Office uropéen des br v ts

(11)

EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 20.06.2001 Bulletin 2001/25
- (21) Application number: 00127688.0
- (22) Date of filing: 18.12.2000

- (51) Int CL7: C12Q 1/68, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50
- (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated Extension States: AL LT LV MK RO SI
- (30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988
- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - · Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - · Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ochiai, Keiko, c/o Kyowa Hakko Kogy C ..Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- · Tateishi, Naoko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54)Novel polynucleotides

Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequenc s of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

RECEIVED

JAN 0 8 2002

TECH CENTER 1600/2900

Description

10

20

25

30

35

40

50

55

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 tor/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 tor/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred tor/year or more of other amino acids, such as L-arginin, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is d regulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtain d on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual g n density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. Howev r, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clanfied hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as Escherichia coll, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known gen is have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been diveloped. The techniquesis of ntribute to the analysis of microorganisms, such as yeasts, Mycobacterium tuberculosis, Mycobacterium bovis us din BCG vaccines, and the like (Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

15 BRIEF DESCRIPTION OF THE DRAWING

10

25

30

40

45

55

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the pre invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the pr s nt invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:

(a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides si lected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,

(b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bact rium, a labeled polynucleotide d rived from a mutant of the coryneform bact rium or a lab led polynucleotide to be examined, under hybridization conditions.

- (c) detecting any hybridizati n, and
- (d) analyzing the r sult of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at I ast two of the third polynucleotides, or at I ast two of the first, second and third polynucleotides.

- (2) The method according to (1), wher in the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotid sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucle tide comprising thin ucliotid is sequence silect diffinities DNOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid si quence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polypeptide according to (16) or (17), wherein at I ast one amino acid is deleted, replac d, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid si quenc having a homology of at least 60% with the amino acid sequince of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storag d vice for screening and analyzing nucleotide sequence information which is coincident with or analogous to th target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (I) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous t the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a corynef im bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- EP 1 108 790 A2 (ii) at least temporarily storing said information; (iii) comparing the at least one amino acid's quenc information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information. (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;

5

10

15

20

25

30

35

40

45

50

55

DEICHOON - ED - ++ NOTANA 1 -

- (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
- (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encod d by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) at least temporarily storing said information; (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence s lected from SEQ ID NOS:2 to 3501.
 - (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polyp ptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
 - (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or anal gous to the p lypeptide having at I ast one amino acid sequence s lected from SEQ ID NOS:3502 to 7001.
 - (31) The system according to any one of (23), (25), (27) and (29), wher in a coryneform bacterium is a micro r-

ganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*. (32) The method according to any one of (24), (26), (28) and (30), while rein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.

- (33) The system according to (31). wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
 - (37) The recording medium or storage device according to
- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryn form bacterium is replaced with an amino acid residue other than a Val residue.
 - (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
 - (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
 - (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
 - (45) A DNA encoding the polypeptide of any one of (38) to (44).
 - (46) A recombinant DNA comprising the DNA of (45).
 - (47) A transformant comprising the recombinant DNA of (46).
 - (48) A transformant comprising in its chromosome the DNA of (45).
 - (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
 - (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
 - (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in th medium, and recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a ferm intation methid, with a circ sponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation p int present in the production strain bas d on a result obtained by (i);
 - (iii) introducing the mutation p int into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the corynef rm

5

10

15

25

30

35

40

45

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway r a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide s quence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
 - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
 - (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (63) A method for producing at least one c mpound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an anal gue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulat at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues ther of;

- r covering the compound from the culture.
- (64) The method according to (63), while rein the compound is L-lysine.
 - (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

10

15

20

30

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a p plidase to extract peptide fragments:
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 25 As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.
 - (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- [0018] The present invention will be described below in more detail, based on the determination of the full nucl otid 35 sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- 40 [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like
- [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactolermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis 55 ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryn form bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride. 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l I ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2

times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA. [0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of th buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant

solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chl roform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

15

20

25

35

45

50

55

DESCRIPTION SER HARROTOPAN I

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinaft r referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a g nome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 h urs.

[0041] The resulting ligation product is precipitated with ethanol and dissolv d in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life T chnologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as discribed in the manufacturer's instructions.

[0043] The transformed *Escherichia coli* is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

15 (3) Production of cosmid library

20

30

40

45

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/I Nacl, 20 mmol/I Tris hydrochloride, 5 mmol/I EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tub. Aft r confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragm. nts of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

35 [0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each will of a 96-well reaction plat (manufactured by PE Bi systems) to which 0.025 ml pir well of a PCR rilation solution has been added using TakaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the insinted fragments.

[0059] The excessive primers and nucleotid is are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-strand d DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plat to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

10

15

25

30

35

40

45

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction prim r (MI3REV) (*DNA Research*, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 µl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye T reminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for us in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The Univ rsity of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactur d by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same mann in as in the preparation of the double-stranded DNA plasmid described in the above (4-1). Thin undotted sequence at the end of the insert fragmint of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Rilaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clon's arising quenced at both ends of the insert in diragm into detict a nucleotide sequence in the contiguous derived from the shotgun sequincing obtained in (5) which is coincident with the singular quence. Thus, the chain linkage between rispective cosmid clones and respective contiguous are clarified, and mutual alignment is carried out. Furth imore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be usid. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone whi in only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a templat or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is det rmined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence repres nted by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are position d at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequ nce selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determin d in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The xpr ssi n modulating fragment (hereinaft r referred to as "EMF") is used herein to define a seril soft polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated peratably" is used here in to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an increase of the EMF.

20

25

30

35

enhancer, a sill incer, a ribosome-binding significant quince, a transcriptional termination sequencity, and the like. In coryneform bacteria, an EMF is usually present in an intergenic significant quantity present to a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an interginic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequince or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids. or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

10

20

25

30

35

40

50

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 r Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucle tide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the lik, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucl otide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derivid from coryn form bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucle tide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridiz s with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a since primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 r an oligonucleotid c mprising a sequence c mplementary to the lig nucleotide.

[0117] Also, analogues of these oligonucleotid is (hereinafter also riferred to as "analogous oligonucliotides") ar also provided by the presint invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiest r

10

20

30

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucl otide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (*Cell Engineering*, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

10

15

25

30

35

40

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutati in worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can b obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a numb r of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of abovitem 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtain d by selecting a mutant wherein the utilization frequency of this pathway is low red.

5. Clarification or determination of us ful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of us ful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene *hom* of a lysine-producing B-6 strain of *Corynebacterium glutamicum* (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of *Corynebacterium glutamicum* ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which profine at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwl of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cyt sine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild typ strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain—btained by the random mutation and silecting is generally infering the properties of saccharides, and production of saccharides, and productions train as temperature and oxygen) to a wild type strain, which brings about troubles such as failing the establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

5

10

20

25

30

35

40

45

50

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or sup nior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bact ria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

10

15

25

30

35

40

50

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invintion obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid supp int to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a pilynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

which at least one of a polynucleotide incoding a polypeptide comprising the amino acid silvance represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

⁵ [0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Thin, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

10

20

25

40

45

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expr ssion profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profil of th gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions:
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) d rived from coryneform bacteria in the method of the hybridizati n, a mutation p int of a useful mutant, which is us ful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can b identified and the gene

expression amount and the xpression profile thir of can be analyzed.

20

35

45

50

55

[0167] The nucleic acid molecul (DNA, RNA) dirived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like in mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol.*, 181: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescenc dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaG ne manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

30 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria us d in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording m dia, such as a floppy disk, a hard disk, a magnitic tapi, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; lectric recording midia, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example, Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

9. System based on a computer using the recording medium of the present invention which is readable by a computer

[0185] The term "system based on a computer" as used herein refers a system composed of hardware divice(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

25 [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software divice (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a softwar device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotid array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genom have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucle tide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the cimparatir.

5

10

15

35

40

50

[0193] This system is usable in the methods in items 2 to 5 as described above for silenching and analyzing the ORF and EMF domains, targit sequence, target structural motification of a coryn form bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as using the derein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

10

15

20

25

30

35

40

by Novagen), and the like.

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so I ing as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-de-cribed host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, th DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamin d Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{tp}), *lac* promoter, P_L promoter, P_R promoter, P_R promoter, P_R promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{tp} are linked in series ($P_{tp} \times 2$), *tac* promoter, *lac*T7 promoter *lot*I promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation cod in is adjust in the dispersion of the initiation cod in its adjust in the dispersion of the initiation cod in its adjust in the dispersion of the initiation cod in its adjust in the initiation code in the initiation cod in its adjust in the initiation code in the initiation code in the initiation code in the

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

mized, in a known manner, depending on the host cells and invironmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia. The genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium. The genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue. Escherichia coli XL2-Blue. Escherichia coli JM109. Escherichia coli DH1, Escherichia coli MC1000. Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109. Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA*, 69: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the meth ds described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the lik.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia. the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Pat int Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metal-lothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)), the method described in Virology, 52: 456 (1973), and the like.

[0218] When insect cells are used as the hist cells, the polypeptide can be expressed, for example, by the method described in Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992), Bio/Technology, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

10

15

20

30

to obtain a ricombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypiptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392. pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.

[0222] Examples of the insect cells include *Spodoptera frugiperda* oocytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual, W.H.* Freeman and Company, New York (1992)), *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

10

15

30

35

40

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbonydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn sleep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is pr ferably maintained at 3.0 to 9.0 during th culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] Whin a microorganism transformed with a recombinant vector containing an inducibling promoter is culturied,

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8*, 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Sk og (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

25 [0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptid of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion prot in expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition t direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membran outer envelope. The method can be selected by changing the host cell employed or the structure of the polyp ptid produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expr ssing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recov ring the polypeptide from the animal individual or plant individual.

[0258] Exampl s of the method for producing the polyp ptide of the present invention using the animal individual include a method for producing the polyp ptide of the present invention in an animal develop d by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

10

10

20

25

30

35

40

45

EP 1 108 790 A2

[0259] In the animal individual, the polypiptid can be produced by breeding a transginic nonhuman animal to which the DNA encoding the polypeptide of thi present invention has be in inserted to produce and accumulate the polypeptide in the animal, and recoving the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the liking the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples includian α -casein promoter, a β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which th DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15*: 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and anoth in method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λ PL(con), λ PL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspend d in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion x-change chromatography using a resin, such as Gelharose FF (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sleve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugarchain thereto) is secrited out of cells, the polypeptide or its dirivative can bid lected in this culture supernatant. Namely, the culture supernatant is brained by treating the culture medium in a treatmint similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence r presented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10: 6487 (1982). *Proc. Natl. Acad. Sci. USA*, 79: 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

15

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptid which has n t been mutated, it is prefirred that the mutant polypeptide has a homology of 60% or mori, preferably 80% or more, and particularly priferably 95% or mirre, with the polypeptide which has not billien mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the pris intrinvention can be produced by a chemical synth sis method, such as Fmoc (fluor intrinvention) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polyp ptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods.

[0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, y asts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucliotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genom of Corynebacterium glutamicum, the polypucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

5

10

20

25

30

35

40

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from th venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antiginused for the immunization, and the sirum is isolated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

25

30

35

45

50

55

- (a) Preparation of antibody-producing cell
- 10 [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polyp ptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody tit r, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- 20 (b) Preparation of myeloma cells

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lin s include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and th like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmoVl glutamine, 5×10-5 moVl 2-mercaptoethanol, 10 µg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 µg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) p r 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is furth r added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

[0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody btained in (d) discribed below as a first antibody, and is further allowed to react with an anti-ration anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invinction is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.
 - [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.
- 15 [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
 - [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.
- 20 [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
 - [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),
- Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).
 - [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
- [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem.*, 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.
 - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bact ria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by th above assay, or a polypeptide array or proteome analysis described below.
 - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
 - 12. Production and use of polypeptide array
 - (1) Production of polypeptide array

- [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.
 - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
- [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
 - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackw II Scientific Publications, Chapter 10 (1986); *Meth.*
- 55 Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.
 - [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polyp ptide array

5

10

15

30

35

40

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptid or compound, or a secondary label which specifically binds to the complex or to a component of the complex aft r unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered includ a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptid comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amin acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide and having substantially the same activity as that of the polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

- 50 [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptid can be detected.
 - 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a pelypeptide is separated by two dimensional extrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining tw

electrophoretic procedures having different principles. For xample, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention

and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotid sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometim is derived from a modified protein. However, the modified protein can be efficiently identified using the recording mindium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide squence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the gen me of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention

35 Example 1

is not limited thereto.

10

15

25

30

40

45

50

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined bas d on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepar d and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l pepton , 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintain d at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the sam manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenologon by nol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subject of to iso-

propanol precipitation. The thus formed genome DNA precipitate was wash id with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

10

15

20

30

35

40

45

50

55

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were blunt-ended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-w II titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

25 (3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digest d with SauSAI (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionat d into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the <code>BamHI</code> site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into <code>Escherichia coli XL-1-BlueMB</code> strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The <code>Escherichia coli</code> was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in ach well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the instreed fragment.

[0350] The excessive prim is and nucli otides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a timplate.

[0352] The double-stranded DNA plasmid as the template was obtain id by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

[0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

20

25

30

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The sembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig d riv d from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage betw n respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] Th sequence in the region which was not covered with the contigs was determined by the following method.

[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone in a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clon or cosmid clone covering the gap part was available, primers complemintary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a timplate or by the shotgun method in which the sequince of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Fram Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of th ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or G npept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by thes ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions we reconfirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the g nome.

10

20

30

40

45

50

	r						_				\neg				1								
5		Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	DNA tcpoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
15		Natched 'ength (a.a.)	524 re	-	390 D	392 D	174 hy	704			1		422 N			854 D	112 h	329 h	268 b		265 c	155 h	117
			5.		ë	ř;	1)/	_		_		4	_		ãó —		3.	7		2	-	
20		Similarity (%)	8.66		81.8	79.9	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
		Identity (%)	8.66		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
25			dnaA		Natis dnaN	natis recF	r yreG	losis					losis		-	ulosis	ulosis	Hie	noluteolus		us ccdA		ulosis
<i>30</i>	Table 1	Homologous gene	Brev:bacterium flavum dnaA		Mycobacterium smegmatis dnaN	Nycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB			:		Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxletta burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
40		db Match	Jsp. R98523		SP. DP3B_MYCSM	P. RECF_MYCSM	P YREG_STRCO	pir:S4<198					sp:YV:1_MYCTU			sp:GYRA_MYC."U	oir.E70698	SP.YEIH_ECOLI	gp:AB042619_1		gp. AF '56103_2	p.r.A49232	pir.F7C664
		ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
45		Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8798	10071	9474	10107	11253	11523	14398	14746	15209	1720?	17670	17860	18736	20073
50		Initial (nt)	-	1920	2222	3585	4766	5354	7830	9465	9562	9514	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
		SEQ NO (a.a)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
55		SEQ NO. (DNA)	7	6	4	5	9		80	Ì	9	=	12	13	4	15	91	1.	18	16	20	21	22

5		no	ine protein	c acic reductase	Jrsor	y protein		e de:oxication	helitase		cosidase		ly or integral	port ATP.	r, periplasmic	nsnort protein	bincing profein	NF-180	is isomerase A	e protein
10		Function	hypothetical membrane protein	2,5-dikelo-D-gluconic acic reductase	5-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide de:oxication enzyme	ATP-dependent DNA helinase		glucan 1,4-alpha-glucosidase	lipoprclein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport profein	ribose transport ATP-bincing protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
15		Natched ength	321	26	196	270	51	139	217	Ī	449	311	266	222	283	312	236	347	169	226 h
20		Similarity (%)	50.8	88.5	56.1	56.7	72.6	79.9	8.09		54.1	63.7	74.1	70.3	56.5	68.3	7.97	44.4	6.69	53.1
		Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
25	ontinued)	s gene	126	P. ATCC	ticus nutA	Jurans	riatum ORF1	estris	dans recG		evisiae 31	pathiae	enes SF370	fecE	a MSBB	rbsC	rbsA		e H37RV	удаР
30	Table 1 (continued)	Homologous gene	Mycobacterium leprae NLCB1788.18	Corynebacterium sp. 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C stat	Erysipelothrix rhuslopathiae ewlA	Streplococcus pyogenes SF370 misC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon mannus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yagP
35				30			3	×ā		-			S E		=======================================	E		Pe		
40		db Match	9p:MLCB1788_6	pir. 40838	sp:5N ^T D_VIBPA	gp:AE001909_7	pri 25°3302C	prf.24*3353A	Sp. RECG_THIFE		SP.AMYH_YEAST	gp.ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir.A72417	prf.1207243B	sp.RBSA_BACSU	pir 151116	sp:CYPA_MYCTU	sp YOGP_BACSU
		OR: (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	687
45		Termina' (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
50		Initial (nt)	20073	21253	21597	22164	23779	24295	26292	26338	28099	29117	29965	29995	30697	3.677	32699	34280	34339	34992
		SEQ NO (a.a.)	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
55		SEQ NO.	23	24	25	26	27		59	33	5	32	33	34	35	98	Ť	88		6

			_	_	1		_							7	\top	\top	\top			Ţ	
5	Function	ferric enterobactin transport system permease protein	ATDaca	A I Pase	vulnibactin utilization proteiri	hypothetical membrane protein	serine/Ihreonine protein kınase	serine/threonine protein kinase	penicillin-binding prolein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
15	Matched length (a.a.)	332	\top	Ť	260	95		486	492	375	469	155	526					117	490	242	262
20	Similarity (%)	70.5			52.7	72.6	68.7	59.1	2'99	65.6	70.8	66.5	38.8					63.3	78.2	57.0	64.1
	Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.8					29.9	46.7	27.3	29.0
25 (bennije	gene	fepG			6-24 viuB	rculosis	ae pknB	olor pksC	S pbpA	spoVE	rculosis	erculosis	ercutosis					eum ATCC	2 gabD	I	ınaschii
o Table 1 (continued)	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 48490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
<i>35</i>	do Match	SD. FEPG_ECOLI E		gp:VC:J52150_9		Sp.YO11_MYCTU	SP PKNB MYCLE		- ,	2		pir.A70700	pir:970700					Sp.PH2M_TRICU	sp.GA3D_ECOLI	SP.YRKH_BACSU	sp:Y441_METJA
	ORF (bp)	978 s	966	777 9	822 s	270 s	1938 s	_		~-	1353	462	864	147	720	219	471	954	1470	1467	789
45	Termina! (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46689	48024	48505	49455	49897	50754	50966	54008	51626	55546	55629
50	Initial (nt)	37221	37242	38202	38978	40458	425:3	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	
	SEO	3541	3542	3543	3544	3545	3546	3547	3548	3543	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
55		1- 41	42	43	44	45	46	47	48	64	20	51	52	53	54	55	56	57	5.B	9	8

		1		1	Ī	i	Τ	T-	<u> </u>	Γ	Ī	Τ	T	T	7-	1		T	\top	1	
	Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and coball transport prote.n		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+:/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
	Matched length (a.a.)	74	179	62		310			390		400	241	340				497	563		229	293
	Similarity (%)	74.3	70.4	83.9		50.7			59 5		64.8	53.1	0.09				68.8	9.09		63.3	73.7
	Identify (%)	40.5	36.3	53 2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
Table 1 (continued)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 cicb	Salmonella typhimurium phuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
	db Match	SP YRKF_BACSU	sp:YCE1_SYNY3	pir:G7C988		9P:LMFL4768_11			pir:F70952		gp AF179611_12	sp:PNUC_SALTY	sp:PHOL_MYCTU				sp.CITW_BACSU	sp:DPIB_ECOLI		sp.DPIA_ECOLI	gp:A=134895_1
	ORF (bp)	291	591	174	855	840	711	1553	1113	447	1269	069	1122	132	384	765	1467	1653	570	654	912
	Terminal (nt)	55386	25680	57651	58941	59930	60662	62321	62390	63594	65458	65508	67972	68301	68251	65824	68720	72158	71474	72814	72817
	Initial (nt)	92995	57270	57478	58087	59091	59952	59909	63508	64040	64150	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
١٨٠٠)	SEO NO (a a)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
	SEQ NO (DNA)	61	62	63	64	65	99	67	89	69	5	=	72	73	74	75	76	77	78	79	ည္ထ

5		Function	hypotheticai protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	crealin.ne deaminase			SIRZ gene family (silent information regulator)	triacylglycerol Ilpase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
15		Matched length (a a)	127	334	43	85		42	8	507	394			279	251	262		171	100	162	570
20		Similarity (%)	76.4	7.66	79.1	63.5		75.0	0.99	59.0	8.66			50.2	59.0	56.1		94.7	100 0	100 0	100 0
		Identity (%)	38.6	99.¢	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
25 26 30	ie i (commuca)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS				Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acres		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
<i>35</i>	lan	HoH	Streptomyc SCM2.03	Corynebact bio8	Mycobacter H37Rv Rv1	Saccharom YKL084w		Chlamydia TC0129	Chlamydia	Streptomyc	Bacillus sp.			Saccharom	Propioniba	Propioniba		Corynebac ureR	Corynebac ureA	Corynebacterium g ATCC 13032 ureB	Corynebacterium g ATCC 13032 ureC
40		db Match	gp:SCM2_3	sp.BIOB_CORGL	pir H70542	sp:YK!4_YEAST		PIR:F81737	GSP: Y35914	prt 25:2333A	gp D38505_1			sp:HST2_YEAST	prf 2316378A	prf 23:6378A		gp.AB029154_1	gp AB029154_2	gp:CGL251883_2	gp CGL251883_3
		ORF (bp)	429	1007	237	339	117	141	273	+-	1245	306	615	924	972	900	888	513	300	486	1710
45		Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85038	85663	87241	87561	88545	90445	90461	91473	91988	93701
50		Initial (nt)	73844	74490	75506	75697	76353	80753	B1274	83568	84935	85403	86277	86318	88532	89444	89558		91174	91503	91992
		SEO NO	3581	3582	3583	3584	3585	3586	35.87	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
55		SEO		-82	83	84	95	98	78	88	89	96	16	92	33	94	95	96	- 26	86	66

,	_		-,																					
10		Function	u'ease accessory protein	u'ease accessory protein	u'ease accessory protein	u'ease accessory protein	epoxide hydrolase		valanimycin resistant profein			heat shock protein (henda-family)	AVP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase	pump protein (fransport)	indole 1 and March Andrews	asponda Harrist	hypothetical membrane protein	
15		Matched length (a.a.)	157	226	205	283	279		347			668	481		196		1297		338	513	15.7		106	
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		2.09	71.4	49.7		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
30 talla	(Danilling)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum A-CC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		I Salmonella typhimurium putA		Phanerochaete chrysosporium aad	Escherichia coli K:2 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
35	-		Cory	Conyr	Coryr A.CC	Cory	Agrob		Strept			Esche	Esche	_	Aerop		Salmo		Phane	Esche	Entero		Esche	
40		db Match	gp:CGL251883_4	gp:CGL251883_5	gp CGL251883_6	gp.CGL251883_7	prf.2318326B		gp. AF148322_1			SP.HTPG_ECOLI	SP. AMN_ECOLI		pir. E 72483		sp.PUTA_SALTY		sp. AAD_PHACH	sp:YDAH_ECOLI	prf 2422424A		Sp. YIDH ECOLI	
45	<u> </u>	(hp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	099	3456	114	945	1614	1332	669	366	315
-		l erm nal (nt)	94199	94879	955.3	95365	98368	98189	973-9	100493	98808	101612	104909	105173	105841	.06630	110890	111274	112318	114083	115478	114564	115943	116263
50		(nt)	93726	94202	94899	95517	97144	97521	9847C	99819	101582	103435	103494	105751	105392	107289	107435	111161	111374	112470	114.47	115262	115578	115949
	SEQ		3600	3601	3602	3603	3604	3605	3606	3607	3608	3509	3610	361:	3512	3513	3514	3615	3616	3617	3618	3619	3620	3621
55	SEO	(DNA)	5	101	102	103	104	105	106	107	108	109	110	Ξ	112	113	114	115	115	=	118	119	120	121

EP 1 108 790 A2

5		Function		transcriptional repressor	methylgiyoxalase	hypothetical protein	mannitol dehydrogenase	O-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoate-beta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyllransferase		DNA-3-methyladenine giycusylase		esterase		carbonate dehydralase	xylose operon repressor prolein	macrolide efflux protein		
15		Matched length (a.a.)			126		497	435		260	451		279	27.1		188		270		231	357	418		
20		Similarity (%)		59 7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		67.6		69.3		53.2	49.3	61.2		
		Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		45.0		39.3		30.9	24.1	21.1		
25	Table 1 (continued)	is gene		nefaciens	ũ	berculosis	rescens milD	niae dalT		12 gatR	ginosus xylB		glutamicum C	glutamicu:n B		па тад		fing bacterium		hermophila	V23 xylR	s mef214		
30	Table 1 (c	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yur?	Mycobacterium tuberculosis H37Rv Rv1278c	Pseudomonas fuorescens milD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterlum glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 Fde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
35		db Match		sp.ACCR_AGRTU	pir.C70019	IYCTU	prf 2309180A			SP.GATR_ECOLI	STRRU		gp:CGPAN_2	gp.CGPAN_1		Sp.3MG_ARATH		gp:AB029896_1		SP.CAH_METTE	SP XYLR BACSU	ap:LLLP42'4_12		
		ORF (bp)	2052	7.80 sp./	390 pir.(510 sp:	1509 prf		189	837 sp.(1419 sp.	822	837 gp:	813 gp.	951	630 sp.	654	924 gp	627	558 sp	1143 Sp	1.0	1	444
45		Terminal (Int)	116548 2	116810 7	120410	120413	1,20951		-	+		127992		127192	128099	+-	130798	130815	132424	132981	\top	+	135519	136122
50		Initial (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127.71	127189	128004	129049	130118	130145	131738	131798	:		135478		3543 136565
		SEQ NO.	3622	<u>. </u>	3624	<u> </u>	3676	1627	+	-	3630	3531	3632	3633	3634	3635	3636	3637	3638			2641		
55	11 مس	SEQ NO DNA)	122	123	124	125	424	127	128	2 5	133	131	132	133	134	135	136	137	138	2	\$		24	143

			_		Τ.							_										_				
5		Function				cellulose synthase	hypothelical membrane protein				chloramnhonical concilius asstati	Sample and sensulate protein	Typothetical Temprane protein		nicional programment	national membrane erotain	Thomas delineare protein		ATD denondant helicase		nodulation protein	DNA repair system specific for alkylated DNA	A 3-mothyladosias alices	hooning off	hynothetical protein	doxorubicin biosynthesis enzyme
15	Matched	(aa)				420 Ce	593 hy				303	\top	\top		361	\top	i	-	A DCA	1	188 noc	219 DN	166 DN		\top	
20	Similarity	(%)		+-		51.2	51.8	-	+		50 7	50.1			623	70.7			84.3		0.99	60.7	65.1	61.3	72.7	+
	Icentity	(%)				24.3	25.1				34.7	30.3	3		32.4	34.7			33.8		40.4	34.7	39.8	34.1	509	31.0
25 30	Homologous gene	,				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Oseudomonas aeruginosa rarD	Escherichia coli K12 vads			Escherich a coli K12 abrB	Escherich a coli K12 yfcA			Escherich:a coli K12 hrpB		Rhizobium leguminosarum bv.	Escherichia coli o373#1 alkB	Escherich'a coli K12 tag	Escherichia coli K12 rhtC	btilis yaaA	Streptomyces peucetius dnrV
35	I					Agrobact	Saccharo YDR420				- pseudom	Scherich			Escherich	Escherich			Escherich		Rhizobium viciae plas	Escherich	Escherich	Escherichi	Bacillus subtilis yaaA	Streptomy
40	db Match					pir 1397 14	SO:HKR1_YEAST				SP.RARD_PSEAE	SP YADS ECOLI			SP. ABRB_ECOLI	Sp. YFCA_ECOLI			SP.HRPB_ECOLI		SP NODL_RHILV	SP ALKB_ECOLI	Sp. 3MG1_ECOLI	SP. RHTC ECOL!	sp:YAAA_BACSU	pri.2510326B
	ORr (ha)		194	1539	636	1451	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	525	878	291	852
45	Terminal	(1)	139744	140329	139226	141789	143526	143075	144639	145480	145518	147239	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
50	Initial (nt)		-4	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151583	152410	155613	155853	156821	156848	157614	158154	. 58869	159162
			2044	3645	3646	3647	3649	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
55	SEO	(OrtA)	*	145	145	147	148	149	153	151	152	153	154	155	156	1	128	159	99	161	162		20	165	991	167

	r				_	_		_	1	1	Τ:		a , !			ī		T		Τ	T			T^-	7
5		Function	methyltransferase				ribonuclease			neprilysin-like meranopepudase i		transcriptional regulator, Unity armily or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde	mvo-inositol catabolism	myo-inositol catabolism	rhizonine catabolism prolein	myo inositol 2-dehydrogenase	myo inositol catabolism	III October Concession of	netabolite export purity of tetracenomycin C resistance		oxidoreduciase	
15		Matched length (aa)	104				118		\top	722	:	238	332	596	498	268	5.BR	282	335	550	/07	457		354	
20		Similarity (%)	56.7				76.3			57.2		9:59	63.0	2:08	1 86.1	587	200	63.0	22.5	13.4	1.2)	61.5		65.5	
		Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	5	200	5 6	7.87	29.	44.6	30.9		2.	
25	tinued)		s pombe				s MC58					farR		olor A3(2)	olor msdA				2000	or iolG		escens tcmA		V	
30	Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Neissena meningitidis MC58 NMB0662			Mus musculus n11		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2)	SC8F11.03c	anno sootuundane	Bacillus subtilis iole	Bacillus subtilis iolO	Rhizobium meliloti mocc	Bacilius subtiis ich or iolG	Bacillus subtifis iolH	Streptomyces glaucescens tcmA		Bacillus subtilis yvaA	
35 40		db Match	gp SPAC1250_3 S				gp:AE002420_13 N			gp.AF176569_1		SP.FARR_ECOLI	nir 14544	6		_	BACSU	sp:10LD_BACSU	Sp. MOCC_RHIME	sp:MI2D_BACSU	Sp.IOLH_BACSU	sp.TCMA_STRGA		sp.vvAA_BACSU	
		ORF (bp)	342 gp	930	657	933	405 96	639	741	2067 91	953		1017	+-		75161	888	1728 5	954 s	1011	870	1374	621	1023	456
45		Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	- i	ı	O EC .	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297
50		Initial (nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	3677 168595	200036	16000	068601	170933	172468	173548	175319	176308	177334		179081	<u> </u>	180842
		SEQ	-i	3669	<u>.</u>	1.		3673	4-	-	_l	.1		1 _	2/05	3680	3681	3682	3683	3684	3685	· i · · · ·	3687	i i	3689
55		SEO		169	170	15	172	173	174	175	178	13 2			6/-	<u>6</u>	181	182	183	184	185	98	197	2	1 89

		Τ_	T	1		_	ī	Τ-	Τ-	1 .	1	1	Τ-	Τ-	T	1	Τ	_	1		ī		
5	Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		glucose-resistance amylase regulator regulator			D-xylose proton symporter		(ransposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminolransferase small subunit		hypothetical prolein	
15	Matched length (a.a.)		331 re	442 OX	303 hy		64 00			134 cal		338 glu			458 D-,		401 tra	145 sig		S06 glu		496 hyp	
20	Similarity (%)		61.9	52.5	64.7		92.2			58.2		62.1			70.5		100.0	2.09	100 0	8.66		72.8	
	Identity (%)		32.0	24.4	33.7		70.3			30.6		28.7			36.0		100.0	27.6	99.9	99.4		44.6	
25 (panuju	gene		cebR	34 y4hM			olor A3(2)								ylT		amicum		anicum	amicum		cutosis	
& Table 1 (continued)	Homo!ogous gene		Streptomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Bacillus subtifis yfiH		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti f.xl.	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698	
35 40	db Match		gp:SRE9798_1	SP Y4HM_RHISN	SP YFIH BACSU		sp.CSP_ARTGO			pri.2'13413A 8		sp.ccpA_BACSU			SP.XYLT_LACBR L		gp:AF189147_1 C	Sp:FIXL_RHIME R	gp. AB024708_1 g	gp. AB024708_2		pir.C70793 H	
	ORF (bp)	384	993	1233	1011	429	201	534	306	414	426	066	402	240	1473	300	1203	435	4530	1518	240	1485	369
45	Terminal (nt)	181647	181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	205956
50	Initial (1c)	18:264	182679	182819	184077	185214	186508	186769	187302	3698 187687	188725	189736	3701 189920	190628	192175	193248	193262	195038	195240	199772	201580	233244	205588
	SEQ NO (a a)	3690	3691	3692	3633	3694	3695	3696	3697	3698	3696	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	371
55	SEQ NO (DNA)	190	191	192	193	194	195	8	197	198	199	200	201	:	203	204	205	202	207	208	508	210	211

	1 1	ATP.	ermea	ctase
Function sembrane prot sembrane prot oglycan rotein rotein rotein	ui di	stern	export system permease	e oxidoredu
Function Function hypothetical membrane protein acetoacetyl CoA reductase oxidoreductasc oxidoreductasc hypothetical protein hypothetical protein rhamnosyl transferase	orthetical pro	hypothetical protein O-antigen export sy binding protein	O-antigen export sy protein hypothetical protein	NADPH quinone oxidoreductase
	=			Ž
Matched length (aa) 1122 223 223 350 350 302	41.0	214	262	302
Similarity (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)		55.1	75.6	71.5
(%) (%) 39.8 35.0 31.4 66.0 60.5 43.2		31.3	31.3	41.1
25		. 8	_ ~	
Table 1 (continued) Homologous gene Mycobacterium avium embB Mycobacterium tuberculosis H37Rv Rv3790 Mycobacterium tuberculosis H37Rv Rv3790 Leishmania major ppg1 Mycobacterium tuberculosis H37Rv Rv3789 Mycobacterium tuberculosis H37Rv Rv3789 Mycobacterium tuberculosis H37Rv Rv3789	mefaciens	Agrobacterium tumefacieris olasmid pTI-SAKURA tlor/100 Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD Mycobacterium tuberculosis	93
ble 1 (complete the string of	erium te	Ti-SAK	enteroco terium t	v3778c piens pi
Table 1 (contin Homologous gen Homologous gen Mycobacterium tubercul H37Rv Rv3790 Pseudomonas sp. phb8 Mycobacterium tubercul H37Rv Rv3790 Mycobacterium tubercul Mycobacterium tubercul H37Rv Rv3789 Mycobacterium tubercul H37Rv Rv3789 Mycobacterium tubercul H37Rv Rv3789	Agrobact	Agrobact olasmid p Yersinia	Yersinia	H37Rv Rv3778c Homo sapiens pig3
35			 	
db Match 70697 70697 70697 70697 70696 70666		6260_1 _YERE		0309
db Match db Match pri.2224383C pri.2224383C pri.25042798 pri.B70697 pri.B706N_MYCTU sp:Y0GN_MYCTU		gp: AB016260_100 sp.RFBE_YEREN	Sp.RFBD_YEREN	73 pr. r / 0695 4 gp. AF010309_1
ORF (bp) 318 318 759 pr	+	597 g 789 s		954 [6
		116	1 1	220151
206385 203541 209210 209210 209992 211535 211535 211535 211535 211535 211535 211535 211535 211535 211535 211535 211535	216605	216116		
206C68 206C68 207011 208S89 209S68 211777 211777 212Z83 212Z83 213712 213712 214Z1 214S27	2.6264	2:6712	218746	216979
SEQ NO (4.8.) 3712 3 3712 3 3714 3 3716 3718 3719 3719 3729 3723 3724 3723	3725	3726	3728	3729 3730
22 22 22 22 22 22 22 22 22 22 22 22 22	-i- -i-	226	228	229

		1 1		_	i				I									Т	_
5	Function		probable electron fransfer protein	arrino acid carrier protein		mclybdopterin biosynthesis protein mceB (sulfurylase)	mclybdopterin synthase, large subunit	mclybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdople in converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminolransferase			
15	Watched 'ength (a.a.)		82	475		368	150	158	154	377	227	256	96	355	121	330			
20	Similarity (%)		51.0	15.8		70.1	75.3	63.3	84.4	58.6	20.5	68.0	70.8	8.09	6.91	65.8			
	Idertity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
52 52 Table 1 (continued)	ous gene		uberculosis	IST		sp. PCC 7942	linovorans	sp. PCC 7942	ilinovorans	linovorans	linovorans	linovorans	uberculosis	oralis malK	elicolor A3(2)	oll:s hisC			
os Table 1	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicotinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicolinovorans modA	Aycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
35	db Match		PIR: A70606	sp.ALST_BACSU		go:SYPCCMOEB_	pri 2403296D	SP.MOCB_SYNP7	p-1 2403296C	gp:ANY10817_2	p.f.2403296F	pri.2403296E		prt 2518354A	CO	sp. HISB_ZYMMO			
40	75 P)	12		1476 sp.A		1083 gp.S									-		99)4	02
	CRF (bp)	582	7 297	i	606		456	471	3 468	3 1185	723	604	321	912	3 420	1023	906	294	120
45	Terminal (nt)	221131	222207	2222.0	225244	225242	226312	225760	227218	227703	228991	229711	230928	230931	231848	232260	234818	234910	235409
50	Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229513	230514	230608	231842	2322E7	233282	233913	235203	235290
	SEQ NO (3.8.)	3731	3732	3733	3734	3735	3736	3737	3738	3735	374C	3741	3742	3743	3744	3745	3746	3747	3748
55	SEO NO NO	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	

	ĺ	T		\neg	\top							T					Ī						
5	Function	actor	Irogenase	idase	magnesium ion transporter		Na/dicarboxylate cotransporter	se	orotein	on protein			membrane transport protein	queuine (RNA-r.bosyltransferase	hypothetical membrane protein			rter	glutamyl-tRNA synthetase				
10	·	transcript on factor	alcohol dehydrogenase	pulrescine oxidase	magnesium ic		Na/dicartoxyl	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane tra	quenine IRM	hypothetical r			AEC transporter	glutamyl-tRN		liansposase		
15	Matched length (a.a.)	252	335	451	444		267	317	160	144			997	400	203			526	316		360		
20	Similarity (%)	57.1	0.99	38.1	68.5		59.6	69.1	73.8	70.1			45.7	0.89	62.1			49.6	63.3		55.0		_
	identity (%)	29 4	340	215	30.9		33.2	46 1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
55 52 Table 1 (continued)	s gene	ιγR	mophilus	ond si	i mgtE			serculosis	serculosis	ponicum			perculosis mpl.2	ıs	Ф			scens strW	×		Ingae tnpA		
S Table 1 (c	Homologous gene	Brucella abortus oxyR	Bacillus slearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv ty.A	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35 40	db Match	gp.BAU8:286_1	sp.ADH2_BACST	sp.PUO_M:CRU	prl:2305239.A		prf.2320140A	pir.C70800	pir.B7C800	gp.RHBNFXP_1			sp:YV34_MYCTU	Sp.TGT_ZYMMO	sp:YPDP_BACSU			pr.S65588	sp.SYE_BACSU		go:PSESTBCBAD_		
	ORF (bp)	762	1017	90.	1350	174	1530	1020	522	417	201	351	2403	1263	738	1030	648	1437	879	066	1110	303	138
45	Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	2439:0	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	255204
50	Initial (nt)	236212	236326	237345	238176	239772	239996	242902	24291C	243494	244015	244466	244902	247310	249294	249428	250369	250503	25152	253819	255438	255794	256967
	SEQ NO (8.8)	3749	3750	3751	3752	3753	:3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3776
55	SEQ NO.	249	250	251	252	253	254	255	256	257	258	259	263	251	252	263	264	285	265	267	268	269	270

						Table 1 (conlinued)				
SEQ NO (DNA)	SEQ NO (8.8)	nitial (nt)	Termiral (nt)	ORF (bp)	db Malch	Homologous gene	Iden!ity (%)	Similarity (%)	Matched length (aa)	Function
27.1	3771	256599	257894	1296	gsp:W69554	Brev bacterium lactofermentum aspC	98.6	100.0	432	asparlate transaminase
272	3772	257900	258529	630						
273	3773	258551	260875	2325	gp:AF025391_1	Thermus thermophilus dnaX	31.6	53.1	642	DNA polymerase III holoenzyme tau sukunit
274	3774	259312	258596	717						
275	3775	230987	261262	339	Sp. YAAK_BACSU	Bacillus subtilis yaaK	41.6	74.3	101	hypothetical prolein
276	3776	251402	262055	654	sp.RECR_BACSU	Bacillus subtilis recR	42.5	72.4	212	recombination protein
277	3777	253295	262546	750	prl:2503462B	Heliobacil us mobilis cobQ	38.3	61.7	248	cotyric acid synthase
278	3778	254566	263298	1269	prf.2503462C	Heliobacilius mobilis murC	31.3	9.09	444	UDP-N-acetylmuramyl tripeptide synthetase
279	3779	265579	264599	1080	pir.H70794	Mycobacterium fuberculosis H37Rv dnaQ	25.7	55.2	346	DNA polymerase III epsilon chain
280	3780	269124	268258	857	sp:YLEU_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	100.0	100.0	270	hypothelical membrane protein
281	3781	269371	270633	1263	sp:AKAB_CORGL	Corynebacterium glutamicum lysC-alpha	99.5	8.66	421	aspartate kinase alpha chain
282	3782	270576	269524	1053						
283	3783	271761	273194	1434						
284	3784	274120	273542	579	prf.2312309A	Mycobacterium smegmatis sigE	31.2	63.5	189	extracytoplasmic function alternative sigma factor
285	3785	274366	275871	1506	sp.CATV_BACSU	Bacillus subtilis katA	52.9	76.4	492	vegetalive catalase
286	3786	275891	276232	342						
207	3787	276247	275957	291						
288	3788	276763	276302	462	sp LRP_KLEPN	Klebsiella pneumoniae Irp	37.1	72.0	143	leucine-responsive regulatory protein
289	3.89	276829	27758:	753	sp. AZLC_BACSU	Bacillus subtilis 1A1 azIC	30.5	68.0	203	branched chain amino acid fransport

	Function			metalloregulatory protein	arsenic oxyanion-translocation pump membrane subunit	arsenate reductase				Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple resistance and pH regulation related protein A				transcriptional activator	two-component system sensor histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein
	Matched ength			06	341	119				503	119	824				223	521	98		307	149
	Similarity (%)			689	84.2	6.89				70.4	70.6	64.3				70.4	56.8	0.09		54.7	71.8
	Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
Table 1 (continued)	Homologous gene			Sirorhizobium sp. As4 arsR	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD	Staphylococcus aureus mnhC	Bacillus firmus OF4 mrpA				Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1363 apl		Bacillus subtilis ykuE	Bacillus subtilis yqeY
	db Match			gp:AF178758_1	gp: AF178758_2	SP ARSC_STAXY				gp.AF097740_4	ort 2504285D	gp:AF097740_1				sp:czcr_AlceU	pr.2214304B	SP.APL_LACLA		pr.B69865	sp.YGEY_BACSU
	CRF (5p)	324	315	345	1080	387	318	270	453	1530	38.1	2986	1485	603	864	999	1467	603	561	915	453
	Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949	281404	782917	283317	287857	287059	287966	289131	289777	292417	291273	292597	293991
	Iritial (nt)	277581	278301	278732	278914	279893	280666	280939	281401	282933	783317	285202	286373	287661	288829		291243	291815	291833	293511	293539
	SEQ NO (a a.)	3790	3791	3792	3793	3794	3795	3796	3797	3798	3700	3300	3801	3802	3803	3804	3805	3806	3807	3808	3805
	SEQ NO (DNA)	290	†	ī	293	294	235	296	297	298	900	3000	301	302	303	304	305	306	307	308	309

				τ -	, .			1	,			r		ı	1					. —		
5		Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid-CoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
15		Matched length (aa)	782	1.2		50	149	440		534	127	251	254	394	153	272			207		240	211
20		Similarity (%)	177.1	63.4		0.96	89.9	689		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		17.1	58.3
	i	Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
25 30 35	Table 1 (continued)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streplomyces coelicolor A3(2) SCH-7, 10c	Mycobacterium tuberculosis H37Rv Rv3679c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
40		db Match	prf 2209359A	pir:S20912		gp:SCH17_10	pir:G70790	sp. SHIA_ECOLI		sp:LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	Sp.FLUG_EMENI	prf.2512386A	Sp. NODN_RHILV	pir.F70790			prf:2323349A		SP:UVEN_MICLU	pir.870790
	ĺ	ORF (bp)	2385	336	192	153	459	1353	609	1536	525	6 33	942	194	47.	843	1173	705	189	:92	780	558
45		Termina! (nt)	294034	297402	297622	297783	298250	298332	300695	299726	301512	303099	304074	305263	305758	306790	305195	307524	306782	307727	308734	309302
50		Initial (rt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305289	305858	306387	306890	307452	307918	3828: 307955	308745
ر.]	SEQ NO (2 a)	3810	3311	3812	3313	3314	3315	3316	3917	3918	3819	3920	3821	3822	3823	3824	3825	3826	3827	3828	3829
55		SEQ NO (DNA)	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

			· · ·	-				7	_			Т			\neg	-		$\overline{}$		_
5	Function	eir.		9	ibrane protein	nosphalase	ein	region protein		abrane protein	ein	ein				RNA helicase	u		ase I	
10	Fur	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphalase	hypothetical prolein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
15	Matched length (a a)	192	396	280	156	287	349	319	<u> </u>	262	201	59				764	67		977	
20	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
30 (continued)	s gene	2 уеаВ	ercu:osis	р. С12 сЕН	erculosis	rae erB	erculosis	8		erculasis	oerculosis	oerculosis				rA	ormis SI55		berculosis op.A	
30 Table 1 (c	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tubercuiosis 137Rv Rv367 c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherich a coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter gobiformis SI55 csp		Mycobacterium tubercutosis H37Rv Rv3646c topA	
3 5		Ē	W.E.	රි	₹£	M	ŽŸ	Es		₹£	¥£ E	₩.H							ΣÏ	\dashv
40	db Match	Sp. YEAB_ECOL!	pir:H70789	pri:2411250A	pi::F70789	pir:S72914	pir.E70788	pir.C44020		pir.C7C788	pir.870788	pir.A70788				sp:YPRA_BACSU	sp.CSP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	545	396	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	731
45	Termina' (nt)	310038	311325	311839	312909	313625	316002	317132	316350	317893	318465	318699	319013	318545	319335	3:9336	322207	321992	325897	326614
50	Initial (nt)	305370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318596	318958	318991	321690	322007	322216	322910	325904
	SEO	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	384E
55	SEQ.	330	331	332		334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

					-												·				<u> </u>
	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	typothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycolhiol-dependenl formaldehyde dehydrogenase		metallo-beta-factamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthelase	UDP-sugar hydrolase	
	Matched length (a a)	263	423		144	172	314	558	101	362		160	251	415	320	108	230		260	586	
	Similarity (%)	62.4	52.7		0.65	63.4	0.59	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	66 5		57.3	54.4	
	identity (%)	32.7	25.3		326	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	
Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R23 cyaB	Bacilus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysantherni D1 bgxA	Azospiri lum irakense salB	Amycolatopsis methano ica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tubercutosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yefJ	Salmonella typhimurium ushA	
	db Match	sp.CYAB_STIAU	sp.DP3X_BACSU		gp AEC02103_3	gp.AEC01882_8	sp:RLUC_ECOLI	SP.BGLX_ERWCH	gp: AF090429_2	sp.FADH_AMYME		sp.YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir:A70562	sp.YC22_METJA		sp. YEFJ_ECOLI	sp.USHA_SALTY	
	ORF (bo)	1041	1257	162	111	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340559	342375	343451	345717	345814
	Initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975
	SEQ NO	3649	3650	3851	3852	3853	3654	3855	3956	3257	3956	3859	3860	3861	3862	3963	3864	3965	3966	3967	3868
	SEQ NO DHA)	349	350	351	352	353	354	355	355	357	358		360	361	362	363	364	365	366	367	368

5		Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphale Ihymidylyllransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeplidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		cabsular polysaccharide biosynthesis	ORF 3	I popolysaccharide biosynthesis / aminotransferase
15		Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	:05		613	06	394
20		Similarity (%)	-	74.9	84.9	74.0	83.4	61.2	99		683	62.5	56.4		46.0	9.92	57.2	68.6		65.7	51.0	68.3
		Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
25	lable I (confinded)	us gene		berculosis	ım M32 rfbA	utans milC	utans XC rmlB	us HB8 nox	oureus sirA		berculosis	elicolor	apsulata		elicolor A3(2)	TCC 6872	insorii ptk	insonii ptp		aureus M capD		ejuni wlaK
	lable	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans milC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomonas capsulata		Streptornyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsorii ptk	Acinetobacter Johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
35		<u></u>				5	 	Ì							S	O R						
40		db Natch		sp:ADH_MYCTU	sp.RFBA_SALAN	gp: D78182	SP. RM.B. STRVU	SP NOX_THETH	prf.2510361A		sp:v17M_MYCTU	gp.SC5F2A_19	prf.2502226A		gp.SCF43_2	55: 95W dsg	prf.2404346B	prf. 2404346A		sp:CAPD_STAAU	PRF.2109288X	prf.2423410L
		ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	.032	1095	1434	603	786	1812	942	1155
45		Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	36770*	369801
50		Initiat (nt)	346460	346019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647
س.	:: \big	SEQ NO (a.a.)	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3890	3881	3882	3883	3884	3885	3885	3887	3888
55		SEO NO (DNA)	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	397	388

			ls /		au				a)					01					-
Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	ipopolysaccharide biosyrthesis / export protein	UDP-N-acetylglucosamine 1-carboxyviny:transferase	UDP-N- acefylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetical protein	acetyltransferase	hypothetical prote n B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
Matched length (a.a.)	196	380	504	427	273	356	53		70		404	354	65	388			243	221	
Identity Similarity (%)	75.0	69.2	8.69	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	_
Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
Homologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthornonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 w5hl I	
db Match	9p AF014804_1	sp.CAPM_STAAU	pir:S67859	SP MURA_ENTC.	sp:MURB_BACSU	gp VCLPSS_9	prf 2211295A		pir.S43613		pir.G70539	gsp:W37352	PIR: S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB000676_13	
OR:	612	1161	:491	1314	500.	.035	150	135	327	276	1170	993	231	1161	273	1209	822	645	
Termina¹ (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	307200	
Initia' (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383769	385190	386195	386556	
SEQ NO (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906	
SEO NO (DNA)	389	390	361	352	393	394	395	396	397	398	399	9	104	402	403	404	405	406	:

					,	-,							— · _T		. —— - т	—	r				
5		Function	dihydrolipoamlde dehydrogenase	UTPglucose-1-phosphale uridylyltransferase	regulatory protein	Iranscriptional regulator	cytochrame b subunit	succinate dehydrogenase Ilavoprotein	succinate dehydrogenase subunit B						hypothelical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
15		Matched length (a.a.)	469 dil	295 U	153 re	477 Ira	230 cy	e08 IIa	258 su						259 hy	431 hy			197 te		499 tra
20		Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
		identity (%)	9.66	417	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
25	lable i (confinited)	s gene	lutamicum	pestris	uginosa PAO1	erculosis	color A3(2)	Ą	rans sdhB						color	2 yjiN			glaucescens		ae T#2717
30	ו אומפו	Homologous gene	Corynebaclerium glutamicum A⁺CC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 ortX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glau GLA 0 tcmR		Streptomyces fradiae T#2717 urdJ
35			A C	×	Pse.	ΣΞ	SC	8	Ра						SC	Es			ਲੋਂ ਹ		Stre
40		db Natch	gp CGLPD_1	pir.JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir.A27763	gp.BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOLI			sp.TCMR_STRGA		gp:AF164961_8
		ORF (bp)	1407	921	49B	:422	77.	1875	637	336	261	630	96	339	975	1251	420	303	879	204	1647
45		Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50		Initial (nt)	387692	389248	390233	3911 392208	392705	393639	395428	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401:50
		SEQ NO (2 a.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3925
55		SEQ NO (DNA)	408	409	410	÷	412	£13	414	415	416	417	418	419	420	421	422	423	424	425	426

5	Function	Iransporter	formylletrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical prolein		cation-transporting P-type ATPase B		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			
15	Matched length	 	286 10	208 de			280 hy	92 hy		748 ca		626 glu	348 he	330 AB	254 AB	266 hyl	258 hy	•		
20	Similarity (%)	74.6	72.7	74.0			53.6	95.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6	:		
	Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25 9)ene	T#27:7	P-1 purt:				GIR 10	ulosis		ctpB		isiae	theriae	theriae	theriae	or C75A	or C75A			
30 F	Homologous gene	Streptomyces fradiae T#27:7 urdJ	Corynebacterium sp. P-1 purt	Bacillus subtifis deoC			Mycobacterium avium GIR 10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C stat	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A: 1c			
40	db Match	gp AF164961_8	sp. PURU_CORSP (sp DEOC_BACSU_E			prf.2413441K	pir A70907 H		sp:CTPB_MYCLE N		SP. AMYH_YEAST S	gp:AF109162_1 C	gp:AF109162_2 h	9p.AF109162_3 C	gp.SCC75A_17 S	gp:SCC75A_17 S			
15	ORF (bp)	1632	912	999	150	897	867	300	200	2265	450	1863	1077	890,	813	957	837	810	813	501
45	Term·nal	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415528	416599	417439	417545	418441	419257
50	Initial (nt)	402799	405419	405480	406310	406417	406550	407708	406546	405975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
	SEQ NO	3927	3928	3929	3930	393.	3932	3933	3934	3935	39361	3937	3938	3939	3940	3941	3942	3943	3944	3945
55	SEQ NO IDNA	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

EP 1 108 790 A2

5 10	hed jth Function	: UDP-N-acetylpyruvoylglucosamıne reductase				8 long-chain-fatty-acidCoA ligase	6 transferase	6 phosphoglycerate mutase	7 two-component system sensor histidine kinase	1 Iwo-component response regulator		1 ABC transporter ATP-binding protein	9 cytochrome P450	6 exapolyphosphatase	hypothetical membrane protein	g ipyr:oline-5-carboxylate reductase	14 Imembrane glycoprotein	5 hypothelical protein	
20	Similarity Matched (%)	58.4 356				68.1 558	58.7 416	84.2 246	74.8 417	90.9 231		60.7 921	66.9 269	57.8 306	57.3 302	100.0 269	52.0 394	94.6 55	
	Identity (%)	30.1	_	-		35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
55 57 Table 1 (continued)	Homologous gene	Escherichia coli RDD312 mu:B				s icfA	coelicolor	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	n tovis BCG		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacter urr glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	m leprae 72	
	Homol	Escherichia co				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces gpm.	Mycobacteriu	Mycobacterium bovis BCG regX3		Streptomyces SCE25.30	Mycobacteriu H37Rv RV31:	Pseudomona	Mycobacteriu H37Rv Rv049	Corynebacter ATCC 17965	Equine herpe	Mycobacterium leprae B2168_C1_172	
40	db Match	gp.ECOMURBA_1				sp:LCFA_BACSU	gp SC2G5_6	sp.PM.GY_STRCO	prf 2404434A	pd.2404434B		gp SCE25_30	sp:YV21_MYCTU	pd.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp D88733_1	pir S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	- B 10	1122	198	219
45	Terminal (nt)	420885	421516	42C309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434910	434886	434986	435940	436321
	SEQ NO (a.a.)	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3955	3957	3958	3959	3960	3961	3962	3963
55	SEO NO (NNO)	445	447	448	449	450	451	452	453	454	455	455	457	458	459	460	46:	462	463

		T	i	1		T-	Τ	T	T	Т		1	T	Γ	ī	Τ-	Т	T	1	T	نه ا	$\overline{\Box}$
5	Function	ein			hosphatase	ein		ductase	ane synthase		cal operon transcriptional regulator	ort protein	ale dehydralase	ogenase		ort protein		iron(III)-transport system permease protein		pinding protein	croporphyrin-III C-methyllransferase	
10	J.	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cal operon transc	shikimate transport protein	3-dehydroshikimale dehydralase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport protein		periplasmic-iron-binding protein	croporphyrin-III C	
15	Watched lergth: (a.a.)	29			296	74		455	308		321	417	309	282		363		578		347	486	
20	Similarity (%)	100 C			77.4	66.2		74.3	75.3		57.6	72.2	57.9	98.6		9.89		55.2		59.9	71.6	
	Identity (%)	89.7			510	40.5		44.4	50.7		27.1	35.5	282	98.2		34.7		25.1		25.1	46.5	
25 Table 1 (continued)	s gene	color			rae e:B	erculosis		rae hemA	rae hern3b		aceticus	2 shiA	qa4	lutamicum		2 polG		s sfuB		enteriae bitA	ae cysG	
35 Table 1	Homologous gane	Streptomyces coel·color SCE68.25c			Mycobacterium leprae MTCY20G9,32C, serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catiV	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebaclerium glutamicum ASO19 aroE		Escherichia coli K12 polG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
40	db Match	gp:SCE68_25			pir S72914	sp.YV35_MYCTU		SP HEM1_MYCLE	pir.S72887		SP.CATM_ACICA	SP. SH.A_ECOLI	sp.3SHD_NEUCR	gp:AF124518_2		sp. POTG_ECOLI		sp.SFUB_SERMA		gp. SHU75349_1	pir:S72909	
	ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
45	Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441501	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50	Initial (nt)	435463	435573	437233	439044	438179	438294	439516	439909	441220	442482	442758	444.85	446538	447670	449179	449714	450826	450849	451895	452661	454450
	SEQ NO (a a)	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3381	3982	3983	3984
55	SEQ NO (SNA)	464	465	466	46?	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	183	484

5	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	proloporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothelical membrane protein	суtоснють с biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate cctaprenyfiransferase
15	Matched length (a.a.)	337			858		364	464	425	161	208	245	533	338		144	06		82	301
20	Similarity (%)	83.1			56.5		7.97	59.9	83.5	32.7	71.2	35.3	0.87	8.77		69.4	72.2		1.87	61.5
	Identity (%)	8.09			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	us gene	licolor A3(2)			prae ctpB		ilicolor A3(2)	Υm	, prae hemL	12 gpmB	berculosis	berculosis	berculosis	berculosis		berculosis ob5	ureus zntR		berculosis	.12 menA
Table 1	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae clpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae hemL	Escherichia co i K12 gpmB	Mycobacterium tuberculosis H37Rv Rv3526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv 2v0531	Escherichia col K12 menA
35	db Match	SP HEMZ_STRCO			MYC.E		sp. OCUP_STRCO	Sp. POOX_BACSU B												SP WENA_ECOL! E
40	a	sp HEM2	_		sp.CTPB_		sp:DCUP	XOad ds	sp:GSA_NYCLE	sp.PWG2_ECOLI	pir:A70545	pir:B70545	pir.C70545	pir:070545		pir.G70790	prf.242C312A		pir:F70545	sp WEN
	ORF (bs)	1017	582	510	2544	. 843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	954
45	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	765909	457571	468658	470170	470654	470657	471121	471847	471915
50	In tial (nt)	454967	456016	456641	457357	459425	46C023	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO.	3985	3986	3987	3988	3989	3950	3991	3992	3993	3994	3995	3596	3997	3598	3999	4000	4001	4002	4003
55	SEQ NO (DNA)	485	7 98	487	488	489	490	491	492	493	494	495	496	497	498	499	203	501	502	503

								_	,		Ţ										
5		lion	6	boxylase	ane protein	ldehyce	jlucarale	ry protein			oxylic acid				: phosphate			80		nine dehydratase	lerase
10		Function	glycosyl transferase	ma'onyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyce dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical prolein		2-pyrone-4, 6-dicarboxylic acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	plerin-4a-carbinolamine dehydratase	muconate cycloisomerase
15		Matched length (a.a.)	1	421	139	520	303	293	94		267	\top			410			293 n	202 p	77 p	335 п
20		Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2	64.9		54.7				83.2			703	82.7	68.8	76.7
		Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				0.09			48.5	57.9	37.7	54.0
25	ned)	e _D					HCS		sis		8 IdB				Sis					8	s s
<i>30</i>	Table 1 (continued)	Homologous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yqiF	Pseudomonas pulida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp LB126 fidB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex aeolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
35			9	i					≥I		6.				ΣÏ		_			Ac	ΣÏ
40		cb Match	gp.AF125164	_	sp.YQJF_ECOLI	pir:S27612	sp:KDGD_PSEPU	sp.ALSR_BACSU	pir.B70547		gp:SS>277295				pir D70547			sp:MENB_BACSU	gp:AE001957_12	pir C70304	pir.070548
		ORF (bp)	864	1323	4	1560	940	879	315	444	750	417	378	261	1275	222	308	957	603	309	1014
45		Terminal (nl)	473811	473914	474997	475489	477046	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
50		Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	4802C1	480624	48.001	481391	482668	483587	483942	485062	485384	485385	486001
		S NO S	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	¢C20	4021	4022
55		SEO NO (D:IA)	504	505	206	507	808	203	510	511	512	513	514	515	516	517	518	519	520	521	522

											 ,				
5	Function	2-oxog!utarale decarboxylase and 2- succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inosilol monomannoside transferase	O-serine/O-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		tase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L.1	protein	4-aminobutyrate aminotransferase
		2-oxogluta succinyl-6- cyclohexac synthase	hypothetics	alpha-D-m 6)phospha monoman	D-serine/D transporter	ubiquinone biosynthes		oxidoreductase	heptaprenyl d component II	preprotein	transcriptic	50S riboso	50S riboso	regulatory protein	4-aminobu
15	Matched length (a.a.)	909	148	408	447	237		412	316	11	318	145	236	564	443
20	Identity Similarity (%) (%)	54.0	64.9	54.2	6 68	66.7		76.7	67.1	100.0	100.0	100 0	100 0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100 0	100.0	100.0	23.1	60.5
20 Table 1 (continued)	Homologous gene	menD .	uberculosis	lubercutosis	K12 cycA	K12 ubiE		luberculosis	ermophilus pT	n glutamicum cE	n glutamicum sG	n glutamicum K	n glutamicum A	oelicolor	tuberculosis gab T
·	Homolog	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tubercutosls H37Rv pimB	Escherichia coli K12 cycA	Escherlchia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0581c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebaclerium glutamicum ATCC 13032 rolK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptornyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
40	db Match	sp.MEND_9ACSU	pir.G70548	pir.H70548	sp:CYCA_ECOLI	sp.UBIE_ECCLI		pir.D70549	sp.HEP2_BACST	gp:AF130462_2	gp.AF130462_3	gp.AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp.GA9T_MYCTU
	ORF (bp)	1629 54	441 pi	1239 pi	1359 sp	98 069	699	1272 pi	1050 , sp	333 81	954 91	435 91	708	1512 9	1344 \$
45	Terminal (nt)	488656	489100	490447	7.91938	492655	493583	492645	495110	497142	498327	499032	499869	499925	522920
50	Initial (nt)	487C28	468660	489209	490580	491965	492915	493916	494061	495810	497374	493598	499162	501436	501577
	SEQ NO	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
55	SEQ NO (DNA)	523	524	525	526	527	528	529	530	531	532	533	534	535	536

				ے								beta	heta				
	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	lyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase bela chain	DNA-directed RNA polymerase heta chain	hypothetical protein		DNA-binding protein	hypothetical protein
	Matched , length (aa)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90 4	68.7	52.0		63.8	57.7
	Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0	,	39.2	29.3
Table 1 (continued)	Homalogous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 lyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rpiL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpcC	Mycobacterium tuberculosis H37Rv Jv0186c		Streptomyces coelicolor A3(2) SCJ9A 15c	Mycobacterium tuberculosis H37Rv RV29CBC
	db Malch	sp.GABD_ECOLI	GP.ABCARRA_2	sp:TYRP_ECOL!	sp.CTPG_MYCTU	Sp P49_STRLI		sp RL1C_STRGR	sp RL7_MYCTU		p r A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GF:AF12:004_1		gp:SCJ9A_15	sp:YT38_MYCTU
	ORF (bp)	1359	468	1191	1950	1413	503	513	384	138	972	3495	3999	282	180	780	799
	Terminal (nt)	504283	503272	505569	507647	509081	969509	510510	510974	510989	512507	5:6407	520492	518696	520950	521644	521679
	nitial (nt)	502925	503739	504379	4040 505698	507669	509094	509998	5:0591	5.1126	511536	512913	516494	519277	520671	520855	522476
	SEQ NO (a.a.)	4037	4038	4039	404C	4041	4042	4043	4044	4045	4046	4047	404B	4049	4050	405;	4352
	SEO NO (DNA)	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

١					т	_	_		-													
5	Function	30S ribosomal protein S12	al protein S7	ıctor G						ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA acetate coenzyme A transferase	30S :Ibosomal protein S10	al protein L3		50S ribosomal protein L4	50S ribosomal protein L23		al protein L2	30S ribosomal protein S19	
15		30S ribosom	30S ribosomal protein	elongation factor			lipoprotein			ferric enterobac binding protein	ferric enterot	ferric enterot	butyryt-CoA:	30S ribosom	50S ribosomal protein L3		50S ribosom	50S ribosom		50S ribosomal protein L2	30S ribosom	
15	Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	95	
20	Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	9.08	79.3	0.66	9.68		90.1	9.06		92.9	6.86	
	Identity (%)	6.06	81.8	71.7			58.0	_		56.2	45.6	48.1	58.6	- 84.2	99		71.2	74.0		60.7	87.0	
25 (pənu	e.	ulare	atis							ပ္	ပ္ခ	٥	n actA	ဥ	CG rplC		CG rpID	CG rpM		CG rplB	losis	
S Table 1 (continued)	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus Iuteus fusA			Chlamydia Irachomalis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv RvC705 rpsS	
35				2			O			!		-				_						
40	db Match	SP: RS12_MYCIT	sp 2S7_MYCSM	sp.EFG_MICLU			GSP Y37841			sp: FEPC_ECOLI	sp.FEPG_ECOU		gp.CTACTAGEN_1	sp:RS10_PLARO	Sp: 3_MYCBO		Sp:RL4_MYCBO	Sp.RL23_MYCBO		Sp:RL2_MYCLE	sp.RS19_MYCTU	
	ORF (bp)	365	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	84C	276	285
45	Termina: (nt)	523059	523533	526010	523911	526013	526894	£27607	892823	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50	Initial (r1)	522694	523369	523896	525070	526156	527121	527759	528040	529570	530628	531782	532008	533099	533437	534087	534090	534746	535072	535075	535935	536183
	SEQ NO (a.a)	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063	4364	4065	4066	4067	4068	4069	4070	4071	4072	4073
55	SEQ NO.	553	554	555	556	557	558	559	960	561	295	563	564	565	999	567	999	569	570	57:	572	573

		Ţ	T	Γ.		T -	Γ			Τ		Γ	Г	se		ļ	0		Ī	Ī	Ē		
5	Function	itein L22	tein S3	itein L18	lein L29	tein S17				tein L14	ein L24:	tein L5		nic acid reducta		enase chain D	nine dinucleotid	enase H or alpha			TP-binding prote		
10	Fun	50S ribosomal protein L22	30S ribasomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucteotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
15	Matched length (a a)	109	239	137	29	82				122	105	183		260		298	94	756			524		
20	Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6		
	Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	. 73.2	73.6		52.3		28.9	37.2	24.3			26.9		
os Table 1 (continued)	us gene	iberculosis NV	ovis BCG rpsC	ovis BCG rpIP	ovis BCG rpmC	ovis BCG rpsQ				berculosis IN	berculosis iX	s rplE		Sp.		Jenes fdhD	icclor A3(2)	F			berculosis ppD		
·	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv3714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rp!X	Micrococcus luteus rplE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdiF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
35			Γ-				 		-			Σ		_		_	8 X		! 				-
40	db Match	sp. RL22_MYCTU	SP. 3S3_MYCBO	Sp.RL16_MYCBO	Sp. 3L29_MYCBO	SP: 3517_MYCBO				sp.RL:14_MYCTU	sp:RL24_MYCTU	sp.RL5_MICLU		sp:2DKG_CORSP		SP: FDHD_WOLSU	gp:SCGD3_29	SP.FDHF_ECOLI			sp:YC81_MYCTU		
	- 1919년 (학원)	363	744	414	229	276	294	313	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	1074
45	Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	549187	548990	550699	551854
50	Initial (nt)	536217	536579	537328		537977	539267	538698	539413	539741	540112	540426	541048	542856	543412	544329	544670	546889	547329	548990	4093 550651	551844	552927
	SEO NO (a.e.)	4074	4075	4076	: 4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	400	7607	4093	4094	4095
55	SEQ VO (DNA)	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	585	290	-65	592	593	594	595

5		u			n S8	nL6	n L18	n S5	n L30	n L 15		emialdehyde		t regulatory	nase or betaine					drogenase		e synthetase	e synthetase	
10		Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal prolein L6	50S ribosomal protein L 18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal prolein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or belaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoeno!pyrwate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
15		Matched length (a a)	405	150	132	179	110	171	55	143		128		125	487	İ		409	107	257	50	629	378	422
20		Similarity (%)	50.4	66.7	7.76	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.6	66.4	70.8	26.0	45.0	66 7	65.2
		Identity (%)	24.7	42.7	75.8	59.2	67.3	8.79	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	20.0	22.9	386	34 8
25	Table 1 (continued)	us gene	igidus AF 1398	odurans	8	Ş	s rpIR	s rpsE	12 rpmJ	S rplO		ilcolor msdA		lense carR	dochrous 15			recA2	sulatus fdxE	tida cymB	K1 APE0029	us Vc1 DSM	furiosus Vc1 DSM	thropolis theB
30	Table 1 (Homologous gene	Archaeoglobus fulgidus AF 1398	Delnococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. recA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furios 3638 ppsA	Rhodccoccus erythropolis thcB
35			₹		2	2						<u> </u>			R 0			S	<u>ur</u>	2 P	a	T 60	пю	-
40		db Matc:	pir.E69424	gp.AE001531_13	pir: S29885	pir.S29886	sp.RL18_MICLU	SP:RS5_MICLU	sp.RL30_ECOLI	Sp:RL15_MICLU		prf:2204281A		GP ABCARRA_2	prf.2518398E			pri:24112579	prf.2313249B	gp: PPU24215_	PIR:H72754	pir.JC4175	pir.JC4176	10 pri 2104333G
		ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1230
45		Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
50		Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	262632	562633	562963	563736	563871	565471	566759	568088
		SEO NO (a.a.)	4096	4097	4098	4099	4100	410	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
55		SEO S NO 1	296	597	598	599	900	601	602	603	604	605	909	607	809	609	6:0	611	612	613	614	615	9,9	6:1

5	Function	transcriptional repressor	adenylale kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothelical protein	cell elongation protein	cyclopropane fatty acyl-phospholipid synthase	hypothetical membrane protein
15	Matched length (a a)	256	184		253		72	122	134	:32	311		122	265	786			485	505	423	100
20	Sirritarity (%)	0.39	81.0		74.7		96.0	91.0	93.3	93 9	77.8		17.1	61.1	51.2			53.8	50.9	26.0	29.0
	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
30 (bendining) t alver	Homologous gene	ora carotovora	eus adk		168 map		infA	ophilus PB8	oelicolor A3(2) <	tuberculosis IC rpsD	168 rpoA		i K12 rplQ	i K12 truA	tuberculosis			1 tuberculosis	sliana CV DIM	li K12 da	Streptomyces coelicolar A3(2) SCL2.30c
35 35	Homolog	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HBB rps13	Streptomyces coelicolor A3(2) SC6G4.08. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rpIQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium Iuberculosis H37Rv Rv5283	Arabidoosis thaliana CV DIM	Escherichia coli K12 da	Streptomyces of SCL2.30c
40	db Malch	pri.2512309A	sp.KAD_MICLU		SP. AMPM_BACSU		pir.F69644	pr.2505353B	sp.RS11_STRCO	prf.2211297F	sp.RPOA_BACSU		Sp.RL17_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	Sp. DIM ARATH		gp:SCL2_30
	ORF (bp)	904	543	612	792	828	216	365	402	603	1014	156	489	867	2397	456	303	1257	1545		426
45	Terminal (:r:)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576998	577923	580429	580436	580919	582562	584228	585520	586248
50	Initial (Int)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	561406	562884		565823
	SEO		4119	4120	4121	4122	1123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
55	SEQ NO.	618	6;9	620	62.	622	623	624	625	626	62?	628	629	630	631	632	633	63	635	636	63,

					T				A1.										
5	Function	ne proteinase	brane protein	abrane protein				ein	ntigen target ES/	rotein L13	rotein S9	mine mutase		ein			ein	eu	ein
10	Fu	high-a!kaline serine proteinase	hypothetical membrane protein	typothetical membrane protein				hypothetical protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
15	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
20	Similarity (%)	58.0	50.6	38.4	-			6.69	81.3	82.1	72.4	76.4		45.6			72.2	68 5	78.6
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
<i>25</i> (pə			(3(2)	sis				sis	sis	(3(2)	(3(5)			303				sis	sis
& Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4 12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 str1753			Mycobacterium leprae B229_F1_20	Myccbacterium tuberculosis H37Rv RV3423C alr	Myccbacterium tuberculosis H37Rv Rv3422c
35		Bacil	Strep SC30	Mycc H37F				Mycc H37F	Mycc	Stre	Strep	Stap		Synecho Str1753			Myc B22	Myc H37	Myc H37
40	db Match	SP.ELYA_BACAO	pir:T10930	pir.E70977				pir.C70977	prf:2111376A	sp:RL13_STRCO	sp.RS9_STRCO	pri:2323260A		pir.S75138	•		pir:S73000	SP.ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	306	324	288	441	546	1341	303	1509	573	234	855	1093	495
45	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
50	Initial (nt)	587757	589015	589296	590411	99066	592862	593935	594293	594939	595382	596109	597892	590194	599350	299699	600876	600971	602080
	SEO NO (a a)	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
55	SEQ NO (DVA)	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

		<u>i</u>							٦			_ · - _†	. 1				 -		r — 1 ₁
5	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical prolein	ribosomal-protein-alanine N- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat snock protein groES	heal shock prolein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
15	b d											ď.							
	Matched length (a.a.)	550	411	207	132	319	571			100	537	75	138	94	174		116	504	146
20	Similarity (%)	66.2	9.77	75.4	59.9	75.2	59.4			94.0	85.1	26.0	45.0	88.3	81.6		8.69	93.9	53.C
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			78.0	63.3	20.0	34.0	64.9	55.2		41.4	80.8	39.0
S 52 Table 1 (continued)	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 rimi	Pasteurella haemolytica SERCTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mop8	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	GP:MSGTCWPA_3 Mycobacterium tuberculosis	Mycobacterium smegmalis whiB3	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
		scheric	ropion	lycoba 37Rv I	scheri	asteur ERCT	ycoba 37Rv f			lycoba 37Rv	ycoba 229_C	ycoba	ycoba	Mycoba whi83	ycoba 37Rv F		ycoba 1620_1	Coryneb ammoni guaB	yrococ
35		田	<u>-</u>	<u> </u>	ш_							_	1_3 M	₹ 3				0 g g	٦
40	db Match	Sp. YIDE_ECOL!	gp.PSJ00161_1	sp:Y098_MYCTU	sp.RIMI_ECOLI	SP.GCP_PASHA	sp.Y115_MYCTU			sp:CH10_MYCTU	SP CH61_MYCLE	GP.MSGTCWPA_1	GP MSGTCWPA	gp:AF073302_1	sp Y09F_MYCTU		Sp YO3H_MYCLE	gp.AB003154_1	PIR:F71458
	ORF (pp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	627
45	Terminal (nt)	604409	605708	606392	606898	607936	609879	610175	609816	610544	612272	610946	611109	612418	613719	614747	614903	616853	615605
50	Initial (at)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
	SEQ NC.	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
55	SEQ NO.	656	657	659	629	999	661	299	663	664	999	999	299	899	699	670	671	672	673

EP 1 108 790 A2

		т— -														r	,			
5	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothelical protein	hypothetical membrane protein	
15	Matched length (a.a.)	381	274	252	517				513	411	218				201	563		275	288	
20	Similarity (%)	86.1	67.5	58.4	92.8				9.68	18.7	65.1				64.2	64.1		62.9	58.3	
	Idenlity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
25 Q) Je	3872	Į <u>u</u>	:					r A3(2)	r A3(2)	D.				losis	losis		r A3(2)	su	
30 Spending 1 (Continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC588.20c	Deinococcus radiodurans DRC809	
35		م ت	Ü	aö .	 				St	જ જ					ΣΞ	ΣÏ		20.00	۵۵	
40	db Match	gp.AB003154_2	sp.YBIF_ECOLI	prf 1516239A	sp.GUAA_CORAM				gp.SCD63_22	6	sp.DEGU_BACSU				pir B70975	pir.A70975		gp.SC588_20	gp AE001935_7	
	ORF (bp)	1122	921	606	1569	693	441	189	1.76	1140	069	324	489	963	825	1590	999	1961	861	330
45	Terminal (nt)	618094	618393	619994	621572	620264	622157	622457	622460	624939	525674	926000	626370	626577	528551	630140	63015	531809	631824	532590
50	Initial (nt)	615973	619013	619086	620004	620926	621717	622269	623635	623800	624985	625677	625558	627539	627727	628551	630810	633949	632684	633079
	SEQ NO (a a)	4174	4175	4176	4177	4178	4179	416C	4181	4102	4183	4184	4185	4186	4187	4188	4189	419C	4191	4192
55	SEQ NO.	674	675	929	677	879	929	980	681	682	683	684	585	989	587	588	589	069	591	692 4

70

DEIGU. - EU ++103300 #1

5		Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphale (GGPP) synihase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
15		Matched length (a.a.)	95	524	288	722	367	188	145 0	462	497	205 6	7 268	223		206 /		346	268	1101	159
20		Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
		Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
25	Table 1 (continued)	us gene	arnum	ens ATCC	ens ATCC	licolor A3(2)	ens crtE	ens	ii olc OS60 blc	ens	ens ATCC	s cps1K	licolor A3(2)	8 yvrO		i abcD		4P90 abc	enzae A	s dnaE	licolor A3(2)
30	Table 1 (Homologous gene	Mycobacterluni mar num	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A, 29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii olc OS60 blc	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
35		ļ	Σ	91	9 9	33	ā	ā	ਹ	9	<u>8</u> 6	SI	SC	Ва		Ŧ		Es	SH	¥	के छ
40		cb Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF139916_11	gp.AF139916_14	SP.BLC_CITFR	gp.AF139916_1	gp.AF139916_5	gp AF155804_7	gp SCE25_33	pri 2420410P		prf.2320284D		sp ABC_ECOLI	SP HLPA_HAEIN	prf.2517386A	gp:SCE126_11
		93F (bp)	336	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	946	1090	168	3012	44.7
45		Terminal (nt)	633079	633532	635178	636369	638317	640208	640232	642557	642556	844778	545176	647593	648315	648440	650187	649114	650332	654612	655122
50		Iritia (n1)	633474	635.75	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
		SEQ NO.	4193	4194	4195	4196	4197	4198	4199	1200	4201	4202	4203	4204	4205	4206	4207	4208	4209	42:0	42.1
55		SEQ NO (DNA)	593	594	969	969	269	969	669	700	701	702	703	704	705	902	707	708	602	710	711
				J. J																	

5		Function	hypothetical membrane protein		transc:iptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothelical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acelylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
15		Matched length (a a)	468		203	264		245	157	357	151	278	80	489		379	429	069		8	
20		Similarity (%)	26.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99	
		identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
25	Table 1 (continued)	Homologous gene	oelicolor A3(2)		tuberculosis sirR	oelicolor A3(2)		Archaeoglobus fulgidus AF 1676	oe'icolor A3(2)	m diphtheriae	tuberculosis spoU	tuberculosis c folD	leprae	oelicolor A3(2)		m glutamicum	eri met?	i K12 cstA		i K12 yjiX	
35	Table 1	Homolog	Streptomyces coelicolor A3(2) SCE9 01		Mycobacterium tuberculosis H37Rv Rv2788 sırR	Streptomyces coelicolor A3(2) SCG8A.05c		Archaeoglobus	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae MLCB1779.16c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri met?	Escherichia coli K12 cstA		Escherichia coli K12 yjiX	
40		db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp SC6673_18		gp:AF052652_1	pri 2317335A	Sp.CSTA_ECOLI		sp:YJX_ECOL!	
		ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	963	1131	1311	2202	609	201	609
45		Terminal (nt)	656534	655397	657215	657205	658142	658928	659424	660538	660650	662017	562374	562382	664126	565183	666460	670465	669445	670872	671045
50		Initial (nt)	655122	655834	656547	658002	658005	658155	658933	659543	661120	661.66	662120	663761	665088	666313	667770		670053	670472	671653
		SEQ NO	4212	4213	4214	4215	4216	4217	4218	4215	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
55		SEQ NO (DNA)	7	713	714	715	716	717	718	719	720	721	722	723	724	725	726	121	728	729	8

	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		pencilin-brading protein ob precutsor	hypothetical protein	hypothetical protein			uracil phosphoribosyltranslerase	bacterial regulatory protein, laci family	N-acy-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (a a)		244	346	331	278		301	417	323			209	77	385	561	468	1140	263	127
	Similarity (%)		73.8	69.1	79.8	72.3		57.5	7.07	52.6			72.3	66.2	80.5	538	65.0	100.0	60.1	6.99
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia co'i K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum 3ER manB	Halobacterium volcanii ATCC 29605 Ipd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2)
	db Match		gp.AF109162_3	pir.S54438	sp.SYW_ECOLI	sp YHJD_ECOL!		sp:DACD_SALTY	pir.F73842	gp:SC6G10_8			Sp. UPP_LACLA	gp:SC1A2_11	pir H70841	SP. MANB MYCPI		prt.2415454A	sp YD24_MYCTU	ap.SCF11 30
	ORF (bp)	975	790	1017	1035	1083	903	1137	1227	828	195	351	633	384	1182	1725	1407	3420	870	486
	Terminal (nt)	698976	689917	907069	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	68989	969069	691722	691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108		705211	708839	700733
	SEO NO.	4249	4250	4751	-+		-	4255	4256	4257	4258		4260	4261	4262	4263	4264	4265	4266	195
	SEQ NO (DNA)	749	1	751	_	1-	1	 	756	757	758		-	76:	762	763	764	765	766	767

			i								ι —		<u> </u>				-	t		
5		Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	delergent sensitivity rescuer or carboxyl transferase	delergent sensitivity rescuer or carboxyl transferase
15		Matched length (a.a.)	381	305	521	278	96	383 6		456 h			225 10	352 h	133 h	718 h	192 h	63 h	537 d	543 6
20		Similarity (%)	0.69	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	7.97	63.4	66.2	8.69	100.0	100.0
		Identity (%)	44.6	24.6	24 0	42.5	39.0	546		408			100.0	61.1	51.1	35.1	31.8	33.3	8.66	9.66
25 30	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis ISS9 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium teprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dlsR1
<i>35</i> 40		db Match	pir.B69760	sp.TRXB_BACSU	Sp.PRPD_SALTY	prf. 1502224A	PIR:E72779	SP.CISY_MYCSM		pir B70539			Sp. THTR_CORGL	gp:C_11168X1_62 0	gp:MLCB4_16	pir.G70539	Sp.YCEF_ECOLI E	pri.2323363CF	gp:A8018531_2	pir.JC4991
		ORF (bp)	1086	924	1494	688	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
45		Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
50		Initial (nt)	711635	7.1724	712738	714258	714757	7:5102	7.6630	7.8009	7:8105	7:8658	721449	721777	723338	7234:2	726452	726715	728352	730324
		SEQ NO	4258	4259	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
55	التمر	SEQ NO (DNA)	768	769	770	171	772	773	77.4	27.5	776	777	778	779		781	782	783	784	785

	r					-			Т	-7	— — _Г	1		- -			٦ –		\neg
5		Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein			5-phosphoribosyl-5-amiro-4- imidasol carboxylase	hypothetical protein	hypothetical prote:n	nitrilotriacetale monooxygenase	Iransposase (1SA0963-5)	glucose 1-dehydrogenasa	hypothelical membrane protein		hypothetical protein	hypothetical protein	
			bifu repr	Α Q	5'-p imid	호	_		5p		h	nit	ia Ta	gr	- Å		h A	ř	_!
15		Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142	
20		Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	9.07	73.0	52.5	64.8	68.8		66.3	76.8	
		Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
25	a)			s	2				2		3(2)	ပ္ပ		030	38			3(2)	
·	lable 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammonlagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebaclerium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzil ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtills 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
40		cb Match	sp.BIRA_ECOLI	pir.G70979	Sp.PURK_CORAM	Sp.KLP_ECOLI			sp.PUR6_CORAM	gp.APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp.DHG2_BACME	pir.A72258		sp. YWJB_BACSU	gp:SCJ9A_21	
		ORF (bp)	854	486	1:61	1872	615	357	495	453	792	1314	1500	789	369	342	295	420	222
45		Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	74C228	741765	742195	741818	742828	742831
50		Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
		SEQ NO.	4286	4287	4288	4289	4290	4291	4292	4293	4234	4295	4296	4297	4238	4299	1300	4301	4302
55		SEQ	786	787	788	789	750,	, 52.	792	793	794	795	967	797	798	799	800	108	802

5		Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		trehalose/mallose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA he'icase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15		Matched length (a.a.)	27.1	306		417		332		1783			240	720	701			_		2033	869	873
20		Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
		Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
25	ılinued)	gene	is malG	s malF		s malE		msiK		rans R1			culosis	19 jhp0462	rvrD					lor	2C-1 130	hepA
	Table 1 (continued)	Hcmologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia co'i K12 uvrD					Streptomyces coelicolor SCH5, 13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
35 40		db Match	prf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A		pir B75633			pir.E70978	pir C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp HEPA_ECOLI
		ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
45		Terminal (n:)	743067	743900	745046	745622	748442	747031	748814	748386	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
50		initial (nt)	743900	744931	745513	746893	748020	748C26	748446	753685	757063	757395	759262	760796	762468	762497	762730	762977	768191	769443	774142	777035
	i	SEQ NO (a a)	4303	4304	4305	4306	4307	4308	4309	43.0	4311	4312	43:3	43.4	43.5	4316	4317	4318	4319	4320	4321	4322
55	j	SEQ NO (DNA)	803	804	805	809	607	808	609	610	811	812	813	814	815	81E	817	918	819	820	821	822

,																	_	
5	Function	ein	sicNAc- prenol, a-3-L- erase	phate se		ein	ein	nutase	ein	mannose-6-phosphate isomerase			onsive protein		mocysteine			Se
10	υ.Ή	hypothetical protein	dTDP-Rha:a-D-GicNAcdiphosphoryl polyprenol, thamnosyl (ransferase	mannose-1-phosphate guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phos			pheromone-responsive protein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
15	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
20	Similarity (%)	71.4	6.77	6.99	81.9	74.8	713	66.3	56.3	66.2			57.8		63.0			26.0
	identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
25 Onlinued)	s депе	erculosis	egmatis	revisiae	egmatis	erculosis	icolo: A3(2)	rideo M40	erculosis	2 manA			alis plasmid		nalis WAA38			gidus VC-16
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolo: A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobaclerium tuberculosis H37Rv Rv3258c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AFC061
35	ćb Match	pir.D70978	gp.AF187550_1	sp.MPG1_YEAST	gp.AF164439_1	pir B70847	gp SCE34_11	SP MANB_SALMO	pir.B70594	Sp.MANA_ECOLI			prf. 1804279K		SP. SAHH_TRIVA		-	sp KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
45	Terminal (nt)	777158	779910	78117	781875	782162	783104	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
50	Iritia' (nt)	778711	779014	783128	781468	782617	782712	783184	784635	785643	785896	787624	787733	788196	788672	789426	789721	790096
بة <i>م</i> ــــــــــــــــــــــــــــــــــــ	SEQ NO	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
55	SEQ SEQ NO NO (DNA) (3.8)	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

		T	-	1		1	1	1	т	т—	· · · ·		1	,		, -	.
5	. 40	am response		em sensor				n or chloroplast	e SecA subunit				te 3-phosphate		le 3-phosphate		na factor
10	Function	two-component system response requiator		two-component system sensor histidine kinase	lipoprotein	t:ypothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
15	Matched lergth (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
20	Similarity (%)	9 06		78.9	65.6	72.8		61.6	9.66		78.8	82.9	0.66	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.3		34.5	99.1		47.1	64.6	0.86	38.3	100.0	21.6	61.2
25 (percij	ene	culosis		culosis	culosis	ulosis		rps22	amicum)		ulosis	ulosis	micum	ulosis	Imicum	ulosis	ulosis
So Table 1 (conlinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c IpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tubercutosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tubercutosis H37Rv Rv3228c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
35		ΣI	-	ΣI	ΣI	ΣI	-	Ŝ	₩ O ₹	-	ΣÏ	ΣÏ	S &	Σï	3	ΣÏ	₹ 8
40	cb Match	pri 2214304A		prf 2214304B	pir F70592	pir D70592		sp RR33_SPIOL	gsp:R74093		pir.A70591	pir.F73590	gp:AF114233_1	pir.D70590	GP AF114233_1	pir.G70506	pri 2515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	564	987	1413	480	123	1110	618
45	Terminal (nt)	791409	790738	793008	79471	79530	795292	796110	798784	799691	800200	800208	801190	803128	802565	903131	805325
50	Initial (nl)	790732	791421	791512	793008	794714	795447	795448	795250	799020	799697	801194	802602	802649	802687	804240	804408
	SEQ NO (a a)	434C	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
55	SEQ NO. (Dr.A)	840	841	842	843	844	945	846	847	848	849	950	951	952	853	954	855

EP 1 108 790 A2

	1						$\overline{}$				1					T			
5		Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent ONA helicase		polassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
15		Matched length (aa)	84	129	415	458		291	249	1155		1126		302	230	099		280	
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	588		49.3	
		identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
25	nued)	ane ane	ulosis	ulesis	ulosis	CG43		ulosis	ulosis	ulosis		ulosis		schii JAL-	vlosis	IvrD		culcsis	
30	Table 1 (continued)	Homologous gene	Mycobacterium Iuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138 1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis 1137Rv Rv3196	
35 40		db Match	pir. D70596	pir.B70596	pir.E70595	sp DEAD_KLEPN		pir.H70594	pir:F70594	pir.G70951		pir.G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI		pir:870951	
		ORF (bo)	258	420	1200	1272	225	846	759	3048	780	3219	1332	1005	714	2034	591	9.8	603
45		Terminal (rt)	805535	806737	806740	807946	809510	810394	811153	814217	811386	817422	814210	818523	815236	821287	822669	821290	823391
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	8.5541	8:75:8	818523	819254	822079	822105	822799
		SEQ NO (a a)	4356	4357	4358	4359	4360	435	4352	4363	4364	4365	4366	4357	4358	4369	4370	4371	4372
55		SEQ NO (DNA)	856	857	858	859	860	861	862	863	864	998	998	867	968	969	870	871	872

			T		T	T	T	T		T	<u> </u>	Т	$\overline{}$	T		_	_	Τ-		1
5	Function	ein	ein			Lie		e profein	die			ase precursor		A polymerase	otein PS1 protein					e)
10		hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible profein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphatase
15	Matched length	474	350			1023	463	301	81	201		408		208	363					255
20	Similarity (%)	76.4	74.9			73.5	57.7	89.0	53.0	736		4 4		514	51.5					74.9
	Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
25 G	900	ulosis	ulosis			losis	Su	fer er!	PE0247	 		es ATCC		LaBelle- iid	ATCC					pur3
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er!	Aeropyrum pernix K1 APE0247	Bacilius subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b milochondrion piasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Strepto:nyces alboniger pur3
35		Z 1	S.T.			≱ I			∢	Ì		255		žΫ		_				8
40	db Match	pir:A70951	pir H70950			pir G70950	gp.AE001938_5	sp:ER1_HEVBR	PIR F72782	SP:YAAE_BACSU		pir.TRYX94		pir S03722	sp.CSP1_CORGL					рл.2207273Н
	OR=	1446	1050	675	522	2955	1359	951	345	900	363	1062	501	585	1581	429	510	222	308	780
45	Terminal (rt)	822680	825239	925242	825996	929570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
50	Initial (nt)	824.25	824190	825916	626517	825616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	R40431	840745	842298
	SEQ NO	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
55	SEQ NO (DNA)	873	874	.875	976	877	878	979	980	1881	882	883	884	885	886	887	888	889	930	.68

EP 1 108 790 A2

5	Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	celi division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactın utilization protein	Fe-regulated protein	hypothetical membrane protein	fertic anguibactin-binding protein precursor	lerrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
15	Matched length	(a.a.) 243 m	359 pe	226 ce	72 hy	301 ce	145 pr	116 hy				272 vi	319 F.	191 H	325 fe	313 fe	312 fe	250 le
20	Similarity [%]	593	986	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
	Identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
25	gene	persicus	color A3(2)	erculosis E	(1 APE2061	erculosis X	2 smpB	2 yeaO				AWA 395	reus sirA	rae	775 tatB	8 yclN	8 yclO	8 yclP
30 t diversity	Homologous gene	Streptomyces flavopersicus	Streptomyces coelicalor A3(2)	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
35		55 5		ΣÏ	Ă	ZI	1 "	<u> </u>	 	<u> </u>			S					8
40	db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp.SMPB_ECOL!	sp.YEAO_ECOLI				sp VIUB_VIBCH	prf 2510361A	gp.MLCB1243_5	Sp:FATB_VIBAN	pir B63763	pir.C69763	pir.D69763
	ORF	819	1104	687	264	006	492	351	537	300	405	825	918	588	1014	666	942	753
45	Terminal	842306	844360	845181	844842	846097	846628	846982	846269	848028	847718	848499	849326	850412	852364	853616	854724	855476
50	initial	843124	843257	844495	845105		845137	845632	046005		848122	849323	850243	850999	851351	852618	853783	854724
	SEQ	(a a) 4392	4353	4394	4395	4396	4397	4398	4399	4400	4401	4402	4403	4404	4405	4406	4407	4408
55	SEO	(DNA)	893	894	895	696	897	868	669	606	98	605	903	904	906	906	907	806

EP 1 108 790 A2

			1						₁	[٠ ۲			-			-		
5 10	Function	hypothelical prolein	hypothelica; protein	kynurenine aminotransferase/glutamine Iransaminase K		DNA repair helicase	hypothetical prolein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothelical protein	glutamine cyclotransferase			permease		I rRNA(adenosine-2'-0-)- methy:transferase	
15	Matched length (a.a.)	48	84	442		613	764	57		198	61	159	273			477		310	
20	Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	678			79.3		51.7	
	Identity (%)	0.99	61.0	33.5		30.7	36.1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
30 30 Table 1 (continued)	Homologous gene	Chlamydia muridarum Nigg TC0129	eumoriae	gicus (Rat)		Saccharomyces cerevislae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		luteus rpf	factis cspB	m leprae	radiodurans			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus IsnR	
35 35	Hon	Chlamydia m TC0129	Chlamydia pneumoriae	Rattus norvegicus (Rat)		Saccharomyces cerevisi S288C YIL143C RAD25	Mycobacterium t H37Rv Rv0862c	Mycobacterium H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus factis cspB	Mycobacterium leprae MLCB57,27c	Deinococcus radiodurans DR0112			Streptomyce: SC6C5.09		Streptomyce	
40	db Malch	PIR. 681737	GSP Y35814	pir.S66270		sp:RA25_YEAST	pir F70815	pir G70815		prf.2420502A	prf.2320271A	gp:MLCB57_11	gp.AE001874_1			gp:SC6C5_9		Sp.TSNR_STRAZ	
	ORF (bp)	147	273	1209	639	1671	2199	219	843	597	381	525	774	669	138	1473	912	828	876
45	Termina' (nt)	860078	860473	862752	862753	863396	865119	867571	868830	667803	869318	869379	869918	870721	871660	873210	872016	87404C	874269
50	Initia: (nt)	850224	850745	851544	853391	992598	867317	867353	867798	858399	868938	869903	870691	871419	871523	871738	872927	873213	874944
	SEQ NO (a a)	4409	44 10	4411	44.12	4413	4414	4415	44.6	4417	44:8	44:9	4420	4421	4422	4423	4424	4425	4426
55	SEO NO.	606	910	911	912		914	915	515	917	918	919	920	921	922	923	924	325	926

	_	 ;								——т	 -					 -				· · · · · · · · · · · · · · · · · · ·	 -
5		Function	hypothetical prolein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter		hypothelical protein	fatty-acid synthase			homoserine O-acelyltransferase		•	glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopytimidine-DNA glycosidase
45		บ	h À	ğ	S E	λ _ζ	Š		À	:	_		후	_		-B	盲	ŧ,	18		<u>9</u> 9
15		Matched fength (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
20		Similarity (%)	55 1	52.9	69 5	80 6	58 1		77.4	83.4			59.7			72.6	62.0	88.9	56.4	68.1	51.0
		identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
25	inued)	ene	uiosis	C 21783	႐ဘ	or A3(2)	cens		ulosis				×			ans	folA	hyA	ysQ	lor A3(2)	atus
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacilus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCIB.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammon:agenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium fol A	Escherichia coli K12thyA	Escherichia coli K12 cysQ	Streptomyces coelicalar A3(2) SC7C7, 18c	Synechococcus elorgatus naegeli mutM
35				Ba		क्ष ठ	Ps		₹£	S #			Le			86	Σ	Es	:	क छ	Sy Er
40		db Malch	sp:YZ11_MYCTU	pir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir:S55505			prf.2317335B			gp:AE002044_8	pri:2408256A	SP.TYSY_ECOLI	sp:CYSQ_ECOLI	gp:SC7C7_16	sp:FPG_SYNEN
		ORF (bp)	933	1128	1473	339	:653	816	840	8907	489	186	:047	426	267	237	456	798	756	4560	768
45		Terminal (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895598	896719	692689	897727	897979	898434	899253	904602	905382
50		Initial (nt)	875883	877112	88:114	881647	88.695	883726	885388	895672	894703	895408	896642	897144	897423	897963	898434	899231	800006	900043	904615
		SEQ NO (a a)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4435	4437	4438	4439	4440	4441	4442	4443	4444	4445
55		SEQ NO.	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

					,						···								
5	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peplidase	hypothelical protein		5-phosphoribosylg/ycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
15	Matched length (aa)	128	196	403		557	195		7.8	763	885	217		236	434		189	525	217
20	Similarity (%)	86.7	71.9	0.78		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
30 F G G G G G G G G G G G G G G G G G G	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus factis MG1363 apl	Streptomyces coelicolor A3(2) SC128.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculos s H37Rv Rv0336		Mycobacterium tuberculos:s H37RV Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purM	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
40	db Match	pir.F70816	sp.AP_LACLA	_	-	pir.NUEC	pir.G70506		sp.YT26_MYCTU	sp:PCRA_BACST	p:SCE25_30	prf.2420410P		pir.D73716	sp:YT19_MYCTU		gp AB003159_2	gp.AB003159_3	gp:CGL133719_3
	ORF (bp)	408	609	1173	717	1620	1176	381	309	2289	2223	999	205	111	1425	228	627	1560	819
45	Terminal (n:)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
50	Initial (nt)	905389	906391	907731	909612	903378	910696	910843	911163	911226	915699	915364	916874	917680	917928	919054	919330	919967	921594
	SEQ NO.	4446	4427	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
55	SEO NO.	946	547	648	649	655	951	525	853	954	955	928	957	928	959	ე96	961	362	963

5		Function	repressor of the high-affinity (methyl) ammonium uplake system	hypothetical protein	or o	30S ribosomal protein 319	30S ribosomal protein 5 14	50S ribosomal protein L33	50S ribosomal profein LZB	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component	regulator	two-component system serisor	proteinase DO precursor	molybdopterin biosyninesis chxi protein (molybdenum colacior biosynthesis enzyme chx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
15	-	Matched length (a a)	222	109		1				529	8	7.8	55		727	. 7.7	484	406	188		131	210	191
20		Similarity (%)	100.0	100.0		76.1	0.08	83.7	81.8	71.1	77.5	65.4	78.2		7.1.8	5.5	60.1	59.9	54.3		77.1	0.09	59.7
		Identity (%)	100.0	100.0		52.2	540	55.1	52.0	34.4	37.5	37.2	0.09		•	40.0	24.4	33.3	27.7		50.4	286	25.1
25 1	ninuea)	gene	utamicum	ıtamicum		xa rps 18	rpsN	rpmG	2 rpmB	yvdB	eus zntR	yi rpmE	color A3(2)		•	дае сорк	2 baeS	2 htrA	a CV cnx1		erculosis iscl	erculosis	FFS
<i>30</i>	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophera paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A :4			Pseudomonas syrirgae copk	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium Iuberculosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
35		db Match	p.CGL133719_2 C	gp:CGL133719_1 C		Sp. RR18_CYAPA (\Box					3			1	sp.COPR_PSESM	ECOLI		sp.CNX1_ARATH		Sp.MSCL_NYCTU	601	389
40		ag ag	gp.CGL1	gp:CGL1		Sp.RR18	SP. RS 14 ECOLI	Sp. RL33 ECOL	pir RSEC28	pir B70033	pr 2420312A	sp RL31	gp:SC51A_14			sp.COP	SP.BAES				+	pir. A70601	pir.JC4389
		ORF (bp)	999	327	321	249	303	: -	+-	<u> </u>	1			1 447	+	969	1365	1239	· i i	198	+	651	3 570
45		Terminal (nt)	922396	923138	923981	924159	924425	924734	924901	925325	026031	927737	927922	000000	921333	928812	930248	931648	 	037487	932570	933060	933733
50		foitial (nt)	923061	923464	923661	924407	924727	024905	925134	925.52	22035	921242	927752	201100	97//85	928117	928884			032280	┵	933710	
		SEQ		4465	4456		+-		6777	747		7/55	4474	1	64/5	4476	4477	447R	4479	746	4481	4482	4483
55		SEQ.	964 4464	965	996	1 .	:	8 8	07.0	2,6	27.5	9/2	974		6/6	976	17.6	97.0	979	8		982	983

			,	,															
5		e	phate	hesis protein	ine N-	le protein	ein		e protein	e protein		e prctein		elase	relicase				
10		Function	UTP-glucose-1-phosphate uridyly transferase	molybdoplerin biosynthesis protein	ribosomal-protein-alanine Nacetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane prolein	cyclomaltodextrinase	hypothelical membrane protein	hypothetical protein	methionyl-IRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
15		Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
20		Similarity (%)	689	62.5	549	548	62.4	ļ Ļ	9.09	59.6	536	75.2	78.3	66.7	49.0	53.3	59.0		9.69
		Identity (%)	42.2	31.8	29 0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
30	Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans mceA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculos's H37Rv Rv0093c	Bacillus sphaericus ≣-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
35			Xanti	Arthro	Esch	Myco H37F	Esch		Наето Н11602	Myco H37R		Mycoba H37Rv	Myco H37R	Metha therm MTH5	Esche	Methano thermoar MTH796			Enterd
40		db Malch	oir.JC4985	prf:2403296B	SP:RIMJ_ECOL:	pir.G73601	SP.CYNX_ECOLI		sp:YG02_HAEIN	Sp:Y05C_NYCTU	sp.CDAS_BACSH	pir.E73602	sp Y19J_MYCTU	SP.SYM_METTH	prf.1336383A	pir.B69206	sp:YXAG_BACSU		gp.AF029727_:
	į	ORF (bp)	897	1257	999	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
45	ļ	Termina! (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950928	951934	953043	954266
50		Intia' (nt)	934423	935351	936615	937382		939217	939686	943041	940759	943940	944009	946840	948791	951460	952991	953573	953973
		SEQ %0	4484	4485	4486	4487	4468	4489	4490	4491	4492	4493	4494	4495	4496	4497	4458	4499	4500
55	ļ	SEC NO (DNA)	984	985	986	987	988	989	666	166	565	993	994	995	966	266	_		000

5		Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15		Matched length (aa)	139	112		565	231		94	139	16	205		263	362	265	315		478	242	159	108
20		Similarity (%)	9.79	88.4		75.6	62.8		59.6	9.79	84.6	8.99		7.07	63.5	65.3	67.0		85.8	67.4	58.5	78.7
		Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25	(pan	ě		Adi			OK8	,			los·s	CadD		losis	losis	1gA	rosis		Ahraca	dxK	ulosis	or A3(2)
30	Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coli did	Klebsiella pneumoniae OK8 kpnlM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraca ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SCF1.02
35		tch					Ì		-	-), (C.10									ECOLI	WYCTU	2
40	1	db Match	oir TOFC13	ap.AF052055 1		prf. 2014253AE	Sp.MTK1_KLEPN		ap AF329727	pir TQEC13	sp.YJ94_MYCTU	pri 2514367A		pir C73603	pir.D73603	Sp.KS3A_ECOLI	pir F70603		pir.S47441	SP PDXK ECOLI	sp YX05_MYCTU	gp:SCF1_2
		ORF (bp)	477	7		+	840	219	294	٠	357	621	1	;	1671	879		642		792	+	321
45		Terminal (nt)	054753	955354	956774	955686	957844	959185	971090	960961	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
50		Iritial (11)	054277	054941	955911	957398	959683	959403	06.00.81	960385	961297	961629	961662	962809	963864	964974	965852	965591	966828	968667		970029
		SEQ	÷					4506				45.10	4511	4512	4513	15.4	4515	4516	4517	4518		4520
55			-	3 5			$\overline{}$	1006	 -			1010		10:2	1013	1714	1315	1016	1017	101	1019	1020

																				
5		Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydralase				major secreted protein PS1 protein precursor	Iranscriptional regulator (tetR	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone	methyltransferase	hypothetical protein	hypothetical protein		nentide chain release (2012)	amide-urea transport protein	
15		Matched length (a.a.)	107	261	276					440	100	802	157 0		121 h	482 h	-	546	 	_
20		Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		0.89	72.8	
25		Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8	1
	(continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Steptomyces coelicolor A3(2) SCJ1 15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87,17c	Haemophilus influenzae Rd HI0508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD	
40		db Match	gp:SCF1_2	gp:SCJ1_15	sp: YXEH_BACSU	pir:E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA622491_21	pir:A70539		pir.159305	prf.2405311A	
4.5		ORF (bp)	321	96	792	:017	654	777	1212	1385	579	2373	498	999	381	1551	936	1547	1269	
45		Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981493	982287	982294	984650	985845	984864	998007	
50	ļ	(nt)	370418		973035	4524; 973139	973957	974186	376176	976349	978379	980740	980993	981622	982674	983100	984910	986510	986739	
<i>بين</i>	SEO		4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537	
55	SEO	02 (ŠNO)	1021	1022	1023	1024	1025	1026	1027	1029	1029	1030	1031	1032	1033	1034	1035	1036	1037	
														-						

5		Function	amide-urea transport protein	amide-urea transport protein	high-affinily branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde. 3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoyiglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursor	nodulation ATP-binding protein I
15	Matched	length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	3.6	452		909	310
20		(%)	61.0	68.0	0.07	69.1	902	540	72.8	61.0	63.2	650	546	62.5	79.1	71.9		61.7	64.8
	1	(%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
30 Februit 20	(2000)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomoras aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	oli K12 pth	Ikii IFO 0895	Streptomyces roseolulvus gap	ningitid s	oli K12 pth	Mycobacterium tubercuiosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10967 alkD	lis prs	lis gcaD		oli K12 sufl	N33 nodi
35		Homo	Methylophilus fmdE	Methylophilus fmdF	Pseudomora: braF	Pseudomona: braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces	Neisseria meningitid s	Escherichia coli K12 pth	Mycobacteriu H37Rv rplY	Salmonella ty gloA	Bacillus ceret alkD	Bacillus subtilis prs	Baci'lus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodi
40		db Match	prf.2406311B	prf.2406311C	SP.BRAF_PSEAE	SP.BRAG_PSEAE	SP:PTH_ECOLI	SP. ZNPD WILMR	sp.G3P_ZYMMO	GSP Y75094	Sp:PTH_ECOLI	pir.870622	sp:LGUL_SALTY	pri.25-6401BW	sp.KPRS_BACCL	oir S66080		sp:SUFI_ECOLI	sp:NODI_R∺IS3
	1	(bg)	882	1077	726	669	612	1023		369	531	909	429	524	975	1455	1227	1533	918
45		Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1302864	1203930
50		Initial (nt)	988023	938904	989980	990716	992028	93205B	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
	SFO	NO (6.6)	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4549	4549	4550	4551	4552	4553	4554
55	SFO	NO (ANO)	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

						Table 1 (conlinued)				
SEQ	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Hcmologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1055	4555	1003953	1004793	831	CS80NL 11d	Streptomyces I vidans ORF2	30.2	63.2	272	hypothetical membrane protein
1056	4556		1006095	1257	כסרו	Escherichia coli K12 uhpB	24.6	48.4	459	two-component system sensor histidine kinase
1357	4557	1006099	1006697	609	prf.2107255A	Streptomyces peucetius dnrN	36.6	67.3	202	two component transcript onal regulator (luxR family)
1058	4558	1006937	1006734	204						
	4559	1006998	1008152	1155	gp:SCF15_7	Streptomyces coelicolor A3(2) SCF15.07	31.5	64.5	349	hypothetical membrane protein
1060	4560	1008522	1010061	1440	pir.S65587	Streptomyces glaucescens strV	28.6	57.0	535	ABC transporter
1961	4561	1008586	1008534	153						
1062		1010057	1011790	1734	pir.T14180	Mycobacterium smegmatis exiT	44.0	74.C	573	ABC transporter
1063	4563	1013761	1011797	1965	sp.GGT_ECOL	Fscherichia coli K12 ggt	32.4	58.6	999	gamma-gʻutamyltranspeplidase precursor
1064	4564	1014016	1014264	249						
1065	4565	1014861	1014343	519						
1066	4566	1014925	1015116	192						
1067	4567	1015652	1016560	606						
990.	4568	10:5692	1015450	243	GPU. AF164956_23	Corynebacterium glutamicum TnpNC	64.0	72.0	37	transposase protein fragment
1069	4569	10:5852	1015145	708	gp.AF121030_8	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	9.66	100.0	236	transposase (IS1628 TnpB)
1070	4570	10.6557	1017018	462						
1071	4571	1017870	1017274	597						
1072	4572	1018082	1018393	312					<u> </u>	
1073		4573 1018416	1019066	651	sp.TETC_ECOU	Escherichia coli letR	23.0	59.6	183	Iranscriptional regulator (Tel'4- family)
1074	4574	1019090	1022715	3627	sp.MFD_ECOLI	Escherichia coli mfd	38.2	65.1	1217	transcription/repair-coupling protein
1075	4575	1020613	1019390	1224						
j										

	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical profein			IpqU protein	enolase (2-phosphoglycerate dehydra:ase)(2-phospho-D- glycerate hydro-lyase)	hypothelical protein	hypothelical protein	hypothetical protein	guanosine pentaphosphalase or exopolyphosphalase		threonine dehydratase	
	Matched length (a.a.)	9/	632	574	368		183			241	422	41	191	153	329		314	
ļ	Similarity (%)	0.69	62.7	81.9	100.0		57.4			689	86 0	58.0	55 0	77.8	55 0		64 7	
	Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	68.0	31.9	5.9.5	25.2		30.3	
Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtliis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tube culosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	
	db Match	GS ² ;Y75301	sp:MDLB_ECOLI	sp.YC73_MYCTU	sp.YLI3_CORGL		SP.YABN_BACSU			pir.A70623	sp.ENO_BACSU	PIR:872477	pir.C70623	pir.D70623	sp.GP2A_ECOLI		sp.THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	.275	144	540	546	963	984	930	195
	Terminal (nt)	1021078	1022699	1024566	1026505	103218	1032780	1032760	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
	Initial (nt)	1021305	1024666	1025396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159		1036900	1037448	1037461	1039650	1039783
	SEQ NO		4577	4578		4580	4581	4582	4583	45B4	4585	4585		4588	4589	4590	4591	4592
	SEO		1077	1078	1079 4579	1090	108	1082	1083	1084	1085	1086	1067	1088	1089	1090	1001	1092

		,							,				1		,			·			
	Function		hypothetical protein	Iranscription activator of Lithamnose operon	hypothetical protein		hypothetical protein	transcr ption elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7- phosphale synthase		hypothetical protein or undecaprenyl pyrophosphale synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a.a.)		56	242	282		140	143	140	300		367		6	28			308	434	969	
	Similarity (%)		74.1	55.8	1.09		57.1	60.1	72.1	56.3		99.5		97.3	100.C			6.67	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55, 39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flav.m.)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match		pir.372287	SP RHAR_ECOLI	pir.F7C893		gp.SCF55_39	sp.GREA_ECOLI	pir:G70894	pir:S44952		sp:AROG_CORGL		sp.YARF_CORGL	SP:YARF_CORGL			sp.COAA_ECOLI	gsp:R57745	SP PABS_STRGR	
-	ORF (bp)	330	189	663	816	387	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	104329B	1043774	1044477	1046930	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	In.tial (nt)	1039595	1040494	1040925	1042027	1043235	.043747	.044295	.044959	.045158	-046073	.0456:0	.047452	.047827	.048356	.048525	1049385	1053362	.050624	.052021	4612 .053880
į	SEQ NO (a a)	4593	4594	4595	4596	4597	45.98	4599	.1603	4601	4602	4603	1604	4605	4605	4607	4608	4609	4610	4611	4612
	SEQ NO (DNA)	1093	1094	1095	1095	1097	1098	1099	1:00	11011	1102	1103	1104	1105	1106	1107	1108	1109	1110	111	1112

SEO SE NO N	SEO initial NC (nt)	Terminal (nt)	ORF (bp)	do Match	Homologous gene	Identity (%)	Sirrilarity (%)	Matched length (a.a.)	Function
→	4613 1054859	1055722	864						
114 46	4614 1055032	1054640	393						
115 46	4615 1055783	1056319	537	gp A0 504_1	Alcaligenes faecalis otcR	30.3	58.8	165	phosphinothricin resistance protin
116 46	4616 1057200	4.	879	sp:YBGK_ECOLI	Escherichia coli ybgK	30.3	59.0	300	hypothetical protein
1117 46	4617 1057573	1058628	1056						
1118 46	4618 1057868	1057200	699	sp. YBGJ_ECOLI	Escherichia coli ybgJ	37.8	57.8	225	hypothetical prolein
1119	4619 1058598	1057843	756	SP LAMB_EMENI	Emericella nidulans lamB	30.8	52.2	276	lactam utilization protein
+-		1058624	591	Sp:YCSH_BACSU	Bacillus subtilis ycsH	40.6	81.2	165	hypothetical membrane protein
1121 46	4621 1059218	1059889	572						
+	4622 1059360	1059962	603						
1123 46	4623 1060112	1060792	681	SP YDHC BACSU	Bacillus subtilis ydhC	26.0	63.2	204	transcriptional regulator
1124 46	4624 1060869	1062146	.278						
1125 46	4625 1063629	↓	1419	Sp.FUMH_RAT	Rattus norvegicus (Rat) fumH	52.0	79.4	456	furnarate hydratase precursor
+	4625 1063936	1064424	489	gp.AF048979_1	Rhodococcus erythropolis IGTS8 dszD	32.7	65 4	159	NADH-dependent FMN oxydoreductase
1127 46	4627 1064738	1064478	261						
1128 46	4628 1065200	1064754	447						
1129 46	4629 1065867	1265304	564	gp:SCAH10_16	Streptomyces coelicator A3(2) StAH10.16	55.4	810	184	reductase
1130 4	4630 1066083	1067570	1488	sp.SOXA_RHOSO	Rhodococcus sp. IGTS8 soxA	39 '	2.79	443	dibenzothiophene desulfurization enzyme A
1131	4631 1067570	1068649	1080	sp.SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	25.8	51.3	372	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1132 4	4632 1068649	9 1069845	1197	SP. SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	28.9	61.6	391	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1133 4	4633 1069692	2 1068913	780						
1134	4060000	1060110	6						

		i	T	ī	T-	1			T	1	T	Τ_	Τ-			Τ	-		Т	;
5		iphatic nase					protein	e small subuni	e large subunit		d to be useful and				oline	PS1 protein		protein	nsferase	
10	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothelical protein		transmembrane efflux protein	exodeoxyribanuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated p	ornithine carbamoyll ansferase	hypothetical protein
15	Matched length (a a)	397	325	211	227	1	82	62	466	311	131		338		552	412	361	75	30,	143
20	Similarity (%)	73.1	75.7	56.4	66.1	!	78.1	67.7	55.6	78.8	47.0		63.9		61.4	0.09	98.6	0.08	8.83	6 69
	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.8	39.2
25 E	8			Sis			A3(2)	1655	1655						SLC6A7	CUM ATCC		≰	a argF	
so Table 1 (continued)	Fomologous gene	Escherichia coli K12 ssuD	Escherichia co'i K12 glpX	Myccbacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia col: K12 MG1655 xseB	Escherichia colı K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7	Corynebacterium glutamicum (Brev:bacterium f:avum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa	Bacillus subtilis 168 ykkB
35	-		Esc	Myc H37	Вас		SCF	Esche	Esch	Esct	Neis		Esc		Rattu	Cory (Brei 1796	Baci	Dich	Pse	Baci
40	db Match		SP. GLPX_ECOLI	pir.B70897	pir.H70062		gp:SCH24_37	sp.EX7S_ECOLI	sp:EX7L_ECOL!	sp:LYTB_ECOLI	GSP:Y75421		SP. PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	sp:YYAF_BACSU	sp VAPI_BACNO	sp.OTCA_PSEAE	SP.YKKB_BACSU
	OR: (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
45	Terminal (nt)	1071134	1071479	1072676 1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1380972	1082951	1085462	1086087	1086917	1087044
50	In tia! (nt)	1069959	1072441		1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079145	1080540	.080965	.082708	4649 1084183	1084380	4651 : 1085791	1086095	1087544
	SEO NO (a a)	4535	4636	4637	1638	4639	4640	4641	4642	4643	4644	4545	4648	4647	4649	4649	4650	4651	4652	4653
55	SEQ NO (DNA)	1135	1.36	1:37	1138	1139	. 140	141	1142	:143	1144	1145	1146	1147	1148	1149	1150		1152	1153

						Table 1 (conlinued)				
SEC	SEO NO.	Initial (nt)	Terminal (n:)	ORF (tp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1154	4654	1088293	1087664	630	gp:AF013289_1	Mus musculus RDH4	33.8	9.09	198	9-cis retinol dehydrogenase or oxidoreductase
1155	4655	1089740	1088535	1206	sp:YIS1_STRCO	Streptomyces coelicolor SC3C8.10	42.2	73.0	396	transposase/integrase (IS110)
1156	4656	1090175	1093216	3042	sp.YEGE_ECOLI	Escherichia coli K12 yegE	230	52.2	1153	hypothetical membrane prolein
1157	4657	1093929	1094693	765	Sp.NCDC_RHIME	Rhizobium meliloti nodC	22.8	47.1	259	N-acetylglucosaminyltransferase
1158	4658	1094693	1094911	219						
1159	4659	1095052	1095384	333						
1160	4660	4660 1095677	1095387	291	pir.S43613	Corynebacterium glutamicum ATCC 31831	82.5	93.8	97	transposase (insertion sequence IS31831)
116:	46E1	1096093	1395719	375	pir JC4742	Corynebacterium glutamicum (Brevibacterium factofermentum) ATCC 13859	79.2	94.4	125	transposase
1162	4662	1096331	1096188	147	pir.JC4742	Corynebacterium glutamicum (Brevibacterium lactofermenlum) ATCC *3869	87.5	95.8	48	Iransposase
1163	4663	1096471	199633	<u> </u>						
1164	46E4	1097111	1096746	366						
1165	4665	1097229	1097726	498						
1166	4666	1097750	1098592	843	sp:MORA_PSEPU	Pseudomonas putida M10 norA	37.5	65.3	264	oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)
1167	466?	1098609	1098929	321	sp.DC4C_ACICA	Acinetobacter calcoaceticus dc4c	33.3	63.9	108	4-carboxymuconolacione decarboxiyase
1168	4658	1099088	1099750	663						
1169	4659	1099209	1099015	195						
1170	4670	1099768	1099115	654	gp. AF056302_19	Streptomyces roseo'ulvus IrnS	34.9	66.4	146	frenolicin gene cluster protein involved in frenolicin blosynthetic

			_					- -			,				,			
	Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothelical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
	Matched length (a.a.)	563				 		655	329	160	262	248	593	136	111	134	367	436
	Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	96.8
	Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
Table 1 (continued)	Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacler sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF 1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
	db Match	gp.SPU59234_3						SP.YT15_MYCTU	PSCHI_RHD8.4	gp:AM:J73808_1	pir:A70577	gp:STMBCPA_1	SO. TLRC_STRFR	sp:Y06C_MYCTU	sp.PHNA_ECOLI	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
	ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
	Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
!	Initial (nt)	7166601	4672 1102043	1102695	1103180	1103951	1104923	1106058	110738:	1107560	1108201	1108993	1109792	11:1820	1111889	1112957	1113102	1114486
ļ	SEO NO (a.a)	4571	4672	4673	4574	4575	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4586	4687
; !	SEO NO (bila)	11711	1172	1173	1174	1175	1176	1177	1178	1179	1180	1161	1182	1183	1184	1185	1166	1187

5	Function	cysteine desulphurase	nicolinate nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	aikyiphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoale hydroxylase (4- hydroxybenzoale 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrane prolein
15	Matched length (a.a.)	376 c	283 P	361 q	235	192 h	214 1	108	216	148	420	395	191		250		339		221
20	Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	2 09	8.09	64.3	68.6	9 69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
30 (Continued)	s gene	refaciens ase gene	ercu!osis	φĄ	icolor	durans R1	licolor	12 MG1655	12 lplA	12 phnB	ida pcaK	ruginosa phhy	38 ykoE	关	38 ykoC		haA	si Orsay	мағ
30 1	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC588.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 IpIA	Escherichia coli K12 phnB	Pseudoincnas putida pcaK	Pseudomenas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichla co'l chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtifis ywaF
35	-	₹ 5	 	8	<u>के छ</u>	2 2	क छ	<u>≈</u> ₹	<u> </u>		 	1 -	ä	T	i iii			مم	\vdash
40	db Match	gp:RFAJ3152_2	SP.NACC_MYCTU	pir E69663	gp.SC5B8_7	gp.AE001961_5	gp:SC3A7_e	sp:YBCF_ECOLI	gp: AAA21740_1	sp. PHNB_ECOLI	Sp. PCAK_PSEPU	Sp. PIHHY_PSEAE	pir.A69859		pir. G69858		SP.CHAA_ECOLI	pir C75001	Sp.YWAF_BACSU
	ORF (bp)	1074	837	1182	642	009	909	342	789	41:	1293	1185	588	1338	753	531	1050	708	723
45	Terminal (nl)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124835	1127009	1128350	1129102	1129632	1136704	1131428	1131401
50	Iridial (nt)	1116905	1117744	1118932	11:9727	1120205	1121432	1121809	1122606		1124826	1126020	1126422		<u></u>		.129655		132.23
	SEO	4698	4699	4630	4691	4692	4693	4664	4695	9695	4667	4698	4699	4700	4701	4702	4703	 -	4705
55	SEO		1189	1190	+	1192	1193	1194	1195		1197	198	1.0	200	1201	.202	1203	1204	1205

							-			T	-	T		dwnc								
5		Function	Subunit A	dase			brane protein	thiamin						e (arsenical p	orane protein	U	c	in (tyrosine lein A)				
10		Fur	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein	-				chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
15		Matched length (a.a.)	946	164			318	282					27.1	111	340	147	221	614	506	315		103
20		Similarity (%)	58.7	81.7			72.0	490					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
		Identity (%)	35.5	57.3			39.9	34.0		ļ			28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
25	ned)	a	nrA	sis				A3(2)			-					sls	sis		sis	sis		
30 35	Table 1 (continued)	Homologo.us gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicator A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
40		db Watch	SP UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp.SCF76_2					sp.CTR2_PENVA	sp:ARC2_ECOLI	sp.YYAD_BACSU	pir:F70559	pir:F70555	sp:TYPA_ECOLI	pir.F70874	pir.B70875		SP FER_STRGR
		ORF (bp)	2340	495	215	1776	954	006	365	297	261	387	834	345	1200	537	714	1911	1506	87.0	438	315
45		Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140501	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
50		'nitial (ct)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1.40021	1:40861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	1148953
		SEQ NO.	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	4725
55	<i>_</i> ::	SEO NO (DNA)	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1215	1217	1218	1219	1220	1221	1222	1223	1224	1225

5	Function	animotrane ferate	pariate arminuransiciose		o selvicione accidociate de la control de la	letranydrouprominate soccury as coccury as coccury as coccury as a coccur, and a coccury as a coccur, and a coccury as a c		hypothetical protein	dihydropleroale synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, usefut in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPgiucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
15	Matched	_	39/			229 st		211 h	273 d	245 h	ч 66	6 7 5	286 n	524 s	433 4	400	93	194	
20	Similarity (%)		52.9			100.0		100.0	0 69	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)		25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
25 (penujipa	gene		'W-2 aat			lutamicum		lutamicum	icolor A3(2)	rae u1756	erculosis	oerculosis	ır seorubida	osaceus scrB	12 MG1655	licolor A3(2)	carofaciens	30E	
30 Table 1 (conflued)	Homologous gene		Bacillus sp. strain YM-2			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutam cum ATCC 13032 orf2	Streptomyces coelicolor A3(2), dhpS	Mycobacterium leprae u17561	Mycobacterium Iuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora gr seorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicolor A3(2) gigC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
35								υ ∢	<u> </u>			2	†	+	†	 	1	 	
40	db Match		sp.AAT_BACSP			gp:CGAJ4934_1		pir:S60064	gp:SCP8_4	gp.MLU15180 14	pir.G70609	gsp.W32443	sp.MYRA_MICGR	SP. SCRB PEDPE	•	sp.GLGC_STRCO	Sp.MDMC_STRMY	\$P:RPOE_ECOL!	
	ORF	(dg)	1:01	621	1185	891	663	768	R31	729	306	165	864	1494		1215	639	639	492
45	Terminal	Ê	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1150728	1150738	1162379	1164916	1164974	1166384	1167067
50	Initial	<u>(</u>	149279	:153408	1151186	1153263	1155537	1155902	1157694	1158524	1159267	1159635	1159865	1162231	1153605	1.63702	1165512	1165746	1166576
	SEO	(9.8)	÷	4727	4728	4729	4730	1	4732	47.33	4734	4735	4736	47.37	4738	4739	4740	4741	4742
55	SEQ	$\overline{}$		1227	1228	1229	1230	$\overline{}$.232	1223	·+	1235	1236	1227	1238	1239	1240	1241	1242

5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC fransporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	sh.kimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of letracenomycin C resistance	
15	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
20	Similarity (%)	73.2	72.0	83.8	0.77	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49 8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterlum tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tomA	
35 40	db Match	pir.C70508	Sp:MRP_ECOLI	pir.870509	pir:C70509	pir.A70952			prf.2306387A	sp:MDR2_CRIGR	pir:H70953	sp. AROE_ECOLI	sp.PNBA_BACSU				Sp.TCR1_ECCLI	sp.TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1811	651	876	525	1215	1347	705
45	Terminal (nt)	1157577	1157587	1158747	1159321	1171187	1171871	1171869	1172501	176308	1183121	180872	.183603	.184257	1185155	185218	. 187039	188389	1190526
50	nitial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1:72462	1176271	1180048	1180837	1181675	1181993	4755 1183607	4756 1184280	1185742	4758;1185825	4759 1167043	4760 1189822
	SEQ NO.	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	475B	4759	4760
55	SEQ NO. (DNA)	1243	1244	1245	1246	1247	1248	1219	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

5		Function	5- methyltetrahydropteroyltriglulamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd.type menaquinol oxidase subunit l!	cytochrome bd-type menaquinol oxidase subunil l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine triphosphatase)(8-oxo-dGTPase)(dGTP		proline-specific permease
15		Matched length (a.a.)	774		444						526	551	333	512	402		96		433
20		Similarity (%)	72.2		79.5						63.5	58.4	93 C	99.0	55.0		656		850
		Identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
25	lable 1 (continued)	eue gene	eus metE		es strain KGB1						(12 MG1655	(12 MG1855	glutamicum aclofermentum)	glutamicum actofermentum)	(12 MG1655		mutī		nurium proY
<i>30</i>	lable 1 (Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC.	Escherichia coli K12 MG1855 cydD	Corynebacterium glutamicum (Brevibacterium Isclofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgans mutT		Salmonella typhimurium proY
35		db Match	pir.S57636		gsp: Y29930						sp.CYDC_ECOL!	sp.cydd_Ecol.	gp:AB035066_2	gp.AB035066_1	Sp.YEJH_ECOLI		sp.MUTT_PROVU		SP. PROY_SALTY
		ORF (bp)	2235 pir.S	455	1398 gsp.	324	945	792	1647	192	1554 sp.C	1533 sp.C	√.db 666	1539 gp./	2265 sp.)	342	393 sp.f	765	- -
45		Terminal O	1188388 22	119:542 4	1193807 13	1194190 3	1195109 9	1195125 7	1197620 16	1197815 1	1197990 1	1199543 1	1231090 9	1202094 1	1203916 2	1206657	 	1208138	1208212 1
50		Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316		1237374	1239615
		SEQ NO (a a)		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
55		SEQ NO. (DNA)	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

		<u> </u>		1	Ī	i	T		T	T	Γ			\top		T	Τ	
5	Function	dependent RNA	ory protein, tet3	ol 4-	ductase	ygenase		in	gulator		Ui.		ui.					
10	Fu	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tet? family	pentachlorophenol monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothelica: protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
15	Matched length (aa)	643	247	595	354	278		185	878		203	395	915			220		†
20	Identity Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.8			64.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
30 (Continuos) 1 elder	us gene	oniae CG43 ependent RNA	p.ae	iva pcpB	B13 clcE	coaceticus		berculosis	erevisiae		licolor A3(2)	berculosis	berculasis			ng bacterium		
30 ed	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) or 2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
35		i						ΣI				ΣI						
40	db Match	sp.DEAD_KLEPN	prf 2323363BT	sp.PCPB_FLAS3	SOCICE PSESS	SD.CATA_ACICA		pir.A70672	sp.SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			gp.AB029896_1		
	ORF (bp)	2196	697	1590	1068	895	471	540	3102	1065	828	1173	2628	306	318	774	378	786
45	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1215904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1229636	1229095	1229935
50	Init at (nt)	1209934	1213115	1213269	1214871	1215952	12.7374	12.7982	12:9895	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
	SEQ NO (a a)	4778	4779	+	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
55	SEQ NO.	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

Matched Function (aa)	122 short-chain latty acids transporter	155 requisitory profein	\top			228 fumarale (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	2inc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP.G1P 137 3'-pyrophosphotranslerase) (ppGpp synthetase I)	601 tripeptidyl aminopeptidase		\top	24 homoserine denydrogenase		\top			505 Initrate reductase bela chain	137 hypothetical protein	93 hypothetical protein	1271 nitrate reductase alpha chain
Similarity (%)	69.7	9 9 9	56.6			57.9	66.7	706	58.4	49.3			96.0			9.39	63.4	82.4	46.0	55.0	75.8
Identity (%)	37.7		24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	9.99	36.0	36.0	46.9
Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibro sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subblis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG
db Match	sp.ATOE_ECOLI	\$p.A!OE_ECOL!	SP. PECS_ERWCH		N.	SP.FNR_ECOLI	SP. MERP_SHEPU	sp ATZN_ECOL!	sp.RELA_VIBSS	gsp:R80504			GSP P61449			sp:NARI_BACSU	sp:NARJ_BACSU	+	PIR D72603	PIR B72603	SP:NARG BACSU
ORF (bp)	537	- :	486	222	519	750	234	1875	630	1581	603	150	108	1260	069	111	732	1593	594	273	3744
Terminal (rt)	1229180	0916771	1230480	1230831	1230914	1232479	1232836	1234881	1235612	.236545	.241554	1242156	1243728	. 243942	1244843	1245720	1246508	.247199	.250444	.251817	1248794
Initial (nt)	1229716	91 /6771	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	4804 1242156	1242275	1243521	4807 1245201	1245532	1246496	1247239	4811. 1248791	1249851		1252537
SEQ	4795	4/95	4796	4797	4798	4799	4800	4801	4802	4803	4824	4805	4806	4807	4808	4809	4810	4811	4812		 -
SEQ	(DNA)	1295	1295	1297	1298		1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314

		onx t			Ē	Ę	leotide	otein	otein	igase									a.N.
5	Function	osynthesis on num cofacto	ie protease		brane prote	brane prote	anine dinuc	synthesis pr	synthsisi prosybdenum sis enzyme)	acid-CoA					ase factor 1	n oxidase		, <u>c</u>	sphate alph Iltansferase
10	Fu	molybdopterin biosynthesis cnxt protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine proteasi precurosor		hypothetical membrane protein	hypothetical membrane protein	mo ybdopterin guanine dinucleotide synthase	mo ybdoptein biosynthesis protein	mo ybdoplerin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	Rho factor				peptide chain release factor	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha N. acetylglucosaminyltransferase
15	Matched length (aa)	157 p	738 e		334 h	472 h	178 m	366 m	354 M	572 ec	753 RI				363 pe	280 pr		215 hy	322 un
				ļ 1	· · ·			.,		5			:	<u>_</u>	<u> </u>	2		2	3
20	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9	!	96.0	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
25 (panu	ē	/ cnx1	rain IFO-	i	losis	losis	obA	losis	, Z	ns					-1			osis	
S Table 1 (continued)	Homologous gene	aliana C\	scens st		n fubercu 1c	n tubercu 2c	putida m	tubercu 3c moeA	aliana cn)	oleovora	teus rho				K12 RF	ı K12		tubercul	i K12 rfe
Table	Homol	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis !haliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherich a coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherich a coli K12 rfe
35				!							Σ	<u> </u>	_		ŭ	я П			<u>ü</u>
40	db Match	sp:CNX1_ARAT⊣	SP.PRTS_SERWA		sp:Y0D3_MYCTU	sp.Y0D2_MYCTU	gp: PPU242952_2	sp.MOEA_ECOLI	sp.CNX2_ARATH	SP ALKK PSEOL	SP.RHO_MICLU				sp.RF1_ECOLI	SP. HEMK_ECOLI		sp:YD01_MYCTU	sp.RFE_ECOLI
	ORF (bp)	499	998:	684	1008	1401	551	1209	1:31	1725	2286	603	969	1023	1074	837	774	648	1146
45	Terminal (nt)	1254634	1254737	1257750	1255851	1257865	1259429	1259993	1261688	1262986	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
50	Initial (nt)	1254146	:256602	1257067	1257858	1259265	1259989	:261201	1262818	1264610	1265142	1265565	1266306	1266449	1267430	1268507	1269040	1269396	1270047
	SEQ NO (a a)	4616	4617	4618	4619	4620	4621	4622	4623	4624	4£25	4626	4627	4628	4E29	4E30	4E31	4632	4633
55	SEQ NO (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

_				- ,												 -	
	Function		hypothelical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- birding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-Iransporting ATP synthase alpha chain	H+-Iransporting ATP synthase gamma chain	H+-Iransporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		80	245	71	151	274	516	320	483	122	132	230	95	134	101	301
	Similarity (%)		99.0	56.7	6'58	6.99	67.2	88.4	9.92	100.0	73.0	67.4	85.7	96.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54 5	37.9
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqiC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	Sp.ATP6_ECOLI	Sp.ATPL_STRL!	SP. ATPF_STRLI	SP.ATPD_STRLI	SP.ATPA_STRLI	sp.ATPG_STRLI	sp.ATPB_CORGL	SP.ATPE_STRLI	sp:Y02W_MYCTU	sp.Y036_MYCTU	GP.SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp.YD24_MYCTU
	ORF (bp)	486	249	810	240	564	613	1674	975	1449	372	471	9	285	453	312	122
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340		1273559	1274131	1274975	1276709	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEQ NO	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	SEC NO NO		1335	1336		1338	1339	1340	1341	342	1343	1344	1345	1346	1347	1348	1349

nitrogenase cofactor sythesis protein 1,4-alpha-glucan branching enzyme (glycogen branching enzyme) subunit for various dehydrogenases sulfonate binding protein precursor electron transfer flavoprotein alpha electron transfer flavoprotein betaferric enterobactin transport ATP-binding protein or ABC transport 5 FMNH2-dependent aliphatic alphatic sufforates transport alphatic sulfonates transport sulfonate monooxygenase Function ATP-binding protein hypothetical protein hypothetical protein hypothetical protein permease protein permease protein alpha-amylase 10 incdus 15 Matched ength (8.8) 375 366 240 228 311 710 467 211 260 367 244 335 397 Similarity 74.3 75.8 72.8 87.6 70.0 67.7 55 7 62.1 00 8 20 22 89 2 61 20 Identity 31.8 35.2 S <u>~</u> 35.1 33.1 50 6 8 46 22. 43 39 3 29 25 Rhizobium sp. NGR234 plasmid cNGR234a y4mE (continued) Mycobacterium tuberculosis H37Rv Rv1326c glgB Dictyoglomus thermophilum amyC Mycobacterium tuberculosis H37Rv Rv3040c Mycobacterium tuberculosis H37Rv Rv3037c Escherichia coli K12 ssuD Escherichia coli K12 ssuB Azutcbacter vinelandii nifS Escherichia coli K12 ssuC Escherichia coli K12 ssuA Homologous gene Escherichia coli K12 fepC Rhizobium meliloti fixA Rhizobium meliloli fixB 30 35 1143 gp ECO237695_3 SP Y4ME_RHISN Sp.SSUC_ECOL! sp.SSUB_ECOU SP. SSUA_ECOLI SO GLGB_ECOLI sp AMY3 D.CTH Sp.FEPC_ECOLI sp:FIXB_RHIME Sp.FIXA_RHIME Sp.NIFS_AZOVI db Match pr H70859 pir C70860 40 2193 1056 1128 1146 ORF (ba) 758 957 1434 879 786 951 615 729 348 804 612 312 1294436 1297093 Terminal 284466 1285284 1286999 1287281 1289514 129:373 1298339 1298342 :299000 1286030 1292577 1294025 1295206 1296220 1297203 $\widehat{\Xi}$ 4864 | 1297212 4855 1298553 1366 | 4366 | 1300145 1291026 1291599 1295435 4863 1296479 1283324 1284517 1295302 1286043 1289473 1291307 1294151 1295047 1296253 1293222 Initial 3 4851 4952 4852 4950 4953 4854 4856 4861 (9.3.) 4855 4858 4860 Š. 4957 4959 (DNA) 1350 1352 1353 1354 1359 1362 1364 1365 1351 1355 1356 1357 1360 1361 1363 9

45

50

EP 1 108 790 A2

5	Function	transcriptional regulator	acety!ransferase				tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyt-tRNA(GIn) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6. phosphate 1-phosphutransrelase
15	Vatched length (aa)	59 tr	181				361 th		332 h	500		0 (F	220 h	97 9	484 9	263 v	96	358 p
20	Similarity (%)	76.3	55.3				6.08		66.0	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	Identity (%)	47.5	34.6				616		33.7	30.2		42.6	40.0	53.6	74.0	28.1	46.5	54.8
Table 1 (continued)	Hornologous gene	GR234 plasmid IF	K12 MG1655				uberculosis		uberculosis	Steptomyces glaucescens tcmA		narinus dn.J	luberculosis	selicolor A3(2)	tuberculosis	viuB	selico.or A3(2)	nethanolica pfp
30 — 9QEL	Homolog	Rhizobium sp. NGR234 plasmld pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces gl		Rhodothermus marinus dn'J	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelico.or A3(2) SCE6.24	Amycolatopsis methanolica píp
40	db Match	SP.Y4MF_RHISN	sp:YHBS_ECCLI				pir.C70858		pir:B70857	sp.TCMA_STRGA		Sp.DNLU_RHOMR	pir.H70856	sp.SATC_STRCO	sp.GATA_MYCTU	Sp VIUB_VIBVU	gp:SCE6_24	SP PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	107.1
45	Terminal ('1.')	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314479	1316083
50	Initial (nt)	1300369	4868 1300552 1301055	1301929	1303123	1303299	1303829	1304536	1304932	4875 1307384	1308196	4877 1308330	1311097	1311320	1311625	488: 1313270	1314775	13150*3
	SEQ NO (a a)	1 .	4868	ļ. —	48.0	4871	4872	4873	4874	4875	48.6	48.7	4878	4879	4880	488	4882	4883
55	SEQ NC (DNA)	1367	1368	1369 4869	1370	1371	1372	1273	1374	1275	1376	1377	1378	1379	1380	1381	1382	1383

Table 1 (continued)	Homologous gene (%) (%) (%) (90 (a a)		Bacillus megaterium ccpA 31.4 328 glucose-resistance amylase regulator (catabolite control protein)	Escherichia coli K12 rbsA 44.7 76.2 499 ripose transport ATP-binding protein	Escherichia coli K12 MG1655 45.6 76.9 329 high affinity ribose transport protein	Escherichia coli K12 MG1655 45.9 77.7 305 periplasmic ribose-binding protein	Escherichia coli K12 MG1655 41.7 68.4 139 high affinity ribose transport protern	Saccharomyces cerevisiae 31.0 58.0 200 hypothetical protein	Streptomyces coelicolor 31.4 60.2 354 iron-siderophore binding lipoprotein	Rattus norvegicus (Rat) NTCI 35.8 61.9 268 Na-dependent bile acid transporter	Staphylococcus aureus WHU 29 43.1 71.8 485 RNA-dependent amidotransferase B	Methanococcus Jannaschii 32.6 61.1 172 putative F420-dependent NADH	Escherichla coli K12 yqjG 39.8 66.9 317 hypo:hetical protein	Mycobacter um tuberculosis 39.3 62.4 234 hypothetical protein	Mycobacterium tuberculosis 27.4 52.6 325 hypothetica membrane protein		Corynebacterium glutamicum 99.2 99.4 513 dihydroxy-acid dehydratase	Mycobacterium tuberculos s 33.3 68.6 105 nypothetical protein
	db Match		sp.CCPA_BACME	sp.RBSA_ECO:	sp.RBSC_ECOLI	sp.RBSB_ECOLI	sp RBSD_ECOL	sp:YIW2_YEAST	gp:SCF34_13	SO NTC'_RAT	gso W61467	sp F4RE_METJA	sp.YaJG_ECOLI	pir.A70672	pr:H70855		gp.A.012293_1	pir.G70855
	ORF (tp)	930	1107	1572	972	942	369	636	1014	.005	.479	672	1077	774	1056	237	1839	564
	Terminal (nl)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321475	1322393	1323533	1324779	1326379	1330967	331102	1331953	1333424	.335280	1335975
	SEO NC (a a)	4884	4885	4886	4887	4888	4889	4890	4891	2687	4893	4894	4835	4896	4997	4998	4899	4900
	SEQ NO (DNA)	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1392	1395	1396	1397	1398	1399	.400

						Table 1 (continued)				
SEQ NO.	SEQ NO (a.a.)	Initial (nt)	Terminal (rt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a a)	Function
1401	4901	1337557	1336055	1473	Sp.YILV_CORGL	Corynebacterium glutamicum ATCC 13032 yilV	100.0	100.0	62	hypothetical membrane protein
1402	4932	1338639	1338379	231	GP:SSU18930_26	Sulfotobus solfataricus	45.0	55.0	99	hypothetical protein
1403	4933	1342072	1342677	909						
1404		4934 1342457	134.960	498	SP NRTD_SYNP7	Synechococcus sp. nrlD	50.9	80.8	167	nitrate transport ATP-binding polein
1405	4935	1342727	1342461	267	SP MALK_ENTAE	Enterobac:er aerogenes (Aerobacter aerogenes) malK	46.0	78.2	87	mal:ose/mallodextrin transport ATP- binding protein
1406	4935	4905 1343575	1342794	882	sp NRTA_ANASP	Anabaena sp. strain PCC 7120 nrtA	28.1	56.8	324	nitrate transporter prolein
1407	1407 4927	1344018	1344464	447						
1408	4939	4909 1344440	1344808	369						
1409	4939	1344935	1345420	486	sp DIM6_STRCO	Streptomyces coelicolor	39.4	73.2	142	actinorhocin polyketide dimerase
14:0	4913	1345485	1346439	954	sp.czcD_ALCEU	Ralstonia eutropha c2cD	39.1	72.7	304	coball-zinc-cadimium resistance protein
14:1	4911	1345497	1345335	153						
14.2	4912	1345331	1345642	9						
1413	4913	1346458	1348272	1815	sp.Y686_METJA	Methanococcus jannaschii	22.9	53.7	642	hypothetical protein
1414	4914	1348334	1350076	1743						
14.5	4915	1350855	1352444	1590	gsp:Y22646	Brevibacterium flavum serA	9.66	100 0	530	D-3-phosphoglycerate dehydrogenase
14.6	4916	1352053	.351727	327	SP:YEN1_SCHPO	Sch zosaccharomyces pombe SPAC11G7.01	29 0	52.0	105	hypothetica' serine-rich protein
1417	4917	1352585	:353451	198						
14:8	4918	1355601	1354540	1062						
1419	4919	1355589	:357554	1855	pır 103476	Rhodobacter capsulatus strain SB1003	32.9	63.1	620	hypothetical protein
1420	4920	1355452	.356853	402						

								+				_							_		
5		E		catabolism ase (includes ene-1,7-dioale erase), 5- hex-3-ene-1,7- opet	3. 9 3-0.	eu eu	ase)	or													rotein
10		Function		homoprolocatechiuate catabolism bifunctional isomerase/decarboxy/ase [includes 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase), 5- carboxymethyl-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransterase or 3- deme:hylubiquinone-9 3-O- methyltransterase	isochorismate synthase	glutamyl-tRNA synthetase	transcriptional regulator													thiam n biosynthesis protein
15		Matched length (a a)		228	192	37.1	485	67													599
20		Similarity (%)		59.2	55.7	70.4	69.7	0.06													81.0
25		Identity (%)		33.3	23.4	38.0	37.3	77.0									_		-		65.1
<i>30</i>	Table 1 (continued)	Hcmologous gene		Escher chia coli C hpcE	Escherichia coli K12	Bacilus subtilis dhbC	Bacillus sublilis gltX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
35 40		db Match		so∷PCE_ECCL! Esc	sp. JBIG_ECOLI Esc	sp.CHBC_BACSU_Ba	sp.SYE_BACSU Bar	gp-SCJ33_10 Str												_	sp. THIC_BACSU , Bac
45		ORF (3p)	654	804	618	1128	1488	213	516	525	342	621	303	180	330	213	183	318	1152	324	176
	!	Terminal (nt)	1358210	1359062	1359669	1360158	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50		Initial (rt)	1357557	1358255	1423 4923 1359052	1361295	1361361	1363138	1363657	1364253	4929 : 1364915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	4939 1371637
	بر الإسر	SEQ NO (a.a.)	4321	4922	4923	4927	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	4939
55		SEQ NO. (D'4A)	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1435	1437	1438	:439

SEO NO. NO. 1940 1940 1944 1945 1994 1994 1995 1995 1995 1995	Table 1 (continued)	Termina ORF db Match Homologous gene (%) (%) (aa) Function (ab)	1371979 348	1373131 53:	. 1373929 132 GSP-Y37857 Chlamydia trachomatis 61.0 74.0 44 lipoprotein	1275491 936	1273350 2427 sp. PHS1_RAT Rattus norvegicus (Rat) 44.2 74.0 797 glycogen phosphorylase	1375805 183	1375932 156	1376146 1407 sp.YRKH_BACSU Bacillus subtilis yrkH 25.4 52.8 299	1377666 750	137846€ 477	137956E 564 sp.SPCT_ECOLI Escherichia coli K12 spoT 29.8 60.1 178 guanosine 3.5'-bis(diphosphate) 3'-	+-	1381882 1443 sp.LEU2_ACTTI	1382492 591 sp.LEUD_SALTY Salmonella typhimurium 67.7 89.2 195 subunit	1382502 318	mutator mult protein (17,8-dihydro- Mycobacterium tuberculosis 45.9 71.4 294 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)	1384985 156	NAD(P)H-dependent 45.0 72.2 331 dihydroxyacetone phosphate reductase	
SEO Initial NO. (n1) (a a) (b a) (a b) (a b) (a b) (a c) (a		ORF (bp)		53:	132	936	2427	} —	156	1407	750		564	705	1443	 	┼	 	-	 	1 3
SEO Initial (n)		Termina (nt)	1271979	1373131	1373929	1375491	1273350	1375805	1375933	1376149	1377666	137846E	137956€	1379555	1381882	1382492	1382502	1382645	1384085	1385125	
SEO NO. 4940 4941 4944 4957 4955 4955			⊢`—	<u> </u>	Ι.	ļ i.		١	! - -	! —	↓	• –		+-		1	╄.	<u> </u>	83930	84130	
					<u>. </u>	<u> </u>	1		137							3 138					÷
SEO NO. 1441 1441 1443 1443 1443 1443 1455 1455				· }								+- -			+			495		-	ļ

glutamine-binding protein precursor

234

59.0

27.4

Escherichia coli K12 MG1655 ginH

Sp.GLNH_ECOLI

861 807

1396561

1397421

1472 | 4972

1398468 1398557

1397662

4973

1473

hypothetical membrane protein

322

60.3

28.6

Methanobacterium thermoautotrophicum MTH465

pir.H69160

978

1474 4974 1399534

408

phage integrase

223

52.5

26.9

Bacteriophage L54a vinT

756 SP. VINT_BPL54

5	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful anligens for vaccines and diagnostics	biotin carboxyl carrier protein	9	lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein
15	Matched ength (a a)		335 thiamin-p	245 uracil-DN	568 hypotheti	693 ATP-dep	polypeptide 108 antigens for diagnostics	67 biotin car	167 methylase	155 lipopolysi protein		Neisserial p 65 be useful ar diagnostics	252 ABC tran	220 nopaline
20	Similarity Hal		57.6	59.6	56.3 5	9 0.09	48.0	67.2	63.5	78.7		74.0 (786 2	75.0 2
	dentity Sin		32.2	38.8	23.1 5	35.4 6	31.0	38.8	37.1 6	42.6		67.0	56.4 7	32.7
25 Q		-			(sec3)	ပ		enreichii	u	1655			lus	Sus
30 September 1 (Continued)	Homologous gene		Escherichia coli K12 thil	Mus musculus ung	Mycoplasma genita'ium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia ccli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM
35			İ				- Ne					N N		
40	db Match		993 Sp. THIL ECOLI	SE UNG MOUSE	sp:Y369_NYCGE	sp.RECG_ECOLI	GSP:Y75303	sp.BCCP_PROFR	SP: YHHF_ECOLI	sp:KDTB_ECOLI		GSP:Y75358	sp.GLNQ_BACST	SP.NOCM_AGRTS
	03F (bp)	978	993	762	158	2121	324	213	582	480	1080	204	750	843
4 5	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568
50	In tial (nt)	1387270	1387332	1388312	1389209	1393796	1391951	1392939	1393154	1393742	1394854	1394894	1395549	1396410
	SEO SEO NO NO DNA) (a.a.)	4959	4960	496.	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971
55	SEO NO (DNA)	:459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471

113

			Г	1			ı —		Ī		1	Γ	Γ-	ī	T		T	_		-	i		i	$\Gamma \neg$
5		Function						(IS3 related)		ein										_	ıt protein	ein	drogenase	
10		D.H.						insertion element (IS3 related)		hypothetical protein										DNA polymerase t	cephamycin export protein	DNA-binding protein	morphine-8-dehydrogenase	
15		Matched length (a.a.)						56		37		:								968	456	283	284	
20		Similarity (%)						2.96		97.0										80.8	87.8	65.4	76.1	
		Identity (%)	_	_				88.5		9.0										56.3	33.8	41.3	46.5	
25	Table 1 (continued)	s gene						lutamicum		lutamicum										erculosis	mdurans	color A3(2)	da morA	
<i>30</i>	Table 1 (c	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum			l I							Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A, 15c	Pseudomonas putida morA	
		db Match						0680		PIR S60890		· ·								sp:DPO1_MYCTJ	SP. CMCT_NOCLA	gp:SCJ9A_15	Sp. MORA_PSEPU	
40		-	4	2	7	4	6	2 pir.S60890	2	1 PIR.S	 O	2	-	2	6	2	**	7		-5	2	•	3	6
		CR (6b)	744	432	55	864	21	192	855	11	36	315	321	375	94	306	26	222	59	271	142	06	87	:5
45		Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	.407167	.407559	:406703	1405428	1410064	1411119	1412000 1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50		fo.tial (nt)	1401333	4978 1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	:407873	.409023	1409802	1411011	1411424	<u>i</u>	1412351	1412916		1417883	1417962	1418876	1420036
		SEQ NO.	4977	4978	4979	4980	4981	4582	1983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4934	1995	4996	4997	4998
55	. اسم	SEQ NO.	1477	1479	1479	1480	1481	1482	1483	1484	1485	.486	.487	1488	1489	1490	1491	1492	1453	1494	1495	1496	1497	1498

			_	1	ī	<u> </u>	1	$\overline{}$		<u>e</u>		1		$\overline{}$							<u></u>	_
5	Function		tein S1		ri.					eferring nucleosid nucleosidase)	ce protein		repressor, afor		subunit B	oin.	ri.	in		in	iin	
10	Fun	hypothetical protein	30S ribosomal protein		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC	hypothetical protein	Pypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	rydrolase
15	Matched length (a a)	163	451		195					310	517	293	337		671	152	121	279		939	150	214
20	Similarity (%)	583	71.4		93.9					810	53.8	9.79	9.59		83.3	59.2	80.2	77.1		47.2	0.89	58 4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32 7	30.4
25 Continued)	is gene	icolor	12 rpsA		tofermentum					a runH	ureus	12 rbsK	12 ascG		eumoniae IvrB	ınnaschii	12 ytfH	12 yttG		ამა	licolor A3(2)	12 ycbL
	Homologous gene	Streptomyces coelicolor SCH5 13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13859 yacE					Crithidia fasciculata ıunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yttH	Escherichia coli K12 ytlG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escher chia coli K12 ycbL
<i>35</i>	db Match	Sp YAFE_ECOLI	Sp.RS1_ECOU		SD:YACE_BRELA					Sp.IUNH_CRIFA	sp.QACA_STAAU	SP RBSK_ECOLI	sp.ASCG_ECO_1		sp.UVRB_STRPN	sp:Y531_METJA	SP.YTFH_ECOLI	sp:YTFG_ECOLI	-	pir.H7004C	gp.SC9H11_26	sp. YCBL_ECOLI
	ORF (bp)	654 s	1458 S	1476	s 239	1098	582	246	957	936	1449	921	1038	798	2097	441 :	381	979	684	2349	9.5	99
45	Terminal (rt)	1420071	1422556	142,096	1425878	1427354	1427376	-427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	.436869	1439201	:440025	1438212	:440675	:441793
50	Initial (nt)	1420724	1421099	142257:	1425279	1426257	1427957	1428049	1428290	5007 1429159	1430642			5011 1432750	5012 :434105	1513 5013 1436335	1514 5014 1437249	1437356	1439343	1440560		1442392
	SEQ NO	499 4939	500 5000	5031	5002	5003	504 5034	5005	5005	2005	5008	+-		• •		5013	5014	1515 5015	5016	5017	5018	5019
55	SEQ NC DIMA	1499	1500	1501	1502	1503	1504	1505	1506	1507	1506	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

phenylalanyl-tRNA synthetase alpha chain sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport ATP-binding protein hypothetical protein ;245 (uvrA region) hypothetical protein 1246 (uvrA region) translation initiation factor IF-3 5 excinuclease ABC subunit A 50S ribosomal protein L35 50S ribosomal protein L20 glycerophosphoryl diester system permease protein system permease proein IRNA(guanosine-2-0-)-Function hypothetical profein phosphodiesterase methlytransferase 10 system protein 15 Matched length (a e) 952 8 179 142 292 436 393 244 117 \mathbb{S} 9 74 Similarity 78.2 56.0 50.0 71.3 71.2 9 9 8 20 8 57. 76 92 7 6 27 47 Identity 56.2 52.5 470 75.0 44.0 8 41.7 33.2 3 33 28 28. 34 25 Aeropyrum pernix K1 APE0042 Rhodobacter sphaeroides infC Escherichia coli K12 MG1655 trmH Escherichia coll K12 MG1655 Escherichia coli K12 MG1655 Escherichia coli K12 VG1655 Escherichia coli K12 VIG1655 Table 1 (continued) Pseudomonas syringae pv. syringae Escherichia coli K12 uvrA Homologous gene Mycoplasma fermentans Bacillus subtilis 168 syfA Bacillus subtilis glpQ Micrococcus luteus Micrococcus luteus 30 ugpB ugpA upgE ngpC 35 Sp.GLPQ_BACSU SP. RL35_NYCFE SP:SYFA_BACSU Sp:UVRA_ECOLI Sp:UGPC_ECULI SP.TRMH_ECOLI sp:JGPA_ECOLI SP. UGPE ECOLI sp:UGPB_ECOLI sp. RL20_PSESY SP IF3 RHOSH db Match PIR-J00406 PIR:E72756 PIR J00406 40 1314 1224 1020 7.7 2847 2124 249 ORF (bp) 306 450 267 192 381 903 834 594 717 822 567 1450692 45 1455338 1456948 1458066 Terminal 1445333 1443810 1445323 1448358 1448390 1448581 1449025 1449119 1452653 1454071 1454102 1455350 1444944 1446874 1451820 Ē 1450918 14541151 1456036 1456355 1444115; 1452758 1448645 1454350 5027 1457047 1446159 1447446 1450125 1442487 1445333 1447732 1449940 1451920 3 50 5020 9 5036 5021 5023 5025 5026 5027 5028 5028 5033 5034 5035 8.8 5025 5030 524 5024 5631 5032 (ANC) 1520 .523 . 525 . 528 .528 522 533 -529 532 55

פאיפרייים יבח

	ſ																			- 1	
5		Function	phenylalanyl-tRNA synthetase beta chain			3-0-acyltransferase		N-acetylglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		nate lyase				rotein	tyrosyl-IRNA synthase (tyrosine tRNA ligase)	rotein		rotein
70			phenylalanyl-l chain		esterase	macrolide 3-C		N-acetylglutama dehydrogenase	glutamate N-a	acetylornithin	argininosuccir		argininosuccinate lyase				nypothetical protein	tyrosyl-tRNA : tRNA ligase)	hypothetical protein		hypothetical protein
15		Matched length (a.a.)	343		363	423		347	388	391	401		478				50	417	149		42
20		Similarity (%)	71.7		55.1	56.3		99.1	2.66	99.2	93.6		0.09				72.0	79.6	64.4		75.0
		Identity (%)	42.6		26.5	30.0		98.3	99.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
25	ued)	a.	1655		\$	iens		cum	cum	cum	cum		cum				~		ij.		66
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1855 syf8		S:reptomyces scables estA	S:reptomyces mycarofaciens rrdm3		Corynebaclerium glutamicum ASO19 argC	Corynebaclerium glutamicum ATCC 13032 argJ	Corynebaclerium glutamicum ATCC 13032 argD	Corynebac:erium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coil K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum N.gg TC0:29
35							<u> </u>	0 X					ა <u>ჯ</u>								46
40		db Match	sp.SYFB_ECOU		Sp.ESTA_STRSC	Sp.MDMB_STRMY		gp.AF005242_1	sp ARGJ_CORGL	sp:ARGD_CORGL	sp.ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR-F81737
	i	ORF (bp)	2484	177	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
45		Terminal (nt)	1460516	1458198	1462128	1453516	1463934	1465123	1466373	1468548	147-413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	14/7929	1478503	1483335
50		Initial (nt)	5038 1458133.	1453966	5040 1461157	1462134	1463533	1464083	1455210	5045 1457376	5046 1470211	1471362	5048 1471477	1472577	1474119	1475683	1476343	1476550	1478293	1478892	1483475
		SEO NO (a a)	5038	5039	2070	5041	5042	5043	5044	5045	5046	5047	5048	5049	2050	5051	5052	5053	5054	5055	5056
55		SEQ VO (JNA)	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

۲			- _T -	-1		-				- 1		i.	- _T			· –] ·	Τ			
5		0	71								nmonia			binding	ig protein or ive iacterial			rase		- B
10	Furction	hypothetical protein	translation initiation factor IF-2	hypothetical profein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	nypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	conomosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothelical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
15	Matched length (a a)			311	\neg	260	ì	574	394	313	549	157	300	551	258	251		270	172	529
20	Similarity (%)	0.99	67.0	60.1		69.6	31.6	63.4	73.1	68.1	76.7	71.3	71.7	59.7	73.6	645		67.0	65.7	72.5
	identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	44.6	28.3		35.6	33.1	45.9
25 (penu	e.		İ			ŀ	losis	CN	losis	losis	၌		s xerD	<u>5</u>	s parA					
S Table 1 (continued)	Homologous gene	Ch'amydia oneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgO		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Nycobacterium !uberculosis H37Rv Rv1697	Nycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis yakG	Staphylococcus aureus xerD	Streptomyces fradiae thC	Caulobacter crescentus parA	Bacillus subtitis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Eacillus subtilis rluB
35	-	<u>၂</u> ပ	ă						≥ I	7. ≤	Ţ-···	+-	100			+			Ž	
40	db Match	GSP: Y35814	sp:fF2_BORBU	sp.YZGD_BACSU		sp:Yaxc_BACSU	sp:YFJB_HAEIN	SP. RECN_ECOLI	pir.H70502	pir.A70503	sp.PYRG_ECOLI	SP.YOKG BACSU	, gp AF093543 1		gp CCU87804_4	sp YPUG_BACSU		ap AF109155_1	—	
	ORF (pp)	273	1353	984	162	819	873	1779	1191	953	1662	657	912	1530	783	765	561	867	+	756
45	Terminal (nt)	1483724	1486327	1497025	1487193	1488056	1489018	1490881	1492134	1493109	1495174	1495861	1496772	1496795	1499645	1500695	1500911	1502578	1503.76	1504238
50	Initial (nt)	1483936	1484675	1486042	1	1487238	5062 1489145	1489103	5064 1490944	1492147	5066 1493513	1495205	1405861	1	1498863	1499931				
	SEO	5057			+	5061	5062	5063	5064	5005	9905	5067	506a	5069	1570 5070	5071	5072	5073	4574 . 5074	5075
55		(UNA)	_	 -	 -	 -	: - -	1563		1565	1556	1567	\dashv		1570	1571	1572	-1	457	1575

Subunit

preprotein translocase SecA signal transduction protein

93.2

75.8

Mycobacterium smegmatis garA

Bacillus subtilis secA

2289 SP.SECA_BACSU

1515458

5091 5092

1591

pir C69334

1164

1515799

1515962

5090

1589

1589

gp:AF173844_2

429

1520029

1519601

61.7

74.4

41.9

Mycobacterium tuberculosis H37Rv Rv1828

Sp:YODF_MYCTU

756

1520945

5093, 1520190

1593

hypothetical protein

hypothetical protein

133

63.2

30.8

Mycobacterium tubercutosis H37Rv Rv1828

Sp.YODE_MYCTU

633

1521589

1520557

5094

1594

2-hydroxy-6-oxohepta-2,4-dienoate lydrolase

210 805 132 234

63

25.2

Archaeoglobus fulgidus AF0675

hypothetical membrane protein 5 Function GTP binding protein hypothetical protein methyl!ransferase Na+/H+ antiporter cytidylate kinase ABC fransporter 10 ABC transporter 15 Matched length (a a) 220 435 232 499 602 257 499 9 Similarity 736 740 73.2 က S 20 29 8 ဗ္ဟ 57. 61 dentity 38.6 42.8 36.2 31.2 39.7 3 29.7 25.7 36 25 Corynebacterium striatum M82B tetA Corynebacterium striatum M82B tetB Table 1 (continued) Mycobacterium tuberculosis Rv3342 Escherichia ccli K12 o249#9 ychJ Bacillus subtilis ATCC 9372 nhaG Homologous gene Escherichia coli K12 ygiE Bacillus subtilis yphC Bacillus subtilis cmk 30 35 SP YPHC_BACSU sp:YX42_MYCTU SPIKCY BACSU ECOL Sp:YCHJ_ECOLI gp: AB029555_1 db Match prf 25°3302B pf 25-3302A sp:YGIE 1 40 ORF (bp) **C69** 1557 813 1554 1767 1548 789 925 699 493 375 189 186 420 45 Terminal 1504945 1506573 5078 | 1507327 | 1506662 1507917 1507405 1510366 1512132 1510843 1512980 1512977 1514693 1514974 1515815 1515408 1505017 1508813 1515159 1515782 1507932 1508729 1512189 1514505 1504256 1510366 1511667 1515396 1514527 lo:tial Ê 50 5082 5076 5079 5081 5085 5083 5086 5084 5088 5089 (a a) 5077 5087 ဋ

119

582

1583

1584

1585

1586

55

1576

1577

1578

1579

580

SEQ

Ş

55		50	45		40	35	30	25	20	15	5
							Table 1 (continued)				
SEO NO.	SEQ	Initial (nt)	Termina' (nt)	09F (bp)	db Match		Homologous gere	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1595		5095 1521771	1522343	573	Sp.YODE_MYCTU	Mycob H37Rv	Mycobacterium Iuberculosis H37Rv Rv1828	71.4	84.3	178	hypothetical protein
1596	9609	1522941	1522432	510							
1597	5097	1524500	1523052	1449							
1598	5398	1525374	1525973	009				-			
1599	5399	1525497	1524568	930							
1600	1600 5100	1526534	1525473	1062	SP.YHDP_BACSU	Bacillu	Bacillus subtilis yhdP	33.9	0.69	342	hemolysin
1601	5101	.527913	1526534	1380	SP YHDT_BACSU	Bacillu	Baci'lus subtilis yhdT	31.4	65.5	65	hemolysin
1602	5102	.527969	1528185	219							
1603	5103	.529333	1527987	1344	go TTHERAGEN_1		Thermus thermophilus herA	41.2	69.5	374	DEAD box RNA helicase
1604	5104	1529485	1530220	735	sp YD48_MYCTU		Mycobacterium tuberculosis H37Rv Rv1348	34 3	1.99	245	ABC transporter ATP-binding protein
1605	5105	1531816	1530341	1476	gsp:W27613	Brevib	Brevibacterium flavum	0 66	99.2	492	6-phosphogluconate dehydrogenase
1606	5106	1531933	1532394	462	pir G70664	Mycot H37R	Mycobacterium tuberculosis H37Rv Rv1847	39 7	8.73	121	thioesterase
1607	5107	1532322	1532996	675							
1608	5108	:533041	1533781	741	sp.NODI_RHIS3	Rhizo	Rhizobium sp. N33 nadl	39.6	68.1	235	nodulation ATP-binding protein I
1609	5109	1533791	1534521	741	pir.E70501	Mycot H37R	Mycobacterium tuberculosis H37Rv Rv1686c	43.1	76.3	232	hypothetical membrane protein
1610	5110	1535431	1534529	973	SP. YFHH_ECOLI	Esche	Escherichia coli K12 yfhH	26.7	63.9	27.7	transcriptional regulator
1611	5111		1535382	845	sp.PHNE_ECOL:	Esche	Escherichia coli K12 phr.E	29.9	63.4	281	phosphonales transport system permease protein
1612	5112	1537030	1536227	. 804	sp.PHNE_ECOLI	Esche	Escherichia coli K12 phnE	27.2	62.3	268	phosphonates transport system permease protein
1613	5113	1537833	1537030	808	sp PHNC_ECOLI	Esche	Escherichia coli K12 phnC	44.8	72.0	250	phosphonates transport ATP-binding prolein
1614	5114	657865	1538968	210						:	
1615	1615 5115	1538919	1537870	1050				_			

5	Function		phosphomethylpyrimidine kinase	hydoxyethylthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	parine phosphoribosyltransferase	hypothetical protein	ersenic oxyan on-translocation pump membrane subunit		hypothelical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphale mannose synthase	apolipoprotein N-acyltransferase		secretory lipase
15	Matched length (a.a.)		262	249	451	468	156	206	361		222	469	97					110	217	527		392
20	Simitarity (%)		70.2	77.5	55.0	66.9	29.0	68.5	54.6		83.8	83.6	20.0					87.3	71.0	55.6		55.6
	Identity (%)		47.3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0		-		_	71.8	39.2	25.1		23.7
30 30 Table 1 (continued)	Homologous gene		Salmonella typhimurium thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv JfaA1	Burkholderia cepacia Pc701 mopB	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp. R9 ORFA	Pseudomonas sp. R9 CRFG					Mycobacterlum tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1
40	db Match		SP.TH.D_SALTY	SP.THIM_SALTY	p:r.H70830	pri 2223339B	pr12120352B	SP. YEBN_ECOLI	gp AF178758_2		gp:SCI7_33	gp.PSTRTETC1_6	GP PSTRTETC1_7					pir:A70945	prf.2317468A	Sp LNT_FCOLI		4 gp. AF188894_1
	ORF (tp)	702	1584	834	1314	1386	474	966	966	483	693	1455	426	615	207	189	750	366	8.0	1635	741	1224
45	Terminat (nt)	1538963	1539820	1542115	1546289	1546307	1547567	1545349		1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555086	1556771	1557014	1557859	1559497	1 !
50	Initiat (nt)	1539664	1541403	1542922	.544976	1547692	1548440	15486511		1550469	1551545	1552518	1553722	5128 1554684	1554861	1555079	1555835	1556376	1557823	5134 1559493	1560237	1561660
	SEQ NO.	5116	5117	5118	5119	5120	5121	5122	5123	5124	5125	5126	5127	5128	5129	5130	5131	5132	5133	5134	5135	5136
55	SEO NO (DNA)	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636

	Function	precorrin 2 methyllransferase	precorin-6Y C5, 15 methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		A-P-dependent RNA helicase	sec-independent protein translocase protein	hypothetical prote.n	hypothelical protein	hypothetical protein	hypothetical protein		hypothelical prolein	hypothetical protein	hypothetical prolein
	Matched length (a a)	291	411			244	382		1030	268	95	317	324	467		61	516	159
	dentity Similarity (%)	26.7	8.09			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	20.0
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	. 44.7	31.9	32.4	53.1		54.1	48.6	42.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudornonas denitrificans SC510 cobL			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberzulosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	pir:C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp.AF0:4460_1		sp:WTR4_YEAST	sp.TATC_ECOU	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY38_MYCLE	sp:YY37_MYCTU		pir:870512	pir:C70512	PIR:H72504
	CRF (ba)	774	1278	386	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
	Terminal (rt)	1562553	1562525	1564237	1564482	1564565	1565302	156/106	.567117	1569932	1571068	.571506	1572492	1573491	1575205	-574945	1576947 1575406	1577835
	Initial (nf)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	5144 1569933	1570933	1571382	1572486	1573463	1574915	1574957	1575136	_1	1577327
	SEO NO (a a)	5137	5138	5139	5140	5141	5142	5143	5144	5145	5.46	5147	5148	5.49	5150	5151	5152	5153
	SEQ NO (DNA)		1638	.639	1640	.641	.642	1643	.644	.645	1646	.647	.648	.649	059.	:99:	.652	:653

5		aperone-like				itein	ein	eu .	sferase	se	nsferase		ıclase	ein				Se
10	Function	AAA family ATPase (chaperone-like (unction)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothelical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphor bosyltransferase	beta-phosphoglucomutase	5-methylletrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reduclase	a senale reductase	•	cysteinyl-IRNA synthetase
15	Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
20	Similarity (%)	78.5	0.67	67.2	71.4	72.5	61.0	8 66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	99 B	8.96	30.8	31.6		22.4	33 0	32.6	47.2		35.8
<i>25</i> (þ.		s arc	nT		sis	198	orA23	cum AJ233	cum	88	T		аћрЕ	e)	lasmid	sis		
ss os Table 1 (continued)	Hornologous gene	Rhodococcus erythropol:s arc	Mycobacterium leprae pim T	Ното sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glularricum (Grevibacterium flavum) MJ233 aspA	Corynebaclerium glu:amicum ASO19 hisG	Thermo:oga maritima MSB8 TM1254	Escherichia coli K12 melH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Slaphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
40	db Match	prf 2422382Q	pi: S72844	gp AF005050_1	oir:870513	sp.VAPI_BACNO	prf.2513299A	sp.ASPA_CORGL	gp:AF050166_1	pir:H72277	sp:METH_ECOL!		6 SP. AHPF XANCH	sp.ACR3_YEAST	sp ARSC_S"AAU	pir G70964		2 sp SYC_ECOLI
	CRF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
45	Term rai (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1595603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
50	Iritial (nt)	1578531	1579400	158C771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	:591343	1592966	.593337	1594532	1595030	159621	1597450
	SEQ NO.	5154	5155	5156	5157	5158	5159	5160	5161	2915	5163	5154	5155	9915	5167	5168	5169	51/C
55	SEQ NO (DNA)	-654	:655	1656	.657	1659	1659	1660	1661	1562	1563	1564	1665	1666	1667	1660	1669	1670

5		Function	protein			se					nthetic	ed to							Se	pha
10		ם ב	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			Iransposase		bio operon ORF I (biotin biosynthelic enzyme)	Neisserial polypeptides predicted to he useful anligens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)/ransport system kinase	methylmalonyl-CoA mutase alpha subunit
15		Matched length (a.a.)	255 1	326	359 1	334 c			360		152	198		597		535		99	339	741
20		Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		58 4	723	87.5
		Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
<i>25</i>	ned)	ē.	cA CA	iens	losis				trpA		P			Jm M82B		ım M82B		pac	Α̈́	nensis
	lable 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			go PSESTBCBAD_ Pseudomonas syringae trpA		Escherichia coli K12 ybhB	Neisser a meningitidis		Corynebacterium striatum M828 tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
35 40		db Match	SP.BACA_ECOLI	prf.2214302=	pir.F70577	1113 Sp. PYRD_AGRAE			go PSESTBCBAD_		sp:Y8-48_ECOLI	GSP:Y74829		1797 prf 2513302A		prf.2513302B		609 pir.JU0052	9 sp. ARGK_ECOLI	sp:MUTB_STRCM
		ORF (bp)	879	948	666	1113	351	807	1110	488	531	729	633	1797	249	1587	351	609	1089	2211
45		Terminal (nt)	1597745	1595614	1600677	1501804	1501931	1603466	1504629	1604830	1505281	1606689	1608248	1505861	1609335	1507661	1509842	1610844	1311150	1512234
50		nrial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	:605215	1605811	1635961	1607645	1607657	1609087	1639247	1610192	.610236	:612238	-614444
		SEQ NO		5172	5173	5174	5175	5175	5177	5178	5179	5180	5181	5182	5183	5184	5105	5186	5187	5188
55		SEQ NO.	1671	1672	1573	1674	1675	1576	1577	1578	1679	1680	1681	1682	1683	1684	1605	1686	1687	1588

5	c	nutase bela	ne protein		ne protein	ne protein							o					
10	Function	methylmalonyl-CoA mutase bela subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothelical protein		hypothetical protein
15	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	98		446
20	Similarity (%)	68.2	70.1		87.0	787	72.8		65.7	56.5		85.9	81.5	51.9	62.0	80 2		1.38
	Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
<i>25</i> (pa		nsis	sis		sis	sis	(3(5)		reichil			Sis	sis	=	(2)6			58
S Table 1 (continued)	Homologous gene	Strep:omyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichll subsp. Shermanii hemH	Streptococcus faacium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus janraschli WJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningilidis MC58 NMB1652
35		1				ΣI	SS		i -			≥ I	≥ I	22	S	22		
40	db Match	sp.MUTA_STRCM	sp.YS13_MYCTU		sp.YS39_MYCTU	p.r B70711	gp SCC77_24		sp HEMZ_PROFR	Sp:P54_ENTFC		pir F73 8 73	pir E70873	pir F54496	gp:SCD82_4	pir.E64494		2 gp.AE002515_9
	ORF (bp)	1848	723	282	1296	435	843	783	1110	1800	498	2829	564	992	663	267	393	1392
45	Terminal (nt)	1614451	1617300	1617994	1518321	1519672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	-633324
50	Initial (nt)	1616298	16-6578	.617398	1619616	1620105	1621009	1621056	1622950	1624826	5198 1625925	1626279	1629298	1629913	1531329	1631660 1631926	1631745	1631933
	SEQ NO (e a)	5139	5130	5191	5192	5193	5194	5195	5196	5137	5198	5199	5200	5201	5202	5203	5204	5205
55	SEO NO (DNA)	1689	1690	1691	1697	1693	1694	1695	1696	1691	1698	1699	1700	1701	1702	1703	1704	1705

5		Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprolein	integrase	ABC transporter ATP-binding protein		sialidase	Iransposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitragen fixation protein
15		Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88		107	149
20		Similarity (%)	0.09	0.69	73.2		58.3					73.8	60 4	64 4		72.4	100 0	72.0	43.0		701	85.2
		identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	9.66	64.0	32.0	_	32.7	63.8
<i>25</i>	Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae ORF24	photrhoeae	Synechocystis sp. PCC6803 sl11614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yijK		Micromonospora vindifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 InpB	Corynebacterium glutamicum TnpNC	TP16		Pyrococcus abyssi Orsay PAB1C87	Mycobacterium leprae MLCL536.24c nilU7
	Tab	Hom	Neisseria d	Neisseria gonorrhoeae	Synechocy:		Streptomyc SC3D11.02		· 			Streptococcus phage TP-J34	Conynepha	Escherichi		Micromonospora vi	Corynebac 22243 R-p	Corynebac TnpNC	Plasmid NTP16		Pyrococcu PAB1C87	Mycobact MLCL536
<i>35</i>		db Match	CCD V38838		443		gp:SC3011_2					pri 2408488H	prt 2510491A	Sp.YJJK_ECOLI		SP. NANH_MICVI	gp.AF121000_8	GPU.AF164956_23	GP:NT1TNIS_5		pir B75015	pir.S72754
		ORF (bp)	-	200	`	783	489	1362	35?	156	162	375	458	1629	1476	1182	208	243	261	 -	423	447
45		Terminal (nt)	0010001	601760	.635241	1633781	.636244	:638442	1638775	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1645063	1645601	1647133	1547212	1647651
50		Initial (nt)		0007591	1633566	1634563	1636732	1637381	1639132	1639365	1639656	163978:	1620546	1642674	1644218	1645499	1645661	164582;	1645861	1723 5223 1646549	-647634	-648097
		SEO NO			5208	5209		5211	•	4	-		5216		5213	5219	5220	5221	5222	5223	1724 : 5224	1725 5225
55	:مد		- i		17.08	1709	1710	1711			_	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725

5				inding proteir				protein						8	l oxidase ne O			
10	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding proteir	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		relicase	quinone oxidereductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	transketolase	transaldolase	
15	Matched length (a.a.)	52	:.7	252	377	493	217	518	317	266	291		418	323	295	675	358	
20	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	746		51.0	70.9	8.99	100.0	85.2	
	Identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	150.0	62.0	
25 9	ene	APE2025	nifS	or A3(2)	ulosis	C6803	or A3(2)	ulosis			ulosis		PHC450	lor	kyi coxC	glutamicum		
30 + 0	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coeilcolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22 08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PHC450	Escherichia coli K12 qor	Nitrohacter winogradskyi coxC	Corynebacterium glut ATCC 31833 सि	Mycobacterium leprae MLCL536.39 tal	
35 40	db Malch	PIR.C72506	pir.S72761	gp.SCC22_4	pir.A70872	sp:Y074_SYNY3	gp.SCC22_8	pir F70871	0 pir.S72783	pir:S72778	pir C70871		pir.C71156	Sp. GOR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	sp.TAL_MYCLE	
	ORF (bp)	162	1263	756	11.6	.443	693	1629	102	804	666	357	1629	975	696	2100	1080	1164
45	Terminal (~t)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1655700	1657515	:058675	•659140	.661136	1662552	1662630	1666502	1667752	1666601
50	luitial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1855681	5234 1656712	1557677	1659496	1659508	1661578	1663598	1664403	16666/3	1667764
	SEO	5226	5227	522B	5229	5230	5231	5232	5233	-	5235	5236	5237	5238	5239	5240	5241	5242
55	SEO	1726		1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

	۲-	_ ,		···							 								
5				· 6	se							Se	ule I		ate				it C
10		Function	glucose 6-phosphate dehydrogenase	oxppcycle protein (glucose phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sercosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	głyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
15		Matched length (a a)	484	318	258	128	500	205				259	128	405	333	324	309	281	701
20		Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9 66	51.0	98.5	7.66	87.4	82.5	76.2	61.5
		Identity (%)	8.99.8	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99 1	63.9	56.3	52.0	34 4
25	nuea)	e c	į.	llosis	siae		olis	mcum				micum iA	siae	ımicum gk	ımicum ap	ulosis	ulosis	ulosis	C6803
30	able 1 (continued)	Homologous gene	Brev:bacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W so.3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynetacterium glutamicum ATCC 13032 soxA				Corynebacterium gluramicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebaclerium glu:amicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechacyslis sp. PCC6803 uvrC
35	-		ä	Σï	Sa	i —	+-			_		\ <u>3 ₹</u>		0 4	υ¥	ΣÏ	i		
40		db Match	gsp:W27612	pir:A70917	sp. SOL3_YEAST	SP. SAOX BACSN	gp. AF126281_1	gp CGL007732_5				sp. TPIS_CORGL	SP.YCQ3_YEAST	sp.PGK_CORGL	sp.G3P_CORGL	pir D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp.UVRC_PSEFL
	1	ORF (bp)	1452	957	705	405	1401	840	174	687	981	111	408	1215	1002	981	1023	927	2088
45		Termiral (nt)	1669401	1670375	1671099	1671273	:673123	1673266	1677384	1678070	1580128	1593332	1681670	1581190	1582624	1684117	1585115	1586152	1687103
50		Iritial (1r)	1667950	1669419 1670375	1670395	1671677		1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	:687078	5259 1689190
		SEO NO (a.a.)	5243	5244	5245	5246			5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
55		SEQ NO		1744	.7.15	.745		+	1749	1750	-		:753	1754	1755	1756	1757	1758	1759

1									-			<u> </u>			_			. 1	1
5	-		mazine	y rib operon	protein	y rib operon	and 3, 4- 4-phosphate nthesis)	ha chain	ninase	epimerase	1/NOP2	ltransferase	se		synthetase	tabolism			
10	Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin blosynthetic protein	polypeplide encoded by rib operon	GTP cyclohydrolase II and 3, 4- d:hydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphale 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosoma! protein n	S-adenosylmethionine synthetase	DNA/oantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
15	Matched length (a a)	150 h	154	72 ip	217 ri	106 р	404 d	211	365 ri	234 11	448 (6	308	150 p	725 p	407 S	409 n	- 	186 9	103 ir
		=	-	_	2	1	9	2	3(73	4	3(-	1.	4	4		-	=
20	Similarity (%)	2.89	72.1	0.89	48.0	52.0	84.7	79.2	2 79	73.1	60.7	67.9	7.27	46 3	9 66	6 08	87.7	74.7	90.3
	Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	4.6	2.44	22.9	69.3	58.0	70.4	39.8	9.08
25 ਹ		S					s ribA	8 ribE				ſmt			233	S	S	guk1	s
క Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escher chia coli K12	Bacillus subtilis	Bacillus subtills	Bacillus sublilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia co'i K12 r bD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus sublilis 168 def	Escherichia coli priA	Brevioaderium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae gukl	Mycobacterium tuberculosis H37Rv Rv1388 m!HF
35		Mycoba H37Rv	Escher	Bacillus	Bacillus	Bacillus	Mycoba	Actinobacillus pleuropneumo	Escheri	Saccha S288C	Escheri	Pseudo	Bacillus	Escheri	Brevisa	Mycoba H37Fv	Mycoba H37Rv	Saccha	Mycobs H37Rv
40	db Match	sp:YR35_MYCTU	sp.RISB_ECOLI	GSP. Y83273	GSP Y83272	GSP:Y83273	gp.AF001929_1	sp:RISA_ACTPL	sp.RIBD_ECOLI	sp:RPE_YEAST	sp:SUN_ECOLI	sp.FMT_PSEAE	sp.DEF_BACSU	Sp. PRIA_ECOLI	gsp:R60060	sp.DFP_MYCTU	sp:YD90_MYCTU	pirKIBYGU	pir.B70899
	ORF (bp)	579	11.1	228	714	336	1266	533	984	557	:332	945	507	2064	1221	1260	291	627	3.8
45	Terminal (nt)	1689201	1699869	1690921	1691421	1691347	1693360	1691639	1692275	1593262	1693967	1695499	1596466	1697084	1699177	1700508	1702032	1702411	1702991
50	Indial (nt)	1689779	1690345	1690654	1590708	1691012	1691625	1692271	1693258	1693918	1695298	1656443	1696972	1699147	1700397	1701737	1702322	1703037	5277 1703308
	SEQ NO (a.e.)	526c	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
55	SEQ NO (DNA)	176C	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	2772	1773	1774	1775	1773	111.

5	Function	orolidine-5'-phosphale decarboxylase	carbamoyl-phosphate synthase large chain	ca-bamoyl-phosphate synthase small chain	dihydrcorotase	asparlate carbamcyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinale synthase	shikimale kinase	type IV prepilin-like protein specific leader peptidase
15	rh ($-\uparrow$	\neg			-	- }		_				- 1		
	Malched length (a a)	276	1122	381	405	311	176	1 297	_			137	187	217	361	166	142
20	Similarity (%)	73.6	77.5	70.1	67.7	7.67	1.08	734				69.3	98.4	100.0	99.7	100.0	549
	Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
25 G		sis			405		405	Sis					entum	E DO	LINO	Eng	<u>a</u>
35 September 25	Homologous gene	Mycobacterium fuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacter um tuberculosis H37Rv Rv2218				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13859 efp	Corynebacterium glulamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroE	Corynebacterium glutam cum ASO 19 arok	Aeromonas hydrophila tapD
35			1 111	İ		i ···	 	1	-	-							1
40	db Match	sp DCOP_MYCTU	pir.SYECCP	SP.CARA_PSEAE	Sp. PYRC_BACCL	sp.PYRB_PSEAE	Sp. PYRR_BACCL	Sp.YOOR_MYCTU				sp.NUSB_BACSU	SP. EFP_BRELA	gp.AF12460G_4	gp:AF12460C_3	gp AF 124600_2	SP.LEP3_AERHY
	ORF (bo)	834	3339	=======================================	1341	936	576	1164	477	797	210	- 68	26.	1089	1095	492	= 4
45	Terminal (nt)	1703517	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716:32	1716780	1717938	1719107	1720971
50	Initial (rt)	1704350	1707697	1708884	17:0357	5282 1711343	1711927	1712596	1713830	1714299	1714741	.716052	1716692	17.7869	1719032	1719598	:721381
	SEO		5279	5280	5281	5282	5283	5284	5285	5286	5287	5289	5289	5290	5291	5292	5293
55		17.78	1779	1780	1781	782	:783	1784	:785	:786	1787	.788	682.	062.	167:	1792	1793

,													<u>_</u>					
5		otein, arsR	}		er, ofein	TP-binding	nase			a.	!		ase	 	sidase			
10	Function	bacterial regulatory protein, family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothelical protein	hypothetical protein	alanyl-IRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		franscriptional regulator
15	Matched length (a a)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
20	Similarity (%)	68.7	73.2		20.7	7.1.7	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
tinued)	gene	olor A3(2)	htheriae		rsay	huC	culosis	culosis	culosis	lans ATCC	culosis		e aspS	culosis	visiae			olor A3(2)
& Table 1 (continued)	Homalogous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacil'us subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacilius ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv RV2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
35	! !	SC St	3 ₹	-	<u>\$</u> &		₹£	₹ E	₹£	# 8		_	Αy			-	I	8 8
40	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp FHUC_BACSU	pir:D70660	pirE70660	pir.=70660	sp:SYA_THIFE	sp.Y0A9_MYCTU		SP.SYD_MYCLE	Sp:Y0BQ_MYCTU	sp.AMYH_YEAST	SP.YHGE_BACSU		9p:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	284
45	Terminal (nt)	172:423	1722853	1722202	1723826	1724578	17246:2	1725459	1725625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
50	Initial (nt)	.721725	1721780	1722807	1722870	1723826	1725439	17266251	1727170	1730248	1731542	1732822	1734811	1735056	1738679	1740539	1741219 1740572	1741313 1741906
	SEQ NO	5294	5295	5296	5207	5298	5299	5300	5301	5305	5303	5304	5305	5306	5307	5308	5309	53:0
55	SEQ NO		1795	1796	1797	1798	1739	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydralase		alpha-glycerolphosphate oxidase	hislidyl-tRNA synthelase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyttransferase	dipeptide transport system	nypothetical protein	protein export membrane protein	
	Matched length (a.a.)		371		116	462		598	421	211	175		128		760	185	49	558	332	
	Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6.66	99.5	98.0	30.7	25.9	
Table 1 (continued)	Homologous gene		Streptomyces cael color A3(2) SCE 15. 13c		Pseudomonas aeruginosa PAO1 sifA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium g'utamicum ATCC 13032 orf4		Corynebacterium g utamicum ATCC 13032 rei	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 ddAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
	db Match		gp.SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf.2423362A	sp:SYH_STAAU	gp:CJ11168X3_12 7	prl.23133C9A		gp:AF03865*_4		gp:AF038651_3	gp:AF038651_2	gp:A ² 038651_1	sp Y08G_MYCTU	9 sp SECF_ECOLI	
	ORF (bp)	714	1113	126	495	1347	861	1685	1287	639	507	1 237	555	342	2280	555	150	1743	1209	630
	Terminal (nt)	.742605	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757599	1760336
	Initial (nt)	1741893	174270	1743843	1744025	1744884	1746728	1747918	1749276 1747990	1749963	1750427	1750564	1751497	1752186	5224 1754894	1755479	1755/48	1757228	158797	1759707
	SEQ NO (a a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	532.	5322	5323	1	5325	532E	5327	5328	5329
	SEC NO (CNA)	1811	1812	1813	1914	1815	1816	-817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1879

					_			-											
5	Function	profein-export membrane profein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypoth etical protein	hypoth etical protein	hexosyltransferase or N-acetylglucosaminyl-phosphalidylinositol biosynthetic proteir	acyltransferase	CDP-diacylglycerol-glycerol-3. phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threony-tRNA synthetase	hypothetical prolein			
15	Matched length	616	106	331	210	180	250	283	111	170	414	295	78	194	647	C04			
20	Similarity (%)	52.0	66.0	91.9	74.3	63.3	78.4	68.6	613	61.2	493	87.9	78.0	78.4	6.89	51.8			
	Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3	-		
30 aldeT	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia col: K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streplomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C sp114	Streptomyces coelicolor A3(2) SCL2 16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
35 40	db Match	prl.2313285A	SD: YOBD_MYCLE	sp:RUVB_ECJU	SP RUVA_MYCLE	sp:RUVC_ECOLI		sp.TES3_ECOLI	gp.SC10A5_9	pir.H73570	sp.GPI3_YEAST	gp:SCi_2_16 S	pir:C70571	N 17207C:riq	sp.SYT2_BACSU B	SD: YWBN_BACSU B			
	ORF (bp)	1932	363	1080	618	693	753	846	474	462	1083	963	557	660	2058	1206	564	545	735
45	Terminal (nt)	1758833	1761005		1762517	1763.77	1753990	1765015	1756442	1756487	1766948	1768034	1769322	1769681	1770327	1772658	1774444	1773893	1774457
50	In tial (nl)	1760734	1761357	_	1763134	1763839		1765860	1765969	1766948	5335 1768030	1768996	1769678	. —		:773863	1773881	1774438	1775191
	SEO NC NC	5330	5331	5332	5333	5334	5335	5336	5337	5338	5335	5340	5341				5345.		5347
55	SEO VO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	-	_	1845		1847

[Ì	1	7			_	_		· - T	_		 I	-	— _[. —- ı	_			
5	uc						ansferase											oinding profeir					lısm		
10	Function						puroniycin N-acetyltransferase				9							ferric transport ATP-binding protein			:		pantothenate metabolism flavoprotein		
15	Matched length (aa)						190											202					129		
20	Similarity (%)						54.2											28.7					2.99		
	Identity (%)						36.3								_			28.7					27.1		
25 ontinued)	s gene						stus pac											afuC					dip s		
S Table 1 (continued)	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC		:			Zymomonas mobilis díp		
35	db Match						STRLP											Sp AFUC_ACTPL A					gp:AF088896_20 Z		
		378	594	07	5	6	7 sp.PUAC	98	01	6	8	13	23	13	6	2	6		: 61	6	1/0	0.		4	0.
	al ORF (bp)	<u> </u>	-	1407	615	399	9 567	1086	1101	699		1:13	1923	12 483	189	7 312	1 429	R 597	666 9	159	1107	1 450	1 591	9 864	9 420
45	Terminal (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789769	1790057	179046	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50	Initial (nt)	1777269	1777444	1779508	.780158	1780935	1781585	1781705	1783281	1784080	1785473	5358 1786944	1788929	1789090	1789580	1789746	1790889	5364 1791842	1792428	1793654	1793714	1795202	1795591	1756186	1797350
	SEO NO (8.8)	5348	5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363	5364	5365	5366	5367	5368	5269	5270	527
<i>55</i>	SEO NO (DNA)	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

			ī	;	Γ	<u> </u>	T	Τ-	T -]		T	Τ-	T -	- ;-	_	Т	7-	Т	Τ-	1	Τ_		T	Τ	
5																					lvase			hatase		
10		Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
15		Matched length (a a)																			186			164		
20		Similarity (%)																			78.0		 	51.8		
		Identity (%)		_																	51.1			29.3		
25	(pan	9																			l İ			ae		
30	Table 1 (continued)	Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevis ae S288C YIR028C yvh1		
35						_	-	-		<u> </u>					<u> </u>		-				Es					-
40		db Match																			sp.TNP2_ECOL!			sp.PVH1_YEAST		
		ORF (bp)	120	/35	225	894	156	474	753	423	289	429	465	237	681	096	480	.89	285	375	612	1005	375	47.7	726	423
45	i	Term·nal (nt)	1797850	1/98023	1799406	1800366	1800449	1901307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806586	1807396	1808113	1908421	1808832	1910372	1811545	1811938	1912691	1913606	1912460
50		fnitial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1892733	1833465	1894134	:804629	1804919	1805727	.805917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
	انتمس	SEQ NO (a.n.)	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
55		SEQ NO (DNA)	1 1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1889	1889	1890	1891	1892	1893	1894	1895

	Г			- -	-					 -											- 1			
5		Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15		Matched length (a.a.)	216									545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			÷0 6		£4.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	Table 1 (continued)	us gene	icolor A3(2)									ma MSB9					glutamicum	glutamicum	glutamicum			emi recJ		age phi-O1205
30	Table 1 (c	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermo:oga marilima MSB9 TM1185					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebac!erium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
35									<u></u>			Ę Ę		-	_		ၓ	Con	Cor)	_				<u>8 0</u>
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR S60831	pir.S60890	pir. S60889			sp RECJ_ERWCH		pir:T13302
		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (11)	1814517	1815651	1815128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initiat (nt)	5356 1813780	1814863	1815673	18.6451	1817132	1817803	1818460	1818798	18:9954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1824928	1917 5417 1836675
		SEQ NO	5356	5397	5399	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEO NO (DNA)	1896	1857	1858	1899	1900	1901	706,	.603	.504	:905	1906	1907	806,	606.	:£10	1611	1912	1913	1914	1915	1916	1917

			T			\top	1	Ţ-	\top	;	7	T	Ī	T	\top			Τ	\top	7	T			ď
5																	SH3							einase ATI
10	Function				helicase		phage N15 protein qp57										actin binding protein with SH3 domains					A*P/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
15	Matched length	/1			620		109										422					347		630
20	Similarity (%)				44.7		64.2										49.8					52.5		60
	Identity (%)				22.1		36.7										28.7					23.6		30.2
²⁵ (pen	. eu				e ATCC		57										ombe							
S S Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SCSC7.14		Escherichia coli K12 cipA
35			<u> </u>	-			80							-			-2					ช ช		
40	db Match				sp:YC18_MYCPN		pir.T13144										gp:SPAPJ760_					gp:SC5C7_14		sp.CLPA_ECOLI
	ORF (bp)	3789	447	534	1839	375	336	366	618	537	529	798	186	372	438	976	1221	852	1395	594	180	1257	1854	1965
45	Terminal (nt)	1842137	184268	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50	Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	:847938	.848509	. 848988	:849781	5430 1850035	1850415	1851049	5433 1851220	1851473	1852479	1854261	1855058	1855532	1856885	1958763
	SEQ NO.	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5436	5439	5440
55	SEQ NO (DNA)	1918	1919	1920	1921	1922	1923	1924	1925	1925	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1538	1939	1940

5	Function					ATP-dependent helicase					hypothetical profein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15	Matched length (a.a.)					693					224	208				_	363	358			504	
20	Similarity (%)					45.9					47.8	61.5					7.66	99.7			45.8	
	Identity (%)				_	21.4					25.9	31.7			_		99.2	99.7		_	24.6	
Table 1 (Continued)	auaô sn					ureus SA20					licolor A3(2)	i-C31 gp52					glutamicum M	glutamicum R			licolar A3(2)	
	Homologous gene				 	Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17 07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebaclerium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
40	db Match					Sp PCRA_STAAU					gp:SCH17_7	pr.25:4444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355 s	559	378	465	264	8 222	702 0	225	2166	273	6567	1069 p	1074 p	1521	717	1818	186
45	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	:867095	:867874	1868587	: 868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	Initial (nt)	1850752	1861320	1861842	1862088	5445 1862945	1865265	1855842	5448 1856328	1856832	1867098	5451 1867886	1863895	1871092	1871373	1877886	5456 1873312	1879412	5458 1883990	1884936	5460 1885230	1887405
لتتمس	SEO NO.	5441	5442	5443	5444	5445	5446	5447		5449	5450	5451	5452	5453	5454	5455	<u></u>	5457		5459	<u></u>	5461
55	SEO NO (DNA)	1941	1942	1943	1944	1945	1945	1947	1948	1949	1950	1951	1952	1953	1954	1955	1955	1957	1958	1959	1960	1961

	<u> </u>					7		\neg		i										Ī			-		\neg
10	Function	SNF2/Rad54 helicase-related protein	hypothelical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15	Ma:ched length (a a)	06	163		537				724							1004									
20	Similarity (%)	70.0	56 4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7				25.3							20.1									
25 (pən.	9	S.	gle		-16																		·		
S Table 1 (conlinued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coll clp3							Homo sapiens numA									
35	db Malch	gp:AE001973_4	pir.T:3226	-	gp:AF188935_16				sp.CLPB_ECOLI							pir. S23647									
40	# 6	 -	 -	0		90	33	33		-	13	. 9	1	9	8	. =	0	51	9	4	96	69	98	6	9
	(bp)	38 351	11 864	9 330	1680	1206	1293	19 2493	1785	33 621	1113	36 846	55 981	5 879	25 198	13 2766	3 600	34 1251	99 99	35 714	1008	12 1659	33 1486		25 1509
45	Terminal (nt)	1887688	1888231	1889859	1892028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50	Initial (nt)	1888338	1889094	1989530	1891707	1893037	5467 1894680	1897231	1899159		1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	5480 1909498	1910508	1912300	1913820		1916233
	SEQ NO (a a)	5462	5463	5464	5465	5456	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	15477	5478	5479	5480	5481	5482	5483	1984 5484	5485
55	SEQ NO (DNA)	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	.981	1982	1983	984	.685

		_	<u> </u>	_	_	٦-	T	T	_	T	, -	·-,	_			ī		 -			_,_				
5	tion										Jein			ase											
10	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length	(99)						-		-	1408 su			61 mc		-			114 hy			328 hy	-	-	
20	Similarity (%)										49.2		-	65.6			 		58.8			54.6			
	Identity (%)										23.2			42.6					38.6			27.1			
25	9	1																	Sis			:=			
S S S S S S S S S S S S S S S S S S S	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
35	٤									<u></u> -		- -	— 						ZI				_		- 1
40	db Match										4464 pir T03099			sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA			
	ORF (bp)	360	222	312	645	759	549	930	908	357	4464	579	945	171	375	1821	201	468	381	202	837	942	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1923347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1933990	1931421	193:935	1932373	1933522	1934971	1936849	1937411	1937485
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	5496 1926837	1928189	5498 1928211	1928534	5520 1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202 1937411	1938C19
	SEQ NO	5486	5487	5488	5485	549∁	5491	5492	5493	5494	5495		_		5499		5501	2002 5502	2003 5503	5504	5055	5506	5507	5508	5509
55	SEQ NO (DNA)	1986	1987	1988	1999	1990	1991	1992	1993	1994	1995	1936	1997	1998	1999	2200	2001	2002	2003	2004	2005	2006	2007	2008	2009

		1	_	1	T -	Т-	_	_	_	1	_	Ţ-	-	_		T				_	1		· · · · · ·	-, -1
5	Function										surface protein				major secreted protein PS1 protein precursor			DNA topo.somerase III					major secreted protein PS1 protein pracursor	
15	Matched length										304				270			597	!				344	
20	Similarity (%)										44 1				54.4			50.9					54.7	
	Identify (%)	_									23.0				30.7			23.8					29.7	
os 55 Table 1 (continued)	Homologous gene										calis esp				glutamicum lavum) ATCC	-		Bdc					glutamicum avum) ATCC	
Table 1	Hemolog	•									Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
35	db Match			<u> </u>							prf.2509434A	i			sp.CSP1_CORGL			sp:TOP3_ECOLI					sp. CSP1_CORGL	
40	ORF (ap)	11911	534	588	444	53	303	216	309	885	828 prf.25	76		6		30			35	1	2	4		-
45		1-	┼	-	- -	32 753	ł					95 297	52 381	19 429	0 1581	2430	19 967	16 2277	3 2085	1 891	5 432	1 744	4 1887	9 291
45	Terminal (n:)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	.958450	1959765	1960371	1961114	1963139
50	rilial (Jr.)	1936945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	5523 1948553	1951450	1952495	1954922	5527 1958287	5528 1959340	5529 1960196	1961114	5531 1963000	5532 1963429
	SEQ NC (3.8.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522		2024 5524	5525	5526	5527	5528	-	5530	<u> </u>	5532
55	SEQ NO (DNA)	2010	2011	2012	2013	2014	20:5	20:6	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

5	Function				Ihermonuclease										single stranded DNA-binding protein								serine protease				
15	Matched length (a.a.)				227 thermo	-	1				 				225 single								249 serine				
20	Similarity (%)				57.7										59.1								52 E				
²⁵ S	Identity (%)	-			30.4					_					24.9			 - 		-	_		D 25.7				
Table 1 (continued)	Homologous gene				Staphylococcus aureus nuc										Shewanella sp. ssb								Ancpheles gambiae AgSP24D				
35	db Match			: : !	Sp NUC_STANU										prf.23;3347B								sp.S24D_ANOGA				
	ORF (tp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	570	912	693	365	747	183
45	Terminal (nt)	715896.	1964727	1965911	1966964	1967269	1968167	1969715	1570203	1971474	1973090	1973'47 1973737	1973809 1974204	1974503	1975794	1976494	1976983	1977549	1978323	1978721	1979217	1979909	1980885	1381657	1982028	1982817	1981912
50	initial (nt)	1964743	5534 1965902	5535 1966267	5536 1566301	1967435	1967604	5539 1968264	5540 1969745	2041 5541 1970254	.97.672			:974267	1975-71	1975916	1976522	1977C43	1977742	1978389	5552 1978660	1979239	1979974	1980965	1981663	1982071	1982091
	SEQ NO (a a)	5533				5537	5536	5539		5541	5542	5543	5544	5545	5546	5547	2048 5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5550
55	SEQ NO DNA)	2033	2034	2035	2036	2037	2039	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	202	2053	2054	2055	2056	2057	2058

			T		Π	T	T	Ī		\Box	1	T	П	1	Γ -	T	7	1	Т	1	Π	$\overline{}$
5		Function								ıntegrase	(ransposase (divided)	(ransposase (divided)		transposition repressor	insertion element (IS3 related)	Iransposase					major secreted protein PS1 protein precursor	nlegrase
15		Watched lergth (a.a.)	:							406	124	117		31	£3	270 t		-			153 in	223
20		Slmi arity (%)				-				55.9	94.4	84.6		8.96	88.4	53.7					37.0	56.1
		Identity (%)								29.6	83.9	6.07		80.7	74.4	31.1					25.0	28.7
25	minuea)	gene								ge L5 int	fermentum	fermentum		fermentum	ıtamicum	olor A3(2)					tamicum Im) ATCC	e L5 int
30 C	lable I (confinited)	Homo!agous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL 2005 ISaB 1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf t	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35		db Match												,								BPML5
40										SP.WINT_BPMLS	gsp:R23011	gsp:R23011		gsp:R21601	pir:S60889	gp:SCJ11_12					sp.CSP1_CORGL	sp.VINT
		ORF (bo)	363	273	264	234	342	273	303	1149	380	417	207	114	135	828	354	891	432	744	1584	697
45		Terminal (n:)	1983548	1983883	1984181	1984450	1984728	1985384	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1989778	1991020	1989874	1991189	1991795	1992538	1954608
50	-	Initial (rt)	1983185	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987856	1986303	1586383	1988483	1988664	1985605	1990667	1990764	1991620	1992538	1994121	1995294
	<u>-</u>	SEQ NO (a a)	5559	2999	5561	5562	5563	5564	5955	5566	2567	5568	5569	5570	5571	5572	5573	5574	5575	5576	2077 5577	5578
55		SEQ NO CNA	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	207	2072	2073	2074	2075	2076	2077	2078

5		orter				itein	<u>_</u>	clase					sphate				ate	!	
10	Function	sodium-dependent transporter	hypothetical prolein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypotheticai protein	deoxyuridine 5-triphosphate nucleotidohydrolase	hypolhetical protein	
15	Matched length (a.a.)	88	95			233	384	126		232	201	37:	618	472		268	140	150	
20	Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	786	528	78.5	52.3		62.7	82 1	70.7	
	Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	95.0	46.0	
55 (Danuijued)	s gene	26595	Αı			erculosis D	erculosis	Jonii ms/A		erculosis	serculosis	enzae Rd	CL 190 dxs	ma MSB8		berculosis	licolor A3(2)	berculosis	:
S Table 1 (continued)	Homologous gene	Helicobacter pylori 26595 HP0214	Bacillus subtilis yxaA			Mycabacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium Iuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 H10390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
<i>35</i>	db Match	pi:F64546	sp.YXAA_BACSU			pr:C70968	pir:E70968	438 gp. AF 128264_2		pir:H70968	pir.C70528	Sp.RND_HAEIN	gp AB02663	pir:E72298		pir.C70530	sp.DUT_STRCO	pir.E70530	
	03F (bp)	336 pi	432 5	345	336	d 969	1254 p	408 g	426	969	624 p	1263 \$	1908	1236	282	198	447	549	207
45	Terminal (rt)	1995783	1996537	1997112	1997503	1998240	1999542	1959949	1999707	2500521	2002112	2203334	2003402	2005452	2006979	2006777	2007738	2008798	2009082 2008876
50	Initial (nt)	1996089	1996106	1996769	1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002002	2005309	2006697	2006698		2006184	2006250	
	SEO	<u></u>	5580		5882		5584	5585	5586	5587	5589	5589	5590	5591	5592		5594	5895	2096 5596
55	SEQ		2080		2062		2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096

Similarity	length (a.a.)	Helicobacter pylori 26695 39.8 76.1 88 sodium-dependent transporter	HP0214 As a 815 92 hypothetical protein	2			Mycobacterium tuberculosis 33.5 64.4 233 riboflavin biosynthesis protein H37Rv Rv2671 ribD	Mycobacterium tuberculosis 42.5 71.9 384 potential membrane protein H37Rv Rv2673	Streptococcus gordonii msrA 41.3 67.5 126 methionine sulfoxide reductase		Mycobacterium tuberculosis 55.2 77.2 232 hypothetical protein H37Rv Rv2676c	Mycobacterium tuberculosis 55.7 78.6 201 hypothetical protein	Haemophilus influenzae Rd 25.9 52.8 371 ribonuclease D		Streptomyces sp. CL190 dxs 55.3 78.5 618 synthase	Thermotoga manitima MSB8 25.4 52.3 472 RNA methyltransferase		Manage attention triberculosis	38.1 02.7 200	Streptomyces coelicolor A3(2) 55.0 82.1 140 deoxyuridine 3-tripinospilate SC2E9.09 dut	Mycobacterium tuberculosis 46.0 70.7 150 hypothetical protein H37Rv Rv2698	
<u> </u>			12	5	-	+								-				├-	\dashv			
di de C. L.	(%)	39.8	0 07	20			33.5	42.5	41.3		55.2	55.7	25.9	-	55.	25.	_	5	g S	- 55.	46.	_
lable 1 (confined)	Homologous gene	Helicobacter pylori 26695	HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis	Haemophilus influenzae Rd	KW20 HI0390 rnd	Streptomyces sp. CL 190 dxs	Thermotoga maritima MSB8		M.cobacterium tuberculosis	H37Rv Rv2696c	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis H37Rv Rv2698	
	db Match	.ir. E64546		sp.YXAA_BACSU			pir.C70968	pir:E70968	gp. AF128264_2		pir:H70968	pir.C70528		sp:RND_HAEIN	gp:AB026631_1	pir.E72298			pir.C70530	sp.DUT_STRCO		
	ORF (bp)	 -	9	432	345	336	969	1254		426	969	624		1263	1908	1236	_	282	861	447	549	
	Terminal (nt)		1995/83	1996537	1997112	1997503	1998240	1999542	1999949	1000707	2000521	2002112	7117007	2003334	2003402	2005462		2006979	2006777	2007738		
	Initial		1996088	1996106	1996768	╀-		1998289	1999542	20000	2000132	007	7001469	2002002	2005309	2006607		2006698	2007637			
	SEO		5579 1	5580 1							5587		2288	5589	5590		1600	5592	5593			
Ì		(DNA)	2079	2080		-					2086		2088	2089	0000	2007	2091	2092	2093	000	2095	22

Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
Matched length (a.a.)	100	198	248	500	422		578	127	92	523	144	228	77	329		305	661
Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	93.6	64.0	99.1		79.0	50.7
tdentity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5 08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dbR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
db Match	pir.F70530	SP.SUHB_ECOLI	sp:PPGK_MYCTU	prf.2204286A	sp:YRKO_BACSU		sp:Y065_MYCTU	pir:H70531	pir.G70531	gp:SCH5_8	prf:2204286C	pir:140339	GP:AF010134_1	sp.GALE_BRELA		pir.E70532	sp:MTR4_YEAST
ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266			2025270		2026494
SEQ NO.	5597	5598	5599	5600	5601	5602	5603	5604	5605	9099	5607	5608	5609	5610	5611	5612	5613
SEQ NO.	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (hp) (bp) (a.a.)	SEQ NO. (nt) Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (aa) (a a) (nt) (nt) (pt) (pt)	SEQ No. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis (%) 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 19B	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Mycobacterium tuberculosis Identity (%) Similarity (%) Matched (%) Matched (%) 5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ (a a.) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) <td>SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matc</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)<td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matc</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (n1) (n1) (pp) db Match Homologous gene (%) 81.0 91.0 100 5597 2009570 20093280 291 pir.F70530 Mycobacterium fuberculosis 58.0 81.0 100 5599 2010539 20103724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5509 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5601 201637 1335 sp.PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5602 201637 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016321 1710 Mycobacterium fuberculosis 61.3 80.8 57.8 5604 201819 1710 Mycobacterium fuberculosis 65.8</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (ml) (ml) (pp) pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5599 2010556 2011362 826 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010556 2011362 826 sp.PGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5601 201566 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015686 537 Mycobacterium tuberculosis 61.3 80.8 57.8 5603 2017966 201627 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 201626 201</td><td>SEO Inntial CRF db Match Homologous gene (%) (%) Matched (%) NO (n1) (n1)<</td></td>	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matc	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matc</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (n1) (n1) (pp) db Match Homologous gene (%) 81.0 91.0 100 5597 2009570 20093280 291 pir.F70530 Mycobacterium fuberculosis 58.0 81.0 100 5599 2010539 20103724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5509 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5601 201637 1335 sp.PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5602 201637 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016321 1710 Mycobacterium fuberculosis 61.3 80.8 57.8 5604 201819 1710 Mycobacterium fuberculosis 65.8</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (ml) (ml) (pp) pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5599 2010556 2011362 826 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010556 2011362 826 sp.PGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5601 201566 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015686 537 Mycobacterium tuberculosis 61.3 80.8 57.8 5603 2017966 201627 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 201626 201</td> <td>SEO Inntial CRF db Match Homologous gene (%) (%) Matched (%) NO (n1) (n1)<</td>	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matc	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (n1) (n1) (pp) db Match Homologous gene (%) 81.0 91.0 100 5597 2009570 20093280 291 pir.F70530 Mycobacterium fuberculosis 58.0 81.0 100 5599 2010539 20103724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5509 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5601 201637 1335 sp.PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5602 201637 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016321 1710 Mycobacterium fuberculosis 61.3 80.8 57.8 5604 201819 1710 Mycobacterium fuberculosis 65.8	SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (ml) (ml) (pp) pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5599 2010556 2011362 826 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010556 2011362 826 sp.PGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5601 201566 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015686 537 Mycobacterium tuberculosis 61.3 80.8 57.8 5603 2017966 201627 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 201626 201	SEO Inntial CRF db Match Homologous gene (%) (%) Matched (%) NO (n1) (n1)<

Table 1 (continued) Terminal ORF Terminal OFF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF Terminal ORF		_													·							
SEC Initial Commission Comparison			Function	eroxide-inducible genes		ident helicase	protein		story protein	litization operon repressor	ictokinase (fructose 1- kinase)	olpyruvate-protein Insferase	phosphate regulon	fructokinase or 6- ictokinase	n, fructose-specific IIBC	rrier protein		ease	oinding protein			ielate epimerase
SEC Initial Terminal ORF ORF O			;	hydrogen p activator		ATP-depen	regulatory (SOS regula	galactitol u	phosphofru phosphate	phosphoen phosphotra	glycerol-3-prepressor	1-phosphol phosphofru	PTS syster component	phosphoca		uracil perm	ATP/GTP-			diaminopin
SEC	15			299		1298	145		222	245	320	292	262	345	549	81		407	419			569
SEQ	20			65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	80.0			64.7
SEO Initial Terminal ORF db Match (nt) (nt) (nt) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp			Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
SEO Initial Terminal ORF db Match (nt) (nt) (nt) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp	25	ntinued)	gene	~			gerus nrdR			gatR	olor A3(2)	ophilus ptsl	glpR	atus fruK	fruA	ophilus XL-		pyrP	s orf11*			zae Rd
SEO (ni) (ni) (ni) (ni) (bp) (bp) (bp) (a.a.) (ni) (ni) (ni) (ni) (ni) (ni) (ni) (ni		Table 1 (cor	Homologous	Escherichia coli oxyf		Escherichia coli hrpA	Streptomyces clavuli		Bacillus subtilis dinR	Escherichia coli K12	Streptomyces coelice SCE22.14c	Bacillus stearotherm	Escherichia coli K12	Rhodobacter capsula	Escherichia coli K12	Bacillus stearotherm 65-6 ptsH		Bacillus caldolyticus	Streptomyces fradia			Haemophilus influen KW20 HI0750 dapF
SEC Initial Terminal (nt) (a.a.) (5614 2029177 2030157 5615 2031365 2030277 5616 2031478 2035383 5617 2035880 2035890 5619 2036812 2037507 5620 2037815 2038591 5621 2038591 2039550 5622 2041321 2039618 5623 2041728 2045571 5626 2045762 2046028 5625 204736 2046714 5626 2045762 2046320 5630 2050321 2051106 5631 2051306 2051845 5632 2052675 2051845			db Match	sp.OXYR_ECOLI		sp:HRPA_ECOLI	gp:SCAJ4870_3			Sp.GATR_ECOLI		sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp.PTFB_ECOLI	sp.PTHP_BACST		Sp.PYRP_BACCL	gp:AF145049_8			sp.DAPF_HAEIN
SEQ Initial NO. (nt) (a.a.) (nt) (5614 2029177 5615 2031365 5616 2031478 5617 2035890 5619 2036812 5620 2037815 5620 2037815 5620 2041728 5623 2041728 5625 2043736 5625 2045762 5629 2050107 5630 2050321 5631 2051306 5632 2052675			ORF (bp)	981	1089	3906	450	420	969	777	096	1704	792	066	1836	267	582	1287	1458	786	537	831
SEO NO. (a.a.) 5614 5615 5616 5617 5619 5622 5622 5623 5625 5626 5623 5626 5623 5626 5627 5626 5623 5627 5628 5628 5628 5631 5632 5633	4 5		Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
\ \	50		Initial (nt)			2031478			2036812	2037815	2038591								2050107			2052675
SEQ NO. (DNA) 2114 2115 2117 2119 2120 2127 2128 2128 2128 2128 2128 2128 2128			SEQ NO.	5614	5615	5616	5617	5618	5619	5620	5621	5622	5623	5624	5625	5626	5627			_	5631	+
	55		SEQ NO	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

hypothetical membrane protein

228

58.8

24.6

Bacillus subtilis ybaF

609 pir.F69742

Table 1 (continued) Table 1 (continued)		_																	
SEG Initial Terminal ORF Charles Cha			Function	. delta-2- entenylpyrophosphate ferase		thetical protein			thetical membrane protein	thetical protein	mate transport ATP-binding	serial polynentides predicted to serial polypeptides predicted to setul antigens for vaccines and tostics	mate transport system ease protein	mate transport system lease protein	atory protein	thetical protein		ı synthase	scine transport ATP-binding
Second Continued Continu	45			tRN/ isope trans		hypo	-		hypo	hypo	gluta	Neis Neis be u	gluta perm	gluta	regu	hypo		bioti	putre
SE	15		Matched length (a.a.)	300		445			190	494	242	1.7	225	273	142	29		197	223
SEQ Initial Terminal ORF Gb Match Table 1 (continued) SEQ Initial Terminal ORF Gb Match Homologous gene SEQ Initial Terminal ORF Gb Match Homologous gene SEQ SEQ SEQ SEQ SEQ SEQ SEC MIAA_ECOL Escherichia coli K12 miaA SEG SEG SEG SEG SEG SEG SEG Mycobacterium tuberculosis SEG SEG SEG SEG SEG SEG SEG Mycobacterium tuberculosis SEG SEG SEG SEG SEG SEG SEG Mycobacterium tuberculosis SEG SEG SEG SEG SEG SEG SEG Mycobacterium tuberculosis SEG S	20		Similarity (%)	68.7		75.7			63.7	86.4	93.6	73.0	100.0	9.66	6.99	71.6		61.4	69.5
SEQ Initial Terminal ORF db Match Homologous gene (In) (In)			Identity (%)	40.0		48.5			29.0	68.4	9.66	0.99	100.0	99.3	34.5	40.3		33.0	33.2
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (bp) db Match (a.a.) 2053286 2052684 903 sp.MIAA_ECOLI 5634 2053743 2053609 675 5 5635 2055743 2055761 1359 pir.B70506 5636 2055743 2055761 1020 5637 2055763 2056787 1020 5639 2055743 2056787 1020 5640 2059774 2060499 726 sp.CLUA_CORGL 5641 2060414 2060499 726 sp.CLUC_CORGL 5642 2061629 2062312 684 sp.GLUC_CORGL 5643 2062441 2063259 819 sp.GLUD_CORGL 5644 2063894 2063298 597 sp.RECX_MYCLE 5645 2065667 738 pir.A70878 5646 2065666 2067141 576 sp.BIOY_BACSH 5648 2067168 206786 699 sp.POTG_ECOLI	25	ਰਿ				s			S	Ü	Ę		Ę	22. E	,	s			
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (bp) db Match (a.a.) 2053286 2052684 903 sp.MIAA_ECOLI 5634 2053743 2053609 675 5 5635 2055743 2055761 1359 pir.B70506 5636 2055743 2055761 1020 5637 2055763 2056787 1020 5639 2055743 2056787 1020 5640 2059774 2060499 726 sp.CLUA_CORGL 5641 2060414 2060499 726 sp.CLUC_CORGL 5642 2061629 2062312 684 sp.GLUC_CORGL 5643 2062441 2063259 819 sp.GLUD_CORGL 5644 2063894 2063298 597 sp.RECX_MYCLE 5645 2065667 738 pir.A70878 5646 2065666 2067141 576 sp.BIOY_BACSH 5648 2067168 206786 699 sp.POTG_ECOLI		Table 1 (continue	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosi H37Rv Rv2731			Mycobacterium tuberculosi H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicu ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicu ATCC 13032 gluC	Corynebacterium glutamicı (Brevibacterium flavum) AT 13032 gluD	Mycobacterium leprae rec)	Mycobacterium tuberculosi H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG
SEG Initial Terminal ORF (n.t.) (n.t.) (bp) 5633 2053286 2052684 903 5634 2054283 2053609 675 5635 2055743 2054724 1023 5636 2055743 2054724 1023 5637 2055765 2056787 1023 5638 205778 2057780 669 5639 2059774 2060499 726 5640 2059774 2060499 726 5641 2060414 2060312 684 5642 2061629 2062312 684 5644 2063894 2063259 819 5645 2065627 2065667 738 5646 2066404 2065667 738 5647 2066566 2067141 576 5648 2067168 2067866 699			db Match									3SP.Y75358	sp.GLUC_CORGL	i	 			sp:BIOY_BACSH	ECOLI
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			ORF (bp)	,	675		1020	1023			 	 	 				738	-	
SEQ Initial NO. (nl) (a.a.) (nl) (a.a.) (nl) (a.a.) (nl) (a.a.) (nl) (a.a.) 2053586 5634 2054403 5635 2054403 5636 2055743 5637 2055765 5639 2059774 5640 2059774 5641 2060414 5642 2061629 5643 2062441 5644 2063894 5645 2066566 5648 206566	45		-	2052684	2053609		 	 	2057120	 	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866
	50		Initial (nt)		2054283				1	2059420	·	2060414	2061629						
SEQ NO. (DNA) 2133 2134 2135 2136 2140 2142 2144 2146 2146 2146 2146					5634	5635	5636	5637	5638	5639	5640	5641	5642		5644	5645	5646	+	
	55		SEQ NO.	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148

	. 1									\neg				T	\neg		_	
Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	89	319
Similarity (%)	78.5	9.68	78.3	68.5	72.5	52.1	0.07		59.8 59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli ter&	Bacillus subtilis 168 spolllE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
db Match	pir.B60176	sp:35KD_MYCTU	pir:H70878	sp.CINA_STRPN	prf.2421334D	pir:T10688	gp:AF071810_1		pH2118285B	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			prf.2217311A	pir.F69700	prf.2518365A
ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878			2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066				2079275	2081136				2085702	
SEQ NO	5650	5651	5652	5653	5654	5655	5656	5657			5660	5661	5662	5663	5664	5665	5666	5667
SEQ.	2150	2151	2152	2153	2154	2155	2156	2157	215A	2159	2160	2161	2162	2163	2164	2165	2166	2167
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) (bp)	SEQ Initial (nt) Terminal (nt) QRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a a .) (nt) (nt)	SEQ Initial NO. Terminal (nt) (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (aa) 8650 2068703 2069392 690 pir.B60176 Mycobacterium tuberculosis 41.7 78.5 228 5651 2069383 2068556 828 sp.35KD_MYCTU Mycobacterium tuberculosis 72.5 89.6 269	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (bp) (bp)	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 65.0 (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (bp) QRF (bp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ (nt) at 10 (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (hp) (NE) (hp) (hp) (hp) db Match (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp	SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (pp) (pp	SEC NO (nt) Initial (nt) Terminal (nt) ORF (pp) db Match (pp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEC NO (a1) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEG Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%) (%)	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) NO (nt) (nt) (bp) db Match Homologous gene (%) <td>SEG Initial Terminal ORF db Match Homologous gene (%) Riminarity (%) Matched (%) 8.50 (n1) (n2) (n2) (n2) (n2) (n2) (n2) 208 2</td> <td>SEQ Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)<td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nt) (nt)</td><td>SED Initial Terminal ORF db Match Homologous gene Identify (%) Similarity (%) Matched (%)</td></td>	SEG Initial Terminal ORF db Match Homologous gene (%) Riminarity (%) Matched (%) 8.50 (n1) (n2) (n2) (n2) (n2) (n2) (n2) 208 2	SEQ Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nt) (nt)</td> <td>SED Initial Terminal ORF db Match Homologous gene Identify (%) Similarity (%) Matched (%)</td>	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nt) (nt)	SED Initial Terminal ORF db Match Homologous gene Identify (%) Similarity (%) Matched (%)

	Function	bifunctional protein (riboflavin kinase	and FAU synthetase)	tRNA pseudouridine syndiase o	hypothetical protein	hypothetical protein	phosphoesterase		DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation indication factor IT 9	translation initiation factor IF-2	metarical contains	nypomencal process	n-utilization substance protein	termination/antitermination factor)		handhelical profein		peptide-binding protein	peptidetransport system permease	oligopeptide permease	populations port system ABC-	transporter ATP-binding protein
	Matched length (a.a.)	329		303	47	237	273		433	308	108	****	1103	8	83	357	3		105	3	534	337	292		552
	Similarity (%)	0.62	2	61.7	73.0	62.5	68.9		78.8	70.8	70.4	Ç	62.9		66.3		2		2	00.0	6.09	69.4	60.2	3	81.3
	Identity (%)	56.2	7.00	32.7	65.0	42.2	46.9		51.0	36.7	32.4	,	37.7		44.6	ç	42.3		3	34.6	25.3	37.7	786	200	57.6
Table 1 (continued)	Homologous gene	Corynebacterium	ammoniagenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	7 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Bacillus subtilis 100 100	Stinmatella aurantiaca DW4 infB	origination of the Autonomy	Streptomyces coelicolor A3(4)		Bacillus subtilis 168 nusA		Machaeterium tuberculosis	H37Rv Rv2842c	Bacillus subtilis 168 dppE	Erchorichia coli K12 danB	בארוופורטווופ בטוו איד לאגם	Bacillus subtilis spoone	Mycobacterium tuberculosis H37Rv Rv3663c dppD
	db Match		Sp.RIBF_CORAM	Sp.TRUB BACSU	PIR:PC4007	dp:SC5A7 23		pir.B/U883	pir:G70693	pir.H70693		sp:RBFA_BACSU		Sp.Irz_311AU	gp:SC5H4_29		sp:NUSA_BACSU			pir.E70588	DDDE BACSU	7 7 6	Sp. UPPB_ECULI	prf:1709239C	pir.H70788
	ORF (bp)		1023	204	T	651		804	1305	966		447	2000	3012	336		966	130,	3	534	1600		924	666	1731
	Terminal	(mil)	2086919	SARRAC	2087954	2080218	25007	2089861	2090751	2092051		2093055		2093712	2096844		2097380		C198607	2098412	-		2102946	2103973	2105703
	Initial	(aux)	2087941	2707900			2005007	2090664	2092055	2093046		2093501	.1 .1	2096723	2097179		2098375		2098562	2098945		2100240	2102023	2102975	
	SEQ	(a.a.)	5668		5670		200	5672	5673	5674	· -	5675		9299	5677		5678		5679	5680		5681	5682	5683	
	SEQ	2	2168		2170		1712	2172	2173	2174	7	2175		2176	2177		2178		2179	2180		2181	2182	2183	2184

Г		-T	T		\neg						\top	\top		\top	\top	Π.			
	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
	Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	630	216	424	360
	Similarity (%)	84.6	65.0	2.09	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
	Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0			•		47.2	27.3	44.0	29.5	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
	db Match	sp:SYP_MYCTU	gp:Scc30_5	Sp.BCHD_RHOSH	prf. 2503462AA	prf.2108318B	sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp:GSHR_BURCE					SP. AMPM_ECOLI	prf.2224268A	prf.2518330B	prf.2518330A	gp: AE001863_70
	ORF (bp)	1764	735	759	1101	750	1422	900	1014	1395	942	474	357	729	789	1866	630	1149	957
	Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
	Initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628				2124996	2125089
	SEQ	(4.4.)	5686	5687	5688		2690	5691	5692	 5693	5694	5695	9699	5697		_	5700	5701	5702
		(DNA) 2185	2186	2187	2188	2189	2190	2191	2192	 2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

$\overline{}$
Ō
Ð
_
\subseteq
=
$\overline{}$
ਨ
ក
ಀ
~
a
Ω
ď

- 1				$\neg \neg$	T				$\neg au$	\top	\top	⊆					\neg	\top		\neg
	Function	ABC transporter		hypothetical protein (gcpE protein)		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase				ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
	Matched length (a.a.)	225		359		405	147	312				245	356	94	294	185	109		280	254
	Similarity (%)	71.1		73.8		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43.1		8.92	83.5
	identity (%)	37.3		44.3		43.0	36.0	22.8				37.1	0.99	41.5	33.3	47.0	28.4		49.6	54.7
(nanimina) i ainpi	Homologous gene	Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
	db Match	prf:2420410P		sp.GCPE_ECOLI		pir:G70886	GSP:Y37145	sp:DXR_ECOLI				pir:872334	sp:YS80_MYCTU	pir.A70801	sp.CDSA_PSEAE	Sp.RRF_BACSU	prf.2510355C		sp.EFTS_STRCO	pir.A69699
	ORF (bp)	069	162	1134	612	1212	645	1176	441	480	1578	855	1098	258	855	555	729	861	825	816
	Terminal (nt)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825		2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
	Initial (nt)	2126064	2127087		2128850	2129880	2130306	2131078	2131322	2131726	2133402		2135551	2135884	2137089	2137840		2138994	2139827	2140886
	SEQ NO.	5703	5704	5705	5706	5707	5708	5709	5710	5711	5712	5713	5714	5715	5716	5717	5718	5719	5720	5721
	SEQ	2203	2204		2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	7717	2218	2219	2220	2221

	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		11	225	376	62	251	437
	Similarity (%)	58.0	68.7	8.99	75.8	72.3	0.96	69.5		61.1	59.1		88.3	6.09	64.1	74.2	76.9	26.8
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	sp:YS91_MYCTU	prf:2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp.RNH2_HAEIN		prf.2514288H	prf:2510361A		sp.RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp.THIS_ECOLI	sp:THIG_ECOLI	prf.2417383A
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231	1	2148231		1		2151039	2152135	2152334	2153058
	SEO NO	5722	5723	5724	5725	5726	5727	5728	6779	5730	5731	5732	5733	5734	5735	5736	5737	5738
	SEQ NO.	2222	2223	2224	2225	2226	2227	2228	2220	2230	2231	2232	2233	2234	2235	2236	2237	2238

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

continued)	
Table 1 (c	

_							$\neg \neg$		I	T	- i	T	$\overline{}$	$\neg \neg$	\neg	\neg	$\neg \Gamma$	$\neg \tau$			1	
	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
	Matched length (a.a.)	776	334	456	65	350				273	210	172	69	83	196	256	318	559				505
	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	9.73	72.1	2.99	79.5	61.7	69.1	63.8	78.2				99.1
	Identity (%)	56.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
Table 1 (confinued)	Homologous gene	Bordetella pertussis TOHAMA I	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
	db Match	sp.TEX_BORPE	pir.A36940	pir.H72105	prf.2108268A	sp:PCAB_PSEPU				sp:TRMD_ECOLI	gp:SCF81_27	sp:RIMM_MYCLE	pir.B71881	pir.C47154	pir.T14151	prf:2512328G	prf:2220349C	sp.SR54_BACSU				10 sp.FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	069	819	648	513	348	495	576	867	876	1641	633	417	699	1530
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815					2171058	2172131	2172877	
	Initial (nt)	2156733	2157721	2159181	2159237		2160670		. 1		2163098	2164260	2164390	2165309				2169584	2170426		2172209	2175288
	SEO	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754					5759
	SEQ			2241	2242		2244	2245	2246	2247	2248	2249	2250	2220	2252	2223	2254	2255	2256	2257	2258	2259

Table 1 (continued)

	Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
	Matched length (a.a.)			1144		1206	92		305	257			188	285	221	176	238	559	541	388	
	Similarity (%)			46.2		72.6	73.9		0.09	73.5			9.9/	2'99	76.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	20.0	28.3	26.6	35.3	
ומחוב ו (בסוווווומבם)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922 1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581,28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match			sp.AMYH_YEAST		65 sp:Y068_MYCTU	sp.ACYP_MYCTU		Sp:YFER_ECOLI	pir:S72748			gp:DNINTREG_3	sp.FPG_ECOLI	pir.B69693	sp.Y06F_MYCTU	sp:Y06G_MYCTU	prf.2104260G	Sp.CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	441
	Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	2198007
	Initial (nt)	2176046	2176402		2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187679	2188306	2189170	2189906		2191328	2191522			2198447
	SEQ NO (a.a.)	5760	5761	5762	5763	5764	5765	5766	5767	5768	5769	5770	5771	5772	5773	5774	5775	5776	5777	5778	5779
	SEQ NO.	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

													$ \tau$			
Function	hypothetical protein	peptidase	sucrose transport protein			maitodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
Matched length (a.a.)	405	353	133			814	295	264	169	228	89	258	241	245	210	402
Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
Homologous grane	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485 Igt	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmIR
db Match	pir.A72322	sp.HIPO_CAMJE	pir:S38197			prf.2513410A	Sp. YFIE BACSU	sp:LGT_STAAU	sp.TRPG_EMEN!	pir.H70556	sp:HIS3_RHOSH	sp. HIS6_CORG	prf.2419176B	gp.AF051846_1	gp:AF060558_1	sp.CMLR_STRLI
ORF (bp)	1284	1263	336	135	276	2550		†	801	657	354	774	825	738	633	1266
Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205490	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
SEQ	5780	5781	5782	5783	5784	5785	57.8E	5787	5788	5789	5790	5791	5792	5793	5794	5795
SEO	2280	2281	2282	2283	2284	2285	22 BE	2287	2288	2289	2290	2291	2292	2293	2294	2295
	SEQ Initial Terminal ORF db Match Homologous grine (%) (nt) (hp) (bp) (aa)	SEQ Initial (nt) Terminal (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) NO (nt) (nt) (bp) (bp) Thermotoga maritima MSB8 21.0 43.7 405 hypothetical prothetical SEQ NOTE (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5780 2198475 2199758 1284 pir.A72322 Thermotoga maritima MSB8 21.0 43.7 405 5781 2199808 2201070 1263 sp:HIPO_CAMJE Campylobacter jejuni ATCC 32.9 64.3 353 5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133	SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous grane (%) Identity (%) Similarity (%) Matched (%) 5780 2198475 2199758 1284 pir.A72322 Thermotoga maritima MSB8 21.0 43.7 405 5781 2199808 2201070 1263 sp.HIPO_CAMJE Campylobacter jejuni ATCC 32.9 64.3 353 5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 markitima MSB8 27.1 51.9 133	SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5780 2198475 2199758 1284 pir A72322 Thermotoga maritima MSB8 21.0 43.7 405 5780 2198475 1263 sp:HIPO_CAMJE Campylobacter jejuni ATCC 32.9 64.3 353 5781 2201408 2201073 336 pir:S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 markina MSB8 27.1 51.9 133 5784 2201689 22015450 135 markina MSB8 27.1 51.9 133	SEQ (nt) (nt) (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5780 2198475 2199758 1284 pir A72322 Thermotoga maritima MSB8 21.0 43.7 405 5780 2198475 2199758 1263 sp: HIPO_CAMJE Campylobacter Jejuni ATCC 32.9 64.3 353 5781 2201408 2201073 336 pir: S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 mir: S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201669 2201450 135 mir: S38197 Thermococcus litoralis malP 36.1 67.4 814	SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous grane (%) Identity (%) Similarity (%) Matched (%) 5780 2198475 2199758 1284 pir. A72322 Thermotoga maritima MSB8 21.0 43.7 405 5780 2198475 2199758 1284 pir. A72322 Thermotoga maritima MSB8 21.0 43.7 405 5781 2199808 2201070 1263 sp. HIPO_CAMJE Campylobacter jejuni ATCC 32.9 64.3 353 5782 2201408 2201070 135 pir. S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201869 2201594 276 pir. S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201869 2201594 276 pir. 2513410A Thermococcus litoralis malP 36.1 67.4 814 5785 2204541 22014591 900 sp. YFIE BACSU Bacillus subtilis 168 yffE 33.9 66.4 295 <	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) NO (nt) (nt)	SEQ (nt) (nt) (nt) Initial (nt) (nt) CRF (nt) (nt) db Match (bp) Homologous ginne (%) Identity (%) Similarity (%) Matched (%) 5780 1198475 2199758 1284 pir.A72322 Thermotoga maritima MSB8 21.0 43.7 405 I 5780 2198475 1289758 1284 pir.A72322 TMo896 21.0 43.7 405 I 5781 2199808 2201070 1263 sp.HIPO_CAMJE Campylobacter Jejuni ATCC 32.9 64.3 35.3 I 5781 2201408 2201070 135 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201584 2201594 276 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201584 2201594 276 pir.Z513410A Thermococcus litoralis malP 36.1 67.4 814 5786 2205491 2201592 2550 pir.Z513410A Thermococcus aureus FDA 485 31.4 65.5	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) ST80 1184 (nt) (nt)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	SEG Initial Terminal ORF db Match Homologous g::ne Identity Similarity Matched (%) NOO (nt) (nt)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%a) Similarity length (%a) Matched (%a) Matched (%a) (%	SEQ Initial Terminal ORF db Match Homologous grine Identity Similarity (%) Matched (%) NO (nt) (nt) (pp) db Match Homologous grine (de) (%)	SEG Initial Terminal ORF db Match Homologous grime (%) (

	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
	Matched length (a.a.)		198	362	439	342			211	204	723	258	268	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	60.9	64.4	68.3	71.1	68.0	9'29	73.5
	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
	db Match		sp:HIS7_STRCO	sp:HIS8_STRCO	sp.HISX_MYCSM	gp:SPBC215_13			prf.2321269A	pir.RPECR1	pri 2387283B	pir:E70572	gp:SC2G5_27	prf.2503399A	sp:GALR_ECOLI	sp:FHUC_BACSU	prf.2423441E	pir:G70046	pir:G70046	sp:YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	3588	801	774	1011	966	798	1038	348	594	441
	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225835	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	3222528	2225149	2226763	2227779	2227906	2229896	2230937	2231294	2231932	2232456
	SEQ NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5885	5806	5807	5808	5809	5810	5811	5812	5813	5814
	SEQ NO. (DNA)	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

Corynebacterium glutamicum AS019

49.6 80.5 73.8 55.7 64.7

53.3 37.6

DNA polymerase III

415

Catharanthus roseus metE Streptomyces coelicolor A3(2) dnaE

Escherichia coli K12 rarD

840 sp.RARD_ECOLI 468 sp.HISJ_CAMJE

5833 | 2252017 | 2252856 |

3582 prf.2508371A

2248358

pir.S57636

1203

2247006

2331 2332 2333 2334 2335

279 149 198

21.5

22.7

Campylobacter jejuni DZ72 hisJ Archaeoglobus fulgidus AF2388

918 pir.D69548

5835 2253725 2254642

5834 2253192 2253659

chloramphenicol sensitive protein histidine-binding protein precursor

hypothetical membrane protein

	,																	
5		Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosyltrehalose trehalohydrolase	hypothetical protein	threonine dehydratase		
15		Matched length (a.a.)	355		814	322					375	120		568	214	436		
20		Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3		
	:	identity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3		
25	ntinued)	gene	olor A3(2)		3 treY	urans					escens	olor A3(2)		Q36 treZ		ıtamicum		
<i>30</i>	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCIB.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA		
40		db Match	gp:SCI8_12		pir. S65769	gp:AE002006_4					sp:LXA1_PHOLU	gp:SC7H2_5		pir:S65770	sp:YVYE_BACSU	sp:THD1_CORGL		
		ORF (bp)	1143 g	909	2433 pi	1023 gi	399	198	189	1056	1044 sp	378 91	231	1785 pi	651 sp	1308 sp	205	156
45		Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295
50		Initial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450
		SEQ NO.	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829	5830
				10	۱ ـ				t t	1	l		1		1 -	1	1 -	1 - 1

2319

2322

2321

2324

2325

2328

2327

2329

SEQ NO (DNA)

55

2315 2316 2317 2318

ed)
ontinu
1 (0
Table

						יייייייייייייייייייייייייייייייייייייי				
SEQ NO (DNA)	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2336		2255558	2254683	876	sp.GS39_BACSU	Bacillus subtilis 168 ydaD	48.2	0.08	280	short chain dehydrogenase or general stress protein
2337	5837	2257024	2255738	1287	sp:DCDA_PSEAE	Pseudomonas aeruginosa lysA	22.9	47.6	445	diaminopimelate (DAP) decarboxylase
2338	5838	2259312	2258362	951	sp:CYSM_ALCEU	Alcaligenes eutrophus CH34 cysM	32.8	64.3	314	cysteine synthase
2339	5839	2259999	2259421	579					-	
2340	5840	2260931	2260002	930	sp:RLUD_ECOLI	Escherichia coli K12 rluD	36.5	61.0	326	ribosomal large subunit pseudouridine synthase D
2341	5841	2261467	2260934	534	sp.LSPA_PSEFL	Pseudomonas fluorescens NCIB 10586 IspA	33.8	61.7	154	lipoprotein signal peptidase
2342	5842	2261688	2262689	1002						
2343	5843	2262850	2264499	1650	pir.S67863	Streptomyces antibioticus ofeB	36.4	64.0	550	oleandomycin resistance protein
2344	5844	2264996	2265298	303						
22.45	5845	228510B	2264509	909	orf 2422382P	Rhodococcus erythropolis orf17	36.7	57.6	158	hypothetical protein
2346	5846	2346 5846 2265420	4	975	SD ASPG BACLI	Bacillus licheniformis	31.2	62.0	321	L-asparaginase
2347	5847	2268297		1401		Escherichia coli K12 dinP	31.8	60.7	371	DNA-damage-inducible protein P
2348		2269245	2268388	858	sp:YBIF_ECOLI	Escherichia coli K12 ybiF	31.5	61.5	286	hypothetical membrane protein
2349	5849	2270261	2269260	1002	gp:SCF51_6	Streptomyces coelicolar A3(2) SCF51.06	44.3	73.1	334	transcriptional regulator
2350	5850	2270304	2270435	132						
2351	5851	2270884	2270258	627	gp:SCF51_5	Streptomyces coelicolor A3(2) SCF51.05	42.0	67.0	212	hypothetical protein
2352	5852	2274149	2270988	3162	sp.SYIC_YEAST	Saccharomyces cerevisiae A364A YBL076C ILS1	38.5	65.4	1066	isoleucyl-tRNA synthetase
2353	5853	2274688	2274473	216						
2354	2354 5854	2275861	2274767	1095						

5

	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	UDP-N-acetylglucosamine-N- acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N- acetylglucosamine pyrophosphoryl- undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoytalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
	Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110		_	365	494
	Similarity (%)	73.2	99.3	9 66	100.0	51.0	98.6	100.0	8.66	99.5	9.66	99.1			63.8	64.2
	identity (%)	46.3	99.3	1.78	99.2	39.0	98.6	9.66	99.4	98.9	99.4	99.1			38.6	35.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum fts2	Corynebacterium glutamicum ftsQ	Corynebacterium glutamicum murc	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
	db Match	pir:F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	prf.2420425C	GP. AB028868_1	sp:FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			sp:MRAY_ECOLI	1542 sp:MURF_ECOLI
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
	Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
	Initial (nt)	2276637	2277336	2278078	2278859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEQ NO (a.a.)	5855	5856	5857	5858	5859	5860	5861	5862	5863	5864	5865	5866	5867	5868	5869
	SEQ NO (DNA)	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369

	Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411
	Similarity (%)	9'29	100.0	58.8		79.3	88.8	69.3	1	65.3	9.07	62.0	9.69		68.8	62.4		58.4
	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268, 11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium (eprae MLCB268.23
	db Match	sp:MURE_BACSU	GSP:Y33117	pir:S54872		pir.A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp:METF_STRU	pir.S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	507	369	2148	651	1236
	Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
	Initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2297653	2297866	2299428	2299524	2300706	2302179	1	2302833	2303690	2304983
	SEQ NO.	5870	5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	5886
	SEQ NO.	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothelical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sultur subunit (Rieske (eFe-2S) iron-sultur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
	Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201	203	278
	Similarity (%)	62.0	87.9	7.77	64.5	57.1			100.0	100.0	75.7	8.09	61.3	64.7	57.1	83.1
	identity (%)	30.4	699	58.4	35.1	28.2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir.G70936	gp:AF260581_2	gp:MLCB268_20	pir:G70936	sp.CSP1_CORGL			gp:AF096280_3	gp.AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp:P60_LISGR	prf.2503462K	gp:AF107888_1	sp:Y005_MYCTU
	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092		2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEQ NO. (a.a.)	5887	5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	2900	5901
	SEQ NO. (DNA)	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

	1	i '	_			_						,						
Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aidehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		210
Similarity (%)	7.07		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	0.79	68.5		65.7
Identity (%)	36.7		38.6	28.7	7.66	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 IIsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
db Match	sp.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	sp:COBU_PSEDE	sp:COBV_PSEDE		prf:2414335A		gp:PPU010261_1	prf.2110282A	gp:AF047034_2		gp:AB020975_1
ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	5919 2341412
SEQ NO (a.a.)	5902	5903		5905	5906	2907	5908	9069	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (hp) (bp) (bp) (a.a.)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (houst) Matched (%) (a.a.) (nt) (nt)	SEQ Initial (a.a.) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (matched) 5902 2325887 2325273 615 sp.COX3_SYNVU Synechococcus vulcanus 36.7 70.7 188 5903 2326173 153	SEQ Initial NO. Initial (nt) Terminal (DR) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5902 2325873 615 sp.COX3_SYNVU Synechococcus vulcanus 36.7 70.7 188 5903 2326273 2326121 153 Mycobacterium tuberculosis 38.6 71.0 145	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (pt) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ Initial NO. Initial (nt) (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5902 2325887 2325273 615 sp.COX3_SYNVU Synechococcus vulcanus 36.7 70.7 188 5902 2325887 2326273 615 sp.COX3_SYNVU Synechococcus vulcanus 36.7 70.7 188 5904 2326900 2326472 429 sp.Y00A_MYCTU Mycobacterium tuberculosis 38.6 71.0 145 5905 2327997 2326921 1077 sp.COX2_RHOSH Rhodobacter sphaeroides ctaC 28.7 53.9 317 5906 2328516 2330435 1920 gp.AB029550_1 KY9611 lisA 100.0 100.0 100.0 5907 2330927 2330586 342 gp.AB029550_2 KY9611 off1 100.0 100.0 114	SEQ NO. (a.a.) Initial (nI) Terminal (nI) ORF (bp) db Match (bp) Homologous gene (%) Homologous gene (%) Identity (%) Similarity (%) Matched (%) <	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO. (III) Initial (III) ORF (III) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matche	SEQ (Na.) (10.1) Intital (Int) (SEQ (a.a.) Initial (m) Terminal (m) ORF (m) db Match (m) Homologous gene (m) Identity (m) Similarity (m) Matched (m) 5902 2325273 615 sp.COX3_SYNVU Synechococcus vulcanus 36.7 70.7 188 5903 2326273 615 sp.COX3_SYNVU Synechococcus vulcanus 36.7 70.7 188 5904 2326273 135 sp.Y00A_MYCTU Mycobacterium tuberculosis 38.6 71.0 145 5905 232690 232691 1077 sp.Y00A_MYCTU Mycobacterium tuberculosis 38.6 71.0 145 5906 232691 1077 sp.Y00A_MYCTU Mycobacter sphaeroides ctaC 28.7 53.9 31.7 5906 232692 2330435 192 gp.AB029550_1 Corynebacterium glutamicum 100.0 100.0 114 5908 2331200 2330486 34.2 gp.AB029550_2 KY9611 ilisA 35.0 60.2 246 5908 2331807 78.8 gp.MLCB22_2	SEQ (nt) (nt) (nt) (nt) (bp) CRF (nt) (bp) db Match (pp) (pp) Homologous gene (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp	SEO (a.a.) Initial (a.b.) Terminal (bp) ORF (bp) Ab Match Homologous gene (%b) (in) Initial (bp) Framinary (bp) Marched (%b) (in) (in)	SEQ Innii al (ml) Terminal (bp) ORF (bp) Ab Match Homologous gene (%b) (%b) Matched (%b) Matched (%b) Matched (%b) Matched (%b) (%b) Matched (%b) Matche

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacetate permease	fransmembrane transport protein	transmembrane transport protein		
	Matched length (a.a.)	285	257	559	401		157		145	128		220	111			433	158	118		
	Similarity (%)	6.07	76.7	8.79	100.0		63.7		44.0	65.6		6.09	73.0			53.4	72.8	66.1		
	identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
	db Match	sp:LIPA_PELCA	sp:Y00U_MYCTU	sp:YIDE_ECOLI	gp:AF189147_1		gp:SC5F7_34			pir.B72308		sp:LUXA_VIBHA	pir.A72404			prf:2203345H	gp:SCGD3_10	9p:SCGD3_10		
	ORF (bp)	1044	780	1617	1203	300	471	213	975	399	900	849	393	243	261	1323	561	444	195	405
	Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
	Initial (nt)	2342304	2343479	2344431	2347491	2347505	2348548	2350620	2351022	2351310	2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357726
	SEQ NO.	5920	5921	5922	5923	5924	5925	5926	5927	5928	5929	5930	5931	5932	5933	5934	5935	5936	5937	5938
	SEQ NO. (DNA)	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

Table 1 (continued)

_		<u>.</u>									_								
	Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (1S402)
	Matched length (a.a.)		214	809	441	392	601	54	374	358		382		249	378	204	156	281	129
	Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
	Identity (%)		67.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) ginE	Thermotoga maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
	db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp:GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	Sp.GAL1_HUMAN	gp:AF174645_1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	sp.GPH_ECOLI	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:YI21_BURCE
ľ	ORF (bp)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
	Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
	Initial (nt)	2358695	2359416	2362748	2364155	2364352	2365587	2367652	2367791	2370381	2370423	2372557	2372561	2373289	2374462	2374544	2375214	2375767	2377390
	SEQ NO.	5939	5940	5941	5942	5943	5944	5945	5946	5947	5948	5949	5950	5951	5952	5953	5954	5955	5956
	SEO NO.	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

hypothetical protein

65.7

33.6

Deinococcus radiodurans DR1192

gp: AE001968_4

5974 2390904

75.5

43.9

Escherichia coli K12 nagD

sp:NAGD_ECOLI

pyruvate dehydrogenase component ribose transport system permease protein N-acetylglucosamine-6-phosphate deacetylase ABC transporter or glutamine transport ATP-binding protein transcriptional regulator calcium binding protein Function hypothetical protein hypothetical protein lipase or hydrolase acyl carier protein Matched length (a.a) Similarity (%) 78.9 80.0 57.8 9.77 55.2 œ 55. 62. Identity 55.9 41.6 29.6 30.4 55.2 33.7 25.4 26.2 42.7 Rickettsia prowazekii Madrid E RP367 Streptomyces seoulensis pdhA Dictyostelium discoideum AX2 cbpA Streptomyces coelicolor A3(2) SC8F4.22c Streptomyces coelicolor A3(2) SC6G4.24 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv2239c Myxococcus xanthus ATCC 25232 acpP Escherichia coli K12 glnQ Homologous gene Bacillus subtilis 168 rbsC sp:RBSC_BACSU sp:Y01K_MYCTU sp:GLNQ_ECOLI sp:ACP_MYXXA gp:AF047034_4 sp:CBPA_DICDI db Match gp:SC6G4_24 gp:SC8F4_22 pir.H71693 ORF (bp) Terminal <u>E</u> Initial (r (a.a.) õ (DNA)

						_	,								•				_		,
5	Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15	hed (1																				
	Matched length (a.a.)	271						530		594	89		633	86			636			414	171
20	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
25 Da		(3(5)								(2)(2)	sis		s	is BMK			s			s dgt	A0251
os (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
35								csu						-1							
40	db Match	gp:SC4A7_8						sp.PPBD_BACSU		gp:SCt51_17	pir:G70661		prf.2413330B	gp:XXU39467			gp:AF058788_1			prf.2413330A	gp:NMA1Z2491_23 5
	ORF (bp)	825	492	771	546	465	342	1560	714	1836	240	675	1899	462	243	929	1869	324	1152	1272	675
45	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	2406936
	SEQ NO.	5975	9269	5977	5978	5979	5980	5981	5982	5983	5984	5985	5986	2987	5988	5989	2990	5991	2669	5993	5994
55	SEQ NO. (DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

5	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	Matched length	692	138		508	89	132	529	224	233	245	296	432	157	85	344	248	
20	Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	86.0	20.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
25 Q	ene	ulosis	ter		38	ulosis	11	ulosis	or A3(2)	P 26 uppS	ulosis	oniae era	ulosis	ulosis	-	culosis 1	lor A3(2)	
So Table 1 (Continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
35	db Match	pir.B70662	gp:AE003565_26		pir:S58522	pir:E70585	sp:FUR_ECOLI		gp:AF162938_1	sp.UPPS_MICLU	pir.A70586	gp:AF072811_1	sp:Y1DE_MYCTU	sp:YN67_MYCTU	GSP:Y75650	sp:PHOL_MYCTU	gp:SCC77_19	
	ORF (hr)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
45	Terminal	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
50	Initial	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEQ	(a.a.)	5996	5997	5998	5999	0009	6001	6002	6003	6004	6005	9009	6007	8009	6009	6010	6011
55	SEO	(DNA) 2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

Table 1 (continued)

									4)	م آ	<u>,</u>						
Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics		-	peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
Matched length (a.a.)	380	334	320	134			611	738	604	68	107			690	453	594	449
Similarity (%)	4.77	9.67	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10 04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis
db Match	prf:2421342B	prt.2421342A	prf:2318256A	sp.AGA1_YEAST			gp:SC6G10_4	sp:MALQ_ECOLI	gp:AB005752_1	GSP:Y74827	GSP:Y74829			sp:DCP_SALTY	gp:AF064523_1	pir.G70983	pir.H70983
ORF (bp)	1146	1023	990	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	2439906	2440994
Initial (nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296	2432508	2433868	2434207	2434619	2434776	2436838	2436871	2438113	2439906
SEQ NO.	6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	6024	6025	6026	6027	6028
SEQ NO. (DNA)	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

nued)	
(Cont	
ble 1	
퍨	

						lable 1 (confinded)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2529	6029	2441589	2441005	585	pir. T07979	Chlamydomonas reinhardtii ipi1	31.8	57.7	189	isopentenyl-diphosphate Delta- isomerase
2530	6030	2441669	2441890	222						
2531	6031	2442355	2442792	438						
2532	6032	2443356	2441602	1755						
2533	6033	2444015	2443356	099						
2534	6034	2444551	2444033	519						
2535	6035	2444735	2445709	975	gp:CORCSLYS_1	Corynebacterium glutamicum ATCC 13032 aecD	99.4	100.0	325	beta C-S lyase (degradation of aminoethylcysteine)
2536	9603	2445716	2446993	1278	sp:BRNQ_CORGL	Corynebacterium glutamicum ATCC 13032 brnQ	99.8	100.0	426	branched-chain amino acid transport system carrier protein (isoleucine uptake)
2537	6037	2447021	2447998	978	sp:LUXA_VIBHA	Vibrio harveyi luxA	21.6	49.0	343	alkanal monooxygenase alpha chain
2538	6038	2450844	2450323	522						
2539	6039	2451785	2450859	927	gp:AF155772_2	Sinorhizobium meliloti mdcF	25.9	60.5	324	malonate transporter
2540	6040	2454637	2451794	2844	sp:GLCD_ECOLI	Escherichia coli K12 glcD	27.7	55.1	483	glycolate oxidase subunit
2541	6041	2454725	2455435	711	sp:YDFH_ECOLI	Escherichia coli K12 ydfH	25.6	65.0	203	transcriptional regulator
2542		6042 2455733	2455452	282						
2543	6043	2457066	2455720	1347	sp.YGIK_SALTY	Salmonella typhimurium ygiK	22.5	57.6	467	hypothetical protein
2544	6044	2457759	2457337	423						
2545	6045	2457863	2459371	1509	sp:HBPA_HAEIN	Haemophilus influenzae Rd H10853 hbpA	27.5	55.5	546	heme-binding protein A precursor (hemin-binding lipoprotein)
2546	6046	2459371	2460336	996	sp:APPB_BACSU	Bacillus subtilis 168 appB	40.0	73.3	315	oligopeptide ABC transporter (permease)
2547	6047	2460340	2461167	828	sp:DPPC_ECOLI	Escherichia coli K12 dppC	43.2	74.5	271	dipeptide transport system permease protein
2548		6048 2461163	2462599	1437	prf.2306258MR	Escherichia coli K12 oppD	37.4	66.4	372	oligopeptide transport ATP-binding protein

(panu)
2
conti
-
യ
Tab

_																		1		
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin I	GTP-binding protein
	Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603
	Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	71.7				71.9	73.7	59.0	73.0	83.6
	Identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
, , , , , , , , , , , , , , , , , , , ,	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	pir.D70367	prf.2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		Sp:THIX_CORGL	sp.VG66_BPMD					prf.2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	sp:LEPA_BACSU
	ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
	Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	2462049				2465767		2467077	2470313		2473480		2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
	SEO NO.	6049	6050	6051	6052	6053	6054	6055	6056	6057	6058	6909	0909	6061	6062	6063	6064	909	9909	6067
	SEQ.	2549				2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

Table 1 (continued)

Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for ONA binding and uptake		hypothetical protein hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
Similarity (%)	69.7	72.9	67.1	9.08	74.1	49.7	63.6		66 66 3	66.4	86.3	85.3		9.66	100.0		78.2
Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8 34.8	46.8	55.6	0.89		99.1	99.3		58.9
Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
db Match	pir.H70683	sp.RS20_ECOLI	sp.RHTC_ECOLI	gp:SC6D7_25	pir.H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:888123_7	pir.F70685	pir.G70685	gp:SCC123_17		sp.PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1296	912	711	1503
Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2488288	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2481111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
SEQ NO.	6068	6909	0209	6071	6072	6073	6074	6075	8878	6077	8209	6009	6080	6081	6082	6083	6084
SEQ NO.		2569		2571	2572	2573	2574	2575	2578	2577	2578	2579	2580	2581	2582	2583	2584
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (hp) (bp) (bp) (a.a.)	SEQ Initial (a.a.) Terminal (ht) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (a.a.) (a.a.) (nt) (nt) (bp) (bp)	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (match (match)) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis H37Rv Rv2405 41.6 69.7 185 6069 2485473 2485733 261 sp.RS20_ECOLI Escherichia coli K12 rpsT 48.2 72.9 85	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis H37Rv Rv2405 41.6 69.7 185 6069 2485473 2485733 261 sp.RSZ0_ECOLI Escherichia coli K12 rpsT 48.2 72.9 85 6070 2486469 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (nt) (ht) (ht)	SEQ (n1) Initial (n1) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis H37Rv Rv2405 41.6 69.7 185 6069 2485473 2485733 261 sp.RATC_ECOLI Escherichia coli K12 rpsT 48.2 72.9 85 6070 2486469 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2486477 405 gp.SC607_25 Streptomyces coelicolor A3(2) 61.2 80.6 129 6072 2487884 2486910 975 pir.H70684 H37Rv Rv2413c 46.0 74.1 313	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match db Match Homologous gene Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEO Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (n1) (n1) (p1) (p2) db Match Homologous gene (%) <	SEC NO. Initial (rnf) Terminal (rnf) ORF (pp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. NO. (no.) (no.) (no.) (no.) (no.) (no.) (%) <t< td=""><td>SEC NO. Initial (nt) Terminal (nt) ORF (bp) db Malch (bp) Homologous gene (%) Identity (%) Similarity (%) Similarity (%) Matched (%) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis 41.6 69.7 185 6069 2485473 2485733 261 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6072 2487884 2486910 975 pir.H70684 Mycobacterium tuberculosis 46.0 74.1 313 6072 2487865 2487912 1539 sp.CME3_BACSU Bacillus subtilis 168 comEA 30.8 63.6 195 6074 2490154 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 66.4<</td><td>SEC NO. Initial (nt) Terminal (nt) ORF (bp) db Malch (bp) Homologous gene (%) Identity (%) Similarity (%) Similarity (%) Matched (%) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis 41.6 69.7 185 6069 2485473 2485733 261 sp.RRSZ0_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2486477 405 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6072 2487884 2486910 975 pir.H70884 Mycobacterium tuberculosis 46.0 74.1 313 6073 2489450 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 63.6 195 6074 2490154 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 63.6<</td><td> SEG</td><td> Natural Terminal ORF Ab Match Homologous gene (%) (%</td><td> Natural Terminal ORF db Match Homologous gene (%) (%</td></t<>	SEC NO. Initial (nt) Terminal (nt) ORF (bp) db Malch (bp) Homologous gene (%) Identity (%) Similarity (%) Similarity (%) Matched (%) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis 41.6 69.7 185 6069 2485473 2485733 261 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6072 2487884 2486910 975 pir.H70684 Mycobacterium tuberculosis 46.0 74.1 313 6072 2487865 2487912 1539 sp.CME3_BACSU Bacillus subtilis 168 comEA 30.8 63.6 195 6074 2490154 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 66.4<	SEC NO. Initial (nt) Terminal (nt) ORF (bp) db Malch (bp) Homologous gene (%) Identity (%) Similarity (%) Similarity (%) Matched (%) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis 41.6 69.7 185 6069 2485473 2485733 261 sp.RRSZ0_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2485801 669 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6071 2486881 2486477 405 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 6072 2487884 2486910 975 pir.H70884 Mycobacterium tuberculosis 46.0 74.1 313 6073 2489450 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 63.6 195 6074 2490154 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 63.6<	SEG	Natural Terminal ORF Ab Match Homologous gene (%) (%	Natural Terminal ORF db Match Homologous gene (%) (%

5	Function	1	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15	Matched		422 xa	276 2,			91	101 50	886 rit				195 h	436 tr	117 h		134 n		92 h	112 1	118
20	Similarity	(%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	76.9	67.8	9.68		67.4	64.3	68.6
	-	(%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9
25 (panui)	9	ם ב	buX	АТСС			FO13189	, IFO13189	ne				Nor A3(2)	tamicum	olor A3(2)	olor A3(2)	gmatis ndk		rans R1	rculosis	rculosis
os Table 1 (continued)	S stronglowe L	Sing sposing Boul	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
<i>40</i>		i	sp. PBUX_BACSU B				Sp.RL27_STRGR	prt:2304263A	SP. RNE_ECOLI				gp:SCF76_8	pir:S43613	gp:SCF76_8	gp:SCF76_9	gp. AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
	ORF		1887 sg	843 pi	621	396	264 s	303 p	2268 s	549	573	747	609	1308	378	450 6	408	360	342	465	423
45	Terminal		2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50	leitic		2499783		2502735	2503870	2504247	2504602	2507098		2507138	2508094		2510830	2511046	2511427	2512356			2513618	2514114
	SEQ	NO.	+		6087	8009	6009	0609	6091					9609	7609	8609	6609	_		6102	6103
55	SEQ				2587	2588	2589	2590				_		2596	2597	2598	2599	2600	2601	2602	2603

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)

																_				
	Function	folyl-polyglutamate synthetase				valyt-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
į	Matched length (a.a.)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	9'89	59.2	8.92	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
lable i (confilined)	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	prf:2410252B				sp:SYV_BACSU	pir.A38447	sp.DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf.2513416G	7_78036U9X.qg	prf.2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEQ NO.	6104	6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
	SEQ NO. (DNA)	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

EP 1 108 790 A2

5	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
15	Matched length (a.a.)	251 pr	406 be		256 ar	825 tra	115 ar		437 3- cy	214 pr	217 pr	273 hy	92 m		372 m		285 ca		437 tol
20	Similarity (%)	82.5	71.9		76.6	43.0	9.68		63.4	9.07	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		60.8		72.3		62.2
25 (pontinued	gene	us 1CP pcaR	bktB		us pcal.	olor A3(2)	us pcaL		s pcaB	us pcaG	us pcaH	ırculosis	rculosis		is 1CP catB		chrous catA		a plasmid
S Table 1 (continued)	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
<i>35</i>	db Match	pri:2408324F	prf:2411305D		prf.2408324E	gp:SCM1_10	prf:2408324E		prf:2408324D	prf.2408324C	prf.2408324B	pir.G70506	prf.2515333B		SP:CATB_RHOOP		prf.2503218A		gp:AF134348_1
	ORF (bp)	792 p	1224 p	912	753 p	2061 g	366 pi	879	1116 p	612 р	069	1164 pi	291 pi	771	1119 s	909	855 pr	141	1470 91
45	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2545315
	SEQ NO.	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	2640 6140
55	SEQ NO. (DNA)	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

EP 1 108 790 A2

	r														-				
5	Function	genase subunit	genase subunit	lohexa-3,5-diene drogenase	regulator of LuxR family with ATP-binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	ane transport	Clp protease it 2	Cip protease	ein	olyl isomerase) in)	ein	protein	ein				in	
10	Ρ	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5. carboxylate dehydrogenase	regulator of LuxF binding site	transmembrane transport prote 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp proteolytic subunit 2	ATP-dependent Cip protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15	Matched length (a.a.)	161	342	277	676	435	388	197	198	42	417	160	336	115		142		35	75
20	Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	7.87
	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
55 Gontinued)	eue sn	putida plasmid	tida plasmid	tida plasmid	thropolis thcG	coaceticus	coaceticus	licolor M145	licolor M145	cus ORF154	38 tig	licolor A3(2)	urans LC411	181		striatum ORF1		striatum ORF1	striatum ORF1
E Table 1 (Homologous gene	Pseudomonas pu pDK1 xyIY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xylL	Rhodococcus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptomyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
35 .									ທມາວ			00 00		V		0			
40	db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp:REU95170_1	sp.PCAK_ACICA	sp.BENE_ACICA	gp:AF071885_2	gp:AF071885_1	gp:SIS243537_4	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf.2301342A		prf:2513302C		prf:2513302C	prf.2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
	SEQ NO (a a)	6141	6142	6143	6144	6145	6146	6147	6148	6149	6150	6151	6152	6153	6154	6155	6156	6157	6158
55	SEQ NO.	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

10
15
20
25
30
35
40
45

•																						
	Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
	Matched length (a.a.)			140	248	199	890	358				104			381	290	392		538	286	316	
	Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
Table 1 (continued)	Homologous gene			Staphylococcus aureus NCTC 8325-4 (acB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 ctl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes lltB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
	db Match			sp:LACB_STAAU	Sp:YAMY_BACAD	pir.A70866	SP. AMPN_STRLI	pir:B70206				gp:AF139916_3			sp:CRTJ_MYXXA	sp.CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir;S47696	
	ORF (bp)	390	885	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	939	1707
	Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
	Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	2569211	2571460	2571510	2572193	2572677	2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	2582417
	SEQ NO. (a.a.)	6159	6160	6161	6162	6163	6164	6165	6166	6167	6168	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178	6179
	SEQ NO. (DNA)	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

ABC transporter ATP-binding protein ABC transporter ATP-binding protein transcriptional regulator, TetR family polypeptides predicted to be useful antigens for vaccines and acetylornithine aminotransferase hypothetical membrane protein hypothetical membrane protein 5 acetoacetyl CoA reductase chromate transport protein Function alkaline phosphatase hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 diagnostics globin 15 Matched length 536 700 (a.a) 240 98 55 563 172 411 126 396 127 482 218 235 238 94 Similarity 61.4 60.0 52.6 0.09 55.0 77.0 60.4 68.9 79.6 62.2 56.7 0 S G 8 65.1 29 63 47 47 Identity 28.0 37.8 52.8 31.4 28.0 53.2 27.3 36.2 36.4 28.1 26.7 38.0 31.1 31.4 49.1 %) 25. Aeropyrum pernix K1 APE1182 Streptomyces coelicolor A3(2) SC6D10.19c Chromatium vinosum D phbB Corynebacterium glutamicum Pseudomonas putida GM73 ttg2A Streptomyces coelicolor actil Mycobacterium leprae o659 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv2474c Mycobacterium tuberculosis H37Rv Rv2478c Mycobacterium tuberculosis H37Rv Rv0364 Mycobacterium tuberculosis Pseudomonas aeruginosa Homologous gene Escherichia coli K12 yijK Plasmid pUM505 chrA Neisseria meningitidis Mycobacterium leprae MLCB1610.14c Bacillus subtilis phoB ATCC 13032 argD 30 H37Rv Rv1128c sp:ARGD_CORGL sp.CHRA_PSEAE sp:Y05L_MYCLE sp:YA26_MYCTU gp:MLCB1610_9 Sp. PHBB_CHRVI gp:AF106002_1 Sp. YJJK_ECOL gp:SC6D10_19 db Match GSP:Y74375 pir:C69676 pir.B72589 pir.A40046 pir.E70867 pir.A70539 pir.A70867 40 2103 1419 1668 1128 162 615 1314 1584 708 738 393 465 441 792 627 621 ORF (bp) 1941 747 2596048 2602879 2595822 2593965 2595188 2597869 2598662 2585926 2587763 2588725 2590302 2591574 2592794 2593968 2594597 Terminal 2584504 2588722 2591137 45 £ 2595983 2597715 2598483 2595061 2595808 2600764 2601461 2589565 2592365 2592838 2594594 2587976 2589432 2590697 2584613 2586180 2592402 2582564 <u>E</u> 50 6197 6194 6195 6196 6186 6190 6191 6192 6193 6184 6185 6187 6188 6189 6180 6182 6183 6181 SEO (a a.) 9 2691 2692 2693 2694 2695 2696 2697 2683 2684 2687 2688 2690 (DNA) 2680 2682 2685 2686 2681 ġ.

20

25

35

1		7	\neg		Ī	7			<u>.</u> ⊆	T	П									
5	Function			ding transport protein	ding transport protein		rotein		TP-binding proteiransport proteirs prot			e mannose		genase	odifier		brane protein	d protein	G	
10	Fun			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein			dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
15	Matched length (a.a.)			279	292		462		386			154		207	183		412	255	258	179
20	Similarity (%)			76.3	67.5		63.2		79.8			72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1			37.7		67.2	48.6		35.0	41.2	40.0	48.0
ntinued)	gene			Su	ns		rium		li msiK			es pombe		chrous	PCC7942		a MSB8	gip	rculosis	orn
S Table 1 (continued)	Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK			Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechacoccus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
35							⊢ #=		S I			S TO		<u>π</u> σ	ဟ ပ		- -	Ш	ZI.	
40	db Match			sp:MSMG_STRMU	sp:MSMF_STRMU		prf.2206392C		prf.2308356A			prf.2317468A		prf:2516398E	prf.2513418A		pir:A72312	sp:GIP_ECOLI	pir.E70761	sp:ORN_ECOLI
	ORF (bp)	930	639	912	843	1674	1329	1242	1128	36.6	750	684	069	789	762	345	1182	750	798	657
45	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	0500100	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
50	Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639	4001	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
	SEQ NO. (a.a.)	6198	6199	6200	6201	6202	6203	6204	6205	9004	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
55	SEQ NO. (DNA)	2698	2699	2700	2701	2702	2703	2704	2705		2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

															•						
5		Function	elin esterase					S1207)			regulator		sporulation-specific degradation regulator protein		erase		ırotein	pyrazinamidase/nicotinamidase	ırotein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
10			ferric enterochelin esterase	lipoprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-spec regulator protein		uronate isomerase		hypothetical protein	pyrazinamida	hypothetical protein	bacterioferritir	bacterial regu family
15		Matched length (a.a.)	454	398				436			131	358	97		335		291	185	75	141	114
20		Similarity (%)	50.9	71.9				9.66			63.4	69.3	72.2		6.09		45.0	74.6	80.0	73.8	61.4
		Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
25	inued)	ane	Q	ulosis				amicum			m KP1001	RAGUE-	egA		IxaC		ennial	pncA	culosis	doc	lor A3(2)
30	Table 1 (continued)	Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- BAWLEY KIBNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SCI11.01c
40		db Match	prf.2409378A S	pir.C70870				gp:SCU53587_1 C			gp:AF085239_1 c	Sp.GLSK_RAT	pir.A36940 E		sp:UXAC_ECOLI		prf.1814452C	prf:232444A	pir.E70870	sp. BCP_ECOLI	gp:SCI11_1
		ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
45		Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
50		Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
		SEQ NO.	6216	6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
55		SEQ	2716	2717	2718	2719	2720	1272	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

hypothetical membrane protein hypothetical membrane protein hypothetical membrane protein hypothetical membrane protein lincomycin resistance protein phosphopantethiene protein transferase Function transposase (IS1628) hypothetical protein hypothetical protein fatty-acid synthase ribonuclease PH 10 aryisulfatase peptidase 15 Matched length 3029 250 (a.a.) 145 473 113 230 112 113 202 236 428 175 404 Similarity (%) 74.4 54.0 81.4 97.2 σ ဖ ဖ σ 85. 75 83 55 60 67 69 92 58 20 Identity (%) 46.0 56.6 62.3 25.3 40.4 40.2 37.2 55.0 60.2 29.0 52.4 30.1 92.1 Corynebacterium ammoniagenes ATCC 6871 ppt1 25 Streptomyces coelicolor A3(2) SC4A7.14 Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB Corynebacterium glutamicum ImrB Synechocystis sp. PCC6803 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv0950c Mycobacterium tuberculosis H37Rv Rv1343c Mycobacterium tuberculosis H37Rv Rv1341 Mycobacterium tuberculosis H37Rv SC8A6.09c Pseudomonas aeruginosa ATCC 15692 rph Mycobacterium leprae ats Homologous gene Mycobacterium leprae B1549_F2_59 ammoniagenes fas Conynebacterium 30 35 sp:RNPH_PSEAE Sp:Y03O_MYCLE sp:Y03Q_MYCTU sp:Y076_MYCLE sp:Y029_MYCTU BAY15081_1 gp:AF237667_1 sp:Y077_MYCT db Match gp:SC4A7_14 gp:AF121000_ pir:D70716 pir.S76537 pir:S2047 40 gp. 1425 8979 1182 1362 765 618 735 ORF (bp) 405 324 414 615 462 354 246 693 582 534 999 2635165 2653326 2654079 2654875 2656974 2657736 2637168 2637240 2638649 2648235 2650902 2651339 2651420 2653009 2656985 2650164 2652067 45 Terminal 2634747 <u>=</u> 2654018 2653254 2654660 2658500 2657633 2635151 2649550 2652801 2656236 2656452 2636589 2636845 2637653 2647627 2649416 2650441 2650986 2652037 Initia <u>£</u> 50 6245 6246 6248 6252 6238 6243 6247 6250 6251 6236 6239 6240 6242 6244 6249 6237 6241 6235 SEQ NO (a.a.) 2746 2752 (DNA) 2735 2736 2741 2743 2747 2748 2749 2750 2751 2738 2739 2742 2737 2740 Ö

5

	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain I	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
	db Match	prf:2516259A		gp:SCE22_22	sp:Y03M_MYCTU		pir.A47039	sp:Y03H_MYCTU	sp:Y03G_MYCTU		sp.Y03F_MYCTU		prf: 1816252A	sp:Y0A8_MYCTU	pir.T34684	sp:SERB_ECOLI		pir:D45335	
	ORF (bp)	852	929	492	747	891	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEQ NO.	6253	6254	6255	6256	6257	6258	6229	6260	6261	6262	6263	6264	6265	6266	6267	6268	6569	6270
	SEQ NO. (DNA)	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

5
10
15
20
25
30
35
40
45
50

						Table 1 (continued)				
SEQ.	SEQ	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(DINA) 2771		2674339	2673338	1002	gp:AF112536_1	Corynebacterium glutamicum ATCC 13032 nrdF	99.7	99.7	334	ribonucleotide reductase beta-chair
27.70	6272	2674804	267,5289	486	sp:FTNA_ECOLI	Escherichia coli K12 ftnA	31.5	64.2	159	ferritin
2773			2676240	750	4,	Streptomyces coelicolor A3(2) whiH	32.8	60.2	256	sporulation transcription factor
2774	6274	2676902	2676243	099	pir.140339	Corynebacterium glutamicum ATCC 13869 dtxR	27.6	60.4	225	iron dependent repressor or diptheria toxin repressor
2775	6275	2676940	2677377	438	sp:TIR2_YEAST	Saccharomyces cerevisiae YPH148 YOR010C TIR2	24.2	62.1	124	cold shock protein TIR2 precursor
2776	6276	2677193	2676918	276	pir.C69281	Archaeoglobus fulgidus AF0251	50.0	86.0	50	hypothetical membrane protein
2777			2677478	2121	gp:AF112535_3	Corynebacterium glutamicum ATCC 13032 nrdE	6.66	100.0	707	ribonucleotide reductase alpha- chain
2778	6278	2680470	2680784	315						
2779		2681363	2681223	141	SP:RL36_RICPR	Rickettsia prowazekii	28.0	79.0	41	50S ribosomal protein L36
2780	6280	2681546	2682376	831	sp:NADE_BACSU	Bacillus subtilis 168 nadE	55.6	78.1	279	NH3-dependent NAD(+) synthetas
2781			2681464	93						
2782	6282	2683119	2683616	498						
2783			2682379	747	pir:S76790	Synechocystis sp. PCC6803 str1563	30.7	56.4	257	hypothetical protein
2784	6284	2683418	2683131	288	pir.G70922	Mycobacterium tuberculosis H37Rv Rv3129	41.7	68.8	96	hypothetical protein
2785	6285	2684646	2683627	1020	sp:ADH2_BACST	Bacillus stearothermophilus DSM 2334 adh	26.1	52.8	337	alcohol dehydrogenase
2786	6286	2684919	2686289	1371	sp:MMGE_BACSU	Bacillus subtilis 168 mmgE	27.0	26.0	459	Bacillus subtilis mmg (for mother c metabolic genes)
2787	6287	2686315	2687148	834	pir:T05174	Arabidopsis thaliana T6K22.50	33.8	66.2	284	hypothetical protein
2788	8 6288	2688240	2687449	792						
2789	9 6289	3 2690050	2688389	1662	1662 sp:PGMU_ECOLI	Escherichia coli K12 pgm	61.7	90.6	556	phosphoglucomutase

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

ned)
continued)
Table 1 (
<u>a</u>

[na	Function hypothetical membrane protein hypothetical membrane protein hypothetical protein transposase (1S1676) major secreted protein PS1 protein precursor transposase (1S1676) ABC transporter ABC transporter hypothetical protein hypothetical protein	Matched length (aa) 84 122 254 496 355 355 355 438 438 873 873	Similarity (%) (%) (64.3 e4.3 e1.5 79.1 48.6 49.6 49.6 e6.2 e6.2 e6.2 e6.2 e7.0 e7.0 75.0	1dentity (%) 41.7 41.7 25.4 51.2 24.8 24.8 30.8 30.8 30.0 60.0 71.0	Cum (TCC (17C)(17C)(17C)(17C)(17C)(17	Homologous gene Homologous gene Hyzobacterium tuberculosis H37Rv Rv3069 Helicobacter pylori J99 jhp1146 Bacillus subtilis 168 ycsl Rhodococcus erythropolis Corynebacterium glutamicum (Brewibacterium glutamicum		db Match pir.F70650 pir.D71843 sp.YCSI_BACSU gp:AF126281_1 gp:AF126281_1 gp:AF126281_1 sp.CCEP1_CORGL sp.CCEP5_30 gp:SAU18641_2 PIR.F81516 PIR.F81537	Terminal ORF db Match (nt) (bp) db Match 2690437 288 pir.F70650 2690760 324 pir.D71843 2691564 792 sp.YCSI_BACSU 2693053 1365 gp.AF126281_1 2695279 354 2695212 1401 gp.AF126281_1 2697212 1401 gp.AF126281_1 2697383 768 2697383 768 2701612 693 269926 2541 gp.SCE25_30 2702487 708 gp.SAU18641_2 2704586 273 PIR.F81516 2704586 273 PIR.F81537	Initial (nt) (bp) db Match (nt) (nt) (bp) db Match (nt) (nt) (bp) db Match (nt) (nt) (bp) dc Match (nt) (nt) (pp) dc Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	Initiat
Identity Similarity Matched (%) (%) (eas) (aa) 41.7 64.3 84 h 51.2 79.1 254 h 51.2 79.1 254 h 24.8 49.6 355 h 24.6 46.6 550 (9 30.8 66.2 438 45.4 79.8 218 60.0 67.0 84 71.0 75.0 42	oxidoreductase or dehydrogenase	196	54.1	28.1	Streptomyces collinus Tu 1892 ansG	Streptor	prf.2509388L Streptor		2710555 678 2711308 672 prf.2509388L	2710555 678 2711308 672 prf.2509388L	2710555 678 2711308 672 prf.2509388L
Identity Similarity Matched (%) (%) (aa) (aa) 41.7 64.3 84 h 5 25.4 61.5 122 h 51.2 79.1 254 h 24.8 49.6 355 p 24.8 46.6 500 (24.6 46.6 500 (30.8 66.2 438 (45.4 79.8 218 (60.0 67.0 84	hypothetical protein	42	75.0	71.0	1129	52		PIR:F81737	2704975 141 PIR:F81737	2704835 2704975 141 PIR:F81737	2704835 2704975 141 PIR:F81737
Identity Similarity Matched (%) (%) (aa) (aa) 41.7 64.3 84 h 5 25.4 61.5 122 h 51.2 79.1 254 h 24.8 49.6 355 p 24.8 46.6 500 (24.6 46.6 500 (30.8 66.2 438 (45.4 79.8 218	hypothetical protein	84	0.79	0.09	nydophila pneumoniae CP0987	Chlan AR39		PIR:F81516	2704586 273 PIR:F81516	2704314 2704586 273 PIR:F81516	2704314 2704586 273 PIR:F81516
Identity Similarity Matched (%) (%) (aa) 41.7 64.3 84 h 51.2 79.1 254 h 51.2 79.1 254 h 24.8 49.6 355 h 24.8 49.6 355 h 30.8 66.2 438	ABC transporter ATP-binding protein	218	79.8	45.4	ococcus aureus	Staphyl	2	gp:SAU18641_2	708 gp:SAU18641_2	2703194 2702487 708 gp:SAU18641_2	2703194 2702487 708 gp:SAU18641_2
Identity Similarity (%) (84) (84) (84) (84) (84) (84) (84) (84								891	2703356	2702466 2703356	2702466 2703356
Identity Similarity (%) (84) (84) (84) (84) (84) (84) (84) (84	ABC transporter	873	0.69	33.0	ces coelicolor A3(2)	Streptomyo SCE25.30		gp:SCE25_30	2699926 2541 gp:SCE25_30	2702466 2699926 2541 gp:SCE25_30	2702466 2699926 2541 gp:SCE25_30
Identity Similarity (%) (%) (aa) (aa) 41.7 64.3 84 5.25.4 61.5 122 51.2 79.1 254 24.2 48.6 496 24.8 49.6 355 24.8 49.6 355 30.8 66.2 438								693	┼	2700920 2701612	2700920 2701612
Identity Similarity Matched (%) (%) (aa) Iength (aa) 41.7 64.3 84 5.25.4 61.5 122 51.2 79.1 254 24.2 48.6 496 24.8 49.6 355 24.8 49.6 355	proton/sodium-glutamate symport protein	438	66.2	30.8	lis 168	Bacillus subti		sp:GLTT_BACCA	2698194 1338 sp.GLTT_BACCA	2699531 2698194 1338 sp.GLTT_BACCA	2699531 2698194 1338 sp.GLTT_BACCA
Identity Similarity (%) (%) (94) (94) (94) (94) (94) (94) (94) (94	An amount of the same of the s							768	2697383	2698150 2697383	2698150 2697383
Identity Similarity Matched (%) (%) (aa) 41.7 64.3 84 5.25.4 61.5 122 51.2 79.1 254 24.2 48.6 496 24.8 49.6 355	transposase (1515/5)	200	46.6	24.6	erythropolis	Rhodococcus		gp:AF126281_1	1401 gp:AF126281_1	2695812 2697212 1401 gp. AF126281_1	2695812 2697212 1401 gp. AF126281_1
Identity Similarity Matched (%) (%) (aa) Iength (aa) (aa) 84 (aa) 51.2 79.1 254 24.2 48.6 496 24.2 49.6 355	(CFC) (CFC)							447	2695320	2695766 2695320	2695766 2695320
Identity Similarity Matched (%) (%) (94) (aa) 41.7 64.3 84 5.25.4 61.5 122 51.2 79.1 254 24.2 48.6 496 24.8 49.6 355								165	2695718	2695554 2695718	2695554 2695718
Identity Similarity Matched (%) (%) (aa) (aa) 41.7 64.3 84 5.25.4 61.5 122 51.2 79.1 254 24.2 48.6 496 24.2 48.6 355								354	 	2694926 2695279	2694926 2695279
ldentity Similarity Matched (%) (%) (9%) (aa) 1515 41.7 64.3 84 1512 79.1 254 15 24.2 48.6 496	major secreted protein PS1 protein precursor	355	49.6	24.8	n glutamicum flavum) ATCC	Corynebacteriur (Brevibacterium 17965 csp1		sp:CSP1_CORGL	1620 sp.CSP1_CORGL	2693299 2694918 1620 sp.CSP1_CORGL	2693299 2694918 1620 sp.CSP1_CORGL
ldentity Similarity Matched (%) (%) (94) (aa) Sis 41.7 64.3 84 Ip1146 25.4 61.5 122 S1.2 79.1 254	(ransposase (1516/6)	496	48.6	24.2	Ahropolis	Rhodococcus en		gp:AF126281_1	1365 gp:AF126281_1	2691689 2693053 1365 gp.AF126281_1	2691689 2693053 1365 gp.AF126281_1
Identity Similarity Matched (%) (%) (94) (aa) (aa) 41.7 64.3 84 25.4 61.5 122	hypothetical protein	254	79.1	51.2	168 ycsl	Bacillus subtilis		sp:YCSI_BACSU	792 sp.YCSI_BACSU	2690773 2691564 792 sp.YCSI_BACSU	2690773 2691564 792 sp.YCSI_BACSU
Identity Similarity Matched (%) (%) (aa) (aa) 41.7 64.3 84	hypothetical membrane protein	122	61.5	25.4	ori J99 jhp1146	Helicobacter pyl		pir:D71843	324 pir:D71843	2690437 2690760 324 pir.D71843	2690437 2690760 324 pir.D71843
Identity Similarity Matched (%) (%) (aa)	hypothetical membrane protein	84	64.3	41.7	tuberculosis	Mycobacterium H37Rv Rv3069		pir.F70650	288 pir.F70650	2690150 2690437 288 pir.F70650	2690150 2690437 288 pir.F70650
(Popular)	Function	-	Similarity (%)	Identity (%)	lous gene	Homolog		db Match	ORF db Match H	Terminal ORF db Match H (nt) (bp)	Initial Terminal ORF db Match H (nt) (nt) (bp)

succinyl-CoA synthetase beta chain succinyl-CoA synthetase alpha chain UDP-N-acetylglucosamine succinyl-CoA coenzyme transferase product O-acetylserine synthase carboxyvinyltransferase transcriptional regulator transcriptional regulator Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein cysteine synthase methyltransferase frenoticin gene E Matched length 213 400 (a.a) 305 172 205 417 90 281 75 321 42 83 291 2 84 Similarity 43.0 73.0 71.8 84.6 Ś 51.2 0.99 75.0 75.3 84.2 0.69 79.7 65.1 79.4 68 17 Identity (%) 45.9 42.0 39.8 S ထ 71.0 66.3 57.1 61.1 6 36. 22 38 47. 38 25. 61. 4 Aeropyrum pernix K1 APE1069 Streptomyces roseofulvus frnE Azospirillum brasilense ATCC 29145 ntrC Coxiella burnetii Nine Mile Ph sucD Streptomyces coelicolor A3(2) SC2G5.15c Deinococcus radiodurans R1 DR1844 Clostridium kluyveri cat1 cat1 Azotobacter vinelandii cysE2 Table 1 (continued) Acinetobacter calcoaceticus NCIB 8250 murA Mycobacterium tuberculosis H37Rv Rv1314c Mycobacterium tuberculosis H37Rv Rv0089 Chiamydia muridarum Nigg TC0129 Bacillus subtilis 168 sucC Homologous gene Bacillus subtilis 168 cysK Chlamydia pneumoniae 30 sp:SUCD_COXBU Sp.CYSK_BACSU sp:SUCC_BACSU gp:AE002024_10 sp:Y089_MYCTU sp:MURA_ACICA sp:Y02Y_MYCTU Sp.CAT1_CLOKL sp:NIR3_AZOBR S gp:SC2G5_15 db Match gp: AF058302 prf.2417357C GSP:Y35814 PIR:F72706 PIR:F81737 1143 1194 1539 1254 225 735 924 360 819 ORF (bp) 525 273 843 546 288 882 570 195 408 141 2722857 2728207 2729378 2732518 2724478 2723609 2725843 2725384 2727399 2720385 2723770 2726786 2712374 2713453 2713842 2717993 2718436 2720319 2721295 45 Terminal Ę 2730916 2721934 2725359 2725619 2728133 2729025 2731376 2721702 6318 2723064 2726577 2727145 2713702 2719689 2719750 2721227 2724057 2711850 2713181 2718187 Initia! <u>E</u> 50 6319 6320 6326 6315 6321 6323 6325 6316 6322 6324 6309 6310 6311 6312 6313 6314 6327 (a a.) SEQ NO 2823 2811 2815 2816 2817 2818 2819 2820 2821 2822 2824 2825 2826 2827 2809 (DNA) 2810 2813 2812 2814

5

10

15

20

25

35

40

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hynothetical profein	nypomencal process	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
	Matched length (a.a.)		213	255	292	325	369	315		344	7	225	259	352	58	347	482
	Similarity (%)		81.7	82.8	82.2	78.5	56.0	0.09		55.7	23.7	74.2	26.0	79.0	81.0	94.2	89.0
	(%)		46.5	58.8	51.4	50.2	40.0	34.3		7.70	7 67	44.9	28.6	58.5	58.6	81.0	70.3
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		1 10000	Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
	db Match		pir:E70810	pir:S68595	gp:MTPSTA1_1	pir.A70584	pir.H70583	gp:SCD84_18			sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir.B70809	gp:AB003158_5	gp.AB003158_4
	ORF (bp)	807	732	897	921	1014	1125	876	783		1095	687	942	1101	213	1074	1482
	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553		2739556	2741356	2741636	2743785	2744222	2744881	2746083
	Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771		2740650	2740670	2742577	2742685	2744010	2745954	2842 6342 2747564
	SEQ NO.	÷		6330	6331	6332	6333	6334	6335		6336	6337	6338	6339	6340	6341	6342
	SEQ			2830	2831	2832	2833	2834	2835		2836	2837	2838	2839	2840	2841	2842

			$-\tau$			T					Т	T		\top			\neg
5					e protein		nthetase		nthetase							sporter	lase
10	Function		hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5-phosphoribosyl-N- 5-phosphoribosyl-n- formylglycinamidine synthetase	hypothetical protein	a se bissorious as selection as the	giuniauone peroxidas	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15	Matched length	(a.a.)	124	315	217	42	763		223	79		000	965		211	414	697
20	Similarity	<u></u>	75.8	94.0	87.1	71.0	89.5		93.3	93.7		8.77	51.5		68.7	81.6	70.6
	Identity	(%)	57.3	75.9	67.7	64.0	9.77		80.3	81.0	1	46.2	28.0		37.4	49.0	41.8
25											ļ		929		s l	2	apb1
so Salah 1 (continued)	ando succolomo H		Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium armmoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium armoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35	-		ΣÏ	0 % 0	0 % 0	i	0 # 5		0 , 2 2	Oed		-	∢ c		<u> </u>		
40	40	db Match	pir.H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21 4	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir.C70709	sp:DCTA_SALTY	prf:2408266A
	ORF	(pb)	375	1017	741	186	2286	720	699	243	522	477	2748	276	687	1338	2118
45	Terminal		2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50	Portial	(ut)	2748057	2748095	2749902	2751918	2752312	2752402		2753237	2753298	2753804	2753992	2756851		2759200	2761649
	SEQ	(a.a.)		6344	6345	6346	6347	6348	6349	6350	6351	6352	6353	6354	6355	6356	6357
55		NO.		2844	2845	2846	2847	2848		2850	2851	2852	2853	2854	2855	2856	2857

10
15
20
25
30
35
40
45
50

	Function		5'-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein nypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
	Matched Jength (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4 56.4	9'29	98.8	9.66	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8 26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
lable 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3 Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	gp.AB003161_2	sp:AAT_SULSO	gp:AB003161_1	sp:YHIT_MYCLE		pir. 862195	sp:DTPT_LACLA	sp.BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf:2222216A	sp:TIPA_STRLI	prf:2419350A
	ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
	fnitial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2789895	2770511	2770714	2771989	2774098	2774814	2775689	2776879
	SEQ NO.	6358	6329	6360	6361	6362	6363	6364	6365	6366	6367	6368	6369	6370	6371	6372
	SEQ NO. (DNA)	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

							\top		<u></u>				T		\neg	, a			\top		
10		Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein			hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake system protein
			pyruv	multic	trans	hypot		3-ket	trans	hypo	hypo		-	hypo	hypo	trans	trehi		te	gluc regu	high-aff protein
15		Matched length (a.a.)	574	504	92	421		303	232	278	288			140	464	155	487		245	344	353
20		Similarity (%)	75.8	68.9	68.5	78.4		62.1	0.69	52.9	55.6			50.7	64.0	50.3	66.7		57.6	60.2	46.7
		Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7			28.6	36.0	32.3	38.8		27.4	24.7	22.4
25	itinued)	gene	рохВ	us plasmid	yedC	rculosis		opolis SQ1	alsR	rculosis C	ykrA			us kidney	erculosis	us hrd8	es pombe		2 otsB	n ccpA	nzae Rd
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA			Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd H10119 znuA
35			 	ts sa	E S	ΣÏ	_	<u>₹</u> ₹	1	1	i lää	H	-	0 8	≥ I	S		-		111	
40		db Match	gp:ECOPOXB8G_1	prf.2212334B	Sp:YCDC_ECOLI	pir.D70551		gp: AF096929_2	SP. ALSR BACSU	pir.C70982	pir.C69862			pir.A45264	pir:B70798	pir.S41307	sp:TPS1_SCHPO		SP.OTSB_ECOLI		sp.ZNUA_HAEIN
		ORF (bp)	1737	1482	531	1320	2142	+	705		813		459	399	1503	327	1455	513	768	1074	942
45		Terminal (2776768	2780446	2780969	1	2782340		2785651	2788594	2788587		2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797806
50		Initial (nt)	2778504	2778965	27R0439		2784481					-1-1	2789935	2790152	2790946	2792531		2794300	_		2796865
		SEQ NO.		6374	6375		5377				6381	25	6382	6383	6384	6385	6386	6387	6388	6389	6390
55			(UNA)	2874 6			77.00					007	_	+	2884	28R5		2887	2888	2889	2890

	Γ				\top	\top	$\overline{}$	T				1	T		Jo.	$\neg \top$				
5				e protein	-5)		genase		synthesis ase or	o-inositol 2-	atoin cictor	orein	otein	or	methylase on series of the ser	tase	II sucrose ific IIABC	hydrolase or	hate	6-phosphate
10		Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	Allimate teamonare mentals	shikimate transport pr	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphale hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
15		Matched length (a.a.)	223	135	303		561		204	128	5 0	292	130	212	334	464	668	473	248	368
20		Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	21.0		80.8	55.7	47.3	68.8	77.0	56.9	69.4	60.3
		Identity (%)	31.4	0.09	23.4		32.1		34.3	35.2	J U C	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
25	(inued)	ene	us 8325-4	culosis	ns		polis SQ1		MSB8	dh or iolG		shiA	shiA	olor A3(2)	visiae	cysS	acB	ylicum	nagB	14 manD
30	Table 1 (continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bplA	Bacillus subtilis 168 idh or iolG	Charlette and 1740	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
35			Staph	₹1	¥		문 X		투명	<u>8</u>	14	Ψ.	ŭ	જ જ	S ≻	ű	<u> </u>	\\ \cute{\cie{\cute{		
40		db Match	gp:AF121672_2	pir.E70507	pir.A69426		gp:AF096929_2		pir.872359	sp:MI2D_BACSU	11002 1110	Sp.SHIA_ECOLI	sp:SHIA_ECOLI	gp:SC5A7_19	sp.PT56_YEAST	SP. SYC ECOLI	prf.2511335C	gp:AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
		ORF (bp)	069	555	1500	201	1689	747	618	435	900	855	426	654	939	1380	1983	1299	759	1152
45		Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676		2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279	2814081
50		Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110		2805967	2806441		2808364	2809778		2813258	2814037	2815232
		SEO	6391	6392	6393	6394	6395	6396	6397	6398		6399	6400	6401	6402	6403	6404	6405	6406	6407
55			2891	2892	2893			2896		2898		2899	2900	2901	2902	2003	2904	2905	2906	2907

Table 1 (continued)

				т				r		·		,	_			, —
Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATB-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE lype translocator	leucine-responsive regulatory protein	•	hypothetical protein	hypothetical protein	transcription factor
Matched length (a.a.)	298	321	220		439	222	260	342	314	258	193	142		152	235	157
Similarity (%)	62.1	9'29	68.6		50.3	2.73	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prf.2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:8FU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOLI	prf.2309303A		pir.C70607	sp:Y18T_MYCTU	pir:H70803
ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
SEQ NO (a a.)	6408	6408	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
SEQ NO.	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta		A/G-specific adenine glycosylase			L-2.3-butanedial dehydrogenase				hypothetical protein	virulence factor	virulence factor
		two-com regulator	two-con histidine		DNA re	hypothe	hypothe	p-hydro dehydro		mitochc dehydra		AG-sp			L-2.3-b				hypothe	virulenc	virulenc
	Matched length (a.a.)	223	341		463	345	231	471		210		283			258				97	66	72
	Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		66.2		70.7			9.66				69.1	63.0	55.0
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7		48.4			99.2	_			48.5	57.0	54.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca1	Strentomyces antibioticus (MRL)	3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match	prf:2214304A	sp:BAES_ECOLI		sp:RADA_ECOLI	sp:YACK_BACSU	pir.D70804	gp:PPU96338_1		pir:T08204		gp:AF121797_1			gp:AB009078_1				pir:E70552	GSP:Y29188	GSP:Y29193
	ORF (bp)	723	1116	582	1392	1098	687	1452	147	621		879	1155	306	774	324	741	312	291	420	213
	Terminal (nt)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	2837956		2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
	Initial (nt)	2830057	2830779	2832085	2832790	2834188	2835969	2837499	2837737	2838576		2838643	2839562	2841063	6436 2841075	2842130	2842493	2843405	2843722	2845139	2845889
	SEQ NO	6424	6425	6426	6427	6428	6459	6430	6431	6432		6433	6434	6435	6436	6437	6438	6439	6440	6441	6442
	SEQ NO DNA)	2924	2925	2926	2927	2928	2929	2930	2931	2932		2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

	Function	virulence factor	CIpC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomucin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
	Matched length (a.a.)	55 viru	832 Clp	469 ino	316 trai	680 phe		i			481 ling	240 hyl	511 lys	268 pa			138 hy	2-s 158 hy Pyl	118 dih	268 dih
	Similarity Mi	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6			9.69	0.69	69.5	75.0
	Identity S	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folP
	db Match	GSP:Y29193	sp.MECB_BACSU	gp:AB035643_1	pir.JC6117	sp:PH2M_TRICU					gp:AF237667_1	pir:G70807	gp.AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp.HPPK_METEX	sp.FOLB_BACSU	gp:AB028656_1
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	390	837
	Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	2865346	2865731
	Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	6449 2853769	2855795	2859044	2859055	2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	2866567
÷	SEQ NO.	6443	6444	6445	6446		6448	6449	6450	6451	6452	6453	6454	6455	6456	6457	6458	6459	6460	6461
	SEQ NO. (DNA)		2944	2945	2946		2948		2950	+	2952	2953	2954	2955	2956	2957		2959	2960	

(pant
(continued
Table 1

SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	6462	2867173	2866586	588	sp:GCH1_BACSU	Bacillus subtilis 168 mtrA	9.09	86.2	188	GTP cyclohydrolase I
2963	6463	2867471	2868385	915						
2964	6464	2869748	2867169	2580			56.0	0.69	782	cell division protein FtsH
2965	6465	2870444	2869863	582	gp:AF008931_1	Salmonella typhimurium GP660 hprt	51.5	83.0	165	hypoxanthine phosphoribosyltransferase
2966	6466	2871389	2870499	891	sp:YZC5_MYCTU	Mycobacterium tuberculosis H37Rv Rv3625c	41.0	66.8	310	cell cycle protein MesJ or cytosine deaminase-related protein
2967	6467	2872677	2871445	1233	sp.DAC_ACTSP	Actinomadura sp. R39 dac	27.2	51.4	459	D-alanyl-D-alanine carboxypeptidase
2968	6468	2872926	2873399	474	sp:IPYR_ECOLI	Escherichia coli K12 ppa	49.7	73.6	159	inorganic pyrophosphatase
2969	6469	2873611	2873393	219						
2970	6470	2875443	2873905	1539	pir.H70886	Mycobacterium tuberculosis H37Rv speE	26.0	80.7	507	spermidine synthase
2971	6471	2875832	2875434	399	Sp:Y0B1_MYCTU	Mycobacterium tuberculosis mycobacterium tuberculosis H37Rv Rv2600	888 886 866	888 830 444	132	hypothetical membrane protein hypothetical membrane protein
2972	6472	2876280	2875870	411	sp:Y0B2_MYCTU	Mycobacterium tuberculosis H37Rv Rv2599	36.8	63.2	144	hypothetical protein
2973	6473	2876777	2876280	498	sp.Y083_MYCTU	Mycobacterium tuberculosis H37Rv Rv2598	36.4	60.1	173	hypothetical protein
2974	6474	2877385	2876777	609	sp:Y0B4_MYCTU	Mycobacterium tuberculosis H37Rv Rv2597	44.6	72.3	202	hypothetical protein
2975	6475	2877703	2877455	249	sp.PTBA_BACSU	Bacillus subtilis 168 bglP	30.3	59.6	68	PTS system, beta-glucosides- permease II ABC component
2976	6476	2877858	2877595	264						
2977	6477	2879710	2878478	1233	gp:AB017795_2	Nocardioides sp. KP7 phdD	38.0	9.69	411	ferredoxin reductase
2978	6478	2879965	2880252	288	9p:SCH69_9	Streptomyces coelicolor A3(2) SCH69.09c	46.4	73.2	97	hypothetical protein
2979	6479	2880544	2880987	444	prf.2516298U	Burkholderia pseudomallei ORF E	26.7	59.3	135	bacterial regulatory protein, marR family

Table 1 (confinued)

						ומחום ו (בסווווותבת)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2980		2880998	2884882	3885	prf.2413335A	Streptomyces roseosporus cpsB	28.4	51.6	1241	peptide synthase
2981	6481	2883304	2881844	1461						
2982	6482	2886497	2884935	1563	prf.2310295A	Escherichia coli K12 padA	35.0	63.7	488	phenylacetaldehyde dehydrogenase
2983	6483	2887833	2886916	918	gp:CJ11168X2_25	Campylobacter jejuni Cj0604	57.3	79.7	241	hypothetical protein
2984	6484	2890185	2890346	162	GP:MSGTCWPA_1	GP:MSGTCWPA_1 Mycobacterium tuberculosis	62.0	63.0	54	hypothetical protein
2985	6485	2890377	2890553	177	GP:MSGTCWPA_1	GP.MSGTCWPA_1 Mycobacterium tuberculosis	74.0	80.0	31	hypothetical protein
2986	6486	2890540	2888897	1644	gsp:R94368	Brevibacterium flavum MJ-233	99.5	100.0	548	heat shock protein or chaperon or groEL protein
2987	6487	2890930	2890751	180						
2988	6488	2892138	2890930	1209						
2989	6489	2893100	2892138	963						
2990	6490	2895085	2893100	1986						
,	100	_	20000	2464						
1867	049	070/607		24.04						
2992	6492	2900326	2897528	2799						
2993	6493	2903920	2900330	3591	prf.2309326A	Homo sapiens MUC5B	21.7	42.3	1236	hypothetical protein
2994	6494	2906738	2903964	2775						
2995	6495	2907250	2906639	612						
2996	6496	2907515	2908885	1371	pir.G70870	Mycobacterium tuberculosis H37Rv Rv2522c	37.1	68.0	447	peptidase
2997	6497	2909210	2909788	579						
2998	6498	2909830	2909231	009						
2999	6499	2910172	2913228	3057	prf.2504285B	Staphylococcus aureus mnhA	35.6	68.3	797	Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase

10
15
20
25
30
35
40
45
50

				1	1	1	7									
	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ effux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
	Matched length (a.a.)	104	523	161	77	121	178	334		184	7.1	339			31	513
	Similarity (%)	81.7	72.1	60.9	66.2	63.6	54.5	61.7		6.09	70.4	54.2			59.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
	db Match	gp:AF097740_3	gp:AF097740_4	gp.AF097740_5	prf.2416476G	prf.2504285H	pir.D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir.D70631	pir:870631			gp:AF108767_1	gp:BFU88888_2
	ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO.	6500	6501	6502	6503	6504	6505	6506	6507	6508	6209	6510	6511	6512	6513	6514
	SEQ NO. (DNA)	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014
							1	,								

Table 1 (continued)

	$ \top $		d E				tein			305									
Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
Similarity (%)		67.2	68.9	56.4		8.09	66.3	68.5	70.2	64.8	63.5		8.79	60.3				82.6	
Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicolor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A berA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 purT	
db Match		sp.BCR_ECOLI	gp:VCAJ10968_1	sp:PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACLI	pir.C70629	pir B70629 pir B70629	sp:GLNH_BACST	pir.H70628		sp:ADRO_BOVIN	sp:ELAA_ECOLI				sp:PURT_BACSU	
ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399	1194	888
Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2931338	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
Initial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
SEQ NO.	6515	6516	6517	6518	6519	6520	6521	6522	6523	6524	6525	6526	6527	6528	6259	6530	6531	6532	6533
SEQ NO. (DNA)	3015	3016	3017	3018	3019	3020	3021	3022	3823	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

Table 1 (continued)

													ase					
Function	insertion element (IS3 related)	insertion element (1S3 related)	two-component system sensor histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
Matched length (a.a.)	295	88	349	218		427	204		359	344	304	182	174	250	294			
Similarity (%)	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	0.09	56.1			
Identity (%)	9'22	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6			
Homologous gene	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT			
db Match	pir.S60890	pir S60889	gp:AB016841_1	sp.DEGU_BACBR		gp:AB003160_1	pir:G70575		SP.YFDA_CORGL	pir.509283	gp:CGFDA_1	pir:G70833	gp:AF058713_1	pir:B70834	sp:THTM_HUMAN			
ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	399
Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485	2958139	2959520	2960468	2962730	2963198
Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2954141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
SEQ NO.	6534	6535	6536	6537	6538	6239	6540	6541	6542	6543	6544	6545	6546	6547	6548	6549	6550	6551
SEQ NO.	3034	3035	3036	3037	3038	3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051

10
15
20
25
30
35
40
45
50

	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, lacl family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
	Matched length (a.a.)	69	200	132	489	108	283	476	399		375	184	99	56	361	204	386
	Similarity (%)	82.0	95.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09
	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 str0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous IFO3338	Kryptophanaron alfredi symbiont luxA luxA luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP:Y29188	GSP:Y29182	GSP:Y29193	pir:S76683	sp:CADF_STAAU	pir.H75109	gp:AB010439_1	sp.LUXA_KRYAS		sp:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir:E70812	pir.D70812	pir.D70834
	ORF (bp)	177	762	396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
	initial (nt)	2964258	2965076	2965188	2967804	2968403	2968951	2969834	2971017	2972099	2973205	2973796	2973961	2974200	2974467	2975629	2976596
	SEQ NO.	6552	6553	6554	6555	6556	6557	6558	6223	0959	6561	6562	6563	6564	6565	9959	6567
	SEQ NO. (DNA)	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

Table 1 (continued)

_					ī	ī						6.					,	 1
	Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5'-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase
	Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334
	Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	66.5	99.8	79.0	60.0			48.4			81.7
	Identity (%)	32.0		28.0	38.0	9.69	47.4	56.7	38.7	8.66	42.6	27.2			18.9			50.0
	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
	db Match	pir.869109		gp:SC4A7_3	GP.ABCARRA_2	prf:2104333D	gp.SAU43299_2	sp:DNAJ_MYCTU	sp.GRPE_STRCO	gsp:R94587	gp:SCF6_8	sp.PFS_HELPY			sp:CUT3_SCHPO			sp:ADH2_BACST
	ORF (bp)	798	243	1134	330	1518	438	1185	929	1854	1332	633	1200	885	3333	636	1485	1035
	Terminal (nt)	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
	Initial (nt)	2978644	2978737	2978982	2980887	2981698	2982460	2983679	2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781
	SEQ NO.	6568	6959	6570	6571	6572	6573	6574	6575	6576	6577	6578	6229	6580	6581	6582	6583	6584
	SEQ NO (DNA)	3068	3069		3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084

			T	Ī	\neg	T		\neg			du					П					\neg
5	د					ne protein			erase, subun	erase small	nosphosulfate	luctase	NADP				ake protein		nase		
10	Function					hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, subunit 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
15	Matched length (a.a.)					301	252		414	308	212	502	487	144			142	80	161		
20	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	29.7			59.9	66.3	76.4		
	Identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	20.0	39.1		
25 (pen	<u>ə</u>						- A3(2)		N	O s		C 7942	siae				nB	r A3(2)	SMZ ID		
% Table 1 (continued)	Homologous gene					Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8 10c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35						Ba	- S S			 		S		Ĭ				क्ष छ	P.8		
40	db Match					pir.F69997	gp:SC7A8_10		sp:CYSN_ECOLI	sp.CYSD_ECOLI	sp:CYH1_BACSU	SP. NIR SYNP7	sp:ADRO_YEAST	prf:2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	216	207	189	261	927	723	915	1299	912	6693	1683	1371	1083	237	534	414	366	522	321	486
45	Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3882453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50	Initial (nt)	2997151	2997687	2997688	2998223	2999454	3000200	3001512	3001539	3002453	3883145	3005162		3007294	3008689	3008770	3009162	3009242	3010231	3010659	3010926
	SEQ NO.	6585	6586	6587	6588	6289	6590	6591	6592	6593	6594 6594	6595		6597	6598	629	9600	6601	6602	6603	6604
55	SEQ NO (DNA)	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

EP 1 108 790 A2

15	
20	
25	
30	
35	
40	

red)	
continu	
e 1 C	
함	

	Function	hypothetical protein		hypothetical protein	ABC transporter	nsporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase					dehydrin-like protein	maltose/maltodextrin transport ATP-binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	oprotein
		hypothe		hypothe	ABC trai	ABC transporter	metaboli			succinyl-diami desuccinylase					dehydrin	maltose/maltod binding protein		cobalt tra	NADPH-	inosine-ur hydrolase	hypothet	DNA-3-n	flavohemoprotein
	Matched length (a.a.)	99		337	199	211	416			466					114	373		179	231	317	276	179	406
	Similarity (%)	58.0		57.9	64.8	73.0	8.79			48.5					46.0	50.1		9'29	71.4	59.3	59.4	78.8	63.8
	Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5					33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
lable 1 (continued)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB					Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
	db Match	SP:YTZ3_AGRVI	•	sp:YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir:A69778			sp:DAPE_ECOLI				CD11004207422	GPU: DCA29/422_1	Sp:MALK_ECOLI		gp.AF036485_6	sp:FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	sp:HMPA_ALCEU
	ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	767		954	1068	642	618	816	903	975	588	1158
	Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420		3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
	Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181		3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
	SEQ NO. (a.a.)	9099	9099	2099	8099	6099	6610	6611	6612	6613	6614	6615	6616		6617	6618	6619	6620	1299	2299	6623	6624	6625
	SEQ NO (DNA)	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116		3117	3118	3119	3120	3121	3122	3123	3124	3125

10	
15	
20	
25	
30	
35	
40	

_																				
	Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		529		410
	Similarity (%)		63.8		69.3		59.9		78.8	6.08		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium melilati rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A.16c		Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp:ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf:2422381B	sp:DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	567	237	771	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	3041932
	SEQ NO.	9299	6627	6628	6299	6630	6631	6632	6633	6634	6635 ee35	9639	6637	8639	6639	6640	6641	6642	6643	6644
	SEQ NO.	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

(
ntinue
1 (00
Table

		1		ī		- 1		_				i .	a)				T	
Function			hypothetical protein			hypothetical membrane protein	acyltransferase or macrolide 3-O-acyltransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
Matched length (a.a.)			1416			363	408		529		369	251	601	332	241	207	768	
Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:	:	Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pir.G70961	pir.F70961	sp.PPCK_NEOFR	pir.E75125	sp:YGGH_ECOLI	pir:E70959	pir.C70839	
ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699 699	1137	177	1830	1011	765	705	2316	1422
Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
SEQ NO.	6645	6646	6647	6648	6649	999	6651	6652	6653	6654	6655	9599	6657	6658	6999	9999	6661	6662
SEQ NO (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

EP 1 108 790 A2

phosphatidic acid phosphatase

Bacillus licheniformis ATCC 9945A bcrC

sp:BCRC_BACLI

hypothetical protein

74.7

55.6

Mycobacterium tuberculosis H37Rv Rv3808c

pir.D70888

propionyl-CoA carboxylase complex B subunit major secreted protein PS1 protein precursor hypothetical membrane protein hypothetical membrane protein hypothetical membrane protein Function polyketide synthase hypothetical protein hypothetical protein acyl-CoA synthase nodulation protein antigen 85-C Matched length (a.a.) Similarity 54.2 75.0 % 76. 62. |dentity 33.5 39.8 30.2 27.1 34.3 ဖ 49.7 51.2 29. 37. Streptomyces erythraeus eryA Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1 Streptomyces coelicolor A3(2) pccB Fable 1 (continued) Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv0401 Mycobacterium tuberculosis H37Rv Rv3802c Mycobacterium tuberculosis H37Rv Rv3807c Mycobacterium tuberculosis ERDMANN RV0129C fbpC Mycobacterium tuberculosis Mycobacterium bovis BCG Azorhizobium caulinodans ORS571 noeC Homologous gene H37Rv Rv0204c H37Rv Rv3805c sp:NOEC_AZOCA sp:A85C_MYCTU Sp.ERY1_SACER sp:CSP1_CORGI gp:AF113605_1 db Match prf:2310345A pir:H70633 pir.A70888 pir:A70839 pir:C70888 pir.F70887 ORF (화) Terminal Initial = SEO NO (a a.) (DNA) SEQ

10
15
20
25
30
35
40
45
50

	Function			dimethylaniline monooxygenase (Noxide-forming)		UDP-galactopyranose mutase	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryl-tRNA synthetase	transcriptional regulator, GntR family or fatty acyl-responsive regulator	hypothetical protein	hypothetical protein		2,3-PDG dependent phosphoglycerate mutase		nicotinamidase or pyrazinamidase	
	Matched length (a.a.)			377		377	659	499	279	261	419	235	356	113		218		460	
	Similarity (%)		į	50.4		72.9	47.8	78.8	70.3	72.0	87.6	61.7	61.2	7.67		62.8		6.03	
	Identity (%)			24.4		43.2	29.6	51.7	41.6	46.7	70.2	27.7	32.6	46.0		37.2		27.4	
Table 1 (continued)	Homologous gene			Sus scrofa fmo1		Escherichia coli K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	
	db Match			sp:FMO1_PIG		sp.GLF_ECOLI	pir:G70520	sp:GLPK_PSEAE	pir:A70521	pir.D70521	gsp:W26465	sp:FARR_ECOLI	pir.H70652	pir.A70653		gp:AMU73808_1		prf.2501285A	
	ORF (bp)	777	510	1302	612	1203	2049	1527	834	876	1266	714	1113	342	66	699	630	1143	729
	Terminal (nt)	3084424	3085218	3087048	3088276	3087101	3090664	3090760	3092342	3093175	3094078	3096287	3097423	3097764	3097780	3097904	3099454	3100698	3101426
	Initial (nt)	3085200	3085727	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343	3095574	3096311	3097423	3097878	3098572	3098825	3099556	3100698
	SEQ NO. (a.a.)	0899	6681	6682	6683	6684	6685	9899	6687	6688	6899	0699	6691	6692	6693	6694	9699	9699	6697
	SEQ NO (DNA)	3180	3181	3182	3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197

transcription activator or transcriptional regulator GntR family glucan 1,4-alpha-glucosidase hydrolase or haloacid dehalogenase-like hydrolase shikimate transport protein glycerophosphoryl diester phosphodiesterase L-lactate dehydrogenase transcriptional regulator Function gluconate permease hypothetical protein hypothetical protein phosphoesterase pyruvate kinase efflux protein Matched length (a.a.) Similarity (%) 71.9 57.0 68.6 99.7 9.79 74.4 55.3 54.1 47.7 57.1 58. dentity 37.3 31.6 29.0 33.5 39.9 27.6 47.8 32.1 25. Streptomyces coelicolor A3(2) SC6G4.33 Streptomyces coelicolor A3(2) SC1C2.30 Corynebacterium glutamicum Escherichia coli K12 MG1655 glcC Table 1 (continued) Mycobacterium tuberculosis Brevibacterium linens ORF1 tmpA Mycobacterium tuberculosis H37Rv Rv2795c Brevibacterium flavum lctA Saccharomyces cerevisiae S288C YIR019C sta1 Homologous gene Streptomyces lavendulae ORF372 Escherichia coli K12 shiA Bacillus subtilis glpQ Bacillus subtilis gntP H37Rv Rv1069c ASO19 pyk sp.GLPQ_BACSU sp.GNTP_BACSU sp:KPYK_CORGL SP: AMYH_YEAST sp:GLCC_ECOLI sp:SHIA_ECOLI gp: AF030288_ db Match gp:SC6G4_33 gp:SC1C2_30 gsp:Y25997 pir:870885 pir. B26872 pir.C70893 ORF (bp) **Terminal** (ju) Initial (nt) 90/9 60/9 SEQ (a.a.) 0 (DNA) SEO

_		 r								r	т	<u>-</u>				-					
	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
	Matched length (a.a.)	376		55			569		122		210	164	292	384				216	447	137	212
	Similarity (%)	68.9		80.0			51.3		63.1		69.1	92.7	65.8	49.0				64.8	59.3	65.0	75.5
	Identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill 1		Escherichia coli B msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gltC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
	db Match	prf.2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		sp:ILL1_ARATH		sp.PMSR_ECOLI	pir:140858	sp.GLTC_BACSU	gp:AF121000_10				pir.G70654	prf:2508244AB	sp.YXAD_BACSU	prf.2518330B
	ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	909	924	1134	1611	111	1521	633	1491	456	636
!	Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
	Initial (nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124886	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	SEQ NO.	6717	6718	6119	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
	SEQ NO.	-	3218	3219	3220	3221	3222	3223	3224	3225	+	3227	3228	3229	3230	3231	3232	3233	3234	3235	3236

	Function			two-component system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	Lucathatical protain	nypomencal process	hypothetical protein		bacterial regulatory protein, gntK family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
	Matched length (a.a.)			408	48	277	265	192	87	296	314	374	3	46	42		109	488	267
	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	69.6	73.9	51.2	1 0	0.00	75.0		26.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	7 00	707	61.0	71.0		30.3	26.0	48.3
Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spoillJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coli K12 MG1655	Service of the servic	Chlarobium vibriotatme yaca	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
	db Match			prf.2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J BACSU	pir.C70948	sp:TAG1_ECOLI	sp:YW12_MYCTU	SD:YHBW ECOLI		sp:YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp.GLCC_ECOLI	gp:SC4G6_31	sp:35KD_MYCTU
	ORF (bp)	639	2.00	1311	150	822	1302	639	261	903	987		996	273	141	207	363	1416	873
	Terminal (nt)	3137558	2420474	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496		3145626	3146841	3147230	3151369	3151842	3153828	3153894
	Initial (nt)	3136920	10000	3137903	3138630	3139455	2139651	3141523	3141969	3143356			3144661	3146569		2151575		3152413	
	SEO NO.	+-		6739	6740	6741	67.42	6743	6744	6745	2746	0.40	6747	6748	6749	6750	6751	6752	
	SEQ			3239	3240	3241			3244	3245	3 66	3240	3247	324R	3249	200	3251	1757	3253

1											_											
	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
	Matched length (a.a.)						217	241				56		62	55	27	46		38	180	717	
	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	0.06		84.2	59.4	73.4	
	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesei gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
	db Match						gp:SCD35_11	sp:NO21_SOYBN				sp.TNP5_PSEAE		sp:FER_SACER	gp:SCD31_14	GPU:AF164956_8	GPU:AF164956_23		sp:G3P_PYRWO	pir.S77018	pir.H69268	
ļ	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	111	162	1038	126	099	2217	171
	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	6774 3166437
	SEQ NO. (a.a.)	6754	6755	6756	6757	6758	6229	929	6761	6762	6763	6764	6929	9929	6767	6768	6929	6770	6771	6772	6773.	6774
	SEQ NO.	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		630	101	322		8/			909	72		73	70
	Similarity (%)		71.4		72.1		47.9	63.4	6:09		66.7			68.5	54.0		73.0	77.0
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus museulus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
	db Match		sp:BAES_ECOLI		sp.PHOP_BACSU		sp.COPA_PSESM	sp.TLPA_BRAJA	SP:GOR_MOUSE		sp.ATZN_SYNY3			75 sp.ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU:AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171819	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172538	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO.	6775	6776	5777	6778	6229	6780	6781	8782	6783	6784	6785	6786	6787	6788	6849	6790	6791
	SEQ NO. (DNA)	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

তু
ij
ቜ
ğ
こ
ø
펿
_

	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	100		421		208	461		154	229	92		480		647	107	137	296		7.1	298	433
	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
lable 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp.AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp.DNAB_ECOLI		sp:RL9_ECOLI	sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:Y0HC_MYCTU	pir.870912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	1263 sp:YBJZ_ECOLI
	ORF (bp)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	6812 3193201	6813 3194514
	SEQ NO. (a.a.)	6792	6793	6794	6795	9679	6797	6798	6229	6800	6801	6802	6803	6804	6805	9089	6807	6808	6809	6810	6811	6812	6813
	SEQ NO.	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

5		Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
15		th (\neg							-									
		Matched length (a.a.)	221	237	360			154	268	404	_		166	231		398	392	486	169	159
20		Similarity (%)	80.1	45.0	0.06			64.9	55.6	9.99			63.3	63.6		66.3	99.5	53.7	60.4	159.0
		Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
25	ontinued)	s gene	2 MG1655	ni Cj0606	erculosis			2 dps	2 mutM or	2 rtcB			Έ	uinea pig) qor		erculosis eA	nelassecola glutamicum)	≍	ium vanZ	ium vanZ
	Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium van 2	Enterococcus faecium vanZ
<i>40</i>		db Match	sp:YBJZ_ECOLI	pir:E81408				sp:DPS_ECOLI	sp.FPG_ECOLI	Sp.RTCB_ECOLI			SP:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	SD.GNTK BACSU	1	ENTFC
		ORF (bp)	069	1977	1089	909	1485		813	1149	1089	+-	474	1011	Ξ	1176	1176	1482	50	525
45		Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	120472B	3204731	3205222	3206756	3208024	3209454	3209705	321124E	3211904
50		Initial (nt)	3195203	3197186	3197412	3199187	3200686		3201900	3202952		3204156		3206232	3206646	(3208279	321118F	2241836	3212428
		SEQ NO.		6815		6817	6818	_	6820	6821	_	_		6825	6826		6828	6820		
55		SEO	3314	3315	3316	3317	3318	3319	3320	3321	3322	2 6	3324	3325	3326	3327	3328	22.00	3323	3331

	Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2, 4-diene-1, 7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1, 7 dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lacl family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
	Matched length (a.a.)	448	444				194			943	104	96		247	298	339	229	454
	Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	8.09
	Identity (%)	29.9	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
Table 1 (continued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
	db Match	Sp. MERA STAAU	sp:DADA_ECOL1				sp:NOX_THETH			sp:SYL_BACSU	sp:YBAN_ECOLI	sp:VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOLI	gp:AF173167_1	sp.KDGR_ERWCH	356 sp.PCAK_PSEPU
	ORF (bp)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837	1125	780	1356
	Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
	Initial (nt)	3212588		3216759	3217215	6836 3217777	3217993	3218777	3221044	3222633	3222722	3223445			3225554	3226687	3227689	3227724
	SEQ	6832		6834	6835	6836	6837	6838	6839	6840		6842	6843	6844	6845	6846	6847	6848
	SEQ			3334	3335	3336	3337	3338	3339	3340		3342	3343		3345	3346	3347	3348

Table 1 (continued)	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5- phosphoribosyl) anthranilate isomerase(PRAI)	tryptophan synthase beta chain		i propieta	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding proteir	ABC transporter
	Matched length (a.a.)	476	507	170	515		208	348	474		417		283	521	152	305	547
	Similarity (%)	49.4	54.4	99.4	93.8		100.0	99.4	98.3		97.9		96.5	86.8	71.7	63.6	57.2
	Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6		95.4	9.99	30.3	32.5	25.2
	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB		Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
	db Match	orf 1706191A		pir.JC2326	sp:TRPE_BRELA		TRPG_BRELA	044 sp.TRPD_CORGL	422 sp:TRPC_BRELA			sp:TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	810 sp.PTXA_ECOLI	SP:NOSF PSEST	
	ORF (bp)	1326	1251	510	1554	171	624	1044	1422	808	3	1251	840	1539	810	906	1584
	Terminal (nt)	3230444	i	3233105	3234956	3233250	3235579	3236645	3238062	2236510	0,000	3239332	3240171	3240313	3241879	3243759	3245342
	Initial (nt)	3220440		3232596	3233403	3233420	3234956	3235602	3236641	2007000	3537213	3238082	3239332	3241851	3242688	3242854	3243759
	SEQ NO.	070	6850	6851	6852	6853	6854	6855	6856	100	7090	6858	6889	6860	6861	6R62	6863
	SEQ NO.	_	3350	3351	3352	3353		3355	3356		335/	3358	3359	3360	3361	1367	3363

10	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpoter		bacterial regulatory protein, tetR	hydroxyquinol 1,2-dioxygenase
15	p t ~													hype				
	Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188	246
20	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
25 (pən	e e	O	ockii	I	A3(2)	Plasmid	ockii	ae					· ·	osis	o. lactis		8	SU.S
S Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
35	_				0, 0,	0, 0,												
40	db Match	Sp:UCRI_CHLLT	sp:NADO_THEBR	Sp: YFEH_ECOLI	gp:SCI11_36	pir.A29606	sp:NADO_THEBR	sp.YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp.DTPT_LACLA		sp.ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
45	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	SEQ NO. (a.a.)	6864	6865	9989	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876	6877	6878	6879	6880
55	SEQ NO.	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

(continued)
ontinu
(conti
_
Tab Tab

_																				
	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
	Matched length (a.a.)	351	513	280	357	270	332	343	1242				206		1660	141		125	67	297
	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
Table 1 (continued)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium icIR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces griseus stri	Bacillus subtilis yvnB				Caenorhabdilis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiD	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
	db Match	sp.TCBF_PSESQ	sp:XYLE_ECOLI	sp:ICLR_SALTY	sp:YDGJ_ECOLI	gsp:W61761	sp:MI2D_BACSU	sp:STRI_STRGR	pir:C70044				sp:UNC1_CAEEL		gp:MBO18605_3	prf:2323363AAM		sp:THID_BACSU	pir.F70041	prf.2501295A
	ORF (bp)	1089	1524	861	1077	879	1005	1083	4032	645	618	1086	744	696	4929	507	360	009	243	837
	Terminal (nt)	3257403	3258561	3261989	3263221	3264115	3265146	3266266	3271093	3267913	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
	Initial (nt)	3258491	3260084	3261129	3262145	3263237	3264142	3265184	3267062	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ NO.	6881	6882	6883	6884	6885	9889	6887	6888	6889	0689	5891	6892	6893	6894	6895	9689	6897	6898	6833
	SEQ NO. (DNA)	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391	3392	3393	3394	3395	3396	3397	3398	3388

	Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
Matched	length (a.a.)	279	324			249		29	102	212	169	471	234		858	1201		189	308
Circularia	(%)	60.6	58.0			75.5		70.1	65.7	0.79	56.2	51.8	69.2		54.3	60.1		6.09	82.5
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
ומחום ו (בחווווומפת)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mr11			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis aziD	Bacillus subtilis azID	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus txB
	db Match	sp:FECB_ECOL!	sp:MRF1_SCHPO			sp:THID_BACSU		pir.F70041	sp.AZLD_BACSU	sp:AZLC_BACSU	sp:YQGE_ECOLI	sp:ccA_ECOLI	pir.E70600		pir:F70600	pir.G70600		sp:RPSH_PSEAE	Sp.TRXB_STRCL
0	ORF (bp)	957	1122	384	219	798	345	201	345	13	267	1320	996	273	2511	3249	723	603	951
	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
,	Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	3300371
SFO		0069	6901	6902	6903	6904	6905	9069	6907	6908	6069	6910	6911	6912	6913	6914	6915	6916	6917
SFO	NO.	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

	Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
	Matched tength (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
	Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
	Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
	db Match		Sp. THI2_CHLRE	sp:CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp.GIDB_ECOLI	plr:A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp:LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
	ORF (bp)	1185	372	1242	777	1041	618	1152	837	699	951	399	336	294	222	408	1848	255	1032	447
	Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
	Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
	SEQ NO.	6918	6919	6920	6921	6922	6923	6924	6925	6926	6927	6928	6359	6930	6931	6932	6933	6934	6935	6936
	SEQ NO. (DNA)	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	Matched length (a.a.)	396	440 p	738 is	591 a	437 ci	118	595 9	426 hy	501 L	463 aı	316 h	369 st	524 pr	550 ar
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
	db Match	sp:EFTU_CORGL	sp.SECY_CORGL	sp:IDH_CORGL	prf.2223173A	sp:CISY_CORGL	sp:FKBP_CORGL	sp:BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	sp:SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
	Terminat (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	1238274
	SEQ NO.	6937	6938	6839	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	6950
	SEQ NO (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

_															
	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (confinued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
	db Match	sp.DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir:B48648	pir:C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp.OTCA_CORGL	gp:AF041436_1
	ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	3464 6964 1469528
	SEQ NO. (a.a.)	6951	6952	6953	6954	6955	9569	6957	6958	6969	0969	6961	6962	6963	6964
	SEQ NO.	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

_															
	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
ĺ	Matched length (a.a.)	467	87	362	452	7.1	919	410	632	331	295	376	301	248	500
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgllIR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp.CGL007732_3	gp:CGL007732_2	prf.1509267A	gp:AF124600_1	pir:855225	prf.2204286D	sp.GLUB_CORGL	sp:RECA_CORGL	sp:DAPA_BRELA	sp.DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	903	744	1500
	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEQ NO.	6965	9969	2969	6968	6969	6970	6971	6972	6973	6974	6975	6976	7269	8269
	SEQ NO.	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

	_																
5			uridilylyl-	rotein P-II	er	enase (NADP+)					ie betaine				a-synthase	ase	
10		Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
15		Matched length (a.a.)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	77
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	rable i (confinited)	ns gene	glutamicum J	glutamicum 3	glutamicum P	glutamicum A	glutamicum	glutamicum	glutamicum A	glutamicum	glutamicum	glutamicum B	glutamicum A	glutamicum B	glutamicum	glutamicum	glutamicum H
30	lable	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
35	}			67		0 4											
40		db Match	gp:CAJ10319_4	gp:CAJ10319_	gp:CAJ10319_2	pir:S32227	sp:KPYK_CORGL	gp:AF096280_1	prf:2322244A	sp:THRC_CORGL	prf.2501295B	pir:140715	pir:140713	sp.PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
		ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
45		Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
50		Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
		SEQ NO (a.a.)	6269	6980	6981	6982	6983	6984	6985	9869	2869	6988	6869	0669	6991	6992	6993
55		SEQ NO. (DNA)	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	397	329	459	852	315	504
	Identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
	db Match	sp.DDH_CORGL	gp:CGL238703_1	sp:ACKA_CORGL	prf.2516394A	prf.2309322A	6 sp:CLPB_CORGL	prf.1210266A	1512 prf.2501295A
	ORF (bp)	960	135	1191	987	1377	2556	945	1512
	Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
	Initial (nt)	3494 6994 2787715	2888078	6996 2936505	6997 2937494	6998 2961342	2966161	7000 3099522	7001 3274074
	SEQ NO.	6994	6995		7669	8669	6669	7000	7001
	SEQ	3494	3495	3496	3497	3498	3499	3500	3501

30

35

45

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gine nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and IysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points wer observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196.* 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6:* 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, *hom* and *pyc*, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with *Bam*HI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepar d from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 w re used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

10

15

25

30

35

40

55

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito *et al.* PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the *hom* gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the *pyc* gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the *hom* or *pyc* gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated *hom* gene and *pyc* gene, respectively.

[0384] The HD-1 strain (strain obtain d by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 l jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate h ptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 mm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

15

20

25

30

35

50

55

⁴⁵ Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from this B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in *hom*, a mutation, Thr311lle, in *lysC*, a mutation, Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacem in having mutated gene

10

15

20

25

40

45

50

[0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwf* were produced as described below.

[0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μ g/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μ g/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311lie, in IysC into one point mutant HD-1

[0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

[0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

[0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwi gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 l jar fermenter in accordance with the method of Example 2(3).
[0397] Table 3 shows the results.

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

5

10

15

20

25

30

35

40

50

55

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

10

15

20

25

30

35

45

55

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buff r attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a r vers transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/μl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 μl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/ I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 µl.

(3) Hybridization

15

20

25

30

40

45

50

55

[0433] UltraHyb (110 μ l) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ l) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Tabl	-	=
Ian	ю.	

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

30

35

40

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of Escherichia coli adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: 2444-2448 (1988)). A case where E-value was le-10 or I ss was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

10

20

25

30

35

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

10

20

25

30

35

40

50

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

20

25

30

35

40

45

50

[0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, *9*: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

(4) In-gel digestion of detected protein spot

[0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μ l of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/ μ l) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.

(5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)

[0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

[0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.

[0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.

[0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

[0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

(6) Identification of protein spot

[0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

[0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

(a) Search and identification of gene encoding high-expression protein

[0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

[0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid significant quence right presented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomeras which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

[0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).

[0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.

[0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

[0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

[0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.

[0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

[0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

[0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

[0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

[0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

Claims

20

25

35

45

50

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

15

20

25

30

35

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides.
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynuce-lotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - 9. A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 50 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A m thod for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recoviring this polypeptide from the midium.

5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) scr ening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

- (ii) a data storing device for at least temporarily storing the input information,
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- **30.** A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

25

30

35

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
- 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence repr s nted by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.
 - 47. A transformant comprising the recombinant DNA of claim 46.
 - 48. A transformant comprising in its chromosome the DNA of claim 45.
 - 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
 - 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

10

15

20

30

35

40

45

55

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - 63. A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;
 - recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional el ctrophoresis;

5

10

15

20

25

30

35

40

45

50

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- **66.** The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus *corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

GENOME AND/OR SEQUENCE DATA POLYNUCLEOTIDE
AND/OR
POLYPEPTIDE
SEQUENCE
RECOGNIZER AND
QUERY BUFFER NETWORK REQUEST RESULT USER INPUT DEVICE

FIG. 4

