Reinforcement Learning Lecture 4

Georg Martius

Distributed Intelligence / Autonomous Learning Group, Uni Tübingen, Germany

November 5, 2024

1 / 40 | Georg Martius | Reinforcement Learning – Lecture 4

© 2024 Universität Tübingen

Model-free Control

Overview

- Last time: unknown MDP
 - ▶ how to estimate the value function
 - no model (model-free)
- ► Today: Solve an unknown MDP
 - optimize the value function
 - obtain optimal policy
 - ► also without model
- Next time: Bandits a special case of RL problems with a single state and exploration (given by Claire Vernade)

2 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Plan for today

- 1. Q-function
- 2. Monte-Carlo Control
- 3. Temporal Difference Learning
- 4. On-Policy vs. Off-Policy
- 5. Off-Policy Learning (Q-learning)

40 | Georg Martius | Reinforcement Learning - Lecture 4 © 2024 Universität Tübingen 4 / 40 | Georg Martius | Reinforcement Learning - Lecture 4 © 2024 Universität Tübingen

Where to apply model-free control?

- MDP model is unknown, but experience can be sampled Examples:
 - Robot control
 - ► Tokamak plasma control
 - Protein Folding
- ► MDP model is known, but is too big to use, except by samples Examples:
 - ► Game of Go
 - ► Elevator optimization
 - Optimizing decision making problems in simulation

5 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübinger

Policy Iteration (reminder)

Policy Iteration

Given a policy π

- 1. Policy Evaluation: Evaluate the policy π estimate v_{π}
- 2. Policy Improvement: $\pi' > \pi$ e.g. Improve the policy by acting greedily with respect to v_{π} requires model
- 3. iterate until value function does not change
- ▶ Policy iteration always converges to π^*

What stops us from optimizing the value function?

We know how to estimate the value function: Monte-Carlo or TD How to derive the (greedy) policy? (deterministic notation)

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathcal{R}_{s}^{a} + \mathcal{P}_{ss'}^{a} V\left(s'\right)$$

lacktriangledown greedy policy improvement over V(s) requires the MDP or a model of it

What to do? Learn an action-value function!

Action-value function (reminder)

 $q_{\pi}(s,a)$: value of performing action a in state s and then following the policy Q(s,a) is an estimate of $q_{\pi}(s,a)$

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(s, \underline{a})$$

 \blacksquare greedy policy improvement over Q(s, a) is model-free

6 / 40 | Georg Martius | Reinforcement Learning – Lecture 4

© 2024 Universität Tübinger

Policy Iteration with Action-Value Function

Policy Iteration with Action-Value Function

Given a policy π

- 1. Policy Evaluation: Evaluate the policy π estimate action-value function q_{π}
- 2. Policy Improvement: $\pi' > \pi$ e.g. Improve the policy by acting greedily with respect to q_{π} \checkmark
- 3. iterate until action-value function does not change

Greedy action selection

"Behind one door is tenure - behind the othe is flipping burgers at McDonald's." Copyright © 2003 David Farley, d-farley@ibiblio.org

Example: There are two doors in front of you:

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- lackbox You open the right door and get reward +1 $V({\rm right})=+1$
- You open the right door and get reward +3 V(right) = +2
- ▶ You open the right door and get reward +2V(right) = +2

Are you sure you've chosen the best door?

Exploration is needed!

9 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Does ϵ -Greedy policy harm improvement? NO

i.e.: does Policy Iteration still converge?

Theorem: ε-Greedy Policy Improvement

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, i.e. $v_{\pi'}(s) \geq v_{\pi}(s)$

$$q_{\pi}(s, \pi'(s)) = \sum_{a \in \mathcal{A}} \pi'(a \mid s) q_{\pi}(s, a)$$

$$= \epsilon / m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

$$\geq \epsilon / m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a \mid s) - \epsilon / m}{1 - \epsilon} q_{\pi}(s, a)$$

$$= \sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, a) = v_{\pi}(s)$$

Therefore: $v_{\pi'}(s) \geq v_{\pi}(s)$

ϵ -Greedy exploration

Simplest idea for ensuring continual exploration

- ▶ All m actions are tried with non-zero probability
- ightharpoonup With probability $1-\epsilon$ choose the greedy action
- ightharpoonup With probability ϵ choose an action at random

$$\pi(\mathbf{a}\mid s) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon & \text{if } \mathbf{a}^* = \arg\max_{\mathbf{a}\in\mathcal{A}} Q(s,\mathbf{a}) \\ \frac{\epsilon}{m} & \text{otherwise} \end{cases}$$

10 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Monte-Carlo Action-value function estimation

- 1. trajectory using π : $\tau = \{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- **2.** For each state S_t and action A_t in τ :

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

3. iterate

We have the ingredients

- Action-value estimation
- Policy: ϵ -greedy

Monte-Carlo Control / Policy Iteration

Every episode we iterate:

- 1. Policy evaluation: Monte-Carlo action-value estimation $Q \approx q_{\pi}$
- 2. Policy improvement: ϵ -greedy policy improvement

Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübinger

Convergence?

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s, \mathbf{a}) = \infty$$

► The policy converges on a greedy policy,

$$\lim_{k \to \infty} \pi_k(a \mid s) = [a] = \arg\max_{a' \in \mathcal{A}} Q_k(s, a')]$$

- ▶ Adapt exploration rate as $\epsilon \leftarrow \frac{1}{k}$
 - converges to greedy policy
- \blacktriangleright infinite exploration because $\sum_{k=1}^{\infty}\frac{1}{k}=\infty$

Theorem

GLIE Monte-Carlo Control converges to the optimal action-value function, $Q(s, \mathbf{a}) \to q^*(s, \mathbf{a})$

Convergence?

What do you think is needed?

- 1. nothing, it converges always X
- 2. it does not converge X
- 3. a lot of iterations ✓
- 4. every state, action pair is visited infinitely often ✓
- a greedy policy X
- 6. policy needs to become greedy in the limit ✓
- 7. policy needs to keep exploring ✓

Greedy in the Limit with Infinite Exploration (GLIE)

► All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s, \mathbf{a}) = \infty$$

► The policy converges on a greedy policy,

$$\lim_{k \to \infty} \pi_k(a \mid s) = [a = \underset{a' \in \mathcal{A}}{\operatorname{arg max}} Q_k(s, a')]$$

Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Example: Blackjack

- ▶ Goal: get as close as possible to 21 points but not above
- ► Counting: Face-cards: 10, Ace: 1 or 11, other: cards their value
- start with two cards, dealer has one card open

Example: Monte-Carlo Control in Blackjack

▶ Dealer: stick if sum of cards ≥ 17 , otherwise twist

17 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Break

Compare: Optimal Value vs Policy Evaluation

- \triangleright Policy: stick if sum of cards ≥ 20 , otherwise twist (suboptimal policy)
- ightharpoonup Dealer: stick if sum of cards ≥ 17 , otherwise twist

3 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Using Temporal-difference (TD) learning

What are the advantages of TD over MC?

- ► Lower variance
- online
- ▶ incomplete sequences
- exploits Markov property

Natural idea: use TD instead of MC

Simplest TD Q update:

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma Q(S', A') - Q(S, A)\right)$$

SARSA

SARSA

- 1. Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
- 2. Repeat (for each episode):
 - **2.1** $S \leftarrow$ from environment

- (ϵ -greedy w.r.t. Q)
- **2.2** $A \sim \pi_{\epsilon}^Q(S)$ **2.3** Repeat (for each step of episode):
 - **2.3.1** Take action A, observe R, S'
 - **2.3.2** $A' \sim \pi_{\epsilon}^Q(S')$

- $(\epsilon \text{ -greedy w.r.t. } Q)$
- 2.3.3 $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') Q(S,A)]$ 2.3.4 $S \leftarrow S'; A \leftarrow A'$
- 2.4 until S is terminal

21 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Windy Gridworld Example

Reward: R = -1 per timestep until reaching goal

Undiscounted: $\gamma = 1$

Convergence of Sarsa

Theorem

Sarsa converges to the optimal action-value function, $Q(s, \mathbf{a}) \to q^*(s, \mathbf{a})$, under the following conditions:

- ▶ GLIE sequence of policies $\pi_t(a \mid s)$ (decay of exploration rate)
- ightharpoonup Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

22 / 40 Georg Martius | Reinforcement Learning - Lecture 4 © 2024 Universität Tübingen

SARSA on the Windy Gridworld Example

SARSA(λ) Algorithm

Naturally we can combine n-step TD updates with SARSA \Rightarrow SARSA(λ) Use eligibility traces (backward view):

$SARSA(\lambda)$

- 1. Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
- 2. Repeat (for each episode):
 - **2.1** $E(s, \mathbf{a}) = 0, \forall s \in \mathcal{S}, \mathbf{a} \in \mathcal{A}(s)$
 - **2.2** $S \leftarrow$ from environment
 - 2.3 $A \sim \pi_{\epsilon}^{Q}(S)$
 - 2.4 Repeat (for each step of episode):
 - **2.4.1** Take action A, observe R, S'
 - **2.4.2** $A' \sim \pi_{\epsilon}^{Q}(S')$
 - **2.4.3** $\delta \leftarrow R + \gamma Q(S', A') Q(S, A)$
 - **2.4.4** $E(S, A) \leftarrow E(S, A) + 1$
 - **2.4.5** For all $s \in \mathcal{S}, a \in \mathcal{A}(s)$:
 - $Q(s, \mathbf{a}) \leftarrow Q(s, \mathbf{a}) + \alpha \delta E(s, \mathbf{a})$ $E(s, \mathbf{a}) \leftarrow \gamma \lambda E(s, \mathbf{a})$
 - **2.4.6** S'; $A \leftarrow A'$
 - **2.5** until S is terminal

Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

 $(\epsilon \text{ -greedy w.r.t. } Q)$

(ϵ -greedy w.r.t. Q)

Break

SARSA(λ) update on the Windy Gridworld Example

Action values increased by one-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

On-policy vs. Off-Policy

On-policy

- "Learn while doing the job"
- Learn about policy π from experience sampled with π

Examples:

- ► MC Control/Policy Iteration
- SARSA

Off-policy

- "Look over someone's shoulder"
- \blacktriangleright Learn about policy π from experience sampled with μ

Examples: (discussed next)

- ► Importance Sampling MC
- Q-Learning

Why is off-policy learning a good idea?

- can learn from demonstrations
- \triangleright can re-use all experience (data from policies $\pi_1, \pi_2, \dots \pi_{t-1}$)
- learn about optimal policy while following exploratory policy
- learn about multiple policies while following one policy

Importance Sampling

We get samples from current policy, but would like to compute the expectation with respect to a different policy.

Importance Sampling

$$\begin{split} \mathbb{E}_{X \sim P}[f(X)] &= \sum P(X)f(X) \\ &= \sum Q(X) \frac{P(X)}{Q(X)} f(X) \\ &= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right] \end{split}$$

estimate expectation of a different distribution

29 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Off-policy without Importance Sampling

Off-policy learning of action-values $Q(s, \mathbf{a})$

- $ightharpoonup q_{\pi}(s, \mathbf{a})$: value of doing action \mathbf{a} in state s and then following π
- we want to approximate $q_{\pi}(s, \mathbf{a})$, but get data from policy μ : $A_t \sim \mu(\cdot \mid S_t)$
- No problem!
 Current action A_t comes from exploration policy μ , but then we follow π .

$$A' \sim \pi(\cdot \mid S_{t+1})$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \underbrace{Q(S_{t+1}, A')}_{\approx v_{\pi}(S_{t+1})} - Q(S_t, A_t) \right)$$

Q estimates $q_{\pi}(s, a)$

Importance Sampling for Off-Policy Monte-Carlo

Have: return G_t from policy μ

Importance Sampling: reweight according to similarity between policies

▶ Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi (A_t \mid S_t)}{\mu (A_t \mid S_t)} \frac{\pi (A_{t+1} \mid S_{t+1})}{\mu (A_{t+1} \mid S_{t+1})} \cdots \frac{\pi (A_T \mid S_T)}{\mu (A_T \mid S_T)} G_t$$

► Update value towards corrected return

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\pi/\mu} - V(S_t)\right)$$

- **Warning**: cannot use if μ is zero when π is non-zero
- ► Importance sampling can dramatically increase variance

Similarly possible for TD: weight TD-target by $\frac{\pi}{u}$

30 / 40 | Georg Martius | Reinforcement Learning – Lecture 4

© 2024 Universität Tübingen

Q-Learning

Let both exploration- and target policy improve!

▶ The target policy π is greedy w.r.t. Q(s, a) (approaching π^*)

$$\pi\left(S_{t+1}\right) = \operatorname*{arg\,max}_{a'} Q\left(S_{t+1}, a'\right)$$

- ▶ The behavior policy μ is e.g. ϵ -greedy w.r.t. Q(s, a)
- ► The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q\left(S_{t+1}, A'\right) \qquad A' \sim \pi(\cdot \mid S_{t+1})$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \arg\max_{a'} Q\left(S_{t+1}, a'\right)\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q\left(S_{t+1}, a'\right)$$

Q-Learning Control update

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Theorem

Q-Learning (Control) converges to the optimal action-value function, $Q(s, a) \rightarrow q^*(s, a)$

33 / 40 | Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Q-Learning Demo

python3 gridworld.py -a q -k 20 -n 0 (You can do the same after completing the homeworks)

Let's look at it after 100 or 1000 iterations: python3 gridworld.py -a q -k 100 -n 0 -q

What happens if we add noise? python3 gridworld.py -a q -k 1000 -n 0.2 -q

Q-Learning Algorithm

Q-Learning

- 1. Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
- 2. Repeat (for each episode):
 - **2.1** $S \leftarrow$ from environment
 - 2.2 Repeat (for each step of episode):

2.2.1
$$A \sim \pi_{\epsilon}^Q(S)$$
 (ϵ -greedy w.r.t. Q)
2.2.2 Take action A , observe R, S'
2.2.3 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a'} Q\left(S', a'\right) - Q(S, A)\right]$
2.2.4 $S \leftarrow S'$

2.3 until S is terminal

34 / 40 | Georg Martius | Reinforcement Learning – Lecture 4

© 2024 Universität Tübingen

Cliff Walking Example

Fixed ϵ -greedy exploration policy. No noise in environment.

- 1. Which path will be learned by Q-Learning?
- 2. Which path will be learned by SARSA? (Poll)

Cliff Walking Example

Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Relationship between DP and TD (cont)

Episodes

Full Backup (DP)	\mid Sample Backup (TD)
Q-Policy Iteration	SARSA
$Q(s, \mathbf{a}) \leftarrow \mathbb{E}\left[R + \gamma Q\left(S', \mathbf{A}'\right) \mid s, \mathbf{a}\right]$	$Q(S, A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S', A')$
Q-Value Iteration	
Q-Value Iteration $Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q\left(S', a'\right) \mid s, a\right]$	$Q(S, A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in A} Q(S', a')$

Relationship between DP and TD

Full Backup (DP) $v_{\pi}(s) \leftarrow s$

Sample Backup (TD)

Bellman Expectation Equation for $v_{\pi}(s)$

Iterative policy Evaluation

TD Learning

Bellman Expectation Equation for $q_{\pi}(s, a)$

Q-policy Iteration

Bellman Optimality Equation for $q^*i(s, a)$

Georg Martius | Reinforcement Learning - Lecture 4

© 2024 Universität Tübingen

Questions?

[Image: globalrobots.com]

where $x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$