Cognome e Nome: Matr.: Matr.:

Architettura degli Elaboratori - Inf A – Secondo compitino – 11 aprile 2006

Esercizio 1.A – Esercizio Assembly – (13 punti)

- 1. Dato un vettore V di interi a 32 bit di dimensione m, una subroutine (scritta in assembly MIPS) deve calcolare il massimo tra quegli elementi del vettore V che sono sia positivi che multipli di 6. La subroutine accetta in ingresso
 - (a) l'indirizzo base del vettore V nel registro a0;
 - (b) il numero di righe m nel registro a1;

Il risultato va scritto nel registro \$v1 Il listato della subroutine (che comprende un esempio di chiamata) è già delineato qui di seguito, con opportuni commenti. Si completino direttamente su questo foglio tutte e sole le parti indicate da sottolineatura.

```
.data
A: .word 6 12 16 17 19 18 21
m: .word 7
.text
__start:la $a0, A
lw $a1, m
jal max_mult
b end
max_mult:___, ___
                            # copia in $t0 l'indirizzo base del vettore
                            # copia in $t1 la dimensione del vettore
                            # inizializza $v1 a 0 (massimo parziale)
         ---- ----, ----
                            # inizializza $t3 a 6
loop:
                            # se il vettore e' stato esaminato completamente salta a exit
         ---- ----, -----
         ____ $t4, ____
                            # carica in $t4 un elemento dal vettore
                            \# scrive il $t5 il resto della divisione con 6
                            # se l'elemento non e' un multiplo di 6 salta a skip
         ____ $t5, ____
         ____ # se l'elemento non supera il massimo parziale salta a skip
                            # aggiorna il massimo parziale
         ____ $t0, ___, __ # aggiorna $t0 con l'indirizzo del prossimo elemento
skip:
         ____ $t1, ___, __ # aggiona $t1 con il numero di elementi ancora da esaminare
                            # ripete il ciclo
                            # esce dalla funzione
exit:
end:
```

Esercizio 2.A – Teoria Assembly – (4 punti)

1.	Si scriva un possibile traduzione della pseudo-istruzione MIPS mul \$s0, \$t0, \$t1.
2.	In accordo alle convenzioni, che uso hanno i registri \$s0,, \$s7?
Eser	cizio 3.A– Teoria – Rispondere, in maniera articolata, alla seguente domanda – (6 punti)
1.	Descrivere i diversi modi di indirizzamento tipici dei linguaggi macchina.

1.	. Cognome e Nome:	Matr.:
	${f A}-11$ aprile 2006 – Secondo Compitino	
Esei	rcizio 4. A – Teoria – Rispondere, in maniera concisa, alle seguenti dor	nande – (12 punti)
1.	. Che caratteristiche hanno i processori RISC?	
2.	. In un processore che compito svolge l'unità di controllo, o controllore?	
3.	A che scopo vengono utilizzati i codici correttori degli errori?	
4.	Mostrare un esempio di dipendenza RAW (Read After Write) tra due istruzioni.	
5.	Cosa indica il termine predizione dinamica di salto?	
6.	Quando un processore si può definire superscalare?	