IEOR 4500 Applications Programming for FE Week 7-2: Gradient Descent

Anran Hu

Introduction to Optimization

What is Optimization?

- The process of finding the best solution from a set of feasible solutions.
- Involves maximizing or minimizing an objective function.

Optimization Problems

- **Objective Function**: The function to be optimized f(x) (e.g., profit, cost).
- ▶ **Variables**: Parameters that can be adjusted to optimize the objective *x*.
- **Constraints**: Conditions that the variables must satisfy e.g., $g(x) \le 0$, g(x) = 0.

Introduction to Optimization

Different Types of Optimization

- Linear vs. Nonlinear: Linear functions vs. functions with nonlinear relationships.
- ► Convex vs. Non-Convex: Convex problems have one global optimum; non-convex may have multiple local optima.
- Constrained vs. Unconstrained: Constrained problems include restrictions on the variables.

► Applications of Optimization

- Finance: Portfolio optimization, risk management.
- ► Engineering: Resource allocation, design optimization.
- Machine Learning: Training algorithms, hyperparameter tuning.

Unconstrained Optimization

Say we want to minimize some function f(x), without constraints

- ▶ Objective: Find the minimum (or maximum) of a function f(x).
- Formally:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Common Methods

- Gradient Descent: Iteratively moves in the direction of the negative gradient.
- Newton's Method: Uses second-order derivatives (Hessian) to refine updates.
- Quasi-Newton Methods: Approximates the Hessian for faster convergence (e.g., BFGS).

Descent Directions and Optimal Points

- ▶ Goal: Minimize a differentiable convex function f(x) over \mathbb{R}^n .
- Scheme:
 - Start at an initial point x_0 .
 - At each step, move to a new point $x + \Delta x$ such that $f(x + \Delta x) < f(x)$.
- ▶ Descent Directions: Δx is called a *descent direction* if it reduces f(x): $f(x + \Delta x) < f(x)$.
- ▶ First-order condition for convex functions: For all $x, y \in \mathbb{R}^n$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

▶ Stopping Criterion: Stop when $\nabla f(x) = 0$, indicating no further descent directions.

Gradient Descent in One Dimension

- ▶ In 1D, only two directions: forward or backward.
- For convex f(x):
 - ▶ If gradient f'(x) < 0: Moving forward decreases f(x).
 - ▶ If gradient f'(x) > 0: Moving backward decreases f(x).
- ► The step direction should be opposite to the sign of the gradient.

Gradient Descent for Multivariate Functions

- ▶ In multiple dimensions, there are many descent directions.
- ▶ A natural choice: $\Delta x = -t\nabla f(x)$ (negative gradient).
- For small step size t > 0, Taylor expansion shows

$$f(x + \Delta x) \approx f(x) - t\nabla f(x)^T \nabla f(x) < f(x).$$

- ▶ This shows $\Delta x = -t\nabla f(x)$ is a descent direction.
- This approach is the foundation of the Gradient Descent Method.

Gradient Descent

$$\min_{x\in\mathbb{R}^n}f(x)$$

- An iterative optimization algorithm to minimize a differentiable function.
- Updates x by moving in the direction opposite to the gradient.
- ▶ Update rule: $x \leftarrow x \alpha \nabla f(x)$.
- ▶ The learning rate α controls the step size.
- Repeat until convergence: parameters change minimally or objective stabilizes.

Why Gradient Descent is Popular

Efficient for Large-Scale Problems

- Only requires the first-order derivative, making it scalable to high-dimensional data.
- Stochastic and mini-batch variants allow for handling large datasets effectively.

Flexible with Different Objective Functions

- Applicable to both convex and non-convex functions.
- Widely used in machine learning, from linear regression to deep neural networks.

Simple and Easy to Implement

- Iterative update rule is straightforward and adaptable to various optimization tasks.
- Can be customized with different learning rates and regularization terms.

Example

Minimizing $f(x) = x^2$, with derivative f'(x) = 2x.

▶ Start at x = 10, with $\alpha = 0.1$.

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- ▶ Start at $x_0 = 10$, with $\alpha = 0.1$.
- $x_1 = x_0 \alpha f'(x_0) = x_0 \alpha \cdot 2x_0 = 0.8x_0 = 8$

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- Second iteration

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- Third iteration
- $x_3 = x_2 \alpha f'(x_2) = x_2 \alpha \cdot 2x_2 = 0.8x_2 = 5.12$

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- ► After 200 iteration
- $x_{200} = 10 \times 0.8^{200} \approx 4e^{-19}$

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- ▶ If we choose a different learning rate, $\alpha = 0.2$, $x_0 = 10$.
- ▶ Comparing with $\alpha = 0.1$, step size is larger
- First iteration:

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- ▶ If we choose a different learning rate, $\alpha = 0.2$, $x_0 = 10$.
- ▶ Comparing with $\alpha = 0.1$, step size is larger
- Second iteration:

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- ▶ If we choose a different learning rate, $\alpha = 0.2$, $x_0 = 10$.
- ▶ Comparing with $\alpha = 0.1$, step size is larger
- Third iteration:

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- ▶ If we choose a different learning rate, $\alpha = 0.2$, $x_0 = 10$.
- ▶ Comparing with $\alpha = 0.1$, step size is larger
- In the end

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- It seems that increasing learning rate α can make the algorithm converge faster. Is this always true?
- Let's try a bigger learning rate $\alpha = 0.5$
- $x_1 = x_0 \alpha f'(x_0) = x_0 x_0 = 0.$ Converge in one step!

- Let's try bigger α
- ▶ When $\alpha = 0.8$,

$$x_{k+1} = x_k - 0.8 \cdot 2x_k = -0.6x_k$$

▶ When $\alpha = 1$.

$$x_{k+1} = x_k - 2x_k = -x_k$$

Importance of Learning Rate (α)

- Controls step size.
- ► Too large: Overshooting, possible divergence.
- ► Too small: Slow convergence.
- ► How to choose learning rate?
- Constant learning rate
 - Fixed α requires tuning.
 - Common methods: Grid search, manual adjustment.
- Adaptive learning rate: backtracking line search
 - **D**ynamically adjusts α until sufficient decrease in the objective.
 - More computationally intensive but robust.

Stopping Criteria

- ► Stop when gradient norm is small.
- Set a maximum iteration.
- ► Monitor change in objective function.

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable with a Lipschitz continuous gradient.
- L-smooth: there exists L > 0 such that:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

- ► L-smoothness limits how quickly the gradient can change, ensuring *f* is not too steep or irregular.
- ▶ The parameter *L* is known as the *smoothness constant*.

Gradient descent update:

$$x_{k+1} = x_k - \alpha \nabla f(x_k).$$

- ► Convergence for General Convex Functions
 - ▶ If $\alpha \leq \frac{1}{I}$:

$$f(x_k) - f(x^*) \le \frac{\|x_0 - x^*\|^2}{2\alpha k}.$$

▶ Sublinear rate: $O\left(\frac{1}{k}\right)$.

▶ A function $f: \mathbb{R}^n \to \mathbb{R}$ is *strongly convex* if there exists a constant $\mu > 0$ such that:

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2}$$

for all $x, y \in \mathbb{R}^n$.

- ▶ The parameter μ is called the *strong convexity constant*.
- Strong convexity implies that the function f is more curved than a regular convex function, providing a quadratic lower bound.
- ▶ When μ > 0, the function has a unique global minimum.

- Convergence for Strongly Convex Functions
 - ▶ If f is strongly convex with μ and $\alpha \leq \frac{1}{L}$:

$$||x_k - x^*|| \le (1 - \mu \alpha)^k ||x_0 - x^*||.$$

Linear rate: $O((1-\mu\alpha)^k)$.

Key Points

- **Lipschitz Gradient**: Ensures the gradient does not change too quickly, stabilizing gradient descent.
- ▶ **Step Size**: α must satisfy $\alpha \leq \frac{1}{L}$.
- ➤ **Rates**: Sublinear for convex; linear for strongly convex, indicating faster convergence.

IEOR 4500 Applications Programming for FE

Week 8-2: Gradient Descent

Anran Hu

Descent Directions and Optimal Points

- ▶ Goal: Minimize a differentiable convex function f(x) over \mathbb{R}^n .
- Scheme:
 - Start at an initial point x_0 .
 - At each step, move to a new point $x + \Delta x$ such that $f(x + \Delta x) < f(x)$.
- ▶ Descent Directions: Δx is called a *descent direction* if it reduces f(x): $f(x + \Delta x) < f(x)$.
- ▶ First-order condition for convex functions: For all $x, y \in \mathbb{R}^n$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

▶ Stopping Criterion: Stop when $\nabla f(x) = 0$, indicating no further descent directions.

Gradient Descent

- ▶ In multiple dimensions, there are many descent directions.
- ▶ A natural choice: $\Delta x = -t\nabla f(x)$ (negative gradient).
- For small step size t > 0, Taylor expansion shows

$$f(x + \Delta x) \approx f(x) - t\nabla f(x)^T \nabla f(x) < f(x).$$

- ▶ This shows $\Delta x = -t\nabla f(x)$ is a descent direction.
- This approach is the foundation of the Gradient Descent Method.

Gradient Descent

$$\min_{x \in \mathbb{R}^n} f(x)$$

- An iterative optimization algorithm to minimize a differentiable function.
- Updates x by moving in the direction opposite to the gradient.
- ▶ Update rule: $x \leftarrow x \alpha \nabla f(x)$.
- ▶ The learning rate α controls the step size.
- ▶ Repeat until convergence: parameters change minimally or objective stabilizes. (e.g., $\|\nabla f(x)\| \le \epsilon$)

Important: The choice of step size α is crucial. A larger step size can help explore faster but can also result in an increase in function value or insufficient decrease.

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

- Let's try learning rate $\alpha = 0.5$
- $x_1 = x_0 \alpha f'(x_0) = x_0 x_0 = 0.$ Converge in one step!

- Let's try bigger α
- ▶ When $\alpha = 0.8$,

$$x_{k+1} = x_k - 0.8 \cdot 2x_k = -0.6x_k$$

▶ When $\alpha = 1$.

$$x_{k+1} = x_k - 2x_k = -x_k$$

Importance of Learning Rate (α)

- Controls step size.
- ► Too large: Overshooting, possible divergence.
- ► Too small: Slow convergence.
- ► How to choose learning rate?
- Constant learning rate
 - Fixed α requires tuning.
 - Common methods: Grid search, manual adjustment.
- Adaptive learning rate: backtracking line search
 - **D**ynamically adjusts α until sufficient decrease in the objective.
 - More computationally intensive but robust.

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable with a Lipschitz continuous gradient.
- L-smooth: there exists L > 0 such that:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

- ► L-smoothness limits how quickly the gradient can change, ensuring *f* is not too steep or irregular.
- ▶ The parameter *L* is known as the *smoothness constant*.

Gradient descent update:

$$x_{k+1} = x_k - \alpha \nabla f(x_k).$$

- ► Convergence for General Convex Functions
 - ▶ If $\alpha \leq \frac{1}{I}$:

$$f(x_k) - f(x^*) \le \frac{\|x_0 - x^*\|^2}{2\alpha k}.$$

▶ Sublinear rate: $O\left(\frac{1}{k}\right)$.

▶ A function $f: \mathbb{R}^n \to \mathbb{R}$ is *strongly convex* if there exists a constant $\mu > 0$ such that:

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2}$$

for all $x, y \in \mathbb{R}^n$.

- ▶ The parameter μ is called the *strong convexity constant*.
- Strong convexity implies that the function f is more curved than a regular convex function, providing a quadratic lower bound.
- ▶ When μ > 0, the function has a unique global minimum.

Convergence Theorem for Gradient Descent

- Convergence for Strongly Convex Functions
 - ▶ If f is strongly convex with μ and $\alpha \leq \frac{1}{L}$:

$$||x_k - x^*|| \le (1 - \mu \alpha)^k ||x_0 - x^*||.$$

Linear rate: $O((1-\mu\alpha)^k)$.

Key Points

- **Lipschitz Gradient**: Ensures the gradient does not change too quickly, stabilizing gradient descent.
- ▶ **Step Size**: α must satisfy $\alpha \leq \frac{1}{L}$.
- ➤ **Rates**: Sublinear for convex; linear for strongly convex, indicating faster convergence.

Constant Learning Rate: When It May Not Work

Constant Learning Rate in Gradient Descent:

- A fixed step size α is used to update the parameters.
- Works well for simple, well-conditioned functions.

Problems with Constant Learning Rate:

- **Ill-conditioned problems**: Large condition number leads to slow convergence.
- **Non-convex functions**: A constant step size may oscillate near saddle points or get stuck in local minima.
- **Variable curvature**: A single step size may be too large for steep regions and too small for shallow regions.

Condition Number and III-Conditioned Problems

Condition Number (κ) :

- Ratio of the largest eigenvalue to the smallest eigenvalue of the Hessian matrix.
- ho $\kappa \approx 1$: Function is well-conditioned, easier to optimize.
- $ho \kappa \gg 1$: Function is ill-conditioned, difficult to optimize.

Convergence for Strongly Convex Functions

▶ If f is strongly convex with μ and $\alpha \leq \frac{1}{L}$:

$$||x_k - x^*|| \le (1 - \mu \alpha)^k ||x_0 - x^*||.$$

 \blacktriangleright μ and L are the smallest/largest eigenvalues of the Hessian

► Effect on Gradient Descent:

- ▶ High κ : Zigzagging behavior, slow convergence.
- A constant learning rate may overshoot in some directions and lead to inefficient updates in others.

An example

III-Conditioned Quadratic Function:

$$f(x_1, x_2) = x_1^2 + \gamma x_2^2$$
 (with $\gamma \gg 1$)

- ▶ Condition number κ is large due to $\gamma \gg 1$, resulting in elongated contours.
- Gradient descent with constant learning rate will struggle, leading to:
 - ▶ **Zigzagging** in steep directions.
 - **Slow progress** in shallow directions.
- See notebook

Step Size Selection

Exact Line Search:

$$t = \arg\min_{s \ge 0} f(x + s\Delta x)$$

An exact line search is used when the minimization cost with one variable is lower than computing the search direction.

Inexact Methods: Backtracking line search is a popular heuristic for selecting t. It ensures that the step size is reduced enough to guarantee sufficient reduction in f(x).

Backtracking Line Search

Adaptive Step Size: Adjusts *t* dynamically based on the Armijo condition:

$$f(x - t\nabla f(x)) \le f(x) - \alpha t \|\nabla f(x)\|^2$$

- ightharpoonup Set t=1.
- ▶ While $f(x t\nabla f(x)) > f(x) \alpha t \|\nabla f(x)\|^2$:
 - ▶ Update $t := \beta t$, where $\alpha \in (0, 0.5)$ and $\beta \in (0, 1)$.
- ► Allows larger steps in shallow directions and smaller steps in steep directions.
- ► Reduces **zigzagging** and ensures stable convergence.

Taylor Expansion Insight: There always exists a small enough t (t < 1/L for strongly smooth function) that satisfies the condition due to the Taylor expansion.

$$f(x - t\nabla f(x)) \approx f(x) - t\nabla f(x)^{\top} \nabla f(x) + \cdots$$

Benefits of Backtracking Line Search

Benefits:

- ▶ **Improved Stability:** Step size is dynamically reduced, preventing overshooting.
- ► Faster Convergence: Larger steps can be taken in shallow directions, speeding up convergence.
- No Need for Condition Number Knowledge: Backtracking adapts based on local curvature without needing explicit knowledge of the condition number.

Example: Unconstrained Minimization in \mathbb{R}^2

Consider the convex function:

$$f(x) = x_1^2 + \gamma x_2^2$$

The gradient is:

$$\nabla f(x) = \left[\begin{array}{c} 2x_1 \\ 2\gamma x_2 \end{array} \right]$$

After the update step, the next point in the gradient descent algorithm is:

$$x'(t) = ((1-2t)x_1, (1-2\gamma t)x_2)$$

Exact Line Search

Exact Line Search:

$$t = \arg\min_{t \ge 0} f(x'(t))$$

Solving this yields:

$$t = \frac{x_1^2 + \gamma^2 x_2^2}{2(x_1^2 + \gamma^3 x_2^2)}$$

Comparison:

- Backtracking Line Search: Slower convergence but faster step size computation.
- ► Exact Line Search: Faster convergence but more computationally expensive for each step size calculation.

IEOR 4500 Applications Programming for FE Week 9-1: Constrained Optimization

Anran Hu

Gradient Descent

$$\min_{x \in \mathbb{R}^n} f(x)$$

- An iterative optimization algorithm to minimize a differentiable function.
- Updates x by moving in the direction opposite to the gradient.
- ▶ Update rule: $x \leftarrow x \alpha \nabla f(x)$.
- ▶ The learning rate α controls the step size.
- ▶ Repeat until convergence: parameters change minimally or objective stabilizes. (e.g., $\|\nabla f(x)\| \le \epsilon$)

Important: The choice of step size α is crucial. A larger step size can help explore faster but can also result in an increase in function value or insufficient decrease.

Importance of Learning Rate (α)

- Controls step size.
- ► Too large: Overshooting, possible divergence.
- Too small: Slow convergence.
- ► How to choose learning rate?
- Constant learning rate
 - Fixed α requires tuning.
 - Common methods: Grid search, manual adjustment.
 - smaller than 1/L, where L is the smoothness parameter, the Lipschitz constant for gradient of f.
- Adaptive learning rate: backtracking line search
 - **D**ynamically adjusts α until sufficient decrease in the objective.
 - More computationally intensive but robust.

Step Size Selection

Exact Line Search:

$$t = \arg\min_{s \ge 0} f(x + s\Delta x)$$

An exact line search is used when the minimization cost with one variable is lower than computing the search direction.

Inexact Methods: Backtracking line search is a popular heuristic for selecting t. It ensures that the step size is reduced enough to guarantee sufficient reduction in f(x).

Backtracking Line Search

Adaptive Step Size: Adjusts *t* dynamically based on the Armijo condition:

$$f(x - t\nabla f(x)) \le f(x) - \alpha t \|\nabla f(x)\|^2$$

- ▶ Set t = 1.
- ► While $f(x t\nabla f(x)) > f(x) \alpha t \|\nabla f(x)\|^2$:
 - ▶ Update $t := \beta t$, where $\alpha \in (0, 0.5)$ and $\beta \in (0, 1)$.
- ► Allows larger steps in shallow directions and smaller steps in steep directions.
- ► Reduces **zigzagging** and ensures stable convergence.

Accelerated Gradient Descent

Nesterov's Accelerated Gradient Descent improves standard gradient descent by introducing momentum. The update rule becomes:

$$y^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)})$$
 (1)

$$x^{(k+1)} = y^{(k+1)} + s^{(k)}(y^{(k+1)} - y^{(k)})$$
 (2)

Momentum correction accelerates convergence by reducing "zigzagging."

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD):

Useful for minimizing functions that are the sum of many terms, such as in statistical estimation.

$$minimize \sum_{i} f_{i}(x)$$

At each iteration, a random sample $f_i(x)$ is used to compute the gradient, reducing computation time:

$$x^{(k+1)} = x^{(k)} - t^{(k)} \nabla f_i(x^{(k)})$$

Introduction to Constrained Optimization

Constrained Optimization Problem:

- ▶ Given an objective function f(x) to minimize over $x \in \mathbb{R}^n$.
- Subject to constraints:

$$g_i(x) \le 0$$
 (inequality constraints)
 $h_i(x) = 0$ (equality constraints)

Goal: Find x^* that minimizes f(x) while satisfying all constraints.

- Constraints restrict the feasible region for the solution.
- ► Common methods: Projected Gradient Descent, Penalty Method, and Barrier Method.

Projected Gradient Descent (PGD)

Projected Gradient Descent:

- ▶ Suitable for problems with simple convex constraints, where $x \in C$.
- Update rule:

$$x_{k+1} = \Pi_{\mathcal{C}}(x_k - \alpha \nabla f(x_k))$$

where $\Pi_{\mathcal{C}}$ denotes the projection onto the set \mathcal{C} .

► Each gradient step is followed by a projection back onto the feasible set.

Example Applications:

- ▶ Problems with box constraints, e.g., $x_i \in [a_i, b_i]$.
- ightharpoonup Problems where $\mathcal C$ is defined by linear inequalities.

Projected Gradient Descent (PGD)

Objective: Minimize $f(x_1, x_2) = (x_1 + 1)^2 + 2x_2^2$

Constraints:

▶ $x_1 \ge 0$, $x_2 \ge 0$ (first quadrant only)

PGD Steps:

- 1. Take a gradient descent step: $x_{\text{new}} = x \alpha \nabla f(x)$.
- 2. Project the new point x_{new} back onto the feasible region if it lies outside.
- ▶ Initialization: $x_1 = 3, x_2 = 2$, learning rate $\alpha = 0.3$
- First update $x_{1,\text{new}} = 3 0.3 \times 2 \times (3+1) = 0.6$, $x_{2,\text{new}} = 2 0.3 \times 4 \times 2 = -0.4$
- After projection: $x_{\text{new}} = (0.6, 0)$
- Second update $x_{1,\text{new}} = 0.6 0.3 \times 2 \times (0.6 + 1) = -0.36$, $x_{2,\text{new}} = 0$
- After projection: $x_{new} = (0,0)$

PGD Illustration

PGD for Different Constraints

- ▶ Box constraints: $x_i \in [a_i, b_i]$
- ▶ Single linear constraint: $a^{\top}x = b$ or $a^{\top}x \leq b$
 - ▶ Given a point $x_0 \in \mathbb{R}^n$.
 - ▶ The projection of x_0 onto $a^Tx = b$ is given by:

$$x_{\text{proj}} = x_0 - \frac{a^T x_0 - b}{\|a\|^2} a$$

- This formula adjusts x_0 along a to satisfy the constraint $a^T x = b$.
- ▶ Multiple constraints: could be tricky ⇒ alternating projection

PGD for Different Constraints

- ▶ Box constraints: $x_i \in [a_i, b_i]$
- ▶ Single linear constraint: $a^{\top}x = b$ or $a^{\top}x \leq b$
 - ▶ Given a point $x_0 \in \mathbb{R}^n$.
 - ▶ The projection of x_0 onto $a^Tx = b$ is given by:

$$x_{\text{proj}} = x_0 - \frac{a^T x_0 - b}{\|a\|^2} a$$

- This formula adjusts x_0 along a to satisfy the constraint $a^T x = b$.
- ▶ Multiple constraints: could be tricky ⇒ alternating projection
- Works well for simple, convex feasible sets.
- ▶ Efficient for box or linear constraints.
- Less effective for complex or non-convex constraints.

Using QP for Projection onto Linear Constraints

Problem Setup:

- ▶ Given a point $x_0 \in \mathbb{R}^n$.
- Project x_0 onto a feasible region defined by:
 - **Equality constraints:** $A_{eq}x = b_{eq}$
 - ▶ Inequality constraints: $A_{ineq}x \leq b_{ineq}$

QP Formulation:

- ▶ Objective: Minimize the distance to x_0 .
- ► Formulate as:

$$\min_{x} \|x - x_0\|^2$$

subject to:

$$A_{eq}x = b_{eq}$$
 and $A_{ineq}x \le b_{ineq}$

▶ Given an objective function f(x) with equality and inequality constraints:

$$\min_{x} f(x)$$

subject to:

$$g_i(x) \le 0, \quad i = 1, ..., m$$
 (inequality constraints)
 $h_i(x) = 0, \quad j = 1, ..., p$ (equality constraints)

Penalty Method:

- Converts the constrained problem into an unconstrained one by adding a penalty term to the objective.
- New objective function:

$$f_{ extst{penalty}}(x,
ho) = f(x) +
ho \sum_{i} \max(0,g_i(x))^2 +
ho \sum_{j} h_j(x)^2$$

ightharpoonup
ho is the penalty parameter; larger values enforce constraints more strictly.

$$f_{\mathsf{penalty}}(x,
ho) = f(x) +
ho \sum_i \mathsf{max}(0, g_i(x))^2 +
ho \sum_j h_j(x)^2$$

The above new objective function is not differentiable. Can we do something to make it differentiable?

$$f_{ extst{penalty}}(x,
ho) = f(x) +
ho \sum_i \max(0,g_i(x))^2 +
ho \sum_j h_j(x)^2$$

The above new objective function is not differentiable. Can we do something to make it differentiable?

- ► Introduce new variables s_i
- Consider constrained optimization problem

minimize
$$f_{\text{penalty}}(x, s, \rho) = f(x) + \rho \sum_{i} (g_i(x) - s_i)^2 + \rho \sum_{j} h_j(x)^2$$

subjecto to $s_i \leq 0$ for all i

Now we have an optimization problem with simple box constraints!

Algorithm:

- 1. Start with an initial ρ .
- 2. Solve the unconstrained problem with $f_{penalty}(x, \rho)$, or problem with simple box constraints .
- 3. Increase ρ and repeat until constraints are approximately satisfied.
- Converts the problem into a series of unconstrained problems or problems with simple box constraints.
- Suitable for both equality and inequality constraints.
- Large ρ can lead to numerical issues; requires careful tuning.

Barrier Method

Barrier Method:

- ▶ Suitable for inequality constraints: $g_i(x) \le 0$.
- Adds a barrier term to prevent the solution from approaching the boundary of the feasible region.
- New objective function:

$$f_{\text{barrier}}(x,\mu) = f(x) - \frac{1}{\mu} \sum_{i} \ln(-g_i(x))$$

As $\mu \to \infty$, the barrier prevents x from violating constraints.

Algorithm:

- 1. Start with a small μ .
- 2. Solve the unconstrained problem with $f_{\text{barrier}}(x, \mu)$.
- 3. Gradually increase μ for stricter enforcement of constraints.

Projecting onto the Feasible Region in Log Barrier Method

Problem: When g(x) > 0, the point x is outside the feasible region defined by $g(x) \le 0$.

Solution: Projecting along the Gradient Direction

- ▶ The gradient $\nabla g(x)$ points in the direction of the steepest increase in g(x).
- ▶ Moving along $-\nabla g(x)$ reduces g(x) and pushes x back toward the feasible region.
- ▶ Projection step for small adjustment:

$$x_{\text{new}} = x - \frac{\nabla g(x)}{\|\nabla g(x)\|^2} g(x)$$

where $\frac{g(x)}{\|\nabla g(x)\|^2}$ scales the adjustment to ensure feasibility.

Intuition:

 $g(x_{\text{new}}) \approx g(x) - \nabla g(x)^{\top} \frac{\nabla g(x)}{\|\nabla g(x)\|^2} g(x) = 0$

Barrier Method

- ▶ Ideal for inequality constraints.
- Prevents boundary solutions; becomes more strict as μ increases.
- Not suitable for equality constraints; requires carefully increasing μ .
- Needs to choose stepsizes carefully: easy to fall into region $g_i(x) > 0$

IEOR 4500 Applications Programming for FE Week 9-2: Constrained Optimization

Anran Hu

Introduction to Constrained Optimization

Constrained Optimization Problem:

- ▶ Given an objective function f(x) to minimize over $x \in \mathbb{R}^n$.
- Subject to constraints:

$$g_i(x) \le 0$$
 (inequality constraints)
 $h_i(x) = 0$ (equality constraints)

Goal: Find x^* that minimizes f(x) while satisfying all constraints.

- Constraints restrict the feasible region for the solution.
- Common methods: Projected Gradient Descent, Penalty Method, and Barrier Method.

Projected Gradient Descent (PGD)

Projected Gradient Descent:

- ▶ Suitable for problems with simple convex constraints, where $x \in C$.
- Update rule:

$$x_{k+1} = \Pi_{\mathcal{C}}(x_k - \alpha \nabla f(x_k))$$

where $\Pi_{\mathcal{C}}$ denotes the projection onto the set \mathcal{C} .

► Each gradient step is followed by a projection back onto the feasible set.

Example Applications:

- ▶ Problems with box constraints, e.g., $x_i \in [a_i, b_i]$.
- ightharpoonup Problems where $\mathcal C$ is defined by linear inequalities.

Projected Gradient Descent (PGD)

Objective: Minimize $f(x_1, x_2) = (x_1 + 1)^2 + 2x_2^2$

Constraints:

 $ightharpoonup x_1 \ge 0$, $x_2 \ge 0$ (first quadrant only)

PGD Steps:

- 1. Take a gradient descent step: $x_{\text{new}} = x \alpha \nabla f(x)$.
- 2. Project the new point x_{new} back onto the feasible region if it lies outside.
- ▶ Initialization: $x_1 = 3, x_2 = 2$, learning rate $\alpha = 0.3$
- First update $x_{1,\text{new}} = 3 0.3 \times 2 \times (3 + 1) = 0.6$, $x_{2,\text{new}} = 2 0.3 \times 4 \times 2 = -0.4$
- After projection: $x_{\text{new}} = (0.6, 0)$
- Second update $x_{1,\text{new}} = 0.6 0.3 \times 2 \times (0.6 + 1) = -0.36$, $x_{2,\text{new}} = 0$
- After projection: $x_{new} = (0,0)$

PGD Illustration

PGD for Different Constraints

- ▶ Box constraints: $x_i \in [a_i, b_i]$
- ▶ Single linear constraint: $a^{\top}x = b$ or $a^{\top}x \leq b$
 - Given a point $x_0 \in \mathbb{R}^n$.
 - ▶ The projection of x_0 onto $a^Tx = b$ is given by:

$$x_{\text{proj}} = x_0 - \frac{a^T x_0 - b}{\|a\|^2} a$$

- This formula adjusts x_0 along a to satisfy the constraint $a^T x = b$.
- ▶ Multiple constraints: could be tricky ⇒ alternating projection

PGD for Different Constraints

- ▶ Box constraints: $x_i \in [a_i, b_i]$
- ▶ Single linear constraint: $a^{\top}x = b$ or $a^{\top}x \leq b$
 - ▶ Given a point $x_0 \in \mathbb{R}^n$.
 - ▶ The projection of x_0 onto $a^Tx = b$ is given by:

$$x_{\text{proj}} = x_0 - \frac{a^T x_0 - b}{\|a\|^2} a$$

- This formula adjusts x_0 along a to satisfy the constraint $a^T x = b$.
- ▶ Multiple constraints: could be tricky ⇒ alternating projection
- Works well for simple, convex feasible sets.
- ▶ Efficient for box or linear constraints.
- Less effective for complex or non-convex constraints.

Using QP for Projection onto Linear Constraints

Problem Setup:

- ▶ Given a point $x_0 \in \mathbb{R}^n$.
- Project x_0 onto a feasible region defined by:
 - **Equality constraints:** $A_{eq}x = b_{eq}$
 - ▶ Inequality constraints: $A_{ineq}x \leq b_{ineq}$

QP Formulation:

- ▶ Objective: Minimize the distance to x_0 .
- ► Formulate as:

$$\min_{x} \|x - x_0\|^2$$

subject to:

$$A_{eq}x = b_{eq}$$
 and $A_{ineq}x \leq b_{ineq}$

▶ Given an objective function f(x) with equality and inequality constraints:

$$\min_{x} f(x)$$

subject to:

$$g_i(x) \le 0, \quad i = 1, ..., m$$
 (inequality constraints)
 $h_i(x) = 0, \quad j = 1, ..., p$ (equality constraints)

Penalty Method:

- Converts the constrained problem into an unconstrained one by adding a penalty term to the objective.
- New objective function:

$$f_{ extst{penalty}}(x,
ho) = f(x) +
ho \sum_{i} \max(0,g_i(x))^2 +
ho \sum_{j} h_j(x)^2$$

ightharpoonup
ho is the penalty parameter; larger values enforce constraints more strictly.

$$f_{\mathsf{penalty}}(x,
ho) = f(x) +
ho \sum_i \mathsf{max}(0, g_i(x))^2 +
ho \sum_j h_j(x)^2$$

The above new objective function is not differentiable. Can we do something to make it differentiable?

$$f_{ extst{penalty}}(x,
ho) = f(x) +
ho \sum_i \max(0,g_i(x))^2 +
ho \sum_j h_j(x)^2$$

The above new objective function is not differentiable. Can we do something to make it differentiable?

- ► Introduce new variables s_i
- Consider constrained optimization problem

minimize
$$f_{\text{penalty}}(x, s, \rho) = f(x) + \rho \sum_{i} (g_i(x) - s_i)^2 + \rho \sum_{j} h_j(x)^2$$

subjecto to $s_i \leq 0$ for all i

Now we have an optimization problem with simple box constraints!

Algorithm:

- 1. Start with an initial ρ .
- 2. Solve the unconstrained problem with $f_{penalty}(x, \rho)$, or problem with simple box constraints .
- 3. Increase ρ and repeat until constraints are approximately satisfied.
- Converts the problem into a series of unconstrained problems or problems with simple box constraints.
- Suitable for both equality and inequality constraints.
- Large ρ can lead to numerical issues; requires careful tuning.

Subgradient Descent

Subgradient Descent Overview

- Used for non-differentiable functions where a standard gradient does not exist.
- ► In subgradient descent, we use a subgradient g at point x such that:

$$f(y) \ge f(x) + g^{T}(y - x) \quad \forall y$$

- Subgradient is usually not unique.
- ► The subgradient g generalizes the concept of a gradient, providing a direction for descent even if the function is not smooth.

Examples of Subgradients

1. Absolute Value Function

For f(x) = |x|:

$$\partial f(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \\ s \in [-1, 1] & \text{if } x = 0 \end{cases}$$

2. Maximum Function

For $f(x) = \max(g(x), h(x))$:

$$\partial f(x) = \begin{cases} \nabla g(x) & \text{if } g(x) > h(x) \\ \nabla h(x) & \text{if } h(x) > g(x) \\ \alpha \nabla g(x) + (1 - \alpha) \nabla h(x) & \text{if } g(x) = h(x), \alpha \in [0, 1] \end{cases}$$

Subgradient Descent

Subgradient Descent Algorithm

- 1. Start with an initial point $x^{(0)}$.
- 2. For each iteration k:
 - ► Compute a subgradient $g^{(k)}$ of f at $x^{(k)}$.
 - ► Update *x* using:

$$x^{(k+1)} = x^{(k)} - \alpha^{(k)}g^{(k)}$$

where $\alpha^{(k)}$ is a step size, typically diminishing over iterations.

3. Repeat until convergence.

Barrier Method

Barrier Method:

- ▶ Suitable for inequality constraints: $g_i(x) \le 0$.
- Adds a barrier term to prevent the solution from approaching the boundary of the feasible region.
- New objective function:

$$f_{\text{barrier}}(x,\mu) = f(x) - \frac{1}{\mu} \sum_{i} \ln(-g_i(x))$$

As $\mu \to \infty$, the barrier prevents x from violating constraints.

Algorithm:

- 1. Start with a small μ .
- 2. Solve the unconstrained problem with $f_{\text{barrier}}(x, \mu)$.
- 3. Gradually increase μ for retrieving original solution.

Projecting onto the Feasible Region in Log Barrier Method

Problem: When g(x) > 0, the point x is outside the feasible region defined by $g(x) \le 0$.

Solution: Projecting along the Gradient Direction

- ▶ The gradient $\nabla g(x)$ points in the direction of the steepest increase in g(x).
- ▶ Moving along $-\nabla g(x)$ reduces g(x) and pushes x back toward the feasible region.
- ▶ Projection step for small adjustment:

$$x_{\text{new}} = x - \frac{\nabla g(x)}{\|\nabla g(x)\|^2} g(x)$$

where $\frac{g(x)}{\|\nabla g(x)\|^2}$ scales the adjustment to ensure feasibility.

Intuition:

$$g(x_{\text{new}}) \approx g(x) - \nabla g(x)^{\top} \frac{\nabla g(x)}{\|\nabla g(x)\|^2} g(x) = 0$$

Barrier Method

- ▶ Ideal for inequality constraints.
- Prevents boundary solutions; becomes more strict as μ increases.
- Not suitable for equality constraints; requires carefully increasing μ .
- Needs to choose stepsizes carefully: easy to fall into region $g_i(x) > 0$