Contents

1	Cont	est Setu																						1
	$\frac{1.1}{1.2}$	vimrc bashrc	 <u>.</u>																			•	 •	 . 1 . 1
	1.3	C++ ter	mplate					 								: :			Ċ			:		 . 1
	1.4	Java ten	nplate					 																 . 2
2	Rem	inder																						2
3	Licof	ul code																						2
3	3.1		ponentiati	on O	(100	(ex	n))																	
	3.2	GCD .				٠		 																 . 2
	$\frac{3.3}{2.4}$	Extende	d Euclide	an A	lgor	ithn	1																	 . 3
	$\frac{3.4}{3.5}$	Prime G	ar enerator				•	 : :	: :		: :				•	: :	•	: :		: :		:	 •	 . 3 . 3
	3.6	STL qui	ck referen	ce .				 																 . 3
		3.6.1	$Map \dots$				-	 									-							 . 3
		3.6.2	Set																					 . 3
		3.6.3	Algorith																					 . 3
		3.6.4	String				٠	 ٠.		•				٠.	٠		٠		٠			٠	 ٠	 . 4
4	Sear																							4
	4.1	Binary S 4.1.1	Search Find kov				٠	 • •	٠.	•				٠.	٠	٠.	٠		٠			•	 ٠	 . 4
		4.1.1	Find key Upper /																			•	 •	 . 4
	4.2		Opper / 列舉																				 •	 . 4
	4.3	Two-poi	ハ平 nter 爬行え	Ļ				 : :														:		 . 4
5	Basi	c data st	ructure																					4
_	5.1	1D BIT						 																 . 4
	5.2	2D BIT						 																 . 4
	$\frac{5.3}{5.4}$	Segment	ind Tree				٠	 		•		•			٠		٠		٠		•		 ٠	 . 4
	0.1	beginene	1100				•	 		•			• •		•		•		•	•	•	•	 •	
6	D																							4
	$-\mathbf{v}$	amic Pro	grammiı	15																				
U	Dyna	amic Pro	grammiı	ıg																				
7			grammiı	ıg																				4
	Tree 7.1			ıg				 																 . 4 . 4
	Tree							 							•									
	Tree 7.1	LCA															·							 . 4 4
7	Tree 7.1 Grap 8.1	LCA oh Articula	tion point	: / ed	lge																			 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2	LCA oh Articula	tion point	: / ed	lge .																			 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA Articula BCC ver BCC edg SCC	tion point	, / ec	 			 									:	 	•				 	 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3	LCA	tion point rtex ge	; / ec	 			 										 					 	 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA Articula BCC ver BCC ede SCC Shortest 8.5.1	tion point rtex ge Path Dijkatra	/ ed	 			 															 	 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA Articula BCC ver BCC ed. SCC . Shortest 8.5.1 8.5.2	tion point rtex ge Path Dijkatra SPFA	5 / ec			•	 										 				:	 	 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA Articula BCC ver BCC ed; SCC Shortest 8.5.1 8.5.2 8.5.3	tion point rtex ge Path Dijkatra SPFA Bellman	; / ec				 										 				· · ·	 	 . 4 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ven BCC ed, SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4	tion point ttex ge Path Dijkatra SPFA Bellman- Floyd-W	Ford	· · · · · · · · · · · · · · · · · · ·			 																. 4 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA Articula BCC ver BCC ede SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W	Ford	ull			 																. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ver BCC edy SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1	tion point ttex ge Path Dijkatra SPFA Bellman Floyd-W	Fordarshaw (D	ıll													· · · · · · · · · · · · · · · · · · ·						. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ver BCC ed. SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut	Ford arsha	inic)			 															 	 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ver BCC edy SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos	Ford arsha w (D	all inic																		 	 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut	Ford arsha w (D	all inic																		 	 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximus	Fordarshaw (D	ill inic x Fl		Gra	 															 	 44. 44. 44. 44. 44. 44. 44. 44.
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articula BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximus	Fordarshaw (D	ill inic x Fl		Gra	 															 	 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6	LCA bh Articula BCC ver BCC edge SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 REMP Z Algori	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximum	Ford arsha w (D t Ma Bi _l	all inic) x Fl		Gra																	 . 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4
8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 Strir 9.1 9.2 9.3	LCA Articula BCC ven BCC ed, SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 RMP Z Algori Trie	tion point ttex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximus	Fordarsha w (D t Ma Bij	all inic part		Gra																	 . 4 4. 44 . 44 . 44 . 44 . 44 . 44 . 44
8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6	LCA Articula BCC ven BCC ed, SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 RMP Z Algori Trie	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximum	Fordarsha w (D t Ma Bij	all inic part		Gra																	 . 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 Strin 9.1 9.2 9.3 9.4	LCA Articula BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 KMP Z Algori Trie Suffix A	tion point ttex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximus	Fordarsha w (D t Ma Bij	all inic part		Gra																	 44. 44. 44. 44. 44. 44. 44. 44.
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 Strin 9.1 9.2 9.3 9.4	LCA Articula BCC ven BCC ed, SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 RMP Z Algori Trie	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximun	Fordarshaw (D	hll inic		Gra																	 . 4 4. 44 . 44 . 44 . 44 . 44 . 44 . 44
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6 Strir 9.1 9.2 9.3 9.4 Georg	LCA Articula BCC very BCC edges SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 MR KMP Z Algori Trie Suffix A	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximun	Fordarshaw (D	hll inic		Gra																	 . 4 4. 44 . 44 . 44 . 44 . 44 . 44 . 44
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6 Strir 9.1 9.2 9.3 9.4 Georg	LCA Articula BCC ven BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 Reg KMP Z Algori Trie Suffix A metry Templat	tion point rtex ge Path Dijkatra SPFA Bellman- Floyd-W Max Flo Min-Cut Min Cos Maximum	Fordarshaw (D	hll																			 . 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4

1 Contest Setup

1.1 vimrc

```
set number
                  " Show line numbers
                   " Enable inaction via mouse
   set mouse=a
                    " Highlight matching brace
   set showmatch
                   " Show underline
   set cursorline
   set cursorcolumn "highlight vertical column
   filetype on "enable file detection
   syntax on "syntax highlight
                    " Auto-indent new lines
   set autoindent
   set shiftwidth=4 "Number of auto-indent spaces
   set smartindent "Enable smart—indent set smarttab" "Enable smart—tabs
   set softtabstop=4 "Number of spaces per Tab
    ' -----Optional-----
   set undolevels=10000 "Number of undo levels
   set scrolloff=5 " Auto scroll
   set hlsearch "Highlight all search results
   set smartcase "Enable smart-case search
   set ignorecase " Always case—insensitive
   set incsearch "Searches for strings incrementally
   highlight Comment ctermfg=cyan
   set showmode
  set encoding=utf-8
  set fileencoding=utf-8
31 scriptencoding=utf-8
```

1.2 bashrc

```
1 | alias g++="g++ -Wall -Wextra -std=c++11 -O2"
```

1.3 C++ template

```
#include <bits/stdc++.h>

using namespace std;

#define x first
#define y second

typedef long long int ll;
typedef pair<int, int> ii;

int main()
{
    return 0;
}
```

1.4 Java template

```
illimport java.io.*;
  import java.util.*;
  public class Main
       public static void main(String[] args)
           MyScanner sc = new MyScanner();
           out = new PrintWriter(new BufferedOutputStream(System.out));
           // Start writing your solution here.
           // Stop writing your solution here.
           out.close();
       public static PrintWriter out;
17
       public static class MyScanner
18
           BufferedReader br;
21
           StringTokenizer st;
           public MyScanner()
               br = new BufferedReader(new InputStreamReader(System.in));
           boolean hasNext()
               while (st == null || !st.hasMoreElements()) {
                       st = new StringTokenizer(br.readLine());
                   } catch (Exception e) {
                       return false;
               return true;
           String next()
               if (hasNext())
                   return st.nextToken();
               return null;
           int nextInt()
               return Integer.parseInt(next());
           long nextLong()
               return Long.parseLong(next());
```

```
double nextDouble()
58
59
                return Double.parseDouble(next());
           String nextLine()
63
               String str = "";
                try {
                    str = br.readLine();
66
               } catch (IOException e) {
67
                    e.printStackTrace();
68
69
                return str;
71
72
73 }
```

2 Reminder

- 1. Read the problem statements carefully. Input and output specifications are crucial!
- 2. Estimate the **time complexity** and **memory complexity** carefully.
- 3. Time penalty is 20 minutes per WA, don't rush!
- 4. Sample test cases must all be tested and passed before every submission!
- 5. Test the corner cases, such as 0, 1, -1. Test all edge cases of the input specification.

3 Useful code

3.1 Fast Exponentiation O(log(exp))

3.2 GCD

3.3 Extended Euclidean Algorithm

3.6.2 Set

```
set<T> s; // iterable
void clear();
size_t count(T val); // number of val in set
void erase(T val);
it find(T val); // = s.end() if not found
void insert(T val);
it lower_bound(T val); // = s.end() if not found, *it = <key, val>
it upper_bound(T val); // = s.end() if not found, *it = <key, val>
```

3.4 Leap year

```
| year % 400 == 0 | (year % 4 == 0 && year % 100 != 0)
```

3.5 Prime Generator

return qcd;

3.6 STL quick reference

3.6.1 Map

```
map<T1, T2> m; // iterable
void clear();
void erase(T1 key);
it find(T1 key); // <key, val>
void insert(pair<T1, T2> P);
T2& [](T1 key); // if key not in map, new key will be inserted with default val
it lower_bound(T1 key); // = m.end() if not found, *it = <key, val>
it upper_bound(T1 key); // = m.end() if not found, *it = <key, val>
```

3.6.3 Algorithm

```
// return if i is smaller than i
  comp = [&](const T& i, const T& j) -> bool;
  vector<T> v;
  bool any of(v.begin(), v.end(), [&](const T& i) -> bool);
  bool all of(v.begin(), v.end(), [&](const T& i) -> bool);
  void copy(inp.begin(), in.end(), out.begin());
  int count(v.begin(), v.end(), int val); // number of val in v
  it unique(v.begin(), v.end()); // it - v.begin() = size
  // after calling, v[nth] will be n-th smallest elem in v
  void nth element(v.begin(), nth it, bin comp);
  void merge(in1.begin(), in1.end(), in2.begin(), in2.end(), out.begin(),
  // include union, intersection, difference, symmetric difference(xor)
  void set union(in1.begin(), in1.end(), in2.begin(), in2.end(), out.
      begin(), comp):
  bool next permutation(v.begin(), v.end());
  // v1, v2 need sorted already, whether v1 includes v2
16 bool inclues(v1.begin(), v1.end(), v2.begin(), v2.end());
it find(v.begin(), v.end(), T val); // = v.end() if not found
it search(v1.begin(), v1.end(), v2.begin(), v2.end());
it lower_bound(v.begin(), v.end(), T val);
it upper bound(v.begin(), v.end(), T val);
21 bool binary search(v.begin(), v.end(), T val); // exist in v ?
void sort(v.begin(), v.end(), comp);
void stable sort(v.begin(), v.end(), comp);
```

- 3.6.4 String
- 4 Search
- 4.1 Binary Search
- **4.1.1** Find key
- 4.1.2 Upper / lower Bound
- 4.2 折半完全列舉
- 4.3 Two-pointer 爬行法
- 5 Basic data structure
- 5.1 1D BIT
- 5.2 2D BIT
- 5.3 Union Find
- 5.4 Segment Tree
- 6 Dynamic Programming
- 7 Tree
- 7.1 LCA
- 8 Graph
- 8.1 Articulation point / edge
- 8.2 BCC vertex
- 8.3 BCC edge
- 8.4 SCC
- 8.5 Shortest Path
- 8.5.1 Dijkatra
- 8.5.2 SPFA
- 8.5.3 Bellman-Ford
- 8.5.4 Floyd-Warshall
- 8.6 Flow
- 8.6.1 Max Flow (Dinic)
- 8.6.2 Min-Cut
- 8.6.3 Min Cost Max Flow
- 8.6.4 Maximum Bipartite Graph