Exact Cover Problems

October 18, 2017

1 Regular Exact Cover problem

Use backtracking to solve the following exact cover problem, that is: is there a set of rows containing exactly one 1 in each column?

We use the following recursive procedure, where A is a Boolean matrix, and S is the solution set of rows:

```
ExactCover(A, S)
   if A is empty
         return Success
    if A has a 0 column
 3
         return Fail
4
    Select column c with least number of 1s
    for each row r such that A[r, c] == 1
7
         Add row r to solution S
8
         Cover all columns that are selected by row r, as well as all rows that conflict with r
         // Recursively search reduced matrix A
9
         EXACTCOVER(A)
         // Partial solutions that include row r have been explored:
         // backtracking before trying another row
10
         Restore previously deleted rows and columns
         Remove row r from solution S
11
    // Solutions obtained by selecting column c have been explored:
    // backtracking before trying another column
   Restore column c in matrix A
```

```
C 7
                                                                                                                                        1
r<sub>1</sub>
                                                r_1
                                                                                                r_1
                                                                                                                                        0
r2
                                                                                                r<sub>2</sub>
            0
                                                       0
                                                r_3
                                                                                                r_3
r_3
                                       0
                                                       0
                                                                                       0
                                                                                                                                        0
            0
                                  1
                                                                       0
                                                                                                        0
                                                                                                             0
r_4
            1
                            0
                                  1
                                       1
                                                       0
                                                                  1
                                                                       0
                                                                             0
                                                                                  1
                                                                                        1
                                                                                                        0
                                                                                                             1
                                                                                                                   1
                                                                                                                             0
                                                                                                                                  1
                                                                                                                                        1
       0
                  0
                       0
                             0
                                  0
                                                       0
                                                                  0
                                                                       0
                                                                             0
                                                                                  0
                                                                                                        0
                                                                                                             1
                                                                                                                  0
                                                                                                                             0
                                                                                                                                  0
                                       c 7
            0
                  0
                            0
                                  0
                                       1
                                                             0
                                                                  0
                                                                       1
                                                                             0
                                                                                  0
                                                                                        1
                                                                                                        1
                                                                                                             0
                                                                                                                  0
                                                                                                                             0
                                                                                                                                  0
                                                                                                                                        1
                                                r_1
                                                                                                r_1
r_1
            0
                                  0
                                       0
                                                       1
                                                             0
                                                                  0
                                                                       1
                                                                             0
                                                                                  0
                                                                                       0
                                                                                                        1
                                                                                                             0
                                                                                                                  0
                                                                                                                             0
                                                                                                                                  0
                                                                                                                                        0
                                                r_2
                                                                                                r_2
r_2
       0
            0
                 0
                                                       0
                                                             0
                                                                                  0
                                                                                       1
                                                                                                        0
                                                                                                             0
                                                                                                                  0
                                                                                                                                  0
                                                                                                                                       1
                                  0
                                       1
                                                                                                                             1
       0
            0
                 1
                                  1
                                       0
                                                       0
                                                             0
                                                                       0
                                                                             1
                                                                                  1
                                                                                       0
                                                                                                        0
                                                                                                             0
                                                                                                                  1
                                                                                                                             1
                                                                                                                                  1
                                                                                                                                       0
                                       1
                                                       0
                                                                       0
                                                                             0
                                                                                  1
                                                                                        1
                                                                                                                             0
                                                                                                                                  1
                                                                                                                                        1
                                                                                                        0
```

2 Generalized Exact Cover problem

Solve this generalized exact cover problem, that is: Is there a set of rows containing exactly one 1 in each primary column (c_1 through c_5), and at most one 1 in each secondary column (c_6 and c_7)?

Use the EXACTCOVER procedure above, but change line 3 to

if A has a 0 primary column...

	\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3	\mathbf{c}_4	\mathbf{c}_5	c 6	c 7		\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3	\mathbf{c}_4	\mathbf{c}_5	c_6	c_7		\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3	\mathbf{c}_4	\mathbf{c}_5	c_6	c ₇
\mathbf{r}_1	1	0	1	0	0	0	1	r_1	1	0	1	0	0	0	1	r ₁	1	0	1	0	0	0	1
\mathbf{r}_2	1	0	1	0	0	0	0	r ₂	1	0	1	0	0	0	0	r ₂	1	0	1	0	0	0	0
r_3	0	0	1	1	0	0	1	r ₃	0	0	1	1	0	0	1	r ₃	0	0	1	1	0	0	1
r_4	0	1	0	1	1	0	0	r_4	0	1	0	1	1	0	0	r_4	0	1	0	1	1	0	0
r_5	0	1	0	0	1	1	1	r_5	0	1	0	0	1	1	1	r ₅	0	1	0	0	1	1	1
r_6	0	0	0	0	0	1	1	r_6	0	0	0	0	0	1	1	r ₆	0	0	0	0	0	1	1

3 An application: Pentomino

The Pentomino is a tiling problem involving

- 12 different tiles, each of them covering 5 cells
- a 6x10 grid

The following is one of the many solutions to the Pentomino problem:

Design the exact cover matrix for the Pentomino problem:

- what should it be represented by its columns?
- what should each row of the matrix represent?
- what is a solution to the problem?

Hint: Pentomino is a regular exact cover problem.