# Conditional gradient methods. Projected Gradient Descent. Frank-Wolfe Method. Mirror Descent Algorithm Idea.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University



♥ റ ഉ

#### **Projection**

The **distance** d from point  $\mathbf{y} \in \mathbb{R}^n$  to closed set  $S \subset \mathbb{R}^n$ :

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$

We will focus on **Euclidean projection** (other options are possible) of a point  $\mathbf{y} \in \mathbb{R}^n$  on set  $S \subseteq \mathbb{R}^n$  is a point  $\operatorname{\mathsf{proj}}_S(\mathbf{y}) \in S$ :

$$\operatorname{proj}_{S}(\mathbf{y}) = \frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|x - y\|_{2}^{2}$$

- Sufficient conditions of existence of a projection. If  $S \subseteq \mathbb{R}^n$  closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If  $S \subseteq \mathbb{R}^n$  closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set does not exist.
- If a point is in set, then its projection is the point itself.

#### **Projection**



#### Bourbaki-Cheney-Goldstein inequality theorem

Let  $S \subseteq \mathbb{R}^n$  be closed and convex,  $\forall x \in S, y \in \mathbb{R}^n$ . Then

$$\langle y - \operatorname{proj}_S(y), \mathbf{x} - \operatorname{proj}_S(y) \rangle \le 0$$
 (1)

$$||x - \operatorname{proj}_{S}(y)||^{2} + ||y - \operatorname{proj}_{S}(y)||^{2} \le ||x - y||^{2}$$
 (2)



#### Non-expansive function

A function f is called **non-expansive** if f is L-Lipschitz with L < 1<sup>1</sup>. That is, for any two points  $x, y \in \text{dom } f$ .

$$\|f(x)-f(y)\|\leq L\|x-y\|, \text{ where } L\leq 1.$$

It means the distance between the mapped points is possibly smaller than that of the unmapped points.



Figure 1: Obtuse or straight angle should be for any point  $x \in S$ 

Non-expansive becomes contractive if L < 1.

#### **Problems**

#### i Question

Is projection operator non-expansive?

#### i Question

Find projection  $\operatorname{proj}_S(\mathbf{y})$  onto S, where S: • l<sub>2</sub>-ball with center 0 and radius 1:

 $S = \{x \in \mathbb{R}^d | \|x\|_2^2 = \sum_{i=1}^d x_i^2 \le 1\}$ 

 $S = \{ x \in \mathbb{R}^d | \ a_i \le x_i \le b_i \}$ 

• 
$$\mathbb{R}^d$$
-cube:

- Affine constraints:

#### Projected Gradient Descent (PGD). Idea

$$x_{k+1} = \operatorname{proj}_{S}(x_k - \alpha_k \nabla f(x_k))$$
  $\Leftrightarrow$   $y_k = x_k - \alpha_k \nabla f(x_k)$   $x_{k+1} = \operatorname{proj}_{S}(y_k)$ 



Figure 2: Illustration of Projected Gradient Descent algorithm

⊕ n ø



Figure 3: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଓ ବ



Figure 4: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଚ



Figure 5: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ 0 Ø



Figure 6: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଚ



Figure 7: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଚେଡ



Figure 8: Illustration of Frank-Wolfe (conditional gradient) algorithm

**♥ ೧ ⊘** 



Figure 9: Illustration of Frank-Wolfe (conditional gradient) algorithm

**♥ ೧ Ø** 

$$\begin{aligned} y_k &= \arg\min_{x \in S} f_{x_k}^I(x) = \arg\min_{x \in S} \langle \nabla f(x_k), x \rangle \\ x_{k+1} &= \gamma_k x_k + (1 - \gamma_k) y_k \end{aligned}$$



Figure 10: Illustration of Frank-Wolfe (conditional gradient) algorithm





## Convergence rate for smooth and convex case

#### i Theorem

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be convex and differentiable. Let  $S \subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer  $x^*$  of f over S; furthermore, suppose that f is smooth over S with parameter L.

• The Projected Gradient Descent algorithm with stepsize  $\frac{1}{r}$  achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

• The Frank-Wolfe Method achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{2L||x_0 - x^*||_2^2}{k+1}$$

- FWM specificity
  - FWM convergence rate for the  $\mu$ -strongly convex functions is  $\mathcal{O}\left(\frac{1}{L}\right)$
  - FWM doesn't work for non-smooth functions. But modifications do.
  - FWM works for any norm.

## Subgradient method: linear approximation + proximity

Recall SubGD step with sub-gradient  $g_k$ :

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_k) + g_k^\top (x - x_k)}_{\text{linear approximation to f}} + \underbrace{\frac{1}{2\alpha} \|x - x_k\|_2^2}_{\text{proximity term}}$$
$$= \underset{x}{\operatorname{argmin}} \alpha g_k^\top x + \frac{1}{2} \|x - x_k\|_2^2$$



Figure 11:  $\|\cdot\|_1$  is not spherical symmetrical

**♥೧**0

## **Example. Poor condition**

Consider  $f(x_1, x_2) = x_1^2 \cdot \frac{1}{100} + x_2^2 \cdot 100$ .



Figure 12: Poorly conditioned problem in  $\|\cdot\|_2$  norm

#### **Example. Poor condition**

Suppose we are at the point:  $x_k = (-10 \quad -0.1)^{\top}$ . SubGD method:  $x_{k+1} = x_k - \alpha \nabla f(x_k)$ 

$$\nabla f(x_k) = \left(\frac{2x_1}{100} \quad 2x_2 \cdot 100\right)^{\top}\Big|_{(-10 \ -0.1)^{\top}} = \left(-\frac{1}{5} \quad -20\right)^{\top}$$

**The problem:** due to elongation of the level sets the direction of movement  $(x_{k+1} - x_k)$  is  $\sim \perp (x^* - x_k)$ .

The solution: Change proximity term

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_k) + g_k^{\top}(x - x_k)}_{\text{linear approximation to f}} + \underbrace{\frac{1}{2\alpha}(x - x_k)^{\top}I(x - x_k)}_{\text{originity term}}$$

to another

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_k) + g_k^\top(x - x_k)}_{\text{linear approximation to f}} + \underbrace{\frac{1}{2\alpha}(x - x_k)^\top Q(x - x_k)}_{\text{proximity term}},$$

where  $Q = \begin{pmatrix} \frac{1}{50} & 0 \\ 0 & 200 \end{pmatrix}$  for this example. And more generally to another function  $B_{\phi}(x,y)$  that measures proximity.

## **Example. Poor condition**

Let's find  $x_{k+1}$  for this **new** algorithm

$$\alpha \nabla f(x_k) + \begin{pmatrix} \frac{1}{50} & 0\\ 0 & 200 \end{pmatrix} (x - x_k) = 0.$$

Solving for x, we get

$$x_{k+1} = x_k - \alpha \begin{pmatrix} 50 & 0 \\ 0 & \frac{1}{200} \end{pmatrix} \nabla f(x_k) = (-10 - 0.1)^{\top} - \alpha (-10 - 0.1)^{\top}$$

**Observation:** Changing the proximity term, we **change the direction**  $x_{k+1} - x_k$ . In other words, if we measure distance using this **new** way, we also **change Lipschitzness**.

$$i$$
 Question

What is the Lipshitz constant of f at the point  $(1\ 1)^{\top}$  for the norm:

$$||z||^2 = z^{\top} \begin{pmatrix} 50 & 0\\ 0 & \frac{1}{200} \end{pmatrix} z?$$

## **Example. Robust Regression**

Square loss  $||Ax - b||_2^2$  is very sensitive to outliers.

**Instead:**  $\min ||Ax - b||_1$ . This problem also **convex**.

Let's compute L-Lipshitz constant for  $f(x) = ||Ax - b||_1$ :

$$|||Ax - b||_1 - ||Ay - b||_1| \le L||x - y||_2.$$

To simplify calculation: A=I, b=0, i.e.  $f(x)=\|x\|_1$ .

If we take  $x = \mathbf{1}_d$ ,  $y = (1 + \varepsilon)\mathbf{1}_d$ :

$$|n - (1 + \varepsilon)n| = \varepsilon n \le L||x - y||_2 = ||-\varepsilon||_2 = \sqrt{(n\varepsilon^2)} = \varepsilon \sqrt{n}.$$

Finally, we get  $L = \sqrt{n}$ . As we can see, L is dimension dependent.

Show that if  $\|\nabla f(x)\|_{\infty} \leq 1$ , then  $\|\nabla f(x)\|_{2} \leq \sqrt{d}$ .

#### References

Examples for the Mirror Descent was taken from the  $\hfill \square$  Lecture.



