Automatische detectie van prostaatkanker in multi-parametrische MRI

Geert Litjens

Promotoren: Prof. dr. ir. N. Karssemeijer

Prof. dr. J.O. Barentsz

Co-promotor: Dr. ir. H. J. Huisman

Manuscriptcommissie: Prof. di

Prof. dr. J.A. Witjes
Prof. dr. W.J. Niessen

Dr. J. Veltman

Betere zorg voor prostaatkanker...

- Bevolkingsonderzoek kan sterfte aan prostaatkanker met zo'n 25% terugbrengen¹
- Huidige diagnostiek leidt tot overbehandeling: 1448 mannen onderzocht, 47 behandeld om 1 leven te redden
- MRI is superieur: vindt meer prostaatkanker met minder onnodige biopten, kan beter de grootte en agressiviteit van de tumor afschatten en is niet invasief²
- MRI kan kosteneffectief

...voor minder geld door computers

- Verbeteren diagnostiek
 - Reductie overbehandeling
 - Betere therapie
- (Gedeeltelijke) automatisering
 - Tweede beoordeling
 - Excluderen

Programma

MRI

T1-gewogen T2-gewogen Diffussie-gewogen Diffusie Doorlaatbaarheid bloedvaten

Radboudumc

Vind de prostaat

Vind de prostaat

Maar is dit algoritme wel het beste?

- Tientallen verschillende algoritmen in de literatuur
 - Allemaal geëvalueerd op eigen data met andere criteria → vergelijking niet mogelijk
 - Soms ontbreken implementatiedetails → niet na te maken zonder input onderzoeker
- Segmentatiewedstrijd ('Challenge'): PROMISE12
 - Data van meerdere ziekenhuizen met referentiestandaard van ervaren radiologen
 - Tweede referentie van ongetrainde onderzoeker
 - Alle algoritmes op dezelfde manier vergeleken
 - Resultaten worden besproken in hoofdstuk 2

Identificeer verdachte gebieden

- Hoe vinden we nu gebieden die verdacht zijn?
- Combineren van pathologie (verwijderde prostaten) met de MRI

Identificeer verdachte gebieden

- Nauwkeurige analyse discriminatieve eigenschappen in de MRI
- Besproken in hoofdstuk 4

Identificeer verdachte gebieden

- Nu we specifieke gebiedjes hebben kunnen we wat gedetailleerder kijken
- Bijvoorbeeld naar hoe de waarden binnen een gebiedje zich verhouden tot erbuiten

In hoofdstuk 5 laten we zien dat je op deze manier beter de aggressiviteit kan afschatten van prostaatkanker dan door alleen naar het gebiedje zelf te kijken

Validatie

- Initiële evaluatie van het systeem uitgevoerd met retrospectieve data
 - 165 patiënten met in totaal 187 prostaattumoren
 - 182 patiënten zonder prostaatkanker
- Gekeken naar de individuele accuraatheid van het systeem ten opzichte van de radioloog
- Besproken in hoofdstuk 6

Validatie

Mogelijkheden in de klinische praktijk

 Een van de mogelijkheden om dit systeem in de klinische praktijk in te zetten is de uitspraak van de radioloog en het systeem te combineren

Mogelijkheden in de klinische praktijk

- Deze inzet van het systeem kan bij zowel ervaren als minder ervaren radiologen de diagnostiek verbeteren
- Besproken in hoofdstuk 7

Conclusies & toekomsperspectief

- We hebben een systeem voor de detectie van prostaatkanker in MRI ontwikkeld
 - Volledig automatisch
 - Benaderd de accuraatheid van radiologen
- Combinatie van computeruitspraak met die van de radioloog leidt mogelijk tot betere diagnostische beslissingen
- Een benchmark ontwikkeld voor prostaatsegmentatiemethoden

Conclusies & toekomsperspectief

- Verdere verbetering van het systeem
 - Andere segmentatiemethodiek
 - Nauwkeurigere combinatie van MRI beelden
- Evaluatie van het systeem op screeningsMRI
- Onderzoek naar mogelijke gebruiksmethodieken van het systeem
 - Voorleggen van door de computer geïdentificeerde gebieden aan de radioloog
 - Verlichten van de werkdruk voor de radioloog door autonoom eenvoudige cases te identificeren

