第十三讲 Penrose 广义逆矩阵(I)

一、Penrose广义逆矩阵的定义及存在性

对于满秩方阵A, A^{-1} 存在,且 $AA^{-1} = A^{-1}A = I$,因此

$$\begin{cases}
AA^{-1}A = A \\
A^{-1}AA^{-1} = A \\
(AA^{-1})^{H} = AA^{-1} \\
(A^{-1}A)^{H} = A^{-1}A
\end{cases}$$

1. Penrose 定义: 设 $A \in C^{m \times n}$,若 $Z \in C^{n \times m}$ 且使如下四个等式成立:

AZA = A, ZAZ = Z, $(AZ)^{\text{H}} = AZ$, $(ZA)^{\text{H}} = ZA$ 则称 Z 为 A 的 Moore-Penrose(广义)逆,记为,A[†]。

而上述四个等式又依次称为 Penrose 方程(i),(ii),(iii),(iv)。

2. Moore-Penrose 逆的存在性和唯一性

定理: 任给 $A \in C^{m \times n}$, A^{\dagger} 均存在且唯一。

证明:存在性。 $\forall A \in C_r^{m \times n}$,均存在 m 阶酉矩阵 U 和 n 阶酉 矩阵V使

$$VA \in C_r$$
 ,均存在 M 所 百矩阵 U 不 V 使
$$U^HAV = D = \begin{bmatrix} \sigma_1 & \vdots & & \\ \sigma_2 & \vdots & & \\ & \ddots & \vdots & 0 \\ & & \sigma_r & \vdots & \\ & & & 0 & \end{bmatrix}$$
 即 $A = UDV^H$ $\sigma_1^2, \sigma_2^2, \cdots, \sigma_r^2 \in A^HA$ 的全部非零特征值。

其中, $\sigma_1^2, \sigma_2^2, ..., \sigma_r^2$ 是 $A^H A$ 的全部非零特征值。 此时,令 $Z = V\tilde{D}U^H \in C_r^{n \times m}$,其中

(i)
$$AZA = (UDV^H)(VDU^H)(UDV^H) = UDDDV^H = UDV^H = A$$

(ii)
$$ZAZ = (V\tilde{D}U^{H})(UDV^{H})(V\tilde{D}U^{H}) = V\tilde{D}D\tilde{D}U^{H} = V\tilde{D}U^{H} = Z$$

$$(\mathbf{iii}) (\mathbf{AZ})^{\mathrm{H}} = [(\mathbf{UDV}^{\mathrm{H}})(\mathbf{V}\overset{\sim}{\mathbf{D}}\mathbf{U}^{\mathrm{H}})]^{\mathrm{H}} = (\mathbf{UD}\overset{\sim}{\mathbf{D}}\mathbf{U}^{\mathrm{H}})^{\mathrm{H}} = \mathbf{UD}\overset{\sim}{\mathbf{D}}\mathbf{U}^{\mathrm{H}} = \mathbf{AZ}$$

(iv)
$$(\mathbf{Z}\mathbf{A})^{\mathrm{H}} = (\mathbf{V}\tilde{\mathbf{D}}\mathbf{D}\mathbf{V}^{\mathrm{H}})^{\mathrm{H}} = \mathbf{V}\tilde{\mathbf{D}}\mathbf{D}\mathbf{V}^{\mathrm{H}} = \mathbf{Z}\mathbf{A}$$

$$\therefore \mathbf{Z} = \mathbf{A}^{\dagger}$$

唯一性:设Z,Y均满足四个Penrose方程,则

$$Z = ZAZ = Z(AZ)^{H} = ZZ^{H}A^{H} = ZZ^{H}(AYA)^{H} = Z(AZ)^{H}(AY)^{H} = Z(AZ)(AY)$$
$$= ZAY = (ZA)^{H}Y = A^{H}Z^{H}Y = A^{H}Z^{H}(YAY) = A^{H}Z^{H}(YA)^{H}Y = A^{H}Z^{H}A^{H}Y^{H}Y$$

$$= (AZA)^{H}Y^{H}Y = A^{H}Y^{H}Y = (YA)^{H}Y = YAY = Y$$

即满足四个 Penrose 方程的 Z 是唯一的。

由 A^{\dagger} 的唯一性可知: 当A 为满秩方阵时, $A^{\dagger} = A^{-1}$ 。

3. {i,j,···,l}-逆的定义: $\forall A \in C^{m\times n}$,若 $Z \in C^{n\times m}$ 且满足 Penrose 方程中的第(i),(j),···,(l)个方程,则称 Z 为 A 的{i,j,···,l}-逆,记为 $A^{(i,j,···,l)}$,其全体记为 $A\{i,j,···,l\}$ 。{i,j,···,l}-逆共有 $C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15$ 类,但实际上常用的为如下 5 类: $A\{1\}$, $A\{1,2\}$, $A\{1,3\}$, $A\{1,4\}$, $A\{1,2,3,4\} = A^{\dagger}$

二、{1}-逆的性质

1. 引理: $rank(AB) \le min(rankA, rank B)$

证明:矩阵的秩=行秩=列秩。将A、B写成(A \in C^{m×n}, B \in C^{n×p})

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \cdots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \cdots & \mathbf{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \cdots & \mathbf{a}_{mn} \end{bmatrix} = [\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \cdots \quad \mathbf{a}_{n}]$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \cdots & \mathbf{b}_{1p} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \cdots & \mathbf{b}_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{b}_{n1} & \mathbf{b}_{n2} & \cdots & \mathbf{b}_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{bmatrix}$$

(1)设rank(A)=r,则必存在 $a_{l_1}, a_{l_2}, ..., a_{l_r}$ ($l_1, l_2, ..., l_r$ 两两不同)成为线性无关的向量组。所以,其它列向量 a_i 可表示为:

$$a_{i} = \sum_{k=1}^{r} p_{ik} a_{l_{k}}$$
 $(i = 1, 2, \dots, n)$

$$\mathbf{AB} = [\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \cdots \quad \mathbf{a}_{n}] \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \cdots & \mathbf{b}_{1p} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \cdots & \mathbf{b}_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{b}_{n1} & \mathbf{b}_{n2} & \cdots & \mathbf{b}_{np} \end{bmatrix} = [\sum_{i=1}^{n} \mathbf{b}_{i1} \mathbf{a}_{i} \sum_{i=1}^{n} \mathbf{b}_{i2} \mathbf{a}_{i} \quad \cdots \sum_{i=1}^{n} \mathbf{b}_{ip} \mathbf{a}_{i}]$$

可见 AB 的各列向量均为 $a_{l_1}, a_{l_2}, \dots, a_{l_r}$ 的线性组合。亦即 rank(AB) \leq r = rank(A)

(2) 同理设rank(B) = s,则必存在 $b_{m_1}, b_{m_2}, \dots, b_{m_s}$ 成为线性无关的向量组。所以,其它行向量 b_i 可表示为:

$$b_i = \sum_{k=1}^{s} q_{ik} b_{m_k}$$
 $(i = 1, 2, \dots, n)$

$$\mathbf{AB} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \cdots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \cdots & \mathbf{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \cdots & \mathbf{a}_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \vdots \\ \mathbf{b}_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} \mathbf{a}_{1i} \mathbf{b}_{i} \\ \sum_{i=1}^{n} \mathbf{a}_{2i} \mathbf{b}_{i} \\ \vdots \\ \sum_{i=1}^{n} \mathbf{a}_{mi} \mathbf{b}_{i} \end{bmatrix}$$

可见,AB 的各行向量均为 b_{m_1} , b_{m_2} ,…, b_{m_s} 的线性组合,故 rank(AB) \leq rank B = s

合起来即 rank(AB)≤min (rankA,rank B)

[证毕]

2. 定理: 设
$$A \in C^{m \times n}, B \in C^{n \times P}, \lambda \in C, \lambda^{\dagger} = \begin{cases} \lambda^{-1} & \lambda \neq 0 \\ 0 & \lambda = 0 \end{cases}$$

- $(1) (A^{(1)})^{H} \in A^{H}\{1\}$
- $(2) \quad \lambda^{\dagger} A^{(1)} \in (\lambda A) \{1\}$
- (3) S、T 为可逆方阵且与 A 可乘,则 $T^{-1}A^{(1)}S^{-1} \in (SAT)\{1\}, (S \in C_m^{m \times m}, T \in C_n^{n \times n})$
- (4) $\operatorname{rank}(A^{(1)}) \ge \operatorname{rank}A$
- (5) $AA^{(1)}AA^{(1)}A$ 均为幂等矩阵且与A同秩 $(P^2 = P)$
- (6) $R(AA^{(1)}) = R(A)$, $N(A^{(1)}A) = N(A)$, $R((A^{(1)}A)^H) = R(A^H)$
- (7) $A^{(1)}A = I_n \Leftrightarrow rank(A) = n$ $AA^{(1)} = I_m \Leftrightarrow rank(A) = m$
 - $AB(AB)^{(1)}A = A \Leftrightarrow rank(AB) = rank(A)$
- (8) $B(AB)^{(1)}AB = B \Leftrightarrow rank(AB) = rank(B)$

证明:
$$(1)$$
 $A^{H}(A^{(1)})^{H}A^{H} = (AA^{(1)}A)^{H} = A^{H} \rightarrow (A^{(1)})^{H} \in A^{H}\{1\}$

(2)
$$\lambda = 0$$
 时, $\lambda A = 0_{m \times n}$, $\lambda^{\dagger} A^{(1)} = 0_{n \times m}$ 。 显然成立。 $\lambda \neq 0$ 时, $(\lambda A)(\lambda^{\dagger} A^{(1)})(\lambda A) = (\lambda \lambda^{-1} \lambda)(A A^{(1)} A) = \lambda A$

(3)
$$(SAT)(T^{-1}A^{(1)}S^{-1})(SAT) = S(AA^{(1)}A)T = SAT$$

(4)
$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A}) \le \operatorname{rank}(\mathbf{A}^{(1)})$$

(5)
$$AA^{(1)}A = A$$
 $\rightarrow \begin{cases} AA^{(1)}A \cdot A^{(1)} = A \cdot A^{(1)} & \rightarrow (AA^{(1)})^2 = AA^{(1)} \\ A^{(1)} \cdot AA^{(1)}A = A^{(1)} \cdot A & \rightarrow (A^{(1)}A)^2 = A^{(1)}A \end{cases}$

同理, $rank(A^{(1)}A) = rank(A)$

在 $R(AA^{(1)}) = R(A)$ 中,将A换为 A^{H} , $A^{(1)}$ 换为 $(A^{(1)})^{H}$,则有 $R(A^{H}) = R(A^{H}(A^{(1)})^{H}) = R((A^{(1)}A)^{H})$

(8) $R(A) = \{Ax \mid x \in C^n\} \subseteq C^m$ $R(AB) = \{ABy \mid y \in C^P\} \subseteq C^m \rightarrow R(A) \supseteq R(AB)$

• $\nabla T AB(AB)^{(1)}A = A \Leftrightarrow rank(AB) = rank(A)$

⇒: $\operatorname{rank} A = \operatorname{rank} (AB(AB)^{(1)}A) \le \operatorname{rank} (AB) \le \operatorname{rank} (A)$ → $\operatorname{rank} (AB) = \operatorname{rank} A$

 \leftarrow : rankA = dim R(A), rank(AB) = dim R(AB) 故 R(A) = R(AB)

3. 定理: 矩阵 A 当且仅当 A 为满秩方阵时具有唯一的{1}逆: $A^{(1)} = A^{-1}$

三、{1}-逆与{1,2}-逆

1. 定理: 设 Y,Z∈A{1},则YAZ∈A{1,2}

证明: 已知 AYA = AZA = A 故

- (i) A(YAZ)A = AZA = A
- (ii) (YAZ)A(YAZ)=YAYAZ=YAZ

[证毕]

2. 定理: 给定矩阵 A 及 Z ∈ A{1}, 则 Z ∈ A{1,2}的充要条件是 rankA = rankZ

证明: 必要性。已知Z ∈ A{1,2},则

AZA=A; ZAZ=Z

 $由 rank(A^{(1)}) \ge rankA$ $\arctan kZ \ge rankA$ $nankA \ge rankZ$

∴rankZ=rankA

1. 引理:对任意矩阵 A 均有 rank(A^HA) = rankA = rank(AA^H)

证明: $\forall x \in N(A)$ 即 Ax = 0,则 $A^H Ax = 0$ $\rightarrow N(A) \subseteq N(A^H A)$ 另一方面 $\forall x \in N(A^H A)$,则 $x^H A^H Ax = 0 = (Ax)^H (Ax)$ $\Rightarrow Ax = 0 \rightarrow N(A^H A) \subseteq N(A)$ $\therefore N(A^H A) = N(A)$,又 $A^H A = A$ 的列数均为 n , dim N(A) = n - rank A , $dim N(A^H A) = n - rank (A^H A)$ $\Rightarrow rank(A^H A) = rank A$.

 $A \leftrightarrow A^{H}$, \mathbb{N} rank (AA^{H}) =rank A^{H} =rankA

2. 定理: 给定矩阵 A,则 $Y=(A^HA)^{(1)}A^H \in A\{1,2,3\}$ $Z=A^H(AA^H)^{(1)} \in A\{1,2,4\}$

证明:显然 $\mathbf{R}(\mathbf{A}^H\mathbf{A}) \subseteq \mathbf{R}(\mathbf{A}^H)$,又由引理可知 $\mathbf{R}(\mathbf{A}^H\mathbf{A}) = \mathbf{R}(\mathbf{A}^H)$,即存在 U 使 $A^H = A^HAU \rightarrow A = U^HA^HA$

AYA= $(U^HA^HA)[(A^HA)^{(1)}A^H]A_=^{(1)}U^HA^HA=A$ 满足(i) → Y ∈ A{1}
∴ rankY≥ rankA

又 rankY=rank
$$\left(\left(A^{H}A\right)^{(1)}A^{H}\right) \leq rankA^{H}=rankA$$
.
即 rankY=rankA $\rightarrow Y \in A\{1,2\}$

$$AY=\left(U^{H}A^{H}A\right)\left(A^{H}A\right)^{(1)}A^{H}=U^{H}A^{H}A\left(A^{H}A\right)^{(1)}A^{H}AU$$

$$=U^{H}(A^{H}A)U=(AY)^{H}$$

$$\Rightarrow Y \in A\{3\}$$
即 $Y \in A\{1,2,3\}$ [证毕]

五、关于A+

1. 定理: 给定矩阵 A, $A^{+} = A^{(1,4)}AA^{(1,3)}$ 证明: (1) 设 $X = A^{(1,4)}AA^{(1,3)}$, 则 $X \in A\{1,2\}$ (2) $AX = AA^{(1,4)}AA^{(1,3)} = AA^{(1,3)} = (AA^{(1,3)})^{H} = (AX)^{H}$ (3) $XA = A^{(1,4)}AA^{(1,3)}A = A^{(1,4)}A = (A^{(1,4)}A)^{H} = (XA)^{H}$ $\therefore X \in A\{1,2,3,4\} = A^{+}$

[证毕]

2. 定理: 给定矩阵 A,则

- (1) $\operatorname{rank} A^{+} = \operatorname{rank} A$
- (2) $(A^+)^+ = A$
- (3) $(A^H)^+ = (A^+)^H$, $(A^T)^+ = (A^+)^T$
- (4) $(A^H A)^+ = A^+ (A^H)^+$, $(A A^H)^+ = (A^H)^+ A^+$
- (5) $A^+ = (A^H A)^+ A^H = A^H (AA^H)^+$
- (6) $R(A^+) = R(A^H), N(A^+) = N(A^H)$

证明: $(1)A^+ \in A\{1,2\} \rightarrow \operatorname{rank} A^+ = \operatorname{rank} A$

- (2)Penrose 方程中 (i)↔(ii), (iii)↔(iv) 互为对称 故 (A⁺)⁺ = A
- (3)直接采用四个方程验证即可。
- (4)同上。
- (5)证 $X=(A^{H}A)^{+}A^{H}$, 由定理 3 知 $X \in A\{1,2,3\}$,且 $XA=(A^{H}A)^{+}A^{H}A=((A^{H}A)^{+}A^{H}A)^{H}=(XA)^{H}$ $\therefore X = A\{1,2,3,4\}$

(6)
$$\mathbf{R}(A^{+}) = \mathbf{R}(A^{H}(AA^{H})^{+}) \subseteq \mathbf{R}(\mathbf{A}^{H})$$

$$\mathbf{N}(A^{+}) = N((A^{H}A)^{+}A^{H}) \supseteq \mathbf{N}(\mathbf{A}^{H}) , \overrightarrow{\mathbf{m}} \quad \mathbf{rank} A^{+} = \mathbf{rank} A = \mathbf{rank} A^{H}$$

推论 1: 若A∈C_n^{m×n}(列满秩矩阵),则A⁺=(A^HA)⁻¹A^HA∈C_m^{m×n}(行满秩矩阵),则A⁺=A^H(AA^H)⁻¹

推论 2: 对非零列向量 α , $\alpha^+ = (\alpha^H \alpha)^{-1} \alpha^H$;

对非零行向量 β, $\beta^+ = \beta^H (\beta \beta^H)^{-1}$; $\alpha^H \alpha, \beta \beta^H$ 均为数。

说明: A,B 可逆,则 $(AB)^{-1} = B^{-1}A^{-1}$,但一般 $(AB)^{+} \neq B^{+}A^{+}$

如
$$A = \begin{bmatrix} 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, AB = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$(AB)^{+} = \begin{bmatrix} 1 \end{bmatrix}, A^{+} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, B^{+} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}, B^{+}A^{+} = \begin{bmatrix} \frac{1}{2} \end{bmatrix}$$

作业: P306-307 3、4、5、6、8、11、12