Traitement du Signal 1

Maxime Ossonce

EFREI/ESIGETEL - L3

Plan du cours

- 1. Classification des signaux
- 2. Produit de convolution
- 3. Fonction d'autocorrélation
- 4. Représentation fréquentielle

Signal, information

- ▶ Une information décrit ce qui mérite d'être transmis, ce qui n'est pas connu.
- ▶ Un **signal** est la variation d'une grandeur physique porteuse d'une **information**: courant, tension, pression acoustique...
- ▶ Le **traitement du signal** constitue l'ensemble des techniques permettant de décrire, traiter, interpréter un signal dans le but de mettre en forme ou d'extraire une information.

- 1. Classification des signaux
- 1.1 Signaux continus, signaux discrets
- 1.2 Signaux déterministes, signaux aléatoires
- 1.3 Puissance, énergie
- 1.4 Signaux usuels à énergie finie
- 1.5 Signaux usuels à puissance finie
- 2. Produit de convolution
- 3. Fonction d'autocorrélation
- 4. Représentation fréquentielle

Classes de signaux

Nous distinguerons

- Les signaux continus / les signaux discrets;
- les signaux déterministes / les signaux aléatoires;
- ▶ les signaux à énergie finie / les signaux à puissance finie.

Autocorrélation

Le signal $x(t) = A\cos(\omega_0 t)$ est un signal continu déterministe à puissance finie.

Signaux analogiques

Un signal **analogique** (ou à temps continu) est un signal dont l'évolution est décrite selon une variable continue $t \in \mathbb{R}$.

- ▶ A chaque temps $t \in \mathbb{R}$ on associe x(t) la valeur du signal;
- ▶ pour les signaux rééls on aura $x(t) \in \mathbb{R}$;
- ▶ les signaux **complexes** prendront leurs valeurs dans ℂ :
 - considérer un signal à valeurs complexes nous permettra la simplification de l'étude d'un signal à valeurs réelles;
 - ▶ par exemple le signal dit analytique $Ae^{j\omega_0t}$ de $x(t) = A\cos(\omega_0t)$.

1.1 Signaux continus, signaux discrets

Exemple de signaux continus

Figure: Sinusoïde amortie, sinusoïde bruitée, bruit blanc gaussien, signal codé NRZ.

1.1 Signaux continus, signaux discrets

Signaux discrets

Un signal discret est un signal dont l'évolution est décrite selon une variable discrète $n \in \mathbb{Z}$.

- ▶ Pour chaque instant d'échantillonnage $n \in \mathbb{Z}$ on associe x(n) la valeur du signal;
- ▶ un signal discret est généralement le résultat de l'échantillonnage d'un signal continu x(t)
- \triangleright aux instants nT_e .
- $f_e = \frac{1}{T_e}$ est la fréquence d'échantillonnage.
- ► Les signaux discrets sont traités grâce à des processeurs de traitement de signal (*DSP*).

Classification

Information, évènements et probabilité

L'information apportée par un évènement est liée par nature à son caractère **aléatoire**.

- L'étude d'un signal porteur d'une information nous amène à le considérer dans sa dimension probabilistique;
- un signal aléatoire (ou processus stochastique) est un signal dont on connait les propriétés statistiques, par exemple l'espérance mathématique, la variance...
- ▶ Un signal **déterministe** est un signal dont la valeur x(t) est connue pour tout instant t.
- ▶ On observera d'un signal aléatoire une (ou des) réalisation(s).

Classification

Exemples de signaux aléatoires

- ► Le bruit est un signal aléatoire;
- un signal déterministe bruité est donc un signal aléatoire.
- ▶ Les échantillons reçus à l'entrée d'un Processeur de traitement du signal (*DSP*) constituent un signal discrets aléatoires.

Signaux bornés

On ne considérera que le signaux bornés parmi lesquels on trouve

les signaux à énergie finie

$$E = \int_{\mathbb{R}} |x(t)|^2 dt < \infty$$

les signaux à **puissance** finie

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt < \infty.$$

1.3 Puissance, énergie

Signaux à support borné

Les signaux à support borné sont à énergie finie.

$$x(t) = 0 \text{ si } t \notin [t_1, t_2].$$

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt$$

Somme de signaux

- ► La puissance de la somme n'est pas la somme des puissances ;
- ▶ l'énergie de la somme **n'est pas** la somme des énergies.

$$|x_1(t) + x_2(t)|^2 = |x_1(t)|^2 + |x_2(t)|^2 + x_1(t) \cdot \overline{x_2(t)} + \overline{x_1(t)} \cdot x_2(t)$$

$$\neq |x_1(t)|^2 + |x_2(t)|^2$$

Sauf dans le cas de signaux orthogonaux

$$\int x_1(t) \cdot \overline{x_2(t)} dt = 0,$$

▶ par exemple : deux signaux sinusoïdaux de fréquences différentes ou déphasés de $\pi/2$.

Moyenne d'un signal

Les signaux à puissance finie oscillent autour d'une valeur moyenne.

Valeur moyenne d'un signal à puissance finie

$$\mu = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) dt$$

Signaux périodiques

Les signaux périodiques sont à puissance finie.

$$> x(t) = x(t + T_0);$$

- $ightharpoonup T_0$ est la période du signal.
- ▶ Si $x_{T_0}(t)$ est le signal x(t) restreint à un support de largeur T_0
- $x(t) = x_{T_0}(t) + x_{T_0}(t T_0) + x_{T_0}(t 2T_0) + \dots + x_{T_0}(t + T_0) + x_{T_0}(t + 2T_0) + \dots$

Puissance d'un signal périodique

$$P = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} |x(t)|^2 dt$$

► Remarque : une somme de signaux périodiques n'est pas nécessairement un signal périodique (*exercice*).

Signal porte

- Les signaux à support borné $(x(t) = 0 \text{ si } x \notin [t_1, t_2]) \text{ sont à énergie finie.}$
- $E = \int_{t_1}^{t_2} |x(t)|^2 dt$
- ▶ Par exemple, la fonction porte de largeur T, centrée en 0 :

$$\Pi_T(t) = \left\{ \begin{array}{ll} 1 & \text{si } |t| < \frac{T}{2} \\ 0 & \text{sinon} \end{array} \right.$$

Figure : Signal porte de largeur T, $\Pi_T(t)$

$$E = \int_{\mathbb{D}} |\Pi_{T}(t)|^{2} dt = T$$

Exponentielle monolatérale

- L'exponentielle amortie monolatérale est un signal à énergie finie;

Figure : Exponentielle amortie monolatérale, $x(t) = e^{-\alpha t}$

$$E = \int_0^{+\infty} A^2 e^{-2\alpha t} dt = \frac{A^2}{2\alpha}$$

Exponentielle bilatérale

- L'exponentielle amortie bilatérale est un signal à énergie finie;

Figure : Exponentielle amortie bilatérale, $x(t) = e^{-\alpha|t|}$

$$E = \int_{\mathbb{D}} A^2 e^{-2\alpha|t|} dt = \frac{A^2}{\alpha}$$

Sinus cardinal

► Le **sinus cardinal** est un signal à énergie finie;

$$\operatorname{sinc}(t) = \begin{cases} \frac{\sin(\pi t)}{\pi t} & \text{si } t \neq 0\\ 1 & \text{si } t = 0 \end{cases}$$

continu (au sens mathématique).

Figure: Sinus cardinal

- \triangleright E=1
- Calcul dans le domaine fréquentiel (Parseval).

1.5 Signaux usuels à puissance finie

Signal constant

Le signal constant $\forall t \ x(t) = A$ est à puissance finie

$$P=A^2$$
.

ightharpoonup Sa moyenne est $\mu = A$

Exponentielle complexe

▶ L'exponentielle complexe (ou **pulsation**) de fréquence f₀

$$x(t) = Ae^{2j\pi f_0 t + j\phi}$$
 $A \in \mathbb{R}$

- est à valeurs complexes
- est de puissance finie
- $|x(t)|^2 = A^2$
- ► $P = A^2$.
- $\mu = 0.$
- $\underline{A} = Ae^{j\phi}$ est l'amplitude complexe, $x(t) = \underline{A}e^{2j\pi f_0 t}$.

Signal sinusoïdal

Un signal sinusoïdal s'écrit sous la forme

$$x(t) = A\cos(\omega_0 t + \phi)$$

Figure: Signal sinusoïdal

$$\omega_0 = 2\pi/T_0 = 2\pi f_0$$

$$P = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} A^2 \cos^2(\omega_0 t + \phi) dt = \frac{A^2}{2}$$

$$\mu = 0.$$

1.5 Signaux usuels à puissance finie

Somme de sinusoïdes

Une somme de sinusoïdes

$$x(t) = \sum_{m} A_{m} \cos(2\pi f_{m} t + \phi_{m})$$

est de puisssance non nulle. On considère $f_m \neq 0$ et $f_m \neq f_n$ si $m \neq n$. Alors

$$P = \sum_{m} \frac{A_m^2}{2}$$

Signal périodique

Un signal T_0 -périodique ($\omega_0 = 2\pi/T_0$) peut s'écrire sous la forme d'une série de Fourier

Série de Fourier

$$s(t) = A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2) + \cdots$$
$$+ A_n \cos(n\omega_0 t + \phi_n) + \cdots$$

La puissance du signal périodique est alors

$$P = A_0^2 + \frac{A_1^2}{2} + \frac{A_2^2}{2} + \dots + \frac{A_n^2}{2} + \dots$$

Sa moyenne est $\mu = A_0$.

1.5 Signaux usuels à puissance finie

Signal carré

► Le signal carré est un signal T₀-périodique défini sur [0, T₀] par

$$x(t) = \begin{cases} A & \text{si } t \in [0, T_0/2[\\ 0 & \text{si } t \in [T_0/2, T_0[\end{cases}) \end{cases}$$

Figure : Signal carré

$$P = \frac{1}{T_0} \int_0^{T_0/2} A^2 dt = \frac{A^2}{2}$$

$$\mu = \frac{A}{2}.$$

Signal carré de rapport cyclique r

1. Classification des signaux

- 2. Produit de convolution
- 2.1 Distributions
- 2.2 Filtrage
- 2.3 Calcul
- 3. Fonction d'autocorrélation
- 4. Représentation fréquentielle

Le Dirac

- ▶ La notion de fonction $t \rightarrow x(t)$ ne permet pas de rendre compte de tous les phénomènes physiques.
- ▶ Par exemple, l'impulsion $\delta(t)$ est telle que

$$\int_{\mathbb{R}} \delta(t) \, dt = 1$$
 $\delta(t) = 0$ si $t \neq 0$

- L'impulsion ne peut pas être une fonction.
- \triangleright $\delta(t)$ est appelé impulsion de Dirac.
- ► La notion de **distribution** introduite par Laurent Schwartz posera le cadre théorique pour cette objet mathématique, la distribution de Dirac.

Limite d'une suite de fonctions

- Le Dirac peut être vu comme la limite (pour $\epsilon \to 0$) d'une suite de fonctions porte, de largeur ϵ , d'amplitude ϵ^{-1} .
- ▶ On a bien $\int_{\mathbb{D}} \epsilon^{-1} \Pi_{\epsilon}(t) dt = 1$.

Figure: L'impulsion Dirac est la limite d'une suite de fonctions.

Propriétés du Dirac

▶ Si on considère une fonction x(t) alors le produit $x(t) \cdot \delta(t)$ est un Dirac d'amplitude x(0)

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$

La distribution Dirac permet de *prélever* la valeur d'une fonction au temps t=0:

$$\int_{\mathbb{R}} x(t) \cdot \delta(t) dt = x(0).$$

On peut considérer le Dirac centré en t_0 , $\delta_{t_0}(t) = \delta(t - t_0)$:

$$\int_{\mathbb{R}} x(t) \cdot \delta(t-t_0) = x(t_0).$$

Fonction de Heavyside

La fonction de Heavyside u(t) est la fonction échelon :

$$u(t) = \begin{cases} 1 & \text{si } t > 0 \\ 0 & \text{sinon.} \end{cases}.$$

On a par ailleurs :

$$\int_{-\infty}^t \delta(\tau) \, d\tau = \left\{ \begin{array}{ll} 1 & \text{si } t > 0 \\ 0 & \text{sinon.} \end{array} \right.$$

L'impulsion Dirac est donc la dérivée de la fonction de Heavyside.

Systèmes linéaires invariants dans le temps

$$x(t) \rightarrow y(t)$$

Un **SLIT** est un appareil de traitement du signal tel que

réponses du système à $x_1(t)$, $x_2(t)$, alors

 \triangleright si $y_1(t)$, $y_2(t)$ sont les

- la réponse à $x_1(t) + \alpha x_2(t)$ est $y_1(t) + \alpha y_2(t)$;
- la réponse à $x(t-t_0)$ est $v(t-t_0)$.

$$x_i(t) \rightarrow \text{slit} \rightarrow y_i(t)$$

$$\alpha x_1 + x_2(t) \rightarrow \text{slit} \rightarrow \alpha y_1(t) + y_2(t)$$

Figure : Représentation schématique des propriétés d'un SLIT

 $x_1(t-t_0) \rightarrow \text{slit} \rightarrow y_1(t-t_0)$

Signal - EFREI/ESIGETEL - L3

Filtres linéaires

- Les SLIT sont aussi nommés des filtres linéaires
- Les filtres linéaires sont tels qu'il existe un fonction h(t), appelée la réponse impulsionnelle, telle que
- \triangleright pour toute entrée x(t), la sortie y(t) est

$$y(t) = x * h(t)$$

 \triangleright y(t) est le produit de **convolution** de x(t) et h(t).

Le produit de convolution z(t) = x * y(t)

$$z(t) = \int_{\mathbb{R}} x(\tau) \cdot y(t - \tau) d\tau$$

- ▶ La convolution est **commutative** $z(t) = \int_{\mathbb{R}} x(t-\tau) \cdot y(\tau) d\tau$.
- ▶ Par simplification, on notera z(t) = x(t) * y(t).

Propriétés

Le produit de convolution est

- ightharpoonup commutatif : x * y(t) = y * x(t),
- **distributif** par rapport à l'addition : $\alpha \in \mathbb{K}$, $(x_1 + \alpha x_2) * y(t) = x_1 * y(t) + \alpha x_2 * y(t),$
- ▶ **associatif** : (x * y) * z(t) = x * (y * z)(t).

2.2 Filtrage

Classification

Interprétation physique

z.z Fiitrage

Elément neutre

- L'élément neutre du produit de convolution est le Dirac
- $\triangleright x * \delta(t) = x(t)$

$$x * \delta(t) = \int_{\mathbb{R}} x(t - \tau) \cdot \delta(\tau) d\tau$$
$$= \int_{\mathbb{R}} x(t) \cdot \delta(\tau) d\tau$$
$$= x(t) \cdot \int_{\mathbb{R}} \delta(\tau) d\tau$$
$$= x(t)$$

Le produit de convolution d'un signal quelconque et du Dirac centré en t_0 est le signal x(t) retardé de t_0

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

Signal périodique

Soient x(t) un signal T_0 -périodique et $x_{T_0}(t) = x(t)$ sur un intervalle de largeur T_0 et nul en dehors. On a

$$x(t) = x_{T_0}(t) + x_{T_0}(t - T_0) + x_{T_0}(t - 2T_0) + \cdots$$

$$+ x(t + T_0) + x_{T_0}(t + 2T_0) + \cdots$$

$$= x_{T_0} * \delta(t) + x_{T_0} * \delta_{T_0}(t) + x_{T_0} * \delta_{2T_0}(t) + \cdots$$

$$+ x_{T_0} * \delta_{-T_0}(t) + x_{T_0} * \delta_{-2T_0}(t) + \cdots$$

$$= x_{T_0} * (\delta + \delta_{T_0} + \cdots + \delta_{-T_0} + \cdots)(t)$$

$$= x_{T_0} * \coprod_{T_0} (t)$$

► Un signal péridodique s'écrit comme le produit de convolution d'un signal à support borné et un **peigne de Dirac** de cadence T_0 , $\coprod_{T_0}(t)$.

2.2 Filtrage

Classification

Peigne de Dirac

Un signal T_0 -périodique x(t) peut s'écrire comme le résultat du produit de convolution d'un signal à support borné x_{T_0} et d'un peigne de Dirac $\coprod_{T_0}(t)$ de cadence T_0 .

Figure: Peigne de Dirac

Convergence

Le produit de convolution existe quand l'intégrale converge :

$$\int_{\mathbb{R}} x(t-\tau) \cdot y(\tau) \, d\tau < \infty$$

Il existe des conditions **suffisantes** d'existence du produit de convolution :

- Si x(t) et y(t) sont à énergie finie, x * y(t) existe et est à énergie finie;
- ▶ si x(t) est à énergie finie et y(t) est à puissance finie, alors x * y(t) existe et est à puissance finie;
- ▶ si x(t) et y(t) sont causaux (et *intégrable sur tout segment*) alors x * y(t) existe et est causal;
- ▶ si x(t) et y(t) sont à support borné (et *intégrable sur tout segment*), alors x * y(t) existe et est à support borné.

Signal porte et signal quelconque

Exercice

Montrer que le z(t), le produit de convolution de

- \triangleright x(t) un signal quelconque (intégrable sur tout segment) et de
- \triangleright y(t) la fonction porte de largeur T centrée en T/2:

$$y(t) = \begin{cases} 1 & \text{si } t \in [0, T] \\ 0 & \text{sinon} \end{cases}$$

vaut

$$z(t) = \int_{t-T}^{t} x(\tau) d\tau.$$

Convolution de deux signaux porte de même largeur

Exercice

Calculer

 $\Pi_{\mathcal{T}} * \Pi_{\mathcal{T}}(t)$.

Convolution de deux signaux porte de largeurs différentes

Exercice

Calculer

$$\Pi_{\mathcal{T}_1} * \Pi_{\mathcal{T}_2}(t).$$

Exercice

Montrer que si x(t) et y(t) sont à support temporel fini alors z(t) = x * y(t) l'est aussi.

Signal porte et singal sinusoïdal

On considère le signal $x(t) = A\cos(\omega_0 t)$ (à puissance finie) et le signal porte $\Pi_{\mathcal{T}}(t)$.

Autocorrélation

Exercice

Calculer

$$z(t) = \Pi_T * x(t).$$

1. Classification des signaux

2. Produit de convolution

3. Fonction d'autocorrélation

- 3.1 Signaux à énergie finie
- 3.2 Signaux à puissance finie
- 3.3 Autocorrélation de signaux usuels

4. Représentation fréquentielle

Corrélation

La **corrélation** entre deux signaux permet de mesurer la ressemblance entre ces derniers :

$$\int_{\mathbb{R}} x(t) \cdot \overline{y(t)} \, dt$$

Elle est assimilable à un produit scalaire :

- Maximal quand $x(t) = \alpha y(t)$ (les signaux sont colinéaires);
- nul lorsque les signaux sont orthogonaux.
- La corrélation entre un signal et lui-même est la norme de ce dernier (puissance ou énergie).

Autocorrélation

L'autocorrélation $\gamma_x(\tau)$ d'un signal x(t) est la corrélation entre x(t) et lui-même retardé de τ .

- La ressemblance maximale est atteinte pour un retard nul (soit $\tau = 0$).
- ▶ Pour des raisons de convergence, il sera appliqué deux définitions selon que le signal étudié est à
 - 1. énergie finie;
 - 2. puissance finie.

3.1 Signaux à énergie finie

Classification

Définition

Autocorrélation du signal x(t) à énergie finie

$$x(t) o \gamma_x(\tau) = \int_{\mathbb{R}} x(t) \cdot \overline{x(t-\tau)} dt$$

Autocorrélation

Si x(t) est à valeurs réelles (resp. complexes) alors $\gamma_x(\tau)$ est à valeurs réelles (resp. complexes).

3.1 Signaux a energie fini

Propriétés

► Maximum :

$$\gamma_{x}(0) = \int_{\mathbb{R}} x(t) \cdot \overline{x(t)} dt = \int_{\mathbb{R}} |x(t)|^{2} dt = E$$

$$|\gamma_{\mathsf{X}}(\tau)| \leq \gamma_{\mathsf{X}}(0) = E$$

Symétrie hermitienne :

$$\gamma_{x}(-\tau) = \overline{\gamma_{x}(\tau)} \Leftrightarrow \begin{cases} |\gamma_{x}(\tau)| \text{ est pair} \\ \arg\{\gamma_{x}(\tau)\} \text{ est impair} \end{cases}$$

- ▶ Si x(t) est à valeurs réelles alors $\gamma_x(\tau)$ est réél et pair.
- ▶ Si x(t) est à support temporel fini, $\gamma_x(\tau)$ l'est aussi.

3.2 Signaux à puissance finie

Définition

Classification

Autocorrélation du signal x(t) à puissance finie

$$x(t) o \gamma_x(\tau) = \lim_{T o \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cdot \overline{x(t-\tau)} dt$$

▶ Si x(t) est T_0 -périodique, $\gamma_x(\tau)$ l'est aussi :

$$\gamma_{x}(\tau) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cdot \overline{x(t-\tau)} dt$$
$$= \frac{1}{T_0} \gamma_{x_{T_0}}(\tau) * \coprod_{T_0} (\tau)$$

Propriétés

Classification

► Maximum :

$$\gamma_{x}(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} x(t) \cdot \overline{x(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} |x(t)|^{2} dt = P$$

$$|\gamma_{\mathsf{X}}(\tau)| \leq \gamma_{\mathsf{X}}(0) = P$$

Symétrie hermitienne :

$$\gamma_{x}(-\tau) = \overline{\gamma_{x}(\tau)} \Leftrightarrow \begin{cases} |\gamma_{x}(\tau)| \text{ est pair} \\ \arg\{\gamma_{x}(\tau)\} \text{ est impair} \end{cases}$$

▶ Si x(t) est à valeurs réelles alors $\gamma_x(\tau)$ est réél et pair.

Signal porte

Classification

Sinus cardinal

Classification

3.3 Autocorrélation de signaux usuels

Classification

Exponentielle unilatérale

Exponentielle bilatérale

Signal constant

Convolution

Classification

Exponentielle complexe

Convolution

Classification

Signal sinusoïdal

Convolution

Classification

Somme finie de sinusoïdes

Signal carré de rapport cyclique r

Autocorrélation

- 4. Représentation fréquentielle
- 4.1 Spectre

Classification

- 4.2 Signaux à énergie finie
- 4.3 Signaux à puissance finie

4.1 Spectre

Classification

Fréquence

Le **spectre** permet de représenter le signal dans une autre base :

- ▶ base temporelle → base fréquentielle
- ▶ $t \in \mathbb{R}$ (en secondes) $\longrightarrow f \in \mathbb{R}$ (en Hertz).

Transformée de Fourier

La transformée de **Fourier** permet de calculer le **spectre** du signal étudié.

$$x(t) \in \mathbb{C} \xrightarrow{\mathsf{TF}} X(f) \in \mathbb{C}$$

- \blacktriangleright |X(f)| est le spectre d'amplitude.
- ▶ $arg{X(f)}$ est le spectre de phase.
- ▶ En théorie f parcourt \mathbb{R} . Les interprétations physiques pourront se contenter des fréquences positives.

4.2 Signaux à énergie finie

Classification

Définition

Transformée de Fourier $X(f) = TF\{x(t)\}$

$$x(t) \xrightarrow{\mathsf{TF}} X(f) = \int_{\mathbb{R}} x(t) \cdot e^{-2j\pi ft} dt$$

Transformée de Fourier inverse :

$$X(f) \xrightarrow{\mathsf{TF}^{-1}} x(t) = \int_{\mathbb{R}} X(f) \cdot e^{+2j\pi t f} df.$$

- La transformée de Fourier permet de décrire le signal dans le domaine fréquentiel.
- \triangleright A chaque fréquence f est associée une amplitude |X(f)| et une phase $arg\{X(f)\}.$

4.2 Signaux a energie finie

Classification

Propriétés

- ► Linéarité : $\alpha x(t) + \beta y(t) \xrightarrow{\mathsf{TF}} \alpha X(f) + \beta Y(f)$;
- ► Le retard n'induit pas une modification du spectre d'amplitude :

$$X(t-t_0) \xrightarrow{\mathsf{TF}} X(f) \cdot e^{-2j\pi t_0 f}.$$

- ▶ Pour f = 0, on a $X(0) = \int_{\mathbb{R}} x(t) dt$;
- $\blacktriangleright x(t) \cdot e^{2j\pi f_0 t} \xrightarrow{\mathsf{TF}} X(f f_0);$
 - propriété utile pour la modulation.

4.2 Signaux à énergie finie

Propriétés

▶ Dérivée :
$$\frac{dx(t)}{dt} \xrightarrow{TF} j2\pi fX(f)$$
;

• dérivée :
$$\frac{d^n x(t)}{d^n t} \xrightarrow{\text{TF}} (j2\pi f)^n X(f)$$
;

Produit de convolution

La transformée de Fourier du produit de convolution est le produit des transformées de Fourier

$$x * y(t) \xrightarrow{\mathsf{TF}} X(f) \cdot Y(f),$$

$$\blacktriangleright x(t) \cdot y(t) \xrightarrow{\mathsf{TF}} X(f) * Y(f).$$

Signaux réels

Pour x(t) à valeurs réelles ou complexes, on a

$$\overline{X(t)} \xrightarrow{\mathsf{TF}} \overline{X(-f)}.$$

- Les signaux à valeurs **réelles** sont tels que $\overline{x(t)} = x(t)$
- On observe donc une symétrie hermitienne pour la transformée de Fourier des signaux à valeurs réelles :

$$X(-f) = \overline{X(f)}$$

- ► |X(f)| est pair;
- ightharpoonup arg $\{X(f)\}$ est impair.

Densité spectrale d'énergie

La DSE permet de connaître la répartition en fonction de la fréquence f de l'énergie du signal x(t).

- ▶ La DSE s'exprime en JHz^{-1} .
- ▶ La DSE de x(t), notée $S_x(f)$, est la transformée de Fourier de l'autocorrélation $\gamma_x(\tau)$ du signal x(t).
- ▶ Il s'agit par ailleurs de $|X(f)|^2$.
- ► L'égalité de Parseval indique que

$$E = \int_{\mathbb{R}} S_{x}(f) \, df$$

Calcul de la DSE

Signal porte $x(t) = \Pi_T(t)$

$$X(f) = T \operatorname{sinc}(fT)$$

$$|X(f)| = T |\operatorname{sinc}(fT)|$$

$$S_x(f) = T^2 \operatorname{sinc}^2(fT)$$

Figure: DSP du signal porte

- L'égalité de Parseval permet de calculer $\int_{\mathbb{R}} \operatorname{sinc}^2(fT) \, df = \frac{1}{T}$
- La répartition de l'énergie sur la bande $[0; \frac{1}{T}]$ est approx. de 90% de l'énergie totale :

$$\frac{\int_{-\frac{1}{T}}^{\frac{1}{T}} S_X(f) df}{\int_{\mathbb{R}} S_X(f) df} \approx 0.9$$

Sinus cardinal $x(t) = \operatorname{sinc}(t)$

- ▶ On prend $Y(f) = \Pi_{\theta}(f)$. Que vaut y(t)?
- ightharpoonup Que vaut X(f)?
- Qu'indique la relation de Parseval?

Classification

Exponentielle unilatérale

Fourier

4.2 Signaux à énergie finie

Classification

Exponentielle bilatérale

Impulsion Dirac

On calcule la transformée de Fourier de l'impulsion Dirac

$$TF\{\delta(t)\} = \int_{\mathbb{R}} \delta(t) \cdot e^{-j2\pi ft} dt$$
$$= e^{-j2\pi ft}|_{t=0}$$
$$= 1$$

Signal constant

- ▶ On ne peut pas calculer directement la transformée de Fourier du signal constant x(t) = A, $\int_{\mathbb{R}} Ae^{-j2\pi ft} dt$.
- ► Par dualité des formules de la transformée de Fourier et de la transformée de Fourier **inverse**
- et de la transformée de Fourier du Dirac, on en déduit :

Formule de Poisson

$$x(t) = 1 \xrightarrow{\mathsf{TF}} \delta(f)$$

On en déduira que

$$x(t) = e^{2j\pi f_0 t} \xrightarrow{\mathsf{TF}} \delta(f - f_0)$$

Spectre de raie

Le signal de puissance finie

$$x(t) = \sum_{n \in \mathbb{Z}} c_n e^{2j\pi f_n t}$$

aura pour transformée de Fourier

$$x(t) \xrightarrow{\mathsf{TF}} \sum_{n \in \mathbb{Z}} c_n \, \delta(f - f_n)$$

Figure: Spectre d'amplitude d'un signal à puissance finie

- \triangleright Si le signal est réel, X(f) observe une symétrie hermitienne
- \triangleright Si le signal est périodique, on aura $f_n = nf_0$.

4.3 Signaux à puissance finie

Classification

Peigne de Dirac $x(t) = \coprod_{\tau}(t)$

La transformée de Fourier du peigne de Dirac de cadence T_0 est un peigne de Dirac de cadence f_0 de poids f_0

Autocorrélation

Transformée de Fourier du peigne de Dirac

$$\coprod_{T_0}(t) \xrightarrow{\mathsf{TF}} f_0 \coprod_{f_0}(f)$$

Signaux périodiques

Un signal T_0 -périodique x(t) s'écrit comme étant la convolution du signal $x_T(t)$ dont le support est de largeur T_0 et un peigne de Dirac de cadence T_0 :

$$x(t) = x_{T_0} * \coprod_{T_0} (t)$$

On aura donc

$$X(f) = f_0 X_{T_0}(f) \cdot \coprod_{f_0} (f)$$

On peut aussi écrire

$$X(f) = \sum_{n \in \mathbb{Z}} f_0 X_{T_0}(nf_0) \cdot \delta(f - nf_0).$$

Soit $X(f) = \sum_{n} c_n \delta(f - nf_0)$ où c_n sont les coefficients de Fourier du signal x(t).

Densité spectrale de puissance

La DSP permet de connaître la répartition en fonction de la fréquence f de la puissance du signal x(t).

- ► La DSP s'exprime en W Hz⁻¹.
- La DSP de x(t) est la transformée de Fourier de l'autocorrélation γ_x(τ) du signal x(t).
- ► Il s'agit par ailleurs de $|X(f)|^2$.

Figure: DSP d'un signal à puissance finie

Calcul de la DSP

$$X(f) = \sum_{n \in \mathbb{Z}} c_n \, \delta(f - f_n)$$
 $S_{xx}(f) = \sum_{n \in \mathbb{Z}} |c_n|^2 \, \delta(f - f_n)$
 $\gamma_x(\tau)$

$$ightharpoonup$$
 On aura $P = \sum_n |c_n|^2$.

Exponentielle complexe

Fourier

4.3 Signaux à puissance finie

Classification

Signal sinusoïdal

4.3 Signaux à puissance finie

Classification

Signal carré

4.3 Signaux à puissance finie

Classification

Signal carré de rapport cyclique r

4.3 Signaux à puissance finie

Classification

Signal triangulaire