Counting Labelled Three-Connected and Homeomorphically Irreducible Two-Connected Graphs

T. R. S. WALSH

Department of Computer Science, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 361, Canada

Communicated by the Managing Editors

Received May 17, 1977

Labelled three-connected graphs and labelled two-connected graphs with no vertices of degree 2 are counted using methods similar to those used by Riddell to count labelled two-connected graphs.

STATEMENT OF RESULTS

A graph will be assumed to be finite and unoriented, with no loops or multiple edges; if multiple edges are to be allowed, the term multigraph will be used. A graph or multigraph will be called k-connected if at least k vertices and their incident edges must be removed to disconnect it (a complete graph is considered to be k-connected for any k). A block (respectively, multiblock) is a 2-connected graph (respectively, multigraph) with at least 2 vertices, and a brick is a 3-connected graph with at least 4 vertices. A labelling of a graph or multigraph with n vertices is a 1-1 correspondence from the set $\{1, 2, ..., n\}$ onto the set of its vertices.

Let A(x, y) be the mixed exponential generating function $\sum_{n,m} A_{n,m} x^n y^m / n!$, where $A_{n,m}$ is the number of labelled graphs with n vertices and m edges, and let C(x, y) and B(x, y) be analogous generating functions which count labelled connected graphs and labelled blocks, respectively. The following formulae, due to Riddell [10], appear in one-variable form in [6, pp. 3-11]:

$$A(x, y) = \sum_{n=1}^{\infty} x^n (1+y)^{\binom{n}{2}} / n!;$$
 (1)

$$C(x, y) = \log(1 + A(x, y));$$
 (2)

$$\partial B(z, y)/\partial z = \log(z/x),$$
 (3)

where

$$z = x \,\partial C(x, y)/\partial x. \tag{4}$$

In this article the following formulae are derived. Let H(x, y) and F(x, y) count labelled blocks with no vertices of degree less than 3 and labelled bricks, respectively. Then

$$H(x,R) = B(x,y) - (x^2/2) \int_0^y \exp(S(x,t)) dt,$$
 (5)

where

$$R(x, y) = (1 + y) \exp(S(x, y)) - 1$$
 (6)

and

$$S(x, y) = xR(x, y)[R(x, y) - S(x, y)];$$
 (7)

$$(2/x^2) \partial F(x, D)/\partial D = \log(K(x, y)) - P(x, y), \tag{8}$$

where

$$K(x, y) = (2/x^2) \partial B(x, y)/\partial y, \tag{9}$$

$$D(x, y) = (1 + y) K(x, y) - 1, (10)$$

and

$$P(x, y) = xD(x, y)[D(x, y) - P(x, y)].$$
(11)

1. COUNTING LABELLED THREE-CONNECTED GRAPHS

To prove (8)–(11) we use B. A. Trakhtenbrot's canonical network decomposition theorem [14] expressed below as Proposition 1.1. A network N is a multigraph with two distinguished vertices, called its poles and labelled 0 and ∞ , such that the multigraph N^* obtained from N by adding an edge between the poles of N is 2-connected. A vertex of N which is not a pole is called an internal vertex. A chain is a network consisting of 2 or more edges connected in series with the poles at its terminal vertices. A bond is a network consisting of 2 or more edges connected in parallel. A pseudo-brick is a network N such that N^* is a brick. If M is a multigraph or a network, then EM denotes its edge-set.

Let M be a multiblock or a network with $m \ge 2$ edges and let $X = \{N_e, e \in EM\}$ be a set of networks, disjoint from each other and from M, each

having at least one edge. Let G = M(X) be the multiblock or network obtained from M by choosing an orientation (u, v) of each edge $e = \{u, v\}$ in EM and replacing e by N_e , identifying the pole 0 of N_e with u and the pole ∞ with v. Then G = M(X) is called a superposition with core M and components $N_e \in X$. A decomposition of a multiblock or a network G is a representation of G as a superposition: G = M(X). A network N is called, respectively, an h-network, a p-network or an s-network if its admits a decomposition whose core is, respectively, a pseudo-brick, a bond or a chain. A drawing of each of these types of decomposition is given in Fig. 2 of [18]. A p-network (respectively, an s-network) is called a series union (parallel union) of its components.

Trakhtenbrot's canonical network decomposition theorem can be stated as follows.

PROPOSITION 1.1. Any network with at least 2 edges belongs to exactly one of the 3 classes: h-networks, p-networks, s-networks. An h-network has a unique decomposition and a p-network (respectively, an s-network) can be uniquely decomposed into components which are not themselves p-networks (s-networks), where uniqueness is up to orientation of the edges of the core, and also up to their order if the core is a bond.

Proof. Proofs of this theorem in Russian can be found in [14, pp. 240–244; 17, pp. 178–184; and 7, pp. 31–44], and the reader can easily construct one using a similar argument for maps given in [16, pp. 260–263]. ■

Using Proposition 1.1, we can now prove (8)—(11) by applying to labelled networks the techniques used in [6, p. 10] for treating labelled graphs with only one distinguished vertex. In a labelled network, the poles do not receive labels other than 0 or ∞ ; only the n internal vertices receive labels from $\{1, 2, ..., n\}$. For the rest of this section, a network or a graph will be assumed to be labelled and without parallel edges, and each edge $\{u, v\}$ of the core of a superposition is assumed to be given the orientation (u, v), where u < v.

Since B(x, y) counts blocks, and since a network with non-adjacent poles can be obtained by distinguishing, orienting and then deleting any edge of an arbitrary block, all such networks are counted by K(x, y) of (9), where the exponent of x is the number of internal vertices. Then D(x, y) of (10) counts all the networks with at least one edge.

Now let P(x, y) count the s-networks, so that E = D(x, y) - P(x, y) counts all the networks which are not s-networks. Their series unions are distinct and exhaust all the s-networks, by Proposition 1.1 for s-networks decomposition. But series unions are ordered k-tuples, $k \ge 2$; so $P(x, y) = xE^2(1-xE)^{-1}$, and substituting for E yields (11).

Let U count non-p-networks with at least 2 edges. These have non-

adjacent poles, and together with the zero-edge network, are all the non-p-networks with non-adjacent poles. Their parallel unions, which also have non-adjacent poles, are distinct and exhaust all the p-networks with non-adjacent poles, by Proposition 1.1 for p-network decomposition. But parallel unions are unordered k-tuples, $k \ge 2$; so $U = \log(K(x, y))$.

By the first assertion of Proposition 1.1, the right side of (8) counts the *h*-networks. But $(2/x^2) \partial F(x, y)/\partial y$ counts the pseudo-bricks; so by Proposition 1.1 for *h*-network decomposition, the left side of (8) also counts *h*-networks. This completes the proof of formulae (8)–(11).

We note the following generalization, which requires no further proof.

PROPOSITION 1.2. Let X be a set of bricks, X' be the set of pseudo-bricks N such that $N^* \in X$, X" be the set of networks obtained by requiring the cores of h-networks to be taken from X', and Y be the set of blocks N^* such that $N \in X$ ". Then (8)-(11) are valid if F(x, y) counts X and B(x, y) counts Y.

Trakhtenbrot's theorem was part of a study made together with V. A. Kuznetzov [9] of networks, called "strongly-connected networks," and pseudo-bricks which, together with the networks with 1 and 2 edges, are called "indecomposable networks," and the two classes of Boolean functions they code. Drawings of all the indecomposible networks with at most 10 edges appear at the end of [9]. It turns out [18] that repeated network decomposition is essentially equivalent to the unique decomposition of multiblocks into bricks, bonds and polygons, where the uniqueness condition is not the maximality of the components as in [15, Chap. 11], but the non-adjacency of two components if both are bonds or if both are polygons. The sufficiency of this condition was conjectured in [12] and recently proved in [2] and [3]. We have used this "decomposition into 3-connected components" and a modification of the methods of [11] to count unlabelled bricks [18]. Here we note that the set Y of Proposition 1.2 is the set of blocks whose 3-connected components include only bricks taken from X.

2. COUNTING LABELLED HOMEOMORPHICALLY IRREDUCIBLE 2-CONNECTED GRAPHS

To prove (5)–(7) we use the classical series-parallel decomposition of a multiblock, expressed below as Proposition 2.1. A drawing of this type of decomposition is given in Fig. 3 of [18]. A series-parallel network (SPN) can be defined inductively as either the 1-edge network or else the series union or parallel union of SPN's. A block or multiblock $G = N^*$ which can be obtained from some series-parallel network N by adding an edge between

the poles of N is called a series-parallel graph (SPG) or series-parallel multigraph (SPM), respectively. An H-block is a block without vertices of degree <3.

PROPOSITION 2.1. Let G be a multiblock with at least 2 edges.

- (a) If G is an SPM, then for any edge $e = \{u, v\}$ of G, deleting and orienting e yields an SPN with poles and u and v.
- (b) If G is not an SPM, then G has a unique decomposition whose core is an H-block and whose components are SPN's.

Proof. Part (a) follows from the well-known characterization of an SPN as a network with no "Wheatstone bridge"—that is, a network N is an SPN iff N^* has no homeomorph of K_4 , the complete graph on 4 vertices. Clearly this is a property of the multiblock $G = N^*$ and not of the particular edge one deletes to make N.

To prove part (b), we define a homeomorphic reduction on a multiblock G to consist of either replacing a vertex of degree 2—with distinct neighbors—and its incident edges by an edge joining these neighbours, or of deleting one edge from a set of parallel edges. Successive homeomorphic reductions will eventually reduce G to some homeomorphically irreducible block G_0 , which is either a single edge or an H-block. If G_0 is a single edge, then G must be an SPM, since the existence in G of a homeomorph of K_4 precludes reducibility to a single edge [5]. If G_0 is a H-block, then by an argument similar to the one in [5] it follows that any sequence of reductions will reduce G to G_0 : the crucial point is that 2 reductions commute unless G is a triangle, which is an SPG. Reversing these reductions turns each edge of G_0 into an SPN, yielding the required unique decomposition of G.

Now let R(x, y) count the SPN's assumed to be labelled and without parallel edges, and let S(x, y) count those which are s-networks. Clearly SPN's are characterized as networks in which no h-networks appear at any level of decomposition or, equivalently, SPM's are just multiblocks with no bricks among their 3-connected components. By Proposition 1.2 with $X = \phi$ and part (a) of Proposition 2.1, the SPG's can be counted from (8)–(11) after first setting the left side of (8) to 0. Thus (6) and (7) follow from (8), (10) and (11), and by integrating (9) and setting the lower limit of integration to 0 to exclude the zero-edge, 2-vertex graph it follows that the last term in (5) counts the SPG's. Since H(x, y) counts H-blocks, the left side of (5) counts those blocks which are not SPG's, by part (b) of Proposition 2.1. This completes the proof of formulae (5)–(7).

Labelled graphs with no vertices of degree 2 were counted in [8] along with those that are connected. So labelled graphs with at least one vertex of

degree 2 are counted by connectivity, since such a graph cannot be 3-connected.

We have also counted unlabelled H-blocks [18].

3. Numerical Solution of the Equations

For the remainder of this article, if the names of the arguments of a function are omitted, they are assumed to be x and y, and partial derivatives are expressed by subscripting, so that B_{xx} means $\partial^2 B/\partial x^2$.

TABLE I

The number of Labelled 3-Connected (F) and Homeomorphically Irreducible 2-Connected (H) n-Vertex m-Edge Graphs for $n \le 10$

n	m	Н	F	n	m	H	F
4	6	1	1	8	12	19320	16800
				8	13	515760	442680
5	8	15	15	8	14	2821500	2485920
5	9	10	10	8	15	7207396	6629056
5	10	1	1	8	16	11163523	10684723
				8	17	11924808	11716068
6	9	70	70	8	18	9459226	9409806
6	10	537	492	8	19	5831560	5824980
6	11	735	690	8	20	2872737	2872317
6	12	395	395	8	21	1147676	1147576
6	13	105	105	8	22	373156	373156
6	14	15	15	8	23	98112	98112
6	15	1	1	8	24	20475	20475
				8	25	3276	3276
7	11	5670	5040	8	26	378	378
7	12	32375	28595	8	27	28	28
7	13	63945	58905	8	28	1	1
7	14	66090	63990	Ü	-0	-	-
7	15	42602	42392				
7	16	18732	18732				
7	17	5880	5880				
7	18	1330	1330				
7	19	210	210				
7	20	21	21				
7	21	1	1				

TABLE I (continued)

F	Н	m	n	F	Н	n m	
9238320	11052720	15	10	3197880	3787560	14	9
577432800	681515100	16	10	50828400	59121720	15	9
7488142200	8579598300	17	10	296711100	333188100	16	9
46189596600	51121236600	18	10	962902080	1040804100	17	9
175880023200	188523083700	19	10	2061518844	2158303224	18	9
469919266740	491009360625	20	10	3200708952	3277818432	19	9
951063537600	975949118145	21	10	3830943438	3872947050	20	9
1534460236200	1556478133290	22	10	3688441200	3704885712	21	9
2046277331640	2061536771430	23	10	2943415800	2948201280	22	9
2315459369700	2324010011625	24	10	1986963048	1987998768	23	9
2266183117296	2270132385381	25	10	1149664509	1149824529	24	9
1945288222920	1946802611250	26	10	574535052	574550928	25	9
1479253936440	1479734628330	27	10	248787126	248787882	26	9
1003461253560	1003586008995	28	10	93290260	93290260	27	9
610026517620	610052393295	29	10	30163059	30163059	28	9
333212790864	333216921144	30	10	8340552	8340552	29	9
163687633560	163688109840	31	10	1947540	1947540	30	9
72270485595	72270520875	32	10	376992	376992	31	9
28618930515	28618931775	33	10	58905	58905	32	9
10128741210	10128741210	34	10	7140	7140	33	9
3187559828	3187559826	35	10	630	630	34	9
885933085	885933085	36	10	36	36	35	9
215540145	215540145	37	10	1	1	36	9
45379260	45379260	38	10				
8145060	8145060	39	10				
1221759	1221759	40	10				
148995	148995	41	10				
14190	14190	42	10				
990	990	43	10				
45	45	44	10				
1	1	45	10				

Logarithms and exponentials were computed by a two-variable version of [6, p. 9, formula 1.2.8]—a similar generalization appears in [4, p. 406]. Equations (3), (5) and (8) were solved using a two-variable version of the method described in [6, p. 11, formula 1.3.10], modified by subtracting the appropriate multiples of all the coefficients in the kth power of z/x, R/y and

TABLE II The Number of Labelled Homeomorphically Irreducible 2-Connected Graphs with $n \le 20$ Vertices

n													
4													
5													2
6													185
7												2	3685
8												534	5883
9											214	1944	0440
10										155	804	750	7698
11									206	666	055	594	6496
12								509	873	225	158	3609	8023
13							2377	7475	649	132	323	3672	0265
14						2125	7083	3955	793	721	009	155	53094
15					368	86187	1325	5528	386	062	521	373	72770
16				125	39644	24003	3939	312	2770	145	559	900	7227
17			. 8	409662	82914	66407	7343	3606	691	555	669	471	8694
18		. 1	118032	145815	83741	06547	0954	1295	082	944	987	737	56658
19		295619	606502	752072	01209	12108	6401	216	157	362	077	7036	55176
20	15579	0616837	543983	819737	57506	52595	0508	3091	686	657	296	069	27348

n											
4											1
5											26
6											1768
7										2	225096
8										517	725352
9									. 2	11328	302554
10									1546	37991	747936
11								206	0402	17704	103328
12							50	9280	1940	11585	515328
13						2	237644	4239	4892	8994	197504
14						21253	373296	9001	6645	21998	361760
15					368	841339	903194	6270	1453	17238	372256
16				125	39404	826153	318472	27584	7755	38817	715712
17			. 8	4096092	20996	314849	951020	1211	505€	60596	544928
18	•			820109:							
19	•	295619	409809	746023	81353	631386	668392	0626	4035	49276	573344
20	155790	584232	837889	549164	42045	259737	736610	00302	24526	96990	002368

D/y, respectively, from the right side of (3), (5) and (8), respectively, before replacing those coefficients in the memory by those of the k+1st power. The theoretical estimates of the time required to solve these equations up to vertices by these methods are $O(n^4)$ operations for (6) and (7), $O(n^6)$ for (2), (11) and (5), $O(n^7)$ for (3) and $O(n^8)$ for (8), where an "operation" is a multiple-integer-precision multiplication or addition. Using FORTRAN multiple-integer-precision routines we have computed the numbers $H_{n,m}$ and $F_{n,m}$ for $n \le 17$ and all relevant m in roughly one hour of computing time on the BESM-6 computer at Moscow State University. Table I contains the $H_{n,m}$ and $F_{n,m}$ for $n \le 10$.

We have also developed a method of counting labelled bricks and labelled homeomorphically irreducible blocks by number of vertices alone up to n vertices in $O(n^3)$ operations. The basic idea is first to integrate (3), (8) and the integrand of (5) analytically (with lower limit zero), then to solve for H(x, 1) by finding B(x, y) and the integral of (5) as power series in x subject to the condition that R = 1, and finally to solve for F(x, 1) by finding B(x, y) and $\log((1 + y)/2)$ as power series in x subject to the condition that D = 1. We have counted labelled homeomorphically irreducible blocks with up to 34 vertices in 10 minutes of computer time and labelled bricks with up to 37 vertices in 20 minutes. Tables II and III contain the numbers of labelled homeomorphically irreducible blocks and labelled bricks, respectively, with from 4 to 20 vertices.

4. COMPARISON WITH WORMALD'S ENUMERATION OF LABELLED 3-CONNECTED GRAPHS

After the first draft of this paper had been submitted for publication, we learned of two independent enumerations of labelled bricks [1, 19]. We demonstrate the equivalence of Eqs. (8)–(11) with Eq. (1) of [19], using a method suggested by the referee with the original aim of improving upon Eqs. (8)–(11). It was proved in [13] by calculus and in [20] combinatorially that B(x, y) satisfies the partial differential equation

$$x^{2}(1 + B_{xx}(1 - xB_{xx})^{-1}) = 2(1 + y)B_{y}.$$
 (12)

Calculations similar to those in [13] yield the following second-order second-degree PDE for F(x, D):

$$(1+D)F_D = (x^2/2)F_{xx} - (x^4D^4/4)/(1+xD)^2 + (x^4/4)(W_x^2/W_D)$$
 (13)

where

$$W(x, D) = \log(1 + D) - xD^{2}/(1 + xD) - (2/x^{2}) F_{D}(x, D).$$
 (14)

The basic idea is to express y and the derivatives of B in terms of x, D and F and its derivatives and substitute into (12). Define W(x, D) as in (14); then from (8), (10), (11) and (14) we have

$$y = -1 + \exp(W(x, D))$$
 (15)

and from (9),

$$B_{\nu}(x, y) = (x^2/2)(D+1) \exp(-W(x, D)).$$
 (16)

Now $B_D = B_y y_D$; computing B_D from (15) and (16) and integrating (with lower limit zero) yields

$$B(x, y(x, D)) = (x^2/2)[(D+1)W - T]$$
(17)

where

$$T(x, D) = \int_{0}^{D} W(x, t) dt.$$
 (18)

Differentiating the left side of (17) with respect to x yields $B_x + B_y y_x$; so from (15), (16) and (17) we obtain

$$B_x(x, y(x, D)) = x[(D+1)W - T] - (x^2/2) T_x.$$
 (19)

Differentiating the left side of (19) with respect to x and D yields $B_{xx} + B_{xy} y_D$ and $B_{xy} y_D$, respectively; so if we let G(x, D) be the right side of (19), we obtain

$$B_{xx} = G_x - G_D y_x / y_D. (20)$$

Another expression for B_{xx} is obtained by substituting from (9) and (10) into (12):

$$B_{xx} = D(1 + xD)^{-1}. (21)$$

Equating (20) and (21) and substituting for G we have

$$D(1+xD)^{-1} - (D+1)W + T + 2xT_x + (x^2/1)T_{xx} = (x^2/2)(W_x^2/W_D).$$
 (22)

Finally, evaluating the integral in (18) to find T and then substituting for T and W in the left side of (22) but not in the right side and simplifying yields (13). And changing D to y and W to T in (13) and (14) yields Eq. (1) of [19].

Equations (13) and (14), and hence Eq. (1) of [19], are solvable in $O(n^6)$, an improvement over the $O(n^8)$ required for (8), but not over the $O(n^3)$ needed to count labelled bricks by number of vertices alone.

ACKNOWLEDGMENTS

We are indebted to O. B. Lupanov for supervising this research, to Misha Zaitzev for pointing out the equivalence of indecomposible networks to pseudo-bricks, to Sergei Ishenko for numerous programming hints, to N. Wormald for graciously withdrawing his tables, and to the referee for, among many other things, his patience.

REFERENCES

- 1. N. M. BOGOLYUBOV, A. N. VASILYEV, AND Y. M. PISMAK, Enumeration of labelled 3-connected graphs, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov iomi, in press. English transl. J. Soviet Math., in press.
- W. H. Cunningham, "A Combinatorial Decomposition Theory," Ph. D. Thesis, University of Waterloo, 1973.
- W. H. CUNNINGHAM AND J. EDMONDS, A combinatorial decomposition theory, Canad. J. Math. 32 (1980), 734-765.
- 4. E. N. GILBERT, Enumeration of labelled graphs, Canad. J. Math. 8 (1956), 405-411.
- F. HARARY, J, KRARUP, AND A. SCHWENK, Graphs suppressible to an edge, Canad. Math. Bull. 15 (1971), 201-204.
- F. HARARY AND E. M. PALMER, "Graphical Enumeration," Academic Press, New York/London, 1973.
- 7. S. V. Jablonski, "The theory of graphs and networks," Institut Prikladnoy Matematiki, Akad. Nauk SSSR, Moscow, 1972. [Russian]
- 8. D. M. JACKSON AND J. W. REILLY, The enumeration of homeomorphically irreducible labelled graphs, J. Combin. Theory Ser. B 19 (1975), 272-286.
- V. A. KUZNETZOV, On non-repeating contact schemes and non-repeating superpositions of functions of the algebra of logic, *Trudi Mat. Inst. Akad. Nauk SSSR* 51 (1958), 186-225. [Russian]
- R. J. RIDDELL, Contribution to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- 11. R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327–356.
- R. TARJAN AND J. HOPCROFT, Finding the triconnected components of a graph, SIAM J. Comput. 2 (1973), 135-158.
- 13. H. N. V. TEMPERLEY, On the enumeration of Mayer cluster integrals, *Proc. Phys. Soc.* 72 (1958), 1141-1144.
- 14. B. A. TRAKHTENBROT, Towards a theory of non-repeating contact schemes, *Trudi Mat. Inst. Akad. Nauk SSSR* 51 (1958), 226-269. [Russian]
- 15. W. T. TUTTE, "Connectivity in Graphs," University of Toronto Press, Toronto, 1966.
- 16. W. T. TUTTE, A census of planar maps, Canad. J. Math. 15 (1963), 249-271.
- F. Y. VETUKHNOVSKI, "Graphs and Networks," Diskretnaya matematika i matematicheskie voprosi kibernetiki 1, Ed: pp. 149-206, Nauka, Moscow, 1974. [Russian]
- 18. T. R. S. WALSH, Counting unlabelled three-connected and homeomorphically irreducible two-connected graphs, J. Combin. Theory Ser. B 32 (1982), 12-32.
- 19. N. WORMALD, Enumeration of labelled graphs. I. 3-connected graphs, J. London Math. Soc. (2) 19 (1979), 7-12.
- N. WORMALD AND E. M. WRIGHT, The exponential generating function of labelled blocks, Discrete Math. 25 (1979), 93-96.