- (1) The nullspace of A is the orthogonal of the row space of A.
- (2) The left nullspace of A is the orthogonal of the column space of A.

The above statements constitute what Strang calls the Fundamental Theorem of Linear Algebra, Part II (see Strang [170]).

Since vectors are represented by column vectors and linear forms by row vectors (over a basis in E or F), a vector $x \in \mathbb{R}^n$ is orthogonal to a linear form y iff

$$yx = 0.$$

Then, a vector $x \in \mathbb{R}^n$ is orthogonal to the row space of A iff x is orthogonal to every row of A, namely Ax = 0, which is equivalent to the fact that x belong to the nullspace of A. Similarly, the column vector $y \in \mathbb{R}^m$ (representing a linear form over the dual basis of F^*) belongs to the nullspace of A^{\top} iff $A^{\top}y = 0$, iff $y^{\top}A = 0$, which means that the linear form given by y^{\top} (over the basis in F) is orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space of A is equal to the orthogonal of the left nullspace of A, we get the following criterion for the solvability of an equation of the form Ax = b:

The equation Ax = b has a solution iff for all $y \in \mathbb{R}^m$, if $A^{\top}y = 0$, then $y^{\top}b = 0$.

Indeed, the condition on the right-hand side says that b is orthogonal to the left nullspace of A; that is, b belongs to the column space of A.

This criterion can be cheaper to check that checking directly that b is spanned by the columns of A. For example, if we consider the system

$$x_1 - x_2 = b_1$$
$$x_2 - x_3 = b_2$$
$$x_3 - x_1 = b_3$$

which, in matrix form, is written Ax = b as below:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

we see that the rows of the matrix A add up to 0. In fact, it is easy to convince ourselves that the left nullspace of A is spanned by y = (1, 1, 1), and so the system is solvable iff $y^{\mathsf{T}}b = 0$, namely

$$b_1 + b_2 + b_3 = 0.$$

Note that the above criterion can also be stated negatively as follows:

The equation Ax = b has no solution iff there is some $y \in \mathbb{R}^m$ such that $A^\top y = 0$ and $y^\top b \neq 0$.