Mestrado Integrado em Engenharia Informática Tópicos de Matemática Discreta 4. Relações Binárias

José Carlos Costa

Dep. Matemática Universidade do Minho

 1° semestre 2020/2021

Neste capítulo estudaremos

Relações Binárias

- Noções básicas
- Relações de equivalência
- Relações de ordem parcial
- Um par ordenado (a, b) pode ser utilizado para representar a noção de que o objeto a está em relação (i.e., associado de uma forma determinada) com o objeto b.
- Uma relação binária é, então, um conjunto R de pares ordenados: um par ordenado (a, b) pertence a R se e só se a está R-relacionado com b.

TMD Cap 4

DEFINIÇÃO

Sejam A e B conjuntos.

- Uma relação (binária) de A em B (ou correspondência de A para B) é um subconjunto R do produto cartesiano A × B.
- Os conjuntos A e B dizem-se, respetivamente, o conjunto de partida e o conjunto de chegada de R.
- Quando A = B, diz-se simplesmente que R é uma relação (binária) em A.

Notação

Seja $R \subseteq A \times B$ uma relação e sejam $a \in A$ e $b \in B$.

- Se $(a, b) \in R$, então diz-se que a está relacionado com b por R (ou que a está R-relacionado com b), e denota-se a R b.
- Se $(a, b) \notin R$, então diz-se que a não está relacionado com b por R (ou que a não está R-relacionado com b), e escreve-se $a \not R b$.

① Sejam $A = \{0, 2, 4\}$ e $B = \{0, 1, 2, 3\}$. Então

$$\begin{split} R_1 &= \{(0,1)\}, \\ R_2 &= \{(0,1), (0,2), (2,2), (4,1)\}, \\ R_3 &= \{(0,0), (0,2), (2,0), (2,1), (2,3)\}, \end{split}$$

são relações de A em B, enquanto que

$$S = \{(0,0), (1,1), (2,2), (3,3)\}$$

não o é pois $S \not\subseteq A \times B$. A correspondência R_3 , por exemplo, pode ser descrita pelo seguinte diagrama

② Sejam $A = \{1, 2, 3\}$ e $B = \{2, 4, 6, 9, 10\}$, e seja R a relação de A em Bdefinida por

a R b se e só se a b (ou seja, a divide b).

Então

$$R = \{(1,2), (1,4), (1,6), (1,9), (1,10), (2,2), (2,4), (2,6), (2,10), (3,6), (3,9)\}.$$

Note-se que:

- $2 \cancel{R} 9$ pois $2 \cancel{1} 9$, embora $(2,9) \in A \times B$;
- 5 R 10 pois $(5, 10) \notin A \times B$, embora 5 | 10.
- **3** Seja $A = \{1, 2, 3\}$. Então

$$\emptyset$$
, $\{(1,1),(1,2),(2,2),(3,2)\}$, $\{(1,2),(3,3)\}$, A^2

são relações em A.

 $\P = \{(x,y) \in \mathbb{Z}^2 : y = 2x\}$ é uma relação em \mathbb{Z} . Por exemplo,

$$(0,0) \in R,$$
 $(1,2) \in R,$ $(4,8) \in R,$

$$(1\ 2) \subset R$$

$$(4,8) \in R$$

$$(-2, -4) \in R$$
, $(2, 3) \notin R$, $(8, 4) \notin R$.

$$(2.3) \notin R$$
.

$$(8,4) \notin R$$

Observação

Sejam A e B conjuntos. Note-se que:

- O conjunto de todas as relações binárias de A em B é o conjunto potência $\mathcal{P}(A \times B)$. Em particular:
 - ∅ é uma relação de A em B, chamada a relação vazia;
 - A × B é uma relação de A em B, chamada a relação universal.
- ② Se A e B são conjuntos finitos, com m e n elementos respetivamente, então
 - $A \times B$ tem mn elementos, donde $\mathcal{P}(A \times B)$ tem 2^{mn} elementos;
 - existem portanto 2^{mn} relações binárias de A em B.

Notação

Seja A um conjunto não vazio. Então,

- $id_A = \{(a, a) : a \in A\}$ é uma relação em A, dita a relação identidade em A;
- $\omega_A = A^2$ é uma relação em A, chamada a relação universal em A.

As relações id_A e ω_A são também usualmente denotadas por Δ_A ("delta A") e ∇_A ("nabla A") respetivamente.

Exercício

Considere os conjuntos

$$A = \{2, 3, 4, 5\}, B = \{a, b, c\}$$
 e $R = \{(x, y) \in A^2 : x < y\}.$

Indique o valor lógico das seguintes proposições:

- (a) $\{(2, a), (4, b)\}$ é uma relação binária de A em B;
- (b) $\{(a,2),(b,2),(b,b),(c,a)\}$ é uma relação binária de B em A;
- (c) $id_A = \{(2,2), (3,3), (4,4)\};$
- (d) $\{(c,c),(a,a),(b,b)\}$ é a relação identidade em B;
- (e) $(2,4) \in R$;
- (f) 4 R 2;
- (g) $(1,5) \in R$;
- (h) R é uma relação em A com 6 elementos.

RESPOSTA

(a) V; (b) F; (c) F; (d) V; (e) V; (f) F; (g) F; (h) V.

DEFINIÇÃO

Seja R uma relação binária de A em B.

• O *domínio* de *R* é o seguinte subconjunto de *A*

$$Dom(R) = \{a \in A : \exists_{b \in B} (a, b) \in R\}.$$

• A *imagem* ou *contradomínio* de *R* é o seguinte subconjunto de *B*

$$\operatorname{Im}(R) = \{b \in B : \exists_{a \in A} \ (a, b) \in R\}.$$

EXEMPLO

Seja $R = \{(1,0), (1,1), (1,3), (5,0), (5,3), (7,1), (7,3)\}$ a relação do conjunto $A = \{1,3,5,7\}$ no conjunto $B = \{0,1,2,3,4\}$, ilustrada pelo seguinte diagrama

Então,

$$Dom(R) = \{1, 5, 7\},\$$

$$Im(R) = \{0, 1, 3\}.$$

Exercício

Seja R a relação binária em \mathbb{Z} definida por

$$aRb$$
 se e só se $|a|=2b$.

Calcule Dom(R) e Im(R).

DEFINIÇÃO

Dados conjuntos A e B, uma relação binária R de A em B diz-se:

- total quando Dom(R) = A;
- unívoca quando $\forall_{a \in A} \forall_{b_1,b_2 \in B} ((a R b_1 \land a R b_2) \rightarrow b_1 = b_2);$
- uma função ou aplicação quando R é uma relação total e unívoca.

OBSERVAÇÃO

- Escreve-se $f: A \to B$ para indicar que f é uma função de A em B.
- Se f é uma função de A em B então, para cada $a \in A$, escreve-se f(a) = b, onde b é o único elemento de B tal que $(a, b) \in f$, e diz-se que b é aimagem de a por f ou que b é o valor que a função f assume em a.

TMD Cap 4

Observação

Se R e S são relações binárias de A em B, então $R \cup S$, $R \cap S$ e $R \setminus S$ são também relações binárias de A em B.

EXEMPLO

Consideremos as relações

$$R = \{(1,d), (1,e), (2,d), (3,d)\}$$
e
$$S = \{(1,d), (2,d), (3,d), (4,e)\}$$
do conjunto $A = \{1,2,3,4\}$ no conjunto $B = \{d,e\}$. Então
$$R \cup S = \{(1,d), (1,e), (2,d), (3,d), (4,e)\},$$

$$R \cap S = \{(1,d), (2,d), (3,d)\},$$

$$R \setminus S = \{(1,e)\}$$

são relações binárias de A em B.

Noções básic

As operações de união, interseção e complementação permitem obter relações a partir de outras. Estudaremos de seguida outras operações sobre relações.

DEFINIÇÃO

Dada uma relação binária R de A em B, a relação binária de B em A

$$R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$$

é chamada a relação inversa de R.

EXEMPLOS

• Consideremos os conjuntos $A = \{1,3,5\}$ e $B = \{1,2,3,4\}$. A relação $R = \{(1,1),(1,2),(1,3),(5,2),(5,3)\}$ de A em B, tem como inversa a relação $R^{-1} = \{(1,1),(2,1),(3,1),(2,5),(3,5)\}$ de B em A.

4 A relação $S = \{(x,y) \in \mathbb{N}^2 : x \leq y\}$ em \mathbb{N} , dada em extensão por

$$S = \{(1,1), (1,2), (1,3), (2,2), (1,4), (2,3), (1,5), (2,4), (3,3), \ldots\},\$$

tem como inversa a relação em \mathbb{N} ,

$$S^{-1} = \{(y, x) \in \mathbb{N}^2 : x \le y\}$$

$$= \{(x, y) \in \mathbb{N}^2 : x \ge y\}$$

$$= \{(1, 1), (2, 1), (3, 1), (2, 2), (4, 1), (3, 2), (5, 1), (4, 2), (3, 3), \dots\}.$$

TEOREMA

Sejam R e S relações binárias de A em B. Então,

- **1** $\operatorname{Dom}(R^{-1}) = \operatorname{Im}(R) \in \operatorname{Im}(R^{-1}) = \operatorname{Dom}(R);$
- $(R^{-1})^{-1} = R$;
- **③** Se $R \subseteq S$, então $R^{-1} \subseteq S^{-1}$.

DEFINIÇÃO

Consideremos relações $R \subseteq A \times B$ e $S \subseteq B \times C$. A relação binária de A em C dada por $S \circ R = \{(a,c) \in A \times C : \exists_{b \in B} \ (aRb \wedge bSc)\}$

é chamada a relação composta de S com <math>R, também dita "S após R".

EXEMPLOS

• Sejam $A = \{a, b, c, d\}$, $B = \{1, 2, 3\}$ e $C = \{x, y, z\}$. As relações $R = \{(a, 1), (b, 2), (b, 3), (d, 1), (d, 3)\}$, de A em B, e $S = \{(1, y), (2, x), (2, z), (3, y)\}$, de B em C,

têm como composta a relação

$$S \circ R = \{(a, y), (b, x), (b, y), (b, z), (d, y)\}, \text{ de } A \text{ em } C.$$

e

② Seja $A = \{1, 2, 3\}$ e consideremos as relações em A

$$R = \{(1,1), (1,2), (2,2), (2,3), (3,1)\}$$

$$S = \{(1,3), (2,3), (3,2)\}.$$

Então,

$$S \circ R = \{(1,3), (2,2), (2,3), (3,3)\},$$

$$R \circ S = \{(1,1), (2,1), (3,2), (3,3)\},$$

$$R \circ R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)\},$$

$$(R \circ S) \circ S = \{(1,2), (1,3), (2,2), (2,3), (3,1)\},$$

$$R^{-1} = \{(1,1), (1,3), (2,1), (2,2), (3,2)\}.$$

 $R \circ R^{-1} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\},\$

etc.

EXERCÍCIO

Seja $A = \{D, E, F, H, I, J, L, N, T, X\}$. Considere as seguintes relações em A: $P = \{(J, L), (J, D), (L, T), (L, I), (X, N)\},$ $M = \{(E, J), (E, H), (H, N), (D, F)\}.$

- **1** Determine P^{-1} , $P \circ M$, $M \circ P$ e $P \circ P^{-1}$.
- ② Se P é a relação "é pai de" e M é a relação "é mãe de", o que é:
 - i) E em relação a L?
 - ii) J em relação a F?
 - iii) D em relação a L?
 - iv) D em relação a 1?

Resposta

- $P^{-1} = \{(L, J), (D, J), (T, L), (I, L), (N, X)\},$ $P \circ M = \{(E, L), (E, D)\}, \quad M \circ P = \{(J, F)\},$ $P \circ P^{-1} = \{(L, L), (D, D), (D, L), (L, D), (I, I), (I, T), (T, I), (T, T), (N, N)\}.$
- 2) i) Avó paterna; ii) Avô materno; iii) Irmã; iv) Tia.

TEOREMA

Sejam $R \subseteq A \times B$, $S \subseteq B \times C$ e $T \subseteq C \times D$ relações binárias. Então,

- ① $\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R) \in \operatorname{Im}(S \circ R) \subseteq \operatorname{Im}(S)$;
- $R \circ id_A = R = id_R \circ R$:
- $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

DEMONSTRAÇÃO

Apresentamos a prova de 4 e deixamos as restantes como exercício.

Note-se que $(S \circ R)^{-1}$ e $R^{-1} \circ S^{-1}$ são relações de C em A. Para qualquer $(c,a) \in C \times A$, tem-se

$$(c, a) \in (S \circ R)^{-1}$$
 sse $(a, c) \in S \circ R$
sse $\exists_{b \in B} \ ((a, b) \in R \land (b, c) \in S)$
sse $\exists_{b \in B} \ ((b, a) \in R^{-1} \land (c, b) \in S^{-1})$
sse $\exists_{b \in B} \ ((c, b) \in S^{-1} \land (b, a) \in R^{-1})$
sse $(c, a) \in R^{-1} \circ S^{-1}$.

TMD Cap 4

Daqui resulta que $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Dedicar-nos-emos agora ao estudo de relações num conjunto A. Começamos por introduzir algumas propriedades importantes que estas relações podem ter.

Definição

Seja $R \subseteq A \times A$ uma relação binária num conjunto A. Diz-se que R é:

- reflexiva quando $\forall_{a \in A} \ a R \ a$;
- simétrica quando $\forall_{a,b\in A} (a R b \rightarrow b R a)$;
- antissimétrica quando $\forall_{a,b\in A} ((aRb \land bRa) \rightarrow a = b)$ ou, equivalentemente, quando $\forall_{a,b\in A} ((aRb \land a \neq b) \rightarrow b \not R a)$;
- transitiva quando $\forall_{a,b,c\in A} ((aRb \land bRc) \rightarrow aRc)$.

As propriedades acima podem ser caracterizadas da seguinte forma.

TEOREMA

Uma relação binária R em A é:

- reflexiva se e só se $id_A \subseteq R$;
- simétrica se e só se $R^{-1} = R$;
- antissimétrica se e só se $R \cap R^{-1} \subseteq id_A$;
- transitiva se e só se $R \circ R \subseteq R$.

José Carlos Costa (DMAT)

Seja A um conjunto.

- A relação id_A é reflexiva, simétrica, antissimétrica e transitiva.
- ② A relação ω_A é reflexiva, simétrica e transitiva. Esta relação é antissimétrica se e só se A tem no máximo um elemento.
- Se $A = \{1, 2, 3\}$, então a relação em A:
 - $R = \{(1,1), (1,2), (2,2), (3,3)\}$ é reflexiva, não simétrica, antissimétrica e transitiva;
 - $S = \{(1,1), (1,2), (2,1), (2,2)\}$ é não reflexiva, simétrica, não antissimétrica e transitiva;
 - $T = \{(1,2), (2,1), (2,3), (3,2)\}$ é não reflexiva, simétrica, não antissimétrica e não transitiva.
- **1** A relação $R = \{(x, y) \in \mathbb{Z}^2 : x \le y\}$ em \mathbb{Z} é reflexiva, não simétrica, antissimétrica e transitiva.

DEFINIÇÃO

Seja A um conjunto. Uma relação binária em A diz-se uma relação de equivalência se é reflexiva, simétrica e transitiva.

EXEMPLOS

- **1** As relações id_A e ω_A são relações de equivalência num conjunto A.
- ② Seja A o conjunto dos alunos da Universidade do Minho inscritos num único curso. A relação R definida, para cada $x,y\in A$, por

x R y se e só se x e y são alunos do mesmo curso da UM é uma relação de equivalência em A.

- **3** $R = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$ é uma relação de equivalência no conjunto $A = \{1,2,3\}$. De facto:
 - R é reflexiva visto que $id_A = \{(1,1), (2,2), (3,3)\} \subseteq R$;
 - R é simétrica porque $R^{-1} = R$;
 - R é transitiva pois $R \circ R = R \subseteq R$.

Dada uma função $f:A\to B$, a relação binária Ker(f) definida, para cada $x,y\in A$, por

$$x \operatorname{Ker}(f) y$$
 se e só se $f(x) = f(y)$

é uma relação de equivalência em A. De facto, Ker(f) é

- reflexiva: $\forall_{x \in A} f(x) = f(x)$;
- simétrica: $\forall_{x,y\in A} (f(x) = f(y) \rightarrow f(y) = f(x));$
- transitiva: $\forall_{x,y,z\in A} ((f(x) = f(y) \land f(y) = f(z)) \rightarrow f(x) = f(z))$.

A relação binária

$$Ker(f) = \{(x, y) \in A^2 : f(x) = f(y)\}$$

é chamada a equivalência kernel (ou núcleo) da função f.

EXEMPLO (CONGRUÊNCIA MÓDULO m)

Dado um natural m, dito um $m \acute{o} dulo$, a relação \equiv_m em $\mathbb Z$ dada por

$$x \equiv_m y$$
 se e só se m divide $x - y$ (i.e., $\exists_{k \in \mathbb{Z}} x - y = km$).

é uma relação de equivalência em \mathbb{Z} . Com efeito, para todos os $x,y,z\in\mathbb{Z}$,

• x - x = 0m e $0 \in \mathbb{Z}$, donde $x \equiv_m x$;

- $[\equiv_m \text{ \'e reflexiva}]$
- se $x \equiv_m y$, então x y = km para algum $k \in \mathbb{Z}$. Logo y x = -(x y) = -(km) = (-k)m, com $-k \in \mathbb{Z}$, pelo que $y \equiv_m x$;

 $[\equiv_m \text{ é simétrica}]$

• se $x \equiv_m y$ e $y \equiv_m z$, então $x - y = k_1 m$ e $y - z = k_2 m$ para alguns $k_1, k_2 \in \mathbb{Z}$. Logo, $x - z = (x - y) + (y - z) = (k_1 + k_2) m$, com $k_1 + k_2 \in \mathbb{Z}$, pelo que $x \equiv_m z$. $[\equiv_m \text{ \'e transitiva}]$

A relação de equivalência

$$\equiv_m = \{(x,y) \in \mathbb{Z}^2 : m \text{ divide } x - y\}$$

é chamada a congruência módulo m. Também se escreve $x \equiv y \pmod{m}$ em vez de $x \equiv_m y$ e lê-se " $x \notin congruente com y módulo m$ ".

Observação

Seja \equiv_3 a congruência módulo 3, a relação de equivalência em $\mathbb Z$ dada por

$$x \equiv_3 y$$
 se e só se 3 divide $x - y$ (i.e., $\exists_{k \in \mathbb{Z}} x - y = 3k$).

Notemos que, dado $x \in \mathbb{Z}$,

$$x \equiv_3 1$$
 sse $x = 3k + 1$ para algum $k \in \mathbb{Z}$ sse x tem resto 1 na divisão inteira por 3.

De modo análogo se verifica que:

- $x \equiv_3 2$ se e só se x tem resto 2 na divisão inteira por 3;
- $x \equiv_3 0$ se e só se x tem resto 0 na divisão inteira por 3.

Assim, dado que 0, 1 e 2 são os únicos restos possíveis na divisão inteira por 3 e \equiv_3 é uma relação de equivalência, $\mathbb Z$ pode ser partido em três blocos:

$$X_0 = \{x \in \mathbb{Z} : x \equiv_3 0\} = \{3k + 0 : k \in \mathbb{Z}\} = \{\dots, -6, -3, 0, 3, 6, \dots\}$$

$$X_1 = \{x \in \mathbb{Z} : x \equiv_3 1\} = \{3k+1 : k \in \mathbb{Z}\} = \{\dots, -5, -2, 1, 4, 7, \dots\}$$

$$X_2 = \{x \in \mathbb{Z} : x \equiv_3 2\} = \{3k + 2 : k \in \mathbb{Z}\} = \{\dots, -4, -1, 2, 5, 8, \dots\}.$$

Exercício

Seja $A = \{4, 5, 6, 7, 8\}$. Considere as seguintes relações binárias em A:

$$R = \{(4,4), (4,5), (5,4), (5,5), (6,6), (7,7), (7,8), (8,7), (8,8)\},\$$

$$S = \{(4,4), (4,5), (5,4), (5,5), (5,6), (6,5), (6,6), (7,7), (8,8)\}.$$

- Mostre que R é uma relação de equivalência em A.
- ② Determine $X_a = \{x \in A : x R a\}$ para cada $a \in A$.
- Mostre que 5 não é uma relação de equivalência em A.

RESPOSTA

- Para mostrar que R é uma relação de equivalência em A note-se que é
 - reflexiva visto que $id_A = \{(4,4), (5,5), (6,6), (7,7), (8,8)\} \subseteq R;$
 - simétrica porque $R^{-1} = R$;
 - transitiva pois $R \circ R = R \subseteq R$.
- ② $X_4 = X_5 = \{4, 5\}, X_6 = \{6\} \text{ e } X_7 = X_8 = \{7, 8\}.$
- **3** S não é uma relação de equivalência em A pois não é transitiva já que $(4,5), (5,6) \in S$ e, no entanto, $(4,6) \notin S$.

Definição

Seja R uma relação de equivalência num conjunto A e seja a um elemento de A.

 A classe de equivalência de a para a relação R (ou R-classe de a) é o conjunto

$$[a]_R = \{x \in A : x R a\} = \{x \in A : a R x\}$$

dos elementos de A que são R-equivalentes a a (i.e., R-relacionados com a).

A R-classe $[a]_R$ é denotada de forma abreviada por [a], e diz-se simplesmente a classe de equivalência de a, quando a relação R está subentendida.

• O conjunto quociente de A por R é a família de conjuntos

$$A/R = \{[a]_R : a \in A\}$$

formada pelas R-classes.

EXEMPLOS

① Seja $A \neq \emptyset$ e consideremos a relação de equivalência id_A . Para cada $a \in A$,

$$[a]_{\mathrm{id}_A} = \{x \in A : x \mathrm{id}_A a\} = \{x \in A : x = a\} = \{a\}$$

e, portanto,

$$A/\mathrm{id}_A = \{\{a\} : a \in A\}.$$

② Seja $A \neq \emptyset$ e consideremos a relação de equivalência ω_A . Para $a \in A$, tem-se

$$[a]_{\omega_A} = \{x \in A : x \omega_A a\} = A,$$
$$A/\omega_A = \{A\}.$$

pelo que

3 Consideremos a relação de equivalência \equiv_3 em \mathbb{Z} . Como vimos na pág. 22,

$$[0]_{\equiv_3} = \{x \in \mathbb{Z} : x \equiv_3 0\} = \{3k+0 : k \in \mathbb{Z}\} = \{\dots, -6, -3, 0, 3, 6, \dots\}$$

$$[1]_{\equiv_3} = \{x \in \mathbb{Z} : x \equiv_3 1\} = \{3k+1 : k \in \mathbb{Z}\} = \{\dots, -5, -2, 1, 4, 7, \dots\}$$

$$[2]_{\equiv_3} = \{x \in \mathbb{Z} : x \equiv_3 2\} = \{3k + 2 : k \in \mathbb{Z}\} = \{\dots, -4, -1, 2, 5, 8, \dots\}$$

donde

$$\mathbb{Z}/\equiv_3 = \{[0]_{\equiv_3}, [1]_{\equiv_3}, [2]_{\equiv_3}\}.$$

3 Seja $R = \{(4,4), (4,5), (5,4), (5,5), (6,6), (7,7), (7,8), (8,7), (8,8)\}$ a relação de equivalência em $A = \{4,5,6,7,8\}$ do exercício da pág. 23. Então,

$$[4]_R = [5]_R = \{4, 5\}, \quad [6]_R = \{6\}, \quad [7]_R = [8]_R = \{7, 8\}.$$

Assim,

$$A/R = \{\{4,5\}, \{6\}, \{7,8\}\}.$$

Na análise dos exemplos anteriores, verifica-se que as classes de equivalência são não vazias, são disjuntas duas a duas e a sua união é o conjunto no qual a relação de equivalência está definida. O teorema seguinte mostra que essa propriedade é válida para qualquer relação de equivalência.

TEOREMA

Se R é uma relação de equivalência num conjunto A, então o conjunto quociente A/R é uma partição do conjunto A.

A cada relação de equivalência num conjunto A está portanto associada uma partição de A. O próximo resultado mostra que, reciprocamente, cada partição de A determina uma relação de equivalência em A.

TEOREMA

Sejam Π uma partição de um conjunto A e \Re_{Π} a relação binária em A definida por $a \mathcal{R}_{\Pi} b$ se e só se $\exists_{X \in \Pi} a, b \in X$.

Então, \Re_{Π} é uma relação de equivalência em A.

A partição $\Pi=\{\{1,3,5\},\{2,4\},\{6\}\}$ do conjunto $A=\{1,2,3,4,5,6\}$ determina em A a relação de equivalência

$$\mathcal{R}_{\Pi} = \{(1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3), (5,5), (2,2), (2,4), (4,2), (4,4), (6,6)\}.$$

Note-se que $[1]_{\mathcal{R}_{\Pi}} = \{1,3,5\}$. Ou seja, a \mathcal{R}_{Π} -classe de equivalência do elemento 1 de A é o bloco $\{1,3,5\}$ de Π que contém 1. Esta propriedade é verificada por cada elemento de A.

Combinando os dois últimos resultados obtém-se o teorema fundamental das relações de equivalência.

TEOREMA

Seja A um conjunto e sejam R uma relação de equivalência em A e Π uma partição de A. Então,

- **1** A/R é uma partição de A e $\mathcal{R}_{A/R} = R$.
- ② \mathcal{R}_{Π} é uma relação de equivalência em A e $A/\mathcal{R}_{\Pi} = \Pi$.

Definição

Uma relação binária R num conjunto A é chamada uma $(relação\ de)$ ordem parcial quando R é reflexiva, antissimétrica e transitiva. Neste caso, o par (A,R) diz-se um conjunto parcialmente ordenado (cpo).

EXEMPLOS

Cada um dos seguintes pares é um cpo:

- **1** (A, id_A) , onde A é um conjunto e id_A é a relação identidade em A;
- (\mathbb{R}, \leq) , onde \leq é a relação "é menor ou igual a" usual em \mathbb{R} . De facto, \leq é
 - reflexiva: $\forall_{x \in \mathbb{R}} \ x \leq x$;
 - antissimétrica: $\forall_{x,y \in \mathbb{R}} ((x \le y \land y \le x) \rightarrow x = y);$
 - transitiva: $\forall_{x,y,z\in\mathbb{R}} ((x \le y \land y \le z) \rightarrow x \le z)$.
- $(\mathbb{N}, |)$, onde | é a relação "divide" em \mathbb{N} , ou seja,

$$x \mid y$$
 se e só se $\exists_{k \in \mathbb{N}} y = kx$.

1 (\mathcal{F} , \subseteq), onde \mathcal{F} é uma família de conjuntos e \subseteq é a relação de inclusão usual. Em particular, para qualquer conjunto A, ($\mathcal{P}(A)$, \subseteq) é um cpo.

Os seguintes pares não são cpo:

- $(\mathbb{R},<)$, onde < é a relação "é menor que" usual em \mathbb{R} . De facto, < não é reflexiva.
- $(\mathbb{Z}, |)$, onde | é a relação "divide" em \mathbb{Z} , ou seja,

$$x \mid y$$
 se e só se $\exists_{k \in \mathbb{Z}} y = kx$.

De facto, tem-se por exemplo $4 \mid -4$ e $-4 \mid 4$ e, no entanto, $4 \neq -4$. A relação | não é portanto uma relação antissimétrica em \mathbb{Z} .

3 (A, R), onde $A = \{1, 2, 3\}$ e $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)\}$. De facto R não é transitiva pois 1R2 e 2R3 e, no entanto, 1 R 3.

Habitualmente, usa-se o símbolo < para representar uma ordem parcial genérica num conjunto A.

Apresentamos de seguida alguma da terminologia usada em conjuntos parcialmente ordenados.

Notação

Dado um cpo (A, \leq) e dados $a, b \in A$, escreve-se:

- a < b, e lê-se "a é menor ou igual a b" ou "a precede b", para representar $(a,b) \in \leq$;
- a < b, e lê-se "a é menor que b" ou "a precede propriamente b", se $a \le b$ e $a \neq b$:
- a ≪ b, e lê-se "b é sucessor de a" ou "a é sucedido por b" ou "b cobre a" ou "a é coberto por b", se a < b e $\neg (\exists_{c \in A} (a < c \land c < b));$
- $a \parallel b$, e lê-se "a e b são incomparáveis", se $a \nleq b$ e $b \nleq a$.

Por exemplo.

- 4 || 6 em (N, |);
- 6 \ll 7 em (N, <);
- não existem $x, y \in \mathbb{R}$ tais que $x \ll y$ em (\mathbb{R}, \leq) .

REPRESENTAÇÃO GRÁFICA DE UM CPO

Um cpo (A, \leq) , em que A é um conjunto finito não vazio, pode ser representado por meio de um *diagrama de Hasse*, como se descreve a seguir:

- cada elemento a de A é representado por um ponto do plano;
- se $a, b \in A$ são tais que $a \ll b$, então representa-se b acima de a e unem-se estes dois pontos por um segmento de reta.

EXEMPLOS

● Seja $A = \{a, b, c, d, e\}$ e seja \leq a relação $id_A \cup \{(a, b), (a, c), (b, c), (d, c)\}$. O cpo (A, \leq) pode ser representado alternativamente por um dos seguintes diagramas de Hasse

② Seja $X = \{1, 2, 3\}$. O cpo $(\mathcal{P}(X), \subseteq)$ pode ser representado pelo seguinte diagrama de Hasse

 $\textbf{ Seja } A = \{1,2,3,4,5,6,10,12,15,20,30,60\} \text{ o conjunto dos divisores de } 60 \\ \text{ e seja } | \text{ a ordem parcial definida em } A \text{ por }$

$$x \mid y$$
 se e só se $\exists_{k \in \mathbb{N}} y = kx$.

O cpo (A, |) pode ser representado pelo seguinte diagrama de Hasse:

Definição

Seja (A, \leq) um cpo e seja $X \subseteq A$. Um elemento m de A diz-se um:

- *majorante* de X quando $\forall_{x \in X} x \leq m$;
- *minorante* de X quando $\forall_{x \in X} m \leq x$;
- supremo de X quando m é majorante de X e $m \le m'$ para todo o majorante m' de X (ou seja, m é o menor dos majorantes de X);
- *infimo* de X quando m é minorante de X e $m' \le m$ para todo o minorante m' de X (ou seja, m é o maior dos minorantes de X);
- minimo de X quando $m \in X$ e m é minorante de X;
- elemento maximal de X quando $m \in X$ e $\neg(\exists_{x \in X} m < x)$;
- elemento minimal de X quando $m \in X$ e $\neg (\exists_{x \in X} \ x < m)$.

Os conceitos de *majorante*, *supremo*, *máximo* e *elemento maximal* são duais, respetivamente, dos conceitos de *minorante*, *ínfimo*, *mínimo* e *elemento minimal*.

Notação

Seja (A, \leq) um cpo e seja $X \subseteq A$.

- O conjunto dos majorantes de X e o conjunto dos minorantes de X são denotados respetivamente por Maj(X) e Min(X).
- Caso existam, o supremo, o ínfimo, o máximo e o mínimo de X são únicos e representam-se respetivamente por $\sup(X)$, $\inf(X)$, $\max(X)$ e $\min(X)$.

Note-se que, em particular:

- A tem elemento máximo se $\exists_{m \in A} \forall_{x \in A} \ x \leq m$;
- A tem elemento mínimo se $\exists_{m \in A} \forall_{x \in A} \ m \leq x$.

• Consideremos o cpo (A, \leq) do exemplo 1 anterior. Então,

- A não tem majorantes nem minorantes.
- A não tem supremo, nem ínfimo, nem máximo, nem mínimo.
- Elementos maximais de A: c, e.
- Elementos minimais de A: a, d, e.

Consideremos o subconjunto $X = \{b, c, d\}$ de A. Então,

- $\operatorname{Maj}(X) = \{c\} \in \operatorname{Min}(X) = \emptyset.$
- $\sup(X) = \max(X) = c$.
- X não tem ínfimo nem mínimo.
- Elementos maximais de X: c.
- Elementos minimais de X: b, d.

2 Consideremos o cpo (A, |) do exemplo 3 anterior. Então,

- $Maj(A) = \{60\} e Min(A) = \{1\}.$
- $\bullet \ \sup(A) = \max(A) = 60.$
- $\inf(A) = \min(A) = 1$.
- 60 é o único elemento maximal e 1 é o único elemento minimal de A.

Consideremos o subconjunto $X = \{2, 6, 12, 30\}$ de A. Então,

- $Maj(X) = \{60\} e Min(X) = \{1, 2\}.$
- $\sup(X) = 60 \text{ e } \max(X) \text{ não existe.}$
- $\bullet \inf(X) = \min(X) = 2.$
- 12 e 30 são os elementos maximais e 2 é o único elemento minimal de X.

TEOREMA

Seja (A, \leq) um cpo e sejam $a, b \in A$. As seguintes afirmações são equivalentes:

- \bullet $a \leq b$;
- ② $\sup\{a, b\} = b$;
- **3** $\inf\{a,b\} = a$.

Definimos de seguida duas classes especiais de conjuntos parcialmente ordenados.

DEFINIÇÃO

Um cpo (A, \leq) diz-se um:

- **1** conjunto totalmente ordenado ou uma cadeia se, para quaisquer $a, b \in A$, os elementos a e b são comparáveis (i.e., $a \le b$ ou $b \le a$).
 - Neste caso, a ordem parcial \leq diz-se uma ordem total ou ordem linear em A.
- ② reticulado se, para quaisquer $a, b \in A$, o conjunto $\{a, b\}$ tem ínfimo e supremo.

 Do teorema da página anterior, decorre imediatamente que toda a cadeia é um reticulado. Em particular,

$$(\mathbb{R}, \leq), (\mathbb{Q}, \leq), (\mathbb{Z}, \leq), (\mathbb{N}, \leq),$$

com as relações \leq usuais são cadeias e, por isso, são reticulados.

② Os reticulados não vazios com até 5 elementos têm um dos seguintes diagramas de Hasse (sendo $R_{1,1}$, $R_{2,1}$, $R_{3,1}$, $R_{4,2}$ e $R_{5,5}$ cadeias):

3 Para qualquer conjunto A, o cpo $(\mathcal{P}(A), \subseteq)$ é um reticulado, tendo-se

$$\forall_{X,Y\in\mathcal{P}(A)} \text{ (sup}\{X,Y\} = X\cup Y \land \inf\{X,Y\} = X\cap Y).$$

Exercício

Quais dos seguintes conjuntos parcialmente ordenados são reticulados?

2 Identifique todos os diagramas de Hasse possíveis para reticulados com 6 elementos (os diagramas nestas condições são 15).

TMD Cap 4