

Łamana

Azerbejdżan słynie z dywanów. Jako mistrz projektujący wzory zamierzasz stworzyć nowy wzór będący **łamaną**. Łamana to ciąg t odcinków na płaszczyźnie zdefiniowany za pomocą t+1 punktów p_0,\ldots,p_t w następujący sposób. Dla każdego $0\leq j\leq t-1$, kolejny odcinek łamanej łączy punkty p_j oraz p_{j+1} .

Aby stworzyć nowy wzór, naniosłeś już n **kropek** na dwuwymiarowej płaszczyźnie. Współrzędne kropki i $(1 \le i \le n)$, to (x[i], y[i]). Żadne dwa punkty nie mają takiej samej współrzędnej x lub y.

Chcesz znaleźć ciąg punktów $(sx[0], sy[0]), (sx[1], sy[1]), \ldots, (sx[k], sy[k]),$ określających łamaną, która:

- zaczyna się w (0,0) (tzn. sx[0] = 0 i sy[0] = 0),
- zawiera wszystkie kropki (niekoniecznie jako końce odcinków),
- składa się jedynie z poziomych bądź pionowych odcinków (dwa kolejne punkty łamanej mają tę samą współrzędną x lub y).

Łamana może się ze sobą przecinać lub nawet nachodzić na siebie w dowolny sposób. Formalnie: każdy punkt płaszczyzny może należeć do dowolnej liczby odcinków łamanej.

Jest to zadanie typu "output only" z częściową punktacją. Masz dane 10 plików wejściowych określających położenie kropek.

Dla każdego z plików wejściowych należy wygenerować plik wyjściowy definiujący łamaną zgodną z wymaganiami zadania. Dla każdego z plików wyjściowych opisujących poprawne łamane Twój wynik będzie zależał od **liczby odcinków** tworzących łamaną (patrz tabela przeliczników w dalszej części).

Nie należy zgłaszać żadnego kodu dla tego zadania.

Format wejścia

Każdy plik wejściowy ma następujący format

- wiersz 1: n
- wiersze 1+i (dla $1 \le i \le n$): x[i] y[i]

Format wyjścia

Każdy plik wyjściowy musi mieć następujący format:

- wiersz 1: k
- wiersze 1+j (dla $1 \le j \le k$): sx[j] sy[j]

Zwróć uwagę na to, że drugi wiersz powinien zawierać sx[1] i sy[1] (tj. wyjście **nie powinno** zawierać sx[0] i sy[0]). Każda z liczb sx[i] oraz sy[i] powinna być całkowita.

Przykład

Dla przykładowego wejścia

- 4
- 2 1
- 3 3
- 4 4
- 5 2

jednym z poprawnych wyjść jest:

6

2 0

2 3

5352

4 2

4 4

Uwaga: powyższego przykładu nie ma dziś wśród plików wejściowych.

Ograniczenia

- $1 \le n \le 100\,000$
- $1 \le x[i], y[i] \le 10^9$
- Wszystkie wartości x[i] oraz y[i] są całkowite.
- Żadne dwie kropki nie mają tych samych współrzędnych x ani y, czyli $x[i_1] \neq x[i_2]$ oraz $y[i_1] \neq y[i_2]$ dla $i_1 \neq i_2$.
- $-2 \cdot 10^9 \le sx[j], sy[j] \le 2 \cdot 10^9$
- Żaden plik zgłoszony do oceny (zzipowany czy nie) nie może mieć rozmiaru przekraczającego 15MB.

Ocena rozwiązania

Za każdy z testów dostaniesz co najwyżej 10 punktów. Twój plik wyjściowy otrzyma 0 punktów, jeśli nie definiuje łamanej o wymaganych własnościach. W przeciwnym razie wynik zostanie ustalony w odniesieniu do skali zależnej od malejącego ciągu c_1, \ldots, c_{10} , określonej dla każdego testu z osobna.

Przyjmijmy, że Twoja łamana składa się z k odcinków. Otrzymasz wtedy

- i punktów, jeśli $k = c_i$ (dla $1 \le i \le 10$),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ punktów, jeśli $c_{i+1} < k < c_i$ (dla $1 \leq i \leq 9$),
- 0 punktów, jeśli $k > c_1$,
- 10 punktów, jeśli $k < c_{10}$.

Ciągi wartości c_1, \ldots, c_{10} dla kolejnych testów są podane poniżej.

Testcases	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7607	75 336	108 430	138292	150475
c_3	40	674	5 213	50 671	72824	92 801	100 949
c_4	37	651	5 125	50 359	72446	92371	100500
c_5	35	640	5 081	50 203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100050
c_7	28	616	5 020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100015
c_9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Wizualizator

W paczce do tego zadania jest skrypt, który pozwoli Ci zwizualizować pliki wejściowe i wyjściowe.

Aby zwizualizować plik wejściowy użyj następującego wywołania:

```
python vis.py [input file]
```

Możesz również zwizualizować Twoje rozwiązanie dla dowolnego pliku wejściowego, używając poniższego wywołania. Ze względów technicznych wizualizator pokaże jedynie **pierwszych** 1000 **odcinków** pliku wyjściowego.

```
python vis.py [input file] --solution [output file]
```

Przykład takiego wywołania:

```
python vis.py examples/00.in --solution examples/00.out
```