Exercise 5.1. Prove or disprove: $T \in \mathcal{L}(V)$ and $\mathcal{M}(T^2)$ is upper-triangular for some basis of V, then $\mathcal{M}(T)$ is upper-triangular for some basis of V (not necessary the same as the $\mathcal{M}(T^2)$ one).

Proof. WoBuHui. □

Exercise 5.2. Let A, B are upper-triangular matrices with same size, the diagonal of A is $\alpha_0, \dots, \alpha_{n-1}$ and the diagonal of B is $\beta_0, \dots, \beta_{n-1}$. Show that

- A + B is upper-triangular and the diagonal is $\alpha_0 + \beta_0, \dots, \alpha_{n-1} + \beta_{n-1}$.
- AB is upper-triangular and the diagonal is $\alpha_0\beta_0, \cdots, \alpha_{n-1}\beta_{n-1}$.

Proof.

- Trivial.
- Take the standard basis of F^n , we have $Bv_i \in \text{span}(v_0, \dots, v_i)$ and then $A(Bv_i) \in \text{span}(v_0, \dots, v_i)$ since both A and B are upper-triangular, thus AB is upper-triangular. For the diagonal, we know $AB_{i,i} = A_{i,-}B_{-,i}$, however, components before i-th of $A_{i,-}$ are 0 and components since i-th of $B_{-,i}$ are 0, therefore $AB_{i,i} = A_{i,i}B_{i,i} = \alpha_i\beta_i$.

Exercise 5.3. Let $T \in \mathcal{L}(V)$ invertible, and $\mathcal{M}(T)$ with respect to the basis v_0, \dots, v_{n-1} of V is upper-triangular, while the diagonal is $\lambda_0, \dots, \lambda_{n-1}$. Show that $\mathcal{M}(T^{-1})$ with respect to that basis is also upper-triangular, and the diagonal is $\frac{1}{\lambda_0}, \dots, \frac{1}{\lambda_{n-1}}$.

Proof. For any $i = 1, \dots, n$, span (v_0, \dots, v_{i-1}) is invariant under T, thus it is invariant under T^{-1} since T^{-1} is the inverse of T.

For the diagonal, $TT^{-1} = I$, which diagonal is $1, \dots, 1$, which is equal to $\lambda_0 \beta_0, \dots, \lambda_{n-1} \beta_{n-1}$ where β_i is the diagonal of T^{-1} . Thus $\beta_i = \frac{1}{\lambda_i}$.

Exercise 5.4. Give an example that T an invertible operator, where the diagonal of $\mathcal{M}(T)$ is all 0.

Proof.

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Exercise 5.5. Give an example that T an singular operator, where the diagonal of $\mathcal{M}(T)$ is all non-zero.

Proof.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Exercise 5.6. Let F = C and V finite, and $T \in \mathcal{L}(V)$. Show that $k = 1, \dots, \dim V$, then there is a k-dimension subspace of V that is invariant under T.

Proof. If F = C, then $\mathcal{M}(T)$ is upper-triangular for some basis of V. Thus $\operatorname{span}(v_0, \dots, v_{k-1})$ is invariant under T where v_i is such basis.

Exercise 5.7. Let V finite and $T \in \mathcal{L}(V)$ and $v \in V$. Show that:

- There is a unique monic polymonial p_v with minimal degree such that $p_v(T)v = 0$
- Show that the minimal polymonial of T is polymonial multiple of p_v .

Proof.

- p(T)v = 0, therefore we only need to show the uniqueness. Let s, t a monic polymonial with minimal degree such that s(T)v = t(T)v = 0, then (s-t)(T)v = 0, therefore s = t, otherwise there is a polymonial s-t with lower degree such that (s-t)(T)v = 0.
- We divide p by p_v , then $p = sp_v + r$ where $s, r \in \mathcal{P}(F)$ and $\deg r < \deg p_v$. Therefore r = 0, otherwise r is a lower polymonial such that r(T)v = 0, which contradict the property of p_v . Thus $p = sp_v$.

Exercise 5.8. Let V finite and $T \in \mathcal{L}(V)$, and non-zero $v \in V$ such that $T^2 + 2Tv + 2v = 0$. Show that

- If F = R, then $\mathcal{M}(T)$ is **NOT** upper-triangular for all basis of V.
- If F = C, then the diagonal of upper-triangular $\mathcal{M}(T)$ contains -1 + i and -1 i.

Proof.

• Note that $p_v(z) = z^2 + 2z + 2$ is a minimal polymonial of Tv, it is minimal since p_v has no zero, therefore cannot have lower degree.

Then the minimal polymonial p of T is a polymonial multiple of p_v , thus p is **NOT** in form of $(z - \lambda_0) \cdots (z - \lambda_{n-1})$ since p_v has no zero, thus there is no upper-triangular matrix for T for any basis of V.

• -1 + i and -1 - i are two zeros of p_v , thus are zeros of p, therefore are in the diagonal.

Exercise 5.9. Let B square matrix with complex elements. Show that there is a square matrix A with complex elements such that $A^{-1}BA$ is a upper-triangular matrix.

Proof. We can find an operator T such that its matrix is B with respect to the standard basis. Then we can find a basis such that $\mathcal{M}(T)$ with respect to such basis is upper-triangular since B is complex. Then $A = \mathcal{M}(I, \text{standard basis}, \text{upper-trianguler basis})$, and $A^{-1}BA$ is upper-triangular,

 $A = \mathcal{M}(I, \text{standard basis, upper-triangular basis}), \text{ and } A^{-1}BA \text{ is upper-triangular basis})$ this is the change-of-basis formula.

Exercise 5.10. Let $T \in \mathcal{L}(V)$ and v_0, \dots, v_{n-1} a basis of V, show that the following statements are equivalent:

- the matrix of T with respect to v_0, \dots, v_{n-1} is lower-triangular.
- For any $k = 1, \dots, n$, span $(v_{k-1}, \dots, v_{n-1})$ is invariant under T.
- For any $k = 1, \dots, n, Tv_{k-1} \in \text{span}(v_{k-1}, \dots, v_{n-1})$.

Proof. The proof is similar to the upper-triangular one.

- $(1) \Rightarrow (2)$ For any $i \leq j$, $Tv_{j-1} \in \text{span}(v_{j-1}, \dots, v_{n-1}) \subseteq \text{span}(v_{i-1}, \dots, v_{n-1})$, thus $\text{span}(v_{k-1}, \dots, v_{n-1})$ is invariant under T.
- $(2) \Rightarrow (3)$ Tirival.
- $(3) \Rightarrow (1)$ Basically the definition.

Exercise 5.11. Let F = C and V finite. Show that $T \in \mathcal{L}(V)$, then $\mathcal{M}(T)$ is lower-triangular with respect to some basis of V.

Proof. Consider the dual map T', we know there is a basis of V' such that $\mathcal{M}(T')$ is upper-triangular, then $\mathcal{M}(T') = \mathcal{M}(T)^T$ which means $\mathcal{M}(T)^T$ is a upper-triangular, thus $(\mathcal{M}(T)^T)^T = \mathcal{M}(T)$ is lower-triangular.

Exercise 5.12. Let V finite and the matrix of $T \in \mathcal{L}(V)$ is upper-triangular with respect to some basis of V, and $U \subseteq V$ is invariant under T. Show that

- The matrix of $T|_{U}$ is upper-triangular with respect to some basis of U.
- The matrix of T/U is upper-triangular with respect to some basis of V/U.

Proof.

- Since $\mathcal{M}(T)$ is upper-triangular, then the minimal polymonial of T is in form of $p(z) = (z \lambda_0) \cdots (z \lambda_{n-1})$. Then $p(T|_U) = 0$, thus p is polymonial multiple of the minimal polymonial q of $T|_U$. therefore q is also in form of $(z \lambda_0) \cdots (z \lambda_{k-1})$. Thus there is a basis of U such that the matrix of $T|_U$ is upper-triangular.
- Let q the minimal polymonial of T/U, and p the minimal polymonial of T, then p is polymonial multiple of q (see Exercise 5.25 in E5B). Then follow the same step as last proof.

Exercise 5.13. Let V finite, $T \in \mathcal{L}(V)$, $U \subseteq V$ invariant under T, $\mathcal{M}(T|_{U})$ is upper-triangular for some basis of U, $\mathcal{M}(T/U)$ is upper-triangular for some basis of V.

Proof. We will use the conclusion of Exercise 5.25 in E5B:

st =(the minimal polymonial of $T|_{U}$) × (the minimal polymonial of T/U)

is a polymonial multiple of the minimal polymonial p of T. Thus st is in form of $(z-\lambda_0)\cdots(z-\lambda_{n-1})$ since both $\mathcal{M}(T|_U)$ and $\mathcal{M}(T/U)$ are upper-triangular for some basis, therefore p is also in form of $(z-\lambda_0)\cdots(z-\lambda_{k-1})$, hence $\mathcal{M}(T)$ is upper-triangular for some basis of V.