Locally Differentially Private Distributed Deep Learning via Knowledge Distillation2022

Arxiv Di Zhuang, Mingchen Li and J. Morris Chang, Senior Member, IEEE

Contributions

- 1. A fully trusted aggregator barely exists
- 2. Less efficient and not scalable
- 3. At least two non-colluding honest data users might not be practical
 - A novel, effective and efficient privacy-preserving distributed deep learning framework using LDP and Knowledge-Distillation.
 - An active sampling approach to efficiently reduce the total number of queries from the data user to each data owners, so that to reduce the total cost of privacy budget.

Method

- Each data owner perturbs the query data's soft label (using LDP techniques)
- LDP piecewise Mechanism

• Knowledge Distillation - Active query sampling

3) For each available public data $x_i \in X_P$, evaluate it on the student model M_S . Let P_{ij} denote the probability of x_i belonging to class $j \in \{1,2,\ldots,k\}$ predicted by M_S . Let $P_i = \{P_{i1},P_{i2},\ldots,P_{ik}\}$, and suppose $\sum_{l=1}^k P_{il} = 1$. Let P_i^* be the largest value (posterior probability) in P_i . Then, repeat the procedure below for S times to select S query samples:

$$x_{i} \leftarrow X^{P}$$

$$P_{i} \leftarrow M_{S}(x_{i})$$

$$X^{Q} \leftarrow X^{Q} \cup \underset{x_{i}}{\operatorname{argmin}} \frac{1}{m-1} \sum_{l=1}^{k} (P_{i}^{*} - P_{il})$$

$$X^{P} \leftarrow X^{P} - X^{Q}$$

$$(5)$$

Then, use X^Q to query the teacher models, and use the distilled knowledge to train the student initial student model M_S .

Experimental

- CIFAR-10/MNIST/Fashion-MNIST with LDP Piecewise mechanism /Duchi's mechanism /Laplace mechanism
- LDP-DL (SOTA) DP-SGD/PATE/DP-FL

Datasets	CIFAR10 [16]		MNIST [17]		FashionMNIST [18]	
Approaches	Accuracy	Privacy Budget	Accuracy	Privacy Budget	Accuracy	Privacy Budget
LDP-DL	77.5%	5	98.1%	5	83.4%	5
	79.7%	8	98.8%	8	85.7%	8
DP-SGD 15	73.0%	8	97.00%	8	-	-
PATE [10]	73.6%	5	97.7%	5	81.5%	5
	76.0%	8	98.2%	8	84.7%	8
DP-FL [12]	75.9%	5	96.4%	5	82.6%	5
	78.7%	8	97.2%	8	83.6%	8

TABLE 1: In Comparison with Existing Approaches.