Attention-Based Medical Knowledge Injection in Deep Image Classification Models

Anonymous Authors

I. APPENDIX

A. Ablation study: σ parameter

The value of the σ parameter determines the threshold used to consider the pixel-level attention assigned by the model as significant, or not significant. This mechanism is fundamental for us to compute the proportion of pixels with high attention over the total number of pixels in the bounding box, to subsequently calculate the custom attention loss. While in the main paper we resort to a single configuration of σ which was empirically shown to be reliable in most cases, here we provide additional experiments to study the sensitivity of our method with varying values of σ .

Since the attention heatmap is normalized to a range from 0 to 1, the candidate values for σ considered in our study are from 0.1 to 0.9, with all values spaced at 0.2 intervals, i.e. 0.1, 0.3, 0.5, 0.7, and 0.9. We employ PVT, VGG16 and ResNet50 model backbones for all classification tasks on both datasets and use 4 values for λ : {0.25, 0.5, 0.75, and adaptive (*)}. We report detailed results of experiments on testing sets in Table II to Table XXII.

To analyze the distribution of results for F1, Sensitivity, and Specificity across all tables, we consider the number of cases where specific σ values achieve the best performance, leading to the aggregated results in Table I. Aggregating these results further across all model architectures, highlights that the performance is relatively favorable for σ values of 0.1 and 0.9. More specifically, ranking σ values across all experiments based on the number of cases they achieve the best performance (considering F1-Score, Sensitivity, and Specificity), leads to the following result: $\sigma = 0.7:50, \sigma = 0.9:46, \sigma = 0.3:43, \sigma = 0.5:42, \sigma = 0.1:39.$

When considering F1, the best performance of all models across tasks is achieved with σ values of 0.5 and 0.7. More specifically, ranking σ values across all experiments only based on F1-Score leads to the following result: $\sigma = 0.5:21, \ \sigma = 0.7:19, \ \sigma = 0.9:17, \ \sigma = 0.3:16, \ \sigma = 0.1:15.$

If we consider Sensitivity, the best performance of all models across tasks is achieved with σ values of 0.1, 0.3 and 0.7. More in detail, ranking σ values across all experiments solely based on Sensitivity leads to the following result: $\sigma = \{0.1, 0.3, 0.7\}: 14, \ \sigma = 0.9: 13, \ \sigma = 0.5: 10.$ When we consider only Specificity, the performance ranking of the various σ values remains the same as when all metrics are taken into account. Specifically, ranking σ values across all experiments based on Specificity leads to the following outcome: $\sigma = 0.7: 17, \ \sigma = 0.9: 14, \sigma = 0.3: 13, \sigma = 0.5:$

 $11, \sigma = 0.1:10$. In the attempt to identify an ideal value for σ , it is also important to consider that we intend for the model to impose a greater penalty on incorrect predictions (e.g. False Negatives) during training, as referenced by formulas (3), (4), (5), and (7) in the main paper. This implies preferring relatively larger $\mathcal{L}_{attention}$ values, which leads us to prefer higher values of σ . However, it is worth noting that the value of σ should be small enough to avoid overly neglecting the contributions of the light-colored regions in attention heatmaps. Therefore, our conservative choice of $\sigma=0.3$ for results presented in the main paper is reasonably justified. Overall, we observe that the value of σ has an impact on the final model performance, although no unique trend is observed across models and metrics.

TABLE I COMPARISON OF σ VALUES: NUMBER OF CASES IN WHICH THEY ACHIEVE THE BEST PERFORMANCE ACROSS DIFFERENT CONFIGURATIONS OF λ AND FOR DIFFERENT KEY METRICS (F1, SENSITIVITY, AND SPECIFICITY) FOR ALL MODEL ARCHITECTURES.

		PV	Т				
Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$		
F1	5	4	9	7	3		
Sensitivity	6	6	5	1	3		
Specificity	4	4	5	7	3		
VGG16							
Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$		
F1	8	6	6	6	4		
Sensitivity	3	3	3	8	6		
Specificity	3	7	2	5	4		
		ResNo	et50				
Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$		
F1	2	6	6	6	10		
Sensitivity	5	5	2	5	4		
Specificity	3	2	4	5	7		

B. Comparison with medical works

In our experiments, we showed that the proposed custom loss has the potential to improve the performance of state-of-the-art model backbones using the conventional cross-entropy loss. However, another relevant aspect is that of comparing model performance with research works devoted specifically to medical image classification.

To this end, one difficulty for a direct fair comparison is presented by our specific experimental setup. For instance, the proposed custom loss led us to the selection of a subset of classes for the multi-class classification setting, based on

TABLE II RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

$\lambda = 0.5$ Metric $\sigma = 0.1$ $\sigma = 0.3$ $\sigma = 0.5$ $\sigma = 0.7$ $\sigma = 0.9$ Acc / Rec	PVT: Effusion vs No Finding							
$\lambda = 0.25 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	λ		$\sigma = 0.1$		$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	
$\lambda = 0.25 \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\lambda = 0.25 \begin{array}{c} \text{AUC} & 0.713 & 0.702 & 0.705 & 0.739 & 0.702 \\ \text{PPV} & 0.634 & 0.620 & 0.662 & 0.667 & 0.683 \\ \text{Sensitivity} & 0.756 & 0.628 & 0.577 & 0.641 & 0.551 \\ \text{Specificity} & 0.564 & 0.615 & 0.705 & 0.679 & 0.744 \\ \text{FDR} & 0.366 & 0.380 & 0.338 & 0.333 & 0.317 \\ \text{FOR} & 0.302 & 0.377 & 0.375 & 0.346 & 0.376 \\ \text{Prec} & 0.724 & 0.667 & 0.654 & 0.686 & 0.667 \\ \text{Prec} & 0.725 & 0.668 & 0.662 & 0.698 & 0.667 \\ \text{F1} & 0.724 & 0.666 & 0.649 & 0.681 & 0.667 \\ \text{AUC} & 0.771 & 0.732 & 0.743 & 0.774 & 0.727 \\ \text{Sensitivity} & 0.692 & 0.615 & 0.538 & 0.564 & 0.667 \\ \text{Specificity} & 0.756 & 0.718 & 0.769 & 0.808 & 0.667 \\ \text{FDR} & 0.260 & 0.314 & 0.300 & 0.254 & 0.333 \\ \text{FOR} & 0.289 & 0.349 & 0.375 & 0.351 & 0.333 \\ \text{ACC / Rec} & 0.615 & 0.673 & 0.679 & 0.647 & 0.647 \\ \text{Prec} & 0.617 & 0.673 & 0.679 & 0.644 & 0.643 \\ \text{AUC} & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ \text{PVV} & 0.629 & 0.671 & 0.679 & 0.644 & 0.643 \\ \text{AUC} & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ \text{PPV} & 0.629 & 0.671 & 0.679 & 0.644 & 0.643 \\ \text{Specificity} & 0.564 & 0.669 & 0.679 & 0.551 & 0.538 \\ \text{Sensitivity} & 0.564 & 0.669 & 0.679 & 0.544 & 0.621 \\ \text{Sensitivity} & 0.564 & 0.679 & 0.679 & 0.544 & 0.756 \\ \text{Specificity} & 0.667 & 0.667 & 0.679 & 0.544 & 0.756 \\ \text{Specificity} & 0.667 & 0.667 & 0.679 & 0.551 & 0.538 \\ \text{FDR} & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ \text{FOR} & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ \text{ACC / Rec} & 0.686 & 0.712 & 0.679 & 0.664 & 0.672 \\ \text{AUC} & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ \text{Specificity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.563 & 0.731 & 0.654 & 0.577 & 0.628 \\ \text{Specificity} & 0.562 & 0.280 & 0.329 & 0.359 & 0.341 \\ \end{array}$								
$\lambda = 0.25 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F1	0.657	0.622	0.640	0.660	0.644	
$\lambda = 0.25$ Sensitivity 0.756 0.628 0.577 0.641 0.551 Specificity 0.564 0.615 0.705 0.679 0.744 FDR 0.366 0.380 0.338 0.333 0.317 FOR 0.302 0.377 0.375 0.346 0.376 0.376 0.667 0.667 0.654 0.686 0.667 0.667 0.667 0.668 0.667 0.667 0.686 0.667 0.686 0.667 0.686 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.667 0.681 0.681 0.681 0.667 0.681 0.681 0.681 0.667 0.681 0.68		AUC	0.713	0.702	0.705	0.739	0.702	
$\lambda = 0.5$ Sensitivity 0.756 0.628 0.577 0.641 0.551	1 - 0.25	PPV						
$\lambda = 0.75$ FDR 0.366 0.380 0.338 0.333 0.317 FOR 0.302 0.377 0.375 0.346 0.376 Acc / Rec 0.724 0.667 0.654 0.686 0.667 Prec 0.725 0.668 0.662 0.698 0.667 F1 0.724 0.666 0.649 0.681 0.667 AUC 0.771 0.732 0.743 0.774 0.727 PPV 0.740 0.686 0.700 0.746 0.667 Sensitivity 0.692 0.615 0.538 0.564 0.667 Specificity 0.756 0.718 0.769 0.808 0.667 FDR 0.260 0.314 0.300 0.254 0.333 FOR 0.289 0.349 0.375 0.351 0.333 Acc / Rec 0.615 0.673 0.679 0.647 0.647 Prec 0.617 0.673 0.679 0.644 0.643 AUC 0.723 0.740 0.740 0.702 0.719 PPV 0.629 0.671 0.679 0.644 0.643 AUC 0.723 0.740 0.740 0.702 0.719 PPV 0.629 0.671 0.679 0.624 0.621 Sensitivity 0.564 0.679 0.679 0.551 0.538 FDR 0.371 0.329 0.321 0.376 0.379 FOR 0.395 0.325 0.321 0.317 0.311 Acc / Rec 0.686 0.712 0.679 0.664 0.673 AUC 0.720 0.734 0.760 0.726 0.735 PPV 0.638 0.720 0.671 0.669 0.664 0.672 AUC 0.720 0.734 0.760 0.726 0.735 PPV 0.638 0.720 0.671 0.641 0.659 Sensitivity 0.859 0.692 0.705 0.756 0.718 Sensitivity 0.562 0.280 0.329 0.359 0.341	$\lambda = 0.25$	Sensitivity	0.756	0.628	0.577	0.641	0.551	
$\lambda = 0.75$ FOR 0.302 0.377 0.375 0.346 0.376 Acc / Rec 0.724 0.667 0.654 0.686 0.667 Prec 0.725 0.668 0.662 0.698 0.667 Prec 0.725 0.668 0.662 0.698 0.667 Prec 0.725 0.668 0.662 0.698 0.667 AUC 0.771 0.732 0.743 0.774 0.727 PPV 0.740 0.686 0.700 0.746 0.667 Sensitivity 0.692 0.615 0.538 0.564 0.667 Specificity 0.756 0.718 0.769 0.808 0.667 FDR 0.260 0.314 0.300 0.254 0.333 FOR 0.289 0.349 0.375 0.351 0.333 POR 0.289 0.349 0.375 0.351 0.333 POR 0.289 0.349 0.375 0.351 0.333 POR 0.615 0.673 0.679 0.647 0.647 Prec 0.617 0.673 0.679 0.647 0.647 0.643 AUC 0.723 0.740 0.740 0.702 0.719 PPV 0.629 0.614 0.673 0.679 0.644 0.643 AUC 0.723 0.740 0.740 0.702 0.719 Sensitivity 0.564 0.667 0.667 0.679 0.551 0.538 PDR 0.371 0.329 0.321 0.376 0.379 FOR 0.395 0.325 0.321 0.317 0.311 POR 0.371 0.329 0.321 0.376 0.379 POR 0.395 0.325 0.321 0.317 0.311 Acc / Rec 0.686 0.712 0.669 0.664 0.672 AUC 0.720 0.734 0.760 0.726 0.735 PPV 0.638 0.720 0.671 0.679 0.664 0.672 AUC 0.720 0.734 0.760 0.726 0.735 PPV 0.638 0.720 0.671 0.679 0.664 0.672 AUC 0.720 0.734 0.760 0.726 0.735 PPV 0.638 0.720 0.671 0.641 0.659 Specificity 0.859 0.692 0.705 0.756 0.718 Specificity 0.513 0.731 0.664 0.577 0.628 FDR 0.362 0.280 0.329 0.359 0.341		Specificity	0.564	0.615	0.705	0.679	0.744	
$\lambda = 0.5$ Acc / Rec		FDR	0.366	0.380	0.338	0.333	0.317	
$\lambda = 0.5 \begin{tabular}{llll} Prec & {\bf 0.725} & 0.668 & 0.662 & 0.698 & 0.667 \\ F1 & {\bf 0.724} & 0.666 & 0.649 & 0.681 & 0.667 \\ AUC & 0.771 & 0.732 & 0.743 & {\bf 0.774} & 0.727 \\ PPV & 0.740 & 0.686 & 0.700 & {\bf 0.746} & 0.667 \\ Specificity & 0.692 & 0.615 & 0.538 & 0.564 & 0.667 \\ Specificity & 0.756 & 0.718 & 0.769 & {\bf 0.808} & 0.667 \\ FDR & 0.260 & 0.314 & 0.300 & {\bf 0.254} & 0.333 \\ FOR & 0.289 & 0.349 & 0.375 & 0.351 & 0.333 \\ Acc / Rec & 0.615 & 0.673 & 0.679 & 0.647 & 0.647 \\ Prec & 0.617 & 0.673 & 0.679 & 0.647 & 0.647 \\ Prec & 0.617 & 0.673 & 0.679 & 0.644 & 0.643 \\ AUC & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ Specificity & 0.564 & 0.679 & 0.679 & 0.624 & 0.621 \\ Specificity & 0.564 & 0.679 & 0.679 & 0.551 & 0.538 \\ FDR & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ FOR & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ Acc / Rec & 0.686 & 0.712 & 0.679 & 0.664 & 0.673 \\ Prec & 0.711 & 0.712 & 0.680 & 0.672 & 0.674 \\ AUC & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ PPV & 0.638 & 0.720 & 0.671 & 0.641 & 0.659 \\ Specificity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.513 & 0.731 & 0.654 & 0.577 & 0.628 \\ FDR & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ \hline \end{tabular}$		FOR	0.302	0.377	0.375	0.346	0.376	
$\lambda = 0.5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Acc / Rec	0.724	0.667	0.654	0.686	0.667	
$\lambda = 0.5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Prec	0.725	0.668	0.662	0.698	0.667	
$\lambda = 0.5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F1	0.724	0.666	0.649	0.681	0.667	
$\lambda = 0.5$ Sensitivity 0.692 0.615 0.538 0.564 0.667 Specificity 0.756 0.718 0.769 0.808 0.667 FDR 0.260 0.314 0.300 0.254 0.333 FOR 0.289 0.349 0.375 0.351 0.333 Acc / Rec 0.615 0.673 0.679 0.647 0.647 Prec 0.617 0.673 0.679 0.653 0.655 F1 0.614 0.673 0.679 0.644 0.643 AUC 0.723 0.740 0.740 0.702 0.719 PPV 0.629 0.671 0.679 0.624 0.621 Sensitivity 0.564 0.679 0.679 0.744 0.756 Specificity 0.667 0.667 0.679 0.551 0.538 FDR 0.371 0.329 0.321 0.376 0.379 FOR 0.395 0.325 0.321 0.317 0.311 Acc / Rec 0.686 0.712 0.679 0.664 0.673 Prec 0.711 0.712 0.689 0.672 0.673 Prec 0.711 0.712 0.689 0.672 0.673 Prec 0.711 0.712 0.689 0.672 0.674 AUC 0.720 0.734 0.760 0.726 0.735 PPV 0.638 0.720 0.671 0.669 0.726 0.735 Specificity 0.859 0.692 0.705 0.756 0.718 Specificity 0.859 0.692 0.705 0.756 0.718 Specificity 0.513 0.731 0.654 0.577 0.628 FDR 0.362 0.280 0.329 0.359 0.341		AUC	0.771	0.732	0.743	0.774	0.727	
$\lambda = * \begin{cases} \text{Sensitivity} & 0.692 & 0.615 & 0.538 & 0.564 & 0.667 \\ \text{Specificity} & 0.756 & 0.718 & 0.769 & 0.808 & 0.667 \\ \text{FDR} & 0.260 & 0.314 & 0.300 & 0.254 & 0.333 \\ \text{FOR} & 0.289 & 0.349 & 0.375 & 0.351 & 0.333 \\ \text{PoR} & 0.289 & 0.349 & 0.375 & 0.351 & 0.333 \\ \text{Acc / Rec} & 0.615 & 0.673 & 0.679 & 0.647 & 0.647 \\ \text{Prec} & 0.617 & 0.673 & 0.679 & 0.653 & 0.655 \\ \text{FI} & 0.614 & 0.673 & 0.679 & 0.644 & 0.643 \\ \text{AUC} & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ \text{Sensitivity} & 0.564 & 0.679 & 0.679 & 0.624 & 0.621 \\ \text{Sensitivity} & 0.564 & 0.679 & 0.679 & 0.744 & 0.756 \\ \text{Specificity} & 0.667 & 0.667 & 0.679 & 0.551 & 0.538 \\ \text{FDR} & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ \text{FOR} & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ \text{Acc / Rec} & 0.686 & 0.712 & 0.679 & 0.667 & 0.673 \\ \text{Frec} & 0.711 & 0.712 & 0.680 & 0.672 & 0.674 \\ \text{FI} & 0.676 & 0.711 & 0.679 & 0.664 & 0.672 \\ \text{AUC} & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ \text{Sensitivity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.513 & 0.731 & 0.654 & 0.577 & 0.628 \\ \text{FDR} & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ \end{cases}$	١ ٥٠	PPV	0.740	0.686	0.700	0.746	0.667	
$\lambda = * \begin{cases} \dot{\text{FDR}} & 0.260 & 0.314 & 0.300 & \textbf{0.254} & 0.333 \\ \dot{\text{FOR}} & 0.289 & 0.349 & 0.375 & 0.351 & 0.333 \\ \dot{\text{Acc / Rec}} & 0.615 & 0.673 & 0.679 & 0.647 & 0.647 \\ \dot{\text{Prec}} & 0.617 & 0.673 & 0.679 & 0.653 & 0.655 \\ \dot{\text{F1}} & 0.614 & 0.673 & 0.679 & 0.644 & 0.643 \\ \dot{\text{AUC}} & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ \dot{\text{PPV}} & 0.629 & 0.671 & 0.679 & 0.624 & 0.621 \\ \dot{\text{Sensitivity}} & 0.564 & 0.679 & 0.679 & 0.744 & 0.756 \\ \dot{\text{Specificity}} & 0.667 & 0.667 & 0.679 & 0.744 & 0.756 \\ \dot{\text{Specificity}} & 0.564 & 0.679 & 0.321 & 0.376 & 0.379 \\ \dot{\text{FDR}} & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ \dot{\text{FOR}} & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ \dot{\text{Acc / Rec}} & 0.686 & 0.712 & 0.679 & 0.667 & 0.673 \\ \dot{\text{F1}} & 0.676 & 0.711 & 0.679 & 0.664 & 0.672 \\ \dot{\text{AUC}} & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ \dot{\text{Sensitivity}} & \textbf{0.859} & 0.692 & 0.705 & 0.756 & 0.718 \\ \dot{\text{Sensitivity}} & \textbf{0.859} & 0.692 & 0.705 & 0.756 & 0.718 \\ \dot{\text{Specificity}} & 0.513 & 0.731 & 0.654 & 0.577 & 0.628 \\ \dot{\text{FDR}} & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ \end{pmatrix}$	$\lambda = 0.5$	Sensitivity	0.692	0.615	0.538	0.564	0.667	
$\lambda = 0.75 \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		Specificity	0.756	0.718	0.769	0.808	0.667	
$\lambda = 0.75 \begin{cases} -2.0 & 0.615 & 0.673 & 0.679 & 0.647 & 0.647 \\ -2.0 & 0.617 & 0.673 & 0.679 & 0.653 & 0.655 \\ -2.0 & 0.617 & 0.673 & 0.679 & 0.653 & 0.655 \\ -2.0 & 0.617 & 0.673 & 0.679 & 0.644 & 0.643 \\ -2.0 & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ -2.0 & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ -2.0 & 0.629 & 0.671 & 0.679 & 0.624 & 0.621 \\ -2.0 & 0.670 & 0.667 & 0.667 & 0.679 & 0.744 & 0.756 \\ -2.0 & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ -2.0 & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ -2.0 & 0.670 & 0.670 & 0.679 & 0.667 & 0.673 \\ -2.0 & 0.670 & 0.712 & 0.679 & 0.667 & 0.673 \\ -2.0 & 0.711 & 0.712 & 0.680 & 0.672 & 0.674 \\ -2.0 & 0.711 & 0.679 & 0.664 & 0.672 \\ -2.0 & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ -2.0 & 0.735 & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ -2.0 & 0.720 & 0.731 & 0.654 & 0.577 & 0.628 \\ -2.0 & 0.750 & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.641 & 0.629 & 0.341 \\ -2.0 & 0.621 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.641 & 0.659 & 0.341 \\ -2.0 & 0.662 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.641 & 0.679 & 0.628 \\ -2.0 & 0.621 & 0.679 & 0.664 & 0.577 & 0.628 \\ -2.0 & 0.671 & 0.672 & 0.674 & 0.577 & 0.628 \\ -2.0 & 0.671 & 0.672 & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.671 & 0.672 & 0.341 & 0.664 & 0.577 & 0.628 \\ -2.0 & 0.671 & 0.672 & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.671 & 0.671 & 0.671 & 0.672 & 0.361 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.671 & 0.672 & 0.280 & 0.329 & 0.359 & 0.341 \\ -2.0 & 0.671 & 0.672 & 0.671 & 0.672 & 0.671 & 0.672 & $		FDR	0.260	0.314	0.300	0.254	0.333	
$\lambda = 0.75 \begin{tabular}{llll} Prec & 0.617 & 0.673 & 0.679 & 0.653 & 0.655 \\ F1 & 0.614 & 0.673 & 0.679 & 0.644 & 0.643 \\ AUC & 0.723 & 0.740 & 0.740 & 0.702 & 0.719 \\ PPV & 0.629 & 0.671 & 0.679 & 0.624 & 0.621 \\ Sensitivity & 0.564 & 0.679 & 0.679 & 0.744 & 0.756 \\ Specificity & 0.667 & 0.667 & 0.679 & 0.551 & 0.538 \\ FDR & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ FOR & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ \hline & Acc / Rec & 0.686 & 0.712 & 0.679 & 0.667 & 0.673 \\ Prec & 0.711 & 0.712 & 0.680 & 0.672 & 0.674 \\ F1 & 0.676 & 0.711 & 0.679 & 0.664 & 0.672 \\ AUC & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ PPV & 0.638 & 0.720 & 0.671 & 0.641 & 0.659 \\ Sensitivity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.513 & 0.731 & 0.654 & 0.577 & 0.628 \\ FDR & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ \hline \end{tabular}$		FOR	0.289	0.349	0.375	0.351	0.333	
$\lambda = 0.75 \begin{array}{cccccccccccccccccccccccccccccccccccc$		Acc / Rec	0.615	0.673	0.679	0.647	0.647	
$\lambda = 0.75 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Prec	0.617	0.673	0.679	0.653	0.655	
$\lambda = 0.75 \begin{tabular}{llll} PPV & 0.629 & 0.671 & 0.679 & 0.624 & 0.621 \\ Sensitivity & 0.564 & 0.679 & 0.679 & 0.744 & 0.756 \\ Specificity & 0.667 & 0.667 & 0.679 & 0.551 & 0.538 \\ FDR & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ FOR & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ & & Acc / Rec & 0.686 & 0.712 & 0.679 & 0.667 & 0.673 \\ Prec & 0.711 & 0.712 & 0.680 & 0.672 & 0.674 \\ F1 & 0.676 & 0.711 & 0.679 & 0.664 & 0.672 \\ AUC & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ PPV & 0.638 & 0.720 & 0.671 & 0.641 & 0.659 \\ Sensitivity & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ Specificity & 0.513 & 0.731 & 0.654 & 0.577 & 0.628 \\ FDR & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ \hline \end{tabular}$		F1	0.614	0.673	0.679	0.644	0.643	
$\lambda = 0.75$ Sensitivity 0.564 0.679 0.679 0.744 0.756 Specificity 0.667 0.667 0.667 0.579 0.551 0.538 FDR 0.371 0.329 0.321 0.376 0.379 FOR 0.395 0.325 0.321 0.317 0.311 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		AUC	0.723	0.740	0.740	0.702	0.719	
$\lambda = * \begin{cases} \text{Sensitivity} & 0.564 & 0.679 & 0.679 & 0.744 & 0.756 \\ \text{Specificity} & 0.667 & 0.667 & 0.679 & 0.551 & 0.538 \\ \text{FDR} & 0.371 & 0.329 & 0.321 & 0.376 & 0.379 \\ \text{FOR} & 0.395 & 0.325 & 0.321 & 0.317 & 0.311 \\ \text{Acc / Rec} & 0.686 & 0.712 & 0.679 & 0.667 & 0.673 \\ \text{Prec} & 0.711 & 0.712 & 0.680 & 0.672 & 0.674 \\ \text{FI} & 0.676 & 0.711 & 0.679 & 0.664 & 0.672 \\ \text{AUC} & 0.720 & 0.734 & 0.760 & 0.726 & 0.735 \\ \text{PPV} & 0.638 & 0.720 & 0.671 & 0.641 & 0.659 \\ \text{Sensitivity} & 0.859 & 0.692 & 0.705 & 0.756 & 0.718 \\ \text{Specificity} & 0.513 & 0.731 & 0.654 & 0.577 & 0.628 \\ \text{FDR} & 0.362 & 0.280 & 0.329 & 0.359 & 0.341 \\ \end{cases}$) 0.75	PPV	0.629	0.671	0.679	0.624	0.621	
$\lambda = * \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lambda = 0.75$	Sensitivity	0.564	0.679	0.679	0.744	0.756	
$\lambda = * \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Specificity	0.667	0.667	0.679	0.551	0.538	
$\lambda = * \begin{array}{c ccccccccccccccccccccccccccccccccccc$		FDR	0.371	0.329	0.321	0.376	0.379	
$\lambda = * \begin{array}{ccccccccccccccccccccccccccccccccccc$		FOR	0.395	0.325	0.321	0.317	0.311	
$\lambda = * \begin{array}{ccccccccccccccccccccccccccccccccccc$		Acc / Rec	0.686	0.712	0.679	0.667	0.673	
$\lambda = * \begin{array}{ccccccccccccccccccccccccccccccccccc$		Prec	0.711	0.712	0.680	0.672	0.674	
$\lambda = * \begin{array}{ccccccccccccccccccccccccccccccccccc$		F1	0.676	0.711	0.679	0.664	0.672	
$\lambda = *$ Sensitivity 0.859 0.692 0.705 0.756 0.718 Specificity 0.513 0.731 0.654 0.577 0.628 FDR 0.362 0.280 0.329 0.359 0.341		AUC	0.720	0.734	0.760	0.726	0.735	
Sensitivity 0.859 0.692 0.705 0.756 0.718 Specificity 0.513 0.731 0.654 0.577 0.628 FDR 0.362 0.280 0.329 0.359 0.341	.	PPV	0.638	0.720	0.671	0.641	0.659	
FDR 0.362 0.280 0.329 0.359 0.341	$\lambda = *$	Sensitivity	0.859	0.692	0.705	0.756	0.718	
		Specificity	0.513	0.731	0.654	0.577	0.628	
		FDR	0.362	0.280	0.329	0.359	0.341	
		FOR	0.216	0.296	0.311	0.297	0.310	

the available medical knowledge required to setup bounding boxes. This condition does not apply to other studies, where the full set of classes of the NIH dataset is adopted. On the other hand, state-of-the-art papers do not usually publish their code, making replicability in the same experimental conditions unfeasible.

Nevertheless, we made our best effort to analyze recent works and ascertain that the performance scores achieved with our proposed method are in line (or outperform) those reported by other studies. For instance, [1] report a mean AUC on the official NIH dataset split of 0.745. The work in [2] reports a mean AUC of 0.755. More recently, influential works reported a mean AUC of 0.807 [3], 0.817 [4], and 0.819 [5]. Very recent research reported a mean AUC of 0.821 [6] and 0.827 [7]. In our results, it is possible to observe that we can achieve mean values of AUC corresponding to 0.839 ($\lambda = 0.75$, PVT model) as shown in Table VIII, and 0.826 ($\lambda = 0.5$, VGG16 model) as shown in Table XV. Besides the aforementioned challenges exacerbating the difficulty of an exact comparison, we confidently observe that our results are competitive with results obtained thus far by state-of-the-art works on this dataset.

TABLE III RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

PVT: Pneumothorax vs No Finding						
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$
	Acc / Rec	0.612	0.509	0.612	0.573	0.578
	Prec	0.612	0.509	0.613	0.573	0.580
	F1	0.612	0.508	0.611	0.573	0.575
	AUC	0.656	0.556	0.664	0.627	0.610
$\lambda = 0.25$	PPV	0.618	0.509	0.625	0.571	0.592
A = 0.25	Sensitivity	0.586	0.491	0.560	0.586	0.500
	Specificity	0.638	0.526	0.664	0.560	0.655
	FDR	0.382	0.491	0.375	0.429	0.408
	FOR	0.393	0.492	0.398	0.425	0.433
	Acc / Rec	0.552	0.586	0.634	0.591	0.569
	Prec	0.555	0.590	0.634	0.607	0.569
	F1	0.544	0.582	0.633	0.575	0.568
	AUC	0.590	0.628	0.653	0.612	0.599
$\lambda = 0.5$	PPV	0.541	0.609	0.645	0.648	0.574
$\lambda = 0.5$	Sensitivity	0.681	0.483	0.595	0.397	0.534
	Specificity	0.422	0.690	0.672	0.784	0.603
	FDR	0.459	0.391	0.355	0.352	0.426
	FOR	0.430	0.429	0.376	0.435	0.435
	Acc / Rec	0.556	0.573	0.582	0.616	0.608
	Prec	0.556	0.575	0.582	0.617	0.609
	F1	0.555	0.570	0.582	0.616	0.607
	AUC	0.595	0.628	0.605	0.662	0.652
$\lambda = 0.75$	PPV	0.561	0.588	0.587	0.626	0.598
A = 0.15	Sensitivity	0.517	0.491	0.552	0.578	0.655
	Specificity	0.595	0.655	0.612	0.655	0.560
	FDR	0.439	0.412	0.413	0.374	0.402
	FOR	0.448	0.437	0.423	0.392	0.381
	Acc / Rec	0.621	0.578	0.634	0.603	0.625
	Prec	0.622	0.578	0.638	0.609	0.625
	F1	0.620	0.576	0.631	0.598	0.625
	AUC	0.663	0.621	0.712	0.646	0.666
$\lambda = *$	PPV	0.611	0.587	0.663	0.633	0.628
A — *	Sensitivity	0.664	0.526	0.543	0.491	0.612
	Specificity	0.578	0.629	0.724	0.716	0.638
	FDR	0.389	0.413	0.337	0.367	0.372
	FOR	0.368	0.430	0.387	0.415	0.378

TABLE IV RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (MULTI-CLASS CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

PVT: Effusion, Pneumothorax and No Finding							
= 0.9							
66							
62							
61							
57							
04							
02							
90							
43							
09							
09							
05							
08							
70							
68							
67							
77							
1							

TABLE V RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

TABLE VI RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

		PVT: Effu	sion vs No	Finding				PVT: Pneumothorax vs No Finding					
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$
	Acc / Rec	0.826	0.839	0.832	0.820	0.831		Acc / Rec	0.777	0.761	0.788	0.743	0.772
	Prec	0.826	0.839	0.833	0.821	0.834		Prec	0.781	0.761	0.793	0.767	0.776
	F1	0.826	0.839	0.832	0.820	0.831		F1	0.776	0.761	0.787	0.737	0.771
	AUC	0.894	0.903	0.890	0.878	0.904		AUC	0.854	0.837	0.870	0.857	0.849
$\lambda = 0.25$	PPV	0.832	0.846	0.847	0.841	0.865	$\lambda = 0.25$	PPV	0.816	0.752	0.756	0.847	0.742
	Sensitivity	0.815	0.828	0.812	0.789	0.785		Sensitivity	0.715	0.779	0.852	0.592	0.834
	Specificity	0.836	0.850	0.853	0.851	0.877		Specificity	0.838	0.743	0.724	0.893	0.711
	FDR	0.168	0.154	0.153	0.159	0.135		FDR	0.184	0.248	0.244	0.153	0.258
	FOR	0.181	0.168	0.181	0.199	0.197		FOR	0.254	0.229	0.170	0.313	0.190
	Acc / Rec	0.830	0.831	0.824	0.838	0.803		Acc / Rec	0.777	0.780	0.788	0.772	0.772
	Prec	0.835	0.831	0.824	0.839	0.806		Prec	0.777	0.786	0.789	0.776	0.774
	F1	0.829	0.831	0.824	0.838	0.803		F1	0.777	0.779	0.788	0.772	0.772
	AUC	0.911	0.895	0.895	0.903	0.881		AUC	0.845	0.865	0.868	0.841	0.851
$\lambda = 0.5$	PPV	0.878	0.840	0.816	0.855	0.831	$\lambda = 0.5$	PPV	0.765	0.746	0.776	0.806	0.794
	Sensitivity	0.766	0.817	0.837	0.814	0.761		Sensitivity	0.800	0.850	0.811	0.718	0.736
	Specificity	0.894	0.845	0.812	0.862	0.846		Specificity	0.754	0.711	0.765	0.827	0.809
	FDR	0.122	0.160	0.184	0.145	0.169		FDR	0.235	0.254	0.224	0.194	0.206
	FOR	0.207	0.178	0.167	0.177	0.220		FOR	0.210	0.175	0.198	0.255	0.246
	Acc / Rec	0.821	0.834	0.822	0.834	0.838		Acc / Rec	0.780	0.771	0.754	0.764	0.769
	Prec	0.830	0.836	0.823	0.834	0.838		Prec	0.780	0.771	0.761	0.764	0.769
	F1	0.820	0.834	0.822	0.834	0.838		F1	0.780	0.771	0.752	0.764	0.769
	AUC	0.897	0.908	0.882	0.902	0.896		AUC	0.855	0.851	0.843	0.857	0.845
$\lambda = 0.75$	PPV	0.884	0.863	0.847	0.838	0.836	$\lambda = 0.75$	PPV	0.783	0.779	0.719	0.772	0.777
	Sensitivity	0.740	0.795	0.785	0.828	0.839		Sensitivity	0.774	0.756	0.834	0.749	0.754
	Specificity	0.903	0.874	0.858	0.839	0.836		Specificity	0.786	0.786	0.674	0.779	0.784
	FDR	0.116	0.137	0.153	0.162	0.164		FDR	0.217	0.221	0.281	0.228	0.223
	FOR	0.224	0.190	0.200	0.170	0.161		FOR	0.223	0.237	0.198	0.243	0.239
	Acc / Rec	0.816	0.825	0.826	0.815	0.826		Acc / Rec	0.772	0.769	0.780	0.794	0.774
	Prec	0.816	0.826	0.833	0.817	0.829		Prec	0.774	0.769	0.782	0.794	0.775
	F1	0.816	0.825	0.825	0.814	0.826		F1	0.772	0.769	0.780	0.794	0.774
	AUC	0.879	0.887	0.901	0.879	0.907		AUC	0.861	0.841	0.870	0.871	0.851
$\lambda = *$	PPV	0.828	0.841	0.884	0.845	0.859	$\lambda = *$	PPV	0.794	0.757	0.806	0.797	0.767
	Sensitivity	0.798	0.802	0.750	0.771	0.780		Sensitivity	0.736	0.793	0.738	0.788	0.788
	Specificity	0.834	0.848	0.901	0.858	0.872		Specificity	0.809	0.745	0.822	0.800	0.761
	FDR	0.172	0.159	0.116	0.155	0.141		FDR	0.206	0.243	0.194	0.203	0.233
	FOR	0.195	0.190	0.217	0.210	0.201		FOR	0.246	0.218	0.242	0.209	0.218

TABLE VII RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

PVT: Cardiomegaly vs No Finding							
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	
	Acc / Rec	0.722	0.757	0.709	0.702	0.709	
	Prec	0.725	0.762	0.714	0.715	0.710	
	F1	0.722	0.756	0.707	0.697	0.708	
	AUC	0.783	0.829	0.785	0.810	0.794	
$\lambda = 0.25$	PPV	0.749	0.798	0.681	0.768	0.726	
	Sensitivity	0.670	0.688	0.784	0.578	0.670	
	Specificity	0.775	0.826	0.633	0.826	0.748	
	FDR	0.251	0.202	0.319	0.232	0.274	
	FOR	0.299	0.274	0.254	0.338	0.306	
	Acc / Rec	0.716	0.729	0.720	0.771	0.734	
	Prec	0.732	0.735	0.726	0.772	0.734	
	F1	0.710	0.728	0.718	0.770	0.734	
	AUC	0.823	0.772	0.800	0.832	0.811	
$\lambda = 0.5$	PPV	0.794	0.698	0.761	0.795	0.726	
	Sensitivity	0.583	0.807	0.642	0.729	0.752	
	Specificity	0.849	0.651	0.798	0.812	0.716	
	FDR	0.206	0.302	0.239	0.205	0.274	
	FOR	0.330	0.228	0.310	0.250	0.257	
	Acc / Rec	0.718	0.709	0.700	0.736	0.704	
	Prec	0.718	0.709	0.707	0.743	0.704	
	F1	0.718	0.708	0.697	0.734	0.704	
	AUC	0.792	0.789	0.797	0.822	0.783	
$\lambda = 0.75$	PPV	0.729	0.697	0.746	0.785	0.709	
	Sensitivity	0.693	0.739	0.606	0.651	0.693	
	Specificity	0.743	0.679	0.794	0.821	0.716	
	FDR	0.271	0.303	0.254	0.215	0.291	
	FOR	0.293	0.278	0.332	0.298	0.300	
	Acc / Rec	0.681	0.704	0.755	0.743	0.739	
	Prec	0.684	0.707	0.755	0.747	0.744	
	F1	0.680	0.703	0.754	0.742	0.737	
	AUC	0.756	0.782	0.814	0.818	0.814	
$\lambda = *$	PPV	0.707	0.731	0.744	0.779	0.783	
	Sensitivity	0.619	0.647	0.775	0.679	0.661	
	Specificity	0.743	0.761	0.734	0.807	0.817	
	FDR	0.293	0.269	0.256	0.221	0.217	
	FOR	0.339	0.317	0.234	0.285	0.294	

TABLE VIII RESULTS OF PVT MODEL WITH DIFFERENT σ VALUES (MULTI-CLASS CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

PVT: Effusion, Pneumothorax and No Finding							
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	
	Acc / Rec	0.767	0.655	0.683	0.672	0.674	
$\lambda = 0.25$	Prec	0.680	0.656	0.686	0.678	0.682	
A = 0.25	F1	0.676	0.655	0.683	0.669	0.673	
	AUC	0.845	0.815	0.840	0.841	0.838	
	Acc / Rec	0.671	0.667	0.674	0.651	0.678	
$\lambda = 0.5$	Prec	0.675	0.667	0.674	0.651	0.680	
$\lambda = 0.5$	F1	0.670	0.667	0.674	0.651	0.679	
	AUC	0.837	0.835	0.840	0.822	0.835	
	Acc / Rec	0.666	0.685	0.675	0.686	0.664	
$\lambda = 0.75$	Prec	0.675	0.693	0.680	0.688	0.665	
$\lambda = 0.75$	F1	0.664	0.684	0.675	0.685	0.664	
	AUC	0.830	0.846	0.844	0.843	0.832	
	Acc / Rec	0.694	0.686	0.671	0.664	0.681	
$\lambda = *$	Prec	0.693	0.692	0.676	0.669	0.682	
$\lambda = *$	F1	0.693	0.685	0.672	0.665	0.679	
	AUC	0.839	0.846	0.825	0.829	0.845	

TABLE IX RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
λ			$\sigma = 0.3$			$\sigma = 0.9$
	Acc / Rec	0.635	0.647	0.635	0.718	0.667
	Prec	0.635	0.650	0.641	0.719	0.667
	F1	0.634	0.646	0.630	0.718	0.667
	AUC	0.707	0.727	0.685	0.756	0.736
$\lambda = 0.25$	PPV	0.630	0.672	0.672	0.730	0.671
	Sensitivity	0.654	0.577	0.526	0.692	0.654
	Specificity	0.615	0.718	0.744	0.744	0.679
	FDR	0.370	0.328	0.328	0.270	0.329
	FOR	0.360	0.371	0.389	0.293	0.338
	Acc / Rec	0.590	0.679	0.583	0.647	0.686
	Prec	0.594	0.681	0.586	0.647	0.686
	F1	0.585	0.679	0.580	0.647	0.686
	AUC	0.673	0.756	0.708	0.737	0.750
$\lambda = 0.5$	PPV	0.613	0.694	0.571	0.649	0.693
	Sensitivity	0.487	0.641	0.667	0.641	0.667
	Specificity	0.692	0.718	0.500	0.654	0.705
	FDR	0.387	0.306	0.429	0.351	0.307
	FOR	0.426	0.333	0.400	0.354	0.321
	Acc / Rec	0.622	0.673	0.673	0.654	0.660
	Prec	0.624	0.680	0.678	0.656	0.660
	F1	0.620	0.670	0.671	0.652	0.660
	AUC	0.706	0.744	0.741	0.722	0.726
$\lambda = 0.75$	PPV	0.642	0.714	0.708	0.676	0.658
	Sensitivity	0.551	0.577	0.590	0.590	0.667
	Specificity	0.692	0.769	0.756	0.718	0.654
	FDR	0.358	0.286	0.292	0.324	0.342
	FOR	0.393	0.355	0.352	0.364	0.338
	Acc / Rec	0.660	0.673	0.679	0.647	0.654
	Prec	0.662	0.673	0.687	0.668	0.655
	F1	0.660	0.673	0.676	0.637	0.653
	AUC	0.740	0.725	0.716	0.731	0.728
$\lambda = *$	PPV	0.676	0.675	0.649	0.610	0.667
	Sensitivity	0.615	0.667	0.782	0.821	0.615
	Specificity	0.705	0.679	0.577	0.474	0.692
	FDR	0.324	0.325	0.351	0.390	0.333
	FOR	0.353	0.329	0.274	0.275	0.357

TABLE X RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

VGG16: Pneumothorax vs No Finding							
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	
	Acc / Rec	0.668	0.642	0.651	0.616	0.616	
	Prec	0.668	0.643	0.651	0.617	0.617	
	F1	0.668	0.642	0.651	0.616	0.616	
	AUC	0.698	0.718	0.728	0.687	0.719	
$\lambda = 0.25$	PPV	0.664	0.654	0.647	0.629	0.612	
	Sensitivity	0.681	0.603	0.664	0.569	0.638	
	Specificity	0.655	0.681	0.638	0.664	0.595	
	FDR	0.336	0.346	0.353	0.371	0.388	
	FOR	0.327	0.368	0.345	0.394	0.378	
	Acc / Rec	0.668	0.569	0.634	0.629	0.651	
	Prec	0.672	0.579	0.634	0.631	0.651	
	F1	0.666	0.554	0.633	0.628	0.651	
	AUC	0.698	0.694	0.679	0.704	0.679	
$\lambda = 0.5$	PPV	0.647	0.551	0.642	0.615	0.645	
	Sensitivity	0.741	0.750	0.603	0.690	0.672	
	Specificity	0.595	0.388	0.664	0.569	0.629	
	FDR	0.353	0.449	0.358	0.385	0.355	
	FOR	0.303	0.392	0.374	0.353	0.342	
	Acc / Rec	0.664	0.659	0.642	0.634	0.608	
	Prec	0.664	0.662	0.660	0.634	0.629	
	F1	0.664	0.658	0.632	0.633	0.591	
	AUC	0.713	0.710	0.694	0.686	0.687	
$\lambda = 0.75$	PPV	0.661	0.683	0.606	0.642	0.577	
	Sensitivity	0.672	0.595	0.810	0.603	0.810	
	Specificity	0.655	0.724	0.474	0.664	0.405	
	FDR	0.339	0.317	0.394	0.358	0.423	
	FOR	0.333	0.359	0.286	0.374	0.319	
	Acc / Rec	0.638	0.651	0.642	0.599	0.651	
	Prec	0.639	0.651	0.643	0.607	0.656	
	F1	0.637	0.651	0.642	0.592	0.648	
	AUC	0.708	0.681	0.685	0.664	0.694	
$\lambda = *$	PPV	0.654	0.661	0.634	0.578	0.684	
	~						

TABLE XI RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (MULTI-CLASS CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

0.621

0.681

0.339

0.358

0.672

0.612

0.366

0.349

0.733

0.466

0.422

0.365

0.560

0.741

0.316

0.372

Sensitivity

Specificity FDR

FOR

0.586

0.690

0.346

0.375

VGG16: Effusion, Pneumothorax and No Finding							
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	
	Acc / Rec	0.487	0.500	0.504	0.474	0.491	
$\lambda = 0.25$	Prec	0.498	0.501	0.505	0.473	0.483	
$\lambda = 0.25$	F1	0.488	0.500	0.489	0.472	0.483	
	AUC	0.685	0.684	0.700	0.681	0.686	
	Acc / Rec	0.521	0.483	0.521	0.496	0.466	
$\lambda = 0.5$	Prec	0.522	0.490	0.520	0.497	0.453	
$\lambda = 0.5$	F1	0.521	0.478	0.521	0.496	0.444	
	AUC	0.719	0.707	0.703	0.688	0.696	
	Acc / Rec	0.487	0.491	0.496	0.551	0.474	
$\lambda = 0.75$	Prec	0.482	0.503	0.476	0.547	0.464	
$\lambda = 0.75$	F1	0.481	0.484	0.451	0.546	0.449	
	AUC	0.687	0.661	0.691	0.735	0.696	
	Acc / Rec	0.530	0.496	0.517	0.517	0.453	
.	Prec	0.532	0.492	0.513	0.519	0.446	
$\lambda = *$	F1	0.529	0.491	0.510	0.518	0.436	
	AUC	0.710	0.706	0.718	0.719	0.679	

TABLE XII RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

	VGG16: Effusion vs No Finding							
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$		
	Acc / Rec	0.820	0.820	0.829	0.832	0.825		
	Prec	0.822	0.822	0.831	0.835	0.826		
	F1	0.820	0.820	0.829	0.832	0.825		
	AUC	0.897	0.898	0.895	0.904	0.897		
$\lambda = 0.25$	PPV	0.840	0.848	0.857	0.861	0.849		
	Sensitivity	0.791	0.780	0.790	0.793	0.790		
	Specificity	0.850	0.860	0.869	0.872	0.860		
	FDR	0.160	0.152	0.143	0.139	0.151		
	FOR	0.197	0.204	0.195	0.192	0.196		
	Acc / Rec	0.806	0.819	0.810	0.813	0.817		
	Prec	0.807	0.822	0.814	0.814	0.821		
	F1	0.806	0.818	0.809	0.813	0.816		
	AUC	0.878	0.890	0.899	0.891	0.895		
$\lambda = 0.5$	PPV	0.826	0.857	0.850	0.830	0.860		
	Sensitivity	0.775	0.765	0.752	0.786	0.756		
	Specificity	0.837	0.872	0.867	0.839	0.877		
	FDR	0.174	0.143	0.150	0.170	0.140		
	FOR	0.212	0.212	0.222	0.203	0.218		
	Acc / Rec	0.812	0.819	0.817	0.823	0.819		
	Prec	0.812	0.820	0.818	0.823	0.820		
	F1	0.812	0.818	0.817	0.823	0.818		
	AUC	0.892	0.889	0.890	0.898	0.892		
$\lambda = 0.75$	PPV	0.823	0.837	0.835	0.812	0.838		
	Sensitivity	0.794	0.791	0.791	0.841	0.790		
	Specificity	0.829	0.846	0.843	0.805	0.847		
	FDR	0.177	0.163	0.165	0.188	0.162		
	FOR	0.199	0.198	0.198	0.165	0.199		
	Acc / Rec	0.826	0.827	0.814	0.809	0.818		
	Prec	0.826	0.832	0.819	0.810	0.819		
	F1	0.826	0.827	0.814	0.809	0.818		
	AUC	0.894	0.903	0.894	0.887	0.893		
$\lambda = *$	PPV	0.833	0.871	0.857	0.829	0.840		
	Sensitivity	0.814	0.769	0.755	0.779	0.785		
	Specificity	0.837	0.886	0.874	0.839	0.851		
	FDR	0.167	0.129	0.143	0.171	0.160		
	FOR	0.182	0.207	0.219	0.209	0.202		

TABLE XIV RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

TABLE XIII

RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

VGG16: Pneumothorax vs No Finding $\frac{\lambda \quad \text{Metric}}{Acc / \text{Rec}} \quad \frac{\sigma = 0.1}{0.788} \quad \frac{\sigma = 0.3}{0.778} \quad \frac{\sigma = 0.7}{0.789} \quad \frac{\sigma = 0.9}{0.779} \quad 0.788$

	Madela	0.1	0.0	0.5	0.7	0.0
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$
	Acc / Rec	0.788	0.778	0.789	0.779	0.788
	Prec	0.791	0.779	0.790	0.779	0.788
	F1	0.788	0.778	0.789	0.779	0.788
	AUC	0.865	0.837	0.863	0.853	0.849
$\lambda = 0.25$	PPV	0.817	0.793	0.802	0.770	0.784
	Sensitivity	0.743	0.752	0.768	0.795	0.795
	Specificity	0.834	0.804	0.811	0.763	0.781
	FDR	0.183	0.207	0.198	0.230	0.216
	FOR	0.236	0.236	0.223	0.212	0.208
	Acc / Rec	0.789	0.787	0.768	0.780	0.767
	Prec	0.789	0.787	0.768	0.780	0.775
	F1	0.789	0.787	0.768	0.780	0.765
	AUC	0.853	0.863	0.837	0.852	0.854
$\lambda = 0.5$	PPV	0.794	0.779	0.773	0.780	0.823
	Sensitivity	0.781	0.802	0.759	0.781	0.679
	Specificity	0.797	0.772	0.777	0.779	0.854
	FDR	0.206	0.221	0.227	0.220	0.177
	FOR	0.215	0.204	0.237	0.219	0.273
	Acc / Rec	0.777	0.778	0.759	0.762	0.771
	Prec	0.778	0.778	0.761	0.762	0.773
	F1	0.777	0.778	0.758	0.762	0.771
	AUC	0.849	0.855	0.840	0.841	0.846
$\lambda = 0.75$	PPV	0.797	0.789	0.735	0.769	0.749
	Sensitivity	0.743	0.759	0.809	0.749	0.815
	Specificity	0.811	0.797	0.708	0.774	0.727
	FDR	0.203	0.211	0.265	0.231	0.251
	FOR	0.241	0.232	0.213	0.244	0.203
	Acc / Rec	0.774	0.785	0.759	0.771	0.764
	Prec	0.781	0.785	0.759	0.773	0.764
	F1	0.773	0.785	0.758	0.771	0.764
	AUC	0.843	0.847	0.831	0.840	0.835
$\lambda = *$	PPV	0.738	0.791	0.752	0.793	0.767
	Sensitivity	0.852	0.774	0.772	0.733	0.759
	Specificity	0.697	0.795	0.745	0.809	0.770
	FDR	0.262	0.209	0.248	0.207	0.233
	FOR	0.175	0.221	0.234	0.248	0.239

	VGG16: Cardiomegaly vs No Finding								
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$			
	Acc / Rec	0.736	0.702	0.750	0.722	0.752			
	Prec	0.745	0.720	0.756	0.723	0.753			
	F1	0.734	0.696	0.749	0.722	0.752			
	AUC	0.835	0.837	0.829	0.829	0.837			
$\lambda = 0.25$	PPV	0.791	0.782	0.795	0.712	0.767			
	Sensitivity	0.642	0.560	0.674	0.748	0.725			
	Specificity	0.830	0.844	0.826	0.697	0.780			
	FDR	0.209	0.218	0.205	0.288	0.233			
	FOR	0.301	0.343	0.283	0.266	0.261			
	Acc / Rec	0.750	0.729	0.755	0.752	0.741			
	Prec	0.754	0.730	0.756	0.760	0.744			
	F1	0.749	0.729	0.754	0.750	0.740			
	AUC	0.834	0.826	0.840	0.842	0.834			
$\lambda = 0.5$	PPV	0.785	0.719	0.776	0.806	0.772			
	Sensitivity	0.688	0.752	0.716	0.665	0.683			
	Specificity	0.812	0.706	0.794	0.839	0.798			
	FDR	0.215	0.281	0.224	0.194	0.228			
	FOR	0.278	0.260	0.264	0.285	0.284			
	Acc / Rec	0.745	0.741	0.745	0.757	0.734			
	Prec	0.749	0.743	0.746	0.762	0.735			
	F1	0.745	0.740	0.745	0.756	0.734			
	AUC	0.833	0.828	0.838	0.846	0.814			
$\lambda = 0.75$	PPV	0.777	0.766	0.761	0.798	0.722			
	Sensitivity	0.688	0.693	0.716	0.688	0.761			
	Specificity	0.803	0.789	0.775	0.826	0.706			
	FDR	0.223	0.234	0.239	0.202	0.278			
	FOR	0.280	0.280	0.268	0.274	0.252			
	Acc / Rec	0.741	0.732	0.764	0.741	0.734			
	Prec	0.743	0.737	0.765	0.743	0.737			
	F1	0.740	0.730	0.763	0.740	0.733			
	AUC	0.837	0.832	0.844	0.834	0.827			
$\lambda = *$	PPV	0.764	0.773	0.786	0.766	0.766			
	Sensitivity	0.697	0.656	0.725	0.693	0.674			
	Specificity	0.784	0.807	0.803	0.789	0.794			
	FDR	0.236	0.227	0.214	0.234	0.234			
	FOR	0.278	0.299	0.255	0.280	0.291			

TABLE XV RESULTS OF VGG16 MODEL WITH DIFFERENT σ VALUES (MULTI-CLASS CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

VGG16: Effusion, Pneumothorax and No Finding									
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$			
	Acc / Rec	0.674	0.646	0.648	0.669	0.651			
$\lambda = 0.25$	Prec	0.674	0.646	0.648	0.672	0.652			
$\lambda = 0.25$	F1	0.673	0.646	0.648	0.669	0.651			
	AUC	0.834	0.821	0.815	0.827	0.817			
	Acc / Rec	0.672	0.648	0.646	0.667	0.642			
$\lambda = 0.5$	Prec	0.679	0.652	0.658	0.670	0.647			
$\lambda = 0.5$	F1	0.668	0.649	0.646	0.668	0.643			
	AUC	0.833	0.825	0.827	0.825	0.821			
	Acc / Rec	0.652	0.651	0.657	0.635	0.667			
$\lambda = 0.75$	Prec	0.654	0.651	0.659	0.645	0.667			
$\lambda = 0.75$	F1	0.651	0.651	0.652	0.635	0.667			
	AUC	0.823	0.812	0.824	0.822	0.831			
-	Acc / Rec	0.645	0.651	0.657	0.652	0.663			
$\lambda = *$	Prec	0.648	0.656	0.659	0.653	0.663			
$\lambda = *$	F1	0.646	0.653	0.651	0.653	0.663			
	AUC	0.817	0.817	0.826	0.811	0.828			

TABLE XVII

Results of ResNet50 model with different σ values (binary CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

ResNet50: Pneumothorax vs No Finding								
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$		
	Acc / Rec	0.595	0.547	0.651	0.612	0.509		
	Prec	0.595	0.549	0.655	0.612	0.511		
	F1	0.595	0.544	0.649	0.612	0.478		
	AUC	0.618	0.579	0.666	0.637	0.538		
$\lambda = 0.25$	PPV	0.589	0.540	0.630	0.612	0.517		
	Sensitivity	0.629	0.638	0.733	0.612	0.267		
	Specificity	0.560	0.457	0.569	0.612	0.750		
	FDR	0.411	0.460	0.370	0.388	0.483		
	FOR	0.398	0.442	0.320	0.388	0.494		
,	Acc / Rec	0.517	0.599	0.573	0.560	0.491		
	Prec	0.518	0.599	0.574	0.562	0.491		
	F1	0.515	0.599	0.573	0.557	0.490		
	AUC	0.556	0.646	0.599	0.583	0.492		
$\lambda = 0.5$	PPV	0.520	0.598	0.578	0.551	0.490		
	Sensitivity	0.448	0.603	0.543	0.647	0.431		
	Specificity	0.586	0.595	0.603	0.474	0.552		
	FDR	0.480	0.402	0.422	0.449	0.510		
	FOR	0.485	0.400	0.431	0.427	0.508		
	Acc / Rec	0.599	0.569	0.616	0.582	0.556		
	Prec	0.601	0.572	0.616	0.582	0.558		
	F1	0.597	0.565	0.616	0.582	0.552		
	AUC	0.648	0.622	0.625	0.607	0.617		
$\lambda = 0.75$	PPV	0.586	0.558	0.615	0.586	0.570		
	Sensitivity	0.672	0.664	0.621	0.560	0.457		
	Specificity	0.526	0.474	0.612	0.603	0.655		
	FDR	0.414	0.442	0.385	0.414	0.430		
	FOR	0.384	0.415	0.383	0.421	0.453		
	Acc / Rec	0.547	0.569	0.582	0.608	0.603		
	Prec	0.548	0.569	0.582	0.608	0.609		
	F1	0.546	0.569	0.582	0.608	0.598		
	AUC	0.596	0.600	0.598	0.614	0.683		
$\lambda = *$	PPV	0.543	0.573	0.580	0.609	0.633		
	Sensitivity	0.603	0.543	0.595	0.603	0.491		
	Specificity	0.491	0.595	0.569	0.612	0.716		
	FDR	0.457	0.427	0.420	0.391	0.367		
	FOR	0.447	0.434	0.416	0.393	0.415		

TABLE XVI Results of ResNet50 model with different σ values (binary CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

	ResNet50: Effusion vs No Finding								
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$			
	Acc / Rec	0.660	0.628	0.667	0.673	0.622			
	Prec	0.660	0.628	0.672	0.687	0.622			
	F1	0.660	0.628	0.664	0.667	0.622			
	AUC	0.719	0.702	0.748	0.748	0.693			
$\lambda = 0.25$	PPV	0.658	0.628	0.641	0.636	0.617			
	Sensitivity	0.667	0.628	0.756	0.808	0.641			
	Specificity	0.654	0.628	0.577	0.538	0.603			
	FDR	0.342	0.372	0.359	0.364	0.383			
	FOR	0.338	0.372	0.297	0.263	0.373			
	Acc / Rec	0.641	0.647	0.679	0.667	0.615			
	Prec	0.641	0.655	0.679	0.669	0.624			
	F1	0.641	0.643	0.679	0.665	0.609			
	AUC	0.731	0.722	0.728	0.731	0.694			
$\lambda = 0.5$	PPV	0.645	0.621	0.679	0.648	0.592			
	Sensitivity	0.628	0.756	0.679	0.731	0.744			
	Specificity	0.654	0.538	0.679	0.603	0.487			
	FDR	0.355	0.379	0.321	0.352	0.408			
	FOR	0.363	0.311	0.321	0.309	0.345			
	Acc / Rec	0.660	0.647	0.667	0.641	0.667			
	Prec	0.670	0.650	0.668	0.641	0.669			
	F1	0.655	0.646	0.666	0.641	0.665			
	AUC	0.724	0.709	0.724	0.716	0.725			
$\lambda = 0.75$	PPV	0.629	0.629	0.655	0.637	0.648			
	Sensitivity	0.782	0.718	0.705	0.654	0.731			
	Specificity	0.538	0.577	0.628	0.628	0.603			
	FDR	0.371	0.371	0.345	0.363	0.352			
	FOR	0.288	0.328	0.319	0.355	0.309			
	Acc / Rec	0.654	0.660	0.615	0.673	0.660			
	Prec	0.654	0.660	0.618	0.674	0.660			
	F1	0.654	0.660	0.613	0.673	0.660			
	AUC	0.731	0.702	0.707	0.709	0.700			
$\lambda = *$	PPV	0.654	0.662	0.600	0.663	0.658			
	Sensitivity	0.654	0.654	0.692	0.705	0.667			
	Specificity	0.654	0.667	0.538	0.641	0.654			
	EDD	0.246	0.229	0.400	0.227	0.242			

0.338

0.342

0.400

0.364

0.337

0.315

0.342

0.338

0.346 0.346

Specificity FDR

FOR

TABLE XVIII

Results of ResNet50 model with different σ values (MULTI-CLASS CLASSIFICATION - OTTAWA DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

ResNet50: Effusion, Pneumothorax and No Finding									
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$			
	Acc / Rec	0.453	0.474	0.474	0.491	0.440			
$\lambda = 0.25$	Prec	0.438	0.456	0.473	0.487	0.436			
$\lambda = 0.25$	F1	0.436	0.440	0.470	0.488	0.437			
	AUC	0.609	0.673	0.675	0.655	0.658			
	Acc / Rec	0.453	0.432	0.427	0.479	0.483			
$\lambda = 0.5$	Prec	0.448	0.428	0.426	0.463	0.348			
$\lambda = 0.5$	F1	0.450	0.426	0.425	0.465	0.479			
	AUC	0.666	0.610	0.625	0.660	0.678			
	Acc / Rec	0.453	0.462	0.479	0.483	0.491			
$\lambda = 0.75$	Prec	0.451	0.468	0.469	0.477	0.485			
$\lambda = 0.75$	F1	0.452	0.458	0.472	0.478	0.480			
	AUC	0.673	0.679	0.661	0.650	0.665			
	Acc / Rec	0.517	0.462	0.432	0.457	0.538			
.	Prec	0.522	0.455	0.438	0.449	0.537			
$\lambda = *$	F1	0.513	0.453	0.434	0.451	0.536			
	AUC	0.645	0.634	0.631	0.655	0.702			

TABLE XIX RESULTS OF RESNET50 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

TABLE XX RESULTS OF RESNET50 MODEL WITH DIFFERENT σ VALUES (BINARY CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK.

ResNet50: Effusion vs No Finding						ResNet50: Pneumothorax vs No Finding							
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$	λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$
	Acc / Rec	0.790	0.799	0.784	0.813	0.824		Acc / Rec	0.751	0.738	0.741	0.731	0.759
	Prec	0.792	0.799	0.787	0.815	0.824		Prec	0.751	0.739	0.742	0.733	0.763
	F1	0.789	0.799	0.783	0.813	0.824		F1	0.751	0.738	0.741	0.731	0.758
	AUC	0.859	0.875	0.852	0.878	0.884		AUC	0.826	0.827	0.817	0.815	0.817
$\lambda = 0.25$	PPV	0.819	0.793	0.818	0.840	0.822	$\lambda = 0.25$	PPV	0.743	0.725	0.732	0.711	0.729
	Sensitivity	0.743	0.809	0.729	0.772	0.828		Sensitivity	0.765	0.768	0.761	0.779	0.822
	Specificity	0.836	0.789	0.838	0.853	0.820		Specificity	0.736	0.708	0.722	0.683	0.695
	FDR	0.181	0.207	0.182	0.160	0.178		FDR	0.257	0.275	0.268	0.289	0.271
	FOR	0.235	0.195	0.244	0.211	0.173		FOR	0.242	0.247	0.249	0.244	0.204
	Acc / Rec	0.796	0.822	0.798	0.790	0.791		Acc / Rec	0.733	0.720	0.749	0.756	0.739
	Prec	0.796	0.822	0.798	0.793	0.792		Prec	0.734	0.721	0.750	0.757	0.740
	F1	0.796	0.822	0.798	0.790	0.791		F1	0.733	0.720	0.749	0.756	0.739
	AUC	0.863	0.879	0.863	0.870	0.862		AUC	0.803	0.784	0.825	0.831	0.809
$\lambda = 0.5$	PPV	0.810	0.829	0.812	0.823	0.809	$\lambda = 0.5$	PPV	0.748	0.708	0.758	0.747	0.755
	Sensitivity	0.774	0.813	0.775	0.740	0.761		Sensitivity	0.704	0.749	0.733	0.774	0.708
	Specificity	0.818	0.832	0.820	0.841	0.820		Specificity	0.763	0.690	0.765	0.738	0.770
	FDR	0.190	0.171	0.188	0.177	0.191		FDR	0.252	0.292	0.242	0.253	0.245
	FOR	0.217	0.184	0.215	0.237	0.226		FOR	0.280	0.266	0.258	0.234	0.275
	Acc / Rec	0.786	0.821	0.807	0.796	0.796		Acc / Rec	0.760	0.747	0.731	0.745	0.731
	Prec	0.786	0.822	0.807	0.796	0.797		Prec	0.760	0.747	0.732	0.745	0.731
	F1	0.786	0.821	0.807	0.796	0.796		F1	0.760	0.747	0.731	0.745	0.731
	AUC	0.859	0.887	0.873	0.858	0.861		AUC	0.832	0.828	0.813	0.810	0.802
$\lambda = 0.75$	PPV	0.794	0.834	0.806	0.799	0.807	$\lambda = 0.75$	PPV	0.750	0.740	0.719	0.736	0.725
	Sensitivity	0.771	0.802	0.809	0.790	0.780		Sensitivity	0.779	0.763	0.759	0.763	0.745
	Specificity	0.800	0.841	0.805	0.802	0.813		Specificity	0.740	0.731	0.704	0.727	0.718
	FDR	0.206	0.166	0.194	0.201	0.193		FDR	0.250	0.260	0.281	0.264	0.275
	FOR	0.222	0.190	0.192	0.208	0.213		FOR	0.230	0.245	0.255	0.246	0.262
	Acc / Rec	0.803	0.806	0.777	0.794	0.802		Acc / Rec	0.756	0.736	0.745	0.720	0.760
	Prec	0.803	0.807	0.777	0.794	0.802		Prec	0.758	0.736	0.747	0.720	0.760
	F1	0.803	0.806	0.777	0.794	0.801		F1	0.756	0.736	0.744	0.720	0.760
	AUC	0.860	0.866	0.843	0.865	0.870		AUC	0.814	0.816	0.821	0.799	0.842
$\lambda = *$	PPV	0.808	0.790	0.785	0.788	0.811	$\lambda = *$	PPV	0.735	0.733	0.723	0.722	0.749
	Sensitivity	0.796	0.833	0.762	0.804	0.786		Sensitivity	0.802	0.743	0.793	0.715	0.781
	Specificity	0.810	0.779	0.791	0.784	0.817		Specificity	0.711	0.729	0.697	0.724	0.738
	FDR	0.192	0.210	0.215	0.212	0.189		FDR	0.265	0.267	0.277	0.278	0.251
	FOR	0.201	0.176	0.231	0.200	0.207		FOR	0.218	0.261	0.229	0.282	0.229

CLASSIFICATION - NIH DATASET). VALUES IN BOLD INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK

ResNet50: Cardiomegaly	vs	No	Finding
------------------------	----	----	---------

	Residence. Cardionlegary vs No Finding									
λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$				
	Acc / Rec	0.706	0.725	0.700	0.663	0.725				
	Prec	0.707	0.725	0.700	0.668	0.725				
	F1	0.706	0.725	0.700	0.660	0.725				
	AUC	0.779	0.805	0.773	0.750	0.804				
$\lambda = 0.25$	PPV	0.721	0.725	0.704	0.698	0.733				
	Sensitivity	0.674	0.725	0.688	0.573	0.706				
	Specificity	0.739	0.725	0.711	0.752	0.743				
	FDR	0.279	0.275	0.296	0.302	0.267				
	FOR	0.306	0.275	0.305	0.362	0.283				
	Acc / Rec	0.667	0.704	0.683	0.697	0.693				
	Prec	0.676	0.705	0.687	0.703	0.702				
	F1	0.663	0.704	0.682	0.695	0.689				
	AUC	0.764	0.768	0.744	0.781	0.777				
$\lambda = 0.5$	PPV	0.716	0.715	0.711	0.736	0.744				
	Sensitivity	0.555	0.679	0.619	0.615	0.587				
	Specificity	0.780	0.729	0.748	0.780	0.798				
	FDR	0.284	0.285	0.289	0.264	0.256				
	FOR	0.363	0.306	0.337	0.331	0.341				
	Acc / Rec	0.695	0.667	0.693	0.658	0.693				
	Prec	0.702	0.674	0.698	0.671	0.695				
	F1	0.692	0.664	0.691	0.652	0.692				
	AUC	0.776	0.745	0.767	0.754	0.767				
$\lambda = 0.75$	PPV	0.740	0.706	0.731	0.717	0.719				
	Sensitivity	0.601	0.573	0.610	0.523	0.633				
	Specificity	0.789	0.761	0.775	0.794	0.752				
	FDR	0.260	0.294	0.269	0.283	0.281				
	FOR	0.336	0.359	0.335	0.375	0.328				
	Acc / Rec	0.709	0.681	0.709	0.704	0.716				
	Prec	0.710	0.684	0.712	0.705	0.716				
	F1	0.708	0.680	0.707	0.704	0.715				
	AUC	0.782	0.770	0.781	0.776	0.773				
$\lambda = *$	PPV	0.726	0.705	0.741	0.715	0.726				
	Sensitivity	0.670	0.624	0.642	0.679	0.693				
	Specificity	0.748	0.739	0.775	0.729	0.739				
	FDR	0.274	0.295	0.259	0.285	0.274				
	FOR	0.306	0.337	0.316	0.306	0.294				

TABLE XXII

Results of ResNet50 model with different σ values (multi-class classification - NIH dataset). Values in bold INDICATE THE BEST RESULTS WITHIN THE SAME MODEL FOR THIS TASK

ResNet50: Effusion, Pneumothorax and No Finding

λ	Metric	$\sigma = 0.1$	$\sigma = 0.3$	$\sigma = 0.5$	$\sigma = 0.7$	$\sigma = 0.9$
	Acc / Rec	0.630	0.628	0.610	0.619	0.641
$\lambda = 0.25$	Prec	0.630	0.627	0.612	0.617	0.641
$\lambda = 0.25$	F1	0.630	0.627	0.611	0.616	0.638
	AUC	0.796	0.797	0.781	0.786	0.804
	Acc / Rec	0.626	0.616	0.633	0.614	0.600
$\lambda = 0.5$	Prec	0.624	0.615	0.631	0.613	0.599
$\lambda = 0.5$	F1	0.624	0.615	0.630	0.614	0.597
	AUC	0.797	0.788	0.803	0.795	0.776
	Acc / Rec	0.618	0.603	0.620	0.631	0.617
$\lambda = 0.75$	Prec	0.618	0.603	0.619	0.631	0.617
A = 0.15	F1	0.618	0.603	0.618	0.631	0.615
	AUC	0.786	0.774	0.786	0.794	0.783
	Acc / Rec	0.624	0.623	0.630	0.614	0.604
$\lambda = *$	Prec	0.624	0.624	0.628	0.614	0.607
$\lambda = *$	F1	0.622	0.623	0.628	0.613	0.605
	AUC	0.797	0.801	0.795	0.782	0.775

REFERENCES

- [1] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. Summers, "Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3462–3471.
- [2] Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, L.-J. Li, and L. Fei-Fei, "Thoracic disease identification and localization with limited supervision," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2018, pp. 8290–8299.
- [3] S. Guendel, S. Grbic, B. Georgescu, S. Liu, A. Maier, and D. Comaniciu, "Learning to recognize abnormalities in chest x-rays with locationaware dense networks," in *Progress in Pattern Recognition, Image Anal*ysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings 23. Springer, 2019, pp. 757–765.
- [4] C. Ma, H. Wang, and S. C. Hoi, "Multi-label thoracic disease image classification with cross-attention networks," in *Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22.* Springer, 2019, pp. 730–738.
- [5] X. Ouyang, S. Karanam, Z. Wu, T. Chen, J. Huo, X. S. Zhou, Q. Wang, and J.-Z. Cheng, "Learning hierarchical attention for weakly-supervised chest x-ray abnormality localization and diagnosis," *IEEE transactions on medical imaging*, vol. 40, no. 10, pp. 2698–2710, 2020.
- [6] S. Kabir, L. Farrokhvar, and A. Dabouei, "A weakly supervised approach for thoracic diseases detection," *Expert Systems with Applications*, vol. 213, p. 118942, 2023.
- [7] M. Yang, H. Tanaka, and T. Ishida, "Performance improvement in multilabel thoracic abnormality classification of chest x-rays with noisy labels," *International Journal of Computer Assisted Radiology and Surgery*, vol. 18, no. 1, pp. 181–189, 2023.