Math 115A: Sample final exam

Sections 1 and 3. Instructor: James Freitag

For the exam, you may use one 8 inch by 11 inch (normal sized paper) piece of paper with anything at all written on **one side** - theorems, example problems, inspirational sayings - anything goes. There will be 8 problems on the final. The difficulty will be on the level of the exams.

Keep in mind this sample review is not comprhensive. I will post more problems throughout the week.

Problem 1 Eigenvalues

Let $\theta \in (0, \pi/2)$. Let

$$A = \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{pmatrix}.$$

The entries of A are in \mathbb{R} , so we can regard A as either a matrix over the reals or the complex numbers. Are there any eigenvectors over \mathbb{R} ? Explain why not intuitively.

Calculate the eigenvalues and eigenvectors over \mathbb{C} .

Problem 2 Some basics

Let

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array}\right).$$

Find a basis of N(A). Find a basis of R(A). Diagonalize A.

Problem 3 A subspace

Prove that the set of all functions that can be written in the form $a \cdot sin(x+b)$ for $a \in \mathbb{C}$ and $b \in \mathbb{R}$ is a vector space. Is it finite dimensional?

Problem 4 From class Friday

Let $S:U\to V,\ T:V\to W$ be linear maps of finite dimensional vector spaces. Suppose that TS is bijective. Prove that S is surjective if and only T is injective.

Problem 5 Use elementary matrices?

Let $A \in M_{n \times n}(\mathbb{F})$ be an invertible matrix, and let B be any other matrix of $M_{n \times n}(\mathbb{F})$. Prove that $det(AB) = det(A) \cdot det(B)$.

Problem 6 A map with specified kernel

Let V be a finite dimensional inner product space. Let W be a subspace. Constuct a linear operator S on V with $N(S) = W^{\perp}$ and R(S) = W.

Problem 7 Using a map with specified kernel

Let V be a finite dimensional inner product space. Let W be a subspace. Use the previous problem to prove that $dim(W) + dim(W^{\perp}) = dim(V)$.

Problem 8 Examples or lack thereof

Give an example of a 2×2 matrix M over \mathbb{R} such that M has no eigenvalues in \mathbb{R} . Can you give an example of a 3×3 matrix M over \mathbb{R} such that M has no eigenvalues in \mathbb{R} ?

Problem 9 Representation is better than working by hand!

Find a polynomial $q \in P_3(\mathbb{R})$ such that

$$p\left(\frac{1}{4}\right) = \int_0^1 p(x)q(x)dx$$

for all $p \in P_3(\mathbb{R})$. You can write down your polynomial in terms of an inner product.

Linear Algebra Math 115A

#9: First, lets find an orthogonal basis:
$$\langle 1,1 \rangle = \int_{0}^{1} 1 \cdot 1 dx = x \Big|_{0}^{1} = 1 = V$$
 $x - \langle x, 1 \rangle \cdot 1 = x - \int_{0}^{1} x dx = x - \left(\frac{x_{1}^{2}}{2}\right)\Big|_{0}^{1} = \left[x - \frac{1}{2}\right] = V_{2}^{1} \Big|_{0}^{2} = \frac{1}{2} \Big|_{0}^{2}$
 $x^{2} - \frac{\langle x^{2}, 1 \rangle \cdot 1}{\|x\|^{2}} - \frac{\langle x^{2}, x - \frac{1}{3} \rangle}{\|x - \frac{1}{2}\|^{2}} \Big|_{0}^{2} = x^{2} - \int_{0}^{1} x^{2} dx - \int_{0}^{1} x^{3} - \frac{x^{3}}{4\pi} dx \cdot \left[x - \frac{1}{2}\right]$
 $= x^{2} - \frac{1}{3} - \frac{\langle 1 - \frac{1}{4} \rangle}{\sqrt{4\pi}} \Big|_{0}^{2} \left(x - \frac{1}{2}\right)$
 $= x^{2} - \frac{1}{3} - \frac{1}{4} \Big|_{0}^{2} \left(x - \frac{1}{3}\right)$
 $= x^{2} - \frac{1}{3} - \frac{1}{4} \Big|_{0}^{2} \left(x - \frac{1}{3}\right)$
 $= x^{2} - 4x + \frac{1}{6}$
 $= x^{2} - 4x + \frac{1}{6}$

Let u1, u2, u3, u4 be given by Vi for i=1...4.

Then $(u_1,...,u_q)$ is an orthonormal basis, of which each element is a polynomial. Let $y:=\sum_{i=1}^q u_i(\frac{1}{q}) \cdot u_i$. Then by Rep. Thu $\langle P,y \rangle = P(\frac{1}{q})$ for all $P \in P_3(\mathbb{R})$. $S_0^1 P(x) \cdot y(x) dx$