

Diskrete Mathematik und Lineare Algebra

Dr.-Ing. Miriam Hommel

Wiederholung – Woche 1

Quiz-Name:

DMLA_SoSe24_02_Teilbarkeit1

https://arsnova.click/quiz/dmla_sose24_02_teilbarkeit1

Diskrete Mathematik und Lineare Algebra

- 1. Zahlentheorie
- 1.1 Teilbarkeit Anwendungen

Dr.-Ing. Miriam Hommel

1.1 Teilbarkeit – Anwendungen

- Programmierung
- Zufallszahlengenerator
- Prüfziffern:
 - EAN (Europäische Artikelnummer / European Article Number)
 - ISBN (Internationale Standardbuchnummer / International Standard Book Number)
 - IBAN (International Bank Account Number)

• ...

1.1 Teilbarkeit – Anwendungen

Programmierung:

- mod oder %
- Überprüfung, ob eine Zahl gerade ist oder nicht
- Bestimmter Programmcode soll nur bei jedem x-ten Durchlauf einer Schleife ausgeführt werden

• . . .

1.1 Teilbarkeit – Anwendungen

Zufallszahlengenerator (vgl. u.a. Steger, 2001):

- Lineare Kongruenzmethode
 - Startwert: x_0
 - sukzessive Berechnung weiterer Werte: $x_{n+1} = ax_n + c \mod m$
 - Parameter a, c, m müssen bestimmte Bedingungen erfüllen, damit die x_n möglichst "zufällig" verteilt sind
 - Beispiel: nrand48() in C++

1.1 Teilbarkeit – Anwendungen

Prüfziffern:

- Erkennung der häufigsten Fehler:
 - Eingabe einer falschen Ziffer ("Einzelfehler")
 - Vertauschung von zwei Ziffern ("Vertauschungsfehler")

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- EAN (Europäische Artikelnummer/ European Article Number):
 - Strichcode bzw. 13-stellige Ziffernfolge auf vielen Artikeln

Erste beiden Ziffern: Herkunftsland

Folgende 5 Ziffern: Hersteller

Folgende 5 Ziffern: Produkt

Letzte Ziffer: Prüfziffer

Quelle:; Von VaGla - own work created in Inkscape based on the graphics by Grzexs, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1642759

Erlaubt Detektion von Einzelfehlern, aber nicht von allen Vertauschungsfehlern

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- EAN (Europäische Artikelnummer/ European Article Number):
 - Berechnung der Prüfziffer
 - Berechne gewichtete Quersumme der ersten 12 Ziffern
 - Gewichte: abwechselnd 1 und 3 beginnend mit der 1
 - Prüfziffer = kleinste Zahl, die man zur Quersumme addieren muss, damit die Summe durch 10 teilbar ist
 - Hier: $(1 \cdot 5 + 3 \cdot 9 + 1 \cdot 0 + 3 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 + 1 \cdot 4 + 3 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 + 1 \cdot 4 + 3 \cdot 5 + p) \mod 10 = 0$ $(83 + p) \mod 10 = 0 \qquad \Rightarrow \qquad p = 7$

Quelle:; Von VaGla - own work created in Inkscape based on the graphics by Grzexs, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1642759

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- EAN (Europäische Artikelnummer/ European Article Number):
 - Berechnen Sie die Prüfziffer p des Buchs
 "Diskrete Strukturen 1" von Angelika Steger:

_

$$(1 \cdot 9 + 3 \cdot 7 + 1 \cdot 8 + 3 \cdot 3 + 1 \cdot 5 + 3 \cdot 4 + 1 \cdot 0 + 3 \cdot 4 + 1 \cdot 6 + 3 \cdot 6 + 1 \cdot 6 + 3 \cdot 0 + p) \mod 10 = 0$$

 $(9 + 21 + 8 + 9 + 5 + 12 + 0 + 12 + 6 + 18 + 6 + 0 + p) \mod 10 = 0$

$$(106 + p) \mod 10 = 0 \implies p = 4$$

Quelle: M. Hommel

1.1 Teilbarkeit – Anwendungen – Prüfziffern

ISBN (Internationale Standardbuchnummer / International Standard Book Number):

10-stellige Nummer zur eindeutigen Identifizierung von Büchern unterteilt in 4 mit Bindestrichen getrennte Segmente

- Erstes Segment: Herkunftsland
- Zweites Segment: Verlag
- Drittes Segment: Titel
- Viertes Segment: Prüfziffer
- Erlaubt Detektion von Einzel- und Vertauschungsfehlern

Beispiel:

"Diskrete Strukturen 1"

von Angelika Steger

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- ISBN (Internationale Standardbuchnummer / International Standard Book Number):
 - Berechnung der Prüfziffer
 - Berechne gewichtete Quersumme der ersten 9 Ziffern
 - Gewichte: 1. Ziffer: 1; 2. Ziffer: 2; 3. Ziffer: 3; ...
 - Prüfziffer = gewichtete Quersumme modulo 11

Beispiel:

"Diskrete Strukturen 1"

von Angelika Steger

$$3 - 540 - 46660 - 6$$

• Hier:
$$p = (1 \cdot 3 + 2 \cdot 5 + 3 \cdot 4 + 4 \cdot 0 + 5 \cdot 4 + 6 \cdot 6 + 7 \cdot 6 + 8 \cdot 6 + 9 \cdot 0) \mod 11$$

= $(3 + 10 + 12 + 0 + 20 + 36 + 42 + 48 + 0) \mod 11$
= $171 \mod 11 = 6$

Wenn Prüfziffer gleich 10, notiere X.

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- ISBN (Internationale Standardbuchnummer / International Standard Book Number):
 - "Diskrete Strukturen 1" von Angelika Steger: 3 540 46660 6
 - Einzelfehler: 3 540 49660 6

$$p = (1 \cdot 3 + 2 \cdot 5 + 3 \cdot 4 + 4 \cdot 0 + 5 \cdot 4 + 6 \cdot 9 + 7 \cdot 6 + 8 \cdot 6 + 9 \cdot 0) \mod 11$$

= $(3 + 10 + 12 + 0 + 20 + 54 + 42 + 48 + 0) \mod 11$
= $189 \mod 11 = 2 \neq 6$ => Einzelfehler wird erkannt

• Vertauschungsfehler: 3 - 504 - 46660 - 6

$$p = (1 \cdot 3 + 2 \cdot 5 + 3 \cdot 0 + 4 \cdot 4 + 5 \cdot 4 + 6 \cdot 6 + 7 \cdot 6 + 8 \cdot 6 + 9 \cdot 0) \mod 11$$

= $(3 + 10 + 0 + 16 + 20 + 36 + 42 + 48 + 0) \mod 11$
= $175 \mod 11 = 10 \neq 6$ => Vertauschungsfehler wird erkannt

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- Neue ISBN-13 (seit 2007):
 - Überführung der ISBN-10 in die zum Buch gehörende 13-stellige EAN durch Voranstellen der Ziffernfolge 978 (bzw. 979) und Neuberechnung der Prüfziffer
 - "Diskrete Strukturen 1" von Angelika Steger:

• EAN: 9 783540 466604 (vgl. Folie 8)

Quelle: M. Hommel

1.1 Teilbarkeit – Anwendungen – Prüfziffern

- Neue ISBN-13 (seit 2007):
 - "Diskrete Strukturen 1" von Angelika Steger: 978 3 540 46660 4
 - Problem: Vertauschungsfehler
 - ISBN-13: 973 8 540 46660 4
 - EAN: 9 738540 466604

$$(1 \cdot 9 + 3 \cdot 7 + 1 \cdot 3 + 3 \cdot 8 + 1 \cdot 5 + 3 \cdot 4 + 1 \cdot 0 + 3 \cdot 4 + 1 \cdot 6 + 3 \cdot 6 + 1 \cdot 6 + 3 \cdot 0 + p) \mod 10 = 0$$

$$(9 + 21 + 3 + 24 + 5 + 12 + 0 + 12 + 6 + 18 + 6 + 0 + p) \mod 10 = 0$$

$$(116 + p) \mod 10 = 0 \implies p = 4 \implies \text{Vertauschungsfehler wird nicht erkannt}$$