Package 'colorscience'

July 18, 2014

Type Package
Title Color Science methods and data
Version 1.0.0
Encoding UTF-8
Maintainer Jose Gama <jgama@abo.fi></jgama@abo.fi>
Description Methods and data for color science - color conversions by observer, illuminant and gamma. Color matching functions and chromaticity diagrams. Color indices, color differences and spectral data conversion/analysis.
License GPL (>= 3)
Depends R (>= 2.10), Hmisc, munsellinterpol, pracma
Enhances png
LazyData yes
Author Jose Gama [aut, cre]
NeedsCompilation no
Repository CRAN
Date/Publication 2014-07-18 09:25:05
R topics documented:
ASTM.D1925.YellownessIndex ASTM.E313.Whiteness ASTM.E313.YellownessIndex Berger59.Whiteness cccie31 cccie64 CCT2XYZ ChromaticAdaptation

CIE.Whiteness	11
CIE1931xy2CIE1960uv	12
CIE1931xy2CIE1976uv	13
CIE1931XYZ2CIE1931xyz	
CIE1931XYZ2CIE1960uv	
CIE1931XYZ2CIE1976uv	
CIE1960UCS2CIE1964	
CIE1960UCS2xy	
CIE1976chroma	
CIE1976hueangle	
CIE1976uv2CIE1931xy	
CIE1976uv2CIE1960uv	
CIE1976uvSaturation	
CIELabtoDIN99	
CIEluminanceY2NCSblackness	
CIETint	
ciexyz31	
ciexyz64	
CMY2CMYK	
CMY2RGB	
CMYK2CMY	
compuphaseDifferenceRGB	29
conversionIlluminance	30
conversionLuminance	31
createIsoTempLinesTable	32
daylightcomponents	33
deltaE1976	34
deltaE1994	35
deltaE2000	
deltaECMC	
DIN6167.YellownessIndex	
DIN99toCIELab	
dkl2dklCart	
dkl2rgb	
DominantWavelength	
emittanceblackbodyPlanck	
GanzGrieser.Tint	43
GanzGrieser.Whiteness	
heuristic.wlnm2RGB	
HSL2RGB	
HSV2RGB	
Hue.2.RGB	
huedegree	
huedegreemunsell	
Hunter60.WhitenessIndex	
HunterLab2XYZ	
illuminantA	
illuminantD65	53

	54
ϵ	55
	56
	57
	58
	59
	59
	60
	61
	62
	63
	64
	64 65
	66 69
ı	9 70
	70 71
	71 72
	12 73
	13 74
	7 5
	76
	70 77
	, , 77
	78
	, o 79
e	, , 80
•	81
	82
	82
C	83
	84
RGB2hue	85
RGB2LEF	85
RGB2LMS	86
RGB2LSLM	87
RGB2PhotoYCC	88
RGB2XYZ	89
RGB2YCbCr	90
RGB2YIQ	91
RGB2YPbPr	92
RGB2YUV	93
RxRyRz2XYZ 9	94
	94
	95
	96
spectra2CCT	97

Index

spectra2CRIGAIFSCI	
spectra2ISObrightness	
spectra2lux	
spectra2XYZ	
sprague	
StearnsStearnscorrection	102
Stensby68. Whiteness	103
Taube60.Whiteness	104
TCSdata	
tristimulusMunsell	106
WestlandBlacknessIndex	107
whitepointsilluminants	108
whitepointsRGB	109
wlnm2XYZ	110
xFit_1931	111
xy2CCT.HernandezAndres	112
xy2CCT.McCamy	113
xyChromaticitiesVos1978	114
xyY2XYZ	115
XYZ2BVR	115
XYZ2CCT.Robertson	116
XYZ2HunterLab	117
XYZ2Lab	
XYZ2LMS	119
XYZ2Luv	120
XYZ2RGB	121
XYZ2RxRyRz	122
XYZ2xyY	
XYZ2Yuv	
XYZMoonSpencer1945	
XYZperfectreflectingdiffuser	
XYZTannenbaum1974	
Y2MunsellV	128
Y2MunsellVtable1D1535	128
YCbCr2RGB	
YIQ2RGB	130
YPbPr2RGB	
Yuv2Luv	
YUV2RGB	
Yuv2xy	
Yuv2XYZ	
Yxy2CIE1960UCS	
Yxy2Yuv	
	10,
	138

ASTM.D1925.YellownessIndex

ASTM D 1925 Yellowness Index for Plastics

Description

ASTM.D1925.YellownessIndex was developed for the definition of the Yellowness of homogeneous, non-fluorescent, almost neutral-transparent, white-scattering or opaque plastics as they will be reviewed under daylight condition.

Usage

```
ASTM.D1925.YellownessIndex(XYZmatrix)
```

Arguments

XYZmatrix tri-stimulus values for the calculated for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ July\ 2012\ Revision\ 1.0$

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

```
XYZ<-c(0.1146538, 0.08391198, 0.08222077)
ASTM.D1925.YellownessIndex(XYZ)
```

Description

ASTM.E313.Whiteness ASTM E313 Whiteness.

Usage

ASTM.E313.Whiteness(XYZmatrix)

Arguments

XYZmatrix

tri-stimulus values for the calculated for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
XYZ<-c(0.1146538, 0.08391198, 0.08222077)
ASTM.E313.Whiteness(XYZ)
```

ASTM.E313.YellownessIndex

ASTM E313 Yellowness

Description

ASTM.E313.YellownessIndex ASTM E313 has successfully been used for a variety of white or near white materials.

Usage

ASTM.E313.YellownessIndex(XYZmatrix)

Berger59. Whiteness 7

Arguments

XYZmatrix tri-stimulus values for the calculated for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ July\ 2012$ Revision 1.0

Examples

```
XYZ<-c(0.1146538, 0.08391198, 0.08222077)
ASTM.E313.YellownessIndex(XYZ)
```

Berger59.Whiteness

Berger (59) Whiteness

Description

Berger59. Whiteness formula was developed by A. Berger (formerly employee of Bayer AG, Germany and was presented in 1959.

Usage

Arguments

xyYmatrix CIE values for illuminant C

illuminant illuminant observer observer

RefWhite White Reference

Author(s)

Jose Gama

8 cccie31

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
Berger59.Whiteness(xyY)
```

cccie31

CIE (1931) 2-deg chromaticity coordinates

Description

cccie31 is a table with CIE (1931) 2-deg chromaticity coordinates.

Usage

cccie31

Format

This data frame contains the following data:

```
wlnm wavelength (nm)
```

- x x chromaticity coordinate
- y y chromaticity coordinate
- z z chromaticity coordinate

Author(s)

Jose Gama

Source

Commission Internationale de l'Eclairage Proceedings, 1931 Cambridge: Cambridge University Press.

References

Commission Internationale de l'Eclairage Proceedings, 1931 Cambridge: Cambridge University Press.

cccie64 9

Examples

```
data(cccie31)
cccie31
```

cccie64

CIE (1964) 10-deg chromaticity coordinates

Description

cccie64 is a table with CIE (1964) 10-deg chromaticity coordinates.

Usage

cccie64

Format

This data frame contains the following data:

wlnm wavelength (nm)

- x x chromaticity coordinate
- y y chromaticity coordinate
- z z chromaticity coordinate

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

```
data(cccie64)
cccie64
```

CCT2XYZ

Convert CCT to XYZ

Description

CCT2XYZ Converts correlated color temperature (CCT) to CIE tristimulus XYZ.

Usage

```
CCT2XYZ(CCTmatrix)
```

Arguments

CCTmatrix

CCT values

Value

CIE tristimulus XYZ

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

Examples

```
CCT2XYZ(c(0.310897, 0.306510, 74.613450))
```

ChromaticAdaptation

Chromatic adaptation algorithms

Description

ChromaticAdaptation chromatic adaptation algorithms implemented as a linear transformation (XYZ Scaling, Bradford and Von Kries).

Usage

ChromaticAdaptation

CIE. Whiteness 11

Format

This array frame contains the following dimensions:

- 1 rows transformation matrix 3x3
- 2 columns transformation matrix 3x3
- 3 linear transformation (XYZ Scaling, Bradford or Von Kries)
- 4 transformation "direct" or "inverse"

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

Examples

```
data(ChromaticAdaptation)
ChromaticAdaptation
```

CIE.Whiteness

CIE Whiteness

Description

CIE.Whiteness The CIE Whiteness index is widely used in the industry for D65 for 2 or 10 deg observer.

Usage

Arguments

```
xyYmatrix xyY data
illuminant illuminant
observer observer
```

RefWhite Reference White

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
CIE.Whiteness(xyY)
```

CIE1931xy2CIE1960uv

Convert CIE 1931 xy color space to CIE 1960 uv color space

Description

CIE1931xy2CIE1960uv Converts CIE 1931 xy color space to CIE 1960 uv color space.

Usage

```
CIE1931xy2CIE1960uv(xymatrix)
```

Arguments

xymatrix

xy coordinates

Value

CIE 1960 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

CIE1931xy2CIE1976uv

13

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

Examples

```
xyY <- cbind(0.4083308, 0.2988462, 0.08391198)
CIE1931xy2CIE1960uv(xyY)</pre>
```

CIE1931xy2CIE1976uv

Convert CIE 1931 xy color space to CIE 1976 uv color space

Description

CIE1931xy2CIE1976uv Converts CIE 1931 xy color space to CIE 1976 uv color space.

Usage

```
CIE1931xy2CIE1976uv(xymatrix)
```

Arguments

xymatrix xy coordinates

Value

CIE 1976 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
xyY <- cbind(0.4083308, 0.2988462, 0.08391198)
CIE1931xy2CIE1976uv(xyY)
```

CIE1931XYZ2CIE1931xyz Convert CIE 1931 XYZ color space to CIE 1931 xyz color space

Description

CIE1931XYZ2CIE1931xyz Converts CIE 1931 XYZ color space to CIE 1931 xyz color space.

Usage

```
CIE1931XYZ2CIE1931xyz(XYZmatrix)
```

Arguments

XYZmatrix XYZ coordinates

Value

CIE 1931 xyz coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIE1931XYZ2CIE1931xyz(XYZ)
```

CIE1931XYZ2CIE1960uv 15

CIE1931XYZ2CIE1960uv Convert CIE 1931 XYZ color space to CIE 1960 uv color space

Description

CIE1931XYZ2CIE1960uv Converts CIE 1931 XYZ color space to CIE 1960 uv color space.

Usage

CIE1931XYZ2CIE1960uv(XYZmatrix)

Arguments

XYZmatrix XYZ coordinates

Value

CIE 1960 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIE1931XYZ2CIE1960uv(XYZ)
```

CIE1931XYZ2CIE1976uv Convert CIE 1931 XYZ color space to CIE 1976 uv color space

Description

CIE1931XYZ2CIE1976uv Converts CIE 1931 XYZ color space to CIE 1976 uv color space.

Usage

```
CIE1931XYZ2CIE1976uv(XYZmatrix)
```

Arguments

XYZmatrix XYZ coordinates

Value

CIE 1976 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIE1931XYZ2CIE1976uv(XYZ)
```

CIE1960UCS2CIE1964 17

CIE1960UCS2CIE1964

Convert CIE 1960 UCS color space to CIE 1964 color space

Description

CIE1960UCS2CIE1964 Converts CIE 1960 UCS color space to CIE 1964 color space.

Usage

```
CIE1960UCS2CIE1964(uvYmatrix, illuminant = "D65", observer = 2, RefWhite = XYZperfectreflectingdiffuser)
```

Arguments

uvYmatrix uvY data
illuminant illuminant
observer observer

RefWhite Reference White

Value

CIE 1976 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1964\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
CIE1960UCS2CIE1964(c(0.1633789, 1.322222, 0.08391198))
```

18 CIE1960UCS2xy

CIE1960UCS2xy

Convert CIE 1960 UCS color space to 1960 xy color space

Description

CIE1960UCS2xy Converts CIE 1960 UCS color space to 1960 xy color space.

Usage

```
CIE1960UCS2xy(uvMatrix)
```

Arguments

uvMatrix uv coordinates

Value

CIE 1960 xy coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1964\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

```
CIE1960UCS2xy(c(0.1633789, 1.322222 ))
```

CIE1976chroma 19

CIE1976chroma

CIE 1976 chroma formula for CIELab and CIELuv

Description

CIE1976chroma CIE 1976 chroma formula for CIELab and CIELuv.

Usage

```
CIE1976chroma(CIELMatrix)
```

Arguments

CIELMatrix

CIELab or CIELuv data

Author(s)

Jose Gama

Source

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

References

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

Examples

```
CIELMatrix<-c(34.78467, 28.15159, 3.024663)
CIE1976chroma(CIELMatrix)
```

CIE1976hueangle

CIE 1976 hue angle formula for CIELab and CIELuv

Description

CIE1976hueangle CIE 1976 hue angle formula for CIELab and CIELuv.

Usage

```
CIE1976hueangle(CIELMatrix)
```

Arguments

CIELMatrix CIELab or CIELuv data

Author(s)

Jose Gama

Source

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

References

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

Examples

```
CIELMatrix<-c(34.78467, 28.15159, 3.024663)
CIE1976hueangle(CIELMatrix)
```

CIE1976uv2CIE1931xy

CIE-1976 u'v' to CIE-1931 xy

Description

CIE1976uv2CIE1931xy CIE-1976 u'v' to CIE-1931 xy.

Usage

CIE1976uv2CIE1931xy(uvmatrix)

Arguments

uvmatrix

CIE-1976 u'v' data

Author(s)

Jose Gama

Source

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.htm

CIE1976uv2CIE1960uv 21

References

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.htm

Examples

```
CIE1976uv2CIE1931xy(c(0.2830965, 0.4661789))
```

CIE1976uv2CIE1960uv

CIE-1976 u'v' to CIE-1960 uv

Description

CIE1976uv2CIE1960uv CIE-1976 u'v' to CIE-1960 uv.

Usage

CIE1976uv2CIE1960uv(uvmatrix)

Arguments

uvmatrix

CIE-1976 u'v' data

Author(s)

Jose Gama

Source

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.htm

References

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.

```
CIE1976uv2CIE1960uv(c(0.2830965, 0.4661789))
```

22 CIELabtoDIN99

CIE1976uvSaturation CIE 1976 uv Saturation

Description

CIE1976uvSaturation CIE 1976 uv Saturation.

Usage

CIE1976uvSaturation(uvMatrix, whitepoint)

Arguments

uvMatrix CIELuv data whitepoint white point

Author(s)

Jose Gama

Source

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

References

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

Examples

```
CIE1976uvSaturation(cbind(34.78467, 28.15159, 3.024663), as.numeric(
XYZperfectreflectingdiffuser[which(XYZperfectreflectingdiffuser[["Illuminant"]]==
'C'),c('X2','Y2')]))
```

CIELabtoDIN99

Conversion from CIELAB color space to DIN99 coordinates

Description

CIELabtoDIN99 Converts from CIELAB color space to DIN99 coordinates.

Usage

CIELabtoDIN99(Lab)

Arguments

Lab

CIELAB

Value

DIN99

Author(s)

Jose Gama

Source

CIELAB to DIN99 coordinates, 2014 http://de.wikipedia.org/w/index.php?title=Diskussion: DIN99-Farbraum

References

CIELAB to DIN99 coordinates, 2014 http://de.wikipedia.org/w/index.php?title=Diskussion: DIN99-Farbraum

Examples

```
CIELabtoDIN99(c(0.310897, 0.306510, 74.613450))
```

CIEluminanceY2NCSblackness

approximated NCS blackness s by the CIE luminance factor Y

Description

CIEluminanceY2NCSblackness approximated NCS blackness s by the CIE luminance factor Y.

Usage

CIEluminanceY2NCSblackness(Y)

Arguments

Υ

CIE values for illuminant C

Author(s)

Jose Gama

Source

Hsien-Che Lee, 2005 Introduction to Color Imaging Science Cambridge University Press pp. 366

24 CIETint

References

Hsien-Che Lee, 2005 Introduction to Color Imaging Science Cambridge University Press pp. 366

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
CIEluminanceY2NCSblackness(xyY[3])</pre>
```

CIETint

Tint indices: CIE Tint and ASTM E313 Tint

Description

CIETINT Tint indices: CIE Tint and ASTM E313 Tint.

Usage

```
CIETint(xymatrix,illuminant='D65',observer=2)
```

Arguments

xymatrix matrix with xy data

illuminant illuminant observer observer

Value

Tint

Author(s)

Jose Gama

Source

CIE, 2004 CIE Publication 15:2004, "Colorimetry" ASTM E313, "Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates"

References

CIE, 2004 CIE Publication 15:2004, "Colorimetry" ASTM E313, "Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates"

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
CIETint(xyY)
```

ciexyz31 25

ciexyz31

CIE 1931 2-deg, XYZ CMFs

Description

ciexyz31 is a table with CIE 1931 2-deg, XYZ color matching functions.

Usage

ciexyz31

Format

This data frame contains the following data:

```
wlnm wavelength (nm)xbar x CMFybar y CMFzbar z CMF
```

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

```
data(ciexyz31)
ciexyz31
```

26 ciexyz64

ciexyz64

CIE 1964 10-deg, XYZ CMFs

Description

ciexyz64 is a table with CIE 1964 10-deg, XYZ color matching functions.

Usage

ciexyz64

Format

This data frame contains the following data:

```
wlnm wavelength (nm)xbar x CMFybar y CMF
```

zbar z CMF

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

```
data(ciexyz64)
ciexyz64
```

CMY2CMYK 27

CMY2CMYK

Convert CMY coordinates to CMYK

Description

CMY2CMYK Converts CMY coordinates to CMYK.

Usage

CMY2CMYK(CMYmatrix)

Arguments

CMYmatrix

CMY coordinates

Value

CMYK coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

CMY2CMYK(c(0.59072, 0.85570, 0.80283))

CMY2RGB

Convert CMYK coordinates to RGB

Description

CMY2RGB Converts CMYK coordinates to RGB.

Usage

CMY2RGB(CMYmatrix)

28 CMYK2CMY

Arguments

CMYmatrix CMY coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

CMY2RGB(c(0.310897, 0.306510, 74.613450))

CMYK2CMY

Convert CMYK coordinates to CMY

Description

CMYK2CMY Converts CMYK coordinates to CMY.

Usage

CMYK2CMY(CMYKmatrix)

Arguments

CMYKmatrix

CMYK coordinates

Value

CMY coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
CMYK2CMY(c(.342, .768, .683, .378))
```

compuphase Difference RGB

compuphase Difference RGB

Description

compuphaseDifferenceRGB compuphase Difference RGB.

Usage

```
compuphaseDifferenceRGB(RGB1, RGB2)
```

Arguments

RGB1 RGB color sample
RGB2 RGB color reference

Value

Delta E

Author(s)

Jose Gama

Source

Thiadmer Riemersma, 2012 CompuPhase http://www.compuphase.com/cmetric.htm

References

Thiadmer Riemersma, 2012 CompuPhase http://www.compuphase.com/cmetric.htm

```
compuphaseDifferenceRGB(c(124,63,78),c(241,65,78))
```

30 conversionIlluminance

conversionIlluminance Conversion Factors for Units of Illuminance

Description

conversionIlluminance is a table of conversion factors for units of Illuminance

Usage

conversionIlluminance

Format

This data frame contains the following columns:

```
footcandles foot-candles
lux lm/m2 = lux
phot phot
milliphot milliphot
units units
```

Author(s)

Jose Gama

Source

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

References

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

Examples

data(conversionIlluminance)
conversionIlluminance

conversionLuminance 31

conversionLuminance

Conversion Factors for Units of Luminance

Description

conversionLuminance is a table of conversion factors for units of Luminance

Usage

conversionLuminance

Format

This data frame contains the following columns:

```
cd.m.2 cd/m^2 = nit
cd.cm.2 cd/cm^2 = stilb
cd.ft.2 cd/ft^2
cd.in.2 cd/in^2
apostilb apostilb = blondel
millilambert millilambert
footlambert foot-lambert
```

Author(s)

Jose Gama

Source

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

References

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

```
data(conversionLuminance)
conversionLuminance
```

createIsoTempLinesTable

table of isotemperature lines for use with the Robertson Method

Description

createIsoTempLinesTable table of isotemperature lines for use with the Robertson Method (Robertson, 1968) to interpolate isotemperature lines from the CIE 1960 UCS.

Usage

```
createIsoTempLinesTable(SPD=NA,CIETable = ciexyz31, TCS = TCSdata)
```

Arguments

SPD light source spd
CIETable reference data values

TCS spectral reflectance data of 14 color test samples for CRI

Value

Iso temperature lines table

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

```
# illuminant A
SPD = illuminants[1:51*2-1,c('wlnm','A')] # every 10 nm
isoTempLinesTable <- createIsoTempLinesTable(SPD)</pre>
```

daylight components 33

daylightcomponents

daylight components

Description

daylightcomponents table with the mean relative spectral radiant power distribution and first two eigenvectors for the CIE method of calculating daylight.

Format

This data frame contains the following columns:

wlnm wavelength in nm

S0 mean relative spectral radiant power distribution

S1 first eigenvector

S2 second eigenvector

Author(s)

Jose Gama

Source

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

References

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

```
data(daylightcomponents)
str(daylightcomponents)
```

34 deltaE1976

deltaE1976

Delta E (CIE 1976)

Description

```
deltaE1976 The color difference Delta E (CIE 1976).
```

Usage

```
deltaE1976(Lab1, Lab2)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaE1976(RGB1,RGB2)
```

deltaE1994 35

deltaE1994

Delta E (CIE 1994)

Description

```
deltaE1994 The color difference Delta E (CIE 1994).
```

Usage

```
deltaE1994(Lab1, Lab2, textiles = FALSE)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference

textiles boolean, TRUE = version for textiles

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaE1994(RGB1,RGB2)
```

36 deltaE2000

deltaE2000

Delta E (CIE 2000)

Description

```
deltaE2000 The color difference Delta E (CIE 2000).
```

Usage

```
deltaE2000(Lab1, Lab2)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaE2000(RGB1,RGB2)
```

deltaECMC 37

deltaECMC

Delta E CMC

Description

deltaECMC The color difference method of the Color Measurement Committee (the CMC) .

Usage

```
deltaECMC(Lab1, Lab2, L, C)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference
L parameter L
C parameter C

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaECMC(RGB1,RGB2)
```

DIN6167.YellownessIndex

CIE Whiteness

Description

DIN6167. YellownessIndex The CIE Whiteness index is widely used in the industry for D65 for 2 or 10 deg observer.

Usage

Arguments

XYZmatrix CIE values for illuminant C

illuminant illuminant observer observer

RefWhite Reference White

Author(s)

Jose Gama

Source

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

References

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
DIN6167.YellownessIndex(XYZ)
```

DIN99toCIELab 39

DIN99toCIELab

Conversion from DIN99 coordinates to CIELAB color space

Description

DIN99toCIELab Conversion from DIN99 coordinates to CIELAB color space.

Usage

```
DIN99toCIELab(Lab99o)
```

Arguments

Lab99o

Lab99o coordinates

Value

CIELAB coordinates

Author(s)

Jose Gama

Source

DIN99 coordinates to CIELAB color space http://de.wikipedia.org/w/index.php?title=Diskussion:DIN99-Farbraum

References

DIN99 coordinates to CIELAB color space http://de.wikipedia.org/w/index.php?title=Diskussion:DIN99-Farbraum

```
DIN99toCIELab(c(0.59072, 0.85570, 0.80283))
```

40 dkl2dklCart

dkl2dklCart

converts between spherical and cartesian coordinates for DKL

Description

 ${\tt dkl2dklCart\ Converts\ DKL, from\ spherical\ coordinates\ to\ cartesian.\ dklCart2rgb\ Converts\ DKL, from\ cartesian\ to\ spherical\ coordinates.}$

Usage

```
dkl2dklCart(dklMatrix)
```

Arguments

dklMatrix

DKL coordinates

Value

DKL coordinates

Author(s)

Jose Gama

Source

Package psychopy for Python http://www.psychopy.org/epydoc/psychopy.misc-pysrc.html#dkl2dklCart

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology http://www.klab.caltech.edu/~harel/share/gbvs.php

References

Package psychopy for Python http://www.psychopy.org/epydoc/psychopy.misc-pysrc.html#

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology http://www.klab.caltech.edu/~harel/share/gbvs.php

```
RGB<-c(124,63,78)
d <- rgb2dklCart(RGB)
dklCart2dkl(d)
dkl2dklCart(c(1.647176, 60.8308, 91.45825))
d
```

dkl2rgb 41

dkl2rgb

convert RGB to DKL

Description

dk12rgb Converts DKL, spherical coords coordinates to sRGB. dk1Cart2rgb Converts DKL, cartesian coords coordinates to sRGB.

Usage

```
dkl2rgb(dklMatrix, conversionMatrix = NA)
```

Arguments

```
dklMatrix DKL coordinates conversionMatrix conversion matrix
```

Value

RGB coordinates

Author(s)

Jose Gama

Source

Package psychopy for Python http://www.psychopy.org/epydoc/psychopy.misc-pysrc.html#dkl2rgb

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology http://www.klab.caltech.edu/~harel/share/gbvs.php

References

Package psychopy for Python http://www.psychopy.org/epydoc/psychopy.misc-pysrc.html#dkl2rgb

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology http://www.klab.caltech.edu/~harel/share/gbvs.php

```
dklC <- rgb2dklCart(c(54,75,121))
dklCart2dkl(dklC)</pre>
```

42 DominantWavelength

DominantWavelength

Convert CMY coordinates to CMYK

Description

DominantWavelength Converts CMY coordinates to CMYK.

Usage

```
DominantWavelength(xyYmatrix, illuminant='D65',observer=2,
RefWhiteIllum=XYZperfectreflectingdiffuser)
```

Arguments

xyYmatrix xyY matrix illuminant observer observer

RefWhiteIllum Reference White

Value

Dominant Wavelength

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2013\ http: \verb§\#www.brucelindbloom.com/index.html§ ColorCalculator.html§ And the property of the p$

References

 $Bruce\ Justin\ Lindbloom,\ 2013\ http: \verb§\#www.brucelindbloom.com/index.html?ColorCalculator.html]$

```
DominantWavelength(c(0.59072, 0.85570, 0.80283))
```

 ${\tt emittanceblackbodyPlanck}$

emittance of a black body of temperature T at a given wavelength

Description

emittanceblackbodyPlanck emittance of a black body of temperature T at a given wavelength (in metres).

Usage

```
emittanceblackbodyPlanck(wlnm, T)
```

Arguments

wlnm wavelength in nm
T temperature in Kelvin

Value

emittance

Author(s)

Jose Gama

Source

Planck's radiation law http://www.fourmich/documents/specrend/specrend.c

References

Planck's radiation law http://www.fourmich/documents/specrend/specrend.c

Examples

emittanceblackbodyPlanck(555,2000)

44 GanzGrieser. Whiteness

GanzGrieser.Tint

Ganz and Grieser Tint

Description

GanzGrieser.Tint Ganz Grieser Tint Method.

Usage

```
GanzGrieser.Tint(xyYmatrix)
```

Arguments

xyYmatrix

CIE xyY values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)
GanzGrieser.Tint(xyY)
```

GanzGrieser.Whiteness Ganz and Grieser Whiteness

Description

GanzGrieser.Whiteness Dr. E. Ganz (formerly employee of Ciba AG, Switzerland) and Mr.R. Griesser (formerly employee of J.R.Geigy) developed the Ganz Grieser Whiteness Method.

Usage

GanzGrieser.Whiteness(xyYmatrix)

heuristic.wlnm2RGB 45

Arguments

xyYmatrix CIE xyY values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
GanzGrieser.Whiteness(xyY)
```

heuristic.wlnm2RGB

Approximations from wavelengths to RGB

Description

heuristic.wlnm2RGB Approximations from wavelengths to RGB.

Usage

```
heuristic.wlnm2RGB(wavelength, Gamma = 0.8, IntensityMax = 1)
```

Arguments

wavelength wavelenght data

Gamma Gamma

IntensityMax maximum intensity

Value

XYZ coordinates

Author(s)

Jose Gama

46 HSL2RGB

Source

Dan Bruton's, 2004 www.physics.sfasu.edu/astro/color.html Earl F. Glynn 2006 Delphi conversion http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm

References

 $Dan\ Bruton's, 2004\ www.physics.sfasu.edu/astro/color.html\ Earl\ F.\ Glynn\ 2006\ Delphi\ conversion\ http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm$

Examples

```
heuristic.wlnm2RGB(555)
```

HSL2RGB

Convert HSL coordinates to RGB

Description

HSL2RGB Converts HSL coordinates to RGB.

Usage

```
HSL2RGB(HSLmatrix)
```

Arguments

HSLmatrix

HSL coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
HSL<-c(0.9590164, 0.3262032, 0.3666667)
HSL2RGB(HSL)
HSL2RGB(rbind(HSL, HSL, HSL, HSL, HSL))
```

HSV2RGB 47

HSV2RGB

Convert HSV coordinates to RGB

Description

HSV2RGB Converts HSV coordinates to RGB.

Usage

```
HSV2RGB(HSVmatrix)
```

Arguments

HSVmatrix

HSV coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
HSV<-c(0.9590164, 0.4919355, 0.4862745)
HSV2RGB(HSV)
```

48 Hue.2.RGB

Hue.2.RGB

Convert Hue to RGB

Description

Hue.2.RGB Converts Hue to RGB for HSL conversion.

Usage

```
Hue.2.RGB(v1, v2, vH)
```

Arguments

v1	value 1
v2	value 2
νH	value of hue

Value

RGB coordinates

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

```
Hue.2.RGB(1,2,3)
```

huedegree 49

huedegree

convert Munsell hue to degree

Description

huedegree convert Munsell hue to degree.

Usage

huedegree(MunIn)

Arguments

MunIn

Munsell hue color

Value

Munsell hue degree

Author(s)

Jose Gama

Source

Takahiro Onodera, 2010 Color-Model-Munsell-Util http://annocpan.org/dist/Color-Model-Munsell-Util

References

Takahiro Onodera, 2010 Color-Model-Munsell-Util http://annocpan.org/dist/Color-Model-Munsell-Util

Examples

huedegree('1P')

huedegreemunsell

Table with Munsell hue degrees

Description

huedegreemunsell table with Munsell hue degrees.

Usage

huedegreemunsell

Format

This data frame contains the following columns:

HueDegree hue degree

HueMunsell hue in Munsell H

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(huedegreemunsell)
huedegreemunsell

Hunter60.WhitenessIndex

Hunter 60 Whiteness Index

Description

Hunter60. Whiteness Index Hunter 60 Whiteness Index.

Usage

Hunter60.WhitenessIndex(LabHunterMatrix)

HunterLab2XYZ 51

Arguments

LabHunterMatrix

Lab Hunter values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

Examples

```
HunterLab<-c(28.96756, 2.363884, 0.4821515)
Hunter60.WhitenessIndex(HunterLab)</pre>
```

HunterLab2XYZ

Convert HunterLab coordinates to XYZ

Description

HunterLab2XYZ Converts HunterLab coordinates to XYZ.

Usage

Arguments

HunterLabmatrix

HunterLab coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

XYZ coordinates

52 illuminantA

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
HunterLab2XYZ(c(0.310897, 0.306510, 74.613450))
```

illuminantA

Relative spectral power distributions of CIE illuminant A at 1 nm interval

Description

illuminantA is a table with Relative spectral power distributions of CIE illuminant A at 1 nm interval.

Usage

illuminantA

Format

This data frame contains the following data:

```
wlnm wavelength (nm)
```

intensity Relative spectral power

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

illuminantD65 53

Examples

data(illuminantA)
illuminantA

illuminantD65 Relative spectral power distributions of CIE illuminant D65 at 1 nm interval

Description

illuminantD65 is a table with Relative spectral power distributions of CIE illuminant D65 at 1 nm interval.

Usage

illuminantD65

Format

This data frame contains the following data:

wlnm wavelength (nm)

intensity Relative spectral power

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

Examples

data(illuminantD65)
illuminantD65

54 illuminants

illuminants	Relative spectral power distributions of CIE illuminants at 5 nm interval
-------------	---

Description

illuminants is a table with Relative spectral power distributions of CIE illuminants at 5 nm interval.

Usage

illuminants

Format

This data frame contains the following data:

wlnm wavelength (nm)

A illuminant A

B illuminant B

C illuminant C

D50 illuminant D50

D55 illuminant D55

D65 illuminant D65

D75 illuminant D75

D93 illuminant D93

E illuminant E

Natural illuminant Natural

PlusWhite illuminant PlusWhite

TL84 illuminant TL84

Polylux3000 illuminant Polylux3000 **Polylux4000** illuminant Polylux4000

KolorRite illuminant KolorRite

FL1 illuminant FL1

FL2 illuminant FL2

FL3 illuminant FL3

FL4 illuminant FL4

FL5 illuminant FL5

FL6 illuminant FL6

FL7 illuminant FL7

FL8 illuminant FL8

FL9 illuminant FL9

FL10 illuminant FL10

FL11 illuminant FL11

FL12 illuminant FL12

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

Examples

data(illuminants)
illuminants

 ${\tt ISObrightnessReflectometerRSD}$

Weighting factors for the calculation of ISO brightness

Description

ISObrightnessReflectometerRSD is a table with the weighting factors for the calculation of ISO brightness.

Usage

ISObrightnessReflectometerRSD

Format

This data frame contains the following data:

wln wavelength

F factor

weights weight

56 kelvin2xy

Author(s)

Jose Gama

Source

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

References

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

Examples

data(ISObrightnessReflectometerRSD)
ISObrightnessReflectometerRSD

kelvin2xy

Blackbody radiator color temperature to CIE 1931 x,y chromaticity approximation function

Description

kelvin2xy Blackbody radiator color temperature to CIE 1931 x,y chromaticity approximation function.

Usage

kelvin2xy(T)

Arguments

Τ

temperature in Kelvin

Value

color temperature

Author(s)

Jose Gama

Source

Kim et al., 2002 "Design of Advanced Color - Temperature Control System for HDTV Applications" http://fcam.garage.maemo.org/apiDocs/namespace_f_cam.html

Lab2LCHab 57

References

Kim et al., 2002 "Design of Advanced Color - Temperature Control System for HDTV Applications" http://fcam.garage.maemo.org/apiDocs/namespace_f_cam.html

Examples

kelvin2xy(300)

Lab2LCHab

Convert CIE Lab coordinates to LCHab

Description

Lab2LCHab Converts CIE Lab coordinates to LCHab.

Usage

```
Lab2LCHab(LabMatrix)
```

Arguments

LabMatrix

CIE Lab coordinates

Value

LCHab coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
Lab2LCHab(c(0.310897, 0.306510, 74.613450))
```

58 Lab2XYZ

Lab2XYZ

Convert CIE Lab coordinates to XYZ

Description

Lab2XYZ Converts CIE Lab coordinates to XYZ.

Usage

```
Lab2XYZ(Labmatrix, illuminant = "D65", observer = 2, RefWhite
= XYZperfectreflectingdiffuser)
```

Arguments

Labmatrix CIE Lab coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

XYZ coordinates

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

```
Lab2XYZ(c(0.310897, 0.306510, 74.613450))
```

LCHab2Lab 59

LCHab2Lab

Convert LCHab coordinates to CIE Lab

Description

LCHab2Lab Converts LCHab coordinates to CIE Lab.

Usage

LCHab2Lab(LCHabmatrix)

Arguments

LCHabmatrix LCHab coordinates

Value

CIE Lab coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

LCHab2Lab(c(0.310897, 0.306510, 74.613450))

LCHuv2Luv

Convert LCHuv coordinates to CIE Luv

Description

LCHuv2Luv Converts LCHuv coordinates to CIE Luv.

Usage

LCHuv2Luv(LCHuvmatrix)

60 LEF2RGB

Arguments

LCHuvmatrix LCHuv coordinates

Value

CIE Luv coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

LCHuv2Luv(c(0.310897, 0.306510, 74.613450))

LEF2RGB

Convert LEF coordinates to RGB

Description

LEF2RGB Converts LEF coordinates to RGB.

Usage

LEF2RGB(LEFmatrix)

Arguments

LEFmatrix LEF coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

LMS2RGB 61

References

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

Examples

```
LEF<-c(176.66667, 53.50000, -12.99038)
LEF2RGB(LEF)
```

LMS2RGB

Convert LMS coordinates to RGB

Description

LMS2RGB Converts LMS coordinates to RGB.

Usage

```
LMS2RGB(LMSmatrix)
```

Arguments

LMSmatrix

LMS coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
LMS<-c(3.822394, 10.17498, 1.130049)
LMS2RGB(LMS)
```

62 LMS2XYZ

LMS2XYZ

Convert LMS coordinates to XYZ

Description

LMS2XYZ Converts LMS coordinates to XYZ.

Usage

LMS2XYZ(LMSmatrix)

Arguments

LMS matrix LMS coordinates

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
LMS<-c(3.822394, 10.17498, 1.130049)
LMS2XYZ(LMS)
```

LSLM2RGB 63

LSLM2RGB

Convert LSLM coordinates to RGB

Description

LSLM2RGB Converts LSLM coordinates to RGB.

Usage

LSLM2RGB(LSLMmatrix)

Arguments

LSLMmatrix LSLM coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
LSLM<-c(-0.4186083, 0.007563981, 0.4918533)
LSLM2RGB(LSLM)
```

64 Luv2XYZ

Luv2LCHuv

Convert CIE Luv coordinates to LCHuv

Description

Luv2LCHuv Converts CIE Luv coordinates to LCHuv.

Usage

```
Luv2LCHuv(LuvMatrix)
```

Arguments

LuvMatrix Luv coordinates

Value

LCHuv coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
Luv2LCHuv(c(0.310897, 0.306510, 74.613450))
```

Luv2XYZ

Convert CIE Luv coordinates to XYZ

Description

Luv2XYZ Converts CIE Luv coordinates to XYZ.

Usage

Luv2Yuv 65

Arguments

Luvmatrix Luv matrix illuminant observer observer

RefWhite Reference White

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

Luv2XYZ(c(0.310897, 0.306510, 74.613450))

Luv2Yuv

Convert CIE Luv coordinates to Yuv

Description

Luv2Yuv Converts CIE Luv coordinates to Yuv.

Usage

Luv2Yuv(Luvmatrix,illuminant='D65',observer=2,RefWhite=XYZperfectreflectingdiffuser)

Arguments

Luvmatrix CIE Luv coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

Yuv coordinates

66 MaterialReferenceData

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

Examples

```
Luv2Yuv(c(0.310897, 0.306510, 74.613450))
```

MaterialReferenceData Material Reference Data from Principles of Digital Image Synthesis

Description

MaterialReferenceData Material Reference Data from Principles of Digital Image Synthesis, Appendix G Andrew S. Glassner 16 August 1994.

Usage

MaterialReferenceData

Format

This data frame contains the following data:

wavelength wavelength (nm)

DarkSkin spectra of: dark skin

LightSkin spectra of: light skin

BlueSky spectra of: blue sky

Foliage spectra of: foliage

BlueFlower spectra of: blue flower **BluishGreen** spectra of: bluish green

Orange spectra of: orange

PurplishBlue spectra of: purplish blue **ModerateRed** spectra of: moderate red

Purple spectra of: purple

YellowGreen spectra of: yellow green
OrangeYellow spectra of: orange yellow

MaterialReferenceData 67

Blue spectra of: blue
Green spectra of: green

Red spectra of: red

Yellow spectra of: yellow

Magenta spectra of: magenta

Cyan spectra of: cyanWhite spectra of: whiteNeutral spectra of: neutral

Neutral6.5 spectra of: neutral 6.5Neutral5 spectra of: neutral 5Neutral3.5 spectra of: neutral 3.5

Black spectra of: black

PineNeedles spectra of: pine needles

SilverMapleLeaf spectra of: silver maple leaf

DarkGreenMapleLeaf spectra of: dark green maple leaf

RedMapleLeaf spectra of: red maple leaf

Grass spectra of: grass **Soil** spectra of: soil

VineLeaf spectra of: vine leaf Alphalt spectra of: alphalt

DaisyWhitePetals spectra of: daisy white petals
 DaisyYellowCenter spectra of: daisy yellow center
 MarigoldOrange spectra of: marigold orange
 MarigoldYellow spectra of: marigold yellow

DarkBlueJeans spectra of: dark blue jeans

FadedJeans spectra of: faded jeans

DarkBlueSweatPants spectra of: dark blue sweat pants

Denim spectra of: denim

WheatBread spectra of: wheat bread

WheatBreadCrust spectra of: wheat bread crust

Pancake spectra of: pancake

SwissArmyKnife spectra of: swiss army knife

PineWood spectra of: pine wood

MapleWood spectra of: maple wood

OakWood spectra of: oak wood

Bamboo spectra of: bamboo

Redwood spectra of: redwood

68 MaterialReferenceData

WalnutWood spectra of: walnut wood

YellowBanana spectra of: yellow banana

RipeBrownBanana spectra of: ripe brown banana

Cucumber spectra of: cucumber

CornKernel spectra of: corn kernel

CornHusk spectra of: corn husk

YellowDeliciousApple spectra of: yellow delicious apple

GreenPepper spectra of: green pepper

LemonSkin spectra of: lemon skin

Lettuce spectra of: lettuce

Carrot spectra of: carrot

BarleySeeds spectra of: barley seeds

LentilSeeds spectra of: lentil seeds

BrownRiceSeeds spectra of: brown rice seeds

Sand spectra of: sand

Author(s)

Jose Gama

Source

Andrew S. Glassner, 1995 Principles of Digital Image Synthesis The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling

References

Andrew S. Glassner, 1995 Principles of Digital Image Synthesis The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling

Examples

data(MaterialReferenceData)
str(MaterialReferenceData)

MaxChromaFromExtrapRenotationData

Table with maximum chroma for which extrapolated renotation data is available

Description

MaxChromaFromExtrapRenotationData table with maximum chroma for which extrapolated renotation data is available.

Usage

MaxChromaFromExtrapRenotationData

Format

This data frame contains the following columns:

H Hue

V Value

Maximum Chroma Maximum Chroma

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MaxChromaFromExtrapRenotationData)
MaxChromaFromExtrapRenotationData

MaxChromasForStandardMunsellHuesAndValues

Table with maximum Munsell chroma, for a given Munsell hue and value, for which an extrapolated renotation value is available

Description

MaxChromasForStandardMunsellHuesAndValues table with maximum Munsell chroma, for a given Munsell hue and value, for which an extrapolated renotation value is available.

Usage

MaxChromasForStandardMunsellHuesAndValues

Format

This data frame contains the following columns:

H Hue

V Value

Maximum Chroma (MacAdam limit)

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MaxChromasForStandardMunsellHuesAndValues)
MaxChromasForStandardMunsellHuesAndValues

Munsell100hues55 71

Munsell100hues55	Chromaticity diagram showing values for x and y for Illuminant A for 100 hues at 5/5

Description

Munsell100hues55 Chromaticity diagram showing Tristimulus Values and Trilinear Coordinates for Illuminant A for 100 hues at 5/5.

Usage

Munsell100hues55

Format

This data frame contains the following columns:

BookNotation Munsell color notation from the Munsell book

MunsellProductionNo

- X Tristimulus Value X
- Y Tristimulus Value Y
- **Z** Tristimulus Value Z
- x Trilinear Coordinate x
- y Trilinear Coordinate y
- z Trilinear Coordinate z

Author(s)

Jose Gama

Source

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

References

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

Examples

data(Munsell100hues55) Munsell100hues55 Munsell100hues55FM100 Munsell 100-Hues at 5/5, production numbers 101 to 200 and Farnsworth-Munsell 100 Hue test

Description

72

Munsell 100 Hues 55FM100 Munsell 100-Hues at 5/5, production numbers 101 to 200 and Farnsworth-Munsell 100 Hue test.

Usage

Munsell100hues55FM100

Format

This data frame contains the following columns:

FMtest Farnsworth-Munsell 100 Hue test value

MunsellNumber Munsell 100-Hues at 5/5, production number

Author(s)

Jose Gama

Source

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

References

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

Examples

data(Munsell100hues55FM100)
Munsell100hues55FM100

MunsellHues 73

MunsellHues

Table with Munsell Hues

Description

Munsell Hues table with Munsell Hues.

Usage

MunsellHues

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MunsellHues)
MunsellHues

74 MunsellNeutrals2sRGB

MunsellNeutrals2sRGB Table with Munsell Neutrals and corresponding sRGB

Description

MunsellNeutrals2sRGB table with Munsell Neutrals and corresponding sRGB.

Usage

MunsellNeutrals2sRGB

Format

This data frame contains the following columns:

MunsellNeutral Munsell N

R sRGBR

G sRGB G

B sRGB B

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MunsellNeutrals2sRGB)
MunsellNeutrals2sRGB

MunsellSpectral 75

MunsellSpectral

Table with Munsell spectral data

Description

MunsellSpectral table for 1250 matt Munsell color chips with Munsell notation values, XYZ, xyY, RGB, CIE Lab, CIE Luv and spectral data.

Usage

MunsellSpectral

Author(s)

Jose Gama

Source

Spectral Color Research group, 1989 University of Kuopio, Finland School of Computing and the Department of Physics and Mathematics Database - Munsell Colors Matt (AOTF) http://cs.joensuu.fi/~spectral/databases/download/munsell_aotf.htm

Parkkinen, J. P. S., Hallikainen, J. and Jaaskelainen, 1989 "Characteristic spectra of Munsell colors," Journal of the Optical Society of America Vol. 6, No. 2, February 1989, pp. 318-322.

References

Spectral Color Research group, 1989 University of Kuopio, Finland School of Computing and the Department of Physics and Mathematics Database - Munsell Colors Matt (AOTF) http://cs.joensuu.fi/~spectral/databases/download/munsell_aotf.htm

Parkkinen, J. P. S., Hallikainen, J. and Jaaskelainen, 1989 "Characteristic spectra of Munsell colors," Journal of the Optical Society of America Vol. 6, No. 2, February 1989, pp. 318-322.

Examples

data(MunsellSpectral)
MunsellSpectral

MunsellV2relativeLuminanceY

Munsell value V to relative luminance Y

Description

MunsellV2relativeLuminanceY Munsell value V to relative luminance Y.

Usage

MunsellV2relativeLuminanceY(V)

Arguments

Munsell value

Value

CIE XYZ "Y"

Author(s)

Jose Gama

Source

Mark D. Fairchild, 2013 Color Appearance Models, 3rd Ed. Wiley-IS&T

References

Mark D. Fairchild, 2013 Color Appearance Models, 3rd Ed. Wiley-IS&T

Examples

MunsellV2relativeLuminanceY(5)

MunsellV2Y 77

MunsellV2Y

Munsell value to CIE XYZ "Y"

Description

Munsell V2Y Munsell value to CIE XYZ "Y".

Usage

MunsellV2Y(V)

Arguments

V

Munsell value

Value

CIE XYZ "Y"

Author(s)

Jose Gama

Source

ASTM, 2008 ASTM Standard D1535-08

References

ASTM, 2008 ASTM Standard D1535-08

Examples

MunsellV2Y(5)

NickersonColorDifference

Nickerson Color Difference

Description

NickersonColorDifference Nickerson's Color Difference.

Usage

 ${\tt NickersonColorDifference(MunsellHVC1,\ MunsellHVC2)}$

78 Photo YCC2RGB

Arguments

MunsellHVC1 Munsell HVC 1
MunsellHVC2 Munsell HVC 2

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

Examples

NickersonColorDifference('10B 5/6','5B 5/4')

PhotoYCC2RGB

Convert PhotoYCC to RGB

Description

PhotoYCC2RGB Converts PhotoYCC to RGB.

Usage

PhotoYCC2RGB(PhotoYCCmatrix)

Arguments

PhotoYCCmatrix PhotoYCC coordinates

Value

RGB coordinates

Author(s)

Jose Gama

PreucilAngle 79

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

Examples

```
p <- c(0.4560569, 155.9415709, 137.3026467)
PhotoYCC2RGB(p)
```

PreucilAngle

Preucil Angle

Description

PreucilAngle Preucil Angle.

Usage

PreucilAngle(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

Angle

Author(s)

Jose Gama

Source

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

References

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

```
PreucilAngle(c(24,72,44))
```

PreucilPercentGreyness

Preucil Percentage of Greyness

Description

PreucilPercentGreyness Preucil Percentage of Greyness.

Usage

PreucilPercentGreyness(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

Percentage of Greyness

Author(s)

Jose Gama

Source

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

References

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

Examples

PreucilPercentGreyness(c(24,72,44))

PreucilPercentHueError 81

PreucilPercentHueError

Preucil Percentage of Greyness

Description

PreucilPercentHueError Preucil Percentage of Hue Error.

Usage

PreucilPercentHueError(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

Percentage of HueError

Author(s)

Jose Gama

Source

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

References

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

Examples

PreucilPercentHueError(c(24,72,44))

82 rgb2dkIV

RGB2CMY

Convert sRGB coordinates to CMY

Description

RGB2CMY Converts sRGB coordinates to CMY.

Usage

RGB2CMY(RGBmatrix)

Arguments

RGBmatrix

sRGB coordinates

Value

CMY coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
RGB2CMY(c(0.310897, 0.306510, 74.613450))
```

rgb2dk1V

convert RGB to DKL

Description

 $\label{lem:converts} \begin{tabular}{ll} $\tt rgb2dklV Converts \ sRGB \ coordinates \ to \ DKL, \ spherical \ coords, \ sames \ as \ Graph-Based \ Visual \ Saliency. \ rgb2dklCart \ Converts \ sRGB \ coordinates \ to \ DKL, \ cartesian \ coords. \end{tabular}$

Usage

rgb2dk1V(RGB)

RGB2HSL 83

Arguments

RGB

sRGB coordinates

Value

DKL coordinates

Author(s)

Jose Gama

Source

 $Package\ psychopy\ for\ Python\ http://www.psychopy.org/epydoc/psychopy.misc-pysrc.html \#dkl2rgb$

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology http://www.klab.caltech.edu/~harel/share/gbvs.php

References

Package psychopy for Python http://www.psychopy.org/epydoc/psychopy.misc-pysrc.html#dkl2rgb

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology http://www.klab.caltech.edu/~harel/share/gbvs.php

Examples

```
rgb2dklCart(c(54,75,121))
```

RGB2HSL

Convert RGB coordinates to HSL

Description

RGB2HSL Converts RGB coordinates to HSL.

Usage

```
RGB2HSL(RGBmatrix)
```

Arguments

RGBmatrix

RGB coordinates

Value

HSL coordinates

84 RGB2HSV

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
RGB<-c(124,63,78)
RGB2HSL(RGB)
```

RGB2HSV

Convert RGB coordinates to HSV

Description

RGB2HSV Converts RGB coordinates to HSV.

Usage

RGB2HSV(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

HSV coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

RGB2hue 85

Examples

```
RGB<-c(124,63,78)
RGB2HSV(RGB)
```

RGB2hue

Convert sRGB coordinates to hue

Description

RGB2hue Converts sRGB coordinates to hue.

Usage

RGB2hue(RGBmatrix)

Arguments

RGBmatrix

sRGB coordinates

Value

hue

Author(s)

Jose Gama

Examples

RGB2hue(c(0.310897, 0.306510, 74.613450))

RGB2LEF

Convert RGB coordinates to LEF

Description

RGB2LEF Converts RGB coordinates to LEF.

Usage

RGB2LEF(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

86 RGB2LMS

Value

LEF coordinates

Author(s)

Jose Gama

Source

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

References

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

Examples

RGB<-c(124,63,78) RGB2LEF(RGB)

RGB2LMS

Convert RGB coordinates to LMS

Description

RGB2LMS Converts RGB coordinates to LMS.

Usage

RGB2LMS(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

LMS coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

RGB2LSLM 87

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

Examples

```
RGB<-c(124,63,78)
RGB2LMS(RGB)
```

RGB2LSLM

Convert RGB coordinates to LSLM

Description

RGB2LSLM Converts RGB coordinates to LSLM.

Usage

```
RGB2LSLM(RGBmatrix)
```

Arguments

RGBmatrix

RGB coordinates

Value

LSLM coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
RGB<-c(124,63,78)
RGB2LSLM(RGB)
```

88 RGB2PhotoYCC

RGB2PhotoYCC

Convert RGB coordinates to PhotoYCC

Description

RGB2PhotoYCC Converts RGB coordinates to PhotoYCC.

Usage

RGB2PhotoYCC(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

PhotoYCC coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.

Examples

RGB<-c(124,63,78) RGB2PhotoYCC(RGB) RGB2XYZ 89

RGB2XYZ

Convert sRGB coordinates to XYZ

Description

RGB2XYZ Converts sRGB coordinates to XYZ.

Usage

Arguments

RGBmatrix sRGB coordinates

illuminant illuminant observer observer

RefWhite White Reference RGBModel RGB Model

RefWhiteRGB White Reference RGB

gamma gamma

RefWhiteIllum White Reference illuminant
CAT Chromatic Adaptation algorithm
CATarray Chromatic Adaptation data

Value

CIE XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
RGB2XYZ(c(0.310897, 0.306510, 74.613450))
```

90 RGB2YCbCr

RGB2YCbCr

Convert RGB coordinates to YCbCr

Description

RGB2YCbCr Converts RGB coordinates to YCbCr.

Usage

RGB2YCbCr(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

YCbCr coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0\,http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt$

Examples

RGB<-c(124,63,78) RGB2YCbCr(RGB) RGB2YIQ 91

RGB2YIQ

Convert RGB coordinates to YIQ

Description

RGB2YIQ Converts RGB coordinates to YIQ.

Usage

RGB2YIQ(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

YIQ coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

```
RGB<-c(124,63,78)
RGB2YIQ(RGB)
```

92 RGB2YPbPr

RGB2YPbPr

Convert RGB coordinates to YPbPr

Description

RGB2YPbPr Converts RGB coordinates to YPbPr.

Usage

RGB2YPbPr(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

YPbPr coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.

```
RGB<-c(124,63,78)
RGB2YPbPr(RGB)
```

RGB2YUV 93

RGB2YUV

Convert RGB coordinates to YUV

Description

RGB2YUV Converts RGB coordinates to YUV.

Usage

RGB2YUV(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

YUV coordinates

Author(s)

Jose Gama

Source

Madk, Sophie Kirschner, 2014 Color space conversion http://www.blitzbasic.com/codearcs/codearcs.php?code=2953

References

Madk, Sophie Kirschner, 2014 Color space conversion http://www.blitzbasic.com/codearcs/codearcs.php?code=2953

```
RGB<-c(124,63,78)
RGB2YUV(RGB)
```

94 saturationCIECAM02

RxRyRz2XYZ

convert from three filter measurements (reflectance factors) to XYZ

Description

RxRyRz2XYZ convert from three filter measurements (reflectance factors) to XYZ.

Usage

```
RxRyRz2XYZ(RxRyRzmatrix=NA,illuminant='C', observer=2,
RefWhite=XYZperfectreflectingdiffuser)
```

Arguments

RxRyRzmatrix reflectance factors coordinates

illuminant illuminant observer observer

RefWhite White Reference

Value

CIE XYZ coordinates

Author(s)

Jose Gama

Examples

```
RxRyRz2XYZ(c(7.90393, 8.391198, 9.721126))
```

saturationCIECAM02

saturation CIECAM 2002

Description

saturationCIECAM02 saturation CIECAM 2002.

Usage

```
saturationCIECAM02(M, Q)
```

Arguments

M colorfulness Q brightness

Value

saturation

Author(s)

Jose Gama

Source

```
Color by Wikipedians http://www.easyrgb.com/
```

References

Color by Wikipedians http://www.easyrgb.com/

 ${\tt saturationCIELABE} {\tt vaLubbe}$

CIELAB saturation (Eva Lubbe)

Description

saturationCIELABEvaLubbe CIELAB saturation (chroma normalized by lightness).

Usage

saturationCIELABEvaLubbe(L,a,b)

Arguments

L CIELAB L a CIELAB a b CIELAB b

Value

saturation

Author(s)

Jose Gama

Source

```
Color by Wikipedians http://www.easyrgb.com/
```

References

Color by Wikipedians http://www.easyrgb.com/

96 saturationCIELUV

Examples

```
saturationCIELABEvaLubbe(34.78467, 28.15159, 3.024663)
```

saturationCIELUV

CIELUV/CIELAB saturation

Description

saturationCIELUV CIELUV/CIELAB saturation.

Usage

```
saturationCIELUV(u, v, un, vn)
```

Arguments

u CIELAB u v CIELAB v

un CIELAB u neutral vn CIELAB v neutral

Value

saturation

Author(s)

Jose Gama

Source

```
Color by Wikipedians http://www.easyrgb.com/
```

References

Color by Wikipedians http://www.easyrgb.com/

spectra2CCT 97

spectra2CCT

Correlated Color Temperature (CCT) from spectra

Description

spectra2CCT Correlated Color Temperature (CCT) from spectra.

Usage

```
spectra2CCT(SPD=NA, isoTempLinesTable=NA,CIETable = ciexyz31, TCS = TCSdata)
```

Arguments

SPD light source spd

 $iso {\sf TempLinesTable}$

Iso temperature lines table

CIETable reference data values

TCS spectral reflectance data of 14 color test samples for CRI

Value

Correlated Color Temperature (CCT)

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

```
# illuminant A
SPD = illuminants[1:51*2-1,c('wlnm','A')] # every 10 nm
CCT <- spectra2CCT(SPD)
CCT</pre>
```

spectra2CRIGAIFSCI

CRI, GAI and FSCI from spectra

Description

spectra2CRIGAIFSCI Color Rendering Index (CRI), Gamut Area Index (GAI) and full spectrum index (FSCI) from spectra.

Usage

```
spectra2CRIGAIFSCI(SPD=NA, isoTempLinesTable=NA, CCT=NA,
CIETable = ciexyz31, TCS = TCSdata)
```

Arguments

SPD light source spd

isoTempLinesTable

Iso temperature lines table

CCT Correlated Color Temperature (CCT)

CIETable reference data values

TCS spectral reflectance data of 14 color test samples for CRI

Value

CRI, GAI and FSCI

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

spectra2ISObrightness 99

Examples

```
# illuminant A
SPD = illuminants[1:51*2-1,c('wlnm','A')] # every 10 nm
isoTempLinesTable <- createIsoTempLinesTable(SPD)
CCT <- spectra2CCT(SPD)
spectra2CRIGAIFSCI(SPD, isoTempLinesTable, CCT)
spectra2CRIGAIFSCI(SPD, isoTempLinesTable)
spectra2CRIGAIFSCI(SPD)</pre>
```

spectra2ISObrightness Diffuse blue reflectance factor (ISO brightness)

Description

spectra2ISObrightness Diffuse blue reflectance factor (ISO brightness), R457, ISO 2470.

Usage

spectra2ISObrightness(spectraIn=NA, wlIn=NA, RSDmatrix=ISObrightnessReflectometerRSD)

Arguments

spectraIn spectral data
wlIn wavelength range
RSDmatrix ISO brightness data

Value

LCHuv coordinates

Author(s)

Jose Gama

Source

ISO board, 2009 ISO 2470-1: 2009 PAPER, BOARD AND PULPS MEASUREMENT OF DIFFUSE BLUE REFLECTANCE FACTOR PART 1 INDOOR DAYLIGHT CONDITIONS (ISO BRIGHTNESS)

References

ISO board, 2009 ISO 2470-1: 2009 PAPER, BOARD AND PULPS MEASUREMENT OF DIFFUSE BLUE REFLECTANCE FACTOR PART 1 INDOOR DAYLIGHT CONDITIONS (ISO BRIGHTNESS)

100 spectra2lux

Examples

```
spectra2ISObrightness(MaterialReferenceData[,c( 'BlueSky')],
MaterialReferenceData[,c('wavelength' )])
```

spectra2lux

Illuminance (Lux) from spectra

Description

spectra2lux Illuminance (Lux) from spectra.

Usage

```
spectra2lux(spectraIn=NA, ciexyzIn=NA,wlIn=NA, wlInterval=NA)
```

Arguments

spectraIn light source spd ciexyzIn reference data values

wlIn range of output wavelengths

wlInterval arbitrary wavelength interval to be applied to all series through interpolation

Value

Correlated Color Temperature (CCT)

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

```
spectra2lux(MaterialReferenceData[,c('wavelength','BlueSky')])
```

spectra2XYZ

convert spectral data to tristimulus values

Description

spectra2XYZ convert spectral data to tristimulus values.

Usage

```
spectra2XYZ(spectraIn=NA, illuminantIn=NA, ciexyzIn=NA,wlIn=NA, wlInterval=NA)
```

Arguments

spectraIn spectral data illuminantIn illuminant

ciexyzIn range of illuminant wavelengths wlIn range of spectral wavelengths

wlInterval arbitrary wavelength interval to be applied to all series through interpolation

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Andrew S. Glassner, 1995 Principles of digital image synthesis: Vol. 1 Kaufmann

References

Andrew S. Glassner, 1995 Principles of digital image synthesis: Vol. 1 Kaufmann

```
spectra2XYZ(MaterialReferenceData[,c('wavelength','BlueSky')])
```

102 SteamsSteamscorrection

sprague

Interpolates an n by w matrix of spectra, sprague

Description

sprague Interpolates an n by w matrix of spectra, sprague.

Usage

```
sprague(spectra, f)
```

Arguments

spectral spectral data

f range of wavelenghts

Value

Interpolated spectral data

Author(s)

Jose Gama

Source

 $Stephen\ Westland, 2014\ http://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-content/sprague.m$

References

 $Stephen \ Westland, 2014 \ http://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-content/sprague.m$

StearnsStearnscorrection

Stearns and Stearns correction

Description

StearnsStearnscorrection Stearns and Stearns correction.

Usage

StearnsStearnscorrection(P)

Stensby68. Whiteness 103

Arguments

P XYZ coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Stephen Westland and Caterina Ripamonti, 2004 Computational Colour Science using MATLAB John Wiley & Sons Ltd, pp.35

References

Stephen Westland and Caterina Ripamonti, 2004 Computational Colour Science using MATLAB John Wiley & Sons Ltd, pp.35

Stensby68.Whiteness

Stensby Whiteness

Description

 $Stensby 68. \ Whiteness formula \ was \ developed \ by \ Mr. \ P. \ Stensby \ (formerly \ employee \ of \ J.R. \ Geigy \ AG \ in \ US.)$

Usage

Stensby68.Whiteness(LabHunterMatrix)

Arguments

LabHunterMatrix

Lab Hunter values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

104 Taube 60. Whiteness

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
Stensby68.Whiteness(c(0.310897, 0.306510, 74.613450))
```

Taube60.Whiteness

Taube Whiteness

Description

Taube 60. Whiteness developed by Mr. Taube (formerly an employee of BASF AG, Germany). It was presented in 1960 and has found it's application mainly in the plastic sector.

Usage

Arguments

XYZmatrix CIE tristimulus values for illuminant C

illuminant illuminant observer observer

RefWhite White reference

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
Taube60.Whiteness(XYZ)
```

TCSdata 105

TCSdata

The spectral reflectance data of 14 color test samples for CRI

Description

TCSdata is a table with the spectral reflectance data of 14 color test samples for CRI.

Usage

TCSdata

Format

This data frame contains the following data:

wavelength wavelength (nm)

TCS1 spectral reflectance data for sample 1

TCS2 spectral reflectance data for sample 2

TCS3 spectral reflectance data for sample 3

TCS4 spectral reflectance data for sample 4

TCS5 spectral reflectance data for sample 5

TCS6 spectral reflectance data for sample 6

TCS7 spectral reflectance data for sample 7

TCS8 spectral reflectance data for sample 8

TCS9 spectral reflectance data for sample 9

TCS10 spectral reflectance data for sample 10

TCS11 spectral reflectance data for sample 11

TCS12 spectral reflectance data for sample 12

TCS13 spectral reflectance data for sample 13

TCS14 spectral reflectance data for sample 14

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

106 tristimulusMunsell

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

Examples

data(TCSdata) TCSdata

tristimulusMunsell

434 Munsell colors with tristimulus and CMFs for a few illuminants

Description

tristimulusMunsell is a table with 434 Munsell colors with tristimulus and Color matching functions for illuminants A, C D and S.

Usage

tristimulusMunsell

Format

This data frame contains the following data:

Munsell Color notation

X.A tristimulus X for illuminant A

Y.A tristimulus Y for illuminant A

Z.A tristimulus Z for illuminant A

x.A CMF x for illuminant A

y.A CMF y for illuminant A

X.C tristimulus X for illuminant C

Y.C tristimulus Y for illuminant C

Z.C tristimulus Z for illuminant C

x.C CMF x for illuminant C

y.C CMF y for illuminant C

X.D tristimulus X for illuminant D

Y.D tristimulus Y for illuminant D

Z.D tristimulus Z for illuminant D

x.D CMF x for illuminant D

y.D CMF y for illuminant D

WestlandBlacknessIndex 107

- X.S tristimulus for X illuminant S
- Y.S tristimulus for Y illuminant S
- **Z.S** tristimulus for Z illuminant S
- x.S CMF x for illuminant S
- y.S CMF y for illuminant S
- X Munsell painting number

Author(s)

Jose Gama

Source

K. L. Kelley, K. S. Gibson, and D. Nickerson, 1943 "Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements," J. Opt. Soc. Am. 33, 355–376

References

K. L. Kelley, K. S. Gibson, and D. Nickerson, 1943 "Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements," J. Opt. Soc. Am. 33, 355–376

Examples

data(tristimulusMunsell)
tristimulusMunsell

WestlandBlacknessIndex

Westland, et al. blackness index

Description

WestlandBlacknessIndex (Westland, et al., 2006) blackness index.

Usage

WestlandBlacknessIndex(CIELabMatrix)

Arguments

CIELabMatrix CIELab coordinates

Value

blackness index

Author(s)

Jose Gama

Source

Westland, S.; Cheung, T. L. V.; Lozman, O. R., 2006. A metric for predicting perceptual blackness. 14th Color Imaging Conference Final Program and Proceedings, 14-17.

References

Westland, S.; Cheung, T. L. V.; Lozman, O. R., 2006. A metric for predicting perceptual blackness. 14th Color Imaging Conference Final Program and Proceedings, 14-17.

Examples

```
CIELab<-c(34.78467, 28.15159, 3.024663)
WestlandBlacknessIndex(CIELab)
```

whitepointsilluminants

White points of standard illuminants

Description

whitepointsilluminants is a table with White points of standard illuminants.

Usage

whitepointsilluminants

Format

This data frame contains the following data:

illuminant illuminant

description description

x2 x2

y2 y2

x10 x10

y10 y10

CCT CCT

Author(s)

Jose Gama

whitepointsRGB 109

Source

Wikipedia, 2014 White points of standard illuminants http://en.wikipedia.org/wiki/Standard_illuminant

References

Wikipedia, 2014 White points of standard illuminants http://en.wikipedia.org/wiki/Standard_illuminant

Examples

```
data(whitepointsilluminants)
whitepointsilluminants
```

white points RGB

Primaries for RGB color spaces

Description

whitepointsRGB is a table with primaries for RGB color spaces.

Usage

whitepointsRGB

Format

This data frame contains the following data:

```
xRed Primary red x
yRed Primary red y
xGreen Primary green x
yGreen Primary green y
xBlue Primary blue x
yBlue Primary blue y
whitepointilluminant illuminant
gamma gamma
description Color space name
```

Author(s)

Jose Gama

Source

Wikipedia, 2014 RGB color space http://en.wikipedia.org/wiki/RGB_color_space

110 wlnm2XYZ

References

Wikipedia, 2014 RGB color space http://en.wikipedia.org/wiki/RGB_color_space

Examples

data(whitepointsRGB)
whitepointsRGB

wlnm2XYZ

Approximates wavelength to CIE tristimulus XYZ

Description

```
wlnm2XYZ Approximates wavelength to CIE tristimulus XYZ, by interpolation. wlnm2xyz Approximates wavelength to CIE xyz, by interpolation.
```

Usage

```
wlnm2XYZ(wavelength)
```

Arguments

wavelength wavelength

Value

CIE XYZ

Author(s)

Jose Gama

Examples

wlnm2XYZ(555)

xFit_1931

xFit_1931

Approximations from wavelengths to XYZ by Wyman et al

Description

xFit_1931 Approximations from wavelengths to XYZ by Wyman et al.

Usage

```
xFit_1931(wave)
```

Arguments

wave

wavelenght data

Value

XYZ X, Y or Z coordinate

Author(s)

Jose Gama

Source

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

References

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

```
xFit_1931(555)
yFit_1931(555)
zFit_1931(555)
```

xy2CCT.HernandezAndres

convert from chromaticity coordinates to correlated color temperature (Hernandez Andres)

Description

xy2CCT. HernandezAndres convert from chromaticity coordinates to correlated color temperature (approximation) by Hernandez Andres.

Usage

```
xy2CCT.HernandezAndres(x,y)
```

Arguments

x x coordinatesy y coordinates

Value

CCT (Hernandez Andres)

Author(s)

Jose Gama

Source

Hernandez-Andres, et al. 1999 "Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities" http://en.wikipedia.org/wiki/Color_temperature

References

Hernandez-Andres, et al. 1999 "Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities" http://en.wikipedia.org/wiki/Color_temperature

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
xy2CCT.HernandezAndres(xyY[1],xyY[2])</pre>
```

xy2CCT.McCamy 113

xy2CCT.McCamy

convert from chromaticity coordinates to correlated color temperature

Description

xy2CCT. McCamy convert from chromaticity coordinates to correlated color temperature (approximation).

Usage

```
xy2CCT.McCamy(x,y)
```

Arguments

x x coordinatesy y coordinates

Value

CCT McCamy

Author(s)

Jose Gama

Source

C. S. McCamy, 1992 "Correlated color temperature as an explicit function of chromaticity coordinates" Color Research & Application Volume 17, Issue 2, pages 142–144

References

C. S. McCamy, 1992 "Correlated color temperature as an explicit function of chromaticity coordinates" Color Research & Application Volume 17, Issue 2, pages 142–144

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)
xy2CCT.McCamy(xyY[1], xyY[2])
```

```
xyChromaticitiesVos1978
```

```
x, y coordinates transformed to Judd (1951) x', y' system
```

Description

```
xyChromaticitiesVos1978 x, y coordinates transformed to Judd (1951) x', y' system.
```

Usage

```
xyChromaticitiesVos1978(x,y)
```

Arguments

```
x x coordinate
y y coordinate
```

Value

```
x', y' coordinates
```

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)
xyChromaticitiesVos1978(xyY[1],xyY[2])
```

xyY2XYZ 115

xyY2XYZ

Convert CIE CMF to XYZ

Description

xyY2XYZ Converts CIE CMF to XYZ.

Usage

xyY2XYZ(xyYmatrix)

Arguments

xyYmatrix

CIE CMFs

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
xyY2XYZ(c(0.310897, 0.306510, 74.613450))
```

XYZ2BVR

convert from XYZ coordinates to BVR

Description

XYZ2BVR convert from XYZ coordinates to BVR.

Usage

XYZ2BVR(XYZmatrix)

116 XYZ2CCT.Robertson

Arguments

XYZmatrix XYZ coordinates

Value

BVR coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.html$

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2BVR(XYZ)
```

XYZ2CCT.Robertson

convert from chromaticity coordinates to correlated color temperature (Robertson)

Description

XYZ2CCT.Robertson convert from chromaticity coordinates to correlated color temperature (approximation) by Robertson.

Usage

```
XYZ2CCT.Robertson(X, Y, Z)
```

Arguments

Χ	X coordinates
Υ	Y coordinates
7	Z coordinates

Value

CCT (Robertson)

XYZ2HunterLab 117

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

Examples

```
XYZ2CCT.Robertson( 0.11465380, 0.08391198, 0.08222077 )
```

XYZ2HunterLab

convert from XYZ coordinates to Hunter Lab coordinates

Description

XYZ2HunterLab convert from XYZ coordinates to Hunter Lab coordinates.

Usage

```
XYZ2HunterLab(XYZmatrix,illuminant='D65',observer=2,
RefWhite=XYZperfectreflectingdiffuser)
```

Reference White

Arguments

XYZmatrix XYZ coordinates illuminant illuminant

observer observer

Value

Hunter Lab coordinates

Author(s)

Jose Gama

RefWhite

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

118 XYZ2Lab

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2HunterLab(XYZ)
```

XYZ2Lab

convert from XYZ coordinates to CIE Lab coordinates

Description

XYZ2Lab convert from XYZ coordinates to CIE Lab coordinates.

Usage

```
XYZ2Lab(XYZmatrix,illuminant='D65',observer=2,RefWhite=XYZperfectreflectingdiffuser)
```

Arguments

XYZmatrix XYZ coordinates illuminant illuminant

observer observer

RefWhite Reference White

Value

CIE Lab coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIELMatrix<-xyz2lab(XYZ*100)
```

XYZ2LMS 119

XYZ2LMS

Convert XYZ coordinates to LMS

Description

XYZ2LMS Converts XYZ coordinates to LMS.

Usage

```
XYZ2LMS(XYZmatrix)
```

Arguments

XYZmatrix XYZ coordinates

Value

LMS coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
XYZ<-c(21.43162, -3.20673, 120.6259)
XYZ2LMS(XYZ)
```

120 XYZ2Luv

XYZ2Luv

convert from XYZ coordinates to CIE Luv coordinates

Description

XYZ2Luv convert from XYZ coordinates to CIE Luv coordinates.

Usage

```
XYZ2Luv(XYZmatrix,illuminant='D65',observer=2,RefWhite=XYZperfectreflectingdiffuser)
```

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

CIE Luv coordinates

Author(s)

Jose Gama

Source

```
Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn\_XYZ\_to\_T.\ html
```

References

```
Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html
```

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIELuvMatrix<-xyz2luv(XYZ*100)
```

XYZ2RGB 121

XYZ2RGB

convert from XYZ coordinates to CIE RGB coordinates

Description

XYZ2RGB convert from XYZ coordinates to CIE RGB coordinates.

Usage

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White RGBModel RGB model

RefWhiteRGB Reference White point RGB

gamma gamma

RefWhiteIllum Reference White illuminant

CAT CAT method

CATarray Chromatic Adaptation

Value

CIE RGB coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

122 XYZ2RxRyRz

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2RGB(XYZ)
```

XYZ2RxRyRz

convert from XYZ to three filter measurements (reflectance factors)

Description

XYZ2RxRyRz convert from XYZ to three filter measurements (reflectance factors).

Usage

```
XYZ2RxRyRz(XYZmatrix=NA,illuminant='C', observer=2,
RefWhite=XYZperfectreflectingdiffuser)
```

Arguments

XYZmatrix XYZ matrix illuminant observer observer

RefWhite White Reference

Value

CIE XYZ coordinates

Author(s)

Jose Gama

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2RxRyRz(XYZ)
```

XYZ2xyY 123

XYZ2xyY

convert from XYZ coordinates to xyY coordinates

Description

XYZ2xyY convert from XYZ coordinates to xyY coordinates.

Usage

```
XYZ2xyY(XYZmatrix,illuminant='D65',observer=2,RefWhite=XYZperfectreflectingdiffuser)
```

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

xyY coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2xyY(XYZ)
```

124 XYZ2Yuv

XYZ2Yuv

convert from XYZ coordinates to Yuv coordinates

Description

XYZ2Yuv convert from XYZ coordinates to Yuv coordinates.

Usage

```
XYZ2Yuv(XYZmatrix)
```

Arguments

XYZmatrix

XYZ coordinates

Value

Yuv coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2Yuv(XYZ)
```

XYZMoonSpencer1945

Approximations from wavelengths to XYZ by Moon & Spencer

Description

XYZMoonSpencer1945 Approximations from wavelengths to XYZ by Moon & Spencer.

Usage

XYZMoonSpencer1945(wavelen)

Arguments

wavelen

wavelenght data

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

References

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

Examples

XYZMoonSpencer1945(555)

 ${\it XYZ} perfect reflecting diffuser\\$

Perfect reflecting diffuser data

Description

XYZperfectreflectingdiffuser table with perfect reflecting diffuser data.

Format

This data frame contains the following columns:

Illuminant Illuminant

- X2 CIE tristimulus X 2 deg observer
- Y2 CIE tristimulus Y 2 deg observer
- **Z2** CIE tristimulus Z 2 deg observer
- X10 CIE tristimulus X 10 deg observer
- Y10 CIE tristimulus Y 10 deg observer
- **Z10** CIE tristimulus Z 10 deg observer

Author(s)

Jose Gama

Source

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

References

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

Examples

data(XYZperfectreflectingdiffuser)
str(XYZperfectreflectingdiffuser)

XYZTannenbaum1974

XYZTannenbaum1974

Approximations from wavelengths to XYZ by Tannenbaum 1974

Description

XYZTannenbaum1974 Approximations from wavelengths to XYZ by Tannenbaum 1974.

Usage

XYZTannenbaum1974(wavelen)

Arguments

wavelen

wavelenght data

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

References

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

Examples

XYZTannenbaum1974(555)

128 Y2MunsellVtable1D1535

Y2MunsellV

CIE XYZ "Y" to Munsell value

Description

Y2Munsel1V CIE XYZ "Y" to Munsell value.

Usage

Y2MunsellV(Y)

Arguments

Υ

Y data

Value

Munsell value

Author(s)

Jose Gama

Source

ASTM, 2008 ASTM Standard D1535-08

References

ASTM, 2008 ASTM Standard D1535-08

Examples

Y2MunsellV(5)

Y2MunsellVtable1D1535 CIE XYZ "Y" to Munsell value formula, based on the ASTM Standard D1535-08

Description

Y2MunsellVtable1D1535 NLSQ regression for obtaining similar results to table 1 from ASTM Standard D1535-08.

Usage

Y2MunsellVtable1D1535(Y)

YCbCr2RGB 129

Arguments

Y Y data

Value

Munsell value

Author(s)

Jose Gama

Source

ASTM, 2008 ASTM Standard D1535-08

References

ASTM, 2008 ASTM Standard D1535-08

Examples

Y2MunsellVtable1D1535(5)

YCbCr2RGB

Convert YCbCr coordinates to RGB

Description

YCbCr2RGB Converts YCbCr coordinates to RGB.

Usage

YCbCr2RGB(YPbPrmatrix)

Arguments

YPbPrmatrix YPbPr coordinates

Value

RGB coordinates

Author(s)

Jose Gama

130 YIQ2RGB

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

Examples

```
YCbCr2RGB(c(18165.831, -625.617, 6558.790))
```

YIQ2RGB

Convert YIQ coordinates to RGB

Description

YIQ2RGB Converts YIQ coordinates to RGB.

Usage

YIQ2RGB(YIQmatrix)

Arguments

YIQmatrix YIQ coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

YPbPr2RGB 131

Examples

YIQ2RGB(c(82.949, 31.51965, 17.58261))

YPbPr2RGB

Convert YCbCr coordinates to RGB

Description

YPbPr2RGB Converts YCbCr coordinates to RGB.

Usage

YPbPr2RGB(YPbPrmatrix)

Arguments

YPbPrmatrix YPbPr coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0\,http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt$

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.

```
YPbPr2RGB(c(82.949000, -2.792896, 29.280320))
```

132 Yuv2Luv

Yuv2Luv

Convert Yuv coordinates to Luv

Description

Yuv2Luv Converts Yuv coordinates to Luv.

Usage

```
Yuv2Luv(Yu.v.matrix, illuminant = "D65", observer = 2,
RefWhite = XYZperfectreflectingdiffuser)
```

Arguments

Yu.v.matrix Yuv matrix illuminant illuminant observer observer

RefWhite Reference White

Value

Luv coordinates

Author(s)

Jose Gama

Source

Madk, Sophie Kirschner, 2014 Color space conversion http://www.blitzbasic.com/codearcs/codearcs.php?code=2953

References

Madk, Sophie Kirschner, 2014 Color space conversion http://www.blitzbasic.com/codearcs/codearcs.php?code=2953

```
Yuv <- c(0.08391198, 0.2830965, 0.4661789)
Yuv2Luv(Yuv)
```

YUV2RGB 133

YUV2RGB

Convert YUV coordinates to RGB

Description

YUV2RGB Converts YUV coordinates to RGB.

Usage

YUV2RGB(YUVmatrix)

Arguments

YUVmatrix YUV coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Madk, Sophie Kirschner, 2014 Color space conversion http://www.blitzbasic.com/codearcs/codearcs.php?code=2953

References

Madk, Sophie Kirschner, 2014 Color space conversion http://www.blitzbasic.com/codearcs/codearcs.php?code=2953

```
YUV2RGB(c(164.898, -5.584651, 58.53939))
```

Yuv2xy

Yuv2xy

convert from Yuv coordinates to xy coordinates

Description

Yuv2xy convert from Yuv coordinates to xy coordinates.

Usage

```
Yuv2xy(Yu.v.matrix)
```

Arguments

```
Yu.v.matrix Yuv coordinates
```

Value

xy coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
Yuv <- c(0.08391198, 0.2830965, 0.4661789)
Yuv2xy(Yuv)
```

Yuv2XYZ

Yuv2XYZ

convert from Yuv coordinates to XYZ coordinates

Description

Yuv2XYZ convert from Yuv coordinates to XYZ coordinates.

Usage

```
Yuv2XYZ(Yu.v.matrix)
```

Arguments

```
Yu.v.matrix Yuv coordinates
```

Value

XYZ coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
Yuv <- c(0.08391198, 0.2830965, 0.4661789)
Yuv2XYZ(Yuv)
```

136 Yxy2CIE1960UCS

Yxy2CIE1960UCS

convert from Yxy coordinates to CIE 1960 UCS

Description

Yxy2CIE1960UCS convert from Yxy coordinates to CIE 1960 UCS.

Usage

```
Yxy2CIE1960UCS(Yxymatrix)
```

Arguments

Yxymatrix Yxy coordinates

Value

CIE 1960 UCS

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)

Yxy2CIE1960UCS(xyY[c(3,1,2)])
```

Yxy2Yuv 137

Yxy2Yuv

convert from Yxy coordinates to Yuv coordinates

Description

Yxy2Yuv convert from Yxy coordinates to Yuv coordinates.

Usage

```
Yxy2Yuv(Yxymatrix)
```

Arguments

Yxymatrix

Yxy coordinates

Value

Yuv coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)

Yxy2Yuv(xyY[c(3,1,2)])
```

Index

*Topic datasets	DIN6167.YellownessIndex, 38
ASTM.D1925.YellownessIndex,5	DIN99toCIELab, 39
ASTM.E313.Whiteness, 6	dkl2dklCart,40
ASTM.E313.YellownessIndex, 6	dkl2rgb,41
Berger59.Whiteness, 7	DominantWavelength, 42
cccie31, 8	emittanceblackbodyPlanck,43
cccie64,9	GanzGrieser.Tint, 44
CCT2XYZ, 10	GanzGrieser.Whiteness,44
ChromaticAdaptation, 10	heuristic.wlnm2RGB,45
CIE.Whiteness, 11	HSL2RGB, 46
CIE1931xy2CIE1960uv, 12	HSV2RGB, 47
CIE1931xy2CIE1976uv, 13	Hue.2.RGB, 48
CIE1931XYZ2CIE1931xyz, 14	huedegree, 49
CIE1931XYZ2CIE1960uv, 15	huedegreemunsell, 49
CIE1931XYZ2CIE1976uv, 16	Hunter60.WhitenessIndex, 50
CIE1960UCS2CIE1964, 17	HunterLab2XYZ, 51
CIE1960UCS2xy, 18	illuminantA, 52
CIE1976chroma, 19	illuminantD65, 53
CIE1976hueangle, 19	illuminants, 54
CIE1976uv2CIE1931xy, 20	ISObrightnessReflectometerRSD, 55
CIE1976uv2CIE1960uv, 21	kelvin2xy, 56
CIE1976uvSaturation, 22	Lab2LCHab, 57
CIELabtoDIN99, 22	Lab2XYZ, 58
CIEluminanceY2NCSblackness, 23	LCHab2Lab, 59
CIETint, 24	LCHuv2Luv, 59
ciexyz31, <u>25</u>	LEF2RGB, 60
ciexyz64, <mark>26</mark>	LMS2RGB, 61
CMY2CMYK, 27	LMS2XYZ, 62
CMY2RGB, 27	LSLM2RGB, 63
CMYK2CMY, 28	Luv2LCHuv, 64
compuphaseDifferenceRGB, 29	Luv2XYZ, 64
conversionIlluminance, 30	Luv2Yuv, 65
conversionLuminance, 31	MaterialReferenceData, 66
<pre>createIsoTempLinesTable, 32</pre>	${\tt MaxChromaFromExtrapRenotationData},$
daylightcomponents, 33	69
deltaE1976,34	${\tt MaxChromasForStandardMunsellHuesAndValues},$
deltaE1994,35	70
deltaE2000,36	Munsell100hues55, 71
deltaECMC, 37	Munsell100hues55FM100,72

INDEX 139

MunsellHues, 73	XYZ2BVR, 115
MunsellNeutrals2sRGB, 74	XYZ2CCT.Robertson, 116
MunsellSpectral, 75	XYZ2HunterLab, 117
MunsellV2relativeLuminanceY, 76	XYZ2Lab, 118
MunsellV2Y, 77	XYZ2LMS, 119
NickersonColorDifference, 77	XYZ2Luv, 120
PhotoYCC2RGB, 78	XYZ2RGB, 121
PreucilAngle, 79	XYZ2RxRyRz, 122
PreucilPercentGreyness, 80	XYZ2xyY, 123
PreucilPercentHueError, 81	XYZ2Yuv, 124
RGB2CMY, 82	XYZMoonSpencer1945, 125
rgb2dk1V, 82	XYZperfectreflectingdiffuser, 126
RGB2HSL, 83	XYZTannenbaum1974, 127
RGB2HSV, 84	Y2MunsellV, 128
RGB2hue, 85	Y2MunsellVtable1D1535, 128
RGB2LEF, 85	YCbCr2RGB, 129
RGB2LMS, 86	YIQ2RGB, 130
RGB2LSLM, 87	YPbPr2RGB, 131
RGB2PhotoYCC, 88	Yuv2Luv, 132
RGB2XYZ, 89	YUV2RGB, 133
RGB2YCbCr, 90	Yuv2xy, 134
RGB2YIQ, 91	Yuv2XYZ, 135
RGB2YPbPr, 92	Yxy2CIE1960UCS, 136
RGB2YUV, 93	Yxy2Yuv, 137
RxRyRz2XYZ, 94	
saturationCIECAM02, 94	ASTM.D1925.YellownessIndex,5
saturationCIELABEvaLubbe, 95	ASTM.E313.Whiteness, 6
saturationCIELUV, 96	ASTM.E313.YellownessIndex, 6
spectra2CCT, 97	Dammar O Whiteman 7
spectra2CRIGAIFSCI, 98	Berger59.Whiteness,7
spectra2ISObrightness, 99	cccie31,8
spectra2lux, 100	cccie64, 9
spectra2XYZ, 101	CCT2XYZ, 10
sprague, 102	ChromaticAdaptation, 10
StearnsStearnscorrection, 102	CIE.Whiteness, 11
Stensby68.Whiteness, 103	CIE1931xy2CIE1960uv, 12
Taube60.Whiteness, 104	CIE1931xy2CIE1976uv, 13
TCSdata, 105	CIE1931XYZ2CIE1931xyz, 14
tristimulusMunsell, 106	CIE1931XYZ2CIE1960uv, 15
WestlandBlacknessIndex, 107	CIE1931XYZ2CIE1976uv, 16
whitepointsilluminants, 108	CIE1960UCS2CIE1964, 17
whitepointsRGB, 109	CIE1960UCS2xy, 18
wlnm2XYZ, 110	CIE1976chroma, 19
xFit_1931, 111	CIE1976hueangle, 19
xy2CCT.HernandezAndres, 112	CIE1976uv2CIE1931xy, 20
xy2CCT.McCamy, 113	CIE1976uv2CIE1960uv, 21
xyChromaticitiesVos1978, 114	CIE1976uvSaturation, 22
xyY2XYZ, 115	CIELabtoDIN99, 22

INDEX

CIEluminanceY2NCSblackness, 23	LEF2RGB, 60
CIETint, 24	LMS2RGB, 61
ciexyz31, 25	LMS2XYZ, 62
ciexyz64, 26	LSLM2RGB, 63
CMY2CMYK, 27	Luv2LCHuv, 64
CMY2RGB, 27	Luv2XYZ, 64
CMYK2CMY, 28	Luv2Yuv, 65
compuphaseDifferenceRGB, 29	,
conversionIlluminance, 30	MaterialReferenceData, 66
conversionLuminance, 31	MaxChromaFromExtrapRenotationData, 69
createIsoTempLinesTable, 32	MaxChromasForStandardMunsellHuesAndValues
,	70
daylightcomponents, 33	Munsell100hues55, 71
deltaE1976, 34	Munsell100hues55FM100,72
deltaE1994, 35	MunsellHues, 73
deltaE2000, 36	MunsellNeutrals2sRGB, 74
deltaECMC, 37	MunsellSpectral, 75
DIN6167.YellownessIndex, 38	MunsellV2relativeLuminanceY, 76
DIN99toCIELab, 39	MunsellV2Y, 77
dkl2dklCart, 40	Halloctivel, //
dkl2rgb, 41	NickersonColorDifference, 77
dklCart2dkl (dkl2dklCart), 40	Mickel Sollowin Billion Check, 77
dklCart2rgb (dkl2rgb), 41	PhotoYCC2RGB, 78
DominantWavelength, 42	PreucilAngle, 79
	PreucilPercentGreyness, 80
emittanceblackbodyPlanck, 43	PreucilPercentHueError, 81
Con-Cuisson Tint 44	
GanzGrieser.Tint, 44	RGB2CMY, 82
GanzGrieser.Whiteness, 44	rgb2dklCart (rgb2dklV), 82
heuristic.wlnm2RGB, 45	rgb2dk1V,82
HSL2RGB, 46	RGB2HSL, 83
HSV2RGB, 47	RGB2HSV, 84
Hue. 2. RGB, 48	RGB2hue, 85
huedegree, 49	RGB2LEF, 85
huedegreemunsell, 49	RGB2LMS, 86
	RGB2LSLM, 87
Hunter60.WhitenessIndex, 50 HunterLab2XYZ, 51	RGB2PhotoYCC, 88
nuitter Labzx12, 31	RGB2XYZ, 89
illuminantA, 52	RGB2YCbCr, 90
illuminantD65, 53	RGB2YIQ, 91
illuminants, 54	RGB2YPbPr, 92
ISObrightnessReflectometerRSD, 55	RGB2YUV, 93
130bi 1gittile33Nei 1ectolletei N3b, 33	RxRyRz2XYZ, 94
kelvin2xy, 56	
	saturationCIECAM02, 94
Lab2LCHab, 57	saturation CIELAB (saturation CIELUV), 96
Lab2XYZ, 58	${\it saturation} {\it CIELABE} {\it vaLubbe}, 95$
LCHab2Lab, 59	saturationCIELUV, 96
LCHuv2Luv, 59	spectra2CCT, 97

141

```
spectra2CRIGAIFSCI, 98
                                                zFit_1931 (xFit_1931), 111
spectra2ISObrightness, 99
spectra2lux, 100
spectra2XYZ, 101
sprague, 102
StearnsStearnscorrection, 102
Stensby68.Whiteness, 103
Taube60. Whiteness, 104
TCSdata, 105
tristimulusMunsell, 106
WestlandBlacknessIndex, 107
whitepointsilluminants, 108
whitepointsRGB, 109
wlnm2XYZ, 110
wlnm2xyz (wlnm2XYZ), 110
xFit_1931, 111
xy2CCT.HernandezAndres, 112
xy2CCT.McCamy, 113
xyChromaticitiesVos1978, 114
xyY2XYZ, 115
XYZ2BVR, 115
XYZ2CCT.Robertson, 116
XYZ2HunterLab, 117
XYZ2Lab, 118
XYZ2LMS, 119
XYZ2Luv, 120
XYZ2RGB, 121
XYZ2RxRyRz, 122
XYZ2xyY, 123
XYZ2Yuv, 124
XYZMoonSpencer1945, 125
XYZperfectreflectingdiffuser, 126
XYZTannenbaum1974, 127
Y2MunsellV, 128
Y2MunsellVtable1D1535, 128
YCbCr2RGB, 129
yFit_1931 (xFit_1931), 111
YIQ2RGB, 130
YPbPr2RGB, 131
Yuv2Luv, 132
YUV2RGB, 133
Yuv2xy, 134
Yuv2XYZ, 135
Yxy2CIE1960UCS, 136
Yxy2Yuv, 137
```