FIG. I

FIG.2

FIG.3

FIG. 4

SAMPLE	Rmax	Ra	OBA%@3nm
SAMPLE I	7.55	0.88	43
SAMPLE 2	7.12	0.72	73
SAMPLE 3	7.83	0.90	60
SAMPLE 4	8.18	0.88	26

DEPTH FROM REAL PEAK HEIGHT (nm)

FIG.5

FIG.6

FIG. 7

FIG.9

FIG.IO

	+ 2 REAL PEAK HEIGHT: BEARING VALUE AT WHICH BEARING HEIGHT MEASURED VALUE RAPIDLY STARTS TO SCATTER.					
			OBTAIN RELATION BETWEEN RMOX AND BEARING AREA BY AFM	DETERMINE REAL PEAK HEIGHT +2 IN ACCORDANCE WITH MEDIUM SURFACE ROUGHNESS	OBTAIN RELATION OF DEPTH FROM REAL PEAK HEIGHT WITH BEARING AREA, AND DETERMINE SLICE LEVEL AT WHICH BEARING AREA CHANGE	AMOUNT INCREASES DETERMINE BEARING AREA VALUE IN DETERMINED SLICE LEVEL= OBA %
		,		d-2	д-р	d-4
OBTAIN RELATION OF MEDIUM SURFACE ROUGHNESS (RMDX) WITH MAGNETIC HEAD FLYING AMOUNT (GLIDE HEIGHT) AT WHICH MAGNETIC HEAD STARTS TO CONTACT MEDIUM SURFACE	DETERMINE MEDIUM SURFACE ROUGHNESS (RMax) FOR ACHIEVING DESIRED GLIDE HEIGHT	DETERMINE ALLOWABLE RANGE OF FRICTION COEFFICIENT IN MEDIUM SURFACE IN ACCORDANCE WITH DRIVE TORQUE OF SPINDLE MOTOR OF HARD DISK DRIVE	OBTAIN CORRELATION OF OFFSET BEARING AREA (OBA%) *1 WITH FRICTION COEFFICIENT	DETERMINE OBA % TO OBTAIN DESIRED FRICTION COEFFICIENT	PREPARE MAGNETIC DISK SUBSTRATE * 3 IN WHICH SUBSTRATE SURFACE HAS DESIRED OBA%	FORM MAGNETIC LAYER AND OTHER FILMS ON SUBSTRATE TO PREPARE MAGNETIC DISK * 4
O	٩	O	ъ	Φ	4-	Ð

FIG. 12

FIG.13

FIG. 14

ROUGHNESS CHANGE BY H2SIF6 TREATMENT AFTER CHEMICAL REINFORCEMENT (Rd)

FIG.16

ROUGHNESS CHANGE BY H2SIF6 TREATMENT AFTER CHEMICAL REINFORCEMENT (Rmax)

FIG.17

ROUGHNESS CHANGE BY H2SIF6 TREATMENT AFTER CHEMICAL REINFORCEMENT (OBA3nm)