1

Assignment

R Bhargava Ram CS21BTECH11052

4

CONTENTS

1	Uniform Random Numbers	1
2	Central Limit Theorem	2

3 From Uniform to Other

4 Triangular Distribution 5

Abstract—This manual provides solutions to the Assignment on Random Numbers

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution: Download the following files and execute the C program.

https://github.com/bhargav0383/AI1110-Assignments/blob/main/RandomNumbers/codes/1.1.c

https://github.com/bhargav0383/AI1110-Assignments/blob/main/RandomNumbers/ codes/functions.h

Execute the above C program files using the following commands

\$ gcc 1.1.c \$./a.out

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: The python code for the plot in Fig. 1.2 is given below,

https://github.com/bhargav0383/AI1110-Assignments/blob/main/RandomNumbers/codes/1.2CDF.py

Download the above file and execute the command below to produce Fig.1.2

\$ python3 1.2CDF.py

Fig. 1.2: The CDF of U

1.3 Find a theoretical expression for $F_U(x)$. **Solution:** Given U is a uniform Random Variable between 0 and 1,

$$F_U(x) = \Pr\left(U \le x\right) = \int_{-\infty}^x p_U(u) du \qquad (1.2)$$

We have three parts:

- i) For x < 0; $p_X(x) = 0$, So $F_U(x) = 0$.
- ii) For $0 \le x < 1$;

$$F_U(x) = \int_0^x (1)du = x \tag{1.3}$$

iii) For $x \ge 1$; CDF is 1 as all the random numbers are between 0 and 1.

Therefore,

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$
 (1.4)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.5)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.6)

Write a C program to find the mean and variance of U.

Solution: Download the following files and execute the C program.

https://github.com/bhargav0383/AI1110-

Assignments/blob/main/RandomNumbers/codes/1.4.c

https://github.com/bhargav0383/AI1110-

Assignments/blob/main/RandomNumbers/codes/functions.h

Execute the above C program files using the following commands

\$./a.out

The actual analysis values,

$$Mean = 0.500007 \tag{1.7}$$

Variance =
$$0.083301$$
 (1.8)

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.9}$$

Solution: W.K.T,

$$var[U] = E[U^2] - E[U]^2$$
 (1.10)

Where E[U] is,

$$E[U] = \int_{-\infty}^{\infty} x dF_U(x) \tag{1.11}$$

$$= \int_0^1 x$$
 (1.12)

$$=\frac{1}{2}=0.5\tag{1.13}$$

And $E[U^2]$ is,

$$E\left[U^{2}\right] = \int_{-\infty}^{\infty} x^{2} dF_{U}(x) \tag{1.14}$$

$$= \int_0^1 x^2 dF_U(x)$$
 (1.15)

$$=\frac{1}{3}$$
 (1.16)

(1.17)

Hence finally,

$$\therefore \text{ var}[U] = \frac{1}{12} = 0.0833 \tag{1.18}$$

The theoretically calculated values are,

Mean =
$$0.5$$
 (1.19)

Variance =
$$0.0833$$
 (1.20)

These values matches with the actual analysis values from above,

$$Mean = 0.500007 \tag{1.21}$$

Variance =
$$0.083301$$
 (1.22)

Hence it verifies the result.

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: Download the following files and execute the C program.

https://github.com/bhargav0383/AI1110-

Assignments/blob/main/RandomNumbers/codes/2.1.c

https://github.com/bhargav0383/AI1110-

Assignments/blob/main/RandomNumbers/codes/functions.h

Execute the above C program files using the following commands

\$./a.out

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution: The CDF of X is plotted in Fig. 2.2 using the code below

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/2.2CDF.py

Fig. 2.2: The CDF of X

Download the above file and execute the following command to produce Fig.2.2

\$ python3 2.2CDF.py

Some of the properties of CDF

- a) $F_X(x)$ is non decreasing function.
- b) As $x \to -\infty$, $F_X(x) \to 0$ and when $x \to \infty$, $F_X(x) \to 1$
- c) Graph is linear upto some region around x = 0.
- 2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 2.3 using the code below

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/2.3PDF.py

Download the above files and execute the following commands to produce Fig.2.3

\$ python3 2.3PDF.py

Fig. 2.3: The PDF of X

Some of the properties of the PDF:

- a) Symmetric about $x = \mu$
- b) Area under the PDF graph is unity.
- c) Increasing function for $x < \mu$ and decreasing for $x > \mu$ and attains maximum at $x = \mu$.

Let $x \sim \aleph(0, 1)$. The Q-function Q(x) is defined as:

$$Q(x) = Pr(X > x) \tag{2.3}$$

$$= 1 - Pr(X \le x) \tag{2.4}$$

$$= 1 - F_X(x) \tag{2.5}$$

2.4 Find the mean and variance of *X* by writing a C program.

Solution: Download the following files and execute the C program.

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/2.4.c

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/functions.h

Execute the above C program files using the following commands

\$ gcc 2.4.c

\$./a.out

The actual analysis values,

$$Mean = 0.000294 \tag{2.6}$$

Variance =
$$0.999561$$
 (2.7)

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \quad (2.8)$$

repeat the above exercise theoretically.

Solution: CDF is defined as

$$F_X(x) = \int_{-\infty}^{\infty} p_X(x) dx \qquad (2.9)$$

W.K.T,
$$F_X(x) = 1$$
 (2.10)

Mean is given by

$$E(x) = \int_{-\infty}^{\infty} x p_X(x) dx$$
 (2.11)

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left(-\frac{x^2}{2}\right) dx \tag{2.12}$$

It is a odd function function, So its value is 0.

$$E(x) = 0 (2.13)$$

 $E(x^2)$ is given by,

$$E\left(X^{2}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{2} \exp\left(-\frac{x^{2}}{2}\right) dx \qquad (2.14)$$

On applying by-parts for the above integral we get,

$$\int_{-\infty}^{\infty} x \times x \exp\left(-\frac{x^2}{2}\right) dx = -x \exp\left(-\frac{x^2}{2}\right) \Big|_{-\infty}^{\infty} (2.15)$$
$$+ \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx (2.16)$$

Where, $x \exp\left(-\frac{x^2}{2}\right)\Big|_{-\infty}^{\infty} = 0$; because it is a odd function.

$$\therefore E(X^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right)$$
 (2.17)

$$=\frac{\sqrt{2\pi}}{\sqrt{2\pi}}\tag{2.18}$$

$$= 1 \tag{2.19}$$

Variance is given by

$$var[U] = E(U^2) - (E(U))^2$$
 (2.20)

$$\therefore \text{ var}[U] = 1 \tag{2.21}$$

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

Solution: Download the following files and execute the C program.

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/3.1.c

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/functions.h

Execute the above C program files using the following commands

Fig. 3.1: The PDF of *X*

The CDF of *V* is plotted in Fig. 3.1 using the code below

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/ codes/3.1CDF.py

Download the above files and execute the following commands to produce plot Fig.3.1

\$ python3 3.1CDF.py

3.2 Find a theoretical expression for $F_V(x)$. Solution: If Y = g(X), W.K.T,

$$F_Y(y) = F_X(g^{-1}(y))$$
 (3.2)

$$V = -2\ln(1 - U) \tag{3.3}$$

$$1 - U = e^{\frac{-V}{2}} \tag{3.4}$$

$$U = 1 - e^{\frac{-V}{2}} \tag{3.5}$$

$$F_V(x) = F_U(1 - e^{\frac{-x}{2}})$$
 (3.6)

$$\implies F_V(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{\frac{-x}{2}} & x \ge 0 \end{cases}$$
 (3.7)

4 Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 \tag{4.1}$$

Solution: Download the following files and execute the C program.

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/ codes/4.1.c

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/codes/functions.h

Execute the above C program files using the following commands

\$ gcc 4.1.c

\$./a.out

4.2 Find the CDF of T.

Solution: The CDF of T is plotted in Fig. 4.2 using the code below

Fig. 4.2: The CDF of T

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/ codes/4.2CDF.py

Download the above files and execute the following commands to produce Fig.4.2

\$ python3 4.2CDF.py

4.3 Find the PDF of T.

Solution: The PDF of T is plotted in Fig. 4.2 using the code below

https://github.com/bhargav0383/AI1110— Assignments/blob/main/RandomNumbers/ codes/4.3PDF.py

Download the above files and execute the following commands to produce Fig.4.2

\$ python3 4.3PDF.py

Fig. 4.3: The PDF of T

4.4 Find the Theoreotical Expression for the PDF and CDF of *T*

Solution:

$$T = U_1 + U_2 (4.2)$$

$$\implies p_T(t) = \int_{-\infty}^{t} p_{U1}(x) p_{U2}(y) dx \qquad (4.3)$$

$$As, p_{U1}(x) = p_{U1}(y) = p_{U}(u)$$
 (4.4)

$$\implies p_T(t) = \int_{-\infty}^t p_U(u) p_U(t-u) du \quad (4.5)$$

a) Theoretical PDF

i) For $0 < t \le 1$

$$p_T(t) = \int_0^t p_U(t - u) du$$
 (4.6)

$$\implies p_T(t) = \int_0^t du = t \tag{4.7}$$

ii) For $1 < t \le 2$

$$p_T(t) = \int_0^1 p_U(t - u) du$$
 (4.8)

$$\implies p_T(t) = \int_{t-1}^1 du = 2 - t$$
 (4.9)

$$\therefore P_T(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t \le 1 \\ 2 - t & 1 < t \le 2 \\ 0 & t > 2 \end{cases}$$

b) Theoretical CDF

$$F_T(t) = \int_{-\infty}^t p_T(u) du \tag{4.10}$$

$$\therefore F_T(t) = \begin{cases} 0 & t < 0 \\ \frac{t^2}{2} & 0 \le t \le 1 \\ 2t - 1 - \frac{t^2}{2} & 1 < t \le 2 \\ 1 & t > 2 \end{cases}$$

4.5 Verify your results through a plot

Solution: The above theoretical results are verified in the plots Fig 4.2 and Fig 4.3