

Decoupling from a Transient Perspective

Decoupling Transients:

- Local decoupling provides high frequency transient current
- Instantaneous transient current from device can be high
- Bulk decoupling provides low frequency current
- The source has highest inductance, PCB power traces have lower inductance, and local decoupling has lowest inductance
- Decoupling minimizes noise local to device and minimizes the impact on other devices sharing the power bus

Decoupling from an AC Impedance Perspective

Impedance Seen by Device:

- High impedance at DC
- Ideally would have zero impedance at high frequency to short out high frequency transients
- Practical decoupling will be low at high frequency but will begin to increase from parasitic inductance.
- Practical decoupling may have multiple resonant peaks

Model of a practical capacitor

Practical impedance of Capacitor:

- ESR parasitic resistance of capacitor
- ESL parasitic inductance of capacitor
- Practical capacitor acts like capacitor at low frequency and like an inductor at high frequency
- Values shown in this example are typical for a X7R decoupling capacitor
- More accurate models provided by capacitor manufacture.

Resonance from Different Decoupling Capacitors

Don't use two different capacitor values for "better" high frequency bypass

- The practice of using two different parallel capacitors was developed 1970's for through-hole capacitors. It doesn't apply to modern surface mount ceramic
- ESL is relatively independent of capacitance value
 - e.g. ESL for a 100pF, 1000pF, and 10,000pF (25V, 0603, X7R) is approximately the same (ESL ≈ 200pH GRM033R71E103ME14, GRM033R71E102ME14, GRM033R71E101ME14)
- Using two different parallel capacitors can create a resonance

Multiple Same Value Decoupling

Using Multiple Same Type / Value Decoupling Capacitors

- Total impedance is divided by the number of capacitors
 - The example shows five capacitors in parallel $(Z_{total} = Z_c/5)$
- No resonance in impedance -- all capacitors are the same

PCB Design for good decoupling

- Main objective: reduce the parasitic inductances from traces and vias.
- Use short wide traces or polygons
- Use multiple vias (or larger via) for plane connections if possible
- Thin dielectric spacing between top layer and plane reduce via inductance
- Use low ESL capacitor

via inductance

Via inductance				
Drill hole (mil)	h - Distance to Plane (mil)	Inductance - FR4		
12	9	0.0959nH		
12	62	1.26782nH		
16	9	0.08273nH		
16	62	1.17729nH		
20	9	0.07253nH		
20	62	1.10706nH		

Note 1: 9 mil is typical pre-preg thickness, 62 mil is typical two layer board thickness.

Note 2: 12 mil is typical minimum drilled via hole size.

Via Inductance

- Reducing dielectric thickness (h) significantly reduces inductance
- Using larger vias also helps incrementally
- Multiple vias are parallel inductors, so two similar vias will cut the inductance in half

Trace inductance

Trace inductance			
Length (mil)	Width (mil)	h - Distance to Plane (mil)	Inductance
100	8	9	0.9814n
100	8	62	1.960n
100	12	9	0.8065n
100	12	62	1.785n
100	20	9	0.5735n
100	20	62	1.552n
1000	20	9	5.735n
1000	20	62	15.52n

Trace Inductance

- Increasing width decreases inductance
- Decreasing the length decreases inductance
- Reducing dielectric thickness reduces inductance

Comparison of parasitic inductance and ESL

Can return current flow through the power plane?

Can return current flow through the power plane?

- I seems counter intuitive that return current can flow through the power plane, but it can.
- The next two slides will show how current flows in the GND or power plane for a CMOS gate depending on which plane is adjacent to the signal path.

Decoupling: How does current flow in GND plane?

Current flow for adjacent GND Plane for microstrip

- Low to high transition: decoupling capacitor supplies transient current to charge parasitic capacitance of bus and CMOS input.
- **High to Low transition**: parasitic capacitance of bus discharge through the CMOS output

Decoupling: How does current flow in power plane?

How much current does the decoupling deliver?

The supply doesn't provide the transient current

Thanks for your time! Please try the quiz.

- (True/False) Using a large and small value decoupling capacitor is a good way to improve decoupling because the small value decoupling capacitor will be optimal for high frequency. For example, connecting a 0.1uF and a 0.001uF capacitor in parallel is a good combination for better high frequency decoupling.
 - a) True
 - b) False

- 1. (True/False) Using a large and small value decoupling capacitor is a good way to improve decoupling because the small value decoupling capacitor will be optimal for high frequency. For example, connecting a 0.1uF and a 0.001uF capacitor in parallel is a good combination for better high frequency decoupling.
 - a) True
 - b) False

- 2. (True/False) For low inductance, it is better to place multiple small via than one large one. For example, two 12mil via would have lower inductance than one 20mil via.
 - a) True
 - b) False
- 3. (True/False) The thickness of the dielectric between the decoupling capacitor and ground plane will impact the decoupling effectiveness.
 - a) True
 - b) False

- 4. (True/False) For the layout below, when a signal is being transmitted from the CMOS output to the input, the return current will flow in the ground plane (GND).
 - a) True
 - b) False

Thanks for your time!

© Copyright 2022 Texas Instruments Incorporated. All rights reserved.

TEXAS INSTRUMENTS