Aufgabe 1. (6 Punkte) Sei E/F eine Galoiserweiterung. Wir betrachten E als topologischen Raum mit der diskreten Topologie. Zeigen Sie, dass die (Teilraumtopologie der) KO-Topologie auf $Gal(E/F) \subseteq Map(E,E)$ mit der Krulltopologie übereinstimmt. Hinweis: Verwenden Sie Blatt 2, Aufgabe 4 (c) und die Tatsache, dass eine stetige bijektive Abbildung von einem kompakten Raum in einen Hausdorffraum bereits ein Homöomorphismus ist. E mit der derreten Topologie At handorffer (E,E) handorffer) Map (E,E) handorffer) Challety mit KO-Top ist handorffer Remport huns doffer Honoron orphisms (I) Top. sulfor e ist offersightid by eth of y. 2.2. y states Date 522: Ore offen Menger C(KN) (mit in C E 561)

KCE Kappart (E) K and (...) der ko-Topolyre in A offen in her trull topologie. Ber: DE KNEZUNEZ, da jelo ofzil.

Entralo 18 abo KNEGUNEZ, (Th.U) = ((KNEG, MNEG) Ohn

KCE & UNEZ) C(h, U) = / K Konpart & Kenll OF US (Fx) =: Fi da olh ch to E hal (F/E), dougt (hy u) (ever Es gilt C(K,N) = \(\lambda\) ((\alpha\)) shtenda jut C(a,u)= 11 C(a,v3) echalfy $((K, U) = \bigcap_{\alpha \in K} ((\alpha, K))$ lot Clays other 4 m, so news CCh/W (could shape und beliesige leaningungen erlalten Oftenheit) ((x,B) = { (E,E); (x)=B} $((\alpha, B) - C. hal(E/f(\alpha)) fr$ 0: Fld-) F/B) =) ((a, s) offen

2

Aufgabe 2 (Standardauflösung von \mathbb{Z} als *G*-Modul). Sei *G* eine Gruppe. Für $n \in \mathbb{Z}_{\geq -1}$ betrachten wir die freie abelsche Gruppe

(4 Punkte)

$$X_n := \mathbb{Z}[G^{n+1}] = \left\{ \sum_{i=1}^k a_i \underline{g}_i | k \in \mathbb{N}, a_i \in \mathbb{Z}, \underline{g}_i \in G^{n+1} \right\},\,$$

wobei $G^0 = \{1\}$ und folglich $X_{-1} = \mathbb{Z}$ ist. Zeigen Sie:

(a) Die Abbildung $G \times G^{n+1} \to G^{n+1}, (g, (g_0, \dots, g_n)) \mapsto (gg_0, \dots, gg_n)$ setzt sich zu einer Operation $G \times X_n \to X_n$ fort, die X_n zu einem G-Linksmodul macht.

$$g = \sum_{i=1}^{K} a_i g_i = \sum_{i=1}^{K} a_i g_i$$
 $g + h = \sum_{i=1}^{K} a_i g_i + \sum_{i=1}^{K} a_i g_i$

(b) Die Abbildung

$$d_n \colon X_{n+1} \to X_n, \quad (g_0, \dots, g_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^i (g_0, \dots, g_{i-1}, g_{i+1}, \dots, g_{n+1}),$$

ist ein Homomorphismus von G-Linksmoduln.

 $= y dn(\Delta)$

$$\frac{d_{n}(g+b)}{d_{n}(g+b)} = \frac{d_{n}(g+b)}{d_{n}(g+b)} = \frac{d_{n}(g+b)}{d_{n}(g+b)} + \frac{d_{n}(g+b)}{d_{n}(g+b)} +$$

(c) Es ist $d_n \circ d_{n+1} = 0$, d.h. $(X_{\bullet}, d_{\bullet})$ ist ein Komplex von G-Linksmoduln.

 $-(0,-)\overset{1}{\underset{i=0}{\sum}}(-1)\overset{1}{$

(d) Die Abbildungen $(h_n: X_i \to X_{i+1})_{n \ge -1}$ mit $h_n((g_0, \dots, g_n)) = (1, g_0, \dots, g_n)$ bilden eine Nullhomotopie. Insbesondere ist der Komplex $(X_{\bullet}, d_{\bullet})$ exakt.

$$\left(\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) \left(\frac{\partial u}{\partial x_{1}} - \frac{\partial u}{\partial x_{1}} \right)$$

$$= \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} \right) + \frac{\partial u}{\partial x_{1}} \left(-\frac{\partial u}{\partial x_{1}} + \frac{\partial u}{\partial x_{1}} + \frac{$$

Wir betrachten die freie abelsche Gruppe $G = \mathbb{Z}^2$ mit Standardbasis (e_1, e_2) . Zeigen Sie:

(a) Die Ringabbildung $\mathbb{Z}[t_1, t_2] \to \mathbb{Z}[G], t_i \mapsto e_i$, faktorisiert über einen Isomorphismus $S^{-1}\mathbb{Z}[t_1, t_2] \stackrel{\cong}{\to} \mathbb{Z}[G]$ für eine geeignete multiplikativ abgeschlossene Menge $S \subset \mathbb{Z}[t_1, t_2]$.

id not definite, da don aent der alle tremense von G destritten sol mit

Wir verwenden im Folgenden die Identifikation $\mathbb{Z}[G] \cong S^{-1}\mathbb{Z}[t_1, t_2]$.

(b) Der Gruppenhomomorphismus

$$\partial_1: \mathbb{Z}[G] \oplus \mathbb{Z}[G] \longrightarrow \mathbb{Z}[G], \quad (x,y) \mapsto x(t_1-1) + y(t_2-1)$$

hat Bild $\ker(\varepsilon)$, wobei $\varepsilon \colon \mathbb{Z}[G] \to \mathbb{Z}$ die Augmentationsabbildung ist.

Now VL ist underden
$$G = 0$$
, $G = 0$ on ES von he E .

Inst lines Fill Dels Brement von rer E shreden als

 $X(f_{1}-1) + y(f_{2}-1)$.

(c) Der Gruppenhomomorphismus

$$\partial_2 \colon \mathbb{Z}[G] \to \mathbb{Z}[G] \oplus \mathbb{Z}[G], \quad x \mapsto (-x(t_2-1), x(t_1-1))$$

ist injektiv mit Bild $ker(\partial_1)$.

[njehMhd:
$$(-x(t_2-1), x(t_1-1))=0=0 \to -x(t_2-1)=0=0 \times =0$$

 $x(t_1-1)=0=0 \times =0$

$$\partial_1 \cdot \partial_2 (x) = \partial_1 (-x (f_2 - 1), x (f_1 - 1)) = -x (f_2 - 1) (f_1 - 1) + x (f_1 - 1) = 0$$

in
$$\partial_{2} c$$
 tor ∂_{1} .

Wir zegen, and $(t_{1}-1)$ en ornided (81. Daza betache ~~

Also torrespondently (deal $(e_{1}-0)$ in $\mathbb{Z}[\Omega]$. \mathbb{Z}_{5} foly $\mathbb{Z}[\mathbb{Z}[\mathbb{Z}[\mathbb{Z}]]$.

On \mathbb{Z} null tellefor rot, rot and $\mathbb{Z}[\mathbb{Z}]$ null tellefor. \mathbb{Z} $(e_{1}-0)$ $\mathbb{Z}[\mathbb{Z}]$.

(47) e to \mathbb{Z} \mathbb

$$=) \qquad (\times, \cdot, \cdot) = ((+, -1) \times / (+, -1) \times) \quad \in \text{ in } \partial_{\mathcal{Z}} \qquad =) \qquad \text{in } \partial_{\mathcal{Z}} = \text{ for } \partial_{\mathcal{Z}}$$

Aufgabe 4 (Abgeleiteter Limes).

(4 Punkte)

Sei A ein kommutativer Ring und $M_{\bullet} \in \operatorname{Fun}(\mathbb{N}^{\operatorname{op}}, A\operatorname{-Mod})$ ein projektives System von $A\operatorname{-Moduln}$ mit Übergangsmorphismen $(d_n \colon M_{n+1} \to M_n)_{n \in \mathbb{N}}$. Wir betrachten den Homomorphismus $\Delta(M_{\bullet}) := \operatorname{id} - d \colon \prod_{n \in \mathbb{N}} M_n \longrightarrow \prod_{n \in \mathbb{N}} M_n$ von $R\operatorname{-Moduln}$, wobei d der eindeutige Homomorphismus ist, der durch $\operatorname{pr}_n \circ d = d_n \circ \operatorname{pr}_{n+1}$ für alle $n \in \mathbb{N}$ charakterisiert ist. Zeigen Sie:

(a) Die Familie $(R^i: \operatorname{Fun}(\mathbb{N}^{\operatorname{op}}, A\operatorname{-Mod}) \to A\operatorname{-Mod})_{i \geq 0}$ mit

$$R^{i}(M_{\bullet}) := \begin{cases} \ker(\Delta(M_{\bullet})) & (i = 0) \\ \operatorname{coker}(\Delta(M_{\bullet})) & (i = 1) \\ 0 & (\operatorname{sonst}) \end{cases}$$

definert einen universellen δ -Funktor.

de ur fortette dur 0. namt whaten un aut naturale Art mid was dre geloomble Ceuse Rouble Seguine Sei 0 -) No No No o une vete Courte Sellenz Salas Fogus Mugam konn Ares: 0 2/16 -) M. -) ~ () 0 $0 \longrightarrow N_{\bullet} \longrightarrow N_{\bullet} \longrightarrow 0$ Dang 187 Ker A(May) - Core A(M.) R°(n.") d R(n.") $n^{\circ}(N.^{\prime\prime})$ \longrightarrow $n^{\circ}(N.^{\prime\prime})$ Les D(N.") Soker D(N.") Offensill + (1) pany white, da here and here and here out protene soonth werden. Die Dingramme auf allen anderen Stufen entlaten gering rulley does de tomoutativitat and blow wird. B. Z.Z. R 10+ anversel, g. Z.Z. R? 10+ ans(00) dar. Ber Doe Kategore Tim(IN° Amod) hat sendent livetitie (Aly t), 18,1) der hing ax zi gehn M. in tim (IN° Amod) ein jellig M. mit løgetsne objekte i om traksjon tin (N", A-rad) han Surj. Begangstid. dy $R^{1}(\Lambda.)$ $\frac{2(\Lambda.)}{(\Lambda.)}$ $R^{1}(\Lambda.)$ Da In Ly sugerkh 10, b) 1 = il-d Le Nullassid, Instrume ist R'(r)=(ot (A(m. /)) = 0, d.h. N' 1st ausloodsa

(b) Es ist $R^i = \lim^i$ für alle $i \ge 0$, wobei $\lim^i := R^i \lim$.

Lir has in de (a) serets grother duss

 $\mathbb{R}(\Lambda_{\bullet}) : \ker (\Lambda(\Lambda_{\bullet})) =
 \mathbb{R}(\Lambda_{\bullet}) : \mathbb{R}(\Lambda_{\bullet}) =
 \mathbb{R}(\Lambda_{\bullet}) : \mathbb{R}(\Lambda_{\bullet})$

Autsmul de Manusahituit von R 1800 R'= Ini Hizo