

CZ3002 - Advanced Software Engineering

Change Management

Faculty: Dr Althea Liang

School : School of Computer Science and Engineering

Email : qhliang@ntu.edu.sg

Office : N4-02c-107

Quick Review Sheet of Previous Lesson

In the last lesson:

- Sub-disciplines of software engineering include:
 - Configuration management, engineering management, quality management, software maintenance, software testing, etc.
- Release is:
 - A tested and approved baseline that is usually installed at a client site.
- A tool of Release management is VCS:
 - Version Control Software (or Version Control Systems) can be used to manage releases.
- Release management can rely on continuous integration:
 - A software development practice where members of a team integrate their work frequently.

Lesson Objectives

At the end of the lesson, you should be able to:

- Explain the reasons for software system changes and for change control, with the help a real world example introduced
- Understand why change management is important and the roles in change management
- Understand change prediction
- Understand the steps in change control process

Software Systems Change

- Software change is inevitable:
 - Errors must be repaired.
 - The performance or reliability of the system may have to be improved.
 - The business environment changes.
 - New requirements emerge when the software is used.
 - New computers and equipment are added to the system.

Important:

A key problem for organisations is implementing and managing change to their existing software systems.

Managing Changes: A Real Example

Why managing changes is a must?

- Managing amount of changes.
- Managing potential impacts of changes.

Points in Software Development Life Cycle (SDLC)

Change Prediction

- Predicting the number of changes requires an understanding of the relationships between a system and its environment.
- Tightly coupled systems require changes whenever the environment is changed.
- Factors influencing this relationship are:
 - Number and complexity of system interfaces.
 - Number of inherently volatile system requirements; volatile refers to requirements that reflect organisational policies rather than domain characteristics.
 - E.g. only the HR manager can view the employee records.
 - The business processes where the system is used.

Change Control Boards (CCB)

- On moderate or large projects
- Two types:
 - Project Level CCB
 - Software Change Control Board (SCCB)
- Role
 - Assesses impact of change and approve change before it is implemented.
 - Determines when the change will be released.

Steps of Change Control Process

- 0
- Software Configuration Identification
- Change Request (CR) Initiated
- CR Analysed
- CR Approved (or Rejected or Deferred)
- Change Implemented and Unit Tested
- Change Integrated
- Change Validated
- CR Closed

Change Request Form

Change Request Form

Project: Date:

Requester: **Nature of Change** Requested Change:

Change Analyser:

Components Affected:

Associated Components

Technical analysis of change

Change Assessment:

Change Priority: Assessment of change

Change Implementation:

Change Control Board Decision:

Change Implementation:

Quality Assurance/ Testing:

Implementation and Evaluation

Added later

Added later

Added later

Change Control Process: Evaluate Change

Change Control Process: Approve Change (CCB)

Change Control Process: Implement & Do Build

Change Implementation

Change Control Process: Controlled Implementation

- 1
- Change request is queued for action, e.g. an Engineering Change Order is generated.
- 2
- Individuals are assigned to work on relevant Configuration Items.
- 3
- SCIs are "checked out" of SCM system.
- 1
- Changes are made.
- 5
- Changes are reviewed and audited.
- 6
- New SCIs are "checked in" new versions are created.
- 7
- Baseline for testing is established.
- 8
- QA and testing are carried out.

Change Control Process: Controlled Build

- Collect changes ready for next system release.
- Rebuild new version of the software, i.e., the release version.
- Changes to all SCIs are viewed/ audited.
 - Include changes in new release version.
 - New release version is distributed to customers/ or other recipients.

Post view: Example Organisation in this Lesson

Example	Slides
Accenture for a big Russia bank	Managing Changes

Summary

Now you should be able to:

- Explain the reasons for software system change
- Understand why change management is important and the roles in change management
- Understand change prediction
- Understand the steps in Change Control Process

Special Thanks to Kydon during the TEL Efforts of the Lecture

End of Change Management

Faculty: Dr Althea Liang

School : School of Computer Science and Engineering

Email : qhliang@ntu.edu.sg

Office : N4-02c-107