소속:	Computer System	2020-1 8주차 온라인 수업 과제		
학번:	Architecture[답안]	제출기한: 2020년 5월 19일(화)		
이름:	담당교수 : 고영은	Chapter 5.1, 5.2, 5.3, 5.4, 5.5, 5.6		

[다음 문제는 교재의 5장에 기본 컴퓨터의 구조와 명령어를 참조]

1. 기본 컴퓨터에서 AC에는 $B15F_{(16)}$ 가 들어 있고, 초기에 PC의 값은 $011_{(16)}$ 이며, E는 $1_{(16)}$ 이다. 다음 명령 수행 후 E, AC, PC, AR, IR 각각의 내용을 16진수로 쓰시오. (table 5-2 기본 컴퓨터 명령어 참조) (아래 명령어는 순차적 누적 실행이 아니며 초기 값에서 명령어가 한 번씩 개별 실행된 후 값 기입)

	E	AC	PC	AR	IR
СМА	1	4EA0	012	200	7200
СМЕ	0	B15F	012	100	7100
CIR	1	D8AF	012	080	7080
SZA	1	B15F	012	004	7004

2. 기본 컴퓨터에서 ISZ 간접 명령어가 수행된 후에 PC, AR, DR, IR, SC 레지스터 각각의 내용을 보여라. 초기에 PC의 값은 $7FF_{(16)}$ 이고, 메모리 주소 $7FF_{(16)}$, $A9F_{(16)}$, $C35_{(16)}$ 에는 각각 $EA9F_{(16)}$, $0C35_{(16)}$, $FFFF_{(16)}$ 가 들어있다. 타이밍 신호에 따른 레지스터 내용을 16진수로 쓰시오. (Fig 5-9, 5-11참조)

	PC	AR	DR	IR	SC
Initial	7FF	1	_	-	0
T ₀	7FF	7FF	_	1	1
T1	800	7FF	_	EA9F	2
T2	800	A9F	_	EA9F	3
Т3	800	C35	_	EA9F	4
T4	800	C35	FFFF	EA9F	5
Т5	800	C35	0000	EA9F	6
Т6	801	C35	0000	EA9F	0

3. 책 5장에서의 명령어 형식과 명령어를 참조하여 다음의 16비트 명령어를 16진수 코드로 나타내고 수행하는 동작을 기술하시오.

0010 0000 0010 0100

(a) 16비트 명령어의 16진수 코드 : 2024₍₁₆₎

(b) 명령어 (표 5-2에 나열된 명령어 중에서): LDA

(c) 주소 (16진수): 024₍₁₆₎

(d) 레지스터 전송문 : AC <- M[AR]

4. 기본 컴퓨터에서 AC에는 $A937_{(16)}$ 이 들어 있고 초기에는 PC의 값은 $021_{(16)}$ 이며 E는 $1_{(16)}$ 이다. CMA 명령이 다음 타이밍에 따라 수행될 때, 타이밍에 따른 E, AC, PC, AR, IR의 값을 16진수로 쓰시오.

 T_0 : AR <- PC

 T_1 : IR <- M[AR], PC <- PC + 1

 T_2 : I <- IR(15), AR <- IR(0-11), D_0 , ..., D_7 <- Decode IR(12-14)

 T_3 : AC $\leftarrow \overline{AC}$

	Е	AC	PC	AR	IR
Initial	1	A937	021	-	-
T0	1	A937	021	021	-
T1	1	A937	022	021	7200
T2	1	A937	022	200	7200
Т3	1	56C8	022	200	7200

5. 기본 컴퓨터에서 $021_{(16)}$ 번지에 있는 명령어는 I(mode)=0이고, 연산은 ADD 명령어이며, 주소는 $083_{(16)}$ 이다 메모리의 $083_{(16)}$ 번지에는 피연산자로 $B8F2_{(16)}$ 가 들어 있고 AC의 값은 $A937_{(16)}$ 이다. 명령사이클이 다음과 같을 때, 각 타이밍에 따른 PC, AR, DR, AC, IR 레지스터의 값을 16진수로 쓰시오.

 T_0 : AR <- PC

 T_1 : IR <- M[AR], PC <- PC + 1

 $T_2 : I \leftarrow IR(15), AR \leftarrow IR(0-11), D_0, ..., D_7 \leftarrow Decode IR(12-14)$

 T_3 :

 T_4 : DR <- M[AR]

 T_5 : AC <- AC + DR

	PC	AR	DR	AC	IR
Initial	021	_	-	A937	-
TO	021	021	_	A937	-
T1	022	021	_	A937	1083
T2	022	083	_	A937	1083
Т3	022	083	_	A937	1083
T4	022	083	B8F2	A937	1083
Т5	022	083	B8F2	6229	1083