

NEDO 特別講座 市場化成果活用コース モバイルマニュピュレーション

5SEED Platform Robots

Concept of Platform Robots

アプリケーションの開発に専念できる 手足の付いたUSB機器

組合わせ可能

簡単に動作が作成可能

カスタマイズ可能

ROS対応

外装デザインが自由

動作信賴性

Platform Robotsシステムレイヤー

サービスアプリケーション **SGS** ユーザーアプリ AI ハンドリングシステム

ROS Pkg

全体制御

Rero System

のSMO System

SEED System

Platform Robot/ 概要

Platform Robot 種別

4種類のPlatform Robotが製品化されています。

SEED-Noid 概要

◎20自由度の人型ロボット

腕 7軸x2

腰 3軸

頭 3軸

◎可般重量

2Kg

TRX装着時 1.5Kg

TRX回転軸追加可能

- ○繰り返し位置決め精度±0.5mm
- ◎アンダーウエア 冷却機能

SEED-Arm 概要

- ◎6自由度の片腕ロボット
- ◎可般重量2KgTRX装着時 1.5KgTRX回転軸追加可能
- ◎繰り返し位置決め精度 ±0.5mm

SEED-lifter 概要

- ◎昇降·前後 移動
- →平行移動
- →上下最大 500mm
- →前後最大 250mm
- ※上下高さによる

OSPEC

- ·可般重量 20Kg
- ·消費電力 20W

SEED-Mover 概要

- ◎全方位移動4輪 メカナムホイール
- **©SLAM機能**
 - •LIDER
 - •DepthCAM 前後
- ◎電源機能
 - ・バッテリー 1kW
 - •外部電源供給
 - · 充電機能 (Option)
- **©LED表示**
- ◎バンパー機能
- **OSPEC**
 - ·可般重量 35Kg
 - ·最大速度 0.5m/sec
 - ·重量 30kg ※バッテリー込み

SEED-Tracer 概要

- ◎15自由度の人型トレーサー 腕 7軸 x2腰 1軸
- ○一体型PCモニターモバイルルーターTracerコントローラー

Platform Roboty 組合せ

人型のモバイルマニュピュレーターと、単腕のモ バイルマニュピュレーターを構築可能

SEED Solutions

Platform Robot/使用例1

Platform Robot/使用例2

Platform Robots使用例3

ソフトウエアレイヤー

Software

USBデバイスとして、簡単なシリア ルコマンドで動作します。さまざま なレイヤーでの基本ソフトウェアを 用意しております。

サービスアプリケーション SGS ユーザーアプリ

AI ハンドリングシステム

SEED ROS Pkg

ROS

SEED Smartacutuator SDK

Github https://github.com/seed-solutions

Aero Syztem

全体制御

クラウド対応 COSMO Syrtem

駆動 SEED System

SEED Smartactuator SDK

API群

```
//Fixed Parameters-----
void setTypeNumber(uint8_t _id, const char* _type);
void setEditorVersion(uint8_t _id, const char* _ver);
void setMotorCurrentParam(uint8_t _id, uint16_t _driver_max, uint16
void setDummy(uint8_t _id, uint8_t _cmd);
void setSerialVersion(uint8_t _id, const char* _ver);
void setMotorAdaptation(uint8_t _id, uint32_t _type, uint16_t _volt
void setCurrentInstantaneous(uint8_t _id, uint16_t _max, uint16_t _
void setFirmwareVersion(uint8_t _id, const char* _ver);
void setMotorParam(uint8_t _id, uint8_t _mode, uint8_t _feedback);
void setEncoderParam(uint8_t _id, uint16_t _encoder_pulse, uint16_t
//Base Parameters-----
void setIdParam(uint8_t _id, uint8_t _re_id);
void setEmergencyParam(uint8_t _id, uint8_t _mode, uint8_t _io_no,
void setStopModeParam(uint8_t _id, uint8_t _motor, uint8_t _script)
void setOperationParam(uint8_t _id, uint8_t _auto_run, uint8_t _scr
void setOvertravelParam(uint8_t _id, uint8_t _mode, uint8_t _minus,
void setErrorMotionParam(uint8_t _id, uint8_t _temperature, uint8_t
void setResponseParam(uint8_t _id, uint8_t _mode);
void setDioParam(uint8_t _id, uint8_t _io0, uint8_t _io1, uint8_t _
void setAdParam(uint8_t _id, uint8_t _ad0, uint8_t _ad1, uint8_t _a
//Motor Settings-----
void setMotorCurrent(uint8_t _id, uint16_t _max, uint8_t _min, uint
void setMotorMaxSpeed(uint8_t _id, uint16_t _speed);
void setMotorControlParameter1(uint8_t _id, uint8_t _back_surge_a,
void setMotorControlParameter1(uint8_t _id, uint16_t _i_gain, uint8
void setInPosition(uint8_t _id, uint16_t _value);
void setAcDecelerationRate(uint8_t _id, uint16_t _acc, uint16_t _de
void setMotorControlParameter2(uint8_t _id, uint16_t _initial_speed
void setUpperSoftwareLimit(uint8_t _id, int32_t _limit);
void setLowerSoftwareLimit(uint8 t id, int32 t limit);
void setMotorRotation(uint8_t _id, uint8_t _pulse_division, uint8_t
void setMotorError(uint8_t _id, uint16_t _time, uint32_t _pulse);
void setMotorErrorLimit(uint8_t _id, uint8_t _temerature , uint8_t
//Script Settings----
void setScriptData(uint8_t _id, uint8_t _number , uint8_t _start_li
```

void writeScriptLine(uint8_t _id, uint8_t _line , const char* _comm

Aero Command

SEED Command

SEED R7 ROS Pkg

Platform Robotsへカスタマイズ

Aero Command

SGS: SEED Grand Station

パラメーターの設定、Taskの記述、MAPの作成まで、一連の運用まで可能

ラダーライク タスク記述方式

- ・ROS等を意識しないで、タスクを構築できる
- ・設備関連のソフトエンジニアが対応できる →C等で直接プログラムをしなくて良い
- ・内部パラメータが把握しやすい

モーションエディター

- ・基本ポーズを組合わせてモーションを作成
- ・音にあわせて、動きを調整可能

MOVIE 1

MOVIE 2

MOVIE 3

Platform Roboty とは

ユニット化されたSEEDと、用意されたソフトウエア一群によって、 SMARTにあなたのIDEAをREALIZEする

