CITS2211 Assignment 2

Name: Baasil Siddiqui Student Id: 23895849

Question 1

a)

b)

c)

Question 2

a)

the relation is reflexive if $\forall x \in \mathbb{R}((x, x) \in R)$ subtrating any real number by itself results in zero which is an integer, Hence R is reflexive.

The relation is symmetric if for all $(x,y) \in R$, $(y,x) \in R$ if $x \neq y$ we need to show that if x - y is an integer, y - x is an integer as well

let
$$x - y = k$$
 where $x \in \mathbb{Z}$
 $y - x = -k$ (arithmetic)

k is an integer so -k is an integer as

hence, y - x is an integer

Therefore, we have proved that is $(x,y) \in R$ then $(y,x) \in R$ and relation R is symmetric. The relation R is transitive if for all $x,y,z \in \mathbb{R}$ if xRy and yRz then xRz holds so we need to prove that if $x-y \in \mathbb{Z}$ and $y-z \in \mathbb{Z}$ then $x-z \in \mathbb{Z}$

let
$$x - y = k_1$$
 where k_1 is an integer
let $y - z = k_2$ where k_2 is an integer
 $x - z = (x - y) + (y - z)$ (adding and substracting y)
 $= k_1 + k_2$

both k_1 and k_2 are integers so $k_1 + k_2$ is integer as well, so x - z is an integer and $(x, z) \in R$ and the relation R is transitive

Q.E.D.

b)

i.

the equivalence class of any real number x is given by

$$[x] = \{ y \in \mathbb{R} \mid y - x \in \mathbb{Z} \}$$

let y - x be an integer k then y = x + k

Therefore, the equivalence class of any real number x consists of all numbers produced by adding an integer to x since the numbers integers is infinite, each equivalence class is infinite

ii.

as proved in part \mathbf{i} every real number has an equivalence classes therefore, the total number of equivalence classes are infinite.

Question 4

a)

b)

The function π is bijection between \mathbb{N}^2 and \mathbb{N} We need to prove that there exists a bijection between \mathbb{N}^n and \mathbb{N}

Question 6

a)

```
States: Q = \{q_1, q_2, q_3\}
Start state: q_0 = q_1
Alphabet: \Sigma = \{0, 1\}
Accepting states: F = \{q_1, q_3\}
State transition: \delta : Q \times \Sigma - > \mathcal{P}(Q)
```

b)

FSM recognises the symbols 1 and 0

- q_1 is the starting state and it stays there if it reads 0 and moves to q_2 if it reads 1
- in state q_2 it doesn't move if it reads 0 and moves to q_3 if it reads 1
- in state q_3 it only accepts the symbol 0 and stays in q_3

states q_1 and q_3 are the accepting states

Thus, the FSM accepts strings that contain exactly two 1s and any number of 0s including none anywhere

 \mathbf{c}

0*10*10*

Question 7

States:

set of States of the DFSM is the powerset of the states of the original NFSM $Q = \{\phi, \{q_0\}, \{q_1\}, \{q_0, q_1\}\}$

Initial state:

The initial state of the DFSM is a singleton set containing the initial state of the NFSM $\{q_0\}$ is the initial state

Accepting states:

accepting states of the DFSM are the states containing any accepting states of NFSM $\{q_1\}$ and $\{q_0, q_1\}$ are the accepting states

The Transition Function:

The transition function, δ , returns the union of all states that are reachable via the original transition function δ' , by consuming the input from any of the NFSM states in the current DFSM state, i.e., $\delta(s,x) = \bigcup \{\delta'(q,x) \mid q \in s\}$

The Result could be simpliefied by removing the state $\{q_1\}$ since there is no way to reach the state and it's part of the combined state $\{q_0,q_1\}$

