Remark: Linear dependence of n vectors in \mathbb{R}^m ($n \neq m$) is defend in most lin-algebra courses. have here we restrict to the case: n = m.

Defin: Given vectors A_1 A_m in R^m , a relation of linear dependent for A_1 A_m is a true quation: $x \cdot A_1 + x \cdot A_1 + \cdots + x \cdot A_m = 0 \in R^m$ for certain scalars x_1, x_2, \ldots, x_m which are not all zero. A_1, \cdots, A_m are linear dependent; - provided there exists a relation of linear dependence for A_1, \cdots, A_m .