4. Векторы и действия над ними

1. В $\triangle ABC$ даны векторы $\overrightarrow{AB} = \overrightarrow{m}$ и $\overrightarrow{AC} = \overrightarrow{n}$. Построить векторы:

 $\mathbf{a})$ $2\vec{m}$;

$$\vec{\boldsymbol{b}}$$
 $-\vec{n}$;

$$\underline{\boldsymbol{b}}$$
 $-\vec{n}$; $\underline{\boldsymbol{b}}$ $2\vec{m} + 3\vec{n}$; $\underline{\boldsymbol{c}}$ $2(\vec{m} + \vec{n})$; $\underline{\boldsymbol{L}}$ $\vec{m} - \vec{n}$;

$$\underline{e} \stackrel{2}{=} \frac{2}{3} (\overrightarrow{m} - \overrightarrow{n}); \quad \underline{\underline{m}} \stackrel{1}{=} \frac{\overrightarrow{m}}{4} \overrightarrow{m} - 2\overrightarrow{n}; \quad \underline{\underline{m}} \stackrel{\overrightarrow{n}}{=} \frac{\overrightarrow{m}}{2}; \quad \underline{\underline{m}} \stackrel{\overrightarrow{n}}{=} \frac{\overrightarrow{m}}{2}; \quad \underline{\underline{m}} \stackrel{\overrightarrow{n}}{=} \frac{\overrightarrow{m}}{3}.$$

u)
$$\frac{n-m}{2}$$
;

2. Даны координаты точек: A(3;-1;2); B(-1;2;1). Найти координаты и длины векторов: <u>a)</u> \overrightarrow{AB} ; <u>б)</u> \overrightarrow{BA} ; <u>в)</u> $5\overrightarrow{BA}$; <u>г)</u> $-5\overrightarrow{AB}$; д) $3\overrightarrow{AB}$; e) $\frac{1}{2}\overrightarrow{BA}$.

<u>3.</u> Даны координаты точек: A(2;9;-1); B(4;6;5). Найти координаты и длины векторов: **a)** \overrightarrow{AB} ; **б)** \overrightarrow{BA} ; **в)** $2\overrightarrow{AB}$; **г)** $-3\overrightarrow{BA}$; **д)** $\frac{1}{7}\overrightarrow{BA}$.

4. Определить начало вектора $\vec{a} = \{3; -2; 6\}$, если его конец находится в точке B(0; -2; -4).

5. Три вершины параллелограмма ABCD находятся в точках A(-3;1;0), B(0; -2; -4), C(9; 7; 4). Найти координаты четвертой вершины D.

<u>**6.**</u> Пусть $\vec{a} = \{2; -2; -1\}$. Определить координаты единичных векторов $\vec{e_1} \uparrow \uparrow \vec{a}, \vec{e_2} \uparrow \downarrow \vec{a}.$

<u>7.</u> Даны координаты точек: A(3; 2; -1); B(3; 8; 7). Найти:

а) координаты единичных векторов $\overrightarrow{e_1} \uparrow \uparrow \overrightarrow{AB}$, $\overrightarrow{e_2} \uparrow \downarrow \overrightarrow{AB}$;

б) координаты вектора $\vec{b} \uparrow \downarrow \overrightarrow{AB}$, $|\vec{b}| = 5$.

8. Дано: $|\vec{a}| = 2$, $\alpha = 45^{\circ}$, $\beta = 60^{\circ}$, $\gamma = 120^{\circ}$. Вычислить проекции вектора а на координатные оси.

9. Вычислить направляющие косинусы вектора $\vec{a} = \{6; 8; 24\}$.

10. Найти орт вектора $\vec{a} = \{3; 4; -12\}.$

<u>11.</u> Найти направляющие косинусы и орт вектора $\vec{a} = \{-3; -2; 6\}$.

12. Может ли вектор составлять с координатными осями следующие углы:

6)
$$\alpha = 45^{\circ}$$
, $\beta = 135^{\circ}$, $\gamma = 60^{\circ}$;

8)
$$\alpha = 90^{\circ}$$
, $\beta = 150^{\circ}$, $\gamma = 60^{\circ}$;

a)
$$\alpha = 45^{\circ}$$
, $\beta = 60^{\circ}$, $\gamma = 120^{\circ}$; **b)** $\alpha = 45^{\circ}$, $\beta = 135^{\circ}$, $\gamma = 60^{\circ}$; **c)** $\alpha = 90^{\circ}$, $\beta = 150^{\circ}$, $\gamma = 60^{\circ}$; **d)** $\alpha = 90^{\circ}$, $\beta = 150^{\circ}$, $\gamma = 150^{\circ}$?

13. Даны векторы $\vec{a} = \{3; -2; 6\}, \vec{b} = \{-2; 1; 0\}.$ Определить проекции на координатные оси векторов: **a)** $\vec{a} + \vec{b}$; **б)** $2\vec{a} + 3\vec{b}$; **в)** $\vec{a} - 2\vec{b}$.

<u>14.</u> Определить модули суммы и разности векторов $\vec{a} = \{3; -5; 8\},$ $\vec{b} = \{-1; 1; -4\}.$

<u>15.</u> Даны векторы $\vec{a} = \{3; -2; 1\}, \ \vec{b} = \{-1; 1; -2\}, \ \vec{c} = \{2; 1; -3\}.$ Найти:

- **a)** координаты векторов $-2\vec{a}$; $-2\vec{a} + 4\vec{b} \vec{c}$; $x\vec{a} + y\vec{b} + z\vec{c}$;
- **б)** координаты вектора $\vec{d} = \{11; -6; 5\}$ в базисе $\{\vec{a}; \vec{b}; \vec{c}\}$.
- **16.** Найти координаты вектора $\vec{r} = \{4; -2; 6\}$ в базисе $\vec{a} = \{3; 0; 1\}$, $\vec{b} = \{2; -1; 2\}, \vec{c} = \{1; 1; 1\}.$
- 17. Определить, при каких значениях α и β векторы \vec{a} и \vec{b} коллинеарны, и выразить \vec{b} через \vec{a} :
 - **a)** $\vec{a} = -2\vec{i} + 3\vec{j} + \beta\vec{k}$, $\vec{b} = \alpha\vec{i} 6\vec{j} + 2\vec{k}$;
 - **6)** $\vec{a} = -\vec{i} + \alpha \vec{j} 2\vec{k}, \ \vec{b} = \beta \vec{i} 6\vec{j} + 4\vec{k};$
 - **<u>B</u>**) $\vec{a} = \{-6; 3; \beta\}, \vec{b} = \{\alpha; 1; 2\}.$
- <u>18.</u> На плоскости задан ортонормированный базис $\{\vec{i};\vec{j}\}$ и векторы $\vec{a} = -\vec{i} + \vec{j}$, $\vec{b} = 3\vec{j}$, $\vec{c} = 4\vec{i} - 4\vec{j}$. Определить, образует ли базис на плоскости пара векторов:
- $\mathbf{a)}\ \left\{\vec{a};\vec{i}\right\};$

- б) $\left\{b;\vec{j}\right\};$ в) $\left\{\vec{a};\vec{c}\right\};$ г) $\left\{\vec{b};\vec{c}\right\};$ д) $\left\{\vec{a};\vec{b}\right\}.$
- **19.** В пространстве задан ортонормированный базис $\{\vec{i}; \vec{j}; \vec{k}\}$ и векторы $\vec{a} = -2\vec{i}$, $\vec{b} = \vec{i} + 2\vec{j}$, $\vec{c} = \vec{j} - \vec{k}$. Определить, образует ли базис в пространстве тройка векторов:
- $\underline{\mathbf{a}}$ $\{\vec{i}; \vec{j}; \vec{a}\};$

- $\underline{\mathbf{6}} \left\{ \vec{i}; \vec{j}; \vec{b} \right\}; \qquad \underline{\mathbf{B}} \left\{ \vec{i}; \vec{b}; \vec{k} \right\}; \qquad \mathbf{\Gamma} \left\{ \vec{i}; \vec{j}; \vec{c} \right\}; \qquad \mathbf{Д} \right\} \left\{ \vec{a}; \vec{b}; \vec{c} \right\}.$
- **20.** Параллелограмм ABCD построен на векторах $\overrightarrow{AB} = \{2; 6; -4\}$ и $\overrightarrow{AD} = \{4; 2; -2\}$. Определить координаты векторов, совпадающих с его диагоналями \overrightarrow{AC} и \overrightarrow{BD} .
- **21.** Принимая в качестве базиса на плоскости векторы $\overrightarrow{AB} = \overrightarrow{b}$ и $\overrightarrow{AC} = \overrightarrow{c}$, совпадающие со сторонами $\triangle ABC$, определить разложение векторов, приложенных в вершинах треугольника и совпадающих с его медианами.
- **22.** Центр масс однородного стержня находится в точке C(2; 6; -4), один из его концов — в точке A(4;2;-2). Определить координаты точки B второго конца стержня.
- **23.** Найти координаты концов отрезка AB, который точками C(2;0;2) и D(5; -2; 0) делится на три равные части.
- **24.** Даны длины векторов $|\vec{a}| = 3$, $|\vec{b}| = 4$, угол между векторами $(\overrightarrow{a}; \overrightarrow{b}) = \frac{2\pi}{3}$. Найти: **a)** $\overrightarrow{a} \cdot \overrightarrow{b}$; **6)** $\operatorname{пр}_{\overrightarrow{a}} \overrightarrow{b}$; **B)** $(3\overrightarrow{a} - 2\overrightarrow{b}) \cdot (\overrightarrow{a} + 2\overrightarrow{b})$; **г)** $|\overrightarrow{a} + \overrightarrow{b}|$.
- <u>25.</u> Найти угол между векторами $\vec{p} = \vec{a} + 2\vec{b}$ и $\vec{q} = \vec{a} \vec{b}$, если $|\vec{a}| = \sqrt{3}$, $\left| \overrightarrow{b} \right| = 2, \ (\overrightarrow{a}; \overrightarrow{b}) = \frac{\pi}{\epsilon}.$

- **26.** Найти длину вектора $\vec{q} = 2\vec{a} \vec{b}$, если $|\vec{a}| = 2\sqrt{2}$, $|\vec{b}| = 4$, $(\vec{a}; \vec{b}) = 135^{\circ}$.
- **27.** Найти скалярное произведение векторов $\vec{m} = 2\vec{a} + \vec{b}$ и $\vec{n} = \vec{a} 4\vec{b}$, если $|\vec{a}| = 3, \ |\vec{b}| = 4, \ (\hat{\vec{a};\vec{b}}) = \frac{\pi}{3}$.
 - **28.** Даны $\vec{a} = \vec{m} 4\vec{n}$, $\vec{b} = 3\vec{m} + 2\vec{n}$, $\left| \vec{a} \right| = 2$, $\left| \vec{n} \right| = \sqrt{3}$, $(\widehat{\vec{m}}; \vec{n}) = \frac{\pi}{6}$. Найти пр $_{\vec{b}}$ \vec{a} .
- **29.** Векторы $\vec{a} = \{4; -2; -4\}$, $\vec{b} = \{6; -3; 2\}$ заданы координатами в ортонормированном базисе $\{\vec{i}; \vec{j}; \vec{k}\}$. Найти: **a)** $\vec{a} \cdot \vec{b}$; **b)** $\text{пр}_{\vec{a}} \vec{b}$; **b)** $\text{сos}(\widehat{\vec{a}; \vec{b}})$; **г)** $(2\vec{a} \vec{b}) \cdot (\vec{a} + 3\vec{b})$.
- **30.** Найти скалярное произведение векторов $\vec{m}=2\vec{a}+\vec{b}$ и $\vec{n}=\vec{a}-4\vec{b}$, если $\vec{a}=\{-2;-2;4\},\ \vec{b}=\{1;3;1\}.$
- <u>31.</u> Векторы $\vec{a} = \{1; 3; -2\}, \quad \vec{b} = \{1; -2; 2\}$ заданы координатами в ортонормированном базисе $\{\vec{i}; \vec{j}; \vec{k}\}$. Найти проекцию вектора $\vec{q} = 2\vec{a} \vec{b}$ на вектор \vec{b} .
 - **32.** Найти угол ABC, если A(3;-1;3); B(-1;1;3); C(-1;2;5).
- **33.** Даны координаты точек: A(4;2;3), B(-1;5;2), C(-3;3;3). Найти внешний угол треугольника $\triangle ABC$ при вершине B.
- <u>34.</u> Найти косинус угла между диагоналями \overrightarrow{AC} и \overrightarrow{BD} параллелограмма, если заданы три его вершины A(2;1;3), B(5;2;-1), C(-3;3;-3).
 - **35.** Определить, при каких значениях α векторы \vec{a} и \vec{b} ортогональны:
 - **<u>a</u>**) $\vec{a} = \{5; 4; 3\}, \vec{b} = \{-2; \alpha; 4\};$
 - **6)** $\vec{a} = \{1; \alpha; 2\alpha\}, \vec{b} = \{1; 1; -\alpha\};$
 - **B)** $\vec{a} = \{2 + \alpha; \alpha 3; 3 \alpha\}, \vec{b} = \{2 \alpha; \alpha + 3; -\alpha 3\}.$
 - **36.** Вектор $\vec{a} = \{4; -3; 0\}$ составляет с осью l угол $\frac{\pi}{6}$. Найти пр $_l \vec{a}$.
- 37. Дан вектор $\overrightarrow{AB} = \{2; -3; -5\}$. Ось l составляет с координатными осями углы $\alpha = 45^{\circ}$, β острый угол, $\gamma = 60^{\circ}$. Найти пр $_{l}$ \overrightarrow{AB} .
- <u>38.</u> Найти проекцию вектора $\vec{a} = \{5; -4; 1\}$ на ось l, образующую с координатными осями равные острые углы.
 - **39.** Даны векторы $\vec{a} = 2\vec{i} + 3\vec{j}$, $\vec{b} = \vec{i} 4\vec{j} + 5\vec{k}$, $\vec{c} = \vec{i} + \vec{j} \vec{k}$. Найти:
- **a)** $\operatorname{пp}_{\vec{c}}(\vec{a} + \vec{b});$ **6)** $\operatorname{пp}_{\vec{j}}(\vec{a} \vec{b});$ **B)** $\operatorname{пp}_{\vec{b} + 2\vec{c}}\vec{a};$ **r)** $\operatorname{np}_{\vec{a} + \vec{b} + \vec{c}}\vec{k}.$
- **40.** Вычислить работу, производимую силой $\vec{F} = 3\vec{i} 2\vec{j} 5\vec{k}$, если точка ее приложения, двигаясь прямолинейно, перемещается из A(2; -3; 5) в B(3; -3; -1).

- **41.** Две силы $\overrightarrow{F_1} = \{4; 1; 3\}$ и $\overrightarrow{F_2} = \{3; -1; 2\}$ приложены в точке M(1; 4; 7). Вычислить работу их равнодействующей \overrightarrow{R} по перемещению материальной точки из M в N(3; 8; 5).
- **42.** Вычислить работу силы \vec{F} при прямолинейном перемещении материальной точки на вектор \vec{s} , если $|\vec{F}| = 8$, $|\vec{s}| = 3$, $(\widehat{\vec{F};\vec{s}}) = \frac{2\pi}{3}$.
- <u>43.</u> Вычислить работу силы $\vec{F} = \vec{m} + 2\vec{n}$ при прямолинейном перемещении материальной точки на вектор $\vec{s} = 3\vec{m} 4\vec{n}$, если \vec{m} и \vec{n} единичные векторы, угол между которыми $(\vec{m};\vec{n}) = 120^{\circ}$.
- <u>44.</u> Найти вектор \vec{x} , составляющий с осью Oz прямой угол, если $|\vec{x}| = 2$, $\vec{x} \cdot \vec{a} = 4$, $\vec{a} = \{1; 2; -7\}$.
- **45.** Найти вектор \vec{b} , удовлетворяющий условиям: $\vec{b} \parallel \vec{a} = \{12; -16; 15\};$ $|\vec{b}| = 50; \vec{b}$ составляет острый угол с осью Ox.
- <u>**46.**</u> Даны векторы $\vec{a} = 2\vec{i} + 3\vec{j} \vec{k}$, $\vec{b} = \vec{i} 2\vec{j} + 3\vec{k}$, $\vec{c} = 2\vec{i} \vec{j} + \vec{k}$. Найти вектор \vec{x} , удовлетворяющий условиям: $\vec{x} \perp \vec{a}$; $\vec{x} \perp \vec{b}$; $\vec{x} \cdot \vec{c} = -6$.
- **47.** Определить, при каких значениях α треугольник ABC будет равнобедренным, если $\overrightarrow{AB} = 6\vec{i} + 6\vec{j} + 2\vec{k}$, $\overrightarrow{AC} = \alpha \vec{i}$.
 - 48. Найти векторное произведение по определению, сделать рисунок:
- а) $(5\vec{i}) \times (4\vec{j});$ <u>б)</u> $(4\vec{k}) \times (2\vec{j});$ <u>в)</u> $(-3\vec{j}) \times (5\vec{i});$ г) $(3\vec{k}) \times (-4\vec{i}).$ 49. Векторы $\vec{a} = \{3; -1; 2\},$ $\vec{b} = \{1; 2; -1\}$ заданы координатами в
- <u>49.</u> Векторы $a = \{3; -1; 2\},$ $b = \{1; 2; -1\}$ заданы координатами в ортонормированном базисе $\{\vec{i}; \vec{j}; \vec{k}\}.$ Найти: **a)** $\vec{a} \times \vec{b};$ **б)** $\vec{b} \times \vec{a};$
- **B)** $(2\vec{a} \vec{b}) \times (2\vec{a} + \vec{b})$.
- <u>**50.**</u> Даны векторы $\vec{a} = 2\vec{i} + 3\vec{j}$, $\vec{b} = \vec{i} 4\vec{j} + 5\vec{k}$. Найти: **a)** $\vec{a} \times \vec{b}$; **б)** $\vec{b} \times (\vec{a} + 3\vec{b})$; **в)** $(4\vec{a} + \vec{b}) \times (\vec{a} \vec{b})$.
- **51.** Даны вершины треугольника A(1;-1;2), B(5;-6;2), C(1;3;-1). Найти: **a)** площадь треугольника ABC; **b**) длину высоты $h = \left|\overrightarrow{BD}\right|$.
- **52.** Найти площадь треугольника с вершинами в точках A(2;1;0), B(4;4;5), C(2;3;4).
- <u>53.</u> Найти площадь параллелограмма с вершинами в точках A(1;2;0), B(3;0;3), C(5;0;6), D(3;2;3).
- <u>**54.**</u> Найти площадь параллелограмма, построенного на векторах $\vec{p} = \vec{a} + 3\vec{b}$ и $\vec{q} = 3\vec{a} \vec{b}$, если $|\vec{a}| = 1$, $|\vec{b}| = 2$, $(\hat{\vec{a}}; \hat{\vec{b}}) = \frac{2\pi}{3}$.

- **55.** Найти площадь треугольника, построенного на векторах $\vec{p} = \vec{a} 2\vec{b}$ и $\vec{q} = 3\vec{a} + 2\vec{b}$, если $|\vec{a}| = |\vec{b}| = 5$, $(\vec{a}; \vec{b}) = 45^\circ$.
- **56.** Площадь треугольника $\triangle ABC$ равна $\frac{\sqrt{35}}{2}$. Две его вершины $A(2;-1;3),\ B(1;2;1)$. Найти координаты третьей вершины, если известно, что она лежит на оси Oz.
- **57.** Сила \overrightarrow{F} приложена к точке A. Определить момент \overrightarrow{M} этой силы относительно точки O, если:

a)
$$\vec{F} = 2\vec{i} - 4\vec{j} + 5\vec{k}$$
, $A(4; 2; -3)$, $O(3; 2; -1)$;

$$\underline{6}$$
) $\vec{F} = 2\vec{i} + 4\vec{j} - 5\vec{k}$, $A(4; -2; 3)$, $O(3; 2; -1)$.

- **58.** Найти вектор \vec{m} , зная, что он перпендикулярен векторам $\vec{a} = \{5; -1; -1\}$ и $\vec{b} = \{3; 3; -3\}$ и удовлетворяет условию $\vec{m} \cdot (\vec{i} + 2\vec{j} 7\vec{k}) = -16$.
- <u>**59.**</u> Найти единичный вектор \vec{x} , перпендикулярный векторам $\vec{a}=\left\{4;1;3\right\}$ и $\vec{b}=\left\{4;0;2\right\}$.
- **60.** Показать, что векторы $\vec{a} = 7\vec{i} + 6\vec{j} 6\vec{k}$ и $\vec{b} = 6\vec{i} + 2\vec{j} + 9\vec{k}$ могут быть ребрами куба, и найти его третье ребро.
- <u>**61.**</u> Даны векторы $\vec{a} = 2\vec{i} + 3\vec{j}$, $\vec{b} = \vec{i} 4\vec{j} + 5\vec{k}$, $\vec{c} = \vec{i} + \vec{j} \vec{k}$. Вычислить смешанное произведение $\vec{a}\vec{b}\vec{c}$; указать ориентацию тройки $\vec{a}, \vec{b}, \vec{c}$.
- $\underline{\textbf{62.}}$ Даны векторы $\vec{a} = \{1; -1; 3\}, \ \vec{b} = \{-2; 2; 1\}, \ \vec{c} = \{3; -2; 5\}.$ Вычислить: **a)** $\vec{a}\vec{b}\vec{c}$; **б)** $\vec{b}\vec{c}\vec{a}$; **в)** $\vec{b}\vec{a}\vec{c}$.
 - 63. Найти объем параллелепипеда, построенного на векторах:

a)
$$\vec{a} = \{-5, 3, 2\}, \vec{b} = \{-6, 3, 4\}, \vec{c} = \{-8, 6, -5\};$$

6)
$$\vec{a} = 2\vec{i} + \vec{k}$$
, $\vec{b} = \vec{i} + 2j - 2\vec{k}$, $\vec{c} = 2\vec{j}$.

- 64. Вычислить объем пирамиды, если известны координаты ее вершин:
- <u>**a**</u>) S(4;5;1), A(1;-1;2), B(3;6;0), C(3;0;2);
- **6)** A(0;3;2), B(2;2;-2), C(2;-2;3), D(3;4;-6);
- **B)** A(2; -3; 5), B(0; 2; 1), C(-2; -2; 3), D(3; 2; 4).
- 65. Вычислить объем треугольной призмы, построенной на векторах:

a)
$$\vec{a} = \{2; 2; 4\}, \vec{b} = \{3; 4; 0\}, \vec{c} = \{4; 7; 8\};$$

6)
$$\vec{a} = 2\vec{i} + 3\vec{j} + 6\vec{k}$$
, $\vec{b} = 4\vec{i} - 2\vec{j} + \vec{k}$, $\vec{c} = 2\vec{i} + 4\vec{k}$.

66. Проверить, компланарны ли векторы:

a)
$$\vec{a} = \{3; -2; 1\}, \vec{b} = \{0; 2; -3\}, \vec{c} = \{-3; 4; -4\};$$

$$\vec{a} = 8\vec{i} + 3\vec{j} + 2\vec{k}, \ \vec{b} = 2\vec{j} - \vec{k}, \ \vec{c} = \vec{i} + 2\vec{j} + 3\vec{k}.$$

67. Установить, образуют ли векторы базис:

a)
$$\overrightarrow{a_1} = \{3; -2; 1\}, \ \overrightarrow{a_2} = \{2; 1; 2\}, \ \overrightarrow{a_3} = \{3; -1; -2\};$$

6)
$$\overrightarrow{a_1} = \{-2; -1; 1\}, \overrightarrow{a_2} = \{4; -4; 1\}, \overrightarrow{a_3} = \{4; -6; 2\};$$

B)
$$\overrightarrow{a_1} = \{2; 2; 4\}, \ \overrightarrow{a_2} = \{2; -1; 4\}, \ \overrightarrow{a_3} = \{4; 7; 8\}.$$

68. Проверить, лежат ли точки в одной плоскости:

a)
$$A(1; 2; -1), B(0; 1; 5), C(-1; 2; 1), D(2; 1; 3);$$

$$\underline{6}$$
) $A(3;1;-2)$, $B(1;0;-1)$, $C(7;-3;-1)$, $D(2;-5;0)$;

B)
$$A(-5; -3; 4), B(1; 4; 6), C(3; 2; -2), D(8; -2; 4).$$

- **69.** Объем треугольной пирамиды ABCD равен 5. Три его вершины находятся в точках A(2;1;-1), B(3;0;1), C(2;-1;3). Найти координаты третьей вершины D, если известно, что она лежит на оси Oy.
- **70.** Даны векторы $\vec{a} = \vec{i} + 4\vec{j} + 8\vec{k}$, $\vec{b} = \vec{i} 2\vec{j} + 2\vec{k}$. Найти вектор \vec{x} , образующий острый угол с осью Oz и удовлетворяющий условиям: $|\vec{x}| = 1$; $\vec{x} \perp \vec{b}$; векторы $\vec{a}, \vec{b}, \vec{x}$ компланарны.
- **71.** Даны векторы $\vec{a} = 8\vec{i} + 4\vec{j} + \vec{k}$, $\vec{b} = 2\vec{i} 2\vec{j} + \vec{k}$. Найти вектор \vec{x} , образующий тупой угол с вектором \vec{b} и удовлетворяющий условиям: $|\vec{x}| = |\vec{a}|$; $\vec{x} \perp \vec{a}$; векторы \vec{a} , \vec{b} , \vec{x} компланарны.
- **72.** Проверить, будут ли компланарны векторы $\vec{a} = 2\vec{p} + 3\vec{q}, \ \vec{b} = 3\vec{q} 5r,$ $\vec{c} = 2\vec{p} + 5\vec{r}$, если векторы \vec{p} , \vec{q} , \vec{r} некомпланарны.

Ответы. **2. a)**
$$\overrightarrow{AB} = \{-4; 3; -1\}; |\overrightarrow{AB}| = \sqrt{26}; \textbf{ б)} \overrightarrow{BA} = \{4; -3; 1\}; |\overrightarrow{BA}| = \sqrt{26};$$

B)
$$5\overrightarrow{BA} = \{20; -15; 5\}; \quad |5\overrightarrow{BA}| = 5\sqrt{26}; \quad \Gamma) - 5\overrightarrow{AB} = \{20; -15; 5\}; \quad |-5\overrightarrow{AB}| = 5\sqrt{26};$$

д)
$$3\overrightarrow{AB} = \{12; -9; 3\}; \quad |3\overrightarrow{AB}| = 3\sqrt{26}; \quad \mathbf{e}) \ \frac{1}{2}\overrightarrow{BA} = \{2; -\frac{3}{2}; \frac{1}{2}\}; \quad |\frac{1}{2}\overrightarrow{BA}| = \frac{1}{2}\sqrt{26}.$$

3. a)
$$\overrightarrow{AB} = \{2; -3; 6\};$$
 $|\overrightarrow{AB}| = 7;$ **6)** $\overrightarrow{BA} = \{-2; 3; -6\};$ $|\overrightarrow{BA}| = 7;$ **B)** $2\overrightarrow{AB} = \{4; -6; 12\};$ $|2\overrightarrow{AB}| = 14;$ **r)** $-3\overrightarrow{BA} = \{6; 9; 18\};$ $|-3\overrightarrow{BA}| = 21;$

B)
$$2\overrightarrow{AB} = \{4; -6; 12\};$$
 $\left|2\overrightarrow{AB}\right| = 14;$ Γ) $-3\overrightarrow{BA} = \{6; 9; 18\};$ $\left|-3\overrightarrow{BA}\right| = 21;$

e)
$$\frac{1}{7}\overrightarrow{BA} = \left\{-\frac{2}{7}; \frac{3}{7}; -\frac{6}{7}\right\}; \qquad \left|\frac{1}{7}\overrightarrow{BA}\right| = 1.$$
 4. $(-3; 0; -10).$ 5. $D(6; 10; 8).$

6.
$$\overrightarrow{e_1} = \left\{ \frac{2}{3}; -\frac{2}{3}; -\frac{1}{3} \right\};$$
 $\overrightarrow{e_2} = \left\{ -\frac{2}{3}; \frac{2}{3}; \frac{1}{3} \right\}.$ **7. a)** $\overrightarrow{e_1} = \{0; 0, 6; 0, 8\};$

$$\overrightarrow{e_2} = \{0; -0, 6; -0, 8\}; \ \mathbf{60} \ \overrightarrow{b} = \{0; -3; -4\}. \ \mathbf{8.} \ x = \sqrt{2}; \ y = 1; \ z = -1. \ \mathbf{9.} \ \cos \alpha = \frac{3}{13};$$

$$\cos\beta = \frac{4}{13};$$
 $\cos\gamma = \frac{12}{13}.$ **10.** $\left\{\frac{3}{13}; \frac{4}{13}; -\frac{12}{13}\right\}.$ **11.** $\cos\alpha = -\frac{3}{7};$ $\cos\beta = -\frac{2}{7};$

$$\cos \gamma = \frac{6}{7}; \left\{ -\frac{3}{7}; -\frac{2}{7}; \frac{6}{7} \right\}.$$
 12. **a)** да; **б)** нет; **в)** да; **г)** нет. 13. **a)** $\{1; -1; 6\};$

6) $\{0; -2; 12\};$ B) $\{7; -4; 6\}.$ 14. $|\vec{a} + \vec{b}| = 6; |\vec{a} - \vec{b}| = 14.$ 15. a) $-2\vec{a} = \{-6; 4; -2\};$ $-2\vec{a} + 4\vec{b} - \vec{c} = \{-12; 7; -7\};$ $x\vec{a} + y\vec{b} + z\vec{c} = \{3x - y + 2z; -2x + y + z; x - 2y - 3z\};$ 6) $\vec{d} = 2\vec{a} - 3\vec{b} + \vec{c}.$ 16. $\vec{r} = -\vec{a} + 3\vec{b} + \vec{c}.$ 17. a) $\alpha = 4$, $\beta = -1$; $\vec{b} = -2\vec{a};$ 6) $\alpha = 3, \beta = 2;$ $\vec{b} = -2\vec{a};$ B) $\alpha = -2, \beta = 6;$ $\vec{b} = \frac{1}{3}\vec{a}.$ 18. a) $\beta = 0$; $\beta = 0$ HeT; B) $\beta = 0$; β

46. $\{-3; 3; 3\}$. **47.** $12; \frac{19}{2}; \pm 2\sqrt{19}$. **48. a)** $20\vec{k};$ **6)** $-8\vec{i};$ **B)** $15\vec{k};$ **r)** $12\vec{j}.$

49. a) $\{-3; 5; 7\};$ **6)** $\{3; -5; -7\};$ **B)** $\{-12; 20; 28\}.$ **50. a)** $\{15; -10; -11\};$

6) $\{-15; 10; 11\};$ **B)** $\{-75; 50; 55\}.$ **51. a)** 12,5; **6)** 5. **52.** $\sqrt{21}.$ **53.** $2\sqrt{13}.$ **54.** $10\sqrt{3}.$

55. $50\sqrt{2}$. **56.** C(0; 0; 2). **57. a)** $\{-8; 9; -4\}$; **6)** $\{4; 13; -12\}$. **58.** $\{1; 2; 3\}$.

59. $\pm \left\{ \frac{1}{3}; \frac{2}{3}; -\frac{2}{3} \right\}$. **60.** $\pm \left\{ 6; -9; -2 \right\}$. **61.** 16; правая тройка. **62. а)** -7; **б)** -7;

в) 7. **63. a)** 15; **б)** 10. **64. a)** 1; **б)** 1,5; **в)** 6. **65. a)** 18; **б)** 17. **66. a)** компланарны;

б) некомпланарны. **67. а)** да; **б)** да; **в)** нет. **68. а)** да; **б)** нет; **в)** да.

69. $D_1(0; 8; 0); D_2(0; -7; 0).$ **70.** $\left\{0; \frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right\}.$ **71.** $\left\{-\frac{5\sqrt{2}}{2}; \frac{11\sqrt{2}}{2}; -2\sqrt{2}\right\}.$

72. Компланарны.