Lineær algebra (LA)

anden del af kurset i beregningsteknik

Aalborg Universitet

Troels B. Sørensen

tbs@es.aau.dk

LINEÆR ALGEBRA

MM 2: Tirsdag 14. marts 2023

kl. 08.15 i B2-104

Emner: Vektorrum

Underrum

Uddrivelse/fortrængning

Ligningssystemer

Eksempler på vektorrum

Læsning: [EK] s. 282 – 287, s. 309 – 313 (evt. 334-335 som optakt til LA3)

DEFINITIONER

Vektorrum

Et vektorrum er en algebraisk struktur, der er lukket overfor to kompositionsregler kaldet hhv. "vektoraddition" og "skalarmultiplikation".

Spænd (alle vektorerne i et rum)

Alle mulige linearkombinationer af en given mængde af vektorer.

Dimension

Det største antal lineært uafhængige vektorer i et rum.

Base

En mængde af n uafhængige vektorer, hvor n er dimensionen af rummet.

En base udspænder et rum, dvs. alle rummets vektorer kan beskrives som en linearkombination af basens vektorer.

DEFINITIONER

Underrum

En delmængde af et vektorrum, som selv udgør et vektorrum.

Lineær uafhængighed

En mængde vektorer er lineært uafhængige, hvis ingen af mængdens vektorer kan beskrives som en linearkombination af de øvrige.

$$k_1 v_1 + k_2 v_2 + \cdots + k_n v_n = 0$$

har ingen løsninger udover den trivielle.

k er skalarer, v og 0 er vektorer

VEKTORRUM

Vektoraddition Association
A1 (a+b)+c=a+(b+c)

A1
$$(a+b)+c = a + (b+c)$$

A2
$$a+b=b+a \leftarrow kommutativ$$

A4
$$a + (-a) = 0$$
 ~ Neg. vckter

Et vektorrum er en algebraisk struktur, hvor to kompositionsregler kaldet hhv. "vektoraddition" og "skalarmultiplikation" er defineret.

Skalarmultiplikation

$$\mathbf{S}\mathbf{I}$$
 $k(a+b) = ka + kb$

$$s2$$
 (k+m)a = ka + ma

S1
$$k(a+b) = ka + kb$$

S2 $(k+m)a = ka + ma$

S3 $k(ma) = (km)a$

a, b, c og 0 er vektorer k, m og 1 er skalarer

ET SIGNALRUM / Vekterrum eksempel

Eksempel Et (diskret) signal er en "dobbelt uendelig" følge af reelle tal

$$\bar{x} = \{x_k\}_{k \in \mathbb{Z}} = (\ldots, x_{-2}, x_{-1}, x_0, x_1, x_2, \ldots)$$

Signaler kan lægges sammen:

$$\{x_k\} + \{y_k\} = \{x_k + y_k\} = (\dots, x_{-1} + y_{-1}, x_0 + y_0, x_1 + y_1, \dots)$$

og ganges med skalarer (reelle tal):

$$c\{x_k\} = \{c x_k\} = (\ldots, cx_{-1}, cx_0, cx_1, \ldots)$$

Mængden S af signaler er et vektorrum.

SIGNALVEKTORER / Vektoron etcsempel

For an arbitrary digital transmitter, we have the following:

Input Binary vectors of length K from the input set \mathbb{U} :

$$[U_1, U_2, \dots, U_K] \in \mathbb{U} := \{0, 1\}^K.$$

The "duration" of one binary symbol U_k is T_b .

Output Waveforms of duration T from the output set S:

$$x(t) \in \mathbb{S} := \{s_1(t), s_2(t), \dots, s_M(t)\}.$$

Waveform duration T means that for m = 1, 2, ..., M,

$$s_m(t) = 0$$
 for $t \notin [0, T]$.

SIGNALVEKTORER

LINEÆRE SYSTEMER / Lineare signaler

For lineære systemer gælder disse to principper:

- 1. Superposition
- 2. Homogenitet (proportionalitet)

Eller:

Lineære signaler er vægtede summer (eller linearkombinationer) af signaler.

RÆKKERUM - en base baseret på rakkevekterer (echelantern)

Eksempel Find en basis for Row
$$\begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow \leftarrow$$

$$\Rightarrow \text{ basis for rækkerummet: } \left\{ \begin{bmatrix} 1\\3\\-5\\1\\5 \end{bmatrix}, \begin{bmatrix} 0\\1\\-2\\2\\-7 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\-4\\20 \end{bmatrix} \right\} \text{ which with the problem of the proble$$

Hvorfor? Fordi rækkeoperationer danner *linearkombinationer* af rækker \Rightarrow rækkeoperationer laver ikke om på rækkerummet.

- en base baseret på sølevekterer (edulon form)

Eksempel

s for Col
$$\begin{bmatrix} -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$$

Eksempel Find en basis for Col
$$\begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ 0 & 1 & 2 & -1 & -4 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{pmatrix}$$

$$\Rightarrow \text{basis:} \left\{ \begin{bmatrix} 1 \\ -2 \\ 2 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 1 \\ -8 \end{bmatrix} \right\} \begin{bmatrix} -9 \\ 2 \\ 1 \\ -8 \end{bmatrix} \right\}$$

Hvorfor? Fordi rækkeoperationer ikke ændrer på *lineære* afhængigheder mellem søjlerne.

Opskrift for uddrivelse

Opskrift på at finde en base for vektorerne $v_1 \cdot \cdot \cdot v_n$

- Start i venstre side med v₁, som beholdes.
- 2. Gå mod højre. Hvis den næste vektor er en linearkombination af de foregående, bortkastes den. Check med fx Gaussisk elimination.
- **3.** Der fortsættes mod højre indtil v_n .
- 4. Den tilbageværende mængde af vektorer udgør en base for de givne vektorer.

LIGNINGSSYSTEMER

matrixer og vektorer

Lineært system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Vektorligning

$$x_1\bar{a}_1 + x_2\bar{a}_2 + \cdots + x_n\bar{a}_n = \bar{b}$$

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Matrixligning

$$A\bar{x}=\bar{b}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Totalmatrix

$$A \mid \bar{b}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

LØSNINGSMETODER

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$$

A skal være kvadratisk og $\triangle A \neq 0$.

2. Gaussisk elimination

Reducer til echelonform vha. rækkeækvivalente operationer. Gauss: Tilbagesubstitution

Gauss-Jordan: Reducer totalmatrix til reduceret echelon

3. Cramers formel

$$\mathbf{x}_{n} = \begin{array}{c|c} \Delta_{n} \\ \hline \Delta \mathbf{A} \end{array} \qquad \begin{array}{c|c} \mathbf{b} & \mathbf{a} \\ \mathbf{b} & \mathbf{a} \\ \hline \mathbf{n} & \mathbf{n} \end{array}$$

4. LU-faktorisering

$$A = LU$$

$$Ax = LUx = b$$

$$Ux = y$$

$$Ly = b$$

Doolittle Crout Cholesky

Ax = b

inhomogent system

Ax=0

homogent system

LØSNINGSTYPER 1

Løsninger til ligningssystem

Inhomogent system

$$4x + 7y = 89$$

$$7x + 3y = 54$$

$$\begin{bmatrix} 4 & 7 \\ 7 & 3 \end{bmatrix} X = \begin{bmatrix} 89 \\ 54 \end{bmatrix}$$

A = 5

$$\Delta A = 12 - 49 = -37$$

Losning:
$$X = 3$$
 $y = 11$

rang
$$(\bar{A}) = 2$$

rang $(\bar{A}) = 2$
Antal sejler = 2

Nollitet =
$$2-2 = 0$$

$$\overline{A} = \begin{bmatrix} 4 & 7 & 3 \\ 7 & 3 & 54 \end{bmatrix}$$

LØSNINGSTYPER 2

Løsninger til ligningssystem

Homogent system

$$4x + 7y = 0$$

$$7x + 3y = 0$$

Men hvis rang(\$\bar{A}\$) < 2 har vi løsninger.

Homogent system

$$4x + 7y = 0$$

$$\triangle \overline{\overline{A}} = 56 - 56 = 0$$

Rokkereducering:

$$\begin{bmatrix} 4 & 7 \\ 8 & 14 \end{bmatrix} \xrightarrow{A} \begin{bmatrix} 4 & 7 \\ 0 & 0 \end{bmatrix} \Rightarrow \frac{\text{kans}(\overline{A})}{\text{nullitet}(\overline{A})} = 1$$

$$tans(\overline{A}) = 1$$

Nulrummet (som er løsningerne) er et 1-dimensionelt Vektorrum.

$$\begin{bmatrix} 4 & 7 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{cases} 4x + 7y = 0 \\ y = -1 \end{cases}$$

$$4x + 4y = 0$$

$$y = -4x$$

Alle vektorer ad dormen:

$$\begin{bmatrix} x \\ y \end{bmatrix} = R \begin{bmatrix} 1 \\ -\frac{4}{7} \end{bmatrix}$$

er løsninger.

Dette er et vektorrum ai dimension 1.

LIGNINGSSYSTEMER

Hvor mange løsninger?

r = rang(A), rangen af A $\widetilde{r} = rang(\widetilde{A})$, rangen af totalmatrixen n = antallet af søiler i A

Totalmatrix: $\widetilde{\mathbf{A}} = [\mathbf{A}|\mathbf{b}]$

