2019 Fall Semester

영어음성학 강의내용 정리

영어영문학과 2018130863 윤보현

1. English Consonants and Vowels

- 1) Consonants: p, t, k, b, d, g, m, n, f, v, 등
- 2) Vowels: I, u, a, ai 등 (diphthong과 monophthong으로 나뉜다.)
- 이런 자음과 모음들을 보면, grouping을 잘 해야 한다. Ex) Voiced sound (유성음) vs. Voiceless sound (무성음), 비음vs.유음

2. Phonetics: 음성학 - A study on speech (How speech is described)

- Physical한 부분에 focus한다. Speech는 사람이 하는 말에 대한 모든 영역을 다루는 것이다.
- 1) Articulatory phonetics (from mouth): 조음 음성학 how to produce speech
- 2) Acoustic phonetics (through air): 음향 음성학 how to transmit speech
- 소리의 높이는 성대가 떠는 정도에 따라 달라지는 것이며, 소리가 바뀌는 것(ㅏ->ㅣ)은 입의 모양 때문이다.(혀의 위치, 턱 등 포함)
- 3) Auditory phonetics (to ear): 청각 음성학 how to hear speech (고막의 움직임 등- 물리학을 포함하는 내용)

3. Articulation

- 1) The vocal tract speech를 만들어내는 tract을 말함
 - 이/비/인(인강-목젖(uvula)부터 후두까지의 긴 관-pharynx)/후(후두-성대가 있는 볼록 튀어나와 있는 부분-larynx)
- Vocal tract (upper) Palate(입천장), Alveolar, Soft Palate (velum), Uvula~larynx=Pharynx
- Alveolar이 중요한 이유: t,d,s,z,l,n 등이 모두 alveolar에서 발음이 된다.
- 입으로 가는 vocal tract말고 soft palate 뒤에 튀어나온 부분 뒤에 작은 구멍 (코로 향하는 통로)도 있다는 것을 알아야 함. 이 track은 nasal track이다.
- Velum이 위로 올라가면 nasal track이 막혀서 이때 소리가 안나는 것은 모든 모음이다. 비음을 뺀 모든 자음들도 마찬가지다. 이 세 가지만 velum이 lowered 되었을 때 발음이 된다. 나머지는 모두 velum이 올라 갔을 때 발음이 된다.

- Q. 우리가 코로 숨을 쉴 때 velum은 raised 될까, lowered 될까?
 - A. Nasal track이 열리기 때문에, velum은 lowered 되는 것이다. (우리가 숨 쉴 때는 lowered된 상태이다.) 그런데 [아]라고 발음하는 순간에 바로 velum이 raised 되는 것이다.
 - 2) 5 Speech Organs = Constrictors = Articulators
 - Speech를 만들 때 3가지의 중요한 process가 필요하다.
 - 영어의 모든 소리는 무성음과 유성음으로 이루어져 있다.

4. Phonation process in larynx

- 1) Vocal cords vibration
- 2) Larynx = Voicebox
 - (1) Voiced: can feel vibration (ex. V, z, l, m, a, I, ...)
 - (2) Voiceless: can't feel vibration (ex. F, s, k, p, h, ...)

5. Oro-nasal process in velum

- Whether velum lowered/ nasals: m n ng ...

6. Articulatory process in lips / tongue tip / tongue body

- Constriction(협착)을 만들어주는 3가지 요소
- CD는 상하 (Constriction degree), CL은 앞뒤 (Constriction Location)
- 이 Constrictor들은 얼마나 되는가에 따라 CD와 CL에 따라 더 자세하게 나눠진다. Location도 control 할 수 있다. (tongue tip을 쓴다 할지라도 조금 막을 건지 어느 정도 막을 건지 아니면 조금 뒤로 갈 건지 앞으로 갈 건지를 조절할 수 있다는 것이다.

7. Control of constrictors (articulators) By CL and CD

1) CL

Tongue tip을 쓰는 것은 영어에서 한 4개 정도 생각하면 된다. CL의 관점에서. Ex) Th를 발음할 때는 tongue tip을 쓰는데 location 관점에서는 윗니를 touch한다. 그 뒤쪽으로 가면 alveolar을 touch할 수도 있는 것임. r을 발음할 때도 Tongue tip은 4개 정도의 CL이 있다. (Bilabial/Labiodental/Palatal/Velar)

2) **CD**

- 형태의 측면/location의 측면/degree의 측면 중에서
- 자음은 stop, fricative, approximants 3가지가 있고, 모음은 vowel이라는 한종류로 구분된다. Approximant에 해당하는 자음은 r, l, w, j[여]

8. How to produce English consonants and vowels?

9. Phonemes – individual sounds that form words

[wood] 입술을 쓰긴 쓴다. 그런데 CL의 관점에서는 아랫입술이 제일 앞쪽으로 와 있으니까 bilabial이고

CD의 관점에서는 approximant (l,r,w,i) 인 것이다.

Larynx를 open시키면 유성음

10. Acoustics (in Praat)

소리를 duration / pitch / intensity(강도) / 을 measure 할 수 있다.

파란색 부분을 spectrogram이라고 한다. 프리즘으로 frequency의 관점에서 분석하는 관점인데 빛을 분석하는 거임.

까만 띠를 볼 수 있다. 여기서는 까만 띠가 총 4개, (빨간색으로 tracking된 띠를 보면 됨) F1,F2가 뭐냐에 따라서 모음이 뭔지를 결정하는 것이다.

Formant 값에 따라 소리를 구분할 수 있다.

11. How to produce English consonants & vowels?

여기서 하나의 예로 /b/라는 소리를 제시하면, CL과 CD를 구분하는 연습을 해보아야 한다.

Lips/TT/TB/Velum/Larynx -> 영어에서 모든 소리는 이 시스템에서 specify가 가능하다.

뭐가 어떻게 바뀌는지를 연습을 해보아야 한다.

Hz - 주파수(frequency) 나타내는 단위 - 1초 동안 몇 번 반복되는가

Sin wave의 크기에 관해서도 또 달라진다. -

Vocal fold의 vibration에 의해서 repeating event가 일어난다.

12. Complex tone in spectrum

Sin wave는 가장 기본적인 형태이고, 결정짓는 것은 frequency와 magnitude (=amplitude) 에 의해 결정이 된다. 이 세상에 존재하는 모든 signal (sound를 포함한)은 여러 다르게 생긴 sin wave들의 결합으로 이루어진다. (합으로 표현될 수 있다.) 19세기 말에 발견된 사실임. 엄청나게 complex한 세상을 단순하게 표현하고 쪼갤 수 있다는 자체에서 의의가 있는 발견이었다.

- 원리: 첫 번째 100Hz 그래프는 1초에 100번 들어간다. 두번째는 2배 빠르고, 세번째는 처음보다 3배 빠르다.

Magnitude를 비교해보면 첫 번째 그래프가 가장 크다. 이 세 개를 합(실질

적으로 더하기를 하는 것)하면 마지막에 보이는 그래프이다. -> 여러 다른 sin wave의 합은 복잡한 소리(신호)로 만들어질 수 있다. 즉, 복잡한 신호 및 소리는 단순한 sin wave의 합으로 표현될 수 있다는 것이다. 제일 마지막에 있는 것은 complex tone, 위의 sin wave는 simple (simplex?) tone이라고할 수 있다.

여기서 x축은 시간, y축은 그냥 value 숫자 값들 (voltage? 값)이다. X축은 frequency, y축을 amplitude 그래프로 변환하였는데, 이를 할 줄 알아야 한다. 밑에 있는 그래프는 synthesis라고 말한다. 오른쪽은 analysis라고 한다.

13. Human voice source

성대에서 나오는 소리의 양(?)이 같아도 입모양에 따라 최종적인 소리가 달라진다. 우리가 모음을 이야기할 때, 음의 pitch를 똑같이 한다고 쳤을 때 [아], [이]를 다르게 하는 것은 입모양의 변화로 인해서 발음할 수 있는 것이다. Larynx에서 나오는 소리를 source라고 하고 tube에서 나오는 소리를 filter라고 한다. 그래서 이 filter를 어떻게 바꾸느냐 에 따라 [아] 소리가 나오고 [이] 소리가 나오는 것이다. 인간의 목소리는 여러가지 sin wave가 합쳐져서 나오는 것이다. 특징적인 점이 있는데, 배수로 다 더해서 합친게 source(larynx)에서 나는 소리이다.