Compading the power set. For a set 5, of the four set of S as $P(s) = \{x \mid x \in s\}$ (the set of all subsets) $|\mathcal{P}(S)| = 2^{|S|} (\pi |S| < \infty)$ Another way to describe XCS is a function fx: (S) -> (0,1) $f_{X}(y) = \{1 \text{ if } y \in X \}$ Alternatively, view S= {s, s, -. s,]. Then XSS is described by a legth n vector where entry i=1 \(\Limins_{5} \in \times_{6} \times_{7}. Note 10({1,2,3}) = 8=2. Lots try to Add a recurere abouthou. Note: if TES, P(T) E P(S).

Say
$$S = \{1,2,3\}$$
, Let $T = \{1,2\} \subseteq S$.

$$P(T) = \{11, \{11\}, \{2\}, \{1,2\}\}.$$

$$P(S) = P(T) \cup \{13\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

$$P(T)$$

$$P(T)$$

Base case: if $S = \{1\}$, rotarn $\{\{\}\}$

$$= \{S\}$$
.

Otherwise let $X \in S$, and set
$$T = S \setminus \{X\}.$$

Now compute $P(T)$ (we can set this for free via recursive magic since $|T| \subseteq |S|$)

Define $P(T) = Same as P(T)$, but with $|X| = |X| = |X|$