NAME

pyFAI-recalib - pyFAI-recalib

SYNOPSIS

pyFAI-recalib [options] -p ponifile -w 1 -S calibrant.D imagefile.edf

DESCRIPTION

Calibrate the diffraction setup geometry based on Debye–Sherrer rings images with a priori knowledge of your setup (an input PONI–file). You will need a "d–spacing" file containing the spacing of Miller plans in Angstrom (in decreasing order). If you are using a standart calibrant, look at https://github.com/kif/pyFAI/tree/master/calibration or search in the American Mineralogist database: http://rruff.geo.arizona.edu/AMS/amcsd.php

OPTIONS

--version

show program's version number and exit

-h, --help

show this help message and exit

-o FILE, **-−out**=*FILE*

Filename where processed image is saved

-v. --verbose

switch to debug/verbose mode

-S FILE, **-−spacing**=*FILE*

file containing d-spacing of the reference sample (MANDATORY)

-w WAVELENGTH, --wavelength=WAVELENGTH

wavelength of the X-Ray beam in Angstrom

-e ENERGY, --energy=ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A)

$-\textbf{P} \ \textbf{POLARIZATION_FACTOR}, \\ --\textbf{polarization} \\ = POLARIZATION_FACTOR$

polarization factor, from -1 (vertical) to +1 (horizontal), default is None (no correction), synchrotrons are around 0.95

-b BACKGROUND, --background=BACKGROUND

Automatic background subtraction if no value are provided

-d DARK, --dark=DARK

list of dark images to average and subtract

-f FLAT, --flat=FLAT

list of flat images to average and divide

-s SPLINE, --spline=SPLINE

spline file describing the detector distortion

-**D** DETECTOR_NAME, --detector=DETECTOR_NAME

Detector name (instead of pixel size+spline)

-m MASK, --mask=MASK

file containing the mask (for image reconstruction)

-n NPT, **--pt**=*NPT*

file with datapoints saved. Default: basename.npt

--filter=FILTER

select the filter, either mean(default), max or median

-l DISTANCE, --distance=DISTANCE

sample-detector distance in millimeter

--poni1=PONI1

poni1 coordinate in meter

--poni2=PONI2

poni2 coordinate in meter

--rot1=*ROT1*

rot1 in radians

--rot2=ROT2

rot2 in radians

--rot3=*ROT3*

rot3 in radians

--fix-dist

fix the distance parameter

--free-dist

free the distance parameter

--fix-poni1

fix the poni1 parameter

--free-poni1

free the poni1 parameter

--fix-poni2

fix the poni2 parameter

--free-poni2

free the poni2 parameter

--fix-rot1

fix the rot1 parameter

--free-rot1

free the rot1 parameter

--fix-rot2

fix the rot2 parameter

--free-rot2

free the rot2 parameter

--fix-rot3

fix the rot3 parameter

--free-rot3

free the rot3 parameter

--fix-wavelength

fix the wavelength parameter

--free-wavelength

free the wavelength parameter

$\pmb{--} \pmb{saturation} = SATURATION$

consider all pixel>max*(1-saturation) as saturated and reconstruct them

--weighted

weight fit by intensity, by default not.

--**npt**=*NPT_1D*

Number of point in 1D integrated pattern, Default: 1024

--npt-azim=NPT_2D_AZIM

Number of azimuthal sectors in 2D integrated images. Default: 360

--npt-rad=NPT_2D RAD

Number of radial bins in 2D integrated images. Default: 400

--unit=UNIT

Valid units for radial range: 2th_deg, 2th_rad, q_nm^-1, q_A^-1, r_mm. Default: 2th_deg

--no-gui

force the program to run without a Graphical interface

--no-interactive

force the program to run and exit without prompting for refinements

-r MAX_RINGS, --ring=MAX_RINGS

maximum number of rings to extract. Default: all accessible

-p FILE, --poni=*FILE*

file containing the diffraction parameter (poni-file). MANDATORY

-k, --keep

Keep existing control point and append new

The main difference with pyFAI–calib is the way control—point hence DebyeSherrer rings are extracted. While pyFAI–calib relies on the contiguity of a region of peaks called massif; pyFAI–recalib knows approximatly the geometry and is able to select the region where the ring should be. From this region it selects automatically the various peaks; making pyFAI–recalib able to run without graphical interface and without human intervention (—no-gui—nointeractive options).