$$\bullet \quad \lim_{x\to 0^+} x^{\alpha} ln x = 0 \ .$$

> Soit n un entier naturel non nul; $\lim_{x \to -\infty} x^n e^x = 0$.

Remarque: Pour les quotients dont on a calculés la limite à $+\infty$, la limite de leurs inverses à $+ \infty$ est égale à 0;

en particulier $\lim_{x\to +\infty} x^{\alpha} e^{-x} = 0$.

EXERCICES D'APPLICATION

Exercice 1

Résoudre:

1)
$$ln(2x-5) + ln(1+x) = 2ln2$$
. 2) $2lnx + 3 = 0$.

3)
$$(\ln x)^3 - \ln x^3 = -2$$
. 4) $\ln x - \ln(2-x) \ge 0$. 5) $\ln(\frac{x+1}{x-1}) \le 0$.

6)
$$(\ln x)^2 - 2\ln x - 3 > 0$$
. 7) $e^2 e^{-x} - e^{x^2 - 4} = 0$.

8)
$$e^x - 2e^{-x} = -1$$
. 9) $(e^{x-1})^4 \ge e^{x^2}$.

8)
$$e^{x} - 2e^{-x} = -1$$
. 9) $(e^{x-1})^{4} \ge e^{x^{2}}$.
10)
$$\begin{cases} 2lnx - 3lny = 5 \\ lnx + 2lny = -1 \end{cases}$$
. 11)
$$\begin{cases} e^{x} \cdot e^{y} - e^{5} = 0 \\ lnx + lny = ln6 \end{cases}$$
.

Exercice 2

Déterminer D_f l'ensemble de définition de f, les limites aux bornes de D_f , la dérivée f'(x) et le tableau de variation de f.

1)
$$f(x) = x \ln x - x$$
. 2) $f(x) = \ln(\frac{1+x}{1-x})$. 3) $f(x) = \frac{\ln x + 1}{\ln x - 1}$.

4)
$$f(x) = \frac{1+e^x}{1-e^x}$$
. 5) $f(x) = -2x+1 + \ln\left(\frac{x+1}{x}\right)$. 6) $f(x) = x + e^{-x}$.

7)
$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$
. 8) $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. 9) $f(x) = x - \ln(1 + e^x)$.

Exercice 3

Soit la fonction f, f(x) = ln(cosx) et C_f sa courbe.

- 1. Etudier les variations de f sur]- $\frac{\pi}{2}$; $\frac{\pi}{2}$ [et dresser son tableau de variation.
- 2. a) Résoudre dans \mathbb{R} l'équation $cosx + \sqrt{3}sinx = 0$.
- b) Soit la fonction g, $g(x) = ln(cosx + \sqrt{3}sinx)$; montrer que C_g la courbe de g peut se déduire de C_f par une transformation simple à préciser.

Exercice 4

- A. Soit la fonction f définie par $f(x) = \frac{1}{2}x^2 x^2 \ln x$.
- 1. Déterminer D_f l'ensemble de définition de f et calculer les limites de f aux bornes de D_f .
- 2. Montrer que f peut être prolongée par continuité en 0. Définir ce prolongement.
- B. On considère la fonction g définie par

$$\begin{cases} g(x) = \frac{1}{2}x^2 - x^2 \ln x & \text{si } x > 0 \\ g(0) = 0 \end{cases}$$
 et (C) sa courbe dans un repère

orthonormal d'unité 2 cm.

- 1. Etudier la dérivabilité de g sur $[0; +\infty[$.
- 2. Etudier les variations de g et dresser son tableau de variation.
- 3. a) Montrer que la restriction h de la fonction g à l'intervalle [1; $+\infty$ [admet une fonction réciproque h^{-1} dont on précisera l'ensemble de définition.
- b) Sur quel ensemble h^{-1} est elle dérivable ?

- c) Résoudre dans \mathbb{R} l'équation $h^{-1}(x) = e$.
- d) Construire la courbe de g et celle de h^{-1} (on représentera les points d'intersection de (C) avec l'axe des abscisses et la demi-tangente en 0).

Exercice 5

On considère la fonction f définie sur \mathbb{R} par $f(x) = (2x+1) e^{-x}$ et (C) sa courbe dans un repère $(0, \vec{i}, \vec{j})$.

- 1. Etudier les variations de f et dresser son tableau de variation.
- 2. Montrer que (C) coupe la droite Δ : y = x en un unique point d'abscisse α appartenant à $\left[1;\frac{3}{2}\right]$.
- 3. Tracer (C).
- 4. a) Montrer que f admet une bijection réciproque f^{-1} sur $\left[\frac{1}{2}; +\infty\right[$.
- b) Déterminer l'image de l'intervalle $]0; \alpha]$ par f^{-1} .
- 5. Déduire du tracé de (C) la courbe de la fonction g définie par $g(x) = |2x+1|e^{-x}$.