Классические модели механики жидкости и газа в рамках континуального подхода

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрофизики и газовой динамики

10 января 2021 г.

Аннотация

Жидкость, газ, твердое тело и их основные отличия. Идеальные и неидеальные, линейные и нелинейные среды. Модели идеальной несжимаемой жидкости, идеального политропного нетеплопроводного газа, вязкой несжимаемой жидкости, вязкого сжимаемого теплопроводного газа.

Жидкость, газ, твердое тело

В чем отличие?

Жидкость, газ, твердое тело

Свойство	Газ	Жидкость	Твердое тело
Сжимаемость	сильная	очень сла- бая	практически отсутствует
Анизотропия	нет	нет	бывает
Внутренние напряжения	функции градиента скорос-ти (при наличии вязкости)	функции градиента скорос-ти (при наличии вязкости)	функции градиента перемещений

Идеальные и неидеальные среды

Идеальная среда

Идеальная среда — это такая среда, в которой отсутствует тангенциальная составляющая вектора напряжения $\vec{\sigma}_{n\tau}$ на любой площадке с нормалью \vec{n} , отвечающая за трение между слоями сплошной среды. При этом:

$$\vec{\sigma}_n(\vec{x}) = -p(\vec{x})\vec{n}.$$

Функция $p(\vec{x})$ определяет давление в точке \vec{x} .

$$\vec{\sigma}_n = \vec{\sigma}_{nn} + \vec{\sigma}_{n\tau}$$

Линейные и нелинейные среды

Линейность среды

Сплошная среда называется линейной, если имеет место линейная зависимость между напряжениями, возникающими в ней, и изменениями деформаций или изменениями скоростей деформаций.

Для твердых тел имеет место обобщенный закон Гука:

$$\sigma_{ij} = C_{ijkm} \varepsilon_{km}, \quad \varepsilon_{km} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_m} + \frac{\partial u_m}{\partial x_k} \right).$$

Для жидкостей или газов:

$$\sigma_{ij} = -p\delta_{ij} + D_{ijkm}e_{km}, \quad e_{km} = \frac{1}{2}\left(\frac{\partial v_k}{\partial x_m} + \frac{\partial v_m}{\partial x_k}\right).$$

Такие жидкости и газы называются ньютоновскими.

Связь тензора напряжений и тензора скоростей деформаций

$$\sigma_{ij} = -p\delta_{ij} + \tau_{ij}, \quad \tau_{ij} = \ D_{ijkm}e_{km}, \quad e_{km} = \frac{1}{2}\left(\frac{\partial v_k}{\partial x_m} + \frac{\partial v_m}{\partial x_k}\right).$$

В матричной форме:

$$\begin{pmatrix} \tau_{11} \\ \tau_{22} \\ \tau_{33} \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \\ \tau_{32} \\ \tau_{13} \\ \tau_{12} \\ \tau_{12} \\ \tau_{13} \\ \tau_{12} \\ \tau_{12} \\ \tau_{13} \\ \tau_{12} \\ \tau_{13} \\ \tau_{14} \\ \tau_{15} \\ \tau_{15}$$

Изотропность свойств жидкости

Пусть $Q=(q_{pr})_{1\leq p,r\leq 3}$ – произвольное ортогональное преобразование координат $(Q^{-1}=Q^T)$, тогда коэффициенты тензора D в новой системе координат не меняют вид:

$$\bar{D}_{ijkm} = q_{\alpha i}q_{\beta j}q_{\gamma k}q_{\delta m}D_{\alpha\beta\gamma\delta} = D_{ijkm}.$$

Симметричность тензоров τ_{ij} и e_{ij}

$$au_{ij} = au_{ji}, \quad e_{ij} = e_{ji}$$
 $\qquad \qquad \downarrow$ $\qquad \qquad D_{iikl} = D_{iilk} = D_{iilk} = D_{iilk}$

Инвариантность относительно отражений

$$Q_1' = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Q_2' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Q_3' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Ограничение на коэффициенты

Инвариантность относительно изменения порядка базиса

$$Q_1^c = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad Q_2^c = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Q_3^c = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Ограничение на коэффициенты

Инвариантность относительно поворота на угол $2\pi/3$

$$Q_{120} = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0\\ -\sqrt{3}/2 & -1/2 & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \Rightarrow \quad D_{1212} = \frac{1}{2} \left(D_{1111} - D_{1122} \right)$$

Ограничение на коэффициенты

 λ , μ – коэффициенты Ламе, или коэффициенты объемной и динамической вязкости.

Тензорная запись

$$D_{ijkm} = \lambda \delta_{ij} \delta_{km} + \mu (\delta_{ik} \delta_{jm} + \delta_{im} \delta_{jk}),$$

Тензорная запись

$$D_{ijkm} = \lambda \delta_{ij} \delta_{km} + \mu (\delta_{ik} \delta_{jm} + \delta_{im} \delta_{jk}),$$

$$\tau_{ij} = (\lambda \delta_{ij} \delta_{km} + \mu (\delta_{ik} \delta_{jm} + \delta_{im} \delta_{jk})) e_{km} = \lambda \delta_{ij} e_{kk} + 2\mu e_{ij} = \lambda \delta_{ij} \operatorname{div} \vec{v} + 2\mu e_{ij},$$

Тензорная запись

$$D_{ijkm} = \lambda \delta_{ij} \delta_{km} + \mu (\delta_{ik} \delta_{jm} + \delta_{im} \delta_{jk}),$$

$$\tau_{ij} = (\lambda \delta_{ij} \delta_{km} + \mu (\delta_{ik} \delta_{jm} + \delta_{im} \delta_{jk})) e_{km} = \lambda \delta_{ij} e_{kk} + 2\mu e_{ij} = \lambda \delta_{ij} \operatorname{div} \vec{v} + 2\mu e_{ij},$$

$$\sigma = -(p + \lambda \operatorname{div} \vec{v})I + 2\mu e,$$

где I – единичный тензор, e – тензор скоростей деформаций.

Идеальная несжимаемая жидкость

Основные допущения

1) постоянная плотность среды:

$$\rho = const;$$

2) напряжение на площадке с произвольной нормалью одинаково и направлено вдоль нее:

$$\sigma_{ij} = -p\delta_{ij}$$
.

В этом случае для любого вектора \vec{n} единичной длины:

$$\vec{\sigma}_n = \vec{n} \cdot \sigma = -p\vec{n}.$$

Идеальная несжимаемая жидкость

Уравнения Эйлера

$$\begin{aligned} \operatorname{div} \vec{v} &= 0, \\ \frac{d\vec{v}}{dt} &= -\frac{1}{\rho} \nabla p + \vec{f}. \end{aligned}$$

Неизвестные функции

Четыре искомые дифференцируемые функции, определенные в области $\Omega \subset R \times R^3$:

$$\vec{v}(t,\vec{x}) = v_1(t,\vec{x})\vec{e}_1 + v_2(t,\vec{x})\vec{e}_2 + v_3(t,\vec{x})\vec{e}_3,$$

$$p = p(t,\vec{x}).$$

Заданные параметры

 ρ – плотность жидкости; $\vec{f} = \vec{f}(t, \vec{x})$ – вектор массовых сил.

Идеальный политропный нетеплопроводный газ

Основные допущения

1) уравнение состояния идеального газа:

$$p = \rho R_1 T$$

где p, ρ , T — давление, плотность и температура газа; R_1 — газовая постоянная для выбранного газа;

2) линейная связь между удельной внутренней энергией и температурой:

$$\varepsilon = C_V T$$
,

где C_V – коэффициент теплоемкости при постоянном объеме;

3) напряжение на площадке с произвольной нормалью одинаково и направлено вдоль нее:

$$\sigma_{ij}=-p\delta_{ij}.$$

Идеальный политропный нетеплопроводный газ

Основные уравнения

$$\frac{d\rho}{dt} + \rho \operatorname{div} \vec{v} = 0, \quad \frac{d\vec{v}}{dt} = -\frac{1}{\rho} \nabla p,$$
$$C_V \frac{dT}{dt} - \frac{p}{\rho^2} \frac{d\rho}{dt} = 0.$$

Неизвестные функции

Пять искомых дифференцируемых функций, определенных в области $\Omega \subset R \times R^3$: $\vec{v}(t,\vec{x}) = v_1(t,\vec{x})\vec{e}_1 + v_2(t,\vec{x})\vec{e}_2 + v_3(t,\vec{x})\vec{e}_3$, $\rho = \rho(t,\vec{x}), T = T(t,\vec{x})$.

Дополнительные соотношения

$$p = \rho R_1 T$$
, $\varepsilon = C_V T$,

где R_1 , C_V – заданные параметры газа.

Вязкая несжимаемая жидкость

Основные допущения

1) плотность жидкости постоянна:

$$\rho = const;$$

2) тензор напряжений имеет вид

$$\sigma_{ij} = -p\delta_{ij} + 2\mu e_{ij}, \quad e_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right),$$

где p — давление жидкости; μ — коэффициент динамической вязкости; e_{ij} — тензор скоростей деформаций.

Вязкая несжимаемая жидкость

Уравнения Навье – Стокса

$$\begin{aligned} \operatorname{div} \vec{v} &= 0, \\ \frac{d\vec{v}}{dt} &= -\frac{1}{\rho} \nabla p + \nu \Delta \vec{v} + \vec{f}. \end{aligned}$$

Неизвестные функции

Четыре искомые дифференцируемые функции, определенные в области $\Omega \subset R \times R^3$: $\vec{v}(t,\vec{x}) = v_1(t,\vec{x})\vec{e}_1 + v_2(t,\vec{x})\vec{e}_2 + v_3(t,\vec{x})\vec{e}_3$, $p = p(t,\vec{x})$.

Параметры среды

 ρ – плотность; μ – динамическая вязкость; $\nu = \mu/\rho$ – кинематическая вязкость жидкости; $f(t, \vec{x})$ – заданный вектор массовых сил.

Вязкий сжимаемый теплопроводный газ

Основные допущения

- 1) уравнение состояния газа: $p = p(\rho, T)$;
- 2) калорическое уравнение состояния: $\varepsilon = \varepsilon(\rho, T)$;
- 3) тензор напряжений имеет вид:

$$\sigma_{ij} = -p\delta_{ij} + 2\mu e_{ij} + \lambda \delta_{ij} \operatorname{div} \vec{v}, \quad e_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right),$$

где λ , μ – коэффициенты объемной и динамической вязкостей; e_{ij} – тензор скоростей деформаций;

4) закон Фурье теплопроводности газа:

$$\vec{q} = -\kappa \nabla T,$$

где κ – коэффициент теплопроводности.

Вязкий сжимаемый теплопроводный газ

Уравнения Навье — Стокса — Дюгема
$$\frac{d\rho}{dt} + \rho \operatorname{div} \vec{v} = 0,$$

$$\rho \frac{d\vec{v}}{dt} = -\nabla p + \mu \Delta \vec{v} + (\lambda + \mu) \nabla (\operatorname{div} \vec{v}) + \rho \vec{f},$$

$$\rho \frac{d\varepsilon}{dt} = -p \operatorname{div} \vec{v} + \lambda (\operatorname{div} \vec{v})^2 + 2\mu e_{ij} e_{ij} + \kappa \Delta T.$$

Замыкающие соотношения

$$p = p(\rho, T), \quad \varepsilon = \varepsilon(\rho, T).$$

Параметры среды

 λ , μ – объемная и динамическая вязкость; κ – коэффициент теплопроводности; \vec{f} – вектор массовых сил.

Литература

- 1. *Басниев К. С., Дмитриев Н. М., Розенберг Г. Д.* Нефтегазовая гидромеханика: Учебное пособие для вузов. М.-Ижевск: Институт компьютерных исследований, 2005.
- 2. *Мейз Дж.* Теория и задачи механики сплошных сред. М.: Издво «Мир», 1974.