Package 'MapRtools'

December 14, 2023

Title Tools for genetic mapping

Author Jeffrey B. Endelman

Version 0.32

Maintainer Jeffrey Endelman <endelman@wisc.edu></endelman@wisc.edu>	
Description Tools for genetic mapping	
Depends R (>= 4.0)	
License GPL-3	
LazyData true	
RoxygenNote 7.2.3	
Encoding UTF-8	
Imports ggplot2, scam, seriation, CVXR, Matrix, HMM, splines2	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
r	
EGQ	2
genetic_map	2
interpolate_cM	3
inverse_map_fn	4
LDbin	4
LG	5
LGtrim	5
LL	ϵ
map_fn	6
MLEL	7
order_markers	7
plot_coverage	8
plot_geno	8
plot_genofreq	9
plot_genoprob	10
plot_LD	10
plot_map	11
r ·1····	11
-	12
rabbit_read	12

2 genetic_map

S1_haplo .																					13
S1_selection																					13

Index 15

EGQ

Expected Genotype Quality

Description

Expected Genotype Quality for Binomial Model

Usage

```
EGQ(depth, error, ploidy, prior)
```

Arguments

depth	read count
error	allelic error
ploidy	ploidy

prior numeric vector of length ploidy + 1

Details

As defined in Matias et al. (2019), EGQ is the PHRED-scaled expected error of the genotype call, conditional on the true genotype. This function returns EGQ for the genotype most frequently miscalled, which is the balanced heterozygote (i.e., ploidy/2).

Value

numeric scalar

References

Matias et al. (2019) Plant Genome 12:190002. https://doi.org/10.3835/plantgenome2019.01.0002

genetic_map

Multi-point estimation of a genetic map

Description

Multi-point estimation of a genetic map

Usage

```
genetic_map(x, LOD, n.point = 5)
```

interpolate_cM 3

Arguments

x matrix of pairwise map distances (cM) between the marker-bins for one chro-

mosome

LOD matrix of LOD scores between marker-bins n.point Number of points used for estimation

Details

Uses LOD-score weighted least-squares regression method described by Stam (1993). Markers must be binned (e.g., using LDbin) for this function to work properly. Argument n.point controls how many pairwise distances are used in the linear regression. n.point=2 means only adjacent bins; n.point=3 means adjacent bins and bins with one intervening marker, etc. Marker names taken from the rownames attribute of x.

Value

data frame with columns marker, position (in cM)

Description

Creates monotone spline between physical (bp) and genetic (cM) distance

Usage

```
interpolate_cM(map, df = 8, max.extend = 5)
```

Arguments

map Data frame with four columns: marker, chrom, bp, cM

df Degrees of freedom for the spline

max extend Maximum distance (in cM) to extrapolate beyond the end of the input map

Details

The input map can be generated by merging an existing genetic map with positions in bp and cM with additional markers with only bp information. Interpolation is based on minimizing the mean-squared error between the original and interpolated positions in cM. For the df and max.extend parameters, use either a single integer (if same for all chromosomes) or a vector of length equal to the number of chromosomes.

Value

List containing

map Map data frame with additional column named cM.spline **plot** ggplot2 object

4 LDbin

inverse_map_fn

Inverse map function

Description

Computes recombination frequency from map distance

Usage

```
inverse_map_fn(x, model)
```

Arguments

x map distance (cM)

model Either "Haldane" or "Kosambi"

Value

recombination frequency

LDbin

Create marker bins based on LD

Description

Create marker bins based on LD

Usage

```
LDbin(geno, r2.thresh = 0.99)
```

Arguments

geno matrix of haplotype dosages (markers x indiv)

r2.thresh threshold for binning

Details

Bins are created based on hierarchical clustering with hclust and method='single', using $1-r^2$ as the dissimilarity metric. The argument r2. thresh controls the height for cutting the dendrogram to create the bins. The marker with the least missing data for each bin is chosen to represent it.

Value

List containing

bins data frame with two columns: marker,bin

geno genotype matrix for the bins

r2 r2 matrix for the bins

LG 5

LG

Make linkage groups based on clustering

Description

Make linkage groups based on clustering

Usage

```
LG(LODmat, thresh = seq(2, 20, by = 2))
```

Arguments

LODmat matrix of LOD scores for the marker bins thresh numeric vector of thresholds for clusterings

Details

If thresh is a numeric vector with multiple LOD thresholds, the function returns a plot showing the number of markers per LG. If thresh is a single value, the function returns a data frame with the LG assignment for each marker. LGs are numbered from the largest to smallest group.

Value

Either a ggplot2 object or data frame of linkage groups (see Details)

LGtrim

Trim a linkage group based on genotype frequencies

Description

Trim a linkage group based on genotype frequencies

Usage

```
LGtrim(geno, LODmat, thresh)
```

Arguments

geno matrix of haplotype dosages (markers x samples)

LODmat matrix of LOD scores for the markers

thresh numeric vector of thresholds for clusterings

Details

This function should only be run on a single linkage group (to form the linkage groups, use LG. If thresh is a numeric vector with multiple LOD thresholds, the function returns a plot showing the impact of the threshold on genotype frequencies. If thresh is a single value, the function returns a vector of the marker names that are retained. The rownames of geno and LODmat must match.

6 map_fn

Value

Either a ggplot2 object or a vector of marker names (see Details)

LL

Log-likelihood for mapping populations

Description

Log-likelihood for mapping populations

Usage

```
LL(r, counts, pop.type)
```

Arguments

r recombination frequency

counts 3x3 contingency table for haplotype dosages 0,1,2

pop. type One of the following: "DH", "BC", "F2", "S1r", "RIL.self", "RIL.sib"

Details

The argument counts can be constructed using the table function for two markers. Genotype coding must represent dosage of a founder haplotype. For BC populations, possible allele dosages are 0,1. For DH and RIL pops, it is 0,2. For F2 and S1 pops, it is 0,1,2. S1r is an S1 population with the 1 alleles in repulsion phase.

Value

log-likelihood

map_fn

Map functions

Description

Computes cM map distance from recombination frequency

Usage

```
map_fn(r, model)
```

Arguments

r recombination frequency
model Either "Haldane" or "Kosambi"

Value

Map distance in cM

MLEL 7

MLEL Max Likelihood Estimation	on of Linkage
--------------------------------	---------------

Description

Max Likelihood Estimation of Linkage

Usage

```
MLEL(geno, pop.type, LOD, n.core = 1, adjacent = FALSE)
```

Arguments

geno	Matrix of haplotype	e dosages (markers x indiv)
------	---------------------	----------------------------	---

pop. type One of the following: "DH","BC","F2","S1","RIL.self","RIL.sib"

LOD Logical, whether to return LOD (TRUE) or recomb freq (FALSE)

n. core For parallel execution on multiple cores

adjacent Logical, should calculation be done for all pairs (FALSE) or adjacent (TRUE)

markers

Details

Can be used to estimate either the LOD score or recombination frequency, depending on the value of LOD. Genotype coding must represent dosage of a founder haplotype. For BC populations, possible allele dosages are 0,1. For DH and RIL pops, it is 0,2. For F2 and S1 pops, it is 0,1,2.

Value

If adjacent is FALSE, a matrix of recombination frequencies or LOD scores; otherwise, a three-column data frame with marker, the LOD or r value, and the phase ("c","r") with the previous marker

Description

Order markers by solving the TSP

Usage

```
order_markers(x)
```

Arguments

x distance matrix

plot_geno

Details

Uses R package seriation to minimize the distance between adjacent markers. For example, x could be a matrix of recombination frequencies or monotone decreasing transformation of LOD scores.

Value

```
a list containing
```

order optimized order as a vector of integers

distance sum of adjacent distances

plot_coverage

Plot marker coverage of the genome

Description

Plot marker coverage of the genome

Usage

```
plot_coverage(map, limits = NULL)
```

Arguments

map data frame with columns chrom & position

limits optional data frame with columns chrom & position, with the maximum length

for each chromosome

Details

If limits not provided, then the maximum values in map are used.

Value

ggplot2 variable

plot_geno

Graphical genotyping

Description

Graphical genotyping

Usage

```
plot_geno(geno, map = NULL)
```

plot_genofreq 9

Arguments

geno genotype matrix (markers x indiv)

map optional data frame with 3 columns (marker, chrom, position)

Details

Input matrix geno should have rownames attribute that matches marker names in the first column of map (when present).

Value

ggplot object

plot_genofreq

Plot and filter markers based on genotype frequency vs position

Description

Plot and filter markers based on genotype frequency vs position

Usage

```
plot_genofreq(geno, thresh = 0.1, span = 0.3)
```

Arguments

geno haplotype dosage matrix (markers x indiv)
thresh threshold for removing markers (see Details)

span parameter to control degree of smoothing for spline (higher = less smooth)

Details

Genotypes should be coded 0,1,2. Markers are removed if their residual to the fitted spline exceeds thresh. Markers are assumed to be ordered. Function designed to be used for one chromosome.

Value

List containing

outliers character vector of marker names

plot ggplot2 variable

10 plot_LD

plot_genoprob

Plot genotype probabilities for one chromosome

Description

Plot genotype probabilities for one chromosome

Usage

```
plot_genoprob(genoprob, map = NULL)
```

Arguments

genoprob matrix (markers x genotypes) of probabilities for one individual optional data frame with 3 columns (marker, chrom, position)

Details

Names for the genotypes are taken from the colnames of genoprob.

Value

ggplot object

plot_LD

Plot LD vs distance

Description

Plot LD vs distance

Usage

```
plot_LD(r2, map, max.pair = 10000, dof = 8)
```

Arguments

r2 squared correlation matrix

map data frame with 3 columns (marker, chrom, position)

max.pair maximum number of r2 pairs for the spline

dof degrees of freedom for the spline

Details

A monotone decreasing, convex spline is fit using R package scam. The input matrix r2 should have rownames attribute that matches marker names in the first column of map.

plot_map

Value

List containing

plot ggplot object

spline data frame with fitted values for the spline

plot_map

Plots data against map

Description

Plots data against map

Usage

```
plot_map(data)
```

Arguments

data

data frame with 3 columns: chrom, position, y (the plotting variable)

Value

ggplot

plot_square

Plot square (dis)similarity matrix

Description

Plot square (dis)similarity matrix

Usage

```
plot_square(data, lims = NULL)
```

Arguments

data square matrix

1 ims numeric 3-vector with the low,mid,high points for the colors

Details

Can be used to plot squared correlation, recomb frequency, LOD and more. By default, 1ims equals (0,median,max)

Value

ggplot2 variable

rabbit_read

rabbit_diallel

Make RABBIT input files for diploid diallel population

Description

Make RABBIT input files for diploid diallel population

Usage

```
rabbit_diallel(ped, geno, geno.founder, map, outstem)
```

Arguments

ped data frame with pedigree (pop,parent1,parent2)

geno list of genotype matrices (markers x indiv), one for each population in ped

geno. founder matrix of genotype data for the founders (markers x indiv)

map genetic map (marker,chromosome,position)

outstem name for output files

Details

Populations must be numbered in ped corresponding to their position in geno. Founders are not included in ped. All genotype matrices must have identical markers. Genetic map position should be in cM. Genotypes need to be coded according to RABBIT format.

rabbit_read

Parse output from RABBIT MagicReconstruct

Description

Parse output from RABBIT MagicReconstruct

Usage

```
rabbit_read(rabbit.file, ML.file = NULL, diaQTL.file = NULL)
```

Arguments

rabbit.file name of RABBIT output file

ML.file name of most likely genotype file to create diaQTL.file name of diaQTL genotype file to create

Details

Two different file formats can be created. The ML.file contains the most likely (i.e., posterior maximum) genotype for each individual at each marker. The diaQTL.file contains the full distribution of genotype probabilities in the format required by the diaQTL R package (diaQTL.file). The default value for each filename is NULL, which generates no file.

S1_haplo 13

Value

data frame defining the genotypes

S1_haplo Phase S1 parent and reconstruct progeny in terms of parental haplotypes

Description

Phase S1 parent and reconstruct progeny in terms of parental haplotypes

Usage

```
S1_haplo(geno, r, error)
```

Arguments

geno ordered genotype matrix (markers x indiv) for one chromosome

r average recombination frequency to use for the HMM

error average genotype error to use for the HMM

Details

It is assumed that only segregating markers are present. Progeny reconstruction occurs using an HMM with a uniform transition probability matrix, based on an average recombination frequency r, and a uniform model for the genotype error.

Value

List containing

parent two column matrix (rows = markers) with the haplotypes for the parentprogeny matrix with progeny reconstructed based on dosage of the second parental haplotype

S1_selection Signatures of selection in S1 populations

Description

Signatures of selection in S1 populations

Usage

```
S1_selection(data, alpha = 0.05)
```

Arguments

data frame with columns: marker, chrom, position, AA, AB, BB. Columns 4-6

have count data.

alpha significance level

Details

Genotypes must be coded based on the S1 parental haplotypes, not markers.

The null hypothesis is no selection, in which case the expected frequency of genotypes is (AA = 1/4, AB = 1/2, BB = 1/4). Two alternate hypotheses are tested for gametic selection: 1.selection in one sex, 2.selection in both sexes. Two models of zygotic selection are also tested: 1.selection against one homozygote, 2.selection against both homozygotes. The selection coefficient equals the sum of the absolute differences between the observed and expected frequencies. Positive values correspond to selection against A or AA, negative values for selection against B or BB. For zygotic2, positive (negative) values represent selection against (for) homozygotes.

P-values are computed based on the likelihood ratio test; in other words, the change in deviance is assumed to be chi-squared distributed under the null hypothesis.

Value

list with "plot" and "table" of results:

model name of best models selection coefficientscore -log10(p) value

Index

```
EGQ, 2
genetic_map, 2
interpolate\_cM, 3
inverse_map_fn, 4
LDbin, 3, 4
LG, 5, 5
LGtrim, 5
LL, 6
\mathsf{map\_fn}, 6
MLEL, 7
\verb|order_markers|, 7
\verb|plot_coverage|, 8
plot_geno, 8
plot\_genofreq, 9
plot\_genoprob, 10
plot_LD, 10
plot_map, 11
plot_square, 11
rabbit_diallel, 12
rabbit_read, 12
S1_haplo, 13
S1_selection, 13
```