Задание 10-1. Теплоотдача.

В данном задании рассматриваются процессы установления теплового равновесия в различных системах. Для решения задачи Вам понадобятся следующие (почти очевидные) теоретические сведения.

1. Если два тела приведены в тепловой контакт, то количество теплоты, перетекающее через единицу площади соприкосновения (поток теплоты) в единицу времени пропорционально разности температур тел

$$q = \alpha(t_1 - t_2), \tag{1}$$

коэффициент α называется коэффициентом теплоотдачи и является характеристикой соприкасающихся тел.

2. Поток теплоты в единицу времени через слой вещества толщиной h пропорционален разности температур границ слоя и обратно пропорционален толщине слоя h:

$$q = \frac{\gamma}{h}(t_1 - t_2). \tag{2}$$

Коэффициент γ называется коэффициентом теплопроводности и является характеристикой вещества.

Во всех задачах данного раздела рассматривается стационарный режим, когда распределение температур не зависит от времени.

Задача 1.1. Радиоактивный метеорит.

Оказалось, что сплошной однородный метеорит радиоактивного материала. Вследствие состоит радиоактивного распада внутри метеорита постоянно выделяется теплота. Теплопроводность метеорита очень Метеорит помещают в жидкость, температура которой поддерживается постоянной. Оказалось, температура установившаяся метеорита превышает температуру окружающей жидкости на величину $(\Delta t)_0$.

1.1.1 Чему будет равна разность температур метеорита и окружающей жидкости $(\Delta t)_1$, если все линейные размеры метеорита увеличить в n раз?

Задача 1.2. Цилиндрический нагреватель.

В качестве нагревателя электронагревателя служит однородный цилиндр, подключенный торцами к токоподводящим электрическим сопротивлением контактам, которых можно пренебречь. Теплопроводность нагревателя очень велика. Нагреватель подключен к источнику постоянного напряжения. В кипящей воде (при нормальном атмосферном давлении) температура

нагревателя равна $t_0 = 120$ °C. Все линейные размеры цилиндра увеличивают на 25%.

1.2.1 Чему будет равна температура такого увеличенного цилиндра в кипящей воде, при его подключении к тому же источнику напряжения?

Задача 1.3. Теплоизоляция.

Для изучения теплоизоляционных свойств материала, из него изготовили плоскую пластину, которую поместили в сосуд в качестве перегородки, разделив сосуд на две части. Сосуд заполняют водой. Причем с одной стороны от пластины температуру воды поддерживают постоянной и равной $t_0 = 100^{\circ}C$. С другой стороны пластины - вода, находящаяся при постоянной температуре $t_3 = 10,0^{\circ}C$. После установления теплового равновесия проводят

измерения температур поверхностей пластины, которые обозначим: t_1 - температура стороны пластины, обращенной к горячей воде; t_2 - температуру стороны, контактирующей с холодной водой. По результатам измерений оказалось, что $t_2=15.0^{\circ}C$.

- 1.3.1 Чему равна температура другой стороны пластины t_1 ?
- 1.3.2 Чему будут равны температуры обеих сторон пластины, если толщину пластины увеличить в 2 раза? Температуры воды с разных сторон от пластины остались неизменными.

При решении данной задачи допускается проведение промежуточных численных расчетов.