Metabolic Stability Report

Metabolic Stability Study of 4 Test Compounds in Mouse Liver Microsomes with and without the Presence of NADPH

SPONSORED BY:

UNC Eshelman School of Pharmacy
Division of Chemical Biology and Medicinal Chemistry
The University of North Carolina at Chapel Hill
120 Mason Farm Rd, 1070H Genetic Medicine Building
Chapel Hill, NC 27599

PERFORMED BY:

Peter Su, Ph.D. Zengbiao Li, Ph.D. Drumetix Laboratories, LLC 8646 W. Market St., Suite 112 Greensboro, NC 27409

Period of Performance: 7/31/19

Drumetix Project No. 30-1504

August 1, 2019

Metabolic Stability Study of 4 Test Compounds in Mouse Liver Microsomes with and without the Presence of NADPH

Drumetix Project No.: 30-1504

SIGNATURE PAGE

REPORT APPROVAL

Zengbiao Li, Ph.D. Director of Technical Operations Drumetix Laboratories, LLC Date

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	v
1 Executive Summary	1
2 Experimental	2
2.1 Chemicals	2
2.1.1 Reference compound	2
2.1.2 Other chemicals	2
2.2 Biological Materials	2
2.3 Experimental Procedures	2
2.3.1 Liver Microsomal Incubation	2
2.3.2 Sample Collection and Preparation	3
2.4 HPLC Conditions	3
2.5 MS Instrument Parameters	3
3 Results and Discussion	5
4 Conclusions	7
5 References	8

LIST OF TABLES

Table 1	Propranolol and Test Compound Peak Area in Incubation Samples (with NADPH)	9
Table 2	Standard Values and Parameters Used in Intrinsic Clearance and Hepatic Extraction Rati Calculation	o 10
Table 3	Liver Microsomal Half Life, Intrinsic Clearance, and Hepatic Extraction Ratio for Propranolol and Test Compounds (with NADPH)	11
Table 4	Liver Microsomal Intrinsic Clearance Reference Value for Propranolol	12
Table 5	Propranolol and Test Compound Peak Area in Incubation Samples (without NADPH)	13
Table 6	% Remaining for Propranolol and Test Compounds after 1-hr Incubation (without NADPH)	14

LIST OF FIGURES

Figure 1.	In (peak area) vs. time plot for propranolol in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)	. 15
Figure 2.	ln (peak area) vs. time plot for CA2-209 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)	16
Figure 3.	ln (peak area) vs. time plot for CA2-220 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)	. 17
Figure 4.	ln (peak area) vs. time plot for CA2-005 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)	
Figure 5.	In (peak area) vs. time plot for ALM-DAI-28 in mouse liver microsomes (with NADPH) (top replicate 1; bottom: replicate 2)	

1 Executive Summary

 $1~\mu\text{M}$ of the test compounds and control (propranolol) were incubated with mouse liver microsomes with the presence of NADPH at 37°C for 0, 7.5, 15, 30, and 60 minutes and without the presence of NADPH at 37°C for 0 and 60 minutes. After quenching with acetonitrile, the incubation samples were analyzed on LC-MS/MS. The peak areas of the compounds were used calculate the half life, intrinsic clearance, hepatic extraction ratio, percent remaining.

The half lives of CA2-209, CA2-220, CA2-005, and ALM-DAI-28 in mouse liver microsomal incubation are 23.5, 5.41, 4.37, and 4.8 min, respectively, while the half life of propranolol is 23.8 min.

All test compounds are stable in microsomes without the presence of NADPH.

2 Experimental

2.1 Chemicals

2.1.1 Reference compound

CA2-209 The University of North Carolina at Chapel Hill CA2-220 The University of North Carolina at Chapel Hill CA2-005 The University of North Carolina at Chapel Hill ALM-DAI-28 The University of North Carolina at Chapel Hill

Propranolol hydrochloride Lot No. 07528HH (Sigma-Aldrich)

2.1.2 Other chemicals

Water Baker Analyzed HPLC Solvent (J.T. Baker)

Acetonitrile HPLC Solvent (Burdick & Jackson)

Dimethyl Sulfoxide Baker Analyzed ACS Reagent (J.T. Baker)

Acetic Acid 99.7%, ACS grade (BDH-VWR)
Ammonium Acetate 97%, GR ACS grade (EMD)
KH₂PO₄ 99%, Reagent, ACS (BDH-VWR)
K₂HPO₄ 98%, Reagent, ACS (BDH-VWR)

MgCl₂•6H₂O 99.9%, AR ACS grade (Mallinckrodt Chemicals)

NADPH Tetrasodium Salt 97.4% (EMD Biosciences)

2.2 Biological Materials

Mouse Liver Microsomes CD1, Male, 20 mg protein/mL, Pool of 1396, Lot No. 1710069

(XenoTech)

2.3 Experimental Procedures

2.3.1 Liver Microsomal Incubation

The test compounds and control (propranolol) were incubated at a concentration of 1 μ M with mouse liver microsomes, with or without the presence of NADPH. The duplicate incubations were conducted in 1-mL 96-well plate in a shaking water bath maintained at 37°C. Ingredients were added as shown below.

	Add	Final	
Components	With NADPH	Without NADPH	Conc.
0.1 M K ₂ HPO ₄ -KH ₂ PO ₄ Buffer (pH 7.4)	435	465	90 mM
33 mM MgCl2	60	60	3.3 mM
5 mg/ml Microsomal Protein	60	60	0.5 mg/mL
40 μM Test Compounds or Control in 0.1 M Phosphate Buffer:Acetonitrile 60:40	15	15	1 µM
26 mM NADPH	30	0	1.3 mM
Vortex Vigorously for 5 sec.	Yes	Yes	
Preincubated at 37°C for 5 min.	Yes	Yes	
Pipette 100 μL out as 0 min sample	Yes	Yes	

2.3.2 Sample Collection and Preparation

Samples were collected at 0, 7.5, 15, 30, and 60 min. (0 and 60 min. only for incubation without NADPH) of incubation by pipetting 100 μ L of incubation mixture out into a 0.5-mL 96-well plate and quenched by addition of 200 μ L of acetonitrile. The plate was capped, vortexed, and centrifuged at 3000 rpm for 10 minutes. The supernatant was injected into LC-MS/MS.

2.4 HPLC Conditions

Instrument: Shimadzu LC-20ADxR Pumps and SIL-20ACxR Autosampler

Column: Primesep D, 5 μm, 100 Å, 2.1x100 mm
Mobile phase A: 0.1% Acetic acid 1 mM NH₄OAc in water

Mobile phase B: 50 mM Acetic Acid in Acetonitrile

Injection volume: 2 µL (5 µL for CA2-209; 1 µL for propranolol)

HPLC flow rate: 0.5 mL/min. Run time: 1.5 min.

Gradient: 50% B (20% B for propranolol) isocratic

2.5 MS Instrument Parameters

Instrument: Applied Biosystems/MDS Sciex API 4000

Gas and temperature settings:

Ionization Source	Turbo Ionspray
Polarity	Positive
Curtain gas	15
CAD	8
Gas1	30
Gas2	50
Interface heater	On
Ionspray voltage	5000
Temperature	500°C

Compound dependent parameters:

	Q1	Q3	Time	DP	EP	CE	CXP
			(msec)			(V)	
Propranolol	260.2	116.1	200	66	8	23.5	5
CA2-209	278.1	236.1	200	73	10	21	12
CA2-220	289.15	261.15	200	121	10	37	16
CA2-005	253.1	211.1	200	40	10	22	5
ALM-DAI-28	318.15	159.0	200	96	10	55	10

3 Results and Discussion

Peak areas of propranolol and the test compounds in incubation samples with the presence of NADPH are listed in Table 1. Half life in liver microsomal incubation in min was obtained through linear regression of ln (peak area) vs. time (min) as shown below:

$$t_{1/2} = -\frac{0.693}{k}$$

where

k = slope of ln(peak area) vs. time line: ln(peak area) = intercept + kt

The plots of ln(peak area) vs. time for propranolol and the test compounds in mouse liver microsomes with the presence of NADPH are shown in Figures 1 to 5.

Intrinsic clearance in mL/min/kg was obtained as shown below:

$$CL_{\text{int}} = 0.693 * \frac{W_{\text{mp}} * W_{\text{liver}}}{t_{1/2} * C_{\text{mp}}}$$

where

 W_{mp} = microsomal protein content in liver (mg/g)

W_{liver} = liver weight per kilogram of body weight (g/kg)

 $t_{1/2}$ = test compound half life in liver microsomal incubation (min)

C_{mp} = microsomal protein incubation concentration (mg/mL)

Hepatic extraction ratio was obtained as shown below:

$$E = \frac{CL_{int}}{Q + CL_{int}}$$

where

Q = hepatic blood flow (mL/min/kg)

CL_{int} = intrinsic clearance (mL/min/kg)

Standard values and parameters used in the intrinsic clearance and hepatic extraction ratio calculation are listed in Table 2. Half life, intrinsic clearance, and hepatic extraction ratio calculated are listed in Table 3.

The liver microsomal intrinsic clearance values for propranolol from references¹⁻⁴ are listed in Table 4. No mouse and monkey liver microsomal intrinsic clearance values for propranolol are available through search on the internet.

As shown in Table 3, the half life, intrinsic clearance, and hepatic extraction ratio replicate values for propranolol and the test compounds are very consistent. The half lives of CA2-209, CA2-220, CA2-005, and ALM-DAI-28 in mouse liver microsomal incubation are 23.5, 5.41, 4.37, and 4.8 min, respectively, while the half life of propranolol is 23.8 min. The intrinsic clearance values of CA2-209, CA2-220, CA2-005, and ALM-DAI-28 are 240, 1040, 1290, and 1170 mL/min/kg, respectively, while the intrinsic clearance of propranolol is 238 mL/min/kg. The hepatic extraction ratios of CA2-209, CA2-220, CA2-005, and ALM-DAI-28 are 0.727, 0.921, 0.935, and 0.929, respectively, while hepatic extraction ratio of propranolol is 0.725.

Peak areas of propranolol and the test compounds in incubation samples without the presence of NADPH are listed in Table 5. Percent remaining values after 1-hr incubation without the presence of NADPH are listed in Table 6. All test compounds are stable in microsomes without the presence of NADPH.

4 Conclusions

The half lives of CA2-209, CA2-220, CA2-005, and ALM-DAI-28 in mouse liver microsomal incubation are 23.5, 5.41, 4.37, and 4.8 min, respectively, while the half life of propranolol is 23.8 min.

All test compounds are stable in microsomes without the presence of NADPH.

5 References

- 1. Chuang Lu, Ping Li, Richard Gallegos, Vinita Uttamsingh, Cindy Q. Xia, Gerald T. Miwa, Suresh K. Balani, and Liang-Shang Gan, Comparison of Intrinsic Clearance in Liver Microsomes and Hepatocytes from Rats and Humans: Evaluation of Free Fraction and Uptake in Hepatocytes, DRUG METABOLISM AND DISPOSITION 34:1600–1605, 2006
- 2. Corning Metabolic Stability in Microsomes Studies, http://www.corning.com/uploadedFiles/Lifesciences/PDFs/ProductInformation/ADME-Tox/Metabolic_Stability_Microsomes_Studies_DS_CLS-DL-GT-028.pdf
- 3. Robert J. Riley, D. F. McGinnity, and R. P. Austin, A Unified Model for Predicting Human Hepatic, Metabolic Clearance from in Vitro Intrinsic Clearance Data in Hepatocytes and Microsomes, DRUG METABOLISM AND DISPOSITION, 33:1304–1311, 2005
- 4. Robert T. Grbac, Forrest A. Stanley, Tomoko Ambo, Joanna E. Barbara, Lois J. Haupt, Brian D. Smith, David B. Buckley, and Faraz Kazmi, High Content Automated Metabolic Stability and CYP Inhibition Cocktail Screening Assays for Early Drug Development, SLAS 2014 Poster, Jan. 18-22, 2014, San Diego, CA

Table 1: Propranolol and Test Compound Peak Area in Incubation Samples (with NADPH)

			ı	Peak Area	a				
Compound	Replicate	Mouse							
Compound	re pricate		Incuba	ation Time	(min.)				
		0	7.5	15	30	60			
Propranolol	1	51400	38200	32300	22200	12300			
Froprantion	2	48000	37700	31700	22000	11400			
CA2-209	1	53400	38900	35100	15000	880			
CA2-209	2	53500	42100	33400	15600	292			
CA2-220	1	44900	16800	6850	2740	664			
CA2-220	2	67400	19000	9440	2340	1480			
CA2-005	1	63500	29400	5840	0	0			
CA2-003	2	60100	28400	5600	0	0			
ALM-DAI-28	1	362000	101000	41700	6560	3330			
ALIVEDAF20	2	361000	102000	41200	7320	3540			

Table 2: Standard Values and Parameters Used in Intrinsic Clearance and Hepatic Extraction Ratio Calculation

Species		Hepatic blood flow Q (mL/min/kg)	protein	Microsomal protein incubation concentration (mg/mL)
Mouse	90	90	45	0.5
Rat	40	70	45	0.5
Dog	32	35	45	0.5
Monkey	32	44	45	0.5
Human	21	20	45	0.5

Table 3: Liver Microsomal Half Life, Intrinsic Clearance, and Hepatic Extraction Ratio for Propranolol and Test Compounds (with NADPH)

		Mouse						
Compound	Replicate	Half Life (min)		CL _{int} (m L	/m in/kg)	E		
		Individual	Average	Individual	Average	Individual	Average	
Propranolol	1	22.4	23.8	251	238	0.736	0.725	
Froprantion	2	25.1	23.0	224	230	0.713	0.725	
CA2-209	1	24.8	23.5	226	240	0.715	0.727	
CA2-209	2	22.1		240	0.738	0.121		
CA2-220	1	5.53	5.41	1020	1040	0.919	0.921	
OA2-220	2	5.29	5.41	1060	1040	0.922	0.321	
CA2-005	1	4.36	4.37	1290	1290	0.935	0.935	
GA2-003	2	4.38	4.57	1280	1230	0.934	0.933	
ALM-DAI-28	1	4.81	4.8	1170	1170	0.929	0.929	
ALIVEDAFZO	2	4.79	7.0	1170	1170	0.929	0.323	

Note: Only data from 0 to 15 min. was used in linear regression.

Table 4: Liver Microsomal Intrinsic Clearance Reference Value for Propranolol

Reference			CL_{int}			Unit	CL _{int} (mL/min/kg)				
Reference		Monkey	Dog	Rat	Mouse	Offic	Human	Monkey	Dog	Rat	Mouse
1	1.72	N/A		79	N/A	L/hr/kg	28.7	N/A		1320	N/A
2	22-33	N/A			N/A	μL/min/mg	20.8- 31.2	N/A			N/A
3	13	N/A			N/A	μL/min/mg	12.3	N/A			N/A
4	23.4	N/A	92.8	842	N/A	μL/min/mg	22.1	N/A	134	1516	N/A

Table 5: Propranolol and Test Compound Peak Area in Incubation Samples (without NADPH)

		Peak Area Mouse				
Compound	Replicate					
Compound	Replicate	Incubation	Time (min.)			
		0	60			
Propranolol	1	52600	53600			
Fropranoioi	2	52300	55400			
CA2-209	1	27800	30300			
CA2-209	2	27000	36800			
CA2-220	1	54200	53900			
CA2-220	2	54600	52800			
CA2-005	1	50700	55200			
OA2-003	2	52400	55000			
ALM-DAI-28	1	558000	539000			
ALIVEDAF20	2	495000	514000			

Drug Metabolism Report Drumetix Project No. 30-1504

Table 6: % Remaining for Propranolol and Test Compounds after 1-hr Incubation (without NADPH)

		% Remaining after 1-hr Incubat				
Compound	Replicate	Mouse				
		Individual	Average			
Propranolol	1	102	104			
Тторгалою	2	106	104			
CA2-209	1	109	123			
OA2-203	2	136	125			
CA2-220	1	99.4	98.1			
OA2-220	2	96.7	90.1			
CA2-005	1	109	107			
CA2-003	2	105	107			
ALM-DAI-28	1	96.6	100			
ALIVEDAF20	2	104	100			

Figure 1. In (peak area) vs. time plot for propranolol in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)

Figure 2. In (peak area) vs. time plot for CA2-209 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)

Figure 3. In (peak area) vs. time plot for CA2-220 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)

Figure 4. In (peak area) vs. time plot for CA2-005 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)

Figure 5. In (peak area) vs. time plot for ALM-DAI-28 in mouse liver microsomes (with NADPH) (top: replicate 1; bottom: replicate 2)