The self-blindable U-Prove scheme from FC'14 is forgeable

Eric Verheul, Sietse Ringers and Jaap-Henk Hoepman

sringers@cs.ru.nl

Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen

February 23, 2016 Financial Crypto, Barbados

Credential schemes

IssueCredential

ShowCredential

Features:

- No communication with issuer during transactions
- Provably unforgeable

Attribute-based credential schemes

Credential

- Attributes (x_1, \ldots, x_n)
- Signature on attributes

Features

- Selective disclosure
- Unlinkability

Attribute-based credential schemes

Credential

- Attributes (x_1, \ldots, x_n)
- Signature on attributes

Features

- Selective disclosure
- Unlinkability

Attribute-based credential schemes

Credential

- Attributes (x_1, \ldots, x_n)
- Signature on attributes

Features:

- Selective disclosure
- Unlinkability

Existing ABCs

Idemix Camenisch, Lysyanskaya	RSA-like groups	unlinkable	unforgeable
U-Prove Brands	elliptic curves	not unlinkable	?
FC'14 scheme Hanzlik, Klukzniak	elliptic curves	unlinkable	forgeable

Existing ABCs

Idemix Camenisch, Lysyanskaya	RSA-like groups	unlinkable	unforgeable
U-Prove Brands	elliptic curves	not unlinkable	?
FC'14 scheme Hanzlik, Klukzniak	elliptic curves	unlinkable	forgeable

Hanzlik and Kluczniak's scheme

Setup:

- Type 2 bilinear pairing $e: G_1 \times G_2 \to G_T$
 - G_1 , G_2 elliptic curves of prime order
- Issuer public key: $(e, g_0, ..., g_n, p, p', p_0, p_1)$
 - with $g_0, \ldots, g_n \in G_1$, $p, p' \in G_2$, $p_0 = (p')^z$, $p_1 = p^f$
- Issuer private key: (f, z)

$$\underbrace{(h, h_2, h_3, h_4, \alpha, b_1, b_2)}_{\in G_1}$$
 numbers

- $h = (g_0g_1^{x_1}\cdots g_n^{x_n})^{\alpha}$
- $h_2 = h^f$

- $h_3 = h^{b_1} h_2^{b_2}$
- $h_4 = h_3^Z$

Hanzlik and Kluczniak's scheme

Setup:

- Type 2 bilinear pairing $e: G_1 \times G_2 \to G_T$
 - G_1 , G_2 elliptic curves of prime order
- Issuer public key: $(e, g_0, ..., g_n, p, p', p_0, p_1)$
 - with $g_0, \ldots, g_n \in G_1$, $p, p' \in G_2$, $p_0 = (p')^z$, $p_1 = p^f$
- Issuer private key: (f, z)

A credential over attributes (x_1, \ldots, x_n) :

$$(\underbrace{h, h_2, h_3, h_4}_{\in G_1}, \underbrace{\alpha, b_1, b_2}_{\text{numbers}})$$

- $h = (g_0g_1^{x_1}\cdots g_n^{x_n})^{\alpha}$
- $h_2 = h^f$

- $h_3 = h^{b_1} h_2^{b_2}$
- $h_4 = h_2^z$

Showing a credential

Credential: $(x_1, ..., x_n), (h, h_2, h_3, h_4, \alpha, b_1, b_2)$

•
$$h = (g_0g_1^{x_1}\cdots g_n^{x_n})^{\alpha}$$

•
$$h_3 = h^{b_1} h_2^{b_2}$$

•
$$h_2 = h^f$$

•
$$h_4 = h_3^z$$

- Zero-knowledge proof over $x_2, \ldots, x_n, \alpha k, b_1 \ell, b_2 \ell$

Showing a credential

Credential: $(x_1,\ldots,x_n),(h^k,h^k_2,h^{k\ell}_3,h^{k\ell}_4,\alpha k,b_1\ell,b_2\ell)$

•
$$h^{\mathbf{k}} = (g_0 g_1^{x_1} \cdots g_n^{x_n})^{\alpha \mathbf{k}}$$

•
$$h_2^k = h^{kf}$$

•
$$h_3^{k\ell} = (h^k)^{b_1\ell} (h_2^k)^{b_2\ell}$$

•
$$h_4^{k\ell} = h_3^{k\ell z}$$

- Zero-knowledge proof over $x_2, \ldots, x_n, \alpha k, b_1 \ell, b_2 \ell$

Showing a credential

Credential: $(x_1,\ldots,x_n),(h^k,h^k_2,h^{k\ell}_3,h^{k\ell}_4,\alpha k,b_1\ell,b_2\ell)$

- $h^{\mathbf{k}} = (g_0 g_1^{x_1} \cdots g_n^{x_n})^{\alpha \mathbf{k}}$
- $h_2^k = h^{kf}$

- $h_3^{k\ell} = (h^k)^{b_1\ell} (h_2^k)^{b_2\ell}$
- $h_A^{k\ell} = h_3^{k\ell z}$

Showing a credential, disclosing x_1 :

- Blind the credential as above
- Zero-knowledge proof over $x_2, \ldots, x_n, \alpha k, b_1 \ell, b_2 \ell$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_j = (g_0 g_1^{x_{1,j}} \cdots g_n^{x_{n,j}})^{\alpha}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_j = g_0 g_1^{x_{1,j}} \cdots g_n^{x_{n,j}}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_j = g_0 g_1^{x_{1,j}}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_i = g_0 g_1^{x_{1,j}}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

= $g_0^{b_{1,j}} \widetilde{g}_0^{b_{2,j}} g_1^{b_{1,j} x_{1,j}} \widetilde{g}_1^{b_{2,j} x_{1,j}}$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_i = g_0 g_1^{x_{1,j}}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

 $= g_0^{b_{1,j}} \widetilde{g}_0^{b_{2,j}} g_1^{b_{1,j} x_{1,j}} \widetilde{g}_1^{b_{2,j} x_{1,j}}$
 $= g_0^{c_{0,j}} \widetilde{g}_0^{d_{0,j}} g_1^{c_{1,j}} \widetilde{g}_1^{d_{1,j}}$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_i = g_0 g_1^{x_{1,j}}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

 $= g_0^{b_{1,j}} \widetilde{g}_0^{b_{2,j}} g_1^{b_{1,j} \times_{1,j}} \widetilde{g}_1^{b_{2,j} \times_{1,j}}$
 $= g_0^{c_{0,j}} \widetilde{g}_0^{d_{0,j}} g_1^{c_{1,j}} \widetilde{g}_1^{d_{1,j}}$

User 1 and 2 calculate:

$$\frac{h_{3,1}^{1/d_{1,1}}}{h_{3,2}^{1/d_{1,2}}} = g_0^u \widetilde{g_0}^v g_1^w$$

Set
$$\widetilde{g}_i = g_i^f$$

•
$$h_i = g_0 g_1^{x_{1,j}}, \quad h_{2,j} = h^f$$

•
$$h_{3,j} = h_j^{b_{1,j}} h_{2,j}^{b_{2,j}}$$

 $= g_0^{b_{1,j}} \widetilde{g}_0^{b_{2,j}} g_1^{b_{1,j}x_{1,j}} \widetilde{g}_1^{b_{2,j}x_{1,j}}$
 $= g_0^{c_{0,j}} \widetilde{g}_0^{d_{0,j}} g_1^{c_{1,j}} \widetilde{g}_1^{d_{1,j}}$

User 1 and 2 calculate:

$$\frac{h_{3,1}^{1/d_{1,1}}}{h_{3,2}^{1/d_{1,2}}} = g_0^u \widetilde{g_0}^v g_1^v$$

 \widetilde{g}_1 is gone!

Set
$$\widetilde{g}_i = g_i^f$$

- $h_i = g_0 g_1^{x_{1,j}}, \quad h_{2,j} = h^f$
- $h_{3,j} = h_i^{b_{1,j}} h_{2,i}^{b_{2,j}}$ $=g_0^{b_{1,j}}\widetilde{g}_0^{b_{2,j}}g_1^{b_{1,j}x_{1,j}}\widetilde{g}_1^{b_{2,j}x_{1,j}}$ $=g_0^{c_{0,j}}\widetilde{g}_0^{d_{0,j}}g_1^{c_{1,j}}\widetilde{g}_1^{d_{1,j}}$

User 1 and 2 calculate:

•
$$\widetilde{g}_1$$
 shared across all credentials

 Group order known ⇒ can invert exponents

$$rac{h_{3,1}^{1/d_{1,1}}}{h_{3,2}^{1/d_{1,2}}}=g_0^u\widetilde{g_0}^vg_1^w$$

 \widetilde{g}_1 is gone!

$$h_3 = g_0^{c_0} \widetilde{g}_0^{d_0} g_1^{c_1} \widetilde{g}_1^{d_1}, \qquad h_4 = h_3^z$$

- 2 users can remove \widetilde{g}_1 from h_3 and \widetilde{g}_1^z from h_4
- 8 users can:
 - compute \widetilde{g}_0 and \widetilde{g}_0^z , g_0^z , \widetilde{g}_1 , \widetilde{g}_1^z , g_1^z
- n attributes $\Rightarrow 2^{2n+1}$ users $\Rightarrow 2n+2$ users

$$h_3 = g_0^{c_0} \widetilde{g}_0^{d_0} g_1^{c_1} \widetilde{g}_1^{d_1}, \qquad h_4 = h_3^z$$

- 2 users can remove \widetilde{g}_1 from h_3 and \widetilde{g}_1^z from h_4
- 8 users can:
 - compute \widetilde{g}_0 and \widetilde{g}_0^z , g_0^z , \widetilde{g}_1 , \widetilde{g}_1^z , g_1^z
 - compute signatures on base points g_i
 - create credentials containing arbitrary attributes.
- *n* attributes $\Rightarrow 2^{2n+1}$ users $\Rightarrow 2n+2$ users

$$h_3 = g_0^{c_0} \widetilde{g}_0^{d_0} g_1^{c_1} \widetilde{g}_1^{d_1}, \qquad h_4 = h_3^z$$

- 2 users can remove \widetilde{g}_1 from h_3 and \widetilde{g}_1^z from h_4
- 8 users can:
 - compute \widetilde{g}_0 and \widetilde{g}_0^z , g_0^z , \widetilde{g}_1 , \widetilde{g}_1^z , g_1^z
 - compute signatures on base points g_i
 - create credentials containing arbitrary attributes.
- *n* attributes $\Rightarrow 2^{2n+1}$ users $\Rightarrow 2n+2$ users

$$h_3 = g_0^{c_0} \widetilde{g}_0^{d_0} g_1^{c_1} \widetilde{g}_1^{d_1}, \qquad h_4 = h_3^z$$

- 2 users can remove \widetilde{g}_1 from h_3 and \widetilde{g}_1^z from h_4
- 8 users can:
 - compute \widetilde{g}_0 and \widetilde{g}_0^z , g_0^z , \widetilde{g}_1 , \widetilde{g}_1^z , g_1^z
 - compute signatures on base points gi
 - create credentials containing arbitrary attributes.
- *n* attributes $\Rightarrow 2^{2n+1}$ users $\Rightarrow 2n+2$ users

$$h_3 = g_0^{c_0} \widetilde{g}_0^{d_0} g_1^{c_1} \widetilde{g}_1^{d_1}, \qquad h_4 = h_3^z$$

- 2 users can remove \widetilde{g}_1 from h_3 and \widetilde{g}_1^z from h_4
- 8 users can:
 - compute \widetilde{g}_0 and \widetilde{g}_0^z , g_0^z , \widetilde{g}_1 , \widetilde{g}_1^z , g_1^z
 - compute signatures on base points g_i
 - create credentials containing arbitrary attributes.
- *n* attributes $\Rightarrow 2^{2n+1}$ users $\Rightarrow 2n+2$ users

$$h_3 = g_0^{c_0} \widetilde{g}_0^{d_0} g_1^{c_1} \widetilde{g}_1^{d_1}, \qquad h_4 = h_3^z$$

- 2 users can remove \widetilde{g}_1 from h_3 and \widetilde{g}_1^z from h_4
- 8 users can:
 - compute \widetilde{g}_0 and \widetilde{g}_0^z , g_0^z , \widetilde{g}_1 , \widetilde{g}_1^z , g_1^z
 - compute signatures on base points gi
 - create credentials containing arbitrary attributes.
- n attributes $\Rightarrow 2^{2n+1}$ users $\Rightarrow 2n+2$ users

Analysis

Ingredients of attack:

- Fixed base points g_0, \ldots, g_n
- Invertibility of exponents

Questions?

Analysis

Ingredients of attack:

- Fixed base points g_0, \ldots, g_n
- Invertibility of exponents

Questions?

