Please check the examination details be	low before ente	ering your candidate in	formation
Candidate surname		Other names	
Centre Number Candidate N	umber		
Pearson Edexcel Inter	nation	al Advanc	ed Level
Time 1 hour 30 minutes	Paper reference	WMA ²	13/01
Mathematics			•
International Advanced Lo	aval		
	evei		
Pure Mathematics P3			
You must have: Mathematical Formulae and Statistic	al Tables (Ye	llow), calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. The curve C has equation

$$y = (3x - 2)^6$$

(a) Find $\frac{dy}{dx}$

(2)

Given that the point $P\left(\frac{1}{3},1\right)$ lies on C,

(b) find the equation of the normal to C at P. Write your answer in the form ax + by + c = 0 where a, b and c are integers to be found.

(4)

Question 1 continued	blank
	Q1
(Total 6 marks)	
, ,	

The functions f and g are defined by

$$f(x) = \frac{5 - x}{3x + 2}$$

$$x \in \mathbb{R}, x \neq -\frac{2}{3}$$

$$g(x) = 2x - 7$$

$$x \in \mathbb{R}$$

(a) Find the value of fg(5)

(2)

(b) Find f^{-1}

(3)

(c) Solve the equation

$$f\left(\frac{1}{a}\right) = g(a+3)$$

(4)

	Leave blank
Question 2 continued	

Leave blank

Question 2 continued	

Question 2 continued	blank
	Q2
(Total 9 marks)	

3. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Given that k is a positive constant,

(a) find

$$\int \frac{9x}{3x^2 + k} \, \mathrm{d}x$$

(2)

Given also that

$$\int_{2}^{5} \frac{9x}{3x^2 + k} \, \mathrm{d}x = \ln 8$$

(b) find the value of k

(4)

Question 3 continued	Leave
	02
	Q3
(Total 6 marks)	

4.

Figure 1

The number of subscribers to an online video streaming service, N, is modelled by the equation

$$N = ab^t$$

where a and b are constants and t is the number of years since monitoring began.

The line in Figure 1 shows the linear relationship between t and $\log_{10} N$

The line passes through the points (0, 3.08) and (5, 3.85)

Using this information,

(a) find an equation for this line.

(2)

(b) Find the value of a and the value of b, giving your answers to 3 significant figures.

(3)

When t = T the number of subscribers is 500000

According to the model,

(c) find the value of T

(2)

	Lo
estion 4 continued	
	1

Leave blank

Question 4 continu	ed	

Question 4 continued	blank
	Q4
(Total 7 marks)	

5.

Figure 2

Figure 2 shows part of the graph with equation y = f(x), where

$$f(x) = |kx - 9| - 2$$

 $x \in \mathbb{R}$

and k is a positive constant.

The graph intersects the y-axis at the point A and has a minimum point at B as shown.

- (a) (i) Find the y coordinate of A
 - (ii) Find, in terms of k, the x coordinate of B

(2)

(b) Find, in terms of k, the range of values of x that satisfy the inequality

$$|kx-9|-2<0$$

(3)

Given that the line y = 3 - 2x intersects the graph y = f(x) at two distinct points,

(c) find the range of possible values of k

(3)

	Leave
	blank
Question 5 continued	

Leave blank

Question 5 continued	1	

Question 5 continued	blank
-	
	Q5
(Total 8 marks)	

6.

Figure 3

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

The function f is defined by

$$f(x) = 5(x^2 - 2)(4x + 9)^{\frac{1}{2}}$$
 $x \ge -\frac{9}{4}$

(a) Show that

$$f'(x) = \frac{k(5x^2 + 9x - 2)}{(4x + 9)^{\frac{1}{2}}}$$

where k is an integer to be found.

(4)

(b) Hence, find the values of x for which f'(x) = 0

(1)

Figure 3 shows a sketch of the curve C with equation y = f(x).

The curve has a local maximum at the point P

(c) Find the exact coordinates of P

(2)

The function g is defined by

$$g(x) = 2f(x) + 4$$
 $-\frac{9}{4} \le x \le 0$

(d) Find the range of g

(3)

	Leave blank
Question 6 continued	blank

Leave blank

Question 6 continued		

Question 6 continued	blank
	Q6
(Total 10 marks)	

7. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(a) Show that the equation

$$2\sin\theta (3\cot^2 2\theta - 7) = 13\sec\theta$$

can be written as

$$3\csc^2 2\theta - 13\csc 2\theta - 10 = 0$$

(4)

(b) Hence solve, for $0 < \theta < \frac{\pi}{2}$, the equation

$$2\sin\theta (3\cot^2 2\theta - 7) = 13\sec\theta$$

giving your answers to 3 significant figures.

(4)

uestion 7 centinued		b
uestion 7 continued		
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Leave blank

Question 7 continued		

Question 7 continued	Leave blank
	Q 7
(Total 8 marks)	
(2000 0 2000 0)	

8.

Figure 4

Figure 4 is a graph showing the velocity of a sprinter during a 100 m race.

The sprinter's velocity during the race, $v \, \text{m s}^{-1}$, is modelled by the equation

$$v = 12 - e^{t-10} - 12e^{-0.75t} \qquad t \geqslant 0$$

where t seconds is the time after the sprinter begins to run.

According to the model,

(a) find, using calculus, the sprinter's maximum velocity during the race.

(5)

Given that the sprinter runs 100 m in T seconds, such that

$$\int_0^T v \, \mathrm{d}t = 100$$

(b) show that T is a solution of the equation

$$T = \frac{1}{12} \left(116 - 16e^{-0.75T} + e^{T-10} - e^{-10} \right)$$
 (4)

The iteration formula

$$T_{n+1} = \frac{1}{12} \left(116 - 16e^{-0.75T_n} + e^{T_n - 10} - e^{-10} \right)$$

is used to find an approximate value for T

Using this iteration formula with $T_1 = 10$

- (c) find, to 4 decimal places,
 - (i) the value of T_2
 - (ii) the time taken by the sprinter to run the race, according to the model.

(3)

	Leave blank
Question 8 continued	Oldlin

Leave blank

Question 8 continued

Question 8 continued	Leave blank
	Q8
(Total 12 marks)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Figure 5

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Figure 5 shows the curve with equation

$$y = \frac{1 + 2\cos x}{1 + \sin x} \qquad -\frac{\pi}{2} < x < \frac{3\pi}{2}$$

The point M, shown in Figure 5, is the minimum point on the curve.

(a) Show that the x coordinate of M is a solution of the equation

$$2\sin x + \cos x = -2$$

(4)

(b) Hence find, to 3 significant figures, the x coordinate of M.

(5)

	I t
estion 9 continued	

	(Total 9 marks

Q9