Linear models with random and fixed effects

Consider

- A dataset
 - $\frac{y}{4}$ $\frac{x}{4}$
 - 3 A
 - 2 B
 - 1 B
- A model M_1 of the form (with the use of lm notation) y^x .
- A model M_2 of the form (with the use of lmer notation) $y^{\sim}(1|x)$.

Solve

- 1. Find the design matrix X for model M_1 ,
- 2. Find the joint distribution of $(\hat{\mu}, \hat{\beta}_X)$ for model M_1 and data from Table 1. Draw contours of this distribution. Here you may assume that μ and β_X are known,
- 3. Find the distribution of prediction \hat{y} for x = A under model M_1 and data from Table 1,
- 4. Find the subspace K orthogonal to subspace spanned by design matrix X derived for model M_2 ,
- 5. Write down the REML likelihood for model M_2 and data presented in Table 1,
- 6. Write down Henderson equations for model M_2 and data presented in Table 1. Here you may use R to find numerical estimate for σ_x^2 .

Hint

If some additional assumptions are **really** needed to solve any of following task you can introduce them. But justify it.

Literature

Feel free to use any source. Everything related to our course is in

- Analiza danych z programem R, Modele liniowe z efektami stałymi, losowymi i mieszanymi, Biecek Przemysław, PWN, 2011.
- Linear Mixed-Effects Models Using R, Gałecki Andrzej, Burzykowski Tomasz, Springer, 2013