

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>

КАФЕДРА <u>«Компьютерные системы и сети»</u>

НАПРАВЛЕНИЕ ПОДГОТОВКИ <u>«09.03.04 Программная инженерия»</u>

ОТЧЕТ

По лабораторной работе №1

Название: Синхронные одноступенчатые триггеры со статическим и

динамическим управлением записью

Дисциплина: <u>Архитектура ЭВМ</u>

Студент: **Ивахненко Д. А**

Группа: <u>ИУ7-46Б</u>

Преподаватель: Попов А. Ю.

Москва

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1. Асинхронный RS-триггер с инверсными входами в статическом режиме

Таблица переходов:

S	R	Q_n	Q_{n+1}	Режим
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	0
0	1	1	0	
1	0	0	1	1
1	0	1	1	
1	1	0	X	Запрещенное состояние
1	1	1	X	_

Получается, что S всегда устанавливает триггер в состояние единицы, а R устанавливает в состояние нуля. Одновременная подача S и R запрещена.

2. Синхронный RS-триггер в статическом режиме

Таблица переходов:

C	S	R	Q_n	Q_{n+1}	Режим
0	~	~	0	0	
0	~	~	1	1	Хранение
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	0
1	0	1	1	0	
1	1	0	0	1	1
1	1	0	1	1	
1	1	1	0	X	Запрещенное состояние
1	1	1	1	X	

Вход C позволяет контролировать сигнал, поступающий в триггер.

3. D-триггер в статическом режиме

Таблица переходов:

C	D	Q_n	Q_{n+1}	Режим
0	~	0	0	Хранение
0		1	1	
1	0	0	0	0
1	0	1		
1	1	0	1	1
1	1	1		

Заметим, что, когда синхронизирующий вход равен 1, текущее значение D отбирается и сохраняется. Сохраненное значение всегда доступно на выходе Q. Чтобы загрузить в память текущее значение D, нужно пустить положительный импульс по линии синхронизирующего сигнала.

4. Синхронный D-триггер с динамическим управлением

Таблица переходов:

D	C	Q_{n-1}	Q_n
~	0 OR 1	0	0
		1	1
0	Switch	0	0
0	[0 to 1]	1	0
1		0	1
1		1	1
0	Switch	0	0
0	[1 to 0]	1	1
1		0	0
1		1	1

В такой схеме, смена состояния происходит не тогда, когда синхронизирующий сигнал равен 1, а при переходе синхронизирующего сигнала с 0 на 1 (фронт) или с 1 на 0 (спад). То есть особенностью синхронных триггеров с динамическим управлением является то, что они запускаются перепадом, а не уровнем сигнала.

5. Синхронный DV-триггер с динамическим управлением

При V = 1 DV-триггер работает по правилам D-триггера, то есть при изменении C (0 на 1) происходит смена состояния в соответствии с текущим значением D.

При V = 0 DV-триггер сохраняет свое состояние неизменным – хранит информацию независимо от состояния D.

6. DV-триггер, включенный по схеме TV-триггера

После поступления на вход Т-импульса, состояние триггера меняется на прямо противоположное. При поступлении второго импульса Т-триггер сбрасывается в исходное состояние.

Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. T-триггер реализует счет по модулю 2: $Q_{n+1} = T \oplus Q_n$.

Синхронный Т-триггер имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, <u>если на счетном входе T действует единичный сигнал.</u>

Вывод

При выполнении этой лабораторной работы я изучил схемы, а также познакомился с принципом работы, минусами и плюсами различных синхронных и асинхронных тригерров.