Predicting cycle hires

Using TFL(Transport for London) data

Project Proposal

- 1. Understanding the current utilization of the public hire scheme using historical data
- 2. Predicting the future demand for bikes daily at each station to improve availability of bikes and optimize flow of system

Location of cycle docks

Feature Engineering

Data provided by TFL:

- Start time, End time, Duration
- Start Station ID, End Station ID

Data from weather API:

- Temperature
- Wind speed
- Weather Condition

Data Visualization

Relationship between weather and hiring frequency

Relationship between weather and hiring frequency

Exploring more relationships

Final Dataset

Features:

- Day of week
- Is weekday?
- Number of hires from station day before
- Number of bikes docked at station day before
- 7 day rolling duration
- Temperature
- Wind speed
- Good weather, OK weather, Bad weather, Very bad weather

Target

Number of cycles hired on a future date

Models

- Benchmark Model- assume number of hires on a given day = number of hires day before
- Linear Regression, Ridge Regression
- Gradient Boosting- implemented in scikit-learn
- XGBoost
- AdaBoost

Results

• Using RMSE

	Training Error	Test Error
Benchmark Model	24.27	26.65
Linear Regression	22.08	24.38
Gradient Boosting	18.46	23.54
XGBoost	20.87	23.53
AdaBoost	20.08	23.24

AdaBoost results

Analysis

- AdaBoost is winner but not significant improvement from Linear Regression
- Models unable to do peak prediction well- some stations are very popular and peaks come from the same 3 stations
- Very high feature importance on day before hires and docks

Future Work

- Add locational information such that model can learn the idea of different stations
- Separate training of dataset by popular stations and less popular stations
- Other possible features: Information of tube disruptions