Introduction to BigData Computing Framework

Apache Hadoop & Spark

國網中心莊家焦

What will you learn today?

- Distributed Computing environment
- Apache Hadoop
 - Concept of MapReduce
 - MapReduce Programing
 - MapReduce Examples
- Apache Spark
 - Concept of RDD
 - RDD Programing
 - Spark Examples

Distributed System

Master /slave architecture

- 開發一個分散式系統很難
 - 主機間如何溝通
 - 系統的可靠性設計
 - **—** ...
- Hadoop
 - HDFS \ MapReduce
- Spark
 - RDD

分散式檔案系統:HDFS

- 在分散式的儲存環境裏,提供邏輯上的單一目錄系統
- 每個檔案被分割成許多區塊並進行異地備份

Data Locality

- 移動運算到資料端比移動資料到運算端來的成本低
 - 減少資料搬運,實現在地運算

Concept of Distributed computing

MapReduce Concept & Real life Example

數學歸納法證明

步驟 1、證明n=1 時,敘述成立。

步驟 2、假設n=k時,敘述成立;證明n=k+1,敘述也成立。

由數學歸納法得證, n為任意自然數時都成立

3. Show that any 2ⁿ x 2ⁿ board with one square deleted can be covered by Triominoes.

試證明:當自然數 $n \ge 3$ 時,不等式: $5^n > 3^n + 4^n$ 恆成立.

- 證明: (1) n=3 時,左式= $5^3=125$,右式= $3^3+4^3=91$,因 125>91,故 $5^3>3^3+4^3$ 成立。
 - (2) 設 n=k(k是一個整數且 k≥3)時, 5^k>3^k+4^k 成立.
 上式兩端同乘5得:

$$5^{k+1} > 5 \cdot 3^k + 5 \cdot 4^k > 3 \cdot 3^k + 4 \cdot 4^k = 3^{k+1} + 4^{k+1}$$
,
故 $5^{k+1} > 3^{k+1} + 4^{k+1}$ 亦成立。

由數學歸納法知 $5^n > 3^n + 4^n$ ($n \ge 3$)成立.

選舉到了...

•台北市10個選區,共100萬票,要算出每個候選人的得票數

監票人3

監票人5

[負責5區]

[負責2區]

虎次	票數
2	1
	1

號次	票數		
1	1		
1	1		
3	1		

號次	票數
3	1
2	1
1	1

號次	票數
1	1
3	1
3	

號次	票數	
3	1	
2	1	
3	1	

號次	票數
2	1
1	1

號次	票數
5	1
1	1
7	1

號次	票數
5	1
2	1
1	1
	1

號次	票數
1	1
5	1
3	

號次	票數
4	1
2	1
6	1

Shuffle & Sort 由各投開票所送到中選會

號次	票數	號次	票數	號次	票數
1	1	2	1	3	1
1	1	2	1	3	1
1	1	2	1	3	1
1	1	2	1	3	1
1	•••	2		3	

中選會 [負責 全部的候選人]

號次	總票數
1	187532

號次	總票數
2	574821

號次	總票數
3	237647

MapReduce Example

- Word Count

Word Count - Mapper

- 將輸入的文字檔案切成split
 - 每個mapper負責一個split
 - 由InputFomrat決定有多少個split
- Mapper處理split中的每一筆record
 - 由RecordReader定義一筆key/value record
- 將每一筆record內的字輸出 (字, 1)
 - 真正map()所執行的工作

This is a book
Hello American
Visit The official site
Our network of more
The American Broadcasting

Word Count – Shuffle & Sort

- Black box
 - 開發人員不用煩腦,framework會自行處理
- 在給Reducer之前完成
- 保證Reducer得到的資訊有下列三個特性
 - 可有多個Reducer
 - 同一個Reducer有可能處理多個Key值
 - 若Reducer看到某個Key1,會看到相對應的所有 value
 - 給定Key1,所有Key1的值都會被同一個Reducer處理
 - Reducer 1收到 This這個字,會收到很多 1

Word Count - Reducer

- Reducer收到許多 key與相對應的value list
 - Reducer1 收到 (INFO, [1,1,1])
 - Reducer 2 收到 (DEBUG, [1]), (WARN, [1])
 - Reducer 對每個字的出現次數做加總

正規描述

Mapper

- $(k1, v1) \rightarrow list(k2, v2)$
- (0, "This is a book book") → ("This", 1), ("is",1), ("a",1), ("book",1),("book",1)

Reducer

- $-(k2, list(v2)) \rightarrow (k3, v3)$
- ("This", [1]) \rightarrow ("This", 1)
- $(\text{"is",[1]}) \rightarrow (\text{"is",1})$
- $(\text{"a",[1]}) \rightarrow (\text{"a",1})$
- $("book",[1, 1]) \rightarrow ("book",2)$

Word Count – Pseudo code

```
void Map (key, value){
    for each word x in value:
        output.collect(x, 1);
}
```

```
void Reduce (keyword, <list of value>){
    for each x in <list of value>:
        sum+=x;
    final_output.collect(keyword, sum);
}
```


Labs 0: IntelliJ IDEA Setup

- Install IntelliJ IDEA Community Version
- Download labs code
 - https://github.com/ogre0403/hust-worksop-2016
- Import labs project into Intellij IDEA

Labs 0: IntelliJ IDEA Setup

- Windows 64
 - Setup winutil.exe/hadoop.dll


```
WordCountDriver

"C:\Program ...
2016-10-25 15:07:12,752 [main] ERROR org.apache.hadoop.util.Shell - Failed to locate the winutils binary in the hadoop binary path
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
    at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:355)
    at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:370)
    at org.apache.hadoop.util.Shell.cclinit>(Shell.java:363)
    at org.apache.hadoop.util.GenericOptionsParser.preProcessForWindows(GenericOptionsParser.java:438)
    at org.apache.hadoop.util.GenericOptionsParser.preProcessForWindows(GenericOptionsParser.java:484)
    at org.apache.hadoop.util.GenericOptionsParser.
at org.apache.hadoop.util.GenericOptionsParser.
init>(GenericOptionsParser.java:170)
    at org.apache.hadoop.util.GenericOptionsParser.
init>(GenericOptionsParser.java:153)
    at ans.mapreduce.wordcount.WordCountDriver.main(WordCountDriver.java:20) <5 internal calls>
```


Labs 1: Word Count(MapReduce)

- WordCountMapper()
 - Use StringTokenizer.nextToken() to get word, then set the value by Text.set()

- WordCountReduceer
 - Iterate all elements in values, and sum up all IntWritable objects

MapReduce Example

- K-means

K-means clustering

- 隨機選取資料組中的k筆資料當作初始群中心 u_1 ~ u_k
- 計算每個資料xi 對應到最短距離的群中心 (固定 ui 求解所屬群 Si)
- 利用目前得到的分類重新計算群中心 (固定 Si 求解群中心 ui)
- 重複step 2,3直到收斂 (達到最大疊代次數 or 群心中移動距離很小)

集中式版本程式

```
// Add in new data, one at a time, recalculating centroids with each new one.
while(!finish) {
   //Clear cluster state
   clearClusters();
   List lastCentroids = getCentroids();
   //Assign points to the closer cluster
    assignCluster();
    //Calculate new centroids.
    calculateCentroids();
   iteration++;
   List currentCentroids = getCentroids();
   //Calculates total distance between new and old Centroids
    double distance = 0;
    for(int i = 0; i < lastCentroids.size(); i++) {
        distance += Point.distance(lastCentroids.get(i),currentCentroids.get(i));
    System.out.println("##########");
    System.out.println("Iteration: " + iteration);
    System.out.println("Centroid distances: " + distance);
    plotClusters();
   if(distance == 0) {
        finish = true;
```

Map

輸入為<目前的中心,point>求point到每個中心的距離輸出為<所屬的中心,point>

Read Distributed cache

C1: (x1,y1)

C2: (x2,y2)

C3:(x3,y3)

Key	value
C2	V1(1,2)

Key	value		
CO	V1(1,2)		
C0	V2(7,4)		
CO	V3(16,3)		
CO	V4(-1,-23)		

Key	value
C2	V2(7,4)

Key	value
C1	V3(16,3)

Key	value
C3	V4(-1,-23)

Reducer

輸入為<中心,屬於該中心的所有point>對所有的point計算出新的中心 輸出<新的中心,point>做為下一次疊代

Key	value
C1	V3(16,3)

Key	value
C2	V1(1,2)
C2	V2(7,4)

Key	value			
C1	V3(16,3)			
C2	V1(1,2)			
C2	V2(7,4)			
C 3	V4(-1,-23)			

Update Distributed cache

C1: (x'1,y'1)

C2:(x'2,y'2)

C3:(x'3,y'3)

Labs 2: K-means (MapReduce)

KMeansMapper

- Use DistanceMeasurer.measureDistance() to calculate distance between vector and ClusterCenter
- Find the nearest ClusterCenter and the shortest distance

KMeansReducer

- Sum up all Vector value. (Each digital is stored in source[])
 Save result in resultVector[].
- Calculate mean of each digital in resultVector[]

MapReduce Example

- Page Rank

PageRank

• 評估網頁重要程度的指標

$$PR(A) = \frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)}$$

$$= \sum_{p_j} \frac{\text{PageRank}(p_j)}{L(p_j)}$$

图 1 链接结构中的部分网页及其 PageRank 值

Page link probability matrix M[i][j] = p 表示由 i 到 j 的機率為 p

	Α	В	С	D
Α	0	1/3	1/3	1/3
В	1/2	0	0	1/2
С	1	0	0	
D	0	1/2	1/2	0

Page link matrix = adjacency matrix M[i][j] = 1 表示由 i 到 j 有一個邊

	А	В	С	D
Α	0	1	1	1
В	1	0	0	1
С	1	0	0	0
D	0	1	1	0

Transport Page link probability matrix M[i][j] = p 表示由 j 到 i 的機率為 p = 前一頁中的1 / Lj

	Α	В	C	D
Α	0	1/2	1	0
В	1/3	0	0	1/2
С	1/3	0	0	1/2
D	1/3	1/2	0	0

$PR(A) = P(B \rightarrow A) * PR(B)$ $+ P(C \rightarrow A) * PR(C)$ $+ P(D \rightarrow A) * PR(D)$	$PR(B) = P(A \rightarrow B) * PR(A)$ $+ P(C \rightarrow B) * PR(C)$ $+ P(D \rightarrow B) * PR(D)$			$PR(C) = P(A \rightarrow C) * PR(A)$ $+ P(B \rightarrow C) * PR(B)$ $+ P(D \rightarrow C) * PR(D)$			PR(E	$PR(D) = P(A \rightarrow D) * PR(A)$ $+ P(B \rightarrow D) * PR(B)$ $+ P(C \rightarrow D) * PR(C)$				
$ ightharpoonup$ PageRank (p_j)	Р	А	В	С	D			PR			PR	
$\sum_{p_j} \frac{L(p_j)}{L(p_j)}$	Α	0	1/2	1	0	Χ	Α	1/4	=	Α	9/24	
$p_j = \langle T_j \rangle$	В	1/3	0	0	1/2		В	1/4		В	5/24	
	С	1/3	0	0	1/2		С	1/4		С	5/24	
Iteration 1	D	1/3	1/2	0	0		D	1/4		D	5/24	
	Р	А	В	С	D	X		PR	=		PR	
	Α	0	1/2	1	0		Α	9/24		Α	15/48	
	В	1/3	0	0	1/2		В	5/24		В	11/48	
	С	1/3	0	0	1/2		С	5/24		С	11/48	
Iteration 2	D	1/3	1/2	0	0		D	5/24		D	11/48	
	Р	А	В	С	D						PR	
	Α	0	1/2	1	0					Α	3/9	
	В	1/3	0	0	1/2			•••		В	2/9	
	С	1/3	0	0	1/2					С	2/9	
Iteration N	D	1/3	1/2	0	0					D	2/9	3

Reduce Pseudo Code

Input:

- Key: <p0>

– Value: [<p1, p2, ..., pn>, <PR, L >, <PR, L> ...]

Output

– Key: <p0 new_PR>

– Value: <p1, p2, ..., pn>

Map Pseudo Code

Input:

- Key: <p0, PR>
- Value: <p1, p2, ..., pn>

Output:

- Type 1
 - Key: <p1> (<p2>, <p3>, ...)
 - Value: <PR L>
- Type 2
 - Key: <p0>
 - Value: <p1, p2, ..., pn>

Labs 3: Page Rank (MapReduce)

- RankCalculateMapper
 - For each linked to page, store (page, thisPagesRank + TotalLinksNumber)
- RankCalculateReducer
 - Calculate fraction pagerank contributed from linked page.
 - Sum up all contributed pagerank.

Hadoop v.s. Spark

Why Spark

- Compare with Hadoop ecosystem
 - More efficient execution
 - More unified program abstraction
 - More flexible program operation

RDD Concept

RDD Essentials

- Resilient distributed dataset
- Each RDD is split into multiple partitions
 - Partitions may exist on different machines
- immutable distributed collection of objects
 - Transform creates new RDD
 - Coarse-grained transformation
- Spark keeps track lineage graph
 - Fast recovery from failure
- Lazy Evaluation
 - Until action is called

RDD operations

Transformations

- Create a new dataset from and existing one.
- Lazy in nature. They are executed only when some action is performed.
- Example :
 - Map(func)
 - Filter(func)
 - Distinct()

Actions

- Returns to the driver program a value or exports data to a storage system after performing a computation.
- Example:
 - Count()
 - Reduce(funct)
 - Collect
 - Take()

Persistence

- For caching datasets in-memory for future operations.
- Option to store on disk or RAM or mixed (Storage Level).
- Example:
 - Persist()
 - Cache()

Create RDD

```
RDD

// base RDD

val lines = sc.textFile("hdfs://...")
```

RDD Transformation

RDD Action


```
System.out.println("Input had " + badLinesRDD.count() + " concerning lines")
System.out.println("Here are 10 examples:")
for (String line: badLinesRDD.take(10)) {
    System.out.println(line);
}
```

Lineage Graph

 Think of each RDD as consisting of instructions on how to compute the data through transformations.

```
errorsRDD = inputRDD.filter(lambda x: "error" in x)
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
badLinesRDD = errorsRDD.union(warningsRDD)

inputRDD

warningsRDD

union

badLinesRDD
```

RDD Operations

RDD Type

- Basic RDD[T]
 - considers each data item as a single value
- Convert to other RDD Type
- PairRDD[K,V]
 - each data item containing key/value pairs.

Basic RDD Transformation

RDD.map(func)

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
map()	Apply a function to each element in the RDD and return an RDD of the result.	rdd.map(x => x + 1)	{2, 3, 4, 4}

```
JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4));
JavaRDD<Integer> result = rdd.map(new Function<Integer, Integer>() {
    public Integer call(Integer x) { return x*x; }
});
System.out.println(StringUtils.join(result.collect(), ","));
```

Basic RDD Transformation

RDD.filter(func)

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
filter()	Return an RDD consisting of only elements that pass the condition passed to filter().	rdd.filter(x => x != 1)	{2, 3, 3}

```
RDD<String> errors = lines.filter(new Function<String, Boolean>() {
   public Boolean call(String x) { return x.contains("error"); }
});
```

Basic RDD Transformation

RDD.flatMap(func)

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
flatMap()	Apply a function to each element in the RDD and return an RDD of the contents of the iterators returned. Often used to extract words.	<pre>rdd.flatMap(x => x.to(3))</pre>	{1, 2, 3, 2, 3, 3}
JavaRDD- public ret } });		t(" "));	

Basic RDD Action

RDD.reduce(func)

Table 3-4. Basic actions on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
reduce(func)	Combine the elements of the RDD together in parallel (e.g., sum).	rdd.reduce((x, y) => x + y)	9

```
Integer sum = rdd.reduce(new Function2<Integer, Integer, Integer>() {
   public Integer call(Integer x, Integer y) { return x + y; }
});
```

Java Basic RDD convert to

— PairRDD : explicitly implement PairFunction()

Function name	Equivalent function* <a, b,=""></a,>	Usage
PairFunction <t, k,="" v=""></t,>	Function <t, tuple2<k,="" v="">></t,>	PairRDD <k, v=""> from a mapToPair</k,>
DoubleFunction <t></t>	Function <t, double=""></t,>	DoubleRDD from map ToDouble
Function <string, blic="" pairfunction<string,="" string="" string,="" tuple2<string,="" w=""> careturn new Tuple2(x.split(" ")</string,>	String>() { ull(String x) {	<pre>JavaDoubleRDD result = rdd.mapToDouble new DoubleFunction<integer>() { public double call(Integer x) { return (double) x * x; } }); System.out.println(result.mean());</integer></pre>

PairRDD Transformation

- PairRDD is also a RDD
 - RDD.filter(func)
 - RDD.map(func)
 - RDD.flatMap(func)

— ...

key	value		1	
holden	likes coffee	filter	key	value
panda	likes long strings and coffee		holden	likes coffee

```
Function<Tuple2<String, String>, Boolean> longWordFilter =
    new Function<Tuple2<String, String>, Boolean>() {
        public Boolean call(Tuple2<String, String> keyValue) {
            return (keyValue._2().length() < 20);
        }
    };
JavaPairRDD<String, String> result = pairs.filter(longWordFilter);
```

PairRDD Transformation

RDD.mapValues(func)

Table 4-1. Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

Function name	Purpose	Example	Result
mapValues(func)	Apply a function to each value of a pair RDD without changing the key.	<pre>rdd.mapValues(x => x+1)</pre>	{(1, 3), (3, 5), (3, 7)}

```
JavaPairRDD<Integer,Integer> result =
    prdd.mapValues(new Function<Integer, Integer>() {
        @Override
        public Integer call(Integer v1) throws Exception {
        return v1 +1;
    }
});
```

PairRDD Transformation

RDD.reduceByKey(func)

Table 4-1. Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

Function name	Purpose	Example	Result
reduceByKey(func)	Combine values with the same key.	<pre>rdd.reduceByKey((x, y) => x + y)</pre>	{(1, 2), (3, 10)}

```
JavaPairRDD<Integer, Integer> result =
    prdd.reduceByKey(new Function2<Integer, Integer, Integer) {
        @Override
        public Integer call(Integer v1, Integer v2) throws Exception {
            return v1 + v2;
        }
    });</pre>
```

Convert MR Job into Spark Job

- Map() in MR
 - flatmap() + map()/mapToPair()

- Reduce() in MR
 - reduceByKey()
 - groupByKey() + mapValue()

Spark RDD example - Word Count

Labs 4: Word Count(Spark)

- Use flatMap() to split each line into multiple words
 - Use String.split() to generate String array, then use
 Arrays.asList() to create String iterable

- Use mapToPair() to transform word into (word, one) pair
 - return (word, 1) tuple

- Use reduceByKey() to generate (word, count) pair
 - Create Function2 class
 - Implement Integer call(Integer v1, Integer v2)

Spark RDD example

- K-means

Labs 5: K-means (Spark)

- · 分群,計算每個Vector離那一組中心最近
 - Use closestPoint(v, centroids) to find the ID of nearest center,
 then return (ID, Vector) tuple

Spark RDD example

- Page Rank

Labs 6: Page Rank (Spark)

 For each URL, calculate the PR contributed from its neighbor, then add (url, PR) tuple into results list