MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

We now use calculus to solve practical problems.

Challenge: convert word problems into mathematical problems

- understand the problem
- draw a diagram
- introduce notation
- translate the problem to the notation
- use calculus to solve it

A farmer has 2400ft of fencing and wants to fence a rectangular field that borders a straight river. No fence needed along river.

What are the dimensions of the field with the largest area?

Introducing notation:

- ▶ let *h* be the height of the field
- ▶ let *w* be the width (parallel to river)
- let A be the area

What do we know?

$$2400 = 2h + w \implies w = 2400 - 2h$$
 for h in $[0, 1200]$
 $A = hw = h(2400 - 2h) = 2400h - 2h^2$ for h in $[0, 1200]$

A is continuous on [0, 1200], we use the Closed Interval Method:

$$A'(h) = 2400 - 4h$$
 $A'(h) = 0 \iff h = 2400/4 = 600$

The value of A at critical number 600 and the interval ends are:

$$A(0) = 0$$
 $A(600) = 600 \cdot 1200$ $A(1200) = 0$

The dimensions of the field are: 600ft height, 1200ft width.

A cylindrical can is made to hold 1L of oil. Find the dimensions that minimize the cost of the metal to manufacture the can.

Introducing notation:

- ▶ let *h* be the height
- ▶ let *r* be the radius
- let V be the volume
- let A be the surface area

$$V = \pi r^2 h = 1 \implies h = 1/(\pi r^2)$$

$$A = 2\pi r^2 + 2\pi rh = 2\pi r^2 + 2/r$$
 for r in $(0, \infty)$

$$A'(r) = 4\pi r - 2/r^2 = (4\pi r^3 - 2)/r^2$$

$$A'(r) = 0 \iff r = 1/\sqrt[3]{2\pi}$$
 is the only critical number

Cannot use Closed Interval Method since $(0, \infty)$ is not closed.

However, $A(1/\sqrt[3]{2\pi})$ must be the **absolute minimum** since:

- A is decreasing, A'(r) < 0, for all $r < 1/\sqrt[3]{2\pi}$,
- ► A is increasing, A'(r) > 0, for all $r > 1/\sqrt[3]{2\pi}$.

A cylindrical can is made to hold 1L of oil. Find the dimensions that minimize the cost of the metal to manufacture the can.

Introducing notation:

- ▶ let *h* be the height
- ▶ let *r* be the radius
- let V be the volume
- let A be the surface area

$$V = \pi r^2 h = 1 \implies h = 1/(\pi r^2)$$

$$A = 2\pi r^2 + 2\pi rh = 2\pi r^2 + 2/r$$
 for r in $(0, \infty)$

$$A'(r) = 4\pi r - 2/r^2 = (4\pi r^3 - 2)/r^2$$

$$A'(r) = 0 \iff r = 1/\sqrt[3]{2\pi}$$
 is the only critical number

Cannot use Closed Interval Method since $(0,\infty)$ is not closed.

However, $A(1/\sqrt[3]{2\pi})$ must be the **absolute minimum**

Then
$$h = 1/(\pi r^2) = \sqrt[3]{2\pi^2}/\pi = \sqrt[3]{4\pi^2/\pi^3} = 2/\sqrt[3]{2\pi} = 2r$$

Hence radius $r = 1/\sqrt[3]{2\pi}$ and height h = 2r minimizes the cost.

The argument we have used on the last slide is the following:

First Derivative Test for Absolute Extreme Values

Let f be continuous, defined on an open or closed interval. Let c be a critical number of f.

- ▶ If f'(x) > 0 for all x < c, and f'(x) < 0 for all x > c, then f(c) is the absolute maximum of f.
- ▶ If f'(x) < 0 for all x < c, and f'(x) > 0 for all x > c, then f(c) is the absolute minimum of f.

Find the point on the parabola $y^2 = 2x$ that is closest to (1,4).

Introducing notation:

▶ let *d* be the distance of (x, y) to (1, 4)

Then

$$d = \sqrt{(x-1)^2 + (y-4)^2}$$
 $x = y^2/2$

Square root makes derivative complicated. Note that d minimal $\iff d^2$ minimal.

Thus, instead of d we minimize d^2 !

$$f(y) = d^2 = (y^2/2 - 1)^2 + (y - 4)^2$$

$$f'(y) = 2(y^2/2 - 1)y + 2(y - 4) = y^3 - 8$$

$$f'(y) = 0 \iff y = 2$$

Moreover f'(y) < 0 for all y < 2 and f'(y) > 0 for all y > 2.

Thus by the First Derivative Test for Absolute Extrema, f(2) is the absolute minimum. Thus the point (2,2) is closest to (1,4).

A man wants wants to get from point *A* on one side of a 3km wide river to point *B*, 8km downstream on the opposite side. He can row 6km/h and run 8km/h. Where to land to be fastest?

Introducing notation:

- ▶ let C be the landing point
- ▶ let x = downstream distance of A to C

The time for rowing is and running:

$$t_{\text{row}}(x) = (\sqrt{3^2 + x^2})/6$$

 $t_{\text{run}}(x) = (8 - x)/8$

The total time is $t(x) = t_{row}(x) + t_{run}(x)$ for x in [0,8]

$$t'(x) = \frac{x}{6\sqrt{3^2 + x^2}} - \frac{1}{8}$$
 $t'(x) = 0 \iff x = 9/\sqrt{7}$

$$t'(x) = 0 \iff 3\sqrt{3^2 + x^2} = 4x \iff 9(3^2 + x^2) = 16x^2$$
$$\iff 7x^2 = 81 \iff x^2 = 81/7 \iff x = 9/\sqrt{7}$$

A man wants wants to get from point A on one side of a 3km wide river to point B, 8km downstream on the opposite side. He can row 6km/h and run 8km/h. Where to land to be fastest?

Introducing notation:

► let C be the landing point

▶ let x = downstream distance of A to C

The time for rowing is and running:

$$t_{\text{row}}(x) = (\sqrt{3^2 + x^2})/6$$

 $t_{\text{run}}(x) = (8-x)/8$ The total time is $t(x) = t_{\text{row}}(x) + t_{\text{run}}(x)$ for x in [0,8]

$$t'(x) = \frac{x}{6\sqrt{3^2 + x^2}} - \frac{1}{8} \qquad t'(x) = 0 \iff x = 9/\sqrt{7}$$

Now we apply the Closed Interval Method:

$$t(0) = 1.5$$
 $t(9/\sqrt{7}) = 1 + \sqrt{7}/8 \approx 1.33$ $t(8) = \sqrt{73}/6 \approx 1.42$

Thus landing $9/\sqrt{7}$ km downstream is the fastest.

Find the area of the largest rectangle that can be inscribed in a semi-circle circle of radius *r*.

Introducing notation:

- ► let (x, y) be the upper right corner of the rectangle
- ▶ let A be the area

The area is
$$A(x) = 2xy = 2x\sqrt{r^2 - x^2}$$
 for x in $[0, r]$

A is continuous on [0, r], we use the Closed Interval Method:

$$A'(x) = 2\sqrt{r^2 - x^2} + \frac{2x}{2\sqrt{r^2 - x^2}}(-2x) = \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$$
$$A'(x) = 0 \iff x^2 = r^2/2 \stackrel{x \ge 0}{\iff} x = r/\sqrt{2}$$

Note that A(0) = 0 and A(r) = 0. Thus the maximum area is:

$$A(r/\sqrt{2}) = 2\frac{r}{\sqrt{2}}\sqrt{r^2 - \frac{r^2}{\sqrt{2}^2}} = \sqrt{2}r\sqrt{\frac{r^2}{2}} = r^2$$

A store sells 100 blu-ray players per week for 200\$ each. A market survey shows that for each 10\$ discount, the store would sell 40 more players per week. The store buys the players at a price of 150\$ per piece.

What selling price would maximize the profit of the store? Introducing notation:

- ▶ let *x* be the discount
- \blacktriangleright let s be the number of players sold, and p the profit

$$s(x) = 100 + 40 \cdot \frac{x}{10} = 100 + 4x$$

$$p(x) = s(x) \cdot (200 - x - 150) = (100 + 4x) \cdot (50 - x)$$

$$= -4x^{2} + 100x + 5000 \quad \text{for } x \text{ in } [0, 50]$$

$$p'(x) = -8x + 100 \qquad p'(x) = 0 \iff x = 12.5$$

Note that p(x) is continuous, and p(0) = 5000 p(12.5) = 5625 p(50) = 0

By the Closed Interval Method, 12.5\$ discount for maximal profit.

A store sells 100 blu-ray players per week for 200\$ each. A market survey shows that for each 10\$ discount, the store would sell 40 more players per week. The store buys the players at a price of 150\$ per piece.

What selling price would maximize the profit of the store?

By the Closed Interval Method, 12.5\$ discount for maximal profit.