p-adic Lie Group

Peter Sun^{1,2*}

 $^{1*}\mbox{Department}$ of Mathematics, UCLA, Hilgard Ave., Los Angeles, 90095, California, United States.

Corresponding author(s). E-mail(s): jsun100@g.ucla.edu;

Abstract

In this paper we seek to introduce the p-adic Lie groups. We shall first construct the field of p-adic numbers as the completion of the rationals with respect to a non-archimedean metric. We then very briefly develop analysis on the field of p-adic numbers and introduce the notion of locally analytic functions. Then, we can finally introduce analytic manifolds. We will then consider the structure of p-adic Lie groups, its relation to pro-p groups, and the algebraic theory of p-adic Lie groups along with relevant definitions.

To my parents, Zane, and Mr. Nguyen, my high school math teacher.

1 Preliminaries

1.1 p-adic Analysis

Proposition 1.1.1. Let X be an ultrametric space, then every ball in X is open and closed.

Proposition 1.1.2. Let $B, B' \subset X$ be two balls. If $B \cap B' \neq \emptyset$, then $B' \subset B$ or $B \subset B'$.

Remark 1.1.3 (Total disconnectedness). A connected ultrametric space contains at most one point.

Definition 1.1.4 (Spherical complete). Let (X, d) be an ultrametric space. It is called **spherical complete** if for every descending chain of balls $B_1 \supseteq B_2 \supseteq \ldots$ in X their intersection is non-empty.

Proposition 1.1.5. A spherically complete ultrametric space is complete.

Proposition 1.1.6. Let X be a complete ultrametric space. If 0 is the only accumulation point of $d(X \times X) \subseteq \mathbb{R}^{\geq 0}$, then X is spherical complete.

Definition 1.1.7 (Non-archimedean absolute value). Let K be a field. A non-archimedean absolute value on K is a function

$$|\cdot|:K\to\mathbb{R}$$

satisfying the following properties:

- 1. $|a| \ge 0$,
- 2. $|a| = 0 \iff a = 0$,
- $3. |ab| = |a| \cdot |b|,$
- 4. $|a+b| \leq \max\{|a|,|b|\}.$

A field $(K, |\cdot|)$ is called **non-archimedean** if $|\cdot|$ is non-archimedean and

- 1. $|\cdot|$ is non-trivial
- 2. K is complete with respect to the metric d(a,b) = |b-a|.

Definition 1.1.8 (Field of p-adic numbers). Let $p \in \mathbb{Z}^+$ be a prime number. We can define

$$|a|_p:=p^{-r} \ \text{if} \ a=p^r\frac{m}{n} \ \text{with} \ r,m,n\in \mathbb{Z} \ \text{and} \ p \not|\! mn,$$

which is a non-archimedean absolute value on \mathbb{Q} . The completion of \mathbb{Q} under the corresponding metric is called the **field of** p-adic numbers, which we denote \mathbb{Q}_p . It follows from Lemma 1.8 that \mathbb{Q}_p is spherically complete.

Lemma 1.1.9. If K is p-adic, then

$$|n| \ge |n!| \ge |p|^{\frac{n-1}{p-1}}$$

for all $n \in \mathbb{N}$.

Definition 1.1.10. A (non-archimedean) norm on V is a function $\|\cdot\|:V\to\mathbb{R}$ satisfying:

1. ||av|| = |a| ||v||,

- 2. $||v + w|| \le \max(||v||, ||w||)$,
- 3. $||v|| = 0 \implies v = 0$.

for all $v, w \in V, a \in K$.

Definition 1.1.11. Let V be a normed K-vector space with norm $\|\cdot\|$. Then, V is called a K-Banach space wf V is complete with respect to the metric $d(v,w) = \|w - v\|$.

Definition 1.1.12. Let V, W be two normed K-vector spaces. Let $\mathcal{L}(V, W)$ be the set of continuous functions from V to W, and let

$$\begin{split} \|f\| &:= \sup \left\{ \|f\left(v\right)\| : \|v\| = 1 \right\} \\ &= \sup \left\{ \frac{\|f\left(v\right)\|}{\|v\|} : v \neq 0 \right\} \\ &= \inf \left\{ C : \|f\left(v\right)\| \leq C \, \|v\| \ \ for \ all \ v \in V \right\}. \end{split}$$

It is clear that $\mathcal{L}(V, W)$ equipped with the operator norm is a normed K-vector space. We also see that W is K-Banach $\Longrightarrow \mathcal{L}(V, W)$ is K-Banach.

Lemma 1.1.13. Let K be a fixed non-archimedean field with norm $|\cdot|$ and $(V, ||\cdot||)$ a K-Banach space. Let $(v_i)_{i\in\mathbb{N}}$ be a sequence in V. Then

- 1. $\sum_{i=1}^{\infty} v_i \ converges \iff \lim_{i \to \infty} v_i = 0$
- 2. If $\lim_{i\to\infty} v_i$ exists and equals $v\neq 0$, then $||v_i|| = ||v||$ for almost every $i\in\mathbb{N}$.
- 3. Rearrangement of convergent series is convergent and converges to the same limit.

Definition 1.1.14 (Differentiability). Let V, W be two normed K-vector spaces. Let $U \subset V$ be an open set. Let $f: U \to W$ be a map. We say that f is **differentiable** at $v_0 \in U$ if there is a continuous linear map

$$D_{v_0}f:V\to W$$

satisfying for any $\epsilon > 0$ there is $U_{\epsilon} \ni v_0$ open such that

$$||f(v) - f(v_0) - D_{v_0} f(v - v_0)|| \le \epsilon ||v - v_0||$$

for all $v \in U_{\epsilon}$. Moreover, such a continuous linear map is unique.

Remark 1.1.15. The usual rules of differentiability applies.

Definition 1.1.16 (Strict differentiability). A map $f: V \to W$ is said to be **strictly differentiable** at $v_0 \in U$ if there exists a continuous linear map $D_{v_0}f: V \to W$ such that for all $\epsilon > 0$ there is $U_{\epsilon} \ni v_0$ with

$$||f(v_1) - f(v_2) - D_{v_0} f(v_1 - v_2)|| \le \epsilon ||v_1 - v_2||$$

for all $v_1, v_2 \in U_{\epsilon}$.

Definition 1.1.17 (Power series). We define f(X), a power series in r variables $X = (X_1, \ldots, X_r)$ with coefficients in V, to be

$$f(X) = \sum_{\alpha \in \mathbb{N}_0^r} X^{\alpha} v_{\alpha}$$

with $v_{\alpha} \in V$. We let $X^{\alpha} := X_1^{\alpha_1} \cdots X_r^{\alpha_r}$ and $|\alpha| = \alpha_1 + \ldots + \alpha_r$. We say that $f(X) = \sum_{\alpha} X^{\alpha} v_{\alpha}$ is ϵ -convergent if

$$\lim_{|\alpha| \to \infty} \epsilon^{|\alpha|} \|v_{\alpha}\| = 0.$$

1.2 Manifolds

Let $(K, |\cdot|)$ be a fixed non-archimedean field. Let M be a Hausdorff topological space. **Definition 1.2.1** (Coordinate chart). A coordinate chart for M is a pair (U, φ) for $U \subseteq M$ open and $\varphi: U \to \varphi(U) \subset K^n$ homeomorphism. We call U a coordinate domain or coordinate neighbourhood. We say that φ is a coordinate map. Let $(U, \varphi), (V, \phi)$ be two charts. Then we say that say that they are compatible if $\phi \circ \varphi^{-1}: \varphi(U \cap V) \to \varphi(U \cap V)$ and $\varphi \circ \varphi^{-1}: \varphi(U \cap V) \to \varphi(U \cap V)$ are locally analytic. It is clear that if two compatible charts overlap, then they are locally euclidean with the same dimension.

Definition 1.2.2 (Atlas). By an **atlas** for M we mean a set $\mathcal{A} = \{(U, \varphi)\}$ of charts for M such that any two charts in \mathcal{A} are compatible. We say that two atlases are equivalent if their union is also an atlas for M. We say that an atlas \mathcal{A} is **maximal** if for all \mathcal{B} equivalent to \mathcal{A} we have that $\mathcal{B} \subset \mathcal{A}$.

Charts with empty intersection are automatically compatible. One can check that the definition for equivalence defines an equivalence relation.

Proposition 1.2.3. If A is maximal for M, then the coordinate neighbourhoods form a basis for the topology on M.

Definition 1.2.4 (Dimension of an atlas). We say that an atlas A is n-dimensional if all the charts in A has dimension n.

Definition 1.2.5 (Analytic manifolds). A locally analytic manifold (over K) is a pair (M, A), where M is a Hausdorff, second-countable topological space equipped with a maximal n-dimensional atlas A. We say that a function $f: M \to E$ is locally analytic if $f \circ \varphi^{-1}$ is analytic for all charts (U, φ) for M, where E is a K-Banach space. An analytic map can be defined similarly.

Definition 1.2.6. Let X be a topological space. We say that an open covering $\bigcup_{i \in I} U_i$ for X is **locally finite** if for every $x \in X$ there is $U \ni x$ such that $\#\{i \in I : U \cap U_i \neq 0\} < \infty$. We say that X is **paracompact** (respectively strictly paracompact), if any open covering can be refined to a locally finite covering (respectively which consists of pairwise disjoint open subsets).

We see that any ultrametric space is strictly paracompact.

Proposition 1.2.7. Let M be a manifold, then the following are equivalent:

1. M is paracompact,

- 2. M is strictly paracompact,
- 3. The topology of M can be defined by a metric satisfying the strict triangle inequality.

Definition 1.2.8 (Tangent bundle). Let M be a manifold, let T_pM denote the tangent space of M at $p \in M$. Then, we define

$$TM := \coprod_{p \in M} T_p M.$$

One can check routinely that TM is an analytic manifold.

Definition 1.2.9 (Vector field). Let $U \subset M$ be open. We define a **vector field** ξ to be a locally analytic map $\xi: U \to T(M)$ satisfying $\pi \circ \xi = \mathrm{id}_U$. We denote by

$$\Gamma\left(U,T\left(M\right)\right)$$

to be the set of all vector fields on U.

1.3 Lie Groups

Definition 1.3.1. A **Lie Group** over K is a group that is also an analytic manifold with multiplication $\cdot: G \times G \to G$ such that

is locally analytic.

Clearly left and right multiplication by an element $g \in G$ are locally analytic isomorphisms of manifolds.

Proposition 1.3.2. Every continuous homomorphism between p-adic lie groups is analytic. Thus, for a given topological group there is at most one p-adic Lie groups structure.

One can see that p-adic Lie groups are totally disconnected. This means that the Lie algebra determines the Lie group locally around the identity.

Definition 1.3.3 (Lie group germ). We define $G_{\epsilon} := B_{\epsilon}(0) \subset K^d \cong \mathfrak{g}$. We also define $\{G_{\epsilon}\}_{\epsilon}$ to be the **Campbell-Hausdorff Lie group germ** of \mathfrak{g} , where \mathfrak{g} is a Lie algebra.

Theorem 1. [1] Lie $(G_{\epsilon}) \cong \mathfrak{g}$ as Lie algebras.

Proof. Let $c := (G_{\epsilon}, \subseteq, K^d)$ be a chart for G_{ϵ} with the analytic isomorphism

$$\varphi_c: G_\epsilon \times K^d \xrightarrow{\cong} TG_\epsilon,$$

with the corresponding linear isomorphism

$$C^{\operatorname{an}}\left(G_{\epsilon},K^{d}\right)\longrightarrow\Gamma\left(G_{\epsilon},TG_{\epsilon}\right)$$
$$f\longmapsto\xi_{f}\left(g\right)=\left[c,f\left(g\right)\right].$$

We have the Lie bracket of vector fields

$$[f_1, f_2](g) = D_g f_1(f_2(g)) - D_g f_2(f_1(g))$$

and

$$T_0\left(G_{\epsilon}\right) \to \Gamma\left(G_{\epsilon}, TG_{\epsilon}\right),$$

which induces the Lie bracket on $Lie\left(G_{\epsilon}\right)=T_{0}G_{\epsilon}.$ We have the commutative diagram

$$\begin{array}{c} K^{d} \xrightarrow{D_{0}r_{g}} K^{d} \\ \downarrow \cong & \downarrow \cong \\ T_{0}G_{\epsilon} \xrightarrow{d(r_{g})_{0}} T_{g}\left(\epsilon\right). \end{array}$$

Let $f_v(g) = D_0 r_g(v)$. We get that

$$\xi_{[c,v]}(g) = d(r_g)_0([c,v]) = [c, D_0 r_g(v)] = \xi_{f_v(g)}.$$

This gives us another commutative diagram

$$K^{d} \xrightarrow{r \mapsto f_{v}} C^{\mathrm{an}} \left(G_{\epsilon}, K^{d}\right)$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$T_{0}G_{\epsilon} \xrightarrow{t \mapsto \xi_{t}} \Gamma\left(G_{\epsilon}, TG_{\epsilon}\right).$$

Let [,]'' be the Lie bracket on K^d , corresponding to the Lie bracket of the Lie algebra Lie $(G_{\epsilon}) = T_0 G_{\epsilon}$. Then, we have that

$$f_{[v,w]''} = [f_v, f_w]$$

for all $v, w \in K^d$. We see that

$$f_v(0) = v$$

and

$$[v, w]'' = [f_v, f_w] (0)$$

= $D_0 f_v (w) - D_0 f_w (v)$.

Now, we need to show that $[\ ,\]'=[\ ,\]''.$ To do this we need the following identity

$$r_{q}(h) = \underline{H}(h,g),$$

where

$$\underline{H}(\underline{Y},\underline{Z}) := (H_{(1)}(\underline{Y},\underline{Z}), \dots, H_{(d)}(\underline{Y},\underline{Z}))$$

is the tuple of formal power series in 2d variables (with abuse of notation). We have that

$$H_{(i)} = Z_i + \sum_{j=1}^d P_{(i,j)} \left(\underline{Z}\right) Y_j + \dots$$

Then

$$d\left(r_{g}\right)_{0} = \left(\frac{\partial H_{\left(i\right)}\left(\underline{Y}\right), g}{\partial Y_{i}}|_{\underline{Y}=0}\right) = \left(P_{i, j}\left(g\right)\right)_{i, j}$$

and

$$f_v(g) = d(r_g)_0(v) = \left(\sum_{j=1}^d v_j P_{(1,j)}(g), \dots, \sum_{j=1}^d v_j P_{d,j}(g)\right), v \in K^d.$$

Then, we see that

$$P_{(i,j)}(\underline{Z}) = \delta_{ij} + \frac{1}{2} \sum_{k=1}^{d} \gamma_{jk}^{i} Z_{k} + \dots$$

Then, we have that

$$\frac{\partial P_{(i,j)(\underline{Z})}}{\partial Z_k}|_{\underline{Z}=0} = \frac{1}{2}\gamma^i_{jk},$$

where $\gamma_{ij}^k \in K$ is defined by

$$[e_i, e_j] = \sum_{k=1}^d \gamma_{ij}^k e_k.$$

Lastly, we have that

$$D_0\left(f_v\right) = \left(\frac{1}{2} \sum_{j=1}^d \gamma_{jk}^i v_j\right)_{i,k}$$

and

$$D_0(f_v)(w) = \left(\frac{1}{2} \sum_{j,k=1}^d \gamma_{jk}^1 v_j w_k, \dots, \frac{1}{2} \sum_{j,k=1}^d \gamma_{jk}^d v_j w_j\right) = \frac{1}{2} [v, w]'.$$

Lastly, we have that

$$[v, w]'' = D_0 f_v(w) - D_0 f_w(v) = \frac{1}{2} [v, w]' - \frac{1}{2} [w, v]' = [v, w]'.$$

2 The Algebraic Theory of p-adic Lie Groups

2.1 Introduction

Let \mathcal{O} be a complete discrete valuation ring with field of fractions K. Let π be a prime element in \mathcal{O} . We see that $\mathcal{O} = \varprojlim_m \mathcal{O}/\pi^m \mathcal{O}$ as a topological ring.

Definition 2.1.1 (Profinite group). A profinite group is a Hausdorff, compact, totally disconnected topological group.

Definition 2.1.2 (Projective limit). Let (I, \leq) be a directed, partially ordered set. Let $((A_i)_{i\in I}$ be groups and $f_{ij}: A_j \to A_i$ be homomorphisms for all $i \leq j$ such that

- 1. $f_{ii} = id_{A_i}$.
- 2. $f_{ik} = f_{ij} \circ f_{jk}$ for all $i \leq j \leq k$.

We call $((A_i)_{i\in I}, (f_{ij})_{i\leq j})$ an **inverse system** of groups. We call the homomorphisms f_{ij} **transition morphisms**. Now, we can define the **inverse limit** of $((A_i)_{i\in I}, (f_{ij})_{i\leq j})$ as follows:

$$A = \lim_{i \in I} A_i = \left\{ \left(a_1, a_2, \dots, \right) \in \prod_{i \in I} A_i : a_i = f_{ij} \left(a_j \right), i, j \in I, i \leq j \right\}.$$

Definition 2.1.3. Let $\mathcal{N}(G)$ be the set of open normal subgroups in G. Now, we have that

$$G = \varprojlim_{N \in \mathcal{N}(G)} G/N$$

the projective limit of finite groups G/N.

Definition 2.1.4 (Group ring). Let (G, \cdot) be a multiplicative group, and let $(R, +, \cdot)$. We define the group ring G over r, denoted by R[G], to be the set of maps $f: G \to R$ such that f is zero except for finitely many $g \in G$. We define cf to be the map $x \mapsto cf(x)$, $c \in R$. We also define addition of f, g to be the map $x \mapsto f(x) + g(x)$. We define fg to be

$$x\mapsto\sum_{uv=x}f\left(u\right)g\left(v\right)=\sum_{u\in G}f\left(u\right)g\left(u^{-1}x\right).$$

One can check that this makes R[G] into a free module over R and a ring. We also have the projective system of rings for $\mathcal{O}[G/N]$. Now, define

$$\Lambda\left(G\right):=\mathcal{O}\left[\left[G\right]\right]:=\varprojlim_{N\in\mathcal{N}\left(G\right)}\mathcal{O}\left[G/N\right]$$

the completed group ring or Iwasawa algebra of G over \mathcal{O} .

One can see immediately that $\mathcal{O}[G] \to \Lambda(G)$ is a natural inclusion. Thus, we can view $\mathcal{O}[G]$ as a subring of $\Lambda(G)$. Since $\mathcal{O}[G/N]$ is finitely generated and are free \mathcal{O} -modules, we see that they are complete topological \mathcal{O} -algebra with respect to the π -adic topology. One can see that

$$J_{m,N}\left(G\right):=\ker\left(\Lambda\left(G\right)\overset{\mathrm{pr}}{\longrightarrow}\left(\mathcal{O}/\pi^{m}\mathcal{O}\right)\left[G/N\right]\right)$$

for $m \geq 1$, $N \in \mathcal{N}(G)$ forms a basis of open neighborhoods around zero.

2.2 p-Valued Pro-p-Groups

Definition 2.2.1 (p-valuation). Let G be a group. We say that $\omega: G \setminus \{1\} \to (0,\infty)$ is a p-valuation on G if

- $$\begin{split} &1. \ \omega\left(g\right) > \frac{1}{p-1}, \\ &2. \ \omega\left(g^{-1}h\right) \geq \min\left(\omega\left(g\right), \omega\left(h\right)\right), \\ &3. \ \omega\left(\left[g,h\right]\right) = \omega\left(ghg^{-1}h^{-1}\right) \geq \omega\left(g\right) + \omega\left(h\right), \\ &4. \ \omega\left(g^{p}\right) = \omega\left(g\right) + 1 \end{split}$$

for all $g, h \in G$. We suppose by convention that $\omega(1) = \infty$.

Remark 2.2.2. One can see that

$$\omega\left(g\right) = \omega\left(g^{-1}\right)$$

by setting h = 1 in 2. We also have that

$$\omega\left(ghg^{-1}\right) = \omega\left(\left[g,h\right]h\right) \ge \min\left(\omega\left(\left[g,h\right]\right),\omega\left(h\right)\right) \ge \min\left(\omega\left(g\right) + \omega\left(h\right),\omega\left(h\right)\right) = \omega\left(h\right).$$

Thus, we see that $\omega\left(ghg^{-1}\right)=\omega\left(h\right)$. One can also show that if $\omega\left(g\right)>\omega\left(h\right)$, then $\omega(gh) = \omega(h)$. Thus, we see that

$$\omega(gh) = \min(\omega(g), \omega(h)) \text{ for } \omega(g) \neq \omega(h).$$

Now, we define

$$G_{\nu} := \{ g \in G : \omega(g) \ge \nu \}$$

and

$$G_{\nu+} := \{ g \in G : \omega(g) > \nu \}$$

for any $\nu \in \mathbb{R}^{\geq 0}$. One can readily check that these are normal subgroups of G. One can show that $G_{\nu}/G_{\nu+}$ is a central subgroup of $G/G_{\nu+}$.

Proposition 2.2.3. For all $g, h, k \in G$ we have that

- $$\begin{split} &1. \;\; [gh,k] = g \; [h,k] \; g^{-1} \; [g,k], \\ &2. \;\; [g,hk] = [g,h] \; h \; [g,k] \; h^{-1}, \\ &3. \;\; \left[[g,h] \, , hkh^{-1} \right] \left[[h,k] \, , kgk^{-1} \right] \left[[k,g] \, , ghg^{-1} \right] = 1. \end{split}$$

We will omit the routine check here.

Now, we define

$$\operatorname{gr}_{\nu} G := G_{\nu}/G_{\nu+},$$

which is commutative by 3 above. We can also define

$$\operatorname{gr} G := \bigoplus_{\nu>0} \operatorname{gr}_{\nu} G.$$

We say that $\xi \in \operatorname{gr} G$ is homogeneous of degree ν if it likes in $\operatorname{gr}_{\nu} G$. We say that g is a **representative** of ξ if g is such that $\xi = gG_{\nu+}$. We see that $p\xi = 0$ for any homogeneous $\xi \in \operatorname{gr} G$, so $\operatorname{gr} G$ is an F_p -vector space.

Lemma 2.2.4. The map

$$\operatorname{gr}_{\nu} G \times \operatorname{gr}_{\nu'} G \longrightarrow \operatorname{gr}_{\nu+\nu'} G$$

 $(\xi, \eta) \longmapsto [\xi, \eta] := [g, h] G_{(\nu+\nu')+}$

for $\nu, \nu' > 0, g, h$ representatives of ξ, η , is a well-defined bi-additive map. One has that $[\xi, \xi] = 0, [\xi, \eta] = -[\eta, \xi]$.

Thus, we have a graded \mathbb{F}_p -bilinear map

$$[,]: \operatorname{gr} G \times \operatorname{gr} G \to \operatorname{gr} G$$

satisfying the Jacobi Identity and

$$[\xi,\xi]=0$$

for all $\xi \in \operatorname{gr} G$

Remark 2.2.5. One can show that the map

$$\operatorname{gr}_{\nu} G \to \operatorname{gr}_{\nu+1} G$$

taking

$$gG_{\nu+} \mapsto g^p G_{(\nu+1)+}$$

is well-defined and \mathbb{F}_p -linear. Thus, we have a map

$$P: \operatorname{gr} G \to \operatorname{gr} G$$

and we may consider gr G as a graded module over $\mathbb{F}_p[P]$ in variable P.

Definition 2.2.6 (Rank). We say that (G, ω) is of **finite rank** if $\operatorname{gr} G$ is finitely generated as an $\mathbb{F}_p[P]$ -module.

Lemma 2.2.7. [1] (G, ω) is saturated $\iff P(\operatorname{gr} G) = \bigoplus_{\nu > \frac{p}{n-1}} \operatorname{gr}_{\nu} G$.

Lemma 2.2.8. [1] Let (G, ω) be of finite rank. Then, we see that the subgroups G^{p^n} forms basis for the open neighborhoods of $e \in G$ and

$$\operatorname{rank}\left(G,\omega\right)=\lim_{n\to\infty}\frac{v\left(\left[G:G^{p^{n}}\right]\right)}{n}.$$

Theorem 2. [1] Let G be a p-adic Lie group, then there exists $G' \subseteq G$ compact, open subgroup and ω integral p-valuation on G' defining the topology of G' s.t.

- 1. (G', ω) is saturated;
- 2. rank $G' = \dim G$.

Proof. Let d be the dimension of G, let $c = (U, \varphi, \mathbb{Q}_p^d)$ be a chart around $e \in G$. Normalize φ so that $\varphi(e) = 0$. Since m_G is continuous, we can find an open neighborhood $V \subset U$ of e small enough so that the image of $V \times V$ is contained in U. Then we see that restricting φ to V gives us another chart $(V, \varphi|_V, \mathbb{Q}_p^d)$ around e. We see that

$$\varphi \circ m_G \circ (\varphi^{-1} \times \varphi^{-1}) : \varphi(V) \times \varphi(V) \to \varphi(U)$$

is locally analytic and given by (F_1, \ldots, F_d) , where

$$F_{i}(X,Y) = \sum_{\alpha,\beta} c_{i,\alpha,\beta} X^{\alpha} Y^{\beta}$$

with coefficients in \mathbb{Q}_p . Let n > 0 be large enough so that

- 1. $p^{n}\mathbb{Z}_{p}^{d} \subset \varphi(V)$, 2. $\lim_{|\alpha|+|\beta|\to\infty} \left(v\left(c_{i,\alpha,\beta}+n\left(|\alpha|+|\beta|\right)\right)\right)=\infty$ for all $1\leq i\leq d$, 3. $\left(F_{1}\left(x,y\right),\ldots,F_{d}\left(x,y\right)\right)=\varphi\left(\varphi^{-1}\left(x\right)\varphi^{-1}\left(y\right)\right)$ for all $x,y\in p^{n}\mathbb{Z}_{p}^{d}$.

For n large, we also have that

$$v\left(c_{i,\alpha,\beta}\right) + n\left(|\alpha| + |\beta|\right) \ge n$$

for all α, β . Thus, for n large, we have that $\varphi^{-1}\left(p^n\mathbb{Z}_p^d\right)$ are compact, open, and multiplicatively closed subsets in G. Applying the argument above to the inverse map, we can see that $\varphi^{-1}p^n\mathbb{Z}_p^d$ are subgroups of G for n large. We normalize φ to $\psi:=p^{-n}\varphi$ for n large so that the coefficients $c_{i,\alpha,\beta} \in \mathbb{Z}_p$. Thus, $g \mapsto g^p$ and $(g,h) \mapsto [g,h]$ are also locally analytic converging on \mathbb{Z}_p^d with coefficients in \mathbb{Z}_p . NOw, set

$$G' := \psi^{-1} \left(p^2 \mathbb{Z}_p^d \right)$$

$$\omega\left(g\right):=l+\delta$$

for $g \in \psi^{-1}\left(p^{l+1}\mathbb{Z}_p^d\right) \setminus \psi^{-1}\left(p^{l+2}\mathbb{Z}_p^d\right)$ and

$$\delta = \begin{cases} 1 & p = 2 \\ 0 & p \neq 2. \end{cases}$$

One can check that ω is a p-valuation. Now, we see that for all $l \in \mathbb{N}$ we have that $P: \operatorname{gr}_{l+\delta} G' \to \operatorname{gr}_{l+\delta+1} G'$ is a bijection, which implies that $\operatorname{gr} G'$ is finitely generated by $\operatorname{gr}_{1+\delta} G'$. Thus, we can see by previous lemma that (G',ω) is saturated. Proceeding with the calculation, we see that

$$\operatorname{rank} G = \lim_{n \to \infty} \frac{v\left(\left[G' : G'^{p^n}\right]\right)}{n}$$

$$= \lim_{n \to \infty} \frac{v\left(G' : G'_{n+1+\delta}\right)}{n}$$

$$= \lim_{n \to \infty} \frac{dn}{n}$$

$$= d.$$

References

- [1] Peter Schneider "p-adic Lie Groups", Springer Berlin 2011
- $[2]\,$ Helge Glockner "Lectures on Lie groups over local fields", arxiv 2016
- $[3]\,$ John M. Lee "Introduction to Smooth Manifolds", Springer New York 2012