NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Poh Wei Shan Charlotte

MA3110 Mathematical Analysis II AY 2007/2008 Sem 1

Question 1

(a)
$$a_0 = 1$$
, $a_1 = \frac{2}{5}$, $a_2 = \frac{36}{25}$, $a_3 = \frac{8}{125}$, $a_4 = \frac{1296}{625}$

(b)

$$\frac{a_{n+1}}{a_n} = \begin{cases} \frac{2}{5} \left(\frac{1}{3}\right)^n & \text{for even } n \\ \frac{6}{5} \cdot 3^n & \text{for odd } n. \end{cases}$$

 \therefore lim sup $\left|\frac{a_{n+1}}{a_n}\right| = \infty$ and lim inf $\left|\frac{a_{n+1}}{a_n}\right| = 0$.

(c)

$$(a_n)^{\frac{1}{n}} = \begin{cases} \frac{6}{5} & \text{for even } n\\ \frac{2}{5} & \text{for odd } n. \end{cases}$$

 $\therefore \lim \sup (a_n)^{\frac{1}{n}} = \frac{6}{5} \text{ and } \lim \inf (a_n)^{\frac{1}{n}} = \frac{2}{5}.$

(d) Radius of Convergence = $\frac{1}{\lim \sup |a_n|^{\frac{1}{n}}} = \frac{5}{6}$.

When $x = -\frac{5}{6}$, the series become $\sum_{n=0}^{\infty} \left(-\frac{4+(-1)^n 2}{6}\right)^n$.

The even terms of the series are 1, hence the series does not converge by the nth-term divergence test.

Similarly, the series does not converge for $x = \frac{5}{6}$. Interval of Convergence $= (-\frac{5}{6}, \frac{5}{6})$.

Question 2

(a) For $x \in (0, \infty)$,

$$\left| \frac{x^n \cos \frac{n\pi}{x}}{(1+2x)^n} \right| \le \left| \frac{x^n}{(1+2x)^n} \right|$$

$$\le \left| \frac{x^n}{(2x)^n} \right|$$

$$= \left(\frac{1}{2} \right)^n.$$

 $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$ is a geometric series which converges. Hence, by the Weierstrass-M test, $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on $(0,\infty)$.

(b) $\forall n \in \mathbb{N}, f_n \text{ is continuous on } (0, \infty) \text{ and from (a)}, \sum_{n=1}^{\infty} f_n \text{ converges uniformly on } (0, \infty) \text{ to } f.$ By the theorem on preservation of continuity on series of functions, f is continuous. Therefore,

$$\lim_{x \to 1} f(x) = f(1)$$

$$= \sum_{n=1}^{\infty} f_n(1)$$

$$= \sum_{n=1}^{\infty} \frac{\cos n\pi}{3^n}$$

$$= \sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n$$

$$= \frac{-\frac{1}{3}}{1 - (-\frac{1}{3})}$$

$$= -\frac{1}{4}.$$

(c) $\forall m \in \mathbb{N}, \sum_{n=1}^{m} f_n(x)$ is a finite sum of functions (hence we have the "limit of sum = sum of limits"). Therefore,

$$\lim_{x \to \infty} \sum_{n=1}^{m} f_n(x) = \sum_{n=1}^{m} \lim_{x \to \infty} f_n(x)$$

$$= \sum_{n=1}^{m} \lim_{x \to \infty} \frac{x^n \cos \frac{n\pi}{x}}{(1+2x)^n}$$

$$= \sum_{n=1}^{m} \left(\frac{1}{2}\right)^n$$

$$= \frac{\frac{1}{2}(1-(\frac{1}{2})^m)}{1-\frac{1}{2}}$$

$$= 1 - \frac{1}{2m}.$$
(1)

Note that (1) is obtained using the proof in (a) and Squeeze Theorem.

(d) Define $B_m = 1 - \frac{1}{2^m} \ \forall m \in \mathbb{N}$.

From (a), $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly to $f: \forall \varepsilon > 0, \exists N_1 \in \mathbb{N}$ such that $\forall x \in (0, \infty)$

$$\left| \sum_{n=1}^{m} f_n(x) - f(x) \right| < \frac{\varepsilon}{3} \text{ whenever } m > N_1 - (*)$$

 $\lim_{m\to\infty} B_m = 1 : \forall \varepsilon > 0, \exists N_2 \in \mathbb{N} \text{ such that}$

$$|B_m - 1| < \frac{\varepsilon}{3}$$
 whenever $m > N_2$. — (\triangle)

From (c), for each $m \in \mathbb{N}$, $\lim_{x\to\infty} \sum_{n=1}^m f_n(x) = B_m : \forall \varepsilon > 0, \exists M_m > 0$ such that

$$\left| \sum_{n=1}^{m} f_n(x) - B_m \right| < \frac{\varepsilon}{3} \text{ whenever } x > M_m. \quad (\blacktriangle)$$

Hence, $\forall \varepsilon > 0$, $\exists N = \max\{N_1, N_2\}$ such that (*) and (\triangle) are satisfied. Next, choose an m > N, then $\exists M_m > 0$ such that (\blacktriangle) is satisfied.

Therefore, $\forall \varepsilon > 0$, $\exists M = M_m > 0$ such that whenever x > M,

$$|f(x) - 1| = |f(x) - \sum_{n=1}^{m} f_n(x) + \sum_{n=1}^{m} f_n(x) - B_m + B_m - 1|$$

$$\leq |f(x) - \sum_{n=1}^{m} f_n(x)| + |\sum_{n=1}^{m} f_n(x) - B_m| + |B_m - 1|$$

$$< \varepsilon.$$

Question 3

(a) Let $F(x) = \int_a^x f(u) \ du$ for $x \in [a, b]$.

By the Fundamental Theorem of Calculus, since f is continuous on [a, b], F is differentiable on [a, b] and $F'(x) = f(x) \ \forall x \in [a, b].$

By the Mean Value Theorem for derivatives, $\exists y_0 \in (a,b)$ such that

$$F(b) - F(a) = F'(y_0)(b - a)$$

$$\therefore \int_a^b f = f(y_0)(b - a).$$

(b) What we want to show: $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}$ such that $\forall x \in [a, b],$

$$|l_n(x) - F(x)| < \varepsilon$$
 whenever $n \ge N(\varepsilon)$.

What we have:
$$F(x) = \sum_{k=0}^{n-1} \int_{x+\frac{k}{n}}^{x+\frac{k+1}{n}} f(t) dt$$
.

Since f is continuous on \mathbb{R} , $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}$, f is continuous on $[x + \frac{k}{n}, x + \frac{k+1}{n}]$. Therefore, from (a), $\forall n \in \mathbb{N}, \exists x_n \in [x + \frac{k}{n}, x + \frac{k+1}{n}]$ such that

$$\int_{x+\frac{k}{n}}^{x+\frac{k+1}{n}} f(t) dt = f(x_n) \left(\left(x + \frac{k+1}{n} \right) - \left(x + \frac{k}{n} \right) \right)$$
$$= \frac{1}{n} f(x_n).$$

In addition, since f is continuous on \mathbb{R} , $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$ such that $\forall x \in \mathbb{R}$,

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \delta(\varepsilon)$.

Using all the above, we can start our proof.

 $\forall \varepsilon > 0$, we choose $N(\varepsilon) \in \mathbb{N}$ such that $N(\varepsilon) > \frac{1}{\delta(\varepsilon)}$. Then $\forall x \in [a, b], \forall n \geq N(\varepsilon)$,

$$|l_n(x) - F(x)| = \left| \sum_{k=0}^{n-1} \frac{1}{n} f(x + \frac{k}{n}) - \sum_{k=0}^{n-1} \int_{x + \frac{k}{n}}^{x + \frac{k+1}{n}} f(t) dt \right|$$

$$= \left| \sum_{k=0}^{n-1} \left(\frac{1}{n} f(x + \frac{k}{n}) - \int_{x + \frac{k}{n}}^{x + \frac{k+1}{n}} f(t) dt \right) \right|$$

$$= \frac{1}{n} \left| \sum_{k=0}^{n-1} \left(f(x + \frac{k}{n}) - f(x_n) \right) \right|$$

$$\leq \frac{1}{n} \sum_{k=0}^{n-1} \left| \left(f(x + \frac{k}{n}) - f(x_n) \right) \right|$$

$$< \frac{1}{n} \sum_{k=0}^{n-1} \varepsilon$$

$$= \varepsilon$$

$$(2)$$

The inequality (2) is due to the definition of the continuity of f on \mathbb{R} . Since $n \geq N(\varepsilon)$, then $n > \frac{1}{\delta(\varepsilon)}$. Since $x_n \in [x + \frac{k}{n}, x + \frac{k+1}{n}]$, we have $|(x + \frac{k}{n}) - x_n| < \frac{1}{n} < \delta(\varepsilon)$. Therefore the inequality holds.

Note that $N(\varepsilon)$ is dependent on $\delta(\varepsilon)$ which is only dependent on ε .

Thus we have proved that $l_n(x)$ converges uniformly to F(x).

Question 4

(a) To solve for local extrema, we will solve for f'(x) = 0.

$$f'(x) = 3x^2 - a \Longrightarrow x = \pm \sqrt{\frac{a}{3}}.$$

For $x = \sqrt{\frac{a}{3}}$, $f''(x) = 6x > 0$. For $x = -\sqrt{\frac{a}{3}}$, $f''(x) < 0$.

Therefore, f has a local maximum at $x=-\sqrt{\frac{a}{3}}$ where $f(-\sqrt{\frac{a}{3}})=b+\frac{2a}{3}\sqrt{\frac{a}{3}}$ and has a local minimum at $x=\sqrt{\frac{a}{3}}$ where $f(\sqrt{\frac{a}{3}})=b-\frac{2a}{3}\sqrt{\frac{a}{3}}$.

(b) Let $x_1 < x_2 < x_3 \in \mathbb{R}$ be the 3 real roots of f(x) = 0.

Then by Rolle's Theorem, $\exists c \in (x_1, x_2)$ and $d \in (x_2, x_3)$ such that f'(c) = f'(d) = 0.

Note that a cannot be less than 0, otherwise from (a), $f'(x) = 3x^2 - a \neq 0 \ \forall x \in \mathbb{R}$. a also cannot be equal to 0, otherwise $f'(x) = 3x^2 - a = 0$ will only have one real root but $c \neq d$. Therefore, a > 0 and using (a), we have $c = -\sqrt{\frac{a}{3}}$ and $d = \sqrt{\frac{a}{3}}$.

Hence, we want to show that $f(-\sqrt{\frac{a}{3}}) > 0$ and $f(\sqrt{\frac{a}{3}}) < 0$. We will only prove the first inequality and the second one is similar.

Firstly, $f(-\sqrt{\frac{a}{3}}) \neq 0$ as there are only 3 real roots, x_1, x_2, x_3 and thus $-\sqrt{\frac{a}{3}}$ should not be another root of f(x) = 0.

Now, assume $f(-\sqrt{\frac{a}{3}}) < 0$, we want to obtain a result (*) that $\exists e \in (-\sqrt{\frac{a}{3}}, x_2)$ such that $f(e) = f(-\sqrt{\frac{a}{3}})$ which is actually a contradiction.

If $\forall x \in (-\sqrt{\frac{a}{3}}, -\sqrt{\frac{a}{3}} + \delta)$, $f(-\sqrt{\frac{a}{3}}) = f(x)$, then we already have the result (*) that we want. If $\exists x' \in (-\sqrt{\frac{a}{3}}, -\sqrt{\frac{a}{3}} + \delta)$ such that $f(-\sqrt{\frac{a}{3}}) > f(x')$, then $f(x') < f(-\sqrt{\frac{a}{3}}) < 0 = f(x_2)$. By the

Intermediate Value Theorem, $\exists e \in (x', x_2) \subseteq (-\sqrt{\frac{a}{3}}, x_2)$ such that $f(e) = f(-\sqrt{\frac{a}{3}})$. Hence, we have proved (*).

Now we have $f(e) = f(-\sqrt{\frac{a}{3}})$, hence $\exists i \in (-\sqrt{\frac{a}{3}}, e)$ such that f'(i) = 0. However, f' is a polynomial of order 2, hence f'(x) = 0 should only have at most 2 roots, which have already been found to be at $x = -\sqrt{\frac{a}{3}}$ and $\sqrt{\frac{a}{3}}$. Hence we obtain a contradiction. Therefore, $f(-\sqrt{\frac{a}{3}}) \nleq 0$.

Therefore, $f(-\sqrt{\frac{a}{3}}) > 0$.

Using a similar argument, we will get $f(\sqrt{\frac{a}{3}}) < 0$. Hence, f has a positive local maximum and a negative local minimum.

(c) From (a), we know that the local maximum is at $x = -\sqrt{\frac{a}{3}}$ and local minimum is at $x = \sqrt{\frac{a}{3}}$. Note that a > 0 in order to have 2 local extrema.

Therefore, we have $f(-\sqrt{\frac{a}{3}}) > 0$ and $f(\sqrt{\frac{a}{3}}) < 0$.

 $\lim_{x\to-\infty} f(x) = -\infty$. Therefore $\exists y_1 < -\sqrt{\frac{a}{3}}$ such that $f(y_1) < 0$.

 $\lim_{x\to\infty} f(x) = \infty$. Therefore $\exists y_2 > \sqrt{\frac{a}{3}}$ such that $f(y_2) > 0$.

 $f(y_1) < 0 \text{ and } f(-\sqrt{\frac{a}{3}}) > 0.$

By the Intermediate Value Theorem, $\exists x_1 \in (y_1, -\sqrt{\frac{a}{3}})$ such that $f(x_1) = 0$.

Applying the Intermediate Value theorem again on the intervals $(-\sqrt{\frac{a}{3}}, \sqrt{\frac{a}{3}})$ and $(\sqrt{\frac{a}{3}}, y_2)$, we will also find $x_2 \in (-\sqrt{\frac{a}{3}}, \sqrt{\frac{a}{3}})$ and $x_3 \in (\sqrt{\frac{a}{3}}, y_2)$ such that $f(x_2) = f(x_3) = f(x_1) = 0$ with $x_1 < x_2 < x_3$.

Therefore, f(x) = 0 has exactly 3 real solutions.

(d) From (b) and (c), we have the conclusion that f(x) = 0 has exactly 3 real solutions if and only if f has a positive local maximum and negative local minimum. Therefore

$$b - \frac{2a}{3}\sqrt{\frac{a}{3}} < 0 \text{ and } b + \frac{2a}{3}\sqrt{\frac{a}{3}} > 0 \Leftrightarrow -\frac{2a}{3}\sqrt{\frac{a}{3}} < b < \frac{2a}{3}\sqrt{\frac{a}{3}} \Leftrightarrow b^2 < (\frac{2a}{3}\sqrt{\frac{a}{3}})^2 \Leftrightarrow 27b^2 - 4a^3 < 0.$$

Hence, f(x) = 0 has exactly 3 real solutions if and only if $27b^2 - 4a^3 < 0$.