

Data Visualisation CSE613

Prof. Ramesh Ragala

January 16, 2018

Introduction: The essence of Semi

Different Types of Data in data visualization

- Quantitative Data
 - Continuous Data
 - Discrete Data
 - Interval Data
 - Ratio Data
- Qualitative Data
 - Ordinal Data
 - Nominal Data

Introduction: The essence of Semiotics

Level of Organisation:

- A data variable is classified \rightarrow 4 types \rightarrow based on on the scale by which the values it contains are measured:
 - Nominal/categorical data:
 - The data values are categorical and not numeric.
 - A categorical variable is one that has two or more categories or labels or classes, but there is no intrinsic ordering to the categories.
 - simply Categorical variables represent types of data which may be divided into groups.
 - It is completely qualitative measurement.
 - Examples: age, gender, educational levels, countries, people names. operations: == and !=
 - Comparing two observations using the values for the variable, the observations will either be similar or different depending on whether the categorical value matches or not.

Introduction: The essence of Semi

Example on Categorical Data:

- ullet if the categorical data has only two outcomes ullet binary or binomial data
- The Binomial data outcomes may pass/fail, live/dead or extinct/not extinct

Introduction: The essence of Semiotics

Examples on Categorical Variables

	A	В	C	D	E	F	G	H	1.0
1	Name	Miles Per Gallon	Accceleration	Horsepower	weight	cylinders	year	price	Country
2	Volkswagen Rabbit DI	43,1	21,5	48	1985	4	78	2400	Germany
3	Ford Fiesta	36,1	14,4	66	1800	4	78	1900	Germany
4	Mazda GLC Deluxe	32,8	19,4	52	1985	4	78	2200	Japan
5	Datsun B210 GX	39,4	18,6	70	2070	4	78	2725	Japan
6	Honda Civic CVCC	36,1	16,4	60	1800	4	78	2250	Japan
7	Oldsmobile Cutlass	19,9	15,5	110	3365	8	78	3300	USA
8	Dodge Diplomat	19,4	13,2	140	3735	8	78	3125	USA
9	Mercury Monarch	20,2	12,8	139	3570	8	78	2850	USA
40	n .: N .	40.0	40.0	405	2525	-	70	2000	1104

Figure: Classic car data set shown as bar chart for numerical variable "Miles per gallon" and coloured based on categorical variable Country.

FIGURE: nominal level of measurement

- A categorical variable (sometimes called a nominal variable) is one that has two or more categories, but there is no intrinsic ordering to the categories.
- A purely categorical variable is one that simply allows you to assign categories but you cannot clearly order the variables.
- If the variable has a clear ordering, then that variable would be an ordinal variable.
- The Nominal or categorical data has only meaning \rightarrow how they are differing from one another.
- Example: Country names are Nominal data values → putting all country names in alphabetical order is not making any relationship to another.
- Assignment of numbers to categories has no mathematical meaning.
- Nominal categories should be mutually exclusive and exhaustive

Where Can We Have Categorical Data:

- Social sciences : opinions on issues
- Health sciences: response to treatments/drugs
- Behavioral sciences : e.g. diagnose mental illness
- Public health : AIDS awareness
- Zoology: animals food preferences
- Education : student's response to exams
- Marketing : consumer preferences
- Almost everywhere
- Distinction in categorical data are: Nominal Data and Ordinal Data

Ordinal data values:

- The data values are categorical but ordered.
- Comparing two observations using the values for that variable.
- Operations: ==,!=, \leq and \geq
- it is mainly used for obey ordering relations among data values
- Ordinal data is that which has inherent order, but no inherent degree of difference between what is being ordered.
- **Example:** The Ist, IInd and IIIrd place winners in a race are on ordinal scale
- But we do not know how much faster first place was than second place
- But we know only that one was faster than other.

FIGURE: Ordinal level of measurement

Interval Data:

- The data values are numeric.
- It represents the more sensitive type of data or sophisticated form of measurement.
- simply, Interval data is data which exists on a scale with meaningful quantitative magnitudes between values.

 Data values can be compared quantitatively using basic arithmetic operations +,-,* and / not the values themselves.

- The values are ordered. it includes negative numbers and zero.
 But zero is not absolute reference point.
- Scale data is usually aggregated or converted to averages.

0

Interval Data:

- Example:1 The dataset does not contain an interval data variable, if there were a variable in a dataset that recorded the measurements of temperature. → it would be classified as a interval variable.
- Temperature variable contains the values 40,60 and 80, we could say that compared with 40°F, 80°F is two times warmer than 60°F (80-40)/(60-40), but not twice as hot because 0°F is an arbitrarily chosen point on the scale.
- Example:2 if Sidda Reddy is rated as "6" on attractiveness and Durga Prasad a "3" → it does not mean Sidda Reddy is twice as attractive as Durga Prasad.

FIGURE: interval level of measurement

The measurement between the sizes of the fish Joe caught in order of when he caught them.

Ratio Data:

- The Data Values are numeric and include an absolute zero.
- This data values are allowed to compare quantitatively with other using basic arithmetic operations
 - Ratio data is data which, like interval data, has a meaningful order and a constant scale between ordered values, but additionally it has a meaningful zero value.
- Supported Operations are ==, !=, \leq , \geq , -, / and *
- The Ratio level of measurement applies to data that can be arranged in order.
- In addition, both differences between data values and ratios of data values are meaningful. Data at the ratio level have a true zero.
- Example: If one box weighs 50lbs and another 100lbs → the second box weighs twice as much as the first → this is not a case in interval data

FIGURE: Ratio level of measurement

- The amounts of teddy bears a certain child has.
- Since we cant have less than zero teddy bears, then the ratio level has a true zero.

- According to Bertin, The components are characterized by following way:
 - Nominal Variables → Qualitative Components(N)
 - Ordinal Variables → Ordered Components(O)
 - Interval and Ration Variables → Quantitative Components(Q)