

数字集成电路设计 第八章 电路仿真

白雪飞 中国科学技术大学微电子学院

提纲

- 引言
- SPICE简介
- 器件模型
- 器件表征
- 电路表征
- 互连线仿真

引言

仿真和仿真器

■ 仿真 (Simulation)

- 将系统建立模型以表征其关键特性,并对这些关键特征作出近似模仿
- 模型表示系统自身,仿真表示系统的时序行为
- 不能完全依赖仿真而忽略手工分析
 - Simulation guided through insight gained from analysis

■ 仿真器 (Simulator)

- 工艺仿真器: 预测工艺步骤中各个因素如何影响器件特性
 - Synopsys Sentaurus, Silvaco TCAD, ...
- 电路仿真器: 预测表明性能和功耗的电压和电流
 - Cadence Spectre, Synopsys PrimeSim HSPICE, ...
- 逻辑仿真器:验证HDL设计是否具有正确的逻辑操作
 - Cadence Incisive/Xcelium, Synopsys VCS, Siemens ModelSim, Xilinx Vivado Simulator, ...
- 体系结构仿真器: 预测体系结构的吞吐量和存储器访问模式等
 - gem5, zsim, ...

SPICE简介

SPICE和电路仿真

■ SPICE (Simulation Program with Integrated Circuit Emphasis)

- 最初由UC Berkeley于1970年代开发
- 求解描述电路元件的非线性微分方程
- 有众多的免费版本和商用版本
- 输入文件包含:网表、仿真选项、分析命令、器件模型
- 网表可以手工输入,也可以由EDA软件从原理图或版图生成

■ 主要电路仿真软件

- Cadence Spectre, PSpice
- Synopsys PrimeSim HSPICE, HSIMplus
- Siemens Tanner T-Spice
- 华大九天 Empyrean ALPS (Accurate Large Capacity Parallel SPICE)
- Silvaco SmartSpice, ADI LTspice, ...
- 本章例题采用HSPICE,用于其他版本SPICE仿真时应加以修改

SPICE电路元件和数量级前缀字母

常用SPICE电路元件

字母	元件		
R	电阻		
С	电容		
L	电感		
K	互感		
V	独立电压源		
I	独立电流源		
M	MOS晶体管		
D	二极管		
Q	双极型晶体管		
W	有损传输线		
X	子电路		
E	电压控制电压源		
F	电流控制电流源		
G	电压控制电流源		
Н	电流控制电压源		

SPICE数量级前缀

字母	单位前缀	数量级
Α	atto	10 ⁻¹⁸
F	femto	10 ⁻¹⁵
Р	pico	10 ⁻¹²
N	nano	10 ⁻⁹
U	micro	10-6
M	milli	10-3
K	kilo	10³
X, MEG	mega	10 ⁶
G	giga 10 ⁹	
Т	tera	10 ¹²

电压源

- 直流源
 - Vdd vdd gnd 2.5
- 分段线性源
 - Vin in gnd PWL 0ps 0 100ps 0 150ps 1.0 1ns 1.0
- 梯形脉冲源
 - Vck clk gnd PULSE 0 1 0ps 100ps 100ps 300ps 800ps

PULSE v1 v2 td tr tf pw per

梯形脉冲波形

电源和无源器件


```
* RC circuit response to rising input
* Parameters and models
.option post
* Simulation netlist
Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0
R1 in out 2k
C1 out gnd 100f
* Stimulus
.tran 20ps 1ns
.plot v(in) v(out)
.end
```


RC电路响应仿真

晶体管直流分析


```
* MOS I-V characteristics
* Parameters and models
.include './models.sp'
.temp 70
.option post
* Simulation netlist
Vgs g gnd 0
Vds d gnd 0
M1 d g gnd gnd NMOS W=100n L=50n
* Stimulus
.dc Vds 0 1.0 0.05 SWEEP Vgs 0 1.0 0.2
.end
```


MOS管I-V特性仿真

瞬态分析


```
* Unloaded unit inverter step response
* Parameters and models
.param SUPPLY=1.0
.option scale=25n
.include './models.sp'
.temp 70
.option post
* Simulation netlist
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 25ps 0ps 0ps 35ps 80ps
M1 y a gnd gnd NMOS W=4 L=2 AS=20 PS=18 AD=20 PD=18
M2 y a vdd vdd PMOS W=8 L=2 AS=40 PS=26 AD=40 PD=26
* Stimulus
.tran 0.1ps 80ps
.end
```


反相器阶跃响应仿真

子电路及测量


```
* Fanout-of-4 inverter delay
* Parameters and models
.param SUPPLY=1.0
.param H=4
.option scale=25n
.include './models.sp'
.temp 70
.option post
* Subcircuits
.global vdd gnd
.subckt inv a y N=4 P=8
M1 y a gnd gnd NMOS W='N' L=2
+ AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'
M2 y a vdd vdd PMOS W='P' L=2
+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'
.ends
* Simulation netlist
Vdd vdd gnd 'SUPPLY'
```

```
Vin a gnd PULSE 0 'SUPPLY' Ops 20ps 20ps 120ps 280ps
X1 a b inv * shape input waveform
X2 b c inv M='H' * reshape input waveform
X3 c d inv M='H**2' * device under test
X4 d e inv M='H**3' * load
X5 e f inv M='H**4' * load on load
* Stimulus
.tran 0.1ps 280ps
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
+ param='(tpdr+tpdf)/2'
+ TRIG v(d) VAL='0.2*SUPPLY' RISE=1
+ TARG v(d) VAL='0.8*SUPPLY' RISE=1
.measure tfall * fall time
+ TRIG v(d) VAL='0.8*SUPPLY' FALL=1
+ TARG v(d) VAL='0.2*SUPPLY' FALL=1
.end
```

FO4反相器延时仿真和测量

FO4反相器延时仿真和测量结果

FO4反相器延时仿真和测量

优化


```
* FO4 inverter P/N ratio optimization
* Parameters and models
.param SUPPLY=1.0
.option scale=25n
.include './models.sp'
.temp 70
.option post
* Subcircuits
.global vdd gnd
.subckt inv a y N=4 P=8
M1 y a gnd gnd NMOS W='N' L=2
+ AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'
M2 v a vdd vdd PMOS W='P' L=2
+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'
.ends
* Simulation netlist
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' Ops 20ps 20ps 120ps 280ps
X1 a b inv P='P1' * shape input waveform
X2 b c inv P='P1' M=4 * reshape input waveform
```

```
X3 c d inv P='P1' M=16 * device under test
X4 d e inv P='P1' M=64 * load
X5 e f inv P='P1' M=256 * load on load
* Optimization setup
.param P1=optrange (8,4,16) * from 4 to 16, quess 8
.model optmod opt itropt=30 * max of 30 iterations
.measure bestratio param='P1/4' * best P/N ratio
* Stimulus
.tran 0.1ps 280ps SWEEP OPTIMIZE=optrange
+ RESULTS=diff MODEL=optmod
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
+ param='(tpdr+tpdf)/2' goal=0
+ param='tpdr-tpdf' goal=0
.end
```

FO4反相器P/N比优化

其他常用命令

■ 仿真精度

- .option accurate
- 减小积分容差,提高仿真精度

■ 自动结束仿真

- .option autostop
- 完成所有.measure函数的计算时,提前结束瞬态分析,减少仿真时间

■ 仿真温度

- .temp 0 70 125
- 设置用于仿真的电路温度,以°C为单位

■ 直流工作点

- op.
- 输出静态工作点处的电压、电流、晶体管偏置条件

器件模型

MOS管模型

- Level 1模型 (Shichman-Hodges Model)
 - 与Shockley模型接近,增加了沟道长度调制和体效应
- Level 2和Level 3模型
 - Level 2模型基于Grove-Frohman公式,Level 3模型基于经验公式
 - 增加速度饱和、迁移率退化、亚阈值导电、漏致势垒降低等效应
- BSIM模型 (Berkeley Short-Channel IGFET Model)
 - BSIM3v3 工业标准MOSFET模型,可用于深亚微米工艺
 - BSIM4 基于阈值电压的Bulk MOSFET模型,用于130-nm~22/20-nm工艺节点
 - BSIM-BULK 基于电荷的Bulk MOSFET模型
 - BSIM-SOI 绝缘体上硅(SOI)器件模型
 - BSIM-IMG 独立多栅(Independent Multi-Gate)器件模型
 - BSIM-CMG 公共多栅(Common Multi-Gate)器件模型,即FinFET模型

扩散电容模型

扩散区面积和周长

	AS1 / AD2	PS1 / PD2	AD1 / AS2	PD1 / PS2
(a)	$w \times 5$	$2 \times w + 10$	$w \times 5$	2×w+10
(b)	$w \times 5$	2×w+10	$w \times 3$	w+6
(c)	$w \times 5$	2×w+10	$w \times 1.5$	w+3

```
* Shared contacted diffusion

M1 mid b bot gnd NMOS W='w' L=2 AS='w*5' PS='2*w+10' AD='w*3' PD='w+6'

M2 top a mid gnd NMOS W='w' L=2 AS='w*3' PS='w+6' AD='w*5' PD='2*w+10'
```

带有接触共享扩散区的晶体管SPICE模型

设计角

```
1958
```

```
* Inverter step response across process corners
* Parameters and models
.option scale=25n
.param SUP=1.0 * Must set before calling .lib
.lib './opconditions.lib' TT
.option post
* Simulation netlist
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 25ps 0ps 0ps 35ps 80ps
M1 y a gnd gnd NMOS W=4 L=2
+ AS=20 PS=18 AD=20 PD=18
M2 y a vdd vdd PMOS W=8 L=2
+ AS=40 PS=26 AD=40 PD=26
* Stimulus
.tran 0.1ps 80ps
.alter
.lib './opconditions.lib' FF
.alter
.lib './opconditions.lib' SS
.end
```

```
* opconditions.lib
* TT: Typical nMOS, pMOS, voltage, temp.
.lib TT
.temp 70
.param SUPPLY='SUP'
.include 'modelsTT.sp'
.endl TT
*-----
* SS: Slow nMOS, pMOS, low voltage, high temp.
.lib SS
.temp 125
.param SUPPLY='0.9 * SUP'
.include 'modelsSS.sp'
.endl SS
* FF: Fast nMOS, pMOS, high voltage, low temp.
.lib FF
.temp 0
.param SUPPLY='1.1 * SUP'
.include 'modelsFF.sp'
.endl FF
```

多设计角仿真

器件表征

I-V特性

65-nm工艺NMOS管I-V特性

I-V特性

65-nm工艺PMOS管I-V特性

I-V特性

180-nm工艺NMOS管I-V特性

阈值电压的提取方法

固定电流法

阈值电压定义为在指定漏极电流 I crit 时的栅电压

线性外推法、最大跨导法

从 I_{ds} $^{-}V_{qs}$ 曲线最大斜率处外推得到栅电压

阈值电压的影响因素

MOS管阈值电压

阈值电压与晶体管的沟道长度、宽度、温度、工艺等因素有关 电流并不在V_t处骤降为零,且在纳米工艺截止器件仍十分显著

栅电容

提取用于估算延时的等效栅电容的电路

仿真输入SPICE文件中将晶体管扩散区面积和周长设置为0调整 C_{delay} 直至X3和X6的延时相等为止,此时 C_{delay} 等于X4的等效栅电容

提取用于估算功耗的等效栅电容的电路

$$C_{ ext{eff-power}} = rac{\int i_{ ext{in}}(t) \mathrm{d}t}{V_{ ext{DD}}}$$

寄生电容

提取用于估算延时的等效寄生电容的电路

调整 $C_{
m delay}$ 直至X3和X4的延时相等为止,此时 $C_{
m delay}$ 等于M1漏极等效电容

提取扩散电容时使用的尺寸参数

	$W(\lambda)$	$\mathrm{AD}\left(\lambda^{2} ight)$	$\mathrm{PD}\left(\lambda ight)$	每微米等效电容C
C_{gol}	1600	0	0	$C_{ m delay}/1600\lambda({ m per}{ m \mu m})$
C_{jb}	0	8000	0	$C_{ m delay}/8000\lambda^2({ m per}{ m \mu m}^2)$
C_{jbsw}	0	0	1600	$C_{ m delay}/1600\lambda({ m per}{ m \mu m})$
C_{jbswg}	1600	0	1600	$C_{ m delay}/1600\lambda$ – C_{gol} (per $\mu{ m m}$)
C_d (单独接触)	1600	8000	3200	$C_{ m delay}/1600\lambda({ m per}{ m \mu m}{ m gate}{ m width})$
C_d (共享接触)	3200	9600	3200	$C_{ m delay}/1600\lambda({ m per}{ m \mu m}{ m gate}{ m width})$
C_d (合并不带接触)	3200	4800	3200	$C_{ m delay}/1600\lambda({ m per}{ m \mu m}{ m gate}{ m width})$

等效电阻

扇出为h的反相器

扇出h的反相器的RC延时模型

通过不同扇出时的延时以及栅电容C,可以估算 $\mathsf{NMOS}/\mathsf{PMOS}$ 的等效电阻 R_n 和 R_p

提取等效串联电阻的电路

通过不同扇出时c至d的延时以及栅电容C,可以估算NMOS/PMOS的等效串联电阻

电路表征

直流传输特性

```
1958 Proce and Technical
```

```
* Inverter DC transfer characteristics
* Parameters and models
.param SUPPLY=1.0
.option scale=25n
.include './models.sp'
.temp 70
.option post
* Simulation netlist
Vdd vdd gnd 'SUPPLY'
Va a gnd 0
Vclk clk gnd 'SUPPLY'
* Static Inverter
M1 y1 a gnd gnd NMOS W=16 L=2
M2 y1 a vdd vdd PMOS W=32 L=2
* Dynamic Inverter
M3 y2 a gnd gnd NMOS W=16 L=2
M4 y2 clk vdd vdd PMOS W=16 L=2
M5 y2 z vdd vdd PMOS W=4 L=2
M6 z y2 gnd gnd NMOS W=4 L=2
M7 z y2 vdd vdd PMOS W=8 L=2
.ic V(y2) = 'SUPPLY'
* Stimulus
.dc Va 0 1.0 0.01
.end
```


静态和动态反相器直流传输特性仿真

逻辑努力

用于表征二输入与非门延时的电路

.tran 1ps 1000ps SWEEP H 1 8 1

65-nm工艺反相器和二输入与非门的 延时与扇出的关系及逻辑努力

其他表征仿真

■ 电压源输出的电荷和能量

- .measure charge INTEGRAL I (vdd) FROM=0ns TO=10ns
- .measure energy param='charge*SUPPLY'

■ 电压源输出的瞬时功率和平均功率

- .print P(vdd)
- .measure pwr AVG P(vdd) FROM=0ns TO=10ns

■ 失配情况仿真

- 仅在不同设计角仿真无法体现晶体管的失配
- 仿真不同晶体管之间的PVT偏差

■ 蒙特卡洛仿真

- 器件模型必须包括参数的统计分布数据
- .tran 1ps 1000ps SWEEP MONTE=30

$$g \xrightarrow{\Delta V_t} d \\ W/(L+\Delta L)$$

失配情况仿真

互连线仿真

传输线仿真

本章结束