

Tema 1. Fundamentos Matemáticos. Cuerpos de Galois

Criptografía y seguridad informática Seguridad en las tecnologías de la información

@ COSEC LAB

Curso 2016-2017

Galois

25 de octubre de

1811

Bourg-la-Reine,

Francia

31 de mayo de 1832

(20 años)

París, Francia

Nacionalidad Francia

Campo Matemática

Trabajos sobre Conocido por

teoría de ecuaciones

e integrales abelianas

Nacimiento

Fallecimiento

Cuerpos de Galois CG(p)

- Sea $Z_p = \{0,1,2,\ldots,p-1\}$ siendo p primo $\forall x \neq 0 \in Z_p$, x es primo relativo a p (coprimo) y, por tanto, existe x-1 respecto al módulo p
- Z_p es un cuerpo respecto a las operaciones de suma y multiplicación mod p:
 - ▶ Elemento neutro aditivo (0)
 - Elemento neutro multiplicativo (1)
 - ▶ Se cumplen las propiedades conmutativa, asociativa y distributiva respecto a las operaciones + y ; tiene inverso aditivo, e inverso multiplicativo para los elementos distintos de 0
- Hay p elementos en CG(p)
- ▶ $\Phi(p) = p-1$ (hay p-1 elementos en el campo coprimos con p)
- ► Z_p es un <u>cuerpo finito</u> denominado <u>Cuerpo de Galois CG(p)</u>

Cuerpos de Galois CG(qⁿ)

 Otro cuerpo CG(qⁿ), relacionado con el anterior, se define así:

- CG(23)
- Está formado por los polinomios de grado (n-1) o menor
- Los coeficientes pertenecen a \mathbb{Z}_q con q primo

 Si al operar con los polinomios (aritmética de polinomios) resulta un polinomio de grado n o mayor, se reduce módulo un polinomio p(x) de grado n irreducible

$$a(x) \in CG(q^n)$$

- $a(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0, \ a_i \in Z_a \ mod \ p(x);$
 - Se suele utilizar $p(x) = x^n + x + 1$ que es irreducible para n= 1, 3, 4, 6, 7, 9, 15, 22, 28, 30, 46, 60, 60, 63, 127...
 - Existen **q**ⁿ polinomios en CG(**q**ⁿ)

 $\Phi(p(x)) = q^n - 1$ (hay $q^n - 1$ elementos "coprimos" con p(x)) Universidad

Carlos III de Madrid COSEC LAB. Dpto. Informática

Operaciones en Cuerpos de Galois CG(qn)

- Las operaciones a realizar en $CG(q^n)$ son relativamente sencillas:
- Suma y resta
 - $c(x)=a(x) \pm b(x) \mod p(x)$
 - implica simplemente $c_i = (a_i \pm b_i) m \acute{o} d q$
- Multiplicación
 - $c(x) = a(x) \cdot b(x) \mod p(x),$
 - Multiplicamos los dos polinomios teniendo en cuenta que los coeficientes pertenecen a Zq (deben reducirse mód q)
 Dobtendremos un polinomio de grado 2 · (n-1) = 2n-2 que deberá
 - Obtendremos un polinomio de grado $2^{-\frac{1}{2}}(n-1) = 2n-2$ que deberá reducirse mód p(x): dividimos el polinomio entre p(x) y nos quedamos con el resto

Operaciones en Cuerpos de Galois CG(qn)

- "División" (inverso multiplicativo)
 - $u(x) \cdot s(x) = v(x) \mod p(x)$ $\forall u(x)$? $\forall s(x) \in CG(q^n), \exists t(x) \in CG(q^n) \mid s(x) \cdot t(x) = 1 \mod p(x)$
 - \triangleright ¿Cómo calcular $s(x)^{-1}$ mod p(x)?
 - Aplicando el Teorema de Fermat/Euler

 - $s(x)^{-1} \mod p(x) = s(x)^{\Phi(p(x))-1} \mod p(x) = s(x)^{q^{n}-2} \mod p(x)$

Aplicando el algoritmo de Euclides modificado

Cuerpos de Galois CG(2ⁿ)

- ▶ Dentro de estos cuerpos vamos a estudiar **CG(2ⁿ)**
- Cada elemento de $a(x) \in CG(2^n)$ se representa mediante sus coeficientes $a_i = \{0,1\}$ $\{0,0,0\}$ $\{0,0\}$ $\{0$

$$(a_{n-1}, a_{n-2}, \dots, a_1, a_0)$$

- El <u>número de elementos de CG(2ⁿ) es 2ⁿ</u>
 - Usamos n bits para representar un elemento
 - p(x) usará n+l bits

Cuerpos de Galois CG(2ⁿ)

- Ventajas de la aritmética en CG(2ⁿ) mod p(x) con respecto CG(p):
 - Operaciones más simples y no es necesario reducir para la suma y la resta
 - Al tener un cardinal igual a una potencia de 2, CG(2ⁿ) aprovecha toda la capacidad de la representación electrónica (bits), que no suele ocurrir con CG(p)
 - ▶ Para 8 bits, Z₂₅₆ no es un cuerpo
 - ▶ Z₂₅₁ sí es un cuerpo pero desaprovechamos capacidad del byte
 - Cálculo de inversos más rápidamente para computadores.

Cuerpos de Galois CG(2ⁿ)

▶ Los coeficientes operan en Z₂

 \mathbf{Z}_{2}

w	-w	w-I
0	0	
1	1	1

Suma:

 $w=u+v \mod 2$

u	v	w
0	0	0 -
0	ı	distinto o
1	0	1 - 1000
ı	ı	2 = 0 -

Resta:

 $w=u-v \mod 2$

	u	v	w
۲	0	0	0
٦	0	I	-1 = 1
1	- [0	I
L	.	I	0

La suma y la resta de coeficientes en Z₂ es equivalente a la operación XOR ⊕

Sumas y restas en Cuerpos de Galois CG(2n)

▶ Suma y resta: $c(x) = a(x) \pm b(x) \mod p(x)$

$$c_i = (a_i \pm b_i) \bmod 2 = \begin{cases} 0 & \text{si } a_i = b_i \\ 1 & \text{si } a_i \neq b_i \end{cases}$$
 on xore

por lo que

$$c_i = (a_i \pm b_i) = a_i \oplus b_i$$

▶ Ej. a=(10110) y b=(10101) en $CG(2^5)$. Calcular c=a+b $c=(10110) \oplus (10101) = 00011$ Es come have un xor de ombos polimentos.

- \triangleright c(x)=a(x) b(x) mod p(x)
- En este caso, si el polinomio resultado de la multiplicación de los polinomios es de grado n o mayor que n, habrá que reducirlo mód p(x)

$$c(x) = \sum_{i=0}^{n-1} (a_i \cdot b(x)) \cdot x^i \bmod p(x)$$

$$a_{i} \cdot b(x) = \begin{cases} b(x) = b_{n-1}x^{n-1} + \dots + b_{0} & \text{si } a_{i} = 1 \\ 0 & \text{si } a_{i} = 0 \end{cases}$$

$$a(x) = x^{3} + x + 1 \end{cases} \quad a(x) = x^{3} + x + 1$$

esto es la operación lógica AND

▶ Ej. $a(x) = x^2 + 1 = (101)$ cálculo de c=a·a en CG(2³) [n=3] con $mod p(x) = x^3 + x + 1 = (1011)$ $a \cdot a = (101) \cdot (101)$ Si el coeficiente que multiplica es 1, se copia el polinomio superior en Esta suma es un su correspondiente sitio. **XOR** si no, nada (la multiplicación es un AND) 0 0 reduciendo mód p(x)Un polinomio en CG(2n) es 10001 1011 divisible entre otro ("cabe") si tiene el mismo número o • 1011 10 . 0 de bits o más Esta resta es un XOR también 00111 ° O Hemos acabado cuando000 el polinomio que queda tiene n bits (menos bits111 que p(x), que se representa con n+1 bits) $x^{2} + x + 1$ El resultado final es c = (| | | | |) =

- Para realizar "b/a" mód p(x), necesitamos calcular $a^{-1} \cdot b$ mód p(x)
- Ya que p(x) es irreducible, $\forall a(x) \in CG(2^n)$ es coprimo con p(x), excepto el polinomio nulo
- Por tanto $\Phi(p(x))$, el número de elementos coprimos con p(x) es:

$$\Phi(p(x)) = 2^n - 1$$

Por tanto

COSEC LAB. Dpto. Informática

$$a^{-1} = a^{\Phi(p(x))-1} \mod p(x) = a^{2^{n}-2} \mod p(x)$$

$$a^{-1} = x^{2} \pmod p(x) = a^{2^{n}-2} \mod p(x)$$

$$p(x) = x^{2} \pmod p(x) = a^{2^{n}-2} \mod p(x)$$

$$= (100) \mod p(x) = a^{00} \pmod p(x)$$

$$= (100) \mod p(x)$$

$$= (10$$

a'= 111 mod pcx1

▶ Ej. Halle el inverso de $a(x)=(100)=x^2$ en CG(2³) con el mód $p(x)=x^3+x+1=(1011)$

$$a^{-1} = (100)^{2^{3}-2} m \acute{o} d(1001) = (100)^{6} m \acute{o} d(1011)$$

Para calcular, vamos a desarrollarlo de esta forma (por ejemplo)

$$(100)^6 = (100)^2 (100)^4 m\acute{o}d(1011)$$

Veamos cuanto vale (100)²mód(1011)=(10000)mód(1011)=110

Veamos cuanto vale $(100)^4$ mód $(1011) = (100)^2(100)^2 = (110)^2$ mód(1011)

Luego

▶ Por tanto el inverso de $a(x)=(100)=x^2$ es $a^{-1}(x)=(111)=x^2+x+1$

- Operación xtime:
- Xtime es "multiplicar por x", es decir, multiplicar por (10)
- ▶ Idea general:
 - ▶ Supongamos que estamos trabajando en CG(2³).
 - Multiplicar el polinomio a(x)=(a₂a₁a₀) por (10) es equivalente a desplazar I posición a la izquierda los "bits" de a(x). Llamémos a este polinomio desplazado a'(x).

$$a'(x) = (a_2 a_1 a_0) \cdot (10) \mod p(x) = (a_2 a_1 a_0 0) \mod p(x)$$

- Si $a_2 = 1$, a'(x) debe reducirse mod. p(x) para obtener el resultado final:
 - ☐ ESTA REDUCCIÓN EQUIVALE A REALIZAR a'(x) XOR p(x)
 - \Box a(x) · (10) mod p(x) = a'(x) XOR p(x)

Los ordenadores pueden computar muy eficientemente xtime:

$$(010)(100) = (1000) \oplus (1011) = 011$$
 $x^3 \mod (x^3+x+1) = x+1$

$$(010)(011) = (110)$$
 $x^4 \mod (x^3+x+1) = x^2 + x$

$$(010)(110) = (1100) \oplus (1011) = 111$$
 $x^5 \mod (x^3+x+1) = x^2 x+1$

$$(010)(111) = (1110) \oplus (1011) = 101$$
 $x^6 \mod (x^3+x+1) = x^2+1$

$$(010)(101) = (1010) \oplus (1011) = 001$$
 $x^7 \mod (x^3+x+1) = 1$

$$(010)(001) = (010)$$
 $x^8 \mod (x^3+x+1) = x$

$$(010)(010) = (100)$$

$$x^{9} \mod (x^{3}+x+1) = x^{2}$$

$$(010)(100) = (1000) \oplus (1011) = 011$$
 $x^{10} \mod (x^3+x+1) = x+1$

$$(010)(011) = (110)$$
 $x^{11} \mod (x^3+x+1) = x^2 + x$

$$(010)(110) = (1100) \oplus (1011) = 111$$
 $x^{12} \mod (x^3+x+1) = x^2 x+1$

Universidad