Connect to Google Drive

```
# Import drive to connect and interact with Google Drive (so we can import the data)
# Note: This may take a while, but remember to give permission
from google.colab import drive
drive.mount("/content/gdrive")
!pwd # Print working directory
     Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive",
     /content/gdrive/My Drive/IA avanzada para la ciencia de datos/Machine learning
# Navigate to the path where the dataset is stored and read the csv file
%cd "/content/gdrive/MyDrive/IA avanzada para la ciencia de datos/Machine learning"
!ls # List files located in defined folder
/content/gdrive/MyDrive/IA avanzada para la ciencia de datos/Machine learning
     actividad5_over_under_fitting.ipynb 'log_reg_gd_V06_alumno-1 (1).ipynb'
     hypothesis_function.ipynb
                                          'log_reg_multiclase_alumnos (1).ipynb'
     Iris.csv
                                          'perceptron_and_or_xnor-1 (2).ipynb'
     'linear_reg_gd1_alumno (1).ipynb' Presentaciones
     loading_dataset.ipynb
```

Load Dataset

- 1. Descargar el dataset de iris de Kaggle de la cuenta UCI MACHINE LEARNING https://www.kaggle.com/datasets/uciml/iris
- 2. Guardar el dataset .data o .csv en mi Drive
- 3. Cargar el dataset como DataFrame usando Pandas en Python
- 4. Visualizar el dataset de manera tabular

```
import pandas as pd
# Add names to columns if required
columns = ["sepal length","sepal width","petal length","petal width", "class"]
df = pd.read_csv('Iris.csv',names=columns)
print(df)
                        sepal length sepal width petal length petal width
            0
                         5.1 3.5 1.4 0.2 Iris-setosa

      5.1
      3.5
      1.4
      0.2
      Iris-setosa

      4.9
      3.0
      1.4
      0.2
      Iris-setosa

      4.7
      3.2
      1.3
      0.2
      Iris-setosa

      4.6
      3.1
      1.5
      0.2
      Iris-setosa

      5.0
      3.6
      1.4
      0.2
      Iris-setosa

      ...
      ...
      ...
      ...
      ...

      6.7
      3.0
      5.2
      2.3
      Iris-virginica

      6.3
      2.5
      5.0
      1.9
      Iris-virginica

      6.5
      3.0
      5.2
      2.0
      Iris-virginica

      6.2
      3.4
      5.4
      2.3
      Iris-virginica

      5.9
      3.0
      5.1
      1.8
      Iris-virginica

            1
            3
            4
            145
            146
            147
            148
            149
```

[150 rows x 5 columns]

Explore Dataset

- 1. Imprimir nombre de columnas
- 2. Seleccionar una sola columna
- 3. Seleccionar multiples columnas

```
# See columns names with 'columns' property
df.columns
    Index(['sepal length', 'sepal width', 'petal length', 'petal width', 'class'], dtype='object')
# Select a single column based on column name
df['sepal length']
    0
           5.1
    1
           4.9
           4.7
    2
    3
          4.6
          5.0
    145
         6.7
    146
         6.3
    147
         6.5
         6.2
    148
    149
         5.9
    Name: sepal length, Length: 150, dtype: float64
# Select multiple columns
df[["sepal length", "sepal width"]].head(6)
```

	sepal 1	Length	sepal	width	
0		5.1		3.5	11.
1		4.9		3.0	
2		4.7		3.2	
3		4.6		3.1	
4		5.0		3.6	
5		5.4		3.9	

Define X and y (features and labels)

- 1. Definir X(features) y y(labels) del dataset y guardarlos en una variable cada uno
- 2. Visualizar X y y
- 3. Crear nuevas columnas basadas en columnas existentes (sepal_proportion & petal proportion)
- 4. Re-definir mi X con las nuevas columnas (sepal_proportion & petal_proportion)
- 5. Visualizar nuevas features (X)

```
# Define X(features) & y(labels) from the dataset

df_X = df[["sepal length","sepal width","petal length","petal width"]]

df_y = df[["class"]]
```

df_X.head()

	sepal length	sepal width	petal length	petal width	
0	5.1	3.5	1.4	0.2	11.
1	4.9	3.0	1.4	0.2	
2	4.7	3.2	1.3	0.2	
3	4.6	3.1	1.5	0.2	
4	5.0	3.6	1.4	0.2	

df_y.head()

- 1 Iris-setosa
- 2 Iris-setosa
- 3 Iris-setosa
- 4 Iris-setosa

```
# Make new columns with indicators (based on values of other columns) [Adding features] # Get proportion of lenght vs width for both sepal and petal df_X["sepal proportion"] = df_X["sepal width"]/df_X["sepal length"] df_X["petal proportion"] = <math>df_X["petal width"]/df_X["petal length"] df_X.head()
```

	sepal length	sepal width	petal length	petal width	sepal proportion	petal proportion	
0	5.1	3.5	1.4	0.2	0.686275	0.142857	
1	4.9	3.0	1.4	0.2	0.612245	0.142857	
2	4.7	3.2	1.3	0.2	0.680851	0.153846	
3	4.6	3.1	1.5	0.2	0.673913	0.133333	

```
# Define New X(features)
df_X_new = df_X[["sepal length","sepal width"]]
df_X_new
```

	sepal length	sepal width	
0	5.1	3.5	11.
1	4.9	3.0	
2	4.7	3.2	
3	4.6	3.1	

df_y

	class	
0	Iris-setosa	ıl.
1	Iris-setosa	
2	Iris-setosa	
3	Iris-setosa	
4	Iris-setosa	
145	Iris-virginica	
146	Iris-virginica	
147	Iris-virginica	
148	Iris-virginica	
149	Iris-virginica	

Quiz

1. ¿Por qué separamos las features de los labels en el dataset?

Nosotros separamos datos en dos partes: "features" y "labels" . Ya que esto simplifica el proceso y nos ayuda a entender mejor nuestro problema.

Primero, al dividirlos, queda claro cuáles son las entradas y qué estamos tratando de predecir. Esto hace que el problema sea más fácil de entender.

Segundo, nos permite aplicar transformaciones específicas a cada conjunto si es necesario. A veces, las características y las etiquetas necesitan un tratamiento diferente, como normalización o codificación, y esta separación facilita este proceso

Reporte

En esta clase vimos lo que es la IA, que es el ML y el DL, asi como los tipos de Machine Learning, vimos que es la data que es una database y un datase, asi mismo aprendimos para que nos sirven los datos en ML, las diferencias entre labels y features.

Para esta actividad tenemos un dataset que obtuvimos de kaggle, el famosos Iris, separamos los labels de los features para tener mejor un entendimiento de los datos.

loading_dataset.ipynb - Colaboratory En este dataset tenemos la clasificación de flores de 3 tipos, donde estas la "Clase", serian los labels y lo que queremeos predecir con los features que posee cada una.

completed at 7:31 PM