a) Organosilanes of the type $(RO)_3Si(C_nH_{2n+1})$ and $(RO)_3Si(C_nH_{2n-1})_{\mbox{\tiny a}}$

R = alkyl,

n = 1 - 20;

b) Organosilanes of the type $R'_x(RO)_ySi(C_nH_{2n+1})$ and $(RO)_3Si(C_nH_{2n+1})$

R = alkyl,

R' = alkyl

R' = cycloalkyl

$$N = 1 - 20$$
,

$$x+y = 3$$
,

$$x = 1, 2$$

$$y = 1, 2;$$

c) Halogen organosilanes of the type $X_3 \operatorname{Si}(C_nH_{2n+1})$ and $X_3 \operatorname{Si}(C_nH_{2n-1})$

$$X = Cl, Br,$$

$$n = 1 - 20;$$

d) Halogen organosilanes of the type $X_2\left(R'\right) Si(C_nH_{2n+1})$ and

$$X_2$$
 (R') $Si(C_nH_{2n-1})$,

$$X = Cl, Br$$

$$R' = alkyl$$

SE:

CARROLL AND ACTION AND ACTION AND ACTION AND ACTION AND ACTION ACTION AND ACTION ACTION

e) Halogen organosilanes of the type $X(R')_2 Si(C_nH_{2n+1})$ and

$$X(R')_2 Si(C_nH_{2n-1})$$
,

$$X = Cl, Br;$$

$$R' = alkyl$$

$$R' = cycloalkyl$$

$$n = 1 - 20;$$

f) Organosilanes of the type $(RO)_3Si(CH_2)_m$ -R'

$$R = alky,l$$

$$m = 0.1 - 20,$$

R' = methyl-, aryl (e.g., $-C_6H_5$, substituted phenyl groups)

$$-NH_2$$
, $=N_3$, $-SCN$, $-CH=CH_2$, $-NH-CH_2-CH_2-NH_2$,

$$-N-(CH_2-CH_2-CH_2NH_2)_2$$
,

$$-OOC(CH_3)c = CH_{2}$$

$$\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(or)$_3$,}$$

$$-S_x$$
-(CH₂)₃Si(OR)₃,

355402v1

weeks there are a section of the sec

-SH, and

-NR'R''', wherein R' = alkyl, aryl; R'' = H, alkyl, aryl; and R''' = H, alkyl, aryl, benzyl, or C_2H_4NR'''' R'''' with R'''' = H, alkyl and R'''' = H, alkyl;

g) Organosilanes of the type $(R'')_x (RO)_y Si(CH_2)_m$ -R'

$$R'' = alkyl, cycloalkyl,$$

$$x+y=2$$
,

$$x = 1, 2,$$

$$y = 1, 2,$$

$$m = 0.1$$
 to 20,

R' = methyl-, aryl, $-C_6H_5$, substituted phenyl groups

-C₄F₉, -OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂,

 $-NH_2$, $-N_3$, SCN, $-CH = CH_2$, $-NH-CH_2-CH_2-NH_2$,

 $-N-(CH_2-CH_2-NH_2)_2$,

-OOC (CH₃)C = CH₂,

-OCH₂-CH(O) CH₂,

-NH-CO-N-CO-(CH₂)₅

 $\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(OR)$_3$,}$

 $-S_x$ -(CH₂)₃Si(OR)₃

-SH, and

-NR'R''R''', wherein R' = alkyl, aryl; R'' = H,

355402v1

March 1977, Acres 1977, Acres

alkyl, aryl; and $R^{"}=H$, alkyl, aryl, benzyl, or $C_2H_4NR^{"}R^{"}$ with $R^{"}=H$, alkyl and $R^{"}=H$, alkyl);

h) Halogen organosilanes of the type $X_3Si\ (CH_2)_m$ -R'

$$X = Cl, Br,$$

$$m = 0, 1 - 20,$$

R' = methyl-, aryl., $-C_6H_5$, substituted phenyl groups

$$-N-(CH_2-CH_2-NH_2)_2$$
,

$$-OCH_2$$
- $CH(O)$ CH_2 ,

$$\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(OR)$_3$,}$$

$$-S_x$$
-(CH₂)₃Si(OR)₃, and

i) Halogen organosilanes of the type $(R)X_2Si(CH_2)_m-R'$

$$X = C1, Br,$$

$$m = 0, 1 - 20,$$

355402v1

R' = methyl-, aryl [(e.g]., $-C_6H_5$, substituted phenyl groups,

-OOC (
$$CH_3$$
) $C = CH_2$,

-NH-CO-N-CO-(CH₂)₅,

-NH-COO-CH₃, -NH-COO-CH₂-CH₃, -NH-

 $(CH_2)_3Si(OR)_3$,

$$-S_x$$
-(CH₂)₃Si(OR)₃,

-SH;

(j) Halogen organosilanes of the type (R)₂X Si(CH₂)_m-R'

$$X = Cl, Br,$$

$$R = alkyl,$$

$$m = 0, 1 - 20,$$

R' = methyl-, aryl., $-C_6H_5$, substituted phenyl groups,

$$-NH_2$$
, $-N_3$, SCN, $-CH=CH_2$, $-NH-CH_2-CH_2-NH_2$,

-OOC (
$$CH_3$$
) $C = CH_2$,

-NH-CO-N-CO-(CH₂)₅,

 $\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2)$_3Si(OR)$_3$,}$

 $-S_x-(CH_2)_3Si(OR)_3$

-SH;

(k) Silazanes of the type $R'R_2Si-N-SiR_2R'$

Н

R = alkyl,

R' = alkyl, vinyl; or

(l) Cyclic polysiloxanes of the type D 3, D 4 or D 5:

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

m) Polysiloxanes or silicone oils of the type

$$Y-O-\left(\begin{pmatrix}R\\|\\Si-O\\|\\R'\end{pmatrix},\begin{pmatrix}R''\\|\\Si-O\\|\\R'''\end{pmatrix},Y\right)$$

$$m = 0, 1, 2, 3, \dots \infty$$

 $n = 0, 1, 2, 3, \dots \infty$
 $u = 0, 1, 2, 3, \dots \infty$

$$Y=CH_3$$
, H, C_nH_{2n+1} $n=1-20$
 $Y=Si(CH_3)_3$, $Si(CH_3)_2H$

$$R = alkyl, aryl, (CH2)n-NH2, H,$$

$$R' = alkyl, aryl, (CH2)n-NH2, H2$$

$$R^{\prime\prime} = \text{ alkyl, aryl, } (CH_2)_n\text{-NH}_2, H,$$

$$R'''=$$
 alkyl, aryl, $(CH_2)_n$ - NH_2 , $H.$,

- 4. (Amended) A method of producing the surface-modified oxides in accordance with claim 1 or 2, comprising placing pyrogenically produced oxides doped by aerosol in a suitable mixing container, spraying the oxides under intensive mixing with the surface-modification reagent or a mixture of several surface-modification reagents.
 - 5.(Amended) In a reinforcing filler composition wherein the improvement comprises the surface-modified oxides according to claim 1 or 2 as reinforcing filler.

- 6. (New) The method of claim 4 wherein the spraying step includes spraying with water and/or acid prior to the spraying with the surface-modification reagent or a mixture of several surface-modification reagents.
- 7. (New) The method of claim 4 further comprising re-mixing at 15 to 30 minutes and tempering at a temperature of 100 to 400 °C for a period of 1 to 6 hours.
- 8. (New) The surface-modified, pyrogenically produced oxides according to claim 3 wherin the cyclic polysiloxanes is type D 4.
- 9. (New) The surface-modified, pyrogenically produced oxides according to claim 8 wherin the type D4 cyclic polysiloxanes is octamethylcyclotetrasiloxane.