

P & NP Problems

"Hard Problems" -> a problem that takes exponential time to compute -> (runtime)
where it is not practical to obtain a solution for a problem of modest size n.

Tower OF Hanoi

M1 = 1
Mn = 2Mn-1 + 1
soln: Mn = 2ⁿ-1 - real cost too high!!!

The why is it so lengthy?

decision problem: also prob that has 2 possible answers

answers

optimization problem: any problem and passible solns

every decision problem has a corr. optimization problem

if we provide evidence that the optimization problem is hard \Rightarrow optimization problem is also tough.

easy to solve opt prob \Rightarrow easy to solve decision

easy 70 some opt prob - easy to solve ducisi

NOT HARD - P

Polynomially bounded algo: worst case complexity is bounded by poly function of input poly bound prob => poly bound algo

= class of decision problems that are polynomially bounded. P problems

[Difk (O[V]2): worst case

eg. 1. Can we travel from city A to city B in k 2. possible to supple electricity to all homes using a powerline of k kilometers?

WTL (0(N1))

3. Can we start from A, visit every other city once, and then return to A in K only > theres a cycle in the A obt boop. graph , travelling salesman problem

fully

consider all tours, find one that costs no more than k. for n) cities -> thats n! cases no more tour?

a. correct tour?

b. total length?

for 2 soln takes $O(n^2)$ time

connect

permut ate.

· 0/1 knapsack problem is there a subset of objects that fits in the knapsack and returns a profit of at least k? no known poly time: no of subsets = 2"

worst case check all: O(2") given a subset $\Rightarrow O(n)$ to check de takes O(nc) time: psue do-polynomial (size & value of input) prob ago verify:

which

soln?

yes nondet erministic algorithm: solves problem in 2 Phases guels allerify + owpw styp NP: non deterministic polynomially bounded: a class of decision problems for which there is a polynomially bounded non deterministic algo or a class of decision probs whose answers can be veri-fied in polynomial time algorithm P = NP

NP eg: travell knapso	uing salesman ack
non NP (>not P)	: variant of travelling sa
	does every towr have co
	<u> </u>
	each verification: O(n)
	total verification: 0 (r
it willn't wont	,
it won't work.	
it won't work.	z 'guess' is 'all sowtions' there
it won't work.	

Subclass of NP NP - Completeness Problem Reduction

. How do we know a problem is hard ← +akes + > poly time How to show a problem is hard 1 Reduce a known hard problem to given problem P, (known) -> P2 if P_2 has a solution, reduction gives a way to solve P_1 \Rightarrow P_1 is as hard as P_2 eg. Factor All (n) ~~ Factor 1(n) · use factor 1 fo get 1 factor in of n. divide n/m · call factor All (n/m) -> keep repeating Hamiltonian path problem: given graph G.
is there any path that passes through all
traveling the vertices of the graph exactly once
Salesmen (, Salesmen copy graph: edge: w=1; no edge: add, w=2

graph transformed problem: is there a path through the graph to all nodes with weight (n+1) fravelling sales man problem. polynomial time (traverse edges: max: v(v-1))

NP - completeness

Prob D: DENP, every prob Q in NP is reducible to D in polynomial time.

then D is NP- complete.

D = P

eg. Circuit Satisfyability problem: CIRCUIT-SAT

given a circuit, is there a set of imputs: output
is true

n inputs: 2 options each: 2ⁿ possibilities

guess + verify can happen in polynomial time

· SAT: satisfiable boolean formula given a bool formula, ... same thing

Cooktlevin proved that circuit-SAT is NP-complete

⇒ every NP prob can be reduced to circuit-SAT : CIRCUIT-SAT can be reduced to SAT. SAT is in NP

→ SAT is NP - Complete.

realistibility is transitive.

everything in NP can reduce to NP-Complete

NP-complete are the "hardest" soln to them is soln to all

once soln to NP-complete is found, all probs in NP can be solved in polynomial time

if D is NPC, Q is NP, D red. > Q

> Q is NPC

Solving NP

small problem size

s then link the 2

end points

n-1 edges.

	211/0/1 1 1/2010 2011 21 00
	solve special instance & locally optimal
	solve special instance solve solve special instance solve solve heuristic algorithms (greedy heuristic)
	l Picks - cost
	O fast Current.
	2 not guaranteed to give best soln 3 will give close to optimal solution in most cases 3 can give horible soln
	3 will give close to motimal solution in most cases
	@ can sire horible soln
	0. 110 2 007
	neuristic greedy
	Greedy Heunistic For TSP: Thearest neighbour
	in greedy, if the last edge is very heavy, it will fuck up. wont happen in practice
	will fuck up.
	wont happen in practice
	(2) Shortest link
	pick from edges -> least weight.
)	pick from edges -> least weight. pick next cheapest edge that doesn't create a
have	cycle and the edge is not the third edge
1	incident on the vertice
es.	> ensures we visit vertice
	had been

only once.

greedy heuristic for knapscack by DP: psue Sort obj acc to profit/weight (descending) for 1 -> n if (weight + w[i] < c)
value + = v[i] weight t = WCi] time to calc P/S \rightarrow o(n) sort $\rightarrow 0$ (nlogn) $\leftarrow TC$. choose $\rightarrow 0$ (n)

$$3a) \log_{10} a = 1 f(n) = n-1 = 0(n) = 0(n\log_{10} a)$$

$$\theta (n\log_{10} n) = W(n)$$