Proposition: If $n = a^2 + b^2$, p|n, and $p \equiv 3 \pmod{4}$, then p|a and p|b.

If not, then either $p \not| a$ or $p \not| b$, say $p \not| a$. Then (a,p)=1, so there is a z with $az \equiv 1 \pmod{p}$. But then since $p|n,\ p|a^2+b^2$, so $a^2+b^2\equiv 0\pmod{p}$. Then $1+(bz)^2=(az)^2+(bz)^2=z^2(a^2+b^2)\equiv z^20=0\pmod{p}$, so x=bz satisfies $x^2+1\equiv 0\pmod{p}$, i.e., $x^2\equiv -1\pmod{p}$, a contradication. So p|a and p|b.

(*) This means that $p^2|a^2$ and $p^2|b^2$, so $p^2|a^2+b^2=n$, and $(n/p^2)=(a/p)^2+(b/2p)^2$. This will be very significant shortly! The final peice of the puzzle is:

Proposition: If $p \equiv 1 \pmod{4}$ and p is prime, then $p = a^2 + b^2$ for some integers a, b.

To see this, set $k=\lfloor\sqrt{p}\rfloor=$ the largest integer $\leq p$. Since p is prime, \sqrt{p} is not an integer, so $k<\sqrt{p}< k+1$. Because $p\equiv 1\pmod 4$, there is an x with $x^2\equiv -1\pmod p$. Now look at the collection of integers u+xv for $0\leq u\leq k$ and $0\leq v\leq k$. Since there are $(k+1)^2>p$ of them, at least two of them are congruent mod p; $u_1+xv_1\equiv u_2+xv_2$. Then $u_1-u_2\equiv xv_2-xv_1=x(v_2-v_1)$, so $(u_1-u_2)^2\equiv x^2(v_2-v_1)^2=-(v_2-v_1)^2$. Setting $a=u_1-u_2$ and $b=v_2-v_1$, this means $p|a^2+b^2$. But since either $u_1\neq u_2$ or $v_1\neq v_2$, $a^2+b^2>0$. Also, since $0\leq u_1,u_2,v_1,v_2\leq k$, $|u_1-u_2|,|v_2-v_1|\leq k$, so $a^2+b^2\leq k^2+k^2=2k^2<2p$. So $0< a^2+b^2<2p$ and is divisible by p; so $a^2+b^2=p$, as desired.

So now we know that (1) the product of two sums of two squares is a sum of two squares, (2) 2 and any prime $\equiv 1 \pmod{4}$ is a sum of two squares, and (3) and prime $\equiv 3 \pmod{4}$ which divides $a^2 + b^2$ divides both a and b. Putting these together, we can completely characterize which numbers can be expressed as $a^2 + b^2$:

Theorem: If $n = 2^k p_1^{k_1} \cdots p_r^{k_r} q_1^{m_1} \cdots q_s^{m_s}$ is the prime factorization of n, where $p_i \equiv 1 \pmod{4}$ and $q_i \equiv 3 \pmod{4}$ for every i, then $n = a^2 + b^2$ for some integers $a, b \Leftrightarrow m_i$ is even for every i.

The idea: use (*) above to show that if $n=a^2+b^2$ then each of the primes q_i can be divided out two at a time as $(n/q_i^2)=(a/q_i)^2+(b/q_i)^2$, until there are none left, showing that their exponents are all even. Conversely, (by induction) $2^kp_1^{k_1}\cdots p_r^{k_r}$ is a sum of two squares, since each factor is, and then since the remaining factor $q_1^{m_1}\cdots q_s^{m_s}=q_1^{2u_1}\cdots q_s^{2u_s}=(q_1^{u_1}\cdots q_s^{u_s})^2+0^2$ is a sum of squares, the product, n, is a sum of two squares.

So, for example, since we know $p = 61 \cdot 2^{285652} + 1$ is prime and (as one of our class members pointed out!) $4|2^{285652}$ so $p \equiv 1 \pmod 4$, this number <u>can</u> be expressed as the sum of two squares. Care to figure out which ones?