Complexity problems in enumerative combinatorics

Natalia Durlik

02.12.2021

Natalia Durlik SZIO 02.12.2021 1 / 14

Plan

Przykłady

$$F_{n} = F_{n-1} + F_{n-2}, \quad F_{0} = F_{1} = 1$$

$$F_{n} = \sum_{i=0}^{\lfloor n/2 \rfloor} {n-i \choose i}$$

$$F_{n} = \frac{1}{\sqrt{5}} \left(\phi^{n} - (-\phi)^{-n} \right), \quad \phi = \frac{1+\sqrt{5}}{2}$$

$$F_{n} = (A^{n})_{2,2}, \quad A = {0 \choose 1}_{1}$$

$$D_n = [[n!/e]]$$

$$C_n = \frac{1}{n+1} {2n \choose n}$$

$$T_n = (n-1)![t^n]z(t), \quad z(t) = te^{te^{te^{-t}}}$$

$$T_n = n^{n-2}$$

Natalia Durlik SZIO 02.12.2021 4 / 14

Wilfian formulas

Definicja

Mówimy, że formuła jest typu:

- (W1) jeśli istnieje algorytm obliczający a_n w czasie poly(n)
- (W2) jeśli istnieje algorytm obliczający a_n w czasie $o(a_n)$

Natalia Durlik SZIO 02.12.2021 5 / 14

Wilfian formulas

Definicja

Mówimy, że formuła jest typu:

- (W1) jeśli istnieje algorytm obliczający a_n w czasie poly(n)
- (W2) jeśli istnieje algorytm obliczający a_n w czasie $o(a_n)$
- (W3) jeśli istnieje algorytm obliczający a_n w czasie poly(log(n))
- (W4) jeśli istnieje algorytm obliczający a_n w czasie $n^{o(1)}$

$$\pi(n) = \sum_{k=2}^{n} \left(\left\lfloor \frac{(k-1)!+1}{k} \right\rfloor - \left\lfloor \frac{(k-1)!}{k} \right\rfloor \right)$$

Natalia Durlik SZIO 02.12.2021 6 / 14

$$\pi(n) = \sum_{k=2}^{n} \left(\left\lfloor \frac{(k-1)!+1}{k} \right\rfloor - \left\lfloor \frac{(k-1)!}{k} \right\rfloor \right)$$
 $\pi(x) \approx \frac{x}{\log(x)}$

Natalia Durlik SZIO 02.12.2021 6 / 14

$$\pi(n) = \sum_{k=2}^{n} \left(\left\lfloor \frac{(k-1)! + 1}{k} \right\rfloor - \left\lfloor \frac{(k-1)!}{k} \right\rfloor \right)$$
$$\pi(x) \approx \frac{x}{\log(x)}$$

Istnieje algorytm obliczający $\pi(x)$ w czasie $O(\frac{x^{2/3}}{\log^2 x})$ i pamięci $O(x^{1/3}\log^3 x \log\log x)$.

<ロ > < 個 > < 重 > < 重 > 重 の < の

6/14

Natalia Durlik SZIO 02.12.2021

$$\pi(n) = \sum_{k=2}^{n} \left(\left\lfloor \frac{(k-1)! + 1}{k} \right\rfloor - \left\lfloor \frac{(k-1)!}{k} \right\rfloor \right)$$
$$\pi(x) \approx \frac{x}{\log(x)}$$

Istnieje algorytm obliczający $\pi(x)$ w czasie $O(\frac{x^{2/3}}{\log^2 x})$ i pamięci $O(x^{1/3}\log^3 x \log\log x)$.

Pytanie

Czy istnieje formuła typu (W4) dla $\{\pi(n)\}$?

◆ロト ◆個ト ◆意ト ◆意ト ■ めなべ

6/14

Natalia Durlik SZIO 02.12.2021

Niech a_n oznacza liczbę możliwych pokryć kwadratu $[2n \times 2n]$ przez domina, tj. prostokąty 2×1 lub 1×2 .

Natalia Durlik SZIO 02.12.2021 7/14

Niech a_n oznacza liczbę możliwych pokryć kwadratu $[2n \times 2n]$ przez domina, tj. prostokąty 2×1 lub 1×2 .

Problem pokrycia przez domina jest równoważny ze znalezieniem skojarzenia doskonałego w dualnym grafie kratowym G.

Natalia Durlik SZIO 02.12.2021 7/14

Niech a_n oznacza liczbę możliwych pokryć kwadratu $[2n \times 2n]$ przez domina, tj. prostokąty 2×1 lub 1×2 .

Problem pokrycia przez domina jest równoważny ze znalezieniem skojarzenia doskonałego w dualnym grafie kratowym G.

Twierdzenie [Kasteleyn, 1961]

Liczba możliwych pokryć regionu R przez domina wynosi $\sqrt{|detK|}$, gdzie K to ważona macierz sąsiedztwa grafu G, z poziomymi krawędziami z wagą 1 i pionowymi $i=\sqrt{-1}$.

Natalia Durlik SZIO 02.12.2021 7 / 14

Niech a_n oznacza liczbę możliwych pokryć kwadratu $[2n \times 2n]$ przez domina, tj. prostokąty 2×1 lub 1×2 .

Problem pokrycia przez domina jest równoważny ze znalezieniem skojarzenia doskonałego w dualnym grafie kratowym G.

Twierdzenie [Kasteleyn, 1961]

Liczba możliwych pokryć regionu R przez domina wynosi $\sqrt{|detK|}$, gdzie K to ważona macierz sąsiedztwa grafu G, z poziomymi krawędziami z wagą 1 i pionowymi $i=\sqrt{-1}$.

Algorytm FKT - Fisher, Kasteleyn, Temperley

Algorytm obliczający liczbę skojarzeń doskonałych w grafie planarnym w czasie poly(n).

Natalia Durlik SZIO 02.12.2021 7/14

llość pokryć sześcianu $[2n \times 2n \times 2n]$ przez prostopadłościany $1 \times 1 \times 2$?

Natalia Durlik SZIO 02.12.2021 8/14

llość pokryć sześcianu $[2n \times 2n \times 2n]$ przez prostopadłościany $1 \times 1 \times 2$?

llość pokryć $[2 \times n \times n]$?

Natalia Durlik SZIO 02.12.2021 8 / 14

Ilość pokryć sześcianu $[2n \times 2n \times 2n]$ przez prostopadłościany $1 \times 1 \times 2$?

Ilość pokryć $[2 \times n \times n]$?

Twierdzenie

Problem zliczania pokryć 3-wymiarowego obszaru 3-wymiarowymi dominami jest #P-zupełny.

Natalia Durlik SZIO 02.12.2021 8

 $T = \{\tau_1, \dots, \tau_k\}$, gdzie $\tau_i \in \mathbb{Z}^2$ utworzone z kwadratów 1×1 przystających do siebie krawędziami. Rozważamy pokrycia regionu R kopiami elementów z T, bez odbijania, bez rotacji, bez nachodzenia elementów na siebie.

Natalia Durlik SZIO 02.12.2021 9

 $\mathbf{T}=\{ au_1,\ldots, au_k\}$, gdzie $au_i\in\mathbb{Z}^2$ utworzone z kwadratów 1×1 przystających do siebie krawędziami. Rozważamy pokrycia regionu R kopiami elementów z \mathbf{T} , bez odbijania, bez rotacji, bez nachodzenia elementów na siebie.

Problem pokrycia skończonego regionu przez skończony zbiór ${\bf T}$ jest NP-zupełny.

Natalia Durlik SZIO 02.12.2021 9 / 14

 $\mathbf{T}=\{ au_1,\ldots, au_k\}$, gdzie $au_i\in\mathbb{Z}^2$ utworzone z kwadratów 1×1 przystających do siebie krawędziami. Rozważamy pokrycia regionu R kopiami elementów z \mathbf{T} , bez odbijania, bez rotacji, bez nachodzenia elementów na siebie.

Problem pokrycia skończonego regionu przez skończony zbiór ${\bf T}$ jest NP-zupełny.

Natalia Durlik SZIO 02.12.2021 9 / 14

Rectangular Tileability

Czy dla podanego skończonego zbioru T istniej $n,m\in\mathbb{N}$, takie że T pokrywa region $n\times m$?

Natalia Durlik SZIO 02.12.2021 10 / 14

Rectangular Tileability

Czy dla podanego skończonego zbioru **T** istniej $n, m \in \mathbb{N}$, takie że **T** pokrywa region $n \times m$?

Twierdzenie

Rectangular Tileability jest problemem nierozstrzygalnym.

Rectangular Tileability

Czy dla podanego skończonego zbioru **T** istniej $n, m \in \mathbb{N}$, takie że **T** pokrywa region $n \times m$?

Twierdzenie

Rectangular Tileability jest problemem nierozstrzygalnym.

Twierdzenie

Mając dany T, problem istnienia pokrycia dla regionu $[n \times m]$ można rozstrzygnąć w czasie O(log(n) + log(m)).

Interpretacja kombinatoryczna

Definicja

Niech A_n oznacza zbiór pewnych *obiektów kombinatorycznych* o rozmiarze n, co oznacza, że możemy zweryfikować przynależność elementu do zbioru A_n w czasie poly(n).

Interpretacja kombinatoryczna

Definicja

Niech A_n oznacza zbiór pewnych *obiektów kombinatorycznych* o rozmiarze n, co oznacza, że możemy zweryfikować przynależność elementu do zbioru A_n w czasie poly(n).

Definicja

Oznaczmy $A = \bigcup_n A_n$.

Niech $f:\mathcal{A} \to \mathbb{N}$ funkcja obliczalna, $f(X) \leq e^{Cn^a}$, $X \in \mathcal{A}_n$, C,a>0.

Niech

$$\mathcal{P} = \bigcup_{X \in \mathcal{A}_n} \mathcal{P}_X$$

będzie rodziną kombinatorycznych obiektów sparametryzowaną przez \mathcal{A} taką, że $|\mathcal{P}_X| = f(X)$. Wtedy mówimy, że \mathcal{P} jest kombinatoryczną interpretacją f(X).

Cykle Hamiltona w grafach 3-regularnych

Twierdzenie

Niech e-krawędź w grafie 3-regularnym G. Wtedy liczba $N_e(G)$ cyklów Hamiltona w G zawierająca krawędź e jest parzysta.

Natalia Durlik SZIO 02.12.2021 12 / 14

Cykle Hamiltona w grafach 3-regularnych

Twierdzenie

Niech e-krawędź w grafie 3-regularnym G. Wtedy liczba $N_e(G)$ cyklów Hamiltona w G zawierająca krawędź e jest parzysta.

Problem otwarty

Interpretacja kombinatoryczna dla $N_e(G)/2$.

Natalia Durlik SZIO 02.12.2021 12 / 14

Cykle Hamiltona w grafach 3-regularnych

Twierdzenie

Niech e-krawędź w grafie 3-regularnym G. Wtedy liczba $N_e(G)$ cyklów Hamiltona w G zawierająca krawędź e jest parzysta.

Problem otwarty

Interpretacja kombinatoryczna dla $N_e(G)/2$.

Natalia Durlik SZIO 02.12.2021 12 / 14

Kombinatoryczna interpretacja dla ciągów

Obserwacja

Niech $\{a_n\}$ ma wzór typu (W1), tzn. można obliczyć elementy ciągu w czasie poly(n). Wtedy a_n ma trywialną interpretację - liczby $\{1, \ldots, a_n\}$.

Kombinatoryczna interpretacja dla ciągów

Obserwacja

Niech $\{a_n\}$ ma wzór typu (W1), tzn. można obliczyć elementy ciągu w czasie poly(n). Wtedy a_n ma trywialną interpretację - liczby $\{1, \ldots, a_n\}$.

Definicja

Niech $\mathcal{P} = \cup \mathcal{P}_n$ taki że $|\mathcal{P}_n| = a_n$.

Mówimy, że \mathcal{P} jest interpretacją kombinatoryczną dla a_n typu:

(C1) jeśli przynależność obiektu do \mathcal{P}_n można sprawdzić ze złożonością pamięciową O(logn).

Kombinatoryczna interpretacja dla ciągów

Obserwacja

Niech $\{a_n\}$ ma wzór typu (W1), tzn. można obliczyć elementy ciągu w czasie poly(n). Wtedy a_n ma trywialną interpretację - liczby $\{1, \ldots, a_n\}$.

Definicja

Niech $\mathcal{P} = \cup \mathcal{P}_n$ taki że $|\mathcal{P}_n| = a_n$.

Mówimy, że \mathcal{P} jest interpretacją kombinatoryczną dla a_n typu:

(C1) jeśli przynależność obiektu do \mathcal{P}_n można sprawdzić ze złożonością pamięciową O(logn).

Przykład

- liczby Catalana
- permutacje

Super Catalan numbers

Definicja

$$S(m,n) := \frac{(2m)!(2n)!}{m!n!(m+n)!}$$

Super Catalan numbers

Definicja

$$S(m, n) := \frac{(2m)!(2n)!}{m!n!(m+n)!}$$

$$S(m,n) = \sum_{k} (-1)^{k} {2m \choose m+k} {2n \choose n+k}$$

Twierdzenie

Liczby S(m, n) mają kombinatoryczną interpretacje typu (C1).

$$S(m, m+I) = \sum_{k} 2^{I-2k} \binom{I}{2k} S(m, k)$$

Super Catalan numbers

Definicja

$$S(m, n) := \frac{(2m)!(2n)!}{m!n!(m+n)!}$$

$$S(m,n) = \sum_{k} (-1)^{k} {2m \choose m+k} {2n \choose n+k}$$

Twierdzenie

Liczby S(m, n) mają kombinatoryczną interpretacje typu (C1).

$$S(m, m+I) = \sum_{k} 2^{I-2k} \binom{I}{2k} S(m, k)$$