0.1 极小多项式与 Cayley-Hamilton 定理

命题 0.1

数域 区上的 n 阶矩阵 A 一定适合数域 区上的一个非零多项式.

证明 我们已经知道,数域 \mathbb{K} 上的 n 阶矩阵全体组成了 \mathbb{K} 上的线性空间,其维数等于 n^2 . 因此对任一 n 阶矩阵 A, 下列 n^2+1 个矩阵必线性相关: $A^{n^2},A^{n^2-1},\cdots,A,I_n$.

也就是说, 存在 \mathbb{K} 中不全为零的数 $c_i(i=0,1,2,\cdots,c_{n^2})$, 使

$$c_{n^2}A^{n^2} + c_{n^2-1}A^{n^2-1} + \dots + c_1A + c_0I_n = O.$$

这表明矩阵 A 适合数域 账上的一个非零多项式.

定义 0.1 (矩阵的极小多项式)

若 n 阶矩阵 A (或 n 维线性空间 V 上的线性变换 φ) 适合一个非零首一多项式 m(x), 且 m(x) 是 A (或 φ) 所适合的非零多项式中次数最小者,则称 m(x) 是 A (或 φ) 的一个**极小多项式**或**最小多项式**.

 $\dot{\mathbf{L}}$ 由命题 0.1可知矩阵 A 的极小多项式 m(x) 一定存在, 故极小多项式是良定义的.

定理 0.1 (Cayley-Hamilton 定理)

- 1. **代数形式:** 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, f(x) 是 A 的特征多项式, 则 f(A) = O.
- 2. **几何形式:** 设 σ 是 n 维线性空间 V 上的线性变换, f(x) 是 σ 的特征多项式, 则 $f(\sigma) = O$.

证明

1. **代数形式**: 因为复数域是最大数域,所以可将 A 看作一个复矩阵. 由复方阵必相似于上三角阵知 A 复相似于一个上三角阵,也就是说存在的可逆矩阵 P,使 $P^{-1}AP = B$ 是一个上三角阵,其中 P 与 B 都是复矩阵,由相似矩阵有相同特征多项式可知 A 与 B 有相同的特征多项式 f(x). 记

$$f(x) = x^n + a_1 x^{n-1} + \dots + a_n$$

则 f(B) = O. 而

$$f(A) = A^{n} + a_{1}A^{n-1} + \dots + a_{n}I_{n}$$

$$= (PBP^{-1})^{n} + a_{1}(PBP^{-1})^{n-1} + \dots + a_{n}I_{n}$$

$$= PB^{n}P^{-1} + a_{1}PB^{n-1}P^{-1} + \dots + a_{n}I_{n}$$

$$= P(B^{n} + a_{1}B^{n-1} + \dots + a_{n}I_{n})P^{-1}$$

$$= Pf(B)P^{-1} = O.$$

2. **几何形式**: 设 $\{e_1, e_2, \cdots, e_n\}$ 是 V 的一组标准基, φ 在这组基下的矩阵为 A, 则由 f(x) 是 φ 的特征多项式可知, f(x) 也是 A 的特征多项式. 从而由代数形式的结论可知 f(A)=0. 于是对 $\forall \alpha \in V$, 都存在 k_1, k_2, \cdots, k_n , 使得

$$\alpha = k_1 e_1 + k_2 e_2 + \dots + k_n e_n = (e_1, e_2, \dots, e_n) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}.$$

两边同时作用 φ 得到

$$\varphi(\alpha) = k_1 \varphi(e_1) + k_2 \varphi(e_2) + \dots + k_n \varphi(e_n) = (\varphi(e_1), \varphi(e_2), \dots, \varphi(e_n)) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

$$= (e_1, e_2, \dots, e_n) A \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = A \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = A (e_1, e_2, \dots, e_n) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = A \alpha.$$

因此 $f(\varphi)(\alpha) = f(A)(\alpha) = 0$. 故由 α 的任意性可知 $f(\varphi) = 0$.

0.1.1 极小多项式的性质

命题 0.2 (极小多项式的性质)

- (1) 若 f(x) 是 A 适合的一个多项式,则 A 的极小多项式 m(x) 整除 f(x).
- (2) 任一n 阶矩阵的极小多项式必唯一.
- (3) 相似的矩阵具有相同的极小多项式.
- (4) 矩阵及其转置有相同的极小多项式.
- (5) 设m(x) 是n 阶矩阵A 的极小多项式, λ_0 是A 的特征值, 则 $(x-\lambda_0) \mid m(x)$.
- (6) 设 A 是一个分块对角阵

$$A = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_k \end{pmatrix}$$

其中 Ai 都是方阵,则 A 的极小多项式等于诸 Ai 的极小多项式之最小公倍式.

室记 性质 (5) 告诉我们: 矩阵的特征值一定是其极小多项式的根. 证明

(1) 由多项式的带余除法知道

$$f(x) = m(x)q(x) + r(x),$$

且 $\deg r(x) < \deg m(x)$. 将 x = A 代入上式得 r(A) = O, 若 $r(x) \neq 0$, 则 A 适合一个比 m(x) 次数更小的非零多项式, 矛盾. 故 r(x) = 0, 即 $m(x) \mid f(x)$.

- (2) 若 m(x), g(x) 都是矩阵 A 的极小多项式,则由矩阵极小多项式的性质 (1)知道 m(x) 能够整除 g(x), g(x) 也能够整除 m(x). 因此 m(x) 与 g(x) 只差一个常数因子,又极小多项式必须首项系数为 1, 故 g(x) = m(x).
- (3) 设矩阵 A 和 B 相似, 即存在可逆矩阵 P, 使 $B = P^{-1}AP$. 设 A, B 的极小多项式分别为 m(x), g(x), 注意到

$$m(B) = m(P^{-1}AP) = P^{-1}m(A)P = O,$$

因此 $g(x) \mid m(x)$. 同理, $m(x) \mid g(x)$, 故 m(x) = g(x).

- (4) 设 A 的极小多项式是 m(x), 转置 A' 的极小多项式是 n(x). 将 m(A) = 0 转置可得 m(A') = 0, 因此 $n(x) \mid m(x)$. 同理可证 $m(x) \mid n(x)$, 故 m(x) = n(x).
- (5) 由 m(A) = O 及 命题??可得 $m(\lambda_0) = 0$, 再由余数定理得 $(x \lambda_0) \mid m(x)$.

(6) 设 A 的极小多项式为 m(x), A_i 的极小多项式为 $m_i(x)$, 诸 $m_i(x)$ 的最小公倍式为 g(x), 则 $g(A_i) = O$, 于是

$$g(A) = \begin{pmatrix} g(A_1) & & & \\ & g(A_2) & & \\ & & \ddots & \\ & & g(A_k) \end{pmatrix} = O,$$

从而 $m(x) \mid g(x)$. 又因为

$$m(A) = \begin{pmatrix} m(A_1) & & & \\ & m(A_2) & & \\ & & \ddots & \\ & & m(A_k) \end{pmatrix} = O,$$

所以对每个 i 有 $m(A_i) = O$, 从而 $m_i(x) \mid m(x)$, 即 m(x) 是 $m_i(x)$ 的公倍式. 又 g(x) 是诸 $m_i(x)$ 的最小公倍式, 故 $g(x) \mid m(x)$. 综上所述,m(x) = g(x).

命题 0.3

设数域 \mathbb{F} 上的 n 阶矩阵 A 的极小多项式为 m(x), 求证: $\mathbb{F}[A] = \{f(A)|f(x) \in \mathbb{F}[x]\}$ 是 $M_n(\mathbb{F})$ 的子空间, 且 $\dim \mathbb{F}[A] = \deg m(x)$.

证明 容易验证 $\mathbb{F}[A]$ 在矩阵的加法和数乘下封闭, 从而是 $M_n(\mathbb{F})$ 的子空间. 对任一 $f(x) \in \mathbb{F}[x]$, 由多项式的带 余除法可知, 存在 $q(x), r(x) \in \mathbb{F}[x]$, 使得 f(x) = m(x)q(x) + r(x), 其中 $\deg r(x) < \deg m(x) = d$, 于是 f(A) = m(A)q(A) + r(A) = r(A) 是 I_n, A, \dots, A^{d-1} 的线性组合. 另一方面, 若设 $c_0, c_1, \dots, c_{d-1} \in \mathbb{F}$, 使得

$$c_0 \mathbf{I}_n + c_1 \mathbf{A} + \dots + c_{d-1} \mathbf{A}^{d-1} = \mathbf{O},$$

则 A 适合多项式 $g(x) = c_{d-1}x^{d-1} + \cdots + c_1x + c_0$, 由矩阵极小多项式的性质 (1)可知 $m(x) \mid g(x)$, 又因为 $d-1 = \deg g(x) < \deg m(x) = d$, 所以 g(x) = 0, 即 $c_0 = c_1 = \cdots = c_{d-1} = 0$, 于是 I_n, A, \cdots, A^{d-1} 在 \mathbb{F} 上线性无关. 因此, $\{I_n, A, \cdots, A^{d-1}\}$ 是 $\mathbb{F}[A]$ 的一组基,特别地, $\dim \mathbb{F}[A] = d = \deg m(x)$.

命题 0.4

n 阶矩阵 A 的极小多项式是其特征多项式的因式. 特别. A 的极小多项式的次数不超过 n.

证明 设 A 的极小多项式和特征多项式分别为 m(x) 和 f(x),则由Cayley-Hamilton 定理可知 f(A) = O,于是再由矩阵极小多项式的基本性质 (1)可知 $m(x) \mid f(x)$. 又因为特征多项式 f(x) 一定不是零多项式,所以 $\deg m(x) \leq \deg f(x) = n$.

推论 0.1

n 阶矩阵 A 的极小多项式和特征多项式有相同的根 (不计重数).

证明 设 m(x) 和 f(x) 分别是 n 阶矩阵 A 的极小多项式和特征多项式,由极小多项式的性质 (5)可知, f(x) 的根 (即特征值) 都是 m(x) 的根. 又由推论 0.4可知, m(x) | f(x), 从而 m(x) 的根也都是 f(x) 的根. 因此若不计重数, m(x) 和 f(x) 有相同的根.

例题 0.1 设 m(x) 和 f(x) 分别是 n 阶矩阵 A 的极小多项式和特征多项式, 求证: $f(x) \mid m(x)^n$.

证明 由于n 阶矩阵 A 的特征值最多是n 重的,因此设n 阶矩阵 A 的特征值为 x_i ($1 \le i \le n$),即 f(x) 为 x_i ($1 \le i \le n$),并且

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n).$$

又由推论 0.1可知 $x_i(1 \le i \le n)$ 也都是 m(x) 的根. 从而由余数定理可知 $(x - x_i) \mid m(x), i = 1, 2, \dots, n$. 于是由整除

的基本性质 (6) 归纳可得

$$(x-x_1)(x-x_2)\cdots(x-x_n)\mid m^n(x).$$

即 $f(x) \mid m^n(x)$.

命题 0.5 (常见矩阵的极小多项式)

- (1) 若 n 阶矩阵 A 有 n 个不同的特征值,则极小多项式等于特征多项式. 特别地,n 阶基础循环矩阵的极小多项式等于 $x^n 1$.
- (2) 设 n 阶矩阵 A 可对角化, $\lambda_1, \lambda_2, \dots, \lambda_k$ 是 A 的全体不同的特征值, 则 A 的极小多项式为 $(x \lambda_1)(x \lambda_2) \dots (x \lambda_k)$.
- (3) n 阶幂零 Jordan 块的极小多项式是 x^n .
- (4) 设 n(n > 1) 阶矩阵 A 的秩为 1, 求证: A 的极小多项式为 $x^2 tr(A)x$.

证明

(1) 设 A 的极小多项式和特征多项式分别为 m(x) 和 f(x),A 的 n 个不同的特征值为 λ_i ($1 \le i \le n$), 则 $f(x) = (x - \lambda_1) \cdots (x - \lambda_n)$. 由推论 0.1 可知, λ_i ($1 \le i \le n$) 也是 m(x) 的根. 从而

$$(x-\lambda_1)\cdots(x-\lambda_n)\mid m(x).$$

即 $f(x) \mid m(x)$, 又由推论 0.4可知 $m(x) \mid f(x)$, 故 m(x) = f(x).

(2) 设 A 的极小多项式为 m(x). 由 A 可对角化知存在可逆矩阵 P, 使得

$$P^{-1}AP = B = \operatorname{diag}\{B_1, B_2, \cdots, B_k\},\$$

其中 $B_i = \lambda_i I$ 为纯量矩阵. 显然 B_i 的极小多项式为 $x - \lambda_i$, 故由极小多项式的性质 (3) 和 (6)可得

$$m(x) = m(\mathbf{B}) = [x - \lambda_1, x - \lambda_2, \cdots, x - \lambda_k] = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_k).$$

- (3) 设 n 阶幂零 Jordan 块为 A, 则由命题**??**可知 $A^k \neq O(k=1,2,\cdots,n-1)$, 但 $A^n=O$. 故 n 阶幂零 Jordan 块 A 的极小多项式为 x^n .
- (4) 由命题??证法二可知, A 适合多项式 $x^2 tr(A)x$. 显然 A 不可能适合多项式 x. 若 A 适合多项式 x tr(A), 则 $A = tr(A)I_n$ 为纯量矩阵, 其秩等于 0 或 n, 这与 r(A) = 1 矛盾. 因此, A 的极小多项式为 $x^2 tr(A)x$.

命题 0.6

设 f(x) 和 m(x) 分别是 m 阶矩阵 A 的特征多项式和极小多项式, g(x) 和 n(x) 分别是 n 阶矩阵 B 的特征多项式和极小多项式, 证明以下结论等价:

- (1) A, B 没有公共的特征值;
- (2) (f(x), g(x)) = 1 $\not \le (f(x), n(x)) = 1$ $\not \le (m(x), g(x)) = 1$ $\not \le (m(x), n(x)) = 1$;
- (3) f(B) 或 m(B) 或 g(A) 或 n(A) 是可逆矩阵.

证明 (1) \Leftrightarrow (2): 由推论 0.1可知, (2) 中所有的条件都等价. 显然 (1) 与 (f(x), g(x)) = 1 等价, 故 (1) 与 (2) 等价.

- (2) ⇒ (3): 例如,若 (f(x), n(x)) = 1,则存在 u(x), v(x),使得 f(x)u(x) + n(x)v(x) = 1. 将 x = B 代入上式并注意到 n(B) = O,故可得 $f(B)u(B) = I_n$,这表明 f(B) 是可逆矩阵. 将 x = A 代入上式并注意到 f(A) = O(Cayley-Hamilton 定理),故可得 $n(A)v(A) = I_n$,这表明 n(A) 是可逆矩阵. 同理可证其他的情形.
- (3) \Rightarrow (1): 设 $\lambda_1, \dots, \lambda_m$ 是 A 的特征值, 则 $n(\lambda_1), \dots, n(\lambda_m)$ 是 n(A) 的特征值. 例如,若 n(A) 是可逆矩阵,则 $n(\lambda_i) \neq 0$,即 λ_i 都不是 n(x) 的根. 由推论 0.1 可知, λ_i 都不是 g(x) 的根,即 $\lambda_1, \dots, \lambda_m$ 都不是 B 的特征值,从而 A, B 没有公共的特征值. 同理可证其他的情形.

命题 0.7

设 f(x) 和 m(x) 分别是 n 阶矩阵 A 的特征多项式和极小多项式,g(x) 是一个多项式,求证:g(A) 是可逆矩阵的充要条件是 (f(x),g(x))=1 或 (m(x),g(x))=1.

证明 先证充分性, 若 (f(x),g(x))=1, 则存在多项式 u(x),v(x), 使得

$$u(x)f(x) + v(x)g(x) = 1.$$

又由Cayley-Hamilton 定理可知,f(A) = O. 从而将 x = A 代入上式得 $v(A)g(A) = I_n$, 故 g(A) 可逆. 若 (m(x), g(x)) = 1, 则存在多项式 u(x), v(x), 使得

$$u(x)m(x) + v(x)g(x) = 1.$$

又注意到 m(A) = 0. 从而将 x = A 代入上式得 $v(A)g(A) = I_n$, 故 g(A) 可逆.

再证必要性, 设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 为 A 的所有特征值, 则 $g(\lambda_1), g(\lambda_2), \dots, g(\lambda_m)$ 为 g(A) 的所有特征值. 又因为 g(A) 可逆, 所以其特征值 $g(\lambda_i) \neq 0$ ($i = 1, 2, \dots, m$), 即 λ_i 都不是 g(x) 的根. 而由推论 0.1可知, λ_i 是 f(x), m(x) 的 全部根. 因此 f(x), m(x) 与 g(x) 没有公共根, 故 (f(x), g(x)) = 1, (m(x), g(x)) = 1.

命题 0.8

证明:n 阶方阵 A 为可逆矩阵的充要条件是 A 的极小多项式的常数项不为零.

全 笔记 也可利用推论 0.1和 Vieta 定理来证明.

证明 设 f(x) 和 m(x) 分别是 A 的特征多项式和极小多项式,则 m(x) | f(x). 若 A 可逆,则 f(x) 的常数项 $(-1)^n |A|$ 不等于零,因此 m(x) 的常数项也不为零.

反之, 设 $m(x) = x^m + b_{m-1}x^{m-1} + \cdots + b_0$, 其中 $b_0 \neq 0$, 则

$$m(A) = A^m + b_{m-1}A^{m-1} + \cdots + b_0I_n = 0,$$

于是

$$A(A^{m-1} + b_{m-1}A^{m-2} + \cdots + b_1I_n) = -b_0I_n.$$

由 $b_0 \neq 0$ 即知 A 可逆.

0.1.2 Cayley-Hamilton 定理的应用: 逆矩阵和伴随矩阵的多项式表示

命题 0.9

设 $A \neq n$ 阶可逆矩阵, 求证: $A^{-1} = g(A)$, 其中 g(x) 是一个 n-1 次多项式.

证明 设 $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ 是 A 的特征多项式, 因为 A 可逆, 故 $a_n = (-1)^n |A| \neq 0$. 由Cayley-Hamilton 定理可得 f(A) = 0, 于是

$$A\left(-\frac{1}{a_n}(A^{n-1}+a_1A^{n-2}+\cdots+a_{n-1}I_n)\right)=I_n.$$

因此

$$A^{-1} = -\frac{1}{a_n}(A^{n-1} + a_1A^{n-2} + \dots + a_{n-1}I_n).$$

命题 0.10

设 $A \in n$ 阶矩阵, 求证: 伴随矩阵 $A^* = h(A)$, 其中 h(x) 是一个 n-1 次多项式.

证明 我们用摄动法来证明结论. 设 $f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ 是 A 的特征多项式, 其中 $a_n = (-1)^n |A|$.

若 A 是可逆矩阵,则由命题 0.9可得

$$A^* = |A|A^{-1} = (-1)^{n-1}(A^{n-1} + a_1A^{n-2} + \cdots + a_{n-1}I_n).$$

令 $h(x) = (-1)^{n-1}(x^{n-1} + a_1x^{n-2} + \dots + a_{n-1})$, 则 $A^* = h(A)$, 并且 h(x) 的系数由特征多项式 f(x) 的系数唯一确定. 对于一般的方阵 A, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 为可逆矩阵. 设

$$f_{t_k}(x) = |xI_n - (t_kI_n + A)| = x^n + a_1(t_k)x^{n-1} + \dots + a_{n-1}(t_k)x + a_n(t_k)$$

为 $t_k I_n + A$ 的特征多项式, 则 $a_i(t_k)$ 都是 t_k 的多项式且 $a_i(0) = a_i$ ($1 \le i \le n$). 由可逆矩阵情形的证明可得

$$(t_k \mathbf{I}_n + \mathbf{A})^* = (-1)^{n-1} \left((t_k \mathbf{I}_n + \mathbf{A})^{n-1} + a_1(t_k)(t_k \mathbf{I}_n + \mathbf{A})^{n-2} + \dots + a_{n-1}(t_k) \mathbf{I}_n \right).$$

注意到上式两边的矩阵中的元素都是 t_k 的多项式,从而关于 t_k 连续.上式两边同时取极限,令 $t_k \to 0$,即得

$$A^* = (-1)^{n-1}(A^{n-1} + a_1A^{n-2} + \dots + a_{n-1}I_n).$$

因此无论 A 是否可逆, 我们都有 $A^* = h(A)$ 成立.

0.1.3 Cayley - Hamilton 定理的应用:AX = XB 型矩阵方程的求解及其应用

命题 0.11

设A为m阶矩阵,B为n阶矩阵, 求证: 若A,B没有公共的特征值, 则矩阵方程AX = XB 只有零解X = O.

证明 证法一: 设 $f(\lambda) = |\lambda I_m - A|$ 为 A 的特征多项式,则由Cayley-Hamilton 定理可知 f(A) = O, 再由 AX = XB 可得

$$O = f(A)X = Xf(B).$$

因为 A,B 没有公共的特征值, 故由命题 0.6可知, f(B) 是可逆矩阵, 从而由上式即得 X = O.

证法二: 任取矩阵方程的一个解 X = C, 若 $C \neq O$, 则 $r(C) = r \geq 1$. 由例题??可知,A,B 至少有 r 个相同的特征值, 这与 A,B 没有公共的特征值相矛盾. 因此 C = O, 即矩阵方程只有零解. \square

例题 0.2 设 n 阶方阵 A,B 的特征值全部大于零且满足 $A^2 = B^2$, 求证:A = B.

证明 由 $A^2 = B^2$ 可得 A(A - B) = (A - B)(-B), 即 A - B 是矩阵方程 AX = X(-B) 的解. 注意到 A 的特征值全部大于零,-B 的特征值全部小于零,故它们没有公共的特征值,由命题 0.11可得 A - B = O, 即 A = B.

例题 0.3 设 $A = \text{diag}\{A_1, A_2, \dots, A_m\}$ 为 n 阶分块对角矩阵, 其中 A_i 是 n_i 阶矩阵且两两没有公共的特征值. 设 B 是 n 阶矩阵, 满足 AB = BA, 求证: $B = \text{diag}\{B_1, B_2, \dots, B_m\}$, 其中 B_i 也是 n_i 阶矩阵.

证明 按照 A 的分块方式对 B 进行分块, 可设 $B = (B_{ij})$, 其中 B_{ij} 是 $n_i \times n_j$ 矩阵. 由 AB = BA 可知, 对任意的 i, j, 有 $A_i B_{ij} = B_{ij} A_j$. 因为 A_i, A_j ($i \neq j$) 没有公共的特征值, 故由命题 0.11可得 $B_{ij} = O$ ($i \neq j$),从而 $B = \text{diag}\{B_{11}, B_{22}, \dots, B_{mm}\}$ 也是分块对角矩阵.

命题 0.12

设 A,B 分别为 m,n 阶矩阵,V 为 $m\times n$ 矩阵全体构成的线性空间,V 上的线性变换 φ 定义为: $\varphi(X) = AX - XB$. 求证: φ 是线性自同构的充要条件是 A,B 没有公共的特征值. 此时, 对任一 $m\times n$ 矩阵 C, 矩阵方程 AX - XB = C 存在唯一解.

注 由证法二不难看出,这个命题的结论在数域 ℙ上也成立.

证明 证法一: 若 A,B 没有公共的特征值,则由命题 0.11可知, $\varphi(X) = AX - XB = 0$ 只有零解,即 $Ker\varphi = 0$. 从而 φ 是 V 上的单映射,从而是线性自同构. 若 A,B 有公共的特征值 λ_0 ,则 λ_0 也是 B' 的特征值. 设 α , β 为对应的特征向量,即 $A\alpha = \lambda_0\alpha$, $B'\beta = \lambda_0\beta$,则 $\alpha\beta' \neq O$ 且

$$\varphi(\alpha \beta') = (A\alpha)\beta' - \alpha(B'\beta)' = \lambda_0 \alpha \beta' - \lambda_0 \alpha \beta' = 0,$$

于是 Ker $\varphi \neq 0$, 从而 φ 不是线性自同构.

证法二: 由命题??知, φ 的表示矩阵为 $A\otimes I_n-I_m\otimes B'$, 其特征值为 $\lambda_i-\mu_j(1\leq i\leq m;1\leq j\leq n)$, 其中 λ_i,μ_j 分别为 A,B 的特征值. 因此 φ 是 V 上的线性自同构当且仅当其表示矩阵 $A\otimes I_n-I_m\otimes B'$ 是可逆矩阵, 这当且仅当 φ 的特征值 $\lambda_i-\mu_j(1\leq i\leq m;1\leq j\leq n)$ 全都非零. 这也当且仅当 A,B 在复数域中没有公共的特征值. 例题 0.4 设 n 阶实矩阵 A 的所有特征值都是正实数, 证明: 对任一实对称矩阵 C, 存在唯一的实对称矩阵 B, 满足 A'B+BA=C.

证明 考虑矩阵方程 A'X - X(-A) = C, 注意到 A' 的特征值全部大于零,—A 的特征值全部小于零, 它们没有公共的特征值, 故由命题 0.12可得上述矩阵方程存在唯一解 X = B. 容易验证 $X = \overline{B}, B'$ 也都是上述矩阵方程的解, 故由解的唯一性可知 $B = \overline{B}$ 且 B = B', 即 B 为实对称矩阵, 结论得证.

0.1.4 Cayley-Hamilton 定理的应用: 特征多项式诱导的直和分解

例题 0.5 设 φ 是复线性空间 V 上的线性变换, 又有两个复系数多项式:

$$f(x) = x^m + a_1 x^{m-1} + \dots + a_m, \quad g(x) = x^n + b_1 x^{n-1} + \dots + b_n.$$

设 $\sigma = f(\varphi), \tau = g(\varphi)$, 矩阵 C 是 f(x) 的友阵, 即

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & -a_m \\ 1 & 0 & 0 & \cdots & -a_{m-1} \\ 0 & 1 & 0 & \cdots & -a_{m-2} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & -a_1 \end{pmatrix}$$

若 g(C) 是可逆矩阵, 求证: Ker $\sigma \tau$ = Ker σ ⊕ Ker τ .

证明 由命题??可知 C 的特征多项式就是 f(x). 由命题 0.7可知 (f(x),g(x))=1. 由 (f(x),g(x))=1 可知, 存在多项式 u(x),v(x), 使得

$$u(x)f(x) + v(x)g(x) = 1.$$

从而

$$u(\varphi)f(\varphi) + v(\varphi)g(\varphi) = I_V. \tag{1}$$

于是对 $\forall \alpha \in \text{Ker } \sigma \tau$, 由 (1)式可得

$$\alpha = u(\varphi)f(\varphi)(\alpha) + v(\varphi)g(\varphi)(\alpha).$$

又因为 $\alpha \in \text{Ker } \sigma \tau$, 所以 $f(\varphi)g(\varphi)(\alpha) = g(\varphi)f(\varphi)(\alpha) = 0$. 因此 $u(\varphi)f(\varphi)(\alpha) \in \text{Ker } g(\varphi), v(\varphi)g(\varphi)(\alpha) \in \text{Ker } f(\varphi)$. 故有 $\text{Ker } \sigma \tau = \text{Ker } \sigma + \text{Ker } \tau$. 任取 $\beta \in \text{Ker } \sigma \cap \text{Ker } \tau$, 则 $\sigma(\beta) = f(\varphi)(\beta) = 0, \tau(\beta) = g(\varphi)(\beta) = 0$. 由(1) 式可得

$$\beta = u(\varphi)f(\varphi)(\beta) + v(\varphi)g(\varphi)(\beta) = 0.$$

故 $\operatorname{Ker} \sigma \cap \operatorname{Ker} \tau = 0$, 因此 $\operatorname{Ker} \sigma \tau = \operatorname{Ker} \sigma \oplus \operatorname{Ker} \tau$.

命题 0.13

设 φ 是数域 \mathbb{K} 上 n 维线性空间 V 上的线性变换, 其特征多项式是 $f(\lambda)$ 且 $f(\lambda)$ = $f_1(\lambda)f_2(\lambda)$, 其中 $f_1(\lambda)$, $f_2(\lambda)$ 是互素的首一多项式. 令 V_1 = $\ker f_1(\varphi)$, V_2 = $\ker f_2(\varphi)$, 求证:

- (1) V_1, V_2 是 φ -不变子空间且 $V = V_1 \oplus V_2$;
- (2) $V_1 = \text{Im } f_2(\varphi), V_2 = \text{Im } f_1(\varphi);$
- (3) $\varphi|_{V_1}$ 的特征多项式是 $f_1(\lambda), \varphi|_{V_2}$ 的特征多项式是 $f_2(\lambda)$.

Ŷ 笔记 这个命题是命题??的推广.

这个命题的结论还可以进一步推广, 例如不限定 $f(\lambda)$ 是 φ 的特征多项式, 而只要求 φ 适合它 (比如 φ 的极小 多项式 $m(\lambda)$), 则由完全相同的讨论可以证明此时对这个命题的 (1) 和 (2) 都成立. 特别地, 如果考虑极小多项式的

首一互素因式分解

$$m(\lambda) = m_1(\lambda)m_2(\lambda), V_1 = \operatorname{Ker} m_1(\varphi), V_2 = \operatorname{Ker} m_2(\varphi),$$

则由完全类似的讨论可以证明: $\varphi|_{V_i}$ 的极小多项式就是 $m_i(\lambda)$.

注 $(3) 中 <math>f_1(\lambda) = g_1(\lambda), f_2(\lambda) = g_2(\lambda)$ 的原因: 由于 $f_i(\lambda)$ 与 $g_i(\lambda)$ 的根相同, 且 $f_1(\lambda)$ 与 $f_2(\lambda)$ 没有公共根, 因此不妨设

$$f_1(\lambda) = (\lambda - x_1)^{i_1} \cdots (\lambda - x_s)^{i_s}, \quad f_2(\lambda) = (\lambda - y_1)^{j_1} \cdots (\lambda - y_l)^{j_l}, \tag{2}$$

$$g_1(\lambda) = (\lambda - x_1)^{i'_1} \cdots (\lambda - x_s)^{i'_s}, \quad g_2(\lambda) = (\lambda - y_1)^{j'_1} \cdots (\lambda - y_l)^{j'_l}.$$
 (3)

其中 $x_1, \dots, x_s, y_1, \dots, y_l$ 互不相同. 则

$$f_1(\lambda)f_2(\lambda) = [(\lambda - x_1)^{i_1} \cdots (\lambda - x_s)^{i_s}][(\lambda - y_1)^{j_1} \cdots (\lambda - y_l)^{j_l}],$$

$$g_1(\lambda)g_2(\lambda) = [(\lambda - x_1)^{i'_1} \cdots (\lambda - x_s)^{i'_s}][(\lambda - y_1)^{j'_1} \cdots (\lambda - y_l)^{j'_l}].$$

又由 $f(\lambda) = f_1(\lambda)f_2(\lambda) = g_1(\lambda)g_2(\lambda)$ 可得

$$[(\lambda - x_1)^{i_1} \cdots (\lambda - x_s)^{i_s}][(\lambda - y_1)^{j_1} \cdots (\lambda - y_l)^{j_l}] = [(\lambda - x_1)^{i'_1} \cdots (\lambda - x_s)^{i'_s}][(\lambda - y_1)^{j'_1} \cdots (\lambda - y_l)^{j'_l}].$$

比较上式两边的常数项可得

$$x_1^{i_1} \cdots x_s^{i_s} y_1^{j_1} \cdots y_l^{j_l} = x_1^{i_1'} \cdots x_s^{i_s'} y_1^{j_1'} \cdots y_l^{j_l'}.$$

又因为 $x_1, \dots, x_s, y_1, \dots, y_l$ 互不相同, 所以

$$i_1 = i'_1, \dots, i_s = i'_s, j_1 = j'_1, \dots, j_l = j'_l.$$

再由(2)和(3)式可知 $f_1(\lambda) = g_1(\lambda), f_2(\lambda) = g_2(\lambda)$.

证明

(1) 对 $\forall \alpha \in V_1$, 都有 $f_1(\varphi)(\alpha) = 0$. 从而

$$f_1(\varphi)(\varphi(\alpha)) = (f_1(\varphi)\varphi)(\alpha) = (\varphi f_1(\varphi))(\alpha) = \varphi(f_1(\varphi)(\alpha)) = \varphi(0) = 0.$$

故 V_1 是 φ -不变子空间, 同理可得 V_2 也是 φ -不变子空间. 由 Cayley - Hamilton 定理可得 $f(\varphi) = f_1(\varphi)f_2(\varphi) = \mathbf{0}$, 故由命题??可知 $V = V_1 \oplus V_2$.

(2) 由 $f_1(\varphi)f_2(\varphi) = \mathbf{0}$ 可得 $\operatorname{Im} f_2(\varphi) \subseteq \operatorname{Ker} f_1(\varphi) = V_1, \operatorname{Im} f_1(\varphi) \subseteq \operatorname{Ker} f_2(\varphi) = V_2$. 因为 $V = V_1 \oplus V_2$,故由维数公式可得

$$\dim \operatorname{Im} f_2(\varphi) = \dim V - \dim \operatorname{Ker} f_2(\varphi) = \dim V - \dim V_2 = \dim V_1,$$

$$\dim \operatorname{Im} f_1(\varphi) = \dim V - \dim \operatorname{Ker} f_1(\varphi) = \dim V - \dim V_1 = \dim V_2,$$

从而 $V_1 = \operatorname{Im} f_2(\varphi), V_2 = \operatorname{Im} f_1(\varphi)$.

(3) 设 $\varphi|_{V_i}$ 的特征多项式为 $g_i(\lambda)(i=1,2)$, 则由命题??可得

$$f(\lambda) = f_1(\lambda)f_2(\lambda) = g_1(\lambda)g_2(\lambda). \tag{4}$$

注意到 $f_i(\varphi|_{V_i}) = f_i(\varphi)|_{V_i} = \mathbf{0}$, 即 $\varphi|_{V_i}$ 适合多项式 $f_i(\lambda)$, 因此 $\varphi|_{V_i}$ 的特征值也适合 $f_i(\lambda)$, 即 $g_i(\lambda)$ 的根 都是 $f_i(\lambda)$ 的根. 因为 $(f_1(\lambda), f_2(\lambda)) = 1$, 故 $f_1(\lambda)$ 与 $f_2(\lambda)$ 没有公共根, 从而由 $f_i(\lambda)$ 的首一性和(4) 式即得 $f_1(\lambda) = g_1(\lambda), f_2(\lambda) = g_2(\lambda)$.

0.1.5 Cayley-Hamilton 定理的其他应用

例题 0.6 设 A 为 n 阶矩阵, C 为 $k \times n$ 矩阵, 且对任意的 $\lambda \in \mathbb{C}$, $\begin{pmatrix} A - \lambda I_n \\ C \end{pmatrix}$ 均为列满秩阵. 证明: 对任意的 $\lambda \in \mathbb{C}$

$$\mathbb{C}$$
, $\begin{pmatrix} C \\ C(A-\lambda I_n) \\ C(A-\lambda I_n)^2 \\ \vdots \\ C(A-\lambda I_n)^{n-1} \end{pmatrix}$ 均为列满秩阵.

证明 由推论??可知,对任意的 $\lambda \in \mathbb{C}$,下列线性方程组只有零解:

$$\begin{cases} (A - \lambda I_n)x = \mathbf{0}, \\ Cx = \mathbf{0}. \end{cases}$$
 (5)

而要证明结论, 根据推论??可知, 只要证明对任意的 $\lambda \in \mathbb{C}$, 下列线性方程组只有零解即可:

$$\begin{cases}
Cx = \mathbf{0}, \\
C(A - \lambda I_n)x = \mathbf{0}, \\
C(A - \lambda I_n)^2 x = \mathbf{0}, \\
\dots \\
C(A - \lambda I_n)^{n-1} x = \mathbf{0}.
\end{cases}$$
(6)

任取 $\lambda_0 \in \mathbb{C}$ 以及对应线性方程组 (6)的任一解 x_0 ,则由线性方程组 (6)可得 $Cx_0 = 0$, $CAx_0 = 0$, \cdots , $CA^{n-1}x_0 = 0$,因此对任意次数小于 n 的多项式 g(x),均有 $Cg(A)x_0 = 0$.设

$$f(\lambda) = |\lambda \mathbf{I}_n - \mathbf{A}| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

为 A 的特征多项式,则由 Cayley - Hamilton 定理可得

$$(A - \lambda_1 I_n)(A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) = \mathbf{0}.$$

因此 $y = (A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) x_0$ 既满足 $(A - \lambda_1 I_n) y = 0$, 又满足 Cy = 0, 故由线性方程组(5)只有零解可得 $y = (A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) x_0 = 0$. 不断重复上述论证, 最后可得 $x_0 = 0$, 结论得证. \Box **例题 0.7** 设 A 是 n 阶矩阵, B 是 $n \times m$ 矩阵, 分块矩阵 $(B, AB, \cdots, A^{n-2}B, A^{n-1}B)$ 的秩为 r. 证明: 存在 n 阶可逆

矩阵 P, 使得

$$P^{-1}AP = \begin{pmatrix} A_{11} & A_{12} \\ O & A_{22} \end{pmatrix}, \quad P^{-1}B = \begin{pmatrix} B_1 \\ O \end{pmatrix},$$

其中 A_{11} 是 r 阶矩阵, B_1 是 $r \times m$ 矩阵.

注 $A\alpha_i(1 \le i \le r)$ 都是 $\alpha_1, \alpha_2, \dots, \alpha_r$ 的线性组合的原因: 因为 $\alpha_1, \dots, \alpha_r$ 是 $(B, AB, \dots, A^{n-2}B, A^{n-1}B)$ 列向量的极大无关组, 所以对 $\forall i \in \{1, 2, \dots, r\}$, 都存在 $k \in \{0, 1, \dots, n-1\}$, 使得 α_i 是 A^kB 的某一列向量.

当 α_i 是 $A^k B(0 \le k \le n-2)$ 的某一列向量时,则 $A\alpha_i$ 一定是 $A^{k+1}B$ 的某一列向量,又由于 $1 \le k+1 \le n-1$,因此 $A\alpha_i$ 仍是 $(B,AB,\cdots,A^{n-2}B,A^{n-1}B)$ 的某一列向量,从而 $A\alpha_i$ 可由 α_1,\cdots,α_r 线性表出.

当 α_i 是 $A^{n-1}B$ 的某一列向量时, 则 $A\alpha_i$ 一定是 A^nB 的某一列向量. 由(7)式可知

$$\mathbf{A}^{n}\mathbf{B} = -a_{1}\mathbf{A}^{n-1}\mathbf{B} - \cdots - a_{n-1}\mathbf{A}\mathbf{B} - a_{n}\mathbf{B}.$$

而上式右边的每一个列向量都可以由 $\alpha_1, \dots, \alpha_r$ 线性表出,于是 A^nB 的每一个列向量都可以由 $\alpha_1, \dots, \alpha_r$ 线性表出. 故 $A\alpha_i$ 也可以由 $\alpha_1, \dots, \alpha_r$ 线性表出.

证明 设 $(B, AB, \dots, A^{n-2}B, A^{n-1}B)$ 列向量的极大无关组为 $\alpha_1, \alpha_2, \dots, \alpha_r$, 由基扩张定理可将其扩张为 \mathbb{F}^n 的一组基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. 令 $P = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 则 P 为可逆矩阵. 设 A 的特征多项式为 $f(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n \lambda^{n-1}$

 $a_{n-1}\lambda + a_n$, 则由Cayley - Hamilton 定理可得

$$f(A) = A^n + a_1 A^{n-1} + \dots + a_{n-1} A + a_n I_n = 0,$$

从而

$$\mathbf{A}^{n}\mathbf{B} = -a_{1}\mathbf{A}^{n-1}\mathbf{B} - \dots - a_{n-1}\mathbf{A}\mathbf{B} - a_{n}\mathbf{B}. \tag{7}$$

由上式容易验证 $A\alpha_i(1 \leq i \leq r)$ 都是 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 的线性组合,于是 $AP=P\begin{pmatrix}A_{11}&A_{12}\\O&A_{22}\end{pmatrix}$,即有 $P^{-1}AP=$

$$\begin{pmatrix} A_{11} & A_{12} \\ O & A_{22} \end{pmatrix}$$
. 又 B 的列向量都是 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 的线性组合, 于是 $B = P \begin{pmatrix} B_1 \\ O \end{pmatrix}$, 即有 $P^{-1}B = \begin{pmatrix} B_1 \\ O \end{pmatrix}$.

例题 0.8 设 $\stackrel{\checkmark}{A}$ 是数域 \mathbb{F} 上的 n 阶矩阵, 递归地定义矩阵序列 $\{A_k\}_{k=1}^\infty$:

$$A_1 = A$$
, $p_k = -\frac{1}{k} \operatorname{tr}(A_k)$, $A_{k+1} = A(A_k + p_k I_n)$, $k = 1, 2, \cdots$.

求证: $A_{n+1} = 0$.

证明 设 A 的全体特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,它们的幂和记为 $s_k = \sum_{i=1}^n \lambda_i^k = \operatorname{tr}(A^k)$,它们的初等对称多项式记为 σ_k ,则 A 的特征多项式为

$$f(\lambda) = \lambda^n - \sigma_1 \lambda^{n-1} + \dots + (-1)^{n-1} \sigma_{n-1} \lambda + (-1)^n \sigma_n.$$

下面用归纳法证明: $p_k = (-1)^k \sigma_k (1 \le k \le n)$. $p_1 = -\text{tr}(A) = -\sigma_1$, 结论成立. 假设小于等于 k 时结论成立, 则 $A_{k+1} = A^{k+1} - \sigma_1 A^k + \cdots + (-1)^k \sigma_k A$. 由 Newton 公式可得

$$p_{k+1} = -\frac{1}{k+1} \operatorname{tr}(A_{k+1}) = -\frac{1}{k+1} (s_{k+1} - s_k \sigma_1 + \dots + (-1)^k s_1 \sigma_k) = (-1)^{k+1} \sigma_{k+1},$$

结论得证. 最后, 由Cayley - Hamilton 定理可得

$$A_{n+1} = A^{n+1} - \sigma_1 A^n + \dots + (-1)^n \sigma_n A = f(A)A = 0.$$