

Deep Learning Lecture 8

Data Augmentation Pretrained Models and Transfer Learning

Prof. Dr. Rainer Herrler

Phone: 09721/940-8710

Email: rainer.herrler@fhws.de

Pictures from Wikipedia / Pixabay
Some Pictures generated with Stable Diffusion

Other layers like Normalization / Dropout etc can also be inserted

Question: How can we see what's generated from the first layer?

GPU's for Deep Learning

- Kepler, Pascal, Volta (2017), Turing (2018), Ampere (2020), Ada & Hopper (2022) **Use Case:**
- Tegra (Embedded) / GeForce (Consumer)
- Quadro (Workstation) / Tesla (Datacenter)

e.g. my Notebook GTX 1650 mobile is a Turing Architecture ~6x slower than T4

Overview on current hosted services including GPU

Free hosted Jupiter Notebooks

- Google Colab
 - https://colab.research.google.com/
 - Direct connection to google drive for persisting data (model weights, training data)
 - T4 GPU or comparable TPU
 - Upgradeable to Colab Pro for stonger GPUs
- Kaggle
 - https://www.kaggle.com/
 - Good for exercises with data provided by Kaggle
 - Provides P100 and T4 GPUs as well as TPU's
- Paperspace
 - https://www.paperspace.com/gpu-cloud
 - Free GPUs of different types, even very powerful ones
 - Very often out of resources

Payed Services

- Microsoft Azure
 - Free 100\$ budget for students
 - Many Services provided –e.g. Azure Machine Learning Studio
 - Complex setup
 - Eg 90cent per h for Tesla K80
- Lambda Labs
 - https://lambdalabs.com/service/gpucloud/pricing
 - Newest types of GPU,
 - Good prices starting from 0.5\$ per h
- Vast.ai
 - https://cloud.vast.ai/create/
 - Very Cheap options available,
 - From private or Datacenter
- Amazon, Jarvislabs...

Deep Learning

Exercise

Try to create a CNN for CIFAR 100

- Short Link: https://bit.ly/30j1YeG
- Full Link: https://colab.research.google.com/drive/1x PCB1JdyLZgG17nJ8ePBoO95RO22C7C?usp=sharing
- Difficulties
 - Many classes and few samples
 - Complex networks will overfit very fast
 - Regularization is needed!
- Realistic outcome:
 - Rates around >35 % accuracy should be achievable
 - More complex networks can reach 60% accuracy and more

DL 015 CIFAR-100-CNNs.ipynb

Further comments when training in the cloud

- Save the training results regularly
 - Typically your notebooks are persistently stored
 - Training data and trained weights are not on a (very) permanent store
 - Store training data somewere else (Github/Kaggle)
 - Connect Network Drive for output
 - Use Checkpoint-Callbacks to store data

Prevent logout

- Free services often stop the python kernel after a long period of inactivity or if they are short on resources
- If you use the free service and you need a longer runtime while you are afk you can use browser plugins to simulate activity
- In doubt switch to a payed plan

from google.colab import drive
drive.mount('/content/gdrive')

Data Augmentation Extend your training data

Data Augmentation

- Definition: Data Augmentation creates more samples by slight modifications that usually don't have an effect on the predicted class
- Example Modifications for Images
 - Shifting, Skaling, Rotation
 - Adjusting Contrast, Saturation, Brightness
 - Adding noise
- Example Modification for Audio
 - Add Pitch
 - **—** ...
- Further Information:
 - https://www.datacamp.com/tutorial/complete-guide-data-augmentation

Data Augmentation with Tensorflow

- Option 1: Using special Layers in the model
 - RandomFlip
 - RandomRotation
 - With every epoch a randomly modified sample is being shown
 - We can create an extra Network for augmentation
 - These layers apply the random modification just in training
 - https://keras.io/api/layers/preprocessing_layers/image_augmentation/
- Option 2: Using the ImageDataGenerator
 - Here augmentation is not part of the model itself, instead it's a sperate step
 - https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerat or
- Option 3: Use Keras-Function to read from Directory
 - Augmentation can be done while "streaming" data from the filesystem.
 - tf.keras.preprocessing.image_dataset_from_directory
 - https://keras.io/api/preprocessing/image/

Data Augmentation Notebook

DL 014 DataAugmentation.ipynb

What did we learn from the last Notebook

- Data Augmentation helps to fight overfitting
 - accuracy: 0.9400 val accuracy: 0.2145 (without augmentation)
 - accuracy: 0.3980 val accuracy: 0.3218 (with augmentation)
- Networks can be nested
 - Use network as a layer to compose more complex models
 - Take care that input and output layers fit together and that input_size for first layer is given
- Streaming images with Iterators
 - Images for training don't have to be in memory, but can be loaded step by step
 - Creation of Iterators for streaming
 - ImageDataGenerator.flow(..
 - tf.keras.utils.image_dataset_from_directory()
- We have written a own training-Loop for several epochs
 - Most of the times this is not necessary but it gives you additional flexibility

CNN-Architectures and pretrained models

Pretrained Models for Classification in Keras

- Architectures
 - VGG16 16 Layers
 - VGG19 19 Layers
 - InceptionV9
 - ResNet (50 to 100Layers)
 Residual Connections
 - EfficientNetB0
- Pretrained Models
 - Weights available for different image training sets
 - Imagenet, COCO etc

https://pub.towardsai.net/from-vggnet-to-efficientnet-key-milestones-in-the-evolution-of-cnn-design-d778aa1e1bed

Deep Learning

ResNet Architecture (2015)

- ResNet is the abbreviation of Residual Neural Network
- Authors: Kaiming He et al (formerly Microsoft now Facebook)
- Design:
 - Introduction of so called "Skip-Connections" aka "residual connections" to form Residual Blocks
 - A couple of these blocks are stacked
- Effect:
 - Identity function allows the upstream gradient to better flow backwards (no vanishing gradients)
 - Networks can be deeper

Picture from Wikipedia

Applying pretrained models (Trained on ImageNet)

DL_014_VGG16.ipynb

DL_015_VGG19.ipynb

DL_016_InceptionV3.ipynb

DL_017_EfficientNetB0.ipynb

For these CNN-Architectures we can get weights for different image datasets

All classes of the image dataset used for training can be predicted!

Transfer learning

- NN models can just predict what they are trained for
 - Same kind of input format (pixel resolution and channels)
 - Same prediction classes (e.g 100 different classes)
- For example a NN trained on Imagenet
 - can distinguish between cats and dogs
 - cannot distinguish between different breeds of dogs
- Luckily we can reuse models trained on different tasks and extend them to new use cases
 - Early layers are frozen and weights later layers are recreated (reinitialized)
 - Then they are trained with new samples
- Transfer learning is applicable even when...
 - ...we don't have enough data for the new task to train
 - ...we don't have the time and resource to train from scratch

Transfer Learning Idea

Model is already capable of:

Detecting Textures Object Edges and & Patterns Parts Corners

Transfer Learning Idea

- Different approaches possible
 - Just retrain the last Fully Connected Layer
 - Retrain multiple layers from the end (all Dense layers)
 - You can also unlock earlier Convolutional Layers and adjust weights here (e.g Fine Tune / improve results with new data)

General Rules

- The more layers you retain the more data and epochs are required
- You typically shouldn't unlock certain types of layers like BatchNormalization Layers

(Reference: https://pub.towardsai.net/batchnorm-for-transfer-learning-df17d2897db6)

Reusing Pretrained Modells (on Imagenet) for own tasks

DL_024_Transfer Learning-EfficientNet.ipynb

https://bit.ly/42P1jGm