

Embedded Storage

SM2259XT SATA Solid-State Drive Controller

Datasheet

Revision 0.1 May 2018

Revision History

Revision	Date	Description
0.1	May 28, 2018	Initial release

IMPORTANT NOTICE

Fidential Fo' INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF SILICON MOTION. INC. ("SMI"). NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN SMI'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, SMI ASSUMES NO LIABILITY WHATSOEVER, AND SMI DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF SMI PRODUCTS INCLUDING LIABILITY OR WARRANTIES FOR FITNESS FOR A PARTICULAR MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

SMI products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. SMI may make changes to specifications and product descriptions at any time, without notice. SMI may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not constitute any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by SMI. SMI assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of SMI. Contact your local SMI sales office or your distributor to obtain the latest specifications and before placing your product order.

Silicon Motion and Silicon Motion logo are registered trademarks of SMI and/or its affiliates. Other brand names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Copyright © 2018, SMI. All Rights Reserved.

www.siliconmotion.com

Table of Contents

1.	Ove	rview	6					
	1.1	Product Description	6					
	1.2	Key Features	6					
	1.3	Functional Description	8					
	1.4	Block Diagram						
2.	Sigr	nal Descriptions	10					
	2.1	2.1 Ball Assignments						
	2.2	Signal Descriptions	11					
3.	Electrical Specifications							
	3.1	3.1 Recommended Operating Conditions						
	3.2	DC Electrical Characteristics	18					
	3.3	Flash Interface Timing Characteristics	20					
		3.3.1 SDR (Legacy NAND) Interface	20					
		3.3.2 NV-DDR Interface	23					
		3.3.3 NV-DDR2 Interface	28					
4.	Package Information							
5.	Prod	duct Ordering Information	34					
	5.1 Ordering Information							
	5.2							

List of Tables

SATA Interface Signals	11						
Flash Interface Signals							
Power Signals							
Miscellaneous Signals							
5: Recommended/Typical Operating Conditions							
Digital DC Electrical Characteristics (VCCGQ of 3.3V)	18						
Digital DC Electrical Characteristics (VCCGQ of 1.8V)	18						
Digital DC Electrical Characteristics (VCCFQ of 1.8V)							
Digital DC Electrical Characteristics (VCCFQ of 1.2V)	19						
AC Timing Characteristics of SDR Mode							
AC Timing Characteristics of NV-DDR Mode	23						
AC Timing Characteristics of NV-DDR2 Mode	28						
Ordering Information	34						
	Flash Interface Signals Power Signals Miscellaneous Signals Recommended/Typical Operating Conditions Digital DC Electrical Characteristics (VCCGQ of 3.3V) Digital DC Electrical Characteristics (VCCGQ of 1.8V) Digital DC Electrical Characteristics (VCCFQ of 1.8V) Digital DC Electrical Characteristics (VCCFQ of 1.2V) AC Timing Characteristics of SDR Mode AC Timing Characteristics of NV-DDR Mode						

List of Figures

144-Ball TFBGA Assignments (Top View – Balls Down)	10
	_
Command Latch Timing	21
Address Latch Timing	21
Data Output (Write) Cycle Timing	22
Data Input (Read) Cycle Timing	22
NV-DDR Command Cycle Timing	
NV-DDR Address Cycle Timing	25
NV-DDR Data Input (Read) Cycle Timing	27
NV-DDR2 Command Cycle Timing	29
NV-DDR2 Address Cycle Timing	30
NV-DDR2 Data Output (Write) Cycle Timing	31
NV-DDR2 Data Input (Read) Cycle Timing	32
144-Ball TFBGA Package (14x14mm)	33
Top Marking	34
3MI Moonly	
	Address Latch Timing Data Output (Write) Cycle Timing Data Input (Read) Cycle Timing NV-DDR Command Cycle Timing NV-DDR Address Cycle Timing NV-DDR Data Output (Write) Cycle Timing NV-DDR Data Input (Read) Cycle Timing NV-DDR2 Command Cycle Timing NV-DDR2 Address Cycle Timing NV-DDR2 Data Output (Write) Cycle Timing NV-DDR2 Data Output (Write) Cycle Timing NV-DDR2 Data Input (Read) Cycle Timing

1. Overview

1.1 Product Description

The SM2259XT is a high-performance SATA 6Gb/s SSD controller ideally suited for client SSDs, Ultrabooks, and Tablets. The controller fully supports high-speed Toggle, ONFI, as well as the latest generation NAND flash, enabling the realization of fast, reliable, and feature-wise SSDs on the market. Incorporated Silicon Motion's proprietary NANDXtend® error-correcting code (ECC) technology, the SM2259XT provides comprehensive data protection and enhances the endurance and retention of TLC and QLC NAND, achieving longer durability for SSD.

1.2 Key Features

Host Interface

- Industrial Standard SATA Revision 3.1 compliant
- Industrial Standard ATA/ATAPI-8 and ACS-3 command compliant
- Supports SATA interface rate of 6Gb/s (backward compatible to 1.5Gb/s and 3Gb/s)
- Native Command Queuing up to 32 commands
- Supports SATA device sleep mode (DevSleep)
- Data Set Management command (TRIM support)
- Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.)
- Supports 28-bit and 48-bit LBA (Logical Block Addressing) mode commands

NAND Flash Support

- Supports ONFI 4.0 and Toggle 2.0 interface
- Supports SDR, NV-DDR, NV-DDR2, NV-DDR3, and Toggle DDR/DDR2 NAND flash
- 4-channel flash interface supports up to 16 NAND flash devices
- Supports 1.2V/1.8V Flash I/O
- Supports 8KB and 16KB page size
- Supports 1-plane, 2-plane, and 4-plane operation

Data Protection and Reliability

- End-to-End Protection
- Supports ATA8 security feature set
- Hardware LDPC ECC engine with hard-decision and soft-decision decoding
- RAID engine offers additional level of data protection
- Internal data shaping technique increases data endurance
- StaticDataRefresh technology ensures data integrity
- Early weak block retirement option
- Global wear leveling algorithm evens program/erase count and extends SSD lifespan

Architecture

- 32-bit RISC CPU
- High-efficiency 64-bit system bus
- Automatic sleep and wake-up mechanism to save power
- Built-in voltage detectors for power failure protection
- Built-in power-on reset and voltage regulators
- Built-in temperature sensor for SSD temperature detection
- Supports JTAG interface and UART (RS-232) interface

Enhanced Security

- Real time full drive encryption with Advanced Encryption Standard (AES)
- Trusted Computing Group (TCG) Opal protocol
- Hardware SHA 256 and True Random Number Generator (TRNG)
- eFuse Memory (OTP)

Package

- ... compliant

SMI Confidential Revision 0.1

1.3 Functional Description

Host Interface

The high-speed SATA interface is compliant with SATA Revision 3.1 and ATA-8 ACS-3 specifications, and supports device sleep mode to efficiently save power consumption.

Flash Interface and Data Transfer

In addition to supporting high-speed Toggle, ONFI, and legacy Asynchronous NAND, the flash interface enables 2-way and 4-way interleaving for a multi-bank NAND flash connection to obtain optimal performance. The SM2259XT uses a superior DMA technology to transfer data between the host and the NAND flash interface. The DMA technology transfers data at a very high rate in both directions (read and write) and in doing so, effectively decreases the loading of micro processor.

LDPC ECC

The LDPC ECC engine executes parity generation and error detection/correction features, and enhances decoding throughput and data reliability. With LDPC of correction capability 1e-2 RBER, the hard and soft decoding mechanism provides powerful error correction. Hence the SM2259XT can enhance the endurance and retention of TLC and QLC NAND and extends the SSD lifespan.

RAID Protection

In case of uncorrectable errors occurring within a superblock (a pre-defined area which consists of a particular set of blocks across physical NAND units), the RAID engine recovers the uncorrectable error chunk by using a certain storage space of parity bits. Incorporated with LDPC, the RAID ensures a comprehensive level of data integrity while providing a broad range of RAID overhead protection.

Data Security

Security commands can be used to lock and unlock the drive by password or through a hardware switch. For those users who require the highest level of security, the SM2259XT provides an enhanced data security option. By utilizing the latest data management techniques such as AES and TCG Opal, the full data encryption on SSD can eventually ensure the security of confidential data and information.

SLC Caching

The intelligent SLC caching algorithm enables the NAND flash memory to operate in SLC-mode and hence enhances write performance of SSD.

SMART

The SM2259XT supports SMART commands that allow users to read spare and bad block information. The users can thus evaluate drive health at run time and receive an early warning before the drive life ends.

SMI Confidential Revision 0.1

1.4 Block Diagram

Figure 1: SM2259XT Block Diagram

2. Signal Descriptions

2.1 Ball Assignments

Figure 2: 144-Ball TFBGA Assignments (Top View – Balls Down)

A1	A2	A3	A4	A5	A6	A7	A8	А9	A10	A11	A12
B1	B2	B3	B4	B5	B6	B7	B8	В9	B10	B11	B12
C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
H1	H2	нз	H4	Н5	Н6	H7	Н8	Н9	H10	H11	H12
Ji	J2	13	J4	J5	J6]7	18	19	J10	J11	J12
K1	К2	КЗ	К4	К5	К6	K7	К8	К9	K10	K11	K12
L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12
M1	M2	МЗ	M4	M5	M6	M7	M8	M9	M10	M11	M12

SMI Confidential Revision 0.1

2.2 Signal Descriptions

Table 1: SATA Interface Signals

Signal	Ball NO.	Туре	Description		
p0_rx_p	A5	CMOS input	CATA Dy Differential Dair		
p0_rx_m	A4	CMOS input	SATA Rx Differential Pair		
p0_tx_p	A2	CMOS output	SATA Tx Differential Pair		
p0_tx_m	A1	CMOS output			
p0_resref	B1	Input	External reference for output drive calibration. Attach a 200 Ω (±1%) precision resistor-to-ground on the board.		
DEVSLP B5 CMOS input		CMOS input	SATA device sleep mode (DevSleep)		
			If the host supports DevSleep, the device will enter sleep		
			mode when this pin is asserted high.		

Table 2: Flash Interface Signals

Signal	Ball NO.	Туре	Description			
P_FSH0_DAT[0]	L2	CMOS I/O				
P_FSH0_DAT[1]	M2	CMOS I/O				
P_FSH0_DAT[2]	K3	CMOS I/O	(8)			
P_FSH0_DAT[3]	M3	CMOS I/O	Flash data bus for channel 0			
P_FSH0_DAT[4]	K4	CMOS I/O	Flash data bus for channel o			
P_FSH0_DAT[5]	L4	CMOS I/O				
P_FSH0_DAT[6]	K5	CMOS I/O				
P_FSH0_DAT[7]	L5	CMOS I/O				
P_FSH1_DAT[0]	L11	CMOS I/O				
P_FSH1_DAT[1]	K10	CMOS I/O				
P_FSH1_DAT[2]	L10	CMOS I/O				
P_FSH1_DAT[3]	K9	CMOS I/O	Flash data bus for channel 1			
P_FSH1_DAT[4]	L9	CMOS I/O	Flash data bus for channer i			
P_FSH1_DAT[5]	K8	CMOS I/O				
P_FSH1_DAT[6]	L8	CMOS I/O				
P_FSH1_DAT[7]	L7	CMOS I/O				

Table 2: Flash Interface Signals (continued)

Signal	Ball	Туре	Description	
	NO.		•	
P_FSH2_DAT[0]	J11	CMOS I/O		
P_FSH2_DAT[1]	H10	CMOS I/O		
P_FSH2_DAT[2]	H11	CMOS I/O		
P_FSH2_DAT[3]	G10	CMOS I/O	Flash data bus for channel 2	
P_FSH2_DAT[4]	G11	CMOS I/O		
P_FSH2_DAT[5]	F10	CMOS I/O		
P_FSH2_DAT[6]	F11	CMOS I/O		
P_FSH2_DAT[7]	E11	CMOS I/O		
P_FSH3_DAT[0]	A11	CMOS I/O	, ,0,	
P_FSH3_DAT[1]	A12	CMOS I/O		
P_FSH3_DAT[2]	B10	CMOS I/O	*/.0.	
P_FSH3_DAT[3]	B11	CMOS I/O	Flash data bus for channel 3	
P_FSH3_DAT[4]	B12	CMOS I/O	Plasti data bus foi channel 3	
P_FSH3_DAT[5]	C10	CMOS I/O		
P_FSH3_DAT[6]	C11	CMOS I/O	0.	
P_FSH3_DAT[7]	C12	CMOS I/O		
P_FSH0_ALE	K6	CMOS output	Flash address latch enable – channel 0	
P_FSH1_ALE	K11	CMOS output	Flash address latch enable – channel 1	
P_FSH2_ALE	D10	CMOS output	Flash address latch enable – channel 2	
P_FSH3_ALE	D9	CMOS output	Flash address latch enable – channel 3	
P_FSH0_CLE	K7	CMOS output	Flash command latch enable – channel 0	
P_FSH1_CLE	J10	CMOS output	Flash command latch enable – channel 1	
P_FSH2_CLE	D11	CMOS output	Flash command latch enable – channel 2	
P_FSH3_CLE	C9	CMOS output	Flash command latch enable – channel 3	
P_FSH0_CEN[0]	J3	CMOS output		
P_FSH0_CEN[1]	J2	CMOS output	Flash chip enable - channel 0	
P_FSH0_CEN[2]	J1	CMOS output		
P_FSH0_CEN[3]	L3	CMOS output		
P_FSH1_CEN[0]	K1	CMOS output		
P_FSH1_CEN[1]	K2	CMOS output	Floor ohin anable shannal 1	
P_FSH1_CEN[2]	L1	CMOS output	Flash chip enable - channel 1	
P_FSH1_CEN[3]	M1	CMOS output		
P_FSH2_CEN[0]	D8	CMOS output		
P_FSH2_CEN[1]	C8	CMOS output	Flood object analysis observed 2	
P_FSH2_CEN[2]			Flash chip enable - channel 2	
P_FSH2_CEN[3]	A9	CMOS output		

Table 2: Flash Interface Signals (continued)

Signal	Ball NO.	Туре	Description		
P_FSH3_CEN[0]	A8	CMOS output			
P_FSH3_CEN[1]	B8	CMOS output	Flack skin anakla, akannal 2		
P_FSH3_CEN[2]	C7	CMOS output	Flash chip enable - channel 3		
P_FSH3_CEN[3]	D7	CMOS output			
P_FSH0_DQS_P	M5	CMOS I/O	P_FSHx_DQS_P/P_FSHx_DQS_N: Flash data strobe/Flash data strobe complement.		
P_FSH0_DQS_N	M4	CMOS I/O	For SDR access mode, these signals are not used (no		
P_FSH1_DQS_P	M10	CMOS I/O	connect). • For NV-DDR and Toggle DDR 1.0 access modes, the		
P_FSH1_DQS_N	M11	CMOS I/O	P_FSHx_DQS_P indicates the data valid window. Input with read data, output with write data. Edge-aligned with read		
P_FSH2_DQS_P	K12	CMOS I/O	data, centered in write data.		
P_FSH2_DQS_N	L12	CMOS I/O	For NV-DDR2/NV-DDR3 and Toggle DDR 2.0 access modes, P_FSHx_DQS_P indicates the data valid window.		
P_FSH3_DQS_P	E12	CMOS I/O	P_FSHx_DQS_P is paired with differential signal		
P_FSH3_DQS_N	D12	CMOS I/O	P_FSHx_DQS_N to provide differential pair signaling to the system during reads and writes.		
P_FSH_WP	J6	CMOS output	Flash write protect signal directly connected to the flash memory write protect signal.		
P_FSH_FRB	J7	CMOS input	Flash ready/busy signals indicating the state, ready or busy of flash memory.		
P_FSH0_RE_N_P	M6	CMOS output	P_FSHx_RE_N_P / P_FSHx_RE_N_N: Flash read enable and Flash read enable complement.		
P_FSH0_RE_N_N	M7	CMOS output	 For SDR access mode, the P_FSHx_RE_N_P enables serial data output. For NV-DDR2/NV-DDR3 and Toggle DDR 1.0/2.0 access 		
P_FSH1_RE_N_P	M9	CMOS output	modes, the P_FSHx_RE_N_P signal is the serial data-out control, and when active, drives the data onto the DQ bus.		
P_FSH1_RE_N_N	M8	CMOS output	Data is valid after tDQSRE of rising edge and falling edge of P_FSHx_RE_N_P, which also increments the internal column address counter by each one. The read enable		
P_FSH2_RE_N_P	J12	CMOS output	P_FSHx_RE_N_N is paired with differential signal P_FSHx_RE_N_P (only in NV-DDR2 and Toggle DDR 2.0		
P_FSH2_RE_N_N	H12	CMOS output	modes) to provide differential pair signaling to the system during reads. For NV-DDR access mode, P_FSHx_RE_N_N is used as		
P_FSH3_RE_N_P	F12	CMOS output	write/read direction control. When this signal is latched high, the controller is driving the DQ bus and DQS (data is being		
P_FSH3_RE_N_N	G12	CMOS output	written to the bus). When this signal is latched low, the NAND flash is driving the DQ bus and DQS (data is being read from the bus).		

Table 2: Flash Interface Signals (continued)

Signal	Ball NO.	Туре	Description
P_FSH0_WE_N	L6	CMOS output	Flash write enable
			For SDR access mode, the write enable signal controls the
P_FSH1_WE_N	J9	CMOS output	latching of output data. Data, commands, and addresses are
			latched on the rising edge of P_FSHx_WE_N.
P_FSH2_WE_N	E10	CMOS output	For NV-DDR2/NV-DDR3 and Toggle DDR 1.0/2.0 access
			modes, this signal controls writes to the DQ bus. Commands
P_FSH3_WE_N	A10	CMOS output	and addresses are latched on the rising edge of the WE
			pulse.
			For NV-DDR access mode, this signal is used as the clock.
VREFIO_FSH	M12	Input	External Flash I/O reference voltage (0.5 x VCCFQ)

Table 3: Power Signals

Signal	Ball NO.	Туре	Description			
V11A_PAD	A7	Analog power input	SATA PHY core and AIP power 1.16V			
V25_PAD	E6	Analog power output	3.3V-to-2.5V regulator output			
VCCAH	B2	Analog power input	Power supply for SATA PHY and AIP 3.3V			
VCCFQ	F9, G9, H9, J8	Power input	Power supply for Flash I/O 1.2V/1.8V			
VCCGQ	F1	Power input	Power supply for general I/O 1.8V/3.3V			
VDD	E7-E9, F7, F8	Power input	Core power supply 1.16V			
VSS	G5, G6, H5, H6	Ground	Core ground connection			
VSS33	G7, G8, H7, H8	Ground	GPIO/Flash IO ground connection			
VCC5V	B6	Analog input	Voltage detection input for Host power supply			
VDTF_VIN	B7	Analog input	Voltage detection input for Flash power			
CRY_AVDD33	C1	Analog power input	Crystal power supply 3.3V			
VGNDA	A3, B4	Analog ground	SATA PHY and AIP ground connection			
CRY_AVSS33	C2	Analog ground	Crystal ground connection			
SIMI OULY						

Table 4: Miscellaneous Signals

Signal	Ball NO.	Туре	Description
P_EXRSTN	D5	CMOS input	Chip Global Reset
P_EXCLK	C4	CMOS input	Chip External Clock
EX_PWD_N	A6	CMOS output	External Power Control Signal
P_P0[1]	НЗ	CMOS I/O	General Purpose I/O
P_P1[0]	D2	CMOS I/O	General Purpose I/O
P_P1[1]	E2	CMOS I/O	General Purpose I/O
P_P1[2]	F5	CMOS I/O	General Purpose I/O
P_P1[3]	F4	CMOS I/O	General Purpose I/O
P_P1[4]	F3	CMOS I/O	General Purpose I/O
P_P1[5]	F2	CMOS I/O	General Purpose I/O
P_P1[6]	G4	CMOS I/O	General Purpose I/O
P_P1[7]	H4	CMOS I/O	General Purpose I/O
P_P2[0]	D3	CMOS I/O	General Purpose I/O
P_P2[2]	D4	CMOS I/O	General Purpose I/O
P_P2[3]	B3	CMOS I/O	General Purpose I/O
P_P2[4]	E5	CMOS I/O	General Purpose I/O
P_P2[5]	C3	CMOS I/O	General Purpose I/O
P_P2[6]	E4	CMOS I/O	General Purpose I/O
P_P2[7]	E3	CMOS I/O	General Purpose I/O
efuse_VQPS	F6	Power input	eFuse power
XOUT	D1	CMOS output	Crystal Out
XIN	E1	CMOS input	Crystal In
P_JTAG_TRST_N	G1	CMOS input	JTAG Signal
P_JTAG_TMS	J5	CMOS input	JTAG Signal
P_JTAG_TDI	H1	CMOS input	JTAG Signal
P_JTAG_TDO	J4	CMOS output	JTAG Signal
P_JTAG_TCK	G2	CMOS input	JTAG Signal
P_TEST0	D6	CMOS input	Test signal.
D ====:	00	0.100	Tie to ground for normal operation.
P_TEST1	C6	CMOS input	Test signal. Tie to ground for normal operation.
P_TEST2	C5	CMOS input	Test signal.
			Tie to ground for normal operation.
NC	G3, H2	1	Used for internal test. Do not connect (N.C.)

Note: For more information on GPIO, please contact project manager or local support personnel.

3. Electrical Specifications

3.1 Recommended Operating Conditions

Table 5: Recommended/Typical Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Core Power Supply	VDD	1.07	1.16	1.21	V
I/O Pad	VCCGQ	1.7	1.8	1.95	V
Power Supply	VCCGQ	2.7	3.3	3.6	V
Flash I/O	VCCEO	1.14	1.2	1.26	V
Power Supply	VCCFQ	1.7	1.8	1.95	V
Flash I/O Reference Voltage	VREFIO_FSH	:.7	0.5 x VCCFQ		V
	V11A_PAD	1.07	1.16	1.21	V
Analog Power Supply (SATA PHY and AIP)	VCCAH	3.06	3.3	3.63	V
(OATATTIT allu AIF)	CRY_VDD33	3.06	3.3	3.63	V

SIMI COUNTINGING

3.2 DC Electrical Characteristics

Table 6: Digital DC Electrical Characteristics (VCCGQ of 3.3V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (V _{IO})	VCCGQ	2.7	3.3	3.6	V
High Level Output Voltage	V _{OH}	0.67 x V _{IO}			V
Low Level Output Voltage	V _{OL}			0.4	V
High Level Input Voltage	V _{IH}	0.8 x V _{IO}		V _{IO} + 0.3	V
Low Level Input Voltage	V _{IL}	V _{SS33} - 0.3		0.2 x V _{IO}	V
Pull-up Resistance	R _{PU}	28.6	40.8	69.4	kΩ
Pull-down Resistance	R _{PD}	27.1	38.7	69.4	kΩ

Table 7: Digital DC Electrical Characteristics (VCCGQ of 1.8V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (V _{IO})	VCCGQ	1.7	1.8	1.95	V
High Level Output Voltage	V_{OH}	VCCGQ - 0.1			V
Low Level Output Voltage	V_{OL}			0.1	V
High Level Input Voltage	V _{IH}	0.8 x V _{IO}		V _{IO} + 0.3	V
Low Level Input Voltage	V_{IL}	V _{SS33} - 0.3		0.2 x V _{IO}	V
Pull-up Resistance	R_{PU}	52.6	82.9	129	kΩ
Pull-down Resistance	R_{PD}	47.1	79.3	133.4	kΩ

Table 8: Digital DC Electrical Characteristics (VCCFQ of 1.8V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (V _{IO})	VCCFQ	1.7	1.8	1.95	V
High Level Output Voltage	V_{OH}	VCCFQ - 0.1			V
Low Level Output Voltage	V _{OL}			0.1	V
High Level Input Voltage	V _{IH}	0.8 x V _{IO}		V _{IO} + 0.3	V
Low Level Input Voltage	V_{IL}	V _{SS33} - 0.3		0.2 x V _{IO}	V
Pull-up Resistance	R_{PU}	34.4	53.4	81.5	kΩ
Pull-down Resistance	R_{PD}	31.3	51.5	85.1	kΩ

Table 9: Digital DC Electrical Characteristics (VCCFQ of 1.2V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (V _{IO})	VCCFQ	1.14	1.2	1.26	V
High Level Output Voltage	V _{OH}	VCCFQ - 0.1			V
Low Level Output Voltage	V _{OL}	6),		0.1	V
High Level Input Voltage	V _{IH}	0.8 x V _{IO}		$V_{10} + 0.3$	V
Low Level Input Voltage	V _{IL}	V _{SS33} - 0.3		0.2 x V _{IO}	V
Pull-up Resistance	R _{PU}	67.4	110.2	170.9	kΩ
Pull-down Resistance	R _{PD}	68.8	115.1	186.1	kΩ

3.3 Flash Interface Timing Characteristics

3.3.1 SDR (Legacy NAND) Interface

Table 10: AC Timing Characteristics of SDR Mode

Parameter	Symbol	Min	Max	Unit
CE# Setup Time	tCS	15.0		ns
CE# Hold Time	tCH	5.0		ns
CLE Setup Time	tCLS	10.0		ns
CLE Hold Time	tCLH	5.0		ns
ALE Setup Time	tALS	10.0		ns
ALE Hold Time	tALH	5.0		ns
Write Cycle Time	tWC	20.0		ns
WE# Pulse Width	tWP	10.0		ns
WE# High Hold Time	tWH	7.0		ns
Write Data Setup Time	tDS	7.0		ns
Write Data Hold Time	tDH	5.0		ns
Read Cycle Time	tRC	20.0		ns
Ready to RE# Low	tRR	20.0		ns
RE# Pulse Width	tRP	10.0		ns
RE# High Hold Time	tREH	7.0		ns

Figure 3: Command Latch Timing

Figure 4: Address Latch Timing

Figure 5: Data Output (Write) Cycle Timing

Figure 6: Data Input (Read) Cycle Timing

3.3.2 NV-DDR Interface

Table 11: AC Timing Characteristics of NV-DDR Mode

Parameter	Symbol	Min	Max	Unit
CLK Cycle Time	tCK	10.0		ns
CLK Low Time	tCKL	0.43	0.57	tCK
CLK High Time	tCKH	0.43	0.57	tCK
CE# Setup Time	tCS	15.0		ns
CE# Hold Time	tCH	2.0		ns
CLE, ALE, W/R# Setup Time	tCALS	2.0		ns
CLE, ALE, W/R# Hold Time	tCALH	2.0		ns
Command & Address DQ Setup Time	tCAS	2.0		ns
Command & Address DQ Hold Time	tCAH	2.0		ns
Data Output (Write) Setup Time	tDS	0.9		ns
Data Output (Write) Hold Time	tDH	0.9		ns
DQS Falling Edge to CLK Rising Setup Time	tDSS	0.2		tCK
DQS Falling Edge to CLK Rising Hold Time	tDSH	0.2		tCK
DQS Low Pulse Width	tDQSL	0.4	0.6	tCK
DQS High Pulse Width	tDQSH	0.4	0.6	tCK
Data to the 1 st DQS Latching Transition	tDQSS	0.75	1.25	tCK
DQS Write Preamble	tWPRE	1.5		tCK
DQS Write Postamble	tWPST	1.5		tCK
W/R# Low To Data Input Cycle	tWRCK	20.0		ns
W/R# Low to DQS/DQ Driven by Flash Memory	tDQSD	0	18.0	ns
Access Window of DQ[7:0] from CLK	tAC	3.0	20.0	ns
Access Window of DQS from CLK	tDQSCK		20.0	ns
DQS-DQ Skew, DQS to Last DQ Valid, Per Access	tDQSQ		0.85	ns
DQ-DQS Hold, DQS to The 1 st DQ to Go No-valid	tQH	0.33		tCK
DQ Input Data Valid Window	tDVW	0.24		tCK

Figure 7: NV-DDR Command Cycle Timing

Figure 8: NV-DDR Address Cycle Timing

Figure 9: NV-DDR Data Output (Write) Cycle Timing

Figure 10: NV-DDR Data Input (Read) Cycle Timing

3.3.3 NV-DDR2 Interface

Table 12: AC Timing Characteristics of NV-DDR2 Mode

Parameter	Symbol	Min	Max	Unit
Address to Data Loading Time	tADL	100		ns
Command/Address Hold Time	tCAH	5		ns
Command/Address Setup Time	tCAS	5		ns
CLE/ALE Hold Time	tCALH	5		ns
CLE/ALE Setup Time	tCALS	15		ns
CLE/ALE Setup Time when ODT is enabled	tCALS2	25		ns
CE# Hold Time	tCH	5		ns
CE# Setup Time	tCS	40		ns
Write Cycle Time	tWC	25		ns
WE# High pulse Width	tWH	11		ns
WE# Low pulse Width	tWP	11		ns
WE# High to RE# Low	tWHR	120		ns
WE# High to RE# Low for Random Data out	tWHR2	300		ns
Data Strobe Cycle Time	tDSC	5		ns
Data Setup Time	tDS	0.4		ns
Data Hold Time	tDH	0.4		ns
DQS Output High Pulse Width	tDQSH	0.45*tRC	0.55*tRC	ns
DQS Output Low Pulse Width	tDQSL	0.45*tRC	0.55*tRC	ns
Read Cycle Time	tRC	5		ns
RE# High Pulse Width	tREH	0.45*tRC	0.55*tRC	ns
RE# Low Pulse Width	tRP	0.45*tRC	0.55*tRC	ns
Read Preamble	tRPRE	15		ns
Read Preamble when ODT is enabled	tRPRE2	25		ns
Read Postamble	tRPST	tDQSRE + 6*tRC		ns
Read Postamble Hold Time	tRPSTH	5		ns
Write Preamble	tWPRE	15		ns
Write Preamble when ODT is enabled	tWPRE2	25		ns
Write Postamble	tWPST	6.5		ns
Write Postamble Hold Time	tWPSTH	5		ns

Figure 11: NV-DDR2 Command Cycle Timing

Figure 12: NV-DDR2 Address Cycle Timing

Figure 13: NV-DDR2 Data Output (Write) Cycle Timing

Figure 14: NV-DDR2 Data Input (Read) Cycle Timing

4. Package Information

Figure 15: 144-Ball TFBGA Package (9x9mm)

Product Ordering Information 5.

Ordering Information 5.1

Table 13: Ordering Information

Ordering Number	Operating Temperature	Package Description
SM225GX0900XT-XX	0°C ~ 70°C	144-ball BGA, 9x9x1.2 (mm)

Fidential fo Note: The suffix "XX" denotes the IC revision.

5.2 **Top Marking**

Figure 16: Top Marking

