Домашнее задание № 3

Сергей Миллер 494

23 сентября 2015 г.

Задача 1.

а) Построим недетерминированный автомат (вершина серого цвета - начальная, вершины в виде двойного круга - конечные). Очевидно, что каждый блок из a четной длины имеет нечетное вхождение подслова aa. Тогда построим автомат в котором старт и финиш находятся на цикле, в котором любой путь до финиша проходит через нечетное количество групп с четным числом букв a. Очевидно, что в остальных местах слова может быть любая последовательность из b, между которыми любое число групп из a нечетной длины.

Построим	$\Pi K A$.
	$\Delta \Pi \Lambda$.

построим дил.								
0	a	1						
0	b	0, 11						
1	a	2,3						
0,11	a	1,12						
0, 11	b	0						
-2, 3	a	1						
2,3	b	3, 4, 5						
1,12	a	2, 3, 13						
1, 12	b	0						
3, 4, 5	a	6,8						
3, 4, 5	b	3, 4, 5						
2, 3, 13	a	1,12						
2, 3, 13	b	3, 4, 5						
-6, 8	a	7, 9, 10						
6, 8	b	3,5						
7, 9, 10	a	6,8						
7, 9, 10	b	0, 11						
3,5	a	8						
3, 5	b	3, 4, 5						
8	a	9, 10						
9,10	a	8						
9, 10	a	0, 11						

_	0	1	2	3	4	5	6	7	8	9	10	11	12
\overline{a}	1	3	4	1	6	7	4	8	7	10	11	10	12
b	2	12	0	5	0	5	5	9	2	5	12	2	12
\overline{a}	A	B	A	A	B	A	A	A	A	A	A	A	A
b	A	A	A	B	A	B	B	B	A	B	A	A	A
\overline{a}	C	D	C	C	D	B	C	A	B	A	A	A	A
b	A	A	A	D	A	D	D	D	A	D	A	A	A
\overline{a}	B	C	B	B	C	E	B	F	E	G	G	G	\overline{G}
b	A	G	A	D	A	D	D	H	A	D	G	A	G
\overline{a}	B_1	C	B_2	B_1	C	E	B_2	F	E	G_1	G_2	G_1	$\overline{G_1}$
b	A	G_1	A	D	A	D	D	H	A	D	G_1	A	G_1