LINEAR REGRESSION MODELS W4315

HOMEWORK 3 ANSWERS

October 12, 2009

Instructor: Frank Wood (10:35-11:50)

1. (20 points) 2.17 in the textbook

Answer:

Greater than. The conclusion is that we accept $H_0: \beta_1 = 0$.

2. (60 points) 2.23 in the textbook

Answer:

a.	Source	MS	df	SS
	Regression	3.5879	1	3.5879
	Error	45.8176	118	0.3883
	Total	49.4055	119	

b. MSR estimates $\sigma^2 + \beta_1^2 \sum (X_i - \overline{X})^2$. MSE estimates σ^2 .

(A lot of you simply wrote the definition of MSR/MSE, however the problem asked about what do they estimate. Analogous to using sample mean to estimate the population mean, the quantity being estimated should be a population version.)

They estimate the same quantity when $\beta_1 = 0$.

c.
$$H_0: \beta_1=0, H_a: \beta_1\neq 0.$$

$$F^*=3.5879/0.3883=9.24, F(0.99;1,118)=6.855$$
 If $F^*<6.855$, accept H_0 , otherwise reject H_0 . We reject H_0 .

d. SSR = 3.5879; 7.26%; coefficient or determination.

e. +0.2695.

f. R^2 . R^2 is the proportion of variability in a data set that can be explained by the statistical model. It provides a measure of how well the data can be summarized by the model.

3. (20 points) 2.54 in the textbook

Answer:

Yes. The linear relationship between Y and X can be captured by β_1 .

No. The variance of Y depends on X.