中南大学网络教育课程考试复习题及参考答案 数字通信原理

一、	填空题:
----	------

	<u>, </u>
1.	已知二进制数字信号每个码元占有的时间为 $1ms$, $0、1$ 码等概率出现,则码元速率为,
	信息速率为;
2.	从信息传输角度来看,数字通信系统的主要质量指标是和。
3.	高斯白噪声是指噪声的概率密度服从分布,功率谱密度服从分布。
4.	通常,在纠、检错编码中引入的监督码元越多,信道的下降也越多。
5.	若要检出 3 个错码,则分组码的最小码距 dmin 应。
6.	码重是码组中的个数。
7.	对线性分组码,如果找到了码的,那么编码方法就完全确定了。
8.	常用的简单差错控制码有奇偶监督码、水平奇偶监督码、水平垂直奇偶监督码、群计数码
	和码。
9.	已知(5,1)重复码,它的两个码组分别为00000和11111,则(5,1)重复码的最小码距为,
	只用于检错,能检出位错码。
10.	四进制数字信号的信息传输速率为800b/s,其码元速率为,若传送1小时后,接收到
	40 个错误码元, 其误码率为。
11.	数字信号有时也称离散信号,这个离散是指信号的
12.	如果在已知发送独立的符号中,符号"E"出现的概率为 0.125,则符号"E"所包含的信息量
	为 <u></u> 。
13.	对线性分组码,如果找到了码的,那么编码方法就完全确定了。
14.	在 2PSK 输出信号中存在倒相现象,其解决方法是采用。
15.	假设分组码的最小码距为 8,则它能检测误码的位数至多为
16.	假设线性分组码信息码元长为5。若希望所编码字能够纠正1位错,码字最小码长为。
17.	通信系统的性能指标主要有
	衡量,后者用接收端输出的
18.	对于一个数字基带传输系统,可以用实验手段通过在示波器上观察该系统的来定性的了解
	码间干扰及噪声的情况。
19.	2ASK 的功率谱由和两部分组成,其带宽为基带信号带宽的倍。
20.	点对点之间的通信可分为,半双工通信和三种。
21.	对信 $m(t) = 5.12\cos 6000\pi t$ (V)进行 PCM 调制,其抽样速率是,对其进行 128 级均久
	量化,量化间隔为 V,每个量化值可编成位自然二进码。
22.	在数字调制系统中,载波同步的方法可分为,。
23.	在增量调制系统中,当模拟信号斜率陡变时,阶梯电压波形有可能跟不上信号的变化而形成很大失
	真,这样的失真称为。
24.	形成高次群的方法一般采用。
25.	A 律 PCM 基群共包括个时隙。
26.	改善码间串扰的方法有和。
27.	设输入信号抽样值为—131 个量化单位,则其 A 律 13 折线法编码输出码组为。
28.	已知绝对码为 10011011,则其相对码为(设前一个相对码为 0)。
29.	若一个低通信号 $m(t)$ 的频带范围为 $0^{\sim}108 \mathrm{KHz}$,则可以无失真恢复信号的最小采样频率
	为。
30.	载波同步的方法有 和 。

二、选择题:

1.	1. 二进制数字基带传输信系统的误码率计算公式为	()
	A. P. = P(1) + P(0) $B. P. = P(1)$	P(0/1)+ P(0)P(1/0)
	A 17 17 D 17	
	$_{C.}$ $P_{a} = F(0/1) + P(1/0)$ $_{D.}$ $P_{a} = P(0)$	P(0/1)+ P(1)P(1/0)
2.	2. 发端发送纠错码,收端译码器自动发现并纠正错误	是,传输方式为单向传输,这种差错控制的工作方
	式被称为	
	A. FEC B. ARQ C. IF	D. HEC
3.	3. 数字通信系统的有效性指标为	()
	A. 误码率 B. 信噪比 C. 信号带宽	D. 信息速率
4.	4. 为了解决连0码而无法提取位同步信号的问题,	【们设计了 ()
	A. AMI 码 B. 多进值码 C. HDB3 码	D. 差分码
5.	5. 如果在已知发送独立的符号中,符号"E"出现的	勺概率为 0.125,则符号"E"所包含的信息量为
	()	
	A. 1bit B. 2 bit C. 3 bi	t D.4 bit
6.	6. 码长 n = 7 的汉明码,监督位至少应是	()
	A. 2 位 B. 3 位 C	. 4 位 D. 5 位
7.	7. 由发送端发送专门的同步信息,接收端把这个专门]的同步信息检测出来作为同步信号的方法,被称
	为()	
	A. 外同步法 B. 自同步法 C. 位同步法	
8.	8. 若要传输速率为 7200B 的数据流,所需要的最小作	
	A. 2. 4kHz B. 3. 6kHz C. 5. 4kHz	
9.	9. 不论是数字的还是模拟的通信系统,只要进行相号	
	A. 载波同步 B. 网同步 C. 位同步	
10.	10. 四进制等概率的每一波形包含的信息量为()	
	A. 1bit B. 2 bit C. 3bit	
	11. 低频成分少,频带比较窄,另外即使有长连 0 码时	
	A. AMI 码 B. 多进值码 C. HDB3 码 D 12. 已知码元速率为 200 波特,则 2PSK 的带宽为 (
	12. C知時几速率为 200 被符,则 2FSA 的市见为(A. 200Hz B. 400Hz C. 800Hz	
	13. 一个频带限制在 0 到 f _x 以内的低通信号 x(t),用	
		1s 处平见行 母恋加什, 石安小人共的 恢复 X(t),
		2f D. f < f
14	$A \cdot f_s \ge 2f_x$ $B \cdot f_s \ge f_x$ $C \cdot f_s \le 14.$ 数字通信系统的有效性指标为($\mathbf{r}_{\mathbf{x}} = \mathbf{r}_{\mathbf{x}}$
	· \B == \ - \ \ \ - \ \ \ \ \ - \ \ \ \	
	15. 如果在已知发送独立的符号中,符号"E"出现	
	()	
	A. 1bit B. 2 bit C. 3 b	it D.4 bit
16.	16. 码长 n =7 的汉明码,校正子至少有()	
	A. 2 位 B. 3 位 C. 4 位	D. 5 位
17.	17. 发端发出检错码,收端译码器判决码组中有无错说	吴出现,再把判决信号送回发端,发端根据判决信
	号将收端认为有错的消息重发到收端,直到正确接	:收为止。这种差错控制的工作方式被称为()

A. FEC B. HEC C. IF

D. ARQ

18. 如果将全"0"码编为 HDB3 码其输出为

()

A. ···-100-1+100+1-100-1 ··· B. ···-1000+1000-1000+1···

C. ···+1000-1000+1000-1··· D. ···-10000+10000-10000+1···

19. 对于 △M编码过程,过载量化噪声通常发生在

)

A. 信号幅值较大时 B. 信号频率较大时 C. 噪声较大时 D. 信号斜率较大时

- 20. 利用平方变换法提取载波同步时,在电路中是由以下哪个部件造成载波同步的"相位模糊"(A. 带通滤波器 B. 平方率部件 C. 窄带滤波器 D. 2 分频器
- 21. PCM 一次群一个复帧的时间是()

A. 250 μ s

B. 500 µ s

C. 1000 µ s

D. 2000 µ s

22. 即使在"0"、"1"不等概率出现情况下,以下哪种码仍然不包含直流成分:

A. AMI 码

B. 双极性归零码

C. 单极性归零码

D. 差分码

23. 具有检测误码能力的传输码型是(

A. AMI 码

B. HDB3 码 C. CMI 码 D. 以上都是

24. 在各信源符号出现的概率不等的情况下,不等长码编码的平均码长比等长码编码的平均码长要短,

下面的几种编码,属于不等长码编码的是()

A. PCM 码 B. Δ M 码 C. 循环码 D. 哈夫曼编码

25. 科斯塔斯环具有()特点。()

A. 能提取载波同步信号, 能解调信号

B. 能提取载波同步,不能解调信号

C. 不能提取载波同步, 能解调信号 D. 不能提取载波同步, 不能解调信号

三、简答题:

- 1. 简述奈奎斯特低通抽样定理。
- 2. 某给定低通信道带宽为 3000Hz, 在此信道上进行基带传输, 当数字基带传输系统为理想低通时, 求 无码间串扰传输的最高速率以及相应的频带利用率。
- 3. 检错重发(ARQ)常用的三种实现形式是什么?
- 4. 已知循环码的生成多项式为 $g(x) = x^4 + x^2 + x + 1$, 信息码为 110, 求编码效率。
- 5. 无码间干扰传输的条件是什么?
- 6. 一码长 n=7 的汉明码,监督位为 3 位,试写出监督码元与信息码元之间的关系函数。
- 7. 奈奎斯特第一准则:无码间串扰的频域条件的物理意义。

$$\label{eq:Heq} \boldsymbol{H}_{\mathrm{eq}}(\boldsymbol{\omega}) = \!\! \sum_{i} \boldsymbol{H} \! \left(\boldsymbol{\omega} + \! \frac{2\pi i}{T_{B}} \right) \! = \! \begin{cases} \boldsymbol{T}_{\!\!\!B} \,, & \left| \boldsymbol{\omega} \right| \! \leq \! \frac{\pi}{T_{B}} \\ \\ \boldsymbol{0}, & \left| \boldsymbol{\omega} \right| \! > \! \frac{\pi}{T_{B}} \end{cases}$$

利用 Costas 环提取载波的方法如上图所示,请分析其工作原理。

9. 设一样值脉冲为-850 个量化单位, 求其 PCM 编码和编码误差。当接收端收到该码字后, 其译码值为

多少?

10. 已知 $g_1(x) = x^3 + x^2 + 1$, $g_2(x) = x^3 + x + 1$ 。 讨论由 $g(x) = g_1(x)g_2(x)$ 生成的 7 位循环码的 检错和纠错能力。

四、作图题:

1. 已知二进制数据序列为 01101011,以矩形脉冲为例,画出差分信号的波形图(假设"1"有电平变化。差分信号也叫相对码,只需要将对应单元格划线或涂色即可)

例如下图:

		0	1	0	1	1	0	1	0
]	1								
()								

请填下表:

		原来	0	1	1	0	1	0	1	1
1										
C)									

2. 已知一数据序为 01101101,请以 A 方式 $(0^{\circ}$ — "0",180° — "1")填出它的 2DPSK 波形对应相位 (假设初始相位为 0° ,每个周期一个波形)。

初始相位 0	0	1	1	0	1	1	0	1

3. 已知数字信息 $\{a_{\alpha}\}$ = 1011010,码元速率为 600 波特,载波频率为 600Hz,请分别画出 2ASK、2PSK 和 2DPSK 的波形。

201 8H H3(X/V 8							
(设前一相位为0)	1	0	1	1	0	1	0
2ASK							
apar.							
2PSK							
2DPSK							

4. 二进制数字信号为 10100001,写出相应的单极性 AMI 码和 HDB3 码电平值。(设 AMI 码和 HDB3 码中前一个非零码为负电平)

	1	0	1	0	0	0	0	1
AMI		-		-	-	-	-	
HDB3								

五、综合题:

- 1. 画出相位比较法解调 2DPSK 信号方框图,并利用数学推导法说明其工作过程。
- 2. 设计 3 个抽头的迫零均衡器,以减小码间串扰。已知, x_{-2} =0, x_{-1} =0. 1, x_0 =1, x_1 =-0. 2, x_2 =0. 1,其余 x 均为 0。求 3 个抽头的系数 C_{-1} , C_0 , C_1 , 并计算均衡前后的峰值失真。
- 3. 已知(7, 3)分组码的监督关系式为:

$$\begin{cases} x_6 + x_3 + x_2 + x_1 = 0 \\ x_5 + x_2 + x_1 + x_0 = 0 \\ x_6 + x_5 + x_1 = 0 \\ x_5 + x_4 + x_0 = 0 \end{cases}$$

求其监督矩阵和生成矩阵。

- 4. 信号 x(t)的最高频率 f_0 =2. 5kHz,振幅均匀分布在-4V 到 4V 范围以内,按奈奎斯特速率进行采样,量化电平间隔为 1/32(V),进行均匀量化,采用二进制编码后在信道中传输。假设系统的平均误码率为 P_0 = 10^{-3} ,求传输 10 秒钟以后错码的数目。
- 5. 为了传送码元速率为 $R_B=10^3$ (波特)的数字基带信号,试问系统采取图 1 中那种传输特性较好,并说明理由。

- 6. 设信号 $x(t) = M \sin \omega_0 t$ 进行简单增量调制,若量化台阶 σ 和抽样频率 fs 选择得既能保证不过载,又保证不致因信号振幅太小而使增量调制器不能正常编码,试确定 M 的动态变化范围,同时证明 $f_s > \pi f_0$ 。
- 7. 设有一个三抽头的时域均衡器,如图 P4-8 所示。输入波形**水**在各抽样点的值依次为 $\mathbf{x}_{-1}=1/8$, $\mathbf{x}_{-1}=1/3$, $\mathbf{x}_{0}=1$, $\mathbf{x}_{+1}=1/4$, $\mathbf{x}_{+2}=1/16$ (在其它抽样点均为 0)。试求均衡器输出波形**火**在各抽样点的值。

- 8. 设信号频率范围 0~4kHz,幅值在一2. 048~+2. 048 伏间均匀分布。(1) 若采用 A 律 13 折线对该信号非均匀量化编码,这时最小量化间隔等于多少? (2) 若采用**均匀量化**编码,以 PCM 方式传送,量化间隔为 2mv,用最小抽样速率进行抽样,码元波形是宽度为τ的矩形脉冲,且占空比为 1,求传送该 PCM 信号实际需要最小带宽。
- 9. PCM 采用均匀量化,进行二进制编码,设最小的量化级为 10mV,编码范围是 0V 到 2.56V,已知抽样脉冲值为 0.6V,信号频率范围 $0\sim4kHz$ 。
 - (1) 试求此时编码器输出码组,并计算量化误差。
 - (2) 用最小抽样速率进行抽样,求传送该 PCM 信号所需要的最小带宽。

参考答案

一、填空题:

- 1.1000B, 1000bit/s:
- 2. 传输速率, 误码率或有效性. 可靠性(本小题顺序可以交换)
- 3. 正态,均匀
- 4. 传输效率
- 5. 大于等于 4
- 6. 非零码元
- 7. 生成矩阵
- 8. 恒比
- 9.5, 4
- 10.400B, 2.8×10^{-5} ;
- 11. 状态, 时间
- 12.3 bit
- 13. 生成矩阵
- 14. 2DPSK
- 15. 7
- 16.9
- 17. 有效性;可靠性;信噪比
- 18. 眼图
- 19. 连续谱; 离散谱; 2
- 20. 单工; 全双工
- 21.6000; 0.08V; 7
- 22. 插入导频法; 直接法 或 外同步法; 内同步法
- 23. 过载失真
- 24. 复接技术
- 25. 32
- 26. 部分响应系统 均衡技术
- 27.0 100 0000
- 28. 11101101
- 29. 216KHz
- 30. 插入导频法 直接法

二、选择题:

- 1. B 2. A 3. D 4. C 5. C 6. B 7. A 8. B 9. A 10. B
- 11. C 12. B 13. A 14. D 15. B 16. B 17. D 18. A 19. D 20. D
- 21. D 22. A 23. D 24. D 25. A

三、简答题:

- 1. 一个频带限制在(0, f_H) 赫兹内的时间连续信号 m(t), 如果以 T_s ≤1/(2 f_H) 秒的间隔对它进行等间隔(均匀) 抽样,则 m(t) 将被所得到的抽样值完全确定。
 - 或:对频带限制在 $(0, f_H)$ 赫兹内的模拟信号进行抽样,抽样速率 f_S (每秒内的抽样点数)应不小于 $2f_H$,才不会产生失真。
- 2. 当基带形成滤波器为理想低通时,则码间无串扰的最高码速率为:

$$R_B = 2 \times B = 2 \times 3000 = 6000B$$

频带利用率为:
$$\eta = \frac{R_B}{B} = \frac{6000}{3000} = 2B/Hz$$

- 3. 检错重发(ARQ)常用的三种实现形式是什么?
 - (1) 停发等待重发

- (2) 返回复发
- (3) 选择重发
- 4. 已知循环码的生成多项式为 $g(x) = x^4 + x^2 + x + 1$,信息码为 110,求编码效率。

X⁴ => n-k=r=4(最高次) 由 110 得 k=4 所以 n=k+r = 4 + 3 = 7

由生成多项式可知监督码元 r=4

码组长 3+4=7

编码效率 R=3/7=43%

- 5. 数字信号无码间传输准则为:数字脉冲的传输速率 fb 是等效理想低通信道截止频率 fc 的两倍,即以 fb=2fc 的速率传输数码信号时,可实现无码间干扰传输。通常采用满足奇对称条件的滚降低通滤波器等来有效理想低通。
- 6. $\mathbf{A} = [\mathbf{a}_6 \ \mathbf{a}_5 \ \mathbf{a}_4 \ \mathbf{a}_3] \square \mathbf{G}$
- 7. 奈奎斯特第一准则——无码间串扰的频域条件的物理意义。

把 H(ω)波形在ω轴上以 2π/TB 间隔切开,然后分段沿ω轴平移到(-π/TB, π/TB) 区间内,将它们叠加起来求和,只要其结果是叠加出一个固定值(水平线),当以 1/TB 速率传输基带信号时,无码间串扰。当以高于 1/TB 速率传输基带信号时,存在码间串扰。

8. 设输入的抑制载波双边带信号为 $m(t)\cos\omega_c t$,则

$$\begin{cases} v_3 = m(t)\cos\omega_c t \cos(\omega_c t + \theta) = \frac{1}{2}m(t)[\cos\theta + \cos(2\omega_c t + \theta)] \\ v_4 = m(t)\cos\omega_c t \sin(\omega_c t + \theta) = \frac{1}{2}m(t)[\sin\theta + \sin(2\omega_c t + \theta)] \end{cases}$$

经低通后的输出分别为

$$\begin{cases} v_5 = \frac{1}{2} m(t) \cos \theta \\ v_6 = \frac{1}{2} m(t) \sin \theta \end{cases}$$
 (7-5)

乘法器的输出
$$\nu_7 = \nu_5 \cdot \nu_6 = \frac{1}{4} m^2(t) \sin \theta \cos \theta = \frac{1}{8} m^2(t) \sin 2\theta$$
 (7-6)

式中 θ 是压控振荡器输出信号与输入已调信号载波之间的相位误差。当 θ 较小时,式(7-6)可以近似地表示为: $v_7 \approx \frac{1}{4} m^2(t) \theta$

ντη的大小与相位误差 θ 成正比,因此,它就相当于一个鉴相器的输出。用ντ去调整压控振荡器输出信号的相位,最后就可以使稳态相位误差θ减小到很小的数值。这样压控振荡器的输出ντ就是所需要提取的载波。不仅如此,当θ减小到很小的时候,式(7-5)的ντ就接近于调制信号m(t),因此,同相正交环法同时还具有了解调功能。9. 设一样值脉冲为-850 个量化单位,求其 PCM 编码和编码误差。当接收端收到该码字后,其译码值为多少?

极性码为0

段落码为110

段内码 1010

编码误差: 850-512-10*32=18 个量化单位

7/11 转化 01101010000, 译码值=848 个量化单位

10.
$$g(x)=g_1(x)g_2(x)=x^6+x^5+x^4+x^3+x^2+x+1=11111111$$

最小码距为7

用于检错, d₀>=e+1, 可以检 6 位错;

用于纠错, d。>=2t+1, 可以纠 3 位错:

同时用于检纠错, do>=t+e+1, 可以纠 1 位错同时检 5 位错或纠 2 位错同时检 4 位错;

四、作图题

1. 已知二进制数据序列为 01101011,以矩形脉冲为例,画出差分信号的波形图(假设"1"有电平变化)。 差分信号(也叫相对信号(码)

	原来	0	1	1	0	1	0	1	1
1									
0									

2. 已知一数据序为 01101101,请以 A 方式 (0° — "0",180° — "1") 填出它的 2DPSK 波形对应相位 (假设初始相位为 0°,每个周期一个波形)。

初始相位 0°	0	1	1	0	1	1	0	1
	0°	180°	0°	0°	180°	0°	0°	180°

3. 略

4. 二进制数字信号为 10100001, 写出相应的单极性 AMI 码和 HDB3 码电平值。(设 AMI 码和 HDB3 码中前一个非零码为负电平)

	1	0	1	0	0	0	0	1
AMI	+1	0	-1	0	0	0	0	+1
HDB3	+1	0	-1	0	0	0	V-	+1

五、综合题:

1. 略(详见教材)

$$\begin{bmatrix} x_0 & x_{-1} & x_{-2} \\ x_1 & x_0 & x_{-1} \\ x_2 & x_1 & x_0 \end{bmatrix} \begin{bmatrix} C_{-1} \\ C_0 \\ C_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} C_{-1} + 0.1C_0 = 0 \\ -0.2C_{-1} + C_0 + 0.1C_1 = 1 \\ 0.1C_{-1} - 0.2C_0 + C_1 = 0 \end{cases}$$

$$\rightarrow$$
 $C_{-1} = -0.09606$, $C_{0} = 0.9606$, $C_{1} = 0.2017$

$$\mathbf{y}_{k} = \sum_{i=-N}^{N} \mathbf{C}_{i} \mathbf{x}_{k-i}$$

$$y_{-1} = 0, \quad y_0 = 1, \quad y_1 = 0$$

 $y_{-2} = 0.0096, \quad y_2 = 0.0557$

$$D_0 = \frac{1}{x_0} \sum_{k=-\infty}^{\infty} |x_k|$$

$$D = \frac{1}{y_0} \sum_{k=-\infty}^{\infty} |y_k|$$

3. 利用代数方程式, 化简后可以写出监督矩阵

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{PI_r} \end{bmatrix}$$

根据监督矩阵和生成矩阵时间的关系可以得到生成矩阵:

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_{r} \mathbf{P}^{T} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

4. 量化阶数; $Q = \frac{(4+4)}{1/32} = 256 = 2^8$ k = 8 最小抽样速率: $f_s = 2f_H = 8kHz$

传码速率为: $R_B = f_s \cdot k = 8 \times 8 = 64kB$

错码的数目: $10 \times 10^{-3} \times 64 \times 10^{3} = 640$ (个)

5. 解:根据无码间干扰时系统传输函数 H(w)应满足的条件分析,图中所示的三个传输函数(a)、(b)、(c)都能够满足以 $R_B=10^3$ (波特)的码元速率无码间干扰传输。此时需要比较(a)、(b)、(c)三个传输函数在频带利用率、单位冲激响应收敛速度、实现难易程度等方面的持性,从而选择出最好的一种传输函数。(5分)

- (1) 传输函数(a)的频带宽度量为 1000Hz; 此时系统频带利用率为 $\frac{R_B}{B}$ = 1B/Hz;
- (2) 传输函数(b)的频带宽度量为 2000Hz; 此时系统频带利用率为 $\frac{R_B}{B}$ = 0.5 B/Hz;
- (3) 传输函数(c)的频带宽度量为 1000Hz; 此时系统频带利用率为 $\frac{R_B}{R}$ = 1B/Hz; (3分)

从频带利用率性能方面比较可得:图中传输函数(a)和(c)的频带利用率为 1B/Hz,大于传输函数(b)的频带利用率。所以,应选择传输函数(a)或(c)。传输函数(a)是理想低通特性,其单位冲激响应为 Sa(x)型,与时间 t 成反比,尾部收敛慢且传输函数难以实现;传输函数(c)是三角形特性,其单位冲激响应为 Sa²(x)型.与时间 t²成反比,尾部收敛快且传输函数较易实现。因此,选择传输函数(c)较好。(2分)

6. 解:要使增量调制不过载,必须使编码器最大跟踪斜率大于信号实际斜率,即 $\left| \frac{dx(t)}{dt} \right| \leq \sigma f_s$

已知信号为 $x(t) = M \sin \omega_0 t$ 则

$$\left| \frac{dx(t)}{dt} \right|_{max} = M\omega_0 = 2\pi f_0 M \le \sigma f_s$$

要使增量调制编码正常, 又要求

$$|x(t)|_{min} > \frac{\sigma}{2} \Rightarrow M > \frac{\sigma}{2}$$

因此:

$$\sigma f_s > 2\pi f_0 M > \frac{\sigma}{2} 2\pi f_0 = \pi f_0 \sigma \Rightarrow f_s > \pi f_0$$

- 8. 设信号频率范围 0~4kHz,幅值在一2. 048~+2. 048 伏间均匀分布。(1) 若采用 A 律 13 折线对该信号非均匀量化编码,这时最小量化间隔等于多少?
- (2) 若采用**均匀量化**编码,以 PCM 方式传送,量化间隔为 2mv,用最小抽样速率进行抽样,码元波形是宽度为τ的矩形脉冲,且占空比为 1,求传送该 PCM 信号实际需要最小带宽。

$$\frac{(1)}{2.048 - (-2.048)} = 1 \text{mv}$$

$$(2)$$
 $\frac{2.048 - (-2.048)}{0.002} = 2^{11}$ $f_s = 8k$ $T_s = \frac{1}{8k}$ $T_s = \frac{1}{8k}$

9.

$$Q = \frac{(2.56 - 0)}{0.01} = 256 = 2^8$$
 解:量化阶数

0.6V 的二进制编码输出: $\left(\frac{0.6}{0.01}\right) = (60)_{10} = (00111100)_{2}$;

量化误差为0;

最小抽样速率: $f_s = 2f_H = 8kHz$

最小带宽:
$$B = \frac{f_s \cdot k}{2} = \frac{8 \cdot 8}{2} = 32kHz$$