Assignment 5

Jatin Tarachandani-CS20BTECH11021

April 2021

Download latex codes from

https://github.com/jatin-tarachandani/AI1103/blob/main/Assignment_5/main.tex

1 Problem Statement

Let X, Y, have the joint discrete distribution such that $X|Y = y \sim \text{Binomial}(y, 0.5)$ and $Y \sim \text{Poisson}(\lambda)$, $\lambda > 0$, where λ is an unknown parameter. Let T = T(X, Y) be any unbiased estimator of λ . Then

- 1. $Var(T) \leq Var(Y)$ for all λ
- 2. $Var(T) \ge Var(Y)$ for all λ
- 3. $Var(T) \ge \lambda$ for all λ
- 4. Var(T) = Var(Y) for all λ

2 Solution

If an estimator of a certain parameter of a sample of data has the expected value exactly equal to the parameter it estimates, then it is said to be an unbiased estimator.

Suppose we had an estimator $T(X_1, X_2, X_3...X_n)$ acting on a set of n RVs $X_1, X_1, X_2, X_3...X_n$ which estimates a parameter θ , then if

$$E(T(X_1, X_2, X_3...X_n)) = \theta$$
 (2.0.1)

the estimator is unbiased.

We know that:

$$Var(Y) = \lambda \tag{2.0.2}$$

as Y has a Poisson distribution. From Bayes Theorem,

$$Pr(X = x, Y = y) = Pr(Y = y) \cdot Pr(X = x | Y = y)$$
(2.0.3)

$$= \frac{\lambda^{y}}{y!} e^{-\lambda} \cdot {y \choose x} \frac{1}{2^{y}}$$
 (2.0.4)

Let us represent Pr(X = x, Y = y) as a function of x, y, and λ : $f(x, y; \lambda)$.

T(X, Y) is an unbiased estimator of λ . From Cramer-Rao bound,

$$Var(T(X,Y)) \ge \frac{-1}{E(\frac{\partial^2 ln(f(x,y;\lambda))}{\partial \lambda^2})}$$
(2.0.5)

$$\geq \frac{-1}{E\left(\frac{-y}{J^2}\right)} \tag{2.0.6}$$

$$\geq \frac{\lambda^2}{E(Y)} \tag{2.0.7}$$

$$\geq \lambda$$
 (2.0.8)

This is because the expectation value of a Poisson distribution with parameter λ is λ itself.

The correct options are options (2) and (3).