Review of loan default prediction

Decision tree review

Overfitting review

Overfitting in logistic regression

Overfitting Overconfident predictions

Overfitting in decision trees

Decision stump (Depth 1): Split on x[1]

What happens when we increase depth?

Deeper trees -> lower training error

Training error = 0: Is this model perfect?

Why training error reduces with depth?

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error split
- Chose feature h^{*}(x) with lowest classification error

By design, each split reduces training error

Decision trees overfitting on loan data

_

Principle of Occam's razor: Simpler trees are better

Principle of Occam's Razor

"Among competing hypotheses, the one with fewest assumptions should be selected", William of Occam, 13th Century

Symptoms: S_1 and S_2

Diagnosis 1: 2 diseases

Two diseases D_1 and D_2 where D_1 explains S_1 , D_2 explains S_2

SIMPLER

Diagnosis 2: 1 disease

Disease D_3 explains both symptoms S_1 and S_2

Occam's Razor for decision trees

When two trees have similar classification error on the validation set, pick the simpler one

20

Which tree is simpler?

Modified tree learning problem

Find a "simple" decision tree with low classification error

How do we pick simpler trees?

1. Early Stopping: Stop learning algorithm before tree become too complex

2. Pruning: Simplify tree after learning algorithm terminates

Early stopping for learning decision trees

Deeper trees → Increasing complexity

Early stopping condition 1: Limit the depth of a tree

Restrict tree learning to shallow trees?

Early stopping condition 1: Limit depth of tree

Picking value for max_depth???

Early stopping condition 2: Use classification error to limit depth of tree

Decision tree recursion review

40

Split selection for credit=poor

No split improves classification error

→ Stop!

Splits for credit=poor	Classification error
(no split)	0.24
split on term	0.24
split on income	0.24

Early stopping condition 2: No split improves classification error

- -

Practical notes about stopping when classification error doesn't decrease

- 1. Typically, add magic parameter ϵ
 - Stop if error doesn't decrease by more than ε

2. Some pitfalls to this rule (see pruning section)

3. Very useful in practice

Early stopping condition 3: Stop if number of data points contained in a node is too small

Can we trust nodes with very few points?

_ _

Early stopping condition 3: Stop when data points in a node $\leq N_{min}$

Summary of decision trees with early stopping

Early stopping: Summary

- 1. Limit tree depth: Stop splitting after a certain depth
- 2. Classification error: Do not consider any split that does not cause a sufficient decrease in classification error

3. Minimum node "size": Do not split an intermediate node which contains too few data points

Greedy decision tree learning

- Step 1: Start with an empty_tree
- Step 2: Select a feature to split data
- For each split of the tree:

 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

--

Overfitting in Decision Trees: Pruning

Stopping condition summary

- Stopping condition:
 - 1. All examples have the same target value
 - 2. No more features to split on
- Early stopping conditions:
 - 1. Limit tree depth
 - 2. Do not consider splits that do not cause a sufficient decrease in classification error
 - 3. Do not split an intermediate node which contains too few data points

Exploring some challenges with early stopping conditions

Challenge with early stopping condition 1

Is early stopping condition 2 a good idea?

Early stopping condition 2:

Don't stop if error doesn't decrease???

x [1]	x [2]	у
False	False	False
False	True	True
True	False	True
True	True	False

$$Error = \frac{2}{4}$$

$$= 0.5$$

Tree	Classification error
(root)	0.5

Consider split on x[1]

-

Consider split on x[2]

Neither features
improve training error
Stop now???

Tree	Classification error
(root)	0.5
Split on x [1]	0.5) Same
Split on x [2]	0.5

Final tree with early stopping condition 2

Tree	Classification error
with early stopping condition 2	0.5

-

Without early stopping condition 2

Early stopping condition 2: Pros and Cons

Pros:

 A reasonable heuristic for early stopping to avoid useless splits

Cons:

 Too short sighted: We may miss out on "good" splits may occur right after "useless" splits Tree pruning

Two approaches to picking simpler trees

1. Early Stopping: Stop the learning algorithm before the tree becomes too complex

2. Pruning: Simplify the tree after the learning algorithm terminates

Complements early stopping

Pruning: *Intuition*Train a complex tree, simplify later

Pruning motivation

Example 1: Which tree is simpler?

Example 2: Which tree is simpler???

Simple measure of complexity of tree

7

Which tree has lower L(T)?

Balance simplicity & predictive power

Too simple, high classification error

_ -

Desired total quality format

Want to balance:

- How well tree fits data
- ii. Complexity of tree

Consider specific total cost

```
Total cost =

classification error + number of leaf nodes

Error(T)

L(T)
```

Balancing fit and complexity

Total cost
$$C(T) = Error(T) + \lambda L(T)$$

tuning parameter

If $\lambda = 0$:

Standard decision true learning

If $\lambda = \infty$:

or panally = $\mathcal{G} = \text{Majority class}$

or panally = $\mathcal{G} = \text{Majority class}$

If λ in between: Balance fit 8 complexity

Use total cost to simplify trees

Tree pruning algorithm

Pruning Intuition

Step 1: Consider a split

0.0

Step 2: Compute total cost C(T) of split

Step 2: "Undo" the splits on T_{smaller}

by leaf node?

Prune if total cost is lower: $C(T_{smaller}) \le C(T)$

Replace split by leaf node?

Step 5: Repeat Steps 1-4 for every split

Decision tree pruning algorithm

- Start at bottom of tree T and traverse up, apply prune_split to each decision node M
- prune_split(T,M):
 - 1. Compute total cost of tree T using $C(T) = Error(T) + \lambda L(T)$
 - 2. Let T_{smaller} be tree after pruning subtree below M
 - 3. Compute total cost complexity of T_{smaller} $C(T_{\text{smaller}}) = Error(T_{\text{smaller}}) + \lambda L(T_{\text{smaller}})$
 - 4. If $C(T_{smaller}) < C(T)$, prune to $T_{smaller}$

Summary of overfitting in

decision trees

What you can do now...

- Identify when overfitting in decision trees
- Prevent overfitting with early stopping
 - Limit tree depth
 - Do not consider splits that do not reduce classification error
 - Do not split intermediate nodes with only few points
- Prevent overfitting by pruning complex trees
 - Use a total cost formula that balances classification error and tree complexity
 - Use total cost to merge potentially complex trees into simpler ones