

Queries, Representation & Detection: The Next 100 Model Fingerprinting Schemes

The lemons: faithful benchmarks

True Positive Rate $TPR(\mathcal{T})$ easy estimation.

False Positive Rate $FPR(\mathcal{T})$ intractable!

Existing benchmarks

 $d_H(h,h') = \mathbb{P}(h(x) \neq h'(x))$ $d_C(h,h') = \mathbb{P}(h(x) \neq h'(x) \mid h(x) \neq y)$

(Conditionned) Hamming distance

Improving existing fingerprints

How far can we go?

- Negative Sampling greatly improve existing methods
- Representation doesn't matter much
- Using train samples helps adversarial-based meth-
- ► For the rest, test samples are better.

Model Stealing detection

 $h: \mathcal{X} \to \mathcal{Y} = \text{platform's model}$ $h': \mathcal{X} \to \mathcal{Y} = \text{suspected model}$

Objective: Design a test \mathcal{T} such that

Effectiveness: if h = h', $\mathbb{P}(\mathcal{T}(h, h') = 1) > 2/3$ Stolen model! Uniqueness: if $h \neq h'$, $\mathbb{P}(\mathcal{T}(h, h') = 0) > 2/3$ Just another model...

Lemon QuRD fingerprinting recipe

- Prepare your model h and get query access to the suspected model h'.
- Measure 50g of queries $S \in \mathcal{X}$. You can adapt the number of queries depending on your budget.
- Cook the representations Z = f(h, S)(resp. Z') of your model h and the suspected model h'.
- Taste the difference between your model h and the suspected model h' using your **detection** fork T(Z, Z').

Ingredients

The Anna Karenina Heuristic

All happy families look alike.

– Anna Karenina, Tolstoï

Fingerprint $\mathcal{T}_{AKH}(h, h')$

- 1. Sample $x \stackrel{\text{i.i.d.}}{\sim} D_{\text{neg}}$ 2. If h(x) = h'(x)
 - ▶ return Stolen
- **else return** Benign

Proposition: \mathcal{T}_{AKH} enjoys one-sided errorrate. If $h \neq h'$,

$$\begin{split} \mathbb{P}(\mathcal{T}_{\text{AKH}}(h,h') &= \text{Stolen}) = d_C(h,h') \\ &\geq \frac{d_H(h,h') - \text{error}(h')}{\text{error}(h)} \end{split}$$

AKH: a strong baseline

- = one exiting fingerprint
- ► one of the Next 100 Fingerprinting SchemesTM
- ► --- = the AKH baseline
- ▶ One column = one benchmark

Code example

smol bench = get benchmark("TinyImageNetModels") runner = Experiment(smol_bench) akh = make_fingerprint("AKH")

print(runner.scores(akh, budget=10))

Easy install (pixi)

Model weights + datasets (Huggingface)

All in one line: pixi r bench scores TinyImageNetModels "AKH"

What now?

- Existing benchmarks are too simple new benchmarks
- Dominant focus on representations better detectors
- No analysis of failure cases theoretical guarantees