Отчёт по лабораторной работе №8

Модель конкуренции двух фирм

Тимур Дмитриевич Калинин

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение 3.1 Конкуренция одной фирмы	7 7 8
4	Выполнение лабораторной работы	10
5	Выводы	14
6	Библиография	15

List of Figures

4.1	Код программы	10
4.2	Параметры симуляции	11
4.3	Графики изменения оборотных средств фирм	12
4.4	Код программы для второго случая	13
4.5	Графики для второго случая	13

1 Цель работы

Построить модель конкуренции двух фирм в OpenModelica.

2 Задание

Вариант 32

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки = пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 Nq}$ $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 Nq}$ $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$ $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$ Также введена нормировка $t=c_1\theta$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо

от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00033) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

3 Теоретическое введение

3.1 Конкуренция одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. M – оборотные средства предприятия τ – длительность производственного цикла p – рыночная цена товара \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ – доля оборотных средств, идущая на покрытие переменных издержек. κ – постоянные издержки, которые не зависят от количества выпускаемой продукции.

В конечном итоге уравнение динамики оборотных средств примет вид:

$$\frac{dM}{dt} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr} N q}{-} \kappa$$

3.2 Конкуренция двух фирм

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Проведя аналогичные рассуждения и условившись, что постоянными издержками можно пренебречь, а также введя нормировку $t=c_1\theta$ получим систему:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 Nq}$ $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 Nq}$ $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$ $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$

Чтобы решить такую систему необходимо знать начальные условия.

Теперь рассмотрим второй случай. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 M_2$ будет отличаться.

Такая модель может выглядеть, к примеру, так:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.002) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

4 Выполнение лабораторной работы

1. Напишем код программы для первого случая (Рис. 4.1). Зададим параметры симуляции (Рис. 4.2).

```
model CompaniesCompetition1
parameter Real pcr=26, tau1=25, tau2=14, p1=5.5, p2=11, N=33, q=1;
parameter Real a1 = pcr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = pcr/(tau2*tau2*p2*p2*N*q);
parameter Real b = pcr/(tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q);
parameter Real c1 = (pcr-p1)/(tau1*p1);
parameter Real c2 = (pcr-p2)/(tau2*p2);

Real M1(start=3.3), M2(start=2.2);
equation
der(M1) = M1-b/c1*M1*M2-a1/c1*M1*M1;
der(M2) = c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;
end CompaniesCompetition1;
```

Figure 4.1: Код программы

Figure 4.2: Параметры симуляции

2. Запустим программу на исполнение. Посмотрим на графики измнения объема продаж (Рис. 4.3). Как видим, оба графика имеют одинаковую форму, но быстрее растет первая фирма.

Figure 4.3: Графики изменения оборотных средств фирм

3. Напишем аналогичную программу для второго случая. (Рис. 4.4). Запустим ее с такими параметрами симуляции и посмотрим на графики изменения объема продаж (Рис. 4.5). Как видим, теперь вторая фирма растет, однако со временем достигает своего максимума, после чего оборотные средства начинают падать, пока в конце концов не становятся равными нулю.

```
model CompaniesCompetition2
      parameter Real pcr=26, tau1=25, tau2=14, p1=5.5, p2=11, N=33, q=1;
 3
      parameter Real a1 = pcr/(tau1*tau1*p1*p1*N*q);
      parameter Real a2 = pcr/(tau2*tau2*p2*p2*N*q);
      parameter Real b = pcr/(tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q);
parameter Real c1 = (pcr-p1)/(tau1*p1);
 5
      parameter Real c2 = (pcr-p2)/(tau2*p2);
 9
      Real M1(start=3.3), M2(start=2.2);
   equation
      der(M1) = M1-b/c1*M1*M2-a1/c1*M1*M1;
12
      der(M2) = c2/c1*M2-(b/c1+0.00033)*M1*M2-a2/c1*M2*M2;
13 end CompaniesCompetition2;
14
```

Figure 4.4: Код программы для второго случая

Figure 4.5: Графики для второго случая

5 Выводы

В результате выполнения лабораторной работы мы познакомились с моделью конкуренции двух фирм и написали ее реализацию в OpenModelica.

6 Библиография

- 1. OpenModelica User's Guide. URL: https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/
- 2. Лабораторная работа №8. 4 c. URL: https://esystem.rudn.ru/mod/resource/view.php?id=831131