DL1002 .B5 *

d. 6(47/1) F3

FOR THE PEOPLE FOR EDVCATION FOR SCIENCE

LIBRARY

OF

THE AMERICAN MUSEUM

OF

NATURAL HISTORY

BIDRAG

til

KÄNNEDOM AF

FINLANDS NATUR OCH FOLK:

Utgifna

af

Finska Vetenskaps-Societeten.

Sextiondesjunde Häftet.

HELSINGFORS, 1909. FINSKA LITTERATUR-SÄLLSKAPETS TRYCKERI. ACOSTIC TYPESTATION WAS SING.

VENT NO.

THE STATE OF THE

10 HH115 July 28

INNEHÅLL:

- Untersuchungen über die Ernährung der Landbevölkerung in Finland, von Sigfrid Sundström.
- Ukonilmoista Suomessa 1904, kirjoittanut Risto Jurva.
 Öfver åskvädren i Finland 1904, af Risto Jurva.
- 3. Tierphänologische Beobachtungen in Finland. Jahrgang 1907, zusammengestellt von K. M. Levander. (Mit einer Karte.)

BIDRAG TILL KÄNNEDOM AF FINLANDS NATUR OCH FOLK. H. 67, N:o 1.

UNTERSUCHUNGEN

ÜBER DIE

ERNÄHRUNG DER LANDBEVÖLKERUNG IN FINNLAND

VON

SIGFRID SUNDSTRÖM.

HELSINGFORS 1908, DRUCKEREI DER FINNISCHEN LITTERATUR-GESELLSCHAFT.

Inhalt.

	S	eite
Ein	eitung	1
I.	Methodik	4
	Statistische Untersuchungsmethoden	5
	Die individuelle Untersuchung	8
	Aufgabe der vorliegenden Untersuchung, Reihe I	11
	Aufgabe der vorliegenden Untersuchung, Reihe Π	15
	Genauigkeit der Probenahme	17
	Vergleich der direkt bestimmten und der berech-	
	neten Zusammensetzung der Kost	18
	Vergleich der direkt bestimmten und der berech-	
	neten Energiemenge der Kost	23
II.	Das Untersuchungsmaterial	25
	Reihe I	25
	Tabelle I. Charakteristik der Versuchspersonen .	28
	Reihe II	46
	Tabelle II. Charakteristik der bei der Enquête un-	
	tersuchten Familien	48
	Tabelle III. Analysen	54
	Tabelle IV. Berechnete Mengen von Gesammtzu-	
	fuhr, Eiweiss, Fett, Kohlehydraten und Ka-	
	lorien. Reihe I	61
III	Die Zufuhr von potentieller Energie bei den Ver-	
	suchsindividuen in der Reihe I	64
	1. Die Zufuhr von potentieller Energie bei einem erwachse-	
	nen Manne	65
	Tabelle V. Die Kalorienzufuhr beim erwachsenen	
	Manne. Reihe I	66

2. Die Zufuhr von potentieller Energie bei einer erwachse-	
nen Frau	75
Tabelle VI. Die Kalorienzufuhr bei einer erwach-	
senen Frau. Reihe I	78
3. Die Zufuhr von potentieller Energie bei Kindern ver-	
schiedenen Alters	80
Tabelle VII. Die Kalorienzufuhr bei Kindern. Reihe I	84
IV. Die Verteilung der Nahrungszufuhr auf Eiweiss, Fett	
und Kohlehydraten	90
Frühere Untersuchungen	90
Der Eiweissbedarf	96
Tabelle VIII. Die Zufuhr von Eiweiss, Fett und	
Kohlehydraten. Reihe I	101
Tabelle IX. Die Zufuhr von Nahrungsstoffen.	
Reihe I. Durchschnitts- und Grenzwerte .	105
Prozentische Verteilung der Kalorienzufuhr auf Ei-	
weiss, Fett und Kohlehydraten. Reihe I .	107
V. Die Ausnutzung der Kost	110
Frühere Untersuchungen	110
Durchschnittszahlen für die Ausnutzung einer Ar-	
beiterkost	117
Eigene Versuche. Die Stickstoffbilanz	118
Tabelle X. In den Digestionsexperimenten ver-	
zehrte Nahrungsmittel. Reihe I	119
Die Ausnutzung der Kost bei der finnländischen	
Landbevölkerung	121
Einfluss der Verteilung des Eiweisses auf anima-	
lische und vegetabilische Nahrungsmittel .	124
VI. Zufuhr von Nahrungsstoffen und potentieller Energie	
nach den eigenen Angaben der Familien in der	
Reihe II	126
Kritik der Methode	126
Reduktion der Kost auf einen erwachsenen Mann	130
Tabelle XI. Tägliche Zufuhr von Eiweiss, Fett,	
Kohlehydraten und Kalorien; täglicher Geld-	
antwand für die Kost Reihe II	138

Die Nahrungszufuhr nach den	Stande der Familien 142
Die Nahrungszufuhr nach de	m Wohnungsorte der
Familien	144
VII. Herstammung der Nahrung aus	verschiedenen Nah-
rungsmitteln	146
Tabelle XII. Täglich genos	sene Nahrungsmittel
in Reihe 1. g	
Verbrauch der gewichtigster	Nahrungsmitteln in
g pro Tag und erw. M	ann 154
VIII. Die Variationen der Nahrungszu	fuhr an verschiede-
nen Tagen und die Verteilung d	lerselben auf Mahl-
zeiten	
Tabelle XIII. Tägliche Abwe	_
zufuhr vom Mittel in l	
Die tägliche Maximalabweid	
der einzelnen Nahrun	•
während. einer Woche	
Die Sonntagskost im Vergle	
den Wochentagen .	
Die Verteilung der täglichen	
die Mahlzeiten	
Tabelle XIV. Die prozentisch	-
rungszufuhr auf die Ma	ahlzeiten 185
IX. Volumen und qualitative Beschaffe	•
Genussmittel	
Die Mängel der Nahrung der	
bevölkerung	
Der Säuregehalt der Kost.	
Das Volumen der Nahrung	
Tabelle XV. Tägliche Gesan	
Reihe I	
Gehalt der Kost an Kochsalz	
Das Verhältnis zwischen de	
und der sogen. trocker	
Abwechselung der Kost. —	Speisezettel 198

Gewürze	208
Kaffee usw	209
	0.0
X. Die Kosten für die Nahrung	212
Preise der Rohwaaren	213
Tabelle XVI. Täglicher Geldaufwand für die Kost	
in Penni. Reihe I	214
Durchschnittspreis für verschiedene Altersklassen	215
Die Kosten für die Nahrung in verschiedenen Tei-	
len des Landes	216
Der Preis für 1000 Kalorien in verschiedenen Nah-	
rungsmitteln	217
Geldwert der einzelnen Nahrungsstoffe	218
Zusammenfassung	223
Anhang. Die Zusammensetzung der Nahrungsmittel und Spei-	
sen	226

Einleitung.

Untersuchungen über die Ernährung des Menschen sind in allen Kulturländern unternommen worden, und zwar gingen sie, mit Ausnahme der Vereinigten Staaten Nordamerikas, wo der Staat selbst die Sache in die Hand nahm, von den physiologischen und hygienischen Instituten aus.

In Finnland hat Prof. Robert Tigerstedt, der früher auf fremdem Boden die Entwickelung der praktischen Ernährungslehre gefördert hat, diese Frage zur Sprache gebracht. Auf der Versammlung der finnländischen Ärzte am 19. September 1903 hielt er einen Vortrag über die Bedeutung von Untersuchungen über die Nahrung finnländischer Arbeiter. Ich erlaube mir aus diesem Vortrage folgendes in extenso anzuführen: 1)

"Eine auf Grund eingehender Studien über die Art, auf welche der finnländische Arbeiter seinen Nahrungsbedarf deckt, gewonnene nähere Kenntnis der Zusammensetzung, Beschaffenheit und Menge seiner Kost wäre von verschiedenen Gesichtspunkten aus wichtig und bedeutungsvoll."

¹) *Tigerstedt*, Finska Läkaresällskapets Handlingar 46, 1903, S. 493.

"Wir würden dadurch eine sehr wertvolle Grundlage für unsere Bemühungen gewinnen, der so grossen Frequenz der Magenleiden in unserem Lande entgegenzuarbeiten."

"Es wäre uns möglich mit grösserem Erfolge als bisher für Veränderungen der Nahrung in der Richtung zu wirken, dass sie ohne Verteuerung besser und gesunder würde."

"Wir könnten uns eine Vorstellung darüber bilden, inwieweit die Nahrung des finnländischen Arbeiters als befriedigend zu betrachten ist oder nicht."

"Selbstverständlich muss sich auch der Staat für diese Frage interessieren, denn es kann dem Volke als Ganzes nicht gleichgültig sein, wie die Arbeitsfähigkeit des einzelnen Bürgers von seiner Nahrung beeinflusst wird."

"Desgleichen spielt die Kenntnis der bei freier Wahl verzehrten Kost eine sehr wichtige Rolle bei der Beköstigung in öffentlichen Anstalten, denn hierbei muss notwendigerweise Rücksicht auf die Gewohnheiten des Volkes genommen, und diese soweit möglich ist beachtet werden."

Soweit mir bekannt liegen bis jetzt nur drei Untersuchungen vor, die sich auf die Ernährung der Bevölkerung Finnlands beziehen.

Von $Gr\"{o}nberg$ wurde 1903 eine Anzahl Analysen finnländischer Nahrungsmittel ver\"{o}ffentlicht. 1)

Eine Untersuchung von *Ehrström* über die Krankenhauskost in Finnland hat Beiträge auch zur Kenntnis der diätetischen Gewohnheiten des finnischen Volkes geliefert.²)

Schliesslich hat Verf. Untersuchungen über die Ernährung bei finnländischen Studenten, welche gemeinsam

¹) Grönberg, Finska Läkaresällskapets Handlingar 45, 1903, S. 443.

²) Ehrström, Finska Läkaresällsk. Handlingar 47, 1905, S. 215. Finska Vet. Soc.

ihre Kost einnahmen, sowie bei einer Anzahl Schülern einer landwirtschaftlichen Schule in Muhos und bei einer Anzahl Arbeiterfamilien in den Städten Wasa und Helsingfors gemacht. 1)

Um einen Beitrag zur Kenntniss der Lebensverhältnisse der Landbevölkerung Finnlands zu liefern, begann ich 1905 eine Untersuchung ihrer Nahrung. Ich hoffte an der Hand derselben die Frage beantworten zu können, "inwieweit die Nahrung des finnländischen Arbeiters als befriedigend zu betrachten ist oder nicht". Im Verlauf der Arbeit überzeugte ich mich jedoch davon, wie schwer es tatsächlich ist, dieses auf Grund der Menge und Zusammensetzung der Kost zu tun. Die Nahrung muss von vielen anderen Seiten beleuchtet werden, und auch dann ist eine sichere Entscheidung über ihre Tauglichkeit nicht möglich.

Das der vorliegenden Untersuchung zu Grunde liegende Material wurde im Sommer 1905, im Winter 1905—1906 und im Frühling 1907 durch zwei für den Zweck instruierten Personen gesammelt. Sämmtliche Analysen usw. sind im hiesigen physiologischen Institut ausgeführt worden. Hierzu kommen noch die Resultate einer Equête, worüber Näheres S. 46.

¹) Sundström, Finska Läkaresällsk. Handl. 47, 1905, S. 421, sowie Skandinavisches Archiv f. Physiol., 19, 1906, S. 78.

I. Methodik.

Untersuchungen, bei welchen unter Anwendung mehr oder weniger befriedigender Methoden die gesammten Einnahmen und Ausgaben des Köpers (in der Regel doch mit Ausnahme des Sauerstoffes) bestimmt worden sind, bilden den Mittelpunkt, um den sich die übrigen Untersuchungen der menschlichen Nahrung gruppieren. Leider haftet derartigen Untersuchungen allzu viel von der Wilkür des Experimentes an, als dass sie sich ohne weiteres auf die praktische Ernährungslehre übertragen liessen. Die von ihnen hergeleiteten Resultate bedürfen daher der Bestätigung durch Untersuchungen an Individuen verschiedener Gesellschaftsklassen, unter Beachtung des Umstandes, dass diese während der Beobachtungszeit leben und arbeiten, wie sie es gewohnt sind, und ihre gewöhnliche, frei gewählte Kost geniessen.

Derartige Untersuchungen bei frei gewählter Kost sind in grosser Zahl ausgeführt worden. Sie bezwecken nicht nur zur Bestimmung des Nahrungsbedarfs des Menschen beizutragen, welcher Bedarf unter den gleichen äusseren Bedingungen überall gleich ist, sondern sie suchen auch Klarheit in eine Menge hierher gehörender Fragen. vor allem der Nahrungshygiene, zu bringen.

Finska Vet. Soc.

Diese Untersuchungen lassen sich in zwei Gruppen, die statistische und die individuelle, teilen.

Von Zeit zu Zeit sind in verschiedenen Ländern Enquêten über die Menge der in einem gewissen Bezirk verbrauchten Nahrungsmittel veranstaltet, und daraus, unter verschiedenen Annahmen, den Nahrungsbedarf für das Individuum berechnet worden. 1)

Statistischer Art sind auch die Untersuchungen, welche den Zweck haben, die Ernährungsverhältnisse gewisser, einer bestimmten Gesellschaftsklasse zugehörigen Familien festzustellen. Man hat dabei die von der Familie während einer gewissen Zeit verbrauchten Nahrungsmittel genau bestimmt.

Die Verfahrungsweise muss als sehr bequem bezeichnet werden. Man wiegt zu Beginn dieser Zeit, die gewöhnlich eine bis zwei Wochen beträgt, alle im Hause befindlichen Rohwaaren. Desgleichen wiegt man während der Versuchszeit alle Nahrungsmittel, die für den Haushalt angeschafft werden. Schliesslich, nach beendeter Beobachtungszeit, notiert man das Gewicht aller übriggebliebener Nahrungsmittel.

Bei der grossen Untersuchung über die Ernährung verschiedener Gruppen der Bevölkerung in den Vereinigten Staaten von Nordamerika ist diese Methode zu ausgedehnter Anwendung gekommen. Mir lagen die Untersuchungsresultate an insgesamt 236 amerikanischen Familien vor. ²)

¹) Vgl. in dieser Hinsicht z. B. die Zusammenstellung in *Meinerts* Armee- und Volksernährung. Berlin 1880 und *Lichtenfelts* Arbeit über die Ernährung der Italiener in Arch. f. d. ges. Physiologie 99. S. 1. 1903.

²) U. S. Depart. of Agriculture, Bulletins N:o 29, 32, 35, 38, Bidrag, H. 67, N:o 1.

Bei fast allen diesen Untersuchungen wurden Proben der genossenen Nahrungsmittel analysiert, doch achtete man nicht immer darauf, dass diese Proben den im Hause angewandten Partien entnommen waren, sondern begnügte sich häufig mit einer allgemeinen Probe aus demselben Orte. Mit grosser Sorgfalt wurden alle Ueberreste gesammelt und bei der Berechnung der genossenen Kost beobachtet. Das Resultat wurde, unter Anwendung der von Atwater aufgestellten Verhältnisszahlen für den Nahrungsbedarf bei verschiedenem Alter und Geschlecht (vgl. unten), auf die Tageskost eines erwachsenen Mannes reduziert.

Die auf diese Weise berechnete Zufuhr von potentieller Energie für einen erwachsenen Mann mit verschiedener Beschäftigung, von der Atwater bei Aufstellung seiner Normalzahlen ausgedehnten Gebrauch gemacht hat, ist jedoch nicht als ganz sicher zu betrachten, da nicht ausgeschlossen ist, dass die erwähnten Verhältniszahlen in einzelnen Fällen zu unrichtigen Resultaten führen können. So ist es ja beispielsweise keineswegs sicher, dass die Kost der Kinder bei den verschiedenen Familien in einer immer gleichen Proportion zur Kost des Familienvaters steht. Indessen dürften die hierdurch entstehenden Fehler nicht als besonders gross erachtet werden können, da die Ergebnisse der einzelnen Beobachtungen gut mit einander übereinstimmen.

Bei 12 finnländischen Arbeiterfamilien habe ich dieselbe Methode augewandt. 1) Die Resultate können indessen nur als appromativ bezeichnet werden, da die genossene

^{40, 46, 52, 53, 54, 55, 71, 84, 107. 116, 129} sowie Storrs agricult. experiment. station, Report 10, 1897 S. 130.

¹⁾ Sundström 1. c.

Kost nicht direkt analysiert, sondern ihre Zusammenzetzung auf Grund vorhandener Mittelzahlen berechnet wurde. Hierher gehören auch meine Untersuchungen über die Ernährung finnländischer Studenten, da unter den Versuchspersonen sowohl männliche als weibliche Individuen vorkamen.

Sicherere Mittelwerte als bei den jetzt besprochenen Untersuchungsmethoden sind durch Untersuchung der Kost bei solchen Tischgemeinschaften zu erhalten, wo, vielleicht mit vereinzelten Ausnahmen, sämtliche Personen demselben Geschlecht und derselben Arbeitskategorie angehören. Eine Menge solcher Untersuchungen sind in Gefängnissen, Kasernen und derartigen Orten unternommen worden; jedoch ist hier die Nahrung nicht im eigentlichen Sinne als frei gewählt zu betrachten.

Schon vor 30 Jahren wurden von Ranke¹) und Steinheil²) Untersuchungen an Tischgemeinschaften, beim ersteren Ziegelarbeiter, beim letzteren Bergleute betreffend, mitgeteilt. Erismann und Sarin veröffentlichen Untersuchungen nach dieser Methode an russischen Fabriks- und Erdarbeitern, Männern und Frauen.³) In Schweden hat Tigerstedt entsprechende Untersuchungen an Holzknechten⁴) mitgeteilt, und in Finnland hat Verf. auf die gleiche Weise die Ernährung in einer landwirtschaftlichen Schule untersucht. wo die Männer mit einer schweren Arbeit (Heumähen) beschäftigt waren, die Frauen eine leichtere Arbeit im Viehstalle verrichteten. Bei diesen Untersuchungen wurden Männer und Frauen getrennt beobachtet.⁵)

¹) Ranke, Zeitschrift f. Biologie 13, S. 131, 1877.

²) Steinheil, Ebenda 13, S. 415, 1877.

³⁾ Erismann und Sarin, Arch. f. Hygiene, 9, S. 32, 1889.

⁴⁾ Tigerstedt, Hygiea, 62, 1900, S. 121 (schwedisch).

⁵) Sundström, 1. c.

Die grösste Anwendung hat diese Methode indessen in den Vereinigten Staten Nordamerikas bei einer grossen Anzahl von Studenten-"clubs" sowie bei Arbeitern, welche, wie Holzknechte, ihre Mahlzeiten gemeinsam einnahmen, gefunden. 1) Im Gegensatz zu den oben genannten Untersuchungen derselben Art, stützten sich die letzterwähnten auf Analysen jedes einzelnen Nahrungsmittels, wodurch die gewonnenen Mittelzahlen einen wesentlich grösseren Wert besitzen.

Die sichersten Resultate zur Beurteilung der täglichen Zufuhr von Nahrungsstoffen und potentieller Energie erhält man indessen durch die direkte Untersuchung der von einzelnen Individen genossenen Kost. Unter den hierhergehörigen Arbeiten sind folgende beispielsweise angeführt.

Forster 2) bestimmte die Nahrung zweier Arbeiter und dreier Frauen.

Hultgren und Landergren lieferten Beiträge zur Kenntnis der Ernährung teils wohlhabenderer Personen, teils von Arbeitern, indem sie im ersteren Falle 6 Individuen 3), im letzteren 9 Individuen 4) untersuchten. Die Untersuchungsdauer wechselte zwischen 6 und 11 Tagen. Die Personen wogen selbst ihr Essen ab, und der Gehalt an Nahrungsstoffen wurde wesentlich unter Anwendung von vorhandenen Durschsnittszahlen berechnet, die zum Teil von den Un-

¹) U. S. Dep. of Agric., Bull. 29, 31, 53, 91, 129. 149, 152; Reports of Storrs (Conn.) agric. exp. stat. 1897.

²) Forster, Zeitschrift f. Biologie 9, 1873, S. 386.

³) *Hultgren* und *Landergren*, Mitteil. a. d. physiol. Laborat. in Stockholm, 6, 1889.

⁴) *Hultgren* und *Landergren*, Untersuchung über die Ernährung schwedischer Arbeiter, Stockholm, 1891.

tersuchern selbst aufgestellt waren. Die Ausnützung des Eiweisses wurde durch den Vergleich der berechneten N-Zufuhr und der direkt bestimmten N-Abgabe im Harn bestimmt. Hierbei wurde vorausgesetzt, dass sich die Versuchsindividuen im N-Gleichgewicht befanden.

Albertoni und Novi machten bei einem italienischen Landwirte, seiner Frau und seinem Sohne zwei Reihen von Kostwägungen jede 3 Tage umfassend, die eine im Sommer, die andere im Winter. 1) Proben der angewandten Nahrungsmittel worden analysiert, desgleichen die zur Versuchszeit gehörende Kotmenge. Leider schlichen sich in ihre Rechnungen wesentliche Fehler ein, welche Hultgren veranlassten, die Versuchsprotokolle umzurechnen. 2) Im folgenden werden diese korrigierten Werte angeführt werden.

In Italien untersuchte ferner *Manfredi* die Nahrung einer Anzahl neapolitanischer Arbeiter während 5 Tage, ³) und *Serafini* und *Zagato* die Kost einiger Studenten. ⁴) Die beiden letzteren analysierten direkt den Teil der Nahrung. der aus gekochten Speisen bestand.

Kürzlich sind sehr sorgfältige Untersuchungen von Moquette über die Nahrung von 10 Arbeitern in Utrecht ⁵) und von Slosse und van de Weyer über die Nahrung von 33 Arbeitern in Brüssel ausgeführt worden. ⁶) Diese beiden

¹⁾ Albertoni und Novi, Arch f. d. ges. Physiol. 56, 1894, S. 213.

²) Hultgren, Arch. f. d. ges. Physiologie, 60, 1895, S. 205.

³⁾ Manfredi, Arch. f. Hygiene, 17, 1893, 552.

⁴⁾ Serafini und Zagato, Arch. f. Hygiene, 29, 1897, S. 141.

⁵) Moquette, Onderzoeking over volksvoeding in de gemeente Utrecht, Utrecht 1907.

⁶⁾ Slosse und van de Weyer, Étude analytique de l'alimentation d'un groupe de 33 ouvriers Bruxellois. Bruxelles, 1905. Bidrag, H. 67, N:o 1.

Untersuchungen sind erst nach Abschluss meiner eigenen zu meiner Kenntniss gelangt.

Moquette nahm von jeder Speise eine gleich grosse Menge als Probe; die Proben wurden für jeden Tag gesammelt. Nachdem sie durch eine Fleischmühle gegangen waren, wurden sie mit den Händen zu möglichster Homogenität vermischt. Von dieser Mischung wurden 600—700 g 1—2 Tage lang bei $+100\,^{\circ}$ C. getrocknet und schliesslich in einer Kaffeemühle zermahlen und das Pulver in gewöhnlicher Weise analysiert.

Slosse und van de Weyer instruierten ihre Versuchspersonen selbst ihr Essen zu wägen und von allem was sie im Laufe des Tages verzehrten den 10. Teil abzuwägen und in ein Glasgefäss zu legen, das am Morgen nach jedem Versuch stage in Laboratorium gebracht wurde. Hier wurde die Probe in eine Schale entleert und nach feiner Zerkleinerung auf 6-7 Stunden aufs Wasserbad gebracht, um schliesslich für 12 Stunden einer Temperatur von 90° C. ausgesetzt zu werden. Nach dieser Zeit war die Probemasse in ein grobes Pulver verwandelt, welches 6-8 % Wasser enthielt. Da es sich erwies, dass die Pulverisierung der Masse, infolge ihres Fettreichtums, schwierig war, wurde zuerst das Fett mit warmem Aether während 24 Stunden extrahiert. Nach der Extraktion wird das Pulver bei 50° getrocknet, und eignet sich jetzt zum Pulverisieren, was so lange geschieht bis das Pulver ein Sieb mit 225 Maschen auf den Quadratcentimeter passieren kann. Hierauf wird es der gewöhnlichen Analyse auf Stickstoff, Fett, Asche und Wasser unterworfen. Dem Aetherextrakt der Proben wurde sodann ein bestimmter Gewichtsteil entnommen und eingedunstet. worauf der Rest gewogen wurde. Für alle 33 Versuchspersonen wurden während der ganzen Versuchszeit, welche 6 Arbeitstage umfasste, Speiseproben für jeden Tag getrennt gesammelt, sowie Kot und Harn, ersterer jedoch für die ganze Zeit. 1)

Bei den Untersuchungen, auf welche sich die vorliegende Arbeit gründet, kamen, um Gelegenheit zum Vergleichen und Kontrollieren zu erhalten, gleichzeitig zwei verschiedene Methoden zur Anwendung: Reihe I, eine genauere, auf etwa hundert Personen ausgedehnte Untersuchung, und Reihe II, eine Enquêteuntersuchung.

Reihe I.

Für jede Person sollte während einer genügend langen Zeit bei jeder Mahlzeit die genossene Kost abgewogen und davon aliquote Teile zur Analyse aufbewahrt werden.

Dies wurde an Ort und Stelle von einer dazu instruierten Person bewerkstelligt. Diese, welche in den meisten Fällen auf dem Bauern- oder Käthnergut wohnte oder sich sonst den ganzen Tag über dort authielt, war stets selbst bei den Mahlzeiten zugegen. Jedes Gericht wurde getrennt für sich gewogen, blieb etwas übrig, so wurde das Gewicht

¹⁾ Die Untersuchung, die durchweg einen soliden Eindruck macht, ist gleichwohl mit einem Fehler behaftet, auf den ich bier hinweisen möchte. Die Verfasser haben den Verbrennungswert der Kost nicht direkt bestimmt, sondern unter Anwendung der Zahlen 4,0 für Eiweiss und Kohlehydrate und 8,9 für das Fett. Diese Zahlen Atwaters sind aber unter Berücksichtigung des Verlustes im Kot aufgestellt. Die Verfasser wenden sie für ihre Berechnung der Kalorien an, obgleich sie von den Nettowerten Eiweiss, Fett und Kohlehydraten ausgehen. Ihre Schlussresultate werden dadurch durchweg ein wenig zu klein.

Bidrag, H. 67, N:o 1.

des Restes abgezogen. Die Wägungen geschahen mit einer Briefwaage, die bis zu 2 kg belastet werden konnte, mit einer Genauigkeit von + 5 g. Für Brot, Butter, Fisch usw. wurde eine Umstellung derselben Waage benutzt, so dass die Genauigkeit der Wägung + 1.0 g betrug. In einzelnen Fällen, wo das Gefäss + Speise über 2 kg wog, wurde eine Haushaltswaage angewandt, die eine Genauigkeit von + 25 g gestattete. Für jede Person und Mahlzeit geson dert wurde die Menge der verzehrten Nahrung notiert. Zugleich wurde nach jeder Mahlzeit, für jede Person gesondert, der 10. Teil von jeder konsumierten Speise entnommen, welcher mit einer kleinen Handwaage mit einer Genauigkeit von + 0,1 g abgewogen wurde. Diese aliquoten Teile wurden hiernach in hermetisch schliessende Konservengläser gesammelt. Der Inhalt der Gläser wurde im Sommer durch Kochen in Heu, im Winter durch die Kälte konserviert. Zugleich wurde iedem Glase etwas Chloroform hinzugefügt. Die Erfahrung zeigte, dass der Inhalt, auf diese Weise bewahrt, sehr gut den oft bis eine Woche dauernden Transport zum physiologischen Institute, wo die Analysen ausgeführt wurden, vertrug.

Für einige der Versuchspersonen wurden 3 Tage hindurch Harn und Kot gesammelt, die sich auf die für diese Tage getrennt gesammelte Nahrung bezogen. Die Versuchstage wurden von der Zeit kurz vor dem Frühstück gerechnet, wo Harn und Kot abgesetzt wurden. Letzterer wurde anfangs durch Kohlekapseln abgegrenzt, dann aber, da es sich zeigte, dass die Versuchspersonen schwer zum Schlucken derselben zu bringen waren, ging man auf getrocknete Heidelbeeren über. Die Gesammtmenge des Kotes wurde eingesandt, im Sommer gebührend konserviert. Vom

Harn wurde der 5. Teil gesammelt, mit Chloroform versetzt und eingesandt.

Gleich nach der Ankunft im Institut wurden Speise und Kot in glazierte Tonschalen getan, aufs Wasserbad zum Trocknen gestellt, und der Inhalt von Zeit zu Zeit umgerührt. Dem Kot wurden vor dem Trocknen einige Tropfen konc. Schwefelsäure zugefügt.

Da es sich um eine, oft 3 Liter enthaltende Masse von breiger Konsistenz handelte, der ausserdem noch das Spülwasser der Glasgefässe zugefügt war, nahm das Trocknen 2-3 Tage in Anspruch. Nach Beendigung dieses Prozesses blieb eine, gewöhnlich etwa 8 % Wasser enthaltende Masse zurück, welche gewogen wurde. Diese wurde dann in eine durch einen elektrischen Motor getriebene Handmühle gebracht, und passierte diese, infolge des verhältnissmässig geringen Fettgehalts, ohne Schwierigkeit, so dass sie in Form eines feinen Pulvers herauskam. Eine Veränderung des Gewichts war bei einer Anzahl, zwecks Feststellung dieses Umstandes angestellter Versuche nicht zu konstatieren. Nach dem Mahlen wurde das Pulver in einen Blechkasten mit einem 1/4 Meter hohen Rande getan und lange umgeschüttelt, worauf, vermittelst einer aus 16 kleinen, mit gleich grossen Zwischenräumen zusammengefügten Blechbüchsen bestehenden Einrichtung, eine Probe entnommen wurde. Diese betrug 1/5 bei 1/10 der ganzen Masse und davon wurde das Material zur Analyse alsdann entnommen. Da alle Analysen doppelt gemacht wurden, hatte ich reichliche Gelegenheit mich von der Homogenität der Proben zu überzeugen.

Alle die 146 Speiseproben, 12 Kotproben, 12 Brotproben sowie eine Probe von sog. "Talkkunamehl" wurden auf Stickstoff, Fett, Asche und Wasser analysiert. Bidrag, H. 67, N:o 1. Die *Stickstoffanalysen* wurden mit Zusatz von Quecksilber und unter Anwendung von Kongo als Indikator ausgeführt. Das Eiweiss wurde = 6,25 N berechnet.

Betreffend die Fettbestimmung ist folgendes zu erwähnen. Nachdem ein grosser Teil des Materiales schon analysiert war, bemerkte ich dass meine Voraussetzung, die Trockenheit des Pulvers und die geringe Fettmenge würden ein Vermischung desselben mit geglühtem, mit Aether extrahiertem Sand oder Kaolin überflüssig machen, nicht zutraf, dass im Gegenteil auf diese Weise eine Vermehrung des Extraktes bis um 10 % erlangt werden konnte. Ich sah mich daher genötigt die Analysen umzumachen, machte sie aber dann nur einfach.

Bei den Aschebestimmungen wurde kein Unterschied zwischen löslichen und unlöslichen Salzen gemacht. In einer grossen, dünnen Platinschale wurde eine gewisse Menge Substanz über schwacher Flamme erhitzt bis alle Kohle verbrannt war.

Die Wasserbestimmungen wurden ausgeführt durch Abwägung von 3 g Substanz auf tarierten Uhrgläschen, die auf etwa 105°C erhalten wurden, bis das Gewicht konstant blieb.

Ausser diesen Analysen wurden bei allen 171 Proben mittelst der Berthelot'schen Bombe (Mahler-Kroeker'sche Modifikation) die *Verbrennungswärme* bestimmt. Es zeigte sich, dass die fein pulverisirten Proben sich ausserordentlich gut dazu eigneten.

Der Harn wurde nur auf Stickstoff analysiert.

Die Versuchspersonen wurden während der Versuchszeit einmal gewogen. Vom Bruttogewicht wurde das Gewicht der Kleider abgezogen, die besonders gewogen wurden. Die Wägungen geschahen mittelst einer justierten

Finska Vet. Soc.

Federwaage, mit welcher sicher Unterschiede von ± 0.5 kg beobachtet werden konnten. Eine Messung der Körperlänge hielt ich für unangebracht, da ich nicht selbst die Bestimmungen ausführte und eine derartige Messung leicht fehlerhaft werden konnte. Dagegen sind Angaben geliefert worden über das allgemeine Aussehen der Versuchspersonen, ihre Gemütsart und ihre Arbeit.

Reihe II.

Durch eine Art von Enquête sollte die Menge der Nahrung ermittelt werden, die bei verschiedenen Familien genossen wurde.

Zu diesem Zwecke stellte ich ein Frageformular zusammen, welches in schwedischer und finnischer Sprache gedruckt wurde.

Es enthielt hauptsächlich folgende Anweisungen und Fragen:

"1:o. Es wird um Angaben ersucht über die im Laufe einer Woche im Haushalt verbrauchten Esswaaren. Man erhält sie auf folgende Weise:

Am Tage, an welchem die Untersuchung beginnt, werden alle Speisevorräte, die sich im Hause befinden, gewogen. Während der ganzen Versuchswoche wird jedes Nahrungsmittel, das durch Kauf, Melken, Fischen usw. hinzukommt, gewogen. Nach der Versuchszeit wird alles gewogen, was übrig geblieben ist. Addiert man die Nahrungsmittel, die sich im Haushalte befanden, zu den hinzugekommenen und zieht die übriggebliebenen ab, so erhält man die gewünschte Menge der verzehrten Nahrungsmittel, die auf dem dazu bestimmten Platz auf dieser und den drei folgenden Seiten einzutragen ist. Einige Nahrungsmittel sind angegeben, für andere ein freier Platz gelassen. Der am Orte geltende Preis für die Nahrungsmittel ist zu verzeichnen."

Bidrag, H. 67, N:o 1.

Hierauf folgt der Raum für 27 genannte und 6 ungenannte animalische Nahrungsmittel sowie für 24 bezeichnete und 8 unbezeichnete vegetabilische, schliesslich für Kaffee, Thee und Kochsalz

Dann Raum zur Beantwortung der Fragen: Welche Gewürze sind im Haushalt zur Anwendung gekommen? Sind alkoholhaltige Getränke genossen worden? Welche?

2:o. Es wird um Angaben ersucht über die Zeiten des Frühstücks-, Mittags- und Abendessens, sowie über den Speisezettel der Familie für eine Woche.

Speisezettel. — Die Hauswirtin wird gebeten zu notieren, welcher Art Speise zu jeder Mahlzeit aufgetragen wird. (Eine Zeile für jede Mahlzeit der Woche).

Schliesslich die Fragen: An welchem Ort geschah die Untersuchung? An welchem Tage begann sie? Beschäftigung des Familienvaters? Sein Monatslohn ungefähr? 1) Sein Arbeitstag in Stunden? 1) Wieviele Zimmer bewohnt die Familie? 1 Eigene oder gemietete Zimmer? 1) Wieviel beträgt die monatliche Miete? 1) Wieviele Personen männlichen Geschlechts finden sich in der Familie? Bitte ihr Alter in ganzen Jahren anzugeben. Wieviel Personen weiblichen Geschlechts? Ihr Alter in ganzen Zahlen. Wer führte die Untersuchung aus? Name, Stand, Adresse!

Die oben erwähnte, von mir bei der Reihe I angewandte Methode ist von Wait, 2) zunächst zur Erleichterung von Untersuchungen über die Ausnützung der Kost, vorgeschlagen worden. Bei 16 derartigen Experimenten nahm er aliquote Teile der verzehrten Kost, mischte dieselben, trocknete und analysierte die Probe, während er gleichzeitig die einzelnen Nahrungsmittel und Speisen (Fleisch, Milch,

¹) Diese Fragen wurden nur in einigen wenigen Fällen beantwortet, weshalb ich sie übergehe.

²⁾ Wait, U. S. Dep. of Agricult., Bull. 117, S. 40.

Butter, Brot, Hafermehlgerichte, Kartoffeln) direkt analysierte. Die Uebereinstimmung zwischen den "composite analyses" und den "individual analyses" ist im hohem Grade auffallend, wie aus folgender Tabelle hervorgeht. In dieser sind für die einzelnen Nahrungsstoffe wie für die Gesammt-Kalorien (von mir unter Anwendung der Zahlen 5,65, 9.4 und 4,15 berechnet) die Maximalabweichungen nach oben und unten sowie die mittleren — algebraischen wie arithmetischen — Abweichungen in Prozent der bei den "individual analyses" gefundenen Werte angegeben.

	Max. Abweichung nach oben. nach unten.		Mittlere .	Abweichung arithm.
Eiweiss	7,6	0,9	+2,2	2,_3
Fett	7,1	4,7	-0,8	$3,_{0}$
Kohlehydrate	1,5	$3,_2$	-0,7	1,6
Kalorien	1,0	2,1	-0,2	0,6

Aus dieser Zusammenstellung geht hervor, dass die Differenzen jedenfalls "nicht grösser sind als die, welche bei Analysen desselben Nahrungsmittels, wie Fleisch, Fisch usw., in gewissen Fällen selbst bei Doppelanalysen derselben Probe entstehen können. Ausserdem kommen bei der Berechnung einer Kost alle Fehler, welche den Analysen der verschiedenen Nahrungsmittel anhaften mit in Betracht. Der Fehler beim Analysieren einer allgemeinen Probe muss ja als geringer anzusehen sein, wenn die Anzahl der Analysen reduziert wird" (Wait).

Um zu untersuchen, wie gross die Abweichungen bei einer gewöhnlichen, aus mehreren Speisen bestehenden Kost, die ja hinsichtlich der Entnahme von Probe recht grosse Schwierigkeiten darbieten muss, sich gestalten würden, entnahm ich bei zwei Personen (N:o 91 und 92) Parallelpro-Bidrag, H. 67, N:o 1.

ben. Die Analysen ergaben folgende, für einen Tag berechnete Resultate

N:o	Eiweiss, g.	Fett, g.	Kohlehydrate, g.	Kalorien.
91. I	77,6	32,1	293,6	1952
П	80,5	30,8	290,6	1963
92 I	70,s	29,8	298,2	1899
II	67,6	27,4	298,9	1917

Die prozentische Abweichung von den Mittelwerten beträgt:

N:o	Eiweiss	Fett	Kohlehydrate	Kalorien.
91	1,8	2,6	0,5	0,3
92	2,3	$4,_{2}$	0,1	. 0,5
Mittel	2,1	3,4	0,3	0,4

Die Schwierigkeit, übereinstimmende Durchschnittsproben zu erhalten, ist somit am grössten für das Fett, hierauf folgt das Eiweiss; ganz klein und fast gleich sind die Abweichungen für die Kohlehydrate und die Gesammtkalorien.

Die direkt gewonnen analytischen Resultate gestatten uns ferner die Genauigkeit zu beurteilen, die sich erreichen lässt, wenn man auf Grund der vorliegenden Durchschnittszahlen die Zusammensetzung der Nahrung berechnet.

Bezeichnet man die durch direkte Analyse gewonnenen Zahlen mit 100, so beträgt im Mittel für 84 Personen die unter Benutzung der vorliegen Durchschnittszahlen (siehe Tabelle IV Seite 61) berechnete Menge von

Eiweiss				121
Fett .			-	95
Kohlehye	lra	te	n	105
Kalorien			, -	105

Finska Vet. Soc.

Einen näheren Einblick liefern die in Figur 1 aufgenommenen Diagramme. Die Abszisse gibt die Grösse der

berechneten Menge von Eiweiss, Fett usw. in Prozenten der gefundenen an; die Ordinaten in wieviel Prozenten aller 84 Fälle die in der Abszisse angegebenen Prozentzahlen repräsentiert sind. Die dünne ausgezogene Linie bezeichnet das Eiweiss, die punktierte Linie das Fett, die unterbrochene Linie die Kohlehydrate und die dicke ausgezogene Linie die Gesammtkalorien. Aus der Figur ist ersichtlich, dass die maximale Abweichung am grössten ist für das Fett (etwa 50—140 %), geringer für das Eiweiss (etwa 90—150 %), am kleinsten für die Kohlehydrate und Kalorien (etwa 80—130 %). In allen diesen Fällen ordnen sich die Zahlen sehr symmetrisch um das entsprechende Mittel.

In jedem Einzelfalle sind somit die unter Anwendung von den vorliegenden Analysenmittelzahlen berechneten Resultate mit recht wesentlichen Fehlern behaftet. Vor allem gilt dies für das Fett, für welches Fehler bis zum Betrage des halben Wertes entstehen können. Es wird dies klar, wenn man bedenkt, in wie hohem Grade der Fettgehalt der meisten Nahrungsmittel wechselt. Wenngleich man, wie Bidrag, H. 67, N:o 1.

es sich ja gebührt, die Milch in gewisse Hauptarten einteilt. wie ganze Milch, abgerahmte Milch usw., so ist dies doch nicht ausreichend, denn auf dem Lande finden sich zwischen diesen Hauptarten viele Zwischenformen, in denen nur ein Teil des Rahmes entfernt worden ist; alle diese Zwischenformen fasse ich als abgerahmte Milch auf. Auch der Fettgehalt des Specks ist stark variirend. Ist man jedoch im Besitz eines grossen Materiales, wie bei Enquêten, so lassen sich gleichwohl, wie aus den obenerwähnten Resultaten hervorgeht, annehmbare Mittelwerte erzielen.

Auch für die potentielle Energie betragen die Fehlermöglichkeiten bis ein Viertel des ganzen Wertes, wodurch natürlich der Wert der einzelnen Beobachtungen herabgesetzt wird; für ein grösseres Material dagegen werden die Mittelwerte recht gut, was auch daraus folgt, dass die berechnete Menge von Kalorien in fast der Hälfte der Fälle mit der kalorimetrisch bestimmten übereinstimmt.

Nur das Eiweiss nimmt eine Ausnahmestellung ein, denn die berechnete Menge ist bedeutend grösser, durchschnittlich um 20 %, als die direkt gefundene. Die Ursache dieses sehr bemerkenswerten Unterschiedes könnte ja in der Verfahrungsweise beim Präparieren der Proben liegen. zum Beispiel auf einem Verlust von Stickstoff beim Eintrocknen beruhen. Dies ist jedoch nicht anzunehmen. Einer stärkeren Erhitzung ist das Material nie ausgesetzt gewesen. in der Kost dürfte sich auch kein Teil des Stickstoffs in einer Form vorfinden, die nicht das gewöhnliche Trocknen auf dem Wasserbade vertrüge. Ich glaube daher, dass die wirkliche Erklärung darin zu suchen ist, dass einerseits die Durchschnittswerte der Analysen, die in den gewöhnlichen Tabellen aufgenommen sind. in Bezug auf die in Finnland vorkommenden Nahrungsmittel einen allzu hohen Stickstoff-

gehalt zeigen, andererseits, dass durch die Behandlung der Nahrungsmittel im Haushalt ein Teil der Stickstoffsubstanz verloren geht. So ist ja bekannt, dass die Kartoffeln einen guten Teil ihrer Stickstoffsubstanz dadurch verlieren, dass sie geschält in kaltem Wasser liegen, ein Verfahren, das bei uns ganz allgemein ist. Auch das Fleisch verliert ja beim Kochen in Wasser, das allmählich erwärmt wird, einen Teil seines Eiweisses.

Dadurch, dass jede der 146 Speiseproben gleichzeitig sowohl einer gewöhnlichen Analyse als auch der Verbrennung in der kalorimetrischen Bombe unterworfen wurde, erhalten wir die Möglichkeit zu untersuchen, in welchem Grade die aus der Zusammensetzung der Kost aus Eiweiss usw. berechnete Kalorienmenge mit dem direkt bestimmten Kalorienwerte übereinstimmt. Dies hat um so grösseres Interesse, als hier wirklich gemischte Kost zur Untersuchung vorlag.

Gewöhnlich werden zur Berechnung der potentiellen Energie die Rubner'schen Standard-Zahlen angewandt. Diese Zahlen gelten nur für gemischte Nahrung und haben sich sehr gut dem wirklichen Tatbestand entsprechend erwiesen, wie unter Anderem aus Tigerstedt's Berechnung der von Atwater und dessen Mitarbeitern veröffentlichten Analysen und Verbrennungswerte hervorgeht; als Summe der direkt bestimmten Kalorien ergab sich 51000; unter Anwendung der Rubner'schen Zahlen berechnete sich die Kalorienmenge zu 51087 1).

Die amerikanischen Nahrungsphysiologen wenden vielfach Zahlen an, die teils auf den Verbrennungswert der verschiedenen Nahrungsstoffe, teils auf den Erfahrungen

¹) Tigerstedt, Handbuch der Physiol. d. Menschen, I, 2 S. 371. Bidrag, H. 67, N:o 1.

basiert sind, welche über die Zusammensetzung der Nahrung bei den Amerikanern gemacht wurden. Für den Verbrennungswert des Eiweisses wurde die Zahl 5,65 aufgestellt. für den des Fettes 9,4, der Kohlehydrate 4,15, Zahlen, die sich alle auf die Wärmemenge beziehen, welche erforderlich ist, um 1 kg Wasser von 20 auf 21°C zu erwärmen 1). Um Zahlen zu erhalten, die möglichst der von meinen Versuchspersonen verzehrten Nahrung entsprechen, habe ich im Anschluss an *Rubner* und die amerikanischen Forscher, und mit einer Rechnung, deren Einzelheiten aus folgender Tabelle hervorgehen dürften, für das Eiweiss die

Nah- rungs- stoff.	Nahrungsmittel	A. Prozentischer Anteil der Nahrungs- mittel an die Zufubr der Nahrungs- stoffe	B. Wärme- wert Kal.	A × B Kal.	Mittel pro g Kal.
Eiweiss	Fleisch, Fisch etc.	19	5,15	107,4	
	Molkereiprodukte	36	5,65	203,4	
	Zerealien	37	5,80	214,6	
	Kartoffeln	8	5,00	40,0	
:	-	100		565,4	5,654
Fett	Fleisch, Speck,				
	Fisch	25	9,50	237,5	
	Molkereiprodukte	61	9,25	564,3	
	Vegetabilien	14	9,30	130,2	
		100		932,0	9,320
Kohlehy-	Molkereiprodukte	16	3,90	62,4	
drate	Zerealien	66	4,20	277,2	
	Kartoffeln und an-		,		
	dere Vegetabilien	18	4,20	75,6	
		100	1	415,2	4,152

¹) Atwater, Report of Storrs (Connecticut) agricult. experiment station for 1899, S. 104.

Zahl 5,654 erhalten, für das Fett 9,320, für die Kohlehydrate 4,152, oder abgerundet für Eiweiss 5,65, für Fett 9,30, für Kohlehydrate 4,15. Die Zahlen stimmen fast genau mit den amerikanischen überein, der Unterschied besteht nur darin, dass die Zahl für das Fett 9,3 statt 9,4 beträgt.

Unter Anwendung dieser Zahlen wurde für alle 146 Speiseproben die Kalorienmenge der Kost berechnet. Die Resultate wurden alsdann mit den direkt bestimmten Kalorien verglichen. Die Summe der berechneten Kalorien beträgt 99,5% der bestimmten. Wären die Zahlen mit 3 Dezimalstellen zur Anwendung gekommen, so wäre der Unterschied noch geringer geworden. Um zu veranschaulichen, wie die verschiedenen Prozentzahlen sich auf die 146 Fälle verteilen, zeichnete ich eine prozentische Kurve, in der die Ordinaten das Prozent der Fälle angeben (siehe Fig. 2). Wie man sieht, fallen alle Zahlen zwischen 96

und 102 Prozent, mit wenigen Ausnahmen zwischen 98 und 102 Prozent. Diese Unterschiede lassen sich sehr gut durch die Art und Weise, wie die Standardzahlen berechnet sind, erklären.

Moquette, dessen Untersuchungen über die Ernährung holländischer Arbeiter zu meiner Kenntniss gelangten, während ich diese Arbeit schrieb, hat gleichfalls die Resultate Bidrag, H 67, N:o 1.

der Berechnung des Kalorienwertes mit den Ergebnissen der direkten kalorimetrischen Bestimmung verglichen. ¹) In Prozent der direkt bestimmten Kalorien betragen die berechneten

> Maximum $105,4\,^{0}/_{0}$ Minimum $95,8\,^{0}/_{0}$ Mittel $101,2\,^{0}/_{0}$

Die Abweichungen sind also bei ihm etwas grösser als bei mir; im grossen und ganzen stimmen unsere Resultate aber sehr gut überein.

Die grosse Uebereinstimmung zwischen dem direkt bestimmten und dem berechneten Kalorienwerte der Nahrung existiert nicht beim Kote. In meinen 12 Kotproben variiert das Verhältnis zwischen dem berechneten und dem direkt bestimmten Kalorienwert zwischen 89,4 und 97,6 % und beträgt im Durchschnitt 93,8 %. Dieses Verhalten lässt sich, wie mir scheint, unschwer erklären. Die chemische Analyse des Kotes ist sehr unvollkommen; die stickstoffhaltigen Stoffe darin sind von sehr wechselnder Zusammensetzung; auch besteht der Aetherextrakt zum grossen Teil aus Cholesterin und anderen Stoffen mit höherem Verbrennungswerte als das Fett.

Das gleiche Verhalten wie bei meinen Versuchen zeigen auch die von früheren Autoren mitgeteilten Bestimmungen. So fand *Lorisch* bei der Analyse dreier Proben von normalem Kot die Grenzwerte 83,0 und 94,2 sowie den Mittelwert 87,9 0′0; 2) *Pletnev* führt als entsprechende Zahlen 88,8, 91,9 und 90,5 an. 3)

¹⁾ Moquette, 1. c. S. 135.

²) Lohrisch, Calorimetrische Fäcesuntersuchungen. Zeitschr. f. physiol. Chemie, 41, 1904, S. 308.

³) Pletnev, Vergleichende Ausnutzungsversuche. Zeitschr. f. experiment. Pathol. und Therapie, V, 1908, S. 186.

Ich selbst habe aus den zahlreichen Angaben über Zusammensetzung und Verbrennungswert des Kotes in den amerikanischen Bulletins 1) derartige Prozentzahlen berechnet und als Grenzwerte 73,2 und 98,8 sowie als Mittelwert 90,8 % erhalten. — Aus v. Willebrand's Analysen von Kinderkot ergeben sich resp. 89,9, 104,7 und 97,5 % 2)

II. Das Untersuchungsmaterial.

Reihe I.

Das hierzu gehörige Untersuchungsmaterial umfasst 20 Untersuchungen in 18 Höfen (in 2 Höfen wurden die Wägungen in zwei Perioden ausgeführt). Die Höfe wurden aus verschiedenen Teilen des Landes gewählt: Süd-Karelien (Sakkola), Nord-Karelien (Kiihtelyswaara), Mittleres Finnland (die Gegend um Jywäskylä), Savolax (die Umgegend der Stadt Iisalmi), Nord-Osterbotten (Wuolijoki am Südufer des Uleasees), Süd-Osterbotten (die Umgegend von Wasa). sowie Nyland (Kyrkslätt). Bei der Wahl dieser Höfe war ich im allgemeinen gezwungen, die Beziehungen zu berücksichtigen, die ich hatte, denn bei derartigen Untersuchungen ist man mehr als sonstwo von der Zuverlässigkeit der Versuchspersonen abhängig. Ich habe dadurch in gewissen Fällen vielleicht die Homogenität des Materiales aufs Spiel gesetzt. Zwei Drittel der untersuchten Höfe waren grössere Bauerhöfe, das übrige Drittel Käthen oder andere kleine Pachtstellen.

¹⁾ U. S. Department of Agricult., Bulletin 63, 69, 109, 136, 175.

 $^{^{2})\} v.\ Willebrand,\ Finska Läkaresällskapets Handlingar 49, 1, S. 463, 1907.$

Untersucht wurden in diesen Höfen 103 Individuen. Das Material für 4 derselben ging verloren, weshalb die Zusammensetzung ihrer Nahrung nach vorhandenen Mittelwerten berechnet wurde. Hier finden sich die Analysen für 99 Personen. Die Untersuchungszeit betrug in 96 Fällen eine Woche, in 6 Fällen 3 und in 1 Falle 2 Tage. Insgesamt umfasst die Untersuchung 692 Tage.

Die 103 Personen bestehen zur Hälfte aus Erwachsenen (20 Männer und 29 Frauen), zur anderen Hälfte aus Kindern oder jungen Leuten.

In der Tabelle I sind das Alter, das Körpergewicht, der Körperbau, das Temperament, die Art der Tätigkeit der Versuchspersonen zusammengestellt; die Zahlen im letzten Stab beziehen sich auf die Nummern der Analysen in Tabelle III.

Tabelle I. Reihe I. Charakteristik

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
	1. Bauerfamilie in Sakkola			•
1 2 3	Bauer Sohn Tochter	32 17 15	67 59 53	kräftig und gesund gross und kräftig kräftig und wohlgenährt
4	Tochter	10	32	mittelkräftig mit mittlerem Fettpolster
	2. Bauerfamilie in Kiihtelyswaara.			
5	Bauer	36	65	gross und kräftig, etwas mager
6	Bäuerin	26	50	kurz, mittelkräftig, etwas mager
7	Dienstmädchen	15	53	sehr kräftig und gesund
8	Tochter	10	24	etwas schwächlich und mager
	3. Bauerfamilie in Kiihtelyswaara.	4		
9	Bauer	33	60	etwas schwächlich und ma- ger
10	Bäuerin	32	53	mittelkräftig, mit mittlerem Fettpolster
				:

der Versuchspersonen.

Gemütsart	Arbeit	Gegenstand der Unter- suchung	Zeit	Analyse- nummer
				H 17
sanguinisch "etwas phleg- matisch	Heuernte tätig am Haushalt und beim Melken, bisweilen Arbeit auf	Nahrung "	25—27. EVII. 05. 25—27. VII. 05. 25—27. VII. 05.	1 2 3
ruhig	dem Felde kleinere Haus- haltsarbeiten	22	"	4
phlegmatisch	Pflügen	27	10-16. VIII. 05.	5
ruhige Ge- mütsart	tätig am Haushalt, beim Melken und beim	27	. 22	6
phlegmatisch	Ausbuttern gröbere Arbei- ten im Hause und bei der	13	99	7
ruhig	Ernte Spiel und Pfle- ge ihrer kleinen Geschwister	77	91	8
sanguinisch	Dreschen	29	22—25. VIII. 05.	9
ruhig	tätig am Haus- halt und beim Melken	37	26-28. VIII. 05. 22-24 und 28. VIII. 05.	10
	III CIROII	>>	25—27. VIII. 05.	12

Nummer	Beruf oder Stellung in der Wirtschaft		Alter	0	Körper- gewicht	Körperbau
	" - "			1		
11	Tochter	i	13		32	etwas schwächlich und mager
12	Tochter		10		21	mittelkräftig, mager
	•					
13	Sohn		4	1	14	klein, etwas blass
	4. Heuerlingsfamilie in der Nühe von Jywäskylä.					
14	Bauer		36		57	mittelkräftig und mager
15	Bäuerin		34	1	61	kräftig, aber etwas mager
16 17 18	Tochter Sohn Tochter	-	6 8 4	Without Bully and woman	26	etwas schwächlich kräftig gebaut etwas schwächlich
	5. Bauerfamili e in der Nähe von Jywäskylä.					
. 19	Bauer	;	32		71	lang, kräftig
20	Schwester		25		52	klein, schwächlich, mager,

Gemütsart	Arbeit	Gegenstand der Unter- suchung	$oldsymbol{Z}$ eit	Analyse- nummer
lebhaft	Arbeit auf dem	Kot Harn Nahrung	25—27. VIII. 05. 22—24. VIII. 05.	147 159 13
lebhaft	Felde verschiedene Haushaltsar- beiten, Kinder-	23 33	25—28. VIII. 05. 22—24. und 28. VIII. 05.	14 15
	pflege, Beeren- pflücken	, Kot Harn	25—27. VIII. 05.	16 148 160
lebhaft	Spiel	Nahrung	22—28. VIII. 05.	, 17
phlegmatisch	Kartoffelernte, Dreschen	Nahrung	22—28. IX. 05.	18
sanguinisch	tätig am Haus- halt und bei der Kartoffelernte	99	22—24 und 28 IX. 05.	19
ruhig lebhaft ruhig	Spiel im Freien Kartoffelernte Spiel im Freien	Kot "Harn Nahrung "" Kot Harn	25—27. IX. 05. 22—28. IX. 05. 22—25. IX. 05. 26—28. IX. 05.	20 149 161 21 22 23 24 150 162
sanguinisch	verschiedene kleinere Arbeiten	Nahrung	2-8. X. 05.	25
sanguinisch	tätig am Haus halt	27	**	26

Bidrag, H. 67, N:o 1.

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
21	Bruder	23	67	stark, kräftig
22 23	Waisenknabe Waisenmädchen	13 10	29 30	mittelkräftig, mager lang, schwächlich, mager, blass
	6. Heuerlingsfamilie in Orawisaari.			•
24	Bauer	• 44	76	lang, kräftig mit mittlerem : Fettpolster
25 26	Bäuerin Tochter	49	63 70	lang und mager lang, kräftig und wohlge- närt
27	Tochter	18	60	etwas schwächlich
28	Sohn	7	24	gross, mittelkräftig
	7. Bauerfamilie in Toivakka.	,		erte l
29 30	Tagelöhner Bauer	35 31	68 67	kräftig und gesund gross und kräftig
31	Dienstmädchen	21	57	schwächlich und blass
32 33	Dienstmädchen Knecht	18 15	59 36	stark, etwas wohlgenährt schwächlich

Gemütśart	Arbeit	Gegenstand der Unter- suchung	Zeit	Analyse- nummer
sanguinisch	Gespanndienst, Pflügen	Nahrung	2-8. X. 05.	27
phlegmatisch stillsam	Gespanndienst tätig am Haus- halt, Schulbe- such	33 23	n n	28 29
phlegmatisch	Schaufelarbeit	"	12—18. X. 05.	30
sanguinisch sanguinisch	tätigam Haushalt "	"	12—15. X. 05.	31 33
melancholisch	Nähen und Haus-	Kot Harn Nahrung	16—18. X. 05. " 12—15. X. 05.	32 151 163 35
	haltsarbeiten	Kot Harn	16-18. X. 05.	34 152
ziemlich leb- haft	Schulbesuch	Nahrung	12—18. X. 05.	164 36
phlegmatisch	Feldarbeit		23—29. X. 05.	9.5
sanguinisch	kleinere Arbei- ten	27	23—29. A. 05.	37 38
phlegmatisch	tätig am Haus- halt, Arbeit im Viehstalle	27	77	39
kolerisch ruhig	renstane " Feldarbeit	22	27	40 41

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
	8. Bauerfamilie in der Nähe von Iisalmi.			
34	Knecht	22	64	mittelkräftig, mager, blass
35	Dienstmädchen	21	50	kurz und kräftig
36	Sohn	16	44	kurz, kräftig und gesund
37	Sohn	11	32	schwächlich, mager
38	Sohn	9	26	schwächlich und blass
	9. Bauerfamilie in der Nähe von Itsalmi.			
39	Bäuerin	44	65	mittelkräftig, kurz, wohlge- nährt
40	Ansässige Arbeiterin	40	47	klein und mager
41	Tochter	16	47	kräftig und gesund
42	Sohn	11	31	etwas schwächlich und blass
43	Sohn	9	25	etwas schwächlich

Gemütsart	Arbeit	Gegenstand der Unter- suchung	Zeit	Analyse- nummer
		1		
sanguinisch	Heufuhren, Schu- sterarbeit	Frühstück	10-16. I. 06.	54
		Mittag Abendbrot	17	55 5 6
phlegmatisch	tätig am Haus- halt und Ar- beit im Vieh- stalle	Frühstück	99 99	57
!		Mittag	"	58
phlegmatisch	Heufuhren	Abendbrot Frühstück	27	59 60
paregaration		Mittag	27	6I
1 3 3 3 6		Abendbrot	27	62
lebhaft	Schulbesuch	Frühstück Mittag	27	63 64
1		Abendbrot	22	65
ruhig	27	Frühstück	"	66
		Mittag Abendbrot	77	67 68
•		1	1	
phlegmatisch	tätig am Haus- halt und beim Melken	Nahrung	24—30. I. 06.	69
kolerisch	17	Frühstück	22	70
:		Mittag Abendbrot	77	71
ruhig	tätig am Haus- halt, Handar- beit	Nahrung	17 27	72 73
langsam	Skilaufen	Frühstück	27	74
		Mittag	27	75
langsam	19	Abendbrot Nahrung	77	76 77

Bidrag, H. 67, N:o 1.

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
44	10. Heuerlingsfamilie in der Nähe von Iisalmi. Dienstmädchen	24	59	lang und mager
45	Sohn	19	58	kräftig und gesund
46	Sohn	14	33	etwas schwächlich und blass
47	Sohn	8	22	etwas schwächlich
4 8	Sohn	5	17	schwächlich
1 9	11. Heuerlingsfamilie in der Nähe von Iisalmi. Bäuerin	47	52	kurz und etwas mager
. 50	Soh n	14	32	etwas schwächlich, gesund
51	Tochter	9	22	schwächlich, gesund
52 53	Tochter Sohn	6 2	18 11	kurz, wohlgenährt kurz, wohlgenährt

Gemütsart	Arbeit	Gegenstand der Unter- suchung	Zeit	Analyse- nummer
etwas melan- cholisch	Arbeit im Vieh- stalle	Nahrung	6—9. II. 06.	78
1			10—I2. I. 0I6.	79
		Kot	"	155
111 41 1	Cognonadionat	Harn Frühstück	6—12. II. 06.	167
phlegmatisch	Gespanndienst	Mittag		81
		Abendbrot	27	82
langsam	Holzsägen, Ge- spanndienst	Frühstück	29	83
	-	Mittag	59	84
		Abendbrot	27	85
ziemlich leb- haft	Schlittenfahren (zum Vergnügen)	Frühstück	77	86
		Mittag	77	87
1		Abendbrot Frühstück	97	88
ruhig	22	Mittag	77	90
		Abendbrot	מ מ	91
!			•	
ziemlich phleg- matisch	tätig am Haus- halt und beim Melken	Frühstück	17—23. II. 06.	92
	Merken	Mittag	27	93
		Abendbrot	77 11	94
lebhaft	Holzsägen	Frühstück	. 17	95
	-	Mittag	22	96
		Abendbrot	n	97
lebhaft	Spiel, Schlitten-	Frühstück	n	98
	fahren	Mittag		99
		Abendbrot	n	100
lebhaft		Nahrung	27	101
ruhig	Spiel im Hause	,,	"	102

Nummur	Beruf oder Stellung in der Wirtschaft	Alter	1	Körperbau Körper-
	12. Bauerfamilie in Wuolijoki.			
54 55	Knecht Tochter	24 18		54 kurz und mittelkräftig 56 lang und schwächlich
56	Sohn	15		44 lang und mittelkräftig
57	Dienstmädchen	14	1	34 kurz, etwas schwächlich
58	Tochter	6		14 kurz, mittelkräftig
	13. Bauerfamilie in Mustasaari (schwedisch).			
59	Bauer	56		etwas schwächlich, mager,
60	Bäuerin	51		65 kurz und kräftig
61	Tochter	25		63 kurz und kräftig
	Tochter	24		65 mittelkräftig, blass, gesund
	Sohn	18		71 lang, sehr kräftig
64	Knecht	17		67 kräftig und gesund
65	Sohn	9	1	35 kurz und kräftig
66	14. Bauerfamilie in der Mustasaari (schwedisch).	40	;	60 lang and mittallmätti
00	Bauer	42	!	68 lang und mittelkräftig

Gemütsart	Arbeit	Gegenstand der Unter- suchung	${f Z}$ eit	Analyse- nummer
phlegmatisch etwas melan- cholisch	Gespanndienst tätig in der Mol- kerei	Nahrung	8—10. IV. 06. 8—14. IV. 06.	103 104
ziemlich leb- haft	Gespanndienst	"	"	105
ruhig	tätig am Haus- halt und bei der	29	`97	106
lebhaft	Kinderpflege Spiel, meist im Hause	33	. 29	107
phlegmatisch	Holzhauen, Ge- spanndienst	"	14 - 20. I. 07.	108
sanguinisch	tätig am Haus- halt, Handar- beit, Arbeit im Viehstalle	>>	27	109
sanguinisch	Arbeit im Vieh- stalle	99	2*	110
melancholisch	Nähen, Arbeit im Viehstalle	27	19	111
phlegmatisch	Holzhauen, Ge- spanndienst, Tischlerei	27		112
sanguinisch	Holzhauen, Ge- spanndienst	1)	99	113
phlegmatisch	Schulbesuch, Ski- laufen	77	25	114
phlegmatisch	Gespanndienst	,,,	22—28. I. 07.	115

Bidrag, H. 67, N:o 1.

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
67	Dienstmädchen	19	65	kräftig
68 69	Tochter Sohn 15 Dieselbe Familie wie	11 6	36 24	ziemlich kräftig kurz und kräftig
70 71	N:o 14. Bauer (= N:o 66) Bäuerin	42 35	67 66	kurz und kräftig
72	Dienstmädchen (= N:o 67)	19	64	
73	Tochter (= N:o 68)	11	37	kurz und schwächlich
74 75	Sohn Tochter	9	30 33	kurz und kräftig
76 77	Tochter Sohn (= N:o 69)	7 6	24 23	ziemlich kräftig
78	Tochter	3	14	mittelkräftig
	16. Bauerfamilie in Mustasaari (schwedisch).			
79	Bauer	43	66	kurz, kräftig
80	Dienstmädchen	43	61	kurz und kräftig
81	Sohn	16	60	kräftig
82	Tochter	10	38	kräftig
83	Sohn	8	34	kurz und kräftig
	17. Bauerfamilie in Solf (schwedisch).			
84	Bauer	45	65	kurz und kräftig

Gemütsart	Arbeit	Gegenstand der Unter- suchung	${f Z}$ eit	Analyse- nummer
kolerisch	tätig am Haus- halt und beim Spinnen, Arbeit	Nahrung	22—28. <u>I</u> . 07.	116
ruhig ruhig	im Viehstalle Schulbesuch Skilaufen	22 23	" "	117 118
sanguinisch	Schaufelarbeit tätig am Haus- halt und bei der Saat	33 33	17—23. VI. 07.	138 139
_	Schaufelarbeit	37	27	140
ruhig lebhaft ruhig — lebhaft	Spiel im Freien " " " " " "	29 29 27 29 29	29	141 142 143 144 145 146
- träge	Holzfuhren tätig am Haushalt, Arbeit im Viehstalle Holzfuhren Schulbesuch	27 22 23 23	17-23. II. 07.	*) 119
ruhig	27	27	59	*)
phlegmatisch	Gespanndienst	Frühstück	3—9. I. 06.	42
•	1	Mittag	27	43

 $^{^{*}}$) Die Proben sind verloren gegangen. Bidrag, H. 67, N:o 1.

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
85	Bäuerin .	50	48	schwächlich, blass, gesund
86	Tochter	18	46	kurz und kräftig
87 88	Sohn Sohn	14 11	36 26	kurz und mittelkräftig
	18. Dieselbe Familie wie N:o 17.			
89 90	$\begin{array}{l} \text{Bauer (= N:o 84)} \\ \text{Bäuerin (= N:o 85)} \end{array}$	46 51	67 50	_
91	Tochter (= N:o 86)	18	48	_
92	Sohn (= N:o 88)	12	31	_
93	Sohn 19. Bauerfamilie in Solf (schwedisch).	9	25	kurz und schwächlich
94	Weib	5 3	52	etwas schwächlich
95	Bäuerin	37	56.	kurz und kräftig

Finska Vet. Soc.

Gemütsart	Arbeit	Gegenstand der Unter- suchung	${f Z}{ m eit}$	Analyse- nummer
ruhig	tätig am Haus- halt und beim	Abendbrot Nahrung	39. I. 06.	44 45 – 51
ruhig	Melken Arbeit im Viehstalle, Spinnen, Weben	22	29	"
lebhaft "	Gespanndienst Spiel	27 29	29 29	"
	Gespanndienst	22	28. II—6. III. 07.	120
	tätig am Haus- halt und beim Melken	>>	28. II – 3. III. 07.	121
		Kot Harn	4-6. III. 07. " 28. II-6. III. 07.	122 156 168
	Arbeit im Vieh- stalle	Nahrung "	28. II – 6. III. 07. 28. II – 3. III. 07. 4–6. III. 07.	123 124 125
	Spiel	Kot ["] Harn Nahrung	28. II—6. III. 07.	157 169 126
träge	»,	"	"	127
ruhig	Handarbeit	22	3 Tage in Jan. 06.	94
phlegmatisch	tätig am Haus-	Kot Harn Nahrung	n n	153 165 95
	halt, Arbeit im Viehstalle	Kot Harn	"	154 166

Bidrag, H. 67, N:o 1.

Nummer	Beruf oder Stellung in der Wirtschaft	Alter	Körper- gewicht	Körperbau
96 97	20. Parzellenwirtschaft in Kyrkslätt (schwedisch). Wirt Wirtin	41 42		etwas schwächlich etwas schwächlich
98 99 100 101 102 103	Tochter Sohn Tochter Tochter Tochter Tochter	16 12 10 7 4 2	32 34 29 19	kräftig kurz und schwächlich mittelkräftig kurz und kräftig mittelkräftig kurz und kräftig

Gemütsart	Arbeit	Gegenstand der Unter-	Zeit	Analyse
1		suchung		se-
	1			
kolerisch	Gespanndienst	Nahrung	31. IV—6. V. 07.	129
phlegmatisch	tätig am Haushalt, Arbeit im Viehstalle	,,	31. IV—3. V. 07.	130
		77	4—6. V. 07.	131
		Kot	· "	158
	1	Harn	, "	170
lebhaft	Kinderpflege	Nahrung	31. IV—6. V. 07.	132
ruhig	Schulbesuch	,,	! 29	133
lebhaft	29		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	134
träge	"	77	n	135
lebhaft	Spiel	44	22	136
		1	**	137

Reihe II.

In Bezug auf die Untersuchung der in den verschiedenen Haushaltungen verzehrten Nahrung ist folgendes anzuführen.

Durch meine eigene Fürsorge wurden 12 Enquêtehefte gefüllt. Durch das Entgegenkommen des Volksschullehrers, Herrn *Lucander* in Pargas wurden weitere 3 gesammelt. Auf sein Anraten wandte ich mich ferner an eine Anzahl seiner Kollegen auf dem Lande mit dem Ersuchen, mir in meinem Unternehmen behilflich zu sein, und erhielt ich derart im Ganzen 65 Enquêtehefte, welche durch die Fürsorge einer Anzahl Volksschullehrer und -lehrerinnen auf dem Lande ausgefüllt worden sind.

Ich habe die Enquête-Familien nach ihrem Wohnort in eine Anzahl Kreise gruppiert, welche mit römischen Ziffern nummeriert sind. Die untersuchten Höfe sind als Fortsetzung der vorhergehenden mit arabischen Ziffern bezeichnet, von 21 an.

I.	Süd- und Südwest Finnland, finnische Gegend 21—33
II.	" schwedische Gegend 34—43
III	Satakunta, finnisch
IV.	Savolax, finnisch
V.	Karelen, finnisch
VI.	Süd-Osterbotten, finnische Gegend 69—70
VII.	" schwedische Gegend 71—75
VIII.	Nord-Osterbotten, finnische Gegend in der Nähe der
	Küste
IX.	Ebenda, weiter im Lande
X.	Lappland, finnisch

Ihrer gesellschaftlichen Stellung nach verteilen sich die Höfe folgendermassen:

Bauerhofsbesitzer				34
Heuerlinge ("torpare"),	Käthner ("inl	nysing,	backstugusi	ittare"),
Fischer				21
Arbeiter				25
				80

Die Anzahl Personen in den enquêtemässig untersuchten Familien beträgt 560.

Die Tabelle II enthält Angaben über den Wohnort der zur Reihe II gehörigen Familien, über die Zeit der Untersuchung, den Beruf des Familienvaters, sowie die Zahl und das Alter der jeder Familie gehörigen Personen. Die Zahlen in der 5. und 6. Kolumne geben das Alter (in ganzen Jahren) der einzelnen Individuen an.

Tabell II. Reihe II. Charakteristik der bei der Enquête untersuchten Familien.

Familien nummer	Wohnort	Zeit	Beruf	Versuchs	Alter der personen	Berechnete er- wachs. Männer
				männliche	weibliche	er- ner
I						
21	Nurmijärvi	Okt. 05	Schmied	43. 5	39. 17. 15. 13. 10. 7. 2.	5,4
22	- 27	"	Bauerhofs- besitzer	35. 27. 23. 19. 12. 10. 6		7,8
23	Wichtis	Juni 06	Heuerling	M	W	1,7
24	Kymi	27	Bauerhofs- besitzer	50. 18. 14. 16. 7	81, 55, 48, 20. 11	7,5
25	Pusula	Mai 06	Heuerling	48. 16. 12. 19	50. 18. 14. 7. 2	6,0
26	27	22	Schuster	81. 44. 18. 13.	41.16.6	5,8
			•	2		
27	Somerniemi	77	Heuerling	46. 25. 22	66. 18	4,4
28	Somero	Juni 06	Heuerling	36. 13. 11. 5.	36. 18. 7.	5,0
				3	11/12	
29	ת	27	Bauerhofs- besitzer	45, 36, 14, 12, 8	36. 26. 23. 5/12	6,3
30	Rusko		Bauerhofs-	42, 22, 22, 16	40. 22. 17. 18.	8,5
30	Tousie	29	besitzer	12, 22, 22, 20	15. 12. 6	,,,
31		Mai 06	Heuerling	62. 28. 25	54. 30. 15	5,1
32	Tammela, Fors-		Heuerling	43. 17. 11. 1	39. 14. 8	4,7
	sa					
33	27	Mai 06	Fabriksar-	37. 6. 3	36. 15. 8	3,6
			beiter			
II	1					
34	Strömfors	Okt. 06	Bauerhofs-	35. 20. 9	50, 22, 17, 9.	6,2
			besitzer		7.4.1	
35	"	Aug. 06	Bauerhofs- besitzer	27. 27. 28. 6/12	49. 26. 24. 22. 14. 2	6,9

Familien nummer	Wohnort	Zeit	Beruf		Alter der personen weibliche	Berechnete er- wachs. Männer
				manniche	Weibliche	.19
II						
36	Strömfors	Aug. 06	Bauerhofs- besitzer	50. 22	47. 21	3,4
37	Pargas	Sommer 05	Bauerhofs besitzer	M. M. M. 9	W. W. W. 13	6,5
38	27	Mai 05	Bauerhofs- besitzer	48. 20. 16. 6. 25	76. 30. 19. 18. 15. 5. 3	8,4
39	77	Somm. 05	Heuerling	M. 1	W.	1,9
40	77	Mai 05	Heuerling	56. 15. 4	45 11	3,4
41	"	Somm. 05	Heuerling	M. 3/12	W. W. W.	3,3
42	Karis	Mai 06	Käthner	30. 25	66. 40. 27	4,2
43	Brändö	Juni 06	Fischer	52. 19. 16	49	3,6
III						
44	Nakkila	Juni 06	Henerling	52. 49. 16. 13. 4. 1	42	4,9
45	Karkku	Mai 06	Heuerling	35. 6. 8/12	28. 4	2,7
46	Suoniemi	22	Bauerhofs-	46. 38. 17	30. 20. 16	5,1
			besitzer			
47	77	77	Arbeiter	39. 15. 12. 6. 4. 1	36. 11. 9. 7	5,7
48	Parkano	April 06	Bauerhofs- besitzer	45. 18. 17. 13. 12. 7	20. 18. 15. 5	7,4
49	27	Juni 06	Heuerling	40. 19	30. 15. 8	3,9
50	Kanka an pää	Juli 06	Bauerhofs-	60, 22, 19, 15.	54. 25. 18	6,3
			besitzer	4		
IV						
51	Wesanto	Juni 06	Bauerhofs-	40, 35, 30, 18	73. 42. 31. 21.	8,3
		- 3334 55	besitzer	12	14	0,0
52	29	72	Bauerhofs-		70. 50. 21. 16	8,7
		"	besitzer	19. 15		,

Familien nummer	Wohnort	Zeit	Beruf		Alter der spersonen	Berechnete er- wachs. Männer
				шапппспе	weinitelle	er er
IV						
53	Rantasalmi	Mai 06	Bauerhofs- besitzer	43. 24. 21, 19. 15. 5. 4	63 3 8, 29, 25, 19, 14, 11, 7	10,8
54	Leppävirta	Juni 06	Heuerling	64. 24. 22. 12	30. 26	4,6
55	Kangaslampi	Mai 06	ländliche	28. 28. 27	21	3,8
			Kleinhändl.			
56	Mäntyharju	22	Bauerhofs- besitzer	50. 23	48, 19, 8	3,9
57			Heuerling	39. 13	34	2,5
58	22	"	Näherin	11	35. 14	2,1
	. 77	29			-01.22	-,-
V		1				
59	In der Nähe	Juni 06	Arbeiter	27. 26. 3	63. 21. 2	3,9
	von Wiborg		(Löschung)			
60	77 77	27	Fabriksar- beiter	34. 6. 4	27. 7. 2. 1	3,3
61	Walkeala	Mai 06	Bauerhofs- bes tzer	25. 20. 17. 1	50. 23. 14. 11.	6,4
62	Jaakkima		Arbeiter	49. 13. 7	42	3,0
63	" "	99	Arb.an einer		25	1,9
00	"	"	Sägemühl.	-0.0/12		-,5
64	22	27	Arbeiter	51. 24. 21. 17. 13. 9. 5	47	6,3
65	Parikkala	22	Bauerhofs- besitzer	52. 50. 45. 43. 35. 32. 25. 21. 12. 11	42, 40, 35, 30, 15, 12, 6, 1, 1/12	15,0
66	Antrea, Ka- vantsaari	April 06	Heuerling	45. 30. 5. 2	38. 16. 13. 8	5,2
67	Ilomants	Juni 06	Zimmerer	35. 13. 10/12	33. 4	2,9
68	Kivinebb	Nov. 06	Bauerhofs-	61. 20. 16. 12	51. 19	5,0
			besitzer			

Wohnort Zeit Beruf Zahl und Alter de Versuchspersonen männliche weiblich	chr s.
	a 6
VI 69 Härmä	1
69 Härmä Juni 06 Korbflechter 36. 15. 14 38. 13. 2.	1 4,4
70 Wai 06 Masshinist 26 14 11 7 29 1	4,4
Mai 00 Maschinist 50, 14, 11, 7, 55, 1	1,4
	70.00
VII	
71 Solf Jan. 07 Bauerhofs- besitzer 47. 15. 11. 9 51. 19	4,5
72 , Bauerhofs- 50 54.21.15	3,2
besitzer	
73 , Bauerhofs- 66 64. 28. 19	3,2
besitzer	2,9
besitzer	,9
75 Mustasaari März 07 Bauerhofs- 27. 6 63. 24	2,8
besitzer	_,-,-
VIII	00 10
76 Wuolijoki Mai 05 Bauerhofs- 71. 36. 32. 18. 65. 31. 25	1
besitzer 20. 12 21. 18. 6/12	10.
77 , Fuhrmann 61.12. M 53.34.6.	3 4,8
78 " Käthner — 55. 28	1,4
79 , Schneider 54. 17. 14. 7 44. 11. 11	5,3
80 " Käthner 13 50	1,5
81 Muhos Mai 06 Heuerling 53. 12. 10. 6 50. 3	3,7
82 , Schuster 33. 10. 5. 2 30. 7/12	3,1
83 Kiiminki Frühling Bauerhofs- 60, 36, 22, 20, 72, 39, 39	
06 besitzer 10. 6 22. 12.	9
84 Alatornio Juni 06 Bauerhofs- 56. 21. 15. 10. 53. 25. 18	6,0
besitzer 6	

Familien- nummer	Wohnort	Zeit	Beruf		Alter der spersonen weibliche	Berechnete er- wachs. Männer
VIII			4			
85	Alatornio	Juni 06	Arbeiter	27. 5. 3	28.2	2,5
86	22	" Arb. in einer 55. 14 52. 17		52. 17	3,2	
			Sägemühle			
IX		-			1	
87	Rowaniemi	Juli 06	Bauerhofs-	57. 13. 2	45. 23. 14. 1	4,2
88			besitzer Schuster	50. 9. 6. 1.	36. 7. 4	9.0
00	27	. "	Schuster	1/12	30.7.4	3,8
89			Arbeiter		25. 2/12	2,7
90	Turtola	Mai 06	Arbeiter	32. 1	27. 5	2,3
91	**	**	Fuhrmann		39, 14, 5, 2	1,9
92	Kuusamo	Juni 06	Bauerhofs-	65. 31. 8. 1	74. 53. 31. 29.	7,6
			besitzer		18. 12. 6. 4	
93	22	*	Bauerhofs-	47. 19. 12. 10.	37. 17. 7. 5. 1	5,9
			besitzer	3		
94	77	Mai 06	Bauerhofs-	47. 20. 18. 15.	49. 22. 5	6,3
			besitzer	12		
X						
95	Sodankylä	Juni 06	Bauerhofs-	28, 26, 21, 18,	160 29 1	5,8
"	Sodalikyla	bull 00	besitzer	2	. 00. 20. 1	, 0,0
96		"	Schneider	_	39. 8. 6. 4	3,8
97	Inari"	27	Fischerlapp	53. 9. 6	53. 19. 12	4,1
98	n	97	Arbeiter	37. 5. 3. 1	32.6	2,9
99	Utsjoki	"	Bauerhofs-	25. 20. 10	62, 30, 27	4,8
			besitzer			
100	22	22	Bauerhofs-	44	43. 15	1,7
			besitzer			

In Tabelle III sind zuerst die Ergebnisse von 146 Analysen mitgeteilt, die sich auf die von den Versuchspersonen der Reihe I genossenen Kost beziehen. Dann folgen in fortlaufender Nummerfolge je 12 Kot- und Harnanalysen (N:r 147—170). Zum Schluss bringt die Tabelle die Analysen von 10 Roggenbrot- und 2 Gerstenbrotproben aus verschiedenen Teilen des Landes, sowie einer Probe von sog. "Talkkuna"mehl (Nr 171—183).

Tabelle III. — Analysen.

A. Kost.

Analyse- nummer	Person	Gesamtgew.	Trocken- substanz	Asche g	Stickstoff g	Eiweiss g	Fott g	Kohle- hydrate	Kalorien, dir. be- stimmt
	_								
1	1	743	676,1	55,0	20,6	128,5	69,8	422,8	3190
2	2	915	828,1	61,3	21,0	131,8	111,6	523,4	4055
3	3	553	503,2	33,7	12,3	76,9	99,0	293,6	2608
4	4	427	386,s	23,9	11,7	73,4	64,5	225,0	1970
5	5	984	901,4	56,1	17,9	112,2	181,1	552,0	4699
6	6	726	660,7	47,2	17,7	111,1	90,8	411,6	3224
7	7	943	861,9	60,4	19,6	122,6	90,5	588,4	3912
8	8	453	413,6	26,3	11,2	70,2	48,9	268,2	2028
9	9	956	864,3	59,3	21,2	132,9	66,0	606,1	3854
10		983	889,6	59,0	21,9	136,6	105,2	588,8	4173
11	10	796	720,5	47,8	14,2	88,4	63,7	520,6	3293
12		853	782,2	46,9	15,6	97,2	80,2	557,9	3688
13	11	700	632,1	44,8	15,8	98,7	38,5	450,1	2835
14		716	645,8	40,1	14,6	91,6	67,3	446,8	3009
15	12	394	354,2	27,6	8,0	50,4	36,6	239,6	1653
16		413	368,8	28,5	9,5	59,5	49,1	231,7	1732
17	13	261	235,6	15,1	6,3	39,4	30,8	150,3	1144
18	14	993	910,7	60,6	21,1	132,1	73,5	644,5	4057
19	15	556	508,3	38,4	12,4	77,3	37,3	355,3	2234
20	_	660	599,9	36,3	13,1	81,8	45,5	436,3	2710
21	16	407	364,3	23,6	8,7	54,5	37,9	248,3	1713
22	17	561	507,7	33,7	10,6	66,2	41,5	366,3	2292
23	18	378	341,7	20,8	8,4	52,5	48,8	222,6	1669
24	_	410	376,4	24,2	8,7	54,5	27,9	269,8	1705
25	19	814	735,9	51,3	18,6	116,4	119,7	448,5	3649
26	20	477	440,7	28,6	11,3	70,6	70,6	270,9	2181
27	21	1286	1157,6	65,8	23,6	146,6	95,2	850,0	5332
28	22	821	738,1	42,7	12,4	77,2	72,2	546,0	3415

Analyse- nummer	Person	Gesamtgew. getrocknet g	Trocken- substanz	Asche	Stickstoff g	Eiweiss g	Fett g	Kohle- hydrate	Kalorien, dir. be- stimmt
29	23	520	465,4	27,0	7,0	43,7	38,5	356,2	2103
30	24	1099	993,6	63,8	22,3	139,6	91,2	699,0	4537
31	25	549	491,3	36,2	10,7	66,4	50,0	338,7	2256
32	26	710	636,8	44,7	14,8	93,0	79,5	419,6	3045
33		540	488,2	37,3	9,6	60,5	44,3	346,1	2155
34	27	587	522,4	34,6	12,4	77,5	58,1	352,2	2460
35	_	445	399,7	30,3	9,6	60,1	37,8	271,5	1816
36	28	491	433,1	29,5	9,5	59,4	50,1	294,1	2013
37	29	1180	1080,9	70,8	24,7	154,6	75,5	780,0	4854
38	30	927	842,6	63,0	17,5	109,4	83,+	586,8	3783
39	31	573	522,6	44,1	12,9	80,8	51,0	346,7	2357
40	32	824	744,1	54,4	16,8	105,5	63,4	520,8	3389
41	33	684	619,7	41,7	14,0	87,6	54,0	436,4	2834
42	84	200	185,6	15,6	5,9	37,0	20,0	113,0	865
43	_	307	276,3	18,7	7,1	44,2	24,6	188,8	1244
44	_	159	144,3	10,2	3,9	24,3	16,5	93,3-	. 688
45	85—88	1270	1148,5	83,0	26,8	167,6	44,5	853,4	4895
46	_	1740	1567,8	135,7	41,4	259,3	102,7	1070,1	6878
47		1770	1626,7	108,0	43,2	270,8	159,3	1088,6	7523
48	_	1770	1610,8	104,4	44,6	279,7	185,9	1040,s	7670
49		1190	1061,5	80,9	29,6	185,6	136,9	658,1	5081
50	_	1540	1376,7	101,6	33,1	206,4	86,2	982,5	6081
51	_	1800	1609,2	120,6	39,2	244,8	77,4	1166,4	7139
52	94	323	299,0	23,1	9,4	58,8	39,4	177,7	1426
53	95	453	413,1	23,6	12,9	80,6	57,5	251,4	2002
54	34	427	389,9	29,9	8,6	53,8	25,2	281,0	1719
55	_	387	354,0	31,3	10,4	65,4	46,4	210,9	1653
56	_	253	230,2	17,2	7,4	46,3	23,0	143,7	1095
57	35	247	225,0	15,3	5,1	32,1	14,1	163,5	990
58	_	271	243,1	20,1	6,4	40,1	36,3	146,6	1167
59		203	184,6	11,6	6,1	38,4	17,7	116,9	878

Analyse- nummer	Person	Gesamtgew. getrocknet	Trocken- substanz	Asche	Stickstoff	Eiweiss g	Fett	Kohle- hydrate	Kalorien, dir. be- stimmt
		1							
60	36	260	236,4	20,8	6,3	39,8	25,5	150,3	1075
61		267	240,0	20,0	7,6	47,8	31,8	140,4	1170
62		161	148,0	7,9	4,7	29,8	18,5	91,8	724
63	37	226	207,5	14,9	5,7	35,3	34,4	122,9	1027
64	_	196	179,5	13,1	6,1	38,0	29,4	99,0	904
65		193	176,0	11,2	5,8	36,3	27,4	101,1	889
66	38	203	187,6	13,2	5,5	34,5	27,6	112,3	917
67		209	193,5	14,6	5,7	35,9	27,0	116,0	933
68		176	162,0	11,3	4,8	30,1	23,6	97,0	791
69	39	470	433,0	37,6	13,9	87,0	36,7	271,7	1990
70	40	281	258,4	16,3	9,6	60,0	21,9	160,2	1185
71	_	277	249,2	19,9	7,5	46,8	15,2	167,3	1112
72	-	250	224,5	15,0	8,3	51,5	18,0	140,0	1061
73	41	427	392,8	26,0	12,0	75,2	49,1	242,5	1904
74	42	311	287,0	14,0	7,4	46,3	29,5	197,2	1355
75		271	246,9	18,7	6,8	42,8	18,7	166,7	1105
76	_	267	246,0	12,3	6,9	43,0	23,0	167,7	1149
77	43	614	563,7	33,8	15,2	95,2	63,2	371,5	2697
78	44	523	480,6	32,9	12.4	77,4	41,3	329,0	2166
79.	_	397	362,8	21,8	9,2	57,2	20,6	263,2	1625
80	45	267	245,6	12,8	5,6	35,0	16,8	181,0	1110
81		301	273,1	21,1	5,6	35,2	20,2	196,6	1195
82	_	171	157,0	7,5	4,5	28,2	4,8	116,5	703
83	46	187	171,6	9,5	4,1	25,4	11,6	125,1	775
84		196	175,2	12,3	3,9	24,3	10,4	128,2	782
85	_	129	117,5	5,4	3,4	21,4	4,4	86,3	527
86	47	196	183,6	11,6	4,4	27,6	11,8	128,2	813
87	_	216	199,1	15,3	4,1	25,5	14,7	139,5	868
88	_	117	108,5	6,3	3,4	21,2	3,9	73,7	469
89	48	164	149,6	9,5	3,3	20,7	10,2	109,2	679
90	-	140	124,s	9,9	2,8	17,4	11,1	86,4	558

Finska Vet. Soc.

Analyse- nummer	Person	Gesamtgew. getrocknet	Trocken- substanz	Asche	Stickstoff g	Eiweiss g	Fett g	Kohle- hydrate g	Kalorien, dir. be- stimmt
:									
91	_	81	72,7	5,3	2,3	14,3	4,1	49,0	330
92	49	214	192,1	13,7	4,8	29,7	21,2	127,5	918
93	_	219	198,1	13,4	1,7	29,6	23,0	132,1	951
94		196	176,0	9,8	5,1	31,9	19,4	114,9	850
95	50	196	176,3	9,4	4,5	28,2	18,0	120,7	828
96		192	174,4	12,9	4,2	26,3	17,1	118,1	805
97		171	150,8	6,8	1,4	27,4	13,3	103,3	736
98	51	185	167,7	9,8	4,1	25,7	19,2	113,0	802
99		169	154,5	10,6	4,1	25,9	14,2	103,8	720
100	_	148	133,3	4,6	4,3	26,8	11,2	90,7	645
101	52	396	357,5	28,5	10,4	64,9	40,8	223,3	1729
102	53	246	220,6	14,8	7,6	47,2	38,1	120,5	1125
103	54	1027	925,5	80,3	20,3	126,s	80,1	638,3	4059
104	55	367	331,3	26,8	8,4	52,8	45,1	206,6	1600
105	56	739	687,2	51,0	16,4	102,7	91,6	441,9	3266
106	57	524	470,5	35,6	12,5	78,1	44,0	312,8	2222
107	58	371	339,8	21,9	9,7	60,8	73,5	183,6	1772
108	59	740	677,1	40,7	18,1	113,2	73,3	449,9	3185
109	60	624	561,0	34,9	14,9	93,0	41,2	391,9	2564
110	61	596	541,2	37,0	12,3	76,9	47,1	380,2	2481
111	62	556	501,5	33,9	12,7	79,5	36,7	351,4	2334
112	63	981	882,0	58,9	24,1	151,1	72,6	599,4	4049
113	64	1091	999,3	70,9	24,6	153,8	64,4	710,2	4416
114	65	571	517,3	29,7	14,0	87,9	44,0	355,7	2414
115	66	844	766,4	52,3	23,5	146,9	62,5	504.7	3530
116	67	634	579,5	41,8	15,1	94,5	46,9	396,3	2662
117	68	471	443,2	29,7	13,9	86,7	40,0	286,8	2029
118	69	430	393,1	28,0	11,0	68,4	36,1	260,6	1830
119	80	704	652,6	47.2	19,8	123,9	39,4	442,1	2937
120	89	630	590,4	42,8	16,6	104,0	51,7	391,9	2714
121	90	328	302,4	23,0	9,0	56,1	22,6	200,7	1392

Bidrag, H. 67, N:o 1.

Analyse- nummer	Person	Gesamtgew. getrocknet	Trocken- substanz	Asche	Stickstoff	Eiweiss	Fett	Kohle- hydrate	Kalorien, dir. be- stimmt
122		430	399,9	29,7	10,3	64,1	40,4	265,7	1826
123	91	479	436,8	33,5	12,4	77,6	32,1	293,6	1952
124	_	410	375,2	28,7	11,8	74,2	27,5	244,8	1711
125		570	513,5	37,6	14,2	88,9	35,3	351,7	2298
126	92	466	431,9	33,1	11,3	70,8	29,8	298,2	1899
127		457	427,3	33,4	10,8	67,6	27,4	298,9	1917
128	93	361	335,4	26,0	7,9	49,1	28,2	232,1	1513
129	96	1050	969,2	67,2	30,6	191,1	71,4	639,5	4468
130	97	400	365,2	26,4	12,2	76,4	35,6	226,8	1696
131	_	493	451,6	31,1	15,7	98,1	42,9	279,5	2114
132	98	484	442,9	29,5	13,2	82,8	51,8	278,8	2111
133	99	434	402,8	25,6	11,5	71,6	37,8	267,6	1870
134	100	403	377,2	21,4	10,8	67,7	42,3	245,8	1816
135	101	361	332,0	18,4	9,7	60,6	36,8	216,2	1597
136	102	266	241,0	15,2	8,4	52,1	29,0	144,7	1171
137	103	211	192,1	10,8	6,3	39,5	25,7	116,1	960
138	70	1017	914,5	65,3	29,4	183,0	81,4	584,8	4284
139	71	586	552,6	44,5	19,7	123,1	51,6	333,4	2555
140	72	704	655,4	51,4	21,0	130,9	. 55,6	417,5	3022
141	73	421	390,6	26,9	10,7	66,9	43,4	253,4	1873
142	74	459	424,6	29,4	15,1	94,1	46,8	254,3	2017
143	75	439	408,8	3 0,3	13,0	80,8	42,6	255,1	1877
144	76	414	390,8	26,1	13,4	83,6	33,5	247,6	1805
145	77	411	385,9	27,5	14,5	90,8	44,8	222,8	1825
146	78	197	186,9	11,2	6,3	39,4	37,0	99,3	963

B. Kot.

Analyse- nummer	Person	Gesamtgew. getrocknet g	Trocken- substanz	Asche g	Stickstoff	Eiweiss g	Fett	Kohle- hydrate g	Kalorien, dir. be- stimmt
147	10	79,7	71,8	10,1	3,8	23,7	14,2	23,8	378
148	12	31,3	27,9	4,6	1,4	8,9	3,3	11,1	143
149	15	80,5	73,4	10,7	3,1	19,5	5,4	37,8	335
150	18	34,7	31,6	4,8	1,5	9,5	2,9	14,4	146
151	26	37,5	33,1	6,6	1,7	10,7	4,4	11,4	167
152	27	29,3	26,3	4,1	1,2	7,3	3,2	11,7	129
153	94	29,2	26,4	5,5	1,0	6,5	4,5	9,9	132
154	95	33,7	29,2	6,6	1,3	8,4	4,2	10,0	132
155	44	29,0	25,9	3,6	1,3 .	8,0	3,3	11,0	132
156	90	39,3	38,1	10,5	2,2	13,7	2.3	11,6	158
157	91	37,3	33,7	5,6	1,9	12,0	2,5	13,6	152
158	97	53,3	48,3	9,3	2,3	14,6	6,2	18,2	233

C. Harn.

Analyse- nummer	Harn- menge g	Stick- stoff g
159	1903	10,5
160	1393	5,0
161	2117	11,8
162	950	4,0
163	2000	13,1
164	1840	11,8
165	1217	9,3
166	2517	12,5
167	1277	7,9
168	1850	8,5
169	1750	9,0
170	2517	16,1

Bidrag, H. 67, N:o 1.

D. Brot- und Mehlproben.

Analysenummer und Gegenstand der Unter- suchung	Eiweiss 9/0	Fett %	Kohle- hydrate	Kalorien, dir. be- stimmt per kg
Roggenbrot, trocken				
171	12,3	2,3	72,7	3938
172	11,9	1,5	72,7	3933
173	11,6	2,5	71,1	3948
174	11,4	1,9	71,7	3911
175	13,9	1,7	69,4	3794
176	9,8	1,3	74,5	3866
177	14,1	1,2	70,2	3940
178	11,6	1,7	72,4	3894
179	11,9	2,2	70,8	3899
180	11,6	0,9	73,7	3960
"Rieska", Kornbrot, trocken				`
181	11,1	1,9	71,8	3943
182	10,2	1,8	73,4	3928
"Talkkuna" mehl		1		
183	9,8	2,6	73,1	3881

In Tabelle IV schliesslich finden sich die unter Anwendung der zugänglichen analytischen Mittelwerte durch Rechnung erhaltenen Werte für Eiweiss, Fett, Kohlehydrate und Kalorien bei den Versuchspersonen der Reihe I.

Tabelle IV. Reihe 1.

Berechnete Mengen von Gesamtzufuhr, Eiweiss, Fett,
Kohlehydraten und Kalorien.

Versuchs- person N	Gesamt- zufuhr g	Eiweiss g	Fett g	Kohle- hydrate g	Kalorien
		1			
5.	3471	148	193	607	5160
6	3370	139	. 100	350	3897
7	3444	136	82	641	4190
8	1857	69	66	276	2139
9	4199	193	. 88	727	4934
10	2851	138	69	630	4040
11	3071	139	69	519	3575
12	1760	79	42	281	1985
13	1294	53	23	190	1291
14	3426	169	82	. 739	4806
15	2076	96	42	456	2830
16	1583	72	44	288	1956
17	2277	79	45	382	2434
18	1492	62	42	267	1852
19	2994	147	107	491	3816
20	1474	77	60	261	2051
21	3313	193	89	964	5795
22	2211	115	54	617	3601
23	1486	65	31	318	1913
24	3799	172	58	743	4556
25	1885	78	31	356	2180
26	2346	106	45	368	2499
27	1672	68	30	302	1757
28	1884	75	39	285	1963
29	2657	201	79	726	4843
30	2343	157	66	522	3698
31	1690	109	48	322	2408
32	2255	144	60	476	3364
33	1956	118	57	405	2926

Bidrag, H. 67, N:o 1.

Versuchs- person №	Gesamt- zufuhr g	Eiweiss g	Fett g	Kohle- hydrate g	Kalorien
34	4331	222	83	646	4624
35	2592	144	57	443	3204
3 6	2551	148	73	413	3205
37	2452	116	75	329	2734
38	2016	103	66	332	2576
39	2030	115	30	294	2158
4 0	2914	157	37	473	3175
41	1557	87	43	267	2003
42	2712	150	57	532	3600
43	1451	101	61	401	2819
44	1412	68	25	296	1861
45	2263	103	41	502	3055
46	1456	71	27	330	2037
47	1952	79	31	342	2168
48	1342	53	24	230	1558
49	2213	_ 106	49	384	2665
50	1894	87	40	355	2356
51	1752	83	36	313	2109
52	1372	67	33	234	1692
53	1169	47	25	125	1021
55	1277	63	53	181	1606
56	2670	121	123	423	3585
57	1755	84	66	283	2217
58	1639	68	72	189	1745
59	3151	135	67	501	3485
60	2366	117	52	429	2806
61	2300	102	60	404	2824
62	2257	99	47	356	2488
63	4271	186	71	720	4752
64	4539	219	87	573	5286
65	2355	104	54	407	2807
66	4134	160	67	608	4071
67	2882	115	42	503	3081

Finska Vet. Soc.

Versuchs- person &	Gesamt- zufuhr g	Eiweiss g	Fett g	Kohle- hydrate g	Kalorier
68	2006	104	66	336	2607
69	1902	79	39	260	1885
70	4241	216	50	681	4547
71	2611	130	23	394	2592
72	3217	145	29	490	3171
73	1845	93	31	271	1941
74	2327	111	28	342	2298
75	2155	97	23	296	1986
76	1727	83	20	263	1675
77	2087	96	25	269	1889
78	950	42	28	117	977
79	3562	166	52	507	3706
80	3404	146	42	463	3151
81	3967	187	68	655	4464
82	2705	120	37	414	2745
83	3156	138	43	463	3118
81	3614	136	32	486	3134
85	1774	72	21	265	1699
86	1897	81	26	261	1753
87	2040	88	27	314	2066
88	2446	104	31	371	2431
89	3606	134	48	490	3233
90	1863	69	21	255	1639
91	2356	92	26	359	2259
92	2467	93	23	384	2342
93	1708	76	23	254	1695
96	4258	213	83	593	4437
97	1793	97	58	190	1926
98	2106	102	57	258	2185
99	1610	80	33	246	1784
100	1630	83	47	211	1798
101	1555	71	43	218	1709
102	1701	58	28	120	1090
103	986	45	24	103	910

Bidrag, H. 67, N:o 1.

III. Die Zufuhr von potentieller Energie bei den Versuchsindividuen in der Reihe I.

Die erste und wichtigste Anforderung auf die Nahrung ist die, dass sie eine ausreichend grosse Menge potentieller Energie enthält. Eine Kost, der diese Bedingung nicht erfüllt, ist als ungenügend zu bezeichnen und darf daher nicht in dieselben Kategorie gesetzt werden wie normale Kostsätze.

Zur Beurteilung der Menge potentieller Energie, die der Organismus bei gewöhnlicher Ruhe verbrennt, liegt eine ziemlich erhebliche Anzahl von Untersuchungen im Respirationsapparate vor, die teils an hungernden Individuen, teils an solchen, die ihre gewöhnliche Menge Nahrung genossen, ausgeführt wurden.

Durch Zusammenstellung dieser Untersuchungen ist *Tigerstedt* zu dem Resultat gekommen, dass ein in gewöhnlichem Sinne ruhender Mensch per kg Körpergewicht und Stunde 1,30 bis 1,50 Kal. verbraucht. 1) Weniger als 1,30 Kal. pro Stunde oder 31 Kal. pro Tag verzehrten nur wenige Versuchspersonen und handelte es sich dann in den meisten Fälle um alte Leute oder Individuen mit, nach dem Körpergewicht zu urteilen, gut entwickeltem Panniculus adiposus. 2) Für meine Versuchspersonen, die ja Körperarbeiter sind und eine intensive Tätigkeit entfalteten, dürfte daher die Zahl 31 Kal. pro kg. Körpergewicht und Tag als Minimum des Energieverbrauches nicht zu hoch sein.

¹⁾ Tigerstedt, Handbuch der Physiol. d. Menschen, I, 2, S. 544.

²) Vgl. noch *Ekholm*, Skand. Arch. f. Physiol., 11, 1901, S. 26 u. 69.

Da ferner, wie weiterhin gezeigt werden soll, etwa ein Achtel des Bruttokalorienwertes der Nahrung im Kot verloren geht, dürfte der Verbrennungswert der aufgenommenen Nahrung im Minimum auf etwa 35 Kal. pro kg Körpergewicht und Tag geschätzt werden können.

1. Die Zufuhr von potentieller Energie bei einem erwachsenen Manne.

In der Tabelle V (S. 66) sind die Resultate meiner direkt bestimmten Kalorienmittelwerte für erwachsene Männer, die eine Woche lang untersucht worden waren. zusammengestellt. Die Kolumne 1 enthält die Nummer der Versuchsperson, die Kolumnen 2 u. 3 ihr Alter und Körpergewicht, die Kolumnen 4 u. 5 die Kalorienzufuhr brutto, im ganzen und auf 1 kg Körpergewicht berechnet.

Wie ersichtlich, ist die tägliche Zufuhr bei allem Versuchsindividuen, pro kg Körpergewicht berechnet, grösser als das oben angegebene Minimum.

Bei zahlreichen Stoffwechselversuchen, wo der Kalorienverbrauch direkt bestimmt oder berechnet und die gleichzeitig ausgeführte äussere Arbeit gemessen worden ist, hat man auf Grund des Mehrverbrauchs von Kalorien im Verhältniss zum Verbrauch bei körperlicher Ruhe die Verwertung der potentiellen Energie bei der äusseren Arbeit festzustellen versucht. Als allgemeine Norm kann die Prozentzahl 25 ¹) festgesetzt werden; d. h. eine Arbeit von 100 kg-m würde einen Mehrverbrauch von etwa 1 Kal. beanspruchen.

^{&#}x27;) Siehe Näheres bei *Tigerstedt* l. c. S. 451 ff. Bidrag, H. 67, N:o 1.

Andererseits lässt sich, bei Kenntnis des Körpergewichtes, der Energiebedarf der Versuchsperson in Ruhe mit grosser Wahrscheinlichkeit berechnen.

Tabelle V.

Die Kalorienzufuhr beim erwachsenen Manne. Reihe I.

		1 57.00	Kalorien			
Versuchsperson N:o	Alter	Körper- gewicht	im ganzen	pro kg Körper- gewicht		
63	18	71	4049	57.		
45	19	58	3008	57,0		
34	22	64	4467	51,9		
21	23	67	5332	79,6		
30	25 31	67	3783	i 1		
				56,5		
.19	32	71	3649	50,7		
9	33	60	3991	66,5		
29	35	68	4854	71,4		
5	36	65	4699	72,3		
14	36	57	4150	72,8		
96	41	70	4468	63,8		
66	42	68	3530	52,0		
70	42	68	4284	64,0		
24	44	76	4537	59,7		
84	45	65	2797	43,0		
89	46	67	2714	41,0		
59	56	69	3185	46,2		
Mittel	35	67	3970	59,3		

Wenn die von dieser Person zu leistende Arbeit bekannt ist, kann man demnach die Grösse ihres Nahrungsbedarfs bei der Arbeit unschwer feststellen.

Finska Vet. Soc.

Das durchschnittliche Körpergewicht eines finnländischen Arbeiters beträgt 67 kg, eine Zahl, die gut mit der Quetelet's für das mittlere Gewicht eines 30-jährigen Mannes, 66,1 kg, übereinstimmt. 1)

Die Brutto-Zufuhr bei einem Mann von diesem Körpergewicht muss bei körperlicher Ruhe etwa 2345 Kal. betragen.

Wenn wir eine einigermaassen sichere Methode besässen, die Grösse der körperlichen Arbeit bei verschiedenen Beschäftigungen zu berechnen, so könnten wir zugleich für den Energiebedarf eine Zahl aufstellen, die in diesem speziellen Falle der Zahl 2345 $+\frac{\text{Anzahl kg-m}}{100}$ recht nahe käme.

Eine körperliche Arbeit von 100000 kg-m würde also eine Nahrungszufuhr von c. 3350 Kal. erfordern.

Leider fehlt uns in den meisten Fällen die Möglichkeit, die Arbeitsmenge zu berechnen. Nur für einige ganz einfache Arbeitsarten sind Berechnungen gemacht worden, aber für die Abschätzung der wechselvollen Arbeit eines Landmannes können sie uns keine Anleitung bieten.

Dagegen ist der entgegengesetzte Weg, aus der Menge der verbrauchten Kalorien die Grösse der Arbeit zu berechnen, vielfach angewandt worden. Bei allen derartigen Berechnungen ist jedoch die grösste Vorsicht zu beobachten, und die derart gewonnenen Zahlen sind nur als approximativen Ausdruck für die Grösse der geleisteten Arbeit anzusehen.

Auch hat man sich in den meisten Fällen damit begnügt, die Arbeit als unbedeutend, leicht, mässig, stark,

¹) Quetelet, Anthropometrie, 1870. Bidrag, H. 67, N:o 1.

schwer usw. zu bezeichnen. Will man jedoch auf Grund der Menge der zugeführten Nahrung die Grösse der geleisteten Arbeit in kg-m ausdrücken, so muss selbstverständlich auch die Möglichkeit in Betracht gezogen werden, dass ein Teil der resorbierten Nahrung im Körper angesetzt wird. Ist dies der Fall, so sind natürlich alle Berechnungen über die Grösse der Arbeit vergeblich.

Wenn wir wissen, dass ein finnländischer Student täglicg 3934 Kal. konsumiert, 1) so fällt uns nicht ein, seine Arbeit auf 160000 kg-m zu schätzen, denn es ist uns bekannt, dass seine körperliche Arbeit sehr gering ist. Die Ursache seiner so hohen Zufuhr liegt offenbar darin, dass dem Studenten eine gute Kost geboten wurde, die ihn verlockte mehr zu essen, als er brauchte. Der Beweis dafür finden wir in der Angabe, dass er bei dieser Diät in der Tat fettleibig wurde.

Im allgemeinen lassen sich bei Untersuchungen, wo die Kost wohlschmeckend war oder den Reiz der Neuheit besass, aus der Zufuhr keine Schlüsse in Bezug auf die gesammte Verbrennung ziehen oder aus dieser auf die ungefähre Grösse der körperlichen Arbeit.

Anders verhält es sich, wenn es sich um Individuen handelt, die eine mehr oder minder strenge körperliche Arbeit ausführen. Die Kost eines solchen Arbeiters ist, sofern sie mit seinen Gewohnheiten übereinstimmt, nicht so verlockend, dass eine Ueberernährung stattfinden würde. Im Gegenteil findet sich nicht selten eine Unternährung vor. Bei den von mir untersuchten erwachsenen Männern dürfte sowohl Ueber- als Unterernährung als ausgeschlossen anzusehen sein; die Nahrung fand sich in genügender

¹⁾ Sundström, Skand. Arch. f. Physiol. 19, 1906, S. 82.

Menge vor, doch war ihre appetitreizende Beschaffenheit ziemlich gering. Ich nehme daher an, dass die Kalorienzahl bei den die 17 in der Tabelle V aufgenommenen Männern einigermassen ihrem wirklichen Bedarf entspricht (natürlich mit Berücksichtigung des Verlustes im Kot).

Die Kalorienmenge in der genossenen Kost variiert von 2714 bis 5332 Kal. Die Nettowerte, welche wir durchschnittlich auf 87,5 $^{0}/_{0}$ des Bruttowertes abschätzen können, variieren zwischen 2375 und 4666 Kal. Der Mittelwert der Bruttokalorien beträgt 3970, der der Nettokalorien 3474 Kal.

Zum Vergleich mit diesen Durchschnittszahlen erbieten sich zunächst die Kostmasse, welche sich auf männliche Individuen mit der gleichen Beschäftigung in anderen Ländern beziehen. Zu diesem Zweck führe ich aus einer von Atwater 1) zusammengestellten Tabelle die Kalorienzahlen an.

Vers	uch	sindividuen					Kal. netto.	Anzah Beob.
Farmer	in	Connectio	eut				3410	7
,,	27	Vermont					3635	5
77	77	New-York	k				3785	2
77	22	Mexiko					3435	3
Bauern	${\rm in}$	Russland					3165	?
99	27	Italien.					3565	2
				7)	litte	el	3500	

Die Uebereinstimmung zwischen meiner Zahl 3474 und dem Mittel *Atwaters*, 3500, ist sehr gut.

¹) Atwater, Report of Storrs (Connecticut) agricult. station, 1902—1903, S. 135.

Bidrag, H. 67, N:o 1.

Hultgren und Landergren, 1) sowie Verf. 2) teilten die von ihnen ermittelten Kostmasse schwedischer und finnländischer Arbeiter in zwei Gruppen ein, je nachdem die Kost mehr oder weniger als 3500 Kal. enthielt; Kostmasse unter 3500 Kal. sollten mittlerer Arbeit entsprechen, die, welche diese Grenze überstiegen, angestrengter Arbeit. Folgende Tabelle enthält eine Zusammenstellung der Mittelwerte beider Gruppen.

. Arbei	itsart.		-	Bru	ttokalo	orien.	
L. mittlere A	arbeit				3281	(ohne	Alkohol)
angestren	gte Arbeit				4557		27
mittlere Arbe	eit		_		3011		
angestrengte	Arbeit (in d	l. St	ad	t)	4378		
27	" (auf d.	Lai	nde	e)	4770		
27	" im Mi	ttel			4574		
	L. mittlere A angestren mittlere Arbe angestrengte	angestrengte Arbeit mittlere Arbeit angestrengte Arbeit (in d " " (auf d. im Mi	L. mittlere Arbeit angestrengte Arbeit . mittlere Arbeit angestrengte Arbeit (in d. St " (auf d. Lanim Mittel	L. mittlere Arbeit angestrengte Arbeit angestrengte Arbeit (in d. Stad " (auf d. Lande im Mittel	L. mittlere Arbeit angestrengte Arbeit angestrengte Arbeit (in d. Stadt) , (auf d. Lande) im Nittel	L. mittlere Arbeit 3281 angestrengte Arbeit 3011 angestrengte Arbeit (in d. Stadt) 4378 " " (auf d. Lande) 4770 im Mittel 4574	L. mittlere Arbeit 3281 (ohne angestrengte Arbeit 3011 angestrengte Arbeit (in d. Stadt) 4378 " " (auf d. Lande) 4770 im Mittel 4574

Ich werde das jetzt vorliegende Material in zwei Gruppen einteilen, wobei ich den mittleren Bruttowert 3970 als Grenze annehme. Die 7 Kalorienzahlen unter dem Mittelwerte bezeichne ich als Gruppe I, die 10 über derselben als Gruppe II. Ich finde umso mehr Grund zu einer solchen Einteilung, als die Prüfung der Beschäftigung der Versuchspersonen ergibt, dass die Männer der Gruppe I insgesamt leichtere Arbeit, Aufsicht über andere oder Tätigkeit als Lastfuhrmann, zu verrichten hatten, während dagegen die Männer der Gruppe II schwere Arbeit

²) *Hultgren* und *Landergren*, Untersuchung der **Ernähru**ng schwedischer Arbeiter.

³⁾ Sundström, l. c.

auf Feld und Wiese hatten. Der Mittelwert für Gruppe I beträgt brutto 3238 und netto 2833, für Gruppe II resp. 4483 und 3923.

Die Mittelwerte für die beiden Gruppen stimmen somit gut mit den S. 70 angeführten Mittelwerten der zwei Gruppen von *Hultgren* und *Landergren* überein.

Weiteren Vergleichs wegen teile ich nachstehende Tabelle mit, in welcher ich zwei von *Tigerstedt* 1) aufgestellte Tabellen vereinigt habe, von denen sich die eine auf 126 amerikanische Kostmasse, die andere auf 76 europäische (brutto) bezieht.

Kategorie.	Amerika.	Europa.
I	2315	2229
II	2779	2889
III	3262	3222
IV	3738	3702
V	4180	4252
VI	4692	4752
VII	5511	6037

 $\begin{tabular}{ll} \bf Meine & beiden & Gruppen & stimmen & einigermaassen & mit \\ \bf den & \it Tigerstedt \end{tabular} schen & Kategorien & III & und & VI & "berein". \\ \end{tabular}$

Schliesslich seien in Bezug auf Arbeitskategorien die von *Voit* ²) und *Atwater* ³) angeführten Normalzahlen (brutto) mitgeteilt.

¹⁾ Tigerstedt, Handbuch der Physiol. S. 549 50.

²) Nach *Tigerstedt*, Grundsatser för utspisningen i allmänna anstalter, Stockholm, 1891.

³) Nach Tigerstedt, Hygiea 1903, S. 8 (schwedisch). Bidrag, H. 67, N:o 1.

Voit: mitt	lere Arbeit			3055	Kal.
star	ke "			3348	"
ange	estrengte A	rbei	t	3575	"
Atwater:	unbedeute	nde	Arbeit	2500	
	leichte		**	3000	
	mässige		"	3500	
	starke		**	4000	
	schwere		,,	5700	
	sehr schw	ere	,,	7500	

Später hat *Atwater* für den *netto* Bedarf folgende Zahlen aufgestellt: 1)

Man without muscular exercise	 2450 Kal
sedentary	 2700 "
light to moderately musc. work	 3050 "
moderately active musc. work	 3400 "
hard muscular work	 4150 "
very hard muscular work	 5500 "

Wie stimmen nun meine Erfahrungen mit diesen Zahlen überein?

Die Brutto-Durchschnittszahl für Gruppe I fällt zwischen Voits Zahlen für mittlere und starke Arbeit, verglichen mit Atwater hingegen zwischen leichte und mässige Arbeit, die Brutto-Durchschnittszahl für Gruppe II zwischen die Atwater'schen Zahlen für starke und schwere körperliche Arbeit. Der allgemeine Mittelwert 3970 stimmt gut mit den 4000 Kal. Atwaters für starke körperliche Arbeit überein.

Atwater, Report of Storrs agricult. station 1902—1903, S. 137.
 Finska Vet. Soc.

Durch einen Vergleich meiner Nettowerte mit den Nettoenergiezahlen Atwaters wäre eine bessere Uebersicht zu erhalten gewesen, wenn für jede Versuchsperson die Nettokalorien direkt bestimmt worden wären. Da aber, wie es jetzt der Fall ist, die Nettowerte unter Anwendung der aus einigen wenigen Fällen gewonnenen Zahlen berechnet wurden, halte ich es nicht für statthaft, die potentielle Energie netto für jede Person auszurechnen, sondern berechne sie nur für die Mittelwerte. Von diesen Mittelwerten, 2833 (I) und 3923 (II) sowie 3474 (I + II), übersteigt die erste um ein weniges Atwaters Zahl für eine Person mit mehr sitzender (sedentary) Lebensweise. Wir haben jedoch allen Grund anzunehmen, dass alle unsere Personen eine Arbeit geleistet haben, welche die körperliche Arbeit bei einer solchen Lebensweise übersteigt. Mein mittlerer Nettowert für Personen mit schwererer Arbeit nähert sich der Zahl Atwaters für schwere Arbeit. Der Gesammtmittelwert netto übersteigt etwas Atwaters "mässige Arbeit".

Es dürfte nicht ohne Interesse sein zu prüfen, ob sich ein Zusammenhang zwischen der geleisteten Arbeit der Versuchspersonen und ihrer Energiezufuhr nachweisen lässt.

Als Beschäftigung ist in der Hälfte der Fälle. 8, die eines Lastfuhrmanns angegeben. Mit der Arbeit eines solchen beschäftigten sich alle Männer der Gruppe I, mit Ausnahme der zwei, für die nur geringe körperliche Arbeit angegeben wird, ausserdem 3 Männer der Gruppe II. Für letztere wird jedoch bemerkt, dass die Fuhren mit mancherlei schwerer Arbeit verbunden gewesen waren, wie Baumfällen u. dergl. Infolge dieser ungleichen Arbeitsmenge, die Bidrag, H. 67, N:o 1.

wir den Fuhrleuten zumessen müssen, wechselte ihr Kalorienverbrauch zwischen 2714 und 4468 Kal.

In Gruppe II waren alle Männer, mit Ausnahme der erwähnten 3. zur Zeit der Beobachtung mit schwerer Feldarbeit beschäftigt. Für eine Person, N:o 29, wird ganz einfach Arbeit auf dem Felde angegeben. Zwei Männer, N:o 9 und 14, waren mit Erntearbeit, kombiniert mit Dreschen beschäftigt nnd verbrauchten 3991 und 4150 Kal. N:o 70 und 24 hoben Gräben aus, ihre Kalorienzufuhr ist die nächste in der Reihe und beträgt resp. 4284 und 4537. Der grösste Energiewert wurde von Pflügern erreicht, N:o 5 und 21. welche auf 4699 und 5332 Kal. kamen. Diesen Zahlen kann noch das Resultat von meinen früheren Untersuchungen an 24 mit Heumachen beschäftigten Männern der landwirtschaftlichen Schule zu Koivikko hinzugefügt werden. 1) Ihre Zufuhr betrug 4900 Kal. brutto, oder, wenn wir mit Tigerstedt einen Verlust im Kot von 10 % annehmen, 4410 Kal. netto. In der folgenden Tabelle habe ich für die aufgezählten landwirtschaftlichen Arbeiter die Mittelwerte der Brutto- und Nettokalorien zusammengestellt und an der Hand der letzteren die Arbeit in kg-m berechnet.

¹⁾ Sundström, Skand. Arch. f. Physiol. 19, 1906, S. 84.

Arbeit	Zufuhr Kal.		Berechnete Arbeit Kg-m	
Fuhren Erntearbeit Gräbenziehen Pflügen Heumachen	3527	3086	74000	
	4070	3561	F21000	
	4411	3860	151000	
	5016	4389	204000	
	4900	4410	206000	

Vergleichen wir diese Zahlen für die Nettokalorien mit den Normalzahlen Atwaters, so kann nach dieser Zusammenstellung die Arbeit eines Lastfuhrmanns als leichte bis mässige Arbeit (3050) bezeichnet werden, Erntearbeit als mässige (3400), Gräbenziehen, Pflügen und Heumachen als schwere körperliche Arbeit (4150).

2. Die Zufuhr von potentieller Energie bei einer erwachsenen Frau.

In Bezug auf die Nahrungszufuhr der Frau liegen nur wenige Untersuchungen vor. Ein prinzipieller Unterschied zwischen dem Nahrungsbedarf eines Mannes und einer Frau ist nicht anzunehmen, bis auf den, der durch das niedrigere Körpergewicht der Frau und ihre gewöhnlich leichtere Arbeit bedingt wird. Voit stellt als Norm für den Kalorienbedarf eines weiblichen Arbeiters 2444 Kal. brutto fest, was unter Annahme von 10 % Verlust durch den Kot 2200 Kal. Netto ergibt. Atwater gibt für Frauen folgende Normalzahlen an:

Bidrag, H. 67, N:o 1.

light to moderate muscular work 2450 Kal. netto. moderately active work 2700 " "

Die entsprechenden Bruttozahlen sind c. 2550 und 2800 Kal.

Die verschiedenen, die Nahrung von Frauen betreffenden Untersuchungen sind bald genannt.

Tigerstedt stellte 1891 zusammen 1)

Beamtenfrau . . . 1996 Forster
Schullehrerin . . 2282 Jürgensen
Fabriksarbeiterin . 2873 Erismann
Erdarbeiterin . . 2609 Sarin
, 2824 , .

Die Durchschnittszahl für die beiden ersten, keine körperliche Arbeit verrichtenden Frauen beträgt brutto 2139 Kal., entsprechend 1925 Kal. netto. Für die körperlich arbeitenden Frauen beträgt der Mittelwert brutto 2769 Kal., entsprechend 2492 netto.

Aus den amerikanischen Untersuchungen sind betreffend den Nahrungsbedarf der Frau zu entnehmen, dass bei 7 aus Frauen bestehenden "clubs" die Kalorienzufuhr im Mittel 3545 Kal. beträgt. 2) Es ist wenig wahrscheinlich, dass dies dem Nahrungsbedarf von Personen mit geringer körperlicher Arbeit entsprechen sollte, und es liegt daher nahe anzunehmen, dass hier Ueberernährung vorliegt. Zwei nur von Früchten lebenden Frauen konsumierten dagegen

¹⁾ Tigerstedt, Grundsatser för utspisningen usw. S. 90.

²) Report of Storrs agr. exp. stat. 1902—1903, S. 135.

äusserst geringe Mengen potentieller Energie, 1) weshalb ich mir vorstelle, dass sie als unterernährt zu betrachten sind.

Albertoni und Novi untersuchten die Nahrung einer italienischen Bäuerin und erhielten durchschnittlich für den Sommer und Winter 2899 Kal. (das Resultat nach Hultgrens Umrechnung. ²)

Verfasser untersuchte 3 finnländische Familien, die nur aus Frauen bestanden. 3) Der Mittelwert für dieselben beträgt 2796 Kal. Desgleichen habe ich auf der landwirtschaftlichen Schule zu Koivikko die Nahrung für 9 Frauen mit recht schwerer Arbeit gesondert gewogen. Die Durchschnittszahl für ihre Kalorienzufuhr betrug 3508. 3)

In nachstehender Tabelle VI finden sich die Kalorienzahlen für 25 eine Woche lang untersuchten Frauen sowohl in Gesamtmengen als berechnet für 1 kg Körpergewicht.

¹⁾ U. S. Dep. of Agricult., Bull. N:o 107.

²) Hultgren, Archiv f. d. gesamt. Physiol. 60, 1895, S. 205.

³⁾ Sundström, Skand. Arch. f. Physiol. 9, 1906. S. 87 und 85.

Tabelle VI.

Kalorienzufuhr bei der erwachsenen Frau. Reihe I.

Versuchsperson N:o	Alter	Körper- gewicht	Gesamt- kalorien	Kalorien pro kg Kör- pergewicht
				1
(27	18	60	2092	34,9)
32	18	59	3389	57,5
(55	18	56 ,	1600	28,5)
67	19	65	2662	41,6)
72	19	64	3022	46,5
91	19	48	1958	40,8
26	20	70	2536	36,2
31	21	57	2357	41,4
35	21	50	3035	60,7
(44	24	59	1934	32,8)
62	24	65	2334	35,9
20	25	52	2181	42,0
61 .	25	63	2481	39,4
6	26	50	3224	64,5
10	32	53	3462	63,3
15 - 1	34	61	2438	39,9
71	35	66	2555	38,7
40	40	47	3358	71,5
(97	42	80	1875	23,4)
80	43	61	2937	48,2
(39	44	65	1990	30,6)
49	47	52	2719	52,3
25	49	63	2256	35,8
60	51	65	2564	39,4
(90	51	49	1578	32,2)
Mittel für alle 25 Frauen.	31	59	2501	42,4
D:o für 19 Frauen (— N:o				
27. 55. 44. 97. 39. 90)	30	59	2709	46,0

Finska Vet. Soc.

Bei Prüfung der Kalorienzufuhr pro kg Körpergewicht bemerkt man bei nicht weniger als 6 Frauen (N:o 27, 55, 44, 97, 39 und 90) eine Bruttozufuhr unter 35 Kal. Aus schon angeführten Gründen werden diese aus der Berechnung der Normalzahlen ausgeschlossen. Der Mittelwert für die übrigen beträgt 2709 Kal. oder, pro kg Körpergewicht berechnet, etwa 46 Kal. Die Gesamtzufuhr variierte bei diesen zwischen 1958 und 3462 Kal. oder 35,8 und 75,9 Kal. pro kg Körpergewicht.

Das durchschnittliche Körpergewicht für sämtliche Frauen beträgt 59 kg, eine bedeutend höhere Zahl als die Quetelet's für belgische Frauen im Alter von 30 Jahren, 55,3 kg.

Für fast alle Frauen ist als Beschäftigung das Besorgen des inneren Haushaltes und Pflege des Viehs angegeben. Eine Einteilung auf Grund der Arbeit ist daher nicht so leicht wie bei den Männern durchzuführen. Prüft man die genannten Kostmasse, so findet man gleichwohl, dass sie sich in zwei Gruppen ordnen, eine, welche sich um die Kalorienzahl 2500 bewegt und aus 12 Personen besteht, und eine andere von 7 Personen, deren Nahrungszufuhr zwischen 3000 und 3500 Kal. beträgt (in einem Falle etwas unter 3000).

Der Mittelwert für Gruppe I beträgt brutto 2420 Kal., eine Zahl, welche mit der von *Voit*, 2444 Kal, übereinstimmt. Der Mittelwert für Gruppe II beträgt 3204.

Die beiden Gruppen würden für Frauen den Kategorien leichte und angestrengte Arbeit entsprechen.

Meine Durchschnittszahl stimmt mit früheren Untersuchungen gut überein, wie dies aus folgender Zusammenstellung ersichtlich ist.

Arbeiterin	in	${\bf Russland}$						2769	Kal.
27	12	Italien .		. •				2899	22
77	27	Finnland	(i.	d. 8	Stäc	ltei	n)	2796	77
"	na	ch Atwate	r.					2800	27
"	in	Finnland	(au:	f d.	La	nde	9)	2709	27

Aus diesen Ermittlungen geht als Durchschnittswert für eine körperlich arbeitende Frau mit "mittlerer Arbeit" etwa 2800 Kal. brutto hervor.

3. Die Zufuhr von potentieller Energie bei Kindern verschiedenen Alters.

In Bezug auf den Nahrungsbedarf der Kinder sind die vorliegenden Angaben noch spärlicher. Sie gründen sich teils auf einer Anzahl Versuche in der Respirationskammer, teils auf einigen Untersuchungen über die von Kindern verschiedenen Alters bei freier Wahl genossenen Kost. In der folgenden Tabelle habe ich die mir zugängligen Untersuchungen der ersteren Art angeführt. Sie sind nach Tigerstedt 1) referiert mit Hinzufügung der Versuche v. Willebrands. 2)

¹⁾ Tigerstedt, Handbuch der Physiol. I, 2 S. 476.

²) v. Willebrand, Finska Läkaresällsk. Handlingar. Bd 49,1, 1907, S. 417.

A 74 a	Körper-	Kalorien-	Kalorien		A 4
Alter	gewicht	ver- brauch	per kg	per m²	Autor
9	23	1462	63	1499	Hellström
_	24	1412	59	1377	Rubner
_	26	1171	45	1100	v. Willebrand
10	26	1352	52	1290	Rubner
-	30	1394	46	1175	v. Willebrand
11	32	1798	56	1391	Sondén u. Tigerstedt
-	41	1804	44	1321	Rubner
12	38	1811	48	1300	Rubner
_	38	1838	48	1254	Sondén u. Tigerstedt
13	34	1283	37	946	v. Willebrand
14	36	1200	34	862	v. Willebrand

Diese Zahlen drücken den Nettoverbrauch bei gewöhnlicher körperlicher Ruhe aus. Einen direkten Vergleich mit den von mir ermittelten Zahlen ist nicht möglich. da sich meine Zahlen auf die Bruttozufuhr beziehen. und ausserdem der bei den Kindern stattfindende, wenn auch ziemlich geringe Ansatz von Eiweiss und Fett hier noch berücksichtigt werden muss (bei 9-jährigen z. B. betrug dieser nach v. Willebrand's Berechnung 0,07 g N und 0,36 g Fett, d. h. insgesammt nur 6 Kal.). Kinder, die zu Hause gelebt hatten und den ganzen Tag umhergelaufen waren, müssen ausserdem einen bedeutend grösseren Umsatz haben als die in der Tabelle angeführten Kinder, die angehalten worden waren, keine grössere Körperbewegungen zu machen. Endlich kann die Kost bei den Respirationsversuchen nicht im eigentlichen Sinne als freigewählt bezeichnet werden.

In Bezug auf die Menge der bei freigewählten Kost von Kindern genossenen Nahrung sind Untersuchungen von *Uffelmann* ¹), *Herbst* ¹), *Hasse* ²) und *Camerer* ³) (vgl. die folgende Tabelle) mitgeteilt worden.

4.7.	Körper-	Kalorie		
Alter	gewicht	im ganzen	pro kg Kör- pergewicht	Autor
77. 7				
Knaben	12	988	81	ITttolmonn
2			1	Uffelmann
2	15	1350	90	Herbst
4	15	1201	79	Uffelmann
4	16	1349	87	Herbst
5-6	18	1380	77	Camerer
7—10	24	1480	62	d:o
9	28	1870	68	Herbst
10	25	1600	64	Uffelmann
11-14	34	1610	47	Camerer
14	43	2045	48	Uffelmann
15-16	53	2100	40	Camerer
17-18	59	2240	38	d:o

¹⁾ Ref. nach Tigerstedt, Nagels Handbuch I, 2, S. 478

²) Ref. nach *König*, Chemie der menschl. Nahrungs- und Genussmittel, 4 Aufl. Bd. I, S. 385.

⁸) Camerer, Der Stoffwechsel des Kindes, Tübingen, 1896, S. 108.

A.74	Körper-	Kalori	Kalorienzufuhr		
Alter	gewicht	im ganzen	pro kg Kör- pergewicht	Autor	
Mädchen					
2	11	1213	106	Hasse	
2	16	1209	76	d:o	
2-4	13	957	74	Camerer	
3	17	1397	82	Hasse	
4	17	1515	89	d:o	
5 - 7	17	1140	67	Camerer	
8	31	2034	66	Hasse	
8-10	22	1320	60	Camerer	
10	43	1987	46	Uffelmann	
10	40	2420	61	Hasse	
11-14	32	1650	52	Camerer	
12	48	1948	41	Herbst	
14	50	1896	38	d:o	
15 - 18	41	1360	33	Camerer	
(21—24	45	1780	40	d:o)	

Das vorliegende Beobachtungsmaterial ist also ziemlich spärlich und doch wäre hier ein umfangreicheres statistisches Material von der grössten Bedeutung. Um meinerseits zur Lösung der Frage nach dem Nahrungsbedarf des Kindes etwas beizutragen, habe ich einige Kostmasse für Kinder verschiedenen Alters gesammelt. Diese sind in folgender Tabelle zusammengestellt.

Tabelle VII.

Die Kalorienzufuhr bei Kindern. Reihe I.

Versuchs- person	Geschlecht	Alter	Körper- gewicht	Gesamt- kalorien	Kalorien pro kg Kör- pergew.			
	I. Kinder 2—3 Jahren							
53	Knabe	2	11	1125	102,3			
103	Mädchen	2	14	960	68,6			
78	Mädchen	3	14	983	70,2			
	-	II. Kinde	r 4—5 Jal	hren.				
13	Knabe	4	14	1144	81,7			
18	Mädchen	4	17	1684	99,1			
102	Knabe	4	19	1171	61,6			
48	Knabe	5	17	1567	92,2			
	I	II. Kinde	er 6—7 Ja	hren.				
69	Knabe	6	24	1830	76,3			
77	Mädchen	6	24	1825	79,3			
16	Mädchen	6	19	1713	90,2			
52	Mädchen	6	18	1729	96,1			
58	Knabe	6	14	1772	126,6			
28	Mädchen	7	24	2013	83,9			
101	Mädchen	7	29	1597	55,0			
76	Knabe	7	24	1805	75,2			
	1	V. Kinde	r 8—9 Ja	hren.				
17	Knabe	8	26	2292	88,2			
47	Knabe	8	22	2150	97,7			
38	Knabe	9	29	2641	91,1			
43	Knabe	9	25	2697	107,9			
65	Knabe	9	35	2414	* 69,0			
93	Knabe	9	25	1513	60,5			
74	Mädchen	9	30	2017	67,2			
51	Mädchen	9	22	2167	98,5			
75	Mädchen	9	33	1877	56,9			
					1 77 / 0 .			

Finska Vet. Soc.

Versuchs- person	Geschlecht	Alter	Körper- gewicht	Gesamt- kalorien	Kalorien pro kg Kör- pergew.
	V	. Kinder	· 10—11 Ja	ahren.	
8	Mädchen	10	24	2028	84,5
12	Mädchen	10	21	1687	80,4
23	Mädchen	10	30	2103	70,1
100	Mädchen	10	34	1816	53,4
37	Knabe	11	32	2820	88,1
42	Knabe	11	31	3609	116,4
68	Mädchen	11	36	2029	56,4
73	Mädchen	11	37	1873	50,6
	***	T 14		* .	
	VI.	Jüngling	ge 12—17	Jahren.	
92		12	31	1908	61,5
99	— . i	12	32	1870	58,4
22	_	13	29	3415	117,6
46	_	14	33	2084	63,1
50		14	32	2343	73,2
33 -	_	15	36	2834	78,7
56		15	43	3266	76,0
36	_	16	44	2969	67,5
64	_	17.	67	4416	65,9
VII. Mädchen 12-16 Jahren.					
11		13	32	2934	91,7
57		14	33	2222	67,3
7	-	15	53	3912	73,8
41	_	16	47	1904	40,5
(98		16	62	2111	34,4)

Für Kinder verschiedenen Alters erhalten wir also folgende Grenzwerte für die Kalorienzufuhr

	Alter J.	Gesamtmenge.	pro kg Körpergewicht.
	2-3	9601125	69—102
	45	1144 - 1684	62-99
	6 - 7	1597 - 2013	55 — 127
	89	1513 - 2697	57—108
	10—11	1687 - 3609	53—116
Knaben	12 - 17	1870 - 4416	58—118
Mädchen	11—16	1904 - 3912	41-92

In folgender Tabelle sind die Mittelzahlen für die gesammte Kalorienzufuhr sowie für die Kalorienzufuhr pro kg Körpergewicht und pro m^2 der Körperoberfläche (berechnet nach Meeh¹) eingetragen.

Kalorienzufuhr, Durchschnittswerte.

1.1.	Kör-	Kalorien-	Kalorien pro		
Altersgruppe Jahre	n perge- wicht	perge-		m² Kör- perober- fläche	
I 2—3	13	1023	78,7	1546	
II 4-5	17	1392	81,9	1761	
III 6—7	22	1786	81,2	1847	
IV 8-9	27	2196	81,3	1968	
V 10-11	31	2246	72,5	1847	
VI Knaben 12-	-17 39	2789	71,5	1968	
VII Mädchen 11-	-16 41	2743	67,0	1872	
VIII Erwachsene	Jänner 67	3970	59,3	1953	
IX Erwachsene I	Frauen 59	2709	46,0	1454	

¹⁾ Meeh, Zeitschrift f. Biologie, 15, 1879, S. 425.

Finska Vet. Soc.

Um zu entscheiden, ob meine Versuchspersonen körperlich normal entwickelt waren, stelle ich das mittlere Gewicht meiner Versuchspersonen mit den von Quetelet 1) und Key 2) mitgeteilten Angaben in folgender Tabelle zusammen 3)

	Alter.	i i	Sundström	Quetelet.	Key.
			kg	kg	kg
	2-3	J.	13	13	
	4-3	J.	. 17	16	
	68	J.	22	_	22
	89	J.	27	_	26
	10-11	J.	31		30
Knaben	12—17	J.	39		42
Mädchen	1116	J.	41	-	44

Wir finden eine recht gute Uebereinstimmung zwischen meinen Gewichten und den normalen Mittelwerten. Nur für das Alter von 12—17 Jahren findet sich ein grösserer Unterschied. Im allgemeinen dürften also meine Versuchspersonen als normal entwickelt bezeichnet werden können.

Eine nähere Durchmusterung der in der Tab. VII zusammengestellten Zahlen erweist innerhalb jeder Gruppe so grosse Schwankungen der Energiezufuhr, dass für viele derselben den Mittelwerten keine grössere Bedeutung zuerkannt werden kann. Da indessen keine besseren Mittel-

¹⁾ Quetelet, Anthropometrie, Bruxelles, 1870.

²) *Key*, Verhandlungen des X. internationalen med. Kongresses, Bd I, Berlin, 1890.

⁸⁾ Ich habe mich darauf beschränkt Quetelet nur für das frühere Kindesalter heranzuziehen, denn für die folgende Jahre sind seine Zahlen offenbar zu niedrig und für diese entsprechen Keys Werte viel näher den normalen.

Bidrag, H. 67, N:o 1.

zahlen zu meiner Verfügung stehen, werde ich mir gestatten, dieselben bei der Berechnung der in der Reihe II gewonnen Resultate zu benutzen.

Wenn wir die Maxima und Minima für jede Gruppe mit den Durchschnittszahlen vergleichen, so erweist sich in Bezug auf die Gesamtzufuhr ein Unterschied zwischen kleineren und grösseren Kindern, insofern als die ersteren sich etwas enger um die Durchschnittszahl schliessen, während für die letzteren sehr grosse Differenzen vorhanden sind.

Der Grund hierfür ist wohl in der Tatsache zu suchen, dass die kleinen Kinder eine gleichartigere Beschäftigung haben, die meist in Spielen besteht, während die älteren schon frühzeitig zu mancherlei Arbeit herangezogen werden. Die verschieden grosse Leistung, die bei diesen Arbeiten ausgeführt wird, bedingt die wechselnde Zufuhr des Brennmaterials.

Den wichtigsten Vergleichsgrund zwischen den Gruppen bilden die Zahlen, welche die Zufuhr pro kg Körpergewicht und m² Körperoberfläche bezeichnen. Aus der Tabelle S. 86 ersehen wir, dass die ersteren Zahlen in allen Gruppen höchst bedeutend wechseln und merkwürdigerweise fast innerhalb derselben Grenzen. Die Durchschnittszahlen hingegen unterscheiden sich nicht viel von einander; bis zum Alter von 10 Jahren beträgt die Zufuhr pro kg Körpergewicht etwa 80 Kal., nach 10 Jahren etwa 70 Kal. Die Zufuhr pro m² Körperfläche ist nicht sehr instruktiv, da keine Nettowerte bestimmt wurden und noch weniger die wirkliche Grösse der Verbrennung. Für die Altersgruppen über 6 Jahre sind die Zahlen ziemlich gleich, für die unter 6 Jahre sinken sie mit abnehmendem Alter.

Sondén und Tigerstedt 1) haben durch Bestimmung der Kohlensäureproduktion bei einer grossen Anzahl Individuen in Ruhe eine Vermehrung der Wärmeproduktion pro m² Körperfläche mit abnehmendem Alter nachgewiesen. Dasselbe haben auch Magnus-Levy und Falk gefunden. 2)

Wenn es sich bei meinen Versuchspersonen teils umgekehrt verhält, teils so, dass die verschiedenen Altersklassen eine gleich grosse Wärmeproduktion zeigen, vorausgesetzt natürlich, dass die wirklich produzierten Kalorien sich wie die zugeführten verhalten, so dürfte dies seinen Grund darin haben, dass die älteren Kinder in lebhafterer Tätigkeit waren.

Nehmen wir nach den in Tabelle S. 81 mitgeteilten Versuchen an, die Verbrennung für beispielsw. 8—9-jährige Kinder betrage bei Ruhe 1325 Kal., so übersteigt die durchschnittliche Nettozufuhr meiner 8—9-Jährigen: 1709 Kal., diese Zahl um 384 Kal., die einer Arbeit von etwa 38000 kg-m entsprechen. Eine solche Arbeit dürfte recht wohl bei der körperlichen Beschäftigung dieser Kinder geleistet werden können.

Zum weiteren Vergleich mit den in der Tab. S. 82, 83 referierten Untersuchungen habe ich diese Kostmasse in dieselben Altersgruppen wie mein eigenes Material eingeteilt. Das Resultat ist aus folgender Tabelle ersichtlich.

¹) Sondén und Tigerstedt, Skand. Arch. f. Physiologie 16, 1895 S. 100. Vgl. die Kritik Rubners, Die Ernährung im Knabenalter. Berlin 1902.

²⁾ Magnus-Levy und Falk, Arch. f. Anat. u. Physiol., physiol. Abth, Suppl.bd 1899, S. 314.

Alter	Körper-	Zufuhr im g den S. 82 Aut	Zufuhr im ganzen bei meinen Ver-	
Jahre	gewicht kg	Kal.	berechnet für das Körperge- wicht meiner Versuchs- personen Kal.	suchs- personen Kal.
2-3	14	1143	1061	1023
4-5	16	1277	1356	1392
6—7	20	13 3 3	1466	1786
8-9	26	1676	1740	2196
10—11	31	1791	1791	2246
Jünglinge 12—17	47	1999	1659	2789
Mädchen d:o	43	1714	1794	2617

Für die beiden ersten Gruppen ist die Übereinstimmung zwischen meinen Werten und den übrigen recht gross, dann aber bleiben die letzteren bedeutend zurück.

IV. Die Verteilung der Nahrungszufuhr auf Eiweiss, Fett und Kohlehydrate.

Unter den verschiedenen Normen, welche für die Verteilung der Nahrungszufuhr auf die verschiedenen Nahrungsstoffe vorgeschlagen worden sind, ist Voits Normalkostsatz der bekannteste und berühmteste. Dieser fordert bekanntlich für einen "mittleren Arbeiter" eine tägliche Zufuhr von 118 g Eiweiss, 56 g Fett und 500 g Kohlehydraten. Eigentlich verlangt Voit 18,3 g Stickstoff und 328 g Kohlenstoff. Der ganze N-Bedarf sowie 63 g Kohlenstoff könne durch 118 g Eiweisssubstanz gedeckt werden, der Rest, 265 g C, müsste so auf Fett und Kohle-

Finska Vet. Soc.

hydrate verteilt werden, dass die Zufuhr von Kohlehydraten nicht 500 g überstiege, dann diese Menge sei das Maximum, das vom Körper mit Vorteil vertragen würde. Der Rest des Kohlenstoffs würde durch 56 g Fett gedeckt werden.

Von denselben Prinzipien ausgehend stellt *Voit* für starke und angestrengte Arbeit 135 g Eiweiss, 80 g Fett und 500 g Kohlehydrate, bzw. 145 g Eiweiss, 100 g Fett und 500 g Kohlehydrate als Norm auf.

Seit 1877, wo *Voit* seine Norm veröffentlichte, ist dieselbe fast überall, wo es sich darum handelte, die Ernährungslehre praktisch zu verwerten, z. B. bei der Aufstellung von Kostordnungen, massgebend gewesen. Wenngleich mehrere der Voraussetzungen, auf welche sich *Voit* bei der Aufstellung seiner Kostmasse stützte, nicht mehr als unbedingt gültig aufgefasst werden können, geben diese nichts desto weniger ein gutes Bild der Art und Weise, wie sich die Bevölkerung in den meisten europäischen Ländern ernährt, und sie muss immer noch bei der Beköstigung in öffentlichen Anstalten ernsthaft berücksichtigt werden.

Da es auf dem gegenwärtigen Standpunkt der Wissenschaft unmöglich ist, aus rein theoretischem Gesichtspunkte anzugeben, wie die Nahrung aus den verschiedenen Nahrungsstoffen zusammengesetzt sein muss, sind jetzt wie früher die Erfahrungen über die Zusammensetzung der frei gewählten Kost als sehr wichtig zu erachten.

In folgender Tabelle habe ich eine Anzahl Untersuchungen über die tägliche Zufuhr verschiedener Nahrungsstoffe bei Körperarbeitern zusammengestellt.

	Eiweiss g	Fett g	Kohle- hydrate	Autor Litteratur, S. 7—9
Handweber in Sachsen	65	49	485	v. Rechenberg
Finnländ. Arbeiter:				
auf dem Lande	225	119	685	Verfasser
in der Stadt	150	136	496	d:o
Russischer Bauer	129	33	587	Erismann
Schwedischer Arbeiter	159	94	571	Hultgren ü. Lander-
Italienischer Landar-				gren
beiter	152	70	659	Albertoni und Novi
				nach Hultgren
Holländischer Arbeiter	70	50	405	Moquette
Belgischer Arbeiter	105	106	390	Slosse und van de
				Weyer

Der Durchschnittswert für diese aus verschiedenen europäischen Ländern gesammelte Arbeiterkostmasse beträgt:

132 g Eiweiss, 82 g Fett und 535 g Kohlehydrate.

Als Beispiel von amerikanischen Kostmassen zitiere ich nach Atwater 1) die Mittelwerte für Landwirte und Mechaniker:

			Kohle-
	Eiweiss	Fett	hydrate
	g.	g	8
Landwirte (14)	108	136	493
Mechaniker (39)	114	133	419
Mittelwert	111	135	456

Der Verbrennungswert beträgt bei den europäischen Kostmassen 3498 Kal., bei den amerikanischen 3571 Kal.

Finska Vet. Soc.

 $^{^{\}scriptscriptstyle 1})$ Atwater, Report of Storrs agricult. exp. station 1902—03, S. 135.

Um eine Vorstellung über die Zusammensetzung der Nahrung in den 7 von *Tigerstedt* aufgestellten Arbeitskategorien zu geben, deren potentielle Energie in Tab. S. 71 angegeben ist, habe ich von *Tigerstedt* folgende Tabelle entlehnt, soweit sie sich auf die Gesamtmenge von Eiweiss, Fett und Kohlehydraten bezieht.

	Amerika	nische Ko	ostmasse	Europäische Kostmasse			
Gruppe	Eiweiss g	Fett Kohle- g kydrate		Eiweiss g	Fett g	Kohle- hydrate	
I	86	81	295	82	44	362	
II	88	108	345	104	60	464	
III	103	125	409	127	85	466	
IV	125	137	476	136	93	556	
V	116	158	538	162	135	569	
VI	145	195	557	182	106	737	
VII	145	235	666	166	156	952	

Folgende Tabelle enthält Angaben über die Maximal- und Minimalmengen von Eiweiss, Fett und Kohlehydraten in den von *Tigerstedt* gesammelten 126 amerikanischen und 76 europäischen Kostmassen.

		Amerika	Europa
		g	g
Eiweiss:	Maximum	204	225
	Minimum	35	57
Fett:	Maximum	283	309
	Minimum	34	11
Kohlehydrate:	Maximum	723	1328
	Minimum	181	290

Um bequem die Zusammensetzung eines Kostmasses aus Eiweiss, Fett und Kohlehydraten beurteilen zu können, Bidrag, H. 67, N:o 1. kann man nach *Rubner* den Anteil derselben an der Gesammtzufuhr von potentieller Energie prozentisch berechnen. Die Resultate einer solchen Berechnung der hier angeführten Kostmasse sind in folgender Tabelle eingetragen.

	Kalori	en in Pı	roz. aus
	Eiweiss	Fett	Kohle- hydraten
Handweber in Sachsen	10	17	73
Handweber in Sachsen Finnländischer Arbeiter auf d. Lande		17 23	58
: J Ct - Jt		25 33	52
		55 10	74
	16		61
	. 17	23	69
Italienischer Landarbeiter . , Holländischer Arbeiter	. 16	15	69
	. 12	19	53
Belgischer Arbeiter	. 14	31 34	54
3.5 1 11		3 4 36	56
"	. 14	90	30
Tigerstedt, Zusammenstellung ameri kanischer Kostmasse I	. 15	33	52
II	. 13	ээ 36	51
Ш	. 13	36	51
IV	. 14	34	52
V	. 11	36	53
VI	13	38	49
VII	. 11	39	50
d:o europäischer I	. 15	18	67
II	. 15	19	66
ш	. 16	25	59
IV	. 15	23	62
V	. 16	29	55
VI	16	20	64
VII	. 10	24	65
Voit's Norm f. mittlere Arbeit .	. 16	17	67
, f. schwere , .	17	26	57

Finska Vet. Soc.

Schon unter den hier angeführten wenigen Beispielen von Kostmassen begegnen wir grossen Differenzen.

In Bezug auf die prozentische Verteilung der gesamten Energiezufuhr ist Eiweiss mit Zahlen von 10—19 vertreten, das Fett zeigt noch grössere Differenzen, 10—45, und die Kohlehydrate 49—74.

Alle diese Kostmasse beziehen sich auf Individuen von im Grossen und Ganzen gleichen Raceeigenheiten. Als Beispiel der Nahrung anderer Völker seien folgende Angaben über die Nahrung von Ackerbauern in Japan 1) und die Nahrung ackerbautreibender Neger in Alabama, U. S. A. 2) angeführt.

	Eiweiss.	Fett.	Kohle- hydr.
	g	g	g
1) Ackerbauer, Japan	71	12	414
2) " Neger, Alabama	62	132	436
		in $^{0}/_{0}$	
1) Ackerbauer, Japan	14	5	. 80
2) " Neger, Alabama	8	37	55

Als Beispiel von grossen Fettmengen in der Kost sei die Nahrung von Holzfällern in Maine, U. S. A. 3) erwähnt, welche aus 182 g Eiweiss, 337 g Fett und 812 g Kohlehydraten bestand; das prozentische Verhältniss der Kalorien beträgt:

aus	Eiweiss			11	$^{0}/_{0}$
22	Fett .			45	"
**	Kohlehyd	ra	ten	44	29

¹⁾ U. S. Depart. of Agricult., Bull. 159.

 $^{^{2})}$ U. S. Depart. of Agricult., Bull. 38.

³) U. S. Depart of Agricult., Bull. 149.

Auch von den schwedischen Holzfällern werden grosse Mengen von Speck konsumiert (bis zu 523 g), so dass die Fettkalorien bis zu 58 Proz. der Gesammtzufuhr ausmachen können (*Tigerstedt* ¹).

Das grösste Interesse bei der Frage nach der Verteilung der Nahrung auf die verschiedenen Nahrungsstoffe ist natürlich dem Eiweiss gewidmet worden.

Durch eine Reihe Untersuchungen von Hirschfeld, ²) Kumagawa, ³) Klemperer, ⁴) Sivén, ⁵) Neumann, ⁶) Chittenden ⁷) u. a. hat sich gezeigt, dass der Körper mit einer bedeutend geringeren täglichen Stickstoffzufuhr als der von Voit erforderten im Stickstoffgleichgewicht bleiben kann, ja nach Chittenden würde er dabei nicht nur nicht an Kraft und Wohlbefinden verlieren, sondern sein Arbeitsvermögen nähme dabei sogar zu usw.

Des Vergleichs wegen habe ich diese Untersuchungen in eine Tabelle zusammengestellt, in der ich das Gewicht der Versuchspersonen, ihre Bruttozufuhr an Eiweiss, desgl. pro kg Körpergewicht, die Kalorienzufuhr pro kg Körpergewicht und schliesslich, ein wie grosser Teil der Gesamt-Kalorienzufuhr durch das Eiweiss geliefert wird, aufgenommen habe.

¹⁾ Tigerstedt, Hygiea, 62, 1900, 121.

²) Hirschfeld, Arch. f. pathol. Anat. 114, 1888. S. 301.

 $^{^{\}rm a})$ Kumagawa, Arch. f. pathol. Anat. 116, 1889, S. 370.

^{*)} Klemperer, Zeitschrift f. klin. Medizin, 16, 1889, S. 550.

⁵) Sivén, Skand. Arch. f. Physiol. 10, 1900, S. 116.

⁶⁾ Neumann, Arch. f. Hygiene, 45, 1902, S. 1.

⁷) Chittenden, Physiological economy in nutrition, London, 1905.

Ich teile diese Untersuchungen in drei Gruppen ein, nämlich 1) Untersuchungen an Europeern, welche höchstens 9 Tage lang fortgesetzt wurden; 2) Neumanns 10 Monate dauernde Untersuchungen und Chittenden's Versuche an sich selbst und 3 Assistenten (ich halte mich nur an die Versuche, welche 180 bis 258 Tage fortgesetzt wurden, und wo Stickstoffgleichgewicht nachgewiesen worden war); bei den unter 1) und 2) angeführten Versuchen ist keine eigentliche körperliche Arbeit verrichtet worden; 3) Chittenden's Versuche an 10 Soldaten aus der Armee der Vereinigten Staaten und an 4 Studenten, welche alle recht schwere körperliche Arbeit (Training) verrichteten, und welche während einer Zeit von 64 bis 166 Tagen beobachtet wurden (es wurden nur solche Versuche mitgerechnet, in denen N-Gleichgewicht nachgewiesen worden war).

Autor	Körper- gewicht	Ges. Eiweiss	Eiweiss pro kg	Kal. pro kg	Eiweiss Kal. in % d. Ges. Kal.	
						1
1) Untersuchun-	Mittel	63	45	0,73	54	7
gen von kurzer	Max.	73	55	1,15	89	9
Dauer	Min.	48	28	0,47	42	3
						1
2) Neumann,	Mittel	65	55	0,85	33	11
Chittenden, keine	Max.	72	69	1,03	35	12
körperl. Arbeit	Min.	58	37	0,64	27	9
						·
3) Chittenden,	Mittel	63	60	0,95	42	10
körperliche Ar-	Max.	74	73	1,13	48	11
beit	Min.	53	50	0,68	37	7

Aus der Tabelle ergibt sich, dass Personen, welche eine recht schwere Arbeit verrichteten, mit der Hälfte der Eiweissmenge auskamen, die *Voit* als Norm für einen mittleren Arbeiter vorgeschlagen hatte.

Tigerstedt, welcher die Frage nach dem geringsten Eiweissbedarf auf dem 14. Internationalen Kongress für Hygiene und Demographie referierte, 1) fasst sein Referat in folgende Schlusssätze zusammen:

- 1. "Der Mensch kann das Stickstoffgleichgewicht behaupten und völlig leistungsfähig bleiben, auch wenn die Menge des genossenen Eiweisses erheblich geringer ist, als die von *Voit* in seinem Normalkostmass für einen mittleren Arbeiter postulierte Menge".
- 2. "Daraus folgt aber nicht, dass es bei der Feststellung eines Kostmasses angezeigt wäre, die Eiweisszufuhr diesen Erfahrungen nach zu vermindern".
- 3. "Im allgemeinen lässt sich wohl sagen, dass die Kost, wenn sie die berechtigten Anforderungen an ihre Menge und Beschaffenheit sonst erfüllt, auch Eiweiss in genügender Menge enthält".

Bei derselben Gelegenheit äusserte sich Rubner²) über die praktischen Konsequenzen des Eiweissminimums folgendermassen:

"Wenn es sich um Vorschläge für eine Verköstigung von Berufsklassen handelt, so müssen wir doch in Betracht ziehen, dass wir unter keinen Umständen Minimalwerte fordern dürfen. Wäre die Kost auch noch so exakt für eine Berufsklasse ausstudiert worden, so müssen wir, glaube ich, doch bei Aufstellung eines Kostsatzes einen gewissen Spiel-

 $^{^{\}mbox{\tiny 1}})$ Tigerstedt,Bericht über den XIV. Internationalen Kongress für Hygiene und Demographie, Berlin 1907, II, S. 349.

²) Rubner, Volksernährungsfragen, Leipzig, 1908, S. 38.

raum für nicht vorauszusehende Möglichkeiten eines Mehrbedarfs lassen. Denn erstens ist bei Zumessung der Kost selbst nur auf den mittleren Gehalt der Speisen an Nahrungsstoffen Rücksicht genommen! Die Kost würde also, wenn, wie in der Praxis es unvermeidlich ist, auch die Minimalwerte des Gehalts an N sich finden, einen N-Verlust des Körpers herbeiführen, zweitens gibt es Fälle leichter Gesundheitsstörung, wie Diarrhöen u. dgl., wobei dann gleichfalls das N-Gleichgewicht benachteiligt werden kann. Wenn man auch weit niedrigere Eiweissmengen als 118 g täglich unter Umständen als ausreichend findet, so ist damit nicht gesagt, dass Personen, die in der Wahl ihrer Nahrungsmittel uneingeschränkt sind, gerade eine so günstige Zusammenstellung finden werden, um ein solches Minimum des Eiweissverbrauches zu erzielen".

Endlich ist auch der Umstand zu berücksichtigen, dass, wenigstens was die von mir untersuchten Verhältnisse betrifft, der berechnete Eiweissgehalt im Mittel um etwa 20%, grösser ist also der direkt bestimmte (vgl. oben S. 20).

Aus dem hier Ausgeführten geht hervor, dass der Mensch seinen Energiebedarf auf die verschiedenste Weise aus Eiweiss, Fett und Kohlehydraten füllen kann, und dass also der Spielraum für die Mengen, in denen diese Stoffe in der Kost enthalten sind, sehr gross ist. Diese Variationen scheinen nur zum Teil vom physiologischen Nahrungsbedarf bedingt zu sein; vielmehr stehen sie in einem nahen Zusammenhange mit der oekonomischen Stellung der Individuen: die weniger Bemittelten müssen ihre Nahrung mit Rücksicht auf die Preisbilligkeit anordnen, während die Wahlhabenderen, unabhängig von den Kosten, ihre Nahrung wesentlich nach den esslusterregenden Eigenschaften der Speisen wählen.

Bidrag, H, 67, N:o 1.

Was die stickstofffreien Nahrungsstoffe betrifft, so wirken diese beiden Faktoren in entgegengesetzter Richtung, der erstere ist bestrebt die billigen Kohlehydrate auf Kosten des teureren Fettes zu vermehren, der letztere die Kohlehydrate durch das wohlschmeckende Fett zu ersetzen.

Auf das Eiweiss wirken sie dagegen in gleicher Richtung, denn Fleisch, Milch und die billigen Vegetabilien enthalten grosse Mengen Eiweiss. Bei Deckung der von mir für einen erwachsenen Arbeiter gefundenen mittleren Energiezufuhr von 4000 Kal. mit Roggenbrot bekommt der Körper 124 g Eiweiss. Wenn der gesammte Nahrungsbedarf mit ganzer Milch gefüllt werden soll, wird eine Eiweissmenge von 195 g genossen werden, usw. Mit diesen Tatsachen vor Augen muss man wohl zugeben, dass die "Ernährungsökonomie" Chittenden's, 1) die er so ansprechend vertritt, und die "Ernährungsreform" Hindhede's, 2) welche er mit der Einseitigkeit des Entusiasten verficht, bis auf weiteres wenigstens für unsere ärmeren Volksklassen nicht als Vorbilder aufgestellt werden können.

Ich gehe jetzt auf die bei der vorliegenden Untersuchung gewonnenen Erfahrungen über.

In Tab. VIII sind für alle 88 Personen, deren Nahrung eine ganze Woche lang analytisch untersucht wurde, die zugeführten Mengen Eiweiss, Fett und Kohlehydrate sowohl in Gesamtmengen als berechnet pro kg Körpergewicht zusammengestellt.

¹⁾ l. c.

²) *Hindhede*, En reform af vor ernaering, Köpenhamn 1906 u. a.

Tabelle VIII.

Die Zufuhr von Eiweiss, Fett und Kohlehydraten. Reihe I.

Ve.	Ges	7	Kör	Tota	tle Z_1	ufuhr	Zuf Kör	uhr pr pergev	o kg vicht	
Versuchs- person	$\operatorname{Geschlecht}$	Alter	Körpergew.	Eiweiss g	Fett g	Kohle- hydrate g	Eiweiss g	Fett g	Kohle- hydrate	
I. Kinder 2 – 3 Jahren.										
53 103 78	Knabe Mädchen Mädchen	2 2 3	11 14 14	47 40 39	38 26 37	121 116 99	4,27 2,86 2,79	3,45 1,86 2,64	11,00 8,29 7,07	
		11.	Kir	ider 4	-5 J	ahren.				
13 18 102 48	Knabe Mädchen Mädchen Knabe	4 4 4 5	14 17 19 17	39 53 52 52	31 40 29 25	150 243 145 245	2,79 3,12 2,72 3,06	2,21 2,35 1,53 1,47	10,71 14,27 7,63 14,41	
		III.	Kir	nder 6	_7 J	ahren.				
69	Knabe	6 :	24	68	36	261	2,83	1,50	10,88	
77	Knabe	6	24	91	45	223	3,96	1,96	9,80	
16	Mädchen	6	19	55	38	248	2,90	2,00	13,05	
52	Mädchen	6	18	65	41	223	3,61	2,28	12,39	
58	Mädchen	6	14	61	74	184	4,36	5,29	13,14	
28.	Knabe	7	24	59	50	294	2,46	2,08	12,25	
101	Mädchen	7	29	61	37	216	2,10	1,28	7,45	
76	Mädchen	7	24	84	34	248	3,50	1,42	10,33	

Bidrag, H. 67, N:o 1.

Ve.	Ges		Kör	Total	e Zı	ufuhr	Zuf Kör	uhr pr pergev	o kg vicht
/crsuchs- person	(teschlecht	Alter	Körpergew.	Eiweiss 8	Fett	Kohle- hydrate g	Eiweiss g	Fett 8	Kohle- hydrate g
		IV.	Kir	nder 8-	9 J	ahren.			
17	Knabe	8	26	66	42	366	2,54	1,62	14,08
47	Knabe	8	22	74	30	341	3,36	1,36	15,50
38	Knabe	9	29	101	78	325	3,48	2,69	11,21
43	Knabe	9	25	95	63	372	3,80	2,52	14.88
65	Knabe	9	35	88	44	356	2,51	1,26	10,17
93	Knabe	9	25	49	28	232	1,96	1,12	9,28
74	Knabe	9	30	94	47	254	3,13	. 1,57	8,47
51	Mädchen	9	22	78 :	\overline{c}	308	3,55	2,05	14,00
75	Mädchen	9	33	81	43	. 255	2,45	1,30	7,73
		V.	Kind	ler 10—	-11	Jahren.			
8	Mädchen	10	24	70	49	268	2,92	2,04	11,17
12	Mädchen	10	21	54	42	236	2,57	2,00	11,24
23	Mädchen	10	30	44	39	356	1,47	1,30	11.87
100	Mädchen	10	34	68	42	245	2,00	1,24	7,21
37	Knabe	11	32	110	91	323	3,44	2,84	10,09
42	Knabe	11	31	132	71	532	$\frac{4}{1},26$	2,29	17,16
68	Mädchen	11	36	87	40	287	2,42	1,11	7,97
73	Mädchen	11	37	67	43	253	1,81	1,16	6,84
		VI.	Jüng	linge 1	2—1	7 Jahre	en.		
92	_	12	31	69	27	299	2,23	0,87	9,65
99		12	32	72	39	268	2,25	1,22	8,38
22	-	13	29	77	72	546	2,66	2,48	18,83
46	_	14	33	71	26	340	2,15	0,79	10,30
50	_	14	32	84	50	334	2,56	1,56	10,44
33		15	36	88	54	436	2,44	1,59	12,11
56		15	43	103	92	442	2,40	2,14	10,28
36		16	44	117	76	383	2,66	1,73	8,71
64	_	17	67	154	6±	710	2,30	0,96	10,60

Finska Vet. Soc.

Ver P	A	Kör	Tot	ale Zu	fuhr	Zufuhr	pro kg gewich	Körper- t
Versuchs- person	Körpergew. Alter		Eiweiss g	Fett	Kohle- hydrate	Eiweiss	Fett g	Kohle- hydrate g
		V	II. M	ädchen	12-17	Jahren.		
11	13	32	95	55	448	2,97	1,72	14,00
57	14	33	78	44	313	2,36	1,33	9,48
7	15	53	123		588	2,33	1,72	11,09
41	16	47	75		243	1,60	1,04	5,17
(98	16	62	83	52	279	1,34	0,84	4,50)
						_,,	-,	_,,
			VIII.	Erwacl	hsene M	änner.		
63	18	71	151	73	599	2,13	1,03	8,44
45	19	58	98	42	494	1,69	0,72	8,52
34	22	64	166	95	636	2,60	1,49	9,94
21	23	67	147	95	850	2,20	1,42	12,69
30	31	67	109	83	587	1,63	1,24	8,76
19	32	71	116	120	449	1,63	1,67	6,24
9	33	60	134	83	599	2,23	1,38	9,98
29	35	68	155	76	780	2,28	1,12	11,47
5	36	65	112	181	552	1,72	2,78	8,49
14	36	57	132	74	645	2,32	1,30	11,32
96	41	70	191	71	640	2,73	1,01	9,14
66	42	68	147	63	505	2,16	0,93	7,43
70	42	68	183	81	585	2,73	1,21	8,73
24	44	76	140	91	699	1,84	1,20	9,20
84	45	65	106	61	395	1,63	0,94	6,08
89	46	67	104	52	392	1,58	0,79	5,94
59	56	69	113	73	450	1,64	1,06	6,52

Bidrag, H. 67, N:o 1.

Vej p	+	Kör	Tot	ale Zu	fuhr	Zufuhr	pro kg l gewicht	Körper-		
Versuchs- person	Körpergew. Alter	Eiweiss	Fett g	Kohle- hydrate g	Eiweiss g	Fett g	Kohle- hydrate g			
IX. Erwachsene Frauen.										
(27	18	60	. 68	47	306	1,13	0,78	5,10)		
32	18	59	106	63	521	1,80	1,07	8,83		
(55	18	56	53	45	207	0,95	0,80	3,70)		
67	19	65	95	47	396	1,48	0,73	6,19		
72	19	64	131	56	418	2,02	0,86	6,43		
91	19	48	79	32	292	1,65	0,67	6,08		
26	20	70	74	59	378	1,06	0,84	5,40		
31	21	57	81	51	347	1,42	0,90	6,09		
35	21	50	111	68	427	2,22	1,36	8,54		
(44	24	59	69	32	301	1,17	0,54	5,11)		
62	24	65	80	37	351	1.23	0,57	5,40		
20	25	52	71	71	271	1,37	1,37	5,21		
61	25	63	77	47	380	1,22	0,75	6,03		
6	26	50	111	91	412	2,22	1,82	8,24		
10	32	53	92	71	537	1,74	1,34	10,13		
15	34	61	79	41	390	1,30	0,67	6,40		
71	35	66	123	52	333	1,86	0,79	5,05		
40	40	47	158	55	468	3,36	1,17	9,96		
(97	42	80	86	39	249	1,08	0.49	3,11)		
80	43	61	124	39	442	2,03	0,64	7,25		
(39	44	65	87	37	272	1,34	0,57	4,18)		
49	47	52	91	64	375	1,75	1,23	7,21		
25	49	63	66	50	339	1,05	0,80	5,38		
60	51	65	93	41	392	1,43	0,63	6,03		
(90	51	49	60	30	229	1,22	0,61	4,67)		

In der Tabelle IX sind die Durchschnittszahlen und die Grenzwerte für die verschiedenen Altersgruppen aufgenommen.

A. Durchschnittswerte.

	Altersgruppen				Zufuhr					
				im	ganz	zen	pro	kg Kö gewich	rper-	
N:o	Alter			Eiweiss g	Fett g	Kohle- hydrate g	Eiweiss g	Fett g	Kohle- hydrate g	
I	Kinder	2-3	J.	42	34	112	3,23	2,62	8,62	
II	29	4-5	22	49	31	196	2,88	1,82	11,53	
III	33	6 - 7	22	68	44	237	3,09	2,01	10,77	
IV	99	8-9	22	81	47	312	2,99	1,81	11,56	
V	22	10-11	"	79	52	313	2,55	1,68	10,10	
VΙ	Knaben	12 - 17	29	93	56	418	2,38	1,44	10,72	
VII	Mädchen	12 17	22	95	61	407	2,32	1,49	9,93	
VIII	Männer			136	83	580	2,03	1,24	8,79	
IX	Frauen			97	54	395	1,62	0,91	6,58	

B. Grenzwerte.

Alter	Zufu	ıhr im g	anzen	Pro kg Körpergewicht					
Altersgruppen	Fett 8 Eiweiss		Kohle- hydrate	Eiweiss 8	Fett	Kohle- hydrate			
I	39-47	26-38	99-121	2,79-4,27	1,86-3,85	7,07-11,00			
II	39 - 53	25 - 40	145—245	2,72-3,12	1,47-2,35	7,63-14,41			
III	55—91	34—74	184—294	2,10-4,36	1,28-5,29	7,45-13,14			
IV	49—101	2878	232—372	1,96-3,80	1,12-2,69	7,73—15,50			
V	44 —132	3991	236—532	1,47-4,26	1,11-2,84	6,84-17,16			
VI	69 - 154	26 - 92	268—710	2,15-2,66	0,87-2,48	8,38-18,83			
VII	75—123	44 - 91	243 - 588	1,34-2,97	0,84-2,97	4,50-14,00			
VIII	98—191	42 - 181	392—850	1,58-2,73	0,72-2,78	6,08-12,69			
IX	66—158	32-91	271—537	1,05-3,36	0,57-1,82	5,05-10,13			

Wie zu erwarten war, finden wir in allen Altersgruppen grosse Variationen in Bezug auf die Zufuhr der verschiedenen Nahrungsstoffe, wie sich am besten aus Tab. IX zu erkennen gibt. Dessen ungeachtet kann man gewisse Anhaltspunkte über die Art und Weise gewinnen, wie sich die Zufuhr der verschiedenen Nahrungsstoffe mit steigendem Alter vermehrt.

Vergleichen wir beispielsweise ein 2—3-jähriges Kind und einen erwachsenen Mann. Während das Fett nur auf etwas über das Doppelte gestiegen ist, haben das Eiweiss den 3-fachen und die Kohlehydrate nicht weniger als den 5-fachen Betrag erreicht. Gleichzeitig hat sich aber die Zufuhr pro kg Körpergewicht vermindert und zwar für das Eiweiss um ein Drittel, für das Fett um die Hälfte, während die Kohlehydrate für das 2—3-jährige Kind pro kg Körpergewicht berechnet fast genau ebensoviel wie beim

Finska Vet. Soc.

erwachsenen Manne betragen. Aus der Tabelle S. 86 ging hervor, dass die Kalorienzufuhr für einen erwachsenen Mann das Vierfache der Zufuhr eines 2—3-jährigen Kindes beträgt, während sie pro kg Körpergewicht berechnet bei jenem um ein Drittel abgenommen hat.

Um leichter einen Vergleich der Kostmasse der verschiedenen Altersgruppen unter einander sowie mit anderen Kostmassen zu ermöglichen, habe ich für sämtliche Gruppen ausgerechnet, ein wie grosser Teil der gesammten Energiezufuhr von jeder der drei Gruppen von Nahrungsstoffen gedeckt wird. Folgende Tabelle enthält die derart erhaltenen Mittelwerte wie auch die Maxima und Minima.

	Kalorien aus		
	Eiweiss 0/0	Fett °/ ₀	Kohle- hydraten %
	ſ		
Kinder 2—3 J Mittel	18	33	49
max.	19	38	54
, min.	18	27	44
Kinder 4—5 J Mittel	16	23	61
max.	20	27	68
min.	14	17	55
Kinder 6—7 J Mittel	17	25	58
max.	22	41	64
min.	13	19	44
Kinder 8—9 J Mittel	16	21	63
max.	21	29	71
min.	13	14	54
Kinder 10-11 J Mittel	16	23	61
max.	19	32	73
min.	9	18	51

Bidrag, H. 67, N:o 1.

		Ka	lorien a	us
		Eiweiss	Fett º/o	Kohle- hydraten
Jünglinge 12—17 J	Mittel	15	20	65
	max.	17	28	72
	min.	10	13	57
Mädchen 12—17 J	Mittel	15	23	62
	max.	17	26	67
	min.	13	19	57
Männer, leichtere Arbeit.	Mittel	15	21	64
	max.	18	33	72
	min.	12	14	53
Männer, schwerere Arbeit	Mittel	15	20	65
	max.	19	38	70
	min.	10	16	52
Frauen	Mittel	16	20	64
	max.	21	32	69
	min.	12	14	54

Die Eiweisskalorien betragen für alle untersuchte Individuen 9 bis 22 $^{0}/_{0}$; die Fettkalorien 13—41 $^{0}/_{0}$; die Kohlehydratkalorien 44 bis 72 $^{0}/_{0}$.

Für Männer wechseln die Prozentzahlen für Eiweiss zwischen 10 und 19, was mit den früheren Untersuchungen bei Männern genau übereinstimmt (vgl. S. 94). Auch für das Fett und die Kohlehydrate sind die Grenzwerte, bis auf einige Ausnahmen, die gleichen wie bei jenen Untersuchungen.

Die Durchschnittszahl für sämtliche Personen beträgt für das Eiweiss 16, für das Fett 21 und für die Kohlehydrate 63. Im Verhältniss zum Verbrennungswerte kommt somit in der Nahrung des Finnländers das Eiweiss im selben Verhältniss wie im Voit'schen Kostmasse vor. Die Proportionen für Fett und Kohlehydrate bilden das Mittel der Zahlen in Voits Normen für mittlere und für schwere Arbeit. In den beiden Gruppen: mittlere Arbeiter und Männer mit schwerer Arbeit, in die ich meine männlichen Versuchsindividuen eingeteilt hatte, ist die Fettzufuhr verhältnissmässig die gleiche, bei Männern mit schwerer Arbeit sogar etwas geringer (20 bis 21), während Voit's Norm für die ersteren 17 und für die letzteren 26 % Fett enthält.

In den verschiedenen Gruppen kommen in Betreff der Zusammensetzung der Nahrung nur sehr kleine Unterschiede zum Vorschein. Der Eineissgehalt beträgt für alle 15—16 %, ausser für Kinder von 2—3 Jahren (18) und von 6—7 Jahren (17). — Auch der prozentische Fettgehalt ist bei Kindern und Erwachsenen ziemlich gleich. Bei 2—3-jährigen beträgt er höchstens 33 %, bei Kindern von 4—5 Jahren ist er schon nur um 3 %, höher als bei Erwachsenen. Bei Kindern von 6—7 Jahren steigt er auf 25 %, sinkt dann aber wieder und beträgt für Erwachsene 20 %. — Kohlehydrate füllen bei der jüngsten Gruppe die Hälfte, bei den übrigen sechs Zehntel bis zwei Drittel des Kalorienbedarfs.

Um die Verteilung der Kost auf Eiweiss, Fett und Kohlehydrate noch weiter zu veranschaulichen, habe ich wie üblich 1) das Gewichtsverhältnis zwischen dem Eiweiss und den stickstofffreien Nahrungsstoffen und 2) zwischen Fett und Kohlehydraten berechnet.

Ich führe dieses Verhältnis für die verschiedenen Gruppen sowohl mit den Durchschnittszahlen als den Grenzwerten an.

Alters- gruppen	Eiwe N:freie		Fe Kohleh	
N:o	Grenzwerte	Mittelwerte	Grenzwerte	Mittelwerte
		1		
I	3,4-3,6	3,5	2,7— 4,5	3,3
II	3,3-5,2	4,6	4,8 - 9,8	6,3
III	3,0-5,8	4,1	2,5—7,3	5,4
$I\nabla$	3,2-7,3	4,1	4,2-11,4	6,6
∇	3,8-9,8	4,6	3,6- 9,1	6,0
VI	3,9 - 8,0	5,1	4,8—13,1	7,5
VII	3,9-5,5	4,9	5,0-8,1	6,7
VIII	3,6-6,4	4,9	3,1—11,7	7,0
IX	3,1-6,6	4,6	3,8—11,3	6,6

Nehmen wir Kinder von 2—3 Jahren aus, so ist die Durchschnittszahl für das Verhältnis zwischen dem Eiweiss und den stickstofffreien Stoffen 1:4,7 und zwischen Fett und Kohlehydraten 1:6,4. Die Abweichungen von diesen Mittelwerten sind für die verschiedenen Gruppen nicht gross. Dieselben Zahlen für die Voitsche Norm betragen resp. 1:4,7 und 1:8,9, die erstere ist also identisch mit unserer Zahl, die zweite fast um die Hälfte grösser.

V. Die Ausnutzung der Kost.

Um eine Untersuchung der menschlichen Nahrung zu einem so vollständigen Stoffwechselversuch zu erweitern, als es sich ohne die Anwendung einer Respirationskammer tun lässt, genügt es ausser der Nahrung den dieser entsprechenden Kot und Harn zu analysieren. Durch direkte Bestimmung des Energiewertes der Nahrung, des Kotes und

Finska Vet. Soc.

Harns und durch Abzug des Verbrennungswertes der beiden letzteren von dem der ersteren erhält man direkt die Energiemenge, welche dem Körper zu Gute gekommen ist.

Obgleich ich für 12 Versuche von je 3 Tagen sowohl Nahrung als Harn und Kot gesammelt, und für die beiden ersteren den Verbrennungswert direkt bestimmt hatte, so hielt ich dies betreffs des Harns für unnötig, da die Kalorimetrie des Harns noch recht unsicher ist. Ich versuchte daher durch Berechnung zu einer approximativen Vorstellung über den Verbrennungswert des Harns in meinen Versuchen zu gelangen und ging dabei folgendermassen zu Wege.

Nach einer grossen Menge von Untersuchungen von Rubner, Loeuy und Atwater (siehe Tigerstedt) entsprechen 1 g Stickstoff im Harn im Mittel 8,07 Kalorien (Grenzwerte 6,42 bzw. 9,46). Bei meinen Versuchen wurden in Form von N-Substanz durchschnittlich 16 Proz. der Gesammtkalorienzufuhr aufgenommen. In diesen wurde der Stickstoff mit einem Verlust von etwa 16 Proz. ausgenutzt. Der Verbrennungswert der resorbierten N-Substanz beträgt demnach 13,4 Proz. der Gesammtkalorien. Diesen entspricht 3,279 g N-Substanz oder 0,525 g N, was, durch die Nieren abgegeben, 8,07 \times 0,525 = 4,2 Kal. darstellt. Durch den Harn würden also etwa 4 Proz. der Kalorienzufuhr verloren gehen.

Es ist lange klar gewesen von welcher Bedeutung es ist, die Ausnutzung verschiedener Arten von Nahrung festzustellen. Die grösste Arbeit ist jedoch auf die Bestimmung der Ausnutzung verschiedener einzelner Nahrungsmittel verwendet worden. Obgleich die auf Grund dieser Untersuchungen veröffentlichten Zahlen für den prozentischen

¹) Tigerstedt, Nagels Handbuch d. Physiol. II, 2, S. 373. Bidrag, H. 67, N:o 1.

Verlust im Darme nicht als unbedingt richtig angesehen werden können, da der Kot keineswegs nur die Abfallstoffe der Nahrungsmittel darstellt, sondern noch gewisse Exkretionsprodukte aus dem Körper selbst enthält, so bieten sie doch wichtige Anhaltspunkte für den Vergleich zwischen verschiedenen Nahrungsmitteln dar.

Für die von meinen Versuchspersonen verzehrten Nahrungsmittel führe ich in folgender Tabelle einige Angaben über die Ausnutzung von Eiweiss, Fett und Kohlehydraten an.

Nahrungsmittel Se Weige	Fett º/o	Kohlchydr.	Autor
		1	
Rindfleisch, gekocht 97,7			Rubner
d:o 97,5			
Speck	87,3	-	Rubner
Fisch, gekocht 98,0	91,0		"
Milch, Mittel 92,9	94,7	100,0	27
Butter, Mittel aus 4 Versuchen —	92,6		27
d:o " 2 " —	96,5		Hultgren u.
			Landergren
d:o " 2 " —	92,9	_	Atwater
Eier	95,6		Rubner
Roggenbrot aus			
feinem Mehl 69,5	-	95,2	König
aus mittelfeinem Mehl 68,0		93,2	27
aus kleihaltigem Mehl 60,2		89,7	21
Kartoffeln 60,5			
Erbsen 82,5		96,4	

¹) Zusammengestellt aus *Rubner*, Handbuch der Ernährungs- therapie und Diätetik I, 1 S. 115, Leipzig 1897, *Tigerstedt*, Grundsatser för utspisningen, Stockholm 1891, und *König*, Chemie der menschl. Nahrungs- und Genussmittel. Berlin 1904, Teil. II.

Atwater stellt zum praktischen Gebrauch eine Tabelle zusammen, welche ich hier verkürzt wiedergebe: 1)

	Ausnu	tzung in l	Prozent
Nahrung	Eiweiss	Fett	Kohlehydr.
Anim. Nahrung	97	95	98
Getreidearten .	85	90	98
Hülsenfrüchte .	78	90	97
Zucker	_		98
Kartoffeln	83	90	95

Indem Atwater diese Zahlen für die in gemischter Kost enthaltenen Nahrungsmittel benutzte und gleichzeitig die Ausnutzung der gemischten Kost direkt bestimmte, erhielt er für 93 Kostsätze folgende Zahlen:

Analyse	Eiweiss	$93,_{3}$	$\mathbf{F}\mathbf{e}\mathbf{t}\mathbf{t}$	95,0	Kohlehydr.	97,7
Berechnung	27	93,6	22	94,5	27	97,7

Hieraus ergibt sich, dass die durch Berechnung erhaltenen Zahlen für die Ausnutzung gemischter Kost mit den durch direkte Analyse gewonnenen gut übereinstimmen. Bedingung ist jedoch, dass die Zahlen für die Ausnutzung sich auf die gerade benutzten Nahrungsmittel beziehen, was bei der Atwater'schen Zusammenstellung der Fall ist.

Bis jetzt fehlen alle Angaben über die Ausnutzung finnländischer Nahrungsmittel. Eine Berechnung nach den Zahlen in Tabelle S. 112 würde wahrscheinlich keine annehmbaren Resultate liefern, wovon ich mich direkt überzeugen

¹⁾ Report of Storrs agricult. exper. stat. 1899, S. 86.

konnte. Daher sind direkte Untersuchungen über die Ausnutzung gemischter Kost nicht ohne Interesse.

Untersuchungen über die Ausnutzung gemischter Kost sind teils für sich allein, teils in Verbindung mit Untersuchungen über frei gewählte Kost ausgeführt worden.

Cramer untersuchte die Ausnutzung der aus Milch, Eiern, Brot, Erbsen und Kartoffeln bestehenden Kost eines Vegetariers; 1) er fand für das Eiweiss eine Ausnutzung von 78,9 $^0/_0$, für das Fett 93,0 $^0/_0$, für die Kohlehydrate 95,1 und für die Kalorien (berechnete) 93,6 $^0/_0$.

Hultgren und Landergren²) untersuchten die Ausnutzung der Nahrung nach dem État der schwedischen Marine (2 Versuchspersonen), sowie einer fast nur aus trockener Speise bestehenden Kost (gesäuertem weichem Brote aus grobem Roggenmehle, gekochten Kartoffeln, gesalzenen Speckseiten, Häringen und Milch); das Ergebniss ist für Eiweiss resp. 80,4 und 75,3 %, für das Fett 81,1 und 81,1 %, für die Kohlehydrate 93,5 und 91,7 %, sowie für die Kalorien (berechnet) 93,5 und 91,7 %.

In einigen hierher gehörigen Untersuchungen bei frei gewählter Kost beschränkte man sich darauf, allein die Ausnutzung des Eiweisses festzustellen, indem man die N-Menge im Harn als Mass der resorbierten N-Menge auffasste. In dieser Weise fanden Hultgren und Landergren 3) den Eiweissverlust bei Bemittelten mit reichlicher animalischer Kost gleich 13 %, bei Arbeitern, die reichlich grobes Roggenbrot verzehrt hatten, gerade 3 Mal soviel, 39 %.

¹⁾ Cramer, Zeitschrift f. physiol. Chemie, 6, 1882, S. 346.

²) Hultgren und Landergren, Nord. med. Arkiv 22, 1890, N:o 17.

³) Hultgren und Landergren, Hygiea, 1889, N:o 11 und Untersuchung der Nahrung schwed, Arbeiter, S. 43.

Wie ersichtlich ruht diese Methode auf der Voraussetzung, das sich die Versuchspersonen im Stickstoffgleichgewicht befanden.

Albertoni und Novi bestimmten bei ihrer Untersuchung der Kost eines italienischen Ackerbauers, seiner Frau und seines Sohnes auch die Ausnutzung ihrer Nahrung. Mit Hultgrens Korrekturen betrug die Ausnutzung 1) durchschnittlich für die Sommerkost: Eiweiss 87,6, Fett 83,7, Kohlehydrate 97,2 und Kalorien 93,4; für die Winterkost: resp 81,0, 88,6, 94,1, 91,8. Die Kost bestand im Sommer aus Brot, Käse. Thunfisch und Melone, im Winter aus Polenta, Schweinefett, Suppe und Häring.

 $Manfredi^2$) untersuchte die Ausnutzung der Nahrung bei einer Anzahl neapolitanischer Arbeiter, deren Kost aus Brot, Suppe, Maccaroni, Fisch, Käse, Gemüse usw. bestand. Die Zahlen für die Ausnutzung waren: Eiweiss 81,4, Fett 87,6, Kohlehydrate 95,9 und Kalorien 92,7 $^{\circ}/_{0}$.

Slosse und $van\ de\ Weyer\ ^3)$ bestimmten bei ihren 33 belgischen Arbeitern gleichfalls die Ausnutzung der Nahrung und erhielten für

Mit diesen Zahlen stimmen die Resultate der hierher gehörigen amerikanischen Untersuchungen ziemlich gut

¹⁾ Hultgren, Archiv f. d. gesamt. Physiol. 60, 1895, S. 205.

²) Manfredi, Archiv f. Hygiene, 17, 1893, S. 552.

³⁾ Slosse und van de Weyer l. c.

überein. Bei 62 "Digestionsexperimenten" mit gemischter Kost erhielt man eine Ausnutzung")

des Eiweisses von 90,5 0/0 des Fettes , 95,2 , der Kohlehydrate , 97,5 , der Kalorien , 91,6 , ,

wobei jedoch auch der Kalorienwert des Harns abgezogen ist.

Rechnet man alle in Amerika ausgeführten Digestionsexperimente mit, so erhält man im Mittel für die Ausnutzung

des Eiweiss . . 92 $^{0}/_{0}$ des Fettes . . . 95 ,, der Kohlehydrate 97 ,, der Kalorien . . . 91 , (inklus. Harn).

Recht gut mit diesen Zahlen übereinstimmend sind die $K\ddot{v}nig$'s für die Ausnutzung einer animalische Nahrungsmittel reichlich enthaltenden Kost: 2)

Eiweiss . . . 91 $\frac{9}{0}$ Fett . . . 95 , Kohlehydrate . 97 ..

Für eine vegetabilische Nahrung und eine Kost mit einer mittleren Menge animalischer Stoffe gibt König an:

¹⁾ U. S. Departm. of Agricult., Bull. 175, S. 130.

 $^{^2)}$ $K\ddot{o}nig,$ Chemie d. menschl. Nahr. u. Genussm. Berlin 1904. Teil 2, S. 251.

	Eiweiss	Fett	Kohlehydr
	0/0	0/0	0/0
Vegetab. Kost .	78	86	93
Gemischte Kost	85	92	95

Stellen wie die Untersuchungen von Cramer, Hultgren und Landergren, Albertoni und Novi sowie Manfredi zusammen, wobei wir uns der Durchschnittszahlen ihrer Untersuchungen bedienen, so erhalten wir für die Ausnutzung der Arbeiterkost als Durchschnittszahle für:

Eiweiss	$80,6^{-0}/_{0}$
Fett	87,0 0/0
Kohlehydrate	$94,80/_{0}$
Kalorien	$91,6^{-0}/_{0}$

Falls der Kot wirklich nur Reste der Nahrung ausmachte, so würden die oben referierten Untersuchungen eine grosse Exaktheit besitzen. Ursprünglich stellte man sich die Sache so vor. Leider aber ist sie nicht so einfach.

Schon früh kam man dahinter, das der Körper auch im Hungerzustande Kot abgibt, welcher beträchtliche Mengen organischer Substanz enthält.¹) In einer Anzahl Untersuchungen bei Hunger betrug die Trockensubstanz des Kotes 2,00—3,82 g, der Stickstoff 0,11—0,32 und der Aetherextrakt 0,44—1,35 g pro Tag. In verschiedenen Untersuchungen bei fast ganz stickstofffreier Kost stieg¹ die N-Menge des Kotes bis auf 1,52 g. Bei fettfreier Nahrung konnte der Aetherextrakt bis 6,5 g betragen. Diese Mengen leiten sich offenbar von den verschiedenartigen Verdauungsflüssigkeiten sowie von abgestossenem Darmepithel her.

¹) Siehe Näheres *Tigerstedt*, Nagels Handbuch, S. 347. Bidrag, H. 67, N:o 1.

Diese Zuschüsse erhält der Kot natürlich auch bei gewöhnlicher Nahrung. Er besteht somit teils aus Produkten, die aus dem Körper selbst herstammen, teils aus Resten der Nahrung.

Mehrere, u. a. von $Stutzer^{\ 1}$) und $Pfeiffer^{\ 2}$) vorgeschlagene Methoden, die beiden Bestandteile des Kotes zu trennen, haben sich nicht im Stande gezeigt dies zu tun, und wir können nur im speziellen Falle, wenn der Stickstoff im Kot nicht mehr als etwa 1 bis 1 $^{1}/_{2}$ g beträgt, annehmen, dass er zum grössten Teil seinen Ursprung aus dem Körper selbst herleitet. Desgleichen kann der Aetherextrakt des Kotes, wenn er $6,_{5}$ g nicht übersteigt, gänzlich von den Verdauungsflüssigkeiten herrühren.

Meine eigenen Untersuchungen über die Ausnutzung der Nahrung in Finnland haben in Bezug auf die durchschnittliche Stickstoffbilanz folgende Resultate ergeben.

Dig ea	Versuchs-	S	Stickstoff	g	N-Bilanz g
Digest.	person	Nahrung	Kot	Harn	M-Dilanz g
1	10	15,6	3,8	10,5	+1,3
2	12	9,5	1,4	5,0	+ 3,1
3	15	13,1	3,1	11,8	-1,8
4	18	8,7	1,5	. 4,0	+3,2
5	26	14,×	1,7	13,1	± 0,0
6	27	12,4	1,2	11,8	0,6
7	94	9,1	1,0	9,3	0,9
8	95	12,9	1,3	12,5	- 0,9
9	44	9,2	1,3	7,9	±0,0
10	90	10,3	2.2	8,5	- 0.4
11	91	14.2	1,9	9,0	+3,3
12	97	15,7	2,3	16,1	-2,7

¹⁾ Stutzer, Zeitschr. f. physiol. Chemie, 10, 1886, S. 153.

 $^{^{2})\} Pfeiffer,$ Zeitschr. f. physiol. Chemie, 10, 1886, S. 170 u. 561.

Für so kurze Versuchsperioden wie die vorliegenden ist kein Stickstoffgleichgewicht zu erwarten, wenngleich die zur Anwendung gekommene Nahrung dieselbe war, an die die Versuchspersonen gewöhnt waren. Jedenfalls tritt Stickstoffgleichgewicht in den Versuchen 5 und 9 auf und in 4 anderen Fällen, Vers .6, 7. 8, 10, beträgt die N-Bilanz weniger als 1 g. Für zwei Kinder, Vers. 2 und 4, beträgt die Bilanz über +3 g, desgleichen im Vers. 11.

In Tabelle X sind die bei sämtlichen Digestionsexperimenten verzehrten Mengen der Nahrungsmittel aufgezählt.

Tabelle X.

In den Digestionsexperimenten verzehrte Nahrungsmittel in Gram. Reihe I.

Digest.	Versuchs- person	Nahrungsmittel (für drei Tage)
1	10	Fischsuppe 660, Häring 40, saure Milch 2150, Butter 180, Roggenbrot 2650, Piroggen (Art Pastete) 300, Brei aus Gerstengrütze 430, Kartoffeln 700, Kartoffelmus 540.
2	12	Fleischsuppe 360, Fischsuppe 500, Häring 40, saure Milch 3250, Butter 90, weiches Roggenbrot 880, Piroggen 110, Gerstenbrei 120, Kartoffeln 510, Kartoffelmus 150.
3	15	Specksauce 100, gesalzener Fisch 150, saure Milch 1320, Butter 65, weiches Roggenbrot 500, Gersten- brot 1000, Reis- und Mannabrei 310, Kartoffeln 810, gedämpfte Kartoffeln 660, Kartoffelmus 440, Erbsensuppe 550, roter Brei (Manna oder Roggen- mehl mit Preisselbeeren gemischt).

Bidrag, H. 67, N:o 1.

Digest.	Versuchs- person	Nahrungsmittel (für drei Tage)
4	18	Specksauce 60, gesalzener Fisch 15, saure Milch 1190, Butter 55, weiches Roggenbrot 760, Gersten- brot 210, Reisbrei 370, Kartoffeln 280, Kartoffeln
5	26	gedämpft 200, Kartoffelmus 480, Erbsensuppe 310. Specksauce 560, Fischsuppe 1110, gesalzener Fisch 90, saure Milch 2400, Butter 70, Roggenbrot (weiches) 1160, weiches Weizenbrot 25, Haferbrei 890, Kartoffeln 1150, Kartoffelmus 950.
6	27	Specksauce 440, Fischsuppe 790, gesalzener Fisch 65, saure Milch 1370, Butter 30, weiches Roggen- brot 1150, weiches Weizenbrot 25, Haferbrei 430. Kartoffeln 830, Kartoffelmus 630.
7	94	Gekochtes Fleisch 80, gekochte Quappe 290, gesalzene Strömlinge 15, abgerahmte Milch 1190, weiches Roggenbrot 490, Haferbrei 730, Gerstenbrei 380, Kartoffeln 410.
8	95	Gekochtes Fleisch 170, gekochte Quappe 100, abgerahmte Milch 2020, Butter 30, weiches Roggenbrot 170, weiches Weizenbrot 40, Haferbrei 1060, Gerstenbrei 250, Plinzen 70, Kartoffeln 1270.
9	44	Specksauce 80, Fleisch u. Kartoffeln gedämpft 220, saure Milch 1020, Butter 35, weiches Roggenbrot 1070, Gerstenbrei 850, Kartoffeln gedämpft 600.
10	90	Gekochtes Rindfleisch 52, Fleisch u. Kartoffeln gedämpft 265, gesalzener Strömling 15, abgerahmte Milch 1115, Quark 430, weiches Roggenbrot 355, weiches Weissbrot 35, Gerstenbrei 330, dicker Mannabrei 340, dünner Mannabrei 1490, Milchsauce 110, Kartoffeln 1145.
11	91	Gekochtes Rindfleisch 100, Fleisch u. Kartoffeln gedämpft 235, Strömling 55, abgerahmte Milch 1150, Quark 535, weiches Roggenbrot 500, trockenes

Digest. exp.	Versuchs- person	Nahrungsmittel (für drei Tage)
12	97	Roggenbrot 110, weiches Weizenbrot 35, Gerstenbrei 690, dicker Mannabrei 400, dünner Mannabrei 1230, Milchsauce 170, Kartoffeln 1680. Specksauce 105, Fleischsuppe mit Fleisch 1280, gebratener Fisch 275, ganze Milch 320, abgerahmte Milch
		1100, Butter 10, Eier 90, weiches Roggenbrot 380, Zwieback aus Weizenmehl 30, Roggenmehlbrei 625, Kartoffeln 540, Erbsensuppe 400.

In der folgenden Tabelle sind die Resultate der Digestionsversuche übersichtlich zusammengestellt.

Digest.	Versuchs- person Digest. exp.	Stickstoff g		Fett g in		Kohlehyd- rate g in		Kalorien in	
		Nah- rung	Kot	Nah- rung	Kot	Nah- rung	Kot	Nah- rung	Kot
1	10	15.0	9 ^	00.0	14.0	557.	99.	3688	378
1	10	15,6	3,8	80,2	14,2	557,9	23,8		
2	12	9,5	1,4	49,1	3,3	231,7	11,1	1732	143
3	15	13,1	3,1	45,5	5,4	436,3	37,8	2710	3 35
4	18	8,7	1,5	27,9	2,9	269,8	14.4	1705	146
5	26	14,8	1,7	79,5	4,4	419,6	11,4	3045	167
6	27	12,4	1,2	58,1	3,2	352,2	11,7	2460	129
7	94	9,4	1,0	39,4	4,5	177,7	9,9	1426	132
8	95	12,9	1,3	57,5	4,2	251,4	10,0	2002	132
9	44	9,2	1,3	20,6	3,3	263,2	11,0	1625	132
10	90	10,3	2,2	40,4	2,3	265,7	11,6	1826	158
11	91	14,2	1,9	35,3	2,5	351,7	13,6	2298	152
12	97	15,7	2,3	42,9	6,2	279,5	18,2	2114	233

Bidrag, H. 67, N:o 1.

Die tägliche N-Menge im Kote beträgt im Ganzen 1,0—3,8 g. In 6 Fällen ist der Kot-N kleiner als 1,5 g, weshalb wir annehmen können, dass er in diesen Fällen zum grössten Teil aus dem Körper selbst stammt. Für 4 Personen beträgt die N-Menge zwischen 1,7 und 2,3 g. In diesen Fällen stammt wohl ein Teil von der Nahrung, aber auch hier ist die Stickstoffsubstanz ziemlich gut ausgenutzt worden. Nur in 2 Fällen übersteigt die Stickstoffmenge im Kot 3 g. Die betreffenden Individuen (N:o 10 und 15) genossen eine Kost, die zum grossen Teil aus groben Vegetabilien bestand. N:o 10 verzehrte 2650 g Roggenbrot und N:o 15 ausser 500 g Roggenbrot noch 1000 g kleiehaltiges Gerstenbrot.

Der Aetherextrakt variiert zwischen 2,3 und 14,2 g. In 11 Fällen betragen die Grenzwerte 2,3 und 6,2 g, sind also nicht grösser als die Menge, die bei fettfreier Kost im Kote anzutreffen ist, und müssen sich somit zum grössten Teil aus dem Körper selbst herleiten. N:o 10 mit 14,2 g Fett im Kot genoss durschschnittlich 60 g Butter im Tage.

Die Menge der Kohlehydrate beläuft sich in 9 Fällen auf 9,9 bis 14,4 g; in einem Falle betrug sie 18,2 g. Für die Personen 10 und 15, welche, wie erwähnt, grosse Quantitäten Brot genossen, betrugen die "Kohlehydrate" im Kot 23,8 resp, 37,8 g und bestanden zum grössten Teil aus Zellulose, die ich nicht besonders bestimmte.

Die Gesamtmenge *Kalorien* in dem Tageskot beträgt in 9 Fällen 129—167, in den übrigen Fällen 233 bis 378.

Die folgende Tabelle enthält Angaben über die prozentische Ausnutzung der Trockensubstanz, des Stickstoffs, des Fettes, der Kohlehydrate, der Asche und der Kalorien.

Versuchsperson Digest. exp.	Versu	Prozentische Ausnutzung							
	chsperson	Trocken- substanz	Stick- stoff	Fett	Kohle- hydrate	Asche	Kalorien		
1	10	90,8	* 75,6	82,3	95,7	78,5	89,8		
2	12	92,4	85,0	93,3	95,2	83,9	91.7		
3	15	87,8	76,2	88,1	91,3	70,5	87,6		
4	18	91,6	82,6	89,6	94,7	80,2	91,4		
5	26	94,8	88,5	94,5	97,3	85,2	94,5		
6	27	94,8	90,6	94,5	96,7	88,1	94,8		
7	94	91,2	88,9	88,6	94,1	76,2	90,7		
8	95	92,9	89,6	92,7	96,0	72,0	93,4		
9	44	92,9	86,0	84,0	95,8	83,5	91,9		
10	90	90,5	78,6	94,3	95,6	68,8	91,3		
11	91	93,4	86,5	92,9	96,1	85,1	93,4		
12	97	89,3	85,1	85,6	93,5	70,1	89,0		
Mi	ttel	91,9	84,4	90,0	95,2	78,6	91,6		

Die Ausnutzung der *Trockensubstanz* schwankt zwischen 87,8 und 94,8 und beträgt im Mittel 91,9 %.

Die Ausnutzung des Stickstoffs wechselt zwischen 75,6 und $90,6^{\circ}/_{0}$, die Durchschnittszahl ist $84,4^{\circ}/_{0}$. Das geringste Prozent findet sich in den Experimenten 1 und 3, resp. 75,6 und $76,2^{\circ}/_{0}$. Diese Zahlen stimmen recht gut mit den Werten überein, die Tigerstedt 1) bei der Berechnung einer Kost, wo das Eiweiss hauptsächlich aus Vegetabilien entstammt, zur Anwendung empfiehlt. Die Durchschnittszahl $84^{\circ}/_{0}$ stimmt recht gut mit der von uns früher angeführten Durchschnittszahl der Untersuchungen über die Ausnutzung des Eiweisses in der Arbeiterkost überein $(81^{\circ}/_{0})$. Desgleichen fällt sie mit Königs Durchschnittszahl für eine

 $^{^{\}mbox{\tiny 1}})$ $\it Tigerstedt,$ <code>Otspisningen</code> usw. S. 47.

Bidrag, H. 67, N:o 1.

Kost mit mässigen Mengen animalischen Eiweisses (85 $^{0}/_{0}$) zusammen.

Weit günstiger gestaltet sich die Ausnutzung des Eiweisses bei den amerikanischen Untersuchungen (92%). Bei diesen war die Kost zum grösseren Teile animalischen Ursprungs, und die vegetabilischen Nahrungsmittel im allgemeinen leichter resorbierbar, so z. B. Weizenbrot im Gegensatz zu Roggenbrot. Eine Vorstellung über die vollständigere Ausnutzung des animalischen Eiweisses bietet die folgende Tabelle, wo die Digestionsexperimente nach dem Prozent des animalischen Eiweisses vom Gesammteiweiss geordnet sind.

Digest. experimente	- wei	imal. Hess in Prent von taleiwe	ro-	N-Verlust im Kot in Prozent
4	1	28	- Land	17,4
1	i	33	i	24,4
3	1 -	33	1	23,8
9		40	1	16,0
5		48		11,5
6		49	1	9,4
11		56		13,5
8		59		10,4
2		64		15,0
10	-	64		21,4
7	.	64		11,1
12	-	7.7		14,9

Überall wo das animalische Eiweiss $40\,^{\circ}/_{\circ}$ oder weniger des Gesamteiweisses ausmacht, ist die prozentische Ausnutzung geringer als die Durchschnittszahl. Eine Ausnutzung von mehr wie $84,4\,^{\circ}/_{\circ}$ findet sich in allen Fällen, wo

Finska Vet. Soc.

das animalische Eiweiss 48—77 % beträgt. Nur Versuch 10, wo die Ausnutzung des Eiweisses trotz des grossen Reichtums an animalischen Nahrungsmitteln schlecht war. bildet eine Ausnahme.

Die Ausnutzung des Fettes wechselt zwischen 82,3 und $94,5\,^{\circ}/_{\circ}$ und beträgt im Mittel $90,0\,^{\circ}/_{\circ}$. Positive und negative Abweichungen verteilen sich ziemlich gleichmässig um die Durchschnittszahl. Diese liegt mitten zwischen den von König für eine entsprechende Kost angegebenen Zahlen $(92\,^{\circ}/_{\circ})$ und der Zahl, welche sich aus der Zusammenstellung verschiedener Arbeiterkostmasse als Mittel für die Ausnutzung des Fettes $(87\,^{\circ}/_{\circ})$ ergibt. In den amerikanischen Kostmassen wurde auch das Fett besser ausgenutzt.

Die Kohlehydrate wurden zu 91,3 bis 97,3, durchschnittlich zu 95,2 % ausgenutzt. Es ist dies ganz dieselbe Zahl, die König angibt (95 %), und die, welche als Mittel für eine Anzahl Arbeiterkostmasse erhalten wurde (94,8 %). Wie für das Eiweiss und Fett, so finden wir auch für die Kohlehydrate in den amerikanischen Untersuchungen eine wesentlich vollständigere Ausnutzung.

Die Aschebestandteile werden in der finnländischen Kost zu 68,8 bis 88,1, durchschnittlich zu 78,6 % ausgenutzt. In den amerikanischen Digestionsversuchen ist die entsprechende Zahl 70,4. Eine grössere Bedeutung dürfte jedoch diesen Zahlen nicht zuzumessen sein, infolge der vielen Nebenumstände, die hier einwirken.

Die potentielle Energie kommt nach Abzug des Verbrennungswertes des Kotes dem Körper zu 87,6 bis 94,8, im Mittel zu 91,6 % zu gute. Die Durchschnittszahl stimmt völlig mit der Prozentzahl überein, welche wir als Mittel unserer Zusammenstellung auf S. 117 erhielten (91,6). sowie mit den die Ausnutzung der Energie betreffenden Resul-Bidrag, H. 67, N:0 1.

taten Rubners (91,9 $^{0}/_{0}$). 1) Nur in zwei Experimenten wird die Zahl (90 $^{0}/_{0}$) überschritten, die Tigerstedt, als die Ausnutzung der potentiellen Energie $^{\circ}$ bezeichnend, vorschlägt.

Nach *Tigerstedt* stimmt der Verlust an Trockensubstanz im Kot mit dem an potentiellen Energie ziemlich nahe überein. Dies wird auch durch meine Beobachtungen (vgl. Tabelle Seite 123) bestätigt: durchschnittlich beträgt hier die Ausnutzung der Trockensubstanz 91,9 und die der potentiellen Energie 91,6 %.

Addieren wir zur Energiemenge, welche in den Kot verloren geht, die, welche der Körper im Harn verlässt (4,2), so erhalten wir $12,6^{-0}/_{0}$. Die finnländische Kost, soweit sie von mir untersucht worden ist, verliert somit im Harn und Kote durchschnittlich ein Achtel der direkt kalorimetrisch bestimmten potentiellen Energie. Die "availability" der Energie in den amerikanischen Untersuchungen wurde gleich $91,6^{-0}/_{0}$ gefunden. Die finnländische Kost verliert somit auf den genannten Wegen um die Hälfte mehr Energie als die amerikanische.

VI. Zufuhr von Nahrungsstoffen und potentieller Energie nach den eigenen Angaben der Familien in der Reihe II.

Den Resultaten der Berechnung, welcher ich die Angaben unterwarf, die von 80 Familien aus verschiedenen Teilen des Landes über die im Laufe einer Woche verbrauchten Nahrungsmittel eingesandt waren, haftet eine aus verschiedenen Ursachen bedingte Unsicherkeit an.

1. Wenn man genötigt ist, sich an ein Material zu

¹⁾ Rubner, Zeitschrift f. Biologie 21, 1885, S. 379.

halten, das von unbekannten Personen herrührt, so muss man in Betracht ziehen, dass dieses in einigen Fällen nicht mit der wünschenswerten Genauigkeit gesammelt ist, und in gewissen Fällen ist man, wegen offenbarer Unrichtigkeiten, geradezu gezwungen, eine Untersuchung auszuschliessen. Dies brauchte indessen nur in einigen wenigen Fällen zu geschehen und wenn keine deutlichen Fehler vorhanden waren, wurden die eingesandten Angaben mit in Rechnung gezogen.

Ein interessantes Beispiel bietet eine Untersuchung der Kost bei einem Teil der Bevölkerung Chicagos dar. 1) Durch besonders geschulte Personen ("investigators") wurden die Ernährungsverhältnisse in 25 Familien sehr sorgfältig untersucht. Von 28 anderen Familien, deren Lebensverhältnisse mit denen der ersteren übereinstimmten, wurden von den Familien selbst Angaben erhalten, wie solche auch mir zu Gebote standen. Es erwies sich, dass während die ersteren pro Mann und Tag 116 g Eiweiss und 3160 Kalorien zu einem Preise von 17,9 Cents konsumiert hatten, die letzteren für 22,1 Cent 147 g Eiweiss und 3550 Kalorien erhalten hatten. — Die durch Fragebogen erhaltenen Kostmasse überstiegen somit die direkt untersuchten, das Eiweiss um 27 %, die Kalorien um 12 % und der Preis um 24 %.

2. Durch Familienenquêten erhält man Kenntnis über die in einer gewissen Zeit verzehrten Mengen von Rohwaaren. In einem Haushalt har man jedoch mit einer grösseren oder geringeren Menge von Abfällen aus der Küche oder vom Tische zu rechnen. Um die wirklich verzehrte Kost kennen zu lernen, muss man daher von den in den Rohwaaren enthaltenen Nahrungsstoffen, resp. von der in ihnen repräsentirten potentiellen Energie die organische Substanz und den Kalorienwert abziehen, welche in diesen

U. S. Departm. of Agricult., Bull. 129, S. 97.
 Bidrag, H. 67, N:o 1.

Abfällen enthalten sind. Die meisten amerikanischen Untersuchungen haben den Abfall berücksichtigt, 1) wie auch *Jordan* dies bei seinen diesbezüglichen Untersuchungen in Deutschland gemacht hat. 2)

In der folgenden Tabelle sind die Resultate dieser Untersuchungen in Bezug auf Eiweiss, Fett, Kohlehydrate und Kalorien zusammengestellt.

Ort	Verlust an					
	Eiweiss.	Fett.	Kohlehydr.	Kal.		
Amerika.	0/0	0/0	o / ₀	n / ₀		
Mittel f. 18 Studenten-						
clubs	$16,_{2}$	17,4	9,9	13,8		
Mittel f. besser situierte						
Familien	2.4	4,0	0,9	2.2		
Mittel f. 24 Arbeiterfa-						
milien	6,0	6,3	$_{4,2}$	$_{5,2}$		
Deutschland.						
Studentenclubs, gewöhn-						
liche Kost	21,4	_	_	19,8		

Für die Studentenclubs sind die Zahlen sehr gross, bis ein Fünftel der Rohwaaren betragend. Für ein Studentenclub in Finnland fand ich allein in Tischabfällen einen Verlust von $3,4\,^0/_0$ der Gesamtkalorien. 3) Familienhaushaltungen verstehen es besser essbare Abfälle nutzbar zu machen, bei ihnen ist daher der Verlust verhältnissmässig gering. In allen angeführten Fällen finden wir, dass sich die verschiedenen Nahrungsstoffe in verschiedener Menge

¹⁾ U. S. Departm. of Agricult., Bull. 32, 35, 53, 91.

²) Ref. nach Rubner, Volksernährungsfragen, 1908, S. 72.

³) Sundström, Skand. Arch. f. Physiol. 19, 1906, S. 82.

beim Abfall beteiligen: am meisten das Fett, hierauf das Eiweiss, am wenigsten die Kohlehydrate.

Je knapper die Lebensbedingungen einer Familie sind, um so kleiner, sollte man glauben, müssten die Abfälle werden. Dies wird jedoch durch die grössere Fähigkeit der gebildeten Hausfrau, ihren Haushalt nach vernüftigen Prinzipien einzurichten, zum Teil aufgewogen, und selbst bei ganz armen Leuten lässt sich ein beträchtlicher Verlust von nährenden Bestandteilen der Kost nachweisen. So betrug z. B. bei einer armen Farmerfamilie der Verlust an Energie $1,3^{\,0}/_{0}$. $^{\,1}$)

Aus natürlichen Gründen konnte eine Feststellung des Abfalles bei meinen Enquêtefamilien nicht in Frage kommen. Infolgedessen sind meine Zahlen als etwas zu gross zu bezeichnen.

- 3. Da bei der Berechnung der Zufuhr von Eiweiss, Fett und Kohlehydraten bei den Enquêtefamilien die gewöhnlichen analytischen Durchschnittszahlen zur Anwendung kamen, so werden wahrscheinlich die berechneten Mengen für Eiweiss, Kohlehydrate und Kalorien grösser, für das Fett kleiner als sie tatsächlich betragen haben (vgl. oben S. 18).
- 4. Sämtliche Enquêteuntersuchungen betreffen Familien, die aus Personen verschiedenen Alters und Geschlechts bestehen. Wenn man sich nur auf Angaben beschränkt, die sich auf ganze Familien beziehen, so wird die systematische Behandlung und der Vergleich zwischen verschiedenen Familien in vielerlei Hinsicht fast unmöglich. Wenngleich sich auch aus einer Aufzählung der in einer Familie in einer gewissen Zeit verbrauchten Mengen von

¹) U. S. Departm. of Agricult., Bull. 54.

Eiweiss, Fett und Kohlehydraten wichtige Schlüsse in Bezug auf die Verteilung der gesamten Kraftzufuhr auf diese Stoffe ziehen lassen, ist es doch nicht möglich, irgend welchen Schluss in Bezug auf die Grösse der absoluten Kraftzufuhr zu ziehen, und man muss also versuchen, aus den gewonnenen Zahlen die Nahrungszufuhr bei einem einzelnen Individuum, in der Regel bei einem erwachsenen Manne zu berechnen.

Wenn ich auch völlig davon überzeugt bin, dass hierdurch andererseits ein gewisser Grad von Willkürlichkeit eingeführt wird, so glaube ich jedoch diese Methode bei der Berechnung der Resultate meiner Enquête anwenden zu müssen, und finde in dieser Hinsicht eine gute Stütze bei den entsprechenden amerikanischen Untersuchungen, welche grösstenteils in derselben Weise berechnet worden sind.

Bei seinen Berechnungen über die Kost einiger sächsischen Arbeiterfamilien verfuhr Meinert 1) etwa folgendermassen. Erwachsene Personen rechnet er teils jede für sich, teils zwei und zwei zusammen. Für Kinder verschiedenen Alters rechnet er den halben Verbrauch einer erwachsenen Person, in einem Fall jedoch werden die Kinder, da sie "aussergewöhnlich starke Esser" waren, als Erwachsene gerechnet und in einem anderen Falle 5 Kinder als 2 Erwachsene. Dass bei einer solchen Berechnungsart die Willkür eine viel zu grosse Rolle spielt, dürfte ohne weiteres klar sein.

Um Reduktionsfaktoren für Frauen und Kinder zu erhalten geht v: Rechenberg 2) teils von dem durch ihn be-

¹⁾ Meinert, Armee- und Volksernährung. Berlin 1880, Bd. II.

²) v. Rechenberg, Die Ernährung der Handweber in der Amtshauptmannschaft Zittau. Leipzig 1889, S. 22.

stimmten Körpergewicht aus, teils von einer Zahl Bestimmungen über das Verhältnis zwischen dem Verbrauch bei Kindern verschiedenen Alters und dem eines mittleren Arbeiters. Für Frauen berechnet er den Verbrauch im Verhältniss zum Manne als proportionell dem Körpergewicht, für Kinder nimmt er an, dass schlecht genährte Kinder im Verhältnis zu gut genährten ebenso viel verbrauchen wie schlecht genährte Erwachsene im Verhältnis zu gut genährten.

Diese Berechnungsart kann im speziellen Falle gute Dienste leisten, wenn tatsächlich sämtliche Personen, auch die Kinder, mit der gleichen Arbeit beschäftigt waren. In Fällen, wo es sich um verschiedenartige Beschäftigungen handelt, würde diese Berechnungsart gänzlich irre führen.

König 1) schlägt, ohne die Art der Berechnung anzugeben, Kostmasse für verschiedene Alter vor, welche, auf den Kostsatz eines erwachsenen Mannes bezogen, folgenden Verhältnisszahlen entsprechen:

Kinder unter 1 Jahr	2
	_
von 2—5 Jahren	4
6 -8 "	5
8—16 "	6
16—18 "	8
Frauen	8
erwachsener Mann	10

Atwater hat für die amerikanischen Untersuchungen folgende Zahlen zur Anwendung aufgestellt:

¹) König, Prozentuale Zusammensetzung der menschl. Nahrungsmittel. Berlin 1906, S. 6.

Bidrag, H. 67, N:o 1.

erwa	chser	er	Mann	•			10
erwa	chser	ie :	Frau .				8
Knab	e v	on	14 - 17	Ja	hre	en	8
Mäde	hen	22	14 - 17		22		7
Kind		27	10-13		22		6
"		"	6 - 9		,,		õ
"		"	2 - 5		,,		4
,,	unter	r	2 Jah	ren			3

An Stelle der 5 ersten Glieder in dieser Zusammenstellung hat Atwater später angegeben: 1)

Man "hard work"	12
man "moderately work"	10
man "light work",	
boy 15—16 y	9
man "sedentary occupation",	
woman "active work",	
boy 13—14 y.,	
girl 15—16 y	8
woman "light work",	
boy 12 y.,	
girl 13—14 y.,	7
boy 10—11 y.,	
girl 10—12 y	6

Um eine konventionelle Massenheit für den Nahrungsbedarf bei Individuen verschiedenen Alters zu bekommen. ist Engel²) vom Nahrungsbedarf des neugeborenen Kindes ausgegangen. Dieser sei gleich der Einheit und für jedes

¹⁾ Atwater, Report of Storrs agricult. stat., 1902—03, S. 131.

 $^{^{2})\ \}mathit{Engel},\ \mathrm{Die}\ \mathrm{Lebenskosten}$ belgischer Arbeiterfamilien. Dresden 1895.

Lebensjahr wäre zu dieser ein Zehntel hinzuzufügen, für Frauen bis zum beendeten 20. Jahr, für Männer bis zum 25. Jahr. Die Einheit nannte *Engel* Quet (zum Andenken an *Quetelet*). Ein neugeborenes Kind wäre = 1 Quet, ein Kind von 10 Jahren also 2 Quet, eine erwachsene Frau 3 Quet, ein erwachsener Mann 3,5 Quet.

Obgleich sich mit Fug fragen lässt, ob nicht eine Einheit wie die Engel'sche selbst für rein ökonomische Untersuchungen gar zu willkürlich ist, so hat sie doch auch bei Untersuchungen von frei gewählter Kost, welche den Zweck hatten physiologische Fragen zu beantworten, Eingang gefunden. So hat Lichtenfelt bei seinen Berechnungen der Nahrung von Italienern Frauen und Kinder auf Quet 1) reduziert. In seinem Lehrbuch der Hygiene erwähnt Flügge²) nur die Engel'sche Methode und sagt: "diese Berechnung harmoniert annähernd mit neueren, auf der festgestellten Kalorienproduktion der verschiedenen Lebensalter aufgebauten Zahlen". Dies ist jedoch nicht ganz exakt, denn wie Rubner betont, 3) beträgt der Kalorienbedarf des neugeborenen Kindes 280 Kal., während ein mittlerer Arbeiter 2800 Kal. bedarf, somit ein Verhältniss von 1:10 anstatt 1:3.5.

Diese Arten, Familien von verschiedener Zusammensetzung auf dieselbe Einheit zu reduzieren, sind teils für Verhältnisse aufgestellt, die zu weit von den von mir untersuchten abweichen, teils zu sehr auf willkürlichen Annahmen basiert, um als Grundlage für eine Berechnung der von den Enquêtefamilien genossenen Kost dienen zu können.

¹⁾ Lichtenfelt, Arch. f. d. ges. Physiol. 99, 1903.

²) Flügge, Grundriss der Hygiene, Leipzig 1908, S. 171.

³) Rubner, Volksernährungsfragen, Leipzig 1908, S. 77.

Bidrag, H. 67, N:o 1.

Da ich indessen in der Reihe I eine Paralleluntersuchung einzelner Personen besitze, die allerdings von geringem Umfang ist, sich aber völlig auf dieselben Verhältnisse bezieht wie die Enquête, so halte ich mich für berechtigt, zu diesem Zwecke eigene Verhältnisszahlen aufzustellen, im vollen Bewusstsein, dass dieselben sich ausschliesslich auf den speziellen Fall beziehen.

In Bezug auf das Verhältnis zwischen der Nahrungszufuhr von Frauen und Männern werden (siehe S. 75) folgende Verhältnisszahlen angeführt:

Russische Fal	oriksarb	eit	er					7 8:	100
" Ba	uern .			4				80:	100
Italienische B	auern							81:	100
Atwater's Zah	len .							80:	100
Finnländische	Ackerb	au	er					72:	100
27	Arbeite	er	(in	d.	St	ad	t)	71:	100
,,	Landbe	γö	lke	run	g,			68:	100

Auf Grund der aus den finnländischen Untersuchungen geholten Verhältniszahlen nehme ich an, dass die Nahrungszufuhr einer Frau 0,7 von der des Mannes beträgt.

Für Personen männlichen Geschlechts nehme ich mit *Atwater* volle 18 Jahr als Grenze zwischen dem Knabenund dem Mannesalter an.

Für Personen weiblichen Geschlechts hat Atwater in seiner späteren Tabelle die Grenze auf 15 Jahre herabgesetzt. Auch bei der von mir untersuchten finnländischen Landbevölkerung kann das Alter von 13—15 Jahren als Grenze betrachtet werden, wo die Mädchen antangen, an den den Frauen zukommenden Arbeiten ausser dem Hause

teilzunehmen (z. B. N:o 7 und 11), nachdem sie schon mit 12 Jahren einen grossen Teil des Haushalts besorgen, mit anderen Worten, die Beschäftigungen ausführen, die den meisten Frauen dieser Klasse eigen sind. Für ruhende Personen weiblichen Geschlechts haben Sondén und Tigerstedt von 11 Jahren an eine Kohlensäureproduktion gefunden, die nur unbedeutend von der der erwachsenen Frau abweicht. 1) Ich habe das Alter von 12 Jahren als Grenze aufgestellt. Mädchen über 12 Jahre haben also eine Zufuhr. entsprechend 0,7 vom Nahrungsbedarf des Mannes.

Um Verhältniszahlen für Kinder verschiedenen Alters zu erhalten, stellte ich folgende Tabelle auf, die nach der Tabelle S. 86 berechnet ist. Im Verhältnis zur Zufuhr eines erwachsenen Mannes geniessen:

Kinder	ν.	2-3	J.,	Mittel	eben	${\it erreichte}$	3	J.	26:	100
"		45	"	27	77	22	5	99	35:	100
"		6 - 7	"	22	77	27	7	22	45:	100
22		89	22	99	99	22	9	77	55:	100
"		10 - 11	95	22	27	22	11	27	57:	100
Knaben	v.	12 - 17	"	"	77	22	15	22	70:	100

Für Kinder unter 10 Jahren habe ich für die hier nicht aufgenommenen Altersklassen die Verhältniszahlen durch graphische Interpolation erhalten, wie aus folgender Zusammenstellung ersichtlich ist:

¹) Sondén und Tigerstedt, Skand. Arch. f. Physiol. 6, 1895, S. 100.

N	Neugeborenes Kind								
1	Jahr.					1,5			
2	Jahre					2,0			
3	"					2,5			
4	27	ě		•		3,0			
õ	27					3,5			
6	"					4,0			
7	22			•		4,5			
8	22	•			•	5,0			
9	27					5,5			
10	"					6,0			

Für Kinder über 10 Jahre ist mein Material allzu klein und zu variierend, um zur Aufstellung von Verhältniszahlen dienen zu können. Ich entlehne für diese hauptsächlich die Verhältniszahlen *Atwater*'s; die Fortsetzung der Tabelle wird somit:

11	Jahre								6,5
12	77	u	nd	er	w.	Fr	aue	en	7,0
13	27								7,5
14	,,								8,0
15	"				•				8,5
16	"								9,0
17	77						٠		9,5
18	. ,,	u	nd	erv	W.	Μä	nn	er	10,0

Völlig wissenschaftlich begründete Verhältniszahlen dürften sich mit dem vorhandenen Materiale nicht aufstellen lassen. Unter solchen Umständen müssen sie so handlich als möglich gemacht worden. Diesen Vorzug besitzen die Atwater'schen Zahlen. Ich konnte indessen, wegen der

mit meinen direkten Untersuchungen unvereinbaren Werte für die Nahrungszufuhr bei Frauen und bei Kindern unter 10 Jahren, von ihnen keinen ausgedehnteren Gebrauch machen, und habe also eigene Verhältniszahlen berechnen müssen. Diese lassen sich kurz durch folgende Formel ausdrücken:

$$\frac{\text{Alter}}{2} + 1$$
; für Männer Altersmax. 18 für Frauen " 12

Beispiel für 9 Jahre:

$$\frac{9}{2} + 1 = 5,5$$

Übrigens ergeben die verschiedenen Reduktionsarten nur wenig variierende Resultate. Die in meiner Reihe II aufgenommenen 559 Individuen werden reduziert

Tabelle XI enthält alle Berechnungen über die in den Enquêtefamilien verzehrten Mengen Eiweiss, Fett und Kohlehydraten für einen erwachsenen Mann und Tag, die aus diesen erhaltene potentielle Energie, berechnet nach den auf Seite 23 angeführten Verbrennungswerten, sowie schliesslich den Preis der Kost, mit einigen Ausnahmen nach den örtlichen Preisen der Nahrungsmittel berechnet, wobei ausschliesslich die Rohwaaren in Betracht gezogen wurden, daher z. B. als Brotpreis der Preis des darin enthaltenen Mehles gewählt wurde.

Bidrag, H. 67, N:o 1.

Tabelle XI.

Tägliche Zufuhr von Eiweiss, Fett, Kohlehydraten und Kalorien; täglicher Geldaufwand für die Kost. Reihe II.

Familie	Eiweiss g	Fett g	Kohle- hydrate g	Kalorien	Preis Penni
21	118	97	401	3233	41
22	379	216	1269	9417	114
23	193	105	951	6014	77
24	127	92	604	4080	53
25	143	75	671	4290	41
26	103	55	501	3173	29
27	267	127	1367	8363	87
28	164	56	884	5116	35
29	289	127	937	6703	73
30	211	144	764	5702	63
31	175	108	623	4579	52
32	158	71	572	3927	44
33	135	109	610	4308	57
34	202	106	790	5406	62
35	223	109	1098	6830	55
36	138	135	505	4131	60
37	170	52	624	4034	44
38	273	138	901	6565	42
39	163	81	700	4579	45
40	124	28	434	2762	34
41	103	64	340	2588	30
42	188	107	745	5149	75
43	284	139	924	6732	94

Familie	Eiweiss g	Fett g	Kohle- hydrate g	Kalorien	Preis Penni
44	150	90	674	4482	42
45	199	69	860	5332	27
46	263	108	1010	6682	63
47	137	60	616	3888	37
48	191	91	664	4681	52
49	145	53	510	3429	36
50	230	64	1052	6261	44
51	225	170	665	5612	59
52	252	107	831	5868	59
53	197	113	464	4090	68
54	205	143	766	5667	67
55	160	197	339	4143	85
56	131	125	552	4193	45
57	185	156	800	5816	66
58	66	98	251	2326	35
59	156	137	585	4583	91
60	223	184	351	4400	127
61	130	86	501	3613	62
62	170	89	840	5274	56
63	145	218	670	5627	91
64	171	169	974	5318	69
65	202	101	808	5434	63
66	183	126	664	4961	70
67	128	81	620	4045	49
68	109	152	467	3968	37
69	290	204	1134	8242	135
70	182	126	601	4694	63

Bidrag, H. 67, N:o 1.

Familie	Eiweiss g	Fett g	Kohle- hydrate	Kalorien	Preis Penni
71	136	41	578	3584	41
72	166	69	782	4825	60
73	146	60	538	3616	53
74	159	60	602	3955	55
75	154	75	521	3730	67
76	213	122	868	5940	61
77	191	168	438	4459	46
78	178	68	637	4282	37
79	103	40	420	2697	20
80	125	74	765	4569	30
81	114	58	481	3180	37
82	149	73	583	3940	46
83	163	74	637	4253	65
84	219	180	839	6393	109
85	249	214	1152	8178	141
86	285	194	923	7245	141
87	242	136	911	6413	98
88	88	53	417	2721	43
89	233	113	1400	8177	89
90	141	34	752	4234	38
91	161	56	767	4614	48
92	258	130	629	5277	72
93	211	67	914	5608	57
94	143	63	575	3780	37
95	175	124	479	4130	67
96	141	63	578	3781	38
97	145	46	295	2471	37
98	67	16 1	298	3140	60
99	185	161	468	4485	77
100	79	53	271	2064	40

Die Eiweissmenge wechselt in den 80 Beobachtungen zwischen 66 und 379 g. Der Maximalwert muss indessen wie der Maximalwert für alle anderen Nahrungsstoffe mit grossen Fehlern behaftet sein, die sich aus den am Anfange dieses Kapitels erwähnten Ursachen herleiten. Das allgemeine Eiweissmittel beträgt 177 g. Wenn wir dieses auch der Reduktion um 21 % unterziehen, die nach der oben (Seite 18) dargestellten Tatsachen motiviert werden kann, so bleiben jedenfalls noch 146 g übrig, die das Mittel bei der Reihe I um 10 g übersteigen.

Die Grenzwerte des *Fetts* sind 34 und 216 g, das Mittel beträgt 104 g. Der reduzierte Wert beträgt 109 g, somit 26 g mehr als bei der Reihe I, was wohl zu einem Teil darauf beruht, dass in den Enquêtefamilien reichlicher fette Nahrungsmittel, besonders Speck, zur Anwendung kamen, zum grossen Teil ist er jedoch auf dem Fettverlust im Haushalte zu beziehen.

Die Kohlehydratmenge wechselt zwischen 251 und 1400 g, und beträgt im Mittel 688 g. Der reduzierte Wert 655 übersteigt den in Reihe I bestimmten um 75 g, d. h. um 13 $^{\rm 0}/_{\rm 0}$.

Die Kalorien betragen 2064—9417, im Mittel 4824. Die reduzierten Kalorien, 4596, übersteigen die Zahl in Reihe I um 12 $^{0}/_{0}$, d. h. um dieselbe Prozentzahl, welche man in Chicago in Bezug auf Familien fand, die durch direkte Bestimmung oder durch blosse Enquête untersucht worden waren.

Im Zusammenhang hiermit sei eine statistische Enquête erwähnt, die in Belgien unter einer grossen Anzahl Familien als Ergänzung der analytischen Untersuchungen von Slosse und van de Weyer angestellt wurde und deren Mittelwert für 33 Arbeiter 3100 g beträgt, während der Bidrag, H. 67, N:o 1.

enquêtenmässig berechnete 3400 g ausmacht, also ein Mehr von 11 $^{0}/_{0}$ zeigt. 1)

Es scheint somit, dass eine den Familien selbst anvertraute Ermittelung der Nahrungszufuhr etwa 10 $^{\rm o}/_{\rm o}$ grössere Werte ergiebt, als die, welche man bei einer sorgfältig ausgeführten, direkten Untersuchung erhält.

Ich hatte gehofft, aus verschiedenen Teilen des Landes eine so grosse Anzahl von Angaben zusammenbringen zu können, dass sich durch Zusammenstellung derselben eine Vorstellung über die in verschiedenen Teilen des Landes herrschenden diätetischen Eigentümlichkeiten, wenn solche vorhanden sind, erhalten liesse. Mein geringes Material gestattet eine solche jedoch nicht. Jedenfalls erlaube ich mir ganz im allgemeinen die Kostmasse nach 1) dem Stand und 2) dem Wohnort der Familien zusammenzustellen.

In der folgenden Tabelle sind die Kostmasse in 3 Gruppen verteilt, Hofbauern (34 Fälle), Heuerlinge usw. (21 Fälle) und Arbeiter (25 Fälle).

]	Eiweiss g	Fett g	Kohle- hydrate g	Kalorien	Preis Penni
Bauer .				194	107	709	5034	61
Heuerling				170	. 87	694	4650	50
Arbeiter.				159	119	646	4686	62
Gesammtm	itt	el		177	104	686	4811	60

¹⁾ Ref. nach Exp. stat. record, Vol. XIX, 1908, S. 562.

Wie man sieht, sind die Kalorienmengen ziemlich gleich und nähern sich der allgemeinen Durchschnittszahl. Um die Mengen der einzelnen Nahrungsstoffe besser vergleichen zu können, habe ich die Gruppe der Hofbauern zur selben Kalorienzutuhr reduziert wie die übrigen. Die Gruppen gestalten sich dann:

	Eiweiss	Fett	${\bf Kohlehydrate}$
	gʻ	g	g
Hofbauer.	180	99	656
Heuerling.	170	87	694
Arbeiter .	159	119	646

Das Eiweiss zeigt eine deutliche Steigerung vom Arbeiter zum Hofbauer. Das Fett wird am meisten vom Arbeiter, am wenigsten vom Heuerling genossen, eine Mittelstellung nimmt der Hofbauer ein. Ein entgegengesetzes Verhältnis findet sich in Bezug auf die Kohlehydrate. Diese Umstände treten am deutlichsten in folgender Tabelle zu Tage, wo ich berechnet habe, ein wie grosser Teil der gesamten Energie aus Eiweiss, Fett und Kohlehydraten in Prozent erhalten wird.

		F	Kalorien	aus
		Eiweiss	Fett	Kohlehydraten
		0/0	°/o	°/o
Bauer		17	21	62
Heuerling		16	19	65
Arbeiter .		15	25	60

In der folgenden Tabelle habe ich ähnliche Berechnungen ausgeführt nach der Gegend, aus der die Enquête-Bidrag, H. 67, N:o 1.

hefte herstammen. Zu diesem Zweck teilte ich das Material in 10 Gruppen (siehe S. 46) ein.

g g g	. 59
I 189 106 781 5295	
II 187 96 706 4879	54
III 185 75 757 4884	43
IV 178 139 584 4722	61
V 160 133 639 4793	71
VI 236 165 868 6470	99
VII 152 61 564 3767	55
VIII 181 115 704 5014	67
IX 185 82 796 5111	60
X 132 102 398 3342	53

Wie man sieht, ist in allen grösseren Gruppen das Material geeignet, die grossen Variationen auszugleichen, so dass die Mittelwerte der Kalorien, mit Ausnahme der ganz kleinen Gruppen VI, VII, X, einander nahe stehen. Betreffend die Verteilung der Kalorienzufuhr auf die verschiedenen Nahrungsstoffe beschränke ich mich auf folgende prozentische Tabelle.

		Kalorien	aus
Gruppe	Eiweiss	Fett	Kohlehydraten
	0/0	o /o	$_{\rm o}/_{\rm o}$
I	16	20	64
II	17	20	63
III	17	15	68
IV	17	29	54
V	15	27	58
VI	16	25 .	. 59
VII	18	16	66
VIII	16	23	61
IX	16	16	68
X	17	30	53

Man ersieht hieraus, dass die Eiweissmenge sehr wenig variiert, sie macht in einem Fall 15, in einem zweiten $18^{\circ}/_{\circ}$, in allen übrigen $16-17^{\circ}/_{\circ}$ aus.

Das grösste Interesse bietet die Fettzufuhr dar. Verhältnissmässig am wenigsten Fett wurde in Satakunta (15 %), in Süd-Osterbotten, der schwedischen Gegend um Wasa, sowie in einigen von der Küste entfernten Gegenden von Nord-Osterbotten genossen. Die fetteste Kost verzehrte man in Lappland (30 %), Sawolax (29 %), Karelien (27 %), im ersteren Falle offenbar wegen der überwiegend animalischen Kost, in den letzteren als Ausdruck der, wie es scheint, besseren Beschaffenheit der Nahrung daselbst. Die Prozentzahlen für die Kohlehydrate verhalten sich umgekehrt zu denen für das Fett.

VII. Herstammung der Nahrung aus verschiedenen Nahrungsmitteln.

Nachdem im vorhergehenden das Verhalten der Nahrung vom Gesichtspunkte ihres Gehalts an Nahrungsstoffen und an potentieller Energie, also mehr in physiologischer Hinsicht betrachtet worden ist, werde ich im Folgenden die hygienisch-diätetischen Fragen berücksichtigen, auf welche die Untersuchung vielleicht eine Aufklärung geben könnte

Es ist klar, dass diese Forschungen ein überwiegend lokales Interesse besitzen. Während der physiologische Nahrungsbedarf in seinen Grundzügen bei allen Menschen gleich ist, so wird die Art, auf welche ein Volk seinen Nahrungsbedarf befriedigt, durch die natürlichen Hilfsquellen des Landes bestimmt. Will man z. B. Regeln für die Zusammensetzung einer Kost aus verschiedenen Nahrungsmitteln aufstellen, so darf man sich nur in allgemeinen Worten äussern, denn durch zahlreiche Untersuchungen frei gewählter Kost in verschiedenen Ländern hat man gefunden, dass Gesundheit und Arbeitskraft mit den verschiedensten Zusammensetzungen der Kost vereinbar sind.

Es wäre in praktischer Hinsicht gut, wenn man mit Grotjahn 1) für einen erwachsenen, arbeitenden Mann als Minimum für ein Jahr fordern könnte:

¹⁾ Nach Rubner, Volksernährungsfragen, S. 75.

Zerealien		250 kg
Kartoffeln		150 "
Leguminos	en	30 "
Milch		180 l
Fett		15 kg
Fleisch .		50 "

Rubner hat auf die Haltlosigkeit einer derartigen Auffassung hingewiesen. "Es gibt keine Normalweltkost, man kann die Ernährung mit Vegetabilien allein, oder mit Animalien und Vegetabilien, mit und ohne Fleisch mit vollster Gesundheit des Körpers ausführen." 1)

Die Tabelle XII enthält für die in Reihe I untersuchten Personen im Mittel pro Tag die Zufuhr an Fleisch, Speck, frischem und gesalzenem Fisch, ganzer Milch, abgerahmter Milch, saurer Milch, Butter, weichem Brot, trockenem Brot, Mehl, Grützen und Kartoffeln. Die Personen sind in denselben Altersgruppen geordnet wie in Tabelle VIII, und für jede derselben ist die Durchschnittszahl berechnet.

¹⁾ Rubner, l. c., S. 65.

Tabelle XII.

Täglich genossene Nahrungsmittel in Reihe I, g.

	Versuchs- person	Fleisch	Speck	Fisch, frisch	Fisch, salz	Volle Milch	Magere Milch	Saure Milch	Butter	Roggenbrot, weich	Roggenbrot, trocken	Mehl und Grütze	Kartoffeln
	I. Kinder 2—3 Jahren.												
	53	11	8	_	_ :	97	384	417	8	76		44	44
	103	27	12	8	4	119	452	-	4	40	_	23	70
-	78	. —		14		111	, ,		18	46	51	23	28
	Mittel	13	7	7	1	109	459	139	10	54	17	30	47
				II.	Kind	ler 4	-5 J	ahre	n.				
	13	11	_	9	3 -	76	167	534	16	183	3	10	160
	18	-	7	_	2	104	. 1	404	25	270	-	14	199
	102	41	26	32	8	109	528		3	46	· —	19.	120
-	48	20	13		_	_	301	149	11	283		11 .	310
	Mittel	18	12	10	3	72	317	272	14	196	1	14	197
				III.	Kin		6—7						000
	69	39	5	_		519		107	7	111	59	11	220
	77	_		49	15	104	1329	81	11	120	88	63	66
	16		9	<u> </u>	4	104		660	23	273	_	21 45	343
	52	20	8			154 799	330 380	393	11 35	308 196		22	43
	58 28	22	29	2 17	6	799	137	831	18	246		11	392
	101	45	30	14	2	190	1	34	6	173		48	194
	76	±0		30	14	100	1131		6	95	132	61	34
-	Mittel	16	10	14	5	221		263	15	190	35	36	168
ı	TITLUCCI	10	10				, 0.0						

Versuchs- person	Fleisch	Speck	Fisch, frisch	Fisch, salz	Volle Milch	Magere Milch	Saure Milch	Butter	Roggenbrot, weich	Roggenbrot, trocken	Mehl und Grütze	Kartoffeln
IV. Kinder 8—9 Jahren.												
			T V .									
17		16	_	17	69	304	420	18	423		21	460
47	17	20	_	_	7.4	514	279	12	401		20	243
38	65	23		_	74	559	554	16	473	_	28	87
43	100	_	63		57	169	3	36	617	250	15	148
65	31	9		9	114	687	390	21	36	259	31	277
93	53	_	-	19	143	672		5	39	70	107	292
74			59	8	_	1587	4.40	11	127	183	53	129
51 75	25	7	67	1.0	90	526 1206	442	13 8	393 66	106	67 107	62
				16								144
Mittel	32	8	21	8	61	692	230	16	286	69	50	205
83	10	_		5	407	1609		9	134	81	192	246
Allgem.	İ					,						1
Mittel	30	8	19	7	95	783	207	15	271	70	64	209
			∇ .	Kinde	er 10	-11	Jahr	en.				
8				6 -	6	152	805	63	266		18	303
12	24		19	6	19	61	886	29	344		2	207
23	71	33		_	_	98		8	349	27	8	436
100	71	25	50	20	85	518	_	4	170		34	281
37	92	33	4		26		806	27	389	_	33	105
42	100	_	91	3		1241	3	29	746		8	208
68	32	16			810			10	24	199	60	68
73	_	_	74	29	_	1053	50	19	118	125	65	115
Mittel	49	13	30	8	122	558	319	24	301	64	29	248
82	35	_		13		1231		8	158	79	225	258
88	85	8		28	_	1016	46	5	24	118	131	390
Allgem.										·		
Mittel	51	12	24	11	130	671	260	20	259	55	58	237

Bidrag, H. 67, N:o 1.

Versuchs- person	Fleisch	Speek	Fisch, frisch	Fisch, salz	Volle Milch	Magere Milch	Saure Milch	Butter	Roggenbrot, weich	Roggenbrot, trocken	Mehl und Grütze	Kartoffeln
VI. Jünglinge 1217 Jahren.												
92	33	-		22	126	892]		51	38	93	196	460
99	52	17	79	13		597	43	7	264		32	247
22	85	55	_	3	_	123	_	7	167	394	19	832
46	16	15				250	280	13	486	_	13	221
50	20	8	_	_	129	460	449	15	490	_	58	81
33	168	_	73	12		135	200	38	549	_	34	482
56	69	_	19	8	113	520	754	107	476	_	56	170
36	206	14		22		666	503	23	513		66	215
6 1	112	28	_	36	90	1706	488	29	9	516	100	628
Mittel	85	16	19	13	51	594	302	27	332	111	64	311
81	61		_	14	948	1332	60	17	170	133	292	395
87	73	5		25	_	817	32	5	14	190	109_	309
Allgem. Mittel	81	13	16	14	128	486	255	24	289	121	89	367
			VII.	Mädc	hen :	12—1	7 Jal	hren.				
11	40	_	13	1		240	1424	53	560	_	16	383
57	78	_	7	8	57	332	497	54	349	_	48	123
7	-	_	-	34	14	338	648	65	563	44	50	1086
41	96	6	55	5	21	707	51	25	399		8	127
98	88	49	98	28	240	395	46	8	148		26	328
Mittel	60	11	35	15	65	402	533	41	404	9	30	409

Versuchs- person	Fleisch	Speek	Fisch, frisch	Fisch, salz	Volle Milch	Magere Milch	Saure Milch	Butter	Roggenbrot, weich	Roggenbrot, trocken	Mehl und Grütze	Kartoffeln
			VIII.	Erw	achse	ene I	Männe	er.				
63	117	26	_	21	_	1543	443	24	26	421	88	691
45	27	28		_		377	366	15	706		21	483
34	257	22		66		6 80	1036	11	770	_	54	446
21	182	82	_	4		168	_	25	139	771	24	938
30	172		90	99		72	254	43	743	_	53	461
19	237	32		3		738	143	72	486	_	19	554
9	34	_	21	24		861	1073	64	966	_	20	443
29	204	—	131	99	_	118	269	51	1027		59	654
5	_	_	-	19	769	382	694	169	17	593	35	487
14	-	27	_	56	_	557	1044	36	90	494	45	866
96	170	37	154	70	_	1124	383	10	454	_	96	904
66	45	13	_	_	467	1628		21	_	249	223	327
70	-	_	182	97	_	2262	114	25	164	368	200	222
24	_	47	36	42	_		1026	16	399	309	34	756
84	91	—		31		1839	_	3	11	144	221	474
89	31	_	-	19	704	1154		6	73	88	251	410
59	42	16	_	4	_	1379	421	36		319	81	119
Mittel	95	19	36	38	114	905	427	37:	357	221	90	543
79	88	_		38	355	1349		13	56	79	291	526
Allgem. Mittel	94	18	34	38	128	930	404	36	340	213	101	542

Versuchs- person	Pleisch	Speck	Fisch, frisch	Fisch, salz	Magere Milch Volle Milch	Saure Milch	Butter	Roggenbrot, weich	Roggenbrot, trocken	Mehl und Grütze	Kartoffeln
			IX.	Erwac	chsene Fra	auen.					
27		34	23	14	- 198	310	6	293		27	292
32	188		147	23	- 86	134	35	611		32	609
55	96	_	15	3	90 267	163	40	159	_	41	200
67	67	10		_	121 769	_	13		193	148	515
72		_	114	74	- 1550	50	9	114	206	181	255
91	34			20	184 875		4	82	66	142	511
26		46	35	100	_ 309	504	15	330	_	35	469
31	127		148	14	_ 71	104	34	390	_	24	447
35	197	12	_	6	580	689	11	568	_	45	221
11	24	15	_	_	- 288	316	6	413	_	19	237
62	100	23	_	6	770	81	17	_	169	64	451
20	133	23	_		- 243	79	38	275	_	15	253
61	81	33	_	3	33 744	121	26	_	257	38	556
6		_	9	6	79, 208	1131	78	603	11	67	486
10	31		94	6	37 230	681	52	885	_	13	475
15		11		47	270	607	15	389	7	18	471
71			123	65	— 13 3 2		7.	118	133	116	222
40	74		101	39	150 465	997	8	681		15	225
97	80	51	131	31	105 455		3	108		46	291
. 80	50	_	_	21	255 1658		9		76	292	276
39	82		105	50	- 1001	18	8	389	_	8	187
49	28	8		14	176, 549	639	19	509		66	108
25	_	24	21	26	- 241	316	_	390	_	- 34	479
60	98	19		8	111 723	225	15	_	313	23	418
90	25	_	-	6	169 785		5	77	16	98	369
Mittel	63	13	44	24	63 611	299	20	308	60	67	387
85	31	5	_	9	— 795	29	3	27	79	97	266
86	71	8		26	— 862	29	3	_	86	74	287
Allgem. Mittel	62	12	41	24	58 628	278	18	285	62	68	378

Ein vollständiger Vergleich zwischen den in verschiedenen Altersklassen verzehrten Mengen der verschiedenen Nahrungsmittel dürfte nicht nötig sein, er wurde nur zeigen, dass von Kindern und Erwachsenen die gleichen Nahrungsmittel benutzt und mit steigendem Alter in immer grösseren Mengen verbraucht werden.

In einer Hinsicht dürfte jedoch eine Zusammenstellung am Platze sein und zwar über den Verbrauch verschiedener Nahrungsmittel bei Kindern unter 6 Jahren und bei Erwachsenen, am geeignetsten beim erwachsenen Manne. Der Uebersichtlichkeit wegen fasse ich diese in grössere Gruppen zusammen: Fleisch, Milch, Butter, Zerealien (alles Brot als weiches berechnet unter der Annahme, dass 100 g weiches Brot 147 g trockenem entsprechen, schliesslich Reduktion des Brotes auf Mehl mit der Berechnung 100 g weiches Brot = 70 g Mehl) und Kartoffeln.

Kinder	unter 6 Jahren.	Männer.	Verhältniss.
	g	g	
Fleisch	37	184	1:5,0
Milch	681	1462	1:2,2
Butter	12	36	1:3,0
Zerealien	123	552	1:4,5
Kartoffeln	133	542	$1:4,_{1}$

Bei den verschiedenen Nahrungsmitteln sind also die Proportionen ziemlich verschieden. Während z. B. der Erwachsene nur doppelt so viel Milch genossen hat als das Kind, ist sein Fleischverbrauch auf das Fünffache gestiegen.

Die Tatsache, dass verschiedene Nahrungsmittel in der Kost von Individuen in verschiedenem Alter in verschiedener Proportion vertreten sind, würde den Wert der Bidrag, H. 67, N:o 1. Reduktion der Bestimmungen in der Reihe II auf den Verbrauch eines erwachsenen Mannes scheinbar verringern. Dieser Unterschied wird jedoch ausgeglichen, wenn man sämmtliche Altersklassen in Betracht zieht. Ich habe aus 62 Familien der Reihe II, deren gesamte Energiezufuhr pro Mann nicht allzu sehr von dem für einen erwachsenen Mann direkt gefundenen Wert abwich, die Zufuhr von Nahrungsmitteln pro Mann und Tag berechnet. Wie aus der folgenden Tabelle hervorgeht, zeigen die Resultate dieser Berechnung, von der ich, des Raumes wegen und da die Enzelheiten kein grösseres Interesse bieten, nur die Mittelwerte anführe, eine grosse Aehnlichkeit mit den für die direkt untersuchten Individuen in Reihe I gefundenen.

Verbrauch in g pro Tag und erw. Mann.

Nohama associated		Reih	e I	Reihe II	
Nahrungsmittel	Max.	Min.	Durchschnitt	Durchschnitt	
			1		
Fleisch	257	27	94 \ 166	74) 187	
Fisch	279	0	72	113	
Speck	47	0	18	28	
Milch	2376	336	1462	1565	
Butter	169	3	36	45	
Weiches Brot	1027	110	644	486	
Mehl und Grütze	291	20	101	196	
Kartoffeln	904	119	542	510	
Zucker	_		_	36	
Kaffee , .	_	_	_	18	

Fleisch und Fisch betragen durchschnittlich für die persönliche Untersuchung 166 g, für die Enquête 187 g. Im Hinblick darauf, dass in letzterem Falle die Knochen

gewöhnlich mitgerechnet sind, ist die Uebereinstimmung auffallend gut. Rechnen wir den Speck mit, so ist die Durchschnittszahl für die persönliche Untersuchung 184 g und für die Enquête 215 g.

Zum Vergleich mit diesen Resultaten mögen folgende Angaben über die Fleischkonsumption (g) in einigen Kostmassen dienen, in denen die gesamte Energiezufuhr mit der meiner Versuchspersonen ziemlich nahe übereinstimmt.

	Fleisch.	Speck.	Summe.
Amerika, Arbeiter 1)	324	98	422
" Farmer 2)	90	163	253
Schweden, Arbeiter 3)	203	52	255
Finnland, Arbeiter in der Stadt 4)	_	_	265
" Landbevölkerung, Mittel	177	23	200

Die für die finnländische Landbevölkerung gefundene Zahl stimmt mit den von *Voit* und *Tigerstedt* ⁵) für einen mittleren Arbeiter geforderten Mengen resp. 230 und 170 g ziemlich gut überein.

Die *Milch*konsumption pro Mann und Tag beträgt in der Reihe I 1462 g, in der Reihe II 1565 g. Das Mittel ist 1514 g. Von diesen waren $10\,^{6}/_{0}$ als ganze Milch, $63\,^{6}/_{0}$ als abgerahmte oder separierte und $27\,^{6}/_{0}$ als Buttermilch oder saure Milch genossen.

Folgende Tabelle zeigt die in einigen früheren Unter-

¹⁾ U. S. Departm. of Agricult., Bull. 29 u. 46.

²) Report of Storrs agricult. stat. 1897, S. 140.

³) *Hultgren* und *Landergren*, Untersuchung der Nahrung schw. Arbeiter, S. 30.

⁴⁾ Sundström, 1. c.

⁵⁾ Tigerstedt, Grundsatser för utspisningen, S. 129.

Bidrag, H. 67, N:o 1.

suchungen, wo die Energiezufuhr die gleiche ist wie hier, ermittelten Zahlen für die Milchkonsumption:

Amerika,	Arbeiter 1)						274	g
22	Farmer 2) .						207	g
Schweden	, Arbeiter ³)						970	g
Finnland,	Studenten						1242	g
99	Arbeiter in	de	r	Sta	dt		1494	g
"	landwirtsch	aft	l.	Sel	ıül	er	2777	g

Die Zufuhr von Butter beträgt für die beiden Untersuchungsreihen 36 und 45 g, durchschnittlich 40 g.

Die durchschnittliche Buttermenge ist kleiner als die bei früheren Untersuchungen in Finnland gefundene:

Finnländische	Studenten	•		70 g	3
"	landtwirtschaftl. Schüler			51 §	3
59	Arbeiter in der Stadt			57 g	Σ',

dagegen grösser als die anderwärts gefundene:

Arbeiter in Amerika 34 g Farmer " " 25 g Arbeiter in Schweden 29 g

Küse und Eier bilden nur zufällige Bestandteile der Kost der finnländischen Landbevölkerung, der Mittelwert des ersteren beträgt 3 g pro Mann und Tag, von den letzteren wurde ungefähr 1 pro Mann und Woche verzehrt. Amerikanische Arbeiter geniessen gleichfalls c. 1 Ei die

¹⁾ U. S. Departm. of Agricult., Bull. 29 u. 46.

 $^{^{2})\ \}mbox{Report of Storrs agricult. stat. }1897,\ \mbox{S. }140.$

³) Hultgren und Landergren, Untersuchung der Nahrung schw. Arbeiter. S. 30.

Woche, Farmer 2 Eier pro Tag, nach Kostmassen, die wegen der Aehnlichkeit der Kalorienmenge mit den vorliegenden als geeignetes Vergleichsmaterial dienen können.

Von Brot, als weiches berechnet, war in Reihe I 644 g pro Mann und Tag verzehrt worden, in Reihe II 486 g. Der Unterschied ist nur scheinbar. In der letzteren ist infolge der Untersuchungsmethode eine gewisse Menge Mehl, die tatsächlich als Brot genossen wurde, in den Wägungen als Mehl aufgenommen. Wenn wir in beiden Fällen das Brot zn Mehl reduzieren und die Menge von verbrauchtem Mehl und Gries dazu fügen, so wird die Summe für die beiden Reihen resp 552 und 536 g, also die gleiche Menge. Der Mittelwert beträgt 544 g. Zum Vergleich mögen folgende Angaben über den Brotverbrauch dienen:

Schweden	, Arbeiter				743	g
Finnland,	Studenten .				203	g
<i>;</i> •	Arbeiter in	der	Stad	t.	333	g
27	landwirtsch	aftl.	Schü	ler	703	8
77	Landbevölk	erung	· ·		644	g

Meinen Berechnungen zufolge werden von der finnländischen Landbevölkerung $78\,^{\circ}/_{\circ}$ der Zerealien als Brot verzehrt, der Rest in Form von Mehl oder Grütze genossen. Das Brot wurde in Reihe I durchschnittlich in $75\,^{\circ}/_{\circ}$ als weiches, in $25\,^{\circ}/_{\circ}$ als trockenes genossen.

Die Menge der genossenen Kartoffeln unterscheidet sich in den beiden Reihen beträchtlich. In Reihe I wurden 542 g gekochte und geschälte Kartoffeln verzehrt, entsprechend (nach der Berechnungsweise von Hultgren und Landergren) 671 g Rohwaare. In Reihe II beträgt die Menge Rohkartoffeln 510 g. Der Mittelwert ist 590 g.

Bidrag, H. 67; N:o 1.

Rohkartoffeln wurden verbraucht:

Schweden, Arbeiter	523 g
Finnland, Studenten	219 g
" Arbeiter in der Stadt	332 g
" landwirtschaftl. Schüler	624 g

Ich habe noch nähere Berechnungen über den Verbrauch von Zucker und Kaffee ausgeführt.

In 80 Familien wurden durchschnittlich 36 g Zucker und 18 g Kaffee verbraucht. Diese Zahlen bezeichnen den Konsum dieser Stoffe für einen Mann berechnet; wie wir später sehen werden, wird von den Frauen verhältnismässig viel mehr genossen.

Um verschiedene Kostmasse bequem vergleichen zu können, haben mehrere Autoren berechnet, ein wie grosser Teil, gewöhnlich in Prozenten ausgedrückt, von Eiweiss, Fett und Kohlehydraten aus den verschiedenen Nahrungsmitteln erhalten wird. In einigen wenigen Fällen ist zugleich die prozentige Verteilung der potentiellen Energie auf die verschiedenen Nahrungsmittel angegeben. Die letzteren Prozentzahlen sind nun ganz besonders geeignet zu veranschaulichen, wie die Kost zusammengesetzt ist. Ich habe daher den obenerwähnten Berechnungen noch solche über die Verteilung der Kalorien hinzugefügt.

Der Raumersparnis wegen habe ich mein Material teils in Durchschnittszahlen, teils graphisch zusammengestellt und hierbei auch die Grenzwerte berücksichtigt. Dabei habe ich die Nahrungsmittel in 4 grössere Gruppen, nähmlich 1. Fleisch, Speck, Fisch; 2. Milch und andere Molkereiprodukte; 3. Zerealien (Brot, Mehl, Grützen); 4. Kartoffeln, vereinigt.

Für die Reihe II habe ich ausserdem noch Zucker und "sonstige vegetabilische Kost", meist aus Erbsen, in einigen Fällen auch aus anderem Gemüse bestehend, angeführt.

Die Resultate gründen sich auf Berechnungen einerseits über 96 Kostmasse für eine Woche, die sich auf einzelne Personen beziehen, andererseits auf 62 Kostmasse aus der Reihe II, gleichfalls für eine Woche.

In den Figuren gibt die Abszisse das Prozent des Nahrungsstoffes an, auf den sich die Kurve bezieht, die Ordinaten das Prozent des erwähnten Materials.

Das Eiweiss stammt im Mittel aus:

								Reihe I	Reihe II	Mittel.
								0/0	0/0	0/0
Fleisch .								19	15	17
Milch .								36	35	36
Zerealien								37	41	39
Kartoffeln								8	7	8
sonstigen	ve	get.	N	ah	run	gsi	m.		2	
								100	100	100

Auf Grund der beiden, unter einander gut übereinstimmenden Reihen lässt sich schliessen, dass durchschnittlich 17 $^{0}/_{0}$ des Eiweisses aus Fleisch, 36 $^{0}/_{0}$ aus Molkereiprodukten, 39 $^{0}/_{0}$ aus Getreidearten und 8 $^{0}/_{0}$ aus Kartoffeln herstammen.

Die Summe des animalischen Eiweisses beträgt somit durchschnittlich 53 $^{0}/_{0}$, die des vegetabilischen 47 $^{0}/_{0}$ des Gesamteiweisses. Zum Vergleich mit diesen Zahlen mögen folgende Angaben dienen:

		Anim.	Eiweiss	Veget. Eiweiss
			°/o	0/0
Finnland,	Studenten		70	30
"	Arbeiter in der Sta	dt .	63	37
"	landwirtschaftl. Sch	ıüler	57	43
"	Landbevölkerung .		53	47

Das Fleischeiweiss stimmt mit den auf der landwirtschaftlichen Schule zu Koivikko gefundenen Prozent, 16, gut überein. Das Milcheiweiss betrug bei Koivikko 41 $^{0}/_{0}$, also etwas mehr. Das Broteiweiss beträgt für meine Versuchspersonen allein 30 $^{0}/_{0}$, auf Koivikko waren es 27 $^{0}/_{0}$. Finnländische Arbeiter in der Stadt verzehrten 9 $^{0}/_{0}$ weniger Brot-, dafür aber 9 $^{0}/_{0}$ mehr Fleischeiweiss. Schwedische Arbeiter zeigten eine Aufnahme von 26 $^{0}/_{0}$ Eiweiss aus Fleisch, 20 $^{0}/_{0}$ aus Milch, Butter und Käse, 42 $^{0}/_{0}$ aus Zerealien und 5 $^{0}/_{0}$ aus Kartoffeln.

Aus der graphischen Darstellung in Fig. 3 ist ersicht-

lich, dass das Fleischeiweiss in einem Viertel der Fälle nur 5—10 $^{\rm o}/_{\rm o}$ betrug. Das Maximum liegt bei 55 $^{\rm o}/_{\rm o}$. Die Milchkurve hat zwei Spitzen, die eine etwa bei 7 $^{\rm o}/_{\rm o}$, die zweite zwischen 35 und 40 $^{\rm o}/_{\rm o}$. Das Maximum ist 65 $^{\rm o}/_{\rm o}$. Das Zerealieneiweiss beträgt zwischen 15 und 55 $^{\rm o}/_{\rm o}$, das Kartoffeleiweiss höchstens 20 $^{\rm o}/_{\rm o}$.

Das Fett stammte aus:

	Reihe I	Reihe II º/o	Mittel 0/0
Fleisch	8) 25	17) 22	13) 20
Fleisch Speck	17	$egin{array}{c} 17 \ 15 \end{array} iggr\} \ 32$	$\begin{pmatrix} 13 \\ 16 \end{pmatrix}$ 29
Milch	24) 61	20) 60	22 60
Milch Butter	37	$\begin{pmatrix} 20 \\ 40 \end{pmatrix} 60$	$\begin{bmatrix} 22 \\ 38 \end{bmatrix}$ 60
Vegetab. Nahrun	gsm. 14	8	11
	100	100	100

89% des Fettes werden also in animalischen Nahrungsmitteln aufgenommen. Das meiste entfällt auf die Butter, die allein zwei Fünftel zuführt. Der Reihe nach folgen sodann Milch, Speck und Fleisch. Des Vergleiches wegen werden noch einige ähnliche Berechnungen über andere Kostmasse mitgeteilt:

	Fleisch, Speck								
			u.	Fisch	Milch	Butter			
				0/0	o /o	0/0			
Finnland,	Studenten			32	21	39			
77	landwirtchaftl. Schüler			39	11	41			
27	Arbeiter in der Stadt	٠		39	41	38			
"	Landbevölkerung			29	22	38			

Die grösste Konstanz betrifft die Butter, welche in allen finnländischen Kostmassen etwa 40 $^{\rm o}/_{\rm o}$ des Fettes geliefert hat.

Die graphische Darstellung in Fig. 4 veranschaulicht die Verteilung des Fettes auf die verschiedenen Nahrungs-

mittel. Die Kurven für die wichtigsten Fettquellen, Fleisch und Molkereiprodukte, sind langgestreckt und umfassen für das erstere $0-65\,^{\circ}/_{0}$, für die letzteren $15-95\,^{\circ}/_{0}$.

Die Kohlehydrate leiten ihren Ursprung aus:

	Reihe I	Reihe II
	0/0	0/0
Milch	16	13
Brot	$\begin{bmatrix} 52 \\ 14 \end{bmatrix}$ 66	63
Mehl u. Grütze	14 \ \	f
Kartoffeln	16	16.
Erbsen	2	2
Zucker		6
	100	100

Finska Vet. Soc.

Im Mittel werden $15\,^{6}/_{0}$ der Kohlehydrate aus animalischen Nahrungsmitteln erhalten. Die wichtigste Kohlehydratquelle ist das Brot, das die Hälfte derselben liefert. Im Verein mit anderen Zerealien deckt das Brot $^{2}/_{3}$ des Bedarfs an Kohlehydraten. In folgender Tabelle habe ich die Resultate der Reihe I mit den Ergebnissen früherer finnländischer Untersuchungen zusammengestellt.

		Milch	Brot	Mehl u. Grützen	
					00110111
finnländische	Studenten	16	34	. 18	10
27	Arbeiter in d. Stadt	16	37	17	13
22	landtwirtschaftl.				
	Schüler	16	50	14	16
27	Landbevölkerung	16	52	14	16

Die Uebereinstimmung zwischen den beiden letzten ist vollständig.

Fig. 5 stellt den Ursprung der Kohlehydrate aus Milch, Zerealien und Kartoffeln graphisch dar.

Bidrag, H. 67, N:o 1.

Die	Grenzwerte	$\sin d$	für	Milch .		٠	0-40 %
22	77	27	"	Zerealien			$40-90^{-0}/_{0}$
				Kartoffeln			$0 - 40^{-0}/_{0}$

Die Kalorienzufuhr aus den verschiedenen Nahrungsmitteln geschieht in folgenden Verhältnissen in Prozent ausgedrückt:

		Reihe I	Reihe II	
		0/0	0/0	400
Fleisch		9	10	
Molkereiprodukte		28	27	
Zerealien		50	48	
Kartoffeln		13	11	
Zucker			3	
sonstige Nahrungsmitt	el		1	
		100	100	

Zwischen den beiden Reihen herrscht somit eine gute Uebereinstimmung. In beiden betragen die Kalorien aus den animalischen Nahrungsmitteln 37 % der ganzen Energiezufuhr. Das Fleisch liefert genau ein Zehntel der Gesamtkalorien. Aus Nahrungsmitteln, die aus Getreidearten hergestellt sind, erhält man die Hälfte, durchschnittlich

Figg. 6 und 7 stellen in derselben Weise wie die früheren den Ursprung der Kalorien aus Fleisch, Molkereiprodukten, Zerealien und Kartoffeln dar, und zwar bezieht sich Fig. 6 auf Reihe I und Fig. 7 auf Reihe II.

Die Grenzwerte betragen für

	Reihe I	Reihe II
Fleisch	. 030	0-45
Molkereiproduk	te 0—55	20 - 55
Zerealien .	. 20—70	20-80
Kartoffeln	. 0—25	0-35

Es zeigt sich also, dass Fleisch in der Mehrzahl der Fälle in verhältnismässig geringeren Mengen in der Kost enthalten war, als die Durchschnittszahlen dies andeuten. In einem Drittel der Fälle betrug das "Fleischprozent" in Reihe I weniger als 5, in Reihe II in etwa sieben Zehnteln der Fälle weniger als $10^{\circ}/_{0}$.

In folgender Tabelle habe ich diese Resultate mit einigen früheren zusammengestellt:

Bidrag, H. 67, N:o 1.

				F	leisch	Milch usv	v. Zer.	Kart.
finnländische Stude	enten				21	40	24	4
" Arbe	iter in	d. 8	Sta	đt	10	40	34	7
" land	wirtscl	aaft	tlic	he				
Schü	ler .				14	29	44	10
" Land	bevölk	ceru	ıng		10	28	49	12
Amerika, 1) Mittel	aus							
185 Untersuchur	ngen .				26	19	34	6
Farmer					32	14	27	13
Holzfäller					43	5	24	12
Schweden, 1) Arbei	iter .				14	18	51	11

Unsere finnländischen Familien haben 3 % der Kalorien aus Zucker bezogen. Vergleichsweise sei erwähnt, dass in den drei erwähnten amerikanischen Kostmassen das Prozent von Zucker durchschnittlich 11-12 der gesammten Kalorienzufuhr betrug. Dabei verzehrten die Nordamerikaner noch 3-4 % ihrer Kalorien in Früchten.

Schliesslich führe ich in der folgenden Tabelle für die genannten Untersuchungen die Verteilung der Kalorien auf animalische und vegetabilische Nahrungsmittel an:

		Animal.	Vegetab.
		0/0	0/0
finnländische	Studenten	. 61	39
19	Arbeiter in der Stadt	. 50	50
**	landwirtschaftl. Schüler	r 43	57
* *	Landbevölkerung .	. 38	62
			P.

¹) Die Zahlen sind berechnet nach Report of the Storrs agricult. stat. 1899, S. 82; ebenda 1897, S. 140; U. S. Departm. of Agricult., Bull. 149, S. 36, sowie *Hultgren* und *Landergren*, Die Ernährung schwedischer Arbeiter. S. 32, 34, 35.

amerikanische	Untersuchu	inge	en			45	55
27	Farmer .					46	54
22	Holzfäller					48	52
schwedische A	Arbeiter .			,		32	68

Während die finnländischen Studenten 39 % ihrer Kalorienzufuhr in vegetabilischen und 61 % in animalischen Nahrungsmitteln bekamen, verhalten sich die Zahlen bei der Landbevölkerung umgekehrt, resp. 62 und 38. Zwischen diese Extreme plazieren sich Arbeiter in der Stadt und landwirtschaftliche Schüler.

Ein aus verschiedenen Teilen des Landes, zu verschiedenen Jahreszeiten gesammeltes Enquêtematerial wäre zur näheren Aufklärung der vorliegende Frage von grosser Bedeutung. Es würde in einfacher Form eine Vorstellung über die Zusammensetzung der Kost für verschiedene Volksklassen, Orte und Jahreszeiten geben. Da ich nicht im Besitze eines solchen Materiales bin, so sollte ich eigentlich auf eine derartige Zusammenstellung verzichten. Indessen führe ich in folgender Tabelle die Berechnungen über den Ursprung der Kalorien aus verschiedenen Nahrungsmitteln an, 1) in verschiedenen Teilen des Landes, wobei ich dieselbe Einteilung anwende wie in der Tabelle S. 144, 2) bei verschiedenen Volksklassen, Hofbauern, Heuerlingen usw. und Arbeitern.

	Prozent	tische Verteil	lung der B	Calorien auf
a) Nach dem Ort.	Fleisch	Milch usw.	Zerealien	Kartoffeln
Ι	7	27	45	17
II	8	25	46	14
III	8	25	47	15
IV	16	29	43	6
ν	11	26	5 0	8
VI	10	40	36	12
VII	7	25	43	20
VIII	6	25	54	10
IX	7	21	60	10
X ,	16	32	46	
b) Nach dem Stande				
Bauer	9	29	47	10
Heuerling	8	25	46	16
Arbeiter	11	24	51	9

Wenn sich aus diesen Tabellen Schlüsse ziehen liessen, so wären es folgende:

Der Fleischverbrauch ist am grössten in Sawolax und Lappland, am kleinsten in der verhältnismässig armen Gegend von Nord-Osterbotten, die näher der Küste liegt. An der entfernteren Stelle von Nord-Osterbotten war das Milchkonsum am geringsten, am grössten wieder in Süd-Osterbotten. Umgekehrt verhält es sich in Bezug auf die Getreidearten. Was finnische und schwedische Gegenden im Vergleich zu einander betrifft, so lässt sich, nach den Gruppen, I und II, die sich beide auf eine grössere Anzahl Beobachtungen beziehen, kein grösserer Unterschied nachweisen.

In Betreff der Verteilung auf die verschiedenen Gesellschaftsklassen existiert allerdings ein Unterschied, er ist jedoch so klein, dass im grossen und ganzen die Zu-

Finska Vet. Soc.

sammensetzung der Kost bei Hofbauern, Heuerlingen und Arbeitern als gleich angesehen werden kann. Der Fleischverbrauch ist am grössten bei Arbeitern (Speck), am geringsten bei Heuerlingen. Der Milchverbrauch ist am grössten bei Hofbauern, am kleinsten bei Arbeitern. Die Arbeiter verbrauchten mehr Mehl und Grütze als die beiden anderen Gruppen, aber weniger Kartoffeln.

VIII. Die Variationen der Nahrungszufuhr an verschiedenen Tagen und die Verteilung derselben auf Mahlzeiten.

Ausser dem theoretischen Interesse, welches die Kenntnis der diätetischen Gewohnheiten eines Volkes bietet, besitzt diese auch eine praktische Bedeutung, wo es sich darum handelt, Kostmasse für öffentliche Anstalten auszuarbeiten. Für diesen Zweck ist unter anderem die Kenntnis der Variationen, die in Bezug auf den Gehalt der Kost an Nahrungstoffen und potentieller Energie vorkommen, von grosser Bedeutung.

Der Nahrungsbedarf ist gewöhnlich in Durchschnittszahlen ausgedrückt, die eine längere Zeit umfassen. Ursprünglich hegte man die Ansicht, dass das stoffliche Gleichgewicht des Körpers gestört würde, wenn man an verschiedenen Tagen verschiedene Mengen Nahrung genoss. Es war Hofmann, 1) der sich zuerst gegen diese Ansicht wendete. Später wurde durch eine Anzahl Untersuchungen der Kost bei freier Wahl festgestellt, dass in der Regel grosse Variationen in der Nahrungszufuhr an verschiedenen

¹) *Hofmann*, Fleischnahrung und Fleischkonserven. Leipzig 1880, S. 16.

Bidrag, H. 67, N:o 1.

Tagen einer Versuchsperiode stattfinden. Einige haben auch versucht die Weite dieser Schwankungen zu bestimmen.

Bei 28 vom Jürgensen, Nakahama, Hultgren und Landergren untersuchten Personen fanden sich nach einer Zuzammenstellung von Tigerstedt 1) folgende prozentische Abweichungen vom Mittel:

für		
Eiweiss	maxim. Abweichung nach oben	$8-52~^{0}/_{0}$
	" nach unten	8-40 0/0
	mittlere Abweichung	$3-28^{\ 0}/_{0}$
Fett	maxim. Abweichung nach oben	8-90 %
	" nach unten	$8-52^{\ 0}/_{0}$
	mittlere Abweichung	$7-39^{\ 0}/_{0}$
Kohlehydrate	maxim. Abweichung nach oben	$9-42{}^{0}/_{0}$
	" nach unten	$11 47 \ ^{0}/_{0}$
	mittlere Abweichung	$6-20^{\circ}/_{0}$
Kalorien	maxim. Abweichung nach oben	6 —31 $^{\rm 0}/_{\rm 0}$
	" nach unten	$9-30^{\ 0}/_{0}$
	mittlere Abweichung	$5-16^{\ 0}/_{0}$

Nach einer Verteilung der Prozentzahlen in Gruppen gelangt Tigerstedt, mit Reserve wegen des geringen Materials, zu folgendem Resultat. Die mittlere Variationen beträgt für das Eiweiss, die Kohlehydrate und die gesamte Kraftzufuhr etwa 15 $^{\rm o}/_{\rm o}$, für das Fett etwas mehr. Die maximale Abweichung dagegen kann für die Kohlehydrate und die gesamte Kraftzufuhr auf 20-25 $^{\rm o}/_{\rm o}$, für das Eiweiss auf 20 $^{\rm o}/_{\rm o}$ und für das Fett auf 20-30 $^{\rm o}/_{\rm o}$ angenommen werden.

¹⁾ Tigerstedt, Utspisningen etc. pag. 104.

Vielleicht ist den täglichen Variationen nur eine untergeordnete Bedeutung beizulegen, umsomehr als sie teilweise darauf beruhen, welche Kost zufällig zu Gebote steht, und sich ausserdem nur bei einer längeren Versuchsperiode mit Sicherheit teststellen lassen. Ich hielt es gleichwohl für Mühe wert mein Material Berechnungen in angedeuteter Hinsicht zu unterwerfen, um womöglich zu konstatieren, ob sich bei der finnländischen Landbevölkerung in Bezug auf diesem, wie man glauben sollte, dem Belieben überlassenen Umstande irgend welche Gesetzmässigkeit feststellen liesse.

Für jede der 96 Personen der Reihe I, die eine ganze Woche lang untersucht worden waren, wurden daher für jeden Tag der Woche die Mengen von Eiweiss, Fett und Kohlehydraten sowie die Kalorien berechnet und die prozentische Verhältniszahl zum Gesammtmittel ermittelt. In jeder Serie wurde die grösste Abweichung nach oben und nach unten notiert. Schliesslich wurde aus diesen Zahlen die mittlere Abweichung bestimmt.

Vielleicht hätte die detaillierte Zusammenstellung für Eiweiss, Fett und Kohlehydrate manches von Interesse geboten. Ich habe gleichwohl die hierhergehörigen, allzu umfangreichen Tabellen nicht angeführt, und nur die täglichen Variationen der gesamten Energiezufuhr in folgender Tabelle zusammengestellt. In dieser ist der Sonntag durch kursive Schrift angegeben.

Tabelle XIII.

Tägliche Abweichung der Kalorienzufuhr vom Mittel in %									
Person	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Mittlere Abwei- chung	
5	+27	+ 8	+ 2	_ 2	+ 5	- 31	- 8	12	
6	+ 27	+17	— 25	- 4	- 10	_ 9	+ 3	14	
7	+ 3	+ 7	+ 1	— <i>3</i>	— 19	_ 10	+23	10	
8	+4	+ 5	+17	_ 2	— 13	— 17	+ 7	9	
9	+17	_ 2	- 2	— 6	+19	-17	_ 9	10	
10	+ 8	— 1 2	± 0	+ 7	+11	- 23	+ 9	10	
11	_ 2	- 31	+4	+21	+20	- 17	- 27	17	
12	- 3	+ 8	— 36	+ 8	+14	11	+19	14	
13	+ 35	— 17	— 26	+16	_ 4	+ 6	10	16	
14	- 5	+ 5	— 11	— 9	+ 22	+ 5	- 7	9	
15	10	_ 9	— 17	- 4	+ 5	+52	_ 21	16	
16	— 22	+ 3	± 0	+36	<u>- 11</u>	— 13	+ 7	13	
17	+18	+28	-20	+ 3	- 12	- 3	— 11	14	
18	14	+13	17	+ 5	- 22	+29	+4	15	
19	- 11	+ 1	- 4	+ 5	士 0	+4	+ 4	4	
20	+ 1	- 24	19	+11	- 5	+29	+ 6	13	
21	- 2	+13	+14	+12	- 13	+ 1	- 19	11	
22	— 6	+ 7	+ 13	+4	+20	— 14	-25	13	
23	+12	+ 7	+ 7	士 0	— 13	- 8	- 6	8	
24	+11	+ 3	+19	+ 5	- 8	— <i>13</i>	-17	11	
25	- 27	- 1	+ 37	+ 1	+ 8	- 6	-11	13	
2 6	12	- 19	+32	+11	+22	- 4	33	19	
27	- 15	± 0	-11	+23	+ 27	- 4	- 20	14	
28	+26	+13	+4	+30	- 2	-37	- 34	21	
29	+16	+10		+ 4	-13	. — 8	- 3	9	
30 31	$+7 \\ +27$	-11 -13	-25 +20	-2 -7	-9 -23	$+ 4 \\ + 6$	+37 -10	14	
32	+27		'	— 7 — 7	— 23 — 24	$+ 0 \\ + 2$	+29	10	
32 33	-2 $+22$	+ 1 + 1 + 1	$+\frac{2}{-12}$	- 1 - 2	- 2 1	$+ \frac{1}{2}$	$+29 \\ +27$	14	

Finska Vet. Soc.

Täg	Tägliche Abweichung der Kalorienzufuhr vom Mittel in %									
Person	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Mittlere Abwei- chung		
34	_ 7	+ 8	+19	- 3	+ 12	— 3	— 26	11		
35	+ 3	- 4	— 2	— 3 — 3	+18	_ 3	— 10	6		
36	-11	+ 6	+ 1	— 6	+4	+12	- 6	7		
37	+10	+ 4	+ 5	— 13	_ 9	+ 22	- 18	12		
38	+ 6	+11	— 15	+,11	+ 3	- 9	_ 8	9		
39	+ 0	+ 6	— 14	+ 7	12	+ 7	+ 5	7		
40	_ 7	+ 0	_ 10	+ 5	+ 12	+ 3	- 3	6		
41	13	_ 2	— 21	+13	+ 14	+ 0	+ 8	10		
42	+ 6	+ 11	15	+11	+ 3	_ 9	_ 8	9		
43	+ 5	- 10	— 15	+10	+14	— 3	— 3	9		
44	+34	+ 31	17	_ 2	17	- 8	23	19		
45	+ 0	- 4	+12	+ 7	_ 4	+ 1	11	6		
46	13	_ 3	+4	+ 7	- 4	+ 11	— 2·	6		
47	4	10	+ 5	+24	— 13	- 7	+5	10		
48	- 4	11	+ 1	+ 7	+4	+ 1	+ 1	4		
49	17	- 4	+4	+ 9	+10	— 5	+ 3	7		
50	- 16	+ 9	+ 1	+ 3	+ 9	9	+ 2	7		
51	+ 7	+ 1	- 18.	+25	+ 9	14	— 10	12		
52	- 23	+ 4	+ 9	+35	+ 6	25	_ 6	15		
53	- 19	+ 12	— 3	+42	15	10	- 5	15		
55	+23	+12	25	$+23^{\circ}$	+28	— 51	- 10	25		
56	- 6	+20	_ 7	+ 2	+10	— 13	- 6	9		
57	- 12	+10	- 31	+10	+32	23	+13	19		
58	+ 2	+25	- 6	1	+ 3	- 9	— 14	9		
59	- 15	— 3	- 41	+24	+15	+ 2	+17	17		
60	_ 1	_ 2	- 14	+ 4	9	+38	16	12		
61	18	11	_ 2	+36	+ 3	- 1	- 7	11		
62	- 22	+36	+ 10	+13	- 19	24	+ 5	18		
63	- 7	+ 3	- 14	± 0	_ 5	+ 11	+ 13	8		
64	- 17	+ 2	+ 5	— 6	+ 7	+4	+ 6	7		
65	+13	- 16	- 18	+ 3	+ 7	- 3	+14	11		

Bidrag H. 67, N:o 1.

Tä,	Tägliche Abweichung der Kalorienzufuhr vom Mittel in %									
Person	Tag 1	Tag 2	Tagi 3	Tag 4	Tag 5	Tag 6	Tag 7	Mittlere Abwei- chung		
66	+12	+ 5	+ 10	— 17	- 39	+15	+15	16		
67	+12 -3	+ 2	+ 20	- 20	— 35 — 11	+ 13 + 9	+ 3	10		
68	- 11	+ 13	+16	- 1	-41	— 3	+28	16		
69	$\frac{-11}{+6}$	+ 25	+10 $+10$	— 38	— 28	+18	+ 8	19		
70	+ 5	+3	+ 0	- 4	- 6	+ 7	— 5	4		
71	+28	$\begin{bmatrix} + & 5 \\ - & 5 \end{bmatrix}$	二 — 17	_ 2	+ 13	— 6	— <i>3</i>	12		
72	+ 6	-3 + 16	— 17 — 13	+11	+20	<u>-</u> 20	-20	15		
73	— 36	+ 24	— 23	+ 9	+ 33	+4	— 11	20		
74	- 20	+ 12	+ 25	_ 1	+11	-11	-15	14		
75	- 20 - 7	- 9	39	+12	+22	+10	+12	16		
76	+ 2	+ 8	— 14	- 24	- 1	+ 9	+21	11		
77	— 13	+17	24	- 11	4	_ 8	+43	17		
78	+ 20	_ 5	- 30	- 14	+41	_ 2	-10	17		
79	- 7	+ 4	+17	— 12	— 13	+35	-24	16		
80	- 29	+ 2	+ 22	+16	+10	-12	- 8	14		
81	-30°	+ 1	_ 7	+ 7	18	+13	+33	16		
82	- 39	+ 20	+ 22	+ 30	_ 4	16	— 12	20		
83	41	+ 26	+ 21	+10	_ 1	- 10	- 5	16		
84	— 15	+ 31	— 11	+ 9	_ 6	+ 7	- 14	13		
85	— 14	—11	+20	+ 12	- 6	+ 7	_ 9	11		
86	_ 2	+ 4	— 17	+ 17	- 4	+16	- 14	11		
87	_ 7	- 8	— 19	+ 18	+17	+ 3	4	11		
88	- 21	_ 2	+10	+ 23	+10	+ 1	— 21	13		
89	+ 5	+ 10	- 32	+ 9	+15	+24	31	18		
90	_ 7	+ 7	_ 3	+ 19	± 0	_ 5	—11	7		
91	11	+ 9	14	+16	+ 4	_ 4	1	8		
92	+4	+ 1	- 11	+ 18	+ 9	 16	_ 5	9		
93	+ 1	- 7	- 4 2	+29	+ 4	+ 9	+ 5	14		
96	17	_ 1	+14	— 12	+10	<i>— 3</i>	+10	10		
97	— 21	- 5	+ 25	15	+13	+ 9	- 6	13		
98	+ 2	+ 8	+ 22	- 15	+ 8	- 8	— 18	12		

Finska Vet. Soc.

Tägliche Abweichung der Kalorienzufuhr vom Mittel in %									
Person	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Mittlere Abwei- chung	
							1	!	
99		17	+17		22			22	
100	- 4	+ 1	+42	- 1	35	- 1	_ 3	12	
101	- 31	± 0	+40	3	+ 8	— <i>15</i>	+ 1	14	
102	- 32	- 24	+17	- 3	+ 31	+ 6	+ 1	16	
103	14	_ 9	+12	+ 3	— 36	+24	+ 20	17	

Hultgren und Landergren haben ohne Erfolg eine deutlich hervortretende Gesetzmässigkeit in ihren Serien gesucht. Auch meine Beobachtungen zeigen die grösste Abwechselung und Unregelmässigkeit. Ein Umstand verdient gleichwohl hervorgehoben zu werden. In einer grossen Anzahl von Fällen folgt auf einen Maximalwert ein Minimalwert und umgekehrt. Wenn an einem Tage eine für den Bedarf vielleicht ungenügende Kalorienmenge zugeführt worden ist, ist der Organismus bestrebt, diesen Mangel so rasch wie möglich zu decken. Hat dagegen an einem Tage eine Ueberernährung stattgefunden, so macht sich der Nahrungstrieb am folgenden Tage oder in den folgenden Tagen nicht auf dieselbe Weise geltend wie früher. Ich gebe jedoch zu, dass viele Nebenumstände geeignet sind, die direkte Beobachtung dieser Verhältnisse zu trüben.

Unter der Voraussetzung, dass der Hauptsache nach der Gesamtverbrauch der Familie für verschiedene Tage sich nach dem der einzelnen Glieder richtet, und dass die Zufuhr beider parallel geht, was ja nicht ohne weiteres notwendig ist, erbieten einige Proben aus dem Hofe 17, für vier Personen für jeden Tag der Bidrag, H. 67, N:o 1.

Woche gesammelt, in dieser Hinsicht ein gewisses Interesse. Für das Eiweiss und die Kalorien ergeben diese folgendes:

Tag	Eiweiss g.	Kalorien
1	168	4895
2	259	6878
3	271	7 523
4	280	7670
5	186	5081
6	206	6081
7	245	7139

In der ersten Hälfte der Woche steigt die Zufuhr ganz gleichmässig an und sinkt dann, nach dem sie den Maximalwert erreicht hat, rasch auf nur zwei Drittel desselben und beginnt dann wieder gleichmässig zu steigen.

Dies kann ein Werk des Zufalls oder im selben Sinne wirkender Nebenumstände sein, es kann aber auch ein Ausdruck des oben erwähnten Sachverhalts darstellen.

Das Resultat meiner Berechnungen über die täglichen Variationen drücke ich in Uebereinstimmung mit *Tigerstedt* in 1) Grenzwerten, 2) Verteilung der einzelnen Fälle innerhalb dieser, 3) Durchschnittszahlen aus. Für den praktischen Gebrauch sind die letzteren am besten zu handhaben, und obgleich sich ihr Wert für die in Rede stehenden Fragen bestreiten lässt, so bin ich doch meinerseits der Ansicht, dass sie einen solchen besitzen, da das Material ja nicht gar so klein ist.

Folgende Tabelle S. 177 enthält die Durchschnittszahlen der teils durch Berechnung, teils durch Analyse erhaltenen Abweichungen, und zwar die Maximalabweichungen nach oben und nach unten, wie auch die mittleren Abweichungen. Wie ersichtlich findet sich zwischen den berechneten und den analytisch festgestellten Variationen eine sehr grosse Uebereinstimmung.

	Maxim	Maximalabweichung				
	nach oben	nach unten	Mittel	Mittlere Abweichung		
Eiweiss, berechnet	31	26	29	16		
nach Analysen .	21	27	24	16		
Mittel	26	27	27	16		
Fett, berechnet	58	43	51	28		
nach Analysen .	64	61	63	36		
Mittel	61	52	57	32		
Kohlehydrate, berechnet .	25	23	24	13		
nach Analysen .	19	33	26	13		
Mittel	22	28	25	13		
Kalorien, berechnet	22	23	23	13		
nach Analysen .	22	24	23	13		
Mittel	22	24	23	13		

Aus der Tabelle ergeben sich also für die verschiedenen Nahrungsstoffe und die gesamte Energiezufuhr folgende Abweichungen: für Eiweiss die Maximalabweichung im Mittel 27 und die mittlere Abweichung 16, für Fett resp. 57 und 32, für Kohlehydrate resp. 25 und 13 und für die Kalorien resp. 23 und 13 Proz.

Die Grenzwerte betragen für

Eiweiss		maxim. Abweichung nach o	ben 9— 78
		" " nach un	iten 9- 30
		mittlere Abweichung	6 35
Fett .		maxim. Abweichung nach o	ben 11—139
		" " nach un	ten 14 – 74
		mittlere Abweichung	6 54

Bidrag H. 67, N:o 1.

Kohlehydraten	maxim. Abweichung nach oben	7 - 53
	" nach unten	8-52
	mittlere Abweichung	5 - 27
Kalorien	maxim. Abweichung nach oben	5-52
	" nach unten	5 - 54
	mittlere Abweichung	4 - 25

Die maximalen Abweichungen nach unten bewegen sich somit regelmässig innerhalb engerer Grenzen als die

Kalorien. Die Maximalabweichungen nach oben sind oberhalb, die nach unten unterhalb der Abszisse eingetragen.

maximalen Abweichungen nach oben. Die Grenzen für beide wie auch für die mittleren Abweichungen sind aber so weit, dass ich es für nötig hielt, das Material in Gruppen zu teilen, je nachdem die Abweichung 0—5, 6—10,

Finska Vet. Soc.

11—15 % usw. betrug. Die auf jede Gruppe entfallenden Fälle stellte ich sodann in ein prozentisches Verhältnis zur Gesamtanzahl der Fälle. An der Hand der so erhaltenen Prozentzahlen zeichnete ich prozentische Kurven, deren Ordinaten die jeder Gruppe angehörende Anzahl Fälle ausdrückt, während die Abszissen die jede Gruppe begrenzenden Prozentzahlen für die Grösse der Abweichungen

angaben. In Fig. 8 sind die Maximalabweichungen nach oben und unten, und in Fig. 9 die mittleren Abweichungen dargestellt.

Die Maximalabweichungen für das Eiweiss häufen sich in den meisten Fällen um die Zahl 25, stimmen somit nahezu mit der Durchschnittszahl überein.

Die Maximalabweichungen für das Fett sind so äusserst variierend, dass ihnen kaum eine Bedeutung zugemessen werden kann.

Die Maximalabweichungen für die Kohlehydrate befin-Bidrag, H. 67, N:o 1. den sich meistens zwischen den 15 und 25, reichen somit im allgemeinen nicht an die Durchschnittszahl heran.

Die Maximalabweichungen für die potentielle Energie sind am zahlreichsten in der Nähe der Zahl 20 vertreten.

In mehr als einem Drittel der Fälle betragen die mittleren Abweichungen etwa $11-15~^{\rm 0/_{\rm 0}}$, die Resultate stimmen somit gut mit den Durchschnittszahlen überein. Auch für die mittleren Abweichungen zeigt dass Fett grosse Variationen, die meisten Fälle häufen sich gleichwohl um 20 bis 30 Proz.

Die Ergebnisse meiner Untersuchungen sind also fast dieselben, zu denen Tigerstedt auf Grund eines geringeren Materiales gelangte.

In praktischer Hinsicht liesse sich aus dem hier ausgeführten folgern, dass die Kost in öffentlichen Anstalten als mit den eigenen Gewohnheiten des Volkes übereinstimmend angesehen werden kann, wenn sie Abweichungen von der Durchschnittszahl zulässt, welche für das Eiweiss, die Kohlehydrate und die gesamte Energiezufuhr höchstens ein Viertel, im Mittel ein Achtel derselben betragen. Für das Fett dagegen können die Abweichungen höchstens den halben Betrag, im Mittel ein Viertel erreichen.

Hultgren und Landergren 1) verglichen für ihre schwedischen Arbeiter die Sonntagskost mit der Kost der Wochentage. Sie stellten fest, dass am Sonntage die Eiweissmenge und die gesamte Energiezufuhr nahezu die gleichen

Hultgren und Landergren, Über die Ernähr. schwed. Arb. S. 76.

waren wie an den Wochentagen, die Fettzufuhr hingegen absolut und relativ grösser, während die Kohlehydrate in geringerem Verhältnis vertreten waren. Während an den Wochentagen das Verhältnis Fett: Kohlehydrat durchschnittlich 1:6,92 betrug, gestaltete es sich an den Sonntagen wie 1:4,51.

Moquette 1) fand bei holländischen Arbeitern das gleiche Verhalten. Im Sommer war das Verhältnis Fett: Kohlehydrat an den Wochentagen gleich 1:9,29, am Sonntag gleich 1:7,10; im Winter resp. 1:8,60 und 1:6,80.

Es ist wohl kaum nötig, meine Berechnungen über das Verhältnis der Kost am Sonntage und an den Wochentagen bei der finnländischen Landbevölkerung hier in Detail anzuführen, und begnüge mich daher, nur das Hauptresultat mitzuteilen.

Die mittlere Energiezufuhr am Sonntage stimmt mit der an den Wochentagen fast genau überein; das gleiche ist auch mit dem Eiweiss der Fall. Dagegen ist die durchschnittliche Menge des genossenen Fettes am Sonntage um $15~^{0}/_{0}$ grösser als an den Wochentagen, und dem entsprechend die Zufuhr von Kohlehydraten am Sonntage c. $\pm~^{0}/_{0}$ kleiner als an den Wochentagen.

Wenn die mittlere Tageszufuhr eines erwachsenen Mannes beträgt

136 g Eiweiss, 83 g Fett, 580 g Kohlehydrate = 3970 Kalorien,

so würde die Sonntagskost für ihn bestehen aus

 $^{^{1})}$ Moquette, Onderzoekingen over volksvoeding etc. S. 117. Bidrag, H. 67, N:o 1.

137 g Eiweiss, 95 g Fett, 557 g Kohlehydraten = 3990 Kalorien,

und die Kost an den Wochentagen aus

136 g Eiweiss, 81 g Fett, 584 g Kohlehydraten = 3966 Kalorien.

Das Verhältnis zwischen Fett und Kohlehydraten ist an den Wochentagen im Mittel wie 1:7,21, am Sonntage wie 1:5,86.

Wichtiger als die Kenntnis der vom einen Tage zum anderen stattfindenden Variationen der Kost ist vielleicht die Kenntnis darüber, wie der Arbeiter seine Kost auf die verschiedenen Mahlzeiten verteilt, da man bei der Aufstellung von Kostmassen natürlich diesem Punkte eine grosse Aufmerksamkeit widmen muss.

Tigerstedt 1) hat auch in dieser Hinsicht das 1891 vorliegende Material zusammengefasst. Seitdem habe ich die Verteilung der Kost auf die einzelnen Mahlzeiten bei finnländischen Studenten und den Schülern an einer landwirtschaftlichen Schule untersucht, und Ehrström 2) hat berechnet, ein wie grosser Teil der gesammten Kraftzufuhr des Tages in Finnland auf die verschiedenen Mahlzeiten entfällt. Aus

¹⁾ Tigerstedt, Utspisningen i allmänna anstalter, S. 139-140.

²) Ehrström, Finska Läkaresällskapets Handlingar, 47, 1905, S. 320.

allen diesen Untersuchungen ergibt sich, dass in der Regel sowohl bei den körperlich arbeitenden als bei den besser situierten Klassen die Tageszufuhr auf drei Mahlzeiten verteilt wird, eine, einige Stunden nach dem Aufstehen, eine nach Schluss der Tagesarbeit und eine dritte zwischen diesen. Durch Einschalten einer Zwischenmahlzeit zwischen Frühstück und Mittag oder Mittag und Abendbrot wird die Zahl der Mahlzeiten auf vier, an einigen Stellen, wo beide Zwischenmahlzeiten genossen werden, auf fünf vermehrt. Wenn aber auch diese Zwischenmahlzeiten eingenommen werden, so zeigt doch die Erfahrung, dass sie nur klein sind. Die Verteilung auf drei Hauptmahlzeiten ist für alle Völker und Klassen gemeinsam.

Auch die finnländische Landbevölkerung hat drei Mahlzeiten, soweit es sich um Aufnahme wirklicher Nahrung handelt. Dazu kommt aber das Kaffeetrinken, das ebenso regelmässig dreimal täglich geschieht. Gleich nach dem Aufstehen, gewöhnlich um 5—6 Uhr morgens, wird Kaffee gekocht, von dem die Erwachsenen vor Beginn der Arbeit gewöhnlich wenigstens zwei Tassen trinken (siehe das nächste Kapitel!), in der Regel ohne etwas dazu zu geniessen. Der Nährwert des mit dem Kaffee verzehrten Zuckers und der Sahne ist gering und braucht nicht berücksichtigt werden. Zwischen 10—12 U. wird wieder Kaffee getrunken, und der Nachmittagskaffe schliesslich um 4—5 nachm.

Die Zeit für die Hauptmahlzeiten liess ich in jeder Familie notieren. Ich beschränke mich darauf das Material in Gruppen zu vereinigen: Frühstück wurde verzehrt um 7—8 U. in $10 \%_0$, 8-9 , $80\%_0$ später als 9 , $10\%_0$ Mittag wurde eingenommen um 1-2 , $45\%_0$, 2-3 , $45\%_0$ vor 1 U. und nach 3 , $10\%_0$ Abendbrot wurde verzehrt vor 7 , $30\%_0$ um 7-8 , $50\%_0$ nach 8 , $20\%_0$

In Bezug auf die Verteilung der Nahrungsstoffe und Energie auf die drei Mahlzeiten der finnländischen Landbevölkerung habe ich direkte analytische Untersuchungen an 15 Personen angestellt, die meisten aus der Gegend von Iisalmi. Die hier gewonnenen Erfahrungen lassen sich natürlich nicht ohne Weiteres auf andere Gegenden des Landes übertragen, gleichwohl glaube ich in Anbetracht der Uebereinstimmung, welche auch sonst in diätetischer Hinsicht in verschiedenen Teilen des Landes herrscht, und da ausserdem, wie wir finden werden, das Resultat mit dem von Verf. in einer finnländischen landwirtschaftlichen Schule gefundenen übereinstimmt, wo die Kost nach der der Landbevölkerung eingerichtet war, dass auch in anderen Teilen des Landes die Verteilung auf die Mahlzeiten der Hauptsache nach mit der von mir gefundenen übereinstimmt.

Tabelle XIV enthält für sämtliche Versuche die prozentische Verteilung von Eiweiss, Fett. Kohlehydraten und Kalorien auf Frühstück, Mittag und Abendbrot.

Tabelle XIV.

Die prozentische Vertheilung der Nahrungszufuhr auf die Mahlzeiten. Reihe I.

Versuchs-		Früb	stück		Mittag				Abendbrot			
person N:o	Eiweiss	Fett	Kohle- hydrate	Kalorien	Eiweiss	Fett	Kohle- hydrate	Kalorien	Eiweiss	Fett	Kohle- hydrate	Kalorien
											i	
84	35	33	29	31	42	40	48	44	23	27	23	25
34	32	27	44	38	39	49	33	37	29	24	23	25
35	29	21	38	33	36	53	34	38	35	26	28	29
36	34	34	39	36	41	42	37	39	25	24	24	25
37	32	38	38	36	35	32	31	32	33	30	31	32
38	34	.35	35	35	36	35	36	35	30	30	29	30
40	38	40	34	35	30	28	36	33	32	32	30	32
42	35	42	37	38	32	26	31	31	33	32	32	31
45	36	40	37	37	36	48	40	40	28	12	23	23
46	36	45	37	37	34	40	38	38	30	15	25	25
47	37	39	38	38	34	49	41	40	29	12	21	22
48	40	41	45	43	33	44	35	36	27	15	20	21
49	33	33	34	34	33	36	35	35	34	31	31	31
50	34	36	36	35	32	34	35	34	34	30	29	31
51	33	43	37	37	_33	32	34	33	34	25	29	30
Mittel	35	36	37	36	35	39	36	36	30	25	27	28

Das Eiweiss wird somit zugeführt

im Frühstück zu 29-40im Mittel 35 $^{\rm 0}/_{\rm 0}$

,, Mittag , 30-42 , , $35^{-0}/_{0}$

, Abendbrot , 23—35 , , 30 $^{\rm 0/_{\rm 0}}$

Bidrag, H. 67, N:o 1.

Das Fett wird zugeführt

im Frühstück zu 21-45 im Mittel $36 \, {}^{0}/_{0}$ " Mittag " 26-53 " " $39 \, {}^{0}/_{0}$ " Abendbrot " 21-32 " " $27 \, {}^{0}/_{0}$

Die Kohlehydrate werden zugeführt

im Frühstück zu 29—45 im Mittel 37 $^{0}/_{0}$ " Mittag " 31—48 " " 36 $^{0}/_{0}$ " Abendbrot " 21—32 " " 27 $^{0}/_{0}$

Die Kalorienzufuhr beträgt

im Frühstück 31—43 im Mittel 36 $^{\circ}/_{0}$, Mittag 31—44 , , 36 $^{\circ}/_{0}$, Abendbrot 21—32 , , 28 $^{\circ}/_{0}$

Am grössten sind die Variationen beim Fett, weniger bei dem Eiweiss, den Kohlehydraten und den Kalorien. Alle vier verteilen sich der Hauptsache nach gleich auf die drei Mahlzeiten.

Des Vergleiches wegen führe ich von den in der Litteratur bekannten Kostmassen nur drei an, welche sich auf Arbeiter beziehen, die ihre tägliche Nahrungszufuhr auf drei Mahlzeiten verteilten, und deren Resultate mit genügender Ausführlichkeit beschrieben worden sind. Diese sind: 1) ein deutscher Arbeiter untersucht von Forster, 1) 2) schwedische Arbeiter nach Hultgren und Landergren, 2) 3) finnländische landwirtschaftliche Schüler nach Verf. 3)

¹) Forster, Zeitschr. f. Biologie, 9, 1873, S. 393—397.

²) *Hultgren* und *Landergren*, Untersuchung der Ernährung schwedischer Arbeiter, S. 64.

³⁾ Sundström, Skand. Arch. f. Physiol. 19, 1906, S. 95.

In folgender Tabelle sind die Resultate dieser Untersuchungen zusammengestellt:

			Kohle-	
$Fr\"{u}hst\"{u}ck.$	Eiweiss	Fett	hydr.	Kal.
deutscher Arbeiter	25	11	33	27
schwedischer "	23	41	35	34
finnländischer "	26	36	37	35
finnländische Landbevölkerung	35	36	37	36
Mittag.				
deutscher Arbeiter	33	58	31	37
schwedischer "	47	27	33	36
finnländischer "	45	38	36	38
finnländische Landbevölkerung	35	39	36	36
Abendbrot.				
deutscher Arbeiter	42	31	36	36
schwedischer "	30	32	32	30
finnländischer "	29	26	27	27
finnländische Landbevölkerung	30	25	27	28

Nach einer von *Ehrström* zusammengestellten Enquête über die Verteilung der Kost in den Krankenhäusern Finnlands entfallen von den Gesammtkalorien auf

> das Frühstück 38 Proz. den Mittag 37 " das Abendbrot 25 "

Wie ersichtlich bieten die hier zusammengestellten finnländischen Kostsätze hinsichtlich ihrer Verteilung auf Bidrag, H. 67, N:o 1.

Mahlzeiten eine sehr grosse Uebereinstimmung dar: die Ergebnisse der vorliegenden Untersuchung stimmen mit denen in der landwirtschaftlichen Schule zu Koivikko völlig überein. Den einzigen bemerkenswerten Unterschied finden wir in der Verteilung des Eiweisses auf Mittag und Frühstück. Während die landwirtschaftlichen Schüler den grösseren Teil des Eiweisses auf den Mittag verlegten, haben meine Versuchspersonen es gleichmässig auf beide Mahlzeiten verteilt.

Die Prozentzahl der Kalorien ist in beiden Untersuchungen nahezu dieselbe wie bei Ehrström.

Was speziell die Kalorienzufuhr im Mittagsessen betrifft, so finden wir übereinstimmende Angaben auch bei den ausländischen Kostmassen: der deutsche und der schwedische Arbeiter geniessen zum Mittag 36—37 % der Kalorien der ganzen Tageszufuhr. Dagegen geniesst der Deutsche bei dieser Mahlzeit verhältnismässig mehr Fett, der Schwede mehr Eiweiss.

Zum Frühstück verzehrten Deutsche und Schweden weniger, zum Abendbrot mehr als die Finnländer. Dadurch, dass der schwedische Arbeiter zum Frühstück eine ansehnliche Menge Fett genoss, ist seine gesammte Energiezufuhr bei dieser Mahlzeit nur um ein weniges geringer als die des finnländischen Arbeiters.

IX. Volumen und qualitative Beschaffenheit der Nahrung. Genussmittel.

Die Kost muss nicht allein dem Körper eine genügend grosse Energiemenge zuführen, sie muss auch so beschaffen sein, dass sie die Esslust anregt und unterhält.

Finska Vet. Soc.

"So sehr man auch geneigt ist, die Verfeinerung des Geschmackes als einen Luxus oder eine Verweichligung anzufeinden, so kann man sich doch der Einsicht nicht verschliessen, dass die Verbesserung der Ernährung einen Gewinn an Gesundheit und Kraft für alle Volksklassen bedeutet", und "Nachlässigkeit in der Ernährung, in der Wahl und Zubereitung der Speisen ist ebenso gesundheitsschädlich wie Unmässigkeit und Völlerei", und "die Kochkunst ist nicht bloss Luxus, sondern eine hygienisch notwendige Sache, welche aus dem Hause der Reichen in die Wohnungen der Arbeiter und selbst der Armen hinausgeht, um deren Wohlbehagen und Gesundheit zu fördern" (Leyden 1).

v. Rechenberg²) hebt hervor, dass die von ihm untersuchten Weber in Sachsen, obgleich sie sich satt gegessen. eine Energiemenge verzehrt hatten, die allzu gering war und sie auf einem Stadium der Unterernährung erhalten hatte. Er erklärt diese Tatsache damit, dass ihre Kost allzu einförmig war.

In der Litteratur finden sich sehr spärliche Mitteilungen über die qualitative Beschaffenheit der Nahrung bei frei gewählter Kost. Dies darf uns auch nicht Wunder nehmen. Die Beurteilung der quantitativen Nahrungszufuhr ist eine leichtere Sache, hier besitzt man in einem gewissen Grade physiologische Tatsachen, um die Resultate damit zu vergleichen. Zur Beurteilung der qualitativen Beschaffenheit einer Kostform sind fachmännische Kenntnisse in der Kochkunst erforderlich, sonst werden die Urteile

¹) Leyden, Handbuch der Ernährungstherapie, Leipzig 1897, Bd. I, S. 217—220.

 $^{^2)\} v.\ Rechenberg,$ Die Ernährung der Handweber, S. 58 ff. Bidrag, H. 67, N:o 1.

über Gebühr subjektiv. Teils weil ich keine derartigen Kenntnisse besitze, teils weil die Untersuchung der quantitativen Verhältnisse der Kost der finnländischen Landbevölkerung meine disponible Zeit vollständig in Anspruch nahm, ist eine eingehendere Untersuchung über die qualitative Beschaffenheit dieser Kost verabsäumt worden. Ich stelle mir vor, dass gerade dieses Gebiet ein dankbares Untersuchungsfeld für eine qualifizierte Person bilden müsste.

In einem von der Finnländischen Gesellschaft der Ärzte am 23. Mai 1903 angenommenen Komissionsgutachten wurde vorgeschlagen, dass eine Enquête über die Verbreitung der chronischen Magenkrankheiten im Lande von einer genauen Untersuchung der hygienischen, vor allem der diätetischen Verhältnisse in den betreffenden Gegenden begleitet sein sollte. 1)

Backman bringt gleichfalls diese Sache zur Sprache. 2) Da seine Äusserung die einzigen bislang zugängigen Angaben über die Ernährung der finnländischen Landbevölkerung enthält, so erlaube ich mir sie zum Teil in extenso wiederzugeben.

"Unter solchen Faktoren (praedisponierend für die Entstehung chronischer Magenleiden) seien in erster Reihe genannt Uebelstände in diätetischer Hinsicht. Eine genaue Untersuchung der bei unserer Landbevölkerung in verschiedenen Teilen des Landes herrschenden Diät wäre in dieser Hinsicht von ausserordentlicher Bedeutung. Da nun derartige Untersuchungen bis auf weiteres fehlen, muss man sich mit den ungefähren Angaben über Quantität und Qualität der Nahrung, die zu erhalten sind, begnügen, denn schon hieraus dürften sich wichtige Schlüsse ziehen lassen."

¹) Finska Läkaresällskapets Handlingar, 45, 1903, S. 628.

²) Backman, Om behandlingen af de hos allmogen i Norden vanligaste magsjukdomarna, H:fors, 1904, S. 10.

"Die wichtigsten Bestandteile der Nahrung unserer Landbevölkerung sind bekanntlich Brot, Kartoffeln, Milch, Mehl- und Grützspeisen. Frisches Fleisch kommt vielerorts nur als Feiertagsessen vor und wird reichlich nur eine kurze Zeit des Jahres (der Schlachtzeit) genossen. Frischer Fisch desgleichen in grösserer Menge nur bei den Küstenbewohnern. Gezalzen dagegen kommen Fleisch und Fisch etwas allgemeiner vor. Die Konsumption von Butter dürfte, an manchen Orten wenigstens, recht gering sein; doch ist hier oft der Grad des Vermögens der bestimmende Faktor. Speck und Käse bilden auch keinen integrierenden Teil der täglichen Kost; Erbsen kommen in nennenswertem Grade nur in Süd- und Westfinnland zur Anwendung. Was die Qualität einiger der gewöhnlichsten Nahrungsmittel betrifft, so ist das Brot oft zu stark gesäuert infolge der langdauernden Gährung, der man den Teig bei Bereitung des Brotes unterwirft. Dieser Prozess dauert oft 2-3, ja selbst 5-6 Tage; meistens allerdings 1-2 Tage. Die Milch wird fast nie unabgerahmt genossen, oft, besonders im Innern des Landes, wird mit Vorliebe saure Milch angewandt. Anstatt mit Milch muss sich jedoch der ärmere Teil der Bevölkeruug oft mit Dünnbier begnügen, oder auch wird dieselbe durch Kaffee, oft stark mit Zichorie gemischt, ersetzt. Das Kaffeetrinken ist übrigens in allen Schichten unseres Volks verbreitet und kommt an manchen Orten im Üebermaass vor, so dass eine tägliche Konsumption von 6-10 Tassen keine Seltenheit ist."

Backman ist der Ansicht, dass in hygienischer Beziehung die Mängel der Nahrung der finnländischen Landbevölkerung zu suchen seien in:

- einer zu voluminösen Kost, wegen allzu reichlichen Gebrauchs von Kohlehydraten,
- 2) einer zu sauren Kost, beruhend auf dem Reichtum organischer Säuren,
- 3) zu salziger Kost,
- 4) mangelhafter Zubereitung der Kost und zu viel s. g. trockener Speise,

Bidrag, H. 67, N:o 1.

- 5) ungeeigneter Temperatur der Kost,
- 6) zu rasch eingenommenen Mahlzeiten.
- 7) zu reichlichem Kaffeegebrauch.

Daneben erwähnt er noch das Verzehren verdorbener Speisen.

Die obige Reihenfolge stammt von mir, ich wollte mir dadurch bei der Mitteilung meiner eigenen Beobachtungen einen Ausgangspunkt verschaffen.

Direkte Beobachtungen über die in den Punkten 2, 5 und 6 hervorgehobenen Umstände habe ich nicht machen können; auch ist die im ersten Teil von Punkt 4 erwähnte Zubereitung nicht wissenschaftlich beachtet worden. Mein subjektives Urteil lautet, dass in dieser Hinsicht allerdings ernste Missstände vorhanden sind.

Aufschlüsse über den Säuregehalt der Kost hätte man sich ja unschwer verschaffen können, wenn man bei den Mahlzeiten Generalproben gesammelt, sie unmittelbar darauf in Wasser ausgelaugt und dann auf gewöhnliche Weise titriert hätte. Diese einfache Art ist u. a. in Amerika zur Bestimmung des Säuregehalts im Brot angewandt worden. 1) Aus praktischen Gründen musste ich leider davon abstehen.

Man kann sich indessen eine Vorstellung von den Verhältnissen bilden, wenn man die in grossen Mengen (Max. in Reihe I 2262 g) verzehrte saure Milch berücksichtigt. Ein in den östlichen Teilen des Landes gewöhnliches Nahrungsmittel ist das sog. "Kokkeli". Abgerahmte Milch wird in grossen Gefässen mehrere Wochen gesäuert. Je nach Bedarf versieht man sich von diesem Vorrat.

¹) U. S. Departm. of Agricult., Bull. 67, S. 19.

Man kann sich vorstellen, welche Mengen von Milchsäure auf diese Weise dem Magen zugeführt werden.

Die Zubereitung der gekochten Speisen lässt offenbar viel zu wünschen übrig. Rohwaaren, die eine geschickte Hausfrau zu schmackhaften Gerichten verwandeln würde. sind in vielen Bauerhöfen für den an Besseres Gewöhnten fast ungeniessbar. Natürlich ist dies eine Regel mit vielen Ausnahmen. Speziell scheint mir, dass in den inneren und östlichen Teilen des Landes gewisse Kenntnisse in der Kochkunst vorhanden wären, wenn die Hausmütter sich nur die Mühe geben wollten, sie anzuwenden. Viele Volksgerichte, welche ich hier nicht aufzählen kann, sind wohl der Beachtung wert. Dagegen steht, z. B. in den schwedischen Gegenden, besonders in Süd-Osterbotten, selbst in nahe der Stadt gelegenen Dörfern, die Kochkunst auf einem sehr niedrigen Standpunkte. Die Hausmütter selbst sind sich dieses Mangels bewusst und beklagen ihn. Das Heilmittel wäre Kochunterricht in jeder Volkschule in der Stadt und auf dem Lande.

Meine direkten Beobachtungen über die qualitative Beschaffenheit der Nahrung der finnländischen Landbevölkerung haben folgendes ergeben.

Das Volumen der Nahrung. Munk 1) gibt für mittlere Arbeit ein Volumen von 1600 bis 1850 g als Norm an und bezeichnet ein 2500 g übersteigendes Volumen als ekzessiv. Rubner 2) gibt als Grenzwerte des Volumens bei Fleischkost 738—948 g, bei vegetabilischer Kost 1237—4248 g an.

¹) *Munk*, Ernährung des gesunden und kranken Menschen, 3. Aufl. Wien und Leipzig, 1895, S. 323.

²) Rubner, Handbuch der Ernährungstherapie, 1897, Teil. I, S. 135.

Bidrag, H. 67, N:o 1.

Bei den meisten Untersuchungen über Arbeiterkost ist indessen ein viel grösseres Volumen als das von *Munk* empfohlene beobachtet worden. *Hultgren* und *Landergren* fanden für schwedische Arbeiter durchschnittlich ein Gesamtvolumen von 4097 g, in denen 4023 Kalorien enthalten waren, also etwa 1 Kalorie pro Gramm. Dasselbe Verhältnis finden wir bei finnländischen landwirtschaftlichen Schülern: 4817 g Nahrung geben 4770 Kalorien.

In Bezug auf das Volumen der Kost bei den Versuchspersonen in Reihe I gibt Tabelle XV eingehende Angaben.

1					Ma1:	ah a	Wo:h1:	aha
		Kir	nder	Männli Individ		Weibliche Individuen		
	17: 1 0	- T	Tz: 1 0	0 T	T., 11	0.15.7	NE:: 1 10 15	
	Kinder 2—3 J.		Kinder 8		Jünglinge 1		i	
	53	1169	17	2277	92	2467	11	3071
	103	986	47	1952	99	1610	57	1755
1	78	950	38	2016	22	2211	7.	3444
	Mittel	1035	43	1451	46	1456	41	1557
	Kinder 4-	-5 J.	65	2355	50	1894	98	2106
	13	1294	93	1708	33	1956	Mittel	2386
	18	1492	74	2327	56	2670	Fraue	en
	102	1701	51	1752	36	2551	$\dot{27}$	1672
	48	1342	75	2155	64	4539	32	2255
	Mittel	1456	Mittel	1999	Mittel	2373	55	1277
1	Kinder 6-	7 T	Kinder 10-	-11 J.	Männ	er	67	2882
	69	1902	8	1857	63	4271	72	3217
	77		12	1760	45	2263	91	2356
	16	2087	23	1486	34	4331	26	2346
	52	1583	100	1630	21	3313	31	1690
	52 58	1372	37	2452	30	2343	35	2592
ļ	28	1639	42	2712	19	2994	44	2030
١	101	1884	68	,2006	9	4199	62	2257
1	76	1555	73	1845	29	2657	20	1474
ŀ		1727	Mittel	1969	5	3471	61	2300
ı	Mittel	1719			14	3426	6	3370
Ì					96	4258	10	2851
					66	4134	15	2076
ı					70	4241	. 71	2611
					24	3799	40	2914
					84	3614	97	1793
					89	3606	80	3404
					59	3151	39	2030
					Mittel	3534	49	2213
							25	1885
						İ	60	2366
							90	1863
						1	Mittel	2309

Bidrag, H. 67, N:o 1.

Bei Kindern von 2—3 Jahren beträgt das Volumen etwa 1 kg, bei Kindern von 4—5 Jahren 1,5 kg und steigt dann, so dass es bei Kindern von 8—11 Jahren 2 kg ausmacht, bei jungen Personen beiderlei Geschlechts und bei Frauen zwischen 2300 und 2400 g und bei erwachsenen Männern etwa 3,5 kg beträgt. In Bezug auf die Zufuhr von potentieller Energie ergeben meine Ermittlungen, dass bei Kindern jedes Gramm der Bruttokost 1 Kalorie zuführt, während bei Erwachsenen im Mittel 1 gramm der Nettokost demselben Wärmewerte entspricht.

Gehalt der Kost an Kochsalz. Da das in gesalzenem Fleisch, gesalzenem Fisch u. desgl. enthaltene Kochsalz nicht bestimmt worden ist, so ist aus meinen Beobachtungen keine Kenntnis über die Gesamtmenge Kochsalz zu erhalten. Ich hatte nur die Möglichkeit das als freies Kochsalz im Haushalt angewandte zu berechnen. Dieses bezeichnet keineswegs das wirklich verzehrte Kochsalz, denn ein Teil muss ja verloren gegangen sein (z. B. im fortgegossenem Wasser nach dem Kochen von Kartoffeln). Für einen erwachsenen Mann berechnet, beträgt der Verbrauch an freiem Kochsaltz brutto 2—89 g, im Mittel 34 g pro Tag.

König berechnet für eine erwachsene Person 17 g Kochsalz. 1) Schon das freie Kochsalz steigt bei der finnländischen Landbevölkerung durchschnittlich auf das Doppelte. Sollte dieser Zahl eine Beweiskraft zuzumessen sein, so wäre allerdings die Kost unserer Bevölkerung als sehr reich an Kochsalz zu betrachten.

Das Verhältnis zwischen der zubereiteten Kost und der sog. trockenen Kost. Für sämtliche Personen der

¹) König, Chemie der menschlichen Nahrungs- und Genuss- mittel, 4 Aufl., I, S. 1368.

Reihe I habe ich diesbezügliche Berechnungen angestellt. Um Raum zu ersparen gebe ich indessen hier nur die Grenzwerte und das Mittel.

Die folgenden Zahlen beziehen sich auf die gekochte Kost, inklus. gekochten Kartoffeln. In Prozent von der gesammten Kost enthielt diese

im	ganzen				15—75	im	Mittel	$47^{-0}/_{0}$
an	Eiweiss				16 - 65	27	22	40 0/0
an	Fett .				4 - 82	77	79	$42~^{0}/_{0}$
an	Kohlehy	dr	ate	n	12-71	27	**	$39^{-0}/_{0}$
an	Kalorier	1			1669	22	27	39 0/0

Die Variationen sind auch hier am grössten für das Fett, für die übrigen, Gesamtmenge, Eiweiss, Kohlehydrate und Energie, ungefähr von gleicher Grösse.

Zieht man die Kartoffeln ab, so bleiben für die übrigen gekochten Speisen:

an	Eiweiss				$32~^{0}/_{0}$
an	Fett.				$41^{-0}/_{0}$
an	Kohlehy	dra	ate:	n	$21^{-0}/_{0}$
an	Kalorier	ı			$25^{-0}/_{0}$

Vier Zehntel der gesamten Energiezufuhr sind somit durch gekochte Speisen, inklus. Kartoffeln gedeckt worden; zieht man diese ab, so bleibt genau ein Viertel der Energiezufuhr in der genossenen gekochten Speise.

Die Schüler der landwirtschaftlichen Schule zu Koivikko verzehrten gleichfalls etwa vier Zehntel $(37\,^{\circ}/_{\circ})$ in Form von gekochter Speise inklus. Kartoffeln. Zieht man diese ab, bleiben $29\,^{\circ}/_{\circ}$ der Kalorien, die durch die übrige gekochte Kost gedeckt wurden.

Bidrag H. 67, N:o 1.

Die finnländischen Studenten verzehrten ungefähr die Hälfte ihrer Nahrung (48 $^{\rm 0}/_{\rm 0}$) in Form von gekochten Speisen, ausser Kartoffeln.

Trockenes Essen ist somit in überwiegender Menge in der Nahrung der untersuchten Landbevölkerung enthalten, gleichwohl nicht in solchem Verhältnis, dass es ohne weiteres als unhygienisch angesehen werden könnte.

Abwechselung der Kost. Ausser den 20 Familien. von denen ich selbst Speisezettel für eine Woche sammelte, bekam ich aus den Enquêteheften 62 vollständige Speisezettel für die gleiche Zeit. Da die Veröffentlichung dieser 82 Speiseordnungen zu viel Raum beanspruchen würde, und da sie keine so grosse Abwechselung darbieten, dass dies notwendig wäre, so beschränke ich mich darauf, 10 derselben auszuwählen, 5 aus Reihe I und 5 aus Reihe II, und zwar so, dass durch diese, so viel möglich, auch die übrigen repräsentiert werden.

Ich teile diese Speisezettel in 3 Gruppen ein, solche, die sich durch sehr grosse Einförmigkeit auszeichnen, indem dasselbe Gericht fast in allen Mahlzeiten der Woche wiederkehrt, solche, wo dies allerdings nicht der Fall war, die Kost aber immerhin sehr einförmig war, und solche, in denen sich eine grössere Abwechselung geltend macht.

I. (N:o 97) Zuerst sei die Kost eines Fischerlappen, Eigentümers eines kleinen Landbesitzes, angeführt. Seine Speiseordnung trägt so deutlich als möglich das Gepräge der Hauptnahrung. Nur in 5 Mahlzeiten der Woche fehlt Fisch. Ausserdem besteht die Kost aus Brot und saurer Milch.

Sonntag. Fr. Brot und saure Milch.

M. Gebratener Fisch, Brot u. saure Milch.

A Gebratener Fisch, Brot, Butter u. saure Milch.

Montag. Fr. Gekochter Fisch, Brot u. saure Milch.

Finska Vet. Soc.

M. Brot und saure Milch.

A. Gerösteter Fisch u. saure Milch.

Dienstag. Fr. Fisch, Brot u. saure Milch.

M. Gebratener Fisch, Brot u. saure Milch.

A. Fisch.

Mittwoch. Fr. Gekochter Fisch, Brot u. saure Milch.

M. Plinzen, Brot, Butter u. saure Milch.

A. Fischsuppe.

Donnerstag. Fr. Fisch. Brot u. saure Milch.

M. Brot u. saure Milch.

A. Brot u. saure Milch.

Freitag. Fr. Fisch, Brot u. saure Milch.

M. Gebratener Fisch u. saure Milch.

A. Fischsuppe, Frot.

Sonnabend. Fr. Gekochter Fisch und Brot.

M. Gekochter Fisch, Brot u. saure Milch.

A. Fischsuppe, gebratener Fisch.

II. (N:o 36) Ein schwedischer Bauerhofbesitzer hat dem Speck einen übertrieben hervorragenden Platz auf dem Speisezettel eingeräumt. Er hat jedoch in Bezug auf die anderen Gerichte, Kartoffeln, Mehl und Grützespeisen und Erbsen, eine gewisse Abwechselung zu Stande gebracht.

Sonntag. Fr. Speck mit Kartoffeln, Brot, Butter, Milch.

M. Fleisch, Reisbrei, Brot, Butter, Milch.

A. Speck, Brot, Butter, saure Milch.

Montag. Fr. Speck mit Kartoffeln, Brot, Butter, Milch.

M. Speck, Brot, saure Milch.

A. Speck, Roggenmehlbrei, Brot, Milch.

Dienstag. Fr. Speck, Mehlbrei, Brot, Butter.

M. Speck, Brot, Butter, Milch.

A. Speck, Gerstenbrei, Brot.

Mittwoch. Fr. Speck, Gerstengrützsuppe, Brot, Butter.

M. Speck, Brot, saure Milch.

A. Haferbrei, Brot, Butter, Milch.

Donnerstag. Fr. Speck mit Kartoffeln, Brot, Butter.

Bidrag H. 67, N:o 1.

M. Erbsensuppe mit Fleisch, Brot, Butter, Milch.

A. Erbsensuppe, Fleisch, Brot, Milch.

Freitag. Fr. Speck mit Kartoffeln, Brot, Milch.

M. Speck, Brot, saure Milch.

A. Speck, Griesmilchsuppe, Brot, Milch.

Sonnabend. Fr. Speck mit Kartoffeln, Brot, Butter.

M. Speck und Kartoffelsuppe, Brot, Milch.

A. Reisbrei, Brot, Butter, Milch.

III. (N:o 18) Ein Blick auf den folgenden Speisezettel eines schwedischen Hofbauern in Süd-Osterbotten lässt deutlich die Einförmigkeit in Bezug auf Mehl- und Grützespeisen hervortreten. Grützoder Mehlbrei zum Frühstück, Mittag und Abendbrot. Kartoffeln mit Strömlingen und Milchsauce sind 4 Mal vorgekommen. Einmal Plinzen aus Blut und einmal gedämpftes Fleisch bilden die einzige Abwechselung.

Sonntag. Fr. Brot, gekochte Milch, Brei.

M. Kartoffeln mit Fleisch, Brot, Milch.

A. Griesmilchsuppe.

Montag. Fr. Kartoffeln und gedämpft Fleisch, Griesmilchsuppe.

M. Kartoffeln mit Milchsauce, Brot. Milch.

A. Gerstenmehlbrei und Milch.

Dienstag. Fr. Gerstenmehlbrei, Quark, Brot.

M. Kartoffeln mit Strömlingen und Milchsauce, Gerstenmehlbrei, Quark, Brot.

A. Griesmilchsuppe und Brot.

Mittwoch. Fr. Plinzen aus Blut.

M. Kartoffeln mit Strömlingen und Milchsauce, Milch, Brot.

A. Gerstenmehlbrei mit Milch.

Donnerstag. Fr. Griesmilchsuppe mit Brot.

M. Kartoffeln mit Milchsauce, Griesmilchsuppe und Brot.

A. Gerstenmehlbrei und Milch.

Freitag. Fr. Quark, Gerstenmehlbrei mit Milch.

Finska Vet. Soc.

- M. Kartoffeln mit Strömlingen und Milchsauce, Gerstenmehlbrei, Quark und Brot.
- A. Gerstenmehlbrei und Milch.

Sonnabend. Fr. Weissbrot.

- M. Kartoffeln mit Strömlingen u. Milchsauce, Brot, Milch.
- A. Brot, Brei, Milch.

IV. (N:o 30) Schliesslich finden wir bei einem finnischen Bauern im südwestlichen Finland ein starkes Uebergewicht der Kartoffeln in der Kost. Zu 20 Mahlzeiten gekochte Kartoffeln, dazu in der 21. Kartoffelmus. Es ist nicht angegeben, ob die Kartoffeln geschält oder ungeschält gekocht waren, der Unterschied zwischen diesen Alternativen ist sehr gering. Gerade aus Kartoffeln könnte eine in Kochkunst erfahrene Frau zahlreiche einfache Gerichte herstellen. "Man wäre imstande mehrere Monate hindurch täglich Kartoffeln in ständiger Abwechselung zu bringen" (Sternberg¹)). Die übrigen Gerichte bilden auch hier eine gewisse Abwechselung.

- Sonntag. Fr. Kartoffeln, gesalzener Fisch, Brei, Brot, Butter, Milch.
 - M. Kartoffeln, frischer Fisch, Brot, Butter, Milch.
 - A. Kartoffeln, gesalzener Fisch, Brot, Butter, Milch.

Montag. Fr. Kartoffeln, gesalz. Fisch, Sauce, Brot, Milch.

M. Kartoffeln mit Speck, Brot, Milch.

A. Kartoffeln, gesalz. Fisch, Brot, Milch.

Dienstag. Fr. Kartoffeln mit Fettsauce, Milchbrei, Brot, Butter.

M. Kartoffeln mit Speck, Brot, Milch.

A. Kartoffeln, gesalz. Fisch, Ofennäse, Pfannkuchen, Brot.

Mittwoch. Fr. Kartoffeln, gesalz. Fisch, Wurst, Brot, Milch.

M. Kartoffeln, gesalz. Fisch, Brot, Butter.

A. Kartoffelmus, gesalz. Fisch, Brei, Brot, Milch.

¹) Sternberg, Krankenernährung und Krankenküche, Stuttgart 1906, S. 63.

Bidrag H. 67, N:o 1.

Donnerstag. Fr. Kartoffeln, Fisch, Brot, Milch.

M. Kartoffeln mit Speck, Brot, Milch.

A. Kartoffeln, Fisch, Milchsuppe, Brot, Milch.

Freitag. Fr. Kartoffeln, Fisch, Sauce, Milchsuppe, Brot.

M. Kartoffeln mit Sauce, Brot, Butter, Milch.

A. Kartoffeln mit frischem Fisch, Brot, Butter, Milch.

Sonnabend. Fr. Kartoffeln, gesalz. Fisch, Sauce, Milch.

M. Kartoffeln mit Speck, Brot, Milch.

A. Kartoffeln, Brei, Butter, Milch.

Aus den angeführten 4 Speisezetteln ergibt sich mit grosser Deutlichkeit eine Neigung der Hausmütter, das Nahrungsmittel, welches gerade am reichlichsten in der Vorratskammer vertreten ist, zu jeder Mahlzeit vorzusetzen. Es ist ja klar, dass dies teilweise durch die vorhandenen Verhältnisse bedingt ist, aber es lässt sich mit Fug fragen, ob der Hauptgrund nicht doch darin liegt, das den Hausmüttern nicht die Augen aufgegangen sind für die Abnahme des Appetites, welche die ständige Wiederkehr desselben Gerichtes mit sich bringt, und dass dieselben Hausmütter es nicht verstehen eine grössere Abwechselung zu Stande zu bringen.

Bei Vielen liegen die Verhältnisse nicht so offen, aber auch bei ihnen ist die Zahl der Gerichte auf das möglichst Kleinste beschränkt. Als Beispiele hierfür führe ich drei Speisezettel an, einen aus dem mittleren Finnland, einen aus Sawolax und einen aus Nord-Karelien. Die Anzahl der gekochten Gerichte ist in allen dreien ungefähr dieselbe. Doch ist deutlich die karelische Kost abwechselungsreicher. Dies kann nicht darauf beruhen, dass diese sich auf einen Bauerhof bezieht, während die beiden anderen Heuerlinge sind, denn Pilze und Himbeeren sind Etwas, was sich auch der Aermste als Abwechselung gestatten könnte.

- V. (N:o 4) Kathe in Mittel-Finnland.
- Sonntag. Fr. Kartoffeln mit Salzfisch, Brot, Butter, saure Milch.
 - M. Gerstenbrot, Butter und saure Milch.
 - A. Reissuppe mit Brot.
- Montag. Fr. Salzfisch, Brot, Butter, saure Milch.
 - M. Salzfisch, Reissuppe, Gerstenbrot, Butter, saure Milch.
 - A. Gedämpfte Kartoffeln mit Brot.
- Dienstag. Fr. Salzfisch, gedämpfte Kartoffeln, Brot, saure Milch.
 - M. Salzfisch, Brot, Butter, saure Milch.
 - A. Reissuppe mit Brot.
- Mittwoch. Fr. Kartoffeln mit Salzfisch und Specksauce, Brot, saure Milch.
 - M. Erbsensuppe, Brot, saure Milch.
 - A. Kartoffeln mit Salzfisch, Brot, Butter.
- Donnerstag, Fr. Gedämpfte Kartoffeln und Brot.
 - M. Salzfisch, Brot, Butter, saure Milch.
 - A. Kartoffelmus mit Salzfisch, Brot.
- Freitag. Fr. Kartoffeln mit Salzfisch, Brot, Butter, saure Milch.
 - M. Brot. Butter, saure Milch.
 - A. Gedämpfte Kartoffeln und Brot.
- Sonnabend. Fr. Kartoffeln mit Specksauce und Salzfisch, Brot, saure Milch.
 - M. Gerstengrützsuppe mit Brot.
 - A. Brot, Butter, saure Milch.

VI. (N:o 11) Kathe in Sawolax.

- Sonntag. Fr. Strömlinge, Hafergrützsuppe und Gerstenbrot.
 - M. Speck mit gedämpften Kartoffeln, Brot.
 - A. Strömlinge, Brot, Butter, dicke saure Milch (Kokkeli).
- Montag. Fr. Strömlinge, Hafergrützsuppe, Brot.
 - M. Gerstengrützkuchen und ganze Milch.
 - A. Speck, Brot und Buttermilch.
- Dienstag. Fr. Speck und Kartoffeln, Brot, Butter, saure Milch.
 - M. Gerstengrützbrei, Brot, Butter, Buttermilch.
- Bidrag, H. 67, N:o 1.

A. Brot, Butter, ganze Milch, dicke saure Milch (Kokkeli).

Mittwoch. Fr. Fleisch mit Kartoffeln gedämpft, Brot.

M. Mehlsuppe von saurer Milch, Gerstenbrot, Butter-

A. Gerstenbrot, Butter, ganze Milch, dicke saure Milch (Kokkeli).

Freitag. Fr. Gerstengrützsuppe, Gerstenbrot, Butter.

M. Gerstengrützsuppe, Gerstenpfannkuchen, Butter.

A. Gerstenbrot, Butter, ganze Milch, dicke saure Milch (Kokkeli).

Sonnabend. Fr. Gerstenbrei, Gerstenbrot, Butter, Buttermilch.

M. Strömlinge, Gerstengrützsuppe, Gerstenbrot, Butter.

A. Strömlinge, Gerstenbrot, ganze Milch, dicke saure Milch (Kokkeli).

VII. (N:0 2) Bauerhof in Nord-Karelien.

Sonntag. Fr. Weizenmehlsuppe, Piroggen, Brot, Butter, Eier, ganze Milch mit Himbeeren.

M. Kartoffeln, Brot, Butter, ganze Milch.

A. Brot, Butter, ganze Milch.

Montag. Fr. Gerstenmehlbrei, Brot, Butter, ganze Milch.

M. Kartoffeln, Brot, Butter, ganze Milch.

A. Sauremilchsuppe, Brot, Butter, ganze Milch.

Dienstag. Fr. Kartoffeln und Pilze gedämpft, Brot, ganze Milch.

M. Kartoffeln, Brot, Butter, ganze Milch.

A. Gerstenmehlsuppe, Brot, saure Milch.

Mittwoch. Fr. "Talkkuna," 1) Brot, Butter, ganze Milch.

M. Kartoffeln, Brot, Butter, saure Milch.

A. Sauremilchsuppe, Brot, Butter.

Donnerstag. Fr. Gedämpfte Kartoffeln, Brot, Butter, saure Milch.

M. Brot, Butter, ganze Milch mit Himbeeren.

A. Häring, Brot, saure Milch, ganze Milch mit Himbeeren.

¹) Anm. Hafer oder Gerste wird gebrüht, dann im Ofen getrocknet, gemahlen und aus dem Mehl mit Wasser ein dicker Breigekocht, der Talkkuna heisst (Analyse s. Seite 60).

Freitag.

- Fr. Kartoffeln und Pilze gedämpft, Brot, Butter, ganze Milch mit Himbeeren.
- M. Brot, Butter, ganze Milch.
- A. Kartoffeln, Brot, Butter, ganze Milch.

Sonnabend.

- Fr. Häring und gedämpfte Kartoffeln, Brot, saure Milch.
- M. Brot, Butter, dicke saure Milch (Kokkeli), ganze Milch.
- A. Kartoffeln, Brot, Butter, saure Milch.

Schliesslich gebe ich als Nummer 8, 9 und 10 Speisezettel, die vorteilhaft von den vorhergehenden abweichen. Gute Abwechselung zeigt ein karelischen Bauerhof an der russischen Grenze. Der Einfluss des Russischen macht sich hier durch den Sauerkohl geltend. Die bessere Kost sticht recht ab von anderen hygienischen Uebelständen, die sich hier geltend machen. 1)

VIII. (N:o 68) Bauerhof in Karelien an der russischen Grenze.

Sonntag.

- Fr. Kartoffelpirogge, Fleisch, Milch.
- M. Sülze von Schweinfleisch, "Ohrikaisia," ²) Moosbeerenbrei.
- A. Piroggen, Fleisch, Butter.

Montag.

- Fr. Eiermilch, Piroggen, Fleisch, Häring.
- M. Gedämpfte Bohnen, Fleisch.
- A. Dasselbe.

Dienstag.

- Fr. Gedämpfte Bohnen, Fleisch.
- M. Kartoffeln, Sauce, Pilze, Häring.
- A. Reisbrei mit Milch.

¹) Ich machte einen Versuch in dieser Gegend eine genauere Wägungsserie zu unternehmen, aber dieselbe Person, welche lange in finnischen Kathen im mittleren Finnland gelebt hatte, konnte sich unmöglich in der Atmosphäre des karelischen Bauerhofes aufhalten, wenigstens nicht in der Nacht.

²) Dünner Teig aus feiner Gerstengrütze mit saurer Milch, auf einem Kohlblatte ausgebreitet und gebacken.

Bidrag, H. 67, N:o 1.

Mittwoch. Fr. Gedämpfte Kartoffeln mit Häring.

M. Sauerkohl mit Fleisch.

A. Dasselbe.

Donnerstag. Fr. Gerstengrützsuppe, Häring.

M. Fleisch, Ofengericht aus Pilzen, Aepfelsuppe.

A. Kartoffelmus, Pilze.

Freitag. Fr. Gerstenmehlsuppe und Häring.

M. Gedämpfte Kartoffeln mit Fleisch.

A. Dasselbe.

Sonnabend. Fr. Hafersuppe mit Milch und Butter.

M. Gerstenbrei, Fleisch, Piroggen.

A. Dasselbe kalt.

Ausserdem zu allen Mahlzeiten Brot und saure Milch.

Wirklich gutes Essen wurde in einem Bauernhofe im mittleren Finnland von der Familie des Besitzers genossen, das Gesinde musste sich aber mit einer Kost begnügen, die der aus der angeführten Kathe entsprach. Das Haus war auch nach moderneren Prinzipien eingerichtet, obgleich es ein ganz gewöhnlicher Bauerhof war. Obgleich hier bei vielen Mahlzeiten mehrere Gerichte aufgetragen wurden, ist leider die Abwechselung nicht so gut, wie sie sein könnte. Es wurden auch andere Wurzelgemüse, wie rote Rüben und gelbe Rüben angerichtet; Preisselbeermus wurde serviert, ja einmal sogar Anjovis aufgetragen.

IX. (N:o 5) Bauerhof in Mittel-Finnland.

Sonntag. Fr. Kartoffeln mit Sauce, rote Rüben, Gerstenbrot, Butter und Milch.

M. Schafsbraten mit Kartoffelmus und roten Rüben, Gerstenbrot mit Butter und Fleisch, Kohl in Milch, Milch.

A. Schafsbraten mit Milchkohl und roten Rüben, Gerstenbrot mit Butter und Milch.

Montag. Fr. Kartoffeln mit Sauce und roten Rüben, Brot, Butter, Milch.

Finska Vet. Soc.

- M. Fleisch und Kartoffeln gedämpft, Brot, Butter.
- A. Speck und roten Rüben, Brot, Butter, Milch.
- Dienstag. Fr. Kartoffeln mit Specksauce, Brot, Butter, Milch.
 - M. Kartoffelmus, Brot, Butter, Milch.
 - A. Kartoffeln mit Anjovis und roten Rüben, Brot, Butter, Milch.
- Mittwoch. Fr. Kartoffeln mit Specksauce und roten Rüben, Brot, Butter.
 - M. Speck mit Mus aus gelben Rüben, roten Rüben, Brot, Butter, Milch.
 - A. Rindfleisch mit gedämpften Kürbissen und roten Rüben, Brot, Butter, Milch.
- Donnerstag. Fr. Kartoffeln mit Specksauce und roten Rüben, Brot, Butter und Fleisch, Milch.
 - M. Schaffleisch mit Kohl gedämpft, Blutplinzen mit Preisselbeermus, rote Rüben, Brot, Butter, Milch.
 - A. Speck mit roten Rüben, Fruchtsuppe, Brot, Butter, Buttermilch.
- Freitag. Fr. Kartoffeln mit Specksauce und roten Rüben, Brot, Butter, Fleisch, Buttermilch.
 - M. Fleisch und Kartoffeln, gedämpft, Brot, Butter, Milch.
 - M. Schafsbraten mit Rübenmus, Speck, Brot, Butter, Buttermilch.
 - A. Schafsbraten mit Kartoffeln und roten Rüben, Griesbrei, Brot, Butter, Milch.
- Sonabennd. Fr. Schafsbraten mit Kartoffeln und roten Rüben, Brot, Butter, Fleisch, Milch.
 - A. Rindfleisch mit roten Rüben, Heidelbeersuppe,, Gerstenbrot, Butter, Milch.

X. (N:o 43) Eine recht nette, obgleich einfache Speiseordnung befolgte ein Fischer in den Åländischen Schären.

- Sonntag. Fr. Brot, Butter, saure Milch.
 - M. Gedämpfte Kartoffeln mit Fleisch, Rosinensuppe.
 - A. Pfannkuchen, Brot, Butter, Milch.
- Montag. Fr. Gebratene Strömlinge und Milch.

Bidrag, H. 67, N:o 1.

M. Fisch und Kartoffeln.

A. Grützsuppe.

Dienstag. Fr. Fisch und Kartoffeln, Milch.

M. Gebratene Strömlinge, saure Milch.

A. Brei.

Mittwoch. Fr. Pfannkuchen und Milch.

M. Grützsuppe.

A. Brei.

Donnerstag. Fr. Kartoffeln mit Fisch.

M. Erbsensuppe mit Fleisch.

A. Brei.

Freitag. Fr. Brot, Butter, saure Milch.

M. Grützsuppe.

A. Gedämpfte Kartoffeln.

Sonnabend. Fr. Brot, Butter und saure Milch.

M. Fisch und Kartoffeln.

A. Fleisch, Brot, Butter, Milch.

Um eine Vorstellung darüber zu erhalten, welche Gewürze von der ländlichen Bevölkerung benutzt werden, erbat ich mir in den Enquêteheften Angaben hierüber. 58 Hefte brachten mir Antworten auf diese Frage; in den übrigen 22 sind wohl meistens keine Gewürze zur Anwendung gekommen. In den übrigen wurden, die Brotgewürze mitgezählt, durchschnittlich 2 Gewürze angewandt.

Die verschiedenen Gewürze sind von den verschiedenen Haushaltungen in folgendem prozentischem Verhältnis angewandt worden:

0										
Pfeffer .				60	Fenchel					7
Zwiebel.	۰			48	Ingwer					7
Anis				16	Senf .					5
Zimmt .				14	Essig.					2
Cardemom				10	Lorbeerb	lät	tte	r.		2
Kümmol				7						

Finska Vet. Soc.

Die Bedeutung der Genussmittel ist nicht zu unterschätzen. Hier ist nicht der Platz auf eine Diskussion der Frage in ihrer ganzen Weite einzugehen, es seien nur einige allgemeine Gesichtspunkte erwähnt.

Der Städter kann Genussmittel in irgend einer Form kaum entbeeren. Denken wir nur an den Arbeiter. Das einförmige Leben in den Fabriken erweckt in ihm das Verlangen nach Etwas, das gut schmeckt und ihn belebt. Auch das Leben des Landmannes ist ein ewiges Einerlei; auch er sucht Etwas, das seiner Arbeit eine angenehme Abwechselung schenkt.

Die Stellung des *Alkohols* als Genussmittel, wenigstens in seinen stärkeren Formen, ist wohl durch die Wissenschaft genügend präzisiert worden; der Genuss, den der Alkohol schenkt, kann die sozialen Schäden, die er erzeugt. nicht aufwiegen.

Der Vollständigkeit wegen nahm ich in die Enquêtehefte auch eine Frage nach dem Alkoholverbrauch auf, obgleich ich im voraus überzeugt davon war, dass auf diese Weise keine sicheren Angaben zu erhalten wären. In 50 Fällen wurde die Frage beantwortet. In fünfen wurde der Genuss von Branntwein zugestanden, in einem Falle auch die Menge angegeben, 1 Liter in der Woche.

Die Frage nach dem Kaffee und dem Thee als Genussmittel liegt nicht so klar wie für den Alkohol. Die sozialen Schäden, welche der Alkohol mit sich führt, dürfte Niemand dem Kaffee aufbürden wollen. Gleichwohl fehlt es nicht an Stimmen, welche behaupten, dass Kaffee und Thee die Stellung nicht verdienen, die sie einnehmen. U. a. äussert sich Röttger, der eine grosse Enquête unter den Aerzten angestellt hat, folgendermassen: "Thee und Kaffee— ersterer weniger, letzterer aber ganz besonders— sind

in stärkeren Aufgüssen unbedingt auch gesunden Organismen schädlich; selbst in schwächeren Aufgüssen schaden sie Kindern, Blutarmen, Nervösen und Herzkranken und tragen, wenn sie, wie bei der ärmeren Bevölkerung in grossen Mengen über den ganzen Tag verteilt, wenn auch nur dünn, getrunken werden, dazu bei, eine Unterernährung des Organismus zu begünstigen". 1)

Der Kaffee hat seinen Weg in Finnland bis in die ärmsten Hütten gefunden. Selbst der Fischerlappe, der sich mit Fisch, Brot und saurer Milch begnügt, hat eine beträchtliche Menge Kaffee konsumiert. Bei sämtlichen 100 Untersuchungsfamilien war der Kaffee der konstanteste Gebrauchsartikel. Hinsichtlich des quantitativen Verbrauchs desselben, habe ich in Reihe I Kenntnis genommen von der Anzahl "Tassen", die jeder im Laufe des Tages getrunken hatte. Bei der Berechnung verteile ich die Personen in Gruppen: Kinder unter 10 Jahren, junge Personen unter 17 Jahren, erwachsene Männer und erwachsene Frauen. Für eine Woche beträgt die Anzahl Kaffeetassen für

Kinder unter 10 Jahren 5—12	im	Mittel	10
junge Personen 6—42	99	27	29
Männer	-99	22	33
Frauen 15—91	**	• • •	43

Somit eine schöne Steigerung des durchschnittlichen Verbrauchs für Kinder $1^{1}/_{2}$, für junge Personen 3, für Männer 5 und für Frauen 6 Tassen per Tag.

Durch die Enquête erhält man Kenntnis über den täglichen Verbrauch an Kaffeebohnen: berechnet für einen erwachsenen Mann beträgt er durchschnittlich $18~\mathrm{g}$.

¹) Röttger, Genussmittel — Genussgifte, Berlin 1906, S. 92.

Thee kam bedeutend seltener vor, genau im fünften Teil aller Höfe, besonders in den östlichen Teilen des Landes, im vereinzelten Fällen aber auch über das ganze Land verstreut.

Eine derartige Kaffeemenge muss an und für sich zu gross sein; kommt hierzu noch, dass der Kaffee meist nur mit Zusatz von etwas Zucker und Rahm, in den meisten Fällen mit allen möglichen Zichoriensorten vermischt, getrunken wird, so sieht man leicht die Berechtigung der Annahme ein, die dem Kaffee ein disponierendes Moment für die Entstehung chronischer Magenstörungen zuschreibt. Besonders ist dem üblichen Brauch, den Kaffee gleich nach dem Aufstehen nüchtern zu geniessen, in dieser Beziehung eine verderbliche Bedeutung zuzumessen.

Wie nun der stets zunehmenden Kaffeekonsumption steuern? Den Kaffee ganz zu entfernen wäre weniger wohlbedacht, und übrigens unmöglich. Wenn der Kaffee dazu beiträgt, die Düsterheit zu beleben, an der der finnländische Charakter keinen Mangel hat, so ist ja sein Platz berechtigt. Am besten dürfte man wohl dem übermässigen Kaffeegenuss dadurch entgegenarbeiten, dass man auch der Volksnahrung den Gehalt an Genussmitteln verliehe, der ihr zukommt, den sie aber in so geringem Grade besitzt. Teils dadurch, dass man dem Volke eine menschenwürdigere Existenz bereitet, teils indem man es mit den Vorteilen bekannt macht, welche die Zivilisation auch den Armen bietet, indem man sie lehrt, die natürlichen Quellen, die ihnen zu Gebote stehen, auszunützen, speziell ihre Kost so zuzubereiten, dass sie einen geeigneten Ersatz für Alkohol und Kaffee bildet, dürfte dem Missbrauch dieser Genussmittel wirksamer gesteuert werden, als durch Verbote und Restriktionen

X. Die Kosten für die Nahrung.

Die Kosten für die Nahrung der ländlichen Bevölkerung sind nicht so leicht festzustellen wie die der Arbeiterfamilien, bei denen in den meisten Fällen jeder Bissen mit baarem Gelde bezahlt werden muss. Bei den ländlichen Familien, von denen hier die Rede ist, wurde der überwiegend grösste Teil der Nahrung durch eigene Landwirtschaft. Fischerei oder eigene Viehwirtschaft erhalten. Da sie ja jedenfalls durch den Selbstverbrauch ihrer Produkte des Einkommens verlustig gingen, das sie durch den Verkauf derselben erzielt hätten, war ich der Ansicht, dass eine Berechnung des Nahrungspreises an der Hand der an den betreffenden Orten herrschenden Handelspreise der Rohwaaren ein gewisses Interesse haben dürfte.

Die Preise der Rohwaaren suchte ich durch die Enquête aus allen Teilen des Landes zu erfahren. Diese Preise wurden ohne weiteres zur Berechnung der Kosten für die Nahrung der Enquêtefamilien, Reihe II, angewandt. Nur was das Brot betrifft, das ja auf dem Lande zu Hause gebacken wird, schien es mir richtiger die Mehlpreise zu Grunde der Berechnung zu legen.

Die Preise der Nahrungsmittel an den verschiedenen Orten würden vielleicht manches Interessantes darbieten, da sie aber keineswegs Gegenstand einer systematischen Untersuchung darstellen, halte ich sie nicht für die Veröffentlichung wert. Da es für die Berechnung der Kostpreise für Reihe I nicht tunlich war, in jedem Einzelfalle die Ortspreise auzuwenden, wodurch die Rechnung sehr kompliziert würde, hielt ich es für genügend, aus den Ortspreisen einen Durchschnittspreis für das ganze Land zu berechnen. Diese

Durchschnittspreise machen keine anderen Ansprüche, als dass ich mich ihrer, in Ermangelung besserer, bei der Berechnung bediente. Folgende Durchschnittspreise wurden aus einer grösseren Anzahl Fälle erhalten.

	Penni		Pe	enni
1 kg	g frisches Rindfleisch . 65	1 l saure Milch		5
77	gesalzenes " . 75	1 kg Butter		210
*2	frisches Schweinefleisch 121	1 Ei		7
	finnländisches gesalze-	1 kg Roggenmehl		22
	nes Schweinefleisch . 124	"Gerstenmehl		23
27	amerikan. gesalzenes	" Weizenmehl		39
	Schweinefleisch 126	" Hafergrütze		39
11	Rindfett 100	"Gerstengrütze		28
**	frischer Fisch 53	" Reis		48
,,	gesalzener " 30	" Gries		49
11;	ganze Milch 14	" Roggenbrot, weiches		25
**	abgerahmte Milch 5	1 I Kartoffeln		5
**	separierte " 4	1 kg Zucker		110
59	Butter- " 4	"Kaffee		183

Die an der Hand dieser Zahlen berechneten Kosten für die Kostmasse der Reihe I sind in Tabelle XVI enthalten.

Tabelle XVI.

Täglicher Geldaufwand für die Kost in Penni. Reihe I.

Kir	nder	Männliche Individuen	Weibliche Individuen
Kinder 2—3 J. 53 12 103 14 78 14 Mittel 13 Kinder 4—5 J. 13 14 18 19 102 17 48 15 Mittel 16 Kinder 6—7 J. 69 22 77 20 16 21 52 18 58 28 28 21 101 22 76 17 Mittel 21	Kinder 8—9 J. 17 25 47 19 38 29 43 32 65 43 93 19 74 24 51 20 75 21 Mittel 26 Kinder 10—11 J. 8 30 12 21 23 20 100 27 37 33 42 37 68 31 73 23 Mittel 28	Individuen Jüngl. 12—17 J. 92 22 99 23 22 34 46 17 56 21 33 50 56 44 36 41 64 56 Mittel 34 Männer 63 50 45 26 34 54 21 56 30 48 19 56 9 51 29 59 5 75 14 41 96 60 66 42	Individuen Mädch. 12—17 J. 11 34 57 27 7 45 41 25 98 36 Mittel 33 Frauen 27 19 32 45 55 23 67 30 72 32 91 23 26 28 31 36 35 35 44 26 62 30 20 31 61 34 6 51 10 38 15 26
M10061 _1		96 60	

Indem wir die Kosten z.B. für 1000 Kalorien berechnen, erhalten wir eine bequeme Art die Preise der verschiedenen Kostmasse zu vergleichen. Diese Art der Berechnung wurde zuerst von *Rechenberg* und gleichzeitig von *Hultgren* und *Landergren* angewandt.

Folgende Tabelle enthält neben dem Durchschnittspreis für verschiedene Altersklassen auch die Kosten für 1000 Kalorien in Penni.

Altersgruppe	Gesamt- preis	Preis f. 1000 Kal.
Kinder von 2-3 Jahren	13	12,7
" " 4—5 "	16	11,5
" " 6—7 "	21	11,8
" " 8—9 "	26	11,8
" " 10—11 "	28	12,5
Knaben " 12—17 "	34	12,2
Mädchen von 12—17 "	33	12,6
Männer	48	12,1
Frauen	30	12,0

Der Preis für 1000 Kalorien wechselt für die verschiedenen Altersgruppen nur zwischen 11,5 und 12,7 Penni und beträgt im Mittel für alle Kostmasse 12,1 Penni. Der erstere Umstand ist insofern von Bedeutung als er zeigt, dass eine Reduktion der Nahrungspreise nach denselben Prinzipien, wie z. B. die der Kalorien, möglich ist.

Durchschnittlich wurden in Reihe II 4811 Kalorien für 60 Penni erhalten, was für 1,000 Kalorieen 12,5 Penni beträgt, also eine vollständige Uebereinstimmung mit den Resultaten der Reihe I.

Für Kaffee und Zucker bezahlten die Familien in Bidrag, H. 67, N:o 1.

Reihe II 8 Penni, für jede Sorte die Hälfte, zusammen also 13 % der Gesamtkosten. Vom Rest entfallen 18 Penni auf animalische und 34 Penni auf vegetabilische Nahrungsmittel, somit ein Verhältnis von 1:2. Da nun die Kalorien sich auf animalische und vegetabilische Nahrungsmittel gleichfalls wie 1:2 verhalten, so ist einzusehen, dass für die animalischen Nahrungsmittel im Verhältniss zum Kalorienwerte ein 4 Mal höherer Preis bezahlt wird als für die vegetabilischen.

Eine Berechnung der Kosten für die Nahrung in verschiedenen Teilen des Landes ergab, dass diese im Satakunta am billigsten ist (8,3 Penni für 1000 Kal.). In Süd-Finnland ist der Preis für 1000 Kal. sowohl in schwedischen als finnischen Gegenden 11,1 Penni. In Sawolax beträgt derselbe Preis 13,0 Penni und in Karelien 14,8 Penni. Am höchsten ist der Preis, wegen der reichen Fischnahrung, in Lappland (15,9 Penni). Eine andere Bedeutung ist diesen Zahlen nicht zuzumessen, als dass sie eine ganz allgemeine Vorstellung über die Verhältnisse geben.

Bei den verschiedenen Gruppen, in welchen wir die ländliche Bevölkerung einteilten: Bauerhofbesitzern, Heuerlingen und Arbeitern, finden wir deutliche, wenngleich ganz kleine Unterschiede in den Kosten für die Nahrung. Die Hofbauern haben für 1000 Kal. durchschnittlich — direkt oder indirekt — 12,2 Penni bezahlt. Etwas billiger ist die Kost der Heuerlinge (10,8 Penni für 1000 Kal.). etwas teurer die der Arbeiter (13,2 Penni für 1000 Kal.).

Denselben Preis für 1000 Kal., wie die Landbevölkerung bezahlte, bezahlte auch die landwirtschaftlichen Schüler auf Koivikko (männliche 12,4, weibliche 12,9 Penni). Doppelt so teuer stellte sich dagegen die Nahrung der Arbeiter in der Stadt (männliche 24,1 weibliche 24,0 Penni für

1000 Kal.). Am teuersten war die Kost der Studenten, die für dieselbe Kalorienmenge 32,1 Penni zu zahlen hatten.

Zum Vergleich des Gesamtpreises der Nahrung mit den Preisen verschiedener Nahrungsmittel, habe ich für einige derselben die Kosten für 1000 Kalorien ausgerechnet. Die Resultate sind aus folgender Tabelle ersichtlich:

Animal. Nahrungs- mittel	Preis für 1000 Kal. Penni	Vegetabil. Nahrungs- mittel Preis für 1000 Kal. Penni
		Roggenmehl
Abgerahmte Milch .	11,4	Hafergrütze 9,4
Fett	11,7	Weizenmehl 9,4
12,5 Penni ————		12,5 Penni
Gesalz. amerikan. Speck Ganze Milch Gesalz. finnisch. Speck Butter Salzfisch Salzfleisch Frisches Rindfleisch. Eier Frischer Fisch, z. B.	18,8 19,5 21,2 26,5 28,3 35,0 41,7 77,0	Gries 12,5 Reis 13,0 Weissbrot 18,7 Zucker 27,8
Hecht	81,5	-

Bidrag, H. 67, N:o 1.

Unter den 11 animalischen Nahrungsmitteln sind nur zwei, abgerahmte Milch und Fett, billiger als die Gesamtnahrung, während unter den 12 vegetabilischen Nahrungsmitteln vier, Gries, Reis, Weissbrot und Zucker, teurer sind als 12.5 Penni für 1000 Kalorien.

Die Beurteilung der Preisbilligkeit der Nahrungsmittel nach dem Kalorienwerte ist ja unzweifelhaft die zuverlässigste und für praktische Zwecke, wo es sich darum handelt, die Preise verschiedener Nahrungsmittel zu vergleichen. die geeignetste. Nachdem festgestellt worden ist, dass das Eiweiss bei gewöhnlicher Kost stets in für den Körper genügender Menge vorhanden ist, gibt es keinen Grund, physiologisch dem Eiweiss einen höheren Einkaufspreis als den übrigen Nahrungsstoffen zuzuerkennen.

Die Ursache, weshalb das Eiweiss zweifellos mit einem recht hohen Preise bezahlt wird, ist wohl die, dass es dem Geschmacke besser zusagt, mit anderen Worten, das Eiweiss besitzt neben seinem physiologischen Werte einen Genusswert, welcher der Preisbestimmung Schwierigkeiten in den Weg stellt.

In noch höherem Grade dürfte dies mit dem Fette der Fall sein, welches, wie wir früher sahen, in der Kost, die als "bessere" gilt, in grösserer Menge enthalten ist. Diesen Ursachen dürfte es zuzuschreiben sein, dass die Versuche, dem Eiweiss, dem Fett und den Kohlehydraten einen bestimmten Geldwert zuzuteilen, zu den wechselndsten Resultaten geführt haben.

 $K\ddot{o}nig$) berechnete den Preis für 1 kg Eiweiss aus Fleisch zu 7,0—8,0 Rmk, aus Milch zu 2,5—3,0 Rmk, aus Käse zu 3,0—

¹) König, Chemie der menschl. Nahrungs- und Genussmittel, 4 Aufl., II, S. 1463.

5,0 Rmk. Das Fett schätzt er auf 1,2—1,8 Rmk und die Kohlehydrate auf 0.4—0,6 Rmk pro kg. Hiernach stellt er folgendes Preisverhältnis für Eiweiss, Fett und Kohlehydrate auf:

5--7:3:1

Demuth¹) untersucht zuerst, wieviel Nährstoffe man für 1 Rmk in 62 animalischen und 48 vegetabilischen Nahrungsmitteln erhält. Er bekommt im Mittel für 110 Nahrungsmittel (in ganzen Zahlen) 185 g Eiweiss, 107 g Fett und 495 g Kohlehydrate. Den Geldwert des Fettes setzt er hierauf gleich dem Preise des Rüböls, Olivenöls, des Fettes von Rindvieh und Schwein auf 1,20 Rmk fest. Für die Kohlehydrate nimmt er einen Geldwert an, der in demselben Verhältnis zu dem des Fettes steht, wie die Verbrennungswerte dieser beiden Stoffe, und erhält so für die Kohlehydrate einen Preis von 0,50 Rmk für 1 kg. Der Wert des Eiweisses wird schliesslich als Unterschied zwischen dem Preise des ganzen Kostsatzes und den Werten für Fett und Kohlehydrate berechnet. Nach dieser Berechnung kostet 1 kg Eiweiss 3,30 Rmk. Die Verhältnisse zwischen dem Preise des Eiweisses, des Fettes und der Kohlehydrate werden somit fast die gleichen wie die König'schen

6,6:2,4:1,0.

Dieselbe Berechnungsweise wie König wandte auch Almen an, als er 1879 aus den Preisen für Blut, amerikanischen Speck und Kartoffeln den Preis für Eiweiss, Fett und Kohlehydrate auf resp. 4,0, 8,0 und 1,5 Öre für 100 g festsetzte. Später gibt er ohne Darlegung seiner Berechnungsprinzipien für 100 g Eiweiss 15 Öre, für 100 g Fett 20 Öre und für 100 g Kohlehydrate 2 Öre an, somit ein Preisverhältnis wie

7.5:10:1 (1879 wie 2.7:5.3:1.0)

Er hält somit das Fett für den teuersten Nahrungsstoff. 2)

Bidrag, H. 67, N:o 1.

¹⁾ Ref. nach König, l. c. S. 1461.

²) Almén, Huslig ekonomi, Stockholm, 1902, S. 3.

Hultgren und Landergren¹) haben schliesslich eine neue Methode bei der Berechnung der Preisverhältnisse der Nahrungsmittel angewandt. Sie wandten für 9 Kostsätze, welche in Gleichungen gebracht worden waren, so dass die Eiweissmenge mit x, die Fettmenge mit y und die Kohlehydratenmenge mit z multipliziert wurde, worauf diese Produkte addiert dem Preise der Kostsätze gleichgestellt wurden, die kleinste Quadratmetode an und erhielten für die verschiedenen Nahrungsstoffe folgende Preise pro-Gramm:

Eiweiss . . 0,202 Öre Fett . . . 0,070 " Kohlehydrate 0,022 "

Diese Preise verhalten sich wie 9:3:1.

Ich brauche wohl keine weiteren Berechnungsarten anzuführen, um zu zeigen, dass ein grosser Unterschied zwischen den erhaltenen Resultaten herrscht. Darin sind alle einig, dass die Kohlehydrate am billigsten sind, ja es herrscht sogar in dieser Hinsicht eine gewisse Uebereinstimmung zwischen den Untersuchungen, was den absoluten Preis betrifft. Drei von den vieren bewerten das Eiweiss höher als das Fett, während Almén das Gegenteil tut.

Da ich die Methode von Hultgren und Landergren für die wissenschaftlichste hielt, und da es recht interessant wäre, auch für unsere Verhältnisse den Preis zu kennen, den der Arbeiter im allgemeinen für die verschiedenen Nahrungsstoffe bezahlt, unternahm ich es, die kleinste Quadratmethode auch auf mein Material anzuwenden. Waren doch zahlreiche Personen in ziemlich gleicher ökonomischer Stellung untersucht worden, und die Kosten für de-

¹⁾ Hultgren und Landergren, Untersuchung der Nahrung usw. S. 93.

ren Nahrung nach einem, auf ein grösseres Gebiet sich beziehenden Preise berechnet. Die Berechnungen wurden angewandt 1) auf 95 Kostmasse der Reihe I, 2) auf 57 Kostmasse der Reihe II, 3) auf die Gesamtzahl beider, 152. Das Resultat entsprach nicht der recht mühevollen Arbeit. Der Preis des Eiweisses betrug für 1) + 76 Penni, für 2) — 189 Penni, für 3) + 26 Penni. Der Preis für das Fett war in allen Fällen positiv, resp. 271, 433 und 374 Penni. Für die Kohlehydrate erhielt ich 1) — 26 Penni, 2) + 68 Penni, 3) + 21 Penni. Nur in Fall 3 sind alle Werte positiv, aber diese verdienen sehr wenig Vertrauen. Versuche. die Gleichungen nach grösserer gegenseitiger Aehnlichkeit zu kombinieren, führten zu keinem besseren Resultate.

Um jedenfalls eine Vorstellung über den Preis zu erhalten, der zu der Zeit, wo ich meine Untersuchung anstellte, für die drei Nahrungsstoffe bezahlt wurde, versuchte ich einige Berechnungen anzustellen. Für das Fett, das in der Mischung, in der es in der Nahrung der finnländischen Landbevölkerung vorkommt, zum absolut überwiegenden Teil aus Fett von Rindvieh, aus Speck und aus Butter besteht, ist es verhältnismässig leicht einen approximativen Preis zu berechnen. Ich ging von den auf S. 22 genannten Verhältnissen zwischen dem prozentischen Verhältnisse verschiedener Fettarten zum Gesamtfett in der Nahrung aus. Unter der Annahme, dass der Preis für 1 kg Fett von Rindvieh 1 Fmk 1) beträgt, für 1 kg amerikanischen Speck 1,26 Fmk und für 1 kg Butter 2,10 Fmk, berechnete ich 1 kg Mischfett auf 1,92 Fmk.

Als Mittel von 88 analytisch untersuchten Kostsätzen erhält man 92 g Eiweiss, 49 g Fett und 373 g Kohle-

 $^{^{1}}$) = 1,24 Rmk.

Bidrag, H. 67, N:o 1.

hydrate für 31 Penni. Subtrahieren wir hiervon den Wertvon 49 g Fett = 9 Penni, so bleiben für 92 g Eiweiss und 373 g Kohlehydrate 22 Penni. Würde das Eiweiss mit demselben Preise bezahlt werden wie das Fett, so würde es allein 18 Penni kosten und für die Kohlehydrate nur 4 Penni übrig bleiben, was für 1 kg Kohlehydrate 10 Penni entspräche, ein Wert der sicher zu niedrig ist, wenn wir nicht mit $Fl\ddot{u}gge^{1}$) den Kohlehydraten jeden Geldwert absprechen wollen. Mit grösster Wahrscheinlichkeit können wir daher annehmen, dass bei der finnländischen Landbevölkerung das Fett teurer bezahlt wird als das Eiweiss.

Wie die 22 Penni tatsächlich zwischen dem Eiweiss und den Kohlehydraten zu verteilen sind, lässt sich nicht leicht entscheiden. Vielleicht könnte man die Kohlehydrate in den Kartoffeln als Norm berechnen, wie die meisten es getan haben; ihr Geldwert würde dann 35—40 Penni pro kg betragen. Für 373 g würden also 13—15 Penni bezahlt werden, für 92 g Eiweiss blieben 7—9 Penni, entsprechend einem Preise von 75—100 Penni für 1 kg. Das Verhältnis zwischen den Geldwerten der drei Nahrungsstoffe würde somit betragen

Eiweiss		Fett	Ko	hlehydrate	4
2,5	:	5	:	1	

Wie man sieht, fast die gleiche Proportion wie bei der ersten Berechnung von *Almén* (vgl. S. 219).

¹) Flügge, Beiträge zur Hygiene, Leipzig, 1879, S. 107.

Zusammenfassung.

- 1. Die Berechnung der Zusammensetzung einer Kost nach vorhandenen Analyse-Mittelwerten kann mit recht wesentlichen Fehlern behaftet sein (vgl. S. 19).
- 2. Der unter Anwendung der gewöhnlichen Standard-Zahlen für die Verbrennungswärme der organischen Nahrungsstoffe berechnete Wärmewert der Kost stimmt mit dem direkt bestimmten Kalorienwerte sehr nahe überein.
- 3. Für einen erwachsenen finnländischen Bauer beträgt die tägliche Zufuhr von potentieller Energie bei einer mittelschweren körperlichen Arbeit etwa 4000 Kalorien. Bei mässiger körperlicher Arbeit geniesst eine Frau 2700—2800 Kalorien. Bei Kindern steigt die Energiezufuhr von etwa 1000 Kalorien für 2—3 jährige, um etwa 200 Kalorien pro Jahr.

Diese Resultate stimmen mit den Zahlen, die man als Normalwerte betrachtet, überein oder übersteigen sie etwas.

4. Ein erwachsener Mann geniesst durchschnittlich 136 g Eiweiss, 83 g Fett und 580 g Kohlehydrate, was einer solchen Verteilung der Kalorienzufuhr entspricht, dass 15 $^{0}/_{0}$ auf Eiweiss, 21 $^{0}/_{0}$ auf Fett und 64 $^{0}/_{0}$ auf Kohlehydrate entfallen.

Auch bei Individuen anderen Alters und Geschlechts wird eine Verteilung konstatiert, die unbedeutend von der erwähnten abweicht, welche hinsichtlich des Eiweisses der Menge entspricht, die gewöhnlich in der Nahrung des Menschen enthalten ist, hinsichtlich des Fettes allerdings etwas geringer ist, als man es wünschen könnte, immerhin aber die Menge übersteigt, die man in der Nahrung fordern muss.

5. Die Nahrung der finnländischen Landbevölkerung wird, wenn man berücksichtigt, dass sie zum grossen Teil Bidrag, H. 67, N:o 1.

aus groben Vegetabilien besteht, verhältnismässig gut ausgenutzt. Vom Eiweiss gehen im Kot etwa 16 $^{0}/_{0}$, vom Fett etwa 10 $^{0}/_{0}$ und von den Kohlehydraten etwa 5 $^{0}/_{0}$ verloren. Die gesammte Energie der Nahrung wird mit einem Verlust von etwa 12,5 in Kot und Harn ausgenutzt.

- 6. Die finnländische Kost zeigt in verschiedenen Teilen des Landes nur verhältnismässig kleine Unterschiede. Doch scheint es, als ob gegen Osten hin die Beschaffenheit derselben sich verbesserte. Ein deutlich ausgeprägter Unterschied zwischen schwedischen und finnischen Gegenden besteht nicht. Zwischen verschiedenen Gruppen der Landbevölkerung wurden kleine Differenzen nachgewiesen, doch beruhten diese vielleicht auf einem inhomogenen Versuchsmaterial.
- 7. Die Nahrungszufuhr an verschiedenen Tagen zeigt Variationen, welche in den meisten Fällen nicht die Grenzen überschreiten, welche man als physiologisch normale aufgestellt hat. Die Verteilung der Nahrung auf Mahlzeiten zeigt ein deutliches Uebergewicht beim Frühstück und Mittag auf Kosten des Abendessens, jedoch in keinem hohen Grade.
- 8. Während somit vorliegende Untersuchung in Bezug auf die gesammte Energiezufuhr, die Verteilung derselben aut die einzelnen Nahrungsstoffe, die Ausnutzung der Nahrung und im allgemeinen was die quantitativen Eigenschaften der Kost betrifft, bei dem nicht allzu armen Teile der finnländischen Landbevölkerung keinen Grund zum Tadel gibt, so lässt dagegen die qualitative Beschaffenheit derselben viel zu wünschen übrig.
- 9. In der Nahrung eines erwachsenen Bauers sind im Mittel pro Tag folgende Naturprodukte enthalten: gegen 200 g Fleisch, Fisch und Speck, etwa 1½ Liter ganze Milch, etwa 550 g Mehl und Grützen und etwa 600 g rohe

Kartoffeln. Die Hälfte der ganzen Energiezufuhr wird von Getreidearten erhalten, der vierte Teil von Molkereiprodukten, der zehnte Teil von Fleisch und der Rest zum grössten Teil aus Kartoffeln.

- 10. Die vorhandenen Rohwaaren werden zu grossem Teil gar nicht zubereitet, sondern als trockenes Essen verzehrt, der Rest wird in Form einiger weniger Gerichte verabreicht, die ohne Abwechselung auf dem Speisezettel einander folgen.
- 11. Da der Geldwert für die Nahrung der finnländischen Landbewölkerung so niedrig ist, nur 50 60 Penni, so könnte man vielleicht glauben, dass eine Verbesserung derselben nicht möglich sei. Da wir aber fanden, dass u. a. Fleisch und vor allem Milch in der Kost in bemerkenswerten Mengen enthalten sind, da wir ausserdem wissen, dass der Landmann auf seinem eigenem Boden kostenlos allerlei Gemüse erhalten könnte, dass seine Kinder in den Wäldern ungehindert Beeren und Pilze pflücken können, so muss man schliessen, dass die mangelhafte Beschaffenheit der Kost, welche die Begier nach schädlichen Genussmitteln erweckt und wahrscheinlich beim Volke krankhafte Störungen der Verdauungsorgane verursacht, zu einem Teil auf mangelndem Willen, zum grössten Teil jedoch auf mangelndem Können beruhen.
- 12. Das einzige Mittel diesen verhängnisvollen Missverhältnissen abzuhelfen ist, unter der Landbevölkerung praktische Kenntnis der Haushaltungskunst zu fördern, vor allem durch überall im Lande dem aufwachsenden weiblichen Geschlechte zugänglige, wo möglich obligatorische Kurse in der Kochkunst die Segungen derselben unter den niederen Klassen zu verbreiten.

Anhang.

Die Zusammensetzung der Nahrungsmittel und Speisen.

Folgende Tabelle enthält die Analysenzahlen, welche ich bei der Berechnung der Zusammensetzung der Nahrungsmittel anwandte, und die Zahlen für die Zusammensetzung gekochter Speisen, welche ich an der Hand der Menge und Zusammensetzung der einzelnen Bestandteile berechnete.

Die meisten Analysen beziehen sich auf Nahrungsmittel aus Finnland oder Schweden. Die meisten Zahlen sind Almén 1) entlehnt, vor allem was Fleisch und Milchsorten betrifft, da für diese die abgerundeten Zahlen Almen's sich gut eignen. Wenn man einen Einblick in die äusserst wechselnde Zusammensetzung derselben erhält, ist man wenig geneigt allzu grosse Genauigkeit anzuwenden. Für die meisten Mehl- und Grützesorten habe ich die Grönberg'schen Analysen über finnländische Nahrungsmittel²) benutzt. In einem einzigen Fall, für den amerikanischen Speck, machte ich von amerikanischen analytischen Durchschnittszahlen Gebrauch. 3) Einige Analysen sind König's grosser Arbeit 4) entnommen, einige andere habe ich nach Ehrström 5) angeführt. In einigen weiteren Fällen habe ich ausserdem Hammarsten's Zusammenstellung 6) benutzt, und nur fünf analytische Durchschnittszahlen sind meine eigenen. Die Kalorien sind nach den S. 22 angegebenen Zahlen berechnet.

¹⁾ Almén, Huslig ekonomi, Stockholm 1902

²) Grönberg, Finska Läkaresällskapets Handlingar, 45, 1903, S. 443.

 $^{^{3})\} Atwater.\ U\ S.$ Departm. of Agricult., Bull. 28 (revised edition).

⁴⁾ König, Chemie der menschl. Nahrungs- und Genussmittel, 4 Aufl.

⁵) Ehrström, Finska Läkaresällskapets Handlingar, 47, 1905, S. 322.

 $^{^{\}circ})$ Hammarsten, Lehrbuch der physiol. Chemie, Wiesbaden 1904.

	10	000 g e			
A. Animalische Nahrungsmittel	Eiweiss	Fett	Kohle- hydrate	Kalorien	Autor
	g	g	g	ä	
Rindfleisch, frisch m. Knochen 1) .	170	100	_	1911	Almén
" salz " " ¹) .	185	115.		2138	29
Kalbfleisch, frisch " " 1) .	165	100		1882	~ 22
Hammelfleisch, """") .	150	150	_	2273	>>
" salz " " ¹) .	160	180	-	2614	77
Rennfleisch, frisch " " 1) .	160	120		2044	22
Schweinefleisch, " " " " " .	100	500		5371	22
, salz , , ²) .	110	550	<u> </u>	5847	n
" " amerikanisch.					
"salted bellies"	77	662	_	6724	Atwater
Schmalz	25	885		8408	Almén
Herz, Leber etc. Mittel	186	31	_	1346	König
Blut	180	2		1036	37
Wurst	220	160		2763	Almén
Fisch, frisch ³)	110	3		650	Ehrström
Strömling, salz +)	110	70		1286	Almén
Milch, volle	35	35	50	717	29
" abgerahmte	35	7	50	.458	27
Buttermilch	35	10	45	466	29
Butter	7	850	7	7929	29
Käse, Fett	230	270	40	3956	97
Eier, ganze Eier	106	93	4	1480	Hammarsten
" ohne Schalen	122	107	5	1711	29

^{1) 15 %} Abfälle, besonders Knochen.

d:o

d:o

d:o

Bidrag, H. 67, N:o 1.

²) 6 ⁰/₀

^{3) 30 °/&}lt;sub>0</sub>

^{4) 40} º/o

	10	000 g e	nthalte	n	
B. Vegetabilische Nahrungsmittel	Eiweiss	Fett	Kohle- hydrate	Kalorien	${ m Autor}$
	g	g	g	Ü	
Roggenmehl	109 -	15	729	3847	Grönberg
Gerstenmehl	94	10	759	3799	"
Weizenmehl	153	7	730	4168	Ehrström
Hafermehl, "Talkkunamehl" (vgl.					
S. 60)	98	26	731	3881	Sundström
Gerstengraupen	110	12	726	3807	Grönberg
Hafergraupen	145	52	677	4168	22
Reisgraupen	72	5	772	3707	"
Mannagraupen	113	7	735	3931	"
Buchweizengraupen	103	19	711	3760	"
Roggenbrot, frisch, Mittel	82	12	489	2641	Sundström
"trocken, (vgl. S. 60).	120	17	719	3908	"
Gerstenbrot, "Rieska", frisch	73	15	494	2640	"
" trocken (vgl. S. 60) .	107	19	726	3936	27
Weizenbrot, frisch	90	4	540	2827	Grönberg
Weizenzwieback	115	30	710	3928	Almén
Kartoffeln	20	2	210	991	"
Kohlrüben	12	2	80	414	"
Erbsen	220	11	522	3548	Grönberg
Blumenkohl	20	2	50	333	Almén
Essbare Pilze, frisch	32	4	60	455	Hammarstén
Äpfel	4		130	540	"
Verschiedene Beeren	5	_	90	386	- 27
Rosinen	20	5	560	2391	Almén
Zucker	_	_	100	3950	Ehrström
Schwaches Bier	7		24	136	Almén

	10	kos			
C. Gerichte	Eiweiss	Fett	Kohle- hydrate	Kalorien	kostet Penni
	g	g	g		
Rindfleisch, gekocht oder gebraten .	327	163		3397	109
Beef aus gewöhnlichem Fleisch	238	221	_	3423	141
Speck, gebraten	110	830	_	8507	133
Fisch, in Butter gebraten	218	102		2179	84
Specksauce	28	104	49	1353	20
Milchsauce (nach Ehrström)	40	49	82	1012	17
Fleisch und Kartoffeln gedämpft	68	23	63	864	23
Speck und Kartoffeln gedämpft	26	83	104	1339	23
Erbsensuppe mit Speck	72	170	120	2528	33
Fisch und Kartoffeln gedämpft	52	2	88	674	15
Fisch mit Milch gedämpft	92	4.	33	692	40
Roggenmehlbrei	25	4	168	888	5
Gerstenmehlbrei	22	2	175	881	5
Gerstenmehlmilchsuppe	32	8	83	610	6
Gerstengrützbrei	62	10	260	1513	5
Gerstengrützmilchsuppe	35	6	91	623	5
Hafergrützmilchsuppe	38	9	87	654	7
Reisgrützbrei	37	6	116	740	9
Reisgrützmilchsuppe	31	13	110	748	10
Griesbrei	38	5	157	916	10
Griesmilchsuppe	36	6	95	648	5
"Talkkunabrei"	26	7	193	1027	5
Sauremilchsuppe	39	8	57	516	6
Kohl mit Milch gedämpft	31	5	55	446	11
Blutkuchen 1) mit Milchsauce	44	26	263	1615	16

¹⁾ Anm. Rinder- oder Schweineblut mit Wasser verdünnt, daraus mit grobem Roggenmehl und Salz ein Teig angerührt, auf eine Pfaune ausgegossen und im Ofen gebacken. Dieser Kuchen wird in passende Stücke geschnitten und entweder in Butter gebraten oder mit Milch übergossen und gedämpft.

Bidrag, H. 67, N:o 1.

	1	1000 g enthalten			
C. Gerichte	Eiweiss	Fett	Kohle- hydrate	Kalorien	kostet Penni
	g	g	g		
Kartoffeln mit Milch gedämpft	29	5	145	790	8
Kartoffelmus	26	13	186	1033	11
Gelbe-Rüben-Mus	14	18	105	332	10
Pfannkuchen	100	35	390	2518	37
Blutplinzen	164	72	210	2470	39
Preisselbeermus	2	-	636	2554	45
Heidelbeersuppe	2		132	539	15

UKONILMOISTA SUOMESSA

1904

KIRJOITTANUT

RISTO JURVA

HELSINKI 1909

SUOMALAISEN KIRJALLISUUDEN SEURAN KIRJAPAINON OSAKEYHTIÖ

Sisällysluettelo.

•	Siv.
Alkulause	1
Jkonilmoista Suomessa yleensä	4
Säätila huhti—syyskuulla 1904	8
Jkonilmat 1904	11
Jkkospurkausten edellytyksistä	28
Jkonilmojen voimakkuus	32
" kestävyys	34
" liikunnasta	35
Jkonpurkausten jakautuminen maan eri osiin nähden	40
Jkonilmojen jaksollisuudesta	51
Kalevantulet	62
Jkoniskut	65
Meteorit	67
Liite I	68
" II	122
Kuv. I-V.	
Taulut A ja B.	

Oikaisuja:

Siv. 2 rivi 17 ylhäältä on: ukonilmoista 1105 tulee olla: ukonilmoista 1031

. 4 alhaalla on: kymmenesosissa vuoden tulee olla: kymmenesosissa vastaavan kuukauden "Ukonilmoista Suomessa 1904" ilmestyy kahdeksantenatoista vuosikertana Professori A. F. Sundell'in vuonna 1887 aloittamassa, maamme ukonilmoja käsittävässä tutkimus sarjassa. Professori Sundell'in toimittamina ilmestyivät vuosikerrat 1887—1896; vuosikerrat 1897—1902 ovat Maisteri W. Öhqvist'in ja 1903 Tohtori Hugo Karsten'in laatimia.

17:s vuosikerta (1903) eroaa edellisistä laajemman ja täydellisemmän havaintoaineiston käsittelyn kautta. Ukkosilmiötä on siinä tutkittu sekä keskiarvo- että synoptistametodia käyttämällä. Viimemainitusta metodista huomauttaa T:ri Karsten, että etupäässä se "on oikeastaan selittänyt ukonilmojen etenemisen ja ilmapaineen variationit, lämpötilan, vesihöyryn paineen, tuulen suunnan y. m. ukonilmoilla". Ja siitä syystä "onkin aivan selvää, että synoptinen metodi tarjoaa erinomaisia etuja niin epäyhtenäisen ilmiön kuin ukonilman tutkimisessa". 1 — "Ukonilmoista Suomessa 1904" liittyy kokoonpanoonsa nähden melkein täydelleen edelliseen vuosikertaan. Poikkeuksena mainittakoon yleinen säätila 1904 huhti-syyskuulla (siv. 8), lämpötila- ja ukkoslukuisuus-poikkeus käyvät vuosina 1887-1904 (Taulu A ja B), ukkospurkausten lukumäärä minimin eri oktanteissa (siv. 35), sekä ukonilman etenemisnopeuden tarkempi määräys (siv. 37).

¹ Karsten: Ukonilmoista Suomessa 1903 siv. 2.

Ensimmäisenä ehtona, jotta synoptista metodia saattaisi suuremmalla menestyksellä käyttää on, että havaintoasemia on tarpeeksi tiheässä. Tämä ehto on kumminkin sangen vaikeasti täytettävissä maassamme, ja siitä johtuu, että ukonilmahavainnoista tehdyt johtopäätökset ovat jossain määrin epävarmoja.

Tarkempi selostus havaintopaikoista ja havaintojen tekijöistä v. 1904 on Liitteessä II, jossa on myöskin ilmoitettuna ajat, jolloin havaintoja eri asemilla on tehty. Siitä huomaa, että henkilöiden luku, jotka pitemmän tahi lyhyemmän ajan ovat toimineet havaintojen tekijöinä, on 172. Koko vuoden 1904 toimessa olleiden asemain luku oli vaan 70. Tämä vastaa asematiheyttä 0,02 100 km² kohden (vastaava luku v. 1903 0.02). Jos lasketaan havaintoverkon tiheys kaikille asemille, satunnaisia lukuun ottamatta, niin saadaan luku 0.04 (v. 1903 samoin 0.04).

Kaikkiaan saapui v. 1904 ukonilmoista 1105, kalevantulista ja jyrinättömistä salamoista 64 ilmoitusta. Sen lisäksi on ilmoitettu 17 ukoniskua, 3 meteoria ja 2 vesipatsasta. — Saapuneiden ilmoitusten lukumäärä on, verrattuna edellisiin vuosiin, pieni. Ainoastaan v. 1902 i oli mainittu luku pienempi (793). Syynä tähän vähenemiseen on epäilemättä vuonna 1904, samoin kuin 1902, etupäässä kesäkuukausien alhainen lämpötila sekä muutenkin ukonilmoille epänormaliset sääsuhteet. Seuraavassa taulussa on vuosien 1902—04 keskilämpötila sekä "normali"-lämpötila määrättynä vuosilta 1886—1900:

¹ W. Öhqvist: Ukonilmat Suomessa 1902 siv. 3.

Paikka	1904	1903	1902	1886— 1900		
Oulu	1.8	3.1	0.2	2:0		
Kuopio	2.2	4.0	0,6	2.7		
Vaasa	3.0	4.4	1.9	3.5		
Sortavala	2.6	4.2	0.8	3.0		
Tampere	3.3	5.1	2.2	4.0		
Helsinki	4.0	5.8	2.9	4.7		
Maarianhamina	4.6	6.0	3.7	5.2		

Ukkospurkauksien luku asemaa kohden oli vastaavina vuosina

Edellisestä huomaa, että vuosi 1903 on keskiarvoa lämpöisempi ja sitä vastaa suurin ukkoslukuisuus; 1902 ja 04 ovat taasen kylmempiä ja niitä vastaa 15-vuotista keskiarvo pienempi ukkoslukuisuus, vielä sillä tavalla, että kylmempää vuotta 1902 vastaa pienin purkautumisluku asemaa kohden. Näyttää siis siltä, kuin jos ukkoslukuisuus Suomessa ainakin näennäisesti riippuisi lämpösuhteista (tarkemmin siv. 7 ja taulu A ja B). Tämä johtuu epäilemättä siitä, että suurin osa ukkospurkauksista maassamme on n. k. lämpöukkos-luonnetta. ² Jos sää suhteet muodostuvat tällaisten lämpöukkosten syntymiselle epäsuotuisiksi senkautta, että lämpötila runsaan sademäärän, pohjanpuoleisten tuulien y. m. vaikutuksesta pysyy alhai-

¹ W. Öhqvist: Ukonilmat Suomessa 1901 siv. 43.

² Hann: Lehrbuch der Meteorologie 1901 siv. 666.

Nat. o. Folk, H. 67, N:o 2.

sena ja taivas pilvisenä, vähenee purkausten luku ja sattuneet ukonilmat ovat useastikin pyörre-ukkosluonteisia, ¹ jolloin pyörre luontoisella tarkoitetaan Mohn'in mukaan suurempia ilmakehän-pyörteitä, sykloneja seuraavia ukkospurkauksia.

Koska vuosi 1904 näyttää, samoin kuin 1902, muodostavan jonkinlaisen poikkeuksen, lienee syytä lyhyesti tarkastaa yleistä säätilaa kesävuosipuoliskona ja siten jo edeltäpäin huomata eri ukkoslajien muodostumismahdollisuudet. Sitä ennen kumminkin lyhyt silmäys ukonilmoihin yleensä maassamme.

1. Ukonilmoista Suomessa yleensä.

Kuten edellä mainittiin, voi ukonilmat jakaa kahteen luokkaan, nimittäin: lämpö- ja pyörre-luontoisiin. Edellisten lukuisuus-käyrä liittyy varsin tarkkaan yleiseen lämpötila-käyrään, kun taasen jälkimmäiset esiintyvät enemmän vuorokauden (ja vuoden) ajasta riippumattomina. Professori A. F. Sundell² huomauttaa jo vuonna 1887, että suurin osa Suomen ukonilmoista on lämpöluonnetta ja tämä väitös osoittautuu oikeaksi kun vertaa ukkoslukuisuus poikkeusta eri vuosina 15:sta vuotis-keskiarvosta vastaaviin lämpötila poikkeuksiin (Taulu A).

Mainittu taulu on muodostettu siten, että kunkin vuoden touko—syyskuun lämpötilapoikkeus on esitetty asteen kymmenesosissa vuoden keskilämmöstä (määrättynä

¹ Hann: Lehrbuch der Meteorologie 1901 siv. 669.

² Sundell: Ukonilmoista Suomessa v. 1887, siv. 18.

Taulu 1.

Huomattujen ukonpurkausten (□) ja kalevantulien (□) jako vuoden eri päiville.

Päivä	Tammikuu	Huhtikuu	Toukokuu	Kesäkuu	Heinäkuu	Elokuu	Syyskuu	Lokakuu	Marraskuu
	13 4	ব্ৰ ব	K	ব্ৰে 🔾	[] <	[] <	[] <	[] <	13
1 2 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Yhteensä		39 7 8 1 2 - 1 - 1 2 - 3 3 - 3 56 8	1 1 1 - 7 9 7 7 1 8 8 35	1 - 2 - 46 4 3 1 - 1 - 1 - 1 - 1 3 - 2 1 1 - 1 3 - 2 5 - 16 - 15 - 16 - 15 - 16 - 15 - 16 - 15 - 16 - 15 - 16 - 15 - 16 - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17	6 — 23 — 35 — 35 — 45 — 23 — 45 — 23 — 49 — 9 — — — — 6 — 43 3 3 27 3 1 — 2 — 1 — 5 — 1 — 5 — 2 — 1 1 8 1 360 8	3 2 12 4 4 — 21 1 1 — 5 — 11 3 6 — 4 1 7 5 5 2 27 — 3 — 12 1 14 — 9 2 13 1 11 2 — 6 — 14 — 1 — 3 — — 6 — 2 — — — 209 24	1 - 1 - 1 - 1 - 37 7 40 2 1 - 2 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 3	

Nat. o. Folk, H. 67, N:o 2.

jaksosta 1886—1905) negativisenä ollen alaspäin, positivisenä ylöspäin, luettuna vaakasuorasta viivasta. Lämpötilapoikkeusta osoittaa yhtäjaksoisesti vedetty viiva. Vastaavalla tavalla on ukkoslukuisuus-poikkeus käyräkin muodostettu; normaliarvo on määrättynä aikajaksosta 1887—1901, siis 15 vuodesta. Ukkoslukuisuus-poikkeus käyrä on piirretty pilkkuviivoja käyttämällä.

Taulua A tarkastaissa huomaa, että vastaavaisuus käyrien kulussa on yleensä hyvä; ainoat poikkeukset ovat vuosina 1888 ja 1895. Muuten näyttää siltä, että äkillisempiä muutoksia lämpötilassa yleensä seuraa suuremmat muutokset lukuisuudessakin, esim. v. 1889, 1896 ja 1899. Hitaammat vaihtelut eivät samassa määrässä muuta ukkolukuisuutta, niin esim. v. 1901 ja 1902.

Edellä mainittu omituisuus on vaan siten selitettävissä, että ukkoslukuisuuden etupäässä määräävät lämpösuhteet, se on että purkaukset enimmäkseen ovat lämpöluonteisia. Poikkeukset vuosina 1888 ja 1895 ovat siten selitettävissä, että huolimatta siitä, että lämpötilan poikkeus oli noll tahi negativinen yleinen säätila pysyi syklonisena ja pyörreukkosten lukumäärä senkautta oli siksi suuri, että ukkoslukuisuus nousi yli normalin.

Prohaska¹ esittää pyörre- ja lämpöukkosten suhteen murtoluvulla $\frac{S_2}{S_1}$, jossa S_2 on ukkosten lukumäärä kl. 5_p^h — 11^h_a ja S_2 11^h_a — 5^h_p . Tämä luku on yleensä (Prohaskan mukaan) 1, mutta suurenee pyörreukkosten ja pienenee lämpöukkosten lukumäärän kasvaessa. Prohaskan tulokset ja vastaavat luvut Suomessa ovat:

¹ Hann: Prohaskas Untersuchungen über die Gewitterserscheinungen in Steiermark, Kärnten und Oberkrain. Met. Zeit. 1889 siv. 176.

Prohaskan suhde	Tammik.	Maalisk.	Huhtik.	Toukok.	Kesäk.	Heinäk.	Elok.	Syysk.	Lokak.	Marrask.	Jouluk.	Vuosi
Steiermark-	. ;.						1,1					
issa j. n. e.	2.00	1.23	0.49	0.55	0.83	0.77	1.87	2.15	3.55	5.14	2.15	1.06
Suomessa	-	_	_	0.81	0.6	0.8.	1.1.	1.61	_	_	_	0.8

Tämän mukaan on kesäkuu (sekä touko- ja heinäkuu) lämpöukkosista rikkain. Taulusta B huomaakin vastaavalla tavalla että kesä- ja heinäkuun käyrät parhaimmin liittyvät yhteen. Syyskuussa olisi pyörre-ukkoslaji enimmin edustettuna ja sen huomaa taulusta siitä, että ukkoslukuisuus poikkeukset vähemmän seuraavat vastaavia lämpötilapoikkeuksia. — Wienissä on suhde noin 0.7.

Taulun A ja B nojalla voi siis ehkä ainakin jossain määrin pitää yleisenä sääntönä, että vuosina jolloin lämpöpoikkeus on positivinen s. o. jolloin yleinen säätila maassamme on antisyklonalinen, ukkolukuisuus on suurempi ja sellaisina vuosina taasen, jolloin poikkeus on negativinen (s. o. yleinen säätila enemmän syklonalinen, kuten 1904) taasen pienempi. Antisyklonaliseen säätilaan kuuluu m. m., että pilvisyys on pienempi ja sen kautta auringon säteily voimakas. Auringon säteiden ioniserava vaikutus taasen on silloin täydellisempi ja ukkosmahdollisuudet suurempia (kts. siv. 29).

Mitä sääelementtien kulkuun tulee, ovat niissä tapahtuneet poikkeukset vastaavia ulkomailla huomattuihin. Ferrarin ² sääntö toteutuu myöskin Suomessa kuten Karsten ³ jo v. 1903 on osoittanut. Loppuun on

¹ oikeastaan tammi—touko- ja syys—joulukuulla.

² Hann: Lehrbuch der Meteorolog. 1901 siv. 140.

³ Karsten: siv. 9.

liitetty muutamia käyriä ukonilmoilta v. 1904. Niistä huomaa, Ferrarin säännön mukaan, että ilmapaine (ja suhteellinen kosteus) saavuttaa minimiarvonsa ennen purkautumista, lämpötila maksimin; purkauksen jälkeen on ilmapaine (ja suhteellinen kosteus) korkeimmillaan, lämpötila alimmillaan. Varsinaisesta havaintoainestosta esitettäköön tässä seuraavat ukonilmalla huomatut muutokset lämpötilassa:

Päivä		Uovointo	:1-	1-0	Ilman la	impötila	Lämpö- tilan
Paiva		Havainto	ратк	ка	ennen ukkosta	jälkeen ukkosen	alene- minen
Toukokuun	20	Mikkeli			15	6	9
Kesäkuun	20	***			20	12	8
Heinäkuun	21	Bromarf			15	9	6
72	25	Pälkjärvi			19	13	6
Elokuun	4	27			20	13	7
77	18	Kuusamo			18	12	6

2. Säätila huhti—syyskuulla 1904.

Parhaimman kuvan säätilasta niinhyvin kullekin vuorokaudelle, kuin 10:n vuorokautiselle keskiarvolle Europassa ja Pohjois-Atlannilla, saa Deutsche Seewarte'n Internationaler Dekadenberichte'stä. Sen mukaan oli huhtikuun ensimmäisenä kolmanneksena — siis kymmenvuorokautisena keskiarvona — minimialue lännessä Norjan rannikolla. Tuulet olivat siitä syystä mainittuna aikana maassamme enimmäkseen etelänpuolelta ja lämpötila yli

Bidrag t. känned. af Finl.

normalin. Keskivaiheilla kuukautta määräsi säätilan etupäässä kauempana Länsi-Siperiassa oleva, mutta Suomeenkin ulettuva maksimi. Siitä syystä olivat tuulet kääntyneet enemmän lounaan puolelle ja lämpötila sekä meillä että muulla Pohjois-Europassa yli normalin (etenkin dekadin lopussa, katso Taulu I). Huhtikuun viimeisellä kolmanneksella on minimialue pohjoisessa Jäämerellä ja tuulet sen vaikutuksesta yhä vielä lounaan puolella. Lämpötila pysyy yli normalin ja siten muodostuu kuukausi yleensä keskiarvoa lämpimämmäksi (noin 0.°6). Sademäärä oli kumminkin normalimäärää ja sadepäivien luku (>0.1 mm:ä) normalilukua suurempi. 1 — Huhtikuun kolmas dekadi muodostaa viimeisen jakson aina syyskuuhun saakka, jolloin lämpötila Suomessa ja suurimmassa osassa Pohjois-Europaa oli yli normalin. Ja juuri tämä lämpötilan poikkeus seuraavina kuukausina negativiseen suuntaan on syynä (edellisen luvun mukaan) ukonilmojen vähyyteen varsinaisina kesäkuukausina samoin kuin esim. v. 1902 ja heinäkuussa 1903, kuukauden viime päiviä lukuunottamatta, 2

Säätila oli touko-syyskuussa lyhyesti seuraava:

Toukokuun alussa on ilmapaine alimmillaan lounaassa ja korkeimmillaan pohjoisessa; tuulet ovat enimmäkseen idän ja pohjan puolelta; sadepäivien luku on verrattain suuri. Keskivaiheilla kuukautta on ilmapaine alimmillaan pohjoisessa, mutta loppupuolella on alue korkeampaa painetta levinnyt yli Skandinavian ja sen vaiku-

¹ Nämät sademäärät ja sadepäiväin luvut ovat otetut teoksesta Statistisk Årsbok 1907; samasta lähteestä muidenkin kuukausien vastaavat luvut.

² Karsten: Ukonilmoista Suomessa 1903 (Taulu I).

Nat. o. Folk, H. 67, N:o 2.

tus ilmenee meillä m. m. toukokuun viimepäiväin korkeana lämpötilana (Taulu I). Tuuli oli enimmäkseen pohjoinen ja lämpötila koko kuukauden aikana suurimmaksi osaksi paljoa alle normalin (noin 2°). Sadepäiväin luku ja sademäärä olivat normali-arvojaan suuremmat. — Kesäkuussa on ilmapaine yleensä alimmillaan Pohjois-Europassa ja alueen keskus on maastamme itään. ovat enimmäkseen luoteisia à koillisia ja lämpötila huomattavasti alle normalin (noin 1.06). Sadepäivien lukumäärä oli keskilukua suurempi ja sateenpuoli hyvin runsas; paikottain 150 % normalimäärästä ja siitäkin yli. — Heinäkuussa on lämpötilan poikkeus negatiiviseen suuntaan suurin (noin 2.°2). Ilmapaine on yleensä alimmillaan idässä ja koillisessa. Tuulet olivat pohjan puolelta ja lämpötila (lukuunottamatta muutamia päiviä toisella kolmanneksella, jolloin sään määräsi meistä etelään oleva maksimi [Taulu I]) huomattavasti alle normalin. Sademäärä oli verrattain vähäinen, joskin sadepäiväin luku yli keskiluvun. — Elokuun ensipäivinä on maassamme harjanne korkeampaa painetta, joka "kiilana" tunkeutuu Atlannilta yli Keski-Europan maahamme. Tuulet ovat lounaan puolelta ja lämpötila muutamana päivänä yli normalin (Taulu I). Keskivaiheilla kuukautta on ilmapaine alhaisempi ja tuulet idän- ja etelänpuolella. Joskin tuulet tulevat lämpimiltä seuduilta pysyy lämpötila runsaan sateenpuolen kautta kylmänä. Viimeisellä kolmanneksella on ilmapaine jälleen korkeampi; minimi on Itämeren maakunnissa. Tuulet ovat idän- ja pohjan puolelta ja lämpötila yleensä koko kuukautena alle normalin (noin 1°). Sademäärä oli elokuussa yleensä ja monin paikoin sangen runsas; niin oli Kuopiossa 125.1 mm:ä (normalimäärä 73.9) ja Maarianhaminassa 119.5 mm:ä, norm. 62.0. Sadepäivien

luku oli kaikkialla keskilukua huomattavasti suurempi. — Syyskuussa on ilmapaine koko vuoteen verrattuna korkeimmillaan; varsinainen maksimi on Keski- ja Itä-Europassa; tuulet ovat enimmäkseen lounaisia ja kaakkoisia, sekä lämpötila keskiarvoisesti yli normalin (noin 0.°6). Sademäärä oli verrattain pieni samoin sadepäivien luku; niin oli Oulussa 9.7, normalimäärä 60.4 mm:ä ja Tampereella 19.3, norm. 58.2 mm:ä.

Kuten edellisestä huomaa muodostui säätila yleensä sellaiseksi, että lämpötila pysyi alle normalin. Lämpöukkosen muodostumismahdollisuudet vähenevät ja seuraavasta huomaa, että pyörreluontoiset purkaukset (jolloin pyörreluontoisella tarkoitetaan sivulla 4 annetun määritelmän mukaista ukkosta) todellisuudessa muodostavat suuremman osan kesän purkauksista. — Ukonilmojen syntymiselle ovat suotuisimmat huhti- ja syyskuu; kesäkuu, mutta etenkin heinäkuu epäsuotuisat. Taulusta A huomaakin negativisen ukkoslukuisuus-poikkeuksen suurimmaksi etenkin heinä- ja elokuussa; posetivinen poikkeus suurimmillaan (huhti-) syyskuussa.

3. Ukonilmat 1904.

Ilmoitettujen ukonilmojen luvun kutakin päivää kohden näkee taulusta 1. Siitä huomaa, että varsinaisina talvikuukausina on ilmoitettu vaan kolme purkausta nimittäin tammik. 4, 5 ja 18 p:nä. Näillä talviukkosilla on kumminkin merkityksensä siinä, että ne useimmiten edustavat tyypillisiä pyörreukkosia ja siten harvinaisempaa ukkosmuotoa maassamme.

Nat. o. Folk, H. 67, N:o 2.

A. Talviukkoset.

Tammikuun 4 p. aamulla oli 775 mm:ä korkea maksimi Itämeren maakunnissa ja kauempana lännessä Atlannilla oli minimi. Pohjois-Suomessa oli pieni, heikko osaminimi ja lämpötila oli yleensä normali. Tuusniemeltä ilmoitettiin ukkosta kl. 3.15—3.50 a., kovan länsimyrskyn raivotessa. Varmaan tapahtuivat purkaukset tuon pienen, mutta suurigradienttisen pyörteen alueella. Tämä "pyörre" voi kumminkin olla horisontaliakselinen, "Böen"-tyyppiin kuuluva, jolloin ukkonen olisi tällä säätilalle luontainen ilmiö.

Turussa huomattiin tammik. 5 p. kalevantulia ESE:ssä. Sääkartoista päättäen tapahtui purkaus maksimialueella; tarkempia tietoja ei siitä ole saatu. Skandinaviassa ja Bayerissa on tultu siihen tulokseen, että "kalevantulet ovat yksinomaan jyrinällisten salamain heijastuksia". ¹ Jos tämä sääntö pitää paikkansa Suomenkin nähden olisi ukkonen sattunut 775 mm:ä korkealla maksimialueella ja vielä likellä sen keskustaa, joka oli Itämeren maakunnissa.

Tammikuun 18 p. aamulla kuultiin Heinäluodolla ukkosta SSW:stä. Mainittuna päivänä oli ilmapaine melkein koko Pohjois-Europassa normali (760 mm:ä). Pienempiä minimejä löytyi kumminkin useampia m. m. yksi Suomenlahdella. Lämpötila oli Pohjois-Suomessa alhainen, Torniossa ja Kajanissa — 16° ja Sortavalassa — 3° sekä Hankoniemessä ja Helsingissä 0°. — Talviukkosten joukkoon olisi vielä luettava purkaukset loka- ja marraskuussa; mutta noudattamalla aikajärjestystä esitetään ne vasta kesäukkosten jälkeen.

¹ Karsten: siv. 66.

B. Kesäukkoset.

Kuten taulusta 1 huomaa, voi ukonilmat jaata seuraaviin jaksoihin:

Ajanjakson numero	Ajat joiksi ajanjakso sattuu	Ukonilmo- jen luku ajanjaksolla	Ukkos- päiviä	Ajanjakso- jen välinen päivämäärä
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Huhtik 17 — Huhtik 18 Toukok 18 — Toukok 20 " . 28 Kesäk 3 " . 12 " . 17 — Kesäk 19 " . 22 — " . 25 " . 27 — " . 29 Heinäk 1 — Heinäk 6 " . 9 — " . 10 " . 16 — " . 17 " . 25 Elok 2 — Elok 4 " 13 " 15 — Elok 20	47 23 8 46 13 57 66 44 139 58 70 43 37 27 68	2 3 1 1 3 4 3 6 2 2 1 3 1 6	29 7 5 8 4 2 1 1 3 5 7 7 8 1
16	Syysk 10 — Syysk 11	77	2	20

1 jakso huhtikuun 17-18 p.

Ilmapaine oli maassamme 17 p. normali tahi vähän yli; maksimialue oli kaakossa Venäjällä ja minimi Atlannilla Norjan luoteisrannikolla. Pääminimistä erottautui heikompi reunaminimi, jonka keskus 17 p:n iltana oli Ahvenanmaalla. Ukonilma alkaa mainitun toisarvoisen minimin koillisosassa ja etenee sieltä (Kartta II) mannermaalla niinhyvin pohjoista, itää kuin kaakkoa kohden. Nat. o. Folk, H. 67, N:o 2.

Tämän päivän ukkosretket ovat muuten niitä harvoja, joita on voitu v. 1904 isobronteilla esittää. — Mitä ukonilman luonteeseen tulee mainittakoon, että lämpötila oli edellisenä päivänä verrattain tasaisesti jakautuneena maassanme. 17 p. oli horisontalinen lämpögradientti kauvempana lounaassa verrattain suuri, joten on mahdollista, että se lisäsi ilmiön voimakkuutta. Ukkonen ilmestyi nimittäin maahamme rajuna pyörre-ukkosena. Salamat olivat häikäisevän kirkkaita ja monin paikoin oli täydellinen rajuilma. Myöhemmin illalla nähtiin monissa kohdin komeita kalevantulia, jotka olivat merkkinä siitä, että rajuilma eteni kaummaksi sekä maalle että merelle päin. Purkaukset 18 p. aamuna ovat todennäköisesti jatkona edellisen päivän ukkos-säälle.

2 jakso toukokuun 18-20 p.

Aamulla 18 p. on Lofotilta keski Ruotsiin ulettuva osaminimi, joka on syvimmillään Hernösandissa, 742 mm:ä Maksimialue on kauempana etelässä, Keski-Europassa. Ilmapaine on pohjoismaissa yleensä alenemaan päin, osoittaen lähestyvää matalan paineen-aluetta. — Pohjois Skandinaviassa oleva minimi on muuten varsin hyvin kehittynyt; sillä on oma tuuli- ja sade-systeminsä. Lämpötila on maassamme tasainen 7 à 8°, idässä vähän korkeampi, 10°. Purkaukset alkoivat aamulla SW-osassa Suomea; ne olivat verrattain heikkoja. Tuuli oli yleensä kohtalainen, mutta sade heikkoa. 19 p. on minimi siirtynyt koillista kohden pohjois Pohjanlahdelle (Torniossa 741 mm:ä). Ukkosalue on seurannut minimiä, ollen nyt etupäässä Pohjanmaalla. Lämpötila on jotakuin ennallaan, kaakossa korkeimmillaan. Illalla on minimi Kuolan niemimaalla, mutta sen sijaan on heikko reunaminimi muodostunut Laatokan seuduille, jossa lämpötila oli ollut korkeimmillaan. 20 p. aamulla ilmoitettiin ukkosta Kaakkois-Suomesta. Nämät (20 päivän) purkaukset johtuvat todennäköisesti siitä labilisesta tasapaino-tilasta, johon alimmat ilmakerrokset olivat korkean lämpötilan kautta (muuhun Suomeen verraten) joutuneet. Tätä käsitystä vahvistaa Pawlovskissa 17 ja 18 p. toimitetut ilmapallonousut, jolloin koneet merkitsivät:

17 p. kl. 10.20 a.—12.25 p. ja 18 p. kl. 10.15 a.—12.50 p. 30 m korkeudella + 11.°0 30 m korkeudella + 14.°9 520 " " 5.°2 1180 " " 1.°9 1350 " " 0.°1 1610 " " 2.°3 1980 " " 1.°2

17 ja 18 p. on siis ensimäisellä 1000 m:llä lämpötila gradientti suurempi kuin 1° à 100 m.² — 18 ja 19 päivän ukonilmat liittyvät täydelliseksi kehittyneeseen minimin, kun taasen 20 p:n ovat lämpösuhteista kehittyneen minimin yhteydessä. — Tämän ukkosjakson jälkeen muuttuu sää joksikin aikaa kylmemmäksi (Taulu I).

3 jakso toukokuun 28 p.

Ennen 28 p. määrää sään maassamme alue korkeampaa ilmapainetta ja taivaan selkeänä pysyessä kohoaa lämpötila huomattavasti (Taulu I). Siten on 27 p. lämpötila korkeimmallaan alueella, joka oli Kajaanista Kuopioon

¹ Bullet. Meteorolog. de l'Observ. Phys. Central Nicolas St. Petersburg 1904 N:ris 126, 127.

² Börnstein: Leitfaden der Wetterkunde 1901 siv. 9. Nat. o. Folk, H. 67, N:o 2.

vedetyn suoran itäpuolella, 12° à 14° ja siitä länteen 9° à 10°. Mainitun päivän iltana ilmestyy Keski-Skandinaviaan heikko osaminimi suuremmasta Atlannilla olevasta minimistä (Bodössä 759 mm:ä). — 28 p. on (osa —) minimi 754 mm:ä syvänä Torniossa ja keskipäivällä ilmoitetut ukkoset ulottuvat melkein meridianin suunnassa olevalla alueella. Ukkonen on paikottain kova, mutta lyhytaikainen, tuuli oli heikko. — Ukkosalueen omituinan ulettuvaisuus ja lämpösuhteet viittaavat ukkosen lämpöluonteeseen.

4 jakso kesäkuun 3 p.

Säätilan määräsi etupäässä Länsi- ja Keski-Europassa oleva maksimi. Edellisinä päivinä oli lämpötila maassamme varsin korkea (Taulu I). 2 p. oli ilmapaine melkein kaikkialla Pohjois-Europassa noin 760 mm:ä. Pohjois-Europassa on yleensä näinä päivinä tyyntä (1—3 p.). Tukholman seuduille näkyy muodostuvan lämpömaksimi:

			Maarianhamina	Tukholma	Karlstad
kesäk.	1	p.	15°	18°	14°
27	2	22	15	19	14
22	3	77	17	20	14

Ja luultavasti juuri tämän lämpömaksimin vaikutuksesta on isobarissa 760 3 p. aamuna muodostunut tyypillinen ukkospoimu. Ensimmäiset purkaukset saman päivän aamuna johtuvat epäilemättä tämän poimun "minimistä". Myöhemmin syvenee poimu-minimi ja illalla on se Helsingissä 752 mm:ä syvänä. Illalla muodostuu ukkoskulkue, jonka eteneminen kuvaa minimin siirtymistä. — Tämän

Bidrag t. känned, af Finl.

päivän ukkossää oli vuoden huomattavimpia. Edellisen mukaan oli ukkonen lämpöluonnetta, kehittyen ukkospoimusta. Tämä esimerkki osoittaa oivallisella tavalla Prof. A. F. Sundell'in¹ väitteen: "I allmänhet torde äfven värmeåskvädren stå i samband med förhandenvarande svagare barometerminima" oikeaksi.

Ukonilman jälkeen alenee lämpötila huomattavasti (Taulu I). Tämä johtuu siitä, että tuo alkujaan varsin heikko minimi siirtyessään itään syvenemistään syventyy, aikaansaaden 4 ja 6 p:nä kovia myrskyjä pohjan puolelta maassamme.

5 jakso kesäkuun 12 p.

Tämä ukonilma sattuu aikana, jolloin lämpötila on alle normalin (Taulu I). Ilmapaine on Atlannilla korkeimmillaan ja alimmillaan idässä Venäjällä. 12 p:nä vaihteli ilmapaine 750 ja 760 mm:n välillä idässä ja lännessä. Ukkosalue on enimmäkseen Kaakkois-Suomessa ja ukkonen etenee noudattaen Buys-Ballot'in lakia. Purkaukset sattuvat siten etupäässä idässä olevan minimin alueella.

Ukonilman jälkeen kohosi lämpötila monin paikoin paljoa yli normalin, sillä maahamme leviää alue korkeampaa painetta.

Kesäkuun 17 p. alkaa suurempi ukkosjakso, joka jatkuu heinäkuun 10 p:ään. Kuten Taulusta I huomaa, sattuvat purkaukset osaksi normalisen lämpimänä aikana.

— Ensimmäinen osa tätä suurempaa jaksoa on

¹ Sundell: Ukonilmat Suomessa 1887 siv. 17.

6 jakso kesäkuun 17-19 p.

Purkaukset liittyvät 16 p:nä Englantiin ilmestyneeseen 740 mm:ä syvään minimiin varsin huomattavalla tavalla. Mainittuna päivänä oli ilmapaine maassamme noin 760 mm:ä ja alenemaan päin; lämpötila oli korkea (Taulu I). 17 p:nä on minimi 744 mm:ä syvänä Norjan länsirannikolla ja saman päivän iltana Pohjois-Skandinaviassa. Minimi siirtyy siis koillista kohden. Ukkospurkaukset sattuvat 17 p. kaikkialla maassamme. Yleinen etenemissuunta on SW-NE vastaten Buys Ballot'in lakia. 18 p. kuluessa on minimi Tornion seuduilla. Koko maa muodostaa ukkosalueen ja etenemissuunta on SW-NE à W-E. 19 p. on minimi jonkunverran täyttyneenä entisellä paikallaan Torniossa. Ukkosalue ulettuu pohjoisesta Inarin seuduilta etelään Söderskärin majakalle. Sitä paitsi ilmoitettiin Ruotsista (Karlstadista) ukkosta. — Sää muuttuu tämän 3-vuorokautisen jakson jälkeen kylmäksi (Taulu I).

7 jakso kesäkuun 22-25 p.

Edellisenä päivänä oli lämpötila yleensä ollut alhainen. 21 p. on ilmapaine melkein koko maassa 755 mm:ä. 22 p. on keski Skandinaviaan ilmestynyt minimi. Korkeanpaineen-alue käsitti suurimman osan Europaa, Pohjoismaita lukuunottamatta. Mainittuna päivänä ilmoitetut ukkoset käsittivät koko Suomen. Etenemissuunta oli lounaan puolelta koilliseen. — 23 p. on minimi Ahvenanmaalla 748 mm:ä syvänä. Ukkosalue on etupäässä Keski-Suomessa ja Pohjanmaalla, missä lämpötila muuten oli ollut korkeimmillaan. Purkaukset olivat heikkoja ja lyhytaikaisia, etenemissuunta S—N, mutta Pohjanmaalla (minimin pohjoisosissa) E—W. — 24 p. on minimi 751 mm:ä

Bidrag t. känned. af Finl.

syvänä Helsingissä. Lämpötila, kuten edellisinä päivinäkin alimmillaan Etelä-Suomessa, korkeim. pohjoisessa. Siten oli aam. Hangossa 11°, mutta Oulussa ja Torniossa 16° ja Kajanissa 15°. Ukkosalue ulottui suurimmaksi osaksi Keski- ja Itä-Suomeen. Tämä johtunee siitä, että ukonilma etenee s. o. muodostuu helpoimmiten siellä, missä kohoava ilmavirta on voimakkain. — 25 p. on minimi Tampereella, jossa lämpötila oli 8° aamulla; Oulussa ja Torniossa taasen 15°. Ukkosalue on enimmäkseen Pohjois-Suomessa; myöskin Kuolasta ilmoitetaan ukkosta. ¹

8 jakso kesäkuun 27-29 p.

Säätilan määrää maassamme tänä jaksona etupäässä kaksi minimiä, joista toinen oli 26 p. aamulla etelä Ruotsissa 741 mm:ä syvänä. Minimi oli 21 p. ollut Pohjois Atlannilla, Labradorin niemimaasta kaakkoon. ² Kuten Taulusta I huomaa oli lämpötila mainittuna päivänä nousemaan päin, mutta kumminkin alle normalin. Pohjois-Suomeen näkyi muuten muodostuvan lämpökeskus kuten seuraavista luvuista huomaa:

			Hankoniemi	Jyväskylä	Kajaani	Tornio
26	p.	kl. $7 h_a$	11°	12°	14°	19°
27	,,	22	13	12	16	18
28	55	22	12	13 .	. 16	18
29	99	. 99	. 10	15	18	. 17

Sitäpaitsi oli lämpötila kauempana idässä korkeampi, mutta pohjoisessa (Vardössä) ja Skandinaviassa alhaisempi.

¹ Bull. Meteorolog. de l'Observ. Phys. Cenral Nicolas St. Petersburg 1904 N:o 158.

² Deutsche Seewarte: Internat. Dekadenbericht 1904 N:o 144.
Nat. o. Folk, H. 67, N:o 2.

27 p. on minimi huomattavasti täyttyneenä Suomessa. Ilmapaine on noin 750 mm:ä, gradientti pieni ja lämpötila, kuten edellisestä huomaa pohjoisessa korkeimmillaan. Ukkosalue on kokonaan Pohjois-Suomessa; ukkonen paikottain kova. Samoin raivosi muutamin paikoin todellinen myrsky, repien m. m. ladolta katon. Etenemissuunta oli SE-NW, vastaten yleistä ilmaliikettä. Nämät ukkoset ovat muodostaneet ennen mainitussa lämpömaksimissa, mutta samalla tuon heikon minimin alueella. — Seuraavana, 28 p., on ilmapaine yhä tasoittunut; se oli noin 752 mm:ä maassamme. Ukkosalue on nytkin pohjois-Suomessa sekä Pohjanmaalla. – 29 p. oli ilmapaine 760 mm:ä; ukkosalue länsi osassa maatamme Marjaniemen majakalta pohjoisessa Turkuun etelässä. Tuuli oli heikko ja monin paikoin oli tyyntä; kaikki edellytyksinä lämpöukkosen muodostumiselle. Ukkospurkaukset kohdistuivat ylipäänsä kahden varsin heikon minimin, ukkospoimun ympärille, joista toinen oli Vaasan, toinen Räävelin seuduilla. Purkausten yleinen etenemissuunta etelässä E - W vastaa jälkimmäistä, johjoisessa S-N edellistä reunaminimiä. - Että ilmakehässä tähän aikaan yleensä oli "rauhatonta" todistavat muuten ilmapallohavainnot Pawlovskissa 1 25-28 p.:

25 p.	kl.	10.49 a	.—12	2.14 p.	26 p	k	1. 9.46	a.—:	12.з р.
. 30	$_{\mathrm{m}}$	kork.	oli	$14.^{\circ}{}_{0}$	30	\mathbf{m}	kork.	oli	19.°0
370	"	27	"	$9.^{\circ}_{4}$	850	22	22	22	$9.^{\circ}_{0}$
1230	25	>>	22	$2.^{\circ}_{4}$	1530	"	77	22	$4.^{\circ}_{3}$
					2180	22	22	22	$2.\circ_5$

Bull. Meteorolog. de l'Observ. Phys. Central Nicolas St. P:burg 1904, N:ris 165—168.

27 p. kl. 10.56—11.49 a. 28 p. kl. 10.10 a.—12.17 p.

30 m kork. oli 16.°0 30 m kork. oli 15.°2

490 " " " 10.°1 1030 " " " 3.°6

1880 " " " — 1.°3

9 jakso heinäkuun 1-6 p.

30 p:n aamuna on sääkartalla 1 huomattavissa kaakosta Mustaltamereltä pohjoista kohden tunkeutuva minimi. Lämpötila on maassamme yleensä alhainen, koko jakson ajan kumminkin korkeimmillaan Kaakkois-Suomessa. Ukkosalue muodostuu 30 p:nä Itä-Suomeen: myöskin sisä Venäjältä ilmoitetaan ukkosta. Suomessa oleva ukkosalue ja Venäjältä ilmoitetut purkaukset sattuvat minimin reuna-osissa, karttavat siis minimin keskustaa. 2 — Heinäk. 1 p. on minimialue siirtynyt kauemmaksi länteen ja 2 p. on se Hankoniemen seuduilla. Isobarissa 755 on kumminkin huomattavissa 2 ukkospoimua, toinen Keski-Suomessa, toinen Laatokan (Pietarin) seuduilla. Purkauksia on ilmoitettu etupäässä Pohjanmaalta (vastaten Keski-Suomen poimua) ja kaakkoiskulmasta (vastaten Pietarin seuduilla olevaa poimua). Ukonilman etenemis-suunta vastaa Buys-Ballot'in lakia. — Tämän jakso-osan purkaukset liittyvät ainakin alussa niin läheisesti minimiin, että niitä voi pitää pyörreluontoisina; heinäk. 3 p:n purkaukset (ainakin Itä-Suomessa) taasen ovat lämpöluontoisia, sillä ne kehittyivät sellaisten edellytysten vallitessa, jotka juuri ovat ominaisia lämpöukkosille. Ilmapaine oli sinä päivänä harvinaisen tasaisesti jakautuneena koko Pohjois-

¹ Bull. Meteorolog. de l'Observ. Phys. Nicolas St. P.burg 1904 N:ris 168 ja 169.

² Karsten: siv. 36.

Nat. o. Folk, H. 67, N:o 2.

Europassa ja lämpötila oli idässä korkeimmillaan. — 4 p. on Skandinaviaan ilmestynyt minimi. Ukonilmat ovat enimmäkseen Pohjois-Suomessa. 5 p. on minimi Ahvenanmaalla ja ukkosalue käsittää suurimman osan maatamme; etenemis-suunta noudattaa Buys-Ballotin lakia. 6 p. on ilmapaine uudelleen varsin tasaisesti jakautuneena; Kaakkois-Suomessa on kumminkin heikko minimi. Ukkosalue ulottuu kautta Suomen. Tämän päivän ukkonen on todennäköisesti lämpöluontoinen.

10 jakso heinäkuun 9-10 p.

Tämä jakso sisältää vuoden ukkosrikkaimman päivän, nim. 9 p. Kuten taulusta I huomaa oli lämpötila yleensä alhainen. 8 p. oli ilmapaine-jaoitus yleensä tasainen, gradientti siitä syystä pieni ja monin paikoin olikin tyyntä. Saman päivän iltana on Pohjanlahden etelä- ja Suomenlahden itäosaan muodostunut kaksi ukkospoimua. Varsinainen minimi on Vienan merellä. Ensimmäinen purkaus ilmoitettiin Jyväskylästä varhain aamulla 9 p:nä. Myöhemmin ilmoitettiin m. m. Hernösandista Ruotsinpuolella. Kuten Liitteestä I huomaa, tapahtuvat purkaukset enimmäkseen Etelä-Suomessa, mutta siihen liittyy Ruotsissa (?) oleva ukkosalue. Koillisessa oleva minimi on tällä välin syventynyt ollen Arkangelissa 747 mm:ä. Ilmapaineen aleneminen maassamme merkitsi minimin syventymistä ja ukkosalue on siten minimin lounaisasossa. Ukkonen etenee suunnassa W à N-E à S, vastaten yleistä ilmaliikettä minimin ympärillä; ukkonen oli yleensä heikko, tuuli muutamin paikoin kova. Tämän jakson ukkoset ovat mahdollisesti seuranneet ukkospoimihin liittyneinä pääminimiä, sen matkalla lännestä itään. Ukkosalue liittyy muu-

Bidrag t. känned, af Finl.

ten minimiin siellä tavalla, että ukkosta voi pitää pyörreluontoisena.

11 jakso heinäkuun 16 ja 17 p.

Keski-Europalaisesta maksimista ulottui kiila korkeampaa painetta maahamme ja sen vaikutuksesta nousi lämpötila (Taulu I). Tämän lämpimän jakson päättää 16 -17 p:n purkaukset. 15 p. ilmestyy nimittäin Englantiin minimi, joka siirtyy edemmäksi itää kohden. Illalla on maassamme huomattavissa ukkospoimu ja purkauksia sattui sen itä osassa Laatokan seuduilla. 16 p. aamulla on minimi Norjan rannikolla ja pienempi poimu Keski-Suomessa. Jo varhain aamulla muodostuu Merenkurkun seuduille ukkoskulkue, edeten suuntaan SE. Kl. 5 ha ilmestyy uusi kulku edeten pitkin Pohjanlahden rannikkoa suuntaan NE (vastaten lähenevän minimin ympäri kiertävää ilmavirtaa). Myöhemmin, jolloin minimi on Pohjois-Skandinaviassa ja osaminimi on muodostunut Pohjanlahden eteläosaan, syntyy kolmas kulkue Satakunnassa, edentyen suunnassa W-E ja lopuksi myöhemmin illalla neljäs kulkue (epävarma) Merenkurkusta kaakkoiseen. Minimi on sillä välin siirtynyt koillista kohden. — Mainitut kulkueet osoittavat kauniilla tavalla miten ukkoskulkueet noudattavat Buys-Ballot'in lakia liikkuessaan minimialueella. — Varhain 17 p:ä, jolloin minimi on Vardössa muodostuu ukkoskulkue, joka siirtyy Merenkurkusta itään Venäjän rajalle saakka. Etelä-Pohjanmaalla tosin on suurempi aukko, joten esitys isobronteilla tulee vaillinaiseksi (Kartta III). Tätä kaksi vuorokautista, pyörreluontoista ukkosjaksoa seuraa verrattain kylmä periodi (Taulu I); 18 p. oli lämpötila laskeutunut suurimmassa osassa maatamme 5 à 10°.

Nat. o. Folk, H. 67, N:o 2.

12 jakso heinäkuun 25 p.

Ilmapaine on maassamme tasaisesti jakautuneena ja alenemaan päin. Keski- ja Pohjois-Suomessa oli ukkospoimu, jonka keskus sattui Jyväskylän seuduille. Lämpötila oli yleensä maassamme alhainen, idässä korkeimmillaan. — Ukkosalue rajoittuu suurimmaksi osaksi poimun seuduille ja etelä rannikolla oli pienempi kulkue. — Pawlovskissa 1 25 p:nä toimitetussa ilmapallonousussa huomattiin ilmakehässä vallitsevan labilinen tasapaino.

13 jakso elokuun 2-4 p.

Tämäkin jakso sattuu, kuten 11, verrattain lämpimän periodin loppuun (Taulu I). Alue korkeampaa painetta tunkeutui nimittäin Keski-Europasta maahamme ja vallitsevien SW-tuulien kautta pääsi lämpötila nousemaan; minimi on pohjoisessa Jäämerellä. 2 p. aamulla oli ilmapainejaoitus tasainen, mutta Jyväskylän seuduilla on huomattavissa ukkospoimu samoin kuin seuraavanakin päivänä. Ukkosalue oli etupäässä Pohjois-Suomessa; ukkonen oli paikottain ankara ja tuuli kova. — 4 päivänä on poimu Keski-Suomessa, varmaan vallinneesta korkeasta lämpötilasta, muodostunut heikoksi minimiksi. Ukkosalue on siirtynyt enemmän keski- ja itäosaan maatamme, etupäässä tuon heikon minimin eteläpuolelle. Muutamin paikoin oli ukkosen aikana kova myrsky. — Ukkosta voi pitää lämpöluonteisena; mahdollista on kumminkin, että se olisi "Böen"-tyyppiin 2 luettava. Alempien ilmakerros-

 $^{^{\}rm 1}$ Bull. Meteorolog. de l'Observ. Phys. Nicolas St. P
:burg 1904 N:ris 194, 195.

² Das Wetter 1898 siv. 193—204; 1903 siv. 121—127.

ten labilista tasapainoa kuvaa havainnot ilmapallonoususta Pawlovskissa ¹ elokuun 1 p. kl. 2.8—3.50 p.

30 metrin korkeudella oli $18.^{\circ}_{0}$ 850 , , , , $8.^{\circ}_{5}$

14 jakso elokuun 13 p.

Tämän päivän ukkonen oli pyörreluontoinen. Lämpötila, joka sitä ennen oli nousemaen päin, aleni jonkunverran sen jälkeen (Taulu I). Edellisen päivän iltana oli Etelä-Ruotsissa 748 mm:ä syvä minimi. Painegradientti oli suuri ja tuulet siitä syystä kovia. 13 p. aamuna on minimi Ahvenanmaan seuduilla. Ukkosalue on pääasiallisesti Lounais-Suomessa ja isobrontien avulla voi esittää ukkoskulkueen Kemiöstä Ikalisten seuduille saakka. Ukkoskulkueen etenemissuunta liittyy tarkkaan yleiseen ilmasirkulatioon minimin ympärillä.

15 jakso elokuun 15—20 p.

15:nen ja 16:nen päivän purkaukset näyttävät liittyvän erääseen suurempaan, Norjasta itäänpäin tunkeutuvaan minimiin (15 p. aamulla 742 mm:ä syvä). Ilmapaine on siitä syystä mainittuina päivinä alimmillaan lännessä. — 18 p. oli ilmapaine verrattain tasainen maassamme ja sattuneet purkaukset liittyvät heikompiin, enemmän paikallisiin minimeihin. Varsinainen ukkosalue on kumminkin pohjoisosissa Suomea. — 19 p. aamuna on pohjoisessa Vienan merellä suurempi, luultavasti toisarvoinen minimi.

¹ Bull. Meteorolog. de l'Observ. Phys. Nicolas St. P;burg 1904 N:o 202.

Nat. o. Folk, H. 67, N:o 2.

Muutamat Pohjois-Suomesta saapuneet ilmoitukset kuuluvat epäilemättä tämän vaikutuspiiriin. Suurin osa ilmoituksista kohdistuu kumminkin Etelä-Suomessa olevaan ukkosalueeseen, erään uuden minimin koillisosassa. 20 p. on minimi syventyneenä Vaasan seuduilla; ilmoitettuja purkauksia on vähän, mutta ne käsittävät suurimman osan maatamme. Mitään mainittavampaa muutosta ei tämä ukkosjakso näy vaikuttaneen lämpötilassa (Taulu I).

16 jakso syyskuun 10-11 p.

muodostaa viimeisen ja verrattain ukkosrikkaan jakson v. 1904. Kuten taulusta I huomaa loppuu jälleen eräs lämpimämpi periodi tähän ukkosjaksoon. Ilmapaine oli edellisinä päivinä ollut alenemaan päin, merkkinä siitä, että lännestä päin siirtyi alue alempaa ilmapainetta maassamme. Korkeanpaineen alue on Länsi- ja Keski-Europassa. Illalla 9 p:nä on Ahvenanmaan seuduille ilmestynyt osaminimi. 10 p. aamulla on ilmapaine alimmillaan 753 mm:ä Norjan rannikolla; idässä oli 765 mm:ä. Ukkosalue käsittää etupäässä Lounais-Suomen, vaan leviää illaksi jo Tankarin majakalle pohjoisessa. Ukkonen oli yleensä ankara, mutta tuuli vaan paikottain kovempi. Ukkosen kulkusuunta vaihteli yleensä, mutta pääpiirteissä vastasi se kumminkin ilmaliikettä minimin etu- s. o. itäpuolella, nimittäin etelänpuolelta pohjanpuolelle. 11 p. aamuna on minimin keskusta Pohjanlahdella ja ukkosalue on siirtynyt enemmän itään. Illalla muodostuu isobariin 755 2 hyvin kehittynyttä ukkospoimua ja näkyvät nämät olevan jonkinlaisia "ukkospesiä". Toinen niistä on Lounais- ja toinen Itä-Suomessa. Kuten Liitteestä I huomaa ovat purkaukset yleensä keskittyneet näille seuduille. — Mainittua ukkos-

Bidrag t. känned. af Finl.

jaksoa seuraa kylmempi jakso ja tästä sekä edellisestä voi päättää ukkosen 16:na jaksona olleen pyörreluonnetta.

Muista myöhemmin huomatuista ukonilmoista mainittakoon, että ne useammat ovat pyörre- (tahi mahdollisesti "Böen") luontoisia. Niin esim. lokakuun 3:n päivän. 745 mm:ä syvä minimi tunkeutuu lännestä itää kohden. Painegradientti on suuri ja tuuli sitä vastaava. Ukkospurkaus tapahtuu merellä, sillä siellä ovat ukkosedellytykset tähän vuodenaikaan jo suuremmat kuin maalla. Ukkosen aikana vallitsi raju myrsky. - Samoin oli 17 ja 18 p:n ukonilma. Englannissa oli 735 mm:ä syvä minimi, joka siirtyi itäänpäin. 18 p. aamuna on minimi Pohjois-Ruotsissa 739 mm:ä syvänä. Painegradientti oli suuri ja tuulet melkein koko maassa 7 à 8 Beauforte'a. Ukkosta huomattiin vaan merellä tahi rannikolla, sillä se ei tunkeutunt kuin Kiskolle saakka maalla. 19 p:n purkaukset Lovisan ja Verkkomatalan seuduilla olivat jatkona edellisen illan purkaukseen. Mainittuja ukonilmoja seurasi huomattava lämpötilan muutos; sää muuttui nimittäin kylmäksi. – Vuoden viimeinen ilmoitettu purkaus sattui marraskuun 14 p:nä Ikalisissa.

Omituisuutena näillä purkauksilla on, kuten Karsten jo huomauttaa se, että ne tapahtuvat enimmäkseen myöhään illalla tahi varhain aamulla. Ulkomailla on myöskin, esim. Keski-Europassa ja Norjassa tultu samanlaisiin tuloksiin.

Kuten edellisestä huomaa on suurin osa ukkosjaksoista v. 1904 pyörreukkosluonnetta (7), jolloin pyörreluontoisilla tarkoitetaan ukonilmoja, jotka liittyvät reunamuodostumina suurempiin täydellisemmin kehittyneisiin

 ¹ Karsten: siv. 18.

Nat. o. Folk, H. 67, N:o 2.

minimeihin; ¹ välimuotoa edustavia on 5:n ja puhtaasti lämpöluonteisia vaan 4:n ukkosjakson aikana. On kumminkin huomattavaa, että monet pyörretyyppiin ² luetut itse asiassa voivat olla "Böen"-luontoisia, vaikka tässä toimitetussa tarkastuksessa etupäässä itsetoimivien koneiden puutteesta havaintoasemilla ja asemaverkon harvuudesta ei "Böen"-ilman karakteristiset ominaisuudet ole voineet täydelleen käydä ilmi.

4. Ukkospurkauksien edellytyksistä.

Edellisen mukaan voivat purkaukset tapahtua niin hyvin maksimi- kuin minimi-alueella. Kumminkin näyttävät suurimmat ukonilmat sattuvan aikaan, jolloin säätilassa tapahtuu suurempia muutoksia siten, että maksimi siirtyy pois ja minimi asettuu sijalle. Ukkosalue pysyttäytyy silloin kumminkin minimin reuna-alueella ja välttää keskustaa. — Myöskin pienemmät toisarvoiset reuna-minimit ja ukkospoimut muodostavat monastikin sangen huomattavia ukkosalueita; niillä on siitä syystä kesäisessä sääennustuksessa ukkoseen nähden merkityksensä.

Taulusta I huomaa, että nytkin "ajanjaksot joina on vallinnut korkea lämpötila tavallisesti päättyvät ukkospurkauksilla". 3 Vuonna 1904 merkitsee se useimmin säätilan muuttumista antisyklonalisesta syklonaliseksi. Maksimin vallitessa pysyy sää enemmän selkeänä ja siitä syystä on

¹ Hann: siv. 669.

² esim. Prohaska: Met. Zeit. 1892, siv. 161.

³ Karsten: siv. 34.

auringon säteiden vaikutus verrattain suuri. — Kaikista huomioista nimittäin selvenee että ukkonen yleensä muodostuu suurempien vesihöyrymäärien tiivistyessä ylemmissä ilmakerroksissa. Ilman sähköominaisuuksia tutkittaissa on huomattu siinä löytyvän niinhyvin positivisia kuin negativisia ioneja, joiden lukumäärä kumminkin vaihtelee eri korkeuksilla. Ilman ioniseraus taasen perustuu etupäässä auringon säteilyyn. Kuta suurempi auringon säteily on, sitä suuremmaksi kasvaa pilviin käyräytyvä sähkömäärä. Pilvi-sähkö on tavallisesti positivista, sillä etupäässä negativiset ionit muodostavat vesipisaroitten tiivistyskeskuksiksi ja putoavat sateen ohella maahan. ¹

Ilmapaineen vaikutuksen purkauksiin v. 1904 huomaa seuraavasta taulusta:

¹ Arrhenius: Lehrbuch der kosmischen Physik II, siv. 793.

Taulu 2.

Ilmapaine väli	Ukon- ilmojen luku
1	
777	1
76 - 74	1
7472	_
72—70	4
70-68	2
68-66	1
66-64	18
6462	19
62 - 60	77
60-58	84
58-56	110
56-54	225
54-52	100
52-50	175
50-48	94
48 - 46	54
46-44	13
. 41—42	4

Nämät luvut eivät luonnollisesti kumminkaan ole aivan tarkkoja, sillä isobarikartoista 1 on monasti ollut vaikeata määrätä ilmapaine eri paikoin maata eri tunneilla; lähestyvän minimin vaikutuksesta ovat nimittäin painevaihtelut hyvinkin monimutkaisia. Siitä huolimatta on tulos melkein yhtäpitävä Karsten'in tutkimuksen kanssa, niin että

Bidrag t. känned. af Finl.

¹ Meteorologisen Keskuslaitoksen Barometern 1904.

saadut maksimipaineet varmaan ovat ominaisia ukonilmoille Suomessa.

Vuonna 1904 huomaa taulusta seuraavat maksimit:

771	mm:ä	1903	samoin	771	mm:ä
755	. 25	. 12		757	23
751	27	. ,,	,,	751	27

Tämän mukaan ovat todennäköiset purkauskorkeudet:

771, 756 ja 751 mm:ä.

S. o. purkaukset sattuvat Suomessa ilmapaineen ollessa vähän alle normalin. Vastaaviin tuloksiin on tultu esim. Utrechtissä 1 kesä—syyskuussa v. 1848—66; ukonilmamaksimi on siellä 755 mm:n paineessa. Monné 1 on määrännyt 11 asemalle saman suureen vuosina v. 1884—88 ja 1890—94, saaden arvon 756 mm:ä. Prohaska 2 ja Prestell ovat myöskin tulleet vastaaviin tuloksiin.

Mitä maksimiin 771 mm:ä tulee on se, kuten Karsten huomauttaa varsinaisia lämpöukkosia vastaava. 756 mm:ä vastannee maksimin ja minimin välisellä alueella tapahtuvia purkauksia. Varsinaisia pyörreluontoisia purkauksia edustaa 751 mm:n maksimi. Vertaamalla v. 1903 ja 1904 maksimien lukuarvoja

¹ Monné: Über die Häufigkeit der Gewitter bei verschiedenen Barometerständen. Met. Zeit. 1904, siv. 38.

² Hann: siv. 666.

³ Karsten: siv. 39.

Nat. o. Folk, H. 67, N:o 2.

	1	903			1904		
771	mm:ä	60	purkausta	4	purkausta	ι	
757	27	225	77	225	77	(755	mm:ä)
751	22	394	27	175	99		

huomaa, että suurin muutos on tapahtunut varsinaisia lämpöukkosia vastaavassa maksimissa (771 mm:ä).

5. Ukonilmojen voimakkuus.

Jotta saataisiin käsitys keskivoimakkuudesta eri ukonilmoilla, on ukonilmojen aikasumma (minutien summa) jaettu ukonilmojen luvulla, jolloin "kovat" ukonilmat ovat saaneet arvon kaksi ja heikot arvon puoli. Tämä laskutapa perustuu siihen otaksumaan, että keskikovan ukonilman purkausten luku minutissa on yleensä konstanti, sekä kovan kaksi kertaa niin suuri ja heikon vaan puolet siitä.

 $\label{eq:taulu} \textbf{Taulu 3.}$
 $\textbf{n} = \textbf{ukonilmojen luku.} \quad \textbf{i} = \textbf{ukonilmojen voimakkuus ukonilmaminuuteissa.}$

Ητ	htik	kuu	То	ukok	auu	K	esäk	uu	Не	inäk	auu	Е	loku	ıu	Sy	ysk	uu
Päivä	n	i	Päivä	n	i	Päivä	n	i	Päivä	n	i	Päivä	n	i	Päivä	n	i
													1				1
17	39	184	9	1	8	2	2	67	1	6	28	1	3	58	3	1	80
18	8	93	16	1	40	3	46	64	2	22	85	2	12	39	5	1	52
19	2	120	18	7	96	4	1	10	3	35	87	3	4	35	9	1	123
22	1	30	19	8	30	8	1	5	4	13	42	4	20	63	10	36	46
28	2	10	20	6	22	12	13	41	5	44	58	5	1	40	11	40	63
30	3	80	27	1	5	13	2	18	6	23	66	6	5	63	13	5	80
_	_		28	8	44	16	3	60	7	4	8	7	9	156	16	1	2
_	_	_	_	_	_	17	25	29	8	6	90	8	6	92	17	2	65
_	_	_	_	_		18	16	68	9	49	52	10	4	19	18	1	5
_		_	_	_		19	16	22	10	9	52	11	9	26		_	_
_	_	_		_		20	5	45	15	6	48	12	5	132	_	_	_
-		~—	_	_	-	21	6	31	16	43	46	13	27	66	_		-
-		_	_			22	23	80	17	27	61	14	3	93	_	_	
-		_	_	_	_	23	15	36	19	2	60	15	11	51	_	_	_
-		_		_	_	24	18	. 45	21	5	7	16	14	78	_	_	-
-		_	_	-	_	25	8	104	22	1	60	17	9	64	_	_	_
-	_	_		_	_	26	4	17	25	48	60	18	8	59	-	_	-
_	_	_		_	_	27	13	46	26	5	29	19	13	34	_	-	-
-		_	_	_	_	28	6	141	29	2	52	20	10	23		_	-
		-	_	_	_	29	24	130	30	1	55	22	6	19	_	-	_
_	_	_		_	_	30	10	93	31	8	44	23	14	88	-	—	_
-	_		_	_	_	_	-	_			_	24	1	26	_	_	_
-	_		_	-		_	_					25	3	66	-	_	
_		_	_		_		_			_		28	5	178		-	
=	_		_			_	_				_	29	2	165		_	_
-		154	_	_	45	_	_	62	_	_	58	_		67	_	-	56

Nat. o. Folk, H. 67, N:o 2.

6. Ukonilmojen kestävyys.

 $\label{eq:Taulu 4.} {\bf Taulu \ 4.}$ n = ukonilmojen luku. ${\bf t_{e-a}} = {\bf ukonilmojen}$ keskipituus minuuteissa.

Huhtikuu		Toukokuu		Kesäkuu		Heinäkuu			Elokuu			Syyskuu					
Päivä	n	t-0-a	Päivä	n	t _{e-a}	Päivä	n	t _{e-a}	Päivä	n	t _{e-a}	Päivä	n	. to-8	Päivä	n	t-e-a
17	39	245	9	1	15	2	2	50	1	6	28	1	3	38	3	1	80
18	8	244	16	1	40	3	46	60	2	22	66	2	12	46	5	1	105
19	2	90	18	7	46	4	1	10	. 3	35	91	3	4	30	9	1	123
22	1	30	19	8	13	8	1	5	4	13	59	4	20	63	10	36	50
28	2	8	20	6	22	12	13	27	5	44	45	5	1	80	11	40	65
30	3	67	27	1	5	13	2	18	6	23	46	6	5	38	13	5	24
_	_	_	28	8	33	16	3	30	7	4	8	7	9	104	16	1	2
_	_	_	_	_	_	17	25	28	8	6	103	8	6	92	17	2	88
_	_			_	_	18	16	43	9	49	46	10	4	34	18	1	5
	-	_	_	_		19	16	15	10	9	29	11	9	17	_	_	_
_	_	:				20	5	45	15	6	64	12	5	53			_
_	_	_	_	_		21	6	23	16	43	52	13	27	54	-		_
_				_	_	22	23	56	17	27	63	14	3	93	_	_	_
_			_			23	15	26	19	2	30	15	11	46	_	_	_
	-				_	24	18	30	21	5	7	16	15	52	-	_	_ '
	_	_	_	_	_	25	8	59	22	1	60	17	9	47	-	_	-
-		_	_		_	26	4	17	25	48	25	18	8	29	_	_	
_	_					27	13	46	26	5	17	19	13	24	_	_	
-	_	_			_	28	6	106	29	2	26	20	10	14	_	_	_
_			_	_	_	29	24	98	30	1	110	22	6	11	_	_	
_				_		30	10	69	31	8	39	23	14	53	_		_
_		_	_		_	_	_		_	_	_	24	1	13	_	_	_
-			-	_		_		_		_	_	25	3	55	_	_	_
_		_		_			_	_	_	_	_	28	5	142	_	_	_
-	_	_				_		_		_	_	29	2	84	_	_	_
-	_	217	_	_	28	-	_	50		_	51	_		55	_	_	56

Bidrag t. känned. af Finl.

7. Ukonilmojen liikunnasta.

Tarkempi selostus ukonilman liikuntasuunnasta, sekä muista tähän kuuluvista kysymyksistä on "Ukonilmoista Suomessa 1903" siv. 40—41. Tässä mainittakoon vaan tulokset vuodelta 1904 ja niistä sekä entisistä havainnoista tehdyt johtopäätökset.

Yleisenä sääntönä voi pitää, että ukonilmat noudattavat etenemisessään yleistä ilmasirkulatiota s. o. Buys-Ballot'in lakia. Samaan tulokseen on Karsten'kin¹ jo v. 1903 tullut. Plumandon² on tarkemmin tutkinut tätä kysymystä ja hän on tehnyt sen huomion, että jos gradientti on ainakin 0.007—0.013 mm:ä, liittyy ukkonen yleiseen ilmavirtaan, joka noudattaa Buys-Ballot'in lakia. Jos gradientti on pienempi on etenemissuunta epämääräinen, kumminkin suunta SW yleisempi ainakin Ranskassa. — Maassamme oli 1904 gradientti yleensä ukkossäällä suurempi kuin 0.01 mm:ä, joten edellisen mukaan etenemisilmiö on saanut luonnollisen selityksensä.

Karsten tekee eron paikallisen ja yleisen suunnan välillä. Paikallinen suunta voi kumminkin usein huomattavasti erota yleisestä suunnasta, mutta siitä huolimatta pitää edellinen sääntö paikkansa.

Ukonilmat esiintyvät seuraavalla tavalla minimin eri oktanteissa (vuonna 1904):

Taulu 5.

Oktanti	S	sw	W	NW	N	NE	E	SE
Prosenttia .	20.6	17.2	12.6	7.8	7.7	7.2	12.6	14.2

¹ Karsten: siv. 41.

Nat. o. Folk, H. 67, N:o 2.

² Plumandon: La marche des orages 1894.

ja siitä johtuu, että tulevien ukonilmojen luku on suurin lounaan puolelta, kuten Taulusta 6 tarkemmin huomaa.

Taulu 6. Ukonilmojen liikunta-suunta eri kuukausina.

	Tammi— Toukokuu	Kesäkuu	Heinäkuu	Elokuu	Syys— Joulukuu	Koko vuosi
S	12	35	42	28	26	143
SW	19	47	63	42	26	197
W	15	31	43	47	19	155
NW	21	22	50	25	4	122
N	10	20	41	12	5	88
NE	4	24	29	7	2	66
E		21	28	16	4	69
SE	5	21	29	21	8	84
	86	221	325	198	94	924

Ukkospurkaukset esiintyvät siis lukuisimmin S-oktantissa, vähimmin NE-oktantissa. Klossowsky¹ on toimittanut vastaavia tutkimuksia europalaisessa Venäjässä; hän tuli siihen tulokseen, että purkausluku on suurin SE-oktantissa. Taulun 5 luvuista on kumminkin huomattava, että ne ovat sangen epävarmoja. Ne synoptiset kartat (Barometern 1904), joiden mukaan laskut on tehty, ovat siksi pienet, että niihin harvoin mahtuu koko minimi yhdellä kertaa. Ja sitä paitsi on minimin muoto useimmiten sangen epämääräinen.

¹ Hann: Lehrbuch der Meteorologie 1901 siv. 672.

Professori A. F. Sundell¹ mainitsee, että etenemisnopeus usein ukkossäällä v. 1887 oli aina 100 km. Tämä nopeus lienee yleensä kumminkin liian suuri, sillä maksiminopeus ulkomailla on vaan noin 70 km. tunnissa. Sitäpaitsi ovat maksiminopeudet ukkoskulkueilla v. 1903—1904 Suomessa kokolailla pienemmät. Isobrontikartoista mitattuna oli ukkoskulkueen:

Jos vertaa näitä arvoja vastaaviin ulkomailla, huomaa niiden verrattain hyvin soveltuvan muualla saatuihin arvoihin. Niin on keskinopeus Venäjällä ja Ranskassa 41, Norjassa 38, Alankomaissa 38.7 ² ja Etelä-Saksassa ³ noin 41 km tunnissa. Lang on nimittäin näyttänyt, että etenemisnopeus vaihtelee vuosien kuluessa riippuen siitä, että minimi-radat ovat periodisten siirtymisten alaisia; siten oli v. 1883—84 etenemisnopeus 42, mutta 1887—88 vaan 36 km. Prohaska ⁴ on huomannut samantapaisen vaihtelun; v. 1886 oli nim. etenemisnopeus 30.7, mutta 1887 28.s km. Mitä vaihteluun v. 1903 ja 1904 Suomessa tulee

¹ Sundell: Ukonilmat Suomessa 1887, siv. 19.

² Hann: Lehrbuch der Meteorologie 1901, siv. 650.

³ Lang: Fortpflanzungsgeschw. d. Gewitt. in Süd-Deutschland.

⁴ Hann: siv. 650.

Nat. o. Folk, H. 67, N:o 2.

on se ensiksikin siksi pieni ja toiseksi kelvollisen havaintoaineston vähyyden takia siksi epävarma, että sen ainakin toistaiseksi saattaa jättää huomioon ottamatta.

Rohr'in ¹ tutkimusten mukaan ukonilmasta jouluk. 11 p. 1891 oli etenemisnopeus merellä 79.7 km. Tämä on suurimpia huomattuja nopeuksia. Maksiminopeus Suomessa 1903 lähenee varsin hyvin tätä lukua. Pienin huomattu nopeus on taasen 9.3 km, jonka Prohaska ² oli huomannut Steiermarkissa. Suomessa on vastaava luku 12 km, siis sangen lähellä sekin toista raja-arvoa. Toisin sanoen, Suomessa huomatut raja-arvot v. 1903—04 lankeavat varsin lähelle ulkomailla huomattuja. Tämä merkinnee ehkä sitä, että kaikesta huolimatta edellä esitetyt nopeusarvot ainakin jossain määrin vastaavat todellisuutta, mutta vasta useampana vuotena saatu kokemus voi lopulta ratkaista tämän kysymyksen.

Ulkomailla on muuten huomattu etenemisnopeudella olevan sekä vuotuinen että vuorokautinen jakso. 3 Sitäpaitsi vaihtelee nopeus riippuen suunnasta, mistä ukkonen lähestyy. Suomeen nähden ei vielä tunneta mitään varmaa näistä seikoista, mutta kumminkin näyttää siltä kuin jos etelän ja lounaan puolelta tulevilla olisi suurin nopeus, noin 46 km. Ranskassa on nopeus suunnasta SW 49 ja Venäjällä suunnasta SW ja NW 47 km. 4

Mitä muuten ukkoskulkueihin v. 1904 tulee, olivat ne edelliseen vuoteen verraten paljoa pienemmät. Ensimmäinen, samalla huomattavin kulkue sattui huhtikuun 17 p.

¹ Hann: Lehrbuch d. Met. 1901, siv. 650.

² Gockel: Das Gewitter, siv. 198.

³ Hann: siv. 650.

^{4 , 652.}

Ukkosalueen muodosti etupäässä Turun ja Porin lääni, s. o. ukkonen raivosi Keski-Ruotsissa ja Pohjois-Itämerellä olevan osaminimin koillis kulmassa (pääminimi Vardössä). Alueen (ukkos-) keskusta oli Rauman seudulla, josta kulkueet kaarena etenivät sekä pohjoista, itää että etelää kohden (Kartta II). Mainituissa suunnissa vaihteli nopeus 35—37 km.

Seuraava huomattavampi kulkue sattui heinäk. 3 p. Varsinais-Suomessa ja Uudellamaalla. Ukkosalue muodostui Pohjois Skandinaviasta Vaasan seuduille ulottuvan minimin kaakkoisella reuna-alueelle ja etenemis-suunta liittyi yleiseen ilmaliikkeeseen minimin ympärillä. — Ukonilma heinäk. 16 p. oli huomattava siitä syystä, että silloin ilmestyi kaikkiaan 4 eri kulkuetta, alkaen tavallisesti Merenkurkusta, joka muodosti jonkinlaisen ukkospesän. -Vuonna 1887 1 oli samantapainen ukkospesä Ahvenanmaan ja Hankoniemen välisessä saaristossa. – Ensimmäinen kulkue alkoi kl. 2 ha ja liikkui suunnassa SE-NW etelä Pohjanmaalta; seuraava kulkee suunnassa SW-NE vastaten Pohjois-Skandinaviassa olevaa minimiä. Keskipäivällä on etenemissuunta W-E ja minimi Pohjois-Suomessa. Illemmalla, jolloin minimi todennäköisesti on jatkanut kulkuaan kauvemmaksi koilliseen, muodostuu kulkue siirtyen Merenkurkusta kaakkoa kohden sisämaahan. Tästä huomaa, että etenemissuunta on kiertynyt suunnasta SE—NW myötä päivään minimin mukana suuntaan (NW) --SE. Tämä esimerkki on oivallinen todistus siitä, miten etenemis-suunta noudattaa Buys-Ballot'in lakia. Seuraavana päivänä on minimi Oulun läänin eteläosassa ja ukkoskulkue alkaa Etelä-Pohjanmaalta, kulkee Jyväskylän

¹ Sundell: Ukonilmat Suomessa 1887, siv. 18.

Nat. o. Folk, H. 67, N:o 2.

ja Kuopion kautta sekä yli Pielisjärven Venäjän rajalle. Oikeastaan alkoi kulkue jo Merenkurkusta, mutta Laihian ja Virtain välille on muodostunut suurempi aukko, niin että kulkue luetaan varsinaisesti alkaneen noin 3,30 ha Virtain seuduilta. Ukkosalue sattui siis minimin etelä-reunalle (Kartta III).

Elokuun 13 p. muodostuu pienempi kulkue Kemiöstä Ikalisiin etelä Pohjanlahdella olevan minimin itä- à koillisosassa. Etenemis-suunta vastaa Buys-Ballot'in lakia ja nopeus oli noin 37 km.

8. Ukonilmojen jakautuminen maan eri osiin nähden.

Karsten huomauttaa v. 1903: "Tarkka selostus ukonilmojen jakautumisesta maantieteellisessä suhteessa ei ole tänä vuonna mahdollinen siitä syystä, että niin harvoilta asemilta on saatu tietoja ukonilmoista". Sitä suuremmassa määrässä on selostus tänä vuonna epävarma, sillä toimineiden asemain luku on jonkin verran pienentynyt. Kumminkin riittävät saadut havainnot useimmissa kohdin vahvistamaan Karsten'in tuloksia edelliseltä vuodelta.

A. Ukonilmojen lukuisuuden muuttuminen merestä sisämaahan päin.

Tätä suhdetta esittää seuraava taulu 7. Se on muodostettu siten, että sarekkeeseen "merellä" ovat jaetut

¹ Karsten: siv. 42.

kaikki ne ukonilmat, jotka ovat sattuneet ulommilla majakoilla ja saarilla; "rannikolla" taasen ne ukonilmat, jotka sattuivat asemilla korkeintaan 20 km päässä rannikolta sisämaahan. Kaikki muut purkaukset kuuluvat "sisämaa"asemille.

 $\begin{array}{c} \textbf{Taulu 7.} \\ \textbf{n} = \text{asemain luku.} \quad \textbf{N} = \text{ilmoitettujen purkausten luku.} \\ \frac{\textbf{N}}{\textbf{n}} = \textbf{ukkoslukuisuus s. o. purkausten luku asemaa kohden.} \end{array}$

1904				Merell	ä	Ra	nniko	lla	Sisämaassa			
1904			n	N	N n	n	N	N n	n	N	N n	
						1						
Huhtikuu		-	10	. 3	0.3	35	23	0.7	40	20	0.5	
Toukokuu			10	. 0	0.0	39	14	0.4	42	20	0.5	
Kesäkuu.			11	15	1.4	50	99	2.0	50	117	2.3	
Heinäkuu			11	23	2.1	51	136	2.7	53	153	2.9	
Elokuu .			11	12	1.1	46	88	1.9	51	87	1.7	
Syyskuu.		• :	11	; 9	0.8	40	36	0.9	43	36	0.8	
Huhti-Sy	ys]	k.	_	_	5.7	_	_	8.6	_	_	8.7	

Kuten taulusta huomaa, kasvaa ukkoslukuisuus mereltä maalle päin, mutta ero sisämaan ja rannikon välillä ei nytkään ole varsin suuri. Kumminkin on — huhti- ja elokuuta lukuunottamatta — ukkoslukuisuus suurin sisämaassa.

B. Ukonilmojen lukuisuus eri leveysasteilla.

Ukkoslukuisuus pienenee yleensä siirryttäissä maapallolla alemmilta leveysasteilta korkeimmille. Sen todis-

¹ Karsten: siv. 44.

Nat. o. Folk, H. 67, N:o 2.

taa m. m. Klossowsky'n laaja tutkimus ukonilmojen jakautumisesta maapallollamme. Pienempiä aloja tarkastettaissa voi kumminkin esiintyä huomattaviakin eroavaisuuksia. Suurissa piirtein katsottuna leviää alue, jossa on 5—10 purkausta vuodessa Englannista Etelä-Skandinavian kautta Pohjois-Venäjälle. Viivan Bergen—Koula luoteispuolella on vuodessa vaan noin 1—5. Islannissa on ukkonen harvinainen ilmiö ja sen korvannee siellä mahtavat revontulet.

Jotta saataisiin selville missä määrin tämä yleinen jako vastaa todellisuutta pienemmillä alueilla Suomessa, ovat asemat — kuten 1903 — jaettu kolmean ryhmään 60—62°, 62—64°, 64—66° pohjoista leveyttä; sitäpaitsi ovat asemat kussakin ryhmässä jaettu rannikko- (I) ja sisämaa- (II) asemiin, sekä lopuksi käsitettynä yhdessä (I + II).

Taulu 8.

60-	-62° 62-	-64° 64—66°	60 - 62°	62—64°	64—66°
1904 I	II	II I II	- 1	I + II	
	U	konilmoje	en lukui	isuus	
		,			
Huhtikuu . 0.9	0.8 0.0	0.3 0.0 0.	0.8	0.3	0.0
Toukokuu . 0.7	0.3 0.3	0.6 0.0 0.	0.4	0.6	0.4
Kesäkuu . 2.5	1.8 1.7	2 2 2.5 3.	2.2	2.0	2.8
Heinäkuu . 3.2	2.1 5.0	5.0 0.5 2.	7 2.6	5.0	2.3
Elokuu 1.9	1.8 0.4	1.2 0.5 2.	1.8	1.0	1.7
Syyskuu . 0.6	1.6 0.7	0.6 0.0 0.	2: 1.0	0.7	0.2
Huhti— Syyskuu 9.8	8.4 8.1	9.9 3.5 8.	8.8	9.6	7.4

¹ Klossowsky: Distribution des orages à la surface du globe terrestre. Revue météorologique. Vol. III. Odessa 1893.

Bidrag t. känned. af Finl.

² Gockel: Das Gewitter, siv. 215.

Tässä taulussa käytettyjen asemien luku näkyy taulusta 9.

Taulu 9.

	60-62°	62—64° 64-	-66° 6	0-620	62—64°	64—66°
1904	I II	I II I	П		I + II	
		Ase	mien	luku		
Huhtikuu .	14 + 21 +	3 13 2	9	35	16	11
Toukokuu .	16 24	3 14 2	9	40	17	11
Kesäkuu .	22 25	7 16 2	9	47	23	11
Heinäkuu .	23 26	6 17 2	9	49	23	11
Elokuu	21 24	5 17 2	9 ,	45	22	11
Syyskuu .	16 22	3 14 2	8	38	17	10

Taulusta 8 huomaa, että edellä mainittu suhde pitää paikkansa Suomeen nähden vaan huhti- ja syyskuussa (v. 1903 touko- ja syyskuussa). — Tämä johtunee mahdollisesti ukkospurkauksien luonteesta mainittuina kevätja syyskuukausina, jolloin varsinkin eteläiset rannikkoseudut muodostuvat ukkosalueiksi. — Suurin ukkoslukuisuus on vyöhykkeessä 62—64°; siitä sekä pohjoista että etelää kohden pienenee lukuisuus ollen kumminkin suurempi etelässä. Alueilla 60—62° ja 62—64° on lukuisuus suurin heinäkuulla; 64—66° jo kesäkuulla. Karsten¹ tuli v. 1903 vastaaviin tuloksiin.

¹ Karsten: siv. 46.

C. Ukkoslukuisuus eri pituusasteilla.

Jotta saataisiin selville missä määrin ukkoslukuisuus muuttuu eri pituusasteilla, on maa jaettu kolmeen alueeseen: I alue 2°:sta W. L. länteen, luettuna Helsingin meridianista; II alue 2°:sta W. L. aina 2°:een E. L. ja III alue 2°:stä itään. Asemain lukumäärä on sarekkeessa n_1 , n_2 ja n_3 .

Taulu 10.

1904	n,	I	n.,	II	n_3	III
1					3	
Huhtikuu	20	1.1	26	0.5	18	0.1
Toukokuu	20	0.3	27	0.8	18	0.3
Kesäkuu	24	2.2	34	1.9	23	2.8
Heinäkuu	22	2.0	35	3.6	24	3.8
Elokuu	22	1.3	32	1.7	23	1.8
Syyskuu	18	1.1	27	0.9	19	0.7
Huhti—Syyskuu	_	8.0	_	9.4	_	9.5

"Ukkoslukuisuuden lisääntyminen W—E on todistuksena mannermaailmaston vaikutuksesta." Eroavaisuus alueiden II ja III välillä on kumminkin varsin pieni, mutta negativinen. Vuonna 1903 oli se positivinen.

Tilasto ukonilmoista (taulu 11) eri lääneissä vahvistaa edellisiä tuloksia.

Taulu 11.

Ukonilmojen suhteellinen lukuisuus Touku-Syyskuussa.

1904	Uudenmaan lääni	Turun ja Porin lääni	Hämeen lääni	Mikkelin lääni	Kuopion lääni	Viipurin lääni	Vaasan lääni	Oulun lääni	Koko maa
(Huhtikuu).	(0.2)	(1.3)	(1.0)	(0.0)	(0.0)	(0.2)	(0.6)	(0.0)	(0.6)
Toukokuu	1.0	0.2	0.6	0.5	0.2	0.2	0.4	0.3	0.4
Kesäkuu	1.8	2.2	1.9	2.3	1.6	2.8	1.6	2.8	2.2
Heinäkuu	3.7	1.2	1.7	2.7	6.7	2.4	4.5	2.5	2.9
Elokuu	1.8	1.6	2.0	2.5	1.5	2.1	1.3	1.9	1.8
Syyskuu	0.8	1.3	1.2	0.0	0.5	1.1	0.8	0.3	1.0
Yhteensä	9.1	6.5	7.4	8.0	10.5	8.6	8.6	7.8	8.3

Riippuen läänin asemasta pituusaste- ja leveysastealueisiin nähden sekä meren läheisyydestä, on ukkoslukuisuus joko suurempi tahi pienempi. "Tästä selviää
Mikkelin läänin (v. 1904 Kuopion) suuri sekä Turun
ja Porin läänin pieni ukkoslukuisuus." Useimmissa lääneissä on lukuisuus suurin heinäkuusa; Oulun, Viipurin
ja Turun lääneissä jo kesäkuussa, Hämeen läänissä vasta
elokuussa.

Jotta ukonilmojen maantieteellisen leviämisen tarkempi tutkiminen vastaisuudessa olisi mahdollinen, niin liitetään tähän, kuten v. 1903, luettelo ukonilmojen luvusta eri kuukausina vakinaisilla asemilla, s. o. niillä asemilla, joilla on tehty ulkoilmahavaintoja kautta vuoden. Miten ruudun numero on eri seuduille muodostettu, on tarkemmin selitetty "Ukonilmoista Suomessa 1903" siv. 48.

Taulu 12.
Ukonilmojen luku.

Ruudun	Asema	Tammikuu'	Toukokun Huhtikuu	Heinäkuu Kesäkuu	Vuosi Marraskuu Lokakuu Syyskuu Elokuu
955 W 954 ,	Lågskär Herrö Bogskär	. -	1 -	1 — 2 —	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
953 " 951 " 950 "	Utö	. -	1 - 1 1 -	2 2 2 1 5	$\begin{vmatrix} 1 & 1 & - & - & 7 \\ - & 2 & - & - & 7 \\ 10 & 2 & 1 & - & 20 \end{vmatrix}$
005 , 004 , 002 ,	Sälskär Märket Finström Kuusisto	. -	1 - 1 - 1 -	$ \begin{array}{c cccc} 3 & 1 \\ 2 & - \\ 1 & - \\ 1 & 2 \end{array} $	$\begin{vmatrix} 4 & - & - & 12 \\ 1 & - & - & 4 \end{vmatrix}$ $\begin{vmatrix} 2 & 1 & - & 5 \\ 1 & - & - & 5 \end{vmatrix}$
27 27	Kuusisto Kemiö Paimio Parainen		1 1 1 1 1 1 1 1 1	4 - 3 -	$\begin{vmatrix} 2 & 1 & - & - & 5 \\ 3 & - & 1 & - & 9 \\ - & 1 & - & - & 5 \end{vmatrix}$
001 "	Sauvo Kisko Lohja	. -	1 1 1 1 — —	5 2 3 2 1 —	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
, , , , , , , , , , , , , , , , , , ,	Helsinki Söderskär Viipuri	. -	- 1 - 1 	2 4 3 6 4 2	1 - - 8 3 1 - - 14 3 1 - - 10
004 " 053 W 052 "	Uusikirkko (V. l. Enskär Mynämäki). -	$ \begin{array}{ccc} 1 & 1 \\ 1 & - \\ 2 & - \\ \end{array} $	4 4 5 1 5 1	- 2 - 12 4 1 - 12 - 12 - 9
051 m	Alastaro Lieto Somero Lappträski		1 — 1 — 1 1 — 1	3 1 3 - 3 - - -	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Bidrag t. känned. af Finl.

Ruudun	Asema			Tammikuu	Huhtikuu	Toukokuu	Kesäkuu	Heinäkuu	Elokuu	Syyskuu	Lokakuu	Marraskuu	Vuosi
100 TW	C.I.I. I.				,		0		0	0	1		10
103 W	Säbbskär	٠	•	_	1	_	2	3	2	2 2	_	_	10
102 "	Huittinen	٠	•	_	1	_	+	1	3	3			8
101	Hinnerjoki .	•	•	_	1		_	1	3	ð		_	8
101 ,,	Urjala Hattula		٠	_	1		2	_	_	2		_	5
100 " 103 E				_	1		_		2	1			5 7
7.04			٠	_		1	6	4 5	4	1			17
	Kurkijoki Hanhipaasi .		•	_		1	2	1	1	1	_		5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Hanhipaasi . Heinäluoto .			1	_		3	6	5	1			16
106 " 151 W	Ikaalinen	•		1	1	2	2	2	1	1		1	9
	Riitiala				1	_	2	5	1	3		1	11
27 27	Tampere				1	1	5	2		2			13
150 E	Kuhmoinen .				1	1	1	3	2	-			7
4.50	Hirvensalmi.	•	•			_	3	4	4				11
152 " 203 W	Sälgrund				1		2	6	7	1	1		18
202 ,	Jalasjärvi		•		2		_	1		1			5
201 "	Virrat		•	_	_		2	6	1	_		_	9
, , , , ,	Alavus	•	•		1	1	6	_	3	1		_	12
200 ,	Korpilahti		٠	_		1	1	1	2				8
205 E	Värtsilä	•		_		_	3	5	1	1			10
n n	Pälkjärvi		i		_	_	2	9	2	1	_	_ '	14
253 W	Pirttikylä					_	5	4	6	_		_	15
250 E	Uurainen			_	_	_	1	5	_	_	_		6
252	Kuopio				_	_	2	1	1		_		7
253 "	Tuusniemi .			1		1	3	14	3				22
303 W	Valsörarna .				_		1	3	_	1			5
** 99	Vaasa				_	_	1	5	1	1	_	_	8
302 "	Munsalo					1	1	2			_	_	4
300 E	Pihtipudas .			_	_	1	2	5	_	1	_		9
,, ,,	Viitasaari			_		3	1	3	1	1		_	9
1									!				!

Nat. o. Folk, H. 67, N:o 2.

Ruudun numero	Asem	a		Tammikuu	Huhtikuu	Toukokuu	Kesäkuu	Heinäkuu	Elokuu	Syyskuu	Lokakuu	Marraskuu	Vuosi
352 E	Tankar						_	2	_	1	_	_	3
351 "	Ykspihlaja					-	_	7	_		_	-	7
" "	Kokkola .			-	_	_		7	_	1	_		8
401 W	Ulkokalla .			_	_	-	_	5	_	2	_	_	7
402 "	Kajaani .			-	_	_	3	3	2	_	-	_	8
404 "	Kuhmoniem	i		-		-	4	5	2	1	_	_	12
450 "	Frantsila .				_	1	2	4	4	_		_	11
451 "	Vaala				_	1		6	3	1		_	11
500 "	Marjaniemi						4	3	2	_	_	-	9
501 E	Pudasjärvi			_		1	3	1	2	1	_	-	8
550 W	Simo			_	_		2	_	1			-	3
553 E	Taivalkoski					_	6	3	2		_	-	11
554 "	Kuusamo .			-			6	1	1	_	_	_	8
601 W	Ylitornio .			_		_	4	1	2			_	7
801 "	Enontekiö.				_	_	3	_	1	_	_		4

Taulu 13.

	1904		Tammikuu	Huhtikuu	Toukokuu	Kesäkun	Heinäkuu	Elokuu	Syyskuu	Lokakuu	Marraskuu	Yhteensä
Uu	Asemia		6	6	8	12	13	12	8	7	7	
denm; lääni	Ukkos- j läänissä .	. -		1	6	5	10	16	3	3	_	44
Uudenmaan lääni	päiviä (asemilla.	. -		1	7	17	34	21	6	4		90
	Ukkospurkauksia.	. -	_	1	8	21	48	23	6	4	_	111
Turun ja Porin lääni	Asemia	. 9	23	28	26	29	29	28	29	26	23	_
Turun Porin läi	Ukkos- j läänissä.	. -	-	5	2	14	9	14	9	1	1	55
n j	päiviä asemilla.	. -		34	4	50	35	50	35	2	1	211
ni.	Ukkospurkauksia.	. -		37	5	65	36	54	37	2	1	237
н	Asemia		7	7	7	11	11	10	9	6	6	_
Hämeen lääni	Ukkos- j läänissä .	• -	-	1	2	9	9	9	4		_	34
een	päiviä asemilla.	. -	-	7	4	19	17	19	11	_		77
	Ukkospurkauksia.	. -	_	7	4	21	19	20	11	—	_	82
Z	Asemia		1	1	2	3	4	3	1	1	1	_
Mikkelin laäni	Ukkos- j läänissä .	٠.	-		1	3	4	4	_		_	12
eli	päiviä (asemilla.	- -	-	_	1	6	8	6	-		—	21
	Ukkospurkauksia.	. , -	_	_	1	7	9	6			-	23
×	Asemia		4	4	4	7	7	8	4	4	4	_
lää	Ukkos- j läänissä .	-	1		1	9	11	4	1	-	_	27
Kuopion lääni	päiviä (asemilla.	.	1	-	1	11	41	12	2	_		68
	Ukkospurkauksia.	.	1		1	11	47	12	2	_		74
	Asemia	.	11	12	13	16	16	15	14	10	10	_
lag	Ukkos- j läänissä .		1	1	3	14	15	15	2	2	_	53
/iipurin lääni	päiviä asemilla.		1	2	3	39	33	29	12	2		121
	Ukkospurkauksia.		1	2	3	44	38	31	15	2	_	136
	Asemia		16	16	21	26	26	23	21	17	17	_
Vaasan lääni	Ukkos- j läänissä .		-	4	4	9	10	12	2	1		42
san	päiviä (asemilla.	.	-	9	8	31	88	28	16	1	_	181
	Ukkospurkauksia.		_	9	8	43	118	30	17	1		226
0 u	Asemia		14	14	15	20	18	17	15	14	14	_
ոս	Ukkos-∫ läänissä .				3	15	14	11	4	-	_	47
Oulun lääni	päiviä (asemilla.		_	_	5	41	35	28	4			113
ni.	Ukkospurkauksia.		_		5	55	45	33	4		-	142

Nat. o. Folk, H. 67, N:o 2.

Taulu 14.

1904	Huhtikuu	Toukokuu	Kesäkau	Heinäkuu	Syyskuu Elokuu
Asemia	88 7 53	96 8 33	26 214	124 24 291	116 101 25 12 193 86

Taulu 15.

Ukkosen leviäminen huhti—syyskuussa prosentissa pinta-alasta.

1904		Uudenmaan lääni	Turun ja Porin lääni	Hämeen lääni	Mikkelin lääni	Kuopion lääni	Viipurin lääni	Vaasan lääni _	Oulun lääni.	Koko maa
	1							1		
Huhtikuu		17	14	(100)	0	0	17	14	0	9
Toukokuu		14	8	29	50	25	8	10	11	4
Kesäkuu		28	12	19	67	17	18	13	14	7
Heinäkuu		34	13	17	50	53	14	34	14	10
Elokuu .		11	13	21	50	38	13	10	15	7
Syyskuu		25	13	31	0	50	43	38	7	7

9. Ukonilmojen jaksollisuudesta.

A. Ukonilmojen vuorokautinen jaksollisuus.

Samoin kuin v. 1903 on seuraavia tauluja laadittaissa käytetty Helsingin aikaa. ¹ Sillä täten syntyneet virheet eivät ole suurempia kuin havaintovirheetkään ja lopputuloksessa häviävät ne suurimmaksi osaksi. ²

¹ Karsten: siv. 56.

² Mohn & Hildebrandsson: Les orages dans la pénisule Scandinave, siv. 57.

Taulu 16.

Ukkospurkausten vuorokautinen jaksollisuus eri kuukausina. Kaikki asemat.

1904	Tammi— Toukokuu	Kesäkuu	Heinäkuu	Elokuu	Syys — Lokakuu	Koko vuosi
1	5					
12-1 a.	1	1	7	2	1	12
1-2		1	7	3	3	14
2 - 3	. 3	_	4	4		11
3—4	1	2	11	2	2	18
4-5	' 1	_	3	1	1	6
5-6	1	_	4	2	1	8
6-7	_	_	1	3	1	5
7-8	1	_	8	2	4	14
8-9	1	1	8	4	5	19
9-10	3	5	6	4	8	26
10—11	· —	11	21	. 6	4	42
11—12	7	15	33	16	4	75
12—1 p.	2	26	31	9	5	88
1-2	8	27	37	13	1	86
23	3	38	38	11	3	93
3-4	4	38	25	18	5	90
4-5	6	25	24	20	9	84
5—6	6	19	. 27	18	5	75
6-7	6	13	24	13	6	62
7—8	11	17	12	26	1	70
8—9	8	9	6	18	8	49
9-10	11	10	2	7	6	36
10-11	2	1	2	1	. 3	9
11—12	_	-	1	3	7	11

Bidrag t. känned. af Finl.

Taulu 17.

Ukkospurkausten vuorokautinen jaksollisuus eri kuukausina.

Vakinaiset asemat.

1904	Tammi— Toukokuu	Kesäkuu	Heinäkuu	Elokuu	Syys— Joulukuu	Koko vuosi
12—1 a.	1	2	6	1		10
1—2		_	4	3	2	9
2—3	3	1	2	5	_	11
3-4	1	1	7	1	2	12
4—5	1	_	3	1	1	6
5—6	1	_	3	2	1	7
6-7	-	<u> </u>	1	1	1	3
78	2	_	5	3	2	12
8-9	1	_	4	3	6	14
9—10	2	3	4	2	5	16
10-11	_	8	10	4	2	24
11-12	4	8	14	9	6	41
12-1 p.	1.	20	21	6	2	50
1-2	4	15	17	7	_	43
2-3	3	25	31	6	2	67
3-4	2	25	13	10	2	52
4-5	2	13	13	10	8	46
5—6	3	11	13	10	5	42
6—7	6	11	9	8	5	39
7—8	5	5	7	14	4	35
8-9	5	4	3	12	7	31
9—10	5	5		2	4	16
10—11	2	2		1	5	10
11—12	_	_	_	2	6	8

Nat. o. Folk, H. 67, N:o 2.

Taulu 18.

Ukkospurkausten vuorokautinen jaksollisuus eri lääneissä.

Vakinaiset asemat.

	1904	Uudenmaan Jääni	Turun ja Porin lääni	Hämeen lääni	Mikkelin läämi	Viipurin lääni	Kuopion lääni	Vaasan ไม่ลักi	Oulun lääni	Koko maa	
1								1			
Í	12—1 a.	-	1	-	. – :	2	1	6	_	10	
	1-2	3	_	_	- 1	2	_	4	_	9	
	2—3	_	2	_	_	2	_	4 :	3	11	
	3-4	-	2	1		—	1	8	_	12	
	4-5	2		_	-	_		4 ;		6	
	5-6	1	3	1	-		1	1	—	7	
	6 - 7	1	1	_	-		1	-	, —	3	
	7—8	4	3		_	_	1	4	_	12	1
	8—9	1	8	1	1	3	—	-	-	14	
:	9—10	2	9		1	3	_	1		16	
	10—11	2	9	6		4	_	2	1	24	
	11-12	5	11	ŏ	3	5	6	3	3	41	,
	12—1 p.	7	2	2		12	5	7	15	50	,
	1—2	4	6	2	3	7	5	10	6 ,	43	
	2-3	7	16	1	3	8	6	15	11	67	
	3—4	4	13	_		8	5	13	9	52	1
	4-5	2	13	3	_	6	2	11	9	46	
;	56	4	14	1	2	4	4	8	5	42	
;	6-7	1	15	2	1	3	4	5	8	39	,
	7—8	5	13	1	1	7	3	4	1 .	35	1
	8-9	4	12	2	_	3	2	6	2	31	
	9—10	1	6	2		2		4	1	16	
•	10-11	5	1	1				3		10	
ł.	11-12	1	3	-	_	3	1	_	_	8	
1											

Bidrag t. känned. af Finl.

Ukkospurkausten vuorokautisessa jaksollisuudessa on huomattavaa, että maksimi tammi—toukokuulla sattuu sangen myöhään. Maksimiaika siirtyy keskikesäksi lähemmäksi vuotuista maksimia, mutta alenee jälleen loppukesällä (syyskuussa). Mahdollisesti kuvaa tämä maksimi tunnin siirtyminen lämpö- ja pyörreluontoisten purkausten erillaista suhdetta eri kuukausina. Koko vuoteen verraten lankeaa maksimitunti 2^h — 3^h_p (iltamaksimi 5^h — 6^h_p) ja minimitunti kl. 6^h — 7^h_a .

Taulut 17 ja 18 ovat muodostetut niiden asemain ilmoituksesta, jotka ovat olleet toiminnassa kaiken vuotta, s. o. vakinaisten asemain. Maksimitunnin siirtyminen illemmalta enemmän keskipäivälle keskikesäksi ja loppukesällä jälleen myöhempään on taulussa 17 myöskin huomattavissa. Koko vuoteen nähden on kumminkin nytkin maksimi $2^{\rm h}-3^{\rm h}_{\rm p}$ ja minimi $6^{\rm h}-7^{\rm h}_{\rm a}$.

Taulu 19.

Päivä	Huhtik.	Toukok.	Kesäkuu	Heinäk.	Elokuu	Syyskuu
			1			
4		0				
1		0.8	1.0	11.2	6.5	0.0
2		0.0	12.8	21.8	7.8	0.2
3		0.2	24.2	26.5	40.2	0.5
4	_	0.5	13.0	26.5	11.8	0.5
5		0.2	0.8	31.5	7.0	0.8
6	_	0.0	0.2	23.8	5.5	0.8
7	_	0.0	0.8	9.2	8.1	0.2
8		0.2	0.8	16.2	5.8	0.2
9	_	0.5	0.5	28.2	2.5	9.8
10		0.2	0.8	16.8 .	3.8	28.8
11		0.0	4.0	2.2	5.8	29.5
12		0.0	7.2	0.0	11.0	11.8
13	_	0.0	4.2	0.0	15. 5	2.8
14		0.0	0.8	1.5	11.2	1.2
15	_	0.2	1.2	13.8	10.2	0.2
16	9.8	0.5	8.0	29.8	12.2	1.0
17	21.5	2.0	17.2	24.5	10.2	1.5
18	14.2	5,8	18.2	7.8	10.0	1.0
19	3.0	8.0	14.2	1.5	11.5	0.5
20	0.8	4.0	8.0	2.2	8.8	0.5
21	0 8	1.8	10.0	3.0	4.2	-
22	0.8	0.0	16.8	1.8	6.5	_
23	0.2	0.0	1.7.8	0.2	8.8	
24	0.0	0.0	15.2	10.8	4.8	
25	0.0	0.0	10.5	22. 8	1.8	
26	0.0	0.2	7.8	13.8	. 0.8	
27	0.5	2.5	9.0	2.2	1.5	
28	1.0	4.2	12.5	1.0	3.5	_
29	1.2	2.0	16.5	1.2	2.5	_
30	1.5	0.0	12.8	3.0	0.5	_
31		0.2		5.0	0.0	

Bidrag t. känned. af Finl.

B. Ukonilmojen vuotuinen jaksollisuus.

Jotta saataisiin selvempi kuva vuotuisesta jaksollisuudesta on eri päivien ukkospurkausten luku tasattu kaavaan $n = \frac{a+2b+c}{4}$ avulla, jossa a ja c ovat läheisten päiväin, b kysymyksessä olevan päivän purkausten luku. Mainittua jaksoa osoittaa taulu 19.

Ottamalla kustakin ryhmästä varsinaisen maksimin, saadaan seuraavat päivät:

Aikaero

		Aikaeiu
		vuorokausissa
Huhtikuun	17	
29	30	13
Toukokuun	9	9
Tounonaun	19	10
27		9
27	28	6
${ m K}$ esäkuun	3	_
22	7	4
22	12	5
*	18	6
27		5
27	23	6
27	29	6
Heinäkuu	5 (3)	ı
**	9	4 (6)
	16	7
22		9
"	25	10
Elokuu	4	9
>>	13	10
,,	23	
))	28	5
"	_ ~	Q

Nat. o. Folk, H. 67, N:o 2.

Syyskuu	5	_
27	11	5
"	17	8

Mitään selvää jaksoa ei luvuista voi huomata; kumminkin näyttää siltä kuin jos olisi ollut pienempi noin 6 ja suurempi noin 10 vuorokautinen periodi. Ottamalla maksimien muodostamasta sarjasta maksimit saamme noin 14 vuorokautisen jakson (siihen kuuluvat päivät paksummilla numeroilla). Vuonna 1904 oli siis ukkospurkauksia odotettavissa aina noin 6 ja 10 sekä 14 päivän päästä.

C. Muista ukkosjaksoista.

Jo 1885 osoitti Köppen, 1 että ukkoslukuisuus oli suurin uudenkuun ja ensimmäisen neljänneksen aikana. Myöhemmin ovat eri tutkijat eri maissa tulleet samanlaiseen tulokseen. Niin esim. Meyer 2 Göttingenissä, Mac Donall 3 Greenwich'issä y. m.

Vuoden 1904 purkauksia kuupäivän mukaan järjestäessä huomaa, että purkauksista sattuu eri kuuvaiheille seuraava luku, prosenteissa ilmoitettuna:

3	3	0	C
$32\ ^{0}/_{0}$	$19^{~0}/_{\boldsymbol{0}}$	$19^{-0}/_{0}$	$30~^0/_0$

¹ Köppen: Einfluss des Mondes auf die Gewitter. Met. Zeit. 1885, siv. 34.

² Meyer: Mondfasen und Gewitter. Met. Zeit. 1885, siv. 406.

³ Das Wetter 1904, siv. 166.

Suurin määrä lankeaa siis uudenkuun ja viimeisen neljänneksen ajalle. — Jos taasen jakaa kuukauden kahteen osaan, uusikuu- ja täysikuu-puoliskoon, saa seuraavat luvut:

Tuloksena v. 1904 on siis, että ainakin uudenkuun aikana ukkoslukuisuus oli suurin.

Paitsi tätä ukkosjaksoa löytyy toinenkin Arrheniuksen ja Ekholmin keksimä. Sen suhteen ei v. 1904:n havaintoja ole tarkastettu.

Aurinkopilkkujen 11-vuotista jaksoa vastaavaa ukkosjaksoa ei Suomessa oikeastaan vielä voi tutkia, sillä ukkoshavaintoja on järjestelmällisesti tutkittu vaan 18:na vuotena. Kumminkin tuntuu yleensä siltä, kuin jos jonkinlainen jakso tässä suhteessa siitä huolimatta nyt jo olisi huomattavissa. Seuraavassa on esitetty ukkoslukuisuus vuosina 1887—1904 tasoitettuna kaavan

$$\frac{a+b+c+d+e}{5}$$

mukaan sekä vastaavat aurinkopilkkujen relativiluvut, josta edellämainittu vastaavaisuus on huomattavissa:

Vuosi	Ukkos- lukuisuus asemaa kohden	Tasoitetut auringon- pilkku relativi- luvut
1887	(10.10)	12.6 1
1888	(10.10)	7.0
1889	9.84	6.3
1890	9.44	8.4
1891	9.74	37.7
1892	10.76	70.0
1893	11.86	83.7
1894	14.18	79.1
1895	15.38	61.5
1896	15.56	43.1
1897	14.08	28.1
1898	12.06	24.6
1899	10.78	13.8
1900	9.12	8.8
1901	9.88	(2.6) ²
1902	9.34	(4.7)
1903	(9.0)	(25.3)
1904	(8.3)	(41.4)

V. 1904 jälkeen tuntuu, saapuneista ukkosilmoituksista päättäen, ukkoslukuisuus olevan kasvamaan päin.

Dekadeista muodostetussa jaksossa on selvään huomattavissa kaksi suurempaa maksimia:

¹ Die Wolfschen Tafeln der Sonnenflechenhäufigkeit. Met. Zeit. 1902.

 $^{^{2}}$ Provisorische S
 onnenflechen-Relativzalen. Met. Zeit. vuosik, 1901—1904.

IV	11-20	49
"	21-30	7
∇	1-10	2
,,	11—20	24
22	21 - 31	9
VI	1-10	55
**	11—20	82
,,	21 - 30	130
//		
VII	1—10	213
	1—10 11—20	213 80
VII		
VII	11-20	80
VII "	11—20 21—31	80 67
VII " VIII	11—20 21—31 1—10	80 67 67
VII " VIII "	11—20 21—31 1—10 11—20	80 67 67 110

Kuukausittain järjestettynä muodostuu jakso:

huhtikuu	56
toukokuu	35
kesäkuu	267
heinäkuu	360
elokuu	209
syyskuu	92

Edellisen jakson molemmat maksimit vastaavat v. Bezold'in kahta kesämaksimia. Tämä kesämaksimin kaksiosaisuus on muuten huomattavissa ukkoslukuisuudessa aina Keski-Europasta Siperiaan saakka. ¹

¹ Gockel: Das Gewitter, siv. 203.

Nat. o. Folk, H. 67, N:o 2.

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Pä	Kale	vantulia	Paikka, jossa kalevantulia vastaav	
Päivä	Havaintopaikka	t	R	ukonilma on sattunut
I 5	Turku	6.0 p.	ESE	ŋ
IV 17	Urjala		SW-W-N	Monin paikoin ympäristössä esim
1	Cijara	оло 11.50 р.		Alastarossa SW:ssä, Karkuss NW:ssä ja Tampereella ja Messu kylässä N:ssä.
. 29	Parainen	8.45 p.	W	Kuusisto (mahd. Nauvo ja Turku
,,,	Sälgrundin ma-			
1	jakka	9.5 p.— <i>0.15 a</i> .	sw	Pohjanlahdella (?).
27	Tampere	p.	SW	ſ∡ SW:ssä. Messukylä.
"	Turku	p.	NW	Mynämäki.
1 22	Söderskär, ma-		,	
1	jakka	9.45 p.−2.0 a.	NNW	Märket, majakka (?).
, ,,	Lauttakylä	n. 10.30 p.	N	Tyrvää, Karkku NNE:ssä ja Lavi NNW:ssä.
18	Utö, majakka	0.0—2.0 a.	S—SE	Suomen lahdella (?).
VI 3	Lieto	7.45 p.	NE	Kaarina.
77	Porkkala	8.10 - 10.30 p.	sw-n	Helsinki, Lohja.
**	Korpilahti	9.0 p.	S	?
27	Loviisa	9.30-10.0 p.	sw-w	Haiko, Söderskär.
25	Enontekiö	7.30 p.	W	?
30	Ulkokalla, ma-			
	jakka	n. 10.0 p.	NW	?
VII 16	Helsingkallan,			
	loistolaiva	9.12 p.	ESE	Pietarsaari E:ssä.
27	Kurkijoki	9.50 p.	NE	?
77	Merenkurkku,			
	Snipan loist.laiv.	11.50 p.	NW	Etelä-Pohjanmaalla.
17	Storkallegrund,			
	loistolaiva	0.32—2.47 a.	SW-SE	Vaasa.
n	Merenkurkku,			
	Snipan loist.laiv.	1.15 a.	sw	Vaasa.

Bidrag t. känned. af Fi

d .	Kalevantulia			Paikka, jossa kalevantulia vastaava	
D::	Havaintopaikka	t	R	ukonilma on sattunut	
17	Heinäluoto, ma-				
17	jakka	132 n n 20 a	N-E	Kaakkois-Suomessa (Lappeenranta).	
30	Ulkokalla	-	WE	Maakkois-Suomessa (Lappeenranca).	
31	Helsingkallan,	10.0 р.	_	_	
01	loistolaiva	117_147 a	N	Kokkola.	
I 1	Merenkurkku,	1.11—1.±1 a.	14	HORBOIA,	
1 1	Snipan loist laiv.	10 10—10 35 n	NNW	?	
	Ulkokalla	11.6 p.	WSW	2	
2	Ulkokalla, ma-	тт.о р.	11011	·	
-	jakka	n. 3.0 a.		Rantsila ja Ruukki.	
	Pietarsaari	10.15 p.	SE	Transfer Ja Traditi.	
27	Sotkamo	11.0 p.	W		
	Kuhmoniemi	11.42 p.	NE	/ Ukonilma, joka hävisi Kuhmonie-	
4	Sortavala	6.45—7.17	NW-W	meltä 8.42 p. suuntaan NE.	
7	Maarianhamina .	8.0-9.0 p.		Herrön majakka.	
27	Heinäluoto, ma-	olo olo pi		11011 Inguitar	
"	jakka	9.13—11.33 p.	N	Pelkjärvellä ja Värtsilässä NW:ssä.	
27	Turku	11.0 p.		Herrön majakalla.	
10	Sälskär	? .	_		
11	Utön majakka .	9.0 p.—2.0 a.			
,,	Turku	10.0 p			
27	Sälskär	10.0—11.0 p.	SE-E		
22	Karkku, Linnain.	10.0 p.		Isokarin seuduilla.	
- 37	Sauvo	10.41 p.	W)	
12	Helsingkallan,				
	loistolaiva	0.27—0.42 a.	S		
27	Säbbskär,majakka	a	s	Hinnerjoki SE:ssä.	
15	Inkoo, Svartbäck	10.30 p.			
18	Oulu	7.30—9.30 p.	_	Ylitornio.	
27	Ulkokalla	9.1 p.		Oulu.	
19	Suursaari	11.0 p.	NE	Taavetti (?).	

[.] o. Folk, H. 67, N:o 2.

Kalevantulia			Paikka, jossa kalevantulia vastaava
Havaintopaikka	t	R	ukonilma on sattunut
Verkkomatala	8.15—9.3 p.	NW	Viipurin seuduilla.
Miehikkälä	8.30 p.	$_{ m SE}$)
Finström, Godby	8.30—10.30 p.	NE	Hinnerjoen, Alastaron ja Huittister
Merenkurkku,			seuduilla.
Snipan loist.laiv.	8.45—11.55 p.	SE—E	Vaasan ja Laihian seuduilla E:ssä
			Sälgrundissa SE:ssä.
Alavus, Norrviiki	8.50—9.15 p.	S	Ruovesi.
Sauvo	8.56 p.	N	Hinnerjoen, Alastaron ja Huittister
			seuduilla.
Somero	9.0 -10.0 p.	sw	-
Loviisa	9.30—10.0 p.	W	_
Ikaalinen	illalla	sw	Karkku, Linnainen.
loistolaiva	1.7—1.10 a.	N	_
	n. 9.0—10.0 p.		_
-	n	_	Verkkomatala.
1		E	_
Kokkola	_	s	
Ulkokalla	_	sw	_
	1		
	8.8-8.15 p.	NNE	Pohjanlahdella (?).
	1		Porkkalan majakka.
	-		Kisko (?).
	п. т. Р.	1111	Histo (.).
	n 11.0-12.0 n		
	Verkkomatala Miehikkälä Finström, Godby Merenkurkku, Snipan loist.laiv. Alavus, Norrviiki Sauvo Somero Loviisa Ikaalinen Helsingkallan, loistolaiva Korpilahti Viipuri Pudasjärvi Kokkola Ulkokalla Helsingkallan, loistolaiva Helsingkallan, Somero Storkallegrund,	Verkkomatala. 8.15—9.3 p. Miehikkälä. 8.30 p. Finström, Godby 8.30—10.30 p. Merenkurkku, 8.45—11.55 p. Snipan loist.laiv. 8.45—11.55 p. Alavus, Norrviiki 8.50—9.15 p. Sauvo. 9.0—10.0 p. Loviisa. 9.30—10.0 p. Ikaalinen illalla Helsingkallan, 1.7—1.10 a. Korpilahti n. 9.0—10.0 p. Viipuri n. Pudasjärvi 9.0 p. Kokkola 7.55 p. Ulkokalla 8.6—9.6 p. Helsingkallan, 10.45 p.—n. Páimio 10.45 p.—n. n. 11.0 p. Storkallegrund,	Havaintopaikka t R Verkkomatala. 8.15—9.3 p. NW Miehikkälä. 8.30 p. SE Finström, Godby 8.30—10.30 p. NE Merenkurkku, 8.45—11.55 p. SE—E Alavus, Norrviiki 8.50—9.15 p. S Sauvo. 9.0—10.0 p. SW Loviisa. 9.30—10.0 p. W Ikaalinen. illalla SW Helsingkallan, 1.7—1.10 a. N Korpilahti. n. 9.0—10.0 p. W Viipuri. n. — Pudasjärvi. 9.0 p. E Kokkola. 7.55 p. S Ulkokalla. 8.6—9.6 p. SW Helsingkallan, loistolaiva 8.8—8.15 p. NNE Helsinki. 10.45 p.—n. — Päimio. n. 11.0 p. NW

II. Ukoniskut.

Seuraavat ukoniskut ovat ilmoitetut vuonna 1904:

- Huhtikuun 17 p. Risteen aseman läheisyydessä raivosi ankara ukonilma, jonka kestäessä salama iski 9-aikana illalla alas aseman läheisyydessä; myöhemmin nähtiin siinä suunnassa, jossa isku tapahtui, valonheijastusta ikäänkuin tulipalosta. Luultavaa siitä syystä oli, että joku riihi (?) oli syttynyt tuleen.
 - " " Köyliön pitäjässä Ehtamon kylässä paloi kl. 9.45 p. m. riihi salaman sytyttämä.
 - 18 "Jalasjärvellä "pärskyivät" telefonit ukkosen aikana.
- Kesäkuun 3 p. Perniön aseman läheisyydessä pirstoi salama sähkölennätin-pylvään ja löi 18 (?) rata-työmiestä tainnuksiin; kolmelta vahingoittuivat vaatteet ja heidät täytyi viedä lääkärille Saloon.
 - " " Köyliön pitäjässä Metsolan kylässä iski salama Eskolan kartanon navettaan polttaen sen; tulipalossa paloi sika ja 2 vasikkaa. Eräs henkilö vahingoittui.
 - " " " Salama iski Tapilan navettarakennuksen. Kaatoi 4 lehmää, tekemättä niille kumminkaan mitään vahinkoa. Eräs palvelija menetti iskusta kuulonsa ja puhekykynsä. Samalla ukkosella iski salama Pappilaankin, tekemättä kumminkaan mitään mainittavampaa vahinkoa.

- Heinäkuun 1 p. Kirkkonummella Botviikissa iski salama erääseen torppaan.
 - " " Siuntiossa pirstoi salama Lill Granholmalla männyn.
 - 17 " Uurainen. Salama iski 3 km. SE:hen kirkolta olevaan Mäkisen torppaan. Salama tuli huoneeseen seinän kautta, sytytti erään kudoksen, pirstoi seinäkellon sekä poistui lopuksi ikkunan kautta. Huoneessa oli sattumalta 6 henkeä, mutta ei kukaan vahingoittunut, tunsivat vaan jonkinlaista pahoinvointia jälestäpäin.
 - " 25 " Kuuleman mukaan oli salama iskenyt kahteen paikkaan lähellä Hankoniemen kaupunkia, tekemättä kumminkaan minkäänlaista vahinkoa.
 - " " " Virolahdella tappoi salama lehmän.
- Elokuun 2 p. Kuhmoniemessä iski salama maahan aivan havaintopaikan läheisyydessä.
 - , 13 " Nuutajärvi. Salama pirstoi noin 40 cm:n läpimittaisen koivun 200 m:n päässä tehdasrakennuksesta.
 - " " " Salama iski telefonipylvääseen Tiuassa.
 - " 15 " Kaarina. Salama iski Littoisten tehdasrakennukseen. Eräs telefonijohto vahingoittui.
- Syyskuun 10 p. Salaman kerrottiin sytyttäneen erään riihen Mommolan kylässä Huittisissa.
 - " 11 " Salama iski 2 km. päässä Kyrön asemalta olevaan vuoreen.

12. Meteoreja.

Helmikuun 16 p. nähtiin Salossa keskikokoinen viheriänvärinen meteori. Se havaittiin NE:ssä noin 30° korkeudella, josta se laskeutui alas taivaan rantaan kl. 5^h 49 p. m.

Kesäkuun 3 p. kerrottiin Paimiossa nähdyn erään "tulipallon", joka kulki lännessä päin.

Lokakuun 28 p. kl. 10^h 23 p. taivaan ollessa enimmäkseen pilvinen, nähtiin Verkkomatalasta pilvien lomassa korkealla eräs sinertävän valkoinen tulipallo. Se oli lapsenpään kokoinen ja liikkui hyvin nopeaan etelästä zenitin kautta pohjoiseen laskeutuen samalla alaspäin. Pallon perässä oli jonkinlainen valojuova ja koko ilmiö hävisi äänettömänä.

Vesipatsaita.

Heinäkuun 9 p. nähtiin 2 pienempää, pilvipyörteen kohottamaa vesipatsasta, jotka liikkuivat Bromarf'istä itään olevalla lahdella.

Liite I.

 $t_{\rm a}={
m aika}$ alkaessa. $t_{\rm e}:$ aika loppuessa. $R={
m suunta}$, missä ukonilma huomattiin. $V_{\rm f}$, $V_{\rm u}$ ja $V_{\rm e}={
m tuulen}$ suunta ja voima ennen ukkosta, sen aikana ja jälkeen. 🏹 – ukkonen. 🕇 – kaukaista jyrinää. 🔌 – Kalevantuli, salama ilman jyrinää. B – salama. D – jyrinä. T = ilman lämpötila C°. h = ilmapaineen korkeus. 🔘 = sadetta. 📤 = rakeita. 🛆 =: hernelunta. M =: pilvistä. 🌑 = täyspilvinen 🌖 = melkein pilvessä. 🕦 – puoliselkeä. 🐧 – melkein selkeä. 🔘 – selkeä. B—D – aika salaman ja ukkosen välillä.

Ajat ovat Helsingin puolipäiväpiirin mukaan, joten 12 päivällä on merkitty 12 a ja 12 yöllä 12 p. Kursiivilla merkityt ajat kuuluvat seuraavaan ja alle viivatut taasen edelliseen vuorokauteen.

Pä		V.	Z.					,		
ii v ä	Havaintopaikka	$\mathbf{t}_{\mathbf{n}}$	t	X.	tn	t _e	y J	^ n	o O	Huomautuksia
4	I. 4 Tuuspiemi		3.15 a 3.30 a	W—IE	1	I	W	M	, M	Wrskv".
18	akka		9.33 a 10.33 a	SSW	}	ı		8	:	C
17	IV 17 Lågskär, majakka		5.35 р 7.0 р	NW-W	1	and the same of th	$\infty_{\!$	S.	∞_{ω}	
	Sauvo		5.40p 5.50p	Z	$5.10\mathrm{p}$	5.10p 7.10p	1	ω	σΩ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
,,	Sälskär, majakka		5 56 p 9.41 p	SW-NE	6.1 p	6.1 p 9.21 p	i	1	and the same of th	[록¹, @, ▲ snurenlaisia.
2	Märket, majakka	5.58 p	. 5.58p 6.50p	W-S-E	$4.23\mathrm{p}$	4.23 р 7.8 р	αŽ	N _z	a a	
2	٠	. n.6.0 p 4.0 a	4.0 a	NE	1		SW_1	NE,		Ø⁰ n.
£	Finström, Godby		$9.58\mathrm{p}$	6.3 p 9.58 p SW-NE	$6.10\mathrm{p}$	6.10 p 9.50 p	SW_2	NSW.	W.	@ ⁹ -2 kuurottain, ▲ 6.15-6.17 p.
ž	Maarianhamina	$6.20~\mathrm{p}$	10.0 p	$6.20 \text{ p} 10.0 \text{ p} \text{W} \left\{ \frac{\text{N-NE}}{\text{SW-S}} \right\}$	-	!	SW_0	SW_o	!	8.20 p B—D = 23 s SW:ssü ja 8.35 p.
*	Sabbskar, majakka		6.49 p 11.44 p	S-NE	7.14 p	7.14p 9.14p	ļ	:	1	$\lceil \mathbf{\overline{K}}', \boldsymbol{\varnothing}^{\circ} \cdot \rceil = 36 \text{ N;ssä.}$
	The second secon		-							

Bidrag t. känned. af Fin

																		6	89	
nousemassa W.ssä; ainakin vielä 10.50 p riehui rajuilma. [4. Jyrinä melkein yhtenäinen, ? N. 9.0 p [4] ulutavasti sytyttänyt jonkin talon palamaan aseman läheisyydessä. [4] oli kuultu myöskin Ristinassa ja Heinolassa.	K myöskin Tyrväällä ja Tampe-	[reella.	区?; salamat "isoja". @ kaiken yötä.	[文², く 7.0 p. (Matikalla Huittisista Loimijoelle oli	Karossa, Vempeleella, Alastarossa ja Loimijoella. 9.45 p sytytti Karihen Köyliössä. Kariela 1.00 m is 2.00 m is		[द² jyrinät "rämiseviä".	[द², @°, salamat "laveita" ja kirkk.	≼ 7,20 p SW:ssä ja 11.0 p N:ssä.		[42, 6]. Salamat häikäisevän val-	T¹ I⊊ kirkkaita ja laveita. ذ pi-	$T = +8^{\circ}$. [saroittain.	T^2 aamulla 18 6.0; $T = +5$.	T°, ≤ 9.5 p. — 0.15 a SW:ssä.		$\mathbb{I}\mathbb{Z}^2 9.0 - 10.0 \text{ p.} \leqslant \text{n. } 10.30.$	·. L	/ Silma näkvi SW:ssä liittavän [3-	ilmaan. 120° horisontin valaisivat 🔾 toisinaan. 🔘 a.
	1	SE	1	$\mathbf{x}_{\mathbf{i}}$			1		SE_3	SW_3		₩,	w _e	w	-	1	SE	I		v°
1	1	∞	I	$\vec{\mathbf{v}}_{_{\!\mathbf{i}}}$	1	1	S,	İ	$\mathrm{SW}_{\scriptscriptstyle{\frac{1}{4}}}$	SW_3	1	∞	$\tilde{\mathbf{v}}_{_{\mathbf{i}}}$	∞	1	ı	SE	$ \overset{\circ}{\nabla} $	SW_2	တိ
	!	SE	1	$\mathbf{x}_{\mathbf{i}}$		ı			SE	SW_3	SE	သို့	S _z	∞	S,		Ø	1	1	v,
1		ļ	[a	9.45 p 0.20a		n	$930\mathrm{p}$	Į	l	5.0 a	n	6.0 p	1		1			п
1	1			1	10 р	$9.45 \mathrm{p}$	8.0 p		7.50 p	Į	8 20 p	2.0 a	п	5.0 p	1	I	1			6.0 p
SW	M	Ø	NW-Z-SE	NW-NE-Z-8	NW-SW NE-SE	SW-NE	W-E	NW	SW-NE	MW-W	SE-N	3.0 a S-W-NW	NWS	M	SW-W	S-N	SW-W-N	Z	N-S	1
ainakin 10.50 p	п	8.40 p	e	4.0 a	8.0 p	$1.25\mathrm{p}$	0.0 p	n.3.0a	8.23 p	$0.20 \mathrm{p}$	1.0 p	3.0 a	0.40 a	2.0 a	9.5 p	v.6.0a	г. 11.0 р	1.3.0 a	4.0 a	4.0 a
n. 7.0 p 10.50 p	7.0 p	7.0 p	7.0 p	$7.30\mathrm{p}$	7.30 p	$7.30\mathrm{p}11.25\mathrm{p}$	7.30 p 10.0 p	n. 7.30 p n. 3.0a	7.32 p 8.23 p	$7.50 \mathrm{p} 10.20 \mathrm{p}$	8.0 p 11.0	8.0 p	8.20 p 0.40 a	8.30 p	8.45 p 9.5	n. 9.0 p $n.6.0a$	в. 9 0 р п. 11.0 р	n.9.0 p $n.3.0 a$	9.0 p	9.0 p
-						•		•								-	•	-		•
	neu.				:ਵਰ	я			ki .	ka.					kka .					
sema	innai				kkyl	ajakk			orrvii	najak			•		majal		٠.	-	ema.	
en as	ru, L	nen	ijärv	mäki	isten	ri, m		rjoki	18, N	tär, n	nen	aro .	ıkylä	ıjärvi	und,	sto.	akylë		n as	ere.
Risteen asema	Karkku, Linnainen	Ahlainen	Mouhijärvi	Mynämäki	Huittisten kkylä	Isokari, majakka	Lavia.	Hinnerjoki	Alavus, Norrviiki	Lågskär, majakka	Ikaalinen	Alastaro	Messukylä	Nuutajärvi	Sälgrund, majakka	Kuusisto.	Lauttakylä	Salo	Liedon asema	Tampere.
17	2	*	*		*	2	2	"	£	2	2	ę	2	ŝ	z	s	2	÷	2	2

ihtikuu

Pa		M	6			1	7	11	H
äivä	Havaintopaikka	t _a t _e	A	t _a	t e) tt	n A	о >	Huomautuksia
-		90 20 0	MN	0.00		ď	o.	oź	/ Aluksi ≼ NW:ssä, sitten [द. @° pi-
-	TITLE	0.0 1	N M MS	v.30 p	5.30 p		S W	CW.	saroissa.
£	Urjala	9.23 p n.2.6	9.25 $n.3.0a$ S W — W — $n.3.0a$ a	(2.0 a	2.30a)	. γ Λ Λ	3	o W	4 6.40 p w – 5 w:Salja 11.50 p N:Ssa.
£	Nauvo	9.40p 4.50a)a	4.10 a	5.0 a		1	1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
22	Hattula	9.45p 11.0 p	p W-NW	$9.30\mathrm{p}$		SW	$^{ m NS}$	SW	$T^{1-2} \le 9.30 \text{ p NW:ssa}$, $^{\circ}$ ° pisaroit-
2	Kisko, Toija	. 10.0 р п		1	1	s.	Watercook	1	⊘° n. [tain.
20	Somero	п. 10.0 р п. 11.0 р	SW-NW-N			w _a	∞^*	Ì	$(\mathbb{R}^2, \mathbb{Q}^{\circ})$. Päivällä kova S-myrsky $\mathbb{T} = +9$ à 10°.
2	Turenki	10.15р —	-	-	1	J	1		区。, @ tikkusadetta.
22	Paimio	п.10.30 р	Z	10.30.p	п	ļ			$ extbf{\beta}^{1-2}$.
20	Lavia	10.50p 1.0 a	- w	[1	S _o	1	[₹² jyrinät rämiseviä.
33	Kuortane		1]	1]	-		ſ≼ yöllä 17—18 päivän välillä.
18	Jyväskylä	n.2.0a —	1	1	1	ì		l	
*	Lauttakylä	n. 20an. 3.0a	a NE	1			1	1	14', sadetta 9 mm:a. 14 aamulla 17/1V 39.0 p-11.0 p.
23	Kemiö	yöllä yöllä	::3		1	1		İ	
2	Utö, majakka	п. 2.15 а 2.45	2.45 a S à SW-NE	2.0 a	3.0 a	1		1	✓ 0.0 a—2.0 S ja SE:ssä.
2	Parainen	n. 4.0 p n. 5.0 p	MS d	1	1	1	1	1	
32	Sälskär, majakka	4.6 p 5.21 p	d	5.0 p	8.0 p	1		1	ΙΨ°.
33	Turku	-	N S	1	1	-	1	1	[≼ yöllä, ⊘² n. 4.30 a.
2	Jalasjārvi	п. 9.30 р —	SW	1	-	property			(a.

	ESE,	ESE,	ESE,	$11.45\mathrm{p}$	$10.20\mathrm{p}$	$9.40\mathrm{p}11.20\mathrm{p}$ S—E—N $10.20\mathrm{p}11.45\mathrm{p}$	11.20p	$9.40\mathrm{p}$		Porkkala, majakka
° ⊢	SE	$\mathrm{SE}_{_{6}}$	${ m SE}_{6}$	1	Ī	2.5 p 3.30p W	$3.30\mathrm{p}$	2.5 p		Alavus, Norviiki.
Pohjoisemmassa kuultiin [4] jo 1.0 p.	v,	w.	$\vec{\alpha}$	2.0 p	$1.20\mathrm{p}$	1.35 p $1.50 p$ NW-W-NE $ 1.20 p$ $ 2.0 p$	$1.50\mathrm{p}$	$1.35\mathrm{p}$		Kuortane
	SW_6	$SW_{\mathfrak{g}}$	SW_6	1	1	4.55 p 5.5 p SW-SE-NE	5.5 р	$4.55\mathrm{p}$		
[¶°, @¹.	SW_{\downarrow}	SE_7	SE,	$3.15\mathrm{p}$	3.4 p	3.0 p 3.5 p SE—NW 3.4 p 3.15 p	3.5 p	3.0 p		
	1	1	1	1	-	1	3.51p 4.21p	$3.51\mathrm{p}$		Sälskär, majakka
o tikkusadetta.	1	.1	1	1	7.0 p	1	1	7.0 p		Purku
区。	I	1	1	8.0 p 11.0 p	8.0 p	1	6.51p 8.51p	$6.51 \mathrm{p}$	٠	Sälskär, majakka
Telefonikoneet pärskyivät.	-	1	1	- Characterists		0.0 a 1.0 a SW-N -	1.0 a	0.0 a		19 Jalasjärvi

at. o. Folk, H. 67, N:o 2.

1904

Toukokuu

pitkin päivää; edellisenä päivänä T=+13. Seuraavat päivät kylmiä. 21 p \star ja \blacktriangle ja tuuli Ns. Helsinki 7 p ▲ 3.40—3.55 p ja 🔘 D (?), \otimes^2 , \triangle 5.10 – 5.15 p, \triangle pieniä. Huomautuksia 区°, @2 ukkosen aikana. ≼ 1,10 a SW:ssä. 1 D², ▲ 11.15 a. pisaroita. 1 D², @°. ا⊈°, ⊚°. ĭ, ®. ™, 1 D°. Ċ · · SSW2 SE_{\downarrow} SSE SW. SW SW_2 \overline{W}_2 SW4 SW_2 \sum_{a} \sum_{b} \sum_{a} N_O Ś Ø WSW_3 SSE, SE_6 SW SW_2 $\mathop{\rm SW}_{2}$ SW. W_{θ} ŝ က္ရွိ Ω SE_6 SSE SE SW_6 SE $SW_{\mathfrak{g}}$ $\mathop{\rm SW}_{\mathfrak g}$ ٨ Š ž 2.0 p 8.0 p 8.20 p 1.11p $5.35 \, \mathrm{p}$ 9.0 a 12.15p و د 2.0 12.11 p 1 7.0 p 5.10p 1.30 p 1 7.20 p 8.0 p 5.0 p $4.15\,\mathrm{p}$ 10.0 a n. 12.0 p 3.55 p SE-E-NE 12.22p | 12.38p | SE-E-NE 4.30p SW-W-NE S-SE-E SW-NE SW-N W-S W-E W-N S-N S-N $\mathbb{S}^{\mathbb{N}}$ SW \geq بم S $\dots \dots$ n.1.0p n.2.0p 1.20a 2.0 a 7.50a 11.0 a 9.55 a 10.20 a . . 11.0 a 12.0 a 1.30p 1.45p 1.15p 1.30p 7.2 M $6.30 \, \mathrm{p}$ $3.40\,\mathrm{p}$ 4.5 p 8.0 p 8.55 a . n. 4.30 a n 9.0a п.11.20 в Lappträski, Kappelby. 11.25 a 5.10p 34 Kisko, Toijan kartano Söderskär, majakka. Havaintopaikka Helsinki . . . Alavus, Norviiki. Hangon majakka Tampere. . Somero . Viitasaari lkaalinen Ikaalinen Munsala Rantsila Laihia. Ruukki Kemiö Karja . Vaala . Sauvo. 16 18 6 6 Päivä

1 7°. 2. Helsinki ▲ 2.0—2.5 p.	(11) A n 1230 n @ cobs onnon	että jälkeen [K. Ilma muuttui illalla koleaksi ja tuuliseksi.	Ilma jäi kylmäksi 🏹 jälkeen.	4 K NE:ssä, ▲ 12.45—12.50 p.	$\lceil \overline{\mathbf{q}}^{1-2}, \ 0^{1}.$	(1 D. Harvinaisen mustat [\overline{A} pilvet Essä. Jyrinä kova Jokkaisissa. $T_{\theta} = +15^{\circ}.4$, $T_{\parallel} = +6^{\circ}.n$. Sen jälkeen ovat ilmat yhä kylmettyneet; $22 \text{ p } T = +1^{\circ}.n$, aamulla \overline{A} .	▲ 5.15-5.20 p.	$\left\{ \begin{array}{l} \blacktriangle^{\circ} 11.40 \text{ a}{-}12.10 \text{ p. 21. } 1.10 \text{ p.} \\ \blacktriangle \text{ Lauttakylässä.} \end{array} \right.$	٢٠.	1 D. 🕲 päiv. kuluessa	2 D; toinen 🛭 "likempänä" maata.	1 D; @ hiukan a. p.	$ abla^2, egin{pmatrix} \mathbb{Q}^2. \\ abla^2, egin{pmatrix} \mathbb{Q}^2.$			🕲 kuuroissa pitkin päiv., tuuli vaiht.	✓ 5.41 p SE:ssä.	
W,	N ₆ -8	SW_2	NW_8	WNW_2	NNW_6	WNW ₂	NW_6	1	SQ.	1	Z	l	SW_2	N.	NE_2	NW_2	$\overline{\mathrm{NE}_{\scriptscriptstyle{2}}}$	
NW.	N ₁₋₂	SW,	${ m SE}_{\!\scriptscriptstyle 6}$	$\overline{\mathrm{NW}}_2$	NW_4	WNW.	1	манич	$\mathrm{SE}_{_{\!0}}$	SSE	NW		NW_6	N,	NE_2	$\vec{\Delta}$	$\mathrm{NE}_{\scriptscriptstyle{\downarrow}}$	
NW.	N E	SW_1	W	W		NNW_2	-	1	SE_6	1	M	-	M M	Z	NE,	v.	NE,	
9.40a 10.0 a	12.10p 12.20p	n.1.0 p	6.0 p	$1.55\mathrm{p}$	$1.25\mathrm{p}$	1	l		1	1	2.0 p		3.50p 4.45p	$6.30\mathrm{p}$		$6.38 \mathrm{p}$		
9.40 a	12.10p	1	11.50a 6.0 p	12.31p 1.55p	12.30p						1.0 p	!	$3.50\mathrm{p}$	4.20 p		1		
NW-SE	N-S	SW-NE	N-SE	NW-N-NE	NW-SE	2 30p 2.30p NE—E—SE	-	1	WE	Ø	W-E		NW-SE	SWNE	NE-E-S	5.40p 6.0 p S-W-NW	$5.43\mathrm{p}\mathrm{SE-SSE-S}$	
9.35 a 9.45 a	a 12.0 a	1	12.5 p	12.30 p	$1210\mathrm{p}$	2.30 p	1		$2.40\mathrm{p}$	1	2.0 p	1	4.10 p	$5.30\mathrm{p}$	$4.10\mathrm{p}$	6.0 p	5.43 p	
9.35 a	11.0 a	11.4 a	11.15a 12.5 p	$11.30\mathrm{a}12.30\mathrm{p}$	12.0 a 12 10p	$230\mathrm{p}$	I	1	$2.35\mathrm{p}$	$_{\rm n.1.0p}$	1.0 p	п. 1.30 р	$3.45\mathrm{p}$	4.0 p	4.0 p	$5.40\mathrm{p}$	$5.43\mathrm{p}$	
Loviisa	Tuusniemi	Uusikirkko	Pihtiputaa	Viitasaari	Loviisa	Mikkeli	Kurkijoki	Sortavala	Ylitornio	Jyväskylä	Korpilahti	Kuhmoinen	Loviisa	Vehkalahti,Brakilan talo	Pudasjärvi	Viitasaari	Utti	
20	£	2	*	2	2	٤	2	55	27	87	r	"	ž	2	£	ě	*	

esäkuu

Pā	: :	ď	1.71	P			1	4.4		
iivä	Науалпторалкка	t _a	t _o	궠	t a	t _o	> T	n ^	Φ >	Huomautuksia
-	Uusikirkko	12.0 a	[W—E	11.55 а 12.3 р	12.3 p	W_2	\mathbb{W}_{2}	W_2	2 D; ilma [द jälkeen jäi lämpimäksi.
¢.1	Huittinen	3.0 a	4.30 a	S-N	3.0 a 4.30 a	4.30 a	WNW	1	Ĕ,	
33	Värtsilä	11.30 a 11.40 a	11.40 a	NW-SE	11.38 a 11.55 a	11.55 a	SW_6	NW_8	. 0	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
33	Isokari, majakka.	9.30 a	9.35 a	WNW	1	[SE_{2}	SE_2	SE_{2}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\$	Sauvo	10.0 a	1	Z	10.30 a 10.40 a	10.40 a		$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	1	⊠°, ©∘.
2	Säbbskär, majakka.	10.14a	$2.14\mathrm{p}$	SW				-	1	т°.
2	Mynämäki	п.10.30 а		NE	п. 11.0 а п.12.30 р	1.12.30 p	1	1		1 D.
2	Isokari, majakka	11.45 a	11.50a	11.45 a 11.50 a WNW-W-SW	1	1	SSW_2	SSW_2	SSW_2	`⊙⊠.
86	Heinämaa	$12.45\mathrm{p}$	1.55 p	12.45 p 1.55 p SW—W—N	$1.22\mathrm{p}$	2.0 p	NE,	NE.	SE,	
2	Alastaro	1.0 p	3.0 p	S-SE-E	3.0 p	6.0 p	$\mathbf{x}_{\mathbf{z}}$	νς.	闰	⊤°, ©°.
ŧ	Mynämäki	$1.23\mathrm{p}$	1.23 p 4.5 p	SW	$1.34\mathrm{p}$	3.7 p	$^{ m SW}$	$^{ m SW}$	SW_1	
*	Utön majakka	$2.14\mathrm{p}$	2.24 p	Z						т.
u	Isokari "	2.15p	$2.20\mathrm{p}$	2.20p SW-S-SE	3.0 p	4.50 p	SW_2	SW_2	SW_2	区。.
. 33	Sauvo	$2.36\mathrm{p}$	5.1 p	5.1 p W-NW-N	$3.51\mathrm{p}$	$4.11 \mathrm{p}$!	SE_{g}	মু	
25	Mynämäki	3.13p	3.50 p	SE	$3.25\mathrm{p}$	$3.48\mathrm{p}$	SW_1	SW_1	SW_1	ylätuuli N ₁ .
\$	Parainen	$3.20\mathrm{p}$	3.30 p	3.30p S-SW-W	3.35 p	3.45 p	∞	S.	SW_2	\(\infty\) \(\infty\) \(\infty\) \(\infty\)
2	Salo	$3.24\mathrm{p}$	6.24 p	6.24 p NW-W-SW	$3.54\mathrm{p}$	6.4 p	S_{2-4}	S_0^{-1}	ğ	
8	Kaarina	$3.45\mathrm{p}$	$4.35\mathrm{p}$	S-N	$3.35\mathrm{p}$	$4.20\mathrm{p}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	SE_2	SW_2	[द² ja ⊘³ 4.10—4.20 p.
\$	Paimio	$3.50\mathrm{p}$	3.50р 5.07р	W—NW	3.50p 5.12p	5.12p		$\overline{\mathrm{W}}_{2}$	ļ	(K², ⊘°. 5.14 p kuului kovempi D (NNE:ssä ja siirtyi NE:hen.

										,											75		_
			· -	٦٠.	., ⊘., ∟	(区*, ②*, 区 iski Eskolan taloon Metsolan kylää Kiskon pit. Sy- tytti navetan ja poltti muutamia elukoita.	区2, @2.	区°, ©° kuurottain.	T¹, ◎¹.	/ [₹², @². [≼ havaintopaikan yläp. (terävät ja pystysuorat.	\mathbf{K}^{1-2} , \mathbf{Q}^2 n. 5.24 p.	⊤°, @° kuurottain.	$\begin{cases} I\mathbb{Z}^{1-2}. \text{ Tedellisenä päivänä} = +23^{\circ}; \\ \text{jälkimmäisenä} + 10^{\circ} \text{ ja yöllä} + 1^{\circ} \\ h + 3^{\circ}. \end{cases}$		\\ \(\) \(≼ 7.25 p SW:ssä ja 10.30 p N:ssä.		$ \nabla_{1}^{1-2}$.	.∾⊠	∠ 7.45 p NE:ssä.			
	NE,	1		SE_{2}	v,	į	N	$\mathrm{NW}_{_{4}}$	$\mathrm{SE}_{_{\mathrm{I}}}$	च		W	E	1	Ä	NE_1	$\mathrm{SE}_{_{1}}$	ENE	1	1	W		
	SE_2	SO.	1	SE	SW_{\downarrow}		NE	SW_1	SSW2 -1	E,]	W_2	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$		ਲੂੰ	N	SE_o	$\mathrm{ESE}_{_{\! 1}}$		NE_{\downarrow}	\mathbf{W}_2	$\mathrm{NW}_{\mathfrak{g}}$	
-	SE_2	Ω	4	\mathbf{SE}_{2}	$\tilde{\mathbf{x}}_{\mathbf{z}}$	1	1	SE_2	${\rm SSE_3}$	च	1	$\mathrm{SE}_{\scriptscriptstyle{1}}$	$\mathrm{SE}_{\scriptscriptstyle{\ddagger}}$	1	Ç,	${\rm NW}_2$	$\mathrm{SE}_{_{1}}$	ESE_{3}		1	M_{2}	SE_6	
	6.0 p	5.10p		$5.40\mathrm{p}$	6.10p	7.0 р	12.0 p	8.0 p	1	8.0 p	1	$6.41\mathrm{p}$	7.35 p	$7.30\mathrm{p}$	7.10р 11.0 р	7.35p 8.15p	$9.10\mathrm{p}$	$8.20\mathrm{p}$		$9.30\mathrm{p}$	1	9.30 p	
İ	3.17 p	$3.30\mathrm{p}$]	$4.42\mathrm{p}$	5.15 p	5.0 р	4.40p 12.0	$6.30\mathrm{p}$		$6.45\mathrm{p}$		$4.26\mathrm{p}$	6.15 р	7.0 p	$7.10\mathrm{p}$	$7.35\mathrm{p}$	$7.05\mathrm{p}$	$7.40\mathrm{p}$]	$8.25\mathrm{p}$		8.33 p	
1	NW-SE	SW-NE	SE	5.35 p W-NW-N	$6.30\mathrm{p}\mathrm{SW}\mathrm{-S}\mathrm{-SE}$	S_{-N}	ESES	NW-N-NE	NW-N-NE	SW-Z-NE	\mathbf{E} — \mathbf{S}	S-SE-E	SW-NE	W— N	SW-S-E	SW-W-NE	E-W-N	M-SW	1	NE-E-S	W-N	WSW-E	
8.10p	5.0 p	5.0 p	$4.29\mathrm{p}$		$6.30\mathrm{p}$	4.30p 6.50p	4.35 p 11.30 p	4.45p 6.15p	$6.25\mathrm{p}$	8.45 p		$6.21 \mathrm{p}$	7.20 p	8.0 p	$7.20 \mathrm{p}$	8.10p	8.0 p	$8.20\mathrm{p}$	0.0 p	9.0 p	8.8 p 10.30p	9.0 p	
3.50 p	3.50 p	4.0 p	4.14 p	4.22 p	4.30 p	4.30 p	4.35 p	4.45 p	5.0 p	5.15p	5.24 p	$5.31\mathrm{p}$.5.35 р	6.0 p	$6.40\mathrm{p}$	$7.26\mathrm{p}$	$7.30\mathrm{p}$	7.35 p	$7.50 \mathrm{p}$	8.0 p	8.8 p	$8.15\mathrm{p}$ 9.0	
Turku	Lieto	Kuusisto	Utön majakka	Heinämaa	Hattula	Kisko, Toijan kartano.	Sauvo	Hangon majakka	Bromarf	Lohja	Salo	Huittisten kkylä	Somero	Karja	Hattula	Porkkala, majakka	Järvelä	Söderskär, majakka.	Kisko, Toijan kartano	Lieto	Kaarina	Helsinki	
က	2	£		ŧ	\$		E	£		£			r	,				*	'n	*	*	*	

Kesäkuu

P		M	1.71	f				ŀ	j.	
äivä	Havaintopaikka	t,	to	R	t	t e	Vf	n A	У	Huomautuksia
33	Paimio	$8.17\mathrm{p}$	8.17p 8.35p	WNW-N	$8.30\mathrm{p}$		щ°	ë E	l	©1-2,
2	Söderskär, majakka.	8.33 p	8.33 p 10.45 p	SW-Z-E	8.40p 9.30p	$9.30\mathrm{p}$	ENE	S à W	N e	$\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ŧ	Haiko, Kallnäs	8.35 p	8.35 p a. 11.0 p	SW-S-E	$9.25\mathrm{p}10.10\mathrm{p}$	10.10p	NE,	1	Z [®]	区 n. 10.10 p.
2	Bromarf, Sommarbo .	$9.55\mathrm{p}$	$9.55 \mathrm{p} 11.10 \mathrm{p}$	SW-NE	$10.57\mathrm{p}$		NW_2	$\rm NW_{2-4}$	N_{2}	[₹², D¹, @².
22	Helsinki	10.0 p 10.25 p	$10.25\mathrm{p}$	M	$10.22\mathrm{p}$		Z S	N ₆		· ·
ε	Loviisa	. 10.0 p 11.15p	11.15 р	S-WN	11.30р 3.0 а	3.0 a	$\mathrm{SE}_{\scriptscriptstyle\downarrow}$	$\mathbf{S}_{\mathbf{s}}$	$\overset{\mathbf{N}}{\sim}$	$(4.49.30 \text{ ja } 10.0 \text{ p SW-W}, \otimes^2 12.0 \text{ p})$ $(-1.0 \text{ a}, \mathbb{R}^{1-2})$
32	Hangon majakka	10.10p 10.45p	$10.45\mathrm{p}$	ENE	$9.30\mathrm{p}$	п	$\mathrm{NW}_{_{1}}$	NW⁴	$NW_{_{4}}$	<u></u>
4	Oulu	3.33 p		SW-E	$3.52\mathrm{p}$		SW_2	SW_2	SW_2	$\left\{ \begin{array}{l} \blacktriangle 1.0-2.30 \text{ ja i. p. Tlitorniossa} \\ \blacktriangle 1.20 \text{ p.} \end{array} \right.$
£	Uusikirkko	п. 0 30 а	[S		1		-	1	Ilma oli ennen paahtavan lämmin, nyt kolea, sateinen.
**	Tuusniemi	6.35 р	6.45 p	6.35 p 6.45 p NNW-ESE		1	Z	Z	Z	/ Ennemmin samana päivänä n.12.0a / I≼ "hirmuisella myrskyllä" ja ▲.
*	Vaala		1	N-W-S	2.55.p		N _o	NW_s	$N_{\mathfrak{g}}$	$\left\{ \begin{array}{l} \blacktriangle \circ 255 \text{ p, } @\circ. \\ \searrow 530-5.40 \text{ p.} \end{array} \right. \times \circ 3.40-4.10 \text{ p.}$
n	Vaala		1	N-S	7.20 p	$7.40\mathrm{p}$	$_{_{6}}^{N}$	$\mathbf{Z}_{\mathbf{z}}$	$_{_{4}}^{\rm N}$	\triangle ² 7.40—7.45 p, \bigcirc °. T = +4.
2	Uurainen	5.40 p	1	NE-N	1	1		1	1	1 D.
00	Lieto	2.0 p	2.5 p	E-NW	2.2 p	$2.10 \mathrm{p}$	Ä	E ₁₀	প্র	Turku 🕿 2.15 p.
10	Valsörarna, majakka	4.16 p	١	NW	1	1	-	l	1	
=	Viipuri	. 12.0 a	$5.30\mathrm{p}$	-	1	1			1	I로°, @ I로 jalk.

	,																						11	
	2 D. Tuuli oikeastaan vaihteleva.	. №	[¶°; ◎ E.ssä.	Pilvet hajaantuivat N:ssa kahtia. Toinen haara kulki NE—E—SE ja siinä 2 D°.	I≼ siirtyi merelle.	.º∑I	.° @°.					⊤°, ⊘° pisaroita.	▲ 10.5 a.	⊗ kuurottain, toisinaan ★; T noin 0°.	[文 kulki "kauhealla pauhinalla".		I₄°, ⊚¹.		1 D°.	ĭ, ◎°.	[द². ▲ 12.17—12.22 p.		., ◎.,	2 D, @°. 1.23 p raju myrsky.
-	S.	WSW_{i}	z	SW_2	ž	M M	z [†]	NW_5	!	\mathbb{W}_{2}	٦	国	1	[↑]	Z		w,	SW_6	$SW_{\mathfrak{g}}$	SW_2	W	SE_{2}	$\mathrm{SW}_{\mathfrak{g}}$	W
I	W	$\mathbf{W}_{_{4}}$	$W_{_6}$	NE.	z°	ž	Z,	NW_5	į	$\rm NW_{4}{8}$	虽	1	1	W_2	Z	1	SW_{6}	SW_6	SW_2	SW_2	$_{8}$ W	SE_{2}	S_{10}	W_{10}
-	W	Z	NW_4	\mathbb{Z}_{2}	Z,	NW_3	Z [*]	NW		δ,	NW	NW_2		W	Z	SW_3	SW_{\star}	$NE_{\mathfrak{g}}$	SW_2	$\mathrm{SW}_{_{4}}$	W		SW_{\downarrow}	$\alpha_{\!$
ı	11.53 a	í	1	1.15 p	$3.29\mathrm{p}$	-	$2.40\mathrm{p}$	4.5 p	3 3.) р п. 4.10 р	$6.30 \mathrm{p}$	$7.85\mathrm{p}$			5.0 p	$3.10\mathrm{p}$!	$4.30\mathrm{p}$			12.0 a	12.40 p	$2.30\mathrm{p}$	$1.40\mathrm{p}$	2.54 p
1	11.40 a 11.53 a		1	12.50 p	$2.40\mathrm{p}$	$4.26\mathrm{p}$	2.0 p	$3.15\mathrm{p}$	п 339 р	$3.52\mathrm{p}$	$6.45\mathrm{p}$			10.33 a	3.0 p	1	$3.15\mathrm{p}$		п. 11.0 р	10.40 a	12.15p 12.40p	$1.30\mathrm{p}$	1.19 p	2.50 p
Management	W-E	W-SW-S	12.20p 12.45p NE-E-SE	N-NW-W 12.50 p	N-S	Z	W-N-NE	NE-E-S	1	NW—SW	国	SE-E	1	E-NE	NNW-SE	M	W-N-E	SW-S-E	NE	SW-W-N 10.40 a 12.0	W-SE	E-NE	SW-W-NW	1.25 p WNW-N
11.10a	11.58 a	12.8 p 12.46p	12.45 p	2.0 p)	$2.45\mathrm{p}$	$2.20\mathrm{p}$	$2.40\mathrm{p}$	4.0 p		6.5 p	6.5 p	1	l	2.13p 12.43p	$2.50\mathrm{p}$	{	$3.25\mathrm{p}$	7.0 p		11.5 a	1.5 p	10 p	$1.37\mathrm{p}$	
11.0 a 11.10a	11.47 a 11.58 a	12.8 p	$12.20\mathrm{p}$	(2.15 p 2.20 p)	1.40p	$1.45\mathrm{p}$	$2.20\mathrm{p}$	$3.40\mathrm{p}$	п. 3.45 р	$3.49\mathrm{p}$	$4.55\mathrm{p}$	$5.25\mathrm{p}$	-	$12.13\mathrm{p}$	$2.45\mathrm{p}$	$3.50\mathrm{p}$	3.0 p	$6.55\mathrm{p}$	8.0 p	11.0 a 11.5	12.10p 1.5	$12.50\mathrm{p}$	$1.17\mathrm{p}$	1.23 p
Kuopio	sko	Sortavala	Kurkijoki	Miehikkälä	Vehkalahti	Suursaari	Taavetti	Verkkomatala, loist.laiv.	Kurkijoki	Uusikirkko	Verkkomatala, loist. laiv.	Viipuri	Ylitornio	Kuusamo	Tuusniemi	Suursaari	Kajaani . ,	Sauvo	Inkoo, Svartbäck	Hirvensalmi	Sotkamo	Oulu	Värtsilä	Pälkjärvi
12	-	: :	2	*		2		*				2	13		\$	15	16			17			*	*

esäkuu

Pä		K		٥			,	j.		
iivä	Наvaintopaikka	a a	t o	¥	t _a	t to	\ \	я >	>	Huomautuksia
										(i) (i) (i)
21	Ilomantsi	1.28 p	1.35 p	$1.35 \mathrm{p} \mathrm{SSW-NNE}$		1.26p 1.48p	${ m SSW}_6$	SSW_{4}	SSW_{4}	tuulen suunta vahan 14 jalkeen ensin NNW ⁴ , vasta sitten SSW ₁ .
£	Rantsila	3.0 p	$3.30\mathrm{p}$	SW-W-NE			W	W	$W_{\mathfrak{g}}$	la kuurottain kaik. päiv.
"	Kajaani	3.0 p	$3.25\mathrm{p}$				Westerman]	1	
*	Herrön majakka	3.9 p	$4.29\mathrm{p}$	SSW-N	$3.29\mathrm{p}$	$5.34\mathrm{p}$	SW_{4}	SW_{\star}	SW_{5}	
x	Pudasjārvi	$3.13\mathrm{p}$	3.13p 4.18p	SW-E	$3.48\mathrm{p}$	5.58p	S.	NW_4	∞,	, sitäpaitsi e. p. p.
2	Somero	n. 4.0 p	n.6.0 p	n.4.0 p n.6.0 p SW-W-NE		1	SW_6	SW_5	$_{ m SM}$, jalk. 4.0 p.
2	Taivalkoski	4.17 p	$4.42\mathrm{p}$	4.17p 4.42p SW-S-NE		4.37p 5.2 p	W_1	SW_2	W_1	4
*	Mynāmāki	4.25 p		5.5 p SW-NW-NE $(4.50p 5.5 p)$ (5.15 p 5.25p)	(4.50 p)	5.5 p) 5.25p/	SW_3	$\mathrm{SW}_{_{4}}$	WSW_2	[¶°, @° pisaroita.
	Kuhmoniemi	4.42 p	4.47 p	4.42p 4.47p SW- NE	4.57 p	4.57 p 5.14 p	$\mathrm{SW}_{_{4}}$	SW_8	W_2	▲ 5.2—5.4 p.
22	Huittisten kkylä.	5.0 p	$5.25\mathrm{p}$	5.0 p 5.25p SW-S SE		5.35p $5.40p$	${ m WSW}_6$	SSW_8	$\mathrm{SSW}_{\mathfrak{g}}$	T°, ©°. ○ jo 6.15 p.
33	Alastaro	5.10p	5.10p 6.0 p	W-E	$5.45\mathrm{p}$	5.45p 6.0 p	W	W	W_9	$\sqrt{\Lambda^{1-2}}$.
2	Tampere	$6.45\mathrm{p}$	6.45р 6.55р	M-M		1	W ₁₁ (?)	W ₁₄ (?)	W ₁₁ (?)	(Kova pyörretuuli raivosi hetken ∫ saikana.
\$	Heinola	7.0 p	7.0 p 7.15p	W-NE	8.30 p	8.30p 10.0p	SW_{g}	SW_{10}	SW_4	[
\$	Paimio	n. 7.0 p	а. 7 30 р	n. 7.0 p n. 7 30 p NW-N(?)	-	-		W_2	[Το.
\$	Isokari, majakka	7.15 p	$7.20\mathrm{p}$	7.15 p 7.20 p NE-E-SE	1		SSW_2	SSW_4	$\mathrm{SSW}_{_{4}}$	No.
22	Jämsä	7.30 p	7.30p 8.0 p	NW—S		l	W	W_2	l	∅² 20 m. aikana.
£	Kuhmoinen	7.30 p	8.0 p	Z	$7.30\mathrm{p}$	8.0 p		l	1	[₹ 4 à 2.5 km päässä N:ssä.
*	Ruovesi	7.31 p	1	A		1	SW_{θ}	$_{ m NMS}$	W	
, n	Järvelä	7.40 p	$7.55\mathrm{p}$	7.40p 7.55p NW-NE-SE		7.45p 8.15p	NW_1	NW_1	NW_1	

	-		1	1]	M	1	[n.2.0 p]	Pernaja	2
		-		1	l	1.40p 1.45p NE—E—SE	1.45 p	1.40p	Miehikkälä	22
79 .0 c		1	J	3.0 р	$1.30\mathrm{p}$	NE-E-SE	2.15p 12.30p	12.15 p	Enontekiö	4
	五	-	SW_3		j	SW-N-WW		$12.10\mathrm{p}$	Parainen	22
	1	1	1					n. 12.0 a	Somero	2
∫ ▲ n. 100a. Maarianhaminassa @¹	1	,		1					Turku	\$
$\lceil \sqrt{3} \rceil^{1-2}$, \lozenge^{1-2} .	Ħį.	NE,	W_2	8.45a 1.0 p	8.45 8	NE-S	0.40 a 11.30 a	10.40 a	Laanila, Inari	19
[N		$\mathrm{SW}_{_{\downarrow}}$	$9.55 \mathrm{p} 10.45 \mathrm{p}$	9.55	s_{-N}		9.50 p	Ylitornio	2
Joka pilven mukana.										
(1 D. Pitkin päivää ukkospilviä. Tuulen suunta vaihteli S_{2-4} , SW_{2-4}) ja W_{9-4} välillä. Vähän sadetta	$\vec{\Xi}_{_{2}}$	NW_{\star}	SW_2	9.25 p? 10.27 p	9.25 p	SW-NE		$9.17\mathrm{p}$	Kuhmoniemi	\$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SW_{\downarrow}	$SW_{\mathfrak{g}}$	SW_8	7.35 p	7.15 p	7.0 p SW-S-SE		$6.55\mathrm{p}$	Kurkijoki	t
\(\times\) \(\omega\)	1			ļ		1	1	$6.45\mathrm{p}$	Tampere	2
٦٠.	1	I	1		1	SW	$6.21\mathrm{p}$	4.61 p	Sälskär, "	2
$\left\{ \begin{array}{ll} \mathbb{F}^{1}, \ \mathbb{F} \end{array} \right\}$ likimmillään 4.55 p SE:ssä \mathbb{F}^{1} B-D = 5 s.	NW_1	SW_3	된	6.3 р	4.18p	WSW-E	5.1 p	$3.49\mathrm{p}$	Märket, majakka	2
3 D°, @°.	0	${ m WSW}_6$	$\mathrm{SW}_{\mathfrak{g}}$	5.55 р	$3.50\mathrm{p}$	$3.40\mathrm{p}$ W $-\mathrm{N}-\mathrm{NE}$		$3.30\mathrm{p}$	Maarianhamina	*
Synkkiä pilviä pitkin päivää; sataluut vähän.	SSW_2	SW ₂	SW_2	3.47 p	$3.42\mathrm{p}$	3.37 p SW-W-N	3.37 p	$3.27\mathrm{p}$	Kuhmoniemi	£
\bigcirc tasaista, $T-+13$.	W	NW_7	NW_{6}	4.50 p	$3.30\mathrm{p}$	SW_SE	$3.15\mathrm{p}$	$2.20\mathrm{p}$	Kuusamo	ŧ
	W ₃	W	W_3	3.5 p	$2.45\mathrm{p}$	2.35 p SW-{ N-} NE	2.35 p	$1.50\mathrm{p}$	Taivalkoski	*
	W	W	N		1	Z	2.5 p	1.50 p	Ylitornio	£
3	W	W	\mathbf{W}_{2}		.	W— S — E	2.0 a 12.20 p	12.0 a	Taivalkoski	2
▲° 11.40 a, ⊤°, ⊜°.	SW_6	SW_{\downarrow}	SW_{\downarrow}	11.40 a 12.15 p	11.40 8	E-NE	2.0 a 12.30 p	12.0 a	Kuusamo	2
2 D°, @° ja tyyntä.	-	l	1	-	-		12.0 a n. 2.0 p	п. 12.0 в	Suolahti	£
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\mathbf{W}_0	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$	SW_3	11.10 a 11.45 a	11.10s	SW-NE	0.50 a 12.10 p	10.50 a	Alavus, Norviiki	*
	SSW_2	SSW_{4}	$\mathrm{SSW}_{\mathtt{t}}$	1	1	9.52 a 10.14 a SSW-N-NNE	10.14a	9.52a	Ilomantsi	18
1 Do.	-	1	N N	-	1	ฉหา		O.O.P	· · · · · · · · · · · · · · · · · · ·	

cesäkuu

P			h-1							
äivä	Havaintopaikka	t _a	t o	~	t	t _e	, K	N N	o 0	Huomautuksia
19	Malmin asema	$2.20\mathrm{p}$		NE	n.2.0p]		M	No.	
*	Söderskär, majakka.	$2.20\mathrm{p}$	$2.22\mathrm{p}$	WN	$2.40\mathrm{p}$	$2.45\mathrm{p}$	WSW	WSW	${ m WSW}_4$	2 D°.
2	Nurmi	4.20 p	4.25 p	$W{-}S{-}SE$	4.45 p	5.5 p	SW_2	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$	$\infty_{_{\mathrm{z}}}$	3 D.
£	Nurmi	$5.05\mathrm{p}$	5 35 p	N-NE-E	6.0 p	6.5 p	v.	$\Sigma_{\mathbf{z}}$	ž	[⊈¹, @ pisaroittain.
8	Herrö, majakka	$6.49\mathrm{p}$	8.29 p	SEN	$7.19\mathrm{p}$	$8.34\mathrm{p}$	v.	Z.	x_{e}	[₹°, @²,
*	Sälskär, "	$6.50\mathrm{p}$	$8.51\mathrm{p}$	W			1		J	
ŧ	Märket, loistolaiva	7.46p		8.43p WNW-W-E	$7.53\mathrm{p}$	$9.43\mathrm{p}$	Ω̈́	NW_0	$\mathrm{ESE}_{\scriptscriptstyle{2}}$	$\left\{\begin{array}{lll} \mathbf{K} & \text{likimmillään 8.32 p ENE:ssä} \\ \mathbf{B-D} = 6 \text{ s.} \end{array}\right.$
2	Lågskär, majakka	9.0 p	1	Z	1	í	S _S	Š	S ₂	1 Do.
2	Maarianhamina	9.0 p	9.15 p	NW-N-NE	$9.23\mathrm{p}$	$9.40\mathrm{p}$	SSW_4	NW_2	SW_{6-4}	K°, ©°. © yön kuluessa ja vielä 8.50 a.
2	Finström, Godby	9.6 p	9.25 p	W	8.57 p	8.57 p n. 11.20 p	W	°	0	· M
20	Tampere	10.0 a 10.5 a	10.5 a	1	10.0 a	í	S.	Ω ₂	$\tilde{\mathbf{v}}_{_{\mathbf{z}}}$	
*	Karkku, Linnainen	11.10 a	п 12.0 п	$11.10\mathrm{a_{\; n}}$ $12.0\mathrm{a_{\; SSESE-E}}$ $11.20\mathrm{a_{\; 12.19}}$ p	$11.20\mathrm{a}$	$12.19\mathrm{p}$	SSE_1	SSW_1	SW_1	2 D°.
*	Heinola		-1	W-E	1.0 p	6.0 p	NW_6	N_{6}	W_2	②². 2 D°.
	Kurkijoki	1.10 p	1.55 p	1.55 p SW-W-N	1.33 p	2.10p	W_2	W	W	∫ [द kuului uudelleen i. p. W:ssä.
	Hirvensalmi	1.35 p	$1.40\mathrm{p}$	SW-W	1	1	∞	SW_2	SW_0	(Thuli myöhem. N. @ 2.3 mm. Te
	Mikkeli	2.2 6 p	$2.27\mathrm{p}$	S-NE	$2.20\mathrm{p}$	3.5 p	SW_0	SW_{4}	SW_0	$\begin{cases} +19.8, T_1 = +11.8.19/V1 \text{ yöllä } \boxed{3} \\ 0.00-1.0 \text{ a ia } \boxed{1 \text{ mm}}. \end{cases}$
21	Miehikkälä	12.30 p	12.45 p	12.30 p 12.45 p W—NW - N 12.40 p 1.5	12.40 p	1.5 р		1	1	▲ 12.45—12.55.
33	Viipuri	12.45 p	1		"	1	1	1	1	

ľ																							81		
14. 6.	∫ [द, @¹. Taivas paksujen pilvien peittämä.		Tuuli heikko, vaihteleva.	T°, 2 KZ.	٦٠.		1 D.		• päivän kuluessa.	Τ°.				区°, ©° pisaroittain.	1 D, @².	Seuraavina päivinä 🕲 ja 🛆.) ⊘kuurottain pitkin päivää. 21 päiv.) p-b 756 mm, 22 päiv., b 754 mm.	1 B kirkas, kaita; D kohtalaista. @°.	/ [∡¹-² @ kaiken päivää taukosi kl. (5.0 p hetkeksi.	т°.	Φ , τ°, 1 D.	Γζ°, ◎°.	@* 4.50—6.10 p. ·
₹ M C	٦	į		Σ_1		0	W		$\infty_{\rm e}$	SE_5	S.	SE_2		SW_1	$\mathrm{SSW}_{\scriptscriptstyle{\downarrow}}$		SW_2	$S_{1-\frac{1}{2}}$	W	SW_1	W	1	Z,	1	z°
5 W 4	0	SE	1	SSE_2		0	W	1	νς.	S.	SW_3	SW_2		SW_5	SSW_{5}		SW_2	$S_{1-\frac{1}{2}}$	M	SW_2	W	l	\mathbb{Z}_{2}		ž
0	SE_6	1	ļ	0	-	νį,	W ₂	1	$^{S}_{i}$	$S_{\mathfrak{g}}$	$\mathbf{x}_{\mathbf{r}}$	SW_{\bullet}		v.	SSW_3	1	$\mathrm{SW}_{_{\boldsymbol{\dagger}}}$	$S_{1-\frac{1}{2}}$	W	SW_1	W	1	Z,		ž
1.±0 P	$2.10\mathrm{p}$	ı		n	-	1.15 p	11.30 a	1		2.0 p	-	2.1 p	1	$2.16\mathrm{p}$	4.33 a	1	$3.30\mathrm{p}$	3.0 p	1	4.40 p	5.0 p	1		. 4.30 p	7.0 p
1.±0 P	1.45 p	1	I	$10.15\mathrm{p}$]	п. 12.0 л 1.15 р	11.0 a 11.30 a		-	$1.30\mathrm{p}$		$1.29\mathrm{p}$		2.12p	$4.23\mathrm{p}$	2.0 p	2.35 p	1.0 p	1	$3.45\mathrm{p}$	1	1	1	n. 4.0 p n. 4.30 p	4.30p 7.0 p
אאר שמיד אאר	W-E	Z	W—N	Z	MN	σ ₂	W-N-NE			W-S-E	$1.10\mathrm{p}\mathrm{s}$ SSE-NE	W - E		N-WN-WS	SW	SW-NE	SW-SE-NE	s_{-N}	W-N-E	SW-NE	W-E	NW	SW	ΣΩ.	NE-W
dozer done	2.40p 1.45p		n. 11.0 p	$10.18\mathrm{p}$	n. 12.0 a	1.8 p	1	$1.30\mathrm{p}$	$1.45\mathrm{p}$	2.0 p		1.55 р	$8.38\mathrm{p}$	2.15p	2.33 p		3.5 p	3.0 p	$6.30\mathrm{p}$	4.0 p	4.45 p	4.21 p	1	1	$5.10\mathrm{p}$ $5.15\mathrm{p}$
d oper	$2.40\mathrm{p}$	4.0 p	n. 10.0 p n. 11.0 p	$10.15\mathrm{p}/10.18\mathrm{p}$	10.30 a n. 12.0 a	11.35 a	11.40 a	$12.30\mathrm{p}$	1.0 p	$1.10\mathrm{p}$	$1.10\mathrm{p}$	1.14 a	$1.38\mathrm{p}$	2.10p	$2.23\mathrm{p}$	$2.30\mathrm{p}$	$2.40\mathrm{p}$	$2.45\mathrm{p}$	3.0 p	$3.30\mathrm{p}$	$3.45\mathrm{p}$	3.51 p	3.55 p	$n.4.0\mathrm{p}$	5.10 p
1 44 031460	Loviisa	Malmin asema	Haiko, Kallnäs	Sälgrund, majakka	Haiko, Kallnäs	ist.laiv.	Inari, Jankkila	Viipuri	Tampere	nila	Alavus, Norviiki	Messukylä	Sortanlahti, majakka	Alavus, Norviiki	Heinäluoto, majakka .	Ikaalinen	Riitiala	Tuusniemi	Laihia	Alavus, Norviiki	Virrat	Sälskär	Laihia	Pirttikylä	Pirttikylä
1	\$	\$	*	\$1 51	£	8	2	\$	s	ę	*	\$	t	2	\$	2	2	8	£	ş	5.	2	8	33	£

kesäkuu

Pä	11:000	Z .	1.4	D			. 11	: - A	. 4	
ivä	пауангоракка	t,	t _e	T.	t a	t _e	****** >	n A	θ >	Huomautuksia
\$1 \$1	Pirttikylä	5.10 p	$5.35\mathrm{p}$	NE-E	$4.30 \mathrm{p} \mid 7.0$	7.0 p	N	N	$^{ m N}_{ m o}$	
£	Isokyrö	5.30 p	5.30р 6.0 р	SWN	ł	į	SE	S.W.	NW_0	
2	Laihia	5.32 p	$6.10\mathrm{p}$	5.32 p 6.10 p W-N-NE	4.50 p	5.35 p	. * M	W.	M_{2}	T°, @² osittain ① .
£	Helsingkallan,loist.laiv.	$5.42\mathrm{p}$	6.2 p	S—SW	1]	0	NE	N_2	-0_
53	Hirvensalmi	8.30 a	8.41 a	SE-NE	7.50a 11.0	11.0 а	SW_{\star}	ŭ	$\vec{\infty}$	▲ 8.30 - 8.35 a, @².
2	Kokkola	$12.10 \mathrm{p}$ $12.15 \mathrm{p}$	12.15 p	SE-S	12.15 p	12.15p 1.55p	W_2	W ₂	\mathbf{W}_{2}	3.
t	Marjaniemi, majakka .	$1.50\mathrm{p}$	2.0 p	SSW-SE	$5.30\mathrm{p}$	5.30p 5.40p	NNE,	NNE,	$\mathrm{NNE}_{\scriptscriptstyle{2}}$	
2	Pietarsaari	1.55 p	$2.40\mathrm{p}$	SE-S-W	2.5 p	2.45 p	NW_{\downarrow}	NW_{4}	NW_0	. N
\$	Pudasjärvi	2.0 p	$2.15\mathrm{p}$	S-SE-E	$1.30\mathrm{p}$	2.0 p	$^{\infty}$	Þ.	Ħ	
ž	Tankarin majakka	2.0 p	$2.30\mathrm{p}$	American	1		NE_{g}	NE		
ŧ	Munsala	$2.15\mathrm{p}$	$3.10\mathrm{p}$	NE	$2.25\mathrm{p}$	3.15 р	N	Z ₄	N_{\star}	
\$	Ahlainen	1	Anto-oran		2.15 p	$2.20_{\rm P}$		ļ	ş	▲ 2.20—2.30 p. ▲ tuli aina 3 km päässä N:ssä ja n. 2 km leveydelle.
٤	Vaasa	2.15 p	$2.35\mathrm{p}$	NE	11.55 а	d	NW_o	NNW	NW_o	[₫₀, ◙₀.
2	Helsingkallan,loist.laiv.	$2.27 \mathrm{p}$	$2.47\mathrm{p}$	E-NW	$3.22\mathrm{p}$	$4.27\mathrm{p}$	NNE,	NNE	0	[
ŧ	Pietarsaari, Björnholm.	$2.30\mathrm{p}$		2.40 p SW-W-NW	.2.0 p	$2.45\mathrm{p}$	∞, 2	σĵ'	NW_2	
2	Tuusniemi	3.0 p	5.0 p	S-N	4.0 p	5.0 p	S_{1-2}	δ 22	S_{1-2}	
"	Kuopio	3.8 p	$3.40\mathrm{p}$	SE	3.15 p	4.0 p	1	1	1	M°, ©².
:	Sälgrund, majakka	4.5 p	4.15 p	4.15 p SE-E-NE	Ì	1	$\infty_{_{1}}$	NW_1	. 0	· o
s	Lohtaja	$4.20\mathrm{p}$	4.24 p	S-N	4.15p	4.55 p	Z	Z	0	
\$	Tampere	-1		ļ	1	1	-	- Landan	1	○ ▲ 4.30 p.

																							8	3	
· • • • ·	1 D, @°,		"Ukkossadetta."	⟨ KZ², KZ jälkeen ع kovan tuulen	(Ollessa.	(1 D, @¹. Vāhān myöbemmin ko- (hosi suuria "mustia" pilviä S−N.	(3 D, © sekä ennen että ſ≼ jälkeen kuuroissa.			Sylvanoissa.	·		[द°, @°; [द myöskin yöllä.	Ţ.,	, Z		[⊈°, ◎².	Z°.	/ Kana Tamitav kvimät ilm estäneet			\top° b ₀ = 755.5, b _j = 756.0, \bigcirc° .	区。, ②。 tikkusadetta pitem. aikaa.		$\lceil \mathbb{Z}^{\circ}, \mathbb{O}^{\circ}, \text{ pisarat suuria. } \mathfrak{t} = +13^{\circ}.$
SW_2	NE,	NNW_2	process and	ह्य	1	$\mathrm{ESE}_{_{6}}$	1	Ø	$\mathrm{SW}_{_{4}}$	SW_2	NW_4	NE_1	∞_{\downarrow}	NE_3	Z	SW_6	\overline{W}_{2}		SSE_2	Ę	NE_2	펀	$^{\circ}$	$\mathrm{SE}_{\scriptscriptstyle{\frac{1}{4}}}$	S. E
SW ₂	NE	NNW_2	1	Ë	-	$\vec{\Omega}_{\star}$	Ø	闰	$\mathrm{SW}_{_{\downarrow}}$	$\infty_{_{2}}$	W	$NE_{_{1}}$	$\operatorname{SE}_{\scriptscriptstyle{\ddagger}}$	NNW_2	N	\vec{x}	NW_2	$\mathrm{SE}_{\scriptscriptstyle{\pm}}$	SE,	$\mathrm{SW}_{\scriptscriptstyle{\dagger}}$	E.	E	N.	So.	$\mathbf{SE}_{_{6}}$
SW ₂	NE	NNW_2		SE_{z}		NE	202	Z	$\mathrm{SW}_{^{\dagger}}$	SW2	NW	NE_1	${ m SE}_{\!\scriptscriptstyle{\downarrow}}$	NNW ₂	Z	SW.	SW.	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	SE,	SW_6	NE,	<u>a</u>	ž	Ω°	SE.
	12.0 a	ļ	ii.	12.25 p 12.45 p		з.0 р	1	2.30р 4.0 р	5.0 p	$2.40\mathrm{p}$	$3.45\mathrm{p}$		5.5 p	9.0 p	1	12.0 p	n			9.10р 9.30р	9.35 a	9.45 a 10.50 a		{	5.30 p
1	11.45a 12.0	1	12.10 p	12.25 p		$2.30\mathrm{p}$		2.30 p	4.0 p	2.10 p	$3,15\mathrm{p}$	1	4.55 p	$4.23\mathrm{p}$	ļ	5.0 p 12.0	5.35р	ĺ	1	9.10 p	8.50 a	9.45 a	-		4.55 p
SE	NE-N	SE	-	E-NW	İ	SZ Z	$\frac{N}{\infty}$	E-W	E-W	SW-NE	$3.25\mathrm{p}$ SE $-E-NE$	1	NE SW	NE-NNW	E-W	S-N	5.12p 5.35p NW-N-NE	SE-NW	7.50p 9.0 p SW-W-NW	SW-W-NW	9.30 a NE-N-W	SW-S-E	SE	3.15p 3.40p E-NE-W	SE-NW
5.15p 5.22p	1.30 a 11.31 a	1.40 a 11.50 a	-	2.4 p 12.46 p		1.20р 1.21р			4.15 p	2.50 p 4.22 p	3.25 p	3.20 p	3.40р 4.50р	4.8 p 4.11p	4.40p 4.43p	7.0 p	5.35 p	5 50 p	9.0 p	1-	9.30 a]	9.55 a	3.5 p 4.20p	3.40p	4.50 p 2.15 p
del.e	11.30 а	11.40a	1	12.4 p	12.25 p	1.20 p	п.2.0 р	$2.30\mathrm{p}$	$2.40\mathrm{p}$	$2.50\mathrm{p}$	3.0 p	$3.20\mathrm{p}$	$3.40\mathrm{p}$	4.8 p	$4.40\mathrm{p}$	5.0 p	$5.12\mathrm{p}$	5.15p	7.50 p	9.5 p	9.15 a	9.30 a	3.5 p	3.15p	4.50 p ₁
Lainia	Mikkeli	Isokari, majakka.	Ahlainen	Sotkamo	Kajaani	Mikkeli	Kisko, Toijan kartano.	Korpilahti	Pihtipudas	Viitasaari	Ruukki	Alavus, Norviiki	Ylitornio	Marjaniemi	Lohtaja	Pihtiputaa	Turku	Ylitornio	Hanhipaasi, majakka .	Kurkijoki	Alastaro	Huittisten kkylä	Pirttikylä	Pudasjärvi	Kuusamo
67	-63 -	£	*	2	٤	2		\$	s	F	2	2	:			£		:	£	;	(S)		"	ž	£

Kesäkuu

						-	-	-		A The Control of the
Pä	11.	K	N#	٩			1		11	
ivä	пауаньорыкка	t_a	t _e	ď	t,	t e	V Lts	n A	о О	Huomantuksia
25	Sodankylä	4.58 p	$6.23\mathrm{p}$	SE-S-SW	1	1	∞	S.	$\mathbf{s}_{_{\!$.∞∑I
2	Sabbskär, majakka	5.34 p	$7.44\mathrm{p}$	NW	e de		1	I	ļ	٢٠.
5	Enontekiö	6.0 p		7.0 p NE-N-W	$6.45\mathrm{p}$	7.0 p		1	1	۲۰.
2	Kuusamo	$6.20 \mathrm{p}$		7.0 p NE-NW	$6.25\mathrm{p}$	$6.40\mathrm{p}$	NE_2	21	NE_2	T° ≤ 7.30 p W:ssä.
33	Inari	7.0 p		$7.30\mathrm{p}$ SE—S—SW	1	-	E.	E	$\mathrm{SE}_{_{\!$	· <u>\</u>
56	Inari, Räkkijärvi.	$1.30\mathrm{p}$		S-E	$1.30\mathrm{p}$	-	闰	図	[2 Do.
2	Heinäluoto, majakka .	$6.53\mathrm{p}$	7.0 p	SW-SE	$6.48\mathrm{p}$	$7.13\mathrm{p}$	NNE,	$\mathrm{SW}_{\mathtt{t}}$	NE_{j}	
£	Inari, Thule	7.36 p	8.31 p	E-Z-NNW	7.36 p	7.36р 8.51р	NE,	NE_3	NE_2	f 3 B² suoraa zenitistä; W.stä undel- l leen ukkospilviä 9.14 p.
	Kitee	$9.50\mathrm{p}$	9.50р 9.55р	$\mathbf{S}_{}\mathbf{N}$		-	1	and the same of]	
25	Marjaniemi, majakka	10.31 a 10.38 a	10.38 a	SE-NW	10.30 a	10.30 a 11.0 a	E,	ਬੁ	$\mathrm{ESE}_{\scriptscriptstyle 3}$	-01
ŧ	Simo	11.0 a 11.3 a	11.3 а	SE	10.0 а	10.0 a 12.0 a	X,	∞_{\downarrow}	Ş	[द. 24/VI oli kuultu [द. S:ssä.
x	Taivalkoski	12.7 p 12.17 p	12.17 p	SE-NW	п. 12.0 а	п. 12.0 а п.12 Б 9 п	SE,	SE_{t}	SE_{2}	
ĸ	Ylitornio	12.10p 1.20p	$1.20\mathrm{p}$	S NW	1240p	12 40p 1.35p	NE,	SE_{a}	SW2	[₹¹², ◎²
£	Kuusamo	12.10p 1.20p	1.20 p	SE-NW	12 10p 12.25p	12.25 p	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	SE_{12}	SE	/ @2, K². Tuuli hajoitti kahden ladon katot ja kaasi aitoja monin paikoin.
£	Inari, Thule	$1.21\mathrm{p}$	$1.37\mathrm{p}$	S—SW	$\frac{2}{2}$ 31 p	2 31p 5.51p	Ę	Ę	ENE,	[\sum_2^2.
E	Inarinjārvi	$1.30\mathrm{p}$	$3.10\mathrm{p}$	S-E-N	2.0 p	$2.55\mathrm{p}$	NE	NE	SE_2	[፳¹, ◎¹.
,	Kuusamo	$1.30\mathrm{p}$		$2.30\mathrm{p}\mathrm{SE}-\mathrm{S-NW}$		1.50p 2.15p	$\mathrm{SE}_{\scriptscriptstyle{4}}$	SE_{12}	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	[\(\alpha\), \(\infty\).
£	Taivalkoski	$2.27\mathrm{p}$		2.52 p SE - S -NW	2.2 p	$3.23\mathrm{p}$	SE_2	SE_3	SE	
2	Tampere	$2.50\mathrm{p}$	I	-	1	1	SE_2	$SE_{_{\scriptscriptstyle{I}}}$	${ m SE}_{\scriptscriptstyle 2}$	Illalla D°; 8.0 p 2 D.

																					8	5	
. 2			2.		[X ¹² , ز ja Δ .	▲ 20-2.15 p.	🛂		pitkin päivää, 1 D.		⊤°, ⊜°, ⊕.	/ 12.40 p \mathbb{R}^2 SW:ssä, n. 11.50 a \mathbb{Q}^2 , muuten \mathbb{Q}^{9-1} kuuroissa.	T° , \mathfrak{Q}^{1} , $T=+17^{\circ}$.		⊘². Inarissa [≼ a.	.∾∑	.°∑	Kolita näkyi K-pilviä Venäjän rajalla kulkemassa mainittuun suuntaan. Samoin oli Wissä S-NW.	.∾∑	Tuuli varemmin päiv. E à SE. \otimes° noin $1/2$ t. 3 à 4 D°.	∫ ⊜ kuurottain pitkin päivää. ⊊¹−² n. 3.10 p.	· · · · ·	· 전
wî,	0	NE	NE	畇,	SW_{\downarrow}	闰]	;	Ħ	N_1	NE	N_{1-2}	W ₂	N	NW∗	Z		NW_1	NW_1	N_{1-2}	W	NW
SQ.	E1-2	NE	NE	Ħ,	v.	囶	1	NE_2	1	$SE_{_3}$	Z,	Z	$N_{1-\frac{2}{2}}$	Ą	$^{ m N}_{ m e}$	z°	Z		NW_2	NW_{2-3}	N_{1-2}	W	NW_{\star}
ΔŽ	E ₁₋₂	NE	NE	ъ́	$\vec{\Delta}$	闰	1	l		E,	N.	×	N _{1-z}	NW_2	$_{_{6}}$	NW_2	Ø		NW_2	NNW_1	$N_{1-\frac{2}{2}}$	W ₂	NW.
1	5.0 p	4.45 p	$7.45\mathrm{p}$	8.27 p	5.8 p	$2.45 \mathrm{p}_{_{\mathrm{l}}}$	5.0 p	$8.20\mathrm{p}$	ı	$8.17\mathrm{p}$	$1.10\mathrm{p}$	3.0 p	$1.15\mathrm{p}$	$2.40\mathrm{p}$	4.30 p	$1.30\mathrm{p}$	2.0 p		1	2.38p	1	1	1
-	4.30 p	4.15 p	$5.15\mathrm{p}$	$7.42 \mathrm{p}$	10.58 a	2.0 p	3.0 p	$7.40\mathrm{p}$	1	$7.42\mathrm{p}$	$12.33\mathrm{p}$	11.50 p	11.0 а	$1.23\mathrm{p}$	3.45 p	$12.35\mathrm{p}$	1.0 p		i	1	1	1	
S-W	S-NW	NW-SE	E-W	E-W	S-N	SE-NW		σ ₀	W	SE-S-N	E-S-SW	ENE	S - N	S-E-N	SW-NE	E-W	N-S	$\mathbf{s}_{-\mathbf{N}}$	NE-SW	$2.28\mathrm{p}\mathrm{N-NW}_\mathrm{lSW}^\mathrm{W}$	NE-NW	E-SE-S	
5.3 p	5.0 p	4.45 p	$7.30\mathrm{p}$		4.42 p	$2.50\mathrm{p}$	5.0 p	$7.30\mathrm{p}$	1	$7.57 \mathrm{p}$	$1.15\mathrm{p}$	7.50 p	12.0 a	3.0 p	$4.30\mathrm{p}$	$1.55\mathrm{p}$	$1.30\mathrm{p}$	$5.30\mathrm{p}$	2.18p	2.28p	$3.30\mathrm{p}$	$3.15\mathrm{p}$	3.15p
38 p	3.50 p	4.0 p	5.0 p	$7.37\mathrm{p}$	10.8 a	1.15 p	3.0 p	$6.50\mathrm{p}$	$6.50\mathrm{p}$	$7.32\mathrm{p}$	11.14 а	11.14a	11.30 a 12.0	11,30 a	11.30 a	12.2 p	$12.45\mathrm{p}$	$1.30\mathrm{p}$	2.0 p	2.5 p	$2.40\mathrm{p}$	$2.45\mathrm{p}$	$2.45\mathrm{p}$
Sodankylä	Inari, Jankkila	Enontekiö	Enontekiö	Kuhmoniemi	Sodankylä	Enontekiö	Ikaalinen	Pirttikylä		Taivalkoski	Laihia			Pirttikylä		ınpää	Virrat	Koli	Marjaniemi	Karkku, Linnainen	Isokyrö		Oravainen
27	2	£	ĸ	n	28	×	£	٤	\$	ſ	29	£	t	£	£	£	ŕ	£	٤	٤		£	2

esäkuu

(13°. Taivas kaiken päivää tasai- sessa harmaassa pilvessä.	⊠ ¹, ⊘². ▲ 4.37—4.38 p.	[4], 1 4 .45 p.		(@² rukiit monin paikoin menneet lakoon.		\(\sigma^\circ\) \(\infty\).	
NE,	L	v°	NE	图	0	Z [†]	
Z	5,10	Ē	0	闰	NE,	z [°]	
z		NE,	NE_3	9	0	Z.	
5.0 p	3.45p 4.44p	$4.25\mathrm{p}$	$4.55\mathrm{p}$	6.40 p	6.0 p	7.30 р	
ı	$3.45\mathrm{p}$	$3.50\mathrm{p}$	$4.25\mathrm{p}$	4.40 p	5.0 p	7.0 p	
	S-N	(3.10p 4.35p SE-NW 3.50p 4.25p	4.15p 4.55p S—E—NE 4.25p 4.55p	. $4.40p$ $6.10p$ $E-W$ $4.40p$ $6.40p$	5.5 p 5.50p SE -NW 5.0 p 6.0 p	. $6.20\mathrm{p}$ 7.10 p N—NE E 7.0 p 7.30 p	
6.30 p	(3.6 p 4.42 p	4.35 p	4.55 p	6.10 p	$5.50\mathrm{p}$	$7.10\mathrm{p}$	_
. 2.45p 6.30p	3.6 p	3.10p	4.15 p	$4.40\mathrm{p}$	5.5 p	$6.20\mathrm{p}$	
	_	;—			•		
1.			ala .		ala .		
Vi.		. 1 . 1	omat	to.	omat	tti .	
30 Nurmi Vi. 1.	0.11	Lankla	Verkkomatala	Koivisto	Verkkomatala	Taave	
30		£	\$	Ł.	\$		

Vat. o. Folk, H. 67, N:o 2.

leinäkuu

	Muistutuksia		/ Merivesi harvinaisen korkealla, sa-	· · · · · · · · · · · · · · · · · · ·	/ K°, ©'—² sitä paitsi satoi ennen \ ja jälkeen kuurottain. Kl. 3.19 p. B.	© aika ajoit, pitkin päiv. Tuuli aikaa ennen [द N ₆ , mutta juuri ennen sitä E ₁ , © ¹ n. 2.20 p. 3 B.	@ kuurottain. 2 B, ensin B°, sit-	t ten B:	I⋜ °; 30/VI Iद ², @ ³. n. kl. 5.0−7.0 p.	Do.	区。	[द°, @°, O pilvet E:ssä ja W:ssä.	\$\infty\$, taivas pilv. Essä.	2 B NE:ssä	⊤°.		🔘 kaiken päivää aika ajoit.	区°, @' noin kl. 12 a. @2.	/ @², kl. 3.15 p. kulki E:ssä vankka \ sadepilvi; muutamia D.	区1. @1 ajoit. @2.
	> >		S_{0-1}	NW	NW ₁	Town as	NW_s	NE,	NNE ₀ -2		$\infty_{_{2}}$	Š	NW,	Wı	SE_{2}	$\overline{\rm NE}_2$	NE3	NE_2	N_{1-2}	ž
\$ P	п ^	1	€~•	9	NW_2	T-comp	NW,	NE,	NNE ₀ -2	NE2	SE_2	S.	N	z	$\mathbb{E}_{_{\!\!\!2}}$	NE_{0-2}	NE	NE,	tyyntä	SE.
***	<u>></u>	ESE,	Z	SW_1	NW_2	Ξ	NW_2	NE_2	NNE_{0-2}	NE_2	$\mathcal{R}_{\frac{1}{4}}$	$\infty_{\rm s}$	Z,		SE_1	NE_{o-2}	Ä,	NE_2	$\mathrm{SE}_{\scriptscriptstyle 1}{\scriptscriptstyle 2}$	NE
,	te	6.0a(?) 6.15a	12.55 p	$1.30\mathrm{p}$	$2.36\mathrm{p}$		п	ļ	12.20a 10.37a			1.2 p	3.55 p	1.0 p	$6.57 \mathrm{p}$	i	6.0 p	$2.20\mathrm{p}$	$3.20\mathrm{p}$	3.5. n 5.25 n
	t	6.0a(?)	12.5 p 12.55 p	10.40a	$2.23\mathrm{p}$	п. 2.20 р	12.40p		12.20 a	1	10	1.0 p	$12.30\mathrm{p}$	$12.35\mathrm{p}$	$6.33\mathrm{p}$	1	8.0 а	$1.25\mathrm{p}$	2.50 p	3.5, n
	첫	SW	N-W-S	WS-WN-N	N-E-S	\bowtie	ENE	N-NW-W	E-W	SW-SE-NE	12.7 p 12.51p E-NE-N	12.10p 1.7 p SE-E-NE	$3.45\mathrm{p}$ NE—E - SE	NE-E	Z	E-W	1	SE-S-SW	SE-NW	SE-NW
K	t _o	6.25 a	12.0 a 12.15 p	12.40p 1.10p	$2.26\mathrm{p}$	2.29 p	$2.25\mathrm{p}$		10.13a 11.20 a	11.30a 11.0 p	$12.51\mathrm{p}$	1.7 p		1	$6.33\mathrm{p}$	$1.21\mathrm{p}$	$6.15\mathrm{p}$	2.5 p	1.40 p	3.20 m
<u> </u>	ه م	5.28 a	12.0 a	$12.40\mathrm{p}$	2.13 p	2.18p	2.20 p	3.15a	10.13a	11.30 a	12.7 p	$12.10\mathrm{p}$	$12.15 \mathrm{p}$	$12.25\mathrm{p}$	$12.33\mathrm{p}$	$12.51\mathrm{p}$	1.0 p	1.0 p	1.37 p	19.35 n
11.	пауалиоралкка	Söderskär, majakka.	Kirkkonummi	Porkkala, majakka	Bromarf	Inkoo, Svartbäck	Hangon majakka	Uurainen	Ilomantsi	Pielisjārvi	Palkjarvi	Värtsilä	Kokkola, Ykspihlaja .	Kokkola	Heinäluoto, majakka	Ilomantsi	Tankar, majakka.	Pietarsaari, Björnholm.	Lohtaja	Pietarsaari Biörkudden
Päivä	määrä	-		5	5		*	23		2	20	ű	2	#	\$	22	2	**	*	-
																				2

89	3 D. 	SSW ₁ NE, NE, SE,	SS N.	S. ES.	3.0 a 12.35 p 2.50 p 3.10 p	3.0 a 1 2.50p	11.12 a 11.32 p	11.12 a 11.32 p 11.20 a 12.45 p 11.15 p 4.20 p 11.30 a n.12.30 p.	11.12 8 11.20 8 1.15 F 11.30 8	Storkallegrund, loistol. Nurmi
	☐ ☐ Interpreted in INT = Interpreted in INT = Interpreted in	W W 2	W. SE.	W _o	0.45 p 12.10 p päiv.	12.50a 5.45p 10.45a 12.10p SE 10.50a paiv.	NE—E	10.35 a 11.30 a 10.40 a 1.15 p	10.35 g 10.40 g	
	🕲 kaiken päivää.	ů Š	−° NE,	NE,	5.45 p	 12.50 a	N S	10.30a 11.30a 10.30a 5.5 p	10.30 a 10.30 a	Tampere
	sadekúuroja. ▲ 12.5—12.25 p. ruis laossa.	0	0	z [*]	2.40 p	10.13 a	2.10p E - SW-W 10.13a		10.15 a	
	$(\mathbb{Z}^{1-2}; \text{ n. kl. } 11 \otimes^2, 4.0 \text{ p. rankkoja} $	$\mathbf{x}_{_{\mathbf{j}}}$	W_2	Ħį		10.15 a	SW-NE		10.10ϵ	Messukylä
	/ @ sekä ennen että jälestä puolen- bäiv. Ukkospilviä Wissä ja Eissä.	1	1	1	1	-		11.0 a	10.0 a 11.0	Korpilahti
	$oxdot S_i^2, oxdot S_i^2$.		M_2	1	10.25 a n. 3.0 p	10.25 a	S-E-N	a 2.0 p	10.0	Pirttikylä
	3 D.	$\mathbf{x}_{_{\mathbf{i}}}$	δĵ.	S_1	9.40a 11.15a	9.40a	S-SE-E	9.30 a 10.10 a	9.30 8	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N,	$\mathrm{SE}_{_{1}}$	SE_1	1	1	W— S — E	9.15a 12.0 a	9.15 8	
	<u>-</u> -	W_3	ا	0	$133\mathrm{p}$	11.33 а	囝	9.3 a 10.3 a	9.3	Heinäluoto, majakka .
	1 B. ©°.	NW_3	NNE_3	NNE_3	$8.42\mathrm{p}$	8.7 p	E-NW	8.0 p	$7.39\mathrm{p}$	Storkallegrund, loistol.
	1 ⊤°, ©°, O. Ikaalisissa kuultu ukk.	NE_o	NE_{\downarrow}	NE_{\downarrow}	$7.50\mathrm{p}$	$6.42\mathrm{p}$	NE	٥٠	$6.25\mathrm{p}$	
	2 D.	NE_2	X,	NW_2	$9.15\mathrm{p}$	$7.45\mathrm{p}$	NE-N-NW	$6.30 \mathrm{p}$	$6.25\mathrm{p}$	Sälgrund, "
	D° SE;ssä.	Towns or the same of the same	$\overline{\mathrm{SE}}_{2}$	\mathbb{Z}_{2}	7.6 p	5.56p	1	6.6 p	6.1 p	Jikokalla, majakka.
	[중 paikan yli.	$\mathbf{SE}_{_{\!$	Ħ,	$SE_{ au}$	$8.40\mathrm{p}$	$6.30\mathrm{p}$	E-Z-W	7.0 p	5.0 p	Pihtipudas
	2 D°.	$\mathbf{v}_{\mathbf{i}}$	$\mathbf{z}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{r}}$		J	S-E-N	5.0 p	4.45 p	
	·°L	SW_2	SE_{2}	NNE_2	1	1	SE	4.34 p	4.31 p	Jikokalla, majakka.
	$\int \mathbf{I} \mathbf{A}^{1-2}$; vaan väh. aikaa \mathbf{E}_{ω} , muu- \int ten \mathbf{E}_{3-4} .	ह्य	EJ .	斑	1	1	NE-N-NW	4.59 p	4.20 p	Uusikirkko
	©3.	z	Z,	Z,	5.0 p	$2.50\mathrm{p}$	NE-E-SE	3.30p	$2.45\mathrm{p}$	Kokkola
	.o.ZJ	NE	N_2	NE,	$6.30\mathrm{p}$	3.20 p	SE-NE 3.20p 6.30p	2.40p 3.35p	2.40I	Pietarsaari

Teinäkuu

		1								1
P	:	K	M							
äivä	Havaintopaikka	t	te		t_a	te	$\nabla_{\mathbf{f}}$	on N	∑ _e	Huomautuksia
က	Vaasa	11.45 a	1.35 a	S-SE-E	1.5 p	3.0 p	NNE	SE	NNE	$\lceil \overline{A}^{0-1}, \bigcirc^{0-1}.$
5.	Viipuri	12.0 a	3.0 p		1]	-			
r	Kuhmoinen.	п. 12.0 а п. 1.0 р	n.1.0p			j	1		1	
*	Jyväskylä	12.0 a 1230a	12 30 a	M-N	`	1	$\tilde{\infty}$	ΞĪ	ā	
2	Ruovesi	12.9 а	a 12.53 p	S-NW	10.0 a	5.0 p	Ωĵ	ೲ	SW.	Τ¹, ⊚¹.
	Lappeenranta	12.50 p 1.0 p	1.0 p	SE-NW	12.45 p	$1.15\mathrm{p}$	l	1	Manual of	▲ 12.50—1.0 p.
8	Tausniemi	n.1.0 p n.3.0 p	n.3,0 p	N-NW-S			$W_{9}(?)$	W ₉ (?)	W ₉ (?)	pitkin päivää, W myrsky kai-
2	Tampere	1.0 p	$1.30\mathrm{p}$	1	$12.30\mathrm{p}$	$2.30\mathrm{p}$		W		lken aikaa.
*	Kokkola, Ykspihlaja .	1.0 p	2.45 p	SE-E-NE	1	1		W	N,	[∡² etenkin SE:ssä.
£	Munsala	120p	$320\mathrm{p}$	3 20p SW-S-ENE	$2.10\mathrm{p}$	4 30 p	Z	SW.	N _c	/ 区。, ●。, ● pilv. tiivimpiä S:ssä. Ukkosen jälkeen vähän aika ●!.
2	Pietarsaari	$1.20\mathrm{p}$	3.0 p	3.0 p SE - S-NW	$2.55\mathrm{p}$	u	NE_2	NW_2	NW_2	<u></u>
:	Pietarsaari, Björnholm.	$1.23\mathrm{p}$	$4.13\mathrm{p}$	S-N	2.45 p	d 5.9	Z	SE_6	0	[₹¹, @²-¹.
٤	Mikkeli	(1.35 p (1.55 p	1.50 p s	SW-W-WNW S-NE	2.25 p	3.40 p	$^{\circ}_{\mathrm{E}}$	SE ₂	SE,	I\(\times\), hyvin tumma ukkospilvi kulki läntis. taivaanrann. SW—NW, @°.
æ	Kokkola	$2.20\mathrm{p}$	3.40 p	SE-NE	$3.30\mathrm{p}$	6.0 p	W	W	NW,	0
2	Kurkijoki	$2.30\mathrm{p}$	3.35 p	S W-W-NW	3.45 p	$4.40\mathrm{p}$	$\mathrm{SE}_{\scriptscriptstyle{2}}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	0	
8	Hirvensalmi	$2.40\mathrm{p}$	$3.20\mathrm{p}$	SW-NE	$2.10\mathrm{p}$	6.0 p	0	$\tilde{\Sigma}_z$	o∑ _z	$\left\{ \begin{array}{c} \mathbb{A}^2 \ 2.40 - 2.42 \ \text{p.} \mathbb{Z}^2. \end{array} \right.$ Ilma aivan loimusi" \bullet sunria
\$	Uurainen.	2.50 p	$3.15\mathrm{p}$		$3.20\mathrm{p}$	$3.45\mathrm{p}$	E	SE,	$\infty_{\mathbf{z}}$	
	Pietarsaari	$4.10\mathrm{p}$		4.35 p SE-E-NW	2.55 p	n	NE_2	NW_2	NE.	ĭZ°.
	Suolahti	4.27p	4.27p 4.40p	NW	14.744		0	NW ₁₋₂	NE	② pitkin päivää vaan ei 区:lla. 区 näyttihajoavan" paikallaan.

																					91		
[₹², D°.		Jonkin aikaa oli sade kovaa.		▲ 2.18 – 2.21 p.	Tuuli pyöri sinne tänne.	(2) tasaista.		\mathbb{N}^2 .	[द¹−², Kl. 4.30 p. hyvin kova [द.	Tuuli hyvin heikko.	Jyrinä lopussa tiheää. Wissä näkyi sade ollen erinomaisen rajua. Pilvi hävisi NE:ssä.	[₹², @²; kl. 12.5 p. oli rankka sade. Vuokatin luon. oli kuult. [≰ silloin.	$\{ \mathbb{K}^{1-2}, \mathbb{Q}^2; \leq 6.30 \text{ p. W:ssä, } \leq 7.15 \text{ p. } $	⊤°, @ tasaista, kunnes tuli ≡.	[₹², ▲ 9.2—9.10 a.	Kl. 9.52 a. S.ssā ja 10.10 a. NW:ssä. Kl. 9.58 a. BD = 15 s. Ko., ⊗°	(1.4 mm. S-taivas hyvin synkkä.	ſ≼ aamupäivällä.		Seka ennen etta jalk puolenpai- vää on safanut runsaasti			[∡', ⊚'.
W	1	$W_2(?)$	W	1		NW_1	W	NW_2	W_2	0	W.	W_2	$\mathrm{SW}_{\scriptscriptstyle 2}$	SSE_1	W_2	S _o	0	an Campaign	Ŧ.	l	SE_{4}	SE_{1-2}	NE_{σ}
W	WSW ₁	$W_{4}(?)$	1	1		W,	W,	W	W_2	Z	W ₄	W	$\mathrm{SW}_{\mathfrak{g}}$	SE_1	Ţ,	Ā	0	-	五	闰	$^{\infty}_{\mathbf{s}}$	SE_6	NW_{\downarrow}
SW	-	$W_2(?)$	W ₃		1	W	W,	NW.	W	Z	SE0	SW_2	W	Ē	X,	Ę	$\infty_{_{\mathbf{t}}}$		E	∞	SE,	SE	NW.
1.5 p	1.00 p	$2.30\mathrm{p}$	1	2.58p	5.18p	$5.45\mathrm{p}$	6.0 p	-	ı	6.0 p	9.0 p	7.22 p	7.10 p	12.7 p	12.0 a	10.45 a	11.30 а		$12.55 \mathrm{p}$	12.0 a	$2.38\mathrm{p}$	12.50 p	1.25 p
12.50 p	der.1	2.0 p		$2.13\mathrm{p}$	$4.48\mathrm{p}$	$4.30\mathrm{p}$	$5.05\mathrm{p}$		1	$5.30\mathrm{p}$	8.34p 9.0	7.0 p	6.30 p	2.12 a 12.7	8.50 a 12.0	10.3 a	10.55 a		$11.10\mathrm{a}$ $12.55\mathrm{p}$	11.0 a 12.0 a	1.5 p	11.50a	12.30 p
SW-SE (12.50p)		E-N	WNW-N		1	S-E	S-E	SW-E-NE	4.40p SE- E-NE	S-N	9.18p sw-NW	W-E	WE	S—SW	SW-NE	9.52 a 10.10 a S—W—NW 10.3 a 10.45 a	0.40 a 11.05 a S—SW—W 10.55 a 11.30 a	The second	S-E-NE	EW	$1.3 \ a \ 1.40 \mathrm{p} \mathrm{SW-S-NE} \ 1.5 \ \mathrm{p} \ 2.38 \mathrm{p}$	$1.5\ a\ 12.20 p\ SE-N\ a\ NW\ 11.50 a\ 12.50 p$	1.5 a 1.50 p SE - E - NE 12.30 p 1.25 p
2.50p 1.45p	2.55p 1.45p	$2.20\mathrm{p}$	$2.45\mathrm{p}$	Į	4.58p	3.53p 4.50p	5.0 p	4.10p 5.10p	$4.40\mathrm{p}$	4.55 p	9.18p	7.55 p	6.45p 7.15p	0.27 a 1.32 a	10.0 a	10.10a	11.05 а		0.57 a 12.45 p	1.0 a 12.0 a	$1.40\mathrm{p}$	$12.20\mathrm{p}$	1.50 p
12.50 p	12.55 p	$1.30\mathrm{p}$	$2.10\mathrm{p}$	Į	3.38 p	$3.53\mathrm{p}$	4.0 p	$4.10\mathrm{p}$	$4.20\mathrm{p}$	$4.45\mathrm{p}$	6.26p	6.35 р	$6.45\mathrm{p}$	$0.27\mathrm{a}$	8.45 a 10.0	9.52 a	10.40 a		10.57 а	11.0 a	11.3 а	П.5 а	11.5 а
Kurkijoki	Söderskär, majakka.	Halsua	Söderskär, majakka	Pihtipudas	Pihtipudas	Kokkola	Kokkola, Ykspihlaja .	Pietarsaari	Pietarsaari, Björnholm.	Lohtaja	Kuhmoniemi	Sotkamo	Kajaani	Helsingkallan,loist.laiv.	Hirvensalmi	Mikkeli	Kurkijoki	Turku	Uurainen	Korpilahti	Viitasaari	Suolahti	Pietarsaari, Björnholm.
4	£	ŧ	٤	2	£	\$	£	t	r	£	2	8	£	5	¥	\$	ş	\$	*	2	2	:	£

emakuu

		M	h-							
Päi	Havaintopaikka			pđ			V.	Λ	Λ	Hnomontuleia
vä	T	T _s	t _o	i i	t,	t _o	i u	n	Φ.	Tromanara
5	Jyväskylä	. 11.10 a 11.35 a	П.35 а	S-E-N	10.0 а 11.30 а	11.30 a	SW_1	${\rm SSE}_{10}(?)$	0	/ 区2, @² hyvin runsas; raju myrskyn tapainen tuuli. @ myöskin i. p
\$	Munsala	11.25 a 12.0	12.0 a	A	11.55 a 12.25 a	12.25 а	Z	N	Ž	· · · · · · · · · · · · · · · · · · ·
33	Kokkola, Ykspihlaja	$12.46 \mathrm{p} 12.47 \mathrm{p}$	$12.47\mathrm{p}$	∞			N	N	Z	1 D S:ssä.
%	Kokkola	$12.47\mathrm{p}$		Ø		1	N,	N,	z.	1 D ² S:ssä.
44	Marjaniemi, majakka	1.8 p		M-S	$3.58\mathrm{p}$	$4.28\mathrm{p}$	NW_2	W,	N ₃	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Mynämäki	1.25 p	1.45 p E	E-N-NW	2.5 p	2.18p	SW_2	SW.	NE,	🔊 vielä kl. 4.0 p.
2	Karkku	$1.39\mathrm{p}$	-	$\mathbb{E}(?)$			Ē	1	$S_1(?)$	1 D n. 3.0 p
2	Halsua	$1.40\mathrm{p}$	$2.40\mathrm{p}$	s $-w$ $-N$	$2.20\mathrm{p}$	$3.30\mathrm{p}$	\mathbf{E}_{1-2}	N ₄	\mathbb{E}_{1-2})
33	Kokkola	1.45 p		2.05 p SE-E-NE		2.0 p 5.0 p	N_1	N_1	S.	[≼ E:ssä, @°.
£	Lohtaja	$1.50\mathrm{p}$	$2.15\mathrm{p}$	s_{-NW}	4.0 p	4.0 p 5.30p	N ₃₋	N_{3-4}	N_{3-4}	\$\infty\$.
ŕ	Pihtipudas	$1.58\mathrm{p}$	$2.20\mathrm{p}$	EW	n. 2.40 р n. 4.0 р	n.4.0 p		and the second	1	☐ meni Emiijärven kylän ylitse.
5	Lavia	$2.30\mathrm{p}$	3.0 p	E-W	3.0 p	$3.20\mathrm{p}$	$SW_8(?)$	SW ₈ (?)	1	▲ 3.4—3.10 p
٤	Pietarsaari, Björnholm.	2.35 p	$3.40\mathrm{p}$	NE-E-SE	$3.20\mathrm{p}$	3.20p 4.55p	NE_6	NE.	NE_2	\(\begin{aligned} \omega_{\columb{1}}\) = 2 alussa, heikompi myöh.
r	Sauvo	$2.46\mathrm{p}$	į	W	$12.21\mathrm{p}$	12.21 р 2.11 р	1	ন্	₽Ť	1 D°, ز. ▲ 12.21—12.26 p.
£	Heinäluoto, majakka .	2.48 p	$2.53\mathrm{p}$	NNE	2.3 p	2.3 p 3.48p	SSE	SSW	SSE	(%) tihkusadetta.
*	Säbbskär, "	$2.54\mathrm{p}$	$4.49\mathrm{p}$	E-SW	n. 3.0p n. 4.0p	n.4.0 p		1	1	Pilvet suun. NE. ☐.
\$	Ulkokalla, ".	3.6 p	3.46 p	SW-W-NW	1		N	×	NNE	٢٠.
"	Storkallegrund, loistol.	3.18p	4.7 p	E-N	5.2 p	$5.47\mathrm{p}$	NNE,	NNE_2	NNE_2	
r	Sälgrund, majakka	3.29 p	4.45 p	3.29 p 4.45 p ESE · S-WSW	3.20p 6.25p	6.25 p	NNE_2	*	NW,	* aikana oli ensin tyyntä, sen jälkeen tuuli kiertyi "ympäri kom-

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\mathbf{W_2}$	W W	W ₂	2.53 p 5.35 p	2.53 p	3.35 p NE—SE 4.34 p W-NW NE	3.35 p 4.34 p	1.50 p 2.9 p	
	Γ⊈°.	NE_2	N	NW_2			S-NE	SE-F	$2.15\mathrm{p}$ SE-E-NE	1.50 p 2.15 p SE-F
	Tampereella 🕟.	s E	v. E	S.E.	2.30 p	1.0 p 1.45 p	≱ ≥	E-S-W	1.50p	
	$\left\{\begin{array}{l} \lceil \mathbf{q}^{1} \rceil.$ Kurikan kylässä 3 km päässä $\right.$ \blacksquare^{2} 12.33—12.40 p.	SW_2	SW_{\downarrow}	$\vec{\alpha}$	$2.30\mathrm{p}$	$12.29\mathrm{p}$		NW-N-NE	1.25 p NW-N-1	12.30 p 1.25 p NW-N-1
	区。, ◎。	$\mathrm{NE}_{\scriptscriptstyle{\downarrow}}$	W_{6}	M ⁺	$4.33\mathrm{p}$	$12.18\mathrm{p}$		E-N	5.3 p	ď
	$\langle \mathbb{R}^2, \mathbb{Q}^2 \rangle$	NE,	NE,	NW ₂		$12.30\mathrm{p}$	压	SE-E-N	1.10 p SE-E-N	11.30 a 1.10 p SE-E-N
	} ▲ 12.32—12.35 p.	SSW.	\mathbf{E}_{i}	$ m SSW_{ m I}$		12.35 p	5-7	$_{ m SSW}$ (N-ENI	12.12 p SSW (S-SSE 1.19 p SSW (N-ENI	11.14 a 12.12 p SSW (S-SSE)
		SE	田	国	8.0 a	7.0 a		SE?)—NW	12.0 a SE ?)—NW	110 a 12.0 a SE ?)—NW
	$\begin{pmatrix} 1 \text{ B}^2 \text{. Pilvet kl. } 10.40 \text{ ja } 11.0 \text{ a. kul-} \\ \text{kivat peräkkäin.} \end{pmatrix}$	W	W	W	11.15 а	11.10 a 11.15 a		N-NE-E	11.0 a N—NE-E	10.40 a 11.0 a N—NE-E
		SSE,	SE_3	SE	1			SE-E-NE	6.55p SE-E-NE	6.43p $ 6.55p $ SE—E—NE
	 / Pilviä ei ollut vielä näkyvissä, kun	δĵ,	$\vec{\alpha}$	NE_2	9.38 p	$8.25\mathrm{p}$		S-NW	8.57 p S—NW	S-NW
	1 D; 🕲 varemmin päiv.							Ø	1	6.30 p — s
	1 B, muuten ⊤.	$SW_{_{\downarrow}}$	∞	0	$6.20\mathrm{p}$	6.0 p		N-NW-W	6.40 pN-NW-W	6.10p $6.40p$ $N-NW-W$
	া≾°, ⊚°	W	W	W	u	3.0 p		NW-NE-SE	7.45 p NW-NE-SE	6.0 p 7.45 p NW-NE-SE
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SE_{5}	NE	NE,	$7.38\mathrm{p}$	$6.58\mathrm{p}$		SE-NE	6.18p	
	T^2 .	°	W	SE,	1	1		W-N-E	6.15p	
		l	İ	ļ	$8.15\mathrm{p}$	n.7.0 p		1	6.15 p	
		δį,	v,	$^{\circ}_{\mathbf{z}}$	1			SSW-NW-N		
	D°, pilvi kaukana.	W_2	$\infty_{_{\mathbf{I}}}$	νς'	1	1		N-E-S	$5.30\mathrm{p}$	
		W	v.	Ħ	$6.30\mathrm{p}$	5.7 p		SW-NE	5.45 p	
	٠,٠	NE,	NE,	NE3	n. 4.30 p	n. 4.0p n. 4.30 p		$^{ m SSW}$	4.48 p	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				$4.40\mathrm{p}$	4.20 p		SSE-NNE-NNW	6.0 p	4.0 p 6.0 p sse-nne-nnw
	🖉 kaiken päivää.	v.	v,	SW_2	1	1		S-W-N	4.2 p	
200		1	1		$5.30 \mathrm{p}$	4.0 p				3.40p

Heinäkuu

Pä	11.	K	h-d	f			1			
ivä	пауаппоражка	ta	t _e	펐	†°	t _e	>	on A	> [®]	Huomautuksia
9	Pietarsaari	$2.55\mathrm{p}$	3.50 p	2.55 p 3.50 p SE-E-NE		3.30 p 6.10 p	NW.	NE,	NE,	
2	Virrat	$3.35\mathrm{p}$	$530 \mathrm{p}$	SW-S-E	4.0 p	$5.30\mathrm{p}$	W_2	W	∞	$\sqrt{3}$
*	Pihtiputaa	t.23 p	4.48 p	W-E	4.37 p	4.58 p		W	W	[∡ kulki paikan yli.
\$	Merenkurkku, Snipan	4.40 p	$5.50\mathrm{p}$	NW			SW_2	SW_2	SW_2	T° NW:ssä.
2	Inari (järvellä 30 km) NW kirkolta)	5.15p	ı	WSS—S				1	1	SSW;ssä B ja pilviä.
*	Suolahti	$5.22\mathrm{p}$	5.22p 6.20p	SW-NE	6.10 p	635р	∞	SW	ν.	Pilvet SW:stä.
2	Jyväskylä	6.0 p	6.0 p	ENE, N	1	l	ω	W	1	[∡° ESE:ssä. 2 å 3 D N;ssä.
	Rantsila	$6.15\mathrm{p}$	na manual	SE	1	1	NW_{\downarrow}	NW₄	NW_4	1 D.
"	Tuusniemi	$7.30\mathrm{p}$	$8.40\mathrm{p}$	W-NW	$9.15\mathrm{p}$	9.15p 10.9 p	M	W	W	
33	Malmin asema	$7.30\mathrm{p}$		NE	1		1	i	١	1 D NE:ssä.
ε	Kuopio	d06.7	8.35 p	NW-SW	$7.50\mathrm{p}$	7.50p 8.25p	1	1	l	$\lceil \overline{A}^1, \bigcirc \rceil^2$.
t	Inari, Tschurnojärvi	8.30 p	1	S-E	8.40 p	8.40p 10.0 p	0	N	Z	1 D°. Tuuli aam. S, päivällä tyyni.
	Jaakkima	11.30a 11.31a	11.31 a	Ø		,	NW_3	NW.	W	
\$	Sortavala	1.46p	1.46p 1.55p	W-E	$1.50\mathrm{p}$	1.50p 2.7 p	WSW_3	SW_2	SW_2	∅², □ √ √ √ √
	Inari, Tschurnojārvi	3.55 p	3.55p 4.0 p	S—W	$3.45 \mathrm{p}$ 4.0	4.0 p	Z	N	0	2 D. Tuuli hiljeni [≼ aikana.
2	ka	7.24 p	$7.39\mathrm{p}$	7.24 p 7.39 p N—NW—W 8.0 p	8.0 p	1		•	1	T°. Ulkokalla f⊈ ja @.
00	Taivalkoski	11.27 a	12.37 p	11.27 a 12.37 p NE-N-SW $ 11.38 a 12.53 p$	11.38 a	12.53 p	E	NE,	国	(Kar kl. 1.0—1.15 p ja 4.10 4.30 p.
2	Inari, Tschurnojärvi	12.15 p	6.0 p	. $12.15p$ 6.0 p $S-Z-E-N$ $11.30a$ 11.0 p	11.30 a	11.0 р	Z	E ja —	Z	Tuulen suunta ja voima [≼ aikana' vaihtelevainen. Ø pin.,väliajoilla. [록 vli seudun. Muuten näkvi [≼

ı														•							95		
o kuuroissa,)			区。mutta jyrähdykset lukuisia.	a. p. ja ▲ kl. 2.20 p.	▲ 12.30—12.32 p. ▲ pavun kokoisia.	[₫₀, ◎∘.	▲ 10.52—10.53 a ja 11.38—11.39 a.		$b = 750 \text{ mm}, T = 14^{\circ}.$		/ Ensin 1, sitten 2 B; sen jälkeen muutamia @² kuuroja. @.senrasi tätä Tº N·ssa		2 D.	ĭZ°, @².		区1 likimpänä 1.44 p. @' tasaista, senjälkeen kun taivas oli selkeyty-	(nyt ilmestyi uusi ukkospilvi W:ssä.	/ Ikaalisissa ☑°, ©°, mutta lähitie- noilla ▲².	Myöhemmin WSW, ukoniskuja.			
0	SW.	}		W.	j	NW	1			$^{ m SW}$	\cdot SSW] [SW.	,	NW	ı	$\mathrm{SW}_{_{\star}}$	ă, M≪	* 1	SW_2	SW_1		S.W.
z	W	SW_8		NW.	NW	NW	NW	1	NW_{6}	SW	$^{ m SM}$		NW,	W ₄ 6	NW_6	1	$_{ m SW_6}$	× M M	* [W	! #	M .	N N
Z	SW.	SW_6		SW_3	SW		NW	W	W	8	WSW ₃	9	SW.	W.	NW	e access	SW_6	W ₂	*	$\overline{\mathrm{NW}}_{2}$			× ×
8.0 p	Ī	7.0 p	-	$2.10 \rm p$	11.58a 12.8 p	9.15a 19.40 n	2.41 p		12.25 p	12.08 p	$1.20\mathrm{p}$	12.0 a	1.0 p	$12.20 \mathrm{p}$	1.15p 1.50p	12.35 p	2.9 p			2.20 p	3.30 p)	d c4.1	2.30 p
6.0 p	1	6.10 p		1.45 p	11.58 a	9.0 a	12.21 p 2.41 p		11.58 a	$11.55\mathrm{a}12.08\mathrm{p}$	12.20p 1.20p	11.50 a 12.0	10.0 a 1.0 p	$11.30 \mathrm{a} 12.20 \mathrm{p}$	1.15 p	12.7 p 12.35 p	1.10 p		1	1.30 p	12.40 p	1.45 p	1.40 p
S-N	NW-N-NE	SWNE	Ì	N-E-SE	W-\N-\E		N-E-S		N & NE-E	NW-SE	NW-ENE	M-N	N-NE-E	SW	NW-SE	M	$^{ m NW-SE}$	W-SW-S N-NE-E	!	NW-SSE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N-E-D	IV W — IV — E
5.10p 5.36p	5.15р 5.35р	6.0 p 6.20 p	1.0 а —	.10.30а 2.5 р	10.30 a n.12 30 p	10.50 a 12.40 p	10.56a 12.41 p		$11.4 \text{ a } 12.25\mathrm{p}$ N à NE $-$ E $11.58\mathrm{a}$ $12.25\mathrm{p}$	11.20 a 12.45 p	11.25 a 12.35 p	11.30a 12.0 a	11.30 a 12.20 p	1.50 a —	[2.5 p 12 10 p	$2.15\mathrm{p}\ 12.17\mathrm{p}$	12.32p 2.9 p	12.40p 1.0 p 1.10p 1.50p		1.1.0p n.230 p	1.3 p 1.45 p	1.10 p	H-N-W N dct.2 doz.1
Heinola 5	Miehikkälä5	Taavetti 6	Jyväskylä 1	Bromarfn.	Turku 10	Kuusisto 10	Sauvo 10	Palkjarvi	Malmin asema 11	Porvoo, Kallnäs 11	Söderskär, majakka 11	Kisko, Toijan kartano $\begin{vmatrix} 11 \\ 0 \end{vmatrix}$	Porkkala, majakka 11	Salo 11	Loviisa 12	Helsinki 12	Inkoo, Svartbäck 12	Riitiala $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \begin{vmatrix} 12\\1 \end{vmatrix}$	Ikaalinen n.	:	Söderskär, majakka 1		гогккала, тајакка
5	2	,	6	2	2	2	\$	\$	٤	2	£	\$	5	r	ž	2	2	z		ä	\$	ş	\$

\Box
\Box
ಣ
\sim
•=
(1)
. •
ш.

o josephano socia E	nuomaucuksia	(\bigcirc * kl. 1.30–1.45 p. Ukkospilvet kulkivat nop., kl. 1 oli T = 16°.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	▲ 2.10—2.11 p. @ kl. 2.20 p.	ajoittain.) Kauempana @ ukkosen aik. Tuuli) kovanpuoleinen kaiken aikaa	2 D kl. 2.15 p. S:ssä.		⊚ myöhemmin [द्र°.			Τ°, ◎°.		[¼¹, @°. B kl. 3.25 p.	٦°.	②², ▲ 3.24 p noin 2 ^m .	([द² kl. 348 p., kova jyrinä ja sa- (lama sekä @³, T=13°.s.	1 17 weekhow M2 weekhow M0
A	o >	SW(?)	ž Ž	ı	NNE	J	Z	,	N_2		NE,	1	NE_2]	W ₂	W	1		
Δ	n A		z Z		N_1	1	Z		W	Married	NE,	W	NE_2	1	W	!		ਜ਼ੂ	
1.1	v T	SW (?)	Z Z	[$\mathbf{W}_{_{1}}$	Í	Z		W	NW_3	NE_1	W	$NE_{_{2}}$	[W_2	NW_6	1	NE	
	t e	1.30p 2.20p	1.45 p 4.30 p		1.20p 11.0 p	1		1	$2.40\mathrm{p}$	1	5.9 p	3.50 p	-	-	$3.41\mathrm{p}$	4.22p 5.5 p	5.0 p	3.41p 5.26p	A One
	ta				$1.20\mathrm{p}$	1		1	1.0 p	l	$3.42\mathrm{p}$	$2.40\mathrm{p}$		1	$3.25\mathrm{p}$	$4.22\mathrm{p}$	$3.20\mathrm{p}$	$3.41\mathrm{p}$	2 25 m 1 90m
P	4	1.25p 1.53p WNW-ESE 1.30n 2.10p ESE_S_wsw	2.0 p N(?)-E-S(?)	[-		3.0 p S - SWW		NW-SE	W-S-SE	NE-SW	The state of the s	NW-SW	N-W-S	3.33 p NW-W-SSE	Z	4.0 p N-NE-SE	E-Z-W	NIN TO OT
	t e	1.53 p 2.10 p	2.0 p	$2.39\mathrm{p}$	2.40 p	2.15 p		1	$2.48\mathrm{p}$	$2.30\mathrm{p}$	$4.57\mathrm{p}$	$3.30\mathrm{p}$	$3.58\mathrm{p}$	9.5 р	3,33 p	1	4.0 p	3.41p	225 245 NW
K	t,	1.25 p	1.30 p	2.4 p	2.5 p	2.6 p	$2.10\mathrm{p}$	$2.15\mathrm{p}$	$2.20\mathrm{p}$	$2.20\mathrm{p}$	$2.32\mathrm{p}$	$2.38\mathrm{p}$	$2.43\mathrm{p}$	$2.45\mathrm{p}$	3.1 р	$3.17\mathrm{p}$	$3.20\mathrm{p}$	3.31 p	225 m
	Науалпторанкка	Kirkkonummi,	Inari, Otsamotunturi .	Säbbskär, majakka	Jyväskylä	Helsinki	Inari, Tchurnojärvi.	Riitiala	Uurainen	Virrat	Taivalkoski	Söderskär, majakka.	Kuusamo	Jyväskylä	Bromarf	Ruovesi	Malmin asema	Inari	Malainlyi
Pä	iivä	6	F	ű	*	2	: :	22	*	2	2	33	£	2	£	ž	2	£	

	_			1 2 2 2 2 2	2000				, adid	22
D	~ ×	W N	× ×	-	6	W—SW—S	5 15 p	$5.10\mathrm{p}$		8
		M_2	M_2		1	E-SE-S	3.50 p	3.48p	Pälkjärvi	33
.∾∑		NW_6	Z		1	S-NE	3.35 p	2.55 p	Ylitornio	2
[▼°, ◎².		NNW ₃	WNW,	4.50 p	$3.13\mathrm{p}$	NW-W-S		$2.14\mathrm{p}$	Sortavala	2
	W_{2-0}	M_2			$1.56\mathrm{p}$	WSW-ENE		$2.01\mathrm{p}$	Ilomantsi	и
\mathbb{Q}^{1-2} , 1 Do.				$2.10\mathrm{p}$	$1.45\mathrm{p}$	E-SE-S	$1.56\mathrm{p}$	1 55 p	Pälkjärvi	r
▲ 1.50—1.56 p. @².		NW	M	1.55 p	$145\mathrm{p}$	1	1		Malmin asema	£
c1.	NW.	N ₆	NW_{4}	$2.30\mathrm{p}$	$1.40\mathrm{p}$	NW-NE-SE	1	1	Vaala	8
[4 ¹ , ∅ ¹ .	W ₂	. W ₆	\bowtie	$2.20\mathrm{p}$	1.2 p	NW-SE	$2.15\mathrm{p}$	$12.17\mathrm{p}$	Värtsilä	æ
1 D° pitkä. ©°. kl. 11.25—11.30 ©² paksuja mustia pilviä kaikkialla. Tuuli kääntyi myöh. NW₂. W²., NW₄.	NW_2	N N	NW	12.0 a	11.25 a	NW-NE-SE 11.25 a 12.0		11.30 а	Vaala	2
Vesi juoksi puroissa kuin keväällä.	NW	NW ₁₋₂	NW_{1-2}	8.0 p	10.0 a	NW-SE		11.15 a	Tuusniemi	10
	NW_o	W_2	SW_4	7.15 p	$6.40\mathrm{p}$	NE-W	$6.50\mathrm{p}$	$6.10\mathrm{p}$	Vehkalahti, Brakila.	33
Jo kl. 2.30 p kuuli D N:ssä.		1	1		$5.30\mathrm{p}$	NW-SE	l	$5.30\mathrm{p}$	Korpilahti	'n
□ (100) (100) [100]	WNW ₂	WNW_{\star}	WNW_2	$6.40\mathrm{p}$	$5.35\mathrm{p}$	M	5.13p	$5.10\mathrm{p}$	Sortavala	*
Pilvet näyttivät kaup. luona jakau- tuneen; osa kulki W.hen, osa E:hen.	N	ļ	Z	ı	6.0 p	WS	6.0 p	5.0 p	Lappeenranta	\$
tuli Lovinsan lahdella; ne olivat pienen herneiden kokoisia.						SE	ı	п. 5.0 р	Loviisa	2
	sW.	SW	SW_{\star}	5.55 p	$550 \mathrm{p}$	E-SW	5.5 p	$4.40\mathrm{p}$	Vehkalahti, Brakila.	£
	I	ļ	1	4.55 p	$4.30\mathrm{p}$	1	$4.40\mathrm{p}$	$4.35\mathrm{p}$	Viipuri	*
•				I	1	1		n. 4:0 p	Kuhmoinen	2
		ı	1	5.0 p	$430 \mathrm{p}$	W-E	5.0 p	4.0 p	Karja	32
2.	1	SW		1	4.25 p	国	n. 4.30 p	n. 4.0 p n. 4.30 p	Inkoo, Svartbäck	11
$T = +13^{\circ}$. If if \pm .0 p. $T = +16.^{\circ}$ kl. 5.0 p.										
ja omituisen muotoisia. Aivan lapi- näkyviä. @² kl. 4.20—4.30 p.	===		1	5.45 p	4.15 p	NW-SE	5.0 p	3.55 p	Kirkkonummi	6

einakuu

1	Huomautuksia		el el	区2, salamat välkkyviä.	2 2		$\lceil \overrightarrow{A}^2, \bigcirc \rceil^2$.		Ø kauempana, ⊕; kl. 3, 1 B².	Ι∇°, @².	/ \leq ESE:ssä kl. 9.12 p. \mathbb{F}^{1-2} SSE kovimmillaan. \mathbb{Q}^2 .		Ø kuurottain.	[V ¹ −².	$\lceil \sqrt{3}^{0} - 1 angle$		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Γ ₂ ^{1−2} , ز harvinaisen rankkaa.	[द², @² niin, että vesi valui "virtana".		\T\
	^			× ×	0	N_{2}	\mathbb{N}_{2}	W	SW_2	νς°	SSE	SE_o	20]	SQ.	$SW_{\mathfrak{g}}$	SW_2	v.	SE		S
77	on N	W	W .	×	°	$\mathbf{Z}_{_{\vec{1}\vec{5}}}$	Z.	W	$\tilde{\mathbf{v}}_{_{\mathbf{z}}}$	w,	0	$\mathrm{SE}_{_{1}}$	N	[SE_2	SW_2	$\operatorname{SE}_{\scriptscriptstyle{2}}$	$\vec{\infty}$	$\tilde{\mathbf{v}}_{i}$	SW_{4}	ဏ်
	Vf	M		W	°	0	\mathbb{N}_{2}	W	S.		$\mathrm{SSE}_{\scriptscriptstyle{\downarrow}}$	${\rm SE}_{\scriptscriptstyle 2}$	Ø			W	SW_{\star}	1	SW_2	SW_{\star}	ď
	t _e	82 70 E	6.55 p	8.40p	6.35p 9.10p	$9.30\mathrm{p}$	$10.30\mathrm{p}$	1	1	3.40a	6.47 a	6.0 a	ļ			7.40a	7.45 a	6.25a	8.40a	8.0 a	6.55a 7.40a
	₩.	30 7	6.23 p	8.34 p		9.2 p	10.0 p 10.30 p			3.35 a	6.37 a	4.5 a	1	[1	6.20 a	6.5 a	6.0 a	6.45 a	n. 6.0 a	
a	ı,	W - N - NE	NW-SE		8 50 p SW-NW-NE	NW-E	E-SE	9.33 p 11.3 p NNE-NNW	NE-E-SW	SW-S	7.02 a SW-SSE-NE	SW-NE	NW—SE	WSW	50 a SW-S-NE	Z	SW-S-NE	Z	S-Z-NE	SW-W	SE-E-NE
M	t e	n 0.6	6.45 p	9.5 p	8 50 p	9.18p	9.45 p $10.25 p$	11.3 p	n. 2.45 a n. 3.20 a	3.15 a n. 4.0 a		4.45 a	6.0 a		50 a	$6.20\mathrm{a}$	7.40a SW	6.10a	7.40a	n.8.0a	7.35 a
M.	t,	19.30 n	6.12 p	7.48p	8.5 p	$8.38\mathrm{p}$	$9.45\mathrm{p}$	$9.33\mathrm{p}$	n. 2.45 a	3.15 a	3.52 a	3.55 a	n.4.0a	4.40 a	п	5.10a	5.30 a	5.50a	7.0 a	n. 7.0 a n. 8.0 a	7.5 a
	науальторанка	Tunsniemi	· · · iqi	Palkjarvi	Värtsilä	Soutanos	Soldavald	Heinäluoto	Laihia	Vaasa	Helsingkallan	Merenkurkku, Snipan, majakkalaiva/	ska .	Valsörarna, "	Pietarsaari	Vaasa	Pietarsaari	Pietarsaari, Björnholm.	Kokkola, Ykspihlaja	Tankar, majakka.	Pietarsaari. Biörnnolm.
Pä	ivä	12					2	32	16	e			2	α	22	%			ŧ	33	

ı																							99	9	
TAT + CONTROL TOOLS	Γ¾², @² vesi "virtasi" pilvistä.				∅¹-², ∅ kaiken päivää.	4	2 D vühän varemmin oli @².	T°, @°.		[₫², ◎°.	pisaroita.	D hiljaisia, mutta pitkiä. @°.	$\lceil \overline{A}^{0-1}, \bigcirc \circ angle.$	3 D; uudelleen [≰ n.	/ [₹¹-², @°, < 5.30 p. SW:ssä ja	(C.T.) J. Intigoda.	[₹².	} @³ löi rukiit lakoon.	@ ² kl. 7.15—7.50 p.	\mathbb{R}^2 , $1/2$ tuntia \mathbb{Q}^2 .		/ 区°, ©° pisaroittain kaiken päivää;) tuuli raina ia nunskaista	The Language of	2 D.	∅² hyvin rajua.
 2	${ m SE}_{ m au}$		1	$ \overline{\Omega} $	1	SW_5	1	∞_{ω}	$\tilde{\mathbf{x}}_{_{\mathbf{I}}}$	a,	SW_{\star}	δ	$\mathrm{SW}_{_{4}}$	1	W_{2}	M	NW_{\downarrow}	$\mathbf{v}_{\mathbf{t}}\mathbf{v}_{\mathbf{t}}$	W_0	SW_1	and the same of th	SW_{\downarrow}	W_{4} m	[SW_1
œ 2	SW_1	I	1	∞,	1	SW_{5}	$^{\infty}_{1}$	}	SW_2	WSW_2	$\mathrm{SW}_{\scriptscriptstyle{4}}$	$\tilde{\mathbf{x}}_{i}$	SW_6		νį.	M	NW_2	$\vec{x} \vec{x}$	W	SW_3	W	SW_8	SW_{14} m	[SW_{5}
20	SW_1	1	1	S,	1	SW_5	W	SW_{4}	SW_6	SSW_5	SW_{\downarrow}	$\mathcal{X}_{\frac{1}{4}}$	SW_6		w,	M	NW_4		SW_8	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$		SW_8	S ₈ m]	SWs
	8.0 a	-	1	$3.12\mathrm{p}$		$3.30\mathrm{p}$	-	[7.15 p	$6.38\mathrm{p}$		6.0 p	8.5 p	6.0 p	$7.10\mathrm{p}$	$7.30\mathrm{p}$	1	6.24 p	7.55 p	8.15 p	-	8.0 p	$8.25\mathrm{p}$	1	1
}	7.0 a	1	1	3.5 р	10.0 a	3.15 р			5.45 p	$6.26\mathrm{p}$]	5.35 р	$7.35\mathrm{p}$	$5.40\mathrm{p}$	$5.20\mathrm{p}$	8.0 p		6.37 p	7.0 p	n. 7.0 p		7.56 p	$7.31\mathrm{p}$		1
	SE-NE	SW-NE	W-NE	W-N-E		W-NE	3.30 p NW-WNW(?)-W(?)	NW	6.20 p WNW-N	NW	SW-NE	WS-E	SW-W-NW	SE	SW-NE	6.48p W-N-NE	$7.40 \mathrm{p} \mathrm{SW-S-NE}$	SW- NE W NW-N	W-E	ENE-NE	N—E	NW-N-NE	SW-E	W	1
	7.30 a	9.14 a 10.44 a	2.25 p	$3.25\mathrm{p}$		$3.50\mathrm{p}$				6.26 р	5.15 p	$6.10\mathrm{p}$	$7.30\mathrm{p}$	5.55 р	$6.30\mathrm{p}$			$\frac{7.37 \mathrm{p}}{8.54 \mathrm{p}} \mathrm{W}$	$8.10\mathrm{p}$	8.5 p	a.8.0 p	8.30 p	8.5 p		7.50р 8.50р
	7.10 a	9.14a	$1.55\mathrm{p}$	$2.30\mathrm{p}$	3.0 p	3.0 р	3.3 р	$4.20\mathrm{p}$	4.50 p	4.56 p	5.0 p	$5.30\mathrm{p}$	$5.40\mathrm{p}$	$5.45\mathrm{p}$	5.45 p	$6.15\mathrm{p}$	$6.30\mathrm{p}$	6.30 p 7.49 p	$6.40\mathrm{p}$	$6.45\mathrm{p}$	n.7.0 p n.8.0 p	$7.15\mathrm{p}$	$7.25\mathrm{p}$	п. 7.30 р	7.50 p
	Kokkola	Utö, majakka	Sappi, "	Kankaanpää	Ikaalinen	Riitiala	Karkku, Linnainen	Ruovesi	Merenkurkku, Snipan, i majakkalaiva	Valsörarna, majakka	Rantsila	Vaala	Pietarsaari, Björnholm.	Kuopio	Kajaani	Tuusniemi	Pietarsaari	Kuhmoniemi	Vaasa, Villsk a t	Vaasa	Loviisa	Laihia	Sälgrund, majakka	Pirttikylä	Kokkola, Ykspihlaja
	2	22	2	33		2	2	2		2	2	2	2	33	\$		25	2	2		4	2	2	8	

einäkuu

Pä	11.	Y	1-4	Q			A	A	P	n o o o o o o o o o o o o o o o o o o o
iivä	пауапторанкка	t_a	t _e	ď	ta	t _e	۸ تې	n	θ λ	THOMADURSIA
16	Lohtaja	8.12p 8,14p	8.14p	$_{ m N-S}$	7.0 p	7.0 p 8.30p	∞	Ø	Ø	f Tuuli heikko •, ©!; jo kl. 7.0 a. kuului [द S—N, tuuli silloin S ja ©.
R		8.40p 8.50p	8.50 p	SSW	$8.40\mathrm{p}$	8.40p 8.50p	$\tilde{\mathbf{x}}$	SSW_4	${ m SSW}_2$	/ Myöhemmin yöllä n. kl. 2.0 a. Г₹ ja @²; hävisi n. kl. 2.40 a.
2 :	Viitasaari	10.40p 11.10p 10.54p	11.10 p	S—NW SW—NE	1 1	_ 11.13p	$^{\mathrm{S}}_{^{2}}$	$S_{a}^{S_{2}}$	N N N	Sade alkoi jo ennen kl. 10.54 p. 1 D.
17	Tuusniemi	0.0 a	1.0 a	W-N-E	1.30 a	1.30 a 2.0(?) a	W _{1 2}	W_{1-2}	NW_{1-2}	
,	Merenkurkku, Snipan,	0.5 a	0.25 a	NW-N-NE	1.15a 1.40a	1.40a	0	N	Z _o	∠ 11.50 p. NW:ssä 「\(\mathbb{Z}\), \(\omega\).
2	Valsörarna, loistolaiva	ъ		M		-	1	1	1	✓ p. E:ssä.
£	Helsingkallan,loist.laiv.	0.32 a	3.47 a	3.47 a NW-NNE-SSE	2.12 a	2.32 a	0	NW_7	NNW_2	ſ₹² SE:ssä, @³.
	Sälgrund, majakka	0.50 a	2.15a	$^{ m SW}$	1.5 а	а 4.15 а	SW	\bowtie	NW	I'4², raivo myrskyn tapaisia tuulen- puuskia ja kovia rankkasadekuu- roja toisinaan.
*	Vaasa	n. 1.0 a n. 4.0 a	n.4.0a	SW-E	2.45a	4.20 a	SW_1	NNE	NE3	$\lceil \overline{A}^2, \bigcirc^{1,-2}, \bullet.$
2	Storkallegrund, loistol.	1.22 a	2.42a	SW-SE	1.7 а	3.52 a	SSW_1	SW_2	NW_2	∠ 0.32 a. SW;ssä ja kl. 2.47 a. SE;ssä.
κ	Merenkurkku, Snipan	1.40a		2.50 a SW-S-SE	3.30 a	3.45 a	N_5	N	NNW_2	[₹¹, №⁰-¹. ≰ 1.15 a. SW:ssä.
22	Kurkijoki	1.15 a	1.50 a	闰	1.45 a	٥٠	1	.	1	
2	Verkkomatala, loist. laiv.	1.15a		2.25 a NE-E-SE	1.35 a	1.45 a	SW_2	SW_3	SW_{\star}	٠٠.
33	Kuhmoniemi	1.27 a	I	SW-NE		1	\overline{W}_2			Tuuli a. NW ₆₋₄ .
2	Norrskär, majakka	n. 2.0a n. 3.0a	n. 3.0 a	SE	1	1	S_{g-8}	N_{6-8}	S2 8	/ @ aika ajoittain, I∡° SE:ssä. @:lla \ oli tuuli —₀.
\$	Vaasa, Villskat	2.5 a	4.15 a	E-W	2.30 a	6.0 a	W	NW_s	NW_6	\(\sigma^2, \@^2.\)
	1 TITLE - TITLE	0 10.	4.KO.	ਕਸ਼ ਸ ਮ	0 300	An a	W	NW	NW	©0 ©0

	②² kl. 7.15—7.25 p.	\mathbb{N}_{2}	NE,	Z	$7.30\mathrm{p}$	7.15p	NE-SW			Vaala	50
	▲ 4.45 p (?).	luma.	Assessment	1		1	1	l	1	Sälgrund, majakka	33
01	T°; sää ollut yleensä kylmänpuol.	1			1		1	1	$1.30\mathrm{p}$	Hinnerjoki	2
1	(a). Helsinki \triangle 1.36—1.40 p, (a) o 12.5 (b) 12.40 ja 3.40—3.50 p.	8W		Ø		1	SW - E	п.12.30 р	п.11.30 а п.12.30 р	Haiko, Kallnäs	32
	■ 9.0—9.10 a.	1				i	Management	1		Heinämaa	33
	▲ 5.0—5.5 p. @² ajoitt. 「▼ Nauvossa.		SE_{g}	P	$4.59\mathrm{p}$	8.19a				Sauvo	ñ
	▲ 12.30 p.	-			1	-	1		ı	Tampere	2
	▲ 8.30—9.10 a, rakeet pienen herneen kokoisia, läpikuultavia; maa rakeiden peittämä.			and the state of t	1		1	[Loviisa	10
	Noin 10.0 a ▲ ja @.	ļ	ļ	Videnages	-	1		1	1	Kajaani	
	/ f≼ yöllä. Päivällä tuuli myrskyin. / f≼ Nauvossa, ▲ ja @² Jyväskylä.	SW	-	SW	1	1	ļ		12.0 p	Lappeenranta	<u>z</u>
		$\mathrm{NW}_{_{4}}$	W_{2}	\overline{W}_{2}	$1.15\mathrm{p}$	8.0 a	W-E	10.30 a	8.15 a 10.30	Pielisjārvi	£
	16/VII n. 6.0 − 7.0 p		$\mathrm{NW}_{_{\ddagger}}$!		7.40a	E	1 1	77.35a 18.5 a	Juuka	;
	(Myrsky. Ennen ukkosta 5 päivää hyvin lämmintä, sen jälkeen kyl- mempää ja NW tuulia.	NW ₉₋₁₀ (?)	NW ₈ (?) NW ₉₋₁₀ (?) NW ₀₋₁₀ (?)	NW_8 (?)	8.0 a	6.0 а	NW SE	8.0 а	6.30 a	Tuusniemi	۶
	\mathbb{R}^2 , \mathbb{Q}^2 .				8.0 a	5.15 a	SW-SE	6.30a	5.0 a	Kuopio	2
	/ Myrsky raivosi ukkosen kestäessä. Salama iski Mäkisen torppaan.	1	ı	-	4.35 a	4.10 a	SW-NW	4.35 a	4.10a	Uurainen	\$
		WNW	1	SW	6.0 a	4.15 a	NS	4.30 a	3.55 a	Jyväskylä	\$
	[₹², ♠°. Ukkospilvi kulki ohi E:ssä.	W_2	W	W ₂	4.0 a	3.40a	NE-S	4.15a	3.30 a	Virrat	:
	$\begin{cases} \text{Y\"oll\"a} \text{ vasten 18 p. oli } T = +7^{\circ}. \\ \leq 2.0 \text{ a S:s\'a\'a}. \end{cases}$	$\rm NW_{10}$	SE,	SE_2	5.0 a	3.50 a	SSE-NW	4.20 a	3.30 а	Viitasaari	2
	区°, osittain kovaa sadetta.	$_{6}^{N}$	$N_{_6}$	z ⁹	4.0 a	12.0 p	N-NE-E	3.30 a	3.10a	Laihia	\$
		WSW_4	${ m WSW}_5$	$\mathrm{WSW}_{_{\frac{1}{4}}}$	3.3 a	2.33a	NNW-N-E			Heinäluoto, majakka	2
	⊊² kävi alhaalla.	$\mathrm{SW}_{\bar{b}}$	SW_{\downarrow}	SW_5			SW-SE-NE	3.20a	3.0 а	Uusikirkko	"
	\mathbb{N}^2 , \mathbb{O}^2 .		1	1		2.45a		***************************************	2.30 a	Pirttikylä	2
	[₹ kävi alhaalla.	SW_{δ}	SW_{\downarrow}	SWs	2.20 a	n. 2.0 a	SW-NE	2.25 a	2.10a	Uusikirkko	17

emakuu

P		<u></u>	K	f						
äivä	Havaintopaikka	T _e	°	걲	t	t _e	Λ_{f}	Vu	Ve	Huomautuksia
21	Bromarf, Sommarbo .	1.3 p 1.58p		NE-E-S N-S	_ 1.51 p	2.15 p	$\stackrel{NW_2}{NW_3}$	$\frac{\mathrm{NW}_3}{\mathrm{NE}_5-7}$	$\frac{\text{NW}_2}{\text{NW-NE-SW}}$	1 \mathbb{I}^2 kl. 1.58 p., \mathfrak{Q} ; tuuli puuskain. $\mathbb{I}_9 = +15$, $\mathbb{I}_9 = +9$. \mathbb{A}^2 1.53—1.57 p.
2	Inkoo, Svartbäck	1.10 p		NE—SW	1	diament .	NW_o	NW_6	NW_0	Kaiken päivää silloin tällöin @¹−². Välillä auringonpaistetta.
*	Porkkala, majakka	2.15 p		2.30p N—NE—SE	2.0 p	3.10 p	N	NE_{\downarrow}	$\mathbf{E}_{0}(\red{?})$	©°. I⊊ Houtskarilla, myös 20 p.
33	Vehkalahti, Brakila.	4.18p	$4.19\mathrm{p}$	NENW	4.15 p	4.52 p	NW_6	NW	NW_2	
,	Miehikkälä	5.10p	$5.15\mathrm{p}$	N-E-SE	1	Į		-]	
55	Söderskär, majakka.	3.20 a	4.20 a	ESE-NE	3.25 a	5.0 а	ESE,	ESE,	Δĵ	
25	Thuusniemi	7.0 a	8.30 a	NW-N-NE	7.0 a	9.0 a	$S_{1-\frac{1}{2}}$	S_{1-2}	NE_{l-2}	/ Viime ukonilm. saakka ollut noin
×	Lemo, Kaarina	п 8.0 а	1		8.0 a	8.5 a	1	1	[(Toato (:) vacin tunior ponjois.
\$	Kuusisto	8.5 a	ļ	1	1	1	∞	∞	1	D°, ع.
\$	Utö, majakka	8.14 a	9.29 a	SNE	8.47 a	9.4 a	I			/ K°, K² kulki 20 km päässä E t. N olev. maan yli; siellä tuli ⊘ ja ▲.
ĸ	Korpilahti	8.15 a	france	W-E	9.0 a		D. Communication of the Commun	Management		2 D.
*	Hirvensalmi	9.15a	9.20a	SW-NE ¹ 10.0 a 12.0	10.0 a 1	2.0 a	1			[덫º, @ pitkällistä
2	Porkkala, majakka	10.0 a		$2.30 \mathrm{p} \mathrm{SW} - \mathrm{S} - \mathrm{NE} \mathrm{I}1.20 \mathrm{a}$ $2.15 \mathrm{p}$	11.20 a	2.15p	SW_2	SW_3	SW_1	™. ©°.
2	Huittisten kikylä	$10.30\mathrm{a}$	10.30 a 11.10 a	SW-S-E	$10.40\mathrm{a}$ $11.5\mathrm{s}$	l.5 a	SW_2	SW_1	SW_1	Kl. 11.0 a oli B—D 3 à 4s. @'?.
*	Hangon majakka	10.45 a	10.45 a 11.55 a	WSW-NW-ENE 10.40 a 11.45 a	10.40 a 1	1.45 a	SSW_2	SW_3	WSW_1	/ \mathbb{Z}^2 , $B-D=7$ à 8s; @ alussa heik- koa, kl.11akov; sademäärä 11.6mm.
	Bromarf Sommarbo	10.55 a	12 IGn	10 55a12 16n WNW-ESE/ 11.15a12.5 p	11.15 a 1	2.5 p	WSS	ď	WSS	$(1B^2, B-D)$ 3 à 4 ° kl. 11.49 a; \mathbb{Z}^{1-2} . Muuten \equiv edellis. illasta saakka
2 2	Karja	п. 11.0 а	n. 11.0 a n. 12.0 a	NW-NE	d 20.21	1.20 p		5'	1	anna ukkossäähän saakka; sen jälk. = @ heikk., kl. 12.52 — 1.20 p kovaa.

	103
 「▼, ◎* ukkosen aikana. ✓ 11.53 ja 12.10 p. S:ssä. ✓ amyöhemminkin. ≡ kaiken vuorokautta. Melkein tyyntä. 「▼, ◎*. 「▼, B—D = 10s. 「▼, ⑤*. 「▼, ⑥*. 「▼, ⑥*. 「√, B—D = 10s. 「√, B—D = 10s. 「√, B—D = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬) = 10s. (¬	∵, ©∴
SW ₂ - 4 SW ₂ - 5 SW ₂ - 4 SW ₂	SW SW
N N N N N N N N N N	SW ₆
SW 22 SW 4 SW 4 SW 4 SW 4 SW 4 SW 4 SW 4	S W S
12.15 p 1.0 p 1.0 p 1.12.45 p 1.24.5 p 1.28 p 1.30 p 1.	6.0 p
11.20 a 12.15 p 10.20 a 1.0 p 11.30 a 12.45 p 11.50 a 12.45 p 10.30 a 12.45 p 10.30 a 12.45 p 10.30 a 12.45 p 10.30 a 12.8 p 11.20 p 1.28 p 12.25 a 1.0 p 12.25 p 1.28 p 12.30 p 1.28 p 12.30 p 1.30 p 12.30 p 1.30 p 12.30 p 1.30 p 12.50 p 1.30 p 12.50 p 1.30 p 12.50 p 2.10 p 12.50 p 2.10 p 12.50 p 2.10 p 12.50 p 2.10 p 12.50 p 2.10 p 12.50 p 2.10 p 12.50 p 2.50 p 2.10 p 13.50 p 2.50 p 2.10 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p 15.50 p 3.30 p	4.25 p
SW—S—SE N—NE (?) NW—N SW—N SW—N SW—N SSW—N SSW—N W—E SSW—N SSW—S—SE SW—S—SE SW—N W—N W—N W—N W—N W—N W—N W—	SW-NE W-S-E S-SE-E SW-N
1.50 a 2.30 p 2.30 p 2.50 p 2.15 p 1.16 p 1.33 p 1.40 p 3.0 p 3.0 p 3.0 p 3.0 p 3.0 p 3.15 p	5.0 p 5.35 p 6.30 p
11.10a 11.50a 11.15a 12.45p 11.35a 12.45p 11.35a 12.40p 12.30p 12.45p 12	4.20p 5.7 p 5.30p 5.50p
Salo	Lappeenranta Tuusniemi Kurkijoki
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2

leinäkuu

MACHINE CONTRACTOR							-			
Pä		M	11	۴			1	<u> </u>	Þ	11.
iivä	Науалпторанкка	t,	و+	A	-p ^a	t e	V _f	n	ө >	ниотаптикыз
25	Värtsilä	5.57 p	6.50 p	S-E-NE	6.25 p	7.7 p	W	SW_6	SW_0	.⊚°, ⊠
33	Pälkjärvi	6.5 р	7.3 p	SN	6.2 p	6.8 p	ŝ	ωຶ	ŝ	$\lceil \mathbb{Q}^1, \mathbb{Q}^1, \mathbb{T}_{\theta} = +19^{\circ}, \mathbb{T}_{j} = +13^{\circ}.$
33	Sortavala	6.5 p	7:15 p	NW-NE	6.50 p	$7.20\mathrm{p}$	1	WNW_3	WNW_{i}	区。, ②².
£	Inkoo, Svartbäck	$6.40\mathrm{p}$	7.3 p)		ì	0	0	0	.∞∑
8	Järvelä	6.55 p	7.30 p	S—SE—E	1		W	W	$\mathbf{W}_{_{1}}$	
*	Heinäluoto, majakka .	8.33 p	9.56 p	SW-S	$10.18 \mathrm{p} 10.33 \mathrm{p}$	0.33 p	SSW_3	$\mathrm{SSW}_{\scriptscriptstyle \pm}$	SSW_3	٦٠.
*	Kuhmoinen	п.10.0 р п.10.30р	n.10.30p		1	1	-	ļ		
26	Inkoo, Svartbäck	10.55 a	1	W		1	İ	NW_6	1	O silloin tällöin. K Kemiössä (?).
8	Loviisa	$12.50\mathrm{p}$	$1.30\mathrm{p}$	NW-SE	$1.10\mathrm{p}$	1.45 p	0	NW_6	NW_2	\(\mathbb{G}\), \(\infty\).
2	Rantsila	1.5 p	1.20 p	NE-SW	12 40 p	$1.30\mathrm{p}$	Z,	用	Ž	▲° 12.50—1.20 p. ▲ Porkkalassa.
2	Alastaro	$2.50 \mathrm{p}$	3.0 p	N-W-SW	$2.40\mathrm{p}$	3.0 p	N	N N	N_2	
33	Kaarina	$3.55\mathrm{p}$	$4.15\mathrm{p}$	N-NE-E	$4.33\mathrm{p}$	4.45 p	NW_{\downarrow}	NW_6	NW_2	[₹°, ©².
8	Vaala		[W—S	4.0 p	4.30 p	N	N	N	©².
22	Vaala	1	1	N-E-S	$3.50\mathrm{p}$	4.0 p	N	NE,	N	$D(?), \otimes^2$.
22	Vaala	ļ	ĺ	N—S	$6.20 \mathrm{p}$	$6.40\mathrm{p}$	N	N	N.	D(?), @°.
53	Hirvensalmi	2.0 p	2.2 p	NWW		1		1	. 1	M°.
2	Ersta	$5.10\mathrm{p}$	б.0 р	Й	1		Z.	$N_{\epsilon_{1}}$	$\mathbf{N}_{\mathbf{s}}$	(Τ°, taivas suureksi osaksi selkeä; (vaan E.ssä ja W.ssä vähän pilviä.
30	Sortavala	2.0 p	$3.50\mathrm{p}$	E-NW	$2.20\mathrm{p}$	3.45 p	NNE_3	ENE,	ENE,	区3, @2.
31	Helsingkallan,loist.laiv.	0.22 a	0.37 a	N	1	1	SSW_2	SSW_1	v,	∠ 1.17 a ja 1.47 a N:ssä, ⊤°.
n	Kokkola	1.0 a	2.0 a			1]	S_3	1	∫ @°, päivällä ensimmäinen kuuma näivä ⊥95°

	⊠°, ©°.		/ 区2. Jyrinät niin kovia että katto- puoli ja akkunat kirkossa tärisivät.	D°.
	$\infty_{\tilde{v}}$	SW_6	${\rm SW}_3 \over {\rm W}_3$	
₩.	W_1	S.	\mathbf{W}_{2}^{3}	
	W	$\infty_{\frac{1}{4}}$	SW_1 W_1	0
2.51a 3.46a	3.0 a 3.30 a		=	ļ
2.51a	3.0 a		 10.37 a	
WNW	SO	. 7.20a 10.0 a NW-N-E	W—E W—E	Z
	3.05 a	10.0 a	8.47a 9.27a 10.27a 10.57a	1
2.6 a	3.0 а 3.05 а	7.20 a	8.47 a 10.27 a	12.30 a
Ulkokalla, majakka	Kokkola, Storån vaihde	Pudasjārvi	Taivalkoski	Pietarsaari, Björnholm
31	2	2	ŧ	\$

at. o. Folk, H. 67, N:o 2.

lokuu

	K	. hat	c			Δ	A	Δ	o isolary mo source H
	t a	t _e	Ä	10°	t _o	°∓>	я ^	φ	THOHAUCHKSIA
9	70	65 n 690n		6 15 n	6 35 n	Amount		I	
7.3	7.35 p	7.45 p	N-E	7.50 p	8.0 p	SW_2		$\operatorname{SE}_{\scriptscriptstyle{2}}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
kir- talo 8.15 p	5 p	9.45 p	W-S-E			Ē	E E	\mathbf{E}_{3}	, ×
2.30 a)a	3,0 a	SW	1.45 a	3.0 з	1		1	⊼ ¹.
2.50'a)a	3.20 a	S—E—N	-	[ĉ	国	∞	T°, 1 D¹.
3.47 a	ಡ	4.47 a	W— E	4.17a	5.0 a	$\overline{\mathbb{W}}_2$	W	0	/ [₹², B kirkkaita, toiset mutkik- kaita. @² ajoittain; ▲ 4.27 - 4.32 a.
$4.10\mathrm{p}$	d (4.35 p	W—S—E	Management	ł	W	W	$NW_{_{4}}$	
$6.26\mathrm{p}$	j p	7.12 p	S_{-N}	$6.45\mathrm{p}$	7.2 p	ν, T	∞ _∞	${\bf N}_{\!\scriptscriptstyle 2}$	/ [☑², ◎². Ukkospilvi kulki Tipasojan ja Sumpsan kylien yli.
6.35 p	d o	1	Ø	$9.15 \mathrm{p} 10.0$	10.0 p	W	W	\mathbb{W}_{\downarrow}	1 D.
7.7 p	j d	8.42 p	8.42 p WSW-N- ENE	7.48p 8.0	8.0 p	W _o	W	0	/ < NE:ssä kl. 11.42 p. Useita B löi lännen puolella maahan.
7.35 p	<u>d</u>	8.27 p	8.27 p W—NW—N	7.50 p	8.0 p	W	0	NW_{\downarrow}	/ 区。Päivällä puuskaisia, pienempiä (sadekuuroja.; synkkiä pilviä W.ssä.
8.10	d (8.10р 9.0 р	SW-NE	8.20 p	8.20p 8.50p	\mathbb{W}_2	0	NW_2	/ $[\mathbb{K}^2,~@^1,~\leqslant~8.0~\mathrm{p~SW};\mathrm{ssi}$ ja 8.40 p. / NE:ssä.
80.33	0p	8.30p 10.0 p	W-E	9.20p	$9.20 \mathrm{p} 10.30 \mathrm{p}$	NW_2	NW_2		
00	0 b	8.30p 9.40p	S-W-N	1		ı°	W	0	✓ 11.0 p In:ssa. 1✓.; salamat "nal- käiseviä.
9.6	9.0 p	decomp	S-W-N	ì		1			
8	3.55 p	4.5 p	N-S	1	1	SSE	Š	NE	[द¹, ≼ 3.45 p ja 3.50 p N:ssä.
4.5	430n	80 n	NW-N-NE	[and the same of	OC.	W	Ċ	

																					107	7	
		T°.			Kovimmillaan n. 6.0—7.0 p. Pilvet kulkivat kovaa, vaikka tuuli oli	(heikko, B—D = 3^{8} .	ार, ७॰.	••		(14-ilma kulki "hirmuisella myrs- kvllä" kl. 5.0−6.0 p niin. "että särki	mita irti sai". Ilma ennen lämpöistä,	nye vineampaa; cuun yieyy mana (N-myrskyksi.	₩°, ©°.	⊤°, ©°. Paksuja pilviä SW—NE.	[¶ kulki paikan yli, 1 salama iski suoraan zenitistä;@². Söderskärissä [¼ p ja @°.	M.	[[द. Salamat muuten kirkkaita ja laveita. @². ≤ 645 p NW:ssii ja 7.15 W:ssii.		T^2 , \varnothing^{1-2} .	∠ 7.35 p W:ssä ja 9.5 p NE:ssä(?) ∅		(1) voimakkaita; kl. 7.26 myrsky $0^{2}-1$. $T_{\rm e}=+20^{\circ}$. $T_{\rm i}=+13^{\circ}$.	
°	Z.	0	$\mathrm{SW}_{_{\delta}}$	$\vec{\Delta}$	囶	SE_o	1	νς.	W_2	1	NNW2 - 3	Ø	Z	SW ₂	0	\overline{NW}_2	W	N,	WSW_1	0	SW_2	W	0
NW	$\mathrm{SW}_{\scriptscriptstyle{4}}$	0	W	$\infty_{\rm s}$		z	1	S ₂ 0 NW.	\widetilde{W}_{8}	1	N_{8-6}	W	\mathbb{N}_{\downarrow}	SW_{2}	N	$\mathfrak{D}_{\mathfrak{c}_{\mathbf{l}}}$	N,	N.0	$\mathrm{SSW}_{\scriptscriptstyle{4}}$	9	SW_1	W ₁₀	W
NW	SW_6	WNW ₁	$ ext{WSW}_{{}^{\sharp}}$	SW_{6}	so.	SW_2	1	SW_3	SW_0	$NW_{_{\pm}}$	$W_{1}-\frac{1}{2}$	w	0	S.W.	W	ŝ	WNW	N	NNW.	SW_2	SW_1	W	0
5.45p 7.30p	7.45 p	1	11.30 a	$2.25\mathrm{p}$	в.0 р	5.0 p	4.50 p	$5.20\mathrm{p}$	4.58 p	1	$6.20\mathrm{p}$	5.15 р	$5.30\mathrm{p}$	5.20 p	$5.50\mathrm{p}$	1	7.0 p 10.5 p	7.21 p 8.52 p	11.23р	$8.45\mathrm{p}$		ill.	$9.55\mathrm{p}$
$5.45 \mathrm{p}$	$7.20\mathrm{p}$		11.15 a 11.30 a	2.0 p	4.0 p	4.30 p	4.0 p	5.0 p	$4.26\mathrm{p}$	-	4.45 p	5.0 p	$5.10\mathrm{p}$	$4.50\mathrm{p}$	5.38 p	1	7.0 р	$7.21\mathrm{p}$	$8.18 \mathrm{p} 11.23 \mathrm{p}$	8.0 p	1	7.35 p	$9.10\mathrm{p}_\mathrm{l}^\dagger$ $9.55\mathrm{p}$
. MN	N-E-SE	7.35 p WNW-WNW q 28.7	W-N	SW-SE-NE	NW-SE	W-E	NW-N-NE	NE-N-NW	WE		N-S	W-SW-S	NW-S	5.10p SW-NE-SE	N - S	NW-N-NE	W—E	W-E	9.33 p W-NNW-NE	8.45 p W—N—NE	E-NE-N	W-E	W-E
1	6.51 р	$7.35\mathrm{p}$	1.5 a 11.25 a	1	7.0 р	5.0 p	4.45 p		5.3 p	1	$6.20\mathrm{p}$	5.0 p	$5.10\mathrm{p}$		5.36p	8.0 p	9.20 p	9.0 p	$9.33\mathrm{p}$		8.40 p	$8.25\mathrm{p}$	10.20 p
1	$6.50 \mathrm{p}$	$7.15\mathrm{p}$	11.5 а	1	3.0 p	3.0 p	$3.25\rm{p}$	$3.30\mathrm{p}$	$4.15\mathrm{p}$	$4.20\mathrm{p}$	4.45p	4.55 p	5.0 p	5.0 p	5.35 p	$6.40\mathrm{p}$	7.15 p	$7.21\mathrm{p}$	$7.23\mathrm{p}$	$7.45\mathrm{p}$	7.57 p	8.0 p 8.25 p	9.8 p 10.20 p
Juuka	Vehkalahti	Sälgrund, majakka	Porkkala, "	Vaala	Lappeenranta		I.)	Viipuri	Kangaslampi	Rantsila	Tuusniemi	Miehikkülä	Hirvensalmi	Vaala	Loviisa	Nurmi (Vp. 1.)	Sortavala	Jänisjärvi	Heinäluoto, majakka .	Kurkijoki	Verkkomatala,loist.laiv.	Pälkjärvi	Jaakkima

okuu

P		K	1.4							
äivä	Havaintopaikka	t a	o	R	t s	t ₀	$\nabla_{\mathbf{f}}$	V _u	V_{Θ}	Huomautuksia
4	Sortavala	yöllä	yöllä		1		Pasaula	-	1	K
ĵ.		8.14 p	9.34 p	8.14p 9.34p wnw-z-ese		8.39 р 10.9 р	WSW.	WNW's	NNW.	[₹², @² pilvet synkkiä [≰ meni
)9		п. 230 а п. 3.0 а	n. 3.0 a	W-NE			SW	SSE_{i}	SSW_1	(Jicov carrico Praincarri y 11.
9	Sälgrund, majakka	4.15 a	5.15 a	5.15 a W-WNW-NW	5.15a	7.0 a	SE,	$\mathrm{SE}_{\scriptscriptstyle{2}}$	SE_3	·
2	Storkallegrund, loistol.	5.37 a	6.27 a	SSW-S-SE	4.57a	6.52 a	$\mathcal{N}_{\mathbf{c}}$	SSE_{t}	$\mathrm{SSE}_{\scriptscriptstyle{\downarrow}}$	
	Porkkala, majakka	П.0 а	11.0 a 11.50a	SW-N-NE			Ę	Ŧ	E	∠ 11.10 a SW:ssä ja 11.45 a N:ssä.
3		$ 11.50\mathrm{p} $	ĺ	闰	12.0 p	1	W	W	$\mathbf{W}_{_{\downarrow}}$	1°, ◎°.
2	Heinäluoto, majakka	$3.33\mathrm{p}$	4.3 p	SW-S		Para salan		1	1	T¹. ≤ 9.13 p ja 11.33 p N:ssä.
8	Kuopio	3.45 p	5.0 p	SE-SW	$4.15\mathrm{p}$	4.25 p	- Tomore	1		IZ° pitemm. väliajoilla, @².
*	Tuusniemi	4.0 p	$6.30\mathrm{p}$	W-NE	4.15 p	$6.45\mathrm{p}$	$S_{1-\frac{1}{2}}$	S_{1-2}	∞	
£	Hirvensalmi	5.0 p	5.5 p	S-N	m accommand		\mathbf{W}_2	0	0	₩.
	Mikkeli	$5.30\mathrm{p}$	$6.30\mathrm{p}$	SSW-SE-NE	$5.50\mathrm{p}$	$6.30\mathrm{p}$	W_2	W	W	₩°, ©°.
\$	Junka	1		M	-		-		1	K ja Ø W:ssä j. p. p.
33	Vartsilä	6.56р	11.0 р	6.56p 11.0 p WN-NE			SE_2	SE ₂	$\mathbf{SE}_{\!\scriptscriptstyle 2}$	₩.
*	Homantsi	7.54 p	11.22 p	7.54 p 11.22 p WSW-ENE	8.56p	8.56p 10.5 p	\mathfrak{T}_{i}	1		Tuulen kulkusuunta I Ξ aikana ja jälkeen SW ₂ —S ₂ , S ₂ SW ₂ —W ₄ —SE ₂ ja SE ₂ . Jo kl. 7.30 p oli I Ξ kuultu SW;ssä. B harvinaisen kenea; 1 à 2 B minutissa. Jyrinä eisiti ollut "kauheaa"; T oli varnaan korkeammalla ilmassa
t	Herrön majakka	8.49 p	8.49 p 11.19 p	SSW-NE	1	-	x.	20	ν.	۰
A	1. December of a	100 0	B 1K	C IXI N	0 9% ~	10 m	MIL	MIN	MIN	/ 151 10 10 to Chank to / K NIThough

																					109		
14.	[द¹ pilvet kulk. suunnassa W.	©, ©² kl. 8.0—9.0 p.	T, sen jälkeen tuli ilma kylmäksi.	[द॰ ja zenitissä; № 1.20 2.10 p sitten № Pilvet hävisivät, ilman että voitiin havaita minkäänlaista	erityistä pilven liikuntasuuntaa.		T.2.	[द², @², ▲ 2.5 p.	Ensim. D kova myöhemm. ⊤, @²,	[₹², ∅²; tuuli heikko. 7/VIII [≰.	▲ 2.5—2.10 a.	≼ 6.18 p SW:ssä ja 6.25 p NE:ssä.	Yöllä oli halla, niin että vaan ylemmillä paikoin olevat perunamaat suojeltuivat.	G° ja 10 p ≤° SE:ssä, 11 p ≤° E:ssä.	∅ 9.10 p. ≼ 9.45 p E:ssä.	▲ 8.23—8.26 p; ©° kuuroissa aina 10.20 p. Sen jälkeen taivas selkeni ja Eissä näkyi ≼² ainak. vielä 11.50 p.	$\mathbb{I}\mathbb{Z}^1$, \mathbb{Q}^2 ja \blacktriangle B $-$ D = 5^{8} .	$B-D=10$ s; \varnothing^1 , \blacktriangle , \checkmark .	$[\nabla_1, \otimes^1]$	▲ 9.15 a. @ kaiken päivää ajoitt.) @° vaan ennen ja jälk. K. Yöllä) oli ≰.		D°, @ ² .
1	granas	!	N,	°	I	Z	0	$\mathrm{SE}_{\scriptscriptstyle{\frac{1}{4}}}$	$\vec{\infty}$	∞	N_1	WSW_3	ŀ	1	SW_3	WSW_2]		İ	İ	₩,	SW_{2}	
		Ì	NW	SE,		NE	0	SE_{s}	∞	Ø	N_1	SW_3	$SW_6(?)$]	W	WSW ₃	l	[Avantorial	Ω̈́,	SW_2	<u>a</u>
I D		l	NW_2	0	l	SW	0	SE_6	∞_{\downarrow}	ω	W,	SSW_1	${\rm SW}_{_{\downarrow}}$	[SW_6	WSW			-	1	SŽ,	SSW.	a a
11.20 p	4.18a	-		5.0 p	1	3,35 р	1	$12.50\mathrm{p}$	1.45 p	$2.45\mathrm{p}$	2.45 a	8.30 p			$8.20\mathrm{p}$	8.45 p	n	[4.25 p	7.1 a 1.46 p
d02.11 dcc.01	0.18a	ŀ	!	1.10 p		$2.25\mathrm{p}$	1	$11.25\mathrm{a}$ $12.50\mathrm{p}$	$12.35\mathrm{p}$	2.0 p	2.0 a	5.45 p	1	-	$7.50\mathrm{p}$	8.2 p	$11.45\mathrm{p}$		-	l	1	9.55 a	7.1 a
Z I	SW-NE		E—SE	2.45 p NNW—SSE	WSW	N-S	S-W	NW-NE	$\mathbf{S}_{-}\mathbf{N}$	WNW-ENE	SW-E	SW-W-NW	S - N	∞	W-NW-NE	WSW	SW-N	SWE	国	$^{ m SW}$		S-E-NE	X
11.26p	2.48 a	л. 2.80 р	$1.30\mathrm{p}$		3.44 p	$2.45\mathrm{p}$	$1.34\mathrm{p}$	$12.30 \mathrm{p}$	$12.50\mathrm{p}$	2.45 p	2.15 a	$6.10_{\rm p}$	6.45 p	7.31 p	$8.10\mathrm{p}$	8.15p	-	1.10a	n.4.0a	1		1.15p	7.1 a
d92.11 d c.11	1.48a	n. 11.5 a n. 2.80	11.35 a	1.35 p	2.14p	$2.35\mathrm{p}$	11.19a	11.20a 12.30p	12.45p 12.50p	2.0 p	2.5 а	4.40 p	6.40 p	$7.30\mathrm{p}$	$7.47\mathrm{p}$	7.59 p	11.30p	0.35a	n. 3.0 a n. 4.0 a	8.30 a	8.35 a	9.50 a	6.6 a
Palkjarvi	Bogskär, majakka	Pernaja	Ersta	Loviisa	Utö, majakka	Miehikkälä	Herrö, majakka	٠.	Vaala	Tuusniemi	Verkkomatala,loist.laiv.	Porkkala, majakka	Hinnerjoki	Sälskär	Maarianhamina	Finström, Godby	Isokari, majakka	Isokari, "	Hinnerjoki	Nuutajärvi	Alastaro	Porkkala, majakka	Sauvo
,	œ	33	"	2	22	2	10	\$	\$	3	Ξ	*	٤	33	33	2	£	21	2	2	*	*	22

fat. o. Folk, H. 67, N:o 2.

190

Elokur

			2,						
Päivä	Havaintopaikka	t t t t	В	t t	t	$V_{ m f}$	n A	V _o	Huomautuksia
55	Salo	6.35 a 7.0 a	W-NW	6.50 a 11.30 a	30 a	SW_2	SW_{2-4}	\mathcal{X}_{c_2}	
3	Paimio	7.7 a —	Z	-	1	!	1		1 D, @ kaiken aamua ja aamupäiv.
2	Kisko, Toijan kartano.	8.30 a 10.25 a	W	а 11.	11.0 а	∝,	!	Ē	区, T ₀ = +110.
	Heinümaa	9.45 a 10.26 a	SW-W-NW	8.35 а 9.	9.50 a	SE_2	v,	SE,	
,	Sabbskär, majakka	100 a 10.46 a	되		1	-	-	1	·
2	Somero	10.20 а	\mathbf{x}	 R		ลี	1		∫ [द°; ensimmäinen [⊊ seudulla tänä kesänä.
2	Nuutajärvi	10.30 a 12.0 a	SE-NW	10.0 a 12.0	0 a	SE_2	$SE_{_{1}}$	$\mathrm{SE}_{_{2}}$	/ I¼² , ② ² 11.30 a. ▲ 11.2511.30 a. Ukonisku.
2	Maarianhamina	10.55 a 11.37 a	NW-ESE	11.5 а 11.20р	20 p	SE_2	WNW_{\downarrow}	NNW_{6}	(11.20 a B – D 3 s, @?. Sadekuuroja aina 6.35 p. 👟
2	Herrö, majakka	11.9 a 12.24 p	NW-E	10.19 a 1.19 p	19 p	NW	NW	NW_6	
	Finström, Godby	11.14 a 11.45 a	SW	11.22 а 6.5	$6.20\mathrm{p}$	SW_3	SW_3	NW_{10}	
	Sälgrund, majakka	11.15 a 11.25 a	W	-	-	ENE_2	SE_1	0	٠,
	Karkku, Linnainen	11.15 a n.1.0 p	SE-E-NNE 11.16 a		$1.23\mathrm{p}$	$\mathbf{x}_{_{\mathbf{i}}}$	Š	N	/ I⊈o; hetken aikaa vaan oli tuuli
2	Messukylä	11.20a 1.20p	SE-NW	ದ	1	W_2	ā	SE_{\downarrow}	AND VIEW DAY
	Tampere	и 11.30 а п. 1.30 р	E-S	1		SE	SE	SE_{5}	
	Ikaalinen.	11.35 а —	SE-NW			[-	1	
2	Ruovesi	12.40p 2.10p	W-S	1		闰	1	\mathbf{E}_{1-2}	⊤¹, @ kaiken päivää.
2	Sälgrund, majakka	. 12.45p 4.15p E-NE-N 12.30p 3.5	E-NE-N	12.30p 3.	2 P	0	$\operatorname*{SE}_{1}$	0	T°, @ alkoi uudell. illalla ja kesti keskiyöhön. 6.0 p alkoi kova NW- tuuli kest, kaiken yötä 7 å 8 Beauf. Kaluultav. kulk. Korsnäsin, När-
					_			,	l piön, Lappvärtin ja Karijoen yli.

Elokur

Р		K	h-d						ŀ	
äivä 	Havaintopaikka	T _e	-¢	<u> </u>	t	t _e	\	^ ^	>	Huomautuksia
15	Säbbskär, majakka	8.54 p	1.14a	$_{ m SW}$	1	1	1	1	1	T1.
	Inkoo, Svartbäck		1	-	}			SE_6	Į	≼ 10.30 p, @².
16	Sälskär, majakka.	$2.21\mathrm{p}$		M	1	1	!	1	ı	ن- ا
:	Somero, Pitkjärvi	$2.40\mathrm{p}$	t	S	1		$\mathbf{SE}_{\scriptscriptstyle{2}}$	-		la kaiken aamupäiv.
	Herrö, majakka	$2.49 \mathrm{p}$	5.34 p	SSW-NE			$\mathrm{SW}_{^{\dagger}}$	SW_{4}	$\mathrm{SW}_{_{\pm}}$	ĭ <u>,</u>
: :	Alavus, Norviiki	3.55 p	4.5 p	凶	1	1	E,	E ₂	E,	T°, Kuhmoinen T°.
: :	Messukylä	$4.20\mathrm{p}$	5.55 p.	E-S-W	$3.50\mathrm{p}$	6.0 p	-	1		
: :	Heinämaa	4.20 p	$6.10\mathrm{p}$	S-SE-E	$4.25\mathrm{p}$	$6.35\mathrm{p}$	SW_2	· W ₂	SW_0	
: :	Tampere	4.30 p	1	1	4.0 p	5.0 p	SE	I	$\operatorname{SE}_{\scriptscriptstyle{\Sigma}}$	
: 5	Vaasa	4.50 p	$5.20\mathrm{p}$	S-N	5.10p	$6.15\mathrm{p}$	NE	NE,	Ē	\(\sqrt{\omega}\), \(\int{\omega}\)!—².
: :	Riitiala	5.18p	$5.30\mathrm{p}$	田	$5.10\mathrm{p}$	6.0 p	SW_{1-2}	SW_{1-2}	0	3 D° E:ssä.
: \$	Pirttikylä	$5.20\mathrm{p}$	6.50 p	Ø	$2.20\mathrm{p}$	7.15p	$\mathbf{SE}_{\!\scriptscriptstyle{2}}$	国	v°	™.
	Laihia	5.43 p		7.35 p SE-E-NE	5.35 p	8.35 p	0	0	0	(O, alussa @². D² alussa pitem. väliajoilla. Salam. kirkkaita pitkiä.
2	Ruovesi	$5.55\mathrm{p}$	6.5 p	SW	5.30 p	7.25 p	$\mathrm{SE}_{\scriptscriptstyle{2}}$	Ì	ů	To, @2.
	Hirvensalmi	6.2 p	6.10p	SW-NE	5.40p	7.0 p		0	0	ĭ
	Porkkala, majakka	7.35 p	7.35 p 11.20 p	S-W-N	8.0 p	$8.10\mathrm{p}$	δ,	Š,	$\tilde{\mathbf{v}}$	≼ 8.40 p S:ssä ja 11.15 p N:ssä.
17	Porkkala, majakka	1.5 a		SSW-W-NE	1.0 a	1.40a	$\mathbf{v}_{\mathbf{i}}$	MSW_2	WSW_1	≼ 1.0 a SSW:ssä ja 3 40 a NE:ssä.
2	Salo	9.0 a	9.45 a	SW-SE	6.50 a	6.50 a 11.30 a	S_{2-4}	S _C	S_0	
	Verkkomatala, loist, laiv.	9.48 a	1	NW-N-NE	ı	1	SE_3	SE	SE_3	T°, 1 D.
	Nuntaiärvi	. 10.30 a		NW	1.	1	1 -	1	1.3	🕔 kaiken päivää; ajoitt. rankkaa.

																								113	3	
le, @* 0.25—2.45 p.	⊆ ² , ⊘ ² kl. 3.20—3.40 p.	区, @. Alatornio 区.	🔘 samalla aikaa.	٦٠.			$\lceil \mathbb{T}^{\circ}, \otimes \text{ hienoa; } \mathbb{T}_{\theta} = +18^{\circ}, \mathbb{T}_{j} = +14^{\circ}.$	/ Tuuliviiri näytti päivän kuluessa kaikkia eri suuntia.	区。.	Ŋ	T°, @ pisaroittain. Alatorniossa [द.	[⊈°, 1 D.		B-D=7 s.		2 D°.		.°°, ⊚°.	19 ja 20 p. tuon tuostakin .			٦٠.	pitkin iltaa.	Iद° oli Suomen lahdella.	sekä ennen että jälkeen	· • · • ·
되	ъ°	NW_2	1	°	SE_{2}	9	SW_2		M	NE,	БŢ	0	1	l	1	1	$\mathrm{SE}_{\mathfrak{g}}$	SW_2	SW_6	1	1	1	ß	$\tilde{\Sigma}_{z}$	1	ਕੁੱ
3	SE_{2}	NE	A	国"	SE_2	Ħ H	SW_2	ļ**	闰	₫*	NE,	NE,	İ			1	SSE_{7}	SSW_{4}	SW_6	1	1	1	8	SW_2	E	ਸ਼੍ਰ
গ্র	SE_2	N_{2}	1	Ē,	SE_2	E,	SW_2	0	Z	Ħ T	$_{2}^{N}$	$\overline{\mathrm{NE}_2}$	[1	[$\mathrm{SSE}_{\!\scriptscriptstyle 7}$	₩,	SW_6	1	1	1	∞	SW_2	Ŧ	ਛਾਂ
Ъ	4.30 p	4.35 p	1	8.0 p	1.5 p	$1.47\mathrm{p}$	3.5 p	а 11.45 а	7.0 p	l	Į		1	7.3 p	:	8.45 p	$7.15\mathrm{p}$	8.15 p	$9.50\mathrm{p}$		-	1	-		1	2.30 p 11.30 p
ಪ	$3.20\mathrm{p}$	$4.20\mathrm{p}$	1	6.0 p	$12.55\mathrm{p}$	$1.37\mathrm{p}$	$2.40\mathrm{p}$	10.5 a	4.0 p	1	1	1	-	$6.43\mathrm{p}$	1	$8.15\mathrm{p}$	7.0 p	$7.45\mathrm{p}$	$7.50\mathrm{p}$	J	$7.50\mathrm{p}$		1		10.0 p	2.30 p
W	S-SW-W	SWNE	NW	W-E	SE-NW	sE-s-w	SE-SW-NW	SE-S	E-S	$6.40\mathrm{p}$ SE $-\mathrm{S-SW}$	S. N	$_{\rm SE-SSE-S}$	S-W	ESE-SSE	NE	E-S-W	S-E-N	$_{\rm SSW-NNE}$	SW-W-NW	SE	SW-NNE	SE	8.20 p 9.50 p SW-W-N	W-S-E	WE	1
1.55 p	4.45p	4.5 p	1	7.1 p	1	1.47 p	3.30 p	3.55 p	6.0 p			1	[7.0 p	f	and the same of	7.35 p	7.50p	8.35 p	$8.15\mathrm{p}$	8.36 p	8.30 p	$9.50\mathrm{p}$	$9.10\mathrm{p}$	9.45 p 10 30 p	9.45p 9.45p
1.45 p	$2.10\mathrm{p}$	3.35 p	n. 4.0 p	2.0 p	1	12.57 p	$2.55\mathrm{p}$	3.5 p	5.0 p	6.0 p	6.5 p	$6.45\mathrm{p}$	n.9.0 p	$5.48\mathrm{p}$	6.9 p	7.0 p	7.18 p	$7.30\mathrm{p}$	$7.40\mathrm{p}$	8.0 p	8.3 p	8.15 p	$8.20 \rm p$	9.0 p	$9.45\mathrm{p}$	$9.45\mathrm{p}$
			•			•				ri.												•				•
akka	٠									arsa		rvi	rd.	akka	rd.	rvi			akila		akka.			ı.		ki .
maja				mi		ki.				Sam		schjä	ılegå	, maj	ılegâ	schjä			i, Br		, maj	sema	:d			[orvii
Sälgrund, majakka	Pirttikylä	Ylitornio.	Salo	Hirvensalmi	Vaala	Taivalkoski	Kuusamo	Pirttikylä	Simo	Inarijärvi, Saunarsaari	Ylitornio.	Inari, Nitschjärvi	Inari, Thulegård	Söderskär, majakka.	Inari, Thulegård	Inari, Nitschjärvi	Suursaari	Loviisa .	Vehkalahti, Brakila.	Helsinki.	Söderskär, majakka	Malmin asema	Miehikkälä	Loviisa .	Taavetti.	Alavus, Norviiki
17	2	20	*	*	18	2	2	2	2	2		£	2	19	2	2	2	2	2	8		*		\$	٤	

Elokuu

P		K	1				1	and a second		
äivä	Havaintopaikka	ئر ا	t o	跖	1ºe	t e	V	V _n	^	Huomautuksia
20	Viipuri	1	1	1	• 1	1	1		1	Yöllä [⊈, Ø ja ▲.
*	Söderskär, majakka.	$1.43\mathrm{p}$	2.7 p	2.7 p SSW—NE	1.48p	2.18p	1	1	!	B-D=12s.
ů	Rantsila	$1.50\mathrm{p}$		M	$2.45\mathrm{p}$	3.0 p	БŢ	¥	БŢ	1 D, @².
*	Loviisa	$2.25\mathrm{p}$	$2.35\mathrm{p}$	SW-NE	2.35 p	3.0 p	$SSW_{\mathfrak{s}}$	SW_6	SSW_{6}	[₹°, ◎².
2	Verkkomatala,loist.laiv.	4.51 p	5.0 p	5.0 p W—NW—N	5.8 p	5.13p	$\vec{\mathbf{z}}$	Š	$\vec{\mathbf{x}}$	
*	Inari, Partakon talo .	$5.15\mathrm{p}$	$530\mathrm{p}$	$530\mathrm{p}$ SE—S—SW	7.0 p	$7.20\mathrm{p}$	Ę	E	$\tilde{\mathbf{v}}_{z}$	[द", @". ≤ 6.30 p S:ssä.
*	Viipuri	5.30 p	5.45 p	5.45p SW-{W SE		5.35p 6.10p	Ω _ω	SW_{4-5}	SSW_{2-3}	(5.30 p. SW:ssä synkkiä pilviä. @2
2	Inari, Nitschjärvi	$5.35\mathrm{p}$	$5.40\mathrm{p}$	$5.40 \mathrm{p} \mathrm{SE-SSE-S}$		1	NE	NE	NE	(n. 0.10 p.
8	Korpilahti	$7.15\mathrm{p}$	Į.	S-E-W	$7.30\mathrm{p}$		ω		-	tullut runsaasti.
*	Kurkijoki	$7.25\mathrm{p}$		SE-E-NE		7.20p 7.30p	တ္ခ	$\vec{\infty}$	$^{\circ}_{z}$	ع-2; uudelleen ذ 7.408.0 p.
25	Lappeenranta	11.0 p 12.0 p	12.0 p		п. 11.0 р 10.0 а	10.0 a	国	国	国	✓ kl. 10.0—11.0 p.
22	Porkkala, majakka	7.0 а	7.10a	W—N	7.10a	7.50 a	SW_2	$\mathrm{SW}_{_{ullet}}$	SW_{δ}	4
22	Inari, Partakon talo .	12.30 p		Ø	1		NE,	1	1	
2	Karkku, Linnainen	$1.49\mathrm{p}$	$2.12\mathrm{p}$	N (?)	1.50p	1	1	1	1	
22	Vaala		1	N-S	1.55 p	25 p	Z *	N [*]	Z	
	Kajaani	3.35 p	3.50 p	NE-SW	3.40 p	4.45 p	$\mathbf{N}_{_{2}}$	$^{\circ}_{z}$	NE,	/ ≤ 3.30 p NE:ssä ja 3.55 p SW:ssä.
2	Heinäluoto, majakka .	5.13p	1	i	1	-	-	1	1	10.
2	Loviisa	$6.30\mathrm{p}$	$6.50\mathrm{p}$	W-N-E	1	1	W_2	0	0	·. 图
23	Sauvo	10.11a	1	NW	11.56a 12.36p	$12.36\mathrm{p}$	1	NE_{6}	NE	1 D, @².
:	Kurkijoki	12.45 n	1	NE.N.NW			W.S.	NE	147	M2 - 100 -

ı																						1	15		
14.00-14.00 p.; 14heor pion.,	1 D, ♠°.	区, @° ajoittain.	Mahdollisesti 2 [4-ilmaa.	T°, 2 D.	I文・、〇。 ajoittain. Kuuleman mu- kaan oli [文 13/VIII iskenyt erää- seen telefonipylvääseen Tiuossa.	٠٠٠	/ [₹¹-² vasta kl. 7.0 p. [≰ luultavasti korkeimmissa pilvikerroksissa.	区¹, @° ajoittain.	[독°. Pilvi pysyi kaiken aikaa N:ssä.	[₹⁰, ◎⁰.			.∘∑∫		·		T° , $B-D = 11^{9}$.	· -	T° ja ≼		-,⊥	-,⊥	T°. Pilv. suunta SW, B—D = 10 s.	.1.	▲ n. 4.5 p.
PAT	N	퇴	Z,	0	ğ.	0		NW_0	N	NE	NE_2	W	N,	সূ	0	ENE	1	SSE_{1}	1	SE_2	SE_3	EI I	1	ENE	1
₹N1	Ž	园	!	0	E	0	-	$NE_{_{\downarrow}}$	\mathbf{Z}_{z}	Ħ	NW_{4}	W_2	ı°	평	Z z	ENE	1	SE_{5}	1	SE_2	SE_3	SE,	1	E [‡]	1
TNT	ž	W_0	NW_1	NW	ন্ত্র	ı°		Ę	S.	W_{2}	°	W	0_	$\mathrm{SE}_{\scriptscriptstyle \mathrm{I}}$	NW_3	Ā		SE_5		SE_2	ESE_{5}	SE_3		च्	i
4.0 P	2.0 p	$4.40\mathrm{p}$	-	1	4.40 p	1	1	$4.40\mathrm{p}$		$6.10\mathrm{p}$	$5.52\mathrm{p}$	$6.20\mathrm{p}$		1	$5.45\mathrm{p}$	$6.13\mathrm{p}$!	8.0 p	10.0 p	10.0 p	7.15a	8.33 a 10.33 a	
0.1 que.21	1.15 p	1.15p	1	1	1.15 p			$1.15\mathrm{p}$		4.20 p	$5.27\mathrm{p}$	$5.50\mathrm{p}$		1	4.0 p	$5.23\mathrm{p}$	-		1	2.10p	$3.15\mathrm{p}\ 10.0$	$3.15 \mathrm{p} 10.0$	5.35 a	8.33 a	
N-W	S-W-N	W-NW	1	p SSE-E-NNW	$\mathbf{W} = \left\{ \mathbf{S} \mathbf{W} \right\}$	M	NW-N-E	E-SE	Z	N-NE-E	NW-N-NE	NW	4.13 p NW-W-SW	1.45 a 12.50 p (?) SW-W-N	5.5 p NE-ESE-SSE	NNW-NNE	s-NE	NW-SE	M	NE-N-NW	SE	ESE-SSE	SW-N	S-E	
	1	$1.20\mathrm{p}$	3.15 p	2.3	3.10 p	$3.15\mathrm{p}$	p n.8.0 p	5.5 p	4.15 p	4.15 p	4.52 p	1		$12.50\mathrm{p}$		5.23 p	1.0 a	2.19 p	I	$7.10\mathrm{p}$	$5.15\mathrm{p}$	$8.10\mathrm{p}$	6.30a	9.48a	i
	12.50p	1.0 p	$1.30\mathrm{p}$	$1.43\mathrm{p}$	2.50 p	3.0 p	3.0 p	$3.25\mathrm{p}$	$3.45\mathrm{p}$	4.0 p	$4.42\mathrm{p}$	4.50 p	4.0 p	11.45 a	$3.45\mathrm{p}$	5.3 p	0.10a	$1.32 \mathrm{p}$	$1.36\mathrm{p}$	2.5 p	3.5 p	$7.55\mathrm{p}$	5.0 a	8.33 a	ı
		•											•	•	•	•	•	•	•			 -			•
			inen						iki .					akka	2	-	5	2			1710	anna			inen
		بر.	Linns				·	٠.	Norvii		emi			maj		to,	•					ina)		to,	Linna
vaala.	Rantsila	Pirttikylä	Karkku, Linnainen	Viitasaari	Pirttikylä	Jalasjärvi	Haiko .	Pirttikylä	Alavus, Norviiki	Pielisjärvi	Kuhmoniemi	Ersta .	Suolahti	Porkkala, majakka	Sälgrund,	Heinäluoto,	Isokari,	Märketin	Sälskär,	Ahlainen	Salounna mainthe	Surgi ama	Isokari,	Heinäluoto,	Karkku, Linnainen
67	*	£	2	2	*	*		2	2	2	\$	£	24	ş;	ŧ		28	۶	×	£		2	53	£	31

Syyskur

P		K					ŀ	l.). -	
äi vä	Havaintopaikka	t t	t e	24	t _e	- G-	\ \	^ ¤	>	Huomautuksia
33	Karkku, Linnainen	°. 8.40 p	10.0	8.40p 10.0 p S-SWjaS-SE 9.5 p	9.5 р	1		S.	Ī	
5	Herrö, majakka	2.49 p	2.49p 4.34p	S-W(?)-NE	1		$\mathrm{SSW}_{\scriptscriptstyle{\downarrow}}$	$\mathrm{SSW}_{\scriptscriptstyle \downarrow}$	${\rm SSW}_5$	<u>[</u> ≰².
9	Kuhmoniemi	}	Į	W		1				☑ puolen päivän aikana.
6	Brändö	5.57 p	8.0 p	SW	5.0 p	9.0 p	SSE_6	$\mathrm{SSE}_{\mathfrak{g}}$	∞_{\downarrow}	T^1 .
10	Jyväskylä	n. 3.0 a	1	l	yöllä	6.0 a	-	Management		✓ myöh. illalla.
*	Kokkola			1	3.0 а	5.50 a	!	∞	I	
8	Lavia	7.20 a	8.30 a	S-N	7.40 a	8.45 a	W	W	S ₂	[₹², sal. kirkkaita; @², ≰ 7.0 a S:ssä.
"	Brändö	8.0 a	8.10a	W		1	$\mathbf{x}_{_{\!\!\!4}}$	S		T°, @° kuuroja.
	Lauttakylä	9.9 a	-	S-SE-E	9.6 a	9.19a	SE	∞	SE	
	Riitiala	4.10 p	4.40 p	W—E	4.0 p	5.0 p	∆ ₀	Ω _ω	Ω_{c_1}	
2	Utö, majakka	4.14 p	$7.24\mathrm{p}$	1	ĺ		1	{		
*	Lågskär, majakka	$4.20\mathrm{p}$	4.55 p	SW-NE	$4.25\mathrm{p}$	5.0 p	∞_{\downarrow}	SW_4	SW_{\star}	
"	Herrö, " · ·	4.24 p	$6.29\mathrm{p}$	SE-E-N	3.59p 6.4 p	6.4 p	S _{ro}	S _{ro}	ಹ್ನ	区。, @2.
r	Maarianhamina	4.28 p	$5.15\mathrm{p}$	SW-S-E	$4.30\mathrm{p}$	$5.20 \mathrm{p}$	$\tilde{\mathbf{x}}$	$\mathbf{x}_{\mathbf{z}}$	$W_{\mathfrak{g}-2}$	$B-D = 10 s 4.58 p. [\mathbb{Z}^1, \mathbb{Q}^1].$
z	Ruovesi	$4.42\mathrm{p}$	4.42p 10.5 p	SW-N			S.	ı	δ,	T°, @°.
2	Alavus, Norviiki	$5.20\mathrm{p}$	$5.35\mathrm{p}$	5.20p 5.35p SE-E-NE	$5.40\mathrm{p}$	$5.46\mathrm{p}$	$^{\infty}_{s}$	Ω̈́	∞	
"	Hangon majakka	5.50 p	5.55 p	SSW	$6.15\mathrm{p}$	$6.30\mathrm{p}$	SSW_3	SSW_4	SSW_3	2 D, ⊚¹.
4	Mynämäki	5.55 p	$6.40\mathrm{p}$	S-N	6.0 p	7.10p	\vec{s}	SS.	ΣΩ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8	Finström, Godby	6.10p	$6.30\mathrm{p}$	SE	5.57p $6.50p$	6.50p	SW_2	SE,	SW_2	≼ 8.30—10.30 p NE:ssä.
\$	Sauvo	1		l	6.11 p	$6.21\mathrm{p}$	1	SW		≼ 8.56 p N:ssä.
1	(Danesland			C T CT	B. A.m	R Onm	Ö	a	SIX	M2 nthossadatta

	[₹² kl. 4.18 a.	SSW_2	w.	v.	6.3 а	5.3 a	W-N	4.33 a	1.33 а	Heinäluoto, "	33
	[द, द, 0.6 a ja 2.4 a. @°.	ESE_{2}	SE_{2}	SSW_2	2.6 a	1.6 a	s_{-s}	1	0.6 a	Ulkokalla, majakka.	11
17		1	l	I	1	1	Z	ı	$10.30\mathrm{p}$	Jalasjärvi	2
1	[¼¹, @° ja ≰.	SSW_2	$\mathrm{SSW}_{\mathtt{t}}$	SSW_2	0.6 a	$10.21\mathrm{p}$	MS-M	0.6 a	$10.21\mathrm{p}$	Ulkokalla, "	2
		SE	$\mathrm{SE}_{_{\!$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	0.30a	10.0 p		0.0 p 0.30 a	10.0 p	Tankar, majakka.	2
	/ ≤ 9.10 p SE:ssä. Г≼² pysähtyi ze- (mitiin. @².	a.	v.°	$^{\circ}_{\circ}$	п	10.20p	$_{ m SE-Z}$	9.45 p 10.35 p	$9.45\mathrm{p}$	Vaasa	2
	← 9.12—9.10 p N.SSa. 1← a.ussa, kovimmill. SSW:ssä. @'—² n. 12.0 p.	$\mathrm{SE}_{\scriptscriptstyle{1}}$	$\mathrm{SE}_{\scriptscriptstyle{\frac{1}{4}}}$	ESE,	п	10.42 p	$9.32\mathrm{p}$ $11.27\mathrm{p}$ wsw-ssw-sse $10.42\mathrm{p}$	$11.27\mathrm{p}$	$9.32\mathrm{p}$	Helsingkallan,loist.laiv.	3
	≼ 8.45 p SE:ssä ja 11.55 p E:ssä. ∅².	$\tilde{\Sigma}_{z}$	N _e	$\infty_{\!$	$9.35\mathrm{p}$	$9.15\mathrm{p}$		1		Merenkurkku, Snipan, loistolaiva	2
	₹ 9.0 p.	N _{zo}	S.	$\mathbf{z}_{\mathbf{z}}$	Į	Ì	No.	10.0 p	9.0 p 10.0	Tampere	2
	$\lceil \mathbf{\zeta}^2, \text{ kirkk. } 0^1.$		1	1	1	9.50p	S-SW-W	9.0 p 9.30p	9.0 p	Lapua	"
	B "leveitä"; ilma lämmintä; @¹.	v,	$\tilde{\Omega}$	νĵ.	12.0 p	10.0 p 12.0	S-W-N	8.43p 11.0 p	$8.43\mathrm{p}$	Laihia	2
		S.	$\infty_{\mathbf{z}}$	νĵ.	u ,	$8.40\mathrm{p}$	$\mathrm{W}{-}\mathrm{E}$	3.40p 9.10p	$8.40\mathrm{p}$	Riitiala	2
	≼ 8.30 p NW:ssä ja 9.30 p N:ssä. ⊗ ∘.	ą.	$\vec{\mathbf{v}}$	Ω,	1	١		$8.45\mathrm{p}$	$8.30\mathrm{p}$	Hattula	£
	7°, ₹² 8.16 p ja 11.30 p E à S·ssä.	1	· Management	1		i	ſ	1	$8.16\mathrm{p}$	Valsörarna, "	2
	14., salamat kirkaita ja "levelta". Niitä oli muunmuassa zenitissä.	SW_3	SSE_3	SSE_3	8.55 p 10.15 p	8.55 p	S-NE	$9.45\mathrm{p}$	8.15 p	Sälgrund, majakka	\$
		.	N _c		9.0 p	1	σΩ	8.45 p	$7.59\mathrm{p}$	Karkku, Linnainen.	3
	$\int \mathbb{I} \mathbb{Z}^2, \langle 7.47 \text{ p SW:ssä. BD} = \text{pitkä,}$ mitta \mathbb{D}^2 . $\equiv 2$.	SSW_3	SSW_6	SSW_{\downarrow}	9.7 р	8.47 p	W—S-NE	9.7 р	8.7 p	Merenkurkku, Norrskär majakka	2
	≼ 8.27 p E:ssä ja 10.17 p ESE:ssä.	$\infty_{\rm s}$	$\tilde{\Sigma}_{z}$	νĵ,	1	1	I	$7.49\mathrm{p}$	$7.22\mathrm{p}$	Storkallegrund, loistol.	\$
		$_{\rm SSW}$	SW	∞	8.9 p	7.24 p	S_{-N}	$7.54\mathrm{p}$	7.9 p	Lauttakylä	ü
	⊠¹, ⊚.	1	I	1	$8.34\mathrm{p}$	$7.14\mathrm{p}$	sw-nw	$8.14\mathrm{p}$	7.4 p	Säbbskär, majakka	33
	2 D.	1	1	∆ v	1	6.0 p	Z	$7.10\mathrm{p}$	7.0 p	Kisko, Toija	ž
	/ [文'. Joku rakennus, luultav. riihi (W:ssä paik. oli isk. kautta syttyn.	ಶ್ತ	ESE,	ESE,	9.0 p	7.15 p	S-SW-N	8.0 р	$6.45\mathrm{p}$	Huittisten kikylä	2
	$oxed{\mathbb{Z}_2}$.	1			7.5 p	$6.45\mathrm{p}$	-	$7.05\mathrm{p}$	$6.45 \mathrm{p}$	Isokari, majakka	\$
	[₹°, ◎⁰-1.	Ŋ,	S.	w.	$8.20\mathrm{p}$	7.15 p	SW-W NW	7.20 p	$6.20\mathrm{p}$	Alastaro	t
		-	1	02		d ree	NI-TI-C doc', doz'c	dac.	dozo	могланити	ΩT

yyskuu

P		Ľ,	N -1							
äivä	Havaintopaikka	يْد	t _o	ZŽ	t a	وب ا	Vf	va n	>°	Huomautuksia
11	Kokkola	3.0 a	3.40 a	E-S	4.0 a	6.30 a	ß	Σ_1	$\mathbf{z}_{\mathbf{z}}$	T, @1-2.
£	Bogskär, majakka	4.8 a	4.53 a	S-SE-E	4.27 a	4.48 a	$\mathrm{SW}_{_{\!$	SSW_{δ}	SSW_3	$/ \mathbb{K}^1$, $@^{\circ}$. B - D = 6 s. $<$ 0.48 a SW:ssa ja 5.23 a E:ssa.
2	Säbbskär, "	5.49 a	9.34 a	SE	1	1	l	l	1	·
32	Loviisa	6.30 a	6.50 a	SW-NE	6.0 a	8.0 a	ΔŽ	SW_4	SW_2	[₹², @².
33	Kemiö			NW	1		1	anguaran ang		2 D päiv. @ kaik. päiv.
*	Porkkala, majakka	7.0 a	7.20 a	SW-N	7.10a	7.35 a	SSW_2	SW ₃	SSW_3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
"	Hinnerjoki	n. 730 a	1		.	1	1	1	1	1 D.
*	Lavia	7.30 a	9.10a	SW-NE	8.0 a	$9.40\mathrm{a}$	SW_2	SW_3	SW_1	
8	Hangon majakka	8.0 a	8.0 a 11.45 a	ENE	1	l	SSW_3	SW_4	SW_3	[\(\infty\) \(\infty\) kuurottain.
33	Kisko, Toija	8.30 a		ω.	I		SE_2	-	.1	
*	Verkkomatala,loist.laiv.	8.35 a	9.50a	M-MS-S	9.2 a l	a 10.5 a	SSW_3	SW_3	SW_2	
2	Lauttakylä	8.56a		ļ			ŀ	1	-	
\$	Viipuri	9.0 a	9.0 a 10.30 a	MSS	9.15 a 11.0	11.0 a	SSW_2	SSW_{1-2}	SW_{3-4}	T°, @° kuurottain.
\$	Heinämaa	9.12a	9.12a 11.25a	SW-NE	10.45 a 11.15 a	11.15 a	SW_2	SW_{\star}	W_2	Δ 10.50—11.0 a; 10.45 a T = +16 ja 11.0 a = +10.5.
2	Huittisten kikylä	9.15 a	9.15a 10.30a	S-SW-NW	10.50 a 11.0	11.0 a	$\Sigma_{\rm s}$	Ω,	S ₂	T°, ©°. T=+12°, b=759.5 mm.
8	Alastaro	$9.20\mathrm{a}$	9.20 a 10.20 a	SW-E	9.30 a 10.20 a	10.20 a	S.	SW_2	$\Sigma_{\mathbf{z}}^{0}$	\mathbf{K}^{1-2} . \triangle 9.50 – 10.0 a, \bigcirc 3.
£	Uusikirkko	9.20 a 10.0	10.0 a	s_{-N}	9.30 a 10.5	a c.01	$\infty_{_{2}}$	N,	$\tilde{\mathbf{v}}_{\mathbf{z}}$	[⊈¹-². ▲ 10.30 a.
33	Riitiala	9.30 a	9.30a 9.50a	W—E	1	1	1	1		©2.
**	Karkku, Linnainen	9.58 a	9.58 a 11.18 a	W	10.13a 11.18a	11.18a		SE ₂	1	

																						119	
G ² . Ukonisku. @² kuurottain.	🔘 tois. rankkaa.	[द्र°, @ kaik. pāivāä; edellis. yönā ≰ S:ssä.	/ [द°; 7.0 p @² noin 10 minuuttia; tuuli saman aikaa noin 10 Beauf.		区°, ©° pisaroittain.		[☑¹, ◎⁰-¹.		\(\sigma^2\).	⊥°, ©°.	\(\begin{aligned} \G \rightarrow \alpha \rightarrow 		Ø vähän väliä; ز n. 2.0—3.0 p.		I⊊°, @¹. @ myösk. varemmin päiv.	/ [द², @¹-². Pilvet hyvin matalalla ja "pyörteisliikkeessä".			I ▼ Ulkokalla.	"Ukkossadetta" @²kl. 3.30—3.45 p.		{ Iद°, ▲ 1.10-1.12 p, @ pitkin päi- vää; ilma verrattain lämmin.	⊤°, ▲ 3.10-3.15 p.
1	$SW_{_{4}}$	1	W_8	$\mathrm{SSE}_{_{1}}$	WSW_3	ŝ	$\tilde{\Omega}_{c_1}$	W	$\mathbf{x}_{_{\!\!4}}$	Ω _σ	SW_0	Z	1	SE_{2}	s,	SW_3	WSW_5	$^{2}_{2}$		0	NW_1	W_1	Z _z
I	ಬ್ಹ	1	W	$\mathrm{SSE}_{\scriptscriptstyle 2}$	WSW_6	$\infty_{\frac{1}{4}}$	$\delta_{\mathbf{z}}$	W	လ္ရွိ	$\vec{\mathbf{v}}$	SW_6	SSE	1	NW_2	∞_{\downarrow}	WsW_{7}	WSW_4	w.		Ħ ₂	NE_1	\mathbb{W}_{1}	N_2
1	SW_2		\mathbf{W}_2	$\mathrm{SSE}_{_{\mathbf{I}}}$	$\Sigma_{\rm s}$	∞_{c_1}	S_2	W	Š	v.	SW_o	$\tilde{\mathbf{x}}$		W	$\vec{\Delta}$	SW_3	SW_5	$\tilde{\mathbf{v}}_{z}$		$\tilde{\mathbf{v}}_{\mathbf{s}}$	$\mathbf{\overline{B}}_{\mathbf{I}}$	SW_2	N _*
n. 11.0 a	$12.20\mathrm{p}$	1	$1.30\mathrm{p}$	$1.40\mathrm{p}$	$12.16\mathrm{p}$	1.15 p	$12.45\mathrm{p}$	2.0 p	$1.15\mathrm{p}$	I	$2.20\mathrm{p}$	$9.10\mathrm{p}$	I	$2.42\mathrm{p}$	3.15p	4.10p 4.30p	4.45 p	$5.35\mathrm{p}$	6.18p	3.30p 4.0 p	0.10an.8.0a	2.50p 3.15p	5.0 p
n. 10.0 a n. 11.0 a	$11.30\mathrm{a}12.20\mathrm{p}$		11.0 a	$12.20\mathrm{p}$	12.9 p 12.16p	12.5 p 1.15 p	12.0 a	12.0 a	12.50p 1.15p	1	12.32 p	$8.30\mathrm{p}$	1	2.3 p	3.0 p	$4.10\mathrm{p}$	4.15p	5.15p	$5.25\mathrm{p}$	3.30 p	0.10a	$2.50\mathrm{p}$	4.0 p
l	S-N	s	N-NE-E	NW-SE	W-NE	S-N	12.0 a 12.45 p S—W—NW 12.0 a 12.45 p	1	E-W	S-W	SE-NW	M	S-N	NW-N-NE	W-N	SSW-S-SE	SW-S-E	S-N	W— E	E-W	SW-S-E	SW-W-E	Z
n. 11.0 a	12.0 a	11.30 a	$2.50\mathrm{p}$	11.45a 1.10p	12.26 p	1.5 p	12.45 p	1.0 p	$2.40\mathrm{p}$	12.28 p	12.20p 1.37p	-	3.0 p	$2.25\mathrm{p}$	$3.10\mathrm{p}$	4.37 p	4.18p 5.3 p	$5.20\mathrm{p}$	6.8 p	ļ	0.52 a	3.5 p	1
n. 10.0 a n. 11.0 a	10.20 a 12.0	10.30 a 11.30 a	10.50a	11.45a	11.47 a 12.26 p	11.48a 1.5 p	12.0 a	12.0 a	12.15p 2.40p	$12.16 \mathrm{p} \ 12.28 \mathrm{p}$	$12.20\mathrm{p}$	n.1.0 p	2.0 p	$2.19\mathrm{p}$	$2.50\mathrm{p}$	$3.52\mathrm{p}$	4.18p	$4.45\mathrm{p}$	5.48 p	l	$11.11\mathrm{p}$	2.45 p	$3.30\mathrm{p}$
Kyrön asema	Kurkijoki	Nuutajärvi	Ersta	Sortavala	Hanhipaasi, majakka	Jaakkima	Hattula	Tampere	Pälkjärvi	Ruovesi	Värtsilä	Jyväskylä	Lappeenranta	Viitasaari	Taavetti	Koivisto	Verkkomatala,loist.laiv.	Uusikirkko	Pihtipudas	Vaala	Verkkomatala, loist. laiv.	Somero	Ersta
11		*	*	2			2	,	2			2	£	*	2	. *	2	2	2	12	13	*	*

Pä		K		ſ				1		
iivä	Науаіптораікка	a _e	₽°	궠	ta	t _e	>	>	>°	Huomautuksia
13	Verkkomatala,loist.laiv.	3.40 p		NE-E-S	3.55p 4.45p	4.45 p	W ₃	, N	WNW ₂	1 D. Pilvet hyvin synkkiä NE:stä S:ään. Tuuli oli N vaan n. 10 m.
2	Hinnerjoki	4.55 p		Z	. [1	Z,	N_{4-2}	Z,	1D @.
16	Parainen	$9.50 \mathrm{p}$	$9.52\mathrm{p}$	WE	$10.15 \mathrm{p} 10.25 \mathrm{p}$	$10.25\mathrm{p}$	0	W_2	0	≼ 9.40 p W:ssä.
17	Pudasjärvi	3.40 a	4.0 a	E-S-W	-	1	NW_2	Z	N_2	≤ 9.0 p E:ssä.
33		11.34p 1.29p	$1.29\mathrm{p}$	W-S-N			SSW_3	SSW_3	W	\mathbb{N}^2 .
18		11.10p	1.15p	11.10p $11.15p$ $SW-W-N$ 10.0 p $11.25p$	10.0 p	11.25 p	SW_8	WSW_9	SW_8	≼ 9.40 p SW:ssä ja 1.0 a N:ssä.
20	Herrö, majakka	$3.24\mathrm{p}$	$5.34 \mathrm{p}$	3.24p 5.34p SSW-E-NE			∞_{z}	$\mathbf{v}_{\mathbf{z}}$	Ω _ε	
X 3	Salgrund, majakka	8.35 p 8.36 p	8.36 p	SW	8.15p	9.15p	NW ₈₋₁₀ (?)	8.15 p 9.15 p NW ₈₋₁₀ (?) NW ₈₋₁₀ (?)	WNW	Tuuli "rajumyrskyn tapaánen" noin 25 m.; ennemmin päivällä oli se ollut SW à SSW ja 6 à 7 Beauf., n. kl. 8 se yhtäkkiä kääntyi NW. Tuuli yöllä kova. 1 D.
17	Verkkomatala,loist.laiv.	1.5 а		M	Ì		SE_3	S	$\mathrm{SSE}_{_{2}}$	Tuuli I≼ jälkeen SSW ja se oli seur. päiv. noin 8 Beauf. Lämpötila pysyi muuttumattomana.
18	Paimio	9.30p 9.35p	9.35 p	NW	9.30 p	9.30p 9.35p	1	$ m NW_{10}$	l	≼ n. 11.0 p NW:ssä. Rajumyrskyn tapainen tuuli ▲, ⑤ ja ſ록 5 minutin aikana. Seuraavana aamuna huurretta ja kylmyysasteita.
\$	Kisko, Toijan kartano. n.11.0 p.n.11.5 p	п.11.0 р п	. 11.5 р	1	İ			1		(@², ▲ ja ≼ kovan myrskyn ohella n. kl. 11.0 p ja riitti rajuilma n. 5 minutia.
33	Porkkala, majakka	. 11.10p 11.15p	1.15 p	SW-N	10.0 p 11.25 p	11.25 p	1	Tanana a		区1, @1.

						_
		Helsinki ▲ 10.10 ja ع-².	[五(3)]		1 B.	
1	${\rm SSW}_4$	1				
	SW_{\downarrow}	pro-risema.	W (?)		1	
I	SW		W (?)		1	
1	I	1			!	
1	Į	l			1	
-		W-E			$^{\mathrm{SW}}$	
0.30a	03 a	n. 2.0 a	1		1	
$11.30\mathrm{p}$	t.laiv. 11.51p 03 a	n 1.0 a			. 11.0 р	
Söderskär, majakka.	Verkkomatala, lois	Loviisa	Loviisa		XI 14 Ikaalinen	
<u>∞</u>	19	*	§3		XI 14	
. +	0	E'al	11-	п	67	7

at. o. Folk, H. 67, N:o 2.

Liite II.

Havaintopaikka	Lääni	Havain	Havaintopaikan asema	Havainnon tekijä	Arvo	Aika, jolloin havainnon tekiiä on ollut
٦		ф	У			toimessa
Ahlainen	Turun ja Porin	61°41′		3° 19′ W K. J. Inberg	Herra	23/6—28/8
Alastaro	£	80 58	2 6 "	Mikko Havia	\$	1/5—31/12
Alavus, Norrviiki	Vaasan	62 24	1 33 "	A. Norrvik	Maanviljelijä	$^{1}/_{1}$ $^{-31}/_{12}$
Bogskür, majakka	Turun ja Porin	59 30	4 36 "	Konrad Lindström (W. Montell	Majakanpäällikkö "	
Bromarf, Sommarbo .	Uudenmaan	60 1	1 52 "	Anders Donner	Professori	3/6—19/9
Brändö	Turun ja Porin	60 25	5 54 "	H. O. Mäkelä	Kirkkoherra	9-10/9
Enontekiö	Oulun	68 24	1 21 "	Yrjö Halonen	Lukkari	1/1-31/12
Ersta	Hämeen	29 09	0 52 E	E. Lindstedt	Herra	29/7—11/9
Finström, Godby	Turun ja Porin	60 14	4 57 W	W L. W. Fagerlund	Lääket. Tohtori	1/1-31/12
Frantsila	Oulun	64 30	0 40 E	Alf. Hanell	Kirkkoherra	
Hamina	Viipurin	60 34	2 15 ,,	A. E. Elenius	*	25/7
Halsua	Vaasan	63 28	0 47 W	E. Lilius	Herra	4/4
Hangon majakka	Uudenmaan	59 46	1 59 "	E. Nylund	Majakanpäällikkö	1/1—31/12
Haiko, Kallnäs	6	60 21	0 40 E	A. F. Sundell	Professori	3/6—23/8
Hanhipaasi, majakka .	Viipurin	61 19	5 54 "	(E. V. Eriksson M. Piiparinen	Majakanpäällikkö "	} 1/1-31/12
Hattula	Hämeen	61 4	0 34 W	0 34 W J. Arho	Ylioppilas	
Heinola	Mikkelin	61 12	1 56 E	Frans Rönholm	Herra	11/,8/,

3/6-25/7	Ylioppilas	" Alfr. Wiitala	0 10 "	52 0	90 2	Hämeen	Järvelä
/1/12	Proviisori	(E. Mansnerus	#			Vaasan	Jyvaskylä
70	Herra	J. V. Sahlstein	47		69	Vescen	Turniohmis
/73/8	Kirkkoherra	F. F. Alcenius	18 E	14 4	63 1	Kuopion	Juuka
	Metsäherra	A. Ahlberg	11 W	29 2	62 2	Vaasan	Jalasjärvi
	Herra	E. Zink	14 E	1 5	61 31	Viipurin	Jaakkima
1/1—31/12	Majakanpäällikkö	K. A. Karlsson	57 "	es es	60 43	Turun ja Porin	Isokari, majakka
22/6—29/6	Kirkkoherra	G. Durchman	37 "	1 2	63	Vaasan	Isokyrö • · · ·
1/6-15.8	Rehtori	M. Brenner	39 W	1 0	09	Undenmaan	Inkoo, Svartbäck
1/1—31/12	Metsäherra	M. W. Wænnerberg	16 "	6 2	69	*	" Thulegård
26/6; 7—9/7; 2/8—20/8	*	Onni Ollila	51 "	36 3	69 3	£	" Räkkijärvi
19/6—22/6		J. H. Saarinen	42 "	0 1	68 30	*	" Laanila
22/6-27/6; 6/7		Onni Ollila	12 ,,	34 4	69 3	£	" Jankkila.
25/6-27/6; 22/6	Insinöri	J. H. Saarinen	21	54 2	68 5	Oulun	Inari k:kylä
8/9/_1	Metsäherra	G. E. R. Wasastjerna	57 E	1 5	62 41	Kuopion	Ilomantsi
,,	Kansakoulunopettaja	W. Korhonen	. 89	52 1	61 5	**	" Riitiala
*	Opettaja	Aatu Kokko	53 "	46 1	61 4	*	Ikaalinen
,,	Kruunuvouti	Karl Lydén	16 W	1 2	61 11	Turun ja Porin	Huittinen
	Herra	A. Tanttu	13 E	38 2	61 3	Mikkelin	Hirvensalmi
23	Kirkkoherra	Herman Miettinen	57 "	0 2	19	*	Hinnerjoki
1/1-31/12	ε	F. F. A. Grönlund	46 "	58 4	59 5	Turun ja Porin	Herrö, majakka
$\begin{cases} 26/5 - 11/11 \end{cases}$	4	Carl E. Wahlberg	M ⊗	2	63 37	Vaasan	Helsingkallan,loist.laiv.
6/ 9/	26		P.		00	Tompon	nemanaa
37 1117	A AL MARKED COLL	,	F		9	11:	:
11 / 12	Fil maisteri	W. Öhonist.			• }		
1/1-31/12		Meteorol. Keskuslait.	0	0 0	60 10	Uudenmaan	Helsinki
	Rehtori	M. Brenner					
1/1-01/12	Majakanpäällikkö	Frans F. Berglöf	61° 16' 6° 46' E	6, 6	6101	Viipurin	Heinäluoto, majakka .

Havaintopaikka	Lääni	Havain	Havaintopaikan asema	Havainnon tekijä	Arvo	Aika, jolloin havainnon tekiiä on ollut
4		φ.	У	, and a second		toimessa
Jämsä	Hämeen	$61^{\circ} 53'$	0° 15′ E	H. Salonius	Herra	1/6-30/6
Kaarina	Turun ja Porin	60 27	2 37 W	37 W Artur Forsell	Fil. maisteri	3/6
Kajaani	Oulun	64 13	2 49 E	Maria Renfors	Neiti	1/1-31/12
Kangaslampi	Mikkelin	62 17	3 15 ,,	A. Hukkanen	Kirkkoherra	15/7-4/8
Kankaanpää	Turun ja Porin	61 48	2 33 W	K. H. Lindfors	*	20/6-16/7
Karja	Uudenmaan	60 4	1 17 "	C. M. Wikström	Tilanomistaja	18/5—25/7
Karkku, Linnainen	Turun ja Porin	61 23	1 58 "	f Edith Hjelt Hjalmar Hjelt	Ylioppilas Fil Tohtori	\\ \begin{cases} \frac{11}{4} \- \frac{1}{8}; \frac{11}{8} \- \frac{30}{9} \end{cases}
Kemiö		60 10	2 13 ,,	Maria Hedberg	Neiti	1/1-31/5; 1/8-31/12
Kisko, Toija	*	60 16	1 31 ,,	Sofi Rosell	*	$^{1}/_{1}$ — $^{31}/_{12}$
Kitee	Kuopion	62 6	5 10 E	Lauri Hendell	Fil. maisteri	2*/6
Kokkola	Vaasan	63 50	1 49 W	Knut Cajanus Edv. Bengelsdorff	Herra Asemapäällikkö	} 1/131/12
" Ykspihlaja .	\$	63 51	1 55 "	. , ,	*	*
Koli	Kuopion	63 7	4 48 E	Lauri Hendell	Fil. maisteri	29/6
Koivisto	Viipurin	60 22	3 41 "	K. K. Talvinen	Herra	30/6, 11/0
Korpilahti	Hämeen	62 10	0 37 "	A. L. Vilén	Kirkkoherra	$\frac{1}{1} - \frac{11}{6}$; $\frac{21}{6} - \frac{31}{12}$
Kirkkonummi	Uudenmaan	60 12	0 38 W	38 W Axel Heinrichs	Fil. tohtori Professori	$\left. \frac{1}{7} - \frac{2b}{7} \right _7$
Kuhmoinen	Hämeen	61 34	0 15 E	M. A. Levander	Kirkkoherra	1/1-31/12
Kuhmoniemi	Oulun	64 6	4 34 "	Onni Lindblad	Herra	3
Kuopio	Kuopion	62 54	2 43 "	Milma Malmström	Rouva	"

		,							
\ 20/5—7/8	Fil. maisteri Vlioppilas	61 41 2 18 " (A. W. Nordström	8	18	0.1	41	61	Mikkelin	Mikkeli
8/0/_	Kirkkoherra			640	7	4.1	8	VIIPurin	Michikkala
(4/ 26/	Fil. maisteri	(Lauri Hendell	Ē	4	c		00	Λ.:	M: 1. 11-1-:: 1::
1/1-18/8	Herra	B. Grahn	8	2	_	29	61	Hämeen	Messukylä
*	*	Aug. Uppman	33	22	4	14	63	2	Merenkurkku, Norrskär
2	æ	W H. W. Gylander		12	4	26	63	Vaasan	loistolaiva
									Merenkurkku, Snipan
*	Majakanpäällikkö	M. L. Borén	国	23	0	$^{\circ}$	65	Oulun	Marjaniemi, majakka .
$^{1}/_{1}$ — $^{31}/_{12}$	Kapteeni	Herman Korsström	\geqslant	Ι	2	9	09	Turun ja Porin	Maarianhamina
9/6-27/8	Fil. maisteri	Aleksander Dahl	国	4	0	15	09	Uudenmaan	Malmi
1/1—31/12	Majakanpäällikkö	Emil Holstius	≽	3	5	51	59	Turun ja Porin	Lågskär, majakka
20/5-31/12	Proviisori	J. R. Gössling	回	17	1	27	09		Loviisa
$^{1}/_{1}$ — $^{31}/_{12}$	Kansakoulunopettaja	F. W. Leman	£	53	0	15	09	Uudenmaan	Lohja
23/6—16/7	Herra	Joh. Seppälä	*	26		Т	64	Vaasan	Lohtaja
1/1.—31/12	Asemapäällikkö	A. L. Ståhlberg	£	31	01	34	09	Turun ja Porin	Lieto
/5/8	Provasti	\sim	2	7.0	71	χ Ω	0.7	v aasan	Laihia
15/ 14/	Ylioppilas	(Väinö Ollila		r E		C all	00	Δ.	
17/4—11/9	Proviisori	Verner Dahlström	F	21	0.1	36	61	*	Lavia
\$	Kirkkoherra	W Vilh. Lindstedt	\geq	17	2	10	61	Turun ja Porin	Lauttakylä
1/1—81/12	Herra	E. A. Lindh	£	13	ಣ	4	61	Viipurin	Lappeenranta
1/1—31/5; 1/7—31/12	Kansakouluopettaja	N. Silfvast	闰	15	1	38	09	Uudenmaan	Lappträsk
	Pastori	A. E. Helin	\geq	33	22	23	09	Turun ja Porin	Kuusisto
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Herra	K. Koivunen	=		4	90	69	Oulun	Kuusamo
1/ 31/	Metsäpäällysmies	1.6 F. (A. Korhonen	F			N C	0		
11/9	Fil. maisteri	12 W Artur Forsell	\geq	12	<i>∞</i> 1	42	09	Turun ja Porin	Kyrö
$^{1}/_{1}-^{31}/_{12}$	Läänineläinlääkäri	56 E O. V. Löfman	囝	56	4	61 18	61	Viipurin	Kurkijoki
11/1/.	Kırkkonerra	62° 48' 1° 27' W HJ. Svanberg	M	1.7.	I	48,	65	Vaasan	Kuortane

Havaintopaikka	Lääni	Havain	Havaintopaikan asema	Havainnon tekijä	Arvo	Aika, jolloin havainnon tekijä on ollut	
		ф	٧	S		toimessa	26
Mouhijarvi	Turun ia Porin	61°31′	1° 56' W	Ad. Hildén	Herra	1,11/	
	9			(M. Manner	26	*	
Munsala	Vaasan	63 27	2 32 "	A. Westerlund	*	$^{1/1}$ $^{-31}$ 12	
Mvnämäki	Turun ia Porin	60 41	2 58	(K. A. Cajander	Lehtori		
)	" (Fr. W. Sipilä	Kirkkoherra		
				J. V. Eriksson	Majakanpäällikkö		
Märket, majakka	£	60 18	5 49 "	J. A. Dahlbom	33	*	
				M. A. Sjöblom	*		
Nauvo	n	60 12	3 3 "	J. J. Fogelberg	Herra	17/4	
Nerkoon kanava	Kuopion	63 24	2 21 E	J. F. Bäckström	£	10/8	
Nurmi	Viipurin	60 49	3 32 "	Emil Cederström	Fil. maisteri	19/6—11/9	
Nuntajärvi IIriala	Нётови	61	1 39 W	W K. H. Nyman	Insinööri	11, 31,	
Turangai vi, Cijaia	тапперп		2	Collin Wulff	Fil. maisteri	/1/12	
Oulu	Oulun	65 1	0 30 E	L. Gratschoff	Lääk. tohtori		
Oravainen	Vaasan	63 18	2 34 W	W Gust. A. Hedberg	Fil. maisteri	29/6	
Paimio	Turun ja Porin	60 27	2 16 W	W O. R. Brander	Asemapäällikkö	1/1-7/7; $6/8-81/12$	
Parainen	ű	60 17	2 41 "	A. Stenvall	Fil. maisteri	1/1—31/12	
Pernaja	Uudenmaan	60 23	1 2 E	Artur Forsell	*	8/8	
Pielisjärvi	Kuopion	63 16	5 5 "	Erik Wahlroos	Proviisori	2/7—23/8	
Pietarsaari	Vaasan	63 41	2 15 W	Nanny Lovenetzsky	Neiti	28/6-16/7	
" Björnhol-							
men	"	63 45	2 3 "	Gustaf Hedberg	Fil. maisteri	6/6-2/8	

		0 29 E N. Söderling	0 29 E	2 09	Uudenmaan	Söderskär, "
127	æ	K. E. Holmberg	5 22 "	60 25	Turun ja Porin	
	ů		2		Vaasan	
1/1-31/12	Majakanpäällikkö	W J. E. Mannfolk	3 36 W	61 29	Turun ja Porin	Sübbskär, majakka
$^{5}/_{5}$ $^{-15}/_{7}$; $^{11}/_{8}$ $^{-14}/_{9}$	Ylioppilas	E. Kaila	0 49 "	62 34	Vaasan	•
28/4	č	8	7 27 E	62 14	Viipurin	
17/5-15/9	Majakanpäällikkö	K. E. Eklund	4 14 W	62 40	Vaasan	Storkallegrund, loist. laiv.
17/6—2/8	Agronomi	H. B. Åström	3 30 "	64 7	Oulun	
*	Ylioppilas		4 45 "	61 42	*	•
*	Majakanpäällikkö	A. Risu	5 31 E	60 50	Viipurin	Sortanlahti, majakka .
1/131/12	Herra	W Pietari Sörman	1 26 W	60 37	Hämeen	
25/6—6/7	Metsäherra	Rob. Mellenius	1 39 E	67 25	\$	
£	Kirkkoherra	J. Alfr. Keckman	0 4 ,,	65 38	Oulun	
1/1—31/13	Neiti	Selma Henricsson	2 15 "	60 20	Turun ja Porin	
5/1	Herra	Lars F. Lydén*	3 27 "	61 52	\$	•
} 1/1—31/12	" Professori	49 W $\int J$. N. Sainio Art. Zetterman	1 49 W	60 23	Turun ja Porin	
19/5—2/8	Herra	11 E E. Lindholm	0 11 E	64 40	Oulun	
β/μ-1-1/ ₆ -1-1/ ₈	Henkikirjuri	W A. Lindqvist	0 52 W	61 56	Hämeen	Ruovesi, Tapio
*	Neiti	" Inez Karsten	5 42 "	62 3	Kuopion	
2	Metsäpäällysmies	A. Suopunki	1 55 E	65 23	Oulun	
} 1/1—31/12	Majakanpäällikkö "	I. Taucher W. Strömstén	0 33 "	59 56	Uudenmaan	Porkkala, majakka
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Lyseolainen	Aarne Sjöberg	3 18 W	62 46	£	Pirttikylä, Ahlholma .
1/1-31/12	Pastori	63°21' 0°37' E H. Salonen	0° 37′ E	63°21′	Vaasan	Pilitipudas

Havaintopaikka	Lääni	Havain	Havaintopaikan asema	Havainnon tekijä	Arvo	Aika, jolloin havainnon tekijä on ollut
		ø	٠٠٧			toimessa
Suursaari	Viipurin	.L .09	2° 2′ E	A. E. Elenius	Kirkkoherra	12/6-19/8
Taavetti		60 55	2 37 "	A. E. Borgström	Asemapäüllikkö	1/1—11/9
Taivalkoski	Oulun	65 32	3 18 "	J. Barkman	Kirkkoherra	1/1-31/12
Tampere	Hämeen	61 30	1 12 W	Thekla Molin	Neiti	
Tankar, majakka.	Vaasan	63 57	2 6 ,,	Knut Cajanus	Majakanpäällikkö	r
Turku	Turun ja Porin	60 27	2 41 ,,	Artur Forsell	Fil. maisteri	17/4 - 1/8; $26/8 - 1/9$
Tuusniemi	Kuopion	62 49	3 31 E	Juho Miettinen	Työmies	1/1-31/12
IIII. Land	Ondow	06 18	1 30 W	f H. G. Roos	Majakanpäällikkö	
Опокана, тајакка.	Ounun		A 00 1	(E. Björklöf	**	
Utö, majakka	Turun ja Porin	59 + 47	3 35 "	M. Nyström	n	*
Uurainen	Vaasan	62 30	0 29 E	Arnold Berger	Kirkkoherra	
			06 4	J. Hurmalainen	Kansanopistonjohtaja	
Unsikirkko	Viipurin	00 71	* OC #	(Matti Kurppa	Kansakoulunopettaja	r.
Utti	£	60 43	1 59 "	Elis Cederström	Fil. maisteri	26/5
Vaala	Oulun	64 33	1 52 "	" K. J. Björklund	Sähkölennätinpääll.	$1/_1 - ^{31}/_{12}$
Valsörarna, majakka	Vaasan	63 25	3 53 W	W F. J. Eklund	Majakanpäällikkö	
				f Ida Pomelin	Neiti	
Vaasa	£	02	" CZ ?	$\overline{}$	Ylioppilas	
Vehkalahti, Brakilan talo	Viipurin	60 31	2 21 E	F. K. E. Lindholm	Herra	28/2—/9
				Frans Laurell	Majakanpäällikkö	
Verkkomatala, loist. laiv.	\$	60 19	3 49 "	N. Edv. Ståhlberg	"	$\begin{cases} 1/131/12 \end{cases}$
,				XX7 XX7.7.11.		

1/1—31/12	1/5—1/9	1/1-31/12	\$: 5	*	
Puutarhuri	Pastori	Kirkkoherra	Pastorin rouva	Kirkkoherra		
60° 43' 3° 48' E K. F. Forstén	Em. Fr. Landgren	62 14 1 12 W A. Nyholm	62 10 5 42 E Nina Karsten	66 19 1 15 W Antti Holmström		
3° 48′ E	0 53 ,,	1 12 W	5 42 E	1 15 W		
60° 43'	63 4	62 14	62 10	66 19		
Viipurin	Vaasan	\$	Kuopion	Oulun		
Viipuri	Viitasaari	Virrat	Värtsilä	Ylitornio		
Tat	_	E	11-	П	67	TAT.

		Syys	kuı	1.				Loka	kuu.	
3	í	0	2	0	3	0	· 1	0	20	
										HIE
										++++
1111			++++							
			- 11							T
										ш
			111		FIE					
			111		FILE					
					14					
			111							
					ΗĖ					
										1111
					+++					
				FILLER						
										Title
					===	-				
										1111
					F .					
			_							
						1				
					THE					
						-				##
			111							
~			Λ.							
			/ V							
+++			7							
			-							
			$\perp \wedge$		+					
_			1/ 1		###					
_			V		##					1111
			1							
1		1 \ ~	1		111					
		+	V		Ш					
1 1 1	TT-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-									17.11

Ukonilmat Huhti-Syysk. 1904.

Ukonpurkausten lukumäärä.

- a Päivän keskilämpötila 15 p Huhtik.—20 p. Syysk, 1904.
 - b Keskilämpötila 15 vuoden (1886-1900) kuukausi keskimäärien mukaan.
 - I Helsinki.
 - II Kuopio.
 - III Vaasa.

Ukonilmakulkue 17 p:nä Heinäk. 1904

Termogrammeja ukonilmalla.

Taulu B

Barogrammeja ukonilmalla.

ÖFVER

ÅSKVÄDREN I FINLAND

1904

AF

RISTO JURVA

HELSINGFORS 1909 FINSKA LITTERATURSÄLLSKAPETS TRYCKERI

Innehållsförteckning.

				Sid.
Förord				1
Om åskvädren i Finland				4
Väderleksläget under april—september 1	904			8
Beskrifning af åskutbrotten 1904				11
Betingelserna för åskutbrott				28
Åskvädrens intensität				32
" långvarighet				34
" rörelseriktning				35
Åskutbrottens fördelning på landets olik	a delar			40
Öfver åskvädrens periodicität				51
Kornblixtar	•			62
Åskslag				65
Meteorer				67
Bihang I				68
, H				122
Fig. IV.				
Fig. A och B.				

"Öfver åskvädren i Finland 1904" bildar den 18:de årgången i den af Professor A. F. Sundell år 1887 påbegynta undersökningsserien öfver Finlands åskväder. Årgångarna 1887—1896 äro bearbetade af Professor Sundell; årgångarna 1897—1902 åter af Magister W. Öhqvist samt år 1903 af Doktor Hugo Karsten.

Den 17:de årgången (1903) skiljer sig från de föregående genom en mera detaljerad och mångsidigare bearbetning af observationsmaterialet. Åskvädren äro där undersökta med tillhjälp af såväl medeltal- som den synoptiska metoden. Hvad den sistnämda metoden beträffar påpekar D:r Karsten, att "det egentligen är den synoptiska metoden, som klargjort åskvädrens fortplantning och variationerna i lufttrycket, temperaturen, vattenångans tryck, vindriktningen m. m. under åskväder". Och därför är det också "à priori klart, att den synoptiska metoden erbjuder synnerliga fördelar för ett så diskontinuerligt fenomen som åskvädren äro". 1 — "Öfver åskvädren i Finland 1904" ansluter sig nästan direkte till föregående årgång. Bland afvikelser från den föregående årgången må nämnas: det allmänna väderleksläget under april-september 1904 (sid. 8), kurvorna af temperaturafvikelsen och afvikelsen i åskutbrottens relativa talrikhet under

¹ Karsten: Öfver åskvädren i Finland 1903, sid. 2.

åren 1887—1904 (Fig. A och B), antalet åskutbrott i minimas olika oktanter (sid. 35) samt en noggrannare bestämning af fortplantningshastigheten hos åskvädren (sid. 37).

För att man med större framgång skall kunna begagna sig af den synoptiska metoden, måste observationsstationerna vara relativt tätt fördelade öfver landet. Uppfyllandet af detta villkor är likväl förenadt med stora svårigheter i vårt land och däraf följer att de ur åskvädersobservationerna dragna slutsatserna i någon mån äro osäkra.

Bihang II i slutet af boken innehåller närmare data om observationsorterna och observatörerna för år 1904 samt tiden under hvilken observationerna utförts å de särskilda stationerna. Därur framgår, att antalet personer, som en längre eller kortare tid utfört observationer, varit 172. Antalet stationer, där observationer utförts under hela året var blott 71. Detta motsvarar en medeltäthet af 0.02 stationer per 100 km² (motsvarande tal 1903 0.02). Beräknas observationsnätets täthet för alla stationer, frånsedt de tillfälliga, erhålles talet 0.04 (år 1903 äfven 0.04).

Under året 1904 anlände alt som alt 1031 rapporter öfver åskutbrott och 64 öfver kornblixt. Dessutom anmäldes 17 åskslag, 3 meteorer och tvänne skydrag. — Antalet rapporter äro i förhållande till de föregående åren ringa. Endast år 1902 i var ifrågavarande tal mindre (793). Orsaken till förminskningen år 1904 är utan tvifvel att söka däri, att liksom år 1902, temperaturen under sommarmånaderna i allmänhet var låg och att väderleksförhål-

¹ W. Öhqvist: Åskvädren i Finland 1902, sid. 3.

landena dessutom gestaltade sig abnorma i afseende på åskutbrott. I följande tabell är medeltemperaturen för åren 1902—1904 samt normala temperaturen för 1886—1900 utsatt:

Observationsort	1904	1903	1902	1886— 1900
Uleåborg	1.8	3.1	0.2	2.0
Kuopio	2.2	4.0	0.6	2.7
Vasa	3.0	4.4	1.9	3.5
Sordavala	2.6	4.2	0.8	3.0
Tammerfors	3.3	5.1	2.2	4.0
Helsingfors	4.0	5.8	2.9	4.7
Mariehamn	4.6	6.0	3.7	5.2

Antalet åskutbrott per station var under motsvarande år

Året 1903 var varmare än i genomsnitt och det motsvaras af ett största antal åskutbrott; åren 1902 och 04 voro åter kallare och dem motsvarar ett mindre antal åskutbrott per station än i medeltal under 15 år. Det kallaste året 1902 har dessutom det minsta antal utbrott att uppvisa. Det förefaller altså som om i Finland antalet utbrott per station åtminstone skenbart rättade sig efter temperaturförhållandena (närmare se sidan 7 samt Fig. A och B). Orsaken härtill är, att åskutbrotten för det mesta äro s. k. värmeåskväder. ² Om väderleksför-

¹ W. Öhqvist: Åskvädren i Finland 1901, sid. 43.

² Hann: Lehrbuch der Meteorologie 1901, sid. 666.

Nat. o. Folk, H. 67, N:o 2.

hållandena gestalta sig för uppkomsten af värmeåskvädren abnorma därigenom, att temperaturen i följd af riklig nederbörd, vindar från nordsidan m. m. håller sig låg och himmeln är mulen, aftager åskutbrottens antal och de inträffade utbrotten äro ofta s. k. hvirfvelåskväder. Enligt Mohn betecknas därmed åskutbrott, som uppträda i förening med större atmosferhvirflar, cykloner.

Emedan året 1904, liksom 1902, bildar på sätt och vis ett undantag, kan en kort öfversikt af det allmänna väderleksläget under sommarhalfåret vara af nöden. Man kan däraf redan på förhand konstatera sannolikheten för de olika slagen af åskvädrens uppkomst. Därförinnan dock en kort öfversigt om åskvädren i allmänhet i Finland.

1. Om åskvädren i Finland.

Såsom i det föregående nämdes kan man särskilja mellan tvänne slag af åskväder, nämligen värme- och hvirfvelåskväder. Kurvan, som utvisar de förstnämdas antal, ansluter sig till den dagliga temperaturkurvan, medan åter de sistnämda uppträda mera oberoende af den. Redan år 1887 omnämner Professor A. F. Sundell, 2 att åskvädren i Finland till större delen äro värmeåskväder. Detta påstående bekräftas af den analoga gången af afvikelserna i åskutbrottens relativa talrikhet samt motsvarande temperaturafvikelser (Fig. A).

Ifrågavarande Fig. är uppgjord sålunda, att temperaturafvikelsen från motsvarande månaders medelvärden

¹ Hann: Lehrbuch der Meteorologie 1901, sid. 669.

² Sundell: Åskvädren i Finland 1887, sid. 18.

Tabell 1.

Fördelningen af observerade åskutbrott (♂) och fall af kornblixt (﴿) på årets särskilda dagar.

1	_				1			1						1		
Datum	o arragit	Januari		April	Maj	unu	Ī.	mr	1	Augusti	Ì	Бергениет	Sentember	OWCODEL	Olttokom	November
	13	<	[Z	\leq	[]	[]	\leq	[]	\leq	I	\leq	13	1	K	\leq	13
1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Summa				711	1	1 2 466 3		6 23 35 13 45 23 4 6 49 9 — — — 6 6 43 27 1 5 1 — 43 5 2 — 2 1 8 360	333	3 12 4 21 1 5 11 6 6 7 5 27 3 12 14 9 9 13 11 6 14 1 3 6 2 2 2 209	2 4 1 - 3 - 1 5 2 - - 1 2 1 2 - - - - - - - - - - - - -		7 2 1 1		3 3	

Nat. o. Folk, H. 67, N:o 2.

(1886—1905, i tiondedelar af en grad) för hvart år under månaderna maj—september är utsatt, ifall den är negativ nedanom, ifall positiv ofvanom den horisontala linien. Den helt dragna kurvan framställer sålunda temperaturafvikelsens gång. På samma sätt är afvikelsen i åskutbrottens relativa talrikhet bildadt; månadens normalvärden äro bestämda ur åren 1887—1901, d. v. s. ur 15 års observationer. Den punkterade linien framställer afvikelsens gång i åskutbrottens relativa talrikhet.

Såsom ur Fig. A framgår är öfverensstämmelsen i kurvornas gång i allmänhet tillfredsställande; de enda undantagen finner man under åren 1888 och 1895. Dessutom förorsaka snabba förändringar i temperaturen större förändringar i åskutbrottens relat. talrikhet, såsom t. ex. under åren 1889, 1896 och 1899. De långsammare förändringarna i temperaturen åter åstadkomma ej så stora förändringar i åskutbrottens talrikhet; så t. ex. under 1901 och 1902.

Den i det föregående omnämda öfverensstämmelsen kan endast förklaras sålunda, att åskutbrotten på det närmaste sammanhänga med temperaturförhållandena, d. v. s. att åskutbrotten för det mesta äro värmeåskväder. Undantagen för åren 1888 och 1895 kunna förklaras därigenom, att i trots af att temperaturafvikelsen var noll eller negativ, det allmänna väderleksläget höll sig cyklonalt och hvirfvelåskvädren därigenom blefvo så allmänna, att antalet utbrott per station var större än i normala fall.

Prohaska¹ framställer förhållandet mellan värme

¹ Hann: Prohaskas Untersuchungen über die Gewitterserscheinungen in Steiermark, Kärnten und Oberkrain. Met. Zeit. 1889 sid. 176.

och hvirfvelåskvädren genom ett bråk $\frac{s_2}{s_1}$, där s_2 är antalet åskutbrott mellan kl. $5_p{}^h-11^h{}_a$ och s_2 mellan $11^h{}_a-5^h{}_p$. Förhållandets värde är i allmänhet, enligt Prohaska, lika med ett, men tilltager samtidigt som antalet hvirfvelåskväder, och aftager åter samtidigt som värmeåskvädren tilltaga i antal. Följande tabell innehåller resultatet af Prohaska's undersökningar i Steiermark m. m. samt motsvarande resultat i Finland:

Prohaskas förhåll.	Januari	Mars	April	Maj	Juni	Juli	Augusti	September	Oktober	November	December	Hela året
Steiermark												
m. m	2.00	1.23	0.49	0.55	0.83	0.77	1.87	2.15	3.55	5.14	2.15	1.06
Finland .	_	_	_	0.81	0.6	0.8	1.1	1.61	_	_	_	0.8

Enligt föregående tabell äro värmeåskvädren de allmännaste under juni (samt maj och juli). Ur Fig. B finner man äfven, att kurvorna för juni och juli bäst ansluta sig till hvarandra. I september vore antalet hvirfvelåskväder störst och det framgår ur tabellen därigenom, att kurvan för afvikelsen i åskutbrottens antal per station mindre ansluter sig till motsvarande kurva för temperaturen. — Prohaskas relation är för Wien circa 0.7.

Enligt Fig. A och B kan man alltså åtminstone i någon mån anse som en allmän regel, att då temperaturafvikelsen är positiv, d. v. s. då det allmänna väderleksläget i vårt land är anticyklonalt, antalet åskutbrott per station är större; men då afvikelsen åter är negativ (d. v. s. det allmänna väderleksläget mera cyklonalt, såsom under

¹ egentligen januari—maj och september—december.

Nat. o. Folk, H. 67, N:o 2.

1904), mindre än i genomsnittsförhållanden. Under det anticyklonala väderleksläget håller sig bl. a. himmeln klar och insolationen är därigenom stark. Solstrålarnas joniserande värkan åter är då fullständigare och möjligheten för åskutbrott större (se sid. 29).

Hvad beträffar de meteorologiska elementens gång under åskväder, så påvisade Karsten i redan 1903 att de i allmänhet följa Ferraris i regel äfven i vårt land. I slutet af boken finnas några kurvor utvisande elementens gång under åskväder. Ur dem framgår, enligt Ferraris regel, att lufttrycket (och den relativa fuktigheten) uppnår sitt minimum före utbrottet, temperaturen åter sitt maximum; efter utbrottet åter lufttrycket (och den relativa fuktigheten) sitt maximum, temperaturen sitt minimum. Ur det egentliga observationsmaterialet må omnämnas följande observerade förändringar i temperaturen:

7	atum	Observationsort	Luf tempe	тепъ	Tempera- turens tillbaka-
	atum	Observationsoft	före åsk- vädret	efter åsk- vädret	gång un- der åsk- vädret
Maj	20 .	S:t Michel	15	6	9
Juni	20 .	77	20	12	8
Juli	21 .	Bromarf	15	9	- 6
37	25 .	Pälkjärvi	19	13	6
Augus	sti 4 .	77 * * *	20	13	7
"	18 .	Kuusamo	18	12	6

¹ Karsten: sid. 9.

² Hann: Lehrbuch der Meteorolog. 1901 sid. 640.

2. Väderleksläget under april-september 1904.

En öfversigt af väderleksläget såväl för en dag som för tio dagars medeltal finnes för Norra Atlanten och delvis Europa i Deutsche Seewarte's Internationaler Dekadenbericht. Enligt den låg under den första dekaden af april, minimet i vester vid Norge. Vindarna voro därför mera från sydsidan och temperaturen öfver den normala. I medlet af månaden bestämdes väderleksläget hufvudsakligast af det i Vestra Sibirien liggande maximet, hvaraf en gren med högre lufttryck trängde sig till Finland. Vinden vände sig därför mera på sydvest och temperaturen var såväl hos oss som annorstädes i Norra Europa öfver den normala (isynnerhet på slutet af dekaden, Fig. I). Under den sista dekaden af april ligger minimet i norr öfver Ishafvet och vindarna äro fortfarande på SW-sidan. Temperaturen är öfver den normala och månaden blir härigenom 0°.6 varmare än i genomsnitt. Nederbörden var dock större än den normala och antalet nederbördsdagar (≥0.1 mm) likaså. 1 — Den tredje dekaden under april var den sista ända till september, då temperaturen i Finland och i större delen af Norra Europa var öfver den normala. Och hufvudsakligen är (enligt föregående kapitel) den negativa temperaturafvikelsen under de påföljande månaderna orsaken till åskutbrottens förminskning under sommarmånaderna, liksom t. ex. år 1902 och i juli 1903, månadens sista dagar dock undantagna. 2

Väderleksläget under maj—september var i korthet följande:

 $^{^{\}rm 1}$ Nederbörden samt nederbördsdagarna är
o ur Statistisk Årsbok 1907.

² Karsten: Öfver åskvädren i Finland 1903 (Pl. I).
Nat. o. Folk, H. 67, N:o 2.

I början af maj var lufttrycket högst i norr, lägst i sydvest; vinden var från E à N; nederbördsdagarnas antal var relativt stort. I medlet af månaden åter var lufttrycket lägst i norr, men i slutet hade ett område med högre tryck utbredt sig öfver Skandinavien och dess inverkan hos oss framgår bl. a. ur maj månads sista dagars höga temperatur (Fig. I). Vinden var för det mesta från nordsidan och temperaturen under månaden mycket under den normala (c:a 2°). Antalet nederbördsdagar samt nederbörden var större än i genomsnitt. — I juni är lufttrycket lägst i Norra Europa och minimets centrum är beläget öster om vårt land. Vinden är för det mesta NW à NE och temperaturen betydligt under den normala (c:a 1°.6). Antalet nederbördsdagar var större än i medeltal och nederbörden var mycket riklig; ställvis var den 150 % och mer af den normala mängden. — Under juli är temperaturafvikelsen i den negativa riktningen störst (c:a 2°.2). Lufttrycket är i allmänhet lägst i öster , och nordost. Vinden är från norr och temperaturen (några dagar under den andra dekaden undantagna, då ett söderut beläget maximum bestämde väderleksläget [Fig. I]) betydligt under den normala. Nederbörden var relativt liten om ock nederbördsdagarnas antal öfver medeltalet. — I början af augusti låg ett område med högre lufttryck öfver Finland; en "kil" sträckte nämligen sig från Atlanten öfver Central Europa in i vårt land. Vinden var från SW och temperaturen under några dagar öfver den normala (Fig. I). I medlet af månaden är lufttrycket lägre och vinden mera på E à S. Oaktadt vindarna komma från varmare trakter håller sig temperaturen låg till följd af den rikliga nederbörden. Under den sista dekaden är lufttrycket högre; minimet ligger i Östersjöprovinserna. Vinden är från E och N och temperaturen under hela månaden under den normala (c:a 1°). Nederbörden var i augusti i allmänhet (och ställvis mycket) riklig; sålunda uppmättes i Kuopio 125.1 mm (i normala fall 73.9 mm) och Mariehamn 119.5, norm. 62.0 mm. Nederbördsdagarnas antal var betydligt större än i medeltal i augusti. — I september är lufttrycket högst under hela året; det egentliga maximet ligger i Central- och Ost-Europa; vinden är SW à SE och temperaturen i genomsnitt öfver den normala (c:a 0°.6). Nederbörden och nederbördsdagarnas antal var relativt litet; i Uleåborg uppmättes sålunda 9.7 mm, normala mängden 60.4 mm och Tammerfors 19.3 mm, norm. 58.2 mm.

Såsom ur det föregående framgår, gestaltade sig väderleksläget så, att temperaturen för det mesta höll sig under den normala. Möjligheten för uppkomsten af ett värmeåskvåder reduceras härigenom och ur det följande framgår, att hvirfvelåskvädren egentligen bilda den största delen af sommarens åskutbrott. — För uppkomsten af åskväder var förutsättningen störst under april och september; under juni, men isynnerhet juli åter minst. Detta förhållande motsvaras i Fig. A af åskutbrottens stora negativa afvikelse under juli och augusti, samt af den positiva afvikelsen i april och september.

3. Beskrifning af åskutbrotten 1904.

Antalet åskvädersrapporter per dag framgår ur Tab. 1. Såsom därur framgår är antalet anmälda utbrott under de egentliga vintermånaderna endast tre, nämligen den 4, 5 Nat. o. Folk, H. 67, N:o 2.

och 18 januari. Dessa vinterutbrott äro ändå af betydelse, ty de representera oftast typiska hvirfvelåskväder och därigenom ett mera sällsynt slag af åskutbrott i vårt land.

A. Vinteraskväder.

Den 4 januari låg ett 775 mm högt maximum i Östersjöprovinserna och längre vesterut på Atlanten fanns ett minimum. I Norra Finland låg ett litet, svagt delminimum och temperaturen var i allmänhet normal. Från Tuusniemi anmältes åska kl. 3.15—3.50 a under vestlig storm. Det är möjligt, att utbrotten inträffade inom det förut omnämnda lilla minimet, i hvilket dock gradienten kunnat vara rätt betydlig. Men det är äfven möjligt, att ifrågavarande hvirfvel var horisontal, nämligen en så kallad "Böen"-hvirfvel. Åskutbrottet var i så fall ett för nämda hvirfvelslag karakteristiskt fenomen.

I Åbo observerades den 5 januari kornblixt i ESE. Enligt de synoptiska kartorna inträffade utbrottet å ett maximi-område. Närmare underrättelser finnes ej om utbrottet. I Skandinavien och Bayern har man påvisat, att kornblixtarna äro att "anses som reflex af blixtar med dunder". ¹ Ifall denna lag äfven kan tillämpas i Finland, så har åskutbrottet inträffat å ett 775 mm högt maximiområde och nära dess centrum, som låg i Östersjöprovinserna.

Den 18 januari hörde man åskan i SSW på Heinäluoto fyr. Ifrågavarande dag var lufttrycket i hela Norra Europa normalt (760 mm). Några obetydliga minima

¹ Karsten: sid. 66.

funnos dock, bl. a. ett öfver Finska viken. Temperaturen var i Norra Finland låg, i Torneå och Kajana — 16°, men i Sordavala — 3° och Helsingfors samt Hangö 0°. — Till vinteråskutbrotten höra ännu de under oktober samt november; emellertid behandlas de först efter sommaråskvädren, d. v. s. i kronologisk ordning.

B. Sommaraskvädren.

Såsom ur tabell 1 framgår, kan man indela sommarens åskutbrott i följande perioder:

Periodens N:o	Tiden inom hvilken perioden infallit	Åskvädrens antal under perioden	Åskväders- dagar	Antal dagar mellan perioderna
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	April 17 — April 18 Maj 18 — Maj 20 " 28 Juni 3 " 12 " 17 — Juni 19 " 22 — " 25 " 27 — " 29 Juli 1 — Juli 6 " 9 — " 10 " 16 — "	47 23 8 46 13 57 66 44 145 58 70 43 37 27 68	2 3 1 1 1 3 4 3 6 2 2 1 3 1 6 2	29 7 5 8 4 2 1 1 3 5 7 7 8 1 20

1 åskvädersperioden, april 17—18.

Lufttrycket var i vårt land den 17 normalt eller något däröfver; maximet låg i Ryssland och minimet på norska NW-kusten. Från hufvudminimet afskildes ett randminimum, hvars centrum den 17 på kvällen låg på Åland. Åskutbrotten uppstodo i NE-delen af det sekundära minimet och fortplantade sig på fasta landet såväl åt norr, öster som sydost (Karta II). Åskväderstågen voro bland de få som man år 1904 kunnat åskådliggöra genom isobronter. — Hvad åskutbrottet beträffar må nämnas, att temperaturen föregående dag var relativt jämnt fördelad i vårt land. Den 17 var dock den horisontala temperaturgradienten relativt betydlig i SW och det är möjligt att den förökade åskutbrottets häftighet. Åskvädret uppträdde nämligen i vårt land såsom ett mycket starkt hvirfvelåskväder. Blixtarna voro bländande och på flere ställen rasade en formlig storm. Senare på kvällen sågs flerstädes praktfulla kornblixtar, hvilka betecknade att åskvädret fortsatte sin färd längre såväl mot det inre af landet som ut på hafvet. Åskutbrotten den 18 på morgonen voro tydligen fortsättning af den föregående dagens utbrott.

2 åskvädersperioden, maj 18-20.

Den 18 på morgonen låg ett delminimum från Lofoten till mellersta Sverige; minimets centrum var i trakten af Hernösand (742 mm). Maximet låg längre söderut i Central-Europa. Lufttrycket var i hela norden i fallande, betecknande att ett minimum var i antågande. — Det i norra Skandinavien liggande minimet var mycket väl utbildadt; det hade sitt eget vind- och regnsystem.

Temperaturen var relativt jämt fördelad (på morgonen) 7 à 8°, i öster dock litet högre, 10°. Åskutbrotten begynte på morgonen i SW Finland; de voro i allmänhet relativt svaga. Vinden var måttlig, regnet svagt. Den 19 fanns minimet i NE på norra delen af Bottniska viken (i Torneå 741 mm). Åskutbrotten inträffa för det mesta i Österbotten; området för åskutbrotten har sålunda förflyttat sig med minimet. Temperaturen är nästan oförändrad, högst i SE. På kvällen är minimet på Kolahalfön, men i stället har ett randminimum uppstått i trakten af Ladoga, där temperaturen varit högst. Den 20 rapporterades åska från SE-Finland. Dessa, den 20:s åskutbrott, uppstodo troligen i följd af den labila jämvikten hvari de lägsta luftlagren befunno sig i följd af den höga temperaturen (i förhållande till det öfriga Finland). Denna uppfattning bekräftas af luftballonguppstigningarna i Pawlovsk 1 den 17 och 18, då apparaterna registrerade:

d. 17 kl. 10.20 a.—12.25 p. och d. 18 kl. 10.15 a.—12.50 p. på 30 m höjd + 11°.0 på 30 m höjd + 14°.9 , 520 , , 5°.2 , 1180 , , 1°.9 , 1350 , , 0°.1 , 1610 , , 2°.3 , 1980 , , 1°.2

Den 17 och 18 var således på de första 1000 m temperaturgradienten större än 1° à 100 m.² — Askutbrotten den 18 och 19 ansluta sig till ett väl utveckladt minimum, medan den 20:s uppstodo i ett genom värmeförhål-

¹ Bullet. Meteorolog. de l'Observ. Phys. Central Nicolas St. Petersburg 1904 N:ris 126, 127.

² Börnstein: Leitfaden der Wetterkunde 1901 sid. 9.
Nat. o. Folk, H. 67, N:o 2.

landena uppkommet minimum. — Efter denna period blef väderleken någon tid kallare (Fig. I).

3 åskvädersperioden, maj 28.

Före den 28 bestämdes väderleken i vårt land af ett maximum och då himmeln höll sig klar steg temperaturen betydligt (Fig. I). Sålunda var temperaturen på morgonen högst, 12 à 14°, å ett område öster om en linie dragen från Kajana genom Kuopio på vestra sidan åter 9 à 10°. På kvällen har ett delminimum från ett större atlantiskt minimum blifvit synligt i mellersta Skandinavien (i Bodö 759 mm). — Den 28 har minimet, 754 mm djupt, förflyttat sig till Torneå och de på dagen inrapporterade utbrotten inträffade å ett område som sträckte sig nästan meridiant. — Den säregna formen af åskvädersområdet samt temperaturfördelningen äro tecken på utbrottens värmenatur.

4 åskvädersperioden, juni 3.

Väderleksläget bestämdes hufvudsakligast af ett i Vest- och Central-Europa liggande maximum. Den föregående dagen var temperaturen i vårt land mera hög (Fig. I). Den 2 var lufttrycket nästan i hela Norra Europa normalt, d. v. s. omkring 760 mm. I Norra Europa rådde annars under dessa dagar vindstilla (den 1—3). I trakten af Stockholm synes ett värmemaximum bildas:

Mariehamn Stockholm Ka	aristad
den 1 juni 15° 18°	14°
" 2 " 15 19	14
" 3 "	14

Bidrag t. känned. af Finl.

Det är troligt, att genom detta värmemaximum i isobaren 760 den 3 på morgonen uppkommit en typisk åskväderssäck. De första utbrotten på morgonen uppstodo utan tvifvel i närheten af det i "säcken" varande minimet. Detta fall utgör en bekräftelse på den af Professor A. F. Sundell¹ redan år 1887 uttalade åsikten om, att "I allmänhet torde äfven värmeåskvädren stå i samband med förhandenvarande svagare barometerminima".

Efter åskvädret föll temperaturen betydligt (Fig. I). Orsaken härtill var att det ursprungligen relativt svaga minimet altmer fördjupar sig medan det förflyttas österut. Det förorsakade därför den 4 och 6 starka stormar från nordsidan i vårt land.

5 åskvädersperioden, juni 12.

Detta åskväder inträffade under en tid då temperaturen var under den normala (Fig. I). Lufttrycket är högst i vester på Atlanten, lägst i öster i Ryssland. Den 12 vexlade lufttrycket mellan 750 à 760 mm i öster och vester. Åskutbrotten inträffa för det mesta i SE Finland och rörelseriktningen motsvarar Buys-Ballot's lag. Åskutbrotten inträffade alltså hufvudsakligast på det i österliggande minimets område.

Efter åskvädret steg temperaturen på flere ställen öfver den normala, ty öfver Finland utbreder sig ett område med högre lufttryck.

Den 17 juni begynner en längre åskvädersperiod, hvilken räcker till den 10 juli. Som ur Fig. I framgår, inträffade utbrotten delvis under normala temperaturför-

¹ Sundell: Åskvädren i Finland 1887, sid. 17.

Nat. o. Folk, H. 67, N:o 2.

hållanden. — Den första afdelningen af denna större period är den

6 åskvädersperioden, juni 17—19.

Åskutbrotten ansluta sig tydligt till ett minimum på 740 mm, som den 16 blifvit synligt i England. Under ifrågavarande dag var lufttrycket i vårt land omkring 760 mm och i fallande; temperaturen var hög (Fig. I). Den 17 är minimet 744 mm djupt på Norges vestkust och på aftonen ligger det i Norra Skandinavien. met förflyttar sig alltså mot nordost. Den 17 inrapporteras åskutbrott från hela landet. Den allmänna rörelseriktningen var SW-NE motsvarande Buys-Ballot's lag. Under den 18 har minimet förflyttat sig till trakten af Torneå. Åska inrapporteras från hela landet och rörelseriktningen är SW-NE à W-E. Den 19 låg minimet på sin förra plats i närheten af Torneå, men det hade utfyllts något. Åskutbrott observerades norrifrån Enare söderut till Söderskärs fyr. Dessutom anmältes åska från Sverige (Karlstad). — Väderleken blef efter den 3 dagar långa åskvädersperioden något kyligare (Fig. I).

7 åskvädersperioden, juni 22—25.

Under den föregående dagen var temperaturen i allmänhet låg. Den 21 var lufttrycket nästan i hela landet 755 mm. Den 22 låg i mellersta Skandinavien ett minimum. Ett maximum låg öfver större delen af Europa, endast de nordiska länderna undantagna. Åska inrapporterades från hela landet. Rörelseriktningen var från SW till NE. — Den 23 låg minimet 748 mm djupt på Åland. Åska hördes för det mesta i mellersta Finland och Öster-

botten, hvar temperaturen annars hade varit hög. Utbrotten voro svaga samt korta, rörelseriktningen S-N, men i Österbotten (i norra delen af minimet) E-W. — Den 24 låg minimet 751 mm djupt i Helsingfors. Temperaturen var äfven nu, såsom under den föregående dagen lägst i söder, högst i norr. I Hangö var på morgonen 11°, men i Kajana 15°, och i Uleåborg samt Torneå 16°. Åskan hördes hufvudsakligast i mellersta och östra delarna af Finland. Orsaken härtill var troligen den, att åskvädret rör sig, d. v. s. uppstår lättast där, hvar den stigande luftströmmen är starkast. — Den 25 låg minimet i Tammerfors, där det var 8° på morgonen; i Uleåborg och Torneå åter 15°. Åskan hördes hufvudsakligast i Norra Finland; dessutom anmältes åska från Kolahalfön. ¹

8 åskvädersperioden, juni 27—29.

Väderleken bestämdes under denna period i vårt land hufvudsakligen af tvänne minima; det ena låg den 26 i Södra Sverige 741 mm djupt. Den 21 hade minimet varit på Norra Atlanten, åt sydost från Labrador. ² Såsom ur Fig. I framgår var temperaturen under ifrågavarande dag i stigande, men dock under den normala. I Norra Finland tyckes uppstå ett värmemaximum, som ur följande tabell framgår:

 $^{^{\}rm 1}$ Bull. Meteorolog. de l'Observ. Phys. Central Nicolas St. Petersburg 1904 N:o 158.

² Deutsche Seewarte: Internat, Dekadenbericht 1904 N:o 144.

				Hangö	Jyväskylä	Kajana	Torneå
${\rm Den}$	26	kl.	$7~^{\rm h}_{\rm a}$	11°	12°	14°	19°
•••	27	22	22	13	12	16	18
"	28	77	"	12	13	16	18
22	29	77	27	10	15	18	17

Dessutom rådde längre österut högre temperatur och i Skandinavien en lägre. Den 27 låg minimet betydligt utfyllt i Finland. Lufttrycket var omkring 750 mm, gradienten liten och temperaturen, enligt det föregående, högst i norr. Åska inrapporterades från Norra Finland; ställvis voro åskutbrotten starka och på några ställen rådde värklig storm, som bl. a. bortslet taket från en lada. Rörelseriktningen var SE-NW, motsvarande den allmänna luftcirkulationen. Åskvädret uppstod sålunda inom värmemaximet, men samtidigt i det relativt svaga minimet. — Den 28 hade lufttrycket alltmer jämnat ut sig och var omkring 753 mm i vårt land. Åskutbrott anmältes äfven nu för det mesta från Österbotten och Norra Finland. - Den 29 var lufttrycket 760 mm; området med åskutbrott sträcker sig från Marjaniemi fyr i norr, till Åbo i söder. Vinden var svag och flerstädes rådde vindstilla, d. v. s. vilkoren för uppkomsten af värmeåskväder voro gifna. Åskutbrotten inträffade för det mesta kring tvänne åskväderssäckar, af hvilka den ena låg i trakten af Vasa, den andra i Reval. Rörelseriktningen hos åskvädret söderut E-W, norrut S-N, motsvarar luftcirkulationen kring de i Reval och Vasa liggande åskväderssäckarna. — Enligt luftballonguppstigningarna i Pawlovsk 1 var tillståndet i luftlagren mera

Bull. Meteorolog. de l'Observ. Phys. Central Nicolas St. P:burg 1904, N:ris 165—168.

"oroligt", ty apparaterna registrerade under följande dagar:

9 åskvädersperioden, juli 1-6.

Den 30 på morgonen låg enligt de synoptiska kartorna i ett minimum i SE i trakten af Svarta hafvet. Minimet förflyttade sig i riktning mot norr. Temperaturen var i vårt land i allmänhet låg, under hela perioden högst i SE. Den 30 inrapporterades åska från SE-Finland, dessutom äfven från Ryssland. Åskutbrotten i Finland samt Ryssland inträffade på randen af minimet, undveko alltså minimets centrum. 2 — Den 1 juli hade minimet förflyttat sig längre mot vester och den 2 var det i trakten at Hangö. I isobaren 755 kunde man märka tvänne åskväderssäckar, den ena i mellersta Finland, den andra i trakten af Ladoga (Petersburg). Åskutbrotten inträffade för det mesta i Österbotten (motsvarande åsk-

¹ Bull. Meteorolog. de l'Observ. Phys. Nicolas St. P.burg 1904 N:ris 168 ja 169.

² Karsten: sid. 36.

Nat. o. Folk, H. 67, N:o 2.

väderssäcken i mellersta Finland) och i SE (motsvarande "säcken" i trakten af Petersburg). Rörelseriktningen motsvarade Buys-Ballot's lag. — Åskutbrotten under denna period ansluta sig — åtminstone i början af perioden så till minimet, att man kan anse dem tillhöra ett hvirfvelåskväder hvad åter utbrotten för den 3 beträffar voro de (åtminstone i SE-Finland) af värmenatur, ty de uppstodo under sådana förhållanden som just äro karaktäristiska för ett värmeåskväder. Lufttrycket var under ifrågavarande dag mycket jämnt fördeladt i hela Norra Europa och temperaturen var lägst i SE. - Den 4 låg i Skandinavien ett nytt minimum. Området för utbrotten låg i Norra Finland. Den 5 låg minimet på Åland och åska inrapporterades från hela landet; rörelseriktningen följde Buys-Ballot's lag. Den 6 var lufttrycket åter mycket jämnt fördeladt i hela Finland; i SE låg dock ett svagt minimum. Åska hördes öfverallt i landet. Dagens åskutbrott voro antagligen också af värmenatur.

10 åskvädersperioden, juli 9-10.

I denna period inföll årets åskrikaste dag, nämligen den 9. Som ur Fig. I framgår var temperaturen i allmänhet under den normala. Den 8 var lufttrycksfördelningen mycket jämn, gradienten därför liten och flerstädes rådde vindstilla. På kvällen fanns i södra delen af Bottniska viken samt i östra delen af Finska viken tvänne åskväderssäckar. Det egentliga minimet låg öfver Hvita hafvet. Det första utbrottet inträffade i Jyväskylä redan tidigt på morgonen den 9. Senare rapporterades åska bl. a. från Hernösand i Sverige. Som ur Bihang I framgår inträffade utbrotten för det mesta i Södra Finland.

men dessutom äfven i Sverige. Det i NE liggande minimet har under tiden fördjupats och var i Archangel 747 mm. Då minimet fördjupade sig föll lufttrycket i vårt land och området för åskutbrott var således i SWdelen af minimet. Åskvädret rör sig i riktningen W å N—E à S och motsvarar sålunda luftcirkulationen kring minimet; åskvädret är i allmänhet svagt, vinden dock ställvis hård. Utbrotten under denna tid hafva troligen åtföljt minimet hufvudsakligast koncentrerade i åskväderssäckarna under dess förflyttning från vester till öster. Området med åskvädret ansluter sig på ett sådant sätt till minimet, att man kan anse det för ett hvirfvelåskväder.

11 åskvädersperioden, juli 16—17.

Från det i Central-Europa liggande maximet sträckte sig en kil med högre lufttryck öfver till Finland och temperaturen steg därigenom (Fig. I). Åskvädret under den 16-17 afslutar denna värmeperiod. Den 15 blef nämligen i England ett minimum synligt, hvilket förflyttar sig mera mot öster. På aftonen finnes en åskväderssäck i vårt land och utbrotten inträffa i dess östra del i trakten af Ladoga. Den 16 på morgonen är minimet på norska kusten och en mindre åskväderssäck finnes i mellersta Finland. Redan tidigt på morgonen uppstår i Kvarken ett åskväderståg, hvilket rör sig mot SE. Kl. 5 ha uppstår ett nytt åskväderståg, hvilket rör sig längs kusten af Bottniska viken i riktning mot NE. (Riktningen motsvarar luftcirkulationen kring det kommande minimet.) Senare, då minimet låg i Norra Skandinavien och ett delminimum bildas i södra delen af Bottniska viken, uppstår ett tredje åskväderståg i Satakunta, hvilket rörde sig i Nat. o. Folk, H. 67, N:o 2,

riktningen W—E och slutligen senare på kvällen ett fjärde (osäkert) rörande sig från Kvarken mot SE. Ifrågavarande åskväderståg visa på ett tydligt sätt huru åskvädren röra sig enligt Buys-Ballot's lag, då de befinna sig på området af ett minimum. — Tidigt den 17, då minimet är i Vardö, uppkommer ett åskväderståg, hvilket förflyttar sig från Kvarken mot öster till ryska gränsen. I södra Österbotten finnes visserligen ett större område, utan rapporter om åskvädret så att i framställningen af tåget medelst isobronten en större lucka uppstår där (Karta III). Efter denna två dagars hvirfvelåskvädersperiod infaller en relativt kall period (Fig. I), ty den 18 hade temperaturen aftagit i en större del af landet 5 à 10°.

12 åskvädersperioden, juli 25.

Lufttrycket var i vårt land jämnt fördeladt och i fallande. I Norra och Mellersta Finland fanns en åskväderssäck och dess centrum inföll i trakten af Jyväskylä. Temperaturen var låg, högst i sydost. — Området med åskutbrott låg delvis kring säcken och på södra kusten uppstod ett mindre åskväderståg. — Enligt de i Pawlovsk gjorda ballonguppstigningarna den 25 rådde i de lägre luftlagren en labil jämnvikt.

13 åskvädersperioden, augusti 2-4.

Denna period inföll liksom den 11 i slutet af en relativt varm period (Fig. I). Ett område med högre lufttryck sträckte sig från Central-Europa till vårt land

 $^{^{\}scriptscriptstyle 1}$ Bull. Meteorolog. de l'Observ. Phys. Nicolas St. P
:burg 1904 N:ris 194, 195.

och genom SW-vinden steg temperaturen; minimet låg på Ishafvet. Den 2 var lufttrycksfördelningen jämn, men i trakten af Jyväskylä fanns en åskväderssäck, liksom äfven under den följande dagen. Området med åskutbrott låg hufvudsakligast i Norra Finland; åskvädret var starkt och vinden likaså. — Den 4 hade åskväderssäcken i Mellersta Finland, troligen i följd af den höga temperaturen, utbildats till ett svagt minimum. Området med åskutbrott hade förflyttat sig mera till de mellersta och östra delarna af vårt land, söderom ifrågavarande minimum. På några ställen rådde under åskvädret en hård storm. — Åskutbrotten voro tydligen af värmenatur, men möjligt är dock att de tillhörde en "Böen"-hvirfvel. 1 Det labila jämnviktsläget, hvari luften befann sig, framgår ur luftballonguppstigningarna i Pawlovsk² den 1 aug. kl. 2.8-3.50 p.

> På 30 meters höjd 18°.₀ , 850 , , 8°.₅

14 åskvädersperioden, augusti 13.

Denna dags utbrott är af hvirfvelåskvädernatur. Temperaturen, som före åskvädret var i stigande, föll något därefter (Fig. I). Dagen förut låg i Södra Sverige ett 748 mm djupt minimum. Gradienten var stor och vindarna därigenom starka. Den 13 på morgonen låg minimet på Åland. Området med åskutbrott låg hufvudsakligast i SW-Finland och medels isobronter kunde man framställa ett åskväderståg från Kimito till Ikalis. Rörelse-

¹ Das Wetter 1898 sid. 193-204; 1903 sid. 121-127.

² Bull. Meteorolog. de l'Observ. Phys. Nicolas St. P:burg 1904 N:o 202.

Nat. o. Folk, H. 67, N:o 2.

riktningen af åskvädret motsvarade fullständigt luftcirkulationen kring minimet.

15 åskvädersperioden, augusti 15—20.

Utbrotten den 15 och 16 tycktes ansluta sig till ett större från Norge mot öster framryckande minimum. Lufttrycket var därför ifrågavarande dag lägst i vester. -Den 18 var lufttrycket relativt jämnt fördeladt i vårt land och åskutbrotten tillhöra svaga, mera lokala minima. Det egentliga området med åskutbrott låg i Norra Finland. — Den 19 på morgonen ligger i norr i trakten af Hvita hafvet ett större delminimum. Några rapporter från Norra Finland tillhöra antagligen detta område. Men den största delen af anmälda åskutbrott anlände från Södra-Finland och de tillhörde troligen ett område liggande i nordöstra delen af ett nytt minimum. Den 20 var minimet i trakten af Vasa; antalet inrapporterade åskutbrott var litet, men de tillhörde nästan hela landet. Någon större förändring i temperaturen kunde man ej konstatera (Fig. I).

16 åskvädersperioden, september 10—11

bildar den sista och relativt rikliga perioden 1904. Som ur Fig. I framgår intaller perioden i slutet af en varmare period. Lufttrycket var föregående dag i fallande hvilket betydde, att ett minimum närmade sig vårt land vesterifrån. Maximet låg i Central- och Vest-Europa. På aftonen den 9 låg i trakten af Åland ett nytt delminimum. Den 10 på morgonen var lufttrycket lägst 753 mm på Norges kust; i öster var 765 mm. Området med åskutbrott låg hufvudsakligen i SW-Finland, men utbreder

sig redan på kvällen ända till Tankar fyr i norr. Åskvädret var i allmänhet starkt, men vinden endast ställvis hård. Rörelseriktningen varierade, men i hufvuddrag motsvarade den luftcirkulationen i framdelen d. v. s. i östra delen af minimet, nämligen från sydsidan mot norr. Den 11 låg centret af minimet på Bottniska viken och området med åska har förflyttat sig mera österut. På aftonen bildas tvänne tydliga åskväderssäckar i isobaren 755 och dessa blifva någotslags åskhärdar. Den ena låg i SW-, den andra i E-Finland. Såsom ur Bihang I framgår, inföllo utbrotten för det mesta i dessa trakter. — Efter åskperioden inföll en kallare tid (Fig. I) och af detta samt det föregående kan man sluta sig till, att åskvädert var af hvirfyelåskvädernatur.

Hvad de senare anmälda utbrotten beträffar må nämnas, att de flesta kunna hänföras till hvirfvelåskväder (eller möjligen s. k. "Böen"-väder). Så t. ex. utbrottet den 3 oktober. Ett 745 mm djupt minimum rörde sig från vester mot öster. Gradienten var stor och vinden därefter. Utbrottet inträffade på hafvet, ty där äro möjligheterna för åskutbrott större på denna tid af året än på landet. Under åskvädret rådde stark storm. — På samma sätt voro utbrotten den 17 och 18 i samma månad. I England fanns ett 735 mm djupt minimum, hvilket förflyttade sig mot öster. Den 18 på morgonen fanns minimet i Norra Sverige 739 mm djupt. Gradienten var stor och vinden nästan i hela landet 7 à 8 Beaufort stark. Utbrott observerades endast på hafvet och kusten, ty de sträckte sig ei längre inåt landet än till Kisko. Utbrotten den 19 i trakten af Lovisa och Verkkomatala voro fortsättning på den föregående dagens åskvader. Efter detta åskväder inträffade en betydlig temperaturföränd-Nat. o. Folk, H. 67, N:o 2.

ring i det att väderleken blef kylig. — Det sista år 1904 anmälda utbrottet inträffade den 14 i Ikalis.

Betecknande för dessa utbrott är, såsom Karsten ¹ redan påpekar, det att de uppträda för det mesta sent på kvällen eller tidigt på morgonen. Å utrikes ort, såsom t. ex. i Central-Europa och Norge, har man kommit till motsvarande resultat.

Ur det föregående framgår att större delen af åskvädersperioderna år 1904 kan hänföras till hvirfvelåskvädren (7), hvarvid med sådana betecknas åskutbrott, hvilka såsom randområdets fenomen inträffa i omgifningen af större mera utvecklade minima; 2 värmeåskvädren representera 4 åskvädersperioder samt 5 perioder utbrott såväl af det ena som det andra slaget. Det är dock möjligt, att flere till hvirfvel-typen räknade åskväder egentligen borde hänföras till "Böen"-typen, 3 om än de för "Böen"-väder karaktäristiska fenomenen ej genom dessa undersökningar tydligt framträdt, hufvudsakligast till följd af, att sjelfregistrerande apparater saknas på stationerna, samt att stationerna ej ligga nog tätt.

4. Betingelserna för åskutbrott.

Enligt det föregående kunna åskutbrott inträffa såväl på ett maximi- som ett minimiområde. Dock synes som om de flesta utbrotten inträffade, då ett område med

¹ Karsten: sid. 18.

² Hann: sid. 669.

³ t. ex. Prohaska: Met. Zeit. 1892, sid. 161.

högre lufttryck förskjutes och i stället inträder ett lågtrycksområde. Men åskutbrotten inträffa äfven då i omgifningen af minimet och ej i dess centrum. — Äfven mindre, sekundära minima och åskväderssäckar kunna ofta bilda mycket betydande åskhärdar; de hafva därför i afseende på åska, sin betydelse i väderleksprognosen om sommaren.

Ur Fig. I framgår att äfven i år "varma perioder vanligen afslutas genom åskutbrott". ¹ Under året 1904 betyder det, att det anticyklonala väderleksläget ändras till cyklonalt. Under maximets invärkan håller sig himmeln klar och därför blir solstrålarnas inverkan stark. — Ur alla observationer framgår nämligen, att åskan i allmänhet uppstår genom kondensation af större mängder vattenånga i de högre luftlagren. Genom luftelektriska undersökningar har man påvisat, att luften innehåller såväl positiva som negativa joner, hvilkas antal dock varierar på olika höjd. Jonisationsgraden af luften beror närmast på insolationen. Ju intensivase solstrålningen är, desto större blir den i molnen hopsamlade elektriciteten. Molnens elektricität är vanligen positiv, ty hufvudsakligast bilda de negativa jonerna kondensationskärnan för vattendropparna och falla därigenom med regnet på marken.²

Lufttryckets invärkan på utbrotten framgår för år 1904 ur följande tabell:

¹ Karsten: sid. 34.

² Arrhenius: Lehrbuch der kosmischen Physik II, sid. 793.

Tabell 2.

Lufttrycks- intervall	Antalet åskutbrott
777	1
76 - 74	1
74—72	
72—70	4
70 - 68	2
68-66	1
66-64	18
6462	. 19
62 - 60	77
60 - 58	84
58—56	110
56-54	225
54-52	100
52-50	175
50-48	94
48 - 46	54
46-44	13
44—42	4

Dessa tal äro naturligtvis i någon mån osäkra, ty ur isobarkartorna i är det ofta svårt att bedöma lufttrycket i olika delar af landet på olika timmar; ty ett annalkande minimum åstadkommer rätt komplicerade lufttrycksvariationer. Men i trots af detta motsvarar resultatet de värden Karsten fått, så att ifrågavarande maximihöjder torde vara karaktäristiska för åskutbrotten i Finland.

¹ Meteorologiska Anstaltens Barometern 1904.

År 1904 fanns enligt föregående tabell följande maxima:

771	mm	1903	likaledes	771	$_{\mathrm{mm}}$	
755	"	27		757	"	
751	22	99	27	751	39	0

De egentliga maxima voro härigenom

771, 756 och 751 mm.

D. v. s. åskutbrotten i Finland inträffa för det mesta litet under den normala barometerhöjden. I Utrecht 1 t. ex. har man kommit till motsvarande resultat under juni—september åren 1848—66; utbrottsmaximet infaller å 755 mm:s barometerhöjd. Monné 1 har bestämt samma kvantitet för 11 stationer under åren 1884—88 samt 1890—94; som maximum fick han 756 mm. Prohaska 2 och Prestell hafva äfven de uppnått motsvarande resultat.

Hvad maximet 771 mm beträffar är det, som Karsten 3 redan anmärker, det som motsvarar de egentliga värmeutbrotten. 756 mm motsvarar troligen utbrott å ett område, som ligger mellan ett maximum och minimum. De egentliga hvirfvelutbrotten representeras af maximet 751 mm. Jämför man maxima för år 1903 och 1904

¹ Monné: Über die Häufigkeit der Gewitter bei verschiedenen Barometerständen. Met. Zeit. 1904, sid. 38.

² Hann: sid. 666.

³ Karsten: sid. 39.

	19	903			1904		
771	mm	60	utbrott	4	utbro	tt	
757	77	225	22.	225	. 22	(755	mm)
751	77	394	27	175	22		

finner man, att den största förändringen har inträffat i det egentliga värmeåskväder motsvarande maximet 771 mm.

5. Åskvädrens intensitet.

För att erhålla ett begrepp öfver medelintensiteten under de olika åskvädersdagarna har summan af åskväderens längd i minuter dividerats med antalet åskväder, hvarvid de som "starka" åskväder betecknade erhållit värdet två, de som "svaga" värdet ett halft. Denna beräkuing grundar sig på antagandet, att antalet urladdningar per minut i ett "medelstarkt" åskväder är i genomsnitt konstant, samt i starka två gånger så stort och i svaga blott hälften däraf.

 $\label{eq:Tabell 3.} \textbf{Tabell 3.}$ $\textbf{n}=\texttt{\&skv\"{a}drens}$ antal. $\textbf{i}=\texttt{\&skv\"{a}drens}$ intensitet i &skv\"{a}dersminuter.

					-	_											
	Apri	1		Maj			Juni			Juli		A	ugus	sti	Sep	tem	ber
Datum	n	i	Datum	n	i	Datum	n	i	Datum	n	i	Datum	n	i	Datum	n	i
																	.
17	39	184	9	1	8	2	2	67	1	6	28	1	3	58	3	1	80
18	8	93	16	1	40	3	46	64	2	22	85	2	12	39	5	1	52
19	2	120	18	7	96	4	1	10	3	35	87	3	4	35	9	1	123
22	1	30	19	8	30	8	1	5	4	13	42	4	20	63	10	36	46
28	2	10	20	6	22	12	13	41	5	44	58	5	1	40	11	40	63
30	3	80	27	1	5	13	2	18	6	23	66	6	5	63	13	5	80
	_	_	28	8	44	16	3	60	7	4	8	7	9	156	16	1	2
_		-	_	_	_	17	25	29	8	6	90	8	6	92	17	2	65
	<u>-</u>	-	_	_	_	18	16	68	9	49	52	10	4	19	18	1	5
		_	-	_	_	19	16	22	10	9	52	11	9	26	_	_	_
_	_	-	_		_	20	5	45	15	6	48	12	5	132		_	_
_	_		_		_	21	6	31	16	43	46	13	27	66	_		
_		-	_	_	_	22	23	80	17	27	61	14	3	93	_	_	_
	_	-	_	_	_	23	15	36	19	2	60	15	11	51			_
_	_	_	_	_	_	24	18	45	21	5	7	16	14	78		_	
-	_	-		_		25	8	104	22	1	60	17	9	64		_	_
-	_	_	_	_	-	26	4	17	25	48	60	18	8	59	_	_	-
-	_	_	_	_		27	13	46	26	5	29	19	13	34	_	-	
_		_	_	_		28	6	141	29	2	52	20	10	23		_	
	_	_	_	-	_	29	24	130	30	1	55	22	6	19	_		_
-	_	_		_	-	30	10	93	31	8	44	23	14	88	-		_
-	-	_		_	-		-	_	-		_	24	1	26	_	_	_
-		-	_	—	-	<u> </u>	-	_	-	-	-	25	3	66	_	_	
-	-		_	_	-		_	_	—			28	5	178	-	_	-
_	_	_	_	_	_		_			_		29	2	165	_	_	_
-	-	154		_	45		_	62		-	58	_	_	67		-	56

Nat. o. Folk, H. 67. N:o 2.

6. Åskvädrens långvarighet.

Tabell 4.

n = antalet åskväder. $t_{e-a} = åskvädrens$ medellängd i minuter.

	Apri	1		Maj			Jun	i		Jul	i	A	ugu	sti	Sel	oten	ber
Datum	n	10-n	Datum	n	te-a	Datum	n	t-0-a	Datum	n	t _{e-a}	Datum	n	t _{e-u}	Datum	n	t _{e-a}
17	39	245	9	1	15	2	2	50	1	6	28	1	3	38	3	1	80
18	8	244	16	1	40	3	46	60	2	22	66	2	12	46	5	1	105
19	2	90	18	7	46	4	1	10	3	35	91	3	4	30	9	1	123
22	1	30	19	8	13	8	1	5	4	13	59	4	20	63	10	36	50
28	2	8	20	6	22	12	13	27	5	44	45	5	1	80	11	40	65
30	3	67	27	1	5	13	2	18	6	23	46	6	5	38	13	5	24
_			28	8	33	16	3	30	7	4	8	7	9	104	16	1	2
-	_			_	_	17	25	28	8	6	103	8	6	92	17	2	88
-	_			_	_	18	16	43	9	49	46	10	4	34	18	1	5
-		_	_	_	_	19	16	15	10	9	29	11	9	17	_	_	
-		_				20	5	45	15	6	64	12	5	53	_	_	_
_	_	_			_	21	6	23	16	43	52	13	27	54	_	_	_
!	-			_		22	23	56	17	27	63	14	3	93	_		_
				-		23	15	26	19	2	30	15	11	46	_	_	_
'	-	_	_		_	24	18	30	21	5	7	16	14	52	. —	-	_
-	_	_			_	25	8	59	22	1	60	17	9	47	-	_	
-		_	_	_		26	4	17	25	48	25	18	8	29	_	_	_
_	_	_			_	27	13	46	26	5	17	19	13	24	_	_	_
-	_	_				28	6	106	29	2	26	20	10	14		_	_
-		-	_	_	_	29	24	98	30	1	110	22	6	11	_	_	
! -	_		_			30	10	69	31	8	39	23	14	53	_	_	_
_	_	_	_	_	_	_		_	_	_	_	24	1	13		_	
-	_	_			_	_		_		· —		25	3	55	_	_	-
-		_	-	_	_	_	_	_	_		_	28	5	142	_	_	_
	_		_	_		_	_	_	_		_	29	2	84	_	_	
_	_	217	_	_	28	_	_	50		_	51			55	_	_	56

Bidrag t. känned. af Finl.

7. Åskvädrens rörelseriktning.

En närmare beskrifning öfver åskvädrens rörelseriktning samt andra hit hörande frågor finnes i undersökningen "Om åskvädren i Finland 1903" sid. 40-41. Här må omnämnas resultaten för år 1904 samt de därur samt från föregående års resultat dragna slutsatserna.

Som en allmän lag kan man anse, att åskvädren följa den allmänna luftcirkulationen, d. v. s. röra sig enligt Buys-Ballot's lag. Karsten i kom till detta resultat redan 1903. Plumandon i har närmare undersökt denna fråga och han har gjort den upptäckten, att om gradienten är åtminstone 0.007—0.013 mm, ansluter sig åskvädret till den allmänna luftcirkulationen, som följer Buys-Ballot's lag. Om gradienten är mindre är rörelseriktningen obestämd, men dock riktningen från SW den allmännaste åtminstone i Frankrike. — I Finland var 1904 gradienten i allmänhet under åskväder större än 0,01 mm, hvarigenom rörelsefenomenet får sin naturliga förklaring.

Karsten särskiljer mellan en lokal och en allmän rörelseriktning. Den lokala rörelsen kan visserligen ofta skilja sig rätt betydligt från den allmänna, men ändå kan man anse den föregående lagen allmängiltig.

Under år 1904 uppträda utbrotten på följande sätt i de olika delarna af ett minimum:

Tabell 5.

Oktant .	S	sw	W	NW	N	NE	E	SE
Procent .	20.6	17.2	12.6	7.8	7.7	7.2	12.6	14.2

¹ Karsten: sid. 41.

Nat. o. Folk, H. 67, N:o 2.

² Plumandon: La marche des orages 1894.

och däraf följer att åskutbrotten komma mest från SW-sidan, som ur tabell 6 närmare framgår:

Tabell 6. Åskvädrens rörelseriktning under de särskilda månaderna.

	Januari— Maj	Juni	Juli	Augusti	Septemb.— December	Året
S	12	35	42	28	26	143
sw	19	47	63	42	26	197
W	15	31	43	47	19	155
NW	21	22	50	25	4	122
N	10	20	41	12	5	88
NE	4	24	29	7	2	66
E	_	21	28	16	4	69
SE	5	21	. 29	21	8	84
	86	221	325	198	94	924

Åskutbrotten inträffa alltså mest i S-oktanten, minst i NE-oktanten. Klossowsky¹ har utfört motsvarande undersökningar i det europeiska Ryssland och kom till det resultat, att utbrotten voro talrikast i SE-oktanten. Talen i tabell 5 äro dock i någon mån osäkra, ty de synoptiska kartorna (Barometern 1904), enligt hvilka bestämningarna utförts, äro så små, att ett helt minimum sällan på en gång synes på dem. Dessutom är minimets form mången gång mycket obestämd.

Bidrag t. känned. af Finl.

¹ Hann: Lehrbuch der Meteorologie 1901 sid. 672.

Professor A. F. Sundell¹ anmärker, att rörelse-hastigheten hos åskvädren år 1887 var ända till 100 km. Denna hastighet torde dock vara för stor, ty maximi-hastigheten utrikesort är endast omkring 70 km. Och dessutom äro maximihastigheterna för åskväderstågen år 1903—04 i Finland betydligt mindre. Ur isobrontkartorna utmätna voro åskväderstågens

```
      Medelhastighet
      år
      1903
      40.4 km i timmen

      "
      "
      1904
      40.6 "
      "

      "
      "
      1903—04
      40.5 "
      "
      "

      Maximihastighet
      "
      1903 c:a
      80 "
      "
      "

      "
      "
      1904 "
      63 "
      "
      "

      Minimihastighet
      "
      1903 "
      12 "
      "
      "

      "
      1904 "
      28 "
      "
      "
```

Om man jämför dessa värden med motsvarande å utrikes ort, finner man att öfverensstämmelsen är tillfredsställande. Så är medelhastigheten i Ryssland och Frankrike 41, Norge 38, i Holland 38.72 och södra Tyskland cirka 41 km i timmen. Lang har nämligen påvisat, att hastigheten varierar under olika år i följd af, att minimas banor äro utsatta för periodiska förskjutningar; sålunda var medelhastigheten år 1883—84 42, men 1887—88 endast 36 km. Prohaska har konstaterat en motsvarande växling; år 1886 var nämligen rörelsehastigheten 30.7, men 1887 28.8 km. Hvad olikheten i hastighet i vårt land under åren 1903 och 1904 beträffar, är den för det

¹ Sundell: Åskvädren i Finland 1887, sid. 19.

² Hann: Lehrbuch der Meteorologie 1901, sid. 650.

³ Lang: Fortpflanzungsgeschw. d. Gewitt. in Süd-Deutschland.

⁴ Hann: sid. 650.

Nat. o. Folk, H. 67, N:o 2.

första så liten och dessutom i följd af det dugliga observationsmaterialets ringa mängd så osäker, att den åtminstone tillsvidare kan lämnas obeaktad.

Enligt Rohr's ¹ undersökning öfver åskvädret den 11 dec. 1891 var fortplantningshastigheten på hafvet 79.7 km. Denna hastighet är bland de största observerade. Maximihastigheten år 1903 närmar sig fullständigt detta värde. Den minsta observerade hastigheten är åter 9.3 km, hvilken Prohaska ² påvisat i Steiermark. I Finland är motsvarande tal 12 km, alltså äfven den nära det andra gränsvärdet. De i Finland 1903—04 observerade gränsvärdena närma sig alltså de å utrikes ort observerade. Detta betyder möjligen, trots osäkerheten, att de förutnämda hastighetsvärdena i någon mån motsvara de verkliga förhållandena. Först den under flere års lopp samlade erfarenheten kan slutligen afgöra denna fråga.

I utlandet har man konstaterat en daglig och årlig period hos rörelsehastigheten. ³ Dessutom varierar hastigheten beroende från hvilket håll åskvädret närmar sig. Från vårt land känner man ingenting med säkerhet om dessa fenomen, men dock synes det som om hastigheten från S à SW vore störst, omkring 46 km. I Frankrike är hastigheten från SW 49 och i Ryssland från SW och NW 47 km. ⁴

Hvad åskväderstågen år 1904 beträffar, voro de i förhållande till det föregående året betydligt mindre. Det första och samtidigt det betydligaste åskväderståget inträffade den 17 april. Området med åska låg hufvud-

¹ Hann: Lehrbuch d. Met. 1901, sid. 650.

² Gockel: Das Gewitter, sid. 198.

³ Hann: sid. 650.

⁴ " " 652.

sakligast i Åbo och Björneborgs län, d. v. s. åskvädret rasade i nordöstra delen af det i mellersta Sverige och på norra Östersjön liggande delminimet (hufvudminimet låg vid Vardö). Centret för området med åskutbrott låg i trakten af Raumo och därifrån rörde sig åskvädret såväl mot norr, öster som söder (Karta II). Vid ifrågavarande riktningar vexlade hastigheten mellan 35—37 km.

Det följande mera betydliga åskväderståget inträffade den 3 juli i Egentliga Finland och Nyland. Området med åskutbrott bildades i sydöstra delen af ett från Norra Skandinavien till trakten af Vasa sig sträckande minimum och rörelseriktningen motsvarar den allmänna cirkulationen kring minimet. - Åskvädret den 16 juli är därigenom intressant, att då uppstod allt som allt 4 olika tåg, vanligen från Kvarken, som bildade någotslags "åskhärd". — År 1887 fanns en liknande härd i skärgården mellan Åland och Hangö. — Det första tåget begynte kl. 2 ha och det rörde sig i riktning SE-NW i södra Österbotten; det påföljande tåget rörde sig i riktning SW-NE motsvarande luftcirkulationen hos ett i norra Skandinavien liggande minimum. På dagen ligger minimet i Norra Finland och rörelsen hos åskväderståget är W-E. På kvällen, då minimet antagligen förflyttat sig längre mot NE, uppstår det sista tåget (osäkert), rörande sig från Kvarken mot SE till det inre af landet. Häraf framgår, att rörelseriktningen har vridit sig medsols från SE-NW efter minimet till (NW)-SE. Detta utgör ett exempel på huru åskvädren röra sig enligt Buys-Ballot's lag. Den påföljande dagen ligger minimet i södra delen af Uleåborgs län och ett åskväderståg begynner från Södra Österbotten

¹ Sundell: Åskvädren i Finland 1887, sid. 18.

Nat. o. Folk, H. 67, N:o 2.

och fortsätter sin färd genom Jyväskylä och Kuopio samt öfver Pielis sjö till den ryska gränsen. Egentligen uppstod åskväderståget i Kvarken, men emellan Laihela och Virdois ligger en större lucka, så att tåget anses egentligen hafva börjat kl. 3,30 ha i trakten af Virdois. Åskväderståget inföll således i södra delen af ett minimum (Karta III).

Den 13 aug. uppstod ett mindre åskväderståg från Kimito till Ikalis i E à NE-delarna af ett på södra Bottenhafvet liggande minimum. Rörelseriktningen motsvarar Buys-Ballot's lag samt hastigheten var c:a 37 km.

8. Åskutbrottens fördelning på landets olika delar.

Karsten påpekar år 1903 att "en noggrann utredning af frågan, huru åskutbrotten fördela sig i geografiskt hänseende, är detta år ej möjligt på grund af det fåtal stationer från hvilka åskvädersrapporter kommit". ¹ I år är utredningen om möjligt ännu osäkrare på grund af att antalet stationer något förminskats. Dock äro resultaten sådana, att de motsvara de af Karsten för år 1903 erhållna.

A. Åskvädersfrekvensens förändring från hafvet mot det inre landet.

Åskvädersfrekvensens förändring i detta afseende framgår ur tabell 7. Den är uppställd sålunda att de utbrott som inträffat på de längst ute belägna fyrarna

¹ Karsten: sid. 42.

och öarne anförts under rubriken "vid hafvet"; under rubriken "vid kusten" åter de utbrott som inträffat högst på c:a 20 km afstånd inåt landet från kusten. Alla andra utbrott höra till det "inre af landet".

Tabell 7. $n=antal\ stationer.\quad N=antal\ inrapporterade\ åskväder.$ $\frac{N}{n}=antal\ åskväder\ per\ station.$

1004	Vi	d hafv	et	Vic	d kust	en	Inre af landet			
1904	n	N	N n	n	N	N n	n	N	N n	
April	10	3	0.3	35	23	0.7	40	20	0.5	
Мај	10	0	0.0	39	14	0.4	42	20	0.5	
Juni	11	15	1.4	50	99	2.0	50	117	2.3	
Juli	11	23	2.1	51	136	2.7	53	153	2.9	
Augusti	11	12	1.1	46	88	1.9	51-	87	1.7	
September	11	9	0.8	40	36	0.9	43	36	0.8	
April—Sept.	_		5.7	_	_	8.6	_	_	8.7	

Såsom ur tabellen framgår ökas frekvensen från hatvet mot det inre af landet, men skillnaden mellan det inre landet och kusten är alldeles obetydlig. 1 Dock är — april och augusti undantagna — antalet utbrott per station störst i det inre af landet.

B. Åskvädersfrekvensen vid olika breddgrader.

Antalet utbrott per station aftager i allmänhet då man förflyttar sig från lägre, geografisk bredd till högre.

¹ Karsten: sid. 44.

Nat. o. Folk, H. 67, N:o 2.

Det bevisar bl. a. Klossowsky's ¹ stora arbete öfver åskvädrens fördelning på jordklotet. Men då man undersöker mindre områden, kunna betydliga afvikelser upptäckas. I stora drag sedt sträcker sig ett område med 5—10 utbrott om året från England genom Södra Skandinavien till Ryssland. ² Nordvest om en linje från Bergen till Kolahalfön är antalet utbrott endast c:a 1—5. ² Å Island är åskväder ett sällsynt fenomen och det ersättes troligen genom praktfulla norrsken.

För att undersöka i hvilken grad denna allmänna fördelning motsvarar de verkliga förhållandena i Finland äro stationerna — liksom under år 1903 — delade i trenne grupper, nämligen 60—62°, 62—64° och 64—66° nordlig bredd; dessutom äro stationerna i hvar grupp fördelade i kust- (I) och inlandsstationer (II) samt slutligen behandlade tillsamman (I + II).

Tabell 8.

60-	-62° 62-	-64° 64-	-66° 6	0-62°	62—64°	64—66°
1904 I	II I	II I	II		I + II	
		Åskväd	lersf	rekv	ens	
		1			E-	
April 0.9	0.8 0.0	0.3 0.0	0.0	0.8	0.3	0.0
Maj 0.7	0.3 0.3	0.6 0.0	0.4	0.4	0.6	0.4
Juni 2.5	1.8 1.7	2 2 2.5	3.0	2.2	2.0	2.8
Juli 3.2	2.1 5.0	5.0 0.5	2.7	2.6	5.0	2.3
Augusti 1.9	1.8 0.4	1.2 0.5	2.0	1.8	1.0	1.7
September. 0.6	1.6 0.7	0.6 0.0	0.2	1.0	0.7	0.2
April—September . 9.8	8.4 8.1	9.9 3.5	8.3	8.8	9.6	7.4

¹ Klossowsky: Distribution des orages à la surface du globe terrestre. Revue météorologique. Vol. III. Odessa 1893.

Bidrag t. känned, af Finl.

² Gockel: Das Gewitter, sid. 215.

Antalet i tabellen begagnade stationer framgår ur tabell 9.

Tabell 9.

,	60-62	20 62-	-64° 64	-66° 60)-62°	62—64°	64—66°		
1904	II	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
			Anta	al stat	tione	r			
	1								
April	14 2	1 3	13 2	9	35	16	11		
Мај	16 2	24 3	14 2	9	4 0	17	11		
Juni	22 2	25 7	16 2	9	47	23	11		
Juli	23 2	26 6	17 2	9	49	23	11		
Augusti	21 2	24 5	17 2	9	45	22	11		
September.	16 2	22 3	14 2	8	38	17	10		

Ur tabell 8 framgår, att det i det föregående omnämda förhållandet motsvaras af verkliga förhållanden i vårt land endast under april och september (år 1903 maj och september). — Detta beror troligen på åskutbrottens olika natur under vår- och höstmånaderna, då isynnerhet de sydligaste delarna af vårt land bilda det egentliga åskvädersområdet. — Den största frekvensen tillkommer området mellan 62—64° nordlig bredd; från detta såväl mot söder som norr aftager frekvensen, dock mindre mot söder. Å områdena 60—62° och 62—64° är frekvensen störst under juli; å området 64—66° redan i juni. Karsten kom år 1903 till samma resultat.

¹ Karsten: sid. 46.

C. Åskvädersfrekvensen å olika längdgrader.

För att undersöka huru åskvädersfrekvensen förändras med den geografiska längden, har landet indelats i tre områden: I vester om 2° W. L. räknadt från Helsingfors meridian; II från 2° W. L. till 2° E. L. och III öster om 2° E. L. Antalet stationer finnes i kolumnerna n_1 , n_2 och n_3 .

Tabell 10.

1904	n_1	I	n_2	П	n_3	ш
April	20 20 24 22 22	1.1 0.3 2.2 2.0 1.3	26 27 34 35 32	0.5 0.8 1.9 3.6	18 18 23 24 23	0.1 0.3 2.8 3.8 1.8
September April—September	18	1.1 8.0	27	0.9	19	9.5

"Ökningen i åskvädersfrekvensen från W—E visar det kontinentala klimatets inflytande." Skillnaden mellan områdena II och III är dock mycket liten men negativ; år 1903 var den positiv.

Tabell 11 framställer åskutbrottens antal per station i de olika länen och resultaten däri bekräfta de föregående resultaten.

Tabell 11.
Askutbrottens relativa talrikhet Maj—September.

1904	org	Tavastehus län Åbo och	S:t Michels län	Kuopio län	Viborgs län	Vasa län	Uleåborgs län	Hela landet
(Amril)	(0.0) (1	(1 a)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0)
(April)	(0.2) $(1.$, i ,	(0.0)	(0.0) 0.2		(0.6)	(0.0)	(0.6)
e e					0.2			0.4
Juni	1.8 2.	2 1.9	2.3	1.6	2.8	1.6	2.8	2.2
Juli	3.7 1.	2 1.7	2.7	6.7	2.4	4.5	2.5	2.9
Augusti	1.8 1.	6 2.0	2.5	1.5	2.1	1.3	1.9	1.8
September	0.8 1.	3 1.2	0.0	0.5	1.1	0.8	0.3	1.0
Yhteensä	9.1 6.	5 7.4	8.0	10.5	8.6	8.6	7	8.3

Beroende af länets läge såväl i afseende på breddområden och längdområden som hafvets närhet, ställer sig åskvädersfrekvensen olika. "Häraf förklaras S:t Michels läns stora och Åbo och Björneborgs läns ringa åskvädersfrekvens." I de flesta län är frekvensen störst i juli; i Uleåborgs, Viborgs och Åbo län åter redan i juni, men i Tavastehus län först i augusti.

För att framdeles möjliggöra en noggrannare undersökning öfver åskutbrottens geografiska fördelning, bifogas en förteckning öfver utbrottens antal å de fasta stationerna, d. v. s. vid de stationer där åskiakttagelserna utförts under hela året. Huru nummern på rutan är bestämd se närmare i "Öfver åskvädren i Finland 1903" sid. 48.

Tabell 12.
Antal åskväder.

Rutans nummer	Station	Januari	April	Maj	Juni	Juli	Augusti	September	Oktober	November	År
955 W 954 " 953 " 951 " 950 " 005 " 004 " 002 " " " " 001 "	Lågskär	ari			1 2 2 2 1 3 2 1 1 1 4 3 5 3	E:	10 4 1 2 1 2 3 4 2	nber 1 4 1 2 2 1 1 1 2 2	ber	nber	3 111 2 7 7 7 7 20 12 4 5 5 5 9 5 14 12
000 " 000 E 003 " 004 " 053 W 052 " " " 051 " 051 E	Lojo		1 1 2 1 1 1	1 1 1 - 1 - - 1 1 1	1 2 3 4 4 5 5 3 3 3	4 6 2 4 1 1 1	1 3 3 4 2 2	1 1 2 1 1 2 2 1			1 8 14 10 12 12 9 9 4 8 1

Bidrag t. känned. af Finl.

Rutans	Station			Januari	April	Maj	Juni	Juli	Augusti	September	Oktober	November	År
103 W	Säbbskär			ł	1		2	3	2	2			10
100	Hvittis	•		! —	1		4	3 1	-2	2	_	_	8
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Hinnerjoki .			. —	1		4	1	3	3	_		8
101	Urdiala	•	•		1			1	9				1
100 ,	Hattula	•	•	_	1		2			2			5
100 " 103 E	Villmanstrand		•					4	2	1			7
104 ,	Kronoborg .		•			1	6	5	4	1			17
105 ,,	Hanhipaasi .		•			_	2	1	1	1	_		5
106 "	Heinäluoto .			1	_	_	3	6	5	1			16
151 W	Ikalis			_	1	2	2	2	1	_	_	1	9
202 11	Riitiala			_	_	_	2	5	1	3	_		11
77 77	Tammerfors .			_	1	1	5	2	2	2	_	_	13
150 E	Kuhmoinen .			_		1	1	3	2	_	_	-	7
152 "	Hirvensalmi .			_			3	4	4			.—	11
203 W	Sälgrund			-	1		2	6	7	1	1	_	18
202 "	Jalasjärvi				2	_	_	1	1	1	_	_	5
201 "	Virrat			—			2	6	1				9
77 19	Alavus				1	1	6	_	3	1		_	12
200 "	Korpilahti			-	-	1	1	4	2		_	_	8
205 E	Värtsilä	1		_			3	5	1	1	_		10
. , ,,	Pälkjärvi					_	2	9	2	1	_		14
253 W	Pörtom			l		_	5	4	6				15
250 E	Uurainen			_	-	_	1	5	_	_	_	_	6
252 "	Kuopio			—		-	2	4	1	_	_		7
253 "	Tuusniemi .			1	_	1	3	14	3		_		22
303 W	Valsörarna .			_			1	3	_	1		_	5
1 17 99	Vasa			-			1	5	1	1		_	8
302 "	Munsalo			. —	_	1	1	2			_		4
300 E	Pihtipudas .			-	-	1	2	5		1	_		9
27 27	Viitasaari				_	3	1	3	1	1	_	_	9

Nat. o. Folk, H. 67, N:o 2.

Rutans nummer	Station		,	Januari	April	Ma,j	Juni	Juli	Augusti	September	Oktober	November	År
352 E	Tankar				_			2		1			3
351 "	Yxpila		•		_		_	7	_	_	_	_	7
" "	Gamlakarleby	•	•	_	_			7		1	_		8
401 W	Ulkokalla						_	5		2	_	_	7
402 ,	Kajana					_	. 3	3	2	_			8
404 ,	Kuhmoniemi					_	4	5	2	1			12
450 "	Frantsila	,				1	2	4	4			_	11
451 "	Vaala				_	1		6	3	1			11
500 "	Marjaniemi .				_		4	3	2			_	9
501 E	Pudasjärvi .			_	_	1	3	1	2	1	_		8
550 W	Simo					_	2	_	1			_	3
553 E	Taivalkoski .			_			6	3	2				13
554 "	Kuusamo			-		_	б	1	1	_	_	_	8
601 W	Ylitornio					_	4	1	2				7
801 "	Enontekiö					_	3		1				4

Tabell 13.

	1904	Januari	April	Maj		Juli	Augusti	September	Oktober	November	Summa
Nylands län	Antal stationer	6	6	8	12	13	12	8	7	7	_
md	Åskda- länet	_	1	6	5	10	16	3	3		44
s la	gar för \ stationerna	-	1	7	17	34	21	6	4		90
	Åskutbrott		1	8	21	48	23	6	4		111
Åbo och B:borgs län	Antal stationer	23	28	26	29	29	28	29	26	23	_
Åbo och borgs lä	Åskda- länet	_	5	2	14	9	14	9	1	1	55
och i lä	gar för \ stationerna		34	4	50	35	50	35	2	1	211
	Åskutbrott		37	5	65	36	54	37	2	1	237
Tavastehus län	Antal stationer	7	7	7	11	11	10	9	6	6	
aste län	Åskda- länet	-	1	2	9	9	9	4	_	_	34
ehı	gar för (stationerna	-	7	4	19	17	19	11			77
	Åskutbrott		7	4	21	19	20	11	_	_	82
5:5	Antal stationer	1	1	2	3	4	3	1	1	1	-
Mic län	Åskda- länet	-	-	1	3	4	4	_	_	_	12
Michels län	gar för (stationerna	_		1	6	8	6		_		21
S	Åskutbrott	_	_	1	7	9	6		—	_	23
Кu	Antal stationer	4	4	4	7	7	8	4	4	4	_
opi	Åskda- / länet	1	—	1	9	11.	4	1	-	_	27
0 1	gar för (stationerna	1	-	1	11	41	12	2	_	-	68
än	Åskuthrott	1		1	11	47	12	2	_		74
Kuopio län Viborgs län	Antal stationer	11	12	13	16	16	15	14	10	10	_
3100	Åskda- / länet	1	1	3	14	15	15	2	2	_	53
Š	gar för stationerna	1	2	3	39	33	29	12	2	_	121
än	Åskutbrott	1	2	3	44	38	31	15	2		136
	Antal stationer	16	16	21	26	26	23	21	17	17	_
Vasa	Åskda- / länet	- '	4	4	9	10	12	2	1		42
ı län	gar för stationerna	_	9	8	31	88	28	16	1	_	181
B	Åskutbrott	_	9	8	43	118	30	17	1		226
d	Antal stationer	14	14	15	20	18	17	15	14	14	
] ea	Åskda- (länet		_	3	15	14	11	4	_		47
leåborgs län	gar för stationerna			5	41	35	28	4		'	113
00	Åskutbrott		_	5	55	45	33	4	_	_	142

Nat. o. Folk, H. 67, N:o 2.

Tabell 14.

1904	April	Maj	Juni	Juli	Augusti	September
Stationer	88	96	124	124	116	101
	. 7	8	26	24	25	12
	53	33	214	291	193	86

 ${\bf Tabell~15}.$ ${\bf \hat{A}}{\bf skans}$ utbredning maj—september i procent af arealen.

1904	Tavastchus län Åbo och B:borgs lan Nylands län	Viborgs län Kuopio län S:t Michels	Hela landet Uleâborgs län Vasa län
1		1	
April	17 14 (100)	0 0 17	14 0 9
Maj	14 8 29	50 25 8	10 11 4
Juni	28 12 19	67 17 18	13 14 7
Juli	34 13 17	50 53 14	34 14 10
Augusti	11 13 21	50 38 13	10 15 7
September	25 13 31	0 50 43	38 7 7

9. Öfver åskvädrens periodicität.

A. Åskvädrens dagliga gång.

Såsom år 1903 har äfven nu i följande tabeller allt reducerats till Helsingfors tid. ¹ Ty de därigenom uppkomna felen äro ej större än observationsfelen och i slutresultatet bortelimineras de till största delen. ²

¹ Karsten: sid. 56.

² Mohn & Hildebrandsson: Les orages dans la pénisule Scandinave, sid. 57.

Tabell 16. Åskutbrottens dagliga gång under olika månader. Alla stationer.

1	1904	Januari— Maj	Juni	Juli	Augusti	Septemb.— Oktober	Året
!							
1	12-1 a.	1	1	7	2	1	12
*	1-2		1	7	3	3	14
	2-3	3	_	4	4		11
	3-4	1	2	11	2	2	18
	4-5	1	_	3	1	1	6
	5-6	1	_	4	2	1	8
	6 - 7		_	1	3	1	5
	7—8	1		8	2	4	14
	8-9	1	1	8	4	5	19
	9-10	3	5	6	4	8	26
	10-11	_	11	21	6	4	42
1	11—12	7	15	33	16	4	75
	12—1 p.	2	26	31	9	5	88
	1—2	8	27	37	13	1	86
	2-3	3	38	38	11	3	93
	3-4	4	38	25	18	5	90
	4-5	6	25	24	20	9	84
	5-6	6	19	27	18	5	75
1	6-7	6	13	24	13	6	62
	7—8	11	17	12	26	4	70
	8-9	8	9	6	18	8	49
	9-10	11	10	2	7	6	36
	10-11	2	1	2	1	3	9
	11—12	-	_	1	3	7	11

Bidrag t. känned. af Finl.

Tabell 17. Åskutbrottens dagliga gång under olika månader. Fasta stationer.

1904	Januari— Maj	Juni	Juli	Augusti	Septemb.— December	Hela året
12—1 a.	1	2	6	1		10
1-2			4	3	2	9
2—3	3	1	2	5	_	11
3-4	1	1	7	1	2	12
4-5	1	- 1	3	1	1	6
5—6	1	_	3	2	1	7
6-7	_		1 .	1	1	3
78	2	_	5	3	2	12
8-9	1 ,		4	3	6	14
9—10	2	3	4	2	5	16
10-11	_	8	10	4	2	24
11—12	4	8	14	9	6	41
12-1 p.	1	20	21	6	2	50
1-2	4	15	17	7	_	43
2-3	3	25	31	6	2	67
34	2	25	13	10	2	52
4-5	2	13	13	10	8	46
56	3	11	13	10	5	42
6—7	6	11	9	8	5	39
7-8	5	5	7	14	4	35
8-9	5	4	3	12	7	31
9—10	5	5	_	2	4	16
10—11	2	. 2	_	1	5	10
11—12			_	2	6	8

Nat. o. Folk, H. 67, N:o 2.

Tabell 18. Åskutbrottens dagliga gång i olika län. Fasta stationer.

1904	Nylands län	Åbo län	Tavastehus län	S:t Michels län	Viborgs län	Kuopio län	Vasa län	Uleåborgs län	Hela landet
	-								
12—1 a.	_	1			2	1	6	<u> </u>	10
1-2	3		_	_	2		4	_	9
2—3		2	_		2	-	4	3	11
3-4	_	2	1			1	8	-	12
4—5	2	_	_		_		4	_	6
56	1	3	1			1	1	_	7
6 - 7	1	1	_	_		1		_	3
7—8	4	3	_			1	4	_	12
8—9	1	8	1	1	3			-	14
9-10	2	9	_	1	3	_	1		16
10—11	2	9	6		4		2	1	24
11-12	5	11	5	3	5	6	3	3	41
12—1 p.	7	2	2		12	5	7	15	50
12	4	6	2	3	7	5	10	6	43
23	7	16	1	3	8	6	15	11	67
3-4	4	13	_	_	8	5	13	9	52
45	2	13	3		6	2	11	9	46
5—6	4	14	1	2	4	4	8	5	42
6—7	1	15	2	1	3	4	5	8	39
7—8	5	13	1	1	7	3	4	1	35
8—9	4	12	2	-	3	2	6	2	31
9—10	1	6	2		2		4	1	16
10—11	5	1	1			_	3	_	10
11—12	1	3	_	-	3	1	_		8

Bidrag t. känned, af Finl.

I åskutbrottens dagliga gång är att observera, att maximet infaller under januari—maj mera sent. Till högsommarn har maximitimmen förflyttat sig mera mot den årliga, men i slutet på sommaren (och september) till en senare. Det är möjligt, att denna förändring af maximitimmen kunde beteckna ett olika förhållande mellan värme- och hvirfvelåskvädren under olika månader. För hela året infaller maximitimmen till 2^h — 3^h_p (det senare maximet 5^h — 6^h_p) och minimitimmen till 6^h — 7^h_a .

Tabell 17 och 18 äro uppgjorda enligt de fasta stationernas, d. v. s. de som arbetat under hela året, rapporter. Maximitimmens förskjutning från senare timme mera till middagen om högsommaren och åter i slutet till en senare timme framgår äfven ur tabell 17. För hela året är äfven nu maximitimmen $2^h - 3^h_p$ och minimitimmen $6^h - 7^h_a$.

B. Åskutbrottens årliga gång.

För att erhålla en mera åskådlig bild af åskutbrottens årliga gång är antalet åskutbrott för de särskilda dagarna utjämnadt enligt formeln $n=\frac{a+2b+c}{4}$, hvari a och c äro de närstående dagarnas utbrottsantal, b åter antalet inrapporterade åskväder under dagen ifråga. Den årliga gången af årsutbrotten framgår ur tabell 19.

Tabell 19.

1			1			1 1
Datum	April	Maj	Juni	Juli	Augusti	Septem- ber
		_				
1	_	0.8	1.0	11.2	6.5	0.0
2		0.0	12.8	21.8	7.8	0.2
3	_	0.2	24.2	26.5	40.2	0.5
4	_	0.5	13.0	26.5	11.8	0.5
5	_	0.2	0.8	31.5	7.0	0.8
6	_	0.0	0.2	23.8	5.5	0.8
7	_	0.0	0.8	9.2	8.1	0.2
8		0.2	0.8	16.2	5.8	0.2
9	_	0.5	0.5	28.2	2.5	9.8
10		0.2	0.8	16.8	3.8	28.8
11	_	0.0	4.0	2.2	5.8	29.5
12	_	0.0	7.2	0.0	11.0	11.8
13		0.0	4.2	0.0	15. 5	2.8
. 14		0.0	0.8	1.5	11.2	1.2
15	_	0.2	1.2	13.8	10.2	0.2
16	9.8	0.5	8.0	29.8	12.2	1.0
. 17	21.5	2.0	17.2	24.5	10.2	1.5
18	14.2	5.8	18.2	7.8	10.0	1.0
19	3.0	8.0	14.2	1.5	11.5	0.5
20	0.8	5.8	8.0	2.2	8.8	0.5
21	· 0 8	1.8	10.0	3.0	4.2	0.2
22	0.8	0.0	16 8	1.8	6.5	-
23	0.2	0.0	17.8	0.2	8.8	_
24	0.0	0.0	15.2	10.8	4.8	_
25	0.0	0.0	10.5	22.8	1.8	_
26	0.0	0.2	7.8	13.8	0.8	_
27	0.5	2.5	9 0	2.2	1.5	
28	1.0	4.2	12.5	1.0	3.5	_
29	1.2	2.0	16.5	1.2	2.5	_
30	1.5	0.0	12.8	3.0	0.5	-
31		0 2	-	5.0	0.0	. –

Bidrag t. känned. af Finl.

Uttager man från hvarje grupp det väsentligaste maximet, erhåller man följande dagar:

		Tidsintervall
		i dagar
April	17	
,,	30	13
Maj	9	9
27	19	10
27	28	9
Juni	3	6
	7	4
27	12	5
"	18	6
11	23	5
"	29	6
, Juli		(3) 6
Jun	9	4 (6)
22	_	7
"	16	9
,,,	25	10
Augusti	4	9
"	13	10
"	23	5
"	28	8
September	5	5
27	11	8
"	17	

Någon tydlig period framgår ej ur talen; men ändå synes det som om en kortare period om 6 och en större om 10 dagar skulle finnas: Om man tager ur maximidagarna deras maximivärden, uppkommer en c:a 14 dagars Nat. o. Folk, H. 67, N:o 2.

period (dagarna i denna period med fetare stil). År 1904 kunde man alltså vänta åskutbrott alltid efter en 6 och 10 som 14 dagar.

C. Andra åskvädersperioder.

Redan år 1885 påvisade Köppen, ¹ att antalet åskutbrott var störst under nymåne och de första kvartalen. Senare hafva olika forskare i flere länder kommit till samma resultat. Så t. ex. Meyer ² i Göttingen, Mac Donall ³ i Greenwich o. s. v.

Om man ordnar åskdagarna år 1904 i måndagar, finner man att antalet utbrott fördelar sig i procent för de olika månfaserna på följande sätt:

Det största antalet inträffar således under nymåne samt den sista kvartalen. — Om man åter tudelar månmånaden, nämligen i en ny- och fullmånads halfva, får man följande värden:

	6
$55^{-0}/_{0}$	$45~^{\mathrm{0}}/_{\mathrm{0}}$

¹ Köppen: Einfluss des Mondes auf die Gewitter. Met. Zeit. 1885, sid. 34.

Bidrag t. känned. af Finl.

² Meyer: Mondfasen und Gewitter. Met. Zeit. 1885, sid. 406.

³ Das Wetter 1904, sid. 166.

Såsom resultat för år 1004 kan man därför anse, att åtminstone under nymåne var antalet åskutbrott störst.

Utom denna månperiod finnes ännu en annan, påvisad af Arrhenius och Ekholm. I afseende på den har 1904 års observationer ej undersökts.

Hvad beträffar en solfläckarnas 11-åriga period motsvarande åskvädersperiod i Finland, så kan man egentligen ännu ej utföra undersökningar öfver den, ty åskvädersobservationerna äro bearbetade för endast 18 år. Men i trots däraf synes det, som om någon period i detta afseende redan nu skulle finnas. I det följande är åskutbrottens antal per station för åren 1887—1904 framställda utjämnade enligt formeln

$$\frac{a+b+c+d+e}{5}$$

samt motsvarande solfläcksrelativtalen; ur tabellen framgår en analog gång hos båda talgrupperna:

År	Utjämnadt utbrott antal per station	Utjämnadt solfläcks- relativtal
	1	
1887	(10.10)	12.6 1
1888	(10.00)	7.0
1889	9.84	6.3
1890	9.44	8.4
1891	9.74	37.7
1892	10.76	70.0
1893	11.86	83.7
1894	14.18	79.1
1895	15.38	61.5
1896	15.56	43.1
1897	14.08	28.1
1898	12.06	24.6
1899	10.78	13.8
1900	9 12	8.8
1901	9.88	(2.6) 2
1902	9.34	(4.7)
1903	(9.0)	(25.3)
1904	(8.3)	(41.4)

Efter år 1904 synes det, enligt anlända rapporter, som vore antalet utbrott per station i stigande.

Summan af inrapporterade åskutbrott under de olika dekaderna bildar en serie med tvänne större maximum:

 $^{^{\}scriptscriptstyle 1}$ Die Wolfschen Tafeln der Sonnenflechenhäufigkeit. Met. Zeit. 1902.

 $^{^{2}}$ Provisorische Sonnenflechen-Relativzalen. Met. Zeit. årg. 1902–1905.

IV	11 - 20	49
"	21 - 30	. 7
∇	1-10	2
"	11—20	24
99	2131	9
∇I	1-10	55
27	11-20	82
"	21 - 30	130
VII	1—10	213
VII "	1—10 11—20	213 80
"	11-20	80
"	11—20 21—31	80 67
" VIII	11—20 21—31 1—10	80 67 67
" VIII "	11—20 21—31 1—10 11—20	80 67 67 110
" VIII "	11—20 21—31 1—10 11—20 21—31	80 67 67 110 32

Antalet utbrott ordnade efter månader gifver följande period:

April	56
Maj	35
Juni	267
Juli	360
Augusti 🗸	209
September	92

Den föregående periodens tvänne maxima motsvara v. Bezold's båda sommarmaxima. Denna tudelning af sommarmaximet kan man annars finna i åskutbrottens antal, allt från Mellersta Europa till Sibirien. ¹

¹ Gockel: Das Gewitter, sid. 203.

Nat. o. Folk, H. 67, N:o 2.

10. Kornblixtar.

t = tiden för kornblixtarna. R = riktningen, i hvilken de observerats.

Da	Kori	nblixtar		Orten, där kornblixtarna motsva-
Datum	Observationsort	t	R	rande åskväder egt rum
I 5	Åbo		ESE	2
IV 17	Urjala	8.40-11.30 p.	SW-W-N	På flere ställen, t ex. Alastaro SW, Karkku i NW samt Tam merfors och Messuby i N.
29	Parainen	8.45 p.	W	Kustö (möjligen Nagu och Åbo).
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sälgrund, fyr	1	sw	Bottniska viken (?).
"	Tammerfors		sw	[≼ i SW. Messuby.
"	Åbo	, -	NW	Mynämäki.
"	Söderskär, fyr	1 -	NNW	Märket, fyr (?).
n n	Lauttakylä	-	N	Tyrvis, Karkku i NNE och Lavi i NNW.
18	Utö, fyr	0.0-2.0 a.	S-SE	Finska viken (?).
VI 3	Lieto	7.45 p.	NE	Karins.
, , ,	Porkkala	1	sw-n	Helsingfors, Lojo.
.,	Korpilahti	9.0 p.	s	?
, ,	Lovisa	9.30—10.0 p.	sw-w	Haiko, Söderskär.
25	Enontekiö		W	?
30	Ulkokalla, fyr		NW	?
	Helsingkallan,		,	
	fyrskepp	9.12 p.	ESE	Jakobstad i E.
, ,,	Kurkijoki	9.50 p.	NE	?
"	Merenkurkku,			
	Snipan, fyrskepp	11.50 p.	NW	Södra Österbotten.
17	Storkallegrund,			
	fyrskepp	0.32—2.47 a.	SW-SE	Vasa.
,,	Merenkurkku,			
	Snipan	1.15 a.	sw	Vasa.
,,	Heinäluoto, fyr .			SE-Finland (Villmanstrand).
30	Ulkokalla	-	_	
		L		

Bidrag t. känned. af Fi

Ког	nblixtar		Orten, där kornblixtarna motsva-
Observationsort	t	R	rande åskväder ägt rum
	117 147 9	N	Gamlakarleby.
	1.11—1.41 a.	14	Gamiakarieby.
-	10.10—10.35 p.	NNW	?
Ulkokalla	11.6 p.	wsw	?
Ulkokalla, fyr .	c. 3.0 a.	_	Frantsila och Ruukki.
Jakobstad	10.15 p.	SE	_
Sotkamo	11.0 p.	W	
Kuhmoniemi	11.42 p.	NE	Ett åskväder som försvann från Kuhmoniemi 8.42 p. till NE.
Sordavala	6.45-7.17	NW-W	_
Mariehamn	8.0—9.0 p.	_	Herrö fyr.
Heinäluoto, fyr .	9.13—11.33 p.	N	Pelkjärvi och Värtsilä i NW.
Åbo	11.0 p.		Herrö fyr.
Sälskär	?		
Utö fyr	9.0 p.—2.0 a.	_	
Åbo	10.0 p		
Sälskär	10.0—11.0 р.	SE-E	I trakten af Enskär.
Karkku, Linnais.	10.0 p.		1 trakten at Enskar.
Sagu	10.41 p.	W)
Helsingkallan,	,		
fyrskepp	0.27—0.42 a.	S	_
Säbbskär, fyr	a	S	Hinnerjoki i SE.
Ingå, Svartbäck.	10.30 p.		_
Uleåborg	7.30-930 p.		Ylitornio.
	9.1 p.	_	Uleåborg.
	11.0 p.	NE	Taavetti (?).
Verkkomatala	8.15—9.3 p.	NW	I trakten af Viborg.
Miehikkälä	8.30 p.	SE)
Finström, Godby		NE	I trakten af Hinnerjoki, Alastaro
			I trakten af Vasa och Laihia i E,
fyrskepp	8.45—11.55 p.	SE—E	i Sälgrund i SE.
	Helsingkallan, fyrskepp Kvarken, Snipan fyrskepp Ulkokalla Ulkokalla. fyr Jakobstad Sotkamo Kuhmoniemi Sordavala Mariehamn Heinäluoto, fyr Åbo Sälskär Utö fyr Åbo Sälskär Utö fyr Lingå, Svartbäck. Uleåborg Uleåborg Ulkokalla Hogland Verkkomatala Miehikkälä Finström, Godby Kvarken, Snipan,	Helsingkallan, fyrskepp Kvarken, Snipan fyrskepp Ulkokalla Ulkokalla. fyr Jakobstad Sotkamo Sotkamo Sordavala Sordavala Abo Bilko fyr Bilko f	Observationsort t R Helsingkallan, fyrskepp

t. o. Folk, H. 67, N:o 2.

Da	Korn	blixtar		Orten, där kornblixtarna motsva
Datum	Observationsort	t	R	rande åskväder ägt rum
IX 10	Alavus, Norrvik . 8	8.50—9.15 p.	S	Ruovesi.
27	Sagu	8.56 p.	N	I trakten af Hinnerjoki, Alastar
				och Hvittis.
27	Somero	9.0 -10.0 p.	sw	
,,,	Lovisa	930—10.0 p.	W	_
79	Ikalis	afton	sw	Karkku, Linnais.
11	Helsingkallan,			
	fyrskepp	1.7—1.10 a.	N	_
->	Korpilahti c	. 9.0—10.0 p.	W	
13	Viborg	n	_	Verkkomatala.
17	Pudasjärvi	9.0 p.	\mathbf{E}	
X 3	Gamlakarleby	7.55 p.	\mathbf{S}	<u> </u>
"	Ulkokalla	8.6—9.6 p.	sw	_
. 27	Helsingkallan,	g no and a second		
į	fyrskepp	8.8-8.15 p.	NNE	Bottniska viken (?).
18	Helsingfors	10.45 p.—n.		Porkkala fyr.
,,,	Pemar	c. 11.0 p.	NW	Kisko (?).
	Storkallegrund,	•		
	fyrskeppc.	11.0 -12.0 p.	_	_
		- 1		

ll. Åskslag.

Följande åskslag hafva anmälts från år 1904:

- April 17. I närheten af Riste station rasade ett starkt åskväder och under ovädret slog åskan ned 9-tiden i närheten af stationen; senare syntes i den riktning där åskslaget inträffat ett eldsken, liksom från en eldsvåda. Antagligt var därför, att en ria (?) hade antändts af blixten.
 - " I Kjulo socken, Ehtamo by nedbrann en ria kl. 9.45 p. m. i följd af ett blixtslag.
 - " 18. Telefonen "sprakade" under åskvädret i Jalasjärvi.
- Juni 3. I närheten af Perniö station splittrade blixten en telegrafstolpe och bedöfvade 18 (?) banarbetare; af tre förstördes kläderna och man måste föra dem till läkaren i Salo.
 - " " Åskan slog ned i Eskola gårds ladugård i Metsola by af Kjulo socken; tvänne kalfvar och ett svin inbrändes. En person skadades.
 - " Åskan slog ned i Tapila ladugård. Den kastade omkull 4 kor, utan att dock skada dem på något sätt. En tjänare förlorade genom åskslaget såväl sin talförmåga som hörsel. Under åska nedslog blixten äfven i prestgården, utan att åstadkomma någon nämnvärd skada.
- Juli 1. I Kyrkslätt, Botvik slog blixten ned i ett torp.
 - " " I Sjundeå splittrades af blixten en tall på Lill Granholmen.
 - " 17. Uurais. Blixten nedslog i ett torp, beläget åt SE från kyrkan på c:a 3 km afstånd. Blixten

inkom genom väggen, antände en väfnad, förstörde ett väggur samt försvann slutligen genom fönstret. För tillfället befann sig i rummet 6 personer, men ingen af dem skadades; de kände sig endast illamående efteråt.

- Juli 25. Enligt hörsägen har blixten nedslagit å tvänne ställen i närheten af Hangö stad, utan att dock åstadkomma någon nämnvärd skada.
 - " I Vederlaks dödade blixten en oxe.
- Augusti 2. I Kuhmoniemi slog åskan ned alldeles i närheten af observationsstället.
 - Notsjö. Blixten splittrade en 40 cm tjock björk, som fanns på c:a 200 m afstånd från fabriken.
 - " Åskan nedslog i Teuva i en telefonstolpe.
 - Karins. Åskan nedslog i Littois fabriksbyggnad. En telefonledning skadades.
- September 10. Det berättades, att blixten antändt en ria i Mommola by af Hvittis socken.
 - " 11. Åskan slog ned i ett berg i närheten af Kyrö station.

12. Meteorer.

Februari 16 såg man i Salo en medelstor, grönfärgad meteor. Den observerades i NE på 30° höjd, hvarifrån den sänkte sig ned till horisonten kl. 5 h 49 p. m.

Bidrag t. känned. af Finl.

Juni 3 hade man i Paimio observerat ett eldklot, hvilket rörde sig åt vester.

Oktober 28 kl. 10^h 23 p. medan himmeln för det mesta var mulen, observerades från Verkkomatala mellan molnen högt uppe en blåhvit eldkula. Den var nästan stor som ett barnhufvud och rörde sig mycket hastigt från S genom zenit mot norr och sänkte sig samtidigt. Efter klotet syntes en ljusstrimma och hela fenomenet aflöpte utan något ljud.

Skydrag.

Den 9 juli observerades tvänne mindre skydrag, hvilka rörde sig på viken öster om Bromarf.

Bihang I.

 t_a : tiden för början. t_a – tiden för slutet. R – riktningen, i hvilken åskvädret observerats. $V_{\mathbf{f}_i}$ $V_{\mathbf{u}}$ och $V_{\mathbf{o}}$ – vindens riktning och styrka resp. före, under och efter åskvädret. 🌠 = åska. T = aflägset dunder. 🧸 = kornblixt, blixt utan dunder. B = blixt. D = dunder. T = luftens temperatur i C°. h = barometerhöjden oreducerad. 🕲 = regn. 🛕 = hagel. 🛆 = trindsnö. M = molnigheten.

Tiderna äro angifna efter Helsingfors meridian, hvarvid 12 middag betecknats med 12 a och 12 midnatt 12 p. Tider med kur-• = helmulet. • - nästan helmulet. • = halfklart. • = nästan klart. • = klart. B=D = tiden mellan B och D. siv stil hänföra sig till följande, understreckade åter till föregående dygn.

Datum	Observationsort	\mathbf{t}_{a}	R	t _a	t 0	V T	N n	V	Anmärkningar
I 4 18	I 4 Tuusniemi	3.15 a 3.30 a 9.33 a	a W-E	and the state of t	and 1	W _o	W ₈ —9	W _o	"Storm".
IV 17	IV 17 Lågskär, fyr	5.35 p 7.0 p 5.40 p 5.50 p	p NW—W	5.10 p	 7.10 p	∞	∞ ∞	$^{\infty}_{\sim}$ ∞	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
* *		5.56 p 9.41 p 5.58 p 6.50 p	p SW—NE	6.1 p 9.21 p 4.23 p 7.8 p	9.21 p	\ \\ \oldsymbol{\pi}_{\pi}^{\pi}	\\ \omega_{\mathreal}^{\infty}	\ \oldsymbol{\sigma}_{\infty}^{\infty}	⊈', @, ▲ mera stora.
"	•	· c.6.0p 4.0 α	aNE	1	1	SW	NE_{1-2}	Panel	0° n.
2 2	Finström, Godby Mariehamn	6.3 p 9.58 6.20 p 10.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.10 p 9.50 p	9.50 p	SW.	NSW₄ SW₀	W	Solution
33	Sübbskär, fyr	6.49 p 11.44 p	p S—NE	7.14p 9.14p	9.14 p	i	1	•	\mathbf{K}^{1} , \mathbf{S}° . $(\mathbf{B} - \mathbf{D} = 36 \text{ s i N})$.

Bidrag t. känned. af Fi

	{ ≼ belyste tidtals 120° af horison- ten. @² a.	wg	ഹ്	N _{rs}	п П	0.0 p	1	#.U a	2		Tammer or is	*
0	く tycktes i SW förenas med 区		SW_2				Z X	4.0	9.0 p	on .	Lieto station	2
C	·. L		X,	1		[-	c. 9.0 p c. 3.0 a	c. 9.0 p		Salo	:
	$\mathbb{R}^2 9.0 - 10.0 \text{ p. } \leqslant \text{ c. } 10.30.$	SE	Z.	SO	ı	1	SW-	c. 9.0 p e. 11.0 p	c.9.0 p		Lauttakylii	:
		1	:		,	;	S-N	c. 9.0 p α 6.0 a	c. 9.0 p		Kustö.	÷
	$T^{\circ}, \leq 9.5 \text{ p.} - 0.15 \text{ a i sW.}$	-	-	N.		1	SW-W	8.45 р 9.5 р	8.45 p	lyr .	Sälgrund, fyr	£
	T; på morg. 18 6.0; $T = +5$.	x	∞	∞	6.0 p	5.0 p	M	2.0 a	8.30 p		Notsjö .	£
	$T = +8^{\circ}$. (par.	S.	Ω̈́,	\mathfrak{V}_{i}	=	=	NW	8.20 p 0.40 a	8.20 p		Messuby.	£
	T' K klara och "breda". ©° drop-	v,	₹,	$\hat{\mathbf{v}}_{i}$	5.0 a	2.0 a	S-W-NW	3.0 a	8.0 p		Alastaro .	£
	【 [本, @]. Blixtarna bländhvita,		1	SE	1	$820\mathrm{p}$	SE-N	р 11.0 р	8.0 p		Ikalis	\$
		SW_3	SW_3	SW_3	1		NW-W	7.50 p 10.20 p	7.50 p	уг.	Lågskiir, fyr	2
	≼ 7,20 p i SW och 11.0 p i N.	SE	SW_4	$\mathrm{SE}_{\mathfrak{g}}$	$930\mathrm{p}$	$7.50\mathrm{p}$	SW-NE	7.32 р 8.23 р	7.32 p	rrvik	Alavus, Norrvik	£
	G², ©°, blixtarna "breda" o. bländ.	1	1	1	=	L., own	NW	7.30 p c. 3.0a	с. 7.30 р		Hinnerjoki	
	\(\mathbb{G}\)^2 dundret skrällande.	1	Š	1	1	8.0 p	W-E	7.30 p 10.0 p	7.30 p		Lavia	£
	$ \begin{bmatrix} & 0.0 & a, & a. \\ & 0.0 & i. & surar. \\ \end{bmatrix} \begin{bmatrix} & 0.0 & i. & surar. \\ \end{bmatrix} $		-	1	9.45 p 0.20a	9.45 p	SW-NE	7.30 p 11.25 p	$7.30\mathrm{p}$		Enskär, fyr	
	mijoki var 14. i Hvittis, Vempele, Alastaro samt Loimijoki. 9.45 p antändes en ria i Kjulo. K äunu				n	10 р	NW-SW NE-SE	8.0 p	7.30 p		Hvittis .	5
	[₹², ≰ 7.0 p. Under färden från Hvittis till Loi.	zo.	Ž	\vec{x}			NW-NE-Z-S	4.0 a	7.30 p		Mynämäki	;
	区; blixtarna "stora". @ hela natt.		;	t		1	NW-Z-SE	v	7.0 p		Mouhijärvi	*
		SE	X	SE	ı		Ø	8.40 b	7.0 p		Ahlainen	f
	✓ afven i Tyrvis och Tammerfors.	!	1	!		1	W	n	d 0.7	innais	Karkku, Linnais .	
	I≼ moln i W; åtminstone ämnu 1050 p fortfor ovädret.		1	1	1	I	S.W.	atminst.	e. 7.0 p	on	Riste station	17
	:03											

	Annarkningar	/ I börian ≼ i NW, senare ⊠. ®° enstaka droppar.		$\langle x = 9.30 \text{ p i SW och } 4.30 \text{ a i NE} \\ 18 \text{ p. a T} = +2^{\circ}, \text{ b föll föreg, dag,} \\ 18 \text{ a b} = 760.0.$	7 ¹⁻² . ≤ 9.30 p i NW, ©° droppar.		$(\mathbb{T}^2, \mathbb{Q}^{\circ})$. På dagen hård S-storm. $(\mathbb{T} = +9 \text{ à } 10^{\circ})$.	[₹°, @° dúgg.	$\lceil \sqrt{4} \rceil^{-2}$.	[द² skrällande.	[⊈ natten mellan den 17—18.						ΙΔ°.		(2) a.
\$	^Ф >	 & &	SW_0		8	1	-					-			1			[!
14	n A	$\tilde{\Sigma}$	SW_{\star}	1	8		∞,		-	So	1	1	1	1	-	ı		1	
	V f	$\infty_{\!\!\!\! c}$	SW.		SW	$\tilde{\mathbf{x}}$	N _o	1	-	I	The state of the s		l	1			1	1	
	t _e		5.30 p	5.0 a		-			u		1		-	-	3.0 a		8.0 p	1	-
	t	c. 9,30 p	(5.10 p	4.10 a	$9.30\mathrm{p}$		1		$10.30\mathrm{p}$		1	1	1	1	2.0 a		5.0 p	1	
	J.	NW	9.25 p c. 2.0a SW-W-N (5.10 p	i	W-NW	ļ	SW-NW-N	1	Z	1	1		NE	1	2.45 a S à SW-NE	8W	I	N-S	SW
17	t _e	9.0 p 5.0 a	c. 2.0 a	9.40 p 4.50 a	9.45 p 11.0 p	n	с. 11.0 р		n	1.0 a		į	c. 3.0 a	natt		c. 5.0 p	$5.21\mathrm{p}$		
M	ta		9.25 p	9.40 p	9.45 p	10.0 p	с. 10.0 р с. 11.0 р	$10.15\mathrm{p}$	c. 10.30 p	$10.50\mathrm{p}$		c. 2.0 a	c. 2.0 a c. 3.0 a	natt	c. 2,15 a	c. 4.0 p c. 5.0 p	4.6 p	-	. c. 9.30 p
	Observationsort	Åbo	Urdiala	Nagu	Hattula	Kisko, Toija	Somero	Turengi	Pemar	Lavia	Kuortane	Jyväskylä	Lauttakylä	Kimito	Utö, fyr	Pargas	Sälskär, fyr	Åbo	Jalasjarvi
Da	tum	17	2	*		2	2	2		2	*	18	ĸ		z	2	*	8	s.

	ESE,	ESE	ESE,	$11.45\mathrm{p}$	$10.20 \mathrm{p}$	$9.40 \mathrm{p} 11.20 \mathrm{p} \mathrm{S-E-N} 10.20 \mathrm{p} 11.45 \mathrm{p} $	$11.20 \mathrm{p}$	$9.40\mathrm{p}$		Porkkala, fyr	£	
·. –	SE_{j}	$\mathrm{SE}_{_{6}}$		Armen		M	$3.30\mathrm{p}$	2.5 p		Alavus, Norrvik .	*	~
Norrut hördes [⊊ redan 1.0 p.	v,	$\infty_{_{\!\!0}}$		2.0 p	$1.20\mathrm{p}$. $1.35 \mathrm{p} 1.50 \mathrm{p} \mathrm{NW\text{-}W\text{-}NE} 1.20 \mathrm{p} 2.0 \mathrm{p}$	$1.50\mathrm{p}$	$1.35\mathrm{p}$			30	3.7
	$\mathrm{SW}_{\mathfrak{g}}$	SW_6	SW_6	1	1	4.55p 5.5 p SW-SE-NE —	5.5 p	4.55 p		Suojarvi	2	0.5
[₫°, @¹.	SW_{\downarrow}	$\mathrm{SE}_{\scriptscriptstyle 7}$	SE_{2}	$3.15\mathrm{p}$	3.4 p	3.0 p $3.5 p$ SE—NW $3.4 p$ $3.15 p$	3.5 p	3.0 p		Nykyrka	58	
		1	ł	1	-	I	3.51p 4.21p	$3.51\mathrm{p}$		Sälskär, fyr.	22	7.7
O dugg.		1	1	1	7.0 p	1	7.0 р —	7.0 p		Åbo	21	-
[₫°.	l	1		8.0 p 11.0 p	8.0 p	ı	6.51p 8.51p	$6.51\mathrm{p}$	•	Sälskär, fyr	"	
Telefonapparaterna "sprakado".	1	1	ı	!	I	$^{ m N-MS}$. 0.0 а 1.0 а	0.0 a		Jalasjärvi	19	

at. o. Folk, H. 67, N:o 2.

D		Ŋ							
atum	Observationsort	t_a t_e	떠	t a	¢ e	\rangle \text{\frac{1}{4}}	N N	A _e	Anmärkningar
4	Helsingfors	с. 4.30 а	W		7.0 a	1		1	•
6	Söderskär, fyr	1.15p 1.30p	SW	$1.30\mathrm{p}$	2.0 p	SE	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	SW_9	Helsingfors 7 p ▲ 3.40—3.55 p o. ◎
16	Viitasaari	1.20a 2.0 a	SW-NE	1	1	SE	SW_{\downarrow}	${\rm SSW}_2$	₹ 1,10 a i SW.
18	Hangö, fyr	7.50 a 11.0 a	SW		1	SSE,	SSE_{\downarrow}	$\mathrm{SSE}_{\scriptscriptstyle{\uparrow}}$	[▼°, ◎¹.
8	Sagu	8.55 a —	Ø	12.11 p	1.11 p	SE	S	SW	1 D°.
33	Kimito	с 9.0 а —	W	1	1	1		İ	•
£	Kisko, Toija	9.55 a 10.20 a	W-N	9.0 a	9.0 a 12.15p	$\mathrm{SE}_{\scriptscriptstyle{6}}$	SE	$\mathrm{SE}_{\scriptscriptstyle{1}}$	[₹°, @² under åskvädret.
32	Tammerfors	11.0 a 12.0 a	W—S	10.0 я]	S.	s,	∞	
*	Somero	с.11.20 а —	S-N	е. 12.0 р		ss.	∞°	SQ L	(© under dagen; föregående dag T = +13. De följande kalla. Den 21 p ★ och ▲ och vinden Ns.
33	Karis	c. 1.0 p c. 2.0 p	SW-N					J	区。, ◎。.
19	Lappträsk, Kappelby.	11.25 a	Z	1	1	S.	WSW_3	SW_2	1 D², ▲ 11.15 a.
2	Laihia	$12.22 \mathrm{p} 12.38 \mathrm{p}$	SE-E-NE	1	1	SW_6	SW_{\downarrow}	SW_{\star}	٢٠.
:	Munsala	1.30p 1.45p	ω	1		SW_6	SW_2	SW_2	
	Ruukki	3.40p 3.55p	3.55 p SE-E-NE	7.20 p	8.0 p	SW_6	SW_8	0	·°F
*	Frantsila	4.5 p 4.30p	SW-W-NE	4.15 p	1	W_2	W_2	W_2	enstaka droppar.
22	Ikalis	5.10p	M	5.0 p		ž		N	1 K.
33	Vaala		W-E	$5.10\mathrm{p}$	$5.35\mathrm{p}$	$\dot{\mathbf{x}}$	W	W_2	D(?), @², ▲ 5.10-5.15 p, ▲ små.
2	Alavus, Norrvik	6.30p 7.2 p	S-SE-E	7.0 p	$8.20\mathrm{p}$	$\tilde{\Sigma}_{z}$	Š	ů	™, ©.
"	Ikalis	8.0 p —	N—S	8.0 p	1	-	****	l	1 D ² , ©°.

(1 D ◆ n 1930 n @ håda fäna	och efter IZ. Vädret efteråt kyligt och blåsigt.	Kallare efter [\(\vec{\mathbb{K}}\).	4 [≼ i NE, ▲ 12.45—12.50 p.	$oxdotsim_1^{1-2}, oxtimes_1$.	1 D. Ovanligt mörka $\lceil \Xi \mod n$ i E. I Jokkis D². $\Gamma t = +15 \circ 4$, $\Gamma_0 = +6 \circ a$. Derefter blef vädret kallare; den 22 p $\Gamma = +1 \circ a$, på morgonen \times .	▲ 5.15-5.20 p.	(▲° 11.40 a−12.10 p. 21, 1.10 p. ▲ i Lauttakylä.	·	1 D. 🔘 under dagen.	2 D; en B "nära" marken.	1 D; 🕲 något på m.	¼, @².			skoftals under dagen, vind variab.		
N ₆	SW_2	$\overline{\mathrm{NW}}_{\mathrm{s}}$	WNW_2	NNW_6	WNW ₂	$\mathrm{NW}_{\mathfrak{6}}$	1	SZ,	1	Z		SW_2	N.	NE,	NW_2	NE_{2}	
N_{1-2}	SW,	SE_6	$NW_{\vec{x}}$	$\mathbb{N} W_{_{\pm}}$	WNW.	1	ļ	$\mathrm{SE}_{\mathfrak{g}}$	SSE	NW		NW_6	\mathbf{Z}	NE	∞_{\downarrow}	$\mathrm{NE}_{_{\downarrow}}$	
N	SW_1	W	W	$NW_{_{\downarrow}}$	$\overline{\mathrm{NNW}}_{2}$	1	ļ	SE_6	-	\bowtie		W	Z	$\overline{\mathrm{NE}}_{2}$	νς̈́,	$NE_{\underline{i}}$	
12.20 p	c. 1.0 p	6.0 p	1.55 p	$1.25\mathrm{p}$			ì	1	ļ	2.0 p		3.50p 4.45p	4.20p 6.30p		$6.38\mathrm{p}$		
12.10p 12.20p	1	11.50 a	12.31p 1.55p	12.30p 1.25p	J	1				1.0 p		$3.50\mathrm{p}$	4.20 p		***************************************	-	
N-S	SW-NE	N-SE	NW-N-NE	NW-SE	230p 2.30p NE-E-SE		.	W—E	202	W-E	ı	NW-SE	SWNE	4.10p NE-E-S	5.40p 6.0 p S-W-NW	5.43p 5.43p SE—SSE—S	
a 12.0 a	I	12.5 p		12 10 p	2.30p			$2.40\mathrm{p}$	1	9.0 p	ļ	$4.10\mathrm{p}$	$5.30\mathrm{p}$	$4.10\mathrm{p}$	6.0 p	5.43 p	
11.0 а	11.4 a	11.15a 12.5 p	$11.30\mathrm{a}$ $12.30\mathrm{p}$	12.0 a 12 10p	2 30 p	Management	!	$2.35\mathrm{p}$	c 1.0 p	1.0 p	c. 1.30 p	3.45 p 4.10 p	4.0 p	4.0 p	$5.40\mathrm{p}$	$5.43\mathrm{p}$	
Tuusniemi	Nykyrka	Pihtipudas	Viitasaari	Lovisa	S:t Michel	Krouoborg	Sordavala	Öfvertorneå	Jyväskylä	Korpilahti	Kuhmois	Lovisa	Vekkelaks, Brakila gård	Pudasjärvi	Viitasaari	Utti	
	2	*	3	33	2	£	31	22	58	t		2		2	ţ		

\(\mathbb{A}^2, \mathbb{A}^2, \text{Helsingfors} \) \(\mathbb{A} \) \(

 W_2

 NW_{\downarrow}

 $NW_{_{\downarrow}}$

9.40 a 10.0 a

Lovisa

- ا	4
5	7
Ė	3
-	5

																					10	
Skoltals.			·. ⊢	٦°.	1°, ◎°.	Iद', @'. B slog ned i Eskola gård i Metsola by i Kjulö. Fä- huset antändes och några djur brändes.	[¶², @².	区, @ skoftals.	7, ◎1.	$(\mathbb{K}^2, \mathbb{Q}^2, \mathbb{K} $ of vanom observations orten skarpa och räta.	\mathbb{K}^{1-2} , \mathbb{Q}^2 c. 5.24 p.	⊤°, @° skoftals.	$\left\{\begin{array}{ll} \mathbb{T}_{a^{1-2}}. & \mathbb{T}_{f} = +23^{\circ}; \ \mathbb{T}_{\theta} = +10^{\circ} \ \text{och} \\ \mathbb{P}_{a}^{h} \ \text{natten} \ +1^{\circ} \ \text{a} \ +3^{\circ}. \end{array}\right.$		$[\mathbb{N}^1, \mathbb{O}^{1-2}]$			$\sqrt{1-2}$	₩.	∠ 7.45 p i NE.		
	NE	1	1	SE_2	$\infty_{\mathbf{c}}$	i	N	NW	$\mathbf{SE}_{_{1}}$	च	1	W_{\downarrow}	<u>a</u>		Ą	NE_1	$\mathrm{SE}_{\scriptscriptstyle 1}$	$\mathrm{ENE}_{\scriptscriptstyle{\downarrow}}$			\mathbb{W}_2	
	SE,	∞	1	$\mathrm{SE}_{\scriptscriptstyle{0}}$	$\mathrm{SW}_{^{4}}$		NE_{\downarrow}	SW_1	SSW_{2-1}	国	1	W_2	$\mathrm{SE}_{\scriptscriptstyle{\frac{1}{4}}}$	1	편	Ň.	SE_o	$\mathrm{ESE}_{_{1}}$		NE,	$\overline{\mathrm{W}}_2$	NW
İ	SE_{2}	ß	1	$\mathbf{SE}_{\scriptscriptstyle{2}}$	$\Sigma_{\mathbf{z}}$	1	I	SE_{2}	$\mathrm{SSE}_{\scriptscriptstyle 3}$	म्य		$\mathrm{SE}_{_{\!\!\scriptscriptstyle{\frac{1}{4}}}}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	l	ů	NW_2	$\mathrm{SE}_{\scriptscriptstyle \mathrm{I}}$	$\mathrm{ESE}_{\scriptscriptstyle 3}$	1	1	\mathbb{W}_{2}	$SE_{_{0}}$
	6.0 p	$5.10\mathrm{p}$	İ	$5.40\mathrm{p}$	$6.10\mathrm{p}$	с от	12.0 p	8.0 p	1	8.0 p		$6.41\mathrm{p}$	7.35 p	$7.30\mathrm{p}$	7.10 p 11.0 p	8.15 p	$9.10\mathrm{p}$	$8.20\mathrm{p}$		$9.30\mathrm{p}$	l	9.30 p
	$3.17\mathrm{p}$	$3.30\mathrm{p}$	-	$4.42\mathrm{p}$	$5.15\mathrm{p}$	5.0 р	4.40p 12.0	$6.30\mathrm{p}$	1	$6.45\mathrm{p}$		4.26 p	6.15 p	7.0 p	$7.10\mathrm{p}$	$7.35\mathrm{p}$	$7.05\mathrm{p}$	$7.40\mathrm{p}$	ļ	$8.25\mathrm{p}$	l	8.33 p
1	NW-SE	SW-NE	SE	5.35 p W—NW—N	$6.30\mathrm{p}\mathrm{SW}\mathrm{-S}\mathrm{-SE}$	S-N	E-SE-S	NW-N-NE	NW-N-NE	SW-Z-NE	E-S	S-SE-E	SW-NE	W-N	SW-S-E	SW-W-NE	E-W-N	W-SW	1	NE-E-S	W-N	WSW-E
o.top	5.0 p	5.0 p	$4.29\mathrm{p}$			4.30 p 6.50 p	4.35 p 11.30 p	4.45p 6.15p	$6.25\mathrm{p}$	8.45 p	-	$6.21\mathrm{p}$	7.20 p	8.0 p	$7.20\mathrm{p}$	$8.10\mathrm{p}$	8.0 p	$8.20\mathrm{p}$	9.0 p	9.0 p	8.8 p 10.30p	9.0 p
9.00 p	$3.50\mathrm{p}$	4.0 p	4.14 p	$4.22\mathrm{p}$	$4.30\mathrm{p}$	4.30 p	4.35 p	4.45 p	5.0 p	5.15р	5.24 p	$5.31\mathrm{p}$	5.35 р	6.0 p	$6.40\mathrm{p}$	$7.26\mathrm{p}$	$7.30\mathrm{p}$	$7.35\mathrm{p}$	$7.50\mathrm{p}$	8.0 p	8.8 p	8.15 p
			т т	1aa		Toija		fyr								la, fyr		Söderskär, fyr	Toija		ins	gfors
. 00 W 0	" Lieto .	" Kustö .	" Utö, fyr	" Heinämaa	" Hattula	" Kisko, Toija	. Sagu .	" Hangö, fyr	" Bromarf	" Lojo .	" Salo	" Hvittis	" Somero	" Karis .	" Hattula	" Porkkala, fyr	" Järvelä	, Södersl	" Kisko, Toija	" Lieto .	" S:t Karins	" Helsingfors
-	*		,						,	*	6		,	· ·		· ·					,	

					The Personal Persons Inches					
Datum	Observationsort	₩ ————————————————————————————————————	c c	ద	t _a	t _o	V F	V	V_{θ}	Anmärkningar
က	Pemar	8.17p 8.35p	8.35 p	WNW-N	8.30 p		БÃ	Ä	į	10
32	Söderskär, fyr	8.33 p 10.45 p	0.45 p	SW-Z-E	8.40p 9.30p	9.30 p	ENE	S à W	Z,	$\int \mathbb{R}^2 BD = 1 s$; vinden kom turvis från alla väderstrock.
2	Haiko, Kallnüs	8.35 р с. 11.0 р	. 11.0 р	SW-S-E	$9.25\mathrm{p}10.10\mathrm{p}$	$0.10 \mathrm{p}$	NE.	-	Z S	[द² c. 10.10 p.
2	Bromarf, Sommarbo .	$9.55 \mathrm{p} 11.10 \mathrm{p}$	$1.10\mathrm{p}$	SW-NE	$10.57\mathrm{p}$	-	NW_2	NW_{2-4}	N_2	[\(\infty\), \(\infty\).
t	Helsingfors	. 10.0 p 10.25 p	$0.25\mathrm{p}$	M	$10.22\mathrm{p}$		N _e	N	1	
8	Lovisa	. 10.0 p 11.15p	1,15 p	S-W-N 11.30p 3.0 a	11.30 p	3.0 a	SE_{\downarrow}	Š	\mathbf{Z}_{2}	$(4.930 \text{ och } 10.0 \text{ p i } \text{SW-W}, \otimes^2)$
£	Hangö fyr	. 10.10p 10.45p	$0.45\mathrm{p}$	ENE	$9.30\mathrm{p}$	n	NW_{\downarrow}	NW_{\star}	NW_{\downarrow}	· M
-	Uleåborg	3.33 p		SW-E	3.52 p		SW_2	SW_2	SW_2	(▲ 1.0—2.30 och c. m. i Öfvertor- neå ▲ 1.20 p.
£	Nykyrka	е. 0 30 а	}	∞						Vädret förut kväfvande varmt, nu kyligt, regnigt.
ę	Tuusniemi	6.35 p	6.45 p	6.35p 6.45p NNW—ESE			Z	Z	Z	(Tidigare samma dag c. 12.0 a ☑ med "hemsk storm" och ▲.
\$	Vaala		[N-W-S	$2.55\mathrm{p}$		z	$\overline{\mathrm{NW}}_8$	Z,	{ ▲° 255 p, @°. ¥° 3.40—4.10 p. △ 5.30—5.40 p.
2	Vaala		1	N-S	7.20p 7.40p	7.40 p	N	N_2	Z,	\triangle ² 7.40—7.45 p, \bigcirc ⁰ . T = +4.
2	Uurais	$5.40\mathrm{p}$	1	NE-N	-	-		[ì	1 D.
∞	Lieto	2.0 p	2.5 p	E-NW	2.2 p	$2.10\mathrm{p}$	E	臣,0	Š	Åbo ▲ 2.15 p.
10	Valsörarna, fyr	4.16 p	1	NW	1		1			
11	Vibore	120 a 530n	5 30 n							70 @ ofton 7

12 Kropio 1.0 a 11.10 a 1.1 d 11.24 a 1.24 b 1.24																								77	
Knopio 11.0 a 11.10 a 11.13 a W-E 1.40 a 11.53 a W, w, w, w, w, w, w, w, w, w, w, w, w, w,				[द°;	/ Molnen delade sig i N; ena delen åt NE—E—SE och där 2 D°.	[द förflytt. till hafvet.	.∾∑I	. ◎ . ⊠					T°, ©° tidtals.	▲ 10.5 а.	skoftals, ibland *; T c.a 0°.	☐ gick med "hemskt buller".		[₹°, ◎¹.		1 D°.	[₫°, ◎°.			区。, ⑤。.	2 D, @°. 1.23 p hård storm
Kuopio 11.0 a 11.10 a 11.10 a 11.10 a 11.10 a 11.10 a 11.47 a 11.58 b W—E 11.40 a 11.53 a W.2 Sordavala 12.20 p 12.20 p 12.20 p 12.20 p 12.20 p 12.20 p 11.5 p 2.20 p NPW. Michikkälä 12.20 p 2.20 p N—NW—N 12.20 p N.2 Veckelaks 1.40 p 2.20 p N—NW—N 1.15 p N.2 Hogland 1.45 p 2.20 p N—NW—N 1.25 p N.2 Hogland 1.45 p 2.20 p NP—N—N 2.40 p N.2 Kronoborg 1.34 p 6.5 p NP—N—N 3.50 p N.2 Nykyrka 3.49 p 6.5 p NP—N—N 3.50 p N.2 Nykyrka 1.2.35 p 12.45 p NP—N—N N.2 Nykyrka 1.2.35 p 1.2.50 p N.2 N.2 Nykyrka 1.2.35 p 1.2.30 p 1.3.5 p N.2 Nykyrka 1.2.3	1	ũ,	WSW_{i}	\vec{z}	SW_2	ž	W	Z,	NW_5	1	W.	9	ন্ত্র	1	W	Z	1	Ω̈́,	SW_6	SW_6	SW_2	W_2	SE_2	SW_6	W
Kuopio 11.0 a 11.10 a —	1	W	W	W_{6}	NE,	ž	Z,	$\vec{\mathbf{z}}$	NW_{5}	1	NW_{4-8}	E	opiniopinali	1	W	Z		SW_6	SW_6	SW_2	SW_2	W_8	SE_{2}	S	W ₁₀
Kuopio 11.0 a 11.10 a — — Nykyrka 11.47 a 11.58 a W—E 11.40 a Sordavala 12.8 p 12.46 p W—SW—S — Kronoborg 12.20 p 12.45 p NE—E—SE — Kronoborg 1.45 p 2.20 p N 4.26 p Veckelaks 1.45 p 2.20 p N 4.26 p Veckelaks 1.45 p 2.20 p N 4.26 p Veckelaks 1.45 p 2.20 p N 4.26 p Verkkomatala, fyrskepp 3.40 p 4.0 p NE—E—S 2.40 p Kronoborg 0.349 p 6.5 p N 6.45 p Verkkomatala, fyrskepp 4.55 p 6.5 p E 6.45 p Verkkomatala, fyrskepp 4.55 p 6.5 p E 6.45 p Viborg 12.13 p 12.45 p E 6.45 p Viborg 12.13 p 12.45 p E 6.45 p Viborg 12.13 p 12.10 p	1	W ₂	Z	$NW_{_{\downarrow}}$	$_{2}^{N}$	Z.	NW ₃	Z	NW_{\downarrow}		\displays	NW.	NW ₂	1	W ₂	z	SW_3	$\mathrm{SW}_{\scriptscriptstyle{4}}$	NE_0	SW_2	SW_{\star}	W ₂	SE,	SW_{\downarrow}	\mathfrak{D}_{∞}
Kuopio 11.0 a 11.10a — — — Nykyrka 11.47a 11.58a W—E 11.40a Sordavala 12.20p 12.46p W—SW—S — Kronoborg 12.20p 12.45p N—NW—W 12.50p Miehikkülä 1.45p 2.20p N—NW—W 12.50p Pockelaks 1.45p 2.20p N—NW—W 12.50p Hogland 1.45p 2.20p N—NW—S 2.40p Verkkomatala, fyrskepp 2.20p 2.40p NE—E—S 3.15p Verkkomatala, fyrskepp 4.55p 6.5 p E 6.45p Viborg - - - - - Viborg - - - - - Viborg - - - - - Viborg - - - - - Viborg - - - - - Viborg - -]	11.53 a	1	-	1.15 р	$3.29\mathrm{p}$	1	$2.40\mathrm{p}$	4.5 p	3, 4.10 p	$6.30\mathrm{p}$	$7.85\mathrm{p}$	I	-	5.0 p	$3.10\mathrm{p}$	}	4.30 p	!	1	12.0 a	12.40 p	$2.30\mathrm{p}$	$1.40\mathrm{p}$	$2.54\mathrm{p}$
Kuopio 11.0 a 11.10 a 11.10 a 11.10 a 11.10 a — Nykyrka 11.47 a 11.58 a W—E Sordavala — — Sordavala 12.8 p 12.46 p W—SW—S K W—SW—S Kronoborg 1.40 p 2.45 p N—NW—W N C A	1	11.40a	!	1	12.50 p	$2.40\mathrm{p}$	$4.26\mathrm{p}$	2.0 p	$3.15\mathrm{p}$	3.30 p	$3.52\mathrm{p}$	$6.45 \mathrm{p}$	[3.0 p	[3.15 p		. 11.0 р	10.40 a	12.15p	$1.30\mathrm{p}$	1.19p	$2.50\mathrm{p}$
Kuopio 11.0 a 11.10 Nykyrka 11.47 a 11.58 Sordavala 12.8 p 12.46 Kronoborg 12.5p 2.0 p Wiehirkälä 1.40 p 2.45 Veckelaks 1.40 p 2.45 Verkkomatala, fyrskepp 2.20 p 2.40 Verkkomatala, fyrskepp 3.40 p 4.0 Kronoborg 2.3.45 p 6.5 Viborg 3.49 p 6.5 Viborg 5.25 p — Öfvertorneå 5.25 p — Kuusamo 12.13 p 12.43 Tuusniemi 2.45 p 2.50 p Hogland 3.50 p — Kajana 3.0 p 3.25 Sagu 6.55 p 7.0 Ingå, Svartbäck 8.0 p — Hirvensalmi 11.0 a 11.5 Sotkamo 12.50 p 10 Värtsilä 1.17 p 137 Värtsilä 1.23 p 1.25	1	W—E	W-SW-S	NE-E-SE	N—NW—W	N-S	N	W-N-NE		I		田	SE-E	1	E-NE		W			NE	SW-W-N		E-NE	SW-W-NW	W-NW-N
Kuopio 1 Nykyrka 1 Sordavala 1 Kronoborg 1 Veckelaks 1 Verkkomatala, fyrskepp 1 Verkkomatala, fyrskepp 1 Verkkomatala, fyrskepp 0 Viborg 1 Viborg 1 Viborg 1 Virortorneå 1 Tuussineni 1 Hogland 1 Sagu 1 Ingå, Svartbäck 1 Sotkamo 1 Uleåborg 1 Värtsilä 1 Pälkjärvi 1	11.10a	11.58 a		12.45 p		2.45 p	$2.20\mathrm{p}$	$2.40\mathrm{p}$	4.0 p	1	6.5 p	6.5		ĺ	12.43 p	$2.50\mathrm{p}$		$3.25\mathrm{p}$	7.0 p	1		1.5 p	1.0 p	$1.37\mathrm{p}$	1.25 p
Kuopio Nykyrka Sordavala Kronoborg Wiehildkälä Veckelaks Hogland Taavetti Verkkomatala, fyrskepp Kronoborg Nykyrka Ofvertorneå Viborg Kuusamo Tuusniemi Hogland Kajana Sagu Ingå, Svartbäck Hirvensalmi Sotkamo Uleåborg Värtsilä Pälkjärvi	11.0 a	11.47 a	12.8 p	12.20p	1.5 p (2.15 p	1.40 p	$1.45\mathrm{p}$	$2.20\mathrm{p}$	$3.40\mathrm{p}$		$3.49\mathrm{p}$	4.55 p	$5.25\mathrm{p}$	1	12.13 p	$2.45\mathrm{p}$	$3.50\mathrm{p}$	3.0 p	$6.55\mathrm{p}$	8.0 p	11.0 а	$12.10\mathrm{p}$	$12.50\mathrm{p}$	$1.17 \mathrm{p}$	$1.23\mathrm{p}$
13 15 16 17 17 17						Veckelaks								Öfvertorneå										Vārtsilā	Pälkjärvi
	12		\$				ŧ	3	3	*	2	2	2	13	*	2	15	16		2	17	,			

	Anmärkningar	vindens riktning genast efter [3]	skoftals hela dagen.		[¶2², ◎³.	(1), dessutom på e. m.	o efter 4.0 p.		区°, ©° dropp.	▲ 5.2—5.4 p.	T°, ©°. ○ redan 6.15 p.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∫ En hård hvirfvelvind rasade en stund under I⊊.	[☑°, @?. Hård storm.		.∾∑	ز under 20 m.	1		
	o A	SSW_{\star}	W	·	SW_5	v,	$_{ m SW}$	W	WSW_2	W_{2}	SSW_6	W	W ₁₁ (?)	$\mathrm{SW}_{_{4}}$	Í	SSW_4		-	[*] M	NW
;	n	$\mathrm{SSW}_{_{1}}$	W	·	SW_{\star}	NW_{4}	SW_5	SW_2	$\mathrm{SW}_{_{4}}$	SW_8	SSW_8	W	W14 (?)	SW_{10}	\mathbb{W}_2	$\mathrm{SSW}_{_{\downarrow}}$	W_2		SW	NW
<u> </u>	Vf	SSW_6	W	l	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$	∞_{\wp}	SW_6	W_1	SW_3	SW_{4}	WSW_6	W_6	W ₁₁ (?)	SW_8	I	SSW_2	$\overline{\mathrm{W}}_2$	-	SW_6	NW
	t	1.48 p	-	ļ	5.34 p	$5.58\mathrm{p}$		5.2 p	5.5 p) 5.25p)	5.14 p	$5.40\mathrm{p}$	6.0 p		$10.0\mathrm{p}$	-	1	pushed	8.0 p	1	7.45n 8.15n
	+1 ⁿ	1.26p 1.48p			$3.29\mathrm{p}$	$3.48\mathrm{p}$	1	$4.37 \mathrm{p}$	4.50p	4.57 p	5.35 p	$5.45\mathrm{p}$	WHITE	8.30 p	-	1		7.30 p	1	
C	Ä	1.28p 1.35p SSW—NNE	SW-W-NE	l	SSW-N	SW-E	SW-W-NE	4.17p 4.42p SW-S-NE	5.5 p SW-NW-NE $(4.50p 5.5 p)$ $(5.15p 5.25p)$	SW-NE	5.25 p SW-S-SE	W-E	M—M	W-NE	c. 7.0 p c. 7 30 p NW—N(?)	7.15p 7.20p NE—E—SE	NW—S	Z	闰	7.40p 7.55p NW-NE-SE
Ľ.	t to	1.35 p	3.30 p	3.25 p	4.29 p	3.13p 4.18p	c.4.0 p c. 6.0 p	$4.42\mathrm{p}$	5.5 p	4.42p 4.47p	$5.25\mathrm{p}$	6.0 p	6.55 p	7.0 p 7.15p	c. 7 30 p	$7.20\mathrm{p}$	8.0 p	8.0 p	1	7.55 p
Ľ	, c+	1.28 p	3.0 p	3.0 p	3.9 p	3.13p	c.4.0 p	$4.17\mathrm{p}$	4.25 p	$4.42\mathrm{p}$	5.0 p	5.10p	$6.45\mathrm{p}$	7.0 p	c.7.0 p	$7.15\mathrm{p}$	$7.30\mathrm{p}$	$7.30\mathrm{p}$	7.31 p	7.40 p
	Observationsort	Ilomants	Frantsila	Kajana	Herrö fyr	Pudasjärvi	Somero	Taivalkoski	Mynämäki	Kuhmoniemi	Hvittis	Alastaro	Tammerfors	Heinola	Pemar	Enskär, fyr	Jämsä	Kuhmoinen	Ruovesi	Järvelä
Da	tum	17	2	t	\$	33	25	ŧ	2	8	6	£	2	2	£	33	2	τ	2	2

																				79		
	.°°°.	2 D°, @° och lugnt.	▲ ° 11.40 a, ⊤°, ⊚°.		· • 💆		\bigcirc jämnt, $T=+13$.	/ Mörka moln dagen lång; regn litet.	3 D°, @°.	/ \mathbb{Z}^1 , \mathbb{Z} omkring 4.55 p i SE B-D (=5 s.		☑, ◎°.		1 D. Hela dagen åskmoln. Vindens riktning vexlade mellan S ₂ -4. SW ₂₋₄ och W ₂₋₄ . Litet regn med hvart moln.	[¶, @° fint dugg.	$\lceil \overline{\zeta}^{1-2}, \overline{\otimes}^{1-2}. \rceil$	(▲ c. 100 a. i Mariehamn @' 4.10 (—4.55 a.	[⊈ och ▲ 11.46 a.		2 D.		
SSW_2	$\mathbf{W}_{_{0}}$!	SW_6	W ₂	W	W	W	SSW_2	0	NW_1	-	1	SW_{\star}	ਸੁੰ	Ŋ	· 편	İ	1	Ą	-	-	1
$\mathrm{SSW}_{\scriptscriptstyle{2}}$	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$	I	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$	W ₃	W	W	NW_7	SW_2	${ m WSW}_6$	SW_3		1	SW_6	NW_{\star}	-	SW,	<u> </u>	I	1	1	1	
$\mathrm{SSW}_{\scriptscriptstyle{4}}$	SW_3	[SW,	\mathbb{W}_2	$N_{_{4}}$	W ₃	NW_6	SW_2	SW_6	मू	1	We consider	SW_8	SW_2	SW_{\downarrow}	W_2		and the same of th	SW_3	1	1	1
-	11.45 a	a. a. a. a. a. a. a. a. a. a. a. a. a. a	12.15 p		1	3.5 p	$4.50\mathrm{p}$	$3.47\mathrm{p}$	5.55 p	6.3 p			$7.35\mathrm{p}$	10.27 p	9.55 p 10.45 p	1.0 p			-	3.0 p		1
	11.10 a 11.45 a		11.40a 12.15p			$2.45\mathrm{p}$	$3.30\mathrm{p}$	$3.42\mathrm{p}$	$3.50\mathrm{p}$	4.18p	1	ĺ	$7.15\mathrm{p}$	9.25 p? 10.27 p	$9.55\mathrm{p}$	8.45 a		1	1	$1.30\mathrm{p}$	1	
.52a 10.14a SSW-N-NNE	SW-NE	İ	E-NE	W-S-E	Z	2.35 p SW-(N-)NE	SW-SE	SW-W-N	W-N-NE	$^{ m WSW-E}$	SW	*******	SW-S-SE	SW - NE	s_{-N}	NE—S			SW-N-NW	NE-E-SE	1.40p 1.45p NE-E-SE	M
10.14a	.50 a 12.10 p	12.0 в с. 2.0 р	12.30 p	12.20 p	2.5 p	2.35 p	3.15p	3.37 p	$3.40\mathrm{p}$	5.1 p	$6.21\mathrm{p}$		7.0 p	-]	11.30 a				2.15p 12.30p	145p	[
9.52a	10.50 a	с. 12.0 в	12.0 a 12.30 p	12.0 a 12.20p	$1.50\mathrm{p}$	$1.50\mathrm{p}$	$2.2 \mathrm{Cp}$	$3.27\mathrm{p}$	$3.30\mathrm{p}$	$3.49\mathrm{p}$	4.61 p	$6.45\mathrm{p}$	$6.55\mathrm{p}$	9.17p	$9.50\mathrm{p}$	10.40a 11.30	1	c. 12.0 a	$12.10\mathrm{p}$	12.15p	$1.40\mathrm{p}$	[c. 2.0 p]
	:													•								•
	vik.								•							re .						•
Homants	Alavus, Norrvik	Suolahti	Kuusamo .	Taivalkoski.	Öfvertorneå	Taivalkoski.	Kuusamo .	Kuhmoniemi	Mariehamn .	Märket, fyr.	Sälskär, ".	Tammerfors	Kronoborg .	Kuhmoniemi	Öfvertorneå	Laanila, Enare	Åbo	Somero	Pargas	Enontekiö .	Miehikkälä.	Pernå
18	2	2	£	z	2	33	£	\$	ĸ	*	2	ε	£	2	33	19	8	33	\$	44	£	,

	The second secon									
D		Z,				-		-		
atum	Observationsort	t	t e	ద	t	t _e	V _f	V	٥ م	Anmärkningar
- 61	Malm, station	2.20 p	[NE	c.2.0 p			M		
. S.	Söderskär, fyr	$2.20\mathrm{p}$	2.22 p	NW	$2.40\mathrm{p}$	$2.45\mathrm{p}$	$ ext{WSW}_4$	WSW	$ ext{WSW}_{\downarrow}$	2 D°.
N "	Nurmi	$4.20\mathrm{p}$	4.25 p	W-S-SE	4.45 p	5.5 p	SW_2	SW_{\downarrow}	∞	3 D.
"	Nurmi	$5.05\mathrm{p}$	5 35 р	N-NE-E	6.0 p	6.5 p	S_{2}	∞ •	$\infty_{\mathbb{S}}$	区, @ tidtals.
., H	Herrö, fyr	$6.49\mathrm{p}$	8.29 p	S-E-N	$7.19\mathrm{p}$	$8.34\mathrm{p}$	v.	N.	∞_{ε}	区。, ②2,
S.	Sälskär, fyr	$6.50\mathrm{p}$	8.51 p	M			-	1	1	Ţ.
, W	Märket, fyrskopp	7.46 p	8.43p	8.43p WNW-W-E	7.53 p	9.43 p	∞_{\downarrow}	NW	$\mathrm{ESE}_{\scriptscriptstyle 2}$	∫ K närmare kl. 8.32 p i ENE B D = 6 s.
Ţ,	Lågskär, fyr	9.0 p		Z	1	i	Š	ω	N z	1 D°.
	Mariehamn	9.0 p	9.15 p	NW-N-NE	$9.23\mathrm{p}$ $9.40\mathrm{p}$	9.40 p	SSW_{\downarrow}	NW_2	$SW_{6-\frac{1}{4}}$	/ \(\begin{aligned} \(\mathbb{\omega} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
" Fi	Finström, Godby	9.6 p	$9.25\mathrm{p}$	W	8.57 p c. 11.20 p	3, 11.20 p	W	0	0_	° M
20 Tra	Tammerfors	10.0 a 10.5 a	0.5 a	-	10.0 a	1	S.	N.	S.	
" K	Karkku, Linnais	11.10a	S a 0.21 .	11.10 a c. 12.0 a SSE-SE-E	-E 11.20 a 12.19p	12.19p	SSE	SSW_1	SW_1	2 D°.
H	Heinola		Į	W-E	1.0 p 6.0 p	6.0 p	$NW_{\mathfrak{g}}$	Z	\overline{W}_2	@: 2 D°.
" K	Kronoborg	1.10p		1.55 p SW-W-N	1.33р	2.10p	W ₂	W	W	∫ K [∞] hördes ånyo på c. m. i W.
. II	Hirvensalmi	1.35 p	1.40 p	SW-W	1		Š	SW_2	SW_0	Windon conero N @ 9 3 mm WE
*	S:t Michel	2.26 p	$2.27\mathrm{p}$	S-NE	$2.20\mathrm{p}$	3.5 p	SW_0	SW₄	SW_0	+ 19°.8, To = + 11°.8, 19/VI natt. [文]
21 M	Michikkälä	12.30 p	12.45 p	. $12.30\mathrm{p} \left[12.45\mathrm{p} \right] \mathrm{W-NW-N} \left[12.40\mathrm{p} \right] 1.5\mathrm{p}$	12.40 p	1.5 p		1		→ 12.45—12.55.
V	Viboro	12.45p	l		-	1				

																							8.	1	
3	/ I⊊°, @¹. Himmeln betäckt af täta		Vinden svag, vexlande.	⊤°, 2 区.	·,-		1 D.		• under dagens lopp.					区°, @° droppar.	1 D, @².	Under följande dagar ⊘och ▲.		[4] Rade hörts d. 17—18 och 19—20.	(© skoftals under dagen. D. 21 (p-b 756 mm, d. 22 b 754 mm.	1 B klar, smal; D måttligt. @°.	/ $\square \mathbb{A}^{1-2}$ @ dagen lång; kl. 5.0 p l upphörde till en stund.		① , ⊤°, 1 D.	.°°°.	
4)	I	1	$\mathbf{z}_{\mathbf{r}}$		0	W	1	v.	SE	ũ	SE]	SW_1	${\rm SSW}_{_{\pm}}$		SW_2	S_{1-2}	W	SW_1	W	1	ž	1	z°
	0-1	SE	}	SSE,		0	W_{\downarrow}	ı	v.	∞_{z_0}	SW_3	SW_2]	SW_5	${\rm SSW}_{_{\delta}}$	1	SW_2	$S_1 - \frac{1}{2}$	W	SW_2	\mathbb{W}_3	1	\mathbb{N}_{2}	l	z°
,	SE		1	0	J	δ,	W ₂		∞_{ϵ}	Σ_{z}	S.	SW_4		Ω _ω	SSW_3		SW_{4}	$S_{1-\frac{1}{2}}$	W	SW_1	W		Z.		N _o
	$2.10\mathrm{p}$	1	l	n		1.15 p	11.30 a	;	i	2.0 p		2.1 p	ļ	2.12p 2.16p	4.33 a	1	$3.30\mathrm{p}$	3.0 p	B	$4.40\mathrm{p}$	5.0 p	1		. 4.30 p	7.0 p
í	1.45 p	1	1	$10.15\mathrm{p}$		с. 12.0 а	11.0 а	ı	ļ	$1.30\mathrm{p}$	1	$1.29\mathrm{p}$		$2.12\mathrm{p}$	4.23 p	2.0 p	$2.35\mathrm{p}$	1.0 p	1	$3.45\mathrm{p}$	1		1	c. 4.0 p c. 4.30 p	4.30p 7.0 p
	W-E	Z	W-N	Z	NW	ďΩ	W-N-NE 11.0 a 11.30 a			WS-E	S-SSE-NE	W - E	ı	SW-NW-N	SW	SW-NE	SW-SE-NE	SN	W-N-E	SW-NE	W-E	NW	SW	∞	NE-W
	2.40p 1.45p		з. 11.0 р	10.18p	з. 12.0 а	1.8 p		$1.30\mathrm{p}$	1.45 p	2.0 p	$1.10 \mathrm{p} \mathrm{s}$	$1.55 \mathrm{p}$	8.38 p	2.15 p	$2.33\mathrm{p}$		3.5 p	3.0 p	6.30 p	4.0 p	4.45 p	4.21 p	1		$5.15\mathrm{p}$
	$2.40\mathrm{p}$	4.0 p	е. 10.0 р с. 11.0 р	$10.15 \mathrm{p} 10.18 \mathrm{p}$	10.30 a c. 12.0 a	11.35 а 1.8 р	11.40 a	$12.30\mathrm{p}$	1.0 p	$1.10\mathrm{p}$	$1.10\mathrm{p}$	1.14 a	$1.38\mathrm{p}$	2.10p	$2.23\mathrm{p}$	$2.30\mathrm{p}$	$2.40\mathrm{p}$	$2.45\mathrm{p}$	3.0 p	$3.30\mathrm{p}$	3.45 p	3.51 p	3.55 p	c. 4.0 p	5.10p 5.15p
	Lovisa	Malm, station	Haiko, Kallnäs	Sälgrund, fyr	Haiko, Kallnäs	Verkkomatala,fyrskepp	Enare, Jankkila	Viborg	Tammerfors	Enare, Laanila	Alavus, Norviiki	Messuby	Sortanlahti, fyr	Alavus, Norviiki	Heinäluoto, fyr	Ikalis	Riitiala	Tuusniemi	Laihela	Alavus, Norviiki	Virrat	Sälskär	Laihela		Pörtom
	£	*	*	§]	ŧ	£	s 	t	£	ř	ŕ	ş	£	ž			ŧ	£	£	٤	£	r	٤	ŧ	

	r	_	
	~	_	
	↘	_;	
	_	٦.	
	۳	₹.	
	Ė	_	
٠	•		
Р	•	•	
		Θ,	

D		K ;								
atum	Observationsort	10° a	t e	ಆ	1 ^s	°¢	$\nabla_{\mathbf{f}}$	Vu	$\Lambda_{_{0}}$	Anmärkningar
62	Pörtom	$5.10\mathrm{p}$	5.35 p	NE-E	$4.30\mathrm{p}$	4.30 p 7.0 p	N	N	N_{o}	
"	Storkyro	$5.30\mathrm{p}$	6.0 p	SW-N]	1	${ m SE}_0$	SW_0	NW_0	$\begin{bmatrix} 14^{\circ} & 1 = +10^{\circ} & \text{skortals pa r. m.} \end{bmatrix}$ och aft, men icke under $\boxed{4}$.
2	Laihela	$5.32\mathrm{p}$	$6.10\mathrm{p}$	W-N-NE	4.50 p	5.35 p	W	\mathbf{W}_2	W_2	T° , \mathbb{Q}^2 delvis \mathbb{O} .
3	Helsingkallan,fyrskepp	$5.42\mathrm{p}$	6.2 p	S—SW	l	1	0	NE_1	Ň	· -
23	Hirvensalmi	8.30 a	8.41 a	SE-NE	$7.50\mathrm{a}$	7.50 a 11.0 a	SW_{4}	S	SQ.	▲ 8.30 – 8.35 a, @ ³ .
22	Gamlakarleby	$12.10 \mathrm{p} 12.15 \mathrm{p}$	12.15 p	SE-S	$12.15\mathrm{p}$	12.15p 1.55p	W_2	W_2	W_2	
22	Marjaniemi, fyr	$1.50\mathrm{p}$	2.0 p	SSW-SE	$5.30\mathrm{p}$	5.30p 5.40p	NNE,	NNE,	$\mathrm{NNE}_{\scriptscriptstyle{2}}$	
8	Jakobstad	1.55 p	$2.40\mathrm{p}$	SE-S-W	2.5 p	$2.45\mathrm{p}$	NW	NW_4	NW_o	[₹∘.
8	Pudasjärvi	2.0 p	$2.15\mathrm{p}$	S-SE-E	1.30p	2.0 p	Ω _*	E	ĦÎ	
33	Tankar, fyr	2.0 p	$2.30\mathrm{p}$		1		NE	NE	1	
	Munsala	$2.15\mathrm{p}$	$3.10\mathrm{p}$	NE	$2.25\mathrm{p}$	3.15p	N ₄	N.	$N_{_{4}}$	$oxdots, igotimes_{0^{-1}}, lacktriangle$
*	Ahlainen				2.15p	$2.20\mathrm{p}$			í,	(▲ 2.20—2.30 p. ▲ å ett område (3 km åt norr och c. 2 km bredt.
20	Vasa	2.15 p	$2.35\mathrm{p}$	NE	11.55 a	d	NW_0	NNW_0	NW_o	K°, ©°.
33	Helsingkallan,fyrskepp	$2.27\mathrm{p}$	$2.47\mathrm{p}$	E-NW	$3.22\mathrm{p}$	$4.27\mathrm{p}$		NNE_2	0	[द°, @ jämnt.
*	Jakobstad, Björnholm.	$2.30\mathrm{p}$	$2.40\mathrm{p}$	SW-W-NW	2.0 p	$2.45\mathrm{p}$	$\infty_{\rm s}$	SÇ.	$\overline{\mathrm{NW}}_2$	[₹°, ◎¹.
2	Tuusniemi	3,0 p	5.0 p	s_{-N}	4.0 p	5.0 р	S ₁ 2	S_{1-2}	S_{1-2}	
n	Kuopio	3.8 p	$3.40\mathrm{p}$	SE	$3.15\mathrm{p}$	4.0 p		1	1	\(\mathbb{A}\), \(\infty\).
4	Sälgrund, fyr	4.5 p	4.15 p	4.15p SE-E-NE		1	Δ <u>r</u>	NW_1	0	T.
"	Lohtaja	4.20 p	4.20p 4.24p	S-N	4.15p	4.15p 4.55p	N	N	0	

	$\lceil \mathbb{A}^{\circ}, \otimes^2, \text{ dropparna stora. } \mathfrak{t} = +13^{\circ}.$	SEz	SE	SE,	4.55 p 5.30 p	4.55 p	SE-NW	50p; 5.15p	4.50 p	Kuusamo	£
}		$\mathrm{SE}_{\scriptscriptstyle{1}}$	N g	Ω_{w}^{∇}	I	1	1	.15p 3.40p	3.15p	Pudasjārvi	22
88	区, @ dugg en längre tid.	N _o	$\mathbf{N}_{_{2}}$	N_{2}		-	$_{ m SE}$	$4.20\mathrm{p}$	3.5 p	Pörtom	5
	T° be = 755.5, bj = 756.0, \mathbb{Q}^2 .	ਬੱ	Ē	Ð.	9.45 a 10.50 a	9.45a	SW-S-E	9.55 a	9.30 a	Hvittis kyrkoby	٤
	۲۰,	NE_2	Ä	NE,	9.35 a	8.50 a	NE-N-W	9.30 a	9.15 a	Alastaro	25
	17	ਛੂੰ	$\mathrm{SW}_{_{4}}$	SW_6	$9.30\mathrm{p}$	$9.10\mathrm{p}$	SW-W-NW	1	9.5 p	Kronoborg	٤
	j ⊠o-1. Årets första ⊠. Den kalla väder! antae'l hindrat uppkomsten.	SSE_2	SE_2	SE_2			SW-W-NW	50р 9.0 р	$7.50 \mathrm{p}$	Hanhipaasi, fyr	8
	· M	$\vec{\Delta}_{\star}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$!	1	SE-NW	$5.50\mathrm{p}$	5.15p	Ylitornio	£
	\(\mathbb{A}^\circ\) \(\infty\).	. W ₂	NW_2	SW_2	n	$5.35\mathrm{p}$	NW-N-NE	$5.35\mathrm{p}$	5.12p	Åbo	8
		SW_6	∞,	SW	12.0 p	5.0 p 12.0	S-N	7.0 p	5.0 p	Pihtiputaa	33
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z	N	N	Į	ļ	E-W	$4.43\mathrm{p}$	$4.40\mathrm{p}$	Lohtaja	33
	T°.	NE_3	NNW_2	NNW ₂	9.0 p	$4.23\mathrm{p}$	NE-NNW	8 p 4.11p	4.8 p	Marjanièmi.	\$
	区°, ©°; 区 äfven under natten.	∞_{\downarrow}	$\mathrm{SE}_{\scriptscriptstyle \downarrow}$	$\mathrm{SE}_{\scriptscriptstyle\downarrow}$	5.5 p	$4.55\mathrm{p}$	NE-SW	40b 4.50p	3.40 p	Ylitornio	5
		NE_1	NE_1	NE_{i}	1		1	$3.20\mathrm{p}$	$3.20\mathrm{p}$	Alavus, Norviiki	11
		$\mathrm{NW}_{_{4}}$	$W_{\mathfrak{g}}$	NW_{\downarrow}	$3.45\mathrm{p}$	3,15p	SE-E-NE	3.25 p	3.0 p	Buukki	2
	skoftals.	SW_{2}	S.	SW_2	$2.40\mathrm{p}$	$2.10\mathrm{p}$	SW-NE	50p 4.22p	2.50 p	Viitasaari	8
-		SW_4	SW_4	SW_{4}	5.0 p	4.0 p	E-W	4.15 p	$2.40\mathrm{p}$	Pihtipudas	22
		Ø	闰	Z	4.0 p	$2.30\mathrm{p}$	E-W		$2.30\mathrm{p}$	Korpilahti	, 8
	(3 D, © såväl före som efter 「₹ skoftals.	1	20	SΩ	1		N-S	1	c. 2.0 p	Kisko, Toija gård	*
	/ 1 D, @¹. Något senare uppsteg \ stora, svarta moln från S till N.	ESE_6	$ \overset{\circ}{\sim} $	NE	3.0 p	$2.30\mathrm{p}$	S - N	1.21 p	$1.20_{ m P}$	S.t Michel	\$
		1	1	l			!	1	$12.25\mathrm{p}$	Kajana	22
	[द², efter [द ⊘¹ med hård vind.	БŢ	Ē	SE2	12.25 p 12.45 p	$12.25\mathrm{p}$	E-N-W	4 p 12.46p	12.4 p	Sotkamo	2
	"Åskregn."	1	. 1]	afton	12.10p afton	-		- Company	Ahlainen.	*
		NNW_2	NNW.	NNW_2	- Partie	1	SE	.40a 11.50a	11.40a	Enskär, fyr.	2
	1 D, ©°,	NE	NE	ŇΕο	12.0 a	11.45 a 12.0	NE-N	.30a 11,31 a	11.30 a	S:t Michel	24
	•	2 11 2	2112	2 M O			200	1	John		

D		K	h-d	i						
atum	Observationsort	ta	to	R	ta	- to	$\Lambda_{ m f}$	N N	$\Lambda_{_0}$	Anmärkningar
25	Sodankylä	4.58 p	$6.23\mathrm{p}$	6.23p SE-S-SW	1		$\vec{\Omega}$	ದ್ದ	$\mathcal{X}_{_{\!\!4}}$	
32	Säbbskär, fyr	5.34 p	$7.44 \mathrm{p}$	NW				1		
2	Enontekiö	6.0 p	7.0 p	7.0 p NE-N-W	$6.45\mathrm{p}$	7.0 p		I	***************************************	Τ°.
33	Kuusamo	$6.20\mathrm{p}$	7.0 p	NENW	$6.25\mathrm{p}$	$6.40\mathrm{p}$	NE2	67	$\overline{\mathbf{NE}_{2}}$	T° ≤ 7.30 p i W.
ε	Enare	7.0 p	7.30 p	SE-S-SW	1		Ħ	E	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$.°∑
26	Enare, Räkkijärvi	1.30p		S—E	$1.30\mathrm{p}$		E	国	1	2 D°.
33	Heinäluoto, fyr	$6.53\mathrm{p}$	7.0 p	SW-SE	6.48p	$7.13\mathrm{p}$	NNE_2	SW.	NE_3	
\$	Enare, Thule	7.36 p	8.31 p	E-Z-NNW	7.36 p	8.51 p	NE	NE_3	$\mathrm{NE}_{2^{-0}}$	f 3 B ² rakt från zenit; från W åter (åskmoln 9.14 p.
32	Kides	$9.50 \mathrm{p}$	9.50р 9.55р	SN		Ī]	ļ	1	
22	Marjaniemi, fyr	10.31 a 10.38 a	10.38 a	SE-NW	10.30 a 11.0	11.0 а	Ē	Þ	ESE,	Το.
22	Simo	11.0 а 11.3 а	11.3 а	SE	10.0 a 12.0	12.0 a	∞_{\downarrow}	മ്	$\infty_{_{\!$	\(\mathbb{\beta}\) \(\mathbb{\capaa}\) \(\mathbb{\capaa}\) \(\mathbb{\capaa}\) \(\mathbb{\capaa}\) \(\mathbb{\capaa}\) \(\capaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
32	Taivalkoski	12.7 p 12.17 p	12.17 p	SE-NW	е. 12.0 а е.12.59 я	е. 12.50 я	SE_2	SE_1	SE_{2}	
33	Ylitornio	12.10p 1.20p	$1.20\mathrm{p}$	SNW	12 40 p 1.35 p	1.35 p	NE2	SE_6	SW_2	[\frac{1}{8}\] \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{1}\) \(\frac{1}\)
\$	Kuusamo	12.10р 1.20р	$1.20\mathrm{p}$	SE-NW	$12.10\mathrm{p}$ $12.25\mathrm{p}$	12.25 p	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	SE_{12}	$\mathrm{SE}_{\mathfrak{g}}$	från tvenne lador och kullkastade
33	Enare, Thule	1.21 p	1.37 p	S—SW	$2.31\mathrm{p}$	2.31p 5.51p	E.	Ē	ENE,	[Zaruesgaruar pa nere stanten.
2	Enare sjö	$1.30\mathrm{p}$	$3.10\mathrm{p}$	S-E-N	2.0 p	$2.55 \mathrm{p}$	NE,	NE2	SE_2	∀', @'.
66	Kuusamo	$1.30\mathrm{p}$		$2.30 \mathrm{p} \mathrm{SE} - \mathrm{s-NW}$	$1.50\mathrm{p}$	$2.15\mathrm{p}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	SE_{12}	SE_{4}	[¼ ¹ , ∅ ¹ .
22	Taivalkoski	2.27 p		2.52 p SE-S-NW	2.2 p	$3.23\mathrm{p}$	SE_2	SE,	SE	
2	Tammerfors	$2.50\mathrm{p}$	1		1		SE	SE,	SE_2	Pä aftonen D°; 8.0 p 2 D.

5	, ●. Iq º.	W ₁	W ₁	$\begin{array}{c}W_2\\NW_{\pm}\end{array}$	1 1	1 1	E-SE-S	2.45p 3.15p 2.45p 3.15p	2.45p	64 64		• •	• •							Laihela 2 Oravais
	$/$ \otimes skoftals dagen lång. $/$ $/$ c. 3.10 p.	1-2	$N_{1-\frac{9}{2}}$	N_{1-2}				NE-NW	3.30 p	3.30 p	3.30 p	3.30 p	3.30 p	3.30 p	3.30 p	2.40p 3.30p	2.40p 3.30p	2.40p 3.30p	2.40p 3.30p	0 2.40p 3.30p
	/ Vinden tidigare på dagen E à SE. (©° cirka ½ t. 3 à 4 D°.	NW_1	NW_{2-3}	NNW_1	$2.38\mathrm{p}$. >	W_WW-N	$2.28 \mathrm{p} \mathrm{N-NW}_{\mathrm{SW}}^{\mathrm{W}}$	2.5 p 2.28p N—NW/SY	$\sim 2.5 \text{ p} = 2.28 \text{ p} \text{ N-NW}_{SY}^{W}$	$\sim 2.5 \text{ p} - 2.28 \text{ p} \text{ N-NW}_{SY}$	2.5 р	2.5 р	2.5 р	2.5 р	2.5 р	2.5 р	2.5 р	Karkku, Linnais $\frac{2.5}{10}$ p $\frac{2.28p}{10}$ N $-$ NW 6 N
	·. ∑	NW_1	$\overline{\mathrm{NW}}_2$	NW_2]		NE-SW	2.18p NE—SW	2.0 p 2.18p NE-SW	. 2.0 p 2.18p NE-SW	2.0 p 2.18p NE—SW	\cdot 2.0 p 2.18p NE—SW	\cdots \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	2.0 p	2.0 p	2.0 p	2.0 p	2.0 p	Marjaniemi 2.0 p 2.18p NE—SW
	Från Koli sågs K-moln vid ryska gränsen, i rörelse i nämnda rikt- ning. Likaså i W S—NW.		l					S-N	5.30 p	5.30p	5.30 p	5.30 p	5.30 p	5.30 p	1.30р 5.30р	1.30р 5.30р	1.30р 5.30р	1.30р 5.30р	1.30р 5.30р	1.30р 5.30р
	ĭZ°.	Z	N	σ <u>ο</u>	2.0 p	1.0 p		N-S	1.30p		1.30p	1.30p	1.30p	1.30p	1.30p	1.30p	1.30p	$\dots \dots \dots \dots 12.45 p$ 1.30 p	$\dots \dots \dots \dots 12.45 p$ 1.30 p	1.30p
	.∘∑I	$NW_{_{\downarrow}}$	N	NW_2	12.35 p 1.30 p	2.35 p	_		1.55 p E-W	1.55 p E-W	1.55 p E-W	1.55 p E-W	1.55 p E-W	1.55 p E-W	12.2 p 1.55p E—W	12.2 p 1.55p E—W	12.2 p 1.55p E—W	npää 12.2 p 1.55p E—W	npää 12.2 p 1.55p E—W	npää 12.2 p 1.55p E—W
	⊘². I Enare [द् a.	$_{ m e}$	N	$^{\rm N}_{\rm e}$	4.30 p	$3.45\mathrm{p}$	က်	SW-NE 3	4.30 p SW-NE	4.30 p SW-NE	4.30 p SW-NE	4.30 p SW-NE	4.30 p SW-NE	4.30 p SW-NE	11.30a 4.30p SW-NE	11.30a 4.30p SW-NE	11.30a 4.30p SW-NE	11.30a 4.30p SW-NE	11.30a 4.30p SW-NE	11.30a 4.30p SW-NE
		M _o	Ħ	NW_2	$2.40\mathrm{p}$	$1.23\mathrm{p}$	Ϊ.	S-E-N 1.	3.0 p S-E-N	S-E-N	3.0 p S-E-N	3.0 p S-E-N	3.0 p S-E-N	3.0 p S-E-N	3.0 p S-E-N	3.0 p S-E-N	11.30 a 3.0 p S-E-N	11.30 a 3.0 p S-E-N	11.30 a 3.0 p S-E-N	3.0 p S-E-N
	$T^{\circ}, \bigcirc ^{1}, T = +17^{\circ}.$	N_{1-2}	N_{1-2}	$N_{1-\frac{1}{2}}$	11.0 a 1.15 p	0 28	11.	S-N 11.	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	$\mathbf{s}_{-\mathbf{N}}$	11.30 a 12.0 a S-N	11.30 a 12.0 a S-N	11.30 a 12.0 a S-N	
	(12.40 p \mathbb{K}^2 i SW, c. 11.50 a \mathbb{O}^2 , annars \mathbb{O}^{0-1} skoftals.	NE	Z	\bowtie	3.0 p	$11.50\mathrm{p}$	I	ENE 111.	7.50 p ENE	ENE	7.50 p ENE	7.50 p ENE	7.50 p ENE	7.50 p ENE	7.50 p ENE	7.50 p ENE	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	\dots 11.14 a 7.50 p E-NE
	Τ°, ∅°, Φ.	N	Z,	\mathbf{Z}_{i}	$1.10\mathrm{p}$	$12.33\mathrm{p}$	<u>Si</u>	E-S-SW	1.15p E-S-SW	E-S-SW	1.15p E-S-SW	1.15p E-S-SW	1.15p E-S-SW	1.15p E-S-SW	1.15p E-S-SW	1.15p E-S-SW	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	1.15p E-S-SW
		된	$SE_{_3}$	Ē	$8.17\mathrm{p}$	$7.42\mathrm{p}$	7.4	SE-S-N	7.57 p SE-S-N	SE-S-N	7.57 p SE-S-N	7.57 p SE-S-N	7.57 p SE-S-N	7.57 p SE-S-N	$7.32 \mathrm{p}$ $7.57 \mathrm{p}$ SE-S-N	$7.32 \mathrm{p}$ $7.57 \mathrm{p}$ SE-S-N	$7.32 \mathrm{p}$ $7.57 \mathrm{p}$ SE-S-N	$7.32 \mathrm{p}$ $7.57 \mathrm{p}$ SE-S-N	$7.32 \mathrm{p}$ $7.57 \mathrm{p}$ SE-S-N	ski $ 7.32p $ 7.57p $ $ SES-N
	🔘 dagen lång. 1 D.			,	1	,	I								$-6.50 \mathrm{p}$	$-6.50 \mathrm{p}$	$-6.50 \mathrm{p}$	$-6.50 \mathrm{p}$	$-6.50 \mathrm{p}$	$-6.50 \mathrm{p}$
			NE	1	$8.20\mathrm{p}$	0	$7.40\mathrm{p}$	S 7.4	7.30 b	Ø	7.30 b	7.30 b	7.30 b	7.30 b	7.30 b	7.30 b	$6.50 \mathrm{p}$ $7.30 \mathrm{p}$ S	$6.50 \mathrm{p}$ $7.30 \mathrm{p}$ S	$6.50 \mathrm{p}$ $7.30 \mathrm{p}$ S	$6.50 \mathrm{p}$ $7.30 \mathrm{p}$ S
	₩.				5.0 p	Д	3.0 p	- 3.0	5.0 р —		5.0 р —	5.0 р —	5.0 р —	5.0 р —	5.0 р —	5.0 р —	5.0 р —	3.0 p 5.0 p	3.0 p 5.0 p	5.0 р —
	▲ 2.0—2.15 p.	9	闰	呂	$2.45\mathrm{p}$	2.0 p	5. O	SENW 2.0	2.50p SE-NW	SENW	2.50p SE-NW	2.50p SE-NW	2.50p SE-NW	2.50p SE-NW	2.50p SE-NW	1.15 p 2.50 p SE-NW	1.15 p 2.50 p SE-NW	kiö 1.15p 2.50p SENW	kiö 1.15p 2.50p SENW	kiö 1.15p 2.50p SENW
	[₹ ¹ ², ∅³ och △ .	$SW_{_{\downarrow}}$	\mathbf{x}_{s}	$\tilde{\Omega}_{_{\pm}}$	5.8 p	0.58 a	10.	S-N 10.	4.42 p S-N	S - N	4.42 p S-N	4.42 p S-N	4.42 p S-N	4.42 p S-N	4.42 p S-N	10.8 a 4.42 p S-N	10.8 a 4.42 p S-N	10.8 a 4.42 p S-N	10.8 a 4.42 p S-N	4.42 p S-N
		Ē	Ē	EZ Z	8.27 p	$7.42\mathrm{p}$	<u></u>	E-W 7.	— E-W		— E-W	— E-W	— E-W	— E-W	7.37 $ -$	$\mathrm{ni} \ldots \ldots \left 7.37 \mathrm{p} \right - \left \mathrm{E-W} \right $	$\mathrm{ni} \ldots \ldots \left 7.37 \mathrm{p} \right - \left \mathrm{E-W} \right $	$\mathrm{ni} \ldots \ldots \left 7.37 \mathrm{p} \right - \left \mathrm{E-W} \right $	$\mathrm{ni} \ldots \ldots \left 7.37 \mathrm{p} \right - \left \mathrm{E-W} \right $	$\mathrm{ni} \ldots \ldots \left 7.37 \mathrm{p} \right - \left \mathrm{E-W} \right $
	3.	NE	NE,	NE	$7.45\mathrm{p}$	5.15 р	5.	E-W 5.	7.30 p E-W	E-W	7.30 p E-W	7.30 p E-W	7.30 p E-W	7.30 p E-W	7.30 p E-W	. $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$. $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$. $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$. $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$	7.30 p E-W
		NE	NE.	NE	4.45 p	4.15 p	4	NW-SE 4	4.45p NW-SE	NW-SE	4.45p NW-SE	4.45p NW-SE	4.45p NW-SE	4.45p NW-SE	4.45p NW-SE	4.0 p 4.45p NW—SE	4.0 p 4.45p NW—SE	4.0 p 4.45p NW—SE	4.0 p 4.45p NW—SE	4.45p NW-SE
		0_	E1-2	田1-3	5.0 p	4.30 p	4	SNW	SNW		SNW	SNW	SNW	3.50p 5.0 p S-NW	3.50p 5.0 p S-NW	3.50p 5.0 p S-NW	3.50p 5.0 p S-NW	3.50p 5.0 p S-NW	3.50p 5.0 p S-NW	SNW
	· 2	vî.	Š	Ωį,	1		1	M-S		3.8 p 5.3 p S—W						3.8 p 5.3 p	9.8 p 5.3 p	9.8 p 5.3 p	9.8 p 5.3 p	

D		Z Z			66				
atum	Observationsort	t _a t _e	- B	t	t _e	$ m V_f$	V	o o	Anmärkningar
06	Riftiala	3.0 n 430n	0 B - SE			တို	Ž	Ž	
: :	Karkku. Linnais.	3.9 p 3.40p?	Z	4.13p	5.30 p	NW,	NW ₂	Ž Ž	
	Lohtaja	3.10p 3.11p			1	N_{3-5}	N_{3-5}	N_{3-6}	Ķ
	Simo	3.15p 3.20p	$^{\circ}$ op	3.0 p 4.30p	4.30 p	$\vec{\infty}$	$\tilde{\omega}_{i}$	Ñ,	(4B efter hvarandra då tvänne moln från E och W sammanstötte.
5	Alavus, Norviiki	3.30p 5.15p	5p NE-SW	4.0 p	$5.40\mathrm{p}$	Σ_{i}	NE_2	$NW_{_{4}}$	[☑, ◎'.
£	Jakobstad, Björnholm.	c. 4.0p c. 5.0;p	d',c	1	-	ļ		Baseline .	
\$	Paimio	4.44p	N-NE	4.54 p	5.57 p	ı°	Ą	N_{2}	T° , \lozenge^{1-2} .
2	Oravais	c. 5.0p c. 7.0p	Op SE	-	[NW_4	NW_4	NW_6	
2	Åbo	5.25 p 5.35 p	5p E-N	1	-	NW_3	NW_2	NW_3	2 D°.
2	Pargas	5.27 p 6.25 p	5p N-NE-E	ļ		SW_2	SW_2	SW_1	٠٠٠
2	Sagu	5.35p 5.4	5.40p E-S-W	$5.15\mathrm{p}$	$6.10\mathrm{p}$	Ħ	NE_2	NE_2	[₫°, ◎°.
2	Åbo	!	Z	6.0 p	6.15р	NW_2	NW_2	$\mathrm{NW}_{_{2}}$	∫ Den från N kommande f∡ förena- ≷ des med den i E.
30	Enare	1.21 a 1.5	1.56 a NE-Z-SW	1.31 a	2.51a	NW_{4}	N	NW_{\downarrow}	Efter ovädret kyligt.
r.	Enare	c. 3.0a	1	-	1	1		1	
£	Heinäluoto, fyr	11.33 а 3.1	3.13p SSE—W - N 12.33p 1.33p	12.33 p	1.33 р	E	$\mathrm{SE}_{\scriptscriptstyle{1}}$	α_{ω}	$\left\{ \begin{array}{l} \blacktriangle 1.3 - 1.18 \text{ p.} \blacktriangle \text{ voro mera stora.} \\ \bigcirc ^{2}. \end{array} \right.$
£	Koivisto	12.45p —	NE	12.50p 1.30p	1.30 p	NE	NE	闰	1 D. O' efter [Z, före svagt.
*	Hanhipaasi, fyr	12.44p 1.1	12.44p 1.19p SE-S-SW	1		NE,	NE	1	I⊈°, @-skurar.
2	Kronoborg	1.35 p 2.1	2.15p S—SW	(2.0 p	2.5p)	NE,	NE	NE_{g}	

\ slagits ned. \(\mathbb{G}^\circ\), \(\insigm\).	a l X	NE P		6.0 p 7.30 p	4.40p 5.0 p 7.0 p	4.40p 0.10p E-W 4.40p 0.40p 5.5 p 5.50p SE-NW 5.0 p 6.0 p 6.20p 7.10p N-NE E 7.0 p 7.30p	6.10p 5.50p 7.10p	4.40 p 5.5 p 6.20 p	 	Kolvisto 7erkkomatala ?aavetti
∫ @² rågen hade på många ställen \ slagits ned.	闰	ঘ	呂	$6.40\mathrm{p}$	4.40 p	$4.40 \mathrm{p}$ $6.10 \mathrm{p}$ $E-W$ $4.40 \mathrm{p}$ $6.40 \mathrm{p}$	$6.10 \mathrm{p}$	4.40 p	٠	
	NE_1	٥		4.55 p	$4.25\mathrm{p}$	4.15p 4.55p S—E—NE 4.25p 4.55p	$4.55\mathrm{p}$	4.15 p		erkkomatala.
[द ¹ , ⊘ ¹ ▲ 4.45 p.	w°	E	NE_{s}	4.25 p	$3.50\mathrm{p}$	(3.10p 4.35p SE-NW 3.50p 4.25p	4.35 p	3.10 p		rv1
[द ¹, ② ². ▲ 4.37—4.38 p.	S.	S_{10}	\mathbf{E}_{10}	3.45p 4.44p		S	$4.42\mathrm{p}$	(3.6 p 4.42p		
(IG. Himmeln hela dagen jämnel mulen, grå.	NE,	Z ⁺	ž	— 5.0 р	and the same of th	!	2.45p 6.30p	2.45 p		30 Nurmi Vi. 1.

Tat. o. Folk, H. 67, N:o 2.

	(
Ôbse	°bservationsort	M.	171	cá			Λ	Λ	Λ	
		ta	to		t _a	²		n -	9	Almarkhingar
Söderskär, fyr.	ür, fyr	5.28 a	5.28 a 6.25 a	SW	6.0a(?) 6.15 a	6.15 a	ESE,		1	
Kyrkslätt	•	12.0 a 12.15 p	12.15 p	N—W—S 12.5 p 12.55p	12.5 p	12.55 p	Z	٥٠	S_{0-1}	/ Vattnet süllsynt högt, liksom om
Porkkala, fyr	fyr	12.40p 1.10p	$1.10\mathrm{p}$	N-NW-SW 10.40a 1.30p	10.40a	1.30 p	SW_1	9	NW,	HOSCEIL.
Bromarf		2.13p	2.13p 2.26p	N—E—S	2.23p 2.36p	2,36 p	NW_2	$\overline{\mathrm{NW}}_{\mathrm{z}}$	NW,	K°, @¹-² dessutom regn, såväl förutsomefteråtskofvis.Kl.3.19pB.
Ingå, S	Ingå, Svartbäck	2.18 p	2.18p 2.29p	M	c. 2.20 p	I	ğ		1	© tidtals under dagen. Vinden före
Hangö fyr	fyr	2.20 p	2.20 p 2.25 p	ENE	12.40 p	n	NW ₂	NW_1	NW_2	skoftals. 2 B, först B°, se-
Uurainen	n	3.15a	1	N-NW-W			NE_2	NE,	NE.	dall D.
Homants.		10.13 a 11.20 a	11.20a	E-W	12.20 a 10.37 a	10.37 a	NNE ₀ -2	NNE ₀ -2	NNE ₀₋₂	[₹°; 30/VI [≰², @². c. kl. 5.0—7.0 p.
Pielisjärvi		11.30 a	11.0 p	11.30a 11.0 p SW-SE-NE	-	1	NE_2	NE,		Do.
Pälkjärvi.		12.7 p	12.51 p	12.7 p 12.51p E-NE-N	-		Ω̈́	SE_2	Z,	IZ°.
Värtsilä		$12.10\mathrm{p}$	1.7 p	$12.10\mathrm{p} \ 1.7\ \mathrm{p} \ \mathrm{SE-E-NE} \ 1.0\ \mathrm{p} \ 1.2\ \mathrm{p}$	1.0 p	1.2 p	Ω _σ	ΔŽ	∞ 20	区, @°, @ moln i E och W.
Gamlak	Yxpila.	12.15p	$3.45\mathrm{p}$	$ 12.15\mathrm{p} 3.45\mathrm{p} \mathrm{NE-E-SE} 12.30\mathrm{p} 3.55\mathrm{p} $	$12.30\mathrm{p}$	3.55 p	ž	N ₁	NW,	∅², himmeln mulen i E.
Gamlakarleby		$12.25\mathrm{p}$!	NE-E	12.35p 1.0 p	1.0 p	N	N ₁	W_1	2 B i NE.
Heinält	o, fyr	12.33p 6.33p	$6.33\mathrm{p}$	Z	6.33 p	6.33p 6.57p	SE_1	Ħ	\mathbf{SE}_{2}	
Homants.		12.51p 1.21p	1.21 p	E-W	1		NE_{0-2}	NE_{o-2}	NE,	
Tankar, fyr.	fyr	1.0 p	1.0 p 6.15p	1	8.0 a	8.0 a 6.0 p	EZ	NE.	NE,	tidtals hela dagen.
Jakobst	Jakobstad, Björnholm.	1.0 p	2.5 p	2.5 p SE-S-SW	$1.25\mathrm{p}$	$2.20\mathrm{p}$	NE_2	NE	NE_2	[\(\vec{\pi}\) o' cirka kl. 12 a. \(\empi^2\).
Lohtaja		1.37 p	1.37p 1.40p	SE-NW	2.50 p	3.20 p	$\mathrm{SE}_{1^{+-2}}$	tyyntä	N_{1-2}	(⊘³, kl. 3.15 p. rörde sig i E ett stort regnmoln; något D.

	. *	0770	070	07707			AA NT AA AA CI AA	an Otter	3		Cid Introvious	:
	0	3	Œ Ø	E CE			45 n 11 48 n wsw w ww	11 48.5	11 45 9		S.t. Michel	
9			I	I	1	-	Z	.30 a c.12.30p.	11.30 а		Michikkälä.	ç
89	\[\bullet \lambda \la	KE.	NE.	രൂട്ട	3.0 a 12.35 p 2.50 p 3.10 p	3.0 a 2.50 p	NE(?)—E S—E—NE	1.20 a 12.45 p 1.15 p 4.20 p	11.20 a 1.15 p		Nurmi	÷
	3 D.	$\mathbf{SSW}_{_{1}}$	SSW_1		-		,	.12 a 11.32 p	11.12a	d.fyrskepp	Storkallegrund, fyrskepp 11	:
	M^1 .	e1 ,	$\mathrm{SE}_{_{\!$	SE,	dagen	$10.50\mathrm{a}$	$1.40\mathrm{a}$ 1.15 p NE—E—SE 10.50 a dagen	$1.15\mathrm{p}$	10.40 a		Taavetti	£
	[द¹-², moln. rörelseriktn. NW—E.	W	W	M_0	$12.10\mathrm{p}$	$10.45\mathrm{a} 12.10\mathrm{p}$	W	.35 a 11.30 a	10.35 a		Nykyrka.	£
		W.	NE,	NE,	$5.45\mathrm{p}$	$12.50\mathrm{a}$	S-W	5.5 p	10.30 a 5.5		Vasa, Villskat	£
	🧶 hela dagen.	0	0	0	1	ALIEN AND AND AND AND AND AND AND AND AND AN	ļ į	.30a 11.30a	10.30 a		Tammerfors	:
	regnskurar. ▲ 12.5—12.25 p.; rågen nedslagen.	0	e 	Z	2.40 p	10.13 a	2.10p E-SW-W 10.13 a	2.10p	10.15 a		Laihela	2
	([≼¹-²; c. kl. 11 ∅². 4.0 p. starka	Ų,	M_2		2.0 p	10.15 a	SWNE	.10a 11.15a	10.10a		Messuby	F
	∫ @ såväl på f. m. som e. m. 「蚤-) moln i W och i E.						1	11.0 а	10.0 a 11.0		Korpilahti .	ş
	\	ļ [*]	W.	1	c. 3.0 p	10.25 a c. 3.0 p	S-E-N	2.0 p	10.0 a		Pörtom	33
	3 D.	$\infty_{_{1}}$	$\tilde{\mathbf{x}}_{i}$	S_1	9.40a 11.15a	9.40a	S-SE-E	.30 n 10.10 a	9.30 a		Riitiala	:
	.°∑	N_1	SE_1	SE_1		Manage and Manage and	W-S-E	12.0 a	9.15 a 12.0		Virrat	5
		W ₃)	0	$1.33\mathrm{p}$	11.33 а	闰	10.3 а	9.3 a 10.3	уг	Heinäluoto, fyr	ಣ
	1 B. ©°.	NW_3	NNE	NNE_3	$8.42\mathrm{p}$	8.7 p	E-NW	8.0 p	$7.39\mathrm{p}$	d,fyrskepp	Storkallegrund, fyrskepp	:
	1 T°, ⊗°, ⊕. Käűren i Ikalis.	NE_0	NE_{\downarrow}	$NE_{_{\ddagger}}$	$7.50\mathrm{p}$	$6.42\mathrm{p}$	NE	%	$6.25\mathrm{p}$		Laihela	F
	2 D.	NE,	Ž.	NW_2	$9.15 \rm p$	$7.45 \mathrm{p}$	NE-N-NW	$6.30\mathrm{p}$	$6.25\mathrm{p}$		Sälgrund, "	:
	Do i SE.	1	SE,	Z z	7.6 p	$5.56\mathrm{p}$	1	6.6 p	6.1 p	r	Ulkokalla, fyr	
	I≼ öfver orten.	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	ā	$\mathrm{SE}_{\scriptscriptstyle{1}}$	$8.40\mathrm{p}$	$6.30\mathrm{p}$	E-Z-W	7.0 p	5.0 p	-	Pihtipudas .	5
	2 D°.	$\mathbf{x}_{_{\mathbf{I}}}$	$\mathbf{v}_{_{\mathbf{I}}}$	$\overset{\circ}{\Omega}$	1	J	S-E-N	5.0 p	$4.45\mathrm{p}$		Virrat	f
	·	SW_2	SE_{2}	NNE_{2}			SE	4.34 p	4.31 p		Ulkokalla, fyr	
	$\int \mathbb{T}^{1-2}$; endast en kort tid E_6 , and $\lim_{n\to\infty} E_{3-4}$.	E	B	ह्युं		1	NE-N-NW	4.59 p	4.20 p		Nykyrka.	
	2.	z	Z,	z	5.0 p	$2.50\mathrm{p}$	$3.30\mathrm{p}$ NE $-E-SE$	$3.30\mathrm{p}$	$2.45\mathrm{p}$		Gamlakarleby	£
	্_ শু	NE	Ň	NE,	$6.30\mathrm{p}$	$3.20\mathrm{p}$	SE-NE	$3.35\mathrm{p}$	2.40p		Jakobstad .	2

Observ	Observationsort		M	쩠			$\Lambda_{ m f}$	V	N N	Anmärkningar
		t _a	t _e		t_a	t _e				
Vasa		11.45 a	1.35 a	H-ES-S	1.5 p	3.0 p	NNE	$ m SE_0$	NNE_0	$\lceil \overline{\mathbb{Q}^{0-1}}, \bigcirc ^{0-1}, \rceil$
Viborg .		12.0 a	3.0 p		1	i	I	and the second	}	
Kuhmoinen,		с. 12.0 а	c. 12.0 a c. 1.0 p	-	1	1]		I	
Jyväskylä	•	12.0 a	12.0 a 1230a	W-N	1	1	ş	$\mathbf{E}_{_{1}}$	eī	
Ruovesi .		12.9 а	12.9 a 12.53 p	S-NW	10.0 a	5.0 p	Ą	SQ.	SW_2	T^1, \otimes^1 .
Villmanstrand		$12.50\mathrm{p}$	12.50p 1.0 p	SE-NW	12.45 p	1.15 p	ı	1	1	▲ 12.50—1.0 p.
Tuusniemi	•	c.1.0p	c. 1.0 p c. 3.0 p	N-NW-S	ļ		$W_{\mathfrak{g}}(?)$	$W_9(?)$	$W_{9}(?)$	🧔 dagen lång, W storm hela tiden.
Tammerfors	ors	1.0 p	1.0 p 1.30 p	-	$12.30\mathrm{p}$	$2.30\mathrm{p}$	W	W		
Gamlakarl	Gamlakarleby, Yxpila.	1.0 p	2.45 p	SE-E-NE		1	$\mathbf{W}_{_{1}}$	W	\mathbb{N}_{i}	[₹² isynnerhet i SE.
Munsala .		$120\mathrm{p}$	3 20 p	SW.S-ENE	2.10p	4 30 p		SW	N_{z}	
Jakobstad		$1.20\mathrm{p}$		3.0 p SE-S-NW	$2.55 \mathrm{p}$	n	NE_2	NW_2	$\rm NW_2$	\mathbb{N}^2 .
Jakobstad	Jakobstad, Björnholm.	$1.23\mathrm{p}$	4.13p	S-N	$2.45\mathrm{p}$	6.5 p	N	SE_6	0	$\lceil \overline{\zeta}^1, \bigcirc^{2-1}.$
S:t Michel		(1.35 p) (1.55 p	1.50 p 2.25 p	SW-W-WNW S-NE	2.25 p	3.40 p	$_{ m S_o}^{ m SE_o}$	$^{ m SE}_{2}$	SE_o	/ K°, ett mycket mörkt K-moln rörde sig på horis SW−NW, ©°.
Gamlakarleby	leby	$2.20\mathrm{p}$	$3.40\mathrm{p}$	SE-NE	$3.30\mathrm{p}$	6.0 p		W,	NW_{1}	
Kronoborg		2.30 p	3.35 p	SW-W-NW	3.45 p	4.40p	SE_2	SE	0	
Hirvensalmi	mi im	$2.40\mathrm{p}$	$3.20\mathrm{p}$	SW-NE	2.10p	6.0 p	0	Ω,	$\tilde{\Sigma}$	$\begin{cases} A^2 & 2.40-2.42 \text{ p. } \mathbb{Z}^2. \text{ Molnen nä-} \\ \text{stan i "l&gor"} & \text{stora.} \end{cases}$
Uurainen.		2.50 p	$3.15\mathrm{p}$		$3.20\mathrm{p}$	$3.45\mathrm{p}$	EŽ	SE,	$\Sigma_{\mathbf{z}}$	
Jakobstad		4.10p	4.35 p	4.35 p SE-E-NW	2.55 p	n	NE,	NW.	NE,	™.
Suolahti		4.27 p	4.27 p 4.40 p	NW	1	-	1	NW,	NE.	@ dagen lång, men ej under [≼. FS syntes nunlösa sie nå samma

	∏', ⊚'.	NE ₆	NW_{\downarrow}	NW	$1.25\mathrm{p}$	12.30 p	1.5 a $ 1.50\mathrm{p} \mathrm{SE}$ $-\mathrm{E-NE} 12.30\mathrm{p} 1.25\mathrm{p} $	$1.50\mathrm{p}$	и.5 а	Jakobstad, Björnholm.
		SE_{1}	$\mathrm{SE}_{\mathfrak{g}}$	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	$12.50\mathrm{p}$	11.50 а	1.5 a $12.20 \mathrm{p} \mathrm{SE-N} \mathrm{anW} 11.50 \mathrm{a} 12.50 \mathrm{p}$	$12.20 \mathrm{p}$	11.5 а	Suolahti
91		SE_{\downarrow}	S.	SE_2	$2.38\mathrm{p}$	1.5 p	1.3 a $1.40 \mathrm{p} \mathrm{SW-S-NE}$ 1.5 p $2.38 \mathrm{p}$	1.40 p	11.3 а	Viitasaari
	Saval pa form. som efterm, hade det regnat rikliet.	1	国	∞	12.0 a	11.0 a 12.0 a	E-W	1.0 a 12.0 a	11.0 a	Korpilahti
		国	E	E,	$12.55\mathrm{p}$	$11.10\mathrm{a}$	S-E-NE 11.10 a 12.55 p	$0.57\mathrm{a}12.45\mathrm{p}$	$10.57\mathrm{a}$	Jurainen
	ſ∡ på morgonen.	ł	1	l						Åbo
	(1.4 min. S-himmein mycket mork.	0	0	Ω,	11.30 a	$10.55\mathrm{a}$	0.40a 11.05a S—SW—W 10.55a 11.30a	11.05 a	$10.40\mathrm{a}$	Kronoborg
	I≼ 9.52 a. i S och 10.10 a. i NW. KI. 9.58 a. B—D = 15 s. 「≼°, ©°	s,	Ŧ	Ĕ	10.45 a	10.3 а	9.52 a 10.10 a S—W—NW 10.3 a 10.45 a	10.10a	9.52 a	S:t Michel
	[₹², ▲ 9.2—9.10 a.	W ₂	νĵ.	$\mathbf{v}_{_{\mathbf{i}}}$	8.50 а 12.0 а	8.50 a	SW-NE	10.0 a	8.45 a 10.0	Hirvensalmi
	T°, @ jämnt tills ≡ uppstod.	$\mathrm{SSE}_{_{1}}$	SE_1	<u> </u>	12.7 p	2.12 a 12.7	S-SW	0.27 a 1.32 a	$0.27\mathrm{a}$	Helsingkallan,fyrskepp
	(K ¹⁻² , @²; ≤ 6.30 p. i W, ≤ 7.15 p. i SE.	SW_2	SW_6	W	$7.10\mathrm{p}$	6.30 p	W-E	7.15 p	$6.45\mathrm{p}$	Kajana
	(\(\mathbb{K}^2, \@^2; \text{ kl. 12.5 p. regnet starkt.} \) (\(\mathbb{P}\mathbb{A} \) \(\mathbb{V}\mathbb{u}\mathbb{o}\mathbb{k}\mathbb{t} \) \(\mathbb{F}\mathbb{A} \)	W_2	W	SW_2	7.22 p	7.0 p	W— E	7.55 p	6.35 p	Sotkamo
	Dundret i slutet mera tätt. I W syntes regnet vara sällsynt starkt. Molnet försvann i NE.	W,	[†] M	SE_{2}	9.0 p	8.34 p	6.26p 9.18p S-W-NW	9.18p	6.26p	Kuhmoniemi
	Vinden mycket svag.	0	Z	Z	6.0 p	$5.30\mathrm{p}$	S-N	4.55 p	4.45 p	Lohtaja
	[द¹-². Kl. 4.30 p. Γ≼ mycket stark.	W_2	\mathbb{W}_{2}	W_2	1	[SE-E-NE	$4.40\mathrm{p}$	$4.20\mathrm{p}$	Jakobstad, Björnholm.
	\mathbb{I}_{2}^{2} .	NW_2	W_2	NW_2		Buyelage	SW-E-NE	5.10p	$4.10\mathrm{p}$	Jakobstad
		W	W	W	6.0 p	$5.05\mathrm{p}$	S-E	5.0 p	4.0 p	Gamlakarleby, Yxpila.
	◎ jämnt.	$\mathrm{NW}_{_1}$	W		$5.45\mathrm{p}$	4.30 p	S-E	$4.50\mathrm{p}$	$3.53\mathrm{p}$	Gamlakarleby
	Vinden vexlande.	1			$5.18\mathrm{p}$	$4.48\mathrm{p}$	1	$4.58\mathrm{p}$	3.38 р	Pihtipudas
	▲ 2.18—2.21 p.	ļ		ĺ	$2.58\mathrm{p}$	$2.13\mathrm{p}$				Pihtipudas
		W	;	W_3	l	1	WNW-N	$2.45\mathrm{p}$	2.10p	Söderskär, fyr
	Regnet någon tid starkt.	$W_2(?)$	$W_4(?)$	$W_2(\r;)$	$2.30\mathrm{p}$	2.0 p	E-N	$2.20\mathrm{p}$	$1.30\mathrm{p}$	Halsua
		ı	WSW_1	WSW_1	24	24	2.55 p 1.45 p NW-NNE	$1.45\mathrm{p}$	$12.55\mathrm{p}$	Söderskär, fyr
	\(\mathbb{\pi}\), D°.	W	W	SW.	1.5 p	(12.50p	SW-SE	2.50p 1.45p	12.50 p	Kronoborg

D		Z,	l.d							
atum	Observationsort	, t	00	SI.	+p**	t _e	$\Lambda_{ m f}$	^n	o o	Anmärkningar
5	Jyväskylä	. 11.10 a 11.35 a	11.35 a	S-E-N	10.0 a 11.30 a	11.30 а	S. W.	$\mathrm{SSE}_{10}(?)$	c	/ K², ©² mycket rikligt orkanlik storm. © också på c. m.
:	Munsala	11.25 а 12.0 а	12.0 a	E	11.55 a 12.25 a	12,25 a	Z	Z	Z	₩°, №°.
3	Gamlakarleby, Yxpila.	a. 12.46p 12.47p	12.47 p	Ø	1	Management	N.	N,	z.	1 D i S.
33	Gamlakarleby	. 12.47 p	l	20		1	N,	z.	N,	$1 \text{ D}^2 \text{ i S}.$
2	Marjaniemi, fyr	1.8 p		W - S	3.58p	3.58p 4.28p	NW_2	W	Z	1 1 1 .
2	Mynämäki	$1.25\mathrm{p}$	1.45 p	1.25 p 1.45 p E-N-NW	2.5 p	$2.18\mathrm{p}$	SW_2	SW.	NE_{2}	
2	Karkku	$1.39\mathrm{p}$	1	E(?)			E]	$S_1(?)$	1 D c. 3.0 p. @°.
2	Halsua	$1.40\mathrm{p}$	$2.40\mathrm{p}$	S-W-N.	$2.20\mathrm{p}$	2.20p 3.30p	\mathbb{E}_{1-2}	Σ_{4}	\mathbb{E}_{1-2}	
8	Gamlakarleby	$1.45\mathrm{p}$	$2.05\mathrm{p}$	2.05 p SE-ENE		2.0 p 5.0 p	N_1	Z I	N ₂	☆ i E, ◎°.
*	Lohtaja	$1.50\mathrm{p}$	$2.15\mathrm{p}$	s_{-NW}	4.0 p	4.0 p 5.30p	N_{3-1}	N_{3-4}	N_{3}	©2.
12	Pihtipudas	1.58 p	$2.20\mathrm{p}$	E-W	c. 2.40 p C. 4.0 p	c. 4.0 p		j	1	K gick öfver Emäjärvi by.
33	Lavia	$2.30\mathrm{p}$	3.0 p	E-W	3.0 p	3.0 p 3.20p	SW ₈ (?)	SW ₈ (?)	1	▲ 3.4—3.10 p.
2	Jakobstad, Björnholm.	$2.35\mathrm{p}$	$3.40\mathrm{p}$	3.40 p NE—E—SE	$3.20\mathrm{p}$	3.20p 4.55 p	NE	NE	NE_2	[द, @¹−² i början, senare svagare.
Ω	Sagu	$2.46\mathrm{p}$	ĺ	M	12.21 p 2.11 p	$2.11 \mathrm{p}$	Management	· ഇ	ā	1 D°, @². ▲ 12.21—12.26 p.
,,	Heinäluoto, fyr	2.48 p	$2.53\mathrm{p}$	NNE	2.3 p	2.3 p 3.48p	SSE	SSW	SSE	@ duggregn.
£	Säbbskär, "	2.54p 4.49p	4.49 p	E-SW	c. 3.0 p c. 4.0 p	c. 4.0 p	1	1	}	Molnen i riktning mot NE, 区。
£	Ulkokalla, "	3.6 p	$3.46\mathrm{p}$	3.46 p SW-W-NW	1	1	N	Z	NNE_6	To.
*	Storkallegrund,fyrskepp	3.18p 4.7 p	4.7 p	E-N	5.2 p	5.2 p 5.47p	NNE2	NNE,	NNE,	
2	Sälgrund, fyr	3.29 p	4.45 p	3.29 p 4.45 p ESE-S-WSW 3.20 p 6.25 p	$3.20\mathrm{p}$	6.25 р	NNE.	(**	NW,	(*) Under [3 rådde först vind- stilla, senare eick vinden kom-

		_ >	W,	W	2.53p 5.35p	$2.53\mathrm{p}$	W-NW NE	4.34 p	2.9 p		٠		Halsua .	H
	№.	W_2	W	W_{2}		ļ	NE-SE	3.35 p	$1.50\mathrm{p}$				Pielisjärvi	P.
93	区。	NE_{2}	\mathbb{Z}_{2}	NW_2			2.15p SE-E-NE		$1.50\mathrm{p}$				Jakobstad	Ja
		$\mathrm{SE}_{1}{2}$	SE_{1-2}	$SE_{1-\frac{3}{2}}$	2.0 p	$1.45\mathrm{p}$	SE-NW	2.0 p	$1.30\mathrm{p}$	•	•		Tuusniemi	T.
	1 Tammerfors [\(\overline{\pi} \).	Œ	$\mathbf{v}_{_{\!\!\!0}}$	W_2	$2.30\mathrm{p}$	1.0 p	E-S-W	$1.50\mathrm{p}$	1.6 р	•			Messuby.	M
	{	SW_2	$\mathrm{SW}_{_{\ddagger}}$	\vec{x}	2.30 p	12.29 p	NW-N-NE	1,25 p	12.30 p		•		Palkjarvi.	- Pä
	Ĭ ₹°, ◎°.	NE_{\downarrow}	W_6	W,	4.33 p	$12.18\mathrm{p}$	E-N	5.3 p	11.38 а				Sodankylä	So
	\square \square \square \square \square \square \square \square	NE,	NE,	NW.	1.45 p	$12.30\mathrm{p}$	SE-E-NE	$1.10 \mathrm{p}$	11.30 a			Ċ	Jakobstad	Ja
	▲ 12.32—12.35 p.	SSW	$\frac{E_2}{SSW_1}$	SSW_{\downarrow}		12.35 p	11.14 a 12.12 p SSW (S-SSE 12.32 p 1.19 p (N-ENE 12.35 p	12.12p	11.14 a 12.32 b				Homants.	IIc
		SE	田	军	8.0 a	7.0 a	SE(?)-NW	12.0 a	110 a				Tuusniemi	T
	/ 1 B ² . Molnen kl. 10.40 och 11.0 a. fölide efter hvarandra.	W	W	M __	11.15ล	11.10 a 11.15 a	N-NE E	10.40a 11.0 a	10.40 a	•			Riitiala	
		SSE,	SE_3	SE_s	1		6.55 p SE-E-NE	6.55 р	$6.43\mathrm{p}$				Suolahti .	Sn
	∫ Inga moln syntes ünnu, då ⊤ hördes.	ů,	∞_{\downarrow}	NE_2	9.38 p	$8.25\mathrm{p}$	S-NW	8.57 p	$6.24\mathrm{p}$	•	•	.=	Kuhmoniemi	Kı
	1D; @ tidigare på dagen.	1	1	1			20	1	$6.30\mathrm{p}$		•		Pörtom .	Pe
	1B, annars T.	SW_{\downarrow}	$\Sigma_{_0}$	0	$6.20\mathrm{p}$	6.0 p	6.40 p N-NW-W	$6.40\mathrm{p}$	$6.10\mathrm{p}$				Ruukki .	E
	☑., ◎	W.2	W.ż	W_{2}	n	3.0 p	7.45 p NW-NE-SE		6.0 p				Pielisjärvi	
	건.	SE_5	NE,	NE,	$7.38\mathrm{p}$	$6.58\mathrm{p}$	SE-NE	$6.18\mathrm{p}$	5.58p	٠		f_{y}	Marjaniemi, fyr	M
	, <u> </u>	0	W	SE,			W-N-E	6.15 p	$5.45\mathrm{p}$	-	•		Sotkamo .	. S
		l	!	1	$8.15\mathrm{p}$	c. $7.0\mathrm{p}$	ļ	6.15 р	$5.30\mathrm{p}$	٠	•	V3.	Sälgrund, fyr	S
		ų,	v.	$S_{\mathbf{z}}$		1	SSW-NW-N	and the same of th	$5.16\mathrm{p}$	٠			Ilomants.	IIC
	D°, molnen aflägsna.	W.	∞	νζ,			N-E-S	$5.30\mathrm{p}$	5.0 p		•		Virrat	Vi
		W	w.	ਬੱ	$6.30\mathrm{p}$	5.7 p	SWNE	$5.45\mathrm{p}$	4.45 p				Frantsila.	Fr
		NE,	NE3	NE_3	c 4.0p c. 4.30 p	c 4.0p	$_{ m SSM}$	$4.48\mathrm{p}$	$4.13\mathrm{p}$	•			Marjaniemi	W
	\(\mathbb{\omega}\). \(\infty\).	I	l	1	$4.40\mathrm{p}$	4.20 p	6.0 p SSE-NNE-NNW		4.0 p	•			Sastmola.	Sa
	lela dagen.	လို	∞,	SW_2	-	-	s-w-N	4.2 p	3.48p	٠			Ruovesi .	Rt
		}	-		4.0 p 5.30p	4.0 p	_	-	$3.40\mathrm{p}$	٠			Heåborg	n .

200	Dat	Obsorvationsont	Z.	17	. Ω			1	11	17	
	tum	CDSGI Vacionisoro	ta	t _e	a a	t _a	t _e	A F	n A	° >	Anmarkningar
	. 9	Jakobstad	2.55 p	$3.50\mathrm{p}$	2.55 p 3.50 p SE-E-NE		3.30p 6.10p	NW.	NE.	NE,	·. 图
	2	Virrat	3.35 p	$530\mathrm{p}$	SW-S-E	4.0 p	$5.30\mathrm{p}$	W_2	W_0	S.	$\lceil \vec{A}^{1-2} angle$
	;	Pihtiputaa	4.23 p	4.48 p	W-E	4.37 p	4.37 p 4.58 p	M M	W	W	[≼ gick öfver orten.
	£	Kvarkgn, Snipan fyr-	4.40 p	$5.50\mathrm{p}$	NW			SW_2	SW_2	SW_2	τ° i NW.
		Enare (på sjön 30 km) åt NW från kyrkan)/	5.15p	1	S—SSW			***************************************			I SSW B och moln.
		Suolahti	$5.22\mathrm{p}$	$6.20\mathrm{p}$	SW-NE	$6.10\mathrm{p}$	6.10p 635p	νζ	SW_1		Moln i SW.
		Jyväskylä	6.0 p	6.0 p	ENE, N	1		Ω	M		K° i ESE. 2 à 3 D i N.
	2	Frantsila	6.15p	1	SE	1	1	NW	NW_4	NW_4	1 D.
		Tuusniemi	$7.30\mathrm{p}$	$8.40\mathrm{p}$	W-NW	$ 9.15\mathrm{p} 10.9$	10.9 р	×	W	W	
	2	Malm, station	$7.30\mathrm{p}$	ł	NE			ļ	1	. 1	1 D i NE.
_	2	Kuopio	$7.50\mathrm{p}$	8.35 p	NW-SW	7.50p	7.50p 8.25p		1	1	$\lceil \overline{\mathbf{q}}^1, \mathbb{Q}^2 .$
	£	Enare, Tschurnojärvi .	$8.30\mathrm{p}$		S-E	$8.40\mathrm{p}$	8.40p 10.0 p	0	N	N	1 D°. Vind. på morg. S, på dag. lugnt.
	2	Jaakkima	11.30a 11.31 a	11.31 a	Ω	1	1	NW_3	NW_4	W	
	33	Sordavala	$1.46\mathrm{p}$	1.46p $1.55p$	W-E	$1.50\mathrm{p}$	2.7 p	WSW_3	SW_2	SW_2	©², №°.
	:	Enare, Tschurnojärvi .	$3.55\mathrm{p}$	3.55р 4.0 р	S—W	3.45 p	3.45 p 4.0 p	Z	Z	0	2 D. Vinden aftog under [4.
	2	Sälskär, fyr	7.24 p	$7.39 \mathrm{p}$	7.39 p N-NW-W		1	1	İ	1	r°. Å Ulkokalla 📝 och ⊚.
	œ	Taivalkoski	11.27 a	12.37 p	11.27a $12.37p$ NE-N-SW $11.38a$ $12.53p$	11.38 ุก	$12.53\mathrm{p}$	园	NE3	呂	([₹² kl. 1.0—1.15 p o. 4.10 – 4.30 p.
	"	Enaro, Tschurnojärvi , 12.15 p	12.15p		6.0 p S-Z-E-N 11.30 a 11.0 p	11.30 а	11.0 р	Z	E ja —	Z	der K varierande. med paus. K öfver orten, K syntes kretsa

																						95	5	
skoftals.				[द्र° men talrika skrällar.	②² a. p. och ▲° kl. 2.20 p.	▲ 12.30—12.32 p. ▲ stora som bönor.	区, @。	▲ 10.52—10.53 a och 11.38—11.39 a.		$b = 750 \text{ mm}, T = 14^{\circ}.$		Först 1, sedan 2 B; därefter nägra	atfüljde detta 7° i N.		2 D.	[▼°, @².		[₹¹ närmast 1.44 p. 🎨¹ jämnt, efteråt, sedan himmeln klarnat upp,	(närmade sig fr. W nytt [∡-moln.	I Ikalis $\mathbb{I}\mathfrak{A}^{\circ}$, \mathfrak{A}° , men i omgifningen \mathbb{A}^2 .	Senare WSW, blixtslag.			
0	SW ₂	ľ	1	W	J	NW	-	1	0	SW	88W		1	SW_3		NW_4	J	SW_{\star}	*M	*	SW_2	SW_1	1	SW_1
, N	W.3	SW_8	1	NW_2	NW_{4}	NW	NW	1	NW_6	SW	SW	PRODUCT :	-	NW_1	W_{4} — θ	$NW_{\mathfrak{g}}$	and the same of	SW_6	W	*	W	ļ	M	NW_2
N.	SW.	SW_6	Standard	SW_3	$\mathrm{SW}_{_{\downarrow}}$	M	NW.	$\overline{\mathrm{W}}_{2}$	W	SW	WSW ₃			SW_2	W.	NW_4		SW_6		*	NW.	SW,	W ₂	SW.
8.0 p	1	7.0 p		$2.10\mathrm{p}$	11.58 a 12.8 p	9.15a	12.21 p 2.41 p	1	12.25 p	12.08 p	1.20 p	11.50 a 12.0 a	J	10.0 a 1.0 p	11.30a 12.20p	1.15p 1.50p	p 12.35 p	2.9 p			2.20 p	3.30 p	$1.45^{1}_{ m p}$	$2.30\mathrm{p}$
6.0 p	I	$6.10\mathrm{p}$	1	1.45 p	11.58 a	9.0 a	12.21 p		11.58 а	11.55 a 12.08 p	$12.20\mathrm{p}$	11.50 a	1	10.0 a	11.30a	1.15 р	12.7 p	1.10p	1 1	1	1.30 p	2.40p	$1.43^{\circ}_{ m p}$	$1.40\mathrm{p}$
S-N	NW-N-NE	SWNE	}		W-\\\-\\\-\\\		N-E-S	1	1.4 a $12.25\mathrm{p}$ N à NE—E $11.58\mathrm{a}$ $12.25\mathrm{p}$	NW-SE	NW-ENE 12.20p 1.20p	W-M	N	N-NE-E	8W	NW-SE	W	NW-SE	W-SW-S	í	NW-SSE	1	N-E-S	$2.15\mathrm{p}$ NW-N-E
$5.36\mathrm{p}$	5.35 p	$6.20\mathrm{p}$	ļ	2.5 p	10.30 a e. 12.30 p	0.50a 12.40p	0.56 a 12.41 p		12.25 p	1.20 a 12.45 p	1.25 a 12.35 p	12.0 a	1	1.30 a 12.20 p	1	2.5 p 12 10p	12.17p	2.9 p	1.0 p		2. 1.0 p e. 2.30 p	1.3 р 1.45р	Tr. com	$2.15\mathrm{p}$
5.10p	5.15 p	6.0 p	1.0 a	е. 10.30 а	10.30 a	10.50 a	10.56 a	1	11.4 a	11.20 a	11.25 a	11.30 a 12.0	c. 3.0 p	11.30 a	11.50 a	12.5 p	12.15p 12.17p	12.32 p	12.40p	c. 1.0 p	c. 1.0 p	1.3 р	$1.10\mathrm{p}$	1.20 p
					•		•		•				- <u>-</u>	•	•	•	•						•	
									ion .	lnäs	fyr.	0.00	13 Ser.	yr .				bück				fyr.	ion .	yr .
Heinola.	Miehikkälä	Taavetti .	Jyväskylä	Bromarf .	Åbo	Kustö	Sagu	Palkjärvi.	Malm, station	Borgå, Kallnäs	Söderskär, fyr.	L'iolro Illoii	Misko, toyla gard	Porkkala, fyr	Salo	Lovisa.	Helsingfors.	Ingå, Svartbück	Riitiala .	Ikalis	Kyrkslätt	Söderskär, fyr.	Malm, station.	Porkkala, fyr
"	*	%	6	\$	۶	t,				s	ŧ		٤	,,	s a	t	22		£	٤	£			ç

- 1			 -																	
		Anmärkningar	p. var	3 3 3 10.1 3 3 3 1 130.9	_	▲ 2.10—2.11 p. ◎ kl. 2.20 p.			@ längre borta under [\(\frac{1}{4}\)-v\(\text{iden hela tiden mera stark.}\)	2 D kl. 2.15 p. i S.	4	senare [\(\sigma\).			To, ⊗°.		[⊈¹, @°. B kl. 3.25 p.	٢٥.	②², ▲ 3.24 p cirka 2 ^m .	$\int \mathbb{T}^2 \mathrm{kl.}$ 3.48 p., starkt dunder och $(B \mathrm{Samt} \bigotimes^2, \Upsilon = 13^\circ.s.)$
	ļ.	^ ^	SW(?)		z	1	NNE		Z	-	N_2		NE,	-	NE_2	[W.	W		1
	þ.	a A	11		Z	[N_1	1	Z	1	$\mathbf{W}_{_{\downarrow}}$	9	NE_2	\mathbf{W}_2	NE_2		W	1	į	ਵੰ
	ļ.	V ^t	SW (?)	,	z.º	1	W_1	1	z	1	W	NW_3	NE,	W	NE,		W ₂	N W		ZE.
		t e	1.30p 2.20p		1.45 p 4.30 p		1.20 p 11.0 p	1	1	ı	$2.40\mathrm{p}$	1	5.9 p	$3.50\mathrm{p}$		1	3.41 p	5.5 p	5.0 p	3.41р 5.26р
		t a	1.30 p		1.45 p		$1.20\mathrm{p}$			1	1.0 p		3.42 p	$2.40\mathrm{p}$		1	$3.25\mathrm{p}$	4.22 p	$3.20\mathrm{p}$	3.41 p
	f	3	1.53 p WNW-ESE 2.10 p ESE-S-WSW		2.0 p N(?)-E-S(?)			1	S SW-W		NW-SE	W-S-SE	NE-SW	Ī	NW-SW	N-W-S	3.33 p NW-W-SSE	N	4.0 p N-NE-SE	E-Z-W
		t _e	1.53 p	4	2.0 p	$2.39 \mathrm{p}$	$2.40 \mathrm{p}$	2.15 p	3.0 p S	1	2.48 p	$2.30\mathrm{p}$	4.57 p	$3.30\mathrm{p}$	3.58 p	9.5 p		l	4.0 p	3.41р
-	K	+> ³⁸	1.25 p 1.30 p	7	1.30 p	2.4 p	2.5 p	2.6 p	$2.10\mathrm{p}$	2.15 p	$2.20\mathrm{p}$	$2.20\mathrm{p}$	$2.32\mathrm{p}$	2.38p	$2.43\mathrm{p}$	$2.45\mathrm{p}$	3.1 p	$3.17\mathrm{p}$	$3.20\mathrm{p}$	3.31 р
	:	- Observationsort	Kyrkslätt		Enare, Otsamotunturi.	Sübbskär, fyr	Jyväskylä	Helsingfors	mojārvi .	Riitiala	Uurainen	Virrat	Taivalkoski	Söderskär, fyr	Kuusamo	Jyväskylä	Bromarf	Ruovesi	Malm, station	Enare
	Da	itum	<u> </u>		£	2	*	4	,,		%	*	2	2	2	66	\$	33		*

säregen form. Alldeles genom- skinliga. \mathbb{Q}^2 kl. 4.20—4.30 p. $T = +15^{\circ}$. kl. 4.0 p. $T = +16^{\circ}$ s kl. 5.0 p.	@ 2.					∫ ▲ föll å Lovisa fjärden; de voro ∣ stora som små ärter.	/ Molnen tycktes dela signära staden; en del gick åt W, en annan åt E.	₩°, @³.	Redan kl. 2.30 p hördes D i N.		Vattn. rann i bäckarna som om våren.	1 D° lång. ©°, kl. 11.25—11.30 ©° mörka svarta moln öfverallt. Vin- den senare från NW ₂ , W ₂ , NW ₄ .		2.	▲ 1.50—1.56 p. @².	@¹-², 1 D°.		\(\begin{align*} \be	₩.	D°.	D°.	
1	1	1	١	1	$\mathrm{SW}_{^{\dagger}}$	1	Z	WNW ₂	W	NW_0	NW	$\overline{\mathrm{NW}_2}$	W_2	NW_4	l		W_{2} —0	1	N	W_2	M_2	\ddot{N}_2
l	SW	١		1	SW_4	1		WNW.	1	W_2	NW_{1-2}	, N	W	N _e	NW		W_2	NNW_3	NW_6	\mathbb{W}_2	M_2	z*
I		1	1		SW_4	1	Z	WNW_2		SW_{4}	NW_{1-2}	NW	W	NW.	M	1	W_2	WNW_1	$N_{\mathfrak{g}}$	W_2	W	Z [*]
5.45 p		5.0 p	1	4.55 p	5.55 p			$6.40\mathrm{p}$		7.15p	8.0 p	12.0 a	$2.20\mathrm{p}$	$2.30\mathrm{p}$	$1.55\mathrm{p}$	$2.10\mathrm{p}$	$2.30\mathrm{p}$	4.50 p		1	1	6.15 р
4.15 p	4.25 p	430 p		$4.30\mathrm{p}$	5.50p	1	6.0 p	$5.35\mathrm{p}$	$5.30\mathrm{p}$	$6.40\mathrm{p}$	10.0 a	11.25 a 12.0 a	1.2 p	$1.40\mathrm{p}$	$1.45\mathrm{p}$	$1.45\mathrm{p}$	$1.56\mathrm{p}$	$3.13\mathrm{p}$	1	l		5.30p 6.15p
NW-SE	闰	W-E	1	1	E-SW	SE	W—S	M	NW-SE	NE-W	NW-SE	NW-NE-SE	NW-SE	NW-NE-SE		E-SE-S	WSW-ENE	NW-W-S	S-NE	E-SE-S	W-SW-S	NW-NE-SE
5.0 p	3. 4.30 p	5.0 p	1	4.40p	5.5 p		6.0 p	5.13p		6.50p]		$2.15\mathrm{p}$		1	1.56p	2.13p	$3.35\mathrm{p}$	$3.35\mathrm{p}$	$3.50\mathrm{p}$	5.15 p	1
3.55 p	c. 4.0 p c. 4.30 p	4.0 p	c. 4.0p	4.35 p	4.40 p		5.0 p	5.10p	$5.30\mathrm{p}$	$6.10\mathrm{p}$	11.15 а	11.30 а	$12.17\mathrm{p}$			$1.55\mathrm{p}$	$2.01\mathrm{p}$	$2.14\mathrm{p}$	$2.55\mathrm{p}$	3.48 p	5.10p	1
Kyrkslätt	Ingå, Svartbäck c	Karis	Kuhmoinen e	Viborg	Vehkalahti, Brakila.	Lovisa c	Villmanstrand	Sordavala	Korpilahti	Vehkalahti, Brakila.	Tuusniemi 1	Vaala 1	Värtsilä 1	Vaala	Malm, station	Pälkjärvi	Ilomantsi	Sordavala	Ylitornio	Pälkjärvi		Vaala
6.	*		*	3	**	2			,	*	10		*	2	2	2	2			33		2
		- 5																				

		, 4	Ľ							
Obser	Observationsort	±°°°	t _e	ಜ	t _a	to o	$ m V_{ m f}$	^a	N _e	Anmärkningar
E		90		117 9.1	1	, , , , , , , , , , , , , , , , , , ,				
Tuusniemi		12.30 p	Z.0 p	12.30p 2.0 p W-N-NE	3.0 p	3.15p	W ₁ 2	W_{1-2}	W_{1-2}	
Kangaslampi	mpi	$6.12\mathrm{p}$	$6.45\mathrm{p}$	NW-SE	6.23 p	$6.55\mathrm{p}$	W_2	W	W	
Pälkjärvi		7.48p	9.5 p	W-E	$8.34\mathrm{p}$	$8.40\mathrm{p}$	Wo	W	W	[द², blixtarna bländande.
Värtsilä	•	8.5 p	8 50 p	8 50 p SW-NW-NE	6.35 р	$9.10\mathrm{p}$	0	Î	0	[∑ ² ,
Conderrole)	8.38 p	8.38p 9.18p	NW-E	9.2 p	$9.30\mathrm{p}$. 0	N	N_{2}	[₹², ز, klara B.
SOI UAVA)	9.45p	9.45 p $10.25 p$	E-SE	10.0 p 10.30 p	$10.30\mathrm{p}$	$_{z}^{N}$	N	N_2	[¼², ◎².
Heinäluoto	oto	9.33 p	9.33р 11.3 р	NNE-NNW	1	[W	W	W_2	
Laihela		с. 2.45 а	с. 2.45 а с. 3.20 а	NE-E-SW	-	1	$S_{\mathbf{z}}$	v,	SW_2	Blangre borta, ⊕; kl. 3 1 B².
Vasa.		3.15 а	3.15 a c. 4.0 a	SW-S	3.35 a	3.40 a	ĺ	χĝ	z°	区。, @2.
Helsingkallan		3.52 a		7.02 a SW-SSE-NE	6.37 a	6.47 a	$\mathrm{SSE}_{\mathtt{t}}$	ı°	SSE	$\{ \le i \text{ ESE kl. 9.12 p. } \mathbb{Z}^{1-2} \text{ i SSE} \}$ starkast. \mathbb{Q}^2 .
Kvarken skepp	Kvarken, Snipan, fyr-	3.55 a	4.45 a	SW-NE	4.5 a	6.0 a	SE,	SE_1	SE_{o}	I\(\infty\). \(\infty\).
Norrskär, fyr		. c. 4.0a	6.0 a	NW—SE	1		Ø	Z	w	🔘 i skurar.
Valsörarna,	na, "	4.40 a	1	WSW	[1		I.		14 ^{1−2} .
Jakobstad	ad	п	5.0 a	5.0 a SW-S-NE	1	· ·	.	SE_2	∞,	[∑ ⁰ —1.
Vasa .		5.10a	6.20 a	Z	6.20 a	7.40 a	W	SW_2	SW	
Jakobstad	ad	5.30 a		7.40 a SW-S-NE	в 6.5 а	7.45 a	SW.	SE_2	SW_2	$\lceil \overline{\Lambda}^2, \bigcirc \rceil^2$.
Jakobst	Jakobstad, Björnholm.	5.50 a	6.10a	Z	6.0 a	6.25 a	1	Ω _±	δ_{z}	[∡¹-², @² sällsynt häftigt.
Gamlak	Gamlakarleby, Yxpila.	7.0 a	7.40a	S-Z-NE	6.45 a	8.40a	SW_2	Ω̈́	SE	[द², @² så, att vatt. rann i strömmar.
Tankar, fvr	fyr	c. 7.0 a	c. 7.0a c. 8.0a	SW-W	c. 6.0 a	8.0 a	SW_4	$\mathrm{SW}_{\scriptscriptstyle{4}}$	I	

	_		_		_	_						
	@ mycket starkt.	SW	SW_5	SW_{δ}	1	1	1	8.50 p	7.50 p	Gamlakarleby, Yxpila.		
)	2 D.	1	1	1	-	:1	A	ļ	c. 7.30 p	Pörtom		
98		W_4 m	SW ₁₄ m	S _s m	$8.25\mathrm{p}$	$7.31\mathrm{p}$	SW—E	8.5 p	7.25 p	Sälgrund, fyr	33	
	14. Caroppar nera dagen; bla-	SW_{\bullet}	SW_8	SW_8	8.0 p	7.56 p	NW-N-NE	$8.30\mathrm{p}$	7.15p	Laihela	*	
	/ reso @n J.common L. J. J.com. 1.13	1	W	ļ	l	1		c. $8.0\mathrm{p}$	c. 7.0 p c. 8.0 p	Lovisa	*	
	\mathbf{K}^2 , $1/2$ timme \mathbb{Q}^2 .	SW_1	SW_3	$\mathrm{SW}_{_{4}}$	$8.15\mathrm{p}$	c. 7.0 p	ENE-NÈ	8.5 p	$6.45\mathrm{p}$	Vasa	*	
	ز kl. 7.15—7.50 p.	W	W	SW_8	7,55 p	7.0 p	W— E	$8.10\mathrm{p}$	$6.40\mathrm{p}$	Vasa, Villskat	ę	
	} @² slog ned rågen.	$\vec{\mathbf{v}}_{\mathbf{q}}$	$\vec{\mathbf{x}}_{\mathbf{i}}\vec{\mathbf{x}}_{\mathbf{i}}$	$\vec{\alpha_i}\vec{\alpha_j}$	6.24 p	6.37 p	7.37 p SW—NE 8.54 p W—NW—N	7.37 p 8.54 p	6.30 p 7.49 p	Kuhmoniemi		
	$ abla^2 $.	$\mathrm{NW}_{_{4}}$	$\overline{\mathrm{NW}}_2$	NW_4		1	$7.40 \mathrm{p} \mathrm{SW-S-NE}$	$7.40\mathrm{p}$	$6.30\mathrm{p}$	Jakobstad	£	
	111111111111111111111111111111111111111	M	M	M	$7.30\mathrm{p}$	8.0 p	6.48p W-N-NE		$6.15\mathrm{p}$	Tuusniemi	2	
	{ IX¹-², @°, ≤ 5.30 p. i SW och { 6.40 p. i NF.	W_2	w.	$\infty_{\rm s}$	$7.10\mathrm{p}$	$5.20\mathrm{p}$	SW-NE	$6.30\mathrm{p}$	5.45 p	Kajana	£	
	3 D; ånyo ☑ n.	-	!	i	6.0 p	$5.40\mathrm{p}$	SE	5.55 p	5.45p	Kuopio	\$	
	$\lceil \overline{\zeta}^{0-1}, \otimes^{\circ} angle$	$\mathrm{SW}_{_{\mathbf{\downarrow}}}$	SW_6	SW_6	8.5 p	$7.35\mathrm{p}$	SW-W-NW	$7.30\mathrm{p}$	$5.40\mathrm{p}$	Jakobstad, Björnholm.		
	D svaga men långa. @°.	$\vec{\Delta}_{\vec{\bullet}}$	S ₂	$\infty_{_{\!$	6.0 p	$5.35\mathrm{p}$	W-S-E	$6.10\mathrm{p}$	$5.30\mathrm{p}$	Vaala		
	@-droppar.	SW_{\star}	SW₄	$\mathrm{SW}_{_{1}}$	-		SW-NE	$5.15\mathrm{p}$	5.0 p	Frantsila.	t	
	[☆, ◎。.	$\infty_{\!$	${ m WSW}_2$	${\rm SSW}_5$	$6.38\mathrm{p}$	6.26p	NW	$6.26\mathrm{p}$	4.56 p	Valsörarna, fyr	*	
	[₹², @°.	S_1	SW_2	SW_6	7.15 p	5.45 p	6.20 p W-NW-N	$6.20\mathrm{p}$	4.50p	Kvarken, Snipan, fyr- skepp	2	
	Τ°, ◎°.	$\infty_{\mathbf{z}}$	ı	SW_{\downarrow}	1		NW	$4.22\mathrm{p}$	4.20 p	Ruovesi	*	9
	2 D, något tidigare @ ² .	1	$\infty_{_{1}}$	W	ł		3.30 p NW-WNW(?1-W(?)	$3.30\mathrm{p}$	3.3 p	Karkku, Linnais	2	T. 0
		SW_{5}	SW_5	SW_{5}	$3.30\mathrm{p}$	$3.15\mathrm{p}$	W-NE	$3.50\mathrm{p}$	3.0 p	Riitiala	*	7 N
	ع−², Ø dagen lång.	ì	ı	1	1	10.0 a	ı		3.0 p	Ikalis		65
			$\mathbf{x}_{\mathbf{t}}$	S,	$3.12\mathrm{p}$	3.5 p	W-N-E	$3.25\mathrm{p}$	$2.30 \mathrm{p}$	Kankaanpää	*	TI
		1	1	1		1	W-NE	$2.25\mathrm{p}$	$1.55\mathrm{p}$	Säppi, " · · · · ·	*	11-
		I	1	1			SW-NE	9.14 a 10.44 a	9.14a	Utö, fyr	2	Tr.
) [∢², @² vattnet "nedströmmade") från molnen.	SE_{\downarrow}	SW_1	SW_1	8.0 a	7.0 a	SE-NE	7.30 a	7.10a	Gamlakarleby	£	0
	I I	S W S	δ.	80		1.0 a			20 000		OT	4

Da		K		F			þ.	\$ \$	ŀ	
atum	Observationsort	t,	t _o	K	ta	t _e	Vf	o N	Α .	Anmärkningar
16	Lohtaja	8.12p 8.14p	8.14p	NS	то д	8.30 p	Ω	Ø	Ø	Vinden svag ●, @¹; redan kl. 7.0 a.) hördes [∡ i S—N, vinden då Soch ◎.
£		8.40p 8.50p	8.50 p	SSW	8.40 p	8.50 p	8.40p 8.50p SSW ₆₋₈	${\rm SSW}_{_{\bullet}}$	SSW_2	Senare på natten c. kl. 2.0 a [3] och @2: försvann c. kl 2.40 a.
46		$10.40 \mathrm{p} 11.10 \mathrm{p}$	11.10p	S-NW		1	N _{c2}	$\infty_{\mathbf{z}}$	Ω ₂	
\$	Kuhmoniemi	. 10.54 p		SW-NE		11.13р	SW.	SW_6	NW.	börj. redan före kl. 10.54 p. 1 D.
17	Tuusniemi	0.0 а	1.0 a	W-N-E	$1.30\mathrm{a}2.0(?)\mathrm{a}$	2.0(?)a	W ₁ . 2	W_{1-2}	NW_{1-2}	
£	Kvarken, Snipan, fyr-	yr-} 0.5 a	0,25 a	NW-N-NE	1.15 a 1.40 a	1.40a	0	N_{δ}	Z	∠ 11.50 p. i NW 「¬, □
ů	Valsörarna, fyrskepp .	ಹ	1	W		1]	1	1	✓ p. i E.
\$	Helsingkallan, "	0.32 a	3.47 a	3.47 a NW-NNE-SSE	2.12 a	2.32 a	0	NW_7	NNW_2	[¶² i SE, ∅³.
\$. 0.50a 2.15a	2.15a	SW	1.5 a 4.15 a	4.15 a	SW	A .	NW	[\frac{\mathbb{G}^2}{s}, starka stormartade vindbyar och starka störtregnskurar tidtals.
2	Vasa	c. 1.0a c. 4.0a	3. 4.0 a	SWE	2.45a 4.20a	4.20a	SW_1	NNE,	NE_3	$\mathbb{I}\mathbb{Z}^2, \ \mathbb{Q}^{1-2}, \ \mathbf{\Theta}.$
2	Storkallegrund, fyrskepp 1.22 a 2.42 a	1.22 a	2.42 a	SW-SE	1.7 а	3.52 a	SSW_1	SW_2	NW_2	✓ 0.32 a. i SW och kl. 2.47 a. i SE.
	Kvarken, Snipan	1.40 a	$2.50\mathrm{a}$	1.40a 2.50a SW-S-SE	3.30 a	3.45 a	Z,	N_{i_5}	NNW_2	[\(\mathbb{\pi}\), \(\emploremath{\omega}\) ⁰⁻¹ . \(\lambda\) 1.15 a. i SW.
2	Kronoborg	1.15 a	1.50 a	A	1.45 a	ç-	1	esterates	-	
2	Verkkomatala,fyrskepp	1.15 a		2.25 a NE—E—SE	1.35 а 1.45 а	1.45 a	SW_2	SW_3	SW_{4}	10,
*	Kuhmoniemi	1.27 a	1	SW-NE	1	[W	1	1	Vinden på morg. NW ₆₋₄ .
2	Norrskär, fyr	c. 2.0a c. 3.0a	c. 3.0 a	SE	1	1	S	N_{6-8}	S ₆ —8	(© tidtals, दि° i SE. Under © var vinden — o.
=	Vasa, Villskat.	2.5 a 4.15 a	4.15a	E-W	2.30 a	6.0 a	W	NW_8	NW_6	[₹², ②².

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		@² kl. 7.15—7.25 p.	N_{z}	NE.	Z	$7.30\mathrm{p}$	7.15p	NE-SW				Vaala
kylä		▲ 4.45 p (?).	1	1	1	1		1	1	1	:	lgrund, fyr .
kylā 230a	01	¬; väderlek. varit i allm. kylig.			1	Î				$1.30\mathrm{p}$		Hinnerjoki
kylä 2.30a	1	(\bigcirc . I Helsingfors \triangle 1.36—1.40 p, \bigcirc . 12.5—12.40 och 3.40—3.50 p.	SW	-	∞	1	Į	SW - E	c.12.30 p	c.11.30 a		iko, Kallnäs
kylä - <td></td> <td>▲ 9.0—9.10 a.</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>I</td> <td>1</td> <td></td> <td>ļ</td> <td></td> <td>inämaa</td>		▲ 9.0—9.10 a.	1	1		1	I	1		ļ		inämaa
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		▲ 5.0—5.5 p. @² tidtals. [द i Nagu.	1	$\mathrm{SE}_{\mathfrak{g}}$		$4.59\mathrm{p}$	8.19a	1				ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		▲:12.30 p.	1		1		1		1			mmerfors
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		dem.	1						l	}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(▲ 8.30—9.10 a, ▲ som små ärter,										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	1]	I			1		ı		ijana
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~	SW	1	$^{ m SW}$				1			Ilmanstrand .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			NW_{4}	\mathbf{W}_{z}	W_2	1.15 p		W-E	$10.30\mathrm{a}$	8.15 a		Pielisjärvi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		¹⁶ /VII c. 6.0—7.0 p [\(\) troligen i W.	1	NW⁴			7.40a	NW-(E)		7.35 a		Juuka
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		före åskvädret nder 5 dagar, däref V-vindar.	NW ₉₋₁₀ (?)	NW ₉₋₁₀ (?)	NW_8 (?)			NW-SE	8.0	6.30 a	•	Tuusniemi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbb{N}^2, \mathbb{Q}^2$.	3	1	1		5.15 a					Kuopio
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Stark storm under åskan. Elixten slog ned i Mäkinens torp.		l		4.35 a	4.10a			4.10a		ırainen
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			WNW	1	SW		4.15 a	N-S		3.55 а		väskylä
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ett åskmoln förbi i	\mathbb{W}_{2}	W	M_2		3.40a			3.30 a		rrat
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Matten mot den 18 p. var $T = +7^{\circ}$, ≤ 2.0 a i S.	NW_{10}	SE,	$\mathrm{SE}_{\scriptscriptstyle{2}}$					3.30 а		tasaari
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[द°, delvis starkt regn.	N	$_{_6}$	N N		12.0			3.10a		ihela
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\mathrm{WSW}_{\scriptscriptstyle 4}$	WSW	WSW_{4}			NNW-N-E	1	l		sinäluoto, fyr
2.30a — — 2.45a — — —		[⊈² gick lågt.	SW_{5}	SW_4	SW_5	1	1			3.0 a		Nykyrka.
		$\lceil \overline{A}^2, \ \otimes^2.$	1	1	1	J	2.45a	I		2.30a		Pirttikylä

.T111

Da		K	£		1	1	‡	
itum	Observationsort	a ct	t _e	t a t	, f	n ^	φ	Anmarkningar
21	Bromarf, Sommarbo	1.3 p		1.51 p 2.15 p	NW_3 NW_3	$\stackrel{\mathbf{NW}_3}{\mathrm{NE}_{5^{-7}}}$	NW_2 $NW-NE-SW$	1 \mathbb{R}^2 kl. 1.58 p., ②; vinden byig. $\mathbb{T}_6 = +15$, $\mathbb{T}_1 = +9$. \mathbb{A}^2 1.53—1.57 p.
æ	Ingå, Svartbäck	1.10p	- NE-SW	1	NW_0	NW_6	NWo	@¹-² tidtals hela dagen. Däremellan solsken.
2	Porkkala, fyr	2.15p 2.	2.30 p N-NE-SE	2.0 p 3.10p	N ₃	· NE	$\mathbf{E}_{\mathbf{o}}(?)$	◎°. I≼ i Houtskär, äfven den 20.
\$	Vehkalahti, Brakila.	4.18p 4.	$4.19\mathrm{p}$ NE-NW	4.15p 4.52p	NW_6	$NW_{_{\downarrow}}$	$\overline{\mathrm{NW}}_{2}$	
\$	Miehikkälä	5.10p 5.	5.15 p N-E-SE		1:	1		
22	Söderskär, fyr.	3.20a 4.	4.20a ESE-NE	3.25 a 5.0 a	$\mathbf{ESE}_{_{\mathbf{I}}}$	ESE,	Š	
25	Tuusniemi	7.0 a 8.	8.30a NW-N-NE	7.0 a 9.0 a	$S_{1-\frac{1}{2}}$	S_{1-2}	NE,-2	Från sen, åskväd, har temper, varit
32	Lemo, Karins	c. 8.0 a	1	8.0 a 8.5 a		. 1	1	Congain 1 of 1 of 1 of 1 of 1 of 1 of 1 of 1 o
\$	Kustö	8.5 a	-		Ø	20	l	D°, ع.
ŧ	Utö, fyr	8.14a 9.	9.29 a S-NE	8.47a 9.4 a	1	I		[☐, ☐, ☐, gick på 20 km afstånd i E t. N öfver landet; där föll ◎ och ▲.
*	Korpilahti	8.15 a	W—E	9.0 a	1	1	I	2 D.
2	Hirvensalmi	9.15a 9.	9.20 a SW-NE	10.0 a 12.0 a	1	1	I	区, @ långvarigt
2	Porkkala, fyr	10.0 a 2.	$2.30 \mathrm{p} \mathrm{SW-S-NE} 11.20 \mathrm{a} 2.15 \mathrm{p}$	111.20a 2.15p	SW_2	SW_3	SW_1	M', ©°.
£	Hvittis k:by	$10.30\mathrm{a}11.10\mathrm{a}$		SW-S-E 10.40a 11.5 a	SW_2	SW_1	SW_1	Kl. 11.0 a var B—D 3 à 4 s. @¹-².
\$	Hangö fyr	10.45 a 11.	10.45 a 11.55 a WSW-NW-ENE 10.40 a 11.45 a	10.40 a 11.45 a	SSW_2	SW_3	WSW_1	
8	Bromarf, Sommarbo	10.55 a 12.	10.55 a 12.16 p WNW-ESE (11.15 a 12.5 p	(11.15a 12.5 p	$\left. \begin{array}{c} \mathrm{SSW}_{2} \end{array} \right.$	$\Omega_{_{\wp_{1}}}$	SSW	1 B ² , B—D 3 å 4 s kl. 11.49 a; [द ¹⁻² . Annars ≡ från föregående kväll ända till åskvädret; därefter ≡.

	A C A	W 5 W	61 A D	70+.,	d oc.o	N C	doc.o	doc.e	rammpaasi, iyr · · ·
(SW_6	SW_6	SW ₄	;	0	02	5,35 p	5.30 p	
10	1	1		1	-	W-S-E	1	5.7 p	
		1		р 6.0 р	$4.25\mathrm{p}$	SW-NE	5.0 p	$4.20\mathrm{p}$	Villmanstrand
(& KI. 4.0 p anyo. Askslag.	SW	M	ω	p 3.45 p	$3.30\mathrm{p}$		3.55 p	$3.15\mathrm{p}$	
S. INE och N. ett mindre i W.	v,	$\vec{\Delta}$	δ_{4}	1		3.33 p SE-E-NE		$2.22\mathrm{p}$	Fredrikshamn
So.	$\sum_{i=1}^{4} N_{i}$	$\mathbf{v_{\!\!\!4}} v_{\!\!\!2}$	$S_{\frac{1}{2}-\frac{1}{2}}$	4.30 p	$3.20\mathrm{p}$	$\frac{3.11 \text{p}}{4.14 \text{p}} \frac{\text{NNW-N-NE}}{\text{W-E}}$	3.11 p 4.14 p	3.6 p 3.48p	
[☑², ◎².	M°	SW_6	SW_{\star}	3.31 p	2.57 p	SW-NE	4.0 p	$2.10\mathrm{p}$	
	N_2	SW_2	SW_6	э.25 р		3.15 p W-SW-E	3.15 p	$2.10\mathrm{p}$	Vehkalahti, Brakila
	W	8	∞	1	1	3.40 p W-NW-N	$3.40\mathrm{p}$	2.7 p	
$ \tau^{\circ}, B-D = 10 s.$	NNW⁴	NNW_{4}	NNW₄	ł	1	国	$2.55\mathrm{p}$	2.0 p	
	평	$\mathbf{x}_{_{\!\!\mathbf{i}}}$	0	э 3.0 р	$1.55\mathrm{p}$	S-E	3.0 p	$1.10\mathrm{p}$	
	SW_2	SW_{o}	SW_0	3.30 p	$1.50\mathrm{p}$	$2.45 \mathrm{p}$ SW-SE-NE		$1.05\mathrm{p}$	
	Ī	ſ	0	p 2.10 p	12.20	1.40p SW $-S-SE$ $12.20p$		$12.45\mathrm{p}$	
$\lceil \nabla^2, \mathbb{Q}^2 angle$	N_{1-2}	W_{6-7}	W6-7	$0.1.30 \mathrm{p}$	12.50	W-E	$12.45 \mathrm{p}$ $1.20 \mathrm{p}$	$12.45\mathrm{p}$	
Nästan lugnt.		1		d c1.2 c	12.35 p		3.0 p	$12.43\mathrm{p}$	Malm, station
= dygnet om.	SW_2	SW_3	SW3	j 1.30 p	12.30	SW-NW	12.40p $1.40p$	$12.40\mathrm{p}$	
afven senare.		1		12.15 p $12.30 p$	12.15	1	$12.30\mathrm{p}$ $12.35\mathrm{p}$	$12.30\mathrm{p}$	
I ≰ i zenit 12.30 p.	0	SW_{6}	SW6	a 1.0 p	12.25 a 1.20 p	W-E	12.0 а 1.16р 1.24р 1.33р	12.0 а 1.24р	Ingå, Svartbäck
	∞,	SQ.	S,			SSW-NNE	12.3 p $12.17p$	12.3 p	
✓ 11.53 och 12.10 p. i S.	1	1	NW	10.30 a 12.45 p	10.30	SE	11.35 a 12.30 p	11.35 a	
	SW_2	Ω̈́,	SW_2	9.30a 10.45a 11.50a 12.15p	9.30	SW-W-N	11.35 a 12.50 p	11.35 a	
	NW_{1-2}	NW_{1-2}	NW_{1-2}	11.30 a 12.45 p	11.30	NW-N	11.25 a 12.45 p	11.25 a	
[द, @² under åskvädret.	8W	Z	Ω,	a 1.0 p	10.20 a 1.0	N-NE (?)	$11.15 \mathrm{a} 12.30 \mathrm{p}$	11.15a	Kisko, Toija gård
	SW_{0-4}	W	SW_2	a 12.15 p	11.20	$11.10\mathrm{a}$ $11.50\mathrm{a}$ SW—S—SE $11.20\mathrm{a}$ $12.15\mathrm{p}$	11.50 a	11.10a	

٠,
Ξ
5
_

Da	:	M.	h-4	F				3	,	
tum	Ubservationsort	t _a	p ^o	¥	12 ⁶⁸	to oct	> \$	>	>°	Anmärkningar
ç		1	, ,	F	G G	ı i	1) 		
22	Vartsila	d /c·c	d0c.0 d7c.c	S-E-NE	d 1.7 dcz.9	(., p	% *	S.W.	× ×	
ę	Pälkjärvi	6.5 р	7.3 p	SN	6.2 p 6.8 p	6.8 p	s,	s,	v°	$[\mathbb{Q}^1, \mathbb{Q}^1, \mathbb{T}_0 = +19^{\circ}, \mathbb{T}_j = +13^{\circ}]$
٤	Sordavala	6.5 p	$7.15\mathrm{p}$	NWNE	6.50 p	$7.20\mathrm{p}$		WNW_3	WNW,	∏°, @².
x	Ingå, Svartbäck	$6.40\mathrm{p}$	7.3 p	1	-		0	ľ	o	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ž	Järvelä	$6.55\mathrm{p}$	$7.30\mathrm{p}$	S—SE—E	1]	W	W	W	
ů	Heinäluoto, fyr	8.33 p	8.33 p 9.56 p	SW-S	$10.18 \mathrm{p} 10.33 \mathrm{p}$	$10.33\mathrm{p}$	SSW_3	SSW_4	SSW_3	. ⊤°.
ť	Kuhmoinen	e. 10.0 p c. 10.30p	c. 10.30p		1	I	1	1	1	
56	Ingå, Svartbäck	10.55 a		M		1	1	NW_6	l	
ŧ	Lovisa	12.50p 1.30p	$1.30\mathrm{p}$	NW-SE	$1.10\mathrm{p}$	1.10p 1.45p	0	$\mathrm{NW}_{\mathfrak{g}}$	NW_2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8	Frantsila	1.5 p	1.5 p 1.20p	NE-SW	$12.40\mathrm{p}$	$1.30\mathrm{p}$	N	E,	Z,	▲° 12.50—1.20 p. ▲ på Porkkala.
κ	Alastaro	$2.50\mathrm{p}$	3.0 p	3.0 p N—W—SW	$2.40\mathrm{p}$	3.0 p	N.	N	N_2	
t	Karins.	3.55 p		4.15p N—NE-E	$4.33\mathrm{p}$	4.45 p	~	NW_6	NW_2	\(\times^\c, \@^2\).
*	Vaala	area-came		M-S	4.0 p	4.30 p	N	N	N_2	
22	Vaala	1	-	N-E-S	$3.50\mathrm{p}$	4.0 p	N	NE	N	D(?), @ ² .
"	Vaala	!	!	N-S	$6.20\mathrm{p}$	$6.40\mathrm{p}$		N ₈	N	D(?), @.
53	Hirvensalmi	2.0 p	2.2 p	NWW	1		I	l		™.
	Ersta	$5.10\mathrm{p}$	5.10p 6.0 p	国		- Company	N °	$ m N_2$	N_2	(Τ°, himmeln till större delen klar; endast i Ε och W mindre moln.
30	Sordavala	2.0 p	$3.50\mathrm{p}$	E-NW	$2.20\mathrm{p}$	$3.45\mathrm{p}$	NNE	ENE,	ENE,	[¶², @².
31	Helsingkallan, fyrskepp	0.22 a	0.37 a	Z	-		SSW_2	SSW_1	N ₂	∠ 1.17 a och 1.47 a i N, ⊤°.
	, ,	0	0					č		

ĭ¸, ©°.		∫ [\(\inf \text{\mathbb{I}}\). Dundret så starkt att taket \(\) och fönstren i kyrkan skallrade.	D°.
v.	SW_6	SW_2 W_3	1
W	್ಕ್ ಬ್	\mathbf{W}_{2}^{3}	1
W	$\mathbf{v}_{\mathbf{i}}$	SW_1 W_1	0
3.0 a 3.30a		.0.37 a 11.12 a	
3.0 а		 10.37 a	1
20	. 7.20a 10.0 a NW-N-E	W—E W—E	N
3.05 a	10.0 a	9.27 a 10.57 a	l
3.0 a	7.20a	8.47a 9.27a 10.27a 10.57a	12.30a
Gamlakarleby, Storå 3.0 a 3.05 a vexel	Pudasjärvi	Taivalkoski	Jakobstad, Björnholm.
*	22	2	£

ngusti

Da		K		í			1.1	l.	11	
ıtum	Observationsort	پ ا	1 0	¥	t _a	t _e	V F3	n A	^	Аппағкпіндағ
,	Enontekiö	6.5 p 6.20 p	6.20 p	-	$6.15\mathrm{p}$	6.15p 6.35p		1	1	
2	Ylitornio.	7.35 p	$7.45\mathrm{p}$	N-E	$7.50 \mathrm{p}$	8.0 p	SW_2	SŞ.	$\mathrm{SE}_{\scriptscriptstyle{2}}$	区。, ◎。.
t	Enare, 50 km åt NE fr.) kyrkan, Partako gård	$8.15\mathrm{p}$	$9.45\mathrm{p}$	W-S-E			ਸ਼ੁ	ĘĘ	E	[₹°,
23	Marjaniemi, fyr	2.30 a	3.0 a	SW-SE	1.45 a	3.0 a	ļ	[
	Ruukki	2.50 a	3.20 a	S-E-N	1	1	¢>•	闰	20	T°, 1 D¹.
\$	Taivalkoski	3.47 а	4.47 a	W— E	4.17a	5.0 а	W	W ₃	ח	/ [₹², B klara, nâgra bâgformade. (@² tidtals; ▲ 4.27-4.32 a.
ε	Pudasjārvi	4.10 p	4.35 p	W-S-E	1	1	W_2	W	$\mathrm{NW}_{_{4}}$	
\$	Sotkamo	$6.26\mathrm{p}$	7.12 p	S N-S	$6.45\mathrm{p}$	7.2 p	δŽ	∞_{∞}	$\infty_{_{\mathbf{c}_{\mathbf{d}}}}$	(Tipasoja och Sumpsa byar.
2	Frantsila	6.35 p		Ø	9.15 p 10.0	10.0 p	W	W	$\mathbf{W}_{_{4}}$	1 D.
\$	Kuhmoniemi	7.7 p		8.42 p wsw-n-ene	7.48p	8.0 p	W	W	١	{ ≤ i NE kl. 11.42 p. Flere B ned- slogo vesterut i marken.
8	Enare, Pandijärvi	7.35 p	8.27 p	8.27 p W-NW-N 7.50 p 8.0 p	7.50 p	8.0 p	W	. 0	† NM	区。Vinden på dagen byig, mindre regnskurar; mörka moln 1 W.
\$	Kajana	8.10 p	8.10 p 9.0 p	SW-NE	8.20 p	8.20p 8.50p	W	0	NW_2	[\(\mathbb{\bigsigma}^2, \@\'\eq \) \(\mathbb{\bigsigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathbb{\bigma} \) \(\mathb
ı	Pudasjärvi	8.30 p	8.30p 10.0 p	W-E	$9.20\mathrm{p}$	$9.20 \mathrm{p} 10.30 \mathrm{p}$	NW_2	NW_2	I	
£	Sotkamo	$8.30\mathrm{p}$	8.30p 9.40p	S-W-N	1	ı	°	\mathbf{W}_{2}	0	✓ II.0 p 1 N. 1✓, blixtarna blan- dande.
2	Enare, Partako gård .	9.0 p		S - W-N	1	1	1			
3	Lovisa	3.55 p	4.5 p	N-S	1		$\mathrm{SSE}_{\scriptscriptstyle{2}}$	S.	NE	[द', ≤ 3.45 p och 3.50 p i N.

		107
T°. Starkast cirka 6.0—7.0 p. Molnen foro snabbt, fast vinden var svag. B—D = 3°. I≼°, ©°.	Under F\(\mathbb{Z}\)-v\(\text{a}\) dret en "hemsk stoku. 5.0—6.0 p. V\(\text{a}\) dret f\(\text{forut va}\) nu svalare; p\(\text{a}\) kv\(\text{allen}\) N-stor \(\text{\$\mathbb{Z}'}\). \(\mathbb{Z}'\). \(\mathbb{Z}'\). \(\mathbb{Z}'\). \(\mathbb{Z}'\)	\begin{align*} \text{breda.} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SW S. SE.	NNW ₂ . 3 S N ₄ SW ₂ . 3	WSW ₂ SW ₂
$\begin{array}{ccc} SW_{\downarrow} \\ S_{\downarrow} \\ S_{\downarrow} \\ WW_{\downarrow} \\ W_{\downarrow} \end{array}$	$\begin{bmatrix} N & N & N & N \\ N & N & N & N \\ N & N &$	SSW, SW, W, W, W,
SW ₆ WNW ₁ SW ₆ SW ₈ SW ₈ SW ₈ SW ₈		NNW, NNW, SW, SW, W,
7.20p 7.45p 11.15a 11.30a 2.0 p 2.25p 4.0 p 8.0 p 4.30p 5.0 p 4.0 p 4.50p 5.0 p 5.20p 4.26p 4.58p	6.20p 5.15p 5.30p 5.20p 5.20p	7.0 p 10.5 p 7.21p 8.52p 8.18p 11.23p 8.0 p 8.45p — — 7.35p ill.
7.20 p 11.15 a 1 2.0 p 4.0 p 4.0 p 5.0 p	4,45 p 5.0 p 5.10 p 4.50 p 5.38 p	7.0 p 10.5 7.21p 8.52 8.18p 11.23 8.0 p 8.45 — — 7.35p ill. 9.10p 9.55
6.51p N—E—SE 7.35p WNW-NWWW 1.25a W—N 7.0 p NW—SE 7.0 p W—E 4.45p NW-N-E 6.0 p W—E 6.3 p W—E 7.0 p W—E 7.0 p W—E 7.0 p W—E 7.0 p W—E 7.0 p W—E	W S W	9.20 p W—E 9.0 p W—E 9.33 p W—NNW-NE 8.45 p W—N - NE 8.40 p E—NE—N 8.25 p W—E
p 6.51 p 7.35 p v a 11.25 a p 7.0 p p 5.0 p p 4.45 p p 5.3 p	6.20 p 5.0 p 5.10 p 5.10 p 5.36 p	
6.50 p 7.15 p 11.5 a 11.5 a 13.0 p 3.25 p 3.25 p 4.15 p	4.20 p 4.45 p 5.0 p 5.0 p 5.35 p 6.40 p	7.15p 7.23p 7.45p 7.45p 7.57p 8.0 p
Vehkalahti	Frantsila	Sordavala Jünisjärvi Heinäluoto, fyr Kronoborg Verkkomatala,fyrskepp Pülkjärvi
)	2 2 2 2 2	s

ugusti.

Da		K	NA.	ş			d.			
tum	Observationsort	t a	t _o	ᅺ	, t	t _e	\f	>	>°	Anmärkningar
4	Sordavala	natt	natt		1				1	<u> </u>
5	Hanhipaasi, fyr	8.14 p	9.34 p	9.34 D WNW Z - ESE	8.39 p 10.9	q 6.01	WSM	WNW	NNN	/ Ka, @ molnen dystra. K gick
(3)	Marjaniemi	c. 230 a c. 3.0 a	c. 3.0 a	W-NE	<u> </u>		SW,	SSE	SSW_1	
9	Sälgrund, fyr	4.15 a		5.15 a W-WNW-NW	5.15 а	7.0 a	SE_2	SE_2	SE_3	0
\$	Storkallegrund, fyrskepp	5.37 a	6.27 a	SSW-S-SE	4.57 a	6.52 a	ž	SSE_{\downarrow}	$\mathrm{SSE}_{\scriptscriptstyle{\downarrow}}$	
2		11.0 a 11.50 a	11.50 a	SW-N-NE			ъ́	Ħ,	Ā	≼ 11.10 a i SW och 11.45 a i N.
2	Ersta	11.50 p	ĺ	闰	12.0 p		W	M	W	Τ°, ⊜°.
2	Heinäluoto, fyr	$3.33\mathrm{p}$	4.3 p	SW-S	l			1	1	T^{1} . $\leq 9.13 \text{ p och } 11.33 \text{ p i N.}$
22	Kuopio	3.45p	5.0 p	SE-SW	4.15 p	4.25 p	ı	I	1	Iद° med längre pauser, @².
£	Tuusniemi	4.0 p	$6.30\mathrm{p}$	W-NE	$4.15\mathrm{p}$	$6.45\mathrm{p}$	\mathbf{S}_{1-2}	S_{1-2}	Ø	
£	Hirvensalmi	5.0 p	5.5 p	s_{-N}		1	W_2	0	0	区。
\$	S:t Michel	$5.30\mathrm{p}$	$6.30\mathrm{p}$	SSW-SE-NE	$5.50\mathrm{p}$	6.30 р	W	W	W_0	Γ () () () () () () () () () (
t	Juuka ,	Ì	1	M	I	1		1	1	1 och
25	Värtsilä	$6.56 \mathrm{p} 11.0$	ď	WNE			SE_2	SE_{z}	$\mathbf{SE}_{_{2}}$	I №.
8	Ilomantsi	7.54 p	11.22 p	7.54 p 11.22 p WSW-ENE	8.56p 10.5	10.5 р	\mathbf{S}_{2}	ı	1	Vindriktningen under [\(\frac{\text{T}}{4}\) och efterst SW2-S2, S2-SW2-W4-SE2 och SE2. Redan 7.30 p hade man hört [\(\frac{\text{T}}{4}\) is SW. I B sällsynt vacker; i \(\frac{\text{T}}{4}\) is 1 minuten. D dock icke alltför starkt; [\(\frac{\text{T}}{4}\) belägen i högre luftlager.
n	Herrö, fyr	$8.49\mathrm{p}$	$8.49\mathrm{p} 11.19\mathrm{p} $	SSW-NE	-	1	S_1	S_1	S_{1}	т°.

																					109		
	☑¹. Molnen kommo från W.	©, ©² kl. 8.0—9.0 p.	T, efteråt blef vädret kyligare.	[Kooch i zenit; @² 1,20 - 2.10 p, senare @¹—º. Molnen upplöste sig	kunde upptäckas.		 	$\lceil \mathbf{Q}^2, \bigcirc \mathbb{Q}^2, \triangle 2.5 \text{ p.} $	Den första D starkt, senare ⊤, @².	K², ∅²; vinden svag. 7/VIII K.	▲ 2.5—2.10 a.	≼ 6.18 p i SW och 6.25 p i NE.	På natten frost så att endast högre belägna potatisland skyddades.	G° och 10 p く° i SE, 11 p く° i E.	Ø 9.10 p. ≤ 9.45 p i E.	A 8.23—8.26 p; $@$ ° skurar ända till 10.20p. Därefter uppklarnande himmel; i E \leq 2 ännu 11.50 p.	\mathbb{K}^1 , \mathbb{Q}^2 och \triangle B—D = 5 s.	$B-D=10^{\circ}; \otimes^1, \blacktriangle, \checkmark.$	[□], ◎¹.	▲ 9.15 a. @ hela dagen tidtals.	∫ @° endast före och efter [द. På natten ≤.		D∘, @².
	1	1	N	°	I	Z	°	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	$ \overset{\circ}{\nabla} $	∞	N_1	WSW_3	-	1	SW_3	$\overline{\mathrm{WSW}}_{_{2}}$				I	$\delta_{\rm s}$	$\mathrm{SW}_{\scriptscriptstyle{2}}$	1
	I	1	NW	$\mathrm{SE}_{\scriptscriptstyle 2}$		NE	0	SE_{s}	∞_{\downarrow}	∞	N,	SW_3	$SW_6(?)$	1	M_2	WSW ₃	SALARE .	1			$\delta_{\rm s}$	SW_2	Ţ
	ı	1	NW_2	0	l	SW	0	SE_6	$\mathbf{v}_{\mathbf{j}}$	Ø	W_1	SSW_1	$\mathrm{SW}_{^{\star}}$		SW_5	$\overline{\mathrm{WSW}_3}$	[ı	1	$\mathbf{v}_{_{\mathbf{z}}}$	SSW_2	퇴
4	4.18a	1	ı	5.0 p	1	3,35 p		$12.50 \mathrm{p}$	1.45 p	$2.45\mathrm{p}$	2.45 a	8.30 p		1	$8.20\mathrm{p}$	8.45 p	u		ı	-	1	$4.25\mathrm{p}$	$1.46\mathrm{p}$
7	0.18a	1	1	1.10p	I	$2.25\mathrm{p}$	1	11.25 a 12.50 p	12.35 p 1.45 p	2.0 p	2.0 a	$5.45 \mathrm{p}$	1	ı	$7.50\mathrm{p}$	8.2 p	11.45 p	1	ĺ	1	1	9.55a	7.1 a
	SW-NE	ı	E-SE	$2.45\mathrm{p}$ NNW—SSE	MSW	NS	S-W	NW-NE	S-N	WNW-ENE	SW-E	SW-W-NW	$\mathbf{S}_{-\mathbf{N}}$	∞	W-NW-NE	WSW	SW-N	SW-E	闰	SW	SE-E-N	S-E-NE	M
1	2.48a	c. 2.30 p	$1.30\mathrm{p}$	2.45 p	3.44 p	$2.45\mathrm{p}$	$1.34\mathrm{p}$	$12.30\mathrm{p}$	12.50 p	2.45 p	2.15 a	6.10p	6.45 p	7.31 p	$8.10\rm{p}$	8.15p		1.10a	s. 4.0a	-	1	$1.15\mathrm{p}$	7.1 a
4	1.48a	с. 11.5 в	11,35 a	1.35 p	$2.14\mathrm{p}$	$2.35\mathrm{p}$	11.19 a	$11.20\mathrm{a}\ 12.30\mathrm{p}$	12.45 p 12.50 p	2.0 p	2.5 a	4.40 p	6.40p	$7.30\mathrm{p}$	$7.47\mathrm{p}$	7.59 p	11.30p	0.35a	c. 3.0 a c.	8.30 a	8.35 a	9.50 a	6.6 a.
	Bogskär, fyr	Pernå	Ersta	Lovisa.	Utö, fyr	Miehikkälä	Herrö, fyr	Nerko kanal	Vaala	Tuusniemi	Verkkomatala,fyrskepp	Porkkala, fyr	Hinnerjoki	Sälskär	Mariehamn	Finström, Godby	Enskär, fyr	Enskär, "	Hinnerjoki	Notsjö	Alastaro	Porkkala, fyr	Sagu
	00	ŧ	2	\$	r	£	10	z	2	*	111	£		2	2		£	15	2			t	13
1																							

Augusti

Da		Z,								
atum	Observationsort	t e	t _e	대	200	t	>	Vu Vu	> 9	Anmärkningar
13	Salo	6.35 a 7.	7.0 a	W - W	6.50 a	6.50a 11.30a	SW_2	SW_{2-4}	Ω _ω	
\$	Paimio	7.7 a		Z	-		ļ		1	1 D, @ hela morg. och på f. m.
2	Kisko, Toija gård	8.30 a 10.25 a	25 a	W	ಡ	11.0 a	$\infty_{_{4}}$		Ä	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\$	Heinämaa	9.45 a 10.26 a		SW-W-NW	8.35 a	9.50 a	SE,	Š	SE_2	
\$	Säbbskär, fyr	10.0 a 10.46 a	46 a	Ħ	1	1	1	ļ	1	·°F
2	Somero	10.20 a		Ω	ದೆ		Ħ [*]			/ 区。; den första 区 på orten för aret.
£	Notsjö	10.30 a 12.0	0 a	SE-NW	10.0 a 12.0	12.0 а	SE,	SE	SE_{2}	(
£	Mariehamn	10.55 a 11.37 a		NW—ESE 11.5 a 11.20 p	11.5 а	11.20 p	${ m SE}_{2i}$	WNW	NNW_6	(11.20 a B − D 3 s, @². Regnskurar till 6.35 p. ≼.
ž	Herrö, fyr	11.9 a 12.24 p	24 p	NW-E	10.19 a	10.19a 1.19p	NW	NW_6	NW_6	
£	Finström, Godby	11.14 a 11.45 a	45 a	8W	11.22 a	$6.20\mathrm{p}$	SW_3	SW_3	NW_{10}	,
ů	Sälgrund, fyr	11.15 a 11.25 a	25 a	W	1	1	ENE,	$\mathrm{SE}_{_{\mathrm{I}}}$	0	۲۰.
£	Karkku, Linnais	11.15 a c. 1.0 p		SE-E-NNE	11.16a	$1.23\mathrm{p}$	S.	ഗ്	N	[I≼°; vinden starkare endast en
2.	Messuby	11.20a 1.20p	20 b	SE-NW	ಡ	1	W_2	₽Ī	$\mathrm{SE}_{\scriptscriptstyle{1}}$	Act date souther
ĸ	Tammerfors	c. 11.30a c. 1.30 p	.30 р	E - S2	1		SE	SE	SE_5	
\$	Ikalis	11.35 а	1	SE-NW		1	1	1	1	
£	Ruovesi	12.40p 2.	2.10p	M—S		1	闰		\mathbb{E}_{1-2}	T¹, @ hela dagen.
										(T, @ begynte anyo på aft. och
*	Sälgrund, fyr	. 12.45p 4.15p		E-NE-N 12.30 p 3.5 p	$12.30\mathrm{p}$	3.5 p	0	$\operatorname*{SE}_{1}$	0	en stark NW-vind; under natt. 7 å

	2 D, @ hela dagen.	σŝ	$\tilde{\mathbf{v}}_{\mathbf{z}}$	w.			$_{ m SW-NE}$	8.47 p c. 9.10 p	$8.47\mathrm{p}$	Hinnerjoki		
	hela dagen.		20	ďΩ	1	Parameter	W		$8.20\mathrm{p}$	Kustö	2	
111	2 D². Åskslag.	ì				1		$8.25\mathrm{p}$	$8.20\mathrm{p}$	Karins	"	
	🔘 skoftals under dagen. 🚄 8.9 p i W.		闰	∞	9.0 p	7.0 p	W		$8.10\mathrm{p}$	Jyväskylä	,	
	nela dagen.		1	eļ,	ı			$8.30\mathrm{p}$	8.0 p	Pemar	33	
	$\lceil \mathbf{A}^{1-2}, 0^{1-2} $ hela dagen.	ł	$\mathrm{SE}_{\scriptscriptstyle{1}}$	$\mathrm{SE}_{\!\scriptscriptstyle{f 1}}$	l	1	E-N	8.25 p	8.0 p	Sagu	"	
		[I	1	I		7.40p 11.0 p	$7.40\mathrm{p}$	Kimito	ű	
	⊤°, ©.	l		1			∞	$8.21\mathrm{p}$	$7.21\mathrm{p}$	Sälskär, fyr	"	
	6.30 p stark W-vind. @-skur 7.30 p.	$\mathrm{NW}_{_{1}}$	SW_2	$\mathrm{SSE}_{\scriptscriptstyle{\downarrow}}$	d 2.5	6.20a	SW-NW	$6.15\mathrm{p}$	$5.46\mathrm{p}$	Mariehamn	,	
		ਜ਼ੁ	되	SE_{5}	$9.29\mathrm{p}$	10.19 a	E-W	$1.29\mathrm{p}$	11.14a	Herrö, " · · · ·	ŕ	
		W	W_3	SW_2	8.0 a	7.10a	SW-W-N	8.5 a	7.25a	Porkkala, fyr	,	
		0	0	0	11.0 a	6.55 a 11.0	7.20a SW-W-N		6.50 а	Kimito	15	
		W_2	v.	₫	$2.35\mathrm{p}$	$2.20\mathrm{p}$	SW-W-N	$2.30 \mathrm{p} \mathrm{SW}$	$1.40\mathrm{p}$	Kronoborg	14	
	(2) nästan hela dagen.	-	W a NW]	6.18p	6.5 p	l		1	Heinämaa	'n	
	$T_j = +15^{\circ}$. \mathbb{R}° .		1	Ħ	6.0 p	5.0 p	Z.	$5.30\mathrm{p}$	$5.10\mathrm{p}$	Kisko, Toija gård	"	
	(På f. m. före दि ⊘ och ▲. Un- der दि ⊘².	NW_o	NW_0	$\overline{\mathrm{NW}}_0$.		NW-SW-SE	5.0 p	4.0 p	Alastaro	*	
	☑, ◎'.	W_8	W,	1	$5.11\mathrm{p}$	4.51 p	SE-E-N	$4.46\mathrm{p}$	4.0 p	Sagu · · · · ·	£	
	.º◎., №	W	\mathbf{W}_2	W_{o}	ļ	4.5 p	W-NW	$4.32\mathrm{p}$	$3.26\mathrm{p}$	Pemar	t	
		$\infty_{_{\!\!4}}$	S.	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	4.3 p	4.0 p	S-SE-E	$3.40\mathrm{p}$	$3.20\mathrm{p}$	verkkomacala, lyrskepp	£	0
	tate tylines med vaccin.	$\mathrm{SE}_{_{\!$	တ္ခ	$\mathrm{SE}_{\scriptscriptstyle{1}}$	3.30 p	3.5 p	s_{-N}	$3.15\mathrm{p}$	3.0 p	Voultions of of the Constitution		»T
	/ @2 och stora A. En gårds käl-	1	1	ì	1	c. 3.0 p	l			Åbo	\$	e E
	[द, @ skoftals under dagen.	EI.	eī.	र्घ	4.0 p	1.0 p	E-N-NW	3.0 p	2.15p	Virrat	ŧ.	TT
		1	l	[$4.30 \mathrm{p}$	2.0 p	1		1	Kuhmoinen	z	. 11_
	≼ 2.42 p i S och 2.52 p i SE. 2 B.	°	W	WSW_2	1.7 p	$2.57\mathrm{p}$	3.27 p SW-SE-E	$3.27\mathrm{p}$	$1.52\mathrm{p}$	Storkallegrund, fyrskepp	t	T21
	Ianue under askvadret; INE a S W. I\ I\ \ \ \ \ \ \ \ \ \ \ \ \ \	0 W 0	†a	ta vi	d eo dees	d сс.2	AA C	d 02.1 d 0.1	d 0:1	THEORY 145 TENTIONING	OI	

Augusti

	1																			~
Anmärkningar	10 Q	T.	✓ 10.30 p, @².	۲۰;	🔵 hela förmiddagen.		T°, Kuhmoinen T°.				$\lceil \vec{A}^{\circ}, \ $	3 D° i E.	区。	(♠, i början @². D¹ i början med (längre pauser. Blixt, bländ., långa.	To, @2.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				T°, 1 D.
Þ	Φ	1	1	1	1	$\mathrm{SW}_{\scriptscriptstyle{4}}$	\mathbf{E}_{2}		$_{\rm SW_o}$	SE_5	ы	0	so.	0	$^{\circ}_{0}$	ľ		WSW_1	S_{0-2}	$\mathrm{SE}_{\scriptscriptstyle 3}$
Þ	n -	}	SE_6	1	1	SW_{\bullet}	Ħ,	I	\mathbb{W}_{2}	Į	NE_1	SW_{1-2}	E E	0	1	0	$\infty_{\mathbf{z}}$	${ m WSW}_2$	$\mathfrak{V}_{\!$	SE_3
A	¥.	1		1	$\mathrm{SE}_{\scriptscriptstyle{2}}$	$\mathrm{SW}_{_{1}}$	E ₂	I	SW_2	SE_{5}	NE_o	SW_{1-2}	$\mathrm{SE}_{\scriptscriptstyle{2}}$	0		N ₂	s,	$\mathbf{x}_{\mathbf{r}}$	S_{2-4}	SE_3
	t _e				1	1		6.0 p	$6.35\mathrm{p}$	5.0 p	$6.15\mathrm{p}$	6.0 р	$7.15\mathrm{p}$	5.35р 8.35р	7.25 p	7.0 p	8.0 p 8.10p	1.40a	6.50 a 11.30 a	-
	₽ [®]	-	i	-	1		1	$3.50\mathrm{p}$	$4.25\mathrm{p}$	4.0 p	5.10p	$5.10\mathrm{p}$	$2.20\mathrm{p}$		$5.30\mathrm{p}$	$5.40\mathrm{p}$	8.0 p	1.0 a	6.50 a	1
0	ā .	$^{ m SW}$]	W	∞	SSW-NE	凹	E-S-W	S-SE-E		S-N	闰	Ω	5.43 p 7.35 p SE-E-NE	SW	SW-NE	S-W-N	3.30a SSW-W-NE	sw-sE	NW-N-NE
N#	c.	1.14a	1]	l	5.34 p	4.5 p	5.55 p	6.10 p	1	$5.20\mathrm{p}$	$5.30\mathrm{p}$	6.50 p	7.35 p	5.55 р 6.5 р	6.2 p 6.10p	7.35 p 11.20 p		9.45 a	1
M	t _a	8.54 p	I	$2.21\mathrm{p}$	$2.40\mathrm{p}$	$2.49 \mathrm{p}$	3.55 p	4.20 p	$4.20\mathrm{p}$	4.30 p	$4.50\mathrm{p}$	5.18p	5.20 p	5.43 p	5.55 p	6.2 p	7.35 p	1.5 a	9.0 a	9.48 a
	Observationsort	Säbbskär, fyr	Ingå, Svartbäck	Sälskär, fyr	Somero, Pitkjärvi	Herrö, fyr	Alavus, Norviiki	Messuby	Heinämaa	Tammerfors	Vasa	Riitiala	Pirttikylä	Laihela	Ruovesi	Hirvensalmi	Porkkala, fyr	Porkkala, fyr	Salo	Verkkomatala,fyrskepp
Da	tum	15	2	16	\$: 5	: \$: :	: :	: 5		: 2	: ;	: :	£	2	2	17	°	"

																								113	•	
., © 0.55 - 2.50 p.	[₹², @² kl. 3.20—3.40 p.	区, @. Alatornio 区.	samtidigt.	То,	@2°.		[द°, @ svagt; Te = +18°, Tj = +14°.	/ Vinden under dagens lopp från	₩.	区。	T°, @ droppar. Alatorniossa [₹.	区, 1D.		$\mathbf{B} - \mathbf{D} = 7 \mathbf{s}.$		2 D°.		[₹₀, ◎₀.	19 ja 20 p. tidtals 🔘.			T°	🔘 under kvällen.	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	såväl före som efter	· • · • · • · • · • · • · • · • · • · •
4	ъ°	NW_2	l	°	SE_2	0	SW_2	6	M	NE_2	Ħ	°	1	1	-		SE_6	SW_2	SW_6		Annual .	1	ω	ω̈́,	1	ਜ਼੍ਰ
4	SE,	NE_{\downarrow}	M	편"	SE_2	ធ្ន	SW_2	اً	되	Ħ [*]	NE,	NE,	1	1	1	funcia	$\mathrm{SSE}_{_{\!\scriptscriptstyle T}}$	$\mathrm{SSW}_{^{\dagger}}$	SW_6		No.	1	SW	SW_2	E	ਜ਼੍ਰ
	SE,	Z,	1	Ą	SE_{2}	ਸ਼ੂ ਬ	SW_2	١°	Z	코	$N_{_{2}}$	NE_z	1	1	1	ĺ	$\mathrm{SSE}_{_{\!\scriptscriptstyle T}}$	νĵ,	$SW_{\mathfrak{g}}$	1	1	1	S	SW_2	戸 [*]	豆
d	4.30 p	4.35 p	l	8.0 p	1.5 p	1.37p 1.47p	3.5 p	а 11.45 а	7.0 p		1	I	1	7.3 p	1	$8.45\mathrm{p}$	$7.15\mathrm{p}$	$8.15\mathrm{p}$	$9.50 \mathrm{p}$					1	1	$2.30\mathrm{p} 11.30\mathrm{p} $
ಡ	$3.20\mathrm{p}$	$4.20\mathrm{p}$	1	6.0 p	12.55 p	$1.37 \mathrm{p}$	$2.40\mathrm{p}$	10.5 а	4.0 p	1		1	1	$6.43\mathrm{p}$	1	$8.15\mathrm{p}$	7.0 p	$7.45\mathrm{p}$	$7.50\mathrm{p}$	1	$7.50\mathrm{p}$		1	-	10.0 p	$2.30\mathrm{p}$
*	4.45 p S-SW-W	SWNE	NW	W-E	SE-NW	se-s-w	3.30 p SE-SW-NW	SE-S	E-S	6.40 p SE-S-SW	S-N	SE-SSE-S	S-W	ESE-SSE	NE	E-S-W	S-E-N	SSW-NNE	SW-W-NW	SE	SW-NNE	SE	9.50 p SW-W-N	W-S-E	W-E	1.
	4.45 p	4.5 p	[7.1 p	1	$1.47 \mathrm{p}$	3.30 p	3.55 p	6.0 p	$6.40\mathrm{p}$	1		1	7.0 p	1	1	$7.35\mathrm{p}$	7.50p	8.35 p	$8.15\mathrm{p}$	8.36 p	$8.30\mathrm{p}$	$9.50 \mathrm{p}$	9.10p	9.45 p 10 30 p	9.45p 9.45p
dc#.1	2.10 p	3.35 p	c 4.0p	2.0 p	1	12.57 p	$2.55\mathrm{p}$	3.5 р	5.0 p	6.0 p	6.5 p	$6.45\mathrm{p}$	c. 9.0 p	$5.48\mathrm{p}$	6.9 p	7.0 p	7.18p	$7.30\mathrm{p}$	$7.40\mathrm{p}$	8.0 p	8.3 p	$8.15\mathrm{p}$	8.20 p	9.0 p	9.45 p	9.45 p
•																		-							-	
yr										narsaaı		chjärv	legård	fyr	legård	schjärv			Brakil		fyr	on				rviiki .
Salgrund, 1	Pirttikylä	Ylitornio.	Salo	Hirvensalmi	Vaala	Taivalkoski	Kuusamo	Pirttikylä	Simo	Enare, Saunarsaari	Ylitornio	Enare, Nitschjärvi	Enare, Thulegård	Söderskär, fyr.	Enare, Thulegård	Enare, Nitschjärvi	Hogland.	Lovisa .	Veckelaks, Brakila	Helsingfors.	Söderskär, fyr	Malm station	Miehikkälä	Lovisa.	Taavetti.	Alavus, Norviiki
1.1	£	\$	20	2	18	2	2	£	2	s	ŧ	2	z	19	r.		2	2	£	,	2	2	*	\$	5.	٤ .

ıgusti

							THE PERSONNELLE AND PERSONNELL			
Da		K	h-f	and could be approximate approximate to the course of the		m	· recording to			
itum	Observationsort	ψ°	وند.	면	t a	t °	, J	> n	>°	Anmärkningar
50	Viborg	-			1			1	1	Natt \(\mathbb{G}\), \(\mathbb{O}\) och \(\blacksquare{\mathbb{A}}\).
£	Söderskär, fyr.	$1.43\mathrm{p}$		2.7 p SSW—NE	1.48 p	2.18p		1	dec cont	B-D=12s.
2	Frantsila	$1.50\mathrm{p}$		M	$2.45\mathrm{p}$	3.0 p	ВŢ	Ą	ទាំ	1 D, @ ² .
2	Lovisa	$2.25\mathrm{p}$	$2.35\mathrm{p}$	SW-NE	2.35 p	3.0 р	SSW_n	$SW_{\mathfrak{g}}$	SSW_6	[\(\frac{1}{2}\), \(\pi_3\).
u	Verkkomatala,fyrskepp	$4.51\mathrm{p}$	5.0 p	5.0 p W-NW-N	5.8 p	$5.13\mathrm{p}$	ŭ	S.	\vec{x}	ì
*	Enare, Partako gård .	5.15 p	5.30 p	5.30 p SE—S-SW	7.0 р	$7.20\mathrm{p}$	E,	$\mathbf{E}_{\mathbf{c}}$	X,	K. @. 4 6.30 p i S.
	Viborg	$5.30\mathrm{p}$	5.45 p	5.45 p SW-/W	5.35 p 6.10 p	$6.10\mathrm{p}$	v.	SW_{4-5}	SSW_{2-3}	(5.30 p i SW mörka moln. @2 c.
£	Enare, Nitschjärvi	5.35 p	5.40 p	5.40 p SE - SSE S	1	1	NE_6	NE.	NE,	1 0.10 p.
8	Korpilahti	7.15 p	-	S-E-W	7.30 p	[ω	.1	1	rikligt.
*	Kronoborg	7.25 p	!	SE-E-NE		7.20p 7.30p	w w	ŭ	νį,	@12; anyo @° 7.408.0 p.
*	Villmanstrand	11.0 p 12.0 p	12.0 p		c. 11.0 p 10.0 a	10.0 a	至	ঘ	됨	
55	Porkkala, fyr	7.0 а	7.10a	W-N	7.10a	7.50a	SW_2	SW_4	SW_{s}	
2	Enare, Partako gård	$12.30\mathrm{p}$	ļ	00	1	1	NE		1	-
2	Karkku, Linnais	$1.49\mathrm{p}$	2.12p	N (?)	1.50p	.	1	- 1	1	
8	Vaala	1	ı	N-S	1.55 p	2.5 p	Z,	Z,	z	©3.
*	Kajana	3.35 p	$3.50\mathrm{p}$	NE-SW	3.40 p	3.40p 4.45p	Z,	$\tilde{\mathbf{x}}$	NE_2	∫ ≤ 3.30 p i NE och 3.55 p i SW.
2	Heinäluoto, fyr	5.13 p	1	İ		Berten	1	1	1	1 D.
£	Lovisa	$6.30\mathrm{p}$	$6.50 \mathrm{p}$	W-N-E	1	1	\mathbf{W}_2]	0	· M
23	Sagu	10.11a	1	NW	11.56 a 12.36 p	$12.36\mathrm{p}$	-	NE_g	NE,	1 D, @².

■ c. 4.5 p.		ľ		1		!				Karkku, Linnais ,	31 Kark
o*-	ENE	eī eī	ল্	8.33 a 10.33 a	8.33 a	S-E	9.48 a	8.33 a		Heinäluoto, ".	
\top° . Molnen från SW, B $-$ D = 10s .		1		7.15 a	5.35 a	SW-N	6.30 а	5.0 a		är, ".	29 Enskär,
	E	$\widetilde{\operatorname{SE}}_{2}$	\mathbf{SE}_{3}	10.0 p	$ 3.15\mathrm{p} 10.0$	ESE—SSE	$8.10\mathrm{p}$	7.55p	:	una, 1yr.	" Daugi
·	SE_3	SE_3	ESE	10.0 p	$3.15\mathrm{p} 10.0$	SE	$5.15\mathrm{p}$	3.5 p		Caloumnd frm	Q: Jon
	SE	SE_2	SE_2	8.0 p	2.10p	NE-N-NW	$7.10\mathrm{p}$	2.5 p		inen	" Ahlainen
T° och ≼	1		1		1	M		$1.36\mathrm{p}$:är, ".	" Sälskär,
·. L	$\mathrm{SSE}_{\scriptscriptstyle{\downarrow}}$	SE_{5}	SE_5		1	NW—SE	$2.19\mathrm{p}$	$1.32\mathrm{p}$		et, ".	" Märket,
τ° , B—D = 11 s.	1	I	.		l	s $-NE$	1.0 a	0.10a		är, "·	28 Enskär,
-i-	ENE	ENE	ਬੁ	$6.13\mathrm{p}$	$5.23\mathrm{p}$	$5.23\mathrm{p} $ NNW-NNE		5.3 p		Heinäluoto, "	Hein
·	٥	Z,	NW_3	$5.45\mathrm{p}$	4.0 p	5.5 p NE-ESE-SSE		$3.45\mathrm{p}$		und, " ·	, Sälgrund,
	ĦŽ	편	$\mathrm{SE}_{_{1}}$	1		11.45 a 12.50 p (?) SW-W-N	12.50p	11.45 a		Porkkala, fyr.	25 Porkl
М°.	N	9	:	1	-1	4.13p NW-W-SW	$4.13\mathrm{p}$	4.0 p		ahti	24 Suolahti
·,-	W ₂	W_2	W	$6.20\mathrm{p}$	$5.50\mathrm{p}$	NW		$4.50 \mathrm{p}$, Ersta
·. ⊢	NE_2	$\mathrm{NW}_{_{4}}$	°	$5.52\mathrm{p}$	$5.27\mathrm{p}$	NW-N-NE	4.52 p	$4.42\mathrm{p}$		Kuhmoniemi	, Kuhr
[₹, ◎°.	NE_o	মূ	\overline{W}_2	6.10p	4.20 b	${\rm N-\!NE-\!E}$	4.15p	4.0 p		Pielisjärvi	, Pielis
K. Molnet hölls i N.	N N	Z,	လ္မွ	1	1	Z	3.45p 4.15p	$3.45\mathrm{p}$		Alavus, Norviiki.	" Alavı
K¹, ©° tidtals.	NW_0	$NE_{_{4}}$	E	4.40 p	1.15 p	E-SE	5.5 p	$3.25\mathrm{p}$. •	Pirttikylä	" Pirtti
/ [द₁-¹ först kl. 7.0 p. B antagli- (gen i högre molnlager.	1	1	1			NW—N—E	p c. 8.0 p	3.0 p			" Haiko
To.	ا°	0	0	1	1	M	$3.15\mathrm{p}$	3.0 p		järvi	" Jalasjärvi
	E	豆	Ä	4.40p	1.15 p	$W \!\!-\!\!\!\left\{\!\!\!\begin{array}{c} SW \\ N\end{array}\!\!\right\}$	$3.10\mathrm{p}$	2.50 p	•	Pirttikylä ·	" Pirtti
T°, 2 D.	-		NW	ì	1	2.3 p SSE-E-NNW		$1.43\mathrm{p}$	•	saari	" Viitasaari
Möjligen 2 [द√väder.	N	1	NW,	.1	1	disease.	$3.15\mathrm{p}$	$1.30\mathrm{p}$		Karkku, Linnais.	, Kark
K¹, ©° tidtals.	म्	ਸ਼੍ਰੇ	W	4.40 p	1.15 p	W-NW	$1.20\mathrm{p}$	1.0 p		Pirttikylä .	" Pirtti
1D, ♠°.	Z,	Ž	N	2.0 p	1.15p	S-W-N	Į	12.50p		tsila.	" Frantsila.

ember

Da		Z .	1-1	£			Δ	۵	Þ	Anniahrana
itum	Ubservationsort	t a	t e	đ	°a t	t _e	ે >	n A	Ф >	A HILIAN MALLAS
က	Karkku, Linnais	8.40p	10.0 p	8.40p 10.0 p S-SWjaS-SE	9.5 p		1	Š	1	S 8.30 p och åtminstone ännu 10.45 p i N, NE och E.
5	Herrö, fyr	2.49 p	4.34 p	S-W(?)-NE	1		$\mathrm{SSW}_{\scriptscriptstyle{4}}$	$\mathrm{SSW}_{\scriptscriptstyle{\downarrow}}$	SSW_5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
9	Kuhmoniemi	1	1	W		1	1	I		[4] omkring midd.
6	Brändö	5.57 p	8.0 p	SW	5.0 p	9.0 p	SSE_6	SSE	S ₂	Т1.
10	Jyväskylä	c. 3.0 a			natt	6.0 a		1	1	✓ sent på aft.
2	Gamlakarleby	1	1	1	3.0 а	5.50 a	İ	Ø		©2.
*	Lavia	7.20 a	8.30 a	S-N	7.40a	8.45 a	W	W	δ,	[द², B klara; @², ≤ 7.0 a i S.
2	Brändö	8.0 a	8.10a	M		1	SZ,	So.	SΩ	To, @o skurar.
*	Lauttakylä	9.9 a	1	S-SE-E	9.6 a	9.19a	SE	Ø	SE	
*	Riitiala	4.10p	4.40 p	W-E	4.0 p	5.0 p	Ω̈́	$^{2}_{2}$	S _c	
2	Utö, fyr	4.14 p	$7.24\mathrm{p}$	1	l	1	1	١	1	
2	Lågskär, fyr	4.20 p	4.55 p	SW-NE	4.25 p	5.0 p		SW_4	SW	
2	Herrö, "	4.24 p	$6.29 \mathrm{p}$	SE-E-N	$3.59\mathrm{p}$	6.4 p		S ₂	ໝຶ	Ⅰ록°, ◎².
2	Mariehamn	4.28 p	5.15p	4.28p 5.15p SW-S-E	4.30p	$5.20\mathrm{p}$	α̈́	σς̈́	M_{6-2}	$B-D = 10 \text{ s } 4.58 \text{ p. } \boxed{3}^1, \bigcirc 1.$
2	Ruovesi	4.42 p	4.42 p 10.5 p	SW-N	ı	1	∞*	1	Ω̈́	7°, ⊗∘.
2	Alavus, Norviiki	5.20 p	5.35 p	5.20p 5.35p SE-E-NE	5.40p	5.46 p	S.	v,	ΩΩ̈́	
"	Hangö fyr	5.50 p	5.55 p	SSW	$6.15\mathrm{p}$	6.15p 6.30p	SSW_3	SSW_4	SSW_3	2 D, ⊚¹.
*	Mynämäki	5.55 p	5.55p 6.40p	N—S	6.0 p	6.0 p 7.10p	δ,	νς. S	$\mathbf{v}_{\mathbf{i}}$	\M_2.
×	Finström, Godby	6.10p	6.10p 6.30p	SE	5.57 p	5.57 p 6.50 p	SW_2	SE,	SW_2	≼ 8.30—10.30 p i NE.
	Comme				611n	621 n	-	SW	-	< 8.56 p i N.

	Γ 3 ² kl. 4.18 a.	SSW_2	တို့	$\tilde{\Sigma}$	6.3 a	5.3 a	W-N	4.33 a	1.33 a	Heinäluoto, "	2
	[₹°, ≰ 0.6 a och 2.4 a. @°.	ESE,	SE_{2}	SSW_2	2.6 a	1.6 a	SW-S	1	0.6 a	Ulkokalla, fyr	=
17		Ī	l	1	1	1	Z	1	$10.30\mathrm{p}$		8
1	[₹¹, @° och ≰.	SSW_2	${\rm SSW_4}$	SSW_2	0.6 a	$10.21\mathrm{p}$	SW	0.6 a	$10.21\mathrm{p}$, fyr	\$
		SE	$\mathbf{SE}_{_{\!$	${ m SE}_{\scriptscriptstyle 7}$	0.30a	10.0 p		10.0 p 0.30a	10.0 p		2
	$f \leq 9.10 \text{ p}$ i SE. $\mathbb{I}\mathbb{Z}^2$ stannade i zelnit.	∞ _e	s,	$^{\circ}_{\rm o}$	п	$10.20\mathrm{p}$		9.45 p 10.35 p	9.45 p	Vasa	4
	$($ \$\leq 9.12\to 9.10 p i N. IX i början (starkast i SSW. \emploon^{1-2} c. 12.0 p.	SE_{\downarrow}	$\mathrm{SE}_{\scriptscriptstyle{\downarrow}}$	$\mathrm{ESE}_{\scriptscriptstyle{2}}$	п	$10.42\mathrm{p}$	$9.32\mathrm{p}11.27\mathrm{p}\mathrm{wsw\text{-}ssw\text{-}sse}10.42\mathrm{p}$	$11.27\mathrm{p}$	$9.32\mathrm{p}$	Helsingkallan,fyrskepp	*
		∞	Ω _ω	S.	$9.35\mathrm{p}$	$9.15\mathrm{p}$	1	1	1	Kvarken, Snipan fyr-	2
	₹ 9.0 p.	Ω _o	S ₀	Σů.	1		1	10.0 p	9.0 p 10.0	Tammerfors	"
	Γ¶², bländande. ع.	1		1	1	9.50p	S-SW-W	$9.30\mathrm{p}$	9.0 p	Lapua	23
	B "bred"; luften varm; @¹.	ą,	က္ခ်	δ.	12.0 p	10.0 p 12.0	S-W-N	8.43p 11.0 p	$8.43\mathrm{p}$	Laihia	*
		δ,	ŭ	∞_{c_1}	п	$8.40\mathrm{p}$	W $-E$	$9.10\mathrm{p}$	$8.40\mathrm{p}$	Riitiala	2
	≼ 8.30 p i NW och 9.30 p i N.	v,	\mathbf{z}	$\tilde{\Omega}_{\omega}$	1	١		$8.45\mathrm{p}$	$8.30\mathrm{p}$	Hattula	2
	T°, ≤2 8.16 p och 11.30 p i E à S.	1	P14.1811	1		1	1		8.16p	Valsörarna, "	8
	/ I\(\times^2\), B bländande och "bred", \(\times^1\) a. i zenit.	SW_3	$\mathrm{SSE}_{_{3}}$	$\mathrm{SSE}_{_{\!\!3}}$	8.55 p 10.15 p	8.55 p	S-NE	$9.45\mathrm{p}$	8.15p	Sälgrund, fyr	*
			S ₂	1	9.0 p	i	Ø	8.45 p	$7.52\mathrm{p}$	Karkku, Linnais	t
	$\left\{\begin{array}{ll} \mathbb{I}\mathbb{A}^2, \leqslant 7.47 \text{ p i SW. B-D} = \text{lång,} \\ \text{men D}^2. & = ^2. \end{array}\right.$	SSW_3	SSW_6	${\rm SSW}_{_{\!$	9.7 p	$8.47\mathrm{p}$	W-S · NE	9.7 p	8.7 p	Kvarken, Norrskär, fyr	£
	≼ 8.27 p i E och 10.17 p i ESE.	S.	Ω̈́	$\tilde{\mathbf{x}}_{i}$	1			$7.49\mathrm{p}$	$7.22\mathrm{p}$	Storkallegrund,fyrskepp	2
		SSW	8W	Ø	8.9 p	$7.24\mathrm{p}$	S-N	$7.54\mathrm{p}$	7.9 p	Lauttakylä	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	-	1	$8.34\mathrm{p}$	$7.14\mathrm{p}$	SW-NW	$8.14\mathrm{p}$	7.4 p	Säbbskär, fyr	8
	2 D.	1	1	∞_{\downarrow}		6.0 p	Z	$7.10\mathrm{p}$	7.0 p	Kisko, Toija	"
	/ [₹². Någon byggnad, en ria tro-	so,	$\mathrm{ESE}_{\scriptscriptstyle{\downarrow}}$	ESE_{2}	9.0 p	7.15 p	S-SWN	8.0 р	6.45 p	Hvittis k:by	ŧ
	[4].	١	I	1.	d 2.7	$6.45\mathrm{p}$	1	$7.05\mathrm{p}$	$6.45\mathrm{p}$	Enskär, fyr	£
	[⊈°, @⁰-¹.	$\infty_{\rm s}$	SS.	oğ'	8.20 p	7.15 p	SW-W-NW	$7.20\mathrm{p}$	$6.20\mathrm{p}$	Alastaro	ŧ
		1		200	-	d 10.0	AT PT O	Jones	James		

tember

Da		K	1.4	9				.		A to see High and the second
atum	Observationsort	t a	t _e	73	t a	t _e	>	n A	>	Аппагкиндаг
11	Gamlakarleby	3.0 а	3.40 a	E-S	4.0 a	$6.30a_{1}$	s.	$\infty_{_{1}}$	$\tilde{\Sigma}_{i}$	
2	Bogskär, fyr	4.8 a	4.53 a	S-SE-E	4.27 a	4.48 a	SW_{\star}	SSW_{δ}	SSW_3	$(\mathbb{K}^1, \mathbb{Q}^{\circ}. B-D=6s. \leqslant 0.48 \text{ a i})$ (SW och 5.23 a i E.)
8	Säbbskär, "	5.49 a	9.34 a	SE	-		1	1		٦٠.
: :	Lovisa	$6.30\mathrm{a}$	$6.50\mathrm{a}$	SW-NE	6.0 a	8.0 a	$\vec{\mathbf{v}}_{i}$	$\mathrm{SW}_{_{\downarrow}}$	SW_2	[文2, @2.
\$	Kimito	1		NW		1		1		2 D på dagen. 🕲 hela dagen.
2	Porkkala, fyr	z 0.2	7.20a	SW-N	7.10a	7.35 a	${\rm SSW}_2$	SW_3	SSW_3	I 4 '.
*	Hinnerjoki	с. 7.30 а	1	ļ			income	1	1	1 D.
	Lavia	7.30 a	7.30a 9.10a	SW-NE	8.0 a	9.40 a	SW_2	SW_3	SW_1	$\lceil \nabla^2 vert$
	Hangë fyr	8.0 a l	а 11.45 а	ENE		,	SSW_3	$\mathrm{SW}_{_{\downarrow}}$	SW_3	[₹¹, @¹ skoftals.
\$	Kisko, Toija	8.30 a		Ω		1	$\operatorname{SE}_{\scriptscriptstyle 2}$	-	1	
. "	Verkkomatala, fyrskepp	8.35 a	9.50 a	S-SW-W	9.2 a	а 10.5 а	SSW_3	SW_3	SW.	
2	Lauttakylä	8.56 a	1	1	1	1	1			
*	Viborg	9.0 a	9.0 a 10.30 a	$_{ m RSM}$	9.15 a 11.0	и.0 а	SSW_2	SSW_{1-2}	SW_{3-4}	T°, @° skoftals.
£	Heinämaa	9.12a	9.12a 11.25 a	SW-NE	10.45 a 11.15 a	11.15 a	SW_2	$SW_{_{\pm}}$	\mathbf{W}_2	$($ \triangle 10.50-11.0 a; 10.45 a T = +16 $)$ och 11.0 a = +10.5.
\$	Hvittis k:by	9.15 a	9.15 a 10.30 a	S-SW-NW	10.50 a 11.0	11.0 a	$\tilde{\mathbf{v}}_{i}$	v ₂	S	1°, ©°. T = +12°, b = 759.5 mm.
33	Alastaro	9.20 a	9.20 a 10.20 a	SW-E	9.30 a 10.20 a	10.20 a	SŞ,	SW_{2}	\mathbf{x}_{i}	\mathbf{K}^{1-2} . $\triangle 9.50-10.0$ a, \bigcirc ?.
\$	Nykyrka	9.20 a 10.0 a	10.0 a	S-N	9.30 a 10.5	10.5 a	\mathbf{v}_{i}	$\infty_{\tilde{e}}$	ν, i	⊈ ¹ -2. ▲ 10.30 a.
23	Riitiala	9.30a	9.30a 9.50a	W-E				1	1	© ² .

Bidrag t. känned. af

" Sordavala 11.45 a 1.10 b NW—SE 12.20 p 1.40 b SSE, SSE, " Hanhipaasi, fyr 11.47 a 12.26 p W—NE 12.9 p 12.16 p S, " Hattula 12.0 a 12.45 p S—W 12.5 p 11.5 p S, " Hattula 12.0 a 12.0 p 12.45 p S—W 12.45 p S, S, " Tammerfors 12.0 a 12.0 p 12.0 p 12.0 p W, W, S, S, " Palkjärvi 12.15 p 12.2 p 1.15 p S, <td< th=""></td<>
Bersta 10.30a 11.30a S—N — Ersta 10.50a 2.50p N—NE—E 11.0 a Sordavala 11.45a 1.10p NW—SE 12.20p Hanhipassi, fyr 11.47a 12.26p W—NE 12.9 p Jaakkima 11.47a 12.26p N—N—NE 12.9 p Hattula 12.0 a 12.45p S—N 12.5 p Hattula 12.0 a 12.45p S—N 12.0 a Palkjärvi 12.16p 12.24p S—N 12.50p Ruovesi 12.16p 12.25p S—N 12.20p Värtsilä 12.16p 12.25p S—N — Villmanstrand 2.0 p 3.0 p S—N — Villmanstrand 2.0 p 3.0 p S—N — Villmanstrand 2.0 p 3.0 p SW—S—E 4.10p Viitasaari 2.50p 3.10p SW—S—E 4.15p Verkkomatala,fyrskepp 4.45p 5.20p S—N </td
Bersta 10.30 a 11.30 a S—N Ersta 10.50 a 2.50 p N—NE—E Sordavala 11.45 a 1.10 p NW—SE Hanhipaasi, fyr 11.47 a 12.26 p W—NE Jaakkima 11.48 a 1.5 p S—N Hattula 12.0 a 1.0 p S—N Pälkjärvi 12.15 p 2.40 p S—W Pälkjärvi 12.16 p 12.28 p S—W Värtsilä 12.20 p 1.37 p SE—NW Värtsilä 2.19 p 2.25 p NW-N-N-E Villmanstrand 2.19 p 2.25 p NW-N-N-E Värtsilä 2.19 p 2.25 p NW-N-N-E Taavetti 2.50 p 3.0 p NW-N-N-E Verkkomatala,fyrskepp 4.18 p 5.2 p SW-S-E Vaala 2.45 p 5.20 p SW-S-E Vaala 2.45 p 3.5 p SW-S-E Vaala 2.45 p 3.5 p SW-W-S-E Vaala 2.
Brsta
Notsjö Ersta Sordavala Jaakkima Hanhipaasi, fyr Jaakkima Rudovesi Värtsilä Jyväskylä Vyrtsilä Vyrtsilä Villmanstrand Villmanstrand Verkkomatala, fyrskepp Nykyrka Pihtipudas Vaala Vaala Vaala Ersta
Notsjö Ersta Sordavala Jaakkima Hanhipaasi, fyr Jaakkima Tammerfors Ruovesi Värtsilä Jyväskylä Villmanstrand Villmanstrand Koivisto Koivisto Koivisto Koivisto Pihtipudas Pihtipudas Pihtipudas Vaala Pihtipudas Vaala Pihtipudas Varkomatala,fyrskepp
Notsjö Ersta Sordavala Jaakkima Hanhipaasi, fyr Jaakkima Tammerfors Ruovesi Värtsilä Jyväskylä Villmanstrand Villmanstrand Koivisto Koivisto Koivisto Koivisto Pihtipudas Pihtipudas Pihtipudas Pihtipudas Pihtipudas Pihtipudas Vaala Pihtipudas
2

September

Datu	Observationsort	M		꿈			V	, N	V	Anmärkningar
ım		t _a	t _o		, t	, o	4	:	D	
										The Webser and the state of the
13	Verkkomatala, fyrskepp 3.40 p	3.40 p		NE-E-S	3.55 p 4.45 p	4.45 p	W ₃	Z [†]	WNW ₂	—S. Vinden N c. 10 min. lan-
	Hinnerjoki	4.55 p		Z		mayorid shifts	Z	N_{4-2}	Z,	1 D @.
16	Pargas	$9.50\mathrm{p}$ $9.52\mathrm{p}$	$9.52\mathrm{p}$	W-E	$10.15\mathrm{p}\ 10.25\mathrm{p}$	$10.25\mathrm{p}$	0	W	0	≤ 9.40 p i W.
17	Pudasjārvi	3.40a 4.0 a	4.0 a	E-S-W	ı	1	NW_2	ž	Z	
2		11.34p 1.29p	$1.29\mathrm{p}$	W-S-N			SSW_3	SSW_3	W	Γ⊈².
18	$fyr \dots fyr$	11.10p	11.15p	$11.10\mathrm{p} 11.15\mathrm{p} \mathrm{SW-W-N} 10.0 \mathrm{p} 11.25\mathrm{p}$	10.0 p	$11.25\mathrm{p}$	SW_8	WSW_9	SW_8	\leq 9.40 p i SW och 1.0 a i N.
20	Herrö, fyr	$3.24\mathrm{p}$	$5.34\mathrm{p}$	3.24p 5.34p SSW-E-NE	1	-	ನ್ನ '	$^{\circ}_{z}$	S.	, <u> </u>
X 3	Sälgrund, fyr	8.35p 8.36p	8.36 p	SW	8.15 p	9.15 p 1	NW ₈₋₁₀ (?)	$8.15 \mathrm{p} 9.15 \mathrm{p} \mathrm{NW_{8-10}(?)} \mathrm{NW_{8-10}(?)} \mathrm{WNW_{3}}$	WNW3	Vinden orkanlik cirka 25 min.; tidigare på dagen hade den varit SW à SSW 6 à 7 Beauf., c. 8 p plötsligt NW. Under natten hârd. 1 D.
17	Verkkomatala,fyrskepp	1.5 а	.	Μ		1	SE	SE	$\mathrm{SSE}_{\scriptscriptstyle 2}$	Vinden efter [3 åter SSW, föl- jande dag c. 8 Beauf. Tempera- turen oföråndrad.
18	Pemar.	9.30p 9.35p	9.35 p	NW	9.30 p	9.30p 9.35p		NW_{10}	ļ	
\$	Kisko, Toija gård	c. 11.0 p c. 11.5 p	s. 11.5 p	1.		1		1	I	©. A och ≤ under hård storm c. 11.0 p; ovädret räckte c. 5 minnter.
33	Porkkala, fyr	11.10p 11.15p	11.15p	SW-N	10.0 p 11.25 p	11.25 p	1	1	-	[\(\zeta_1, \omega_1\),

		\bigcirc . Helsingfors \triangle 10,10 och \bigcirc 1-2.			1 B.	
1	SSW_4	l	W (?)		-	
1	SW_{4}		W (?)		1	
	$\mathrm{SW}_{\scriptscriptstyle{\downarrow}}$		W (?)			
	I	ļ	.		1	
1		1			[
1	W	W-E	W— E		8M	
0.30 a	0.3 a	. 2.0 a				
. 11.50p 0.30a	11.51р 0.3 а	. с 1.0а с. 2.0а]		. 11.0 p	_
18 Soderskar, Iyr	tala, fyrskepp		Lovisa	H.		
20	19	8	22		XI 14	_
t.	0.	Fo	lk.	Н	67.	N

at. o. Folk, H. 67, N:o 2.

Bihang II.

Observationsort	Län	Observ	Observations- ortens läge	Observator	Titel	Tider, mellan hvilka observationer blifvit
	·	$\dot{\varphi}$	x			gjorda
				,		6
Ahlainen	Abo o. Björneb.	61°41′		3° 19′ W K. J. Inberg	Herr	23/628/8
Alastaro	#	80 58	2 6 ,,	Mikko Havia	£	1/5-31/12
Alavus, Norrviiki	Vasa	62 24	1 33 "	A. Norrvik	Jordbrukare	1/1—31/12
Bogskär, fyr	Åbo o. Björneb.	59 30	4 36 "	Konrad Lindström (W. Montell	Fyrmästare "	*
Bromarf, Sommarbo .	Nylands	60 1	1 52 "	Anders Donner	Professor	3/6-19/9
Brändö	Åbo o. Björneb.	60 25	5 54 "	H. O. Mäkelä	Kyrkoherde	9-10/9
Enontekiö	Uleåborgs	68 24	1 21 ,,	Yrjö Halonen	Klockare	1/1-31/12
Enskür, fyr	Åbo o. Björneb.	60 43	3 57 "	K. A. Karlsson	Fyrmästare	
Ersta	Tavastehus	29 09	0 52 E	E. Lindstedt	Herr	$^{29}/_7-^{11}/_9$
Finström, Godby	Åbo o. Björneb.	60 14	4 57 W	L. W. Fagerlund	Medicine Doktor	1/1-31/12
Frantsila	Uleåborgs	64 30	0 40 E	Alf. Hanell	Kyrkoherde	\$
Fredrikshamn	Viborgs	60 34	2 15 "	A. E. Elenius	22	25/7
Gamlakarleby	Vasa	63 50	1 49 W	Knut Cajanus Edv. Bengelsdorff	Herr Stationsinspektor	1/1-31/12
" Yxpila .	z	63 51	1 55 "			
Halsua	*	63 28	0 47 "	E. Lilius	Herr	4/16/1
Hangö fyr	Nylands	59 46	1 59 "	E. Nylund	Fyrmästare	$^{1}/_{1}$ — $^{31}/_{12}$

Observationsort	Län	Observ	Observations- ortens läge	Observator	Titel	Tider, mellan hvilka observationer blifvit
		ф	~			gjorda
Juuka	Kuopio	63° 14'	4° 18' E	F. F. Alcenius	Kyrkoherde	/7—3/8
Twesolvels	Voces	R1 69	5	(J. V. Sahlstein	Herr	
J V GOAL JEG	V dSd	41 70 70	r 7+ 0	E. Mansnerus	Provisor	1/11/12
Järvelä	Tavastehus	60 52	0 10 "	Alfr. Wiitala	Student	3/6—25/7
Jämsä	Tavastehus	61 53	0 15 ,,	H. Salonius	Herr	1/630/6
Karins	Åbo o. Björneb.	60 27	2 37 W	Artur Forsell	Fil. mag.	3/6
Kajana	Uleåborgs	64 13	2 49 E	Maria Renfors	Fröken	1/131/12
Kangaslampi	S:t Michels	62 17	3 15 "	A. Hukkanen	Kyrkoherde	15/7-4/8
Kankaanpää	Åbo o. Björneb.	61 48	2 33 W	K. H. Lindfors	86	28/6-16/7
Karis	Nylands	60 4	1 17 "	C. M. Wikström	Gårdsägare	18/5—25/7
Karkku, Linnais	Åbo o. Björneb.	61 23	1 58 "	Edith Hjelt	Student	11/4-1/8; 11/8-30/9
	•			l Hjalmar Hjelt	Fil Doktor	
Kimito	33	60 10	2 13 "	Maria Hedberg	Fröken	$^{1}/_{1}$ $^{-31}/_{5}$; $^{1}/_{8}$ $^{-31}/_{12}$
Kisko, Toija	33	60 16	1 31 "	Sofi Rosell		1/1—31/12
Kitee	Kuopio	62 6	5 10 E	Lauri Hendell	Fil. mag.	28/6
Koli		63 7	4 48 "	46 46	*	29/6
Koivisto	Viborgs	60 22	3 41 "	K. K. Talvinen	Herr	30/6; 11/9
Korpilahti	Tavastehus	62 10	0 37 "	A. L. Vilén	Kyrkoherde	1/1-11/6; 21/0-31/12
Kronoborg	Viborgs	61 18	4 56 E	O. V. Löfman	Läneveterinär	1/1—31/12
Kuhmoinen	Tavastehus	61 34	0 .15 "	M. A. Levander	Kyrkoherde	
Kuhmoniemi	Uleåborgs	64 6	4 34 "	Onni Lindblad	Herr	
Kuopio	Kuopio	62 54	2 43 "	Milma Malmström	Fru	"

1/1—17/11	1/31/_	1 12	£	11/9	(1/ _25/	1 1 1	1/1-31/5; $1/7-31/12$	$^{1}/_{1} - ^{31}/_{12}$	17/4—11/9	15/ 14/	6 2	1/131/12	23/6—16/7	1/1—31/12	20/5-31/12	1/1-31/12	9/6-21/8	$^{1}/_{1}$ $^{-31}/_{12}$	*		33	£	1/1-16/8	4/8-26/8		20/5-7/8	
Kyrkoherde	Forstmästare	Herr	Pastor	Fil. mag.	Fil. Doktor	Professor	Folkskollärare	Kyrkoherde	Provisor	Student	Prost	Stationsinspektor	Herr	Folkskollärare	Provisor	Fyrmästare	Fil. mag.	Kapten	Fyrmästare		*	*	Herr	Fil. mag.	Kyrkoherde	Fil. mag.	
Hj. Svanberg	∫ A. Korhonen	(K. Koivunen	A. E. Helin		f Axel Heinrichs	(J. E. Rosberg	N. Silfvast	W Vilh. Lindstedt	Verner Dahlström	f Väinö Ollila	(K. E. Hohenthal	A. L. Ståhlberg	Joh. Seppälä	F. W. Leman	J. R. Gössling	Emil Holstius	Aleksander Dahl	Herman Korsström	M. L. Borén		H. W. Gylander	Aug. Uppman	B. Grahn	f Lauri Hendell	J. E. W. Snellman	A. W. Nordström	Outron control
1° 27' W	7 SI TA	01	33 W	12 "	00		15 E	17	21 ,,		" ' ' C	31 ,,	26 "	53 "	17 E	3 W	4 E	1 W	23 E		12 W	. 22	2 "	45 R		2 18 "	-
62° 48′ 1	87 58	o .	60 23 2	60 42 2	60 19	-	60 38 1	61 10 2	61 36 2	C N	7 00 70	60 34 2	64 1 1	60 15 0	60 27 1	59 51 5	60 15 0	9 09	65 2 0		63 26 4	63 14 4	61 29 1	60 41 2	.	61 41 2	-
Vasa	III.8 house	Uleaborgs	Åbo o. Björneb.	£	M1	Nylands	*	Åbo o. Björneb.	\$		V asa	Åbo o. Björneb.	Vasa	Nylands	2	Åbo o. Björneb.	Nylands	Åbo o. Björneb.	Uleåborgs		Vasa	2	Tavastehus	Viboros	0	S:t Michels	
Kuortane		Kuusamo	Kustö	Kyrö		Kyrkslätt	Lappträsk	Lauttakylä	Lavia	:	Laihia	Lieto	Lohtaja	Lojo	Lovisa	Lågskär, fyr	Malm	Mariehamn	Marjaniemi, fyr	Kvarken, Snipan, fyr-	skepp	Kvarken, Norrskär	Messuby	Michilden	THISTIPPING	S:t Michel	

Tider, mellan hvilka observationer blifvit	gjorda	1,11	*/	1/1-31/12		*		*		17/4	10/8	1/1—31/12	19/4-11/9	1/1—31/12		6.	29/6	1/1 - 7/7; $6/8 - 31/12$	1/1—31/12	8/8 /9/	2/7-23/8	1/1-31/12
Titel		Herr	8		Lektor	Kyrkoherde	Fyrmästare	*		Herr	2	Ingeniör Fil mae	.00	Folkhögskoleförest.	Folkskollärare	Med. Doktor	Fil. mag.	Stationsinspektor	Fil. mag.		Provisor	Pastor
Observator		Ad. Hildén	M. Manner	A. Westerlund	K. A. Cajander	Fr. W. Sipilä	J. V. Eriksson	J. A. Dahlbom	(M. A. Sjöblom	J. J. Fogelberg	J. F. Bäckström	K. H. Nyman Collin Wulff	Emil Cederström	J. Hurmalainen	Matti Kurppa	L. Gratschoff	Gust, A. Hedberg	O. R. Brander	A. Stenvall	Artur Forsell	Erik Wahlroos	H. Salonen
tions- läge	۲	10 56' W	3	2 32 "	9 70			5 49 "		3 3 "	2 21 E	1 32 W	3 32 E		4 of 4	0 30 "	2 34 W	2 16 "	2 41 "	1 2 E	5. 5 "	0 37. "
Observations- ortens läge	ф.	610.317		63 27	80 41			81 09		60 12	63 24	61 2	60 49			65 1	63 18	60 27	60 17	60 23	63 16	63 21
Län		Åbo o. Biörneb.		Vasa	Åbo Diömoh	on of planes.		2		39.	Kuopio	Tavastehus	Viborgs		£	Uleaborgs	Vasa	Åbo o. Björneb.	2	Nylands	Kuopio	Vasa
Observationsort		Monhiisrvi		Munsala	Mrmanili	LAY HOUTHOW.		Märket, fyr		Nagu	Nerko kanal	Notsjö, Urjala.	Nurmi	N ver a very selection of the selection	IN y Ky ľ Ka	Uleåborg	Oravais	Pemar	Pargas	Pernaja	Pielisjärvi	Pihtipudas

Pirttikylä Ahlholma	Vasa	690 118)	20 18/ W	_	Fröken	1,00
· marrie construction for further or the	2000	20		Aarne Sjöberg	Lyceist	8/8
Douleleolo fren	Merlonda	21	66 0	(I. Taucher	Fyrmästare	
L UIBBata, 191 · · ·	Shamus		" cc o	W. Strömstén	*	1/1-31/12
Pudasjärvi	Uleâborgs	65 23	1 55 E	A. Suopunki	Forstmästare	
Pälkjärvi	Kuopio	62 3	5 42 "	Inez Karsten	Fröken	
Ruovesi, Tapio	Tavastehus	61 56	0 52 W	A. Lindqvist	Mantalsskrifvare	17/-17/9
Ruukki	Uleåborgs	64 40	0 11 E	E. Lindholm	Herr	19/5-2/8
S. S.	Åbo o Biömob	80 08	1 49 W	Jo W J J. N. Sainio	*	
	TANG G. EDIGITIES.		AA	Art. Zetterman	Professor	/1—1/12
Sastmola	\$	61 52	3 27 "	Lars F. Lydén	Herr	5/7
Sagu · · · · ·	2	60 · 20	2 15 "	Selma Henricsson	Fröken	1/1—31/12
Simo	Uleaborgs	65 38	0 4 ,,	J. Alfr. Keckman	Kyrkoherde	•
Sodankylä	2	67 25	1 39 E	Rob. Mellenius	Forstmästare	26/6—6/7
Somero	Tavastehus	60 37	1 26 W	Pietari Sörman	Herr	$^{1}/_{1}$ $^{31}/_{12}$
Sortanlahti, fyr	Viborgs	60 50	5 31 E	A. Risu	Fyrmästare	
Sordavala	2	61 42	4 45 "	Eino Pirinen	Student	2
Sotkamo	Uleåborgs	64 7	3 30 "	H. B. Åström	Agronom	17/6—2/8
Storkallegrund,fyrskepp	Vasa	62 40	4 14 W	K. E. Eklund	Fyrmästare	17/5—15/9
Storkyro	£	63 1	2 37 "	G. Durchman	Kyrkoherde	22/6—29/6
Suojarvi	Viborgs	62 14	7 27 E	ç	e	28/4
Suolahti	Vasa	62 34	0 49 "	E. Kaila	Student	$\frac{5}{5}$ $\frac{15}{5}$ $\frac{11}{8}$ $\frac{14}{9}$
Säbbskär, fyr	Åbo o. Björneb.	61 29	3 36 W	W J. E. Mannfolk	Fyrmästare	$^{1/_{1}}$ $^{-31/_{12}}$
Sälgrund, "	Vasa	62 20	3 47 "	Ivar Nyman	*	
Sälskär, " · · · ·	Åbo o. Björneb.	60 25	5 22 "	K. E. Holmberg		
Söderskär, "	Nylands	2 09	0 29 E	(C. F. Liljefors	**	
	3			N. Söderling	33	,,

Observationsort	Län	Observorten	Observations- ortens lage ϕ λ	Observator	Titel	Tider, mellan hvilka observationer blifvit gjorda
Suursaari (Hogland) .	Viborgs	.2 09	2° 2′ E	A. E. Elenius	Kyrkoherde	12/619/8
Taavetti	**	60 55	2 37 "	A. E. Borgström	Stationsinspektor	1/1—11/9
Taivalkoski	Uleaborgs	65 32	3 18 "	J. Barkman	Kyrkoherde	1/1-31/12
Tammerfors	Tavastehus	61 -30	1 12 W	Thekla Molin	Fröken	
Tankar, fyr. %	Vasa	63 57	2 6 ,,	Knut Cajanus	Fyrmästare	2
Tuusniemi	Kuopio	62 49	3 31 E	Juho Miettinen	Arbetare	1/131/12
Ulkokalla, fyr	Uleåborgs	64 20	1 30 W	30 W H. G. Roos	Fyrmästare "	
Utö, fyr	Åbo o. Björneb.	59 47	3 35 "	M. Nyström	*	*
Uurais	Vasa	62 30	0 29 E	Arnold Berger	Kyrkoherde	
Utti	Viborg's	60 43	1 59 ,	Elis Cederström	Fil. mag.	26/5
Vaala	Uleåborgs	64 33	1 52 "	" K. J. Björklund	Telegrafchef	1/1-31/12
Valsörarna, fyr	Vasa	63 25	3 53 W	W F. J. Eklund	Fyrmästare	2
77		60	90	f Ida Pomelin	Fröken	
V 2882 V	*			Arne Sjöberg	Student	
Veckelaks, Brakila gård	Viborgs	60 31	2 21 E		Herr	28/5—/9
				Frans Laurell	Fyrmästare	
Verkkomatala, fyrskepp	*	60 19	3 49 "	N. Edv. Stählberg		$\left.\right _{1/131/12}$
				W. Wahlberg	**	
Viborg		60 43	3 48 "	K. F. Forstén	Trädgårdsmästare	"
Viitagaari	Vasa	63 4	0.53	Em Er Landeren	Pastor	1/5—1/0

1/131/13	2	2	: 5	$\frac{17}{4}$ $\frac{1}{4}$ $\frac{26}{8}$ $\frac{26}{8}$ $\frac{1}{9}$	
Herr	Kyrkoherde	Pastorska	Kyrkoherde	Fil. mag.	- •
61° 4′ 3° 13′ E E. H. Lind	A. Nyholm	62 10 5 42 E Nina Karsten	66 19 1 15 W Antti Holmström	60 27 2 41 " Artur Forsell	
3° 13′ E	1 12 W	5 42 E	W 21 I	2 41 "	
61° 4′	62 14.	62 10	66 19	25 09	
Viborgs	Vasa	Kuopio	Uleåborgs	Åbo o. Björneb.	
Villmanstrand	Virrat	Värtsilä	Ylitornio	, т	

at. o. Folk, H. 67, N:o 2.

Viitasaari

1	Sept.		Okt.
3 1	10	20 3	0 10 20
√ ∠			
	1		
Y			

Ukonilmat Huhti-Syysk. 1904.

Ukonpurkausten lukumäärä.

- a Päivän keskilämpötila 15 p Huhtik.--20 p. Syysk, 1904.
- b Keskilämpötila 15 vuoden (1886-1900) kuukausi keskimäärien mukaan.
 - I Helsinki
 - II Kuopio.
 - III Vaasa.

Åskväderstågen den 17 April 1904.

Åskväderståget den 17 Juli 1904.

Termogram under åskväder.

Barogram under åskväder.

TIERPHÄNOLOGISCHE BEOBACHTUNGEN

IN

FINLAND JAHRGANG 1907

ZUSAMMENGESTELLT

VON

K. M. LEVANDER.

(VORGELEGT AM 18. JANUAR 1909.)

MIT EINER KARTE.

HELSINGFORS 1909, DRUCKEREI DER FINNISCHEN LITTERATUR-GESELLSCHAFT.

Einleitung.

Die heurige Zusammenstellung der der Finländischen Societät der Wissenschaften zugeschickten tierphänologischen Beobachtungen erscheint in einer durchaus anderen Form als die, welche in den früheren Jahrgängen verwendet wurde. In jenen wurden die Daten nach den Beobachtungsstationen gruppiert. Das phänologische Material wurde bei einer derartigen Behandlung zunächst als Beitrag zur Kenntnis des Klima des Ortes, behufs zukünftiger Bearbeitung, dargeboten. Im vorliegenden Jahrgang sind dagegen die von den verschiedenen Beobachtern eingesammelten Daten nach den betreffenden Tierspecies gruppiert. Die verschiedenen Tierspecies in ihren jahreszeitlichen Erscheinungen treten somit in den Vordergrund unseres Interesses. Diese Art die phänologischen Primärangaben zusammenzustellen trägt entschieden mehr als die frühere dem zoologischen Gesichtspunkt Rechnung und ist gewiss viel besser geeignet, das Interesse der Beobachter aufrecht zu erhalten, als jene. Ich möchte hoffen, dass infolge dieser Reform in der Veröffentlichungsweise die Naturfreunde und besonders die Vogelkenner unseres Landes viel zahlreicher als bisher dazu angeregt werden Beobachtungen, insbesondere über den Frühlingszug der Zugvögel, anzustellen.

Infolge des angedeuteten Prinzips bei der Gruppierung der Daten zerfällt die Arbeit in zwei Abteilungen:

die erste und grössere Abteilung umfasst die vogelphänologischen Daten;

die zweite Abteilung umfasst die Daten über Frösche, Fische und Insekten.

In den beiden Abteilungen werden die Species in systematischer Folge aufgezählt.

Jede Species ist mit dem deutschen, lateinischen, schwedischen und finnischen Namen gekennzeichnet.

Unter jedem Speciesnamen sind alle die betreffenden Beobachtungen kategorienweise zusammengestellt. In der aviphänologischen Abteilung kommen hauptsächlich die folgenden Kategorieen in Betracht: Überwinterung 1), Ankunft resp. Frühjahrszug 2) Brutgeschäft 3) und Abzug oder Herbstzug 4). In jeder solchen Kategorie sind die Daten nach den naturhistorischen Provinzen des Landes gruppiert und innerhalb dieser in chronologischer Folge geordnet. Wenn am selben Ort zwei oder mehrere Beobachter tätig waren, so sind die Daten mit dem Namen des betreffenden Beobachters in Parenthese gesetzt worden. Längere Datenreihen werden von einem kurzen Resumée begleitet.

Die Zahl der Beobachtungsstationen betrug 70 (gegen 41 im Jahre 1906) und die der Beobachter 76 (ge-

¹) Es handelt sich hier meistens um Strichvögel resp. um einzelne Individuen von Zugvögeln, die während des Winters beobachtet wurden.

²) Ankunfts-, Durchzugs und Nestbesiedlungsdaten.

³⁾ Beginn der Spielzeit und des Nestbaues, Nestfunddaten.

 $^{\,}$ $^{4})$ Abzugs- und Durchzugsdaten sowie Angaben darüber wann eine Zugvogelart zuletzt gesehen wurde.

gen 42 im Jahre 1906). Der erfreuliche Zuwachs war die Folge einer vermehrten Distribution von Eintragsheften und eines an zahlreiche Naturfreunde zugeschickten Rundschreibens, welches die Bitte enthielt, phaenologische Beobachtungen, insbesondere über die Vögel, anzustellen und an die Finländische Societät der Wissenschaften einzusenden.

Allen Beobachtern, unter welchen viele während mehrerer Jahre, einige sogar während Dezennien, alljährlich der Societät der Wissenschaften phänologische Beobachtungen eingesandt haben, möchte auch ich an diesem Platze meinen verbindlichsten Dank aussprechen!

Ausser den Daten, die durch Distribution von Eintragsheften eingesammelt wurden, enthält die die Vögel betreffende Abteilung des vorliegenden Jahrganges viele Daten, die einigen Zeitschriften (Finsk Jakttidning und Luonnon Ystävä) und der Tagespresse entnommen sind 1). Auch die Monatsberichte der Meteorologischen Zentralanstalt in Helsingfors enthielten mehrere Angaben über die Ankunft der Zugvögel, welche Angaben oft hier zur Verwendung gelangten. Als eine reiche Fundgrube für den heurigen Jahrgang erwies sich ferner die soeben von Herrn E. W. Suomalainen in finnischer Sprache veröffentlichte Vogelfauna 2) der Umgebung von Kuopio, denn diese wertvolle Arbeit enthält zahlreiche gute Mitteilungen von Herrn Matti; Karppanen über die Ankunft und den Abzug der Vögel in Haminanlahti bei Kuopio. Im

¹) Bei Quellenangaben kamen die folgende Abkürzungen ins Gebrauch: F. J. = Finsk Jakttidning; L. Y. = Luonnon Ystävä; Ztg. = Zeitungen.

²) Suomalainen, E. W., Kallaveden seudun linnusto. Acta Societatis pro fauna et flora fennica. 31. N:o 5. Helsingfors 1908.

Nat. o. Folk, H. 67, N:o 3.

Ganzen beträgt die Zahl der Einzelbeobachtungen über die Vögel ca. 1800. Diese verteilen sich auf ca. 150 Species.

Die zweite Abteilung enthält phänologische Beobachtungen über 1 Froschart, 9 Fische und 3 Insekten.

Im Anschluss an die früheren Jahrgänge ist das ganze Beobachtungsgebiet in zahlreiche (17) naturhistorische Provinzen, wie aus der beigelegten Übersichtskarte zu ersehen ist, eingeteilt worden. Die folgenden Abkürzungen der Namen der Provinzen gelangten zur Verwendung:

Al. = Åland; SW. F. = Südwestliches Finland;Nyl. = Nyland; S. Kar. = Süd Karelien.

Sat. = Satakunta; S. Tav. = Süd-Tavastland; S. Sav. = Süd-Savo; Lad. Kar. = Ladoga-Karelien.

 $S.\ \ddot{O}st. = \text{S\"{u}d-\"O}sterbotten};\ N.\ Tav. = \text{Nord-Tavastland};\ N.\ Sav. = \text{Nord-Savo};\ N.\ Kar. = \text{Nord-Karelien}.$

M. $\ddot{O}st. =$ Mittel-Österbotten; Kaj. $\ddot{O}st. =$ Kajana-Österbotten; N. $\ddot{O}st. =$ Nord-Österbotten; Kuus. = Kuusamo.

Lapp. = Lappland.

Verzeichnis der Beobachtungsstationen im Jahre 1907.

Die neuen Beobachtungsstationen sind mit einem * versehen.

Beobachtungsstationen.	Nördl. Breite.	Östl. L. v. Greenw.	Höhe in m.	Beobachter.
Ål. Mariehamn	60° 6′	19° 57′	10	T Donoueth
Al. Mariehamn	59° 47′	21° 22′	5	I. Bergroth. M. Nyström.
* Pargas, Mustfin	60° 20′	22° 12′	5	-
* Åbo	60° 27′		10	
Mynämäki, Tiuvais	60° 42′	21° 56′	30	
Kimito, Kirchdorf	60° 10′	22° 45′	20	M. Hedberg.
T1 1 T 11 1	60° 6′	22° 57′	15	H. Forssman
To the True	60° 27′		30	O. Brander.
Salo	60° 22′		5	A. Zetterman.
Kisko, Toija	60° 16′	23° 29′	50	S. Rosell.
Vihti, Haitis	60° 22′	24° 26′		G. H. Sjöstedt.
Nyl. * Tvärminne	59° 50′	23° 12′	5	A. A. Österlund.
* Ekenäs	59° 58′		5	R. Fabritius und
Ekenas,	00 00	20 21		H. Krank.
Kyrkslätt, Bobäck	60° 12′	24° 30′	20	Th. Sælan.
* Helsingfors	60° 10′	24° 57′	10	B. Poppius, E. Me-
iidisingidis	00 10	21 01	10	rikallio u. a.
* Borgå	60° 24′	25° 40′	5	L Segerstråle.
Borgå, Veckjärvi	60° 24′	25° 44′	15	H. E. Heiman.
* Borgnäs	60° 28′	25° 22′	40	H. J. Pekkola.
* Lovisa	60° 27′	26° 13′	5	J. Iverus.
Pyttis, Kirchdorf,	60° 29′	26° 33′	10	H. Blomqvist.
* Pyttis, Vesterby	60° 29′	26° 32′	10	E. Cederlund.
S. Kar. * Pyhäjärvi, Sor-				
tanlahti	60° 50′	30° 26′	15	J. Kouvo.
Sat. * Tyrvää, Vammala.	61° 20′	23° 0'	60	H. Ståhlberg.
Karkku, Järventaka .	61° 25′	23° 14′	60	Hj. Hjelt.
Tammerfors = Tampere	61° 30′	23° 46′	90	O. Karsten.
* Hämeenkyrö, Uskela	61° 39′	23° 42′	100	J. H. Vuorinen.
Ruovesi, Tapio	61° 56′	24° 3′	160	A. Lindeqvist.
S. Tav. * Tavastehus =				-
Hämeenlinna	61° 0′	$24^{\circ} 28'$	85	K. W. Kockström.
Hattula, Pelkola	61° 5′	24° 27′	90	U. Wegelius.

Beobachtungsstationen.	Nörld. Breite.	Östl. L. v. Greenv.	Höhe in m.	Beobachter.
1			1	
		0		
* Asikkala	61° 8′	25° 48′	90	J. Pekkola.
* Kuhmoinen, Päijälä .	61° 34′	25° 10′	90	M. A. Levander.
* Kuhmoinen, Harmois	61° 30′	25° 10′	90	H. Forssell.
Sysmä, Nuoramois	61° 27′	25° 51′	95	K. J. Karjalainen.
S. Sav. S:t Michel=Mikkeli	61° 41′	27° 15′	90	A. V. Nordström u.
				I. Ehnberg.
Nyslott = $Savonlinna$.	61° 52′	28° 52′	85	E. J. Buddén.
Lad. Kar. * Kexholm =				
Käkisalmi	61° 2′	30° 7′	10	G. W. Levander.
Sortavala	61° 42′	30° 42′	10	V. Jääskeläinen &
				S. Cantell.
S. Öst. Lappfjärd, Kirch-				
dorf	62° 14′	21° 36′	5	A. A. Hannelius.
Vasa	63° 5′	21° 32′	10	Hj. Hjelt.
Mustasaari, Korsholm .	63° 4′	21° 39′	10	I. Wahlbeck.
Replot. ·	63° 14′	21° 22′	5	M. Elenius.
* Isokyrö, Ikola	63° 0′	22° 17′	25	Th. Stolpe.
Vorå, Kovjoki	63° 13′	22° 14′	10	H. Backlund.
N. Tav. Karstula	62° 52′	24° 46′	120	J. V. Sahlstein.
Saarijärvi, Pajuniemi .	62° 42′	25° 16′	120	A. A. Lilius.
* Saarijärvi, Rahkola •	62° 42′	25° 20′	120	A. Nordenstreng.
N. Sav. * Karttula, Kirch-				3.
dorf	62° 54′	27° 0′	115	E. Saastamoinen.
Kuopio	62° 54′	27° 40′	100	B. Ståhlberg.
* Pielavesi, Niemelä .	63° 14′	26° 45′	120	J. B. Jauhiainen.
* Pielavesi, Rannankylä	63° 14′	26° 45′	120	K. Niskanen.
Iisalmi	63° 33′	27° 10′	105	A. N. Arppe.
N. Kar. Värtsilä	62° 10′	30° 39′	85	N. Karsten.
* Liperi, Käsämä	62° 20′	29° 20′		O. J. u. T. Puhakka.
Suojärvi, Anna	62° 13′	32° 24′	140	O. Ehnberg.
* Ilomantsi	62° 41′	30° 54′	_	A. Lackström.
* Juuka, Kirchdorf	63° 14′	29° 15′	115	P. Z. Collan.
* Pielisjärvi, Lieksa	63° 18′	30° 11′	115	G. E. R. Wasa-
	10 10			stjerna.
M. Öst. Nykarleby	62° 31′	22° 30′	5	G. Hedström.
Esse, Öfveresse	63° 35′	23° 11′	10	J. Finnäs.
Kaj. Öst. * Kuhmoniemi,	50 00		10	J
	64° 7′	29° 30′	170	B. Adler.

Beobachtungsstationen.	Nördl. Breite.	Östl. L. v. Greenv	Höhe in m.	Beobachter.
				*
Hyrynsalmi, Salmenky-				
lä	64° 40′	28° 34°	165	E. Buss.
Puolanko, Kirchdorf .	64° 52′	27° 43′		R. Alliniemi.
Suomussalmi, Kirchdorf	64° 54′	29° 3′	_	O. Kyyhkynen.
N . $\ddot{O}st$. * Uleåborg = Oulu	65° 1′	25° 27′	10	Y. Hellman, E. Me-
				rikallio, S. Remes.
* Öfvertorneå, Portimo-				
järvi	66° 22′	23° 57′	-	E. Leander.
Rovaniemi, Muurola .	66° 22′	25° 25′	50	I. Hoikka.
Kuus. Kuusamo	65° 57′	29° 12′	250	S Czarnecki.
Lapp. Kemijärvi	66° 43′	27° 27′	140	K. W. Heikel.
* Muonio	68° 0′	23° 40′	250	J. Montell.
Inari, Thule	69° 6′	27° 12′	150	M. W. Wænerberg.

Verzeichnis der Beobachter im Jahre 1907.

Die Namen der neuen Beobachter sind mit einem *versehen.

* Adler, B., Apotheker.

Alliniemi-Dalström, Rud., Polizeibeamte.

* Arppe, A. N., Arzt.

Backlund, H., Volkschullehrer.

Bergroth, I., Rektor.

Blomqvist, Hilma, Fräulein.

Brander, O., Stationsinspektor.

Buddén, E. J., Rektor.

Buss, Edv., Arzt.

Cajander, K. A., Rektor.

* Cantell, S., Lyceist.

* Cederlund, E., Landwirt.

Collan, P. Z., Arzt.

Czarnecki, Sig., Förster.

Ehnberg, Ingeborg, Fräulein.

O., Arzt.

Nat. o. Folk., H. 67, N:o 3.

Elenius, M., Pfarrer.

* Fabritius, R., Arzt.

Finnäs, J., Volkschullehrer.

* Forssell, H., Arzt.

Forssman, Hedvig, Fräulein.

Hannelius, A. A., Kontorist.

Hedberg, Maria, Fräulein.

ricaberg, maria, rradici

Hedström, G., Direktor.

Heikel, K. W., Postverwalter.

Heiman, H. E., Forstwärter.

* Hellman, Y., Herr.

Hjelt, Hj., Dr. phil.

Hoikka, I., Landwirt.

* Holmström, P. R., Lyceist.

* Iverus, Jedw., Herr.

* Jauhiainen, J. Benj., Polizeibeamte. * Jääskeläinen, V., Student.

Karjalainen, K. J., Volkschullehrer.

Karsten, Nina, Frau.

O., Stadtgärtner.

* Kockström, K. W., Kanzlist.

* Kouvo, J., Schüler.

* Krank, H., Mag. phil., Lehrer.

Kyyhkynen, O, Pfarrer.

* Lackström, A., Student.

* Leander, E., Herr.

* Levander, G. W., Arzt.

M. A., Pfarrer.

Lilius, A. A., Herr.

Lindeqvist, A., Landgerichtsbeam-

* Merikallio, E., Student.

* Montell, J., Förster.

* Niskanen, K., Arzt.

* Nordenstreng, Alma, Frau. Nordström, A. V., Mag. phil.

Nyström, M., Leuchtturmwärter.

* Österlund, A. A., Lotsaltermann.

* Pekkola, H. J., Volkschullehrer.

* Pekkola, Jalmari, Student.

* Poppius, B., Mag. phil.

* Palmgren, R., Student.

* Puhakka, O. J., Landwirt.

T., Landwirt.

* Rajalin, A., Student.

* Remes, S., Lyceist.

Rosell, Sofi, Fräulein. * Saastamoinen, E., Volkschulleh-

Sælan, Th., Professor.

Sahlstein, J. V., Agronom.

* Segerstråhle, L., Lyceist.

Sjöstedt, G. H., Statsrat.

* Stolpe, Th., Arzt.

Ståhlberg, Benj., Mag. phil., Leh-

* Ståhlberg. H., Arzt.

Wænerberg, M. W., Förster.

* Wahlbeck, I., Agronom.

Wasastjerna, G. E. R., Förster.

Wegelius, Uno, Gutsbesitzer. * Vuorinen, J. H., Arzt.

Zetterman, A., Professor, Arzt.

Die Temperatur um 7 Uhr morgens während der Monate März, April und Mai an II Orten in Finland.

Die Ankunft unserer Sommervögel geschieht hauptsächlich in den Monaten März, April und Mai. Deshalb mögen die nachfolgenden Tabellen, welche einen gewissen Einblick in die Temperaturverhältnisse während der genannten Zeit gewähren, hier Platz finden. Die Tabellen sind nach Angaben, welche von der Meteorologischen Zentralanstalt zu Helsingfors freundlichst zu meiner Verfügung gestellt wurden, zusammengestellt. Ausserdem wird am Ende der aviphänologischen Abteilung eine kurze Übersicht über die Witterung des Frühjahres und über die Ankunft der Vögel gegeben werden.

März.

Ma	н	Helsingfors		Tan	o o		Jy	К	×	g
Mariehamn Tag.	Hangö.	ging	Viborg.	Tammerfors	Sortavala	Vasa,	Jyväskylä	Kuopio	Kajana	Uleåborg.
lam nam	000	gfo	o:	erfo	vale	ž	kyl	pio.	na.	groc
p.	1	rs.		TS.	ت		ູ້ຄະ			0,9
				-						
1 - 5,9	- 7,4	- 6,7	— 5,2	— 7,0	- 4,1	- 8,2	- 6,5	- 6,6	- 7.3	- 8,8
2 0,4	- 0,2	1	- 12,9	,	11,3	1,2		11,4		— 7,o
3 - 4,1	4,5	/	,		- 6,2	— 2,3			- 11,7	- 8,0
4 0,2	- 5,4	,	, ,	- 7,0			- 10,9	,	,	0,0
5 - 0,6	,	,	,	, -	_, 2,5	0,1	- 2,8	0,2		2,0
$\begin{bmatrix} 6 & 0,2 \\ 7 & 2,5 \end{bmatrix}$	-0,4 $-2,0$	- 4,7 0,9	- 6,0 0,2	- 3,0 - 2.2	-4,1 $-0,5$	- 0,1 - 2.8	-1,8 $-2,2$	1,8 - 2,0		,
8 0,8	- $0,0$ $ 0,2$			0,0	-,-	- 2,8 1,3	-2,2 $0,2$	- 0,4	- 3,6 0,0	-5,0 $2,0$
9 0,4	0,2	0,3	- 1	0,6			1,0	1,2	0,4	1,4
10 - 5,1		1		- 5,2		- 10,8	,	,	- 14,9	_ ′
11 - 3,3	- 2,6	- 3,4	 4, 8	- 5,0	- 5,9	- 10,4	5,0	- 4,2	- 8,0	
12 - 6,3	9,0		10,8	- 11,0		10,2		12,4		— 17,o
13 - 14,0	- 8,8	1 . /	- 9,4					- 9,8		
14 — 6,1	-19,2		- 9,4		-11,2		- 9,3	9,8		
$\begin{vmatrix} 15 - 9,4 \\ 16 - 4,7 \end{vmatrix}$		- 16,9		- 14,8						
$\begin{vmatrix} 16 - 4,7 \\ 17 & 1,0 \end{vmatrix}$	- 3,0 - 1,3	1 /		- 9,2 - 1,2			- 13,3 - 3,0	— 15,4 — 3,0		
18 1,6	-0.4		- 3, ₂		- 6,5		/	- 3,0 $-$ 4,2		1,2
19 - 0,4	- 1,3	/	- 4,2	- 3,4	,	0,4		- 6,2	- 4,8	_ 2,6
20 - 2,7	0,0	/	- 0,7	- 1,2	, ,	- 3,3		- 3,0	- 2,2	2,0
21 - 0,7	- 3,0	,	,	— · 3,2		,	- 1	- 2,4	- 3,7	_ 4.6
22 - 6,3	- 3,6	- 4,0	- 2,8	- 3,4	- 2,3	- 6,2	- 5,4	- 5,2	- 4,4	9,0
23 - 3,6	- 2,4		- 3,2	-,-		,		10,8	5,3	— 4,₄
24 - 1.5	- 4,0	,	- 3,8	- / -	- 5,9	- 7,0	- 4,0		0,0	14,0
25 - 2,9	- 4,0	- 14,7	- 6,8		,	0,4	- 9,7	, ,		- 1,0
26 - 1,1	- 2,0	,	- 4,0	- 3,0	-,-		-,-	- 1,6	/	0,0 - 4,0
27 1,6 28 1,2	-0,5 $-0,2$	0,9	-2,6 $-1,4$	-0,4 $2,0$		2,3 2, 2	- 3,0	2,0		$\frac{-4,0}{3,0}$
28 1,2 29 2,5	-0,2 $-1,0$	-1,1 $0,9$	- 1,4 - 2,0	-1,6	1,9 $1,4$	0,2	2,8	$\frac{3,8}{1,2}$	$-\begin{array}{c} 2,4 \\ 0,6 \end{array}$	0,0
$\begin{vmatrix} 29 & 2,3 \\ 30 & -2,3 \end{vmatrix}$	- 1,4	- 1,9	- 3,0	-3,4		,		-3,0	/ 1	- 2;0
31 1,0	,	, ,	- 1,6	- 1,8				- 3,2	- 1	2,2
				Mittler			/			
_ 2.4	— 3.1	- 4,4					_ 5.0	- 52	_ 5:5	- 5,4

April.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tag.	Mariehamn.	Hangö.	Helsingfors.	Viborg.	Tammerfors.	Sortavala.	Vasa.	Jyväskylä.	Kuopio.	Kajana.	Uleåborg.
	2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	- 0,6 - 1,1 1,2 1,4 2,0 1.0 0,6 2,4 - 1,7 - 2,1 - 1,1 - 0,7 1,4 - 0,4 1,1 - 1,3 0,5 - 0,2 1,6 2,9 2,8 4,6 3,2 1,1 2.4 0,8 3 2 3,2	- 3,0 0,0 0,8 1,0 1,0 0,4 0,8 0,6 - 1,0 2,2 - 3,4 - 1,8 - 3,0 - 1,0 0,4 1,2 0,5 - 1,6 0,3 1,8 1,3 0,4 1,3 0,4 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	3,2 0,7 0,8 1,8 1,6 1,3 0,7 0,7 0,9 1,3 2,0 0,2 0,2 0,3 1,4 1,0 0,7 0,8 1,9 2,0 0,6 2,9 4,3 1,5 -	2,2 2,0 2,1 2,3 3.4 3,0 1,2 2,3 2,1 0,5 2,6 0,9 0,3 	- 0,9 2,4 1,4 1,8 1,4 2,0 - 2,0 - 2,8 - 2,4 - 1,4 - 0,6 - 5,2 - 2,6 0,2 0,8 - 2,6 - 0,4 1,0 2,0 1,0 5,8 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	- 2,1 0,9 2,1 3,3 1,6 - 2,1 - 0,9 1,4 2,5 1,6 2,7 - 0,3 - 5,7 - 3,0 1,2 2,0 0,1 0,4 - 0,2 2,3 1,5 3,3 4,4 6,0 2,7 1,5 3,6	1,2 - 0,7 1,6 1,3 2,4 1,5 - 0,3 1,3 - 1,9 0,3 0,8 - 2,1 - 3,1 - 5,9 - 2,4 - 1,1 0,4 - 2,4 - 0,7 - 0,1 1,0 0,4 2,8 1,1 0,3 1,8 1,0 1,3 0,6	- 3,0 - 3,4 1,3 0,8 3,0 1,5 0,3 2,2 - 2,4 0,6 0,2 - 2,1 - 4,8 - 1,9 - 2,8 0,8 1,5 - 0,8 - 0,1 1,4 2,0 2,6 2,5 - 0,2 1,8 1,0	- 2,8 - 1,8 - 1,6 - 2,6 - 0,6 - 0,5 - 0,2 - 1,8 - 1,2 - 0,2 - 1,6 - 0,0 - 5,4 - 5,0 - 2,4 - 0,8 - 1,2 - 2,4 - 1,4 - 2,0 - 1,5 - 2,0 - 3,0 - 3,2 - 1,4 - 2,4	2,6 1,4 - 0,6 1,8 0,2 - 0,6 0,4 0,8 2,1 - 0,4 - 1,1 - 0,8 - 4,2 - 7,0 - 5,8 - 1,4 - 0,2 1,6 - 1,4 0,0 0,2 1,8 1,7 1,8 3,5 3,4 2,0 3,2	2,4 0,8 0,8 0,6 4,0 1,4 2,0 2,0 2,0 - 2,0 - 4,0 - 0,3 - 0,2 0,0 - 2,8 - 0,2 - 2,0 3,0 2,0 3,0 2,0 3,0 4,0 1,4 1,0 1,0 1,4 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
$\begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} 0,2 \end{bmatrix} \begin{bmatrix} 0,5 \end{bmatrix} \begin{bmatrix} 1,7 \end{bmatrix} \begin{bmatrix} 0,1 \end{bmatrix} \begin{bmatrix} 0,7 \end{bmatrix} \begin{bmatrix} 0,1 \end{bmatrix} \begin{bmatrix} 0,2 \end{bmatrix} \begin{bmatrix} 0,4 \end{bmatrix}$		1,1	0,2	0,5	1,7			0,1	0,2	0,2	0,4	0,7

Mai.

Tag.	Mariehamn.	Hangö.	Helsingfors.	Viborg.	Tammerfors.	Sortavala.	Vasa.	Jyväskylä.	Kuopio.	Kajana.	Uleåborg.
1	3,8	3,2	5,3	4,8	1,4	1,7	2,3	2,4	1,4	0,9	1,2
2	5,7	1,8	1,1	2,5	3,0	6,1	1,5	4,8	1,2	1,6	0,3
3	3,6	2,2	4,7	5,2	3,4	4,1	3,7	4,0	3,2	5,1	4,0
4	5,2	3,4	4,1	3,7	3,6	4,9	4,1	3,6	4,2	2,0	3,0
5	5,0	5,0	5,3	4,4	4,0	4,0	2,8	5,2	3,4	3,4	3,6
6	6,4	4,3	6,2	5,0	3,8	6,5	4,6	3,6	4,0	3,2	3,0
8	6,8 7,1	6,0 $4,0$	5,9 5,0	2,6 2,8	2,4	$\frac{2,7}{3,9}$	3,4 $3,6$	2,8 4,4	$\frac{1,0}{2,2}$	$\frac{1,8}{5,6}$	0,8
9	7,1	5,6	6,3	4,8	4,8 6,0	1,9	3,7	5,4	5,0	6,3	3,0
10	8,2	6,2	7,8	5,5	5,8	5,8	8,3	3,0	3,6	3,1	4,8
11	10,8	6,2	7,9	8,2	9,0	6,2	6,4	7,7	6,4	5,8	3,6
12	10,6	5,8	7,1	5,9	11,0	11,6	7,7	12,3	9,8	4,8	3,8
13	9,7	9,0	11,7	10,5	8,2	10,8	2,3	8,5	7,4	1,6	0,4
14	6,4	4,5	5,4	3,9	3,4	4,3	4,3	3,2	2,6	1,8	2,0
15	5,0	4,8	3,8	3,5	1,6	2,1	3,2	2,2	1,2	0,9	0,2
16	2,0	1,8	1,6	4,5	1,2	3,5	2,8	3,5	1,4	1,1	0,8
17	1,1	1,0	1,0	3,0	3,2	5,0	2,1	4,5	2,5	3,1	1,4
18	3,8	3,0	3,5	5,5	4,4	6,6	4,1	6,5	7,0	5,1	5,0
19	3,4	5,8	4,4	6,2	4,8	8,1	7,4	9,4	8,2	4,4	8,0
20	3,6	6,0	7,2	9,3	7,6	9,2	4,9	7,9	7,1	4,4	7,0
21	10,8	14,1	11,5	14,0	12,4	8,3	7,2	11,7	8,6	7,3	7,0
22	6,0	5,3	10,4	15,0	9,6	9,0	5,6	7,4	6,0	7,0	6,6
23	6,6	5,0	5,8	5,6	6,8	5,2	5,7	7,0	6,0	9,4	8,0
24	9,2	15,5	8,1	8,4	5,6	6,8	7,2	8,3	7,6	7,2	7,0
25	9,6	5,3	8,2	9,9	7,6	8,8	6,7	9,1	6,2	8,9	5,0
26	7,5	4,7	7,5	9,2	7,8	7,3	4,×	7,6	4,2	4,6	7,5
27	5,2	4,0	4,4	7,3	$4,_{2}$	5,7	4,2	4,2	3,×	4,8	5,0
28	5,1	5,3	4,7	1,8	2,6	3,8	3,0	1,0	0,0	0,8	2,6
29	2,2	2,0	2,5	3,8	1,8	2,3	1,2	0,8	0,0	0,6	3,0
30	2,8	2,3	3,7	3,6	3,4	3,1	1,4	3,2	0,2	3,6	5,0
31	4,8	4,6	3,3	4,0	1,2	3,2	1,0	- 0,6	1,8	0,4	2,5
				1	Mittlere	Temp	eratur.				
	6,0	5,1	5,7	6,0	5,0	5,6	4,2	5,3	4,1	3,9	3,8

I. Abt. Vögel.

1. Misteldrossel. Turdus viscivorus L. Dubbeltrast. Rosorastas.

Ankunft

Nyl. Apr. 13. Borgå.

Kaj. Öst. Mai 5. Suomussalmi.

2. Singdrossel. Turdus musicus L. Sångtrast. Laulurastas.

Ankunft.

Ål		Apr	. 12	. Mariehamn.	S.	Öst.	Mai	14.	Isokyrö-Ikola.
SV	VF.	57	8.	Kisko Toija.	N.	Tav.	Apr.	30.	Saarijärvi-Paju-
	77	**	9,	Salo.			-		niemi.
	77	77	22.	Finby-Falkberg.	N.	Sav.	97	29.	Pielavesi-Nieme-
	27	37	25.	Vihti-Haitis.					lä.
Ny		27	11.	Pyttis.		"	Mai	2.	Kuopio-Hami-
**		77	15.	Borgå.					nanlahti.
77		99	24.	Borgå-Veckjärvi.		17	27	6.	Iisalmi.
27		99	25.	Tvärminne.		19	17	8.	Pielavesi-Ran-
17		77	29.	Ekenäs.					nankylä.
Sat	t.	**	9.	Tammerfors.		99	27	12.	Kuopio.
S.	Tav.	π	26.	Hattula-Pelkola.	N.	Kar.	Apr.	30.	Värtsilä.
	22	Mai	1.	Tavastehus.		97	Mai	2.	Suojärvi-Anna.
S.	Sav.	Apr.	24.	S:t Michel (Nord		77	77	4.	Pielisjärvi-Liek-
				ström).					sa.
	••	\mathbf{M} ai	6.	Sääminki (Se-		77	27	11.	Liperi-Käsämä.
				vón)	M.	Öst.	Apr.	29.	Esse-Öfveresse.
La	d. Kai	Apr.	26.	Sortavala (Can-	Ka	j. Öst.	Mai	3.	Puolanko.
				tell).		77	27	5.	Suomussalmi.
S.	Öst.	77	2.	Replot, 1 Ex.		27	22	9.	Kuhmoniemi-
	77	77	11.	Vörå-Kovjoki.					Korpisalmi.
	ייי	27	26.	Replot.	N.	Öst.	77	6.	Uleåborg-Hieta-
	יי	77	30.	Lappfjärd; Mus-		-			saari (Helf-
				tasaari-Kors-			1		man).
				holm.					

Zusammenfassung. Keine Märzdaten! Amplitude 2. April (Replot) — 14. Mai (Isokyrö-Ikola). Die 4. Pentade des April enthält keine Daten. Die Mehrzahl der Daten fällt in die Zeit zwischen 22. Apr. und 6. Mai. Die frühesten Gebiete waren S. Öst., SW. F., Nyl. und Ål., die letzten Kaj. Öst. und N. Öst, welche ausschliesslich Maidaten aufweisen.

Brutgeschäft. Lad Kar., Sortavala, am 30. Mai Nest mit 5 Eiern gefunden (Jääskeläinen).

3. Rotdrossel. Turdus iliacus L. Rödvingetrast Punasiipirastas.

Ankunft.

 Lad. Kar. Mai
 3. Sortavala.
 Kaj. Öst
 Mai
 10. KuhmoniemiKorpisalmi.

 N. Sav. Apr. 26. Kuopio-Haminanalahti.
 N. Öst.
 1. Uleåborg-Hietasaari, viele (Hellman).

 Kaj. Öst
 Mai
 10. KuhmoniemiKorpisalmi.

 N. Öst.
 "
 1. Uleåborg-Hietasaari, viele (Hellman).

 Kaj. Öst
 "
 13. Muonio.

Brutgeschäft.

Lad. Kar. Mai 30. Sortavala, Nest mit 5 Eiern (Jääskeläinen). N. Öst. Juni 14. Uleåborg, 2 Nester mit 5 resp. 6 Eiern (Merikallio). Lapp. , 12. Muonio, Nest mit 5 Eiern.

4. Wacholderdrossel. Turdus pilaris L. Björktrast. Räkättirastas.

Ankunft.

Apr. 19. Kimito. SW. F. 24. Vihti-Haitis. 26. Finby-Falkberg. März 29. Helsingfors-Drumsö, 7. Exx. (R. Palm-Nyl. Apr. 10. Borgå 12. Lovisa. 17. Helsingfors-Kaisaniemi, viele. 18. Ekenäs (H. Krank); Pyttis. 22. Pyttis-Vesterby. 23. Borgå-Veckjärvi. S. Kar. 25. Pyhäjärvi. 23. Tyrvää-Vamma-Sat. la. 30. Ruovesi-Tapio.

S. Tav. Apr. 21. Hattula-Pelkola. 27. Sysmä-Nuoramois. Mai 1. Tavastehus. S. Sav. März 28. S:t Michel (Nordström). Lad. Kar. Apr. 16. Kexholm. 19. Sortavala (Can-22 tell). S. Öst. 26. Replot 3 Exx. N. Tav. 30. Saarijärvi-Pajuniemi. 28. Kuopio. N. Sav. Mai 6. Iisalmi. 10. Pielavesi-Rannankylä. N. Kar. Apr. 26. Värtsilä. 29. Liperi-Käsämä; Pielisjärvi-

Lieksa.

N. Kar. Mai 1. Suojärvi; Juuka. N. Öst. Mai 5. ÖfvertorneåM. Öst. Apr. 26. Esse-Öfveresse.
Kaj. Öst. Mai 6. Suomussalmi.
" 12. KuhmoniemiKorpisalmi.
" 11. Inari-Thule.

Zusammenfassung. Amplitude 28. März (S:t Michel) — 12. Mai (Kuhmoniemi). Nur zwei Märzdaten (S:t Michel u. Helsingfors) und auch in der vorderen Hälfte von April nur zwei Daten (Nyl.). Die Hauptankunft geschah in der zweiten Hälfte des April (Verspätung!) Die ersten Gebiete waren S. Sav., Nyl. und Lad. Kar., die letzten Kaj. Öst., N. Öst. und Lapp., welche erst im Mai besiedelt wurden.

Brutgeschäft.

Lad. Kar. Mai 30. Sortavala, Nest mit 6 Eiern (Jääskeläinen). N. Sav. Juni 18. Kuopio, Jungen flugfähig (Suomalainen 1. c. p. 48). Lapp. Juni 10. Muonio, Nest mit 5 Eiern.

Abzug. Nyl., Lovisa, am 18. Sept.

- 5. Schwarzdrossel. Turdus merula L. Koltrast. Mustarastas. Am 27. März wurde in S. Tav., Lempäälä, ein 🥱 geschossen; das Ex. wurde der Sammlung des naturwissenschaftlichen Vereins zu Tammerfors geschenkt (Hj. Schulman in L. Y.).
- 6. Wasserschwätzer. Cinclus cinclus (L.) Strömstare. Koskikara.

Lad. Kar., Kexholm, häufig während des Winters an den Strom-schnellen, am 2. April noch gesehen. Einige Tage später waren sie verschwunden.

- S. Savo. Nyslott, erschien hier am 3. Nov.
- 7. Steinschmätzer. Saxicola oenanthe L. Stensqvätta. Kivitasku.

Ankunft.

SW. F. Apr. 20. Korpo-Utö. SW. F. Mai 4. Vihti-Haitis.

" " 25. Salo. " " 5. Mynämäki.

" Mai 3. Kisko-Toija. " " 7. Åbo.

N	yl.	Apr.	17.	Borgå.	S.	Öst.	Mai	3.	Vörå-Kovjoki.
,	,	27	22.	Borgnäs.	N.	Tav.	Apr.	25.	Karstula.
,	,	29	23.	Tvärminne.		97	Mai	16	Saarijärvi-Paju-
7	,	77	24.	Ekenäs, viele					niemi.
				(Fabritius).	N.	Sav.	Apr.	27.	Kuopio-Hamina-
,	,	97	25.	Pyttis-Vesterby.					lahti.
7	7	Mai	3.	Borgå-Veckjärvi.	1	99	Mai	16.	Iisalmi.
,	,	77	8.	Pyttis.	,	17	95	18.	Karttula.
S.	Kar.	"	8.	Pyhäjärvi-Sor-	· N.	Kar.	57	5.	Suojärvi-Anna.
				tanlahti.		27	27	7.	Pielisjärvi-Liek-
Sa	t.	77	9.	Hämeenkyrö-					sa.
				Uskela.	,	"	*	11.	Värtsilä.
,	,	77	10.	Tyrvää-Vamma-	M.	Öst.	**	4.	Nykarleby.
				la.		77	11	6.	Esse-Öfveresse.
S.	Tav.	Apr.	25.	Tavastehus.	Ka	ıj. Öst	5. 99	4.	Puolanko.
	59	19	28.	Sysmä-Nuora-		7*	97	20.	Kuhmoniemi-
				mois.					Korpisalmi.
S.	Sav.	77	29.	Nyslott.		99	57	23.	Suomussalmi
	17	Mai	1.	S:t Michel (Nordström).	N.	Öst.	27	9.	Uleåborg (Remes).
La	d. Ka	r. Apr.	25	Sortavala.		97	7*	17.	Öfvertorneå-
	77	Mai	1.	Kexholm.					Portimojärvi.
S.	Öst.	**	1.	Replot, 1 Ex.;	La	pp.	Juni	1.	Muonio.
				Isokyrö-Ikola.	,		*	3.	Inari-Thule.
	71	77	2.	Lappfjärd.	*				

Zusammenfassung. Aus der ersten Hälfte des April keine Daten! Die 4. Pentade weist nur zwei Daten auf, dagegen die 5. und 6. sowie die 1. Pentade des Mai viele. Die Amplitude war 17. Apr. (Borgå) — 3. Juni (Inari). Die ersten Gebiete waren Nyl. (17. Apr. — 8. Mai), SW. F. (20. Apr. — 7. Mai), S. Tav., Lad. Kar. und S. Savo. Ausschliesslich Maidaten zeigen Sat., S. Öst, N. Kar., M. Öst., Kaj. Öst. und N. Öst. Lappland hat nur zwei Junidaten.

 $Brutgesch \"{a}ft$. Lapp., Muonio, am 14. Juni Nest mit 6 Eiern gefunden.

Abzug.

SW.F.	Aug. 21. Mynämäki-Tiu-	S. Tav. Sept. 18-20. Tavastehus.
	vais.	S. Öst. " 13. Replot.
Nyl.	Sept. 10. Tvärminne.	N. Tav. " 7. Saarijärvi-Paju-
27	" 11. Pyttis.	niemi.
S. Tav.	" 13. Sysmä-Nuora-	N. Sav. " 8. Kuopio.
	mois.	M. Öst. " 10. Esse-Öfveresse.

Kaj. Öst. Aug. — Kuhmoniemi- N. Öst. Aug. 26. Rovaniemi-Muu-Korpisalmi. Sept. 16 Puolanko.

Tuulivaara.

rola.

Amplitude des Herbstzuges 21. Aug. - 20. Sept.

Braunkehliger Wiesenschmätzer. Pratincola rubetra (L.) Busksqvätta. Pensastasku.

Ankunft.

Nvl. Apr. 23. Borgå. S. Sav. Mai 28. S:t Michel. Lad. Kar. " 17. Sortavala. 14. Pielisjärvi, Dorf N. Kar.

N. Öst. Mai 18. Uleåborg (Remes). " 21. Uleåborg-Kraaseli (Merikallio).

Brutgeschäft. Lapp., Muonio, am 21. Juni Nest mit 6 Eiern. Abzug. S. Savo, S:t Michel, am 2. Sept. noch gesehen.

Sprosser. Erithacus philomela (Bechst.) Nordlig näkter-Satakielinen.

Ankunft.

S. Sav. Mai 21. Sääminki (Sevón). N. Kar. Mai 19. Värtsilä.

In Lad. Kar., Kexholm, wurde der Gesang zum ersten Mal am 10. Juni gehört.

10. Rotkehlchen. Erithacus rubeculus (L.) Rödhake. Punarinta satakielinen.

Ankunft.

Nvl. Apr. 17. Borgå. Mai 9. Helsingfors (G. W. Forssell). N. Sav. Apr. 29. Karttula. 30. Kuopio-Haminanlahti.

S. Sav. 12. S:t Michel (Nordström). N. Kar. " 29. Värtsilä.

Lad. Kar. Apr. 26. Kexholm. Mai 6. Sortavala (Cantell).

Mai 11. Pielisjärvi, Dorf Kivivaara (Wasastjerna).

Abzug. Nyl., Pyttis, 6. October.

11. Blaukehlchen. Erithacus suecicus (L.) Blåhake. Sinirintasatakielinen.

$\dot{}$ Ankunft.

N. Sav. Mai 13. Kuopio-Haminan- Lapp. Juni 2. Muonio.

Nest mit Jungen am 25. Juni in Muonio gefunden.

12. Gartenrotschwanz. Erithacus phoenicurus (L.) Rödstjärt. Leppälintu.

Ankunft.

Ål.	Mai	8.	Mariehamn.	S.	Sav.	Mai	5.	Sääminki (Se-
SW. F.	Apr.	29.	Salo.					vón).
22	Mai	5.	Mynämäki-Tiu-	La	d. Kar	,,,	6.	Sortavala (Jääs-
			vais.					keläinen).
27	77	11.	Kimito.		27	**	9.	Kexholm.
**	22	12.	Åbo; Vihti-Hai-	S.	Öst.	17	11.	Replot.
			tis; Pargas.		**	"	12.	Lappfjärd; Iso-
77	27	25.	Finby-Falkberg.					kyrö-Ikola.
Nyl.	27	7.	Ekenäs (Krank).	N.	Tav.	77	9.	Saarijärvi-Paju-
27	22	8.	Helsingfors, Bo-					niemi.
			tan.Garten (B.		**	,,	14.	Karstula.
			Poppius).	N.	Sav.	22	6.	Karttula.
**	22	10.	Pyttis.		27	22	11.	Kuopio.
**	77	12.	Tvärminne.	N.	Kar.	. 17	10.	Värtsilä.
71	57	14.	Borgnäs.		22	22	14.	Suojärvi-Anna;
••	77	15.	Borgå; Borgå-					Pielisjärvi-
			Veckjärvi.					Tuulivaara.
77	77	20.	Lovisa.	\mathbf{M}	. Öst.	37	5.	Nykarleby.
Sat.	"	8.	Tyrvää-Vammala.		17	11	10.	Esse-Öfveresse.
27	77	13.	Tammerfors.	K	aj. Öst.	* ***	9.	Kuhmoniemi-
27	77	15.	Ruovesi-Tapio.					Korpisalmi.
S. Tav.	17	10.	Kuhmoinen-Har-		77	"	22.	Suomussalmi.
			mais.	N.	Öst.	37	21.	Uleåborg-Kraa-
27	27	11.	Sysmä-Nuora-					seli (Merikal-
			mois.					lio).
27	39	18.	Tavastehus.		77	Juni	5.	Öfvertorneå-
S. Sav.	27	5.	S:t Michel (Nord-					Portimojärvi.
			strom); Nyslott;	La	app.	17	3.	Inari-Thule.

Zusammenfassung. Die Art verspätete sich, wie auch in Mecklenburg (n. Clodius, Ornithol. Bericht 1907). Nur ein Datum im April! Schon am ersten darauf folgenden Ankunftstag am 5. Mai wurden Rotschwänze in SW. F., S. Sav. und M. Öst. beobachtet. Die Amplitude war 29. Apr. (Salo) — 5. Juni (Öfvertorneå). Die Hauptmasse verteilte sich über das Land in der Zeit zwischen 5. und 15. Mai.

Brutgeschäft.

Lad. Kar. Mai 30. Sortavala, Nest mit 6 Eiern (Jääskeläinen).
N. Öst. Juni 10. Haukipudas, Nest mit 4 frischen Eiern (Merikallio).
Lapp. " 16. Muonio, Nest mit 3 Eiern.

Abzug.

SW. F.	Oct. 1	5.	Korpo-Utö.	N.	Tav.	Sept.	10.	Saarijärvi-Paju-
Nyl.	Aug. 2	4.	Lovisa.					niemi.
S. Tav.	Sept. 2	4.	Kuhmoinen-	N.	Kar.	99	11.	Värtsilä.
			Päijälä, letzt-		**	77	26.	Suojärvi-Anna.
			mals gesehen.	M.	Öst.	74	7.	Esse-Öfveresse.
S. Sav. A	ug. End	e.	S:t Michel	Ka	j Öst.	27	4.	Kuhmoniemi-
			(Nordström).					Korpisalmi.
Lad. Kar	. Oct.	8.	Sortavala (Jääs-		97	97	8.	Puolanko.
			keläinen).					

 ${\it Zusammen fassung.} \ \ \, {\rm Die} \ \, {\rm Zeit} \ \, {\rm des} \ \, {\rm Herbstzuges} \ \, {\rm dauerte} \ \, {\rm v.} \ \, 24$ Aug, bis 15 Oct. Die Mehrzahl der Daten fiel in den September.

13. Hecken-Braunelle. Accentor modularis (L.) Järnsparf. Rautiainen.

Brutgeschäft. N. Öst., Uleåborg, am 14. Juni wurde ein Nest mit 2 Eiern und 3 Jungen gefunden (Merikallio).

14. Gartengrasmücke. Sylvia simplex (Lath.) Trädgårdsångare. Lehtokerttu.

Ankunft.

Nyl. Mai 24. Borgå.

N. Kar. Juni 4. Värtsilä.

15. Dorngrasmücke. Sylvia sylvia (L.) Gråsångare. Harmaa kerttu.

Ankunft.

S. Sav. Mai 5. Nyslott.

N. Kar. Juni 10. Värtsilä.

16. Zaungrasmücke. **Sylvia curruca** L. Ärtsångare. Hernekerttu.

Ankunft.

N. Sav. Mai 10. Kuopio-Haminan- N. Kar. Juni 10. Värtsilä.

Nest in Lad. Kar., Sortavala, am 9. Juni (Cantell).

Bemerkung. Die Angaben über die Ankunft der drei Sylvia-Arten in Värtsilä sehen zwar unwahrscheinlich aus, aber es ist zu bemerken, dass auch in Nord-Deutschland eine starke Verspätung, wegen der ungünstigen Witterung, stattfand.

17. Gartenspötter. Hippolais hippolais (L.) Gulbröstad sångare. Kultarinta.

Nyl., Lovisa, am 2. Juni erstmals beobachtet.

18. Fitislaubsänger. Phylloscopus trochilus (L.) Löfsångare. Uunilintu.

Ankunft.

SW. F.	Mai	8. Kimito; Salo.	Lad. Kar. Mai 17. Sortavala.	
27	"	10 Vihti-Haitis.	S. Öst. " 12. Lappfjärd.	
57	77	12. Pargas-Mustfin.	N. Tav. , 24. Karstula.	
77	77	20. Korpo-Utö.	N. Sav. " 5. Pielavesi-Ran-	
Nyl.	27	7. Ekenäs	nankylä.	
		(H. Krank).	" 8. Karttula.	
27	77	10. Borgnäs.	" " 11. Kuopio-Hami-	
77	77	Kyrkslätt-Bo-	nanlahti.	
		bäck.	" " 12. Kuopio.	
77	77	20 Borgå.	N. Kar. " 9. Suojärvi-Anna	
27	27	27. Borgå-Veckjärvi.	" " 12. Värtsilä.	
Sat.	27	11. Tyrvää-Vamma-	M. Öst. " 12. Esse-Öfveresse	٥.
		la.	Kaj. Öst. " 22. Kuhmoniemi-	
S. Tav.	77	12. Tavastehus.	Korpisalmi.	
S. Sav.	22	11. S:t Michel, viele	N. Öst. " 19. Uleåborg, viele	3
		(Nordström).	(Merikallio).	
Lad. Kar	. 27	10 Kexholm.	Lapp. Juni 2. Muonio.	

Zusammenfassung. Im April keine Ankunftsdaten! Die Amplitude war 5. Mai (Pielavesi) – 2. Juni (Muonio). Die Ankunft der Hauptmasse geschah in der Zeit zwischen 5. und 12. Mai. Mehrere Daten fallen auf die Tage 10., 11. und 12. Mai (Culmination).

Brutgeschäft.

Lad. Kar. Juni 5. Sortavala, Nest (Jääskeläinen).

N. Öst. " 17. Uleåborg-Kello, Nest mit 4 frischen Eiern (Merikallio).

(Merikallio).

19. Weidenlaubsänger. Phylloscopus rufus (Bechst.) Gransångare. Tynnyrilintu.

Ankunft.

 Nyl.
 Mai
 6. Ekenäs (Krank).
 | N. Sav. Mai
 4. Kuopio-Hami

 S. Tav.
 "
 7. Kuhmoinen.
 | nanlahti.

 S. Sav.
 "
 30. S:t Michel.
 | "
 "
 6. Karttula.

 Lad. Kar.
 "
 10. Kexholm.
 | N. Kar. Apr. 12. Värtsilä.

 "
 "
 19. Sortavala

Abzug.

Nyl. Sept. 19. Helsingfors, Gesang | S. Sav. Sept. 23. S.t Michel, noch im Bot-Garten ge- | vorhanden hört (B. Poppius). | (Nordström).

20. Zaunkönig, Troglodytes troglodytes (L.) Gärdsmyg. Peukaloinen.

Im Frühjahr beobachtet am 29. Mai in Borgå und am 19. Mai in Sortavala.

Gelbköpfiges Goldhänchen. Regulus regulus (L.) Kungsfågel. Hippiäinen.

Im Frühjahr am 26. April ein Paar im Bot. Garten zu Helsingfors (B. Poppius) und am 6. April in Värtsilä gesehen. In Sortavala nistend am 24. Juni (Cantell).

Kohlmeise. Parus major L. Talgoxe. Pakastiainen.
 Nyl., Lovisa, am 12. März singend gehört.
 Lad. Kar., Sortavala, am 11. Mai ein Nest gefunden (Jääskeläinen).

23. Haubenmeise. **Parus cristatus** L. Tofsmes. Töyhtötiainen. Helsingfors, Park Kaisaniemi, am 29. März ein Paar gesehen (K. M. L.)

Nest in Sortavala am 17. Mai gefunden (Cantell).

24. Nordische Sumpfmeise. Parus borealis Sel. Longch. Nordisk mes. Hömötiainen.

Helsingfors, am 23. März singend gehört.

Lad. Kar., Sortavala, am 2. Mai Nest mit 4 Eiern (Jääskeläinen).

25. Blaumeise. **Parus coeruleus** L. Blåmes. Sinitiainen. Helsingfors, Bot. Garten, am 16. April gesehen (B. Poppius).

26.~ Schwanzmeise. Aegithalos caudatus (L.) Stjärtmes. Pyrstötiainen.

Helsingfors, am 17. März etwa 20 Exx. in Gesellschaft mit *Parus major* und *Certhia familiaris* gesehen (K. M. L.). Auch in Sortavala kam sie am 5. Mai zur Beobachtung (Jääskeläinen).

27.~ Baumläufer. Certhia familiaris L. Trädkrypare. Puunkiipijä.

Erschien am 17. März in dem Park Kaisaniemi bei Helsingfors (K. M. L.).

28. Weisse Bachstelze. Motacilla alba ${\bf L}.$ Sädesärla. Västäräkki.

Ankunft.

Ål.	Apr.	29.	Mariehamn.	Nyl.	Apr.	21.	Helsingfors
SW. F.	27	12.	Finby-Falkberg.				(Merikallio).
17	**	13.	Salo.	"	17	22.	Ekenäs, viele
37	27	17.	Korpo-Utö.				(Fabritius):
27	77	23.	Kisko-Toija.				Borgå-Veck-
**	27	24.	Mynämäki-Tiu-				järvi; Borg-
			vais; Vihti-				näs.
			Haitis.	77	77	23.	Tvärminne, viele.
27	77	26.	Kimito.	,,	17	25.	Pyttis.
27	Mai	1.	Åbo.	97	Mai	6.	Kyrkslätt-Bo-
Nyl.	"Apr.	3.	Pyttis-Vesterby.				bäck.
**	22	9.	Borgå; Kyrk-	S. Kar.	Apr.	10.	Pyhäjärvi-Sor-
			slätt-Porkala				tanlahti.
			(Ztg.)	27	97	11.	Heinjoki (L. Y.).
27	21	13.	Tvärminne ein-	Sat.	**	23.	Tammerfors.
			zeln.	77	99	26.	Hämeenkyrö-
**	97	14.	Lovisa.				Uskela.
77	22	15.	Ekenäs	**	99	25.	Tyrvää-Vamma-
			(H. Krank).				la.

Sat.	Mai 9	. Ruovesi-Tapio.	N. Sav.	Apr.	24.	Kuopio-Hami-
S. Tav. A	Apr. 24	: Hausjärvi				nanlahti.
		(Arho).	27	37	25.	Pielavesi-Nie-
77	" 28	. Tavastehus; Kuh-				melä.
		moinen-Har-	57	79	27.	Karttula; Kuo-
		mais.				pio.
77	, 26	6. Hattula-Pelkola;	77	Mai	3.	Pielavesi-Ran-
		Sysmä-Nuora-				nankylä.
		mois.	N. Kar.	Apr.	18.	Värtsilä.
S. Sav.	,, 20	Nyslott, einzelne.	27	97	25.	Liperi-Käsämä;
77	, 24	. S:t Michel, meh-				Suojärvi-Anna
		rere (Nord-	77	99	28.	Pielisjärvi-Liek-
		ström).				sa; Juuka.
**	, 28	5. Nyslott, viele.	77	77	30.	Ilomantsi.
Lad. Kar.	,, 2	3. Kexholm.	M. Öst.	77	23.	Nykarleby.
27	,, 2	5. Sortavala (Jääs-	n	77	24.	Esse-Öfveresse.
		keläinen).	Kaj. Ös	t. "	26.	Kuhmoniemi-
S. Öst.	, 18	3. Replot 1 Ex.				Korpisalmi;
n	, 28	6. Lappfjärd.				Hyrynsalmi;
77	,, 26	6. Replot; Musta-				Suomussalmi.
		saari-Kors-	27	Mai		Puolanko.
		holm; Isokyrö-	N. Öst.	Apr.	20.	Rovaniemi.
		Ikola.	n n	27	28.	Uleåborg (Hell-
57	" 29). Vörå-Ko v joki.				man).
N. Tav.	, 28	5. Karstula; Saari-	29	93	29.	Öfvertorneå.
		järvi-Pajunie-	Kuus.	Mai	9.	Kuusamo-Kirch-
		mi.				dorf.
27	" 29). Saarijärvi-Rah-	Lapp.	Apr.	29.	Kemijärvi.
		kola.	33	Mai	8.	Muonio.
N. Sav.	, 21	Iisalmi.	17	79	10.	Inari-Thule.

Zusammenfassung. Der Frühjahrszug dauerte v. 3. April (Pyttis) bis 10. Mai (Inari). Die erste Pentade des April weist nur ein Ankunftsdatum auf und die zweite nur drei solche. Auch die Mitte dieses Monats weist nur sporadische Daten auf. Vom 22. an werden die Notizen zahlreicher; die Haupttage waren 25. und 26. April. Alle Ankunftsdaten bis 17. Apr. beziehen sich auf Nyl., S. Kar. und SW. Finland. Am 18. Apr. erschien die weisse Bachstelze in N. Kar., Värtsilä, am 20. Apr. in Rovaniemi und am 29. Apr. in Öfvertorneå und Kemijärvi.

Brutgeschäft.

Lad. Kar, Juni 15. Sortavala, Nest N. Öst. Juni 17. Üleåborg-Kello, (Cantell).

N. Öst. " 10. Haukipudas, Nest m. 5
Eiern (Merikallio).

Lapp. " 11. Muonio, Nest m. 5
Eiern. (Merikallio).

Abzug.

SW. F.	Aug.	26.	Korpo-Utö.	S. Sav. Sept. 26. S:t Michel, 15
27	Sept.	20.	Mynämäki-Tiu-	Exx. gesehen
			vais.	(Nordström).
"	22	21.	Salo.	" Nov. 13. S:t Michel, noch
,,	Nov.	22.	Salo, 1 Ex. noch	1 Ex. gesehen
			beobachtet.	(Nordström).
Nyl.	Sept.	26.	Lovisa, 1. Schar	S. Öst. Sept. 28. Replot.
			abgezogen.	" Oct. 6. Isokyrö-Ikola.
27	27	31.	Pyttis, zuletzt	N. Tav. Sept. 26. Saarijärvi-Paju-
			gesehen.	niemi.
**	Oct.	1.	Ekenäs, einige	N. Sav. " 27. Kuopio-Hami-
			noch gesehen	nanlahti
			(Fabritius).	" Oct. 1. Kuopio.
22	17	2.	Lovisa, die lez-	N. Kar. Sept. 10. Värtsilä.
			ten abgezogen.	" " 25. Suojärvi-Anna.
*7	Oct.	25.	Tvärminne,	M. Öst. " 30. Esse-Öfveresse.
			letzmals ge-	Kaj. Öst. " 6. Puolanko.
			sehen.	" " 10. Kuhmoniemi-
Sat.	Sept.	13.	Ruovesi-Tapio.	Korpisalmi.
S. Tav.	27	30.	Sysmä-Nuora-	" " 28. Hyrynsalmi.
			mois.	N. Öst. " 25. Öfvertorneå-Por-
27	Oct.	12.	Tavastehus.	timojärvi.

Zusammenfassung. Der Herbstzug begann am 26. Aug. (Korpo-Utö) und geschah im allgemeinen während des Monats September. Noch Ende October und im November wurden einzelne Exemplare in den mittleren und südlichen Teilen des Landes beobachtet. 29. Gelbe Bachstelze. **Motacilla flava** L. Gulärla. Keltavästäräkki.

Ankunft.

Nyl.	Mai	12. Borgå.	N. Kar. Mai	5.	Värtsilä.
S. Sav	. 51	18. Sääminki (Sevón).	" "	10.	Pielisjärvi-Kirch-
77	51	19. S:t Michel (Nord-			dorf.
		ström).	Kaj. Öst. "	12.	Hyrynsalmi.
Lad. K	ar. "	8. Sortavala (Jääs-	N. Öst. "	12.	Uleåborg (Re-
		keläinen).			mes); am 19.
77	27	9. Kexholm.			Mai viele (Meri-
N. Say	V. 37	Pielavesi-Niemelä.			kallio).
27	77	7. Kuopio-Haminan-	Lapp. "	29.	Inari-Thule.
		lahti.	, Juni	2.	Muonio.

Zusammenfassung. Die Amplitude war 5. Mai — 2. Juni. Die Mehrzahl der Ankunftsdaten liegt zwischen 5. und 12. Mai. Am spätestens erschien die gelbe Bachstelze in Muonio, am 2. Juni.

Brutgeschäft.

Lad. Kar. Juni 20. Sortavala, Nest (Cantell).

N. Sav. , 28. Kuopio, Jungen ausgebrütet (Suomalainen l. c., p. 63).

Lapp. , 14. Muonio, Nest mit 6 Eiern.

Abzug. N. Sav. Sept. 27. Kuopio-Haminanlahti.

- 30. Wiesenpieper. Anthus prateusis (L.) Ängpiplärka. Niitty-kirvinen.
- S. Sav. Apr. 28. S:t Michel: es wurden am diesen Tag mehrere Pieper gesehen, die der Beobachter, Herr Nordström, für Wiesenpieper hielt.

N Sav. , 30. Kuopio-Haminanlahti.

Brutgeschäft. Lapp., Muonio, Nest mit 5 Eiern am 19. Juni.

31. Baumpieper. Anthus trivialis (L.) Trädpiplärka. Metsäkirvinen.

Ankunft am 6. Mai in N. Kar., Pielisjärvi-Kirchdorf.

Brutgeschüft. Lad. Kar., Sortavala, am 20. Juni Nest mit 6 Eiern gefunden (Jääskeläinen).

32. Alpenlerche. Eremophila alpestris flava (Gm.) Bärglärka. Tunturileivonen.

Ankunft.

N. Sav. Apr. 28. Kuopio-Haminanlahti.

N. Kar. Mai 12. Pielisjärvi, Dorf Kivivaara, ca. 20 Exx.

Lapp. " 4. Muonio.

Abzug. Sept. 30. N. Sav. Kuopio-Haminanlahti.

33. Heidelerche. Lullula arborea (L.) Trädlärka. Metsäleivonen.

Ankunft. März 25. Nyl., Ekenäs (H. Krank).

34. Feldlerche. Alauda arvensis L. Sånglärka. Peltoleivonen.

Ankunft.

Ål.	März 20. Jomala (Ztg.)	Nyl. Apr. 9. Lovisa
SW. F.	" 27. Kimito; Wihti-	" " 10. Kyrkslätt-Bo-
	Haitis.	bäck.
27	" 28. Korpo-Utö; My-	" " 15. Borgå-Veck-
	nämäki-Tiu-	järvi.
	vais; Paimio-	S. Kar. " 2. Pyhäjärvi-Sor-
	Vista; Kisko-	tanlahti
	Toija.	Sat. März 30. Karkku-Alus-
27	" 29. Salo.	kylä.
*11	Apr. 15. Finby-Falkberg.	" 31. Hämeenkyrö-
Nyl.	März 7. Ekenäs	Uskela.
	(H. Krank).	" Apr. 6. Tyrvää-Vam-
27	, 9. Pyttis-Vesterby.	mala.
77	" 24. Helsingfors, 1	, 7. Tammerfors.
	Ex. (R. Palm-	S. Tav. März 31. Tavastehus.
	gren).	" Apr. 1. Hattula-Pelkola.
57	" 27. Tvärminne; Eke-	" " 7. Kuhmoinen-Päi-
	näs mehrere	jälä.
	(Fabritius).	" " 9. Sysmä-Nuora-
77	" 28. Esbo (Ztg.); Hel-	
	singfors 3 Exx.	
	(R. Palmgren).	Harmais.
27	" 31. Borgnäs.	S. Sav. " 1. S:t Michel: Ny-
27	Apr. 2. Borgå ca. 20	slott.
	Exx.; Borgnäs	Lad. Kar. , 1. Sortavala
	viele.	(K. Siitoin).

Lad. Kar.	Apr.	7.	Kexholm.	N. Sav.	Apr.	20.	Pielavesi-Ran-
S. Öst.	$M\ddot{a}rz$	28.	Lappfjärd.				nankylä.
29	22	29.	Vasa-Voitby;	N. Kar	. Apr.	2.	Ilomantsi; Pielis
			Replot; Iso-				järvi.
			kyrö-Ikola.	77	22	8.	Liperi-Käsämä.
17	27	30.	Mustasaari-	77	22	9.	Värtsilä.
			Korsholm.	27	22	26.	Suojärvi-Anna.
**	Apr.	2.	Vörå-Kovjoki.	- 27	22	29.	Juuka.
N. Tav.	n	1.	Karstula; Saari-	M. Öst	März	28.	Esse-Öfveresse.
			järvi-Rahko-	77	27	30.	Nykarleby.
			la	Kaj. Ös	st Apr.	17.	Kuhmoniemi-
29	27	22.	Saarijärvi-Paju-		_		Korpisalmi.
			niemi.	N. Öst.	$M\ddot{a}rz$	30.	Uleåborg (Re-
N. Sav.	$M\ddot{a}rz$	31.	Kuopio-Hami-				mes).
			nanlahti.	77	Apr.	3.	Öfvertorneå-Por
*4	Apr.	5.	Kuopio.				timojärvi.
n .	22	10.	Pielavesi-Nie-	77	27	17.	Rovaniemi-Muu-
			melä.				rola.
"	77	13.	Iisalmi.	Kuus.	27	4.	Kuusamo-Kirch-
-4	22	17.	Karttula.				dorf.

Zusammenfassung. Vorzügler wurden an der Südküste am 7. und 9. März beobachtet, aber eigentlich begann der Einzug erst am 27. März. Die warme Zeit zwischen 27. und 31. März ist reich an Ankunftsdaten. Auch 2. Apr. ist datenreich. Die Amplitude für das ganze Land war 7. März (Ekenäs) — 29. Apr. (Juuka). Die frühesten Gebiete waren Nyl., Ål. und SW. F., aber auch in S. Öst. und M. Öst. wurde Gesang schon am 28. März gehört. Die Verbreitung geschah sehr schnell und ging längs dem Küstengebiet gegen Norden. Am 30. März wurde die Feldlerche in Uleåborg und am 3. Apr. in Öfvertorneå gehört. In den inneren und östlichen Provinzen: S. Tav., S. Sav., Lad. Kar., N. Tav., N. Sav. und N. Kar. sind Aprildaten vorherrschend.

Abzug.

SW. F.	Aug. 30.	Kimito.	S. Sav.	Oct.	7.	Kuopio-Hami-
22	Sept. 7.	Korpo-Utö.				nanlahti,
Nyl.	Oct. 6.	Ekenäs, mehrere	-			noch vorhan-
		gesehen (Fab-				den.
		ritius).	M. Öst.	"	16.	Esse-Öfveresse.
n	" 15.	Tvärminne,	Kaj. Ost.	Sept.	18.	Puolanko.
		letzmals ge-	N. Öst.	77	5.	Öfvertorneå-
		sehen.				Portimojärvi.

35. Lerchen-Spornammer. Calcarius lapponicus (L.) Lappsparf. Lapin sirkku.

Ankunft.

N. Sav. Apr. 28. Kuopio-Haminanlahti, viele, die bis 10. Mai hier weilten.

36. Schneeammer. Passerina nivalis (L.) Snösparf. Pulmunen.

Ankunft.

Apr. 2. Korpo-Utö. S. Öst. Apr. 2. Vasa; Isokyrö. 8. Vörå-Kovjoki. Nyl. März 20. Borgå. März 20. Esse-Öfveresse. 23. Pyttis-M. Öst. Kaj. Öst Apr. 3. Suomussalmi. Vesterby. Apr. 2. Ekenäs (Krank). 14. Hyrynsalmi. Sat. März 14. Tyrvää. 20. Puolanko. N. Öst. S. Sav. März 27. Öfvertorneå-Apr. 25. Nyslott. N. Tav. März 25. Saarijärvi-Portimojärvi. 30. Rovaniemi-Pajuniemi. 30. Karstula. Muurola. Apr. 4. Saarijärvi-Apr. 7. Uleåborg, ein Rahkola. Schwarm (Y. März 27. Iisalmi. Hellman). Apr. 4. Kuopio. Kuus. 10. Kuusamo-Kirchdorf. 2. Liperi. N. Kar. 21. Suojärvi-Anna. Lapp. 6. Muonio; Inari. S. Öst. März 18. Replot.

Amplitude 14. März (Tyrvää) — 25. Apr. (Nyslott). Die nördlichsten Punkte, Muonio und Inari, wurden am 6. Apr. erreicht, aber schon am 27. und 30. März erschien die Schneeammer in der Gegend des Polarkreises.

37. Goldammer. Emberiza citrinella (L.) Gulsparf. Keltasirkku.

Nyl. März 24. Helsingfors- S. Sav. März 12. S:t Michel, mehrere Exx. (Nordström).

Lad. Kar. " — Kexholm, häufig auf den Landstrassen. Lapp. Apr. 4. Muonio.

 $Brutgesch\"{a}ft.$ Lad. Kar., Sortavala, am 29. Mai Nest mit 5 Eiern (Jääskeläinen).

38. Rohrammer. Emberiza schoeniclus (L.) Säfsparf. Pajusirkku.

Ankunft.

N. Tav. Mai 13. Karstula.

N. Kar. " 11. Pielisjärvi-Nurmijärvi, 5 oder 6 Exx. (Wasastjerna). Lapp. " 19. Muonio.

Brutgeschäft.

Lad. Kar. Juni 1. Sortavala, Nest mit 5 Eiern (Jääskeläinen).Lapp. , 12. Muonio, Nest mit 5 Eiern.

39. Waldammer. Emberiza rustica Pall. Videsparf. Pohjansirkku.

N. Kar., Pielisjärvi-Lieksa, am 3. Mai 3 Exx.

 $40.\;$ Weissbinden-Kreuzschnabel. Loxia leucoptera Gmel. Bändelkorsnäbb. Kirjasiipi-käpylintu.

Nyl., Borgå, am 24. März wurden 2 Exx. gesehen.

41. Hakengimpel. **Pinicola enucleator** (L.) Tallbit. Tavio-kuurna.

Lapp., Muonio, am 6. Juni Nest mit 4 Eiern.

- 42. Dompfaff. Pyrrhula pyrrhula (L.) Domherre. Punatulkku.
- Nyl. Apr. 28. Lovisa, zeigt sich noch in den Gärten der Stadt, paarweise fliegend.

" Oct. 28. Lovisa, kleine Flüge in der Stadt.

- S. Sav. Nov. 3. S:t Michel, in der Stadt erschienen (Nordström).
- 43. Karmingimpel. Carpodacus erythrinus (Pall.) Rödhämpling. Punavarpunen.

S. Sav., Sääminki, 27. Juni, beobachtet (Sevón). Lad. Kar., Sortavala, 22. Juni, nistend (Cantell).

 $44.\ \ \,$ Erlenzeisig. Chrysomitris spinus (L.) Grönsiska. Vihre
ä varpunen.

Ankunft.

Ål. März, Ende. Åland (Ztg) | Nyl. März 23. Helsingfors-Hög-Nyl. 22. Lovisa, scharenweise fliegend. | Nyl. März 23. Helsingfors-Högholm, 3 Exx. (K. E. Kivirikko).

Nyl. März 30. Esbo-Alberga, kleine Fluge (R. Palmgren).

" Apr. 14. Pyttis. S. Say, Mai 10: Sit Michel. N. Kar. Mai 3. Värtsilä.

" 18. Pielisjärvi-Lieksa.

N. Öst " 1. Uleåborg-Hietasaari, Schwarm

(Y. Hellman).

45. Hänfling. Acanthis cannabina (L.) Hämpling. Hempponen.

Ankunft.

Nyl. Mai 1. Ekenäs (H. Krank). Lad. Kar. Apr. 29. Sortavala "2. Borgå. (Jääskeläinen).

 $Brutgesch\"{a}ft.$ Sortavala, am 7. Juni Nest mit 5 Eiern (Jääskeläinen).

46. Birkenzeisig. Acanthis linaria (L.) Gråsiska. Urpiainen.

Ankunft.

Nyl. März 15. Pyttis.
" " 28 Helsingfors-Hög-holm (K. E. Kivirikko).

Nyl. Apr. 6. Lovisa. S. Sav. März 4-11. S:t Michel (Nordström).

yttis. Lad. Kar. März 31. Sortavala.
elsingfors-Hög-holm (K. E. Kivi-N. Sav. Mai 25. Kuopio, gros-

N. Sav. Mai 25. Kuopio, gros se Scharen noch vorhanden.

Nest mit 6 Eiern in Lapp., Muonio, am 21. Juni.

Im Herbst erschienen die Birkenzeisige am 11. Oct. in Lovisa und am 17. Oct. in S:t Michel (Nordström).

47. Stieglitz. Carduelis carduelis (L.) Steglitz. Tikli.

Nyl. Mai 8. Helsingfors (Poppius).

. 13. Borgå.

Lad. Kar. Apr. 13. Sortavala 2 Exx. (Jääskeläinen).

" 18. Kexholm, ein Paar.

In Kexholm wurden auf einer Strasse der Stadt am 26. Juni zwei Stieglitze gesehen, die einander jagten; wahrscheinlich nistete die Art in der Gegend.

48. Grünling. Chloris chloris (L.) Grönfink. Vihreä varpunen. Überwinternde Exx. wurden in Borgå und Ekenäs beobachtet. In Ekenäs kamen 3 ♀ und 1 ♂ von Mitte Dec. 1906 bis Mitte März 1907 vor (Fabritius).

Ankunft: N. Kar, Värtsilä, am 4. April. — Lad. Kar., Kexholm, Mitte April singend gehört.

Nest in Lad. Kar., Sortavala, am 2. Juni gefunden (Cantell).

Der Grünling wurde auch beobachtet am 30. April im Bot. Garten in Helsingfors (Poppius) und am 28. Juni (ein \circlearrowleft) in Kuopio (Suomalainen).

49. Buchfink. Fringilla coelebs L. Bofink. Peipponen.

Überwinterung. Nyl., Borgå, während des Winters wurden ein Paar Buchfinken in Gesellschaft von Kohlmeisen, Grünlingen, Dompfaffen und Sperlingen gesehen.

$Ank \, unft:$

SW. F.	März	30.	Korpo-Utö;	Nyl	Apr.	3.	Ekenäs ♀
			Kimito.				(Fabritius).
"	Apr.	2.	Sagu (Henrics-	,,	27	9.	Borgå ♀;
			son); Mynä-				Borgnäs.
			mäki-Tiuvais,	,,	17	1 0.	Borgå-Veckjärvi.
			grosse	17	22	11.	Pyttis \circlearrowleft .
			Schwärme;	22	59	17.	Tvärminne ♀.
			Wihti-	11	71	25.	Kyrkslätt-
			Haitis o.				Bobäck ♀.
"	**	3.	Salo \bigcirc .	39	22	27	Lovisa ♀.
"	,,	6	Pargas-Müst-	S. Kar.	99	7.	Pyhäjärvi-
			fin ♂; Wihti-				Sortanlahti o.
			Haitis \mathcal{Q} .	**	39	11.	Heinjoki (L. Y.)
"	"	9.	Finby-Falkberg.	Sat.	**	1.	Karkku-
,,	22	17.	Pargas-Must-				Aluskylä 💍.
			fin Q .	27	29	3.	Tammerfors o
"	19	25.	Salo ♀.				u. ♀.
Nyl.	$M\ddot{a}rz$	9.	Helsingfors, 3	n	27	5.	Tyrvää-
			Exx. (Ztg.).				Vammala 💍.
**	**	13.	Helsingfors	"	99	9.	Ruovesi-Tapio \circlearrowleft .
			mehrere \circlearrowleft	,,	91	18.	Hämeenkyrö-
			(R. Palmgren).				Uskela ♂ u. ♀.
"	"	26.	Tvärminne \circlearrowleft .	27	22	25.	Tyrvää-
**	**	28	Borgå ♂;				Vammala Q .
			Lovisa.	S. Tav.	März	31.	Hattula-Pelkola
29	11	31.	Ekenäs 🍼				einzelne \mathcal{O} .
			(Fabritius).	"	Apr.	3	Tavastehus \circlearrowleft .

S. Tav. A	pr.	7.	Hattula-Pelkola	N. Sa	v.	Apr.	19.	Pielavesi-
			mehrere \bigcirc .					Rannankylä ♀.
27	99	10.	Kuhmoinen-	27		22	21.	Pielavesi-
,,			Harmois o.					Niemelä 🗸.
27	27	13.	Hausjärvi (Arho).	22		22	23.	Iisalmi 💍.
S. Sav.	77	3.	S:t Michel J.	22		99	25.	Pielavesi-
37	22		Nyslott o,					Niemelä ♀.
			gehört.	22		22	28.	Kuopio ♀.
27	27	14.	Nyslott ♀,	22		27	29.	Kuopio-Hami-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			gesehen.					nanlahti ♀;
12	17	15.	S:t Michel Q.					Iisalmi ♀.
Lad. Kar.			Kexholm ~.	N. K	ar	• 12	9.	Pielisjärvi-Kirch-
37	22		Sortavala 7					dorf ♂; am 20.
,	,,		(Jääskeläinen).					April häufig.
22 .	27	15.	Kexholm ♀.	22		77	12.	Värtsilä 💍.
**	79		Sortavala ♀	,,		22		Juuka ♂ u. ♀.
"	~		(Cantell).	,,		"		Liperi-Käsämä 🍼
S. Öst M	Iärz	29	Sideby (Laurin).	"		~	•	и. Q.
	22	31	Lappfjärd 👌 ;	"		,,	26.	Suojärvi-Anna .
"	,,		Replot 1 7.	,,		"		Pielisjärvi ♀.
,, A	Apr.	2.	Isokyrö-Ikola &.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		"		Värtsilä ♀.
27	22		Vasa o.	M. Ö	st.			Nykarleby ~.
**	22		Lappfjärd ♀;	27		Apr.		Esse-Öfveresse o
"	"		Replot ♀.	,,,		"		Esse-Öfveresse \mathbb{Q} .
77	77	9.	Vörå-Kovjoki &.	Kaj.	Ös			Suomussalmi 7.
n	"		Isokyrö-Ikola ♀.	,,,		19		Kuhmoniemi-
"	22		Mustasaari-			7		Korpisalmi J.
	-		Korsholm.	22		27	23.	Suomussalmi o.
N. Tav.	97	9.	Karstula.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		"		Hyrynsalmi J.
27	22	16.	Saarijärvi-	99		Mai		Kuhmoniemi-
			Pajuniemi	"		•		Korpisalmi ♀;
			einzelne 🚜.					Puolanko o.
27	52	23.	Saarijärvi-	.,		27	6.	Puolanko Q.
"			Pajuniemi	N. Č	st.	Apr.		Uleåborg 💍
			mehrere \mathcal{O} .			•		(Remes).
,,,	22	27.	Saarijärvi-	,,		**	26.	Öfvertorneå-
			∙Pajuniemi ♀.	"				Portimojärvi o
N. Sav.	22	1.	Kuopio-Haminan-					u. ♀.
			lahti 🚜.	Kuu	s.	99	29.	Kuusamo-Kirch-
27	99	9.	. Karttula 🕜.			,,		dorf ♂ u. ♀.
n	22		. Kuopio 👸.	Lap	р.	Mai	9.	Muonio 7.
77	"		. Pielavesi-		-			Ü
			Rannankylä 🗸.					
			- 0					

Zusammenfassung. Die Amplitude war 9. März (Helsingfors)

— 9. Mai (Muonio). Nach der Ankunft der ersten Männchen in
der zweiten Pentade des März folgte eine längere Pause. Erst am
26. März begann eigentlich der Einzug der Männchen und zwar anfangs recht allmählich. Die Mehrzahl der Ankunftsdaten fielen
den April. Die Hauptzeit der Männchen dauerte vom 26. März bis
12 April, während die zweite Hälfte des April hauptsächlich Ankunftsdaten für weibliche Exemplare aufweist.

Im Allgemeinen wurden die inneren resp. östlichen und nördlichen Teile des Landes später besiedelt als die südlichen und westlichen. Nach dem ersten Ankunftsdatum geordnet folgen die Provinzen in folgender Weise auf einander: Nyl. (9. III), M. Öst. (27. III), S. Öst. (29. III), SW. F. (30. III), S. Tav. (31. III). Sat. und N. Savo (1. IV), S. Savo (3. IV), N. Öst (6. IV), S. Kar. und Lad. Kar, (7. IV), N. Tav., N. Kar., Kaj. Öst. und Lapp. (9. IV), Kuus. (29. IV).

$Brutgesch\"{a}ft:$

Lad. Kar. Mai 30. Sortavala, Nest mit 5 Eiern (Jääskeläinen).N. Öst. Juni 2. Uleåborg, Nest mit 5 Eiern (Merikallio).

Abzug.

SW. F.	Sept.	28.	Mynämäki-Tiu-	S. Tav.	Sept.	23.	Tavastehus.
			vais, Tausende	S. Sav.	$\mathrm{Nov.}$	11.	S:t Michel, 1
			von Individuen.				Ex. noch ge-
77	Oct.	4.	Salo.				sehen (Nord-
22	27	15.	Korpo-Utö				ström).
**	,,	23.	Mynämäki-Tiu-	Lad, Kar	. Oct.	8.	Sortavala.
			vais, Schar	S. Öst	77	30.	Lappfjärd.
			von 50-60 Exx.	N. Tav.	Sept.	27.	Saarijärvi-
Nyl.	Sept.	15.	Lovisa, Haupt-				Pajuniemi.
			trupp.	N. Kar.	99	10.	Suojärvi-Anna.
57	77	26.	Pyttis, letztmals	22	27	27.	Värtsilä.
			gesehen.	M. Öst.	Oct.	6.	Esse-Öfveresse.
"	**	28.	Lovisa, die letzten.	Kaj. Öst.	Sept.	14.	Kuhmoniemi-
22	Oct.	13.	Tvärminne.				Korpisalmi
S. Tav	. "	18.	Sysmä-	N. Öst.	27	25.	Öfvertorneå-
			Nuoramois.				Portimojärvi.

Amplitude: 10 Sept. (Suojärvi) — 11. Nov. (S:t Michel).

50. Bergfink. Fringilla montifringilla L. Bärgfink. Härkäpeipponen.

Überwinterung. Ein ♂ und zwei ♀ hielten sich von Mitte Dezember 1906 bis Mitte März 1907 in Ekenäs auf. Sie erschienen täglich in dem Garten des Beobachters und nahmen vom Fensterbrett Futter. Auch während des Winters 1905—1906 kamen Bergfinken zusammen mit Buchfinken und Grünlingen in der Stadt vor (Fabritius).

Ankunft:

Nyl.	Apr.	17.	Helsingfors,	N. Sav.	Apr.	28.	Kuopio-
			viele (Meri-				Haminanlahti.
			kallio).	,,	Mai	6.	Karttula.
Lad. Kan	r. "	9.	Sortavala	N. Kar.	27	7.	Värtsilä.
			(Jääskeläinen)	N. Öst.	77	13.	Uleåborg
N. Sav.	\mathbf{Mai}	15.	Kuopio, grosse				(Remes).
			Trupps flogen	Kaj. Öst	. ,,	5.	Suomussalmi.
			gegen Norden.	r.app.	77	13.	Muonio.

Brutgeschüft: Muonio, Nest mit 7 Eiern am 18. Juni. Abzug: N. Kar., Pielisjärvi-Lieksa, am 16. Sept.

 ${\bf 51.}$ Haussperling. Passer domesticus (L.) Hussparf Kotivarpunen.

 $Brutgesch\"{aft}.$ In Lovisa die 1. Brut flugfähig am 14. Juni, die 2. am 26. Juli.

 ${\bf 52.}$ Feldsperling. ${\bf Passer\ montanus\ (L.)}$ Pilfink. Metsävarpunen.

N. Kar. Liperi. Im Kirchdorf wurden 3 Exx. am 15. Juni gesehen (Suomalainen).

53. Star. Sturnus vulgaris L. Stare, Kottarainen.

Ankunft:

 Ål.
 März 22.
 Mariehamn; Brändö (Mäkelä).
 SW. F. März 28.
 Korpo-Utö; Salo; St. Karins-St. Kulho; Vihti.

 SW. F. " 24.
 Finby-Falkberg. Kulho; Vihti.
 " 29. Åbo. " 30. Kisko-Toija.

 vais; Kimito. " 30.
 " 31. Sagu (Henricsson).

Nyl.	März	12.	Hangö.		22	22	27.	Replot, 2 Exx.;
27	22	14.	Tvärminne, ein-					Isokyrö-Ikola.
			zelne.		22	22	29.	Lappfjärd.
22	22	23.	Ekenäs einzelne.		99	`Apr.	2.	Replot, 3 Exx.
27	77	25.	Tvärminne.	N.	Tav.	$M\ddot{a}rz$	27.	Karstula.
22	77	26.	Lovisa.		99	99	30.	Saarijärvi-
22	22	27.	Ingo (Alcenius);					Rahkola.
			Kyrkslätt-Bo-		17	Apr.	3.	Saarijärvi-
			bäck; Helsing-					Pajuniemi.
			fors 8 Exx.		99	. 99	8.	Jyväskylä
			(R. Palmgren):					(Mansnerus).
			Helsingfors-	N.	Sav.	Apr.	1.	Karttula.
			Gammelstad		77	*7	2.	Kuopio.
			(Ztg); Aggelby;		59	99	9.	Pielavesi-
			Borgå.					Niemelä.
**	**	28.	Borgnäs; Pyttis-		77	17		Iisalmi.
			Vesterby.		22	99	21.	Kuopio-Hami-
"	"	30.	Thusby (Seger-					nanlahti
			stråle).					(Karppanen).
"	Apr.		Pyttis.		77	77	27	Kuopio, Haupt-
	März		Heinjoki (L. Y.).					trupp
Sat.	77	27.	Karkku-Aluskylä;	3.7			_	(Karppanen).
			Hämeenkyrö-	N.	Kar.	77		Värtsilä.
			Uskela.		77	99	15	Suojärvi-Anna;
**	n		Tyrvää-Vammala.					Liperi-Käsämä.
" ~	71		Ruovesi-Tapio.		77	77	17.	Pielisjärvi-
S. Tav	* 59 '	27	Tavastehus.	3.5	ä	3.5	0.0	Lieksa.
**			Hattula-Pelkola.	WL.	Ost.			Nykarleby.
"	Apr.	2.	Sysmä-Nuora- mois.	37	öst.	22		Esse-Öfveresse.
		17				" A ~~~		Uleåborg (L. Y.) Inari-Pakana-
# C C	" "		Kuhmoinen. S:t Michel, viele.	Litt	pp.	Apr.	θ.	joki, 1 Ex.
	Marz		Nyslott 1 Ex.					wurde ge-
27	Apr.		Nyslott, 2 Exx.					schossen und
T.od K	-		9. Kexholm.					an das Zool.
	ar. Iua		0. Sortavala 3 Exx.					Museum der
"	77		(Cantell).					Universität in
	Αŗ	m	1. Pyhäjärvi-					Helsingfors
17	111	,1.	Sortanlahti.					von Herrn
29			2. Sortavala 2 Exx.					Wænerberg
77	57		(Jaäskeläinen).					eingeschickt.
S. Öst.	Mä	rz 2	5. Vasa-Gerby;					3
			Mustasaari-					
			Korsholm;					
			Vörå-Kovjoki.					
			v		_			

Bidrag t. känned. af Finl.

Zusammenfassung. Die Amplitude war 12. März (Hangö) — 27. Apr. (Kuopio). Nach der Ankunft der ersten Vorzügler in der dritten Pentade des März folgte eine beträchtliche Pause. In der Zeit zwischen 22. und 26. März vermehren sich die Daten und culminieren am 27. und 28. In diesen Tagen verbreitete sich der Starlängs der westlichen Teile des Landes bis Uleåborg hin. Die östlichen Teile des mittleren Finland wurden erst anfangs April besiedelt. Am 9. April wurde ein Ex. in Lappland bei Pakanajoki erlegt. Die Reihenfolge der Provinzen, nach dem ersten Ankunftsdatum geordnet, gestaltete sich folgendermassen:

Nyl. (12. III), Ål. (22. III), SW. F. (24. III), S. Öst. und S. Sav. (25. III), M. Öst. (26. III), Sat., S. Tav. und N. Tav. (27. III), N. Öst. (28. III), S. Kar. und Lad. Kar. (29. III), N. Sav. (1 Apr.), N. Kar. (5 Apr.) und Lapp. (9. Apr.).

Brutgeschäft. Kuopio, am 19. Juni: die Jungen fliegen (Suomalainen).

Abzug.

S. Tav. Oct. 26. Tavastehus.
S. Öst. " 25. Lappfjärd. N. Tav. Sept. 24. Saarijärvi.
M. Öst. Oct. 2. Esse-Öfveresse.

 $\begin{tabular}{ll} Geographische Verbreitung. Der Star hat während der letzten \\ Jahre sein Brutgebiet gegen Norden hin ausgedehnt! \end{tabular}$

N. Sav. Der Landwirt S. J. Hornborg in Pielavesi-Lammassalo schreibt: die Stare erschienen in dieser Gegend als Brutvögel zum ersten Mal vor 6 Jahren und sind jetzt (1907) ziemlich zahlreich hier.

N. Öst., Uleåborg: Stare erschienen zum ersten Mal am 15 April 1903 in einem Garten und nisteten in aufgehängten Starkasten. Seitdem kommen die Stare jedes Jahr, gewöhnlich ca. 15. April (1907 schon am 28. März) zurück und jedesmal waren sie zahlreicher als früher. Im Frühjahr 1907 waren 7 Starkasten besetzt. (Agda Lahdenperä in L. Y., 1907, p. 212).

N. Öst., Kemi: in dieser nördlich von Uleåborg liegenden Stadt nistete der Star zum ersten Mal im Jahre 1907 (A. Rantaniemi in L. Y., 1907, p. 213). Die geographische Position der Stadt Kemi ist 65° 44′ n. Br.; 24° 32′ östl. v. Greenw.

Lapp, Kittilä: Ein Paar nistete hier an einem Hause (J. Montell, Meddelanden af Societas pro fauna et flora fennica. H. 34, p. 40).

54 Pirol. Oriolus oriolus (L.) Gylling. Kuhankeittäjä. Lad. Kar., Kexholm, am 17. Mai gehört.

S. Tav., Kuhmoinen, am 18. Juni 3 Exx. gesehen und gehört (K. M. L.).

- 55. Tannenhäher. Nucifraga caryocatactes (L.) Nötkråka. Pähkinähakkinen.
- S. Tav., Asikkala—Urajärvi, am 23. Sept. gesehen. Auch in Nyl, an der Zool. Station zu Tvärminne, kam die Art während des Herbstes vor (J. A. Palmén).
- 56. Rotschwanzhäher. **Perisoreus infaustus** (L.) Lafskrika. Kuusanka.

N. Sav., Kuopio, in der Umgebung der Stadt am 17. Sept. 1 Ex. geschossen (Suomalainen).

 $Brutgesch\"{a}ft.$ Lapp., Muonio, Nest mit 3 Eiern am 15. Apr. gefunden

57. Elster. Pica pica (L.) Skata. Harakka.

Brutgeschäft.

N. Öst. Uleåborg, Mai 6. Nest mit 8 Eiern (Merikallio). Lapp., Muonio, Apr. 29. Nest mit 7 Eiern.

58. Dohle. Coloeus monedula (L.) Kaja. Naakka.

Ankunft.

Nyl.	$M\ddot{a}rz$	26.	Lovisa, einige	S. Sav.	Apr.	30.	Nyslott, viele.
			Durchzügler.	Lad. Kar.	$M\ddot{a}rz$	-	Kexholm,
**	22	31.	Borgå.				Durchzügler.
**	Mai	5.	Pyttis.	N. Sav.	Apr.	14.	Karttula, 1 Ex.
S. Sav.	$M\ddot{a}rz$	26.	Nyslott, 4 Exx.				erlegt.
22	27	27.	S:t Michel, 1 Ex.	79	99	24.	Iisalmi,
	Apr.	20.	Nyslott, 1 Ex.				Durchzugler.

Abzug.

Nyl. Sept. 23. Pyttis.

" Oct. 28-29 Lovisa, scharenweise über die Stadt fliegend.

59. Saatrabe. Corvus frugilegus L. Råka. Peltovaris.

Ankunft.

N. Sav. Apr. 14. Kuopio-Haminan- N. Kar. Mai 5. Pielisjärvi, lahti. 18 Exx. 17. Iisalmi. Lapp. Apr. 12. Muonio.

Ausserdem wurden Saatraben im Frühjahre beobachtet: in Nyl., Esbo, 2 Exx. am 19. Mai (Poppius) und in Lad. Kar., Kexholm, am selben Tag, 10 Exx. gegen N fliegend.

Nach den Beobachtungen von J. Montell kam der Saatrabe während der letzten 5 Jahre alljährlich in Lapp., Muonio, vor; während des Sommers 1907 war er besonders häufig (Medd. Soc. pro f. et fl. fenn., H. 34, p. 39 u. 203).

Brutgeschäft. Lapp., Kittilä—Korkalo, ein Nest mit 4 Eiern wurde Mitte Mai gefunden. Wahrscheinlich nistete die Art auch in Muonio (Montell).

60. Nebelkrähe. Corvus cornix L. Kråka. Varis.

Überwinterung.

Ål. Mariehamn.

Nyl. Ekenäs einzeln; Lovisa;
Pyttis 2 Exx.

S. Kar. Pyhäjärvi-Sortanlahti.
Sat. Hämeenkyrö-Uskela, einzelne.

S. Tav. Asikkala; Sysmä-Nuoramois

Die Orte, wo überwinternde Nebelkrähen beobachtet wurden, liegen alle also in Süd- und Mittel-Finland. Der nördlichste Ort war Saarijärvi.

Ankunft.

SW. F.	Febr.	1.	Korpo-Utö.	Sa	t.	März	3.	Hämeenkyrö-
27	,,	9.	Kisko-Toija.					Uskela.
22	$M\ddot{a}rz$	10.	Vihti-Haitis.	วา		17	24.	Ruovesi-Tapio.
19	77	11.	Pargas-Mustfin.	S.	Tav.	22	27.	Kuhmoinen-
,,	27	25.	Finby-Falkberg.					Harmois.
Nyl.	Jan.	24.	Pyttis, Schar.	S.	Öst.	39	3.	Replot.
"	${ m M\ddot{a}rz}$	2.	Ekenäs.		29	22	23.	Lappfjärd; Vörå-
**	22	3.	Helsingfors, ein					Kovjoki.
			Paar.	N.	Tav.	77	8.	Saarijärvi-
**	22	17.	Helsingfors, ei-					Pajuniemi.
			nige (R. Palm-		22	29	15.	Karstula.
			gren).	N.	Sav.	22	1.	Iisalmi.
27	99	20.	Pyttis-Vesterby.		22	22	20.	Karttula.
57	22	25.	Borgå.	N.	Kar.	99	15.	Liperi.
**	22	27.	Kyrkslätt-	-	99	Apr.	5.	Junka.
			Bobäck.	M.	Öst.	März	23.	Esse-Öfveresse.

Kaj. Öst.	$M\ddot{a}rz$	23.	Kuhmoniemi-	N. Öst	März	25.	Öfvertorneå-
			Korpisalmi.				Portimojärvi.
59	99	28.	Hyrynsalmi.	,,,	22	29.	Rovaniemi-
22	Apr.	1.	Suomussalmi.				Muurola
**	92	14.	Puolanko.	Kuus.	Apr.	9.	Kuusamo-
N. Öst.	Febr.	15.	Uleåborg, ei-				Kirchdorf.
			nige (Y. Hell-	Lapp.	$M\ddot{a}rz$	22.	Kemijärvi.
			man).	22	77	30.	Muonio.

Zusammenfassung. In die zwei ersten Monate des Jahres fallen nur 4 Ankunftsdaten. Im März verbreitete sich die Nebelkrähe fast über das ganze Gebiet. Die spärlichen Aprildaten beziehen sich ausschliesslich auf N. Kar., Kaj. Öst. und Kuusamo, also auf die nordöstlichsten Teile des Gebiets.

Beginn des Nestbaus:

SW. F.	Apr.	15. Kisko-Toija.	S. Öst. Apr. 2. Replot.
Nyl.	22	10. Pyttis-Vesterby.	N. Tav. März 30. Saarijärvi-
**	51	11. Borgå-Veckjärvi.	Pajuniemi.
Sat.	59		M Öst. Apr. 3. Esse-Öfveresse.
		Uskela.	N. Öst. " 17. Öfvertorneå-
S Tav.	27	10. Tavastehus.	Portimojärvi.
N. Kar.	7"	 Suojärvi-Anna. 	Kaj. Öst. " 18. Puolanko.
S. Öst.	12	 Vörå-Kovjoki. 	

Zeit des Eierlegens.

Lad. Kar. Mai 4. Sortavala, Nest mit 4 Eiern (Jääskeläinen).
N. Öst. " 6. Uleåborg, Nest mit 6 Eiern (Merikallio).
Lapp. " 7. Muonio, Nest mit 4 Eiern.

Beginn der Strichzeit.

Es sei hier bemerkt, dass die Eintragshefte den Beobachtern die Frage zur Beantwortung stellen, wann die Nebelkrähen anfangen scharenweise umherzustreifen d. h. wann die Strichzeit begonnen hat? Die untenstehenden Daten sind indessen ein Gemisch von Strichdaten u. a. Angaben über beobachtete Nebelkrähenscharen.

SW. F	C. Oct.	21.	Korpo-Utö.	j	S.	Tav.	Juni	12.	Sysmä-
Nyl.	Juli	20.	Lovisa.						Nuoramois.
-	Sept.	12.	Borgå-Veckjärvi.	Ì	S.	Öst.	Aug.	25.	Replot.

S. Öst. Sept. 15. Isokyrö-Ikola.
 " 29. Vörå-Kovjoki.
 N. Kar. " 3. Värtsilä.

M. Öst. Aug. 17. Esse-Öfveresse.

M. Ost. Aug. 17. Esse-Orveresse Kaj. Öst. Juni 26. Kuhmoniemi-Korpisalmi. Kaj. Öst. Sept. 5. Puolanko. N. Öst. Aug. 8 Rovaniemi-Muurola.

" Sept. 10. Öfvertorneå-Portimojärvi.

Markierte Nebelkrähen.

Drei Nebelkrähen, die von der Rossittener Vogelwarte mit Fussring gekennzeichnet waren, wurden erlegt. Es waren die folgenden: Nr. 626. S. Tav., Jaala, am 15. Juni (Ztg.).

Nr. 635 S. Sav., Rantasalmi, am 20. April (L. Y., 1907, p. 136).
Nr. 690. Nyl., Sjundeå, am 12. Mai (Ztg.).

61. Raubwürger. Lanius excubitor L. Varfågel. Isompi lepinkäinen.

Ankunft.

S. Sav. Febr. 16. S:t Michel, 1 Ex. N. Sav Apr. 28. Kuopio. (Nordström). Lapp. Mai 5. Muonio.

 $N\!e\!st$ mit 8 etwas bebrüteten Eiern wurde in Muonio am 28. Mai gefunden.

Abzug.

S. Tav. Dec. 20. Asikkala, 1 Ex. geschossen.

N. Sav. Sept. 12. Kuopio-Haminanlahti.

62. Neuntöter. Lanius collurio L. Vanlig törnskata. Pienempi lepinkäinen.

Ankunft. Nyl, Borgå, am 16. Mai.

63. Seidenschwanz Bombycilla garrulus (L.) Sidensvans. Tilhi.

Frühjahrswanderung.

Nyl. Febr. 16-17. Borgå-Sköldvik, | Lad. Kar. Apr. 12. Kexholm. ein Flug (F. J.). | M. Öst. , 30. Nykarleby. S. Sav. März 19. S:t Michel.

In Sortavala wurden Seidenschwänze noch am 27. Mai gesehen. Nat. o. folk, H. 67, N:o 3.

Herbstwanderung.

SW. F. Nov. 6. Korpo-Utö.	S. Öst. Oct. 12. Lappfjärd.
" 8. Salo.	" Nov. 17. Replot.
" Ende. Vihti-Haitis,	N. Tav. Oct. 20. Saarijärvi-
kleine Flüge.	Pajuniemi.
Nyl. Oct. 12 Pyttis.	N. Sav. " 9. Karttula.
"	N. Kar. " 17. Värtsilä.
" " 26 Tvärminne	Kaj. Öst. " 1. Suomussalmi.
Sat. Dec. 31. Hämeenkyrö,	" " 17. Kuhmoniemi-
1 Ex.	Korpisalmi.
S. Sav. Oct. 2. S:t Michel	N. Öst. " 1. Öfvertorneå-
(Ehnberg).	Portimojärvi.

Zusammen fassung. Die Herbstwanderung fand im October statt. Im November erschienen die Seidenschwänze in SW. F. und in Replot.

Von Kuopio wurde vermeldet, dass die Seidenschwänze ausblieben und zwar meint der Beobachter, dies sei infolge des Mangels an Beeren des Vogelbeerenbaums (Sorbus aucuparia) geschehen.

64. Grauer Fliegenschnäpper. Muscicapa grisola L. Grå flugsnappare. Harmaa paarmalintu.

Ankunft.

 $Brutgesch\"{a}ft.$ Lad. Kar., Sortavala, am 21. Juni Nest mit 4 Eiern (Jääskeläinen).

65. Trauerfliegenschnäpper. **Muscicapa atricapilla** L. Svart och hvit flugsnappare. Mustankirjava paarmalintu.

Ankunft.

Nyl.	Mai	15.	Ekenäs (Krank).	N. Kar.	Mai	12.	Värtsilä.
77	55	24 .	Borgå.	N. Öst.	29	21.	Uleåborg-
S. Sav.	22	11.	S:t Michel				Kraaseli
			(Nordström).				(Merikallio).
Lad. Ka	r. "	17.	Kexholm.				

66. Rauchschwalbe. **Hirundo rustica** L. Ladusvala. Haarapääskynen.

Ankunft.

Å1 Mai 11. Mariehamn. S. Öst. Mai7. Lappfjärd; Mustasaari-3. Salo. SW. F. Korsholm. 5. Kisko-Toija. 9. Vihti-Haitis. 8. Replot. 11. Åbo. 10. Isokyrö-Ikola. N. Tav. 10. Saarijärvi-Rah-12. Mynämäki-Tiuvais. kola, Durch 26. Korpo-Utö. zügler. Nyl. 3. Ekenäs (Krank). 12. Saarijärvi-Pajuniemi, Durch-4. Borgå. 7. Borgå-Veckjärvi; zügler. Tvärminne. N. Sav. 5. Pielavesi-8. Pyttis. Lammassalo. 9. Esbo (B Poppius). 8. Pielavesi-10. Lovisa. Niemelä. 11. Bobäck. 9. Kuopio, 19. Borgnäs. einzelne. S. Kar. 4. Pyhäjärvi-10. Pielavesi-Sortanlahti. Rannankvlä. 3. Tyrvää-Vammala, Sat. 11. Karttula; Kuoeinzelne. pio, mehrere. 7. Tyrvää-Vammala, 12. Kuopiomehrere. Haminanlahti. 11. Ruovesi-Tapio. N. Kar. 11. Värtsilä; Liperi-S. Tav 3. Tavastehus, Käsämä: Pie-2 Exx. lisjärvi-Laak-4. Hattula-Pelkola: sovaara. Svsmä-19. Ilomantsi. Nuoramois. 20. Pielisjärvi-8. Kuhmoinen-Lieksa. Harmois. M. Öst. 12. Esse-Öfveresse. S. Sav. 3. Nyslott, 1 Ex. Kaj. Öst. 22. Hyrynsalmi. 4. Nyslott, 2 oder 3 7. Suomussalmi. Juni ,, Exx. 12. Kuhmoniemi-5. S:t Michel, 2 Exx. Korpisalmi. (Nordström). N. Öst. Mai 19. Uleåborg, 1 Ex. 9. S:t Michel, (Merikallio). mehrere. 23. Rovaniemi-6. Sortavala Lad. Kar. " Muurola. (Cantell). Kuus. Juni 7. Kuusamo. 7. Kemijärvi. 10. Kexholm. Lapp.

Zusammenfassung. Die Amplitude war 3. Mai-7. Juni. Schon am ersten Ankunftstag, d. 3. Mai, wurde die Rauchschwalbe in 5 Provinzen Süd- und Mittel-Finlands beobachtet (SW. F., Nyl., Sat., S. Tav. uud S. Savo). Am 4. Mai wurde die Rauschwalbe in S. Kar., am 5. Mai in N. Sav., am 6. Mai in Lad. Kar. zum ersten Mal gesehen. Danach kommen in der Reihe N. Tav. (10. Mai, Ål. und N. Kar. (11. Mai), M. Öst. (12 Mai), N. Öst. (19. Mai), Kaj. Öst. (22. Mai) und Lapp. (7. Juni). Die Hauptzeiten waren 3. und 4. Mai sowie die Periode 7. bis 12. Mai.

$Brutgesch\"{a}ft.$

Nyl. Juli 28. Lovisa, Jungen flügge.S. Tav. Sept. 8. Kuhmoinen, in einem Viehstalle wurden noch Jun-

ge im Nest beobachtet (Ztg.).

Abzug.

SW. F	. Aug.	30.	Salo.	S. Öst.	Aug.	25.	Vörå-Ko v joki.
"	Sept.	12.	Salo, noch einige	N. Tav.	. Sept	. 8.	Pajuniemi.
			gesehen.	N. Sav.	(Aug.	15.)	Karttula.
"	Oct.	12.	Korpo-Utö.	29	Sept.	6.	Pielavesi-
Nyl.	Aug.	24.	Lovisa.				Niemelä.
77	Sept.	9.	Tvärminne.	77	22	9.	Kuopio.
99	**	16.	Pyttis.	N. Kar.	• 19	4.	Ilomantsi.
	*9	20.	Ekenäs, einzelne	19	27	13.	Värtsilä.
			noch gesehen	44	*)	25.	Värtsilä, einzelne
			(Fabritius).	M. Öst.	- 22	ŏ.	Esse-Öfveresse.
Sat.	"	7.	Ruovesi-Tapio.	Kaj. Ös	t. Aug	. 22.	Puolanko.
S. Tav	. Aug.	30.	Tavastehus;	22	27	25.	Kuhmoniemi-
			Asikkala,				Korpisalmi.
,,	Sept.	13.	Sysmä-	19	Sept.	18.	Hyrynsalmi.
			Nuoramois.	N. Öst.	Aug.	28.	Rovaniemi-
**	22	23.	Asikkala, einzelne				Muurola.
			noch verhan-	27	Sept.	1.	Öfvertorneå-
			den.				Portimojärvi.
			*	Kuus.	Aug.	28.	Kuusamo.

Amplitude: 24. Aug. (Lovisa) — 12. Oct. (Korpo-Utö).

 $\,$ 67. Hausschwalbe. Chelidonaria urbica L. Hussvala. Räystäspääskynen.

Ankunft.

Ål.	Mai 1	1. Mariehamn.	S. Sav.	Mai	9.	S:t Michel,
SW. F.	27	6. S:t Karins-Kulho.				2 Exx.
22	"	7. Sagu (Henrics-				(Nordström).
,,		son).	Lad. Kar	r. "	9.	Kexholm,
•9	27	8. Åbo, 2 Exx.		"		1 Paar.
		(Passén).	27	17	11.	Kexholm, viele.
27	, ,	9. Kimito.	S. Öst.	29	4.	Vörå-Kovjoki.
97		5. Salo.	27	77		Vasa-Vasklot
27		0. Korpo-Utö.				(Pomelin).
Nyl.		4. Lovisa.	77	22	18.	Lappfjärd.
,		Borgå.	77	77		Vasa.
27		6. Helsingfors (Ztg.).	N. Tav.	22	8.	Saarijärvi-Paju-
**		8. Pyttis, 1 Ex.		,,		niemi. einige.
•,		9. Ekenäs (Fabri-	77	22	10.	Saarijärvi-Paju-
	-	tius); Kerava	,,,	-		niemi, mehre-
		(Pekkola).				re; Karstula.
17	,, 1	0. Pyttis.	N. Sav.	22	7.	Iisalmi.
27		1. Kyrkslätt-Boback.	22	"	11.	Kuopio.
27		7. Borgå-Veckjärvi.	77	22	13.	Kuopio-
S. Kar.	**	4. Pyhäjärvi-	. "	. "		Haminanlahti.
	.,	Sortanlahti.	N. Kar.	27	4.	Värtsilä.
Sat.	22	1. Hämeenkyrö-	77	"	10.	Liperi-Käsämä.
		Uskela.	77	27	11.	Pielisjärvi-Nur-
22	522	5. Karkku.				mijärvi, 1 Ex
••	29	8. Ruovesi-Tapio,	**	22	19.	Suojärvi-Anna.
		1 Ex.	M. Öst.	22	6.	Nykarleby.
٠,	" 1	1. Tyrvää-Vammala;	27	29	12.	Gamla Karleby
		Ruovesi-Tapio,				(Bengelsdorff).
		mehrere.	77	Juni	5.	Esse-Öfveresse.
>>	" 2	0. Tammerfors.	Kaj. Öst.	Mai	5.	Puolanko,
S. Tav.	27	3. Lahti (M. A. Le-				Durchzügler.
		vander).	77	12	9.	Kuhmoniemi-
	77	8. Hausjärvi (Arho);				Korpisalmi.
		Tavastehus.	29	77	11.	Suomussalmi,
"	57	9. Sysmä-				Durchzügler.
		Nuoramois.	29	22	20.	Hyrynsalmi.
**	" 1	0. Hattula-Pelkola.	22	Juni	3.	Puolanko.
S. Sav.	Mai	4. Nyslott.	Kaj. Öst.	Juni	5.	Suomussalmi.
			-			

N.	Öst.	Mai	12.					10.	Kuusamo.
				(Kytöniemi).		Lapp.	77	4.	Enontekiö.
	22	27	23,	Rovaniemi.		22		6.	Muonio, 3 Ex.
	••	Juni	3.	Öfvertorneå-		12	22	7.	Muonio, mehrere;
				Portimojärvi.	1				Inari Thule.

Zusammenfassung. Die Amplitude war 1. Mai (Hämeenkyrö) — 10. Juni (Kuus.). Am 4. Mai erschien die Hausschwalbe in Nyl., S. Kar., S. Sav., S. Öst., und N. Kar., vorher schon in Sat. und S. Tav. Die Culmination fiel auf die Tage 9., 10. und 11. Mai. Alle Junidaten beziehen sich auf Kaj. Öst., M. Öst., N. Öst. und Lapp.

Die Frostnüchte Ende Mai waren den Schwalben sehr verhängnissvoll, denn an mehreren Orten (Helsingfors-Gammelstad, Esbo-Oittamo, Vihti-Rajaniemi, Kuopio, Vörå-Kovjoki) wurden erfrorene Schwalben gefunden.

Brutgeschäft. In Lovisa wurden die Hausschwalben von Spatzen oft zum Neubau des Nestes gezwungen. Flügge Jungen daselbst am 6. August.

Abzug.

SW. F.	Aug.	30.	Kimito; Salo.	S. Öst.	Sept.	22.	Isokyrö-Ikola.
39	${\bf Sept.}$	8.	Korpo-Utö.	N. Tav	* 22	8.	Pajuniemi.
77	17	14.	Salo, 1 Ex. noch	N. Sav	. ,,	9.	Kuopio, einzelne
			gesehen.				noch gesehen.
Nyl. Aug	. 22. u	25.	Lovisa.	N Kar	. Aug.	22.	Pielisjärvi-
27 27		30.	Pyttis.				Lieksa, versam-
**	Sept.	8,	Tvärminne.				meln sich.
*7	77	7.	Ekenäs	92	Sept.	5.	Värtsilä.
			(Fabritius).	99	99	20.	Suojärvi-Anna.
,,	27	9.	Pyttis, einzelne	M. Öst.	Aug	20.	Esse-Öfveresse.
			noch gesehen.	Kaj. Ös	st. "	20.	Puolanko;
Sat.	Aug.	27.	Hämeenkyrö-				Kuhmoniemi-
			Uskela.				Korpisalmi.
77	Sept.	6.	Tammerfors.	17	77	31.	Suomussalmi.
"	22	7.	Ruovesi-Tapio.	29	Sept.	16.	Hyrynsalmi.
S. Tav.	Aug.	30.	Tavastehus.	N. Öst.	Aug.	29.	Rovaniemi-
77	Sept.	6.	Kuhmoinen.				Muurola.
,,	17	9.	Sysmä-	37	Sept.	1.	Öfvertorneå-
			Nuoramois.				Portimojärvi.
Lad. Kar.	**	3.	Kexholm, zahl-	Kuus.	Aug.	28.	Kuusamo.
			reiche noch	Lapp.	22	23.	Inari-Thule.
			vorhanden.	77	99	26.	Kemijä r vi.

Bidrag, t. känned, af, Finl.

Zusammenfassung. Der Abzug geschah im grössten Teile des Landes in der Zeit zwischen d. 20. Aug. und 9. Sept. Die Amplitude war 20. Aug. (Puolanko) — 22. Sept. (Isokyrö).

68. Uferschwalbe. Clivicola riparia (L.) Backsvala. Törmäpääskynen.

Ankunft.

N. Kar. Juni 6. Pielisjärvi-Lieksa.

N. Öst. " 5. Öfvertorneå-Portimojärvi.

69. Mauersegler. Apus apus (L.) Tornsvala. Tervapääsky.

Ankunft.

SW. F. Mai 20. Abo; Vihti-Haitis. | S. Tav. Mai 24. Sysmä-25. Salo. Nuoramois. Juni 3. Hattula-Pelkola. 30. Korpo-Utö; S:t Karins-Kulho Lad. Kar. Mai 30. Kexholm. (Ingman). Juni 1. Sortavala 2. Pargas-Mustfin. (Cantell). 3. Mynämäki-Tiuvais. S. Öst. Mai 25. Mustasaari-Nyl. Mai 16. Lovisa. Korsholm. 22. Ekenäs (Krank). 29. Isokyrö Ikola. 24. Pyttis. Juni 4. Lappfjärd. 28. Borgå. 8. Replot. Juni 3. Tvärminne. N. Sav. 1. Kuopio. Mai 19. Tyrvää-Vammala. 2. Kuopio-Sat. 59 Juni 3. Tammerfors. Haminanlahti. " 14. Esse-Öfveresse. 14. Hämeenkyrö-M. Ost. Uskela. N. Öst. Mai 20. Rovaniemi-S. Tav. Mai 21. Tavastehus, Muurola.

Zusammenfassung. Die Amplitude war 16. Mai (Lovisa) — 14. Juni (Hämeenkyrö und Esse). Die ersten Provinzen waren Nyl., Sat., SW. F. und S. Tav., die letzten N. Sav. und M. Öst. Die Ankunft fiel hauptsächlich in die zweite Hälfte des Mai und Anfang Juni.

Abzug.

Sat. Sept. 1. Tammerfors.
S. Tav. , 8. Tavastehus.
Lad. Kar. Aug. 28. Kexholm.
S. Öst. Sept. 7. Isokyrö-Ikola.
N. Kar. Aug. 20. Värtsilä.
M. Öst. " 19. Esse-Öfveresse.
N. Öst. " 23. Rovaniemi.

Amplitude 12. Aug. (Lovisa) - 8. Sept. (Tavastehus).

70. Nachtschwalbe. Caprimulgus europæus L. Nattskärra. Kehrääjä.

Ankunft.

Nyl. Mai 24. Ekenäs (Krank). Lad. Kar. " 22. Sortavala (Jääskeläinen).

Abzug, Lad. Kar., in Kexholm wurden am 22. Aug. einige gesehen, aber nicht mehr am 27. und 28. Aug.

71. Wiedehopf. Upupa epops L. Härfågel. Harjalintu.

Lapp., Enontekiö, beim Hetta genannten Dorf wurde 1 Ex. am 13. Sept. geschossen (J. Montell). Ein zweites Ex. wurde am 19. Sept. im Dorf Muoslombolo, an der schwedischen Seite des Flusses Muonio, nicht weit von Muonio-Ylikylä, erlegt (F. J., 1907, S. 346).

- 72. Blauracke. **Coracias garrula** L. Blåkråka. Sininärhi. N. Tav., Pihtipudas-Elämänjärvi, 1 Ex. am 28. Mai erlegt (Ztg.).
- 73. Kuckuck. Cuculus canorus L. Gök. Käki.

Ankunft (Ruf zum ersten Mal gehört).

Ål.	Mai	13.	Mariehamn.	ł	SW.	F.	Mai	11.	Åbo.
SW. I	Ĭ.,	8.	Vihti-Haitis.		22		22	12.	Pargas-Mustfin.
97	27	9.	Kisko-Toija.		Nyl.		27	6.	Pyttis-Vesterby.
37	27	10.	Sagu (Henricsson);		99		27	8	Borgå-Veckjärvi;
			Mynämäki-Tiu-	Ì					Porkala (Ztg.).
			vais; Kimito;		22		19	9.	Ekenäs (Krank).
			Finby-Falkberg;	Ì	22		99	10.	Kyrkslätt-Bobäck;
			Salo.	Ì					Borgnäs.

Bidrag t, känned, af Finl.

Nyl.	Mai	11.	Tvärminne.	N.	Tay.	Mai	12.	Saarijärvi-
27			Borgå; Lovisa:					Pajuniemi.
71	27		Helsinge-Malm		**	22	15.	Karstula.
			(Poppius).		27	77		Saarijärvi-
22	22	21.	Pyttis.		27	77		Rahkola.
S. Kar.	97		Pyhäjärvi-	X.	Sav.	_	12.	Kuopio; Piela-
	77		Sortanlahti.			77		vesi-Niemelä.
Sat.	11	9.	Karkku.		99	12	17.	Pielavesi-
,	. "	12.	Ruovesi-Tapio.		,, .	77		Rannankylä.
"	**		Tyrvää-Vammala;		91	22	20.	Karttula.
"	"		Hämeenkyrö-	N.	Kar.	**	11.	Värtsilä: Liperi-
			Uskela.	1		//		Käsämä.
"	27	20.	Tammerfors.		22		17.	Suojärvi-Anna;
S. Tav.	22	6.	Tavastehus.			-		Pielisjärvi;
22	**	10.	Hausjärvi (Arho);					Ilomantsi.
	, "		Hattula-Pel-		79	- 11	19.	Juuka.
			kola; Sysmä-	М.	Öst.	,,	7.	Nykarleby.
			Nuoramois.		22	91	22.	Esse-Öfveresse.
22	**	11.	Kuhmoinen-Pih-	Ka	ij. Öst	· ,,	21.	Suomussalmi.
			lajalahti (Ztg).		99	99	22.	Kuhmoniemi-
22	97	12.	Kuhmoinen-					Korpisalmi;
			Harmois.					Puolanko.
S. Sav.	29	10.	S:t Michel; Ny-	N.	Öst.	22	22.	Uleåborg
			slott; Sääminki	5				(Remes).
			(Sevón).		99	27	25.	Öfvertorneå-
Lad. Ka	r. "	10.	Kexholm.					Portimojärvi.
22	22	11.	Sortavala		22 .	22 '	26.	Haukipudas (Me-
			(Jääskeläinen).					rikallio); Rova-
S. Öst.	22	20.	Mustasaari-	t				niemi-Muurola.
			Korsholm.	Κυ	ius.	77	24.	Kuusamo-
**	"		Lappfjärd.	t t				Kirchdorf.
27	"		Replot.	La	pp.	Juni		Inari-Thule.
27	Juni	3.	Vörå-Kovjoki.	,	,1	"	5.	Muonio.

Zusammenfassung. Die 1. Pentade des Mai enthält keine Ankunftsdaten Die Amplitude war 6. Mai (Pyttis, Tavastehus) — 5. Juni (Muonio). Die 2. Pentade des Mai enthält Daten aus Nyl., S. Tav., M. Öst., SW. F., Sat., S. Kar. und S. Savo, welche somit die ersten Provinzen waren, wo der Ruf des Kuckucks gehört wurde. Die Tage 10.—12. Mai bezeichnen die Culmination der Ankunft. Die letzten Provinzen waren Kuus., N. Öst. und Lapp.

Ruf zuletzt gehört oder der Kuckuck zuletzt gesehen.

SW. F. Juli 2. Mvnämäki-N. Tav. Aug. 27. Saarijärvi-Tinvais. Pajuniemi. 11. Pargas (Passén). M. Öst. 2. Esse. Oct. 6. Korpo-Utö. Kaj. Öst. Juli 15. Suomussalmi. Juli 17. Lovisa 20. Kuhmoniemi-Nvl. Sept. 20. Esbo. Korpisalmi. Sat. Juli 10. Hämeenkyrö-Aug. 11. Puolanko. Uskela. N. Öst. 24. Rovaniemi-S Tay, Sept. 8. Kuhmoinen-Muurola. Päijälä Sept. 1. Öfvertorneå-

74. Wendehals. Ivnx torquilla L. Göktyta. Käenpiika.

17. Asikkala.

N. Kar. Juli 10. Suojärvi-Anna.

Ankunft.

Nyl. Mai 3. Ekenäs (Krank). 6. Borgnäs. 77 9. Kyrkslätt-Bobäck; Lovisa; Borgå (Pekkola). S. Tav. 4. Kuhmoinen-Harmois. S. Sav. 7. Nyslott. 19. S:t Michel (Nordström). Lad. Kar. 15. Sortavala, 2 Exx. (Cantell). 8. Kuopio-Haminanlahti. N. Sav. 19. Karttula,

75. Kleinspecht. **Dendrocopus minor** (L.) Liten hackspett. Pikku tikka.

Nest mit 5 frischen Eiern am 7. Juni in N. Öst., Ii, gefunden (Merikallio).

- 76. Grauspecht. **Picus canus** Gmel. Gråspett. Harmaa tikka. Ein Ex. in S. Tav., Asikkala, im Dorf Urajärvi am 3. Oct. gesehen.
- 77. Schnee-Eule. Nyctea nyctea (L.) Fjälluggla. Tunturipöllö. In N. Savo, Kuopio, am Dorf Alapitkä, wurde am 20. April ein junges 🗸 gesehen (Karppanen).
- 78. Sperber-Eule. **Surnia ulula** (L.) Hökuggla. Hiiriäispöllö. N. Öst., Uleåborg-Hietasaari, am 1. Mai 1 Ex. gesehen (Y. Hellman).

Lapp., Muonio, Nest mit 9 Eiern am 16. April gefunden.

Bidrag t. känned. af Finl.

Portimojärvi.

79. Lapplandskauz. **Syrnium lapponicum** (Sparrm.) Lappuggla. Lapin pöllö.

Lapp., Muonio, Nest mit 3 Eiern am 15. April und Nest mit 3 Jungen am 2. Juni gefunden.

80. Rauhfusskauz. **Nyctala tengmalmi** (Gmel.) Pärluggla. Helmipöllö.

Lapp., Muonio, Nest mit 6 Eiern am 12. Apr. gefunden.

81. Sperlingskauz. Glaucidium passerinum (L.) Sparfuggla. Varpuispöllö.

Nyl., Lovisa, am 3. Dec. 1 Ex. in einem Garten der Stadt gesehen.

S. Tav., Asikkala, am 18. Dec. 1 Ex. geschossen.

82. Wald-Ohreule. Asio otus (L.) Hornuggla. Sarvipöllö.

N. Savo, Kuopio-Haminanlahti, am 20. Apr., 20. Aug., 14. und 28. Sept. beobachtet (Karppanen).

Lapp., Muonio, *Nest* mit 5 Eiern am 20. Apr. gefunden (Montell, F. J., 1907, p. 161).

83. Sumpf-Ohreule. Asio acciptrinus (Pall.) Jorduggla. Suopöllö.

Ankunft.

N. Sav. Mai 13. Kuopio-Haminanlahti.Lapp. " 10. Muonio.

Brutgeschäft. Lapp., Muonio, am 25. Mai ein Nest mit 7 Eiern und ein zweites Nest mit 9 Eiern gefunden.

Herbstwanderung.

In N. Savo, bei Kuopio, wurden am 12. Sept. und 10. Oct. 2 Exx. geschossen (Karppanen).

84. Goldadler. Aquila chrysaëtus (L.) Kungsörn. Maakotka. S. Savo, S:t Michel, am 13. Oct. beobachtet (Nordström).

85. Rauhfussbussard. **Archibuteo lagopus** (Brünn.) Fjösbent vråk. Piekanahaukka.

Ankunft.

N. Sav. Apr. 25. Kuopio-Haminanlahti, Lapp. Mai 6. Muonio.

 $Brutgesch \"{a}ft.$ Lapp., Muonio, am 29. Mai Nest mit 4 bebrüteten Eiern gefunden.

Während des *Herbstzuges* am 30. Sept., 9. Oct. und 9. Dec. wurden einige Exemplare bei Kuopio beobachtet (Karppanen).

- 86. Mäusebussard. **Buteo buteo** (L.) Ormvråk. Hiirihaukka. *Ankunft*. N. Kar., Pielisjärvi-Lieksa, am 1. Mai.
- 87. Fischadler. Pandion haliaëtus (L.) Fiskgjuse. Kalasääski.

Ankunft.

Nyl. Apr. 16. Ekenäs (H. Krank). S. Sav. Mai 4. S:t Michel (Nordström).

Horst mit 3 Eiern in Lapp., Muonio, am 6. Juni gefunden.

88. Wanderfalk. Falgo peregrinus Tunst. Pilgrimfalk. Muuttohaukka.

N. Savo. Ein Paar horstete auf der Insel Laivonsaari bei Kuopio (Suomalainen l. c. p. 87).

89. Merlinfalk. Falco aesalon Tunst, Dvärgfalk. Poutahaukka.

Ankunft.

N. Sav. Apr. 28. Kuopio-Haminanlahti, 1 Ex. Lapp. Mai 8. Muonio.

Nest mit 2 Eiern in Muonio am 5. Juni gefunden.

Abzug.

N. Savo, Kuopio-Haminanlahti, am 6. Sept. ein junger Merlinfalk und am 5. Oct. ein altes \bigcirc^{\times} beobachtet.

Bidrag t. känned. af Finl.

90. Turmfalk, Cerchneis tinnunculus (L.) Tornfalk, Tornihaukka.

Ankunft.

Lad. Kar. Apr. 24. Sortavala.

N. Sav. 9. Kuopio-Haminanlahti.

Lapp.

N. Kar. Mai 10. Pielisjärvi-Lieksa.

Lapp. " 13. Muonio.

Brutgeschäft.

N. Öst. Mai 18. Uleåborg, Nest mit 2 frischen Eiern (Merikallio).

" 29. Uleåborg-Kello, Nest mit 4 stark bebrüteten Eiern (Merikallio).

" Juni 13. Uleåborg-Kello, Nest mit 5 stark bebrüteten Eiern (Merikallio).

Lapp. , 7. Muonio, Nest mit 9 frischen Eiern.

, 22. Muonio, Nest mit 3 stark bebrüteten Eiern.

91. Hühnerhabicht. Astur palumbarius (L.) Dufhök. Kanahaukka.

Lapp., Muonio, am 17 Apr. Nest mit 4 Eiern.

92. Sperber. Accipiter nisus (L.) Sparfhök. Varpushaukka.

Ankunft.

Lad. Kar. Mai $\,$ 7. Sortavala, häufig (Jääskeläinen). Lapp. , $\,$ 16. Muonio.

93. Kornweihe. Circus cyaneus (L.) Blå kärrhök. Sinihaukka.

Ankunft.

N. Sav. Apr. 28. Kuopio-Haminanlahti.

Lapp. Mai 17. Muonio.

94. Ringeltaube. Columba palumbus L. Ringdufva. Sepelkyyhkynen.

Ankunft. Apr. 18. N. Savo, Kuopio-Haminanlahti.

Abzug. Sept. 6. ", ",

95. Hohltaube. Columba oenas L. Skogsdufva. Metsäkyyhkynen.

Ankunft.

Nyl. Mai 1. Ekenäs (Krank). N. Kar. Apr. 29. Pielisjärvi-Lieksa, 4 Exx.

96. Rebhuhn. Perdix perdix (L.) Rapphöna. Peltopyy.

Nyl., Lovisa, in den Tagen zwischen d. 25. u. 28. Oct. besuchten die Rebhühner die Gärten der Stadt; am 25. Oct. flog ein gegen eine Telephonendraht und tötete sich dabei.

N. Savo, Kuopio: der Rebhuhn ist in den letzten Dezennien viel häufiger geworden als früher. Im J. 1906 fanden sich nur einige Paare beim Dorf Siikalahti, jetzt waren die Rebhühner laut Angaben ziemlich zahlreich da (Snomalainen l. c. p. 104).

97. Wachtel. Coturnix coturnix (L.) Vaktel. Viiriäinen.

N. Savo, in Vehmersalmi bei Kuopio wurden am 11. und 12. Mai 3 Exx. von S. J. Hallman gesehen (Suomalainen l. c. p. 105).

N. Öst., Torneå, auf einer Insel wurde am 2. Oct. ein Ex. geschossen (Ztg.).

- 98. Moorschneehuhn. **Lagopus lagopus** (L.) Snöripa. Metsäkana. Lapp., Muonio, am 30. Mai *Nest* mit 3 Eiern gefunden.
- 99. Auerhuhn. Tetrao urogallus L. Tjäder. Metso.

Beginn der Balzzeit:

Nyl.	Apr.	20.	Borgå-Veckjärvi.	M. Öst.	Apr.	20.	Esse-Öfveresse.
27	**	28.	Borgå.	Kaj. Öst.	$M\ddot{a}rz$	25.	Kuhmoniemi-
S. Sav.	$M\ddot{a}rz$	24.	S:t Michel				Korpisalmi.
			(Nordström).	97	Apr.	12.	Suomussalmi.
N. Sav.	Apr.	13.	Pielavesi-Ranta.	N. Öst.	Mai	1.	Öfvertorneå-
N. Kar.	• • • • • • • • • • • • • • • • • • • •	5.	Suojärvi-Anna.				Portimojärvi.
,,	99	6.	Ilomantsi.	Lapp.	Apr.	29.	Inari.

Nest mit 5 Eiern in Muonio am 5. Juni gefunden.

Bidrag t. känned. af Finl.

100. Birkhuhn. Tetrao tetrix L. Orre. Teiri.

Beginn der Balzzeit:

SW. F. Apr. 15. Kisko-Toija. N. Sav. Apr. 17. Iisalmi. März 28. Kyrkslätt-Bobäck. N. Kar. März 13. Liperi. Nvl.19. Värtsilä. 29. Borgå. Apr. 1. Ekenäs (Krank). Apr. 8. Juuka. 17. Borgnäs. 13. Suojärvi-Anna. S. Tav. 26. Sysmä-M. Öst. 2. Esse-Öfveresse. 22 Nuoramois. Kaj. Öst. März 10. Kuhmoniemi-S. Sav. Febr. 27. S:t Michel. Korpisalmi. 28. Suomussalmi. März 29. Nyslott. S. Öst. 26. Vörå-Kovjoki. N. Öst. Apr. 1. Öfvertorneå-Apr. 2. Isokyrö-Ikola Portimojärvi. N. Tav. " 22. Saarijärvi-13. Rovaniemi-Pajuniemi. Muurola. N. Sav. März 31. Kuopio. Kuus. 9. Kuusamo-Apr. 2. Pielavesi-Kirchdorf. Niemelä.

Zusatz. In der Nähe der Insel Elglandet bei Ekenäs wurden am 2. März 18 Exx. auf der Eisdecke gesehen (Fabritius). — Bei S:t Michel balzten die Birkhähne am eifrigsten ca. d. 18. und 19. März.

Amplitudeder Balzzeit 27. Febr. (S
:t Michel) — 26. Apr. (Sysmä-Nuoramois).

101. Kranich. Grus grus (L.) Trana. Kurki.

Nat. o. Folk, H. 67, N:o 3.

Ankunft.

sw. F	. Apr.	8. Pargas-Mustfin.	Nyl.	Apr.	13. Borgå-Veckjärvi.
29	27	12. Sagu	77	22	15. Helsinfors, 2 Exx.
		(Henricsson).	"	"	18. Borgå.
99	19	13. Salo.	"	***	21. Pyttis-Vesterby,
27	,	15. Mynämäki-			2 Exx.
		Tiuvais.	22	29	25. Kyrkslätt-Bobäck;
27	22	23. Vihti-Haitis.			Tuusula
22	27	Kisko-Toija.			(J. Aho).
Nyl.	22	10. Borgnäs.	22	99	27. Helsingfors-Åggel-
99	77	11. Lovisa.			by, 38 Exx.
10	17	12. Tvärminne.			(Suomalainen).

Nyl. Apr	28. Pyttis.	N. Tav. Apr. 13. Jyväskylä
S. Kar. "	26. Pyhäjärvi-	(Mansnerus).
	Sortanlahti.	" . 15. Saarijärvi-
Sat	23. Tyrvää-	Rahkola.
	Vammala	" 26. Saarijärvi-
17 99	24. Tammerfors;	Pajuniemi.
	Hämeenkyrö-	Mai 4. Saarijärvi-
	Uskela.	Pajuniemi.
S Tav	13. Kuhmoinen-	N. Sav. Apr. 28. Pielavesi-
	Päijälä.	Niemelä, 4 Exx.
** **	17. Hattula-Pelkola.	" Mai 1. Kuopio.
,,	18. Sysmä-	" 3. Kuopio-
	Nuoramois.	Haminanlahti.
	23. Tavastehus,	N. Kar. Apr. 24. Liperi-Käsämä;
	40 E _{xx} .	Värtsilä.
., .,	24. Hausjärvi	. 25. Ilomantsi.
	(Arho).	"
S. Sav	2. Nyslott, 6 Exx.	M. Öst. 26. Esse-Öfveresse.
,, ,,	4. S:t Michel, ca.	Kaj. Öst. Mai 2. Kuhmoniemi-
	10 Exx.	Korpisalmi.
.,	12. S:t Michel.	" " 11. Suomussalmi,
** *7	15. Nyslott, 3 Exx.	2 Exx.
Lad. Kar. ,	24. Kexholm,	" " 15. Puolanko.
	14 Exx;	N. Öst. Apr. 16 Öfvertorneå-
	Sortavala.	Portimojärvi.
" Mai	10. Kexholm 70	" 29. Uleåborg (Uitto);
	Exx.	Rovaniemi-
S. Öst. Apr.	3. Lappfjärd.	Muurola.
" ",	14. Replot.	Lapp. Mai 6. Muonio.
	15. Isokyrö-Ikola.	" " 16. Inari-Patsjoki.
N. Tav. "	5. Karstula.	

Zusammenfassung. Die Amplitude für das ganze Land var 2. Apr. (Nyslott) — 16. Mai (Patsjoki). Die Periode 2. bis 10. Apr. enthält nur sporadische Daten und zwar aus S. Savo, S. Öst., N. Tav., SW. F. und Nyl., welche somit die ersten Gebiete waren. In der 3. Pentade vermehren sich die Daten in den südlichen und mittleren Teilen des Landes, nehmen aber in der 4. wieder rasch ab. Reich an Beobachtungen ist die Zeit zwischen d. 23. und 26. Apr. (Culmination) Am spätestens geschah die Ankunft in N. Sav., Kaj. Öst. und Lapp., hauptsächlich im Mai. wenngleich der Kranich schon am 16. Apr. in Öfvertorneå erchienen war.

Abzug.

SW.F.	Oct.	25.	Finby-Falkberg.	S.	Sav.	Sept.	2.	S:t Michel, 4 Exx.
Nyl.	Aug.	28.	Kyrkslätt-Bo- bäck; Pyttis- Vesterby.		77	77	9.	(Nordström). S:t Michel, 9 Exx.
27	Sept.	5.	Tvärminne.					(Nordström).
27	27	9.	Lovisa; Pyttis.		27	Oct.	22.	Nyslott, gros-
n	99	13.	Lovisa, ein Trupp von Hunderten.					se Truppen nach WNW
17	22	15.	Pyttis.					fliegend.
**	22		Borgå-Veckjärvi.	La	d. Kar	. Oct.	28.	Sortavala
37	Dec.	13.	Helsingfors-Fred-		**			(Cantell).
			riksberg, um 12	S.	Öst.			Replot.
			U. wurde ein		29	Oct.		Lappfjärd.
			Trupp von ca.		27	17		Isokyrö-Ikola.
			50 St. in die		37	22		Lappfjärd.
			Richtung NE-	N.	Tav.	Aug.	31.	Saarijärvi-
-			SW fliegend ge-					Rahkola.
			sehen (Ztg.).		77	-		u. 12. Saarijärvi.
Sat.	Sept.		Tammerfors.	N.	Sav.	, .		Karttula.
27	52		Ruovesi-Tapio.		77	Sept.	9.	1
22	"	16.	Hämeenkyrö-					minanlahti.
			Uskela.					(Karppanen).
S. Tav.	Aug.	28.	Sysmä-		22	27		Kuopio.
			Nuoramois.	N.	Kar	99		Suojärvi-Anna.
22	Sept.		Asikkala		77	22		Värtsilä.
27	**	9.	Kuhmoinen-		Ost.	. 37		Esse-Öfveresse.
			Päijälä.	Ka	j. Ost.	22		Puolanko.
**	77	12.	Kuhmoinen-		57	39	18.	Kuhmoniemi-
			Päijälä.					Korpisalmi.
74	17		Asikkala.	N.	Öst.	Oct.	5.	Öfvertorneå-
"	Oct.	23. ι	ı. 24. Kuhmoinen-					Portimojärvi.
			Harmois.					

Zusammenfassung. Die Beobachtungen über den Herbstzug verteilen sich sehr gleichmässig auf die Zeit zwischen d. 28. Aug. und 20. Sept. Eine zweite, an Daten viel ärmere Periode bildet die Zeit zwischen d. 5. und 28. Oct. Ganz extreme Daten sind 16. Aug. (Karttula) und 13. Dec. (Helsingfors).

102. Wiesenralle. Crex crex (L.) Ängsknarr. Ruisrääkkä.

Ankunft (= Ruf zuerst gehört).

SW.F.	Mai	19	Salo.	S.	Tav.	Mai	20.	Hattula-
22	22	20.	Mynämäki-Tiuvais.					Pelkola.
**	99	21.	Vihti-Haitis.		92	Juni	10.	Sysmä-
27	22	23.	Kisko-Toija.					Nuoramois.
Nyl.	22	18.	Ekenäs (Krank).	S.	Sav.	Mai	28.	Sääminki.
22	77	21.	Borgå.	La	d. Kar.	Juni	6.	Sortavala
27	17	22.	Borgå-Veckjärvi.	S.	Öst.	99	10.	Isokyrö-Ikola.
17	99	27.	Borgnäs.		91	27	16.	Lappfjärd.
77	Juni	3.	Pyttis.		99	27	22.	Mustasaari-
Sat.	Mai	24.	Hämeenkyrö-					Korsholm.
			Uskela.	N.	Kar.	22	13.	Värtsilä.
57	Juni	2.	Ruovesi-Tapio.		27	27)	18.	Suojärvi-Anna.
**	22	6.	Karkku.		. 27	27	20.	Liperi-Käsämä.
99	27	10.	Tyrvää-Vammala.		99	99	22.	Pielisjärvi.
S. Tav.	. Mai	19.	Kuhmoinen-					
			Päijälä.					

Zusammenfassung. Amplitude 18. Mai — 22. Juni. Die ersten Gebiete waren die südlichsten Teile des Landes: Nyl., SW. F., S. Tav. und S. Savo, in welchen der Ruf erstmals während der letzten Hälfte des Mai gehört wurde. Ausschliesslich Junidaten weisen Lad. Kar., S. Öst. und N. Kar. auf.

103. Getüpfelte Sumpfralle. **Ortygometra porzana** (L.) Sumphöna. Kaislarääkkä.

Ankunft.

Lad. Kar. Mai 14. Sortavala (Cantell).

N. Kar. Juni 18. Pielisjärvi-Lieksa, Ruf zum ersten mal gehört.

104. Schmalschnäbeliger Wassertreter. **Phalaropus lobatus** (L.) Smalnäbbad simsnäppa. Kaitanokka vesipääskynen.

N. Öst., Ii, am 5. Juli Nest mit 4 bebrüteten Eiern gefunden (Merikallio).

Bidrag t. känned. af Finl.

 $105.\ Temmincksstrandläufer.$ Tringa temmincki Leisl. Mosnäppa. Kangas-sirriäinen.

Ankunft.

Nyl. Mai 9. Helsingfors-Drumsö, ca. 15 Exx. (Palmgren).N. Öst. " 16. Uleåborg (Remes).

$Brutgesch\"{a}ft.$

N. Öst. Juni 25. Haukipudas, Nest mit 4 bebrüteten Eiern (Merikallio).
" Juli 5. Ii, zwei Nester mit je 4 bebrüteten Eiern.
Lapp. Juni 19. Muonio, Nest mit 4 Eiern.

106. Alpenstrandläufer. Tringå alpina L. Kärrsnäppa. Suosirriäinen.

Ankunft. Nyl., Helsingfors-Drumsö, am 9. Mai ca. 15 Exx. (Palmgren).

107. Kampfläufer. Machetes pugnax (L.) Brushane. Suo-kulainen.

Ankunft.

N. Öst. Mai 16. Uleåborg (Remes).

" 18. Öfvertorneå-Portimojärvi.

Lapp. " 21. Muonio.

108. Flussläufer. Tringoides hypoleucus (L.) Drillsnäppa. Rantasipi.

Ankunft.

SW. F. Apr. 8. Korpo-Utö. S. Öst. Mai 10. Isokyrö-Ikola. 13. Lappfjärd. 24. Mynämäki-Tiuvais. Nyl. 17. Tvärminne. N. Tav. 18. Saarijärvi-Paju-25. Borgnäs. niemi. Mai 2. Borgå. N. Sav. 11. Kuopio-Haminan-6. Ekenäs (Krank); lahti. Pyttis. 14. Karttula. S. Tav. 9. Hattula-Pelkola. N. Kar. 10. Värtsilä; Suojärvi. 11. Sysmä-Nuoramois. 12. Pielisjärvi. S. Sav. M. Öst. 3. S:t Michel (Nord-13. Esse. ström). K. Öst. 20. Kuhmoniemi-7. Nyslott, 1 Ex. Korpisalmi. 4. Kexholm. Lad.Kar. .. 28. Puolanko. 19. Sortavala. N. Öst. 19. Uleåborg S. Öst. " 3. Replot. (Remes).

Zusammenfassung. Amplitude 8. Apr. (Korpo) — 28. Mai (Puolanko). Auf den Apr. fallen nur einige Daten aus SW. F. und Nyl. Die Hauptankunft geschah in der Zeit zwischen d. 24. Apr. und 20. Mai. Die Mehrzahl der Daten verteilt sich sehr gleichmässig auf diese Periode.

109. Bruchwasserläufer, **Totanus glareola** (L.) Kärrsnäppa. Liro.

Ankunft. N. Öst., Uleåborg, am 19. Mai (Merikallio). Brutgeschäft. Lapp., Muonio, am 15. Juni, Nest mit 4 Eiern.

110. Rotschenkelwasserläufer. Totanus totanus (L.) Rödbent snäppa. Punajalka vikla.

Ankunft. N. Öst., Uleåborg, am 19. Mai (Merikallio).

Brutgeschäft. N. Öst., Ii, am 8. Juni Nest mit einem frischen Ei (Merikallio).

111. Dunkler Wasserläufer. Totanus fuscus (L.) Svartsnäppa. Musta vikla.

Ankunft. Lapp., Muonio, am 19. Mai.

Brutgeschäft. Lapp., Muonio, am 27. Mai Nest mit 4 Eiern.

112. Heller Wasserläufer. **Totanus littoreus** (L.) Gluttsnäppa. Valkea vikla.

Ankunft.

 Nyl.
 Mai
 7. Ekenäs (Krank).
 N. Sav. Mai
 2 Kuopio-Haminan-lahti.

 "
 9. Helsingfors lahti.

 Drumsö, 1 Ex.
 N. Kar. "
 3. Pielisjärvi-Lieksa.

 (Palmgren).
 Kaj. Öst. "
 8. Kuhmoniemi

 "
 17. Borgå.
 Lapp. "
 18. Muonio.

Amplitude 2. Mai (Kuopio) — 18. Mai (Muonio).

Brutgeschäft. Lapp., Muonio, am 18. Juni Nest mit 4 bebrüteten Eiern.

Bidrag t. känned. af Finl.

113. Grosser Brachvogel. Numenius arcuatus (L.) Storspof. Iso kuovi.

Ankunft.

SW. F.	Apr.	17.	Vihti-Haitis.	S.	Öst.	Apr.	23.	Replot, 1 Ex.
22	22	19.	Kimito.		77	99	24.	Vörå-Kovjoki.
27	22	20.	Salo.		22	97	26.	Replot, 3 Exx.
27	22	23,	Mynämäki-Tiu-		77	22	30.	Mustasaari-
			vais; Kisko.					Korsholm.
**	22	24.	Pargas.	N.	Tav	92	26.	Karstula.
Nyl.	**	10.	Tvärminne; Pyt-		99	Mai	5.	Saarijärvi-Paju-
J	-		tis-Vesterby.					niemi.
20	22	20.	Borgå.	N.	Sav.	Apr.	25.	Iisalmi.
10	99	21.	Ekenäs (Fabrit.).		99	99	28.	Kuopio.
**	22		Borgnäs.		**	**	30.	Karttula; Kuo-
27	22	25.	Lovisa.					pio-Haminan-
97	97	30.	Borgå-Veckjärvi.					lahti.
Sat.	19		Tyrvää-Vam-		22	Mai	3.	Pielavesi-
			mala.					Niemelä.
27	22	23.	Hämeenkyrö-	N.	Kar.	Apr.	26.	Suojärvi-Anna.
			Uskela.		22	22	28.	Värtsilä.
יי	Mai	8.	Ruovesi-Tapio.		22	Mai	4.	Juuka.
S. Tav.	Apr.	25.	Tavastehus.	M.	Öst.	Apr.	23.	Esse-Öfveresse.
22	99		Sysmä-Nuora-	Ka	j. Ös	t. Mai	16.	Kuhmoniemi-
			mois.					Korpisalmi.
22	17	27.	Hattula-Pelkola.		17	27	21.	Puolanko.
S. Sav.	22	24.	Nyslott.	N.	Öst.	Apr.	23.	Uleåborg-Hieta-
27	22	28.	S:t Michel			_		saari, viele
			(Nordström).					(Hellman);
Lad. Ka	ar. Aj	or. S	25. Kexholm.					Öfvertorneå-
22	Mai	-	. Sortavala.					Portimojärvi.
S. Öst.	Apr.	19.	Lappfjärd; Iso-	Κι	ıus.	Mai	20.	Kuusamo.

Zusammenfassung. Die Amplitude war 10. Apr. (Nyl.) — 21. Mai (Puolanko). Die Hauptzeit der Ankunft war die zweite Hälfte des April. Die ersten Provinzen waren Nyl. (10. IV), SW. F. (17. IV), S. Öst. (19. IV) und Sat. (22. IV). Die Art verbreitete sich den Küstengegenden entlang gegen Nord und wurde schon am 23. Apr. in Öfvertorneå beobachtet. Die letzten Provinzen waren Kaj. Öst. und Kuusamo, also die nordöstlichsten Teile des Landes, welche erst Mitte Mai besiedelt wurden.

kvrö-Ikola.

Brutgeschäft. N. Öst., Uleåborg-Kello, am 30. Mai Nest mit 3 stark bebrüteten Eiern (Merikallio). N. Öst., Ii, am 6. Juni, Nest mit 3 wenig bebrüteten Eiern (Merikallio).

114. Regenbrachvogel. Numenius phoeopus (L.) Småspof. Pieni kuovi.

Ankunft.

N. Kar. Apr. 25. Pielisjärvi-Lieksa. N. Öst. Mai 12. Öfvertorneå-Portimojärvi. Kaj. Öst. Mai 9. Suomussalmi. Lapp. "18. Muonio.

Nest mit 3 Eiern in Muonio am 9. Juni.

115. Bekassine. Gallinago gallinago (L.) Enkel beckasin. Isompi taivaanvuohi.

Ankunft.

Nyl. Mai 1. Ekenäs (Krank).

S. Sav. , 19. S:t Michel, 6 Exx. spielten (Nordström).

N. Kar. " 3. Pielisjärvi-Lieksa.

" 15. Värtsilä.

116. Waldschnepfe. Scolopax rusticola L. Morkulla. Lehtokurppa.

Ankunft.

Nyl. Apr. 22. Borgå, 1 Ex.

" Mai 1. Kyrkslätt-Bobäck.

" 8. Ekenäs (Krank).

Sat. Apr. 25. Hämeenkyrö
N. Tav. " 6. Saarijärvi-Pajuniemi.

M. Öst. Apr. 29. Esse-Öfveresse.

Uskela.

Amplitude 22. Apr. — 8. Mai.

117. Steinwälzer. Arenaria interpres (L.) Roskarl. Luotolainen.

Brutgeschäft.

N. Öst. Juni 17. Haukipudas, Nest mit 4 frischen Eiern (Merikallio).

Juli 4. Ii, Nest mit 4 bebrüteten Eiern (Merikallio).

118. Austernfischer, Haematopus ostralegus L. Strandskata. Rantaharakka.

Ankunft.

N. Öst. Mai 19. Uleåborg (Merikallio).

Bidrag t. känned. af Finl.

Nest mit 1 frischen Ei in N. Öst., Haukipudas am 9. Juni (Merikallio).

119. Sand-Regenpfeifer. Charadrius hiaticula (L.) Större Strandskata. Tyllikurmitsa.

Ankunft. Nyl., Borgå, am 15. Mai.

Nest mit 1 frischen Ei in N. Öst., Ii, am 6. Juni.

120. Fluss-Regenpfeifer. **Charadrius dubius** Scop. Mindre strandpipare. Pikku kurmitsa.

Ankunft. Nyl., Borgå, 12. Mai.

121. Goldregenpfeifer. Charadrius pluvialis L. Ljungpipare. Tunturikurmitsa.

Ankunft.

N. Sav. Mai 10. Kuopio-Haminanlahti.

N. Kar. " 18. Pielisjärvi-Lieksa.

Abzug.

N. Sav. Sept. 20. Kuopio-Haminanlahti.

122. Kiebitz. Vanellus vanellus L. Tofsvipa. Töyhtöhyyppä.

Ankunft.

SW. F. Apr. 12. Salo.

Nyl. Mai 1. Ekenäs (Krank).

" 5. Tuusula, 6 Exx. (K. M. L.)

Lad. Kar. , 1. Sortavala (Cantell).

123. Singschwan. Cygnus cygnus (L.) Sångsvan. Iso joutsen. Überwinterung? Nyl., Esbo, am 3. Febr. wurde auf einer Wiese (Lillängen) ein Singschwan an einem Bachufer gesehen (F. J., p. 53).

Ankunft.

Ål. März 29. Mariehamn (Ztg.) Nyl. Apr. 17. Borgå. Apr. 1. Hammarland 19. Tvärminne. S. Kar. März 31. Heinjoki (L. Y., (Candolin). 15. Salo. p. 88). Nyl. 11. Pyttis. Apr. 4. Pyhäjärvi-14. Ekenäs, 13 Exx. Sortanlahti. 22 (Krank). Sat. 15. Tyrvää-16. Borgå-Veckjärvi. Wammala

Sat.	Apr.	25.	Hämeenkyrö-	N. Sav.	Apr.].	Karttula.
			Uskela.	**	,.	3.	Kuopio-Hami-
S. Tav.		14.	Sysmä-Nuora-				nanlahti.
			mois.		**	13.	Pielavesi-
S. Sav.	März	31.	Nyslott, 4 Exx.				Niemelä.
**	Apr.	4.	Puumala (Nord-	N. Kar.	**	5.	Suojärvi-Anna.
			ström).	**	22	14.	Värtsilä.
**	17	16.	S:t Michel (Ehn-	Kaj. Öst.	. 41	15.	Kuhmoniemi-
			berg).				Korpisalmi.
Lad. Ka	ar	4.	Kexholm, 6 Exx.	1	5*	16.	Suomussalmi.
93	**	28.	Sortavala.	. 77	22	17.	Hyrynsalmi.
S. Öst	44	17.	Replot.	N. Öst.	März	27.	Uleåborg (Ztg.)
N. Tav.	**	13.	Karstula.	**	Mai	4.	Öfvertorneå-
27	22	20.	Saarijärvi-				Portimojärvi.
			Pajuniemi.	Lapp.	**	7.	Muonio.

Zusammenfassung. Die Ankunft dauerte vom 27. März (Uleåborg) bis 7. Mai (Muonio). Die spärlichen Märzdaten sind aus den Provinzen N. Öst., Ål., S. Savo und S. Kar. Die Ankunft der Hauptmasse geschah im Laufe des April. Die Verbreitung war sehr unregelmässig, die zwei letzten Daten (4. und 7. Mai) beziehen sich doch auf die nördlichsten Gegenden.

Abzug.

Nyl.	Dec.	14.	Tvärminne.	N. Kar.	Sept.	30.	Suojärvi-Anna.
Sat.	Oct.	26.	Tammerfors.	,,	Dec.	1.	Pielisjärvi-
S. Tav.	Sept.	14.	Sysmä-Nuora-				Lieksa.
			mois.	77	57	9.	Pielisjärvi, 6
**	Oct.	5.	Asikkala 8 Exx.				Exx., Zug-
S. Sav.	Nov.	27.	S:t Michel				richtung
			(Ehnberg).				NNO-SSW.
57	Dec.	10.	Jockas-Maivala;	M. Öst.	Nov.	7.	Esse-Öfveresse.
			Nyslott.				
Lad. Kar.	Oct.	6.	Sortavala.	59	22	12.	Kuhmoniemi-
S. Öst.	Xov.	9.	Replot.				Korpisalmi.
29	Dec.	7.	Replot, c:a 100	27	Dec.	4.	Hyrynsalmi,
			Exx.				Schar von
N. Tav.	Nov.	30.	Karstula.				c:a 70—100
19	Dec.	7.	Karstula.				Exx.
N. Sav.	Dec.	10.	Kuopio-Hami-	Lapp.	Oct.	1.	Inari-Thule.
			nanlahti,				
			zogen nach				
			Nord!				

Bidrag t. känned. af Finl.

Zusammenfassung. Die Amplitude war 14. Sept. (Sysmä) — 14. Dec. (Tvärminne), aber die meisten Daten verteilen sich ziemlich gleichmässig auf die Zeit 30. Sept. — 14. Dec.

124. Wildgans. Anser sp Vildgås. Hanhi.

Ankunft.

Al.	März	31.	Lumparland	N.	Sav.	Apr.	22.	Iisalmi.
			(Candolin).		"	99	28.	Pielavesi.
SW. F.	Apr.	12.	Salo.		"	Mai	4.	Kuopio-Hami-
22	22	16.	Mynämäki-					nanlahti.
			Tiuvais.	N.	Kar.	Apr.	23.	Värtsilä.
27	. 99	23.	Vihti-Haitis.		27	22	27.	Suojärvi-Anna.
Nyl.	37	2.	Pyttis-Vesterby.	M.	Öst.	37	25.	Esse-Öfveresse.
27	77	15 .	Tvärminne.		27	\mathbf{M} ai	1.	Nykarleby.
27	22	18.	Borgå.	Ka	j. Öst.	Apr.	24.	Suomussalmi.
"	22	23.	Borgå-Veck-		**	77	26.	Kuhmoniemi-
			järvi.					Korpisalmi.
at.	27	23.	Tyrvää-Vam-		99	Mai	14.	Puolanko.
			mala.	N.	Öst.	Apr.	28.	Uleåborg
S. Tav.	77	11.	Kuhmoinen-					(Remes).
			Päijälä.		77	"	30.	Öfvertorneå;
S. Kar.	22	24.	Pyhäjärvi-					Rovaniemi-
			Sortanlahti.					Muurola.
S. Öst.	77	8.	Isokyrö-Ikola.	Kτ	ıus.	$_{ m Mai}$	4.	Kuusamo.
27	99	22.	Vörå-Kovjoki.	La	pp.	Apr.	30.	Muonio.
N. Tav.	22	22.	Saarijärvi-					
			Pajuniemi.					

Zusammenfassung. Der Einzug dauerte vom 31. März (Lumparland) bis 14. Mai (Puolanko). Die Hauptankunft geschah im April. Die vielen Beobachtungen an den Tagen 22., 23. und 24. Apr. scheinen eine schwache Culmination anzudeuten. Die erste Hälfte des Mai weist nur einige sporadische Ankunftsdaten von den inneren und nördlichen Teilen des Gebiets auf.

Brutgeschäft.

N. Öst., Uleåborg-Kello, am 21. Mai ein Nest mit 2 frischen Eiern; Ii, am 7. Juni ein Nest mit 3 stark bebrüteten Eiern (Merikallio).

Abzug.

CTOT TO	0 1	0.4	77'7 / 77' //	-	1 77			C . 1
SW. F.	Oct.		Vihti-Haitis.		**	Oct.		Sortavala.
22	"	25.	Mynämäki-	S.	Ost.	22	10.	Isokyrö-Ikola.
			Tiuvais.		27	29.	26.	Replot.
**	**	27.	Paimio-Vista.		27	Nov.	6.	Replot.
Nyl.	99	12	Lovisa.	N.	Tav.	Oct.	22.	Saarijärvi-
77	77	24.	Pyttis;					Pajuniemi,
			Tvärminne.					grosse Scha-
, 3	Vov. E	nde.	Helsingfors					ren (die
			(Ztg.)					grössten von
Sat.	Oct.	24.	Tammerfors;					c:a 50 Exx.)
			Hämeenkyrö-		27	29	24.	Karstula.
			Uskela.	N.	Sav.	99	26.	Kuopio-Hami-
S. Tav.	22	22.	Asikkala.					nanlahti;
**	22.	24.	Asikkala; Kuh-	-				Karttula.
			moinen-Päi-	N.	Kar. Se	ept. 21	. u. :	22. Värtsilä.
			jälä, 30−40		79	Sept.	12.	Suojärvi-Anna.
			Exx.	M.	Öst.	Oct.	9.	Esse-Öfveresse.
S. Sav.	,, 9.	-2	4. S:t Michel.	Kε	ij. Öst.	Sept.	11.	Kuhmoniemi.
27	27	24.	Nyslott, grosse		32	Oct.	16.	Puolanko.
			Schar.	La	pp.	Sept.	26.	Inari-Thule.

Über den Herbstzug in S:t Michel giebt Herr Nordström noch die folgenden Nachrichten:

Oct. 9. Um 4 ½ Uhr n. M. zogen 22 Exx. nach SO.
" 12. 9 U. 40′ bis 10 U. 7′ n. M. zogen hunderte von Scharen über die Stadt in der Richtung N—SO; einige flogen in beträchtlicher Höhe, andere so niedrig, dass die Flügelschläge hörbar waren; Temp. + 7 °C, Wetter trübe, fast ruhig, schwacher Wind von S.

Oct. 22. Um 10 U. n. M. zog eine Schar nach S; Wetter regnerisch.

" 23. Um 7 U. 40' n. M. zogen zwei grosse Scharen nach S, kehrten aber um und flogen nach NNW.

" 24. Um 4 U. n. M. zogen 30 Exx. nach S.

Zusammenfassung. Der Abzug dauerte vom 11. Sept. (Kuhmoniemi) bis Ende November (Helsingfors). Die meisten Daten fielen in den October (im Sept. und Nov. nur einige Abzugsdaten). Am 12. Oct. wurde ein enormer Zug in S.t Michel beobachtet, aber auch die Tage 22., 23. und 24. Oct. sind bemerkenswert wegen zahlreicher Mitteilungen über abziehende Scharen.

125. Stockente, Anas boschas L. Gräsand, Sinisorsa.

Überwinterung.

SW. F. Febr. 4. Korpo-Utö.

S. Sav. $_{\rm m}$ 28. S:t Michel, ein Ex. hielt sich hier an einer Quelle auf (Nordström).

Ankunft.

		'		
Apr.	10. Salo.	S. Öst.	Apr.	16. Lappfjärd.
77	13. Vihti-Haitis.	N. Tav.	"	12. Karstula.
März	30. Esbo-Bredvik,	77	79	19. Saarijärvi-Paju-
	5 Exx. (Palm-			niemi.
	gren).	N. Sav.	19	5. Pielavesi-Lam-
Apr.	1. Helsinge-Fred-			massalo
-	riksberg (F. J.,			(Hornborg).
	1907, p. 109).	"	**	14. Iisalmi.
**	11. Ekenäs (Krank):	**		17. Pielavesi-Nie-
	Borgå.			melä.
27	15. Pyttis-Vesterby.	22	77	28 Kuopio; Piela-
27	18. Borgå-Veckjärvi.			vesi-Rannan-
*17	20. Borgnäs			kylä.
77	27. Tvärminne.	N. Kar.	99	24. Värtsilä.
22	11. Tyrvää-Vam-	"	79	27. Suojärvi-Anna.
	mala.	"	"	28. Pielisjärvi-
"]	18. Hämeenkyrö-			Lieksa.
	Uskela.	M. Öst.	**	Esse-Öfveresse.
77	17. Hattula-Pelkola;	Kaj. Öst	- 29	25. Kuhmoniemi-
	Sysmä.			Korpisalmi.
**	14. Nyslott.	77	\mathbf{Mai}	6. Puolanko.
27	22. S:t Michel.	N. Öst.	Apr.	16. Öfvertorneå-
22	14. Kexholm.			Portimojärvi.
22	25. Sortavala (Jääs-	99	Mai	 Uleåborg-Hieta-
	keläinen).			saari (Hell-
22	2. Replot; Bergö.			man).
**	8. Isokyrö-Ikola.	Kuus.	22	5. Kuusamo.
**	· ·	Lapp.	Apr.	22. Muonio.
22	15. Replot.	**	Mai	2. Kemijärvi.
	Marz	" 13. Vihti-Haitis. März 30. Esbo-Bredvik, 5 Exx. (Palmgren). Apr. 1. Helsinge-Fredriksberg (F. J., 1907, p. 109). " 11. Ekenäs (Krank): Borgå. " 15. Pyttis-Vesterby. " 18. Borgå-Veckjärvi. " 20. Borgnäs. " 27. Tvärminne. " 11. Tyrvää-Vammala. " 18. Hämeenkyrö-Uskela. " 17. Hattula-Pelkola; Sysmä. " 14. Nyslott. " 22. S:t Michel. " 14. Kexholm. " 25. Sortavala (Jääskeläinen). " 2. Replot; Bergö. " 8. Isokyrö-Ikola. " 11. Vörå-Kovjoki.	" 13. Vihti-Haitis. März 30. Esbo-Bredvik,	", 13. Vihti-Haitis. März 30. Esbo-Bredvik,

Zusammenfassung. Amplitude 30. März (Esbo) — 6. Mai (Puolanko). Die Ankunft geschah hauptsächlich während des April — die spärlichen Maidaten beziehen sich ausschliesslich auf die nördlichsten Orte. Aus den zwei ersten Pentaden des April liegen wenige Meldungen vor, hauptsächlich von den südlichen und westlichen Küstengegenden.

Brutgeschäft.

Nyl., Ekenäs, am 4. Juni wurden zwei Weibchen mit 5 resp. 6 Jungen, die wenigstens ein paar Tage alt waren, gesehen (Fabritius).

N. Öst., Uleåborg-Kello, am 30. Mai ein Nest mit 8 ziemlich frischen Eiern und am 7. Juni in Ii ein Nest mit 8 bebrüteten Eiern gefunden (Merikallio).

Abzug.

SW. F. Oct. 20. Korpo-Utö. N. Kar. Sept. 28. Suojärvi-Anna. " 27. Lovisa. Nyl. Oct. 23. Värtsilä. S. Sav. Nyslott. Nov. 12. Pielisjärvi-Nov. Anf. S:t Michel Lieksa. (Nordström). M. Öst. 4. Esse-Öfveresse. Lad. Kar. Oct. 7. Sortavala, Kaj. Öst Sept. 21. Puolanko. N. Tav. Nov. 1. Saarijärvi-Paju-26. Kuhmoniemi-99 22 niemi; einige wurden jedoch Korpisalmi. noch am 29. Nov. an der Strom-

Der Abzug der Hauptmasse fand demnach in der Zeit zwischen d. 21. Sept. und 12. Nov. statt.

126. Krickente. Anas crecca L. Krickand. Tavi.

schnelle Summoskoski gesehen.

Ankunft.

SW. F. Apr. 26. Pargas-Mustfin. | S. Öst. Apr. 24. Replot. Nvl.28. Borgå. M. Öst. 25. Esse-Ofveresse. 24. Nyslott, 1 Ex. Kaj. Öst. Mai 5. Suomussalmi. S. Sav. Lad. Kar. Mai 2. Kexholm, 7. Kuhmoniemi-5. Sortavala 1 ~ Korpisalmi. (Jääskeläinen). 18 Puolanko. Apr. 15. Öfvertorneå-6. Sortavala (Can-N. Öst. Portimojärvi. tell). N. Tav. 2. Saarijärvi-Kuus. Mai 4. Kuusamo. Pajuniemi. Lapp. 11. Inari-Thule. N. Kar. Apr. 27. Suojärvi-Anna. Muonio. 77

Amplitude: 15. Apr. (Öfvertorneå!) — 18 Mai (Puolanko). Nest mit 8 Eiern am 10. Juni in Muonio. Der Abzug fand in Sortavala am 5. Oct. statt.

Bidrag t. känned, af Finl.

127. Pfeifente. Anas penelope L. Bläsand. Haapana.

Ankunft.

Nyl. Mai 7. Ekenäs (Krank).

Lad. Kar. " 17. Sortavala (Jääskeläinen).

Kaj. Öst. Apr. 26. Kuhmoniemi-Korpisalmi.

Lapp. " 21. Muonio.

Brutgeschäft.

N. Öst. Juni 6. Ii, Nest mit 9 bebrüteten Eiern (Merikallio).
25. Haukipudas, Junge ausgebrütet (Merikallio).

128. Spiessente. Anas acuta L. Stjärtand. Jouhisorsa.

Ankunft. Lapp., Muonio, am 19. Mai.

Brutgeschäft. N. Öst., Ii, am 6. Juni ein Nest mit 2 frischen Eiern (Merikallio).

129. Tafelente. **Fuligula ferina** (L.) Rödhalsad dykand. Punasotka.

SW. F., Karislojo, am See Haapajärvi wurde 1 Ex. am 27. Aug. geschossen (U. Saalas in L. Y., 1907, p. 198).

130. Reiherente. Fuligula fuligula (L.) Vigg. Jouhisotka.

Ankunft. Nyl., Ekenäs, am 29. Apr.

Brutgeschäft. N. Öst., Ii, am 5. Juli ein Nest mit 9 frischen Eiern (Merikallio).

131. Schellente. Fuligula clangula (L.) Knipa. Selkätelkkä.

Ankunft.

SW. F. März 18. Korpo-Utö. S. Sav. März 28. S:t Michel, Apr. 11. Pargas-Mustfin. (Nordström). Nyl. 9. Ekenäs 29. Nyslott, 2 Exx. (H. Krank). Apr. 13. Sulkava 10 Borgå. (Anttonen). 16. Hangö, ein er-19. Nyslott, 8 Exx. legt (J. Roos). Lad. Kar. 19 Kexholm. 30. Borgå-Veckjärvi. 28. Sortavala. Sat. 2. Tyrvää-Vammala. S. Öst. 2. Replot. 3. Hämeenkyrö-20. Isokyrö-Ikola. Uskela. N. Tav. 7. Karstula. N. Sav. 16. Ruovesi-Tapio. 10. Pielavesi-Niemelä.

N. Sav.	Apr.	26.	Pielavesi-Ran-				
			nankylä.	N. Öst.	März	25.	Öfvertorneå-
27	91	29.	Kuopio-Hami-				Portimojärvi.
			nanlahti.	; r	$_{ m Mai}$	2.	Rovaniemi-Muu-
N. Kar.	**	26.	Pielisjärvi.				rola.
77	97		Suojärvi-Anna.	Kuus.	27	3.	Kuusamo.
M. Öst.	99	24.	Esse-Öfveresse.	Lapp.	Apr.	30.	Muonio.
Kaj. Öst.	97	12	Suomussalmi.	,,,	$_{ m Mai}$	2.	Kemijärvi.
22	22	16.	Kuhmoniemi.	27	27	5.	Inari-Thule.

Zusammenfassung. Die Amplitude war 18. März (Korpo) — 5. Mai (Inari), aber die meisten Daten entfallen auf den April. Die Maidaten beziehen sich ausschliesslich auf N. Öst., Kuus, und Lapp.

132. Eisente. Harelda hiemalis (L.) Alfågel. Alli.

Überwinterung.

SW. F., Korpo-Utö, Eisenten am 4. Febr. beobachtet.

Nyl., Jussarö, Eisenten ziemlich zahlreich in der ersten Hälfte des Februar (F. J.)

Sat., Tammerfors, eine junge Eisente hielt sich während des Winters am Strome auf, wurde aber am 21. März geschossen und dem Zool. Museum der Universität zu Helsingfors übergeben. (Hj. Schulman).

Ankunft.

Nyl.	Apr.	22.	Borgå.	Kaj. Öst.	Apr.	18.	Kuhmoniemi-
77 '	22	26.	Borgå-Veckjärvi.	*			Korpisalmi.
77	27	28.	Tvärminne.	N. Öst.	49	15.	Öfvertorneå-
Lad. Ka	r. "	24.	Kexholm.				Portimojärvi.
N. Kar.	Apr.	27.	Suojärvi-Anna.				

Amplitude 15.-28. Apr.

Albinismus. Eine ganz weisse Eisente wurde am 18. Mai bei Hangö von H. Blomqvist geschossen und dem Zool. Museum der Universität geschenkt.

Abzug.

Lad. Kar. Oct. 16. Sortavala. | N. Kar. Sept. 10. Suojärvi-Anna.

Bidrag t. känned. af Finl.

133. Trauerente. Oidemia nigra (L.) Sjöorre. Merilintu.

Ankunft.

Nyl. Apr. 17. Borgå. N. Kar. Mai 3. Pielisjärvi-Liek-Lad. Kar. Mai 8. Sortavala Q (Jääskeläinen). Lapp. "17. Muonio.

Im Sommer wurde die Art am 4. Aug. in Kuopio-Haminanlahti beobachtet.

134. Samtente. Oidemia fusca (L.) Svärta. Pilkkasiipi. Ankunft. Nyl., Borgå, am 3, April.

135. Eiderente. Somateria mollissima (L.) Eider. Haahka.

Ankunft.

 Ål
 März Ende. Lågskär (Candolin).
 Nyl. Apr. 21. Ekenäs bei Hästöbusio (Fabrisus).

 SW. F. Febr. 3. Korpo-Utö.
 Busö (Fabrisus).

 Nyl. Apr. 15. Borgå.
 Mai 1. Tvärminne.

 S. Öst. " 7. Replot 4 Exx.

Brutgeschäft. N. Öst., Ii, am 5. Juni Nest mit 4 ziemlich frischen Eiern (Merikallio).

136. Grøsser Säger. **Mergus merganser** L. Storskrake. Iso koskelo.

Überwinterung. Am 30. Jan. wurden in der Nähe von Helsingfors zwischen den Inseln Melkö und Rönnskär 4 Exx. von einigen Fischern gesehen (Ztg).

Ankunft.

Nyl. Apr. 28. Borgå. | Lad. Kar. Mai 13. Sortavala.

Brutgeschäft. Bei Uleåborg wurde am 21. Mai ein Nest mit 4 Eiern und am 29. Mai ein zweites Nest mit 5 Eiern gefunden (Merikallio).

137. Mittelsäger. **Mergus serrator** L. Småskrake. Pikku koskelo.

Überwinterung. Lad. Kar., Kexholm, im Winter wurden am Strome ca 10 Exx. gesehen.

Ankunft.

SW. F. Ar	er. 25. Korpo-Utö.	N. Kar. Mai	20. Suojärvi-Anna.
Nyl.	16. Ekenäs (Krank).	Kaj. Öst. Apr.	27. Kuhmoniemi-
,, ,	, 20. Borgå.		Korpisalmi.
" Ma	i 1. Tvärminne.	" Mai	30. Puolanko.
Sat. Ap	r. 20. Tyrvää-Vamma-	N. Öst. Apr.	28. Uleåborg (Re-
	la.		mes).
Lad. Kar.	, 14. Kexholm.	N. Öst. Mai	Öfvertorneå-
S. Öst.	, 25. Replot.		Portimojärvi.
N. Tav. Ma	ai 4. Saarijärvi-Paju-	Lapp. "	20. Muonio.
	niemi.		

Zusammenfassung. Die Amplitude für das ganze Land war 14. Apr. (Kexholm) — 30. Mai (Puolanko). In den südlichen und mittleren Teilen des Landes fand die Ankunft in der zweiten Hälfte des April, in den nördlichen während des Mai statt.

Brutgeschäft.

N. Öst. Haukipudas, am 16. Juni Nest mit 3 frischen Eiern (Merikallio).

Ii, am 5. Juli Nest mit 6 Eiern (Merikallio).

Lapp. Muonio, am 20. Juni, Nest mit 8 Eiern.

138. Kormoranscharbe. **Phalacrocorax carbo** (L.) Storskarf. Merimetso.

Abzug.

Nyl. Sept. 15. Kyrkslätt-Espskär 3 Exx. (Ztg.).

S. Sav. , 13. S:t Michel, 1 Ex. gegen den Saima See fliegend (Nordström).

Oct. 24. Nyslott, 1 Ex. gesehen.

S. Tav. , — Lahti, Vesijärvi 1 Ex. erlegt (Ztg.)

Lad. Kar. Dec. 11. Läskelä, 1 Ex. erlegt (F. J, 1908, p. 30).

N. Sav. Sept. 9. Iisvesi (Suomalainen l. c. p. 125).

" - Kuopio-Haminanlahti.

Bemerkung. Es geht aus den obigen Notizen hervor, dass auffallend viele Kormoranscharben während des Herbstes 1907 in den mittleren und südlichen Teilen Finlands von dem Eismeergestade her gelangt waren.

Bidrag t. känned. af Finl.

139. Fluss-Seeschwalbe. Sterna hirundo L. Fisktärna. Kalatiira.

Ankunft.

 Nyl.
 Apr. 17. Borgå.
 S. Sav. Mai 26. S:t Michel, 2 Exx.

 " Mai 4. Pernå Sondarö (Iverus).
 S. Sav. Mai 26. S:t Michel, 2 Exx.

 N. Öst.
 " 21. Uleåborg (Remes).

Brutgeschäft. N. Öst., Haukipudas, am 16. Juni Eier gefunden (Merikallio).

140. Küsten-Seeschwalbe. Sterna macrura Naum. Rödnäbbad tärna. Lapintiira.

Ankunft.

Nyl. Apr. 28. Borgå. Lapp. Mai 21. Inari. Lapp. Mai 24. Muonio.

Brutgeschäft. In Muonio 2 Eier am 11. Juni (Montell). In Haukipudas 2 Eier am 17. Juni (Merikallio).

141. Lachmöwe. Larus ridibundus L. Skrattmås. Naurulokki.

Ankunft.

Nyl. Apr. 22. Ekenäs (Krank); Helsingfors (Suomalainen). Lad. Kar. Mai 11. Kexholm, auf Ladoga, 1 Ex.

142. Sturmmöwe. Larus canus L. Fiskmås. Kalalokki Überwinterung. In Jan. und Febr. wurden einzelne im Hafen bei Helsingfors gesehen (Suomalainen).

Ankunft:

 Nyl.
 Apr. 15. Borgå.
 S. Sav. Apr. 27. S:t Michel.

 "
 "
 22. Helsingfors.
 N. Sav. Mai
 9. Kuopio.

 S. Sav.
 "
 25. Nyslott.
 N. Kar. "
 6. Pielisjärvi.

143. Heringsmöwe. Larus fuscus L. Sillmås. Selkälokki.

Ankunft.

Nyl. Apr. 3. Borgå. Lad. Kar. Mai 13. Sortavala (Jääskeläinen).

S. Sav. "27. Nyslott. N. Öst. "21. Uleåborg (Remes).

Brutgeschäft. N. Öst., Ii am 8. Juni 5 Nester mit 2-3 Eiern gefunden (Merikallio).

144. Silbermöwe. **Larus argentatus** Brünn, Gråtrut. Harmaa lokki.

Ankunft: Uleaborg bei Hietasaari am 6. Mai viele gesehen (Hellman).

Brutgeschäft. Haukipudas, am 17. Juni 1 Ei (Merikallio).

- 145. Eismöwe. Larus glaucus Brünn. Hvittrut. Iso lokki. In Kuopio-Haminanlahti am 17. Nov. gesehen.
- 146. Haubensteissfuss. Colymbus cristatus L. Skäggdopping. Silkkikuikka.

Ankunft.

Nyl Apr. 15. Borgå.

Nyl. Mai 1. Ekenäs (Krank).

147. Polar-Seetaucher, **Urinator arcticus** (L.) Storlom. Kuikka.

Ankunft.

Nyl. Apr. 30. Ekenäs (Krank), | S. Sav. Mai 4. S:t Michel (Nord-Lad. Kar. Mai 13. Sortavala (Jääs- | ström).

Brutgeschäft. Lapp., Muonio, am 10. Juni 2 Eier.

148. Nord-Seetaucher. **Urinator lumme** (Gunner). Smålom. Kaakkuri.

Ankunft. Nyl., Borgå am 19. April. Brutgeschäft. Lapp., Muonio, am 14. Juni 2 Eier.

149. Gryll-Lumme. Cepphus grylle (L.) Tobisgrissla. Riskilä. *Ankunft*. N. Öst., Uleåborg am 21. Mai (Remes).

 $Brutgesch \ddot{a}ft.$ N. Öst., Uleåborg-Kello, am 13. Juni frische Eier (Merikallio).

150. Tordalk. Alca torda L. Tordmule. Tavallinen ruokki. Ankunft. N. Öst., Uleåborg, am 21. Mai (Remes).

 $Brutgesch\"{a}ft.$ N. Öst., Ii, am 5. Juli, wenig bebrütete Eier (Merikallio).

Über die Witterung und den Frühjahrszug im Jahre 1907.

März 1).

	Mo	Lufttemperatur in C°.										
Ort.	natsı		Max.	Min.		Pentadenmittel.						
	Monatsmittel.	C°.	Tag.	C°.	Tag.	2—6	7—11	12-16	17-21	22—26	27:—31	
Ål. Mariehamn	0,7	11	28	— 14	13			_ 0	-0	1	2	
Nyl. Helsingfors	- 2,2	10	29	17	15	-2	-1	-2	2	3	2	
S. Kar. Viborg	3,2	12	31	- 20	16	— 5	- 3	2	- 2	-3	1	
S. Öst. Vasa	— 1,s	9	30	—18	13	.0	-4	- 0	0	-2	3	
N. Tav. Jyväskylä	- 2,5	11	25	20	16	1	- 2	3	— 3	_2	3	
N. Kar Värtsilä	3,6	11	28,30	<u> </u>	14	4	—3	3	— 3	- 3	2	
N. Öst. Uleåborg .	- 3,6	8	30	— 22	15	—1	— 5	-2	- 2	3	2	
Kaj. Öst. Kajana	- 3,6	4	31	- 18	15	-3	-4	-3	- 3	3	2	
Lapp. Inari	4,6	7	29,31	35	13	1	7	3	- 3	-5	1	

Die Temperatur des Monats März war höher als das normale Mittel. An der Südküste betrug der Überschuss 2°, in den inneren Teilen des Landes etwa 3° und in Nord-Österbotten 3° bis 5°. Die letzten Tage des Monats waren im ganzen Lande die wärmsten; die höchsten Temperaturen betrugen +8° und +12°, sehr seltene Temperaturen in dieser Jahreszeit! Südliche Winde waren vorherrschend. Die kältesten Tage waren die zwischen d. 12. und 16., während welcher Zeit die Temperatur ganz allgemein bis auf 15 und 20 Grade unter Null sank.

¹) Die Tabellen sowie die übrigen meteorologischen Angaben sind den von der Meteorologischen Zentralanstalt herausgegebenen Monatsberichten ("Månadsöfversikt af väderleken i Finland" Jhrg. 1907) entnommen.

Nat. o. Folk, H. 67, N:o 3.

Im Laufe dieses Monats erscheint Corvus cornix an zahlreichen Orten. Sonst weisen die vier ersten Pentaden wenige Ankunftsdaten auf. Vorzügler von Alauda arvensis wurden am 7. und 9., von Fringilla coelebs am 9., von Sturnus vulgaris am 12. und 14. März beobachtet. Passerina nivalis und Fuligula clangula wurden am 14. und 18. zum ersten mal beobachtet. In der 5. Pentade vermehren sich die Daten ein wenig bei Sturnus. In der letzten Pentade oder in der Zeit zwischen 26. und 31. März wird das Wetter entschieden wärmer und der Einzug von Alauda arvensis und Fringilla coelebs of findet jetzt statt. Sturnus culminiert am 27. und 28. März. In die letzte Pentade entfällt auch die erste Ankunft von Coloeus monedula, Turdus pilaris, Cygnus cygnus und einigen anderen Arten.

April.

	Мо			Luft	tei	npe	ratur	in	C°.		
Ort.	natsı		Max.	Min			Pent	adeni	nittel.		
	Monatsmittel.	C°.	Tag.	C°.	Tag.	1-5	6—10	11-15	16—20	21 - 25	26-30
Ål. Mariehamn	1,4	8	3	- 4	14	- 2	1	-0	0	3	3
Nyl. Helsingfors	- 1,7	9	11	- 6	15	- 2	2	1	1	2	3
S. Kar. Viborg	<u> </u>	12	29	- 8	15	- 3	3	— 0	1	3	4
S. Öst. Vasa	1,6	8	23	- 6	15	-3	2	— 0	0	2	2
N. Tav. Jyväskylä .	- 1,4	14	10,12	10	15	_2	2	—1	-0	2	3
N. Kar. Värtsilä	- 1,2	12	26	—11	16	_1	1	—1	-0	2	4
N. Öst. Uleåborg	- 1,5	10	3	_ 9	15	4	2	-2	0	2	4
Kaj. Öst. Kajana	— 1,1	8	26	— 13	15	3	1	-2	0	2	3
Lapp. Inari	- 0,7	9	4	_ 20	17	-1	1	— 5	-4	1	1

Die Temperatur war überhaupt sehr normal und sehr gleichmässig ohne besonders hohe und besonders niedrige Werte. Die erste Pentade zeigt niedrigere Werte als die letzte Pentade des März. Die grösste Erwärmung fand am Ende des Monats statt. Die südöstlichen Winde waren die vorherrschenden.

Von früh ankommenden Zugvögeln wurde das Land im April fortgesetzt mit Sturnus vulgaris, Alauda arvensis und Fringilla coelebs besiedelt. Bei Cygnus cygnus und Fuligula clangula sind die Ankunftsdaten im April viel zahlreicher als im März. Ausserdem kamen in der ersten Hälfte des April Anas boschas, Anser, Fr. montifringilla, Turdus musicus, Motacilla alba und Grus grus an, aber bei fast allen diesen Arten vermehren sich die Ankunftsdaten in der zweiten Hälfte der Monats. Überhaupt nahm die Zahl der Zugvögel in der zweiten Hälfte des April beträchtlich zu. Während dieser Zeit begann der Einzug der folgenden Arten: Turdus pilaris, Saxicola oenanthe, Erithacus rubeculus, Numenius arcuatus, Scolopax rusticola, Tringoides hypoleucus, Harelda hiemalis, Anas crecca, Vanellus vanellus und Mergus serrator. Auch Anthus pratensis, Turdus iliacus, Calcarius lapponicus, Eremophila alpestris, Pratincola rubetra, Numenius phoeopus, Mergus merganser und Larus canus kamen Ende April an.

Mai.

	Mer			Lυ	ıfttei	mper	atur	in	C°.		
Ort.	ıatsı	M	Max. Min. Pentadenmittel.								
	Menatsmittel.	Co.	C	٠.	Tag.	1-5	6-10	11-15	16-20	21-25	26-31
		.									
Ål. Mariehamn	5,7	16 2	1	1	29	5	7	7	4	8	4
Nyl. Helsingfors	6,2	17	9	0	15	5	7	8	5	9	4
S Kar. Viborg	6,4	20 2	1 -	- 3	8	5	6	6	. 7	10	6
S. Öst. Vasa	5,0	13 1	9	0	30	4	6	6	5	7	2
N. Tav. Jyväskylä .	6,1	22 2	0 -	4	8	4	6	7	8	9	3
N. Kar. Värtsilä	5,3	16 2	o	5	15,16	4	4	4	8	8	4
N. Öst. Uleåborg	4,3	14 1	9	4	15	3	4	. 2	5	7	5
Kaj. Öst. Kajana	4,4	14 1	1 -	5	8	3	4	4	5	7	4
Lapp. Inari	1,1	10 2	1 —	9	10	0	- 0	-1	3	3	1

Die Temperatur war durchschnittlich etwa 2°, in den östlichen Teilen des Landes sogar 3° niedriger als das normale Mittel. Die Zeit zwischen d. 21. und 25. Mai war im ganzen Lande die wärmste. Die grösste Abnahme der Temperatur fand in Nord-Finland in der dritten Pentade, in Ost-Finland im Anfang des Monats statt. Die höchste Temperatur, welche im Allgemeinen nicht über + 15° stieg, wurde meistens am 19. bis 21. Mai beobachtet. In den letzten kalten Tagen des Monats fiel ziemlich viel Schnee über einen grossen Teil des Landes. Nur an der Südküste waren südwestliche Winde vorherrschend, in den übrigen waren nördliche, zum Teil auch nordwestliche und nordöstliche Winde die häufigsten.

Von den schon im April an zahlreichen Orten beobachteten Zugvögeln haben Saxicola oenanthe, Turdus musicus und Tringoides hypoleucus noch viele Ankunftsdaten im Mai.

In der ersten Pentade dieses Monats erschienen zum ersten mal Phylloscopus trochilus, Erithacus phoenicurus, Chelidonaria urbica und Hirundo rustica. In den Tagen 9: und 11. culminiert Chelidonaria urbica und fast gleichzeitig oder am 11. und 12. culminiert Hirundo rustica. Die Culmination von Cuculus fällt in die Tage 10. bis 12. Am 16. Mai finden wir das erste Ankunftsdatum für Apus apus und am 18. wurde Crex crex zuerst gehört. Übrigens zogen im Mai u. a. die folgenden Arten ins Land ein: Emberiza schoeniclus, Motacilla flava, Muscicapa grisola und M. atricapilla, Phylloscopus rufus, Erithacus philomela, E. suecicus, Sylvia, Caprimulgus europaeus, Iynx torquilla, Totanus littoreus, Gallinago gallinago und Macheles pugnax.

Juni.

	Мол	Lufttemperatur in C°.									
Ort.	natsı	Max.		Min.		Pentadenmittel.					
	Monatsmittel.	C°.	Tag.	C°.	Tag.	31-4	5-9	10—14	15 -19	20-24	25 - 29
								1			
Ål. Mariehamn	11,6	19	15	3.	1	'7	10	14	13	12	12
Nyl. Helsingfors .	13,3	25	12	2	1	7	12.	17	15	12	13
S. Kar. Viborg	15,2	26	30	<u> </u>	4	9	13	18	17	15	16
S. Öst. Vasa	12,9	26	14	4	5	6	12	17	16	12	13
N. Tav. Jyväskylä	14,3	32	13	- 1	2	7	13	17	17	14	14
N. Kar. Värtsilä	14,3	26	17	- 2	1	7	12	16	18	14	15
N. Öst. Uleåborg .	. 14.5	29	16	- 0	2	6	12	20	18	14	14
Kaj. Öst. Kajana	13,5	25	16	-0	2	6	11	15	18	14	14
Lapp. Inari	12,9	30	16	— 3	2,4	3	. 7	19	20	13	13

Der Anfang des Monats war sehr kalt, mit Frostnächten im grössten Teile des Landes. In der ersten Pentade fiel somit die Temperatur in den östlichen und Nat. o. Folk, H. 67, N:o 3. nördlichen Teilen des Landes bis auf 2 und 4 Grad unter Null.

An mehreren Orten wurden, wie früher erwähnt, tote, erfrorene Schwalben gefunden. Ergänzungsweise sei hier noch laut einer Zeitungsnotiz mitgeteilt, dass man in Nyl., Nurmijärvi zahlreiche tote Schwalben; teils aus ihren Nestern heruntergefallen, teils in diesen selbst, fand und zwar besonders soll dies der Fall an der Nordseite der von den Schwalben bewohnten Häuser gewesen sein.

In Kaj. Öst. und Lapp. nahmen die Schwalben zum Teil erst im Juni ihre Nester in Besitz: Chelidonaria urbica in Puolanko und Suomussalmi am 3. und 5. Juni. in Öfvertorneå, Muonio, Enontekiö und Inari in den Tagen 4.-7. Juni, in Kuusamo am 10. Juni. Auch aus M. Öst. finden wir ein Junidatum bei dieser Species. Hirundo rustica wurde sesshaft in Suomussalmi und Kuhmoniemi am 7. und 12. Juni, in Kuusamo und Kemijärvi am 7. Juni: Clivicola riparia erschien am 5. Juni in Öfvertorneå. Auch aus den südlichen und mittleren Teilen des Landes finden wir sporadische Junidaten bei relativ vielen Arten. Wahrscheinlich handelt es sich hier wohl in fast allen Fällen, falls die Beobachtungen zuverlässlich sind, um Verspätungen bei Besiedelung lokaler Bezirke. Es gehören hierher u. a. die folgenden Fälle: Sylvia simplex, S. sylvia und S. curruca in N. Kar., Värtsilä; Hippolais hippolais in Nyl., Lovisa; Chelidonaria urbica in M. Öst., Esse; Clivicola riparia in N. Kar., Pielisjärvi; Cuculus canorus in S. Öst., Isokyrö und Ortygometra porzana in N. Kar., Pielisjärvi.

In betreff der spätest ankommenden Sommervögeln finden sich in der ersten Hälfte des Juni zahlreiche Ankunftdaten über Apus apus und Crex crex.

Schliesslich sei hier bemerkt, dass ausser den Schwalben viele Arten, die in die südlichen und mittleren Teile des Gebiets während des Mai, einige sogar im April, angekommen waren, erst anfang Juni gewisse, in der Gegend des Polarkreises liegende Orte oder die nördlicheren Teile Lapplands erreichten. So erschienen Anfang Juni Saxicola oenanthe in Muonio und Inari, Erithacus suecicus in Muonio, E. phoenicurus in Öfvertorneå und Inari, Phylloscopus trochilus und Motacilla flava in Muonio.

II. Abt. Andere Tiere.

Amphibien.

1. Grasfrosch. Rana temporaria L. Groda. Sammakko.

Beginn der Laichzeit oder des Quakens.

SW. F.	Apr. 8. Korpo-Utö.	Lad. Kar. Apr. 29. Sortavala.
97	" 28. Salo.	S. Öst. " 3. Vörå-Kovjoki.
97	Mai 4. Kisko-Toija.	" 24. Replot.
Nyl.	" 2. Lovisa.	" Mai 6. Lappfjärd.
"	" 4. Kyrkslätt-Bo	- " 9. Isokyrö-Ikola.
	bäck; Bor	gå; N. Tav. Apr. 29. Karstula.
	Borgnäs.	N. Sav. Mai 11. Karttula; Pie-
27	" 5. Pyttis-Vester	by. lavesi-Ranta.
27	" 6. Ekenäs.	" 12. Kuopio;
S. Kar.	Apr. 22. Pyhäjärvi-So	r- Iisalmi.
	tanlahti.	" " 19. Pielavesi-Nie-
Sat.	" 26. Hämeenkyrö	melä.
	Uskela.	N. Kar. Apr. 27. Suojärvi-Anna.
77	Mai 6. Tyrvää-Vam	" Mai 10. Ilomantsi.
	mala.	" " 11. Pielisjärvi-
S. Tav.	" 1. Tavastehus.	Lieksa.
37	" 8. Sysmä-Nuor	a- " " 16. Värtsilä.
	mois.	M. Öst. Apr. 24. Nykarleby.
S. Sav.	Apr. 27. Nyslott.	" 29. Esse-Öfveresse.
27	Mai 5. S:t Michel.	Kaj. Öst. " 26. Puolanko.

Nat. o. Folk, H. 67, N:o 3.

Kaj. Öst. Mai 10. Kuhmoniemi-Korpisalmi.

N. Öst. 12. Uleåborg. N. Öst. Mai 20. Öfvertorneå-Portimojärvi. Juni 10. Rovaniemi-Muurola.

Fische.

1. Hecht. Esox lucius L. Gädda. Hauki.

Beginn der Laichzeit.

N. Kar. Mai 12. Liperi. Lad. Kar. Apr. 26. Kexholm. Mai 1. S:t Michel. 31. Inari. S. Sav. Lapp. 12

2. Barsch. Perca fluviatilis L. Aborre. Ahven.

Beginn der Laichzeit.

Nvl. Mai 7. Lovisa. Lapp. Mai 31. Inari. S. Sav. 7. S:t Michel.

Brachsen. Abramis brama L. Braxen. Lahna.

Beginn des Laichzeit.

Nyl. 4. Lovisa.

Juni 12. Borgnäs.

Sat. Mai 14. Hämeenkyrö-Uskela.

Juni 12. Tyrvää-Vammala.

S. Tav. Mai 10. Tavastehus (erste Laichzeit).

Juni 10. Tavastehus (zweite Laichzeit).

11. Kuhmoinen-Päijälä.

Mai 18. Finby-Falkberg. | S. Tav. Juni 12. Sysmä-Nuoramois.

16. Hattula-Pelkola. S. Sav. Mai 16. S:t Michel

(Ehnberg). N. Tav. Juni 16. Saarijärvi-Paju-

niemi. N. Sav. " 15. Pielavesi-Ranta.

N. Kar. Mai 18. Värtsilä.

Juni 10. Suojärvi-Anna.

Kaj Öst. Mai 25. Kuhmoniemi-Korpisalmi.

N. Öst. Juni 12. Rovaniemi-Muurola.

Zärthe. Abramis vimba L. Vimba. Vimpa.

Beginn der Laichzeit. Nyl., Lovisa, Apr. 30.

Bidrag t. känned. af Finl.

5. Plötze. Leuciscus rutilus L. Mört. Särki.

Beginn der Laichzeit.

N. Tav. Mai 20. Saarijärvi-Paju-Mai 13. Vihti-Haitis. 19. Hämeenkyröniemi. Sat. Uskela. Juni 1. Saarijärvi-S. Tav. 10. Tavastehus. Rahkola. 13. Sysmä-Nuora-N. Sav. Mai 24. Kuopio. Juni 1. Pielavesi: mois. 16. Hattula-Pel-Karttula. kola. N. Kar. Mai 20. Liperi-Käsämä. S. Sav. 7. S:t Michel Juni 1. Suojärvi-Anna. (Nordström). Kaj. Öst. Mai 27. Kuhmoniemi-S. Öst. Mai 17. Replot. Korpisalmi. Juni 2. Puolanko.

6. Aland. Leuciscus idus L. Id. Säyne.

Beginn der Laichzeit. S. Sav. Mai 6. S:t Michel (Nordström).

7. Stint. Osmerus eperlanus L. Nors. Kuore.

Beginn der Laichzeit.

Nyl. Apr. 30. Veckjärvi.
SW. F. " 26. S:t Karins-Kulho.
S. Tav. Mai 9. Hattula.
" " 10. Tavastehus.
S. Sav. " 17. S:t Michel.

N. Tav. Mai 10. SaarijärviPajuniemi.
N. Sav. Apr. 27. Pielavesi-Niemelä.
" Mai 20. Iisalmi.
N. Kar. " 8. Liperi-Käsämä.

8. Kleine Maräne. Coregonus albula L. Siklöja. Muikku.

Beginn der Laichzeit.

S. Tav. Sept. 25 Tavastehus. N. Kar. Oct. 10. Liperi-Käsämä. 1. S:t Michel. 12. Suojärvi-Anna. S. Sav. Oct. Kaj. Öst. Sept. 29. Kuhmoniemi-29. Saarijärvi-Paju-N. Tav. Korpisalmi. niemi. 4. Öfvertorneå. N. Sav. 13. Karttula. N. Öst.

9. Lachs resp. Forelle. Salmo sp. Lax. Lohi, Taimen.

Beginn des Steigens.

Nyl. Mai 18. Pyttis, die Bucht Abborfors (Iverus).Sat. Juli 20. Tyrvää-Vammala.

Nat. o. Folk, H. 67, N:o 3.

N. Tav. Juni 15. Saarijärvi-Pajuniemi.

N. Öst. Mai 20. Öfvertorneå-Portimojärvi (Taimen = $S.\ trutta$). , , 25. Rovaniemi-Muurola.

Laichzeit.

N. Tav. Oct. 1. Saarijärvi-Pajuniemi

N. Öst. Sept. 15 -30. Rovaniemi-Muurola.

Insekten.

1. Fuchs. Vanessa urticæ L. Nässelfjäril. Nokkosperhonen.

Beginn des Erscheinens.

Ål.	$_{ m M\ddot{a}rz}$	28.	Mariehamn.	S.	Sav.	$M\ddot{a}rz$	28.	Nyslott.
SW. F.	**	27.	Vihti-Haitis.		77	22	29.	S:t Michel.
"	"	28.	Mynämäki-Tiu-	La	d. Ka	r. "	30.	Sortavala.
			vais; Kisko-		97	Apr.	2.	Kexholm.
			Toija.	S.	Öst.	März	29.	Lappfjärd;
37	Apr.	3.	Salo.					Replot; Iso-
"	31	20.	Kimito.					kyrö-Ikola.
"	\mathbf{M} ai	6.	Korpo-Utö; Fin-		27	Apr.	1.	Vörå-Kovj o ki.
			by-Falkberg.		17	27	12.	Vasa.
Nyl.	$_{ m M\ddot{a}rz}$	22.	Borgå.		22	22	20.	Mustasaari-
77	57	27.	Tvärminne; Eke-					Korsholm.
			näs (Fabrit.).	N.	Tav.	"	16	Saarijärvi-Paju-
17	99	29.	Lovisa.					niemi.
,,	22	30.	Borgnäs.	N.	Sav.	$M\ddot{a}rz$	31.	Kuopio.
"	Apr.	10.	Pyttis.		77	Apr.	2.	Pielavesi-Nie-
"	27	11.	Kyrkslätt-Bo-					melä.
			bäck.		99	Mai	10.	Iisalmi.
27	77	12.	Pyttis-Vesterby.	N.	Kar.	$_{ m M\ddot{a}rz}$	28.	Suojärvi-Anna.
S. Kar.	$_{ m M\ddot{a}rz}$	30.	Pyhäjärvi-Sor-		77	Apr.	1.	Värtsilä.
			tanlahti.		97	27	29.	Pielisjärvi-
Sat.	77	27.	Tyrvää-Vam-					Lieksa.
			mala; Tam-		22	Mai		Juuka.
			merfors	Μ.	Öst.	$M\ddot{a}rz$	29.	Esse-Öfveresse.
S. Tav.	· • • • • • • • • • • • • • • • • • • •		Hattula-Pelkola.		27	97		Nykarleby.
**	Apr.	10.	Kuhmoinen-	Ka	ıj. Öst	t. Apr.	29.	Suomussalmi.
			Päijälä.	N.	Öst.	$_{ m M\ddot{a}rz}$		Uleåborg.
"	**	16	. Sysmä-Nuora-		, .	Apr.	2.	Öfvertorneå-
			mois.					Portimojärvi.

Bidrag t. känned, af Finl.

2. Hummel. Bombus sp. Humla. Kimalainen.

Beginn des Erscheinens.

Ă1.	Mai	1.	Mariehamn.	S.	Tav.	Mai	8.	Kuhmoinen-
SW. F.	**		Åbo.					Harmois.
77	22	5.	Korpo-Utö.	S.	Sav.	Apr.	29.	Nyslott.
27	22	6.	Salo.		77	Mai	8.	S:t Michel.
**	27	8.	Kisko-Toija.	La	d. Kar	- 99	4.	Kexholm.
59	27	9.	Vihti-Haitis.	S.	Öst.	77	2.	Vörå-Kovjoki.
"	27	13.	Finby-Falkberg.		77	27	3.	Replot.
Nyl.	Apr.	26.	Borgå.		77	27	5.	Lappfjärd.
n	Mai	4.	Tvärminne.		77	77	8.	Mustasaari-
17	27	5.	Ekenäs.					Korsholm.
27	22	9.	Kyrkslätt-Bobäck;		22	77	9.	Vasa.
			Borgnäs; Pyt-	N.	Tav.	22	18.	Saarijärvi-Rah-
			tis.					kola.
**	22	10.	Lovisa.	N.	Sav.	27	9.	Kuopio.
S. Kar	• 32	3.	Pyhäjärvi-		22	99	11.	Karttula.
			Sortanlahti.	N.	Kar.	Apr.	29.	Suojärvi-Anna.
Sat.	77	6.	Tammerfors.		77	Mai	3.	Värtsilä.
57	22	7.	Tyrvää-	М.	Öst.	29	12.	Esse-Öfveresse.
			Vammala.	Ka	ıj. Öst	- 27	22.	Kuhmoniemi-
77	79	10.	Ruovesi-Tapio.					Korpisalmi.
S. Tav.	Ø 22	5.	Hattula-Pelkola;	N.	Öst.	97	20.	Uleåborg.
			Sysmä-Nuora-		57	27	30.	Öfvertorneå-
			mois.					Portimojärvi.
77	77	7.	Tavastehus.	La	pp.	Juni	8.	Kemijärvi.

3. Mistkäfer. Geotrupes sp. Torndyfvel. Sontiainen.

Beginn des Erscheinens.

Ål.	Apr.	13. Mariehamn.	Nyl.	Mai	3. Borgå-Veck-
SW. F.	27	24. Korpo-Utö.			järvi.
77	Mai	5. Åbo.	99	77	5. Ekenäs.
99	27	6. Kimito.		37	Pyttis.
27	77	20. Finby-Falkberg;	S. Kar.	Apr.	27. Pyhäjärvi-
		Vihti-Haitis.			Sortanlahti.
Nyl.	Apr.	21. Borgå.	S. Tav.	Mai	5. Kuhmoinen-
"	27	24. Borgnäs.			Harmois.
27	27	27. Tvärminne.	27	22	Hattula.
77	Mai	 Kyrkslätt-Bo- 	27	22	20. Sysmä-Nuora-
		bäck; Pyttis-			mois.
		Vesterby.	Lad. Kar	Apr.	24. Kexholm.

Nat. o. Folk, H. 67, N:o 3.

S. Sav.	Apr.	28. Nyslott.	N. Sav.	Mai	8.	Kuopio.
77	Mai	6. S:t Michel.	"	17	11.	Pielavesi-
S. Öst.	Apr.	23. Replot.				Rannankylä.
77	Mai	26. Mustasaari-	N. Kar.	27	1.	Suojärvi-Anna.
		Korsholm.	27	99		Värtsilä.
17	**	30. Vörå-Kovjoki.	M. Öst.	77	6.	Esse-Öfveresse.
N. Tav.	Apr.	30. Karstula.	Kaj. Öst.	Juni	8.	Kuhmoniemi-
"	Mai	2. Saarijärvi-				Korpisalmi.
		Pajuniemi.	N. Öst.	Mai	21.	Öfvertorneå-
,,	17	Saarijärvi-				Portimojärvi.
		Rahkola.				

Systematische Aufzählung der Arten.

		Seite			Seite
			25.	Parus coeruleus L	23
	Aves.		26.	Aegithalos caudatus (L.)	23
1.	Turdus viscivorus L	14	27.	Certhia familiaris L	23
2.	" musicus L	14	28.	Motacilla alba L	23
3.	" iliacus L	15	29.	flava L	26
4.	pilaris L	15	30.	Anthus pratensis (L.) .	26
5.	" merula L	16	31.	" trivialis (L.)	26
6.	Cinclus cinclus (L.)	16	32.	Eremophila alpestris fla-	
7.	Saxicola oenanthe (L.) .	16		va (Gm.)	27
8.	Pratincola rubetra (L.) .	18	33.	Lullula arborea (L.)	27
9.	Erithacus philomela		34.	Alauda arvensis L	27
	(Bechst.)	18	35.	Calcarius lapponicus (L.)	29
10.	Erithacus rubeculus (L.)	18	36.	Passerina nivalis (L.).	29
11.	" suecicus (L.) .	19	37.	Emberiza citrinella L	29
12.	" phoenicurus		38.	" schoenielus L.	30
	(L.)	19	39.	" rustica Pall	30
13.	Accentor modularis (L.)	20	40.	Loxia leucoptera Gmel	30
14.	Sylvia simplex (Lath.) .	20	41.	Pinicola enucleator (L.).	30
15.	" sylvia (L.)	20	42.	Pyrrhula pyrrhula (L) .	30
16.	" curruca L		43.	Carpodacus erythrinus	
17.	Hippolais hippolais (L.).	21		(Pall.)	30
18.	Phylloscopus trochilus		44.	Chrysomitris spinus (L.)	30
	(L.)	21	45.	Acanthis cannabina (L.)	31
19.	Phylloscopus rufus		46.	" linaria (L.)	31
	(Bechst.)		47.	Carduelis carduelis (L.) .	31
20.	Troglodytes troglodytes		48.	Chloris cloris (L.)	32
	(L.)		49.	Fringilla coelebs L	32
21.	Regulus regulus (L.)		50.	" montifringilla	
22.	Parus major L			L	35
23.	" cristatus L	22	51.	Passer domesticus (L.) .	35
24.	" borealis Sel.		52.	" montanus (L.)	35
	Longeh	23	53.	Sturnus vulgaris L	35
Nat.	o. Folk, H. 67, N:o 3.				

		Seite	I		Seite
54.	Oriolus oriolus (L.)	37	91.	Astur palumbarius (L.)	53
55.	Nucifraga caryocatactes		92.	Accipiter nisus (L.)	53
	(L.)	38	93.	Circus cyaneus (L.)	53
56.	Perisoreus infaustus (L.)	38	94.	Columba palumbus L	53
57.	Pica pica (L.)	38	95.	oenas L	54
58.	Coloeus monedula (L.) .	38	96.	Perdix perdix (L.)	54
59.	Corvus frugilegus L	38	97.	Coturnix coturnix (L.) .	54
60.	" cornix L	39	98.	Lagopus lagopus (L.) .	54
61.	Lanius excubitor L	41	99.	Tetrao urogallus L	54
62.	" collurio L	41	100.	" tetrix L	55
63.	Bombyeilla garrulus (L.)	41	101.	Grus grus (L.)	55
64.	Muscicapa grisola L	42	102.	Crex crex (L.)	58
65.	" atricapilla L.	42	103.	Ortygometra porzana	
66.	Hirundo rustica L	43		(L.)	58
67.	Chelidonaria urbica (L.).	45	104.	Phalaropus lobatus (L.)	58
68.	Clivicola riparia (L.)	47	105.	Tringa temmincki Leis-	
69.	Apus apus (L.)	47		ler	59
70.	Caprimulgus europaeus		106.	Tringa alpina L	59
	L	48	107.	Machetes pugnax (L.) .	59
71.	Upupa epops L	48	108.	Tringoides hypoleucus	
72.	Coracias garrula L	48		(L.)	59
73.	Cuculus canorus L	48	109.	Totanus glareola (L.) .	60
74.	Iynx torquilla L	50	110.	" totanus (L.) .	60
75.	Dendrocopus minor (L.)	50	111.	" fuscus (L.)	60
76.	Picus canus Gmel	50	112.	" littoreus (L.) .	60
77.	Nyctea nyctea (L.)	50	113.	Numenius arcuatus (L.)	61
78.	Surnia ulula (L.)	50	114.	" phoeopus (L.)	62
79.	Syrnium lapponicum		115.	Gallinago gallinago (L.)	62
	(Sparr.)	51	116.	Scolopax rusticola L	62
80.	Nyctala tengmalmi	Ì	117.	Arenaria interpres (L.) .	62
	(Gmel.)	51	118.	Haematopus ostralegus	
81.	Glaucidium passerinum	1		L	62
	(L)	51	119.	Charadrius hiaticula L.	63
82.	Asio otus (L.)	51	120.	, dubius Scop.	63
83.	" acciptrinus (Pall.) .	51	121.		63
84.	Aguila chrysaëtus (L.) .	51	122.	Vanellus vanellus (L).	63
85.	Archibuteo lagopus		123.	Cygnus cygnus (L.)	63
	(Brünn.)	52	124.	Anser sp	65
86.	Buteo buteo (L.)	52	125.	Anas boschas L	67
87.	Pandion haliaëtus (L.) .	52	126.	" crecca L	68
88.	Falco peregrinus Tunst.	52	127.	" penelope L	69
89.	" aesalon Tunst	52	128.	" acuta L	69
90.	Cerchneis tinnunculus		129.	Fuligula ferina (L.)	69
	(L.)	53	130.	Fuligula fuligula (L.) .	69
				Bidrag t. känned, af Fi	nl·

		Seite			5	Seite
131.	Fuligula clangula (L.) .	69		1 7 . 7 . 7		
132	Harelda hiemalis (L.) .			Amphibien.		
133.	Oidemia nigra (L.)	71	. 1.	Rana temporaria L		81
134.	" fusca (L.)	71		1		
135.	Somateria mollissima		1			
	(L.)			Fische.		
136.	Mergus merganser L	71	1.	Esox lucius L		00
137.	" serrator L	71				
138.	Phalacrocorax carbo (L.)	72		Perca fluviatilis L		
139.	Sterna hirundo L		3.	Abramis brama L		
140.	macrura Naum		4.	" vimba L		
141.	Larus ridibundus L		5.	Leuciscus rutilus L.		83
142.	" canus L		6.	" idus L		83
143.	" fuscus L		7.	Osmerus eperlanus L.		83
144.	" argentatusBrünn.		8.	Coregonus albula L.		83
145.	glaucus Brünn		9.	Salmo sp		83
146.	Colymbus cristatus L					
	D .					
147.	Urinator arcticus (L.) .	14	ì	Insekten.		
148.	Urinator lumme (Gun-					0.4
	ner)					
149.	11 02 ()					
150.	Alca torda L	74	3.	Geotrupes sp		85

Inhaltsverzeichnis.

	Seite
Einleitung	. 3
Verzeichnis der Beobachtungsstationen im Jahre 1907	
Verzeichnis der Beobachter im Jahre 1907	. 9
Die Temperatur um 7 Uhr morgens während der Monate Mär	z,
April und Mai an 11 Orten in Finland	. 10
I. Abt. Vögel	. 14
Über die Witterung und den Frühjahrszug im Jahre 1907	. 75
II. Abt. Andere Tiere. Amphibien	. 81
Fische	. 82
Insekten	. 84
Systematische Aufzählung der Arten	. 87
Übersichtskarte über die naturhistorischen Provinzen Finlands	. —

BIDRAG TILL KÄNNEDOM AF FINLANDS NATUR OCH FOLK. H. 67, N:o 1.

UNTERSUCHUNGEN

ÜBER DIE

ERNÄHRUNG DER LANDBEVÖLKERUNG IN FINNLAND

VON

SIGFRID SUNDSTRÖM.

HELSINGFORS 1908,

MUSSIM WILLIAM A MINSTER A

UKONILMOISTA SUOMESSA

1904

KIRJOITTANUT

RISTO JURVA

HELSINKI 1909

SUOMALAISEN KIRJALLISUUDEN SEURAN KIRJAPAINON OSAKEYHTIÖ

VIV. 16 LU 10 LO 12 PARTE E RECENTARIO A PER-

ÖFVER ÅSKVÄDREN I FINLAND

1904

AF RISTO JURVA

HELSINGFORS 1909 FINSKA LITTERATURSÄLLSKAPETS TRYCKERI YRARBIJ 100 00 200 0M KAPON K V, 007 FF J, EPO / L

TIERPHÄNOLOGISCHE BEOBACHTUNGEN

IN

FINLAND JAHRGANG 1907

ZUSAMMENGESTELLT

VON

K. M. LEVANDER.

(VORGELEGT AM 18. JANUAR 1909.)

MIT EINER KARTE.

the Text of the Notice of the English State

HELSINGFORS 1909,

DRUCKEREI DER FINNISCHEN LITTERATUR-GESELLSCHAFT.

TO A PART OF THE STATE OF THE S

