

COMP 2019

Week 7
ML Validation

Learning Objectives

- Explain how datasets are used during training (CO3)
- Distinguish bias and variance issues (CO3)
- Explain cross-validation (CO3)
- Understand the large data rationale (CO3)

Supervised Learning from Data

square feet

x1	xn	у	Training	Model	Interence			×××	××
				y = f(X)	, , ,	.0 - 5 - 0 - ×	×××	*	
					0.	0.5 × × × × × × × × × × × × × × × × × × ×	1000 1500	2000 25	00 3000

3.5

Learning = Generalisation

How well does the model perform on UNSEEN data?

Diagnosing a Learning Algorithm

- Suppose you have implemented learner to predict housing prices based on features $x_1, ..., x_n$.
- When you test your learner on a new set of houses, you find that it makes unacceptably large errors in its predictions.
- What should you do?

Possible actions?

- Get more training samples
- Try (adding | removing) features
- Try adding derived features ($\log xi$, x_i^2 , x_ix_j ,...)
- (Impose | Decrease) a penalty on large parameter values
- Hire someone else to do the job.

Overfitting

- Parameters $\theta_0, \dots, \theta_n$ were fit to the training data to minimize the error as measured **on the training data**.
- This may result in a hypothesis that is tailored too much to the training data.
- The hypothesis fails to generalize from training data.
- The hypothesis "overfits".

Model Complexity

- Model fit training data well
 - requires a more complex model (with more parameters)
- Behaviour of model on test data should match that on training data
 - requires a less complex (more stable) model
- More complex model
 - smaller training error but larger difference between test and training error
- Less complex model
 - larger training error but smaller difference between test and training error

Occam's Razor

• Among all suitable hypotheses, select the simplest (the one with fewest assumptions).

Model Selection

- Q: How do we find a good model?
 - We don't know which model (among a set of alternatives) we should select
 - Let's learn multiple models and take the one that performs best
- How do we know which one performs best?
 - We cannot use the training and test sets to perform this evaluation

Underfitting Remedies

Training set size

- Change the model
- Adding data won't help

Overfitting Remedies

Training set size

Adding more data may help to estimate parameters more accurately.

Performance Remedies

- Get more training examples: fixes overfitting
- Remove features: fixes overfitting
- Add features: fixes underfitting
- Impose a penalty on parameter values: fixes overfitting
- Decrease penalty: fixes underfitting
- Change the model architecture: fixes either

Learning Curves

Building Highly Accurate ML Systems

It is all about data

• Classify between confusable words {to, two, too}, {then, than} For breakfast I ate _____ eggs.

"It's not who has the best algorithm that wins. It's who has the most data."

[Banko and Brill, 2001]

Large Data Rationale

- Use a learning algorithm with many parameters
 - e.g. logistic regression/linear regression with many features
 - Low bias algorithm can learn complex concepts
 - $J_{Train}(\theta)$ will be small
- Use a vary large training set
 - unlikely to overfit, low variance
 - $J_{Train}(\theta) \approx J_{Test}(\theta)$

K-Fold Cross-Validation (CV) Solit 1 Split 2 Split 3 Split 4

The partitions must be formed randomly!

4-fold Cross Validation: average the results

CV Training Process

- Can use CV for model selection
 - Train n models and evaluate each with (k-fold) CV
 - Select the model that exhibits best results
 - Re-train the model on all of the training data
- Estimate performance on unseen data using the Test set

What Could Go Wrong?

- The actual distribution you need to do well on is different from the dev/test sets
- You have overfit to the dev set
- The metric is measuring something other than what the project needs to optimize
- Datasets include lots of mislabelled samples

Error Analysis

- Determine where the model errs and what to do about it
 - Diagnosing underfit/overfit is only one form of error analysis
- Manual inspection of errors on the Dev set
- Guides development effort and bounds potential improvement
 - Error rate and frequency of types of classes determine what can be gained

Optimal Error

- The optimal achievable error rate is not always 0%
 - Unintelligible speech in audio recordings even human's cannot decipher
- Compare to human performance
 - But some problems are hard for humans

Summary

- Use separate datasets to train, tune/evaluate, and test the model
- Error analysis helps distinguish high bias from high variance issues, and select actions for improvement
- Cross-validation is a technique for evaluating models based on repeated splitting of data
- Building an ML system is a highly iterative process
- More data is usually better than improving the algorithm

University of South Australia

Questions?