CS102: Discrete Structures Tutorial #2

Summary

	Summary		
proposition	a statement that is either true or false		
propositional	a variable that represents a proposition		
variable			
truth value	true or false		
~ p (negation	the proposition with tru	th value opposite to	
of <i>p</i>)	the truth value of p		
logical	operators used to combine	ne propositions	
operators /			
connectives			
compound	a proposition construc		
proposition	propositions using logica		
truth table	a table displaying all pos	ssible truth values of	
	propositional statement		
$p \lor q$	the proposition " p or q ,"		
(disjunction of	only if at least one of p a	and q is true	
<i>p</i> and <i>q</i>)	41 44 44	22 _ 1 · 1 · 4 . · · · · · · 1	
$p \wedge q$	the proposition " p and q ,		
(conjunction	only if both p and q are t	rue	
of p and q)	41	D = 221 ' · 1 ' ·	
$p \oplus q$	the proposition " p XOR q ," which is true when <i>either</i> one of p or q is true		
(exclusive or	when either one of p or	q is true	
of p and q)	the magnetical 6: £ = £ = = 2 = 1 : 1 : £ 1 : £		
$p \rightarrow q (p)$	the proposition "if p , then q ," which is false if		
implies q)	and only if p is true and	q is raise	
converse of	the conditional statement		
$\begin{array}{c} p \rightarrow q \\ \text{Contrapositive} \end{array}$	$q \rightarrow p$ the conditional statement		
of $p \rightarrow q$			
inverse of	$\sim q \rightarrow \sim p$ the conditional statement		
		L	
$p \rightarrow q$	$ \begin{array}{c} \sim p \to \sim q \\ if p then q \end{array} $	if n a	
	p implies q	if p, q p only if q	
	q whatever p	q follows from p	
Terminologies	p is suffecient for q	q when p	
used to express	a sufficient	a necessary	
$p \rightarrow q$	condition	condition	
	for q is p	for p is q	
	q is necessary for p	q unless ~p	
n \leftrightarrow α	the proposition "p if and		
$p \leftrightarrow q$ (biconditional)	true if and only if p and a		
(Siconational)	value	1 mayo me same num	
bit	either a 0 or a 1		
Boolean	a variable that has a valu	ie of 0 or 1	
variable	a variable that has a valu		
bit operation	an operation on a bit or b	oits	
bit string	a list of bits		
bitwise	operations on bit strings that operate on each		
operations	bit in one string and the		
- F	the other string	or in	
logic gate	a logic element that	performs a logical	
- 0 - 5	operation on one or mor		
	output bit	r P	
logic circuit	a switching circuit made up of logic gates that		
J	produces one or more ou		
tautology	a compound proposition that is always true		
contradiction	a compound proposition that is always false		
contingency	a compound proposition that is sometimes		
 	true and sometimes false		
consistent	compound propositions		
compound	assignment of truth values to the variables		
propositions	that makes all these propositions true		

satisfiable compound proposition	a compound proposition for which there is an assignment of truth values to its variables that makes it true	
logically equivalent compound propositions	compound propositions that always have the same truth values	
predicate	part of a sentence that attributes a property to the subject	
propositional function	a statement containing one or more variables that becomes a proposition when each of its variables is assigned a value or is bound by a quantifier	
domain (or universe) of discourse	the values a variable in a propositional function may take	
$\exists x \ P(x)$ (existential quantification of $P(x)$)	the proposition that is true if and only if there exists an x in the domain such that $P(x)$ is true	
$\forall x P(x)$ (universal quantification of $P(x)$)	the proposition that is true if and only if $P(x)$ is true for every x in the domain	
logically equivalent expressions	expressions that have the same truth value no matter which propositional functions and domains are used	
free variable	a variable not bound in a propositional function	
bound variable	a variable that is quantified	
scope of a quantifier	portion of a statement where the quantifier binds its variable	

Identities involving Propositions

<u>Equivalence</u>	<u>Name</u>
$ \begin{array}{c} p \land T \equiv p \\ \hline p \lor F \equiv p \end{array} $	Identity laws
$ \begin{array}{c} p \lor T \equiv T \\ p \land F \equiv F \end{array} $	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\sim (\sim p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \sim p \equiv T$ $p \land \sim p \equiv F$	Negation laws

Logical Equivalences involving Conditional / Bi-conditional Statements.

$p \rightarrow q \equiv \sim p \lor q$	$p \rightarrow q \equiv \sim q \rightarrow \sim p$	
$p \lor q \equiv \sim p \longrightarrow q$	$p \land q \equiv \sim (p \rightarrow \sim q)$	
$\sim (p \to q) \equiv p \land \sim q$		
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$		
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$		
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$		
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$		
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$		
$p \leftrightarrow q \equiv (p \land q) \ V(\sim p \land \sim q)$		
$p \leftrightarrow q \equiv \sim p \leftrightarrow \sim q$	$\sim (p \leftrightarrow q) \equiv p \leftrightarrow \sim q$	

De Morgan's Laws for Quantifiers

De Morgan's Laws for Quantifiers			
Negation	Equivalent Statement	When is Negation True?	When False?
$\sim \exists x P(x)$	$\forall x \sim P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is
			true.
$\sim \forall x P(x)$	$\exists x \sim P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x.

<u>Logical Equivalences involving Universal and Existential</u> <u>quantifiers</u>

$\sim (\forall x P(x)) \equiv \exists x \sim P(x)$	$\sim (\exists x P(x)) \equiv$	
	$\forall x (\sim P(x))$	
$\exists x \big(P(x) \to Q(x) \big) \equiv$	$\exists x \big(P(x) \lor Q(x) \big) \equiv$	
$\forall x P(x) \rightarrow \exists x Q(x)$	$\exists x P(x) \lor \exists x Q(x)$	
$\forall x \left(P(x) \land Q(x) \right) \equiv \forall x P(x) \land \forall x Q(x)$		
$((\forall x P(x)) \lor (\forall x Q(x))) \rightarrow \forall x (P(x) \lor Q(x))$ is a tautology.		
$\exists x (P(x) \land Q(x)) \rightarrow \exists x P(x) \land \exists x Q(x) \text{ is a tautology.}$		

- 1. Which of these are propositions? What are the truth values of those that are propositions?
 - a) Do not cross the road when the signal is red.
 - b) What is the time now?
 - c) There are no Windmills in the University.
 - d) 3 + x = 12.
 - e) The moon is made of green cheese.
 - f) $5x \ge 67$.
- 2. What is the negation of each of these propositions?
 - a) Ram and Vinod are friends.
 - b) There are 13 items in a baker's dozen.
 - c) Bobby sent more than 50 text messages yesterday on his mobile phone.
 - d) 144 is a perfect square.
- 3. Let p and q be the propositions

p: I bought a lottery ticket this week.

q: I won the million-dollar jackpot.

Express each of these propositions as an English sentence.

(a)
$$\sim p$$
 (b) $p \vee q$ (c) $p \rightarrow q$ (d) $p \wedge q$

$$(e) \; p \leftrightarrow q \; (f \;) \, {\sim} p \to {\sim} q \quad (g) \; {\sim} p \; {\wedge} {\sim} q \quad (h) \; {\sim} p \; {\vee} \; (p \; {\wedge} \; q)$$

- 4. Let *p* and *q* be the propositions
 - p: You drive over 80km/h;
 - q: You get a speeding ticket.

Write these propositions using p and q and known logical connectives.

- a) You do not drive over 80km/h.
- b) You drive over 80km/h, but you do not get a speeding ticket.
- c) You will get a speeding ticket if you drive over 80km/h.
- d) If you do not drive over 80km/h, then you will not get a speeding ticket.

- e) Driving over 80km/h is sufficient for getting a speeding ticket.
- f) You get a speeding ticket, but you do not drive over 80km/h.
- g) Whenever you get a speeding ticket, you are driving over 80km/h.
- 4.1. Assuming the propositions: p: I am awake; q: I work hard and r: I dream of home; write each of the following statements in terms of p, q, r, and logical connectives.
 - (a) I am awake implies that I work hard.
 - (b) I dream of home only if I am awake.
 - (c) Working hard is sufficient for me to be awake.
 - (d) Being awake is necessary for me not to dream of home.
 - (e) I am not awake if and only if I dream of home.
 - (f) If I dream of home, then I am awake and I work
 - (g) I do not work hard only if I am awake and I do not dream of home.
 - (h) Not being awake and dreaming of home is sufficient for me to work hard.
- 4.2. Let p, q, and r be the following statements:

p: *I* will study discrete structure;

q: I will go to a movie;

r: I am in a good mood.

Express these statements in terms of p, q and r:

- (a) If I am not in a good mood, then I will go to a movie.
- (b) I will not go to a movie and I will study discrete structures.
- (c) I will go to a movie only if I will not study discrete structures.

- (d) If I will not study discrete structures, then I am not in a good mood.
- 4.3. Using the propositions of the previous question, convert the following propositional expressions into English statements: -

(a)
$$(\sim p \land q) \rightarrow r$$

(b)
$$r \rightarrow (p \lor q)$$

$$(c) \sim r \rightarrow (\sim q \vee p)$$

(d)
$$(q \land \sim p) \leftrightarrow r$$

- 5. Determine whether these bi-conditionals are true or false.
 - a) 2 + 2 = 4 if and only if 1 + 1 = 2.
 - b) 1 + 1 = 2 if and only if 2 + 3 = 4.
 - c) 1 + 1 = 3 if and only if monkeys can fly.
 - d) 0 > 1 if and only if 2 > 1.
- 6. State the converse, contra-positive, and inverse of each of these conditional statements.
 - a) If it snows tonight, then I will stay at home.
 - b) I go to the beach whenever it is a sunny summer day.
 - c) When I stay up late, it is necessary that I sleep until noon.
- 7. Construct a truth table for the compound propositions.

a)
$$(p \oplus q) \lor (p \oplus \neg q)$$
 b) $(p \oplus q) \land (p \oplus \neg q)$

- 8. Explain, without using a truth table, why $(p \lor \sim q) \land (q \lor \sim r) \land (r \lor \sim p)$ is true when p, q, and r have the same truth value and it is false otherwise.
- 9. What is the value of x after each of these statements is encountered in a computer program, assume that x = I before the statement is reached?

a) if
$$x + 2 = 3$$
 then $x := x + 1$

b) if
$$(x + 1 = 3)$$
 OR $(2x + 2 = 3)$ then $x := x + 1$

c) if
$$(2x + 3 = 5)$$
 AND $(3x + 4 = 7)$ then $x := x + 1$

d) if
$$(x + 1 = 2) XOR (x + 2 = 3)$$
 then $x := x + 1$

- e) *if* x < 2 *then* x := x + 1
- 10. Express the statement "You can see the movie only if you are over 18 years old or you have the permission of a parent." in terms of the prepositions –

m: "You can see the movie,"

a: "You are over 18 years old,"

p: "You have the permission of a parent."

- 11. Express the statement "to use the wireless network in the airport you must pay the daily fee unless you are
- in the airport you must pay the daily fee unless you are a subscriber to the service" in terms of the propositions
 - w: "You can use the wireless network in the airport"
 - d: "You pay the daily fee"
 - s: "You are a subscriber to the service"

- 12. Express these system specifications using the propositions given below and logical connectives:
 - p "The user enters a valid password,"
 - q "Access is granted,"
 - r "The user has paid the subscription fee"
- a) "The user has paid the subscription fee, but does not enter a valid password."
- b) "Access is granted whenever the user has paid the subscription fee and enters a valid password."
- c) "Access is denied if the user has not paid the subscription fee."
- d) "If the user has not entered a valid password but has paid the subscription fee, then access is granted."
- 13. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known? Explain your reasoning.
- Either Kevin or Heather, or both, are chatting.
- Either Randy or Vijay, but not both, are chatting.
- If Abby is chatting, so is Randy.
- Either both Vijay and Kevin are chatting or neither is chatting.
- If Heather is chatting, then Abby and Kevin are also chatting.
- 14. Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $((\sim p \lor \sim r) \land \sim q) \lor (\sim p \land (q \lor r))$ from input bits p, q, and r.
- 15. Show that each of these conditional statements is a tautology.

a)
$$[\sim p \land (p \lor q)] \rightarrow q$$

b)
$$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

c) $[p \land (p \rightarrow q)] \rightarrow q$

d)
$$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$$

16. Is $(\sim p \land (p \rightarrow q)) \rightarrow \sim q$ a tautology?

17. Is
$$(\sim q \land (p \rightarrow q)) \rightarrow \sim p$$
 a tautology?

18. Is
$$(p \to q) \land (q \to r) \to (p \to r)$$
 a tautology?

- 19. Is $(p \lor q) \land (\sim p \lor r) \rightarrow (q \lor r)$ a tautology?
- 20. Show that

a)
$$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$$

b)
$$\sim (p \leftrightarrow q) \equiv p \leftrightarrow \sim q$$

c)
$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

d)
$$\sim p \leftrightarrow q \equiv p \leftrightarrow \sim q$$

e)
$$\sim (p \bigoplus q) \equiv p \leftrightarrow q$$

f)
$$\sim (p \leftrightarrow q) \equiv \sim p \leftrightarrow q$$

g)
$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

h)
$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

i)
$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

j)
$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

k)
$$\sim p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$$

1)
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

m) $p \leftrightarrow q \equiv \sim p \leftrightarrow \sim q$

21. Show that the following are not logically equivalent: -

a)
$$(p \rightarrow q) \rightarrow r$$
 and $p \rightarrow (q \rightarrow r)$
b) $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$
c) $(p \rightarrow q) \rightarrow (r \rightarrow s)$ and $(p \rightarrow r) \rightarrow (q \rightarrow s)$

- 22. Determine whether each of these compound propositions is satisfiable.
 - a) $(p \lor q \lor \sim r) \land (p \lor \sim q \lor \sim s) \land (p \lor \sim r \lor \sim s) \land$ $(\sim p \lor \sim q \lor \sim s) \land (p \lor q \lor \sim s)$
 - b) $(\sim p \lor \sim q \lor r) \land (\sim p \lor q \lor \sim s) \land (p \lor \sim q \lor \sim s) \land$ $(\sim p \ \lor \sim r \ \lor \sim s) \land (p \lor q \lor \sim r) \land (p \lor \sim r \lor \sim s)$
 - c) $(p \lor q \lor r) \land (p \lor \sim q \lor \sim s) \land (q \lor \sim r \lor s) \land$ $(\sim p \lor r \lor s) \land (\sim p \lor q \lor \sim s) \land (p \lor \sim q \lor \sim r) \land$ $(\sim p \lor \sim q \lor s) \land (\sim p \lor \sim r \lor \sim s)$
- 23. Let N(x) be the statement "x has visited Nainital," where the domain consists of the students in your class. Express each of these quantifications in English.
 - a) $\exists x N(x)$
- b) $\forall x N(x)$
- c) $\sim \exists x N(x)$

- d) $\exists x \sim N(x)$
- e) $\sim \forall x N(x)$
- f) $\forall x \sim N(x)$
- 24. Translate these statements into English, where R(x)is "x is a rabbit" and H(x) is "x hops" and the domain consists of all animals.
 - a) $\forall x (R(x) \rightarrow H(x))$
- b) $\forall x (R(x) \land H(x))$
- c) $\exists x (R(x) \rightarrow H(x))$
- d) $\exists x (R(x) \land H(x))$
- 25. Let Q(x) be the statement "x + 1 > 2x." If the domain consists of all integers, what are the truth values of the following?
 - (a) Q(0)
- (b) Q(-1)
- (c) Q(1) d) $\exists x Q(x)$
- (e) $\forall x Q(x)$ (f) $\exists x \sim Q(x)$ (g) $\forall x \sim Q(x)$
- 26. Assuming that the domain of the propositional function P(x) consists of $\{-5, -3, -1, 1, 3, \dots\}$ Express the statements given below using only negations, disjunctions, and conjunctions.
- a) $\exists x P(x)$
- b) $\forall x P(x)$
- c) $\forall x((x \neq 1) \rightarrow P(x))$
- d) $\exists x((x \ge 0) \land P(x))$
- e) $\exists x (\sim P(x)) \land \forall x ((x < 0) \rightarrow P(x))$
- 27. Translate these statements into logical expressions using predicates, quantifiers, and logical connectives.
 - a) Something is not in the correct place.
 - b) All tools are in the correct place and are in excellent condition.
 - c) Everything is in the correct place and in excellent
 - d) Nothing is in the correct place and is in excellent condition.

- e) One of your tools is not in the correct place, but it is in excellent condition.
- 28. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all real numbers.
- a) $\forall x(x^2 \neq x)$ b) $\forall x(x^2 \neq 2)$
- 29. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 - a) When there is less than 30 MB free space on the hard disk, a warning message is sent to all users.
 - b) No directories in the file system can be opened and no files can be closed when system errors have been detected.
 - c) The file system cannot be backed up if there is a user currently logged on.
 - d) Video on demand can be delivered when there are at least 8 MB of memory available and the connection speed is at least 256 kbps.
- 30. Let P(x), Q(x), and R(x) be the statements "x is a clear explanation," "x is satisfactory," and "x is an excuse," respectively. Suppose that the domain for x consists of all English text. Express the following statements using quantifiers, logical connectives, and P(x), O(x), and R(x):
 - a) All clear explanations are satisfactory.
 - b) Some excuses are unsatisfactory.
 - c) Some excuses are not clear explanations.
 - d) Does (c) follow from (a) and (b)?
- 31. Translate these statements into English, where the domain for each variable consists of all real numbers.
 - a) $\exists x \forall y (xy = y)$
 - b) $\forall x \forall y (((x \ge 0) \land (y < 0)) \rightarrow (x y > 0))$
 - c) $\forall x \forall y \exists z (x = y + z)$
- 32. Let P(x, y) be the statement "Student x has taken class y," where the domain for x consists of all students in your class and for y consists of all computer science courses in your University. Express each of these quantifications in English.
- a) $\exists x \exists y P(x, y)$ b) $\exists x \forall y P(x, y)$ $\exists y \forall x P(x, y)$ e) $\forall y \exists x P(x, y)$
- c) $\forall x \exists y P(x, y) d$ f) $\forall x \forall y P(x, y)$
- 33. Let Q(x, y) be the statement "student x has been a contestant on quiz show y." Express each of these sentences in terms of Q(x, y), quantifiers, and logical connectives, where the domain for x consists of all students in the University and for y consists of all quiz shows on TV.
 - a) There is a student at your University who has been a contestant on a TV quiz show.

- b) No student at your University has ever been a contestant on a TV quiz show.
- c) There is a student in your University who has been a contestant on *KBC* and on *Mastermind India*.
- d) Every TV quiz show has had a student from your University as a contestant.
- e) At least two students from your University have been contestants on *KBC*.
- 34. Let I(x) be the statement "x has an Internet connection" and C(x, y) be the statement "x and y have chatted over the Internet," where the domain for the variables x and y consists of all students in your class. Use quantifiers to express each of these statements.
 - a) Jatin does not have an Internet connection.
 - b) Ruchi has not chatted over the Internet with Chitra.
 - c) Jerry and Shiva have never chatted over the internet.
 - d) No one in the class has chatted with Bobby.
 - e) Sanjay has chatted with everyone except Vijay.
 - f) Someone in your class does not have an Internet connection.
 - g) Not everyone in your class has an Internet connection.
 - h) Exactly one student in your class has an Internet connection.
 - i) Everyone except one student in your class has an Internet connection.
 - j) Everyone in your class with an Internet connection has chatted over the Internet with at least one other student in your class.
 - k) Someone in your class has an Internet connection but has not chatted with anyone else in your class.
 - l) There are two students in your class who have not chatted with each other over the Internet.
 - m) There is a student in your class who has chatted with everyone in your class over the Internet.
 - n) There are at least two students in your class who have not chatted with the same person in your class.
 - o) There are two students in the class who between them have chatted with everyone else in the class.
- 35. Express each of these system specifications using predicates, quantifiers, and logical connectives, if necessary.
 - a) At least one console must be accessible during every fault condition.
 - b) The e-mail address of every user can be retrieved whenever the archive contains at least one message sent by every user on the system.
 - c) For every security breach there is at least one mechanism that can detect that breach if and only if there is a process that has not been compromised.

- d) There are at least two paths connecting every two distinct endpoints on the network.
- e) No one knows the password of every user on the system except for the system administrator, who knows all passwords.
- 36. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.
 - a) $\forall x \exists y (x^2 = y)$
 - b) $\forall x \exists y (x = y^2)$
 - c) $\exists x \forall y (xy = 0)$
 - d) $\exists x \exists y (x + y \neq y + x)$
 - e) $\forall x(x \neq 0 \rightarrow \exists y(xy = 1))$
 - f) $\exists x \forall y (y \neq 0 \rightarrow xy = 1)$
 - g) $\forall x \exists y (x + y = 1)$
 - h) $\exists x \exists y (x + 2y = 2 \land 2x + 4y = 5)$
 - i) $\forall x \exists y (x + y = 2 \land 2x y = 1)$
 - j) $\forall x \forall y \exists z (z = (x + y)/2)$
- 37. Suppose the domain of the propositional function P(x, y) consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Write out these propositions using disjunctions and conjunctions.
- a) $\forall x \forall y P(x, y)$
- b) $\exists x \exists y P(x, y)$
- c) $\exists x \forall y P(x, y)$
- d) $\forall y \exists x P(x, y)$
- 38. Express the negations of each of these statements so that all negation symbols immediately precede predicates.
- a) $\forall x \exists y \forall z T (x, y, z)$
- b) $\forall x \exists y P(x, y) \lor \forall x \exists y Q(x, y)$
- c) $\forall x \exists y (P(x, y) \land \exists z R(x, y, z))$
- d) $\forall x \exists y (P(x, y) \rightarrow Q(x, y))$
- 39. Find a counterexample, if possible, to these statements, where the domain for all variables consists of all integers.
- a) $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$
- b) $\forall x \exists y (y^2 = x)$
- c) $\forall x \forall y (xy \ge x)$
- 40. Prove that the compound propositional statement $(p \lor q) \land \sim (\sim p \land (\sim q \lor \sim r)) \lor (\sim p \land \sim q) \lor (\sim p \land \sim r)$ is a tautology.
- 41. Convert the statement $\sim (p \leftrightarrow (q \rightarrow (r \lor p)))$ into PDNF and PCNF forms.