FOUNDATIONS OF HIGHER MATHEMATICS HOMEWORK 7

Problem 10

Proof. (⊆) Let $x \in A \cup B$ and $x \notin A \cap B \cap C$. Then $x \notin A$ or $x \notin B$ or $x \notin C$ by De Morgan's law. Suppose $x \in A$. Then $x \notin B$ or $x \notin C$. It follows that $x \notin B \cap C$, and thus, $x \in A - (B \cap C)$. So, $x \in [A - (B \cap C)] \cup [B - (A \cap C)]$. Now suppose the $x \in B$. Then $x \notin A$ or $x \notin C$. Thus, $x \notin A \cap C$. It follows that $x \in B - (A \cap C)$, and thus $x \in [A - (B \cap C)] \cup [B - (A \cap C)]$.

(⊇) Let $x \in [A - (B \cap C)] \cup [B - (A \cap C)]$. Suppose $x \in A - (B \cap C)$. Then $x \in A$ and $x \notin B$ or $x \notin C$. It follows that $x \in A$ or $x \notin A$. Similarly, $x \notin B$ or $x \in B$. By De Morgan's Law, $x \notin A \cap B \cap C$. Since $x \in A$ not $x \in B$ and $x \notin A \cap B \cap C$, $(A \cup B) - (A \cap B \cap C)$. Now suppose that $x \in B - (A \cap C)$. Then $x \in B$ and $x \notin (A \cap C)$. It follows that $x \notin A$ or $x \notin C$. Since $x \in B$ then $x \in B \cup A$. Also, $x \in B$ or $x \notin B$. Then $x \notin A$ or $x \notin B$ or $x \notin C$ and thus $x \notin A \cap B \cap C$. Therefore, $x \in (A \cup B) - (A \cap B \cap C)$. ■

Problem 11

- a) Proof. Suppose $S \subseteq T$ and x is in the domain of S. Then for an arbitrary element $y \in S[x]$, $(x,y) \in S$. Since $S \subseteq T$ and $(x,y) \in S$, then $(x,y) \in T$ and $y \in T[x]$. Therefore, $S[x] \subseteq T[x]$.
- b) $\bullet (A \times B)[x] = B \text{ if } x \in A.$

Proof. (\subseteq) If $x \in A$ and $y \in (A \times B)[x]$, then $(x, y) \in (A \times B)$. It follows that $y \in B$ from the definition of the Cartesian Product. Therefore, $(A \times B)[x] \subseteq B$.

- (⊇) If $x \in A$ and $y \in B$ then $(x,y) \in (A \times B)$. It follows that $y \in (A \times B)[x]$. Therefore, $B \subseteq (A \times B)[x]$.
- $(A \times B)[x] = \emptyset$

Proof. (\supseteq) \varnothing is the subset of every set, therefore $\varnothing \subseteq (A \times B)[x]$.

(⊆) If $x \notin A$ and $y \in (A \times B)[x]$ Since x, and arbitrary element, is not in the domain A then $(A \times B)[x]$ is not defined and thus, it is vacuously true that $y \in \emptyset$ so $(A \times B)[x] \subseteq \emptyset$.

Problem 13

$$R[7] = \{7, 14, 21, 28, 35, \ldots\}$$

$$R[14] = \{14, 28, 42, 56, 70, \ldots\}$$

The only $n \in \mathbb{N}$ for which $R[n] = \mathbb{N}$ is n = 1.

Problem 19

Given the relation $A = \{(1,1), (1,2), (1,3), (3,4), (4,1), (4,3), (4,5), (5,2), (5,4)\}$ the Cartesian graph looks like:

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Problem 20a

 $R = \{(a, b) \in A \times A : a \text{ divides } b\}$

Problem 20b

 $U = \{(a, b) \in A \times A : a \neq b\}$

Problem 25

Problem 34

a) Non Reflexive: $1 \in \mathbb{R}$ but $1 \cdot 1 \neq 0$ and thus $(1,1) \notin R_1$

Symmetric: Suppose $(x,y) \in R_1$. Then xy = 0 and yx = 0. Thus $(y,x) \in R_1$. Therefore, R_1 is Symmetric.

Non Transitive: $1 \cdot 0 = 0$ so $(1,0) \in R_1$. $0 \cdot 1 = 0$ so $(0,1) \in R_1$ but $1 \cdot 1 \neq 0$ so $(1,1) \notin R_1$.

b) **Reflexive:** Suppose $x \in \mathbb{R}$. Then, |x-x| = 0 < 5 so $(x, x) \in R_2$.

Symmetric: Suppose $(x,y) \in R_2$. Then |x-y| < 5. It follows that, |-(y-x)| < 5 and |y-x| < 5. Therefore, $(y,x) \in R_2$ so R_2 is symmetric.

Non Transitive: |10-6| < 5 and |6-2| < 5 so $(10,6) \in R_2$ and $(6,2) \in R_2$ but $|10-2| = 8 \nleq 5$.

c) Non Reflexive: $0 \in \mathbb{R}$ but $0 \cdot 0 = 0$.

Symmetric: Suppose $(x, y) \in R_3$. Thus, $xy \neq 0$. It follows that $yx \neq 0$ so $(y, x) \in R_3$. Therefore, R_3 is symmetric.

Transitive: (Contrapositive) Suppose $(x, z) \notin R_3$. Then xz = 0. So either x = 0 or z = 0.

Problem 20c

 $E = \{(a, b) \in A \times A : a + b \text{ is even}\}\$

Problem 20d

 $O = \{(a, b) \in A \times A : a + b \text{ is odd}\}$

Assume x = 0. Then xy = 0, and $(x,y) \notin R_3$. So $(x,y) \notin R_3$ or $(y,z) \notin R_3$ by disjunction introduction. Now assume, z = 0. It follows that yz = 0. So, $(y,z) \notin R_3$ or $(x,y) \notin R_3$. Therefore, by the contrapositive, R_3 is transitive. Suppose $(x,y) \in R_3$ and $(y,z) \in R_3$.

d) Reflexive: Let $x \in \mathbb{R}$. Then $x \geq x$ so $(x, x) \in R_4$.

Non Transitive: $2 \ge 1$ so $(2,1) \in R_4$ but 1 < 2 so $(1,2) \notin R_4$.

Transitive: Suppose $(x,y) \in R_4$ and $(y,z) \in R_4$. So $x \ge y$ and $y \ge z$. It follows that, $x \ge y \ge z$ and thus, $x \ge z$. Hence, $(x,z) \in R_4$.

e) Non Reflexive: $1 \in \mathbb{R}$ but $1^2 + 1^2 = 2 \neq 1$. Symmetric: Suppose $(x, y) \in R_5$. So $x^2 + y^2 = 1$. It follows that $y^2 + x^2 = 1$ so $(y, x) \in R_5$ Non Transitive: $1^2 + 0^2 = 1$ so $(1, 0) \in R_5$ and $0^2 + 1^2 = 1$ so $(0, 1) \in R_5$ but $1^1 + 1^1 = 2 \neq 1$ so $(1, 1) \notin R_5$.