Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir

Some Basic Concept of Chemistry

DPP: 10

- Q1 Which of the following relations is incorrect for solutions?
 - (A) $3N Al_2(SO_4)_3 = 0.5M Al_2(SO_4)_3$
 - (B) $3M H_2SO_4 = 6N H_2SO_4$
 - (C) $1M H_3PO_4 = 1/3N H_3PO_4$
 - (D) 1M $Al_2(SO_4)_3 = 6N Al_2(SO_4)_3$
- Q2 Determine the volume/volume percent solution made by combining 25 mL of ethanol with enough water to produce 200 mL of the solution:
 - (A) 12.5
- (B) 20

(C) 40

- (D) 25
- Q3 250ml of 0.5MKCl is diluted with water to $500 \mathrm{ml}$ of solution, the number of chloride ions in the resulting solution are (Gram atomic mass of K = 39 g and Cl = 35.5 g
 - (A) 6.02×10^{23}
 - (B) 7.52×10^{22}
 - (C) 1×10^{24}
 - (D) $3.76 imes 10^{23}$
- Q4 What is the quantity of water that should be added to $16~\mathrm{g}$ methanol to make the mole fraction of methanol as 0.25? (Gram atomic mass of C = 12 q, O = 16 q, H = 1 q)
 - (A) 27 q
- (B) 12 q
- (C) 18 q
- (D) 36 g
- Q5 Mole fraction of the solute in a 1.00 molal aqueous solution is
 - (A) 0.1770
- (B) 0.0177
- (C) 0.0344
- (D) 1.7700

- **Q6** What is the concentration of nitrate ions if equal volumes of 0.1 M ${
 m AgNO_3}$ and 0.1 M NaCl are mixed together?
 - (A) 0.1 M
- (B) 0.2 M
- (C) 0.05 M
- (D) 0.25 M
- **Q7** The molarity of the solution containing 2.8%mass-volume solution of KOH is (Gram atomic mass of K = 39 g, O = 16 g, H = 1 g)
 - (A) M/10
 - (B) $\mathrm{M}/2$
 - (C) M/5
 - (D) 1M
- **Q8** What is the $[OH^{-}]$ in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with $30.0 \text{ mL of } 0.10 \text{MBa}(\text{OH})_2$?
 - (A) 0.10M
 - (B) 0.40M
 - (C) 0.0050M
 - (D) 0.12M
- Q9 The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having $1000 \mathrm{gm}$ of solvent. (Gram atomic mass of S = 32 g, O = 16 g, H = 1 g
 - (A) 1000 g
 - (B) 1098.6 g
 - (C) 980.4 g
 - (D) 1019.6 g
- **Q10** The density (in g mL^{-1}) of a 3.60 M sulphuric acid solution that is 29% (H_2SO_4 molar mass $=98 \text{ gmol}^{-1}$) by mass will be:

- (A) 1.22
- (B) 1.45
- (C) 1.64
- (D) 1.88
- **Q11** How many significant figures are in 0.0008?
 - (A) 1

(B) 2

(C)3

- (D)4
- **Q12** The multiple 5×0.2 after rounding off will be:
 - (A) 1

- (B) 1.0
- (C) 1.00
- (D) 1.000
- **Q13** Add (0.001+0.02) upto the correct number of significant figures
 - (A) 0.021
- (B) 0.02
- (C) 0.003
- (D) 0.001
- Q14 One fermi is
 - (A) 10^{-13} cm
- (B) 10^{-15} cm
- (C) 10^{-10} cm
- (D) 10^{-12} cm
- **Q15** Significant figures in 0.00051 are
 - (A)5

(B)3

(C) 2

- (D)4
- **Q16** 1 m^3 is equal to
 - (A) 100 litre
- (B) 10000 litre
- (C) 10 litre
- (D) 1000 litre
- Q17 A picometre is written as
 - (A) 10^{-9} m
 - (B) 10^{-10} m
 - (C) 10^{-11} m
 - (D) $10^{-12}\ \mathrm{m}$
- **Q18** Convert $25365~\mathrm{mg}$ to S.I. unit
 - (A) 253.65 g
 - (B) $25.365 \times 10^{-3} \text{ kg}$
 - (C) 25.365 kg
 - (D) 253.65 kg

Answer Key

(C)	Q10	(A)
(A)	Q11	(A)
(B)	Q12	(A)
(A)	Q13	(B)
(B)	Q14	(A)
(C)	Q15	(C)
(B)	Q16	(D)
(A)	Q17	(D)
(D)	Q18	(B)
	(A) (B) (A) (B) (C) (B) (A)	(A) Q11 (B) Q12 (A) Q13 (B) Q14 (C) Q15 (B) Q16 (A) Q17

