INTRODUCTION TO NETWORKS

CARSON JAMES

Contents

1. Setup

1. Setup

Definition 1.0.1. Let (M, d) be a metric space, (G, τ) a topological group, and $\cdot : G \times M \to M$ a group action. Suppose that for each $g \in G$, the map $x \mapsto g \cdot x$ is an isometry. We define $\bar{d} : M/G \to [0, \infty)$ by

$$\bar{d}(o_x, o_y) = \inf_{\substack{a \in o_x \\ b \in o_y}} d(a, b)$$
$$= \inf_{g \in G} d(g \cdot x, y)$$

Exercise 1.0.2. If for each $x \in M$, o_x is closed, then \bar{d} is a metric.

Proof. Suppose that for each $x \in M$, o_x is closed. We need only show that for each $x, y \in M$, $\bar{d}(o_x, o_y) = 0$ implies that $o_x = o_y$. Suppose that $\bar{d}(o_x, o_y) = 0$. Then $\inf_{g \in G} d(g \cdot x, y) = 0$. Hence there exists $(\tau_n)_{n \in \mathbb{N}} \subset G$ such that $\tau_n \cdot x \to y$. Since $(\tau_n \cdot x)_{n \in \mathbb{N}} \subset o_x$ and o_x is closed, $y \in o_x$. Thus $o_x = o_y$.

Example 1.0.3. Consider the metric space $(\mathbb{C}, |\cdot|)$, topological group $(S^1, |\cdot|)$ and the (right) action $x \cdot u = xu$. Then the orbits are concentric cirles, which are closed.

Example 1.0.4. Consider the metric space $(\mathbb{C}^{n\times d}, \|\cdot\|_F)$, topological group $(U_d, \|\cdot\|_F)$ and the (right) action $X \cdot U = XU$

Definition 1.0.5. Let (X, \mathcal{A}, μ) be a measure space. Define $\|\cdot\|_* : L^1(X, \mathcal{A}, \mu) \to [0, \infty)$ by

$$||f||_* = \sup_{A \in \mathcal{A}} \left| \int_A f d\mu \right|$$

Exercise 1.0.6. Let (X, \mathcal{A}, μ) be a measure space. Then $\|\cdot\|_*$ is a norm on $L^1(X, \mathcal{A}, \mu)$. *Proof.* Clear.

Definition 1.0.7. Let (X, d) be a compact space. Define

$$\operatorname{Aut}(X) = \{\sigma: X \to X: \sigma \text{ is a homeomorphism}\}$$

We metrize Aut(X) with uniform convergence d_u . It is known that this topology is equivalent to the compact-open topology.

Exercise 1.0.8. With the setup as above, $(Aut(X), d_u)$ is a topological group.

Proof. Please see section on topological groups: Analysis Notes

Definition 1.0.9. Let (X, d) be a compact metric space and $\mu : \mathcal{B}(X) \to \mathbb{R}$ a Borel measure. Define

$$\operatorname{Aut}(X,\mathcal{B}(X),\mu) = \{ \sigma \in \operatorname{Aut}(X) : \sigma_*\mu = \mu \}$$

So that $(Aut(X, \mathcal{B}(X), \mu), d_u)$ is a subspace of $(Aut(X), d_u)$.

Exercise 1.0.10. Let (X, d) be a compact metric space and $\mu : \mathcal{B}(X) \to \mathbb{R}$ an outer-regular Borel measure. Then $\operatorname{Aut}(X, \mathcal{B}(X), \mu)$ is a closed subgroup of $\operatorname{Aut}(X)$.

Proof. Please see section on topological groups: Analysis Notes

Example 1.0.11. With the setup as before, define the (right) group action $\cdot : (L^1(X, \mathcal{B}(X), \mu), \|\cdot\|_*) \times \operatorname{Aut}(X, \mathcal{B}(X), \mu) \to (L^1(X, \mathcal{B}(X), \mu), \|\cdot\|_*)$ by $f \cdot \sigma = f \circ \sigma$. Then for each $\sigma \in \operatorname{Aut}(X, \mathcal{B}(X), \mu)$, the map $f \mapsto f \cdot \sigma$ is an isometry.

Proof. Clear. \Box

Exercise 1.0.12. With the setup from above, the orbits are closed

Proof. IDK, would like to show. I think I can show $\operatorname{Aut}(X,\mathcal{B}(X),\mu)$ is compact and that the action is continuous. This would immediately imply that the orbits are closed.