- Reading2: Organizing, Visualizing, and Describing Data
 - 1. Organizing Data
 - Data Type
 - 1. Numerical and Categorical Data
 - 2. Time Series and Cross-sectional
 - 3. Structured and Unstructured
 - Frequency Distribution
 - Contingency Table
 - 2. Visualizing Data
 - Graph Type
 - Choose from Visualization Types
 - 3. Measures of Central Tendency
 - 4. Measures of Location and Dispersion
 - Location: Quantile + Measures of Central Tendency
 - 5. Skewness, kurtosis, and Correlation

Reading2: Organizing, Visualizing, and Describing Data

key words: data types, frequency, distribution, contingency table, visualization, skewness, kurtosis, correlation, measurement of central tendency, location and dispersion

1. Organizing Data

Data Type

1. Numerical and Categorical Data

Numerical data: counted or measured

Discrete: countable

Continuous: take any fractional value

• Categorical data: labels that can be classify a set of data into groups

Nominal: without order

Ordinal: can be ranked in order respect to the specific characteristic

2. Time Series and Cross-sectional

- Time Series: observations taken periodically.时间变,种类不变
- Cross-sectional: comparable observations taken at one specific point in time.种类变, 时间不变

The two types of data combined together form **panel data**.

3. Structured and Unstructured

Frequency Distribution

- Define the intervals: the range of values with upper and lower limits, all-inclusive, non-overlapping, numbers of interval
- Tally (一致,标签) the observations:observations should be assigned to their appropriate interval
- Count:
 - absolute frequency: actual number of observations
 - Mode frequency: the interval with greatest frequency
 - relative frequency: divide the absolute frequency of each return interval by the total number of observations (%)
 - Cumulative absolute frequency and Cumulative relative frequency can be calculated

Contingency Table

- 2-dimensional array, analyzing 2 variables as the same time, using nominal or ordinal data, with a finite number attributes
- Joint frequency: each cell shows the frequency which is related to two attributes simultaneously
- Marginal frequency: total frequency for the row or a column

Confusion Matrix: one kind of contingency table with numbers of occurrences
predicted and actually observed

2. Visualizing Data

Graph Type

- Histogram:
 - absolute frequency distribution
 - See where most of the observations are concentrated
 - a bar chart of continuous data
- Frequency polygon
- Cumulative (absolute/relative) frequency distribution chart
- Bar chart: illustrate relative sizes, degrees, or magnitudes
 - o grouped bar chart/clustered bar chart: show 2 categories at once
 - stacked bar chart:
 - height of each bar: the cumulative frequency for a category
 - Colors within each bar: joint frequencies
- Tree map: visualizing relative sizes of categories with different colors or shades
- Word cloud: visualizing text, counting the uses/frequency of specific words which shows in type size
- Line charts: usually used for visualizing time series data
 - Multiple time series: when scales of time series are different, use left and right vertical axes
 - Bubble line chart: different sizes bubble represent the relative size of another variable
- Scatter plot: how 2 variables tend to change in relation to each other
 - o correlation coefficient: a measure of strength of a linear relationship
- Scatter plot matrix: analyze three variables
- Heat map: use color and shades to display data frequency, with data from contingency table

Choose from Visualization Types

Relationship, Comparison, Distribution

avoid from misrepresentation to mislead investors

3. Measures of Central Tendency

- identify the center, average to represent the typical or expected value in dataset
- **Arithmetic mean**: **Σ**observation value/#of observations, estimate the next observation, expected value of distribution
 - Eg:
 - population mean: given population only 1 mean
 - **sample mean**: to make inferences about the population mean
 - Properties:
 - all datasets only have one arithmetic mean
 - all data value are considered in arithmetic mean computation
 - all interval and ratio datasets have an arithmetic mean
 - The sum of *deviations* of each observation in the dataset from mean=0
 ∑(Xi-X_bar)=0
 - **Outliers** have an influence in arithmetic mean, providing all-sided information.
 - it should be excluded from measure of central tendency
 - Instead, **trimmed mean** is used (1%= 0.5%lowest + 0.5%highest discarded) without outliers
 - Winsorized mean:substitute a value for <5th percentile and >95th percentile, if select 90% Winsor mean. Then calculate the revised dataset. Decrease the effects of outlier.
- Weighted mean: different observations have a disproportionate influence on mean.
 - $\circ \sum_{i=1}^{n} W_{i}X_{i}$, where Σ Wi=1
 - usually used to calculate <u>portfolio return </u>, the weight of individual asset=market value of each asset/market value of entire portfolio
- Median: midpoint with sorted dataset
 - o not so affected by extreme values
 - o Calculation: with odd/even number of observations
- Mode: value occurs most frequently
 - o datasets can have >=1 or no mode, Unimodal, Bimodal, Trimodal
- Geometric Mean: get investment returns over multiple periods, or used to compute compound growth rate.
 - Function: $G = (\prod_i X_i)^{\frac{1}{N}}$
 - the radical sign is non-negative.

- $1 + R_G = \sqrt[n]{\prod(1 + R_t)}$, where R_t is the return of period t. Then we can get R_G as the result at final.
- By financial calculator: $[y^x][n][\frac{1}{x}][=]$
- Geometric Mean ≤ Arithmetic Mean.
 - the difference between these two mean ↑, when the dispersion of observation ↑
 - When all observations are equal, arithmetic=geometric mean
- Harmonic Mean: used to calculate average cost of shares purchased over time.
 - Function: $\frac{N}{\sum_{i}^{N} \frac{1}{X_{i}}}$
 - after we get average cost per share, if the total money purchase of shares is given, the *total amount of shares purchased* can be computed.
 - o harmonic mean< geometric mean< arithmetic mean

4. Measures of Location and Dispersion

Location: Quantile + Measures of Central Tendency

- **Quantile**: value <= a stated *proportion* of data with a distribution
 - Type:
 - Quartile: 4
 - Q3 Q1: inter-quartile range
 - Quintile: 5
 - Decile: 10
 - Percentile: 100
 - Formula: Position of the observation $L_y = (n+1)\frac{y}{100}$
 - y: at a given percentile
 - n: data points in ascending order
 - Visualization: Box and whisker plot
 - Box: inter-quartile range
 - Vertical line: entire range with largest/smallest values
- Dispersion: variability around the central tendency.
 - o in finance, central tendency is reward, dispersion is a measure of risk.

- Range: provide extremely useful information
 - function: $Range = X_{max} X_{min}$
- Mean Absolute Deviation(MAD): use average the absolute value of deviation from the mean
 - function: $MAD = \frac{\sum_{i=1}^{n} |X_i \bar{X}|}{n}$
- Sample Variance(s^2): $s^2 = \frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n-1}$
 - use n-1 as denominator: *unbiased estimator* of population variance
 - Sample Standard Variance $S = \sqrt[2]{\frac{\sum_{i}^{n}(X_{i}-\bar{X})^{2}}{n-1}}$, whose *unit* is the same as the unit of data.
 - unbiased estimator of population standard deviation σ .
- Relative Dispersion: the amount of variability in a distribution relative to a benchmark.
 - Quantified as Coefficient of Variation(CV), whose benchmark chosen as mean of distribution.
 - function: $CV = \frac{S_x}{X}$
 - The lower the better.
 - ullet In Finance, CV measures the <u>risk per unit of expected return</u> .
 - Direct <u>compare the dispersion</u> between different sets of data.
- Downside Risk: only include outcomes< mean(or other benchmark)实际收益低于 预期的风险,下行风险
 - Name: Target Downside Deviation/Semi-deviation
 - \circ Function: $s_{target} = \sqrt[2]{\frac{\sum_{all}^{n} X_i < B}{n-1}}$, where B is target
 - Be careful that the denominator we use n-1

5. Skewness, kurtosis, and Correlation

- Symmetrical: the degree of symmetry measures if the deviations from the mean are positive or negative.
- Skewness and Kurtosis are critical points for **risk management**.
 - o greater positive kurtosis & more negative skewness in return distribution→
 increased risk
- **Skewness**: show the non-symmetric distribution with positive/negative skew, result from the <u>outliers occurrence</u>.
 - Type:

- Positively Skewed: outliers > mean, skewed right, long upper tail.
- Negatively Skewed: outliers < mean, skewed left, long lower tail.
- The relationship between Mean, Median, Mode:
 - Symmetrical distribution: mean=median=mode
 - For positive skewed, mode < median < mean
 - For negative skewed, mean < median < mode
 - Rule(easy to remember the order):
 - The effect of skew pays more attention on **mean**, other than median and mode.
 - mean is in the same direction of the skew.
 - Besides, <u>median</u> always stays between mean and mode, regardless the skewness direction.

Sample Skewness:

- Function: $Sample\ Skewness = \frac{1}{n} * \frac{\sum_{i=1}^{n} (X_i \bar{X})^3}{s^3}$
 - the denominator > 0, while the sign of **numerator** depend on the skewness direction.
 - if |SampleSkewness| > 0.5, treated as significant.

kurtosis:

- Definition: the degree of a distribution is more or less peaked than a normal distribution
- Types:
 - Lepokurtic: more peaked
 - in investment, a *greater* likelihood of a large deviation from the expected return usually received as an <u>increase in risk</u>.
 - Platykurtic: flatter, less peaked
 - Mesokurtic: the same kurtosis as Ndist
- Excess Kurtosis: more or less kurtosis part than the normal distribution.
 - Mesokurtic EK=0;
 - Lepokurtic EK>0;
 - Platykurtic EK<0;

Sample Kurtosis:

- function: $Sample\ Kurtosis = \frac{1}{n} * \frac{\sum_{i=1}^{n} (X_i \bar{X})^4}{s^4}$
- ∘ Excess Kurtosis = Sample Kurtosis − 3

Correlation

- Covariance: how two variables move together
- For Sample Covariance, the function: $S_{X,Y} = \frac{\sum_{i=1}^{n} \left[(X_i \bar{X})(Y_i \bar{Y}) \right]}{n-1}$

the value is depend on the units of variables. Hence, the covariance cannot show the <u>relative strength</u> of the relationship, but only discloses the <u>move direction</u> whether the same or opposite.

Correlation Coefficient

• Function: $\rho_{XY} = \frac{S_{XY}}{S_X S_Y}$

Properties:

■ range: [-1, 1], without units, care about the <u>strength and movement</u> <u>direction</u> of the linear relationship between 2 variables.

Visualization:Scatter Plots

- two variable relationship
- it can reveal non-linear relationship, which cannot be shown by ρ .
- Correlation != Causation.
- Spurious Correlation 伪关系
 - the relationship between two variables caused by association with a <u>third</u> <u>variable or by chance</u>.