Homomorphisms

Definition

Let G and G' be groups. To say that a map $\phi:G\to G'$ is a *homomorphism* means that it satisfies the homomorphism property:

$$\forall x, y \in G, \phi(xy) = \phi(x)\phi(y)$$

Theorem

For any two groups G and G', there exists at least the trivial homomorphism:

$$\forall x \in G, \phi(x) = e'$$

Proof

Assume G and G' are groups Let $\phi:G\to G'$ be defined by $\phi(x)=e'$ Assume $x,y\in G$ $\phi(xy)=e'=e'e'=\phi(x)\phi(y)$

Example

1). Evaluation

Let
$$F=\{f:\mathbb{R}\to\mathbb{R}\}$$
 and define $\phi_c:F\to\mathbb{R}$ by:
$$\phi_c(f)=f(c)$$

$$\phi_c(f+g)=(f+g)(c)=f(c)+g(c)=\phi_c(f)+\phi_c(g)$$

2). Linear Transformation

Let
$$A\in M_{m\times n}(\mathbb{R})$$
 and define $\phi_A:\mathbb{R}^n\to\mathbb{R}^m$ by:
$$\phi_A(x)=Ax$$

$$\phi_A(x+y)=A(x+y)=Ax+Ay=\phi_A(x)+\phi_A(y)$$

3). Determinant

Define
$$\phi:GL(n,R)\to\mathbb{R}$$
 by:
$$\phi(A)=\det(A)$$

$$\phi(AB)=\det(AB)=\det(A)\det(B)=\phi(A)\phi(B)$$

4). Projection

Let
$$G=\prod_{k=1}^nG_k$$
 and define $\pi_k:G o G_k$ by:
$$\pi_k(g)=g_k$$

$$\pi_k(g_1+g_2)=g_{1_k}+g_{2_k}=\pi_k(g_1)+\pi_k(g_2)$$

5). Modulo

Define
$$\phi: \mathbb{Z} \to \mathbb{Z}_n$$
 by:

$$\phi(m) = m \mod n$$

$$\phi(r+s) = (r+s) \mod n = r +_n s = \phi(r) +_n \phi(s)$$

Theorem

Let $\phi: G \to G'$ be an onto homomorphism:

$$G$$
 abelian $\implies G'$ abelian

Proof

Assume G is abelian

Assume $a', b' \in G'$

Since ϕ is onto, $\exists a, b \in G, \phi(a) = a'$ and $\phi(b) = b'$

$$a'b' = \phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a) = b'a'$$

 $\therefore G'$ is abelian

Theorem

Let $\phi: G \to G'$ and $\gamma: G' \to G''$ be group homomorphisms:

$$\gamma \emptyset : G \to G''$$
 is a homomorphism

A composition of homomorphisms is a homomorphism.

Proof

Assume $x, y \in G$

$$(\gamma \emptyset)(xy) = \gamma(\phi(xy)) = \gamma(\phi(x)\phi(y)) = \gamma(\phi(x))\gamma(\phi(y)) = (\gamma \phi)(x)(\gamma \phi)(y)$$

$$\therefore \gamma \phi \text{ is a homomorphism}$$

Definition

Let X and Y be non-empty sets, $A \subseteq X$ and $B \subseteq Y$, $A, B \neq \emptyset$, and $\phi: X \to Y$:

- 1). $\phi[A] = \{\phi(a) \mid a \in A\}$ is called the image of A in Y under ϕ
- 2). $\phi[X]$ is called the range of ϕ
- 3). $\phi^{-1}[B] = \{x \in X \mid \phi(x) \in B\}$ is called the inverse image of B in X under ϕ

Theorem

Let $\phi:G\to G'$ be a group homomorphism:

- 1). $\phi(e) = e'$
- 2). $\forall a \in G, \phi(a^{-1}) = \phi(a)^{-1}$
- 3). $H \leq G \implies \phi[H] \leq G'$
- 4). $K' \le \phi[G] \implies \phi^{-1}[K'] \le G$

Proof

1). Assume $a \in G$

$$\phi(a)\phi(e) = \phi(ae) = \phi(a) = \phi(a)e'$$

$$\therefore \phi(e) = e'$$

2). Assume $a \in G$

$$\phi(e) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1}) = e'$$
 But inverses are unique
$$\therefore \phi(a^{-1}) = \phi(a)^{-1}$$

3). Assume $H \leq G$

Assume
$$a',b' \in \phi[H]$$
 $\exists \, a,b \in H, \phi(a) = a' \text{ and } \phi(b) = b'$ By closure, $ab \in H$ $\phi(ab) = \phi(a)\phi(b) = a'b' \in \phi[H]$ $\therefore \phi[H]$ is closed under the operation.

$$\phi(e) = e'$$

 $\therefore \phi[H]$ has an identity.

Assume
$$a' \in \phi[H]$$

$$\exists \, a \in H, \phi(a) = a'$$

$$a^{-1} \in H$$

$$\phi(a^{-1}) = \phi(a)^{-1} = (a')^{-1} \in \phi[H]$$

$$\therefore \phi[H] \text{ is closed under inverses.}$$

4). Assume $K' \leq G'$

 $\therefore \phi[H] < G$

Assume
$$a,b \in \phi^{-1}[K']$$
 $\exists a',b' \in K', \phi(a) = a' \text{ and } \phi(b) = b'$ By closure, $a'b' \in K'$ $\phi(ab) = \phi(a)\phi(b) = a'b' \in K'$ So $ab \in \phi^{-1}[K']$ $\therefore \phi^{-1}[K']$ is closed under the operation.

$$\begin{split} \phi(e) &= e' \\ \text{So } e &\in \phi^{-1}[K'] \\ \therefore \phi^{-1}[K'] \text{ has an identity.} \end{split}$$

Assume
$$a \in \phi^{-1}[K']$$

 $\exists \, a' \in K', \phi(a) = a'$
 $(a')^{-1} = \phi(a)^{-1} = \phi(a^{-1}) \in K'$
So $a^{-1} \in \phi^{-1}[K']$
 $\therefore \phi^{-1}[K']$ is closed under inverses.

$$\therefore \phi^{-1}[K'] \leq H$$