Approximate Solution Techniques for Factored FOMDPs

Scott Sanner & Craig Boutilier University of Toronto

Motivating Example: SysAdmin MDP

- Have n computers $C = \{c_1, ..., c_n\}$ in a network
- State: each computer c_i is either "up" or "down"
- Transition: computer is "up" proportional to its state and # upstream connections that are "up"

- Action: manually reboot one computer
- Reward: +1 for every "up" computer

How to Solve SysAdmin?

Factored First-order MDPs

Factored MDPs

Classical Enumerated
State MDPs

- First-order MDPs cannot represent SysAdmin domain independently
 - ⇒ need factored first-order MDP!
- State-of-the-art (factored) MDP solutions can scale only to ~140 computers

Background: Factored MDPs

Classical MDP Review

Representation:

- ◆ <5,A,T,R>
 - 5: finite set of states
 - A: finite set of actions
 - T: $S \times A \times S \rightarrow [0,1]$ transition function
 - R: $5 \times A \rightarrow \mathbb{R}$ reward function
- Policy π : $S \rightarrow A$
- Value function: $V(s) = E_{\pi} [\sum_{t=0}^{\infty} \gamma^t r^t | s]$

Some Solution Methods:

- Value Iteration
- Policy Iteration
- (Approximate) Linear Programming

Factored MDPs and Value Iteration

Can use DBNs and decision diagrams:

■ SPUDD (HSHB, 1999): Value Iteration w/ DDs

$$V^{t+1}(\vec{x}) = \max_{a \in A} \left\{ R(\vec{x}, a) + \gamma \sum_{\vec{x}'} \left[\prod_{i=1}^{n} P(x'_i | Par(x'_i), a) V^t(\vec{x}) \right] \right\}$$

Backup Operator

Define backup operator $B^a[.]$:

$$B^{a}[V(\vec{x})] = \gamma \sum_{\vec{x}'} \left[\prod_{i=1}^{n} P(x'_{i}|Par(x'_{i}), a)V(\vec{x}') \right]$$

E.g., rewrite value iteration:

$$V^{t+1}(\vec{x}) = \max_{a \in A} \left\{ R(\vec{x}, a) + B^a[V^t(\vec{x})] \right\}$$

■ B^a[.] is a *linear* operator:

$$B^{a}[V_{1}(\vec{x}) + V_{2}(\vec{x})] = B^{a}[V_{1}(\vec{x})] + B^{a}[V_{2}(\vec{x})]$$

Approximate LP for Factored MDPs

Linear-value function approximation:

$$V(\vec{x}) = \sum_{j=1}^{k} w_j b_j(\vec{x})$$

Solve for weights using LP (GKP,01; SP,01):

Variables: w_1, \ldots, w_k

Minimize: $\sum_{\vec{x}} V(\vec{x})$

Subject to: $0 \ge R(\vec{x}, a) + B^a[V(\vec{x})] - V(\vec{x})$; $\forall a, \vec{x}$

Constraint Generation

Simple, general constraint format:

$$0 \ge \{F_1(\vec{x}_1) + \ldots + F_m(\vec{x}_m)\} \; ; \; \forall a, \vec{x}$$

$$\ge \max_{\vec{x}} \{F_1(\vec{x}_1) + \ldots + F_m(\vec{x}_m)\} \; ; \; \forall a$$

- Efficiently find max in cost network
 - ◆ i.e., variable elimination
- Iteratively solve LP with constraint generation
 - 1) Start with $w_i = 0$
 - 2) Find max violated constraint for each a
 - 3) If violations: add to LP and re-solve, goto (2)

Why Factored FOMDPs?

- Back to SysAdmin... 😉 ··· 😉 ··· 🤄
- As a factored MDP
 - ◆ Instantiate MDP for n = #computers
 - ◆ Specific solutions aside...
 - MDP repr. is $\Omega(n) \Rightarrow any$ solution is $\Omega(n)$
- As a factored first-order MDP
 - "Lift" MDP specification
 - → "Lift" (approximate) solution
 - Solution O(sub-linear(n)) in struct. cases!

Contribution: Factored FOMDP Representation

First-order MDPs (FOMDPs)

- <5,A,T,R> for FOMDPs defined in terms of cases
 - ◆ E.g., possible *reward* in SysAdmin ...

rCase(s) =
$$\frac{\exists c \, Run(c,s)}{\neg \exists c \, Run(c,s)} \frac{1}{0}$$

- Operators: Define unary, binary case operations
 - E.g., can take "cross-sum" ⊕ (or ⊗, ⊖) of cases...

Factored FOMDPs: Additive Reward

SysAdmin reward scales with domain size:

rCase(s) =
$$\frac{\text{Run}(c_1,s)}{\neg \text{Run}(c_1,s)} = \frac{1}{0} + \dots \oplus \frac{\text{Run}(c_n,s)}{\neg \text{Run}(c_n,s)} = \frac{1}{0}$$

- Beyond expressive power of current FOMDP
- Need language extension for ∑ aggregator:

rCase(s) =
$$\sum_{c \in C}$$
 Run(c,s) 1
- Run(c,s) 0

◆ Semantics is just the expanded ⊕

Factored FOMDPs: Sub-actions

- Usual FOMDP Frame Assumption:
 - ◆ Def: Anything not changed by action remains same
 - Not true for factored FOMDPs (e.g., SysAdmin)
- Remedy: Make "local" frame assumption (i.e., DBN)
 - Specify first-order DBN for deterministic sub-actions

Factored FOMDP: Transition

SysAdmin sub-action transition probability:

$$P(a(c) = up(c)|U(x) = reboot(x) \land x = c, s) = \boxed{\top : 1}$$

$$P(a(c) = up(c)|U(x) = reboot(x) \land x \neq c, s) =$$

$$\boxed{Run(c,s) : 0.95} \\ \boxed{\neg Run(c,s) : 0.05} \otimes \boxed{1 + \sum_{d} \left(\frac{Conn(d,c) \land Run(d,s) : 1}{\neg Conn(d,c) \lor \neg Run(d,s) : 0} \right)}$$

$$1 + \sum_{d} \left(\frac{Conn(d,c) : 1}{\neg Conn(d,c) : 0} \right)$$

■ Need aggregator for joint action distribution:

$$P(a = a(c_1) \circ \cdots \circ a(c_n)|U(\vec{x})) = \prod_{c \in C} P(a(c)|U(\vec{x}), s)$$

SitCalc Extensions and Irrelevance

Upgrade SSAs to handle factored actions:

$$Run(c,do(a,s)) \equiv d \square up(c) \vee Run(c,s) \wedge \neg d \square down(c)$$

Example regression in SysAdmin:

$$Regr[Run(c_i,s) \; ; \; a = \bigcirc up(c_i) \circ \bigcirc \equiv \top$$

- Observation: some sub-actions irrelevant in Regr[.]
 - ◆ Def: all sub-action outcomes B irrelevant to ∮(s) iff

$$\forall b \in B. \operatorname{Regr}[\phi(s),b] \equiv \phi(s)$$

- Need independence of sub-actions (not restrictive)
- Allows irr. sub-actions to be dropped from Regr[.]

Recap: Factored FOMDPs

Reward:

◆ Can be expressed with ∑ aggregator

■ Transition Distribution:

- Decompose joint action into sub-actions
 - SSAs expressed in terms of sub-actions
 - Local distribution for each sub-action
- ◆ Joint distribution uses ∏ aggregator

So far, just syntax...

- Real problem is exploiting syntactic structure
- Key ideas: irrelevance and operator linearity

Contribution: Factored FOMDP Solutions

Factored FOMDP Backup Operator

Define backup operator:

$$B^{U(\vec{x})}[vCase(s)] = \gamma \bigoplus_{a \in A} \left[P(a|U(\vec{x})) \otimes Regr[vCase(s), a] \right]$$

Ex: SysAdmin $vCase^{0}(s) = rCase(s) = \sum_{c} \begin{bmatrix} Run(c,s) : 1 \\ \neg Run(c,s) : 0 \end{bmatrix}$

$$B^{reboot(x)}[vCase^{0}(s)] = \gamma \sum_{c} \left[\bigoplus_{a_{1} \in A(c_{1}), \dots, a_{n} \in A(c_{n})} \left(\prod_{i=1}^{n} P(a_{i}|U) \right) \otimes \sum_{c} \left[\frac{Regr[Run(c, s), a_{1} \circ \dots \circ a_{n}] : 1}{Regr[\neg Run(c, s), a_{1} \circ \dots \circ a_{n}] : 0} \right] \right]$$

Result after simplification:

$$B^{reboot(x)}[vCase(s)] = \gamma \sum_{c} P(up(c)|reboot(x))$$

SDP for Factored FOMDPs

Complete symbolic dynamic programming step:

Recall Classical MDP:
$$V^1(s) = R(s) + \gamma \max_a B^a[V^0(s)]$$

Upgrade to Factored FOMDP:

$$vCase^{1}(s) = rCase(s) \oplus \gamma \max \exists x. B^{reboot(x)}[vCase^{0}(s)]$$

$$= \sum_{c} \left(\frac{Up(c,s) : 1}{\neg Up(c,s) : 0} \right) \oplus \gamma \max \exists x. \sum_{c} P(up(c)|reboot(x))$$

- Caveat: What to do with max ∃x?
- Workaround is to derive a policy (see GKP) to axiomatize optimal x
 - Need to add policy axioms on every SDP step
 - ◆ Exact representation blows up ⊗

Linear-value Approximation

Approximate value w/ basis fn classes:

$$vCase(s) = w_1 \cdot \sum_{c} \begin{bmatrix} \phi(c) & 1 \\ \neg \phi(c) & 0 \end{bmatrix} \oplus w_2 \cdot \sum_{c} \begin{bmatrix} \phi(c) & 1 \\ \neg \phi(c) & 0 \end{bmatrix}$$

- Reduces solution to finding good weights
 - ◆ Weight projection ⇒ policy axioms don't accumulate
 - Only need to do consistency checking!
- Where do basis functions come from?
 - ◆ Use variant of ideas proposed in (GreThi, UAI-04)
- How to find weights?
 - We provide factored FOALP algorithm

Approximate Linear Programming

Factored First-order ALP:

Variables:
$$w_i$$
; $\forall i \leq k$

Minimize: $\sum_s vCase(s)$

Subject to: $0 \geq rCase(s) \oplus B^{U(\vec{x})}[vCase(s)]$
 $\oplus vCase(s)$; $\forall U(\vec{x}), s$

Constraint generation solution:

Constraints are always of the general form:

$$0 \geq \max_{s} \exists ec{x} ig[\sum_{c} case_{1}(c, ec{x}, s) \oplus \ldots \oplus \sum_{c} case_{p}(c, ec{x}, s) ig]$$

- Make a domain size assumption
- ◆ Extend var. elimination techniques from FOPI (Poole, 2003; Braz, Amir, & Roth, 2005, 2006) to relation elimination

[Ch. 6] Some FOPI Techniques for Cases

- Known Eliminations (Poole, 2003; Braz, Amir, & Roth, 2005, 2006)
 - (Partial) Inversion Elimination:

$$\max \Sigma_c [case_1(c) \oplus case_2(c)]$$
 where $Rel(case_1) \cap Rel(case_2) = \emptyset$

Counting Elimination:

max
$$\sum_{c} \sum_{d \neq c} case(c,d)$$

- New Eliminations (SanBout, 2007)
 - Existential elimination (max elim. only):

$$\max \exists x \; \Sigma_c \; [case_1(c,x) \oplus \cdots \oplus case_p(c,x)]$$

Linear elimination:

$$\max \Sigma_{ci} \operatorname{case}(c_i, c_{i+1})$$

Existential Elimination

■ Need to compute: $\max \exists x \Sigma_c [case(c, x)]$

x = c	10
$x \neq c \wedge \dots$	9
$x \neq c \wedge \dots$	0

Introduce:

- $b(c_1)$, $b(c_2)$, $b(c_3)$, ..., $b(c_{n-1})$, $b(c_n)$
- Replace: $(x = c) \equiv \neg b(c) \land b(next(c))$
- Final constraint:

$$0 \ge \max_s \sum_c \left[case_1(c,s) \oplus ... \oplus case_p(c,s) \oplus eCase(c,s) \right]$$

Linear Elimination (9) --- (--- (9) ---- (9)

■ Need to compute: $r(n) = \max_{c2...cn} \sum_{i=1...n} case(c_i, c_{i+1})$

where case(c_i,c_{i+1},s) =

c_i	c_{i+1}	
		1
1	T	-5
T		-5
T	T	0

 \rightarrow r(2) = max c₂

c_1	c_2	
		1
上	T	-5
T		-5
T	T	0

c_1	c_3	
L	L	2
1	T	-4
T		-4
T	T	0

 $r(4) = \max_{0.5} c_{2,0} c_{3,0} c_{4,0}$

c_1	c_3	
1	L	2
L	T	-4
T		-4
T	T	0

 $egin{array}{c|c} c_3 & c_5 \\ \hline egin{array}{c|c} & egin{array}$

 $egin{array}{|c|c|c|c|c|} \hline c_1 & c_5 & & & & \\ \hline \bot & \bot & 4 & & \\ \hline \bot & \top & -2 & \\ \hline \top & \bot & -2 & \\ \hline \top & \top & 0 & & \\ \hline \end{array}$

Computation of r(n) takes O(log(n))!

Some Results for fFOALP vs. ALP

- Line Configuration c₁→c₂→c₃
 Unidirectional Ring

Conclusions

- Introduced factored FOMDP, "lifted" fFOALP solution
 - Exploited:
 - backup linearity
 - first-order irrelevance
 - FOPI for constraint generation
 - ◆ Solutions O(sub-linear(n)) in structured cases!
- What about general factored FOMDPs?
 - Key to efficient solution is FOPI techniques
 - FOPI specific to constraint structure induced by
 - basis function structure X
 - FO-DBN dynamics
 - Need to catalog "efficient" structures
 - Identify new structures exploitable by FOPI!