CSD3130 Tutorial 2

Question 1

A sorting method with "Big-Oh" complexity $O(nlog_{10}n)$ spends exactly 1 millisecond to sort 1,000 data items. Assuming that time T(n) of sorting n items is directly proportional to $nlog_{10}n$, that is, $T(n)=(cnlog_{10}n)$, where c is a constant. Derive a formula for T(n), given the time T(N) for sorting N items, and estimate how long this method will sort 1,000,000 items.

T(n) = cnlog10nn = 1000Cuestion 2 $T(10^6) = 2000m/s = 2sec$ c = 1/1000log(1000)c = 1/3000 $T(10^6) = 2000m/s = 2sec$

Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-Oh complexity of each algorithm.

Expression	Dominant term(s)	Big-Oh complexity
5+0.0001n ³ +0.025n	0.0001n^3	O(n^3)
500n+100n ^{1.5} + 50nlog ₁₀ n	100n^1.5	O(n^1.5)
n²log2n+n(log2n)²	n^2log2n	O(n^2log2n)

Question 3:

The number of operations executed by algorithms A and B is 8n lg n and $2n^2$, respectively. Determine n^0 such that A is better than B for $n \ge n^0$.

n = 17

When n = 16, both algorithm will meet at the same point. After that, A will be better than B