QCM n° 2

Un peu de calcul.

Résoudre sur \mathbb{R} l'équation différentielle $y' + 2xy = e^{-x^2}$. Échauffement n°1

Soit l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ Déterminer f([-4, 5]), $x \longmapsto x^2 + 4x + 1$ Échauffement n°2 $f^{-1}([-3,0]), f^{-1}(\{-4\}) \text{ et } f^{-1}(\{-2\}).$

Échauffement n°3 Soit $C = \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$. Calculer C^3 et C^{-1} .

QCM - cocher une case si la phrase qui suit est correcte.

Soit (\mathscr{E}) : $y' + 2y = e^x$. Question n°1

- \square L'ensemble des solutions de l'équation homogène est $\{Ke^{-2x}, K \in \mathbb{R}\}.$
- $\Box x \mapsto \frac{1}{3} e^x \text{ est une solution particulière de } (\mathscr{E}).$ $\Box x \mapsto \frac{1}{3} e^x + \frac{2}{3} e^{-2x} \text{ est la seule solution de } (\mathscr{E}) \text{ qui vaut 1 en 0.}$
- \square Si f est une solution de (\mathscr{E}) qui s'annule, alors c'est la fonction nulle.

Question n°2 Soit (\mathscr{E}) : y'' + 2y = 0.

- \square Le polynôme caractéristique de (\mathscr{E}) est X^2+2 .
- \square (\mathscr{E}) n'a pas de solution réelle.
- $\Box \text{ L'ensemble des solutions réelles de } \begin{pmatrix} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & \lambda \cos(\sqrt{2}x) + \mu \sin(\sqrt{2}x) \end{pmatrix}.$ $\Box \text{ L'ensemble des solutions complexes de } \begin{pmatrix} \mathbb{E} & \to & \mathbb{C} \\ t & \mapsto & \lambda \cos(\sqrt{2}x) + \mu \sin(\sqrt{2}x) \end{pmatrix}, \ \lambda, \mu \in \mathbb{C} \right\}.$

Question n°3 Soit A, B et C trois ensembles.

- $\Box (A \cap B) \cup C = A \cap (B \cup C) ;$ $\Box A \cap B \cup C = A \cap B \cup A \cap C ;$
- $\Box \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

Question n°4 Soit A et B deux ensembles.

 \square Si $A \subset B$, $\mathscr{P}(A) \subset \mathscr{P}(B)$;

- \square Si $x \in A$, $x \in \mathscr{P}(A)$;
- \square Si $A \subset B$, $A \in \mathscr{P}(B)$; \square $A \subset \mathscr{P}(A)$.
- Question n°5
 - $\square \ \{3k \ , \ k \in \mathbb{Z}\} \cup \{3k+1 \ , \ k \in \mathbb{Z}\} = \{3k \ , \ 3k+1 \ , \ k \in \mathbb{Z}\} \ ;$

 - $\Box \{e^{-x}, x \in \mathbb{R}\} = \{y \in \mathbb{R}, \exists x \in \mathbb{R}, y = e^{-x}\};$ $\Box \bigcap_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, 2 + \frac{2}{n}\right] = [1, 2];$
 - $\square \left(\bigcup_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, 4 \frac{1}{n} \right] \right) \cap [2, 4] = \bigcup_{n \in \mathbb{N}^*} \left[2, 4 \frac{1}{n} \right] = [2, 4[.$

Question n°6 Soit E, F deux ensembles, et $f: E \to F$. Soit $A \subset E$ et $B \subset F$. Alors, pour tout élément x,

- $\square x \in f(A)$ ssi il existe $y \in A$ tel que $y = f^{-1}(x)$;
- $\square \ x \in f^{-1}(B)$ ssi il existe $y \in F$ tel que $x = f^{-1}(y)$;
- $\square \ x \in f^{-1}(B)$ ssi il existe $y \in F$ tel que f(x) = y;
- $\square \ x \in f^{-1}(B) \text{ ssi } f(x) \in B \ ;$
- $\square \ x \in f(B)$ ssi il existe $y \in B$ tel que f(y) = x.

Question n°7 Soit E, F deux ensembles, et $f: E \to F$. Soit $A, A' \subset E$ et $B, B' \subset F$. Alors,

 $\square \ A \subset A' \Leftrightarrow f(A) \subset f(A') \ ;$

- $\Box \ f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B') \ ;$
- $\square B \subset B' \Leftrightarrow f^{-1}(B) \subset f^{-1}(B') ;$
- $\Box f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B') ;$

 $\Box f(A \cup A') = f(A) \cup f(A') ;$

 $\Box f(f^{-1}(B)) = B ;$

 $\Box f(A \cap A') = f(A) \cap f(A') ;$

 $\Box f^{-1}(f(B)) = B.$