Repaso Señales y Sistemas

Ejercicio 1 Respuesta impulsiva

Considere el sistema en tiempo discreto cuya entrada es x(n) y la salida y(n). Sabemos que

- y(n) = g(n) * z(n), donde $g(n) = \beta^n$ para $n \ge 0$.
- $z(n) = z_1(n) + z_2(n)$
- $z_1 = f_1(n) * x(n)$, donde $f_1(n) = \alpha_1^n$ para $n \ge 0$.
- $z_2 = f_2(n) * x(n)$, donde $f_2(n) = \alpha_2 \delta(n \gamma)$.
- 1. Halle la respuesta impulsiva h(n) tal que y(n) = h(n) * x(n).
- 2. Grafique h(n) para

a)
$$\beta = \frac{1}{2}, \alpha_1 = \frac{1}{5}, \alpha_2 = -3, \gamma = 2$$

b)
$$\beta = -\frac{1}{2}, \alpha_1 = \frac{1}{5}, \alpha_2 = -3, \gamma = 2$$

c)
$$\beta = \frac{1}{2}, \alpha_1 = -\frac{1}{5}, \alpha_2 = -3, \gamma = 2$$

3. Para el primer caso, obtenga y(n) cuando $x(n) = \delta(n+3)$.

Ejercicio 2 Respuesta en frecuencia

Considere el sistema en tiempo discreto cuya transferencia es

$$H(z) = 1 - \frac{3}{4}z^{1} + \frac{1}{8}z^{2}.$$

- 1. Obtenga la respuesta en frecuencia del sistema $H(\omega)$.
- 2. Halle la respuesta impulsiva h(n).
- 3. Obtenga el diagrama de polos y ceros

Ejercicio 3 Respuesta en frecuencia

Repita el problema anterior con

$$H(z) = \frac{1}{1 - \frac{3}{4}z^{1} + \frac{1}{8}z^{-2}}.$$

Explique las diferencias con el problema anterior.

Variables y Vectores Aleatorios

Ejercicio 4 Suma de variables

Sean X_1 y X_2 variables aleatorias independientes uniformes en el intervalo [-2,2]. Obtenga las funciones de densidad de probabilidad de las variables $X_3 = X_1 + X_2$ y $X_4 = X_1 + 2X_2$.

Ejercicio 5 Ruido aditivo

Sea Y = X + N, con X y N variables aleatorias independientes.

- 1. Demostrar que $f_Y(y) = f_X(y) * f_N(y)$.
- 2. Demostrar que $f_{Y|X}(y|x) = f_N(y-x)$.
- 3. Si $X \in \{0,1\}$ es una variable aleatoria Bernoulli con $\Pr(X=0) = p$ y $\Pr(X=1) = q = 1 p$, expresar y representar $f_Y(y)$ y $f_{Y|X}(y|x)$.

Ejercicio 6 Cambio de variables

Sean X e Y dos variables exponenciales independientes de parámetros λ_X y λ_Y respectivamente. Hallar la función de densidad de probabilidad conjunta de W=XY y V=X/Y.

Ejercicio 7 Transformada de Box Muller

Sean U_1 , U_2 dos variables aleatorias independientes en (0, 1).

1. Halle la densidad conjunta de las variables:

$$\begin{cases} R = \sqrt{-2\ln(U_1)} \\ \Theta = 2\pi U_2. \end{cases}$$

Verifique que R tiene distribución Rayleigh, que Θ es uniforme y que son independientes (¿por qué?).

2. Halle la densidad conjunta de las variables:

$$\begin{cases} Z_1 = R\cos\Theta \\ Z_2 = R\sin\Theta \end{cases}$$

y demuestre que se trata de variables normales estándar independientes.