1 Определения предела функции (по множеству) по Коши и по Гейне, их эквивалентность. Свойства предела функции (единственность, линейность, предел произведения и отношения, предел и неравенства, ограниченность, отделимость, предел композиции). Замечательные пределы. @Quizert

1.1 Предел функции по Коши

Пусть функция f определена на некотором множестве $D\subset R$ и a - предельная для D точка, тогда

$$\lim_{x \to a} f(x) = A \iff$$

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x) - A| < \epsilon$$

1.2 Предел функции по Гейне

Пусть функция f определена на некотором множестве $D\subset R$ и a - предельная для D точка, тогда

$$\lim_{x \to a} f(x) = A \iff$$

$$\forall \{x_n\} \in D \setminus \{a\} : \lim_{n \to \infty} x_n = a \to \lim_{n \to \infty} f(x_n) = A$$

1.3 Эквивалентность двух определений

От Коши к Гейне:

Пусть $\lim_{x\to a} f(x) = A$ в смысле коши, тогда рассмотрим последовательность точек $x_n \in D \setminus \{a\}$: $x_n \to a$, по определению предела по коши

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x) - A| < \epsilon$$

последовательность $x_n \to a$, то есть

$$\exists N : \forall n > N \to x_n \in \beta_{\delta}(a)$$

при n>N $x_n\in D\backslash\{a\}\cap\beta_\delta(a)$, то есть при n>N выполняется $|f(x_n)-A|<\epsilon$, что и означает, что A - предел функции по гейне

От Гейне к Коши:

Пусть число A не является пределом функции f в точке a в смысле коши, тогда это означает, что

$$\exists \epsilon > 0 : \forall \delta > 0 \ \exists x_{\delta} \in D \cap \beta_{\delta}'(a) : |f(x_{\delta}) - A| \ge \epsilon$$

по определению по гейне: для последовательности точек $x_{1/n} \in D \setminus \{a\}$ (то есть берем $\delta = 1/n$) выполняется, что $\{x_{1/n}\} \to a$ но заметим, что $|f(x_{1/n}) - A| \ge \epsilon$, тогда A не является пределом f в смысле гейне

1.4 Свойства

Пусть функции f, g, h определены на некотором множестве $D \subset R$ и пусть a - предельная для D точка, тогда выполнены следующие свойства:

• Единственность:

$$\lim_{x\to a} f(x) = A, \lim_{x\to a} f(x) = B \Rightarrow A = B$$

• Линейность:

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \Rightarrow \lim_{x \to a} (\alpha f(x) + \beta g(x)) = \alpha A + \beta B$$
$$\forall \alpha, \beta \in R$$

• Предел произведения:

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \Rightarrow \lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$$

• Предел частного:

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \neq 0, \forall x \in D \to g(x) \neq 0 \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

• Предел и неравенства: (входит ли сюда лемма о милиционерах или нет? Жду ответ Музы)

$$\exists \epsilon > 0: \ \forall x \in D \cap \beta'_{\delta}(a) \to f(x) \le g(x), \\ \lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \Rightarrow \\ A < B$$

• Ограниченность:

$$\lim_{x\to a} f(x) = A \Rightarrow \exists \delta > 0, C > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x)| \le C$$

• Отделимость:

$$\lim_{x\to a} f(x) = A \Rightarrow \exists \delta > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x)| > \frac{|A|}{2}$$

Все свойства кроме отделимости и ограниченности следуют из аналогичных свойств для предела последовательности и определения через Гейне (так написано в учебнике).

- Доказательство ограниченности: найдется такое $\delta > 0$: |f(x) A| < 1 при $x \in D \cap \beta'_{\delta}(a)$, таким образом при $x \in D \cap \beta'_{\delta}(a)$ выполнено |f(x)| < 1 + |A|
- Доказательство отделимости: найдется такое $\delta > 0$: $|f(x) A| < \frac{|A|}{2}$ при $x \in D \cap \beta'_{\delta}(a)$, таким образом при $x \in D \cap \beta'_{\delta}(a)$ будет выполнено

$$|A| - |f(x)| \le |f(x) - A| < \frac{|A|}{2} \Rightarrow |f(x)| > \frac{|A|}{2}$$

• Предел композиции:

Пусть $f:D\to E, g:E\to R, a$ — предельная точка множества D, b - предельная точка множества $E, \lim_{x\to a} f(x)=b, \lim_{y\to b} g(y)=c$ и есть такая проколотая окрестность $\beta'_\delta(a)$ точки a, что $f(x)\neq b$ для каждой точки $x\in D\cap\beta'_\delta(a)$. Тогда $\lim_{x\to a} g(f(x))=c$ Доказательство:

Пусть $x_n \to a, x_n \in D$. $x_n \neq a$. Т.к. $f(x) \neq b$ для каждой точки $x \in D \cap \beta'_{\delta}(a)$, то найдется такой номер N, что $f(x_n) \neq b$ при $n > N_0$. Поэтому последовательность $f(x_{N+1}), f(x_{N+2}), \dots$ состоит из элементов множества E, ни один из этих элементов не совпадает с b и эта последовательность сходится к b. Поэтому последовательность $g(f(x_{N+1})), g(f(x_{N+2})), \dots$ сходится к c. Значит и вся последовательность $\{g(f(x_n))\}$ сходится к c

1.5 Замечательные пределы

• Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ Доказательство: для $x\in (0,\pi/2)$ рассмотрим два треугольника и площадь сектора, сравним их и получим (сначала треугольник внутри круга, потом сектор, потом треугольники со стороной по касательной к кругу)

$$\frac{1}{2} \cdot 1 \cdot \sin x \le \frac{x}{2} \le \frac{1}{2} \cdot 1 \cdot \operatorname{tg} x$$

откуда, в силу четности при $x \in (-\pi/2, \pi/2), x \neq 0$ выполнено

$$\cos x \le \frac{\sin x}{x} \le 1$$

Утверждение теперь следует из теоремы о зажатой функции, т.к. $\lim_{x\to y}\cos x=\cos y$ Действительно, $|\cos x-\cos y|=2|\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)|\leq 2|\sin\left(\frac{x-y}{2}\right)|\leq |x-y|$

• Второй замечательный предел: $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$ Доказательство: рассмотрим функции $f(x):=(1+\frac{1}{[x]+1})^{[x]}, g(x):=(1+\frac{1}{[x]})^{[x]+1},$ тогда $f(x)\leq \left(1+\frac{1}{x}\right)^x\leq g(x),$ кроме того, т.к. $\lim_{n\to +\infty}(1+\frac{1}{n+1})^n=\lim_{n\to +\infty}(1+\frac{1}{n})^{n+1}=e,$ то и $\lim_{x\to +\infty}f(x)=\lim_{x\to +\infty}g(x)=e.$ Утверждение теперь следует из теореме о пределе зажатой функции.