Sequence and Series

Yashas.N

yn37git.github.io/blog/2025/Short-Notes

1 Trivial properties

- The below properties are for in general complete spaces. whose defining property is the following point

(in general metric spaces \mathbb{R}^n for $n \in \mathbb{N}$ are complete in particular \mathbb{R} and \mathbb{C} are complete).

• $a_n \to o$ as $n \to \infty$ is a necessary condition for a series $\sum_{n=1}^{\infty} a_n$ to converge. (not sufficient eg: $\sum_{n=1}^{\infty} 1/n$ harmonic series)

2 Tests for positive termed series

 \bullet Below tests apply for series whose general terms are positive only (i.e. $\geq o)$

(Note : it can also be used to check for absolute convergence as taking absolute value of each term results in terms ≥ 0)

- ullet for rest of the notes let behaviour denote convergence and divergence simultaneously i.e. say $\{a_n\}$ follows behaviour of $\{b_n\}$ means that $\{a_n\}$ converges if $\{b_n\}$ converges and $\{a_n\}$ diverges if $\{b_n\}$ diverges.
- Comparison test: for series $\sum u_n$, $\sum v_n$ if $u_n \leq k \times v_n$ for k > 0 then u_n converges if v_n converges and v_n diverges if u_n diverges.
- Limit form of comparison test for series $\sum u_n, \sum v_n$ if

$$l = \lim_{n \to \infty} \frac{u_n}{v_n}.$$

then

- if $l \neq o$ then $\sum u_n$ follows behaviour of $\sum v_n$.
- if l = o then $\sum u_n$ converges if $\sum v_n$ converges.

(as $\mathbf{o} < \mathbf{u}_m \le \mathbf{v}_m$ holds for sufficiently large m, and also if $\sum \mathbf{u}_n$ diverges then $\sum \mathbf{v}_n$ diverges).

- if $l = \infty \sum u_n$ diverges if $\sum v_n$ diverges. (as $o < v_m \le u_m$ holds like preceding point).
- Cauchy's Condensation test: if f(n) is a monotone decreasing sequence of positive numbers (i.e. $f(n) > o, f(k) \ge f(k+1) \ \forall k \in \mathbb{N}$) then for $m \in \mathbb{N} \sum f(n)$ and $\sum m^n f(m^n)$ have same behaviour. (Mostly used in the form $\sum 2^n f(2^n)$.)
- Raabe's Test: for series $\sum u_n$ of positive real numbers if $D_n = n \left(\mathbf{1} \frac{u_{n+1}}{u_n} \right)$ and

$D = \limsup D_n$, $d = \liminf D_n$

then:

- if **D** < **1** series converges
- if $\mathbf{d} > \mathbf{1}$ series diverges
- no conclusions if $d \le 1 \le D$
- Integral test : if $f(x) \ge o$ in $[1,\infty)$ and is monotonically decreasing then $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(x) dx$ follow same behaviour.
- Intergral inequality : if $\sum_{n=1}^{\infty} f(n)$ is as above and converges to s then the for partial sums

$$s_n = \sum_{k=1}^n f(k)$$
 we have

$$\int_{n+1}^{\infty} f(t)dt \le s - s_n \le \int_{n}^{\infty} f(t)dt$$

3 General tests

ullet Ratio test for series $\sum z_n$ with non zero terms $\in \mathbb{C}$ if $r_n = \left| \frac{z_{n+1}}{z_n} \right|$

 $r = \lim \inf r_n$, $R = \lim \sup r_n$.

then:

- if R < 1 series converges absolutely
- if r > 1 series diverges
- no conclusion of behaviour if $r \le 1 \ge R$
- Root test : for series $\sum z_n$ if

$$L = \limsup |z_n|^{1/n}$$

then:

- if L < 1 series converges absolutely.
- if L > 1 series diverges.
- if L = 1 no conclusion.

4 Miscellaneous series properties

- if $\sum (x_n + y_n)$ converges then both $\sum x_n$ and $\sum y_n$ converge or diverge (one cannot diverge and another converge).
- if $\sum a_n$ and $\sum b_n$ converge absolutely then $\sum c_n = \sum a_n b_n$ converges absolutely.
- restatement of above point : $a_n, b_n > o$ and $\sum a_n, \sum b_n$ converge then $\sum a_n b_n$ converges
- if $a_n \geq o$ and $\sum a_n$ converges then $\sum a_n^k$ for $k \geq \mathbf{1}$ converges (as $a_n \to o$, for sufficiently large n we get $a_n < \mathbf{1} \implies (a_n)^k \leq a_n$ and comparison test convergence follows).
- if $o \leq a_n \rightarrow a$ then

$$s_n = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_n}{n} \to \alpha$$

- for converse of above point if s_n converges and if for $a_n = s_n s_{n-1}$, $\lim na_n = 0$ then a_n converges
- similar to above point if $|n\alpha_n| \le M < \infty \ \forall n$ and $\lim s_n = s$ then $\alpha_n \to s$
- $\bullet \ \ \text{if} \ o \mathrel{<} \alpha_n \to \alpha \ \text{then} \\$

$$(\alpha_{\scriptscriptstyle \bf 1}.\alpha_{\scriptscriptstyle \bf 2}\dots\alpha_{\scriptscriptstyle \bf n})^{\scriptscriptstyle \bf 1/n} o \alpha$$

- if $\sum a_n$ converges then $\sum \frac{\sqrt{a_n}}{n}$ converges
- if $a_n \rightarrow 0$ and $\sum a_n$ converges then $\sum \sqrt{a_n a_{n+1}}$ converges.
- Series $\sum_{n=0}^{\infty} \left(\frac{az+b}{cz+d}\right)^n$ for |a|=|c|>0 converges whenever

$$\frac{|\mathbf{b}|^2 - |\mathbf{d}|^2}{2} < \mathbf{Re}(z(c\mathbf{\bar{d}} - \alpha\mathbf{\bar{b}})).$$

or in general if $|a| \neq |c|$, then converges whenever

$$\frac{(|a|^2-|c|^2)|z|^2+|b|^2-|d|^2}{2} < Re(z(c\bar{d}-a\bar{b})).$$

- **Abel's Test :** if $\{x_n\}$ is convergent monotone sequence and series $\sum y_n$ is convergent then $\sum x_n y_n$ is convergent.
- \bullet if $\alpha_n > o$ and $\sum_{n=\mathbf{1}}^\infty \alpha_n$ diverges, $s_n = \sum_{k=\mathbf{1}}^n \alpha_k$

then

- $\blacksquare \sum_{n=1}^{\infty} \frac{a_n}{s_n} \text{ diverges}$
- $\blacksquare \sum_{n=1}^{\infty} \frac{a_n}{s_n^2} \text{ converges}$
- For any sequence $\{a_n\}$

$$\left|\liminf\left|\frac{\alpha_{n+1}}{\alpha_n}\right|\leq \lim\inf|\alpha_n|^{1/n}$$

$$\leq \limsup |\alpha_n|^{1/n} \leq \limsup \left|\frac{\alpha_{n+1}}{\alpha_n}\right|$$

- if $\sum a_n$ converges and $\{b_n\}$ is monotonic and bounded then $\sum a_n b_n$ converges
- Leibniz Theorem : if $\{c_n\}$ is such that $c_n > 0$ and is monotonic decreasing to o (i.e. $c_{n+1} < 0$

$$c_n$$
, $c_n \to 0$) then $\sum_{n=1}^{\infty} (-1)^{n+1} c_n$ converges.

- a series $\sum a_n$ is said to be absolutely convergent if $\sum |a_n|$ converges
- if a series is absolutely convergent the it is convergent.
- if $\sum_{n=0}^{\infty} a_n$ converges absolutely, $\sum_{n=0}^{\infty} a_n = A$,

$$\sum_{n=0}^{\infty} b_n = B \text{ and } c_n = \sum_{k=0}^{n} a_k b_{n-k} \text{ (Cauchy product) then } \sum_{n=0}^{\infty} c_n = AB$$

- Cauchy product of two absolutely convergent series is absolutely convergent.
- if $\{k_n\}$ is a sequence in $\mathbb N$ such that every integer appears once and if $a_n' = a_{k_n}$ then a rearrangement of $\sum a_n$ is of type $\sum a_n'$
- Riemann Rearrangement Theorem : if series of real numbers $\sum \alpha_n$ converges but not absolutely then for any $-\infty \geq \alpha \geq \beta \geq \infty$ series $\sum \alpha_n$ can be rearranged to $\sum \alpha'_n$ with partial sum s'_n such that

$$\lim \inf s'_n = \alpha$$
 and $\lim \sup s'_n = \beta$

• for a given double sequence $\{a_{ij}\}$ for $i=1,2,\ldots,j=1,2,\ldots$ if $\sum_{j=1}^{\infty}|a_{ij}|=b_i$ and $\sum b_i$ converges then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \alpha_{ij}$$

, same holds true i.e. summation can be changed if each of $\alpha_{ij} \geq o$ also.

$$\lim_{n\to\infty}\sum_{r=\alpha}^{\beta}\frac{1}{n}f(\frac{r}{n})=\int_{0}^{b}f(x)dx$$

where replace :

$$r/n \to x$$

$$1/n \to dx$$

$$a = \lim_{n \to \infty} \alpha/n$$

$$b = \lim_{n \to \infty} \beta/n$$

(to derive use simple notion of Riemann Integration: if f is integrable in $[\mathfrak{a},\mathfrak{b}]$ then for every $\epsilon > 0$ $\left|\sum_{i=1}^n f(t_i)\Delta(x_i) - \int\limits_{\mathfrak{a}}^b f(x)d(x)\right| < \epsilon \text{ holds for some partition } p([x_i,x_{i+1}]_1^{n-1}) \text{ of } [\mathfrak{a},\mathfrak{b}] \text{ and for any } t_i \in [x_i,x_{i+1}])$

5 Some limits and theorems

- L'Hospital Rule: if f, g are real differentiable functions in (a,b) (for $-\infty \le a < b \le \infty$) such that $g'(x) \ne o$ in (a,b) then as $x \to a$ $f(x) \to o$, $g(x) \to o$ or if $g(x) \to \pm \infty$ and if $\frac{f'(x)}{g'(x)} \to A$ then $\frac{f(x)}{g(x)} \to A$ (analogous result holds for $x \to b$) (is also true if f, g are complex valued and $f(x) \to o$, $g(x) \to o$)
- for f, g : D $\subset \mathbb{R} \to \mathbb{R}$, if $\lim_{x \to c} f(x) = o$ and g(x) is bounded in some deleted neighbourhood of c then $\lim_{x \to c} f(x)g(x) = o$
- if $\lim_{\substack{x \to c}} f(x) = l$ and g is continuous at l or in some set whose limit point is l then $\lim_{\substack{x \to c}} g(f(x)) = \lim_{\substack{x \to l}} g(x)$
- $\lim_{n\to\infty}\sum_{m=1}^{n}\frac{1}{m}-\ln n=\gamma$ a fixed number
- $\lim_{n\to\infty} z^n = 0$ if |z| < 1
- if a > 1 and p(n) is a fixed polynomial in n then $\lim_{n \to \infty} \frac{a^n}{p(n)} = \pm \infty$ (depends on p(n), precisely on coefficient of largest degree term).
- $\lim_{\substack{n\to\infty\\n\to\infty}} n^{1/n}=\mathbf{1}$ in particular if $|z|\neq 0$ then $\lim_{\substack{n\to\infty\\n\to\infty}} |z|^{1/n}=\mathbf{1}$
- $\lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n = e^a$
- for $\alpha \in \mathbb{R}$, p > 0 we have $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$

- if α , β > α and α ∈ \mathbb{R} then :

- from some preceding points we get growth of ln(n) < growth of n < growth of p(n) (for non constant p(n).) < growth of a^n (a > 1) < growth of n!.
- \bullet series $\sum_{n=\mathbf{1}}^{\infty}\frac{\mathbf{1}}{n^p}$ converges for $p>\mathbf{1}$ and diverges for $p\leq\mathbf{1}$
- series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converges for p > 1 and diverges for $p \le 1$ this result can be continued to series like $\sum_{n=2}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p}$, $\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln \ln n (\ln \ln n)^p}$ and so on.
- \bullet for series such as $\sum_{n=o}^{\infty}q^nz^{kn}$ for some $k\geq o$ fixed then this series is equal to series $\sum_{n\geq o}\alpha_nz^n$ where

$$\begin{split} \alpha_n &= \begin{cases} q^{n/k} & \text{if } n = \text{0, k, 2k, 3k, ...} \\ \text{0} & \text{otherwise} \end{cases} \\ \text{Thus } R &= \underset{n=0}{lim} \underset{1}{sup} _{1}/|\alpha_n|^{1/n} = q^{-1/k}. \text{ for } \\ \sum_{n=0}^{\infty} q^n z^{kn} \text{ series.} \end{split}$$

6 Uniform Convergence

- define uniform norm for a function $f : A \subseteq \mathbb{R} \to \mathbb{R}$ as $||f||_A = \sup(|f(\alpha)| \text{ for } \alpha \in A)$
- A sequence of bounded functions $\{f_n\}$ in \mathbb{R} converges uniformly to f in domain $A\subseteq R$ iff $||f_n-f||_A\to o$ i.e. the uniform norm of f_n-f converges too.
- one way to find the uniform norm for a function is to differentiate it and find its maximum on domain.
- Dinni's Theorem : if $\{f_n\}$ is a monotone sequence of continuous functions on [a,b] (closed and bounded) that converges to f which is continuous on [a,b] then the convergence is uniform.
- if f(x) is uniformly continuous on \mathbb{R} and non zero at integer values then $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ is never convergent (use $|f(x)| \le A|x| + B$)

References

- [1] Rudin W.: Principles of Mathematical Analysis, McGraw-Hill, 3, (1976).
- [2] Ponnusamy S., Silverman H.: Complex Variables and Applications, Birkhauser, (2006).
- [3] Robert G. Bartle, Donald R. Sherbert: Introduction to Real Analysis, Wiley publishers, 4, (2011).