TOPOLOGY QUALIFYING EXAM Fall 1995

(Crane and Wu)

Work out problem 1 and then choose 4 (and only 4) additional problems among the remaining ones. Start each problem on a new sheet of paper. Do not turn in more than 4 additional problems. A space always means a topological space below.

This one is required!

- 1. Answer the following questions and give a brief explanation or counterexample:
 - i) What is the smallest possible cardinality of a noncompact Hausdorff space?
 - ii) (a) Is the disjoint union of finitely many compact spaces compact?
 - (b) Is the Cartesian product of finitely many compact spaces compact?
 - (c) Is the Cartesian product of any family of compact spaces compact?
 - (d) Is the intersection of any family of compact subsets of a Hausdorff space compact?
 - iii) Is the intesection of two connected spaces connected?
 - iv) Is the Cartesian product of finitely many connected spaces connected?
 - v) Is the Cartesian product of uncountably many connected spaces connected?
 - vi) Is every space metrizable?
- vii) Is the inverse of any continuous bijective function continuous?
- viii) Is the composite of two continuous functions continuous?
- ix) What is a quotient map?
- x) Is a quotient map always an open map?

Choose 4 problems from below:

- **2.** Let $S := \{(x,y) \in \mathbb{R}^2 \mid y = \sin \frac{1}{x}, x > 0\} \subset \mathbb{R}^2$. The closure \overline{S} of S (in \mathbb{R}^2) is called the **topologist's sine curve**. It is endowed with the subspace topology. Show that the topologist's sine curve is connected, but not path connected. Is \overline{S} locally connected?
- **3.** Let $f, g: X \to Y$ be continuous. Assume that Y is Hausdorff. Show that the set $\{x \in X \mid f(x) = g(x)\}$ is closed in X.
- 4. Let (X, d) be a metric space. Show that the following are equivalent:
 - i) X has a countable basis;

- ii) X is Lindelöf;
- iii) X has a countable dense subset.
- **5.** Prove or disprove the following statements:
 - i) The continuous image of a locally connected space is locally connected;
 - ii) The quotient of a locally connected space is locally connected.
- **6.** Let $f: X \to Y$ be a map, where Y is a compact Hausdorff space and X any topological space. Show that f is continuous iff the graph of f,

$$G_f := \{(x, f(x)) \mid x \in X\} \subset X \times Y$$

is closed in $X \times Y$.

7. Show that if Y is compact, then the projection map

$$\pi_1: X \times Y \longrightarrow X$$

is a closed map. Is the compactness of Y necessary?

- **8.** Let X be a regular space with a countable basis and U a non-empty open subset. Show that
 - i) U is a countable union of closed subsets of X;
 - ii) There is a continuous function $f: X \to [0,1]$ such that f(x) > 0 for $x \in U$ and f(x) = 0 for $x \notin U$.
- **9.** A space X is called *locally metrizable* if each point x of X has a neighborhood that is metrizable in the subspace topology. Show that a regular Lindelöf space is metrizable if it is locally metrizable.
- 10. Let $f: X \to \mathbb{R}$ be a continuous real-valued function on the compact Hausdorff space X. Show that every nonempty open subset of X contains a nonempty open set on which f is bounded.
- 11. Prove or disprove the following statements:
- (a) \mathbb{R}^2 (with the standard topology) is a countable union of closed subsets each having empty interior.
- (b) \mathbb{R}^2 (with the standard topology) is a countable union of subsets each having empty interior.
- 12. Let Y be a metric space and $f_n: X \to Y$ a sequence of continuous functions and $f: X \to Y$ a function (not necessarily continuous). Suppose $\{f_n\}$ is equicontinuous and $f_n(x) \to f(x)$ for each $x \in X$. Show that f is continuous.