OPERATEUR ELEMENTAIRE D'ADDITION / SOUSTRACTION

L'objectif de ce travail est de concevoir **fonctionnellement** et de décrire **matériellement** un **système combinatoire** d'électronique numérique. La conception fonctionnelle met en application les outils de l'algèbre de Boole. La description matérielle met en œuvre les composants combinatoires de base de l'électronique numérique.

Ce travail est effectué par groupe de 4 ou 5 selon la liste jointe en annexe.

Document à déposer <u>sur CPe-Campus</u> (dépôts de fichier par groupe de TP) <u>avant le</u> :

<

Lundi 07 décembre 2020 13h

Merci de préciser votre <u>groupe de TP</u> et votre <u>groupe de travail</u> sur votre document.

1. CAHIER DES CHARGES

Le système d'électronique numérique étudié réalise une opération élémentaire d'addition (somme) ou de soustraction (différence) entre 2 opérandes binaires d'un seul bit notés A_i et B_i . Le résultat de l'opération est noté S_i pour l'addition et D_i pour la soustraction.

Le système dispose d'un indicateur de retenue (ou report) noté R_i apparaissant dès que le résultat de l'opération dépasse la valeur de la base de numération (ici la base 2).

Dans un contexte plus général, le principe de calcul mis en œuvre est celui de la **retenue propagée**. L'opérateur étudié peut être considéré comme l'élément au rang (i) d'un opérateur plus complexe d'addition ou de soustraction de 2 opérandes A et B de plusieurs bits. Dans ce cadre, l'opérateur élémentaire doit tenir compte d'une retenue éventuelle R_{i-1} issue de l'opérateur de rang (i-1) qui s'ajoute à l'opérande B_i .

La figure ci-dessous décrit le cas de l'addition de deux nombres binaires A et B de (n+1) bits et montre le rôle de l'opérateur élémentaire de rang (i).

Opérande A
$$A_n \qquad \dots \qquad A_i \qquad \dots \qquad A_1 \qquad A_0$$
 Opérande B +
$$B_n \qquad \dots \qquad B_i \qquad \dots \qquad B_1 \qquad B_0$$
 Retenue R
$$R_n \qquad R_{n-1} \qquad R_i \qquad R_{i-1} \qquad \dots \qquad R_0$$
 Somme S
$$R_n \qquad S_n \qquad \dots \qquad S_i \qquad \dots \qquad S_1 \qquad S_0$$

Opérateur élémentaire d'addition de rang (i)

Le choix de l'opération est effectué à partir d'un signal OP défini comme suit :

Addition: OP = 0
 Soustraction: OP = 1

Le schéma bloc ci-dessous fait le bilan des signaux d'entrées et de sortie de l'opérateur élémentaire réalisé :

 T_i est le résultat de l'opération effectuée. Il correspond à S_i pour l'addition et D_i pour la soustraction.

2. CONCEPTION FONCTIONNELLE

Compléter la fiche fournie en fin de document.

2.1. Opérateur élémentaire d'addition

2.1.1. Table de vérité

En fonction des valeurs (0 ou 1) des entrées A_i , B_i et R_{i-1} compléter la table précisant des valeurs des sorties R_i et S_i de l'opérateur élémentaire d'addition.

La table comporte 8 lignes. Pour l'établir, il faut effectuer pour chaque ligne l'opération en arithmétique binaire $A_i + (B_i + R_{i-1})$.

La table obtenue est alors considérée comme la table de vérité des fonctions logiques R_i et S_i à partir des variables A_i , B_i et R_{i-1} .

2.1.2. Terme somme Si

A partir de la lecture directe de la table de vérité, donner l'expression algébrique correspondant à la $1^{\text{ère}}$ forme canonique (somme de produits) de la fonction S_i .

En utilisant le propriétés de l'algèbre de BOOLE, montrer que l'expression obtenue peut se mettre sous la forme d'une fonction OU-EXCLUSIF de 3 variables.

2.1.3. Terme de retenue R_i

Compléter le tableau de KARNAUGH correspondant à la fonction R_i.

Mettre en évidence les groupements permettant d'obtenir les plus grandes simplifications possibles.

En déduire l'expression simplifiée de la fonction R_i.

En vue de simplifier la solution matérielle, on peut transformer l'expression de la fonction R_i en faisant apparaître des termes déjà existants dans la fonction S_i .

Compléter les tables de vérité des fonctions OU et OU-EXCLUSIF des variables A_i et B_i. Donner l'expression algébrique correspondant à la 1^{ère} forme canonique (somme de produits) des deux fonctions. En déduire l'expression de la fonction OU à partir de la fonction OU-EXCLUSIF.

A partir de ce résultat modifier l'expression simplifiée de la fonction R_i de manière à faire apparaitre, entre autres, une fonction OU-EXCLUSIF des variables A_i et B_i .

2.2. Opérateur élémentaire de soustraction

2.2.1. Table de vérité

En fonction des valeurs (0 ou 1) des entrées A_i , B_i et R_{i-1} compléter la table des valeurs des sorties R_i et D_i de l'opérateur élémentaire de soustraction.

La table comporte 8 lignes. Pour l'établir, il faut effectuer l'opération en arithmétique binaire A_i - $(B_i + R_{i-1})$.

Cette table sera considérée comme la table de vérité des fonctions logiques R_i et D_i des variables A_i, B_i et R_{i-1}.

2.2.2. Terme différence Di

A partir de la lecture directe de la table de vérité, donner l'expression algébrique correspondant à la $1^{\text{ère}}$ forme canonique (somme de produits) de la fonction D_i .

En utilisant le propriétés de l'algèbre de BOOLE, montrer que l'expression obtenue peut se mettre sous la forme d'une fonction OU-EXCLUSIF de 3 variables.

Comparer l'expression de la fonction D_i à celle de la fonction S_i .

2.2.3. Terme de retenue R_i

Compléter le tableau de KARNAUGH correspondant à la fonction R_i.

Mettre en évidence les groupements permettant d'obtenir les plus grandes simplifications possibles.

En déduire l'expression simplifiée de la fonction R_i.

En vue de simplifier la solution matérielle, on peut transformer l'expression de la fonction R_i en faisant apparaître des termes déjà existants dans la fonction D_i .

Ecrire les tables de vérité de la fonction OU mise en évidence dans l'expression de R_i et de la fonction $\overline{OU-EXCLUSIF}$ (inverse du OU-EXCLUSIF) des variables A_i et B_i . Donner l'expression algébrique

correspondant à la $1^{\text{ère}}$ forme canonique (somme de produits) des deux fonctions. En déduire l'expression de la fonction OU mise en évidence dans l'expression de R_i à partir de la fonction $\overline{\text{OU-EXCLUSIF}}$.

En déduire l'expression de la fonction R_i faisant apparaitre, entre autres, une fonction $\overline{OU-EXCLUSIF}$ des variables A_i et B_i .

Comparer l'expression obtenue avec celle obtenue pour l'addition.

2.3. Opérateur élémentaire d'addition / soustraction

Selon les valeurs de OP, rassembler dans un tableau les **expressions** algébriques des fonctions logiques R_i et T_i (S_i ou D_i selon le cas) utilisant les variables R_{i-1} , A_i et B_i .

Le signal OP étant considéré comme une nouvelle variable d'entrée du système, donner les expressions algébriques des fonctions logiques R_i et T_i obtenues à partir des variables OP, R_{i-1} , A_i et B_i .

Rechercher les expressions les plus simplifiées de R_i et T_i.

3. DESCRIPTION MATERIELLE

Documentations techniques jointes en annexe (boitiers standards de type J): 74LS04, 74LS08, 74LS32, 74LS86

3.1. Opérateur élémentaire d'addition

3.1.1. Terme somme

Les signaux associés aux variables A_i , B_i et R_{i-1} et éventuellement à leurs inverses $\overline{A_i}$, $\overline{B_i}$ et $\overline{R_{i-1}}$, étant placés sur des équipotentielles, dresser le schéma permettant de réaliser la fonction S_i à partir de portes de base (ET, OU, OU-EXCLUSIF).

3.1.2. Terme de retenue

Les signaux associés aux variables A_i , B_i et R_{i-1} et éventuellement à leurs inverses $\overline{A_i}$, $\overline{B_i}$ et $\overline{R_{i-1}}$, étant placés sur des équipotentielles, dresser le schéma permettant de réaliser la fonction R_i à partir de portes de base (ET, OU, OU-EXCLUSIF).

3.1.3. Bilan

Faire le bilan, par type, du nombre de **portes élémentaires** nécessaires pour réaliser l'opérateur élémentaire d'addition (ET, OU, NON, OU-EXCLUSIF).

En consultant les documentations techniques jointes en annexe, faire le bilan, par référence, du nombre de **boitiers** nécessaires pour réaliser l'opérateur élémentaire d'addition.

3.2. Opérateur élémentaire de soustraction

3.2.1. Terme différence

Les signaux associés aux variables A_i , B_i et R_{i-1} et éventuellement à leurs inverses $\overline{A_i}$, $\overline{B_i}$ et $\overline{R_{i-1}}$, étant considérés comme des équipotentielles, dresser le schéma permettant de réaliser la fonction D_i à partir de portes de base (ET, OU, OU-EXCLUSIF).

3.2.2. Terme de retenue

Les signaux associés aux variables A_i , B_i et R_{i-1} et éventuellement à leurs inverses $\overline{A_i}$, $\overline{B_i}$ et $\overline{R_{i-1}}$, étant considérés comme des équipotentielles, dresser le schéma permettant de réaliser la fonction R_i à partir de portes de base (ET, OU, OU-EXCLUSIF).

3.2.3. Bilan

Faire le bilan, par type, du nombre de **portes élémentaires** nécessaires pour réaliser l'opérateur élémentaire de soustraction (ET, OU, NON, OU-EXCLUSIF).

En consultant les documentations techniques jointes en annexe, faire le bilan, par référence, du nombre de **boitiers** nécessaires pour réaliser l'opérateur élémentaire de soustraction.

3.3. Opérateur élémentaire d'addition / soustraction

3.3.1. Terme résultat (somme ou différence)

Les signaux associés aux variables OP, A_i , B_i et R_{i-1} et éventuellement à leurs inverses \overline{OP} , $\overline{A_i}$, $\overline{B_i}$ et $\overline{R_{i-1}}$, étant placés sur des équipotentielles, dresser le schéma permettant de réaliser la fonction T_i à partir de portes de base (ET, OU, OU-EXCLUSIF).

3.3.2. Terme de retenue

Les signaux associés aux variables OP, A_i , B_i et R_{i-1} et éventuellement à leurs inverses \overline{OP} , $\overline{A_i}$, $\overline{B_i}$ et $\overline{R_{i-1}}$, étant placés sur des équipotentielles, dresser le schéma permettant de réaliser la fonction R_i à partir de portes de base (ET, OU, OU-EXCLUSIF).

3.3.3. Bilan

Faire le bilan, par type, du nombre de **portes élémentaires** nécessaires pour réaliser l'opérateur élémentaire d'addition / soustraction (ET, OU, NON, OU-EXCLUSIF).

En consultant les documentations techniques jointes en annexe, faire le bilan, par référence, du nombre de **boitiers** nécessaires pour réaliser l'opérateur élémentaire d'addition / soustraction.

4. DOCUMENT A RENDRE

Chaque groupe de travail devra rendre un <u>document manuscrit</u>.

Après avoir présenté le cahier des charges du système (fonction étudiée, grandeurs d'entrée, grandeurs de sortie, contraintes de réalisation), exposer tous les éléments de l'étude proposée (étude fonctionnelle et matérielle) en organisant le document en **2 parties séparées** :

- description fonctionnelle s'appuyant sur la fiche fournie en fin de document,
- description matérielle,

Les schémas pourront être faits à l'aide d'un outil de saisie de schéma (celui de PSPICE par exemple) à condition de respecter les consignes données en cours pour la mise en forme.

En complément, donner les résultats d'une recherche sur les circuits intégrés d'électronique numérique permettant de réaliser la fonction arithmétique d'addition (citer les sources). Ces circuits utilisent-ils le principe mis en œuvre dans le système étudié ? Développer en quelques lignes.

Groupe : Equipe : Terme de somme S_i :

NOMS:

OPERATEUR ELEMENTAIRE D'ADDITION / SOUSTRACTION

Description fonctionnelle

1. Opérateur élémentaire d'addition

Table de vérité des fonctions R_i et S_i :

Ai	B _i	R _{i-1}	R _i	S _i
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
1	1	0	1	0
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

Terme de retenue R_i :

A _i B _i \R _{i-1}	0	1
00	0	0
01	0	1
11	1	1
10	0	1

Tables de vérité des fonctions OU et OU-EXCLUSIF :

A _i	B _i	$A_i + B_i$	$A_i \oplus B_i$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

2. Opérateur élémentaire de soustraction

Table de vérité des fonctions R_i et D_i :

A _i	B _i	R _{i-1}	R _i	D _i
0	0	0	0	0
1	0	0	0	1
0	1	0	1	1
0	0	1	1	1
1	1	0	0	0
0	1	1	1	0
1	0	1	0	0
1	1	1	1	1

Terme de différence D_i:

Terme de retenue R_i:

$A_i B_i \setminus R_{i-1}$	0	1
00	0	1
01	1	1
11	0	1
10	0	0

Tables de vérité des fonctions OU et OU-EXCLUSIF :

A _i	B _i	$OU(f(A_i),f(B_i))$	$\overline{A_i \oplus B_i}$
0	0	1	1
1	0	0	0
0	1	1	0
1	1	1	1

 $OU(f(A_i),f(B_i)) = Expression de la fonction OU mise en évidence dans le terme <math>D_i$.

3. Opérateur élémentaire d'addition / soustraction

OP	R _i	T _i (S _i ou D _i)
0 (ADD)		
1 (SOUS)		