Statistics for Data Science Lecture 6

Dennis Fok (Econometric Institute)

September – October, 2025

Before next time

- Reread Chapter 4 if needed
- Read from Chapter 5:
 - Logistic regression
 - Evaluating Classification Models
- Reconsider the in-class assignments of this week
- Take home assignment
- Ask questions on the discussion board
- Work on final assignment (next deadline October 12)

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Take home assignment (see "starter code" on Canvas)

- Use the Murder rate data (Murder as dependent variable)
- Take four independent variables: Income, Population, Illiteracy, Frost
- Perform forward stepwise regression
- Test whether the optimal model obtained from forward stepwise regression is significantly different from the complete model (these are nested models)
- Also try backward selection starting from all four variables
- And try all subsets selection on AIC

Plan for today

Part I: Categorical explanatory variables

 \rightarrow Working with "Dummy variables"

Part II: Generalized Linear Models

- Main idea
- Logit models

Part III: Bootstrap (perhaps make a start with)

- Main idea
- Practical application

Categorical variables

Can regression do more?

- What we did by regression so far
 - Independent variable *y*: quantitative variable
 - Dependent variables X: quantitative variable
- Quantitative versus qualitative variables
 - Quantitative (numerical): murder rate, population, price, etc.
 - Qualitative (categorical): gender, brand, postcode, etc.
- Handling qualitative variables
 - *y* is qualitative: Later today in part II
 - Now: X is qualitative

Simplest case

- Consider the simplest case
 - Only one independent variable x
 - Only two categories: e.g. male (k obs) and female (m obs.)
- The goal: Test whether mean of y differs across the groups
- We did this with the Two-sample t-test
 - \rightarrow We can also do this using regression!

Dummy variable regression

- Construct a "dummy" variable D
 - ightarrow D = 1 for male and D = 0 for female
- Run regression $y = \alpha + D\beta + \varepsilon$
- Python automatically treats a categorical variable/factor (with two levels) like this
- Testing whether $\beta = 0 \rightarrow$ test of equal means

Ezafus

The equivalence between the approaches

- Two-sample t test and t-test in dummy regression give identical results!
- Maintained assumptions also equivalent
 - Two-sample t-test: equal variance in two groups
 - Dummy variable regression: ε has a constant variance σ^2
 - Both need normality (or a large enough sample)

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Extending to multiple categories

What about variables with K > 2 categories?

- Create a dummy for each of K-1 levels
- Add the K-1 dummies to the model
- Coefficients give difference relative to omitted level

Python does all of this automatically in <a>e <a>smf.ols()

- ullet If the variable is already categorical o Just add the factor to the model
- Otherwise: make categorical (safest) df"["var"] = df"["var"] .astype("category")
- .. or use 🔁 + C(varname) in the formula
- Baseline is automatically chosen
- Change the baseline using € C(varname, Treatment('baselevel'))
 eg. € smf.ols(formula = "price ~ lotsize +
 C(sizeclass, Treatment('small'))", data=df)

Ezapus

Testing for differences

Use t-tests in standard output

- Test one level of the factor versus the baseline level (Corrected for potential other variables in the model)
- Be aware of multiple testing! (with many factor levels testing at 5% may not be smart)
- Test result will depend on chosen baseline!

Test for the overall significance of the factor

- Test whether the factor is important as a whole
- Does *not* depend on baseline
- Compare model with factor vs without using the F-test

Czapus

Relation with the ANOVA method

Analysis of Variance method (ANOVA)

- ANOVA is also seen as an important method by itself
- ANOVA tests for differences in dependent variables across groups

Variants to know about:

- One-way ANOVA
 - \rightarrow One categorical independent variable (1 factor)
- Two-way ANOVA
 - \rightarrow Two categorical independent variables (2 factors)
 - Without interaction
 - With interaction (groups are defined on the combination of both factors)
- ANCOVA (Analysis of Covariance)
 - → Also allow for an additional continuous variable

All these methods are equivalent to regression with dummy variables

 $\underset{\tiny{\textcircled{@} \ 2025 \ Examus \ University \ Rotterdam, \ Al \ rights \ reserved. \ No \ text \ and \ datamining}}} \rightarrow Don't \ need \ to \ learn \ specific \ ANOVA \ functions!}$

Assignment

In-class Assignment 6.1 (see "starter code" on Canvas)

Test the price difference for houses with respect to the number of bedrooms

• First make a factor for the number of bedrooms (see example code):

```
■ df["catbed"] = "" → create a new variable (containing strings)
■ df.loc[df.bedrooms<=2, "catbed"] = "small" → 1 or 2 bedrooms = small
■ df.loc[df.bedrooms==3, "catbed"] = "medium" → 3 bedrooms = medium
■ df.loc[df.bedrooms>=4, "catbed"] = "large" → 4 or more bedrooms = large
■ df["catbed"] = df["catbed"].astype("category")
```

- Test whether the price is different across the three categories:
 - Create a model with the factor
 - Use the reported F-statistic to test whether the categories matter
 - \rightarrow What is your conclusion?
- Interpret the coefficients of the regression model with the factor
- Change the baseline (C(varname, Treatment("baselevel"))) in the regression model and confirm that this does not affect your conclusion for the test (but does affect the coefficients)

Generalized Linear Models

What about "other" dependent variables?

Dependent variables are not always continuous

- Binary
- Categorical
- Counts
- Durations
- ...
- \rightarrow Normal distribution cannot be correct for such variables (or errors)!

Generalized linear models can be used.

→ We focus on *binary* variables (aka logistic regression)

Binary dependent variables

Often the dependent variable (y_i) can only take two values

ightarrow 0 or 1, "failure" or "success"

Examples

- Purchase decision (yes/no)
- Make an insurance claim (yes/no)
- Vote democrat or republican
- Respond to an email campaign (yes/no)
- Product returns (yes/no)

Research goals:

- understand the decision making
- predict (influence?) decision making
- \rightarrow Need model to describe y_i using variables x_i

Example - "Has a house insurance"

Just applying OLS to $y_i = x_i'\beta + \varepsilon_i$

- Linear Probability Model: LPM
- ullet ε_i cannot be considered to be normal
- ε_i has non-constant variance
- Predictions are strange

Want to have:

- Model that gives predictions within $[0,1] \rightarrow$ probabilities
 - A non-linear fit to the scatter.

Generalized linear models [GLM]

Can see this as a special case of a Generalized Linear Model (GLM)

Components of GLM for Y

- A distribution function
- **2** Linear "predictor": $\eta = x'\beta = \beta_1 + \beta_2 x_2 + \ldots + \beta_k x_k$
- **3** Link function g():

$$\eta = g(\mathsf{E}[Y])$$

or conversely

$$\mathsf{E}[Y] = g^{-1}(x'\beta)$$

Wariance is a usually some function of the expectation

Ezafus

GLM for binary data

For binary data we have

- **1** Bernoulli (or Binomial with n=1) distribution with $E[Y] = Pr[Y = 1] = \pi$
- 2 Standard linear predictor $\eta = x'\beta$
- 3 Link functions, choose from:

$$g(\pi) = \log(\frac{\pi}{1-\pi}) = x'\beta$$
 $g^{-1}(x'\beta) = \frac{\exp(x'\beta)}{1+\exp(x'\beta)} = \pi$

Probit:

Logit:

$$g(\pi) = \Phi^{-1}(\pi) = x'\beta$$
 $g^{-1}(x'\beta) = \Phi(x'\beta) = \pi$

Complementary log-log (cloglog):

$$g(p) = \log(-\log(1-\pi)) = x'\beta$$
 $g^{-1}(x'\beta) = 1 - \exp(-\exp(x'\beta)) = \pi$

4 $Var[Y] = \pi(1-\pi) = E[Y](1-E[Y])$ (= property of Bernoulli distribution)

Binary models in Python

```
Core function: <a href="mailto:smf.glm">smf.glm</a>()
```

Example for binary data with logit link

where

- pimport statsmodels.api as sm and
- # import statsmodels.formula.api as smf

Other link functions using

- sm.families.Binomial(link=sm.families.links.Probit())
- # sm.families.Binomial(link=sm.families.links.CLogLog())

Usage of GLM

```
As before # m = smf.glm(...)
```

- fit = m.fit(): estimate the parameters of model m
- # fit.summary(): give estimated coefficients, standard errors and t-tests
- fit.params: return the coefficients
- fit.conf_int(): return confidence intervals
- fit.predict(): give in-sample predicted values
- fit.predict(exog=newdf): give predicted values
- Can also use backward and forward selection and all subset regression from model_selection.py (with updated version on Canvas)

Also very useful ploteffect(fit, "varname") from ploteffect.py (see Canvas)

ightarrow Create plot of probabilities versus an explanatory variable

Ezafus

In-class assignment

In-class assignment 6.2 (see "starter code" on Canvas)

Use the data in website.RData

- The variable min contains the number of minutes an individual has spent on a particular website, active is a 0/1 indicator for active or not active
- Create a logit model to explain active using the other variables
 - \rightarrow Do not include min (why not?)
- Which variables explain the probability of being active?
- Create a plot of the predicted probabilities versus age for all datapoints
- Use the ploteffect function to create a plot of the predicted probabilities versus age
 for someone with the average income and the "average region".
- (Extra: Experiment with transformations of age and/or income)

Ezafus

Estimation

Estimation theory

To estimate β

- Minimizing $\sum_i e_i^2 = \sum_i (y_i \hat{y}_i)^2$ is not very useful anymore
- Measure fit by "log likelihood" (high is good)
- In GLM terminology: Deviance = constant $-2 \times log$ -likelihood (low is good)
- → Maximum likelihood estimation

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Likelihood function

Likelihood function

- Input: parameter values for a model
- Output: "probability" of observing the available data given these parameters
- \rightarrow Joint density function of data seen as function of model parameters

Given

- observations on binary data y_1, \ldots, y_n
- model with parameters β

Likelihood function:

$$L(\beta) = f(y_1, \dots, y_n | \beta) = \Pr[Y_1 = y_1] \times \Pr[Y_2 = y_2] \times \dots \times \Pr[Y_n = y_n]$$
$$= \prod_i \Pr[Y_i = y_i] = \prod_i p_i^{y_i} (1 - p_i)^{1 - y_i}$$

random variable observed value

where p_i is a function of β (follows from the chosen link function)

Maximum likelihood estimation

• Log-likelihood function:

$$\log L(\beta) = \sum_i y_i \log(p_i) + (1-y_i) \log(1-p_i)$$

So, deviance equals

$$D = -2\sum_{i}(y_{i}\log(p_{i}) + (1-y_{i})\log(1-p_{i}))$$

- Min deviance → max likelihood
 → Find β such that data is as likely as possible
- Distributions of estimators follow from max. likelihood theory
- For normal distribution: $D = \sum_{i} (y_i \hat{y}_i)^2 \rightarrow \text{Equivalent to OLS!}$

(zapus

Model selection

• Deviance can directly be used to compare models

$$AIC = D + 2p$$
,

where p equals the number of parameters.

Difference in deviance for nested models can be used for testing.
 Under H₀: both models equally good:

$$D_{\rm small} - D_{\rm large} \sim \chi^2 (k_{\rm large} - k_{\rm small})$$

ightarrow likelihood ratio test

p-value:
$$\ge 1 - \text{stats.chi2}(k_{\text{large}} - k_{\text{small}}).\text{cdf(small.deviance - large.deviance)}$$

where \ref{eq} from scipy import stats and small and large are two fitted models

• Can apply elimination and selection methods for model selection

Ezafus

Other GLMs

There are various other GLMs

Different distributions

- Poisson (for count data)
- Exponential (for survival data)
- •

Different link functions

- identity
 - log
 - reciprocal

(make sure that the range of the link function makes sense)

Prediction

Prediction

The logit or probit model gives predictions of $\Pr[y_i = 1]$: $\hat{p}_i \to \text{Often we want } 0/1 \text{ predictions.}$

Choose a threshold c and transform \hat{p}_i to \hat{y}_i using

$$\hat{y}_i = \begin{cases} 1 & \text{if } \hat{p}_i > c \\ 0 & \text{if } \hat{p}_i \le c, \end{cases}$$

Choices for c:

- Set c = 0.5 (default choice/maximizes hit rate)
- Set c equal to the fraction of observations with $y_i = 1$: (0/1 predictions more balanced)
- Set c optimally given costs of correct or wrong predictions

Capus

Evaluation of predictions

"Prediction-Realization" table (or "Contingency table" or "Confusion matrix").

- Table can also be represented in number of observations
- Prediction should be binary!
- More graphical: **e skm.ConfusionMatrixDisplay(cm).plot()
- Various statistics can be calculated based on this table
 - Hit rate (or accuracy) $h = p_{00} + p_{11}$
 - Sensitivity $p_{11}/p_{.1}$

2025 Frasmus University Rotterdam All rights reserved. No text and datamining.

In-class assignment

In-class assignment 6.2 – continued

- Compare the logit to the probit model using the deviance. Use ₱ model.deviance
 Which is better?
- Generate the confusion matrix to study the prediction quality of the logit
- Do you think the logit predicts well?
- (Optional: try to visualize the differences in predicted probabilities for logit vs. probit)

@ 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Parameter interpretation

Comparison logit/probit

- Difference between logit and probit is small
- Differences are larger when events are rare
- Choice depends on researcher's preference (derivations are easier for the logit model)

But estimated coefficients are really different!

 \rightarrow How can this be?

Parameter interpretation in non-linear models

Parameter interpretation is a bit difficult (nonlinear relations)

- Parameter deals with change in *linear predictor*
- Just looking at parameters is not enough
 - ightarrow only gives $\mathit{direction}$ of effect

To assign meaning to size of parameters:

- Compare probabilities under some scenarios
 - → Make predictions for specific hypothetical cases, eg. using n.predict(exog=...) Special case:
 - Set continuous variables at their mean
 - Average over predictions for the levels of the categorical
 - ploteffect(m, "varname") from ploteffect.py (see Canvas)
- Translate parameters into something meaningful
 - \rightarrow (Average) marginal effects

Marginal effects

How does $E[y_i] = Pr[y_i = 1]$ change if one of the x-variables changes?

- Effect of x_{ji} on $Pr[y_i = 1]$ (keeping other variables fixed) \rightarrow take derivative!
- This derivative is called marginal effect

Marginal effects for logit:

$$\mathsf{Pr}[y_i = 1] = rac{\mathsf{exp}(x_i'eta)}{1 + \mathsf{exp}(x_i'eta)}$$

So

$$\frac{\partial \Pr[y_i=1]}{\partial x_{ji}} = \ldots = \frac{\exp(x_i'\beta)}{(1+\exp(x_i'\beta))^2} \beta_j = \Pr[y_i=1] \Pr[y_i=0] \beta_j.$$

Czafus

Marginal effects

Marginal effect of x_{ii} in the logit model:

$$\Pr[y_i = 1] \Pr[y_i = 0] \beta_j$$

Note:

- Effect of x_{ii} on $Pr[y_i = 1]$ depends on all elements of x_i .
- Effect equals 0 if $Pr[y_i = 1]$ equals 0 or 1.
- Compare this to the LPM $y_i = x_i'\beta + \varepsilon_i$, where

$$\frac{\partial \Pr[y_i = 1]}{\partial x_{ii}} = \frac{\partial x_i' \beta}{\partial x_{ii}} = \beta_j.$$

• Marginal effect in the probit model:

$$\frac{\partial \Pr[y_i = 1]}{\partial x_{ii}} = \frac{\partial \Phi(x_i'\beta)}{\partial x_{ii}} = \phi(x_i'\beta)\beta_j.$$

Often we consider the average marginal effect over all observations

Avg. marginal effects in example

Dependent variable: Has a house insurance

		avg. marg.		avg. marg.	
	Logit	effect	Probit	effect	LPM
С	-7.3409		-4.2670		-0.70183
AGE	0.17808	0.025637	0.10339	0.025758	0.029261

 \rightarrow Very small differences in marginal effects!

Calculating marginal effects in Python

```
Given a model ॄ m = smf.glm(..).fit() use ॄ m.get_margeff().summary()
```

- Gives average marginal effects
- + tests & confidence intervals
- #m.get_margeff(atexog=data): calculate marginal effects for specific observation

In-class assignment

In-class assignment 6.2 – continued

- Use the logit model with age, income and region as variables
- Calculate the average marginal effects of income over the observations
- What does this marginal effect mean?

Bootstrap

Summary of statistics so far

- Which component one should look at?
- Where do you need a mathematical statistician?

Estimation uncertainty

Every estimate has its uncertainty

How to obtain estimation uncertainty?

- Derive the (asymptotic) variance of the estimator!!
- Estimate the "asymptotic variance"
- Construct confidence interval and tests
- → New derivations for new models!

Statisticians will never lose their job.... until... Bootstrap!

Drawbacks of asymptotic theory

Classical statistics is based on asymptotic theory

- Assuming large number of observations
- In practice *n* never goes to infinity
- Asymptotic theory may (sometimes) capture reality very slowly

Example: Estimate mean from simulated data

- DGP: 30 obs simulated from a standard *exponential* distribution (mean=1 and std=1)
- CLT says distribution of sample mean $\approx N(1, \frac{1}{30})$
- Check CLT by repeating 1000 times:
 - Generate data & construct an point estimate

95% confidence interval should be
$$1 \pm 1.96 \frac{1}{\sqrt{30}}$$

ightarrow 25 cases should be left, and 25 right of this interval

Histogram of the estimated mean

Slide 38

From theory to bootstrap

Handling estimation uncertainty using (asymptotic) theory is not always useful

- You need a mathematical statistician all the time!
- Even if the theory is correct, in practice it may not work

Alternative: handle it by bootstrap

- Use "simulation"
- If we can "simulate" the estimator many times, we can get a confidence band (and do hypothesis testing)!
- However, we have only one set of data in practice
- Can we simulate from our data?
 - \rightarrow Bootstrap!

Capus

The idea of bootstrap

- An estimator is a function of all observations
- Randomly redraw a new sample from the observations (is called bootstrap sample)
 - Draw with replacement
 - \rightarrow the same observation may appear more than once!
 - Sample size is (in general) equal to original sample.
- Recalculate the estimator for each bootstrapped sample (=bootstrapped estimate)
- Pull all bootstrapped estimates together and calculate:
 - Sample variance as the estimated variance of the original point estimate
 - A bootstrapped confidence band (rank the bootstrapped estimates)

Czafus

Bootstrap in Python

- Steps for using bootstrap
 - ① Draw the bootstrap sample
 - Calculate the statistic of interest (make sure you really get a single number!)
 - 3 Repeat... and collect all statistics
 - 4 Report distribution and percentiles of statistics
- Example steps 1–3 to bootstrap distribution of sample mean (given dataframe df)
 - collectstats = []
 - for i in range(10000):
 - bootstrapsample = df.sample(frac=1, replace=True)
 - stat = bootstrapsample["varname"].mean()
 - collectstats.append(stat)

Ezafus

Display the bootstrap results

- Display the bootstrapped distribution
 - plt.hist(collectstats)
- Display the bootstrapped confidence interval, eg.
 - np.quantile(collectstats, [0.025, 0.975])

Notes:

- ullet Above gives 95% interval ightarrow can of course get different interval
- This is the most straightforward implementation
- Other methods exist (eg. with bias correction)

Summary bootstrap

- Bootstrap is a powerful idea
- You can get rid of the mathematical statistician for
 - Construct confidence band or test for an estimate
 - Conduct a diagnosis test without knowing the limit distribution
- You still need a mathematical statistician (or yourself) for
 - Construct/Imagine an estimator that works
 - Construct/Imagine a diagnosis statistic that works
 - The "that works" part can also be checked by simulation

You bootstrapped yourself out of the mud!

Hang on! Bootstrap is not always working!

- Bootstrapping the maximum (as an estimator for the endpoint) does **not** work
- Standard bootstrap requires independence of observations (can be generalized)

Ezafus

Assignment 6.3/Take home assignment

- Use the website data
- Continue from In-class Assignment 6.3 and consider the logit model
- Predict the active probability for

```
    exog={'age': 40, 'income': 2000, 'region' : 1}
    exog={'age': 40, 'income': 3000, 'region' : 1}
```

- Calculate the difference in predicted probabilities
- Convert the difference into a single number by selecting the [0] element
- Construct the 95% confidence interval for this difference using bootstrap (at least 1000 times)
- ightarrow See also the example bootstrap code on Canvas

Capus

Before next time

- Nothing to read
- Reconsider/finish the in-class assignments of this week
- Look at (the code of) an additional example/exercise using binary data (next slide)
- Prepare questions for next time (final lecture!)
 - Theory
 - Applications
 - Exercises
 - Final assignment
 - Statistical challenges...
- You can already work on part 3 of the assignment

2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Additional exercise binary data

Consider the data in brandchoice.csv containing brand choice decisions of households together with prices (per ounce) and marketing actions: display (special positioning of product at retailer) and feature (product is mentioned in leaflet)

- Make a model to explain the brand choice (see this as a binary decision)
- What (transformations of) variables should be included?
 Also consider a model containing the price difference (next to other variables)
- What do the coefficients mean?
- Does price have a significant influence?
- How well does the model predict?

© 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin