вариант	ф. номер	група	поток	курс	специалност
III.1					
Име:					

Теоретичен изпит по логическо програмиране примерен вариант (2016/2017)

Задачите, които ще бъдат дадени в първата част от изпита, би трябвало да може да се решат, ако се знаят нещата от "задължителния списък". Всичко, което на лекциите или в записките е било доказано, тук може да се използва наготово без доказателство (това е критично важно например за задача 2, която иначе би била много трудна).

- **Зад. 1.** Посочете всички подформули и нарисувайте дървото на формулата $\forall x \, (\exists y \, p(x, f(y)) \vee r(x) \Rightarrow p(x, y))$
- **Зад. 2.** Формулата φ съдържа подформула $\forall x \, p(x,y)$. Формулата ψ се получава като заменим тази подформула с $\forall z \, p(z,y)$. Ако е известно, че z не е свободна променлива на φ , докажете, че z не е свободна променлива на ψ .
- Зад. 3. Формулирайте теоремите за коректност и пълнота на обратния извод за логически програми.
- **Зад. 4.** Докажете, че φ е неизпълнима тогава и само тогава, когато $\neg \varphi$ е предикатна тавтология. Докажете, че следните три неща са еквивалентни: φ не е изпълнима, φ е неизпълнима, φ е тъждествено невярна.
- **Зад. 5.** Универсумът на структурата \mathbf{M} съдържа всички термове без променливи. Известно е, че стойността на терма $\mathbf{f}(\mathbf{x})$ в \mathbf{M} при оценка v е равна на $v(\mathbf{x})$. Да се докаже, че \mathbf{M} не е ербранова структура.
- ${\bf 3ад.~6}$. Да се докаже, че ако празният дизюнкт е тъждествено верен в структурата ${\bf M}$, то универсумът на ${\bf M}$ съдържа само един елемент.

Може да използвате без доказателство всички твърдения от лекциите или записките, но трябва да формулирате твърденията, които използвате.

вариант	ф. номер	група	поток	курс	специалност
III.2					
Име:					

Теоретичен изпит по логическо програмиране примерен вариант (2016/2017)

Задачите, които ще бъдат дадени в първата част от изпита, би трябвало да може да се решат, ако се знаят нещата от "задължителния списък". Всичко, което на лекциите или в записките е било доказано, тук може да се използва наготово без доказателство (това е критично важно например за задача 2, която иначе би била много трудна).

- **Зад. 1.** За всяка променлива, в $\forall x \, (\forall x \, \exists y \, p(x,f(y)) \, \lor \, r(x) \Rightarrow p(x,y))$ определете дали е свободна или свързана. Кои са кванторите на свързаните променливи? Коя е областта на действие на всеки един от кванторите?
- **Зад. 2.** Формулата φ съдържа подформула $\forall x \, p(x,y)$. Формулата ψ се получава като заменим тази подформула с $\forall z \, p(z,y)$. Докажете, че формулите φ и ψ са еквивалентни.
- Зад. 3. Нека s е субституцията, за която s(x) = f(x), s(y) = f(x), s(z) = f(x) и изобщо за всяка променлива v е изпълнено s(v) = f(x). Намерете с точност до конгруентност резултата от прилагането на s върху формулата $\forall x \, p(x, f(y)) \Rightarrow \exists y \, p(x, f(y))$.
- **Зад. 4.** Дайте дефиниции за $\mathbf{M} \models \varphi, \models \varphi, \mathbf{M} \models \varphi$ и $\models \varphi$.
- **Зад. 5.** Приложете алгоритъма за унификация към системата $\{f(a,y)=f(x,g(b))\}.$
- Зад. 6. Формулирайте дефиницията на либерална резолвента

Може да използвате без доказателство всички твърдения от лекциите или записките, но трябва да формулирате твърденията, които използвате.

вариант	ф. номер	група	поток	курс	специалност
IV.1					
Име:					

Теоретичен изпит по логическо програмиране примерен вариант (2016/2017)

Във втората част от изпита ще бъдат дадени две задачи за доказателство. Първата задача ще бъде част от нещата, за които в "задължителния списък" се иска да може да се доказват. Втората задача ще бъде извън този списък.

- **Зад. 1.** Докажете, че за всяка формула може да се намери еквивалентна на нея формула, която е в пренексна нормална форма.
- **Зад. 2.** а) Докажете, че $\forall \mathbf{x} (\varphi) \vDash \varphi$.
- б) Нека $\varphi[s]$ е скулемово усилване на $\exists \mathtt{x}\,(\varphi)$ и скулемовият символ не се среща никъде във формулата φ . Докажете, че ако $\mathbf{M} \models \exists \mathtt{x}\,(\varphi)$, то съществува структура \mathbf{K} , която съвпада с \mathbf{M} във всичко, освен може би при интерпретацията на скулемовия символ, такава че $\mathbf{K} \models \varphi[s]$.
- в) Опишете примерен алгоритъм, посредством който за произволно крайно множество Γ от пренексни формули може да намерим крайно множество Γ' от безкванторни формули, че Γ е изпълнимо тогава и само тогава, когато Γ' е изпълнимо. Докажете, че от изпълнимостта на Γ следва изпълнимостта на Γ' .
- В доказателствата може да използвате наготово всички твърдения, които на лекциите или в записките са били доказани **преди** твърденията, които тук се иска да бъдат доказани.

вариант	ф. номер	група	поток	курс	специалност
IV.2					
Име:					

Теоретичен изпит по логическо програмиране примерен вариант (2016/2017)

Във втората част от изпита ще бъдат дадени две задачи за доказателство. Първата задача ще бъде част от нещата, за които в "задължителния списък" се иска да може да се доказват. Втората задача ще бъде извън този списък.

- Зад. 1. Докажете, че ако една затворена формула е изпълнима в структура, то тя е тъждествено вярна в структурата.
- Зад. 2. Ще казваме, че едно множество от дизюнкти е *про- тиворечиво*, ако дизюнктите в него не съдържат променливи и от множеството може да се изведе с либерална резолюция празният дизюнкт.
- а) Докажете, че ако λ е литерал без променливи и множествата $\Gamma \cup \{\{\lambda\}\}$ и $\Gamma \cup \{\{\overline{\lambda}\}\}$ са противоречиви, то множеството Γ също е противоречиво.
- б) Нека Γ е непротиворечиво множество от дизюнкти без променливи. Дефинирайте такова непротиворечиво множество Δ от дизюнкти, че $\Gamma \subseteq \Delta$ и за всеки литерал λ без променливи ако $\{\lambda\} \notin \Delta$, то $\{\overline{\lambda}\} \in \Delta$. (В дефиницията на Δ може да използвате без доказателство, че множеството на атомарните формули без променливи е изброимо.)

В доказателствата може да използвате наготово всички твърдения, които на лекциите или в записките са били доказани **преди** твърденията, които тук се иска да бъдат доказани.