NLP For Economists Topic Modeling

Sowmya Vajjala

Munich Graduate School of Economics - LMU Munich

Guest Course, October 2020

Goals

Give a general overview of topic models and their applications note: since I don't have much experience with topic models other than classroom instruction, I am giving you relevant resources where possible.

useful resources:

- https://mimno.infosci.cornell.edu/
- http: //www.cs.columbia.edu/~blei/topicmodeling.html

What is topic modeling?

- ► Topic Models are a group of algorithms which attempt to discover latent themes in large collections of documents.
- ➤ They use statistical methods to analyze word usage in the texts to discover what "themes" run through them, how these themes connect to each other etc.

What is topic modeling?

- ► Topic Models are a group of algorithms which attempt to discover latent themes in large collections of documents.
- ► They use statistical methods to analyze word usage in the texts to discover what "themes" run through them, how these themes connect to each other etc.
- Good thing about them: they do not expect us to provide any prior annotations/categories for texts. Topics will "emerge" from the analysis.
- ▶ Bad thing: "Topics" need not necessarily be meaningful, unless you know how to tweak the models

What is topic modeling?

- ► Topic Models are a group of algorithms which attempt to discover latent themes in large collections of documents.
- ► They use statistical methods to analyze word usage in the texts to discover what "themes" run through them, how these themes connect to each other etc.
- Good thing about them: they do not expect us to provide any prior annotations/categories for texts. Topics will "emerge" from the analysis.
- ▶ Bad thing: "Topics" need not necessarily be meaningful, unless you know how to tweak the models
- ▶ They seem to be the most popular method for analyzing unstructured text data in Economics

Latent Dirichlet Allocation (LDA)

- ▶ LDA is the most known topic modeling algorithm
- ► Intuitions:
 - each document is a mixture of multiple topics
 - each topic can be characterized by some set of keywords related to that topic.
 - a keyword can exist in multiple topics with different degrees of importance.

What does a Topic Model do?-1

source: https://goo.gl/azc7Gc

What does a Topic Model do? -2

Real inference with LDA - topic model built using 17000 articles from Science journal.

source: https://goo.gl/azc7Gc

How are topic models useful? -2

Analysing topics over time

source: https://goo.gl/azc7Gc

How are topic models useful? -3

Analyzing topics by author

TOPIC 10		TOPIC 209			TOPIC 87			TOPIC 20	
WORD	PROB.	WORD	PROB.		WORD	PROB.		WORD	PROB.
SPEECH	0.1134	PROBABILISTIC	0.0778		USER	0.2541		STARS	0.0164
RECOGNITION	0.0349	BAYESIAN	0.0671		INTERFACE	0.1080		OBSERVATIONS	0.0150
WORD	0.0295	PROBABILITY	0.0532		USERS	0.0788		SOLAR	0.0150
SPEAKER	0.0227	CARLO	0.0309		INTERFACES	0.0433		MAGNETIC	0.0145
ACOUSTIC	0.0205	MONTE	0.0308		GRAPHICAL	0.0392		RAY	0.0144
RATE	0.0134	DISTRIBUTION	0.0257		INTERACTIVE	0.0354		EMISSION	0.0134
SPOKEN	0.0132	INFERENCE	0.0253		INTERACTION	0.0261		GALAXIES	0.0124
SOUND	0.0127	PROBABILITIES	0.0253		VISUAL	0.0203		OBSERVED	0.0108
TRAINING	0.0104	CONDITIONAL	0.0229		DISPLAY	0.0128		SUBJECT	0.0101
MUSIC	0.0102	PRIOR	0.0219		MANIPULATION	0.0099		STAR	0.0087
AUTHOR	PROB.	AUTHOR	PROB.		AUTHOR	PROB.		AUTHOR	PROB.
Waibel_A	0.0156	Friedman_N	0.0094		Shneiderman_B	0.0060		Linsky_J	0.0143
Gauvain_J	0.0133	Heckerman_D	0.0067		Rauterberg_M	0.0031		Falcke_H	0.0131
Lamel_L	0.0128	Ghahramani_Z	0.0062		Lavana_H	0.0024		Mursula_K	0.0089
Woodland_P	0.0124	Koller_D	0.0062		Pentland_A	0.0021		Butler_R	0.0083
Ney_H	0.0080	Jordan_M	0.0059		Myers_B	0.0021		Bjorkman_K	0.0078
Hansen_J	0.0078	Neal_R	0.0055		Minas_M	0.0021		Knapp_G	0.0067
Renals_S	0.0072	Raftery_A	0.0054		Burnett_M	0.0021		Kundu_M	0.0063
Noth_E	0.0071	Lukasiewicz_T	0.0053		Winiwarter_W	0.0020		Christensen-J	0.0059
Boves_L	0.0070	Halpern_J	0.0052		Chang_S	0.0019		Cranmer_S	0.0055
Young_S	0.0069	Muller_P	0.0048		Korvernaker_B	0.0019		Nagar_N	0.0050

Figure 3: An illustration of 4 topics from a 300-topic solution for the CiteSeer collection. Each topic is shown with the 10 words and authors that have the highest probability conditioned on that topic.

source:

How are topic models useful? -4

Picking up similar documents

FIGURE 4. The analysis of a document from *Science*. Document similarity was computed using Eq. (4); topic words were computed using Eq. (3).

source:

http://www.cs.columbia.edu/~blei/papers/BleiLafferty2009.pdf

A small exercise

Interpreting Topic Models

What do you think of these topics (and their 5 most frequent keywords)? If you are asked to evaluate this topic model now, what will you look for?

- Topic 1: Onion, Cream, Black pepper, Milk, Cinnamon
- ▶ Topic 2: Cumin, Coriander, Turmeric, Fenugreek, Lemongrass
- ► Topic 3: Vanilla, Cream, Almond, Coconut, Oat
- ► Topic 4: Olive oil, tomato, parmesan cheese, lemon juice, garlic
- ► Topic 5: soy sauce, scallion, sesame oil, cane molasses, roasted sesame seed
- Topic 6: Milk, pepper, yeast, potato, lemon juice
- Topic 7: Scallion, garlic, ginger, soy bean, pepper
- ► Topic 8: Pepper, vinegar, onion, tomato, milk

Some questions to ponder on:

- Coherence among the keywords for a topic (Is some word looking out of place?)
- Are there two topics that perhaps should be one?
- Can we name the topics with what we think is the group?
- ▶ Do you think the topic model learnt something about ingredients in this example?

Building Topic models

- gensim is a popular library for topic models in python. https://radimrehurek.com/gensim/
- sklearn also has an implementation of LDA
- some links if you want to explore in Python:
 - https://medium.com/analytics-vidhya/ topic-modeling-using-gensim-lda-in-python-48eaa2344920 https://dx.doi.org/10.1006/10.1
 - //github.com/practical-nlp/practical-nlp/blob/master/Ch7/02_TopicModelling.ipynb
- I was about to write a demo code, and discovered this in browser topic model builder!: https://mimno.infosci.cornell.edu/jsLDA/
- ► Try it out (if you want, you can submit your analysis of this tool instead of the actual Assignment 3!)

Concluding Remarks

- ► Topic models are a good tool to use when we have a large corpus of texts, and no other related annotation.
- ► Although they are complex mathematical models, they are relatively easier to implement for a not so experienced person.
- However, training/tuning model performance can take time, it can be hard to understand what is a good number of topics, get topics with coherent keywords, etc.