PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-294539

(43) Date of publication of application: 19.10.1992

(51)Int.CI.

H01L 21/316 H01L 21/304

(21)Application number : 03-060060

(71)Applicant: KAWASAKI STEEL CORP

(22)Date of filing:

25.03.1991

(72)Inventor: ODA MUNETAKA

(54) METHOD FOR FORMING INSULATION FILM

(57)Abstract:

PURPOSE: To provide a method for forming an insulation film which enables a high-quality insulation film to be formed on a surface of a silicon substrate. CONSTITUTION: After a natural oxide film is eliminated by halogen gas and ultraviolet rays 71, an oxide film is formed again by oxygen and ultraviolet rays 72 and then the oxide film is eliminated by the halogen gas and the ultraviolet rays 71 (first step), thus enabling an extremely clean surface to be formed and a target highquality insulation film to be formed in the later second step.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-294539

(43)公開日 平成4年(1992)10月19日

_	1,010	庁内整理番号 8518-4M 8831-4M 8518-4M	FI	技術表示箇所
---	-------	---	----	--------

審査請求 未請求 請求項の数3(全 3 頁)

(21)出願番号	特顧平3-60060	(71)出願人	000001258 川崎製鉄株式会社
(22)出顧日	平成3年(1991)3月25日		兵庫県神戸市中央区北本町通1丁目1番28 号
		(72)発明者	小田 宗隆 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内
		(74)代理人	弁理士 長谷川 芳樹 (外3名)
			•

(54) 【発明の名称】 絶縁膜の形成方法

(57)【要約】 (修正有)

【目的】 本発明は、高品質の絶縁膜をシリコン基板の 表面に形成できる絶縁膜の形成方法を提供する。

【構成】 本発明によれば、ハロゲン系のガスと紫外線71により自然酸化膜が除去された後、酸素と赤外線72により再び酸化膜が形成され、再びハロゲン系のガスと紫外線71により酸化膜が除去される(第1のステップ)ので、極めて溶浄な表面とすることができ、その後の第2のステップにおいて、目的とする高品質の絶縁膜が形成できる。

変集例に用いる装置。

特開平4-294539

(2)

【特許請求の範囲】

【請求項1】 シリコン基板の表面に絶縁膜を形成する方法において、絶縁膜を形成すべきシリコン基板をハロゲン系ガスの雰囲気に晒しながら紫外線を照射し、次いで酸素を含むガスの雰囲気に晒しながら赤外線を照射し、次いでハロゲン系のガスの雰囲気に晒しながら紫外線を照射する第1のステップと、前配シリコン基板をシリコンと反応して絶縁物を生成するガスの雰囲気に晒しながら赤外線を照射し、前配絶縁膜を形成する第2のステップとを備えることを特徴とする絶縁膜の形成方法。

【請求項2】 前配第1のステップの後に、前配シリコン基板を酸素を含むガスの雰囲気に晒しながら赤外線を照射し、次いでハロゲン系のガスの雰囲気に晒しながら紫外線を照射するステップを、少なくとも1回行なう請求項1記載の絶録膜の形成方法。

【請求項3】 前記絶縁物を生成するガスが、酸素、水 蒸気、酸化窒素もしくはアンモニアを含むガスである請 求項1または2記載の絶縁膜の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はシリコン基板にゲート酸 化膜などの絶縁膜を形成する方法に関する。

[0002]

【従来の技術】ゲート酸化膜の品質はMOSFETの特性を左右するので、信頼性の高いLSIを製造するためには、高品質の絶録膜を形成することが必要になる。従来、一般的には、ゲート酸化膜の形成に先立って、シリコン基板をRCA洗浄することが行なわれる。これは、NH。OHとH。O: またはHC1とH。O: などでシリコン基板を洗浄し、その後に熱酸化などでゲート酸化 30 膜を形成するものである。しかし、このようなRCA洗浄中にシリコン基板の表面が自然酸化されやすく、この自然酸化膜の除去が重要になっている。

【0003】そこで、例えば特開昭62-139335号、同62-293724号のような清浄化方法が提案されている。これによれば、シリコン基板はRCA洗浄の後に高真空中に置かれ、加熱されて酸化シリコンが脱離される。このため、自然酸化膜を除去した後に、熱酸化によってゲート酸化膜を形成できる。

[0004]

【発明が解決しようとする課題】しかし、このような従来方法では、ゲート酸化膜の厚さが200オングストローム程度もある場合には特に問題がないが、140オングストローグ程度以下の厚さになると酸化膜の品質が劣化し、ゲート酸化膜としての信頼性が低くなる。これは、シリコン基板の表面に清浄化の後も重金属、炭素などが残留し、これがゲート酸化膜に含まれてしまうためと考えられる。

【0005】そこで、本発明は、高品質の絶縁膜をシリコン基板の表面に形成できる絶縁膜の形成方法を提供す

ることを目的とする。

[0006]

【課題を解決するための手段】本発明に係る絶縁膜の形成方法は、絶縁膜を形成すべきシリコン基板をハロゲン系ガスの雰囲気に晒しながら紫外線を照射し、次いで酸素を含むガスの雰囲気に晒しながら赤外線を照射し、次いでハロゲン系のガスの雰囲気に晒しながら紫外線を照射する第1のステップと、シリコン基板をシリコンと反応して絶縁物を生成するガスの雰囲気に晒しながら紫外線を照射し、目的とする絶縁膜を形成する第2のステップとを備えることを特徴とする。

【0007】 ここで、シリコン基板を酸素を含むガスの 雰囲気に晒しながら赤外線を照射し、次いでハロゲン系 のガスの雰囲気に晒しながら紫外線を照射するステップ を、少なくとも1回、第1のステップと第2のステップ の間で繰り返してもよい。

[0008]

【作用】本発明によれば、ハロゲン系のガスと紫外線により自然酸化膜が除去された後、酸素と赤外線により再び酸化膜が形成され、再びハロゲン系のガスと紫外線により上記酸化膜が除去されるので、極めて清浄な表面とすることができ、その後に目的とする高品質の絶縁膜が形成できる。

[0009]

(実施例)以下、添付図面を参照して本発明の実施例を 説明する。

【0010】図1は実施例の方法が適用される装置の構 成図である。図示の通り、石英製のチュープ1の一方は 細径の排気口2となって真空ポンプ (図示せず) に接続 され、他方の開口にはシールリング3を介して蓋4が固 定される。蓋4には給気口5が設けられ、この給気口5 はパルプ61を介して弗素(F:)、三弗化塩素(C·l F₁)、弗化水素 (HF) 等のハロゲン系のガスの供給 源に接続され、かつパルプ62を介して酸素(O2)の 供給源に接続され、かつパルプ63を介して酸素、水蒸 気 (H₂ O) 、二酸化窒素 (NO₂) 、アンモニア (N H:) 等のシリコン (Si) と反応して絶縁膜を生成す る反応ガスの供給源に接続される。チューブ1の上方に は、紫外線を照射する紫外線光源71と、赤外線を照射 する赤外線光源72が配置され、チューブ1内の支持突 起8上には処理すべき半導体ウエハ9がセットされてい る.

【0011】次に、上記の装置による絶縁膜の形成方法について説明する。まず、シリコンからなる半導体ウエハ9を用意し、公知のRCA洗浄により、表面に付着した有機物や無機物などを除去し、清浄にした半導体ウエハ9を図1のチューブ1中にセットする。この状態では、半導体ウエハ9には自然酸化膜が形成されている。そこで、紫外線光源71を点灯して紫外線を照射しながら、パルブ61を開いて給気口5を介してチューブ1の

50

(3)

特限平4-294539

内部に下, ガスを供給する。これにより、RCA洗浄後に生じた自然酸化膜は、半導体ウエハ9の表面に残存していた汚染物と共に除去され、更に清浄化される。

【0012】次に、紫外線光源71を消灯にすると共に パルプ61を閉じてF・ガスの供給を停止し、しかる後 に赤外線光源72を点灯して赤外線を照射しながら、パ ルブ62を開いて給気ロ5を介してO・ガスの供給す る。これにより、半導体ウエハ9の表面は軽く酸化され、薄い自然酸化膜が形成される。次に、赤外線光源72を消灯すると共に、パルブ62を閉じてO・ガスの供 給を停止し、しかる後に紫外線光源71を点灯して紫外線を照射しながら、給気ロ5を介してF・ガスを供給する。これにより、自然酸化膜は除去されて半導体ウエハ9の表面は更に浄化される。

【0013】以上の処理が終了したら、紫外線光源71 を消灯にしてF:ガスの供給を止め、赤外線光源72の 点灯によって半導体ウエハ9を加熱しながら、パルブ6 3を開いて給気口5より反応ガスを供給する。ここで、 形成すべき例えば50オングストローム程度の厚さのゲート酸化膜として、窒化シリコン膜を用いるときにはN20、NH:などを反応ガスとし、酸化シリコン膜を用いるときはO2、H20などを反応ガスとして用いる。

[0014] なお、上述の表面清浄化のための自然酸化 腹の形成および除去の工程は、必要とされる清浄度に応 じて、更にもう1サイクルあるいは複数サイクル繰り返 してもよい。また、図1では横型のチャンパを示した が、縦型を用いてもよい。

[0015]

【発明の効果】以上、詳細に説明した通り本発明では、ハロゲン系のガスと紫外線により自然酸化膜が除去された後、酸素と赤外線により再び酸化膜が形成され、再び10 ハロゲン系のガスと紫外線により酸化膜が除去されるので、極めて清浄な表面とすることができ、そのため、高品質の絶縁膜をシリコン基板の表面に形成できる。これにより、MOSFETのゲート絶縁膜などの信頼性を大幅に向上させることが可能となる。

【図面の簡単な説明】

【図1】実施例に係る絶縁膜の形成方法を用いる装置の 構成図である。

【符号の説明】

1…チューブ

9…半導体ウエハ 71…紫外線光源 72…赤外線光源

【図1】

実施例に用いる軽量。