Prédire aussi bien que les meilleurs (Et en plus en faisant des maths!)

Pierre Alquier

Les mercredis mathématiques du CIRM 28 novembre 2018

Ligue 1 · 02/12, 16:00

Stade de Reims

COMPOSITION STATISTIQUES ACTU

PROBABILITÉ DE VICTOIRE

contre

 OM
 Match nul
 Stade de Reims

 67%
 21%
 12%

Ligue 1 · 02/12, 16:00

COMPOSITION STATISTIQUES ACTU

PROBABILITÉ DE VICTOIRE

contre

 OM
 Match nul
 Stade de Reims

 67%
 21%
 12%

Ligue 1 · 02/12, 16:00

Ligue 1 · 02/12, 16:00

Ligue 1 · 02/12, 16:00

Ligue 1 · 02/12, 16:00

OM

67%

Ligue 1 · 02/12, 16:00

OM

67%

2 - 1

1-1 2-0

Ligue 1 · 02/12, 16:00

Stade de Reims

COMPOSITION

STATISTIQUES

ACTU

PROBABILITÉ DE VICTOIRE

OM 67% Match nul 21%

Stade de Reims 12%

2 - 1

1-1 2-0

Ligue 1 · 02/12, 16:00

Stade de Reims

COMPOSITION

STATISTIQUES

ACTU

PROBABILITÉ DE VICTOIRE

OM 67% Match nul 21%

Stade de Reims 12%

2 - 1

1-1 2-0

Ligue 1 · 02/12, 16:00

COMPOSITION

STATISTIQUES

ACTU

PROBABILITÉ DE VICTOIRE

OM 67% Match nul 21%

Stade de Reims 12%

2 - 1

1-1 2-0

Ligue 1 · 02/12, 16:00

Stade de Reims

COMPOSITION

STATISTIQUES

ACTU

PROBABILITÉ DE VICTOIRE

OM 67% Match nul 21%

Stade de Reims 12%

2 - 1

1-1 2-0

3 - 0

Ligue 1 · 02/12, 16:00

Stade de Reims

COMPOSITION

STATISTIQUES

ACTU

PROBABILITÉ DE VICTOIRE

OM 67% Match nul 21% Stade de Reims 12%

V

ND

V

V

Apprendre à prédire aussi bien que le meilleur pronostiqueur.

Apprendre à prédire aussi bien que le meilleur pronostiqueur. De façon générale : on parle plutôt d'expert.

Apprendre à prédire aussi bien que le meilleur pronostiqueur. De façon générale : on parle plutôt d'expert.

• En général, c'est assez difficile (on verra à la fin).

Apprendre à prédire aussi bien que le meilleur pronostiqueur. De façon générale : on parle plutôt d'expert.

- En général, c'est assez difficile (on verra à la fin).
- 2 Le problème devient plus facile si il existe un expert qui ne se trompe jamais.

Apprendre à prédire aussi bien que le meilleur pronostiqueur. De façon générale : on parle plutôt d'expert.

- En général, c'est assez difficile (on verra à la fin).
- 2 Le problème devient plus facile si il existe un expert qui ne se trompe jamais.

Suivre un expert qui ne s'est jamais trompé.

Suivre un expert qui ne s'est jamais trompé.

t = 1

V

ND

V

V

ND

V

Suivre un expert qui ne s'est jamais trompé.

t = 1

ND

Suivre un expert qui ne s'est jamais trompé.

t = 1

V

<u>ND</u>

V

V

ND

,

Suivre un expert qui ne s'est jamais trompé.

t = 1

V

<u>ND</u>

٧

ND

V

t = 2

ND

ND

V

Suivre un expert qui ne s'est jamais trompé.

t = 1

V

<u>ND</u>

V

ND

V

t = 2

ND

ND

<u>V</u>

Suivre un expert qui ne s'est jamais trompé.

t = 1

V

<u>ND</u>

V

ND

٧

t = 2

ND

ND

<u>V</u>

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

ND

ND

$$t = 2$$

ND

ND

ND

$$t = 3$$

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

<u>ND</u>

$$t = 2$$

$$t = 3$$

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

ND

ND

$$t = 2$$

ND

ND

ND

t = 3

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

ND

ND

$$t = 2$$

ND

ND

ND

t = 3

ND

t = 4

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

ND

ND

$$t = 2$$

ND

ND

ND

$$t = 3$$

ND

$$t = 4$$

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

ND

ND

$$t = 2$$

ND

ND

ND

t = 3

ND

t = 4

Suivre un expert qui ne s'est jamais trompé.

$$t = 1$$

<u>ND</u>

٧

٧

ND

٧

$$t = 2$$

ND

ND

V

ND

$$t = 3$$

٧

<u>ND</u>

t = 4

ND

INL

\

t = 5

Théorème

En considérant n experts, dont l'un ne se trompe jamais, en utilisant l'algorithme consistent, je commetrai au plus n-1 erreurs.

Théorème

En considérant *n* experts, dont l'un ne se trompe jamais, en utilisant l'algorithme consistent, je commetrai au plus n-1erreurs.

 $\mathsf{Err}_t(\text{consistent}) < n-1.$

Algorithme halving

Suivre la majorité des experts qui ne se sont pas trompés.

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

ND

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

<u>V</u>

ND

V

 $\overline{\mathsf{\Lambda}}$

ND

.

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

<u>V</u>

ND

<u>V</u>

V

ND

<u>V</u>

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

.

ND

$$t = 2$$

ND

ND

V

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

 $\underline{\mathsf{V}}$

$$t = 2$$

<u>ND</u>

 $\underline{\mathsf{ND}}$

٧

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

$$t = 2$$

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

ND

$$t = 2$$

t = 3

<u>ND</u>

/

<u>ND</u>

ND

,

ND

__

V

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

<u>V</u>

<u>V</u>

ND

<u>V</u>

$$t = 2$$

ND

<u>ND</u>

V

ND

$$t = 3$$

V

ND

۱/

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

<u>V</u>

ND

$$t = 2$$

ND

<u>ND</u>

٧

ND

$$t = 3$$

<u>V</u>

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

<u>\</u>

ND

$$t = 2$$

<u>ND</u>

<u>ND</u>

٧

ND

t = 3

 $\underline{\mathsf{V}}$

ND

10

<u>V</u>

t = 4

ND

INL

Ť

V

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

$$t = 2$$

$$t = 3$$

$$t = 4$$

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

$$t = 2$$

$$t = 3$$

$$\overline{\mathsf{V}}$$

$$t = 4$$

Suivre la majorité des experts qui ne se sont pas trompés.

ND

$$t = 1$$

ND

<u>V</u>

<u>V</u>

$$t = 2$$

<u>ND</u>

<u>ND</u>

\

ND

$$t = 3$$

<u>V</u>

ND

<u>V</u>

$$t = 4$$

<u>ND</u>

۷L

V

$$t = 5$$

Suivre la majorité des experts qui ne se sont pas trompés.

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

V

ND

ND

ND

ND

'

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

V

<u>ND</u>

<u>ND</u>

<u>ND</u>

<u>ND</u>

,

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

V

<u>ND</u>

<u>ND</u>

<u>ND</u>

<u>ND</u>

٧

Suivre la majorité des experts qui ne se sont pas trompés.

t = 1

ND

ND

ND

ND

t=2

ND

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

<u>ND</u>

<u>ND</u>

<u>ND</u>

<u>ND</u>

٧

$$t = 2$$

<u>ND</u>

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

<u>ND</u>

<u>ND</u>

<u>ND</u>

<u>ND</u>

٧

$$t = 2$$

<u>ND</u>

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

ND

ND

ND

$$t = 2$$

t = 3

ND

ND

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

ND

ND

ND

$$t = 2$$

t = 3

ND

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

ND

ND

ND

$$t = 2$$

t = 3

ND

ND

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

<u>ND</u>

<u>ND</u>

<u>ND</u>

<u>ND</u>

$$t = 2$$

<u>ND</u>

D

_

ND

$$t = 3$$

ND

<u>V</u>

$$t = 4$$

V

Suivre la majorité des experts qui ne se sont pas trompés.

$$t = 1$$

ND

ND

ND

ND

$$t = 2$$

ND

ND

t = 3

ND

t = 4

t=5

$$n = 80$$

$$n=80\xrightarrow{1}40$$

$$n=80\xrightarrow{1}40\xrightarrow{2}20$$

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10$$

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5$$

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5$$

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5 \xrightarrow{6} 1.25$$

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5 \xrightarrow{6} 1.25 \xrightarrow{7} 0.625$$

Exemple:

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5 \xrightarrow{6} 1.25 \xrightarrow{7} 0.625$$

Donc halving commet au plus 6 erreurs si n = 80.

Exemple:

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5 \xrightarrow{6} 1.25 \xrightarrow{7} 0.625$$

Donc halving commet au plus 6 erreurs si n = 80.

Le nombre d'erreurs E vérifie

$$1 \le \frac{n}{2^E} = \frac{n}{2 \times \dots \times 2}.$$

Donc : le nombre d'erreurs commises par *halving* est au plus le nombre de fois que je peux diviser n par deux en restant $\geq 1...$

Exemple:

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5 \xrightarrow{6} 1.25 \xrightarrow{7} 0.625$$

Donc halving commet au plus 6 erreurs si n = 80.

Le nombre d'erreurs E vérifie

$$1 \le \frac{n}{2^E} = \frac{n}{2 \times \dots \times 2}.$$

Autrement dit

$$2^E \leq n$$
.

Donc : le nombre d'erreurs commises par *halving* est au plus le nombre de fois que je peux diviser n par deux en restant $\geq 1...$

Exemple:

$$n = 80 \xrightarrow{1} 40 \xrightarrow{2} 20 \xrightarrow{3} 10 \xrightarrow{4} 5 \xrightarrow{5} 2.5 \xrightarrow{6} 1.25 \xrightarrow{7} 0.625$$

Donc halving commet au plus 6 erreurs si n = 80.

Le nombre d'erreurs E vérifie

$$1 \le \frac{n}{2^E} = \frac{n}{2 \times \dots \times 2}.$$

Autrement dit

$$2^{E} < n$$
.

$$E \leq \log_2(n)$$
.

En considérant n experts, dont l'un ne se trompe jamais, en utilisant l'algorithme halving, je commetrai au plus $log_2(n)$ erreurs.

En considérant n experts, dont l'un ne se trompe jamais, en utilisant l'algorithme halving, je commetrai au plus $log_2(n)$ erreurs.

 $\mathsf{Err}_t(\mathrm{halving}) \leq \log_2(\mathrm{n}).$

En considérant n experts, dont l'un ne se trompe jamais, en utilisant l'algorithme halving, je commetrai au plus $log_2(n)$ erreurs.

$$\operatorname{\mathsf{Err}}_t(\operatorname{halving}) \leq \log_2(\operatorname{n}).$$

Exemple: si on suit n = 1247 experts,

$$\mathsf{Err}_t(\mathrm{consistent}) \le n - 1 = 1246$$

$$\mathsf{Err}_t(\mathrm{halving}) \leq \log_2(n) \simeq 10.28$$

En considérant n experts, dont l'un ne se trompe jamais, en utilisant l'algorithme halving, je commetrai au plus $\log_2(n)$ erreurs.

$$\operatorname{\mathsf{Err}}_t(\operatorname{halving}) \leq \log_2(\operatorname{n}).$$

Exemple: si on suit n = 1247 experts,

$$\mathsf{Err}_t(\mathrm{consistent}) \le n - 1 = 1246$$

$$\mathsf{Err}_t(\mathrm{halving}) \le \log_2(n) \simeq 10.28$$

 $\Rightarrow \mathsf{Err}_t(\mathrm{halving}) \le 10$

Le gouvernement vous ment!

Le gouvernement vous ment!

Le Père Noël n'existe pas!

Le gouvernement vous ment!

Le Père Noël n'existe pas!

 $\frac{1}{2}$

1

 $\frac{1}{2}$

 $\frac{1}{2}$

1

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

1

1

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{4}$

1

1

 $\frac{1}{2}$

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$

 $\frac{1}{2}$

$$\mathsf{Err}_t(\mathrm{EWA}) \leq \mathsf{Err}_t(\mathsf{meilleur\ expert}) + \mathrm{Regret}(t)$$

et

$$\frac{\operatorname{Regret}(t)}{t} \xrightarrow[t \to \infty]{} 0.$$

Une version un peu plus générale et formalisée du résultat, extraite de la thèse de Sébastien Gerchinovitz.

Une version un peu plus générale et formalisée du résultat, extraite de la thèse de Sébastien Gerchinovitz.

Lemma 1. Assume that for some known constant $B_u > 0$,

$$y_1,\ldots,y_T\in[-B_y,B_y]$$
.

For all $\tau>0$, if the algorithm $\operatorname{SeqSEW}^{B,\eta}_{\tau}$ is used with $B\geqslant B_y$ and $\eta\leqslant 1/(8B^2)$, then it satisfies

$$(14) \qquad \sum_{t=1}^{T} (y_{t} - \widehat{y}_{t})^{2} \leq \inf_{\rho \in \mathcal{M}_{1}^{+}(\mathbb{R}^{d})} \left\{ \int_{\mathbb{R}^{d}} \sum_{t=1}^{T} \left(y_{t} - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_{t}) \right]_{B} \right)^{2} \rho(\mathrm{d}\boldsymbol{u}) + \frac{\mathcal{K}(\rho, \pi_{\tau})}{\eta} \right\}$$

$$(15) \qquad \leq \inf_{\rho \in \mathcal{M}_{1}^{+}(\mathbb{R}^{d})} \left\{ \int_{\mathbb{R}^{d}} \sum_{t=1}^{T} \left(y_{t} - \boldsymbol{u} \cdot \boldsymbol{\varphi}(x_{t}) \right)^{2} \rho(\mathrm{d}\boldsymbol{u}) + \frac{\mathcal{K}(\rho, \pi_{\tau})}{\eta} \right\}.$$

Proof (of Lemma \square). As is usually done in the online learning setting for the study of the Exponentially Weighted Average Forecaster, our proof relies on the control of $\sum_t \eta^{-1} \ln(W_{t+1}/W_t)$ where we recall that $W_1 \triangleq 1$ and, for all $t \geqslant 2$,

$$W_t \triangleq \int_{\mathbb{R}^d} \exp\left(-\eta \sum_{s=1}^{t-1} \Bigl(y_s - \bigl[\boldsymbol{u} \cdot \boldsymbol{\varphi}(\boldsymbol{x}_s) \bigr]_B \Bigr)^2 \right) \, \pi_\tau(\mathrm{d}\boldsymbol{u}) \; .$$

On the one hand, we have

$$\frac{1}{\eta} \ln \frac{W_{T+1}}{W_1} = \frac{1}{\eta} \ln \int_{\mathbb{R}^d} \exp \left(-\eta \sum_{t=1}^T \left(y_s - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_s)\right]_B\right)^2\right) \pi_{\tau}(\mathbf{d}\boldsymbol{u}) - \frac{1}{\eta} \ln 1$$

$$(16) = \frac{1}{\eta} \sup_{\boldsymbol{\rho} \in \mathcal{M}_1^+(\mathbb{R}^d)} \left\{ \int_{\mathbb{R}^d} \left(-\eta \sum_{t=1}^T \left(y_t - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_t)\right]_B\right)^2\right) \rho(\mathbf{d}\boldsymbol{u}) - \mathcal{K}(\boldsymbol{\rho}, \pi_{\tau}) \right\} - 0$$

$$(17) = -\inf_{\boldsymbol{\rho} \in \mathcal{M}_1^+(\mathbb{R}^d)} \left\{ \int_{\mathbb{R}^d} \sum_{t=1}^T \left(y_t - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_t)\right]_B\right)^2 \rho(\mathbf{d}\boldsymbol{u}) + \frac{\mathcal{K}(\boldsymbol{\rho}, \pi_{\tau})}{\eta} \right\},$$

where 16 follows from a convex duality argument for the Kullback-Leibler divergence (cf., e.g., DZ98 p. 264] or Cat04 p. 159) which we recall in Proposition in the Appendix.

On the other hand, we can rewrite W_{T+1}/W_1 as a telescopic product and get

$$\begin{split} &\frac{1}{\eta} \ln \frac{W_{T+1}}{W_1} = \sum_{t=1}^T \frac{1}{\eta} \ln \frac{W_{t+1}}{W_t} \\ &= \sum_{t=1}^T \frac{1}{\eta} \ln \int_{\mathbb{R}^d} \frac{\exp\left(-\eta \left(y_t - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_t)\right]_B\right)^2\right) \exp\left(-\eta \sum_{s=1}^{t-1} \left(y_s - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_s)\right]_B\right)^2\right)}{W_t} \pi_{\tau}(\mathbf{d}\boldsymbol{u}) \\ &= \sum_{t=1}^T \frac{1}{\eta} \ln \int_{\mathbb{R}^d} \exp\left(-\eta \left(y_t - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_t)\right]_B\right)^2\right) p_t(\mathbf{d}\boldsymbol{u}) , \end{split}$$

where (18) follows from the definition of p_t .

Let $t \in \{1,\dots,T\}$. First note that by assumption $y_t \in [-B_y,B_y] \subset [-B,B]$ so that both y_t and $\begin{bmatrix} u \cdot \varphi(x_t) \end{bmatrix}_B$ are $\begin{bmatrix} -B_y \end{bmatrix}$ -valued for all $u \in \mathbb{R}^d$. Moreover, from Proposition $\boxed{6}$ in the Appendix, the square loss is $1/(8B^2)$ -exp-concave on $\begin{bmatrix} -B,B \end{bmatrix}$ and thus η -exp-concave (since $\eta \leq 1/(8B^2)$ by assumption). Therefore, by Jensen's inequality,

$$\int_{\mathbb{R}^d} e^{-\eta \left(y_t - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(\boldsymbol{x}_t)\right]_B\right)^2} \, p_t(\mathrm{d}\boldsymbol{u}) \leqslant \exp\left(-\eta \left(y_t - \int_{\mathbb{R}^d} \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(\boldsymbol{x}_t)\right]_B p_t(\mathrm{d}\boldsymbol{u})\right)^2\right) \, .$$

Taking the logarithms of both sides of the inequality yields

(19)
$$\ln \int_{\mathbb{R}^d} e^{-\eta \left(y_t - \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_t)\right]_B\right)^2} p_t(\mathbf{d}\boldsymbol{u}) \leqslant -\eta \left(y_t - \int_{\mathbb{R}^d} \left[\boldsymbol{u} \cdot \boldsymbol{\varphi}(x_t)\right]_B p_t(\mathbf{d}\boldsymbol{u})\right)^2$$
$$= -\eta (y_t - \widehat{y}_t)^2.$$

Dividing the latter inequality by η , summing over $t \in \{1, \dots, T\}$ and combining with Equation (18), we get

(20)
$$\frac{1}{\eta} \ln \frac{W_{T+1}}{W_1} \leqslant -\sum_{t=1}^T (y_t - \widehat{y}_t)^2.$$

Putting Inequalities (17) and (20) together, we get Inequality (14) of Lemma (1 As for Inequality (15), it follows from (14) by noting that

$$\forall y \in [-B, B], \quad \forall x \in \mathbb{R}, \qquad |y - [x]_B| \leqslant |y - x|,$$

so that truncation to [-B,B] can only improve prediction under the square loss if the observations are [-B,B]-valued, which is the case here since by assumption $y_t \in [-B_y,B_y] \subset [-B,B]$ for all $t=1,\ldots,T$.

POURQUOI, POURQUOI, POURQUOI?

POURQUOI, POURQUOI, POURQUOI?

Prédiction de la qualité de l'air par différents experts, utilisant différents modèles physiques.

Cours du change Euro/Dollar.

CONCLUSION

FAITES DES MATHS FAITES DE L'INFORMATIQUE Vous en aurez besoin PARTOUT

CONCLUSION

FAITES DES MATHS FAITES DE L'INFORMATIQUE Vous en aurez besoin PARTOUT

References:

- L'étude de l'algorithme halving est tirée de [1].
- L'exemple sur la pollution de l'air est tiré de [2].
- 3 L'étude de l'algorithme mult.up est copié-collée de [3].
- Les cartes et séries épidémiologiques sont tirées du site https://sites.sentiweb.fr/.

[1] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 2012.

[2] G. Stoltz. Agrégation séquentielle de prédicteurs : méthodologie générale et applications à la prévision de la qualité de l'air et à celle de la consommation électrique. *Journal de la SFDS*, 2010.

[3] S. Gerchinovitz. Prédiction de suites individuelles et cadre statistique classique: étude de quelques liens autour de la régression parcimonieuse et des techniques d'agrégation. Thèse de doctorat. Université Paris Sud. 2011.