AVL Tree

Adelson-Velskii and Landis

AVL Tree

• BST

Balanced to guarantee depth of O(log N)

Balance condition

AVL Tree: Balance

- Height
 - The height of an empty tree is -1
- For every node in the tree
 - The height of the left and right tree can differ by at most 1

AVL Tree: Balance

- Easy Cases:
 - Insert into left tree
 - Insert into right tree

Tree is balance and will remain balanced

- Hard Cases
 - 1. Insert into the left subtree of the left child
 - 2. Insert into the right subtree of the left child
 - 3. Insert into the left subtree of the right child
 - 4. Insert into the right subtree of the right child
- 1 & 4, 2 & 3 are mirror images of each other

Tree becomes unbalanced (dun dun dunnnnn)

- This is the only situation that is possible
 - Before insertion x was the same size as y or else the tree would already be imbalanced

- This is the only situation that is possible
 - Before insertion x was the same size as y or else the tree would already be imbalanced

Do a single rotation of k2 and k1

- Make k1 the new root
 - o adjust the other nodes

Real example

Real example

Real example

Just the reverse of case 1

- A single rotation will not cover it.
- Who can be the new root?

Rotate k2 and k1

Rotate k2 and k3

AVL Tree: Rotation

• The double rotation case 3 also works, but in reverse

- There are many ways of looking at these problems
- The solution is basic

Insert:

Insert:

Insert: