FACULDADE DE TECNOLOGIA DE SÃO PAULO

CURSO SUPERIOR DE TECNOLOGIA EM DESENVOLVIMENTO DE SOFTWARE MULTIPLATAFORMA

ANÁLISE DE ADEQUAÇÃO DE SOLO PARA CULTIVO DE MANDIOCA UTILIZANDO PERCEPTRON:

Uma Abordagem de Aprendizado de Máquina

Desenvolvido por:

João Pedro Dias Barreto Leonardo Wicher Lopes Ferreira

Relatório Técnico - Projeto de Aprendizado de Máquina

São Paulo September de 2025

RESUMO

Este trabalho apresenta o desenvolvimento e implementação de um modelo de Perceptron para classificação binária da adequação de solo para o cultivo de mandioca (*Manihot esculenta*). O sistema desenvolvido analisa quatro parâmetros edáficos fundamentais: pH do solo, concentração de potássio, qualidade da drenagem e presença de compactação. O modelo alcançou 97,78% ± 4,44% de acurácia na validação cruzada, demonstrando alta eficácia na predição da adequação do solo. A implementação inclui uma interface gráfica intuitiva para aplicação prática por agricultores e técnicos agrícolas.

Palavras-chave: Perceptron, Agricultura de Precisão, Classificação de Solo, Aprendizado de Máguina, Mandioca.

1. INTRODUÇÃO

A mandioca (*Manihot esculenta*) constitui uma das principais culturas alimentares do mundo, sendo especialmente relevante para a segurança alimentar em países tropicais. No Brasil, representa importante fonte de carboidratos e matéria-prima para diversos produtos industriais.

A adequação do solo representa fator determinante para o sucesso do cultivo da mandioca, influenciando diretamente na produtividade e qualidade das raízes tuberosas. Fatores como pH, disponibilidade de nutrientes, drenagem e estrutura física do solo são parâmetros críticos que determinam a viabilidade econômica do cultivo.

Tradicionalmente, a avaliação da adequação do solo baseia-se na experiência empírica dos produtores ou em análises laboratoriais interpretadas por técnicos especializados. Esta abordagem apresenta limitações relacionadas à subjetividade da interpretação, custos elevados e tempo prolongado para obtenção de resultados.

Neste contexto, técnicas de aprendizado de máquina emergem como ferramentas promissoras para automatização e otimização da tomada de decisão na agricultura de precisão.

2. METODOLOGIA

2.1 Descrição do Modelo

O modelo implementado baseia-se na arquitetura clássica do Perceptron monocamada, com as seguintes características:

- Arquitetura: 4 neurônios de entrada correspondentes aos atributos de entrada
- Função de ativação: Degrau unitário (step function)
- Saída: Classificação binária (0 = não apto, 1 = apto)

2.2 Função de Ativação

A função de ativação degrau foi implementada conforme:

```
f(x) = 1, se x \ge 0
f(x) = 0, se x < 0
```

Onde x representa a soma ponderada das entradas mais o bias.

2.3 Algoritmo de Treinamento

```
O treinamento utiliza a regra Delta: \Delta w_i = \eta \times e \times x_i
Onde \eta = taxa de aprendizado, e = erro (saída desejada - saída obtida), x_i = entrada i
```

2.4 Base de Dados

O dataset foi construído com base em conhecimento agronômico estabelecido, contendo 45 exemplos balanceados com os seguintes atributos:

- pH do solo (4,0 8,0)
- Potássio em mg/dm³ (40 200)
- Drenagem (0=ruim, 1=boa)
- Compactação (0=presente, 1=ausente)
- Classe alvo: Adequado (0=não, 1=sim)

Distribuição das classes:

- Solos adequados: 22 exemplos (48,9%)
- Solos inadequados: 23 exemplos (51,1%)

3. RESULTADOS E DISCUSSÃO

Tabela 1 - Resultados da validação cruzada 5-fold

Métrica	Valor	
Acurácia Média	97,78% ± 4,44%	
Épocas Médias	4,2 ± 1,1	
Melhor Fold	100,00%	
Pior Fold	88,89%	

Tabela 2 - Impacto da taxa de aprendizado na performance

Taxa (η)	Acurácia (%)	Épocas	Observações	
0,01	93,33 ± 5,44	24,3 ± 6,2	Convergência lenta	
0,05	95,56 ± 3,14	17,0 ± 12,0	Moderada	
0,10	95,56 ± 6,29	5,3 ± 1,2	Balanceada	
0,20	97,78 ± 3,14	8,7 ± 0,9	Ótima	
0,50	100,00 ± 0,00	5,3 ± 1,2	Excelente	

Tabela 3 - Importância dos fatores (pesos absolutos médios)

Fator	Peso Médio	Importância
Distância do pH Ideal	0,40	Crítica
Ausência de Compactação	0,31	Alta
Boa Drenagem	0,11	Média
Potássio Normalizado	0,07	Baixa

4. DISCUSSÃO CRÍTICA

4.1 Vantagens do Modelo

- Alta Interpretabilidade: O Perceptron permite compreensão direta da importância de cada fator através dos pesos sinápticos, facilitando a validação agronômica dos resultados.
- **Simplicidade Computacional:** A implementação requer recursos computacionais mínimos, viabilizando aplicação em dispositivos móveis e sistemas embarcados.
- Convergência Rápida: O modelo converge em média após 4,2 épocas, demonstrando eficiência no aprendizado dos padrões.
- Performance Robusta: Acurácia de 97,78% indica alta confiabilidade para aplicação prática.

4.2 Limitações Identificadas

- Linearidade dos Dados: O Perceptron assume separabilidade linear das classes, limitando sua aplicação a problemas linearmente separáveis.
- Tamanho da Base de Dados: Dataset com 45 exemplos pode ser insuficiente para capturar toda a variabilidade das condições de campo.
- Fatores Não Considerados: Importantes parâmetros como matéria orgânica, micronutrientes e aspectos climáticos não foram incluídos no modelo.

4.3 Regras de Decisão Interpretáveis

Solo ADEQUADO quando:

- pH próximo a 6,0 (±0,5)
- Solo não compactado
- Drenagem adequada
- Potássio > 100 mg/dm³

Solo INADEQUADO quando:

- pH < 5.0 ou pH > 7.0
- Presença de compactação
- Drenagem deficiente
- Combinação de múltiplos fatores limitantes

5. CONCLUSÃO

O presente trabalho demonstrou a viabilidade e eficácia da aplicação do algoritmo Perceptron para classificação da adequação de solo para cultivo de mandioca. O modelo desenvolvido alcançou performance excepcional (97,78% de acurácia), convergência rápida e alta interpretabilidade dos resultados.

A análise dos pesos sinápticos confirmou conhecimentos agronômicos estabelecidos, identificando o pH como fator mais crítico, seguido pela ausência de compactação do solo. Esta concordância entre os resultados do modelo e o conhecimento técnico valida a abordagem metodológica adotada.

A interface gráfica desenvolvida viabiliza a aplicação prática do sistema, democratizando o acesso à tecnologia de suporte à decisão na agricultura. O sistema pode contribuir significativamente para otimização do uso da terra, redução de custos de análise e melhoria da produtividade agrícola.

O trabalho contribui para o avanço da agricultura de precisão no Brasil, demonstrando que técnicas simples de aprendizado de máquina podem gerar impacto significativo quando aplicadas adequadamente a problemas agronômicos específicos.

REFERÊNCIAS

COCK, J. H. Cassava: new potential for a neglected crop. Boulder: Westview Press, 1985. 191 p.

EL-SHARKAWY, M. A. Cassava biology and physiology. **Plant Molecular Biology**, v. 56, n. 4, p. 481-501, 2003.

FAO - FOOD AND AGRICULTURE ORGANIZATION. **FAOSTAT - Crops and livestock products.** Roma: FAO, 2021.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Levantamento sistemático da produção agrícola.** Rio de Janeiro: IBGE, 2022. 85 p.

KOHAVI, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. **Proceedings of the 14th International Joint Conference on Artificial Intelligence**, v. 2, p. 1137-1143, 1995.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and organization in the brain. **Psychological Review**, v. 65, n. 6, p. 386-408, 1958.