# **Connected Graphs**

## **Definition**

Let G be a graph and let  $u, v \in V(G)$ :

- To say that u and v are *connected* means that G contains a u-v path.
- To say that G is connected means that  $\forall u, v \in G$ , u and v are connected. Otherwise, G is said to be disconnected.
- By definition, the trivial graph is connected.

## **Examples**



### **CONNECTED**

## Theorem

Let G be a graph with  $n(G) \ge 3$ :

G is connected  $\iff \exists u,v \in V(G), u \neq v \text{ such that } G-u \text{ and } G-v \text{ are connected.}$ 

Proof.

 $\implies$  Assume G is connected.

Let  $u, v \in V(G)$  such that d(u, v) = diam(G).

ABC/WLOG: G - v is disconnected.

Since  $n(G) \ge 3$ , there exists distinct  $x, y \in V(G - v)$  such that x and y are not connected in G - v. However, G is connected and so x and y are connected in G. So let  $P_1$  be a x - u

geodesic in G and let  $P_2$  be a u-y geodesic in G. Since v cannot appear in  $P_1$  or  $P_2$ ,  $P_1$  and  $P_2$  are paths in G-v as well. Thus  $P_1 \cup P_2$  is a x-y walk in G-v, and so there exists a x-y path in G-v, contradicting the disconnectedness of x and y. And so G-v is connected. Likewise, G-u is connected.

 $\therefore \exists u, v \in V(G), u \neq v \text{ such that } G - u \text{ and } G - v \text{ are connected.}$ 

 $\iff$  Assume  $\exists\, u,v\in V(G), u\neq v$  such that G-u and G-v are connected.

Assume  $x, y \in V(G)$ 

Case 1:  $\{x, y\} \neq \{u, v\}$ 

AWLOG:  $u \notin \{x, y\}$ 

By assumption, x and y are connected in G - u, and thus are connected in G.

Case 2:  $\{x, y\} = \{u, v\}$ 

Since, by assumption, G contains at least three vertices, there exists a third distinct vertex  $w \in V(G)$ . Also by assumption, u and w are connected in G-v and hence G. Likewise, v and w are connected in G-u and hence G. So let  $P_1$  be a u-w path in G and let  $P_2$  be a v-w path in G.  $P_1 \cup P_2$  is a u-v walk in G, and so G must contain a u-v path, and thus u and v are connected in G.

 $\therefore$  G is connected.

#### **Theorem**

Let G be a connected graph and let P and Q be two longest paths in G, both of length k:

P and Q have at least one vertex in common.

*Proof.* ABC: *P* and *Q* have no vertices in common.

Let  $P=(u_0,u_1,\ldots,u_k)$  and  $Q=(v_0,v_1,\ldots,v_k)$ . Since G is connected, every  $u_i$  in P is connected to every  $v_j$  in Q. Let  $R=(u_i=w_1,w_2,\ldots,w_\ell=v_j)$  be the shortest such path and AWLOG that  $i\geq j$ . Note that no other vertices in P or Q can exist in R, otherwise the minimality of |R| is contradicted. Now, consider the path  $S=(u_0,\ldots,u_i,\ldots v_j,\ldots v_k)$ :

$$|S| = i + \ell + (k - j)$$
$$= k + \ell + (i - j)$$
$$> k$$

since  $\ell > 0$  and  $i - j \ge 0$ , thus contradicting the maximality of |P| and |Q|.

 $\therefore$ , P and Q share at least one vertex in common.