

30 min

10 min

Session introduction & agenda

Introduction of STM32WBA6 series

How to start with STM32WBA6 ecosystem?

10:30 Break

Agenda (9:00 – 12:00)

5

STM32WBA6 use cases and ecosystem

Demo1: Performance

Demo2 : Energy efficiency

Demo3: Unlocking OTA

Demo4: Various 2.4GHz protocols

Demo5: Running Matter

15 min

ST RF Lab services and capabilities

Takeaways, Q&A

STM32WBA6 in action Use-cases and ecosystem demo lab tour

STM32WBA6 in action Use-cases and ecosystem demo lab tour

STM32WBA6 and its energy efficiency

Unlocking OTA with STM32WBA6

STM32WBA6 and various 2.4GHz protocols

Demo 1: WBA6 performance Introduction

1 WBA6 system architecture overview

Low impact of BLE connectivity on MCU core performance for other application tasks

Flexible system priority setting

3

Demo 1: WBA6 performance STM32 Architecture efficiency

- Flexible architecture supporting communication between peripherals without CPU involvement
 - Communication between peripheral using GPDMA
 - GPDMA linked list for memory task automatization
- ICACHE for performance increase

Even with active RF, plenty of performance is remaining for user application

Demo 1: WBA6 performance Demo project description

- Coremark score of STM32WBAxx MCU = 410.03 (¹)
 - With IAR 9.60.4 coremark score 413.9 can be achieved
- Testing project base on BLE_HearRateFreeRTOS example
 - Coremark calculation demo available on stm32-hotspot

Task name	priority	description
Radio	HIGH	Radio handling
RNG		Used for advertising and generating HRS data
HRS app		Heartrate payload simulation
Statistic		FreeRTOS runtime statistic
Coremark	LOW	Idle task executing coremark

Typical case

Typical case

Demo 1: WBA6 performance Results

configuration	Coremark calculation duration [s]	Coremark result	Coremark [%]
Without RTOS	24.16	413.9	100
With RTOS (only coremark task)	24.3	409.8	99
100 ms advertising	24.6	406.5	98.2
20 ms advertising	25.2	396.8	95.8
Connected, HR notification enabled, 50 ms connection period	24.9	401.6	97.0
Connected, HR notification enabled, 11.25 ms connection period	26.8	373.1	90.1

Demo 1: WBA6 performance System interrupts setting

- Single core RF MCUs usually demands RF to be the highest priority in the system
 - Needed on STM32WBA as well to ensure best RF performance (1)
- Other task/peripheral may need to have higher priority

Task name	priority	description
High priority task	HIGH	Demo blocking delay
Radio		Radio handling
Other tasks	LOW	

<3% impact on CPU performance by BLE radio activity in typical, yet demanding use-case</p>

Autonomous peripherals to perform tasks without the need of CPU activity

Flexible MCU priority setting options

Try WBA6 performance in your own use case Find complete project on stm32-hotspot

STM32WBA6 in action Use-cases and ecosystem demo lab tour

Demonstrate STM32WBA6 is tailored for battery powered applications

2 Highlight energy consumption figures in different modes

3

How the ST ecosystem helps to achieve good energy consumption and how to measure it

Demo 2: WBA6 and its energy efficiency From documentation figures

Demo 2: WBA6 and its energy efficiency To real power consumption measurement

BLE_Power_Peripheral

Demo 2: WBA6 and its energy efficiency To real power consumption measurements

BLE_Power_Peripheral

1 Update Adv interval to 1.28 secs

Update Adv payload to 31 bytes

Enable Full RAM retention (RAM1 + 2 + Radio)

STM32 Cube

Thanks to turnkey BLE_Power_Peripheral sample code replicate and measure

Refer to our wiki page* to understand procedure and how to replicate and correlate DS numbers

*https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WBA Power Consumption Measurement

Make your own measurements & evaluation

STM32WBA6 in action Use-cases and ecosystem demo lab tour

Demo 3: Unlocking OTA with STM32WBA6 Introduction

OTA Concept Overview and Quick Start Example

Complete FUOTA Development Toolkit

Overcoming firmware update OTA challenges with a collection of Practical Examples

Demo 3: Unlocking OTA with STM32WBA6 FUOTA Principle

Demo 3: Unlocking OTA with STM32WBA6 **FUOTA** examples

Dual Bank specificities

- BLE FUOTA service will, into opposite bank:
 - Make a full erase
 - Write FW app received over BLE
 - Reboot MCU on opposite bank
- No Application Install Manager needed
- Always a functional App installed (N-1)
- Allows read-while-write operations
- Boot address is selected with option byte OB_USER_SWAP_BANK

New example OEMiROT & FUOTA for discovery board:

- OEMiROT stands for OEM immutable (unchangeable) Root of Trust
 - Secure Boot
 - Secure Firmware Update
- Available soon on GitHub HotSpot (7)
- ST Wiki page to guide you for the implementation

Demo 3: Unlocking OTA with STM32WBA6 Takeaways

FUOTA solution is part of the SDK package including all related tools

Full ecosystem: Android/iOS app, Web app, etc.

Overcoming FUOTA Challenges with large memory with dual-bank implementation and OEMiROT for security

STM32WBA6 in action Use-cases and ecosystem demo lab tour

💯 🗗 🕏 Demo 4: STM32WBA6 running various 2.4GHz protocols Introduction

Overview of available protocol stacks using 2.4GHz radio peripheral

Walkthrough of 2.4GHz examples available in STM32Cube SDK

Zigbee Pro and Zigbee Direct demonstration

🖆 🗖 🕮 Demo 4: STM32WBA6 running various 2.4GHz protocols Protocols stacks variants overview

- 6 variants of Bluetooth Low Energy stack
 - Bluetooth Low Energy 5.4
- 5 variants of Zigbee stack
 - Zigbee Pro 2017 (R22) and 2023 (R23)
- 2 variants for Thread
 - Compliant with Thread 1.3
- Other solutions
 - 802.15. 4 MAC layer only
 - for proprietary or 3rd party upper layers protocol stack integration
 - Concurrent mode stacks
 - Zigbee Direct
 - MATTER

💯 🖆 🛣 🕮 Demo 4: STM32WBA6 running various 2.4GHz protocols STM32CubeWBA package

- SDK available also on GitHub STM32CubeWBA*
- Examples covering the mostly common use-cases.
- Baremetal / OS versions available

^{*}https://github.com/STMicroelectronics/STM32CubeWBA/

Demo 4: STM32WBA6 running various 2.4GHz protocols Setup A – STM32WBA6 as Zigbee OnOff server / client

Delivered on our <u>GitHub HotSpot!</u>

For STM32WBA65RI-Nucleo board

Smart phone with related apk

Demo 4: STM32WBA6 running various 2.4GHz protocols Setup B – STM32WBA6 as Zigbee Direct Device (ZDD)

Smart phone with related apk

🖆 🕏 🧸 🕮 Demo 4: STM32WBA6 running various 2.4GHz protocols **Takeaways**

Various stack variants covering different use cases

Maturity and interoperability of our Zigbee solution

Zigbee Direct solution included in SDK and described on wiki*

*https://wiki.st.com/stm32mcu/wiki/Connectivity:Ubisys_Smart_Home_Application_Zigbee_Direct_Setup

Explore Zigbee Direct as interesting extension of Zigbee protocol standard

STM32WBA6 in action Use-cases and ecosystem demo lab tour

Demo 5: STM32WBA6 running Matter Introduction

What is Matter protocol?

* matter

How can ST assist in supporting Matter?

Adding STM32WBA6 Matter end device to Apple Ecosystem

Demo 5: STM32WBA6 running Matter What is Matter protocol?

- MATTER is an open-source protocol maintained by CSA
 - Application layer
 - https://github.com/project-chip/connectedhomeip
- Ensure interoperability for consumers with a unified connectivity protocol
 - Using existing protocols IPv6, UDP
 - Thread, Wifi, Ethernet
- Ensure security and data privacy for consumers
- Cross-platform support (Android, iOS)
- But Significant demand for memory resources

Demo 5: STM32WBA6 running Matter **How can ST assist in supporting Matter?**

- X-CUBE-MATTER is package enables Matter protocol on STM32 – pre-certified
- ST wiki page can assist you in navigating through all the steps needed to build a MATTER device
- STM32Hotspot
 - GitHub repository
 - ST examples
- STM32 wireless portfolio

Demo 5: STM32WBA6 running Matter Matter accessory application memory footprint

* consumed / available

Demo 5: STM32WBA6 running Matter PKA (Public Key Accelerator) benefits

- Fast commissioning enabled by the PKA peripheral available on STM32WBA6
- 4x faster than without an accelerator

Measured approximately 15 seconds with PKA versus 60 seconds without PKA

Demo 5: STM32WBA6 running Matter **Takeaways**

X-CUBE-MATTER for STM32 including Matter stack and application examples (pre-certified)

Several wiki* pages with all important information needed for evaluation and development

*https://wiki.st.com/stm32mcu/wiki/Connectivity:Introduction_to_Matter

STM32WBA6 tailored for Matter over Thread accessories

Make it yours now and evaluate!

X-CUBE-MATTER * matter

STM32WBA6

- 802.15.4 + BLE
- Low-Power consumption
- PKA (Public Key Accelerator)
- Up to +10 dBm

STM32WBA6 in action Use-cases and ecosystem demo lab tour

Agenda (9:00 – 12:00)

1 5 min

Session introduction & agenda

STM32WBA6 use cases and ecosystem

- Demo1 : Performance
- Demo2 : Energy efficiency
- Demo3: Unlocking OTA

• Demo5 : Running Matter

Introduction of STM32WBA6 series

How to start with STM32WBA6

6

ST RF Lab services and capabilities

4 10 min

10:30 Break

ecosystem?

Takeaways, Q&A

