Confiabilidade em Circuitos Eletrônicos

Abordagem via Part Stress Analysis

João Pedro Samarino Walter Fonseca de Magalhães Paulo Cirino Ribeiro Neto

O Circuito Eletrônico Amplificador de Audio

- O Som é definido por intensidade, altura e timbre ;
- Da ganho em um som mantendo a maior parte do som original;
- Amplificador da Classe AB;
- Rendimento teórico de 78,5% e ângulo de condução próximo a 180°

Simulações

- Utilização dos Softwares Matalab e LTSpice para execução das simulações;
- Simulações por blocos;
- Limite superior de funcionamento de 35W;

A Metodologia

Part Stress Analysis

- Baseado na norma Militar MIL-HDBK_217FI;
- Expressada como um somatório da contribuição de cada componente submetido aos fatores que o caracterizam;
- Leva em consideração aspectos físicos e de condição de uso;

$$\lambda_{sys} = \sum_{i=1}^{n} (\lambda_{g_i}. \, \pi_{f_i})$$

Modelo de Confiabilidade

- Utilizado o modelo de confiabilidade exponencial;
- Modelagem dos componentes :
 - Diodo;
 - Transistor;
 - Resistor;
 - Capacitor Eletrolítico;
 - Capacitor Cerâmico.
- Utilização da metodologia presente no MIL-HDBK 217F NOTICE 2:
- Dados de resistência térmica dos transistores foram retirados dos respectivos datasheets.

Confiabilidade dos Componentes

Resistor:

$$\lambda_p = \lambda_B \cdot \pi_P \cdot \pi_Q \cdot \pi_E \cdot \pi_T \cdot \pi_S$$

Capacitor:

$$\lambda_p = \lambda_B \cdot \pi_T \cdot \pi_C \cdot \pi_V \cdot \pi_E \cdot \pi_Q$$

Diodo:

$$\lambda_p = \lambda_B \cdot \pi_T \cdot \pi_C \cdot \pi_V \cdot \pi_E \cdot \pi_Q$$

Transistor:

$$\lambda_D = \lambda_B \cdot \pi_T \cdot \pi_P \cdot \pi_S \cdot \pi_E \cdot \pi_Q$$

$$R(t) = e^{-\lambda_p/10^6}$$

 λ_B : Taxa de falha base;

 λ_p : Estimativa da taxa do componente resistor;

 $\pi_{\!V}:$ Fador de Stress devido a tensão;

 π_{C} : Fator referente a contrução;

 π_Q : Fator de qualidade;

 π_S : Fator referente à *Stress*;

 π_{P} : Fator referente a potência;

 π_T : Fator de Temperatura;

 π_E : Fator de Ambiental.

Pré-Amplificador

Proteção/estabilização

Outros componentes/filtros:

Estágio de Potência

Tempo até Falha Sistema Completo

Distribuição do uso

Distribuição de Tempo até falha

Confiabilidade para 50 anos

Proposta de Melhoria

Melhorias:

- Transistor com maior capacidade de dissipação;
- Ex:
 - NJW0281G;
 - NJW0302G.
- Resistência Térmica de 0.8°C/W;
- Temperatura do Amplificador em 35°C.

Obrigado

João Pedro Samarino Walter Fonseca de Magalhães Paulo Cirino Ribeiro Neto