Лекция №10:

3.4 <u>Еквивалентност между денотационната и операционната семантика по стойност</u>

Предстои ни да докажем една от най-важните теореми в нашия курс, която се изказва съвсем кратко: за всяка рекурсивна програма R:

$$O_V(R) = D_V(R).$$

Този резултат хвърля мост между двата съвършено различни подхода към определянето на формална семантика на рекурсивните програми, които разгледахме дотук. При денотационния поход функцията, която се определя от програмата R, в нашите означения — $D_V(R)$, се дефинира посредством най-малката неподвижна точка на подходящ непрекъснат оператор в подходяща област на Скот, Определение 3.5 (или еквивалентно, посредством най-малкото решение на системата от функционални уравнения 2.11, която този оператор задава).

От друга страна, функцията $O_V(R)$, която се пресмята операционно от програмата R, въведохме по един по-естествен начин — чрез правилата за синтактичен извод 3.9. Фактът, че тези два типа семантики съвпадат, е сам по себе си интересен и нетривиален. Но той също така е от изключителна важност за верификацията на рекурсивните програми, защото дава възможност да се използват техники от типа на μ -индуктивния принцип на Скот, които вървят за най-малки неподвижни точки. Този феномен — че функцията, която се пресмята от една рекурсивна програма може да се опише чрез подходяща най-малка неподвижна точка — позволява тези техники да се използват и за доказване на коректност на рекурсивни програми.

В следващия раздел ще докажем, че подобна характеризация е в сила и при предаване на параметрите $no\ ume$.

Да покажем равенството на двете частични функции $D_V(R)$ и $O_V(R)$ означава да покажем двете включвания

$$O_V(R) \subseteq D_V(R)$$
 и $D_V(R) \subseteq O_V(R)$.

Това ще направим в двата следващи подраздела.

3.4.1 Доказателство на включването $O_V(R) \subseteq D_V(R)$

Ще започнем с една спомагателна лема, която, ще използваме многократно по-надолу.

Лема 3.3. Нека $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$ е терм, в който всяка от функционалните променливи F_i е на m_i аргумента, $1 \leq i \leq k$. Нека още c_1,\ldots,c_n са естествени числа, а f_1,\ldots,f_k са частични функции, съответно на m_1,\ldots,m_k аргумента. Тогава

$$\tau[X_1/c_1, \ldots, X_n/c_n](f_1, \ldots, f_k) \simeq \tau(c_1, \ldots, c_n, f_1, \ldots, f_k).$$

Доказателството на тази лема е със съвсем рутинна индукция по построението на терма τ , затова ще го пропуснем.

Да обърнем отново внимание, че в лявата страна на горното равенство c_1, \ldots, c_n се употребяват като константи, докато в дясната страна — като числа. Термът $\tau[X_1/c_1, \ldots, X_n/c_n]$ вляво е функционален, т.е. терм без обектови променливи, затова пресмятаме стойността му в точка от вида (f_1, \ldots, f_k) .

Пример. Нека $\tau(X,F)$ е F(X)+X. Да означим с S функцията "прибавяне на 1", т.е. S(x)=x+1 за всяко x. Тогава

$$\tau(5, S) = S(5) + 5 = 11.$$

От друга страна, за стойността на функционалния терм au[X/5]в т. S ще имаме:

$$\tau[X/5](S) = (F(5) + 5)(S) = S(5) + 5 = 11.$$

Оттук до края на този раздел ще считаме, че е фиксирана произволна програма R от нашия език REC:

$$\begin{aligned} &\tau_0(X_1,\ldots,X_n,F_1,\ldots,F_k) &\quad \text{where} \\ &F_1(X_1,\ldots,X_{m_1}) = \tau_1(X_1,\ldots,X_{m_1},F_1,\ldots,F_k) \\ &\vdots \\ &F_i(X_1,\ldots,X_{m_i}) = \tau_i(X_1,\ldots,X_{m_i},F_1,\ldots,F_k) \\ &\vdots \\ &F_k(X_1,\ldots,X_{m_k}) = \tau_k(X_1,\ldots,X_{m_k},F_1,\ldots,F_k) \end{aligned}$$

В раздел 3.2.2 показахме, че операторът $\Gamma = \Gamma_{\tau_1} \times \cdots \times \Gamma_{\tau_k}$ е непрекъснат в областта на Скот

$$\mathcal{F} = (\mathcal{F}_{m_1} \times \cdots \times \mathcal{F}_{m_k}, \subseteq, (\emptyset^{(m_1)}, \dots, \emptyset^{(m_k)}))$$

и следователно той има най-малка неподвижна точка $ar{f}_{\Gamma} \ = \ (f_{\Gamma}^1, \dots, f_{\Gamma}^k).$

Чрез \bar{f}_{Γ} определихме функцията $D_V(R)$ — денотационна семантика по стойност на програмата R посредством равенството:

$$D_V(R)(c_1,\ldots,c_n) \simeq \tau_0(c_1,\ldots,c_n,f_\Gamma^1,\ldots,f_\Gamma^k)$$

за всички естествени c_1, \ldots, c_n .

По-надолу това равенство ще съкращаваме до

$$D_V(R)(\bar{c}) \simeq \tau_0(\bar{c}, \bar{f}_{\Gamma}).$$

В раздел 2.3.3 забелязахме, че вместо да говорим за неподвижни точки на оператора Γ , интуитивно по-ясно е да си представяме решенията на следната система, определена от R:

Видяхме, че всяка неподвижна точка на Γ е решение на системата (3.10) и обратно, всяко решение на (3.10) е н.т. на оператора Γ . В частност, наймалката неподвижна точка $(f_{\Gamma}^1,\ldots,f_{\Gamma}^k)$ на Γ ще бъде най-малко решение на тази система.

Близката ни цел е да покажем включването $O_V(R) \subseteq D_V(R)$, което може да се изкаже така: всяка стойност, която се извежда от R с правилата за извод, се получава на определен етап от итерацията на оператора $\Gamma = \Gamma_{\tau_1} \times \cdots \times \Gamma_{\tau_k}$.

Съгласно определението за подфункция, $O_V(R) \subseteq D_V(R)$, ако за всички естествени c_1, \ldots, c_n и d е в сила импликацията

$$O_V(R)(\bar{c}) \simeq d \implies D_V(R)(\bar{c}) \simeq d,$$

или преписана чрез съответните дефиниции на $O_V(R)$ и $D_V(R)$:

$$R \vdash_V \tau_0[\bar{X}/\bar{c}] \to d \implies \tau_0(\bar{c}, \bar{f}_{\Gamma}) \simeq d.$$

Съгласно *Лема* 3.3, стойността на израза вдясно можем да запишем и така:

$$\tau_0(\bar{c}, \bar{f}_{\Gamma}) \simeq \underbrace{\tau_0[\bar{X}/\bar{c}]}_{\mu}(\bar{f}_{\Gamma}).$$

Да означим за момент с μ функционалния терм $\tau_0[\bar{X}/\bar{c}]$. Тогава импликацията по-горе добива вида:

$$R \vdash_V \mu \to d \implies \mu(\bar{f}_{\Gamma}) \simeq d.$$
 (3.11)

Ясно е, че ще се наложи да докажем (3.11) не само за $\mu = \tau_0[\bar{X}/\bar{c}]$, а за всеки функционален терм $\mu(F_1,\ldots,F_k)$, чиито функционални променливи F_1,\ldots,F_k са като тези на програмата R, т.е. имат местност m_1,\ldots,m_k , съответно.

В доказателството на импликацията (3.11), което ще проведем по-долу, никъде няма да използваме, че \bar{f}_{Γ} е $na\~u$ -малката сред неподвижните точки на оператора Γ . Затова ще формулираме твърдението за npous-волна неподвижна точка \bar{f} на Γ .

Твърдение 3.4. Нека $\mu(F_1,\ldots,F_k)$ е функционален терм, а $\bar{f}=(f_1,\ldots,f_k)$ е неподвижна точка на оператора $\Gamma=\Gamma_{\tau_1}\times\cdots\times\Gamma_{\tau_k}$. Тогава е в сила импликацията:

$$R \vdash_V \mu \to d \implies \mu(\bar{f}) \simeq d.$$
 (3.12)

Преди да сме пристъпили към доказателството на твърдението, да изкажем следствието, което получаваме от него при $\mu = \tau_0[\bar{X}/\bar{c}]$:

Следствие 3.1. За всяка рекурсивна програма R

$$O_V(R) \subset D_V(R)$$
.

Доказателство. Нека $R \vdash_V \mu \to d$ с дължина на извода l. Ще покажем, че $\mu(\bar{f}) \simeq d$, като разсъждаваме с пълна индукция по l.

Наистина, да приемем, че за всяко опростяване $\mu' \to d'$:

ако
$$R \vdash_V \mu' \to d'$$
 с дължина на извода $l' < l$, то $\mu'(\bar{f}) \simeq d'$

(индуктивната хипотеза).

Разглеждаме различните възможности за функционалния терм μ .

- $\underline{1)}\ \mu$ е константа. Тогава $R \vdash_V \mu \to d$ може да е изпълнено само ако $\mu = d$ и в такъв случай $\mu(\bar{f}) \stackrel{\text{ge}\varphi}{=} d$.
- $\underline{2)}\ \mu$ е обектова променлива. Този случай е невъзможен, защото μ е функционален терм.
- 3) μ е от вида μ_1 ор μ_2 . Имаме по условие, че

$$R \vdash_V \mu_1 \ op \ \mu_2 \rightarrow d$$
,

откъдето по Лема 3.1 получаваме, че с дължина на извода, по-малка от l, са били изведени условията над чертата на правило (1):

$$R \vdash_V \mu_1 \rightarrow c_1$$
 и $R \vdash_V \mu_2 \rightarrow c_2$

за някои c_1 и c_2 , такива че c_1 ор $c_2 = d$. Прилагаме индукционната хипотеза към тези опростявания и получаваме, че

$$\mu_1(\bar{f}) \simeq c_1$$
 и $\mu_2(\bar{f}) \simeq c_2$.

Тогава от дефиницията за cmoйнocm на mep_M и факта, че c_1 op $c_2=d$ ще имаме:

$$\mu(\bar{f}) \stackrel{\text{de}}{\simeq} \mu_1(\bar{f}) \ op \ \mu_2(\bar{f}) \simeq c_1 \ op \ c_2 = d.$$

- 4) μ е от вида **if** μ_1 **then** μ_2 **else** μ_3 , разсъждаваме по много подобен начин, като разглеждаме двата случая, отговарящи на правилата $(2_{\mathbf{t}})$ и $(2_{\mathbf{f}})$.
- 5) Последната възможност за μ е да е от вида $F_i(\mu_1, \dots, \mu_{m_i})$. Тук имаме

$$R \vdash_V F_i(\mu_1, \dots, \mu_{m_i}) \rightarrow d$$

с дължина на извода l. Прилагаме отново $\mathit{Лема}\ 3.1$ и получаваме, че преди това (т.е. с дължина на извода, по-малка от l) $\mathit{mpябва}\$ да са били изведени условията в предпоставката на правило (3_V) , т.е. за някои константи c_1,\ldots,c_{m_i} са били изведени

$$R \vdash_V \mu_1 \to c_1, \ldots, R \vdash_V \mu_{m_i} \to c_{m_i} \quad \text{if} \quad R \vdash_V \tau_i[X_1/c_1, \ldots, X_{m_i}/c_{m_i}] \to d$$

с дължина на извода, по-малка от l. Прилагаме индуктивната хипотеза към тези опростявания и получаваме, че

$$\mu_1(\bar{f}) \simeq c_1, \ldots, \mu_{m_i}(\bar{f}) \simeq c_{m_i}$$
 if $\tau_i[\bar{X}/\bar{c}](\bar{f}) \simeq d$.

Следователно

$$\mu(\bar{f}) \stackrel{\text{ge}}{\simeq} f_i(\mu_1(\bar{f}), \dots, \mu_{m_i}(\bar{f})) \simeq f_i(c_1, \dots, c_{m_i}). \tag{3.13}$$

Този е моментът да използваме, че векторът $\bar{f} = (f_1, \dots, f_k)$ е неподвижна точка на оператора $\Gamma = \Gamma_{\tau_1} \times \dots \times \Gamma_{\tau_k}$. По дефиниция това означава, че $\Gamma(\bar{f}) = \bar{f}$, или разписано:

$$\Gamma(\bar{f}) \stackrel{\text{ded}}{=} (\Gamma_{\tau_1}(\bar{f}), \dots, \Gamma_{\tau_k}(\bar{f})) = (f_1, \dots, f_k).$$

В частност, за нашето i ще имаме

$$\Gamma_{\tau_i}(\bar{f}) = f_i$$
.

Оттук при $\bar{c} = (c_1, \ldots, c_{m_i})$ ще е изпълнено

$$\Gamma_{\tau_i}(\bar{f})(\bar{c}) \simeq f_i(\bar{c}).$$
 (3.14)

Но колко е $\Gamma_{\tau_i}(\bar{f})(\bar{c})$? От определението на термален оператор (3.1) имаме

$$\Gamma_{\tau_i}(\bar{f})(\bar{c}) \stackrel{\mathrm{def}}{\simeq} \tau_i(\bar{c},\bar{f}) \stackrel{\mathrm{Jiema}}{\simeq} {}^{3.3} \tau_i[\bar{X}/\bar{c}](\bar{f}) \stackrel{\mathrm{m.x.}}{\simeq} d.$$

Сега от равенствата (3.13) и (3.14) получаваме финално

$$\mu(\bar{f}) \simeq f_i(\bar{c}) \simeq \Gamma_{\tau_i}(\bar{f})(\bar{c}) \simeq d,$$

което и трябваше да покажем.

3.4.2 Доказателство на включването $D_V(R) \subseteq O_V(R)$

За да покажем това включване, се оказва полезно да въведем k на брой спомагателни функции, които ще означим с g_1, \ldots, g_k . Техният интуитивен смисъл е следният: $g_i: \mathbb{N}^{m_i} \longrightarrow \mathbb{N}$ е функцията, която се определя операционно по стойност от F_i . Формалното определение на g_i е следното:

$$g_i(c_1, \dots, c_{m_i}) \simeq d \quad \stackrel{\text{\pie}\Phi}{\Longleftrightarrow} \quad R \vdash_V F_i(c_1, \dots, c_{m_i}) \to d$$
 (3.15)

за всички естествени c_1, \ldots, c_{m_i} и d.

Разбира се, от това определение никак не следва, че g_1, \ldots, g_k наистина са $e\partial no shauhu$ функции. Това ще се изясни по-надолу. Нещо повече, ще се окаже, че векторът (g_1, \ldots, g_k) всъщност е най-малката неподвижна точка на оператора Γ , т.е. ще бъде вярно, че

$$\bar{g}=\bar{f}_{\Gamma}.$$

Когато докажем това, ще сме на една крачка от включването $D_V(R) \subseteq O_V(R)$, което е нашата цел в този раздел.

Най-напред да забележим, че когато викаме F_i с аргументи, които са константи (а не произволни термове), е в сила еквивалентността:

Лема 3.4. За производни константи c_1, \ldots, c_{m_i} и d:

$$R \vdash_V F_i(c_1, \ldots, c_{m_i}) \rightarrow d \iff R \vdash_V \tau_i[\bar{X}/\bar{c}] \rightarrow d$$

за всяко $1 \le i \le k$.

Доказателство. Ако $R \vdash_V F_i(c_1, \ldots, c_{m_i}) \to d$, то съгласно Лема 3.1 преди това трябва да е било изведено опростяването

$$\tau_i[X_1/c_1,\ldots,X_{m_i}/c_{m_i}] \to d.$$

Обратно, нека $R \vdash_V \tau_i[\bar{X}/\bar{c}] \to d$. Трябва да покажем, че са изпълнени предпоставките на правило (3_V) , което е единственото правило, от което можем да изведем $R \vdash_V F_i(c_1, \ldots, c_{m_i}) \to d$:

$$\frac{R \vdash_V c_1 \to c_1 \quad \cdots \quad R \vdash_V c_{m_i} \to c_{m_i} \quad R \vdash_V \tau_i[X_1/c_1, \dots, X_{m_i}/c_{m_i}] \to d}{R \vdash_V F_i(c_1, \dots, c_{m_i}) \to d} \quad (3_V)$$

Но това наистина е така, защото първите опростявания над чертата са аксиоми, а това, че $R \vdash_V \tau_i[X_1/c_1,\ldots,X_{m_i}/c_{m_i}] \to d$ ни е дадено по условие.

Сега можем да пристъпим към доказателството на едната половина от равенството $\bar{g} = \bar{f}_{\Gamma}$, а именно:

Твърдение 3.5.

$$\bar{g}\subseteq \bar{f}_{\Gamma}$$
.

Доказателство. Да фиксираме $1 \leq i \leq k$, както и произволни константи c_1, \ldots, c_{m_i}, d и да приложим $Tespdenue\ 3.4$ към функционалния терм $\mu = F_i(c_1, \ldots, c_{m_i})$ и н.м.н.т. $\bar{f}_\Gamma = (f_\Gamma^1, \ldots, f_\Gamma^k)$ на Γ . Ще получим

$$R \vdash_V \underbrace{F_i(c_1, \dots, c_{m_i})}_{\mu} \to d \implies \underbrace{F_i(c_1, \dots, c_{m_i})}_{\mu} (\bar{f}_{\Gamma}) \simeq d,$$

или все едно,

$$\underbrace{R \vdash_V F_i(c_1, \dots, c_{m_i}) \to d}_{g_i(c_1, \dots, c_{m_i}) \simeq d} \implies f_{\Gamma}^i(c_1, \dots, c_{m_i}) \simeq d.$$

Но предпоставката на тази импликация е точно дефиницията (3.15) на g_i . Излезе, че за произволни c_1, \ldots, c_{m_i} и d

$$g_i(c_1,\ldots,c_{m_i}) \simeq d \implies f_{\Gamma}^i(c_1,\ldots,c_{m_i}) \simeq d,$$

което означава, че $g_i\subseteq f^i_\Gamma$. Понеже i беше произволно, имаме всъщност $\bar g\subseteq \bar f_\Gamma$.

Да помислим как да покажем обратното включване $f_{\Gamma}^i \subseteq g_i$. Разсъждаваме така: щом g_i са функциите, които се пресмятат операционно по стойност от F_i , то звучи логично операционната семантика по стойност на R — функцията $O_V(R)$ — да може да се дефинира и така:

$$O_V(R)(\bar{c}) \simeq \tau_0(\bar{c},\bar{g}).$$

Оказва се, че това наистина е така. Всъщност търсеното от нас включване $\bar{f}_{\Gamma}\subseteq \bar{g}$ ще следва от едната половина на горното равенство $O_V(R)=\lambda \bar{c}.\tau_0(\bar{c},\bar{g}),$ затова ще докажем само тази половина.

Става въпрос за включването $\lambda \bar{c}.\tau_0(\bar{c},\bar{g})\subseteq O_V(R)$, което разписано поточково изглежда така: за произволни c_1,\ldots,c_{m_i} и d:

$$\tau_0(\bar{c}, \bar{g}) \simeq d \implies O_V(R)(\bar{c}) \simeq d,$$

или преписано чрез дефиницията на O_V :

$$\tau_0(\bar{c},\bar{g}) \simeq d \quad \Longrightarrow \quad R \vdash_V \tau_0[\bar{X}/\bar{c}] \ \to \ d.$$

От $\ensuremath{\mathit{Лема}}$ 3.3 имаме, че $\tau_0(\bar{c},\bar{g})$ можем да си представяме отново като $\tau_0[\bar{X}/\bar{c}](\bar{g})$. Следователно горната импликация можем да запишем по следния начин:

$$\underbrace{\tau_0[\bar{X}/\bar{c}]}_{\mu}(\bar{g}) \simeq d \quad \Longrightarrow \quad R \vdash_V \underbrace{\tau_0[\bar{X}/\bar{c}]}_{\mu} \ \to \ d.$$

Ясно е, че ще ни се наложи да доказваме тази импликация за npouseoneh функционален терм μ .

Твърдение 3.6. За всеки функционален терм $\mu(F_1, \ldots, F_k)$ и всяко естествено d е в сила:

$$\mu(\bar{g}) \simeq d \implies R \vdash_V \mu \to d.$$

Доказателство. Доказателството отново ще е с индукция, но този път по построението на функционалния терм μ . Фиксираме произволен функционален терм $\mu(F_1, \ldots, F_k)$ и приемаме, че за всички функционални термове, построени npedu него твърдението е вярно (undykmubha xunomesa). Разглеждаме различните възможности за μ .

- 1) Нека μ е константа. Тогава равенството $\mu(\bar{g}) \simeq d$ може да се случи само при $\mu = d$, откъдето очевидно $R \vdash_V d \to d$.
- 2) Случаят $\mu = X_i$ е невъзможен, защото μ е функционален терм.
- 3) μ е от вида μ_1 ор μ_2 . Имаме по условие, че

$$\mu(\bar{g}) \stackrel{\text{деф}}{\simeq} \mu_1(\bar{g}) \ op \ \mu_2(\bar{g}) \simeq d.$$

Тогава трябва да съществуват числа d_1 и d_2 , такива че

$$\mu_1(\bar{g}) \simeq d_1, \quad \mu_2(\bar{g}) \simeq d_2 \quad \text{и} \quad d_1 \text{ op } d_2 \simeq d.$$

Като приложим индукционната хипотеза към μ_1 и μ_2 , от горните равенства ще имаме

$$R \vdash_V \mu_1 \rightarrow d_1, \quad R \vdash_V \mu_2 \rightarrow d_2 \quad \text{if} \quad d_1 \text{ op } d_2 = d.$$

Но това са точно условията над чертата на правилото (1). Прилагаме го и получаваме, че

$$R \vdash_V \mu_1 \ op \ \mu_2 \rightarrow \ d.$$

4) Нека μ е от вида **if** μ_1 **then** μ_2 **else** μ_3 . По дефиниция имаме:

$$\mu(\bar{g}) \simeq \begin{cases} \mu_2(\bar{g}), & \text{ako } \mu_1(\bar{g}) > 0\\ \mu_3(\bar{g}), & \text{ako } \mu_1(\bar{g}) = 0\\ \neg !, & \text{ako } \neg ! \mu_1(\bar{g}). \end{cases}$$

Понеже по условие $\mu(\bar{g}) \simeq d$, не е възможно $\neg!\mu_1(\bar{g})$, и значи остават случаите $\mu_1(\bar{g}) > 0$ и $\mu_1(\bar{g}) = 0$. Ще разгледаме само първия; при втория се разсъждава аналогично.

Нека $\mu_1(\bar{g}) > 0$. Тогава $\mu_1(\bar{g}) \simeq d_1$ за някое $d_1 > 0$. От дефиницията на стойност на условен терм се вижда, че в този случай $\mu(\bar{g}) \stackrel{\text{деф}}{\simeq} \mu_2(\bar{g}) \simeq d$. Да ги запишем общо:

$$\mu_1(\bar{g}) \simeq d_1 > 0$$
 и $\mu_2(\bar{g}) \simeq d$.

Понеже термовете μ_1 и μ_2 са построени преди μ , то за тях индуктивната хипотеза е в сила. Така от горните две равенства получаваме

$$R \vdash_V \mu_1 \rightarrow d_1$$
 за $d_1 > 0$ и $R \vdash_V \mu_2 \rightarrow d$,

които са точно предпоставките на правилото $(2_{\mathbf{t}})$. Прилагаме го и получаваме търсеното

$$R \vdash_V \mu \rightarrow d.$$

5) Последният случай $\mu = F_i(\mu_1, \dots, \mu_{m_i})$ отново е най-интересен. Точно тук ще използваме специалния избор на функциите \bar{g} . Имаме по условие, че $\mu(\bar{g}) \simeq d$, което по дефиницията за стойност на терм означава, че

$$g_i(\mu_1(\bar{g}),\ldots,\mu_{m_i}(\bar{g})) \simeq d.$$

Тогава съществуват числа d_1, \dots, d_{m_i} , такива че

$$\mu_1(\bar{g}) \simeq d_1, \dots, \mu_{m_i}(\bar{g}) \simeq d_{m_i} \quad \text{if} \quad g_i(d_1, \dots, d_{m_i}) \simeq d.$$

Понеже термовете μ_1, \ldots, μ_{m_i} са построени на по-ранен етап от μ , то за тях индуктивната хипотеза е в сила, т.е. ще имаме изводимостите

$$R \vdash_V \mu_1 \rightarrow d_1, \dots, R \vdash_V \mu_{m_i} \rightarrow d_{m_i}.$$
 (3.16)

По-горе получихме $g_i(d_1,\ldots,d_{m_i})\simeq d$, което по дефиницията (3.15) на g_i означава, че

$$R \vdash_V F_i(d_1, \ldots, d_{m_i}) \rightarrow d.$$

Оттук по Лема 3.4 ще имаме

$$R \vdash_V \tau_i[\bar{X}/\bar{d}] \rightarrow d.$$

Тази изводимост, заедно с другите от (3.16), всъщност са точно предпоставките на правило (3_V) . Прилагаме го и получаваме търсеното

$$R \vdash_V \underbrace{F_i(\mu_1, \dots, \mu_{m_i})}_{\mu} \rightarrow d.$$

Сега да видим как от твърдението, което току-що доказахме, ще следва търсеното от нас включване $\bar{f}_{\Gamma} \subseteq \bar{g}$:

Твърдение 3.7. $\bar{f}_{\Gamma} \subseteq \bar{g}$.

Доказателство. По определение \bar{f}_{Γ} е най-малката неподвижна точка на оператора Γ . От теоремата на Кнастер-Тарски за произволни ОС знаем, че \bar{f}_{Γ} е и най-малката npedhenodeuжна move на Γ , т.е. тя е най-малкото решение и на nepaвенството

$$\Gamma(\bar{f}) \subseteq \bar{f}$$
.

Ние ще покажем, че векторът $\bar{g}=(g_1,\ldots,g_k)$ също е решение на това неравенство, т.е. $\Gamma(\bar{g})\subseteq \bar{g}$. Оттук, понеже \bar{f}_{Γ} е най-малкото решение, ще получим желаното включване $\bar{f}_{\Gamma}\subseteq \bar{g}$.

Да покажем $\Gamma(\bar{g})\subseteq \bar{g}$ означава да покажем, че за всяко $i=1,\dots k$

$$\Gamma_{\tau_i}(\bar{g}) \subseteq g_i$$
.

Да фиксираме произволно $1 \le i \le k$, както и произволни естествени числа c_1, \ldots, c_{m_i} и d. Ще покажем, че за тях е в сила импликацията:

$$\Gamma_{\tau_i}(\bar{g})(\bar{c}) \simeq d \implies g_i(\bar{c}) \simeq d.$$
 (3.17)

Наистина, от определението за термален предикат имаме:

$$\Gamma_{\tau_i}(\bar{g})(\bar{c}) \overset{\text{дeф}}{\simeq} \tau_i(\bar{c},\bar{g}) \overset{\text{Лема } 3.3}{\simeq} \tau_i[\bar{X}/\bar{c}](\bar{g}).$$

Сега нека приемем, че предпоставката $\Gamma_{\tau_i}(\bar{g})(\bar{c}) \simeq d$ на импликацията (3.17) е в сила. Оттук, като използваме горните равенства, получаваме

$$\underbrace{\tau_i[\bar{X}/\bar{c}]}_{\mu}(\bar{g}) \simeq d.$$

Тук е моментът да приложим последното Tеврдение 3.6 за $\mu = \tau_i [\bar{X}/\bar{c}].$ Ще получим, че

$$R \vdash_V \tau_i[\bar{X}/\bar{c}] \rightarrow d.$$

Съгласно Лема 3.4 това условие е еквивалентно на

$$R \vdash_V F_i(\bar{c}) \rightarrow d$$
,

откъдето по дефиницията (3.15) на g_i , получаваме търсеното $g_i(\bar{c}) \simeq d$. С това проверката на (3.17) е завършена и следователно $\Gamma_{\tau_i}(\bar{g}) \subseteq g_i$. Тъй като i беше произволно, това ни дава общо, че $\Gamma(\bar{g}) \subseteq \bar{g}$, т.е. \bar{g} е преднеподвижна точка на оператора Γ и следователно $\bar{f}_{\Gamma} \subseteq \bar{g}$.

Като следствие от доказаните до тук *Твърдение* 3.5 и *Твърдение* 3.7 получаваме това, което беше нашата цел:

Следствие 3.2. $\bar{f}_{\Gamma} = \bar{g}$.

Вече подготвихме всичко за финалната

Теорема 3.2. За всяка рекурсивна програма R

$$O_V(R) = D_V(R).$$

Доказателство. Първото включване $O_V(R) \subseteq D_V(R)$ всъщност е *Следствие* 3.1, което доказахме в предишния раздел.

За да покажем и обратното включване $D_V(R)\subseteq O_V(R)$, да приемем, че за произволни c_1,\dots,c_{m_i} и d

$$D_V(R)(\bar{c}) \simeq d.$$

Това означава, съгласно дефиницията на $D_V(R)$, че

$$\tau_0(\bar{c}, \bar{f}_{\Gamma}) \simeq d.$$

Но $\bar{f}_{\Gamma}=\bar{g}$ и значи

$$\tau_0(\bar{c}, \bar{g}) \simeq d,$$

което, използвайки, Лема 3.3 можем да препишем като

$$\tau_0[\bar{X}/\bar{c}](\bar{q}) \simeq d.$$

Но тогава от Твърдение 3.6 ще имаме, че

$$R \vdash_V \tau_0[\bar{X}/\bar{c}] \rightarrow d,$$

което по дефиницията (3.7) на операционна семантика означава точно

$$O_V(R)(\bar{c}) \simeq d$$
.

Това завършва доказателството на включването $D_V(R) \subseteq O_V(R)$ и на теоремата.

Накрая да направим важното уточнение, че никъде в доказателството на тази теорема не използвахме, че програмата R е над естествените числа. Това означава, че този резултат остава в сила и за рекурсивни програми над npouseonen тип данни.