FM DEMODULATION IC FOR BROADCASTING SATELLITE RECEIVER

The TA8804F combines the necessary function on a single monolithic integrated circuit to modulate FM signal of the 2nd IF of DBS.

FEATURES

- 5V Power Supply
- 2nd IF AGC Amp
- dB-Linear Signal Level Amp
- PLL FM Detector
- Keyed AFT

Weight: 0.63g (Typ.)

The information contained frerein is prevented only as a guide for the applications of our products. No responsibility is assumed by TOSINEA CORPORATION for any infringements of interlectual property of other rights of TOSINEA CORPORATION or other inside the stand parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSINEA CORPORATION or others. On the TOSINEA CORPORATION or others. The TOSINEA CORPORATION are untended for use in general commissions follow requirement, to make upperfect, metallic places make sure that you consult with us before you see these TOSINEA products in equipment including our requirement of control and the transfer control application including our requirement and may might be the transfer of critical application including our requirement and may might be the transfer of critical application mitted on such uses a atomic underly control including our standard instrumentation. Commodition on the time of the product of the product of the time of the product of the product of the time of the product of the product of the time of the time of the product of the product of the time of the product of the product of the product of the product of the time of the product of

BLOCK DIAGRAM

TA8804F - 2
1996 <u>4 - 22</u>
TOSHIBA CORPORATION

INTEGRATED CIRCUIT TOSHIBA

TERM	ERMINAL FUNCTION				
PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT		
1	Keyed Pulse Input	It clamps at the pulse peak and generates the reference level. The input impedance is 3kΩ. ■ If any keyed pulse input, Keyed pulse: low level sample state Keyed pulse: high level hold state ■ If no keyed pulse input, sample state at all time	500Ω		
2 3	Detect Output	It outputs the detection output through a low-pass filter of 30MHz cut off frequency using an emitter follower.	3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		
4 5	Video Amplifier Level Adjustment	It controls the level adjustment by varying the emitter resistance of a differential amplifier. If the resistance between pins 4 and 5 is reduced the output will be greater, however, since the output dynamic range is narrow the output level should be used in the range of lower than $0.7V_{p-p}$.	2κΩ 2κΩ 2κΩ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
6 7	Loop Filter	The output impedance is 200Ω . In the application circuit, $\omega = 174 \mathrm{MHz}$ $\varepsilon = 0.81$	6 Video Amp		

TA\$804F – 3
1996 – 4 – 22
TOSHIBA CORPORATION

INTEGRATED CIRCUIT TOSHIBA

PIN	PIN NAME	FUNCTION	INTERFACE CIRCUIT
8 8	GND1	It is the GND of VCO circuit blocks that are VCO (pins 9, 10, 12), loop filter (pins 6, 7), video amplifier (pins 4, 5) AFT system (pins 1, 23, 24, 25, 26, 27, 28) and S/H (pins 29, 30).	
9 10	vço coil	It is the VCO using variations in internal impedance of diode for control voltage from mixer. Use a UI characteristic for the capacitor of the external tank circuit to correct the internal temperature drift.	TO OOS JOS UNITED TO STATE OF THE PARTY OF T
12	VÇO Temperature Compensate Bias	The VCO bias is composed of a synthesis of bias in proportion to VBE and VT of transistor, and this terminal generates a bias proportioned to the VBE. If the external resistance reduced, the VCO sensitivity will rise.	12 300Ω V(O Bids
13	2nd AGC Adjustment	It changes the input level for a AGC detector. It adjusts by adding the direct current offset to pins 14 and 15. The variation width of about 8dB can be added. Internal bias is 2.5V.	(3) 50kΩ vcc

TA8804F - 4	
1996 – 4 – 22	
TOSHIBA CORPOR	RATION

TOSHIBA

PIN	N BIN NAME FUNCTION INTERFACE CIRCUIT		
No.	PIN NAME	TOMETON	
14 15	2nd AGC Filter	It generates the AGC voltage by filtering the 402.78MHz (479.5MHz) IF signal by means of an internal resistance and an external condenser. If applying the VCC to pin 15, the AGC will be minimum gain and the VCO oscillates at free-running frequency.	(C) 10pF 100C 100C 100C 100C 100C 100C 100C 100
16	1st AGC Slice Adjustment	It sets the input level threshold for generating the control signal to lower gain from the IC to the 2nd converter of front stage when excessive input. Even if the 2nd AGC adjustment varies, the 1st AGC adjustment point hardly changes. The internal bias is 2.5V.	16 50κΩ
17	1st AGC Filter	It outputs by comparating with the AGC and 1st AGC slice level adjustment voltages. This comparator is constructed by the active load type high gain amplifier and determines its response by a capacitor connected to this terminal.	15 pt 4 pt 10 pt 1
18	1st AGC Control	It outputs the control voltage using an emitter follower (active low level). The internal current sink has only 25 μ A.	18 V V V V V V V V V V V V V V V V V V V

TA8804F - 5	
1996 - 4 - 22	
TOSHIBA CORPO	RATION

INTEGRATED CIRCUIT

TOSHIBA

TECHNICAL DATA

TA8804F

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
19	Signal Level Out	It outputs the AGC voltage by doing logarithm <-> linear conversion. In the TA8804F the level detection can be carried out even after the 1st AGC is effective and input is reduced using the 1st AGC output.	(B) (1) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
20 22	2nd IF In	The IF amplifier constructed by the 3-step series connection of variable gm type gain control, of which the maximum gain is 47dB and minimum gain — 8dB. In order to prevent a sneak of radio frequency all the circuits are balance-connected. Therefore, the differential combination is also desirable for the IC input. The internal bias is 2.0V and input impedance 1kΩ.	
23	AFT Output (Analog)	It outputs by integrating the detection output by means of pin 27 and 28 filters, doing center adjustment and multiplying about five times as much.	(3) The state of t

TA8804F – 6	
1996 – 4 <u> – 22</u>	
TOSHIBA CORPO	DRATION

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
24 25	AFT Output (Digital)	It outputs by converting the analog AFT output to binary with a comparator. In the case of center detection, the each output will be high level. The width of dead gone is determined by the internal threshold and VCO sensitivity, that cannot be adjusted externally.	24 CH 25 κΩ
26	AFT Center Adjustment	It moves the AFT center frequency in the width of 10MHz and absorbs the center gap caused by dispersion of each AFT circuit.	26 62kΩ Vcc 2
27 28	AFT Filter	It constructs a filter whose cut off frequency is less than 1Hz (capacitor : 0.7Hz at $0.1\mu\text{F}$) with an internal $1.1\text{M}\Omega$ resistance and external condenser.	27 1.1MΩ 18Ω 18Ω 18Ω 18Ω 18Ω 18Ω 18Ω 18Ω 18Ω 18
29	Hold Capacitor	Sample and hold by charge/ discharging the condenser using the switching signal regenerated by keyed pulse.	39 (G. 600 t. 60

TA8804F – 7
1996 – 4 – 22
TOCHIBA CODDODATION

INTEGRATED CIRCUIT

TECHNICAL DATA

TA8804F

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	VCC MAX	6.0	V
Power Dissipation	PD MAX	1000	mW
Operation Temperature	Topr	– 20∼7 5	°C
Storage Temperature	T _{stg}	− 55~ 150	°C
Lead Temperature		260°C, 1	Os

Recommended assembly method : Recommended temperature profile of reflow soldering of far and medium infrared rays

RECOMMENDED POWER SUPPLY VOLTAGE

PIN No.	PIN NAME	MIN.	TYP.	MAX.	UNIT
11	V _{CC}	4.5	5.0	5.5	V

TA8804F - 8
1996 – 4 – 22
TOCHION CORROBATION

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS (Unless otherwise specified, V_{CC} = 5.0V, Ta = 25°C)

CHARA	CTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Cur	root	¹CC _	1		55	80	105	mΑ
supply Cul	Pin 1	V ₁			2.0	2.5	3.0	
	Pin 2	$\frac{1-v_1}{v_2}$	1		1.9	2.4	2.9	}
	Pin 3	V2 V3	1		1.9	2.4	2.9	
	Pin 4	$\frac{\sqrt{3}}{\sqrt{4}}$	1		0.8	1.3	1.8	
	Pin 5	V ₂	-	_	0.8	1.3	1.8	
	Pin 6	V ₆ _	1		1,7	2.1	2.5	
	Pin 7	V ₇	-		1.7	2.1	2.5	
	Pin 9	Vg	-		2.4	2.8	3.2	
	Pin 10	V ₁₀	-		2.4	2.8	3.2]
	Pin 12	V ₁₂	1		0.4	0.7	1.0	7
	Pin 13	V ₁₃			2.3	2.5	2.7	١,,
Terminal Voltage	Pin 14	V ₁₄				3.6	1 —	\ \
voltage	Pin 15	V ₁₅				3.6		1
	Pin 16	V ₁₆		-	2.1	2.5	2.9	7
	Fill 10	V ₁₈ h		Pin 17 : 1kΩ-GND		1.0	1.3	=
	Pin 18	V ₁₈₁		Pin 17 : Vcc	3.9	4.3	4.7	
	Pin 20	V ₁₈₁	\dashv		1.5	2.0	2.5	1
	Pin 22	V ₂₂	-		1.5	2.0	2.5	
	Pin 27	V ₂₇	-			2.3	2.8	
	Pin 28		\dashv			2.3	2.8	7
	Pin 29	V ₂₈			1.8	2.3	2.8	7
		V29			1.8	2.3	2.8	7
	Pin 30		-			 		
Pin 2, 3 A Output Cu	•	12, 13	1		- 1.0	<u> </u>	6.0	mA
1'st AGC Output Current		118	1		- 0.02	-	6.0	m

TA8804F – 9	_
1996 – 4 – 22	_
TOSHIBA CORPORATION	J

TA8804F

INTEGRATED CIRCUIT **TOSHIBA**

TECHNICAL DATA

AC CHARACTERISTICS

C CHARACTERISTICS	CVA 4D OIL	TEST	TEST CONDITION	MiN.	TYP.	MAX.	UNIT
CHARACTERISTIC	SYMBOL	CIRCUIT	" (E31 COMPINOR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
IF Input Frequency Range	fin	_	<u> </u>	350	400	550	MHz dBmW
If Input Level Range	vin		_	- 60	_	- 10	(50Ω <u>)</u>
1st AGC Shoulder Level Range	AGCMAX	2	(Note 1)		- 20	- 10	dBmW (50Ω)
1st AGC Control Sensitivity	∆AGC	2	(Note 2)	1.0	3.5	ნ.0	V/dB
Signal Level Sensitivity	ΔV/Δν	2	(Note 3)	10	35	60_	mV/dB
VCO Conversion Sensitivity	ß	2	Converting to output rate Pin 4, 5: open / (Note 4)	_	110	130	MHz/V
VCO Temperature Drift	∆f _{Ta}	2	Ta = - 10~65°C / (Note 5)	_	± 1.0	± 2.5	MHz
PLL Lock Range	fL	2	(Note 6)	± 25	± 30		MHz
PLL Capture Range	fca	2	(Note 6)	± 25	±30		MHz
Demodulation Output Level	Vout	2	$\Delta f = 10MHz_{p-p} / (Note 7)$	0.15	0.26	0.40	V _{p-p}
Video Amplifier Variable Width	VoutS / 5	2	Pin 4, 5 : short, $5k\Omega$ / (Note 8)	10	14		dB
Demodulation Output Amplitude Frequency Characteristics 1	VoutA1	2	f=0.2~4MHz/(Note 9)	_	_	±0.5	dB
Demodulation Output Amplitude Frequency Characteristics 2	VoutA2	2	f=4~9MHz/(Note 9)	_		±2	dВ
Group Delay Characteristics 1	τpd1	2	f=0.2~4MHz/(Note 9)			±10	ns
Group Delay Characteristics 2	τpd2	2	f=4~9MHz/(Note 9)		_	± 40	ns
AFT Sensitivity	Δf/ΔV	2	(Note 12)	2,4	3.2	4.0	MHz/V
S/H Sample Speed	∆f _{spl}	2	Converting to input frequency rate/(Note 10)	1.0	0.2	_	MHz / μ
Keyed AFT Input Range	V ₁	2		0.35	0.5	0.65	V _{p-p}
Keyed AFT Input Frequency	T ₁	2	(Note 11)	8.0	16.7	50	ms
AFT Width of Dead Zone	VDEAD	2	(Note 13)	250	340	400	kHz
Digital AFT Voltage Low Level	V ₂₀ L	2	(Note 13)	_	0.3	0.5	V
DG	DG	application circuit	APL 90% / (Note 14)	<u> </u>	± 2.0	± 5.0	%

TA8804F - 1 <u>0</u>	
1996 – 4 – 22	

TOSHIBA

TECHNICAL DATA

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MiN.	TYP.	MAX.	TINU
DP	DP	. 11	APL 90% / (Note 14)		± 2.0	± 5.0	¢
Inter-Modulation 2	IM2	application	2.15MHz beat level/ (Note 15)	40	45		dB
Inter-Modulation 3	1M3		1.43MHz beat level/ (Note 15)	40	50		dB
Video Output S/N	S/N _{SAT}	application circuit	C / N = ∞	48	51	_	dB

MEASUREMENT CONDITION

(Note 1) 1st AGC Shoulder Level Range : AGCMAX

F=402.78 MHz input level $v_{in}=0$ to -40 dBmW (50 Ω) to pin 20. Measure v_{in} that pin 18 voltage is lower than 4V by opening pin 16 and raising v_{in} .

(Note 2) 1st AGC Control Sensitivity : △AGC

Input f = 402.78 MHz $v_{in} = 0 - 40 dBmW$ (50 Ω) to pin 20. Calculate v_{in} that pin 18 voltage is 4V/1V (as v_{in1} , v_{in2}), using the equation below.

$$\Delta AGC = -3/(v_{in1} - v_{in2}) \quad V/dB$$

(Note 3) Signal Level Sensitivity: ΔV/ΔV

Measure each output voltage of pin 19 at $v_{in} = -40$, -60 dBmW (50 Ω)

$$\Delta V / \Delta V = (V - 60 - V - 40) / 20 \text{ mV/dB}$$

(Note 4) VCO Conversion Sensitivity : eta

Input mainly f=402.78 MHz and sweep $\pm 5 MHz$, $v_{in}=-30 dBmW$ (50 Ω) to pin 20. Calculate $\beta=10/(V det_{+5}-V det_{-5})$ and multiply the gain portion (2.66) of video amplifier when outputting a direct current voltage to pin 3 at 407.78 MHz, 397.78 MHz as $V det_{+5}$ and $V det_{-5}$ each.

(Note 5) VCO Temperature Drift : AfTa

Short pin 6 and 7, and connect pin 14 to GND.

Measure the VCO frequency at ambient temperature $Ta = 25^{\circ}C$, $-10^{\circ}C + 65^{\circ}C$ and calculate how much changes from 25°C. (read out the VCO leakage output by spectrum analyzer.)

(Note 6) PLL Lock Range : fL, Capture Range : fca

Measure the range that synchronizes with VCO by putting pin 20 input frequency away from the free-running frequency.

TA8804F - 11	
1996 - 4 <u>- 22</u>	
TOSHIBA CORPO	RATION

(Note 7) Demodulation Output Level: Vout

Input pin 20 f = 402.78MHz, $f_m = 100 \text{kHz}$, $\Delta_f = 10 \text{MHz}_{p-p}$, $v_{in} = -30 \text{dBmW}$ (50 Ω)

Open pin 4 and 5 and measure the output level of pin 3.

(Note 8) Video Amplifier Variable Width : VoutS, VoutS

Input pin 20 f = 402.78MHz, $f_m = 100kHz$, $\Delta f = 10MHz_{p-p}$, $v_{in} = -30d8mW$ (50 Ω) Measure the variation of video output by shorting between pin 4 and 5 and connecting a $5k\Omega$ resistance.

(Note 9) Demodulation Output level Width, Group Delay Characteristics: VoutA, zpd

Input pin 20 f = 402.78MHz, f_m = 100kHz, 60Hz to 4MHz to 9MHz, Δf = 5MHz_{p-p}, v_{in} = Δf 30dBmW (50 Ω)

Compare to the value at 100kHz by opening pin 4 and 5, and measuring the output level and group delay of pin 3.

(Note 10) 5/H Sample Speed : △f_{SD}!

Input the signal 1 below for a modulation signal. Input the signal 2 below to pin 1. Observe the differential voltage waveform between pin 29 and 30, and measure the slew rate in the sampling period.

Keyed Pulse Allowable Period: T1 (Note 11)

> Input the signal below to pin 1 and open pin 27 and 28. Observe the pin 23 output and change f so as to be 2.5V voltage.

Measure the frequency range in which a 2kHz sine wave does not output to pin 23, by changing the signal 3 period.

If the sample-hold circuit malfunctions, the 2kHz sine wave will be outputted from pin 23.

TA8804F - 12	
1996 – 4 – 22	
TOSHIBA CORPOR	MOITAS

TA8804F

TOSHIBA

TECHNICAL DATA

(Note 12) AFT Sensitivity: $\Delta f/\Delta V_{23}$

Input pin 20 f = 402.78MH2 \pm 1MHz, v_{in} = - 30dBmW (50 Ω)

Adjust f so that pin 23 output will be 2.5V. By moving f up, and down, calculate each frequency as f_H , f_L when pin 23 voltage varies 0.5V using the following equation.

$$\Delta f/\Delta V_{23} = f_H - f_L (MHz/V)$$

(Note 13) AFT Digital Output Width of Blind Sector : fDEAD

input pin 20 f = 402.78MHz \pm 5MHz, v_{in} = -30dBmW (50 Ω)

Measure the input frequency range in which both pin 24 and 25 become high level, by sweeping f.

(Note 14) DG, DP

Input pin 20 f = 402.78MHz \pm 5MHz, v_{in} = - 30dBmW (50 Ω), Δ f = 17MHz_{p-p}, Gray level video signal (APL : 10~90%)...Pre-emphasis-on

(Note 15) IM2, IM3

Input pin 20 f = 402.78MHz \pm 5MHz, v_{in} = -30dBmW (50 Ω), Δ f = 17MHz $_{p-p}$. Color subcarrier (3.579MHz), Sound subcarrier (5.7272MHz) ...

Observe the frequency component outputting to the screen output pin (pin 3) through the video gate of a video noise meter by spectrum analyzer, and measure the level difference between 3.579MHz component and 2.15MHz, 1.43MHz components.

TA8804F - 13
1996 – 4 – 22
TOSHIBA CORPORATION

TOSHIBA

TECHNICAL DATA

TEST CIRCUIT 1

TEST CIRCUIT 2

TA8804F - 14	
199 <u>6 – 4 – 22</u>	
TOSHIBA CORP	MOITARO

Weight: 0.63g (Typ.)

TA8804F 16*
1996 - 4 - 22
TOSHIBA CORPORATION