Making sense of if-then statements.

- The statement "If P then Q" is true whenever Q is true or P is false. Equivalently, the statement "If P then Q" is false whenever Q is false and P is true.
- The **converse** of the statement "If P then Q" is the statement "If Q then P".
- The **contrapositive** of the statement "If P then Q" is the statement "If not Q then not P".
- Any if-then statement is equivalent to its *contrapositive*, but not necessarily to its converse!
- (1) For each of the following statements, write its contrapositive and its converse. Decide if original/contrapositive/converse true or false for real numbers a, b, but don't prove them yet.
 - (a) If a is irrational, then 1/a is irrational.
 - (b) If a and b are irrational, then ab is irrational.
 - (c) If $a \ge 3$, then $a^2 \ge 9$.

Proving if-then statements.

- The general outline of a direct proof of "If P then Q" goes
 - (1) Assume P.
 - (2) Do some stuff.
 - (3) Conclude Q.
- Often it is easier to prove the contrapositive of an if-then statement than the original, especially when the conclusion is something negative. We sometimes call this an *indirect proof* or a *proof by contraposition*.
- (2) Consider the following proof of the claim "For real numbers x, y, z, if x + y = z + y, then x = z" from the axioms of \mathbb{R} . Match the parts of this proof with the general outline above. Which sentences are *assumptions* and which are *assertions*? Is it clear *just from reading each sentence on its own* whether it is an assumption or an assertion? Is it clear *why* each assertion is true?

Proof. Suppose that x + y = z + y. Then adding -y (which exists by Axiom 6) we get

$$(x + y) + (-y) = (z + y) + (-y).$$

This can be rewritten (by Axiom 3) as

$$x + (y + (-y)) = z + (y + (-y)),$$

and hence (by Axiom 6) as

$$x + 0 = z + 0$$
,

which gives x = z (by Axioms 4 and 2).

(3) Consider the following purported proof of the true fact "If $2x + 5 \ge 7$ then $x \ge 1$." Is this a good proof? Is it a correct proof?

Proof.

$$x > 1$$
.

Multiply both sides by two.

$$2x \geq 2$$
.

Add five to both sides.

$$2x + 5 \ge 7$$
.

Proving if-then statements.

- (4) Prove or disprove each of the statements in (1). You might consider a proof by contraposition for some of these!
- (5) Prove or disprove the *converse* of each of the statements in (1).

Using the axioms of $\mathbb R$ to prove basic arithmetic facts.

- (6) Let x and y be real numbers. Use the axioms of \mathbb{R} to prove¹ that if $x \geq y$ then $-x \leq -y$.
- (7) Let x and y be real numbers. Use the axioms of \mathbb{R} to prove that $x \geq y$ if and only if $-x \leq -y$.
- (8) Let x, y be real numbers. Use the axioms of \mathbb{R} and facts we have already proven² to prove that if $x \leq 0$ and $y \leq 0$, then $xy \geq 0$.
- (9) Use³ the axioms of \mathbb{R} and facts we have already proven to prove that 1 > 0.

¹Hint: You may want to add something to both sides.

²Be careful: are you using any facts that we have not already proven?

³Hint: Try a proof by contradiction.