INTRODUÇÃO A CIÊNCIA DE DADOS NA ENGENHARIA DE PETRÓLEO

Aula 1 - Introdução

- Modelagem Matemática
- Modelos baseados em física x Modelos baseados em dados
- □ Ciência de Dados
- Aplicações na Indústria de Petróleo
- □Sites Indicados

Modelagem Matemática

MODELAGEM

- <u>Modelo</u>: Conjunto de equações utilizadas para descrever/entender o comportamento de um sistema.
- <u>Equações</u> transformam parâmetros de <u>ENTRADA</u> conhecidos em respostas previstas de parâmetros de <u>SAÍDA</u>.
- Aprendizado: Identificação do melhor modelo (Ajuste de Histórico, calibração de modelos, treinamento).

□ Modelos baseados na física: Fundamentados nas leis físicas que regem o sistema.

□ <u>Modelos baseados em Dados:</u> Informações dos processos são derivadas diretamente dos dados, não requerem uma compreensão precisa dos processos físicos do sistema.

Date	Qliq	Qoil	Qwater	Qg	wc	ТРТ	Status
12/03/2015	2428	394	2035	232907	84	93	Yes
23/04/2015	2329	747	1582	260277	68	96	No
05/05/2015	2416	391	2025	260557	84	95	Yes
12/06/2015	2323	633	1690	370250	73	101	Yes
31/07/2015	2304	1123	1181	434015	51	109	No
08/08/2015	2351	615	1736	372962	74	102	Yes
20/08/2015	2363	321	2042	356196	86	102	No
02/09/2015	2374	311	2063	325247	87	100	No
16/10/2015	2406	344	2062	231806	86	93	Yes
16/05/2016	2418	433	1985	265612	82	97	?

- ✓ Quais variáveis se correlacionam?
- √ Como elas se comportam ao longo do tempo?
- ✓ Posso prever alguma dessas variáveis a partir das outras? Se sim, quais?

□ Modelos baseados na física:

Físico Resolução (solução numérica sob restrições computacionais) Física Modelada Observada

Modificado de Rasheed et al. (2019).

□ Modelos baseados em Dados:

Como os dados são uma manifestação da física conhecida e desconhecida, ao desenvolver um modelo orientado a dados, é possível considerar a física completa.

Modelos baseados na Física		<u>Modelos baseados em Dados</u>		
	Base sólida em função da física do problema.	Funciona como caixa-preta.		
	Difícil de integrar dados históricos de longa data nos modelos computacionais.		Leva em consideração dados e experiências históricas de longo prazo.	
	Sensível à instabilidade numérica devido a uma série de condições (iniciais, contorno, incertezas nos parâmetros de entrada).		Depois do modelo treinado, é consideravelmente estável para fazer previsões/inferências.	
	Menos suscetíveis a viés.		O viés nos dados é refletido na previsão do modelo.	
	Boa generalização para novos problemas com física semelhante.		Generalização ruim para problemas não vistos.	

- Quando usar o modelo baseados em dados ?
 - Modelos físicos muito complexos;
 - Grande tempo computacional dos simuladores;
 - Grande quantidade de dados ("informações") disponíveis;
 - Melhoria dos modelos físicos ...
- Modelo de dados irá substituir os modelos físicos?
 - Tendência na formação de modelos híbridos (dados + físicos) para resolução dos problemas de engenharia para tomada de decisão.

□ Ciência de dados (do inglês, data science) é o processo que utiliza algoritmos, métodos e sistemas para extrair conhecimento e obter insights de dados estruturados e não estruturados. Área multidisciplinar que aplica inteligência analítica e aprendizado de máquinas para colaborar com a realização de previsões, aprimoramento da otimização, e melhoria das operações e da tomada de decisões.

estatísticos.

CIÊNCIA DE DADOS

Aumento considerável dos Novos modelos Avanços nas previsões dados e da matemáticos e em tempo real, tecnologia estatísticos Big data CIÊNCIA DE MINERAÇÃO ANALÍTICA **ESTATÍSTICA** DE DADOS DADOS **PREDITIVA** Compilação e limpeza Previsões mais Extrair padrões de dados. acuradas dos dados Aplicação de métodos

MACHINE LEARNING:

Utiliza uma variedade de algoritmos que aprendem iterativamente a partir dos dados de treinamento para melhorar, descrever dados e prever resultados.

Importância do domínio da área:

O modelo de ML geralmente procura padrões/correlações entre variáveis. Mas devemos ter um cuidado em interpretar estas correlações, pois nem sempre elas são coerentes.

https://www.tylervigen.com/spurious-correlations

□ Etapas do Processo

Etapa 1 - Definição do problema: Definir objetivo que se deseja alcançar

□Caracterização de Subsuperfície e Petrofísica:

TRABALHOS	MÉTODO	
Caracterização do reservatório fraturado	Redes neurais e lógica Fuzzy	
Previsão da porosidade e permeabilidade do campo	Support Vector Machine	
Análise de permeabilidade do campo	Random Forest Tree	
Modelagem das propriedades PVT do gás	SVM e árvore de decisão	
Análise de logs	Inteligência artificial	

□Gerenciamento de Reservatórios:

TRABALHOS	MÉTODO
Metodologia para caracterização do reservatório de gás natural	bootstrapping
Gerenciamento de Reservatórios Integrados	Técnicas de Machine Learning
Otimização do sistema de completação de poços	Data analytics

■ Estudos de Reservatório e EOR

TRABALHOS	MÉTODO	
Previsão do holdup em duas fases de reservatórios	SVM otimizando aplicando Algoritmos Genéticos	
Modelos Híbridos para aprendizado próprio para melhor entendimento do reservatório	Primeiros Princípios + Redes Neurais	
Modelagem de Seleção de candidatos e desempenho de poços tratados com com gel	Naive Bayes	

Produção:

■Muitos dados, modelagem em tempo real através de equipamentos de medição.

TRABALHOS	MÉTODO	
Previsão do breakthrough da água em reservatórios fraturados	SVM	
Previsão da vazão de produção de óleo	ANN, BBN*, Árvores de Decisão	
Estratégias de planejamento de ordenação de testes de produção	Random Forests	
Controle e automação da produção de shale gas	ML e ANN	

□ Perfuração:

Controle de risco, controle das taxas de penetração.

TRABALHOS	MÉTODO	
Simular o desempenho de diferentes tipos de fluidos de perfuração em diferentes condições do ambiente	SVM	
Mapear alvos potenciais de perfuração durante a fase de exploração usando informações de deposição	SVM	
Análise de risco e incertezas no gerenciamento da pressão de perfuração	BBN	
Sistema de previsão de circunstâncias que levam a blow-out	BNN	

- □ Facilidades, remediação e gerenciamento:
 - Melhor entendimento do desempenho de certos equipamentos da plataforma, cronogramas da plataforma e operações corretivas.

TRABALHOS	MÉTODO
Análise de risco para possíveis ataques terroristas a gasodutos	BBN
Previsão de preços de Gás a curto prazo	RNA + SVM
Mapeamento de várias estratégias para gerenciamento de plataformas offshore para reduzir riscos e evitar perdas	BBN

□ Dutos:

Melhor entendimento das condições dos dutos sob diferentes condições, assim como riscos envolvidos.

TRABALHOS	MÉTODO
Sistema de previsão de falha de duto para reduzir intervenção humana	SVM
Planejamento de inspeção ideal para problemas nos dutos	Árvores de decisão + BNN + Algoritmos Genéticos
Verificar a relação de causa-efeito para analisar o risco associado a dutos offshore	BBN

Artigo: Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

https://iogsolutions.com/index.php/blog/item/3-current-trend-ingeosteering-where-are-we-heading

http://www.ukbrocean.coppe.ufrj.br/Eventos data/20080526/Slides.pdf

Geodirecionamento

Geodirecionamento do Poço:

- Controle da direção de um poço baseado nos resultados de medidas de perfis, para manter dentro de uma zona de interesse.
- Quais informações precisamos?
 - Propriedades mecânicas das rochas envolta da broca.

Artigo: Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

■ Dados são coletados em tempo real durante a perfuração. A partir dessas medidas, é possível definir em qual tipo de formação a broca está? Caso ela passe para outra formação, é possível identificar em tempo real?

Artigo: Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Etapa 1: Préprocessamento

Etapa 2: Agrupamento

Etapa 3: Significância Petrofísica

Etapa 4: Previsão da litologia

- Análises estatísticas;
- Remoção de outliers;
- Análise de correlações de variáveis;
- o PCA.

- Identificar eletrofácies a partir das variáveis de RG (raio gama), DT (acústico), RHOB (densidade).
- Métodos: K-means,
 SOMs, clusterização
 hierárquica

- Análise dos 3 diferentes clusters encontrados em termos de mineralogia usando dados de testemunho.
 - Arenito, xisto e calcário.

- Prever as 3 classes do agrupamento, usando ML.
 - Entradas: MWD
 - Saídas: Cluster 1,2 ou 3.

Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Boxplot das variáveis

Distribuições das variáveis

Etapa 1: Pré-processamento

Variables	Correlation Coefficient		
DT/NPHI	0.93		
Pressure/ECD	0.84		
GR/NPHI	0.78		
Temperature/pressure	0.76		
Temperature/ECD	0.49		
Temperature/torque	0.46		
Temperature/(rev/min)	0.43		
Torque/pressure	0.37		
Torque/ECD	0.27		
Torque/mud-flow rate	0.21		

Correlação de Variáveis

Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Cluster 3

Cluster 3

Cluster 1

PC1

Cluster 1

R-means

Cluster 3

Cluster 2

Cluster 1

PC1

A

Cluster 3

Clusterização Hierárquica

Etapa 2: Agrupamento

SOM (self-organizing maps, no português Mapas de Kohonen)

Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Etapa 3: Significância Petrofísica

- Cluster 1: fácies rica em xisto.
- Cluster 2: fácies rica em arenito.
- Cluster 3: fácies rica em calcário/ dolomita.

Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Etapa 4: Previsão da litologia

Variáveis muito parecidas entre clusters. Necessário usar outras técnicas para automaticamente identificar em qual cluster está, a partir das variáveis de entrada.

Variáveis de Perfuração em cada cluster

Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Etapa 4: Previsão da litologia

Technique	Training/Testing	Accuracy	AUC	Kappa	Log Loss
DTo	Training	0.90	0.93	0.79	0.32
DTs	Testing	0.80	0.73	0.51	0.70
Gradient	Training	0.94	0.98	0.89	0.40
boosting	Testing	0.77	0.83	0.49	1.93
Random forest	Training	1.00	1.00	1.00	0.019
	Testing	0.75	0.86	0.46	0.60

Table 4—Accuracy metrics for the different tree-based regression techniques. AUC = area under the ROC curve.

Métricas de avaliação

Matriz de confusão

Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field

Etapa 4: Previsão da litologia

Sites Indicados

Kaggle

https://www.kaggle.com/

Sites Indicados

KDnuggets

https://www.kdnuggets.com/

Sites Indicados

https://archive.ics.uci.edu/ml/index.php

Welcome to the UC Irvine Machine Learning Repository!

We currently maintain 557 data sets as a service to the machine learning community. You may <u>view all data sets</u> through our searchable interface. For a general overview of the Repository, please visit our <u>About page</u>. For information about sets in publications, please read our <u>citation policy</u>. If you wish to donate a data set, please consult our <u>donation policy</u>. For any other questions, feel free to <u>contact the Repository librarians</u>.

Canais Youtube

- LORDE-COPPE / UFRJ:
 - https://www.youtube.com/channel/UCjc2gQvYyYG17T7syO66JgA
- Programação Dinâmica:
 - https://www.youtube.com/c/Programa%C3%A7%C3%A3oDin%C3%A2mica
- StatQuest with Josh Starmer:
 - https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw
- Peixe Babel:
 - https://www.youtube.com/c/PeixeBabel/videos

Referências Bibliográficas

- □ BALAJI, K. et al. Status of Data-Driven Methods and their Applications in Oil and Gas Industry. 2018.
- □ Gupta, I. et al. (2020). Looking Ahead of the Bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field. Society of Petroleum Engineers. doi:10.2118/199882-PA
- □ Hodaway, K R. Harness Oil and Gas Big Data with Analytics. 2014.
- Rasheed A, San O, Kvamsdal T. Digital Twin: Values, Challenges and Enablers. 2019. Disponível em: https://arxiv.org/abs/1910.01719.
- □ Sankaran S, Matringe S, Sidahmed M, et al. Data Analytics in Reservoir Engineering. SPE Technical Report. 2019.