

G22 - 2023/2024

Gustavo Costa - <u>up202004187</u> João Oliveira - <u>up202004407</u> Ricardo Cavalheiro - <u>up202005103</u>

Table of contents

O1 Business
Understanding

Domain Description

O3 Exploratory Data
Analysis

O4 Predictive DM Problem

4.1 Problem Definition

4.2 Data Preparation

4.3 Experimental Setup

05 Conclusions

Business Understanding

Analysis of Requirements with End User

- **Investors** & **stakeholders** are looking for the best teams to invest their funds in order to maximize their returns.
- Teams analysts' want to know which statistics have the most impact in the team performance and also the ones they need to improve at.

Business Understanding

Business Goals

- Successfully predict the playoff qualification of at least 70% of the teams.
- The project must be completed until its due date.

Business Goals > DM Goals

- Building a model to predict whether or not a team will qualify for the playoffs.
- Obtain an accuracy of at least 70% & AUC over 0.8.

Domain Understanding

10 Years Data of WNBA Seasons

- Teams 143 entries
- Players 894 entries
- Players_Teams 1877 entries
- Coaches 163 entries
- Awards_Players 96 entries
- Teams_Post 81 entries
- Series_Post 71 entries

Exploratory Data Analysis

Fig 1 - Target Distribution

Fig 2 - Coaches Playoff
Appearances
Distribution

Exploratory Data Analysis

Fig 3 - Awards
Distribution

Fig 4 - Best Players by Category

0 0 0 0 0 0

Exploratory Data Analysis

Fig 5 - Teams Playoff Appearances

Fig 6 - Players Position
Distribution

0 0 0 0 0 0

Predictive CRISP-DM Problem Definition

Task

- Supervised Learning project (Classification).
- Binary Target.
- Predict whether a team will qualify for the playoffs.
- Balanced dataset.

Experience

- 10 Years of data from the WNBA
- To predict a **specific** year, we will use the data from the **previous years**.

Performance Measure

- We will be using mostly Accuracy & AUC to evaluate our model.
- Kaggle submission results.

Data Preparation

Coaches

- + Regular & Playoff win-rate;
- + Coach_Awards;
- + Num_Playoff appearances.

Teams

- Irrelevant attributes (arena, etc...);
- + Team Rating based on its players;
- + Replaced some features by its success rate; e.g made/attempted;
- + Team Power Ratings based on current Player Ratings;
- + Playoff Rank;
- + Binary Encoding Target Variable.

Players

- Pointless attributes, always the same value (e.g first & lastseason);
- Players without any played game. (338 entries)
- + Low Null % Replace by its mean. (weight & height)

Outliers

- Box plots;
- Not many outliers found;
- Can't really be sure they are real outliers.

Players_Teams

- + Player_Awards;
- + Replaced some features by its success rate; e.g made/attempted;
- + **PER** attribute based on John Hollinger's Player Efficiency Rating formula:
- + Regular & Playoff Rating based on statistics.
- + Combined both Regular & Playoff stats (weighted)

Data Preparation (Ratings)

Feature Importance

 Random Forest feature importance to quantify the impact of each stat on whether a player makes the playoffs.

Regular/Playoff Rating

 Calculated a player rating for each phase of the season (Playoffs and Regular), taking in consideration his statistics and the importance of each.

Final Rating

 Combined both ratings together into a single attribute. (Weighted)

Team Rating

- Teams have **two** ratings;
- One taking into consideration the players are playing the current season;
- The other the players are played the **last** season; (Speaks to if the team normally has good players)

Feature Selection

Correlation Matrix

- Checked for correlation between the continuous attributes;
- Removed highly correlated features.

Recursive Feature Elimination

 Iteratively removes features to see which features generate the best results for each model.

Point-Biserial Correlation

 Removed continuous features with very low correlation to the target.

Force Model Output

• Since only **eight** teams actually qualify for the playoffs, we can force the model to predict only eight **1's**. (The 4 highest probabilities of each conference)

Principal Component Analysis

• Reduces dimensionality by finding new uncorrelated variables.

Models Performance

Average Performance Results Each YEAR is trained with the previous years

Classification Model	Accuracy	AUC
Logistic Regression	0.71	0.69
SVM	0.69	0.69
Random Forest	0.64	0.64
Gradient Boosting	0.60	0.58
KNN	0.56	0.53

Models Performance

Average Performance Results

• Each YEAR is trained with the previous

years

000000

Kaggle Test Year

Submission

TeamID	Playoff
ATL	Υ
CHI	N
CON	N
IND	Υ
LAS	Υ
MIN	Υ
NYL	Υ
PH0	Υ
SAS	Υ
SEA	Υ
TUL	N
WAS	Υ

Conclusions

- The process of understanding and exploring the data was very important in the early phases.
- The data cleaning and preparation made sure that the data was ready for modeling.
- We noted different results in model performance, with Random Forest and Gradient Boosting performing the best.
- The role of feature selection was crucial in improving model results.
- This process involved continuous loops of understanding, preparing, modeling, and refining. (CRISP-DM)
- The results ensured confidence in our ability to accurately predict the teams that will make the playoffs.

05

Fig 10 - Correlation Matrix

HOW TO CALCULATE PER:

[FGM x 85.910

- + Steals x 53.897
- + 3PTM x 51.757
- + FTM x 46.845
- + Blocks x 39.190
- + Offensive_Reb x 39.190
- + Assists x 34.677
- + Defensive_Reb x 14.707
- Foul x 17.174
- FT_Miss x 20.091
- FG_Miss x 39.190
- TO x 53.897]
- x (1 / Minutes)

PER Formula, used to calculate the player rating

Correlation Matrix Pairs > 0.75 correlation

total minutes and total points: 0.89 total minutes and total steals: 0.85 total minutes and total turnovers: 0.90 total_minutes and total_pf: 0.88 total_points and total_turnovers: 0.84 total assists and total minutes: 0.86 total_assists and total_points: 0.83 total assists and total turnovers: 0.82 total assists and total qs: 0.78 total_steals and total_turnovers: 0.76 total pf and total points: 0.79 total_pf and total_steals: 0.76 total pf and total turnovers: 0.83 total_gs and total_minutes: 0.87 total_qs and total_points: 0.79 total qs and total turnovers: 0.77 total_qp and total_minutes: 0.82 total qp and total turnovers: 0.76 total qp and total pf: 0.80 total_drebounds_pct and total_orebounds_pct: -1.00playoff_rank and po_winrate: -0.87 coach po wr and playoff rank: -0.75 coach_po_wr and po_winrate: 0.78 team_rating and winrate: 0.81 team players rating and total minutes: 0.83 team_players_rating and total_points: 0.83 team players rating and total assists: 0.83 team_players_rating and total_turnovers: 0.76

Point Biserial Correlation Test

po_winrate: 45.62% correlation **playoff_rank**: 45.04% correlation

team_players_rating: 39.27% correlation

winrate: 34.91% correlation

coach_po_wr: 32.54% correlation
total_assists: 29.99% correlation
coach_reg_wr: 29.64% correlation
total_points: 28.92% correlation
player_awards: 27.79% correlation
total_blocks: 26.97% correlation
total_minutes: 26.44% correlation
team_rating: 26.39% correlation
total_turnovers: 25.48% correlation

coach_playoffs_count: 24.50% correlation

rank: 24.16% correlation total_gs: 23.08% correlation total_steals: 22.88% correlation total_pf: 21.06% correlation

team_playoffs_count: 19.10% correlation total_drebounds_pct: 14.76% correlation total_orebounds_pct: 14.76% correlation

total_ft_pct: 13.38% correlation coach_awards: 12.93% correlation total_fg_pct: 11.87% correlation total_dq: 11.23% correlation total_gp: 8.83% correlation

total_three_pct: 7.22% correlation

Fig 11 - Random Forest Year 10

Fig 12- Random Forest ROC Curve Year 10

precision recall f1-score support 0.0 1.00 0.75 0.60 1.0 0.80 1.00 0.89 0.85 13 accuracy 0.82 13 macro avg weighted avg 0.88 0.85 0.84 13

Fig 13 - Logistic Regression Year 10

Fig 14 - Logistic Regression ROC Curve Year 10

Fig 15 - SVM Year 10

Fig 16 - SVM ROC Curve Year 10

Fig 17 - Gradient Boosting Year 10

Fig 18 - Gradient Boosting ROC Curve Year 10

Fig 19 - KNN Year 10

Fig 20 - KNN ROC Curve Year 10

