Model building

Cross validation
Prof. Dr. Jan Kirenz

The following content is based on Mine Çetinkaya-Rundel's excellent book Data Science in a Box

Data and exploration

Data

```
office_ratings <- read_csv("data/office_ratings.csv")
office_ratings</pre>
```

```
## # A tibble: 188 x 6
##
     season episode title
                                 imdb rating total votes air date
     <dbl>
           <dbl> <chr>
                                       <dbl>
                                                  <dbl> <date>
##
## 1
                 1 Pilot
                                        7.6
                                                   3706 2005-03-24
## 2
                 2 Diversity Day
                                        8.3
                                                   3566 2005-03-29
                 3 Health Care
                                                   2983 2005-04-05
## 3
                                        7.9
                                        8.1
## 4
                 4 The Alliance
                                                   2886 2005-04-12
                 5 Basketball
                                                   3179 2005-04-19
                                        8.4
## 5
## 6
                 6 Hot Girl
                                        7.8
                                                   2852 2005-04-26
## # ... with 182 more rows
```

Source: The data come from data.world, by way of TidyTuesday.

IMDB ratings

Code Plot

```
ggplot(office_ratings, aes(x = imdb_rating)) +
  geom_histogram(binwidth = 0.25) +
  labs(
    title = "The Office ratings",
    x = "IMDB Rating"
)
```

IMDB ratings vs. number of votes

Code Plot

```
ggplot(office_ratings, aes(x = total_votes, y = imdb_rating, color = season)) +
  geom_jitter(alpha = 0.7) +
  labs(
    title = "The Office ratings",
    x = "Total votes",
    y = "IMDB Rating",
    color = "Season"
)
```

Outliers

Code Plot

```
ggplot(office_ratings, aes(x = total_votes, y = imdb_rating)) +
  geom_jitter() +
  gghighlight(total_votes > 4000, label_key = title) +
  labs(
    title = "The Office ratings",
    x = "Total votes",
    y = "IMDB Rating"
)
```

If you like the Dinner Party episode, I highly recommend this "oral history" of the episode published on Rolling Stone magazine.

IMDB ratings vs. seasons

Code Plot

```
ggplot(office_ratings, aes(x = factor(season), y = imdb_rating, color = season)) +
   geom_boxplot() +
   geom_jitter() +
   guides(color = FALSE) +
   labs(
      title = "The Office ratings",
      x = "Season",
      y = "IMDB Rating"
   )
```

Modeling

Train / test

Create an initial split

```
set.seed(1122)
office_split <- initial_split(office_ratings) # prop = 3/4 by default</pre>
```

Save training data

```
office_train <- training(office_split)
dim(office_train)</pre>
```

```
## [1] 141 6
```

Save testing data

```
office_test <- testing(office_split)
dim(office_test)</pre>
```

[1] 47 6

Specify model

Computational engine: lm

```
office_mod <- linear_reg() %>%
   set_engine("lm")

office_mod

## Linear Regression Model Specification (regression)
##
```

Build recipe

Code Output

```
office_rec <- recipe(imdb_rating ~ ., data = office_train) %>%
  # title isn't a predictor, but keep around to ID
  update_role(title, new_role = "ID") %>%
  # extract month of air_date
  step_date(air_date, features = "month") %>%
  step_rm(air_date) %>%
  # make dummy variables of month
  step_dummy(contains("month")) %>%
  # remove zero variance predictors
  step_zv(all_predictors())
```

Build workflow

Code Output

```
office_wflow <- workflow() %>%
  add_model(office_mod) %>%
  add_recipe(office_rec)
```

Fit model

Code Output

```
office_fit <- office_wflow %>%
  fit(data = office_train)
```

Evaluate model

Make predictions for training data

```
office_train_pred <- predict(office_fit, office_train) %>%
  bind_cols(office_train %>% select(imdb_rating, title))
office_train_pred
```

R-squared

Percentage of variability in the IMDB ratings explained by the model

Are models with high or low R^2 more preferable?

RMSE

An alternative model performance statistic: root mean square error

$$RMSE = \sqrt{rac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{n}}$$

```
rmse(office_train_pred, truth = imdb_rating, estimate = .pred)
```

Are models with high or low RMSE are more preferable?

Interpreting RMSE

Is this RMSE considered low or high?

```
rmse(office_train_pred, truth = imdb_rating, estimate = .pred)
## # A tibble: 1 x 3
##
    .metric .estimator .estimate
##
    <chr> <chr> <dbl>
## 1 rmse standard 0.350
office_train %>%
  summarise(min = min(imdb_rating), max = max(imdb_rating))
## # A tibble: 1 x 2
##
      min max
## <dbl> <dbl>
## 1 6.8 9.7
```


Make predictions for testing data

```
office_test_pred <- predict(office_fit, office_test) %>%
   bind_cols(office_test %>% select(imdb_rating, title))

office_test_pred

## # A tibble: 47 x 3
## .pred imdb_rating title
```

Evaluate performance on testing data

RMSE of model fit to testing data

• R^2 of model fit to testing data

```
rsq(office_test_pred, truth = imdb_rating, estimate = .pred)
```

Training vs. testing

metric	train	test	comparison
RMSE	0.350	0.482	RMSE lower for training
R-squared	0.533	0.496	R-squared higher for training

Evaluating performance on training data

- The training set does not have the capacity to be a good arbiter of performance.
- It is not an independent piece of information; predicting the training set can only reflect what the model already knows.
- Suppose you give a class a test, then give them the answers, then provide the same test.
 The student scores on the second test do not accurately reflect what they know about the subject; these scores would probably be higher than their results on the first test.

Source: tidymodels.org

Cross validation

Cross validation

More specifically, **v-fold cross validation**:

- Shuffle your data v partitions
- Use 1 partition for validation, and the remaining v-1 partitions for training
- Repeat v times

You might also heard of this referred to as k-fold cross validation.

Cross validation

Split data into folds

```
set.seed(345)

folds <- vfold_cv(office_train, v = 5)
folds

## # 5-fold cross-validation</pre>
```


Fit resamples

```
set.seed(456)
 office fit rs <- office wflow %>%
  fit resamples(folds)
office fit rs
## # Resampling results
## # 5-fold cross-validation
## # A tibble: 5 x 4
    splits
                     id .metrics
##
                                             ■ nd
   st>
##
## 1 <split [112/29]> Fold1 <tibble [2 × 4]> <tibble [0 × 1]>
## 2 <split [113/28] > Fold2 <tibble [2 \times 4] > <tibble [0 \times 1] >
## 3 <split [113/28]> Fold3 <tibble [2 \times 4]> <tibble [0 \times 1]>
## 4 <split [113/28] > Fold4 <tibble [2 \times 4] > <tibble [0 \times 1] >
## 5 <split [113/28] > Fold5 <tibble [2 \times 4] > <tibble [0 \times 1] >
```

Collect CV metrics

```
collect_metrics(office_fit_rs)
```

Deeper look into CV metrics

<chr>

standard

##

##

##

##

##

##

##

##

<chr> <chr>

1 Fold1 rmse

2 Fold1 rsa

3 Fold2 rmse

5 Fold3 rmse

7 Fold4 rmse

9 Fold5 rmse

4 Fold2 rsq

6 Fold3 rsa

8 Fold4 rsq

10 Fold5 rsq

```
Raw Tidy

collect_metrics(office_fit_rs, summarize = FALSE) %>%
  print(n = 10)

## # A tibble: 10 x 5
## id .metric .estimator .estimate .config
```

0.399 Preprocessor1_Model1

0.449 Preprocessor1_Model1

0.306 Preprocessor1_Model1
0.749 Preprocessor1 Model1

0.438 Preprocessor1_Model1

0.390 Preprocessor1_Model1

0.419 Preprocessor1 Model1

0.280 Preprocessor1 Model1

0.327 Preprocessor1 Model1

0.344 Preprocessor1 Model1

<dbl> <chr>

How does RMSE compare to y?

Cross validation RMSE stats

```
## # A tibble: 1 x 6
## min max mean med sd IQR
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 0.306 0.438 0.378 0.399 0.0581 0.0918
```

Training data IMDB score stats

```
## # A tibble: 1 x 6
## min max mean med sd IQR
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 0.700
```

What's next?