Model checking based validation of cyber-physical systems

Partha Roop, Avinash Malik, Sidharta Andalam

December 2016

www.pretzel.ece.auckland.ac.nz/bio

Outline

- Acknowledgements
- 2 Introduction
- Mathematical models
- Specification/properties
 - Temporal Logics
 - Semantics
- Model checking algorithm
- 6 Illustration
- Timed Automata and Uppaal
- 8 The Cardiac Pacemaker Verification

Some acknowledgements

- Tony Zhao, Nathan Allen (Auckland University) for their joint work with me on pacemaker modelling and validation.
- Uppaal model checking tools: http://www.uppaal.org.
- For CTL model checking, I am using chapter 3 of a Springer book I co-authored [3].
- The pacemaker case study is based on the TACAS 2012 paper from Upenn authors [2].
- The Uppaal models used in this course is join work with my ME student Tony Zhao [4]. These are developed by adapting [2].

Learning outcomes

- Students will appreciate the validation of a closed loop system comprising of timed automata models of the heart and pacemaker using model checking.
- Students will understand the modelling of a pacemaker using timed automata and Uppaal.

What is Verification?

The process of checking whether a system (software or hardware) conforms to or violates a pre-specified set of desired properties (often referred to as the requirements) is called *verification*. Methods used include:

- design review and code inspection
- (semi-)automated analysis of system.
- testing and automatic test case generation.
- model based testing.

Of these, testing is usually referred to as verification.

Formal verification

The techniques in the previous slide (usually based on testing) *try to find the presence of errors*. For safety critical systems, we need to prove the absence of certain errors. Formal verification techniques employ a method of proof over mathematical models of systems to *prove the absence of certain errors*.

```
while 1 do
  Mutexbegin::
  need[me] = true;
  while need[other] do
    if turn!= me then
        need[me]=false;
    endif
  endwhile

    critical section

  -code of critical section here -
  Mutexend::
  need[me]=false;
  turn=other;
endwhile
```

Desired properties

- Mutual exclusion no two processes can enter the critical section simultaneously. [safety property]
- Deadlock freedom processes are able to make progress. [liveness property]
- Eventual entry every requesting process will be able to enter the critical section eventually. [fairness property]

Design or Property Verification

Given:

- A Model of the Design, M.
- A property (expressed in a suitable logic).

Some method of proof is employed to check if the model *satisfies* the property. Two common methods of proof are *theorem proving* and *model checking*.

Requirements

- Mathematical Model of the design.
- 2 Language to express properties mathematically.
- A Method of proof.

We will concentrate on *model checking* as a method of proof. Model checking is an algorithmic and fully automated method of proof for *finite* models of systems. Hence, it is an ideal tool for engineers.

Mathematical Model

A mathematical model of concurrent systems (such a digital hardware) is a *Kripke structure* (a finite state machine variant ideal for formal proof).

Definition (Kripke Structure)

A Kripke Structure (KS) is defined as a tuple $\langle AP,S,s_0,T,L\rangle$ where AP is the set of atomic propositions, S is the set of states with s_0 being an unique start state, $T\subseteq S\times S$ is the set of transition/edge relations between two states and $L:S\to 2^{AP}$ is the labeling function mapping each state to a set of atomic propositions AP that holds at that state. We denote a transition $(s_1,s_2)\in T$ as $s_1\to s_2$.

Definition (Path)

A path in a KS M starting from a state s is an infinite sequence of states $\pi = s_o s_1 s_2 \dots$ such that $(s_i, s_{i+1}) \in T$ holds for all $i \geq 0$.

11 / 55

Example: Model of a Traffic Light Controller

Let $C = \{r, y, g\}$. Then, the state space of the controller is given by $S = C \times C$.

Logic Based Verification

Requirements

- Mathematical Model of the design.
- 2 Language to express properties mathematically.
- A Method of proof.

Mathematical Logic

Logic provides the the basis of verification methods. Like a programming language, a logic combines *syntax*, dictating how to write legal formulas, with *semantics*, which provide precise meaning to each formula.

Mathematical logic formalizes the notion of proof.

Logics may be classified as either:

- Static Logics: The semantics of such logics remain fixed over time. Examples: propositional and predicate logic.
- ② Dynamic Logics: Semantics of such logics evolve with time. Example: Modal logics such as temporal logics.

Propositional Logic

- A set of propositions.
- A set of *connectives* $\{\land, \lor, \neg, \Rightarrow\}$.

Definition: Formula:

- Every proposition is a formula.
- If p is a formula then so is $\neg p$.
- If p, q are formulae then so are $(p \land q)$, $(p \lor q)$ and $(p \Rightarrow q)$.

Example:

$$((((p \Rightarrow q) \land (q \lor r)) \Rightarrow (p \lor r)) \Rightarrow \neg (q \lor s))$$

Interpretation / Semantics

An interpretation assigns truth values to propositions appearing in the formula and then evaluates it.

Р	Q	Implication
F	F	Т
F	Т	Т
T	F	F
Т	Т	Т

Table: Semantics of the "material implication"

Limitations

A major limitation of propositional logic is poor expressibility due to the lack of variables and quantification.

- Today is a cloudy day. Needs variables.
- All cats are black. Needs variables and quantification (universal quantifier).
- Some dogs are not black. Needs variables and quantification (existential quantifier).

Specification using Temporal Logics

Propositional and predicate logic are unsuitable to describe properties of dynamic systems (such as reactive systems). Temporal logic is a formalism for describing sequences of transition between states in a reactive system [1].

- Linear Temporal Logics: Time is considered as a linearly ordered set, measuring it either with real or natural numbers. Example: LTL.
- ② Branching Time Logics: The temporal order defines a tree which branches towards the future. Example: CTL, ACTL, CTL*.

Computation Tree

A computation tree is an infinite tree starting from a given state of a Kripke model. The tree is obtained by unwinding the model.

Example:

A computation tree starting at node (r, r) of the traffic light example:

Computation Tree Logic (CTL)

CTL formulas are defined over *paths* of a given infinite computation tree.

Temporal Operators:

- X, the next time operator: this requires that a property holds in the second state of a given path.
- F, the eventually or in the future operator: this requires that a property hold in a future state of a given path.
- \odot G, the always or the globally operator: this requires that a property hold along every state of a path.
- **1** U, the until operator: it requires two properties (p_1Up_2) and requires that there is a state on the path where p_2 holds and that p_1 must hold along every preceding state.

Path Quantifiers:

- E, the existential path quantifier.
- ② A, the universal path quantifier.

CTL Syntax

State and Path Formulae

CTL formulas is the set of all *state formulas* generated by the following definition.

Definition (State Formulae)

- If $p \in AP$ then p is a state formula.
- If φ_1 and φ_2 are state formulae, then $\neg \varphi_1, (\varphi_1 \lor \varphi_2), (\varphi_1 \land \varphi_2)$ are also state formulae.
- If φ is a path formula then $\mathbf{E}\varphi$ and $\mathbf{A}\varphi$ are also state formulas, where path formula are defined below.

Definition (Path Formulae)

If φ_1 and φ_2 are *state* formulae then $X\varphi_1$, $F\varphi_1$, $G\varphi_1$, $(\varphi_1 \ U \ \varphi_2)$ are path formulae.

Examples

- Every request is eventually acknowledged: $AG(reg \Rightarrow AFack)$.
- ② Along all computation paths in the future, GATE is high: AFgate.
- Safety Property: Red light is shown to at least one direction all the time:

$$AG([ns = r] \vee [ew = r]).$$

Liveness Property: Any direction will always eventually see the green light:

$$AG(AF[ns = g]) \wedge AG(AF[ew = g]).$$

Example CTL Property

AG(EFp)

Semantics

Semantics for CTL state property: $\varphi \to \text{true} \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists \psi \mid \exists \psi$

$$\begin{split} & \| \mathbf{true} \|_M = S \\ & \| p \|_M = \{ s \mid p \in L(s) \} \\ & \| \neg \phi \|_M = S - \| \phi \|_M \\ & \| \phi_1 \lor \phi_2 \|_M = \| \phi_1 \|_M \cup \| \phi_2 \|_M \\ & \| \mathbf{E} \psi \|_M = \{ s \mid \exists \pi \in \mathsf{PATH}(s) : \ \pi \in \| \psi \|_M \} \\ & \| \mathbf{A} \psi \|_M = \{ s \mid \forall \pi \in \mathsf{PATH}(s) : \ \pi \in \| \psi \|_M \} \end{split}$$

where

Semantics of Path Property: $\psi \rightarrow X\phi \mid F\phi \mid G\phi \mid \phi \cup \phi$

$$\begin{split} & \| \mathbf{X} \boldsymbol{\varphi} \|_{M} = \{ \boldsymbol{\pi} \mid \boldsymbol{\pi}[1] \in [\![\boldsymbol{\varphi}]\!]_{M} \} \\ & \| \mathbf{F} \boldsymbol{\varphi} \|_{M} = \{ \boldsymbol{\pi} \mid \exists i \geq 0 : \boldsymbol{\pi}[i] \in [\![\boldsymbol{\varphi}]\!]_{M} \} \\ & \| \mathbf{G} \boldsymbol{\varphi} \|_{M} = \{ \boldsymbol{\pi} \mid \forall i \geq 0 : \boldsymbol{\pi}[i] \in [\![\boldsymbol{\varphi}]\!]_{M} \} \end{split}$$

$$[\![\varphi \cup \varphi_2]\!]_M = \{ s \mid \exists j \geq 0 : \pi[j] \in [\![\varphi_2]\!]_M \ \land \ \forall i < j : \pi[i] \in [\![\varphi_1]\!]_M \}$$

Adequate sets

The 8 basic CTL operators (AX, EX, AF, EF, AG, EG, AU, EU) can all be expressed in terms of EX, EG, EU.

- $AXf = \neg EX(\neg f)$.
- $AFf = \neg EG(\neg f)$.
- $AGf = \neg EF(\neg f)$.
- $A[fUg] = \neg E[\neg gU(\neg f \land \neg g)] \land \neg EG \neg g].$
- EFf = E[trueUf].

Logic Based Verification

Requirements

- Mathematical Model of the design.
- 2 Language to express properties mathematically.
- A Method of proof.

Model Checking Problem

Definition (Model Checking)

Given a KS instance M and a CTL property φ , determine a $S' \subseteq S$ such that $S' = \{s \mid M, s \models \varphi\}$. We say that $M \models \varphi$ iff $s_0 \in S'$. In this case, we say that the model satisfies the property.

Model Checking Algorithm

The algorithm works iteratively, labeling the states of M with sub-formulas in f that are true in a given state. Initially, label(s) = L(s).

In the ith stage of the algorithm, sub-formulas with (i-1) nested CTL operators are processed. When a given sub-formula is processed, it is added to the labeling of state s if it holds in s.

Once the algorithm terminates, we have $M, s \models f$ if $f \in label(s)$.

Example of nesting:

Let f = AF(EX[ew = g]). This can be rewritten as: $\neg EG[\neg EX(ew = g)]$ The nesting of CTL operators in the above formula is:

- i=1: (ew = g)
- i=2: EX(ew = g)
- i=3: $\neg EX(ew = g)$
- Let $q = \neg EX(ew = g)$
- i=4: *EGq*
- i=5: ¬*EGq*

Case Based Algorithm

Since all CTL formulas can be expressed using \neg , \lor , \land , EX, EG, EU there are 6 cases to handle:

- 1 g: an atomic proposition.
- \bigcirc $\neg f_1$
- **3** $f_1 \vee f_2$
- \bullet EXf_1
- EGf₁

Labeling Procedure

- For formulas of the form $g = \neg f_1$, we label all states that are not labelled by f_1 .
- For formulas of the form $g=f_1\vee f_2$, we label all states that are labelled by either f_1 or f_2 .
- For formulas of the form $g = EXf_1$, we label all states that have some successor labelled by f_1 .
- For formulas of the form $g = E[f_1 U f_2]$, we apply algorithm $checkEU(f_1, f_2)$.
- For formulas of the form $g = EGf_1$, we apply algorithm $checkEG(f_1)$.

checkEU()

```
procedure checkEU(f_1, f_2)
T := \{s | f_2 \in label(s)\}
for each s \in T do
  label(s) := label(s) | | \{E[f_1 Uf_2]\};
endfor
while T \neq \phi do
  choose s \in T:
  for all t such that R(t,s) do
     if E[f_1Uf_2] \notin label(t) and f_1 \in label(t) then
         label(t) := label(t) \bigcup \{E[f_1 U f_2]\};
        T := T | |\{t\}|
     endif
  endfor
endwhile
end procedure
```

Example

Basics for checkEG()

This algorithm is based on decomposition of M's graph into nontrivial strongly connected components.

Definition:

A strongly connected component (SCC) C is a maximal subgraph such that every node in C is reachable from every other node in C along a directed path entirely contained within C. C is nontrivial iff it has more than one node or it contains one node with a self loop.

Basis for the checkEG algorithm

For the algorithm, we construct a structure

M'(S', R', L') from M as follows:

- $P' = R|_{S' \times S'}$

The algorithm depends on the following lemma.

Lemma:

 $M, s \models EGf_1$ iff the following conditions are satisfied:

- ② There exists a path in M' that leads from s to some node t in a nontrivial SCC C of the graph (S', R').

checkEG()

```
procedure checkEG(f_1)
//subgraph creation
S' := \{s | f_1 \in label(s)\}
SCC = \{C | C \text{ is a nontrivial SCC of } S'\}
//group all nodes in any nontrivial SCC
//which already satisfy f_1
T := \bigcup_{C \in SCC} \{s | s \in C\}
for each s \in T do
  label(s) := label(s) \bigcup \{EGf_1\};
endfor
while T \neq \phi do
  choose s \in T;
   T := T \setminus \{s\};
  //perform backward reachability from members of T
  for all t such that t \in S' and R(t, s) do
     if EGf_1 \notin label(t) then
          label(t) := label(t) \bigcup \{EGf_1\};
        T := T \bigcup \{t\};
     endif
  endfor
endwhile
end procedure
```

Example

Example of Traffic Light Controller

Let f = AF(EX[ew = g]). This can be rewritten as: $\neg EG[\neg EX(ew = g)]$ The nesting of CTL operators in the above formula is:

- i=1: (ew = g)
- i=2: EX(ew = g)
- i=3: $\neg EX(ew = g)$
- Let $q = \neg EX(ew = g)$
- i=4: *EGq*
- i=5: ¬EGq

Example..

step i=1

39 / 55

(University of Auckland) GIAN course 2016

step i=2

step i=3

(University of Auckland) GIAN course 2016 41 / 55

step i=4

Example..

step i=5

43 / 55

Real-time systems using Timed Automata

- Real-time systems are modelled using timed automata (TA), which capture a sub-class of hybrid systems.
- TA: The progression of time is captured using a set of real-valued clocks.
- All clocks progress at the same rate i.e. $\dot{t}=1$ for any clock t.

Definition (Clock constraints)

Let $x,y,... \in \mathcal{C}$ denote clocks and let $a,b,... \in \Sigma$ denote actions. Let $\sim \in \{\leq,<,=,>,\geq\}, n \in \mathbb{N}$. Then, a clock constraint is of the form $x \sim n$ or $x-y \sim n$.

Definition (Timed Automaton (TA))

A timed automaton A is defined as a tuple $\langle N, I_0, E, I \rangle$ where:

- N is a finite set of locations, also called nodes,
- $I_0 \in N$ is the initial location.
- $E \subseteq N \times \mathcal{B}(\mathcal{C}) \times \Sigma \times 2^{\mathcal{C}} \times N$ is the set of edges and,
- $I: N \longrightarrow \mathcal{B}(\mathcal{C})$ assigns invariants to locations.

We denote a transition $\langle I, g, a, r, I' \rangle \in E$ as $I \xrightarrow{g,a,r} I'$.

Types of states and transitions in Uppaal

Locations	Descriptions
Normal	Normal locations are used for describing commonly used states, in which time ticks unless instantaneous transitions take place.
Intial	<i>Initial</i> locations. The start of an automaton is this location.
C Committed	Committed locations. When in the committed location, the only possible transition is always the one going out of the committed state. The committed location has to be left immediately.

Transitions	Descriptions
? (input) Broadcast Channels	Broadcast channels are used for synchronization in a one-producer-multiple consumer situation, and commonly seen in the automata network.
x >= n Clock Gurads	Clock guards are used for describing clock-driven transitions.

(University of Auckland) GIAN course 2016 46 / 55

The Random Heart Model

- The random heart model generates H_APulse, H_VPulse randomly in the interval [Minwait, Maxwait].
- Progression of time modelled using real-valued clock variables Clock1, Clock2.
- Invariants introduce fairness i.e. locations have to be exited before invariants become false.

The human heart – a real-time system

^aZhao and Roop, "Model Driven Design of Cardiac Pacemakers using IEC61499, CRC Press, 2015".

4□ > 4□ > 4□ > 4□ > 4□ > 4□

The closed-loop pacing system

^aZhao and Roop, "Model Driven Design of Cardiac Pacemakers using IEC61499, CRC Press, 2015".

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

49 / 55

Overall Uppaal Model – VVI Mode

Monitors and TCTL properties

- A monitor is a timed automaton that observe the system execution to reach a specific "location". A clock is used to measure the time lapse from some initial event to a final event when this location is reached.
- For example, in the LRI monitor, we measure the time lapse between any two consecutive ventricular events using a clock called *t*. In this example, we reach a specific "committed location", called Detected.
- Then we verify the TCTL property:
 A[] (Monitor_LRI.Detected imply Monitor_LRI.t <= TLRI)

DDD mode - timing diagram

- 4 ロ ト 4 昼 ト 4 佳 ト - 佳 - り 9 (P

^aZhao and Roop, "Model Driven Design of Cardiac Pacemakers using IEC61499, CRC Press, 2015".

Next: Uppaal Demo

- I will demo the Uppaal tool.
- We will discuss the VVI and DDD modes of the pacemaker.

Conclusions

- In this lecture we learnt about temporal logic, CTL.
- We learnt about explicit state model checking.
- We learnt about how to extend the approach for the verification of timed systems.
- We learnt about TCTL model checking using Uppaal.
- We present the verification of VVI and DDD modes using Uppaal.

Next lecture

- From timed to hybrid system modelling using hybrid automata.
- ② Cardiac cell modelling and associated detailed and abstract models.
- Modelling of the cardiac conduction system.
- Forward and backward conduction.
- Demonstration using Simulink.

- E. M. Clarke, Orna Grumberg, and Doron A. Peled. *Model Checking*.
 The MIT Press. 1999.
- Zhihao Jiang, Miroslav Pajic, and Rahul Mangharam. Cyber–physical modeling of implantable cardiac medical devices. Proceedings of the IEEE, 100(1):122–137, 2012.
- Roopak Sinha, Parthasarathi Roop, and Samik Basu. Correct-by-construction approaches for SoC design. Springer, 2014.
 - Yu Zhao and Partha S Roop.

 Model-driven design of cardiac pacemaker using IEC 61499 function blocks.

Distributed Control Applications: Guidelines, Design Patterns, and Application Examples with the IEC 61499, 9:335, 2016.