EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the <u>Privacy Policy</u>.

Course > Week 10 > Practic... > Q3: X-V...

Q3: X-Values

Problem 3: X Values

Part 1

6/6 points (ungraded)

Instead of the Bellman update equation, consider an alternative update equation, which learns the X value function. The update equation, assuming a discount factor $\gamma = 1$, is shown below:

$$X_{k+1}\left(s
ight) \leftarrow \max_{a} \sum_{s'} T\left(s, a, s'
ight) \left[R\left(s, a, s'
ight) + \max_{a'} \sum_{s''} T\left(s', a', s''
ight) \left[R\left(s', a', s''
ight) + X_{k}\left(s''
ight)
ight]
ight]$$

Assuming we have an MDP with two states, S_1, S_2 and two actions, a_1, a_2 , select the expectimax tree rooted at S_1 that corresponds to the alternative update equation

Submit

✓ Correct (6/6 points)

Part 2

6/6 points (ungraded)

Select the mathematical relationship between the X_k -values learned using the alternative update equation and the V_k -values learned using a Bellamn update equation.

$$\quad \quad \bigcirc \ \, X_{k}\left(s\right) =V_{k+1}\left(s\right)$$

$$\bigcirc \ X_{k+1}\left(s\right) =V_{k}\left(s\right)$$

$$\bigcirc \ \, X_{k}\left(s\right) =V_{k+2}\left(s\right)$$

$$\bigcirc X_{k+2}\left(s\right) =V_{k}\left(s\right)$$

$$\circ \ X_{k}\left(s
ight) =V_{k}\left(s
ight)$$

$$ullet X_k\left(s
ight) = V_{2k}\left(s
ight) imes$$

$$\bigcirc \ \ X_{2k}\left(s\right) =V_{k}\left(s\right)$$

$$\bigcirc X_{k}\left(s
ight) =V_{k}\left(s
ight) +V_{k+1}\left(s
ight)$$

$$\circ \ X_{k}\left(s
ight) =V_{k}\left(s
ight) +V_{k}\left(s^{\prime }
ight)$$

Submit

✓ Correct (6/6 points)

© All Rights Reserved