Introduction to Computer Science Lecture 10: Artificial Intelligence

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)

Department of Electrical Engineering

National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

【本著作除另有註明外,採取<u>創用CC「姓名標示</u> 一非商業性—相同方式分享」台灣3.0版授權釋出】

What is AI?

Cognitive Science 認知科學

LogicistIs that human?

Think like humans	Think rationally
Act like humans	Act rationally

圖靈 Turing (1950) Test

Eliza: chayden.net/eliza/Eliza.html www.jabberwacky.com

Natural language processing Knowledge representation Automated reasoning Machine learning Rational Agent

Strong AI vs. Weak AI

- Weak Al
 - Machines can be programmed to exhibit intelligent behavior.
- Strong AI
 - Machines can be programmed to possess intelligence and consciousness.
- John Searle's Chinese room argument.

Levels of Intelligent Behaviors

- Reflex: actions are predetermined responses to the input data
- More intelligent behavior requires knowledge of the environment and involves such activities as:
 - Goal seeking
 - Learning

Research Approaches in Al

- Performance oriented
 - Engineering track
 - To maximize the performance of the agents.
- Simulation oriented
 - Theoretical track
 - To understand how the agents produce responses.

Understanding Images

- Template matching
- Image processing
 - edge enhancement
 - region finding
 - smoothing
- Image analysis
 - Hough transformation (line, circles)

Natural Language Processing

● Syntactic analysis 競技分析

- Mary gave John a birthday card. Subject: Mary

- John got a birthday card. Subject: John

- Semantic analysis, contextual analysis 語意分析
 - John drove me home.
 - John drove me crazy.
 - The pigpen was built by the barn.
 - The pigpen was built by the farmer.
 - Do you know what time it is?

Natural Language Processing (contd.)

- Information retrieval / extraction
 - I've got a solution to your problem.
 - Shoot.
 - Right.
 - How was your date last night?
 - He/She has a good personality.
 - You can count on me.
 - Ya, right. That's comforting.

Reasoning

- Production systems
 - Collection of states including initial state & goal state(s)
 - Collection of productions: rules or moves
 - Each production may have preconditions
 - Control system: decides which production to apply next
- Recall prolog
- Similar to finite state automata

Search a Production System

Computer Game Playing

- Let's meet an old friend
 - Tic-tac-toe

0	0	×
	×	
	×	

Game Tree & Minimax Search

Heuristic

- For most games, a complete search is practically impossible.
 - Chess $\sim 10^{47}$; Chinese chess $\sim 10^{48}$; Go $\sim 10^{171}$
- A quantitative estimate of the distance to a goal is needed.

Artificial Intelligence

- Requirements for good heuristics
 - Much easier to compute than a complete solution
 - Reasonable estimate of proximity to a goal

Let's Define a Heuristic

XX_{-}	100
X	10
	0
OX*	0
O	-10
00_	-100

0	0	×
	×	
	×	

$$0+10+10-10+0+10+0+100 = 120$$
The board favors X

Does It Work?

This is the best choice for O based on our heuristic.

How About This?

What's Wrong?

- Heuristics are not perfect
 - Otherwise, we'd call them solutions
- Heuristics are usually more accurate toward the end of the game.
- Need some search procedure for more accurate estimation.

Heuristic + Minimax Search

Alpha-Beta Pruning

Learning

- Supervised vs. unsupervised
- Supervised
 - Learning by provided examples
 - Imitation
 - Parameter tuning
- Unsupervised
 - Learning by experiences
 - Reinforcement
 - Evolutionary (semi-supervised)

Artificial Neural Networks

- Human brain
 - 10¹¹ neurons
 - 10¹⁴ synapses

Perceptron

1 iff greater than or equal to the threshold

Some Building Blocks

AND

OR

SIGN

$$\begin{array}{cccc} x & \longrightarrow & \boxed{1} \\ y & \longrightarrow & \boxed{1} \end{array} 1.5 \qquad --$$

$$\begin{array}{cccc}
x & \longrightarrow & \boxed{1} \\
y & \longrightarrow & \boxed{1}
\end{array}$$
 0.5 \longrightarrow

$$x \rightarrow \boxed{1} \boxed{0} -$$

Some Examples

The XOR Problem

Associative Memory

Content addressable

How Does It Work

Step 2: The top and bottom units become excited

Final: All the units on the perimeter are excited

Example

BAM applet: http://www.cbu.edu/~pong/ai/bam/bamapplet.html

Darwin's Theory of Evolution

- Evolution
 - The change in populations of organisms over generations.
- Darwin's idea: Natural selection
 - Struggle to survive
 - Survival of the fittest
 - Genetic variation: inherited traits

Black-Box Optimization 黑盒子最佳化問題

- Finding the x that yields the highest y with an unknown f
- Evolving the giraffe that is the fittest in an unknown environment.
- Instead of finding a solution, let's evolve a solution.

(1+1) Evolutionary Strategy

- Simplest evolutionary strategy
- One parent: n-dimension real vector, $P = (p_1, ..., p_n)$
- Generate one child by mutation: $C = (c_1, ..., c_n)$

-
$$c_i = p_i + N(0, \sigma^2)$$

- Replace P by C if C is better.
- Modify σ according to the replacement rate r.
 - One fifth rule

1/5 Rule Intuition

- $\sigma \leftarrow \sigma/C^{1/n}$, if $r > \Theta$
- $\sigma \leftarrow \sigma \cdot C^{1/n}$, if $r < \Theta$
- If replacement rate high, not exploring enough \rightarrow increase step size.
- If replacement rate low, too daring → reduce step size.

Visualization of 1/5 Rule

Training NN with (1+1)ES

5 neurons, 17 parameters++++

License

Page	File	Licensing	Source/ author
28	B 2 : 2:	OC	"BAM applet".,Author:kmalasri@hotmail.com, Source: http://dilbert.com/strips/comic/1996-05-02/, Date:2013/03/06, Fair use under copyright law 46,52,65.
6		© 00 N SA	"Edge detection applied to a photograph"., Author:JonMcLoone, Source: http://en.wikipedia.org/wiki/ File:EdgeDetectionMathematica.png, Date:2013/03/06, This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

