Graph Neural Networks for Identification of Robust Biomarkers from Multi-Omics Data

Lukáš Růžička

Datasets

5 datasets:

- allRNA 58216 features
- circRNA 51018 features
- miRNA 2553 features
- piTNA 556 features
- TE 687 features
- Data complete for 66 subjects

Classification tasks

Disease

- Binary classification
- Class imbalance (7/59)

Risk, Mutation

- # classes = 3

Baseline models

- Multinomial logistic regression
 - L1 regularization
- Support vector classifier
 - Recursive feature elimination
- Gradient boosting classifier
 - Gini importance (impurity-based feature selection)

Baseline classification

Classification performed on:

- Each omic type individually
- Joint dataset
- For each task, 5 iterations with 6-k cross-validation
- Feature selection performed for 4 different settings of selection "strength"
 - LR → C (inverse of lambda in Lasso)
 - SVC, GBC → n (number of highest ranking features)

Baseline results (joint only)

	classifier	parameter	precision	recall	F-1
Disease	MLR	C = 0.6	0.80 +00	0.84 +00	0.84 +00
	SVC	Number of features = 100	0.94 +00	0.94 +00	0.93 +00
	GBC	Number of features = 20	0.98 +01	0.98 +01	0.99 +01
Risk	MLR	C = 1	0.36 +00	0.45 +00	0.35 +00
	SVC	Number of features = 100	0.91 +00	0.89 +00	0.89 +00
	GBC	Number of features = 10	0.86 +02	0.84 +02	0.84 +02
Mutation	MLR	C = 0.8	0.39 +00	0.62 +00	0.48 +00
	SVC	Number of features = 100	0.86 +00	0.82 +00	0.80 +00
	GBC	Number of features = 100	0.91 +03	0.90 +02	0.90 +03

MOGONET performance

- Tested on all datasets together
- MRMR used for feature selection (top 200 features)
- # of training epochs: 1000
- # of pretrain epochs: 500
- Parameter k set to 2, 3, 5 and 10

MOGONET performace results (best)

	k	Accuracy	F1	AUC	F1 weighted	F1 macro
Disease	10	0.94	0.97	1.00	-	-
Risk	2	0.94	-	-	0.94	0.95
Mutation	2	0.90	-	-	0.89	0.89

+ MOGONET was able to rank 30 most important biomarkers

Other frameworks that look promising

GCNCC

- + Works with PPI
- only binary classification
- input not specified

ScGNN

- + intuitive interface
- + example input data look similar to ours
- + output seems suitable
 - Graph, learned embeddings, identified cell types

Other frameworks that look promising

PAMOGK

- - MOSEK Optimizer API should be free for students upon request
- Input data format not suitable
- - Don't have pathway data file (ndexbio.org)

DeepOmix

- - functional modules (prior knowledge) must be provided by user
 - (tissue network, gene co-expression network, signaling pathways
- + good UI
- + also outputs top-ranked identified pathways

Other frameworks that look promising

GCN_Cancer

- + Utilizes PPI however, needs to be generated by user
 - Partial description of how to do it is given
- Only some datasets could be probably used (ensemble gene ID)

Further goals

- Gather results from more GNN frameworks
 - ScGNN, DeepOmix and GCN_cancer frameworks look the most promising
- Validate if the marked biomarkers coincide across all the frameworks
- Discuss their validity with expert
- Possibly try out different combinations of omic types used in analysis