Aufgabe 1.

i) Seien $(X_t)_{t\geq 0}$ und $(Y_t)_{t\geq 0}$ zwei unabhängige Poisson Prozesse zu den Parametern $\lambda>0$ und $\mu>0$. Zeigen Sie, dass $(X_t+Y_t)_{t\geq 0}$ ein Poisson Prozess zum Parameter $\lambda+\mu$ ist.

Nach Definition 5.ii müsste $\Delta(X+Y)_t \in \{0,1\}$ sein, ist aber X=Y, so ist $\Delta(X+Y)_t \in \{0,2\}$, sodass wir davon ausgehen, dass zu zeigen ist, dass $\frac{1}{2}(X_t+Y_t)$ ein Poissonprozess ist. Sind X,Y unabhängig von \mathscr{F} , so ist auch X+Y unabhängig von \mathscr{F} . Dies sollte eventuell noch gezeigt werden. Hierdurch ist $X_t+Y_t-X_s-Y_s$ unabhängig von \mathscr{F}_s , sodass Bedingung iv der Definition 5 erfüllt ist. Bedingungen i und iii sind klar. Somit ist $((X_t+Y_t)/2)$ ein erweiterter Poissonprozess. Da zudem gilt $E[(X_t+Y_t)/2] = E[X_t]/2 + E[Y_t]/2 = (\lambda + \mu)t/2$, ist $((X_t+Y_t)/2)$ ein Poissonprozess zum Parameter $(\lambda + \mu)/2$.

Aufgabe 2. Sei $(B_t)_{t\geq 0}$ eine Brown'sche Bewegung mit $B_0=0$. Zeigen Sie, dass $(X_t)_{0\leq t\leq 1}:=(B_t-tB_1)_{0\leq t\leq 1}$ ein Gauß'scher Prozess ist und berechnen Sie die Kovarianz-Struktur $\operatorname{Cov}(X_s,X_t),\ 0\leq s,t\leq 1$.

Nach Definition der Covarianz gilt, dass

$$Cov(X_s, X_t) = E[(X_s - E[X_s])(X_t - E[X_t])].$$

Da
$$E[X_s] = E[B_s - sB_1] = 0$$
, gilt

$$= E[(B_s - sB_1)(B_t - tB_1)],$$

= $E[B_sB_t] - sE[B_1B_t] - tE[B_sB_1] + stE[B_1^2].$

Bei Wikipedia standen die Kovarianzen $Cov(B_s, B_t) = E[B_sB_t] = min(s, t)$ des Wiener Prozesses, sodass

$$= \min(s, t) - st - st + st = \min(s, t) - st.$$

Aufgabe 3. Zeigen Sie, dass jede Stoppzeit eine optionale Zeit ist.

Das wird in Gleichung (11) in Skript gezeigt. Nach Definition 10.iv der optionalen Zeit muss für alle $t \geq 0$ gelten, dass $\{T < t\} \in \mathscr{F}_t$. Es gilt $\{T < t\} = \bigcup_{n \in \mathbb{N}} \{T \leq t - \frac{1}{n}\}$. Für alle $n \in \mathbb{N}$ gilt nach Definition 10.iii der Stoppzeit T, dass $\{T \leq t - \frac{1}{n}\} \in \mathscr{F}_{t-\frac{1}{n}}$. Da $\mathscr{F}_{t-\frac{1}{n}}$ eine σ -Algebra ist, ist auch $\bigcup_{n \in \mathbb{N}} \{T \leq t - \frac{1}{n}\} \in \mathscr{F}_{t-\frac{1}{n}}$. Nach Definition 2.i der Filtration \mathbb{F} gilt für alle $t \geq 0$, dass $\mathscr{F}_{t-\frac{1}{n}} \in \mathscr{F}_t$. Somit ist $\{T < t\} \in \mathscr{F}_t$ und T eine optionale Zeit.

Aufgabe 4 (4 Punkte). Nenn Sie ein Beispiel für einen Prozess $X=(X_t)_{t\in[0,\infty)}$ mit stetigen Pfaden und eine zufällige Zeit T, die bezüglich der natürlichen Filtration von X eine Options- aber keine Stoppzeit bildet. Hinweis: Betrachten Sie $X_t=(t-S)^+$ für eine geeignete nicht-negative Zufallsvariable S.

Betrachte zum Beispiel $X_t=t$ und $T=\inf\{s\geq 0\mid X_s>1\}$. Nach Satz 16.ii ist T eine optionale Zeit. Es bleibt noch zu zeigen, dass T keine Stoppzeit ist.