Algoritmos Exactos y Metaheurísticas

Primer Semestre 2025

Universidad Diego Portales Prof. Víctor Reyes Rodríguez

Objetivos

Simulated Annealing (SA)

Simulated Annealing

- Se basa en el trabajo Metropolis et al. (1953) en el campo de la termodinámica estadística.
- Modelamiento del proceso de los cambios energéticos en un sistema de partículas conforme decrece la temperatura, hasta que converge a un estado estable (congelado).
- Incorpora una estrategia explícita para impedir óptimos locales. (así como el Tabu Search)

Idea

- Permitir movimientos a soluciones que empeoren la función objetivo, de forma de poder escapar de los óptimos locales.
- Permitir movimientos que empeoran la calidad de la función objetivo de acuerdo a una probabilidad asociada a la temperatura del sistema.
- Al comienzo, la temperatura es alta y cualquier transición entre estados es permitida y soluciones que empeoren la función objetivo pueden ser aceptadas con mayor probabilidad que más tarde cuando la temperatura disminuye.
- Mientras que las soluciones que mejoran la función objetivo siempre son aceptadas, las soluciones que la empeoran son aceptadas con mayor probabilidad si la temperatura es más alta.

Probabilidad de aceptación y temperatura

Esta probabilidad de aceptación sigue la distribución de Boltzmann:

$$P(\text{temperatura,sol-nueva,sol-actual}) = e^{\Delta_{obj}/T}$$

con obj: objetivo, T: temperatura, en donde:

$$\Delta_{obj} = -|\text{sol-nueva} - \text{sol-actual}|$$

su valor es siempre negativo, pues implica un empeoramiento de la calidad de las soluciones.

Probabilidad de aceptación y temperatura

- La temperatura (parámetro), determina la probabilidad de aceptación de soluciones que no mejoran la solución actual.
- A una cierta temperatura, varios intentos de nueva solución son explorados.
- Cuando se alcanza un estado de equilibrio, la temperatura disminuye gradualmente.

Algoritmo general

Algorithm 2.3 Template of simulated annealing algorithm.

```
Input: Cooling schedule.
s = s_0; /* Generation of the initial solution */
T = T_{max}; /* Starting temperature */
Repeat
   Repeat /* At a fixed temperature */
     Generate a random neighbor s';
     \Delta E = f(s') - f(s);
     If \Delta E \leq 0 Then s = s' /* Accept the neighbor solution */
     Else Accept s' with a probability e^{-\Delta E \over T};
   Until Equilibrium condition
   /* e.g. a given number of iterations executed at each temperature T */
   T = g(T); /* Temperature update */
Until Stopping criteria satisfied /* e.g. T < T_{min} */
Output: Best solution found.
```

Ingredientes

Entonces, los ingredientes para el SA serían:

- Ingredientes de HC (representación, evaluación, operadores de vecindario)
- Función de probabilidad de aceptación (Boltzmann)
- Temperatura inicial y final
- Proceso de enfriamiento: Esto es clave para la eficiencia y efectividad del algoritmo.

Aceptación de movimientos

La probabilidad de aceptación de un movimiento que no mejora la solución actual es:

$$P(\Delta_{obj}, T) > R$$

en donde R es un número aleatorio entre [0,1] generado a partir de una distribución uniforme

- ¿Qué ocurre con temperaturas altas? (pensemos en T=∞)
- ¿Qué ocurre con temperaturas bajas? (pensemos en T=0)

Estado de equilibrio

Para alcanzar el estado de equilibrio en cada temperatura, un número suficiente de movimientos deben ser aplicados. Tenemos dos formas:

- Estático: Se determina antes de la búsqueda. En general, una proporción de la vecindad N(s) se genera. A mayor proporción, más caro el algoritmo y mejores resultados se obtienen.
- Adaptativo: Si la solución mejora, no se revisa en la proporción establecida, y pasa directamente al paso de enfriamiento. Otra forma es guardar el mejor valor de la función objetivo (f_h) y peor valor de función objetivo (f_l). Luego el número de iteraciones en la siguiente iteración estará dado por:

$$L = L_B + \lfloor LB \cdot F_{-} \rfloor$$

con $F_=1-e^{-(f_h-f_l)/f_h}$ y L_B es el número inicial de iteraciones.

Enfriamiento

En el algoritmo SA tenemos dos condiciones sobre la temperatura:

- T_i>0, para todo i.
- El límite cuando i→∞ de T_i debe ser 0.

La temperatura se puede actualizar de varias formas:

- Lineal: $T=T-\beta$, con β constante. (osea $T_i=T_0^-i^*\beta$).
- Geométrica: $T=\alpha T$, con $\alpha=]0,1[$. Es la más popular, y se sugiere un α entre 0.5 y 0.99
- Logarítmico: T_i=T₀/log(i). En general es lento en la práctica.

Condiciones de término

 Llegar a una temperatura final T_f (es el más popular), tiene que ser baja (por ej 0.01)

- Tiempo
- Número de iteraciones
- Número de iteraciones sin poder mejorar la mejor solución encontrada.