导语

shortcut(或shortpath,中文"直连"或"捷径")是CNN模型发展中出现的一种非常有效的结构,本文将从Highway networks到ResNet再到DenseNet概述shortcut的发展。

前言

自2012年Alex Krizhevsky利用深度卷积神经网络(CNN)(AlexNet [1])取得ImageNet比赛冠军起,CNN在计算机视觉方面的应用引起了大家广泛地讨论与研究,也涌现了一大批优秀的CNN模型。研究人员发现,网络的深度对CNN的效果影响非常大,但是单纯地增加网络深度并不能简单地提高网络的效果,由于梯度发散,反而可能损害模型的效果。而shortcut的引入就是解决这个问题的妙招。本文主要就模型发展中的shortcut展开讨论。欢迎大家多多批评指正。

→、Highway networks

Highway [2] 是较早将shortcut的思想引入深度模型中一种方法,目的就是为了解决深度网络中梯度发散,难以训练的问题。我们知道,对于最初的CNN模型(称为"plain networks",并不特指某个模型框架),只有相邻两层之间存在连接,如图1所示(做的图比较丑,请多担待),x、y是相邻两层,通过W_H连接,通过将多个这样的层前后串接起来就形成了深度网络。相邻层之间的关系如下,

$$y = H(x, W_H).$$

其中II表示网络中的变换。

为了解决深度网络的梯度发散问题,Highway在两层之间增加了(带权的)shortcut(原文中并没有使用这个名词,为统一起见,采用术语shortcut)。两层之间的结构如图2所示,

图2

x, y的关系如下式,

$$\mathbf{y} = H(\mathbf{x}, \mathbf{W}_{\mathbf{H}}) \cdot T(\mathbf{x}, \mathbf{W}_{\mathbf{T}}) + \mathbf{x} \cdot C(\mathbf{x}, \mathbf{W}_{\mathbf{C}}).$$

其中设置C=1-T,可以将上式改写为,

$$\mathbf{y} = H(\mathbf{x}, \mathbf{W}_{\mathbf{H}}) \cdot T(\mathbf{x}, \mathbf{W}_{\mathbf{T}}) + \mathbf{x} \cdot (1 - T(\mathbf{x}, \mathbf{W}_{\mathbf{T}})).$$

作者将T称为"transform gate",将C称为"carry gate"。输入层x是通过C的加权连接到输出层y。通过这种连接方式的改进,缓解了深度网络中的梯度发散问题。Highway networks与plain networks的训练误差对比如图3所示。可以看到对于plain networks,随着层数的增加,训练误差在逐步扩大,而对于highway networks,训练误差比较稳定,显著低于plain networks的误差,尤其是在层数非常深的时候。

算法在CIFAR数据集上的分类结果如图4所示。

Network	CIFAR-10 Accuracy (in %)	CIFAR-100 Accuracy (in %)			
Maxout [20]	90.62	61.42			
dasNet [36]	90.78	66.22			
NiN [35]	91.19	64.32			
DSN [24]	92.03	65.43			
All-CNN [37]	92.75	66.29			
Highway Network	92.40 (92.31±0.12)	$67.76~(67.61\pm0.15)$			

图4

尽管在实验结果上,highway networks并没有比之前的一些模型取得显著地提升,但是它的这种思想对后面的模型改进影响非常大。

二、ResNet

ResNet [3]的动机依然是解决深度模型中的退化问题:层数越深,梯度越容易发散,误差越大,难以训练。理论上,模型层数越深,误差应该越小才对,因为我们总可以根据浅层模型的解构造出深层模型的解(将深层模型与浅层模型对应的层赋值为浅层模型的权重,将后面的层取为恒等映射),使得这个深层模型的误差不大于浅层模型的误差。但是实际上,深度模型的误差要比浅层模型的误差要大,在CIFAR-10上面的训练和测试误差如图5所示。

作者认为产生这种现象的原因是深度模型难以优化,难以收敛到较优的解,并假设相比于直接优化最初的plain networks的模型F(x)=y,残差 F(x)=y-x 更容易优化。对于plain networks的模型,形式化地表示为图6(本质上与图1的结构类似,采用图6主要是为了与论文中的描述一致),F就是要优化的目标F(x)=y。

图6

而对于ResNet,形式化地表示为图7,优化的目标F为F(x)=y-x,即为残差。

图7

需要注意的是,变换F可以是很多层,也就是说shortcut不一定只跨越1层。并且实际中,由于shortcut只跨越单层没有优势,ResNet中是跨越了2层或3层,如图8所示。ResNet-34中,采用图8左侧的shortcut跨越方式; ResNet-50/101/152采用图8右侧的shortcut跨越方式。

图8

ResNet-34与其他两种模型的对比如图9所示。

经过改进之后, ResNet与plain networks在ImageNet上的训练误差对比如图10。对于plain networks, 34层的模型误差要比18层的误差大, 而对于ResNet, 34层的模型误差要小于18层的误差。

在ImageNet和CIFAR-10上面的结果对比如图11所示。

method	top-1 err.	top-5 err.	
VGG [41] (ILSVRC'14)	-	8.43 [†]	
GoogLeNet [44] (ILSVRC'14)	-	7.89	
VGG [41] (v5)	24.4	7.1	
PReLU-net [13]	21.59	5.71	
BN-inception [16]	21.99	5.81	
ResNet-34 B	21.84	5.71	
ResNet-34 C	21.53	5.60	
ResNet-50	20.74	5.25	
ResNet-101	19.87	4.60	
ResNet-152	19.38	4.49	

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except † reported on the test set).

me	error (%)		
Maxo	9.38		
NIN	8.81		
DS	DSN [24]		
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Table 6. Classification error on the CIFAR-10 test set. All methods are with data augmentation. For ResNet-110, we run it 5 times and show "best (mean±std)" as in [43].

图11

对比highway networks和ResNet,可以看到ResNet的改进主要在以下方面,

- 1,将highway networks的T和C都设为1,降低模型的自由度(深度模型中,自由度越大未必越好。自由度越大,训练会比较困难)。
- 2, shortcut不仅限于跨越1层,而可以跨越2层或3层。

三、DenseNet

DenseNet [4]的初衷依然是为了解决深度模型的退化问题——梯度发散,借鉴highway networks和ResNet的思路,DenseNet将shortcut用到了"极致"——每两层之间都添加shortcut,L层的网络共有L*(L-1)/2个shortcut(这样会不会太简单粗暴了?模型会不会太大?参数会不会太多?计算会不会太慢?放心,作者当然不会直接这么做)。通过shortcut可以直接将浅层的信息传递到深层,一方面可以解决退化问题,另一方面也可以看作是特征重用(feature reuse)。

首先来回顾一下highway networks和ResNet的连接单元,为了与文中表达式保持一致,又做了几幅丑图,见谅。对于plain networks,相邻两层之间有,

$$x_l = H_l(x_{l-1})$$

连接单元如图12所示,

图12

对于ResNet, 相邻两层之间有,

$$x_l = H_l(x_{l-1}) + x_{l-1}$$

连接单元如图13所示,

图13

而对于DenseNet,则有,

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

连接单元如图14所示,每层的输出结果都会通过shortcut连接到后面的层。

图14

如果真的每层的输出都稠密地连接到后面的所有层,那么模型将变得非常"宽",计算将会很慢。因此,作者采用的是"局部"稠密连接,如图15所示,每个block里面才进行稠密连接。每个block里面的连接方式如图16所示,前面层的输出通过shortcut直接连接到block中后面的其他层。block之间通过transition层连接。

图16

对于一个包括t层的block,假设每层输出k个feature map(或通道),则第i(1 \leq i \leq t)层的输入feature map数为k*(i-1)+k0,其中k0为block的输入的通道数。将层分block只是限制了i的大小,如果每层的输出数k比较大的话,计算仍然很慢,因此作者也对k进行了限制,文中k称为growthrate。此外为了将模型进一步压缩,作者还采用了bottleneck layer和对transition的输出进行压缩(DenseNet-BC)。

在ImageNet任务上,不同层数的DenseNet的架构如图17所示,

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201($k = 32$)	DenseNet-161($k = 48$)		
Convolution	112 × 112	7 × 7 conv, stride 2					
Pooling	56 × 56	3 × 3 max pool, stride 2					
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$		
Transition Layer	56 × 56	1 × 1 conv					
(1)	28 × 28	2 × 2 average pool, stride 2					
Dense Block (2)	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$		
Transition Layer	28 × 28	1 × 1 conv					
(2)	14 × 14		2 × 2 average pool, stride 2				
Dense Block (3)	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 36$		
Transition Layer	14×14	1 × 1 conv					
(3)	7 × 7	2 × 2 average pool, stride 2					
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$		
Classification	1 × 1		7 × 7 global	average pool			
Layer		1000D fully-connected, softmax					

图17

相比ResNet, DenseNet的参数更少(主要是因为feature map少), 计算更快。 对比如图18所示,

DenseNet在CIFAR和SVHN数据集上的误差对比如图19所示,可以看出,DenseNet在模型大小和算法精度上都具有非常大的优势。从实用角度来讲,DenseNet获得CVPR2017 best paper也不足为奇。

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-		10.41	8.81	35.68		2.35
All-CNN [31]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M		4.81		22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

图19

对比highway networks和ResNet,可以看到DenseNet的改进主要在shortcut的使用上,将网络层进行稠密连接,shortcut可以跨越很多层并可以同时存在,通过将网络分为block和限制每层的输出通道数来减少参数和降低计算复杂度。

总结

为了解决深度模型中的梯度发散问题,很多技术方法被提了出来, shortcut是其中一种非常有效的方法。本文主要概述了shortcut使用的一些历程,希望通过本文能给其他技术方法的改进带来一丝启发。不足之处还请多多指正。谢谢!

参考文献:

- 1 ImageNet Classification with Deep Convolutional Neural Networks.
- 2 Training Very Deep Networks.
- 3 Deep Residual Learning for Image Recognition.
- 4 Densely Connected Convolutional Networks.