Wave-U-Net: End-to-end Source Separation

Mahshid Alinoori

Introduction

Deep Neural Networks have emerged as alternatives of traditional approaches in audio source separation

They take the magnitude spectrogram of the mixture as input

They **output** the **magnitude** spectrogram of separated sources or the corresponding **masks**

••••

estimated by

Griffin-Lim

Introduction

Many DNN models in **audio** domain are inspired by the ones introduced for **image** domain

U-Net was
proposed for
biomedical image
segmentation and
the applied for
singing voice
separation

Wave-U-Net is the adaptation of U-Net to the one-dimensional time domain to capture features at different time scales

Modifications are applied to reduce the output artifacts

U-NET

Convolutional Layers

Encode the image into a small and deep representation

Upsampling Layers

Decode the representation to the original size of the image

Skip Connections

Low-level information can flow from high-resolution input to high-resolution output so that minor changes can be avoided

Wave-U-Net

Downsampling

- Compute increasing number of higher-level features
- Each successive level has the half time resolution as the previous one.
- Implemented by Decimate layers that discard features for every other time step

Upsampling

- Decode the representation to the original size of the image
- Implemented in the time direction using linear interpolation of neighboring features
- No zero-padding is applied

Upsampling

Strided Deconvolution

- Feature maps are padded with zero between every two original values
- Produce aliasing effect in the form of high-frequency buzzing noise

Linear Interpolation

- Ensures temporal continuity
- Implemented as a learned upsampling layer using 1D convolution across time
- $\bullet \quad f_{t+0.5} = \sigma(w) \odot f_t + (1 \sigma(w)) \odot f_{t+1}$

Other Architectural Improvements

Difference Output Layer

We model the mixture as $\mathbf{M} \approx \sum_{i=1}^{K} \mathbf{S}^{i}$.

The model is not constrained enough. So only K-1 source signals are estimated and the last signal is computed as:

$$\hat{\mathbf{S}}^K = \mathbf{M} - \sum_{j=1}^{K-1} \hat{\mathbf{S}}^j$$

Stereo Channels

Multichannel input and outputs are supported through C number of filters for convolutional layers in the output layers

Input Context

Wave-U-Net keeps the the input size larger than output size to avoid artifacts at the borders caused by zero-padding

Experiments & Results

Dataset

MusDB and CCMixter

SDR Issues

Silent pr near silent segments are outliers but also considered in the average ratio

Model Variants

Implemented to determine the impact of improvements.

M4 Network

Network for stereo channels without learned upsampling ranked first

U-Net

Trained a U-Net under the same condition to compare results

M6 Network

All improvements applied and ranked second

Conclusion

An end-to-end source separation applied to singing voice and multi-instrument

A substitute for SDR metric is proposed

Combines high-level and low-level features at different time scales

Outperforms the state-of-the-art approach trained under comparable settings

Thanks

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations by Stories.