Nur die Aufgaben mit einem * werden korrigiert.

4.1. MC Fragen.

- (a) Sei $X_n = \left(0, \frac{1}{n}\right]$ und $Y_n = [n, +\infty)$ für $n \ge 1$. Welche Aussagen sind richtig?
 - \square $X_n \supseteq X_{n+1}$ für jedes $n \ge 1$;
 - $\square \quad \bigcap_{n>1} X_n \neq \emptyset;$
 - \square $Y_n \subseteq Y_{n+1}$ für jedes $n \ge 1$;
 - $\square \cap_{n>1} Y_n = \emptyset.$
- (b) Sei $\sum_{n=1}^{\infty} a_n$ eine Reihe. Welche Aussagen sind richtig?
 - \square $\sum_{n=1}^{\infty} a_n$ konvergiert, falls $\lim_{n \to \infty} a_n = 0$.
 - \square $\sum_{n=1}^{\infty} a_n$ konvergiert, falls die Folge (S_m) der Partialsummen $S_m = \sum_{n=1}^m a_n$ konvergiert.
 - \square Falls $\sum_{n=1}^{\infty} b_n$ eine konvergente Reihe ist, wobei $0 \leq b_n \leq a_n$ für jedes $n \in \mathbb{N}$, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (c) Sei $\phi : \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung, $\sum_{n=1}^{\infty} a_n$ eine Reihe und $b_n = a_{\phi(n)}$. Welche der folgenden Aussagen stimmt?
 - \square $\sum_{n=1}^{\infty} a_n$ ist konvergent und ϕ surjektiv $\Longrightarrow \sum_{n=1}^{\infty} b_n$ ist konvergent.
 - \square $\sum_{n=1}^{\infty} a_n$ ist konvergent und ϕ injektiv $\Longrightarrow \sum_{n=1}^{\infty} b_n$ ist konvergent.
 - \square $\sum_{n=1}^{\infty} a_n$ ist absolut konvergent und ϕ surjektiv $\Longrightarrow \sum_{n=1}^{\infty} b_n$ ist konvergent.
 - \square $\sum_{n=1}^{\infty} a_n$ ist absolut konvergent und ϕ injektiv $\Longrightarrow \sum_{n=1}^{\infty} b_n$ ist konvergent.
- *4.2. Limit-Vergleichssatz Sei (a_n) und (b_n) zwei Folgen, wobei $a_n, b_n > 0$ für jedes $n \in \mathbb{N}$. Angenommen, es existiert eine reelle Zahl l > 0, so dass $\lim_{n \to \infty} a_n/b_n = l$.
 - (a) Zeigen Sie, dass es ein N > 0, wobei $\frac{l}{2}b_n < a_n < \frac{3l}{2}b_n$ für jedes n > N, gibt.
 - (b) Zeigen Sie, dass $\sum_{n=1}^{\infty} a_n$ genau dann konvergiert, wenn $\sum_{n=1}^{\infty} b_n$ konvergiert.
 - (c) Das Obenstehende gilt nicht, wenn $a_n/b_n \to 0$. Finden Sie ein Beispiel, bei dem $a_n, b_n > 0$, $a_n/b_n \to 0$ und $\sum_{n=1}^{\infty} a_n$ konvergiert, aber $\sum_{n=1}^{\infty} b_n$ divergiert.
- *4.3. Reihe I. Untersuche das Konvergenzverhalten folgender Reihen. Wenn die Reihe konvergiert, berechnen Sie den Wert der Reihe.

(a)
$$\sum_{n=3}^{\infty} \frac{1}{n(n-1)(n+1)}$$
,

(b)
$$\sum_{n=2}^{\infty} \frac{6 \cdot 2^{n-2}}{3^n}$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{3}{2n+2}$$
.

4.4. Reihe II. Sei $\sum_{k=1}^{\infty} a_n$ konvergent, mit $a_k \geq 0, \forall k \geq 1$. Beweisen Sie, dass

$$\sum_{k=1}^{\infty} \sqrt{a_k a_{k+1}}$$

konvergiert.