מבוא למתמטיקה שמושית -פתרון 1 - אביב תשס"ד

.1 מקומה של חזית גל ההדף של פצצה אטומית נתון ע"י $R(t,E,\rho,p_0)$, כאשר הקומה של חזית גל ההדף של פצצה אטומית נתון ע"י ρ_0 , צפיפות האויר ו- ρ_0 אנרגית הפיצוץ, ρ_0 צפיפות האויר ו- ρ_0 הלחץ האטמוספרי.

	E	ρ_0	t	R	p_0	
L	2	-3	0	1	-1	(メ)
M	1	1	0	0	1	(14)
T	-2	0	1	0	-2	

$$\Pi_1 = R \left(\frac{\rho_0}{Et^2}\right)^{1/5} \qquad \Pi_2 = p_0 \left(\frac{t^6}{E^2 \rho_0^3}\right)^{1/5}$$

ולכן

$$R = \left(\frac{Et^2}{\rho_0}\right)^{1/5} \phi \left(p_0 \left(\frac{t^6}{E^2 \rho_0^3}\right)^{1/5}\right)$$

(ב) נניח דמיות חלקית. כש-E גדול מאוד:

$$\phi\left(\Pi_2\right) \cong A\Pi_2^{\alpha}$$

כאשר A קבוע. נקבל

$$R \approx \left(\frac{Et^2}{\rho_0}\right)^{1/5} A p_0^{\alpha} \left(\frac{t^6}{E^2 \rho_0^3}\right)^{\alpha/5}$$

אנו רוצים להבטיח שני דברים: שהרדיוס ילך ויגדל עם t, ושמהירות התפשטות תהיה פונקציה עולה של E, זה יובטח לנו אם

$$-\frac{1}{3} < \alpha < \frac{1}{2}$$

	U	ν	\boldsymbol{x}	y	ψ	
L_x	1	0	1	0	1	2
L_y	0	2	0	1	1	
T	-1	-1	0	0	-1	

$$\eta = y\sqrt{\frac{U}{\nu x}} \qquad \phi = \frac{\psi}{\sqrt{U\nu x}}$$

לכן לפתרון צריכה להיות הצורה

$$\psi = \sqrt{U\nu x} f(\eta)$$

נציב במשוואה ובתנאי הגבול ונקבל

$$f^{(3)} + \frac{1}{2}ff'' = 0$$
$$f'(0) = f(0) = 0$$
$$f' \xrightarrow[\eta \to \infty]{} 1$$