# Modern Algebra 1 - MATH 6302

Joel Sleeba University of Houston joelsleeba1@gmail.com

September 30, 2024

## Contents

| Contents |     |                          | 1 |               |
|----------|-----|--------------------------|---|---------------|
| 1        | 1.1 | Internal Direct products |   | <b>2</b><br>2 |
| 2        |     |                          |   | 4             |

#### Chapter 1

#### 1.1 Internal Direct products

Suppose G is a group and  $H, K \leq G$ . Define

$$HK = \{hk : h \in H, k \in K\}$$

**Theorem 1.1.1.** Suppose  $|H|, |K| < \infty$ , then  $|HK| = \frac{|H||K|}{|H \cap K|}$ .

*Proof.* We write  $HK = \bigcup_{h \in H} hK$ . Then  $h_1K = h_2K$  if and only if  $h_2^{-1}h_1 \in K$ . This is equivalent to saying  $h_2^{-1}h_2 \in H \cap K$ . verify

**Theorem 1.1.2.** If  $H, K \leq G$  then  $HK \leq G$  if and only if HK = KH.

Corollary 1.1.2.1. If H is a normal subgroup of G, then  $HK \leq G$ 

**Theorem 1.1.3.** If  $H, K \leq G$ ,  $|H|, |K| < \infty$ , H, K normal in G, and  $H \cap K = \{e\}$ , then  $HK \cong H \times K$ . In this case HK is called the internal direct product of H and K.

*Proof.* By the corollary,  $HK \leq G$ . Therefore consider the map  $\phi: HK \to H \times K := hk \to (h, k)$ .

- $\phi$  is well defined. We know that  $|HK| = \frac{|H||K|}{|H \cap K|} = |H||K|$ . Hence every element in HK has a unique representation as hk. Thus we see that  $\phi$  is well defined.
- $\phi$  is a homomorphism. Let  $h_1k_1, h_2k_2 \in HK$ . Want to show that  $\phi(h_1k_1h_2k_2) = \phi(h_1k_1)\phi(h_2k_2) = (h_1, k_1)(h_2, k_2) = (h_1h_1, k_1k_2)$ . Equilvalently we want to show that  $h_1k_1h_2k_2 = h_1h_2k_1k_2$ , which is again equivalent to showing hk = kh for all  $h \in H, k \in K$ . This is again equivalent to showing  $[h, k] = h^{-1}k^{-1}hk = e$  for all  $h \in H, k \in K$ .

To see why  $[h, k] = \{e\}$ . see that  $[h, k] = h^{-1}(k^{-1}hk) = h^{-1}h' \in H$  for some  $h' \in H$ . Similarly  $[h, k] = (h^{-1}k^{-1}h)k = k'k \in K$  for some  $k' \in K$ .

Both of these are by the normality of H and K. But since we know that  $H \cap K = \{e\}$ , we see that [h, k] = e for all h, k. Hence we are done.

### Chapter 2

**Example 2.0.1.** Let  $G = D_{12}$ ,  $H = \langle r \rangle$ ,  $K = \langle s \rangle$ . Then  $H \cap K = \{e\}$ , so |HK| = 12 and  $HK \cong D_{12}$ , but  $HK \ncong H \times K$  since  $H \times K$  is Abelian and  $D_{12}$  is not.

**Theorem 2.0.1** (Diamond Isomorphism Theorem). Suppose  $A, B \leq G$  and  $A \subseteq N_G(B)$ , then  $AB \leq G$ ,  $B \triangleleft AB$ ,  $A \cap B \subseteq AB$ ,  $A \cap B \subseteq AB$ ,  $A \cap B \subseteq AB$ 



Proof. verify

**Theorem 2.0.2.** Let  $H, K \subseteq G$  and  $H \leqslant K$ , then  $H \subseteq K$ ,  $K/H \subseteq G/H$ ,

$$(G/H)/(K/H) \cong G/K$$