Page: 1 of 29

FCC TEST REPORT

FCC ID · ZTJ-VB2

: Shenzhen Uniwisdom Technologies Co., Ltd. **Applicant**

: Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an Address

District, Shenzhen, P.R.China

Equipment Under Test (EUT):

Product Name : Wireless Microphone System

Model No. : VB-2 LT; VB-2 GT; PV-1 V1 BL(Transmitter); PV-1V1 BHS(Transmitter);

PV-1 V1 BG(Transmitter)

Standards : FCC CFR47 Part 74 Section 74.861:2009

Date of Test : August 15 ~ August 17, 2011

Date of Issue : August 18, 2011

Test Engineer : Hunk yan

Tarko zhang : Philo zhong **Reviewed By**

Test Result : PASS

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

> Tel:+86-755-27553488 Fax:+86-755-27553868

♦ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

2 Test Summary

Test Items	Test Requirement	Test Method	Result
RF Output Power	74.861(e)(1)(i)	TIA/EIA-603-C-2004	PASS
Modulation Characteristics	2.1047(a)	TIA/EIA-603-C-2004	PASS
Occupied Bandwidth	2.1049(c)(1)	TIA/EIA-603-C-2004	PASS
Spurious Radiated Emissions	2.1053 & 74.861(e)(6)	TIA/EIA-603-C-2004	PASS
Frequencies Stability	2.1055(a)(1)	TIA/EIA-603-C-2004	PASS

3 Contents

1	C	OVER PAGE	.1
2	T ?	EST SUMMARY	.2
3	C	ONTENTS	.3
4	G	ENERAL INFORMATION	.5
	4.1 4.2	CLIENT INFORMATION	. 5
	4.3 4.4 4.5	DETAILS OF E.U.T DESCRIPTION OF SUPPORT UNITS STANDARDS APPLICABLE FOR TESTING	. 5
	4.6 4.7	TEST FACILITY TEST LOCATION	. 6
5	\mathbf{E}^{\prime}	QUIPMENT USED DURING TEST	.7
6	R	F OUTPUT POWER	.9
	6.1 6.2 6.3	TEST EQUIPMENT	.9
7	M	IODULATION CHARACTERISTICS	10
	7.1 7.2 7.3	TEST EQUIPMENT TEST PROCEDURE TEST RESULT	10
8	O	OCCUPIED BANDWIDTH OF EMISSION	12
	8.1 8.2 8.3	TEST EQUIPMENT TEST PROCEDURE TEST RESULT	12
9	F	REQUENCY STABILITY	15
	9.1 9.2 9.3 9.4	TEST EQUIPMENT TEST CONFIGURATION TEST PROCEDURE TEST RESULT	15 15
1() SI	PURIOUS RADIATED EMISSION	
	10.1 10.2 10.3 10.4 10.5	TEST PROCEDURE	20 21 22
11		HOTOGRAPHS - CONSTRUCTIONAL DETAILS	
	11.1 11.2 11.3 11.4	EUT – FRONT VIEW EUT – BACK VIEW EUT – OPEN VIEW	26 26 27

WALTEK SERVICES

Page:4 of 29

O1 1 T	T 1 1	TO 1 1		\sim	T / 1
Shenzhen U	Jniwisdom	Lechno	logies	Co	Ltd.

FCC ID: ZTJ-VB2

1	1.5	PCB – BACK VIEW	28
12	FCC	C LABEL	29

4 General Information

4.1 Client Information

Applicant : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Applicant : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an

District, Shenzhen, P.R.China

Manufacturer : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Manufacturer : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an

District, Shenzhen, P.R.China

4.2 General Description of E.U.T.

Product Name : Wireless Microphone System

Model No. : VB-2 LT; VB-2 GT; PV-1 V1 BL(Transmitter); PV-1V1

BHS(Transmitter); PV-1 V1 BG(Transmitter)

Differences describe : All the models are exactly the same excepte different model names.

Operation Frequency : $174.00 \text{MHz} \sim 216.00 \text{MHz}$

4.3 Details of E.U.T.

Technical Data: : Powered by DC 3.0V (2 * 1.5V "AA" Size Battery)

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Wireless Microphone System. The standards used were FCC CFR47 Part 74 and FCC CFR 47 Part 2

WALTEK SERVICES

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	Wws200 81596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	N/A	N/A	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	N/A	N/A	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931	-	9k-1GHz	Aug. 2, 2011	Aug. 1, 2012	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	Wws200 80941	±10%
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0- 300V Freq_range: 10-80Hz	Aug. 2, 2011	Aug. 1, 2012	Wwd200 81185	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0- 300V Power_freq: 10-80Hz				distinguish:0 .02Hz

WALTEK SERVICES

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
Shihin Temperatur e Chamber	BM50-CB	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Advantest Spectrum Analyzer	R3132	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Wws200 81890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range: 0.15-1000 MHz	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	-	-	Aug. 2, 2011	Aug. 1, 2012	Wws200 81597	-
Spectrum Analyzer	HP 8566B	36874	-	-	Aug. 2, 2011	Aug. 1, 2012	Wws200 83213	-
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V- 4.4KV Pulse current: 100A-2.2KA	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/ CDN 117	25627	W2008011	1.2/50μS	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82399	-
Monople Antenna	-	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Audio Generator	INSTEK/ GAG-809	-	-	-	Aug. 2, 2011	Aug. 1, 2012	WWS20 100845	Freq: ±(3%+1Hz)

WALTEK SERVICES

6 RF Output Power

Test requirement: FCC CFR47 Part 74 Section 74.861(e)(1)(i)

Test method: Based on TIA/EIA-603-C-2004

Limit: According to Part 74.861(e)(1)(i), the output power

shall not exceed 50mW (16.99 dBm).

6.1 Test Equipment

Please refer to Section 5 of this report.

6.2 Test Procedure

The maximum peak output power was measured with a spectrum analyzer connected to the antenna terminal (conducted measurement) while EUT was operating in normal situation. The test was performance in three frequency as low, middle and high.

6.3 Test result

Frequency (MHz)	RF Output Power (dBm)	Limit (dBm)	Result
178.1500	-12.24	16.99	PASS
198.8500	-3.41	16.99	PASS
214.5000	-9.87	16.99	PASS

WALTEK SERVICES

7 Modulation Characteristics

Test requirement: FCC CFR47 Part 2 Section 2.1047(a)

Test method: Based on TIA/EIA-603-C-2004

Requirement: According to Part 2.1047(a), for Voice Modulated

Communication Equipment, the frequency response of the audio modulating circuit over a range of 100Hz to

5000Hz shall be measured.

7.1 Test Equipment

Please refer to Section 5 in this report.

7.2 Test Procedure

(a) Test Configuration

- (b) Position the EUT as shown in above, adjust the audio input frequency to 100 Hz and the input level from 0V to maximum permitted input voltage with recording each carrier frequency deviation responding to respective input level.
- (c) Repeat step (b) with changing the input frequency for 200, 500, 1000, 3000 and 5000 Hz in sequence.

WALTEK SERVICES

7.3 Test Result

The test data of modulation characteristic is showing as below:

Modulation Limit

Frequency Response

8 Occupied Bandwidth of Emission

Test requirement: FCC CFR47 Part 2 Section 2.1049(c)(1)

Test method: Based on TIA/EIA-603-C-2004

Limit: According to FCC 74.861 (e)(5), the frequency

emission bandwidth shall not exceed 200 kHz.

8.1 Test Equipment

Please refer to Section 5 in this report.

8.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Install new batteries in the EUT. Turn on the EUT and set it to any one convenient frequency within its operating range.

8.3 Test Result

The necessary (or occupied) bandwidth for FM (frequency modulation) devices is given by B = 2M + 2D, where M is the highest baseband frequency of the modulating signal and D is the peak frequency deviation. In this case, M = 5 kHz, D = 14 kHz, so B = 2*5kHz + 2* 14kHz = 38 kHz < 200 kHz.

Please refer the following plots

WALTEK SERVICES

Modulated signal: 2.5kHz

Low Channel

Middle Channel

WALTEK SERVICES

High Channel

9 Frequency Stability

Test requirement: FCC CFR47 Part 2 Section 2.1055(a)(a)

Test method: Based on TIA/EIA-603-C-2004

Limit: According to FCC 74.86(e)(4), the frequency tolerance

of the transmitter shall be 0.005 percent.

9.1 Test Equipment

Please refer to Section 5 in this report.

9.2 Test Configuration

Figure 1

9.3 Test Procedure

A) Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at an environmental chamber whose temperature is set to 20 °C. Install new batteries in the EUT.
- 2. Set SA center frequency to the EUT operation frequency. Then set SA RBW to 30 kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. For battery operated only device, supply the EUT primary voltage at the battery operating end point which is specified by the manufactured and record the frequency.

B) Frequency stability versus environmental temperature

1. Setup the configuration per figure 1 for frequencies measured at an environmental chamber, Install new batteries in the EUT.

WALTEK SERVICES

- 2. Turn on EUT and set SA center frequency to the EUT operation frequency, then set SA RBW to 30kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measurement frequencies.

9.4 Test Result

a) Frequency stability versus input voltage (battery operation end point voltage is 2.7V)

Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured at end point voltage	Frequency Tolerance (%)	
178.1500	20	178.1523	0.0013	
198.8500	20	198.8487	0.0007	
214.5000	20	214.4974	0.0012	

b) Frequency stability versus environmental temperature

Reference Frequency: 178.1500MHz, Limit: 0.005%						
Environment Temperature(°C)	Power Supply	Frequency Deviation measured with time Elapse(30 minutes)				
remperature(C)		MHz	%			
50	New Battery	178.1518	0.0010			
40	New Battery	178.1515	0.0008			
30	New Battery	178.1517	0.0010			
20	New Battery	178.1505	0.0003			
10	New Battery	178.1508	0.0004			
0	New Battery	178.1514	0.0008			
-10	New Battery	178.1516	0.0009			
-20	New Battery	178.1520	0.0011			
-30	New Battery	178.1513	0.0007			

Reference Frequency: 198.8500MHz, Limit: 0.005%						
Environment Temperature(°C)	Power Supply	Frequency Deviation measured with time Elapse(30 minutes)				
		MHz	%			
50	New Battery	198.8523	0.0012			
40	New Battery	198.8525	0.0013			
30	New Battery	198.8518	0.0009			
20	New Battery	198.8516	0.0008			
10	New Battery	198.8512	0.0006			
0	New Battery	198.8517	0.0009			
-10	New Battery	198.8521	0.0011			
-20	New Battery	198.8526	0.0013			
-30	New Battery	198.8519	0.0010			

WALTEK SERVICES

Reference Frequency: 214.5000MHz, Limit: 0.005%						
Environment Temperature(°C)	Power Supply	Frequency Deviation measured with time Elapse(30 minutes)				
remperature(C)		MHz	%			
50	New Battery	214.5031	0.0014			
40	New Battery	214.5028	0.0013			
30	New Battery	214.5029	0.0014			
20	New Battery	214.5012	0.0006			
10	New Battery	214.5017	0.0008			
0	New Battery	214.5026	0.0012			
-10	New Battery	214.5031	0.0014			
-20	New Battery	214.5038	0.0018			
-30	New Battery	214.5035	0.0016			

Test Result: The frequency tolerance rating is 0.0018% < 0.005%. Passed.

10 Spurious Radiated Emission

Test requirement: FCC CFR47 Part 2 Section 2.1053

Test method: Based on TIA/EIA-603-C-2004

Limit: According to Part 74.861 (e)(6), the mean power of emissions

shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

(i) on any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the

authorized bandwidth: at least 25 dB.

(ii) on any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of

the authorized bandwidth: at least 35 dB.

(iii) on any frequency removed from the operating frequency by more than 250 percent up to and the authorized bandwidth shall be attenuated below the un-modulated carrier by at least

43 + 10 Log (output power in watts)dB.

10.1 Test Equipment

Please refer to Section 5 in this report.

WALTEK SERVICES

10.2 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

WALTEK SERVICES

10.3 Test Procedure

- 1. Place the transmitter to be tested on the turntable in the standard test site. The transmitter is Transmitting into a non-radiating load, which is placed on the turntable. The RF cable to this load should be of minimum length.
- 2. The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 3. The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- 5. New battery were installed in the equipment under test for radiated emissions test, the transmitter shall than be rotated through 3600 in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 6. The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- 7. The maximum signal level detected by the measuring receiver shall be noted.
- 8. The measurement shall be repeated with the test antenna set to horizontal polarization.
- 9. Replace the antenna with a proper antenna (substitution antenna).
- 10. The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- 11. The substitution antenna shall be connected to a calibrated signal generator.
- 12. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14. The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16. The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

WALTEK SERVICES

- 17. This is a handhold device, The radiation emission should be tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 18. The EUT was under working mode during the final qualification test and the configuration was used to represent the worst case results.

10.4 Test Result

Frequency (MHz)	Detector	Ant. Pol	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Turntabl e Angle (°)			
Low Channel: 178.15MHz										
178.15	178.15 Peak V -13.56 (Fund.) 1.1 15									
356.30	Peak	V	-36.25	-13.00	-23.25	1.3	60			
534.45	Peak	V	-40.84	-13.00	-27.84	2.1	45			
712.60	Peak	V	-38.74	-13.00	-25.74	1.8	220			
890.75	Peak	V	-36.45	-13.00	-23.45	1.6	180			
1068.90	Peak	V	-42.24	-13.00	-29.24	2.0	200			
1247.05	Peak	V	-44.27	-13.00	-31.27	1.7	160			
1425.20	Peak	V	-48.71	-13.00	-35.71	1.4	180			
1603.35	Peak	V	-42.16	-13.00	-29.16	2.4	210			
1781.50	Peak	V	-43.65	-13.00	-30.65	1.4	150			
178.15	Peak	Н	-18.74	(Fund.)		1.8	130			
356.30	Peak	Н	-42.15	-13.00	-29.15	2.3	50			
534.45	Peak	Н	-47.54	-13.00	-34.54	1.6	300			
712.60	Peak	Н	-39.53	-13.00	-26.53	1.8	140			
890.75	Peak	Н	-47.40	-13.00	-34.40	2.5	160			
1068.90	Peak	Н	-52.36	-13.00	-39.36	1.5	270			
1247.05	Peak	Н	-48.12	-13.00	-35.12	1.4	90			
1425.20	Peak	Н	-50.33	-13.00	-37.33	2.0	60			
1603.35	Peak	Н	-48.21	-13.00	-35.21	2.1	350			
1781.50	Peak	Н	-49.02	-13.00	-36.02	1.9	180			

WALTEK SERVICES

Middle Channel: 198.85MHz										
198.85	Peak	V	-6.08	(Fund.)		1.0	40			
397.70	Peak	V	-32.81	-13.00	-19.81	1.5	90			
596.55	Peak	V	-34.62	-13.00	-21.62	1.4	120			
795.40	Peak	V	-40.12	-13.00	-27.12	1.1	70			
994.25	Peak	V	-44.36	-13.00	-31.36	1.7	80			
1193.10	Peak	V	-36.85	-13.00	-23.85	1.1	300			
1391.95	Peak	V	-46.21	-13.00	-33.21	1.2	160			
1590.80	Peak	V	-38.71	-13.00	-25.71	1.4	40			
1789.65	Peak	V	-36.32	-13.00	-23.32	1.0	20			
1988.50	Peak	V	-40.15	-13.00	-27.15	1.3	95			
198.85	Peak	Н	-10.36	(Fund.)		1.8	140			
397.70	Peak	Н	-38.42	-13.00	-25.42	2.2	320			
596.55	Peak	Н	-41.12	-13.00	-28.12	1.6	140			
795.40	Peak	Н	-43.23	-13.00	-30.23	1.8	110			
994.25	Peak	Н	-39.45	-13.00	-26.45	1.9	200			
1193.10	Peak	Н	-44.52	-13.00	-31.52	2.0	140			
1391.95	Peak	Н	-38.68	-13.00	-25.68	2.0	50			
1590.80	Peak	Н	-46.74	-13.00	-33.74	1.8	90			
1789.65	Peak	Н	-46.52	-13.00	-33.52	1.7	170			
1988.50	Peak	Н	-48.65	-13.00	-35.65	2.4	340			
High Channel: 214.50MHz										
214.50	Peak	V	-11.45	(Fund.)		1.1	310			
429.00	Peak	V	-38.79	-13.00	-25.79	1.3	250			
643.50	Peak	V	-42.51	-13.00	-29.51	1.1	290			
858.00	Peak	V	-39.69	-13.00	-26.69	1.0	300			
1072.50	Peak	V	-44.12	-13.00	-31.12	1.5	180			
1287.00	Peak	V	-46.06	-13.00	-33.06	1.4	40			
1501.50	Peak	V	-39.81	-13.00	-26.81	1.7	120			
1716.00	Peak	V	-42.08	-13.00	-29.08	1.7	60			
1930.50	Peak	V	-48.20	-13.00	-35.20	1.3	80			
2145.00	Peak	V	-47.13	-13.00	-34.13	1.0	210			

WALTEK SERVICES

214.50	Peak	Н	-17.26	(Fund.)		2.1	260
429.00	Peak	Н	-42.38	-13.00	-29.38	2.1	260
643.50	Peak	Н	-41.23	-13.00	-28.23	2.1	190
858.00	Peak	Н	-45.06	-13.00	-32.06	1.8	160
1072.50	Peak	Н	-46.22	-13.00	-33.22	2.0	100
1287.00	Peak	Н	-48.36	-13.00	-35.36	1.9	130
1501.50	Peak	Н	-40.20	-13.00	-27.20	2.4	170
1716.00	Peak	Н	-50.39	-13.00	-37.39	2.2	200
1930.50	Peak	Н	-47.60	-13.00	-34.60	2.0	310
2145.00	Peak	Н	-52.29	-13.00	-39.29	1.9	20

10.5 Photograph – Radiated Emission Setup

Below 1GHz

Above 1GHz

WALTEK SERVICES

11 Photographs - Constructional Details

11.1 EUT – Front View

11.2 EUT – Back View

WALTEK SERVICES

11.3 EUT – Open View

11.4 PCB – Front View

WALTEK SERVICES

11.5 PCB – Back View

12 FCC Label

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

