[1, n] в [1, n], при этом коэффициент μ_{α} определяется суммой

$$\mu_{\alpha} = \sum_{\epsilon_i \in \{0,1\}} (-1)^{\epsilon_1 + \dots + \epsilon_n} \epsilon_{\alpha(1)} \dots \epsilon_{\alpha(n)}.$$

Если α — перестановка, коэффициент μ_{α} равен $(-1)^n$, поскольку единственный ненулевой член суммы — это тот, для которого все ϵ_i , равны 1. В противном случае можно разложить μ_{α} следующим образом:

$$\sum_{\epsilon_i, i \neq k} (-1)^{\epsilon_1 + \ldots + \epsilon_n} \sum_{\epsilon_k = 0, 1} (-1)^{\epsilon_k} \epsilon_{\alpha(1)} \ldots \epsilon_{\alpha(n)},$$

где k — элемент из [1,n], который не принадлежит образу α , и хорошо видно, что внутренний член (сумма по ϵ_k) равен нулю; это доказывает, что μ_α в этом случае равно нулю. Второе искомое выражение (суммы которого записываются на множествах) просто выводится из первого, исключением ненулевых ϵ_i , появляющихся в сумме.

$$\sum_{E'} = \sum_{E} + (-1)^{|E'|} \prod_{1 \le i \le n} S_i(E'). \tag{7}$$

Вклад наименьшего элемента \emptyset в эту сумму — нулевой; значит, начнем с его последователя, который может быть $\{1\}$, $\{n\}$ или какое-нибудь одноэлементное множество в соответствии с порядком, заданным на [1, n]. Можно заметить, что $S_i(E') = S_i(E) \pm a_{ij}$, где $\{j\} = E \triangle E'$.

В этой записи, как в алгоритме 12, \pm должен пониматься как +, если $E \subset E'$ и -, если $E' \subset E$.

Чтобы оценить $\sum_{E'}$, исходя из \sum_{E} с использованием соотношения (7), нужно осуществить n сложений (для подсчета каждого $S_i(E')$), затем n-1 перемножений: $S_1(E') \times \cdots \times S_n(E')$, и, наконец, 1 сложение. Имеем 2^n-2 операций для осуществления (7), при этом первый член $\sum = -\prod_{1 \leq i \leq n} \alpha_{in}$ требует n-1 перемножений; это доказывает сформулированный результат о сложности. Сложность $O(n2^n)$ значительна, но остается того же порядка, что и сложность, индуцированная определением (n!(n-1) перемножений и n!-1 сложений). Формула Стирлинга позволяет сравнить эти два значения сложности: $n \cdot n!/(n \cdot 2^n) \approx (n/2e)^n \sqrt{2\pi n}$.

22. Перманент матрицы (продолжение)

а. Правая часть может рассматриваться как многочлен (от переменных a_{ij}), равный $\sum_{\alpha} \mu_{\alpha} a_{1\alpha(1)}...a_{n\alpha(n)}$, где сумма распространяется на все отображения [1, n] в [1, n]. Коэффициент μ_{α} задан формулой

$$\mu_{\alpha} = \sum_{\omega} \mu_{\alpha}(\omega) \quad \mathbf{c} \quad \mu_{\alpha}(\omega) = \omega_1 \dots \omega_{n-1} \omega_{\alpha(1)} \dots \omega_{\alpha(n)},$$

в которой полагаем $\omega_n=1$. Если α — перестановка, то каждое $\mu_{\alpha}(\omega)$, присутствующее в сумме μ_{α} , равно 1 и, следовательно, $\mu_{\alpha}=2^{n-1}$. Напротив, если α не является перестановкой, то сумма μ_{α} — нулевая. Действительно, образ α отличен от [1, n], и различаем два случая:

- (i) $\exists \ k < n$, не принадлежащий образу α ,
- (ii) $\exists \ k < n$, дважды полученный из α .

В обоих случаях члены $\mu_{\alpha}(\omega)$, присутствующие в сумме, группируются попарно, один соответствуя $\omega_k=1$, другой — $\omega_k=-1$, и взаимно уничтожаются (в случае (ii) $\mu_{\alpha}(\omega)=\omega_k$).

b. Формула пункта **a** может быть записана в следующем виде:

$$\frac{per A}{2} = \sum \omega_1 \dots \omega_{n-1} \prod_{1 \le i \le n} (a_{in} + \omega_1 a_{i1} + \dots + \omega_{n-1} a_{in-1})/2.$$

Как и в предыдущем упражнении, вычисление перманента получается генерированием перебора при линейной упорядоченности на $\{-1,1\}^{n-1}$, в которой два последовательных элемента отличаются только одной компонентой. Если для $\omega \in \{-1,1\}^{n-1}$ и $i \leq n$ положить

$$S_i(\omega) = (a_{in} + \omega_1 a_{i1} + \dots + \omega_{n-1} a_{in-1})/2,$$