Energy measurements in HPC Architectures

[CMP223] Computer Systems Performance Analysis [INF01146] Análise de Desempenho

Laura Soares Luna Amanuel Otho Marcondes Setembro/25

Agenda

- Context & Motivation
- Computational Object
- Application, Instrumentation, Metrics
- Measurement Examples
- Next Steps

Energy consumption by source, World

Measured in terms of primary energy using the substitution method.

Data source: Energy Institute - Statistical Review of World Energy (2024) **Note:** "Other renewables" include geothermal, biomass, and waste energy.

OurWorldinData.org/energy | CC BY

Energy consumption by source, World

Measured in terms of primary energy using the substitution method.

Data source: Energy Institute - Statistical Review of World Energy (2024) **Note:** "Other renewables" include geothermal, biomass, and waste energy.

OurWorldinData.org/energy | CC BY

Energy consumption by source, World

Measured in terms of primary energy using the substitution method.

Data source: Energy Institute - Statistical Review of World Energy (2024) **Note:** "Other renewables" include geothermal, biomass, and waste energy.

OurWorldinData.org/energy | CC BY

Energy consumption in data-centres

- Data-centres in 2024 consumed 415 TWh, about 1.5% off all energy consumed in the world
- This number might reach 945 TWh in 2030

DATA-CENTRE ENERGY GROWTH

China and the United States are predicted to account for nearly 80% of the global growth in electricity consumption by data centres up to 2030*.

*Predicted trajectory under current regulatory conditions and industry projections.

*Predicted trajectory under current regulatory conditions and industry projections.

Energy measurements in HPC architectures

- It is increasingly critical to have energy monitoring tools in data-centres
- Optimizing energy performance depends on monitoring
- Allows power management initiatives

Energy measurements in HPC architectures

- Perform energy measurements on a cluster (computational object)
- Utilize an application/program to stress the machines
 - LU factorization (StarPU + Chameleon)
 - Stress package (lacks GPU support)

Partition	CPU	RAM	Accelerator	Disk	Motherboard
poti[1,2,3,4,5]	Intel(R) Core(TM) i7-14700KF, 3.40 GHz, 28 threads, 20 cores	96 GB DDR5	NVIDIA GeForce RTX 4070	1.7 TB SSD, 119.2 GB NVME	Gigabyte Technology Co., Ltd. Z790 UD AX

LU Factorization

Instrumentation: Network-manageable Rack Power Distribution Unit (PDU)

- The PDUs (the power outlet) used by the nodes are connected to the internal network of the cluster
 - Access using SSH
 - Answers to SNMP requests
- Provide energy measurements

- Active Power: electrical energy consumed in a circuit, in watts (W ou kW)
- "the energy actually used in load"
- P= V × I × cosф

- Active Power: electrical energy consumed in a circuit, in watts (W ou kW)
- "the energy actually used in load"
- P= V × I × cosφ

Voltage	214.4 V	Current	3.37 A
Active Power	0.669 kW	Power Factor	0.925
Energy	4144.103 kWh	Frequency	60.043 Hz

voltage root mean square*

* the square root of the mean square of a set of values

(o valor eficaz é a raiz quadrada da média aritmética dos quadrados dos valores)

- Active Power: electrical energy consumed in a circuit, in watts (W ou kW)
- "the energy actually used in load"
- P= V x I x cosф

Voltage	214.4 V	Current	3.37 A
Active Power	0.669 kW	Power Factor	0.925
Energy	4144.103 kWh	Frequency	60.043 Hz

current root mean square*

* the square root of the mean square of a set of values

(o valor eficaz é a raiz quadrada da média aritmética dos quadrados dos valores)

- Active Power: electrical energy consumed in a circuit, in watts (W ou kW)
- "the energy actually used in load"
- P= V × I × cosφ

power factor

Metrics: script making SNMP requests

```
while $SECONDS -lt $run time
   echo 'date'
   snmpget etc $IP PowerNet-MIB::ePDUDeviceStatusEnergy.1
   snmpget etc $IP PowerNet-MIB::ePDUDeviceStatusActivePower.1
   sleep $sleep
done
time (YYYY-MM-DD HH:MM:SS)
energy (kWh, cumulative)
active power (kW)
```

Measurement example I

tupi[5-6] multinode_pcept_train tupi3 i9_parquet_analysis_fix

OR

Measurement example I

tupi[5-6] multinode_pcept_traintupi3 i9_parquet_analysis_fix

AND

we need to allocate all the machines in the same PDU so other users' experiments don't show up in our measurements

Measurement example II

LLM inference (Qwen3-4B), 300 planning tasks in two batches with long-context answers (32k tokens)

tupi[**2**,**3**,6] progressive poti[**1**,2,3,**4**,5] e2e-plan

Problem: electric topology

rack 4 122 123 poti2 poti1 poti3 poti4 poti5 tupi2 tupi1 tupi3 tupi4 tupi5 tupi6 + switch + monitor

Next steps

- Re-work the electrical topology of the cluster
 - Have all the nodes of a partition in the same PDU
 - Isolate the network switches

Next steps

- Re-work the electrical topology of the cluster
 - Have all the nodes of a partition in the same PDU

Isolate the network switches

tsubasa
hype[1-5]
knl[1-4]
bali2
beagle
turing
switch 1GB
switch infiniband

Next steps

- Re-work the electrical topology of the cluster
 - Have all the nodes of a partition in the same PDU
 - Isolate the network switches
- Plan the experiments (notebook, git)
- Execute, adjust, execute again

Thank you!! 🙌 💆 🧠 💖 🔋

Any questions?
Irsoares@inf.ufrgs.br
otho.marcondes@inf.ufrgs.br
luntek22@student.hh.se

References 1

[energy mix] <u>https://ourworldindata.org/energy-mix</u>

[nature] <u>https://www.nature.com/articles/d41586-025-01113-z</u>

[wikipedia] https://en.wikipedia.org/wiki/List of countries by electricity

consumption

[Schneider https://eshop.se.com/in/blog/post/difference-between-active

Electric] <u>-power-reactive-power-and-apparent-power.html</u>

[wikipedia 2] https://pt.wikipedia.org/wiki/Valor_eficaz

Lucas Leandro Nesi, Lucas Mello Schnorr, Arnaud Legrand. Communication-Aware Load Balancing of the LU Factorization over Heterogeneous Clusters. IEEE International Conference on Parallel and Distributed Systems (ICPADS), Dec 2020, Hong Kong, France. hal-02633985