Face recognition From Singleimage Per Person-A survey

One Sample per Person Problem

Given a stored database of faces, the goal is to identify a ferson from the database later in time in any different and unfredictable foses, lighting, etc. from just one image.

Advantages

1-) easy to collect samples
Lismart ands, Passport,
Driver's license. etc.

2 -> Save Storage Cost

3 - Save Computational Cost.

Objective: How to improve performance against extremely small sample size.

Face Recognition Methods

Holistic methods

La Identify face using whole face image as input.

Local methods

-> use local facial features for recognition.

Hybrid methods

-> Use both - local & holistre features for recognition.

Holistiz methods

- -> PCA
- -> fisherface
- -> (PC)2A
- 7 2DPCA
- -> NoBe model
- -> Enlarge training set

 -> New representation

 SVD- Perturbation
 - -> Generate novel Views Parallel Deformation
- -> Dis-advantages of Holistiz methods

PCA

Preprocessing

- -> Convert each image to same width & Height
- -> Take training set of M images
 each with dimension + MXM
- -> Create Matrix A

each column is a Vector representation of NXM image matrix

-> Find mean face by taking average of each raw.

 N^{2} $\int_{-\infty}^{\infty} \frac{1}{M} \frac$

-> Substract the mean Vector from
each N2xxI Vector + so data become
normalized + zero mean

-> Find Covariance Matrix

AAT -> N2 x N2

L. find eigenvectors ->

total N2 -> tolarge

Recovery of eigenvector from low-dimentional space to highdimensional space. Suppose Vin eigenvector of ATA - (MXI) 50, ATAVI = LLIVI mutiply both side by A AATAVI: MIAVI (CAVI) = (MIA) VI 50 AVI - eigen vectors of C AVI + (N2XM) X (MXI) -So by taking eigen vectors Vi, Vz. .. Vm in lower space we can get the eigen vectors of AAT Higer Vi = E A Vak (N2XM) X(MXI)
Space. Vi = K:1 L:1,2...M (N2XI)

Recognition

-> accurate reconstruction of face

B not needed.

total eigenvectors required for recognition, << M

Original Paper > M=16 then

M'= 7 - top seven eigenvectors

corresponding to heighest eigenvalues

-> each training image

tr-1 -> tr1-meanface

i -> tr2-mean face

tr-m - mean face

-> (ompute weight vector for each training image.

training image.

will= [e:g.V-1] [tr-1]

will= [e:g.V-1]

W12 - [eg. V+2] [+8+1]

wim + [eg - VAM) [tram]

> represent each image with Weight Vectors

Tri - [WII WIZ --- WIM]

Trm + [WMI, WMZ --- WMM]

> Test image -> Substract mean face - find weight Vector [W11, W12, --- Wim]

Find Euclidian Distance of test image Vector with each of the training image,

4 select the image with

Fisherface

-> face classification

-> Maximize between class scatters
& minimize within class scatters

Steps

-> Suppose total number of classes are 4 with 2 images for training in each

-> Find avg. face.

-> Compute avg. face of each ferson e.g. here for 2 persons per class U1= { [91+92] Same for 112, 113 & 114. Substruct avg. face of each class
from traing & faces.

ai - [ai-11] [ai-11]

ai - [di-11] [di-11] within class scatter matrix Si = a'a'T + a'a'T Su = didiT + dz'dz'T Sw = S1 + S2 + S3 + S4 between class scatter matrix SB = 2(U,-U) (U,-U) T total +... + 2(U4-U) (U4-U) T images lass. Per class. Objective + Work = argmax [WTSBW]

[WTSWW]

[WTSWW]

If SWB non singular Columns of W are eigenvectors of SwisB IF SW B Singular. Apply PCA -> reduce dimensionality. WPCA: argmax WTST W ST: Z (KK-M) (KK-M) Wfld = argmax |WTWTcqSBWpcaW| W TWO CO SW WPCOW Wort = Wflol Wpcq > classify new face by nearest neighbor Disadvantage : -> Expensive calculation time -> Large Storage.

-> fail when each persons he closs ontain one training face

> It perform best in Variation in lighting a facial expression.

-> unimportant features -> faded out and important features become more. Silent after fre-frocessing.

-> Results -> improved when tested for one sample Per Person.

20 matrix -> not ID Vector.

-> No need to transform Image Matrix to Vector.

Suppose each image size mxn

I total images are M

then Coyanance Matrix

Gt = H Z (Aj-A) (Aj-A)

Mean
training fact
images

generalized eigen vectors criteria criteria office nx1 (Optimal projection Axis)

eigen vectors of [xopt

Gt corresponding to largest eg-value total scatter Criterion

Advantages

-> Size of image covariancematrix -> much smaller.

Leasy to evaluate

→ Less time to determine Corresponding eigenvectors.

Disadvantages

Storage - PCA - W, Wz ... Wn 2DPCA -> Principle Component Vectors.

How to reduce the Dimen siony - not clear.

Noise model

real world

La Certificate photographs

-> Currepted by Various

Scratches, blur or Dis
Coloration.

Paper

Authentication System to handle the Problem with one training image per Person.

Idea

Synthesize multiple new face images which imitate the current images for recognition.

Imitation -> Noise model Contrast Brightness Gaussian Blur.

By changing the Values of norse

Parameters -> several corrupted images

corresponding to one sample are

imitated

error rate - in 137 sammed Id-cards

indicates
method can significantly improve
the similarity between corrupted images
t training images.

for Better recognition 9 Ly enlarge the size.

of training set. Synthesizing Virtual Samples New representations New Visual for single training Samples + not existed in Oatabar Samples -> ROCA -> Representational Oriented Component analysis. 4 One sample for persons Pre Processing: apply linear & non-linear filters to + 150 representation 4 OCA clousifier is builet on each representation -> All OCA classifiers are Combined to give weighted linear sum for final Dea

Image Perturbation Construct new Representation

For given image X ;
error range 13 set for
Vertical & Horizontal localization
Error.

A new sample 13 generated by changing Vertical & or Horizontal (coordinate Value.

SVD Perturbation

face recognition -> Single image Per Person.

I -> Input image -> MIXM2

P= U = N V T La MIXM2 Diagonal
Matrix
La MixM, -> orthogonal matrix
La MixML -> orthogonal matrix

→ Combine I linearly with P

to generate new image with

following equation.

J= I+dP → O<d<1

-> Change the Values of 2 to generate additional images.

Ja works better by minor changes in expression, illumination & Occlusions.

Drawback

- -> Generated Virtual images may be highly correlated.
- -> New Sample should to not be considered as independent training images.

Generate Novel Views

[goal
Virtual samples - should

Loccupy Different locations
in the face space & represent

specific Variations of face images

Solution

- Dapply geometrical transformation

 → rotation

 scale etc.
- 2) Synthesizing the face image under different Pose & different illumination condition.

Technique

Parallel Deformation

— Generate novel View of single face image under different Poses.

Need to learn transformation

AX -> Difference between original face X & its reference face

Difference between images

of other Prototy pical face

to the same reference face

Assume. -> linear class Assumption. $\Delta X = \frac{9}{2} \lambda i \Delta X i$

Obtain di by minimizing.

[[DX - \frac{2}{2} di \DXi]]

novel images of each single face.

OBadvantages

- -> Difficult to generate for diffi Pose.
- -> Nowel image need correspondent between & real & reference image

Disadvantages of Holistiz methods

- -> one single feature Vector to represent each face image.
- ->> Sensitive to large appearence change duc to
 - -> expression
 - -> illumination
 - -> Pose & partial occlusion

Solution

La local features

- -> Original face -> represented

 By set of low dimensional

 Feature Vectors.
- -- Problem of Dimensionality can be removed.
- -> Recognize face Based on