Exact quantization methods for Multistage Stochastic Linear Problem

Maël Forcier, Stéphane Gaubert, Vincent Leclère

ECSO-CMS 2022. Venice.

European Conference on Stochastic Optimization

Computational Management Science June 30th 2022

Multistage stochastic linear programming (MSLP)

$$\begin{aligned} \min_{(\boldsymbol{x}_t)_{t \in [T]}} & & \mathbb{E} \Big[\sum_{t=1}^T \boldsymbol{c}_t^\top \boldsymbol{x}_t \Big] \\ \text{s.t.} & & \boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t & \forall t \in [T] \\ & & & \sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} & \forall t \in [T] \\ & & & \boldsymbol{x}_0 \equiv x_0 \text{ given} \end{aligned}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

We set $V_{T+1} \equiv 0$ and

$$V_t(x_{t-1}) := \mathbb{E}\left[\hat{V}_t(x_{t-1}, \boldsymbol{\xi}_t)\right] := \mathbb{E}\begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^{\top} x_t + V_{t+1}(x_t) \\ ext{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$$

How to deal with continuous distributions?

Maël Forcier

Multistage stochastic linear programming (MSLP)

$$\min_{(\boldsymbol{x}_t)_{t\in[T]}} \quad \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

We set $V_{T+1} \equiv 0$ and:

$$V_t(x_{t-1}) := \mathbb{E}ig[\hat{V}_t(x_{t-1}, oldsymbol{\xi}_t)ig] := \mathbb{E}egin{bmatrix} \min & oldsymbol{c}_t^ op x_t + V_{t+1}(x_t) \ ext{s.t.} & oldsymbol{A}_t x_t + oldsymbol{B}_t x_{t-1} \leqslant oldsymbol{b}_t \end{bmatrix}$$

➡ How to deal with continuous distributions?

2/25

Multistage stochastic linear programming (MSLP)

$$\min_{(m{x}_t)_{t\in[T]}} \quad \mathbb{E}\left[\sum_{t=1}^T m{c}_t^ op m{x}_t
ight] \ ext{s.t.} \quad m{A}_t m{x}_t + m{B}_t m{x}_{t-1} \leqslant m{b}_t & orall t \in [T] \ m{\sigma}(m{x}_t) \subset m{\sigma}(m{c}_{ au}, m{A}_{ au}, m{B}_{ au}, m{b}_{ au})_{ au \leqslant t} & orall t \in [T] \ m{x}_0 \equiv m{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

We set $V_{T+1} \equiv 0$ and:

$$V_t(x_{t-1}) := \mathbb{E} ig[\hat{V}_t(x_{t-1}, oldsymbol{\xi}_t) ig] := \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op x_t + V_{t+1}(x_t) \ ext{s.t.} & oldsymbol{A}_t x_t + oldsymbol{B}_t x_{t-1} \leqslant oldsymbol{b}_t \end{bmatrix}$$

How to deal with continuous distributions?

Maël Forcier

Real problem

$$V_t(x) = \mathbb{E} ig[\hat{V}_t(x, \xi_t) ig] = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + V_{t+1}(y) \ \mathrm{s.t.} & oldsymbol{A}_t y + oldsymbol{B}_t x \leqslant oldsymbol{b}_t \end{bmatrix}$$

 ξ_t continuous

Real problem

$$V_t(x) = \mathbb{E} ig[\hat{V}_tig(x, oldsymbol{\xi}_t ig) ig] = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + V_{t+1}(y) \ \mathrm{s.t.} & oldsymbol{A}_t y + oldsymbol{B}_t x \leqslant oldsymbol{b}_t ig] \end{cases}$$

 ξ_t continuous

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1, \cdots, ξ^N drawn by Monte Carlo

SAA N=20

Real problem

all problem
$$V_t(x) = \mathbb{E} ig[\hat{V}_tig(x, oldsymbol{\xi}_t ig) ig] = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + V_{t+1}(y) \ ext{s.t.} & oldsymbol{A}_t y + oldsymbol{B}_t x \leqslant oldsymbol{b}_t ig] \end{cases}$$

 ξ_t continuous

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

SAA N=20

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x, \check{\xi}_{t,P})$$

with $\check{p}_{t,P} := \mathbb{P} \big[\boldsymbol{\xi}_t \in P \big]$ and $\check{\xi}_{t,P} := \mathbb{E} \big[\boldsymbol{\xi}_t \, | \, \boldsymbol{\xi}_t \in P \big]$

Partition-based

Real problem

all problem
$$V_t(x) = \mathbb{E}ig[\hat{V}_tig(x,oldsymbol{\xi}_tig)ig] = \mathbb{E}egin{bmatrix} \min & oldsymbol{c}_t^ op y + V_{t+1}(y) \ ext{s.t.} & oldsymbol{A}_t y + oldsymbol{B}_t x \leqslant oldsymbol{b}_t ig] \end{cases}$$

 ξ_t continuous

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1,\cdots,ξ^N drawn by Monte Carlo

SAA N=20

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x, \check{\xi}_{t,P})$$

with $\check{p}_{t,P} := \mathbb{P}\big[\boldsymbol{\xi}_t \in P\big]$ and $\check{\boldsymbol{\xi}}_{t,P} := \mathbb{E}\big[\boldsymbol{\xi}_t \,|\, \boldsymbol{\xi}_t \in P\big]$ If $\boldsymbol{\xi} \mapsto \hat{V}(\boldsymbol{x},\boldsymbol{\xi})$ is convex, $V_{t,\mathcal{P}}(\boldsymbol{x}) \leqslant V_t(\boldsymbol{x})$.

Partition-based

Exact quantization

Definition

A MSP admits a local exact quantization at time t on x if there exists a finitely supported $(\check{\xi}_t)_{t\in[T]}$ i.e. such that

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\left[\hat{V}_t(x, \check{\xi}_t)\right].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition $\mathcal{P}_{t,x}$ such that the induced quantization is exact at time t on x, for all distributions of $(\xi_{\tau})_{\tau \in [T]}$.

Questions

- Under which condition does there exist an exact quantization?
- Can we construct a uniform and universal exact quantization?

Exact quantization

Definition

A MSP admits a local exact quantization at time t on x if there exists a finitely supported $(\xi_t)_{t\in[T]}$ i.e. such that

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\left[\hat{V}_t(x, \check{\xi}_t)\right].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition $\mathcal{P}_{t,x}$ such that the induced quantization is exact at time t on x, for all distributions of $(\xi_{\tau})_{\tau \in [T]}$.

Questions:

- Under which condition does there exist an exact quantization ?
- 2 Can we construct a uniform and universal exact quantization?

Assume $V_{t+1} \equiv 0$ for now and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$.

Let $\mathbf{A} = (-\mathbf{u})$, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$. Then,

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \geqslant 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\mathcal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}\big[\xi \in P\big]$, $\check{\xi}_P = \mathbb{E}\big[\xi \,|\, \xi \in P\big]$.

There is no partition-based local, neither uniform or universal, exact quantization result for **A** non-finitely supported.

Assume $V_{t+1} \equiv 0$ for now and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$. Let $\boldsymbol{A} = (-\boldsymbol{u}), \; \boldsymbol{B} \equiv (0), \; \boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$. Then,

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \geqslant 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\mathcal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \in P]$.

There is no partition-based local, neither uniform or universal, exact quantization result for **A** non-finitely supported.

Assume $V_{t+1} \equiv 0$ for now and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$.

Let $\mathbf{A} = (-\mathbf{u})$, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$. Then,

$$\hat{V}(x,\xi) = \min_{\substack{y \in \mathbb{R} \\ \text{s.t.} \quad uy \geqslant 1}}^{y} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}\big[\boldsymbol{\xi} \in P\big]$, $\check{\xi}_P = \mathbb{E}\big[\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \in P\big]$.

There is no partition-based local, neither uniform or universal, exact quantization result for **A** non-finitely supported.

Assume $V_{t+1} \equiv 0$ for now and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$.

Let $\mathbf{A} = (-\mathbf{u})$, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$. Then,

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}} \quad y \\ \text{s.t.} \quad uy \geqslant 1 = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P} \big[\boldsymbol{\xi} \in P \big]$, $\check{\xi}_P = \mathbb{E} \big[\boldsymbol{\xi} \, | \, \boldsymbol{\xi} \in P \big]$.

➡ There is no partition-based local, neither uniform or universal, exact quantization result for A non-finitely supported.

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $Ay + Bx \leqslant h$

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y) \qquad \text{epi} (\hat{V}(\cdot,\xi))$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y)\in P}$$
.

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y) \in P}$$
.

 $\hat{V}(\cdot,\xi)$ is polyhedral because epi $(\hat{V}(\cdot,\xi))$ is the projection of epi (Q^{ξ}) .

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y) \in P}$$
.

 $\hat{V}(\cdot,\xi)$ is polyhedral because epi $(\hat{V}(\cdot,\xi))$ is the projection of epi (Q^{ξ}) .

$$\operatorname{epi}\left(\hat{V}(\cdot,\xi)\right)$$

$$V(x) = \mathbb{E}\left[\hat{V}(x, \xi)\right] = \sum_{\xi \in \mathsf{supp}(\check{\xi})} p_{\xi} \hat{V}(x, \xi)$$

ightharpoonup If the noise is finitely supported, then V is polyhedral

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y)\in P}$$
.

 $\hat{V}(\cdot,\xi)$ is polyhedral because epi $(\hat{V}(\cdot,\xi))$ is the projection of epi (Q^{ξ}) .

$$\operatorname{epi}\left(\hat{V}(\cdot,\xi)\right)$$

$$V(x) = \mathbb{E} \left[\hat{V}(x, \xi) \right] = \sum_{\xi \in \mathsf{supp}(\check{\xi})} p_{\xi} \hat{V}(x, \xi)$$

- \rightarrow If the noise is finitely supported, then V is polyhedral
- Existence of uniform exact quantization implies polyhedrality of *V*.

Counter examples with stochastic constraints

Stochastic **B**

$$\begin{split} V(x) &= \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \mathbf{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix} \\ &= \mathbb{E}\big[\max(\mathbf{u}x, 1)\big] \\ &= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases} \\ \end{split}$$

$$V(x) &= \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \mathbf{u} \\ & x - y \leqslant 0 \end{bmatrix} \\ &= \mathbb{E}\big[\max(x, \mathbf{u})\big] \\ &= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \end{cases}$$

Stochastic **b**

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \mathbf{u} \\ & x - y \leqslant 0 \end{bmatrix}$$
$$= \mathbb{E} \left[\max(x, \mathbf{u}) \right]$$
$$= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \geqslant 1 \end{cases}$$

 \vee V is not polyhedral \Rightarrow No uniform exact quantization for non-finitely

 \boldsymbol{u} is uniform on [0,1]

Counter examples with stochastic constraints

Stochastic **B**

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \mathbf{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix}$$

$$= \mathbb{E}[\max(\mathbf{u}x, 1)]$$

$$= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$$

$$= V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \mathbf{u} \\ & x - y \leqslant 0 \end{bmatrix}$$

$$= \mathbb{E}[\max(x, \mathbf{u})]$$

$$= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \end{cases}$$

Stochastic **b**

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \mathbf{u} \\ & x - y \leqslant 0 \end{bmatrix}$$
$$= \mathbb{E} \left[\max(x, \mathbf{u}) \right]$$
$$= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \geqslant 1 \end{cases}$$

lacktriangle V is not polyhedral \Rightarrow No uniform exact quantization for non-finitely supported \boldsymbol{B} and \boldsymbol{b} .

 \boldsymbol{u} is uniform on [0,1]

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & c^{\top}y \\ \text{s.t.} & Ay + Bx \leqslant b \end{bmatrix}$$

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

ightharpoonup This extends to finitely supported random A, B and b.

Let's dive in

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & \boldsymbol{c}^{\top} y \\ \text{s.t.} & Ay + Bx \leqslant b \end{bmatrix}$$

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

ightharpoonup This extends to finitely supported random A, B and b.

Let's dive in

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & \boldsymbol{c}^{\top} y \\ \text{s.t.} & Ay + Bx \leqslant b \end{bmatrix}$$

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

ightharpoonup This extends to finitely supported random A, B and b.

Let's dive in

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & c^{\top}y \\ \text{s.t.} & Ay + Bx \leqslant b \end{bmatrix}$$

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

ightharpoonup This extends to finitely supported random A, B and b.

Let's dive in !

Contents

- 1 Local and Universal Exact Quantization for cost in 2-stage
- Uniform and Universal Exact Quantization for cost in 2-stage
- Uniform and Universal Exact Quantization for cost in multistage
- Complexity results

Reformulation of V(x) highlighting the role of the fiber P_x

For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^{\top} y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_x} c^{\top} y\right]$$
 where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leqslant b\}$

Illustrative running example:

$$\mathbf{P}_{\mathbf{x}} := \{ y \in \mathbb{R}^m \mid ||y||_1 \leqslant 1,
y_1 \leqslant x, \ y_2 \leqslant x \}$$

Reformulation of V(x) highlighting the role of the fiber P_x

For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^{\top} y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_x} \mathbf{c}^{\top} y\right]$$
 where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leqslant b\}$

Illustrative running example:

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, \textcolor{blue}{y} \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, \textcolor{blue}{y} \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, \textcolor{blue}{y} \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_{x} is

$$\mathcal{N}(P_{\times}) := \{ N_{P_{\times}}(y) \mid y \in P_{\times} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

Proposition

If P_x is bounded, $\{ri(N) \mid N \in \mathcal{N}(P_x)\}$ is a partition of \mathbb{R}^m .

 P_x and $\mathcal{N}(P_x)$ for x = 0.3

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} c^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$\mathcal{N}(P_x)$$
 for $x = 0.3$

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} c^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\underset{y \in P_x}{\operatorname{arg \, min}} c^{\top} y \text{ is a face of } P_x.$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_x$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \boldsymbol{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\underset{y \in P_x}{\operatorname{arg \, min}} c^{\top} y \text{ is a face of } P_x.$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost
$$-c$$
 and $\mathcal{N}(P_x)$ for $x = 0.3$

$$P_x$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\underset{y \in P_x}{\operatorname{arg \, min}} c^{\top} y \text{ is a face of } P_x.$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in \underline{P}_x} \boldsymbol{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\underset{y \in P_x}{\operatorname{arg \, min}} c^{\top} y \text{ is a face of } P_x.$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in \underline{P}_x} \boldsymbol{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \boldsymbol{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\underset{y \in P_x}{\operatorname{arg \, min}} c^{\top} y \text{ is a face of } P_x.$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{\rm v}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\underset{y \in P_x}{\operatorname{arg \, min}} c^{\top} y \text{ is a face of } P_x.$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_x$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$P_{x}$$
 for $x = 0.3$

For a given x, we have

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \boldsymbol{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 P_{x} for x = 0.3

$$V(x) = \mathbb{E}\left[\min_{y \in P_x} \mathbf{c}^\top y\right]$$
$$= \sum_{N \in \mathcal{N}(P_x)} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\text{ ri } N} \min_{y \in P_x} \mathbf{c}^\top y\right]$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top}y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top}y\right] \quad \text{where } y_{N} \in \operatorname{arg\,min}_{y} \underbrace{\boldsymbol{c}^{\top}}_{\in -\operatorname{ri} N} y.$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$$

$$-c_{2}$$

$$\cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \mathbf{c}^{\top} y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \mathbf{c}^{\top} y\right] \quad \text{where } y_{N} \in \operatorname{arg min}_{y} \underbrace{\mathbf{c}^{\top}}_{\in -\operatorname{ri} N} y.$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\operatorname{ri} N} \mathbf{c}^{\top}\right] y_{N}(x)$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$$

$$-c_{2}$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$$

$$y_N \in \operatorname{arg\,min}_y \underbrace{c}_{\in -\operatorname{ri} N} y.$$

$$\mathcal{N}(P_x)$$
 and $p_N \check{c}_N$ for $x = 0.3$

For
$$N \in \mathcal{N}(P_x)$$
,

$$p_N := \mathbb{P}[c \in -\operatorname{ri} N]$$

$$\check{c}_N := \mathbb{E}[c \mid c \in -\operatorname{ri} N]$$

We replace the continuous cost \boldsymbol{c} , by the discrete cost $\check{\boldsymbol{c}}$.

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \mathbf{c}^{\top}y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \mathbf{c}^{\top}y\right] \quad \text{where } y_{N} \in \operatorname{arg\,min}_{y} \underbrace{\mathbf{c}^{\top}}y.$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\operatorname{ri} N} \mathbf{c}^{\top}\right] y_{N}(x)$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top}y$$

$$p_{N} \check{c}_{N} \text{ for } x = 0$$

For
$$N \in \mathcal{N}(P_x)$$
,

$$p_{N} := \mathbb{P}[\mathbf{c} \in -\operatorname{ri} N]$$

$$\check{c}_{N} := \mathbb{E}[\mathbf{c} \mid \mathbf{c} \in -\operatorname{ri} N]$$

We replace the continuous cost \boldsymbol{c} , by the discrete cost $\check{\boldsymbol{c}}$.

Contents

- 1 Local and Universal Exact Quantization for cost in 2-stage
- 2 Uniform and Universal Exact Quantization for cost in 2-stage
- Uniform and Universal Exact Quantization for cost in multistage
- 4 Complexity results

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_{x}

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_{x}

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_{x}

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_{x}

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_{x}

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

Maël Forcier

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \le b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \le b \}$$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

Maël Forcier

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

What are the constant regions of $x \mapsto \mathcal{N}(P_x)$?

Proposition

There exists a collection $\mathcal{C}(P,\pi)$ called the chamber complex whose relative interior of cells are the constant regions of $x \mapsto \mathcal{N}(P_x)$.

I.e, for $\sigma \in \mathcal{C}(P,\pi)$ and $x,x' \in ri(\sigma)$, we have $\mathcal{N}(P_x) = \mathcal{N}(P_{x'}) =: \mathcal{N}_{\sigma}$

 \mathcal{N}_{σ} for $\sigma = [0.5, 1]$

 \mathcal{N}_{σ} for $\sigma = [1, +\infty)$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Common Refinement of Normal Fans

We can quantize c on each chamber.

Common Refinement of Normal Fans

We can quantize c on each chamber.

We take the common refinement:

$$\mathcal{R} := \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau} = \{ N \cap N' \mid N \in \mathcal{N}_{\sigma}, N' \in \mathcal{N}_{\tau} \}$$

For all
$$x \in ri(\sigma) \cup ri(\tau)$$
,

$$V(x) = \sum_{N \in \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

Common Refinement of Normal Fans

We can quantize c on each chamber.

We take the common refinement:

$$\mathcal{R} := \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau} = \{ \textit{N} \cap \textit{N}' \mid \textit{N} \in \mathcal{N}_{\sigma}, \textit{N}' \in \mathcal{N}_{\tau} \}$$

For all
$$x \in ri(\sigma) \cup ri(\tau)$$
,

$$V(x) = \sum_{N \in \mathcal{R}} p_N \min_{y \in P_x} \check{c}_N^\top y$$

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$;
- local exact quantization at x and x' by taking the refinement,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$;
- local exact quantization at x and x' by taking the refinement,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P,\pi)$

Theorem (Uniform and universal quantization of the cost distribution)

Let
$$\mathcal{R} = \bigwedge_{\sigma \in \mathcal{C}(P,\pi)} -\mathcal{N}_{\sigma}$$
, then for all $x \in \mathbb{R}^n$

$$V(x) = \sum_{R \in \mathcal{R}} \check{p}_R \min_{y \in P_x} \check{c}_R^\top y$$

where
$$\check{p}_R := \mathbb{P} \big[\boldsymbol{c} \in \mathsf{ri}(R) \big]$$
 and $\check{c}_R := \mathbb{E} \big[\boldsymbol{c} \, | \, \boldsymbol{c} \in \mathsf{ri}(R) \big]$

Polyhedral dual characterization of V

Dual admissible set

$$D_c := \left\{ \lambda \,|\, A^\top \lambda + c = 0 \right\}$$

Weighted fiber polyhedron

$$E = \mathbb{E}[D_c] = \int D_c \mathbb{P}(dc)$$

Extension of fiber polytope of

L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527–549, 1992.

Polyhedral dual characterization of V

Dual admissible set

$$D_c := \left\{ \lambda \, | \, A^\top \lambda + c = 0 \right\}$$

Weighted fiber polyhedron

$$E = \mathbb{E}\big[D_{oldsymbol{c}}\big] = \int D_{oldsymbol{c}} \mathbb{P}(dc)$$

Extension of fiber polytope of

L. Billera, B. Sturmfels, Fiber polytopes, *Annals of Mathematics*, p527–549, 1992.

Theorem

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_E(b - Bx) = \sup_{\lambda \in F} (b - Bx)^{\top} \lambda$$

Polyhedral dual characterization of V

Dual admissible set

$$D_c := \left\{ \lambda \,|\, A^\top \lambda + c = 0 \right\}$$

Weighted fiber polyhedron

$$E = \mathbb{E}\big[D_{oldsymbol{c}}\big] = \int D_{oldsymbol{c}} \mathbb{P}(dc)$$

Extension of fiber polytope of

L. Billera, B. Sturmfels, Fiber polytopes, *Annals of Mathematics*, p527–549, 1992.

Theorem

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_E(b - Bx) = \sup_{\lambda \in E} (b - Bx)^{\top} \lambda$$

Moreover, for all distributions of c, V is affine on each cell of $C(P, \pi)$.

Explicit computation of an example

Contents

- 1 Local and Universal Exact Quantization for cost in 2-stage
- 2 Uniform and Universal Exact Quantization for cost in 2-stage
- 3 Uniform and Universal Exact Quantization for cost in multistage
- 4 Complexity results

Extension to multistage and stochastic constraints

Theorem

All results generalizes to multistage problem with finitely supported stochastic constraints.

- $(V_t)_t$ are affine on universal chamber complexes, i.e. independent of the law of $(c_t)_t$
- ▶ We have an uniform and universal exact quantization.

Core idea of the proof : Iterated chamber complexes

$$\begin{split} \mathcal{P}_{t,\xi} &:= \mathcal{C}\Big((\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}) \wedge \mathcal{F}\big(P_t(\xi)\big), \pi_{\mathbf{x}_{t-1}}^{\mathbf{x}_{t-1},\mathbf{x}_t}\Big) \\ \mathcal{P}_t &:= \bigwedge_{\xi_t \in \operatorname{supp} \xi_t} \mathcal{P}_{t,\xi} \end{split}$$

Extension to multistage and stochastic constraints

Theorem

All results generalizes to multistage problem with finitely supported stochastic constraints.

- $(V_t)_t$ are affine on universal chamber complexes, i.e. independent of the law of $(c_t)_t$
- **▶** We have an uniform and universal exact quantization.

Core idea of the proof : Iterated chamber complexes

$$\begin{split} \mathcal{P}_{t,\xi} &:= \mathcal{C}\Big(\big(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}\big) \wedge \mathcal{F}\big(P_t(\xi)\big), \pi_{\mathsf{x}_{t-1}}^{\mathsf{x}_{t-1},\mathsf{x}_t}\Big) \\ \mathcal{P}_t &:= \bigwedge_{\xi_t \in \mathsf{supp}\, \boldsymbol{\xi}_t} \mathcal{P}_{t,\xi} \end{split}$$

$$V_t(x) = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + oldsymbol{V}_{t+1}(y) \ ext{s.t.} & (x,y) \in oldsymbol{P}_t \end{bmatrix}$$
 epi (V_{t+1})

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

$$V_t(x) = \mathbb{E}egin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & oldsymbol{c}_t^ op y + oldsymbol{z} \ ext{s.t.} & (x, y, oldsymbol{z}) \in \operatorname{epi}(Q_t) \end{bmatrix}$$
 epi (V_{t+1})

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

$$V_t(x) = \mathbb{E}egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} m{c}_t^ op y + z \ \mathrm{s.t.} \ (x,y,z) \in \mathrm{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$V_t(x) = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + z \ z \in \mathbb{R} \ & ext{s.t. } (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y)\in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

 $\underline{\wedge} \operatorname{epi}(Q_t)$ appears in the constraint and depends on c_{t+1} !

$$V_t(x) = \mathbb{E} egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} & m{c}_t^ op y + z \ ext{s.t. } (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y)\in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\text{epi}(Q_t), \pi_x^{x,y,z})$

 $\underline{\wedge}$ epi (Q_t) appears in the constraint and depends on c_{t+1} !

 V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$V_t(x) = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + z \ z \in \mathbb{R} \ & ext{s.t. } (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y)\in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

 $\underline{\wedge}$ epi(Q_t) appears in the constraint and depends on c_{t+1} !

$$egin{aligned} V_{t+1} & ext{affine on } \mathcal{P}_{t+1} & ext{(by assumption)} \ \mathcal{Q}_t := (\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}) \wedge \mathcal{F}(P_t) \end{aligned}$$

$$V_t(x) = \mathbb{E} egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} & oldsymbol{c}_t^ op y + z \ ext{s.t.} & (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y)\in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$egin{aligned} V_{t+1} & ext{affine on } \mathcal{P}_{t+1} & ext{ (by assumption)} \ \mathcal{Q}_t &:= \left(\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}\right) \wedge \mathcal{F}ig(rac{P_t}{P_t} ig) \ \mathcal{P}_t &:= \mathcal{C}(\mathcal{Q}_t, \pi_\star^{\times, y}) \end{aligned}$$

$$V_t(x) = \mathbb{E} egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} & oldsymbol{c}_t^ op y + z \ ext{s.t.} & (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

 \bigwedge epi (Q_t) appears in the constraint and depends on c_{t+1} !

$$V_{t+1}$$
 affine on \mathcal{P}_{t+1} (by assumption)

$$Q_t := (\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}) \wedge \mathcal{F}(\frac{P_t}{Q_t})$$

$$\mathcal{P}_t := \mathcal{C}(\mathcal{Q}_t, \pi_x^{x,y})$$

[FGL21, Lem. 4.1]: $\mathcal{P}_t \preccurlyeq \mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

 $ightharpoonup V_t$ affine on \mathcal{P}_t , $\mathcal{N}(P_x)$ constant on \mathcal{P}_t

Contents

- Local and Universal Exact Quantization for cost in 2-stage
- Uniform and Universal Exact Quantization for cost in 2-stage
- Uniform and Universal Exact Quantization for cost in multistage
- 4 Complexity results

Volume of a polytope

Vol
$$(\{z \in \mathbb{R}^d \mid Az \leqslant b\})$$
 or Vol $(\mathsf{Conv}(v_1, \cdots, v_n))$

- #P-complete:Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Barvinok (1994)

Volume of a polytope

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}\right) \;\mathsf{or} \;\;\; \mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$$

- #P-complete:Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Barvinok (1994)

2-stage linear problem

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} c^{\top} \mathbf{x} + \mathbb{E} \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{q}^{\top} \mathbf{y} \\ \text{s.t. } T\mathbf{x} + W\mathbf{y} \leqslant \mathbf{h} \end{bmatrix}$$
s.t. $A\mathbf{x} \leqslant \mathbf{b}$

- #P-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m?

Volume of a polytope

Vol
$$\left(\left\{z\in\mathbb{R}^d\,|\, Az\leqslant b\right\}\right)$$
 or Vol $\left(\mathsf{Conv}(v_1,\cdots,v_n)\right)$

- #P-complete:Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Barvinok (1994)

2-stage linear problem

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} c^{\top} \mathbf{x} + \mathbb{E} \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{q}^{\top} \mathbf{y} \\ \text{s.t. } T\mathbf{x} + W\mathbf{y} \leqslant \mathbf{h} \end{bmatrix}$$
s.t. $A\mathbf{x} \leqslant \mathbf{b}$

- #P-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)

Volume of a polytope

Vol
$$\left(\left\{z\in\mathbb{R}^d\,|\, Az\leqslant b\right\}\right)$$
 or Vol $\left(\mathsf{Conv}(v_1,\cdots,v_n)\right)$

- #P-complete: Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Barvinok (1994)

2-stage linear problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} c^{\top} x + \mathbb{E} \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^m} \mathbf{q}^{\top} y \\ \text{s.t. } Tx + Wy \leqslant h \end{bmatrix}$$
s.t. $Ax \leqslant b$

- #P-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)

 - → Approximated case

Complexity result multistage

Shapiro and Nemiroviski (2005):

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1-\alpha$, when T is fixed.

¹No requirement for the first decision.

Complexity result multistage

Shapiro and Nemiroviski (2005):

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1-\alpha$, when T is fixed.

Theorem (FGL: MSLP is polynomial for fixed dimensions)

Assume that T, n_t , and $|\operatorname{supp}(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{b}_t)|$, for $t=2,\ldots,T$, are fixed integers.¹

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible or finds an ε -solution in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

¹No requirement for the first decision.

Complexity result multistage

Shapiro and Nemiroviski (2005):

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1-\alpha$, when T is fixed.

Theorem (FGL: MSLP is polynomial for fixed dimensions)

Assume that T, n_t , and $|\operatorname{supp}(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{b}_t)|$, for $t=2,\ldots,T$, are fixed integers.¹

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible or finds an ε -solution in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

ightharpoonup Can be adapted to exact complexity when we can compute exactly $\mathbb{E}\big[m{c}\in C|(m{A}_t,m{B}_t,m{b}_t)=(A,B,b)\big]$ and $\mathbb{P}\big[m{c}\in C|(m{A}_t,m{B}_t,m{b}_t)=(A,B,b)\big]$.

¹No requirement for the first decision.

- Uniform and universal exact quantization for an MSLP
 - ➤ New complexity results.

- Local exact quantization on c
 - \blacktriangleright Higher order simplex algorithm on the chamber complex solves 2SLP of dimension 100 + 10.
- Local exact quantization result for constraints **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

- Uniform and universal exact quantization for an MSLP
 - ➤ New complexity results.

- Local exact quantization on c
 - ightharpoonup Higher order simplex algorithm on the chamber complex solves 2SLP of dimension 100 + 10.
- Local exact quantization result for constraints B and b.
 - → Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

- Uniform and universal exact quantization for an MSLP
 - New complexity results.

- Local exact quantization on c
 - ➡ Higher order simplex algorithm on the chamber complex solves 2SLP of dimension 100 + 10.
- Local exact quantization result for constraints **B** and **b**.
 - ➤ Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

- Uniform and universal exact quantization for an MSLP
 - New complexity results.

- Local exact quantization on c
 - ightharpoonup Higher order simplex algorithm on the chamber complex solves 2SLP of dimension 100 + 10.
- Local exact quantization result for constraints ${m B}$ and ${m b}$.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

- Uniform and universal exact quantization for an MSLP
 - New complexity results.

- Local exact quantization on c
 - Higher order simplex algorithm on the chamber complex solves 2SLP of dimension 100 + 10.
- Local exact quantization result for constraints ${m B}$ and ${m b}$.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

Thank you for listening! Any question?

M. Forcier, S. Gaubert, V. Leclère

Exact quantization of multistage stochastic linear problems.

arXiv preprint arXiv:2107.09566 (2021).

M. Forcier, V. Leclère

Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization. Operation Research Letters, to appear (2022).

M. Forcier, V. Leclère

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

HAL Id: hal-03683697 (2022).

Local exact quantization and adapted partition

Local exact quantization

random cost

Recall that for a fixed x,

$$\mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

where,

$$p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$$

 $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

$$P_x := \{ y \in \mathbb{R}^m \mid Ay + Bx \leqslant b \}$$

GAPM

random constraints

Similarly, for a given q, and all x,

$$V(x) := \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

$$= \mathbb{E}[\max_{\lambda \in D_{\boldsymbol{q}}} (\boldsymbol{h} - \boldsymbol{T}x)^{\top} \lambda]$$

$$= \sum_{N \in \mathcal{N}(D_{\boldsymbol{q}})} p_N \max_{\lambda \in D_{\boldsymbol{q}}} \psi_{N,x}^{\top} \lambda$$

where,

$$p_{N} := \mathbb{P}[\mathbf{h} - \mathbf{T}x \in ri N]$$

$$\psi_{N,x} := \mathbb{E}[\mathbf{h} - \mathbf{T}x \mid \mathbf{h} - \mathbf{T}x \in ri N]$$

$$\mathbf{D}_{\mathbf{g}} := \{\lambda \in \mathbb{R}^{I} \mid \mathbf{W}^{\top}\lambda \leq \mathbf{g}\}$$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Theorem (FL 2021)

$$\mathcal{R}_x := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_q) \right\}$$
 is an adapted partition to x i.e. $V_{\mathcal{R}_x}(x) = V(x)$

Proof

$$V(x) := \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

$$= \sum_{N \in \mathcal{N}(D)} \mathbb{P}[\boldsymbol{h} - \boldsymbol{T}x \in \operatorname{ri} N] \min_{\lambda \in D} \mathbb{E}[\boldsymbol{h} - \boldsymbol{T}x | \boldsymbol{h} - \boldsymbol{T}x \in \operatorname{ri} N]^{\top} \lambda$$

$$= \sum_{N \in \mathcal{N}(D)} \mathbb{P}[\boldsymbol{\xi} \in E_{N,x}] Q(\mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in E_{N,x}], x) = V_{\mathcal{R}_x}(x)$$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Theorem (FL 2021)

$$\mathcal{R}_x := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_q) \right\}$$
 is an adapted partition to x i.e. $V_{\mathcal{R}_x}(x) = V(x)$

Proof:

$$\begin{split} V(x) &:= \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right] \\ &= \sum_{\boldsymbol{N} \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{h} - \boldsymbol{T}x \in \operatorname{ri} \boldsymbol{N}\right] \min_{\boldsymbol{\lambda} \in D} \mathbb{E}\left[\boldsymbol{h} - \boldsymbol{T}x \mid \boldsymbol{h} - \boldsymbol{T}x \in \operatorname{ri} \boldsymbol{N}\right]^{\top} \boldsymbol{\lambda} \\ &= \sum_{\boldsymbol{N} \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{\xi} \in E_{\boldsymbol{N},x}\right] Q\left(\mathbb{E}\left[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in E_{\boldsymbol{N},x}\right], x\right) = V_{\mathcal{R}_x}(x) \end{split}$$

Synthesis of local and uniform quantization results

	W	(T, h)	q
Local	Ø	\mathcal{R}_{x}	$\mathcal{N}(P_{\scriptscriptstyle X})$
Uniform	Ø	Ø	$\bigwedge_{\sigma \in \mathcal{C}(P,\pi)} \mathcal{N}_{\sigma}$

Numerical Results - ProdMix

k	Z_{L}^{k}	z_U^k	$z_U^k - z_L^k$	Total time	$ \mathcal{P}^k $
1	-18666.67	-16939.71	1726.96	0.57 s	4
2	-17873.01	-17383.73	489.28	2.1 s	9
4	-17744.67	-17709.00	35.67	9.1 s	25
6	-17713.74	-17711.37	2.37	23.7 s	49
8	-17711.71	-17711.56	0.15	50.0 s	81
10	-17711.57	-17711.56	0.01	88.0 s	121

Table: Results for problem Prod-Mix

Comparison with SAA : we solved the same problem $100\ \text{times}$, each with $10\ 000\ \text{scenarios}$ randomly drawn

- \rightsquigarrow 95% confidence interval centered in -17711, with radius 2.2.
- → required 2058s of computation.