Master Thesis

May 28, 2008

Contents

1	Der	ivation from the Standard Model	1
	1.1	Electroweak Standard Model	1
	1.2	OED	1

1 Derivation from the Standard Model

1.1 Electroweak Standard Model

Lagrangian with a global $SU(2) \times U(1)$ symmetry:

$$L=i\bar{L}^{(l)}\gamma_{\mu}\partial^{\mu}L^{(l)}+i\bar{e}_{R}\gamma_{\mu}\partial^{\mu}e_{R}+\tfrac{1}{2}\partial_{\mu}\phi^{*a}\partial^{\mu}\phi^{a}-m^{2}\phi^{*a}\phi^{a}-\frac{1}{4}\lambda(\phi^{*a}\phi_{a})^{2}-h_{e}\bar{L}^{(l)}\phi_{a}e_{R}-\text{h.c.}$$

where $l = e, \mu, \tau$ and a = 1, 2.

Local $SU(2) \times U(1)$ symmetry:

1.2 QED

The QED Lagrangian density is

$$L = \bar{\psi}(ic\gamma^{\mu}D_{\mu} - mc^2)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

where

$$\psi = (\psi_1 \psi_2 \psi_3 \psi_4)$$

and

$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

is the gauge covariant derivative and (e is the elementary charge, which is 1 in atomic units)

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

is the electromagnetic field tensor. It's astonishing, that this simple Lagrangian can account for all phenomena from macroscopic scales down to something like

 10^{-13} cm. So of course Feynman, Schwinger and Tomonaga received the 1965 Nobel Prize in Physics for such a fantastic achievement.

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

$$(ic\gamma^{\mu}D_{\mu} - mc^{2})\psi = 0$$
$$\partial_{\nu}F^{\nu\mu} = -ec\bar{\psi}\gamma^{\mu}\psi$$

The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell equations $(\partial_{\nu}F^{\nu\mu} = -ej^{\mu})$ with a source $j^{\mu} = c\bar{\psi}\gamma^{\mu}\psi$, which is a 4-current comming from the Dirac equation.

The fields ψ and A^{μ} are quantized. The first approximation is that we take ψ as a wavefunction, that is, it is a classical 4-component field. It can be shown that this corresponds to taking three orders in the perturbation theory.

The first component A_0 of the 4-potential is the electric potential, and because this is the potential that (as we show in a moment) is in the Schrödinger equation, we denote it by V:

$$A_{\mu} = \left(\frac{V}{ec}, A_1, A_2, A_3\right)$$

So in the non-relativistic limit, the $\frac{V}{e}$ corresponds to the electric potential. We multiply the Dirac equation by γ^0 from left to get:

$$0 = \gamma^{0}(ic\gamma^{\mu}D_{\mu} - mc^{2})\psi = \gamma^{0}(ic\gamma^{0}(\partial_{0} + i\frac{V}{c}) + ic\gamma^{i}(\partial_{i} + ieA_{i}) - mc^{2})\psi =$$
$$= (ic\partial_{0} + ic\gamma^{0}\gamma^{i}\partial_{i} - \gamma^{0}mc^{2} - V - ce\gamma^{0}\gamma^{i}A_{i})\psi$$

and we make the following substitutions (it's just a formalism, nothing more): $\beta = \gamma^0$, $\alpha^i = \gamma^0 \gamma^i$, $p_j = -i\partial_j$, $\partial_0 = \frac{1}{c} \frac{\partial}{\partial t}$ to get

$$(i\frac{\partial}{\partial t} - c\alpha^{i}p_{i} - \beta mc^{2} - V - ce\alpha^{i}A_{i})\psi = 0.$$

This, in most solid state physics texts, is usually written as

$$i\frac{\partial\psi}{\partial t} = H\psi\,,$$

where the Hamiltonian is given by

$$H = c\alpha^{i}(p_{i} + eA_{i}) + \beta mc^{2} + V.$$

The right hand side of the Maxwell equations is the 4-current, so it's given by:

$$i^{\mu} = c \bar{\psi} \gamma^{\mu} \psi$$

Now we make the substitution $\psi = e^{-imc^2t}\varphi$, which states, that we separate the largest oscillations of the wavefunction and we get

$$j^0 = c\bar{\psi}\gamma^0\psi = c\psi^{\dagger}\psi = c\varphi^{\dagger}\varphi$$

$$j^i = c\bar{\psi}\gamma^i\psi = c\psi^\dagger\alpha^i\psi = c\varphi^\dagger\alpha^i\varphi$$

The Dirac equation implies the Klein-Gordon equation:

$$(-ic\gamma^{\mu}D_{\mu} - mc^{2})(ic\gamma^{\nu}D_{\nu} - mc^{2})\psi = (c^{2}\gamma^{\mu}\gamma^{\nu}D_{\mu}D_{\mu} + m^{2}c^{4})\psi =$$
$$= (c^{2}D^{\mu}D_{\mu} - ic^{2}[\gamma^{\mu}, \gamma^{\nu}]D_{\mu}D_{\nu} + m^{2}c^{4})\psi = 0$$

Note however, the ψ in the true Klein-Gordon equation is just a scalar, but here we get a 4-component spinor. Now:

$$D_{\mu}D_{\nu} = (\partial_{\mu} + ieA_{\mu})(\partial_{\nu} + ieA_{\nu}) = \partial_{\mu}\partial_{\nu} + ie(A_{\mu}\partial_{\nu} + A_{\nu}\partial_{\mu} + (\partial_{\mu}A_{\nu})) - e^{2}A_{\mu}A_{\nu}$$
$$[D_{\mu}, D_{\nu}] = D_{\mu}D_{\nu} - D_{\nu}D_{\mu} = ie(\partial_{\mu}A_{\nu}) - ie(\partial_{\nu}A_{\mu})$$

We rewrite $D^{\mu}D_{\mu}$:

$$\begin{split} D^{\mu}D_{\mu} &= g^{\mu\nu}D_{\mu}D_{\nu} = \partial^{\mu}\partial_{\mu} + ie((\partial^{\mu}A_{\mu}) + 2A^{\mu}\partial_{\mu}) - e^{2}A^{\mu}A_{\mu} = \\ &= \partial^{\mu}\partial_{\mu} + ie((\partial^{0}A_{0}) + 2A^{0}\partial_{0} + (\partial^{i}A_{i}) + 2A^{i}\partial_{i}) - e^{2}(A^{0}A_{0} + A^{i}A_{i}) = \\ &= \partial^{\mu}\partial_{\mu} + i\frac{1}{c^{2}}\frac{\partial V}{\partial t} + 2i\frac{V}{c^{2}}\frac{\partial}{\partial t} + ie(\partial^{i}A_{i}) + 2ieA^{i}\partial_{i} - \frac{V^{2}}{c^{2}} - e^{2}A^{i}A_{i} \end{split}$$
 We use the identity $\frac{\partial}{\partial t}\left(e^{-imc^{2}t}f(t)\right) = e^{-imc^{2}t}(-imc^{2} + \frac{\partial}{\partial t})f(t)$ to get:

$$\begin{split} L &= c^2 \partial^\mu \psi^* \partial_\mu \psi - m^2 c^4 \psi^* \psi = \frac{\partial}{\partial t} \psi^* \frac{\partial}{\partial t} \psi - c^2 \partial^i \psi^* \partial_i \psi - m^2 c^4 \psi^* \psi = \\ &= (imc^2 + \frac{\partial}{\partial t}) \varphi^* (-imc^2 + \frac{\partial}{\partial t}) \varphi - c^2 \partial^i \varphi^* \partial_i \varphi - m^2 c^4 \varphi^* \varphi = \\ &= 2mc^2 \left[\frac{1}{2} i (\varphi^* \frac{\partial \varphi}{\partial t} - \varphi \frac{\partial \varphi^*}{\partial t}) - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi + \frac{1}{2mc^2} \frac{\partial \varphi^*}{\partial t} \frac{\partial \varphi}{\partial t} \right] \end{split}$$

The constant factor $2mc^2$ in front of the Lagrangian is of course irrelevant, so we drop it and then we take the limit $c \to \infty$ (neglecting the last term) and we get

$$L = \frac{1}{2}i(\varphi^* \frac{\partial \varphi}{\partial t} - \varphi \frac{\partial \varphi^*}{\partial t}) - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi$$

After integration by parts we arrive at

$$L = i\varphi^* \frac{\partial \varphi}{\partial t} - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi$$

The nonrelativistic limit can also be applied directly to the Klein-Gordon equation:

$$0 = (c^2 D^{\mu} D_{\mu} + m^2 c^4) \psi =$$

$$= \left(c^2 \partial^{\mu} \partial_{\mu} + i \frac{\partial V}{\partial t} + 2iV \frac{\partial}{\partial t} + iec^2 (\partial^i A_i) + 2iec^2 A^i \partial_i - V^2 - e^2 c^2 A^i A_i + m^2 c^4 \right) e^{-imc^2 t} \varphi =$$

$$\begin{split} &= \left(\frac{\partial^2}{\partial t^2} - c^2 \nabla^2 + 2i V \frac{\partial}{\partial t} + i \frac{\partial V}{\partial t} + i e c^2 (\partial^i A_i) + 2i e c^2 A^i \partial_i - V^2 - e^2 c^2 A^i A_i + m^2 c^4 \right) e^{-i m c^2 t} \varphi = \\ &= e^{-i m c^2 t} \left(\left(-i m c^2 + \frac{\partial}{\partial t} \right)^2 - c^2 \nabla^2 + 2i V \left(-i m c^2 + \frac{\partial}{\partial t} \right) + i \frac{\partial V}{\partial t} + i e c^2 (\partial^i A_i) + 2i e c^2 A^i \partial_i - V^2 + \right. \\ &\left. - e^2 c^2 A^i A_i + m^2 c^4 \right) \varphi = \\ &= e^{-i m c^2 t} \left(-2i m c^2 \frac{\partial}{\partial t} + \frac{\partial^2}{\partial t^2} - c^2 \nabla^2 + 2V m c^2 + 2i V \frac{\partial}{\partial t} + i \frac{\partial V}{\partial t} + i e c^2 (\partial^i A_i) + 2i e c^2 A^i \partial_i - V^2 + \right. \\ &\left. - e^2 c^2 A^i A_i \right) \varphi = \\ &= -2m c^2 e^{-i m c^2 t} \left(i \frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2m c^2} \frac{\partial^2}{\partial t^2} - \frac{i}{2m c^2} \frac{\partial V}{\partial t} + \frac{V^2}{2m c^2} - \frac{i V}{m c^2} \frac{\partial}{\partial t} + \right. \\ &\left. - \frac{i e}{2m} \partial^i A_i - \frac{i e}{m} A^i \partial_i + \frac{e^2}{2m} A^i A_i \right) \varphi \end{split}$$

Taking the limit $c \to \infty$ we again recover the Schrödinger equation:

$$i\frac{\partial}{\partial t}\varphi = \left(-\frac{\nabla^2}{2m} + V + \frac{ie}{2m}\partial^i A_i + \frac{ie}{m}A^i\partial_i - \frac{e^2}{2m}A^i A_i\right)\varphi,$$

we rewrite the right hand side a little bit:

$$i\frac{\partial}{\partial t}\varphi = \left(\frac{1}{2m}(\partial^i\partial_i + ie\partial^iA_i + 2ieA^i\partial_i - e^2A^iA_i) + V\right)\varphi,$$
$$i\frac{\partial}{\partial t}\varphi = \left(\frac{1}{2m}(\partial^i + ieA^i)(\partial_i + ieA_i) + V\right)\varphi,$$

And we get the usual form of the Schrödinger equation for the vector potential $\mathbf{A} = (A_1, A_2, A_3)$:

$$i\frac{\partial}{\partial t}\varphi = \left(-\frac{(\nabla + ie\mathbf{A})^2}{2m} + V\right)\varphi \,.$$