# Deep Learning

# Learning representations with deep neural networks

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

## Typical "Shallow" Learning Flow



## Typical "Shallow" Learning Flow



## Typical "Shallow" Learning Flow



## Typical "Deep" Learning Flow



#### Deep Learning vs. Shallow Learning

- "Shallow" learning algorithms are more concerned with *predictive modelling*.
  - This usually requires *prior domain knowledge*.
  - Most effort on the developer's part is spent on feature engineering and feature selection.
- Deep learning algorithms are concerned with both learning useful representations for inputs and predictive modelling.
  - Inputs are supplied in fairy "raw" form (e.g. pixels of an image) and this requires little to no prior domain knowledge.
  - Most developer effort is spent on *optimizing hyperparameters*.
  - O Deep models have considerable more parameters to learn, so they require *much more training data* than shallow models and are very *computationally intensive*.
- There is usually a tradeoff between feature engineering and model "depth".

• A neural network is considered "deep" if it has more than one hidden layer.



- A neural network is considered "deep" if it has more than one hidden layer.
  - An input causes an *neuron activation pattern* in the first hidden layer.



- A neural network is considered "deep" if it has more than one hidden layer.
  - An input causes an *neuron activation pattern* in the first hidden layer.
  - The first layer causes another *activation pattern* in the second layer and so on.



- A neural network is considered "deep" if it has more than one hidden layer.
  - An input causes an *neuron activation pattern* in the first hidden layer.
  - The first layer causes another *activation pattern* in the second layer and so on.
  - The last layer makes a *prediction*, based the on *activation pattern* of the layer behind it.



- A neural network is considered "deep" if it has more than one hidden layer.
  - An input causes an *neuron activation pattern* in the first hidden layer.
  - The first layer causes another *activation pattern* in the second layer and so on.
  - O The last layer makes a *prediction*, based the on *activation pattern* of the layer behind it
- In other words, with each layer, the network **gradually builds more and more abstract representations** of the input and the final layer acts like a **predictive model**.



- A neural network is considered "deep" if it has more than one hidden layer.
  - An input causes an *neuron activation pattern* in the first hidden layer.
  - The first layer causes another *activation pattern* in the second layer and so on.
  - The last layer makes a *prediction*, based the on *activation pattern* of the layer behind it
- In other words, with each layer, the network **gradually builds more and more abstract representations** of the input and the final layer acts like a **predictive model**.
- The layered structure of a deep neural network makes it the perfect candidate for a deep learning algorithm.





• Every layer produces an *abstract* representation of the input.



- Every layer produces an *abstract* representation of the input.
- With every layer, the representation is gradually more similar between examples of the same class.



- Every layer produces an *abstract* representation of the input.
- With every layer, the representation is gradually more similar between examples of the same class.
- This makes the *prediction* job easy for the last layer.

On the last hidden layer representations have to be linearly separable.



- Every layer produces an *abstract* representation of the input.
- With every layer, the representation is gradually more similar between examples of the same class.
- This makes the *prediction* job easy for the last layer.
- Every layer is "fully connected" to the one after it.
  - $\Rightarrow$  29,915 parameters to learn! (and this is a relatively small network)

On the last hidden layer representations have to be linearly separable.

#### The Trouble with Deep Neural Networks

- Training and using deep neural networks in practice was *infeasible* for many years.
- Learning was extremely slow.
  - A network with a few hidden layers can reach *millions of parameters*.
  - Training is very *computationally intensive*.
  - This also means that researchers had to wait a long time to see if a new idea worked.
- Deep networks are very complex models and are prone to overfitting
  - O To avoid this, they require *considerably more training data* than shallow methods (sometimes millions of training samples).
- The network structure itself (i.e. *number of layers* and number of neurons per layer) is a very hard *hyperparameter* to tune, since there are lots of possibilities.

#### What has changed?

- In the late 2000s and early 2010s, *Deep Neural Networks* and *Deep Learning* have seen a major increase in popularity and performance.
- Aside from the major increase in data availability and computing power, an important reason for the recent breakthrough in *Deep Learning* are the advances made by researchers on the algorithmic side.
  - Better activation functions (e.g. ReLU)
  - Better optimization algorithms (e.g. Momentum, RMSProp, Adam)
  - Better network layer structure (e.g. Convolutions, LSTMs, Residual Networks).
  - Better regularization techniques (e.g. Dropout, BatchNorm).
  - Deep Learning frameworks (e.g. TensorFlow, Theano, PyTorch, Caffe).

# Better Activation Functions







$$\Delta W^{(3)} = (\dots) \cdot \sigma'(\vec{z}^{(3)})$$





$$\Delta W^{(3)} = (\dots) \cdot \sigma'(\vec{z}^{(3)})$$
  
$$\Delta W^{(2)} = (\dots) \cdot \sigma'(\vec{z}^{(2)})\sigma'(\vec{z}^{(3)})$$





$$\begin{split} \Delta W^{(3)} &= (\dots) \cdot \sigma' \big( \vec{z}^{(3)} \big) \\ \Delta W^{(2)} &= (\dots) \cdot \sigma' \big( \vec{z}^{(2)} \big) \sigma' \big( \vec{z}^{(3)} \big) \\ \Delta W^{(1)} &= (\dots) \cdot \sigma' \big( \vec{z}^{(1)} \big) \sigma' \big( \vec{z}^{(2)} \big) \sigma' \big( \vec{z}^{(3)} \big) \end{split}$$





$$\Delta W^{(3)} = (\dots) \cdot \sigma'(\vec{z}^{(3)})$$

$$\Delta W^{(2)} = (\dots) \cdot \sigma'(\vec{z}^{(2)})\sigma'(\vec{z}^{(3)})$$

$$\Delta W^{(1)} = (\dots) \cdot \underline{\sigma'(\vec{z}^{(1)})\sigma'(\vec{z}^{(2)})\sigma'(\vec{z}^{(3)})}$$



 $\sigma'(x)$  has a maximum value of 0.25 for x=0 and it drops very quickly (e.g.  $\sigma'(10)\approx 0.00004$ ).

- The derivative of the *logistic function*  $\sigma'(x)$  has a maximum value of 0.25 for x=0 and it drops very quickly (e.g.  $\sigma'(10)\approx 0.00004$ ).
- Because of the *chain rule*, the weight updates in one layer are multiplied by the gradients of all layers after it.
  - This causes updates in early layers to be very small and learning to be very slow.
  - The updates can even be 0 because of *floating point precision*.
  - A neuron with an output very close to 0 or 1 and, thus, a very small update, is said to be "saturated"
  - The problem gets worse for *deeper networks*.
- This is known as the vanishing gradient problem.
- Another issue with the logistic (and other sigmoids) is that it is *computationally* expensive, since it requires computing the exponential  $e^{-x}$ .

#### **Rectified Linear Units**

• The linear activation f(x) = x does not suffer from vanishing gradient problem, but it also does not benefit from multiple layers.

#### **Rectified Linear Units**

• The linear activation f(x) = x does not suffer from vanishing gradient problem, but it also does not benefit from multiple layers.

• The **Rectified Linear Unit (ReLU)** is a *non-linear activation* function which takes only the

positive part of the linear activation.

$$f(x) = \max(0, x) \qquad f'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$



#### **Rectified Linear Units**

- The linear activation f(x) = x does not suffer from vanishing gradient problem, but it also does not benefit from multiple layers.
- The **Rectified Linear Unit** (**ReLU**) is a *non-linear activation* function which takes only the positive part of the linear activation.

$$f(x) = \max(0, x)$$
  $f'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$ 

- ReLU neurons cannot saturate on the positive side so they don't suffer from the vanishing gradient problem
- The *ReLU* activation is much easier to compute.
- ReLUs output 0 in the negative range which encourages activation sparsity.



## **Dying ReLU Problem**

- Because the output of a ReLU neuron is constant in the negative range, the slope is 0.
- This means that a *ReLU* neuron can "die".
  - i.e. get stuck on the negative side with the output always 0 and very small chances of recovering.
- This effect can be good to some extent, since it encourages activation sparsity, but if it happens too much it can render a very large part of the network essentially useless.
- It can be mitigated by setting a *smaller learning rate* or by using a *ReLU* variant (e.g. *LeakyReLU*, *PreELU*)

#### **ReLU Variants**

#### **Leaky ReLU**



 $\alpha$  is a **hyperparameter**. (It is set before training, and remains constant afterwards).



## **Better Optimizers**

#### Stochastic, Batch and Mini-Batch

- "Stochastic" Gradient Descent is used for the case in which the algorithm computes the gradient and makes one weight update for one training sample at a time.
  - The can lead slow convergence because of *zig-zagging* of the weight vector instead of always taking steps towards the minimum.

#### Stochastic, Batch and Mini-Batch

- "Stochastic" Gradient Descent is used for the case in which the algorithm computes the gradient and makes one weight update for one training sample at a time.
  - The can lead slow convergence because of *zig-zagging* of the weight vector instead of always taking steps towards the minimum.
- Ideally, we want to make a single weight update for the average gradient of all training samples.
  - This is known as **Batch Gradient Descent**, or sometimes "Vanilla" **Gradient Descent**.
  - This method computes the *optimal direction for every update*, but every step involves *lots of computations*.

#### Stochastic, Batch and Mini-Batch

- "Stochastic" Gradient Descent is used for the case in which the algorithm computes the gradient and makes one weight update for one training sample at a time.
  - The can lead slow convergence because of *zig-zagging* of the weight vector instead of always taking steps towards the minimum.
- Ideally, we want to make a single weight update for the average gradient of all training samples.
  - This is known as Batch Gradient Descent, or sometimes "Vanilla" Gradient Descent.
  - This method computes the *optimal direction for every update*, but every step involves *lots of computations*.
- The most common method is to make one weight update based on the average gradient for a (small) subset of data.
  - This is called Mini-Batch Gradient Descent.
  - It usually *converges faster* the *Batch*, even if it takes more steps, because every step is *computed much faster*.

Mini-Batch Gradient Descent is almost always used in practice, but sometimes it is referred to as SGD.

#### **Problems with Gradient Descent**

• Even the optimal, but slow, **Batch Gradient Descent** does not guarantee *good convergence*.

#### **Problems with Gradient Descent**

- Even the optimal, but slow, **Batch Gradient Descent** does not guarantee *good convergence*.
- The error surface of a deep neural network is **non-convex** which means that GD can easily get stuck in **local minima**.

### **Problems with Gradient Descent**

- Even the optimal, but slow, **Batch Gradient Descent** does not guarantee *good convergence*.
- The error surface of a deep neural network is **non-convex** which means that GD can easily get stuck in **local minima**.
- However, it turns out that saddle points, not local minima, are a worse problem for GD convergence.
  - O Saddle points are locations where some dimensions slope up and others slope down, which makes the gradient ~0 in all directions.



#### **Problems with Gradient Descent**

- Even the optimal, but slow, **Batch Gradient Descent** does not guarantee *good convergence*.
- The error surface of a deep neural network is **non-convex** which means that GD can easily get stuck in **local minima**.
- However, it turns out that saddle points, not local minima, are a worse problem for GD convergence.
  - O Saddle points are locations where some dimensions slope up and others slope down, which makes the gradient ~0 in all directions.



- Some of these issues can be alleviated by choosing a proper learning rate, but this is not trivial.
  - Small learning rate means slow convergence, large learning rate means fluctuations around the minimum or divergence.
  - Another issue is that the *same learning rate* applies to all weights. We might want more active neurons to have a smaller learning rate than neurons which are rarely active.

• A **moving average** is a calculation used to smooth out random fluctuations in a (time-)series of data points.

- A moving average is a calculation used to smooth out random fluctuations in a (time-)series of data points.
- In an exponential moving average (or exponentially weighted moving average), more recent points have exponentially more impact on the average.

$$\begin{aligned} v_0 &= 0 \\ v_t &= \beta v_{t-1} + (1 - \beta)\theta_t \end{aligned}$$

 $v_t$  approximates the average over  $\frac{1}{1-eta}$  values



- A moving average is a calculation used to smooth out random fluctuations in a (time-)series of data points.
- In an exponential moving average (or exponentially weighted moving average), more recent points have exponentially more impact on the average.

$$\begin{aligned} v_0 &= 0 \\ v_t &= \beta v_{t-1} + (1 - \beta)\theta_t \end{aligned}$$

 $v_t$  approximates the average over  $\frac{1}{1-\beta}$  values



- A moving average is a calculation used to smooth out random fluctuations in a (time-)series of data points.
- In an exponential moving average (or exponentially weighted moving average), more recent points have exponentially more impact on the average.

$$\begin{aligned} v_0 &= 0 \\ v_t &= \beta v_{t-1} + (1 - \beta)\theta_t \end{aligned}$$

 $v_t$  approximates the average over  $\frac{1}{1-eta}$  values



- A moving average is a calculation used to smooth out random fluctuations in a (time-)series of data points.
- In an exponential moving average (or exponentially weighted moving average), more recent points have exponentially more impact on the average.

$$\begin{aligned} v_0 &= 0 \\ v_t &= \beta v_{t-1} + (1 - \beta)\theta_t \end{aligned}$$

 $v_t$  approximates the average over  $\frac{1}{1-\beta}$  values



### **Momentum**

• One case in which SGD is slow is when the error surface is more steep in one direction then in another.

$$\Delta w^{t+1} = -\eta \frac{\partial E}{\partial w^t}$$

 $\boldsymbol{w}^t$  is the weight at time t.

O This causes SGD to oscillate from one side to the other, while making little progress towards the minimum.



#### **Momentum**

• One case in which SGD is slow is when the error surface is more steep in one direction then in another.

$$\Delta w^{t+1} = -\eta \frac{\partial E}{\partial w^t}$$

 $\boldsymbol{w}^t$  is the weight at time t.

- O This causes SGD to oscillate from one side to the other, while making little progress towards the minimum.
- Momentum is a method which accelerates SGD in a certain direction if several consecutive updates push it towards it.



#### **Momentum**

• One case in which SGD is slow is when the error surface is more steep in one direction then in another.

$$\Delta w^{t+1} = -\eta \frac{\partial E}{\partial w^t}$$

 $w^t$  is the weight at time t.

- O This causes SGD to oscillate from one side to the other, while making little progress towards the minimum.
- Momentum is a method which accelerates SGD in a certain direction if several consecutive updates push it towards it.
- It works by keeping an exponential moving average of gradients (the "velocity") and using it to update the weights, instead of using the gradient directly.

$$v^{t} = \gamma v^{t-1} + (1 - \gamma) \frac{\partial E}{\partial w^{t}}$$
  $\Delta w^{t+1} = -\eta \Delta v^{t}$ 

 $\gamma$  is usually ~0.9

- O The velocities in relevant directions grow over time.
- O The velocities in oscillating directions cancel out.
- Momentum can also help to avoid getting stuck in certain local minima.





# **Adaptive Learning Rate**

 Adagrad, Adadelta and RMSProp are optimization techniques which use an adaptive learning rate (i.e. the learning rate adapts to each weight at each step).

## **Adaptive Learning Rate**

- Adagrad, Adadelta and RMSProp are optimization techniques which use an adaptive learning rate (i.e. the learning rate adapts to each weight at each step).
- RMSProp (Root Mean Square Prop) tries to make learning rate smaller for weights which get updated frequently. It does this by keeping a moving average of squared gradients for each weight and scales the corresponding learning rate by the root of this value.

MeanSquare
$$(w^t) = \gamma$$
MeanSquare $(w^{t-1}) + (1 - \gamma) \left(\frac{\partial E}{\partial w^t}\right)^2$ 
$$\Delta w^{t+1} = -\frac{\eta}{\sqrt{\text{MeanSquare}(w^t)}} \frac{\partial E}{\partial w^t}$$

Exponential moving average of squared gradients.

### **Adaptive Learning Rate**

- Adagrad, Adadelta and RMSProp are optimization techniques which use an adaptive learning rate (i.e. the learning rate adapts to each weight at each step).
- RMSProp (Root Mean Square Prop) tries to make learning rate smaller for weights which get updated frequently. It does this by keeping a moving average of squared gradients for each weight and scales the corresponding learning rate by the root of this value.

MeanSquare
$$(w^t) = \gamma$$
MeanSquare $(w^{t-1}) + (1 - \gamma) \left(\frac{\partial E}{\partial w^t}\right)^2$ 
$$\Delta w^{t+1} = -\frac{\eta}{\sqrt{\text{MeanSquare}(w^t)}} \frac{\partial E}{\partial w^t}$$

**ADAM** (**Ada**ptive **M**oment Estimation) is a combination of *Momentum* and *RMSProp* and it is very common in practice.

$$v^t = \gamma_1 v^{t-1} + (1 - \gamma_1) \frac{\partial E}{\partial w^t}$$
 
$$\text{MeanSquare}(w^t) = \gamma_2 \text{MeanSquare}(w^{t-1}) + (1 - \gamma_2) \left(\frac{\partial E}{\partial w^t}\right)^2$$
 
$$\Delta w^{t+1} = -\frac{\eta}{\sqrt{\text{MeanSquare}(w^t)}} v^t$$
 In practice of the practical properties of the properties of

In practice, the moving averages have bias-correction.

Exponential moving average of squared gradients.

## **Keywords**

