Опты, дз 2

Максим Пасько 776

Conjugate sets

1

$$S = \mathbf{cone}\{(-3,1), (2,3), (4,5)\}$$

Используя теорему о сопряжённом к многогранному множеству, получаем

$$S^* = \{(x, y) \in \mathbb{R}^2 \mid -3x + y \ge 0, \quad 2x + 3y \ge 0, \quad 4x + 5y \ge 0\}$$

(самая яркая красная область и есть S^*)

 $\mathbf{2}$

Исходное множество S можно представить как $S = \mathbf{conv}\{(0,0), (\frac{4}{3}, -\frac{4}{3})\} + \mathbf{cone}\{(1,2), (-1,2)\}$. Тогда, используя теорему о сопряжённом к многогранному множеству, получим, что

1

$$S^* = \{(x,y) \in \mathbb{R}^2 \mid \frac{4}{3}x - \frac{4}{3}y \ge -1, \quad x + 2y \ge 0, \quad -x + 2y \ge 0\}$$

При этом, S и S^* являются выпуклыми, замкнутыми и содержат нуль, поэтому $S^{**}=S,$ а $S^{***}=S^*.$

Для начала отметим, что $\mathbb{S}^n_+ = \{xx^T \mid x \in \mathbb{R}^n\}$, а $x^TAx = \langle A, xx^T \rangle$.

Покажем, что $C=\mathbb{S}^n_+$ является самосопряжённым конусом:

 $1)C \subset C^*$:

Пусть $A \in C$, т.е. $x^T A x \ge 0$. При этом, $x^T A x = \langle A, x x^T \rangle \ge 0 \implies \langle A, B \rangle \ge 0 \quad \forall B \in C \Rightarrow$

 $2)C^* \subset C$:

Пусть $A \in C^*$. Тогда $\langle A, B \rangle \geq 0 \quad \forall B \in C$. При этом, $\exists x \in \mathbb{R}^n : B = xx^T$. Тогда $0 \le \langle A, xx^T \rangle = x^T A x \implies A \in C.$

4

$$\begin{split} K &= \{(x,y,z) & | & y > 0, \quad y e^{\frac{x}{y}} \leq z \}. \\ K^* &= \{(a,b,c) & | & ax + by + cz \geq 0 \quad \forall (x,y,z) \in K \}. \end{split}$$

 $K = \{(x,y,z) \mid y>0, ye^{\frac{x}{y}} \leq z\}.$ $K^* = \{(a,b,c) \mid ax+by+cz \geq 0 \ \forall (x,y,z) \in K\}.$ Так как y>0, справедливо будет $a\frac{x}{y}+b+c\frac{z}{y} \geq 0$. Рассмотрим три случая:

1)c > 0:

 $\overline{\text{Так как }}K^*$ тоже конус, то можно считать, что c=1, т.к. верно будет и для $\lambda c, \quad \lambda \geq 0$. Сделаем замену $\frac{x}{y}=p, \frac{z}{y}=q$. Тогда, при c=1, числа a и b будут находиться из условий $ap+b+q\geq 0, q\geq e^p$. То есть, искомые a и b будут коэффициетом наклона и свободным коэффициентом соответственно таких прямых, которые или не пересекают график экспоненты, или хотя бы касаются его. Такое множество полностью задаётся множеством касательных к экспоненте (просто двигаем вправо касательную, увеличивая коэффици-

ент b). Тогда получаем: $\begin{cases} a=-e^p \\ b=-ap-e^p \end{cases} \Leftrightarrow \begin{cases} a=-e^p \\ b=a(1-\ln(-a)) \end{cases}$. Также надо учесть горизонтальные прямые, которые лежат ниже экспоненты: $q=-b, b\geq 0$. Тогда при c>0итоговая область будет

$$\{(\lambda a, \lambda b, \lambda) \mid \lambda \geq 0, \quad b \geq a(1 - \ln(-a))$$
или $a = 0, b \geq 0\}$

 $\overline{\mathrm{B}}$ этом случае просто получаем $ap+b\geq 0 \quad \forall p,$ то есть $a=0,b\geq 0,$ а это мы уже учли в первом случае.

3)c < 0:

 $\overline{\text{Тогда }a}$ и b ищем из условий $q \leq ap+b, \quad q \geq e^p$. Понятно, что таких a и b не существует, т.к. только в верхней полуплоскости, задаваемой прямой, может полностью содержаться надграфик экспоненты.

Итого, получаем, что

$$K^* = \{(a,b,c) \mid c \ge 0, a < 0, -a \ln(-\frac{a}{c}) + a - b \le 0$$
 или $a = 0, b \ge 0\}$

5

Используя теорему о сопряжённом к многогранному множеству, получаем

$$S^* = \{(x,y) \in \mathbb{R}^2 \mid -4x - y \ge -1, \quad -2x - y \ge -1, \quad -2x + y \ge -1, \quad x \ge 0, \quad 2x + y \ge 0\}$$

Пусть $S^* = \{y \mid \langle x,y \rangle \leq 1 \quad \forall x \in S\}.$ Если $S = S^*$, то $\forall x \in S \quad \langle x,x \rangle \leq 1 \quad \Leftrightarrow \quad \|x\| \leq 1$, то есть самосопряжённым множеством будет замкнутый единичный шар с центром в нуле.

$$S^* = \{y \in \mathbb{R}^n \mid \langle x,y \rangle \geq -1 \quad \forall x \in S\}.$$

$$\langle x,y \rangle = \sum_{i=1}^n x_i y_i. \text{ Пусть } z_i = |a_i| x_i. \text{ Тогда } S^* = \{y \in \mathbb{R}^n \mid \sum_{i=1}^n z_i \frac{y_i}{|a_i|} \geq -1 \quad \forall z \in B_{\varepsilon}(0)\}.$$
 Пусть $p_i = \frac{y_i}{|a_i|}.$ Тогда S^* будет сопряжённым к замкнутому шару радиуса ε с центром в нуле, то есть шаром радиуса $\frac{1}{\varepsilon}$, то есть $S^* = \{p \in \mathbb{R}^n \mid \sum_{i=1}^n p_i^2 \leq \frac{1}{\varepsilon^2}\}$, или же

$$S^* = \{ y \in \mathbb{R}^n \mid \sum_{i=1}^n \frac{y_i^2}{a_i^2} \le \frac{1}{\varepsilon^2} \}$$

Conjugate function

$$f(x) = -\frac{1}{x}, x \in \mathbb{R}_{++}$$

 $f^*(y) = \sup_{x>0} (xy + \frac{1}{x}) = \sup_{x>0} g(x,y)$. Функция g(x,y) неограничена сверху при y>0 (можно подобрать сколь угодно большой x, который даст сколь угодно большой xy), неограничена сверху и при $y \leq 0$ (можно подобрать сколь угодно малый x, который даст сколь угодно большой $\frac{1}{x}$). Значит, $f^*(y) = +\infty \quad \forall y \in \mathbb{R}$.

$$f(x) = -\frac{1}{2} - \ln x, \quad x > 0$$
 $f^*(y) = \sup_{x>0} (xy + \frac{1}{2} + \ln x) = \sup_{x>0} g(x,y).$ Функция $g(x,y)$ неограничена сверху при $y \ge 0$

$$\begin{array}{lll} 0 & \Rightarrow & \mathbf{dom} \ f^*(y) = \{y & | & y < 0\}. \\ \nabla_x g(x,y) = y + \frac{1}{x} = 0 & \Rightarrow & x = -\frac{1}{y} & \Rightarrow & f^*(y) = \ln(-\frac{1}{y}) - \frac{1}{2} \end{array}$$

3

$$f(x) = \ln \sum_{i=1}^{n} e^{x_i}$$

$$f^*(y) = \sup_{x \in \mathbb{R}^n} (\sum_{i=1}^n x_i y_i - \ln \sum_{j=1}^n e_j^x) = \sup_{x \in \mathbb{R}^n} g(x,y)$$
. Функция $g(x,y)$ ограничена сверху при $\mathbf{0} \prec y \prec \mathbf{1}$, т.е. $0 < y_i < 1, \quad i = \overline{1,n}$. $\nabla_{x_k} g(x,y) = y_k - \frac{e^{x_k}}{\sum\limits_{j=1}^n e^{x_j}} = 0 \quad \Rightarrow \quad x_k = \ln(y_k \sum\limits_{j=1}^n e^{x_j})$. Обозначим $\sum\limits_{i=1}^n e^{x_i}$ как S . Тогда

$$g = \sum_{i=1}^{n} y_i \ln(y_i S) - \ln(\sum_{j=1}^{n} y_j S) = \sum_{i=1}^{n} y_i \ln S + \sum_{i=1}^{n} y_i \ln y_i - \sum_{j=1}^{n} y_j \ln S = \sum_{i=1}^{n} y_i \ln y_i$$

4

$$f(x) = -\sqrt{a^2 - x^2}, \quad |x| \le a$$

$$f^*(y) = \sup_{|x| \le a} (xy + \sqrt{a^2 - x^2}) = \sup_{|x| \le |a|} g(x, y), \text{ функция } g(x, y) \text{ ограничена при всех } y.$$

$$\nabla_x g(x, y) = y - \frac{x}{\sqrt{a^2 - x^2}} = 0 \quad \Rightarrow \quad y = \frac{x}{\sqrt{a^2 - x^2}} \quad \Rightarrow \quad x = ay \frac{1}{\sqrt{1 + y^2}} \quad \Rightarrow \quad f^*(y) = \frac{1}{\sqrt{1 + y^2}}$$

$$\nabla_x g(x,y) = y - \frac{a}{\sqrt{a^2 - x^2}} = 0 \quad \Rightarrow \quad y = \frac{a}{\sqrt{a^2 - x^2}} \quad \Rightarrow \quad x = ay \frac{1}{\sqrt{1 + y^2}} \quad \Rightarrow \quad f^*(y) = \frac{a}{\sqrt{1 + y^2}} (y^2 + 1) = a\sqrt{1 + y^2}.$$

5

$$\begin{split} f(X) &= -\ln \det X, \quad X \in S^n_{++} \ f^*(Y) = \sup(\langle X, Y \rangle + \ln \det X) = \sup g(X, Y). \\ \nabla_X g(X, Y) &= Y^T + X^{-1} = \mathbf{O} \quad \Rightarrow \quad X^{-1} = -Y^T \quad \Rightarrow \quad X = (-Y)^{-T} \quad \Rightarrow \\ f^*(Y) &= \langle Y, (-Y)^{-T} \rangle + \ln \det(-Y)^{-T} = \mathbf{tr}(Y^T(-Y)^{-T}) - \ln \det(-Y^T) = -n - \ln \det(-Y). \end{split}$$

6

$$f(x) = g(Ax).$$

$$f^*(y) = \sup(\langle x, y \rangle - f(x))$$

$$g^*(A^{-T}x) = \sup(\langle A^{-T}y, z \rangle - g(z)) = \sup(y^T A^{-1}z - g(z)) = (z = Ax) = \sup(y^T x - g(Ax)) = \sup(\langle y, x \rangle - f(x)) = f^*(y).$$

Subgradient and subdifferential

1

 \Rightarrow :

Пусть x_0 - точка минимума f(x). Тогда $f(x) \ge f(x_0)$ $\forall x$. При этом, $\langle 0, x - x_0 \rangle = 0$. Тогда $f(x) \ge f(x_0) + \langle 0, x - x_0 \rangle$ $\forall x \Rightarrow 0$ является субградиентом f в x_0 , т.е. $0 \in \partial f(x_0)$. **⇐**:

Пусть $0 \in \partial f(x_0)$. Тогда $f(x) \ge f(x_0) + \langle 0, x - x_0 \rangle$ $\forall x$. При этом, $\langle 0, x - x_0 \rangle = 0$. Тогда $f(x) \ge f(x_0)$ $\forall x$, т.е. x_0 - точка минимума f(x).

 $f(x) = \max\{0, x\}.$

Используя теорему Дубовицкого-Милютина, в точке $x_0 = 0$ субдифференциал $\partial f(x_0) = \mathbf{conv}(0,1) = [0,1]$, а в остальных точках определяется градиентом функции (т.к. она там дифференцируема). Итого, получим:

$$\partial f(x) = \begin{cases} 0 & \text{if } x < 0\\ [0, 1] & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$
 (1)

3

1)p = 1:

$$f(x) = ||x||_1 = |x_1| + \dots + |x_n| = \sum_{i=1}^n s_i x_i, \quad s_i \in \{-1, 1\}.$$

$$g(x) = s^T x \quad \Rightarrow \quad \partial g(x) = \partial (\max\{s^T x, -s^T x\}) = \begin{cases} -s & \text{if } s^T x < 0 \\ \mathbf{conv}(-s, s) & \text{if } s^T x = 0 \\ s & \text{if } s^T x > 0 \end{cases}$$

Тогда, используя теорему Дубовицкого-Милютина, получим, что

$$\partial f(x) = \{g \mid \|x\|_{\infty} \le 1, \quad g^T x = \|x\|_1 \}$$

2)p = 2:

 $f(x) = \|x\|_2$ является дифференцируемой везде, кроме 0. Поэтому, везде, кроме нуля $\partial f(x) = \nabla f(x) = \frac{x}{\|x\|_2}$. Покажем, что в нуле $\partial f(0) = B_1(0)$ - замкнутый шар радиуса 1 с центром в нуле.

 $1)\partial f(0) \subset B_1(0)$:

Пусть $g \in \partial f(0)$. Тогда $f(x) \geq f(0) + \langle g, x \rangle$ $\forall x \in \mathbb{R}^n$. То есть, $||x||_2 \geq \langle g, x \rangle$ $\forall x \in \mathbb{R}^n$. Тогда для x = g получим, что $||g||_2 \geq \langle g, g \rangle = ||g||_2^2$ \Rightarrow $||g||_2 \leq 1$. То есть, $g \in B_1(0)$. $2)B_1(0) \subset \partial f(0)$:

Пусть $g \in B_1(0)$. Тогда $\forall x \in \mathbb{R}^n \quad \langle g, x - 0 \rangle + f(0) = \langle g, x \rangle \le \|g\|_2 \|x\|_2 \le \|x\|_2 = f(x)$, то есть $g \in \partial f(0)$.

В итоге, получаем, что

$$\partial f(x) = \begin{cases} \frac{x}{\|x\|_2} & \text{if } x \neq 0\\ B_1(0) & \text{if } x = 0 \end{cases}$$

 $3)p=\infty$:

$$f(x) = \max_{i \in \overline{1,n}} |x_i| = s^T x$$
, $s_i = \begin{cases} -1, & \text{if } f(x) = -x_i \\ 0 & \text{if } f(x) \neq |x_i| \end{cases}$ - это если максимум x_i реализуется $1 & \text{if } f(x) = x_i$

только на одной координате.

Теперь пусть максимум x_i реализуется на координатах $x_j, \quad j \in J$. Тогда $s_i = 0 \quad \forall i \notin J,$ $\|s\|_{\infty} = 1.$

В нуле же опять $\partial f(0) = \{g \mid \|g\|_{\infty} \le 1\}.$ Итого, применяя теорему Дубовского-Милютина, получаем:

$$\partial f(x) = \begin{cases} \{g & | & \|g\|_1 = 1, \quad g^T x = \|x\|_{\infty} \} & \text{if } x \neq 0 \\ \{g & | & \|g\|_{\infty} \leq 1, \quad g^T x = \|x\|_{\infty} \} & \text{if } x = 0 \end{cases}$$

4

$$\begin{split} f(x) &= \|Ax - b\|_1^2 \\ f(x) &= \varphi(Ax - b), \quad \varphi(t) = \|t\|_1^2. \\ \partial(\varphi(Ax - b))(x) &= A^T \partial \varphi(Ax - b). \\ \partial \varphi(t) &= 2\|t\|_1 \partial(\|t\|_1) = \{2g\|t\|_1 \quad | \quad \|g\|_\infty \le 1, \quad g^T t = \|t\|_1\}. \\ \text{Тогда } \partial f(x) &= \{2\|Ax - b\|_1 A^T g \quad | \quad \|g\|_\infty \le 1, \quad g^T (Ax - b) = \|Ax - b\|_1\} \end{split}$$

5

$$f(x) = e^{\|x\|}.$$

$$\varphi(t) = e^t \implies f(x) = \varphi(\|x\|)$$

Тогда, используя уже найденный субдифференциал к ||x||, получим

$$\partial f(x) = e^{\|x\|} \partial(\|x\|)(x) = \partial f(x) = \begin{cases} B_1(0) & \text{if } x = 0\\ \frac{xe^{\|x\|}}{\|x\|} & \text{if } x \neq 0 \end{cases}$$
 (2)