目录

目录	₹ 1	
— ,	新建一个 ROS 工作空间	2
	1. 创建 catkin 工作空间	2
	2. 编译 catkin 工作空间	2
	3. 配置环境变量	2
	4. 创建工作包	2
_,	拷贝电机控制相关功能包并重新编译	2
	1. 替换 catkin_ws/src 文件夹	2
	2. 编译整个功能包	2
三、	修改并运行示例程序	2
	1. 修改 catkin_ws/src/drempower/src/motor_test_publisher.cpp 文件	3
	2. 修改 catkin_ws/src/drempower/src/xx_subscriber.cpp 文件	3
	3. 修改 catkin_ws/src/drempower/src/motor_control_test.launch 文件	4
四、	重新编译整个功能包	4
五、	启动 launch 文件	4
六、	使用 rqt_plot 查看电机运行曲线图	5
七、	使用 rqt_graph 查看节点及消息图	7
八、	电机控制相关 Canopen 对象字典表	8
	1. 自定义对象字典表	8
	2. 控制模式与 RPDO 配置	10
	3. 控制模式与 TPDO 配置	12
	4. PDO 配置步骤流程	13

一、新建一个 ROS 工作空间

- 1. 创建 catkin 工作空间
- \$ mkdir -p ~/catkin_ws/src
- 2. 编译 catkin 工作空间
- \$ cd ~/catkin_ws
- \$ catkin_make
- 3. 配置环境变量
- \$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
- 4. 创建工作包
- \$ cd ~/catkin_ws/src
- \$ catkin_create_pkg drempower std_msgs roscpp rospy
- 二、拷贝电机控制相关功能包并重新编译
- 1. 替换 catkin_ws/src 文件夹
- ●将电机 ROS 库函数文件夹下的 DrEmpower_ws/src 文件夹整个复制到 ~/catkin_ws 路径下,替换原有的 src 文件夹;
- 2. 编译整个功能包
- \$ cd ~/catkin_ws/
- \$ catkin_make

三、修改并运行示例程序

●在示例程序中提供了单个电机 7 种控制模式测试,实际使用时根据实际情况修改测试的电机 ID 号和测试模式;

	模式名称	模式简称	数字代号	注释
位	轨迹跟踪模式	TP	7	
置控	梯形轨迹模式	PP	1	
制	前馈控制模式	FP	-1	
速度	速度爬升模式	PV	3	
控制	速度前馈模式	FV	-3	

扭	<u> </u>	D.T.	,	
矩	扭矩爬升模式	PT	4	
控制	直接控制模式,	FT	-4	
	阻抗控制模式	IP	-7	

以上7种控制模式更详细的介绍请参考产品手册及使用说明书中的《DrEmpower 系列电机使用手册 v1.0》

1. 修改 catkin_ws/src/drempower/src/motor_test_publisher.cpp 文件

●根据实际电机 ID 号及想要测试的模式修改第 14、15 行,如下图所示;

```
src > drempower > src > G motor_test_publisher.cpp > ...

#include "drempower/tp_msg.h"

#include "drempower/fp_msg.h"

#include "drempower/fv_msg.h"

#include "drempower/fv_msg.h"

#include "drempower/ft_msg.h"

#include "canopen.h"

#include "drempower/fv_msg.h"

#in
```

图 1 修改测试节点文件中的电机 ID 及控制模式

2. 修改 catkin_ws/src/drempower/src/xx_subscriber.cpp 文件

●根据上图中选择的模式,修改对应的 xx_subsriber.cpp 文件,例如上图中我们选择测试 IP_MODE(阻抗控制模式),则这一步需要修改 ip_subscriber.cpp 文件,修改处位于倒数第 4 行,将其中的数字改成实际的电机 ID 号;

```
int main(int argc, char **argv)
{

ros::init(argc, argv, "ip_subscriber_node");

ros::NodeHandle n;

ros::Subscriber sub = n.subscribe("ip_mode", 10, msg_callback);

can_msg_pub = n.advertise<can_msgs::Frame>("sent_messages", 10);

ros::Rate rate(1);

rate.sleep(); // 延时等待CAN适信和始化

set_op_mode(can_msg_pub, 1, 0)P_IP_MODE); //根据电机实际ID号进行修改

ros::spin();

return 0;

47
```

图 2 修改对应控制模式协议解析节点中的电机 ID 号

- 3. 修改 catkin_ws/src/drempower/src/motor_control_test.launch 文件
- ●根据图 1 中选择的模式,将对应控制模式协议解析节点 xx_subscriber_node 节点注释删掉,同时注释掉其他控制模式协议解析节点(快捷键 Ctrl+/);

图 3 在 launch 文件中启动对应控制模式协议解析节点

■注意:一次只能同时测试一种控制模式,且不同模式协议解析节点只能同时 启动一个:

四、重新编译整个功能包

- \$ cd ~/catkin_ws/
- \$ catkin make

五、启动 launch 文件

- \$ roslaunch drempower motor_control_test.launch
- ■注意: 启动 launch 文件前需要先将电机供电,同时将 USB 转 CAN 模块连接 好电脑和电机,如图 4 所示(必须使用图中所示的 USB 转 CAN 模块);

图 4 电机接线图

六、使用 rqt_plot 查看电机运行曲线图

- ●轨迹跟踪模式(TP)下,TPDO1 配置为循环同步模式,每接收到一个 SYNC 返回一次电机状态;
- ●其他 6 种模式下, TPDO1 配置成异步模式, 每 10ms 返回一次电机状态;
- ●在示例程序中,电机自动返回电机状态数据,会被 state_subscriber_node 接收解析,并向外发送 Topic(motor_state),该 topic 采用 state.msg,包含电机 id 号,实时电机位置(度)、电机速度(r/min)、电机扭矩(Nm);
- ●重新开启一个 terminal(快捷键 Ctrl+alt+T),输入 rqt_plot 指令,在弹出的窗口里选择 topic(motor_state)即可,如图 5 所示;

\$ rqt_plot

图 5 启动 rqt_plot 并选择 motor_state 话题

●轨迹插补模式、梯形轨迹模式、阻抗控制模式下电机运行曲线图如图 6 所示:

(a) 轨迹跟踪模式

(b) 迹跟踪模式

(c) 阻抗控制模式

图 6 三种控制模式下电机运行状态曲线图

七、使用 rqt_graph 查看节点及消息图

●重新开启一个 terminal(快捷键 Ctrl+alt+T),输入 rqt_graph 指令即可得到当前 ROS 节点及节点间消息交互动态图形,如图 6 所示

图 6 示例程序下 ROS 节点及消息动态图 (有改动)

- ●从图中可以看出整个示例程序中存在 4 个节点: motor_test_node、ip_subscriber_node、socketcan_bridge_node及 state_subscriber_node。其中:
- **1.** motor_test_node 节点对应库文件 motor_test_publisher.cpp, 其主要作用发送对应的控制指令,图中测该节点按照 ip_msg.msg 中规定消息类型发送控制指令ip_node 消息;
- **2.** ip_subscriber_node 节点对应库文件中 ip_subscriber.cpp, 其主要作用是将 ip_msg.msg 格式的 ip_node 消息根据 canopen 通信协议解析成 can_msgs/Frame.msg 格式的 sent_message 消息;
- **3.** socketcan_bridge_node 节点是 ROS 标准库 Ros_canopen 库里的子节点,主要有两个作用,一是将 can_msgs/Frame.msg 格式的 sent_message 消息通过 socketcan 设备发送到 CAN 总线上; 另外一个作用是将 socketcan 设备接收的 CAN 数据转换成 can_msgs/Frame.msg 格式的 received_message 消息;
- **4.** state_subscriber_node 节点对应库文件中 state_subscriber.cpp,其主要作用是解析由 socketcan_brideg_node 节点转换后的 received_message 消息,这些消息是由电机发送给上位机,包括电机运行状态等信息。state_subscriber_node 节点将解析后的电机运行状态转换成 state_msg.msg 格式的 motor_state 消息,该消息可以用 rqt_plot 工具绘制实时电机运行曲线,也可以用在用户程序里来了解电机实时运行状态等;
- ●其他控制模式也类似,只需将前两个节点对应换成对应的控制模式即可,后面两个节点无须做任何改变;每种控制模式都有一个对应的协议解析节点xx_subscriber_node(对应xx_subscriber.cpp),当需要使用某种控制模式时,只需在launch 文件中打开对应xx_subscriber_node 节点,同时屏蔽掉其他控制模式的xx_subscriber_node 节点,然后将 motor_test_publisher.cpp 文件中的模式宏定义(第15行)相应修改即可;

八、电机控制相关 Canopen 对象字典表

- ●电机 CAN 通信协议有两个版本,一个为标准版本,另一个为 Canopen 版本;本说明书针对 Canopen 协议版本进行说明;
- ●Canopen 协议包含两部分内容,一部分是标准的 DS301(又名 CIA301),这部分本说明书不做过多解释,用户可参考《CANopen 轻松入门》;
- ●与电机控制直接相关部分,原本也有一套标准协议 CIA402,但是由于其支持的控制模式及数据类型比较固定,下面自定义了一套对象字典,用于实现电机支持的 7 种控制模式,具体介绍如下:

1. 自定义对象字典表

Index 索引	Name 名称	Data type 数据类型	只读/	单位	参数范围	参数说明
0x2101	input_pos 用户指令位置	Float32	读/写	0	软件限位 范围	
0x2102	input_vel 用户指令速度	Int16	读/写	r/min 0.01	-327~327	
0x2103	input_torque 用户指令扭矩	Int16	读/写	Nm 0.01	-327~327	
0x2111	pos_setpoint 目标位置	Float32	只读	0	软件限位 范围	
0x2112	vel_setpoint 目标速度	Int16	只读	r/min 0.01	-327~327	
0x2113	torque_setpoint 目标扭矩	Int16	只读	Nm 0.01	-327~327	
0x2121	pos_estimate 当前实际位置	Float32	只读	0	软件限位 范围	
0x2122	vel_estimate 当前实际速度	Int16	只读	r/min 0.01	-327~327	
0x2123	torque_estimate 当前实际扭矩	Int16	只读	Nm 0.01	-327~327	
0x2131	impedance_kp 阻抗位置增益	Uint16	读写	Nm/rad 0.01	0~655	IP 模式
0x2132	impedance_kd 阻抗速度增益	Uint16	读写	Nm/rad/s 0.01	0~655	IP 模式
0x2141	tt_vel_limit	Int16	读写	r/min	0~327	PP 模式

	轮廓规划速度			0.01		
0x2142	tt_accel_limit	Int16	读写	r/min/s	0~327	PP 模式
	轮廓规划加速度			0.01		500
0x2143	tt_decel_limit	Int16	16 读写	r/min/s	0~327	PP 模式
0.2113	轮廓规划减速度	Intro		0.01	0 327	11 000
0x2151	vel_ramp_rate	Int16	读写	r/min/s	0~327	PV 模式
0.72131	速度斜率	IIIII		0.01	0.327	1 V (关土)
0x2152	torque_ramp_rate	Int16	读写	Nm/s	0~327	PT 模式
UX2132	扭矩斜率		以与 	0.01		PI 医八
0x2161	interpolation_freq	Uint16	读写	Hz	0~655	TP 模式
0x2101	轨迹插补频率	Cilitio		0.01		
0x6040	Controlword	Uint16	读写	-	0~65535	
0x0040	控制字	Ullitto				
0x6041	Statuword	Uint16 只读				
0x0041	状态字	Ullitto	只读	-	-	
0x6060	Modes of operation	IntQ	Int8 读写		-7~7	
UXOUOU	模式选择	IIIto		-	-/~/	
	Modes of operation				7~7	
0x6061	display	Int8	只读	-		
	模式显示					

注:

- 1. 单位列中部分单位下 0.01 表示最终传输值=实际值/0.01,例如需要将 vel_ramp_rate 设置为 10.5r/min/s,则实际传输的为 int16 类型,这时会将 10.5 转换成 1050(10.5/0.01=1050)进行传输,电机收到后也会将 1050*0.01=10.5(因为 CAN 标准帧中数据长度只有 64 位,如果需要同时传输三个浮点数,后两位需要通过 16 位 signed int 进行传输);
- 2. 上述所有字典对象中的参数都是针对一体化关节输出轴,即所有参数都是过了减速器之后的参数,用户无需再进行二次换算;

2. 控制模式与 RPDO 配置

- 为了提高不同控制模式 CAN 通信效率,建议使用 PDO 来实现各种模式控制;
- PP 模式和 IP 模式参数比较多,无法使用 RPDO1 传输完,故单独额外分配了一个 RPDOx 用于传输模式参数,实际使用是需先发送 RPDOx,再发送 RPDO1;
- RPDO4 固定用于传输控制模式(modes of operation, Index = 0x6040),配置 好所有 RPDO 后,需要首先发送一条 RPDO4 设置控制模式(Mode of operation);
- RPDO 映射配置需要和设置的控制模式(Mode of operation)对应,否则电机 无法正常转动;例如使用 TP 模式,则需要将 RPDO1 映射到 input_pos 和 interpolation_freq,并将 Modes of operation 设置为 7;
- 所有控制模式下 RPDO1 传输模式均被配置成循环同步模式,即电机接收到 RPDO1 后,不会立即响应,必须再接收到一帧同步报文后才会响应这条 RPDO1 指令(主要是用于同步多个电机控制);

表 2 控制模式-RPDO 配置表

AA — Associated NAA A — a Manager AA						
TP 模式-轨迹跟踪模式(Modes of operation = 7)						
亦具力和	nh	映射地址	DDDO 八面	<i>(+ t</i> △+ <u>+</u> +		
变量名称	映射索引值	Index-SubIndex	RPDO 分配	传输模式		
input_pos	0x21010020	0x1600-0x01	DDDO1	0x01		
interpolation_freq	0x21610010	0x1600-0x02	RPDO1	(循环同步)		
	PP 模式-梯形轨边	E模式(Modes of op	peration = 1)			
亦具力粉	m	映射地址	DDDO 八冊	比拉 措士		
变量名称	映射索引值	Index-SubIndex	RPDO 分配	传输模式		
input_pos	0x21010020	0x1600-0x01	RPDO1	0x01		
tt_vel_limit	0x21410010	0x1600-0x02	RPDOI	(循环同步)		
tt_accel_limit	0x21420010	0x1601-0x01	RPDO2	0xFF		
tt_accel_limit	0x21430010	0x1601-0x02	RPDO2	(异步)		
	FP 模式-前馈控制	模式(Modes of op	peration = -1)			
变量名称	映射索引值	映射地址	RPDO 分配	传输模式		
文里石你	吹别系引阻	Index-SubIndex	RPDO 介配	12 制 佚 八		
input_pos	0x21010020	0x1600-0x01		0x01		
input_vel	0x21020010	0x1600-0x02	RPDO1	(循环同步)		
input_torque	0x21030010	0x1600-0x03				
PV 模式-梯形轨迹模式(Modes of operation = 3)						
亦具力粉		映射地址	DDDO 八面	(+ t <u>\</u> + + +		
文里 名		Index-SubIndex	RPDO 分配	传输模式		

input_vel	0x21020020	0x1600-0x01		0x01				
vel_ramp_rate	0x21510010	0x1600-0x02	RPDO1	(循环同步)				
FV 模式-梯形轨迹模式(Modes of operation = -3)								
亦具々粉	映射索引值	映射地址	DDDO 公元	传输模式				
变量名称	吹别系引阻	Index-SubIndex	RPDO 分配					
input_vel	0x21020020	0x1600-0x01	RPDO1	0x01				
input_torque	0x21030010	0x1600-0x02	KI DOI	(循环同步)				
	PT 模式-梯形轨迹	並模式(Modes of op	peration = 4)					
变量名称	映射索引值	映射地址	RPDO 分配	传输模式				
文 里 石 你	<u> </u>	Index-SubIndex	KI DO // FL	17相/关入				
input_torque	0x21030020	0x1600-0x01	RPDO1	0x01				
vel_torque_rate	0x21520010	0x1600-0x02	KI DOI	(循环同步)				
	FT 模式-梯形轨边	E模式(Modes of op	peration = -4)					
变量名称	映射索引值	映射地址	RPDO 分配	传输模式				
文	安重名称 映別系引值 RPDO 分配 传制模式 Index-SubIndex							
input_torque	0x21030020	0x1600-0x01	RPDO1	0x01				
mpat_torque	0.721030020	0X1000 0X01	M DO1	(循环同步)				
	IP 模式-阻抗控制	模式(Modes of op	eration = -7)					
变量名称	映射索引值	映射地址	RPDO 分配	传输模式				
文里和你	<u>吹加泵 升</u> 值	Index-SubIndex	KI DO // FL	17 110 1天工				
input_pos	0x21010020	0x1600-0x01		0x01				
input_vel	0x21020010	0x1600-0x02	RPDO1	(循环同步)				
input_torque	0x21030010	0x1600-0x03		(1/42111797)				
impedance_kp	0x21310010	0x1602-0x01	DDDO2	0xFF				
impedance_kd	0x21320010	0x1602-0x02	RPDO3	(异步)				
所有控制模式下 RPDO4 配置								
变量名称	映射索引值	映射地址	RPDO 分配	在於哲士				
义里石你	<u>吹刈系기</u> 徂	Index-SubIndex	KFDU分能	传输模式				
Modes of operation	0x60400008	0x1603-0x01	RPDO4	0xFF				
wodes of operation	0.0040000	0x1003-0x01	KI DU4	(异步)				

3. 控制模式与 TPDO 配置

- ●如果需要实时获取电机运行状态,可以配置 TPDO 将电机状态(当前位置、当前速度、当前扭矩)发送到上位机;如果不需要获取电机运行状态,也可以不配置 TPDO (默认关闭)。
- ●TPDO 传输模式常用的主要有两种:循环同步模式(0x01)和异步模式(0xFF);
- ●循环同步模式(0x01)表示每接收到一帧同步报文,发送一次 TPDO(也可以配置成 0x0N,表示接收到 N 帧同步报文后,发送一次 TPDO);
- ●异步模式(0xFF)一般结合 TPDO 通信参数中的 Event timer(Subindex = 0x05) 用于实现电机定时反馈电机状态,例如异步模式下,将 Event timer 设置成 0x000A,则电机每 10ms(100Hz)发送一次 TPDO;
- ●TPDO 传输模式(Transmission type)具体使用哪种模式,取决于上位机控制发送控制指令的频率。如果是轨迹跟踪(插补)模式(TP),一般上位机会按照较高频率(100Hz以上),这时可以配置成循环同步模式,每接收到一帧同步帧,往上位机发送一次 TPDO;如果是梯形轨迹模式(PP),一般发送指令频率不会太高,这时如果想要得到电机运行状态曲线,需要将 TPDO 配置成异步模式(0xFF),设置合适的 Event timer(一般不能小于 3),让电机较高频率定时发送TPDO,反馈电机状态;

表 3 控制模式 TPDO 配置表

TP 模式-轨迹跟踪模式(Modes of operation = 7) – TPDO 循环同步								
变量名称	映射索引值	映射地址 Index-SubIndex	RPDO 分配	传输模式				
pos_estimate	0x21210020	0x1600-0x01		001				
vel_estimate	0x21220010	0x1600-0x02	TPDO1	0x01 (循环同步)				
torque_estimate	0x21230010	0x1600-0x03		(1/4) (1/4)				
	其他控制模式 – TPDO 异步							
变量名称	映射索引值	映射地址 Index-SubIndex	RPDO 分配	传输模式				
pos_estimate	0x21210020	0x1600-0x01	TPDO1	0xFF				
vel_estimate	0x21220010	0x1600-0x02	IPDOI	(异步)				
torque_estimate	0x21230010	0x1600-0x03	Event timer = $0x000A$					

4. PDO 配置步骤流程

- 配置 PDO 一般有以下几个步骤:
 - 1. 将NMT节点状态机切换到PreOP状态(此状态可用SDO来配置PDO映射);
 - 2. 失能 PDO (将 PDO 的通信参数中的 COB-ID 最高位置为 1);
 - 3. 清空 PDO 映射对象(将 PDO 的映射参数个数(SubIndex=0)置为 0);
 - 4. 设置 PDO 映射对象(参照表 2 和表 3 将映射地址的值设置为对应索引值):
 - 5. 设置传输模式(如果是TPDO且为异步传输模式,还需要设置Event timer);
 - 6. 使能 PDO 映射对象(将 PDO 的映射参数个数(SubIndex=0)设置为实际映射参数个数);
 - 7. 使能 PDO (将 PDO 的通信参数中的 COB-ID 最高位置为 0);
 - 8. 将 NMT 节点状态机切换到 OP 状态(配置的 PDO 映射将有效):
- 下图是一个 RPDO 配置函数,可进行参考:

(该函数位于 Ros 库函数 DrEmpower_ws/src/drempower/src/canopen.h 文件中);

图 8 RPDO 配置示例函数代码