Package 'AquaEnv'

October 12, 2022

Version 1.0-4
Title Integrated Development Toolbox for Aquatic Chemical Model Generation
Author Andreas F. Hofmann, Karline Soetaert, Filip J.R. Meysman, Mathilde Hagens
Maintainer Karline Soetaert < Karline. Soetaert@nioz.nl>
Depends R (>= $2.15.0$)
Imports minpack.lm, graphics, grDevices, stats
Suggests deSolve
Description Toolbox for the experimental aquatic chemist, focused on acidification and CO2 air-water exchange. It contains all elements to model the pH, the related CO2 air-water exchange, and aquatic acid-base chemistry for an arbitrary marine, estuarine or freshwater system. It contains a suite of tools for sensitivity analysis, visualisation, modelling of chemical batches, and can be used to build dynamic models of aquatic systems. As from version 1.0-4, it also contains functions to calculate the buffer factors.
License GPL (>= 2)
LazyData yes
Repository CRAN
Date/Publication 2016-09-06 16:39:52
NeedsCompilation no
Repository/R-Forge/Project aquaenv
Repository/R-Forge/Revision 97
Repository/R-Forge/DateTimeStamp 2016-09-05 13:48:52
R topics documented:
aquaenv

BufferFactors c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p KO_CO2 KS_garagonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4 K_HSO4 K_NH4 K_SiOH4 K_SiOH4 K_SiOH4 K_SiOH5 K_W length.aquaenv PhysChemConst plot.aquaenv plot.aquaenv sample_dickson1981 sample_dickson2007 TAfit Technicals titration watdepth	ae	nv aquaenv	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4 K_HSO4 K_NH4 K_SIOOH3 K_SIOOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst plot.aquaenv sample_dickson1981 sample_dickson2007 TAfit Technicals titration			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 KSp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4 K_HSO4 K_NH4 K_SiOOH3 K_SiOOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst plot.aquaenv sample_dickson1981 sample_dickson2007 TAfit Technicals titration		watucpiii	•
C.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HCO3 K_HF K_HGO4 K_HSO4 K_NH4 K_SiOH4 K_SiOH4 K_SiOOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst plot.aquaenv sample_dickson1981 sample_dickson2007 TAfit Technicals			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 KSp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HFO4 K_HSO4 K_HSO4 K_NH4 K_SiOH4 K_SiOH4 K_SiOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst plot.aquaenv sample_dickson2007 TAfit			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p KO_CO2 KO_O2 KSp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HCO3 K_HF K_HO4 K_SO4 K_NH4 K_SiOH4 K_SiOH4 K_SiOH4 K_SiOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst plot.aquaenv sample_dickson1981 sample_dickson2007			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 KSp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HCO3 K_HF K_HO4 K_HSO4 K_NH4 K_SiOH4 K_SiOH4 K_SiOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst plot.aquaenv sample_dickson1981		1 -	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4 K_HSO4 K_NH4 K_SiOH4 K_SiOH4 K_SiOOH3 K_W length.aquaenv PhysChemConst plot.aquaenv		•	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HCO3 K_HF K_HPO4 K_SO4 K_NSO4 K_NSO4 K_NSO4 K_NSO4 K_NSO4 K_NSOOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv PhysChemConst			
C.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HHO4 K_HSO4 K_NH4 K_SiOH4 K_SiOOH3 K_W length.aquaenv MeanMolecularMass merge.aquaenv			
c.aquaenv ConcRelCI convert DeltaPcoeffs gauge_p K0_CO2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4 K_NH4 K_SiOH4 K_SiOOH3 K_W length.aquaenv			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HCO3 K_HF K_HPO4 K_HSO4 K_HSO4 K_NH4 K_SiOH4 K_SiOOH3 K_W		MeanMolecularMass	
C.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HCO3 K_HF K_HFO4 K_HSO4 K_HSO4 K_NH4 K_SiOH4 K_SiOH3		length.aquaenv	
C.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HCO3 K_HF K_HPO4 K_HSO4 K_HSO4 K_NSO4		$K_W\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	
C.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4 K_HPO4 K_HPO4 K_HSO4 K_HSO4 K_NH4		K_SiOOH3	
C.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HCO3 K_HF K_HPO4 K_HPO4 K_HSO4			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF K_HPO4		-	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3 K_HF		-	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4 K_HCO3		-	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S K_H3PO4		-	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4 K_H2S		-	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2 K_H2PO4		-	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3 K_CO2			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite K_BOH3			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2 Ksp_aragonite Ksp_calcite			
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2 K0_O2		<u> </u>	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p K0_CO2		Ksp_aragonite	
c.aquaenv ConcRelCl convert DeltaPcoeffs gauge_p		K0_O2	
c.aquaenv ConcRelCl convert DeltaPcoeffs		K0_CO2	
c.aquaenv		gauge_p	
c.aquaenv		DeltaPcoeffs	
c.aquaenv			
		1	
		c aquaeny	

Description

PUBLIC function: the main function of the package AquaEnv: creates an object of class aquaenv

Usage

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars, standard is calculated either from the given P, or the given d, lat, and Pa
Р	total pressure in bars, standard: Pa (at the surface)
Pa	atmospheric pressure in bars, standard: 1 atm (at sea-level)
d	depth below the surface in meters, standard: 0 (at the surface)
lat	latitude in degrees (-90 to +90) to calculate the gravitational constant g for calculating the water depth from the pressure and vice versa, standard: 0
SumCO2	total carbonate concentration in mol/kg-solution, if NULL is supplied it is calculated $% \left(1\right) =\left(1\right) \left(1\right) \left$
SumNH4	total ammonium concentration in mol/kg-solution, optional
SumH2S	total sulfide concentration in mol/kg-solution, optional
SumH3PO4	total phosphate concentration in mol/kg-solution, optional
SumSiOH4	total silicate concentration in mol/kg-solution, optional
SumHN03	total nitrate concentration in mol/kg-solution, optional
SumHNO2	total nitrite concentration in mol/kg-solution, optional
SumBOH3	total borate concentration in mol/kg-solution, calculated from S if not supplied
SumH2SO4	total sulfate concentration in mol/kg-solution, calculated from S if not supplied
SumHF	total fluoride concentration in mol/kg-solution, calculated from S if not supplied
TA	total alkalinity in mol/kg-solution, if supplied, pH will be calculated
рН	pH on the free proton concentration scale, if supplied, total alkalinity will be calculated
fCO2	fugacity of CO2 in the water in atm (i.e. the fugacity of CO2 in a small volume of air fully equilibrated with a sufficiently large sample of water), can be used with either [TA], pH, or [CO2] to define the system
C02	concentration of CO2, can be used with either [TA], pH, or fCO2 to define the system

speciation flag: TRUE = full speciation is calculated

dsa flag: TRUE = all information necessary to build a pH model with the direct

substitution approach (DSA, Hofmann2008) is calculated

ae either an object of class aquaenv used for the cloning functionality or a dataframe

used for the from.data.frame functionality. Note that for cloning the desired k1k2 and khf values need to be specified! (otherwise the default values are used

for the cloned object)

from.data.frame

flag: TRUE = the object of class aquaenv is built from the data frame supplied

in ac

SumH2SO4_Koffset

only used internally to calculate dTAdKdKdSumH2SO4

SumHF_Koffset only used internally to calculate dTAdKdKdSumHF

revelle flag: TRUE = the revelle factor is numerically calculated. We do however

strongly encourage to use the analytical calculation from BufferFactors\$RF

skeleton flag: TRUE = a reduced amount of information is calculated yielding a smaller

object of type aquaenv

k_w a fixed K_W can be specified

k_co2 a fixed K_CO2 can be specified; used for TA fitting: give a K_CO2 and NOT

calculate it from T and S: i.e. K_CO2 can be fitted in the routine as well

k_hco3 a fixed K_HCO3 can be specified k_boh3 a fixed K_BOH3 can be specified k_hso4 a fixed K_HSO4 can be specified k_hf a fixed K_HF can be specified

k1k2 either "lueker" (default, Lueker2000), "roy" (Roy1993a), or "millero" (Millero2006)

for $K\CO2$ and $K\HCO3$.

khf either "dickson" (default, Dickson1979a) or "perez" (Perez1987a) for K_HF khso4 either "dickson" (default, Dickson1990) or "khoo" (Khoo1977) for K_HSO4

fCO2atm atmospheric fugacity of CO2 in atm, default = 0.000400 atm fO2atm atmospheric fugacity of O2 in atm, default = 0.20946 atm

Value

a list containing: "S" "t" "p" "T" "CI" "I" "P" "Pa" "d" "density" "SumCO2" "SumNH4" "SumH2S" "SumHNO3" "SumHNO2" "SumH3PO4" "SumSiOH4" "SumBOH3" "SumH2SO4" "SumHF" "Br" "CIConc" "Na" "Mg" "Ca" "K" "Sr" "molal2molin" "free2tot" "free2sws" "tot2free" "tot2sws" "sws2free" "sws2tot" "K0_CO2" "K0_O2" "fCO2atm" "fO2atm" "CO2_sat" "O2_sat" "K_W" "K_HSO4" "K_HF" "K_CO2" "K_HCO3" "K_BOH3" "K_NH4" "K_H2S" "K_H3PO4" "K_H2PO4" "K_HPO4" "K_SiOH4" "K_SiOOH3" "K_HNO2" "K_HNO3" "K_H2SO4" "K_HS" "Ksp_calcite" "Ksp_aragonite" "TA" "pH" "fCO2" "CO2" "HCO3" "CO3" "BOH3" "BOH4" "OH" "H3PO4" "H2PO4" "HPO4" "PO4" "SiOH4" "SiOOH3" "SiO2OH2" "H2S" "HS" "S2min" "NH4" "NH3" "H2SO4" "HSO4" "SO4" "HF" "F" "HNO3" "NO3" "HNO2" "NO2" "omega_calcite" "omega_aragonite" "revelle" "c1" "c2" "c3" "dTAdSumCO2" "b1" "b2" "dTAdSumBOH3" "so1" "so2" "so3" "dTAdSumH2SO4" "f1" "f2" "dTAdKdKdSumHF" or a subset of this set. Please consult the vignette of AquaEnv for more details

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

Examples

```
## Not run:
######################################
# Minimal aquaenv definition
ae <- aquaenv(S=30, t=15)
ae$K_CO2
ae$Ksp_calcite
ae$Ksp_aragonite
ae <- aquaenv(S=30, t=15, p=10)
ae <- aquaenv(S=30, t=15, P=11)
ae <- aquaenv(S=30, t=15, d=100)
ae <- aquaenv(S=30, t=15, d=100, Pa=0.5)
ae$K_CO2
ae$Ksp_calcite
ae$Ksp_aragonite
ae
# Defining the complete aquaenv system in different ways
<- 30
      <- 15
     <- gauge_p(d=10) # ~ p <- 0.1*10*1.01325</pre>
SumCO2 <- 0.0020
     <- 8
TΑ
     <- 0.002140798
fCO2 <- 0.0005326744
CO2 <- 2.051946e-05
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH)
ae$TA
ae <- aquaenv(S, t, p, SumCO2=SumCO2, TA=TA)</pre>
ae$pH
ae <- aquaenv(S, t, p, SumCO2=SumCO2, CO2=CO2)</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, fCO2=fCO2)</pre>
ae$pH
ae <- aquaenv(S, t, p, SumCO2=SumCO2, CO2=CO2, fCO2=fCO2)</pre>
```

```
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, TA=TA)</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, CO2=CO2)</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, fCO2=fCO2)</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, TA=TA, CO2=CO2)</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, TA=TA, fCO2=fCO2)</pre>
# Cloning the aquaenv system: 1 to 1 and with different pH or TA
<- 30
S
      <- 15
t
SumCO2 <- 0.0020
   <- 0.00214
ae <- aquaenv(S, t, SumCO2=SumCO2, TA=TA)</pre>
aeclone1 <- aquaenv(ae=ae)</pre>
pH <- 9
aeclone2 <- aquaenv(ae=ae, pH=pH)</pre>
TA <- 0.002
aeclone3 <- aquaenv(ae=ae, TA=TA)
ae$pH
aeclone1$pH
aeclone2$TA
aeclone3$pH
# Vectors as input variables (only ONE input variable may be a vector)
# (with full output: including the Revelle factor and the DSA properties)
SumCO2 <- 0.0020
     <- 8
S
     <- 30
      <- 1:15
t
      <- gauge_p(10)
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=t, xlab="T/(deg C)", newdevice=FALSE)
S <- 1:30
t <- 15
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=S, xlab="S", newdevice=FALSE)
```

```
S <- 30
p <- gauge_p(seq(1,1000, 100))</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=p, xlab="gauge pressure/bar", newdevice=FALSE)
TA <- 0.0023
S <- 30
t <- 1:15
d <- gauge_p(10)</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, TA=TA, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=t, xlab="T/(deg C)", newdevice=FALSE)
S <- 1:30
t <- 15
ae <- aquaenv(S, t, p, SumCO2=SumCO2, TA=TA, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=S, xlab="S", newdevice=FALSE)
S <- 30
p <- gauge_p(seq(1,1000, 100))</pre>
ae <- aquaenv(S, t, p, SumCO2=SumCO2, TA=TA, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=p, xlab="gauge pressure/bar", newdevice=FALSE)
# Calculating SumCO2 by giving a constant pH&CO2, pH&fCO2, pH&TA,
# TA&CO2, or TA&fCO2
fCO2 <- 0.0006952296
CO2 <- 2.678137e-05
рΗ
      <- 7.888573
TA
      <- 0.0021
S <- 30
t <- 15
p <- gauge_p(10)</pre>
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, CO2=CO2, dsa=TRUE, revelle=TRUE)
ae$SumCO2
ae$revelle
ae$dTAdH
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, fCO2=fCO2)
ae$SumCO2
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, TA=TA)</pre>
ae$SumCO2
ae <- aquaenv(S, t, p, SumCO2=NULL, TA=TA, CO2=CO2)</pre>
ae$SumCO2
```

8 AquaEnv_package

```
ae <- aquaenv(S, t, p, SumCO2=NULL, TA=TA, fCO2=fCO2)
ae$SumCO2
t <- 1:15
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, CO2=CO2)</pre>
plot(ae, xval=t, xlab="T/(deg C)", mfrow=c(9,10), newdevice=FALSE)
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, CO2=CO2, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=t, xlab="T/(deg C)", newdevice=FALSE)
S <- 1:30
t <- 15
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, fCO2=fCO2, revelle=TRUE, dsa=TRUE)
plot(ae, xval=S, xlab="S", newdevice=FALSE)
S <- 30
  <- gauge_p(seq(1,1000, 100))
ae <- aquaenv(S, t, p, SumCO2=NULL, pH=pH, TA=TA, revelle=TRUE, dsa=TRUE)
plot(ae, xval=p, xlab="gauge pressure/bar", newdevice=FALSE)
## End(Not run)
```

AquaEnv_package

AquaEnv - an integrated development toolbox for aquatic chemical model generation

Description

AquaEnv is an integrated development toolbox for aquatic chemical model generation focused on (ocean) acidification and CO2 air-water exchange.

It contains all elements necessary to model the pH, the related CO2 air-water exchange, as well as aquatic acid-base chemistry in general for an arbitrary marine, estuarine or freshwater system. Also chemical batches can be modelled.

Next to the routines necessary to calculate desired information, AquaEnv also contains a suite of tools to visualize this information. Furthermore, AquaEnv can not only be used to build dynamic models of aquatic systems, but it can also serve as a simple desktop tool for the experimental aquatic chemist to generate and visualize all possible derived information from a set of measurements with one single easy to use R function.

Additionally, the sensitivity of the system to variations in the input variables can be visualized.

Details

Package: AquaEnv Type: Package Version: 1.1 AquaEnv_package 9

Date: 2016-05-18

License: GNU Public License 2 or above

Author(s)

Karline Soetaert (Maintainer), Andreas F. Hofmann, Mathilde Hagens

References

Hagens M. and J.J. Middelburg, 2016 Generalised expressions for the response of pH to changes in ocean chemistry. *Geochimica et Cosmochimica Acta, in press*.

Hofmann A. F., K. Soetaert, J.J. Middelburg, F. J. R. Meysman, 2010 AquaEnv: An Aquatic Acid-Base Modelling Environment in R. *Aquatic Geochemistry* **16**: 507-546.

Examples

```
## Not run:
## show examples (see respective help pages for details)
example(aquaenv)
## open the directory with source code of demos
browseURL(paste(system.file(package="AquaEnv"), "/demo", sep=""))
## run demos
demo(basicfeatures )
## show package vignette with tutorial about how to use aquaenv
vignette("AquaEnv")
edit(vignette("AquaEnv"))
browseURL(paste(system.file(package="AquaEnv"), "/doc", sep=""))
## show index file of package vignettes and documentation files
browseURL(paste(system.file(package="AquaEnv"), "/doc/index.html", sep=""))
## show documentation about private functions in the packet
browseURL(paste(system.file(package="AquaEnv"), "/doc/AquaEnv-PrivateFunctions.pdf", sep=""))
## show documentation about physical-chemical constants and formulae used in the packet
browseURL(paste(system.file(package="AquaEnv"), "/doc/AquaEnv-ConstantsAndFormulae.pdf", sep=""))
## End(Not run)
```

10 BufferFactors

```
as.data.frame.aquaenv as.data.frame.aquaenv
```

Description

PUBLIC function: converts an object of class aquaenv to a standard R data frame

Usage

```
## S3 method for class 'aquaenv'
as.data.frame(x, ...)
```

Arguments

- x object of type aquaenv
- ... further arguments are passed on

Value

data frame containing all elements of aquaenv

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

BufferFactors

BufferFactors

Description

PUBLIC function: calculates buffer factors describing the sensitivity of pH and concentrations of acid-base species to a change in ocean chemistry

BufferFactors 11

Arguments

ae an object of class 'aquaenv'. An error is produced in case an object is provided

that is not of class 'aquaenv',

parameters a vector containing one or more of the following variables: "DIC" (mol/kg-

soln), "TotNH3" (mol/kg-soln), "TotP" (mol/kg-soln), "TotNO3" (mol/kg-soln), "TotNO2" (mol/kg-soln), "TotS" (mol/kg-soln), "TotSi" (mol/kg-soln), "TotF" (mol/kg-soln), "TotSO4" (mol/kg-soln), "sal" (-), "temp" (deg C), "pres" (bar), "Alk" (mol/kg-soln). If a variable is not supplied and no object of class 'aquaenv' is provided, default values are assigned following Table 4 of Hagens and Middelburg (2016). If both ae and parameters are supplied,

given parameters will overwrite the corresponding values of ae

species a vector containing one or more of the following variables: "SumCO2", "SumNH4",

"SumH3PO4", "SumHNO3", "SumHNO2", "SumH2S", "SumSiOH4", "SumBOH3", "SumHF", "SumH2SO4", "CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH", "H3PO4", "H2PO4", "HPO4", "PO4", "SiOH4", "SiOOH3", "SiO2OH2", "H2S", "HS", "S2min", "NH4", "NH3", "H2SO4", "HSO4", "SO4", "HF", "F", "HNO3", "NO3", "HNO2", "NO2". Default is c("SumCO2"). This vector de-

fines the species for which the sensitivities are calculated

k_w a fixed K_W can be specified
 k_co2 a fixed K_CO2 can be specified
 k_hco3 a fixed K_HCO3 can be specified
 k_boh3 a fixed K_BOH3 can be specified

k_hf a fixed K_HF can be specified

k1k2 either "lueker" (default, Lueker2000), "roy" (Roy1993a), or "millero" (Millero2006)

for $K\CO2$ and $K\LHCO3$

a fixed K_HSO4 can be specified

khf either "dickson" (default, Dickson1979a) or "perez" (Perez1987a) for K_HF khso4 either "dickson" (default, Dickson1990) or "khoo" (Khoo1977) for K_HSO4

Value

k_hso4

a list containing the objects "ae", "dTA.dH", "dtotX.dH", "dTA.dX", "dtotX.dX", "dTA.dpH", "dtotX.dpH", "dH.dTA", "dH.dtotX", "dX.dtotX", "dpH.dtotX", "beta.H" and "RF".

The object 'ae' is of class 'aquaenv' and refers to the output of the aquaenv function that is always run as part of BufferFactors. Consult the vignette of AquaEnv for more information on this object. The other objects are vectors with the length and names of the input species. Exceptions here are dH.dtotX and dpH.dtotX, which also contain the numerically estimated sensitivities with respect to salinity, pressure and temperature, as well as two factors related to pH scale conversion (see the AquaEnv vignette for details on these latter conversion factors).

In case species are defined which corresponding total concentration equals zero, the corresponding output produces 'NaN'. This is with the exception of "dTA.dH" and "dTA.dpH", which are always calculated as they are linked to beta.H. Additionally, the Revelle factor is always calculated, as the function 'aquaenv' requires that the carbonate system be specified.

12 c.aquaenv

Author(s)

Mathilde Hagens (<M. Hagens@uu. nl>)

References

Hagens M. and J.J. Middelburg, 2016 Generalised expressions for the response of pH to changes in ocean chemistry. *Geochimica et Cosmochimica Acta, in press*.

Examples

```
## Not run:
# Default run
BufferFactors()
# All carbonate system species
BufferFactors(species = c("CO2", "HCO3", "CO3"))
# Total concentrations of all species
"SumHF", "SumH2SO4"))
# Different carbonate system equilibrium constants
BufferFactors(k1k2 = "roy")
# Object of class 'aquaenv' as input
ae_{input} \leftarrow aquaenv(S=35, t=25, SumCO2 = 0.0020, pH = 8.1,
                 skeleton = TRUE)
BufferFactors(ae = ae_input)
# Produces some NaNs as certain total concentrations are zero
BufferFactors(ae = ae_input,
            "SumHF", "SumH2SO4"))
# Object of class 'aquaenv' as input, but different total alkalinity
parameters <- c(Alk = 0.0022)
BufferFactors(ae = ae_input, parameters = parameters)
## End(Not run)
```

c.aquaenv

c.aquaenv

Description

PRIVATE function: adds an element to an object of class aquaenv

ConcRelCl 13

Usage

```
## S3 method for class 'aquaenv'
c(aquaenv, x, ...)
```

Arguments

aquaenv object of class aquaenv

x a vector of the form c(value, name) representing the element to be inserted into the object of class aquaenv

... further arguments will be passed

Value

object of class aquaenv with the added element

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

ConcRelCl ConcRelCl

Description

PUBLIC data frame: a collection of concentrations of key chemical species in seawater, relative with respect to chlorinity (DOE1994))

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

convert convert

Description

PUBLIC function: converts either a single value (the pH scale of a pH value, the pH scale of a dissociation constant (K*), the unit of a concentration value), or all elements of a special unit or pH scale in an object of class aquaenv

14 convert

Arguments

X	object to be converted: either a single value (pH value, K^* value, or concentration value) or an object of class aquaenv
vartype	only valid if x is a single value: the type of x , either "pHscale", "KHscale", or "conc"
what	only valid if x is a single value: only valid if x is a single value: the type of conversion to be done, for pH scales one of "free2tot", "free2sws", "free2nbs", (any combination of "free", "tot", "sws", and "nbs"); for concentrations one of "molar2molal", "molar2molin", (any combination of "molar" (mol/l), "molal" (mol/kg-H2O), and "molin" (mol/kg-solution))
S	only valid if x is a single value: salinity (in practical salinity units: no unit)
t	only valid if x is a single value: temperature in degrees centigrade
p	only valid if x is a single value: gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	only valid if x is a single value: total sulfate concentration in mol/kg-solution; if not supplied this is calculated from S
SumHF	only valid if x is a single value: total fluoride concentration in mol/kg-solution; if not supplied this is calculated from S
khf	only valid if x is a single value: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a) for $K\LHF$
khso4	only valid if x is a single value: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977) for K_HSO4
from	only valid if x is an object of class aquaenv: the unit which needs to be converted (as a string; must be a perfect match)
to	only valid if x is an object of class aquaenv: the unit to which the conversion should go
factor	only valid if x is an object of class aquaenv: the conversion factor to be applied: can either be a number (e.g. 1000 to convert from mol to mmol), or any of the conversion factors given in an object of class aquaenv
convattr	only valid if x is an object of class aquaenv: which attribute should be converted? can either be "unit" or "pH scale"

Details

```
Possible usages are
```

```
convert(x, vartype, what, S, t, p, SumH2SO4, SumHF, khf)
convert(x, from, to, factor, convattr)
```

Value

converted single value or object of class aquaenv with converted elements

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

DeltaPcoeffs 15

Examples

```
## Not run:
### 1
#####
t <- 15
S <- 10
pH_NBS
            <- 8.142777
SumCO2molar <- 0.002016803
pH_free
            <- convert(pH_NBS,
                                      "pHscale", "nbs2free",
                                                                  S=S, t=t)
SumCO2molin <- convert(SumCO2molar, "conc",</pre>
                                                  "molar2molin", S=S, t=t)
ae <- aquaenv(S, t, SumCO2=SumCO2molin, pH=pH_free)</pre>
ae$pH
ae$SumCO2
### 2
#####
ae <- aquaenv(30,10)
ae$SumBOH3
ae <- convert(ae, "mol/kg-soln", "umol/kg-H2O", 1e6/ae$molal2molin, "unit")</pre>
ae$SumBOH3
## End(Not run)
```

DeltaPcoeffs

DeltaPcoeffs

Description

PUBLIC data frame: a collection of coefficients for the pressure correction of dissociation constants and solubility products (Millero1995 WITH CORRECTIONS BY Lewis1998 (CO2Sys)!)

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

16 K0_CO2

gauge_p	gauge_p
BaaBc-b	$sunse \Box p$

Description

PUBLIC function: calculates the gauge pressure (total pressure minus atmospheric pressure) from the depth (in m) and the latitude (in degrees: -90 to 90) and the atmospheric pressure (in bar)

Usage

```
gauge_p(d, lat=0, Pa=1.01325)
```

Arguments

d water depth in meters

latitude in degrees: -90 to 90, standard: 0

Pa atmospheric pressure in bar, standard: 1 atm (at sea level)

Value

gauge pressure (total pressure minus atmospheric pressure) p in bars

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Fofonoff1983

Examples

```
gauge_p(100)
plot(gauge_p(1:100))
```

K0_C02

 $KO \setminus CO2$

Description

PUBLIC function: calculates the Henry's constant (solubility) for CO2

```
K0_C02(S, t)
```

K0_O2

Arguments

S salinity in practical salinity units (i.e. no unit)

t temperature in degrees centigrade

Value

the Henry's constant for CO2 in mol/(kg-solution*atm)

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Weiss1974, DOE1994, Millero1995, Zeebe2001

Examples

```
K0_C02(35, 15)
plot(K0_C02(35, 1:25), xlab="temperature / degC")
```

K0_02

*K0*_*O*2

Description

PUBLIC function: calculates the Henry's constant (solubility) for O2

Usage

```
K0_02(S, t)
```

Arguments

S salinity in practical salinity units (i.e. no unit)

t temperature in degrees centigrade

Value

the Henry's constant for CO2 in mol/(kg-solution*atm)

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

derived from a formulation for [O2]sat given in Weiss1970

18 Ksp_aragonite

Examples

```
K0_02(35, 15)
plot(K0_02(35, 1:25), xlab="temperature / degC")
```

Ksp_aragonite

*Ksp*_*aragonite*

Description

PUBLIC function: calculates the solubility product for aragonite

Usage

```
Ksp_aragonite(S, t, p=0)
```

Arguments

- S salinity in practical salinity units (i.e. no unit)
- t temperature in degrees centigrade
- p gauge pressure (total pressure minus atmospheric pressure) in bars

Value

the solubility product for aragonite in (mol/kg-solution)2

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Mucci1983, Boudreau1996

Examples

```
Ksp_aragonite(35, 15)
Ksp_aragonite(35, 15, 10)
plot(Ksp_aragonite(35, 1:25), xlab="temperature / degC")
```

Ksp_calcite 19

Ksp_calcite

 $Ksp_calcite$

Description

PUBLIC function: calculates the solubility product for aragonite

Usage

```
Ksp_calcite(S, t, p=0)
```

Arguments

S salinity in practical salinity units (i.e. no unit)

t temperature in degrees centigrade

p gauge pressure (total pressure minus atmospheric pressure) in bars

Value

the solubility product for calcite in (mol/kg-solution)2

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Mucci1983, Boudreau1996

Examples

```
Ksp_calcite(35, 15)
Ksp_calcite(35, 15, 10)
plot(Ksp_aragonite(35, 1:25), xlab="temperature / degC")
```

K_BOH3

 $K \setminus BOH3$

Description

PUBLIC function: calculates the dissociation constant of B(OH)3

```
K_BOH3(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

20 K_CO2

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg -solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of B(OH)3 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Dickson1990, DOE1994, Millero1995 (molality version given), Zeebe2001

Examples

```
K_BOH3(35, 15)
K_BOH3(35, 15, 10)
K_BOH3(S=35, t=15, p=10, SumH2SO4=0.03)
plot(K_BOH3(35, 1:25), xlab="temperature / degC")
```

Description

PUBLIC function: calculates the dissociation constant of CO2

```
K_CO2(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, k1k2="lueker", khf="dickson", khso4="dickson")
```

K_H2PO4 21

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
р	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in $\operatorname{mol/kg}$ -solution (calculated from S if not supplied)
k1k2	"lueker", "roy", or "millero": specifies the S , t , dependency to be used. Default is "lueker". (see section below for references)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of CO2 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

```
k1k2 = "roy": Roy1993b, DOE1994, Millero1995, Zeebe2001; k1k2 = "lueker": Lueker2000; k1k2 = "millero": Millero2006
```

Examples

```
K_C02(35, 15)
K_C02(35, 15, 10)
K_C02(S=35, t=15, p=10, SumH2S04=0.03)
plot(K_C02(35, 1:25), xlab="temperature / degC")
```

Description

PUBLIC function: calculates the dissociation constant of H2PO4

```
K_H2PO4(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

22 K_H2S

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied) $$
SumHF	total fluoride concentration in $\operatorname{mol/kg}$ -solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of H2PO4 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1995 (original, SWS pH version), DOE1994 (in a later revision cites Millero1995)

Examples

```
\label{eq:KH2P04} $K_{H2P04}(35, 15, 10)$$ $K_{H2P04}(35, 15, 10)$$ $K_{H2P04}(5=35, t=15, p=10, SumH2S04=0.03)$$ $plot(K_{H2P04}(35, 1:25), xlab="temperature / degC")$$
```

K_H2S $K \setminus H2S$

Description

PUBLIC function: calculates the dissociation constant of H2S

```
K_H2S(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

K_H3PO4 23

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in $\operatorname{mol/kg}$ -solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of H2S in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1988, Millero1995

Examples

```
K_H2S(35, 15)
K_H2S(35, 15, 10)
K_H2S(S=35, t=15, p=10, SumH2SO4=0.03)
plot(K_H2S(35, 1:25), xlab="temperature / degC")
```

K_H3PO4 *K*_*H3PO4*

Description

PUBLIC function: calculates the dissociation constant of H3PO4

```
K_H3PO4(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

24 K_HCO3

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
р	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg -solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of H3PO4 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1995 (original, SWS pH version), DOE1994 (in a later revision cites Millero1995)

Examples

```
K_H3P04(35, 15)
K_H3P04(35, 15, 10)
K_H3P04(S=35, t=15, p=10, SumH2S04=0.03)
plot(K_H3P04(35, 1:25), xlab="temperature / degC")
```

K_HCO3 K_HCO3

Description

PUBLIC function: calculates the dissociation constant of HCO3

```
 \begin{tabular}{ll} K\_HCO3(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, \\ k1k2="lueker", khf="dickson", khso4="dickson") \end{tabular}
```

K_HF 25

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
р	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in $\operatorname{mol/kg}$ -solution (calculated from S if not supplied)
k1k2	"lueker", "roy", or "millero": specifies the S , t , dependency to be used. Default is "lueker". (see section below for references)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of HCO3 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

```
k1k2 = "roy": Roy1993b, DOE1994, Millero1995, Zeebe2001; k1k2 = "lueker": Lueker2000; k1k2 = "millero": Millero2006
```

Examples

```
K_HCO3(35, 15)
K_HCO3(35, 15, 10)
K_HCO3(S=35, t=15, p=10, SumH2SO4=0.03)
plot(K_HCO3(35, 1:25), xlab="temperature / degC")
```

 K_HF $K \backslash HF$

Description

PUBLIC function: calculates the dissociation constant of HF

```
K_HF(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

26 K_HPO4

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg -solution (calculated from S if not supplied)
khf	"dickson" or "perez": specifies the S , t , dependency to be used. Default is "dickson". (see section below for references)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of HF in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

```
khf = "dickson": Dickson1979a, Dickson1987, Roy1993b, DOE1994, Millero1995, Zeebe2001; khf = "perez": Perez1987
```

Examples

```
K_HF(35, 15)
K_HF(35, 15, 10)
plot(K_HF(35, 1:25), xlab="temperature / degC")
```

Description

PUBLIC function: calculates the dissociation constant of HPO4

```
K_HPO4(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

K_HSO4 27

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied) $$
SumHF	total fluoride concentration in $\operatorname{mol/kg}$ -solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of HPO4 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1995 (original, SWS pH version), DOE1994 (in a later revision cites Millero1995)

Examples

K_HSO4 K_HSO4

Description

PUBLIC function: calculates the dissociation constant of HSO4

```
K_HS04(S, t, p=0, khso4="dickson")
```

28 K_NH4

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
р	gauge pressure (total pressure minus atmospheric pressure) in bars
khso4	"dickson" or "khoo": specifies the S, t, dependency to be used. Default is "dick-

son". (see section below for references)

Value

the dissociation constant of HSO4 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

```
"dickson": Dickson1990, DOE1994, Zeebe2001; "khoo": Khoo1977, Roy1993, Millero1995
```

Examples

```
K_HSO4(35, 15)
K_HSO4(35, 15, 10)
plot(K_HSO4(35, 1:25), xlab="temperature / degC")
```

 K_NH4 K_NH4

Description

PUBLIC function: calculates the dissociation constant of NH4

Usage

```
K_NH4(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
р	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg-solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

K_SiOH4 29

Value

the dissociation constant of NH4 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1995a, Millero1995, corrected by Lewis1998

Examples

```
K_NH4(35, 15)
K_NH4(35, 15, 10)
K_NH4(S=35, t=15, p=10, SumH2SO4=0.03)
plot(K_NH4(35, 1:25), xlab="temperature / degC")
```

K_SiOH4

 K_SiOH4

Description

PUBLIC function: calculates the dissociation constant of SiOH4

Usage

```
K_SiOH4(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg-solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of SiOH4 in mol/kg-solution on the free proton pH scale

30 K_SiOOH3

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1988, DOE1994, Millero1995

Examples

K_SiOOH3

*K*_*SiOOH3*

Description

PUBLIC function: calculates the dissociation constant of SiOOH3

Usage

```
K_SiOOH3(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
p	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg-solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the dissociation constant of SiOOH3 in mol/kg-solution on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

K_W 31

References

Wischmeyer2003 (incl. corrections)

Examples

```
K_Si00H3(35, 15)
K_Si00H3(35, 15, 10)
K_Si00H3(S=35, t=15, p=10, SumH2SO4=0.03)
plot(K_Si00H3(35, 1:25), xlab="temperature / degC")
```

 K_W $K \setminus W$

Description

PUBLIC function: calculates the ion product of H2O

Usage

```
K_W(S, t, p=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson", khso4="dickson")
```

Arguments

S	salinity in practical salinity units (i.e. no unit)
t	temperature in degrees centigrade
р	gauge pressure (total pressure minus atmospheric pressure) in bars
SumH2SO4	total sulfate concentration in mol/kg-solution (calculated from S if not supplied)
SumHF	total fluoride concentration in mol/kg -solution (calculated from S if not supplied)
khf	S, t relation for K_HF needed for scale conversion: either "dickson" (default, Dickson1979a) or "perez" (Perez1987a)
khso4	S, t relation for K_HSO4 needed for scale conversion: either "dickson" (default, Dickson1990) or "khoo" (Khoo1977)

Value

the ion product of H2O in (mol/kg-solution)2 on the free proton pH scale

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Millero1995 (SWS pH version), DOE1994 (cites Millero1995), Zeebe2001

32 MeanMolecularMass

Examples

```
K_W(35, 15)
K_W(35, 15, 10)
K_W(S=35, t=15, p=10, SumH2SO4=0.03)
plot(K_W(35, 1:25), xlab="temperature / degC")
```

length.aquaenv

length.aquaenv

Description

PRIVATE function: returns the (maximal) length of the elements in an object of class aquaenv (i.e. > 1 if one of the input variables was a vector)

Usage

```
## S3 method for class 'aquaenv' length(x, ...)
```

Arguments

x object of class aquaenv

... further arguments will be passed

Value

the maximal length of the elements in the object of class aquaenv

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

MeanMolecularMass

MeanMolecularMass

Description

PUBLIC data frame: a collection of mean molecular masses of key chemical species in seawater in $g/mol\ (DOE1994))$

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

merge.aquaenv 33

|--|

Description

PRIVATE function: merges the elements of two objects of class aquaenv: element names are taken from the first argument, the elements of which are also first in the merged object

Usage

```
## S3 method for class 'aquaenv' merge(x, y, ...)
```

Arguments

X	object of class aquaenv: this is where the element names are taken from
У	object of class aquaenv: must contain at leas all the element (names) as aquaenv1, extra elements are ignored
	further arguments will be passed

Value

object of class aquaenv with merged elements

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

|--|

Description

PUBLIC list: a collection of physical and chemical constants

Value

A list containing:

R	(bar*cm3)/(mol*K) the gas constant (corrected after Lewis1998, in Millero1995: $R=83.131$); digits extended after Dickson2007)
F	C/mol the Faraday constant (charge per mol of electrons) (N_A*e-): Dickson2007
uMolToMol	conversion factor from umol to mol
absZero	absolute zero in degrees centigrade

34 plot.aquaenv

е	relative dielectric constanf of seawater (Zeebe2001)
K_HNO2	dissociation constant of HNO2: mol/l, NBS pH scale, hybrid constant (Riordan2005)
K_HNO3	dissociation constant of HNO3: assumed on mol/kg-soln and free pH scale, stoichiometric constant (Soetaert pers. comm.)
K_H2S04	dissociation constant of H2SO4: assumed on mol/kg-soln and free pH scale, stoichiometric constant (Atkins1996)
K_HS	dissociation constant of HHS: assumed on mol/kg-soln and free pH scale, stoi- chiometric constant (Atkins1996)

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

Description

PUBLIC function: high level plot function for objects of class aquaenv

Arguments

X	object of class aquaenv
xval	only valid if bjerrum=FALSE: a vector of the (maximal) length of the elements of aquaenv against which they are to be plotted
what	a list of names of the elements of aquaenv that are to be plotted, if not supplied and bjerrum=FALSE and cumulative=FALSE: all elements are plotted, if not supplied and bjerrum=TRUE then what is set to be c("CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH", "H3PO4", "H2PO4", "HPO4", "PO4", "SiOH4", "SiOOH3", "SiO2OH2", "H2S", "HS", "S2min", "NH4", "NH3", "H2SO4", "HSO4", "SO4", "HF", "F", "HNO3", "NO3", "HNO2", "NO2"), needs to be supplied for cumulative=TRUE
bjerrum	flag: TRUE = a bjerrum plot is done (by calling bjerrumplot)
cumulative	flag: TRUE = a cumulative plot is done (by calling cumulative plot)
newdevice	flag: if TRUE, new plot device is opened
setpar	flag: if TRUE parameters are set with the function par
xlab	x axis label
log	only valif if bjerrum=TRUE: should the plot be on a logarithmic y axis?
total	only valid if cumulative=TRUE: should the sum of all elements specified in what be plotted as well?
device	the device to plot on; default: "x11" (can also be "eps" or "pdf")
filename	filename to be used if "eps" or "pdf" is selected for device

plot.aquaenv 35

size	the size of the plot device; default: 12 (width) by 10 (height) inches
ylim	standard plot parameter; if not supplied it will be calculated by range() of the elements to plot
lwd	standard plot parameter; width of the lines in the plot
mgp	standard plot parameter; default: axis title on line 1.8, axis labels on line 0.5, axis on line 0
mar	standard plot parameter; default: margin of 3 lines bottom and left and 0.5 lines top and right
oma	standard plot parameter; default: no outer margin
palette	only valid if bjerrum=TRUE or cumulative=TRUE: a vector of colors to use in the plot (either numbers or names given in colors())
legendposition	
	only valid if bjerrum=TRUE or cumulative=TRUE: position of the legend
legendinset	only valid if bjerrum=TRUE or cumulative=TRUE: standard legend parameter inset
legendlwd	only valid if bjerrum=TRUE or cumulative=TRUE: standard legend parameter lwd: line width of lines in legend
bg	only valid if bjerrum=TRUE or cumulative=TRUE: standard legend parameter: default background color: white
y.intersp	standard legend parameter; if cumulative=TRUE then default: 1.2 lines space between the lines in the legend
• • •	further arguments are passed on to the plot function

Details

Top level generic usage is

36 plot.aquaenv

Generic usage for creating a cumulative plot is

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

Examples

```
## Not run:
### 0
#####
A <- aquaenv(35, 15, SumCO2=0.003, TA=seq(0.001,0.004, 0.0001))
plot(A, xval=A$TA, xlab="[TA]/(mol/kg-soln)")
plot(A, what=c("CO2", "HCO3", "CO3"), bjerrum=TRUE, log=TRUE)
plot(A, xval=A$TA, xlab="[TA]/(mol/kg-soln)", what=c("CO2", "HCO3", "CO3"),
     cumulative=TRUE, ylab="mol/kg-soln", ylim=c(0,0.0031))
### 1
#####
SumCO2 <- 0.0020
На
       <- 8
       <- 30
       <- 1:15
t
ae <- aquaenv(S, t, p, SumCO2=SumCO2, pH=pH, revelle=TRUE, dsa=TRUE)</pre>
plot(ae, xval=t, xlab="T/(deg C)", newdevice=FALSE)
### 2
#####
S <- 35
t <- 15
SumCO2 <- 0.003500
SumNH4 <- 0.000020
mass_sample <- 0.01 # the mass of the sample solution in kg
mass_titrant <- 0.02 # the total mass of the added titrant solution in
                     # kg
conc_titrant <- 0.01 # the concentration of the titrant solution in</pre>
                     # mol/kg-soln
```

plot.aquaenv 37

```
S_titrant
             <- 0.5 # the salinity of the titrant solution (the
                     # salinity of a solution with a ionic strength of
                     \# 0.01 according to: I = (19.924 S) / (1000 - 1.005S)
             <- 50 # the amount of steps the mass of titrant is added
steps
                     # in
             <- "HC1"
type
pHstart <- 11.3
ae <- titration(aquaenv(S=S, t=t, SumCO2=SumCO2, SumNH4=SumNH4,</pre>
                pH=pHstart), mass_sample, mass_titrant, conc_titrant,
                S_titrant, steps, type)
# plotting everything
plot(ae, xval=ae$delta_mass_titrant, xlab="HCl solution added [kg]",
mfrow=c(10,10))
# plotting selectively
size <-c(12,8) #inches
mfrow \leftarrow c(4,4)
what <- c("TA", "pH", "CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH",
           "NH4", "NH3", "H2SO4", "HSO4", "SO4", "HF", "F", "pCO2")
plot(ae, xval=ae$delta_mass_titrant, xlab="HCl solution added [kg]",
     what=what, size=size, mfrow=mfrow)
plot(ae, xval=ae$pH, xlab="free scale pH", what=what, size=size,
     mfrow=mfrow)
# different x values
plot(ae, xval=ae$delta_conc_titrant, xlab="[HCl] offset added
     [mol/kg-soln]", what=what, size=size, mfrow=mfrow)
plot(ae, xval=ae$delta_moles_titrant, xlab="HCl added [mol]", what=what,
     size=size, mfrow=mfrow, newdevice=FALSE)
# bjerrum plots
plot(ae, bjerrum=TRUE)
what <- c("CO2", "HCO3", "CO3")
plot(ae, what=what, bjerrum=TRUE)
plot(ae, what=what, bjerrum=TRUE, lwd=4, palette=c("cyan", "magenta",
     "yellow"), bg="gray", legendinset=0.1, legendposition="topleft")
what <- c("CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH", "NH4", "NH3",
```

38 plot.aquaenv

```
"H2S04", "HS04", "S04", "HF", "F")
plot(ae, what=what, bjerrum=TRUE, log=TRUE, newdevice=FALSE)
plot(ae, what=what, bjerrum=TRUE, log=TRUE, ylim=c(-6,-1),
     legendinset=0, lwd=3, palette=c(1,3,4,5,6,colors()[seq(100,250,6)]))
### 3
#####
parameters <- list(</pre>
   t
               = 15
                            , # degrees C
   S
               = 35
                            , # psu
    SumCO2_t0 = 0.002
                            , # mol/kg-soln (comparable to Wang2005)
   TA_t0
                = 0.0022
                            , # mol/kg-soln (comparable to Millero1998)
                            , # 1/d
   kc
               = 0.5
                                             proportionality factor
                                                 for air-water exchange
                = 0.000001
                            , # mol/(kg-soln*d) max rate of calcium
                                                 carbonate precipitation
                            , # -
                = 2.0
                                                 exponent for kinetic
                                                 rate law of precipitation
   modeltime = 20
                            , # d
                                               duration of the model
   outputsteps = 100
                                               number of outputsteps
                   )
boxmodel <- function(timestep, currentstate, parameters)</pre>
{
 with (
        as.list(c(currentstate,parameters)),
        {
                <- aquaenv(S=S, t=t, SumCO2=SumCO2, pH=-log10(H), SumSiOH4=0,</pre>
          ae
                           SumBOH3=0, SumH2SO4=0, SumHF=0, dsa=TRUE)
          Rc
                <- kc * ((ae$CO2_sat) - (ae$CO2))
                <- kp * (1-ae$omega_calcite)^n
          Rр
          dSumCO2 <- Rc - Rp
          dHRc
                  <- (
                            -(ae$dTAdSumCO2*Rc ))/ae$dTAdH
          dHRp
                  <- (-2*Rp -(ae$dTAdSumCO2*(-Rp)))/ae$dTAdH
                  <- dHRc + dHRp
          ratesofchanges <- c(dSumCO2, dH)</pre>
          processrates
                        <- c(Rc=Rc, Rp=Rp)
                         <- c(dHRc=dHRc, dHRp=dHRp)
          outputvars
          return(list(ratesofchanges, list(processrates, outputvars, ae)))
        }
}
```

sample_dickson1981 39

```
with (as.list(parameters),
        aetmp <- aquaenv(S=S, t=t, SumCO2=SumCO2_t0,</pre>
                          TA=TA_t0, SumSiOH4=0, SumBOH3=0,
                          SumH2SO4=0, SumHF=0)
        H_t0 <- 10^{-aetmp$pH}
        initialstate <<- c(SumCO2=SumCO2_t0, H=H_t0)</pre>
                     <-- seq(0, modeltime, (modeltime/outputsteps))
        output
                     <-- as.data.frame(vode(initialstate, times,
                                     boxmodel,parameters, hmax=1))
      })
       <- c("SumCO2", "TA", "Rc", "Rp",
             "omega_calcite", "pH", "dHRc", "dHRp")
plot(aquaenv(ae=output, from.data.frame=TRUE), xval=output$time,
     xlab="time/d", mfrow=c(3,3), size=c(15,10), what=what)
what <- c("dHRc", "dHRp")
plot(aquaenv(ae=output, from.data.frame=TRUE), xval=output$time,
     xlab="time/d", what=what, ylab="mol-H/(kg-soln*d)",
     legendposition="topright", cumulative=TRUE)
## End(Not run)
```

sample_dickson1981

sample_dickson1981

Description

PUBLIC dataset: theoretical titration curve for TA determination as given in table 1 of Dickson1981

Meta-data:

```
x-value mass of titrant added (in g)
y-value pH measured on the free proton scale
```

```
t.
                25
                           degC
S
                35
                200
mass \subseteq sample
                0.3000
                           mol/kg-soln
conc\_titrant
                           mol/kg-soln
TA
                0.00245
SumCO2
                0.00220
                           mol/kg-soln
SumBOH3
                0.00042
                           mol/kg-soln
SumH2SO4
                           mol/kg-soln
                0.02824
```

SumHF	0.00007	mol/kg-soln
$K \setminus W$	4.32e-14	(mol/kg-soln)*(mol/kg-soln)
<i>K</i> _ <i>CO2</i>	1.00e-6	mol/kg-soln
K_HCO3	8.20e-10	mol/kg-soln
<i>K</i> _ <i>BOH3</i>	1.78e-9	mol/kg-soln
$K\LHSO4$	1/1.23e1	mol/kg-soln
$K \backslash HF$	1/4.08e2	mol/kg-soln

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

007	
-----	--

Description

PUBLIC dataset: titration curve for TA determination as given on p. 11 of SOP3b in Dickson2007

Metadata:

```
x-value mass of titrant added (in cubic centimeters) y-value E in V
```

t	24.25	degC
S	33.923	
mass_sample	140.32	g
conc_titrant	0.10046	mol/kg-soln
density titrant	1.02393	g/cm3
calculated TA	2260.06	umol/kg-soln
calculated E0	0.394401	V

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

Description

PUBLIC function: calculates [TA] and [SumCO2] (and optionally K_C02 and E0) from a titration curve using an optimization procedure (nls.lm from R package minpack.lm)

Usage

```
TAfit(ae, titcurve, conc_titrant, mass_sample, S_titrant=NULL, TASumCO2guess=0.0025, E0guess=0.4, type="HC1", Evals=FALSE, electrode_polarity="pos", K_CO2fit=FALSE, equalspaced=TRUE, seawater_titrant=FALSE, pHscale="free", debug=FALSE, k_w=NULL, k_co2=NULL, k_hco3=NULL, k_boh3=NULL, k_hso4=NULL, k_hf=NULL, nlscontrol=nls.lm.control(), verbose=FALSE, k1k2="roy", khf="dickson", datxbegin=0, SumCO2Zero=FALSE)
```

Arguments

ae an object of type aquaenv: minimal definition, contains all information about

the system: T, S, d, total concentrations of nutrients etc (Note that it is possible to give values for SumBOH4, SumHSO4, and SumHF in the sample other than

the ones calculated from salinity)

titcurve a table containing the titration curve: basically a series of tuples of added titrant

solution mass and pH values (pH on free proton scale) or E values in V

conc_titrant concentration of the titrant solution in mol/kg-soln

mass_sample the mass of the sample solution in kg

S_titrant the salinity of the titrant solution, if not supplied it is assumed that the titrant

solution has the same salinity as the sample solution

TASumCO2guess a first guess for [TA] and [SumCO2] to be used as initial values for the optimiza-

tion procedure

E0guess first guess for E0 in V

type the type of titrant: either "HCl" or "NaOH"

Evals are the supplied datapoints pH or E (V) values?

electrode_polarity

either "pos" or "neg": how is the polarity of the Electrode: $E = E0 - (RT/F)\ln(H+)$

("pos") or $-E = E0 - (RT/F)\ln(H+) ("neg")$?

 K_CO2fit should K_CO2 be fitted as well?

equal spaced are the mass values of titcurve equally spaced?

seawater_titrant

is the titrant based on natural seawater? (does it contain SumBOH4, SumHSO4, and SumHF in the same proportions as seawater, i.e., correlated to S?); Note that you can only assume a seawater based titrant (i.e. SumBOH4, SumHSO4, and SumHF \sim S) or a water based titrant (i.e. SumBOH4, SumHSO4, and SumHF = 0). It is not possible to give values for SumBOH4, SumHSO4, and SumHF of the titrant.

either "free", "total", "sws" or "nbs": if the titration curve contains pH data: on pHscale which scale is it measured? debug debug mode: the last simulated titration tit, the converted pH profile calc, and the nls.lm output out are made global variables for investigation and plotting a fixed K\ W can be specified k_w a fixed K_CO2 can be specified; used for TA fitting: give a K_CO2 and NOT k_co2 calculate it from T and S: i.e. K\ CO2 can be fitted in the routine as well k_hco3 a fixed K_HCO3 can be specified k boh3 a fixed K\ BOH3 can be specified k_hso4 a fixed K_HSO4 can be specified a fixed K_HF can be specified k_hf nlscontrol nls.lm.control() can be specified verbose mode: show the traject of the fitting in a plot verbose either "roy" (default, Roy1993a) or "lueker" (Lueker2000) for K_CO2 and k1k2 K_HCO3. khf either "dickson" (default, Dickson1979a) or "perez" (Perez1987a) for K_HF at what x value (amount of titrant added) does the supplied curve start? (i.e. is datxbegin the complete curve supplied or just a part?)

Value

SumCO2Zero

a list of up to five values ([TA] in mol/kg-solution, [SumCO2] in mol/kg-solution, E0 in V, K1 in mol/kg-solution and on free scale, sum of the squared residuals)

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

should SumCO2==0?

Examples

```
<- 0.002200
initial_ae <- aquaenv(S=S, t=t, SumCO2=SumCO2, TA=TA)</pre>
mass_sample <- 0.01 # the mass of the sample solution in kg
mass_titrant <- 0.003 # the total mass of the added titrant solution
                      # in kg
conc_titrant <- 0.01 # the concentration of the titrant solution in</pre>
                      # mol/kg-soln
             <- 0.5 # the salinity of the titrant solution (the
S titrant
                      # salinity of a solution with a ionic strength
                      # of 0.01 according to:
                      \# I = (19.924 S) / (1000 - 1.005 S)
steps
             <- 20
                      # the amount of steps the mass of titrant is
                      # added in
             <- "HC1"
type
ae <- titration(initial_ae, mass_sample, mass_titrant, conc_titrant,</pre>
                S_titrant, steps, type)
plot(ae, ae$delta_mass_titrant, what="pH", newdevice=FALSE)
# the input data for the TA fitting routine: a table with the added
# mass of the titrant and the resulting free scale pH
titcurve <- cbind(ae$delta_mass_titrant, ae$pH)</pre>
# for the TA fitting procedure all total quantities except SumCO2
# (SumNH4, SumH2S, SumH3PO4, SumSiOH4, SumHNO3, SumHNO2, SumBOH3,
# SumH2SO4, SumHF) need to be known. However, the latter three
# can be calculated from salinity as it is done in this example.
fit1 <- TAfit(initial_ae, titcurve, conc_titrant, mass_sample,</pre>
              S_titrant)
fit1
# E (V) values as input variables: generate E values using
# E0=0.4 V and the nernst equation
tottitcurve <- convert(titcurve[,2], "pHscale", "free2sws", S=S,</pre>
                       t=t)
# (Nernst equation relates E to TOTAL [H+] (DOE1994, p.7,
# ch.4, sop.3), BUT, if fluoride is present, its SWS, so
# we use SWS!
Etitourve
           <- cbind(titcurve[,1], (0.4 - ((PhysChemConst$R/10)</pre>
               *initial_ae$T/PhysChemConst$F)
               *log(10^-tottitcurve))) # Nernst equation
fit2 <- TAfit(initial_ae, Etitcurve, conc_titrant, mass_sample,</pre>
              S_titrant, Evals=TRUE, verbose=TRUE)
fit2
# k_co2 fitting: one K_CO2 (k_co2) for the whole titration curve
# is fitted, i.e. there is NO correction for K_CO2 changes due to
```

```
# changing S due to mixing with the titrant
fit3 <- TAfit(initial_ae, titcurve, conc_titrant, mass_sample,</pre>
              S_titrant, K_CO2fit=TRUE)
fit3
# assume the titrant has the same salinity as the sample
# (and is made up of natural seawater, i.e. containing SumBOH4,
# SumH2SO4 and SumHF as functions of S), then the "right" K_CO2
# should be fitted i.e we do NOT give the argument S_titrant
# and set the flag seawater_titrant to TRUE
         <- titration(initial_ae, mass_sample, mass_titrant,</pre>
                       conc_titrant, steps=steps, type=type,
                       seawater_titrant=TRUE)
titcurve <- cbind(ae$delta_mass_titrant, ae$pH)</pre>
fit4 <- TAfit(initial_ae, titcurve, conc_titrant, mass_sample,</pre>
              K_CO2fit=TRUE, seawater_titrant=TRUE)
fit4
# fitting of TA, SumCO2, K_CO2 and E0
Etitcurve <- cbind(titcurve[,1], (0.4 - ((PhysChemConst$R/10)</pre>
                    *initial_ae$T/PhysChemConst$F)
                    *log(10^-titcurve[,2])))
fit5 <- TAfit(initial_ae, Etitcurve, conc_titrant, mass_sample,</pre>
              K_CO2fit=TRUE, seawater_titrant=TRUE, Evals=TRUE)
fit5
# fitting of non equally spaced data:
neqsptitcurve <- rbind(titcurve[1:9,], titcurve[11:20,])</pre>
fit6 <- TAfit(initial_ae, neqsptitcurve, conc_titrant,</pre>
               mass_sample, seawater_titrant=TRUE,
                equalspaced=FALSE)
fit6
#add some "noise" on the generated data
noisetitcurve <- titcurve * rnorm(length(titcurve),</pre>
                 mean=1, sd=0.01) #one percent error possible
plot(ae, ae$delta_mass_titrant, what="pH", type="l", col="red",
     xlim=c(0,0.003), ylim=c(3,8.1), newdevice=FALSE)
par(new=TRUE)
plot(noisetitcurve[,1],noisetitcurve[,2], type="1",
     xlim=c(0,0.003), ylim=c(3,8.1))
fit7 <- TAfit(initial_ae, noisetitcurve, conc_titrant,</pre>
              mass_sample, seawater_titrant=TRUE)
fit7
```

```
conc_titrant = 0.3
                      # mol/kg-soln
mass\_sample = 0.2
                      # kg
S_titrant = 14.835 # is aequivalent to the ionic strength
                      # of 0.3 mol/kg-soln
SumBOH3 = 0.00042 \# mol/kg-soln
SumH2SO4 = 0.02824 \# mol/kg-soln
SumHF
        = 0.00007 \text{ # mol/kg-soln}
# convert mass of titrant from g to kg
sam <- cbind(sample_dickson1981[,1]/1000, sample_dickson1981[,2])</pre>
dicksonfit <- TAfit(aquaenv(t=25, S=35, SumBOH3=SumBOH3,</pre>
                    SumH2SO4=SumH2SO4, SumHF=SumHF), sam,
                    conc_titrant, mass_sample,
                    S_titrant=S_titrant, debug=TRUE)
dicksonfit
#TA
       Dickson1981: 0.00245
#SumCO2 Dickson1981: 0.00220
# => not exactly the same! why?
# a.) does salinity correction (S_titrant) matter or not?
# without salinity correction
dicksontitration1 <- titration(aquaenv(t=25, S=35, SumCO2=0.00220,</pre>
                              SumBOH3=SumBOH3, SumH2SO4=SumH2SO4,
                               SumHF=SumHF, TA=0.00245),
                              mass_sample=mass_sample,
                              mass_titrant=0.0025,
                              conc_titrant=conc_titrant,
                               steps=50, type="HC1")
# with salinity correction
dicksontitration2 <- titration(aquaenv(t=25, S=35, SumCO2=0.00220,</pre>
                               SumBOH3=SumBOH3, SumH2SO4=SumH2SO4,
                               SumHF=SumHF, TA=0.00245),
                              mass_sample=mass_sample,
                              mass_titrant=0.0025,
                              conc_titrant=conc_titrant,
                               S_titrant=S_titrant,
                               steps=50, type="HC1")
plot(dicksontitration1, xval=dicksontitration1$delta_mass_titrant,
     what="pH", xlim=c(0,0.0025), ylim=c(3,8.2), newdevice=FALSE,
     col="red")
par(new=TRUE)
plot(dicksontitration2, xval=dicksontitration2$delta_mass_titrant,
     what="pH", xlim=c(0,0.0025), ylim=c(3,8.2), newdevice=FALSE,
```

```
col="blue")
par(new=TRUE)
plot(sam[,1], sam[,2], type="1", xlim=c(0,0.0025), ylim=c(3,8.2))
# => salinity correction makes NO difference, because the relation
# between total sample and added titrant is very large:
# salinity only drops from 35 to 34.75105
#BUT: there is an offset between the "Dickson" curve and our curve:
plot(dicksontitration2$pH - sam[,2])
# b.) does it get better if we fit K_CO2 as well?
dicksonfit2 <- TAfit(aquaenv(t=25, S=35, SumBOH3=SumBOH3,</pre>
                            SumH2SO4=SumH2SO4, SumHF=SumHF), sam,
                             conc_titrant, mass_sample,
     S_titrant=S_titrant, debug=TRUE,
     K_CO2fit=TRUE)
dicksonfit2
#TA
       Dickson1981: 0.00245
#SumCO2 Dickson1981: 0.00220
# => yes it does, but it is not perfect yet!
# c.) differing K values
###################################
# Dickson uses fixed K values that are slightly different than ours
dicksontitration3 <- titration(aquaenv(t=25, S=35, SumCO2=0.00220,</pre>
                               SumBOH3=SumBOH3, SumH2SO4=SumH2SO4,
                               SumHF=SumHF, TA=0.00245, k_w=4.32e-14,
       k_co2=1e-6, k_hco3=8.20e-10,
       k_boh3=1.78e-9, k_hso4=(1/1.23e1),
       k_hf=(1/4.08e2)),
       mass_sample=mass_sample,
       mass_titrant=0.0025,
       conc_titrant=conc_titrant,
       steps=50, type="HC1",
       S_titrant=S_titrant, k_w=4.32e-14,
       k_co2=1e-6, k_hco3=8.20e-10,
       k_boh3=1.78e-9, k_hso4=(1/1.23e1),
       k_hf=(1/4.08e2)
plot(dicksontitration3, xval=dicksontitration3$delta_mass_titrant,
     what="pH", xlim=c(0,0.0025), ylim=c(3,8.2), newdevice=FALSE,
     col="blue")
par(new=TRUE)
plot(sam[,1], sam[,2], type="1", xlim=c(0,0.0025), ylim=c(3,8.2))
plot(dicksontitration3$pH - sam[,2])
# => no offset between the pH curves
# => exactly the same curves!
```

Technicals 47

```
dicksonfit3 <- TAfit(aquaenv(t=25, S=35, SumBOH3=SumBOH3,</pre>
                     SumH2SO4=SumH2SO4, SumHF=SumHF, k_w=4.32e-14,
                     k_co2=1e-6, k_hco3=8.20e-10, k_boh3=1.78e-9,
     k_hso4=(1/1.23e1), k_hf=(1/4.08e2)),
                     sam, conc_titrant, mass_sample,
     S_titrant=S_titrant, debug=TRUE,
                     k_w=4.32e-14, k_co2=1e-6, k_hco3=8.20e-10,
     k_boh3=1.78e-9, k_hso4=(1/1.23e1),
     k_hf=(1/4.08e2))
dicksonfit3
# PERFECT fit!
plot(sam[,1], sam[,2], xlim=c(0,0.0025), ylim=c(3,8.2), type="l")
par(new=TRUE)
plot(tit$delta_mass_titrant, calc, xlim=c(0,0.0025), ylim=c(3,8.2),
     type="l", col="red")
## End(Not run)
```

Technicals

Technicals

Description

PUBLIC list: a collection programming-technical constants

Value

A list with elements:

Haccur accuracy for iterative (Follows2006) pH calculations (max. deviation in [H+])

Hstart start [H+] for an iterative pH calculation

maxiter maximum number of iterations for iterative (Follows2006) pH calculation method

as well as for the application of the standard R function uniroot

unirootinterval

the interval (in terms of [H+]) for pH calculation using the standard R function

uniroot

uniroottol the interval (in terms of [H+]) for pH calculation using the standard R function

uniroot

epsilon_fraction

fraction of disturbance for the numerical calculation of derivatives of TA with

respect to changes in the dissociation constants

revelle_fraction

fraction of disturbance for the numerical calculation of the revelle factor

CO2 fugacity of CO2 in atm

48 titration

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

|--|--|

Description

PUBLIC function: creates an object of class aquaenv which contains a titration simulation

Usage

Arguments

 Sumenas		
aquaenv	an object of type aquaenv: minimal definition, contains all information about the system: T, S, d, total concentrations of nutrients etc (Note that it is possible to give values for SumBOH4, SumHSO4, and SumHF in the sample other than the ones calculated from salinity)	
mass_sample	the mass of the sample solution in kg	
mass_titrant	the total mass of the added titrant solution in kg	
conc_titrant	the concentration of the titrant solution in mol/kg-soln	
S_titrant	the salinity of the titrant solution, if not supplied it is assumed that the titrant solution has the same salinity as the sample solution	
steps	the amount of steps the mass of titrant is added in	
type	the type of titrant: either "HCl" or "NaOH", default: "HCl"	
seawater_titrant		
	is the titrant based on natural seawater? (does it contain SumBOH4, SumHSO4, and SumHF in the same proportions as seawater, i.e., correlated to S?); Note that you can only assume a seawater based titrant (i.e. SumBOH4, SumHSO4, and SumHF \sim S) or a water based titrant (i.e. SumBOH4, SumHSO4, and SumHF = 0). It is not possible to give values for SumBOH4, SumHSO4, and SumHF of the titrant.	
k_w	a fixed K_W can be specified	
k_co2	a fixed K_CO2 can be specified; used for TA fitting: give a K_CO2 and NOT calculate it from T and S: i.e. K_CO2 can be fitted in the routine as well	
k_hco3	a fixed K_HCO3 can be specified	
k_boh3	a fixed K_BOH3 can be specified	
k_hso4	a fixed K_HSO4 can be specified	

titration 49

k_hf	a fixed K_HF can be specified
k1k2	either "lueker" (default, Lueker2000) or "roy" (Roy1993a) for K_CO2 and K_HCO3.
khf	either "dickson" (default, Dickson1979a) or "perez" (Perez1987a) for K_HF

Value

object of class aquaenv which contains a titration simulation

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

Examples

```
## Not run:
# Titration with HCl
######################
S <- 35
t <- 15
SumCO2 <- 0.003500
SumNH4 <- 0.000020
mass_sample <- 0.01 # the mass of the sample solution in kg
mass_titrant <- 0.02 # the total mass of the added titrant solution in
                     # kg
conc\_titrant <- 0.01 # the concentration of the titrant solution in
                     # mol/kg-soln
S_{titrant} <- 0.5 # the salinity of the titrant solution (the
                     # salinity of a solution with a ionic strength of
                     # 0.01 according to: I = (19.924 \text{ S}) / (1000 - 1.005\text{S})
steps
             <- 50 # the amount of steps the mass of titrant is added
                     # in
             <- "HC1"
type
pHstart <- 11.3
ae <- titration(aquaenv(S=S, t=t, SumCO2=SumCO2, SumNH4=SumNH4,</pre>
                pH=pHstart), mass_sample, mass_titrant, conc_titrant,
                S_titrant, steps, type)
# plotting everything
plot(ae, xval=ae$delta_mass_titrant, xlab="HCl solution added [kg]",
mfrow=c(10,10)
# plotting selectively
size <-c(12,8) #inches
```

50 watdepth

```
mfrow \leftarrow c(4,4)
what <- c("TA", "pH", "CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH",
           "NH4", "NH3", "H2SO4", "HSO4", "SO4", "HF", "F", "pCO2")
plot(ae, xval=ae$delta_mass_titrant, xlab="HCl solution added [kg]",
     what=what, size=size, mfrow=mfrow)
plot(ae, xval=ae$pH, xlab="free scale pH", what=what, size=size,
     mfrow=mfrow)
# different x values
plot(ae, xval=ae$delta_conc_titrant, xlab="[HCl] offset added
     [mol/kg-soln]", what=what, size=size, mfrow=mfrow)
plot(ae, xval=ae$delta_moles_titrant, xlab="HCl added [mol]", what=what,
     size=size, mfrow=mfrow)
# bjerrum plots
par(mfrow=c(1,1))
plot(ae, bjerrum=TRUE)
what <- c("CO2", "HCO3", "CO3")
plot(ae, what=what, bjerrum=TRUE)
plot(ae, what=what, bjerrum=TRUE, lwd=4, palette=c("cyan", "magenta",
     "yellow"), bg="gray", legendinset=0.1, legendposition="topleft")
what <- c("CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH", "NH4", "NH3",
           "H2S04", "HS04", "S04", "HF", "F")
plot(ae, what=what, bjerrum=TRUE, log=TRUE)
plot(ae, what=what, bjerrum=TRUE, log=TRUE, ylim=c(-6,-1),
     legendinset=0, lwd=3, palette=c(1,3,4,5,6,colors()[seq(100,250,6)]))
## End(Not run)
```

watdepth

watdepth

Description

PUBLIC function: calculates the depth (in m) from the gauge pressure p (or the total pressure P) and the latitude (in degrees: -90 to 90) and the atmospheric pressure Pa (in bar)

Usage

```
watdepth(P=Pa, p=pmax(0, P-Pa), lat=0, Pa=1.013253)
```

watdepth 51

Arguments

P total	pressure in bar	, standard: 1 atm	(at the sea surface)
---------	-----------------	-------------------	----------------------

p gauge pressure in bar (total pressure minus atmospheric pressure), standard: 0

(at the water surface)

latitude in degrees: -90 to 90, standard: 0

Pa atmospheric pressure in bar, standard: 1 atm (at sea level)

Value

water depth d in meters

Author(s)

Andreas F. Hofmann. Maintained by Karline Soetaert (Karline.Soetaert@nioz.nl).

References

Fofonoff1983

Examples

```
watdepth(100)
plot(watdepth(1:100))
```

Index

* misc	AquaEnv (AquaEnv_package), 8
aquaenv, 2	aquaenv, 2
as.data.frame.aquaenv, 10	AquaEnv_package, 8
BufferFactors, 10	as.data.frame.aquaenv, 10
c.aquaenv, 12	,
ConcRelCl, 13	BufferFactors, 10
convert, 13	
DeltaPcoeffs, 15	c.aquaenv, 12
gauge_p, 16	ConcRelCl, 13
K0_C02, 16	convert, 13
K0_02, 17	DeltaPcoeffs, 15
K_B0H3, 19	bertal coerrs, 15
K_C02, 20	gauge_p, 16
K_H2P04, 21	
K_H2S, 22	K0_C02, 16
K_H3P04, 23	K0_02, 17
K_HC03, 24	K_B0H3, 19
K_HF, 25	K_C02, 20
K_HP04, 26	K_H2P04, 21
K_HS04, 27	K_H2S, 22
K_NH4, 28	K_H3P04, 23
K_SiOH4, 29	K_HC03, 24
	K_HF, 25
K_SiOOH3, 30 K_W, 31	K_HP04, 26
Ksp_aragonite, 18	K_HS04, 27
Ksp_calcite, 19	K_NH4, 28
•	K_SiOH4, 29
length.aquaenv, 32 MeanMolecularMass, 32	K_Si00H3, 30
	K_W, 31
merge.aquaenv, 33	Ksp_aragonite, 18
PhysChemConst, 33	Ksp_calcite, 19
plot.aquaenv, 34	length.aquaenv, 32
sample_dickson1981, 39	Teligili. aquaeliv, 32
sample_dickson2007,40	MeanMolecularMass, 32
TAfit, 40	merge.aquaenv, 33
Technicals, 47	9 1 /
titration, 48	PhysChemConst, 33
watdepth, 50	plot.aquaenv, 34
* package	1 1 1 1001 30
AquaEnv_package, 8	sample_dickson1981,39

INDEX 53

```
sample_dickson2007, 40

TAfit, 40
 Technicals, 47
 titration, 48

watdepth, 50
```