G.H. RAISONI COLLEGE OF ENGINEERING
2020-2021 EVEN TERM
CAE-1 EXAMINATION SUMMER -2021
CONLINE TERM)
DEPARTMENT: ARTIFICIAL INTELLIGENCE
SEMISEC: 4th A
SUBJECT: MLA DATE:
ROLL NO: A-158
NAME & SHIVAM TAWARI
REG NO % 2019 APTE +117028
Bayes Theorem is a method to
determine conditional probabilities,
the probability of one event
occuring given that another event
has already occured. Thus,
nos diliconal oralactilla a
conditional probabilities are a must
in determining accurate predictions
and probabilities in Machine
Leaving.
P(A B) = P(B A) P(A)
P(B)

B.no. 1 Haway

(03.

Probablity that man speaks the Awort Bobablity that man volies = 1 Probablish of getting a 4= 1 Psobablity of not getting a to 4 = 5 Applying Bayes Theorem, $\frac{1}{6} \times \frac{2}{3} + \frac{5}{6} \times \frac{1}{3}$ $\frac{1}{6} \times \frac{2}{3} + \frac{5}{6} \times \frac{1}{3}$ $\frac{1}{6} \times \frac{2}{3} + \frac{5}{6} \times \frac{1}{3}$ $\frac{1}{6} \times \frac{2}{3} + \frac{5}{6} \times \frac{1}{3}$

Pa. 20. 2) Hours

b-_ Principal Component Analysi's is an undoor supervised, non-parametric statistical technique primarily used for dimensionality reduction in machine learning. Given data, <u>×</u> 4 5.5 8.3 3.2 5.2 6,0 3.4 7.4 1.6 5.1 4.8 flost step is to calculate mean g each column. x = 6.7 + 4 + 8.3 + 5.2 + 7.4 +9.1 +7 6.81

A 10. 03

Noset step is to calculate corrariance materix of centered matrix c

$$Cov(21,8) = \sum_{i=1}^{\infty} (2i - \sum_{i=1}^{\infty}) \times (4i - \frac{1}{3})$$

$$= \frac{3}{2} (26 - 6.81) \times (36 - 5.18)$$

7 Ryno @ Dir.

17

Pg.no. & Hom

Finally, we calculate the eigen--decomposition of the constitute matrix. $(A - \lambda I)v = 0$ $(A - \lambda I) = 0$ $A = \lambda I = \begin{bmatrix} 3.068 & -1.136 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \end{bmatrix}$ $-\begin{bmatrix} 3.658-\lambda & -1.136 \\ -1.136 & 2.958-\lambda \end{bmatrix}$ $|0 - \lambda T| = (3.058 - \lambda) (-2.958 - \lambda)$ - (-1.136) (-1.136)=0 Johing above egn.
we get (eigen values): X; - 4.145 & 2 = 1.876 Putting à in eigende composition que. Pg.no.6

10.70 m

Distance Calculation:

¥		P					
	AL	A2 1	di	d2	03	dusted	
	6.8	12 .6	4.0	1.1	5.9	2	
	0.8	9.8	3.0	7.4	10.2	1	
	1.2	11,6	3.1	66	8.5	1	
	2.8	9.6	1.8	S. 6	9.5		
	3.8	9.9	0.0	4.6	8.9	1	
	4.4	6.5	3.5	4.4	12.1	1	
	4.8	1.1	8.4	4-8	7775	Ą	
_	6.0	19-9	1.1	6.0	1.4	3	
	6.2	18.5	19.9	6.2	0.0	3 ^	
	17.6	17.4	8.9	7.6	8.)	3	
	7.8	12.2	8.4	7.8	6.5	2	
	6.6	7.7	4.6	6.6	10.8	1	
_	8:2	4.5	7.0	8-1	14.1	1	
-	જુ. _ધ	6.9	8-7	8.4	11.8	2	
	9.6	3.4	8-3	6.8	15.4	1	
_	1 7 %	11.1	15.9	12.1	18.1	2	
							7

Calculation of new centroid ? Objects ! New s Coursopy 18 4.6 7.1 70.7 8.7 6.6 18.6 Con Christer after seasond iseration Centracid Aerised Contraids · A2 5.6 8.1 7.1 12:0 6.6 18.6 03

Oxer By no. 9