TEA013 – Matemática Aplicada II

Nelson Luís Dias

1 de setembro de 2024

1 Objetivos Didáticos

A Disciplina TEA013 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos aanalíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, espaços vetoriais normados, séries de Fourier e transformadas de Fourier, assim como diversas técnicas numéricas e analíticas de solução de equações diferenciais parciais. Essas técnicas são ilustradas com problemas em Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, enfatizando-se a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

2 Unidades Didáticas

1	Solução numérica de equações diferenciais parciais	
2	Transformada de Laplace	
3	Análise linear, sistemas lineares em Engenharia	
4	Séries e Transformadas de Fourier	
5	Teoria de Distribuições. Funções de Green e Identidades de Green em Engenharia: Hidrógrafa Unitária Instanânea, Problemas de Dispersão de Poluentes.	
6	Teoria de Sturm-Liouville e algumas funções especiais adicionais (Legendre, Laguerre, Hermite). Importância da teoria no método de separação de variáveis para equações diferenciais parciais.	
7	Equações Diferenciais Parciais: problemas lineares e não-lineares em escoamentos na at- mosfera, nos oceanos, em rios e no solo, e problemas de dispersão de poluentes. Classi- ficação e o método das características. Solução por separação de variáveis, transformadas integrais e transformada de Boltzmann.	

3 Programa

Aula	Data	Conteúdo Previsto	Conteúdo Realizado
1	Seg 02 Set	Introdução ao Curso. Revisão de Ferramentas Computacionais.	
2	Qua 04 Set	Diferenças finitas: método explícito para a equação de advecção. Fracasso do método. Explicação: instabilidade numérica. Análise de estabilidade de von Neumann.	
3	Sex 06 Set	Esquemas numéricos para advecção: Upwind. Esquema explícito. Condição de estabilidade. Difusão pura.	
4	Seg 09 Set	Esquema implícito: programação matricial e slicing com Numpy. Difusão pura.	
5	Qua 11 Set	Crank-Nicholson. A equação de difusão-advecção. Introdução ao método ADI.	
6	Sex 13 Set	ADI. Condições de contorno.	
7	Seg 16 Set	Transformada de Laplace: Definição e Cálculo.	
8	Qua 18 Set	Transformada de Laplace: Convolução. Transformada de Laplace: Truques adicionais.	
9	Sex 20 Set	Inversão de Transformadas de Laplace.	
10	Seg 23 Set	A delta de Dirac.	
11	Qua 25 Set	O Cálculo com Distribuições.	
12	Sex 27 Set	P1	
13	Seg 30 Set	Distribuições: resultados adicionais e aplicações.	
14	Qua 02 Out	Espaços Normados. O Produto interno.	
15	Sex 04 Out	Desigualdade de Schwarz e aplicações.	
16	Seg 07 Out	Espaços vetoriais de dimensão infinita. Séries de Fourier: Conceitos gerais e cálculo dos termos complexos.	
17	Qua 09 Out	Série de Fourier trignométrica. Extensões par e ímpar.	
18	Sex 11 Out	Desigualdade de Bessel; Igualdade de Parseval.	
19	Seg 14 Out	Mínimos quadrados e estatística.	
20	Qua 16 Out	Transformada de Fourier e Teorema da Inversão.	
21	Sex 18 Out	Cálculo de transformadas.	
22	Seg 21 Out	Linearidade, derivadas, Teorema da Convolução.	
23	Qua 23 Out	Semana de Engenharia Ambiental.	
24	Sex 25 Out	SIEPE	
25	Seg 28 Out	SIEPE	
26	Qua 30 Out	SIEPE	
27	Sex 01 Nov	P2	
28	Seg 04 Nov	Teorema de Parseval. Aplicações adicionais.	
29	Qua 06 Nov	Operador auto-adjunto. Matriz Adjunta. Operadores diferenciais adjuntos.	
30	Sex 08 Nov	Funções de Green I.	
31	Seg 11 Nov	Funções de Green II.	
32	Qua 13 Nov	Teoria de flambagem. Teoria de Sturm-Liouville.	
33	Sex 15 Nov	Feriado: Proclamação da República.	
34	Seg 18 Nov	Teoria de Sturm-Liouville: aplicações.	
35	Qua 20 Nov	Feriado: Dia Nacional de Zumbi e da Consciência Negra.	
36	Sex 22 Nov	Equações diferenciais parciais: Introdução. Método das características.	
37	Seg 25 Nov	Método das características: aplicações.	
38	Qua 27 Nov	Classificação de EDPs.	
39	Sex 29 Nov	Separação de variáveis: problemas parabólicos.	
40	Seg 02 Dez	Separação de variáveis: problemas elíticos.	
41	Qua 04 Dez	Separação de variáveis: problemas hiperbólicos.	
42	Sex 06 Dez	Revisão.	
43	Seg 09 Dez	Revisão.	
44	Qua 11 Dez	P3	
45	Sex 13 Dez	S	
46	Sex 20 Dez	F	

4 Avaliação

A disciplina é semestral. A avaliação da disciplina consiste de 3 exames parciais (P1, P2, P3), um exame substitutivo S e um exame final F. Os alunos poderão solicitar revisão de prova durante 3 dias úteis após a promulgação da nota. Após esse prazo, não será concedida nenhuma revisão. As soluções são disponibilizadas eletronicamente em https://www.nldias.github.io, juntamente com as notas.

A média parcial, P, será P=(P1+P2+P3)/3. O resultado parcial é: Alunos com P<40 estão reprovados. Alunos com $P\geq 70$ estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M=P. Alunos com $40\leq P<70$ farão o exame final F. Calcula-se a média final M=(P+F)/2. Alunos que obtiverem $M\geq 50$ estão aprovados. Alunos com M<50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima.

5 Biliografia Recomendada

- 1. Dias, N. L. (2024). *Uma Introdução aos Métodos Matemáticos para Engenharia*. Edição do Autor, 2ª edição
- 2. Butkov, E. (1988). Física Matemática. Guanabara Koogan, Rio de Janeiro
- 3. Greenberg, M. D. (1998). *Advanced Engineering Mathematics*. Prentice Hall, Upper Saddle River, New Jersey 07458, 2ª edição
- 4. Greenberg, M. D. (1978). Foundations of Applied Mathematics. Prentice-Hall, London
- 5. Boas, M. (1983). Mathematical Methods in the Physical Sciences. John wiley & Sons