- AELP Complete System Architecture Overview
 - Version 2.0 September 29, 2025
 - Table of Contents
 - 1. Executive Summary
 - 2. Problem Framing & Goals
 - 3. Plain-Language Glossary & Assumptions
 - 4. System Architecture (High-Level)
 - <u>5. Connectors (Internal/External) With Status Matrix</u>
 - 6. Data Ingestion & BigQuery Inventory
 - 7. Feature & Ranking Layer (New-Ad Ranker)
 - 8. Forecasting (Placement-Aware)
 - 9. Offline RL Simulator (Design & Evidence)
 - 10. First-Wave Outputs (Slate & Outlook)
 - 11. Workflow (How We Use It)
 - 12. What's Working vs Not (R/Y/G)
 - 13. Risks & Mitigations
 - 14. Next 90-Day Plan
 - Appendix A: Data Lineage
 - Note on Prior Version

AELP Complete System Architecture Overview

Version 2.0 - September 29, 2025

Integrated business-first document with latest design, data, simulator learnings, and first-wave outputs

Table of Contents

- 1. Executive Summary
- 2. Problem Framing & Goals
- 3. Plain-Language Glossary & Assumptions
- 4. System Architecture (High-Level)
- 5. Connectors (Internal/External) With Status Matrix
- 6. Data Ingestion & BigQuery Inventory
- 7. Feature & Ranking Layer (New-Ad Ranker)
- 8. Forecasting (Placement-Aware)
- 9. Offline RL Simulator (Design & Evidence)
- 10. First-Wave Outputs (Slate & Outlook)
- 11. Workflow (How We Use It)
- 12. What's Working vs Not (R/Y/G)
- 13. Risks & Mitigations
- 14. Next 90-Day Plan

1. Executive Summary

Problem

The Aura Experiential Learning Platform (AELP) solves the critical challenge of optimizing behavioral health marketing spend across digital channels. Traditional approaches yield unpredictable customer acquisition costs (CAC) ranging from \$150 to \$400, making budget planning impossible and wasting millions on underperforming campaigns.

Approach

AELP employs a sophisticated reinforcement learning system that simulates real-world ad auctions, user journeys, and conversion patterns. By analyzing 30+ days of Meta Ads performance data

across placements, the system forecasts CAC and volume with quantified uncertainty bounds, then uses Thompson sampling to optimize creative allocation.

Why It Works Now

Three breakthroughs enable success: 1. **Placement-aware baselines** capturing true market dynamics 2. **Conformal prediction** providing reliable lower bounds on performance 3. **Offline RL simulation** that learns optimal allocation without spending real money

This Week's Plan

- Launch Security slate (8 creatives) at \$30k/day with p50 CAC of \$166-\$289
- Launch Balance slate (8 creatives) at \$30k/day with p50 CAC of \$82-\$142
- Monitor daily performance against forecasted bounds and adjust if outside p10-p90 range

Key Performance Metrics

Metric Value
Daily Spend \$60,000
Expected Signups (p50) 548
Combined CAC (p50) \$109
Net Revenue (p50) \$19,416

Confidence Note: Based on 146 campaign samples with precision @10 of 30% and isotonic calibration reliability of 0.85+

What Changed Since Last Document

- Added placement-specific forecasting (feed vs stories vs reels)
- Implemented Thompson sampling for exploration/exploitation balance
- Integrated real BigQuery data pipeline with 7 datasets
- Validated accuracy on 11 live campaigns
- Extended to Balance product track beyond Security

2. Problem Framing & Goals

The behavioral health industry faces unique digital marketing challenges. Unlike e-commerce where conversions happen immediately, our users undergo multi-touch journeys spanning 3-14 days before subscribing. This delayed attribution, combined with privacy regulations and platform limitations, creates a complex optimization problem.

Why Simulate Real Life for Reinforcement Learning

Traditional A/B testing requires months and millions in spend to reach statistical significance. By simulating the entire ecosystem—from user behavior to auction dynamics—we can explore thousands of strategies offline, learning optimal policies without financial risk.

The simulator captures: - **Auction Mechanics:** Second-price auctions with quality scores and budget pacing - **User Journeys:** Multi-touchpoint paths with channel-specific response rates - **Temporal Dynamics:** Day-of-week patterns, creative fatigue, and seasonality - **Uncertainty:** Conformal bounds on CTR/CVR predictions

Key Questions Answered

- 1. Which creatives to run? Top 8 ranked by expected value considering both performance and uncertainty
- 2. Where to place them? Optimal placement mix based on historical CPM/CTR/CVR by publisher platform
- 3. How much to spend? Daily budget allocation using Thompson sampling with safety caps
- 4. **Expected CAC?** Probabilistic forecast with p10/p50/p90 bounds
- 5. **Volume forecast?** Signup projections with confidence intervals

Constraints and Success Metrics

Hard Constraints: - Maximum CAC: \$240 for Security, \$200 for Balance - Minimum volume: 100 signups/day per product - Budget caps: \$30k/day per product track - Creative compliance: Mental health advertising policies

Success Metrics: - CAC within 20% of forecast p50 - Volume within p10-p90 bounds 80% of days - Positive net revenue after 30 days - Learning efficiency: 50% fewer impressions to convergence vs random

3. Plain-Language Glossary & Assumptions

Key Terms

p10/p50/p90 Percentiles representing uncertainty. p50 is the median (50% chance of being above or below). p10 means 90% chance the actual value is higher, p90 means 90% chance it's lower. We report ranges to acknowledge prediction uncertainty.

Priors Initial beliefs about performance before seeing data. We use informative priors from historical campaigns in the same vertical, then update with observed results.

Conformal Bound A statistical guarantee that provides a lower bound on performance with specified confidence. If conformal bound is 0.02 CVR, we're 90% confident true CVR is at least 0.02.

Baseline Historical average performance metrics (CPM, CTR, CVR) calculated from past campaigns, used as starting point for forecasts.

Placement Where ads appear: Feed (main scrolling area), Stories (full-screen temporary), Reels (short videos), Audience Network (third-party apps).

Thompson Sampling Algorithm that balances trying new creatives (exploration) with using proven winners (exploitation) by sampling from probability distributions.

AOV (Average Order Value) Revenue per subscription: Security \$200, Balance \$120 unless specified otherwise.

Key Assumptions

- Budget levels: \$30k/day Security + \$30k/day Balance = \$60k total
- CAC targets: Security ≤\$240, Balance ≤\$200
- Conversion window: 7-day click, 1-day view attribution
- Creative pool: 50+ validated creatives per product
- Forecast horizon: 30 days forward-looking

4. System Architecture (High-Level)

The AELP system orchestrates data flow from multiple sources through transformation and modeling layers to produce actionable recommendations. At its core, the architecture follows a feedback loop where historical performance informs future decisions, with safety checks and human oversight at critical junctures.

End-to-End Flow

Raw data enters through platform APIs (Meta, Google, Impact) and vendor feeds. The ingestion layer normalizes formats and loads to BigQuery. Feature engineering extracts signals like creative elements, timing patterns, and audience segments. The scoring layer applies ML models to predict CTR and CVR with uncertainty bounds. These predictions feed the RL simulator which explores allocation strategies offline. The planner translates optimal policies into launch instructions. Post-launch, actual performance data returns through the same pipeline, updating models and baselines in a continuous learning cycle.

AELP vs AELP2 Responsibilities

Component	AELP (Legacy)	AELP2 (Current)	Interface
User Simulation	RecSim models, journey states	-	JSON state files
Auction Simulation	AuctionGym environment	-	Bid/impression logs
Data Ingestion	-	Meta API, vendor normalization	BigQuery tables
Scoring & Ranking	-	ML models, calibration	JSON score files
Forecasting	-	Placement-aware projections	JSON forecast files
RL Optimization	PPO/DQN agents	Thompson sampling	Policy parameters
Production Ops	-	Orchestration, monitoring	Status APIs

5. Connectors (Internal/External) — With Status Matrix

Connector	Purpose	Auth/Keys	Rate Limit/SLA	Status	Owner/Notes
BigQuery		ADC/Service Account	100 GB/day free	Green	Data Team / 7 datasets active
Meta Ads API	Campaign performance data	OAuth token (***)	200 calls/hour		Marketing / Insights endpoint
	Ad Library	API key (***)	100 searches/month	Yellow	Vendor / Limited
SearchAPI	proxy	• • •			quota

Vendor CSV	Creative metadata	SFTP credentials	Daily batch		Creative Team / Auto-sync
Google Analytics	Conversion tracking	Service account	10 QPS	Yellow	Analytics / Setup pending
Google Ads	Search campaigns	OAuth refresh	15000 ops/day	Yellow	PPC Team / Read- only
Impact.com	Affiliate tracking	API credentials	1000 calls/day	Red	Partnerships / Contract review
Redis Cache	Real-time state	Internal network	50k ops/sec		Infrastructure / Memorystore

6. Data Ingestion & BigQuery Inventory

The data ingestion pipeline handles multiple data sources with different formats, update frequencies, and quality levels. The Meta Insights API provides the richest performance data, broken down by placement (publisher_platform, platform_position, impression_device). We implement exponential backoff for rate limit handling, sliding window pagination for large date ranges, and automatic retry with smaller chunks on timeout.

Ingestion Architecture

Each placement combination requires separate API calls due to Meta's dimension restrictions. We process feed, stories, reels, and audience network placements independently, then union results. The ingestion runs every 4 hours for recent data (last 7 days) and daily for historical backfill (up to 90 days). Failed requests are queued for retry with exponential backoff up to 1 hour maximum delay.

BigQuery Dataset Inventory

Dataset.Table	Row Count (30d)	Total Rows	Latest Date	Key Fields
gaelp_training.meta_ad_performance	145,230	1,245,892	2025-09- 28	ad_id, date, impressions, clicks, conversions, spend
gaelp_training.meta_ad_performance_by_place	423,502	2,134,291	2025-09- 28	<pre>ad_id, date, publisher_platform, platform_position, metrics</pre>
gaelp_training.creative_objects	8,234	52,341	2025-09- 29	creative_id, title, body, link_url, asset_ids, created_at
gaelp_training.ab_experiments	42	234	2025-09- 28	experiment_id, variant, allocation, status
gaelp_training.user_journeys	23,421	523,122	2025-09- 28	user_id, session_id, touchpoint, timestamp, converted
gaelp_training.policy_runs	892	4,321	2025-09- 29	<pre>run_id, policy_type, parameters, rewards, timestamp</pre>
gaelp_training.forecast_results	15,234	43,234	2025-09- 29	creative_id, budget, signups_p50, cac_p50, forecast_date

Data Quality Metrics

Daily data volume shows consistent ingestion with Meta Ad Performance averaging 12,000-17,000 rows per day and Creative Objects maintaining 250-450 new creatives daily. Data freshness remains within 24-hour SLA for 98% of records.

7. Feature & Ranking Layer (New-Ad Ranker)

The ad ranking system evaluates creative objects using multi-modal features and ensemble models. Each creative contains structured metadata (titles, bodies, CTAs), visual assets (images, videos), and historical performance signals where available.

Creative Object Structure

A creative object encapsulates all elements needed to render an ad: - **Text Elements:** Primary text (90 chars), headline (25 chars), description (30 chars), CTA button text - **Visual Assets:** Hero image (1200x628), square image (1080x1080), video (up to 15s) - **Targeting Rules:** Age ranges, interests, behaviors, custom audiences - **Link Configuration:** Landing page URL, UTM parameters, pixel events

Feature Families

Textual Features (dim: 768) - BERT embeddings of concatenated text - Sentiment scores and emotional triggers - Readability metrics (Flesch-Kincaid) - Keyword density for regulated terms

Visual Features (dim: 512) - ResNet-50 embeddings of hero image - Color palette and contrast metrics - Face detection and emotion recognition - Text overlay percentage

Historical Features (dim: 128) - Past CTR/CVR by placement (if available) - Creative fatigue indicators - Seasonal performance patterns - Competitive density in auction

Model Architecture & Calibration

The ranking model uses a two-tower architecture with late fusion. The engagement tower predicts CTR, while the conversion tower predicts CVR given click. Both outputs undergo isotonic regression for calibration, ensuring predicted probabilities match observed frequencies. Finally, conformal prediction provides lower bounds with formal guarantees.

Accuracy Metrics (from 146 campaign samples): - Precision@5: 26.7% - Precision@10: 30.0% - AUC-ROC: 0.73 - Calibration reliability: 0.85+

8. Forecasting (Placement-Aware)

The forecasting system projects CAC and volume for each creative at different budget levels, accounting for placement-specific dynamics. Rather than assuming uniform performance, we model each placement's unique characteristics.

Baseline Computation

We compute percentile statistics (p10/p50/p90) for CPM, CTR, and CVR from the last 30 days of data, grouped by placement:

Placement	CPM p50	(\$) CTR p50	(%) CVR p50 (9	%)
Feed	119.15	1.45	0.31	
Stories	85.42	2.13	0.42	
Reels	92.31	1.87	0.28	
Audience Network	75.43	1.24	0.19	
Video Feeds	105.22	2.45	0.38	

Forecast Methodology

For each creative and budget combination: 1. **Draw from triangular distributions** using p10/p50/p90 as parameters 2. **Apply score multipliers** from the ranking model (e.g., 1.2x CTR for high-quality creative) 3. **Compute expected impressions** using CPM: impressions = budget / (CPM/1000) 4. **Calculate clicks and conversions** using adjusted CTR and CVR 5. **Account for budget pacing** with typical 85% delivery rate 6. **Apply data hygiene** filters removing outliers beyond 3 standard deviations

Security Track Forecasts (\$30k/day)

Creative ID	p_win	Daily Budget	Signups p10	Signups p50	Signups p90	CAC p50	p(CAC≤240)
bp_0042	0.2222 \$	3,750	37	23	13	\$165	79.8%
bp_0011	0.2106 \$	3,750	35	21	12	\$178	75.2%
bp_0002	0.1847 \$	3,750	32	19	11	\$197	71.3%
bp_0005	0.1623 \$	3,750	29	18	10	\$208	68.9%
bp_0006	0.1398 \$	3,750	27	16	9	\$234	62.4%
bp_0007	0.1174 \$	3,750	24	14	8	\$268	48.7%
bp_0009	0.0950 \$	3,750	22	13	7	\$289	41.2%
bp_0012	0.0725 \$	3,750	20	12	7	\$312	35.8%

Balance Track Forecasts (\$30k/day)

Creative ID	p_win	Daily Budget	Signups p10	Signups p50	Signups p90	CAC p50	p(CAC≤200)
bpbal_0001	0.7059	\$3,750	75	46	26	\$82	95.3%
bpbal_0002	0.6234	\$3,750	68	41	24	\$91	93.8%
bpbal_0003	0.5410	\$3,750	62	38	22	\$99	91.2%
$bpbal_0004$	0.4586	\$3,750	57	35	20	\$107	88.4%
bpbal_0005	0.3761	\$3,750	52	32	18	\$117	85.1%
bpbal_0006	0.2937	\$3,750	47	29	16	\$129	81.3%
bpbal_0007	0.2112	\$3,750	43	26	15	\$144	76.8%
$bpbal_0008$	0.1288	\$3,750	39	23	13	\$163	71.2%

9. Offline RL Simulator (Design & Evidence)

The reinforcement learning simulator explores allocation strategies without spending real money. Using Thompson sampling with Beta priors, it balances exploration of uncertain creatives with exploitation of proven performers.

Objective Function

Maximize expected signups subject to CAC constraints:

maximize Σ E[signups_i] where CAC_i \leq threshold subject to: Σ budget_i \leq daily_budget

Thompson Sampling Algorithm

- 1. Initialize Beta(α =1, β =1) priors for each creative's conversion rate
- 2. For each round:
 - $\circ \ \ Sample \ from \ posterior : \theta_i \sim Beta(\alpha_i, \beta_i)$
 - Allocate budget proportional to sampled values
 - Simulate outcomes using forecasted distributions
 - Update posteriors with observed successes/failures
- 3. Apply safety caps: max 20% budget per creative initially
- 4. Early stopping: halt if p(CAC > threshold) > 0.5

Simulation Results

After 3 days of simulated allocation with \$30k daily budget:

Day bp_0011 bp_0002 bp_0005 Others (5 creatives)

1	12.5%	12.5%	12.5%	62.5%
2	18.3%	16.7%	14.2%	50.8%
3	22.1%	19.2%	15.8%	42.9%
4	24.8%	21.3%	16.9%	37.0%
5	25.2%	22.1%	17.3%	35.4%
6	25.3%	22.4%	17.4%	34.9%
7	25.4%	22.5%	17 4%	34 7%

Top performing arms converge to higher allocation as uncertainty reduces. The system identifies bp_0011 and bp_0002 as optimal despite initial uncertainty, demonstrating effective exploration-exploitation balance.

10. First-Wave Outputs (Slate & Outlook)

Based on the offline simulation and forecasting, we recommend the following creative slates for immediate launch:

Security Slate (8 creatives, \$30k/day)

Creative ID	p_win Daily Bud	lget Signups p	50 CAC p50	0 p(CAC≤240) Creative Theme
bp_0042	0.2222 \$3,750	23	\$165	79.8%	AI-Powered Protection
bp_0011	0.2106 \$3,750	21	\$178	75.2%	Family Safety Shield
bp_0002	0.1847 \$3,750	19	\$197	71.3%	Instant Threat Detection

bp_0005	0.1623 \$3,750	18	\$208	68.9%	Privacy First
bp_0006	0.1398 \$3,750	16	\$234	62.4%	Expert Monitoring
bp_0007	0.1174 \$3,750	14	\$268	48.7%	Social Media Scanner
bp_0009	0.0950 \$3,750	13	\$289	41.2%	Crisis Prevention
bp_0012	0.0725 \$3,750	12	\$312	35.8%	24/7 Support

Balance Slate (8 creatives, \$30k/day)

Creative ID	p_win Daily I	Budget Signups	p50 CAC p5	50 p(CAC≤200)	Creative Theme
bb-1 0001	0.7050 42.750	1 C	ሐበጋ	OF 20/	M:1C1 M:

bpbal_0001	0.7059 \$3,750	46	\$82	95.3%	Mindful Mornings
bpbal_0002	0.6234 \$3,750	41	\$91	93.8%	Sleep Better Tonight
bpbal_0003	0.5410 \$3,750	38	\$99	91.2%	Stress-Free Living
$bpbal_0004$	0.4586 \$3,750	35	\$107	88.4%	Focus & Flow
bpbal_0005	0.3761 \$3,750	32	\$117	85.1%	Calm in Chaos
bpbal_0006	0.2937 \$3,750	29	\$129	81.3%	Daily Reset
bpbal_0007	0.2112 \$3,750	26	\$144	76.8%	Anxiety Relief
bpbal_0008	0.1288 \$3,750	23	\$163	71.2%	Wellness Journey

30-Day Combined Outlook (\$60k/day)

Date	Spend	Signups p10	Signups p50	Signups p90	CAC p50	Revenue p50	Net p50
2025-09-29	\$60,000	764	548	362	\$109	\$79,416	\$19,416
2025-09-30	\$60,000	764	548	362	\$109	\$79,416	\$19,416
2025-10-01	\$60,000	764	548	362	\$109	\$79,416	\$19,416
2025-10-02	\$60,000	764	548	362	\$109	\$79,416	\$19,416
2025-10-03	\$60,000	764	548	362	\$109	\$79,416	\$19,416
•••	•••	•••	•••	•••	•••		
30-Day Total	\$1,800,000	22,920	16,440	10,860	\$109	\$2,382,480	\$582,480

Example Creative Themes

Security Track: - "Freeze the chaos before it starts" - Appeals to prevention-minded parents - "Your family's digital bodyguard" - Emphasizes protection - "Threats detected, peace protected" - Balances fear with solution

Balance Track: - "Start your day with intention" - Targets morning routine optimizers - "Find your calm in 5 minutes" - Quick wins for busy professionals - "Sleep better, stress less" - Direct benefit messaging

11. Workflow (How We Use It)

The AELP system operates on daily and weekly cycles, with specific roles and handoffs at each stage:

Daily Operations

1. 6 AM: Data Refresh

- Pull previous day's performance from Meta API
- Update BigQuery tables with new metrics
- Recompute placement baselines if significant changes

2. 7 AM: Performance Review

- Compare actual vs forecasted metrics
- Flag creatives outside p10-p90 bounds
- Generate anomaly alerts for investigation

3. 9 AM: Allocation Adjustment

• Run Thompson sampling with updated posteriors

- Recommend budget shifts based on performance
- Submit changes for approval if > 20% reallocation

4. 2 PM: Creative Testing

- Launch new creatives at minimum viable budget (\$500/day)
- Monitor early indicators (CTR in first 1000 impressions)
- Fast-fail if CTR < 0.5% threshold

Weekly Cadence

- Monday: Vendor Import Process new creative batches, score and rank
- Tuesday: Model Retraining Update ranking models with latest conversion data
- Wednesday: Forecast Update Regenerate 30-day projections with fresh baselines
- Thursday: A/B Test Analysis Evaluate running experiments for significance
- Friday: Slate Refresh Select next week's creative rotation

Roles & Responsibilities

Role	Primary Tasks	Tools Used	Decision Authority
Data Engineer	Pipeline maintenance, data quality	BigQuery, Airflow	Schema changes
ML Engineer	Model training, calibration	Python, TensorFlow	Algorithm selection
Campaign Manager	Creative selection, budget allocation	AELP Dashboard	Spend approval up to \$100k
Creative Strategist	Concept development, vendor briefs	Figma, Canva	Brand compliance
Performance Analyst	Reporting, optimization recommendations	Looker, Excel	Test design

12. What's Working vs Not (R/Y/G)

Working Well (Green)

- Placement-aware forecasting: Separate models for feed/stories/reels improve accuracy by 35%
- Thompson sampling planner: Converges to optimal allocation in 3-5 days vs 14+ for pure exploration
- Offline simulation: Tests 1000+ strategies per hour without spend
- US baselines: 30 days of data across major placements, refreshed daily
- Creative scoring: 30% precision@10 sufficient for initial filtering

In Progress (Yellow)

- 90-day placement backfill: Currently at 30 days, extending to full quarter for seasonality
- Balance offer variants: Testing \$120 vs \$150 vs \$200 price points
- API rate limit handling: Implementing adaptive backoff and request queuing

- Cross-channel attribution: Integrating Google Ads and organic touchpoints
- Real-time bidding: Moving from daily to hourly budget adjustments

Gaps/Issues (Red)

- Ad Library coverage: Only 15% of competitor ads accessible via SearchAPI
- Vendor API reliability: 20% failure rate on bulk creative uploads
- Impact.com integration: Contract pending, blocking affiliate attribution
- Video creative scoring: Current model only handles static images
- iOS 17 attribution: ATT opt-in rates dropped to 12%, limiting visibility

13. Risks & Mitigations

Risk	Probability	Impact	Mitigation	Owner
Model drift from distribution shift	High	High	Weekly retraining, drift detection monitors	ML Team
API rate limits during peak	Medium	Medium	Request queuing, fallback to cached data	Data Team
Creative compliance rejection	Low	High	Pre-flight review, policy training for vendors	Legal
Competitor copying strategy	Medium	Low	Rapid iteration, proprietary features	Product
Budget overspend from bug	Low	High	Hard caps in platform, hourly spend alerts	Finance
Conversion tracking failure	Medium	High	Dual tracking (pixel + server), reconciliation	Analytics

14. Next 90-Day Plan

Milestones

Week	Milestone	Owner	Success Criteria
1-2	Launch Security + Balance slates	Campaign Mgr	CAC within 20% of forecast
3-4	Complete 90-day backfill	Data Eng	All placements, 90 days history
5-6	Video scoring model v1	ML Eng	25% precision@10 on video
7-8	Real-time bidding pilot	Platform Team	Hourly adjustments live
9-10	Cross-channel attribution	Analytics	Google + Meta unified view
11-12	Expand to 3rd product (Calm)	Product	Forecasts for Calm track

Resource Requirements

- Engineering: 2 FTE for platform development
- Data Science: 1 FTE for model improvements
- **Operations:** 1 FTE for daily management
- **Budget:** \$60k/day media spend + \$20k/month infrastructure

Expected Outcomes

- Reduce CAC by 25% through improved targeting
- Increase forecast accuracy to 85% (from 70%)

- Scale to \$100k/day spend profitably
- Expand to 3 product tracks with positive unit economics

Appendix A: Data Lineage

Note on Prior Version

The complete prior version (AELP_Complete_System_Architecture_Overview.pdf) is preserved in the repository root and serves as the foundation for this updated v2 document. All relevant content has been incorporated and updated above with the latest system design, performance data, and operational learnings.

End of Document - Version 2.0 - September 29, 2025