Full-rate STLC for Four Receive Antennas - Notes

radim.zedka@vut.cz

March 2022

1 Problem Description

Formula (6) in [1] is given by

$$\xi = \rho \frac{\left(\sum_{p=0}^{M-1} \gamma_p \pm 2\mathcal{R}\{\epsilon_p\}\right)^2}{4\sum_{p'=0}^{M-1} \gamma_{p'}},\tag{1}$$

where

$$\gamma_p = \sum_{q=0}^{3} |h_{p,q}|^2, \tag{2}$$

and

$$\epsilon_p = h_{p,0} h_{p,2}^* + h_{p,1} h_{p,3}^*. \tag{3}$$

Each complex channel gain $h_{p,q}$ is composed of two i.i.d. normal variables $a_{p,q}, b_{p,q} \sim \mathcal{N}(0, 1/2)$ which relate to channel gain by $h_{p,q} = a_{p,q} + jb_{p,q}$, where $j = \sqrt{-1}$. Formula (2) then evolves into

$$\gamma_p = \sum_{q=0}^{3} |a_{p,q}|^2 + |b_{p,q}|^2, \tag{4}$$

and $\mathcal{R}\{\epsilon_p\}$ is expressed as

$$\mathcal{R}\left\{\epsilon_{p}\right\} = a_{p,0}a_{p,2} + b_{p,0}b_{p,2} + a_{p,1}a_{p,3} + b_{p,1}b_{p,3}.\tag{5}$$

Formula (1) may be expanded into purely real-valued form

$$\xi = \frac{\rho}{4} \frac{\left(\sum_{p=0}^{M-1} \sum_{q=0}^{3} |a_{p,q}|^2 + |b_{p,q}|^2 \pm 2\mathcal{R}\{\epsilon_p\}\right)^2}{\sum_{p'=0}^{M-1} \sum_{q=0}^{3} |a_{p',q}|^2 + |b_{p',q}|^2}.$$
 (6)

After Lemma 1 in [1] the receiver SNR is calculated via

$$\xi = \frac{\rho}{4} \sum_{p=0}^{M-1} \sum_{q=0}^{3} |a_{p,q}|^2 + |b_{p,q}|^2.$$
 (7)

2 MATLAB Simulation

In MATLAB I created a script which generates the normal-distributed variables $a_{p,q}$ and $b_{p,q}$ in vectors of 10^7 samples each. This way I calculate the histogram of formula (6) and I attempt to approximate it with Gamma distribution with PDF given by

$$f_{\Xi}(\xi) = \frac{\xi^{nM-1}e^{-\frac{\xi m}{2}}}{(2/m)^{nM} \cdot \Gamma(nM)} \quad \forall \quad \xi \in \langle 0, \infty \rangle.$$
 (8)

where n is related to the shape parameter and m to the Gamma scale parameter. Please note that for PDF approximations I set $\rho = 1$. As the error metric of the PDF approximation I used mean-squared-error defined as

$$J = \int \left(f_{\Xi}(\xi)' - f_{\Xi}(\xi) \right)^2 d\xi, \tag{9}$$

where $f_{\Xi}(\xi)'$ is the simulated data histogram and $f_{\Xi}(\xi)$ is the approximation.

Table 1: PDF fitting parameters of (6) at given M

M	m	n	J [dB]
1	1.530445	0.949676	-41.6985
2	1.574221	0.886598	-46.4452
4	1.596783	0.847111	-55.8000
8	1.600477	0.824861	-58.9625
16	1.606456	0.815408	-60.4560
32	1.610120	0.811129	-61.2368
64	1.608200	0.807196	-63.6193
128	1.613510	0.808271	-62.2914
256	1.612725	0.807231	-64.0791
512	1.610609	0.805685	-66.8909

Diversity gain of systems approximated by Gamma distribution is given by

$$\kappa = -\lim_{\rho \to \infty} \frac{d \log_{10}(\bar{\varepsilon}(\rho))}{d \log_{10}(\rho)} = nM, \tag{10}$$

where $\bar{\varepsilon}(\rho)$ is the average bit error rate at given ρ and n is the diversity gain coefficient. Table 1 then summarizes PDF approximation parameters n, m for several values of M.

Figures 1 to 5 I present the results for $M = \{1, 32, 64, 256, 512\}$ where formula (6) is fitted by (8) with m and n according to Table 1.

Figure 1: PDF of (6) approximated by (8) for M = 1.

3 Discussion

My MATLAB simulation attepts show that (6) is close to Gamma distribution with n=0.8 and m=1.6. The diversity gain is for Gamma distribution directly given by nM. Parameter n is decreasing with increasing value of M and it is approaching $n \sim 0.8$. I would be very grateful for your advice.

References

[1] S. -chan Lim and J. Joung, "Full-Rate Space-Time Line Code for Four Receive Antennas", IEEE wireless communications letters, pp. 1-1, 2021.

Figure 2: PDF of (6) approximated by (8) for M=32 .

Figure 3: PDF of (6) approximated by (8) for M=64 .

Figure 4: PDF of (6) approximated by (8) for M=256 .

Figure 5: PDF of (6) approximated by (8) for M=512 .