ZIXUN HUANG

huangzixun.com ♦ Extended CV→

(510)-714-6230 ♦ Berkeley, CA, United States

SUMMARY

Zixun Huang is a graduate student researcher in FHL Vive Center @UC Berkeley, works closely with Dr. Allen Y. Yang. Prior to this, he obtained his Bachelor of Architecture from Zhejiang University. His research interests focus on 3D Vision and Autonomous Fabrication.

EDUCATION

University of California, Berkelev

CA, United States

GPA: 4.0 (CS-related) / 4.0 | Master of Design in **Human-AI Interaction**

Dec. 2023 expected

- Relevant Courses: CS280 Computer Vision, CS282 Deep Neural Network, CS294-026 Computational Photography, CS294-196 GenAI & LLM, CS285 Reinforcement Learning, CS294-137 Immersive Computing
- Thesis: Universal AR-Enhanced Interface for ROS: Enabling Multi-Type Robot Control
- · Awards: MDes Distinguished Scholar Award; MIT Reality HACK 2023 Winner Spatial Audio Track

Zhejiang University

Zhejiang, China

GPA: 3.99 (Math-related) / 4.0 | Bachelor of Engineering in Architecture

Jun. 2020

· Activities: Co-Founded Robotic Fabrication Lab; Excellent in SRTP (Student Research Training Project); ZJU Merit-based Scholarship

PUBLICATIONS

- Huang, Z.*, Yao, K.*, Zhao, S. Z.*, Pan, C.*, Xu, T., Feng, W., & Yang, A. Y. (2023). Robust Digital-Twin Localization via An RGBD-based Transformer Network and A Comprehensive Evaluation on a Mobile Dataset. arXiv preprint arXiv:2309.13570.
- Zhuang, X.*, **Huang, Z.***, Zeng, W., & Caldas, L. (2023). MARL: Multi-scale Archetype Representation Learning for Urban Building Energy Modeling. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1565-1572).
- Xu, W., & **Huang, Z.** (2020). Robotic Fabrication of Sustainable Hybrid Formwork with Clay and Foam for Concrete Casting. In Congreso SIGraDi 2020. São Paulo: Blucher (Vol. 8, No. 4, pp. 377-383).
- Wang, S., Huang, K., **Huang, Z.**, Sodano, M., Xu, W., & Raspall, F. (2019). Fabrication of Topology Optimized Concrete Components Utilizing 3D Printed Clay Mould. In Proceedings of IASS Annual Symposia (Vol. 2019, No. 6, pp. 1-7).

RESEARCH EXPERIENCE

Lead Graduate Researcher, Open-Sourced AR SDK

Sep. 2022 - present

FHL Vive Center for Enhanced Reality, supervised by Dr. Allen Y. Yang

University of California, Berkeley

- Supervising over 5 EECS students to achieve a comprehensive digital-twin tracking dataset featuring moving robots and diverse depth sensors: Microsoft Azure Kinect, IPhone LiDAR, ZED Camera.
- Collaborating closely with the UI/UX and robotics teams to develop a universal AR interface on HoloLens for robot controlling.
- Led the development of DTTDNet: a 3D object localization algorithm; achieved **SOTA** accuracy on multiple datasets; conducted over 25 recorded ablation experiments. (code)
- Calibrated optical motion tracking system and camera system; collaborated to build a novel RGBD dataset specific to iPhone LiDAR with ARKit; Achieved over 13k frames' annotation using optical motion tracking system and programmed Python &C++ toolkits.

Student Researcher

May. 2023 - Sep. 2023

XR Lab - Immersive Design Student Club

- University of California, Berkeley
- Co-First authored a VQAE-based method for residential buildings' latent embedding and clustering.
 Reduced the computation time by 133.7 times for NYC's residential energy consumption estimation.

Teaching And Research Assistant, Robot Laboratory Lead

May. 2019 - Jun. 2020

College of Civil Engineering and Architecture

Zhejiang University

- Assisted teaching in undergrad courses: (1) Architectural Robotics (2) Computational Design & Robotic Fabrication.
- Developed a rapid 3D clay printing system using high-torque stepper motors, Arduino, C programming, Grasshopper, KUKA Robots, and Rhino3D; enabled robotic printing on quadric surfaces.

WORKING EXPERIENCE

Robotics Engineer Intern

Jan. 2019 - May. 2019

RoboticPlus.AI

Shanghai, China

- Designed and fabricated the **China's first** all-carbon fiber pavilion (*press:* archdaily, domus, gooood); Achieved the 4 meters high and 3.8 meters wide entire structure weaved with a continuous line of carbon-fiber. Density of the structure is controlled at 18KG per cubic meter and the bearing capacity of 400KG is achieved. (animation, video, poster)
- Collaborated with architects on a carbon-fiber weaving and resin curing system using KUKA Robots and programmable 3D modeling.
- Programmed the robotic weaving path and ran the simulation for the robotic construction on 40% modules of the pavilion.