

ECUACIONES DIOFANTINAS

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(Aula 26a) 12.0CTUBRE.2023

Ecuaciones Diofantinas

Estudiamos algunas ecuaciones diofantinas.

Ternas Pitagóricas:

Las triplas de números no negativos (x, y, z) que satisfacen la ecuación $x^2 + y^2 = z^2$, se llaman **triplas** o **ternas pitagóricas**.

De entrada, observe que la ecuación $x^2+y^2=z^2$ admite soluciones **triviales** de la forma $(\pm x, 0, \pm x)$ y $(0, \pm y, \pm y)$, para cualesquiera $x, y \in \mathbb{Z}$.

Suponga que $x^2 + y^2 = z^2$, con x, y, z > o. Podemos asumir que z, y, z son primos relativos entre sí, pues si d = (x, y, z) entonces x = dx', y = dy', z = dz', entonces

$$x^2 + y^2 = z^2 \ \Rightarrow \ (dx')^2 + (dy')^2 = (dz')^2 \ \Rightarrow \ d^2\big((x')^2 + (y')^2\big) = d^2(z')^2 \ \Rightarrow \ (x')^2 + (y')^2 = (z')^2.$$

Una terna pitagórica cuyos términos son primos relativos entre sí se llama una **terna pitagórica primitiva**. Nos limitamos a buscar ternas primitivas.

Observe que x, y no pueden ser ambos pares, pues si $2 \mid x, 2 \mid y \Rightarrow 2 \mid z$.

Por otro lado, recordemos que módulo 4, todo par $a \in \mathbb{Z}$ satisface $a^2 \equiv 0 \mod 4$, mientras que todo impar satisface $a^2 \equiv 1 \pmod 4$. Así, los cuadrados son congruentes a $0 \circ 1 \pmod 4$.

Si x,y fuesen ambos impares, tendríamos $z^2 = x^2 + y^2 \equiv 1 + 1 \equiv 2 \pmod{4}$, lo cual es imposible. Entonces uno es par, el otro impar. Sin pérdida vamos a suponer x impar, y par $\Rightarrow z$ es impar.

Como $x^2=z^2-y^2=(z-y)(z+y)$, y los términos z+y, z-y son ambos pares, podemos escribir $x=2a, \quad z+y=2b, \quad z-y=2c, \quad \text{para ciertos } a,b,c\in\mathbb{Z}.$

Observe en particular que z = b + c, y = b - c.

De ahí que $4a^2=(2a)^2=x^2=(z+y)(z-y)=(2b)(2c)=4bc \Rightarrow a^2=bc$. Afirmamos que (b,c)=1. Caso contrario, si p es un primo tal que $p\mid b$ y $p\mid c$, entonces $p\mid b+c=z$ y $p\mid b-c=y$, lo que implica que $p\mid z^2-y^2=x^2 \Rightarrow p\mid x$, y así $(x,y,z)\geq p$, contrario al supuesto inicial.

Sea $a=p_1^{k_1}\cdots p_r^{k_r}$ la factoración en primos de a. Entonces $a^2=p_1^{2k_1}\cdots p_r^{2k_r}$ y todos estos primos dividen al producto bc. Siendo (b,c)=1, entonces necesariamente estos primos se particionan en dos grupos: (los que dividen a b y los que dividen a c), y obtenemos $b=p_1^{2k_1}\cdots p_m^{2k_m}$ y $c=p_{m+1}^{2k_{m+1}}\cdots p_r^{2k_r}$. Portanto, b y c son cuadrados perfectos.

Entonces $b = v^2$, $c = u^2$. Ambos u, v son impares y (u, v) = 1, con u < v. Luego $z + y = v^2$, $z - y = u^2$, y $x^2 = u^2v^2$. Así, obtenemos la parametrización

$$x = uv,$$
 $y = \frac{v^2 - u^2}{2},$ $z = \frac{v^2 + u^2}{2}.$

En particular,
$$x^2 + y^2 = u^2 v^2 + \left(\frac{v^2 - u^2}{2}\right)^2 = u^2 v^2 + \frac{v^4 - 2u^2 v^2 + u^4}{4} = \frac{v^4 + 2u^2 v^2 + u^4}{4} = \left(\frac{v^2 + u^2}{2}\right)^2 = z^2$$
.

Esto muestra la

Proposición

Las ternas pitagóricas primitivas (x, y, z) son de la forma -0.2cm

$$x = uv,$$
 $y = \frac{v^2 - u^2}{2},$ $z = \frac{v^2 + u^2}{2},$

Ejemplos:

и	V	Χ	у	Z
1	3	3	4	5
1	5	5	12	13
1	7	7	24	25
1	9	9	40	41
1	11	11	60	61
3	5	15	8	17
3	7	21	20	29
3	11	33	56	65
5	7	35	12	37
5 5	9	45	28	53
5	11	55	48	73
7	9	63	16	65
7	11	77	36	85

Ternas pitagóricas primitivas.

Puntos Racionales sobre el Círculo: Método de las cuerdas de DIOFANTO.

Una solución entera (a,b,c) de la ecuación $x^2+y^2=z^2$ implica que

$$\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1.$$

Entonces $X=\frac{a}{c}$, $Y=\frac{b}{c}$ es una solución racional de la ecuación $X^2+Y^2=1$. En otras palabras, $(X,Y)\in\mathbb{Q}^2$ es un punto racional sobre el círculo $S^1=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$.

Cualquier múltiplo de la tripla (ma, mb, mc) corresponde al mismo punto racional (X, Y), de modo que podemos restringirnos a buscar soluciones primitivas. DIOFANTO encontró las soluciones racionales de $X^2 + Y^2 = 1$ mediante un método algebraico, cuya geometría se ilustra en la Figura. Sean Q = (-1, 0), R un punto racional sobre S^1 , y ℓ la recta de Q a R.

 ℓ es una recta con pendiente racional, porque las coordenadas de R y Q son racionales. Si la pendiente es t, la ecuación de esta línea es

$$Y=t(X+1).$$

Recíprocamente, cualquier recta de esta forma, con pendiente racional t, se encuentra con el círculo S^1 en un punto racional $R \in \mathbb{Q}^2$. Esto se puede ver calculando las coordenadas de R: sustituyendo Y = t(X+1) en $X^2 + Y^2 = 1$, lo que resulta

$$X^2 + t^2(X+1)^2 = 1,$$
 \Rightarrow $(1+t^2)X^2 + 2t^2X + t^2 - 1 = 0.$

de donde obtenemos las soluciones X = -1 y $X = \frac{1-t^2}{1+t^2}$.

La solución X = -1 corresponde al punto Q, entonces la coordenada X en R es $\frac{1-t^2}{1+t^2}$, y por tanto la coordenada Y es $X = \frac{1}{1+t^2}$, $Y = \frac{2t}{1+t^2}$

$$Y = t(\frac{1-t^2}{1+t^2}+1) = \frac{2t}{1+t^2}.$$

Así, un punto racional arbitrario en el círculo unitario S¹ tiene coordenadas

$$R = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right), \qquad \text{con } t \in \mathbb{Q}.$$

Ahora podemos recuperar las fórmulas pitagóricas de Euclides.

Sea $t \in \mathbb{Q}$ un racional arbitrario, $t = \frac{u}{v}$ donde $u, v \in \mathbb{Z}$. El punto racional R se convierte en

$$R = \left(\frac{1 - u^2/v^2}{1 + u^2/v^2}, \frac{2u/v}{1 + u^2/v^2}\right) = \left(\frac{v^2 - u^2}{v^2 + u^2}, \frac{2uv}{v^2 + u^2}\right) = \left(\frac{\frac{v^2 - u^2}{2}}{\frac{v^2 + u^2}{2}}, \frac{uv}{\frac{v^2 + u^2}{2}}\right), \qquad \text{con } u, v \in \mathbb{Z},$$

y recuperamos las mismas ecuaciones paramétricas anteriores, y el punto racional

$$y = uv,$$
 $x = \frac{v^2 - u^2}{2},$ $z = \frac{v^2 + u^2}{2}.$ $R = \left(\frac{x}{z}, \frac{y}{z}\right).$

Teorema

Los puntos racionales sobre la circunferencia S¹ son todos puntos de la forma

$$(x,y)=(-1,0)$$
 y $(x,y)=\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right), \ con \ t\in\mathbb{Q}.$

Sumas de Cuadrados:

Vamos a probar un resultado debido a Legendre que proporciona un criterio para determinar cuándo una ecuación del tipo $ax^2 + by^2 + cz^2 = 0$ posee solución no nula, y que da una generalización natural de las ternas pitagóricas.

Teorema (Legendre)

Sean $a,b,c\in\mathbb{Z}$ enteros libres de cuadrados, primos relativos entre sí, dos a dos, y no todos del mismo signo. La ecuación $ax^2+by^2+cz^2=0$ posee solución no trivial $(x,y,z)\neq (0,0,0)$., con $x,y,z\in\mathbb{Z}$ si, y sólo si, -bc es un cuadrado módulo a, -ca es cuadrado módulo b, y-ab es cuadrado módulo c.

<u>Prueba</u>: (\Rightarrow) Mostramos que -bc es un cuadrado módulo a. De hecho, x, y y z son primos relativos dos a dos, pues si $d \mid x, d \mid y$, entonces $d^2 \mid x^2$, $d^2 \mid y^2 \Rightarrow d^2 \mid ax^2 + by^2 = -cz^2$ y como c es libre de cuadrados, $d^2 \mid cz^2 \Rightarrow d \mid z$. Al igual que en el caso de las ternas pitagóricas

Podemos escribir entonces x=dx',y=dy',z=dz', con $z',y',z'\in\mathbb{Z}$, y tenemos que

$$ax^{2} + by^{2} + cz^{2} = 0 \implies a(dx')^{2} + b(dy')^{2} + c(dz')^{2} = 0$$

 $\implies a(x')^{2} + b(y')^{2} + c(z')^{2} = 0,$

y podemos limitarnos a buscar soluciones primitivas (x, y, z).

Ahora, como $by^2 + cz^2 \equiv 0 \pmod{a}$, se sigue que $b^2y^2 \equiv -bcz^2 \pmod{a}$. Observe que z debe ser primo relativo con a, pues si p es un primo tal que $p \mid a$ y $p \mid z$, entonces $p \mid by^2$, y como (a,b)=1, entonces $p \mid y$. Esto contradice el hecho que y y z son primos relativos entre sí. Portanto, (a,z)=1. Luego, z es invertible módulo a y $(byz^{-1})^2 \equiv -bc \pmod{a}$. Esto muestra que -bc es residuo cuadrático módulo a.

Por la simetría de la ecuación, también se prueba que -ca es cuadrado módulo b, y que -ab es cuadrado módulo c.

(\Leftarrow) Vamos a suponer, sin pérdida de generalidad, que a < 0, b < 0 y c > 0. Por hipótesis, existe $u \in \mathbb{Z}$ tal que $-bc \equiv u^2 \pmod{a}$. Entonces, módulo a

$$ax^{2} + by^{2} + cz^{2} \equiv by^{2} + cz^{2} \equiv b^{-1}(b^{2}y^{2} + bcz^{2}) \equiv b^{-1}(b^{2}y^{2} - u^{2}z^{2})$$

$$\equiv b^{-1}(by - uz)(by + uz) \equiv (y - b^{-1}uz)(by + uz)$$

$$\equiv L_{1}(x, y, z) M_{1}(x, y, z) \pmod{a},$$

donde $L_1(x, y, z) = d_1x + e_1y + f_1z$, y $M_1(x, y, z) = g_1x + h_1y + i_1z$ son funciones lineales, con $d_1 = g_1 = 0$, $e_1 = 1$, $f_1 = -b^{-1}u$, $h_1 = b$ e $i_1 = u$. Similarmente.

$$ax^2 + by^2 + cz^2 \equiv L_2(x, y, z) M_2(x, y, z) \pmod{b},$$

 $ax^2 + by^2 + cz^2 \equiv L_3(x, y, z) M_3(x, y, z) \pmod{c},$

con $L_k(x,y,z)=d_kx+e_ky+f_kz$, y $M_k(x,y,z)=g_kx+h_ky+i_kz$, para k=2,3. Como a,b,c son primos relativos entre sí, por el Teorema Chino podemos hallar dos formas lineales L(x,y,z)=dx+ey+fz, y M(x,y,z)=gx+hy+iz, tales que

$$L \equiv L_1 \pmod{a},$$
 $L \equiv L_2 \pmod{b},$ $L \equiv L_3 \pmod{c},$ $M \equiv M_1 \pmod{a},$ $M \equiv M_2 \pmod{b},$ $M \equiv M_3 \pmod{c}.$

Luego,

$$ax^2 + by^2 + cz^2 \equiv L(x, y, z) M(x, y, z) \pmod{abc}$$
.

Consideramos ahora todas las triplas $(x,y,z) \in \mathbb{Z}^3$, con $0 \le x \le \sqrt{|bc|}$, $0 \le y \le \sqrt{|ca|}$, $0 \le z \le \sqrt{|ab|}$.

Tenemos en total $(\lfloor \sqrt{|bc|} \rfloor + 1)(\lfloor \sqrt{|ca|} \rfloor + 1)(\lfloor \sqrt{|ab|} \rfloor + 1) > abc$ de estas triplas.

Por el Principio de Dirichlet (principio de las casillas), existen dos triplas distintas de entre estas, (x_1, y_1, z_1) y (x_2, y_2, z_2) , con $L(x_1, y_1, z_1) \equiv L(x_2, y_2, z_2) \pmod{abc}$ $\iff L(x_1 - x_2, y_1 - y_2, z_1 - z_2) \equiv 0 \pmod{abc}$.

Haciendo
$$\tilde{x}=x_1-x_2$$
, $\tilde{y}=y_1-y_2$, $\tilde{z}=z_1-z_2$, tenemos
$$a\tilde{x}^2+b\tilde{y}^2+c\tilde{z}^2\equiv L(\tilde{x},\tilde{y},\tilde{z})\,M(\tilde{x},\tilde{y},\tilde{z})\pmod{abc}.$$

Note que $(\tilde{x}, \tilde{y}, \tilde{z}) \neq (o, o, o)$. Además, $|\tilde{x}| < \sqrt{|bc|}$, $|\tilde{y}| < \sqrt{|ca|}$ y $|\tilde{z}| < \sqrt{|ab|}$. De hecho, como a, b, c son coprimos dos a dos y libres de cuadrados, no puede ocurrir la igualdad.

Por otro lado, como a, b, < o y c > o, tenemos

$$-2abc = a|bc| + b|ca| < a\tilde{x}^2 + b\tilde{y}^2a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2 \le c\tilde{z}^2 < |ab|c = abc.$$

Como $abc \mid a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2$, entonces tenemos $a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2 = 0$, lo que resuelve el problema, o tenemos $a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2 = -abc$. En este último caso tenemos

$$O = (a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2 + abc)(\tilde{z}^2 + ab),$$

= $a(\tilde{x}\tilde{z} + b\tilde{y})^2 + b(\tilde{z}\tilde{y} - a\tilde{x})^2 + c(\tilde{z}^2 + ab)^2.$

Lo que nos da la solución $(\tilde{x}\tilde{z}+b\tilde{y},\tilde{z}\tilde{y}-a\tilde{x},\tilde{z}^2+ab)$.