UF1: Introducció als sistemes operatius

NF2 – Sistemes de numeració (6h)

Continguts

Sistemes de numeració

Codis alfanumèrics

Per què els humans treballem en base 10?

• 10 dits → 10 digits

8 dits → 8 digits

Sistema de numeració decimal

Sistema de numeració octal

Les dades. Tipus de dades

Com es representa la informació?

- Nivell de representació externa: Usada per les persones i inadequada per al'ordinador
- Nivell de representació interna: Adequada a l'ordinador i no intel·ligible directament per l'ésser humà.

Les dades. Tipus de dades

Els caràcters que s'utilitzen per a la representació externa són:

- Numèrics: dígits del 0 al 9 (sistema decimal)
- Alfabètics: són les lletres majúscules i minúscules de la Afins la Z
- Especials: *, /, %, +, -, ...

El pas de la representació externa a la interna s'anomena codificació i el procés invers descodificació.

Les dades. Tipus de dades

- Els ordinadors treballen en binari perquè estan formats per circuits electrònics.
- Només tenen 2 estats possibles (passa corrent o no hi passa).
- S'ha de traduir tota la informació a 0's i 1's establint una correspondència entre el conjunt de tots els caràcters:

{A, B, ...,Z, a, b,...z, 0, 1,...,9, /, +,*,...} i el conjunt binari: {0, 1}

Sistemes de numeració

- -Conjunt de símbols i regles que s'utilitzen per a representar quantitats o dades numèriques.
- -Els sistemes de numeració més utilitzats són el **decimal** i el **binari**.
- -Els sistemes de numeració es caracteritzen per la **base** (numero de símbols diferents que utilitza).
- -El sistema decimal (base 10) utilitza deu símbols (0-9).
- -El sistema binari (base 2) utilitza dos símbols (0 i 1).
- -Els sistemes de numeració actuals són sistemes posicionals i estan basats en el **Teorema Fonamental de la Numeració**.

Teorema Fonamental de la Numeració

En qualsevol sistema de numeració posicional tots els números es poden expressar amb la següent suma de productes.

n-1
Num =
$$\sum (digit)_i$$
. (base)ⁱ
i=0

n = número de dígits dígit = cada xifra que té el número base = base de sistema de numeració

Exemple: 6578 10

 $(6 * 10^3) + (5 * 10^2) + (7 * 10^1) + (8 * 10^0)$

Sistema decimal

- El sistema de numeració decimal és un sistema en base 10 (dígits de 0 fins a 9).
- El valor d'un nombre decimal és la suma dels dígits després d'haver multiplicat cada dígit pel seu pes.

• Els pesos són potències 10, que augmenten de dreta a esquerra, començant per 100=1.

Sistema decimal

Exemple: Expressar el nombre decimal 47 com a suma dels valors de cada dígit.

Solució:

$$47 = (4 \times 10^{1}) + (7 \times 10^{0}) =$$

 $(4 \times 10) + (7 \times 1) = 40 + 7$

Sistema decimal

Exemple: Expressar el nombre decimal 568,23 com suma dels valors de cada dígit.

Solució:

$$568,23 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$

$$= (5 \times 100) + (6 \times 10) + (8 \times 1) + (2 \times 0,1) + (3 \times 0,01)$$

$$= 500 + 60 + 8 + 0,2 + 0,03$$

Sistema binari

- Sistema de numeració de base 2 (0, 1).
- Cadascun d'aquest números s'anomena bit.
- Un bit és la mínima unitat d'informació possible.

Sistema binari

Número decimal		Número	bina	rio
О	О	О	0	О
1	0	0	О	1
2	0	О	1	0
3	0	0	1	1
4	0	1	О	0
5	0	1	О	1
6	0	1	1	0
7	0	1	1	1
8	1	0	О	0
9	1	0	О	1
10	1	0	1	0
11	1	0	1	1
12	1	1	О	0
13	1	1	О	1
14	1	1	1	0
15	1	1	1	1

Ex.:

Posició Valor

Resultat:

$$16+4+2+1=23$$

Exemple: Convertir el número 1101101 a decimal

Solució:

```
Peso: 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0

Número binario: 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1

1101101 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0

= 64 + 32 + 8 + 4 + 1 = 109
```

Exemples:

00100111

Peso	128	64	32	16	8	4	2	1	Total
Binario	0	0	1	0	0	1	1	1	
Decimal			32			4	2	1	39

10110010

Binario	1	0	1	1	0	0	1	0	
Decimal	128		32	16			2		178

Conversió decimal-binari

Mètode de la DivisióSuccessiva per 2

Un mètode sistemàtic per a convertir a binari enters decimals és el procés de la divisió successiva per 2.

Conversió decimal-binari

Exemple:

$$217 = (108 * 2) + 1$$

$$108 = (54 * 2) + 0$$

$$54 = (27 * 2) + 0$$

$$27 = (13 * 2) + 1$$

$$13 = (6 * 2) + 1$$

$$6 = (3 * 2) + 0$$

$$3 = (1 * 2) + 1$$

$$1 = (0 * 2) + 1$$

11011001

Activitat: Completa la següent taula

BINARI	DECIMAL
10101000	
	55
11111111	
	42
1111000	
	32

Sistema octal

- El sistema de numeració octal està format per vuit dígits (0, 1, 2, 3, 4, 5, 6, 7).
- Ésun sistema en base 8, per tant els dígits són potències de 8.

Exemple: 23748

Peso: 8^3 8^2 8^1 8^0

Número Octal: 2 3 7 4

$$2374_8 = (2 \times 8^3) + (3 \times 8^2) + (7 \times 8^1) + (4 \times 8^0)$$

= $(2 \times 512) + (3 \times 64) + (7 \times 8) + (4 \times 1)$
= $1024 + 192 + 56 + 4 = 1276_{10}$

Conversió decimal-octal

Mètode de ladivisió successiva per 8.

Exemple:

Convertir a octal el nombre decimal 359.

Conversió decimal-octal

Conversió octal-binari

 Cada dígit octal es pot representar amb un número binari de 3 dígits (8 = 2³).

```
        Dígito octal
        0
        1
        2
        3
        4
        5
        6
        7

        Binario
        000
        001
        010
        011
        100
        101
        110
        111
```

 Per passar d'octal a binari, simplement es reemplaça cada dígit pel corresponent grup de tres bits.

Conversió octal-binari

Exemple: Convertir a binari els següents números:

(a) 13₈ (b) 25₈ (c) 140₈ (d) 7526₈

Solució:

Conversió binari-octal

- Començant pel grup de tres bits més a la dreta i, movent-se de dreta a esquerra, es converteix cada grup de 3 bits en el dígit octal equivalent.
- Si pel grup de més a l'esquerra no hi ha disponibles tres bits, s'afegeixen un o dos zeros per a completar el grup.

Conversió binari-octal

Exemple: Convertir a octal els següents números binaris:

(a) **110101**

- (b) **101111001**
- (c) 100110011010 (d) 11010000100

Solució:

(a)
$$\underbrace{110}_{6} \underbrace{101}_{5 = 65_8}$$

Sistema hexadecimal

- Ésun sistema en base 16.
- Conjunt de dígits:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

- Cada dígit hexadecimal es representa mitjançant un nombre binari de 4 bits.
- $16 = 2^4$

Sistema hexadecimal

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

El procediment de conversió d'un número binari a hexadecimal consisteix en els següents passos:

- Es parteix el nombre binari en grups de 4 bits, començant pel bit més a la dreta.
- Esreemplaça cada grup de 4 bits pel seu símbol hexadecimal equivalent.

Exemple: Convertir a hexadecimal els següents números binaris:

- (a) 110010100101111
- (b) 111111000101101001

Solució:

Conversió hexadecimal-binari

Esreemplaça cada símbol hexadecimal, pel grup de quatre bits adequats.

Exemple:

(a) 10A4₁₆

(b) **CF8E** 16

(c) **9742**₁₆

Conversió hexadecimal-decimal

Mètode 1:

Per a trobar l'equivalent decimal d'un número hexadecimal, primer, convertir el número hexadecimal a binari, i després, el binari a decimal.

Conversió hexadecimal-decimal

Exemple: Convertir a decimal els següents números hexadecimals:

(a)
$$1C_{16}$$
 (b) $A85_{16}$

Solució: Primer, cal convertir a binari el numero hexadecimal, i després a decimal:

(a) 1 C

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow 0001 $1100 = 2^4 + 2^3 + 2^2 = 16 + 8 + 4 = 28_{10}$

Conversió hexadecimal-decimal

Exemple: Convertir a decimal E5₁₆

Solució:

(a)
$$E5_{16} = (E \times 16) + (5 \times 1) = (14 \times 16) + (5 \times 1) = 224 + 5 = 229_{10}$$

Conversió decimal-hexadecimal

- Dividint successivament per 16.
- La primera resta que es genera és el dígit menys significatiu (LSD).

Exemple: Convertir a hexadecimal el número decimal 650 pel mètode de la divisió successiva per 16.

Conversió decimal-hexadecimal

Resto hexadecimal

Parar cuando la parte entera del cociente sea 0

Dígito más significativo

Conversió hexadecimal-octal

S'utilitza el pas intermedi a binari.

Exemple: 70A1F₁₆

Solució:

```
70A1F<sub>16</sub> = (se pasa a binario)
0111 0000 1010 0001 1111<sub>2</sub> = (grupos de 3)
001 110 000 101 000 011 111<sub>2</sub> = (paso a octal)
1605037<sub>8</sub>
```

Sistemes numèrics

Activitat1: Completa la següent taula

BINARI	DECIMAL	OCTAL	HEXADECIMAL
10101001			
	987		
		701	
			FEA

Sistemes numèrics

Activitat2: Completa la següent taula

BINARI	DECIMAL	OCTAL	HEXADECIMAL
		16	
	123		
			CAE
11111111			

Codificació alfanumèrica

- Les dades, a més de ser numèriques, també poden ser lletres, símbols (@!#\$+-*/=%) i caràcters de control (<CR>, <LF>).
- Els sistemes de codificació alfanumèrica més importants són:
 - ASCII
 - EBCDIC
 - UNICODE

- Utilitza una combinació de 7 o 8 bits pera representar cada símbol.
- Ésel més utilitzat. Espoden representar lletres majúscules i minúscules, dígits de 0 a 9, caràcters especials i caràcters de control.
- Amb el codi ASCII de 8 bits es poden representar 256 símbols diferents.
- Proporciona caràcters addicionals per adaptar-se a cada país.

Caràcters no imprimibles				Caràcters imprimibles								
Nom	Dec	Hex	Car.	Dec	Hex	Car.	De	c Hex	Car.	Dec	Hex	Car.
Nul	0	00	NUL	32	20	Espai	64	40	@	96	60	`
Inici de capçalera	1	01	SOH	33	21	!	65	41	Α	97		a
Inici de text	2	02	STX	34	22	11	66	42	В	98	62	b
Final de text	3	03	ETX	35	23	#	67	43	С	99	63	С
Final de transmissió	4	04	EOT	36	24	\$	68	44	D	100	64	d
enquiry	5	05	ENQ	37	25	%	69	45	Е	101	65	е
<u>acknowledge</u>	6	06	ACK	38	26	&	70	46	F	102	66	f
Campaneta (beep)	7	07	BEL	39	27	1	71	47	G	103	67	g
backspace	8	80	BS	40	28	(72	48	Н	104	68	h
Tabulador horitzontal	9	09	HT	41	29)	73	49	I	105	69	i
Salt de línia	10	0Α	LF	42	2A	*	74	4A	J	106	6A	j
Tabulador vertical	11	0B	VT	43	2B	+	75	4B	K	107	6B	k
Salt de pàgina	12	0C	FF	44	2C	,	76	4C	L	108	6C	
Retorn de carro	13	0D	CR	45	2D	-	77	4D	М	109	6D	m
Shift fora	14	0E	SO	46	2E		78	4E	N	110	6E	n
Shift dins	15	0F	SI	47	2F	/	79	4F	О	111	6F	О
Escape línia de dades	16	10	DLE	48	30	0	80	50	Р	112	70	р
Control dispositiu 1	17	11	DC1	49	31	1	81	51	Q	113	71	q
Control dispositiu 2	18	12	DC2	50	32	2	82	52	R	114	72	r
Control dispositiu 3	19	13	DC3	51	33	3	83	53	S	115	73	s
Control dispositiu 4	20	14	DC4	52	34	4	84	54	Т	116	74	t
neg acknowledge	21		NAK	53	35	5	85		U	117	75	u
Sincronisme	22	16	SYN	54	36	6	86	56	V	118	76	V
Final bloc transmès	23	17	ETB	55	37	7	87	57	W	119	77	W
Cancel·lar	24	18	CAN	56	38	8	88	58	X	120	78	x
Final mig	25	19	EM	57	39	9	89	59	Υ	121	79	У
Substitut	26	1A	SUB	58	3A	:	90	5A	Z	122	7A	Z
Escape	27	1B	ESC	59	3B	;	91	5B	[123	7B	{
Separador arxius	28	1C	FS	60	3C	<	92	5C	\	124	7C	
Separador grups	29	1D	GS	61	3D	=	93	5D]	125	7D	}
Separador registres	30	1E	RS	62	3E	>	94	5E	^	126	7E	~
Separador unitats	31	1F	US	63	3F	?	95	5F		127	7F	DEL

UNICODE

- Proporciona un número únic per cada per acada caràcter, sense importar la plataforma (hardware), el programari o l'idioma.
- Éscompatible amb molts sistemes operatius, així com la majoria d'exploradors d'Internet.
- Permet que un software o pàgina web s'orienti a múltiples plataformes o idiomes sense necessitat de redisseny.

Activitat1: Tradueix a binari la paraula hola

Solució:

1101000: h

1101111: o

1101100: I

1100001: a

Activitat2: Tradueix el següent missatge en binari a codi ASCII.

Activitat3: En l'exercici anterior hi ha una falta ortogràfica (És) perquè al codi ASCII de 7 bits hi falten els accents.

Busca informació sobre l'ASCII estès i corregeix el missatge utilitzant la codificació de la nova taula.