基于外部记忆的算法学习的研究*

王李荣, 。。。

(东南大学计算机科学与工程学院, 江苏省 南京市 123456)

算法学习任务是人工智能的一个核心问题, 近来, 深度学习方法在该 摘 领域的应用取得了良好的效果。

关键词 循环神经网络,外部记忆,算法学习 中图分类号 TG9527 文献标识码 A

Analysis and simulation of the peaches in the birthday party of lady Wang Mu

Hou Ge, Ba Jie

(Dept. Qu Jing, New Western Univ., Changan Da Tang 123456, China)

Abstract The peaches in the birthday party of lady Wang Mu were so delicious that I want to dwell on the analysis and simulation on them. So that I can bring some of them to my kids in Hua Guo Shan.

Key Words Peach, lady Wang Mu, birthday party, Heaven palace

引言 1

人工智能的一个目标是人类不但通过编程使 计算机完成任务,而且可以通过教学使计算机 学会如何去完成任务。近年来,一些研究者的 工作向着这一目标迈出了重要的一步。这些工 作[5, 6, 7, 9] 利用外部记忆模块增强神经网络的 能力,使神经网络学习到算法,比如复制,排序 等。

在训练的过程中,我们发现模型很难收敛, 因此我们使用了课程学习来简化问题。课程学习 的策略是: ……

深度学习在许多任务中都已经取得了很好的 效果,例如机器视觉[8],语音识别[1],自然语言 处理[3]等。但仍有一些任务,一直没有取得关键 性的效果。算法学习任务()是其中比较有趣的 一种。这个任务可以追溯到[4, 2], 但至今还远未 取得较好的结果。将深度学习应用该任务之后, 已经有了显著的突破。有一些结构已经有能力学 也可以参考HAM的内容

会简单的算法,比如排序,加法,乘法等。

相关工作

参 考neural random-access 考Hierarchical Attentive Memory

模型 3

文献^[?, ?]中提到: 模型

实验 4

文献^[?, ?]中提到: 实验HAM提到只要有一 个bit错了,就认为整个输出序列错了比较部分

^{*}收稿日期: XXXX-XX-XX. 基金项目: 国家自然科学基金资助项目 (51685168)

Fig 1: 王母娘娘寿筵上的蟠桃

5 结论

文献[?,?]中提到: 结论

参考文献

- [1] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: Endto-end speech recognition in english and mandarin. In *International Conference on Machine Learning*, pages 173–182, 2016.
- [2] Dana Angluin and Carl H Smith. Inductive inference: Theory and methods. *ACM Computing Surveys (CSUR)*, 15(3):237–269, 1983.
- [3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

- [4] E Mark Gold. Language identification in the limit. *Information and control*, 10(5):447–474, 1967.
- [5] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
- [6] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In Advances in neural information processing systems, pages 190–198, 2015.
- [7] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228, 2015.
- [8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
- [9] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. arXiv preprint arXiv:1511.06392, 2015.