

Syntaxis – definitie term

- Termen
 - duiden individuele objecten aan

Definitie

De termen in de predicaatlogica zijn als volgt gedefinieerd (inductieve definitie):

- individuele variabelen en constanten zijn termen;
- als f een k-plaatsige functieletter is en t_1, \ldots, t_k zijn termen, dan is $f(t_1, \ldots, t_k)$ ook een term;
- Niets anders is een term.
- Voorbeeld: $f^3(g^2(x,h^1(y)),a,g^2(a,y))$

Syntaxis – definitie formule

Definitie

De **formules** in de predicaatlogica zijn als volgt gedefinieerd (inductieve definitie):

- als P een k-plaatsige predicaatletter is en t1, ..., tk zijn termen dan is P(t1, ..., tk) een formule;
- als φ en ψ formules zijn, dan zijn ook $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ en $(\varphi \leftrightarrow \psi)$ formules;
- als φ een formule is en x een individuele variabele, dan zijn $\forall x \varphi$ en $\exists x \varphi$ ook formules;
- niets anders is een formule.

Len formule van de vorm $P(t_1, ..., t_k)$ heet een atomaire formule of atoom

Definitie alfabet

Definitie

Het alfabet van een predicaat logische taal bestaat uit:

- Een verzameling C van individuele constanten: a, b, c, ...,
 a1, a2, a3, ... Piet
- Een verzameling P van predicaatletters: P, Q, R, ..., P1,
 P2, P3, ... voetballen
- Een verzameling F van functieletters: f, g, h, ..., f₁, f₂, f₃, ...
- De logische symbolen: \neg , \land , \lor , \rightarrow , \leftrightarrow , \forall , \exists
- Individuele variabelen: u, v, w, x, y, z, x₁, x₂, x₃, ...
- De hulpsymbolen:) en (
- Plaatsigheid (# argumenten) voor functieletters en predicaatletters ook wel via een index: f³abc of f³(a, b, c): f is 3-plaatsig
- Propositieletters zijn 0-plaatsige predicaatletters.

Substitutie - definitie

Definitie

Substitutie

- Als t, t' termen zijn, x een variabele, dan is [t / x]t' de term die ontstaat door elk voorkomen van x in t' te vervangen door t.
- Als φ een formule is, t een term en x een variabele, dan is $[t/x]\varphi$ de formule die ontstaat door elk voorkomen van x als vrije variabele in φ te vervangen door t.
 - $[t/x]\varphi$ wordt ook wel een instantie van φ genoemd
- Voorbeelden
 - $[y/x](\forall x (Rx \lor Sx) \lor Pxx) = \forall x (Rx \lor Sx) \lor Pyy$
 - $[f(a,b)/z]\exists x (Px \rightarrow Ryz) = \exists x (Px \rightarrow Ryf(a,b))$
 - $[y/x](\exists y (y < x)) = \exists y (y < y)$