Gear Design

ME 310: Mechanical Design

Sappinandana Akamphon

Department of Mechanical Engineering, TSE

Outline

Gear Overview

Gear Trains

Spur Gears

Helical Gears

Bevel Gears

Worms and Worm Gears

Why Gears?

- · High speed, low torque → low speed, high torque
- Speed: easy to get because voltage is easy
- · Torque: hard to get because it requires large current

Principles of Gears

- · Allow positive engagement between teeth
- · High forces can be transmitted while in rolling contact
- Do not need friction to operate \rightarrow high efficiency

Basic Law of Gearing

- Point of contact between two mating gears is always the same relative distances from the two centers.
- Any gear tooth profiles that follow the law of gearing will result in constant relative speed of rotation → involute profile

Gear Geometry

Gear Types

Gear Terminology

Pinion smaller of two gears, usually driving **Gear** Larger of the two. Also called *wheel*. Usually driven.

Gear Materials

- Steel: medium-carbon steel + heat treatment + grinding
- · Cast iron: surface fatigue > bending fatigue
- Nonferrous: bronzes → corrosion + wear resistant, low friction
- Nonmetallic: Nylon → low friction and weight + corrosion resistant, but low thermal conductivity

Gear Efficiency

 With friction, gears are 90 - 95% efficient because of mostly rolling contact

$$T_{\text{out}} = \frac{\eta T_{\text{in}} d_{\text{out}}}{d_{\text{in}}}$$

$$\omega_{\text{out}} = \frac{\omega_{\text{in}} d_{\text{in}}}{d_{\text{out}}}$$

$$P_{\text{out}} = T_{\text{out}} \omega_{\text{out}}$$

$$RR = \frac{\omega_{in}}{\omega_{\text{out}}} = \frac{z_{\text{out}}}{z_{in}} \approx \frac{T_{\text{out}}}{T_{in}}$$

• RR = gear ratio

g

Outline

Gear Overview

Gear Trains

Spur Gears

Helical Gears

Bevel Gears

Worms and Worm Gears

Gear Trains

When large reduction is required

- Large gear + small pinion: simple, but large stress and interference
- Multiple pairs of gears and pinions: less simple, low stress, large space
- Planetary gears: complex, low stress, small space

Interference

Normal Gear Trains

Planetary/Epicyclic Gear Train

 Planetary or epicyclic gears enable a high reduction ratio in small spaces

Planetary Gear Components

Planetary Gears: Torque, Forces, and Reduction Ratios

- Symmetry \rightarrow no net force on shaft
- Multiple planet gears reduce individual torque/force
- · Any combination of fixed, input, output gears
- 1 gear box -> multiple gear reduction ratios

Example

Fixed ring:

$$\omega_{\text{carrier}} = 9$$

$$\omega_{\text{planet}} = (9) \frac{60/2 + 20/2}{20/2} = 36$$

$$\omega_{\text{sun}} = (36) \frac{20}{30} = 24$$

$$RR = 9/24 = 0.375$$

Fixed	Input	Planet	Output	
Ring	Carrier 9	36	Sun 24	0.3
Sun	Carrier 9	36	Ring 14.4	0.6
Carrier	Sun 9	27	Ring 5.4	1.6

Gear Force Analysis: The Components

- F_t Tangential force (tangent to pitch circle)
- F_r Radial force (passing through gear center)
- F_a Axial force (parallel to axis of rotation)

$$\bar{F} = \bar{F_t} + \bar{F_r} + \bar{F_a}$$

Outline

Gear Overview

Gear Trains

Spur Gears

Helical Gears

Bevel Gears

Worms and Worm Gears

Spur Gear Forces

 ϕ pressure angle v_t pitch line velocity

$$F_t = \frac{\text{Power}}{v_t}$$

$$F_r = F_t \tan \phi$$

$$F_a = 0$$

Spur Gear Stress

- Bending Stress → AGMA stress equation
- · Consider tooth as a cantilever beam

$$\sigma = \frac{F_t}{bY_J m} K_O K_m K_v$$

 F_t tangential force

b face width

 Y_{j} geometry factor

m module

K_O overload factor

 K_m mounting factor

 K_{v} velocity factor

Geometry Factor: Y

Overload Factor: K_O

Power source	Driven Machine			
	Uniform	Light shock	Moderate shock	Heavy shock
Uniform	1.00	1.25	1.50	1.75
Light shock	1.20	1.40	1.75	2.25
Moderate shock	1.30	1.70	2.00	2.75

		Driven machine		
Power sources		Uniform	Continuous generator	
Uniform	Electric motor, constant-speed turbine		Fans, low-speed pumps, conveyors	
Light	Water turbine, variable-speed drive	Moderate	high-speed pumps, compressors, heavy conveyers	
Moderate	Multicylinder engine	Heavy	rock crushers, punch	

press drivers

Mounting Factor: K_m

Characteristics of Support	Face Width (cm)			
	0 to 5	15	22.5	40
Accurate mountings, small bearing clearances, precision gears	1.3	1.4	1.5	1.8
Less rigid moutings, standard gears, full face contact	1.6	1.7	1.8	2.2
Less than full face contact		Over	2.2	

Velocity Factor: K_{ν}

· Takes care of shock and impact loading

$$K_{v} = \left(\frac{A + \sqrt{200v_{t}}}{A}\right)^{B}$$

$$A = 50 + 56(1 - B)$$

$$B = 0.25(12 - Q)^{2/3}$$

 v_t pitch line velocity [m/s]

Q AGMA Quality Number

AGMA Recommended Quality Number: Q

v _t [m/s]	Q	Applications
0 - 4	6 - 8	Paper box making machine, cement, mill drives
4 - 10	8 - 10	Washing machine, printing press, computing mechanism
10 - 20	10 - 12	Automotive transmission, Antenna drive, propulsion drive
≥ 20	12 - 14	Gyroscope

Gear Material Strength

$$S_e' = S_e C_L C_G C_S k_r k_t k_{ms}$$

S, endurance limit

C, load factor (= 1 for bending)

 C_G gradient surface = 1

 $C_{\rm S}$ surface factor (= 0.75 for machined surface)

 k_r reliability factor

 k_t temperature factor

 k_{ms} median-stress factor (1 for two-way bending (followers), 1.4 for one-way bending (input or output))

Reliability Factor: k_r

k _r
1.000
0.897
0.814
0.753
0.702
0.659

Temperature Factor: k_t

$$k_{t} = \begin{cases} 1 & T \le 160 \text{ F} \\ \frac{620}{460 + T} & T > 160 \text{ F} \end{cases}$$

General Guidelines

- 1. $RR \ge 1/6$
- 2. Use multi-stage gears for larger than RR < 1/6
- 3. 8m ≤ b ≤ 16m
- 4. many small teeth » few large teeth
- 5. few teeth → small gear, but be careful about interference
- 6. Avoid exact ratio → hunting tooth

Example

A pair of spur gears with face width b=3 cm is used in a conveyor belt drive. The input motor has $\omega_{\rm max}$ of 200 rad/s. The pinion has 18 teeth. The conveyor has moderate shock and should be driven at 100 rad/s. The gears have pressure angles ϕ of 20°. Both pinion and gear has m=1 cm. Determine the maximum power that the gears can transmit continuously with 1% chance of bending fatigue failure. Steel has $S_{ut}=400$ MPa

Pitch line velicity v_t is

$$v_t = \omega R_{pitch} = \frac{\omega mz}{2}$$

= $\frac{200(0.01)(18)}{2} = 18 \text{ m/s}$

Determine number of teeth for mating gear (input pinion z_{in} = 18)

$$\frac{z_{out}}{z_{in}} = \frac{\omega_{in}}{\omega_{out}}$$
$$z_{out} = \frac{200(18)}{100} = 36 \text{ teeth}$$

Using
$$v_t = 18 \text{ m/s}$$
, select $Q = 10$

$$B = 0.25(12 - 10)^{2/3} = 0.397$$

$$A = 50 + 56(1 - 0.397) = 83.77$$

$$K_{v} = \left(\frac{83.77 + \sqrt{200(18)}}{83.77}\right)^{0.397} = 1.24$$

For other factors

```
b 0.03 (face width)
```

 K_0 1.5 (input - motor, output - moderate shock conveyor)

 K_m 1.6 (b = 3 cm, assuming standard gear + average mounting)

 K_{V} 1.24

The bending fatigue stress in the gear is

$$\sigma = \frac{F_t}{bY_J m} K_O K_m K_v$$

$$= \frac{F_t}{(0.03)(0.32)(0.01)} (1.5)(1.6)(1.24)$$

$$= 31000 F_t$$

Solution

Next, the material fatigue strength is

$$S'_e = S_e C_L C_G C_S k_r k_t k_{ms}$$

= $(400 \times 10^6 (0.5))(1)(1)(0.75)(0.814)(1)(1.4)$
= 1.71×10^8

We can then find the maximum allowable tangential force

$$F_t = \frac{1.71 \times 10^8}{31000} = 5516 \text{ N}$$

 $P = T\omega = F_t v_t = 5516 \times 18 = 9.93 \times 10^4 \text{ W}$

Rack and Pinion

$$F_t = \frac{T}{R}$$

$$F_r = \frac{T \tan \phi}{R}$$

- · Rack = linear gear
- Convert torque to force
- Cheaper but less accurate than power screw
- No mechanical advantages

Outline

Gear Overview

Gear Trains

Spur Gears

Helical Gears

Bevel Gears

Worms and Worm Gears

Helical Gears

Helical Gear Force Analysis

- ϕ_n normal pressure angle
- ϕ_t tangential pressure angle

 m_n normal module m_t tangential module ψ helix angle

$$F_{t} = \frac{\text{Power}}{v_{t}}$$

$$F_{r} = F_{t} \tan \phi_{t}$$

$$F_{a} = F_{t} \tan \psi$$

$$\tan \phi_{n} = \tan \phi_{t} \cos \psi$$

$$m_{n} = m_{t} \cos \psi$$

Why use Helical Gears?

- · Smoother operations due to gradual teeth engagement
- \cdot Most common gears in automotive transmission

Design Equations

Same as spur gear equation with small modification

$$\sigma = \frac{F_t}{bY_J m_t} K_v K_o(0.93 K_m)$$

$$S'_e = S_e C_L C_G C_S k_r k_t k_{ms}$$

- **0.93** indicated helical gears less sensitivity to mounting factor
 - Y, needs small modification for helical teeth

Geometry Factor: Y

Geometry Factor Multiplier: Y,

Example: Meshing Helical Gears

A pair of meshing helical gears is connected at the input side to a 0.5-hp motor at 1800 rpm and to an output shaft at 600 rpm. The input gear has 18 teeth, $\phi_n = 20^\circ$, $m_n = 0.00173$, $\psi = 30^\circ$, b = 2 cm. From the given information, determine the pitch line velocity v_t , gear tooth forces F_t , F_r , and F_a , and bending stress σ .

Calculate tangential module from normal module, then pitch diameter and tangential velocity.

$$m_t = \frac{m_n}{\cos 30^{\circ}} = \frac{0.00173}{\cos 30^{\circ}} = 0.002$$

$$d = mz = 0.002(18) = 0.036 \text{ m}$$

$$v_t = \omega \frac{d}{2} = (1800) \frac{2\pi}{60} \frac{0.036}{2} = 3.4 \text{ m/s}$$

Transmitted power only depends on tangential force, after which we can calculate axial and radial forces.

$$F_{t} = \frac{\text{Power}}{v_{t}} = \frac{0.5(746)}{3.4} = 104 \text{ N}$$

$$\tan \phi_{t} = \frac{\tan \phi_{n}}{\cos \psi} = \frac{\tan 20^{\circ}}{\cos 30^{\circ}} = 0.42$$

$$\phi_{t} = 22.8^{\circ}$$

$$F_{r} = F_{t} \tan \phi_{t} = 104 \tan 22.8^{\circ} = 43.7 \text{ N}$$

$$F_{a} = F_{t} \tan \psi = 104 \tan 30^{\circ} = 60 \text{ N}$$

$$\sigma = \frac{F_t}{bY_j m_t} K_v K_o(0.93 K_m)$$

b = 0.02 m

For 18-teeth to 54-teeth mesh, $Y_1 = 0.99(0.42) = 0.416$

Uniform-uniform input-output, $K_o = 1$

For K_v , since $v_t = 3.57$ m/s, let Q = 6.

$$B = 0.25(12 - 6)^{2/3} = 0.825$$

$$A = 50 + 56(1 - 0.825) = 59.8$$

$$K_v = \left(\frac{59.8 + \sqrt{200v_t}}{59.8}\right)^{0.825} = 1.36$$

For K_m , nothing specific about gears or mounting, let's go with the middle case for b = 2 cm. $K_m = 1.6$

We can finally calculate σ

$$\sigma = \frac{F_t}{bY_j m_t} K_v K_o (0.93 K_m)$$

$$= \frac{104}{(0.02)(0.416)(0.002)} (1.36)(1)((0.93)1.6)$$

$$= 1.26 \times 10^7 = 12.6 \text{ MPa}$$

Outline

Gear Overview

Gear Trains

Spur Gears

Helical Gears

Bevel Gears

Worms and Worm Gears

Bevel Gears

Bevel Gear Geometry

Bevel Gears

- γ pitch angle
- ϕ pressure angle

$$d_{av} = d - b \sin \gamma$$

$$v_{av} = \omega \frac{d_{av}}{2}$$

$$F_t = \frac{\text{Power}}{v_{av}}$$

$$F_a = F_t \tan \phi \sin \gamma$$

$$F_r = F_t \tan \phi \cos \gamma$$

Design Equations

Same as spur gear equation with small modification

$$\sigma = \frac{F_t}{bY_J m} K_v K_o K_m$$

$$S'_e = S_e C_L C_G C_S k_r k_t k_{ms}$$

Geometry Factor: Y₁

Mounting Factor: K_m

Mounting type		Mounting Rigidity
Both straddle-mounted		1.0 to 1.25
straddle-overhung		1.1 to 1.4
Doth overhung		1 25 to 1 5
Both overhung	II	1.25 to 1.5

Example: Bevel Gearset Design

Identical bevel gears has a module of 0.005 m/teeth, 25 teeth, 2-cm face width, and a 20° normal pressure angle. The gear quality is Q=7. Both requires overhung mounting. The gears are made of ductile iron whose $S_e=95$ MPa. Determine the power rating of the gearset at 600 rpm.

Solution: Bevel Gearset Design

For the stress side,

$$d_{av} = mz = 0.125 \text{ m}$$

 $v_t = \omega \frac{d_{av}}{2} = 600 \frac{2\pi}{60} \frac{0.125}{2} = 3.93 \text{ m/s}$

For uniform-uniform loading, $K_o = 1$

$$B = 0.25(12 - 7)^{2/3} = 0.731$$

$$A = 50 + 56(1 - 0.731) = 65$$

$$K_{v} = \left(\frac{65 + \sqrt{200(3.93)}}{65}\right)^{0.731} = 1.3$$

For both-overhung mounting, $K_m = 1.5$

For 25-teeth pair, $Y_1 = 0.22$

Solution: Bevel Gearset Design

Now, onto the strength side,

 $C_1 = 1$ for bending

 C_s = 0.75 for machined surface

 $C_G = 1$

No requirement on the reliablility. Let's be generous, give it 90% so that $k_{\rm r}=0.897$.

For normal operating temperature, $k_t = 1$.

For one-way bending, $k_{ms} = 1.4$.

Solution: Bevel Gearset Design

Set the two sides equal ($N_s = 1$), we have

$$\frac{F_t}{(0.02)(0.22)(0.005)}(1.3)(1)(1.5) = 95 \times 10^6(1)(1)(0.75)(0.897)(1)(1.4)$$

$$F_t = 1009 \text{ N}$$
Power = $F_t v_t = 1009(3.93) = 3965 \text{ W} = 5.31 \text{ hp}$

Outline

Gear Overview

Gear Trains

Spur Gears

Helical Gears

Bevel Gears

Worms and Worm Gears

Worm Force Analysis

• With friction $F_f = \mu F$, λ = lead angle, ϕ_n = normal pressure angle

$$\begin{split} F_{wt} &= F\cos\phi_n\sin\lambda + \mu F\cos\lambda = F_{ga} \\ F_{wr} &= F\sin\phi_n = F_{gr} \\ F_{wa} &= F\cos\phi_n\cos\lambda - \mu F\sin\lambda = F_{gt} \end{split}$$

Worm Force Analysis II

Worm Efficiency

· Worm and worm gear velocities can be related by

$$\frac{v_g}{v_w} = \tan \lambda$$

$$v_s = \sqrt{v_w^2 + v_g^2} = v_w \sqrt{1 + \tan^2 \lambda}$$

• Efficiency η is

$$\begin{split} \eta &= \frac{F_{gt} v_g}{F_{wt} v_w} \\ &= \frac{\cos \phi_n \cos \lambda - \mu \sin \lambda}{\cos \phi_n \sin \lambda + \mu \cos \lambda} \tan \lambda \\ &= \frac{\cos \phi_n - \mu \tan \lambda}{\cos \phi_n + \mu \cot \lambda} \end{split}$$

Self-Locking

• Thread will lock itself (not backdrivable) when $F_{wt} \leq 0$

$$F_{wt} = F \cos \phi_n \sin \lambda - \mu F \cos \lambda \le 0$$

$$\mu \ge \cos \phi_n \tan \lambda$$

- Note that when gear drives worm, friction direction is reversed (hence the negative sign)
- · Desirable in cases where auto-braking is needed
- In systems with large inertia, sudden stop can break the worm tooth → alternative brake mechanism is needd

Worm Gear Design Equations

Worm gears have higher stresses than worm, so our main concern is designing the gear.

$$F_{gt,allow} = \frac{C_s d^{0.8} b C_m C_v}{75.948}$$

 $F_{qt,allow}$ allowable gear force [N]

C_s material factor

d gear diameter [mm]

b effective face width (actual width but less than $0.67d_w$) [mm]

 C_m ratio correction factor

 C_{v} velocity factor

C_s : Material factor

For center distance C < 76.2 mm

$$C_s = 720 + 0.000633C^3$$

For *C* ≥ 76.2 mm

Sand-cast gears:

$$C_s = 1000$$
 $d \le 63.5 \text{ mm}$ $C_s = 1856.104 - 467.5454 \log d$ $d > 63.5 \text{ mm}$

Chilled-cast gears:

$$C_s = 1000$$
 $d \le 203.2 \text{ mm}$ $C_s = 2052.011 - 455.8259 \log d$ $d > 203.2 \text{ mm}$

Centrifugally-cast gears:

$$C_s = 1000$$
 $d \le 635 \text{ mm}$
 $C_s = 1503.811 - 179.7503 \log d$ $d > 635 \text{ mm}$

Note: Use C and d in mm

C_m : Ratio correction factor

Depends on gear ratio,

$$RR = \omega_i/\omega_o$$

$$C_m = \left\{ \begin{array}{ll} 0.02\sqrt{-RR^2 + 40RR - 76} + 0.46 & 3 < RR \leq 20 \\ 0.0107\sqrt{-RR^2 + 56RR + 5145} & 20 < RR \leq 76 \\ 1.1483 - 0.00658RR & RR > 76 \end{array} \right.$$

C_{v} : Velocity factor

Depends on sliding velocity at mean worm diameter v_s :

$$C_{v} = \begin{cases} 0.659e^{-0.2165v_{s}} & 0 < v_{s} \leq 3.556 \text{ m/s} \\ 0.652v_{s}^{-0.571} & 3.556 < v_{s} \leq 15.24 \text{ m/s} \\ 1.098v_{s}^{-0.774} & v_{s} > 15.24 \text{ m/s} \end{cases}$$

Example: Worm gear speed reducer

A 2-hp, 1200-rpm motor drives a 60-rpm machanism by using a worm gear reducer. The gear is centrifugally-cast and has d = 20 cm. The worm has λ = 12°, ϕ_n = 20°, and d_w = 5 cm. Assume μ = 0.1, determine

- 1. all force components according to the rated power
- 2. power delivered to the driven mechanism
- 3. whether the drive is self-locking
- 4. safety factor of worm gear

First, determine v_w to determine v_g

$$v_w = \omega_w (d_w/2) = 3.14 \text{ m/s}$$

 $v_g = v_w \tan \lambda = 3.14 \tan 12^\circ$
= 0.667 m/s

Power output at the worm gear is

$$\eta = \frac{\cos \phi_n - \mu \tan \lambda}{\cos \phi_n + \mu \cot \lambda} = \frac{\cos 20^\circ - 0.1 \tan 12^\circ}{\cos 20^\circ + 0.1 \cot 12^\circ} = 0.65$$

$$Power_g = 0.65(2)(746) = 970 \text{ W}$$

$$F_{gt} = \frac{Power_g}{v_g} = \frac{970}{0.667}$$

$$= 1455 \text{ N}$$

The other forces can then be calculated.

$$F_{ga} = F_{wt} = \frac{\text{Power}_w}{V_w} = \frac{2(746)}{3.14} = 475 \text{ N}$$

To find $F_{wr} = F_{gr}$, we need first to find F, which we can solve from either F_{gt} or F_{ga}

$$F_{ga} = 475 = F \cos \phi_n \sin \lambda + \mu F \cos \lambda = F (\cos 20^{\circ} \sin 12^{\circ} + 0.1 \cos 12^{\circ})$$

 $475 = 0.293F$
 $F = 1620 \text{ N}$
 $F_{gr} = F \sin \phi_n = 1620 \sin 20^{\circ} = 554 \text{ N}$

Self locking

$$\mu \ge \cos 20^{\circ} \tan 12^{\circ}$$

0.1 \ge 0.20

Nope! μ is too low to provide self-locking.

Definition of safety factor

$$N_{s} = \frac{F_{gt,allow}}{F_{gt}}$$

Determine the allowable tangential force on worm gear and material factor

$$F_{gt,allow} = \frac{C_s d^{0.8} b C_m C_v}{75.948}$$

$$C = \frac{d_g}{2} + \frac{d_w}{2} = \frac{0.2 + 0.05}{2} = 0.125 \text{ m}$$

$$C_s = 1000$$

Ratio correction factor

$$RR = 1200/60 = 20$$

 $C_m = 0.02\sqrt{-20^2 + 40(20) - 76} + 0.46 = 0.82$

Velocity factor

$$v_s = v_g \sqrt{1 + \tan^2 \lambda} = 3.14 \sqrt{1 + \tan^2 12^*} = 3.21 \text{ m/s}$$

 $C_v = 0.659e^{-0.2165(3.21)} = 0.33$

Finally, the safety factor

$$F_{gt,allow} = \frac{1000(200)^{0.8}(0.67(50))(0.82)(0.33)}{75.948} = 8273 \text{ N}$$

$$N_s = \frac{8273}{1455} = 5.69$$