Homework 6

孙锴

June 1, 2012

练习(4.25)。我对一张鸟的图片进行了处理。

Figure 1: 原图

Figure 2: 使用50%的奇异向量的结果

Figure 3: 使用25%的奇异向量的结果

Figure 4: 使用10%的奇异向量的结果

2.对于保留50%奇异向量的图,RGB百分比分别为99.9963%,99.9974%,99.9901%。对于保留25%奇异向量的图,RGB百分比分别为99.9734%,99.9758%,99.9227%。对于保留10%奇异向量的图,RGB百分比分别为99.9193%,99.9045%,99.7110%。

练习(4.30). $I : : d_{ij}^2 = (x_i - x_j)^T (x_i - x_j) = x_i^T x_i - 2x_i^T x_j + x_j^T x_j$ $: : \frac{1}{n} \sum_{i=1}^n d_{ij}^2 = \frac{1}{n} \sum_{i=1}^n x_i^T x_i + x_j^T x_j - \frac{1}{n} \sum_{i=1}^n 2x_i^T x_j = \frac{1}{n} \sum_{i=1}^n x_i^T x_i + x_j^T x_j - \frac{1}{n} \sum_{i=1}^n x_i^T \right] 2x_j = \frac{1}{n} \sum_{i=1}^n x_i^T x_i + x_j^T x_j$ 同理, $\frac{1}{n} \sum_{j=1}^n d_{ij}^2 = \frac{1}{n} \sum_{j=1}^n x_j^T x_j + x_i^T x_i$ $: : \frac{1}{n} \sum_{j}^n \sum_{i}^n d_{ij}^2 = \sum_{i=1}^n x_i^T x_i + \sum_{j=1}^n x_j^T x_j = 2 \sum_{i=1}^n x_i^T x_i$ $: : -\frac{1}{2} [d_{ij}^2 - \frac{1}{n} \sum_{j=1}^n d_{ij}^2 - \frac{1}{n} \sum_{i=1}^n d_{ij}^2 + \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n d_{ij}^2] = -\frac{1}{2} [d_{ij}^2 - \frac{1}{n} \sum_{j=1}^n x_j^T x_j - x_i^T x_i - \frac{1}{n} \sum_{j=1}^n x_i^T x_i - x_j^T x_j + \frac{2}{n} \sum_{i=1}^n x_i^T x_i] = -\frac{1}{2} [d_{ij}^2 - x_i^T x_i - x_j^T x_j] = x_i^T x_j$: 命题成立。 2. : $X^T X$ 正定 : $X^T X$ 可分解为 $V^T \sigma V$,其中V 是正交阵, σ 是特征值构成的实对角矩阵。 : $V^T \sigma V = V^T \sigma^{\frac{1}{2}} \sigma^{\frac{1}{2}} V$: $X = V^T \sigma^{\frac{1}{2}}$ 因此要求X 只须对 $X^T X$ 进行特征值分解。实际上,更进一步地,可以证

明 X^TX 的特征值分解与 X^TX 的奇异值分解等价。下面对此做简要的证

明:

设 X^TX 的特征值分解为 $V^T\sigma V$,其中V为正交阵。则 X^TXX^TX 的特征值分解为 $V^T\sigma^2 V$,由第I0题的中间结果可知 σ 为 X^TX 的奇异值,从而证明了 X^TX 的特征值与奇异值相同。由特征值与奇异值的定义与正交矩阵的性质不难得到 $V^T\sigma V$ 也是 X^TX 的奇异值分解。

练习(4.31). 1.由前一题所描述的算法,计算得到如下结果:

Number	City	X	Y
1	Boston	-1142.083884	-377.907384
2	Buffalo	-747.362247	-317.003888
3	Chicago	-315.219235	-181.035966
4	Dallas	157.360696	468.414553
5	Denver	592.061231	-31.354278
6	Houston	70.881113	675.437749
7	Los Angeles	1379.289917	243.052158
8	Memphis	-225.12034	293.102375
9	Miami	-884.492215	862.650215
10	Minneapolis	-17.466515	-376.539492
11	New York	-1026.639099	-228.77134
12	Omaha	111.698645	-115.845821
13	Philadelphia	-981.486178	-159.375386
14	Phoenix	1036.07345	351.687039
15	Pittsburgh	-723.52853	-138.947703
16	Saint Louis	-199.731252	53.849447
17	Salt Lake City	944.280885	-148.250074
18	San Francisco	1540.24642	-70.565538
19	Seattle	1332.184127	-738.13522
20	Washington D.C.	-900.946987	-64.461445
山			

由此绘制的图像如下:

Seattle

Figure 5: 生成的美国地图

2.在航线均为近似的最短距离的前提下,可以用距离构造出世界地图,但是方法与前面所述的稍有区别。因为对于美国地图,可以将点近似看为二维空间的点,而对于世界地图,则必须将点近似看为三维空间的点。同时,由于航线距离为球面距离,而不是两点之间的直线距离,所以需要对距离进行转换,将球面距离转化为直线距离。除此之外,与第1间中二维的情况相同。