P. Maurer

ENS Rennes

Référence : Rauch, Partial differential equations.

Fortement inspiré du travail de Corentin Kilque.

Recasage: 222, 250.

Equation de Schrödinger sur $\mathcal{S}(\mathbb{R})$

Définition 1. On rappelle que l'espace de Schwartz sur \mathbb{R} est défini par

$$\mathcal{S}(\mathbb{R}) = \bigg\{ f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \, : \, \forall \alpha, \, \beta \in \mathbb{N} \quad \sup_{x \in \mathbb{R}} |x^{\alpha} f^{(\beta)}(x) \, | < \infty \bigg\}.$$

Théorème 2. Pour $f \in \mathcal{S}(\mathbb{R})$, on a $\hat{f} \in \mathcal{S}(\mathbb{R})$. De plus, f vérifie la formule d'inversion de Fourier :

$$\forall x \in \mathbb{R} \quad f(x) = \int_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} d\xi.$$

Théorème 3. Soit $f \in \mathcal{S}(\mathbb{R})$. Alors il existe une unique fonction $u \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{C})$ telle que

1.
$$\forall (x,t) \in \mathbb{R}^2$$
 $\frac{\partial u}{\partial t}(x,t) = i \frac{\partial^2 u}{\partial x^2}(x,t)$,

- 2. $\forall x \in \mathbb{R}$ u(x,0) = f(x),
- 3. Si $g_t: x \mapsto u(x,t)$, alors

$$\forall T>0 \quad \forall \alpha,\beta \in \mathbb{N} \quad M_{\alpha,\beta}^T := \sup_{|t| < T} \sup_{x \in \mathbb{R}} \left| x^\alpha \, g_t^{(\beta)}(x) \right| < \infty.$$

De plus, on connait explicitement la solution u, qui est donnée par

$$\forall (x,t) \in \mathbb{R}^2 \quad u(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{-i\xi^2 t} e^{ix\xi} d\xi.$$

Démonstration.

On raisonne par analyse-synthèse.

Etape 1: Analyse.

Supposons que $u \in \mathcal{C}^2(\mathbb{R}^2)$ vérifie 1, 2 et 3. Pour $t \in \mathbb{R}$, la condition 3 donne en particulier que $g_t \in \mathcal{S}(\mathbb{R})$. On peut considérer sa transformée de Fourier $\hat{g_t}$, définie sur \mathbb{R} par

$$\hat{g_t}(\xi) = \int_{\mathbb{R}} u(x,t) e^{-ix\xi} dx.$$

Fixons $\xi \in \mathbb{R}$, et donnons nous T > 0. On souhaite appliquer le théorème de dérivation sous l'intégrale à la fonction $t \mapsto \hat{g_t}(\xi)$ pour $t \in [-T, T]$. Notons $v_{\xi}(x, t) := u(x, t) e^{-ix\xi}$.

• Pour $t \in [-T, T]$ fixé, la fonction $x \mapsto v_{\xi}(x, t)$ est intégrable sur \mathbb{R} puisque $g_t \in \mathcal{S}(\mathbb{R})$.

• Pour $x \in \mathbb{R}$ fixé, la fonction $t \mapsto v_{\xi}(x,t)$ est dérivable et vérifie

$$\forall t \in \mathbb{R} \quad \frac{\partial v_{\xi}(x,t)}{\partial t} = \frac{\partial u}{\partial t}(x,t) e^{-ix\xi}.$$

• Pour $(x,t) \in \mathbb{R} \times [-T,T]$, on a la domination :

$$\begin{split} \left| \frac{\partial v_{\xi}(x,t)}{\partial t} \right| &= \left| \frac{\partial u}{\partial t}(x,t) e^{-ix\xi} \right| \\ &= \left| \frac{\partial u}{\partial t}(x,t) \right| \\ &= \left| \frac{\partial^2 u}{\partial x^2}(x,t) \right| \quad \text{(d'après 1)} \\ &= \left| \frac{\partial^2 u}{\partial x^2}(x,t) \cdot \frac{1+x^2}{1+x^2} \right| \\ &\leq \left| \frac{\partial^2 u}{\partial x^2}(x,t) \right| + \left| \frac{x^2 \frac{\partial^2 u}{\partial x^2}(x,t)}{1+x^2} \right| \\ &\leq \frac{M_{1,2}^T + M_{2,2}^T}{1+x^2} \in L^1(\mathbb{R}). \end{split}$$

Le théorème de dérivation sous l'intégrale assure alors que pour tout $t \in [-T, T], t \mapsto \hat{g}_t(\xi)$ est dérivable et

$$\frac{\partial \hat{g_t}(\xi)}{\partial t} = \int_{\mathbb{R}} \frac{\partial u}{\partial t}(x,t) e^{-ix\xi} dx.$$
$$= i \int_{\mathbb{R}} \frac{\partial^2 u}{\partial x^2}(x,t) e^{-ix\xi} dx.$$

Comme T est arbitraire, cela en fait vrai pour tout $t \in \mathbb{R}$.

Les fonctions $x \mapsto u(x,t)$ et $x \mapsto e^{-ix\xi}$ étant de classe \mathcal{C}^2 sur \mathbb{R} , on peut intégrer deux fois par parties l'égalité précédente. Il vient alors

$$\frac{\partial \hat{g_t}(\xi)}{\partial t} = -i\xi^2 \, \hat{g_t}(\xi).$$

C'est une équation différentielle du premier ordre à ξ fixé, donc il existe $A(\xi) \in \mathbb{R}$ tel que pour tout $t \in \mathbb{R}$, on ait

$$\hat{g_t}(\xi) = A(\xi) e^{-i\xi^2 t}.$$

Or, pour $\xi \in \mathbb{R}$, on a

$$\hat{g}_0(\xi) = \int_{\mathbb{R}} u(x,0) e^{-ix\xi} dx$$
$$= \int_{\mathbb{R}} f(x) e^{-ix\xi} dx$$
$$= \hat{f}(\xi).$$

Et d'autre part, $\hat{g}_0(\xi) = A(\xi)$. On en déduit que $A(\xi) = \hat{f}(\xi)$. Soit $t \in \mathbb{R}$ fixé. Puisque $f \in \mathcal{S}(\mathbb{R})$, il en va de même de la fonction $\xi \mapsto \hat{g}_t(\xi) = \hat{f}(\xi)$ on peut donc lui appliquer la formule d'inversion de Fourier, et il vient

$$g_t(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{-i\xi^2 t} e^{ix\xi} d\xi.$$

Puisque $g_t(x) = u(t, x)$, on en déduit l'unicité de la solution.

Etape 2 : Synthèse.

On considère la fonction

$$u(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{-i\xi^2 t} e^{ix\xi} d\xi,$$

définie sur $\mathbb{R} \times \mathbb{R}$.

En appliquant le théorème de dérivation sous l'intégrale aux fonctions $x \mapsto u(x,t)$ et $t \mapsto u(x,t)$, on montre que u admet des dérivées partielles d'ordre deux en ses deux variables, qui sont toutes continues. Aussi, on a bien $u \in \mathcal{C}^2(\mathbb{R}^2)$.

Par ailleurs, le même argument montre que $\frac{\partial u}{\partial t}(x,t) = i \frac{\partial^2 u}{\partial x}(x,t)$, donc u vérifie 1.

Pour $x \in \mathbb{R}$, on a $u(x,0) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) \, e^{ix\xi} \, d\xi = f(x)$ d'après la formule d'inversion de Fourier, donc u vérifie 2.

Il reste à montrer que u vérifie le point 3 pour conclure la preuve. Commençons par remarquer qu'en appliquant encore le théorème de dérivation sous l'intégrale à $g_t: x \mapsto u(x,t)$, on peut en fait montrer que $g_t \in \mathcal{C}^{\infty}(\mathbb{R})$, et que ses dérivées partielles d'ordre $\beta \in \mathbb{N}$ vérifient

$$\frac{\partial^{\beta} g_t}{\partial x^{\beta}}(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} (i)^{\beta} \xi^{\beta} \hat{f}(\xi) e^{-i\xi^2 t} e^{ix\xi} d\xi.$$

Ainsi, pour $\alpha \in \mathbb{N}$, on a

$$x^{\alpha} \frac{\partial^{\beta} g_{t}}{\partial x^{\beta}}(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} i^{\beta} x^{\alpha} \xi^{\beta} \hat{f}(\xi) e^{-i\xi^{2}t} e^{ix\xi} d\xi$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\partial^{\alpha}}{\partial \xi^{\alpha}} (i^{\beta} \xi^{\beta} \hat{f}(\xi) e^{-i\xi^{2}t}) i^{\alpha} e^{ix\xi} d\xi,$$

où on a intégré α fois par parties, les fonctions $\xi \mapsto i^{\alpha} e^{i\xi x}$ et $\xi \mapsto i^{\beta} \xi^{\beta} \hat{f}(\xi) e^{-i\xi^{2}t}$ étant de classe \mathcal{C}^{α} sur \mathbb{R} .

La formule de Leibnitz donne alors

$$x^{\alpha} \frac{\partial^{\beta} g_{t}}{\partial x^{\beta}}(x,t) = \frac{1}{2\pi} \sum_{k=0}^{\alpha} {\alpha \choose k} \int_{\mathbb{R}} i^{\beta+\alpha} \frac{\partial^{k} \xi^{\beta} \hat{f}(\xi)}{\partial \xi^{k}} \cdot \frac{\partial^{\alpha-k} e^{-i\xi^{2}t}}{\partial \xi^{\alpha-k}} e^{ix\xi} d\xi.$$

Par inégalité triangulaire, il vient

$$\left| x^{\alpha} \frac{\partial^{\beta} g_{t}}{\partial x^{\beta}}(x,t) \right| \leq \frac{1}{2\pi} \sum_{k=0}^{\alpha} {\alpha \choose k} \int_{\mathbb{R}} \left| \frac{\partial^{k} \xi^{\beta} \hat{f}(\xi)}{\partial \xi^{k}} \right| \cdot \left| \frac{\partial^{\alpha-k} e^{-i\xi^{2}t}}{\partial \xi^{\alpha-k}} \right| d\xi.$$

Remarquons que la quantité $\frac{\partial^{\alpha-k} e^{-i\xi^2 t}}{\partial \xi^{\alpha-k}}$ s'exprime comme un polynôme en t et en ξ multiplié par $e^{-i\xi^2 t}$ (cela se montre par récurrence). Comme $|e^{-i\xi^2 t}|=1$, il existe donc $P \in \mathbb{R}[X,X]$ tel que

$$\left| \frac{\partial^{\alpha - k} e^{-i\xi^2 t}}{\partial \xi^{\alpha - k}} \right| \le P(|t|, |\xi|).$$

Par ailleurs, comme $f \in \mathcal{S}(\mathbb{R})$ et que $\mathcal{S}(\mathbb{R})$ est stable par transformée de Fourier, on a $\hat{f} \in \mathcal{S}(\mathbb{R})$, donc en particulier, $\sup_{\xi \in \mathbb{R}} \left| \frac{\partial^k \xi^\beta \hat{f}(\xi)}{\partial \xi^k} \right| P(|t|, |\xi|) (1 + |\xi|^2) < \infty$. Il s'en suit que

$$\left|\frac{\partial^k \, \xi^{\,\beta} \, \widehat{f}(\xi)}{\partial \xi^k}\right| \cdot \left|\frac{\partial^{\alpha-k} \, e^{-i\xi^2 t}}{\partial \xi^{\alpha-k}}\right| = o\bigg(\frac{1}{1+|\xi|^2}\bigg),$$

$$\text{et donc } \frac{1}{2\pi} \sum_{k=0}^{\alpha} \left(\begin{array}{c} \alpha \\ k \end{array} \right) \int_{\mathbb{R}} \left| \frac{\partial^k \xi^{\,\beta} \, \hat{f}(\xi)}{\partial \xi^k} \right| \cdot \left| \frac{\partial^{\alpha-k} \, e^{-i\xi^2 t}}{\partial \xi^{\alpha-k}} \right| d\xi < \infty \text{ quelque soit } x \in \mathbb{R} \text{ et } t \in \mathbb{R}.$$

On en déduit que u vérifie la condition 3.