Module 2 – Section 4

Chi-square Test of Independence

Variables

- Variable 2
 - J categories
- Variable 1
 - I categories
- Neither variable is considered the response variable.

Data

- Random sample of size n from population
- Gather information on two categorical variables

Data Summary

- Cross-classify data according to categories of two variables
- Form into contingency table

Ex. 3 x 4 Contingency Table

Variable 2					
Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total
Cat 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	Y_1 .
Cat 2	<i>Y</i> ₂₁	Y_{22}	Y_{23}	Y_{24}	Y_2 .
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> ₃ .
Total	<i>Y</i> .1	<i>Y</i> .2	<i>Y</i> .3	<i>Y</i> .4	n

Example

A study involving more than 5000 students looked at the relationship between smoking habits of students and the smoking habits of their parents.

Ex. Variables

- Variable 2
 - Student Smoking Status
 - Categories: Non-smoker, Smoker
- Variable 1
 - Parent Smoking Status
 - Categories: Neither Smokes, One Smokes, Both Smoke

Ex. Data

Parent Smoking Status	Student Smoking Status
Neither Smokes	Non-smoker
Neither Smokes	Non-smoker
Neither Smokes	Non-smoker
:	:
:	:
Both Smoke	Smoker
Both Smoke	Smoker

Ex. Contingency Table

Student Smoking Status

Parent Smoking Status	Non-smoker	Smoker	Total
Neither Smokes	1168	188	1356
One Smokes	1823	416	2239
Both Smoke	1380	400	1780
Total	4371	1004	5375

- A small proportion of students in the study are Smokers.
- The proportion of students who are Smokers is the lowest when Neither Parent Smokes and highest when Both Parents Smoke

Population Proportions

- p_{ij} = population proportion in category i of Variable 1 and category j of Variable 2.
- p_i = population proportion in category i of Variable 1.
- $p_{.j}$ = population proportion in category j of Variable 2.

Test of I

Test of Independence

Two categorical variables are independent if

$$p_{ij} = p_{i.}p_{.j}$$
 for all i and j

- \blacksquare H_0 : the two variables are independent
 - $\mathbf{p}_{ij} = p_{i.}p_{.j}$ for all i and j
- \blacksquare H_a : the two variables are not independent
 - At least one $p_{ij} \neq p_{i.}p_{.j}$ for some i and j

• If H_0 is true,

$$E(Y_{ij}) = np_{ij} = np_{i.}p_{.j}$$

■ Population proportions $p_{i.}$ and $p_{.j.}$ are unknown.

Estimate with sample proportions from table

$$\widehat{E(Y_{ij})} = n\hat{p}_{i.}\hat{p}_{.j}$$

$$= n\left(\frac{Y_{i.}}{n}\right)\left(\frac{Y_{.j}}{n}\right)$$

$$= \frac{Y_{i.}Y_{.j}}{n}$$

		Var. 2			•
Var. 1	Cat 1	Cat 2	Cat 3	Cat 4	Total
Cat 1	Y ₁₁	<i>Y</i> ₁₂	Y ₁₃	Y ₁₄	<i>Y</i> _{1.}
Cat 2	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂₃	<i>Y</i> ₂₄	<i>Y</i> ₂ .
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> _{3.}
Total	<i>Y</i> _{.1}	<i>Y</i> _{.2}	<i>Y</i> _{.3}	<i>Y</i> _{.4}	n

• If H_0 is true:

$$\widehat{E(Y_{ij})} = \frac{Y_{i.}Y_{.j}}{n} = \frac{\text{(row } i \text{ total)(column } j \text{ total)}}{\text{table total}}$$

Test Statistic

• Compare observed cell value Y_{ij} to estimated expected cell value $\widehat{E(Y_{ij})}$:

$$X^{2} = \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{(Y_{ij} - \widehat{E(Y_{ij})})^{2}}{\widehat{E(Y_{ij})}}$$

■ Large values of X^2 indicate evidence the two variables are not independent.

P-value

• If $\widehat{E(Y_{ij})} > 5$ for each cell, the distribution of X^2 is well approximated by a $\chi^2_{(I-1)(J-1)}$ distribution.

$$p$$
-value = $P(\chi^2_{(I-1)(J-1)} > X^2)$

Ex. Null and Alternative Hypotheses

- H_0 : The smoking status of students and their parents are independent.
- H_a : The smoking status of students and their parents are not independent.

Ex. Expected Values

	Student Smoking Status		
Parent Smoking Status	Non-smoker	Smoker	Total
Neither Smokes	1102.712	253.288	1356
One Smokes	1820.776	418.224	2239
Both Smoke	1447.512	332.488	1780
Total	4371	1004	5375

Ex. Test Statistic and P-value

Test Statistic

$$X^{2} = \sum_{j=1}^{2} \sum_{i=1}^{3} \frac{\left(Y_{ij} - \widehat{E(Y_{ij})}\right)^{2}}{\widehat{E(Y_{ij})}} = 37.5663$$

P-value

$$P(\chi_2^2 > 37.5663) < 0.0001$$

Ex. Conclusion

 We have extremely strong evidence that the smoking status of students is not independent from the smoking status of their parents.

Study of Relationship

- Cell Expected Values
- Cell Residuals
- Contribution of Cell to X² statistic

Ex. Smoking

- We found extremely strong evidence that the smoking status of students is not independent from the smoking status of the parents.
- Where is the relationship?

Ex. Contingency Table with Expected Values

Parent Smoking Status	Non-smoker	Smoker	Total
Neither Smokes	1168 (1102.712)	188 (253.288)	1356
One Smokes	1823 (1820.776)	416 (418.224)	2239
Both Smokes	1380 (1447.512)	400 (332.488)	1780
Total	4371	1004	5375

Ex. Smoking

- Under the assumption of independence:
 - When neither parent smoked, we expect more students to smoke than did.
 - When both parents smoke, we expect less students to smoke than did.
 - When one parent smoked, the expected number of students who smoked is very close to the observed number.

Connections and Similarities

- Analyses for differences in proportions and multinomial response probabilities are similar to analysis for independence.
 - Same Expected Values, Test Statistic, degrees of freedom, p-value.
 - Hypotheses and conclusions are different.

Which one to use?

- Proportions and Multinomial response probabilities
 - Always when group sizes are fixed prior to data collection.
 - Experiment
 - Stratified Sampling
 - Usually when Variable 1 is a grouping variable.

Which one to use?

- Test of Independence
 - Always when Variable 1 is not a grouping variable.
 - Sometimes when group sizes are not fixed prior to data collection.