

By:

DUSTIN SMITH

Contents

1	Basic Principles		
	1.1	The Laplace Transform	5
	12	Convergence	8

1 Basic Principles

1.1 The Laplace Transform

- 1. From the definition of the Laplace transform compute $\mathcal{L}\{f(t)\}(s)$ for
 - (a) f(t) = 4t

The Laplace transform is defined as $\mathcal{L}\{f(t)\}(s) = \int_0^\infty f(t)e^{-st}dt$. Using the definition, we have

$$\mathcal{L}{4t}(s) = \int_{0}^{\infty} 4te^{-st} dt = 4 \lim_{\tau \to \infty} \int_{0}^{\tau} te^{-st} dt$$

We can now use integration by parts or we may notice that $-\frac{\partial}{\partial s}e^{-st} = te^{-st}$. Note that t and e^{-st} are entire functions in both the variable s and t; that is, t and e^{-st} can be represented by a power series that converges everywhere in the complex plane with an infinite radius of convergence. In order to justify differentiation under the integral sign, the following theorem must be satisfied.

Theorem: Let f(s,t) be a function such that both f(s,t) and its partial derivatives are continuous in s and t in some region of the (s,t)-plane, including $a(s) \le t \le b(s)$, $s_0 \le s \le s_1$. Also suppose that the functions a(s) and b(s) are both continuous and both have continuous derivatives for $s_0 \le s \le s_1$. Then for $s_0 \le s \le s_1$

$$\frac{d}{ds}\int_{\alpha(s)}^{b(s)}f(s,t)dt=f(s,b(s))b'(s)-f(s,(\alpha(s))\alpha'(s)+\int_{\alpha(s)}^{b(s)}f_s(s,t)dt.$$

Since $f(s,t) = te^{-st}$ which is the product of two entire functions so is entire and $t, e^{-st} \in C^{\infty}$, the theorem is satisfied. Therefore, we can write

$$\begin{split} 4 \lim_{\tau \to \infty} \int_0^\tau t e^{-st} dt &= -4 \frac{d}{ds} \lim_{\tau \to \infty} \int_0^\tau e^{-st} dt \\ &= 4 \frac{d}{ds} \lim_{\tau \to \infty} \frac{e^{-st}}{s} \Big|_0^\tau \\ &= 4 \frac{d}{ds} \lim_{\tau \to \infty} \left(\frac{e^{-s\tau} - 1}{s} \right) \\ &= \frac{d}{ds} \frac{-4}{s} \\ \mathcal{L}\{4t\}(s) &= \frac{4}{s^2} \end{split}$$

(b) $f(t) = e^{2t}$

For brevity, I am going to drop $\lim_{\tau\to\infty}\int_0^{\tau}$ and just write \int_0^{∞} .

$$\mathcal{L}\{e^{2t}\}(s) = \int_0^\infty e^{t(2-s)} dt = \frac{e^{t(2-s)}}{2-s} \bigg|_0^\infty = \frac{1}{s-2}$$

A justifiable question would be why don't we have ∞ since $\lim_{t\to\infty}e^{t(2-s)}=\infty$. If this was the case, we would have a divergent integral. In order for our integral to converge, we have to mind the exponential term. Let $s=\sigma+i\omega$. Then $exp[2t-\sigma] exp[-i\omega]$.

$$\left| \int_0^\infty \exp[(2-\sigma)t] \exp[-it\omega] dt \right| \leq \int_0^\infty \left| \exp[(2-\sigma)t] \right| \left| \exp[-it\omega] \right| dt$$

By Euler's formula, $\exp[-it\omega] = \cos(t\omega) - i\sin(t\omega)$ so $|e^{-i\omega}| = \sqrt{\cos^2(t\omega) + \sin^2(t\omega)} = 1$. Thus, we have

$$\int_{0}^{\infty} \exp[t(2-\sigma)]dt$$

which converges when $t(2-\sigma) < 0 \iff 2 < \sigma = \Re\{s\}$. Therefore, since $t(2-\sigma) < 0$, we are justified in writing $-t(\sigma-2)$ since $\sigma-2>0$. We then have $\mathcal{L}\{e^{2t}\}(s)=\frac{1}{s-2}$.

(c)
$$f(t) = 2\cos(3t)$$

For this problem, we will need to use integration by parts twice. Let $u = e^{-st}$ and $dv = \cos(3t)dt$. Then $du = -se^{-st}$ and $v = \sin(3t)/3$

$$\mathcal{L}\{2\cos(3t)\}(s) = 2\int_{0}^{\infty}\cos(3t)e^{-st}dt$$

$$= \frac{2e^{-st}\sin(3t)}{3}\Big|_{0}^{\infty} + \frac{2s}{3}\int_{0}^{\infty}\sin(3t)e^{-st}dt$$

For the second integration by parts, u and du will remain the same but $dv = \sin(3t)dt$ so $v = -\cos(3t)/3$.

$$= \frac{2s}{3} \left[\frac{-e^{-st} \cos(3t)}{3} \Big|_0^{\infty} - \frac{s}{3} \int_0^{\infty} \cos(3t) e^{-st} dt \right]$$
$$(1 + s^2/9) 2 \int_0^{\infty} \cos(3t) e^{-st} dt = \frac{2s}{9}$$
$$\mathcal{L}\{2\cos(3t)\}(s) = \frac{2s}{s^2 + 9}$$

(d)
$$f(t) = 1 - \cos(\omega t)$$

By exercise 1 (c), we have

$$\mathcal{L}\{1-\cos(\omega t)\}(s) = \int_0^\infty e^{-st} dt - \int_0^\infty \cos(\omega t) e^{-st} dt = \frac{1}{s} - \frac{s}{s^2 + \omega^2}$$

(e)
$$f(t) = te^{2t}$$

$$\mathcal{L}\{te^{2t}\} = -\frac{\partial}{\partial s} \int_{0}^{\infty} e^{t(2-s)} dt = -\frac{d}{ds} \frac{1}{s-2} = \frac{1}{(s-2)^2}$$

where we require that $\Re\{s\} > 2$.

(f)
$$f(t) = e^t \sin(t)$$

Again, we will use integration by parts where $u = \sin(t)$ and $dv = e^{t(1-s)}dt$.

$$\begin{split} \mathcal{L}\{e^t sin(t)\} &= \int_0^\infty sin(t) e^{t(1-s)} dt \\ &= \underbrace{\frac{sin(t) e^{t(1-s)}}{1-s}}_0^\infty + \frac{1}{s-1} \int_0^\infty cos(t) e^{t(1-s)} dt \\ &= \frac{1}{s-1} \left[\frac{cos(t) e^{t(1-s)}}{1-s} \Big|_0^\infty - \frac{1}{s-1} \int_0^\infty sin(t) e^{t(1-s)} dt \right] \\ &[1+1/(s+1)^2] \int_0^\infty sin(t) e^{t(1-s)} dt = \frac{1}{(s-1)^2} \\ &\int_0^\infty sin(t) e^{t(1-s)} dt = \frac{1}{(s-1)^2+1} \end{split}$$

$$(g) \ f(t) = \begin{cases} 1, & t \geqslant \alpha \\ 0, & t < \alpha \end{cases}$$

$$\mathcal{L}\{f(t)\}(s) = \int_0^a 0 \cdot e^{-st} dt + \int_a^\infty e^{-st} dt$$
$$= \int_a^\infty e^{-st} dt$$
$$= \frac{e^{-as}}{s}$$

$$\text{(h) } f(t) = \begin{cases} sin(\omega t), & 0 < t < \pi/\omega \\ 0, & \pi/\omega \leqslant t \end{cases}$$

This is just another exercise in integration by parts.

$$\begin{split} \mathcal{L}\{f(t)\}(s) &= \int_0^{\pi/\omega} sin(t\omega) e^{-st} dt \\ &= \frac{\omega(1 + e^{-s\pi/\omega})}{s^2 + \omega^2} \end{split}$$

(i)
$$f(t) = \begin{cases} 2, & t \leq 1 \\ e^t, & t > 1 \end{cases}$$

$$\mathcal{L}\{f(t)\}(s) = \int_0^1 e^{-st} dt + \int_1^\infty e^{t(1-s)} dt$$
$$= \frac{2(1-e^{-s})}{s} + \frac{e^{1-s}}{s-1}$$

where we require that $\Re\{s\} > 1$.

2. Compute the Laplace transform of the function f(t) whose graph is given in figure 1.1.

Figure 1.1: Plots of f(t) for problem two.

The first step to these two problems is to determine the function f(t). For figure 1.1a, we have

$$f(t) = \begin{cases} 1 - t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$$

and for figure 1.1b, we have

$$g(t) = \begin{cases} t, & 0 < t < 1 \\ 2 - t, & 1 < t < 2 \\ 0, & t > 2 \end{cases}$$

For figure 1.1a, the Laplace transform is

$$\mathcal{L}\{f(t)\}(s) = \int_0^1 (1-t)e^{-st} dt$$

$$= \frac{1-e^{-s}}{s} + \frac{\partial}{\partial s} \int_0^1 e^{-st} dt$$

$$= \frac{1-e^{-s}}{s} + \frac{d}{ds} \frac{1-e^{-s}}{s}$$

$$= \frac{s-1+e^{-s}}{s^2}$$

For figure 1.1b, the Laplace transform is

$$\mathcal{L}\{g(t)\}(s) = \int_0^1 t e^{-st} dt + \int_1^2 (2-t)e^{-st} dt$$
$$= \frac{e^{-2s}(e^s - 1)^2}{s^2}$$

1.2 Convergence

- 1. Suppose that f is a continuous function on $[0, \infty)$ and $|f(t)| \leq M < \infty$ for $0 \leq t < \infty$.
 - (a) Show that the Laplace transform $F(s) = \mathcal{L}\{f(t)\}(s)$ converges absolutely (and hence converges) for any s satisfying $\Re\{s\} > 0$.
 - (b) Show that $\mathcal{L}\{f(t)\}$ converges uniformly if $\Re\{s\} > x_0 > 0$.
 - (c) Show that $F(s) = \mathcal{L}\{f(t)\}(s) \to 0$ as $\Re\{s\} \to \infty$.
- 2. Let $f(t) = e^t$ on $[0, \infty)$.
 - (a) Show that $F(s) = \mathcal{L}\{e^t\}(s)$ converges for $\Re\{s\} > 1$.
 - (b) Show that $\mathcal{L}\{e^t\}(s)$ converges uniformly if $\Re\{s\} > x_0 > 1$.
 - (c) Show that $F(s) = \mathcal{L}\{e^t\}(s) \to 0$ as $\Re\{s\} \to \infty$.
- 3. Show that the Lpalace transform of the function f(t) = 1/t, t > 0 does not exist for any value of s.