"Tout est difficile avant d'être simple." (Thomas Feller)

Exercice 1 Soit $F = \text{Vect}(e_1, ..., e_p)$ un sev du \mathbb{K} -ev E et $f \in L(E)$. Montrer que F est stable par f ssi pour tout $i \in \{1, ..., p\}$ on a $f(e_i) \in F$.

Exercice 2 Montrer que si u laisse stable toutes les droites vectorielles de E alors u est une homothétie vectorielle. Complément : soit k dans \mathbb{N}^* , montrer que si u laisse stable tous les sevs de E de dimension k alors u est une homothétie vectorielle.

Exercice 3 Déterminer les sevs stables par $u \in L(\mathbb{R}^2)$ de matrice dans la base canonique $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Idem si $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Exercice 4 Montrer que si u et v de L(E) commutent alors ker u et $\operatorname{Im} u$ sont stables par v.

Exercice 5 Soit F sev du \mathbb{K} -ev $E, u \in L(E)$ et $\lambda \in \mathbb{K}$.

- 1. Montrer que $\ker(u \lambda i d_E)$ est u-stable et préciser l'endomorphisme induit.
- 2. Montrer que F est u-stable ssi il est stable par $u \lambda i d_E$.
- 3. Montrer que si F est u-stable alors il est stable par u^2 . Réciproque?

Exercice 6 Montrer que si F sev de E est stable par f et g de L(E) alors il l'est par f + g et par $f \circ g$. Retrouver que le produit de deux matrices triangulaires supérieures l'est encore.

Exercice 7 Soit p un projecteur de E et u dans L(E). Montrer que u et p commutent ssi ker p et $\operatorname{Im} p$ sont stables par u.

Exercice 8 Déterminer les sous espaces de $\mathbb{R}[X]$ stables par l'endomorphisme de dérivation.

Exercice 9 Soit $D: P \mapsto P'$ l'opérateur de dérivation sur $\mathbb{R}[X]$. Supposons qu'il existe un endomorphisme Δ de $\mathbb{R}[X]$ tel que $D = \Delta^2$.

- 1. Montrer que $\mathbb{R}_1[X]$ est stable par Δ .
- 2. Donner la matrice dans la base canonique de $\mathbb{R}_1[X]$ de l'endomorphisme induit par D sur $\mathbb{R}_1[X]$.
- 3. Conclure quand à l'existence de Δ .

Exercice 10 Soit E un \mathbb{K} -ev, $u \in L(E)$ et $\lambda \in \mathbb{K}$. Montrer que si un hyperplan H de E contient $\mathrm{Im}(u-\lambda id_E)$ alors H est stable par u.

Exercice 11 Montrer que si un sev F de E (avec $\dim(E)$ finie) est stable par $u \in L(E)$ alors il est stable par u^{-1} . Rejustifier le fait que l'inverse d'une matrice en damier est encore en damier.

Exercice 12 Montrer qu'un endomorphisme d'un \mathbb{C} -ev de dimension finie admet toujours une droite stable. Ce résultat subsiste-t-il dans un \mathbb{R} -ev?

Exercice 13 Soit $u \in L(\mathbb{R}^4)$ de matrice dans la base canonique A la matrice Attila.

- 1. Déterminer le noyau et l'image de A
- 2. En déduire deux sevs F, G de dimension 1 et 3 stables par u et supplémentaires.
- 3. Préciser u_F, u_G et donner la matrice dans une base adaptée.

Exercice 14 Soit $u \in L(\mathbb{R}^3)$ et $B = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On suppose que $u(e_1) = e_2, u(e_2) = e_3, u(e_3) = e_1$.

- 1. Former la matrice A de u dans B.
- 2. Montrer qu'il n'existe qu'une seule droite D stable par u. En donner un vecteur de base et préciser u_D l'endomorphisme induit par u sur D.
- 3. Vérifier que $P = \text{Vect}(e_1 e_2, e_1 e_3)$ est stable par u.
- 4. Justifier que P est le seul plan stable par u, montrer ensuite que F et P sont supplémentaires et donner la matrice de u dans une base adaptée à cette somme directe.

Exercice 15 Soit $u: P \in \mathbb{R}[X] \mapsto XP$.

- 1. Montrer que u est endomorphisme de $\mathbb{R}[X]$.
- 2. u admet-il des sevs stables de dimension finie?
- 3. Soit $F = \{P \in \mathbb{R}[X], P(1) = 0\}$, montrer que F est un sev de $\mathbb{R}[X]$. Est-il stable par u?

Exercice 16 On rappelle que toute matrice de rang r est équivalente à la matrice J_r dont tous les coefficients sont nuls sauf les $a_{1,1}, a_{2,2}, ..., a_{r,r}$ qui valent 1. Déterminer alors le rang de $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ en fonction de celui de A_1 et de celui de A_2 .

Exercice 17 On suppose A, B inversibles, montrer que $\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ l'est et expliciter son inverse.

Exercice 18 Soit A, B, C, D dans $M_n(\mathbb{K})$ telles que D soit inversible et CD = DC. Montrer que :

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC)$$

On pourra commencer avec n = 1...