Planche TD 1

Ivan Lejeune*

2 février 2024

Exercice. Soit (X, d) un espace métrique, montrer que pour tous $x, y, z \in X$ on a

$$|d(x,y)-d(y,z)| \le d(x,z)$$

Solution. Soient $x, y, z \in X$. On a

$$d(x,y) \le d(x,z) + d(z,y)$$
$$d(x,y) - d(z,y) \le d(x,z) \tag{1}$$

 et

$$d(z,y) \le d(z,x) + d(x,y)$$
$$d(z,y) - d(x,y) \le d(x,z) \tag{2}$$

En combinant les 2 on obtient

$$-d(x,z) \underset{\text{par (2)}}{\leq} d(x,y) - d(y,z) \underset{\text{par (1)}}{\leq} d(x,z)$$

Donc on a bien

$$|d(x,y) - d(y,z)| \le d(x,z)$$

Exercice. Soit $x = ([0,1] \times \{0\}) \cup (\{0\} \times [0,1])$ munit de la distance induite par la norme infinie de \mathbb{R}^2 . Dessiner les boules de centre (1,0).

Solution. On a

$$B(x_0, r[_{\|\cdot\|_{\infty}} = \{ y \in X \mid \mathcal{N}_{\infty}(y - (1, 0)) < r \}$$

$$= \left\{ y \in X \middle| \begin{array}{c} |y_1 - 1| < r & \text{et} \\ |y_2| < r & \end{array} \right\}$$

$$= x \text{ si } r > 1$$

$$=]1 - r, 1] \times \{0\} \text{ sinon}$$

On a

$$B(x_0, r[X = B(x_0, r[\mathbb{R}^2 \cap X$$

Exercice. Soit (X, d) un espace métrique

1. Soit ϕ une fonction croissante de \mathbb{R}^+ dans \mathbb{R}^+ telle que $\phi(0) = 0$, ϕ est injective sur un voisinage de 0 et $\phi(s+t) \leq \phi(s) + \phi(t)$ pour tous $s,t \in \mathbb{R}^+$. Montrer que $D = \phi \circ d$ est une métrique sur X.

^{*}Cours inspiré de M. Akrout