0.1. Introducción modelo Karplus-Strong

En esta sección se analizará el método de sintesis basado en el modelado físico, propuesto por Karplus-Strong.

0.2. Karplus-Strong básico

El modelo básico de Karplus-Strong consiste filtrar una forma de onda a travez de una linea de retardo, gracias a esto se logra simular el sonido de una cuerda de guitarra.

Figura 1: Modelo clásico Karplus-Strong.

0.2.1. Análisis teórico

Este algoritmo se puede describir por su diagrama en bloques como se ve a continuación.

Figura 2: Algoritmo Karplus-Strong.

De este diagrama en bloques se puede obtener la ecuación en diferencias:

$$y(n) = \frac{1}{2} \cdot x(n) + \frac{1}{2} \cdot x(n-1) + \frac{1}{2} \cdot R_L \cdot y(n-L) + \frac{1}{2} \cdot R_L \cdot y(n-L-1)$$
 (1)

A partir de esta expresión se puede calcular su transformada Z y depejar para la transferencia:

$$H(z) = \frac{\frac{1}{2} \cdot z^{L+1} + \frac{1}{2} \cdot z^{L}}{z^{L+1} - \frac{R_{L}}{2} \cdot z - \frac{R_{L}}{2}}$$
(2)

Vale la pena mencionar que de la ecuación (??) es una ecuación en diferencias que cuenta como condiciones iniciales la wavetable suministrada por el ruido.

0.2.2. Análisis singularidades

Se observa que la expresión (??) cuenta con L+1 polos y L+1 ceros. A continuación se muestra un diagrama de polos y ceros del sistema:

- 0.2.3. Sintonización de frecuencia
- 0.2.4. Tipos de ruido
- 0.2.5. Estabilidad

La estabilidad del sistema será determinada por la ecuación (??) se puede observar que si RL es mayor o igual a uno el sistema será inestable, si bien teóricamente esto es cierto, en la realidad se encuentra que si RL = 1 no solo no provocará inestablidad, sino que es recomendable este valor dado que logrará extender las oscilaciones un mayor tiempo.

- 0.2.6. Cálculo Fase
- 0.3. Mejora propuesta
- 0.3.1. Análisis teórico
- 0.3.2. Sintonización de frecuencia
- 0.3.3. Continuidad del sonido
- 0.4. Karplus-Strong percución
- 0.5. Espectrogramas