Семинар 14

Алгебраические и целые алгебраические числа

Комплексное число, являющееся корнем некоторого многочлена с рациональными коэффициентами, называется алгебрическим. Целым алгебраическим называется комплексное число, которое является корнем некоторого многочлена с целыми коэффициентами и старшим коэффициентом 1.

- 1. Доказать, что рациональное число будет целым алгебраическим числом тогда и только тогда, когда оно целое.
- 2. Пусть $V \subset \mathbb{C}$ конечномерное векторное пространство над полем рациональных чисел, а комплексное число α таково, что $\alpha v \in V$ для всех $v \in V$. Доказать, что α алгебраическое число.
- 3. Пусть α и β алгебраические числа степени n и m соответственно. Обозначим через V линейную \mathbb{Q} -оболочку в поле \mathbb{C} чисел $\alpha^k\beta^l$, $0 \leq k \leq n$, $0 \leq l \leq m$. Показать, что $\alpha v \in V$, $\beta v \in V$ для всех $v \in V$.
- 4. Доказать, что если α алгебраическое число, отличное от нуля, то α^{-1} алгебраическое число.

Из результатов задач 3, 4 следует, что алгебраические числа образуют поле (сравните с намеченным в лекциях конструктивным доказательством этого факта, в котором используется легкое обобщение главной теоремы о симметрических многочленах). Чтобы доказать, что множество целых алгебраических чисел образует кольцо, нужно в нашей схеме заменить векторное пространство абелевой группой с конечным числом образующих.

- 5. Пусть $A \subset \mathbb{C}$ абелева группа с конечным числом образующих, а комплексное число α таково, что $\alpha a \in A$ для всех $a \in A$. Доказать, что α целое алгебраическое число.
- 6. Доказать, что множество целых алгебраических чисел образует кольцо (С: действовать, как в задаче 3).
 - 7. Найти кольца целых алгебраических чисел в полях $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-3}).$
- 8. Пусть α и β целые алгебраические числа. Доказать, что корни квадратного уравнения $X^2 + \alpha X + \beta = 0$ будут целыми алгебраическими числами. Сформулируйте и (если получится) докажите общий результат.
- 9. Пусть α алгебраическое число. Доказать, что $N\alpha$ будет целым алгебраическим числом для некоторого целого числа N.