Heuristic Analysis

This heuristic analysis first displays potential optimal solutions for the problems that are being solved. The problems are in the area of air cargo traffic and are meant to be solved with either uninformed planning algorithms or with A* search that applies automatic heuristics. Secondly, the performances of the different algorithms are displayed and later on compared qualitatively.

Optimal Sequences

Problem 1:

- 1. Load(C1, P1, SFO)
- 2. Load(C2, P2, JFK)
- 3. Fly(P2, JFK, SFO)
- 4. Unload(C2, P2, SFO)
- 5. Fly(P1, SFO, JFK)
- 6. Unload(C1, P1, JFK)

Problem 2:

- 1. Load(C1, P1, SFO)
- 2. Load(C2, P2, JFK)
- 3. Load(C3, P3, ATL)
- 4. Fly(P2, JFK, SFO)
- 5. Unload(C2, P2, SFO)
- 6. Fly(P1, SFO, JFK)
- 7. Unload(C1, P1, JFK)
- 8. Fly(P3, ATL, SFO)
- 9. Unload(C3, P3, SFO)

Problem 3:

- Load(C1, P1, SFO)
- 2. Fly(P1, SFO, ATL)
- 3. Load(C3, P1, ATL)
- 4. Fly(P1, ATL, JFK)
- Load(C2, P1, JFK)
- 6. Unload(C1, P1, JFK)
- 7. Unload(C3, P1, JFK)
- 8. Fly(P1, JFK, ORD)
- 9. Load(C4, P1, ORD)
- 10. Fly(P1, ORD, SFO)
- 11. Unload(C2, P1, SFO)
- 12. Unload(C4, P1, SFO)

Performances of Algorithms

Here the performances are being presented. "Expansions" shows how many times a node has been expanded. "Goal Tests" shows how many times it has been tested if we reached goal. "New Nodes" displays how many new nodes have been generated during the search. "Plan Length" is the length of the final plan, that was identified by the algorithm. "Time" is the time it took for the algorithm to complete. "Optimality" is a Boolean that describes if one of the optimal paths has been found.

Searches	Expansions	Goal Tests	New Nodes	Plan Length	Time (s)	Optimality
breadth_first_search	43	56	180	6	0.03	True
depth_first_graph_search	21	22	84	20	0.015	False
uniform_cost_search	55	57	224	6	0.046	True
astar_search with h_1	55	57	224	6	0.041	True
astar_search with h_ignore_preconditions	41	43	170	6	0.045	True
astar_search with h_pg_levelsum	11	13	50	6	1.129	True

Table 1 Problem 1

Searches	Expansions	Goal Tests	New Nodes	Plan Length	Time (s)	Optimality
breadth_first_search	3343	4609	30509	9	15.291	True
depth_first_graph_search	624	625	5602	619	3.59	False
uniform_cost_search	4852	4854	44030	9	13.902	True
astar_search with h_1	4852	4854	44030	9	13.247	True
astar_search with h_ignore_preconditions	1450	1452	13303	9	4.833	True
astar_search with h_pg_levelsum	86	88	841	9	179.781	True

Table 2 Problem 2

Searches	Expansions	Goal Tests	New Nodes	Plan Length	Time(s)	Optimality
breadth_first_search	13063	16544	102013	12	86.775	True
depth_first_graph_search	1292	1293	5744	875	3.526	False
uniform_cost_search	17014	17016	132148	12	51.51	True
astar_search with h_1	17014	17016	132148	12	51.817	True
astar_search with h_ignore_preconditions	6531	6533	51879	13	23.499	False

Table 3 Problem 3

Analysis

I think the two most prominent facts are that breadth_first_search and uniform_cost_search always find an optimal solution, but depth_first_graph_search does not. Depth_first_search is immensely faster in finding a solution though. There exists a trade-off. Depending on what is more important, a quick solution or an optimal one, either depth_first or the other two are better.

These results are expected as depth_first_search just follows one branch all the way down until it finds the goal or it goes on to the next branch. There is no guarantee that an optimal solution will be found (Russell and Norvig, 2002). On the other hand, as breadth_first_search goes through level by level, it is guaranteed to find an optimal solution but at a timely cost (Russell and Norvig, 2002).

For problem 1 and 2 the uninformed algorithms performed better slightly better. It can be argued that with easier problems that are lower in complexity, there is no benefit from the complexity reducing methods like A* with the heuristics. The additional computations are not worth the investment. We can see though that with increasing complexity, the algorithms with heuristics perform better than the simpler uninformed methods. Interestingly enough, the A*_seach_with_ignore_preconditions did not find the optimal path by 1, but the it was twice as fast. For more complex problems, applying this algorithm is suggested. For simpler problems, uniform_cost_search is generally performing better than breadth_first_search, at least time wise and it is advised to use it.

References

Russell, S., Norvig, P., 2002. Artificial Intelligence: A Modern Approach (2nd Edition). Prentice Hall.