Practica 3 - Parte 2 - HAND-SHAKE y CDMA

3 de octubre de 2014

Hand-Shake

- Interfaz que nos permite comunicarnos facilmente con la Impresora, ya que realiza la temporización automáticamente
- Posee dos registros, de 8 bits.
 - DATO: Registro de datos. De lectura y escritura. Es el caracter a enviar o el ultimo enviado.
 - EST: Un registro de estado.
- Los dos registros estan a partir de la posición 40h.
 - 40h = DATO
 - 41h = EST

Continuación

- El registro de estado
 - Bit 0: Linea Busy Idem Impresora
 - Bit 1: Linea Strobe Idem Impresora
 - Bit 2..6: No tienen sentido
 - Bit 7: Interrupción: 0 = Desactivada, 1 = Activada
- ¿Cuándo se dispara la interrupción? Cuando la línea BUSY se desactiva.
- Tenemos 2 maneras de utilizar el HAND-SHAKE: con interrupciones o sin interrupciones

Interrupción

- Para utilizar HAND-SHAKE con interrupciones debemos usar el modo de configuración 2 (c2)
- La interrupción que genera el HAND-SHAKE se conectará a la interrupción de nivel 2 (INT2) del PIC
- Cuando el manejador de la interrupción sea invocado. La impresora va a estar lista para recibir un caracter.

Como usar el HAND-SHAKE sin interrpciones

- El simulador debe estar en la Configuración 1
- Debemos esperar a que la impresora este lista, consultado el estado de la linea BUSY en el registro EST
- Cuando la impresora este lista, escribimos el caracter a imprimir en el registro DATO.
- ¿Qué diferencias hay con el uso de la impresora con el PIO?

```
POLL: IN AL, 41h
AND AL, 1
JNZ POLL
```

MOV AL, PROX_CAR OUT 40h, AL

Como usar el HAND-SHAKE con interrpciones

- El simulador debe estar en la configuración 2
- Debemos programar el PIC para que atienda la interrupción de nivel 2 (INT2)
- Debemos cargar la dirección de la rutina en el vector de interrupciones correspondiente
- En la rutina de la interrupción escribimos el caracter a enviar a la impresora

```
RUT_HAND:
...
MOV AL, PROX_CAR
OUT 40h, AL
...
IRET
```

Controlador de DMA

- ¿Que es DMA?
- Nos permite realizar transferencias de datos de 8 bits memoria-memoria, memoria-periférico o periférico-memoria.
- Por ser una transferencia DMA la CPU no interviene, pero si debe cederle el bus al CDMA.
- En el simulador hay que utilizar la Configuración 3 (c3).

Caracteristicas

- El simulador posee un solo canal DMA
- Puede realizar transferencias en dos modos diferentes:
 - Modo Bloque: Se enviará el bloque completo una vez iniciada la transferencia
 - Modo Bajo demanda: del periferico al que se encuentre conectado
- Cuando el CDMA termina de realizar la transferencia genera una interrupción.
- El CDMA está conectado a la línea de interrupción 3 del PIC.

Conexión

Registros

El controlador de DMA posee los siguientes registros

- CTRL: Un registro de control que nos permite configurar el funcionamiento del CDMA
- *RF*: Registro de direcciones fuente.
 - En transferencias memoria-periferico o periferico-memoria, indica la memoria de donde leer o a donde escribir.
 - En transferencias memoria-memoria, es la posición de memoria de los datos a copiar.
- RD: Registro de direcciones destino.
 - Solo tiene sentido si es memoria-memoria.
- CONT: Registro Contador. Indica el número de bytes a transferir
- ARRANQUE: Registro de Arranque. Accediendo a este registro, se inicia la transferencia.

Registro de Control

- El formato del registro CTRL depende si lo estamos leyendo o escribiendo.
- En lectura
 - STOP:
 - 0: Transferencia en Curso
 - 1: Transferencia detenida por la CPU
 - *TC*:
 - 0: Transferencia no finalizada
 - 1: Transferencia ya finalizada

• En escritura

- STOP:
 - 0: No tiene sentido
 - 1: Detener momentaneamente la transferencia en curso

Registros

- TT: Tipo de Transferencia
 - 0: Transferencia Periferico-Memoria o Memoria-Periferico
 - 1: Transferencia Memoria-Memoria
- ST: Sentido de la Transferencia (solo TT=0)
 - 0: Sentido Periférico-Memoria
 - 1: Sentido Memoria-Periferico
- MT: Modo de Transferencia
 - 0: Por demanda
 - 1: Por Bloques

Direccionamiento

- Los registros se ubican a partir de la dirección 50h
 - *RF*: es de 16 bits
 - RFL: 050h parte baja de RF
 - RFH: 051h parte alta de RF
 - CONT: es de 16 bits
 - CONTL: 052h parte baja de CONT
 - CONTH: 053h parte alta de CONT
 - RD: es de 16 bits
 - RDL: 054h parte baja de RD
 - RDH: 055h parte alta de RD
 - CTRL: 056h
 - ARRANQUE: 057h

¿Cómo lo usamos?

- Demasiadas opciones, demasiadas configuraciones...
- Veamos para que lo vamos a utilizar en el simulador...
 - Para copiar una parte de la memoria a otra posición
 - Para mandar caracteres a la impresora a través del HAND-SHAKE

Caracteristicas

Registros Uso

- Configuramos el registro de Control
 - Tipo Transferencia: Memoria-Memoria
 - Modo Transferencia: Bloques
- Configuramos el registro RF con la posición origen de la memoria
- Configuramos el registro RD con la posición destino de la memoria
- Configuramos el registro CANT con la cantidad de bytes a transferir
- Configuramos el PIC y una manejador de interrupción para saber cuando la transferencia terminó.
- Acceder al registro ARRANQUE para iniciar la transferencia

Ejemplo Memoria-Memoria

Veamos el ejercicio 10 de la práctica 3

Caracteristicas

Registros Uso

Memoria-Periferico

- Configuramos el registro de Control
 - Tipo Transferencia: Memoria-Periferico
 - Sentido Transferencia: Memoria-Periferico
 - Modo Transferencia: bajo demanda
- Configuramos el registro RF con la posición origen de la memoria
- Configuramos el registro CANT con la cantidad de bytes a transferir
- Configuramos el PIC y una manejador de interrupción para saber cuando la transferencia terminó.
- Habilitamos el uso de interrupciones del HAND-SHAKE (conectado al CDMA)
- Acceder al registro ARRANQUE para iniciar la transferencia

Introducción Caracteristica Conexión Registros Uso

Ejemplo Memoria-Periferico

Veamos el ejercicio 11 de la práctica 3