

معسكر علم البيانات و تعلم الآلة

16 - 11 - 2022

نبذة عن المدرب

محتوى المعسكر

الأسبوع السادس Final Project	الأسبوع الخامس Modeling Interpretation in Action	الأسبوع الرابع EDA & FE in Action	الأسبوع الثالث Machine Learning	الأسبوع الثاني Data Analysis and Visualization	الأسبوع الأول Getting Started	اليوم
Final Project	Models Families: Distance & Time Series	DS Knowledge Catalog	Intro to ML	NumPy	Intro to DS	الأدد
Final Project	Models Evaluation: Regression & Classification	EDA1: Univariate & Multivariate Analysis	Supervised ML	Pandas	Git & Github	الإثنين
Final Project	Optimization Techniques	EDA2: Association Analysis & Hypothesis Construction	Supervised ML	Matplotlib	Python Review	الثلاثاء
Final Project	NLP and Text Mining Basics	Features Engineering: Scaling, Merging & Discretization	Unsupervised ML	Seaborn	Python Review	الأربعاء
Presentation	Neural Networks Basics	Models Families: Continuous & Categorical	Unsupervised ML	Plotly	Python Review	الخميس

**ملاحظة: قد تتغير المواضيع أو أوقات طرحها بناء على تقدم الطلاب.

هندسهٔ وتحویر المدخلات

ما هي مرحلة هندسة المدخلات؟

هي مرحلة يتم فيها نقل البيانات من شكلها الخام إلى شكل يقدم معلومة أفضل ويخدم الهدف وتساهم هذه المرحلة في رفع دقة النتائج

ما هي مرحلة هندسة المدخلات؟

تجيب هذه المرحلة على الأسئلة التالية:

- 1. ما هو أفضل تمثيل للبيانات لاستنتاج حل للمشكلة التي نعمل عليها؟
- 3. كيف نستطيع تحويل المدخلات إلى صورة تستطيع فهمها الناتج المستهدفة؟

أهداف مرحلة هندسة المدخلات

تخدم هذه المرحلة هدفين رئيسيين:

- 1. تمثيل أفضل للبيانات
- 3. تحسين أداء النماذج

من أشكال هندسة المدخلات

إعادة ضبط المقياس Scaling

ومن أنواع إعادة ضبط المقياس:

- Min-Max scaling .1
- Standardization .2
- Capping (Floor & Ceiling) .3
 - Quantile Transformers .4

Min-Max Scaling

النماذج الهيكلية والشجرية قلّما تتأثر بالمقياس الموحد وما عداها بالغالب يتأثر مثل & SVM LDA

نتيچة ال-Min-Max Scalar:

- تحويل الخاصية العددية إلى أرقام بين 0 و 1
- تفادي التحيز عن طريق توحيد القياس للخواص العددية

$$x_{scaled} = rac{x - \min(x)}{\max(x) - \min(x)}$$

Min-Max Scaling

مثال لمتغير قبل وبعد تطبيق Min-Max Scalar

Min-Max Scaling

مثال يوضح الفائدة من هذه الخطوة لمتغير قبل وبعد تطبيق Min-Max Scalar

المصدر: https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Standardization

النماذج الهيكلية والشجرية قلّما تتأثر بالمقياس الموحد وما عداها بالغالب يتأثر مثل , & SVM ، LDA. كذلك يتأثر بالحالات الشاذة لأنه يتضمن تقدير المتوسط التجريبي والانحراف المعياري للخواص

نتيجة الStandarization:

- استبعاد المعدل ومن ثم ربطها بالتباين لقيم الخاصية التي ينمي لها

$$_{ au}=rac{x-\mu}{x-\mu}$$
 - تفادي التحيز عن طريق توحيد القياس للخواص العددية

Standardization

مثال يوضح الفائدة من هذه الخطوة لمتغير قبل وبعد تطبيق Standarization

المصدر: https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

التجميع والتقطيع Merging & Disretization

ومن أنواع التجميع والتقطيع:

- Binning .1
- Dimensionality Reduction .2
 - One-hot encoding .3
 - Aggregation Functions .4

Binning

هو ببساطة عملية تحويل الخواص العددية إلى تصنيفات

وتنقسم إلى:

- تجزئة غير موجهة Unsupervised Binning- تقطيع الأرقام إلى فئات متساوية
- تجزئة موجهة Supervised Binning تقطيع مبني على الإنتروبيا أو القصور الحراري

Binning

ايش عكس الBinning؟

عکسها یسمی Encoding

Dimensionality Reduction

عملية تقليل المتغيرات العشوائية أو الخواص للحصول على المتغيرات الرئيسية فقط

نلجاً لتقنيات تقليل المتغيرات العشوائية لأن كثرة المتغيرات العشوائية يتسبب في ضعف ضعف أداء نماذج تعلم الآلة

Dimensionality Reduction

من تقنيات تقليل الأبعاد أو تقليل المتغيرات العشوائية:

- اختيار خواص محددة بسبب وجود علاقة قوية لها مع العنصر المُتوقع

- تحليل العنصر الرئيسي

تحليل العنصر الرئيسي PCA

عملية تحليل العناصر الرئيسية هي عملية تعلم غير موجهة تقوم بـ:

- تحسب العلاقة بين الخواص
- تحدد الخواص المتماثلة بالتأثير وتستهدفها للاستبعاد
- تتضمن تحويل مجموعة من المتغيرات العشوائية إلى مجموعات عشوائية جديدة تسمى العناصر الرئيسية Principal Components

تحليل العنصر الرئيسي PCA

افتراضات تحليل العنصر الرئيسية

- تفترض وجود علاقة خطية بين المتغيرات
- تفترض أن المتغير الرئيسي ذو التباين القليل هي متغيرات ضوضائية يتم الاستغناء عنها
 - جميع المتغيرات لها نسب قياس متقاربة
 - تفترض أنه تم استبعاد القيم الشاذة

مرجع لجميع أفكار هندسة الخواص لتجهيزها لنماذج تعلم الآلة

https://github.com/alicezheng/feature-engineering-book

للتسليم

أنواع الترميز:

Binary encoding .4

One-hot encoding .5

Target Mean encoding .6

Label encoding .1

Ordinal encoding .2

Frequency encoding .3

المقارنة بين أنواع الترميزات من حيث:

طريقة الترميز، مثال للترميز، فرضيات نوع الترميز، حالات لا يناسب فيها استخدام نوع الترميز

Spadily Lucius