My HoTT notes

12 June 2020 - ongoing

Searchable
$$A:\equiv\prod p:A o\mathbf{2}.\left(\sum x:A.p\;x=\mathtt{tt}\right)+\prod x:A.p\;x=\mathtt{ff}$$

In words: the type A is searchable if for every boolean predicate p we can find an element of A that satisfies p or else prove that no element of A satisfies p.

Theorem 0.1. The type Searchable A can be of any h-level.

Proof. p = tt and p = tf are propositions, the summands are disjoint, and dependent products preserve h-level (well, unless the domain is $\mathbf{0}$), so the h-level is determined by A.

If A is contractible, then Searchable A is contractible.

If A is a proposition, then Searchable A is a proposition.

If A is of h-level n, then so is Searchable A.

Hope my mental techniques for h-levels work:)

MerelySearchable $A := \forall p : A \to \mathbf{2}. (\exists x : A.p \ x = \mathtt{tt}) \lor \forall x : A.p \ x = \mathtt{ff}$

Theorem 0.2. isProp (MerelySearchable A)

Proof. We use the truncated logic.

Theorem 0.3. Searchable types include: 0, 1, 2, all finite types and the interval.

If A and B are searchable, so are $A \times B$ and A + B.

If A is searchable and $B:A\to\mathcal{U}$ is a family of searchable types, $\sum x:A.B\ x$ is also searchable.

Proof. For finite types: we assume that "finite" means "there is a list of all the elements". So, use it to check every element, and poof – done.

The interval is contractible, thus equivalent to 1, so it's searchable.

To search A + B first search A, then search B.

To search $A \times B$ and $\sum x : A.B \ x$ search for an a, and when looking for it, search for a b that can be paired with it.

Theorem 0.4. Searchability of \mathbb{N} is taboo.

In general, preservation of searchability for \prod , \mathbb{W} and \mathbb{M} should be taboo.

Proof. N is the primordial searchability taboo – how can we search infinitely many numbers in a finite time (besides checking every next number twice as fast as the previous one)?

W can be used to define \mathbb{N} , so its searchability should be taboo.