send memes comments to tomachello3@gmail.com

amortised cost example. you're given an n bit register, and the operation $inc: x \mapsto x + 1$. it's reasonable to say $cost(inc, x) = \#\{lsb \ bits = 1\}$. so at worst cost = n. on the other hand, $\mathbb{E}cost = \sum k/2^k$ is small. but also note the following: if you had cost = k then it will take a exponential time for cost to equal k again. one costly operation for a bunch of cheap ones.

Tarjan's potential method let $\phi: S \mapsto \mathbb{Z}_{\geq 0}$ assign structures a non-negative integer. if $a = t + \Delta \phi$ where t is the time it takes to make the change ΔS . then $\sum a + \phi(S_0) \geq t_{\text{total}}$.

above example contd. let $\phi = \text{total } \#1$'s in register. if cost = k then t = k but $\Delta \phi = 1 - k$ (or -k if k = n) so that a = 1 and $t_{\text{total}} \leq \#\text{operations} + n$.

credit method give each item some dollars. if an operation costs t, it has to be payed for by the items. if we can make this work, $t_{\text{total}} \leq \text{starting total}$ money.

in B_n we have 2^n vertices and height n. the root has n edges and there's $\binom{n}{k}$ nodes of depth k. say we have $N = \sum a_j 2^j$ keys. we keep a B_j if $a_j = 1$. it costs 1 to make two B_i 's into one B_{i+1} so it costs $\log_2 N$ to meld two heaps of size at most N or insert a new key. it costs $\log_2 N$ to find min, and also to delete it (how?).

algo2 notes https://www.cs.technion.ac.il/ hamilis/Algorithms2.pdf data structures 2 notes https://www.cs.technion.ac.il/ itai/Courses/ds2/lectures/lecture.html