Domain Name System DNS

AULA 10

Prof. Carlos Louzada

Introdução

- Em uma rede, máquinas possuem dois endereços, um endereço **físico**, definido pela placa de rede, e um endereço **lógico**, tipicamente definido pelo protocolo operando na camada de rede do modelo OSI.
- Na pilha TCP/IP endereços lógicos são chamados de endereço IP.
- Endereços IPs não são fáceis de serem recordados quanto nomes e por isso foi criado o sistema DNS.

O que é DNS?

- O Sistema de Nomes de Domínio, mais conhecido pela nomenclatura em Inglês Domain Name System (DNS), é um sistema hierárquico e distribuído de gestão de nomes para computadores, serviços ou qualquer máquina conectada à Internet ou a uma rede privada.
- Faz a associação entre várias informações atribuídas a nomes de domínios e cada entidade participante.
- A sua utilização mais convencional associa nomes de domínios mais facilmente memorizáveis a endereços IP numéricos, necessários à localização e identificação de serviços e dispositivos, processo esse denominado por: resolução de nome.

Porta padrão

 Por padrão, o DNS usa o protocolo *User Datagram Protocol* (UDP) na porta 53 para servir as solicitações e as requisições.

Arquitetura

- O DNS apresenta uma arquitetura cliente/servidor, podendo envolver vários servidores DNS na resposta a uma consulta.
- O servidor DNS resolve nomes para os endereços IP e de endereços IP para os nomes respectivos, permitindo a localização de hosts num determinado domínio.

hosts = qualquer equipamento ativo na rede.

Berkeley Internet Name Domain BIND

- É o servidor para o protocolo DNS mais utilizado na Internet, especialmente em sistemas do tipo Unix, onde ele pode ser considerado um padrão de facto.
- Foi criado por quatro estudantes de graduação, membros de um grupo de pesquisas em ciência da computação da Universidade de Berkeley, e foi distribuído pela primeira vez com o sistema operacional 4.3BSD.
- O programador Paul Vixie, enquanto trabalhava para a empresa DEC, foi o primeiro mantenedor do BIND. Atualmente o BIND é suportado e mantido pelo *Internet Systems Consortium*.

O BIND geralmente encontra-se	localizado no	servidor DNS	primário.
-------------------------------	---------------	--------------	-----------

- O servidor DNS secundário é uma espécie de cópia de segurança do servidor DNS primário.
- Assim, é uma parte necessária para quem quer usar a internet de uma forma mais fácil, evita que hackers roubem dados pessoais.

Servidores-Raiz

- Existem centenas de servidores-raiz DNS (root servers) no mundo todo, agrupados em 13 zonas DNS raiz, das quais sem elas a Internet não funcionaria.
- Dez estão localizados nos Estados Unidos da América;
- Dois na Europa; e
- Um na Ásia.
- Para aumentar a base instalada destes servidores foram criadas réplicas localizadas por todo o mundo, inclusive no Brasil desde 2003.

Hierarquia

Devido ao tamanho da Internet, armazenar todos os pares domínio - endereço IP em um único servidor DNS seria inviável por questões de escalabilidade, que incluem:

- **Disponibilidade:** se o único servidor de DNS falhasse, o serviço se tornaria indisponível para o mundo inteiro;
- Volume de tráfego: o servidor deveria tratar os pedidos DNS do planeta inteiro;
- Distância: grande parte dos usuários estaria muito distante do servidor, onde quer que ele fosse instalado, gerando grandes atrasos para resolver pedidos DNS;
- Manutenção do banco de dados: o banco de dados deveria armazenar uma quantidade de dados enorme e teria que ser atualizado com uma frequência muito alta (assim que um novo domínio fosse associado a um endereço IP).

Divisão do DNS

Os servidores DNS se dividem nas seguintes categorias:

- Servidores-raiz;
- Servidores de domínio de topo;
- Servidores com autoridade.

Servidores Raiz

- No topo da hierarquia estão os 13 servidores raiz.
- Um servidor-raiz (*root name server*) é um servidor de nome para a zona raiz do DNS (Domain Name System).
- A sua função é responder diretamente às requisições de registros da zona raiz e responder a outras requisições retornando uma lista dos servidores de nome designados para o domínio de topo apropriado.
- Os servidores raiz são parte crucial da Internet porque são o primeiro passo em resolver nomes para endereços IP, esses últimos usados para comunicação entre hosts.

Servidores de domínio de topo top-level domain

 Cada domínio é formado por nomes separados por pontos. O nome mais à direita é chamado de domínio de topo.

Ex.: .com, .org, .net, .edu, .inf, .gov.

- Cada servidor de domínio de topo conhece os endereços dos servidores autoritativos que pertencem àquele domínio de topo, ou o endereço de algum servidor DNS intermediário que conhece um servidor autoritativo.
- Há também terminações orientadas a países, chamadas de Código de País para Domínios de Topo/Primeiro Nível (*Country Code Top Level Domains*). Ex.: .br para o Brasil, .ar para a Argentina, .fr para a França e assim por

diante. Há também combinações, como .com.br e .blog.br.

Servidores com autoridade

- O servidor com autoridade de um domínio possui os registros originais que associam aquele domínio a seu endereço de IP.
- Toda vez que um domínio adquire um novo endereço, essas informações devem ser adicionadas a pelo menos dois servidores autoritativos.
- Um deles será o servidor autoritativo principal e o outro, o secundário. Isso é feito para minimizar o risco de, em caso de erros em um servidor DNS, perder todas as informações originais do endereço daquele domínio.

Comando

 Para um exemplo real de funcionamento do protocolo DNS, você pode usar o comando nslookup para descobrir o endereço IP de um determinado servidor. Por exemplo:

C:\nslookup www.google.com.br

CUIDADO!

Você precisa escolher o seu serviço com cuidado - nem todos os provedores serão necessariamente melhores do que o seu ISP

Seu ISP atribuirá
servidores DNS sempre
que você se conectar à
internet, mas nem
sempre é a melhor
escolha de servidor
DNS disponível.

Servidores DNS lentos podem causar um atraso antes que os sites comecem a carregar, e se o seu servidor às vezes cair, você não conseguirá acessar nenhum site.

DNS Públicos

- Mudar para um servidor DNS público gratuito pode fazer uma diferença real, com navegação mais responsiva e registros longos de 100% do tempo de atividade, o que significa que há muito menos chance de problemas técnicos.
- Alguns serviços também podem bloquear o acesso a sites de phishing ou infectados, e alguns oferecem filtragem de conteúdo para manter seus filhos longe do pior da web.

Algumas coisas a serem observadas:

- DNS padrão vs. DNS de terceiros Quando você tem serviço de Internet, seu provedor de serviços de Internet (ISP) tem um DNS padrão, que sua rede usa para se conectar à web. Os ISPs podem coletar dados sobre clientes e suas atividades na Internet. Um DNS de terceiros pode fazer o mesmo, embora seja mais difícil atribuir a conexão a indivíduos ou famílias específicas.
- DNS gratuito vs. DNS pago além da óbvia diferença financeira entre um DNS gratuito e pago, as opções gratuitas geralmente têm menos recursos. Um DNS pago terá segurança mais avançada e funcionalidade de desempenho, bem como melhor suporte ao cliente e mais opções de personalização. Mas de modo geral, um DNS gratuito lhe fornecerá a maioria das finalidades.

DNS público vs. DNS privado

- Um DNS público está disponível para a população em geral, e normalmente vem do seu provedor de serviços de Internet ou de um provedor DNS dedicado.
- Já um DNS privado é normalmente usado por empresas para fornecer aos funcionários acesso mais fácil a sites ou endereços IP internos.
- Normalmente, você pode usar um DNS público em casa e em um DNS público ou privado no trabalho.

DNS Públicos

- OpenDNS;
- Cloudflare;
- DNS Google;
- QUAD9;
- AdGuard DNS;
- CleanBrowsing

OpenDNS

 Propriedade da Cisco, o OpenDNS tem duas opções gratuitas: Family Shield e Home. O Family Shield é bom para pais que querem ter certeza de que seus filhos não estão acessando conteúdos impróprios. Já o Home se concentra na segurança e no desempenho da Internet.

- DNS primário: 208.67.222.222

- DNS secundário: 208.67.220.220

Endereços IPv6 também estão disponíveis:

- DNS primário: 2620: 119: 35 :: 35

- DNS secundário: 2620: 119: 53 :: 53

Cloudflare

- O Cloudflare desenvolveu o 1.1.1.1 para ser o "serviço DNS mais rápido do mundo" e nunca registrará seu endereço IP, nunca venderá seus dados e nunca usará seus dados para direcionar anúncios.
 - DNS primário: 1.1.1.1
 - DNS secundário: 1.0.0.1

Eles também têm servidores DNS públicos IPv6:

- DNS primário: 2606: 4700: 4700 :: 1111
- DNS secundário: 2606: 4700: 4700 :: 1001

DNS do Google

- O produto DNS do próprio Google também é gratuito. Ele se concentra na velocidade, segurança e validade dos resultados, de acordo com a empresa. Ele oferece apenas resolução de DNS e cachê, e não há bloqueio de site com DNS público.
 - DNS primário: 8.8.8.8
 - DNS secundário: 8.8.4.4

8.8.8.8

O Google também oferece versões IPv6:

- DNS primário: 2001: 4860: 4860 :: 8888
- DNS secundário: 2001: 4860: 4860 :: 8844

QUAD9

 O Quad9 possui servidores DNS públicos gratuitos que protegem seu computador e outros dispositivos de ameaças cibernéticas, bloqueando imediatamente e automaticamente o acesso a sites inseguros e sem armazenar seus dados pessoais.

- DNS primário: 9.9.9.9

- DNS secundário: 149.112.112.112

Existem também servidores DNS IPv6 Quad 9:

- DNS primário : 2620: fe :: fe

- DNS secundário : 2620: fe :: 9

AdGuard DNS

- O AdGuard DNS tem dois conjuntos de servidores DNS, os quais bloqueiam anúncios em jogos, vídeos, aplicativos e páginas da web. O conjunto básico de servidores DNS são chamados de servidores "Padrão" e bloqueiam não apenas anúncios, mas também sites de malware e phishing:
 - DNS primário: 176.103.130.130
 - DNS secundário: 176.103.130.131

IPv6 também é compatível:

- DNS primário: 2a00: 5a60 :: ad1: Off
- DNS secundário: 2a00: 5a60 :: ad2: Off

CleanBrowsing

- A CleanBrowsing tem três opções de servidores DNS públicos gratuitos: um filtro de segurança, um filtro adulto e um filtro familiar. Estes são os servidores DNS para o filtro de segurança, o mais básico dos três que é atualizado a cada hora para bloquear sites de malware e phishing:
 - DNS primário: 185.228.168.9
 - DNS secundário: 185.228.169.9

Compatibilidade IPv6:

- DNS primário: 2a0d: 2a00: 1 :: 2
- DNS secundário: 2a0d: 2a00: 2 :: 2

Referências Bibliograficas

 https://www.oficinadanet.com.br/internet/32378-os-6-melhoresservidores-dns-publicos-de-2020

• Torres, Gabriel. Redes de Computadores, 2ª edição. Nova Terra, 2014.