Assignment 10 Chapter 9 Forecasting

EXERCISES

- For an AR(1) model with $Y_t = 12.2$, $\phi = -0.5$, and $\mu = 10.8$, 9.1
 - (a) Find P,(1).
 - (b) Calculate $Y_t(2)$ in two different ways. (c) Calculate $Y_t(10)$.
- 9.2 Suppose that annual sales (in millions of dollars) of the Acme Corporation follow the AR(2) model $Y_t = 5 + 1.1Y_{t-1} - 0.5Y_{t-2} + e_t$ with $\sigma_e^2 = 2$.
 - (a) If sales for 2005, 2006, and 2007 were \$9 million, \$11 million, and \$10 million, respectively, forecast sales for 2008 and 2009.
- 9.3 Suppose that the monthly simple yield of a bond follows the following first-order autoregressive model

$$R_t = 0.2R_{t-1} + a_t$$

where a_t 's are white noises with $\sigma_a = \sqrt{var(a_t)}$. It is known that $R_{100} = 0.01$. Please

- calculate the forward 1-step and forward 2-step forecasts with T = 100 as (i) the forecasting origin;
- (ii) calculate standard deviation of the corresponding prediction error;
- calculate the autocorrelation coefficient of this return series with the (iii) interval 1 and 2.
- 9.13 Simulate an ARMA(1,1) process with $\phi = 0.7$, $\theta = -0.5$, and $\mu = 100$. Simulate 50 values but set aside the last 10 values to compare forecasts with actual values.
 - (a) Using the first 40 values of the series, find the values for the maximum likelihood estimates of ϕ , θ , and μ .
 - (b) Using the estimated model, forecast the next ten values of the series. Plot the series together with the ten forecasts. Place a horizontal line at the estimate of the process mean.
 - (c) Compare the ten forecasts with the actual values that you set aside.
 - (d) Plot the forecasts together with 95% forecast limits. Do the actual values fall within the forecast limits?
 - (e) Repeat parts (a) through (d) with a new simulated series using the same values of the parameters and same sample size.

- 9.14 Simulate an IMA(1,1) process with $\theta = 0.8$ and $\theta_0 = 0$. Simulate 35 values, but set aside the last five values to compare forecasts with actual values.
 - (a) Using the first 30 values of the series, find the value for the maximum likelihood estimate of θ.
 - (b) Using the estimated model, forecast the next five values of the series. Plot the series together with the five forecasts. What is special about the forecasts?
 - (c) Compare the five forecasts with the actual values that you set aside.
 - (d) Plot the forecasts together with 95% forecast limits. Do the actual values fall within the forecast limits?
 - (e) Repeat parts (a) through (d) with a new simulated series using the same values of the parameters and same sample size.

Addition problem: Consider the following time series model:

$$Y_t = 0.3Y_{t-1} - 0.02Y_{t-2} + \varepsilon_t + 0.6\varepsilon_{t-1} - 0.07\varepsilon_{t-2}^2$$

where $arepsilon_t$ is i.i.d with the standard normal distribution.

Questions:

- 1) Reduce the above model and write down its reduced form.
- 2) Assume $Y_T=0.14$, $\varepsilon_T=0.03$, what is the two-step-ahead forecast of Y_T and the corresponding 95% prediction interval for this forecast. You need to keep 2 non-zero digits after the decimal point for the calculation.

(Hints:

$$\hat{Y}_{T}(h) \pm 1.96(1 + \psi_{1}^{2} + \ldots + \psi_{h-1}^{2})^{1/2})$$
.

Deadline: before class next Tuesday (30, Nov)