Generalized Matrix Multiplication for Tenstorrent Wormhole Architecture

Overview

The custom_dm_matmul2.py implementation provides a generalized matrix multiplication solution that can handle arbitrarily large matrices while fully utilizing the Tenstorrent Wormhole architecture. This document explains the key improvements and architectural decisions.

Tenstorrent Tile Architecture

According to the Tenstorrent Metalium Guide, Tenstorrent operates on **32-element tiles** as the fundamental compute unit. This native tile-based computing approach is crucial for optimal performance:

32-Element Tile Benefits

- Hardware Optimized: Each tile is processed by specialized compute engines
- Memory Efficient: Tiles fit optimally in L1 cache and SRAM
- SIMD Operations: Vector operations on 32-element chunks
- Network Efficiency: Tiles are the natural unit for NoC transfers

Tile Alignment Strategy

```
# Ensure matrix dimensions are aligned to 32-element boundaries
def align_to_tile_size(dim, tile_size=32):
    return ((dim + tile_size - 1) // tile_size) * tile_size

# Example: 100x100 matrix becomes 128x128 (4x4 tiles)
M_aligned = align_to_tile_size(100) # 128
```

Key Improvements Over Original Implementation

1. Dynamic Configuration

- Automatic Grid Sizing: Calculates optimal grid dimensions based on matrix sizes
- Adaptive Block Factors: Determines optimal tiling based on available cores and memory
- Scalable Architecture: Supports matrices from 32×32 to 1024×1024 and beyond (32-element tile aligned)

2. Intelligent Tiling Strategy

```
def calculate_optimal_block_factors(matrix_dims, grid_dims,
max_tile_size=32):
    M, K, N = matrix_dims
    GY, GX = grid_dims
```

```
# Distribute work across available cores
# Tenstorrent operates on 32-element tiles as fundamental compute
units

M_block = max(1, min(M // GY, max_tile_size))
N_block = max(1, min(N // GX, max_tile_size))
K_block = max(1, min(K, max_tile_size))
```

Benefits:

- Memory Efficient: Respects core memory constraints
- Load Balanced: Distributes work evenly across cores
- Cache Friendly: Optimizes for L1/L2 cache utilization

3. Optimal Grid Calculation

```
def calculate_grid_size(matrix_dims, max_cores_per_dim=8):
    M, K, N = matrix_dims

# For square matrices: use square grids
    if abs(M - N) <= max(M, N) * 0.1:
        total_cores = min(M * N // (64 * 64), max_cores_per_dim *
max_cores_per_dim)
        grid_size = int(math.sqrt(total_cores))

# For rectangular matrices: use rectangular grids
else:
        aspect_ratio = M / N
        # Calculate based on matrix aspect ratio</pre>
```

Features:

- Aspect Ratio Aware: Adapts grid shape to matrix shape
- Core Utilization: Maximizes use of available cores
- Wormhole Optimized: Respects architecture constraints

Architecture Diagram

```
subgraph "Circular Buffers"
                     LHS_CB["lhs_cb
LHS Tiles"l
                     RHS_CB["rhs_cb
RHS Tiles"l
                     OUT_CB["out_cb
Output Accumulation"]
            end
        end
        subgraph "Network-on-Chip (NoC)"
            NOC["High-Bandwidth
Interconnect"]
        end
        subgraph "Memory Hierarchy"
            L2["L2 Cache
Shared"1
            L1["L1 Cache
Per Core"]
            SRAM ["SRAM
Per Core"]
        end
    end
    subgraph "External Memory"
        DRAM ["DDR/HBM
Main Memory"]
    end
    subgraph "Data Streams"
        LHS_Stream["LHS Stream
(M \times K)"]
        RHS_Stream["RHS Stream
(K \times N)"]
        OUT_Stream["Output Stream
(M \times N)"]
    end
    DRAM --> L2
    L2 --> L1
    L1 --> SRAM
    SRAM --> LHS_CB
    SRAM --> RHS_CB
    SRAM --> OUT_CB
    LHS_Stream --> DM_LHS
    RHS_Stream --> DM_RHS
    COMP --> OUT_Stream
    NOC --> DM_LHS
    NOC --> DM_RHS
    NOC --> COMP
```

Algorithm Flow

1. Initialization Phase

```
# Calculate optimal configuration
matrix_dims = (M, K, N)
grid_dims = calculate_grid_size(matrix_dims, max_cores_per_dim)
block_factors = calculate_optimal_block_factors(matrix_dims, grid_dims,
max_tile_size)

# Calculate iteration counts
M_iters = (M + M_block - 1) // M_block
N_iters = (N + N_block - 1) // N_block
K_iters = (K + K_block - 1) // K_block
```

2. Compute Thread Execution

```
flowchart TD
   Start([Start]) --> M_Loop["for m_iter in range(M_iters)"]
   M_Loop --> N_Loop["for n_iter in range(N_iters)"]
   N_Loop --> Init_Out["Initialize output accumulation"]
   Init_Out --> K_Loop["for k_iter in range(K_iters)"]
   K Loop --> LHS Pop["lhs shard = lhs cb.pop()"]
   LHS_Pop --> RHS_Pop["rhs_shard = rhs_cb.pop()"]
   RHS_Pop --> Compute["partial = lhs_shard @ rhs_shard"]
   Compute --> Accumulate["current += partial"]
   Accumulate --> K_Check{"k_iter < K_iters-1?"}</pre>
   K_Check -->|Yes| K_Loop
   K_Check -->|No| N_Check{"n_iter < N_iters-1?"}</pre>
   N_Check -->|Yes| N_Loop
   N_Check -->|No| M_Check{"m_iter < M_iters-1?"}
   M_Check -->|Yes| M_Loop
   M_Check -->|No| End([End])
```

3. Data Movement Patterns

LHS Data Movement (dm_lhs)

- **Source Cores**: Leftmost column (cx == 0)
- Target Cores: All cores in the same row
- Pattern: Row-wise multicast
- Optimization: Single fetch, multiple recipients

RHS Data Movement (dm_rhs)

• **Source Cores**: Topmost row (cy == 0)

• Target Cores: All cores in the same column

• Pattern: Column-wise multicast

• Optimization: Single fetch, multiple recipients

Performance Optimizations

1. Memory Hierarchy Optimization

• L1 Cache: Store frequently accessed tiles

• L2 Cache: Shared across cores for data reuse

• SRAM: Per-core storage for active computation

• Circular Buffers: Double buffering for smooth execution

2. Network-on-Chip Utilization

• Multicast Operations: Efficient data distribution

• Pipelined Transfers: Overlap computation and communication

• Bandwidth Optimization: Minimize redundant transfers

3. Load Balancing

• **Dynamic Tiling**: Adapts to matrix dimensions

• Core Utilization: Maximizes parallel execution

• Memory Distribution: Even load across cores

Scalability Features

1. Multi-Chip Support

```
# Future extension for multi-chip scaling
def calculate_multi_chip_grid(total_cores, chips_available):
    cores_per_chip = total_cores // chips_available
    return distribute_cores_across_chips(cores_per_chip, chips_available)
```

2. Memory Scaling

• Hierarchical Memory: L1 → L2 → HBM → DDR

• Data Streaming: Continuous data flow

• Cache Coherence: Efficient data sharing

3. Compute Scaling

• Spatial Parallelism: Multiple cores working simultaneously

• Temporal Parallelism: Pipelined execution

• Instruction Parallelism: SIMD operations within cores

Test Cases

The implementation includes comprehensive test cases:

Matrix Size Categories

- 1. Small (32×32, 64×64): Single core optimization with 32-element tiles
- 2. Medium (128×128, 256×256): Multi-core utilization
- 3. Large (512×512): Full grid utilization
- 4. Very Large (1024×1024): Maximum scaling
- 5. Rectangular: Aspect ratio optimization (32-element aligned)
- 6. Extreme Aspect Ratios: Edge case handling (32-element aligned)

Performance Metrics

- Frobenius Relative Error: Matrix-specific accuracy
- L2 Relative Error: Alternative accuracy measure
- Absolute Error: Raw difference magnitude
- PCC (Pearson Correlation Coefficient): Statistical validation

Usage Examples

Basic Usage

```
# Automatic configuration
lhs = torch.randn(512, 256)
rhs = torch.randn(256, 1024)
out = torch.zeros(512, 1024)
generalized_matmul(lhs, rhs, out)
```

Custom Configuration

```
# Manual configuration
grid_dims = (4, 4)
block_factors = [(32, 16), (16, 64), (32, 64)]
generalized_matmul(lhs, rhs, out, block_factors, grid_dims)
```

Performance Testing

```
# Comprehensive testing
run_matmul_test(1024, 1024, 1024, max_cores_per_dim=8, max_tile_size=128)
```

Future Enhancements

1. Multi-Chip Scaling

- Automatic chip detection and utilization
- Inter-chip communication optimization
- Load balancing across multiple chips

2. Advanced Optimizations

• **Mixed Precision**: FP16/FP32 optimization

• Sparse Matrices: Sparse matrix support

• Batch Operations: Multiple matrix multiplication

3. Compiler Integration

• Auto-Tuning: Automatic parameter optimization

• Profile-Guided: Runtime performance feedback

• JIT Compilation: Just-in-time optimization

Conclusion

The generalized matrix multiplication implementation provides:

• Scalability: Handles matrices from 64×64 to 1024×1024+

• Efficiency: Optimal core and memory utilization

• Flexibility: Automatic and manual configuration options

• Robustness: Comprehensive error checking and validation

• Performance: Wormhole architecture optimization

This implementation serves as a foundation for high-performance matrix operations on the Tenstorrent Wormhole architecture, enabling efficient computation of arbitrarily large matrices while maximizing hardware utilization.