Processos Não Estacionários Testes de Raiz Unitária

Bibliografia Básica:

- Enders, W. *Applied Econometric Time Series*. Cap. 4.
- Bueno, R. L. S. *Econometria de Séries Temporais*. Cap. 4.
- Box, G.E., Jenkins, G. M., Reinsel, G.C. & Ljung, G. M.(2016). Time series analysis: forecasting and control. Cap. 4.
- Morettin, P. A. *Análise de Séries Temporais*. Cap. 5.

Processos Não Estacionários

Processo não estacionário é um processo cuja média e/ou variância serão dependentes do tempo.

Processos Estocásticos Integrados

Processo estocástico integrado: processo estocástico que pode se tornar estacionário por meio da diferenciação.

Se um processo se torna estacionário ao se tomar sua primeira diferença dizemos que este processo é integrado de ordem um, ou I(1).

Se o processo somente se tornar estacionário na d-ésima diferença dizemos que este é um processo integrado de ordem d, ou I(d).

Um processo que não precisa ser diferenciado para se tornar estacionário é integrado de ordem zero, ou I(0).

Modelo Random Walk ou Passeio Aleatório

Um passeio aleatório é dado por:

$$Y_t = \delta + Y_{t-1} + \epsilon_t$$

em que $\epsilon_t \sim RB(0, \sigma_{\epsilon}^2)$. Se:

- δ ≠ 0: passeio aleatório com drift (ou deslocamento ou tendência estocástica). Neste caso, valor médio e variância são dependentes do tempo.
- $\delta = 0$: tendência estocástica pura. Neste caso, variância é dependente do tempo, ou seja,

$$E(Y_t) = E(Y_{t-1} + \epsilon_t) = \ldots = E(Y_0 + \sum_{t=1}^{T} \epsilon_t) = Y_0$$

Temos que a esperança é constante e independe do tempo.

$$Var(Y_t) = E\{(Y_t - E(Y_t))^2\} = \ldots = \sum_{t=1}^{T} \sigma_{\epsilon}^2 = T\sigma_{\epsilon}^2$$

A variância é, portanto, uma função crescente do tempo, logo o passeio aleatório não é um processo estacionário.

Como identificar se a série é ou não estacionária?

- 1. Análise gráfica
- Inspeção visual raramente permite distingui-la como de tendência estocástica ou tendência determinística

- Função de autocorrelação:
 - Séries não estacionárias: fortes correlações seriais

3. Teste de Raiz Unitária.

Teste de Raiz Unitária ou Teste de Estacionariedade

Considere o modelo:

$$Y_t = \rho Y_{t-1} + \epsilon_t$$

Raiz unitária: Quando temos que $\rho=1$ aparece o problema de raiz unitária que, basicamente, é sinônimo de não estacionaridade.

Passeio aleatório, com ou sem drift, pode se tornar estacionário ao ser diferenciado, isto é:

$$Y_t = Y_{t-1} + \epsilon_t \Leftrightarrow \Delta Y_t = \epsilon_t$$

Exemplo

Considere a série de taxa de câmbio Real/US\$:

a) Faça o gráfico da série e construa a função de autocorrelação;

b) Tome a primeira diferença e construa a função de autocorrelação.

Testes de Raiz Unitária

Testes que abordaremos:

- 1. Testes Dickey Fuller
- Teste Dickey Fuller Aumentado ADF
- 3. Teste de Phillips Perron
- 4. Teste de KPSS
- 5. Teste de Dickey e Pantula
- 6. Teste com Quebra Estrutural Quebra conhecida
- 7. Teste com Quebra Estrutural Desconhecida
- 8. Raízes Unitárias Sazonais

1. Teste Dickey Fuller - DF

Objetivo:

Testar a existência de 1 RU em Y_t quando o processo gerador da série for expresso por uma das expressões abaixo:

(1)
$$Y_t = \alpha + \beta t + \rho Y_{t-1} + \epsilon_t \Rightarrow \Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \epsilon_t$$

(2)
$$Y_t = \alpha + \rho Y_{t-1} + \epsilon_t$$
 $\Rightarrow \Delta Y_t = \alpha + \gamma Y_{t-1} + \epsilon_t$

(3)
$$Y_t = \rho Y_{t-1} + \epsilon_t$$
 $\Rightarrow \Delta Y_t = \gamma Y_{t-1} + \epsilon_t$

em que α e βt são componentes determinísticos, denominados constante ou drift e tendência linear, respectivamente; ϵ_t é um ruído branco.

Teste DF

Hipóteses nula e alternativa:

$$H_0: \rho = 1 \Leftrightarrow \gamma = 0$$
 (1 RU)

$$H_1: \rho < 1 \Leftrightarrow \gamma < 0 \quad (0 \text{ RU})$$

- Teste Monocaudal à esquerda
- Estatísticas dos testes são chamadas de:
- 1. Modelo com constante e tendência determinística: τ_{τ}
- 2. Modelo com constante: τ_{μ}
- 3. Modelo sem termos determinísticos: τ

Teste DF

Sob a hipótese nula, a distribuição do teste não é convencional, ou seja, não é igual à distribuição t, dado que Y_t não é estacionário.

FIGURE 4.7 The Dickey-Fuller Distribution

Dickey & Fuller (1979) recalcularam os valores críticos: Tabela A, p. 488, Enders (2010)

Empirical Cumulative Distribution of τ

Probability of	a Smalle	r Value		
Sample Size	0.01	0.025	0.05	0.10
No Constant or		τ		
25	-2.66	-2.26	-1.95	-1.60
50	-2.62	-2.25	-1.95	-1.61
100	-2.60	-2.24	-1.95	-1.61
250	-2.58	-2.23	-1.95	-1.62
300	-2.58	-2.23	-1.95	-1.62
∞	-2.58	-2.23	-1.95	-1.62
Constant $(a_2 =$	0)			τ_{μ}
25	-3.75	-3.33	-3.00	-2.62
50	-3.58	-3.22	-2.93	-2.60
100	-3.51	-3.17	-2.89	-2.58
250	-3.46	-3.14	-2.88	-2.57
500	-3.44	-3.13	-2.87	-2.57
60	-3.43	-3.12	-2.86	-2.57
Constant + time				τ_{τ}
25	-4.38	-3.95	-3.60	-3.24
50	-4.15	-3.80	-3.50	-3.18
100	-4.04	-3.73	-3.45	-3.15
250	-3.99	-3.69	-3.43	-3.13
500	-3.98	-3.68	-3.42	-3.13
60	-3.96	-3.66	-3.41	-3.12

Teste DF no R

Para realizar o teste de Dickey-Fuller, carregue o pacote urca.

Em seguida use a função UR.DF, a qual retorna, automaticamente, os valores críticos para o teste.

No R as estatísticas são denotadas por:

$$au_{ au} = au_3$$

$$\tau_{\mu} = \tau_{2}$$

$$\tau = \tau_1$$

Significância dos Termos Determinísticos Individuais

EMPIRICAL DISTRIBUTION OF

Sample	$\hat{\tau}_{\alpha\tau}$ FOR $(\alpha,$	$\beta, \rho) = (0, 0)$	(1) in $Y_t = c$	$\alpha + \beta t + \rho Y_{t-1} +$
size n	0.90	0.95	0.975	0.99
25	2.77	3.20	3.59	4.05
50	2.75	3.14	3.47	3.87
100	2.73	3.11	3.42	3.78
250	2.73	3.09	3.39	3.74
500	2.72	3.08	3.38	3.72
∞	2.72	3.08	3.38	3.71
	$\hat{ au}_{eta r}$ for $(lpha,$	$(\beta, \rho) = (0, 0)$), 1) IN Y, =	$\alpha + \beta t + \rho Y_{t-1} +$
25	2.39	2.85	3.25	3.74
50	2.38	2.81	3.18	3.60
100	2.38	2.79	3.14	3.53
250	2.38	2.79	3.12	3.49
500	2.38	2.78	3.11	3.48
∞	2.38	2.78	3.11	3.46
	$\hat{ au}_{\!$	ρ) = (0, 1) IN	$Y_t = \alpha + \rho$	$Y_{t-1} + e_t$.
25	2.20	2.61	2.97	3.41
50	2.18	2.56	2.89	3.28
100	2.17	2.54	2.86	3.22
250	2.16	2.53	2.84	3.19
500	2.16	2.52	2.83	3.18
00	2.16	2.52	2.83	3.18

Significância dos Termos Determinísticos

Análise da significância dos elementos determinísticos (constante e tendência linear) por meio de testes de hipóteses conjuntos, utilizando valores críticos simulados por DF.

Dickey & Fuller (1981) sugerem as estatísticas F denominadas ϕ_1, ϕ_2 e ϕ_3 para testar hipóteses conjuntas:

$$H_0: \gamma = \alpha = 0 \Rightarrow \Phi_1$$

$$H_0: \gamma = \alpha = \beta = 0 \Rightarrow \Phi_2$$

$$H_0: \gamma = \beta = 0 \Rightarrow \Phi_3$$

As estatísticas relacionadas a essas hipóteses são:

$$\Phi_{i} = \frac{(SQRes_{restrita} - SQRes_{irrestrita})/r}{SQRes_{irrestrita}/(T - k)} \quad i = 1,3$$

sendo r o número de restrições, T número de observações, k número de parâmetros estimados no modelo irrestrito.

Φ_1 for ($(\alpha, \rho) = (0,$	1) IN Y,	$= \alpha + \rho$	$r_{i-1} + e$
Sample				
n	0.90	0.95	0.975	0.99
25	4.12	5.18	6.30	7.88
50	3.94	4.86	5.80	7.06
100	3.86	4.71	5.57	6.70
250	3.81	4.63	5.45	6.52
500	3.79	4.61	5.41	6.47
∞	3.78	4.59	5.38	6.43
FOR ($(\alpha, \beta, \rho) = 0$	(0, 0, 1) IN	$Y_t = \alpha$	+ \beta t +
25	4.67	5.68	6.75	8.21
50	4.31	5.13	5.94	7.02
100	4.16	4.88	5.59	6.50
250	4.07	4.75	5.40	6.22
500	4.05	4.71	5.35	6.15
∞	4.03	4.68	5.31	6.09
FOR (a	$(\alpha, \beta, \rho) = 0$	α, 0, 1) 18	$Y_t = \alpha$	+ \beta t +
25	5.91	7.24	8.65	10.61
50	5.61	6.73	7.81	9.31
100	5.47	6.49	7.44	8.73
250	5.39	6.34	7.25	8.43
500	5.36	6.30	7.20	8.34
∞	5.34	6.25	7.16	8.27

2. Testes Dickey Fuller Aumentado – ADF

Resíduos $\hat{\epsilon}_t$ obtidos dos modelos (1) a (3) são ruídos brancos? Teste ADF: adiciona as defasagens da variável dependente, ou seja, supõe-se que a série é gerada por um processo auto-regressivo de ordem p.

(4)
$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta Y_{t-i} + \epsilon_t$$

(5)
$$\Delta Y_t = \alpha + \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta Y_{t-i} + \epsilon_t$$

(6)
$$\Delta Y_t = \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta Y_{t-i} + \epsilon_t$$

Inclusão de termos autorregressivos não altera a convergência das estatísticas τ, τ_{μ} e τ_{τ} . Portanto, usa-se nos testes ADF os mesmo valores críticos utilizados nos testes DF.

Teste ADF

Para identificar o número de atrasos p de forma que $\hat{\epsilon}_t \sim RB(0, \sigma_{\epsilon}^2)$, usa-se:

- análise das autocorrelações dos resíduos do modelo sem termos de aumento;
- 2) critérios de informação: Akaike (AIC) ou Bayesian (BIC):

$$AIC(p) = In(\sigma_{\epsilon}^2) + p\frac{2}{T}$$

$$BIC(p) = In(\sigma_{\epsilon}^2) + p \frac{In(T)}{T}$$

em que T é o número de observações e p número de parâmetros.

Figure 4.7 A procedure to test for unit roots.

Exemplo

Verificar a existência de RU para:

- 1. IPCA dessazonalizada (Fonte: IPEADATA).
- 2. Taxa de Câmbio médio Real/US\$ (Fonte: IPEADATA).

Poder do Teste de Dickey-Fuller

Erro Tipo I: probabilidade de rejeitar a hipótese nula quando esta hipótese é verdadeira.

Erro Tipo II: probabilidade de não rejeitar a hipótese nula quando a hipótese alternativa é verdadeira.

Poder do Teste: é calculado como 1 menos a probabilidade de se cometer um erro do tipo II, isto é, a probabilidade de se rejeitar a hipótese nula quando ela efetivamente é falsa.

Poder do Teste de Dickey-Fuller

Poder dos testes DF e ADF: em geral, é pequeno devido a alta persistência e/ou tendência presente nas variáveis macroeconômicas.

Consequência: muitas vezes tendemos a aceitar a existência de uma raíz unitária quando na verdade deveríamos rejeita-lá.

Teste DF assume que os resíduos são não correlacionados, sendo que uma maneira de garantir isso é a de incluir defasagens das diferenças da variável dependente na regressão de teste, isto é, aplicar o teste ADF.

Ao se incluir um número maior de regressores que não estão presentes no processo da série, somente agrava o problema.

Teste de Phillips-Perron (PP)

Phillips & Perron (1988) propuseram uma estatística de teste não paramétricas em que a hipótese nula de uma raiz unitária, explicitamente permite dependência fraca e heterogeneidade do processo de erro.

O teste é baseado nas respectivas estatísticas:

 $\Delta Y_t = \gamma Y_{t-1} + \epsilon_t$

$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \epsilon_t \quad \to \quad Z_{\tau,\beta}$$
$$\Delta Y_t = \alpha + \gamma Y_{t-1} + \epsilon_t \quad \to \quad Z_{\tau,\mu}$$

ightarrow $Z_{ au}$

Teste PP

Obtenção das estatísticas $z_{\tau}, z_{\tau,\mu}$ $z_{\tau,\beta}$ depende do cálculo da variância de longo prazo dos resíduos:

$$\hat{v}^2 = \hat{\sigma}^2 + \frac{2}{T} \sum_{j=1}^{M} \omega \left(\frac{j}{M+1} \right) \sum_{t=j+1}^{T} \hat{\epsilon}_t \hat{\epsilon}_{t-j}$$

sendo $\hat{\sigma}^2$ variância populacional estimada; M tamanho do lag; T tamanho da amostra; $\omega\left(\frac{j}{M+1}\right)$ função de ponderação.

Teste PP

 Cálculo da função de ponderação: proposta por Bartlett, ou Parzen ou Quadrática;

- Perron (1990) recomenda o uso da janela de Parzen.
- Grande parte dos trabalhos empíricos emprega ponderação proposta por Bartlett.
- Determinação de *M*: critério de Newey-West (1994) ou Andrews (1991).

Teste PP

Phillips & Perron (1988) também definiram testes sobre os coeficientes do modelo, em vez de usar a estatística t, chamados de z_{α} . Neste caso, os testes são realizados sobre a distribuição dos coeficientes.

Do ponto de vista prático, não há diferença entre a análise associada às estatísticas ou sobre a distribuição.

Teste PP no R

Pacote urca

Usa a função ur.pp()

```
ur.pp(x, type = c('Z-alpha', 'Z-tau'), model =
c('constant', 'trend'),
lags = c('short', 'long'), use.lag = NULL)
```

Z-alpha teste sobre os coeficientes do modelo e Z-tau teste sobre as estatísticas do modelo (na prática não há diferença);

```
short: truncamento é dado por trunc(4 * (n/100)^{1/4});
```

long: truncamento é dado por $trunc(12 * (n/100)^{1/4});$

use.lag: usuário fornece o número de defasagens;

Para correção do termo erro é usado a ponderação de Bartlett.

Exemplo

Verificar a existência de RU para:

- 1. IPCA dessazonalizada (Fonte: IPEADATA).
- 2. Taxa de Câmbio médio Real/US\$ (Fonte: IPEADATA).

Teste de KPSS

Kwiatkowski, Phillips, Schmidt & Shin (1992)¹ desenvolveram um teste de raiz unitária denominado KPSS.

Neste teste as hipóteses são formuladas por:

 $H_0: \{y_t\} \in I(0) \Rightarrow A \text{ série é estacionária}$

 $H_1: \{y_t\} \notin I(1) \Rightarrow A \text{ série é não estacionária}$

Rejeitar H_0 significa que a série tem uma raiz unitária.

¹Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y. (1992), "Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?", *Journal of Econometrics*, 54, 159–178.

Teste de KPSS

O teste KPSS é baseado no seguinte modelo:

$$y_t = \delta t + r_t + \epsilon_t \tag{1}$$

$$r_t = r_{t-1} + u_t \tag{2}$$

em que r_t é um passeio aleatório e ϵ_t é um ruído branco com média zero e variância constante. O valor r_0 é fixo e corresponde ao nível da série.

Se $\delta=0$ o modelo é escrito como uma constante (μ) como termo determinístico.

Se $\delta \neq 0$ o modelo tem uma constante e uma tendência determinística.

Passos do Teste de KPSS

- 1. Estima-se o modelo representado pela equação (1)
- 2. Obtém-se os resíduos $\hat{\epsilon}_t$.
- 3. Calcula-se a soma parcial dos resíduos: $S_t = \sum_{j=1}^t \hat{\epsilon}_t$
- 4. A estatística do teste é dada por: $KPSS = \frac{\sum_{t=1}^{I} S_{t}^{2}}{\hat{\sigma}_{\epsilon}^{2}}$ sendo T o tamanho da amostra, $\hat{\sigma}_{\epsilon}^{2}$ a estimativa da variância de ϵ :

$$\hat{\sigma}_{\epsilon}^{2} = \frac{1}{T} \sum_{t=1}^{T} \hat{\epsilon}_{t}^{2} + \underbrace{\frac{2}{T} \left(\sum_{j=1}^{M} \omega \left(\frac{j}{M+1} \right) \sum_{t=j+1}^{T} \hat{\epsilon}_{t} \hat{\epsilon}_{t-j} \right)}_{}$$

correção da autocorrelação residual

Se KPSS for maior que valor crítico: rejeitar H_0 .

Teste KPSS no R – Pacote urca

■ Função ur.kpss()

```
ur.kpss(y, type = c("mu", "tau"),
lags = c("short", "long", "nil"), use.lag = NULL)
em que mu indica o uso do termo constante e tau o emprego da
constante e tendência.
```

Para a escolha do número de termos para a correção da autocorrelação dos resíduos temos as opções:

- a) short que representa incluir até a defasagem dada pelo valor inteiro de: $4 * \left(\frac{T}{100}\right)^{1/4}$;
- b) long que representa incluir até a defasagem dada pelo valor inteiro de: $12 * \left(\frac{T}{100}\right)^{1/4}$;
- c) nil significa não fazer nenhuma correção no termo de erro.

O termo use.lag permite que o próprio usuário fornece o número de defasagens para a correção da autocorrelação dos resíduos.

Exemplo

Verificar a existência de RU para:

- 1. IPCA dessazonalizada (Fonte: IPEADATA).
- 2. Taxa de Câmbio médio Real/US\$ (Fonte: IPEADATA).