

Sri Chaitanya IIT Academy, India

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE: 13-12-15

 TIME: 3:00
 2012_P1 MODEL
 MAX MARKS: 210

KEY & SOLUTIONS

PHYSICS

1	C	2	В	3	A	4	D	5	A	6	C
7	D	8	В	9	В	10	D	11	BCD	12	AC
13	ABD	14	ACD	15	ABD	16	6	17	1	18	1
19	5	20	4								

CHEMISTRY

21	C	22	D	23	A	24	В	25	C	26	A
27	D	28	D	29	С	30	A	31	BC	32	ABC
33	ABD	34	AB	35	ABC	36	3	37	3	38	2
39	2	40	4		. Y						

MATHEMATICS

41	D	42	C	43	C	44	C	45	В	46	D
47	C	48	В	49	D	50	D	51	ACD	52	ABCD
53	ABCD	54	BC	55	ABD	56	1	57	1	58	2
59	1	60	4								

Sec: Sr.IPLCO Page 1

PHYSICS

- 1. Apply lens maker's formula. To get parallel rays from 2nd curvature the rays after refraction from 1st curvature should become parallel.
- 2. use $\sin c = \frac{1}{\mu}$ and $\mu \alpha \frac{1}{\lambda}$
- 3. Conceptual
- 4. Take projection of mirror along x-axis.
- 5. Use Snell's law
- 6. The shift produced by glass plate would be equal to pp'

i.e.,
$$\left(1 - \frac{1}{\mu}\right)t = 2cm \Rightarrow t = 6cm$$

7. The situation is shown clearly in figure. Here, object and image both are virtual. u = 30 cm, v = 120 cm

$$\Rightarrow \frac{1}{120} + \frac{1}{30} = \frac{1}{f} \Rightarrow f = 24cm$$

- 8. Conceptual
- 9.

It is clear from the ray diagram that as object moves from P to P_1 , the image moves from I to I_1 and hence velocity of image, when object is at P is along $\overrightarrow{v_2}$

10. Deviation produced by mirror is $\delta_1 = \pi - 2 \times 60^\circ$; clockwise

Deviation produced by prism is $\delta_2 = (2-1) \times 6^\circ = 6^\circ$; anticlockwise

So, net deviation $\delta = \delta_1 + \delta_2 = 54^\circ$; clockwise

11. Conceptual

12.
$$\frac{1}{F} = -\frac{2}{f_g} + \frac{2}{f_w} - \frac{1}{f_m}$$

- 13. Conceptual
- 14. Conceptual
- 15. Δx at $\hat{O} = d$ (path difference is maximum at O)

So, if
$$d = \frac{7\lambda}{2}$$
, O will be a minima

 $d = \lambda$, O will be maxima

 $d = \frac{5\lambda}{2}$, O will be minima and hence intensity is minimum

$$\Delta x = \pm \frac{\lambda}{2}, \pm \frac{3\lambda}{2}, \pm \frac{5\lambda}{2}, \pm \frac{7\lambda}{2}, \pm \frac{9\lambda}{2}$$

16 to 18. Conceptual

19. Since the system arrangement of lenses with the object possesses symmetry about the convex lens, therefore the ray diagram must also be symmetric

Object and image (I₁&I₂) for convex lens are placed symmetrically therefore,

$$x = 10cm$$

$$f = -\frac{100}{5}$$
 cm = -20cm

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{(-10)} - \frac{1}{(-a)} = \frac{1}{(-20)} \Rightarrow a = +20cm$$

20. From $y = (2n+1)\frac{\lambda D}{2d}$, those wavelength which undergo destructive interference at the pinhole. They will be absent.

Page 3

Sec: Sr.IPLCO