

Data Science Academy

Seja muito bem-vindo(a)!

Data Science Academy

Como Funciona a Aprendizagem de Máquina

Como os Algoritmos Aprendem

Machine Learning

E como um algoritmo encontra a função matemática que descreve este relacionamento?

Data Science Academy

Um componente chave do processo de aprendizagem é a generalização.

Se um algoritmo de Machine Learning não for capaz de generalizar uma função matemática que faça previsões sobre novos conjuntos de dados, ele não está aprendendo nada e sim memorizando os dados, o que é bem diferente.

E para poder generalizar a função que melhor resolve o problema, os algoritmos de Machine Learning se baseiam em 3 componentes:

Representação

Avaliação

Otimização

Os al<mark>goritmos</mark> de aprendizagem possuem diversos parâmetros internos.

Nenhum algoritmo único ou uma combinação de algoritmos é 100% preciso o tempo todo.

Pelo menos não ainda!!

Big Data é uma grande mistura de dados.

Um bom algoritmo de Machine Learning deve ser capaz de distinguir os sinais e mapear as funções alvo de forma eficiente.

Cost Function

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Underfitting x Overfitting

Underfitting

Overfitting

Data Science Academy

Elementos do Processo de Aprendizagem

Elementos do Processo de Aprendizagem

Um padrão existe

Não há um único modelo matemático que explique esse padrão

Dados estão disponíveis

Data Science Academy

Componentes do Processo de Aprendizagem

Elementos do Processo de Aprendizagem

Um padrão existe

Não há um único modelo matemático que explique esse padrão

Dados estão disponíveis

Aprovação de Crédito

Dados Históricos de Clientes do Banco:

Sexo	Idade	Salário Mensal (R\$)	Anos no Emprego Atual	Anos de Residência	Saldo Bancário (R\$)	Recebeu Crédito
M	35	8.000	6	2	120.000	Sim
F	29	8.500	4	6	78.000	Sim
M	32	7.200	2	7	45.000	Não
M	31	9.600	7	8	9.000	Sim
F	46	10.400	1	2	0	Não

Entrada (variáveis preditoras)

Saída (Label)

Componentes do Processo de Aprendizagem

Input {Dados do cliente} Output {Decisão → Crédito: Sim/Não} {Representação do relacionamento} Função alvo $f: X \rightarrow Y$ {Fórmula matemática desconhecida} $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ Dados {Dados históricos} Hipótese {Faz parte do espaço de hipóteses do algoritmo} g: $x \rightarrow y$

Dados de Treino (x1, y1), (x2, y2),...., (xn, yn)

Algoritmo

Hipótese Final g ≠ f

Espaço de Hipóteses

Data Science Academy

Modelo de Aprendizagem

Espaço de Hipóteses

$$\mathcal{H} = \{h\}$$
 $g \in \mathcal{H}$

Algoritmo de Aprendizagem

Espaço de Hipóteses

Redes Neurais Support Vector Machines Algoritmo de Aprendizagem

Back Propagation
Programação Quadrática

Modelo de Aprendizagem

O Espaço de Hipóteses contém os recursos com os quais podemos trabalhar. O Algoritmo de Aprendizagem recebe os dados e navega pelo Espaço de Hipóteses a fim de encontrar a melhor hipótese que gera o resultado desejado.

Qual o Critério Usado Para Definir a Previsão do Modelo?

Input
$$\rightarrow X = (x_1, x_2, ..., x_d) \rightarrow \text{Vetor de atributos do indivíduo}$$

Input
$$\to X = (x_1, x_2, ..., x_d)$$

Crédito é aprovado se

Crédito é **negado** se

$$\sum_{i=1}^d w_i x_i$$

> threshold

 $\sum_{i=1}^{u} w_i x_i$ < threshold

Fórmula que Define as Hipóteses no Espaço de Hipóteses

$$m{h}(\mathbf{x}) = ext{sign}\left(\left(\sum_{i=1}^d m{w}_i x_i
ight) - ext{threshold}
ight)$$

As diferentes combinações weight/threshold vão formar diferentes hipóteses

As duas linhas em rosa nas imagens acima representam os modelos. Os dois modelos classificam os dados, mas um faz isso melhor do que o outro.

E nosso trabalho, como Cientistas de Dados, é encontrar o melhor modelo possível.

Algoritmo de Aprendizagem

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

O Que Acontece Quando o Modelo Comete Um Erro de Classificação?

Algoritmo de Aprendizagem

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Dados de Treino

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$$

Erro de Classificação

$$\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

Ajuste

Iteração 1

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Iteração 2

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Se os dados forem linearmente separáveis, o algoritmo fará diversas iterações até encontrar a linha que realmente separa as duas classes

Data Science Academy

Cost Function (Função de Custo)

Aprendizagem Supervisionada

Coleção de vetores de atributos (Entrada) Coleção de respostas observadas (Saída)

Aprendizagem Supervisionada

Coleção de vetores de atributos Coleção de respostas observadas

$$\{x_i\}, i = 1, n$$

Durante o treinamento, construímos uma área de respostas (espaço de hipóteses)

Como sabemos se os valores de h(x) são bons ou ruins?

Cost Function

Descreve quão bem resposta na área de respostas (espaço de hipóteses) se encaixa no conjunto de dados que está sendo analisado.

$$J(y_i, h(x_i))$$

A Cost Function é um número que melhor representa a relação entre valores observados e valores previstos. Em outras palavras: é a diferença entre o que deveria ser previsto pelo modelo e aquilo que ele realmente previu!

significam um melhor "fit"

Cost Function

O objetivo do algoritmo de ML é aprender um modelo que minimize os erros

Cost Function

Um dos objetivos em Machine Learning é construir *h(x)* de modo que o valor de J seja minimizado

Em problemas de regressão, h(x) é normalmente interpretada diretamente como a resposta a ser prevista.

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Comparando uma previsão contra o seu valor real, usando uma cost function, determinamos o nível de erro do modelo.

Por ser uma formulação matemática, a cost function expressa o nível de erro em uma forma numérica. A cost function transmite o que é realmente importante e significativo para seus propósitos com o algoritmo de aprendizagem.

Data Science Academy

Gradiente Descendente

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Objetivo:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Gradiente Descendente é ideal quando os parâmetros não podem ser calculados analiticamente (por exemplo, usando álgebra linear) e devem ser pesquisados por um algoritmo de otimização.

Data Science Academy

Overfitting x Underfitting

Aprendizagem Supervisionada

$$Y = f(X)$$

Generalização refere-se a quão bem os conceitos aprendidos por um modelo de aprendizado de máquina se aplicam a exemplos específicos não vistos pelo modelo durante o processo de aprendizado.

Underfitting

Es<mark>se é um p</mark>roblema menos comum e que pode ser resolvido (em geral) usando mais dados.

underfitting

Training cycles

Data Science Academy

Bias (Viés) e Variância

Sepa<mark>rando o</mark> erro de generalização em viés (bias) e variância (variance)

Viés é a tendência do modelo aprender consistentemente uma generalização incorreta

Variância é a tendência de se aprender fatos aleatórios independentemente do sinal real

Erro de Previsão de um Modelo

$$E[(y-\hat{f}(x))^2] = Bias[\hat{f}(x)]^2 + Var[\hat{f}(x)] + \sigma^2$$

Bias

$$Bias[\hat{f}(x)] = E[\hat{f}(x) - f(x)]$$

Variance

$$Var[\hat{f}(x)] = E[\hat{f}(x)^2] - E[\hat{f}(x)]^2$$

Utilizar um modelo complexo que é capaz de reduzir consideravelmente o erro de previsão no dataset de treino, mas ao mesmo tempo não é tão generalizável a ponto de apresentar um bom resultado no dataset de teste

Utilizar um modelo simples que é bem generalizável, mas não reduz consideravelmente o erro de previsão no dataset de treino

Modelos mais simples tem viés alto mas variância baixa (underfitting)

Modelos mais complexos tem viés baixo mas variância alta (overfitting)

A tarefa essencial de previsão é selectionar um modelo que se aproxime do ponto mínimo da curva de erro do dataset de teste

