

Curs Nr. 7

Algoritmi genetici

- Introducere
- Schema de baza
- Modelare probleme
- Exemplu
- Selectie
- Recombinare
- Mutatie
- TSP cu algoritmi genetici
- Implementare paralela AG

1. Introducere

- GA USA, J. H. Holland (1975)
- Algoritmi evolutivi Germania, I. Rechenberg, H.-P. Schwefel (1975-1980)
- Programare genetica (1960-1980, 2000) J. Koza
- Optimizare
- Modele economice
- Modele ecologice
- Modele ale sistemelor sociale
- Invatare

Introductere - cont

- Opereaza asupra unei populatii de indivizi = solutii potentiale – aplica principiul supravietuirii pe baza de adaptare (fitness)
- Fiecare generatie o noua aproximatie a solutiei
- Evolutia unei populatii de indivizi mai bine adaptati mediului
- Modeleaza procese naturale: selectie, recombinare, mutatie, migrare, localizare
- Populatie de indivizi cautare paralela

2. Schema de baza

3. Modelare probleme

Populatie initiala

- Stabileste reprezentare gena individ
- Stabileste numar de indivizi in populatie
- Stabileste functia de evaluare (obiectiv)
- Populatia initiala (genele) creata aleator

Selectie

- **Selectie** extragerea unui subset de gene dintr-o populatie existenta in fct de o definitie a calitatii **functia de evaluare**
- Determina indivizii selectati pt recombinare si cati descendenti (offsprings) produce fiecare individ

Modelare probleme

Criteriul de oprire

- solutie care satisface criteriul
- numar de generatii
- buget
- platou pt cel mai bun fitness

Multipopulation GAs

- Rezultate mai bune subpopulatii
- Fiecare populatie evolueaza separat
- Indivizi sunt schimbati dupa un numar de generatii

3.1 Selectie

- (1) Primul pas: atribuire fitness
- atribuire proportionala
- atribuire bazata pe rang
- (2) Selectia efectiva: parintii sunt selectati in fct de fitness pe baza unuia din algoritmii:
- roulette-wheel selection (selectie ruleta)
- **stochastic universal sampling** (esantionare universala stohastica)
- local selection (selectie locala)
- tournament selection (selectie turneu)
- proportional selection (selectie proportionala)

3.2 Reinserare

- Offspring daca se produc mai putini indivizi sau mai putini copii atunci indivizi suplimentari trebuie reinserati in noua populatie
- Algoritmul de selectie determina schema de reinserare (in general)
- □ reinserare globala in toata populatia pt. roulettewheel selection, stochastic universal sampling, truncation selection
- ☐ reinserare locala pt selectie locala

3.3 Crossover/Recombination

- Recombinarea produce noi indivizi prin combinarea informatiei din parinti (parents mating population).
- Diverse scheme de recombinare
- *O posibilitate* imperechere aleatoare
- La fel cu *Crossing Over* din genetica
- 1. Un procent P_M din indivizii noii populati sunt selectati si se imperecheaza aleator
- 2. Un *crossover point* este selectat pentru fiecare pereche (acelasi sau diferit cu probabilitate)
- 3. Informatia este schimbata intre cei doi indivizi pe baza pct de crossover

Crossover

3.4 Mutatie

- Offspring mutatie
- Mutatie cu perturbatii mici aleatoare
- Diverse forme de mutatie, depind de reprezentare
- Mutatie explorare vs exploatare
- Schema simpla
 - Fiecare bit are o probabilitate de mutatie

Mutatie

Efectul mutatiei si a selectiei

4. Selectia in detaliu

- Primul pas este **atribuirea de fitness** (A)
 - Atribuire directa pe baza functiei obiectiv SAU
 - Atribuire pe baza unui mecanism (A1, A2)
- Fiecare individ din populatie primeste o valoare de fitness
- Pe baza valorii de fitness se realizeaza selectia (S) dupa o schema de selectie (S1, S2, S3, S4)

Termeni

- presiunea de selectie: probabilitatea de selectie a celui mai bun individ comparata cu probabilitatea medie de selectie a tuturor indivizilor
- raspandire: domeniul de valori al numarului de descendenti al unui individ
- pierderea diversitatii: proportia de indivizi din populatie care nu este selectata
- intensitatea de selectie: valoare medie a fitness-ului populatiei dupa aplicarea unei metode de selectie
- covarianta selectiei: covarianta distributiei de fitness a populatiei dupa aplicarea unei metode de selectie

A1. Atribuire fitness proportionala

- Fiecare gena are un fitness asociat
- Se calculeaza fitness mediu al populatiei
- Fiecare individ va fi copiat in noua populatie in fct de fitness comparat cu fitness mediu
- fitness mediu 5.76, fitness individ 20.21 se copiaza de 3 ori
- Indivizii cu fitness egal sau sub medie se ignora
- Noua populatie poate fi mai mica
- Noua populatie se completeaza cu indivizi selectati aleator din vechea populatie

- Fitness-ul atribuit fiecarui individ depinde numai de pozitia lui intre indivizii din populatie
- Pozitia unui individ in populatie depinde de functia obiectiv
- Pos = 1 cel mai putin bun
- Pos = Nind cel mai bun
- Populatia este ordonata in functie de fitness

- *Nind* numarul de indivizi din populatie
- *Pos* pozitia individului in populatie (cel mai prost *Pos*=1, cel mai bun *Pos=Nind*)
- *SP* presiunea de selectie (probabilitatea de selectie a celui mai bun individ relativ la probabilitatea medie de selectie a tuturor indivizilor)

Rang liniar

Fitness(
$$Pos$$
) = 2 - SP + 2*(SP - 1)*(Pos - 1) / ($Nind$ - 1)

- Rangul liniar permite valori SP in (1.0, 2.0].
- Probabilitatea de selectie a unui individ pentru recombinare este fitness-ul (normalizat) raportat la fitness-ul total al populatiei

Rang neliniar:

Fitness(
$$Pos$$
) =
$$Nind*X^{(Pos-1)} / \sum_{i=1,Nind} (X^{(i-1)})$$

• X se calculeaza ca radacina a polinomului:

$$0 = (SP - Nind)*X^{(Nind - 1)} + SP*X^{(Nind - 2)} + ... + SP*X + SP$$

• Rang neliniar permite valori SP in

$$[1.0, Nind - 2.0]$$

- SP mai mari
- Probabilitatea de selectie a unui individ pentru recombinare este fitness (normalizat) raportat la fitness total al populatiei

Atribuire fitness rang liniar si rang neliniar

Liniar SP=2 \rightarrow 0..2 SP = 1.5 \rightarrow 0.5..1.5

- Fata de atribuirea proportionala:
 - Evita problema stagnarii in cazul in care presiunea de selectie este prea mica sau convergenta prematura genereaza o zona de cautare prea ingusta
 - Ofera un mod simplu de a controla presiunea de selectie
 - In general mai robusta

Proprietati

Intensitatea de selectie: SelInt_{Rank}(SP) = (SP-1)*(1/sqrt(π)).

Pierderea diversitatii: LossDiv_{Rank}(SP) = (SP-1)/4.

Covarianta selectiei: $SelVar_{Rank}(SP) = 1 - ((SP-1)^2/\pi) = 1 - SelInt_{Rank}(SP)^2$.

S1. Selectia bazata pe ruleta

"Roulette-wheel selection" sau "stochastic sampling with replacement" 11 indivizi, rang liniar si SP = 2

Nr individ	1	2	3	4	5	6	7	8	9	10	11
Valoare fitness	2.0	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.2	0.0
Probabil. de selectie	0.18	0.16	0.15	0.13	0.11	0.09	0.07	0.06	0.03	0.02	0.0

6 numere aleatoare (distribuite uniform intre 0.0 si 1.0):

• 0.81, 0.32, 0.96, 0.01, 0.65, 0.42.

6, 2, 9, 1, 5, 3

S2. Esantionare universala stohastica

- Se plaseaza pointeri la distante egale pe un interval [0..1] atatia pointeri cati indivizi se vor selecta
- NPointer numarul de indivizi care va fi selectat
- Distanta intre pointeri 1/*Npointer*
- Pozitia primului pointer este data de un numar aleator in intervalul [0..1/NPointer].
- Pentru 6 indivizi de selectat, distanta intre pointeri este 1/6=0.167.
- 1 numar aleator in intervalul [0, 0.167]: 0.1.

1, 2, 3, 4, 6, 8

S3. Selectie locala

- Fiecare individ este intr-o vecinatate
- Structurarea populatiei
- Vecintatea grup de indivizi care se pot recombina (potential)
- Vecintatea liniara: full si half ring

Selectie locala

Selectie locala

- Se selecteaza prima jumatate a populatiei aleator (sau utilizand un algoritm de selectie – esantionare stohastica sau turneu).
- Se defineste apoi o vecintate pentru fiecare individ selectat.
- Se selecteaza un alt individ pt recombinare din vecintate (best, fitness proportional, sau aleator).

Selectie locala

- Distanta de izolare intre indivizi
- Cu cat mai mica vecintatea, cu atat mai mare izolarea
- Vecintati care se suprapun apare transmisie de caracteristici
- Dimensiunea vecinatatii determina viteza de propagare
- Propagare rapida vs mentinere diversitate mare
- Diversitate mare previne convergenta prematura

S4. Selectie turneu

- Un numar *Tour* de indivizi din populatie este selectat aleator si cel mai bun individ dintre acestia este selectat ca parinte
- Procesul se repeta pt cati indivizi dorim sa selectam
- Parametrul pt dimensiunea turneului este *Tour*.
- Tour valori intre 2 .. Nind
- Relatie intre *Tour* si intensitatea de selectie

Dimensiune turne	1	2	3	5	10	30
Intensitate selectie	0	0.56	0.85	1.15	1.53	2.04

Valoare medie a fitness-ului populatiei dupa aplicarea unei metode de selectie

Selectie turneu

Intensitatea de selectie:

$$SelInt_{Tour}(Tour) = sqrt(2*(log(Tour)-log(sqrt(4.14*log(Tour)))))$$

Pierderea diversitatii:

$$LossDiv_{Tour}(Tour) = Tour^{-(1/(Tour-1))} - Tour^{-(Tour/(Tour-1))}$$
 (Aprox 50% din populatie se pierde pt Tour=5).

Covarianta selectiei:

$$SelVar_{Tour}(Tour) = 1 - 0.096*log(1+7.11*(Tour-1)), SelVar_{Tour}(2) = 1-1/\pi$$

6. Crossover / recombination

- Produce noi indivizi prin recombinarea informatei din parinti
- Reprezentari binare
 - binara
 - multipunct
 - uniforma
- Reprezentari intregi/reale
 - discreta
 - reala intermediara
 - liniara

6.1 Recombinare binara

■ Pozitia de crossover selectata aleator → se produc 2 descendenti

Recombinare binara

Exemplu

individual 1:

individual 2:

pozitie crossover = 5

Se creaza 2 indivizi noi:

01110 100101 offspring 1:

10101011010 offspring 2:

6.2 Recombinare multi-punct

 \blacksquare m pozitii de crossover k_i


```
individual 1:
0 1 1 1 0 0 1 1 0 1 0
```

individual 2:
10101100101

pos. cross (m=3) 2 6 10

offspring 1:
0 1 | 1 0 1 1 | 0 1 1 1 | 1

offspring 2:
1 0 | 1 1 0 0 | 0 0 1 0 | 0

6.3 Recombinare uniforma

- Generalizeaza binara simpla si multipunct
- Crossover mask aceeasi dimensiune cu a individului;
- creata aleator si paritatea bitilor din masca indica ce parinte va oferi descendentilor care bit
- individual 1:
 0 1 1 1 0 0 1 1 0 1 0
- *individual 2:* 10101100101 mask 1:011001101
 - mask 2: 1 0 0 1 1 1 0 0 1 0 1 (inversa a mask 1)
- offspring 1:
 1110111111
- offspring 2:
 0 0 1 1 0 0 0 0 0 0
- Spears and De Jong (1991) parametrizare prin asocierea unei probabilitati

6.4 Recombinare reala discreta

Recombinare discreta

- Schimb de valori reale intre indivizi.
- individual 1: 12 25 5
- individual 2: 123 4 34
- Pt fiecare valoare, parintele care contribuie este ales aleator cu probabilitati egale
- sample 1: 2 2 1
- sample 2: 1 2 1
- Dupa recombinare:
- offspring 1: 123 4 5
- offspring 2: 12 4 5

Recombinare reala discreta

Recombinare discreta

Pozitiile posibile ale descendentilor

Poate fi utilizata cu orice valori (binare, reale or simboluri).

Recombinare reala intermediara

Recombinare reala intermediara

- Numai pt valori reale
- Valorile din descendenti alese in jurul valorilor din parinti

Regula:

offspring = parent 1 + Alpha (parent 2 - parent 1)

unde Alpha este un factor de scalare ales aleator in intervalul [-d, 1 + d].

- d = 0 sau d > 0. O valoare buna d = 0.25.
- Fiecare valoare din descendenti este rezultatul combinarii parintilor cu o noua Alpha pt fiecare variabila

Recombinare reala intermediara

Recombinare reala intermediara

- individual 1: 12 25 5
- individual 2: 123 4 34

Valorile Alpha sunt:

- sample 1: 0.5 1.1 -0.1
- sample 2: 0.1 0.8 0.5
- Indivizi noi

```
(offspring = parent 1 + Alpha (parent 2 - parent 1)
```

- offspring 1: 67.5 1.9 2.1
- offspring 2: 23.1 8.2 19.5

Recombinare reala intermediara

Recombinare reala intermediara

Domeniul de valori ale descendentilor fata de cel al parintilor

Repartizare descendenti dupa recombinare intermediara

Recombinare reala liniara

Recombinare liniara

Similara cu cea intermediara dar se foloseste un singur Alpha.

individual 1: 12 25 5

individual 2: 123 4 34

Valorile Alpha sunt:

sample 1: 0.5

sample 2: 0.1

Indivizii noi:

• offspring 1: 67.5 14.5 19.5

offspring 2: 23.1 22.9 7.9

Recombinare reala liniara

Recombinare liniara

7. Mutatie

- Dupa recombinare mutatia descendentilor
- Valori din descendenti sunt mutati prin inversiune (binar) sau adaugarea unor valori mici aleatoare (pasul de mutatie), cu probabilitati mici
- Probabilitatea de mutatie este invers proportionala cu dimensiunea indivizilor
- Cu cat avem indivizi mai lungi cu atat este mai mica probabilitatea de mutatie

7.1 Mutatie binara

- Schimb valorile binar
- Pt fiecare individ, bitul de mutat este ales aleator
- 11 valori, bit 4

inainte de mutatie	0	1	1	1	0	0	1	1	0	1	0
dupa mutatie	0	1	1	0	0	0	1	1	0	1	0

7.2 Mutatie cu valori reale

- Efect
- mutatie

- Dimensiune pas dificil; poate varia in timpul evolutiei
- Mici bine, lent; mari mai repede
- Operator mutatie :

```
mutated variable = variable \pm range \cdot delta (+ sau – cu probabililate egala)
```

```
range = 0.5*domeniu variabila delta = \text{sum}(a(i) \ 2^{-i}), \ a(i) = 1 \ \text{cu} probabilitate 1/m, altfel a(i) = 0.
```

8. Utilizarea GA pt:

- Problema 0/1 Knapsack- TSP

8.1 0/1 Knapsack Problem

- Se da o multime de obiecte, fiecare cu o greutate/pondere
 w(i) si valoare/profit p(i).
- Sa se determine numarul de obiecte din fiecare tip care sa se includa intr-o colectie a.i. greutatea sa fie mai mica decat o valoare data W si valoarea totala sa fie maxima.
- Problema 0/1 knapsack 0 sau 1 obiecte din fiecare tip.
- *Multiobjective optimization problem*: maximizeaza profit si minimizeaza greutate
- Nu exista o (singura) solutie optima ci un set de solutii cu "trade-off" optim = multimea de solutii pt care nu se poate imbunatati un criteriu fara a se inrautati altul

0/1 Knapsack Problem

- Maximizeaza sum(x(i)*p(i))
- Restrictie $sum(x(i)*w(i)) \le W$
- x(i) = 0 or 1

Sir binar - lungime = numarul de obiecte.

Fiecare obiect are asociata o pozitie in sirul binar

- 0 objectul nu este in solutie
- 1 obiectul este in solutie

Operatori genetici:

- selectie turneu
- one-point crossover
- bit-flip mutation.

Dimeniune populatie 100

Tour 2

Probabilitate mutatie: 0.01

greutate (w) 3 3 3 3 3 4 4 4 7 7 8 8 9 valoare (p) 4 4 4 4 4 5 5 5 10 10 11 11 13

Generation 74:	08 23	0110010010000
No Fit Cromozom	09 23	10101010111100
00 24 0001000011000	10 22	0000010011000
	11 22	1010101100000
01 23 0110100000100	12 22	0110101100000
02 23 0010100101000	13 22	1010101100000
03 23 0110010001000	14 22	1010101100000
04 23 0110000110000	15 22	10101010111100
05 23 0101010001000	16 15	0000010001000
	17 12	0110010011000
06 23 1010100000100	18 10	0010100101010
07 23 0110010001000	19 -18	0110011110011

8.2 TSP – Reprezentare problema

Functie de evaluare

• Functia de evaluare pentru *N* orase este suma distantei euclidiene

$$Fitness = \sum_{i=1}^{N} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$$

Reprezentare

• individ = reprezentare a caii, in ordinea de parcurgere a orașelor

3	0	1	4	2	5
0	5	1	4	2	3
5	1	0	3	4	2

TSP Operatori genetici

Crossover

- Nu se potrivesc operatorii traditionali la TSPs
- Inainte de crossover

```
1 2 3 4 5 0 (parent 1)
2 0 5 3 1 4 (parent 2)
```

Dupa crossover

• Greedy Crossover - Grefenstette in 1985

TSP Operatori genetici - recombinare

Parinti 1 2 3 4 5 0 si 4 1 3 2 0 5

- Se genereaza un descendent utilizand cel de al doilea parinte ca sablon: selectez orașul 4 ca primul oraș al copilului 4 x x x x x
- Gasesc legaturi de la oras 4 in ambii parinti: (4, 5) si (4, 1). Daca distanta (4,1) mai mica decat (4,5), selectez 1 ca urmatorul oras din copil: 4 1 x x x x
- Gasesc legaturi de la oras 1 in ambii parinti: (1, 2) si (1, 3).
- (1,2) < (1,3) selectez 2 ca oras urmator: 4 1 2 x x x
- (2,3) > (2,0) selectez **0: 4 1 2 0 x x**
- (0, 1) < (0, 5). Deoarece 1 apare deja in copil, selectez **5 4** 1 **2** 0 **5** x
- Legaturi 5 sunt (5, 0) si (5, 4), dar atat 0 cat si 4 apar in copil. Alegem un oras neselectat 3 copil 4 1 2 0 5 3

Aceeasi metoda pt a genera celalat descendent 1 2 0 5 4 3

TSP Operatori genetici

Mutatie

- Nu putem folosi mutatia clasica. De ex: 1 2 3 4 5 0, mutam 3, schimbam aleator 3 la 5 1 2 5 4 5 0 gresit
- Selectam aleator 2 valori si le interschimbam.
- Swap mutation: 123450 153420

Selectie

- Roulette wheel selection cel mai bun individ are probabilitatea cea mai mare de selectie dar nu este sigur selectat
- Utilizam selectia CHC pt a garanta ca cel mai bun individ supravietuieste (Eshelman 1991).

TSP Comportare

- CHC selection populatie de dimensiune N
- Genereaza N copii cu roulette wheel selection
- Combina N parinti cu N copii
- Ordoneaza 2N indivizi in functie de fitness
- Alege cei mai buni N indivizi pt generatia urmatoare

Comparatie Roulette si CHC selection

Cu selectia CHC populatia converge mai repede decat cu roulette wheel selection si performantele sunt mai bne

TSP Comportare

- Dar convergenta rapida = mai putina explorare
- Pt a preveni convergenta la un minim local, cand am obtinut convergenta populatiei, salvam cei mai buni individi si re-initializam restul populatiei aleator.
- Selectie CHC asfel modificata = selectie **R-CHC**.

Comparatie selectie CHC cu si fara re-initializare

9 Implementarea paralela a AG

- Modelul migrator
- Model global worker/farmer

9.1 Migrare

- Modelul migrator imparte populatia in subpopulatii.
- Aceste populatii evolueaza independent un numar de generatii (timp de izolare)
- Dupa timpul de izolare, un numar de indivizi este distribuit intre subpopulatii = **migrare**.
- Diversitatea genetica a subpopulatiilor si schimbul de informatii intre subpopulatii depinde de:
 - numarul de indivizi schimbati = **rata migrare**
 - metoda de **selectie** a indivizilor pentru migrare
 - schema de migrare

- Implementarea a modelului migrator:
 - scade timpul de prelucrare
 - necesita mai putine evaluari de functii obiectiv fata de un model cu o singura populatie

- Implementarea migrarii (paralel) pe un singur prcesor (pseudo-paralel) este buna
- In anumite cazuri se obtin rezultate mai bune

- Selectia indivizilor pentru migrare:
 - aleator
 - bazata pe fitness (selectez pentru migrare cei mai buni indivizi).
- Schema de migrare intre subpopulatii:
 - intre toate subpopulatiile (topologie completa)
 - topologie inel
 - topologie vecinatate

Topologie completa

Schema de migrare intre subpopulatii

Topologie inel

Topologie vecintate (implemantare 2-D)

9.2 Modelul global - worker/farmer

- Exploateaza paralelismul inerent al GA
- Worker/Farmer schema de migrare

