Climate_ Wins

Weather Conditions & Climate Change Analysis June 2025

Interim Report Amy Zhang

Objective

Assess machine learning tools for enabling ClimateWins, a non-profit, to predict climate change impacts—beginning with the categorization of mainland Europe weather data.

I.
Data Provenance:
Ethical
Considerations &
Data Integrity

Bias Detection, Label Validity & Ethical Risks in Forecasting II.

Machine Learning

Foundations &

Hypotheses for

Weather Data

Three Core
Hypotheses re:
Machine Learning
for Weather
Analysis

III. Preliminary ML Model Evaluations for ClimateWin Requirements

Gradient Descent

Demo

+

3 Supervised ML

Models

I. Data Provenance: Ethics & Integrity Considerations

Full Weather Dataset Overview

- Date range: 1960 2022
 62 years of observations at per diem granularity
- 18 Weather Stations:
 Data points include various weather metrics (see right)
- Dataset Provenance: European Climate Assessment & Data Set Project (ECA&D)
 - Public initiative est. in 1998 by <u>EUMETNET</u>
 (collaborative network of meteorological and hydrological services across Europe and Mediterranean), with support from the <u>European Commission</u>.

'Pleasant Weather' Dataset Overview

Dataset of daily, per-station records spanning 1960 to 2022, each labeled with a binary pleasantness score.

- 1 = Pleasant
- 0 = Unpleasant

I. Data Provenance: Ethics & Integrity Considerations

#1: Geographic Coverage Bias

- Tours (France), Roma (Italy), and Gdansk (Poland) are excluded from the "pleasant weather" subset. (Each was the only station representing its country.)
- Spain is now the sole warm-climate voice.
- Meanwhile, Germany has 3 stations, and the Netherlands has 2.

Geographic gaps in data coverage risk skewing model learning.

Models can **overfit to well-sampled regions,** struggling to generalize for others.

I. Data Provenance: Ethics & Integrity Considerations

#2: Feature Completeness Bias

- Only 7 out of 18 stations record snow depth.
- Only Basel, Dusseldorf, and Oslo have complete weather records.

In trying to make the data ML-compatible, incomplete features are often dropped; this can lead to overrepresentation of simple weather profiles over more complex or volatile contexts.

I. Data Provenance: Ethics & Integrity Considerations

#3: Subjectivity in Labeling

- Sonnblick (Austria): 0 "pleasant" days
- Madrid (Spain): nearly 50/50 split; average 'Pleasantness' ~45%

Boolean labels can encode narrow thresholds that reflect implicit normative assumptions about comfort. These can shape downstream model behavior, user expectations (e.g. tourists), and even influence resource allocation.

Countries Ranked by 'Pleasantness' on Average (1960-2022)

II. Machine Learning Foundations & Hypotheses for Weather Data

Hypothesis #1: Unlocking Emergent Patterns with ML

- Traditional analysis (see right) shows broad seasonal trends.
- But short-term fluctuations—intra-annual "spikes and dips"—often defy visual explanation.
- ML models can analyze complex, nonlinear relationships, identifying subtler climate dunamics.

<u>Hupothesis</u>: The deeper interplay of predictive factors can **enrich** time-based models.

→ 1960
→ 1965

1990

2005 2010

2015 2020

II. Machine Learning Foundations & lupotheses for Weather Data

Hypothesis #2: Weather as Web - Tapping Feature Interdependencies

Interdependencies exist amongst weather metrics:

- Humidity ↔ Cloud Cover ↔ Precipitation
- Radiation ↔ Sunshine ↔ Temperature

Hupothesis: ML models can leverage correlated feature clusters as composite predictors, achieving more robust, context-aware forecasts.

- 0.8

-0.4

-0.6

II. Machine Learnin Foundations & Hypotheses for Weather Data

Hypothesis #3: Temporal Drift in Weather Dynamics

- Color-coded outliers in weather metric distributions reveal **emerging "new normals."**
- Rising temperatures and reduced snowfall in recent years **shift central tendencies**—making older data points increasingly appear as outliers.

<u>Hypothesis:</u> Machine learning models trained on historical climate data may underperform as key weather variables **drift** over time, reducing predictive accuracy.

Supervised Machine Learning: model evaluations

Linear Regression

2 univariate models; highlight "learning" as parameter optimization (ex: gradient descent)

Metwork Artificial Neural

2 ANN – single-layer Logistic Regression & Multi-Layer Perceptron

RNN: K-Nearest Neighbor

1 KNN model; highlights "learning" as hyperparameter vs. parameter optimization (ie cross-validation)

Decision Tree

1 Decision Tree model; highlights "greedy" vs. gradient-based parameter optimization

0SL0 2019

(3 features)
Temperature
(mean),
Time,
Global
Radiation

OSLO

all

years

(6 features)
Temperature
(all),
Global
Radiation,
Precipitation,
Sunshine

Conclusion

Comparison & Recommendations for Climate Wins

III. ML: Forecasting Weather-Related Events

'Actual v. Predicted' Comparison: Two Linear

Regression Models for OSLO 2019

Both models optimized efficiently. However, as a single-variable predictor, *global radiation* proved more relevant due to its **stronger linear relationship** within the underlying data.

Linear
Regression
Model #1: **Mean**Temperature
Over Time

Linear
Regression
Model #2: Mean
Temperature
Over Global
Radiation

III. ML: Forecasting Weather-Related Events

Surface Plot Comparison: Two Linear Regression

Models for OSLO 2019

Model 1's trajectory shorter, misaligned indexes a flatter, noisier surface: weaker gradient signals.

Linear
Regression
Model #1:
Mean
Temperature
Over Time

Model 2's path
(longer and more
curved) reflects a
more directional
loss surface —
strong gradients
guiding toward the
minimum. 'Global
radiation'
creates a more
informative
terrain,

Linear
Regression
Model #2:
Mean
Temperature
Over Global
Radiation

III. ML: Forecasting Weather-Related Events

Contour Plot Comparison: Two Linear Regression Models for OSLO 2019

Model 1 (Temp vs. Time):

Regression

- Wide, gentle contours = flatter terrain.
 Short descent suggests the mode Model #1: Mean saw little gradient to guide it down.
- Final loss stayed high (~0.60).

Temperature Over Time

Linear

Linear Regression Model #2: **Mean** Temperature Over Global Radiation

Model 2 (Temp vs. Global Radiation):

- Tight, concentric contours = steep, informative terrain.
- The longer path reflects stronger gradients and greater "depth".
- Efficient movement toward the center: a much lower loss (~0.26)

Classification Model #1: 🤖 Artificial Neural Network

Now, predicting "pleasant" vs. "unpleasant" — categorical output.

Tested two ANN types:

- Logistic Regression (single-layer)
- Multi-Layer Perceptron (MLP)

Both optimize with gradient descent & binary cross-entropy

Evaluation via training & validation accuracy

MLP starts
higher, ends
higher —
outperforms LR
in generalization

Classification Model #2: 📍 K-Nearest Neighbor (KNN)

KNN is an **instance-based**, **non-inductive model**—it predicts based on proximity, learns mainly via hyperparameter tuning (cross-validation).

KNN achieved **96% accuracy** on unseen data with optimal K=8.

Precision & Recall:

- Unpleasant class: Precision 98%, Recall 97%
- Pleasant class: Precision 85%, Recall 91% *

* Precision < recall on Pleasant class reflects class imbalance—few Pleasant examples make accurate predictions harder despite good coverage.

Classification Model #3: 🌳 **Decision Tree**

Perfect results reflect data simplicity, not overfitting

Audit confirmed **DT rules (see below)** exactly match original labels → **fully separable dataset**

```
|--- OSLO_temp_max <= 17.95

| --- class: 0

|--- OSLO_temp_max > 17.95

| --- OSLO_precipitation <= 0.00

| | --- OSLO_sunshine <= 0.95

| | | --- class: 0

| | --- OSLO_sunshine > 0.95

| | | --- class: 1

| --- OSLO_precipitation > 0.00

| | --- class: 0
```

1. PDecision Tree (DT)

- Final Report of Findings
- Best overall metrics: perfect accuracy and recall.
- o Ideal for this dataset because of its **deterministic, rule-based nature.**
- Caveat: Future data might be less clean or more complex—need to clarify how "pleasant weather" is defined.

2. © 2MLP-ANN

- Strong performance across all metrics with high accuracy and balanced recall.
- Better suited for more complex, real-world data patterns due to its capacity to model nonlinear relationships.
- o Computational cost is higher but still manageable. Good candidate if dataset complexity grows beyond simple rules.

3. **†** KNN

- Solid accuracy and recall, but its **non-inductive**, **instance-based nature limits adaptability**.
- Relies heavily on local data distribution, which might struggle with data drift or feature noise common in weather data.

4. 📶LR-ANN

- o Lowest computational cost and simplest architecture; acceptable baseline performance
- Could be a cost-effective choice for fast prototyping or where interpretability is key, but may require hyperparameter tuning or feature engineering to boost performance.

Metric	☆ 1 Logistic Regression - ANN	☆ 2 MLP - ANN	* KNN	Decision Tree
Accuracy	0.95	0.99	0.96	1.00
Pleasant Recall	0.83	0.99	0.91	1.00
Unpleasant Recall	0.97	1.00	0.97	1.00
Pleasant F1-score	0.84	0.98	0.88	1.00
Macro F1-score	0.91	0.99	0.93	1.00

Climate_ Wins

Final Recommendations

Interim Report Amy Zhang

- Choose the Decision Tree (
 p) for this task and dataset—it's accurate and interpretable.
- Subset data by region to mitigate geographic and feature biases, and to handle subjective definitions of "pleasantness."
- 3. Plan for future expansion: develop more nuanced "pleasantness" criteria, broaden the dataset, and explore flexible models like MLP when complexity grows