Выравнивания. Продолжение.

Алгоритмы в биоинформатике

Антон Елисеев eliseevantoncoon@gmail.com

Что было на прошлой лекции?

- о Дали определение выравнивания и веса выравнивания.
- о Узнали что замены неравноценны.
- о Обсудили как устроены матрицы замен BLOSUM и PAM.
- о Обсудили что один длинный гэп более вероятен чем много коротких.
- Использовали субаддитивные функции штрафов за гэпы, в частности линейную.

Что будет на этой лекции?

- о Узнаем про локальные выравнивания.
- о Обсудим затраты памяти на выравнивание, научимся экономить.
- Поговорим про идеи альтернативных алгоритмов выравнивания.

Зачем?

Иногда нам хотелось бы найти лучшее выравнивание любых подпоследовательностей двух последовательностей.

$$S_{global}(a,b) = \max_{(a^*,b^*)} W(a^*,b^*)$$
 - лучшее глобальное выравнивание

$$S_{local}(a,b) = \max_{(i_l,i_r),(j_l,j_r)} S_{global}(a[i_l\mathinner{.\,.} i_r],b[j_l\mathinner{.\,.} j_r])$$
 локальное выравнивание

$$S_{global}(a,b) = \max_{(a^*,b^*)} W(a^*,b^*)$$
 - лучшее глобальное выравнивание

$$S_{local}(a,b) = \max_{(i_l,i_r),(j_l,j_r)} S_{global}(a[i_l\mathinner{.\,.} i_r],b[j_l\mathinner{.\,.} j_r])$$
 локальное выравнивание

Замечание

Будем веса выбирать так, чтобы пенализировать удаления, вставки и мутации, а за совпадения буреем поощрять.

Идея:

$$D_{i,j} = max egin{cases} D_{i-1,j-1} + w(a_i,b_i) \ D_{i-1,j} + w(a_i,_) \ D_{i-1,j} + w(a_i,_) \ D_{i,j-1} + w(_,b_j) \
angle ext{ (вставка)} \end{cases}$$

Идея:

Если так вышло, что ячейка в динамике стала отрицательной, то нам не нужно ее продолжать! Просто начнём сначала.

$$D_{i,j} = max egin{cases} D_{i-1,j-1} + w(a_i,b_i) \ D_{i-1,j} + w(a_i,_) \ D_{i-1,j} + w(a_i,_) \ D_{i,j-1} + w(_,b_j) \
angle$$
 (вставка)

Алгоритм Смита с Ватерманом.

$$O_{0,0} = 0$$

$$OD_{i,0} = D_{i-1,0} + w(a_i,)$$

$$OD_{0,j} = D_{0,j-1} + w(_, b_j)$$

$$^{\circ}$$
 $D_{i,j} = max egin{cases} 0 \ (\text{пустое выравнивание}) \ D_{i-1,j-1} + w(a_i,b_i) \ (\text{замена}) \ D_{i-1,j} + w(a_i,_) \ (\text{удалениe}) \ D_{i,j-1} + w(_,b_j) \ (\text{вставка}) \end{cases}$

Как найти само выравнивание?

Алгоритм Смита с Ватерманом.

о Сложность по времени

- \circ Сложность по времени $O(n^2)$
- Сложность по памяти

- \circ Сложность по времени $O(n^2)$
- Сложность по памяти $O(n^2)$ Можно ли лучше?

- \circ Сложность по времени $O(n^2)$
- \circ Сложность по памяти $O(n^2)$ Можно ли лучше?

- \circ Сложность по времени $O(n^2)$
- \circ Сложность по памяти $O(n^2)$ Можно ли лучше?

- \circ Сложность по времени $O(n^2)$
- \circ Сложность по памяти $O(n^2)$ Можно ли лучше?
- \circ По памяти можно за $O(max(n,(W_{max}/w_{match})^2))$

Локальное выравнивание. Замечания.

- Работает так же быстро как глобальное
- Можно находить много локальных выравниваний!

Локальное выравнивание. Замечания.

- Работает так же быстро как глобальное
- Можно находить много локальных выравниваний!

Алгоритмы выравнивания и память

- Needleman-Wunsch $O(n^2)$
- Gotoh's $O(n^2)$
- o Smith/Waterman $O(n^2)$

Алгоритмы выравнивания и память

Найдем выравнивание X и Y хромосом человека.

$$size(X) = 156040895 \sim 10^8$$

$$size(Y) = 57227415 \sim 10^7$$

Нам понадобится больше 10^{15} бит

Леммы:

° Пусть D(a,b) расстояние выравнивания, тогда $D(a^{-1},b^{-1})=D(a,b)$, где x^{-1} последовательность x в обратном порядке.

Леммы:

- ° Пусть D(a,b) расстояние выравнивания, тогда $D(a^{-1},b^{-1})=D(a,b)$, где x^{-1} последовательность x в обратном порядке.
- $^{\circ}$ Пусть D(a,b) расстояние редактирования и $a=a_l+a_r$, где $a_l=a[\ ...\ k],\ a_r=a[k\ ...\].$ Тогда \exists такое i, что для $b_l=b[\ ...\ i],\ b_r=b[i\ ...\]$ выполняется $D(a,b)=D(a_l,b_l)+D(a_r,b_r)$

Пруф:

Пруф:

									,	,
		G	Α	T						
	0	1	2	3	6	6	7	7	8	Α
Α	1	1	1	2	5	5	6	6	7	Α
Α	2	2	1	2	4	4	5	5	6	G
G	3	2	2	2	3	4	4	4	5	Α
Α	4	3	2	3	2	3	3	3	4	G
G	5	4	3	3	1	2	2	2	3	Т
Т	6	5	4	3	2	1	2	1	2	Α
Α	7	6	5	4	3	2	1	1	1	С
С	8	7	6	5	4	3	2	1	0	
					T	Α	С	Α		

$$a_l = GAT$$
, $a_r = TACA$

Пруф:

 \triangleleft некоторое разбиение $a=a_l+a_r$. Допустим что \nexists i такого, для которого выполняется $D(a,b) = D(a_l,b_l) + D(a_r,b_r)$ \Rightarrow если мы разобьем a на a_l и a_r , и выровняем a_1 с любым из префиксов b, то a_r нельзя будет выровнять ни с одним из суффиксов b, так, чтобы получилось как в выравнивании a, b.

				,						
		G	Α	T						
	0	1	2	3	6	6	7	7	8	A
Α	1	1	1	2	5	5	6	6	7	A
Α	2	2	1	2	4	4	5	5	6	G
G	3	2	2	2	3	4	4	4	5	Α
Α	4	3	2	3	2	3	3	3	4	G
G	5	4	3	3	1	2	2	2	3	T
Т	6	5	4	3	2	1	2	1	2	Α
Α	7	6	5	4	3	2	1	1	1	С
С	8	7	6	5	4	3	2	1	0	
					T	Α	С	Α		
					(()					

$$a_l = GAT$$
, $a_r = TACA$

Замечание

Допустим что $\exists i$ такое, что выполняется $D(a,b) > D(a_l,b_l) + D(a_r,b_r)$

Но тогда мы бы объединили выравнивание a_l, b_l и a_r, b_r и получили бы более оптимальное выравнивание!

		G	Α	Т						
	0	1	2	3	6	6	7	7	8	Α
Α	1	1	1	2	5	5	6	6	7	Α
Α	2	2	1	2	4	4	5	5	6	G
G	3	2	2	2	3	4	4	4	5	Α
Α	4	3	2	3	2	3	3	3	4	G
G	5	4	3	3	1	2	2	2	3	T
Т	6	5	4	3	2	1	2	1	2	Α
Α	7	6	5	4	3	2	1	1	1	С
С	8	7	6	5	4	3	2	1	0	
					T	Α	С	Α		

$$a_l = GAT$$
, $a_r = TACA$

Следствие

Получается что если $a=a_l+a_r$, то найдется такой индекс i, что для $b_l=b[\ldots i],\, b_r=b[i\ldots]$ выполняется $D(a,b)=D(a_l,b_l)+D(a_r,b_r)$ но такого индекса где $D(a,b)>D(a_l,b_l)+D(a_r,b_r)$ точно не найдется!

		G	Α	Т						
	0	1	2	3	6	6	7	7	8	Α
Α	1	1	1	2	5	5	6	6	7	Α
Α	2	2	1	2	4	4	5	5	6	G
G	3	2	2	2	3	4	4	4	5	Α
Α	4	3	2	3	2	3	3	3	4	G
G	5	4	3	3	1	2	2	2	3	T
Т	6	5	4	3	2	1	2	1	2	Α
Α	7	6	5	4	3	2	1	1	1	С
С	8	7	6	5	4	3	2	1	0	
					T	Α	С	Α		

$$a_l = GAT$$
, $a_r = TACA$

Следствие

Получается что если $a=a_l+a_r$, то найдется такой индекс i, что для $b_l=b[\ldots i],\, b_r=b[i\ldots]$ выполняется $D(a,b)=D(a_l,b_l)+D(a_r,b_r)$ но такого индекса где $D(a,b)>D(a_l,b_l)+D(a_r,b_r)$ точно не найдется.

			Λ	-						
[G	Α	T	,					
	0	1	2	3	6	6	7	7	8	Α
Α	1	1	1	2	5	5	6	6	7	Α
Α	2	2	1	2	4	4	5	5	6	G
G	3	2	2	2	3	4	4	4	5	Α
Α	4	3	2	3	2	3	3	3	4	G
G	5	4	3	3	1	2	2	2	3	Т
Т	6	5	4	3	2	1	2	1	2	Α
Α	7	6	5	4	3	2	1	1	1	С
С	8	7	6	5	4	3	2	1	0	
					T	Α	С	Α		

$$a_l = GAT$$
, $a_r = TACA$

Следствие

Получается что если $a=a_l+a_r$, то найдется такой индекс i, что для $b_l=b[\ldots i],\, b_r=b[i\ldots]$ выполняется $D(a,b)=D(a_l,b_l)+D(a_r,b_r)$ но такого индекса где $D(a,b)>D(a_l,b_l)+D(a_r,b_r)$ точно не найдется.

Значит можно выравнивать суффикс и префикс и искать минимум!

		G	Α	T						
	0	1	2	3	6	6	7	7	8	Α
Α	1	1	1	2	5	5	6	6	7	Α
Α	2	2	1	2	4	4	5	5	6	G
G	3	2	2	2	3	4	4	4	5	Α
Α	4	3	2	3	2	3	3	3	4	G
G	5	4	3	3	1	2	2	2	3	T
Т	6	5	4	3	2	1	2	1	2	Α
Α	7	6	5	4	3	2	1	1	1	С
С	8	7	6	5	4	3	2	1	0	
					T	Α	С	Α		

$$a_l = GAT$$
, $a_r = TACA$

- 1. Разбиваем a пополам, $a = a_{..\frac{1}{2}} + a_{\frac{1}{2}..}$
- 2. Находим расстояние выравнивание от $a_{..\frac{1}{2}}$ до всех префиксов b и то же самое для $a_{\frac{1}{2}..}^{-1}$ и b^{-1}
- 3. Находим разбиение b такое, при котором минимально $D(a_{..\frac{1}{2}},b_l)+D(a_{\frac{1}{2}..},b_r)$, записываем, где это произошло.
- 4. Запускаемся рекурсивно на $a_{..\frac{1}{2}}, b_l$ и на $a_{\frac{1}{2}..}, b_r$

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(*AGTACGCA*, *TATGC*)

		T	Α	T	G	С
	0	-2	-4	-6	-8	-10
Α	-2	-1	0	-2	-4	-6
G	-4	-3	-2	-1	0	-2
Т	-6	-2	-4	0	-2	-1
Α	-8	-4	0	-2	-1	-3

		C	G	Т	Α	Т
	0	-2	-4	6	-8	-10
Α	-2	-1	-3	-5	-4	-6
C	-4	0	-2	-4	-6	-5
G	-6	-2	2	0	-2	-4
С	-8	-4	0	1	_1	-3

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(*AGTACGCA*, *TATGC*)

		T	Α	T	G	С
	0	-2	-4	-6	8	-10
Α	-2	1	0	-2	-4	-6
G	-4	-3	-2	-1	0	-2
T	-6	-2	-4	0	-2	-1
A	-8	-4	0	-2	-1	-3

		C	G	Т	Α	Т
	0	-2	-4	-6	-8	-10
A	-2	7	-3	-5	-4	-6
O	-4	0	-2	-4	-6	-5
G	-6	-2	2	0	-2	-4
C	-8	-4	0	1	-1	-3

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(*AGTACGCA*, *TATGC*)

NW(rev(CGCA), rev(b))

		T	Α	T	G	С
	0	-2	-4	-6	-8	-10
Α	-2	-1	0	-2	-4	-6
G	-4	-3	-2	-1	0	-2
T	-6	-2	-4	0	-2	-1
A	-8	-4	0	-2	-1	-3

ScoreL =
$$[-8,-4,0,-2,-1,-3]$$

rev(ScoreR) = $[-3,-1,1,0,-4,-8]$
Sum = $[-11,-5,1,-2,-5,-11]$

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(*AGTACGCA*, *TATGC*)

H(CGCA, TGC)

Алгоритм Хиршберга. Пример.

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(AGTACGCA, TATGC) H(AGTA, TA) H(CGCA, TGC) H(AG, ()) H(TA, TA) H(CG, TG) H(CA, C)

Алгоритм Хиршберга. Пример.

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(AGTACGCA, TATGC) H(AGTA, TA) H(CGCA, TGC) H(AG, ()) H(TA, TA) H(CG, TG) H(CA, C) H(T, T) H(A, A) H(C, T) H(G, G)

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \dots =$$

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-k) + \frac{n}{4}(k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-k) + \frac{n}{4}(m-i-k) + \frac{n}{4}(m-i-k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-k) + \frac{$$

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-k) + \frac{n}{4}(k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-k) + \frac{n}{4}(m-i-k) + \frac{n}{4}(m-i-k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-k) + \frac{$$

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \dots =$$

$$= nm + \frac{n}{2}m + \frac{n}{4}m + \dots = nm \sum_{t=0}^{\log_2(n)} \frac{1}{2^t} \le 2nm \Rightarrow O(nm)$$

Другой способ — решить рекуррентное соотношение (самостоятельно)

$$T(n,m) = T\left(rac{n}{2}, m-j
ight) + T\left(rac{n}{2}, j
ight) + O(nm)$$
, где $j \in (0,m)$

Алгоритм Хиршберга. Оценка.

- 1. По памяти O(n)
- 2. По времени $O(n^2)$
- 3. Используется асимптотически меньше памяти, а скорость хуже только на константу!

Алгоритм на основе решения дифуров

Оказывается можно рассмотреть уравнения динамики как систему дифференциальных уравнений

Suzuki H., Kasahara M. Introducing difference recurrence relations for faster semi-global alignment of long sequences BMC bioinformatics 2018 https://github.com/ocxtal/libgaba

Wavefront Алгоритм

Ограничимся такими условиями

Штрафы га гэпы о - за открытие, е - за продолжение Совпадения - 0 Мутации - х

Тогда можно найти выравнивание за O(n*s) где s - это вес оптимального выравнивания!

Wavefront Алгоритм

Ближе к концу модуля будет про это лекция

```
Marco-Sola, Santiago, et al. Fast gap-affine pairwise alignment using the wavefront algorithm Bioinformatics 2020 https://github.com/smarco/WFA
```

Резюмируем

- Если нам важно искать самое лучшее совпадение подпоследовательностей, то локально выравниваем.
- Можно использовать линию памяти почти не теряя в скорости