Программа для расчёта поля давления в тепловом насосе

Рамазанова А.Ш.

руководитель: д.х.н., проф. Бажанов В.И.

Московский государственный индустриальный университет Кафедра «Информационные системы и технологии»

Слайд 1: Цель работы

Целью работы является расчет давления вязкой несжимаемой жидкости в пространстве кавитационного насоса с последующим выявлением зон пониженного давления

Слайд 2: Тепловой насос

Слайд 3: Постановка задачи

Система уравнений Навье-Стокса:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial y} = \frac{-1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} = \frac{-1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

Уравнение неразрывности:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Слайд 4: Начальные и граничные условия

Начальные условия: $p_0=P_2$, $p_\infty=P_3$, $u_0=\omega R$, $v_0=V_r$

Граничные условия1: для кольца ротора: условия прилипания и непротекания $V=0,\ U=\omega R$

Граничные условия2: для кольца статора: условия прилипания и непротекания $V=0,\ U=\omega R$

Слайд 5: Численный метод

Метод расщепления по физическим факторам:

1.
$$\frac{\widetilde{\vec{V}} - \vec{V}^n}{\tau} = -(\vec{V}^n \cdot \nabla) \vec{V}^n - \nu \nabla \times \vec{\omega}^n,$$

$$2. \ \Delta p = \frac{\widetilde{D}}{\tau},$$

$$3. \ \frac{\vec{V}^{n+1} - \vec{V}}{\tau} = -\nabla p,$$

где
$$ec{\omega} =
abla imes ec{V}, \quad \widetilde{D} =
abla \cdot ec{V}$$

Слайд 6: Фазовая диаграмма воды

Слайд 7: Результаты - распределение

Поле давления при $\omega=11.0$

Слайд 8: Результаты - распределение

Поле давления при $\omega=50.0$

Слайд 9: Результаты - распределение

Поле давления при $\omega=75.0$

Слайд 10: Результаты - объем зоны низкого давления

Объем при $\omega=11.0$

```
[ras11@ice11 Diplom1]$ ./a.out
t=0
----I-----
Шаг по времени = 0.000078
-----II-----
Проведено итераций = 4190
-----III-----
t=1
-----I-----
Шаг по времени = 0.000078
----II-----
Проведено итераций = 3454
----III-----
Объем зоны низкого давления = 1027.006273
```

Слайд 11: Результаты - объем зоны низкого давления

Объем при $\omega=50.0$

```
[ras11@ice11 Diplom1]$ ./a.out
t=0
----I-----
Шаг по времени = 0.000078
----TT-----
Проведено итераций = 4085
-----III-----
t=1
-----I-----
Шаг по времени = 0.000078
-----TT-----
Проведено итераций = 3095
----TTT-----
Объем зоны низкого давления = 1722.633427
```

Слайд 12: Результаты - объем зоны низкого давления

Объем при $\omega=75.0$

```
[ras11@ice11 Diplom1]$ ./a.out
t=0
-----I-----
Шаг по времени = 0.000078
-----II-----
Проведено итераций = 4012
----TTT-----
t = 1
----T-----
Шаг по времени = 0.000078
-----I I-----
Проведено итераций = 2729
-----TTT-----
Объем зоны низкого давления = 1733.008536
```

Слайд 13: Выводы

- Приведен литературный обзор методов численного решения гидродинамических задач и выбран метод SOR для решения дифференциальных уравнений в частных производных и используется метод расщепления по физическим параметрам для решения системы уравнений.
- Произведен аналитический расчет поля давлений в полости кавитационного насоса.
- Написана программа на языке C++ для расчета с помощью методов расщепления и SOR давления в сопле теплового насоса.
- Рассчитан объем зоны давления, где давление ниже давления насыщенного пара.