



| Date          | 15 March 2024                                |
|---------------|----------------------------------------------|
| Team id       | SWUID20240034764                             |
| Project title | Predicting Full Load Electrical Power Output |
|               | of a Base Load Operated Combined Cycle       |
|               | Power Plant Using Machine Learning           |
| Maximum marks | 4 Marks                                      |

## **Initial Model Training Code**

Model Validation and Evaluation Report The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.





## **Model Validation and Evaluation Report:**

| mo<br>del       | Classification report                                                                                                                                                                                                                                                                       | acc<br>urac<br>y | Prediction matrix  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| Lr<br>mo<br>del | <pre>from sklearn.linear_model import Linear@ LRmodel = LinearRegression() LRmodel.fit(xtrain, ytrain)</pre>                                                                                                                                                                                | 95               | 0.9325315554761302 |
| Dt<br>mo<br>del | # Intializing the model DTRmodel=DecisionTreeRegressor() # Train_the_data with Linear Regreesion model DTRmodel.fit(xtrain, ytrain) DTRpred=DTRmodel.predict(xtest) # Checking for accuracy score with actual de DTRscore=r2_score (ytest, DTRpred) DTRscore                                |                  | 0.9650934927089813 |
| Rf<br>mo<br>del | # Random Forest Regressor from sklearn.ensemble import Rand # Initializing the model REmodel=RandomForestRegressor() # Train the data with Random Fore REmodel.fit(xtrain, ytrain) REpred=REmodel.predict(xtest) #Checking for accuracy score with REscore=r2_score (ytest, REpred) REscore |                  | 0.9212701843289313 |