Due: Mar.26th

Homework 3

Due date: Mar.19th, 2018 Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- 1. Find the equivalent resistance in the circuit R_{ab} in Fig. 1 by using Y- Δ transformation.

Figure 1

2. For the circuit in Fig. 2, determine the value of *R* such that the maximum power delivered to the load is 3 mW.

Figure 2

3. Calculate v_0 in this circuit.

4. Determine the output voltage v_0 in the circuit below.

5. Refer to the op amp circuit in Fig below. Calculate i_x and the power absorbed by the $3-k\Omega$ resistor.

- 6. For the circuit of the Fig below, what should the resistance of R_L be so as to have the maximum transfer of power into it?
 - We can assume that the operational amplifier operates in its linear region.

7. Obtain an expression for the voltage gain $G=v_0/v_s$ foe the circuit in Fig below.

- Due: Mar.26th
- 8. In the circuit of Fig below, a bridge circuit is connected at the input side of an inverting op-amp circuit.
- (a) Obtain the Thevenin equivalent at terminals (a, b) for the bridge circuit.
- (b) Use the result in (a) to obtain an expression for $G = v_0/v_S$.
- (c) Evaluate G for R_1 = R_4 =100 Ω , R_2 = R_3 =101 Ω ,and R_f =100k Ω .

