Class: AMATH 583 Name: Hongda Li HW3 Questions.rst

Quetion 1

What level of SIMD/vector support does the CPU your computer provide? List of SIMD provided by 4900HS:

- 1. AVX2, AVX
- 2. SSE, SSE3, SSSE3 SSE4.1, SSE4.2, SSE2

The SSE is just old type of AVX.

Questions 2, 3

What is the maximum operand size that your computer will support? A in this case, AVX 2 provides the longest register length for data, in this case it's 256 bit.

Question 4

What is the clock speed of your CPU? (You may need to look this up via "About this Mac" or "lscpu"). Base: 3.0 GHz, Boost: 4.3 GHz, usually I get 3.9GHz.

Question 5

Based on the output from bandwidth.exe on your computer, what do you expect L1 cache and L2 cache sizes to be? What are the corresponding bandwidths? How do the cache sizes compare to what "about this mac" (or equivalent) tells you about your CPU? (There is no "right" answer for this question – but I do want you to do the experiment.)

This is the verbatim of the out of from "./bandwidth.exe" command:

read						
bytes/elt	#elts	res_bytes	ntrials	usecs	ttl_bytes	bytes/sec
8	16	128	67108868	15000	8589935104	5.72662e+11
8	32	256	33554436	8000	8589935616	1.07374e+12
8	64	512	16777220	4000	8589936640	2.14748e+12
8	128	1024	8388612	1000	8589938688	8.58994e+12
8	256	2048	4194308	0	8589942784	0
8	512	4096	2097156	1000	8589950976	8.58995e+12
8	1024	8192	1048580	0	8589967360	0
8	2048	16384	524292	0	8590000128	0
8	4096	32768	131074	0	4295032832	0
8	8192	65536	65538	0	4295098368	0
8	16384	131072	32770	0	4295229440	0
8	32768	262144	16386	0	4295491584	0
8	65536	524288	8194	0	4296015872	0
8	131072	1048576	2049	0	2148532224	0
8	262144	2097152	1025	0	2149580800	0
8	524288	4194304	513	0	2151677952	0
8	1048576	8388608	257	0	2155872256	0
8	2097152	16777216	129	0	2164260864	0
8	4194304	33554432	65	0	2181038080	0
8	8388608	67108864	33	0	2214592512	0
8	16777216	134217728	17	0	2281701376	0
write	10,,,210	101217720	± ·		2201,010,0	•
bytes/elt	#elts	res_bytes	ntrials	usecs	ttl_bytes	bytes/sec
8	16	128	67108868	62000	8589935104	1.38547e+11
8	32	256	33554436	62000	8589935616	1.38547e+11
8	64	512	16777220	61000	8589936640	1.40819e+11
8	128	1024	8388612	61000	8589938688	1.40819e+11
8	256	2048	4194308	61000	8589942784	1.40819e+11
8	512	4096	2097156	61000	8589950976	1.40819e+11
8	1024	8192	1048580	61000	8589967360	1.40819e+11
8	2048	16384	524292	61000	8590000128	1.4082e+11
8	4096	32768	131074	32000	4295032832	1.3422e+11
8	8192	65536	65538	33000	4295098368	1.30154e+11
8	16384	131072	32770	31000	4295229440	1.38556e+11
8	32768	262144	16386	31000	4295491584	1.38564e+11
8	65536	524288	8194	32000	4296015872	1.3425e+11
8	131072	1048576	2049	22000	2148532224	9.76606e+10
8	262144	2097152	1025	23000	2149580800	9.346e+10
8	524288	4194304	513	51000	2151677952	4.21898e+10
8	1048576	8388608	257	364000	2155872256	5.92273e+09
8	2097152	16777216	129	351000	2164260864	6.16599e+09
8	4194304	33554432	65	366000	2181038080	5.95912e+09
8	8388608	67108864	33	360000	2214592512	6.15165e+09
8	16777216	134217728	17	375000	2281701376	6.08454e+09
read/write	10///210	13421//20	Ι/	373000	2201/013/0	0.004346+03
	# - 1 + -	was but as	n+ minla	,,,,,,,,,	++1 brr+00	brrt og /gog
bytes/elt 8	#elts 8	res_bytes 128	ntrials 67108868	usecs	ttl_bytes 8589935104	bytes/sec 7.95364e+10
8	16	256		108000	8589935616	
	32		33554436	130000		6.60764e+10 1.32153e+11
8	32 64	512	16777220	65000 44000	8589936640 8589938688	1.32153e+11 1.95226e+11
8		1024	8388612		8589938688	
8	128	2048	4194308	37000		2.32161e+11
8	256	4096	2097156	34000	8589950976	2.52646e+11
8	512	8192	1048580	32000	8589967360	2.68436e+11
8	1024	16384	524292	31000	8590000128	2.77097e+11
8	2048	32768	131074	17000	4295032832	2.52649e+11
8	4096	65536	65538	32000	4295098368	1.34222e+11

8	8192	131072	32770	32000	4295229440	1.34226e+11
8	16384	262144	16386	33000	4295491584	1.30166e+11
8	32768	524288	8194	33000	4296015872	1.30182e+11
8	65536	1048576	2049	21000	2148532224	1.02311e+11
8	131072	2097152	1025	20000	2149580800	1.07479e+11
8	262144	4194304	513	44000	2151677952	4.89018e+10
8	524288	8388608	257	265000	2155872256	8.13537e+09
8	1048576	16777216	129	264000	2164260864	8.19796e+09
8	2097152	33554432	65	262000	2181038080	8.32457e+09
8	4194304	67108864	33	265000	2214592512	8.35695e+09
8	8388608	134217728	17	203000	2281701376	1.12399e+10

The compiler optimized out the read forloop, making the results invalid. I currently don't have a good idea on how to get the read speed yet.

For the write, a Plateau appeared between the block size of "65536" to "131072", indicating a threshold of 2¹⁶ bytes for the L1 registers. Which is about "64kb" L1 Cache. The second Plateau appeared between size "524288" and "1048576" bytes, meaning that L2 could have a size of "512"kb. The third plateau happens around 8mb, and that could potentially be entering the L3 cache.

For the read/write bandwidth to register, it's a different story. It seems like, for blocks that are too small, it's unable to achieve optimal speed, and the speed drops out, around "256kb".

L1 Cache has speed around "1.3425e+11" bytes/s, which is about "134.25 gb/s". And the decrease L2 speed is about "90 gb/s", and for L3, it's about "6gb/s".

The specs of the Ryzen 4900HS has 512kb for L1 register, and 4.0mb for L2 Register, and I think L3 is shared between 2 cluster of cores so we are not worrying about that.

Therefore, it seems like there are 2 types of speed for L1 cache for this CPU, I mistaken the first Plateau as falling L1 to L2, but actually it's not.

I googled a bit, and here is the source for 4900HS cache organization.

For L1, there are 2 types of L1, L1L, L1D, and for L2, it's 512kb shared for one core while 4 ways stitched together for 4 coers.

L3 is 2 times 4 mb (8 mb in total) and shared for all 8 cores.

Note: The Ryzen zen 2 CPU should also have a FMA4 (Fused, Multiply Add) SIMD instruction set for floating operations, however, it's not shown when "./cpuinfo583.exe" is executed.

Questions 6

Based on the output from bandwidth.exe on your computer, what do you expect L1 cache and L2 cache sizes to be? What are the corresponding bandwidths? How do the cache sizes compare to what "about this mac" (or equivalent) tells you about your CPU? (There is no "right" answer for this question – but I do want you to do the experiment.)

There are 3 drops in the data bandwidth from the experiment, at the size of 32kb, 512 kb, and 4mb. Each of them corresponds to part of the L1 cache, all of the L1 cache, L2. And by the time we entered L3 cache (around 4mb), all the speed is gone.

Question 7

What is the (potential) maximum compute performance of your computer? (The horizontal line.) What are the L1, L2, and RAM bandwidths? How do those bandwidths correspond to what was measured above with the bandwidth program?

1. Assume single core performance, The top speed is computed by:

(Core Speed) × (Instruction per clcye) × (Number of Floats it can process with SIMD)

hence the number will be given by:

$$4.3 \times 8[GFlops/s] \approx 34.4[Gflops/s]$$

where the data "8" is for double precision floating points, using the "FMA4" instruction for ryzen processor. However, if the "256" bits register is used with the "AVX2" SIMD, then the data Gflops will be $4.3 \times 4 \approx 17.2$. With both contributing together, we can have: $4.3 \times 8 + 4.3 \times 4 \approx 51.6$ Gflops per second.

I will say this is a very gross over estimate (It hardly even goes to the advertised 4.3 GHz to be honest.), and I will say it's about "15" Gflops under the best case for my CPU.

This part of the HW Questions is done with the help from this stack overflow discussion.

- 2. L1: "255 GB/s", L2 is "88 GB/s", RAM is "9 GB/s", this is for single core I would assume.
- 3. My PC manufracture didn't specify any of this information, there is no comparison to make.

Question 8

Based on the clock speed of your CPU and its maximum Glop rate, what is the (potential) maximum number of *double precision* floating point operations that can be done per clock cycle? (Hint: Glops / sec

:math:'/div' GHz = flops / cycle.) There are several hardware capabilities that can contribute to supporting more than one operation per cycle: fused multiply add (FMA) and AVX registers. Assuming FMA contributes a factor of two, SSE contributes a factor of two, AVX/AVX2 contribute a factor of four, and AVX contributes a factor of eight of eight, what is the expected maximum number of floating point operations your CPU could perform per cycle, based on the capabilities your CPU advertises via cpuinfo (equiv. lscpu)? Would your answer change for single precision (would any of the previous assumptions change)?

- 1. Attempts on computing the maximal performance of the CPU is already been shown in the first part of question 7.
- 2. My answer will change for single precision. The AVX, or the FMA instruction set can be divided up for streaming single precision numbers, this allows for the performance to double when computing single precision floating points compare to double precision floating points.

Question 9

What is the maximum compute performance of your computer? (The horizontal line.) What are the L1, L2, and DRAM bandwidths? How do those bandwidths correspond to what was measured above?

The maximal compute performance is 47.2 GFlops per second. The L1 is 135.9 GB/s, the same as we observed from the homegrown benchmark. The L2 Cache bandwidth is gone under the eyes of this profiler or unknown reasons.

They are very similiar to the measurements above. The DRAM bandwidth is the same as results from the "amath583/bandwidth" docker run.