ALU MATH PRACTICE

QUESTION: Design a 2-bit ALU from the following table:

			Function of selection variables				
Binary code			А	В	D	F with $C_{in} = 0$	F with $C_{in} = 1$
0	0	0	Input data	Input data	None	A, C ← 0	A + 1
0	0	1	. R1	* R1	RI	A + B	A+B+1
0	1	0	R2	R2	R2	A-B-1	A - B
0	1	1	R3	R3	R3	A-1	$A, C \leftarrow 1$
1	0	0	R4	R4	R4	$A \vee B$	
1	0	1	R5	R5	R5	$A \oplus B$	-
1	1	0	R6	R6	R6	$A \wedge B$	_
1	1	1	R7	R7	R7	Ā	_

PIPELINING HAZARDS MATH PRACTICE

VIDEO LINK:

https://www.youtube.com/watch?v=nC6csdXEkzU&t=297s