Введение в обучение с подкреплением

Сеньченко Т. 172

Описание задачи:

В обучении с подкреплением существует агент взаимодействующий с окружающей средой и предпринимающий некоторые действия (ходы).

В ответ окружающая среда дает награду за тот или иной ход и агент продолжает их выполнять.

Описание задачи:

При обучении с подкреплением, в отличии от обучения с учителем, не предоставляются верные пары "входные данные — ответ", а принятие субоптимальных решений не ограничивается явно.

Основываясь на взаимодействии с окружающей средой, агент должен выработать стратегию, которая максимизирует сумму вознаграждений.

Среда обычно формулируется как Марковский процесс принятия решений (МППР) с конечным множеством состояний.

Вероятности выигрышей и перехода состояний в МППР обычно являются величинами случайными, но стационарными в рамках задачи.

Кратко о Марковских процессах:

Марковский процесс принятия решений задается кортежем из 4-х значений:

S – конечное множество состояний

А – конечное множество действий (часто представляется в виде множества A_s, доступных из состояния s)

 $P_a(s, s') = Pr(s_t+1 = s' \mid s_t = s, a_t = a) - вероятность, что действие а в состоянии s во время t приведет в состояние s' ко времени t+1$

 $R_a(s, s')$ — вознаграждение, получаемое после перехода в состояние s' из s с вероятностью перехода $P_a(s, s')$

Постановка задачи:

Цель агента — выработать стратегию $\pi:S o A$, которая максимизирует величину R, где

$$R = \sum_t R_t \gamma^t$$

дисконтирующий множитель, лежит в интервале (0, 1)

вознаграждение, получаемое после перехода в состояние s_{t+1} из состояния s_t в момент времени t

Проблема определения выигрыша

Одной из основных проблем при решении проблем реального мира в RL является проблема выбора выигрыша

Примеры:

• Сохранение наклона

• Увеличение механической энергии

• Ограничение сверху

Эпизодические или непрерывные задачи

Эпизодические задачи

В этом случае у нас есть начальная и конечная точка. Это создает эпизод: список состояний, действий, наград и будущих состояний.

Эпизодические или непрерывные задачи

Непрерывные задачи

Это задачи, которые продолжаются вечно. В этом случае система должна научиться выбирать оптимальные действия и одновременно взаимодействовать со средой.

Как пример можно привести систему, которая автоматически торгует акциями. Для этой задачи нет начальной точки и состояния терминала.

Монте-Карло против Временной разницы Метод Монте-Карло

Когда эпизод заканчивается, система смотрит на накопленное вознаграждение, чтобы понять насколько хорошо она выполнила свою задачу. В методе Монте-Карло награды получают только в конце игры.

Затем, мы начинаем новую игру с новыми знаниями. С каждым разом система проходит этот уровень все лучше и лучше.

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$
Maximum expected future reward starting at that state that state that state
$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$
Discounted cumulative rewards that state that state
$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

- Каждый раз мы будем начинать с одного и того же места.
- Мы проиграем, если кошка съедает нас или если мы сделаем более 20 шагов.
- В конце эпизода у нас есть список состояний, действий, наград и новых состояний.
- Система будет суммировать общее вознаграждение Gt.
- Затем она обновит V (st), основываясь на приведенной выше формулы.
- Затем начнет игру заново, но уже с новыми знаниями.

Монте-Карло против Временной разницы Метод Монте-Карло

Данный метод не ждёт конца эпизода, чтобы обновить максимально возможное вознаграждение.

Он будет ждать лишь следующего временного шага, чтобы обновить значения.

В момент времени t+1 обновляются все значения, а именно вознаграждение меняется на Rt+1, а текущая оценка V(St) на V(St+1).

TD Learning
$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Previous estimate Reward t+1 Discounted value on the next step

TD Target

Наивный подход:

- Опробовать все возможные стратегии
- Выбрать стратегию с наибольшим ожидаемым выигрышем

Проблемы:

- Огромное количество возможных стратегий
- Стохастические выигрыши

Подход с использованием функции полезности:

• Оценивание ожидаемого выигрыша начиная с состояния s, при дальнейшем следовании стратегии π :

$$V(s) = E[R|s,\pi]$$

• Ожидаемый выигрыш, при принятии решения a в состоянии S и дальнейшем соблюдении π

$$Q(s, a) = E[R|s, \pi, a]$$

Подход с использованием функции полезности:

- Если для выбора оптимальной стратегии используется функция полезности Q, то оптимальные действия всегда можно выбрать как действия, максимизирующие полезность
- Если же мы пользуемся функцией V, необходимо либо иметь модель окружения в виде вероятностей P(s'|s,a) что позволяет построить функцию полезности вида $Q(s,a) = \sum_{s'} V(s')P(s'|s,a)$ либо применить метод исполнитель-критик

Подход с использованием функции полезности:

Если задача имеет терминальное состояние, то все хорошо, имея фиксированную стратегию можно оценить $E[R|\cdot]$ усреднив суммарный выигрыш после каждого состояния.

Однако если задача не оканчивается в определенный момент придется использовать алгоритм обучения с временными воздействиями.

Exploitation-exploration:

- Исследование это поиск дополнительной информации об окружающей среде
- Эксплуатация это использование известной информации для получения максимального вознаграждения

Многорукий бандит:

- A множество возможных *действий* (ручек автомата)
- $p_a(r)$ неизвестное распределение награды $r \in R \ \forall a \in A$
- $\pi_t(a)$ стратегия агента в момент $t \, \forall a \in A$
- Игра агента со средой:
- Инициализация стратегии $\pi_1(a)$
- Для всех t = 1...T:
 - \circ Агент выбирает действие (ручку) $a_t \sim \pi_t(a)$
 - \circ Среда генерирует награду $r_t \sim p_{a_t}(r)$
 - \circ Агент корректирует стратегию $\pi_{t+1}(a)$

$$Q_t(a) = rac{\sum_{i=1}^t r_i[a_i=a]}{\sum_{i=1}^t [a_i=a]} o max - средняя награда в t играх$$

$$Q^*(a) = \lim_{t \to \infty} Q_t(a) \to max$$
 — ценность действия a

Жадная и Epsilon-жадная стратегия

Жадная стратегия:

- $P_a = 0 \, \forall a \in \{1 ... N\}$ − сколько раз было выбрано действие a
- $Q_a = 0 \, \forall a \in \{1 \dots N\}$ текущая оценка математического ожидания награды для действия a

На каждом шаге t:

- Выбираем действие с максимальной оценкой математического ожидания: $a_t = argmax_{a \in A} Q_a$
- Выполняем действие a_t и получаем награду $R(a_t)$
- Обновляем оценку математического ожидания для действия a_t :

$$P_{a_t} = P_{a_t} + 1$$
, $Q_{a_t} = Q_{a_t} + \frac{1}{P_{a_t}} (R(a_t) - Q_{a_t})$

Epsilon-жадная стратегия:

Введем параметр $\epsilon \in (0,1)$

На каждом шаге t

- Получим значение α случайной величины равномерно распределенной на отрезке (0,1)
- Если $\alpha \in (0, \epsilon)$, то выберем действие $a_t \in A$ случайно и равновероятно, иначе как в жадной стратегии выберем действие с максимальной оценкой математического ожидания
- Обновляем оценки так же как в жадной стратегии

Если $\epsilon > 0$, то в отличии от жадной стратегии на каждом шаге с вероятностью ϵ происходит "исследование" случайных действий.

Табличные методы

Применимы в случае, когда пространство полей и действий достаточно малы и могут быть записаны в виде векторов и таблиц.

Поскольку найти оптимальную стратегию аналитическим образом не представляется возможным используются итеративные методы.

Метод кросс-энтропии

- Инициализируем стратегию случайным образом
- Повторяем следующий цикл:
 - Сэмплируем испытания N раз
 - Выбираем М < N наиболее удачных –
 «элитных» испытаний
 - Меняем стратегию приоритизируя действия из элитных сессий

Метод кросс-энтропии

• Стратегия задается матрицей:

$$\pi(a|s) = A_{s,a}$$

• М элитных испытаний из N сэмплов:

$$Elite = [(s_0, a_0), (s_1, a_1), \dots, (s_k, a_k)]$$

• Обновляем стратегию в соответствии с действиями предпринятыми в элитных испытаниях

$$\pi(a|s) = \frac{\sum_{s_t, a_t \in Elite} [s_t = s][a_t = a]}{\sum_{s_t \in Elite} [s_t, a_t = s]}$$

Метод кросс-энтропии

Проблемы:

- Редкие состояния
 - Решение сглаживание

$$\pi(a|s) = \frac{\sum_{s_t, a_t \in Elite} [s_t = s][a_t = a] + \lambda}{\sum_{s_t \in Elite} [s_t, a_t = s] + \lambda N_{actions}}$$

- (Опять) стохастические выигрыш
 - Решение сэмплировать действие для каждого состояния и запустить несколько симуляций с данными парами «состояние – действие». Усреднить результат.

Вопросы

- Как ставка дисконтирования влияет на приоритеты (долгосрочное и краткосрочное вознаграждение)?
- В чем заключается проблема жадной стратегии в случае многорукого бандита?
- Опишите задачу максимизации машинного обучения с подкреплением и опишите все элементы.
- Опишите проблему наивного подхода решения задачи (перебор всех возможных стратегий и выбор стратегии с наибольшим ожидаемым выигрышем)

Источники

- «Обучение с подкреплением» статья на neerc.ifmo.ru
- «Введение в обучение с подкреплением для начинающих»
 статья на proglib.io
- «Марковский процесс принятия решений» статья на википедии
- Видеолекция «Crossentropy method» на coursera.org
- <u>Статья «Summary of Tabular Methods in Reinforcement Learning» towardsdatascience.com</u>