Tracking a Small Set of Experts by Mixing Past Posteriors

Olivier Bousquet

Ecole Polytechnique, France and BIOwulf Technologies, New-York

Manfred K. Warmuth

UC Santa Cruz

Outline

• Motivate on-line learning, relative loss bounds

- Comparator on-line as well
- Shifting back
- Mixing Update
- Experimental Results
- Future work

2

- Given batch of random examples
- Goal: Find discriminator that predicts well on random unseen examples

```
Loop for each trial t = 1, ..., T

Get next instance \boldsymbol{x}_t

Make prediction \hat{y}_t

Get label y_t ("true outcome")

Incur loss L(\hat{y}_t, y_t)
```

- No statistical assumptions on the data
- Choose comparison class of predictors (experts) x_t vector of expert's predictions

Goal

• Do well compared to the best off-line comparator

What kind of performance can we expect?

- $L_{1..T,A}$ be the total loss of algorithm A
- $L_{1..T,i}$ be the total loss of *i*-th expert E_i

• Form of bounds

$$\forall S: \quad L_{1..T,\mathbf{A}} \leq \min_{i} \left(L_{1..T,\mathbf{i}} + c \log n \right)$$

where c is constant

• Bounds the loss of the algorithm relative to the loss of best expert

• Master algorithm predicts with weighted average

$$\hat{y}_t = \boldsymbol{v}_t \cdot \boldsymbol{x}_t$$

• The weights are updated according to the Loss Update

$$v_{t+1,i} := \frac{v_{t,i} \ e^{-\eta L_{t,i}}}{\text{normaliz.}}$$

where $L_{t,i}$ is loss of expert i in trial t

→ Weighted Majority Algorithm

[LW89]

 \rightarrow Generalized by Vovk

[Vovk90]

- Off-line algorithm partitions sequence into sections and chooses best expert in each section
- Goal:

 Do well compared to the best off-line partition
- Problem:
 Loss Update learns too well
 and does not recover fast enough

- Predict $\hat{y}_t = \boldsymbol{v}_t \cdot \boldsymbol{x}_t$
- Loss Update

$$v_{t,i}^m := \frac{v_{t,i}e^{-\eta L_{t,i}}}{\text{normaliz.}}$$

- Share Update
 - Static Expert

$$oldsymbol{v}_{t+1} = oldsymbol{v}_t^m$$

- Fixed Share to Start Vector ($\alpha \in [0,1)$)

$$\boldsymbol{v}_{t+1} = (1 - \alpha)\boldsymbol{v}_t^m + \alpha \boldsymbol{v}_0$$

where
$$\mathbf{v}_0 = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$$

- Square loss, Vovk's prediction, labels always 0, typical experts predict uniform in [0, .5], current best expert predicts uniform in [0, .12]
- T = 1400 trials, n = 20000 experts, k = 6 shifts

• Tracks the best expert

• Recall Static Expert bound

$$L_{1..T,\mathbf{A}} \le \min_{\mathbf{i}} \left(L_{1..T,\mathbf{i}} + O(\log \mathbf{n}) \right)$$

- Comparison class: set of experts
- Bounds for Share Algorithms

[HW98]

$$L_{1..T,A} \le \min_{P} (L_{1..T,P} + O(\# \text{ of bits for } P))$$

- Comparison class: set of partitions
- -# of bits for partitions with k shifts:

$$k \log n + \log \binom{T}{k}$$

• Number of possible experts n is large

 $n \approx 10^6$

 \bullet Experts in partition chosen from small subset of size m

 $m \approx 10$

• # of bits for partitions with k shifts:

$$\log \binom{n}{m} + k \log m + \log \binom{T}{k}$$

 \bullet Naive algorithm runs Fixed Share to Startvector alg. for every subset of m out of n experts

- Predict $\hat{y}_t = \boldsymbol{v}_t \cdot \boldsymbol{x}_t$
- Loss Update $v_{t,i}^m = \frac{v_{t,i}e^{-\eta L_{t,i}}}{\text{normaliz.}}$
- Mixing Update

$$\boldsymbol{v}_{t+1} = \sum_{q=0}^{t} \beta_{t+1,q} \boldsymbol{v}_q^m, \quad \text{where } \sum_{q=0}^{t} \beta_{t+1} = 1$$

• Mixing schemes

- T = 1400 trials, n = 20000 experts
- k = 6 shifts (every 200 trials), m = 3 experts in the small subset

• Stuck with best expert of first segment

Weights of Fixed Share to Start Vector Alg.

Weights of Fixed Share to Decaying Past Alg.

• Improved recovery when expert used before

Fixed Share to Decaying Past - Log Weights

• Past good experts remain at higher level

- T = 6000 trials, n = 20000 experts
- k = 29 shifts (every 200 trials), m = 10 experts in the small subset

Fixed Share to Decaying Past - Log Weights

• Past good expert are cached

Fixed Share to Start Vector - Log Weights

• No memory

• Bounds still have the form

$$L_{1..T,A} \le \min_{P} (L_{1..T,P} + O(\# \text{ of bits for } P))$$

• Excess loss for naive alg.

$$O(\log \binom{n}{m} + k \log m + \log \binom{T}{k})$$

• Excess loss for Fixed Share to Decaying Past

$$O\left(m\log n + k\log m + 2\log \binom{T}{k}\right)$$

- → Boundaries are encoded twice
- \rightarrow Off-line problem NP-complete

Loss Bounds Versus Storage Complexity

- Naive alg. has optimal bound exponential storage
- Fixed Share to Uniform Past O(n) weights
- \bullet Fixed Share to Decaying Past O(nT) weights and better bound
- \longrightarrow With tricks $O(n \ln T)$ weights and essentially same bound

Alternates to Mixing

• What we need for bounds

$$\mathbf{v}_{t+1} = \beta_{t+1,q} \mathbf{v}_q^m, \text{ for } 0 \le q \le t$$
 (*)

Mixing Update	$oldsymbol{v}_{t+1} = \sum_{q=0}^t eta_{t+1,q} oldsymbol{v}_q^m$
Max Update	$oldsymbol{v}_{t+1} = rac{1}{ ext{normaliz.} rac{ ext{max}}{q=0,,t}}eta_{t+1,q}oldsymbol{v}_q^m$
Projection Update	$oldsymbol{v}_{t+1} = rg\min_{oldsymbol{v} \in (*)} \Delta(oldsymbol{v}, oldsymbol{v}_t^m)$

Long-term Versus Short-term Memory

- T = 1400 trials, n = 20000 experts
- k = 1 shift (at trial 400), m = 2 experts in the small subset

Fixed Share to Decaying Past - Log Weights

• Larger alpha gives better long-term memory

Fixed Share to Start Vector - Log Weights

- T = 3200 trials, n = 20000 experts
- k = 30 shifts (every 200 and 50 trials), m = 2 experts in the small subset

Fixed Share to Decaying Past - Log Weights

• The memory from many short sections accumulates

- Bayesian interpretation
- Variable share
- Lower bounds
- Automatic tuning
- Mixing Update works for EG family
- Connections to Universal Coding
- Applications
 - Load balancing
 - Switching between a few users
 - Segmentation