THIS IS CS5045!

GCR:ioc7cdl

ENSEMBLE LEARNING

A Classifier Ensemble

Class Prediction

KEY QUESTIONS

Which components to combine?

- different learning algorithms
- same learning algorithm trained in different ways
- same learning algorithm trained the same way

What Makes a Good Ensemble?

Krogh and Vedelsby, 1995

Can show that the accuracy of an ensemble is mathematically related:

$$\hat{E} = \overline{E} - D$$

 \hat{E} is the error of the entire ensemble

 \overline{E} is the average error of the component classifiers

D is a term measuring the diversity of the components

Effective ensembles have accurate and diverse components

Classification Fusion Techniques

 Homogenous Classifiers (Same Classifiers but different training data) e.g. Bagging, Boosting etc

 Heterogeneous Classifiers (Different Classifiers but same training data) e.g. Majority Voting, Mean etc)

 Combination of Homogenous and Heterogeneous Classifiers

Voting Techniques

- Majority Voting
- Average of Probabilities
- Product of Probabilities
- Minimum Probability
- Maximum Probability
- Median

Voting Techniques

C1	C2	С3	Majority Voting 1 1	
1	1	1		
1	1	0		
0	0	0		
0	0	1	0	

Voting Techniques

C1	C2	C3	Average	Product	Minimum	Maximum	Median
0.9	0.5	0.5	0.63	0.23	0.5	0.9	0.5
0.5	0.5	0	0.33	0.00	0	0.5	0.5
0.1	0.1	0.1	0.10	0.00	0.1	0.1	0.1
0.4	0.4	0.6	0.47	0.10	0.4	0.6	0.4

```
Average = (c1+c2+c3)/3

Product = c1*c2*c3

Minimum = min(c1,c2,c3)

Maximum = max(c1,c2,c3)

Median = median(c1,c2,c3)
```

Homogenous Ensemble Classifiers

Same classifier but different training data

- Bagging
- Boosting
- Random Forest
- Others

Bagging

- Sample several training sets of size *n* (instead of just having one training set of size *n*)
- Build a classifier for each training set
- Combine the classifier's predictions
- This improves performance in almost all cases if learning scheme is *unstable* (i.e. decision trees)

Training Dataset1: 2 Dogs and 2 Cats

Training Dataset2: 2 Dogs and 2 Cats

Boosting

- Also uses voting/averaging but models are weighted according to their performance
- Iterative procedure: new models are influenced by performance of previously built ones
 - New model is encouraged to become expert for instances classified incorrectly by earlier models
 - Intuitive justification: models should be experts that complement each other
- There are several variants of this algorithm

Stacking

- Uses *meta learner* instead of voting to combine predictions of base learners
 - Predictions of base learners (level-0 models) are used as input for meta learner (level-1 model)
- Base learners usually different learning schemes
- Hard to analyze theoretically: "black magic"

Deep Ensemble Learning

- Same concepts but applied in Deep Learning models
 - Bagging
 - Combination of Loss functions
 - Parallel models etc.

THANK YOU

LET'S REMEMBER EACH OTHER IN OUR PRAYERS:)

KUCH MEETHA HOJAYE

THIS IS CS5045! SIGNING OFF

GCR:ioc7cdl