

Phase-2 Submission

Student Name: Vijaya Varma R

Register Number: 712523205070

Institution: PPG Institute of Technology

Department: B. Tech Information Technology

Date of Submission: 09/05/2025

Github Repository Link: https://github.com/varma-

007/nm_vijayavarmar_ds

1. Problem Statement

- Road accidents pose a significant threat to public safety, resulting in thousands of fatalities and injuries annually. By analyzing historical traffic data, AI can be used to identify accident-prone areas and predict the likelihood of accidents, helping authorities take preventive actions.
- This is a classification problem, where the goal is to predict whether an accident will occur based on input features like weather, time, location, and vehicle conditions.
- Solving this problem can greatly enhance road safety, assist traffic departments in preventive planning, and ultimately reduce road fatalities.

2. Project Objectives

As we transition from planning to implementation, the project goals are:

- To analyze and preprocess traffic accident data.
- To build **predictive models** that can classify whether an accident will happen or not.

- To identify key risk factors using feature importance and correlation analysis.
- To make predictions with high accuracy and interpretability.
- *Model Goal:* Achieve a balance between *performance metrics* (like F1-score) and *interpretability* (to inform decision-makers).

Evolution: After exploring the data, we realized that certain features (e.g., weather, light conditions) had a stronger influence than initially thought, shifting focus to include these in more detail.

3. Flowchart of the Project Workflow

4. Data Description

- □ Source: [Example: Kaggle's US Accident Dataset or Government Open Traffic Data Portals]
- ☐ **Type:** Structured tabular data (CSV or SQL database)

☐ Attributes:
Weather condition
• Light condition
• Road surface
Time and date of accident
Vehicle count
• Location (latitude/longitude or city/state)
\Box Size: ~100,000 rows × ~20 columns
□ Nature: Static (snapshot of past data)
☐ Target Variable: Accident Severity or Binary (Accident: Yes/No)
5. Data Preprocessing
☐ Missing Values:
Replaced missing weather values with mode.
Time fields cleaned using datetime parsing.
□ <i>Duplicates:</i> Removed ~3% duplicated entries.
□ Outliers:
Speed values over 300 km/hr considered outliers and dropped.
Extreme visibility (0 or >100 miles) corrected.
□ Data Type Conversion:
Converted date strings into datetime objects

Latitude and longitude preserved as float.
□ Encoding:
One-hot encoded categorical features like weather and light conditions.
Label encoded severity levels.
□ Normalization:
MinMaxScaler used on speed, temperature, visibility to bring values between 0 and 1.
6. Exploratory Data Analysis (EDA)
☐ Univariate Analysis:
• Most accidents occur during rush hours (8-10 AM, 5-7 PM).
• Weekends showed a spike in high-speed collisions.
• Accidents more frequent in foggy or rainy weather.
☐ Bivariate/Multivariate Analysis:
• Strong correlation between accident severity and weather, lighting.
• Pairplot showed overlapping regions for accidents in early morning low-light.
□ Insights:
• Time of day, road type, and weather are strong predictors.
• Poor visibility and wet roads significantly increase accident probability

7. Feature Engineering

New Features Created:

Extracted 'Hour', 'Day of Week', and 'Month' from timestamp.

Calculated is_weekend from day.

Feature Transformation:

Combined 'Weather Description' into broader categories (e.g., Clear, Rainy, Foggy).

Binned speed into categories: Low, Medium, High.

Interaction Features:

Created visibility \times *weather interaction to capture poor conditions.*

Dimensionality Reduction (optional):

PCA used to reduce 20+ features to 10 principal components (trial phase only).

8. Model Building

☐ *Models Used:*

Random Forest: Good for classification and feature importance.

Logistic Regression: Baseline model for comparison.

☐ *Train/Test Split:* 80/20 with stratified sampling.

☐ Evaluation Metrics:

Accuracy: % of correct predictions.

Precision: % of correct positive predictions.

Recall: % of actual positives captured.

F1-score: Harmonic mean of precision and recall.

☐ Results:

• Random Forest achieved **F1-score** of 0.87, outperforming logistic regression (0.72).

9. Visualization of Results & Model Insights

☐ *Confusion Matrix:* Showed high true positive rate.

☐ Feature Importance Plot:

Top 5 features: weather, hour, visibility, road condition, light condition.

 \square *ROC Curve:* AUC = 0.92 indicating strong classification.

☐ Interpretation:

- Model identifies dangerous combinations (e.g., low light + rain + high speed).
- Can assist traffic authorities in issuing alerts or adjusting signals.

10. Tools and Technologies Used

Language: Python

IDE/Environment: Google Colab / Jupyter Notebook

Libraries:

Data: pandas, numpy

Visualization: seaborn, matplotlib, plotly

Modeling: scikit-learn, xgboost

Metrics: sklearn.metrics

Optional Visualization Tools: Tableau / Power BI (for dashboarding)

11. Team Members and Contributions

Team Member Name	Contribution
Vijaya Varma R	Data cleaning, EDA, Feature Engineering
Naveenraj P	Model building and evaluation
Sri Hari Krishna R	Documentation and visualizations
Sanjeev R	Documentation and visualizations
Sneha Jenifer J	Project coordination and Github upload