Chapitre 7

Dérivées d'ordres supérieurs et études des extrema

Dérivées partielles d'ordre supérieur 7.1

Soit E un \mathbb{R} espace vectoriel et \mathcal{U} un ouvert de E. On suppose que dim E = n et $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E.

Définitions et propriétés

Définition 7.1.1. Soit $f: \mathcal{U} \to F$ et $a \in \mathcal{U}$. On suppose que f admet une j-ème dérivée partielle $\frac{\partial f}{\partial x_j}(a)$ pour $j=1,\cdots,n$. Si $\frac{\partial f}{\partial x_j}$ admet en a une k-ème dérivée partielle $\frac{\partial \left(\frac{\partial f}{\partial x_j}\right)}{\partial x_k}$, $1\leq k\leq n$, on dit que f admet en a une (k,j)-ième **dérivée partielle seconde** que l'on note $\frac{\partial^2 f}{\partial x_k \partial x_j}(a)$.

Remarque 16. En itérant le procédé, on définit les dérivées partielles triples, quadruples...

Définition 7.1.2. Une fonction $f: \mathcal{U} \to F$ est de **classe** \mathcal{C}^k sur \mathcal{U} si pour tout $j_1, j_2, \dots, j_k \in \{1, \dots, n\}$ la fonction $\frac{\partial^k f}{\partial x_{j_k} \dots \partial x_{j_2} \partial x_{j_1}} : \mathcal{U} \to F$ est continue sur \mathcal{U} . On dit que f est de classe \mathcal{C}^{∞} si f est de classe \mathcal{C}^k pour tout $k \in \mathbb{N}$.

Exemple 7.1.1. Calcul des dérivées partielles secondes de la fonction
$$f(x,y) = x^2 \cos(y)$$
.

1: $R^2 = R^2 - 3R$; $\frac{24}{3}$; $R^2 - 3R$

1) Danvies partille parieir:

2\frac{2}{3} \binom{4}{3} \binom{4}{3} \binom{2}{3} \binom{4}{3} \binom{4}{3} \binom{4}{3} \binom{4}{3} \binom{2}{3} \binom{4}{3} \binom

38

Le calcul des dérivées secondes de l'exemple précédent semble suggérer que les dérivées secondes $\frac{\partial^2 f}{\partial x_i \partial x_j}$ et $\frac{\partial^2 f}{\partial x_j \partial x_i}$ sont égales. C'est le cas pour les fonctions suffisamment régulières :

Théorème 7.1.1 (Schwarz). On suppose que $f: \mathcal{U} \to F$ est de classe \mathcal{C}^2 sur \mathcal{U} . Alors, pour tout $i, j \in \{1, \dots, n\}$ on a sur \mathcal{U}

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i}$$

Démonstration. I de de la preve : Calcul de taux d'accroissement saccessifs (hists). Et l. the de Schwaz Arme la cardition dans logrelle on part intervator l. 2 hista: $\frac{\partial f}{\partial x_i}(a) = \lim_{h_k \to 0} \frac{\partial f}{\partial x_i}(a + h_k e_k) - \frac{\partial f}{\partial x_i}(a)$ $\lim_{h_k \to 0} \frac{\int_{h_k \to 0}^{h_k} (a + h_k e_k) - \frac{\partial f}{\partial x_i}(a)}{h_k}$ $\lim_{h_k \to 0} \frac{\int_{h_k \to 0}^{h_k + h_k e_k + h_k e_k} - \int_{h_k \to 0}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k}$ $\lim_{h_k \to 0} \frac{\int_{h_k \to 0}^{h_k + h_k e_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k e_k) - f(a + h_k e_k)}{h_k + h_k e_k} - \int_{h_k h_k e_k}^{h_k + h_k e_k} \frac{f(a + h_k$

de mens on a $\frac{\partial^2 f}{\partial x_i}(a) = \lim_{h_i \to 0} \lim_{h_i \to 0} \phi(h_i, h_i)$

demente le th, reviet à se convaince que

 $\lim_{h_{j}\to0}\lim_{h_{k}\to0}\phi\left(h_{k},h_{j}\right)=\lim_{h_{k}\to0}\lim_{h_{j}\to0}\phi\left(h_{k},h_{j}\right)$ $=\lim_{(h_{k},h_{k})\to(0,0)}\phi\left(h_{k},h_{k}\right)$

le the le Solway drove me condition pour le grelle cole est reifié: 8/2 si f E E².

Exa L (Dénvers d'ordres supériences et aplication)

Exercice 2.* (Contre exemple au théorème de Schwarz) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.

- 1. La fonction f est-elle continue en (0,0)?
- 2. La fonction f admet-elle des dérivées partielles en (0,0)?
- 3. La fonction f est elle de classe C^1 sur \mathbb{R}^2 ?
- 4. La fonction f est-elle différentiable en (0,0)?
- 5. La fonction f est-elle \mathcal{C}^2 sur \mathbb{R}^2 ?

1) Pour monter que f et continue en (°) il suffit de un q

$$f(x,y) = f(0,0) = 0$$
,

AILLS.

 $|f(x,y) - 0| = |f(x,y)| = \frac{x^4 |\cos^3 \theta| \sin \theta - \cos \theta|^3 \theta}{x^4}$

et 1 st bie continue e (0,0)

renague: son $\mathbb{R}^2 \setminus \{\binom{\circ}{0}\}^{l}$ et \mathbb{C}^{∞} (quotient de polycero) $\Rightarrow f \in \mathbb{C}^{0}(\mathbb{R}^2)$.

e) Derivées partielle de 1 le (°). Il fant revenir à le définities:

$$\frac{\partial f}{\partial x} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

renque: le faction le sof (le, 0) =0 et la fonction mille. Son taux d'acrosseret est 0!

$$\frac{\partial f}{\partial g} \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0$$

renegue: Iden his f(O,le) =0 ...

les dérivée partielles de f en (0,0) existent et $\nabla f(0) = (0)$

3) La fanction of st-elle et som R²? om si an mante que le dérivées partielle 22 et 24 ent l'en (°) (c.f. renegar 1)

Calcularo les dérivées patrielles:
$$\frac{\partial f}{\partial x} \left(\frac{x}{3} \right) = \begin{cases} \frac{x^4 - y^4 + 4x^2y^2}{x^2} & y & \text{sina} \\ \frac{\partial f}{\partial x} \left(\frac{x}{3} \right) = \begin{cases} \frac{x^4 - y^4 + 4x^2y^2}{x^2} & \text{sina} \end{cases}$$
Si $(x,y) = (0,0)$

$$\frac{34}{39} \left(\frac{x}{9}\right) = \frac{\frac{2^{4} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} - 4^{2} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^{4} x^{2}}{(x^{2} + y^{2})^{2}} \times \frac{x^{2} - 4^$$

les dérivées partielles ent contines en (°): en effet

$$\left| \frac{34}{3x} \left(\frac{x}{4} \right) - \frac{34}{3x} \left(\frac{0}{0} \right) \right| = \left| \frac{x^4 - y^4 + 4x^2 y^2}{(x^2 + y^2)^2} y \right| \leq x^{\frac{5}{5}} \frac{|\omega_0|^{\frac{1}{4}} |\sin|^{\frac{1}{4}} + |\omega_0|^{\frac{1}{2}} |\cos|^{\frac{1}{4}}}{x^4}$$

De nein par
$$\frac{24}{39}$$
:

 $\left|\frac{94}{33}\binom{4}{5}\right| \cdot \frac{24}{39}\binom{6}{6}\right| \leq 6 \Lambda$

it $\frac{34}{39} \in C^{\circ}(\mathbb{R}^{2})$

it $\frac{34}{39} \in C^{\circ}(\mathbb{R}^{2})$

it faction $f \in C^{4}(\mathbb{R}^{2})$.

A) In faction f at all diff as l'aigine?

Oni la faction f at all diff as l'aigine?

Oni la faction f at all f and f all at almost f and f and f are f and f and f and f are f and f and f are f and f and f are f and f are f are f are f and f are f are f are f and f are f and f are f are f are f are f and f are f are f and f are f are f are f and f are f are f are f are f are f are f and f are f and f are f

La faction n'est par e^2 un (0,0) can a elle l'état an amat $\frac{34}{250}$ $\binom{0}{0} = \frac{347}{250}$ $\binom{0}{0}$

Le résultat s'étend aux dérivées partielles d'ordre supérieur :

Proposition 7.1.1. Si $f: E \to F$ est de classe C^k sur \mathcal{U} , alors pour tout $j_1, \dots, j_k \in \{1, \dots, n\}$ et toute permutation σ de $\{1, \dots, k\}$, on a :

$$\frac{\partial^k f}{\partial x_{j_k} \cdots \partial x_{j_1}} = \frac{\partial^k f}{\partial x_{j_{\sigma(k)}} \cdots \partial x_{j_{\sigma(1)}}}$$

Démonstration. C'est un corollaire du théorème de Schwarz.

Notations : Par exemple, si f est de classe \mathcal{C}^4 sur \mathcal{U} les calculs de dérivées partielles d'ordres ≤ 4 peuvent se faire dans un ordre arbitraire et on écrit : $\frac{\partial^4 f}{\partial x_1^2 \partial x_2^2}$ pour $\frac{\partial^4 f}{\partial x_2 \partial x_1 \partial x_2 \partial x_1}$.

7.1.2 Opérations sur les fonctions de classe C^k

Proposition 7.1.2. Soient E, F, G trois espaces vectoriels normés, $\mathcal{U} \subset E$ et $\mathcal{V} \subset F$ des ouverts :

- (i) Addition: $f, g: \mathcal{U} \to F$ de classe \mathcal{C}^k sur \mathcal{U} alors f + g est de classe \mathcal{C}^k sur \mathcal{U} .
- (ii) Multiplication par un scalaire : $f: \mathcal{U} \to F$ de classe \mathcal{C}^k sur \mathcal{U} alors λf est de classe \mathcal{C}^k sur \mathcal{U} .
- (iii) Multiplication (cas de $F = \mathbb{R}$): $f, g : \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^k sur \mathcal{U} alors fg est de classe \mathcal{C}^k sur \mathcal{U} .
- (iv) Inverse (cas de $F = \mathbb{R}$): $f : \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^k sur \mathcal{U} et $a \in \mathcal{U}$ tel que $f(a) \neq 0$ alors $\frac{1}{f}$ est de classe \mathcal{C}^k sur un voisinage de $a \in \mathcal{U}$.
- (v) Composition : $f: \mathcal{U} \to F$ et $g: F \to G$. Si f est de classe \mathcal{C}^k sur \mathcal{U} et g est de classe \mathcal{C}^k sur $\mathcal{V} \supset f(\mathcal{U})$, alors $g \circ f: E \to G$ est de classe \mathcal{C}^k sur \mathcal{U} .

Formules de Taylor et matrice hessienne

Théorème 7.1.2 (Formule de Taylor-Young). Soit $f: \mathcal{U} \to F$ une fonction de classe \mathcal{C}^2 et $a \in \mathcal{U}$. Alors il existe une fonction $\omega : E \to F$ définie au voisinage de 0 telle que pour tout $h \in E$ assez petit en norme,

$$f(a+h) = f(a) + d_a f(h) + \frac{1}{2} d_a^2 f(h,h) + \|h\|^2 \omega(h) \text{ avec } \|\omega(h)\|' \xrightarrow{\|h\| \to 0} 0$$
 où $d_a^2 f(h,h) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j.$

Démonstration.

) Applique le the de Tay la Lagrange dans
$$\mathbb{R}$$
 à la facture \mathbb{R} \mathbb

Exemple 7.1.2. Développement limité en (0,0) et à l'ordre 2 de $(x,y) \mapsto (ye^x,\cos(x+y))$.

Exemple 7.1.2. Developpement limite en
$$(0,0)$$
 et à l'ordre 2 de $(x,y) \mapsto (ye^{x},\cos(x+y))$.

$$\begin{pmatrix} x_{1} & y_{1} & y_{2} & y_{1} \\ x_{2} & (x,y) & y_{2} & y_{2} \\ y_{3} & y_{4} & y_{4} & y_{4} \\ y_{4} & y_{5} & y_{4} & y_{4} \\ y_{5} & y_{5} & y_{5} & y_{5} \\ y_{6} & y_{6} & y_{6} & y_{6} \\ y_{6} & y_{6} & y_{6} & y_{6$$

$$f_{i}((0)t(\frac{l_{i}}{l_{i}})) = f_{i}(\frac{0}{0}) + \frac{2f_{i}}{2x}(\frac{0}{0}) h_{i} + \frac{2f_{i}}{2y}(\frac{0}{0}) h_{i}$$

$$+ \frac{1}{2} h_{i}^{2} \frac{2f_{i}}{2x}(\frac{0}{0}) + \frac{1}{2} h_{i} h_{i} \frac{2f_{i}}{2y^{2}}(\frac{0}{0})$$

$$+ \frac{1}{2} h_{i} h_{i} \frac{2f_{i}}{2x^{2}}(\frac{0}{0}) + \frac{1}{2} h_{i} h_{i} \frac{2f_{i}}{2y^{2}}(\frac{0}{0})$$

$$+ \frac{1}{2} h_{i} h_{i} \frac{2f_{i}}{2x^{2}}(\frac{0}{0}) + \frac{1}{2} h_{i} h_{i} \frac{2f_{i}}{2y^{2}}(\frac{0}{0})$$

$$+ o(||h||_{L_{i}})$$

$$+ o(||h||_{L_{i}})$$

$$= 0 + 0 \cdot h_{1} + 1 \cdot h_{2} + \frac{1}{2} \cdot 0 \cdot h_{1}^{2} + 1 \cdot h_{1} \cdot h_{2}$$

$$+ \frac{1}{2} \cdot 0 \cdot h_{2}^{2} + o(\|h\|^{2})$$

$$\frac{\partial f_{2}}{\partial x} \left(\frac{\pi}{3} \right) = -\sin \left(\frac{x+y}{3} \right) \qquad \frac{\partial f_{2}}{\partial y} \left(\frac{x}{3} \right) = -\sin \left(\frac{x+y}{3} \right)$$

1) derivei a le 2

$$\frac{\partial^2 f_{i}}{\partial f_{i}} \left(\begin{array}{c} x \\ y \end{array} \right) = \frac{\partial^2 f_{i}}{\partial g_{i}} \left(\begin{array}{c} x \\ y \end{array} \right) = \frac{\partial^2 f_{i}}{\partial g_{i}} \left(\begin{array}{c} x \\ y \end{array} \right) = -\cos \left(x + y \right)$$

$$= 1 + h_{1} \times 0 + h_{2} \times 0 - \frac{h_{1}^{2}}{2} - \frac{h_{1}^{2}}{2} - \frac{h_{1}h_{2}}{2} + o(\|h\|^{2})$$

$$= 1 - \frac{1}{2} (h_1 + h_2)^2 + o (||h||^2)$$

7.2. ÉTUDE DES EXTREMA LOCAUX

III) la faction
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
. On pose

$$f\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} h_2 \\ 0 \end{pmatrix} + \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \begin{pmatrix} h$$

Dans le cas $F = \mathbb{R}$: Pour une fonction $f : \mathbb{R}^n \to \mathbb{R}$ de classe C^2 et $a, h \in \mathbb{R}^n$, la formule de Taylor donne:

$$f(a+h) = f(a) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)h_{j} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)h_{i}h_{j} + \underset{h \to 0}{o} (\|h\|^{2}).$$

L'application $Q_a f: h \mapsto d_a^2 f(h,h) = \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j$ est une forme quadratique sur \mathbb{R}^n . On peut donc l'écrire sous forme matricielle :

Définition 7.1.3. Soit f une fonction de classe \mathcal{C}^2 de $\mathcal{U} \subset \mathbb{R}^n$ dans \mathbb{R} et $a \in \mathcal{U}$. On appelle matrice Hessienne de f en a la matrice

$$\operatorname{Hess}_{f}(a) = \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right)_{i,j=1}^{n} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(a) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(a) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(a) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(a) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(a) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(a) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(a) \end{pmatrix}$$

*
$$Jac_{f_{1}}(\frac{2}{3}) = (ye^{x} e^{x})$$

* $Hess_{f_{1}}(\frac{2}{3}) = (\frac{3}{3} e^{x})$

* $L_{f_{1}}(\frac{1}{3}) = (\frac{3}{3} e^{x})$

* $L_{f_{2}}(\frac{1}{3}) = (\frac{3}{3} e^{x})$

* $L_{f_{3}}(\frac{1}{3}) = ($

Étude des extrema locaux 7.2

7.2.1 **Définitions**

Définition 7.2.1. Soit $f: E \to \mathbb{R}$ une fonction définie sur un domaine $\mathcal{D} \subset E$ et $a \in \mathcal{D}$. La fonction f admet en a

1. un maximum (resp. minimum) global si pour tout $x \in \mathcal{D}$ on a $f(x) \leq f(a)$ (resp. $f(x) \ge f(a)$.

Exercice 9.* (Fonctions harmoniques) Une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 est dite harmonique si son laplacien est nul:

$$A + (\Upsilon) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

Dans toute la suite, on fixe f une fonction harmonique.

- 1. On suppose que f est de classe \mathcal{C}^3 . Démontrer que $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ sont harmoniques.
- 2. On suppose désormais que f est radiale, c'est-à-dire qu'il existe $\varphi : \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $f(x,y) = \varphi(x^2 + y^2)$. Démontrer que φ est solution d'une équation différentielle linéaire du premier ordre.
- 3. En déduire toutes les fonctions harmoniques radiales.

1. Re
$$R$$
 Hamaique $A(x) = 0$, at $A \in R^3(\mathbb{R}^2)$

1). In pase $A = \frac{34}{9x}$ at a writing $A = \frac{3}{9x}$ at a writing $A = \frac{3}{9x}$ at a writing $A = \frac{3}{9x}$ and $A = \frac{3}{9x}$ at a writing $A = \frac{3}{9x}$ and $A =$

+ y D (22) (3)

$$f(x,y) = f(x^2 + y^2) \qquad \text{an} \quad f(R) = R \qquad R$$

* Calcul des deuves priville:

$$\frac{s_{1}}{s_{1}}$$
: $\frac{y'}{y} = -\frac{1}{x} \Rightarrow \int \frac{y'}{y} dx = -\int \frac{1}{x} dx$

$$y = \frac{c'}{x} \quad \text{an} \quad c' \in \mathbb{R}$$

Aius:
$$U'(n) = \frac{c!}{x}$$
 if $U(n) = k \cdot \ln x + k'$

$$k, k' \in \mathbb{R}$$

En résuré
$$f$$
 s'écuit necessaient:
 $f(\frac{x}{3}) = C \ln (n^2 + y^2) + D (x)$
 $C, D \in \mathbb{R}$

Exercice 10.* Soit l'opérateur de Laplace *n*-dimensionnel $\Delta = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}$.

- 1. Montrer que pour $n \geq 3$ on a $\Delta\left(\frac{1}{\|x\|^{n-2}}\right) = 0$ pour tout $x \neq 0$ où $\|x\| = (x_1^2 + \dots + x_n^2)^{1/2}$ est la norme euclidienne.
- 2. Pour n=2 on a $\Delta\left(\ln\frac{1}{\|x\|}\right)=0$ pour tout $x\neq 0$.

1)
$$f: \mathbb{R}^{M} \to \mathbb{R}$$
 $\frac{M^{7/3}}{\|x\|^{4-2}} = \|x\|^{2-M} = (x_{1}^{2} + 2x_{2}^{2} + ... + 2x_{M}^{2})^{1-M/2}$

x Calcul des derivées pantielles : (2,2+...+2,2)

$$\frac{\partial \mathcal{L}}{\partial x_{i}} \left(\frac{\alpha_{i}}{u_{u}} \right) = 2 \left(1 - \frac{M}{2} \right) \alpha_{i} \| 2 \|^{-M} = \left(2 - M \right) \alpha_{i} \| 2 \|^{-M}$$

$$\frac{\partial \mathcal{L}}{\partial x_{i}} \left(\frac{\alpha_{i}}{u_{u}} \right) = \left(2 - u \right) \left(\| 2 \|^{-M} + 2 \alpha_{i}^{2} \cdot \left(- \frac{u}{2} \right) \cdot \left(2 \alpha_{i}^{2} + \dots + 2 \alpha_{i}^{2} \right)^{-M/2} \right)$$

$$= \left(2 - M \right) \left(\| 2 \|^{-M} - M \alpha_{i}^{2} \cdot \| 2 \|^{-M} \right)$$

$$\Delta f \begin{pmatrix} x_{1} \\ x_{m} \end{pmatrix} = \sum_{i \leq 1} \frac{24}{2\pi i^{2}} \begin{pmatrix} x_{i} \\ x_{m} \end{pmatrix}$$

$$= (2-u) \sum_{i \leq 1}^{m} \left(\|x\|^{-h} - m x_{i}^{2} \|x\|^{-h-2} \right)$$

$$= (2-u) \left(m \|x\|^{-h} - m \|x\|^{-h-2} \sum_{i \leq i}^{m} x_{i}^{2} \right)$$

$$= (2-u) \left(m \|x\|^{-h} - m \|x\|^{-h-2} \sum_{i \leq i}^{m} x_{i}^{2} \right)$$

$$= (2-u) \left(m \|x\|^{-h} - m \|x\|^{-h-2} \right)$$

$$= (2-u) \left(m \|x\|^{-h} - m \|x\|^{-h-2} \right)$$

Et f st bik hanninge.

$$L) = \frac{1}{2} \left(\frac{1}{11 \times 11} \right) = \frac{1}{2} \ln \left(\frac{1}{n^2 + n^2} \right)$$

* Colail des deriver pontilles:

$$\frac{\partial f}{\partial \kappa_i} \binom{\kappa_i}{\kappa_i} = \frac{-\kappa_i}{\kappa_i^2 + \kappa_i^2} = \frac{-\kappa_i}{\|\mathbf{x}\|^2} = -\kappa_i \|\mathbf{x}\|^{-2}$$

$$(\kappa_i^2 + \kappa_i^2)^{-1}$$

$$\frac{\partial^{2}f}{\partial x_{i}^{c}} \left(\frac{x_{i}}{x_{e}}\right) = -\|x\|^{-2} + 2\pi i^{2} \left(\frac{x_{i}^{c} + x_{2}^{c}}{x_{i}^{c}}\right)^{-2} = -\|x\|^{-\frac{1}{c}} + 2\pi i^{\frac{2}{c}} \left(\|x\|^{\frac{1}{c}}\right)$$

* Calcul du Laplacie de f:

$$\Delta f \left(\frac{x_i}{x_i} \right) = -\left| \left| x \right| \right|^{-2} + 2 \frac{x_i^2}{\|x\|^4} - \left\| x \right\|^{-2} + 2 \frac{x_i^2}{\|x\|^4}$$

$$= -2 ||x||^{-2} + \frac{2}{||x||^4} ||x||^2 = 2 (-||x||^{-2} + ||x||^{-2}) = 0$$

- 2. un **maximum** (resp. **minimum**) **strict** si pour tout $x \in \mathcal{D} \setminus \{a\}$ on a f(x) < f(a) (resp. f(x) > f(a)).
- 3. un **maximum** (resp. **minimum**) **local** si il existe un voisinage \mathcal{V} de a tel que pour tout $x \in \mathcal{D} \cap \mathcal{V}$ on a $f(x) \leq f(a)$ (resp. $f(x) \geq f(a)$).

On dit que f admet en $a \in \mathcal{D}$ un **extremum global** (resp. **strict** ou **local**) si f admet un maximum ou un minimum global (resp. strict, local).

Graphe et lignes de niveau de la fonction $(x,y) \mapsto ((x-1)^2 - 2y^2)e^{-2x^2 - y^2}$.

7.2.2 Condition nécessaire d'ordre 1

Définition 7.2.2. On suppose que dim E = n. On dit que $f : \mathcal{U} \to F$ de classe \mathcal{C}^1 sur \mathcal{U} admet un point critique en $a \in \mathcal{U}$ si $\frac{\partial f}{\partial x_i}(a) = 0$ pour tout $i = 1, \dots, n$.

remagne: donce can da f = 0

Théorème 7.2.1. Soit $f: \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathcal{U} . Si f admet un extremum local en $a \in \mathcal{U}$ alors a est un point critique de f.

Démonstration.

Si
$$f$$
 a dust m extreme en $a \in U$, chaque faction partielle $P \longrightarrow P$ $Q \mapsto f(a_1,...,a_{i-1},a_i,a_{i+1},...,a_n)$
adust aussi m extreme en $m := a_i$. So deriver s'annele et an $a \mapsto \frac{2f}{\partial x_i}(a) = 0$.

Exemple 7.2.1. La condition n'est pas suffisante : prendre f(x,y) = xy en (0,0).

$$f: \mathbb{R}^2 \to \mathbb{R}$$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = y$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ 0 \end{pmatrix} = 0$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = x$

* $\frac{\partial f}{$

Mais par tant voisineze V moest de (°), V contient de paits (°) par la quelo $f(\frac{n}{2}) > 0$ et de pets $\binom{n'}{n'}$ par laquels $f(\frac{n'}{2}) < 0$ Ainsi f n'adnet pos de minime mi de mariner en l'aigne (i ai a appelle cele u pt selle). reunque: passe à 2 2 3 par le faction de R 5 R.

Condition suffisante d'ordre 2 7.2.3

On suppose maintenant que $f: E \to \mathbb{R}$ est de classe \mathcal{C}^2 et que a est un point critique de f. D'après la formule de Taylor-Young on a : da 1 (h) = 0

$$f(a+h) = f(a) + \frac{1}{2}Q_a f(h) + o(\|h\|^2)$$

Le signe de la forme quadratique $Q_a f: h \mapsto d_a^2 f(h, h) = h^t \operatorname{Hess}_f(a) h$ permet dans certains cas I fam biliséen equatique ascocias à 9 a 1. de caractériser les extrema :

Proposition 7.2.1. Soit $a \in \mathcal{D}$ un point critique de $f : E \to \mathbb{R}$. Si la forme quadratique $Q_a f$

- 1. définie et positive alors f admet un minimum local strict en a.
- 2. définie et négative alors f admet un maximum local strict en a.

Démonstration. D'après le famile de Taylor- Young:

f(a+h) - f(a) = ! Qaf(h) + o(14 14) Qu' et des pos => duf(.,.) est un prodent scalaire son E => h > Vda f(l, h) et me nome (auclidience) on E Come E et de discusion finie, le nous Will de E et N sont équivalente Dac JA70 tg f(a+h)-f(a) > A | | h | | + o (| l | | 1) > A | | h | 12 en si hat caffisment petit o (11616) < A. De plu A 116112 >0 si Illell \$0, an a \$ (a+h) > f(a) \$h \$0. Auterest dit a st m minim local de d.

Remarque 17. Ne pas oublier la condition "définie": soit $f_1:(x,y)\mapsto \frac{1}{2}x^2-y^4$ et $f_2:(x,y)\mapsto \frac{1}{2}x^2-y^4$ $\frac{1}{2}x^2 + y^4$. On a $J_{f_1}(a) = J_{f_2}(a) = (0,0)$ et $\operatorname{Hess}_{f_1}(0,0) = \operatorname{Hess}_{f_2}(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Ainsi, l'origine est un point critique de f_1 et f_2 , les formes quadratiques $Q_a f_1$ et $Q_a f_2$ sont positives non-définies.

1. l'origine n'est pas un extremum de f_1 : E_n effet: $(01) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Raton son la rangue 17:

$$f_{1}\begin{pmatrix} x \\ y \end{pmatrix} = \frac{n^{2}}{2} + y^{4}$$

$$\frac{\partial f_{1}}{\partial x}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{2}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = 1$$

$$\frac{\partial f_{3}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = -12y^{4}$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}}{\partial y}\begin{pmatrix} x \\ y \end{pmatrix} = x$$

$$\frac{\partial f_{4}$$

la faction parulle f, (0,4) = - y4

 $f(x, 0) = \frac{x}{x}$

2. l'origine est un minimum (global) de f_2 :

$$f_{i}(n_{1}y) = \frac{1}{2}n^{2} + y^{4} > 0$$

where $f_{i}(x_{1}y) = 0$

where $\frac{(x_{1}y)}{x_{2}} = 0$

$$Jac_{\ell}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 9 \end{pmatrix}$$
; $Hest_{\ell}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} rc & s \\ s & t \end{pmatrix}$

7.2.4 Fonctions de \mathbb{R}^2 dans \mathbb{R}

Notation de Monge : Si $f: \mathbb{R}^2 \to \mathbb{R}$ est de classe \mathcal{C}^2 sur \mathcal{U} et $(a,b) \in \mathcal{U} \subset \mathbb{R}^2$. On note

Notation de Monge: Si
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 est de classe \mathcal{L}^2 sur \mathcal{U} et $(a,b) \in \mathcal{U} \subset \mathbb{R}^2$. On note $p = \frac{\partial f}{\partial x}(a,b), \, q = \frac{\partial f}{\partial y}(a,b), \, r = \frac{\partial^2 f}{\partial x^2}(a,b), \, s = \frac{\partial^2 f}{\partial x \partial y}(a,b), \, t = \frac{\partial^2 f}{\partial y^2}(a,b)$. La formule de Taylor-Young devient:
$$f(a+h,b+k) = f(a,b) + ph + qk + \frac{1}{2}\left(rh^2 + 2shk + tk^2\right) + o(h^2 + k^2)$$

Définition - Proposition 7.2.1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 sur \mathcal{U} et $(a,b) \in \mathcal{U}$ un point critique de f:

1. si $rt - s^2 \neq 0$ on dit que (a, b) est un point critique non dégénéré. Dans ce cas :

(a) si $rt - s^2 > 0$ et r > 0: (a, b) est un minimum local de $f \ge 2$

(b) si $rt-s^2>0$ et r<0: (a,b) est un maximum local de f. \leftarrow l and pages < 0 when de Salvata!

(c) si $rt-s^2<0$: (a,b) est un point selle $\det f$. وحر مہم المان زود مہم المان زود مہم المان زود مہم المان ا

2. si $rt - s^2 = 0$ on dit que (a, b) est un point critique dégénéré.

Démonstration.

Démonstration.

3 blue 1 bown

I déc: Etudia le signe de la fane quadratique
$$Q_a f: \mathbb{R}^2 \to \mathbb{R}$$
et dat la matrice et Hesse (a).

on a Hesse (a) = $\binom{n}{s}$ et on applique les artères de Sylveste.

Exemple 7.2.2. $f(x,y) = (x-y)^2 + x^3 + y^3$.

Exemple 7.2.3. $f(x,y) = (x-y)^2 + x^4 + y^4$.

A pt airigue.

$$\frac{34}{34} {x \choose 9} = 2(n-n) + 4x^3$$
 $\frac{34}{39} {x \choose 9} = -2(x-n) + 4y^5$

at $(0,0)$ at bin in pt cirtigue.

 $x = 2$
 x