

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1 (Pressure) 1.6	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7. Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T. =	0.00	$C_4 = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	A		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>54</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.52	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$l_y =$	0.60	in ⁴
I _x =	0.29	
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.453	k-ft
$M_z =$	0.060	k-ft
$M_{y \text{ allowable}} =$	1.256	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>43%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6 35 ksi
$F_{ty} = \Phi =$	0.90
S _y =	0.02 in ³
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
M _y =	0.002 k-ft
P _n =	0.060 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>5%</u>

A cross brace kit is required every 40 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	526.63	<u>1532.12</u>	k
Compressive Load =	1480.22	1066.86	k
Lateral Load =	<u>1.55</u>	<u>560.58</u>	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 22528.3 in-lbs Resisting Force Required = 750.94 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1251.57 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding 134.76 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 336.89 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 134.76 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	t Width	
	22 in	23 in	24 in	<u>25 in</u>
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs

ASD LC	1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W								
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	471 lbs	471 lbs	471 lbs	471 lbs	580 lbs	580 lbs	580 lbs	580 lbs	756 lbs	756 lbs	756 lbs	756 lbs	-252 lbs	-252 lbs	-252 lbs	-252 lbs
FB	341 lbs	341 lbs	341 lbs	341 lbs	417 lbs	417 lbs	417 lbs	417 lbs	544 lbs	544 lbs	544 lbs	544 lbs	-736 lbs	-736 lbs	-736 lbs	-736 lbs
F _V	26 lbs	26 lbs	26 lbs	26 lbs	235 lbs	235 lbs	235 lbs	235 lbs	194 lbs	194 lbs	194 lbs	194 lbs	-270 lbs	-270 lbs	-270 lbs	-270 lbs
P _{total}	2806 lbs	2897 lbs	2988 lbs	3078 lbs	2991 lbs	3081 lbs	3172 lbs	3263 lbs	3293 lbs	3384 lbs	3475 lbs	3565 lbs	209 lbs	264 lbs	318 lbs	372 lbs
M	283 lbs-ft	283 lbs-ft	283 lbs-ft	283 lbs-ft	659 lbs-ft	659 lbs-ft	659 lbs-ft	659 lbs-ft	689 lbs-ft	689 lbs-ft	689 lbs-ft	689 lbs-ft	478 lbs-ft	478 lbs-ft	478 lbs-ft	478 lbs-ft
е	0.10 ft	0.10 ft	0.09 ft	0.09 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.29 ft	1.82 ft	1.50 ft	1.29 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	269.1 psf	266.8 psf	264.8 psf	262.9 psf	240.0 psf	239.0 psf	238.1 psf	237.3 psf	269.1 psf	266.9 psf	264.8 psf	262.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	343.2 psf	337.7 psf	332.7 psf	328.1 psf	412.5 psf	404.0 psf	396.2 psf	389.1 psf	449.4 psf	439.3 psf	430.1 psf	421.6 psf	357.9 psf	133.9 psf	106.5 psf	98.1 psf

Maximum Bearing Pressure = 449 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbsS.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	Ε	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ
Width		22 in			22 in			22 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	55 lbs	143 lbs	52 lbs	218 lbs	659 lbs	215 lbs	16 lbs	42 lbs	15 lbs
F _V	0 lbs	0 lbs	0 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs
P _{total}	2523 lbs	2611 lbs	2520 lbs	2567 lbs	3009 lbs	2564 lbs	738 lbs	764 lbs	737 lbs
M	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.31 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	275.2 sqft	284.8 sqft	274.9 sqft	279.8 sqft	328.0 sqft	279.6 sqft	80.5 sqft	83.3 sqft	80.4 sqft
f _{max}	275.3 psf	284.9 psf	274.9 psf	280.4 psf	328.4 psf	279.9 psf	80.5 psf	80.4 psf	

Maximum Bearing Pressure = 328 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.139 k	Maximum Axial Load =	1.166 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>20%</u>	Utilization =	<u>20%</u>
Diagonal Strut		<u>Bracing</u>	
<u>Diagonal Strut</u> Maximum Axial Load =	0.190 k	<u>Bracing</u> Maximum Axial Load =	0.060 k
	0.190 k 5.692 k		0.060 k 8.894 k
Maximum Axial Load =		Maximum Axial Load =	
Maximum Axial Load = M8 Bolt Shear Capacity =	5.692 k	Maximum Axial Load = M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.005 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 54.00 \text{ in}$$
 $J = 0.255$
 140.613

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.5 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14

$$L_{b} = 54.00 \text{ in}$$

$$J = 0.255$$

$$146.018$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc^{*}\sqrt{((LbSc)/(Cb^{*}\sqrt{(lyJ)/2}))}]$$

29.4

3.4.16

 $\phi F_1 =$

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.5 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.256 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

0.871 k-ft

Compression

3.4.9

b/t =7.4

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi E_1 = \phi c | Bp-1.6Dp$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L =$ 28.5 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 21.0529 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \\ \phi F_L = & 29.8 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$\theta_{\rm N}$$
 2

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \\ \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 29.8 \text{ ksi}$$

$$\varphi F_L St = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

37.77 mm

0.589 in³

1.463 k-ft

3.4.18

h/t = 4.29

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

x =

Sy=

 $M_{max}Wk =$

29 mm

0.457 in³

0.513 k-ft

Compression

y =

Sx=

 $M_{max}St =$

3.4.7
$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.90326$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$
 47.2194

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$
 47.2194

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2$$

3.4.16

$$b/t = 7.75$$

$$Rn = \frac{\theta_y}{\rho_y} F_{CV}$$

$$1.6Dp$$

S1 = 12.3

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

15

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.423 \text{ k-ft}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\psi \Gamma_L = 43.2 \text{ KS}$$

$$\phi F_L W k = 31.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$x = 15 \text{ mm}$$

Sy = 0.163 in³

$$M_{max}Wk = 0.423 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 0.77182 \\ r = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83792 \\ & \phi F_L = & \phi cc(Bc-Dc^*\lambda) \\ & \phi F_L = & 24.5226 \text{ ksi} \end{array}$$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b Fty}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.16.1

SET TO
$$h/t = 7.75$$

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

33.3 ksi

 0.096 in^4

0.163 in³

0.450 k-ft

15 mm

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$S2 = 32.70$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$

 $\phi F_L =$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$

$$0.50 \text{ in}^2$$

33.25 ksi

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 29.96 \text{ in}$$

$$J = 0.16$$

$$78.5957$$

$$\left(R_{C} - \frac{\theta_{Y}}{2} F_{CY}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.5 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Not Used

 $\phi F_L = 33.3 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\omega F_i = 38.9 \text{ ksi}$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.5 \text{ ksi}$$

$$|x| = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

0.413 k-ft

Weak Axis:

3.4.14

$$L_{b} = 29.96 \text{ in}$$

$$J = 0.16$$

$$78.5957$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

$\phi F_L =$ 30.5

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

 $M_{max}St =$

SCHLETTER

Compression

3.4.7 1.28467 λ = 0.437 in r = $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ S1* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 S2* = $\phi cc = 0.75985$ $\phi F_L = (\phi ccFcy)/(\lambda^2)$ $\phi F_L = 16.1143 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 16.11 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 8.09 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

		Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	Υ	-63.248	-63.248	0	0
ſ	2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-63.051	-63.051	0	0
2	M16	V	-100.882	-100.882	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	128.624	128.624	0	0
2	M16	V	63.051	63.051	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	6.					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	113.022	2	245.743	2	.016	9	0	9	0	1	0	1
2		min	-141.263	3	-364.629	3	178	3	0	3	0	1	0	1
3	N7	max	0	15	377.194	1	.003	10	0	10	0	1	0	1
4		min	113	2	-118.424	3	421	1	0	1	0	1	0	1
5	N15	max	0	15	1138.631	1	.134	9	0	1	0	1	0	1
6		min	-1.19	2	-405.097	3	419	3	0	3	0	1	0	1
7	N16	max	386.349	2	820.662	1	0	10	0	9	0	1	0	1
8		min	-431.219	3	-1178.553	3	-51.571	3	0	3	0	1	0	1
9	N23	max	0	15	377.323	1	.73	1	.001	1	0	1	0	1
10		min	113	2	-118.064	3	002	10	0	10	0	1	0	1
11	N24	max	113.023	2	248.248	2	52.032	3	0	1	0	1	0	1
12		min	-141.511	3	-363.331	3	003	10	0	3	0	1	0	1
13	Totals:	max	610.977	2	3203.51	1	0	3						
14		min	-714.372	3	-2548.099	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	271.359	1	.668	4	.199	1	0	10	0	3	0	1
2			min	-366.467	3	.158	15	124	3	0	1	0	2	0	1
3		2	max	271.456	1	.63	4	.199	1	0	10	0	1	0	15
4			min	-366.395	3	.149	15	124	3	0	1	0	10	0	4
5		3	max	271.552	1	.592	4	.199	1	0	10	0	1	0	15
6			min	-366.323	3	.14	15	124	3	0	1	0	3	0	4
7		4	max	271.648	1	.554	4	.199	1	0	10	0	1	0	15
8			min	-366.251	3	.131	15	124	3	0	1	0	3	0	4
9		5	max	271.745	1	.516	4	.199	1	0	10	0	1	0	15
10			min	-366.178	3	.122	15	124	3	0	1	0	3	0	4
11		6	max	271.841	1	.479	4	.199	1	0	10	0	1	0	15
12			min	-366.106	3	.113	15	124	3	0	1	0	3	0	4
13		7	max	271.938	1	.441	4	.199	1	0	10	0	1	0	15
14			min	-366.034	3	.105	15	124	3	0	1	0	3	0	4
15		8	max	272.034	1	.403	4	.199	1	0	10	0	1	0	15
16			min	-365.962	3	.096	15	124	3	0	1	0	3	0	4
17		9	max	272.13	1	.365	4	.199	1	0	10	0	1	0	15
18			min	-365.889	3	.087	15	124	3	0	1	0	3	0	4
19		10	max	272.227	1	.327	4	.199	1	0	10	0	1	0	15
20			min	-365.817	3	.078	15	124	3	0	1	0	3	0	4
21		11	max	272.323	1	.289	4	.199	1	0	10	0	1	0	15
22			min	-365.745	3	.069	15	124	3	0	1	0	3	0	4
23		12	max	272.419	1	.252	4	.199	1	0	10	0	1	0	15
24			min	-365.672	3	.06	15	124	3	0	1	0	3	0	4
25		13	max	272.516	1	.214	4	.199	1	0	10	0	1	0	15
26			min	-365.6	3	.051	15	124	3	0	1	0	3	0	4
27		14	max	272.612	1	.176	4	.199	1	0	10	0	1	0	15
28			min	-365.528	3	.042	15	124	3	0	1	0	3	0	4
29		15	max	272.708	1	.138	4	.199	1	0	10	0	1	0	15
30			min	-365.456	3	.033	15	124	3	0	1	0	3	0	4
31		16	max	272.805	1	.1	4	.199	1	0	10	0	1	0	15
32			min	-365.383	3	.024	15	124	3	0	1	0	3	0	4
33		17	max	272.901	1	.064	2	.199	1	0	10	0	1	0	15
34			min	-365.311	3	.016	15	124	3	0	1	0	3	0	4
35		18	max		1	.035	2	.199	1	0	10	0	1	0	15
36			min	-365.239	3	0	9	124	3	0	1	0	3	0	4
37		19	max		1	.008	10	.199	1	0	10	0	1	0	15

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	<u> </u>
38			min	-365.167	3	027	1	124	3	0	1	0	3	0	4
39	M3	1	max	50.732	2	1.816	4	002	10	0	10	0	1	0	4
40			min	-55.49	9	.428	15	186	1	0	1	0	10	0	15
41		2	max	50.664	2	1.638	4	002	10	0	10	0	1	0	4
42			min	-55.546	9	.386	15	186	1	0	1	0	10	0	15
43		3	max	50.597	2	1.46	4	002	10	0	10	0	1	0	2
44			min	-55.602	9	.344	15	186	1	0	1	0	10	0	15
45		4	max	50.53	2	1.282	4	002	10	0	10	0	1	0	15
46		1	min	-55.658	9	.302	15	186	1	0	1	0	10	0	4
47		5	max	50.463	2	1.104	4	002	10	0	10	0	1	0	15
48		5		-55.714	9	.26	15	186	1	0	1	0	10	0	4
		-	min												_
49		6	max	50.396	2	.926	4	002	10	0	10	0	1	0	15
50		_	min	<u>-55.77</u>	9	.218	15	186	1	0	1	0	10	0	4
51		7	max	50.329	2	.748	4	002	10	0	10	0	1	0	15
52			min	-55.826	9	.176	15	186	1	0	1	0	10	0	4
53		8	max	50.262	2	.57	4	002	10	0	10	0	1_	0	15
54			min	-55.882	9	.135	15	186	1	0	1	0	10	0	4
55		9	max	50.195	2	.392	4	002	10	0	10	0	1	0	15
56			min	-55.938	9	.093	15	186	1	0	1	0	10	001	4
57		10	max	50.128	2	.214	4	002	10	0	10	0	1	0	15
58			min	-55.994	9	.051	15	186	1	0	1	0	10	001	4
59		11	max	50.061	2	.038	2	002	10	0	10	0	1	0	15
60			min	-56.049	9	.009	15	186	1	0	1	0	10	001	4
61		12	max	49.994	2	033	15	002	10	0	10	0	1	0	15
62		12	min	-56.105	9	142	4	186	1	0	1	0	10	001	4
63		13			2	075	15	002	10	0	10	0	1	0	15
		13	max		_										
64		4.4	min	<u>-56.161</u>	9	32	4	186	1	0	1	0	10	001	4
65		14	max		2	116	15	002	10	0	10	0	9	0	15
66		4.5	min	-56.217	9	498	4	186	1	0	1	0	2	001	4
67		15	max	49.792	2	158	15	002	10	0	10	0	10	0	15
68			min	-56.273	9	676	4	186	1	0	1	0	1_	0	4
69		16	max		2	2	15	002	10	0	10	0	10	0	15
70			min	-56.329	9	854	4	186	1	0	1	0	1	0	4
71		17	max	49.658	2	242	15	002	10	0	10	0	10	0	15
72			min	-56.385	9	-1.032	4	186	1	0	1	0	1	0	4
73		18	max	49.591	2	284	15	002	10	0	10	0	10	0	15
74			min	-56.441	9	-1.21	4	186	1	0	1	0	1	0	4
75		19	max	49.524	2	326	15	002	10	0	10	0	10	0	1
76			min	-56.497	9	-1.388	4	186	1	0	1	0	1	0	1
77	M4	1	max	376.03	1	0	1	.003	10	0	1	0	3	0	1
78				-119.298		0	1	45	1	0	1	0	2	0	1
79		2		376.094	1	0	1	.003	10	0	1	0	15	0	1
80				-119.249		0	1	45	1	0	1	0	1	0	1
81		3	max		1	0	1	.003	10	0	1	0	15	0	1
82			min	-119.201	3	0	1	45	1	0	1	0	1	0	1
83		4		376.224	1	0	1	.003	10	0	1	0	15	0	1
		4									-				
84		-	min		3	0	1	45	1	0	1	0	1_	0	1
85		5	max		1	0	1	.003	10	0	1	0	15	0	1
86			min	-119.104	3	0	1	45	1	0	1	0	1_	0	1
87		6	max		1	0	1	.003	10	0	1	0	15	0	1
88			min	-119.055	3	0	1	45	1	0	1	0	1	0	1
89		7		376.418	1	0	1	.003	10	0	1	0	10	0	1
90			min	-119.007	3	0	1	45	1	0	1	0	1	0	1
91		8	max	376.482	1	0	1	.003	10	0	1	0	10	0	1
92			min	-118.958	3	0	1	45	1	0	1	0	1	0	1
93		9	max		1	0	1	.003	10	0	1	0	10	0	1
94			min		3	0	1	45	1	0	1	0	1	0	1
					_										

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC_
95		10	max		_1_	0	1	.003	10	0	1	0	10	0	1
96				-118.861	3	0	1	45	1	0	1	0	1	0	1
97		11		376.677	_1_	0	1	.003	10	00	1	0	10	0	1
98			min	-118.813	3	0	1	45	1	0	1	0	1	0	1
99		12	max	376.741	_1_	0	1_	.003	10	0	1	0	10	0	1
100				-118.764	3	0	1	45	1	0	1	0	1	0	1
101		13		376.806	_1_	0	1	.003	10	0	1	0	10	0	1
102			min	-118.715	3	0	1	45	1	0	1	0	1	0	1
103		14		376.871	_1_	0	1	.003	10	0	1	0	10	0	1
104				-118.667	3	0	1	45	1	0	1	0	1	0	1
105		15	max	376.935	1	0	1	.003	10	0	1	0	10	0	1
106			min	-118.618	3	0	1	45	1	0	1	0	1	0	1
107		16	max	377	1	0	1	.003	10	0	1	0	10	0	1
108			min	-118.57	3	0	1	45	1	0	1	0	1	0	1
109		17	max	377.065	1	0	1	.003	10	0	1	0	10	0	1
110			min	-118.521	3	0	1	45	1	0	1	0	1	0	1
111		18	max		1	0	1	.003	10	0	1	0	10	0	1
112				-118.473	3	0	1	45	1	0	1	0	1	0	1
113		19		377.194	1	0	1	.003	10	0	1	0	10	0	1
114				-118.424	3	0	1	45	1	0	1	0	1	0	1
115	M6	1		867.291	1	.656	4	.055	9	0	3	0	3	0	1
116	1110		min	-1166.497	3	.156	15	256	3	0	2	0	1	0	1
117		2	max		1	.618	4	.055	9	0	3	0	3	0	15
118			min	-1166.425	3	.147	15	256	3	0	2	0	2	0	4
119		3	max	867.483	1	.581	4	.055	9	0	3	0	3	0	15
120			min		3	.138	15	256	3	0	2	0	2	0	4
121		4	max	867.58	1	.543	4	.055	9	0	3	0	9	0	15
122		_		-1166.28	3	.13	15	256	3	0	2	0	2	0	4
123		5	max		1	.505	4	.055	9	0	3	0	9	0	15
124		5		-1166.208	3	.121	15	256	3	0	2	0	3	0	4
125		6	min	867.773	_ <u>3_</u> 1	.467	4	.055	9	0	3	0	9	0	15
126		0	min	-1166.136	3	.112	15	256	3	0	2	0	3	0	4
127		7			<u> </u>	.429	4	.055	9	0	3	0	9	-	15
			max	-1166.064			15		3			_	3	0	
128		0	min		3_	.103		256		0	2	0		0	4
129		8	max	867.965 -1165.991	1	.391	4	.055	9	0	3	0	9	0	15
130					3	.094	15	256	3	0	2	0	3	0	4
131		9	max		1	.354	4	.055	9	0	3	0	9	0	15
132		40	min	-1165.919	3	.085	15	256	3	0	2	0	3	0	4
133		10			1_	.316	4	.055	9	0	3	0	9	0	15
134		4.4	min	-1165.847	3	.076	15	256	3	0	2	0	3	0	4
135		11		868.254	1	.278	4	.055	9	0	3	0	9	0	15
136		40		-1165.774	3	.067	15	256	3	0	2	0	3	0	4
137		12		868.351	1_	.241	2	.055	9	0	3	0	9	0	15
138		4.0		-1165.702	3	.058	15	256	3	0	2	0	3	0	4
139		13		868.447	1	.211	2	.055	9	0	3	0	9	0	15
140				-1165.63	3	.05	15	256	3	0	2	0	3	0	4
141		14		868.544	1_	.182	2	.055	9	0	3	0	9	0	15
142			min		3	.041	15	256	3	0	2	0	3	0	4
143		15	max		_1_	.152	2	.055	9	0	3	0	9	0	15
144			min	-1165.485	3	.032	15	256	3	0	2	0	3	0	4
145		16		868.736	_1_	.123	2	.055	9	0	3	0	9	0	15
146			min	-1165.413	3	.021	9	256	3	0	2	0	3	0	4
147		17	max		_1_	.093	2	.055	9	0	3	0	9	0	15
148			min		3	003	9	256	3	0	2	0	3	0	4
149		18	max	868.929	1	.064	2	.055	9	0	3	0	9	0	15
150			min	-1165.269	3	028	9	256	3	0	2	0	3	0	4
151		19	max	869.025	1_	.034	2	.055	9	0	3	0	9	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
152			min	-1165.196	3	052	9	256	3	0	2	0	3	0	4
153	M7	1	max	189.885	2	1.812	4	0	13	0	1	0	1	0	4
154			min	-100.03	9	.427	15	012	1	0	3	0	3	0	15
155		2	max	189.818	2	1.634	4	0	13	0	1	0	1	0	2
156			min	-100.085	9	.385	15	012	1	0	3	0	3	0	15
157		3	max	189.751	2	1.456	4	0	13	0	1	0	1	0	2
158			min	-100.141	9	.343	15	012	1	0	3	0	3	0	9
159		4	max	189.684	2	1.278	4	0	13	0	1	0	1	0	10
160			min	-100.197	9	.301	15	012	1	0	3	0	3	0	9
161		5	max	189.616	2	1.1	4	0	13	0	1	0	1	0	15
162			min	-100.253	9	.26	15	012	1	0	3	0	3	0	4
163		6	max	189.549	2	.922	4	0	13	0	1	0	1	0	15
164			min	-100.309	9	.218	15	012	1	0	3	0	3	0	4
165		7	max	189.482	2	.743	4	0	13	0	1	0	1	0	15
166			min	-100.365	9	.176	15	012	1	0	3	0	3	0	4
167		8	max	189.415	2	.565	4	0	13	0	1	0	1	0	15
168			min	-100.421	9	.134	15	012	1	0	3	0	3	0	4
169		9	max	189.348	2	.387	4	0	13	0	1	0	1	0	15
170			min	-100.477	9	.092	15	012	1	0	3	0	3	001	4
171		10	max	189.281	2	.209	4	0	13	0	1	0	1	0	15
172		1	min	-100.533	9	.05	15	012	1	0	3	Ö	3	001	4
173		11	max		2	.057	2	0	13	0	1	0	1	0	15
174			min	-100.589	9	001	9	012	1	0	3	0	3	001	4
175		12	max	189.147	2	033	15	0	13	0	1	0	1	0	15
176		'-	min	-100.645	9	147	4	012	1	0	3	0	3	001	4
177		13	max	189.08	2	075	15	0	13	0	1	0	1	0	15
178		15	min	-100.7	9	325	4	012	1	0	3	0	3	001	4
179		14	max	189.013	2	117	15	0	13	0	1	0	1	0	15
180		17	min	-100.756	9	503	4	012	1	0	3	0	3	001	4
181		15	max	188.945	2	159	15	0	13	0	1	0	1	0	15
182		13	min	-100.812	9	681	4	012	1	0	3	0	3	0	4
183		16	max		2	201	15	0	13	0	1	0	1	0	15
184		10	min	-100.868	9	859	4	012	1	0	3	0	3	0	4
185		17	max	188.811	2	243	15	0	13	0	1	0	1	0	15
186		17	min	-100.924	9	-1.037	4	012	1	0	3	0	3	0	4
187		18	max	188.744	2	284	15	0	13	0	1	0	1	0	15
188		10	min	-100.98	9	-1.215	4	012	1	0	3	0	3	0	4
189		19		188.677	2	326	15	0	13		1	0	1	0	1
190		19	max	-101.036	9	-1.393	4	012	1	0	3	0	3	0	1
191	M8	1	min	1137.466	_ 9 1		1	.161	1	0	1	0	2		1
192	IVIO	<u> </u>		-405.971		0	1	393	3	<u> </u>	1	0	1	0	1
193		2		1137.531	1	0	1	.161	1	0	1	0	1	0	1
194					3	0	1	393	3	0	1	0	3	0	1
195		3					1	.161	1		1		1	0	1
		3		1137.596	1	0	1	393	3	0 0	1	0	3	0	1
196 197		4	min	<u>-405.874</u>	<u>3</u> 1	0	1	.161	1	0	1	_	<u> </u>	0	1
		4		1137.661 -405.825			_				1	0			_
198		-	_		3	0	1	393	3	0		0	3	0	1
199		5		1137.725	1_	0	1	.161	1	0	1	0	1	0	1
200				-405.777	3	0	1	393	3	0	1	0	3	0	1
201		6	max		1_	0	1	.161	1	0	1	0	1	0	1
202		-		-405.728	3	0	1	393	3	0	1	0	3	0	1
203		7		1137.855	1_	0	1	.161	1	0	1	0	1	0	1
204				-405.679	3	0	1	393	3	0	1	0	3	0	1
205		8		1137.919	_1_	0	1	.161	1	0	1	0	1	0	1
206			min	-405.631	3	0	1	393	3	0	1	0	3	0	1
207		9		1137.984	1_	0	1	.161	1	0	1	0	1	0	1
208			min	-405.582	3	0	1	393	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	1138.049	1	0	1	.161	1	0	1	0	1	0	1
210			min	-405.534	3	0	1	393	3	0	1	0	3	0	1
211		11	max	1138.114	1	0	1	.161	1	0	1	0	1	0	1
212			min	-405.485	3	0	1	393	3	0	1	0	3	0	1
213		12	max	1138.178	1	0	1	.161	1	0	1	0	1	0	1
214			min	-405.437	3	0	1	393	3	0	1	0	3	0	1
215		13	max	1138.243	1	0	1	.161	1	0	1	0	1	0	1
216			min	-405.388	3	0	1	393	3	0	1	0	3	0	1
217		14	max	1138.308	1	0	1	.161	1	0	1	0	1	0	1
218			min	-405.34	3	0	1	393	3	0	1	0	3	0	1
219		15	max	1138.372	1	0	1	.161	1	0	1	0	1	0	1
220			min	-405.291	3	0	1	393	3	0	1	0	3	0	1
221		16	max	1138.437	1	0	1	.161	1	0	1	0	1	0	1
222			min	-405.243	3	0	1	393	3	0	1	0	3	0	1
223		17	max	1138.502	1	0	1	.161	1	0	1	0	1	0	1
224			min	-405.194	3	0	1	393	3	0	1	0	3	0	1
225		18	max	1138.567	1	0	1	.161	1	0	1	0	1	0	1
226			min	-405.146	3	0	1	393	3	0	1	0	3	0	1
227		19	max	1138.631	1	0	1	.161	1	0	1	0	1	0	1
228			min	-405.097	3	0	1	393	3	0	1	0	3	0	1
229	M10	1	max	272.991	1	.668	4	002	15	0	1	0	1	0	1
230			min	-336.832	3	.158	15	098	1	0	3	0	3	0	1
231		2	max	273.087	1	.63	4	002	15	0	1	0	1	0	15
232		_	min	-336.759	3	.149	15	098	1	0	3	0	3	0	4
233		3	max	273.184	1	.592	4	002	15	0	1	0	1	0	15
234			min	-336.687	3	.14	15	098	1	0	3	0	3	0	4
235		4	max	273.28	1	.554	4	002	15	0	1	0	10	0	15
236			min	-336.615	3	.131	15	098	1	0	3	0	3	0	4
237		5	max	273.376	1	.516	4	002	15	0	1	0	10	0	15
238			min	-336.542	3	.122	15	098	1	0	3	0	3	0	4
239		6	max	273.473	1	.478	4	002	15	0	1	0	10	0	15
240			min	-336.47	3	.113	15	098	1	0	3	0	3	0	4
241		7	max	273.569	1	.441	4	002	15	0	1	0	10	0	15
242			min	-336.398	3	.104	15	098	1	0	3	0	3	0	4
243		8	max	273.665	1	.403	4	002	15	0	1	0	10	0	15
244			min	-336.326	3	.096	15	098	1	0	3	0	3	0	4
245		9	max		1	.365	4	002	15	0	1	0	10	0	15
246			min	-336.253	3	.087	15	098	1	0	3	0	3	0	4
247		10	max	273.858	1	.327	4	002	15	0	1	0	10	0	15
248		10	min	-336.181	3	.078	15	098	1	0	3	0	3	0	4
249		11		273.955		.289	4	002	15	0	1	0	10	0	15
250			min	-336.109	3	.069	15	098	1	0	3	0	3	0	4
251		12	max		1	.251	4	002	15	0	1	0	10	0	15
252		12		-336.037	3	.06	15	098	1	0	3	0	3	0	4
253		13	max	274.147	1	.214	4	002	15	0	1	0	10	0	15
254		13	min	-335.964	3	.051	15	098	1	0	3	0	3	0	4
255		1/		274.244	1	.176	4	002	15	0	1	0	10	0	15
256		14	min	-335.892	3	.042	15	002	1	0	3	0	3	0	4
		15							_		1		15		15
257 258		15	max	274.34 -335.82	3	.138	15	002 098	15	0 0	3	0	3	0	4
		16	min		<u>ა</u>		1		15		1	_	15		15
259		16		-335.747		.1	15	002	1	0	3	0	3	0	
260		17	min		3	.024		098		0		0		0	15
261		17		274.533	1	.078	3	002	15	0	1	0	15	0	15
262		10			3	.016	15	098	1	0	3	0	3	0	4
263		18	max	274.629	1	.056	3	002	15	0	3	0	<u>15</u>	0	15
264		10	min	-335.603	3	001	9	098	1	0		0		0	4
265		19	ттах	274.725	1	.034	3	002	15	0	1	0	15	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]		/-y Mome	LC	z-z Mome	. LC
266			min	-335.531	3	027	1	098	1	0	3	0	3	0	4
267	M11	1	max	50.288	2	1.816	4	.203	1	0	3	0	3	0	4
268			min	-55.573	9	.427	15	017	3	0	10	0	1	0	15
269		2	max	50.221	2	1.638	4	.203	1	0	3	0	3	0	4
270			min	-55.629	9	.386	15	017	3	0	10	0	1	0	15
271		3	max	50.154	2	1.46	4	.203	1	0	3	0	3	0	2
272			min	-55.685	9	.344	15	017	3	0	10	0	1	0	3
273		4	max	50.087	2	1.282	4	.203	1	0	3	0	3	0	15
274			min	-55.741	9	.302	15	017	3	0	10	0	1	0	4
275		5	max	50.02	2	1.104	4	.203	1	0	3	0	3	0	15
276			min	-55.797	9	.26	15	017	3	0	10	0	1	0	4
277		6	max	49.953	2	.926	4	.203	1	0	3	0	3	0	15
278			min	-55.853	9	.218	15	017	3	0	10	0	1	0	4
279		7	max	49.886	2	.748	4	.203	1	0	3	0	3	0	15
280			min	-55.909	9	.176	15	017	3	0	10	0	1	0	4
281		8	max	49.819	2	.57	4	.203	1	0	3	0	3	0	15
282			min	-55.965	9	.135	15	017	3	0	10	0	1	0	4
283		9	max	49.752	2	.392	4	.203	1	0	3	0	3	0	15
284			min	-56.021	9	.093	15	017	3	0	10	0	1	001	4
285		10	max	49.684	2	.214	4	.203	1	0	3	0	3	0	15
286			min	-56.077	9	.051	15	017	3	0	10	0	1	001	4
287		11	max		2	.038	2	.203	1	0	3	0	3	0	15
288			min	-56.133	9	0	3	017	3	0	10	0	1	001	4
289		12	max	49.55	2	033	15	.203	1	0	3	0	3	0	15
290			min	-56.188	9	142	4	017	3	0	10	0	1	001	4
291		13	max	49.483	2	075	15	.203	1	0	3	0	3	0	15
292		1.0	min	-56.244	9	32	4	017	3	0	10	0	2	001	4
293		14	max	49.416	2	117	15	.203	1	0	3	0	3	0	15
294			min	-56.3	9	498	4	017	3	0	10	0	10	001	4
295		15	max	49.349	2	158	15	.203	1	0	3	0	3	0	15
296		10	min	-56.356	9	676	4	017	3	0	10	0	10	0	4
297		16	max		2	2	15	.203	1	0	3	0	3	0	15
298		10	min	-56.412	9	854	4	017	3	0	10	0	10	0	4
299		17	max	49.215	2	242	15	.203	1	0	3	0	3	0	15
300		1 '	min	-56.468	9	-1.032	4	017	3	0	10	0	10	0	4
301		18	max	49.148	2	284	15	.203	1	0	3	0	3	0	15
302		10	min	-56.524	9	-1.21	4	017	3	0	10	0	10	0	4
303		19	max	49.081	2	326	15	.203	1	0	3	0	3	0	1
304		13	min	-56.58	9	-1.388	4	017	3	0	10	0	10	0	1
305	M12	1	max	376.158		0	1	.778	1	0	1	0	2	0	1
306	IVIIZ			-118.938		0	1	002	10		1	0	3	0	1
307		2		376.223	1	0	1	.778	1	0	1	0	1	0	1
308			min			0	1	002	10	0	1	0	15	0	1
309		3		376.288	1	0	1	.778	1	0	1	0	1	0	1
310		-3		-118.841	3	0	1	002	10	0	1	0	15	0	1
311		4	min	376.353	1	0	1	.778	1	0	1	0	1	0	1
312		4			3	0	1	002	10	0	1	0	15	0	1
		E	min				_								
313		5		376.417	1	0	1	.778	1	0	1	0	10	0	1
314		_		-118.744		0		002	10	0		0	10	0	1
315		6	max		1	0	1	.778	1	0	1	0	1	0	1
316		7	min		3	0		002	10	0		0	10	0	-
317		7		376.547	1	0	1	.778	1	0	1	0	1	0	1
318					3	0	1	002	10	0	1	0	10	0	1
319		8		376.611	1	0	1	.778	1	0	1	0	1	0	1
320			min	-118.598	3	0	1	002	10	0	1	0	10	0	1
321		9	max		1	0	1	.778	1	0	1	0	1	0	1
322			min	-118.55	3	0	1	002	10	0	1	0	10	0	1

Schletter, Inc. HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	376.741	1	0	1	.778	1	0	1	0	1	0	1
324			min	-118.501	3	0	1	002	10	0	1	0	10	0	1
325		11	max	376.806	1	0	1	.778	1	0	1	0	1	0	1
326			min	-118.452	3	0	1	002	10	0	1	0	10	0	1
327		12	max	376.87	1	0	1	.778	1	0	1	0	1	0	1
328			min	-118.404	3	0	1	002	10	0	1	0	10	0	1
329		13	max	376.935	1	0	1	.778	1	0	1	0	1	0	1
330			min	-118.355	3	0	1	002	10	0	1	0	10	0	1
331		14	max	377	1	0	1	.778	1	0	1	0	1	0	1
332			min	-118.307	3	0	1	002	10	0	1	0	10	0	1
333		15	max		1	0	1	.778	1	0	1	0	1	0	1
334			min	-118.258	3	0	1	002	10	0	1	0	10	0	1
335		16	max	377.129	1	0	1	.778	1	0	1	.001	1	0	1
336			min	-118.21	3	0	1	002	10	0	1	0	10	0	1
337		17	max	377.194	1	0	1	.778	1	0	1	.001	1	0	1
338			min	-118.161	3	0	1	002	10	0	1	0	10	0	1
339		18	max	377.259	1	0	1	.778	1	0	1	.001	1	0	1
340		10	min	-118.113	3	0	1	002	10	0	1	0	10	0	1
341		19	max	377.323	1	0	1	.778	1	0	1	.001	1	0	1
342		13	min	-118.064	3	0	1	002	10	0	1	0	10	0	1
343	M1	1	max	59.716	1	344.8	3	178	10	0	1	.033	1	0	1
344	IVII	<u> </u>	min	1.846	15	-273.939	1	-16.993	1	0	3	0	10	0	3
345		2	max	59.788	1	344.598	3	178	10	0	1	.03	1	.06	1
346			min	1.868	15	-274.209	1	-16.993	1	0	3	0	10	075	3
347		3	max	69.838	1	4.418	9	174	10	0	3	.026	1	.118	1
348		3	min	-6.663	3	-21.881	3	-16.854	1	0	1	.026	10	148	3
349		4		69.91	1	4.193	9	174	10		3	.022	1	.119	1
350		4	max min	-6.609	3	-22.083	3	-16.854	1	0	1	.022	10	144	3
351		5		69.983	_	3.968		174	10		3	.018	1	.12	1
		5	max		3	-22.285	9		10	0	1	.018	10		3
352 353		6	min	-6.555 70.055	1	3.744	9	-16.854 174	10	0	3	.015	1	139 .12	1
		0	max	70.055	_	-22.487	3	-16.854	1		1			134	3
354		7	min	-6.5 70.127	3			174	10	0		.011	10	.121	
355			max		3	3.519 -22.69	9	-16.854	10	0	3	.011	10	129	3
356		0	min	-6.446								_			
357		8	max	70.199	1	3.294	9	174	10	0	3	.007	10	.123	3
358		9	min	-6.392	3	-22.892		-16.854		0		.004		124 .127	
359		9	max	70.272	1	3.069 -23.094	9	174	10	0	1		10	119	3
360		40	min	-6.338	3			-16.854		0		0			
361		10	max	70.344	1	2.844	9	174	10	0	3	.001	3	.13	2
362		44	min	-6.284	3	-23.297	3	-16.854	1	0	1	0	15	114	3
363		11	max		1	2.62	9	174	10	0	3	0	3	.134	2
364		40	min	-6.229	3	-23.499	3	-16.854	1	0	1	004	1	109	3
365		12	max	70.489	1	2.395	9	174	10	0	3	0	12	.138	2
366		40	min	-6.175	3	-23.701	3	-16.854	1	0	1	007	1	104	3
367		13	max		1	2.17	9	174	10	0	3	0	10	.142	2
368		4.4	min	-6.121	3	-23.903	3	-16.854	1	0	1	011	1_	099	3
369		14	max		1	1.945	9	174	10	0	3	0	10	.145	2
370			min	-6.067	3	-24.106	3	-16.854	1	0	1	014	1_	093	3
371		15	max		1	1.721	9	174	10	0	3	0	10	.149	2
372		4.0	min	-6.013	3	-24.308	3	-16.854	1	0	1	018	1_	088	3
373		16	max		2	15.303	10	176	10	0	1	0	10	.153	2
374			min	-34.641	3	-50.262	3	-17.027	1	0	10	022	1	083	3
375		17	max		2	15.079	10	176	10	0	1	0	10	.15	2
376			min	-34.587	3	-50.465	3	-17.027	1	0	10		1_	072	3
377		18			15	348.965	2	173	10	0	3	0	10	.076	2
378			min		1	-165.979	3	-17.478	1	0	2	03	1	036	3
379		19	max	-1.845	15	348.696	2	173	10	0	3	0	10	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
380			min	-59.674	1	-166.182	3	-17.478	1	0	2	033	1	0	3
381	M5	1	max	142.8	1	1119.426	3	0	10	0	9	.006	3	0	3
382			min	.632	3	-886.309	1	-46.617	3	0	3	0	10	0	1
383		2	max	142.872	1	1119.224	3	0	10	0	9	0	9	.192	1
384			min	.686	3	-886.578	1	-46.617	3	0	3	004	3	242	3
385		3	max	173.772	1	6.727	9	5.109	3	0	3	0	1	.381	1
386			min	-40.919	3	-76.809	3	164	9	0	1	013	3	48	3
387		4	max	173.844	1	6.502	9	5.109	3	0	3	0	1	.385	1
388			min	-40.865	3	-77.011	3	164	9	0	1	012	3	463	3
389		5	max	173.916	1	6.278	9	5.109	3	0	3	0	1	.389	1
390			min	-40.811	3	-77.213	3	164	9	0	1	011	3	446	3
391		6	max	173.988	1	6.053	9	5.109	3	0	3	0	1	.394	1
392			min	-40.757	3	-77.416	3	164	9	0	1	01	3	43	3
393		7	max	174.061	1	5.828	တ	5.109	3	0	3	0	1	.398	1
394			min	-40.702	3	-77.618	3	164	9	0	1	009	3	413	3
395		8	max	174.133	1	5.603	9	5.109	3	0	3	0	1	.403	1
396			min	-40.648	3	-77.82	3	164	9	0	1	008	3	396	3
397		9	max	174.205	1	5.378	9	5.109	3	0	3	0	1	.413	2
398			min	-40.594	3	-78.023	3	164	9	0	1	007	3	379	3
399		10	max	174.277	1	5.154	9	5.109	3	0	3	0	2	.425	2
400			min	-40.54	3	-78.225	3	164	9	0	1	006	3	362	3
401		11	max	174.35	1	4.929	9	5.109	3	0	3	0	2	.437	2
402			min	-40.486	3	-78.427	3	164	9	0	1	004	3	345	3
403		12	max	174.422	1	4.704	တ	5.109	3	0	3	0	2	.45	2
404			min	-40.431	3	-78.629	3	164	9	0	1	003	3	328	3
405		13	max	174.494	1	4.479	9	5.109	3	0	3	0	2	.462	2
406			min	-40.377	3	-78.832	3	164	9	0	1	002	3	311	3
407		14	max	174.567	1	4.255	9	5.109	3	0	3	0	2	.475	2
408			min	-40.323	3	-79.034	3	164	9	0	1	001	3	294	3
409		15	max	174.639	1	4.03	9	5.109	3	0	3	0	3	.487	2
410			min	-40.269	3	-79.236	3	164	9	0	1	0	9	277	3
411		16	max	228.615	2	66.559	2	5.083	3	0	3	0	3	.499	2
412			min	-108.584	3	-138.67	3	174	1	0	2	0	9	259	3
413		17	max	228.687	2	66.289	2	5.083	3	0	3	.002	3	.484	2
414			min	-108.53	3	-138.872	3	174	1	0	2	0	9	229	3
415		18	max	-2.579	12	1128.101	2	4.685	3	0	3	.003	3	.244	2
416			min	-142.964	1	-532.072	3	041	1	0	1	0	9	115	3
417		19	max	-2.542	12	1127.832	2	4.685	3	0	3	.004	3	0	3
418			min	-142.891	1	-532.274	3	041	1	0	1	0	9	0	2
419	M9	1	max	59.604	1	344.758	3	49.099	3	0	3	0	10	0	1
420			min	1.841	15	-273.938	1	.178	10	0	1	033	1	0	3
421		2	max	59.676	1	344.556	3	49.099	3	0	3	0	3	.06	1
422			min	1.862	15	-274.208	1	.178	10	0	1	029	1	075	3
423		3	max	70.094	1	4.404	9	16.569	1	0	1	.01	3	.118	1
424			min	-6.779	3	-21.802	3	-2.147	3	0	10	025	1	148	3
425		4	max	70.167	1	4.179	9	16.569	1	0	1	.01	3	.119	1
426			min	-6.725	3	-22.004	3	-2.147	3	0	10	022	1	143	3
427		5	max	70.239	1	3.954	9	16.569	1	0	1	.009	3	.119	1
428			min	-6.67	3	-22.206	3	-2.147	3	0	10	018	1	139	3
429		6	max	70.311	1	3.729	9	16.569	1	0	1	.009	3	.12	1
430			min	-6.616	3	-22.409	3	-2.147	3	0	10	014	1	134	3
431		7	max	70.383	1	3.505	9	16.569	1	0	1	.008	3	.121	1
432			min	-6.562	3	-22.611	3	-2.147	3	0	10	011	1	129	3
433		8	max	70.456	1	3.28	9	16.569	1	0	1	.008	3	.123	2
434			min	-6.508	3	-22.813	3	-2.147	3	0	10	007	1	124	3
435		9	max	70.528	1	3.055	9	16.569	1	0	1	.007	3	.127	2
436			min	-6.454	3	-23.016	3	-2.147	3	0	10	004	1	119	3
							_								

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC y			z-z Mome	
437		10	max	70.6	1	2.83	9	16.569	1	0	1	.007	3	.13	2
438			min	-6.399	3	-23.218	3	-2.147	3	0	10	0	1	114	3
439		11	max	70.672	1_	2.606	9	16.569	1	0	1	.007	3	.134	2
440			min	-6.345	3	-23.42	3	-2.147	3	0	10	0	10	109	3
441		12	max	70.745	1	2.381	9	16.569	1	0	1	.007	1	.138	2
442			min	-6.291	3	-23.622	3	-2.147	3	0	10	0	10	104	3
443		13	max	70.817	1	2.156	9	16.569	1	0	1	.011	1	.142	2
444			min	-6.237	3	-23.825	3	-2.147	3	0	10	0	10	099	3
445		14	max	70.889	1	1.931	9	16.569	1	0	1	.014	1	.145	2
446			min	-6.183	3	-24.027	3	-2.147	3	0	10	0	10	093	3
447		15	max	70.961	1	1.706	9	16.569	1	0	1	.018	1	.149	2
448			min	-6.128	3	-24.229	3	-2.147	3	0	10	0	10	088	3
449		16	max	69.058	2	15.08	10	16.76	1	0	10	.022	1	.153	2
450			min	-35.218	3	-50.606	3	-2.155	3	0	1	0	10	083	3
451		17	max	69.131	2	14.855	10	16.76	1	0	10	.025	1	.15	2
452			min	-35.164	3	-50.808	3	-2.155	3	0	1	0	10	072	3
453		18	max	-1.861	15	348.966	2	17.521	1	0	2	.029	1	.076	2
454			min	-59.626	1	-165.974	3	-1.835	3	0	3	0	10	036	3
455		19	max	-1.84	15	348.696	2	17.521	1	0	2	.033	1	0	2
456			min	-59.554	1	-166.177	3	-1.835	3	0	3	0	10	0	3
457	M13	1	max	49.097	3	273.752	1	-1.841	15	0	1	.033	1	0	1
458			min	.178	10	-344.782	3	-59.601	1	0	3	0	10	0	3
459		2	max	49.097	3	194.185	1	-1.398	15	0	1	.008	3	.147	3
460			min	.178	10	-244.285	3	-45.039	1	0	3	001	10	117	1
461		3	max	49.097	3	114.617	1	956	15	0	1	.006	3	.244	3
462			min	.178	10	-143.789	3	-30.476	1	0	3	012	1	194	1
463		4	max	49.097	3	35.05	1	172	10	0	1	.004	3	.291	3
464			min	.178	10	-43.292	3	-15.914	1	0	3	024	1	232	1
465		5	max	49.097	3	57.204	3	1.09	2	0	1	.003	3	.288	3
466			min	.178	10	-44.518	1	-2.658	3	0	3	028	1	229	1
467		6	max	49.097	3	157.701	3	13.21	1	0	1	.001	3	.234	3
468			min	.178	10	-124.085	1	-2.014	3	0	3	025	1	187	1
469		7	max	49.097	3	258.197	3	27.773	1	0	1	0	3	.13	3
470			min	.178	10	-203.653	1	-1.371	3	0	3	015	1	105	1
471		8	max	49.097	3	358.694	3	42.335	1	0	1	.003	2	.017	1
472			min	.178	10	-283.22	1	727	3	0	3	0	12	024	3
473		9	max	49.097	3	459.19	3	56.897	1	0	1	.028	1	.178	1
474			min	.178	10	-362.787	1	083	3	0	3	0	3	229	3
475		10	max	49.097	3	559.687	3	71.459	1	0	1	.06	1	.379	1
476			min	.178	10	-442.355	1	.48	12	0	3	006	3	484	3
477		11	max		1	362.787	1	.582	3	0	3	.028	1	.178	1
478			min	.178	10	-459.19	3	-56.785	1	0	1	006	3	229	3
479		12	1		1	283.22	1	1.226	3	0	3	.003	2	.017	1
480			min	.178	10	-358.694	3	-42.223	1	0	1	006	3	024	3
481		13	max	17.018	1	203.653	1	1.87	3	0	3	0	10	.13	3
482			min	.178	10	-258.197	3	-27.66	1	0	1	015	1	105	1
483		14	max	17.018	1	124.085	1	2.514	3	0	3	0	15	.234	3
484			min	.178	10	-157.701	3	-13.098	1	0	1	025	1	187	1
485		15	max	17.018	1	44.518	1	3.157	3	0	3	0	15	.288	3
486		'	min	.178	10	-57.204	3	-1.09	2	0	1	028	1	229	1
487		16	max	17.018	1	43.292	3	16.026	1	0	3	0	12	.291	3
488			min	.178	10	-35.05	1	.173	10	0	1	023	1	232	1
489		17	max		1	143.789	3	30.588	1	0	3	.001	3	.244	3
490			min	.178	10	-114.617	1	.961	15	0	1	012	1	194	1
491		18	max	17.018	1	244.285	3	45.151	1	0	3	.007	1	.147	3
492		10	min	.178	10	-194.185	1	1.404	15	0	1	001	10	117	1
493		10	max	17.018	1	344.782	3	59.713	1	0	3	.033	1	0	1
433		ן וט	шах	17.010		344.702	J	Ja.1 13		U	J	.033	<u> </u>	U	

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

40.4	Member	Sec	:	Axial[lb]		y Shear[lb]	LC			_		_		z-z Mome	LC
494	M16	1	min	.178 1.837	10	-273.752	1	1.846	15	0	1	0	10	0	3
495 496	IVI I O		max	-17.496	3	348.775 -166.19	3	-1.84 -59.558	15 1	0	2	.033	10	0	3
496		2	min	1.837	3	247.323	2	-1.397	15	0	3	.007	1	.071	3
497			max		1			-44.995	1	0	2		10		2
499		3	min	<u>-17.496</u> 1.837	3	<u>-118.152</u> 145.871	2	- <u>44.995</u> 955	15	0	3	001 0	12	149 .118	3
500		3	max	-17.496	1	-70.114	3	-30.433	1	0	2	012	1	247	2
501		4	min	1.837	3	44.419	2	158	10				15	<u>247</u> .141	3
502		4	max min	-17.496	1	-22.075	3	-15.871	1	0	2	024	1	295	2
503		5		1.837	3	25.963	3	1.115	2		3	024 0	15	<u>295</u> .14	3
504		5	max min	-17.496	1	-57.033	2	-1.727	3	0	2	028	1	292	2
505		6		1.837	3	74.001	3	13.254	1	-	3	026 0	15	- <u>.292</u> .115	3
506		0	max	-17.496	1	-158.485	2	-1.083	3	0	2	025	1	238	2
507		7	min	1.837	3	122.039	3	27.816			3		10		3
			max		1	-259.936			3	0		0	1	.066	2
508 509		8	min	<u>-17.496</u> 1.837	3	170.077	3	439 42.378	1	0	3	015 .003	2	133 .022	2
		0	max		1		2		12	_	2				3
510 511		9	min	<u>-17.496</u>		<u>-361.388</u> 218.115	3	.204 56.94		0	3	004 .028	3	007 .228	
512		9	max	1.837 -17.496	3	-462.84	2	.633	12	0	2		3		3
		10	min									004		104	
513		10	max	173	10	-9.183	1 <u>5</u>	71.503	3	0	1 <u>5</u>	.06	1	.485 225	2
514		4.4	min	-17.496	1	-564.292		-2.164		0		003	3		3
515		11	max	173	10	462.84	2	-1.051	12	0	2	.028	1	.228	2
516		40	min	-17.454	1	-218.115	3	-56.82	1	0	3	0	3	104	3
517		12	max	173	10	361.388	2	622	12	0	2	.003	2	.022	2
518		42	min	<u>-17.454</u>	1	-170.077	3	-42.258	1	0	3	0	3	007	3
519		13	max	173	10	259.936	2	193	12	0	2	0	10	.066	3
520		4.4	min	-17.454	1	-122.039	3	-27.696	1	0	3	015	1	133	2
521		14	max	173	10	158.485	2	.412	3	0	2	0	12	.115	3
522		4.5	min	-17.454	1	-74.001	3	-13.133	1	0	3	025	1	238	2
523 524		15	max	173 -17.454	10	57.033 -25.963	3	1.599 -1.115	9	0	3	028	12	.14	2
525		16	min	173	10	22.075	3	15.991	1	0	2	026 0	3	<u>292</u> .141	3
526		10	max	-17.454	1	-44.419	2	.158	10	0	3	023	1	295	2
527		17	min	173	10	70.114	3	30.553	1	0	2	.001	3	.118	3
528		17	max min	-17.454	1	-145.871	2	.96	15		3	012	1	247	2
529		18	max	173	10	118.152	3	45.116	1	0	2	.007	1	.071	3
530		10	min	-17.454	1	-247.323	2	1.402	15	0	3	001	10	149	2
531		19		173	10	166.19	3	59.678	1	0	2	.033	1	0	2
532		19	max	-17.454	1	-348.775	2	1.845	15	0	3	0	10	0	3
533	M15	1		0	1	.923	3	.107	3	0	1	0	1	0	1
534	IVITO	-	max min	-59.178	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.821	3	.107	3	0	1	0	1	0	1
536			min	-59.232	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.718	3	.107	3	0	1	0	1	0	1
538			min	-59.286	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.616	3	.107	3	0	1	0	1	0	1
540			min	-59.34	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.513	3	.107	3	0	1	0	1	0	1
542		J	min	-59.394	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.41	3	.107	3	0	1	0	1	0	1
544		-	min	-59.448	3	0	1	0	1	0	3	0	3	0	3
545		7		0	1	.308	3	.107	3	0	1	0	3	0	1
546			max min	-59.502	3	.308	1	0	1	0	3	0	1	001	3
547		8	max	0	1	.205	3	.107	3	0	1	0	3	0	1
548			min	-59.556	3	.205	1	0	1	0	3	0	1	001	3
549		9	max	0	1	.103	3	.107	3	0	1	0	3	0	1
550		3	min	-59.61	3	0	1	0	1	0	3	0	1	001	3
JJU			HIIII	-03.01	J	U		U		U	J	U		001	J

: Schletter, Inc. : HCV

Job Number : Standard P

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]							LC	y-y Mome			LC
551		10	max	0	1	0	1	.107	3	0	1	0	3	0	1
552			min	-59.664	3	0	1	0	1	0	3	0	1	001	3
553		11	max	0	1	0	1	.107	3	0	1	0	3	0	1
554		40	min	-59.718	3	103	3	0	1	0	3	0	1	001	3
555		12	max	0	1	0	1	.107	3	0	1	0	3	0	1
556		13	min	-59.772	1	205 0	3	.107	3	0	1	0	3	001 0	3
557 558		13	max	0 -59.826	3	308	3	.107	1	0	3	0	1	001	3
559		14	min	<u>-59.626</u> 0	1	306 0	1	.107	3	0	1	0	3	0	1
560		14	max min	-59.88	3	41	3	.107	1	0	3	0	1	0	3
561		15	max	<u>-59.66</u> 0	1	0	1	.107	3	0	1	0	3	0	1
562		13	min	-59.934	3	513	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	1	.107	3	0	1	0	3	0	1
564		10	min	-59.988	3	616	3	0	1	0	3	0	1	0	3
565		17	max	0	1	0	1	.107	3	0	1	0	3	0	1
566		- '	min	-60.042	3	718	3	0	1	0	3	0	1	0	3
567		18	max	0	1	0	1	.107	3	0	1	0	3	0	1
568			min	-60.095	3	821	3	0	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.107	3	0	1	0	3	0	1
570			min	-60.149	3	923	3	0	1	0	3	0	1	0	1
571	M16A	1	max	0	2	1.58	4	.04	1	0	3	0	3	0	1
572			min	-59.055	3	0	2	041	3	0	1	0	1	0	1
573		2	max	0	2	1.404	4	.04	1	0	3	0	3	0	2
574			min	-59.001	3	0	2	041	3	0	1	0	1	0	4
575		3	max	0	2	1.229	4	.04	1	0	3	0	3	0	2
576			min	-58.947	3	0	2	041	3	0	1	0	1	0	4
577		4	max	0	2	1.053	4	.04	1_	0	3	0	3	0	2
578			min	-58.893	3	0	2	041	3	0	1	0	1	001	4
579		5	max	0	2	.878	4	.04	1_	0	3	0	3	0	2
580			min	-58.839	3	0	2	041	3	0	1	0	1	001	4
581		6	max	0	2	.702	4	.04	1	0	3	0	3	0	2
582			min	-58.785	3	0	2	041	3	0	1	0	1	002	4
583		7	max	0	2	.527	4	.04	1	0	3	0	3	0	2
584			min	-58.731	3	0	2	041	3	0	1	0	1	002	4
585		8	max	0	2	.351	4	.04	1	0	3	0	3	0	2
586			min	-58.677	3	0	2	041	3	0		0	1	002	4
587		9	max	<u>0</u>	3	.176	2	.04	3	0	3	0	3	0	2
588		10	min	-58.623		0	1	041	1	0	3	0	1	002	2
589 590		10	max min	0 -58.569	3	0	1	.04 041	3	0	1	0	3	002	4
591		11	max		2	0	2	.04	1	0	3	0	3	0	2
592			min	-58.515	3	176	4	041	3	0	1	0	1	002	4
593		12	max	.048	13	0	2	.04	1	0	3	0	3	0	2
594		12	min	-58.461	3	351	4	041	3	0	1	0	1	002	4
595		13	max	.122	13	0	2	.04	1	0	3	0	1	0	2
596			min	-58.407	3	527	4	041	3	0	1	0	4	002	4
597		14	max	.197	13	0	2	.04	1	0	3	0	1	0	2
598			min	-58.353	3	702	4	041	3	0	1	0	3	002	4
599		15	max	.271	13	0	2	.04	1	0	3	0	1	0	2
600			min	-58.3	3	878	4	041	3	0	1	0	3	001	4
601		16	max	.345	13	0	2	.04	1	0	3	0	1	0	2
602			min	-58.246	3	-1.053	4	041	3	0	1	0	3	001	4
603		17	max	.419	13	0	2	.04	1	0	3	0	1	0	2
604			min	-58.192	3	-1.229	4	041	3	0	1	0	3	0	4
605		18	max	.494	13	0	2	.04	1	0	3	0	1	0	2
606			min	-58.138	3	-1.404	4	041	3	0	1	0	3	0	4
607		19	max	.585	4	0	2	.04	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608	3		min	-58.084	3	-1.58	4	041	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene	<u> </u>										
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.005	2	.003	1	-3.163e-6	10	NC	3	NC	1
2			min	003	3	004	3	001	3	-2.415e-4	1	5537.415	2	NC	1
3		2	max	.002	1	.005	2	.003	1	-3.036e-6	10	NC	3	NC	1
4			min	003	3	004	3	001	3	-2.317e-4	1	6016.825	2	NC	1
5		3	max	.002	1	.005	2	.002	1	-2.909e-6	10	NC	1	NC	1
6			min	002	3	004	3	001	3	-2.218e-4	1	6582.598	2	NC	1
7		4	max	.002	1	.004	2	.002	1	-2.782e-6	10	NC	1	NC	1
8		-		002	3	004	3	0	3	-2.12e-4	1	7255.117	2	NC	1
		-	min												
9		5_	max	.002	1	.004	2	.002	1	-2.655e-6	10	NC	1	NC	1
10			min	002	3	004	3	0	3	-2.021e-4	1_	8061.424	2	NC	1
11		6	max	.001	1	.003	2	.002	1	-2.527e-6	<u>10</u>	NC	1	NC	1
12		_	min	002	3	004	3	0	3	-1.922e-4	1_	9037.989	2	NC	1
13		7	max	.001	1	.003	2	.002	1	-2.4e-6	10	NC	1	NC	1
14			min	002	3	003	3	0	3	-1.824e-4	1_	NC	1_	NC	1
15		8	max	.001	1	.003	2	.001	1	-2.273e-6	10	NC	_1_	NC	1
16			min	002	3	003	3	0	3	-1.725e-4	1	NC	1	NC	1
17		9	max	.001	1	.002	2	.001	1	-2.146e-6	10	NC	1	NC	1
18			min	002	3	003	3	0	3	-1.627e-4	1	NC	1	NC	1
19		10	max	.001	1	.002	2	.001	1	-2.018e-6	10	NC	1	NC	1
20			min	001	3	003	3	0	3	-1.528e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	0	1	-1.891e-6	10	NC	1	NC	1
22			min	001	3	003	3	0	3	-1.43e-4	1	NC	1	NC	1
23		12	max	0	1	.001	2	0	1	-1.764e-6	10	NC	1	NC	1
24			min	001	3	002	3	0	3	-1.331e-4	1	NC	1	NC	1
25		13	max	0	1	.002	2	0	1	-1.637e-6	10	NC	1	NC	1
26		13	min	0	3	002	3	0	3	-1.233e-4	1	NC	1	NC	1
27		14	max	0	1	<u>002</u> 0	2	0	1	-1.509e-6	10	NC	1	NC	1
		14			3	002		0	3			NC	1	NC	1
28		4.5	min	0			3			-1.134e-4	1_				
29		15	max	0	1	0	2	0	1	-1.382e-6	<u>10</u>	NC	1	NC	1
30			min	0	3	001	3	0	3	-1.035e-4	1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-1.255e-6	<u>10</u>	NC	_1_	NC	1
32			min	0	3	001	3	0	3	-9.369e-5	1_	NC	1_	NC	1
33		17	max	0	1	0	2	0	1	-1.128e-6	10	NC	_1_	NC	1
34			min	0	3	0	3	0	3	-8.384e-5	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-1.001e-6	10	NC	_1_	NC	1
36			min	0	3	0	3	0	3	-7.398e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-8.733e-7	10	NC	1	NC	1
38			min	0	1	0	1	0	1	-6.412e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	2.918e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1		10	NC	1	NC	1
41		2	max	0	9	0	2	0	10		1	NC	1	NC	1
42			min	0	2	0	3	0	1	4.807e-7	10	NC	1	NC	1
43		3	max	0	9	0	2	0	10		1	NC	-	NC	1
44			min	0	2	001	3	0	1	5.642e-7	10	NC	1	NC	1
45		4		0	9	<u>001</u> 0	2	0	12	5.756e-5	1	NC	+	NC	1
		4	max		2	-	3				10	NC NC	1		1
46		F	min	0		002		0	1	6.476e-7	<u>10</u>			NC NC	•
47		5	max	0	9	0	2	0	3	6.701e-5	1	NC NC	1	NC NC	1
48		_	min	0	2	003	3	0	1	7.31e-7	<u>10</u>	NC NC	1_	NC NC	1
49		6	max	0	9	0	2	0	3	7.647e-5	1_	NC	1	NC	1
50			min	0	2	003	3	0	1	8.145e-7	10	NC	1_	NC	1
51		7	max	0	9	0	2	0	3	8.593e-5	1_	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC) LC
52			min	0	2	004	3	0	9 8.979e-7	10	NC	1_	NC	1
53		8	max	0	9	0	2	0	3 9.539e-5	1	NC	_1_	NC	1
54			min	0	2	004	3	0	9 9.813e-7	10	NC	_1_	NC	1
55		9	max	0	9	0	2	0	3 1.048e-4	1	NC	_1_	NC	1
56		40	min	0	2	005	3	0	10 1.065e-6	10	NC NC	1_	NC NC	1
57		10	max	0	9	.001	2	0	1 1.143e-4	1	NC	1	NC NC	1
58		4.4	min	0	2	005	3	0	10 1.148e-6	10	NC NC	1_	NC NC	1
59		11	max	0	9	.002	2	0	1 1.238e-4	1	NC NC	1	NC NC	1
60		12	min	0	9	006	3	0	10 1.232e-6 1 1.332e-4	10	NC NC	1	NC NC	1
61 62		12	max min	0	2	.002 006	3	<u>0</u> 	10 1.315e-6	10	NC NC	1	NC NC	1
63		13	max	0	9	.003	2	0	1 1.427e-4	1	NC	1	NC	1
64		13	min	0	2	006	3	0	10 1.399e-6	10	NC	1	NC	1
65		14	max	0	9	.004	2	0	1 1.521e-4	1	NC	1	NC	1
66		14	min	0	2	006	3	0	10 1.482e-6	10	NC	1	NC	1
67		15	max	0	9	.004	2	.001	1 1.616e-4	1	NC	1	NC	1
68		10	min	0	2	007	3	0	10 1.565e-6	10	NC	1	NC	1
69		16	max	0	9	.005	2	.001	1 1.71e-4	1	NC	1	NC	1
70		1.0	min	0	2	007	3	0	10 1.649e-6	10		2	NC	1
71		17	max	0	9	.006	2	.002	1 1.805e-4	1	NC	3	NC	1
72			min	0	2	007	3	0	10 1.732e-6	10	7639.53	2	NC	1
73		18	max	0	9	.007	2	.002	1 1.9e-4	1	NC	3	NC	1
74			min	0	2	007	3	0	10 1.816e-6	10	6611.666	2	NC	1
75		19	max	0	9	.008	2	.002	1 1.994e-4	1	NC	3	NC	1
76			min	0	2	007	3	0	10 1.899e-6	10	5811.84	2	NC	1
77	M4	1	max	.002	1	.006	2	0	10 -1.654e-6	10	NC	1	NC	1
78			min	0	3	005	3	001	1 -2.145e-4	1	NC	1	NC	1
79		2	max	.002	1	.006	2	0	10 -1.654e-6	10	NC	1_	NC	1
80			min	0	3	005	3	001	1 -2.145e-4	1	NC	1_	NC	1
81		3	max	.002	1	.006	2	0	10 -1.654e-6	10	NC	_1_	NC	1
82			min	0	3	004	3	001	1 -2.145e-4	1	NC	1_	NC	1
83		4	max	.001	1	.005	2	0	10 -1.654e-6		NC	_1_	NC	1
84			min	0	3	004	3	001	1 -2.145e-4		NC	_1_	NC	1
85		5	max	.001	1	.005	2	0	10 -1.654e-6		NC	_1_	NC	1
86			min	0	3	<u>004</u>	3	0	1 -2.145e-4	1	NC	1_	NC	1
87		6	max	.001	1	.005	2	0	10 -1.654e-6		NC	1_	NC	1
88		-	min	0	3	004	3	0	1 -2.145e-4	1	NC	1_	NC	1
89		7	max	.001	1	.004	2	0	10 -1.654e-6		NC	1	NC	1
90			min	0	3	003	3	0	1 -2.145e-4	1	NC NC	1_	NC NC	1 1
91		8	max	.001	3	.004	3	0	10 -1.654e-6 1 -2.145e-4		NC NC	1	NC NC	1
			min		1	003	2					1		1
93		9	max min	0	3	.003 003	3	<u>0</u> 	10 -1.654e-6 1 -2.145e-4		NC NC	1	NC NC	1
95		10	max	0	1	.003	2	0	10 -1.654e-6		NC NC	1	NC NC	1
96		10	min	0	3	002	3	0	1 -2.145e-4		NC	1	NC	1
97		11	max	0	1	.002	2	0	10 -1.654e-6		NC	1	NC	1
98			min	0	3	002	3	0	1 -2.145e-4		NC	1	NC	1
99		12	max	0	1	.002	2	0	10 -1.654e-6		NC	1	NC	1
100		12	min	0	3	002	3	0	1 -2.145e-4		NC	1	NC	1
101		13	max	0	1	.002	2	0	10 -1.654e-6		NC	1	NC	1
102		13	min	0	3	002	3	0	1 -2.145e-4		NC	1	NC	1
103		14	max	0	1	.002	2	0	10 -1.654e-6		NC	1	NC	1
104		17	min	0	3	001	3	0	1 -2.145e-4		NC	1	NC	1
105		15	max	0	1	.001	2	0	10 -1.654e-6		NC	1	NC	1
106		'	min	0	3	001	3	0	1 -2.145e-4		NC	1	NC	1
107		16	max	0	1	.001	2	0	10 -1.654e-6		NC	1	NC	1
108		1.0	min	0	3	0	3	0	1 -2.145e-4		NC	1	NC	1
. 50			1111111		_				2.1.100 7	•				

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
109		17	max	0	1	00	2	00	10		10	NC	_1_	NC	1_
110			min	0	3	0	3	0	1	-2.145e-4	<u>1</u>	NC	1_	NC	1
111		18	max	0	1	0	2	0	10	-1.654e-6	<u>10</u>	NC	1_	NC	1
112			min	0	3	0	3	0	1	-2.145e-4	_1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-1.654e-6	<u>10</u>	NC	1	NC	1
114	N40		min	0	1	0	1	0	1	-2.145e-4	1_	NC NC	1_	NC NC	1
115	M6	1_	max	.006	1	.018	2	0	1	2.666e-4	3	NC 1051 000	3	NC	1
116			min	009	3	014	3	004	3	-8.516e-8		1651.802	2	8123.232	3
117		2	max	.006	1	.017	2	0	1	2.607e-4	3	NC 4700 005	3	NC 0700 004	1
118		2	min	008	3	013	3	003	3	-8.065e-8	2	1763.365	2	8703.294	3
119		3	max	.006	1	.016	2	0	1	2.548e-4	3	NC 4000 coc	3	NC 0000 F40	1
120		1	min	008	3	012	3	003	3	-7.614e-8		1890.696	2	9382.546	3
121		4	max	.005	1	.015	2	0	1	2.49e-4	3	NC	3_	NC	1
122		-	min	007	3	012	3	003	3	-9.523e-7	11	2036.956	2	NC	1
123		5	max	.005	1	.014	2	0	1	2.431e-4	3	NC	3_	NC	1
124			min	007	3	011	3	003	3	-1.978e-6		2206.217	2	NC NC	1
125		6	max	.005	1	.013	2	0	1	2.372e-4	3	NC 0.400,000	3	NC	1
126		-	min	006	3	01	3	002	3	-3.12e-6	1_	2403.809	2	NC	1
127		7	max	.004	1	.011	2	0	1	2.313e-4	3	NC	3	NC	1_
128			min	006	3	01	3	002	3	-5.463e-6	1_	2636.846	2	NC	1
129		8	max	.004	1	.01	2	0	1	2.254e-4	3	NC	3	NC	1
130			min	005	3	009	3	002	3	-7.806e-6	1	2915.035	2	NC NC	1
131		9	max	.004	1	.009	2	0	1	2.195e-4	3_	NC NC	3	NC	1
132		10	min	005	3	008	3	002	3	-1.015e-5	1_	3251.973	2	NC	1_
133		10	max	.003	1	.008	2	0	1	2.136e-4	3	NC	3	NC	1
134			min	004	3	007	3	001	3	-1.249e-5	1	3667.305	2	NC	1
135		11	max	.003	1	.007	2	0	1	2.077e-4	3	NC	3	NC	1
136			min	004	3	007	3	001	3	-1.483e-5	_1_	4190.505	2	NC	1_
137		12	max	.003	1	.006	2	0	1	2.018e-4	3	NC	3	NC	1
138		40	min	003	3	006	3	<u>001</u>	3	-1.718e-5	1_	4867.898	2	NC	1
139		13	max	.002	1	.005	2	0	1	1.959e-4	3	NC 5770 004	3	NC	1
140			min	003	3	005	3	0	3	-1.952e-5	1	5776.694	2	NC	1
141		14	max	.002	1	.004	2	0	1	1.9e-4	3_	NC	3	NC	1
142		l	min	002	3	004	3	0	3	-2.186e-5	1_	7055.874	2	NC	1
143		15	max	.001	1	.003	2	0	1	1.841e-4	3	NC .	1	NC	1
144		10	min	002	3	004	3	0	3	-2.421e-5	1	8983.406	2	NC	1
145		16	max	.001	1	.002	2	0	1	1.782e-4	3	NC	<u>1</u>	NC	1
146		<u> </u>	min	001	3	003	3	0	3	-2.655e-5	_1_	NC	<u>1</u>	NC	1_
147		17	max	0	1	.002	2	0	1	1.723e-4	3	NC	1_	NC	1
148		4.0	min	0	3	002	3	0	3	-2.889e-5	1_	NC	1	NC	1
149		18	max	0	1	0	2	0	1	1.664e-4	3	NC	1	NC	1
150		10	min	0	3	0	3	0	3	-3.123e-5		NC	1_	NC	1
151		19	max	0	1	0	1	0	1	1.605e-4	3_	NC	1	NC	1
152		.	min	0	1	0	1	0	1	-3.358e-5		NC	1_	NC	1
153	<u>M7</u>	1_	max	0	1	0	1	0	1	1.521e-5	_1_	NC	1	NC	1
154			min	0	1	0	1	0	1	-7.268e-5		NC	1	NC	1
155		2	max	0	9	.001	2	0	3	1.391e-5	1_	NC	1	NC	1
156		_	min	0	2	001	3	0	1	-5.667e-5	3	NC	<u>1</u>	NC	1_
157		3	max	0	9	.002	2	0	3	1.262e-5	_1_	NC	1_	NC	1
158			min	0	2	003	3	0	1	-4.066e-5	3_	NC	1_	NC	1
159		4	max	0	9	.003	2	.001	3	1.133e-5	1	NC	1	NC	1
160		-	min	0	2	004	3	0	1	-2.464e-5		NC NC	1_	NC NC	1
161		5	max	0	9	.004	2	.001	3	1.004e-5	1_	NC	1	NC	1
162			min	0	2	006	3	0	1	-8.633e-6		NC	1_	NC	1
163		6	max	0	9	.006	2	.002	3	8.742e-6	1	NC	1	NC	1
164			min	0	2	007	3	0	1	0	2	8323.139	2	NC	1
165		7	max	0	9	.007	2	.002	3	2.339e-5	3	NC	3	NC	1_

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio) LC
166			min	0	2	009	3	0	1	0	2	6887.693	2	NC	1
167		8	max	0	9	.008	2	.002	3	3.94e-5	3	NC	3	NC	1
168			min	0	2	01	3	0	1	-3.49e-8	13	5832.223	2	NC	1
169		9	max	0	9	.009	2	.002	3	5.541e-5	3	NC	3	NC	1
170			min	0	2	011	3	0	1	-3.23e-7	9	5019.427	2	NC	1
171		10	max	0	9	.011	2	.002	3	7.143e-5	3	NC	3	NC	1
172			min	001	2	012	3	0	1	-1.579e-6	9	4373.107	2	NC	1
173		11	max	0	9	.012	2	.002	3	8.744e-5	3	NC	3	NC	1
174			min	001	2	013	3	0	1	-2.836e-6	9	3847.352	2	NC	1
175		12	max	0	9	.013	2	.002	3	1.035e-4	3	NC	3	NC	1
176			min	001	2	015	3	0	1	-4.092e-6	9	3412.604	2	NC	1
177		13	max	0	9	.015	2	.002	3	1.195e-4	3	NC	3	NC	1
178		1	min	001	2	016	3	0	1	-5.349e-6	9	3048.764	2	NC	1
179		14	max	0	9	.017	2	.002	3	1.355e-4	3	NC	3	NC	1
180			min	002	2	016	3	0	1	-6.605e-6	9	2741.534	2	NC	1
181		15	max	0	9	.019	2	.002	3	1.515e-4	3	NC	3	NC	1
182		10	min	002	2	017	3	0	1	-7.862e-6	9	2480.356	2	NC	1
183		16	max	0	9	.02	2	.002	3	1.675e-4	3	NC	3	NC	1
184		10	min	002	2	018	3	0	1	-9.118e-6	9	2257.2	2	NC	1
185		17		.002	9	.022	2	.002	3	1.835e-4	3	NC	3	NC NC	1
186		17	max	002	2	019	3	<u>.002</u>	1	-1.037e-5	9	2065.818	2	NC NC	1
		10	min		9		2		3	1.995e-4		NC			_
187		18	max	.001		.024		.002			3		3	NC NC	1
188		40	min	002	2	02	3	0	1	-1.163e-5	9	1901.267	2	NC NC	1
189		19	max	.001	9	.026	2	.002	3	2.155e-4	3_	NC	3_	NC	1
190	140	1	min	002	2	02	3	0	1	-1.289e-5	9	1759.582	2	NC NC	1
191	<u>M8</u>	1	max	.005	1	.021	2	0	1	-7.24e-8	10	NC	1	NC	1
192		_	min	002	3	015	3	001	3	-1.715e-4	3	NC	_1_	NC	1
193		2	max	.005	1	.02	2	0	1	-7.24e-8	<u>10</u>	NC	1_	NC	1
194			min	002	3	014	3	001	3	-1.715e-4	3	NC	1_	NC	1
195		3	max	.005	1	.019	2	0	1	-7.24e-8	10	NC	1	NC	1
196			min	002	3	013	3	001	3	-1.715e-4	3	NC	1	NC	1
197		4	max	.005	1	.017	2	0	1	-7.24e-8	<u>10</u>	NC	_1_	NC	1
198			min	002	3	013	3	0	3	-1.715e-4	3	NC	1_	NC	1
199		5	max	.004	1	.016	2	0	1	-7.24e-8	10	NC	1_	NC	1
200			min	002	3	012	3	0	3	-1.715e-4	3	NC	1	NC	1
201		6	max	.004	1	.015	2	0	1	-7.24e-8	10	NC	1	NC	1
202			min	001	3	011	3	0	3	-1.715e-4	3	NC	1	NC	1
203		7	max	.004	1	.014	2	0	1	-7.24e-8	10	NC	1	NC	1
204			min	001	3	01	3	0	3	-1.715e-4	3	NC	1	NC	1
205		8	max	.003	1	.013	2	0	1	-7.24e-8	10	NC	1	NC	1
206			min	001	3	009	3	0	3	-1.715e-4	3	NC	1	NC	1
207		9	max	.003	1	.012	2	0	1	-7.24e-8	10	NC	1	NC	1
208			min	001	3	008	3	0	3	-1.715e-4	3	NC	1	NC	1
209		10	max	.003	1	.01	2	0	1	-7.24e-8	10	NC	1	NC	1
210			min	0	3	008	3	0	3	-1.715e-4	3	NC	1	NC	1
211		11	max	.002	1	.009	2	0	1	-7.24e-8	10	NC	1	NC	1
212			min	0	3	007	3	0	3	-1.715e-4	3	NC	1	NC	1
213		12	max	.002	1	.008	2	0	1	-7.24e-8	10	NC	1	NC	1
214		14	min	.002	3	006	3	0	3	-1.715e-4	3	NC	1	NC	1
215		13	max	.002	1	.007	2	0	1	-7.24e-8	10	NC	1	NC	1
216		13	min	0	3	005	3	0	3	-1.715e-4	3	NC NC	1	NC NC	1
		11													
217		14	max	.002	1	.006	2	0	1	-7.24e-8	<u>10</u>	NC NC	1	NC NC	1
218		4.5	min	0	3	004	3	0	3	-1.715e-4	3	NC NC	1_	NC NC	1
219		15	max	.001	1	.005	2	0	1	-7.24e-8	<u>10</u>	NC	1	NC	1
220		1.0	min	0	3	003	3	0	3	-1.715e-4	3_	NC	1_	NC	1
221		16	max	0	1	.003	2	0	1	-7.24e-8	<u>10</u>	NC	1	NC	1
222			min	0	3	003	3	0	3	-1.715e-4	3	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.002	2	0	1	-7.24e-8	10	NC	1_	NC	1
224			min	0	3	002	3	0	3	-1.715e-4	3	NC	1_	NC	1
225		18	max	0	1	.001	2	0	1	-7.24e-8	10	NC	1	NC	1
226			min	0	3	0	3	0	3	-1.715e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-7.24e-8	10	NC	1	NC	1
228		1.0	min	0	1	0	1	0	1	-1.715e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.005	2	0	3	2.571e-4	1	NC	3	NC	1
230	IVIIO	+ -	min	002	3	005	3	001	1	-3.58e-4	3	5548.461	2	NC	1
231		2		.002	1	.005	2	0	3	2.446e-4	1	NC	3	NC	1
232			max		3		3	001	1	-3.479e-4		6029.068		NC NC	1
		-	min	002		004				-3.4796-4	3		2		_
233		3	max	.002	1	.005	2	0	3	2.321e-4	1	NC	1_	NC	1
234			min	002	3	004	3	0	1	-3.378e-4	3	6596.296	2	NC	1
235		4	max	.002	1	.004	2	0	3	2.197e-4	_1_	NC	_1_	NC	1
236			min	002	3	004	3	0	1	-3.277e-4	3	7270.602	2	NC	1
237		5	max	.002	1	.004	2	0	3	2.072e-4	1	NC	1	NC	1
238			min	002	3	004	3	0	1	-3.176e-4	3	8079.122	2	NC	1
239		6	max	.001	1	.003	2	0	3	1.947e-4	1	NC	1	NC	1
240			min	002	3	004	3	0	1	-3.075e-4	3	9058.464	2	NC	1
241		7	max	.001	1	.003	2	0	3	1.823e-4	1	NC	1	NC	1
242		-	min	002	3	004	3	0	1	-2.974e-4	3	NC	1	NC	1
243		8		.002	1	.003	2	0	3		1	NC	1	NC NC	1
		-	max							1.698e-4					
244			min	002	3	003	3	0	1	-2.873e-4	3_	NC NC	1_	NC	1
245		9	max	.001	1	.002	2	0	3	1.573e-4	_1_	NC	1_	NC	1
246			min	001	3	003	3	0	1	-2.772e-4	3	NC	1_	NC	1
247		10	max	.001	1	.002	2	0	3	1.449e-4	1_	NC	1_	NC	1
248			min	001	3	003	3	0	1	-2.671e-4	3	NC	1	NC	1
249		11	max	0	1	.002	2	0	3	1.324e-4	1	NC	1	NC	1
250			min	001	3	003	3	0	1	-2.571e-4	3	NC	1	NC	1
251		12	max	0	1	.001	2	0	3	1.2e-4	1	NC	1	NC	1
252		T -	min	0	3	002	3	0	1	-2.47e-4	3	NC	1	NC	1
253		13	max	0	1	.001	2	0	3	1.075e-4	1	NC	1	NC	1
254		10	min	0	3	002	3	0	1	-2.369e-4	3	NC	1	NC	1
		14			1	<u>002</u> 0	2		3		1	NC	1	NC	1
255		14	max	0				0		9.502e-5	<u> </u>				_
256		4.5	min	0	3	002	3	0	1	-2.268e-4	3	NC	1_	NC NC	1
257		15	max	0	1	0	2	0	3	8.256e-5	1_	NC	1	NC	1
258			min	0	3	002	3	0	1	-2.167e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	7.01e-5	_1_	NC	_1_	NC	1
260			min	0	3	001	3	0	1	-2.066e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	5.763e-5	1	NC	1	NC	1
262			min	0	3	0	3	0	1	-1.965e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	4.517e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.864e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	3.271e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-1.763e-4	3	NC	1	NC	1
267	M11	1		0	1	0	1	0	1	8.048e-5		NC	1	NC NC	1
	IVI I I		max	0	1	0	1	0	1	1.5120.5	<u>3</u>	NC NC	1	NC NC	1
268		_	min						-	-1.512e-5			•		
269		2	max	0	9	0	2	0	1	6.456e-5	3_	NC	1_	NC NC	1
270			min	0	2	0	3	0	3	-2.751e-5	1_	NC	1_	NC	1
271		3	max	00	9	0	2	0	1	4.864e-5	3	NC	_1_	NC	1
272			min	0	2	001	3	0	3	-3.991e-5	1_	NC	1	NC	1
273		4	max	0	9	0	2	0	2	3.272e-5	3	NC	1_	NC	1
274			min	0	2	002	3	001	3	-5.23e-5	1	NC	1	NC	1
275		5	max	0	9	0	2	0	2	1.68e-5	3	NC	1	NC	1
276			min	0	2	003	3	001	3	-6.469e-5	1	NC	1	NC	1
277		6	max	0	9	0	2	0	2	8.768e-7	3	NC	1	NC	1
278			min	0	2	003	3	002	3	-7.709e-5	1	NC	1	NC	1
279		7			9		2				•		1		
2/9		/	max	0	∟ ઇ	0	<u> </u>	0	10	-8.533e-7	<u>10</u>	NC		NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
280			min	0	2	004	3	002	3 -8.948e-5	1_	NC	1_	NC	1
281		8	max	0	9	0	2	0	10 -9.299e-7	10	NC	1_	NC	1
282			min	0	2	005	3	002	3 -1.019e-4	1_	NC	1_	NC	1
283		9	max	0	9	0	2	0	10 -1.007e-6	10	NC	1_	NC	1
284		4.0	min	0	2	005	3	002	3 -1.143e-4	1_	NC	1_	NC	1
285		10	max	0	9	.001	2	0	10 -1.083e-6	10	NC	1	NC	1
286		44	min	0	2	006	3	002	3 -1.267e-4	1_	NC	1_	NC	1
287		11	max	0	9	.002	2	0	10 -1.16e-6	<u>10</u>	NC	1_	NC NC	1
288		40	min	0	2	006	3	002	3 -1.391e-4	1	NC NC	1_	NC NC	1
289		12	max	0	9	.002	3	0 002	10 -1.236e-6 3 -1.514e-4	<u>10</u> 1	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min			006	2	<u>002</u> 0		_	NC NC	1	NC NC	1
292		13	max	0	9	.003 006	3	002	10 -1.313e-6 3 -1.638e-4	<u>10</u> 1	NC NC	1	NC NC	1
293		14		0	9	.004	2	<u>002</u> 0	10 -1.389e-6	10	NC NC	1	NC NC	1
294		14	max min	0	2	007	3	002	3 -1.762e-4	1	NC NC	1	NC NC	1
295		15	max	0	9	.004	2	<u>002</u> 0	10 -1.466e-6	10	NC	1	NC	1
296		10	min	0	2	007	3	002	3 -1.886e-4	1	NC	1	NC	1
297		16	max	0	9	.005	2	0	10 -1.543e-6	10	NC	1	NC	1
298		10	min	0	2	007	3	002	1 -2.01e-4	1	8987.357	2	NC	1
299		17	max	0	9	.006	2	0	10 -1.619e-6	10	NC	3	NC	1
300		<u> </u>	min	0	2	007	3	003	1 -2.134e-4	1	7648.752	2	NC	1
301		18	max	0	9	.007	2	0	10 -1.696e-6	10	NC	3	NC	1
302			min	0	2	007	3	003	1 -2.258e-4	1	6618.851	2	NC	1
303		19	max	0	9	.008	2	0	10 -1.772e-6	10	NC	3	NC	1
304			min	0	2	007	3	003	1 -2.382e-4	1	5817.606	2	NC	1
305	M12	1	max	.002	1	.006	2	.003	1 2.177e-4	3	NC	1	NC	2
306			min	0	3	005	3	0	10 1.509e-6	10	NC	1	7721.894	1
307		2	max	.002	1	.006	2	.002	1 2.177e-4	3	NC	1	NC	2
308			min	0	3	005	3	0	10 1.509e-6	10	NC	1	8423.238	1
309		3	max	.002	1	.006	2	.002	1 2.177e-4	3	NC	1_	NC	2
310			min	0	3	004	3	0	10 1.509e-6	10	NC	1_	9257.98	1
311		4	max	.001	1	.005	2	.002	1 2.177e-4	3	NC	1_	NC	1
312			min	0	3	004	3	0	10 1.509e-6	10	NC	1_	NC	1
313		5	max	.001	1	.005	2	.002	1 2.177e-4	3	NC	_1_	NC	1
314			min	0	3	004	3	0	10 1.509e-6	10	NC	1_	NC	1
315		6	max	.001	1	.005	2	.001	1 2.177e-4	3	NC	_1_	NC	1
316		<u> </u>	min	0	3	004	3	0	10 1.509e-6	10	NC	1_	NC	1
317		7	max	.001	1	.004	2	.001	1 2.177e-4	3	NC		NC	1
318			min	0	3	003	3	0	10 1.509e-6	10	NC	1_	NC	1
319		8	max	.001	1	.004	2	.001	1 2.177e-4	3	NC NC	1_	NC NC	1
320			min		3	003	3	0	10 1.509e-6			1	NC NC	1
321		9	max	0	3	.003	2	0	1 2.177e-4	3	NC NC	1	NC NC	1
322		10	min	0	1	003	2	0	10 1.509e-6 1 2.177e-4	10	NC NC	<u>1</u> 1	NC NC	1
323		10	max	0	3	.003	3	0 0		3	NC NC	1	NC NC	1
324		11	min	0	1	002 .003	2	0	10 1.509e-6 1 2.177e-4	<u>10</u> 3	NC NC	1	NC NC	1
326			max min	0	3	002	3	0	10 1.509e-6	10	NC	1	NC	1
327		12	max	0	1	.002	2	0	1 2.177e-4	3	NC	1	NC	1
328		12	min	0	3	002	3	0	10 1.509e-6	10	NC	1	NC	1
329		13	max	0	1	.002	2	0	1 2.177e-4	3	NC NC	1	NC NC	1
330		13	min	0	3	002	3	0	10 1.509e-6	10	NC NC	1	NC NC	1
331		14	max	0	1	.002	2	0	1 2.177e-4	3	NC	1	NC	1
332		1,7	min	0	3	001	3	0	10 1.509e-6	10	NC	1	NC	1
333		15	max	0	1	.001	2	0	1 2.177e-4	3	NC	1	NC	1
334		'	min	0	3	001	3	0	10 1.509e-6	10	NC	1	NC	1
335		16	max	0	1	.001	2	0	1 2.177e-4	3	NC	1	NC	1
336			min	0	3	0	3	0	10 1.509e-6	10	NC	1	NC	1
000					_							_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	2.177e-4	3	NC	1_	NC	1
338			min	0	3	0	3	0	10	1.509e-6	10	NC	1_	NC	1
339		18	max	0	1	0	2	0	1	2.177e-4	3	NC	1	NC	1
340			min	0	3	0	3	0	10	1.509e-6	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	2.177e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	1.509e-6	10	NC	1	NC	1
343	M1	1	max	.005	3	.021	3	.002	3	8.376e-3	1	NC	1	NC	1
344			min	005	2	019	1	0	1	-1.034e-2	3	NC	1	NC	1
345		2	max	.005	3	.011	3	.002	3	4.085e-3	1	NC	4	NC	1
346			min	005	2	01	1	002	1	-5.09e-3	3	4999.456	3	NC	1
347		3		.005	3	.002	3	.002	3	6.502e-5	3	NC	4	NC	1
		-	max												
348		-	min	005	2	002	1	003	1	-1.259e-4	1_	2596.174	3	NC NC	1
349		4	max	.005	3	.006	2	0	3	6.316e-5	3	NC	4_	NC	1
350		_	min	006	2	005	3	003	1	-1.017e-4	1_	1857.912	2	NC	1
351		5_	max	.005	3	.012	2	0	3	6.13e-5	3_	NC	4_	NC	1
352			min	006	2	011	3	003	1	-7.741e-5	1_	1476.081	2	NC	1
353		6	max	.005	3	.017	2	0	3	5.943e-5	3	NC	5_	NC	1
354			min	006	2	016	3	003	1	-5.316e-5	1	1258.491	2	NC	1
355		7	max	.005	3	.021	2	0	3	5.757e-5	3	NC	5	NC	1
356			min	006	2	02	3	003	1	-2.916e-5	9	1124.869	2	NC	1
357		8	max	.005	3	.024	2	0	3	5.571e-5	3	NC	5	NC	1
358			min	006	2	022	3	002	1	-1.195e-5	9	1041.714	2	NC	1
359		9	max	.005	3	.026	2	0	3	5.385e-5	3	NC	5	NC	1
360		Ť	min	006	2	023	3	002	1	4.216e-7	15	993.246	2	NC	1
361		10	max	.005	3	.027	2	0	3	5.199e-5	3	NC	5	NC	1
362		10	min	006	2	024	3	0	1	9.576e-7	10	971.99	2	NC	1
363		11		.005	3	.027	2		3			NC	5	NC	1
			max					0		6.807e-5	1				
364		40	min	006	2	023	3	0	9	1.124e-6	10	975.335	2	NC	1
365		12	max	.005	3	.025	2	0	1	9.232e-5	1_	NC	5	NC	1
366		10	min	006	2	021	3	0	10	1.291e-6		1004.535	2	NC	1
367		13	max	.005	3	.022	2	.001	1	1.166e-4	_1_	NC	5	NC	1
368			min	006	2	018	3	0	10	1.458e-6	10	1065.34	2	NC	1
369		14	max	.005	3	.018	2	.002	1	1.408e-4	<u>1</u>	NC	5_	NC	1
370			min	006	2	014	3	0	10	1.625e-6	10	1170.847	2	NC	1
371		15	max	.005	3	.012	2	.002	1	1.651e-4	1	NC	4	NC	1
372			min	006	2	01	3	0	10	1.792e-6	10	1349.589	2	NC	1
373		16	max	.005	3	.005	2	.002	1	1.832e-4	1	NC	4	NC	1
374			min	006	2	004	3	0	10	1.935e-6	10	1670.603	2	NC	1
375		17	max	.005	3	.002	3	.001	1	5.682e-5	1	NC	4	NC	1
376			min	006	2	003	2	0	10	1.513e-6		2348.385	2	NC	1
377		18	max	.005	3	.009	3	0	1	5.271e-3	2	NC	4	NC	1
378		10	min	006	2	013	2	0		-2.595e-3	3	4536.925	2	NC	1
379		19		.005	3	.016	3	0	3	1.061e-2		NC	1	NC NC	1
		19	max		2		2	0			2	NC NC	1		1
380	NAC.	4	min	006		024			1	-5.276e-3	3		•	NC NC	
381	<u>M5</u>	1	max	.014	3	.067	3	.002	3	2.42e-6	3	NC NC	1	NC NC	1
382			min	018	2	063	1	0	1	0	1_	NC NC	1_	NC NC	1
383		2	max	.014	3	.036	3	.003	3	7.016e-5	3	NC	4	NC	1
384			min	018	2	033	1	0	1	-1.952e-5	1_	1561.503	3	NC	1
385		3	max	.014	3	.008	3	.004	3	1.366e-4	3_	NC	5_	NC	1
386			min	018	2	005	1	0	1	-3.865e-5	1_	805.689	1_	NC	1
387		4	max	.014	3	.019	2	.004	3	1.349e-4	3	NC	5	NC	1
388			min	018	2	016	3	0	1	-3.644e-5	9	568.137	1	NC	1
389	<u> </u>	5	max	.014	3	.039	2	.005	3	1.331e-4	3	NC	5	NC	1
390			min	018	2	036	3	0	1	-3.425e-5	9	453.8	1	NC	1
391		6	max	.014	3	.056	2	.005	3	1.313e-4	3	NC	5	NC	1
392			min	018	2	051	3	0	1	-3.207e-5	9	387.21	2	NC	1
393		7	max	.014	3	.07	2	.005	3	1.295e-4	3	NC	5	NC	1
UJU			παλ	.014	J	.01		.000		1.2335-4	<u> </u>	INC	<u> </u>	110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC_
394			min	019	2	063	3	0	1	-2.988e-5	9	345.95	2	NC	1
395		8	max	.014	3	.08	2	.005	3	1.278e-4	3_	NC	5	NC	1
396			min	019	2	07	3	0	1	-2.77e-5	9	320.26	2	NC	1
397		9	max	.014	3	.086	2	.005	3	1.26e-4	3_	NC	5	NC	1
398		40	min	019	2	<u>074</u>	3	0	1	-2.551e-5	9	305.266	2	NC	1
399		10	max	.014	3	.089	2	.005	3	1.242e-4	3_	NC COO COA	5_	NC	1
400		44	min	019	2	075	3	0	1	-2.333e-5	9	298.661	2	NC NC	1
401		11	max	.014	3	.087	2	.004	3	1.225e-4	3	NC 200 COE	5_	NC	1
402		40	min	019	2	072	3	0	1	-2.114e-5	9	299.635	2	NC NC	1
403		12	max	.014	3	.082	3	.004	1	1.207e-4	3	NC	5	NC NC	1
405		13	min	019	3	066 .072	2	.003	3	-1.896e-5	9	308.571 NC	2	NC NC	1
406		13	max min	.014 019	2	057	3	<u>.003</u>	1	1.189e-4 -1.677e-5	9	327.234	<u>5</u> 2	NC NC	1
407		14	max	.014	3	.058	2	.003	3	1.172e-4	3	NC	5	NC NC	1
408		14	min	019	2	046	3	<u>.003</u>	1	-1.459e-5	9	359.653	2	NC	1
409		15	max	.014	3	.040 .04	2	.002	3	1.154e-4	3	NC	5	NC	1
410		13	min	019	2	031	3	0	1	-1.24e-5	9	414.612	2	NC	1
411		16	max	.014	3	.017	2	.002	3	1.112e-4	3	NC	5	NC	1
412		10	min	019	2	014	3	0	1	-1.124e-5	9	513.377	2	NC	1
413		17	max	.014	3	.005	3	.001	3	4.9e-5	3	NC	5	NC	1
414			min	019	2	01	2	0	1	-3.807e-5	1	722.199	2	NC	1
415		18	max	.014	3	.027	3	0	3	2.398e-5	3	NC	4	NC	1
416			min	019	2	042	2	0	1	-1.957e-5	1	1395.832	2	NC	1
417		19	max	.014	3	.05	3	0	3	0	15	NC	1	NC	1
418			min	019	2	077	2	0	1	-3.386e-7	3	NC	1	NC	1
419	M9	1	max	.005	3	.021	3	.002	3	1.035e-2	3	NC	1	NC	1
420			min	005	2	019	1	001	1	-8.376e-3	1	NC	1	NC	1
421		2	max	.005	3	.011	3	0	3	5.141e-3	3	NC	4	NC	1
422			min	005	2	01	1	0	9	-4.13e-3	1	5001.531	3	NC	1
423		3	max	.005	3	.002	3	.001	1	3.768e-5	1_	NC	4	NC	1
424			min	005	2	002	1	0	3	3.793e-7	10	2597.281	3	NC	1
425		4	max	.005	3	.006	2	.002	1	2.022e-5	3	NC	4	NC	1
426			min	005	2	005	3	001	3	2.046e-7	10	1858.254	2	NC	1
427		5	max	.005	3	.012	2	.002	1	1.065e-5	2	NC	4_	NC	1
428		_	min	005	2	011	3	002	3	-1.093e-5	9	1476.367	2	NC	1
429		6	max	.005	3	.017	2	.002	1	4.476e-6	2	NC	5_	NC	1
430			min	006	2	016	3	002	3	-2.44e-5	9	1258.747	2	NC	1
431		7	max	.005	3	.021	2	.001	1	-3.197e-7	10	NC 100	5	NC	1
432			min	006	2	02	3	003	3	-4.312e-5	1_	1125.108	2	NC	1
433		8	max	.005	3	.024	2	0	1	-4.945e-7	10	NC	5	NC NC	1
434			min		2	022	3	003		-6.332e-5				NC NC	1
435		9	max	.005	3	.026	2	0	2	-6.693e-7		NC	5	NC NC	1
436		10	min	006	2	023	2	003	3	-8.352e-5	1	993.475	2	NC NC	1
437		10	max	.005	3	.027	3	003	2	-8.44e-7 -1.037e-4	10	NC 972.222	5	NC NC	1
438 439		11	min max	006 .005	3	024 .027	2	003 0	10		<u>1</u> 10	NC	<u>2</u> 5	NC NC	1
440		11	min	006	2	023	3	003	3	-1.239e-4	1	975.576	2	NC	1
441		12	max	.005	3	.025	2	<u>003</u> 0	10			NC	5	NC	1
442		12	min	006	2	021	3	003	3	-1.441e-4	1	1004.789	2	NC	1
443		13	max	.005	3	.022	2	<u>003</u> 0	10		10	NC	5	NC NC	1
444		13	min	006	2	022 018	3	003	3	-1.643e-4	1	1065.616	2	NC NC	1
445		14	max	.005	3	.018	2	<u>003</u> 0		-1.543e-6	10	NC	5	NC	1
446		'-	min	006	2	014	3	003	1	-1.845e-4	1	1171.156	2	NC	1
447		15	max	.005	3	.012	2	<u>003</u>		-1.718e-6	10	NC	4	NC	1
448		10	min	006	2	01	3	003	1	-2.047e-4	1	1349.948	2	NC	1
449		16	max	.005	3	.005	2	<u>.005</u>		-1.875e-6	10	NC	4	NC	1
450		1.0	min	006	2	004	3	003	1	-2.206e-4	1	1671.042	2	NC	1
.00					_			.000		T	_	.00 12	_		

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.005	3	.002	3	0	10 -1.624e-6	10	NC	4	NC	1
452			min	006	2	003	2	003	1 -1.343e-4	1_	2348.955	2	NC	1
453		18	max	.005	3	.009	3	0	10 2.604e-3	3	NC	_4_	NC	1
454			min	006	2	013	2	002	1 -5.271e-3	2	4537.988	2	NC	1
455		19	max	.005	3	.016	3	0	3 5.275e-3	3	NC	1_	NC	1
456	1440		min	006	2	024	2	0	1 -1.061e-2	2	NC NC	1_	NC NC	1
457	M13	1	max	.001	1	.021	3	.005	3 3.648e-3	3	NC	1	NC NC	1
458			min	002	3	019	1	005	2 -3.412e-3	1	NC NC	1_	NC NC	1
459		2	max	.001	1	.081	3	.003	3 4.544e-3	3	NC	4	NC NC	1
460		2	min	002	3	068 .131	3	<u>004</u>	2 -4.275e-3	1	1800.121 NC	<u>3</u>	NC NC	2
461 462		3	max	0 002	3			.008	1 5.44e-3 10 -5.138e-3	<u>3</u>	983.062		9103.237	1
463		4	min	<u>002</u> 0	1	108 .164	3	003 .013	10 -5.138e-3 1 6.336e-3	3	963.062 NC	<u>3</u> 5	NC	2
464		4	max	002	3	135	1	004	10 -6.001e-3	<u> </u>	756.704	3	6475.212	1
465		5		002 0	1	.176	3	.015	1 7.232e-3	3	NC	<u>5</u>	NC	2
466			max	002	3	146	1	005	10 -6.863e-3	1	695.544	3	5966.302	1
467		6	max	0	1	.169	3	.012	1 8.128e-3	3	NC	5	NC	2
468			min	002	3	141	1	006	10 -7.726e-3	1	730.931	3	6970.848	
469		7	max	0	1	.145	3	.008	3 9.024e-3	3	NC	5	NC	1
470			min	002	3	123	1	009	2 -8.589e-3	1	871.13	3	NC	1
471		8	max	0	1	.112	3	.01	3 9.92e-3	3	NC	5	NC	1
472			min	002	3	098	1	013	2 -9.452e-3	1	1182.947	3	NC	1
473		9	max	0	1	.082	3	.012	3 1.082e-2	3	NC	4	NC	1
474			min	002	3	074	1	017	2 -1.031e-2	1	1781.016	3	9599.326	2
475		10	max	0	1	.067	3	.014	3 1.171e-2	3	NC	4	NC	1
476			min	002	3	063	1	018	2 -1.118e-2	1	2323.429	3	8375.474	2
477		11	max	0	1	.082	3	.015	3 1.082e-2	3	NC	4	NC	1
478			min	002	3	074	1	017	2 -1.032e-2	1	1781.015	3	9599.382	2
479		12	max	0	1	.112	3	.016	3 9.922e-3	3	NC	5	NC	1
480			min	002	3	098	1	013	2 -9.453e-3	1	1182.947	3	9618.845	3
481		13	max	00	1	.145	3	.015	3 9.026e-3	3	NC	5_	NC	1
482			min	002	3	123	1	009	2 -8.59e-3	<u>1</u>	871.13	3	9971.571	3
483		14	max	0	1	.169	3	.014	3 8.131e-3	3	NC	_5_	NC	2
484			min	002	3	141	1	006	10 -7.727e-3	1_	730.931	3	6963.382	1
485		15	max	0	1	.176	3	.015	1 7.236e-3	3_	NC	5	NC	2
486		40	min	002	3	<u>146</u>	1	005	10 -6.865e-3	1	695.544	3_	5969.945	
487		16	max	0	1	.164	3	.013	1 6.341e-3	3	NC 750.704	5	NC	2
488		47	min	002	3	135	1	004	10 -6.002e-3	1	756.704	3_	6488.764	1
489		17	max	0	1	.131	3	.008	1 5.446e-3	3	NC 000,000	5	NC 0400 000	2
490		10	min max	002	3	108	3	003	10 -5.139e-3 3 4.551e-3	1	983.062	3	9139.022	1
491		18		0		.081		.006			NC	4	NC NC	1
492 493		19	min	002 0	3	068 .021	3	004 .005	2 -4.277e-3 3 3.656e-3	<u>1</u> 3	1800.122 NC	<u>3</u> 1	NC NC	1
494		19	max min	002	3	019	1	005	2 -3.414e-3	1	NC NC	1	NC NC	1
495	M16	1	max	<u>002</u> 0	1	.016	3	.005	3 4.016e-3	2	NC	1	NC	1
496	IVITO		min	0	3	024	2	006	2 -2.742e-3	3	NC	1	NC	1
497		2	max	0	1	.046	3	.006	3 5.021e-3	2	NC	4	NC	1
498			min	0	3	085	2	004	2 -3.4e-3	3	1753.56	2	NC	1
499		3	max	0	1	.072	3	.009	3 6.026e-3	2	NC	5	NC	2
500		J	min	0	3	136	2	003	10 -4.057e-3	3	956.385	2	9184.374	
501		4	max	0	1	.09	3	.013	1 7.031e-3	2	NC	5	NC	2
502			min	0	3	171	2	004	10 -4.715e-3	3	734.455	2	6539.728	
503		5	max	0	1	.097	3	.014	1 8.036e-3	2	NC	5	NC	2
504		Ť	min	0	3	184	2	005	10 -5.372e-3	3	672.529	2	6041.358	
505		6	max	0	1	.095	3	.014	3 9.042e-3	2	NC	5	NC	2
506		Ĭ	min	0	3	177	2	006	10 -6.03e-3	3	702.354	2	7100.384	
507		7	max	0	1	.085	3	.015	3 1.005e-2	2	NC	5	NC	1
			,							_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
508			min	0	3	154	2	009	2	-6.687e-3	3	828.186	2	NC	1
509		8	max	0	1	.071	3	.015	3	1.105e-2	2	NC	5	NC	1
510			min	0	3	121	2	013	2	-7.345e-3	3	1103.095	2	NC	1
511		9	max	0	1	.056	3	.015	3	1.206e-2	2	NC	4	NC	1
512			min	0	3	091	2	017	2	-8.003e-3	3	1605.454	2	9393.915	
513		10	max	0	1	.05	3	.014	3	1.306e-2	2	NC	4	NC	1
514			min	0	3	077	2	019	2	-8.66e-3	3	2034.259	2	8215.159	
515		11	max	0	1	.056	3	.013	3	1.206e-2	2	NC	4	NC	1
516			min	0	3	091	2	017	2	-8.002e-3	3	1605.454	2	9393.954	
517		12	max	0	1	.07	3	.012	3	1.105e-2	2	NC	_5_	NC	1
518			min	0	3	121	2	013	2	-7.344e-3	3	1103.095	2	NC	1
519		13	max	0	1	.085	3	.011	3	1.005e-2	2	NC	5	NC	1
520			min	0	3	<u>154</u>	2	009	2	-6.685e-3	3	828.186	2	NC	1
521		14	max	0	1	.095	3	.011	1	9.042e-3	2	NC	5	NC	2
522			min	0	3	177	2	006	10	-6.027e-3	3	702.354	2	7109.92	1
523		15	max	0	1	.097	3	.014	1	8.037e-3	2	NC	5	NC	2
524			min	0	3	<u>184</u>	2	005	10	-5.369e-3	3	672.529	2	6058.322	1
525		16	max	0	1	.09	3	.013	1	7.032e-3	2	NC	5	NC	2
526			min	0	3	171	2	004	10	-4.71e-3	3_	734.455	2	6568.263	
527		17	max	0	1	.072	3	.008	1	6.027e-3	2	NC	5	NC	2
528			min	0	3	136	2	003	10	-4.052e-3	3	956.385	2	9244.564	
529		18	max	0	1	.046	3	.005	3	5.022e-3	2	NC	4	NC	1
530			min	0	3	085	2	004	2	-3.394e-3	3	1753.56	2	NC	1
531		19	max	0	1	.016	3	.005	3	4.017e-3	2	NC	_1_	NC	1
532			min	0	3	024	2	006	2	-2.736e-3	3	NC	1_	NC	1
533	M15	1	max	0	1	0	1	0	1	3.137e-4	3	NC	1_	NC	1
534			min	0	1	0	1	0	1	-4.913e-5	2	NC	<u>1</u>	NC	1
535		2	max	00	3	0	15	0	1	7.759e-4	3	NC	_1_	NC	1
536			min	0	2	003	4	0	3	-5.149e-4	2	NC	1_	NC	1
537		3	max	0	3	001	15	.003	1	1.238e-3	3_	NC	_1_	NC	1
538			min	0	2	006	4	003	3	-9.807e-4	2	NC	1_	NC	1
539		4	max	0	3	002	15	.006	1	1.7e-3	3	NC	3_	NC	4
540		_	min	0	2	009	4	006	3	-1.447e-3	2	7138.056	4	7047.914	
541		5	max	0	3	003	15	.009	1	2.163e-3	3	NC	5	NC	4
542			min	0	2	011	4	01	3	-1.923e-3	1_	5569.897	<u>4</u>	4586.52	3
543		6	max	0	3	003	15	.013	1	2.625e-3	3	NC	5	NC	4
544			min	0	2	013	4	014	3	-2.4e-3	1_	4687.657	4	3320.106	
545		7	max	0	3	004	15	.017	1	3.087e-3	3	NC	5	NC	4
546			min	0	2	015	4	019	3	-2.878e-3	1_	4157.106	4	2584.389	
547		8	max	0	3	004	15	.021	1	3.549e-3	3	NC	5_	NC	4
548			min	001	2	016	4	023		-3.355e-3		3838.696			
549		9	max	0	3	<u>004</u>	15	.025	1	4.012e-3	3	NC	5	NC	4
550		10	min	<u>001</u>	2	<u>017</u>	4	027	3	-3.833e-3	1_	3667.309	4_	1823.513	
551		10	max	0	3	004	15	.028	1	4.474e-3	3	NC	15	NC NC	4
552			min	001	2	017	4	03	3	-4.31e-3	1_	3613.09	4_	1625.442	
553		11	max	0	3	004	15	.03	1	4.936e-3	3	NC	5	NC	5
554		1.0	min	001	2	<u>017</u>	4	032	3	-4.787e-3	1	3667.309	4_	1499.583	
555		12	max	0	3	004	15	.031	1	5.398e-3	3	NC	5_	NC	5
556			min	002	2	017	4	033	3	-5.265e-3	_1_	3838.696	4_	1430.914	
557		13	max	0	3	004	15	.031	1	5.86e-3	3	NC	5_	NC 4444,005	5
558			min	002	2	01 <u>5</u>	4	033	3	-5.742e-3	1	4157.106	4_	1414.865	
559		14	max	0	3	003	15	.029	1	6.323e-3	3	NC	5	NC	5
560			min	002	2	<u>014</u>	4	031	3	-6.22e-3	1	4687.657	4_	1457.321	3
561		15	max	0	3	002	12	.025	1	6.785e-3	3	NC	5	NC 1700 070	4
562			min	002	2	012	4	027	3	-6.697e-3	1	5569.897	4_	1580.676	
563		16	max	0	3	001	12	.019	1	7.247e-3	3	NC	3	NC 10.070	4
564			min	002	2	009	4	02	3	-7.175e-3	1	7138.056	4	1846.078	_ 3

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	0	3	0	3	.01	1	7.709e-3	3	NC	1	NC	4
566			min	002	2	007	4	011	3	-7.652e-3	1	NC	1	2445.627	3
567		18	max	0	3	.002	3	.001	9	8.172e-3	3	NC	1	NC	4
568			min	003	2	004	4	005	2	-8.13e-3	1	NC	1	4351.405	3
569		19	max	0	3	.004	3	.016	3	8.634e-3	3	NC	1	NC	1
570			min	003	2	002	9	019	2	-8.607e-3	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.005	3	2.558e-3	3	NC	1	NC	1
572			min	0	3	001	1	006	2	-2.563e-3	2	NC	1	NC	1
573		2	max	0	10	0	15	.001	9	2.447e-3	3	NC	1	NC	1
574			min	0	3	003	4	001	2	-2.443e-3	2	NC	1	NC	1
575		3	max	0	10	001	15	.005	1	2.336e-3	3	NC	1	NC	4
576			min	0	3	006	4	004	3	-2.323e-3	2	NC	1	6935.617	3
577		4	max	0	10	002	15	.008	1	2.225e-3	3	NC	3	NC	4
578			min	0	3	009	4	008	3	-2.203e-3	2	7138.056	4	5266.081	3
579		5	max	0	10	003	15	.009	1	2.113e-3	3	NC	5	NC	4
580			min	0	3	011	4	01	3	-2.083e-3	2	5569.897	4	4539.148	3
581		6	max	0	10	003	15	.011	1	2.002e-3	3	NC	5	NC	4
582			min	0	3	013	4	011	3	-1.963e-3	2	4687.657	4	4217.064	3
583		7	max	0	10	004	15	.011	1	1.891e-3	3	NC	5	NC	4
584			min	0	3	015	4	012	3	-1.843e-3	2	4157.106	4	4130.73	3
585		8	max	0	10	004	15	.011	1	1.78e-3	3	NC	5	NC	4
586			min	0	3	016	4	012	3	-1.723e-3	2	3838.696	4	4221.382	3
587		9	max	0	10	004	15	.01	1	1.669e-3	3	NC	5	NC	4
588			min	0	3	017	4	011	3	-1.603e-3	2	3667.309	4	4479.267	3
589		10	max	0	10	004	15	.009	1	1.558e-3	3	NC	15	NC	4
590			min	0	3	017	4	01	3	-1.483e-3	2	3613.09	4	4928.835	3
591		11	max	0	10	004	15	.008	1	1.447e-3	3	NC	5	NC	4
592			min	0	3	017	4	009	3	-1.363e-3	2	3667.309	4	5633.326	3
593		12	max	0	10	004	15	.007	1	1.335e-3	3	NC	5	NC	4
594			min	0	3	016	4	007	3	-1.243e-3	2	3838.696	4	6718.269	3
595		13	max	0	10	004	15	.005	1	1.224e-3	3	NC	5	NC	2
596			min	0	3	015	4	006	3	-1.123e-3	2	4157.106	4	8431.611	3
597		14	max	0	10	003	15	.004	1	1.113e-3	3	NC	5	NC	1
598			min	0	3	013	4	004	3	-1.004e-3	2	4687.657	4	NC	1
599		15	max	0	10	003	15	.002	1	1.002e-3	3	NC	5	NC	1
600			min	0	3	011	4	003	3	-8.835e-4	2	5569.897	4	NC	1
601		16	max	0	10	002	15	.001	1	8.909e-4	3	NC	3	NC	1
602			min	0	3	009	4	001	3	-7.636e-4	2	7138.056	4	NC	1
603		17	max	0	10	001	15	0	4	7.797e-4	3	NC	1_	NC	1
604			min	0	3	006	4	0	3	-6.436e-4	2	NC	1	NC	1
605		18	max	0	10	0	15	0	4	6.686e-4	3	NC	1_	NC	1
606			min	0	3	003	4	0	2	-5.237e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	5.575e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-4.037e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.