1

Funciones

Definición 1.1 Si f g son dos funciones cualesquiera, podemos definir una nueva función f+g denominada **suma** de f+g mediante la ecuación:

$$(f+g)(x) = f(x) + g(x)$$

Para el conjunto de todos los x que están a la vez en el dominio de f y en el dominio de g, es decir:

 $dominio (f + g) = dominio f \cap dominio g$

Definición 1.2 El dominio de $f \cdot g$ es dominio $f \cap$ dominio g

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Definición 1.3 Se expresa por dominio $f \cap dominio g \cap x : g(x) \neq 0$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Definición 1.4 (Función constante)

$$(c \cdot g)(x) = c \cdot g(x)$$

Teorema 1.1 (f+g) + h = f + (g+h)

Demostración.- La demostración es característica de casi todas las demostraciones que prueban que dos funciones son iguales: se debe hacer ver que las dos funciones tienen el mismo dominio y el mismo valor para cualquier número del dominio. Observese que al interpretar la definición de cada lado se obtiene:

$$[(f+g)+h](x) = (f+g)(x) + h(x)$$

$$= [f(x)+g(x)] + h(x)$$

$$y$$

$$[f+(g+h)](x) = f(x) + (g+h)(x)$$

$$= f(x) + [g(x) + h(x)]$$

Es esta demostración no se ha mencionado la igualdad de los dos dominios porque esta igualdad parece obvia desde el momento en que empezamos a escribir estas ecuaciones: el dominio de (f+g)+h y el de f+(g+h) es evidentemente dominio $f\cap$ dominio $g\cap$ dominio h. nosotros escribimos, naturalmente f+g+h por (f+g)+h=f+(g+h)

Teorema 1.2 Es igual fácil demostrar que $(f \cdot g) \cdot g = f \cdot (g \cdot h)$ y ésta función se designa por $f \cdot g \cdot h$. Las ecuaciones f + g = g + f y $f \cdot g = g \cdot f$ no deben presentar ninguna dificultad.

Teorema 1.3 ¹ Dos funciones f y g so iguales si y sólo si

- a) f y g tienen el mismo dominio, y
- **b)** f(x) = g(x) para todo x del dominio de f.

Demostración.- Sea f una función tal que $\forall x \in D_f$, $\exists y \mid y = f(x)$ es decir (x, f(x)) y g una función tal que $\forall z \in D_g$, $\exists y \mid y = g(z)$ es decir (z, g(z)), por definición 1.6 dos pares ordenados (x, f(x)) = (z, g(z)) si y sólo si x = z y f(x) = g(z)

Definición 1.5 (Composición de función)

$$(f \circ q)(x) = f(q(x))$$

El dominio de $f \circ g$ es $\{ x : x \text{ est\'a en el dominio de } g \mid y \mid g(x) \text{ est\'a en el dominio de } f \}$

$$D_{f \circ q} = \{ x \mid x \in D_q \land g(x) \in D_f \}$$

Propiedades 1.1 $(f \circ g) \circ h = f \circ (g \circ h)$ La demostración es una trivalidad.

¹Calculus Vol 1, Tom Apostol, pag. 66

Definición 1.6 a Decimos que dos pares ordenados (a,b) y (c,d) son iguales si sólo si sus primeros elementos son iguales y sus segundos elementos son iguales.

$$(a,b) = (c,d)$$
 si sólo si $a = c$ y $b = d$

Definición 1.7 (Definición de función) b Una función f es un conjunto de pares ordenados (x, y) ninguno de los cuales tiene el mismo primer elemento. Por lo tanto,

$$\forall x \in D_f, \exists y \mid (x, y) \in f$$

Esto es, para todo x en el dominio de la f existe exactamente un y tal que $(x, y) \in f$ Es costumbre escribir y = f(x) en lugar de $(x, y) \in f$, por lo tanto,

$$\forall x \in D_f, \exists y / y = f(x)$$

Definición 1.8 a Una **función** es una colección de pares de números con la siguiente propiedad: Si (a,b) y (a,c) pertenecen ambos a la colección, entonces b=c; en otras palabras, la colección no debe contener dos pares distintos con el mismo primer elemento.

Definición 1.9 ^b Si f es una función, el **dominio** de f es el conjunto de todos los a para los que existe algún b tal que (a,b) está en f. Si a está en el dominio de f, se sigue de la definición de función que existe, en efecto, un número b único tal que (a,b) está en f. Este b único se designa por f(a).

1.1. Teoremas y ejercicios

1.1.1. Ejercicios ²

Ejercicio 1.1 Sea $f(x) = \frac{1}{1+x}$, Interpretar lo siguiente:

i)
$$f(f(x))$$

Vemos que el dominio de $\frac{1}{1+x}$ son todos los reales excepto -1 ya que cualquier número dividido entre 0 es indeterminado.

O es indeterminado. Por otro lado el dominio de
$$f(f(x))$$
 es $f\left(\frac{1}{1-x}\right) = \frac{1}{1+\frac{1}{1+x}} = \frac{1+x}{2+x}, \quad x \neq -2$

Así por definición de dominio

$$D_{f \circ g} = \{ x / x \neq -1 \land x \neq -2 \}.$$

ii)
$$f\left(\frac{1}{x}\right)$$

^aDefinición de Tom Apostol

^bDefinición de Tom Apostol

^aDefinición de Michael Spivak

^bDefinición de Michael Spivak

²Calculo infinitesimal, Micheal Spivak, Pag. 61 al 68

El dominio de f esta dada por $(x \neq 0, -1)$ ya que $\frac{1}{0}$ es indeterminado. Como también $\frac{1}{1 + \frac{1}{x}} = \frac{x}{x + 1}$

iii)
$$f(cx)$$

$$f(cx) = \frac{1}{1+cx}$$
 por lo tanto $\frac{1}{c\left(\frac{1}{c}+x\right)}$ si $x \neq \frac{1}{c}$, 0

iv)
$$f(x+y)$$

$$f(x+y) = \frac{1}{1 + (x+y)} para x + y \neq -1$$

v)
$$f(x) + f(y)$$

$$f(x) + f(y) = \frac{1}{1+x} + \frac{1}{1+y} = \frac{x+y+2}{(1+x)(1+y)}$$
 para $x \neq -1, y \neq -1$

vi) ¿Para que números c existe un número x tal que f(cx) = f(x)?

Existe para todo c ya que $f(c \cdot 0) = f(0)$ entonces f(0) = 1

vii) ¿Para que números c se cumple que f(cx) = f(x) para dos números distintos x?

Solamente para c=1. Ya que f(cx)=f(x) implica x=cx y esto debe cumplirse por lo menos para un $x\neq 0$

Ejercicio 1.2 Sea
$$g(x) = x^2$$
 y sea

$$h(x) = \begin{cases} 0, & x \ racional \\ 1, & x \ irracional \end{cases}$$
 (1.1)

i) ¿Para cuáles y es h(y) < y?

Vemos que h(y) sólo puede ser 1 ó 0. Para que se cumpla la condición $h(y) \leq y$, debe ser $y \geq 0$ é y racional ya que si y es irracional, no se cumple la condición, debido a que si y es irracional entonces es 1. También se cumpliría si $y \geq 1$ sea para y racional o irracional.

ii) ¿Para cuáles y es $h(y) \leq g(y)$?

Se cumple para y racional entre -1, 1 inclusive y para todo y tal que |y| > 1

iii) ¿
$$Qué$$
 es $g(h(z)) - h(z)$?

Sabemos que

$$h(z) = \begin{cases} 0, & z \ racional \\ 1, & z \ irracional \end{cases}$$
 (1.2)

Ahora tenemos que $g(0) = 0^2 = 0$ y $g(1) = 1^2 = 1$ por lo tanto

$$g(h(z)) = \begin{cases} 0^2, & z \ racional \\ 1^2, & z \ irracional \end{cases}$$
 (1.3)

Y restando a h(z) nos queda 0.

iv) ¿ Para cuáles w es $g(w) \leq w$?

Sabemos que un número cualquiera elevado al cuadrado siempre dará un número positivo entonces el rango del dominio para que se cumple la condición $g(w) \le w$ es $-1 \ge w \ge 1$

v) ¿Para cuales cuáles ϵ es $g(g(\epsilon)) = g(\epsilon)$?

Solamente se cumple para -1, 0 1

Ejercicio 1.3 Encontrar el dominio de las funciones definidas por las siguientes fórmulas:

i)
$$f(x) = \sqrt{1 - x^2}$$

Por la propiedad de raíz cuadrada, se tiene $1-x^2 \geq 0$ entonces $x^2 \leq 1$ por lo tanto el dominio son todos los x tal que $|x| \leq 1$

ii)
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

Se observa claramente que el dominio es $-1 \le x \le 1$

iii)
$$f(x) = \frac{1}{x-1} + \frac{1}{x-2}$$

Operando un poco tenemos

$$f(x) = \frac{2x - 3}{(x - 1)(x - 2)},$$

sabemos que el denominador no puede ser 0 por lo tanto el $D_f = \{x \mid x \neq 1, x \neq 2\}$

iv)
$$f(x) = \sqrt{1 - x^2} + \sqrt{x^2 - 1}$$

Claramente notamos que el dominio de f es [-1,1] ya que si se tomara un número mayor a este daría un número imaginario.

v)
$$f(x) = \sqrt{1-x} + \sqrt{x-2}$$

Notamos que no cumple para ningún x ya que si $0 \le x \le 1$ entonces no se cumple para $\sqrt{x-2}$ y si $x \ge 2$ no se cumple para $\sqrt{1-x}$

Ejercicio 1.4 Sea $S(x) = x^2$, $P(x) = 2^x$, s(x) = senx. Determinar los siguientes valores. En cada caso la solución debe ser un número.

1)
$$(S \circ P)(y)$$

Demostración.- Por definición S(P(y)) por lo tanto $S(2^y)=(2^y)^2=2^{2y}$ para todo x existe en los números reales

2)
$$(S \circ s)(y)$$

Demostración.-
$$(S \circ s)(y) = S(s(y)) = S(\sin y) = \sin^2 y$$

3)
$$(S \circ P \circ s)(t) + (s \circ P)(t)$$

$$Demostraci\'on. - (S \circ P \circ s)(t) + (s \circ P)(t) = S(P(s(t))) + s(P(t)) = S(P(\sin t)) + s(2^x) = S(2^{\sin t}) + \sin 2^t = (2^{\sin t})^2 + \sin 2^t = 2^{2 \sin t} + \sin 2^t$$

4) $s(t^3)$

 $Demostración.-s(t^3) = \sin t^3$

Ejercicio 1.5 Expresar cada una de las siguientes funciones en términos de S, P, s usando solamente $+, \cdot y \circ$ en cada caso la solución debe ser una función.

i)
$$f(x) = 2^{\sin x} = (P \circ s)(x)$$

ii)
$$f(x) = \sin 2^x = (s \circ S)(x)$$

iii)
$$f(x) = \sin x^2 = (s \circ S)(x)$$

iv)
$$f(x) = \sin^2 x = (S \circ s)(x)$$

v)
$$f(t) = 2^{2t} = (S \circ P)(t)$$

vi)
$$f(u) = \sin(2^u + 2^{u^2}) = s \circ (P + P \circ S)$$

vii)
$$f(a) = 2^{\sin^2 a} + \sin(a^2) + 2^{\sin(a^2 + \sin a)} = P \circ S \circ s + P \circ s \circ S + P \circ s \circ (S + s)$$

Ejercicio 1.6 Las funciones polinómicas, por ser sencillas y al mismo tiempo flexibles, ocipan un lugar destacado en el estudio de las funciones. Los dos problemas siguientes ponen de manifiesto su flexibilidad y dan una orientación para deducir sus propiedades elementales más importantes.

a) Si $x_1, ..., x_n$ son números distintos, encontrar una función polinómica, f_i de grado n-1 que tome el valor 1 en x_i y 0 en x_j para $j \neq i$. Indicación: El produto de todo los $(x-x_j)$ para $j \neq i$ es 0 en x_j si $j \neq i$. (Este producto es designado generalmente por)

$$\prod_{\substack{j=1\\j\neq i}}^{n} (x-x_j)$$

donde el símbolo Π (pi mayúscula) desempeña para productos el mismo papel que \sum para sumas).

Solución.- Lo que Spivak afirma es que entre los números $x_1, ..., x_n$ hay un sólo número x_i en el que la función f_i tome el valor 1 y que todas los demás números $(x_j \text{ con } j \neq i)$ son ceros en f_i .

Una forma de pensar sobre esta pregunta es considerar una solución fija n y elegir un conjunto de distintas $x_1, x_2, ..., x_n$. Por ejemplo supongamos que elegimos n=3 $x_1=1$, $x_2=2$, $x_3=3$. Entonces supongamos que queremos encontrar un polinomio $f_i(x_1)=f_1(1)=1$, pero $f_1(x_2)=f_1(2)=f_1(3)=0$. Es decir, F_1 es un cuadrático que tiene ceros en x=2 y x=3, pero es igual a 1 en x=1. Naturalmente, esto sugiere mirar un polinomio de la forma

$$a(x-2)(x-3),$$

para que la igualdad sea igual a 1 por alguna constante a. Pero, ¿Qué es esta constante? Bueno, si nos conectamos con x = 1, debemos tener

$$f_1(1) = 1 = a(x-2)(x-3) = 2a,$$

por lo tanto a = 1/2 y la solución deseada es

$$f_1(x) = \frac{1}{2}(x-2)(x-3).$$

Del mismo modo, si tratamos de encontrar un polinomio $f_2(x)$ tal que $f_2(2) = 1$ con raíces en x = 1, 3 tendríamos que resolver la ecuación 1 = a(2-1)(2-3), lo que da a = -1 por lo tanto $f_2(x) = -(x-1)(x-3)$ Ahora veamos el caso general. El polinomio $f_i(x)$ satisface $f_i(x_i)$ y $f_i(x_j) = 0$ para todo $j \neq i$, entonces debe tomar la forma

$$f_i(x) = a \prod_{j \neq i} (x - x_j)$$

Para alguna constante a. Para encontrar esta constante, aplicamos $x = x_1$:

$$f_i(x_i) = 1 = a \prod_{j \neq i} (x_i - x_j),$$

por lo tanto:

$$a = \frac{1}{\prod_{j \neq i} (x_i - x_j)}$$

Así queda

$$f_i(x) = \prod_{i \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

b) Encontrar ahora una función polinómica de grado n-1 tal que $f(x_i) = a_i$, donde $a_i, ..., a_n$ son números dados. (Utilícese las funciones f_i de la parte (a). La fórmula que se obtenga es la llamada formula de interpolación de Lagrange).

Entonces

$$f(x) = \sum_{j=1} a_i f_i(x)$$

por lo tanto

$$f(x) = \sum_{j=1} a_i \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

¿Para qué números a, b, c y d la función $f(x) = \frac{ax+b}{cx+b}$ satisface f(f(x)) = x para todo x? (¿Para qué números dicha ecuación tiene sentido?)

1.1.2. Demostraciones ³

Teorema 1.4 Demostrar que para cualquier función polinómica f y cualquier número a existe una función polinómica g y un número b tales que f(x) = (x - a) g(x) + b para todo x.

Si el grado de f es 1, entones f es de la forma:

$$f(x) = cx + d = (x - a)c + (d + ac)$$

de modo que podemos poner g(x) = c y b = d + ac. Supóngase que el resultado es válido para polinomios de grado $\leq k$. Si f tiene grado k + 1, entonces f tiene la forma:

$$f(x) = a_{k+1}(x - a) = (x - a) g(x) + b,$$

ó

$$f(x) = (x - a)[g(x) + a_{k+1}] + b,$$

Teorema 1.5 Demostrar que si f(a) = 0, entonces f(x) = (x - a) g(x) para alguna función polinómica g. (La recíproca es evidente)

Demostración.- Por el teorema anterior, f(x) = (x - a) g(x) + b. Luego

$$0 = f(a) = (a - a) g(a) + b = b,$$

de modo que f(x) = (x - a) g(x)

³Calculo infinitesimal, Michael Spivak, pag. 63-68

Teorema 1.6 Demostrar que si f es una función polinómica de grado n entonces f tiene a lo sumo n raíces, es decir, existen a lo sumo n números a tales que f(a) = 0

Demostración.- Supongámos que f tiene n raíces $a_1,...,a_n$. Entonces según el anterior teorema $f(x) = (x-a) g_1(x)$ donde el grado de $g_1(x)$ es n-1. Pero

$$0 = f(a_2) = (a_2 - a_1) g_1(a_2)$$

de modo que $g_1(a_2) = 0$, ya que $a_2 \neq a_1$. Luego podemos escribir

$$f(x) = (x - a_1)(x - a_2)g_2(x)$$

donde el grado de g_2 es n-2. Prosigue de esta manera, obtenemos que

$$f(x) = (x - a_1)(x - a_2) \cdot ... \cdot (x - a_n)c$$

para algún número $c \neq 0$. Está claro que $f(a) \neq 0$ si $a \neq a_1, ..., a_n$. Así pues, f puede tener a lo sumo n raíces.

Teorema 1.7 Demostrar que para todo n existe una función polinómica de grado n con raíces. Si n es par, encontrar una función polinómica de grado n sin raíces y sin n es impar, encontrar una con una sola raíz.

Demostración.- Si $f(x) = (x-1)(x-2) \cdot ... \cdot (x-n)$, entonces f tiene n raíces. Si n es par, entonces $f(x) = x^n + 1$ no tiene raíces. Si n es impar, entonces $f(x) = x^n$ tiene una raíz única, que es 0.

Teorema 1.8 a) Si A es un conjunto cualquiera de números reales, defina una función C_A de la manera siguiente:

$$C_A(x) = \begin{cases} 1, & x \text{ si } x \text{ est\'a en } A \\ 0, & x \text{ si } x \text{ no est\'a en } A \end{cases}$$
 (1.4)

Encuentre expresiones para $C_{A \ capB}$, $C_{A\cup B}$ y C_{R-A} , en términos de C_A y C_B (El símbolo $A\cap B$ se ha definido en este capítulo, pero los otros dos pueden ser nuevos para el lector. Pueden definirse de la siguiente manera:

$$A \cap B = \{x : x \text{ pertenece } a \text{ } A \text{ o pertenece } a \text{ } B\}$$

$$R - B = \{x : x \text{ pertenece } a R \text{ pero } x \text{ no pertenece } a A\}$$

b) Suponga que f es una función tal que f(x) = 0 ó 1 para todo x. Demuestre que existe un conjunto A tal que $f = C_A$

Demostración.-

c) Demuestre que $f = f^2$ si y sólo si $f = C_A$ para algún conjunto A

Demostración.-

1.1.3. Ejercicios ⁴

Ejercicio 1.7 Sea f(x) = x + 1 para todo real x. Calcular:

$$f(2) = 2 + 1 = 3$$

⁴Calculus Vol 1, Tom Apostol, pag 69-70

$$f(-2) = -2 + 1 = -1$$

$$-f(2) = -(2+1) = -3$$

$$f\left(\frac{1}{2}\right) = \frac{1}{2} + 1 = \frac{3}{2}$$

$$\frac{1}{f(2)} = \frac{1}{3}$$

$$f(a+b) = a+b+1$$

$$f(a) + f(b) = (a+1) + (b+1) = a+b+2$$

•
$$f(a) \cdot f(b) = (a+1)(b+1) = ab+a+b+1$$

Ejercicio 1.8 Sean f(x) = 1 + x y g(x) = 1 - x para todo real x. calcular:

•
$$f(2) + g(2) = (1+2) + (1-2) = 2$$

•
$$f(2) - g(2) = (1+2) - (1-2) = 3$$

$$f(2) \cdot g(2) = (1+2) \cdot (1-2) = 3 \cdot (-1) = -3$$

$$f[g(2)] = f(1-2) = f(-1) = 1 + (-1) = 0$$

$$g[f(2)] = f(1+2) = g(3) = 1-3 = -2$$

•
$$f(a) + g(-a) = (1+a) + (1-a) = 2$$

$$f(t) \cdot g(-t) = (1+t) \cdot (1+t) = 1+t+t+t^2 = t^2+2t+1 = (t+1)^2$$

Ejercicio 1.9 Sea f(x) = |x-3| + |x-1| para todo real x. Calcular:

•
$$f(0) = |0-3| + |0-1| = 3+1 = 4$$

$$f(1) = |1 - 3| + |1 - 1| = 2$$

•
$$f(2) = |2-3| + |2-1| = -1 + 1 = 0$$

$$f(3) = |3-3| + |3-1| = 2$$

$$f(-1) = |-1-3| + |-1-1| = 4+2 = 6$$

$$f(-2) = |-2-3| + |-2-1| = 5+3 = 8$$

Determinar todos los valores de t para los que f(t+2) = f(t)

$$\begin{array}{rcl} |t+2-3|+|t+2-1| & = & |t-3|+|t-1| \\ |t-1|+|t+1| & = & |t-3|+|t-1| \\ |t+1| & = & t-3 \end{array}$$

 $Pro\ lo\ tanto\ t=1$

Ejercicio 1.10 Sea $f(x) = x^2$ para todo real x. Calcular cada una de las fórmulas siguientes. En cada caso precisar los conjuntos de números erales x, y t, etc., para los que la fórmula dada es válida.

a)
$$f(-x) = f(x)$$

Demostración.- Se tiene $f(-x) = (-x)^2 = x^2 = f(x) \ \forall x \in \mathbb{R}$

b)
$$f(y) - f(x) = (y - x)(y + x)$$

Demostración.-
$$f(y) - f(x) = y^2 - x^2 = (x - y)(x + y), \ \forall x, y \in \mathbb{R}$$

c)
$$f(x+h) + f(x) = 2xh + h^2$$

Demostración.-
$$f(x+h) + f(x) = (x+h)^2 - x^2 = x^2 + 2xh + h^2 - x^2 = 2xh + h^2, \ \forall x \in \mathbb{R}$$

d)
$$f(2y) = 4f(y)$$

Demostración.-
$$f(2y) = (2y)^2 = 4y^2 = 4f(y), \ \forall y \in \mathbb{R}$$

e)
$$f(t^2) = f(t)^2$$

Demostración.-
$$f(t^2) = (t^2)^2 = f(t)^2$$

$$f) \sqrt{f(a)} = |a|$$

Demostración.-
$$\sqrt{f(a)} = \sqrt{a^2} = |a|$$

Ejercicio 1.11 Sea $g(x) = \sqrt{4 - x^2}$ para $|x| \le 2$. Comprobar cada una de las fórmulas siguientes e indicar para qué valores de x, y, s y t son válidas.

a)
$$g(-x) = g(x)$$

Se tiene
$$g(-x) = \sqrt{2 - (-x)^2} = \sqrt{2 - (x)^2} = g(x)$$
, para $|x| \le 2$

b)
$$g(2y) = 2\sqrt{1-y^2}$$

$$g(2y) = \sqrt{4-(2y)^2} = \sqrt{4(1-y^2)} = 2\sqrt{1-y^2}, \quad para \ |y| \le 1 \ Se \ obtiene \ |y| \le 1 \ de \ \sqrt{1-y^2} \ es \ decir \ 1-y^2 \ge 0 \ entonces \ \sqrt{y^2} \le \sqrt{1} \quad y \quad |y| \le 1$$

c)
$$g\left(\frac{1}{t}\right) = \frac{\sqrt{4t^2 - 1}}{|t|}$$

$$g\left(\frac{1}{t}\right) = \sqrt{4 - \left(\frac{1}{t}\right)^2} = \sqrt{\frac{4t^2 - 1}{t^2}} = \frac{\sqrt{4t^2 - 1}}{|t|}, \ para \ |t| \ge \frac{1}{2}$$

Para hallar los valores correspondientes debemos analizar $\sqrt{4t^2-1}$

d)
$$g(a-2) = \sqrt{4a-a^2}$$

$$g(a-2) = \sqrt{4-x^2} = \sqrt{4-(a-2)^2} = \sqrt{4a-a^2}, \ para \ 0 \le a \le 4$$

e)
$$g(\frac{s}{2}) = \frac{1}{2}\sqrt{16 - s^2}$$

$$s\left(\frac{s}{2}\right) = \sqrt{4 - \left(\frac{s}{2}\right)^2} = \frac{\sqrt{16 - s^2}}{2}, \ para \ |s| \le 4$$

$$f) \frac{1}{2+g(x)} = \frac{2-g(x)}{x^2}$$

$$\frac{1}{2+g(x)} = \frac{1}{2+\sqrt{4-x^2}} \cdot \frac{2-\sqrt{4-x^2}}{2-\sqrt{4-x^2}} = \frac{2-g(x)}{x^2} \; para \; \; 0 < |x| \le 2$$

Evaluemos $\sqrt{4-x^2}$. Sea $4-x^2 \ge 0$ entonce $\sqrt{x^2} \le 2$. Por otro lado tenemos que la función no puede ser 0 por $\frac{1}{x^2}$, por lo tanto debe ser $x^2 \le 0$.

Ejercicio 1.12 Sea f la función definida como sigue: f(x) = 1 para $0 \le x \le 1$; f(x) = 2 para $1 < x \le 2$. La función no está definida si x < 0 ó si x > 2.

a) Trazar la gráfica de f

b) Poner g(x) = f(2x). Describir el dominio de g y dibujar su gráfica.

Debido a que $1 \le 2x \le 1$ y $1 < 2x \le 2$ el dominio de g(x) es $0 \le x \le 1$

c) Poner h(x) = f(x-2). Describir el dominio de k y dibujar su gráfica.

Debido a que $1 \le x-2 \le 1$ y $1 < x-2 \le 2$ el dominio de h(x) es $2 \le x \le 4$

d) Poner k(x) = f(2x) + f(x-2). Describir el dominio de k y dibujar su gráfica.

El dominio está vacío ya f(2x) que solo está definido para $0 \le x \le 1$ y f(x-2) solo está definido para $2 \le x \le 4$. Por lo tanto no hay ninguno x que satisfaga ambas condiciones.

Ejercicio 1.13 Las gráficas de los dos polinomios g(x) = x y $f(x) = x^3$ se cortan en tres puntos. Dibujar una parte suficiente de sus gráficas para ver cómo se cortan.

Ejercicio 1.14 Las gráficas de los dos polinomios cuadráticos $f(x) = x^2 - 2$ y $g(x) = 2x^2 + 4x + 1$ se cortan en dos puntos. Dibujar las porciones de sus gráficas comprendidas entre sus intersecciones.

