# **МАТЕМАТИКА** 1-й семестр

Лектор: ВИНОГРАДОВА ЮЛИЯ АЛЕКСАНДРОВНА, кафедра прикладной математики, ауд. 357а тел. 8-926-281-75-66 email: yulich@inbox.ru

#### Основные разделы:

Введение в математический анализ Производная и дифференциал

## Контрольные мероприятия 1-го семестра:

- 1-й модуль
  - 1)РГР «Введение в математический анализ»
  - 2)Защита РГР «Введение в математический анализ»
- 2-й модуль
  - 1) Контрольная работа «Производные»

#### Экзамен

#### Учебные пособия

- 1. Задачи и контрольные вопросы по математике для студентов 1 семестра/А.В. Боголюбов, Ю.В. Елисеева, А.Г. Елькин, Е.А. Яновская. М.: МГТУ «Станкин», «Янус-К», 2003, 2007, 2009.
- 2. Бубнова Т. В., Виноградова Ю. А., Господинова А. Г. Пределы последовательностей и функций: учеб. пособие / Т. В. Бубнова, Ю. А. Виноградова, А. Г. Господинова М.: «Янус-К», 2019
- 3. Бубнова Т. В., Виноградова Ю. А. Высшая математика. Избранные главы: учеб. пособие М.: ФГБОУ ВПО МГТУ «СТАНКИН», 2015

Электронная среда университета edu.stankin.ru

Электронная библиотека biblioclub.ru

#### Лекция 1.

#### Введение в математический анализ

Под множеством понимается совокупность (собрание, класс, семейство)некоторых объектов, объединенных по какому-либо признаку.

Объекты, из которых состоит множество, называются его элементами.

Если x – элемент множества M, то пишут  $x \in M$ . Множество М задается следующим образом:  $M = \{x | x удовлетворяет ... \}$  или  $M = \{x_1, x_2, x_3 ... \}$ .

Если множества состоят из одних и тех же элементов, то они равны.

Множества, состоящие из чисел, называются числовыми.

#### Числовые множества.

 $\mathbb{N} = \{1, 2, ...\}$ — множество натуральных чисел;

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$$
— множество целых чисел;

$$\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$$
— множество целых чисел; 
$$\mathbb{Q} = \left\{\frac{p}{q}: p \in \mathbb{Z}, \quad q \in \mathbb{Z}, \ q \neq 0\right\}$$
— множество рациональных чисел;

 $\mathbb{R} = \{x = \pm n, \alpha_1 \alpha_2 \dots \alpha_n \dots\}$ — множество действительных, или вещественных, чисел, реализуется в виде конечных или бесконечных (периодических и непериодических) десятичных дробей.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

 $\mathbb{I} = \{\sqrt{2}, \sqrt{3}, \pi, ...\}$  - числа, представимые в виде бесконечных непериодических десятичных дробей, образуют множество иррациональных чисел  $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ .

## Понятие абсолютной величины (модуля) действительного числа

**Определение.** Абсолютной величиной или модулем действительного числа x называется неотрицательное число

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0 \end{cases}.$$

#### Свойства абсолютной величины:

1. 
$$|x| \ge x$$
,  $|x| \ge -x$ ,  $|x| = |-x|$ 

2. 
$$|x + y| \le |x| + |y|$$

3. 
$$|x - y| \ge |x| - |y|$$

$$4. |xy| = |x| \cdot |y|$$

5. 
$$|x/y| = |x|/|y|, y \neq 0$$

6. 
$$\sqrt{x^2} = |x|$$

## Геометрический смысл модуля и модуля разности двух чисел:

|x| равен расстоянию от точки x до точки 0 на оси x,

 $|x_1 - x_2|$  равен расстоянию между точками  $x_1, x_2$  на оси x.

# Решение неравенства |x-a| < b:

$$a-b < x < a+b \Leftrightarrow x \in (a-b,a+b)$$

# **Решение неравенства** |x-a| > b:

$$x < a - b$$
 или  $x > a + b \Leftrightarrow x \in (-\infty, a - b) \cup (a + b, +\infty)$ 

## Понятие функции действительной переменной

**Определение.** Пусть  $D \subset \mathbb{R}$  — произвольное множество действительных чисел. Пусть каждому числу  $x \in D$  поставлено в соответствие некоторое вполне определенное действительное число f(x). Тогда говорят, что на множестве D определена числовая функция f. При этом множество D называется областью определения функции f и обозначается D(f), число f(x) называется значением функции в точке x. Множество всех значений функции обозначается E(f).

Символически функция записывается в виде  $f: D \to E$  или y = f(x).

**Определение.** Множество точек плоскости с координатами  $(x, f(x)), x \in D$  называют *графиком функции* y = f(x), определенной на множестве D.

## Способы задания функции

- 1) Наиболее распространенным является *аналитический способ* задания функции. Он состоит в том, что с помощью формулы конкретно устанавливается алгоритм вычисления значений функции y = f(x) для каждого из значений *аргумента* x.
- 2)Графический способ.
- 3) Табличный способ.

**Определение.** Пусть функция  $f: D \to E$  такова, что для любых  $x_1 \in D$ ,  $x_2 \in D$  из условия  $x_1 \neq x_2$  следует  $f(x_1) \neq f(x_2)$ . В этом случае всякому числу  $y \in E(f)$  можно поставить в соответствие некоторое вполне определенное число  $x \in D(f)$ : f(x) = y. Тем самым определена новая функция  $f^{-1}: E \to D$ , называемая *обратной* к заданной функции f.

Графики взаимнообратных функций  $y = f(x), y = f^{-1}(x)$  симметричны относительно прямой y = x.

**Определение.** Пусть заданы функции  $f: D \to Y$  и  $g: Y \to E$ . Их композицией (или сложной функцией, полученной последовательным применением функций f и g) называется функция  $h: D \to E$ , определяемая равенством  $h(x) = g(f(x)), x \in D$ .

**Определение.** Функция называется *четной* (*нечетной*), если ее область определения симметрична относительно точки x=0 и f(x)=f(-x) (f(x)=-f(-x)).

График четной функции симметричен относительно оси Y, график нечетной функции симметричен относительно точки (0,0).

**Определение.** Функция f(x) называется *периодической*, если существует число  $T \neq 0$  (*период* функции) такое, что для любого  $x \in D$  числа x + T, x - T также принадлежат множеству D и выполняется равенство f(x + T) = f(x).

**Определение.** Функция f(x) называется возрастающей (неубывающей, убывающей, невозрастающей) на множестве A, если для любых  $x_1 \in A$ ,  $x_2 \in A$ ,  $x_1 < x_2$  выполняется неравенство  $f(x_1) < f(x_2)$  (соответственно  $f(x_1) \le f(x_2)$ ,  $f(x_1) > f(x_2)$ ,  $f(x_1) \ge f(x_2)$ ). Любая такая функция называется монотонной на множестве A.

# Элементарные функции

## Определение.

Следующие функции называются *основными* элементарными: 1. y = C, где C — постоянная.



2. Степенная функция:  $y = x^{\alpha}$ ,  $\alpha \in \mathbb{R}$ ,  $\alpha \neq 0$ .



3. Показательная функция:  $y = a^x$ , a > 0,  $a \ne 1$ .



4. Логарифмическая функция:  $y = \log_a x, x > 0, a > 0, a \neq 1$ .



# $5. Тригонометрические функции: <math>y = \sin x$ , $y = \cos x$ , $y = \operatorname{tg} x$ , $y = \operatorname{ctg} x$ .



6. Обратные тригонометрические функции: 1)  $y = \arcsin x, \ x \in [-1,1], \ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ , функция монотонно возрастает.



2)  $y = \arccos x, \ x \in [-1,1], \ y \in [0,\pi], \ функция монотонно убывает.$ 



3) 
$$y = \arctan x$$
,  $x \in (-\infty, +\infty)$ ,  $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ , функция монотонно возрастает, график имеет горизонтальные асимптоты  $y = -\frac{\pi}{2}$ ,  $y = \frac{\pi}{2}$ .



4)  $y = \operatorname{arcc} \operatorname{tg} x, \ x \in (-\infty, +\infty), \ y \in (0, \pi),$  функция монотонно убывает, график имеет горизонтальные асимптоты  $y = 0, \ y = \pi$ .



# Определение.

Элементарной называется всякая функция, которая может быть получена из основных элементарных функций с помощью конечного числа арифметических операций и операции композиции.