Week 3 Linear Models

Nebius Academy

The objectives for today

- 1. Controlling LLM's creativity vs reproducibility
- 2. Close view on linear models
- 3. The concept of loss function + on which loss the LLMs are trained
- 4. Get our hands dirty with linear models

Bird's eye view of LLM architecture

Layers Embedding The architecture (Transformer blocks) vectors the In the waste wastelands lands of mine **Tokenization** LM of head mine Hidden size

Several final steps

In the wastelands of mine

LM head produces logits

If the vocabulary size is **V**, the LM head produces V logits

Sampling – Argmax

The simplest strategy is **Argmax**: always take the most probable token.

Pro:

- Reproducibility,
- Good for tasks with THE right answer.

Cons:

- Can be repetitive,
- Not suitable for "creative" tasks,
- Not for Self-Consistency

Sampling – Probabilistic

This way, any token may be generated.

But what if we don't want less-probable tokens?

Top-K

Take K most probable tokens, Renormalize probabilities.

$$(0.3, 0.25, 0.2) \rightarrow \left(\frac{0.3}{0.75}, \frac{0.25}{0.75}, \frac{0.2}{0.75}\right) \rightarrow$$

 \rightarrow (0.4, 0.333333, 0.266667)

Тор-р

Several final steps

In the wastelands of mine

LM head produces logits

If the vocabulary size is **V**, the LM head produces V logits

Softmax

Turns logits (can be any numbers) into probabilities, that

- Are all non-negative,
- Sum to 1

$$(x_1, \dots, x_V) \rightarrow (e^{x_1}, \dots, e^{x_V}) \rightarrow \left(\frac{e^{x_1}}{\sum_t e^{x_t}}, \dots, \frac{e^{x_V}}{\sum_t e^{x_t}}\right)$$

Make non-negative

This is softmax

Why exponent and not square?

Exponent is monotonous.

If $logit_u < logit_v$, then $e^{logit_u} < e^{logit_v}$

Temperature

$$\left(\frac{e^{x_1/T}}{\sum_t e^{x_t/T}}, \dots, \frac{e^{x_V/T}}{\sum_t e^{x_t/T}}\right)$$

Several final steps

In the wastelands of mine

LM head produces logits

If the vocabulary size is **V**, the LM head produces V logits

LM head

Basically, it is a linear transformation:

Logits =
$$x_{out} \cdot W$$

Hidden size is typically kind of 4k, 8k or 12k

A small reminder about matrix multiplication

$$Logits_i = x_1 \cdot w_{1i} + x_2 \cdot w_{2i} + \dots + x_H \cdot w_{Hi}$$

LM head + softmax

Basically, it is a linear transformation:

Logits

 $Logits = x_{out} \cdot W$

Probabilities

= **Softmax** $(x_{out} \cdot W)$

Binary linear classification

A motivational example

Let's classify 2d points: red vs green

A motivational example

Let's classify 2d points: red vs green

The simplest classification rule is a linear rule

So, let's just find a line optimally discriminating between the two classes!

The important assumption

To consider linear models, we need to be sure that **our data is described by numerical features**.

Numerical	Not numerical
Income/loss	Job title
Age	Product category
Temperature	Full text review
Pixel intensity (R/G/B)	Is there "18+" in the text

We'll learn how to deal with non-numerical features a bit later.

Let's add math

Feature description of an object:

$$x = (x_1, \dots, x_D)$$

 x_i - i-th feature value.

In our case it's

$$x = (x_1, x_2)$$

Class 0 Class 1

Let's add math

Class 0 Class 1

Feature description of an object:

$$x = (x_1, x_2)$$

A bias term w_0 , a weight vector:

$$w = (w_1, w_2)$$

A linear model:

$$f(x, w) = w_0 + x_1 w_1 + x_2 w_2$$

Class 0 Class 1

Let's add math

Feature description of an object:

$$x = (x_1, \dots, x_D)$$

A bias term w_0 , a weight vector:

$$w = (w_1, \dots, w_D)$$

A linear model:

$$f(x, w) = w_0 + x_1 w_1 + \dots + x_D w_D = w_0 + x w^T$$

$$xw^T = (x_1, \dots, x_D) \begin{pmatrix} w_1 \\ \vdots \\ w_D \end{pmatrix}$$

A word of caution about notation

 χw

$$x = (x_1, \dots, x_D)$$

$$w = \begin{pmatrix} w_1 \\ \vdots \\ w_D \end{pmatrix}$$

$$x^T w$$
 $w^T x$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix}$$

$$w = \begin{pmatrix} w_1 \\ \vdots \\ w_D \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix}$$

$$w = (w_1, \dots, w_D)$$

$$x_1w_1 + \cdots + x_Dw_D$$

$$xw^{T}$$
 $\langle w, x \rangle$
 wx^{T}

$$x = (x_1, \dots, x_D)$$

$$w = (x_1, \dots, x_D)$$

In another world

Probabilities = Softmax($W \cdot x_{out}$)

My explanations

For x:

	Feature 1	•	Feature D
Object 1			
Object N			

For w:

The usual weight shape in Pytorch is:

(out_features, in_features)

In our case: (1, D)

Class 0 Class 1

Let's add math

Feature description of an object:

$$x = (x_1, \dots, x_D)$$

A bias term w_0 , a weight vector:

$$w = (w_1, \dots, w_D)$$

A linear model:

$$f(x, w) = w_0 + x_1 w_1 + \dots + x_D w_D = w_0 + x w^T$$

$$xw^T = (x_1, \dots, x_D) \begin{pmatrix} w_1 \\ \vdots \\ w_D \end{pmatrix}$$

Let's get rid of the bias term

Feature description of an object:

$$\tilde{x} = (1, x_1, \dots, x_D)$$

A bias term w_0 , a weight vector:

$$\widetilde{w} = (w_0, w_1, \dots, w_D)$$

A linear model:

$$f(x, w) = 1 \cdot w_0 + x_1 w_1 + \dots + x_D w_D = \widetilde{x} \widetilde{w}^T$$

Working with features

What to do with non-numerical (categorical) features?

The simplest way is using dummy variables (one-hot encoding):

	Job title	
Atalya	 Researcher	
Ivan	 Plumber	
Praveen	 Astronaut	
Adriana	 QA	
Ye	 Researcher	

		Researcher	Plumber	Astronaut	
Atalya		1	0	0	
Ivan		0	1	0	
Praveen	-:-	0	0	1	
Adriana		0	0	0	
Ye		1	0	0	

Take (n_values - 1) dummy variables

$$1 \cdot w_0 + x_r w_r + x_p w_p + x_a w_a + x_q w_q$$

	Researcher	Plumber	Astronaut	QA	Sur to:
Atalya	 1	0	0	0	 1
Ivan	 0	1	0	0	 1
Praveen	 0	0	1	0	 1
Adriana	 0	0	0	1	 1
Ye	 1	0	0	0	 1

 $1 \cdot w_0$ **SUM** $x_r w_r$ $x_p w_p$ $x_q w_q$ $x_a w_a$ 0 0 0 W_0 W_r 0 0 0 $W_{\mathcal{p}}$ W_0 0 0 0 W_0 W_{a} 0 0 0 W_q W_0 0 0 0 W_0 W_r

Take (n_values - 1) dummy variables

	Researcher	Plumber	Astronaut	QA	Surr to:
Atalya	 1	0	0	0	 1
Ivan	 0	1	0	0	 1
Praveen	 0	0	1	0	 1
Adriana	 0	0	0	1	 1
Ye	 1	0	0	0	 1

$$1 \cdot (w_0 + a) + x_r(w_r - a) + x_p(w_p - a) + x_a(w_a - a) + x_q(w_q - a)$$

$1 \cdot w_0'$	$x_r w_r'$	$x_p w_p'$	$x_a w_a'$	$x_q w_q'$	SUM
$w_0 + a$	$w_r - a$	0	0	0	$w_0 + w_r$
$w_0 + a$	0	$w_p - a$	0	0	$w_0 + w_p$
$w_0 + a$	0	0	$w_a - a$	0	$w_0 + w_a$
$w_0 + a$	0	0	0	$w_q - a$	$w_0 + w_q$
$w_0 + a$	$w_r - a$	0	0	0	$w_0 + w_r$

Feature engineering

Two purposes:

- Convert non-numerical features into smth that can be consumed by an ML model.
 Example: dummy features
- Make feature description of the objects more expressive

Feature expressivity matters

A linear model can't solve this classification task. At the same time, it can be solved by a linear model on advanced feature $x_1^2 + x_2^2$:

$$class = sign(x_1^2 + x_2^2 - 0.6^2)$$

Feature expressivity matters

Or like this

class =
$$sign(max(0, x_1 + x_2 - 0.75) + max(0, x_1 - x_2 - 0.75) + max(0, -x_1 - x_2 - 0.75) + max(0, -x_1 + x_2 - 0.75))$$

Classic ML had a whole universe of **feature engineering** methods.

Automating feature engineering

Combinations of linear transformations and nonlinearity can do much:

$$(x_1, x_2) \rightarrow (x_1 + x_2 - 0.75, x_1 - x_2 - 0.75, -x_1 - x_2 - 0.75, -x_1 + x_2 - 0.75)$$
 Linear

$$\rightarrow$$
 (max(0, $x_1 + x_2 - 0.75$), max(0, $x_1 - x_2 - 0.75$), max(0, $-x_1 - x_2 - 0.75$), Nonlinearity

$$\rightarrow$$
 max(0, $x_1 + x_2 - 0.75$) + max(0, $x_1 - x_2 - 0.75$)
+ max(0, $-x_1 - x_2 - 0.75$) + max(0, $-x_1 + x_2 - 0.75$) Linear

Automating feature engineering

Combinations of linear transformations and nonlinearity can do much:

$$(x,y) \rightarrow (w_{10} + w_{11}x_1 + w_{12}x_2, w_{20} + w_{21}x_1 + w_{22}x_2, w_{30} + w_{31}x_1 + w_{32}x_2, w_{40} + w_{41}x_1 + w_{42}x_2)$$
 Linear

 \rightarrow (max(0, x'_1), max(0, x'_2), max(0, x'_3), max(0, x'_4))

 $\rightarrow u_1 \max(0, x_1') + u_2 \max(0, x_2') + u_3 \max(0, x_3') + u_4 \max(0, x_4')$

Nonlinearity

Linear

Class probabilities in binary classification and where to get them

Class probabilities

We need them to sample the next token!

Logits = $x_{out} \cdot W$

Probabilities

= **Softmax** $(x_{out} \cdot W)$

Class o

Class 1

Logits in binary case

A logit is

$$f(x,w) = xw^T$$

This is like a "class 1 affiliation score", while "class 0 score is" $-xw^T$.

$$xw^T = (x_1, \dots, x_D) \begin{pmatrix} w_1 \\ \vdots \\ w_D \end{pmatrix}$$

Let's use softmax

Softmax turns logits xw^T into probabilities. In binary case:

$$x \to (-xw^T, xw^T) \to \left(\frac{e^{-xw^T}}{e^{-xw^T} + e^{xw^T}}, \frac{e^{xw^T}}{e^{-xw^T} + e^{xw^T}}\right) =$$

$$= \left(whatever, \frac{1}{e^{-xw^T - xw^T} + 1} \right)$$
 This is class 1 probability

Class 1 probability in binary case

$$x \to \left(whatever, \frac{1}{e^{-xw^T - xw^T} + 1}\right) =$$

$$= \left(whatever, \frac{1}{1 + e^{-2xw^T}} \right)$$
 This is class 1

probability

Class 1 probability in binary case

$$\left(\begin{array}{c} whatever, \frac{1}{1+e^{-xw^T}} \\ \end{array}\right)$$
 This is class 1 probability

sigmoid function

Logistic regression

Logistic regression is a particular type of linear classifier:

Class 1 probability =
$$\sigma(w_0 + xw^T)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic regression

Logistic regression is a particular type of linear classifier:

Class 1 probability = $\sigma(w_0 + xw^T)$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

An important property:

$$1 - \sigma(z) = \sigma(-z)$$

It's class o probability

But what does class probability mean?

Token	p_pred
tired	0.3
happy	0.2
at	0.4
not	0.05

But what does class probability mean?

A data point is either class 0 or class 1, how can we say that it has probability 0.3?

A naïve version:

Take many data points with the same feature description as x. The ratio of class 1 among them is class 1 probability for x.

No, that doesn't work.

But what does class probability mean?

A data point is either class 0 or class 1, how can we say that it has

probability 0.3?

These three points are both class 1.

But in their neighborhoods, we have different probabilities of class 1:

Top: 0.5

Middle: 0.4

Bottom: 5/6

Does logistic regression predict correct probabilities?

Well, it tries, but it is not guaranteed to succeed.

Does logistic regression predict correct probabilities?

Does logistic regression predict correct probabilities?

This illustrates overfitting:

the model does a great job on training data, but the rule is unnatural and wouldn't generalize to test data.

Moreover, the model is **overconfident**

Choosing the right threshold

We classify x as class 1 if

$$f(x, w) \ge 0$$

Choosing the right threshold

We classify x as class 1 if

$$f(x, w) \ge \theta$$

Choosing the right threshold

We classify x as class 1 if

$$f(x, w) \ge \theta$$

We can use Precision-Recall curve to choose the right θ .

But we should do it on a separate **validation dataset**, not on the test data.

The magic square

Classified by the model as...

And it is...

Notation:

Class 1 = Nasty (**positive**)

Class 0 = Common cold (negative)

	Classified as: Class 1	Classified as: Class 0
Class 1	True Positive (TP)	False Negative (FN)
Class 0	False Positive (FP)	True Negative (TN)

Recall

Class 1 = Nasty virus (**positive**)

Class 0 = Common cold (negative)

$$\frac{TP}{TP + FN}$$

This metric is called recall

`	Classified as: Class 1	Classified as: Class 0
Class 1	True Positive (TP)	False Negative (FN)
Class o	False Positive (FP)	True Negative (TN)

Precision

Class 1 = Nasty virus (**positive**)

Class 0 = Common cold (negative)

$$\frac{TP}{TP + FP}$$

This metric is called **precision**

`	Classified as: Class 1	Classified as: Class 0
Class 1	True Positive (TP)	False Negative (FN)
Class o	False Positive (FP)	True Negative (TN)

AUC ROC

Can we score a classifier before we actually choose a threshold?

AUC ROC

Can we score a classifier before we actually choose a threshold?

$$AUC\ ROC = \frac{\#Pairs\ with\ \hat{p}(x_{class\ 0}) < \hat{p}(x_{class\ 1})}{\#All\ pairs\ (x_{class\ 0}, x_{class\ 1})}$$

*Pairs with $\hat{p}(x_{class\ 0}) = \hat{p}(x_{class\ 1})$ are counted as half a pair each.

How to train a model

Two parts of the answer

We need to somehow get w:

$$f(x, w) = xw^T$$

Part 1: Loss function. We're searching for an optimal w, and the loss function tells us **what** we want to optimize.

$$\mathcal{L}(X_{train}, y_{train}, w_{better}) > \mathcal{L}(X_{train}, y_{train}, w_{worse})$$

Part 2: Optimization method. Tells us how do we find the optimal w. [next week]

Loss functions for linear models

What is a loss function

 y_i - true answers, \hat{y}_i - predicted answers

A loss function

$$\mathcal{L}(y,\hat{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i,\hat{y}_i)$$

shows how much we deviate from the truth. And it should be **optimizable**.

Choosing the loss = choosing which types of mistakes are worse Usually, lower loss ~ better model

Predicting the value with a linear function:

$$\hat{y}_i = w_0 + x w^T$$

Loss

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i)$$

 y_i - true value

 \hat{y}_i - predicted value

Loss

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i)$$

 y_i - true value \hat{y}_i - predicted value

Sanity check: why not $\mathcal{L}(y_i, \hat{y}_i) = (y_i - \hat{y}_i)$?

 $\mathcal{L}(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$ is penalizing more harshly for large errors than

$$\mathcal{L}(y_i, \hat{y}_i) = |y_i - \hat{y}_i|$$

Why is it important?

 $\mathcal{L}(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$ is penalizing more

harshly for large errors than

$$\mathcal{L}(y_i, \hat{y}_i) = |y_i - \hat{y}_i|$$

Why is it important?

Less problems from outliers.

Regression losses

 y_i - true answers, \hat{y}_i - predicted answers

MSE (Mean Squared Error)

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MAE (Mean Absolute Error)

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|^2$$

Linear classification is... regression!

A linear model outputs not a class index, but a real number, a "class 1 score". We may suppose that > 0 means "class 1".

Attempt no. 1

Let class labels -1 and 1 be our target

Attempt no. 1

Let class labels -1 and 1 be our target

Loss

$$\mathcal{L}(y, \hat{y}) = \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i)$$

 y_i - true class labels

Attempt no. 1. MSE loss

Let class labels -1 and 1 be our target

MSE Loss

$$\mathcal{L}(y,\hat{y}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

 y_i - true class labels

$$\hat{y}_i$$
 - logits

Attempt no. 1

Let class labels -1 and 1 be our target

MSE Loss

$$\mathcal{L}(y,\hat{y}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

 y_i - true class labels

 \hat{y}_i – logits

 x_1 (the single feature)

Attempt no. 2: accuracy

Accuracy

$$\mathcal{L}(y, \hat{y}) = \sum_{i=1}^{N} \mathbb{I}[\hat{y}_i = y_i]$$

$$y_i$$
 - true class labels (1 or -1)
 $\hat{y}_i = xw^T$ - logits

Class 0 Class 1

Metric vs loss

Metric is our proxy of success

• If metric is optimizable, it's the loss

Otherwise, loss is a proxy of metric

Attempt no. 3: let's use probabilities!

Predicted class 1 probability $\hat{p} = \sigma(xw^T)$ are between 0 and 1.

Attempt no. 3: maximize the right probability

We maximize:

$$l(y, \hat{p}) = \begin{cases} \hat{p}_i, & \text{if } y_i = 1\\ 1 - \hat{p}_i, & \text{if } y_i = 0 \end{cases}$$

 y_i - true class labels \hat{p}_i - predicted probabilities

If the true class is 1, we want $P(class 1) = \hat{p}_i$ as large as possible.

If the true class is 0, we want $P(class 0) = 1 - \hat{p}_i$ as large as possible.

Attempt no. 3: logarithm is better

We maximize:

$$l(y_i, \hat{p}_i)$$

$$= \begin{cases} \log \hat{p}_i, & \text{if } y_i = 1\\ \log(1 - \hat{p}_i), & \text{if } y_i = 0 \end{cases}$$

 y_i - true class labels \hat{p}_i - predicted probabilities

If the true class is 1, we want $P(class 1) = \hat{p}_i$ as large as possible.

If the true class is 0, we want $P(class 0) = 1 - \hat{p}_i$ as large as possible.

Attempt no. 3: logarithm is better

We minimize:

$$l(y_{i}, \hat{p}_{i})$$

$$= \begin{cases} -\log \hat{p}_{i}, & if \ y_{i} = 1 \\ -\log(1 - \hat{p}_{i}), & if \ y_{i} = 0 \end{cases}$$

 y_i - true class labels \hat{p}_i - predicted probabilities

If the true class is 1, we want $P(class 1) = \hat{p}_i$ as large as possible.

If the true class is 0, we want $P(class 0) = 1 - \hat{p}_i$ as large as possible.

Attempt no. 3: logarithm is better

We maximize:

$$l(y_i, \hat{p}_i)$$

$$= \begin{cases} \log \hat{p}_i, & if \ y_i = 1\\ \log(1 - \hat{p}_i), & if \ y_i = 0 \end{cases}$$

 y_i - true class labels \hat{p}_i - predicted probabilities

Attempt no. 3: Cross-entropy loss

We minimize:

$$l(y_i, \hat{p}_i)$$

$$= \begin{cases} -\log \hat{p}_i, & if \ y_i = 1 \\ -\log(1 - \hat{p}_i), & if \ y_i = 0 \end{cases}$$

 y_i - true class labels \hat{p}_i - predicted probabilities

$$\mathcal{L}(y_i, \hat{p}_i) = -y_i \log \hat{p}_i - (1 - y_i) \log(1 - \hat{p}_i)$$

Dancing with probabilities

$$\mathcal{L}(y, \hat{p}) = -y_i \log \hat{p}_i - (1 - y_i) \log(1 - \hat{p}_i)$$

 $\hat{p}_{i,0}$ - predicted probability of class 0

 \hat{p}_{i1} - predicted probability of class 1

$$\begin{split} \mathcal{L}(y_{i}, \hat{p}_{i}) &= -(1 - y_{i}) \log(1 - \hat{p}_{i}) - y_{i} \log \hat{p}_{i} = \\ &= -\mathbb{I}[y_{i} = 0] \log \hat{p}_{i0} - \mathbb{I}[y_{i} = 1] \log \hat{p}_{i1} = \\ &= -\log \, \hat{p}_{i0}^{\, \mathbb{I}[y_{i} = 0]} - \log \, \hat{p}_{i1}^{\, \mathbb{I}[y_{i} = 1]} = \\ &= -\log \, \hat{p}_{i0}^{\, \mathbb{I}[y_{i} = 0]} \hat{p}_{i1}^{\, \mathbb{I}[y_{i} = 1]} = -\log(predicted \, prob \, of \, true \, class \, of \, x_{i}) \end{split}$$

$$\mathcal{L}(y, \hat{p}) = \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{p}_i) = -\sum_{i=1}^{N} (1 - y_i) \log(1 - \hat{p}_i) + y_i \log \hat{p}_i =$$

$$= -\sum_{i=1}^{N} \log \hat{p}_{i0}^{\mathbb{I}[y_i=0]} \hat{p}_{i1}^{\mathbb{I}[y_i=1]} = -\log \prod_{i=1}^{N} \hat{p}_{i0}^{\mathbb{I}[y_i=0]} \hat{p}_{i1}^{\mathbb{I}[y_i=1]} =$$

$$= -\log \prod_{i=1}^{N} predicted prob of true class of x_i$$

$$\mathcal{L}(y, \hat{p}) = \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{p}_i) = -\sum_{i=1}^{N} (1 - y_i) \log(1 - \hat{p}_i) + y_i \log \hat{p}_i =$$

$$= -\sum_{i=1}^{N} \log \hat{p}_{i0}^{\mathbb{I}[y_i=0]} \hat{p}_{i1}^{\mathbb{I}[y_i=1]} = -\log \prod_{i=1}^{N} \hat{p}_{i0}^{\mathbb{I}[y_i=0]} \hat{p}_{i1}^{\mathbb{I}[y_i=1]} =$$

$$= -\log \prod_{i=1}^{N} \mathbb{P}_{pred}\{x_i \text{ has class } y_i\}$$

$$\mathcal{L}(y,\hat{p}) = -\log \prod_{i=1}^{N} \mathbb{P}_{pred}\{x_i \text{ has class } y_i\} =$$

$$= -\log(\mathbb{P}_{pred}\{(x_1 \ has \ class \ y_1) \ \& \dots \& \ (x_N \ has \ class \ y_N)\})$$

An important assumption: different (x_i, y_i) are independent.

Loss functions for multiclass classification: an informal introduction

Multiclass classification reminder (with a twist)

Probabilities

Logits

Mind the transpose

$$Logits = x_{out} \cdot W^T$$

Probabilities

= Softmax $(x_{out} \cdot W^T)$

Multiclass classification reminder (with a twist)

$$Logits = x_{out} \cdot W^T$$

Probabilities = **Softmax**
$$(x_{out} \cdot W^T)$$

Binary:

$$\log \hat{p}_{true\ class} \rightarrow max$$

Multiclass:

$$\log \hat{p}_{true\ class} \rightarrow max$$

Multiclass classification reminder (with a twist)

$$Logits = x_{out} \cdot W^T$$

Probabilities = **Softmax**
$$(x_{out} \cdot W^T)$$

Binary:

$$y_i \log \hat{p}_i + (1 - y_i) \log(1 - \hat{p}_i)$$

Multiclass:

$$y_{i1} \log \hat{p}_{i1} + y_{i2} \log \hat{p}_{i2} + \dots + y_{iC} \log \hat{p}_{iC}$$

 $y_{ij} = \mathbb{I}[y_i = j]$

Probabilities Softmax Logits x_{out} Hidden size

Log-loss for two classes

$$\mathcal{L}(y, \hat{p}) = \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{p}_i) = -\sum_{i=1}^{N} (1 - y_i) \log(1 - \hat{p}_i) + y_i \log \hat{p}_i =$$

$$= -\sum_{i=1}^{N} \log \hat{p}_{i0}^{\mathbb{I}[y_i=0]} \hat{p}_{i1}^{\mathbb{I}[y_i=1]} = -\log \prod_{i=1}^{N} \hat{p}_{i0}^{\mathbb{I}[y_i=0]} \hat{p}_{i1}^{\mathbb{I}[y_i=1]} =$$

$$= -\log \prod_{i=1}^{N} \mathbb{P}_{pred}\{x_i \text{ has class } y_i\}$$

Cross-entropy loss for >2 classes

$$\mathcal{L}(y, \hat{p}) = \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{p}_i) = -\sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{p}_{ij} =$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{C} \log \hat{p}_{ij}^{\mathbb{I}[y_i = j]} = -\log \prod_{i=1}^{N} \prod_{j=1}^{C} \hat{p}_{ij}^{\mathbb{I}[y_i = j]} =$$

 $= -\log(\mathbb{P}_{pred}\{(x_1 \ has \ class \ y_1) \ \& \dots \& \ (x_N \ has \ class \ y_N)\})$

Practice time!

Missing value imputation

- Numerical features: mean, median
- Categorical features: most frequent value, additional "missing" category
- With any features:
 - Create a new "this feature missing" indicator feature
 - Predict from other features. Be extremely careful with this! At the very least, train your classifier on separate data

Use log of feature or create additional indicator that the income is very large

It's actually a categorical variable