11	7b	_	
	'	The velocity of a particle moving along the x-axis is given by $\dot{x} = 8 - 8e^{-2t}$, where t is	1
		the time in seconds and x is the displacement in metres.	
		(i) Show that the particle is initially at rest.	1
		(ii) Show that the acceleration of the particle is always positive.	1
		(iii) Explain why the particle is moving in the positive direction for all $t > 0$.	2
		(iv) As $t \to \infty$, the velocity of the particle approaches a constant.	1
		Find the value of this constant.	l
		(v) Sketch the graph of the particle's velocity as a function of time.	2
		means that it is moving in the State Mo	ean:

.. particle initially at rest.

- (ii) $\ddot{x} = 16e^{-2t}$ As $e^{-2t} > 0$, for all values of t, then \ddot{x} is always positive.
- (iii) Since particle is initially at rest (from (i)) and always a positive acceleration applied (from (ii)), then the velocity must be positive for all t > 0. This

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

In better responses, candidates linked the particle's initial velocity of 0 with its positive acceleration to explain the movement in the positive direction then linked the limiting velocity to sketch velocity against time.

- (i) Most candidates substituted t = 0 to show that $\dot{x} = 0$. Some solved $\dot{x} = 0$ to show that t = 0 and then used the fact that the particle does not stop again to help answer part (iii).
- (ii) In many responses candidates differentiated incorrectly, giving -16e^{-2t} and crossing out the negative sign in order to answer the question. Others gave e^{-3t} or e^{-2t-1}.
- (iii) In better responses, candidates described the motion by linking the concepts in parts (i) and (ii). Others successfully solved $8 8e^{-2t} > 0$ to show that t > 0, while some struggled with negative expressions and negative powers to show that t < 0. In many responses candidates claimed that positive acceleration indicates positive velocity. Many candidates integrated to find x and claimed that positive displacement indicated movement in the positive direction.

HSC Worked Solutions projectmaths.com.au

- (iv) This part was done well especially when $8-8e^{-2t}$ was written as $8-\frac{8}{e^{2t}}$.
 - A significant number relied on substituting values of t and observing the trend.
- (v) In better responses, candidates clearly showed the curve increasing from the origin, concave down and approaching a clearly-drawn asymptote. Others resorted to completing a table of values and plotting points, rather than using their previous responses.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/