Computer-Aided VLSI System Design Innovus Lab (3/3)

TA: 朱怡蓁 r10943012@ntu.edu.tw

Data Preparation

- 1. Extract data from the folder Innovus_Lab.
- 2. The extracted directory contains
 - design data
 - A. CHIP.v
 - B. CHIP.ioc
 - C. CHIP.sdc
 - D. CHIP_scan.sdc
 - celtic
 - A. fast.cdB
 - B. slow.cdB
 - tsmc13 8lm.cl
 - A. icecaps_8lm.tch
 - gds
 - A. tsmc13gfsg_fram.gds
 - B. tpz013g3_v2.0.gds
 - lef
 - A. tsmc13fsg_8lm_cic.lef
 - B. tpz013g3_8lm_cic.lef
 - C. RF2SH64x16.vclef
 - D. antenna 8.lef
 - lib
 - A. slow.lib
 - B. fast.lib
 - C. tpz013g3wc.lib
 - D. tpz013g3lt.lib
 - E. RF2SH64x16_slow_syn.lib
 - F. RF2SH64x16_fast@0C_syn.lib
 - streamOut.map
 - tsmc013.capTbl
 - mmmc.view
 - addIoFiller tpz.cmd

Introduction

In this lab, you will learn how to use Innovus to run the APR flow, and generate the required data for demonstration.

Clock Tree Synthesis (CTS)

- 1. Start Innovus:
 - 1.1 % innovus (remember do not use background execution)
 - 1.2 Fail to open Innovus:
 - % source /usr/cad/innovus/CIC/license.cshrc
 - % source innovus.cshrc

(In this class, source innovus.cshrc from NTU COOL instead)

- 2. Restore file
 - \triangleright Open File \rightarrow Restore Design...
 - ➤ Choose ◆ Innovus
- 3. Restore Design File: DBS/place
- 4. Create new sdc files for CTS (not execute in innovus)
 - 4.1 Copy CHIP.sdc and CHIP_scan_ideal.sdc (in the design_data directory)
 - > % cp design data/CHIP.sdc CHIP cts.sdc
 - > % cp design_data/CHIP_scan_ideal.sdc CHIP_scan_cts.sdc
 - 4.2 Remove **set_clock_latency** & **set_clock_uncertainty** that estimated clock network delay
 - 4.3 Remove set ideal network

```
set sdc_version 1.2
current_design CHIP
create_clock [get_ports {CLK}] -name CLK1 -period 10 -waveform {0 5}
set_case_analysis 0 [get_ports {SCAN_EN}]
set_max_fanout 15 [current_design]
set_max_transition 2.7 [current_design]
#set_clock_latency 2 [get_clocks {CLK1}]
set_input_delay
                         1 -clock CLK1 \
                         [remove_from_collection [all_inputs] [get_ports CLK]]
1 -clock CLK1 [all_outputs]
set output delay
set drive 0.1 [all inputs]
set load -pin load 1 [all outputs]
set_false_path -from [get_ports {DoDCT}]
set_false_path
set_false_path
                                           RESET
                            [get_ports
                                           {Mode}
```

- 5. Update sdc file
 - 5.1 innovus #> update_constraint_mode -name func_mode -sdc_files design data/CHIP cts.sdc
 - 5.2 innovus #> update constraint mode -name scan mode -sdc files

design data/CHIP scan cts.sdc

- 6. Create spec file for CTS
 - 6.1 innovus #> create_ccopt_clock_tree_spec -file ./ccopt.spec
 - 6.2 innovus #> source ./ccopt.spec
 - 6.3 innovus #> ccopt design -cts

```
# Skew group to balance non generated clock:i_clk in timing_config:func_mod create_ccopt_skew_group -name i_clk/func_mode -sources i_clk -auto_sinks set_ccopt_property include_source_latency -skew_group i_clk/func_mode true set_ccopt_property extracted_from_clock_name -skew_group i_clk/func_mode i_set_ccopt_property extracted_from_constraint_mode_name -skew_group i_clk/fuset_ccopt_property extracted_from_delay_corners -skew_group i_clk/func_mode check_ccopt_clock_tree_convergence
```

7. Find DRC error

7.1 Create Routing Blockage

- ➤ Block the place appear DRC violation
- > Select the blockage and press q to set Routing Layers and Cut Layers

- 7.2 innovus #> ccopt_design -cts
- 8. Save file
 - \triangleright Open File \rightarrow Save Design...
 - ➤ Choose ◆ Innovus
 - ➤ File Name: DBS/cts
- 9. CCOpt clock tree debugger
 - ➢ Open Clock → CCopt Clock
 Tree Debugger...
 - Click OK button

- 10. In-Place Optimization After Clock Tree Synthesis
 - 10.1 Open *Timing* → *Report Timing*...
 - 10.2 Perform First Encounter trial route to model the interconnection RC effects
 - Design Stage post-CTS
 - ➤ Analysis Type Setup
 - Click OK button

10.3 After CTS, further timing optimization is performed to meet timing constraints if there is negative timing slack or DRVs. Open $ECO \rightarrow Optimize$ Design...

10.4 Perform post-CTS IPO

- Design Stage post-CTS
- Optimization Type
 - Setup
 - Design Rule Violations
 - Max Cap
 - Max Tran
 - Max Fanout

> Click OK button

10.5 Verify if the hold time constraint is satisfied or not. Open $Timing \rightarrow Report\ Timing...$

- Design Stage post-CTS
- ➤ Analysis Type Hold
- Click OK button
- 10.6 If hold time slack is negative, open $ECO \rightarrow Optimize Design...$
- 10.7 Perform post-CTS IPO
 - Design Stage post-CTS
 - Optimization Type
 - Hold
 - Design Rule Violations
 - Max Cap

- Max Tran
- Max Fanout
- Click OK button

10.8 See timing reports in **timingReports** directory. For detail path report, see

CHIP_postCTS_reg2reg.tarpt.gz (setup time check) and

CHIP postCTS reg2reg hold.tarpt.gz (hold time check).

DRV violations report files: *.cap.gz , *.fanout.gz , and *.tran.gz

- 11. Save file
 - \triangleright Open File \rightarrow Save Design...
 - ➤ Choose ◆ Innovus
 - File Name: DBS/cts

Add Tie Hi/Lo cell

- 1. Open $Place \rightarrow Tie HI/LO \rightarrow Add...$
- 2. Click Select button next to Cell Names
- 3. Choose one **TIEHI** and one **TIELO**, click OK button
- 4. Click OK button

Routing

- 1. Open $Route \rightarrow NanoRoute \rightarrow Route$
- 2. Nanoroute can prevent crosstalk effects and fix antenna rule violations, also it routes design to meet timing constraints
 - 2.1 Routing Phase
 - ➤ Add ◆ Optimize Via and ◆ Optimize Wire
 - 2.2 Concurrent routing features
 - ➤ Fix Antenna
 - ➤ Insert Diodes
 - Timing Driven
 - SI Driven
 - 2.3 Click OK button

Diode Cell Name: ANTENNA

Effort: 10

If Innovus crash, cancel

Timing Driven.

- 3. Save file
 - \triangleright Open File \rightarrow Save Design...
 - ➤ Choose ◆ Innovus
 - ➤ File Name: DBS/route
- 4. In-Place Optimization After Detail Route
 - 4.1 Open *Tools* \rightarrow *set Mode* \rightarrow *Specify Analysis Mode...*
 - ➤ Timing Mode ◆ On-Chip Variation
 - ➤ **CPPR**
 - Click OK button

- 4.2 Open *Timing* → *Report Timing*...
- 4.3 Perform First Encounter trial route to model the interconnection RC effects
 - ➤ Design Stage Post-Route
 - ➤ Analysis Type Setup
 - Click OK button

4.4 Further timing optimization is performed to meet timing constraints if there

is negative timing slack or DRVs. Open ECO → Optimize Design...

- 4.5 Perform post-Route IPO
 - ➤ Design Stage post-Route
 - Optimization Type
 - Setup
 - Design Rule Violations
 - Max Cap
 - Max Tran
 - Max Fanout
 - Click OK button

- 4.6 Verify if the hold time constraint is satisfied or not. Open $Timing \rightarrow Report$ Timing...
 - Design Stage Post-Route
 - Analysis Type Hold
 - Click OK button
- 4.7 If hold time slack is negative, open $ECO \rightarrow Optimize Design...$
- 4.8 Perform post-Route IPO
 - ➤ Design Stage post-Route
 - Optimization Type
 - Hold
 - Design Rule Violations
 - Max Cap
 - Max Tran
 - Max Fanout
 - Click OK button

- 5. Save file
 - \triangleright Open File \rightarrow Save Design...
 - ➤ Choose ◆ Innovus
 - File Name: DBS/route

Add Core Filler cells

- 1. Open Place \rightarrow Physical Cell \rightarrow Add Filler...
- 2. Add core filler to improve electric effects of NWELL and PWELL:
 - 2.1 Click Select button
 - 2.2 Select all core filler cells
 - 2.3 Click Add button
 - 2.4 Click Close button
- 3. Click OK button


```
*INFO: Adding fillers to top-module.

*INFO: Added 17 filler insts (cell FILL64 / prefix FILLER).

*INFO: Added 50 filler insts (cell FILL32 / prefix FILLER).

*INFO: Added 156 filler insts (cell FILL16 / prefix FILLER).

*INFO: Added 553 filler insts (cell FILL8 / prefix FILLER).

*INFO: Added 1319 filler insts (cell FILL4 / prefix FILLER).

*INFO: Added 1438 filler insts (cell FILL2 / prefix FILLER).

*INFO: Added 1494 filler insts (cell FILL1 / prefix FILLER).

*INFO: Total 5027 filler insts added - prefix FILLER (CPU: 0:00:00.3).

For 5027 new insts, *** Applied 2 GNC rules (cpu = 0:00:00.0)
```

Verify Geometry & Connectivity & Process Antenna

- 1. Verify geometry
 - 1.1 innovus # > verify drc
- 2. Verify connectivity
 - 2.1 Open Verify → Verify Connectivity ...
 - 2.2 Net Type ♦ All
 - 2.3 Nets All

If there are dangling wires, use hot key T (shift + t) to fix it.

- 2.4 Click OK button
- 3. Verify process antenna
 - 3.1 Open Verify → Verify Process Antenna...
 - 3.2 Click OK button

Output Data

```
1. Open File \rightarrow Save \rightarrow Netlist...
```

- ➤ Include Intermediate Cell Definition
- ➤ •Include Leaf Cell Definition
- ➤ Netlist File: CHIP pr.v
- Click OK button
- 2. Open $File \rightarrow Save Design...$
 - ➤ Choose ◆ Innovus
 - File Name: DBS/final
- 3. In innovus command prompt, execute the following commands:
 - setAnalysisMode -analysisType bcwc

```
- write_sdf -max_view av_func_mode_max \
    -min_view av_func_mode_min \
    -edges noedge \
    -splitsetuphold \
    -remashold \
    -splitrecrem \
    -min_period_edges none \
    CHIP.sdf
```

- 4. In innovus command prompt, execute the following commands:
 - setStreamOutMode -specifyViaName default -SEvianames false virtualConnection false -uniquifyCellNamesPrefix false -snapToMGrid false -textSize 1 -version 3

Checkpoints

1. Take a screenshot of the CCOpt clock tree debugger view.

2. Take a screenshot after routing (in physical view) and show post-route setup time and hold time analysis report (ensure the slack of setup time and the slack of hold time >= 0)

timeDesign Summary											
Setup views included av_func_mode_max	ded:										
+ Setup mode		all	regi	2reg	+ in2reg	+ reg2out	+ in2out	-++ default			
WNS (ns): TNS (ns): Violating Paths: All Paths:		0.000 0	0.0	889 900 9	5.385 0.000 0 771	0.373 0.000 0	N/A N/A N/A N/A	0.000 0.000 0			
+	+					+ Total		-,			
	Nr	Nr nets(terms)			st Vio +-	Nr nets(terms)					
max_cap max_tran max_fanout max_length		0 (0) 0 (0) 0 (0) 0 (0)		0.000		0 (0) 0 (0) 17 (17) 0 (0)					
Density: 75.612% Total number of g	litch	violation	ns: 0								

Hold views included: av_func_mode_min_av_s	can_mode_	min				
Hold mode	all	reg2reg	in2reg	reg2out	in2out	default
WNS (ns): TNS (ns): Violating Paths:	0.152 0.000 0	0.152 0.000	0.681 0.000 0	1.971 0.000	7.922 0.000 0	0.000 0.000
Violating Paths: All Paths:	5436	3450	2636	13	12	0

- 3. **Due Tuesday, Nov. 28, 19:00**
- 4. Submit to NTU COOL in pdf format.