机器学习

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树

点重

- ●划分选择
- ●剪枝处理

难点

- ●划分选择
- ●剪枝处理

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆ 剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树

决策树 基于树结构来进行预测

根结点 包含 样本全集

内部结点 每个内部节点 对应 一个属性测试

叶结点 每个叶节点对应一个决策结果

决策

- 口决策过程中,提出的每个判定问题 都是对某个属性的"测试"
 - ✓ 每个"测试"考虑的范围:
 限定在上次决策结果的范围之内
 - ✓ 每个"测试"结果:

导出 最终结论 或 进一步的判定问题

决策

- 口决策过程中,提出的每个判定问题 都是对某个属性的"测试"
- □从根结点到每个叶结点的路径, 对应了 一个判定测试序列
- □决策过程的最终结论 对应了 我们所希望的判定结果

决策

- 口决策过程中,提出的每个判定问题 都是对某个属性的"测试"
- □从根结点到每个叶结点的路径, 对应了 一个判定测试序列
- □决策过程的最终结论 对应了 我们所希望的判定结果

决策树学习的目的 是为了产生一棵泛化能力强,即处理未见示例能力强的决策树

决策树学习: 递归算法

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结点** node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

三种情况导致

- 递归返回
- 标记 叶结点

决策树学习: 递归算法

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结**点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

三种情况导致

- 递归返回
- 标记 叶结点

1. 当前结点包含的样本,实际上全部属于同一类别,无需划分标记 叶结点

决策树学习: 递归算法

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结**点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 0: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; ret
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

三种情况导致

- 递归返回
- 标记 叶结点
- 2. 结点包含的样本,不同类别,
- 所有样本在所有属性值相同
- 当前属性集为空,无法划分
- ▶ 当前结点 标记为叶结点
 - ✓利用 当前结点的后验分布

即类别标记为:该结点 所含

样本 最多的类别

后验分布:已观测的分布/知识

决策树学习: 递归算法

三种情况导致递归返回

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结**点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中土 a_* 上取值为 a_*^v 的样本子第
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for
- 输出: 以 node 为根结点的一棵决策树

- 3. 当前结点包含样本集为空, 不能划分, 把当前结点标记 为叶结点
- ✓ 将父结点的样本分布 作 为当前结点的 先验分布
- ✓ 类别 标记为: 其父结点 所含样本 最多的类别

先验分布: 当前样本集分 布未观测到, 利用父结点 分布推测当前结点分布

决策树学习: 递归算法

三种情况导致递归返回

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结**点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点,其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

- 1. 同一类别,无需划分
 - 2. 不同类别, 但是
 - 属性集:取值相同或空, 不能划分
 - ·标记为叶结点,类别为 该结点所含样最多的类 别
 - 3. 样本集为空,不能划分
 - · 标记为叶结点,类别为 父结点所含样本最多的 类别

◆完全决策树:6个属性,每个属性有3个属性值,叶子结点数为6!*3⁶

◆决策树学习算法采用 选择部分属性 和 剪枝 的技术, 得到最终的决策树

坏瓜

好瓜

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ●信息增益、增益率、基尼指数
 - ◆ 剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树

划分选择 — 样本纯度

- 口决策树学习的目标: 提升 结点纯度
 - 一般而言,随着划分过程不断进行,我们希望决策 树的分支结点所包含的样本,尽可能属于同一类别, 即结点的"纯度"越来越高
 - ◆ 信息熵度量样本集合纯度最常用的一种指标
 - 划分选择:信息增益、增益率
 - ◆ 基尼值也度量样本集合纯度
 - 划分选择:基尼指数

信息熵

- ◆ 度量样本集合纯度最常用的一种指标
- ◆ 当前样本集合D 中,第 k 类样本所占的比例为 p_k (k=1,2,...,|Y|) ,则 D 的信息熵定义为

$$\mathbf{Ent}(\mathbf{D}) = -\sum_{k=1}^{|\mathbf{Y}|} p_k \cdot \log_2 p_k$$

• 约定:若 p=0,则 $p \log_2 p=0$

信息熵

- ◆ 度量样本集合纯度最常用的一种指标
- ◆ 当前样本集合D 中,第 k 类样本所占的比例为 p_k (k=1,2,...,|Y|) ,则 D 的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathbf{Y}|} p_k \cdot \log_2 p_k$$

- 约定: 若 p=0, 则 $p \log_2 p=0$
- ◆ 信息熵的最小值为 0 ,最大值为 $\log_2|Y|$
- ◆ 信息熵值越小,则当前样本集合 D的纯度越高。
 即,当前样本集合 D,属于同一类别的可能性越大

/	4 17	Let date		()	riole Jarr	A. I Da	1-1
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|Y|} p_k \cdot \log_2 p_k$$

• 数据集包含17个训练样本

$$|Y|=2$$

正例 $p_1 = 8/17$, 反例 $p_2 = 9/17$,

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|Y|} p_k \cdot \log_2 p_k$$

• 数据集包含17个训练样本

$$|Y|=2$$

正例 $p_1 = 8/17$,反例 $p_2 = 9/17$,

◆根结点的信息熵

Ent(D) =
$$-\sum_{k=1}^{2} p_k \cdot \log_2 p_k = -\left(\frac{8}{17}\log_2 \frac{8}{17} + \frac{9}{17}\log_2 \frac{9}{17}\right) = 0.998$$

- 信息熵值越小,纯度越高,属于同一类别可能性越大
- 信息熵大, 纯度低

划分选择

□信息熵: 度量纯度最常用的一种指标

- □属性划分 的方法
 - ●信息增益
 - ●増益率

- ◆ 离散属性 a 有 V 个可能的取值 $\{a^1, a^2, ..., a^V\}$
 - 离散属性 a= 纹理 有 V=3 个可能的取值 $\{a^1 = 清晰, a^2 = 稍糊, a^3 = 模糊 \}$

- ▶ 离散属性 a 有 V 个可能的取值 $\{a^1, a^2, ..., a^V\}$
 - 用属性a对样本集D进行划分: 则会产生 V 个分支结点,其中,第 v 个分支结点 包含了 D 中所有在属性 a 上取值为 a^{ν} 的样本, 记为 *D*"。

信息增益
$$Gain(D,a)=Ent(D)-\sum_{\nu=1}^{V}\frac{|D^{\nu}|}{|D|}\cdot Ent(D^{\nu})$$

- ▶ 离散属性 a 有 V 个可能的取值 $\{a^1, a^2, ..., a^V\}$
 - 用属性a对样本集D进行划分: 则会产生 V 个分支结点,其中,第 ν 个分支结点 包含了 D 中所有在属性 a 上取值为 a^{ν} 的样本, 记为 **D**^v。

信息增益
$$Gain(D,a)=Ent(D)-\sum_{\nu=1}^{V}\frac{|D^{\nu}|}{|D|}\cdot Ent(D^{\nu})$$

信息增益 为分支结点权重

说明:样本数越多的分支结点,对决策树的影响越大

◆ 离散属性 a 有 V 个可能的取值 $\{a^1, a^2, ..., a^V\}$,用属性 a 对样本集D进行划分,获得信息增益

Gain
$$(D, a)$$
 = Ent (D) - $\sum_{v=1}^{V} \frac{|D^{v}|}{|D|}$ · Ent (D^{v})

- ◆信息增益越大,则使用属性a来进行划分,所获得的纯度提升越大。
- ◆ 当前样本集合D中,同一类的样本比例,增加的最快, 更有利于样本集合D中,所有样本趋于同一类
- □ ID3决策树学习算法,以信息增益为准则来选择划分属性

- ▲属性 "色泽"为例,其对应的3个数据子集分别为D¹(色泽=青绿), D²(色泽=乌黑), D³(色泽=浅白)
- ◆用"色泽"划分后,所获得的3个分支结点的信息熵为:

Ent(
$$D^1$$
) = $-\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000$
Ent(D^2) = $-\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$
Ent(D^3) = $-\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722$

◆属性"色泽"的信息增益为

$$Gain(D, 色泽) = Ent(D) - \sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|} \cdot Ent(D^{\nu})$$

$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right) = 0.109$$

◆类似的,可计算所有属性的信息增益为

Gain(
$$D$$
,色泽) = Ent(D) $-\sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|} \cdot \text{Ent}(D^{\nu}) = 0.109$
Gain(D ,根蒂) = 0.143 Gain(D ,敲声) = 0.141 Gain(D ,纹理) = 0.381
Gain(D ,脐部) = 0.289 Gain(D ,触惑) = 0.006

◆类似的,可计算所有属性的信息增益为

Gain(
$$D$$
, 色泽) = Ent(D) $-\sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|} \cdot \text{Ent}(D^{\nu}) = 0.109$
Gain(D , 根蒂) = 0.143 Gain(D , 敲声) = 0.141 Gain(D , 纹理) = 0.381
Gain(D , 脐部) = 0.289 Gain(D , 触感) = 0.006

- ◆属性"纹理"的信息增益最大,被选为划分属性
 - 基于"纹理",对根结点进行划分
 - 各分支结点,包含了对应的样本子集。

信息增益 越大结点的 纯度提升 越大

◆对每个分支结点,计算其信息增益,做进一步划分, 得到最终的决策树 ______

存在的问题

- ◆若把"编号"作为划分属性,将产生17个分支,每个分支结点仅包含一个样本,则信息增益为0.998,远大于其他属性的信息增益,这些分支结点的纯度己达最大。
- ◆ 这样的决策树,不具有泛化能力,无法对新样本进行有 效预测。

存在的问题

- ◆若把"编号"作为划分属性,将产生17个分支,每个分支结点仅包含一个样本,则信息增益为0.998,远大于其他属性的信息增益,这些分支结点的纯度己达最大。
- ◆ 这样的决策树,不具有泛化能力,无法对新样本进行有 效预测。

信息增益:对属性值数目较多的属性,有所偏好

- 编号——有17个属性值,纹理——有3个属性值
- 信息增益 偏好 编号。

存在的问题

- ◆若把"编号"作为划分属性,将产生17个分支,每个分支结点仅包含一个样本,则信息增益为0.998,远大于其他属性的信息增益,这些分支结点的纯度己达最大。
- ◆ 这样的决策树,不具有泛化能力,无法对新样本进行有效预测。

信息增益: 对 属性值 数目 较多 的属性, 有所偏好

◆为减少这种偏好可能带来的不利影响,著名的C4.5决策树算法,不直接使用信息增益,使用"增益率"来选择 最优 划分属性。

划分选择

- □信息熵:度量纯度最常用的一种指标
- □属性划分 的方法
 - ●信息增益
 - ●増益率

划分选择 —增益率

增益率
$$Gain_ratio(D,a) = \frac{Gain(D,a)}{IV(a)}$$

- ◆ IV(a) 称为属性 a 的 "固有值"
 - 属性 a 的属性值数目 越多,则IV(a)的值通常就越 大,则增益率越小

划分选择 —增益率

增益率

Gain_ratio
$$(D,a) = \frac{\operatorname{Gain}(D,a)}{\operatorname{IV}(a)}$$

- ◆ IV(a) 称为属性 a 的 "固有值"
 - 属性 a 的属性值数目 越多,则 IV(a)的值通常就越大,则 增益率 越小

口存在的问题

增益率:对属性值数目较少的属性,有所偏好

- 编号有17个属性值,纹理有3个属性值
- 增益率偏好 纹理

划分选择 —增益率

口存在的问题

信息增益:对属性值数目较多的属性,有所偏好增益率:对属性值数目较少的属性,有所偏好

- ◆ C4.5决策树,不直接选择增益率最大的候选划分属性, 使用 一个启发式 选择最优划分属性:
 - 1. 先,从候选划分属性中找出信息增益高于平均水平的属性
 - 2. 再,从中选取增益率最高的作为最优划分属性

划分选择

- □决策树学习的目标: 提升 结点纯度
 - ◆ 信息熵 度量样本集合 纯度
 - 划分选择:信息增益、增益率

- ◆ 基尼值 度量样本集合 纯度
 - 划分选择:基尼指数

划分选择 —基尼指数

数据集D的纯度可用"基尼值"来度量

Gini
$$(D) = \sum_{k=1}^{|Y|} \sum_{k \neq k'} p_k \cdot p_{k'} = 1 - \sum_{k=1}^{|Y|} p_k^2$$

- 从D中随机抽取两个样本, 其类别标记不一致的概率
- · 基尼值 Gini(D) 越小,当前样本集D,纯度越高

属性a的基尼指数

$$Gini_index(D,a) = \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \cdot Gini(D^{v})$$

- ◆选择使划分后基尼指数最小的属性作为最优划分属性
- ◆ CART, 采用"基尼指数"来选择划分属性

第四章 决策树

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆ 剪枝处理
 - 预 剪 枝 、 后 剪 枝
- 3. 连续与缺失值
- 4. 多变量决策树

未剪枝决策树

◆完全决策树:6个属性,每个属性有3个属性值,叶子结点数为6!*3⁶

为什么剪枝

- ◆ 决策树学习中,为了尽可能正确分类训练样本,结点 划分过程将不断重复,有时会造成决策树分支过多
- ◆ 决策分支过多,把训练集自身的一些特点,当做所有数据都具有的一般性质,导致过拟合
- ◆ "剪枝",即主动去掉一些分支,降低过拟合的风险
- □剪枝的基本策略
 - ●预剪枝
 - ●后剪枝

- ◆剪枝过程中,如何判断 决策树泛化性能 是否提升? 该不该 剪枝?
- ◆<mark>留出法:</mark> 预留一部分数据用作"验证集",进行性能 评估,决定是否剪枝

- ◆ 生成决策树时,对每个结点在划分前,先估计泛化性能是不提高,若划分后:
 - 泛化性能 不能提升
 - 泛化性能 提升

- ◆ 生成决策树时,对每个结点在划分前,先估计泛化性能是不提高,若划分后:
 - 泛化性能 不能提升,则 停止划分
 - ✓ 当前结点,标记为叶结点
 - ✓ 类别标记为: 训练样例数最多的类别
 - 泛化性能 提升, 能提高验证集精度, 则 划分
 - ✓ 对划分后的属性,执行同样判断

验	
证	
隹	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 岩绿	稍硬 蜷挺 缩 蜷	沉闷 清脆 浊响	稍糊 模糊 模糊	稍凹 坦坦 阻陷	硬滑 硬滑 软粘 硬滑	否否否否

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

1

7个瓜, 标记: 好瓜

验证集精度

划分前 42.9%

结点1

- 不划分/划分前,该结点为叶结点,类别标记为好瓜。
- 使用验证集进行验证, 3个好瓜(标记正确), 验证集精度为 42.9%(3/7)

验证集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白	稍 艇 機 機 機 機	沉闷 清脆 浊响	稍糊 模糊 模糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否 否 否 否

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- · 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度

划分后?

验	
证	
隹	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12		飛蜷 硬挺 蜷缩		一稍糊 模糊	### ### ### ###	一 便滑 硬滑 软料	否否否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度

划分后?

结点2

- 包含样本 4,5,13
- 其中,2个好瓜(4,5),结点2标记为"好瓜"。

剪枝处理 — 预剪枝

验	
证	
隹	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 浅绿	稍蜷 硬缩 蜷缩	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度

划分后?

结点3

• 包含样本 8,9。标记为"好瓜"。

剪枝处理 — 预剪枝

验	
证	-
集	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿白鸟黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11 12	浅白 浅白	硬挺 蜷缩	清脆 浊响	模糊 模糊	平坦 平坦	硬滑 软粘	否否
13	青绿	梢蜷	浊啊	梢糊	凹陷	嫂 渭	

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度

划分后?

结点4

包含样本 11,12。标记为"坏瓜"。

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好
验、工	4 5 8	青绿 白 吳	蜷缩 蜷缩	沉闷 浊响 浊响	清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
证	9 11 12 13	乌黑	稍 梗 蜷 и 蜷 и 蜷 и 蜷 и	沉闷 清脆 浊响	稍糊 模糊糊糊糊糊糊糊糊糊糊糊	稍四 坦坦 四陷	便 便 領 料 料 滑 料 滑	在 在 在

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度

划分后 71.4%

- 若划分, 4,5,8,11,12 标记正确
- 验证集精度为 5/7×100%=71.4%

验	
证	
隹	

- 编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩	沉闷 浊响 浊响	清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅 月 白 日 年 景	稍硬蜷缩蜷	沉闷 清脆 浊响	稍糊 模糊 模糊	稍凹 平坦 凹陷	硬滑 硬滑 软 积	否否否否

- 选取"脐部"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度

划分前 42.9%

7个瓜, 标记: 好瓜

剪枝处理 预剪枝

验	
证	
集	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿白鸟黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑	稍疑絕緒	沉闷 清脆 浊响	稍糊 模糊 模糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

- 选取"色泽"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

色泽=? 验证集精度

划分前:71.4% 划分后:57.1%

预剪枝决策

验证集精度下降 禁止划分

剪枝处理 — 预剪枝

验 证 集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 浅绿	稍 夭 卷 卷 卷 卷 卷 卷	沉闷 清脆 浊响	稍糊 模糊 稍糊	稍凹 平坦 凹陷	硬滑 硬滑 软 硬滑	否否否否

- 选取"根蒂"划分训练集
- 计算 划分前(该结点为叶结点)
- 计算划分后 的验证集精度
- 判断是否需要划分。

验证集精度 根 蒂 = ?

划分前:71.4% 划分后:71.4%

预剪枝决策

划分不能提升验证集精度

禁止划分

剪枝处理 预剪枝

	编号	色泽
验	4	青绿
3四	5	浅白
\	8	乌黑
证了	9	乌黑
	11	浅白
集	12	浅白
7	13	吉绿

所含训练样例 己属于同一类, 不再进行划分

验
证
隹

_ `	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
	9 11 12 13	乌浅浅青	稍 硬 蜷 и 蜷 и 蜷 и	沉闷 清脆 浊响 浊响	稍糊 模糊 棋糊	稍凹 平坦 凹陷	便 便 領 料 料 行 門 料 滑	否否否否

- 计算 划分前/后的验证集精度,判断是否需要划分。
- 最终,得到仅有一层划分的决策树,称为"决策树桩"

剪枝处理 — 预剪枝

□ 预剪枝决策树很多分支,没有"展开"

优点

- ◆ 降低了过拟合风险
- ◆ 显著减少了 训练和测试时间开销

□ 预剪枝决策树很多分支,没有"展开"

优点

- ◆ 降低了过拟合风险
- ◆ 显著减少了 训练和测试时间开销

缺点

- ◆ 带来了 欠拟合风险
- 有些分支的当前划分,虽不能提升泛化性能
- 但在其基础上继续划分,却可能导致整体性能显著提高
- 预剪枝基于"贪心"本质,禁止这些分支展开,带来了 欠拟合风险

第四章 决策树

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆ 剪枝处理
 - ●预剪枝、后剪枝
- 3. 连续与缺失值
- 4. 多变量决策树

- 1. 首先,根据训练集,生成一棵完整的决策树,该决策树的验证集精度为42.9%
- 2. 然后,自底向上地对非叶结点进行考察。

- ◆ 结点6
 - ✓ 初始的决策树,验证集精度为 42.9%

- ◆ 结点6
 - ✓ 若将其替换为叶结点,根据落在其上的训练样本,将 其标记为好瓜。验证集精度提高至 57.1%

- ◆ 结点6
 - ✓ 剪枝前, 42.9%; 剪枝后, 提高至 57.1%

口结点 5

- ✓ 初始的决策树,验证集精度为 57.1%
- ✓ 若将其替换为叶结点,根据落在其上的训练样本,将 其标记为"好瓜",得到验证集精度 仍为 57.1%

- ◆ 结点 5
 - ✓ 剪枝前/后,验证集精度均为 57.1%

- ◆ 结点 5
 - ✓ 剪枝前/后,验证集精度均为 57.1%
 - ✓ 后剪枝决策: 剪枝
 - 奥卡姆剃刀准则: 多个模型满足条件, 选择简单的那个

后剪枝决策:剪枝

- ◆ 结点 2
 - ✓ 剪枝前,验证集精度为 57.1%。

- ◆ 结点 2
 - ✓ 剪枝前,验证集精度为 57.1%。
 - ✓ 剪枝后,根据落在其上的训练样本,将其标记为"好瓜"。验证集精度提高至 74.1%

- ◆ 结点 2
 - ✓ 剪枝前, 验证集精度 57.1%。剪枝后, 提高至 74.1%
 - √ 后剪枝决策: 剪枝

- ◆ 结点 3 和 结点 1
 - ✓ 剪枝前/后,验证集精度降低,则分支得到保留

◆ 最终,基于后剪枝策略得到的决策树:

剪枝处理 一 后剪枝

后剪枝

- ◆ 优点
 - 后剪枝比预剪枝,保留了更多的分支,欠拟合风险小
 - 后剪枝决策树 泛化性能 往往 优于 预剪枝决策树

剪枝处理 一 后剪枝

后剪枝

- ◆ 优点
 - 后剪枝比预剪枝,保留了更多的分支,欠拟合风险小
 - 后剪枝决策树 泛化性能 往往 优于 预剪枝决策树

◆ 缺点

● 训练时间开销大

后剪枝过程,是在生成完全决策树之后进行的,需要自底向上,对所有非叶结点逐一考察

第四章 决策树

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆ 剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树

连续与缺失值— 连续值

连续值 处理

- ◆现实学习任务中,常会遇到连续属性,其可取值数目 不再有限。
- ◆使用离散化技术将连续属性转化为离散属性

连续与缺失值— 连续值

连续值 处理

- ◆现实学习任务中,常会遇到连续属性,其可取值数目 不再有限。
- ◆使用离散化技术(二分法)对连续属性进行处理,转 化为离散属性
 - 属性"密度", 其候选划分点集合包含17个候选值

 $T_{\Xi \Xi} = \{0.244, 0.294, 0.351, 0.381, 0.420, 0.459, 0.518, 0.574, 0.600, 0.621, 0.636, 0.648, 0.661, 0.681, 0.708, 0.746\}$

• 使密度信息增益最大的划分点为 0.381

连续与缺失值— 连续值

连续值 处理

- ◆现实学习任务中,常会遇到连续属性,其可取值数目 不再有限。
- ◆使用离散化技术(二分法)对连续属性进行处理,转 化为离散属性
 - 与离散属性不同,若当前结点划分属性为连续属性, 该属性,还可作为其后代结点的划分属性

缺失值 处理

- ◆现实任务中,常会遇到不完整样本,即样本的某些属 性值缺失
 - 在医疗领域,由于诊测成本、隐私保护等因素,患者的医疗数据在某些属性上的取值未知
 - 如果简单地放弃不完整样本,仅使用无缺失值的样本 来进行学习,显然是对数据信息极大的浪费

缺失值 处理

- ◆Q1: 如何在属性缺失的情况下 进行划分属性选择?
 - 将信息增益的计算式推广为

$$Gain(D,a) = \rho \times Gain(\tilde{D},a) = \rho \times \left(Ent(\tilde{D}) - \sum_{v=1}^{V} \tilde{r}_{v} \cdot Ent(\tilde{D}^{v}) \right)$$

缺失值 处理

- ◆Q1: 如何在属性缺失的情况下 进行划分属性选择?
 - 将信息增益的计算式推广为

$$Gain(D,a) = \rho \times Gain(\tilde{D},a) = \rho \times \left(Ent(\tilde{D}) - \sum_{v=1}^{V} \tilde{r}_{v} \cdot Ent(\tilde{D}^{v}) \right)$$

- ◆Q2: 若样本在该属性上的值缺失,如何对样本进行划分分?
 - 若样本 x 在划分属性 a 上的取值未知,则将 x 以不同的概率划入到不同的子结点中去,样本权值 在与属性值 a^{v} 对应的子结点中 调整为 $r_{v}w_{x}$

缺失值 处理

◆ 计算出所有属性在数据集上的信息增益

$$Gain(D, 色泽) = \rho \times Gain(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$
 $Gain(D, 根蒂) = 0.171 \quad Gain(D, 敲声) = 0.145 \quad Gain(D, 纹理) = 0.424$
 $Gain(D, 脐部) = 0.289 \quad Gain(D, 触感) = 0.006$

在所有属性中,纹理的信息增益最大,被用于对根结点进行划分

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	=	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩	-	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰		软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响		稍凹	硬滑	是
9	乌黑	-	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	9-	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13		稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	-	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	-	沉闷	稍糊	稍凹	硬滑	否

缺失值 处理

- ◆ 计算出所有属性在数据集上的信息增益
 - 纹理 的信息增益最大,被用于对根结点进行划分

根据划分结果,分别进入

── 进入 纹理 = 稍糊 分支

■ 进入 纹理 = 模糊 分支

样本权重在各子结点仍为1

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	-	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响		稍凹	硬滑	是
9	乌黑		沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	1-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	-	否
12	浅白	蜷缩	=:	模糊	平坦	软粘	否
13		稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	-	软粘	否
16	浅日	蜷缩	浊响	模糊	平坦	便渭	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

缺失值 处理

- ◆ 计算出所有属性在数据集上的信息增益
 - 纹理 的信息增益最大,被用于对根结点进行划分

根据划分结果,分别进入

- 进入 纹理 = 清晰 分支
- 🚃 进入 纹理 = 稍糊 分支
- 进入 纹理 = 模糊 分支

样本权重在各子结点仍为1

■■ 样本8和10 在属性"纹理" 上出现缺失值

样本8和10 同时进入3个分支, 调整8和10在3分支权值分别 为7/15,5/15,3/15

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	=	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰		软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响		稍凹	硬滑	是
9	乌黑	1000	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	1-1	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	S 3	否
12	浅白	蜷缩		模糊	平坦	软粘	否
13	=	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	-	软粘	否
16	浅日	蜷缩	浊响	模糊	平坦	便渭	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

第四章 决策树

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆ 剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树

单变量决策树

非叶节点 对某个属性进行测试

多变量决策树

对若干个属性的 线性组合进行测试

单变量决策树

- ◆分类边界 轴平行
 - 分类边界,由若干个与坐标轴平行的分段组成
 - 每一段划分,都直接对应了某个属性取值

多变量决策树

- ◆不是 为每个非叶结点,寻找一个最优划分属性
- lacktriangle 而是 试图建立,一个合适的线性分类器 $\sum_{i=1}^d w_i a_i = \mathbf{t}$

单变量决策树

非叶节点对某个属性进行测试

多变量决策树

单变量决策树

非叶节点

对某个属性进行测试

多变量决策树

非叶节点

对<mark>若干个</mark>属性的 线性组合进行测试

第四章 决策树总结

- 1. 基本流程
- 2. 核心技术
 - ◆划分选择
 - ◆剪枝处理
- 3. 连续与缺失值
- 4. 多变量决策树