Graph Attention Networks: Reproducibility Study

Sina Hassanpouryousefi (GTid: shassanp3)

Team 32

Project Overview and Motivation

 Objective: Reproduce and extend the GAT architecture from Velicković et al. (ICLR 2018).

- Why GATs?
 - Graphs are ubiquitous (e.g., citation networks, social networks, molecular graphs).
 - GATs use masked self-attention to weigh neighbor importance, unlike spectral methods (e.g., GCNs).
 - State-of-the-art performance on node classification tasks (Cora, Citeseer, Pubmed).
- Scope: Implement GAT and baselines (GCN, GraphSAGE, ChebNet, etc.) using PyTorch Geometric, test on Cora dataset, and validate hypotheses.

Hypotheses and Experiments

- Hypotheses Tested (from GAT paper):
 - H1: GAT outperforms GCN and ChebNet on node classification (Cora dataset).
 - H2: Attention mechanism prioritizes semantically relevant neighbors.
 - H3: Multi-head attention improves stability and performance.

- Experiments:
 - Train GAT, GCN, ChebNet, GraphSAGE, etc., on Cora (140 train, 500 val, 1000 test nodes).
 - Visualize attention coefficients using t-SNE.

Methodology and Dataset

- Dataset: Cora (Planetoid benchmark)
 - Nodes: 2708, Edges: 10556 (undirected), Features: 1433 per node, Classes: 7.
 - Moderately imbalanced (e.g., Class 3: 818 nodes, Class 6: 180 nodes).
 - Preprocessing: Row-normalized features, used PyTorch Geometric's train/val/test masks.
- Models Implemented:
 - GAT (gat.py): 2 layers, 8 heads (Layer 1), ELU, dropou (0.6).
 - Baselines: GCN, ChebNet, GraphSAGE (Mean, Pooling), SemiEmb, GatedGCN.
- Framework: PyTorch Geometric, train.py for unified training/evaluation.

Training Setup

- Hardware: Intel Core i9-12900K CPU, 64 GB RAM, Windows 10 (no GPU).
- Framework: PyTorch 2.6.0 (CPU), PyTorch Geometric.
- Training Details:
 - Loss: Negative Log-Likelihood (NLLoss).
 - Optimizer: Adam (Ir=0.005, weight decay: 5e-4 on Layer 1, 0 on Layer 2).
 - Regularization: Dropout (0.6), early stopping (patience=100 epochs).
 - Metrics: Accuracy, Micro-F1, Macro-F1.
- Runtime: ~0.15s/epoch, ~ 250 epochs (avg.), 50 trials total.

Results and Evaluation

- Test Accuracy (Cora):
 - GAT: 83.3% (Original: 83.0%)
 - GCN: 82.0% (Original: 81.5%)
 - ChebNet: 81.8% (Original: 81.2%)
 - GraphSAGE: 79.7%,
 - SemiEmb: 58.6%,
 - GatedGCN: 73.2%.

				GAT on	Cora	
1.0			~~			
0.8		~~~				
0.6						
0.4	N					Train Accuracy
0.2	14					Val Accuracy Test Accuracy Micro-F1 Macro-F1

(a) Accuracy & F1 over Epochs

(b) Loss vs. Epoch

Attention Visualization and Insights

- Experiment: Visualized attention coefficients using t-SNE projections (H2).
- Findings: High-attention links often connect same-class nodes, confirming attention's semantic focus.
- Challenges: Extracting coefficients required custom hooks in PyTorch Geometric.

Discussion and Reproducibility

- Reproducibility: GAT is highly reproducible (83.3% vs. 83.0% original).
- Facilitators:
 - Clear GAT paper documentation.
 - PyTorch Geometric's Cora dataset access.
 - Modular train.py pipeline.
 - LLM assistance for code and metrics.
- Challenges:
 - Limited dataset access (only Cora).
 - Attention visualization required custom tools.
 - Dropout/weight decay tuning was critical.

Recommendations and Future Work

For Paper Authors:

- Share full configuration scripts (e.g., optimizer, seeds).
- Provide utilities for attention visualization.
- Include preprocessing for inductive datasets (e.g., PPI).

For Reproducers:

- Use PyTorch Geometric's Planetoid datasets with clear preprocessing.
- Specify LLM prompts for masking/regularization.
- Verify edge symmetry, test multiple seeds.

Future Work:

- Test on Citeseer, Pubmed, PPI.
- Integrate edge features into attention.
- Extend to graph-level classification.

Conclusion

- Key Takeaways:
 - Successfully reproduced GAT (83.3% accuracy on Cora, vs. 83.0% original).
 - Validated hypotheses: GAT outperforms baselines, attention is critical, multi-head stabilizes.
 - Built a modular, extensible pipeline for GNN benchmarking.
- Impact: Provides a reproducible framework for GNN research, with insights into attention's role.
- Closing: Questions? Explore the GitHub repo for code and details.

