(5) Demostrar que $\Gamma^+ := \{ \varphi \in PROP : \varphi \text{ no contiene los conectivos "¬" ni "\pm"} \}$ es consistente (Ayuda: construir una f tal que $\llbracket \varphi \rrbracket_f = 1$ para toda $\varphi \in \Gamma^+$).

Sean
$$H_{AE}: AE \longrightarrow A$$
 & $H_{\odot}: A^2 \longrightarrow A$ funciones tales que

$$H_{AE}: AE \longrightarrow A$$
 $H_{AE}(P_{e}):=f_{rue}$
 $H_{AE}(\underline{\perp}):=F_{a}|_{se}$

$$H_o: A^2 \longrightarrow A$$
 $H_o(\varphi, \psi) := \varphi \wedge \psi$

$$\begin{cases} \sin_{-bottom}(\varphi) &:= H_{AE}(\varphi) & \text{si} \quad \varphi \in Af \\ \sin_{-bottom}(\varphi \circ \psi) &:= H_{O}(\sin_{-bottom}(\varphi), \sin_{-bottom}(\psi)) \end{cases}$$

la función sin-bottom es equivalente al predicado que indica que un una proposición no contiene el átomo \bot

$$\text{luego} \quad \text{Γ^{+}} = \{ \varphi \in \text{p}_{\text{pop}} : \text{sin-bottom}(\varphi) \}$$

Por lema 34 [7+ es consistente
$$\Longrightarrow$$
] & asignación tal que & valida [7+ Sea & asignación tal que $\delta(P_i) := 1$ $\forall_i \in \mathbb{N}_0$ Por teorema 9] [1.] & que extiende a & sobre [7+ Probemas por inducción que \sin_b bottom(φ) \Longrightarrow [φ] $\delta = 1$ $\forall \varphi \in \mathbb{T}^+$

$$\varphi \in Af$$

si
$$\varphi = \beta$$

si
$$\phi = \bot$$

$$sin_bottom(\bot)$$
 $= 1 Def de sin_bottom$

False
 $\Rightarrow 1 Hipótesis inductiva contrarrecipraca$
 $[\bot]S = 0$
 $= 1 Def de semántica can respecto a (\bot) {
 $0 = 0$
 $= 1 Arit mética$ }$

$(\varphi \circ \psi)$

sin-bottom ($\varphi \circ \psi$) $= \oint Def de sin-bottom \{$ $sin-bottom(\varphi) \land sin-bottom(\psi) \}$ $\Rightarrow \oint Hipótesis inductiva <math>x \neq \emptyset$ $[[\varphi]] f = [\land [[\psi]] f = [$ $= \oint Construcción de f \{$ $[[\varphi]] f = [\land [[\psi]] f = [$ $= \oint Arifmética & Def de \land \emptyset$ frue

Por la tanta se cumple que $\exists \delta$ asignación tal que $[\![\Psi]\!] \delta = 1$ $\forall \Psi \in \Gamma^+$ Con la cual se concluye que Γ^+ es consitente