Impacts of Augmented Running on Energy Expenditure and Leg Muscle Activity

Will Bricca¹, Hiroaki Hirai³, Eric Christofori², Yusuke Yashima³, Ren Kurogi³, Kazuhiro Matsui³, Atsushi Nishikawa³

- 1. University of California, Santa Barbara, USA
- 2. Frankfurt University of Applied Sciences, Germany
- 3. Osaka University, Graduate School of Engineering Science, Japan

Background

- Human running is very inefficient with only around 10% of calories burned for locomotion being used to do useful work on the environment
- Previous studies have used an "exotendon" as intervention to direct more energy in human running motion towards leg swing
- Results have indicated energy savings ranging from 6% to 7% [1].
- This study investigates the applicability of an exotendon at various strengths on multiple steepness grades outdoors with indoor testing for validation

Materials & Methods

- The exotendon is a resistance band (60/120 N m⁻¹) connected by carabiners to two ankle straps (Figure 1)
- Length of the resistance band is 25% of subject leg length measured from the anterior iliac spine to the medial malleolus
- Electromyograms of 8 major muscles (gluteus maximus, iliopsoas, semitendinosus, rectus femoris, vastus lateralis, biceps femoris, soleus, and tibialis anterior) recorded

Figure 1: (A) Resistance band connected to ankle straps (B) Exotendon in use

Figure 2: 2-Km path on Toyonaka campus

Study Population

5 total subjects (age: 23.4 \pm 1.7; height: 175.8 \pm 7.5 cm; mass: 69.4 \pm 8.2 kg) participated

Outdoor Design

- 2 trials for each subject
- 1 trial is, in order, 5 minute warm-up, 2-km natural run, 2-km exotendon run (Fig. 2)
- Data recorded includes net heart rate, step cadence, and step length

Indoor Design

• 2 trials for each subject

4 vs. 3

Semitendinosus

Vastus Lateralis

- 1 trial is, in order, 5-minute warm up, 10-minute natural run, 10-minute exotendon run, 10-minute natural run, 10-minute exotendon run
- Data recorded includes EMG, ground reaction forces, and HR (Fig. 1B)

Results & Discussion

Outdoor Results 8 6 4 2 1.55 -4.85 -4 -6 -8

- NEE equation is accurate alternative for respiratory gas analysis
- Results are not as intense as seen in previous studies
- Applied moments due to exotendon working against gravity could result in increase during inclined grades

Figure 4: Net Energy Expenditure % Difference (120 N m⁻¹)

- In flat portions of outdoor experiments (±0.6 grade), there is lower overall energy expenditure (kcal min⁻¹)
- Declined grades (-4.6%)
 indicate benefits with
 exotendon intervention as well
 for both exotendon strengths
 (Fig. 3,4)
- Inclined grades (4.6%) saw detrimental impacts ranging from 1.55% to 2.70% on average (Fig. 3,4)

Figure 5: 60 N m⁻¹ Trial Example

Net Energy Expenditure Equation [2]:

NEE = 1.012 - (0.0154 × NHR) + (0.0114 × weight) + (0.00192 × NHR × weight)

Indoor Results

2 vs. 1

- Major muscles are grouped into Hip, Quad, and Hamstring. Lower leg results were insignificant.
- 60 N m⁻¹ saw greater impact in quadricep muscles (vastus lateralis and rectus femoris)
- Gluteus maximus and iliopsoas reacted oppositely to moderate exotendon (Fig. 6)

120 N m⁻¹ iterations saw a large detrimental impact (Fig. 7) on both hip muscles

- Improvements in both quadricep and hamstring groups however
- Lower leg muscles resulted in insignificant change with exotendon application
- 60 N m⁻¹ looks to have greater benefits while limiting detrimental effects
- Figure 7: EMG Running Cycle % Difference Per Muscle (120 N m⁻¹)

	60 N/m	120 N/m
Hip	0.37%	12.30%
Quadriceps	-12.06%	-7.80%
Hamstrings	-1.48%	-10.30%

4 vs. 3

2 vs. 1

Figure 8: Major Muscle Group %
Difference Including Cadence Evaluation

- Including step cadence increase allows for more accurate view of exotendon effect on muscle activity
- Step cadence averaged from outdoor analysis to be 2% increase
- Ground reaction force analysis resulted in negligible change in the direction of work

Conclusions

Results indicate that exotendon benefits apply only to flat and declined steepness grades while remaining detrimental to inclined grades

- detrimental to inclined grades
 The 60 N m⁻¹ resistance strength seems to reduce major muscle activity the most while minimizing negative impacts
- Increased sample sizes for both outdoor and indoor experiments is necessary to improve accuracy of results

References

- 1. C. S. Simpson, C. G. Welker, S. D. Uhlrich, S. M. Sketch, R. W. Jackson, S. L. Delp, S. H. Collins, J. C. Selinger, and E. W. Hawkes, "Connecting the Legs with a Spring Improves Human Running Economy," *J. Exp. Biol.*, vol. 222, no. 17, jeb202895, 2019.
- Hiilloskorpi, H. K., M. E. Pasanen, M. G. Fogelholm, R. M. Laukkanen, A. T. Mänttäri, "Use of heart rate to predict energy expenditure from low to high activity levels." *International Journal of Sports Medicine* 24.05 (2003): 332-336.