Analytics for Hospital 's Health-care Data

TEAM ID: PNT2022TMID23753

1.INTRODUCTION

1.1 PROJECT OVERVIEW

Data analytics in clinical settings attempts to reduce patient wait times via improved

scheduling and staffing, give patients more options when scheduling appointments and receiving

treatment, and reduce readmission rates by using population health data to predict which patients

are at greatest risk.

The healthcare industry generates a tremendous amount of data but struggles to convert that data

into insights that improve patient outcomes and operational efficiencies. Data analytics in

healthcare is intended to help providers overcome obstacles to the widespread application of data-

derived intelligence:

1. Making healthcare data easier to share among colleagues and external partners, and easier

to visualize for public consumption

2. Providing accurate data-driven forecasts in real time to allow healthcare providers to

respond more quickly to changing healthcare markets and environments

3. Enhancing data collaboration and innovation among healthcare organizations to convert

analytics-ready data into business-ready information by automating low-impact data

management tasks

1.2 PURPOSE

Data analytics in health care is vital. It helps health care organizations to evaluate and develop practitioners, detect anomalies in scans and predict outbreaks in illness, per the Harvard Business School. Data analytics can also lower costs for health care organizations and boost business intelligence. Most importantly, it helps health care companies to make better care decisions for patients.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

When it comes to big data analytics, the healthcare industry faces numerous challenges. These challenges may include security, visualization, and a wide array of data integrity concerns. Over the years, big data analytics in healthcare has emerged as one of the most challenging undertakings for the healthcare industry. For instance, healthcare professionals, who may not be well-versed with managing electronic health records, now need to gather actionable insights as well. Also, they are expected to apply those learnings to complex initiatives that enhance their overall reimbursement rates.

2.2 REFERENCE

1)Mohammad Alkhatib , Amir Talaei-Khoei (University of Nevada, Reno)Amir Talaei-Khoei University of Nevada, Reno | UNR · Department of Accounting and Information Systems PhD of Information Systems-Amir Ghapanchi

- 2) From: "Book of Data Analytics" Chandank Reddy(Wayne State University) Charu C.Aggarwal(Watson Research Center)
- 3) From: Hoyt,RE,Yoshihashi,A,Eds.(2014).Health Informatics:Practical Guide for Healthcare and formation Technology Professionals,Sixth Edition.Pensacola,FL,Lulu.com
- 4) Panagiota Galetsia, Korina Katsaliakia, Sameer Kumarb,* a School of Economics, Business Administration & Legal Studies, International Hellenic University, 14th km Thessaloniki-N. Moudania, Thessaloniki, 57001, Greece b Opus College of Business, University of St. Thomas Minneapolis Campus, 1000 LaSalle Avenue, Schulze Hall 435, Minneapolis, MN 55403, USA
- 5) from n book: Innovative Data Communication Technologies and Application (pp.83-96) P. Nagaraj-Professor (Assistant) at Kalasalingam University

2.3 PROBLEM STATEMENT DEFINITION

Humanity today is suffering from one of the most dangerous pandemics in history, the Coronavirus Disease of 2019 (COVID-19). Although today there is immense advancement in the medical field with the latest technology, the COVID-19 pandemic has affected us severely. The virus is spreading rapidly, resulting in an escalation in the number of patients admitted. We propose a contextual patient classification system for better analysis of the data from the discharge summary available from the research hospital. The classification was done using the Knuth–Morris–Pratt algorithm. We have also analyzed the data of COVID-19 and nonCOVID-19 patients. During the analysis, studies on the medicines, medical services and tests, pulse count, body temperature, and the overall effect of age and gender was done. The death versus survival ratio for the COVID-19 positive patients has also been studied. The classification accuracy of the contextual patient classification system achieved was 97.4%. The combination of data analysis and contextual patient classification will be helpful to all the sectors to be better prepared for

any future waves of the COVID-19 pandemic. The goal is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning. The length of stay is divided into 11 different classes ranging from 0-10 days to more than 100 days. The tools that we are using for data analytics is Cognos Analytics from IBM.

3. IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No	Parameters	Description
1.	Problem Statement (Problem to	During the covid-19 pandemic, we
	be solved)	have faced one of the difficult times of
		our life. Everyone seeks to survive
		from the great disaster. At the time of
		pandemic, noone get to know about
		which hospital has vacant beds(free
		beds) to admit themselves or others

		infected by covid. This situation made
		the death rate higher.
2.	Idea / Solution description	Predictive analytics can create
		patient journey dashboards and
		disease trajectories that helps us
		to know about the patient's
		period of stay. It improves
		effective allocation of beds and
		other resources, treatment
		delivery, improves efficiencies,
		and so on.
3.	Novelty / Uniqueness	Healthcare data frequently resides in
		several locations. The Collected data
		should be stored in central system(like
		centralized storage). This data becomes
		accessible and usable when it is combined
		into a single, central system, such as an
		enterprise datawarehouse (EDW).
		Uniqueness of our project is that we can
		able to use data for different things such as
		which medicine is more effective and for
		understanding behavioural pattern of
		particular disease.
4.	Social Impact / Customer Satisfaction	effective use of resource Enhanced diagnosis
		Improved Treatment enhancing the overall
		quality of treatment and life of patients

5.	Business Model (Revenue Model)	With the gathered data, redirecting the
		patients to particular hospital based on the
		vacancy, leading retailers used methods like
		market-basket analysis to discover insights
		about consumer purchase behaviour and
		used these insights to optimize the physical
		store experience, target relevant ads and
		streamline the supply chain, among other
		strategic initiatives.
6.	Scalability of the Solution	A variety of institutions must store, evaluate,
		and take action on the massive amounts of
		data being produced by the health care sector
		as it expands quickly. India is a vast,
		culturally varied nation with a sizable
		population that is increasingly able to access
		centralised healthcare services.

3.4 PROBLEM SOLUTION FIT

1. Customer segment(s)

- Patients
- Hospital Management

6. CUSTOMER STATE LIMITATIONS

Inadequate information about availability of required resource AVAILABLE SOLUTIONS

- > Tableau cloud
- Text Mining
- > Information Retrieval

2.
PROBLEMS /PAINS

- Effective Resource allocation
- Reduce Waiting time for patients in Hospitals

9.
ROOT/CAUSE
of every problem

 No proper system or less efficient Prediction System 7. BEHAVIOF

Tracking the information with the available Technologies

3. gers to act

- Covid Pandemic
- > Emergency Situations

4. EMOTIONS

- ➤ BEFORE: Feeling bad & Frustrated
- AFTER: Feeling better &Relaxed

10.
YOUR SOLUTION

Existing: ratio of discharges in given period of time to no. of beds in hospital during the time period

Proposing: Using predictive analysis powered by Al

CHANNELS OF BEHAVIOR

ONLINE: Use of data from all region(data Exploration)

OFFLINE: Use of data Collect from nearby facilities

4. REQUIREMENTS ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No	Functional	Sub Requirement
	Requirement (Epic)	(Story / Sub-Task)
FR -1	User Registration	Registration through Form
		Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via Message
FR-3	Interoperability	Dashboard helps to share the
		patient's information
		interoperable to the hospitals in
		timely manner.
FR-4	Accuracy	Dashboard helps predict the
	,	patient's Health risks accurately
		based on LOS (Length of Stay).
FR-5	Compliance	The compliance of a dashboard is like
		to use very interactively in real time
		by the hospitals.
FR-6	Concise	These dashboards are clear, intuitive,
		and customizable and interactive in
		manner.

4.2 NON- FUNCTIONAL REQUIREMENTS

NFR NO	Non-Functional	Description

	Requirement	
NFR-1	Usability	This Dashboards are designed
		to offer a comprehensive
		overview of patient's LOS, and
		do so through the use of data
		visualization tools like charts
		and graphs.
NFR-2	Security	The Dashboard helps to
		indicate the current threat
		level to the Hospitals; an
		indication of events and
		incidents that have occurred; a
		record of authentication errors;
		unauthorized access
NFR-3	Reliability	This dashboard will be
		consistent and reliable to the
		users and helps the user to use
		in effective, efficient and
		reliable manner.
NFR-4	Performance	This dashboard can scan the
		backend users and analyzing
		the frequency in which they

		visit the dashboard helps understand how useful and	
		helpful the data displayed is for	
		tasks.	
NFR-5	Availability	The dashboard can available to	
		meet user's demand in timely	
		manner and it is also helps to	
		provide necessary information	
		to the user's dataset	
NFR-6	Scalability	The layers used in the	
NrK-0	Scalability		
		dashboard are a hosted feature	
		layer, feature layer view, or	
		hosted tile layer.	

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can

depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION & TECHNICAL ARCHITECTURE

SOLUTION ARCHITECTURE

SYSTEM ARCHITECTURE:

ETL PROCESS (DATA INTEGRATION PROCESS):

TECHNICAL ARCHITECTURE

5.3 USER STORIES

Use the below template to list all the user stories for the product.

User Type	Functional User Story Requirement (Epic)		User Story /Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the dashboard by entering my email, and password, and confirming my password.	I can access my account in the dashboard	High	Sprint-1
		USN-2	As a user, I will receive a confirmation email once I have registered for the dashboard	I can receive a confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the dashboard through Social Media	I can register & access the dashboard with Social Media Login	Low	Sprint-2
		USN-4	As a user, I can register for the dashboard through Gmail	I can register and access dashboard with Gmail	Medium	Sprint-2
	Login	USN-5	As a user, I can log into the application by entering email & password	I can login to the account in my email login.	High	Sprint-2
	Dashboard	USN-6	As a user, I can use my account in my dashboard for uploading dataset.	I can login to the account for uploading dataset.	Medium	Sprint-3
Customer (Web user)	Website	USN-7	As a user ,I can use my dashboard in website I can login into the dashboard by visiting website.		Medium	Sprint-3
Customer Care Executive		USN-8	As a user ,I can contact Customer care Executive for my login.	I can contact customer executive for my login.	High	Sprint-4
Administrator		USN-9	As a user, I can contact administrator for my queries.	I can contact admin strator for so ving my queries.	High	Sprint-4
Exploration Dashboard USN-10 As a		As a user, I can prepare data by using Exploration Techniques.	I can prepare data by using Exploration Techniques.	High	Sprint-3	
Presentation	Dashboard	USN-11	As a user, I can Present data in my dashboard.	I can present data by using my account in dashboard.	High	Sprint-4
Visualization	Dashboard	USN-12	As a user, I can Prepare Data by using Visua ization Techniques	I can prepare data by using Visualization Techniques.	High	Sprint-3

6.PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional	User Story	User Story / Task	Story	Priority	Team Members
	Requirement	Number		Points		
	(Epic)					
Sprint-1	Registration	USN-1	As a user, I can	2	High	Priyadharshini D,
			register for the			Narmadha Varshini N
			application by			
			entering my			
			email, password,			
			and confirming			
			my password			
Sprint-1		USN-2	As a user, I will	1	High	Priyadharshini D,
			receive			Yasotha S
			confirmation			
			email once I have			
			registered for the			
			application			
Sprint-2		USN-3	As a user, I can	2	Low	Priyadharshini D,
			register for the			Yasotha S
			application			
			through			
			Facebook			
Sprint-1		USN-4	As a user, I can	2	Medium	Yamuna Devi
			register for the			V,Priyadharshini D
			application			
			through Gmail			
Sprint-1	Login	USN-5	As a user, I can	1	High	Yamuna Devi
			log into the			V,Priyadharshini D

	application by		
	entering email &		
	password		
Dashboard			

6.2 SPRINT DELIVERY SCHEDULE

Sprints	Total Story	Duration	Sprint Start	Sprint End	Story Points	Sprint
	Points		Date	Date	Completed (as	Release Date
				(Planned)	on Planned End	(Actual)
					Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	11 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	15 Nov 2022

6.3 REPORTS FROM JIRA

ROADMAP

BACKLOGS

BOARD

7. CODING AND SOLUTIONING

7.1 FEATURE 1

```
Data Collection

Download the dataset here

[ ] from google.colab import drive drive.mount('/content/drive')

Mounted at /content/drive

[ ] cd/content/drive/MyDrive/Colab Notebooks
/content/drive/MyDrive/Colab Notebooks

[ ] # Unzipping the dataset lunzip 'Dataset.zip'
```

Model Building 1. Importing The Model Building Libraries [] import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras import layers from tensorflow.keras.layers import Dense,Flatten from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout 2. Initializing The Model [] classifier = Sequential()

```
3. Adding CNN Layers
      classifier = Sequential()
      classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
      classifier.add(MaxPooling2D(pool_size=(2, 2)))
      classifier.add(Conv2D(32, (3, 3), activation='relu'))
      classifier.add(MaxPooling2D(pool_size=(2, 2)))
      classifier.add(Flatten())
  4. Adding Dense Layers
      classifier.add(Dense(units=128, activation='relu'))
      classifier.add(Dense(units=5, activation='softmax'))
0
      classifier.summary()
    Model: "sequential_1"
                                 Output Shape
     Layer (type)
     conv2d (Conv2D)
```

```
5. Configure The Learning Process

[ ] classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

6. Train The Model

[ ] classifier.fit_generator(generator=x_train, steps_per_epoch = len(x_train), epochs=20, validation_data=x_test, validation_steps = len(x_test))

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: "Model.fit_generator" is deprecated and will be removed in a future version. P]

Epoch i/20
494/824 [===========] - ETA: 6:52 - loss: 0.7194 - accuracy: 0.7174

7. Saving The Model

[ ] classifier.save('nutrition.h5')
```

```
8. Testing The Model
   from tensorflow.keras.models import load_model
   from keras.preprocessing import image
   model = load_model("nutrition.h5")
                                                                                                                             ↑ ↓ 60
   from tensorflow.keras.models import load_model
   from tensorflow.keras.preprocessing import image
   model = load_model("nutrition.hS")
   img = image.load_img(r'/content/drive/MyDrive/Colab Notebooks/Sample_Images/Test_Image1.jpg',grayscale=False,target_size= (64,64))
   x = img_to_array(img)
   x = np.expand_dims(x,axis = 0)
   predict_x=model.predict(x)
   classes_x=np.argmax(predict_x,axis=-1)
   classes_x
 1/1 [-----] - 0s 62ms/step
   index=['APPLES', 'BANANA', 'ORANGE', 'PINEAPPLE', 'WATERMELON']
   result=str(index[classes_x[0]])
   result
```

7.2 FEATURE 2

8. TESTING

8.1 TEST CASES

8.2 USER ACCEPTANCE TESTING

9.RESULTS

9.1 PERFORMANCE TESTING

2. case_id by patient_id

3. City_Code_Hospital by City_Code_Hospital

4. City_Code_Hospital by Department

5. Department compared to Hospital_region_code

10. ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGES

- 1. Improved research efforts
- 2. Improved health outcomes
- 3. Obtain operational insights
- 4. Improved staffing
- 5. Informed strategic planning

10.2 DISADVANTAGES

- 1. Lack of alignment within teams
- 2. Lack of commitment and patience
- 3. Low quality of data
- 4. Privacy concerns
- 5. Complexity & Bias

11.CONCLUSION

Data analytics has the potential to transform the way healthcare providers use sophisticated technologies to gain insight from their clinical and other data repositories and make informed decisions. In the future we'll see the rapid, widespread implementation and use of big data analytics across the healthcare organization and the healthcare industry.

12. FUTURE SCOPE

Data analysts can develop software to automatically inform patients about recommended lifestyle changes to prevent certain conditions. This helps improve performance by delivering data-based quality patient care which, in turn, improves patient satisfaction.