<u>Задача 10-3</u>

Две соли

200 г 20% водного раствора индивидуальной соли **X**, имеющей щелочную реакцию среды и окрашивающей пламя горелки в жёлтый цвет, прокипятили в течение некоторого времени и охладили до 20 °C. В результате из раствора выпало 40.0 г кристаллов **Y**, при прокаливании до 120 °C уменьшающих свою массу на 25.2 г в результате полной потери кристаллизационной воды. При последующем охлаждении оставшегося раствора до 0 °C может быть получено ещё 21.3 г **Y**.

Известно, что растворимость \mathbf{Y} (г/100 г воды) в расчёте на безводную соль при 20 °C втрое превышает растворимость при 0 °C.

- 1. Установите формулы солей **X** и **Y**. Ответ подтвердите расчётами.
- Чему равна массовая доля соли в растворе после кипячения при 100 °C и после охлаждения раствора до 0 °C и выпадения осадка?
- 3. Какая масса Y могла бы выпасть в осадок, если сразу после кипячения раствор охладили бы до 10 °C? Считайте, что растворимость при 10 °C равна среднему арифметическому растворимостей при 20 и 0 °C.
 - 4. Приведите тривиальные названия солей X и Y.

Решение задачи 10-3 (автор: Болматенков Д.Н.)

Из условия известно, что \mathbf{Y} – кристаллогидрат. При наличии \mathbf{n} молекул воды на формульную единицу безводной \mathbf{Y} получим следующее соотношение: $25.2/40 = 18 \cdot \mathbf{n}/\mathrm{M}(\mathbf{Y})$, откуда $\mathrm{M}(\mathbf{Y}) = 28.6 \, \mathbf{n}$ г/моль, а масса безводной части \mathbf{Y} равна $\mathrm{M}(\text{безв. }\mathbf{Y}) = \mathrm{M}(\mathbf{Y}) - 18 \, \mathbf{n} = 10.6 \, \mathbf{n}$ г/моль.

Найдём значения молярной массы безводной **Y** при разных значениях *n* и определим возможный состав соли, полагая, что она содержит натрий (на что указывает окрашивание пламени горелки в жёлтый цвет):

n	1	2	3	4	5	6	7	8	9	10
М(безв. Ү)	10.6	21.2	31.8	42.4	53	63.6	74.2	84.8	95.4	106
Соль	-	-	-	NaF	-	-	NaClO	NaNO ₃	-	Na ₂ CO ₃

NaNO₃ не даёт щелочную реакцию среды, а соль NaClO неустойчива при кипячении, поэтому среди найденных солей условию пока что соответствуют NaF·4H₂O и Na₂CO₃·10H₂O. Раз в последнем вопросе задачи просят привести тривиальные названия солей, значит, эта соль имеет широкое применение и известна достаточно давно. Тогда можно предположить, что речь идёт о соде, т.е. декагидрате карбоната натрия. Кроме того, фторид натрия несколько хуже подходит по молярной массе.

Итак, **Y** - Na₂CO₃·10H₂O

В результате охлаждения раствора со 100 °C до 20 °C образовалось n = 40/286 = 0.14 моль осадка, что соответствует уменьшению содержания соли в растворе на $0.14\cdot106 = 14.84$ г и уменьшению содержания воды на $0.14\cdot10\cdot18 = 25.2$ г.

В результате охлаждения раствора с 20 °C до 0 °C образовалось 21.3/286 = 0.074 моль осадка, что соответствует уменьшению содержания соли в растворе на $0.074 \cdot 106 = 7.84$ г и уменьшению содержания воды на $0.074 \cdot 10 \cdot 18 = 13.32$ г.

Обозначим начальное содержание соли и воды в растворе после кипячения при $100\,^{\circ}$ С как m_c° и $m_{\rm B}^{\circ}$ соответственно. Тогда растворимость может быть выражена следующим образом:

$$S(20^{\circ}C)/100 = \frac{m_c^0 - 14.84}{m_s^0 - 25.2}$$

$$S(0 \,{}^{\circ}C) / 100 = \frac{m_c^0 - 14.84 - 7.84}{m_c^0 - 25.2 - 13.32} = \frac{m_c^0 - 22.68}{m_c^0 - 38.52}$$

Предположим, что исходная соль X — карбонат. Тогда её масса составляет $m_c^{\circ} = 200 \cdot 0.2 = 40 \, \text{г.}$ С учётом отличия растворимости в три раза можно записать:

$$\frac{S(20 \,{}^{\circ}C)}{S(0 \,{}^{\circ}C)} = \frac{(40 - 14.84)(m_{e}^{0} - 38.52)}{(m_{e}^{0} - 25.2)(40 - 22.68)} = \frac{25.16(m_{e}^{0} - 38.52)}{17.32(m_{e}^{0} - 25.2)} = 3$$

Данное уравнение имеет единственное решение $m_{B}^{\circ} = 12.7$ г, которое, очевидно, не имеет смысла.

Тогда логично предположить, что карбонат натрия образовался в результате разложения другой соли. Этой солью может быть гидрокарбонат натрия:

$$2NaHCO_3 = Na_2CO_3 + CO_2 + H_2O$$

В этом случае из 40 г NaHCO₃ (0.476 моль) может быть получено 0.238 моль, или 25.2 г, среднего карбоната. Решим аналогичное уравнение с m_c° = 25.2 г:

$$\frac{S(20^{\circ}C)}{S(0^{\circ}C)} = \frac{(25.2 - 14.84)(m_{e}^{0} - 38.52)}{(m_{e}^{0} - 25.2)(25.2 - 22.68)} = \frac{10.36(m_{e}^{0} - 38.52)}{2.52(m_{e}^{0} - 25.2)} = 3$$

Уравнение имеет решение при $m_{\scriptscriptstyle B}{}^{\circ} = 74.5~\Gamma$.

Таким образом, исходной солью X может быть гидрокарбонат натрия.

2. Сразу после кипячения раствор содержал 25.2 г Na₂CO₃ и 74.5 г воды. Массовая доля соли равна:

$$\omega(\text{Na}_2\text{CO}_3) = 25.2/(25.2+74.5) = 0.253$$
 или 25.3 %.

После охлаждения до 0 °C в растворе осталось 25.2-22.68=2.52 г соли и 74.5-38.52=35.98 г воды. Массовая доля соли равна:

$$\omega(\text{Na}_2\text{CO}_3) = 2.52/(2.52+35.98) = 0.065$$
 или 6.5 %.

3. Рассчитаем растворимость при 20 ° С:

$$S(20\,^{\circ}C)/100 = \frac{m_c^0 - 14.84}{m_c^0 - 25.2} = \frac{25.2 - 14.84}{74.5 - 25.2} = 0.21$$
или 21 г соли на 100 г воды

При 0 °C растворимость будет в 3 раза ниже, тогда при 10 °C она составит (7+21)/2 = 14 г соли на 100 г воды.

Пусть при охлаждении из раствора выпадет х моль соли. Тогда масса соли в растворе уменьшится на $106 \cdot x$, а масса воды — на $180 \cdot x$:

$$S(10^{\circ}C)/100 = \frac{m_c^0 - 106x}{m_e^0 - 180x} = \frac{25.2 - 106x}{74.5 - 180x} = 0.14$$

Откуда x = 0.183 моль, что соответствует $0.183 \cdot 286 = 52.3$ г $Na_2CO_3 \cdot 10H_2O$.

4. Гидрокарбонат натрия имеет тривиальное название питьевая (пищевая) сода, декагидрат карбоната натрия – натрит, или кристаллическая сода.

Система оценивания:

1	Формулы солей Х и У по 3 балла	6 баллов		
2	Расчёт массовых долей при 100 и 0 °C по 2 балла	4 балла		
3	Растворимость при 10 °C	1 балл		
	Масса осадка	3 балла		
4	Тривиальные названия Х и У по 0.5 балла	1 балл		
	Итого 15 баллов			