МГУ лаба №103 Измерение скорости полета пули с помощью баллистического маятника

Сергей Слепышев 109 группа

Октябрь 2022 (последний день до дедлайна)

0.1 Вступление

Идея работы

Использование законов сохранения импульса, момента импульса и механической энергии для решения практических задач механики.

Идея эксперимента

Определение скорости пули по реакции мишени (баллистического маятника).

0.2 Эксперимент и обработка

0.2.1 Упражнение 1. Определение скорости пуль

Произвел все замеры и записал их в таблицы 1 и 2:

Таблица 1

m_i	sigma m	M	sigma M	lc	sigma lc	R	Sigma R	g
g	g	g	g	sm	sm	sm	sm	m/s^2
3,8	0,048	446,1	0,05	275	0,5	285	2	9,82
7,56	0,0856							
6,44	0,0744							
12,79	0,1379							
16,02	0,1702							

Таблица 2

N пули	L1	L2	L3	L4	L5	L6	Mean L	SE of mean L	Sigma L pr	sigma L full	V	sigma V	f	sigma f
1	sm	sm	sm	sm	m/s	m/s	(s/m)^2	(s/m)^2						
1	2,5	2,4	2,4	2,5	2,4	2,4	2,4	0,0	0,2	0,2	5,25	0,44	0,03624	0,00022
2	4,3	4,3	4,4	4,2	4	4,3	4,3	0,1	0,2	0,2	4,65	0,24	0,04624	0,00022
3	3,8	3,7	3,8	3,6	3,9	3,9	3,8	0,0	0,2	0,2	4,85	0,27	0,04256	0,00020
4	7,1	7,2	7,3	7,1	7,2	7,3	7,2	0,0	0,2	0,2	4,71	0,15	0,04507	0,00013
5	8,9	8,9	8,8	8,9	8,5	8,7	8,8	0,1	0,2	0,2	4,62	0,12	0,04685	0,00012

Забыл замерить R, поэтому определил его "на глаз погрешность поставил ± 2 см. Погрешность v рассчитал по формуле:

$$\sigma_v = v * \sqrt{\left(\frac{\Delta M}{M+m}\right)^2 + \left(\frac{M*\Delta m}{m(m+M)}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta l_c}{2l_c}\right)}$$

Остальные формулы написаны в методичке.

Вывод: пока значения выглядят адекватными, это хорошо.

0.2.2 Упражнение 2. Оценка потенциальной энергии сжатой пружины.

Методом МНК построил график зависимости $v^{-2}(m)$:

Полученные значения записал в таблицу 3:

Α	sigma A	SE of A	Еp	Sigma Ep	Sigma Ep
Дж^-1	Дж^-1	Дж^-1	Дж	Дж	Дж
				Sigma A	SE of A
0,74	0,00	0,32	0,67	0,01	0,59

Вывод:

Из графика видно, что погрешности ужасно оценены, поэтому вместо них я предлагаю еще и рассчитанные на основе стандартного отклонения (посчитанного в программе ориджин), это могло получиться потому что когда пуля врезалась в цилиндр, она не застревала около центра масс, я заметил, что она была либо ниже (падала внутри цилиндра), либо вылетала вовсе (во втором случае я переделывал опыт). Может быть мой глаз меня подводит, и когда я мерил сильно промазывал по значениям, второе вероятнее всего, т.к. малые абсолютные отклонения по L дают большие относительные отклонения по углу α. Такие проблемы не только у меня, но и моих однокурсников), правда они скатали в итоге с готовых, я подумал сдать как есть.

Все расчетные таблицы (файл формата originlab), как и остальное, что мне понадобилось при выполнении, находятся на моем гитхабе:

https://github.com/serega-drakon/msu-labs