1 Red

A continuación se presenta un esquemático de la red objeto de estudio. En este caso particular se consideran dos alimentadores. Cada uno de ellos cuenta con tres generadores.

Figure 1: Esquemático de la red.

Se ataca el valor de P_LV0101 multiplicando su medida por 1.5. WLS descarta ['P_LV0101']

Figure 2: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 3: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de P_LV0102 multiplicando su medida por 1.5. WLS descarta ['P_LV0102']

Figure 4: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 5: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de P_LV0103 multiplicando su medida por 1.5. WLS descarta ['P_LV0103']

Figure 6: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 7: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de P_LV0201 multiplicando su medida por 1.5. WLS descarta ['P_LV0201']

Figure 8: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 9: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de P_LV0202 multiplicando su medida por 1.5. WLS descarta ['P_LV0202']

Figure 10: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 11: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de P_LV0203 multiplicando su medida por 1.5. WLS descarta ['P_LV0203']

Figure 12: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 13: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de Q_LV0101 cambiandolo por un valor de 0.5. WLS descarta ['Q_LV0101']

Figure 14: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 15: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de Q_LV0102 cambiandolo por un valor de 0.5. WLS descarta ['Q_LV0102']

Figure 16: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 17: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de Q_LV0103 cambiandolo por un valor de 0.5. WLS descarta ['Q_LV0103']

Figure 18: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 19: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de Q_LV0201 cambiandolo por un valor de 0.5. WLS descarta ['Q_LV0201']

Figure 20: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 21: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de Q_LV0202 cambiandolo por un valor de 0.5. WLS descarta ['Q_LV0202']

Figure 22: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 23: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de Q_LV0203 cambiandolo por un valor de 0.5. WLS descarta ['Q_LV0203']

Figure 24: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Figure 25: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en media tensión.

Se ataca el valor de I_LV0101 multiplicando su medida por 1.5. WLS descarta ['Q_LV0101', 'Q_POIMV_MV0101', 'I_POIMV_MV0101', 'I_POI_POIMV']

Figure 26: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Se ataca el valor de I_LV0102 multiplicando su medida por 1.5. WLS descarta ['Q_LV0102', 'I_POIMV_MV0101', 'I_POI_POIMV']

Figure 27: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Se ataca el valor de I_LV0103 multiplicando su medida por 1.5. WLS descarta ['Q_LV0103', 'Q_POIMV_MV0101', 'I_POIMV_MV0101', 'I_POI_POIMV']

Figure 28: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Se ataca el valor de I_LV0201 multiplicando su medida por 1.5. WLS descarta ['Q_LV0201', 'Q_POIMV_MV0201', 'I_POIMV_MV0201', 'I_POI_POIMV']

Figure 29: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Se ataca el valor de I_LV0202 multiplicando su medida por 1.5. WLS descarta ['Q_LV0202', 'I_POIMV_MV0201', 'I_POI_POIMV']

Figure 30: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.

Se ataca el valor de I_LV0203 multiplicando su medida por 1.5. WLS descarta ['Q_LV0203', 'Q_POIMV_MV0201', 'I_POIMV_MV0201', 'I_POI_POIMV']

Figure 31: Comparativa entre las desviaciones típicas de las soluciones para WLS y Huber (con diferentes valores de lambda). Magnitudes medidas en baja tensión.