Name: Janhavi Vijay Pawar Roll No. TI56

Group B: Assignments based on Data Analytics using Python

Perform the following operations using Python on the Facebook metrics data sets

- a. Create data subsets
- b. Merge Data
- c. Sort Data
- d. Transposing Data
- e. Shape and reshape Data

In [1]:

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files u

import os
for dirname, _, filenames in os.walk('input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

/kaggle/input/facebook-data/pseudo_facebook.csv

In [2]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

Data preprocessing

In [3]:

```
fb_data_df = pd.read_csv('pseudo_facebook.csv')
fb_data_df.head()
```

Out[3]:

	userid	age	dob_day	dob_year	dob_month	gender	tenure	friend_count	friendships_init
0	2094382	14	19	1999	11	male	266.0	0	
1	1192601	14	2	1999	11	female	6.0	0	
2	2083884	14	16	1999	11	male	13.0	0	
3	1203168	14	25	1999	12	female	93.0	0	
4	1733186	14	4	1999	12	male	82.0	0	

→

In [4]:

```
# check for missing values
print(len(fb_data_df),'Total data available ')
fb_data_df.isnull().sum()
```

99003 Total data available

Out[4]:

userid	0
age	0
dob_day	0
dob_year	0
dob_month	0
gender	175
tenure	2
friend_count	0
friendships_initiated	0
likes	0
likes_received	0
mobile_likes	0
<pre>mobile_likes_received</pre>	0
www_likes	0
www_likes_received	0
dtype: int64	

In [5]:

there are 177 rows having either gender or tenure missing, thats 0.1 % of total data
as missing data is very small part of total data we can drop those rows directly
fb_data_df.dropna(how = 'any', inplace = True)

```
In [6]:
```

```
# now check data types of columns (fields)
fb_data_df.dtypes
```

Out[6]:

```
int64
userid
age
                            int64
dob_day
                            int64
dob_year
                            int64
dob_month
                            int64
gender
                           object
                          float64
tenure
friend count
                            int64
friendships_initiated
                            int64
likes
                            int64
likes_received
                            int64
mobile_likes
                            int64
mobile_likes_received
                            int64
www_likes
                            int64
www_likes_received
                            int64
dtype: object
```

In [7]:

```
# only change needed is to take tenure as int
fb_data_df ['tenure'] = fb_data_df['tenure'].astype('int')
```

Age group analysis

```
In [8]:
```

```
min(fb_data_df['age']), max(fb_data_df['age'])
Out[8]:
(13, 113)
```

In [9]:

```
# min age is 13 and max is 113 so we will take 10 as lowerbound and 120 as upperbound for c
lables = ['10-20','21-30','31-40','41-50','51-60','61-70','71-80','81-90','91-100','101-110
fb_data_df['age_group'] = pd.cut(fb_data_df['age'], bins = np.arange(10, 121, 10), labels =
fb_data_df.head()
```

Out[9]:

	userid	age	dob_day	dob_year	dob_month	gender	tenure	friend_count	friendships_init
0	2094382	14	19	1999	11	male	266	0	
1	1192601	14	2	1999	11	female	6	0	
2	2083884	14	16	1999	11	male	13	0	
3	1203168	14	25	1999	12	female	93	0	
4	1733186	14	4	1999	12	male	82	0	
4									•

In [10]:

```
# age group vs count histogram
plt.subplots(figsize = (10,8))
sns.histplot(fb_data_df, x = 'age_group', multiple="dodge", shrink = 0.8)
plt.show()
```


Looking at above plot we can say that majority of user base is between age group 10 - 40. In depth analysis can be done on why user count for age above 40 is less.

Gender wise analysis

In [11]:

```
# male female count
gender_counts = fb_data_df['gender'].value_counts()
plt.subplots(figsize=(10,8))
plt.pie(gender_counts, labels = ['male','female'], autopct='%1.1f%%')
plt.show()
```


Based on above plot we can say that there are more mail users than female users

In [12]:

```
# Likes count vs age group and gender
plt.subplots(figsize = (6,6))
sns.barplot(data = fb_data_df,x = 'gender',y = 'likes')
plt.show()
```


As we have seen count of female users is less than male users, but looking at like counts we can say that female users are more active than male users.

In [13]:

```
# Likes_recieved vs gender
plt.subplots(figsize = (6,6))
sns.barplot(data = fb_data_df,x = 'gender',y = 'likes_received')
plt.show()
```


Looking at above plot, we can say that generelly content posted by female users is more liked.

In [14]:

```
# friend count vs age groupu and gender
plt.subplots(figsize = (6,6))
sns.barplot(data = fb_data_df,x = 'gender',y = 'friend_count')
plt.show()
```


Female user have more friends than male users

In [15]:

```
# friendships_initiated vs age group and gender
plt.subplots(figsize = (6,6))
sns.barplot(data = fb_data_df,x = 'gender',y = 'friendships_initiated')
plt.show()
```


From above plot we can see that, female users do send out more friend requests than male users but there is not much difference.

Tenure analysis

In [16]:

```
lables = ['0-1 year','1-2 years','2-3 years','3-4 years','4-5 years','5-6 years','6-7 years
fb_data_df['year_group'] = pd.cut(fb_data_df['tenure'], bins = np.arange(-1, 3285 + 1, 365)
fb_data_df.head()
```

Out[16]:

	userid	age	dob_day	dob_year	dob_month	gender	tenure	friend_count	friendships_init
0	2094382	14	19	1999	11	male	266	0	_
1	1192601	14	2	1999	11	female	6	0	
2	2083884	14	16	1999	11	male	13	0	
3	1203168	14	25	1999	12	female	93	0	
4	1733186	14	4	1999	12	male	82	0	

→

In [17]:

```
# year group histogram
plt.subplots(figsize = (10,8))
sns.histplot(data = fb_data_df,x = 'year_group', multiple = 'dodge', shrink = 0.8)
plt.show()
```


From above plot we can see that; majority of user remain on platform or app for around 0 –1 year after which user count drops by 10 % followed by much steeper decrease in user count. Also, we can see that after 5 years on platform most all users stop using platform and look for alternative.

Active users and inactive user analysis

In [18]:

```
inactive_users = fb_data_df.query('friend_count == 0 and friendships_initiated == 0 and lik
plt.subplots(figsize = (10,8))
sns.histplot(data = inactive_users, x = 'gender', shrink = 0.8)
plt.show()
```


Looking into above plot we can say that the male users are more inactive than femaleusers

In [19]:

```
# age group vs activity per day
fb_data_df['activity_per_day'] = (fb_data_df['friendships_initiated']/fb_data_df['tenure']
plt.subplots(figsize = (10,8))
sns.barplot(data = fb_data_df,x = 'age_group',y = 'activity_per_day')
plt.show()
```


From above plot we can see that users in age group 10 - 20 are most active

In [20]:

```
# gender vs activity per day barplot
plt.subplots(figsize = (10,8))
sns.barplot(data = fb_data_df,x = 'gender',y = 'activity_per_day')
plt.show()
```


From above barplot we can see that female users are far more active than male users

Web users and mobile user analysis

In [21]:

```
fb_data_df.head()
```

Out[21]:

	userid	age	dob_day	dob_year	dob_month	gender	tenure	friend_count	friendships_init
0	2094382	14	19	1999	11	male	266	0	
1	1192601	14	2	1999	11	female	6	0	
2	2083884	14	16	1999	11	male	13	0	
3	1203168	14	25	1999	12	female	93	0	
4	1733186	14	4	1999	12	male	82	0	

•

In [22]:

```
# first get all the active users
active_users = fb_data_df.query("friendships_initiated !=0 and likes != 0").reset_index(dro
# get wich platform they are using
active_users['use_method'] = (active_users['mobile_likes'] >= active_users['www_likes']).re
# plot it
plt.subplots(figsize = (10,8))
plt.pie(active_users['use_method'].value_counts(), labels = ['mobile','web'], autopct='%1.1
plt.show()
```


From above plot we can see that 71 % of facebook users use it from mobile