Serie 1

P1 (LDL^T -Zerlegung einer Matrix)

(10 Punkte)

Seien $n \in \mathbb{N}$ und $A \in \mathbb{R}^{n \times n}$ gegeben. Weiter sei A symmetrisch, also $A^T = A$ und seien alle Hauptuntermatrizen von A regulär.

Analog zur Vorlesung finden wir dann eine linke untere Dreiecksmatrix $L \in \mathbb{R}^{n \times n}$ und eine Diagonalmatrix $D \in \mathbb{R}^{n \times n}$, so dass sich A auch schreiben lässt als $A = LDL^T$ und sowohl L als auch D lassen sich ebenfalls wieder in-place speichern.

Dazu starten wir wie in der Vorlesung, aber unter Beachtung der Symmetrie, mit einer Zerlegung von A, L und D in

$$\begin{pmatrix} a_{11} & A_{*1}^T \\ A_{*1} & A_{**} \end{pmatrix} = \begin{pmatrix} \ell_{11} \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} d_{11} \\ D_{**} \end{pmatrix} \begin{pmatrix} \ell_{11} \\ L_{*1} & L_{**} \end{pmatrix}^T.$$

- (a) Berechnen Sie ausgehend von dieser Gleichung die LDL^T -Zerlegung von A. Implementieren Sie die Operation in der Methode decomp_ldlt. Setzen Sie dies so um, dass nur der linke untere Dreiecksanteil der Matrix A überschrieben wird.
- (b) Schreiben Sie weiter eine Routine eval_ldlt, die das Matrix-Vektor-Produkt $Ax = (LDL^T)x$ berechnet und das Ergebnis in den Vektor $x \in \mathbb{R}^n$ zurückschreibt. Implementieren Sie hierzu die Funktionen eval_l, eval_d und eval_lt, die die in-place Multiplikation einer unteren Dreiecksmatrix, der Diagonalmatrix und der transponierten unteren Dreiecksmatrix bezeichnen.
- (c) Testen Sie ihre Implementierungen von (a) und (b) für verschiedene Matrizen.