Тема 3. Відображення і функції

У попередній лекції були розглянуті бінарні відношення, які є підмножинами декартового добутку двох множин. Бінарні відношення, які визначені на декартовому квадраті множини, представляють найбільший інтерес через те, що вони володіють деякими важливими властивостями: симетричність, рефлективність, транзитивність тощо. Для відношень, що утворені різними множинами, коли $R \subseteq A \times B$, говорити про зазначені вище властивості немає сенсу, тому що перша та друга координати R мають різну природу. Наприклад, відношення "x народився в році y" є підмножиною декартового добутку множини людей та множини років і ставить у відповідність кожній людині рік її народження. Для аналізу подібних відношень вводяться поняття відображення та функції.

3.1. Функціональні відношення

<u>Означення 3.1</u> Відношення $f \subset A \times B$ називається **функціональним** (або просто функцією), якщо виконується наступне:

$$\forall a (a, b) \in f \text{ Ta } (a, c) \in f \Rightarrow b = c.$$

Іншими словами, кожному $a \in A$ з області визначення: $(a, b) \in f$ відповідає один і тільки один елемент $b \in B$.

Іноді функціональне відношення f також позначають у префіксному записі: b = f(a), де $a \in A$, $b \in B$.

Область (множина) визначення функції буде наступна множина:

$$Dom f == \{a \in A \mid \exists b \in B, b = f(a)\}.$$

Область (множина) значень функції буде наступна множина:

$$\operatorname{Im} f == \{b \in B \mid \exists \ a \in A, \ b = f(a)\}.$$

Очевидно, для функціонального відношення f кожний переріз за будь-яким $a \in A$ містить не більше як один елемент. Якщо $a \notin \text{Dom } f$, то переріз за a — порожній.

Якщо $\operatorname{Dom} f = A$, то функціональне відношення f називається **всюди визначеним**. Матриця функціонального відношення містить у кожному рядку не більше як один одиничний елемент, а його граф характеризується тим, що з кожної вершини може виходити тільки одна дуга (враховуючи й петлі).

Наприклад, розглянемо множини $A = \{1, 2, 3, 4\}$ та $B = \{1, 4, 9, 16, 25\}$, тоді відношення $R = \{(1,1), (2,4), (3,9), (4,16)\}$ та $Q = \{(1,1), (2,4), (3,4), (4,16)\}$ є функціональними. Відношення $P = \{(1,1), (1,4), (3,9)\}$, навпаки, не є функціональним.

Розглянемо інший приклад — українсько-англійський словник. Він установлює відповідність між множиною українських та англійських слів. Ця відповідність не є функціональною (оскільки одному українському слову, як правило, ставляться у відповідність декілька англійських слів); крім того, вона практично ніколи не є повністю визначеною: завжди можна знайти українське слово, що не міститься в цьому словнику.

Усяке функціональне відношення можна розглядати як функцію. При цьому перша координата a впорядкованої пари $(a,b) \in f$ ϵ **прообразом** (аргументом, змінною), а друга b – **образом** (значенням). Потрібно розрізняти функцію f як множину впорядкованих пар (відношення) і значення функції b = f(a) як другу координату однієї з таких пар.

Слід зазначити, що відношення, обернене до функціонального, загалом не ϵ функціональним. У розглянутому вище прикладі відношення Q ϵ функціональним, але обернене йому відношення $Q^{-1} = \{(1,1), (4,2), (4,3), (16,4)\}$ не ϵ функціональним.

Якщо функціональне відношення $f \subset A \times B$ всюди визначене на A, то його називають відображенням множини A в B і записують $f: A \to B$. Очевидно, що різниця між відображенням та функцією зводиться до способу означення цих відношень на множині A, причому відображення потрібно розглядати як окремий випадок функції. Більшість математиків не розрізняють поняття відображення і функції.

3.2. Типи відображень

При відображенні A в B кожен елемент a з A має один і тільки один образ ($\forall a \in A \exists ! b \in B \ (a = f(b))$). Однак зовсім не обов'язково, щоб кожний елемент B був образом деякого елемента з A. Графічно ця ситуацію показана на рис. 3.1а. Для порівняння на рис. 3.16 наведено приклад функціонального відношення, яке не є відображенням.

Рис. 3.1. Приклади відображення (а) та функціонального відношення (б).

<u>Означення 3.2.</u> Якщо для відображення $f: A \to B$ будь-який елемент b з B ϵ образом принаймні одного елементу a з A, тобто:

$$\forall b \in B \ \exists a \in A : b = f(a),$$

то кажуть, що множина A накриває множину B, а відображення буде мати назву **сюр'єкції** (рис. 3.2).

Обернене відображення до сюр'єкції f^{-1} не буде порожнім.

<u>Означення 3.3.</u> Якщо для відображення $f: A \to B$ для будь-яких двох різних елементів a_1 та a_2 з A їх образи b_1 та b_2 також різні, то відображення f називається **ін'єкцією** (рис. 3.3). Іншим чином це можна записати як:

$$b = f(a_1)$$
 Ta $b = f(a_2) \Rightarrow a_1 = a_2$.

Рис. 3.2. Сюр'єкція

Рис 3.3. Ін'єкція

<u>Означення 3.4.</u> Відображення, яке одночасно є сюр'єктивним та ін'єктивним називається **бієкцією** (накладанням). У цьому випадку кажуть, що між елементами A та B існує взаємно однозначна відповідність (рис. 3.4).

Рис 3.4. Бієкція

Якщо f — взаємно однозначне відображення, а A = B, то $f: A \to A$ називається відображенням множини A на себе. Елементи $(a, a) \in A \times A$ утворюють **тотожне відображення** E, причому $f \circ f^{-1} = f^{-1} \circ f = E$.

<u>Означення 3.5.</u> Відображення множини в її фактор-множину називається **канонічною сюр'єкцією.**

Наприклад, нехай A та B – множини дійсних чисел і $f:A\to B$ визначено таким чином: f(a)=3a+5. Функція f ін'єктивна, тому що якщо $f(a_1)=f(a_2)$, тоді $3a_1+5=3a_2+5$ і відповідно

 $a_1 = a_2$. Функція $f \in \text{також сюр'єкцією}$. Для будь-якого дійсного числа b треба знайти таке a, що f(a) = b = 3a + 5. Розв'язуючи це рівняння відносно a, знаходимо, що якщо a = (1/3)(b-5), тоді f(a) = b. Тому функція f представляє собою бієкцію або взаємно однозначну відповідність.

Розглянемо інший приклад. Нехай знову A та B — множини дійсних чисел, а функція $f:A \to B$ визначена як $f(a) = a^2$. Функція f не є ін'єктивною, тому що f(2) = f(-2), але $2 \ne -2$. Функція f не є також сюр'єкцією, тому що не існує такого дійсного числа a, для якого f(a) = -1. Зазначимо, що якщо A та B — множини невід'ємних дійсних чисел, то тоді f буде і сюр'єктивним, і ін'єктивним. У випадку коли A та B будуть множинами натуральних чисел, то f збереже ін'єктивність, але втратить сюр'єктивність.

Прикладом бієкційного, але не функціонального відображення є функція $f: \mathbf{R}^+ \to \mathbf{R}$, де $f(a) = \pm \sqrt{a}$.

Різні види кодування (подання чисел у різних системах числення, секретні шифри тощо) є відповідністю між об'єктами, що кодуються, і кодами, що присвоюються їм. Ця відповідність, як правило, має всі властивості взаємно однозначної відповідності, крім, може бути, однієї — сюр'єктивності. Єдність образу та прообразу в кодуванні гарантує однозначність шифрування і дешифрування. Відсутність сюр'єктивності означає, що не кожний код має значення, тобто відповідає якому-небудь об'єкту. Наприклад, кодування телефонів міста Києва семизначними номерами не є сюр'єктивним, оскільки деякі семизначні номери не відповідають жодним телефонам. У випадку коли мова йде про шифрування слів і не виконується умова ін'єкції, то це означає, що неможливо однозначно встановити початкове слово за його шифром або кодом.

3.3. Властивості відображень

Загалом при відображенні $f:A\to B$ елемент із B може бути образом не одного, а кількох елементів із A.

<u>Означення 3.6.</u> Сукупність усіх елементів, образом яких є заданий елемент b, називається **повним прообразом** елемента b і позначається $f^{-1}(b)$. Сукупність елементів f(a), які є образами всіх елементів множини $C \subset A$, називається **образом множини** C та позначається f(C). Сукупність усіх елементів із A, образи яких належать якійсь множині $D \subset B$, називається **повним прообразом множини** D і позначається $f^{-1}(D)$.

Наприклад, нехай $A = \{1, 2, 3, 4\}$ та $B = \{5, 6, 7, 8, 9\}$, а $f = \{(1,5), (2,6), (2,7), (3,8), (3,5)\}$. Тоді повним прообразом елемента "5" з множини B буде $f^{-1}(5) = \{1, 3\}$. Нехай також $C = \{1, 2\}$. Тоді образ множини C буде $f(C) = \{5, 6, 7\}$. Нехай $D = \{6, 7\}$. Тоді $f^{-1}(D) = \{2\}$.

<u>Теорема 3.1.</u> Нехай $f \in$ відображення $f : A \to B$. Тоді справедливі наступні властивості відображень:

```
а) Якщо X \subset Y, то f(X) \subset f(Y), f^{-1}(X) \subset f^{-1}(Y), б) f(X \cup Y) = f(X) \cup f(Y), f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y), в) f(X \setminus Y) = f(X) \setminus f(Y), f^{-1}(X \setminus Y) = f^{-1}(X) \setminus f^{-1}(Y), г) f(X \cap Y) = f(X) \cap f(Y), f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y), д) f^{-1}(X') = (f^{-1})'(X). Доведення.
```

Розглянемо перше твердження пункту б) $f(X \cup Y) = f(X) \cup f(Y)$. Отримаємо наступне:

 $f(a) \in f(X \cup Y) \Rightarrow a \in X \cup Y \Leftrightarrow a \in X \text{ ado } a \in Y \Rightarrow f(a) \in f(X) \text{ ado } f(a) \in f(Y) \Leftrightarrow f(a) \in f(X) \cup f(Y) \Rightarrow f(X \cup Y) \subseteq f(X) \cup f(Y).$

 $f(a) \in f(X) \cup f(Y) \Leftrightarrow f(a) \in f(X)$ afor $f(a) \in f(Y) \Rightarrow a \in X$ afor $a \in Y \Leftrightarrow a \in X \cup Y \Rightarrow f(a) \in f(X \cup Y) \Rightarrow f(X) \cup f(Y) \subseteq f(X \cup Y)$.

3 цих двох результатів отримуємо, що $f(X \cup Y) = f(X) \cup f(Y)$.

Розглянемо друге твердження пункту б) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$. Отримаємо наступне:

 $a \in f^{-1}(X) \cup f^{-1}(Y) \Rightarrow f^{-1}(X \cup Y) \subseteq f^{-1}(X) \cup f^{-1}(Y).$

 $a \in f^{-1}(X) \cup f^{-1}(Y) \Leftrightarrow a \in f^{-1}(X) \cup a \in f^{-1}(Y) \Rightarrow f(a) \in X \text{ afo } f(a) \in Y \Leftrightarrow f(a) \in X \cup Y \Rightarrow a \in f^{-1}(X \cup Y) \Rightarrow f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y).$

Тому отримуємо, що $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Розглянемо перше твердження пункту в) $f(X \setminus Y) = f(X) \setminus f(Y)$. Отримаємо наступне доведення:

 $f(a) \in f(X \setminus Y) \implies a \in X \setminus Y \iff a \in X \text{ Ta } a \notin Y \implies f(a) \in f(X) \text{ Ta } f(a) \notin f(X) \iff f(a) \in f(X) \setminus f(Y) \implies f(X \setminus Y) \subseteq f(X) \setminus f(Y),$

Випадок зворотного включення $f(X)\setminus f(Y)\subseteq f(X\setminus Y)$ доводиться аналогічно і тому отримуємо, що $f(X\setminus Y)=f(X)\setminus f(Y)$.

Розглянемо друге твердження пункту г) $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$. Отримаємо наступне доведення:

 $a\in f^{-l}(X\cap Y)\Rightarrow f(a)\in X\cap Y\Leftrightarrow a\in X$ to $a\in Y\Rightarrow a\in f^{-l}(X)$ to $a\in f^{-l}(Y)\Leftrightarrow a\in f^{-l}(X)\cap f^{-l}(Y)\Rightarrow f^{-l}(X\cap Y)\subseteq f^{-l}(X)\cap f^{-l}(Y).$

Випадок зворотного включення $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$ доводиться аналогічно і тому отримуємо, що $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.

Решту тверджень читачеві пропонується довести самостійно. >

<u>Означення 3.7.</u> Нехай функцію $f: A \to B$ задано на A, f_1 – на множині $C \subset A$, причому для кожного $a \in C$ виконується $f(a) = f_1(a)$. Тоді f_1 називається **обмеженням** (звуженням) функції f на C, а f – продовженням функції f_1 на A.

Наприклад, функція $f(a) = a^3$, яка задана на множині дійсних чисел, відображає цю множину на себе. Якщо ввести обмеження, щоб область визначення була лише множиною цілих чисел, то дістанемо звуження $f_1(a)$ функції f(a) на цілих числах. Причому $f_1(a)$ відображає множину цілих чисел, але не на саму себе, оскільки не кожне ціле число є кубом самого себе.

3.4. Композиція відображень

<u>Означення 3.8.</u> Якщо $f: A \to B$, $g: B \to C$, то їх **композиція** $(g \circ f): A \to C$, причому $(g \circ f)(a) = g(f(a))$. Іншими словами, якщо існує множина пар $(a, b) \in f$ та $(b, c) \in g$, то множина пар $(a, c) \in f \circ g$ утворює композицію $(g \circ f)$. Запис $(g \circ f)$ проводиться в порядку, який є зворотнім до того, в якому виконується операції $f: A \to B$, $g: B \to C$. Таким чином, в математиці прийнято правило, згідно з яким композицію відображень $(g \circ f)$ треба починати з виконання операції f, яка розташована справа.

Наприклад, якщо $f = \sin g = \ln$, то $(g \circ f)(a) = (\ln \circ \sin)(a) = \ln(\sin(a))$.

Легко показати, що композиція відображень асоціативна, тобто $(h^{\circ}g)^{\circ}f = h^{\circ}(g^{\circ}f)$ і записується у вигляді $h^{\circ}g^{\circ}f$. Так само легко з'ясувати, що композиція відображень не комутативне (це випливає з означення композиції відображень).

<u>Теорема 3.2.</u> Функція $f \in \text{взаємно}$ однозначним функціональним відношенням тоді і тільки тоді, коли f^{-1} — взаємно однозначне відношення.

Доведення. Доведемо, що f^{-1} — функція. Нехай (b, a_1) ∈ f^{-1} , (b, a_2) ∈ f^{-1} . за означенням оберненого відношення маємо (a_1, b) ∈ f, (a_2, b) ∈ f. Оскільки f за умовою є взаємно однозначною функцією, дістанемо $a_1 = a_2$, а це означає, що f^{-1} — функціональне відношення. Покажемо, що f^{-1} — взаємно однозначне функціональне відношення. Нехай (b_1, a) ∈ f^{-1} , (b_2, a) ∈ f^{-1} . Це означає, що (a, b_1) ∈ f, (a, b_2) ∈ f. Оскільки f — функція, маємо $b_1 = b_2$, а це означає, що f^{-1} є взаємно однозначним функціональним відношенням. Таким чином, необхідну умову теореми доведено. Читачеві пропонуємо показати, що таким чином доведено також її достатню умову. ▶

<u>Теорема 3.3.</u> Композиція двох функціональних відношень ϵ функціональним відношенням.

Доведення. Нехай $f: A \to B$, $g: B \to C$. За означенням композиції відношень $h = (g \circ f) = \{(a,c) \mid ((a,b) \in f \text{ та } (b,c) \in g\}$. Отже, це за означенням — підмножина декартового добутку $A \times C$. Доведемо, що h — функціональне відношення. Нехай задано дві пари, які належать h:

$$\begin{cases} (a,c_1) \in h \Rightarrow \exists b_1 \in B \mid (a,b_1) \in f, (b_1,c_2) \in g; \\ (a,c_2) \in h \Rightarrow \exists b_2 \in B \mid (a,b_2) \in f, (b_2,c_2) \in g. \end{cases}$$

Оскільки f — функціональне відношення, маємо $b_1 = b_2$, а оскільки g — функціональне відношення, дістаємо $c_1 = c_2$. Отже h — функціональне відношення.

Теорема 3.4 (без доведення). Нехай $f: A \to B, g: B \to C$. Тоді

- а) якщо f і g сюр'єкції A на B та B на C відповідно, то $g \circ f$ є сюр'єкцією A на C. Іншими словами, композиція двох сюр'єкцій сюр'єкція.
- б) якщо f і g ін'єкції, то $g \circ f$ є ін'єкцією. Іншими словами, композиція двох ін'єкцій ін'єкція.
- в) якщо f і g бі'єкції, то g f є бі'єкцією. Іншими словами, композиція двох бі'єкцій бі'єкція.

Для багатомісних функції $f:A^m\to B,\ g:B^n\to C$ можливими є різні варіанти підстановки f у g, які дають функції різних типів. Наприклад, при $m=3,\ n=4$ функція $h_1=g(b_1,f(a_1,a_2,a_3),b_3,b_4)$ має шість аргументів і діє з $B\times A^3\times B^2\to C$, а функція $h_1=g(f(a_1,a_2,a_3),f(d_1,d_2,d_3),b_3,b_4)$ має вісім аргументів та діє з $A^6\times B^2\to C$. Особливо цікавим є випадок, коли задано множину функцій типу $f_i:A^{m_1}\to A,A^{m_2}\to A,...,A^{m_n}\to A$. У цьому разі може виконане будь-яке перейменування аргументів, наприклад, перейменування a_3 в a_2 , що породжує з функції $f(a_1,a_2,a_3,a_4)$ функцію трьох аргументів $f(a_1,a_2,a_2,a_4)$.

<u>Означення 3.9.</u> Функція, що утворюється з функцій $f_1, f_2,..., f_n$ деякою підстановкою їх одна в одну і перейменуванням аргументів, називається **суперпозицією** $f_1, f_2,..., f_n$.

Наприклад, у функції $f_1(a_1,a_2,a_3)=a_1+2a_2+7a_3$ перейменування a_3 в a_2 приводить до функції $f_1(a_1,a_2,a_2)=a_1+2a_2+7a_2=f_2(a_1,a_2)=a_1+9a_2$. Перейменування a_1 та a_3 в a_2 приводить до одномісної функції $f_3(a_2)=10a_2$.