```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv("Titanic-Dataset.csv")

df.head()
```

>	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
4						C.	Code —	+ Te	ext	•

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype ---PassengerId 891 non-null int64 0 Survived 891 non-null int64 Pclass 891 non-null int64 891 non-null object Name 891 non-null object Sex 714 non-null 891 non-null float64 int64 5 Age SibSp 891 non-null int64 Parch 8 Ticket 891 non-null object Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

df.corr()

SibSp 0.414838
Fare 0.216225
Survived 0.081629
Pclass 0.018443
PassengerId -0.001652
Age -0.189119
Name: Parch, dtype: float64

→

sns.heatmap(df.corr(),annot=True)

<ipython-input-8-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a fu
sns.heatmap(df.corr(),annot=True)


```
df.isnull().sum()
```

PassengerId 0 Survived Pclass 0 Name 0 Sex 0 177 Age SibSp 0 Parch 0 0 Ticket Fare a Cabin 687 Embarked 2 dtype: int64

df.drop(["Cabin"],axis=1,inplace=True)

mean_age = df['Age'].mean()
mean age

29.69911764705882

df['Age'].fillna(mean_age, inplace=True)

mode_embarked = df["Embarked"].mode()[0]
mode_embarked

'S

```
df["Embarked"].fillna(mode_embarked,inplace=True)
```

```
df.isnull().sum()
```

```
PassengerId
Survived
               0
Pclass
               0
Name
Sex
Age
SibSp
               0
Parch
Ticket
Fare
               0
Embarked
dtype: int64
```

```
# Example 1: Create a histogram of the 'Age' column
plt.hist(df['Age'], bins=20, edgecolor='k')
plt.xlabel('Age')
plt.ylabel('Count')
plt.title('Age Distribution')
plt.show()

# Example 2: Create a bar chart for the 'Pclass' column
pclass_counts = df['Pclass'].value_counts()
plt.bar(pclass_counts.index, pclass_counts.values)
plt.xlabel('Pclass')
plt.ylabel('Count')
plt.title('Passenger Class Distribution')
plt.xticks(pclass_counts.index, labels=['1st', '2nd', '3rd'])
plt.show()
```



```
# Example 1: Create a box plot of 'Age' by 'Pclass'
sns.boxplot(x='Pclass', y='Age', data=df)
plt.xlabel('Pclass')
plt.ylabel('Age')
plt.title('Age Distribution by Passenger Class')
plt.show()

# Example 2: Create a countplot of 'Sex'
sns.countplot(x='Sex', data=df)
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Passenger Gender Distribution')
plt.show()
```


df.info()

2	Pclass	891	non-null	int64
3	Name	891	non-null	object
4	Sex	891	non-null	object
5	Age	891	non-null	float64
6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Embarked	891	non-null	object

```
dtypes: float64(2), int64(5), object(4)
  memory usage: 76.7+ KB

df.drop(["PassengerId","Name","Ticket"],axis=1,inplace=True)

df.head()
```

```
Survived Pclass
                            Age SibSp Parch
                                                 Fare Embarked
                                                                  畾
0
         0
                     male 22.0
                                           0
                                               7 2500
                                                             S
                 1 female
                           38.0
                                              71.2833
                                                             С
2
                 3 female 26.0
                                    0
                                           0
                                               7 9250
                                                             S
                   female
                          35.0
                                           0 53.1000
                                                             S
                      male 35.0
                                               8.0500
                                                             S
```

```
# Select numerical columns from the dataset
numerical_attributes = df.select_dtypes(include=['int64', 'float64'])

# Create box plots for each numerical attribute
plt.figure(figsize=(16, 8))  # Adjust the figure size for better visualization

for i, column in enumerate(numerical_attributes.columns):
    plt.subplot(2, 3, i+1)  # Create subplots in a 2x3 grid
    sns.boxplot(x=column, data=numerical_attributes, whis=1.5)  # Adjust whis as needed

plt.tight_layout()
plt.show()
```



```
# Load your dataset into a pandas DataFrame (assuming your dataset is loaded as 'df')
# Define the numerical attributes
numerical_attributes = ['Age', 'SibSp', 'Parch', 'Fare']
# Define a function to detect and potentially remove outliers
def detect_and_remove_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.25)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    outliers = df[(df[column] < lower_bound) | (df[column] > upper_bound)]
    return outliers
# Detect and potentially remove outliers for each numerical attribute
outliers_dict = {}
```

726

787

792

813

1

0

0

2

3

female

male

female

female

30.000000

8.000000

6.000000

29.699118

3

4

0

21.0000

29.1250

69.5500

31.2750

Q

```
9/20/23, 10:03 PM
    for attribute in numerical_attributes:
        outliers = detect_and_remove_outliers(df, attribute)
        outliers_dict[attribute] = outliers
   # Print the detected outliers for each numerical attribute
    for attribute, outliers in outliers_dict.items():
        print(f"Outliers in {attribute}:")
        print(outliers)
   # Optionally, remove the outliers from the DataFrame
    for attribute, outliers in outliers_dict.items():
        df = df[~df.index.isin(outliers.index)]
         Outliers in Age:
              Survived Pclass
                                   Sex
                                           Age SibSp Parch
                                                                  Fare Embarked
                                          2.00
                                                               21.0750
                     0
                                  male
                                                           1
         11
                                 female
                                         58.00
                                                               26.5500
         15
                                female
                                         55.00
                                                              16.0000
                                                               29.1250
         16
                     0
                             3
                                  male
                                          2.00
                                                                              Q
                                                           1
         33
                     0
                             2
                                  male
                                         66.00
                                                    0
                                                           0
                                                              10.5000
                                                                              S
         827
                                                               37,0042
                     1
                             2
                                  male
                                          1.00
                                                    0
                                                                              C
         829
                     1
                             1
                                 female
                                         62.00
                                                    0
                                                           0
                                                               80,0000
                                                                              S
         831
                     1
                             2
                                  male
                                          0.83
                                                    1
                                                           1
                                                               18.7500
                                                                              S
         851
                     0
                             3
                                  male
                                         74.00
                                                    0
                                                           0
                                                               7.7750
                                                                              S
                             1 female
                                         56.00
                                                              83.1583
         879
         [66 rows x 8 columns]
         Outliers in SibSp:
              Survived Pclass
                                   Sex
                                                    SibSp Parch
                                                                       Fare Embarked
                                               Age
                                          2.000000
                                                                    21,0750
                     0
                                  male
                                                                                   S
                             3
                                                        3
                                                               1
         16
                                          2.000000
                                                                    29.1250
                     0
                             3
                                  male
                                                        4
                                                                1
                                                                                   Q
         24
                     a
                             3
                                female
                                          8.000000
                                                        3
                                                                1
                                                                   21.0750
         27
                     0
                             1
                                  male
                                         19.000000
                                                        3
                                                                2
                                                                   263,0000
                                                                                   S
         50
                     0
                             3
                                   male
                                         7.000000
                                                        4
                                                                1
                                                                    39.6875
         59
                     0
                             3
                                   male
                                         11.000000
                                                        5
                                                                2
                                                                    46.9000
         63
                     0
                             3
                                  male
                                         4.000000
                                                                2
                                                                    27.9000
                                                        3
         68
                     1
                             3
                                 female
                                         17.000000
                                                        4
                                                               2
                                                                     7.9250
                                                                                   S
         71
                     0
                             3
                                 female
                                         16.000000
                                                                    46.9000
         85
                             3
                                         33.000000
                                                        3
                                                                0
                                                                    15.8500
                                 female
                     1
                                         23.000000
                                                                   263.0000
         88
                                 female
                                                        3
                                                                2
                                                                                   S
                     1
                             1
         119
                     0
                             3
                                 female
                                          2.000000
                                                        4
                                                                2
                                                                    31.2750
                                                                                   S
         159
                     0
                             3
                                  male
                                         29.699118
                                                        8
                                                                2
                                                                    69.5500
                                                                                   S
         164
                     0
                             3
                                   male
                                          1.000000
                                                                    39.6875
         171
                     0
                             3
                                  male
                                          4.000000
                                                        4
                                                                1
                                                                    29.1250
                                                                                   Q
         176
                     0
                             3
                                   male
                                         29.699118
                                                        3
                                                                    25.4667
                                                                1
         180
                     0
                             3
                                 female
                                         29.699118
                                                        8
                                                                2
                                                                    69.5500
                                                                                   S
         182
                                  male
                                          9.000000
                                                                    31.3875
         201
                     0
                             3
                                         29.699118
                                                        8
                                                                2
                                                                    69.5500
                                                                                   S
                                  male
         229
                     0
                             3
                                 female
                                         29.699118
                                                                    25,4667
                                                        3
                                                                1
                     1
                                          5.000000
                                                        4
                                                                2
                                                                    31.3875
                                                                                   S
         233
                             3
                                female
                                          3.000000
                                                        4
                                                                2
                                                                    31.3875
                                                                                   S
         261
                     1
                             3
                                  male
                                  male 16.000000
         266
                     0
                             3
                                                        4
                                                                1
                                                                    39.6875
                                                                                   S
         278
                     0
                             3
                                  male
                                         7.000000
                                                        4
                                                                1
                                                                    29.1250
                                                                                   Q
         324
                     0
                             3
                                  male
                                         29.699118
                                                        8
                                                                2
                                                                    69.5500
         341
                     1
                             1
                                 female
                                         24.000000
                                                        3
                                                                2
                                                                   263.0000
                                                                                   S
         374
                     0
                             3
                                 female
                                         3.000000
                                                        3
                                                                    21.0750
                                                                    46.9000
         386
                     0
                                  male
                                          1.000000
         409
                     0
                             3
                                 female
                                         29.699118
                                                                    25.4667
         480
                     0
                                          9.000000
                                                                    46.9000
                                                                                   S
                             3
                                  male
                                                        5
                                                                2
         485
                     0
                             3
                                 female
                                         29.699118
                                                        3
                                                                    25.4667
                                                                                   S
                                                                1
                     0
                                          9.000000
                                                        4
                                                                    31.2750
                                                                                   S
         541
                             3
                                 female
                                         11.000000
         542
                     0
                             3
                                 female
                                                        4
                                                                2
                                                                    31,2750
                                                                                   S
         634
                     a
                             3
                                 female
                                          9.000000
                                                        3
                                                                2
                                                                    27,9000
         642
                     0
                             3
                                 female
                                          2,000000
                                                        3
                                                                2
                                                                    27,9000
                                                                                   S
         683
                     0
                             3
                                  male
                                         14.000000
                                                                2
                                                                    46.9000
         686
                     0
                             3
                                   male
                                         14.000000
                                                        4
                                                                    39.6875
                                                                                   S
```

```
import matplotlib.pyplot as plt
import seaborn as sns

# Select numerical columns from the dataset
numerical_attributes = df.select_dtypes(include=['int64', 'float64'])

# Create box plots for each numerical attribute
plt.figure(figsize=(16, 8))  # Adjust the figure size for better visualization

for i, column in enumerate(numerical_attributes.columns):
    plt.subplot(2, 3, i+1)  # Create subplots in a 2x3 grid
    sns.boxplot(x=column, data=numerical_attributes, whis=1.5)  # Adjust whis as needed

plt.tight_layout()
plt.show()
```


df.head()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	0	3	male	22.000000	1	0	7.2500	S	ılı
2	1	3	female	26.000000	0	0	7.9250	S	
3	1	1	female	35.000000	1	0	53.1000	S	
4	0	3	male	35.000000	0	0	8.0500	S	
5	0	3	male	29.699118	0	0	8.4583	Q	

```
# Assuming 'df' is your DataFrame containing the dataset
X = df.drop('Survived', axis=1) # Independent variables
y = df['Survived'] # Dependent variable
```

X.head()

Pcla	ISS	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
0	3	male	22.000000	1	0	7.2500	S	ıl.
2	3	female	26.000000	0	0	7.9250	S	
3	1	female	35.000000	1	0	53.1000	S	
4	3	male	35.000000	0	0	8.0500	S	
5	3	male	29.699118	0	0	8.4583	Q	

y.head()

```
2
           1
     3
           1
     4
           0
     5
          0
     Name: Survived, dtype: int64
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
X["Sex"]=le.fit_transform(X["Sex"])
Embarked=pd.get_dummies(X["Embarked"],drop_first=True)
                           \blacksquare
            Q S
            0 1
       0
            0 1
            1 0
           0 1
      884
      886 0 1
      887 0 1
      889 0 0
      890 1 0
     577 rows × 2 columns
X=pd.concat([X,Embarked],axis=1)
X.drop(["Embarked"],axis=1,inplace=True)
from sklearn.model_selection import train_test_split
x\_train, x\_test, y\_train, y\_test=train\_test\_split(X, y, test\_size=0.2, random\_state=2)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
     ((461, 8), (116, 8), (461,), (116,))
from \ sklearn.preprocessing \ import \ StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x\_test = sc.fit\_transform(x\_test)
x_train
     array([[ 0.6931394 , -1.76523977,  0.0155626 , ..., -0.04945919,
              -0.34879005, -1.74466606],
             [\ 0.6931394\ ,\ 0.56649528\ ,\ -1.4470116\ ,\ \ldots,\ -0.5034821\ ,
               -0.34879005, 0.57317559],
             [ 0.6931394 , 0.56649528, 0.16538695, ..., -0.5612962 , -0.34879005, 0.57317559],
             [0.6931394, 0.56649528, 0.0155626, ..., 0.7106139,
               2.86705424, -1.74466606],
             [-2.03794831, 0.56649528, 0.0155626, ..., -1.18255274, -0.34879005, 0.57317559],
             [ 0.6931394 , -1.76523977, 0.0155626 , ..., -0.57501479, 2.86705424, -1.74466606]])
x_test
```

```
-0.23462/4/, -0.3/04/929, 0.59062442],
[ 0.62104163, 0.60390884, -0.05807902, -0.39103094, 0.
 -0.59344272, -0.37047929, -1.69312335],
[\ 0.62104163,\ 0.60390884,\ -1.09122365,\ -0.39103094,
 -0.60183606, -0.37047929, 0.59062442],
\hbox{$[-2.09748023,}\quad 0.60390884,} \ -0.09693589,} \ -0.39103094,} \quad 0.
  1.40207365, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, -0.09693589, -0.39103094, 0. -0.5371402, -0.37047929, 0.59062442],
[\ 0.62104163,\ 0.60390884,\ -1.73693904,\ -0.39103094,\ 0.
 -0.60183606, -0.37047929, 0.59062442],
[\ 0.62104163,\ 0.60390884,\ 1.10420868,\ -0.39103094,\ 0.
  0.82712992, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
 -0.53853349, 2.69920623, -1.69312335],
[\ 0.62104163,\ 0.60390884,\ 0.20020713,\ -0.39103094,\ 0.
 -0.49796849, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -1.3495098 , -0.39103094, 0.
-0.47278847, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
 \hbox{-0.54937769,} \quad \hbox{2.69920623,} \quad \hbox{-1.69312335],}
[\ 0.62104163,\ 0.60390884,\ 2.26649639,\ -0.39103094,\ 0.
 -0.54063183, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
  2.12390081, -0.37047929, -1.69312335],
[-0.7382193 , -1.65587907, 1.49163792, 1.87694853, 0. 0.98240669, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -1.09122365, -0.39103094, 0. -0.37416673, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, 1.23335176, -0.39103094, 0. -1.19986147, -0.37047929, 0.59062442],
[\ 0.62104163,\ 0.60390884,\ -1.3495098\ ,\ -0.39103094,\ 0.
  -0.52419767, -0.37047929, 0.59062442],
\hbox{$[-0.7382193\ ,\ 0.60390884,\ -1.47865288,\ -0.39103094,\ 0.$}
  -0.31856086, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, -1.22036673, -0.39103094, 0. -0.54063183, -0.37047929, 0.59062442],
[ \ 0.62104163, \ -1.65587907, \ \ 0.00649252, \ -0.39103094, \ \ 0.
 -0.54937769, 2.69920623, -1.69312335],
[-2.09748023, 0.60390884, 1.49163792, 1.87694853, 0.
  3.21119074, -0.37047929, 0.59062442],
[-0.7382193 \ , \ 0.60390884, \ 3.04135486, \ -0.39103094, \ 0.
  0.98240669, -0.37047929, 0.59062442]])
```

✓ 0s completed at 10:03 PM

×