

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, Dr.-Ing. Anke Müller, 25. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Kapitel 10:

Fertigungsmesstechnik und Prozessüberwachung

Dr.-Ing. Anke Müller, 25. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Einheiten der Vorlesung Fertigungstechnik

Fertigungsmesstechnik und Prozessüberwachung

Einteilung der Fertigungsverfahren nach DIN 8580

Bildquellen: Pexels

Ziele der heutigen Vorlesung/Übung

Definition Messen und Prüfen

Messen: Vergleichen mit einer vereinbarten Einheit

Messwert = Zahl * Einheit

Prüfen: Untersuchen, inwieweit ein Objekt eine Forderung erfüllt

Unterscheidung zwischen:

- nicht-maßlicher/qualitativer und
- maßgeblicher/quantitativer Prüfung

Prüfobjekte in der Fertigungstechnik sind:

- Werkstücke
- Maschinen und Werkzeuge
- Mess- und Prüfmittel

Typische Prüfaufgaben

Werkstoffprüfung	Geometrieprüfung	Sensorische Prüfung	Funktionsprüfung
Riss	Form	Farbe	Kraft
Gefüge	Maß	Glanz	Geräusch
Härte	Lage	Geruch	Moment
E-Modul	Rauheit	Haptik	Drehzahl

In der industriellen Fertigung kommt der Geometrieprüfung die größte Bedeutung zu

Gestaltabweichung

Wirtschaftliche Fertigung:

→ Achtung bei Angabe von Toleranzen in technischen Zeichnungen

Nur so genau wie notwendig und nicht so genau wie möglich produzieren!

Die Gestalt von Bauteilen kann in zwei Gruppen eingeteilt werden:

- Grobgestalt (Maß, Form, Lage)
- Feingestalt (Welligkeit, Rauheit)

Gestaltabweichung: die Gesamtheit aller Abweichungen, die zwischen der Ist-Oberfläche und der Soll-Oberfläche liegen

Gestaltabweichung nach DIN 4760

Gestaltabweichung (als Profilschnitt überhöht dargestellt)	Beispiele für die Art der Abweichung	Beispiele für die Entstehungsursache
1. Ordnung: Formabweichungen	Geradheits-,Eben- heitsRundheits- Abweichung, u.a.	Fehler in den Führungen der Werkzeugmaschine, Durchbiegung der Maschine oder des Werkstückes, falsche Einspannung des Werkstückes, Härteverzug, Verschleiß
2. Ordnung: Welligkeit	Wellen (siehe DIN 4761)	außermittige Einspannung, Form- oder Lauf- abweichungen eines Fräsers, Schwingungen der Werkzeugmaschine oder des Werkzeuges
3. Ordnung: Rauheit	Rillen (siehe DIN 4761)	Form der Werkzeugschneide, Vorschub oder Zustellung des Werkzeuges
4. Ordnung: Rauheit	Riefen, Schuppen, Kuppen (siehe DIN 4761)	Vorgang der Spanbildung (Reißspan, Scherspan, Aufbau- schneide), Werkstoffverformung beim Strahlen, Knospen- bildung bei galvanischer Behandlung
5. Ordnung: Rauheit	Gefügestruktur	Kristallisationsvorgänge, Veränderung der Oberfläche durch chemische Einwirkung (z.B. Beizen), Korrosionsvorgänge
6. Ordnung:	Gitteraufbau des Werkstoffes	

Die dargestellten Gestaltabweichungen 1. bis 4. Ordnung überlagern sich in der Regel zu der Ist-Oberfläche. Beispiel:

Gestaltabweichung nach DIN 4760

i.A. überlagern sich Rauheit und Welligkeit → beide Feingestaltabweichungen getrennt voneinander erfassen

Messgrößen zur Beschreibung techn. Oberflächen

Profiltiefe P₁:

Summe aus der Höhe der größten Profilspitze und der Tiefe des größten Profiltales des P-Profiles innerhalb der Bezugsstrecke. P_t ist also Maß für die über die Bezugsstrecke erfassten Gestaltsabweichungen der Oberfläche (Form, Welligkeit, Rauheit)

Messgrößen zur Beschreibung techn. Oberflächen

Wellentiefe W_t:

Summe aus der höhe der größten Profilspitze und der Tiefe des größten Profiltals des W-Profils innerhalb der Messstrecke. W_t ist ein maß für die Welligkleit der Oberfläche.

Messgrößen zur Beschreibung techn. Oberflächen

Einzelrautiefe R_{7i}:

Summe aus der Höhe der größten Profilspitze und der Tiefe des größten Profiltals des Rauheitsprofils R innerhalb der Einzelmessstrecke I_r . Die Länge von I_r entspricht der in DIN EN ISO 4288 genannten Grenzwellenlänge λ_c .

Maximale Rautiefe R_{max}:

größte Einzelrautiefe R_{zi} innerhalb der gesamten Messstrecke I_n . R_{max} ist ein Maß für die Ausprägung der Oberflächenrauheit senkrecht zur Prüffläche.

Messgrößen zur Beschreibung techn. Oberflächen

Gemittelte Rautiefe R_z :

Arithmetisches Mittel aus den fünf Einzelrautiefe R_{zi} , deren Einzelmessstrecken aneinandergrenzen.

$$R_Z = \frac{1}{5} \sum_{i=1}^5 R_Z(i)$$

Messgrößen zur Beschreibung techn. Oberflächen

Arithmetischer Mittenrauwert Ra:

Arithmetischer Mittelwert der Beträge aller Profilwerte des Rauheitsprofils.

Sie ist einfach zu messen, besitzt aber nur eine sehr eingeschränkte Aussage für

die Ausprägung einzelner Profilmerkmale.

 $R_a = \frac{1}{l_n} \int_{0}^{m} |Z(x)| dx$

Messgeräte zur Beschreibung techn. Oberflächen

Taktil	Optisch	
Tastschnittgerät (mechanische Abtastung)	Mikroskopie (z.B. konfokal, Laser~, Interferometer)	
 + Standard, umfassendes Normenwerk + reproduzierbare Ergebnisse + lange Messstrecken (50-100 mm) - geringe Tastgeschwindigkeit - berührendes Verfahren (Deformation, Kratzspuren) - Radius der Tastspitze 	+ berührungslos + schnell + hohe Auflösung von <1 μm möglich - meist kleines Messfeld	

- empfindlich gegen Erschütterungen und Vibrationen
 - schwingungsisolierte Lagerung sinnvoll
 - Ergebnisse taktil/optisch meist nicht direkt vergleichbar

Messgeräte zur Beschreibung techn. Oberflächen

Tastschnittgeräte:

Abweichung der Tastschnittmessung von der Ist-Oberfläche aufgrund des Tastspitzenradius

Quelle: PTB

Messgeräte zur Beschreibung techn. Oberflächen

Vergleich taktile und optische Messung (Interferometrie):

Taktil:

Kegelwinkel Tastdiamant 90° Tastspitzenradius $R_s = 5 \mu m$

Optisch (Beispiel):

Fokusdurchmesser d = 2 µm Max. Flankenwinkel 70°

Definition Qualität

Fertigungsbezogener Ansatz:

- Qualität ist Beschaffenheit einer Einheit bezüglich ihrer Eignung, festgelegte und vorausgesetzte Erfordernisse zu erfüllen.
- Deutsches Institut für Normung (DIN) in Zusammenarbeit mit der Deutschen Gesellschaft für Qualität (DGQ)

Quelle: Attila Oess: Total Quality Management

Qualitätssicherung

Aufgaben der Qualitätssicherung:

Sicherstellung fehlerfreier Produkte, d.h. so wie der Kunde sie erwartet

Durchführung:

Rückführung der Messdaten in einen Qualitätsregelkreis

- Behebung der Ursachen von Abweichungen
- langfristige Stabilisierung des Fertigungsprozesses
- Reduzierung der Material- und Nachbearbeitungskosten
- Planbarkeit von Terminen und Mengen wird verbessert

 Systematische Grundlage bildet hierbei die statistische Prozessregelung SPC (Statistical Process Control)

Die statistische Prozessregelung SPC

 Vergleich der stat. Streuung des Prozesses mit dem für die jeweilige Messgröße zugelassenen Toleranzintervall

$$c_p = \frac{OSG - USG}{6\sigma}$$

OSG: obere Sollwertgrenze

USG: untere Sollwertgrenze

- Maß für die Streuung: Vertrauensintervall des Erwartungswertes mit der stat.
 Sicherheit 99,7% (Grundlage: Normalverteilung)
- Nur wenn Streuung deutlich kleiner ist als das Vertrauensintervall, kann der Prozess überhaupt beherrscht werden.
- Es gilt:

Potentiell fähige Prozesse: $c_P > 1,67$

Die statistische Prozessregelung SPC

USG: untere Sollwertgrenze OSG: obere Sollwertgrenze

N: Nennwert

 μ : Erwartungswert

σ: Standardabweichung

- a) Prozess ist potentiell fähig, da die Streuung kleiner als der Toleranzbereich ist
- **b)** Prozess ist nicht potentiell fähig, da die Streuung größer als der Toleranzbereich ist

Die statistische Prozessregelung SPC

- Die tatsächliche Prozessfähigkeit setzt sich zusammen aus der Streuung (c_P-Koeffizient) und der hinreichend zentralen Verteilung im Intervall.
- Der Abstand zwischen dem Erwartungswert und oberer bzw. unterer Sollwertgrenze muss möglichst groß sein.

$$c_{pk} = \min\left(\frac{OSG - \mu}{3\sigma}; \frac{\mu - USG}{3\sigma}\right)$$

c_{pk}: Index der tatsächlichen Prozessfähigkeit

 $c_{pk} > 1,67$: beherrschter Prozess

Die statistische Prozessregelung SPC

a) b)

USG: untere Sollwertgrenze OSG: obere Sollwertgrenze

N: Nennwert

μ: Erwartungswert

σ: Standardabweichung

- a) Beherrschter Prozess
- **b)** Nicht beherrschter Prozess

Anforderungen an den Prozess

- Wachsende Produktqualität
- Kurze Innovationszeiten
- Hohe Variantenvielfalt
- Umweltgerechte Produktgestaltung
- Zunehmender Kostendruck

Quelle: dietl-feinmechanik.de

- → Hohe Bearbeitungsgeschwindigkeiten und Genauigkeiten
- → Prozessüberwachung zur Sicherstellung der Qualitätsfähigkeit, Erhöhung der Verfügbarkeit von Maschinen und Anlagen sowie zur Erfüllung der Sicherheitsanforderungen

Ziele der Prozessüberwachung

- -Überwachung der **Produktmerkmale**
- -Regeln von Prozessparametern
- -Korrektur von Störgrößen
- -Verringerung von Ausschuss und Nacharbeit

Verfügbarkeit erhöhen

- -Maschinenzustände überwachen
- -Werkzeige und Peripherie überwachen
- -Verkürzung der Stillstandszeiten
- -Autom. Prozessführung

Sicherheit und Umweltschutz gewährleisten

- Verringerung der Gefährdung der Umwelt
- -Warnung und Verhinderung gefährdeter Maschinen-und Prozesszustände
- -Verringerung der Belastung der Bediener durch ergonomische Auslegung

Produktqualität

Wirtschaftlichkeit

Sicherheit

Qualitätssichernde Ausgaben

Kurzperiodisch

Langperiodisch

Auf Anforderung

Grundlagen der Prozessüberwachung Aufgaben

Aufgaben der Prozessüberwachung:

- Erfassen des gegenwärtigen Zustands eines Prozesses oder Systems
- Vergleich des gegenwärtigen Zustands mit dem Sollzustand
- Bei Nicht-Vorliegen des Sollzustands: Einleitung von Maßnahmen, wie z.B. Fehlermeldungen

Der Zerspanprozess

Störungsarten im Prozess

Kritische Störungsarten:

- Kollision
- Werkzeugbruch
- Überlast (z.B. Werkstoffinhomogenitäten, Aufmaßschwankungen)
- Instabiler Prozess (Rattern, ungünstiger Spanfluss)
- Schneidenausbruch
- Werkzeugverschleiß

Hochgeschwindigkeitsaufnahme einer Kollision

Quelle: Universität Stuttgart

Prinzipien der Prozessüberwachung

- Kontinuierliche Überwachung
 - z.B.: Temperaturmessung bei schnelllaufenden Arbeitsspindeln
- Periodische Überwachung
 - kurzperiodisch: pro Werkstück
 - langperiodisch: pro Charge oder je Schicht (Wartung)
 - sporadisch: Fehlerbehandlungsmaßnahmen
- Elektrische, geometrische, mechanische und kinematische Messgrößen können mit Sensoren und Messgeräten vor, während oder nach dem Prozess (**Pre-, In-** oder **Post-Prozess**) erfasst und ausgewertet werden.

Messen nicht elektrischer Größen – Einschub Sensorik

Gewünschte Eigenschaften von Sensoren:

- Umwandlung einer physikalischen Größe in ein zur Weiterverarbeitung geeignetes Signal
- Sensitivität: möglichst hohe Empfindlichkeit bezüglich zu messender Größe
- Selektivität: möglichst niedrige Querempfindlichkeit bezüglich anderer Größen
- Stabilität: möglich gleich bleibendes Verhalten in allen Umgebungsbedingungen und über die Zeit

AE-Sensor

Radarsensor

Messen nicht elektrischer Größen – Einschub Sensorik

Sensor-Fusion:

- Informationen mehrerer Sensoren werden zusammengeführt
- Reduzierung statistischer Messfehler
- Möglicher Einsatz verschiedener Messprinzipien => verbesserte Informationsgüte

Beispiele für Sensor-Fusion:

- Stereosehen: aus 2 Kameras wird ein Stereo-Bild aufgebaut
- Navigationsgerät: GPS-Signale und andere lokale wie Geschwindigkeit, Lenkwinkel etc. werden zusammengeführt
- Fahrerassistenzsysteme

Sensoren zur prozessnahen Qualitätsprüfung bei der Schleifbearbeitung

	Kenngröße			Sensorsystem
In-Prozess	Temperatur			Thermoelement Thermokamera Pyrometer
	Schleifkräfte Konditionierkräfte	ess		Piezosensor Kombisensor (AE/Kraft)
	Acoustic Emission ≥ 20 kHz	Prozes		Piezosensor Kombisensor (AE/Kraft)
	Schwingungen ≤20 kHz			Piezosensor Mikromechanischer Sensor
	Scheibenverschleiß			Radarsensor
Prozessnah	Schleifrisse			Wirbelstromsensor
	Scheibenverschleiß			Laserscanner, Antastsensor
	Maß, Form, Lage		ät	Induktive Taster
Post-Prozess	Rauheit		Qualität	Tastnadel
	Maß, Form, Lage		Ju	Koordinatenmessmaschine
	Scheibenverschleiß			Profilprojektor
	Randzone (Härte, Risse, Brand,)			Gefügeschliffe, chemische Analysen, Barkhausen, usw.

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, Dr.-Ing. Anke Müller, 25. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik