MTH 207A: Assignment 4

P 1. Consider the one-way ANOVA model

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \ i = 1, \dots, K, \ j = 1, \dots, n_i$$
 (1)

where ϵ_{ij} are i.i.d. $N(0, \sigma^2)$.

- (a) Find the residual sum of squares (RSS) for the model (1).
- (b) Find the distribution of RSS/σ^2 .

Solution: For the model (1), the design matrix X is

$$X = \begin{bmatrix} \mathbf{1}_{n_1} & \mathbf{1}_{n_1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{1}_{n_2} & \mathbf{0} & \mathbf{1}_{n_2} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{1}_{n_K} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_{n_K} \end{bmatrix}_{n \times (K+1)}.$$

where $n = \sum_{i=1}^{K} n_i$.

Since X is not a full rank matrix, the least square estimator of $\beta = (\mu, \alpha_1, \dots, \alpha_K)'$ is given by

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}\mathbf{y}.$$

First we shall compute $\widehat{\beta}$.

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & n_1 & n_2 & \cdots & n_K \\ n_1 & n_1 & 0 & \cdots & 0 \\ n_2 & 0 & n_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_K & 0 & 0 & \cdots & n_K \end{bmatrix}.$$

It can be shown that

$$(\mathbf{X}'\mathbf{X})^{-} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 1/n_1 & 0 & \cdots & 0 \\ 0 & 0 & 1/n_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1/n_K \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0}' & \mathbf{D}^{-1} \end{bmatrix}.$$

where

$$D = \begin{bmatrix} n_1 & 0 & \cdots & 0 \\ 0 & n_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_K \end{bmatrix}.$$

Also,

$$\mathbf{X}'\mathbf{y} = \begin{bmatrix} \sum_{i=1}^{K} \sum_{j=1}^{n_i} y_{ij} \\ \sum_{j=1}^{n_1} y_{1j} \\ \vdots \\ \sum_{i=1}^{n_K} y_{Kj} \end{bmatrix}.$$

Therefore,

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y} = \begin{bmatrix} 0 \\ \sum_{j=1}^{n_1} y_{1j}/n_1 \\ \vdots \\ \sum_{j=1}^{n_K} y_{Kj}/n_K \end{bmatrix} = \begin{bmatrix} 0 \\ \bar{y}_1 \\ \vdots \\ \bar{y}_K \end{bmatrix}.$$

Thus $\widehat{\mu} = 0$ and $\widehat{\alpha} = \overline{y}_i$ for $i = 1, \dots, K$. Now

$$RSS = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \widehat{\alpha})^2 = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij}^2 + (\bar{y}_i)^2 - 2y_{ij}\bar{y}_i) = \sum_{i=1}^{K} (\sum_{j=1}^{n_i} y_{ij}^2 - n_i(\bar{y}_i)^2)$$

Now observe that

$$n_{i}(\bar{y}_{i})^{2} = n_{i}(\bar{y}_{i})'(\bar{y}_{i})$$

$$= [(1/n_{i}) [\mathbf{0}'_{n_{1}} \cdots \mathbf{0}'_{n_{i-1}} \mathbf{1}'_{n_{i}} \mathbf{0}'_{n_{i+1}} \cdots \mathbf{0}'_{n_{K}}] \mathbf{y}]'$$

$$\times [(1/n_{i}) [\mathbf{0}'_{n_{1}} \cdots \mathbf{0}'_{n_{i-1}} \mathbf{1}'_{n_{i}} \mathbf{0}'_{n_{i+1}} \cdots \mathbf{0}'_{n_{K}}] \mathbf{y}]$$

$$= \frac{1}{n_{i}} \mathbf{y}' \begin{bmatrix} \mathbf{0}_{n_{1}} \\ \vdots \\ \mathbf{0}_{n_{i-1}} \\ \mathbf{1}_{n_{i}} \\ \mathbf{0}_{n_{i+1}} \\ \vdots \\ \mathbf{0}_{n_{K}} \end{bmatrix} [\mathbf{0}'_{n_{1}} \cdots \mathbf{0}'_{n_{i-1}} \mathbf{1}'_{n_{i}} \mathbf{0}'_{n_{i+1}} \cdots \mathbf{0}'_{n_{K}}] \mathbf{y}$$

$$= \mathbf{y}' \mathbf{E}_{n_{i}} \mathbf{y}$$

where

$$\mathbf{E}_{n_i} = \begin{bmatrix} \mathbf{Z}_{n_1 \times n_1} & \mathbf{Z}_{n_1 \times n_2} & \cdots & \mathbf{Z}_{n_1 \times n_i} & \cdots & \mathbf{Z}_{n_1 \times n_K} \\ \mathbf{Z}_{n_2 \times n_1} & \mathbf{Z}_{n_2 \times n_2} & \cdots & \mathbf{Z}_{n_2 \times n_i} & \cdots & \mathbf{Z}_{n_2 \times n_K} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{Z}_{n_{i-1} \times n_1} & \mathbf{Z}_{n_{i-1} \times n_2} & \cdots & \mathbf{Z}_{n_{i-1} \times n_i} & \cdots & \mathbf{Z}_{n_{i-1} \times n_K} \\ \mathbf{Z}_{n_i \times n_1} & \mathbf{Z}_{n_i \times n_2} & \cdots & (1/n_i) \mathbf{J}_{n_i \times n_i} & \cdots & \mathbf{Z}_{n_i \times n_K} \\ \mathbf{Z}_{n_{i+1} \times n_1} & \mathbf{Z}_{n_{i+1} \times n_2} & \cdots & \mathbf{Z}_{n_{i+1} \times n_i} & \cdots & \mathbf{Z}_{n_{i+1} \times n_K} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{Z}_{n_K \times n_1} & \mathbf{Z}_{n_K \times n_2} & \cdots & \mathbf{Z}_{n_K \times n_i} & \cdots & \mathbf{Z}_{n_K \times n_K} \end{bmatrix}$$

 $Z_{n_i \times n_j}$ is $n_i \times n_j$ matrix of all zeros and $J_{n_i \times n_j}$ is $n_i \times n_j$ matrix of all ones. Thus

$$RSS = \mathbf{y}'\mathbf{y} - \sum_{i=1}^{K} \mathbf{y}' \mathbf{E}_{n_i} \mathbf{y} = \mathbf{y}' \mathbf{y} - \mathbf{y}' \mathbf{J}_n \mathbf{y} = \mathbf{y}' [\mathbf{I} - \mathbf{J}_n] \mathbf{y},$$

where

$$\mathbf{J}_{n} = \begin{bmatrix} (1/n_{1})\mathbf{J}_{n_{1}\times n_{1}} & \mathbf{Z}_{n_{1}\times n_{2}} & \cdots & \mathbf{Z}_{n_{1}\times n_{i}} & \cdots & \mathbf{Z}_{n_{1}\times n_{K}} \\ \mathbf{Z}_{n_{2}\times n_{1}} & (1/n_{2})\mathbf{J}_{n_{2}\times n_{2}} & \cdots & \mathbf{Z}_{n_{2}\times n_{i}} & \cdots & \mathbf{Z}_{n_{2}\times n_{K}} \\ \vdots & \vdots \\ \mathbf{Z}_{n_{i-1}\times n_{1}} & \mathbf{Z}_{n_{i-1}\times n_{2}} & \cdots & \mathbf{Z}_{n_{i-1}\times n_{i}} & \cdots & \mathbf{Z}_{n_{i-1}\times n_{K}} \\ \mathbf{Z}_{n_{i}\times n_{1}} & \mathbf{Z}_{n_{i}\times n_{2}} & \cdots & (1/n_{i})\mathbf{J}_{n_{i}\times n_{i}} & \cdots & \mathbf{Z}_{n_{i}\times n_{K}} \\ \mathbf{Z}_{n_{i+1}\times n_{1}} & \mathbf{Z}_{n_{i+1}\times n_{2}} & \cdots & \mathbf{Z}_{n_{i+1}\times n_{i}} & \cdots & \mathbf{Z}_{n_{i+1}\times n_{K}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{Z}_{n_{K}\times n_{1}} & \mathbf{Z}_{n_{K}\times n_{2}} & \cdots & \mathbf{Z}_{n_{K}\times n_{i}} & \cdots & (1/n_{K})\mathbf{J}_{n_{K}\times n_{K}}. \end{bmatrix}$$

Next, it can be shown that $[I - J_n]X = 0$. Hence

$$RSS = \mathbf{y}'\mathbf{y} - \sum_{i=1}^{K} \mathbf{y}' \mathbf{E}_{n_i} \mathbf{y} = \mathbf{y}'\mathbf{y} - \mathbf{y}' \mathbf{J}_n \mathbf{y} = \mathbf{y}' [\mathbf{I} - \mathbf{J}_n] \mathbf{y} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' [\mathbf{I} - \mathbf{J}_n] (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}),$$

Also, $[I - J_n]$ is symmetric and idempotent. Rank $[I - J_n] = \text{trace}[I - J_n] = n - K$. Therefore by Cochran Theorem

$$\frac{RSS}{\sigma^2} = \frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'[\mathbf{I} - \mathbf{J}_n](\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{\sigma^2} \sim \chi_{n-K}^2.$$

P 2. Consider the ANOVA model (1). The regression sum of squares SS_{Reg} is defined as

$$SS_{\text{Reg}} = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\hat{y}_{ij} - \bar{y})^2, \tag{2}$$

where $\widehat{y}_{ij} = \widehat{\mu} + \widehat{\alpha}_i$, $\widehat{\mu}$ and $\widehat{\alpha}_i$ are least squares estimators of μ and α_i , $\overline{y} = \sum_{i=1}^K n_i \overline{y}_i / \sum_{i=1}^K n_i$ and $\overline{y}_i = \sum_{j=1}^{n_i} y_{ij}$ for i = 1, ..., K. Find the distribution of SS_{Reg}/σ^2 .

Solution: From P 1,

$$SS_{\text{Reg}} = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\widehat{y}_{ij} - \bar{y})^2 = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{K} n_i (\bar{y}_i - \bar{y})^2 = \sum_{i=1}^{K} n_i (\bar{y}_i)^2 - n(\bar{y})^2$$

$$= \mathbf{y}' \mathbf{J}_n \mathbf{y} - (1/n) \mathbf{y}' \mathbf{W}_n \mathbf{y} = \mathbf{y}' [\mathbf{J}_n - (1/n) \mathbf{W}_n] \mathbf{y}$$

Where W_n is $n \times n$ matrix of all ones.

Next, it can be shown that $[J_n - (1/n)W_n]X = 0$. Thus,

$$SS_{\text{Reg}} = \mathbf{y}'[\mathbf{J}_n - (1/n)\mathbf{W}_n]\mathbf{y} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'[\mathbf{J}_n - (1/n)\mathbf{W}_n](\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

Also, $[J_n - (1/n)W_n]$ is symmetric and idempotent. Rank $[J_n - (1/n)W_n] = \text{trace}[J_n - (1/n)W] = K - 1$. Therefore by Cochran Theorem

$$\frac{SS_{\text{Reg}}}{\sigma^2} = \frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'[\mathbf{J}_n - (1/n)\mathbf{W}](\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{\sigma^2} \sim \chi_{K-1}^2.$$

Remark: The hypothesis

 $H_0: \alpha_1 = \cdots = \alpha_K$ versus $H_1: \alpha_i \neq \alpha_j$ for at least one pair of (i,j)

can tested using the statistics

$$F = \frac{SS_{\text{Reg}}/df_1}{RSS/df_2} \sim F_{df_1, df_2},$$

where df_1 and df_2 are degrees of freedoms associated to the distributions of RSS and SS_{Reg} respectively.

Note that it can be shown that $[J_n - (1/n)W_n][I - J_n] = 0$. Thus, RSS and SS_{Reg} both are independent. Thus,

$$F = \frac{SS_{\text{Reg}}/(K-1)}{RSS/(n-K)} \sim F_{K-1,n-K}.$$

P 3. Consider the model $y_1 = \theta_1 + \theta_2 + \epsilon_1$, $y_2 = 2\theta_1 + \epsilon_2$, $y_3 = \theta_1 - \theta_2 + \epsilon_3$, where ϵ_i , i = 1, 2, 3, are i.i.d. $N(0, \sigma^2)$. Derive the F-statistics for testing $\theta_1 = \theta_2$.

R: Assignment

P 4. Three teaching methods, A, B, C, are to be compared. Each method was ad-ministered to a group of 4 students, and the scores obtained by the students on a test are given below. Carry out an F -test at level of significance 0.01 to decide whether the mean scores under the three methods are significantly different.

Table 1: Data.

Method					
A	В	С			
75	82	78			
79	93	81			
71	86	76			
69	88	81			

Solution

Comment: Data Import from a CSV file named Score_Data.csv

Comment: ANOVA Method

 $Score.Data < -read.csv("/Users/satya/Desktop/MTH207A/Score_Data.csv")$

 $one.way < -aov(Score \sim Method, data = Score.Data)$

summary(one.way)

Comment: Regression method

$$\begin{split} y &< -c(75,79,71,69,82,93,86,88,78,81,76,81) \\ x1 &< -c(rep(1,4),rep(0,4),rep(0,4)) \\ x2 &< -c(rep(0,4),rep(1,4),rep(0,4)) \\ x3 &< -c(rep(0,4),rep(0,4),rep(1,4)) \end{split}$$

 $model.lm.P1 < -lm(y \ x1 + x2 + x3)$

summary(model.lm.P1)

P 5. Consider the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ with the usual assumptions. Test the following hypotheses: (a) $H_0: \beta_2 = 0$ versus $H_1: \beta_2 \neq 0$, (b) $H_0: \beta_3 = 0$ versus $H_1: \beta_3 \neq 0$ using the data given below.

Table 2: Data.

y	x_1	x_2	y	x_1	x_2
10	21	2.67	13	48	7.20
12	32	3.12	21	81	9.12
6	46	2.11	14	93	3.21
14	91	4.21	11	88	4.87
20	20	6.43	18	46	5.38
5	65	1.76	17	24	8.71
8	26	2.88	27	11	8.11
15	74	6.15			

Solution:

Comment: Problem P5

P5.Data < -read.csv("/Users/satya/Desktop/MTH207A/P5.Data.csv")

```
\begin{split} & model.lm.P2 < -lm(y \sim x1 + x2, data = P5.Data) \\ & summary(model.lm.P2) \\ & linearHypothesis(model.lm.P2, c("x1 = 0"), test = "F") \\ & linearHypothesis(model.lm.P2, c("x1 - x2 = 0"), test = "F") \end{split}
```