學號:B04901060 系級: 電機三 姓名:黃文璁

請實做以下兩種不同 feature 的模型, 回答第(1)~(3) 題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

9小時	public	private	rms
全部汙染源	7.46237	5.53562	6.57001
PM2.5	7.44013	5.62719	6.59624

答: 9小時全部汙染源的 public RMSE 比只抽 PM2.5 的 RMSE 來得高(約高 0.02)。 9小時全部汙染源的 private RMSE 比只抽 PM2.5 的 RMSE 來得低(約低 0.1)。 由於 public、private RMSE 沒有絕對高低,兩種 feature 就本題來說不容易分出好壞。 但若將 public 和 private 結果取方均根平均來看的話,則取全部汙染源的結果較好。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

5 小時	public	private	rms
全部汙染源	7.65925	5.44092	6.64333
PM2.5	7.57904	5.79187	6.74491

答: 5 小時全部汙染源的 public RMSE 比只抽 PM2.5 的 RMSE 來得高(約高 0.08) 5 小時全部汙染源的 private RMSE 比只抽 PM2.5 的 RMSE 來得低(約低 0.35) 綜合 public 和 private 分別的 RMSE 來看,抽全部汙染源的結果稍微較好。 若將 public 和 private 結果取方均根平均來看的話,則取全部汙染源的結果依然較好。 另外值得注意的是,抽 5 小時全部汙染源在 private set 的結果要比抽 9 小時來得好。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001, 並作圖

Regularization	λ	0.0001	0.001	0.01	0.1
全部汙染源	public	7.46237	7.46236	7.46233	7.46198
	private	5.53562	5.53561	5.53553	5.53477
	rms	6.57001	6.57000	6.56995	6.56943
PM2.5	public	7.44013	7.44013	7.44013	7.44012
	private	5.62719	5.62719	5.62719	5.62720
	rms	6.59624	6.59624	6.59624	6.59624

答: 在本題指定的 λ 範圍中, regularization的效果不大(如上圖)。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N}(\mathbf{y}^n-\mathbf{x}^n\cdot\mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\,\mathbf{x}^2\,\dots\,\mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\,\mathbf{y}^2\,\dots\,\mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$

答: (c)

Proof:

Using matrix calculus:

$$\begin{split} L(w,X,y) &= \sum_{n=1}^{N} (\mathbf{y}^{\mathbf{n}} - \mathbf{x}^{\mathbf{n}} \cdot \mathbf{w})^{2} = (y - X\mathbf{w})^{T} (y - X\mathbf{w}) \\ \frac{\partial}{\partial w} L(w,x,y) &= \frac{\partial}{\partial w} \left[(y - X\mathbf{w})^{T} (y - X\mathbf{w}) \right] = -2(y - X\mathbf{w})^{T} X = 0 \\ (y - X\mathbf{w})^{T} X &= y^{T} X - (X\mathbf{w})^{T} X = y^{T} X - w^{T} X^{T} X = 0 \\ w^{T} X^{T} X &= y^{T} X \\ (X^{T} X)^{T} w &= X^{T} y, \ (X^{T} X)^{T} &= X^{T} X \\ w &= (X^{T} X)^{-1} X^{T} y \end{split}$$