Started on	Friday, 3 November 2023, 10:46 PM
State	Finished
Completed on	Friday, 3 November 2023, 11:35 PM

Time taken 48 mins 39 secs

Grade 10.00 out of 10.00 (**100**%)

Question **1**

Correct

Mark 1.00 out of 1.00

The probability of symbol error for 16-QAM with $\frac{E_S}{N_0}=20$ is given as

Select one:

- \bigcirc 3Q(1)
- $Q = \frac{7}{2}Q\left(\sqrt{\frac{1}{3}}\right)$
- 3Q(2)

 ✓

Your answer is correct.

The correct answer is: 3Q(2)

Question **2**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Let the decision regions for $\mathcal{H}_1, \mathcal{H}_0$ be R_1, R_0 , respectively, and corresponding prior probabilities of the hypotheses be π_1, π_0 . The probability of error is given as

Select one:

- $\bigcirc \ \pi_1 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_0 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$
- $\bigcirc \ \pi_1 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}} + \pi_0 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}}$
- $\bigcirc \quad \pi_0 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_1 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$

Your answer is correct.

The correct answer is: $\pi_1 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_0 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

The min P_e detector chooses \mathcal{H}_0 when

Select one:

$$@ \ \frac{p(\overline{\mathbf{y}}|\mathcal{H}_0)}{p(\overline{\mathbf{y}}|\mathcal{H}_1)} \geq \frac{\pi_1}{\pi_0} \ \checkmark$$

Select one:

- LRT
- ML rule

 ✓
- Least Squares
- Maximum Apriori Probability rule

Your answer is correct.

The correct answer is: ML rule

Question 7

Correct

Mark 1.00 out of 1.00

Consider
$$\bar{\mathbf{s}} = \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix}$$
, $\sigma^2 = 2$ and $\pi_0 = \frac{e}{1+e}$. For the binary signal detection problem

described in class, the threshold for the MAP decision rule is given as

Select one:

- 10
- 8
- **6**
- 0 12

Your answer is correct.

The correct answer is: 10

Question **8**

Correct

Mark 1.00 out of 1.00

▼ Flag question

For the binary signal detection problem described in class, the minimum P_e achieved using the MAP rule is given as

Select one:

$$\qquad \qquad \pi_0 Q \left(\frac{\|\vec{s}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{s}\|} \right) + \pi_1 Q \left(\frac{\|\vec{s}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{s}\|} \right)$$

$$\bigcirc \ \, \pi_0 Q \left(\frac{\|\bar{\mathfrak{s}}\| - 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\bar{\mathfrak{s}}\|^2} \right) + \pi_1 Q \left(\frac{\|\bar{\mathfrak{s}}\| + 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\bar{\mathfrak{s}}\|^2} \right)$$

$$\qquad \pi_0 Q \left(\frac{ \|\vec{s}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{s}\|} \right) + \pi_1 Q \left(\frac{\|\vec{s}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{s}\|} \right) \checkmark$$

$$\bigcirc \ \, \pi_0 Q \left(\frac{\|\bar{\mathfrak{s}}\| + 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\bar{\mathfrak{s}}\|^2} \right) + \pi_1 Q \left(\frac{\|\bar{\mathfrak{s}}\| - 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\bar{\mathfrak{s}}\|^2} \right)$$

Your answer is correct.

The correct answer is:
$$\pi_0 Q \left(\frac{\|\vec{\mathbf{s}}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathbf{s}}\|} \right) + \pi_1 Q \left(\frac{\|\vec{\mathbf{s}}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathbf{s}}\|} \right)$$

Question 9	
Correct	
Mark 1.00 out of 1.00	
Flag question	
Consider the binary signal detection problem with $SNR = 10 \ dB$ and $\pi_1 = 0.60$. The min P_e achieved using the optimal decision rule is	
Select one:	
0.00787	
0.0569	
0.1046	
Your answer is correct.	
The correct answer is: 0.0555	
Question 10	
Correct	
Mark 1.00 out of 1.00	
∀ Flag question	
Consider the binary signal detection problem with $SNR = 10 \ dB$ and $\pi_1 = 0.60$. The P_e achieved using the ML decision rule is	
Select one:	
0.00787	
◎ 0.0569 ✔	
O.0555	
0.1046	
0.1046	
○ 0.1040	
Your answer is correct.	