

#### Grundlagen der Wirtschaftsinformatik

Betriebliche Anwendungssysteme

Prof. Dr. Alpar Sommersemester 2019



# Teil 3 Betriebliche Anwendungen

10. Anwendungen in ERP-Systemen

#### **Definition**

Ein **Referenzmodell** ist ein Informationsmodell, dessen Inhalt bei der Entwicklung von Anwendungsmodellen wiederverwendet werden kann [in Anlehnung an vom Brocke 2003, S. 34].

### Typologie von Referenzmodellen

| Merkmal                   |                            | Ausprägung                      |             |             |                          |                             |      |                    |  |
|---------------------------|----------------------------|---------------------------------|-------------|-------------|--------------------------|-----------------------------|------|--------------------|--|
|                           | Annald                     | aspektspezifisch                |             |             |                          |                             |      |                    |  |
|                           | Aspekt                     | Eigenschafts-<br>modell Verhalt |             | Itensmodell | ensmodell erweitertes Mo |                             | dell | aspektübergreifend |  |
|                           | Formalität                 | unformal                        |             |             | semi                     | semi-formal                 |      | formal             |  |
| modell-<br>bezogen        | Fachbezug                  |                                 | Fachkonzept |             | DV-Konzept               |                             |      | Implementierung    |  |
| _                         | Zielperspektive            | Organisationssystemmodell       |             |             | Anwendungssystemmodell   |                             |      |                    |  |
|                           | Sektor                     | Industrie                       | F           | landel      | öffentl<br>Verwa         | ntliche<br>valtung Beratung |      | )                  |  |
|                           | Aufgabe                    | Unterstützungsbereich Z         |             |             | Zwecł                    | kbereich                    |      | Lenkungsbereich    |  |
| methoden-<br>bezogen      | Anforderungs-<br>erfüllung | referenzmodellunspezifisch      |             |             | referenzmodellspezifisch |                             |      |                    |  |
| technologie-<br>bezogen   | Repräsen-<br>tation        | Printmedien                     |             |             | computergestützte Medien |                             |      |                    |  |
| organisati-<br>onsbezogen | Verfügbarkeit              | unveröffentlicht                |             |             | veröffentlicht           |                             |      |                    |  |

Abb. 10-1: Typologie von Referenzmodellen [vom Brocke 2003, S. 98]

# Vorgehensmodell zur Entwicklung und Anwendung von Referenzmodellen



Abb. 10-2: Vorgehensmodell zur Entwicklung und Anwendung von Referenzmodellen (Schlagheck 2000, S. 78)

#### Schnittstellen zwischen operativen Anwendungssystemen



Abb. 10-3: Schnittstellen zwischen operativen Anwendungen

### Beispiel eines ERP-Systems



Abb. 10-4: SAP FIORI (SAP SE)

# Überblick über die SAP-Lösungen



Abb. 10-5: Überblick über die SAP-Lösungen (SAP SE)

# Auszug aus der SAP ERP Solution Map

| Analytics               | Financials                        | Human Capital<br>Management        | Procurement & Logistics Execution      | Product Development & Manufacturing | Sales &<br>Service                |
|-------------------------|-----------------------------------|------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| Financial<br>Analytics  | Financial Supply Chain Management | Talent<br>Management               | Procurement                            | Production<br>Planning              | Sales Order<br>Management         |
| Operations<br>Analytics | Treasury                          | Workforce<br>Process<br>Management | Inventory &<br>Warehouse<br>Management | Manufacturing<br>Execution          | Aftermarket Sales and Service     |
| Workforce<br>Analytics  | Financial<br>Accounting           | Workforce<br>Deployment            | Inbound &<br>Outbound<br>Logistics     | Product<br>Development              | Professional-<br>Service Delivery |
|                         | Management<br>Accouting           |                                    | Transportation<br>Management           | Life-Cycle Data<br>Management       |                                   |
|                         | Corporate<br>Governance           |                                    |                                        | 1                                   |                                   |

Abb. 10-6: Auszug aus der SAP ERP Solution Map (SAP SE)

# Struktur der Finanzbuchhaltung



Abb. 10-7: Struktur der Finanzbuchhaltung

#### **Definition**

**Stammdaten** sind Grunddaten eines Unternehmens, die sich auf betriebswirtschaftlich relevante Objekte beziehen. Stammdaten existieren unabhängig von anderen Daten und werden im Zeitablauf selten verändert.

### SAP-Referenz-IMG (Auszug)



Abb. 10-8: SAP-Referenz-IMG (Auszug) (SAP SE)

#### Globale Parameter für den Buchungskreis



Abb. 10-9: Globale Parameter für den Buchungskreis (SAP SE)

#### Definition von Geschäftsbereichen



Abb. 10-10: Definition von Geschäftsbereichen unter SAP ERP (SAP SE)

#### Kreditkontrollbereiche und Buchungskreise



Abb. 10-11: Kreditkontrollbereiche und Buchungskreise

#### Definition von Kreditkontrollbereichen von SAP ERP



Abb. 10-12: Definition eines Kreditkontrollbereichs mit SAP ERP (SAP SE)

### ERM Finanzbuchhaltung



Abb. 10-13:System der Finanzbuchhaltung als Entity-Relationship-Diagramm

# Gliederung des Industriekontenrahmens (IKR)

| Klasse | Konten                          |  |  |  |
|--------|---------------------------------|--|--|--|
| 0-1    | Anlagevermögen                  |  |  |  |
| 2      | Umlaufvermögen                  |  |  |  |
| 3      | Eigenkapital und Rückstellungen |  |  |  |
| 4      | Verbindlichkeiten               |  |  |  |
| 5      | Erträge                         |  |  |  |
| 6      | Betriebliche Aufwendungen       |  |  |  |
| 7      | Weitere Aufwendungen            |  |  |  |
| 8      | Ergebnisrechnungen              |  |  |  |
| 9      | Kosten- und Leistungsrechnung   |  |  |  |

Tab. 10-1: Gliederung des Industriekontenrahmens (IKR)

# Gliederung des Gemeinschaftskontenrahmens (GKR)

| Klasse | Konten                                        |  |  |  |
|--------|-----------------------------------------------|--|--|--|
| 0      | Anlagevermögen                                |  |  |  |
| 1      | Umlaufvermögen, Forderungen Verbindlichkeiten |  |  |  |
| 2      | Neutrale Aufwendungen und Erträge             |  |  |  |
| 3      | Roh-, Hilfs- und Betriebsstoffe Wareneinkauf  |  |  |  |
| 4      | Kostenarten                                   |  |  |  |
| 5      | Verrechnungskonten                            |  |  |  |
| 6      | Kostenstellenrechnung                         |  |  |  |
| 7      | Kostenträgerrechnung                          |  |  |  |
| 8      | Erlöskonten                                   |  |  |  |
| 9      | Abschlusskonten                               |  |  |  |

Tab. 10-2: Gliederung des Gemeinschaftskontenrahmens (GKR)

#### Modellierung der Konten und des Kontenplans



| Legende   |                                    |
|-----------|------------------------------------|
| MBKZO     | Mandant-Buchungskreis-Zuordnung    |
| KPBKZO    | Kontenplan-Buchungskreis-Zuordnung |
| KZO       | Kontenzuordnung                    |
| KSTRUKTUR | Kontenstruktur                     |

Abb. 10-14: Modellierung der Konten und des Kontenplans



Abb. 10-15: Kontenplanverzeichnis (SAP SE)

#### Buchungskreisspezifische Daten

- Währung
- Steuerkennzeichen
- Kontenabstimmung
- Berechtigung

#### Kontenplanspezifische Daten

- Kontonummer und Kontobezeichnung
- Kontentyp
- Kontengruppe

#### Stammdaten für Kreditoren bzw. Debitoren



Abb. 10-16: Stammdaten für Kreditoren bzw. Debitoren



Abb. 10-17: Modellierung der Anlagenbuchhaltung

#### Legende

ASZO Anlagen-Standort-Zuordnung

ASTRUKTUR Anlagenstruktur

AAKZO Anlagen-Anlagenklassen-Zuordnung AASZO Anlagen-Kostenstellen-Zuordnung

KSGBZO Kostenstellen-Geschäftsbereich-Zuordnung

#### **Definition**

**Bewegungsdaten** sind ereignis- bzw. zeitbezogene Daten, die die Ausprägung von Bestandsdaten verändern. Bestandsdaten beziehen sich auf betriebswirtschaftlich relevante Mengen- und Wertangaben.

#### Beispiel für einen Beleg

Belegart: Ausgangsrechnung an Debitoren 0001

Belegnummer: 0000018056

Buchungskreis: 2

Datum: 28.07.2014

| Position | Artike <b>l</b> | Menge | Preis |
|----------|-----------------|-------|-------|
| 1        | 0100            | 2     | 99,00 |
| 2        | 0466            | 10    | 10,00 |
| 3        | 0622            | 76    | 21,76 |
| 4        | 0666            | 1     | 00,47 |

Belegkopf

Belegpositionen

Abb. 10-18: Beispiel für einen Beleg (Ausgangsrechnung an Debitoren)



Abb. 10-19:

ER-Diagramm zur Erfassung von Belegdaten [Scheer 1997, S. 632]

#### Funktionen der Hauptbuchhaltung



Abb. 10-20: Funktionen der Hauptbuchhaltung



Abb. 10-21: Suche nach dem Begriff "Forderung" in der Sachkontenbezeichnung

#### Sperrmöglichkeit von Konten



Abb. 10-22: Sperrmöglichkeit von Konten mit SAP ERP

### Buchungsschlüssel

Ein Buchungsschlüssel steuert...

- welche Kontenarten (Kreditoren-, Debitoren-, Sach-, Anlage und Materialkonten) gebucht werden können
- ob eine Soll- oder Habenbuchung durchgeführt wird
- ob die Buchung umsatzwirksam ist

Sachkontenbuchung ist

Abb. 10-23: Prozess der Sachkontenbuchung als BPMN-Modell

#### Belegkopf einer Sachkontenbuchung



Abb. 10-24: Belegkopf einer Sachkontenbuchung



Prof. Dr. Paul Alpar



#### Erfassung der ersten Sachkontenposition



Abb. 10-26: Erfassung der ersten Sachkontenposition

#### Erfassung der zweiten Sachkontenposition



Abb. 10-27: Erfassung der zweiten Sachkontenposition

# Belegübersicht



Abb. 10-28: Belegübersicht

## **Jahresabschluss**

Die Arbeiten des Jahresabschlusses umfassen...

- die periodengerechte Abgrenzung der Aufwendungen und Erträge
- die Bestandsaufnahme und Bewertung der Forderungen und Verbindlichkeiten
- das Erstellen der Bilanz und GuV-Rechnung

## Auszug aus einer generierten Handelsbilanz



Abb. 10-29: Auszug aus einer generierten Handelsbilanz

# Typische Belege der Kreditoren- und Debitorenbuchhaltung

| Kreditorenbuchhaltung               | Debitorenbuchhaltung            |
|-------------------------------------|---------------------------------|
| Lieferantenrechnungen               | Rechnungen an Kunden            |
| Gutschriften von Lieferanten        | Gutschriften an Kunden          |
| Ausgehende Zahlungen an Lieferanten | Eingehende Zahlungen von Kunden |

Tab. 10-3: Typische Belege der Kreditoren- und Debitorenbuchhaltung

# Funktionen der Debitorenbuchhaltung



Abb. 10-30: Funktionen der Debitorenbuchhaltung

## Debitorenrechnung stellen



Abb. 10-31: Debitorenrechnung erstellen (SAP ERP)



Abb. 10-32:

Prozess zur Erstellung von Debitorenrechnungen als BPMN-Modell



Abb. 10-33: Datenflussdiagramm des Mahnwesens

# Funktionen der Anlagenbuchhaltung



Abb. 10-34: Funktionen der Anlagenbuchhaltung

# Anlagenbuchhaltung

Die Geschäftsvorfälle der Anlagenbuchhaltung lassen sich anhand der folgenden Phasen differenzieren:

- Buchungen während des *Baus* der Anlage
- Buchung bei *Anlagenzugang*
- Buchungen während der Nutzungsphase der Anlage
- Buchungen bei Anlagenabgang

## Musterbewertungsplan mit Abschreibungsschlüsseln



Abb. 10-35: Musterbewertungsplan mit Abschreibungsschlüsseln (SAP ERP)

## Funktionen der Kosten- und Leistungsrechnung



Abb. 10-36: Funktionen der Kosten- und Leistungsrechnung

## Verrechnungsweg der Kosten auf Teilkostenbasis



Abb. 10-37: Verrechnungsweg der Kosten auf Teilkostenbasis [Grob/Bensberg 2005, S. 61]

## Überblick über die Kalkulationsverfahren

| Fertigungsverfahren         | Kalkulationsverfahren        |
|-----------------------------|------------------------------|
| Einzel- und Serienfertigung | Zuschlagskalkulation         |
| Massenfertigung             | Divisionskalkulation         |
| Sortenfertigung             | Äquivalenzziffernkalkulation |
| Kuppelproduktion            | Kuppelkalkulation            |

Tab. 10-4: Überblick über die Kalkulationsverfahren



Abb. 10-38: Anwendergruppen von Unternehmensportalen (in Anlehnung an [Gurzki et al. 2004, S.8])



Abb. 10-39: Personalisierte Sicht eines Mitarbeiters auf ein Unternehmensportal

# Teilbereiche von PPS-Systemen

- Programmplanung
- Produktionsdurchführungsplanung
- Bereitstellungsplanung



Abb. 10-40: Informationssysteme im Industriebetrieb [Scheer 1997, S. 93]

## Unterstützungssysteme

- Computer Aided Design (CAD). CAD umfasst das computergestützte Entwerfen, Zeichnen und Konstruieren einschließlich der zugehörigen technischen Berechnungen. Hierbei werden ökonomische Fragen einbezogen und auch technische Alternativen bewertet, um zu einer effizienten Lösung zu gelangen.
- Computer Aided Planning (CAP). Das CAP beinhaltet die rechnergestützte Arbeitsplanung, die sowohl eine konventionelle Planung (z. B. Materialbeschreibungen, technischer Fertigungsablauf) als auch eine Planung für NC- (Numeric Control) und DNC (Digital Numeric Control)-gesteuerte Fertigungsanlagen unterstützt.
- Computer Aided Manufacturing (CAM). Unter CAM ist der Rechnereinsatz im Bereich der Fertigung (NC-Maschinen, Roboter) und der innerbetrieblichen Logistik zu verstehen, bei dem insbesondere der Materialfluss verbessert werden soll.



Abb. 10-41: Datenintegration im CIM-Konzept [in Anlehnung an Stahlknecht/Hasenkamp 2005, S. 363]



#### Warenwirtschaftssystem



Abb. 10-42: Das Handels-H-Modell [Becker/Schütte 2004, S. 42 ff.]

## Kaufprozess-Daten

- Artikelbezeichnung
- Artikelmenge
- Preis und Rabatt
- Kaufzeit und Datum
- Kaufort (Filialkennung, Kassenkennung)
- Zahlungsart und -konditionen
- Kundennummer



Abb. 10-43: Datenfluss in einem integrierten Warenwirtschaftssystem

## **Definition**

Unter **Finanzdienstleistungsunternehmungen** (FDL-Unternehmungen) werden Unternehmungen verstanden, die Kundenprozesse mit überwiegend finanziellem Charakter (z.B. Alterssicherung, Zahlungsverkehr, Kredite, Vermögensanlage) durch Herstellung, Vermittlung/Handel, Integration, Beratung und/oder Abwicklung unterstützen.

## FDL-Anwendungssysteme

| Interne                          |                                                          | Kundenp                       | rozesse                         |                                        |  |
|----------------------------------|----------------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------|--|
| Prozesse                         | Finanzieren                                              | Zahlen                        | Anlegen                         | Vorsorgen Absichern                    |  |
| Führungs-<br>prozesse            | Kernbankensystem                                         |                               | Kernversicherungssystem         |                                        |  |
|                                  | Banksteuerung & Controlling                              |                               |                                 | Versicherungsteuerung&Controlling      |  |
|                                  | Business Intelligence                                    |                               | Business Intelligence 3         |                                        |  |
|                                  | Risikomanagement & Compliance                            |                               | Risikomanagement & Compliance 🕄 |                                        |  |
|                                  | Servicelebenszyklusmanagement §                          |                               |                                 | Servicelebenszyklusmanagement 🕄        |  |
|                                  | Kanalmanagement & Customer Relationship Management (CRM) |                               |                                 | Kanalmanagement & CRM 🗐                |  |
| Vertriebs-                       | Online Banking 3                                         | Bankschalter   Beraterarbeits | platz 3 Geldautomat 3           | Kundenportal 3 Maklersystem 3          |  |
| prozesse                         | Mobile App                                               | Social Media 🕄 Contact Co     | enter 3 Externe Berater 3       | Mobile App 3 Beratung 3                |  |
| Ausführung/<br>Abwicklung        | Kredite                                                  | Zahlungsverkehr S             | Wertpapiere 8                   | Lebens- S Nicht-Lebens- S versicherung |  |
| Transaktions-                    |                                                          |                               | Verwaltungshandlungen ≅         | Bestandsmanagement 🕄                   |  |
| bezogene                         | Rating                                                   | 8 Karten 8                    | Handel 8                        | Provisionsmanagement 3                 |  |
| Prozesse                         | Sicherheiten                                             | Verrechnur                    | ng & Erfüllung                  | Schaden-/Leistungsmgmt.                |  |
|                                  | Produktentwicklung S                                     |                               | Produktentwicklung 8            |                                        |  |
|                                  | Stammdatenmanagement                                     |                               | Rückversicherung 🕄              |                                        |  |
| Transaktions-<br>übergreifende   | Portfoliomanagement S                                    |                               | Policierung/Underwriting 8      |                                        |  |
| Prozesse                         | Finanzinformationen & Marktforschung                     |                               | Kontokorrent (In-/Exkasso)      |                                        |  |
|                                  | Finanzplanung                                            |                               | Finanz-/Anlagenverwaltung 8     |                                        |  |
|                                  | Personalwesen                                            |                               |                                 |                                        |  |
| Unter-<br>stützungs-<br>prozesse | Finanz- und Rechnungswesen                               |                               |                                 |                                        |  |
|                                  | Dokumentenmanagement & Scanning                          |                               |                                 |                                        |  |
|                                  | Beschaffung                                              |                               |                                 |                                        |  |

Abb. 10-44: Funktionsbereiche von FDL-Anwendungssystemen (in Anlehnung an Alt und Puschmann 2016, S. 157)



### Prozessdimensionen

- Kundenprozesse in der horizontalen Dimension orientieren sich an den Bedürfnissen des Kunden und unterscheiden für den Bankbereich zwischen Zahlen, Anlegen und Finanzieren. Für den Versicherungsbereich stehen die Kundenprozesse Vorsorgen und Absichern im Mittelpunkt. Zusätzlich können Versicherungsprodukte wie Lebensversicherungen auch den Kundenprozess Anlegen betreffen. Sie deuten damit auf Überschneidungen von Versicherungen und Banken hin.
- *Unternehmensprozesse* in der vertikalen Dimension skizzieren die wesentlichen Geschäftsprozesse eines Finanzdienstleisters. Zu unterscheiden sind Führungs-, Leistungs- und Unterstützungsprozesse, wobei sich die Leistungsprozesse in Vertriebs- und Ausführungs-/ Abwicklungsprozesse sowie transaktionsbezogene und –übergreifende Prozesse aufgliedern lassen. Eine Unterscheidung zwischen Banken und Versicherungen ist in der vertikalen Dimension nicht erforderlich.

## Front- und Backoffice

- Frontoffice- Anwendungen unterstützen Vertriebsprozesse zur Kundenberatung und –betreuung "vor Ort", die in einer (physischen) Filiale ebenso wie im Call Center oder im Bereich der elektronischen Medien (Social, Online oder Mobile Banking) angesiedelt sein können.
- Backoffice- Anwendungen bezeichnen die kundenfernen Anwendungssysteme, die z. B. die Abwicklung und Verwaltung von Krediten, Kapitalanlagen und Zahlungen vornehmen. Die Anwendungssysteme besitzen Schnittstellen zur Bankenwertschöpfungskette, etwa anderen Spezialdienstleistern (z. B. für das Scanning von papierhaften Belegen) oder Dienstleistern aus dem Interbankenbereich (z. B. Swift, Target, Finanzbörsen).

# Anwendungslandschaft - I

- *Vertikale Anwendungssysteme* unterstützen produktspezifische Abwicklungsprozesse, die meist mit bestimmten Organisationsbereichen verbunden sind (z. B. Kredite, Zahlungsverkehr, Wertpapiere, Lebensversicherung, Nicht-Lebensversicherung).
- *Horizontale Anwendungssysteme* unterstützen produktübergreifende Zugangs- und Vertriebsprozesse, die an einen bestimmten Kanal gebunden sind, d. h. um bestimmte Funktionalitäten herum integriert sind (z. B. Vertriebsprozesse, transaktionsübergreifende Prozesse).
- Analytische Anwendungssysteme unterstützen Führungsprozesse durch Bereitstellung von aufbereiteten Informationen auf Basis von Daten aus operativen Anwendungssystemen (z. B. Führungsprozesse, Kundensegmentierung).

## Anwendungslandschaft - II

Integrationszentrierte Anwendungssysteme, wie etwa Data Warehouse- (DWS) und Enterprise Application Integration-Systeme (EAI), stellen anwendungsübergreifende Verbindungen her. So entkoppeln DWS die operativen Anwendungen des Kernbanken-/versicherungssystems von analytischen Anwendungen (Analysewerkzeugen), indem sie Daten aus Geschäftsvorfällen historisieren und integrieren, um damit konsistente Entscheidungsgrundlagen herzustellen. EAI entkoppeln operative Anwendungen, indem nicht mehr bilaterale Schnittstellen zwischen einzelnen Anwendungssystemen erforderlich sind, sondern eine zentralisierte EAI-Plattform die notwendigen Formatumwandlungen und Weiterleitungen zwischen den Anwendungssystemen vornimmt.

## Hauptprozessgruppen für Telekommunikationsdienstleister

- *Managementprozesse* des Unternehmens (Enterprise Management)
- Entwicklungsprozesse (Strategy, Infrastructure & Product)
- Operative Prozesse des Betriebs (Operations)



Abb. 10-45: Enhanced Telecom Operations Map (eTOM) nach [Salcher/Stieber 2006, S. 335]

## Ebenen der zweiten Hauptprozessgruppe

- Die unterste Ebene umfasst den strategischen Einkauf bzw. die Beschaffung notwendiger Ressourcen (Supply Chain Development & Management).
- Die beschafften Ressourcen fließen der Unternehmung zu und werden als Komponenten zum Aufbau von Kommunikationsnetzen eingesetzt (Resource Development & Management). Typische Komponenten sind z. B. systemtechnische Elemente wie Router, Ports und Einschubkarten.
- Im Bereich Service Development & Management findet die Entwicklung von Services statt, die als funktionelle Einheiten zur Abdeckung von Kundenanforderungen dienen. Typische Services von Telekommunikationsdienstleistern sind z. B. Internetzugänge, Telefonanschlüsse, Web Space und E-Mail-Adressen.
- Auf der Ebene Marketing & Offer Management werden die Services schließlich zu Produkten gebündelt und als kundengerichtete Leistungsangebote am Markt platziert.

## **FAB-Prozesse**

- Fulfillment -Prozesse beinhalten solche Tätigkeiten, mit denen bestellte Produkte bzw. deren Services konfiguriert und anschließend an den Kunden bzw. Endanwender ausgeliefert bzw. geschaltet werden.
- Assurance-Prozesse stellen sicher, dass die produktspezifischen Services zur Verfügung stehen und den vertraglichen Vereinbarungen (Service Level Agreements) entsprechen. Hierzu kann z. B. ein proaktives Performance Monitoring erfolgen, das die Verfügbarkeit der zugesicherten Services kontinuierlich überwacht.
- *Billing-Prozesse* haben die Erstellung und den Versand von Rechnungen zum Inhalt. In diese Fakturierungsprozesse können auch mengenorientierte Daten wie z. B. übertragene Datenvolumina einfließen, die auf der Ressourcen- bzw. Netzwerkebene erhoben worden sind und zur Tarifermittlung dienen.

## AS in der Telekommunikationsindustrie

- Operations-Support-Systeme (OSS) dienen der Unterstützung von Betrieb und Wartung der Telekommunikationsinfrastruktur. Hierzu gehören Elemente der Linientechnik, wie etwa Erdkabel und Verteiler, sowie Komponenten der Systemtechnik zur Vermittlung und Dienstbereitstellung.
- Business-Support-Systeme (BSS) werden eingesetzt, um kundenorientierte Prozesse zu unterstützen. Hierzu gehören insbesondere Aufgabenstellungen des Vertriebs und des Kundenservice, sodass der Kern eines BSS durch ein CRM -System gebildet wird.



Abbildung 10-46: Prozesse im Energiemarkt nach (Merz 2016)

## Vereinfachtes Beispiel für einen Smart Contract

WENN Stromeingang
DANN Token erstellen

Der Smart Contract erzeugt automatisiert 1 Token je
KW.

Der Smart Contract prüft den aktuellen Stromprels
und beauftragt ggf. elnen Verkauf.

Der Smart Contract prüft den aktuellen Stromprels
und beauftragt ggf. den Strom einem Speicher
zuzuführen.

Abbildung 10-47: Vereinfachtes Beispiel für einen Smart Contract (Fiedler et al. 2016)



Abbildung 10-48: Vorgehensmodell zur ERP-Einführung (in weiter Anlehnung an Hansmann und Neumann 2012, S. 335)

### Kriterien für die Auswahl von Standardsoftware

- Anbieterqualifikation
- Schnittstellen
- Endbenutzerfähigkeit
- Softwareanpassungen
- Zugriffsschutz, Datensicherheit
- Performance
- Kosten/Nutzen

# Anpassung von Standardsoftware (Customizing)

Parametereinstellung

Ergänzungsprogrammierung

 (allgemeiner Individualprogrammierung)

• Konfigurierung

# Einführung und Integration von Standardsoftware

#### Die Einführung von Standardsoftware kann

- zu einem Stichtag unter Ablösung der alten Systeme (welche gegebenenfalls noch eine Zeitlang im Parallelbetrieb laufen) erfolgen, wobei alle abgedeckten Geschäftsprozesse betroffen sind ("Big Bang").
- stufenweise für einzelne Geschäftsprozesse oder Softwaremodule erfolgen,
- stufenweise für einzelne Unternehmensbereiche erfolgen (z. B. erst Mutterkonzern und dann die Töchter und Vertriebsgesellschaften).

# Projektphasen von ASAP

- Projektvorbereitung
- Business Blueprint
- Realisierung
- Produktionsvorbereitung
- Go-live und Support

## Vorgehensmodell SAP Activate



Abbildung 10-49: Vorgehensmodell SAP Activate (in Anlehnung an Kraljić und Kraljić 2018)

### **Definition**

Open-Source-Software (OSS) bezeichnet Software, deren Programme als Quellcode (Source Code) frei verfügbar sind und bei dem die Nutzer auch das Recht haben, den Programmcode zu verändern. Die Nutzer bzw. nutzenden Unternehmungen können diese Programme für ihre Zwecke verändern, Verbesserungen entwickeln und Fehler beseitigen. Die Nutzer haben das Recht, alle Änderungen und Verbesserungen am Quellcode weiterzugeben. Keine Unternehmung besitzt die Exklusivrechte an der Software, d. h. die Open-Source-Software steht allen offen.

# Beispiele für Open-Source-Programme

- Betriebssysteme: GNU/LINUX, Android
- Betriebliche Standardsoftware (z. B. ERP-Software): ADempiere, Apache OFBiz, Metasfresh
- Customer Relationship Management-Systeme: Vtiger, SuiteCRM, FreeCRM
- Geschäftsprozess- und Workflowmanagement: Bonita BPM, Camunda, Activiti
- Content Management-Systeme: Drupal, Joomla!, Neos, Plone, TYPO3
- E-Learning-Software: Moodle, ILIAS, Sakai
- Büroanwendungen: OpenOffice, LibreOffice, Calligra Suite, NeoOffice
- Grafikanwendungen: GIMP, Scribus
- Datenbanken: MySQL, PostgreSQL, Interbase
- Programmiersprachen: Perl, PHP, Python, Ruby, Free Pascal, FreeBasic
- Entwicklungswerkzeuge: Ant, Make, Maven, GIMP-Toolkit, KDevelop, Eclipse, GNU Compile Collection (GCC), CVS

### Stärken von OSS

- Der offene Quellcode der OSS erhöht die Unabhängigkeit von einem Hersteller.
- Geringerer Lock-In-Effekt, da keine prinzipielle marktbeherrschende Position eines Anbieters vorliegt.
- Keine Lizenzkosten und geringere Erweiterungs- und Wartungskosten als bei vielen proprietären Programmen.
- Etwaige Softwarefehler können von der Entwicklergemeinschaft, die sich dem Open-Source-Gedanken verpflichtet fühlen, behoben werden.
- OSS kann durch unmittelbare Änderung des Quellcode an eigene Bedürfnisse angepasst werden.
- Das Unternehmen kann gegebenenfalls von fremden Erweiterungen der OSS profitieren.
- Größere Zukunftssicherheit, da kein einzelnes Unternehmen, sondern eine Gemeinschaft die Weiterentwicklung unabhängig von finanziellen Aspekten sicherstellen kann.

## Schwächen von OSS

- Ggf. Schwierigkeiten beim Daten- und Dokumentenaustausch zwischen einzelnen Lösungen.
- Die Hardwareunterstützung weist in manchen Fällen, z. B. bei hardwarebeschleunigten Grafikkarten oder bei Multimedia-Geräten, wie z. B. Scannern, Mängel auf.
- Beschaffung von Informationen zu einzelnen OSS-Lösungen ist teilweise problematisch.

## Kriterien für die Auswahl von OSS

- Support
- Dokumentation
- Verbreitungsgrad

# Teil 3, Kapitel 11: Anwendungen zur Entscheidungsunterstützung



Abbildung 11-1: Idealtypischer Führungsprozess (Grob und Bensberg 2009, S. 4)

# Kategorien von EUS

- Datenorientierte EUS dienen der Überwachung (Monitoring), Beschaffung, Aufbereitung und Verdichtung von Daten. Im Verarbeitungsfokus solcher datenorientierter Systeme steht die Ermittlung betriebswirtschaftlicher Kennzahlen, die beispielsweise in Form von Berichten (Reports) bereitgestellt werden. Solche EUS werden in der Initialphase von Entscheidungsprozessen eingesetzt, um die Problemidentifikation zu unterstützen, oder aber in der Kontrollphase verwendet, um Abweichungsanalysen durchzuführen.
- Modell- bzw. methodenorientierte EUS gestatten die Anwendung komplexer, formaler Methoden zur Konstruktion problemorientierter Modelle. Hierbei können z. B. Simulations-, Optimierungs- oder auch explorative Methoden zur Anwendung kommen. Solche Verfahren werden vorzugsweise in den späteren Teilphasen des Entscheidungsprozesses eingesetzt, um die Alternativensuche, die Alternativenbewertung sowie die Finalentscheidung zu unterstützen.

# Erhebungsmöglichkeiten des subjektiven Informationsbedarfs

- **Befragung** der Entscheidungsträger in Form von Interviews oder schriftlichen Befragungen,
- **Beobachtung** des Informationsbeschaffungsverhaltens von Entscheidungsträgern in direkter und indirekter Form (z. B. durch Protokollierung des Suchverhaltens im Intranet), und
- Inhaltsanalyse von relevanten Dokumenten (z. B. Prozessbeschreibungen für Planungs- und Entscheidungsprozesse).

# Ausrichtungen von Business Analytics

- Descriptive Analytics
- Predictive Analytics
- Prescriptive Analytics



Abbildung 11-2: Personality Insights als Beispiel für Cognitive Analytics (http://personality-insights-demo.ng.bluemix.net/)

# Diskrepanzen der Datennutzung

| Thema/Funktion           | Transaktionsorientierte<br>Datenverarbeitung (OLTP) | Entscheidungsorientierte<br>Datenverarbeitung        |
|--------------------------|-----------------------------------------------------|------------------------------------------------------|
| Dateninhalt              | Atomistische Istwerte                               | Archivdaten<br>aggregierte Daten<br>berechnete Daten |
| Datenorganisation        | Anwendungsabhängig                                  | Themenbezogene Bereiche des<br>Gesamtunternehmen     |
| Art der Daten            | Dynamisch                                           | Statisch bis zum nächsten Update                     |
| Datenstruktur            | Funktionsabhängig                                   | Universell                                           |
| Zugriffsfrequenz         | Hoch                                                | Niedrig                                              |
| Aktualisierung der Daten | Transaktionsbezogene<br>Updates                     | Nur lesender Zugriff                                 |
| Nutzung                  | Strukturierte wiederholte<br>Verarbeitung           | Unstrukturierte analytische<br>Verarbeitung          |
| Antwortzeit              | 2-3 Sekunden                                        | I. d. R. mehrere Minuten oder<br>länger              |
| Datenbank-architektur    | Relationale Datenbanken<br>(SQL)                    | Relational und nicht-relational (SQL, NoSQL)         |

Tab. 11-1: Diskrepanzen der Datennutzung

# Definition Business Intelligence

Unter **Business Intelligence** (**BI**) ist ein Gesamtansatz zu verstehen, mit dem Komponenten für die Beschaffung, Aufbereitung und Bereitstellung von Daten zur Unterstützung betrieblicher Entscheidungsprozesse zusammengeführt werden [Kemper et al. 2010, S. 8 ff.].

#### **BI-Architektur**



Abbildung 11-3: BI-Architektur (in Anlehnung an [Bensberg 2010, S. 43])

## **Definition Data Warehouse**

Ein Data Warehouse ist ein themenorientierter, integrierter, nicht flüchtiger und zeitvarianter Datenspeicher [Inmon 2002, S. 33].



Abb. 11-4: Architektur des Data Warehouse (in Anlehnung an [Bensberg 2010, S. 43])

### Flows

- In-Flow: Damit die operativen Daten aus externen Quellen ins DWH integriert werden können und dort in einer einheitlichen Form vorliegen, bedarf es geeigneter Data Warehouse Management-Software, die den Import der Daten übernimmt.
- **Up-Flow**: Wo und in welcher Form werden die Daten im DWH abgelegt?
- **Meta-Flow**: Bezieht sich auf (Meta)Daten, die die Nutzdaten und ihre Entstehung beschreiben.
- **Down-Flow**: Bezieht sich auf das interne Informationsmanagement innerhalb der DWH-Ebene und insb. auf die Archivierung älterer Daten.
- Out-Flow: Data Warehouse-Prozess, der die Daten dem Anwender durch Export aus dem DWH zur Verfügung stellt.

## Entwicklungsumgebung eines Berichtssystems



Abbildung 11-5: Entwicklungsumgebung des Berichtssystems BIRT

## Architektur eines OLAP-Systems



Abb. 11-6: Architektur eines OLAP-Systems

# Exemplarische Konsolidierungspfade für die Dimension Zeit



Abb. 11-7: Exemplarische Konsolidierungspfade für die Dimension Zeit

# Dicing



# Slicing



Abb. 11-9: Grafische Darstellung der Slicing-Technik

## Multidimensionale Datenexploration



Abb. 11-10: Multidimensionale Datenexploration (PowerPlay)

## Exemplarisches Sternschema



Abb. 11-11: Exemplarisches Sternschema



Abb. 11-12: ADAPT-Modell zur Bestimmung eines Würfels und seiner Dimensionen



Abb. 11-13: ADAPT-Modell zur Bestimmung der Dimension Zeit



Abb. 11-14: ADAPT-Modell zur Bestimmung der Dimensionen Artikel und Kunde



Abb. 11-15: Mobiles BI-System (in Anlehnung an [Bensberg 2008, S.76])

## Mobile BI-Anwendungen



Abb. 11-16: Beispiel für eine mobile BI-Anwendung (IBM Cognos Mobile)

# Exemplarisches Sternschema (MS Power BI Desktop)



Abb. 11-17: Exemplarisches Sternschema (MS Power BI Desktop)

## Exemplarischer Bericht (MS Power BI Desktop)



Abb. 11-18: Exemplarischer Bericht (MS Power BI Desktop)

## Big Data

Prof. Dr. Paul Alpar

- Speichervolumina (Volume)
- Geschwindigkeit (Velocity)
- Datenvielfalt (Variety)

# Big Data – Beispielhafte Anwendungen

• Shazam: kann die Popularität von Songs vorhersagen

Kreditech: kann die Kreditwürdigkeit von Kunden vorhersagen, die keinen traditionellen "credit score" haben (z. B. von Schufa)

• Uber: kann vorhersagen, ob seine Kunden einen einmaligen Seitensprung hatten



**Analyseschicht** 

Speicherschicht

Datenquellen





#### Sensordaten

- · Smart Meter
- · RFID-Systeme
- GPS-Sensoren
- Audiodatenströme
- Videodatenströme
- ...



#### Web-basierte Inhalte

- User Generated Content
- Foren und Blogs
- Social Media-Inhalte
- Multimedia-Sites (Fotos, Videos)
- Finanzmarktdaten
- E-Mails
- ...



#### Verhaltensdaten

- Kauftransaktionen
- · Logfiles und Clickstreams
- Web-Suchanfragen
- Likes und Tweets
- Verbindungsdaten (Telekommunikation)
- ...



Abb. 11-19:

## Gapminder



Abb. 11-20: Gapminder als Instrument zur Visualisierung raum- und zeitabhängiger Daten

### **Data Lake**



Abb. 11-21: Data Lake (nach Chessell et al. 2014, S. 8)

#### SAP HANA-Architektur



Abb. 11-22: SAP HANA-Architektur (in Anlehnung an SAP 2016)

## Analysekomponenten von SAP HANA

- Stream Processing dient der analytischen Verarbeitung von Datenströmen. Zu diesem Zweck können kontinuierliche Abfragen definiert werden, die dauerhaft auf die eingehenden Datenströme angewendet werden und beispielsweise zur Detektion kritischer Ereignisfolgen dienen.
- Die Komponente **Analytics Engine** wird eingesetzt, um multidimensionale Auswertungsrechnungen zu erstellen.
- Die **Predictive Engine** stellt Verfahren des maschinellen Lernens und der multivariaten Datenanalyse zur Verfügung (z. B. für die Zeitreihenanalyse, Klassifikation und Segmentierung).
- Zur Analyse von Textdaten bietet die **Text Engine** entsprechende Verfahren an, die ein breites Spektrum unterschiedlicher Aufgabenstellungen unterstützen. Hierzu gehören z. B. die Sentiment Detection (Stimmungsanalyse) von Texten und die Texterkennung auf Basis selbstdefinierter Wörterbücher (Custom Dictionaries).
- Die Komponente **Spatial Processing** enthält Funktionalitäten zur Verarbeitung raumbezogener Daten (Spatial Data). Hiermit kann etwa eine Geokodierung von Adressdaten durchgeführt werden oder aber raumbezogene Relationen (z. B. Distanzen, Nachbarschaften) zwischen Objekten aufgedeckt werden.

## Arten der physischen Datenorganisation





Abb. 11-23: Arten der physischen Datenorganisation (in Anlehnung an Knabke und Olbrich 2016, S. 191)

## Integrierte Ergebnis- und Finanzplanung



Abb. 11-24: System der integrierten Ergebnis- und Finanzplanung in einer divisional organisierten Unternehmung

## Beispiel eines Strukturbaums



Abb. 11-25: Beispiel eines Strukturbaums

## Assistent zur Top-Down-Planung



Abb. 11-26: Assistent zur Top Down-Planung

## Verteilung des Vorgabewertes auf einen Zeitraum



Abb. 11-27: Verteilung des Vorgabewerts auf einen Zeitraum

## Auswertungen von Daten im Tabellenfenster



Abb. 11-28: Auswertungen von Daten im Tabellenfenster

## Grafische Auswertung mittels Strukturbaum



Abb. 11-29: Beispiel einer grafischen Auswertung mittels Strukturbaum



Abb. 11-30: Beispiel eines Entscheidungsbaums [Grob/Schultz 2001, S. 138]

## Interaktive Bestimmung der Nutzenfunktion



Abb. 11-31: Interaktive Bestimmung der Nutzenfunktion

## Risiko-Chancen-Profile



Abb. 11-32: Risiko-Chancen-Profile für drei Investitionsalternativen



Abb. 11-33: Abbildung eines VOFIs in Microsoft Excel

# Verteilungen (Auswahl)



Abb. 11-34: Verteilungen bei Crystal Ball (Auswahl)

## Angabe von Verteilungsparametern



Abb. 11-35: Angabe der Parameter einer Normalverteilung

#### Risiko-Chancen-Profile



Abb. 11-36: Risiko-Chancen-Profil bei Crystal Ball

## Textanalyse



## Beispiel zum Begriff Data Scientist



# Teil 3, Kapitel 12: Anwendungen zur Vernetzung mit Kunden und Lieferanten

# Treiber für die gestiegene Vernetzung mit Kunden und Lieferanten

- Elektronische Kanäle
- Flexible überbetriebliche Organisationsformen
- Diffusion mobiler Geräte
- Wandel von Produkt- zum Kundenfokus

## Integration

Business Networking bzw. Electronic Business bezeichnet die Ausweitung des Integrationsgedankens der Wirtschaftsinformatik auf die gesamte Wertschöpfungskette und lässt sich als **integrierte Ausführung** aller **digitalisierbaren Bestandteile ökonomischer Prozesse** definieren (Thome et al. 2005).

# Definition: Customer Relationship Management (CRM)

Customer Relationship Management ist ein kundenorientierter Managementansatz, bei dem Anwendungssysteme die Informationen für operative, analytische und kooperative CRM-Prozesse integriert bereitstellen und damit zur Verbesserung der Kundengewinnung, -bindung und -profitabilität beitragen. Kernprozesse des CRM sind Marketing, Verkauf und Service.

## Anwendungen bei Kunden-Lieferanten-Vernetzung

- Ziel: Effiziente Transaktionsabwicklung mit Lieferanten und Kunden im Ein- und Verkauf
- Direkter Einbezug von Lieferanten und Kunden, z.B. über elektronische Kataloge oder Märkte



- Ziel: Austausch materialflussbezogener Informationen für reduzierte Bestände und Lieferzeiten
- Ziel: Zentrales Kundendatenmanagement zur verbesserten Kundenbindung

Abbildung 12-1: Anwendungsbereiche bei der Vernetzung mit Kunden und Lieferanten

#### Formen des CRM

- operatives CRM
  - Erfasst u.a. sämtliche Kundendaten in einer Kundendatenbank bzw. einem Data Warehouse.
- analytisches CRM
  - Versucht z.B. mittels statistischer Verfahren den (wahrscheinlichen) Kundenbedarf, das Kundenverhalten und den Kundenwert auf Basis der Daten aus dem operativen CRM zu ermitteln.
- kooperatives CRM
  - Soll die kanalübergreifende Transparenz über die Kundenhandlungen sicherstellen.



Abbildung 12-2: Beispiel eines operativen CRM-Systems (Quelle: Siebel/Oracle)

# Erweiterungen CRM

- Social CRM
- Location based services

## Definition: Supply Chain Management (SCM)

Supply Chain Management bezeichnet die Abstimmung sämtlicher Leistungsflüsse und Aktivitäten zwischen den Aktivitäten eines Wertschöpfungsnetzwerkes zur Erreichung gemeinsamer Ziele. Die Kernprozesse des SCM sind Planung, Beschaffung, Produktion, Distribution und Entsorgung.

#### Funktionalitäten des SCM

- Supply Chain Konfiguration
  - Dient der Analyse und der Gestaltung längerfristiger Produktions-sowie Logistikstrukturen.
- Supply Chain Planung
  - Dient z.B. der Abstimmung zwischen von Bedarfs- und Absatzmengen, Lagerbeständen oder Transportern mit einem kurz- bis mittelfristigen Zeitbezug.
- Supply Chain Ausführung
  - Dient der Abwicklung einzelner Aufträge und umfasst die Auftrags-, Transport-, Lager- und Bestandssteuerung.



Abbildung 12-3: Beispiel eines SCM-Systems (Quelle: SAP)

## Definition: Electronic Commerce (EC)

Electronic Commerce bezeichnet die Abwicklung elektronischer Transaktionen über elektronische Medien. Die Kernprozesse sind Information, Vereinbarung und Abwicklung.

## Unterscheidungsmerkmale Transaktionen

- Aktivitäten
- Teilnehmer
- Kooperationsformen

### EC-Funktionalitäten

- Produktauswahl
- Kontrahierung
- Abwicklung
- Auswertung



Abbildung 12-4: Beispiel einer EC-Anwendung [Kaufhaus des Bundes]

### Besonderheiten E-Procurement

- Automatische Aktualisierung
- Genehmigungsworkflow
- Kostenstellenabstimmung

#### Transformation und Nutzen des IT-Einsatzes



Abbildung 12-5: Transformation und Nutzen des IT-Einsatzes [Venkatraman 1994, S. 74]

## Effekte betrieblicher Anwendungssysteme

- Kommunikations- und Interaktionseffekte
- Prozesseffekte
- Struktur- bzw. Akteurseffekte
- Effekte auf überbetrieblicher Ebene