SRM Institute of Science and Technology Delhi-NCR Campus, Modinagar CYCLE TEST - III

Branch: AIML Subject: Chemistry Duration: 1hr 40 mins Session/Sem: 2022-23/I Code: 21CYB101J Max. Marks: 50 marks

		Part A	
	Attempt a	ll questions (1x10=10	
1. Which of the follo	owing is NOT a natural		
(a) Rayon	(b) RNA	(c) Cellulose	(d) Starch
2. The crystal plane (a) 110	for which the interplana (b) 111	ar spacing $d_{hkl} = a/\sqrt{12}$ in (c) 221	(Marks: 1; BL: 3; CO: 5; PO: 2) (d) 222
3. The polydispersit (a) $M_w = M_n$ (b) M	y index (PDI) of a poly l _w /M _n (c) M _n /M _w	mer is $ (d) \ M_w \times M_n $	(Marks: 1; BL: 1; CO: 4; PO: 1)
4 type (a) ionic (b) va	e of bonding is seen in th n der Waals	ermoset plastic polymers (c) covalent	(Marks: 1; BL: 1; CO: 4; PO: 1) (d) molecular
5. The X-ray diffract	tometers are NOT used	to determine the physi	cal properties of
(a) metals (b) lice		lymeric materials	(Marks: 1; BL: 1; CO: 5; PO: 1) (d) solids
6. The Bragg's equation for diffraction of X-rays is			(Marks: 1; BL: 1; CO: 5; PO: 1)
(a) $n\lambda = 2d\sin\theta$	(b) $n\lambda = 2d^2 \sin\theta$	(c) $n\lambda = 2d\sin^2\theta$	(d) $n\lambda = d^2 \sin\theta$
7. Fibres in the form (a) Wires	of thin filamentary sin (b) Fibres	gle crystals are called (c) Whiskers	(Marks: 1; BL: 1; CO: 5; PO: 1 (d) Matrix
8. Correct order for b	alk modulus is		(Marks: 1; BL: 2; CO: 5; PO: 1
(a) B _{gas} >B _{liquid} >B _{solid}	(b) B _{liquid} >B _{gas} >B _{solid}	(c) B _{solid} >B _{liquid} >B _{gas}	(d) B _{liquid} >B _{gas} >B _{solid}
9. Which type of polymers is known for its high crystallinity?			(Marks: 1; BL: 1; CO: 4; PO: 1)
9. Which type of poly(a) isotactic	(b) syndiotactic	(c) atactic	(d) none of them
10. Aramid fibers are u	sed for	(c) bullet-proof jackets	(Marks: 1; BL: 1; CO: 5; PO: 1) (d) packing materials

(c) bullet-proof jackets

(b) shoe soles

(a) apparels

Part B

Attempt all questions (10 x 4=40 marks)

- (Marks: 5; BL: 2; CO: 4; PO: 1)

 (b) Discuss the synthesis and applications of teflon and polyurethane. (Marks: 5; BL: 2; CO: 4; PO: 1)

 (b) Discuss the synthesis and applications of teflon and polyurethane. (Marks: 5; BL: 2; CO: 4; PO: 1)

 (b) Discuss the doping in conducting polymers and its types. Marks: 5; BL: 2; CO: 4; PO: 1)

 (b) Discuss the synthesis, properties and applications of PVC and nylon-6,6.

 (Marks: 5; BL: 2; CO: 4; PO: 1)

 (Marks: 5; BL: 2; CO: 4; PO: 1)

 (b) Equal number of polymer molecules with M₁ = 20,000 and M₂ = 200,000 are mixed. Calculate its mass average molecular mass (M_w). Take n=10

 (Marks: 4; BL: 3; CO: 4; PO: 1,2)
- 14. (a) Discuss about fibre-reinforced composites in detail and list out their applications.
- (b) Write short notes on the following:

 (i) cross-linked polymer

 (ii) polypropylene

 (Marks: 6; BL: 2; CO: 5; PO: 1)

 (Marks: 4; BL: 3; CO: 4; PO: 1)
- (ii) polypropylene

 (ii) polypropylene

 (ii) polypropylene

 (iii) polypropylene

 (iv) cross-linked polymer

 (iv) polypropylene

 (Marks: 8; BL:1,3; CO: 5; PO: 1)
 - (b) Comment on the significance of matrix in composites. (Marks: 2; BL: 4; CO: 5; PO: 1)
- 16. (a) Construct a labeled diagram exhibiting stress-strain relationship and discuss about it briefly.

 (Marks: 5; BL: 3; CO: 5; PO: 1)
- (b) A brass wire of length 2 m has its one end, fixed to a rigid support and from the other end a 4 kg weight is suspended. If the radius of the wire is 0.35 mm, find the extension produced in the wire. g = 9.8 m/s², $Y = 11 \times 10^{10}$ N/m² (Marks: 5; BL: 3; CO: 5; PO: 1,2)
- 1/2. (a) The parameters of an orthorhombic unit cell are a=50 pm, b=100 pm, c=150 pm. Determine the spacing between (123) planes. (Marks: 3; BL: 3; CO: 5; PO: 1,2)
- (b) Find out the Miller indices for plane with intercepts a=1/2, b=1, $c=\infty$ (Marks:2; BL:3; CO:5; PO: 1,2)
- (c) Discuss Brag's Law (Marks: 5; BL: 3; CO: 5; PO:1)

OR

18. Discuss the principle and instrumentation with a block diagram of X-ray photoelectron spectroscopy (XPS) in detail. Mention any two applications. (Marks: 4; BL: 2,3; CO: 5; PO: 1)