

Benjamin Ricaud, The Arctic University of Norway, Tromsø

Some references available online:

- F. Chung, Lectures on Spectral Graph Theory: https://mathweb.ucsd.edu/~fan/research/cbms.pdf
- U. von Luxburg, A Tutorial on Spectral Clustering: https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
- D. A. Spielman Spectral and Algebraic Graph Theory: http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
- C. O. Aguilar, An Introduction to Algebraic Graph Theory: https://www.geneseo.edu/~aguilar/public/notes/Graph-Theory-HTML/index.html
- Label propagation in scikit-learn: https://scikit-learn.org/stable/modules/semi_supervised.html#label-propagation

Introduction

Graph / Networks

Transportation Networks

Biological Networks

Typical applications

Pattern detection with Graph Neural Nets

Graph signal processing

Graph + values on the nodes

Graph definition

Vertices or nodes

$$V = \{v_1, \dots, v_N\}$$

Edges or links

$$E = \{e_1, \dots, e_M\}$$

Adjacency matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}$$

$$\mathbf{A}(i,j) = \left\{ \begin{array}{ll} +1 & \text{if there is an edge } (v_i,v_j) \text{ or } (v_j,v_i) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

All the information on the graph is contained in the adjacency matrix

Graph definition

Vertices or nodes

$$V = \{v_1, \dots, v_N\}$$

Edges or links

$$E = \{e_1, \dots, e_M\}$$

Weight Matrix:

$$W = \begin{pmatrix} 0 & w_{12} & 0 \\ w_{21} & 0 & w_{23} \\ 0 & w_{32} & 0 \end{pmatrix}$$

W(i,j) is the weight ("strength") of the edge between i,j (if any). W symmetric with positive entries

Directed Graph

Weight Matrix:

$$W = \begin{pmatrix} 0 & 0 & 0 \\ w_{21} & 0 & w_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

There is a connection from v_2 to v_1 but not from v_1 to v_2 . (example: hyperlinks in webpages)

W with positive entries but not symmetric. $W \neq W^T$

Another important matrix, the degree matrix D

• Degree matrix D: diagonal matrix with node degree on the diagonal,

$$D_{ii} = \sum_j w_{ij} = d_i$$
 Degree of node i

Small quiz

Adjacency matrix? Degree matrix?

Part 1:

Some properties of A and W and why we need them

Matrix properties

- Natural question:
- What are the eigenvalues / eigenvectors, the "spectrum"?

"Spectral graph theory"

Remark: Any symmetric matrix has a set of orthogonal eigenvectors, that is why undirected graphs are more studied.

Methods where they play a role

- PageRank
- Label propagation
- Spectral clustering
- Graph signal processing
- Graph neural networks

Most of these methods uses the Laplacian matrix instead of the weight matrix. This is for several reasons and we will see why soon.

Transition matrix

• Adjacency matrix with normalized columns (or rows)

$$T_{ij} = rac{a_{ij}}{\sum_i a_{ij}} = rac{a_{ij}}{d_j}$$
 Degree of node j

Probability to jump from node j to node i

Transition matrix

$$T = \begin{pmatrix} v_1 & v_2 & v_3 \\ 0 & 1/2 & 0 \\ 1 & 0 & 1 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$T = \begin{pmatrix} v_1 & v_2 & v_3 \\ 0 & 1/2 & 0 \\ 1 & 0 & 1 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

• Degree matrix D: diagonal matrix with node degree on the diagonal,

$$D_{ii} = \sum_i w_{ij} = d_i$$
 Degree of node i

Transition matrix or random walk matrix

$$T = WD^{-1}$$

$$T_{ij} = [WD^{-1}]_{ij} = \frac{w_{ij}}{d_j}$$

Probability to jump from j to i

Small quiz

Transition matrix?

Graph + values in the nodes

Encoding values on a graph

• With a vector

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}$$

Propagation on a graph

- Applying T to the vector of node values propagate the values over the graph
- Probabilistic interpretation of TⁿY: probability to reach an node (starting from v₂) after exactly n steps

PageRank

Famous Google PageRank, from Larry Page, Sergey Brin (1998)

Idea:

- Explore webpages by following the hyperlinks randomly
- When a page is visited, increase its score
- To avoid being stuck on pages without links, add a probability to randomly jump to any other page.

This is equivalent to a particular random walk on the graph

with Y_0 random vector

Iterate
$$Y_{t+1} = MY_t$$
 $M = (1-p)T + pB$

with Y_0 random vector

Tuning Transition Random jump anywhere matrix

$$B = \frac{1}{n} \cdot \left[\begin{array}{cccc} 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{array} \right]$$

The math behind

The method consist in applying a matrix many times to an initial vector.

 $Y_n = M^n Y_0$

Provided some conditions on M, this converge when $n \to \infty$ to a unique solution. Conditions:

matrix with non-negative entries

Irreducible matrix: any node in the graph can be reached from any other node.

Perron-Frobenius theorem:

- S is an eigenvector of M associated to the largest eigenvalue $\lambda > 0$,
- S is the unique eigenvector with eigenvalue λ ,
- Any other eigenvalue $|\lambda_i| < \lambda$

In our case the largest eigenvalue is 1, the others are smaller but positive.

 \rightarrow we can use the power method to find S. Because for any eigenvector U_i :

Mⁿ U_i = λ_i ⁿ U_i and λ_i <1 except for λ So will converge to S as n increases $Y = \sum_{i=0}^{N-1} \lambda_i U_i$

If max eigenvalue m is above 1: divide by the norm after each "diffusion": $||\mathbf{M}^{\mathbf{n}}\mathbf{U}||$ to prevent an exponential increase.

Power iteration method

```
import numpy as np
def power iteration(A, num iterations: int):
   # Ideally choose a random vector
   # To decrease the chance that our vector
   # Is orthogonal to the eigenvector
   b k = np.random.rand(A.shape[1])
   for in range(num iterations):
       # calculate the matrix-by-vector product Ab
       b k1 = np.dot(A, b k)
       # calculate the norm
       b k1 norm = np.linalg.norm(b k1)
       # re normalize the vector
       b k = b k1 / b k1 norm
   return b k
```

Propagation of labels

Idea: connected nodes share similar properties (similar label, value or vector of values)

Propagation of labels

Vector associated with a label:

h a label:
$$Y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 Poly No class v_1 No class v_2 No class

Initial values Y_0 Propagate: $Y_{t+1} = TY_t$

Ok but we need to keep the labelled nodes at their initial value!

 \rightarrow Propagate and clamp the labelled nodes: $Y_{t+1} = TY_t + Y_0$ Under some conditions on T it converges

From: Learning from Labeled and Unlabeled Data with Label Propagation, Xiaojin Zhu and Zoubin Ghahramani, 2002.

Propagation of labels

Several classes: Y is a matrix, each column is a label

All labels are diffused at the same time

Alternative propagation

Zhou, D., Bousquet, O., Lal, T., Weston, J., & Schölkopf, B. (2003). Learning with local and global consistency. Advances in neural information processing systems, 16.

- 1. Form the affinity matrix W defined by $W_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$ if $i \neq j$ and $W_{ii} = 0$.
- 2. Construct the matrix $S = D^{-1/2}WD^{-1/2}$ in which D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of W.
- 3. Iterate $F(t+1) = \alpha SF(t) + (1-\alpha)Y$ until convergence, where α is a parameter in (0,1).
- 4. Let F^* denote the limit of the sequence $\{F(t)\}$. Label each point x_i as a label $y_i = \arg\max_{j \leq c} F_{ij}^*$.

$$D^{-1/2}WD^{-1/2}$$

Symmetrized transition matrix

Break

- Let us make some diffusion / propagation on a graph.
- Take you favorite graph, define a signal
- Choose an algorithm and apply the matrix iteratively
- Visualize the evolution. For simple visualization you may use a path graph.