

Investimento

Profa. Me. Marcelo Silva de Jesus

- Unidade de Ensino: 4
- Competência da Unidade: Conhecer os métodos e técnicas de cálculo de valor do dinheiro no tempo e as técnicas de cálculo de financiamentos e investimentos.
- Resumo: Nessa unidade você estudará situações bancárias, aprenderá a programar seu dinheiro para realizações futuras, como calcular os juros do cheque especial e a taxa de juros de investimento
- Palavras-chave: Taxas de juros; Investimento; Amortização.
- Título da Teleaula: Investimento
- Teleaula nº: 4

Contextualização

Um investimento é toda aplicação de dinheiro visando ganhos. A aplicação pode ser realizada em:

- Caderneta de poupança;
- Fundos;
- Ações.

Como são realizados os cálculos em diferentes investimentos?

Fonte: shutterstock_1228631287. Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019.

Valor Futuro - aplicações

Valor Futuro (VF)

O valor futuro está embasado no resultado de uma aplicação com depósitos iguais e periódicos.

Para determinar o valor futuro usamos a seguinte fórmula matemática:

$$VF = \text{dep.}\left[\frac{(1+i)^n - 1}{i}\right]$$

Valor Futuro - aplicações

$$VF = dep. \left[\frac{(1+i)^n - 1}{i} \right]$$

Em que:

VF: valor futuro; resultado da aplicação ou investimento.

dep: refere-se ao valor do depósito.

n: número total de depósitos periódicos e iguais.

i: taxa de juros compostos.

Resolução da SP

Situação-problema 1:
Financiamento

Você, como sócio proprietário de uma Metalúrgica, deverá gerenciar as finanças da reforma do novo pátio de distribuição da empresa.

Calcule a entrada paga para a execução da reforma do novo pátio de distribuição, que foi resultado de uma Fonte: shutterstock_566835985- Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019. aplicação mensal de R\$ 20.000,00 durante três anos sob regime de juros compostos e taxa de 1,20% a.m.

Solução:

$$VF = dep\left[\frac{(1+i)^n - 1}{i}\right]$$

Em que:

VF: valor futuro; saldo da aplicação ao seu término, o que desejamos conhecer.

dep: R\$ 20.000,00 por mês.

n: 36 depósitos periódicos e iguais, pois trata-se de depósitos mensais durante três anos.

i: 1,20% a.m

$$E = VF = 20.000 \left[\frac{(1+0.012)^{36} - 1}{0.012} \right]$$

$$E = VF = 20.000 \left[\frac{1.5364 - 1}{0.012} \right]$$

$$E = VF = 20.000 \cdot 44.70$$

$$VF = R$894.000.00$$

Fonte: shutterstock_566835985. Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019.

O valor da entrada paga para a reforma do novo pátio de distribuição foi R\$ 894.000,00.

Determinação da taxa de juros do valor futuro

Método de Newton-Raphson para Valor Futuro

Função da taxa de juros compostos

$$f(i_j) = \frac{VF}{dep}i_j - \left(1 + i_j\right)^n + 1$$

Função marginal da taxa de juros compostos

$$f'(i_j) = \frac{VF}{dep} - n(1+i_j)^{n-1}$$

Função de Newton-Raphson

$$i_{j+1} = i_j - \frac{f(i_j)}{f'(i_j)}$$

Método de Newton-Raphson para Valor Futuro

Onde:

VF: valor futuro, ou resultado da

aplicação/investimento.

 i_j : taxa de juros compostos.

 $\it dep$: valor depositado periodicamente.

 i_{j+1} : próxima taxa de juros compostos.

Mecanismo do método

1º passo: estipular uma taxa de juros compostos inicial em valor relativo (i_j) .

2º passo: substituir i_j na função da taxa de juros compostos $f(i_j)$.

- Se $|f(i_j)| \le 0.0001$, então i_j é a taxa de juros compostos imposta na aplicação.
- Se $|f(i_j)| > 0,0001$, então i_j não é a taxa de juros compostos imposta na aplicação, vá para o 3° passo.

Mecanismo do método

3º passo: usando o valor da taxa de juros compostos i_j , calcule o valor da função marginal da taxa de juros compostos $f'(i_j)$.

4º passo: usando os valores da taxa de juros compostos (i_j) , da função da taxa de juros compostos $f(i_j)$ e da função marginal da taxa de juros compostos $f'(i_j)$, calcule a próxima taxa de juros compostos (i_{j+1}) , que deverá substituir a última taxa que não deu certo.

Mecanismo do método

5º passo: com a nova (i_{j+1}) determinada no passo anterior, volte ao 2º passo e refaça os cálculos como se essa fosse a taxa inicial, esquecendo-se da taxa anterior.

Os passos deverão ser repetidos até que:

$$\left|f(i_j)\right| \le 0.0001$$

Situação-problema 2:
Financiamento

A reforma do novo pátio de distribuição da empresa em que você é sócio foi financiada e a última parcela será paga com resultado de uma aplicação de R\$ 10.000,00 por mês, durante seis meses.

Essa aplicação resultou, num período de quatro meses, o valor de R\$ 48.763,64, depositando R\$ Fonte: shutterstock_680761060. Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019. 12.000,00 por mês. Portanto, sua missão é determinar a taxa de juros dessa aplicação, e também resultado do investimento de R\$ 10.000,00.

Solução:

1ª Etapa: determinando a taxa de juros compostos

da aplicação:

VF: R\$48.763,64

 i_j : Taxa de juros compostos que desejamos

encontrar.

n: 04

dep: R\$12.000,00/ mês

$$f(i_j) = \frac{VF}{dep}i_j - (1+i_j)^n + 1$$

$$f(i_j) = \frac{48.763,64}{12.000}i_j - (1+i_j)^4 + 1$$

$$f(i_j) = 4,0636i_j - (1+i_j)^4 + 1$$

$$f'(i_j) = \frac{VF}{dep} - n(1+i_j)^{n-1}$$

$$f'(i_j) = 4,0636 - 4(1+i_j)^3$$

$$i_{j+1} = i_j - \frac{f(i_j)}{f'(i_j)}$$

Fonte: shutterstock_566835985. Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019.

A taxa de juros compostos utilizada na aplicação foi de 1,14% a.m.

2ª Etapa: Determinar o resultado da aplicação de R\$10.000,00/mês.

$$VF = dep\left[\frac{(1+i)^n - 1}{i}\right]$$

VF:?

 i_j : 1,14% $a.m = 0,0114 \ a.m$

n: 06

dep: R\$10.000/ mês

$$VF = 10.000 \left[\frac{(1+0.0114)^6 - 1}{0.0114} \right]$$
$$VF = 10.000 \left[\frac{1.0704 - 1}{0.0114} \right]$$
$$VF = R\$61.754.39$$

Fonte: shutterstock_566835985. Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019.

Portanto, essa aplicação paga uma taxa de juros compostos de 1,14% a.m., por isso a aplicação de R\$ 10.000,00 por mês resultará, após seis meses, no montante de R\$ 61.754,39.

No Brasil, para financiamento de compra de imóveis, são utilizados dois métodos de amortização da dívida de compra: o SAC (Sistema de Amortização Constante) e o PRICE (Sistema Francês de Amortização).

SAC – Sistema de Amortização Constante Caracteriza-se por suas parcelas apresentarem um comportamento decrescente. É um sistema muito utilizado para o financiamento de compra de imóveis.

PRICE - Sistema Francês de Amortização

Tem como característica suas parcelas serem iguais. Tem maior aplicação em financiamentos de veículos.

SAC – Sistema de Amortização Constante

Amortização A_m

$$Am = \frac{VP}{n}$$

Juros J_k

$$J_k = D_{k-1}.i$$

Parcela P_k

$$P_k = Am + J_k$$

Dívida D_k

$$D_{k+1} = D_k - Am$$

PRICE – Sistema Francês de Amortização

Parcela parc

Juros J_k

$$parc = \frac{VP.i.(1+i)^n}{(1+i)^n-1}$$

$$J_k = D_{k-1}.i$$

Amortização A_m

Dívida D_k

$$Am_k = parc - J_k$$

$$D_k = D_{k-1} - Am_k$$

Exemplo

Um empréstimo de R\$6.000,00 será parcelado em três vezes mensais sob o sistema PRICE de amortização, com a taxa de juros compostos de 1,2% a.m. Determine o saldo devedor a cada

parcela paga.

Fonte: shutterstock_5 66835985. Disponível em: www.shutterst ock.com. Acesso em 02 ago. 2019.

Você será inserido como sócio proprietário de uma empresa que está reformando o novo pátio de distribuição. Reforma essa, de um ano, que está sendo executada sob contrato de financiamento em sistema de amortização constante em pagamentos trimestrais sob a taxa nominal anual de 15% no valor de R\$ 1.200.000,00.

Fonte: shutterstock_1086642287. Disponível em: www.shutterstock.com. Acesso em 02

Nas situações anteriores você definiu o valor de pagamento da entrada, e também definiu a verba resultante de um investimento que fará parte do pagamento da última parcela do financiamento da reforma; agora você deverá calcular o valor da última parcela a ser paga do financiamento dessa www.shutterstock.com. Acesso em 02 ago. 2019. reforma.

Fonte: shutterstock 560809768. Disponível em:

Sabendo que o valor da reforma é de R\$ 1.200.000,00 com entrada de R\$ 894.000,00, temos que o valor a ser financiado é:

$$VP = AV - E$$

 $VP = 1.200.000 - 894.000 = 306.000$

Portanto, o valor financiado nas condições citadas é de R\$ 306.000,00.

$$i_{ef} = \left(\frac{d}{n} + 1\right)^f - 1$$

 i_{ef} : taxa efetiva d: taxa

d: taxa nominal

n: período da taxa nominal, em dias

f: período da taxa efetiva, em dias

$$i_{ef} = \left(\frac{0,15}{360} + 1\right)^{90} - 1 \Rightarrow i_{ef} = 1,0004^{90} - 1$$

= 0,0366

 i_{ef} : 3,66% ao trimestre

Com as informações ajustadas, podemos determinar o valor da última parcela, que é a quarta parcela do financiamento pelo SAC (Sistema de Amortização Constante).

UTILIZANDO UMA PLANILHA ELETRÔNICA

Fonte: shutterst ock_566 835985. Disponív el em: www.shu tterstock. com. Acesso em 02 ago. 2019.

	Dívida (D_k) $D_{k+1} = D_k - Am$	Amortização (Am) $Am = \frac{VP}{n}$	$J_{k} = D_{k-1} \cdot i$	Parcela (P_k) $P_k = Am + J_k$
0	306.000,00			
1	229.500,00	76.500,00	11.199,60	87.699,60
2	153.000,00	76.500,00	8.399,70	84.899,70
3	76.500,00	76.500,00	5.599,80	82.099,80
4	0,00	76.500,00	2.799,90	79.299,90
Σ		306.000,00		333.999,00

Portanto, o valor da última parcela de financiamento será de R\$ 79.299,90.

Conta garantida — cheque especial

Método Hamburguês

O método Hamburguês é um método de cálculo dos juros a serem cobrados ao final de um período de trinta dias para conta garantida ou cheque especial.

$$J = (i + IOF) \sum SD. d$$

Método Hamburguês

$$J = (i + IOF) \sum SD. d$$

J: juros a serem cobrados pelo uso da conta garantida ou cheque especial.

i: taxa de juros simples ao dia.

IOF: Imposto sobre operações financeiras ao dia.

SD: Saldo devedor.

d: número de dias em que o saldo devedor (SD) não se altera.

Você sabe que a última parcela a ser paga do financiamento dessa reforma é de R\$79.299,90, e que para pagar essa parcela fará uso de uma verba de R\$61.754,39, proveniente de uma aplicação, e o restante virá da conta bancária da empresa.

Como a empresa tem outros compromissos a saldar, provavelmente deverá fazer uso de seu cheque especial, e a instituição bancária cobra uma taxa de juros simples de 144% a.a. e IOF de 0,07% ao dia.

Fonte: shutterstock_782797126. Disponível em: www.shutterstock.com. Acesso em 02 ago. 2019.

Você deverá, no último dia do mês, apresentar os juros a serem cobrados pelo uso do cheque especial e o saldo bancário da empresa.

O extrato bancário é dado a seguir:

Data	Histórico	Movimento	Saldo
01	De transporte		1.000,00 +
03	Clientes	400.000,00 +	
05	Fornecedores	150.000,00 -	
05	Funcionários	100.000,00 -	
10	Encargos Fiscais	170.000,00 -	
13	Clientes	50.000,00 +	

15	Pagamento da Reforma		
22	Pagamento de Manutenção	20.000,00 -	
28	Pagamento de Mat. Construção	85.000,00 -	
30	Cliente	100.000,00 +	
30	Juros do Cheque Especial		

Como a última parcela ser paga é de R\$ 79.299,90 e há uma verba de R\$ 61.754,39, o valor faltante deverá ser retirado da conta bancária da empresa. Assim:

$$V_{C/B} = 79.299,90 - 61.754,39$$

$$V_{C/B} = R$$
\$ 17.545,51

Valor a ser retirado da conta bancária

Juros a serem cobrados:

$$J = (i + IOF) \sum SD. d$$

$$J = \left(\frac{1,44}{360} + 0,0007\right).279364,08$$

$$J = 0,0047.279364,08$$

$$J = R$1.313,01$$

Interação

Um investimento de R\$120,00 por mês, numa aplicação que paga taxa de juros compostos de 1,08% a.m., resultou em R\$1.942,66. Determine o tempo de investimento.

Nesta aula estudamos...

- Valor presente financiamento.
- Valor presente financiamento com entrada.
- Valor presente condições especiais.
- Determinação da taxa de juros do valor www.shutterstock.com. Acesso em 02 ago. 2019. presente.

Fonte: shutterstock_1151714162. Disponível em:

