

MASTER RESEARCH INTERNSHIP IN COMPUTER SCIENCE

Machine learning, Information and Content

"Unsupervised Neural Word Alignment HMM"

Computer Science Laboratory for Mechanics and Engineering Sciences (LIMSI)

Author: VU Trong-Bach Supervisor: Dr. François YVON

Contents

I. ISSUES INTRODUCTION

II. PROPOSED METHOD

III. EXPERIMENTS & RESULTS

IV. CONCLUSION

* [Och and Ney, 2003] [Vogel et al., 1996] 4

$$f^{J} = \{f_{1} \cdots f_{j} \cdots f_{J}\}$$

$$e^{I} = \{e_{1} \cdots e_{i} \cdots e_{I}\}$$

$$e^{I} = arg \max_{e^{I}} \{ P(e^{I}|f^{J}) \}$$

$$= \arg\max_{e^I} \{ P(e^I) \cdot P(f^J | e^I) \}$$

$$P(f^{J}|e^{I}) = \sum_{I} P(f^{J}, a^{J}|e^{I})$$

$$= \sum_{a^{J}} \prod_{j=1}^{J} P(f_j, a_j | f_{j-1}, a_{j-1}, e^I)$$

$$= \sum_{a^J} \prod_{j=1}^J P(a_j | f_{j-1}, a_{j-1}, e^I) \cdot P(f_j | f_{j-1}, a_j, e^I)$$

First order dependence

$$x(t-1)$$

$$y(t-1)$$

$$y(t)$$

$$y(t+1)$$

Hidden Markov Models

$$P(a_j|f_{j-1}, a_{j-1}, e^I) = p(a_j|a_{j-1}, I)$$

$$P(f_j|f_{j-1}, a_j, e^I) = p(f_j|e_{a_j})$$

* [Och and Ney, 2003] [Vogel et al., 1996] 5

 $P(f^{J}|e^{J}) = \sum_{i=1}^{J} [p(a_{i}|a_{j-1}, I) \cdot p(f_{j}|e_{a_{j}})]^{I}$

Hidden Markov Models

Neural Network

$$P(f^{J}|e^{J}) = \sum_{a^{J}} \prod_{j=1}^{J} [p(a_{j}|a_{j-1}, I) \cdot p(f_{j}|e_{a_{j}})]$$

Transition Model or Alignment Model Neuralized

Emission Model or Translation Model

Transition Model or Alignment Model

Emission Model or Translation Model

Transition Model

$$p(a_j|a_{j-1}, I) \text{ or } p(i|i', I) = \frac{s(i-i')}{\sum_{i''=1}^{I} s(i''-i')}$$

Using a non-negative set

i'/i	0	1	2	
0	s(0)	s(1)	s(2)	
1	s(-1)	s(0)	s(1)	s(2)
2	s(-2)	s(-1)	s(0)	s(1)
•••		s(-2)	s(-1)	s(0)

Empty word problem???

Transition Model

$$p(i+I|i',I) = p_0 \cdot \delta(i,i')$$
$$p(i+I|i'+I,I) = p_0 \cdot \delta(i,i')$$
$$p(i|i'+I,I) = p(i|i',I)$$

- p0 is the probability of a transition to the empty word
- $\delta(i,i')$ $\begin{cases} 1 \text{ if } i=i' \\ 0 \text{ otherwise} \end{cases}$

by extending the HMM empty words e^2l

i'/i	0	1	2	•••	0 (I)	1 (I+1)	2 (I+2)	•••
0	s(0)	s(1)	s(2)		$p_0 \cdot 1$	$p_0 \cdot 0$	$p_0 \cdot 0$	•••
1	s(-1)	s(0)	s(1)	s(2)	$p_0 \cdot 0$	$p_0 \cdot 1$	$p_0 \cdot 0$	$p_0 \cdot 0$
2	s(-2)	s(-1)	s(0)	s(1)	$p_0 \cdot 0$	$p_0 \cdot 0$	$p_0 \cdot 1$	$p_0 \cdot 0$
•••		s(-2)	s(-1)	s(0)		$p_0 \cdot 0$	$p_0 \cdot 0$	$p_0 \cdot 1$
0 (I)	s(0)	s(1)	s(2)		$p_0 \cdot 1$	$p_0 \cdot 0$	$p_0 \cdot 0$	•••
1 (I+1)	s(-1)	s(0)	s(1)	s(2)	$p_0 \cdot 0$	$p_0 \cdot 1$	$p_0 \cdot 0$	$p_0 \cdot 0$
2 (I+2)	s(-2)	s(-1)	s(0)	s(1)	$p_0 \cdot 0$	$p_0 \cdot 0$	$p_0 \cdot 1$	$p_0 \cdot 0$
•••	•••	s(-2)	s(-1)	s(0)	•••	$p_0 \cdot 0$	$p_0 \cdot 0$	$p_0 \cdot 1$

Unsupervised - How to update θ ???

Update **0**

Maximize the evidence
$$p(f|\theta) = \sum_{e} p(f,e|\theta)$$

 \triangleright To estimate θ , we can use auxiliary function of EM algorithm

$$p(f|\theta) = E_{q(e)}[\ln p(f,e|\theta)] + H[q(e)] + KL(q(e)||p(f,e|\theta))$$

We choose:

- q(e) to be posterior p(e|f)
- H[q(e)] a constant -> dropped
- Setting *KL divergence to zero*

Only maximize $E_{p(e|f)}[\ln p(f,e|\theta)]$

Gradient:

$$J(\theta) = \sum_{e} p(e|f) \frac{\partial}{\partial \theta} \ln p(f, e|\theta)$$

$$J(\theta) = \sum_{j} \sum_{a_j} p(a_j|f_j) \frac{\partial}{\partial \theta} \ln p(f_j|e_{a_j}, \theta)$$

How calculate posteriors ???

$$p(a_{j} = i'|f_{j}, \theta) \propto \alpha_{i'}(j)\beta_{i'}(j)$$

$$p(a_{j} = i', a_{j+1} = i|f^{J}, \theta) \propto \alpha_{i'}(j)p(a_{j+1} = i|a_{j} = i') \times \beta_{i}(j+1)p(f_{j+1}|e_{a_{j}})$$

Update non-negative set s(i-i')

$$p(a_{j} = i'|f_{j}, \theta) \propto \alpha_{i'}(j)\beta_{i'}(j)$$

$$p(a_{j} = i', a_{j+1} = i|f^{J}, \theta) \propto \alpha_{i'}(j)p(a_{j+1} = i|a_{j} = i') \times \beta_{i}(j+1)p(f_{j+1}|e_{a_{j}})$$

$$s(i, i') = \frac{\sum_{n=1}^{N} \sum_{j=1}^{J-1} p_n(a_j = i', a_{j+1} = i | f^J, \theta)}{\sum_{n=1}^{N} \sum_{j=1}^{J-1} p_n(a_j = i' | f_j, \theta)}$$

N is the number of pair sentences (f; e) in the corpus

Evaluation Methodology

Viterbi Alignment

$$\hat{a}^{J} = \arg \max_{a^{J}} p(f^{J}, a^{J} | e^{2I})$$

$$= \arg \max_{a^{J}} \left\{ \prod_{j=1}^{J} [p(a_{j} | a_{j-1}, 2I) \cdot p(f_{j} | e^{2I}_{a_{j}})] \right\}$$

$$= \left[\arg \max_{a_{j}} \{ p(a_{j} | a_{j-1}, 2I) \cdot p(f_{j} | e^{2I}_{a_{j}}) \} \right]_{j=1}^{J}$$

$$AER = 1 - \frac{(|A \cap S| + |A \cap P|)}{(|A| + |S|)}$$

The best AER = 0.0, where S (sure alignments), P (possible alignments) A (hypothesis alignments).

<u>E.g.</u>

Sure: 1-1 2-1 3-2 4-3 5-4 ... Possible: 4-2 4-3 7-4 7-5

[Och and Ney, 2003]

Corpus	Type	Name	No Sentences
Roman-English	Training	Naacl2003	48k
	Training	WMT2016 SETIMES	213k
	Testing	Naacl2003	248
English-Czech	Training	News commentary v.11	191432
	Testing	Marecek2008	2500
Dutch-English	Training	Europarl	2M
	Testing	Europarl	509
English-Italian	Training	Europarl	2M
	Testing	WAGS	6700

- □ Romanian-English testing set only includes sure alignments.
- ☐ English-Italian testing set includes only rare words.

Corpus	IBM2	IBM4	Best
Ro-En	30.7	30.4	IBM4
En-Cz	24.3	26.7	IBM2
Du-En	27.4	22.3	IBM4
En-It	68.6	80.6	IBM2

IBM2: Fast_align

IBM4: MGIZA++

Corpus	IBM2	IBM4	NWA-HMM
En-Cz	24.3	26.7	82.4

- 82.4 is still a very bad score.
- ✓ AER score has a decreasing tendency until 9th epoch

Other investigations:

- ✓ Maximum log-likelihood in Baum-Welch algorithm.
- ✓ The variation of non-negative transition elements s(i-i') through epochs.

The AER scores for 10 first epochs on English-Czech corpus

Maximum log-likelihood

BW Algorithm uses EM algorithm to find the maximum log-likelihood:

$$\theta^* = \arg\max_{\theta} P(f^J|\theta)$$

✓ Ascending trend through epochs

The variation of non-negative transition elements s(i-i')

✓ The sorter distance the higher value

The mean of non-negative transition elements s(i-i')

✓ The sorter distance the higher value

The variation of non-negative transition elements s(i-i')

The variation of non-negative transition elements s(i-i')

Programing Tips and Tricks

A potential arithmetical issue during running BW-Alg e.g. x^{-200} . x^{-200}

- 1. Baum-Welch normalization
- 2. Log-space multiplication between two very small numbers dealing with normalization task

Programing Tips and Tricks

Baum-Welch normalization

Forward messages α and backward messages β can get very small. e.g. x^-200.

Solution: Using the same normalization factor

$$Z(j) = \sum_{i}^{I} \alpha_{i}(j)$$

$$\hat{\alpha}_{i}(j) = \alpha_{i}(j)/Z(j)$$

$$\hat{\beta}_{i}(j) = \beta_{i}(j)/Z(j)$$

Programing Tips and Tricks

Log-space multiplication between two very small numbers dealing with normalization task

$$\log(\hat{x}_i) = \log(x_i) - \log(\sum_{j=0}^{J}(x_j)). \qquad \frac{\text{However}}{\sum_{j=0}^{J}(\log(x_j)) \neq \log(\sum_{j=0}^{J}(x_j))}$$

$$\hat{x}_i = \frac{x_i}{\sum_{j=0}^{J}x_j} \qquad \log(\sum_{j=0}^{J}(x_j)) = \log(x_0) + \log(1 + \sum_{j=1}^{J}\frac{x_j}{x_0})$$

$$= \log(x_0) + \log(1 + \sum_{j=1}^{J}(\exp^{\log(x_j) - \log(x_0)})$$

$$(x_i = a_i \times b_i) \qquad = \log(a_0 \times b_0) + \log(1 + \sum_{j=1}^{J}(\exp^{\log(a_j \times b_j) - \log(a_0 \times b_0)})$$

$$= \log(a_0 \times b_0) + \log(1 + \sum_{j=1}^{J}(\exp^{\log(a_j \times b_j) - \log(a_0 \times b_0)})$$

$$= \log(a_0) + \log(b_0) + \log(1 + \sum_{j=1}^{J}(\exp^{\log(a_j) + \log(b_j) - \log(a_0) - \log(b_0)})$$
where $x_0 > x_1 > \dots > x_J$ are sorted in descending order.

IV. CONCLUSION

For enhancing translation performance:

- ✓ Believe that an improvement of this proposed method could be useful for further work in unsupervised neural alignment.
- ✓ Potentially to be integrated into well-know Attention Model.

Reasons for using neural alignment:

- ✓ Do not have much aligned corpus which requires expensively human resources.
- ✓ Have not yet found an unsupervised efficient automatic word alignment method which could obtain less than about 10% of error.
- ✓ The word alignment is still a promised model to enhance the translation achievements considerably.
- ✓ Neural network itself is really powerful for extracting special features on our data that plays a necessary role in each alignment

Thank you for your attention!