Examen Kwantummechanica I: 15 januari 2018

THEORIE (30 punten)

Antwoord bondig en gevat maar toch volledig! HEEL VEEL SUCCES!

1. Theorie vraag 1 (10 punten):

(a) Leg duidelijk uit waarom het kwantummechanisch equivalent van het klassieke product xp_x gegeven wordt door een gesymmetriseerde vorm

$$\frac{xp_x+p_xx}{2}.$$

Wat is de rol van hermiticiteit hierbij?

(b) Orbitaal impulsmoment wordt in de klassieke mechanica gedefinieerd door $\vec{L}=\vec{r}\times\vec{p}$.

i. Wat is de corresponderende kwantummechanische operator in de coördinatenruimte EN in de impulsruimte? In het licht van voorgaande discussie omtrent de kwantummechanische vorm voor xp_x , is het al dan niet nodig om de kwantummechanische vorm van \vec{L} te construeren via een gesymmetriseerde vorm

$$\frac{\vec{r} \times \vec{p} - \vec{p} \times \vec{r}}{2} \quad ?$$

Beargumenteer heel duidelijk je antwoord.

ii. Geef de wiskundige definitie en de fysische interpretatie van de vectorgrootheid $\Delta \vec{L}$. Voor de duidelijkheid van de notatie: Δ slaat hier NIET op een afgeleide en Δ slaat hier NIET op een verschil.

iii. Onder welke omstandigheden is het orbitaal impulsmoment \vec{L} een behouden grootheid? Met andere woorden, welke voorwaarden moeten worden voldaan opdat

$$\frac{d\left\langle \vec{L}\right\rangle}{dt} = \vec{0}?$$

iv. Bereken het kwantummechanisch equivalent van de volgende klassieke uitdrukking

$$\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} \ .$$

2. Theorie vraag 2 (20 punten): MONDELING EXAMEN

Examen Kwantummechanica 1: 15 januari 2018

OEFENINGEN (20 punten)

- BELANGRIJK: Je kunt pas aan de oefeningen beginnen wanneer je je antwoorden op het theorie-examen hebt afgegeven.
- Bij het oplossen van het oefeningengedeelte mogen ENKEL gebruikt worden
 - 1. de cursusnota's (TRANSPARANTEN)
 - 2. het handboek Quantum Mechanics van Bransden en Joachain
 - 3. lijst met integralen uit het boek van Michael A. Morrison
- Je kunt bij het oplossen van de oefeningen gebruik maken van de formules en/of uitdrukkingen van de hierboven vermelde drie bronnen. Het is wel nodig om te vermelden waar een bepaalde formule vandaan komt (bijvoorbeeld, we maken gebruik van Vergelijking (2.304) om . . .).

OFFENING 1 (4 PUNTEN): LINEAIRE POTENTIAAL

Een deeltje met een massa $m \neq 0$ beweegt in een één-dimensionale potentiaal $V(x) = |x|V_0$ met $V_0 > 0$.

- 1. Maak gebruik van het Heisenberg onzekerheidsbeginsel om een goede schatting te bekomen van de grondtoestandsenergie E_1 van het deeltje.
- 2. De grondtoestandsenergie E_1 is een functie van m en V_0 : $E_1(m,V_0)$. Leg uit waarom de bekomen m-afhankelijkheid van E_1 in lijn is met de fysische verwachtingen. Toon aan dat de twee limietgevallen: $\lim_{V_0 \to 0} E_1(m,V_0)$ en $\lim_{V_0 \to +\infty} E_1(m,V_0)$ wel degelijk het te verwachten resultaat voor E_1 opleveren.
- 3. Noem E_1 de grondtoestandsenergie en E_4 de energie corresponderend met de derde aangeslagen toestand. Maak een schets van de bijbehorende golffuncties $\psi_1(x)$ en $\psi_4(x)$ in een figuur waarbij de potentiaal $V(x) = |x|V_0$ en de energieën E_1 en E_4 duidelijk aangegeven zijn. Duid op je figuur ook aan waar je ergens E_2 en E_3 verwacht. Verklaar al je antwoorden en verantwoord al de keuzes die je maakt.

OEFENING 2 (4 PUNTEN): VERWACHTINGSWAARDE

Bereken het resultaat van de volgende verwachtingswaarde

$$\langle \Psi(\vec{r},t) | \left[x^2 p_x^2, x p_z - z p_x \right] | \Psi(\vec{r},t) \rangle$$
.

Hierbij is $\Psi(\vec{r},t)$ een niet nader bepaalde oplossing van de TDSE. Je wordt gevraagd om het eindresultaat zo eenvoudig mogelijk te schrijven.

OFFENING 3 (12 PUNTEN): LINEAIRE HARMONISCHE OSCILLATOR

Een deeltje in een één-dimensionale harmonische oscillator bevindt zich op t=0 in de toestand

$$\Psi(x, t = 0) = \mathcal{C}\left[\sqrt{2}\psi_0(x) + \sqrt{5}\psi_1(x) - \psi_3(x)\right],$$

waarbij $\psi_n(x)$ de golffunctie is horend bij de n-de energie-eigentoestand $\left(E_n = \hbar\omega\left(n + \frac{1}{2}\right)\right)$.

- O3.1 (1 punt) Bepaal de constante C.
- O3.2 *(1 punt)* Construeer $\Psi(x,t)$ en $|\Psi(x,t)|^2$ voor een arbitrair tijdstip t>0. Wat is de tijdsperiode van $\Psi(x,t)$ en van $|\Psi(x,t)|^2$?
- O3.3 (1 punt) Als men op een arbitrair tijdstip t de energie van dit deeltje meet, welke waarden kan men dan vinden en met welke waarschijnlijkheid?
- O3.4 (4 punten) Bepaal de matrixrepresentatie van de operator x in de basis $\{\psi_n\}$ en gebruik de matrixrepresentatie om de verwachtingswaarde $\langle x \rangle$ op een arbitrair tijdstip t te berekenen.
- O3.5 *(3 punten)* Bereken EXPLICIET de verwachtingswaarde $\langle p_x \rangle$ op een arbitrair tijdstip t. Door combinatie van de berekende $\langle x \rangle$ en $\langle p_x \rangle$, toon aan dat wel degelijk voldaan is aan het Ehrenfest theorema

$$\frac{d\langle x\rangle}{dt} = \frac{\langle p_x\rangle}{m} .$$

O3.6 (2 punten) Stel dat men op een welbepaald tijdstip met arbitraire precisie de potentiële energie E_{pot} van het beschouwde systeem meet en systematisch de waarde $\frac{7}{4}\hbar\omega$ vindt. Wat is de verwachtingswaarde van de kinetische energie T_{kin} en de bijbehorende onzekerheid ΔT_{kin} direct na de meting van E_{pot} ? Beargumenteer heel duidelijk je antwoord.