Exercice 235:

Soit P un polynôme complexe non nul ayant au moins deux racines distinces et tel que P'' divise P.

- a) Montrer que P est à racines simples.
- b) Montrer que les racines de P sont alignées.

Soit P un polynôme complexe non nul ayant au moins deux racines distinctes et tel que P''|P.

a) Montrer que P est à racines simples.

Écrivons P sous la forme : $P = \lambda \prod_{i=1}^{p} (X - a_i) \prod_{i=1}^{q} (X - b_i)^{m_i}$ avec $p \ge 1$ et les $m_i \ge 2$ et les a_i, b_i distincts. L'objectif est de montrer q = 0.

Par hypothèse,
$$P''$$
 s'écrit $P'' = Q \prod_{i=1}^{q} (X - b_i)^{m_i - 2}$ avec $Q | \prod_{i=1}^{p} (X - a_i)$.

Par hypothèse, P'' s'écrit $P'' = Q \prod_{i=1}^{q} (X - b_i)^{m_i - 2}$ avec $Q | \prod_{i=1}^{p} (X - a_i)$. On note n le degré de P et en regardant les degrés on a : $n - 2 = \deg Q + \sum_{i=1}^{q} (m_i - 2) = p + \sum_{i=1}^{q} (m_i) - 2$ d'où $2 = p - \deg Q + 2q$ avec $p \ge \deg Q$. Ainsi q = 0 ou q = 1. Par l'absurde supposons q = 1.

On pose
$$T = \prod_{i=1}^{p} (X - a_i)$$
.

On a
$$T'' = \lambda n(n-1)T(X-b_1)^{m_1-2} = \lambda(X-b_1)^{m_1-2}((X-b_1)^2T'' + 2m_1(X-b_1)T' + m_1(m_1-1)T)$$

En divisant par $(X-b_1)^{m_1-2}$ et en évaluant en b_1 , on a $n(n-1)T(b_1) = m_1(m_1-1)T(b_1)$. Or $T(b_1) \neq 0$ et $n > m_1$ car $p > 0$.

C'est absurde donc q = 0 et P est à racines simples.

b) Montrer que les racines de P sont alignées.

On rappelle le théorème de Gauss-Lucas : Si $P \in \mathbb{C}[X]$ alors les racines de P' sont des barycentres à coefficients strictement positifs de celles de P.

D'après la question précédente, P admet n racines distinctes a_1, a_2, \ldots, a_n et P'' en a n-2 parmi celles ci. Les racines de P forment un polygone G dont on note, quitte à renuméroter, $a_1, ..., a_s$ les sommets. Par l'absurde on suppose $s \ge 3$, c'est-à-dire que G n'est pas un segment.

Par théorème de Gauss-Lucas, les racines de P' sont dans l'intérieur de G et celles de P'' aussi. Or au moins une des racines de P'' n'est pas dans l'intérieur de G puisque une d'entre elle est un sommet $(k \ge 3)$, ce qui est absurde.

Finalement k=2 (deux racines distinctes) et les racines de P sont alignées.