Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 29

NP-complete problems

Credit: based on slides by A. smith & K. Wayne

Quiz

For each of the following statements, decide T/F/Unknown.

- a) Let X be a problem in \mathbf{P} , then it can be solved in n^{2019} time.
- b) Let X be a problem in **NP**, then it cannot be solved in n^{2019} time.
- c) If a problem is NP-Complete, then the best algorithm for it takes $\Omega(2^n)$ time.
- d) There exists a problem in NP but not in P.

NP-Completeness

Def. A problem Y is NP-Complete if

- 1. $Y \in \mathbf{NP}$
- 2. $\forall X \in \mathbf{NP}, X \leq_{P,Karp} Y$

Theorem. Suppose Y is NP-Complete, then Y is solvable in polytime iff. P = NP

Pf.

- (\Leftarrow) If P = NP, then Y can be solved in poly-time since $Y \in NP$
- (\Rightarrow) If Y is solvable in poly-time, consider any $X \in \mathbf{NP}$. Since $X \leq_{P,Karp} Y, X$ has a poly-time algorithm as well I.e., $\mathbf{NP} \subseteq \mathbf{P} \Rightarrow \mathbf{P} = \mathbf{NP}$

Fundamental question: Are there natural NP-complete problems?

The "first" NP-Complete problem

Theorem. Circuit—SAT is NP-Complete [Cook 1971,Levin 1973]

Input. A combinational circuit built out of AND/OR/NOT gates

Goal. Decide if there is a way to set the circuit inputs so that the

output is 1?

hard-coded inputs

inputs

Stephen Cook Leonid Levin

Example

Given. Graph G

Construction. Circuit K whose inputs can be set so that K outputs true iff. graph G has an independent set of size 2

Indep. Set of size 2? Indep. Set? Are the two nodes chosen connected Set of size 2? by an edge *n* inputs (nodes in indep. set)

hard-coded inputs (graph description)

Establishing NP-Completeness

Once we establish first "natural" NP-complete problem, others fall like dominoes ...

Recipe to establish NP-Completeness of problem Y

- I. Show that $Y \in \mathbf{NP}$
- 2. Choose an NP-complete problem *X*
- 3. Prove that $X \leq_{P,Karp} Y$

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_{P,Karp} Y$ then Y is NP-complete (by transitivity)

NP-Completeness

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

https://xkcd.com/287/

Alibaba's knapsack

https://images.app.goo.gl/pwGFyw2pp6Xmx6CB8

Modern Version

Practicing reductions

• Circuit-SAT \leq 3-SAT

+

 $3-SAT \le_P INDEPENDENT-SET$ $\le_P VERTEX-COVER \le_P SET-COVER$

- 3-SAT ≤ HAM-CYCLE
- ⇒ They are all NP-Complete!

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS

Richard M. Karp University of California at Berkeley

Richard M. Karp

3-SAT is NP-Complete

Theorem. 3-SAT is NP-Complete

Pf. We show Circuit—SAT $\leq_P 3$ -SAT

- Given a circuit K, create a 3-SAT variable x_i for each gate
- Make circuit compute correct values at each node

$$x_{2} = \neg x_{3} \qquad \Rightarrow x_{2} \lor x_{3}, \overline{x_{2}} \lor \overline{x_{3}}$$

$$x_{1} = x_{4} \lor x_{5} \qquad \Rightarrow x_{1} \lor \overline{x_{4}}, x_{1} \lor \overline{x_{5}}, \overline{x_{1}} \lor x_{4} \lor x_{5}$$

$$x_{0} = x_{1} \land x_{2} \qquad \Rightarrow \overline{x_{0}} \lor x_{1}, \overline{x_{0}} \lor x_{2}, x_{0} \lor \overline{x_{1}} \lor \overline{x_{2}}$$

Hard-coded input values and output value

$$x_5 = 0 \Rightarrow \overline{x_5}$$
 $x_0 = 1 \Rightarrow x_0$

• Final step: turn clauses into exactly 3 literals by adding dummy variables

$$\mathsf{EX}.\, x_1 \vee x_2 \Rightarrow x_1 \vee x_2 \vee y, x_1 \vee x_2 \vee \overline{y}$$

! Don't forget to show 3−SAT ∈ NP

Circuit *K* satisfiable iff. 3 truth assignment satisfying all clauses constructed

(DIR-)HAM-CYCLE is NP-Complete

(DIR-)HAM-CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle Γ that visits every node exactly once?

Theorem. 3-SAT \leq_P (DIR-)HAM-CYCLE

Pf. Given 3-SAT instance Φ in CNF: n variables x_i and k clauses C_i

Intuition: traverse row i from left to right \Leftrightarrow set variable $x_i =$ true

$3-SAT \leq_P (DIR-)HAM-CYCLE$

Claim. Φ is satisfiable iff. G has a Hamiltonian cycle

$3-SAT \leq_P (DIR-)HAM-CYCLE$

Claim. Φ is satisfiable iff. G has a Hamiltonian cycle

- (\Rightarrow) Suppose Φ has a satisfying assign. x^* . Define an H-Cycle in G:
 - if x_i^* = true, traverse row x_i from left to right
 - if x_i^* = false, traverse row x_i from right to left
 - For each clause C_i pick (only) one row i and take a detour

- In Γ , replace edges going/leaving C_j with the edge of the corresponding two nodes in some row. This gives a new cycle Γ' in $G \{C_1, C_2, ..., C_k\}$
- In Γ' , set $x_i = \text{true}$ if Γ' traverses row i left-to-right; set $x_i = \text{false}$ otherwise.