# INTRODUCCIÓN A LOS SISTEMAS OPERATIVOS

Karim Guevara Puente de la Vega 2017

# Objetivos

- Proporcionar una visión general de los principales componentes de los Sistemas Operativos.
- Describir los principales conceptos involucrados.
- Reconocer la estructura de un Sistema Operativo.

# Agenda

- Introducción
- Arquitectura de un computador
- Computadoras y software
- Abstracción y compartición de recursos
- Qué es un sistema operativo?
- Componentes de un SO
- Estrategias de SOs

### Introducción

- Un SO actúa como un intermediario entre el usuario y el hardware
- El propósito de un SO es proporcionar un entorno en el que un usuario pueda ejecutar programas.



### Introducción

- SO es como un director
  - Administrar los componentes individuales del computador
  - Abstraer los componentes del computador para el uso de los diversos programas
  - Claves
    - Eficiencia
    - Funcionalidad



# Arquitectura de un computador

La arquitectura de un computador está dividida en dos partes importantes:

### **Hardware**

Se refiere a todas las partes tangibles de un sistema informático.

### **Software**

Es el equipamiento lógico o soporte lógico de un sistema informático.

### Software

### **Software**

 Conjunto de instrucciones que le dicen al hardware que hacer.

# Lenguaje de programación

 Lenguaje que permite escribir un software.

## **Programa**

 Representación de algún software en un lenguaje de programación específico.

# Arquitectura de Software



# Lenguaje de Máquina

- Único lenguaje que entiende el hardware (máquina).
- Específico para cada hardware (procesador, dispositivos, etc.).
- Usa exclusivamente el sistema binario.
- Programa: almacenado en memoria, contiene instrucciones y datos.

# Lenguaje Ensamblador

- Usa mnemónicos (palabras cortas escritas con caracteres alfanuméricos), para codificar las operaciones.
- Es específico (aunque no único) para cada lenguaje de máquina.
- Estructura de una instrucción: MNEMONICO ARGUMENTO(S)
- Los datos y/o direcciones son codificados generalmente como números en sistema hexadecimal.

# Lenguaje de Alto Nivel

- Basado en una estructura gramatical que permite el anidamiento de instrucciones.
- Cuenta con un conjunto de palabras reservadas, para codificar estructuras de control y/o instrucciones.
- Permite el uso de símbolos aritméticos y/o relacionales.
- Permite al programador olvidarse del direccionamiento de memoria.
- En general: permite la realización de programas independiente del Hardware.

# Sistema Operativo

Software encargado de administrar los recursos del sistema.

 Ofrece un conjunto de primitivas a otro software, que le permiten a este ultimo ser tan independiente de la arquitectura de hardware como le es posible.

 Ofrece un conjunto de comandos a los humanos, para interactuar con la máquina.

 Puede ser escrito en lenguaje de alto nivel, en lenguaje ensamblador y/o en lenguaje máquina.

- Los SO varían enormemente en lo que se refiere a su configuración, dado que están organizados según muchas líneas diferentes.
- El hardware debe proporcionar los mecanismos apropiados para asegurar el correcto funcionamiento del sistema informático.
- El diseño de un nuevo SO es una tarea de gran envergadura.
- Dado que un SO es un software grande y complejo, debe crearse pieza por pieza.

# Computadoras y software

- El software se diversifica por su finalidad:
  - Software de aplicación
  - Software del sistema
    - Sistema Operativo



Corta imprime envía guarda

Software de Aplicación

Software de Sistemas

Hardware



malloc() open() fork()

Software de Aplicación

Software de Sistemas

Hardware



inicia-impresora lee-disco sigue-ratón

> Software de Aplicación

Software de Sistemas

Hardware

### Abstracción de recursos

- El software del sistema provee un modelo abstracto de cómo funcionan los componentes del hardware.
  - Simplifica la forma como el programador de aplicaciones controla el hardware.
  - También limita la flexibilidad de cierto hardware concreto.
- Abstracciones de nivel más bajo están el en SO, las de nivel alto están en el sw del sistema exterior al SO.
- Definir un conjunto de abstracciones que serán generalizadas para varios recursos, siendo intuitivas y adecuadas para más de un dominio.

# Compartición de recursos

- El SO conmuta el hardware entre los programas a una velocidad muy elevada:
  - Es aparente la ejecución simultanea de programas
- Computadores pueden soportar una auténtica operación simultánea en algunos casos.
- Programas concurrentes y paralelos, deben compartir el mismo computador.
  - Compartición transparente
  - Compartición explícita

# Máquinas abstractas y compartición transparente

- Máquina abstracta: es una simulación de un computador real.
  - Proceso: programa ejecutándose en una máquina abstracta.



- Compartición multiplexada en espacio y en tiempo
  - Multiprogramación

# Compartición explicita de recursos

- Permiten que los procesos usen recursos comunes con su propia estrategia
  - Aislamiento de recursos: obligación del SO de prevenir el acceso no autorizado a los recursos por una máquina abstracta, cuando están ya asignados.
    - P.e. aislamiento de la memoria, procesador
  - Compartición autorizada es deseable cuando los procesos deben cooperar entre sí, por tanto, deben de poder acceder al recurso compartido

# Qué es un Sistema Operativo?

- Según Tanenbaum: lo define según las funciones que cumple
  - Como maquina extendida.
    Usa hardware y periféricos de una forma sencilla mediante llamadas al Sistema
  - Como administrador de Recursos
    Administra todos los elementos de un Sistema complejo (Procesadores, memorias, temporizadores, discos, entre otros)
- Según Galvin, Silberschatz:
  - Es aquel programa que se ejecuta continuamente en la computadora (Kernel), siendo todo lo demás
    - programas del sistema y
    - programas de aplicación

# Según la definiciones anteriores

- Objetivos de un SO
  - Ejecutar programas del usuario y resolver los problemas del usuario de manera fácil y sencilla.
  - Hace que la computadora sea fácil y conveniente de usar.
  - Utiliza el hardware de la computadora de forma eficiente.



## Componentes de un SO

# Manejador de recursos

Administra y aloja los recursos.

# Programa de control

 Controla la ejecución de los programas de usuarios y las operaciones de los dispositivos de entrada/salida.

### Kernel

 Programa que corre en todo momento (todo lo demás es programa de aplicación).

# Por qué necesitamos al SO?

#### Usuario

 provee interfaces de usuario, interprete de comandos, estructura de directorios, programas de utilerías (compiladores, editores, filtros).

### Ambiente de programación

 provee un ambiente de alto nivel para manejo E/S, manejo de archivos, manejo de procesos.

#### Eficiencia

 remplaza al operador en la calendarización de jobs, almacenamiento archivos de E/S, manejo de concurrencia.

### El SO como interfaz

- Es una capa entre el usuario y el hardware.
- La interfaz ofrece una máquina extendida que es una abstracción de la realidad.



## El SO como interfaz



Interfaz hombre-máquina

Software de Aplicación

API

Software de Sistema (recursos abstractos)

Interfaz SO



Interfaz hardware-software



# Estrategias de Sistemas Operativos

- Toda la historia y desarrollo han dejado una amplia variedad de SO de los cuales no todos se conocen en forma exacta
  - 1940. Primeras Computadoras
  - 1950. Sistemas en Batch
  - 1960. Multiprogramacion y Timesharing.
  - 1970. Minicomputadoras y Microprocesadores.
  - Finales de 70's y 80's. Computadoras personales, Redes, Sistemas Distribuidos y Sistemas Paralelos, Sistemas de Tiempo Real.
  - 1990. WWW, Sistemas de Computo Mobil, PC's.

# Sistemas de procesamiento por lotes o tandas

- Sirve trabajos individuales de una colección de trabajos predefinidos.
- El SO especifica cada trabajo por medio de una lista de ordenes predefinidas: especificación de control de trabajos
- Usuarios no interactúan con un trabajo.
- Al completar el trabajo, se imprimen los resultados y se devuelve al usuario.



# Sistemas de tiempo compartido

- Varios usuarios interactivamente a la vez
- Usuario establece una sesión interactiva con el computador y proporciona operaciones, programas y datos.
- SO proporciona una respuesta adecuada en tiempo a los usuarios
- Gestión de los recursos y mecanismos de protección
  - Políticas de implementación para compartir equitativamente el procesador
- Sistema multitarea: sistema multiprogramado de tiempo compartido que soporta varios procesos por usuario.

# Computadores personales y estaciones de trabajo

- Máquina completa dedicada a un solo usuario
- Para el SO es más importante minimizar el tiempo de espera para el usuario en vez de maximizar la utilización del hardware.
- El computador puede realizar diferentes tareas concurrentemente.



### Sistemas embebidos

- Concebidos con la idea de controlar sistemas autónomos, carecen de usuario humano
- Funciona como un componente de otro sistema más complejo
- SO debe garantizar tiempos de respuesta para ciertas tareas
- Limitaciones en potencia de procesamiento y memoria.





# Sistemas de tiempo real

- Hay sistemas en los que el tiempo de respuesta es crítico
  - Control industrial
  - Control de guiado de misiles
  - Autómatas (air bag, inyección electrónica,...)
  - Asistencia médica

# Sistemas de tiempo real

"Es aquel en el que si el proceso adecuado no se realiza dentro de unos límites de tiempo muy estrictos y muy pequeños, el sistema falla".



# Computadores pequeños con capacidades de comunicación (SCC)

- Incluyen los computadores móviles y los inalámbricos
- Máquinas pequeñas, portátiles, diseñados para las comunicaciones
- SO con nuevas políticas de gestión de recursos, estrategias de gestión de energía, capacidad de almacenamiento limitado, etc.
  - P.e. Tablet, set-top boxes, PDA....
  - PalmOS
  - Windows CE



# Sistemas paralelos

Para ciertas situaciones se necesita mucha más velocidad



¡Este sistema no es 4 veces más rápido!

- Comunicación y sincronización
- Conflictos en accesos a recursos comunes
- No todo el código es paralelizable.

Sistemas Tolerantes a Fallos

### Sistemas distribuidos

- Para cuando se requiere mucha velocidad
  - Distribuir el cálculo
  - + Se comparte recursos
    - + Impresoras, archivos, dispositivos, CPUs,....
  - + Mayor velocidad
  - + Fiabilidad



### SO de Mainframe

- Tales maquinas se diferencian por su capacidad de E/S.
- Estan orientados al procesamiento de varios trabajos a la vez.



### SO de Servidor

- Se ejecutan en servidores.
- Dan servicio a multiples usuarios a travez de una red.



# SO Multiprocesador

- Conectar varias CPUs en un solo sistema.
- Son variaciones de los SO de servidor con funciones especiales.

