

ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΣΣΑΛΟΝΙΚΗΣ

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

School of Electrical and Computer Engineering Aristotle University of Thessaloniki, Greece

Setup & Motivation

 $\mathbf{p}(x, y, \theta)$ and estimate $\mathcal{S}_{V}(\hat{\mathbf{p}})$ scans, in the local co- $\hat{\mathbf{p}}(\hat{x}, \hat{y}, \hat{\theta})$. $\mathbf{p} - \hat{\mathbf{p}} = (\Delta \hat{\mathbf{l}}, \Delta \hat{\theta})$ ordinate frame of each sensor

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
- -environment repetitions
- -map distortions
- -sensor noise
- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- is computationally cheap at \sim O(sensor rays)

Experiments with real and synthetic data

In > 6000	Mean	Mean	Mean
	Position	Orientation	Execution
attempts	Error [m]	Error [rad]	Time [sec]
ALS [1]	0.500	1.956	6.15
CBGL	0.041	0.011	1.61

--- $\mathcal{H}_1(k=10)$

94.4%

99.1%

77.2%

50%

— ALS [1]

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots", $Journal\ of\ Field\ Robotics,\ 2023$

structures

uncertainties

Definition 1. The Cumulative Absolute Error per Ray (CAER) metric

scan rays—1

 $CAER(S_R, S_V) \triangleq \sum |S_R[n] - S_V[n]|$ (1)

