Week-3 Graded Assignment (Theory)

Week-3 Graded Assignment (Theory)

Problem 1

Question

Answer

Solution

Problem 2

Question

Answer

Solution

Problem 3

Question

Answer

Solution

Problem 4

Question

Answer

Solution

Problem 5

Question

Answer

Solution

Problem 6

Question

Answer

Solution

Problem 7

Problem /

Question

Answer Solution

Problem 8

Question

Answer

Solution

Question

What does the following code block print?

```
for i in 'We are in question one':
    if i == 'a' or i == 'e' or i == 'i' or i == 'o' or i == 'u':
        continue
    print(i, end = '')
```

- (a) W r n qstn n
- (b) Wrnqstnn
- (c) We are in question one
- (d) None of the above

Answer

(a)

Solution

The for loop checks whether each character is a vowel or not. If the character is a vowel (a', 'e', 'i', 'o', 'u'), the character is skipped and not printed on the console due to continue statement.

Question

Is it possible to get the below output without using any loop and without repeating the string Hello Python! in Python?

```
Hello Python!
```

- (a) True
- (b) False

Answer

(a) True

Solution

Multiplying a string with a positive number **n** is equivalent to the string repeated **n** times one after another.

```
1 | print(10*'Hello Python!\n')
```

Please find the below code for Question (3 & 4)

```
1  x = int(input())
2  i = 0
3  while x % 10**i != x:
4  i = i + 1
```

Question

What will the variable [i] represent at the end of execution where [x] is a positive integer?

- (a) Number of zeros in x
- (b) Number of ones in x
- (c) Number of digits in x
- (d) Number of non-zero digits

Answer

(c) Number of digits of x

Solution

The above code is equivalent to the below

```
1  x = int(input())
2  i = 0
3  j = x % 10**i
4  while j != x:
5  i = i + 1
6  print("i = ", i)
7  j = x % 10**i
```

The remainder of x is checked on each iteration. x is divided by 1, 10, 100,.. in each iteration, where the remainder of x will be last 1, 2, 3,.. digits respectively. When the divisor x is becomes greater than x, the remainder x % x 10**i will be same as x.

The variable, i counts the number of times the power of 10 is increased, which in other terms is the number of digits in x.

For example, x is 1987 then loop exits at i = 4 when the expression 1987 % 10**4 gives the value of x.

Question

What will be output if a negative value is given as input?

- (a) Number of digits in x
- (b) Number of digits in x -1
- (c) Number of digits in x + 1
- (d) Infinite loop

Answer

(d) Infinite loop

Solution

If x holds the negative integral value, the expression x % 10**i can be expressed as (-a * 10**i + b) % 10**i where a is x // 10**i and b is the remainder. The remainder b is always a positive integer and smaller than the absolute value of x. Hence, the remainder will never be equal to x, and the loop continues infinitely.

For example, if x is equal to -10 then x % 6 will be expressed as (-2 * 6 + 2) % 6 which gives the remainder as 2.

Question

How many times do the break statements get executed? It is a Numerical Type Question (NAT).

Answer

2

Solution

First break statement (in line-3) makes the program to exit from the inner loop regardless of how many iterations remaining. Hence, first break will exits from the inner for-loop and next break (in line-4) will make the program to exit from the outer for-loop. Thus, break is executed two times in the above code snippet.

Question

```
1 | for i in range(10, 0, 1):
2 | print(i)
```

A programmer wants to print a decreasing sequence. How many times does the print statement get executed? And why?

Select the most appropriate statement

- (a) One time because i takes only the value 10 and thereafter it will be decremented
- (b) One time because i takes only the value 9 and thereafter it will be decremented
- (c) print statement will not be executed due to invalid end points
- (d) print statement will not be executed due to incompatible step size

Answer

(d) print statement will not be executed due to incompatible increment

Solution

The start, end and step parameters in range() are 10, 0 and 1. The variable i starts from 10. It should be incremented at each iteration by 1 and should end at 0, which is not possible. The range(10, 0, 1) returns no values, so the loop does not run and therefore print statement will not be executed.

Question

```
1 | for i in range(1231, -12420, -7):
2 | print(i)
```

How many times the print statement get executed? It is a Numerical Type Question (NAT).

Answer

1951

Solution

The variable i starts at 1231 and ends at -12419. This can be counted using another variable say c, as shown in the below code:

The final printed value will give the number of times the print get executed.

An alternate approach will be to use math.ceil() function.

```
1 import math
2 print(math.ceil((-12420-1231)/-7))
```

Code-1

```
1 | x = 0

2 | x_ = 1

3 | for i in range(10):

4 | x, x_ = x_, x + x_

5 | print(x)
```

Code-2

```
1 | x = 0

2 | x_ = 1

3 | for i in range(10):

4 | x = x_

5 | x_ = x + x_

6 | print(x)
```

Question

Code-1 and Code-2 will return the same value.

- (a) True
- (b) False

Answer

(b) False

Solution

In Code-1 the value of x and x_{-} are assigned simultaneously from x_{-} and x_{-} x_{-} respectively. Thus, both variable store different values, the pattern leads to the Fibonacci series since the initial value are 0 and 1 for x_{-} and x_{-} .

In Code-2 the value of x_{-} is assigned to x_{-} and x_{-} is assigned with the value of expression x_{-} which is nothing but the twice the value of x_{-} . Hence, it prints the sequence of value powers of 2.