Трубицын Юрий Алексеевич

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. М.В. ЛОМОНОСОВА ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА МАТЕМАТИЧЕСКОЙ КИБЕРНЕТИКИ

Москва, 2017

Постановка задачи

- Выделить набор признаков СФЭ, которые будут использоваться для решения задачи распознавания, а также реализовать и протестировать алгоритмы вычисления признаков СФЭ;
- 2. Построить регрессионную модель;
- 3. Протестировать построенную модель на примере класса мультиплексорных функций.

Обозначим $X_{\Sigma} = \{x_1,\ldots,x_n\}$ — множество входов схемы Σ , $Z_{\Sigma} = \{z_1,\ldots,z_m\}$ — множество выходов схемы Σ . Введем также $X^* = \{x_1^*,\ldots,x_n^*,\ldots\}$ — счетный упорядоченный алфавит заходов удаленных контактов, $Z^* = \{z_1^*,\ldots,z_n^*,\ldots\}$ — счетный упорядоченный алфавит исходов удаленных контактов.

Определение

Частично заданной $C\Phi \ni$ (замаскированной $C\Phi \ni$) Σ будем называть такую схему Σ' , которая получается путем удаления одного или нескольких ребер из исходной схемы Σ . При этом вершины, инцидентные удаленным ребрам помечаются некоторой переменной из множеств X^* и Z^* в зависимости от того, было ли ребро заходящим или исходящим.

Определение

Одновыходной $C\Phi \ni$ будем называть такую $C\Phi \ni$, у которой множество выходных вершин содержит всего одну вершину.

В общем виде восстановить функциональность частично заданной СФЭ невозможно, так как мы не знаем распределния на пространстве всевозможных восстановлений. Поэтому мы априорно предполагаем, что для сокрытия использовался определенный алгоритм и возникает задача классификации.

Таким образом, формальная постановка задачи звучит так: реализовать алгоритмы, на вход которых подается частично заданная СФЭ, а выходом алгоритма должно быть решение о принадлежности объекта заданному классу.

Для тестирования алгоритма в качестве идентифицируемого класса взят класс схем, реализующих мультиплексорные функции.

Были выделены следующие признаки:

- доля каждого возможного функционального элемента;
- максимальная полустепень исхода вершин, нормированная на количество контактов в СФЭ;
- 🚳 максимальная полустепень захода вершин;
- минимальная полустепень исхода/захода вершин;
- средняя полустепень исхода/захода вершин;
- средняя глубина, нормированная на максимальную глубину;
- среднее количество присоединенных переменных, нормированное на общее количество переменных;

Определение

Регрессионная модель $f(\mathbf{w}, \mathbf{x})$ – это параметрическое семейство функций, задающее отображение

$$f: W \times X \longrightarrow Y,$$
 (1)

где $\mathbf{w} \in W$ – пространтсво параметров, $\mathbf{x} \in X$ – пространство свободных переменных, Y – пространство зависимых переменных.

Модель является настроенной (обученной) когда зафиксированы её параметры, то есть модель задаёт отображение

$$f: X \longrightarrow Y$$
 (2)

для фиксированного значения $ar{\mathbf{w}}$.

Пусть у нас множество X представлено пространством всевозможных векторов, размерность которых равна количеству признаков схем, выделенных для решения задачи распознавания.

Множество $Y = \{0, 1\}.$

Если настроенная регрессионная модель возвращает 0, значит мы считаем, что некоторая СФЭ, набор признаков которой подавался на вход модели, не является мультиплексором. В случае, когда регрессионная модель возвращает 1, мы считаем, что некоторая СФЭ, набор признаков которой подавался на вход модели, наоборот, является мультиплексором.

Использовались следующие алгоритмы машинного обучения:

- метод опорных векторов (поиск разделяющей гиперплоскости с максимальным зазором в этом пространстве);
- метод ближайших соседей (простейший метрический классификатор, основанный на оценивании сходства объектов; классифицируемый объект относится к тому классу, которому принадлежат ближайшие к нему объекты обучающей выборки.);
- случайный лес (алгоритм машинного обучения, заключающийся в использовании комитета (ансамбля) решающих деревьев);
- логистическая регрессия (метод построения линейного классификатора, позволяющий оценивать апостериорные вероятности принадлежности объектов классам).

Тестирование построенной модели проводилось на классе мультиплексорных функций.

Обучающая выборка состояла из схем следующего вида:

- Мультиплексоров;
- Схем, «близких» к мультиплексорам (это мультиплексоры, на некоторые входы которых подаются мультиплексоры порядка 2, 3 или 4);
- Случайные схемы, не являющиеся мультиплексорами.

Размер обучающей выборки равен примерно 600 схемам. Количество немультиплексорных и мультиплексорных схем равное. Для проверки точности полученных моделей использовался скользящий контроль. Скользящий контроль работает следующим образом:

- Фиксируется некоторое множество разбиений исходной выборки;
- Каждое из разбиений делится на две подвыборки: обучающую и контрольную;
- Для каждого разбиения выполняется настройка алгоритма по обучающей подвыборке, затем оценивается его средняя ошибка на объектах контрольной подвыборки;
- Оценкой скользящего контроля называется средняя по всем разбиениям величина ошибки на контрольных подвыборках.

На рис. 1 показаны результаты скользящего контроля.

Рис. 1: 1 - случайный лес, 2 - метод ближайших соседей, 3 - логистическая регрессия, 4 - метод опорных векторов.

Полученные результаты

Класс	Процент уда-	Случайный	Логистическая
	ленных про-	лес	регрессия
	водов		
	5%	0.997996	1.0
Мультиплексоры	10%	0.997996	1.0
	15%	0.997996	1.0
	20%	0.998024	1.0
	25%	0.997996	1.0
	30%	0.998004	1.0
	35%	0.998008	1.0
	40%	0.998016	1.0
	45%	0.998028	1.0
	50%	0.998043	1.0
	55%	0.998047	1.0
	60%	0.998047	0.998054
	65%	0.998058	0.997665
	70%	0.998058	0.997005
	75%	0.998095	0.996076
Не мультиплек-	-	0.994616	0.913862
соры			

Полученные результаты

- Выделен набор признаков СФЭ, которые использовались для решения задачи распознавания, а также реализованы и протестированы алгоритмы вычисления признаков СФЭ;
- 2. Построена регрессионная модель;
- 3. Построенная модель протестирована на примере класса мультиплексорных функций.

Трубицын Юрий Алексеевич

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. М.В. ЛОМОНОСОВА ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА МАТЕМАТИЧЕСКОЙ КИБЕРНЕТИКИ

Москва, 2017

