KYOTO UNIVERSITY

統計的モデリング基礎⑩ ~ベイズモデリング~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

目次:

ベイズモデリング

- ■ベイズ統計の基礎
 - ベイズの公式、事前分布、事後分布
 - 事後分布による意思決定
 - ナイーブベイズ予測
- ベイズモデリング
 - 離散分布のベイズ推定
 - 階層ベイズモデリング
 - 経験ベイズ法

KYOTO UNIVERSITY

4

ベイズ統計:

ベイズの公式によって事前知識と証拠を組み合わせて推論

- ■事前知識と観測された証拠から確率を更新する
 - 事前知識:事前分布によって表される、自分が予めもっている、 ある事象がどの程度起こりそうかという信念
- ■更新はベイズの公式に基づいて行われる

ベイズ統計で中心的役割を果たすベイズの公式: 条件付確率の条件部と帰結部を入れ替える

- ■条件付確率P(rain | cat):猫が顔を洗うのを目撃したときに、 明日雨が降る確率
 - $P(\text{rain} \mid \text{cat}) = \frac{P(\text{rain, cat})}{P(\text{cat})}$

当該日の前日に猫が顔を洗っている確率

猫がどうとか関係なく、 そもそも雨が降る確率 (事前分布)

 $P(\text{rain} \mid \text{cat}) = \frac{P(\text{cat} \mid \text{rain})P(\text{rain})}{P(\text{cat})}$ $\frac{P(\text{cat} \mid \text{rain})P(\text{rain})}{P(\text{cat})}$ $\frac{\text{philips of the principles of the principles}}{\text{princips of the principles}}$

KVOTO UNIVERSITY

例:

ベイズの公式に基づく事後確率計算

- 事前確率: これまでの経験から明日雨が降る確率は20%
- 雨がふる日の前日に猫が顔を洗っている確率は80%

•
$$P(\text{rain} \mid \text{cat}) = \frac{P(\text{cat}|\text{rain})P(\text{rain})}{P(\text{cat})} = \frac{0.8 \times 0.2}{P(\text{cat})} = \frac{0.16}{P(\text{cat})}$$
がわかる

■ 一方、これまでの経験から雨が降らない確率は80%であることと、 雨が降らない日の前日に猫が顔を洗っている確率は50%

$$P(\neg \text{rain} \mid \text{cat}) = \frac{P(\text{cat}|\neg \text{rain})P(\neg \text{rain})}{P(\text{cat})} = \frac{0.5 \times 0.8}{P(\text{cat})} = \frac{0.40}{P(\text{cat})}$$

■ 両者より $P(\text{rain} \mid \text{cat}) = \frac{0.16}{0.16 + 0.40} = 0.29$ (29%) となる

9ポイント増えたよ!

ベイズ決定:

事後分布をもちいた意思決定

■予測×効用によって意思決定

	効用	ビールの仕入れ量	
XIIH		多め	少な目
実際の天候	☀晴れ	+50	0
	鈴雨	-100	-10

- ■猫が顔を洗った場合の期待効用 U
 - U(多めに仕入れ) = $-100 \times P(\text{rain} \mid \text{cat}) + 50 \times P(\neg\text{rain} \mid \text{cat}) = -100 \times 0.29 + 50 \times 0.71 = 6.5$
 - U(少な目に仕入れ $) = -10 \times P($ rain | cat $) + 0 \times P($ ¬rain | cat $) = -10 \times 0.29 + 0 \times 0.71 = -2.9$
 - 多めに仕入れたほうが期待効用が高い

KYOTO UNIVERSITY

ナイーブベイズ予測:

テキスト分類の初等的手法

- ■ある文書が特定のカテゴリに属する確率
 - Webページをみて、そのトピックが経済なのか、スポーツなのか、政治なのか、芸能なのか、…を判別する
 - つまり、事後確率P(topic | text)を知りたい
- ■ベイズの公式により、事後確率は:

$$P(\text{topic} \mid \text{text}) = \frac{P(\text{text} \mid \text{topic})P(\text{topic})}{P(\text{text})}$$

- P(topic): そのトピックが観測される確率
- P(text | topic): あるトピックが決まった時に、そのWebページ (のようなテキスト) がつくられる確率

KYOTO UNIVERSITY

ナイーブベイズ予測:

テキストの生成確率が必要

■ テキストが与えられたときのトピックの事後確率:

$$P(\text{topic} \mid \text{text}) = \frac{P(\text{text} \mid \text{topic})P(\text{topic})}{P(\text{text})}$$

- P(topic) = そのトピックの文書数 全文書数
- *P*(text | topic): これをどのように考えるかは自明ではない
 - ◆トピックが決まった時の文書生成モデルが必要
 - ◆マルコフモデル?

テキストの発生確率モデル: 単語袋(bag-of-words)モデル

■文書 x を、出現する単語によって表現

単純化のための仮定:各単語の発生は独立とするP(text | topic)

$$= P(w_1 \mid \text{topic})^{n_1} P(w_2 \mid \text{topic})^{n_2} \cdots P(w_D \mid \text{topic})^{n_D}$$
辞書に含まれるある単語

Kyoto University

ナイーブベイズ予測:

単語袋モデルに基づくテキストの発生確率の計算

$$P(\text{topic} \mid \text{text}) = \frac{P(\text{text} \mid \text{topic})P(\text{topic})}{P(\text{text})}$$

- P(topic) = そのトピックの文書数 全文書数
- $P(\text{text} \mid \text{topic}) =$ $P(w_1 \mid \text{topic})^{n_1} P(w_2 \mid \text{topic})^{n_2} \cdots P(w_D \mid \text{topic})^{n_D}$
 - $P(w_1 \mid \text{topic}) = \frac{\text{そのトピックの文書中で}_{w_1}$ が現れた回数 で計算 そのトピックの文書中の 総単語出現数

(最尤推定)

信念の逐次更新:

証拠が得られるごとに信念が更新される

- ベイズの定理は証拠をもとに信念を更新する
- 証拠が新しく得られるたびに信念が更新される: $P(\text{rain}) \rightarrow P(\text{rain} \mid \text{cat}) \rightarrow P(\text{rain} \mid \text{cat}, \text{dragonfly}) \rightarrow \cdots$
 - 証拠間が独立であるならば証拠の得られる順番は関係ない
 - 他の例:テキスト分類で、一単語観測されるごとに予測を更新

Kyoto University

ベイズ的統計モデリングの考え方:

最尤推定の尤度の代わりに事後分布を考える

- ■ベイズ統計では事後分布P(パラメータ | データ)を考える
 - 事後分布ではパラメータを確率変数と考える
- ■事後分布:

$$P(パラメータ \mid \vec{\tau} - \mathcal{Y}) = \frac{P(\vec{\tau} - \mathcal{Y} \mid \mathcal{N} \neg \mathcal{Y} - \mathcal{Y}) P(\mathcal{N} \neg \mathcal{Y} - \mathcal{Y})}{P(\vec{\tau} - \mathcal{Y})}$$

■対数事後分布:

KYOTO UNIVERSITY

離散分布のベイズ推定: ディリクレ分布を事前分布とする

•離散分布 $\mathbf{p} = (p_1, p_2, ..., p_k), \sum_{i=1}^k p_i = 1, p_i \geq 0$ を考える

• データ: $\mathbf{n} = (n_1, n_2, \dots, n_k)$

n_i: 各シンボルj ∈ {1,2,...,k}の観測数

- 事後分布 $P(\mathbf{p} \mid \mathbf{n}) = \frac{P(\mathbf{n} \mid \mathbf{p})P(\mathbf{p})}{P(\mathbf{n})} = \frac{P(\mathbf{n} \mid \mathbf{p})P(\mathbf{p})}{\int_{\mathbf{p}} P(\mathbf{n} \mid \mathbf{p})P(\mathbf{p})d\mathbf{p}}$
- 事前分布P(p)はディリクレ分布とする
 - 離散分布の共役事前分布
 - ◆共役事前分布:事後分布と事前分布の形が同じになるような 事前分布

13 Kyoto University

ディリクレ分布:

ディリクレ分布を事前分布とする

• ディリクレ分布:離散分布 $\mathbf{p}=(p_1,p_2,...,p_k),p_j\geq 0, \sum_{j=1}^k p_j=1$ を生成する確率モデル π ンマ関数

$$P(p_1, p_2, \dots, p_k) = \frac{\Gamma(\sum_{j=1}^k \alpha_k)}{\prod_{j=1}^k \Gamma(\alpha_j)} \prod_{j=1}^k (p_j)^{\alpha_j - 1}$$

• $\alpha = (\alpha_1, ..., \alpha_k) \ge 0$ は(超)パラメータ

•
$$\int_{\mathbf{p}} \prod_{j=1}^k (p_j)^{\alpha_j - 1} d\mathbf{p} = \frac{\prod_{j=1}^k \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^k \alpha_k)}$$

//en.wikipedia.org/wiki/birichiet_distribution#/media/File.togbirichietbehsity-alpha_0.5_to_alpha_2.0.gl

14

KYOTO UNIVERSIT

事後分布の計算:

事後分布もディリクレ分布になる

■ 事後分布: $P(\mathbf{p} \mid \mathbf{n}) = \frac{P(\mathbf{n} \mid \mathbf{p})P(\mathbf{p})}{\int_{\mathbf{p}} P(\mathbf{n} \mid \mathbf{p})P(\mathbf{p})d\mathbf{p}}$

•
$$P(\mathbf{n} \mid \mathbf{p})P(\mathbf{p}) = \prod_{j=1}^{k} (p_j)^{n_j} \frac{\Gamma(\sum_{j=1}^{k} \alpha_k)}{\prod_{j=1}^{k} \Gamma(\alpha_j)} \prod_{j=1}^{k} (p_j)^{\alpha_j - 1}$$

事前分布がディリクレ分布

$$P(\mathbf{p} \mid \mathbf{n}) = \frac{\prod_{j=1}^{k} (p_j)^{n_j + \alpha_j - 1}}{\int_{\mathbf{p}} \prod_{j=1}^{k} (p_j)^{n_j + \alpha_j - 1} d\mathbf{p}}$$

$$= \frac{\Gamma(\sum_{j=1}^{k} n_j + \alpha_j)}{\prod_{j=1}^{k} \Gamma(n_j + \alpha_j)} \prod_{j=1}^{k} (p_j)^{n_j + \alpha_j - 1}$$
事後分布もディリクレ分

15 Kyoto University

ベイズ予測分布:

推定のばらつきを考慮した予測

- MAP推定では事後分布が最大となるパラメータを点推定する $\hat{\mathbf{p}} = \operatorname{argmax}_{\mathbf{n}} P(\mathbf{p} \mid \mathbf{n})$
 - 得られたパラメータを次のシンボルxの予測に用いる $P(x | \hat{\mathbf{p}}) = \hat{p}_x, x \in \{1, 2, ..., k\}$
- ■ベイズ予測では事後分布そのものを用いて予測する

$$P(x \mid \mathbf{n}) = \int_{\mathbf{p}} P(x \mid \mathbf{p}) P(\mathbf{p} \mid \mathbf{n}) d\mathbf{p}$$

- あらゆるパラメータのモデルの予測を事後確率で重みづけて予測
- 最適化問題を解いてパラメータを点推定するのでなく、全部使う

離散分布のベイズ予測分布:

やはり加算平滑化になる

$$P(x \mid \mathbf{n}) = \int_{\mathbf{p}} P(x \mid \mathbf{p}) P(\mathbf{p} \mid \mathbf{n}) d\mathbf{p}$$

$$= \int_{\mathbf{p}} p_x \frac{\Gamma(\sum_{j=1}^k n_j + \alpha_j)}{\prod_{j=1}^k \Gamma(n_j + \alpha_j)} \prod_{j=1}^k (p_j)^{n_j + \alpha_j - 1} d\mathbf{p}$$

$$= \frac{\Gamma(\sum_{j=1}^k n_j + \alpha_j)}{\prod_{j=1}^k \Gamma(n_j + \alpha_j)} \int_{\mathbf{p}} (p_x)^{n_x + 1 + \alpha_x - 1} \prod_{j \neq x} (p_j)^{n_j + \alpha_j - 1} d\mathbf{p}$$

$$= \frac{\Gamma(\sum_{j=1}^k n_j + \alpha_j)}{\prod_{j=1}^k \Gamma(n_j + \alpha_j)} \frac{\Gamma(n_x + 1 + \alpha_x) \prod_{j \neq x} \Gamma(n_j + \alpha_j)}{\Gamma(1 + \sum_{j=1}^k n_j + \alpha_j)}$$

$$= \frac{n_x + \alpha_x}{\sum_{j=1}^k n_j + \alpha_j}$$

$$\Gamma(x + 1) = x\Gamma(x)$$

Kyoto University

階層ベイズモデル:

事前分布の事前分布

- 事前分布 $P(\mathbf{p} \mid \alpha)$ もパラメータ(超パラメータ) α をもつ \rightarrow どのように決めたらよいか
- 超パラメータの事前分布P(α)を考える
 - あるいは、データにあわせてチューニングする (後述)
- 事前分布のパラメータもまた事前分布をもつとすると、 モデルが階層化される

経験ベイズ推定:

周辺尤度の最大化

- 周辺尤度: $P(\mathbf{n} \mid \boldsymbol{\alpha}) = \int_{\mathbf{p}} P(\mathbf{n} \mid \mathbf{p}) P(\mathbf{p} \mid \boldsymbol{\alpha}) d\mathbf{p}$
- 周辺尤度を最大化する超パラメータ α を求める: $\hat{\alpha} = \operatorname{argmax}_{\alpha} P(\mathbf{n} \mid \alpha)$
- ■離散分布の周辺尤度(数値的に最大化する):

$$P(\mathbf{n} \mid \boldsymbol{\alpha}) = \int_{\mathbf{p}} \prod_{j=1}^{k} (p_j)^{n_j} \frac{\Gamma(\sum_{j=1}^{k} \alpha_k)}{\prod_{j=1}^{k} \Gamma(\alpha_j)} \prod_{j=1}^{k} (p_j)^{\alpha_j - 1} d\mathbf{p}$$

$$= \frac{\Gamma(\sum_{j=1}^{k} \alpha_k)}{\prod_{j=1}^{k} \Gamma(\alpha_j)} \int_{\mathbf{p}} \prod_{j=1}^{k} (p_j)^{n_j + \alpha_j - 1} d\mathbf{p} = \frac{\Gamma(\sum_{j=1}^{k} \alpha_k)}{\prod_{j=1}^{k} \Gamma(\alpha_j)} \frac{\prod_{j=1}^{k} \Gamma(n_j + \alpha_j)}{\Gamma(\sum_{j=1}^{k} n_j + \alpha_j)}$$