De este modo, todas las soluciones al sistema homogéneo están dadas por $\left(-\frac{1}{5}z, -\frac{7}{5}z, z\right)$. Haciendo z=t se obtienen las ecuaciones paramétricas de la recta L en \mathbb{R}^3 : $x=-\frac{1}{5}t$, $y=-\frac{7}{5}t$, z=t. Como se observó en el ejemplo 5.2.4, el conjunto de vectores sobre L constituye un subespacio de \mathbb{R}^3 .

Observación. No es necesariamente cierto que si H_1 y H_2 son subespacios de V, $H_1 \cup H_2$ es un subespacio de V (puede o no serlo). Por ejemplo, $H_1 = \{(x,y): y = 2x\}$ y $\{(x,y): y = 3x\}$ son subespacios de \mathbb{R}^2 , pero $H_1 \cup H_2$ no es un subespacio. Para ver esto, observe que $(1,2) \in H_1$ y $(1,3) \in H_2$, de manera que tanto (1,2) como (1,3) están en $H_1 \cup H_2$. Pero $(1,2) + (1,3) = (2,5) \notin H_1 \cup H_2$ porque $(2,5) \notin H_1$ y $(2,5) \in H_2$. Así, $H_1 \cup H_2$ no es cerrado bajo la suma y por lo tanto no es un subespacio.

RESUMEN 5.2

- Un subespacio H de un espacio vectorial V es un subconjunto de V que es en sí un espacio vectorial.
- Un subespacio no vacío H de un espacio vectorial V es un subespacio de V si las dos siguientes reglas se cumplen:
 - i) Si $x \in H$ y $y \in H$, entonces $x + y \in H$.
 - ii) Si $x \in H$, entonces $\alpha x \in H$ para cada escalar α .
- Un subespacio propio de un espacio vectorial V es un subespacio de V diferente de [0] y de V.

 $H \cup K$ es un subespacio de \mathbb{R}^3 .

AUTOEVALUACIÓN 5.2

De las siguientes aseveraciones, evalúe si son falsas o verdaderas.

- I) Conjunto de vectores de la forma $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ es un subespacio de \mathbb{R}^3 .
- II) El conjunto de vectores de la forma $\begin{pmatrix} x \\ 0 \\ z \end{pmatrix}$ es un subespacio de \mathbb{R}^3 .
- III) El conjunto de matrices diagonales de 3×3 es un subespacio de \mathbb{M}_{33} .
- IV) El conjunto de matrices triangulares superiores de 3×3 es un subespacio de \mathbb{M}_{33} .
- V) El conjunto de matrices triangulares de 3×3 es un subespacio de \mathbb{M}_{33} .
- VI) Sea H un subespacio de \mathbb{M}_{22} . Entonces $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ debe estar en H.
- VII) Sea $H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x + 3y z = 0 \right\}$ y $K = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x 2y + 5z = 0 \right\}$. Entonces