

PATENTS
112055-0062U
17732-66660.00

IN THE CLAIMS:

- 1 1. (currently amended) An RFID tag antenna system suitable for receiving an RF
2 signal, the RFID tag antenna system comprising:
3 a planar two arm spiral structure arranged to receive the RF signal, the two arms
4 electrically isolated from each other but arranged defining a gap between the two arms,
5 the planar two arm spiral structure having a frequency response from about 870
6 MHz to 920 MHz,
7 an electronic circuit electrically connected to the arms straddling the gap and ar-
8 ranged to receive the RF signal from the planar two arm spiral antenna, and
9 means for sensing the receipt of the RF signal by the electronic circuit.
- 1 2.(original) The RFID tag antenna system of claim 1 wherein the each arm of the pla-
2 nar two arm spiral structure is identical to the other except one is rotated the plane by 180
3 degrees from the other.
- 1 3. (currently amended) The RFID tag antenna system of claim 1 wherein a center
2 is defined at the middle of the gap, and wherein each arm of the planar two spiral struc-
3 ture defines and an inner radial spiral and an outer radial spiral arranged so that the width
4 of each arm grows as the arms radiate farther from the center.
- 1 4. (currently amended) The RFID -RFID tag antenna system of claim 3 wherein the
2 inner and outer radial spirals adhere to a logarithmic function.
- 1 5. (original) The RFID tag antenna system as defined in claim 3 wherein at any point
2 equidistant from the center the widths of each arm are equal to each other and equal to
3 the spaces between each arm.

PATENTS
112055-0062U
17732-66660.00

- 1 6. (original) The RFID tag antenna system of claim 1 wherein a lateral dimensions of
2 the planar two spiral arm structure are less than about five inches by less than about two
3 inches.
- 1 7. (original) The RFID tag antenna system of claim 1 wherein a lateral dimensions of
2 the planar two spiral arm structure are less than about two inches by less than about one
3 inches.
- 1 8.(original) The RFID tag antenna system of claim 1 wherein each arm of the planar
2 two arm spiral structure comprises a thin conductive layer built onto a substrate.
- 1 9. (currently amended) The RFID tag antenna system of claim 1 wherein the elec-
2 tronic circuit comprises:
3 a network that matches the spiral antenna electrical impedance and that receives
4 the RF signal from the planar two arm spiral antenna and provides an RF output signal,
5 and
6 an input circuit that receives and rectifies the output RF signal forming a DC sig-
7 nal, the input circuit including a capacitor ~~the~~that stores energy from the DC signal.
- 1 10. (original) The RFID tag antenna system of claim 9 wherein each arm of the planar
2 two arm spiral structure comprises a thin conductive layer built onto a substrate, and fur-
3 ther wherein the matching and the input circuit is built onto the substrate.
- 1 11. (original) The RFID tag antenna system of claim 10 further comprising a second
2 substrate is mounted to the first substrate where the input circuitry built onto the second
3 substrate and electrical connections are made from the matching network and the input
4 circuit.

PATENTS
112055-0062U
17732-66660.00

- 1 12. (currently amended) A method for receiving an RF signal from an RF signal
- 2 generated as part of an RFID tag system, the method comprising the steps of:
 - 3 arranging a planar two arm spiral structure to receive the RF signal,
 - 4 defining a gap between the two electrically isolated arms,
 - 5 wherein the planar two arm spiral structure has a frequency response from about
 - 6 870 MHz to 920 MHz,
 - 7 electrically connecting an electronic circuit straddling the gap and arranged to re-
 - 8 ceive the RF signal from the planar two arm spiral antenna, and
 - 9 sensing the receipt of the RF signal by the electronic circuit.
- 1 13. (original) The method of claim 12 further comprising the steps of:
 - 2 forming each arm of the planar two arm spiral structure identically to the other
 - 3 except, and
 - 4 rotating one arm in the plane by 180 degrees from the other.
- 1 14. (original) The method of claim 12 further comprising the steps of:
 - 2 defining a center at the middle of the gap, and
 - 3 forming each arm of the planar two spiral structure with an inner radial spiral and
 - 4 an outer radial spiral, and
 - 5 arranging the width of each arm to grow as the arms radiate farther from the cen-
 - 6 ter.
- 1 15. (original) The method of claim 14 wherein the step of forming each arm comprises
- 2 the step of using a logarithmic function to form inner and outer radial spirals.
- 1 16. (original) The method of claim 14 further comprising the step of forming each arm
- 2 such that at any point equidistant from the center the widths of each arm are equal to each
- 3 other and equal to the spaces between each arm.

PATENTS
112055-0062U
17732-66660.00

1 17. (original) The method of claim 12 further comprising the step of forming a lateral
2 dimensions of the planar two spiral arm structure that are less than about five inches by
3 less than about two inches.

1 18. (original) The method of claim 12 further comprising the step of forming a lateral
2 dimensions of the planar two spiral arm structure that are less than about two inches by
3 less than about one inches.

1 19. (original) The method of claim 12 further comprising the step of forming each arm
2 of the planar two arm spiral structure with a thin conductive layer built onto a substrate.
3

1 20. (original) The method of claim 12 further comprising the steps of:
2 providing a network that matches the spiral antenna electrical impedance and that
3 receives the RF signal from the planar two arm spiral antenna and provides an RF output
4 signal, and

5 providing an input circuit that receives and rectifies the RF output signal forming
6 a DC signal, the input circuit including a capacitor that stores energy from the DC signal.

1 21. (original) The method claim 20 further comprising the steps of:
2 building each arm of the planar two arm spiral structure with a thin conductive
3 layer built onto a substrate, and
4 building the network and the input circuit onto the substrate.

22. (original) The method claim 21 further comprising the steps of:
mounting the input circuitry built onto a second substrate, and
making electrical connections from the matching network to the input circuit.