Parton Distribution Functions

arXiv:hep-lat/9609018

Youngwan Kim

Seoul National University SNUCMS arXiv Seminar

February 19, 2021

Outline

- Introduction to PDFs
 Intuition to PDFs
 Factorization
 Significance of PDFs
- 2. Technical Definition of PDFs
 Technical Definition of PDFs
 Gauge Invariance
 Renormalization

Intution to PDFs

Figure: Hadron A + Hadron B \rightarrow 2 partons

Consider a collision of two hadrons A and B...

- parton a from hadron A with ξ_A fraction of its momentum
- parton b from hadron B with ξ_B fraction of its momentum
- $d\hat{\sigma}$ parton level cross section

One can describe $d\sigma$ as a product of these three factors...

Factorization

Hadron Scattering Cross Section

$$\frac{d\sigma}{dp_T} \sim \sum_{a,b} \int d\xi_A f_{a/A}(\xi_A,\mu) \int d\xi_B f_{b/B}(\xi_B,\mu) \frac{d\hat{\sigma}}{dp_T}$$

Parton Level Cross Section

$$\frac{d\hat{\sigma}}{dp_T} \sim \sum_{N} \left(\frac{\alpha_S(\mu)}{\pi}\right)^N H_N\left(\xi_A, \xi_B, p_T; a, b, \mu\right)$$

 \bullet The coefficients H_N are calculable via pQCD ; regard factorization as an established theorem of QCD

Factorization

Another parameter μ ? : there is more to the equation than just a model

- ullet Has dimension of mass o renormalization of $lpha_S(\mu)$ and $f_{a/A}(\xi_A)$
- $\mathrm{d}\hat{\sigma}/\,\mathrm{d}p_T$ is calculated straightforwardly at Born level
 - ▶ Divergences appear starting from NLO and beyond, calculation gets tricky
 - lacktriangle Such divergences are removed, and in their place dependence of the scale μ appears.

Significance of PDFs

Knowledge of PDFs is necessary for the description of hard processes,

Parton-Parton Cross Section (ex. LHC, Fermilab)

$$d\sigma \sim \sum_{a,b} \int d\xi_A f_{a/A}(\xi_A,\mu) \int d\xi_B f_{b/B}(\xi_B,\mu) d\hat{\sigma}$$

DIS Cross Section (ex. HERA)

$$d\sigma \sim \sum \int d\xi_A f_{a/A}(\xi_A, \mu) d\hat{\sigma}$$

Obvious as no prediction is available without any knowledge of PDFs.

Significance of PDFs

For both expressions of $\mathrm{d}\sigma$ it shows that in high energy, short distance collisions...

- a hard scattering probes the system quickly
- strong binding forces act slowly
- → One needs to know probabilities to find partons in a **fast moving** hadron as seen by an approximately instantaneous probe
- → PDFs should provide a **relativistic** view of partons

• Coordinates : $x^{\pm} = (x^0 \pm x^3)/\sqrt{2}$, $P^{\pm} = (P^0 \pm P^3)/\sqrt{2}$, $v = (v^+, v^-, \mathbf{v_T})$

Figure: partons in a fast moving proton

- $ightharpoonup x^+$ can be interpreted as time
- ightharpoonup partons in a proton with a small P^- , big P^+ and $\vec{P_T}=0$, move roughly parallel to the x^+ axis.
- ▶ PDFs are to be defined via null plane field theory, a field theory quantized on planes of equal x⁺.
- $P^{\mu}x_{\mu} = P^{+}x^{-} + P^{-}x^{+} \mathbf{P_{T}} \cdot \mathbf{x_{T}}$

We want to define $f_{i/A}(\xi,\mu)$, the probability density for ...

- finding a parton of flavor i (quark, antiquark, gluon ...)
- which carries a fraction ξ of P^+
- in the hadron A with momentum P.
- \rightarrow Approach by defining a **density operator** using creation, annihilation operators of null plane field theory

Consider $b(\xi P^+, \mathbf{k_T}, s, c; i)$ which annihilates (b^{\dagger} creates)

- ullet a quark with flavor i, having helicity s and color c
- ullet carrying a fraction ξ of P^+ of the proton with transverse momentum ${f k_T}$
- $b(\xi P^+, \mathbf{k_T}, s, c; i) |0\rangle = 0$ for the vacuum state $|0\rangle$
- normalized by the following anticommutation relation :

Anticommutation relation of b,b^{\dagger}

$$\{b(\xi'P^+, \mathbf{k_T'}, s', c'; i), b(\xi P^+, \mathbf{k_T}, s, c; i)\} = (2\pi)^3 2\xi P^+ \delta(\xi'P^+ - \xi P^+) \delta(\mathbf{k_T'} - \mathbf{k_T}) \delta_{s',s} \delta_{c',c}$$

With b and b^{\dagger} , one could define $\rho(\xi P^+, \mathbf{k_T}; i)$ which **counts the number of quarks** in a region of ξ and $\mathbf{k_T}$

Definition of ρ

$$\rho(\xi P^+, \mathbf{k_T}; i) = \frac{1}{(2\pi)^3 2\xi} \sum_{s,c} b^{\dagger}(\xi P^+, \mathbf{k_T}, s, c; i) b(\xi P^+, \mathbf{k_T}, s, c; i)$$

If $|\Psi\rangle$ is obtained by applying b to the vacuum, ρ counts the number $N(\mathcal{V})$ of quarks in the momentum-space volume \mathcal{V} when integrated,

$$\int_{\mathcal{V}} d\xi \, d\mathbf{k_T} \rho(\xi P^+, \mathbf{k_T}; i) \, |\Psi\rangle = N(\mathcal{V}) \, |\Psi\rangle$$

Here we can take a matrix element of ρ in a proton state to define $f_{i/A}(\xi)$

Preliminary definition of $f_{i/A}(\xi)$ I

$$f_{i/A}(\xi) \langle P'|P \rangle = \int d\mathbf{k_T} \langle P'|\rho(\xi P^+, \mathbf{k_T}; i)|P \rangle$$

In order to make this construction more useful, we relate b,b^\dagger with the quark field operator $\psi_i(x)$ quantized on the null plane as ...

$$P_{dy}\psi_{i,c}(x^{+}=0,x^{-},\mathbf{x_{T}}) = \frac{1}{(2\pi)^{3}} \int_{0}^{\infty} \frac{\mathrm{d}k^{+}}{2k^{+}} \int \mathrm{d}\mathbf{k_{T}}$$

$$\times \sum_{s} \left\{ P_{dy}u(k,s)e^{-ik\cdot x}b(k^{+},\mathbf{k_{T}},s,c;i) + P_{dy}v(k,s)e^{+ik\cdot x}d^{\dagger}(k^{+},\mathbf{k_{T}},s,c;i) \right\}$$

- The two components projected by $P_{dy}=\frac{1}{2}\gamma^-\gamma^+$ are the independent dynamical fields representing quarks.
- u(k,s),v(k,s) : usual spinor solutions of the free Dirac eq, normalized to $\bar{u}(k,s)\gamma^+u(k,s)=2k^+$ (same with v(k,s))
- $d^{\dagger}(k^+, \mathbf{k_T}, s, c; i)$: antiquark creation operator (analogous to b^{\dagger})

Then plugging in the above expression into the preliminary definition of $f_{i/A}(\xi)$,

Preliminary definition of $f_{i/A}(\xi)$ II

$$f_{i/A}(\xi) \langle P'|P\rangle = \frac{P^+}{2\pi} \int dy^- e^{-i\xi P^+ y^-} \int dx^- d\mathbf{x_T}$$
$$\times \langle P'|\overline{\psi}_i(0, x^- + y^-, \mathbf{x_T})\gamma^+ \psi_i(0, x^-, \mathbf{x_T})|P\rangle$$

and implementing the following identities:

• Translation invariance :

$$\langle P'|\overline{\psi}_i(0, x^- + y^-, \mathbf{x_T})\gamma^+\psi_i(0, x^-, \mathbf{x_T})|P\rangle$$

$$= \exp\left[i(P' - P) \cdot x^- - (\mathbf{P_T'} - \mathbf{P_T}) \cdot \mathbf{x_T}\right] \times \langle P'|\overline{\psi}_i(0, y^-, \mathbf{0})\gamma^+\psi_i(\mathbf{0})|P\rangle$$

• Proton state normalization : $\langle P'|P\rangle = (2\pi)^3 2P^+ \delta(P'^+ - P^+) \delta(\mathbf{P'_T} - \mathbf{P_T})$

Preliminary definition of $f_{i/A}(\xi)$

$$f_{i/A}(\xi) = \frac{1}{4\pi} \int dy^- e^{-i\xi P^+ y^-} \langle P|\bar{\psi}_i(0, y^-, \mathbf{0})\gamma^+ \psi_i(0)|P\rangle$$

Preliminary definition of $f_{i/A}(\xi)$

$$f_{i/A}(\xi) = \frac{1}{4\pi} \int dy^- e^{-i\xi P^+ y^-} \langle P|\overline{\psi}_i(0, y^-, \mathbf{0})\gamma^+ \psi_i(0)|P\rangle$$

Things to notice from $f_{i/A}(\xi)$...

- It is an expectation value in the hadron state of a certain operator.
- This operator is not local but **bilocal** : $(0, y^-, \mathbf{0})$ and $(0, 0, \mathbf{0})$ are light-like separated.
- Integrate over y^- with the right factor so that we annihilate a quark with ξP^+ momentum.
- → Gluons ...? Gauge invariance ...? Renormalization ...?

The $f_{i/A}(\xi)$ above relies on the gluon potential A^{μ} being in the lightlike axial gauge $A^{+}=0$, so it would be nice to ...

- make the operator gauge invariant
- match the previous definition in $A^+ = 0$ gauge
- \rightarrow Solution: insert a Wilson line factor \mathcal{O} into the operator

Wilson line factor

$$\mathcal{O}(y^-, 0) = \mathcal{P} \exp \left[ig \int_0^{y^-} dz^- A^+(0, z^-, \mathbf{0})_a t_a \right]$$

 $t_a: SU(3)_c$ generator matrix in the 3 representation

 \mathcal{P} : path ordering with more positive y^- values to the left

Then the revised gauge invariant $f_{i/A}(\xi)$ is defined as :

Gauge invariant definition of $f_{i/A}(\xi)$

$$f_{i/A}(\xi) = \frac{1}{4\pi} \int dy^- e^{-i\xi P^+ y^-} \langle P|\overline{\psi}_i(0, y^-, \mathbf{0})\gamma^+ \mathcal{O}(y^-, 0)\psi_i(0)|P\rangle$$

one can immediately see that the gauge $A^+=0$ corresponds to $\mathcal{O}=1$, being consistent with the previous definition of $f_{i/A}(\xi)$

Checking gauge invariance under an unitary transformation U(x):

$$\begin{aligned} & \psi_i(0) \to U(0)\psi_i(0) \\ & \bar{\psi}_i(0, y^-, \mathbf{0}) \to \bar{\psi}_i(0, y^-, \mathbf{0})U(0, y^-, \mathbf{0})^{-1} \\ & \mathcal{O}(y^-, 0) \to U(0, y^-, \mathbf{0})\mathcal{O}(y^-, 0)U(0)^{-1} \end{aligned}$$

Thus including $\mathcal{O}(y^-,0)$, the operator maintains invariant under a change of gauge.

Besides gauge invariance what does $\mathcal O$ offer? Is there any physical significance ...? A mere technique?

Figure: Effect of the $\ensuremath{\mathcal{O}}$ operator

- $\psi_i(0)$: absorbs a quark line from the wave function
- $\overline{\psi}_i(0,y^-,\mathbf{0})$: creates a quark line that goes into the conjugate wave function
- $\mathcal{O}(y^-,0)$: contains gluon fields that create and absorb gluons
 - not just destroying a quark at position 0, leaving its color nowhere to go
 - but rather scatter it, so that it moves to infinity along a fixed light-like line in the minus direction, carrying its color with it.
 - ▶ then its color comes back to $(0, y^-, \mathbf{0})$ to provide the color for the quark that we create
 - → How in detail?

Using the following identity satisfied by any ordered exponential :

$$\mathcal{P} \exp \left[ig \int_0^{\eta} d\lambda n \cdot A(\lambda n^{\mu}) \right] =$$

$$\left[\mathcal{P} \exp \left[ig \int_0^{\infty} d\lambda n \cdot A((\lambda + \eta)n^{\mu}) \right] \right]^{\dagger} \mathcal{P} \exp \left[ig \int_0^{\infty} d\lambda n \cdot A(\lambda n^{\mu}) \right]$$

substituting $A^{\mu} = A_a^{\mu} t_a$, $\eta = y^-$ and $n = (n^+, n^-, \mathbf{n_T}) = (0, 1, \mathbf{0})$ which leads to $n \cdot A = n^+ A^- + n^- A^+ - \mathbf{n_T} \cdot \mathbf{A_T} = A^+$ and $\lambda n^{\mu} = z^-(0, 1, \mathbf{0}) = (0, z^-, \mathbf{0})$, gives

$$\mathcal{P} \exp \left[ig \int_0^{y^-} dz^- A^+(0, z^-, \mathbf{0})_a t_a \right] =$$

$$\left[\mathcal{P} \exp \left[ig \int_{y^-}^{\infty} dz^- A^+(0, z^-, \mathbf{0})_a t_a \right] \right]^{\dagger} \mathcal{P} \exp \left[ig \int_0^{\infty} dz^- A^+(0, z^-, \mathbf{0})_a t_a \right]$$

Which shows that $\mathcal{O}(y^-,0) = \mathcal{O}(y^-,\infty)\mathcal{O}(\infty,0)$ and using this expression, one could insert a complete set $|n\rangle \langle n|$ and write

$$f_{i/A}(\xi) = \frac{1}{4\pi} \int dy^- e^{-i\xi P^+ y^-} \sum_n \langle P | \overline{\Psi}(0, y^-, \mathbf{0}) | n \rangle \gamma^+ \langle n | \Psi(0) | P \rangle$$
$$\Psi(x) = \psi(x) \mathcal{P} \exp \left[ig \int_0^\infty dz^- (x^+, x^- + z^-, \mathbf{x_T})_a t_a \right]$$

From this one can extract Feynman rules via expanding the ordered exponentials and expressing them in momentum space :

$$\mathcal{P}\left[ig\int_0^\infty dz^- A^+(0, z^-, \mathbf{0})_a t_a\right] = 1 + \mathcal{P}\sum_{n=1}^\infty \prod_{i=1}^n \int \frac{d^4 q_i}{(2\pi)^4} g\tilde{A}^+(q_i^\mu) \frac{1}{\sum_{j=1}^i q_j^- + i\epsilon}$$

- One can read off the Feynman rules from the expansion.
- The denominators are represented by double lines, which we shall refer to eikonal lines
- They attach to the gluon propagator via a vertex proportional to $-ign^\mu$

Renormalization

The function $f_{i/A}(\xi)$ is **unrenormalized**, being defined using bare fields, a bare coupling, bare parton masses ... and so on

- would like to introduce the \overline{MS} scheme
- perform integration in $4-2\epsilon$ dimensions, including a factor that keeps the dimension constant

Renormalized, gauge invariant definition of $f_{i/A}(\xi,\mu)$

$$f_{i/A}(\xi,\mu) = \frac{1}{4\pi} \int dy^- e^{-i\xi P^+ y^-} \langle P|\bar{\psi}_i(0,y^-,\mathbf{0})\gamma^+ \mathcal{O}(y^-,0)\psi_i(0)|P\rangle_{\overline{MS}}$$

Antiquarks and Gluons

Will simply state results ...

ullet Antiquarks : utilize charge conjugation, $ar{\mathbf{3}}$ representation generators for $\mathcal O$

$$f_{i/A}(\xi,\mu) = \frac{1}{4\pi} \int \mathrm{d}y^- e^{-i\xi P^+ y^-} \left\langle P \middle| \mathsf{Tr} \left[\gamma^+ \psi_i(0,y^-,\mathbf{0}) \mathcal{O}(y^-,0) \bar{\psi}_i(0) \right] \middle| P \right\rangle_{\overline{\scriptscriptstyle MS}}$$

• Gluons : $A^+=0$ gauge, 8 representation generators for ${\cal O}$

$$f_{g/A}(\xi,\mu) = \frac{1}{2\pi x P^{+}} \int dy^{-} e^{-i\xi P^{+}y^{-}} \langle P|F_{a}^{+}(0,y^{-},\mathbf{0})^{\nu} \mathcal{O}_{ab} F_{b}^{+}(0)^{\nu}|P\rangle_{\overline{MS}}$$

Renormalization Group

- A change in the scale μ affects $f_{a/A}(\xi,\mu)$, which comes from the change in the amount of UV divergence that renormalization is removing.
- By examining the structure of UV divergences, one finds $f_{a/A}(\xi,\mu)$ obeys DGLAP evolution equations,

$$\mu^{2} \frac{d}{d\mu^{2}} f_{a/A}(\xi, \mu) = \sum_{b} \int_{\xi}^{1} \frac{dz}{z} P_{ab}(z, \alpha_{S}(\mu^{2})) f_{b/A}(\xi/z, \mu)$$

- lacktriangle The evolution kernels P_{ab} are perturbatively calculable as expansions in powers of $\alpha_S(\mu)$
- ► Exact evolution kernels have been known up to NNLO (2004),

Renormalization Group

Interpretation? The parameter μ corresponds to the physical resolving power of the probe.

- Parton splitting is not well observed at low resolving power
- \bullet At higher μ which is enough to resolve mother parton into its daughters, observing a splitting

- One can find parton distributions at μ when it is already known at $\mu_0 < \mu$, using the RG equation.
- \blacktriangleright Gluon distribution at $\mu=10,100~GeV$ using the CTEQ3M PDF set
- With greater resolution, smaller momentum fraction due to parton splitting.

Summary

- PDFs can be constructed as a hadron matrix element of the number density operator for quarks.
- PDFs should be renormalized due to divergences from NLO and beyond.
- Renormalization scale corresponds to the physical resolving power of the probe.

Thank You