# IIA Design Project SF2: Image Processing

Joan Lasenby

Engineering Department

Easter 2019



- An 8-bit 256x256 grey-scale image
- 2x 3x compression has little impact on image
- Greater compression starts to distort data . . .
- ... eventually the image is almost un-recognisable



- An 8-bit 256x256 grey-scale image
- 2x 3x compression has little impact on image
- Greater compression starts to distort data . . .
- ... eventually the image is almost un-recognisable



- An 8-bit 256x256 grey-scale image
- 2x 3x compression has little impact on image
- Greater compression starts to distort data . . .
- ... eventually the image is almost un-recognisable



- An 8-bit 256x256 grey-scale image
- 2x 3x compression has little impact on image
- Greater compression starts to distort data . . .
- ... eventually the image is almost un-recognisable



- An 8-bit 256x256 grey-scale image
- 2x 3x compression has little impact on image
- Greater compression starts to distort data . . .
  - ... eventually the image is almost un-recognisable

## **Project Aims**

- To learn about what is typically involved in image compression schemes
- To look at some specific compression options
- To consider how image quality can be assessed
- To investigate and assess your own compression scheme, based around those introduced earlier



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....



- The 8-bit 256x256 grey-scale image again
- Quantization refers to the number of grey levels used
- Initially this is not noticeable
- Quantization is not a good compression technique.....

# **Filtering**



- Store the lower frequency components at progressively lower resolutions
- We can then effectively compress the higher frequencies

## Discrete Cosine Transform (DCT)



- Split each image block into frequency components
- (Re-arranged here to make it easier to see)
- Compress each of the blocks separately in frequency order

## Lapped Bi-orthogonal Transform





- A bit like pre-processing the image first and then applying a DCT
- The pre-processing applies across the boundaries of the DCT blocks

## Discrete Wavelet Transform (DWT)



- Split the whole image into four frequency bands
- Repeat this procedure with the lowest (top-left) frequency band
- Compress grouped components from each band

#### JPEG Compression

- Stands for Joint Photographic Experts Group
- Typical compression process:
  - Split image into 8x8 blocks
  - Use DCT on each of these blocks, and quantise
  - Lossless Huffman coding of these quantised coefficients
- You will get the chance to try to do better than this (to some extent mirroring the more recent JPEG2000 and JPEG-XR standards)

## Image Quality

These are all compressed to a ratio of about 12:1







## **Image Quality**

These are all compressed to a ratio of about 12:1







error 7.63

error 7.05

error 7.71

## **Image Quality**

These are all compressed to a ratio of about 12:1







error 7.63

error 7.05

error 7.71

Visual Quality ??

#### Week 1:

Matlab introduction Image filtering Laplacian Pyramid Quantisation













Interim Report 1, 2 pages (12 marks): 9.15am 16.05.19



Interim Report 1, 2 pages (12 marks): 9.15am 16.05.19 Interim Report 2, 3 pages (18 marks): 9.15am 23.05.19



Interim Report 1, 2 pages (12 marks): 9.15am 16.05.19 Interim Report 2, 3 pages (18 marks): 9.15am 23.05.19 Competition: 11am Monday (3rd June)



Interim Report 1, 2 pages (12 marks): 9.15am 16.05.19 Interim Report 2, 3 pages (18 marks): 9.15am 23.05.19

Competition: 11am Monday (3rd June)

Final Report, 9 pages (50 marks): 4pm Thursday (6th June)

#### Rules

- Design is in pairs, but reports are individual
- Thursdays (9am-11am) and Mondays (11am-1pm) are compulsory (1 mark penalty for each hour).
- Thursday afternoon (2pm-6pm) is strongly advised. In 2019 we have clusters 5 & 6 these will be booked for your use on Thursday afternoon.
- Interim report deadlines are very important (3 mark penalty for each day)
- The final report must not be late.
- Computer issues are not a valid excuse
- All reports will be submitted online via the Moodle site.

#### Information

Everything you need to know is in the handout and on the Moodle site.

See Moodle site (you should all be enrolled – first thing is to check and see me if you are not).

Demonstrators will be Hugo Hadfield and Alex Grafton.