

Course > Week 1 > Proble... > Proble...

Problem: Nonlinear Dynamics

Nonlinear Dynamics

0.0/20.0 points (graded)

Consider a system with the dynamics given by

$$\dot{x} = x^3 + 2x^2 - 5x - 6$$

Fill in the MATLAB code below, which is supposed to:

- Plot a phase diagram \dot{x} vs. x for this system and set the three equilibrium points. Ensure that all equilibrium points are included in the plot range.
- Set the variable "eq_points" such that $x = eq_points(i)$ is an equilibrium point.

Do not change the variable names x, xdot, and eq_points.

```
1 x =
2 xdot =
3 eq_points =
4 plot(x,xdot)
5
```

Unanswered

Run Code

Is the first equilibrium point (at the smallest value of $m{x}$) stable, unstable, or marginally stable?
Stable
O Unstable
Marginally stable
Is the second equilibrium point stable, unstable, or marginally stable?
 Stable
 Unstable
Marginally stable

Is the third equilibrium point (at the largest value of /(x/)) stable, unstable, or marginally stable?

O Stable	
Unstable	
Olistable	
Marginally stable	

There is an interval, containing the origin, that is a region of attraction for one of these points. Identify this interval, using standard notation of (a,b) for open intervals and $[a,b]$ for closed intervals. Indicate a interval extending to infinity with "-inf" or "inf."		
Submit	You have used 0 of 3 attempts	

© All Rights Reserved