Review

ML & DL

Introduction to
machine/deep learning

Transformer

Attention mechanism, encoder/decoder

Pretraining

Masking, natural language generation

Word

Word vectors, language modeling

Sequence

Sequence modeling, seq2seq learning

Prompting

Prompts, in-context learning

Linear Regression

What is it?

The basic idea behind regression is that, you want to model the relationship between a real valued outcome variable y, and a vector of explanatory variables $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

A linear regression relates y to a linear predictor function of x. For a given data point i, the linear function is of the form:

$$\hat{y}_i = w_0 + w_1 x_{i_1} + \dots + w_d x_{id}$$

Linear Regression

Least Square Formulation of the Loss

In this formulation, the least squares fit is the line that **minimizes** the sum of the squared distances between observed data and predicted values, i.e. it minimizes the **Residual Sum of Squares** (*RSS*):

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

where $\hat{y}_i = w_0 + w_1 x_i$ is the predicted outcome for the i^{th} observation.

Logistic Regression

Likelihood

(NLL)

Combine sigmoid function with Bernoulli distribution

$$\mathcal{P}(y|\mathbf{x},\mathbf{w}) = Bernoulli(y|sigm(\mathbf{w}^{ op}\mathbf{x}))$$
 $p(y_i = 1|\mathbf{x}_i,\mathbf{w}) = sigm(\mathbf{w}^{ op}\mathbf{x}_i)$ squash value to (0,1) $p(y_i = 0|\mathbf{x}_i,\mathbf{w}) = 1 - sigm(\mathbf{w}^{ op}\mathbf{x}_i)$ $\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \log p(\mathcal{D}|\mathbf{w})$ Negative Log Likelihood $= \operatorname{argmin}_{\mathbf{w}} - \sum_{i=1}^N (y_i \log \mu_i + (1-y_i) \log (1-\mu_i))$ (NLL)

This is also called the Cross Entropy Error Function.

Multiclass Logistic Regression

Different from binary logistic regression, we model the probability using **Softmax** as

$$egin{aligned} \mathcal{P}(y_i = c | \mathbf{x}_i, \mathbf{W}) &= \mu_{ic} = rac{\exp(\mathbf{w}_c^ op \mathbf{x}_i)}{\sum_{c'=1}^C \exp(\mathbf{w}_{c'}^ op \mathbf{x}_i)} \ \mathcal{P}(y_i | \mathbf{x}_i, \mathbf{W}) &= \prod_{c=1}^C \mu_{ic}^{y_{ic}} \end{aligned}$$

$$egin{aligned} \mathbf{W}^* &= \operatorname{argmax}_{\mathbf{W}} \log p(\mathcal{D}|\mathbf{W}) \ &= \operatorname{argmax}_{\mathbf{W}} \sum_{i=1}^N \log \prod_{c=1}^C \mu_{ic}^{y_{ic}} \end{aligned} egin{aligned} \mathbf{W} &= [\mathbf{w}_1; \dots; \mathbf{w}_C] \ \hline y_{ic} &= \mathbb{I}(y_i = c) \end{aligned} \ &= \operatorname{argmin}_{\mathbf{W}} \sum_{i=1}^N \sum_{c=1}^C -y_{ic} \log \mu_{ic} \end{aligned}$$

Gradient Descent

The most commonly used method for unconstrained optimization

Goal: minimize $\sum_{i=1}^{N} J_i(oldsymbol{ heta})$ with respect to $oldsymbol{ heta}$

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \eta \cdot
abla_{oldsymbol{ heta}} J(heta)$$

Neural Network

$$a_1 = f(W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1)$$

$$a_2 = f(W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2)$$

......

In Matrix Notation

$$z = Wx + b$$

$$a = f(z)$$

Where f() is applied element-wise

$$f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)]$$

Activation function

Chain Rule of Derivatives

• Chain rule in computational graph

Flow graph: any directed acyclic graph node = computation result arc = computation dependency

$$\{y_1,\,y_2,\,\ldots\,y_n\}$$
 = successors of x

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

Review

ML & DL

Introduction to
machine/deep learning

Transformer

Attention mechanism, encoder/decoder

Pretraining

Masking, natural language generation

Word

Word vectors, language modeling

Sequence

Sequence modeling, seq2seq learning

Prompting

Prompts, in-context learning

Word2vec – Skipgram

Example windows and process for computing $P(w_{t+j} \mid w_t)$

Word2vec – Skipgram

We want to minimize the objective function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

- Question: How to calculate $P(w_{t+j} | w_t; \theta)$?
- Answer: We will use two vectors per word w:
 - v_w when w is a center word
 - u_w when w is a context word
- Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Skipgram with Negative Sampling

Change Task from

$$\log p(o|c) = \log rac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

negative sampling to make the problem less costly,

into

not
$$\longrightarrow$$
 Untrained Model thou \longrightarrow 1 log $p(t=1|c,o) = \log \sigma(u_o^T v_c)$ Are the two words neighbours?

$$J_t(heta) = \log \sigma(u_o^T v_c) + \sum_{i=1}^k \log \sigma(-u_{o_i}^T v_c)$$

Word Vectors for NER

Word Vectors for NER

Language Modeling

 A language model takes a list of words (history/context), and attempts to predict the word that follows them

More formally: given a sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$, compute the probability distribution of the next word $x^{(t+1)}$:

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$$

where $oldsymbol{x}^{(t+1)}$ can be any word in the vocabulary $V = \{oldsymbol{w}_1, ..., oldsymbol{w}_{|V|}\}$

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}) = P(\mathbf{x}^{(1)}) \times P(\mathbf{x}^{(2)} | \mathbf{x}^{(1)}) \times \dots \times P(\mathbf{x}^{(T)} | \mathbf{x}^{(T-1)}, \dots, \mathbf{x}^{(1)})$$

$$= \prod_{t=1}^{T} P(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}, \dots, \mathbf{x}^{(1)})$$

Neural Language Modeling

this is the first LM created, a fixed window and then generate

output distribution

$$\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h} + \boldsymbol{b}_2) \in \mathbb{R}^{|V|}$$

hidden layer

$$h = f(We + b_1)$$

(Or average)

concatenated word embeddings

$$e = [e^{(1)}; e^{(2)}; e^{(3)}; e^{(4)}]$$

words / one-hot vectors $oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, oldsymbol{x}^{(3)}, oldsymbol{x}^{(4)}$

laptops

books

Neural Language Modeling

Improvements over *n*-gram LM:

- No sparsity problem
- Don't need to store all observed n-grams

Remaining **problems**:

- Fixed window is too small
- Enlarging window enlarges W
- Window can never be large enough!
- x⁽¹⁾ and x⁽²⁾ are multiplied by completely different weights in W.
 No symmetry in how the inputs are processed.

We need a neural architecture that can process any length input

Review

ML & DL

Introduction to machine/deep learning

Transformer

Attention mechanism, encoder/decoder

Pretraining

Masking, natural language generation

Word

Word vectors, language modeling

Sequence

Sequence modeling, seq2seq learning

Prompting

Prompts, in-context learning

Recurrent Neural Networks

 $\hat{m{y}}^{(4)} = P(m{x}^{(5)}| \text{the students opened their})$

books

hidden states

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$$

 $h^{(0)}$ is the initial hidden state

word embeddings

$$oldsymbol{e}^{(t)} = oldsymbol{E} oldsymbol{x}^{(t)}$$

words / one-hot vectors

$$oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$$

output distribution

$$\hat{\boldsymbol{y}}^{(t)} = \operatorname{softmax}\left(\boldsymbol{U}\boldsymbol{h}^{(t)} + \boldsymbol{b}_2\right) \in \mathbb{R}^{|V|}$$

The input sequence can be of arbitrary length.

Vanishing Gradient Problem for RNNs

RNNs

Advantages of RNNs

- Can process any length input. Computation for step t can (in theory) use information from many steps back.
- Model size doesn't increase for longer input context.
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

Disadvantages of RNNs

LSTM to the rescue!

- Recurrent computation is slow.
- In practice, difficult to access information from many steps back.

Sequence Tagging with RNNs

POS Tagging

Seq2Seq Modeling with RNNs

Encoding of the source sentence. This needs to capture all information about the source sentence. Information bottleneck!

$$egin{aligned} h_y^1 &= f(W_{ye} \cdot e_{< START>} + W_{yh} \cdot oldsymbol{h}_x^4 + b_y) \ h_x^1 &= f(W_{xe} \cdot e_{les} + W_{xh} \cdot h_x^0 + b_x) \end{aligned}$$

Review

ML & DL

Introduction to
machine/deep learning

Transformer

Attention mechanism, encoder/decoder

Pretraining

Masking, natural language generation

Word

Word vectors, language modeling

Sequence

Sequence modeling, seq2seq learning

Prompting

Prompts, in-context learning

Attentions

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$oldsymbol{a}_t = \sum_{i=1}^{t} lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

Attentions

Attentions as QKV

We can think of attention as performing fuzzy lookup in a key-value store.

In a **lookup table**, we have a table of **keys** that map to **values**. The **query** matches one of the keys, returning its value.

In **attention**, the **query** matches all **keys** *softly*, to a weight between 0 and 1. The keys' **values** are multiplied by the weights and summed.

Self Attentions

- Treats each word's representation as a query to access and incorporate information from a set of values.
- Easy to parallelize (per layer).
- Maximum interaction distance: O(1), since all words interact at every layer!

Each word can be query, key, value

All words attend to all words in previous layer; most arrows here are omitted

Self Attentions

Let $w_{1:n}$ be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w_i , let $x_i = Ew_i$, where $E \in \mathbb{R}^{d \times |V|}$ is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in $\mathbb{R}^{d\times d}$

$$q_i = Qx_i$$
 (queries) $k_i = Kx_i$ (keys) $v_i = Vx_i$ (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

query is fixed
$$m{e}_{ij} = m{q}_i^{\mathsf{T}} m{k}_j$$
 $m{\alpha}_{ij} = \frac{\exp(m{e}_{ij})}{\sum_{j'} \exp(m{e}_{ij'})}$

3. Compute output for each word as weighted sum of values

$$o_i = \sum_i \alpha_{ij} v_i$$

From Attentions to Transformers

Transformer Encoder-Decoder

Review

ML & DL

Introduction to machine/deep learning

Transformer

Attention mechanism, encoder/decoder

Pretraining

Masking, natural language generation

Word

Word vectors, language modeling

Sequence

Sequence modeling, seq2seq learning

Prompting

Prompts, in-context learning

Pre-training and Fine-tuning

Pre-training to Fine-tuning

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

Transfer Through Word Embeddings

Transferring Words-in-Context

Transferring Entire Models

Before After Task-specific No task-specific Model models! T5 GPT/BERT CoVe/ELMo /bert I saw a cat . <eos> I saw a cat . <eos>

Language Model Pretraining

- Masked Language Modeling (MLM)
- (Causal) Language Modeling (LM)

3 Training Paradigms

The neural architecture influences the type of pretraining, and natural use cases.

Encoders

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

Encoder-Decoders

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

Decoders

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words

Encoder

So far, we've looked at language model pretraining. But **encoders get bidirectional context,** so we can't do language modeling!

Idea: replace some fraction of words in the input with a special [MASK] token; predict these words.

$$h_1, ..., h_T = \text{Encoder}(w_1, ..., w_T)$$

 $y_i \sim Aw_i + b$

Only add loss terms from words that are "masked out." If \tilde{x} is the masked version of x, we're learning $p_{\theta}(x|\tilde{x})$. Called **Masked LM**.

Masked Attentions in Decoder

Review

ML & DL Word Introduction to Word vectors, Transformer Sequence modeling, Attention mechanism, Pretraining Prompting Masking, natural Prompts, in-context language generation learning

Zero-Shot / Few-Shot Prompting

Zero/few-shot prompting

```
Translate English to French:

sea otter => loutre de mer

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =>
```

Traditional fine-tuning

The End

Good luck to everyone!!!