

Experiência 7

Alarme de Invasão

como aplicação de circuitos digitais combinatórios (ou combinacionais)

1. Objetivo

Compreender os conceitos de concepção, projeto e implementação de uma aplicação real de circuitos combinatórios/combinacionais.

2. Motivações

- O que caracteriza um circuito combinatório/combinacional;
- como é feita o ciclo de criação de algo novo: concepção, projeto, implementação, testes e operação;
- como se projeta um circuito digital combinatório;
- como se faz a interface entre o mundo e o circuito combinatório;
- ficar patente a necessidade de um elemento de memória para aperfeiçoar o seu funcionamento.

3. Contextualização

Os circuitos combinatórios são aqueles cujas saídas são função da entrada.

Então a saída **s** (booleana) é função (função booleana) das entradas (boolenanas) A, B, C,...Y, Z.

Definição de função:

Dados dois conjuntos Alfa e Beta não vazios, uma função f de A em B é uma relação que associa a cada elemento x∈Alfa, um único elemento y∈Beta.

Cada elemento do domínio está associado exatamente a um, e somente um, elemento do contradomínio, também denominado conjunto imagem.

Para uma certa combinação de entradas, somente existe uma saída possível.

Essa relação entre s e A,B,C,... pode ser descrita de várias formas:

a) Forma descritiva: trata-se de exemplo genérico

s = 1 quando (e somente quando) A=0 e C=1 OU quando A =1 e B=0 OU ainda se C=0

b) por uma equação booleana

$$s = A'.C + A.B' + C'$$

c) por um diagrama lógico

d) por uma tabela que descreva TODAS as possibilidades da saída s em função de todas as combinações possíveis de entrada – Tabela Verdade

	saida		
Α	В	С	s
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

4. Especificações do alarme

Sua mãe, orgulhosa de você que cursa engenharia na Mauá, pede para você projetar alarme para o escritório dela.

Especificações:

- Monitoramento dos 3 pontos de acesso externos; duas janelas e uma porta
- Ao haver alguma invasão, tocar uma sirene
- Deve haver um botão de liga/desliga dentro do escritório

5. Topologia

1ª. necessidade: obter a informação na forma digital

A informação <u>porta aberta ou fechada</u> já é dual: aberta ou fechada, então já é de natureza <u>binária</u>.

Temos que escolher "sensores" que transformem a informação do mundo real (porta aberta ou fechada) em uma variável digital (1 ou 0) que as portas lógicas em um circuito combinatório reconheçam.

Sugestão de <u>sensor para janelas e porta</u>: uma chave elétrica que feche um contato quando a porta ou janelas estiverem fechadas e abra esse contato quando a porta ou janelas estiverem abertas.

Chave de "fim de curso" ou microswitch.

Assista ao vídeo sobre o funcionamento do microswitch em https://www.youtube.com/watch?v=q6nP1FjxAMU

Outra alternativa: reed switch

Assista ao vídeo sobre o funcionamento do *reedswitch* em https://www.youtube.com/watch?v=dxW4N bB-7I

Ao escolher uma das duas chaves, colocaremos um resistor de pull up ou pull down.

Então:

Se janela (ou porta) fechada Se janela (ou porta) aberta -> chave fechada

-> nível lógico **ZERO**

Escolhemos o "pull up"

-> chave aberta

-> nível lógico UM

J1 = 1 se Janela 1 estiver aberta. J2 = 1 se Janela 2 estiver aberta.

P = 1 se Porta estiver aberta.

J1 = 0 se Janela 1 estiver fechada.

J2 = 0 se Janela 2 estiver fechada.

P = 0 se Porta estiver fechada

Sugestão de <u>chave de Liga e Desliga (L/D)</u>: uma chave elétrica que permaneça com um contato em posição de Desligado (contato "normalmente fechado - **NF** ou normally closed - **NC**") e, quando na posição Ligado, desfaça o contato **NC** e feche um segundo contato que estava "normalmente aberto - **NA**" (ou normally open - **NO**)

Se chave na posição Desligado, LD = 0 Se chave na posição Ligado, LD = 1

Referência técnica em https://docs.rs-online.com/7127/0900766b8007a406.pdf

2ª. necessidade: processar a informação e tomar decisões

Pedido do cliente: <u>se o sistema estiver ligado e uma das janelas for aberta</u> ou a porta for aberta, fazer soar uma sirene.

a) Forma descritiva:

s = 1 quando (e somente quando) LD =1 **E** quando (J1=1 **OU** quando J2=1 **OU** ainda quando P=1)

b) por uma equação booleana

Tarefa 1

c) por um diagrama lógico

Tarefa 2

d) por uma tabela que descreva TODAS as possibilidades da saída s em função de todas as combinações possíveis de entrada – <u>Tabela Verdade</u>

Tarefa 3

6. Gabaritos das tarefas

Tarefa 1:

$$s = LD \cdot (J1 + J2 + P)$$

Tarefa 2:

Tarefa 3:

	saida			
LD	J1	J2	P	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

7. Parte Experimental

Acesse o Tinkercad (<u>www.tinkercad.com</u>) entrando em sua conta privada (*não é para entrar em Aula*) e utilize o ícone com três barras horizontais para acessar a galeria de circuitos. Na galeria procure pelo circuito **ETE102– Alarme2**, pesquise pela lupa.

<u>Tarefa</u>: Teste o funcionamento do circuito ETE102-Alarme2 no simulador tinkercad e identifique na montagem cada sub-sistema da topologia abaixo.

Foram usados os seguintes componentes com portas lógicas:

Referências para Consulta

- https://www.onsemi.com/products/standard-logic/logic-gates/74act08
- https://www.onsemi.com/products/standard-logic/logic-gates/74act32
- https://www.onsemi.com/pub/Collateral/MM74HC14-D.PDF

7.1 A interface nosso mundo -> digital

Nas janelas e porta

Chave Liga/Desliga - LD

7.2 Processamento e tomada de decisão

7.3 Interface digital -> nosso mundo

Para implementar a sirene, utilizamos o circuito já visto em aula, com um oscilador implementado com porta inversora *Schmitt Trigger* realimentada, fazendo a carga e descarga de um capacitor.

Modificamos o circuito para que haja uma chave digital de acionamento (ou não) da sirene.

Utilizamos o conceito de uma "chave digital".

Se s = 0, então não haverá som no auto-falante, pois a saída da porta E ficará sempre com nível lógico 0 enquanto essa condição de s = 0 permanecer.

Se s =1, a oscilação digital produzida pelo oscilador (sequência infinita de zeros e uns) é refletida na saída.

A base desse circuito é o apresentado em **ETE102-CircuitoOscilador** no tinkercad

Circuito Oscilador

8. Percepção do usuário

Apesar dos elogios afetuosos da sua mãe sobre o sistema, houve duas reclamações:

- (8.1) Quando se fecha a janela ou a porta que ocasionou o acionamento do alarme, a sirene para imediatamente de tocar.
 Efeito: se alguém invadir o local e fechar a janela ou porta rapidamente, o alarme soará por pouco tempo.
- (8.2) Quando falta energia elétrica, o sistema não funciona (pois a fonte de alimentação é ligada à tomada).
 Efeito: se alguém invadir o local em período de falta de energia, o alarme não irá funcionar.
- 3. (8.3) Ao ligar o alarme dentro do escritório (e é a única maneira de fazê-lo), não há como sair pela porta sem que a sirene toque.

Desafios à engenheira ou ao engenheiro.

9. Entrega: Postagem no Moodle

Todos os estudantes deverão postar no Moodle os pontos a seguir, mas os estudantes da mesma equipe postarão o mesmo material.

- a. Qual alteração você faria no circuito do sistema para resolver a reclamação 8.1? Há solução? Se sim, faça um esboço a mão e justifique.
- b. Qual alteração você faria no circuito do sistema para resolver a reclamação 8.2? Faça um esboço a mão e justifique.

Dica: tente utilizar uma pilha (ou um jogo de pilhas) que só contribua com tensão quando faltar energia.

c. Qual alteração você faria no circuito do sistema para resolver a reclamação 8.3? Faça um esboço a mão e justifique.

Dica principal: discuta as ideias de soluções com o seu grupo.

Prazo de entrega: até próximo sábado, 09/05/2020, via moodle