



# Entwicklung eines Nagios Plugins zur Überwachung und Auswertung von Funktionen und Fehlern in Content-Managment-Systemen

#### **BACHELORARBEIT**

für die Prüfung zum Bachelor of Engineering

des Studienganges

#### **Informationstechnik**

an der Dualen Hochschule Karlsruhe

von

#### **Andreas Paul**

Bearbeitungszeitraum: 25.05.2009 – 23.08.2009

Matrikelnummer: 108467

Kurs: TIT06GR

Praxissemester: 6

Ausbildungsfirma: Forschungszentrum Karlsruhe GmbH (FZK)

Steinbuch Centre for Computing Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen

Betrieblicher Betreuer: Dr. Doris Wochele

Prüfer der DHBW Karlsruhe: Holger Raff

# Inhalt

| 1 | Einleit | ung                                                  |  |  |  |  |  |
|---|---------|------------------------------------------------------|--|--|--|--|--|
| 2 | Abstra  | act                                                  |  |  |  |  |  |
| 3 | Aufgal  | enstellung                                           |  |  |  |  |  |
| 4 | Grund   | agen                                                 |  |  |  |  |  |
|   | 4.1     | Überwachungssysteme                                  |  |  |  |  |  |
|   |         | 4.1.1 Ressourcenbelastung                            |  |  |  |  |  |
|   |         | 4.1.2 Netzwerkstruktur und Abhängigkeiten 5          |  |  |  |  |  |
|   |         | 4.1.3 Sicherheitsaspekte                             |  |  |  |  |  |
|   |         | 4.1.4 Port- versus Anwendungsüberwachung 7           |  |  |  |  |  |
|   | 4.2     | Dokumenten-Management-Systeme                        |  |  |  |  |  |
|   |         | 4.2.1 Eingabe                                        |  |  |  |  |  |
|   |         | 4.2.2 Archivierung und Verwaltung                    |  |  |  |  |  |
|   |         | 4.2.3 Ausgabe                                        |  |  |  |  |  |
|   | 4.3     | Content-Management-Systeme                           |  |  |  |  |  |
|   | 4.4     | [Enterprise-Content-Management-Systeme] 1            |  |  |  |  |  |
|   | 4.5     | Universal-Content-Management-Systeme                 |  |  |  |  |  |
|   | 4.6     | [cronjobs]                                           |  |  |  |  |  |
|   | 4.7     | [ds - ADS Benutzer]                                  |  |  |  |  |  |
|   | 4.8     | [Metadaten allg]                                     |  |  |  |  |  |
|   | 4.9     | [alse+-true+-]                                       |  |  |  |  |  |
| 5 | Nagios  |                                                      |  |  |  |  |  |
|   | 5.1     | Allgemein                                            |  |  |  |  |  |
|   | 5.2     | Aufbau / Architektur                                 |  |  |  |  |  |
|   | 5.3     | Überprüfungs-Methoden                                |  |  |  |  |  |
|   | 5.4     | Überwachungslogik (mit Alarmierung/Benachrichtigung) |  |  |  |  |  |
|   | 5.5     | Plugins                                              |  |  |  |  |  |
|   | 5.6     | (Windows) Agenten oder allgemein Einholen von Infos  |  |  |  |  |  |
|   | 5.7     | Visualisierung der eingesammelten Daten              |  |  |  |  |  |
| 6 | Oracle  | UCM                                                  |  |  |  |  |  |

|    | 6.1    | Allgemein                                     |
|----|--------|-----------------------------------------------|
|    | 6.2    | Aufbau / Architektur                          |
|    |        | 6.2.1 Content Server                          |
|    |        | 6.2.2 Vault und Web Layout                    |
|    |        | 6.2.3 Inbound Refinery                        |
|    |        | 6.2.4 Search Engine                           |
|    |        | 6.2.5 Webserver                               |
|    | 6.3    | Überwachungselemente                          |
|    |        | 6.3.1 Statusabfragen                          |
|    |        | 6.3.2 Überwachung der Funktionalität 28       |
|    |        | 6.3.3 Auswerten von Logdateien                |
| 7  | Umset  | zung                                          |
|    | 7.1    | Aufbau der Testumgebung                       |
|    |        | 7.1.1 Aufsetzen eines Nagios-Test-Systems 32  |
|    |        | 7.1.2 Bilddatenbank als VM                    |
|    | 7.2    | Basisüberwachung - Konfigurationsdateien 32   |
|    | 7.3    | Einrichten des Windows Agenten                |
|    | 7.4    | Überprüfen der Prozesse und Services          |
|    | 7.5    | Umsetzung der Funktionlitätstest              |
|    | 7.6    | Auswertung der Logs + Stopwörterdefinition 34 |
| 8  | Ergebr | nis                                           |
| 9  | Zusam  | nmenfassung und Ausblick                      |
| 10 | Anhan  | ng                                            |
|    | 10.1   | Abbildungsverzeichnis                         |
|    | 10.2   | Codelistingverzeichnis                        |
|    | 10.3   | Quellverzeichnis                              |
|    |        | 10.3.1 Literaturverzeichnis                   |
|    |        | 10.3.2 Internetquellen                        |
|    | 10.4   | Glossar                                       |

## Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbst angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderung entnommen wurde.

| Karlsruhe, den 2. Juli 2009 |                |
|-----------------------------|----------------|
|                             |                |
| Ort. Datum                  | (Andreas Paul) |



# 1 Einleitung

Einleitung halt. Kurz was ist Nagios, warum überhaupt überwachen? Was soll überwacht werden -> Stellent/UCM kurz was ist das? Warum gerade das überwachen -> Aktive Benutzung durch User - kritisch



# 2 Abstract

Zusammenfassung von allem.

Aufgabenstellung, Erwartendes Ergebnis



# 3 Aufgabenstellung

Oracle UCM werden im FZK eingesetzt, bisher nur rudimentäre Überwachung durch Nagios möglich. Diese Arbeit soll die spezifischen Überwachungselemente erurieren und umsetzten.



### 4 Grundlagen

In diesem Kapitel werden die grundlegenden Begriffe erläutert, die für das Verständnis der weiterführenden Kapitel notwendig sind.

### 4.1 Überwachungssysteme

was ist wichtig was nicht, gewichtung, klassifizierung, organisationsstrategie HOst, Services erklären

Geräte nicht nur Server bzw. Rechner, sondern auch Switches Router, oder auch explizite Hardwarekomponenten wie Sensoren für Temperatur, Luftfeuchtigkeit oder Rauchmelder.

#### 4.1.1 Ressourcenbelastung

Die Einführung einer Überwachungssoftware bringt bei größeren Serverlandschaften eine nicht zu verachtende Netzwerk- und Prozessorbelastung mit sich. Dabei gilt es die anfallende Belastung durch zwei unterschiedliche Arten der Überwachung zu unterscheiden:

Lokale / Zentrale Bearbeitung Die Durchführung der Überprüfungen findet durch einen zentralen Überwachungsserver statt, der die Informationen über die einzelnen Hosts und Services über das Netzwerk abfrägt / abfragt. Diese Methode ist in der Regel vorzuziehen, da hierbei die zu überwachenden Geräte weniger belastet werden und die Konfiguration der einzelnen Kontrollschritte zentral möglich / realisierbar ist.

Entfernte / Ausgelagerte Bearbeitung Bei einer sehr hohen Anzahl von zu überwachenden Objekten ist eine zentralisierte Ausführung nicht mehr von einem einzelnen Server tragbar. In diesem Fall ist das Überwachungssystem darauf angewiesen, dass die einzelnen Hosts die kontrollierenden Überprüfungen selbständig durchführen und deren Ergebnisse an den Überwachungsserver weiterzuleiten.



Nagios bietet zusätzlich noch eine weitere, dritte Möglichkeit durch das *Distributed Monitoring* (Verteilte Überwachung) an, siehe Kapitel 5.4.

#### 4.1.2 Netzwerkstruktur und Abhängigkeiten

Die Überwachung von Hosts und Services über das Netzwerk erzeugt normalerweise immer zusätzlichen IP-Traffic. Das bedeutet, dass jede Überquerung weiterer Netzwerkknoten, die zwischen dem Überwachungsserver und den zu überwachenden Geräten liegen, eine weitere Belastung für das Netzwerk bedeutet, sowie eine Abhängigkeit zwischen Host und Server einführt.

Quelle: [Jose07] S. 5

Abbildung 1: Zusätzliche Netzwerkabhängigkeit und Netzwerkbelastung<sup>1</sup>

In der obigen Abbildung erzeugt der Router 1 die zuvor beschriebene zusätzliche Netzwerkabhängigkeit und Netzwerkbelastung, da der Server 1 bei einem Ausfall des Routers nicht mehr durch den Überwachungsserver erreichbar ist und jede Überprüfung, die vom Überwachungsserver gesendet wird den Router mit dem Routing der Pakete belastet.

Deshalb gilt es laut [Jose07] S. 5 folgende zwei Punkte beim Erstellen eines Überwachungssystems zu beachten:

Überwachungsredundanzen vermeiden Redundate Überwachung entsteht dadurch, dass der gleiche Service durch zwei Arten mit unterschiedlichen Tiefen / Tiefgang geprüft wird. Ein einfaches Beispiel ist die Überwachung eines Webservers auf dem Standardport 80. Eine Überwachungsmethode ist es diesen Port abzufragen und die entsprechende Rückantwort des Servers auszuwerten. Soll die auf dem Webserver laufende Webseite überwacht werden, kann die jeweilige Webseite über die Adresse nach einem bestimmten Inhalt untersucht werden.

In beiden Fällen wird getestet, ob der Webserver über das Netzwerk ansprechbar ist, jedoch sagt der zweite Test zusätzlich noch aus, dass die Webseite

<sup>&</sup>lt;sup>1</sup>Quelle: [Jose07] S. 5



korrekt angezeigt wird, somit wäre der erste Test überflüssig. Jedoch muss zuvor abgewogen werden, ob eine redundante Überwachung nicht sogar hilfreich bei der Ermittlung der Fehlerursache ist. Wenn im oberen Beispiel der Inhalt der überwachten Webseite verändert wird, ist nur aus dem zweiten Test nicht ersichtlich, dass der Webserver einwandfrei funktioniert.

Minimale Netzwerkbelastung Um bereits stark belastete Netzwerkpunkte zu entlasten, bietet es sich an die Frequenz mit der die Test über das Netzwerk gesendet werden zu verringern. Die Aufstellung des Überwachungsservers ist gerade bei größeren Serverlandschaften sehr wichtig, da durch eine effiziente Platzierung womögliche Flaschenhälse / Engstellen vermieden werden können.

#### 4.1.3 Sicherheitsaspekte

Um erweiterte Statusinformationen über einen Prozess oder über die Arbeitsspeicherauslastung auszulesen ist (meistens) zusätzliche Software auf den Hosts nötig. Dadurch erhält der Überwachungsserver Ausführungsrechte auf dem Client, so dass eine weitere potentielle Sicherheitslücke in einem (vermeindlich) zuvor sicheren System entsteht. Jeder, der die Kontrolle über den Überwachungsserver besitzt oder sich als solcher ausgibt, kontrolliert somit gleichzeitig alle anderen überwachte Hosts.

Um dies zu verhindern gibt es verschiedene Ansätze. Als ersten Ansatz sollte der Port durch den der Überwachungsserver mit dem Host kommuniziert vom Standardwert abweichen, damit nicht sofort erkennbar ist, dass sich eine (womöglich) ausnutzbare Überwachungssoftware sich auf dem Rechner befindet. Damit die über diesen Port versendeten Informationen nicht für Dritte zugänglich sind, bietet es sich an die auszutauschende Informationen mit einem Algorithmus zu verschlüsseln.

 Verschlüsselung der Informationen, die zwischen dem Server und dem Host hin- und hergesendet werden, damit man nicht die Inforamtionen im Klartext einfach auslesen kann.



• Firewall regeln, dazu Bild aus dem Jose07 Buch S9

#### 4.1.4 Port- versus Anwendungsüberwachung

• E2E

### 4.2 Dokumenten-Management-Systeme

Um ein Dokumenten-Management-System (DMS) zu erläutern muss sich zuerst mit dem Begriff des "Dokuments" auseinander gesetzt werden. In [DMS08] S. 2 wird ein Dokument durch folgende Punkte definiert:

- Ein Dokument fasst inhaltlich zusammengehörende Informationen strukturiert zusammen, die nicht ohne erheblichen Bedeutungsverlust weiter unterteilt werden können.
- Die Gesamtheit der Information ist für einen gewissen Zeitraum zu erhalten.
- Dokumente dienen oft dem Nachweis von Tatsachen.
- Ein Dokument ist als Einheit ablegbar (speicherbar) und/oder versendbar und/oder wahrnehmbar (sehen, hören, fühlen).
- Das Dokument ist eigentlich der Träger, der die Informationen speichert, egal ob das Dokument ein Stück Paper, eine Datei auf einem Rechner, ein Videoband oder eine Tontafel etc. ist. Dies bedeutet auch, dass es keine Bindung an Papier oder ein geschriebenes Wort gibt.

Desweiteren gibt es eine Differenzierung in zwei Definitionen:

"Als **Dokument im konventionellen Sinne** werden Dokumente bezeichnet, die als körperliches Dokumente (z. B. Papier) vorliegen, ursprünglich als körperliches Dokument vorlagen oder für die Publizierung auf einem körperlichen Medium vorgesehen sind.



Die Begrifflichkeit des **Dokuments im weiteren Sinne** erweitert den Begriff des Dokuments um semantisch zusammengehörende Informationsbestände , die für die Publikation in nichtkörperlichen Medien, z. B. Webseiten, Radio, Fernsehen o. ä. vorgesehen sind. Derartige Dokumente werden oft dynamisch gestaltet und zusammengestellt."

[DMS08] S. 2

Unter **Dokumenten-Management** werden primär die Verwaltungsfunktionen Erfassung, Bearbeitung, Verwaltung und Speicherung von Dokumenten verstanden. [DMS08] S. 344.

Darunter fallen laut [DMS08] S. 3 folgende Punkte:

- Kennzeichnung und Beschreibung von Dokumenten (auch Metadaten des Dokuments genannt)
- Fortschreibung, Versionierung und Historienverwaltung von Dokumenten
- Ablage und Archivierung von Dokumenten
- Verteilung und Umlauf von Dokumenten
- Suche nach Dokumenten bzw. Dokumenteninhalten
- Schutz der Dokumente vor Verfälschung, Missbrauch und Vernichtung
- Langfristiger Zugriff auf die Dokumente und Lesbarkeit der Dokumente
- Lebenslauf und Vernichtung von Dokumenten
- Regelung von Verantwortlichkeiten für Inhalt und Verwaltung von Dokumenten

Der Begriff "Dokumenten-Management-System" muss auch in zwei verschiedene Sichtweisen differenziert werden:



"Bei Dokumenten-Management-Systemen im engeren Sinne geht es um die Logik der Verwaltung von Dokumenten, deren Status, Struktur, Lebenzyklus und Inhalt. Dokumente werden beschrieben, klassifiziert und in einer bestimmten logischen Struktur eingeordnet, damit sie einfach wieder gefunden werden können. Dokumente entstehen, werden verändert und (irgendwann) vernichtet.

Den Dokumenten-Management-Systemen im weiteren Sinne ordnet man auch noch weitere Funktionalitäten zu, wie z.

B. Schrifterkennung, automatische Indizierung, [...], Publizierung.

Hier lassen sich die Grenzen nicht mehr genau bestimmten!"

[DMS08] S. 5

Die Grundstruktur eines Dokumenten-Management-Systemes kann man dadurch grob in folgender Abbildung zusammenfassen:

Bild [DMS08] S. 38

Dabei wird ein DMS in drei verschiedene Teilbereiche aufgegliedert:

- 4.2.1 Eingabe
- 4.2.2 Archivierung und Verwaltung
- 4.2.3 Ausgabe

### 4.3 Content-Management-Systeme

Bei einem Content-Management-System (CMS) steht nicht mehr das eigentliche Dokument im Vordergrund, sondern vielmehr der enthaltene Informationsgehalt des Dokuments. Der Unterschied zwischen einem DMS und einem CMS besteht laut [DMS08] S. 114 im/in Folgenden/m:

"Abgrenzend zum Dokumenten-Management handelt es sich beim Content-Management nicht vordergründig um die Verwaltung von



Dokumenten, sondern um die Verwaltung von Informationseinheiten, die miteinander verknüpft sein können. [...] Je nach ausprägung kann nun ein konkretes System als Dokumenten-Management-System mit Content-Management-Funktionen definiert werden und umgekehrt. [...] Der Ansatz des Content-Management unterscheidet sich vom "klassischen" Dokumenten-Mangement vor allem in Bezug auf die betrachteten Objekte: Ein DMS hat als kleinestes Objekt der Betrachtung eines einzelnen Dokument. [...] Content-Management ist auf logische Informationseinheiten ausgerichtet. Es ist z.B. das Ziel des Content-Managements, Inhalte, die auf mehrere Quellen verteilt sind, neue zusammenzustellen und daraus z.B. ein neues Dokument zu generieren."

[DMS08] S. 114f

Die folgende Abbildung soll den (charakteristischen) Unterschied zwischen CMS-Systemen und DMS-Systemen verdeutlichen.

#### Bild [DMS08] S. 115

Wie zuvor beschrieben ist die Sichtweise eines DMS nur auf die einzelnen Dokumente beschränkt, während ein CMS einzelne Elemente / Informationen aus den Dokumenten extrahieren und daraus ggf. ein neues Dokument generieren kann. Die Sichtweise des CMS wird durch das gestrichelte Polygon dargestellt, welches hier dokumentenübergreifend abgebildet ist.

Der (theoretische/beabsichtigte) Zweck, weshalb ein CMS-System eingesetzt wird, ist laut Oracle folgendermaßen definiert:

"The key to a successful content management implementation is unlocking the value of content by making it as easy as possible for it to be consumed. This means that any piece of content must be available to any consumer, no matter what their method of access."



[UCM07] S. 12

Ein CMS soll die Informationen jedes/jedwedem (Inhalts) extrahieren/aufnehmen und jedes Einzelteil / Element dieser Information den Benutzern zugänglich machen, unabhängig von der Art des Zugriffs. Dieses Konzept soll in Abbildung 2 verdeutlicht werden.



Abbildung 2: "any-to-any" Content-Management Konzept<sup>2</sup>

Das CMS steht hier in der Mitte der Abbildung als Medium zwischen den verschiedenen Inhalten, eingestellt von den *Contributors* (links), und den Anwendern, die auf transformierte Versionen der Inhalte durch unterschiedliche Arten zugreifen (rechts).

### 4.4 [Enterprise-Content-Management-Systeme]

In diesem Zusammenhang / Kontext sei auch der Begriff Enterprise-Content-Management (ECM) genannt. Laut der "Association for Information and Image Management" (AIIM<sup>3</sup>), welche sich mit umfasst dieser Begriff die Verwaltungfunktionen von Unternehmensinformationen in unterschiedlichen Do-

<sup>&</sup>lt;sup>2</sup>Quelle: [UCM07] S. 12

<sup>&</sup>lt;sup>3</sup>Die AIIM ist eine Gesellschaft von internationalen Herstellern und Anwendern von Informations- und Dokumenten-Mangement-Systemen



kumentformaten.<sup>4</sup> Diese Funktionen werden laut [DMS08] S. 116 durch verschiedene "Systeme wie Dokumenten-Management, Groupware, Workflow, Input- und Output-Management, (Web-)Content-management, Archivierung, Records-Management und andere" bereitsgestellt.

### 4.5 Universal-Content-Management-Systeme

Im Gegensatz zu anderen CMS-Systemen, wie Typo3 oder Joomla, bezeichnet Oracle seine Softwarelösung in diesem Bereich als Universal-Content-Management (UCM). Jedoch unterscheidet es sich in der technisches Umsetzung nicht von anderen CMS-Systemen. Es wir vermutet, dass sich Oracle durch diese Bezeichnung von den anderen CMS-Systemem abheben / absetzten wollte, also nur aufgrund von Marketing-Vorteilen ihr Produkt so nannte.

- 4.6 [cronjobs]
- 4.7 [ds ADS Benutzer]
- 4.8 [Metadaten allg]
- 4.9 [alse+-true+-]

<sup>&</sup>lt;sup>4</sup>Quelle: http://www.aiim.org/What-is-ECM-Enterprise-Content-Management.aspx



### 5 Nagios

### 5.1 Allgemein

Nagios dient zum Überwachen von Hosts und deren Services in komplexen Infrastrukturen (Host und Services erklären?) und wurde von dem Amerikaner Ethan Galstad seit 1999<sup>5</sup> - damals unter der Vorgängerversion Net-Saint - entwickelt und bis heute gepflegt. Galstad gründete aufgrund der vielfältigen (ansturmmäßig) und positiven Resonanz am 9. November 2007 die "Nagios Enterprises LLC", welche Nagios als kommerzielle Dienstleistung anbietet. Die Software selbst blieb weiterhin unter der freien Lizenz "GNU General Public License version 2"<sup>6</sup> verfügbar. Diese erlaubt Einblick in den Programmcode und Modifizieren der Anwendung nach eigenen Vorstellungen.

Nagios erfreut sich hoher Beliebtheit aufgrund der (bereits vorhandenen [macht kein sinn hohe beliebtheit aufgrund der großen community?]) großen Community, die Tipps, Ratschläge und auch eigene Nagios-Plugins kostenlos anbietet. Außerdem können selbst mit geringen Programmierkenntnissen zusätzliche Skripte zur Überwachung geschrieben werden, wenn ein spezieller Anwendungsfall dies erfordert. Warum wird Nagios engesetzt und nicht was anders -> andere kandidaten finden openview, big brother? -> das buch vom jäger verwenden!

OpenSource halt, recht einfach plugins programmierbar (auf plugin kapitel verweisen)

<sup>&</sup>lt;sup>5</sup>Quelle: http://www.netsaint.org/changelog.php

 $<sup>^6\</sup>mathrm{Quelle}$ : http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt



### 5.2 Aufbau / Architektur

Barth schreibt über Nagios:

"Die große Stärke von Nagios - auch im Vergleich zu anderen Netzwerküberwachungstools - liegt in seinem modularen Aufbau: Der Nagios-Kern enthält keinen einzigen Test, stattdessen verwendet er für Service- und Host-Checks externe Programme, die als *Plugins* bezeichnet werden."

[Barth08] S. 25

Dieser "Kern" beinhaltet das komplette Benachrichtigungssystem mit Kontaktadressen und Benachrichtigungsvorgaben (Zeit, Art, zusätzliche Kriterien), die Hosts- und Servicedefinitionen inklusive deren Gruppierungen und schließlich das Webinterface. Siehe hierfür auch Abbildung 3.



Abbildung 3: Logische Nagios Struktur<sup>7</sup>

Die Plugins werden durch die Servicedefinitionen mit den jeweiligen Hosts verbunden und werden durch eine Befehlskonfigurationsdatei mit ggf. veränderten Parametern durch Nagios aufgerufen.

<sup>&</sup>lt;sup>7</sup>Quelle: http://www.nagioswiki.org/w/images/8/81/Plugins.png



Das bedeutet, dass die gewünschten Plugins explizit aus dem Nagios Repertoire dem zu überwachendem Computer zugeteilt werden müssen. Eine beispielhafte Servicedefinition für den Host *iwrpaul.ka.fzk.de* wird in Codelisting 1.

Listing 1: Beispielhafte (Definition) eines Servicechecks

Nagios überprüft in einem festlegbaren / veränderbaren Zeitintervall alle vom Benutzer definierten Host- und Servicechecks und verarbeitet / arbeitet / wertet die Daten / Informationen / Ergebnisse der entsprechenden Plugins aus.

Weiterhin beschreibt Barth die Plugins folgendermaßen:

"Jedes Plugin, das bei Host- und Service-Checks zum Einsatz kommt, ist ein eigenes, selbständiges Programm, das sich auch unabhängig von Nagios benutzen lässt."

[Barth08] S. 105

Daher lassen sich die Parameter eines Plugins folgendermaßen überprüfen:

```
paul@iwrpaul:/usr/lib/nagios/plugins$ ./check_swap -w 20 -c 10
SWAP OK - 96% free (1826 MB out of 1906 MB) |swap=1826MB;0;0;0;1906
```

Abbildung 4: Beispielhafte manuelle Ausführung eines Servicechecks

Die Ausgabe des Plugins gibt den Zustand des Services an; in diesem Fall wird kein Schwellwert überschritten, daher die Meldung "SWAP OK".

Dabei wird in vier verschiedene Rückgabewerte / Antworten der Plugins unterschieden:



| Status | Bezeichnung | Beschreibung                                                                                                           |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------|
| 0      | ок          | Alles in Ordnung                                                                                                       |
| 1      | WARNING     | Die Warnschwelle wurde überschritten, die kritische<br>Schwelle ist aber noch nicht erreicht.                          |
| 2      | CRITICAL    | Entweder wurde die kritische Schwelle überschritten oder<br>das Plugin hat den Test nach einem Timeout<br>abgebrochen. |
| 3      | UNKNOWN     | Innerhalb des Plugins trat ein Fehler auf (zum Beispiel weil flasche Parameter verwendet wurden)                       |

Abbildung 5: Rückgabewerte für Nagios Plugins<sup>8</sup>

Anhand dieser Werte wertet Nagios gezielt den Status des jeweiligen Objektes (Host oder Service) aus. Weiterhin gibt es weiche (Soft States) und harte Zustände (Hard States):



Abbildung 6: Beispiel für den zeitlichen Verlauf durch vers. Zustände<sup>9</sup>

Ausgehend von einem OK Zustand wird in diesem Beispiel jede fünf Minuten periodisch überprüft, ob sich der Status des überwachten Objektes verändert hat. Nach zehn Minuten wird ein Umschwenken / Änderung des Zustandes durch das jeweilige Plugin gemeldet

"; der Zustand wechselt nach CRITICAL, zunächst allerdings als Soft State. Zu diesem Zeitpunkt löst Nagios noch keine Benachrichtigung aus"

, da es sich um eine Falschmeldung, auch False Positive genannt, handeln kann. Aufgrund einer kurzweiligen / kurzfristigen (besseres Wort? peak mä-

 $<sup>^8</sup>$ Quelle: [Barth08] S. 105f

<sup>&</sup>lt;sup>9</sup>Quelle: [Barth08] S. 95



ßig) hohen Auslastung des Netzwerkes oder um ein kurzzeitiges Problem, welches sich von alleine wieder normalisiert. (Bspw. Prozessorauslastung) Um einen False Positive auszuschliessen, wird der im Soft State befindliche Service bzw. Host mit einer höheren Frequenz überprüft. Sollten diese Überprüfungen den vorherigen Zustand bestätigen, verfestigt sich der aktuelle Zustand, man spricht nun von einem Hard State / wechselt der Zustand in den Hard State. Erst in diesem Moment werden die entsprechenden Kontaktpersonen über den in diesem Beispiel kritischen Zustand benachrichtigt. Sollte sich der Zustand wieder in den Normalzustand begeben und dieser Zustandsübergang wird von dem (von Nagios ausgeführten) Plugin festgestellt, wird dies an den Nagios Server gemeldet.

Ein Übergang zu dem OK Status wird sofort als Hard State festgelegt / festgehalten / festgesetzt / und führt dadurch zur sofortigen Benachrichtigung durch Nagios.

- Betroffene OSI Schichten auflisten und erklären
- Wie werden die Info von Nagios gesammelt und wie gespeichert -> FlapDetection
- Performacedaten???
- FLapping <sup>10</sup>
- Benachrichtigung durch email oder sms sogar per Telefon geht usw.
- Hierarchie http://nagios.sourceforge.net/docs/3\_0/networkreachability.
   html

### 5.3 Überprüfungs-Methoden

Dienste, die im Netzwerk zur Verfügung stehen (Netzwerkdienste), wie ein Web- oder FTP-Server , lassen sich einfach / simpel direkt über das Netz auf ihren Zustand (hin) überprüfen / testen. Hierfür muss dem entsprechende

 $<sup>^{10} \</sup>verb|http://nagios.sourceforge.net/docs/2_0/flapping.html|$ 

18



Plugin lediglich die Netzwerkadresse mitgeteilt werden, siehe Abbildung 7 als beispielhafte Überprüfung eines Webservers.

```
liwrpaul:/usr/lib/nagios/plugins$ ./check_http -H scc-bm-01.scc.kit.edu
OK HTTP/1.1 200 OK - 5194 bytes in 0.008 seconds |time=0.008195s;;;0.000000 size=5194B;;;0
```

Abbildung 7: Beispielhafte manuelle Ausführung eines netzwerkbasierenden Servicechecks / HTTP Server Check

(Bitte beachten, dass das Plugin immernoch auf dem Nagios Server ausgeführt wird / sich immernoch auf dem Nagios Server befindet)

Dienste, die sich nicht standardmäßig / ohne weiteres / ohne weitere Anpassung(en) über das Netzwerk überprüfen lassen, wie die Kapazität einer Festplatte auf einem entfernten Server(, das (Laufen) eines Prozesses) oder die Durchsuchung einer Logdatei nach bestimmten (Stop)wörtern.

Nagios bietet verschiedene Möglichkeiten an solche Dienste / Services zu überprüfen:



Abbildung 8: Verschiedene Überwachungsmöglichkeiten von Nagios

Hier die Zahlen als Wort oder Ziffer stehen lassen?



Variante / Methode / Client 1 Der zuvor, in Abbildung 7, gezeigte / abgebildete Test eines netzwerkbasierenden Dienstes wird im obigen Bild mit dem Client-Rechner (mit der Nummer) 1 realisiert. Die Überprüfung von nicht netzwerkbasierenden Diensten soll mit den restlichen Client-Rechnern exemplarisch aufgezeigt werden.

Variante / Methode / Client 2 Falls es sich beim Client um ein Unixderivat handelt, ist der entfernte Zugriff auf diesen Client per SSH<sup>12</sup>-Dienst
möglich. Dazu muss auf dem Client ein SSH-Benutzerkonto angelegt sein,
mit dem sich Nagios anmelden kann und die öffentlichen Schlüssel (zwischen
Nagios Server und Client) ausgetauscht werden, damit keine passwortabhängige Benutzerauthentifizierung (Eingabe von PW) notwendig ist. Danach
können lokale Ressourcen, wie Festplattenkapazität oder Logdateien mit dem
entsprechenden Plugin direkt auf dem entfernten Rechner überwacht werden.
Damit der Client diese Plugins verwenden kann, müssen sich die gewünschten
Plugins (auch) auf dem Client (lokal) befinden. Eine beispielhafte Verwendung mit dem dafür gedachten Nagios Plugin "check\_by\_ssh" (von dieser
Überwachungsmethode) wird in Abbildung 9 gezeigt.

```
paul@iwrpaul:<mark>/usr/lib/nagios/plugins$ .</mark>/check_by_ssh -H ppt.ka.fzk.de -C "/bin/check_swap -w 20 -c 10" SWAP OK - 100% free (384 MB out of 384 MB) |swap=384MB;0;0;0;384
```

Abbildung 9: Beispielhafte manuelle Ausführung eines Servicechecks über SSH

(Hier beachten, dass kein Passwort abgefragt wird, daher zuvor Schlüsselaustauschen)

Variante / Methode / Client 3 Eine alternative Möglichkeit solche Dienste auf entfernten Rechnern zu überwachen, ist durch den sogenannten Nagios Remote Plugin Executor (NRPE). Hier muss auf dem Client (extra) ein "Agent" installiert werden, welcher einen (TCP)-Port öffnet mit dem der

<sup>&</sup>lt;sup>12</sup>Durch eine Secure Shell (SSH) kann man sich eine verschlüsselte Netzwerkverbindung zum entfernten Rechner aufbauen.



Agent mit dem Nagios Server kommuniziert.

gung zwischen Nagios Server und Client.

Der Nagios Server kann diese Anforderungen über das (dafür gedachte) Plugin "check\_nrpe" an den Client verschicken. Ein Aufruf dieses Plugins ist dem des "check\_by\_ssh" Plugins, siehe dazu Abbildung 9, sehr ähnlich. Der Nachteil dieser Variante ist ein zusätzlich geöffneter Port und der höhere / erhöhte Aufwand beim Installieren des Agenten im Gegensatz zum (vermutlich /meistens) bereits laufendem SSH-Dienst. Zusätzlich gibt es nur die Möglichkeit die Anfragen auf diesem Port auf bestimmte IPs zu beschränken, jedoch nicht den Zugriff durch ein Passwort zu sichern. Dafür beschränkt sich der NRPE (lediglich) auf die auf dem entfernten Client liegenden Nagios Plugins und kann nicht System- bzw. Benutzerkommandos aufrufen, wie bspw. das "rm" Kommando zum Löschen von Dateien, welche durch den Einsatz von "check\_by\_ssh" standardmäßig möglich wären. Sicherheitstechnisch gesehen ist die SSH Variante (wenn unbehandelt PATH, user einschränken) kritischer, da es einem Angreifer ermöglicht auf diese System- bzw. Benutzerkommandos zuzugreifen, wenn er die Kontrolle über den Nagios Server

Variante / Methode / Client 4 Diese Variante wird nur grob angerissen / kurz / verkürzt behandelt, da sich diese Arbeit hauptsächlich mit der Überwachung von Servern beschäftigt und nicht von Netzwerkkomponenten wie Switches oder Router, die nur durch das Simple Network Management Protocol () überwacht werden können, wenn mehr Informationen als eine schlichte Erreichbarkeit überprüft / gesammelt werden soll.

erlangt. Beide Verfahren unterstützen die Verschlüsselung der Datenübertra-

Barth schreibt über diese Variante / Überwachungsmethode:

"Mit dem Simple Network Management Protocol SNMP lassen sich ebenfalls lokale Ressourcen übers Netz abfragen [...]. Ist auf dem Zielhost ein SNMP-Daemon installiert [...] kann Nagios ihn nutzen, um lokale Ressourcen wie Prozesse, Festplatten oder Interface-



Auslastung abzufragen."

[Barth08] S. 101

Durch SNMP kann auf die strukturierte Datenhaltung der MIB<sup>13</sup> in den entfernten Netzwerkknoten zugegriffen werden. Die MIB-Struktur ist folgendermaßen aufgebaut:



Abbildung 10: Struktur der Management Information Base (MIB)<sup>14</sup>

Anhand dieser Anordnung können die SNMP-Plugins den gewünschten Wert über das Netzwerk abfragen, ohne, dass auf dem Host ein installiertes Programm bzw. Agent notwendig ist.

Man unterscheidet zwischen aktiven und passiven Checks.

passive asynchron! Bei passiven Tests führt der zu überwachende Computer das statuserzeugende Ergebnis selbst aus und sendet es über ein Plugin zum Nagios Server. Hierfür muss das Testprogramm bzw Script und das entsprechende Plugin "send\_ncsa", welches zum Versenden der Informationen zuständig ist, auf dem Host vorhanden sein. Auf der anderen Seite muss der

<sup>&</sup>lt;sup>13</sup>Die Management Information Base (MIB) dient als SNMP-Informationstruktur und besteht aus einem hierarchischen, aus Zahlen aufgebauten Namensraum. Ähnliche Struktur wie andere hierarchische Verzeichnisdiensten wie DNS oder LDAP. Quelle: [Barth08] S.233

 $<sup>^{14}</sup>$ Quelle: [Munin08] S. 156



"NSCA" (Nagios Service Check Acceptor) als Dämon gestartet sein, damit die übermittelten Ergebnisse entgegengenommen werden können.



Abbildung 11: Passive Checks mit NSCA



Abbildung 12: Aktive Checks mit NRPE

• Kurz agenten, zeigen auf f. Kapitel -> SNMP erklären (MIB, OID) Sicherheitsrisiko

# 5.4 Überwachungslogik (mit Alarmierung/Benachrichtigung)

TODO: Distributed Monitoring bezug auf allg überwachungssysteme

### 5.5 Plugins

Gedacht für Linux umgebung

Verschiedene Möglichkeiten Checks zu realisieren unter Unix Systemen: Leicht programmierbar -> perl Extra Plugins für Windows

<sup>17</sup>Quelle: http://www.kilala.nl/Sysadmin/index.php?id=708



|                       | SSH                                     | NRPE                                      | SNMP                              | SNMP traps                                        | NSCA                                      |
|-----------------------|-----------------------------------------|-------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------------------------------|
| Connection initiation | Srv -> CInt                             | Srv -> CInt                               | Srv -> CInt                       | Cint -> Srv                                       | Clnt -> Srv                               |
| Security              | Encryption<br>TCP wrappers<br>Key pairs | Encryption<br>Access List<br>TCP wrappers | Access List (v2)<br>Password (v3) | Access List (v2)<br>Password (v3)<br>TCP wrappers | Encryption<br>Access List<br>TCP wrappers |
| Configuration         | On server                               | On client                                 | On client                         | On client and On server                           | On client                                 |
| Difficulty            | Easy                                    | Moderate                                  | Hard                              | Hard                                              | Moderate                                  |

Abbildung 13: Übersicht der verschiedenen Unix Agenten<sup>17</sup>

# 5.6 (Windows) Agenten oder allgemein Einholen von Infos

Warum nicht einfach alles über SNMP? -> ODI muss man erst beantragen, hoher Aufwand und dann doch nicht so universell/alles abdeckend wie aktive checks, man kann keine logfiles durchuchen -> könnte es aber als standalone prog auf dem client laufen lassen und dieser sendet dann passive checks Sagen das auf alten NSClient verzichtet wird und OpMon Agent nicht behandelt

- 1. Bilder ausm Nagios Buch Seite 472ff!
- 2. NSClient++
- 3. NC\_Net
- 4. NRPE\_NT

#### Zusammenfassung?

Welche wird jetzt eingesetzt und warum?

Erwähne sichheitsstechnisch Parameter erlauben oder nicht erlauben Dabei sagen, dass wenn nicht erlaubt sind keine zentrale Konfiguration der Checks auf dem Nagios server möglich ist -> abwägen



|                       | NSClient    | NRPEnt      | NSClient++                      | SNMP        | SNMP traps                 | NC_net **                  |
|-----------------------|-------------|-------------|---------------------------------|-------------|----------------------------|----------------------------|
| Connection initiation | Srv -> CInt | Srv -> CInt | Srv -> Clnt                     | Srv -> CInt | CInt -> Srv                | Clnt -> Srv<br>Srv -> Clnt |
| Security              | Password    |             | Password<br>Encryption *<br>ACL |             | Access List<br>Password    | Encryption<br>ACL          |
| Configuration         | On client   | On client   | On client                       | On client   | On client and<br>On server | On client                  |
| Difficulty            | Moderate    | Moderate    | Moderate                        | Hard        | Hard                       | Moderate                   |
| Resource<br>usage *** | unknown     | unknown     | 9MB RAM                         | unknown     | unknown                    | 30MB RAM                   |

Abbildung 14: Übersicht der verschiedenen Windows Agenten  $_{18}$ 

## 5.7 Visualisierung der eingesammelten Daten



#### Oracle UCM 6

#### 6.1Allgemein

Oracle Universal Content Management basiert auf der Software Stellent von der gleichnamigen Firma Stellent, welche im November 2006<sup>19</sup> von Oracle gekauft / erworben wurde.

#### Bild [Huff06] S 17

Sessionanzahl

Für was wird sie im FZK benutzt, auch Windows nennen

#### 6.2Aufbau / Architektur

Die Architektur des Oracle UCM Systems gliedert sich in separate Komponenten auf wie in Abbildung 15 gezeigt.

- 6.2.1Content Server
- 6.2.2Vault und Web Layout
- 6.2.3**Inbound Refinery**
- 6.2.4Search Engine
- 6.2.5Webserver

Oracle DB als Grundlage

FZK Bilddatenbank erwähnen

Einchecken -> Konvertieren -> Indexieren

#### Überwachungselemente 6.3

Die Überwachung einer Dienstes über ein Netzwerk verteilt sich auf verschiedenen Ebenen mit unterschiedlichen Gewichtungen. Zum Beispiel stellt das simple Senden eines Pings an den entsprechenden Server die niedrigste und primitivste Stufe dar, da hier lediglich die Netzwerkschnittstelle des Servers

<sup>&</sup>lt;sup>19</sup>Quelle: [OraPress]

 $<sup>^{20}\</sup>mathrm{Quelle:}\ \mathrm{http://www.club-oracle.com/forums/oracle-universal-content-management-ucm-aka-stellent}$ 





Abbildung 15: Oracle UCM Architektur<sup>20</sup>

auf ihre Funktionalität und dabei der Status der Netzwerkstrecke getestet wird. (Rechner an und Netzwerk ok) Ob die Anwendung überhaupt auf dem Server läuft und wenn, in welchem Zustand sie sich befindet (betriebsfähig, reagiert nicht mehr usw.), muss auf eine andere Weise herausgefunden werden.

Dabei lässt sich aus den verschiedenen Überwachungselemente folgende drei Kategorien bilden/ableiten:

#### 6.3.1 Statusabfragen

Diese Kategorie besteht aus einfacheren Überprüfungen, die jeweils den Status des Überwachungselementes überwachen. Dabei können weitere Untergruppen gebildet werden.

(Irgendwie Hierarchie verdeutlichen: zuerst ping als Grundlage, dann prozesse und services dann funktionschecks, bloss wie? Visio Bild?)



#### System

- Ping Überprüft, ob der Rechner vom Nagios-Server über das Netzwerk erreichbar ist.
- Prozessorauslastung Überwacht die Auslastung des Prozessors und schlägt bei ungewöhnlich hohen Werten Alarm.
- Festplattenspeicherausnutzung Überwacht die Speicherplatzauslastungen der verschiedenen Festplattenpartitionen, damit immer genügend Speicherplatz für Anwendungen und Betriebssystem verfügbar ist.
- Temperatur??? Die ganzen Standardüberwachungen -> Thüllmann
- Sessionanzahl Anzahl der am CMS angemeldeten Benutzer, da aus Performanzgründen eine Obergrenze mit einer maximalen Anzahl festgelegt ist.

#### **Prozesse**

- IdcServerNT.exe Der Windowsprozess des Stellent-Servers
- IdcAdminNT.exe Der Windowsprozess für die Administration (Webinterface?) des Stellent-Servers
- w3wp.exe Der Windowsprozess des Microsoft "Internet Information Services"

#### Services

- IdcContentService??? Den Zustand des "Content-Dienstes"-"sccdms01" überprüfen.
- IdcAdminService??? Den Zustand des "Administrations-Dienstes"-"sccdms01\_admin" überprüfen.



- Zeitsynchronisationsdienst: Überprüfen, ob der "W32TIME"-Dienst, der für den Zeitabgleich mit einem Zeitserver zuständig ist, läuft und die Abweichung zwischen Client und Zeitserver festhalten.
- Antivirusdienst: Den Zustand den Dienstes überprüfen, der für die ständig Updates des Virusscanners Symantec AntiVirus notwendig ist.

#### 6.3.2 Überwachung der Funktionalität

Durch die vorherigen Tests kann herausgefunden werden, ob eine Anwendung oder ein Dienst auf dem Server gestarten wurde. Die Funktionalität kann durch solche Überprüfungen jedoch **nicht** sichergestellt werden. Da beispielsweise der Prozess bzw. Dienst des Webservers gestartet ist, jedoch keine Webseite aufgerufen werden kann. Daher muss eine weitere Art von Überprüfungen/Checks die Anwendungen auf ihre Funktionalität (hin) überprüfen.

- Webserver Aufruf einer Webseite auf dem Server. Wenn auf diese Anfrage eine gültige Antwort in Form einer Statuscode-Meldung erfolgt, kann der reale/wirkliche Zustand des Webservers festgestellt werden.
- Webinterface des Oracle UCM Zusätzlich wird mit dieser Abfrage die Integration des Conten-Management-Systems in den Webserver überwacht, da hier nicht nur der Webserver, sondern eine UCM spezifische Webseite abgefragt wird.
- Benutzeranmeldung am Oracle UCM Hier wird getesten, ob sich ein Benutzer erfolgreich am System anmelden kann. Dies wird mit Anmeldungsdaten eines lokalen Benutzers und eines Active Directory-Benutzers durchgeführt um gleichzeitig/zusätzlich die Verbindung zum ADS-Server zu testen.
- Oracle Datenbank Wenn keine Verbindung zur Oracle Datenbank möglich ist, können keine neuen Informationen gespeichert werden. (zitat riester: läuft das system noch pseudomäßig, wirft aber jede Menge Fehler)



- Status von Cronjobs In periodischen Zeitabständen werden Programme aufgerufen, deren Aufruf und Endstatus/Endergebniss überwacht werden muss. Damit nicht das vorherige Ergebnis zu einem False Negative führt, müssen hier zusätzliche Zeitinformationen/zeitliche Parameter beachtet/bedacht werden.
- Einchecken von Dokumenten Damit die eigentliche Aufgabe des Dokumentenverwaltungssystem überwacht werden kann, werden verschiedene Datenformate testweise eingecheckt. Dabei wird die Antwort der Anwendung auf das Hinzufügen der Dateien analysiert.
- Konvertierung Da das hinzugefügte Dokument nicht nur einfach auf dem Server gespeichert wird, sondern dabei auch in ein anderes Format umgewandelt wird, muss diese Konvertierung zusätzlich überwacht werden. Wird beispielsweise ein Bild eingecheckt, wird dieses mehrfach in verschiedenen Auflösung oder als anderes Bilddateiformat gespeichert. Ob diese Transformation erfolgreich ablief, kann anhand dieser neuen Dateien festgestellt werden.
- Indizierung Bei dem Einchecken sollen auch gleichzeitig zusätzliche Informationen über das Dokument festgehalten werden. Diese Informationen können beispielsweise der Name des Authors, das Erstellungsdatum der Datei oder bei Bildern der verwendete Farbraum sein. Bei der Suche nach einem Dokument können diese Informationen als zusätzliche Suchkriterien verwendet werden. Daher müss überprüft werden, ob diese Daten richtig ausgelesen werden, der Datenbank hinzugefügt und vom Anwender abgefragt werden können. Dabei werden auch zuvor festgelegte/ausgewählte Testdateien verwendet.
- Suchfunktion Nach einer erfolgreichen Indizierung muss das eingecheckte Dokument per Suchanfrage gefunden werden. Ob die Suche und Indizierung erfolgreich abgelaufen ist, wird zusätzlich überprüft.



#### • Benutzersimulation!

#### 6.3.3 Auswerten von Logdateien

Die zwei bisherigen Kategorien beinhalten simple Zustandsüberprüfungen oder aktive Funktionaltests. In dieser Kategorie werden zusätzlich verschiedene Logs auf spezielle Warnungs- und Fehlermeldungen anhand entsprechender eindeutigen Signal/Stopwörter untersucht. Dies ist notwendig um Fehlverhalten der Anwendung zu erkennen, das nicht mit den vorherigen Überwachungselementen entdeckt wurde. Desweiteren können durch die Analyse der Logdateien etwaige Alarmmeldungen der bisherigen Tests bestätigt, begründet oder aufgehoben werden. Somit bietet das Auswerten der Logdateien zusätzliche Sicherheit False Positive- oder False Negative-Meldungen auszuschliessen.

Die Oracle UCM Anwendung erstellt drei verschiedene Arten von Logdateien:  $^{21}$ 

- Content Server Log
- Inbound Refinery Log
- Archiver Log

Um alle Logs ohne Probleme im Internetbrowser anzuzeigen, liegen alle Logdateien im HTML-Format vor. Alle drei Arten von Logs bestehen jeweils aus 30 verschiedenen Dateien, die sich täglich abwechseln. Dadruch wird für jeden Tag im Monat eine separate Datei angelegt, um bei vielen Warnungsund Fehlermeldungen durch die chronologische Anordnung/Hierarchie den Überblick zu behalten. So werden die Logdateien zwangsweise nach 30 Tagen nacheinander überschrieben.

Diese Rotation der Logdateien muss bei der Durchsuchung nach Signal/Stopwörter beachtet werden, damit stets die aktuelle Logdatei überwacht wird

\_

<sup>&</sup>lt;sup>21</sup>Quelle: [UCMlog09]



und keine veralteten Informationen für False Positives-Meldungen durch Nagios sorgen.

Übersichttabelle? wie mit beschreibung verbinden?



### 7 Umsetzung

In diesem Kapitel wird die Vorgehensweise der zuvor beschriebenen Problemstellungen erörtert.

### 7.1 Aufbau der Testumgebung

### 7.1.1 Aufsetzen eines Nagios-Test-Systems

Da die einzelnen Überwachungselemente in der Überwachungssoftware Nagios nach und nach eingetragen (/ definiert / assoziiert / verbunden) werden müssen, ist ein häufiges Neustarten der Nagios Anwendung notwendig, damit die neuen Konfigurationsdateien übernommen werden.

Damit dies nicht auf dem produktiven Nagios-Server durchgeführt werden muss, wird ein Nagios-Testserver für diesen Zwecks eingesetzt.

#### 7.1.2 Bilddatenbank als VM

Für die Simulation der verschiedenen Fehlerzuständen der einzelnen Überwachungselemente wird eine virtuelle Maschine mit einer Oracle UCM Prototypinstallation, die extra als Entwicklungsplatform erstellt wurde, verwendet.

### 7.2 Basisüberwachung - Konfigurationsdateien

- Wie/wo werden Hosts eingetragen -> hostgroups
- Service Definitionen -> mit Host verbinden
- Wer wird wann wegen was wie benachrichtigt -> contacts

### 7.3 Einrichten des Windows Agenten

- Port ändern -> RPC
- Verschlüsselung durch PW und/oder Algo
- Hinzufügen der Plugins
- Bsp Aufruf aktiver Check



. Net 2.0 Framework essentiell NC\_Net installieren nagios server ip zur sicherheit angeben port ändern p<br/>w hinzufügen -> dienst starten

test vom nagios host:

Listing 2: Aufruf eines aktiven Checks

Das auf dem Nagios Server liegende Script "check\_nc\_net" stellt eine Verbindung zum angegebenen Server her und führt die mit dem Parameter "1" angegebene Datei aus. Dafür muss sich diese Datei in dem Script Verzeichnis des NC\_Net befinden.

Danach command definition hinzufügen, weil PW und Port verändert wurde:

Listing 3: Nagios-Befehls Definition für den Host

#### Danach

- Logfiles check.exe
- batchloader.exe script

### 7.4 Überprüfen der Prozesse und Services

- Prozesse
- Services
- Bsp Aufruf

### 7.5 Umsetzung der Funktionlitätstest

- batchloader + .blo Dateien
- einloggen mit lokalem und ads benutzer



# 7.6 Auswertung der Logs + Stopwörterdefinition

- $\bullet$  check\_logfiles
- $\bullet\,$  check\_logfiles cfg file inkl. Rotation



# 8 Ergebnis

- Vllt. Übersicht wie was überwacht wird
- Screenshots von Nagios
- Exportierfähigkeit, was muss alles auf dem Live-Nagios Server gemacht werden



# 9 Zusammenfassung und Ausblick

- Geeignete Stopwörter für Logdateien müssen noch gefunden / eruiert werden
- Passende Schwellwertdefinitionen können erst nach einer gewissen Laufzeit festegelegt werden
- Export der entwickelten Überwachung auf den produktiven Haupt-Nagios Server



# 10 Anhang

# 10.1 Abbildungsverzeichnis

| 1  | Zusätzliche Netzwerkabhängigkeit und Netzwerkbelastung               | 5  |
|----|----------------------------------------------------------------------|----|
| 2  | "any-to-any" Content-Management Konzept                              | 11 |
| 3  | Logische Nagios Struktur                                             | 14 |
| 4  | Beispielhafte manuelle Ausführung eines Servicechecks                | 15 |
| 5  | Rückgabewerte für Nagios Plugins                                     | 16 |
| 6  | Beispiel für den zeitlichen Verlauf durch vers. Zustände $\ .\ .\ .$ | 16 |
| 7  | Beispielhafte manuelle Ausführung eines netzwerkbasierenden          |    |
|    | Servicechecks / HTTP Server Check                                    | 18 |
| 8  | Verschiedene Überwachungsmöglichkeiten von Nagios $\ .\ .\ .\ .$     | 18 |
| 9  | Beispielhafte manuelle Ausführung eines Servicechecks über SSH       | 19 |
| 10 | Struktur der Management Information Base (MIB) $\ \ldots \ \ldots$   | 21 |
| 11 | Passive Checks mit NSCA                                              | 22 |
| 12 | Aktive Checks mit NRPE                                               | 22 |
| 13 | Übersicht der verschiedenen Unix Agenten<br>$^{22}$                  | 23 |
| 14 | Übersicht der verschiedenen Windows Agenten                          | 24 |
| 15 | Oracle UCM Architektur                                               | 26 |



# 10.2 Codelistingverzeichnis

| 1 | Beispielhafte (Definition) eines Servicechecks | 15 |
|---|------------------------------------------------|----|
| 2 | Aufruf eines aktiven Checks                    | 33 |
| 3 | Nagios-Befehls Definition für den Host         | 33 |



### 10.3 Quellverzeichnis

#### 10.3.1 Literaturverzeichnis

[DMS08] Götzer, Klaus; Schmale, Ralf; u.a. (2008) "Dokumenten-Management - Informationen im Unternehmen effizient nutzen"4. Auflage,

dpunkt.verlag GmbH Heidelberg, ISBN13: 978-3-89864-529-4, Stand: ????, Einsichtnahme: 25.06.2009

[Barth08] Wolfgang Barth (2008) "Nagios - System- und Netzwerk-Monitoring" 2. Auflage,

ISBN13: 978-3-937514-46-8,

Stand: ????, Einsichtnahme: 25.05.2009

[Huff06] Brian Huff (2006) "The Definitive Guide to Stellent Content Server Development",

ISBN13: 978-1-59059-684-5,

Stand: ????, Einsichtnahme: 25.05.2009

[Jose07] David Josephsen (2007) "Bulding a monitoring infrastructure with Nagios",

ISBN13: 0-132-23693-1,

Stand: ????, Einsichtnahme: 16.06.2009



#### 10.3.2 Internetquellen

[UCM07] Ohne Verfasser (2007) "Oracle Application Server Documentation Libary - Oracle Content Management 10gR3",

Quelle: http://download-west.oracle.com/docs/cd/ E10316\_01/cs/cs\_doc\_10/documentation/integrator/ getting\_started\_10en.pdf

Stand: unbekannt, Einsichtnahme: 16.06.2009

[UCMlog09] Unbekannter Author "vramanat" (2009) "Universal Content

Management 10gR3 - Content Server Log File Information",

Quelle: http://www.oracle.com/technology/products/
content-management/cdbs/loginfo.pdf

Stand: 20.01.2009, Einsichtnahme: 05.06.2009

[Munin08] Gabriele Pohl und Michael Renner (2008) "Munin - Graphisches Netzwerk- und System-Monitoring",ISBN13: 978-3-937514-48-2, Einsichtnahme: 05.04.2009

[OraPress] Letty Ledbetter (2009) "Oracle Press Release - Oracle Buys Stellent",

Quelle: http://www.oracle.com/corporate/press/2006\_nov/stellent.html

Stand: 02.11.2006, Einsichtnahme: 16.06.2009



### 10.4 Glossar

| Bezeichnung | Beschreibung                                                                                | Seiten |
|-------------|---------------------------------------------------------------------------------------------|--------|
| AIIM        | Association for Information and Image Mana-                                                 | 7      |
|             | gement - Die AIIM ist eine Gesellschaft von in-                                             |        |
|             | ternationalen Herstellern und Anwendern von                                                 |        |
|             | Informations- und Dokumenten-Mangement-                                                     |        |
|             | Systemen.                                                                                   |        |
| CMS         | Content-Management-System                                                                   | 6      |
| DMS         | Dokumenten-Management-System                                                                | 4      |
| DNS         | Domain Name System                                                                          | 16     |
| ECM         | Enterprise-Content-Management                                                               | 7      |
| LDAP        | Lightweight Directory Access Protocol                                                       | 16     |
| MIB         | Management Information Base                                                                 | 16     |
| NRPE        | Nagios Remote Plugin Executor                                                               | 14     |
| NSCA        | Nagios Service Check Acceptor                                                               | 16     |
| SSH         | Secure Shell - Durch eine Secure Shell kann<br>man sich eine verschlüsselte Netzwerkverbin- | 14     |
|             | dung zum entfernten Rechner aufbauen.                                                       |        |