Lecture 11 Principal Component Analysis

EE-UY 4563 / EL-GY 9123: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Outline

- Dimensionality reduction
- ☐ Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python

Dimensionality Reduction

- ☐ Many modern data sets have very high dimension
- Want to reduce dimension:
 - Simplify classification / regression tasks on the data set
 - Visualize data
 - Find underlying commonalities in data

Data Definitions

- ☐ Given data: x_i , i = 1, ..., N
- \square Each sample has p features: $x_i = (x_{i1}, ..., x_{ip})$
- \square Represent as an $N \times p$ matrix
- ☐ Unsupervised learning
 - Samples do not have a label
 - Or, we choose to ignore the label for now
- \Box Dimension p is large
- ☐ How do we reduce the dimension?

Example: Faces

Labeled Faces in the Wild Home

- ☐ Face images can be high-dimensional
 - We will use 50 x 37 = 1850 pixels
- ☐ But, there may be few degrees of freedom
- ☐ Can we reduce the dimensionality of this?
- ☐ Data Labelled Faces in the Wild project
 - http://vis-www.cs.umass.edu/lfw
 - Large collection of faces (13000 images)
 - Taken from web articles about 10 years ago

Loading the Data

```
☐ Lect10_PCA_Faces.ipynb
```

- ■Built-in routines to load data is sciket-learn
- ☐ Can take several minutes the first time (Be patient)

```
Image size = 50 x 37 = 1850 pixels
Number faces = 1288
Number classes = 7
```

```
from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

2016-11-14 14:15:30,862 Downloading LFW metadata: http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt
2016-11-14 14:15:30,958 Downloading LFW metadata: http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt
2016-11-14 14:15:31,028 Downloading LFW metadata: http://vis-www.cs.umass.edu/lfw/pairs.txt
2016-11-14 14:15:31,294 Downloading LFW data (~200MB): http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz
2016-11-14 14:20:10,056 Decompressing the data archive to C:\Users\Sundeep\scikit_learn_data\lfw_home\lfw_funneled
2016-11-14 14:22:08,605 Loading LFW people faces from C:\Users\Sundeep\scikit_learn_data\lfw_home
2016-11-14 14:22:13,640 Loading face #00001 / 01288
```


Plotting the Data

- ☐ Some example faces
- ☐ You may be too young to remember them all


```
def plt_face(x):
    h = 50
    w = 37
    plt.imshow(x.reshape((h, w)), cmap=plt.cm.gray)
    plt.xticks([])
    plt.yticks([])

I = np.random.permutation(n_samples)
plt.figure(figsize=(10,20))
nplt = 4;
for i in range(nplt):
    ind = I[i]
    plt.subplot(1,nplt,i+1)
    plt_face(X[ind])
    plt.title(target_names[y[ind]])
```

Outline

- ☐ Dimensionality reduction
- Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python

Projections

- \square Given a vectors z and v
- \square Projection of z onto v is:

$$\hat{\mathbf{z}} = \operatorname{Proj}_{\mathbf{v}}(\mathbf{z}) = \alpha \mathbf{v}, \qquad \alpha = \frac{\mathbf{v}^T \mathbf{z}}{\mathbf{v}^T \mathbf{v}} = \frac{\|\mathbf{z}\|}{\|\mathbf{v}\|} \cos \theta$$

- □Let $V = {\alpha v | \alpha \in R}$ = vectors on the line spanned by v
- □ Theorem: $Proj_v(z)$ is closest point in V to z:

$$\hat{\mathbf{z}} = \arg\min_{\mathbf{w} \in V} ||\mathbf{z} - \mathbf{w}||^2$$

Sample Covariance Matrix

- \square Let \widetilde{X} = data matrix with sample mean removed.
 - \circ Rows: $\widetilde{x}_i = x_i \overline{x}$
- \square Sample covariance matrix: Matrix Q with components:

$$Q_{k\ell} = \frac{1}{N} \sum_{i=1}^{N} (x_{ik} - \bar{x}_k)(x_{i\ell} - \bar{x}_{\ell})$$

- \circ Covariance between feature k and ℓ in the dataset
- Matrix is $p \times p$
- ☐ Theorem: Sample covariance is given by

$$\boldsymbol{Q} = \frac{1}{N} \widetilde{\boldsymbol{X}}^T \widetilde{\boldsymbol{X}}$$

- Proof on board
- Compute sample covariance via a matrix product

Directional Variance

- \square Given data: x_i , i=1,...,N and direction v with ||v||=1
- \square How much does x_i vary in the direction v?
- \square Let $z_i = \boldsymbol{v}^T \boldsymbol{x}_i$ = projection of \boldsymbol{x}_i onto \boldsymbol{v}
- \square Sample mean and variance in direction v is (proof on board):
 - Sample mean $\bar{z} = \boldsymbol{v}^T \overline{\boldsymbol{x}}$
 - \circ Sample variance $s_z^2 = oldsymbol{v}^T oldsymbol{S} oldsymbol{v}$

Maximizing Directional Variance

- \square What directions ν maximize the variance?
- ☐ Formulate as an optimization problem:

$$\max_{v} v^T Q v \text{ s.t. } ||v|| = 1$$

- ullet Let $oldsymbol{v}_1,...,oldsymbol{v}_p$ be the eigenvectors of $oldsymbol{Q}:oldsymbol{Q}oldsymbol{v}_j=\lambda_joldsymbol{v}_j$
- \square Sort eigenvalues in descending order: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
 - Can show that eigenvalues are real and non-negative
- ☐ Theorem: Any local maxima of the variance directional is an eigenvector
 - $oldsymbol{v} = oldsymbol{v}_j$ for some j and $oldsymbol{v}^T oldsymbol{Q} oldsymbol{v} = \lambda_j$
 - Proof on board

Principal Components

- ullet Principal components: The eigenvectors of $oldsymbol{Q}, oldsymbol{v}_1, ..., oldsymbol{v}_p$
 - \circ Always normalized $\|oldsymbol{v}_i\|=1$
- \square Sorted by eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
- \blacksquare Each vector is of dimension p
- ☐ Key property: Vectors are orthogonal

$$\circ \ \boldsymbol{v}_i^T \boldsymbol{v}_k = 0 \text{ if } j \neq k$$

- Proof on board
- ☐ Represents directions of maximal variance

Outline

- □ Dimensionality reduction
- ☐ Principal components and directions of variance
- Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python

Low-Dimensional Representations

- ☐ Given data x_i , i = 1, ..., N
- \square Problem: Find basis vectors v_j , j=1,...,d such that:

$$x_i \approx \overline{x} + \sum_{j=1}^d \alpha_{ij} v_j$$

- Sample mean + linear combination of basis vectors
- $\alpha_i = (\alpha_{i1}, ..., \alpha_{id})$ is an approximate coordinates of x_i in basis $(v_1, ..., v_d)$
- □ Dimensionality reduction:
 - $\,{}^{\circ}\,$ If $d \ll p$ we have represented \boldsymbol{v}_i with a smaller number of coefficients.

Orthonormal Sets and Bases

- lacktriangle Definition: A set of vectors $oldsymbol{v}_1$, ..., $oldsymbol{v}_d$ are an orthonormal set if:
 - $||v_i|| = 1$ for all j (unit length)
 - $v_j^T v_k = 0$ if $j \neq k$ (perpendicular to one another)
- lacksquare If d=p then $oldsymbol{v_1},...,oldsymbol{v_p}$ is called an orthonormal basis
- $oxed{\square}$ Matrix form: If $oldsymbol{V} = [oldsymbol{v}_1 \ ... \ oldsymbol{v}_d]$, then $oldsymbol{V}^T oldsymbol{V} = I_d$
- \square If d = p, then V is an orthogonal matrix
- ☐ Key property: the PCs form an orthonormal basis

Coefficients in an Orthonormal Basis

- lacksquare Suppose $v_1, ..., v_p$ is an orthonormal basis
- \square Given a vector \mathbf{z} , can write

$$\mathbf{z} = \sum_{j=1}^{p} \alpha_j \mathbf{v}_j$$
, $\alpha_j = \mathbf{v}_j^T \mathbf{z}$

- Simple expression for computing coefficients in an orthonormal basis
- Matrix form:

$$\alpha = \mathbf{V}^T \mathbf{z}, \qquad \mathbf{z} = \mathbf{V} \alpha$$

Approximating the Data Matrix

- ☐ Given data x_i , i = 1, ..., N
- ullet Let $v_1, ..., v_p$ be the PCs
- ☐ Find coefficient expansion of each data sample:

$$x_i = \overline{x} + \sum_{j=1}^p \alpha_{ij} v_j$$
, $\alpha_{ij} = v_j^T (x_i - \overline{x})$

lacksquare Now consider approximation with d coefficients:

$$\widehat{\boldsymbol{x}}_i = \overline{\boldsymbol{x}} + \sum_{j=1}^a \alpha_{ij} \boldsymbol{v}_j$$

Average Approximation Error

- \square Let \widehat{x}_i = approximation with d PCs
- \square Error in sample i:

$$x_i - \widehat{x}_i = \sum_{j=d+1}^p \alpha_{ij} v_j$$

 \Box Theorem: Average error with a d PC approximation is:

$$\frac{1}{N} \sum_{i=1}^{N} ||x_i - \hat{x}_i||^2 = \sum_{j=d+1}^{p} \lambda_j$$

 $\,{}^{\circ}\,$ Sum of the smallest p-d eigenvalues

Proportion of Variance (PoV)

- ullet Total variance of data set: $\frac{1}{N}\sum_{i=1}^{N}||x_i-\overline{x}||^2=\sum_{j=1}^{p}\lambda_j$
- lacksquare Average approximation error: $\frac{1}{N}\sum_{i=1}^{N}\|x_i-\widehat{x}_i\|^2=\sum_{j=d+1}^{p}\lambda_j$
- \Box The proportion of variance explained by d PCs is:

$$PoV(d) = \frac{\sum_{j=1}^{d} \lambda_j}{\sum_{j=1}^{p} \lambda_j}$$

- \circ Measure of approximation error in using d PCs
- \square Example: Suppose eigenvalues of sample covariance matrix are 10, 4, 0.2, 0.1, 0, 0, ...
 - What is the PoV for d = 1,2,3,...

Visualizing the Representation

☐ Finds a low-dimensional representation

Geometry of Approximations

- □ Approximation can be interpreted geometrically
- \Box Let V be set of all linear combinations

$$\sum_{j=1}^d \alpha_j \boldsymbol{v}_j$$

- ∘ *V* is a vector space
- \circ Called the span of $v_1, ..., v_d$
- \square Given z, \hat{z} is the closest vector in V to z
- \square Called the projection of z onto V

Space spanned by v_1, \dots, v_d

Latent Representations

- □ Each record is of the form: $x_i \approx \overline{x} + \sum_{j=1}^d \alpha_{ij} v_j$
- \square Variance in x_i explained by small number of "latent components"
 - \circ Coefficients $lpha_{ij}$ are the latent representations of x_i

■Example:

- x_i = list of movie preferences for customer i
- Movie preferences are highly correlated.
- Could be explained by small number of components (action, romance, presence of stars, ...)
- PCA can be used to find these out

Example: USArrests

- ☐ Arrests per capita in four categories
 - One record per US state
- ☐ Visualize PCA in a biplot
 - See the scores (i.e. coefficients of each state)
 - Loading (PC vectors)
- ☐ Fig from ISL 10.1

Outline

- □ Dimensionality reduction
- ☐ Principal components and directions of variance
- ■Approximation with PCs
- Computing PCs via the SVD
- ☐ Face example in python

Singular Value Decomposition

- □Given matrix $A \in R^{M \times N}$
- \square SVD is $A = USV^T$, where
 - $U \in \mathbb{R}^{M \times r}, \ U^T U = I_r$
 - $V \in \mathbb{R}^{N \times r}, V^T V = I_r$
 - \circ ${\bf S}={
 m diag}(s_1,\ldots,s_r), \ \ {
 m sorted}\ s_1\geq s_2\geq \cdots \geq s_r\geq 0$. Called the singular values
- ■All matrices have an SVD
- □ Number of singular values $r \le \min(M, N)$

Computing the PCA via SVD

- \square Let \widetilde{X} = data matrix with sample mean removed.
- \square Take SVD: $\widetilde{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$
- □ Properties:
 - Sample covariance matrix is $Q = \frac{1}{N}\widetilde{X}^T\widetilde{X} = \frac{1}{N}VS^2V^T$
 - Eigenvalues are $\lambda_j = s_j^2/N$
 - $^{\circ}\,$ PCs are v_{j} , columns of V
 - \circ Coefficients are $\alpha = \widetilde{\textbf{X}} \textbf{V} = \textbf{U} \textbf{S}$

Finding the Basis Vectors

- \square Consider problem of finding one basis vector, \boldsymbol{v}
- \square Given basis vector \boldsymbol{u} , the minimum approximation error for the i-th sample is:

$$\min_{\alpha_i} ||x_i - \overline{x} - \alpha_i v||^2$$

- \circ Represents how well x_i can be represented by the vector $oldsymbol{v}$
- □ Define the average approximation error:

$$J(\boldsymbol{v}) \coloneqq \frac{1}{N} \sum_{i=1}^{N} \min_{\alpha_i} ||\boldsymbol{x}_i - \overline{\boldsymbol{x}} - \alpha_i \boldsymbol{v}||^2$$

 \square Select v to minimize approximation error

$$\min_{\boldsymbol{v}} J(\boldsymbol{v})$$

Outline

- ☐ Dimensionality reduction
- ☐ Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- Face example in python

Computing the SVD

npix = h*w
Xmean = np.mean(X,0)
Xs = X - Xmean[None,:]
Then, we compute an SVD. Note that in python the SVD re

U,S,V = np.linalg.svd(Xs, full_matrices=False)4

■ Note efficient use of python broadcasting

■SVD:

- Use full_matrices (avoids computing zero SVs)
- $^{\circ}$ Matrix V is what we call V^T (Different from MATLAB)

Finding the PoV

- Most variance explained in about 400 components
- Some reduction

```
lam = S**2
PoV = np.cumsum(lam)/np.sum(lam)

plt.plot(PoV)
plt.grid()
plt.axis([1,n_samples,0, 1.1])
plt.xlabel('Number of PCs', fontsize=16)
plt.ylabel('PoV', fontsize=16)
```


Plotting Approximations

```
# number of faces to plot
nplt = 2
ds = [0,5,10,20,100]
                      # number of SVD approximations
# Select random faces
inds = np.random.permutation(n samples)
inds = inds[:nplt]
nd = len(ds)
                                                                          ☐ Selection of figure sizes for subplot
# Set figure size
plt.figure(figsize=(1.8 * (nd+1), 2.4 * nplt))
plt.subplots adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
# Loop over figures
iplt = 0
for ind in inds:
    for d in ds:
                                                                          ■ Note: Efficient computing of approx
        plt.subplot(nplt,nd+1,iplt+1)
       Xhati = (U[ind,:d]*S[None,:d]).dot(V[:d,:]) + Xmean
        plt face(Xhati)
        plt.title('d={0:d}'.format(d))
        iplt += 1
    # Plot the true face
    plt.subplot(nplt,nd+1,iplt+1)
    plt_face(X[ind,:])
    plt.title('Full')
    iplt += 1
```

Plotting the Approximations

Plotting the PCs

☐ The PCs can be plotted as well

Other Considerations

- □ Normalization: For most data, it is essential to standardize before computing PC
 - Otherwise, components with large values dominate small ones
- Sklearn has built in PCA routine (will explore in lab)
- ■Some texts do not subtract mean
 - Will be picked up as one of the PCs

State-of-the-Art: Auto-Encoders

- □PCA is a simple example of an autoencoder
- ☐ Tries to find low-dim representation
- Restricted to linear transforms
- □ Not very good for images and complex data

Deep Auto-Encoders

- □Can use deep networks for learning complex latent representations and their inverses
 - http://www.cc.gatech.edu/~hays/7476/projects/Avery Wenchen/
 - https://swarbrickjones.wordpress.com/2016/01/13/enhancing-images-using-deep-convolutionalgenerative-adversarial-networks-dcgans/ (Code in Theano not tensorflow)

