Revision notes - MA3110

Ma Hongqiang

November 22, 2018

Contents

1	Review	3
2	Derivative	4
3	Mean Value Theorem	5
4	Application of Mean Value Theorem	6
5	L'Hospital's Rule	6
6	More on Taylor	8
7	Riemann Integral	9
8	Integrability	10
9	Integral Properties	11
10	Riemann Sum	12
11	Fundamental Theorem of Calculus	13
12	Taylor And Improper Integral	14
13	Pointwise and Uniform Convergence	16
14	Cauchy Criterion	17
15	Property of Uniform Convergence	18
16	Functional Series	19
17	Test of Convergence of Functional Series	21
18	Dini Theorem and Power Series	23

19 Power Series Properties	2 4
20 Properties of Power Series	25
21 Taylor Series	26
22 Power Series Arithmetic	27
23 Open and Closed Sets, Compactness	28

1 Review

Definition 1.1 (Limit of Sequence).

For a sequence $(x_n)_{n\in\mathbb{N}}$, we say $\lim_{n\to\infty}x_n=a$ if and only if

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ such that } \forall n \geq n_0, |x_n - a| \leq \epsilon$$

Similarly, we define $\lim_{n\to\infty} x_n = \infty$ if and only if

$$\forall M > 0, \exists n_0 \text{ depending on } M, \text{s.t. } \forall n \geq n_0, x_n \geq M$$

Definition 1.2 (Limit Point(Subsequential Limit in MA2108 notes)).

A number $a \in [-\infty, \infty]$ is called a **limit point** of the sequence $(x_n)_{n \in \mathbb{N}}$, if there exists an increasing sequence of indices $n_1 < n_2 < n_3 < \cdots$ such that $\lim_{i \to \infty} x_{n_i} = a$.

Theorem 1.1.

 $\lim_{n\to\infty} x_n$ does not exist in $[-\infty,\infty]$ if and only if $(x_n)_{n\in\mathbb{N}}$ has more than 1 limit point in $[-\infty,\infty]$.

Definition 1.3 (Supremum and Infimum).

Let $A \subset [-\infty, \infty]$. The **supremum** of A, denoted by $\sup A$, is defined to be the **least upper bound** of A.

Essentially, $p = \sup A$ if and only if

- 1. $x \le p \forall x \in A$
- 2. if $x \leq u \forall x \in A$ for some $u \in [-\infty, \infty]$, then $p \leq u$.

The infimum is defined in a similar fashion. For detailed definition, check MA2108 revision notes.

Definition 1.4 (Limit Supremum and Infimum).

Given a sequence of real numbers $(x_n)_{n\in\mathbb{N}}$,

$$\lim \sup_{n \to \infty} x_n := \lim_{n \to \infty} (\sup_{m \ge n} x_m)$$

and

$$\lim \inf_{n \to \infty} x_n := \lim_{n \to \infty} (\inf_{m \ge n} x_m)$$

Theorem 1.2.

 $\limsup_{n\to\infty} x_n$ is a limit point and the **largest limit point** of the sequence $(x_n)_{n\in\mathbb{N}}$. $\liminf_{n\to\infty} x_n$ is the smallest limit point.

Theorem 1.3.

 $\lim_{n\to\infty} x_n$ exists in $[-\infty,\infty]$ if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$.

Definition 1.5 (Continuity).

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be **continuous** at x if $\lim_{y\to x} f(y)$ exists and equals f(x). Equivalently,

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \sup_{y \in [x - \delta, x + \delta]} |f(y) - f(x)| \le \epsilon$$

2 Derivative

Definition 2.1 (Derivative).

Let $I \subseteq \mathbb{R}$ be an interval, and let $c \in I$. A function $f: I \to \mathbb{R}$ is differentiable at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = L$$

for some $L \in \mathbb{R}$.

Equivalently, we need

$$\forall \epsilon > 0, \exists \delta > 0, \text{ such that} \forall x \in I, 0 < |x - c| < \delta \Rightarrow |\frac{f(x) - f(c)}{x - c} - L| \le \epsilon$$

Here, L is called the **derivative** of f at c, denoted by f'(c), or $\frac{\mathrm{d}f}{\mathrm{d}x}|_{x=c}$.

If f is differentiable at every $x \in S \subseteq I$, we say f is differentiable on S.

Definition 2.2 (Equivalent Definition of Derivative).

f is differentiable at c, if f(x) can be approximated by the line l(x) := f(c) + f'(c)(x - c) near x = c, i.e.,

$$\forall \epsilon > 0, \exists \delta > 0$$
, such that $\forall x \in [c - \delta, c + \delta], |f(x) - l(x)| \le \epsilon |x - c|$

Theorem 2.1 (Differentiability infers Continuity).

If $f: I \to \mathbb{R}$ is differentiable at $c \in I$, then f is continuous at c.

Theorem 2.2 (Derivative Rules).

Suppose that $f, g: I \to \mathbb{R}$ are differentiable at $c \in I$, then

• (Linearity) For any $a, b \in \mathbb{R}$, af + bg is differentiable at c, and

$$(af + bg)'(c) = af'(c) + bg'(c)$$

• (Product Rule) fg is differentiable at c and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c)$$

• (Quotient Rule) If $g(c) \neq 0$, then f/g is differentiable at c and

$$(\frac{f}{g})'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}$$

Theorem 2.3 (Caratheodory's Representation Lemma).

Let $f: I \to \mathbb{R}$ and let $c \in I$. The following conditions are equivalent:

- 1. f is differentiable at c.
- 2. There exists a function $\phi: I \to \mathbb{R}$ such that ϕ is continuous at c and

$$f(x) - f(c) = \phi(x)(x - c) \quad \forall x \in I$$

In this case, $\phi(c) = f'(c)$.

Theorem 2.4 (Chain Rule).

Let I, J be intervals in \mathbb{R} . Let $g: I \to J$ and $f: J \to \mathbb{R}$. Suppose g is differentiable at $c \in I$ and f is differentiable at $g(c) \in J$, then $f \circ g$ is differentiable at c, with

$$(f \circ g)'(c) = f'(g(c))g'(c)$$

3 Mean Value Theorem

Theorem 3.1 (Derivative of an Inverse Function).

Let I be an interval, and $f: I \to \mathbb{R}$ be continuous and strictly monotone on I. Let J := f(I) be the **range** of f, and $g: J \to I$ be the inverse of f.

If f is differentiable at $c \in I$ and $f'(c) \neq 0$, then g is differentiable at $f(c) \in J$, and

$$g'(f(c)) = \frac{1}{f'(c)}$$

Theorem 3.2 (Mean Value Theorem).

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there exists $c\in(a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

A special case of Mean Value Theorem is Rolle's Theorem.

Theorem 3.3 (Rolle's Theorem).

When f(a) = f(b) in the Mean Value Theorem, we obtain the existence of a $c \in (a, b)$ with

$$f'(c) = 0$$

Definition 3.1 (Relative Extremum).

Let $f: I \to \mathbb{R}$ for some subset $I \subseteq \mathbb{R}$ and let $c \in I$. Then

1. f has a **relative maximum** at c, if for some $\delta > 0$,

$$f(c) \ge f(x) \forall x \in I \cap (c - \delta, c + \delta)$$

2. Relative minimum of f on I are defined analogously.

Relative Extremum refers to either relative maximum or relative minimum.

 ${\bf Theorem~3.4~(Interior~Extremum~Theorem).}$

Let $f: I \to \mathbb{R}$, and let $c \in I$ be an interior point of I, i,e, $(c - \delta, c + \delta) \subseteq I$ for some $\delta > 0$. If f is differentiable at c and has a relative extremum at c, then f'(c) = 0.

Theorem 3.5.

Let $f: I \to \mathbb{R}$ and assume that f'(c) exists for some $c \in I$.

1. If f'(c) > 0, then for some $\delta > 0$, we have

$$f(x) < f(c) \quad \forall x \in I \cap (c - \delta, c)$$

and

$$f(x) > f(c) \quad \forall x \in I \cap (c, c + \delta)$$

2. If f'(c) < 0, then the directions of the two inequalities above are reversed.

Theorem 3.6 (Cauchy's Mean Value Theorem).

Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = (g(b) = g(a))f'(c)$$

4 Application of Mean Value Theorem

Theorem 4.1 (Monotonicity Properties).

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then f is increasing(resp. decreasing) on [a,b] if and only if $f'(x)\geq 0$ (resp. $f'(x)\leq 0$) for all $x\in (a,b)$.

If strict monotonicity is concerned, we will have $f'(x) > 0 \Rightarrow f(x) < f(y)$ for all x < y, but **not** the other direction.

Theorem 4.2 (Uniqueness of Anti-derivative Modulo Shift).

Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b).

Suppose that f and g have the same derivative, i.e., f'(x) = g'(x) for all $x \in (a, b)$, then there exists a constant $C \in \mathbb{R}$ such that

$$f(x) = g(x) + C \quad \forall x \in [a, b]$$

Theorem 4.3 (Intermediate Value Theorem for Derivatives).

Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b]. Suppose that f'(a) < f'(b), then for any $r \in (f'(a), f'(b))$, there exists some $c \in (a, b)$ with f'(c) = r.

Theorem 4.4 (First Derivative Test).

Let f be continuous on (a, b). Let $c \in (a, b)$. Assume that f'(x) exists for all $x \in (a, b) \setminus \{c\}$. Then

- 1. If $f'(x) \ge 0$ for all $x \in (a, c)$ and $f'(x) \le 0$ for all $x \in (c, b)$, then f has a relative maximum at c.
- 2. If $f'(x) \leq 0$ for all $x \in (a, c)$ and $f'(x) \geq 0$ for all $x \in (c, b)$, then f has a relative minimum at c.

Theorem 4.5 (Second Derivative Test).

Let f be differentiable on [a, b] with derivative f'. Suppose f'(c) = 0 at some $c \in (a, b)$, and f' is differentiable at c with derivative f''(c). Then,

- 1. If f''(c) > 0, then f has a relative minimum at c.
- 2. If f''(c) < 0, then f has a relative maximum at c.

5 L'Hospital's Rule

 ${\bf Theorem~5.1~(L'Hospital's~Rule).}$

Let $-\infty \le a < b \le \infty$. Let f and g be differentiable on (a,b). Assume that $g(x) \ne 0$ and $g'(x) \ne 0$ for all $x \in (a,b)$.

(I) If $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$, and $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = L$ for some $L\in [-\infty,\infty]$, then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

(II) If $\lim_{x\to a^+} g(x) = \infty$ and $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = L$ for some $L \in [-\infty, \infty]$, then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

Remark: L'Hospital's rule also holds if we replace $x \to a^+$ above by $x \to b^-$. We can also replace b be $a + \delta$ for some $\delta > 0$. Also, note that we make no assumption on f in (II).

Theorem 5.2 (Taylor Expansion).

Let f be n times differentiable on [a, x], with $f^{(i)}$ denoting the ith derivative of f. Suppose that $f^{(n+1)}(x)$ exists on (a, x). Then there exists $c \in (a, x)$ such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n+1)!} f^{(n+1)}(c) (x-a)^{n+1}$$

6 More on Taylor

Theorem 6.1 (Taylor Theorem).

Let f be n times differentiable on [a, x] with $f^{(i)}$ denoting the ith derivative of f. Suppose that $f^{(n+1)}$ exists on (a, x). Then there exists $c \in (a, x)$ such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n+1)!} f^{(n+1)}(c) (x-a)^{n+1}$$

Theorem 6.2 (Higher Order Derivative Tests).

Let $f: [a,b] \to \mathbb{R}$. Suppose that $f^{(1)}(x_0) = f^{(2)}(x_0) = \cdots = f^{(n-1)}(x_0) = 0$ for some $x_0 \in (a,b)$.

Assume also that $f^{(n)}$ exists at x_0 with $f^{(n)}(x_0) \neq 0$. Then

- 1. If n is even
 - (a) and $f^{(n)}(x_0) > 0$, then x_0 is a relative minimum of f.
 - (b) and $f^{(n)}(x_0) < 0$, then x_0 is a relative maximum of f.
- 2. If n is odd, then x_0 is neither a relative maximum nor a relative minimum of f.

7 Riemann Integral

Definition 7.1 (Partition).

Let [a, b] be a bounded closed interval. A **partition** P of [a, b] is a finite collection of ordered points:

$$P = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

The norm of P, denoted by $||P|| := \max_{1 \le i \le n} \{x_i - x_{i-1}\}.$

Partition can be then used to construct upper and lower bounds for any sensible definition of $\int_a^b f(x) dx$:

Let P be a partition of [a,b] defined above. Let $f:[a,b]\to\mathbb{R}$. Define

$$m_i := \inf_{x_{i-1} \le x \le x_i} f(x)$$
 and $M_i := \sup_{x_{i-1} \le x \le x_i} f(x)$

Then,

Definition 7.2 (Upper Sum and Lower Sum).

The upper sum and lower sum of f, with respect to P is defined by

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
 and $L(f, P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$

It is clear, geometrically that any sensible definition of $\int_a^b f(x) dx$ should satisfy

$$L(f, P) \le \int_a^b f(x) dx \le U(f, P)$$
 for any P

However, in this way, the definition of integral will be dependent on P. We hope to get rid of P.

Theorem 7.1.

Let $f:[a,b]\to\mathbb{R}$. For any partition P of [a,b], we have

$$L(f, P) \le U(f, P)$$

Definition 7.3 (Refinement of Partition).

Let P and Q be two partitions of [a,b]. We say Q is a refinement of P, or Q is a finer partition than P, if $P \subset Q$.

Essentially, some subintervals of P-partition are further divided into smaller subintervals under Q.

Theorem 7.2.

Let $f:[a,b]\to\mathbb{R}$. Let Q be a finer parition of [a,b] than P, then

$$L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$$

Definition 7.4 (Upper and Lower Integrals).

Let $f:[a,b]\to\mathbb{R}$. The upper and lower integrals are defined by

$$U(f) := \inf_{P} U(f, P)$$

$$L(f) := \sup_{P} L(f, P)$$

where inf and sup are taken over all partitions P of [a, b].

Theorem 7.3. $L(f) \leq U(f)$.

Theorem 7.4 (Riemann Integral).

Let $f:[a,b]\to\mathbb{R}$. We say that f is Riemann integrable on [a,b] if $L(f)=\inf_P L(f,P)=\sup_P L(f,P)=U(f)$. In this case, we define

$$\int_{a}^{b} f(x) dx := L(f) = U(f)$$

We also define $\int_b^a f := -\int_a^b f$.

8 Integrability

The Criteria 1 is by definition.

Theorem 8.1.

Let $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}$. If we can find a sequence of partitions P_n of [a,b] such that $\lim_{n\to\infty}L(f,P_n)=\lim_{n\to\infty}Y(f,P_n)=:I\in\mathbb{R}$, then f is Riemann integrable on [a,b] with $\int_a^bf=I$.

Theorem 8.2 (Riemann Integrability Criterion).

Let $f:[a,b]\to\mathbb{R}$. f is Riemann integrable on [a,b] if and only if for all $\epsilon>0$, there exists a partition P of [a,b] such that

$$U(f,P) - L(f,P) \le \epsilon$$

Theorem 8.3 (Bounded Monotone Function).

Let $f:[a,b]\to\mathbb{R}$ be **bounded and monotone**. Then f is Riemann integrable on [a,b].

Theorem 8.4 (Bounded Continuous Function).

Let $f:[a,b]\to \mathbb{R}$ be **continuous** on [a,b]. Then f is Riemann integrable on [a,b].

9 Integral Properties

Theorem 9.1 (Properties of the Riemann Integral). Let f and g be Riemann integrable on [a, b].

- 1. For each $c \in \mathbb{R}$, cf is integrable with $\int_a^b cf = c \int_a^b f$.
- 2. f+g is integrable with $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.
- 3. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_a^b f \leq \int_a^b g$.
- 4. |f| is integrable, and $|\int_a^b f| \le \int_a^b |f|$.
- 5. $f \cdot g$ is integrable.

Theorem 9.2 (Piecewise Integration). Let $f:[a,b] \to \mathbb{R}$ and let $c \in (a,b)$.

1. If f is integrable on [a, c] and [c, b], then f is integrable on [a, b] with

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

2. If f is integrable on [a, b], then f is integrable on [a, c] and [c, b].

Remark: By induction, the theorem above can extend to the case when [a, b] is partitioned into a finite number of intervals.

10 Riemann Sum

Definition 10.1 (Riemann Sum).

Let $P = \{x_0 = a < \cdots < x_n = b\}$ and $f : [a, b] \to \mathbb{R}$. Let $\xi := (\xi_1, \dots, \xi_n)$ with $\xi \in [x_{i-1}, x_i]$ for $1 \le i \le n$. Then

$$S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

is called the **Riemann Sum** of f wrt P and ξ .

Theorem 10.1 (Convergence of Riemann Sums).

Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable. Then uniformly in teh choice of sample point ξ ,

$$\lim_{\|P\| \to 0} S(f, P, \xi) = \int_a^b f$$

More precisely,

$$\forall \varepsilon > 0, \exists \delta > 0 \text{s.t.} \forall P \text{ with } ||P|| \leq \delta \text{ and } \forall \xi, |S(f, P, \xi) - \int_a^b f| \leq \epsilon$$

11 Fundamental Theorem of Calculus

Theorem 11.1.

Let f be integrable on [a, b]. Let $F(x) := \int_a^x f$ for all $x \in [a, b]$, with F(a) := 0. Then F is **uniformly continuous** on [a, b].

Theorem 11.2 (Fundamental Theorem of Calculus(I)).

Let f be integrable on [a,b]. Let $F(x) := \int_a^x f$ for $x \in [a,b]$, with F(a) := 0. If f is continuous at $x_0 \in [a,b]$, then $F'(x_0) = f(x_0)$.

More generally, if $\lim_{h\to 0^+} f(x+h) = \alpha$ and $\lim_{h\to 0^-} f(x+h) = \beta$, then

$$\lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h} = \alpha \text{ and } \lim_{h \to 0^-} \frac{F(x+h) - F(x)}{h} = \beta$$

Theorem 11.3 (Fundamental Theorem of Calculus II).

Let f be differentiable on [a, x], and assume that f' is integrable on [a, x]. Then

$$\int_{a}^{x} f' = f(x) - f(a)$$

Theorem 11.4 (Integration by Parts).

Let $f, g : [a, b] \to \mathbb{R}$ have integrable derivatives f', g' on [a, b]. Then

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g(a) da$$

Theorem 11.5 (Integration by Substitution).

Let $\phi: [a,b] \to I$, where I is an inteval. Suppose there is an integrable derivative ϕ' on [a,b]. Let $f: I \to \mathbb{R}$ be continuous on I. Then

$$\int_{a}^{b} f(\phi(t))\phi'(t)dt = \int_{\phi(a)}^{\phi(b)} f(x)dx$$

12 Taylor And Improper Integral

Theorem 12.1 (Integral Version of MVT).

Let f be continuous on [a, b]. Then $\exists c \in (a, b)$ such that $\int_a^b = f(c)(b - a)$.

Theorem 12.2 (Generalized Integral Version of MVT).

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b]. Let $g:[a,b]\to\mathbb{R}$ be integrable on [a,b] and assume that g has a *constant* sign on [a,b]. Then $\exists c\in(a,b)$ such that $\int_a^b fg=f(c)\int_a^b g$.

Theorem 12.3 (Taylor Expansion in Integral Form).

Let $f:[a,b]\to \mathbb{R}$. Given $x\in (a,b)$, assume that $f^{(1)},\ldots,f^{(n+1)}$ exists on [a,x] and $f^{(n+1)}$ integrable on [a,x]. Then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t) (x-t)^n dt$$

Definition 12.1 (Singularities).

 $b \in [-\infty, \infty]$ is a singularity of f if either $b = \pm \infty$ or f is unbounded in every neighbourhood of b, which can be formulated as one of the following equivalent claims:

- $\limsup_{x\to b} |f(x)| = \infty$
- $\forall \delta > 0, \sup_{x \in [b-\delta,b+\delta]} |f(x)| = \infty$
- $\forall \delta > 0, \forall N > 0, \exists x \in [b \delta, b + \delta] \text{ such that } |f(x)| > N.$
- $\exists x_1, \dots$ with $\lim_{x\to\infty} x_n = b$ such that $\lim_{n\to\infty} |f(x_n)| = \infty$.

 $\begin{tabular}{ll} \textbf{Definition 12.2} & (Improper Integral). \end{tabular}$

Let b be a singularity of f and assume $\int_a^c f$ exists for all $c \in [a, b)$. Then the improper integral $\int_a^b f$ is defined by

$$\int_{a}^{b} f := \lim_{c \to b^{-}} \int_{a}^{c} f$$

if the limit exists.

Similarly, if a is a singularity of f, then

$$\int_{a}^{b} f := \lim_{c \to a^{+}} \int_{c}^{b} f$$

if the limit exists.

If $c \in (a, b)$ is the only singularity of f on [a, b], then

$$\int_a^b f := \int_a^c f + \int_c^b f$$

if both improper integral limit exists.

Definition 12.3 (Cauchy Mean Value Theorem).

Suppose $c \in (a, b)$ is the only singularity of f on [a, b]. Then

$$\lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f + \int_{c+\varepsilon}^{b} f \right)$$

is the Cauchy Principle Value of $\int_a^b f$ if the limit exists. Similarly, if $a=-\infty$ and $b=\infty$ are only singularities of f, then Cauchy Principle Value is defined as

 $\lim_{t \to \infty} \int_{-t}^{t} f$

Remark: Cauchy Principle Value may exists even improper integral does not exists.

13 Pointwise and Uniform Convergence

In this section, we study the convergence of a sequence of functions.

Definition 13.1 (Pointwise Convergence).

Let $E \subset \mathbb{R}$. Let $f_n : E \to \mathbb{R}, n \in \mathbb{N}$, be a sequence of functions. We say that f_n converges pointwise to a limiting function $f : E \to \mathbb{R}$, if $\forall x \in E$, we have

$$f(x) = \lim_{n \to \infty} f_n(x)$$

In other words,

$$\forall x \in E, \forall \epsilon > 0, \exists N_{x,\epsilon} \in \mathbb{N} \text{such that} \forall n > N_{x,\epsilon}, |f_n(x) - f(x)| \leq \epsilon$$

In this case, we say f_n converges to f, i.e., $f_n \to f$, pointwise on E.

Remark: Suppose f_n pointwise converges to f,

- f_n continuous does *not* imply f continuous.
- f_n may have different integral value to f.
- f_n differentiable at x does not imply $f'_n(x) \to f'(x)$ at any x.

Definition 13.2 (Uniform Convergence).

A sequence of functions $f_n: E \to \mathbb{R}$ is said to be converge **uniformly** on E to a limiting function $f: E \to \mathbb{R}$ if

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \text{ such that } \forall n \geq N_{\epsilon} \text{ and } \forall x \in E, |f_n(x) - f(x)| \leq \epsilon$$

or equivalently,

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \text{ such that } \forall n \geq N_{\epsilon}, \sup |f_n(x) - f(x)| \leq \epsilon$$

We say that f_n converges to $f, f_n \to f$, uniformly on E.

Definition 13.3 (Sup Norm).

We define sup-norm of a function f to be

$$||f|| := \sup_{x \in E} |f(x)|$$

Sup-norm $\|\cdot\|$ has the following properties:

- ||f|| = 0 if and only if f = 0
- for c > 0, ||cf|| = c||f||
- $\bullet \ \|f+g\| \leq \|f\| + \|g\|$

The condition for uniform convergence can be written as

$$\lim_{n \to \infty} ||f_n - f|| = 0$$

Theorem 13.1. if $f_n \to f$ uniformly on E, then $f_n \to f$ pointwise on E.

14 Cauchy Criterion

In this section, we introduce another way to show uniform onvergence, apart from definition or sup-norm.

Theorem 14.1 (Cauchy Sequence).

 $\lim_{x\to\infty} a_n$ exists in \mathbb{R} if and only if $(a_n)_{n\in\mathbb{N}}$ is a Cauchy sequence, i.e.,

$$\forall \epsilon > 0, \exists N(\epsilon), \text{ such that } \forall m, n \geq N(\epsilon), |a_m - a_n| \leq \epsilon$$

Cauchy sequence is useful in checking convergence if it is difficult to guess the limit.

Theorem 14.2 (Cauchy's Criterion for Pointwise/Uniform Convergence). Let $f_n : E \to \mathbb{R}$, $n \in \mathbb{N}$, be a sequence of functions.

• There exists an $f: E \to \mathbb{R}$ such that $f_n \to f$ pointwise on E, if and only if for all $x \in E$, $(f(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence, i.e.,

$$\forall x \in E, \forall \epsilon > 0, \exists N_{x,\epsilon} \in \mathbb{N}, \text{ such that } \forall m, n \geq N_{x,\epsilon}, |f_m(x) - f_n(x)| \leq \epsilon$$

• There exists an $f: E \to \mathbb{R}$ such that $f_n \to f$ uniformly on E, if and only if (f_n) is a Cauchy sequence with respect to supnorm $\|\cdot\|$, i,e,

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \text{ such that } \forall m, n \geq N_{\epsilon}, ||f_m - f_n|| \leq \epsilon$$

Theorem 14.3 (Uniform Equivalent to Pointwise on Finite Set).

If E finite set and $f_n, f: E \to \mathbb{R}$, then $f_n \to f$ pointwise is equivalent to $f_n \to f$ uniformly on E.

15 Property of Uniform Convergence

Theorem 15.1 (Preservation of Continuity).

Let $f_n : [a,b] \to \mathbb{R}$, $n \in \mathbb{N}$ be a sequence of functions which converges **uniformly** on [a,b] to a limit $f : [a,b] \to \mathbb{R}$. If $(f_n)_{n \in \mathbb{N}}$ are all **continuous** at a given $x_0 \in [a,b]$ then f is also **continuous** to x_0 .

If $(f_n)_{n\in\mathbb{N}}$ are all continuous on [a,b], then f is also continuous on [a,b].

Theorem 15.2 (Convergence of Integrals).

Let $f_n: [a,b] \to \mathbb{R}$, $n \in \mathbb{N}$, be a sequence of functions converging **uniformly** on [a,b] to a limit $f: [a,b] \to \mathbb{R}$. Suppose that each f_n is **integrable** on [a,b], then f is **integrable** on [a,b], and for any $x_0 \in [a,b]$, $F_n(x) := \int_{x_0}^x f_n$ converges **uniformly** to $F(x) := \int_{x_0}^x f$ on [a,b]. In particular, $\int_a^b f_n \to \int_a^b f$.

Theorem 15.3 (Interchanging Limits with differential operator). Let $f_n : [a, b] \to \mathbb{R}$, $n \in \mathbb{N}$, be a sequence of functions. Suppose that

- For some $x_0 \in [a, b]$, we have $\lim_{n\to\infty} f_n(x_0) = L \in \mathbb{R}$ exists.
- f'_n exists on [a,b] and $f'_n \to g$ uniformly on [a,b] for some $g:[a,b]\to \mathbb{R}$.
- Each f'_n integrable.

Then $f_n \to f$ uniformly on [a, b] for some $f : [a, b] \to \mathbb{R}$ with $f(x_0) = L$, and f' exists on [a, b] with f' = g on [a, b], i.e.

$$\frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x)$$

Remark: In fact, condition (3) can be removed.

16 Functional Series

Definition 16.1 (Infinite Series of Functions).

Let $f_n : E \to \mathbb{R}$, $n \in \mathbb{N}$, be a sequence of functions. We call $\sum_{n=1}^{\infty} f_n$ an **infinite series** of functions, which is to be interpreted as follow:

- 1. We call $S_n: E \to \mathbb{R}$, defined by $S_n:=\sum_{i=1}^n f_i$, the *n*th partial sum of $\sum_{n=1}^\infty f_n$.
- 2. If S_n converges pointwise (resp. uniformly) to a function S defined on a subset $E_0 \subset E$, then we say that the series $\sum_{n=1}^{\infty} f_n$ converges pointwise (resp. uniformly) on E_0 , and we define $\sum_{n=1}^{\infty} f(x) := S(x)$ for all $x \in E_0$.

If for some $x \in E$, $\lim_{n\to\infty} S_n(x)$ does not exist, then $\sum_{n=1}^{\infty} f_n$ is undefined at x.

Theorem 16.1 (Cauchy's Criterion for Series of Functions).

1. $\sum_{n=1}^{\infty} f_n$ converges pointwise on E if and only if

$$\forall \epsilon > 0, \forall x \in E, exits N_{\epsilon,x} \in \mathbb{N} \text{ such that } \forall m \geq n \geq N_{\epsilon,x}, |\sum_{i=n}^{m} f_i(x)| < \epsilon$$

i.e., $\forall x \in E$, $S_n(x) = \sum_{i=1}^n f_i(x)$ is a Cauchy sequence of reals.

2. $\sum_{n=1}^{\infty} f_n$ converges uniformly on E if and only if

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \text{ such that } \forall m \geq n \geq N_{\epsilon}, \|\sum_{i=n}^{m} f_i\| \leq \epsilon$$

i.e., $S_n(x) = \sum_{i=1}^n f_i(x)$ is a Cauchy sequence of functions with respect to the sup-norm $\|\cdot\|$.

Theorem 16.2 (A necessary condition for Uniform Convergence).

If $\sum_{n=1}^{\infty} f_n$ converges **uniformly** on E_i then

$$||f_n|| = \sup_{x \in E} |f_n(x)| \to 0 \text{ as } n \to \infty$$

Theorem 16.3 (Weierstrass M-test).

Let $f_n: E \to \mathbb{R}$ for $n \ge 1$. Let $M_n:=\|f_n\|$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly on E. Furthermore, $\sum_{n=1}^{\infty} |f_n|$ also converges uniformly on E.

Theorem 16.4 (Continuity of an Infinite Series of Continuous Functions).

If $\sum_n f_n$ converges uniformly to a function S on [a, b], and each f_n is **continuous** at $x_0 \in [a, b]$, then S is also **continuous** at x_0 .

Theorem 16.5 (Interchanging Series with Integral).

If $\sum_n f_n$ converges uniformly to a function S on [a,b], and each f_n is integrable on [a,b], then S is integrable on [a,b], and for every $x \in [a,b]$,

$$\int_{a}^{x} S(t)dt = \int_{a}^{x} \sum_{n=1}^{\infty} f_n(t)dt = \sum_{n=1}^{\infty} \int_{a}^{x} f_n(t)dt$$

where the convergence on the right-hand-side is uniform on [a, b].

Theorem 16.6 (Interchanging Series with Derivative).

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of differentiable functions on [a,b] such that

- 1. $sum_{n=1}^{\infty} f_n(x_0)$ converges for some $x_0 \in [a, b]$
- 2. $\sum_{n=1}^{\infty} f'_n$ converges uniformly on [a, b]

Then $\sum_{n=1}^{\infty} f_n$ converges uniformly on [a,b] to a differentiable function $S:[a,b]\to\mathbb{R}$, with

$$S'(x) = \frac{\mathrm{d}}{\mathrm{d}x} (\sum_{n=1}^{\infty} f_n(x)) = \sum_{n=1}^{\infty} f'_n(x)$$

This theorem provides an alternative to Weierstrass M-test for proving uniform convergence of a series of functions.

17 Test of Convergence of Functional Series

Definition 17.1 (Uniform Boundedness).

A sequence of functions $(f_n)_{n\in\mathbb{N}}: E \to \mathbb{R}$ is called **uniformly bounded** on E if there exists a $K \in (0, \infty)$ such that $|f_n(x)| \leq K$ for all $x \in E$ and $n \in \mathbb{N}$, i.e.,

$$\sup_{n\in\mathbb{N}}\|f_n\|\leq K$$

Theorem 17.1 (Dirichlet's Test).

Let $(f_n)_{n\in\mathbb{N}}$ and $(g_n)_{n\in\mathbb{N}}$ be two sequences of functions on E. Then $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ is **uniformly convergent** on E if the following conditions are satisfied:

- 1. The partial sums of $\sum_{n} g_n$, $G_n := \sum_{i=1}^n g_i$, are uniformly bounded (i.e., $\sup_{n \in \mathbb{N}} ||G_n|| \le \infty$)
- 2. $\lim_{n\to\infty} ||f_n|| = 0$, i.e., f_n converges to the constant function 0 uniformly on E.
- 3. For each $x \in E$, the sequence of real numbers $(f_n(x))_{n \in \mathbb{N}}$ is **monotone**.

We have the following corollary from the above theorem:

Theorem 17.2 (Dirichlet's Test for Reals).

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences of real numbers. Then $\sum_{n=1}^{\infty}a_nb_n$ converges if

- 1. $B_n := \sum_{i=1}^n b_i, n \in \mathbb{N}$, are bounded (i.e., $\sup_{n \in \mathbb{N}} |B_n| = K < \infty$)
- $2. \lim_{n\to\infty} a_n = 0.$
- 3. a_n is **monotone** in n.

Theorem 17.3 (Alternating Series Test).

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions on E such that

- 1. $f_n \to 0$ uniformly on E, i.e., $\lim_{n\to\infty} ||f_n|| = 0$
- 2. $\forall x \in E, f_n(x) \text{ is monotone in } n.$

Then the series $\sum_{n=1}^{\infty} (-1)^n f_n(x)$ is **uniformly convergent** on E.

Theorem 17.4 (Abel's Test).

Let $(f_n)_{n\in\mathbb{N}}$ and $(g_n)_{n\in\mathbb{N}}$ be two sequences of functions on E. Then $\sum_{i=1}^{\infty} f_n g_n$ is uniformly convergent if

- 1. $\sum_{n=1}^{\infty} g_n$ converges uniformly on E.
- 2. $(f_n)_{n\in\mathbb{N}}$ are uniformly bounded on E, i.e., $\sup_{n\in\mathbb{N}} ||f_n|| = K < \infty$.
- 3. For each $x \in E$, $f_n(x)$ is monotone in n.

Theorem 17.5 (Abel's Test For Reals).

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences of real numbers on E. Then $\sum_{i=1}^{\infty} a_n b_n$ is uniformly convergent if

- 1. $\sum_{n=1}^{\infty} b_n$ converges.
- $2. \sup_{n \in \mathbb{N}} |a_n| = K < \infty.$
- 3. a_n is monotone in n.

18 Dini Theorem and Power Series

Dini's Theorem is another test of uniform convergence.

Definition 18.1 (Monotone Sequence of Functions).

A sequence of functions $f_n: E \to \mathbb{R}, n \in \mathbb{N}$, is called **monotone** is it is either **increasing** $(\forall x \in E, f_1(x) \leq f_2(x) \leq \cdots)$ or decreasing.

Theorem 18.1 (Dini's Theorem).

Let $(f_n)_{n\in\mathbb{N}}$ and f be defined on [a,b]. Suppose that

- 1. $f_n \to f$ pointwise on [a, b].
- 2. $(f_n)_{n\in\mathbb{N}}$ and f all continuous on [a,b].
- 3. $(f_n)_{n\in\mathbb{N}}$ is monotone

Then $f_n \to f$ uniformly on [a, b].

Definition 18.2 (Power Series).

A series of functions of the form

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

where $(a_n)_{n\geq 0}$ are constants, is called a **power series** in $(x-x_0)$.

Definition 18.3 (Absolute Uniform Convergence).

A series of functions $\sum_{n=1}^{\infty} f_n$ converges **absolutely-uniformly on** E if $\sum_{n=1}^{\infty} |f_n|$ converges uniformly on E.

Theorem 18.2. Absolute uniform convergence of $\sum_n f_n$ implies uniform convergence.

Theorem 18.3 (Radius of Convergence).

given a power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. Let

$$R:=\frac{1}{\limsup_{n\to\infty}|a_n|^{\frac{1}{n}}}\in[0,\infty]$$

with R := 0 (resp. ∞) if $\limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \infty$ (resp. 0). Then

- 1. If $R \in (0, \infty)$, then for any fixed $r \in [0, R)$, then power series converges **absolutely uniformly** on $[x_0 r, x_0 + r]$ and diverges for any x with $|x x_0| > R$.
- 2. If R = 0, then the series converges at $x = x_0$ only.
- 3. If $R = \infty$, then for any fixed r > 0, the series converges **absolutely uniformly** on $[x_0 r, x_0 + r]$. In particular, it converges absolutely at each $x \in \mathbb{R}$.

Theorem 18.4.

If $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0, a_n \neq 0$, and $\rho := \lim_{n \to \infty} \frac{|a_{n+1}|}{a_n}$ exists in $[0, \infty]$, then $R = \frac{1}{\rho}$.

19 Power Series Properties

Recall, the radius of convergence of a power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is given by

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}} \in [0, \infty]$$

The power series converges pointwise on $(x_0 - R, x_0 + R)$, converges uniformly on any **bounded closed subinterval** of $(x_0 - R, x_0 + R)$, and diverges on $(-\infty, x_0 - R) \cup (x_0 + R, \infty)$. The convergence/divergence at $x_0 \pm R$ depends on the concrete problem at hand. Also, the radius of convergence can be given by

$$R = \frac{1}{\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}}$$

if the limit exists, since $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$ is the geometric growth rate of $|a_n|$.

Definition 19.1 (Domain of a Power Series).

The domain of a power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is defined to be the set

$${x \in \mathbb{R} : \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ converges}}$$

Theorem 19.1 (Derivatives of Power Series).

If $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$ has radius of convergence R > 0, then f is **infinitely differentiable** on $(x_0 - R, x_0 + R)$, with

$$f'(x) = \sum_{n=1}^{\infty} \infty n a_n (x - x_0)^{n-1} \quad \forall |x - x_0| < R$$

and for all $k \in \mathbb{N}$,

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1) \cdots (n-k+1)(x-x_0)^{n-k} \quad \forall |x-x_0| < R$$

The radius of convergence of these power series all equal R.

Theorem 19.2 (Facts). • Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two sequences such that $\lim_{n\to\infty} u_n := U \in (0,\infty)$ exists. Then

$$\lim \sup_{n \to \infty} u_n v_n = U \lim \sup_{n \to \infty} v_n$$

• $\limsup_{n\to\infty} |a_n|^{\frac{1}{n-1}} = \limsup_{n\to\infty} |a_n|^{\frac{1}{n}}$.

Properties of Power Series 20

Theorem 20.1 (Power Series as Taylor Series).

Let $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n$ be convergent on (x_0-r,x_0+r) for some r>0. Then

$$a_k = \frac{f^{(k)}(x_0)}{k!} \quad \forall k \in \{0\} \cup \mathbb{N}$$

Essentially, if f can be represented as a power series in powers of $x - x_0$ in a neighbourhood of x_0 , then this power series is in fact the Taylor series for f expanded around x_0 .

Theorem 20.2 (Uniqueness of Power Series).

If

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} b_n (x - x_0)^n$$

on $(x_0 - r, x_0 + r)$ for some r > 0, then $a_n = b_n$ for all $n \in \{0\} \cup \mathbb{N}$.

Theorem 20.3 (Integrating a Power Series).

Let $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$ be convergent on $(x_0 - r, x_0 + r)$ for some r > 0. Then for all $x \in (x_0 - r, x_0 + r)$, f is integrable on $[x_0, x]$ and

$$F(x) := \int_{x_0}^x f(t) dt = \sum_{n=0}^\infty a_n (t - x_0)^n dt = \sum_{n=0}^\infty \frac{a_n}{n+1} (x - x_0)^{n+1}$$

In particular, f is integrable on any $[a,b] \subset (x_0-r,x_0+r)$, with

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (b-x_0)^{n+1} - \sum_{n=0}^{\infty} \frac{a_n}{n+1} (a-x_0)^{n+1}$$

Abel theorem gives us teh ability to check for continuity of a power series at the boundary of its interval of convergence.

Theorem 20.4 (Abel's Theorem). Let $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$, which converges on $(x_0 - R, x_0 + R)$, and assume R > 0 to be the radius of convergence.

1. If the power series converges at $x = x_0 + R$, i.e., $\sum_{n=0}^{\infty} a_n R^n$ converges, then

$$\lim_{x \to (x_0 + R)^-} f(x) = \sum_{n=0}^{\infty} a_n R^n$$

2. If the power series converges at $x = x_0 - R$, i.e., $\sum_{n=0}^{\infty} a_n (-R)^n$ converges, then

$$\lim_{x \to (x_0 - R)^+} f(x) = \sum_{n=0}^{\infty} a_n (-R)^n$$

In other words, if the power series converges at boundary points, then the power series must be continuous at that point(one-sided).

21 Taylor Series

Definition 21.1 (Taylor, Maclaurin Series).

Suppose that f is infinitely differentiable on $(x_0 - r, x_0 + r)$ for some r > 0. Then the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

is called the **Taylor series** of f about x_0 . When $x_0 = 0$, the series becomes

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

which is called the Maclaurin series of f.

In general, $f(x) \neq \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ on interval of convergence of Taylor series, unless f is defined via a power series:

Theorem 21.1 (Power Series as Taylor Series).

If $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges on (x_0-r, x_0+r) for some r>0, then $\sum_n a_n (x-x_0)^n$ is the Taylor series of f about x_0 , i.e., $a_n = \frac{f^{(n)}(x_0)}{n!}$.

In genreall, we want to investage when function f equals its Taylor Series. We first observe the following proven theorem:

Theorem 21.2 (Taylor Expansion with Remainder).

Suppose $f^{(n+1)}$ exists on $I := (x_0 - r, x_0 + r)$. Then $\forall x \in I, \exists c_n \text{ between } x_0 \text{ and } x, \text{ which depends on } n, x, x_0 \text{ such that}$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c_n)}{(n+1)!} (x - x_0)^{n+1}$$

It follows immediately that

Theorem 21.3 (Equality Between a Function and Its Taylor Expansion). Suppose that f is infinitely differentiable on $I = (x_0 - r, x_0 + r)$, then for each $x \in I$,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

if and only if

$$\lim_{n \to \infty} R_n(x) := \lim_{n \to \infty} \frac{f^{(n+1)}(c_n)}{(n+1)!} (x - x_0)^{n+1} = 0$$

The Taylor series of f about x_0 converges uniformly to f on $[a,b] \subset I$ if and only if $R_n \to 0$ uniformly on [a,b].

Power Series Arithmetic 22

Let $f(x) := \sum_{n=0}^{\infty} 6 \infty a_n x^n$ and $g(x) := \sum_{n=0}^{\infty} b_n x^n$ be two power seires. Formal multiplication gives

$$f(x)g(x) = \sum_{n=0}^{\infty} c_n x^n$$

where $c_n := \sum_{k=0}^n a_k b_{n-k}$.

Definition 22.1 (Cauchy Product).

The Cauchy product of $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ is defined to be $\sum_{n=0}^{\infty} c_n$. Then $\sum_{n=0}^{\infty} c_n x^n$ is teh Cauchy product of $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$.

Theorem 22.1 (Merten).

If $\sum_{n=0}^{\infty} a_n = A$ and $\sum_{n=0}^{\infty} b_n = B$, and if either $\sum a_n$ or $\sum b_n$ converges **absolutely**, then Cauchy product $\sum_{n=0}^{\infty} c_n = AB$.

Remark: $\sum_{n} c_n$ may not converge absolutely.

Theorem 22.2. If both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely, then the Cauchy product $\sum_{n=0}^{\infty} c_n$ converge absolutely.

Theorem 22.3 (Arithmetic Operations).

Let

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, |x - x_0| < R_1$$

and

$$g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n, |x - x_0| < R_2$$

then for any $\alpha, \beta \in \mathbb{R}$,

$$\alpha f(x) + \beta g(x) = \sum_{n=0}^{\infty} (\alpha a_n + \beta b_n)(x - x_0)^n, |x - x_0| \le R_1 \wedge R_2$$

and

$$f(x)g(x) = \sum_{n=0}^{\infty} c_n(x - x_0)^n$$
 with $c_n = \sum_{i=0}^n a_i b_{n-i}$, $|x - x_0| \le R_1 \wedge R_2$

23 Open and Closed Sets, Compactness

Definition 23.1 (Neighbourhood).

A neighbourhood of a point $x \in \mathbb{R}$ is any set V that contains a ϵ -neighbourhood $V_{\epsilon}(x) := (x - \epsilon, x + \epsilon)$ of x for some $\epsilon > 0$.

Definition 23.2 (Open/Closed Subset).

A subset G of \mathbb{R} is called open if for each $x \in G$ there exists a neighbourhood V of x such that $V \subset G$.

A subset F of \mathbb{R} is called closed in \mathbb{R} if the complement $\mathbb{R} \setminus F$ is open in \mathbb{R} .

Remark: We can have a set that is neigher open nor closed, say [0,1). Note, the empty set \emptyset is open in \mathbb{R} .

Theorem 23.1 (Properties of Open Set).

- THe union of an arbitrary collection of open subsets in \mathbb{R} is open.
- The intersection of any finite collection of open sets in \mathbb{R} is open.

Theorem 23.2 (Properties of Closed Set).

- The intersection of an arbitrary collection of closed subsets in \mathbb{R} is closed.
- The union of any finite collection of closed sets in \mathbb{R} is closed.

Theorem 23.3 (Characterisation of Open Sets).

A subset of \mathbb{R} is open if and only if it is the union of countably many disjoint open intervals in \mathbb{R} .

Theorem 23.4 (Characterisation of Closed Sets).

Let $F \subset \mathbb{R}$, then the following assertions are equivalent:

- 1. F is closed subset of \mathbb{R} .
- 2. If $X = (x_n)$ is any convergent sequence of elements in F, then $\lim X$ belongs to F.

Theorem 23.5. A subset of \mathbb{R} is closed if and only if it contains all of its limit points.

Definition 23.3 (Open Cover).

Let A be a subset of \mathbb{R} . An **open cover** of A is a collection $\mathcal{G} = \{G_{\alpha}\}$ of open sets in \mathbb{R} whose union contains A, that is

$$A \subseteq \bigcup_{\alpha} G_{\alpha}$$

If \mathcal{G}' is a subcollection of sets from \mathcal{G} such that the union of the sets in \mathcal{G}' also contains A, then \mathcal{G}' is called a **subcover** of \mathcal{G} . If \mathcal{G}' consists of finitely many sets, then we call \mathcal{G}' a finite subcover of \mathcal{G} .

Definition 23.4 (Compact Set).

A subset K of \mathbb{R} is said to be **compact** if every open cover of K has a finite subcover.

${\bf Theorem~23.6~(Heine-Borel).}$

A subset K of \mathbb{R} is compact if and only if it is closed and bounded.

Theorem 23.7. A subset K of \mathbb{R} is compact if and only if every sequence in K has a subsequence that converges to a point in K.