1 1 1

MAJOR PROJECT - 1

NAME : DEEKSHA R SHETTY

COLLEGE : DAYANANDA SAGAR UNIVERSITY
BRANCH : AEROSPACE ENGINEERING

YEAR : FIRST YEAR DATASET SOURCE : KAGGLE

MAIL ID : deekshashetty082@gmail.com

1 1 1

creating dataframe
import pandas as pd
df = pd.read_csv('/content/heart.csv')
df

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	52	1	0	125	212	0	1	168	0	1.0	2	2
1	53	1	0	140	203	1	0	155	1	3.1	0	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1
4	62	0	0	138	294	1	1	106	0	1.9	1	3
1020	59	1	1	140	221	0	1	164	1	0.0	2	0
1021	60	1	0	125	258	0	0	141	1	2.8	1	1
1022	47	1	0	110	275	0	0	118	1	1.0	1	1
1023	50	0	0	110	254	0	0	159	0	0.0	2	0
1024	54	1	0	120	188	0	1	113	0	1.4	1	1

1025 rows × 14 columns

information about the dataframe
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	1025 non-null	int64
1	sex	1025 non-null	int64
2	ср	1025 non-null	int64
3	trestbps	1025 non-null	int64
4	chol	1025 non-null	int64
5	fbs	1025 non-null	int64
6	restecg	1025 non-null	int64
7	thalach	1025 non-null	int64

```
1025 non-null
                               int64
8
    exang
9
    oldpeak
              1025 non-null
                               float64
              1025 non-null
                               int64
10
   slope
11
              1025 non-null
                               int64
   ca
12 thal
              1025 non-null
                               int64
13 target
              1025 non-null
                               int64
```

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

```
# 1025 rows, 14 columns
df.shape
```

(1025, 14)

total number of elements in the dataframe df.size

14350

visualization

```
# visulization on serum cholestero in mg/dl
import seaborn as sns
sns.distplot(df['chol'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning) <matplotlib.axes._subplots.AxesSubplot at 0x7f9e6b034b90>


```
# visualization on resting blood pressure in mmHg
import seaborn as sns
sns.distplot(df['trestbps'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f9e6af84550>

visualization on maximum heart rate achieved import seaborn as sns sns.distplot(df['thalach'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f9e6aecb7d0>

+ Code + Text

visualization on Thalassemia (3 = normal, 6 = fixed defect, 7 = reversible defect)
import seaborn as sns
sns.distplot(df['thal'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f9e6ae05290>

removing 'oldpeak', 'age', 'sex', 'cp', 'exang', 'slope', 'ca' columns
df=df.drop(['oldpeak', 'age', 'sex', 'cp', 'exang', 'slope', 'ca'], axis=1)
df

	trestbps	chol	fbs	restecg	thalach	thal	target
0	125	212	0	1	168	3	0
1	140	203	1	0	155	3	0
2	145	174	0	1	125	3	0
3	148	203	0	1	161	3	0
4	138	294	1	1	106	2	0
1020	140	221	0	1	164	2	1
1021	125	258	0	0	141	3	0
1022	110	275	0	0	118	2	0
1023	110	254	0	0	159	2	1
1024	120	188	0	1	113	3	0

1025 rows × 7 columns

```
# input
x=df.iloc[:,0:6].values
Х
     array([[125, 212,
                              1, 168,
                                        3],
                         0,
            [140, 203,
                              0, 155,
                                         3],
                         1,
                              1, 125,
            [145, 174,
                         0,
                                         3],
            [110, 275,
                         0,
                              0, 118,
                                         2],
```

```
[110, 254, 0, 0, 159,
                                      2],
           [120, 188, 0,
                            1, 113,
                                      3]])
# output
y=df.iloc[:,6].values
    array([0, 0, 0, ..., 0, 1, 0])
#Train and test variables
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
#7.Running a regressor (applying a suitable algorithm)
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
# Model fitting
model.fit(x_train,y_train)
    LogisticRegression()
# Predicting the output
y_pred=model.predict(x_test)
y pred
    array([1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1,
           1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
           0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,
           1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
           1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
           1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0,
           0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1,
           1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0,
           0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1])
y test
    array([1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1,
           1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
           1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
           0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
           1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1,
           1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0,
           1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
           0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
```

 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.

Accuracy of the model
from sklearn.metrics import accuracy_score
accuracy_score(y_pred,y_test)*100

75.4863813229572

individual predicition - o indicates that the person is not affected by the heart attack
model.predict([x_train[13]])

array([0])

Colab paid products - Cancel contracts here

✓ 0s completed at 14:59

X