Max-Heaps

Abstract Data Type:

Describes an object and its operations

Abstract Data Type:

Describes an object and its operations

Data Structure:

Some specific implementation of an Abstract Data Type

Abstract Data Type:

Describes an object and its operations

Data Structure:

Some specific implementation of an Abstract Data Type

Example of an Abstract Data Type: Priority Queues

 Object: Set S of elements with "keys" ("priority") that can be compared

 Object: Set S of elements with "keys" ("priority") that can be compared

Operations:

 Object: Set S of elements with "keys" ("priority") that can be compared

- Operations:
 - Insert(S, x): Insert element x in S

 Object: Set S of elements with "keys" ("priority") that can be compared

Operations:

- Insert(S, x): Insert element x in S
- Max(S): Returns an element of highest priority in S

 Object: Set S of elements with "keys" ("priority") that can be compared

Operations:

- Insert(S, x): Insert element x in S
- Max(S): Returns an element of highest priority in S
- Extract_Max(S): returns Max(S) and removes it from S.

An Application of Priority Queue

The OS can use a Priority Queue to maintain a set S of jobs and schedule them according to their priorities:

- When a new job x arrives, the OS does Insert(S,x).
- When a processor becomes available to execute a job, the OS does

Extract_Max(S)

Worst Case Time For	Insert	Extract_Max
Unordered Linked List		

Worst Case Time For	Insert	Extract_Max
Unordered Linked List	Θ(1)	

Worst Case Time For	Insert	Extract_Max
Unordered Linked List	Θ(1)	Θ(n)

Worst Case Time For	Insert	Extract_Max
Unordered Linked List	Θ(1)	Θ(n)
Ordered Linked List		

Worst Case Time For	Insert	Extract_Max
Unordered Linked List	Θ(1)	Θ(n)
Ordered Linked List		Θ(1)

Worst Case Time For	Insert	Extract_Max
Unordered Linked List	Θ(1)	Θ(n)
Ordered Linked List	Θ(n)	Θ(1)

Worst Case Time For	Insert	Extract_Max
Unordered Linked List	Θ(1)	Θ(n)
Ordered Linked List	Θ(n)	Θ(1)

Goal: Data Structure that does each operation in $\Theta(\log n)$ time

Max-Heaps

Visualizing Max-Heaps

Elements of Max-Heap are stored in a Complete Binary Tree.

A Binary Tree

- A Binary Tree
- Every level L, except maybe the bottom level, has 2^L nodes.

- A Binary Tree
- Every level L, except maybe the bottom level, has 2^L nodes.
- All the nodes in the bottom level are as far to the left as possible.

No!

No!

Height of a Tree

Height of a Tree

Number of edges in the longest path from root to any leaf.

Height of a Tree

Number of edges in the longest path from root to any leaf.

FACT: Height of a CBT with n nodes is $\lfloor \log_2 n \rfloor$

FACT: Height of a CBT with n nodes is $\lfloor \log_2 n \rfloor$

Here n = 9, and height = $\lfloor \log_2 9 \rfloor = 3$

Max-Heap: The n elements of a Max-Heap are stored in a CBT with n nodes such that the following property holds.

Max-Heap Property: Priority of each node >= Priority of its children

Example of a Max-Heap

 $S = \{3, 4, 5, 7, 7, 9, 9, 12, 17\}$ (for simplicity, we identify each element with its priority)

Example of a Max-Heap

$$S = \{3, 4, 5, 7, 7, 9, 9, 12, 17\}$$

Example of a Max-Heap

 $S = \{3, 4, 5, 7, 7, 9, 9, 12, 17\}$

Example of a Max-Heap

 $S = \{3, 4, 5, 7, 7, 9, 9, 12, 17\}$

Example of a Max-Heap

 $S = \{3, 4, 5, 7, 7, 9, 9, 12, 17\}$

Array Representation of a Heap

Index

A: 17 9 12 7 7 9 5 3 4

A.Heapsize = 9

Index

.

A: 17 9 12 7 7 9 5 3 4

A.Heapsize = 9

Index

-

Efficient navigation in the tree

- Left Child of A[i] is at A[2i]
- Right Child of A[i] is at A[2i+1]
- Parent of A[i] is A[[i/2]]

Heap Operations

- Insert(A, x)
- Max(A)
- Extract_Max(A)

- Insert(A, x)
- Max(A)
- Extract_Max(A)

High-Level idea for operations:

- Insert(A, x)
- Max(A)
- Extract_Max(A)

High-Level idea for operations:

1) Maintain the CBT shape

- Insert(A, x)
- Max(A)
- Extract_Max(A)

High-Level idea for operations:

- 1) Maintain the CBT shape
- 2) Maintain the Max-Heap property

Insert(A, x)

A:

A.Heapsize = 9

Index

A.Heapsize = 10

Index

A: 17 9 12 7 7 9 5 3 4 13

A.Heapsize = 10

Index

This is a CBT, but Max-Heap Property has been violated.

A.Heapsize = 10

A: 17 9 12 7 13 9 5 3 4 7

A.Heapsize = 10

Index 1 2 3 4 5 6 7 8 9 10

A: 17 13 12 7 9 9 5 3 4 7

A.Heapsize = 10

Index

Insert(A, x)

1. Put x at the bottom left of the tree:

Increment A.heapsize and set A[A.heapsize] = x

2. Percolate x up the tree:

While priority of x > priority of its parent Swap x with parent

Insert(A, x)

1. Put x at the bottom left of the tree:

Increment A.heapsize and set A[A.heapsize] = x

2. Percolate x up the tree:

While x is not root AND priority of x > priority of its parent Swap x with parent

Insert(A, x)

1. Put x at the bottom left of the tree:

Increment A.heapsize and set A[A.heapsize] = x

Maintains CBT shape

2. Percolate x up the tree:

While x is not root AND priority of x > priority of its parent Swap x with parent Maintains Max-Heap property

 $O(\log n)$

For every input A,x of size n, the algorithm takes at most c_1 . log n steps.

 $O(\log n)$

For every input A,x of size n, the algorithm takes at most c_1 . log n steps.

 $\Omega(\log n)$

For some input A,x of size n, the algorithm takes at least c_2 . log n steps.

 $O(\log n)$

For every input A,x of size n, the algorithm takes at most c_1 . log n steps.

 $\Omega(\log n)$

For <u>some</u> input A,x of size n, the algorithm takes at least c₂ log n steps.

Priority of x is > Priority of root

Max(A)

Max(A):

Return A[1]

Worst-Case Time Complexity is $\Theta(1)$

A: 17 13 12 7 9 9 5 3 4 7

A.Heapsize = 10

Index

A.Heapsize = 10

Index

A.Heapsize = 9

Index

.

Index 1 2 3 4 5 6 7 8 9

Index 1 2 3 4 5 6 7 8 9

- 1. Return the root A[1].
- Remove the returned element from the heap:
 Set A[1] = A[A.heapsize] and decrement A.heapsize
- 3. Drip the element in A[1] down the tree:

Let x be the element in A[1]

While priority of some child of x > priority of x

Swap x with the highest-priority child of x

- 1. Return the root A[1].
- Remove the returned element from the heap:
 Set A[1] = A[A.heapsize] and decrement A.heapsize
- 3. Drip the element in A[1] down the tree:

Let x be the element in A[1]

While x is not a leaf AND priority of some child of x > priority of x Swap x with the highest-priority child of x

- 1. Return the root A[1].
- Remove the returned element from the heap:
 Set A[1] = A[A.heapsize] and decrement A.heapsize
- 3. Drip the element in A[1] down the tree:

Let x be the element in A[1]

While <u>x is not a leaf</u> AND priority of some child of x > priority of x Swap x with the highest-priority child of x

- 1. Return the root A[1].
- Remove the returned element from the heap:
 Set A[1] = A[A.heapsize] and decrement A.heapsize

Maintains CBT shape

3. Drip the element in A[1] down the tree:

Let x be the element in A[1]

While <u>x is not a leaf</u> AND priority of some child of x > priority of x Swap x with the highest-priority child of x Maintains Max-Heap property What is the Worst-Case Complexity of Extract_Max(A)?

What is the Worst-Case Complexity of Extract_Max(A)?

What is the Worst-Case Complexity of Extract_Max(A)?

To sort an Array A of n elements:

To sort an Array A of n elements:

Make a heap out of the elements of A

To sort an Array A of n elements:

• Make a heap out of the elements of A

How do you do this?

To sort an Array A of n elements:

Make a heap out of the elements of A

This can be done in $\Theta(n)$ time!

To sort an Array A of n elements:

• Make a heap out of the elements of A This can be done in $\Theta(n)$ time!

• Extract_Max(A) n times [Each one takes Θ(log n) time]

To sort an Array A of n elements:

• Make a heap out of the elements of A This can be done in $\Theta(n)$ time!

• Extract_Max(A) n times [Each one takes Θ(log n) time]

Worst-Case time complexity is $\Theta(n \log n)$

To sort an Array A of n elements:

- Make a heap out of the elements of A This can be done in $\Theta(n)$ time!
- Extract_Max(A) n times [Each one takes Θ(log n) time]

Worst-Case time complexity is $\Theta(n \log n)$

This sorting can be done "in-place" in A (Refer CLRS Section 6.4)