## Pokročilá kryptologie Diferenciální kryptoanalýza

prof. Ing. Róbert Lórencz, CSc.

České vysoké učení technické v Praze, Fakulta informačních technologií Katedra informační bezpečnosti

1/19

## Obsah přednášky

- Základní vlastnosti
- Analýza S-boxu
- Klíčovaný S-box
- Konstrukce diferenční charakteristiky
- Extrakce bitů klíče experiment

#### DK - základní vlastnosti I

- Diferenciální kryptoanalýza (DK) využívá vysokou pravděpodobnost určitých výskytů rozdílů OT a rozdílů v poslední rundě šifry.
- Označme vstupy  $X = [X_1 X_2 ... X_n]$  a výstupy  $Y = [Y_1 Y_2 ... Y_n]$  nějakého kryptosystému. Dále mějme dva vstupy do sytému X' a X'' a odpovídající výstupy ze systému Y' a Y''.
- Vstupní rozdíl je definován:  $\triangle X = X^{'} \oplus X^{''} = [\triangle X_1 \triangle X_2 \dots \triangle X_n]$ , kde  $\triangle X_i = X_i^{'} \oplus X_i^{''}$ , kde *i* reprezentuje *i*-ty bit.
- Podobně  $\triangle Y_i = Y_i' \oplus Y_i''$  je výstupní rozdíl  $\triangle Y = Y' \oplus Y'' = [\triangle Y_1 \triangle Y_2 \dots \triangle Y_n]$ , kde  $\triangle Y_i = Y_i' \oplus Y_i''$ .
- V ideálním případě náhodné šifry je pravděpodobnost výskytu jednotlivých rozdílů △ Y daných △X právě 1/2<sup>n</sup>, kde n je počet bitů X.

#### DK - základní vlastnosti II

- DK hledá využití možnosti výskytu jednotlivých △Y daných jednotlivými vstupy △X s velmi vysokou pravděpodobnosti p<sub>D</sub> větší než 1/2<sup>n</sup>.
- Dvojici (△X, △Y) nazýváme rozdíl diferenciál.
- Při DK útočník vybírá dvojice vstupu X' a X", tak aby jednotlivé
  △X dávali příslušné △Y s vysokou pravděpodobnosti.
- V případě SPN budeme se snažit zkoumat vysoce pravděpodobné diferenciální charakteristiky. Diferenciální charakteristiky jsou sekvence vstupních a výstupních diferencí v rundách, tak, že výstupní diference z jedné rundy je vstupní diferencí další rundy.
- Užitím vysoce pravděpodobných diferenciálních charakteristik nám umožňuje využít informaci přicházející do poslední rundy SPN k odvození bitů poslední vrstvy podklíče.

#### DK - základní vlastnosti III

 Stejně jako u LK budeme nejdříve zkoumat diferenciální charakteristiky jednotlivých S-boxů s tím, že zjištěné vlastnosti nám pomůže vytvořit celkovou diferenciální charakteristiku.

#### Analýza S-boxu

- Vstupy S-boxu jsou  $X = [X_1X_2X_3X_4]$  a výstupy S-boxu jsou  $Y = [Y_1Y_2Y_3Y_4]$ .
- Všechny diferenční dvojice S-boxu (△X, △Y) budeme zkoumat a určíme s jakou pravděpodobnosti se vyskytuje △Y pro dané △X.
- Pro každou vstupní dvojici  $(X', X'' = X' \oplus \triangle X)$  vyjádříme  $\triangle Y$ , pro které platí  $(Y', Y'' = Y' \oplus \triangle Y)$ .
- Například pro X'=0110 a ze substituce Y'=1011. Pro  $\triangle X=1011$  je  $X''=X'\oplus \triangle X=0110\oplus 1011=1101$  a ze substituce potom Y''=1001 a  $\triangle Y=Y'\oplus Y''=1011\oplus 1001=0010$

#### Ukázka diferenčních párů S-boxu

| X    | Y    | $\Delta Y$        |                   |                   |  |  |  |  |
|------|------|-------------------|-------------------|-------------------|--|--|--|--|
| Λ    | 1    | $\Delta X = 1011$ | $\Delta X = 1000$ | $\Delta X = 0100$ |  |  |  |  |
| 0000 | 1110 | 0010              | 1101              | 1100              |  |  |  |  |
| 0001 | 0100 | 0010              | 1110              | 1011              |  |  |  |  |
| 0010 | 1101 | 0111              | 0101              | 0110              |  |  |  |  |
| 0011 | 0001 | 0010              | 1011              | 1001              |  |  |  |  |
| 0100 | 0010 | 0101              | 0111              | 1100              |  |  |  |  |
| 0101 | 1111 | 1111              | 0110              | 1011              |  |  |  |  |
| 0110 | 1011 | 0010              | 1011              | 0110              |  |  |  |  |
| 0111 | 1000 | 1101              | 1111              | 1001              |  |  |  |  |
| 1000 | 0011 | 0010              | 1101              | 0110              |  |  |  |  |
| 1001 | 1010 | 0111              | 1110              | 0011              |  |  |  |  |
| 1010 | 0110 | 0010              | 0101              | 0110              |  |  |  |  |
| 1011 | 1100 | 0010              | 1011              | 1011              |  |  |  |  |
| 1100 | 0101 | 1101              | 0111              | 0110              |  |  |  |  |
| 1101 | 1001 | 0010              | 0110              | 0011              |  |  |  |  |
| 1110 | 0000 | 1111              | 1011              | 0110              |  |  |  |  |
| 1111 | 0111 | 0101              | 1111              | 1011              |  |  |  |  |

#### DK - základní vlastnosti 2 l

#### Analýza S-boxu

- $\triangle Y$  pro  $\triangle X = 1011, 1000, 0100$  je v předchozí tabulce.
- Z tabulky vidíme například, že pro  $\triangle X = 1011$  se vyskytuje 8 hodnot  $\triangle Y = 0010$ .
- Úplná vyjádření distribuce diferencí pro S-box je následující tabulce.
- Ideální S-box by měl mít pro všechny páry  $(\triangle X, \triangle Y)$  hodnotu 1, tj. jediný výskyt (pravděpodobnost  $1/2^4 = 1/16$ ).
- Suma výskytu v řádcích a sloupcích se rovná 16!

#### Diferenční distribuční tabulka

|        |   | Output Difference |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------|---|-------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|        |   | 0                 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | C | D | Е | F |
|        | 0 | 16                | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| I      | 1 | 0                 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 4 | 0 | 4 | 2 | 0 | 0 |
| n      | 2 | 0                 | 0 | 0 | 2 | 0 | 6 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 |
| p      | 3 | 0                 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 2 | 0 | 0 | 4 |
| u<br>t | 4 | 0                 | 0 | 0 | 2 | 0 | 0 | 6 | 0 | 0 | 2 | 0 | 4 | 2 | 0 | 0 | 0 |
|        | 5 | 0                 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 2 |
| D      | 6 | 0                 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| i      | 7 | 0                 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 4 |
| f      | 8 | 0                 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 4 | 0 | 4 | 2 | 2 |
| f      | 9 | 0                 | 2 | 0 | 0 | 2 | 0 | 0 | 4 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 |
| e      | Α | 0                 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 2 | 0 | 0 | 4 | 0 |
| r      | В | 0                 | 0 | 8 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
| e<br>n | C | 0                 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 6 | 0 | 0 |
| c      | D | 0                 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
| e      | Е | 0                 | 0 | 2 | 4 | 2 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
|        | F | 0                 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 2 | 0 |

8/19

#### Klíčovaný S-box



9/19

## DK - klíčovaný S-box I

Klíč je aplikovan na každý vstup v rundě a nakonci 4. rundě.
 Nechť △W = [W'<sub>1</sub> ⊕ W''<sub>1</sub>, W'<sub>2</sub> ⊕ W''<sub>2</sub>,..., W'<sub>n</sub> ⊕ W''<sub>n</sub>] je diference vstupu do S-boxu. Potom

$$\triangle W_i = W_i' \oplus W_i'' = (X_i' \oplus K_i) \oplus (X_i'' \oplus K_i) = X_i' \oplus X_i'' = \triangle X_i$$

- Bity klíče nemají žádny impakt na vstupní diferencovanú hodnotu a můžou být ignorovány.
- Klíčovaný S-box má stejné diferenční distribuční tabulku jako neklíčovaný S-box.

# Ukázka diferenciální charakteristiky



## DK - konstrukce diferenční charakteristiky I

#### Příklad

- Na základě popisu diferenciálních charakteristik S-boxu v SPN můžeme vytvořit diferenciální charakteristiku celé šifry vzájemným propojením S-boxů v jednotlivých rundách.
- V následujícím příkladu je vytvořena diferenciální charakteristika, která zahrnuje S-boxy  $S_{12}$ ,  $S_{23}$ ,  $S_{32}$  a  $S_{33}$ .
- Na obrázku diferenciální charakteristiky SPN (předchozí slide) je znázorněná tvorba diferenciální charakteristiky SPN.
- Diagram ilustruje vliv nenulových diferencí bitů v propojovací sítí s S-boxy.
- Tlustě je vyznačená cesta S-boxy, které jsou aktivní a mají nenulový rozdíl.
- Diferenciální charakteristika je prováděná přes první 3. rundy.
  Poslední runda slouží pro zapracovaní posledního podklíče a tím i jeho odhalení.

## DK - konstrukce diferenční charakteristiky II

- Použijeme následující diferenční páry S-boxů:
  - ►  $S_{12}$ :  $\triangle X = B \rightarrow \triangle Y = 2$  s pravděpodobností 8/16
  - $S_{23}: \triangle X = 4 \rightarrow \triangle Y = 6$  s pravděpodobností 6/16
  - ►  $S_{32}$ :  $\triangle X = 2 \rightarrow \triangle Y = 5$  s pravděpodobností 6/16
  - ►  $S_{33}$ :  $\triangle X = 2 \rightarrow \triangle Y = 5$  s pravděpodobností 6/16
- Všechny ostatní S-boxy mají nulové vstupní diference a tím i nulové výstupní diference.
- Vstup diferenci do šifry je vstupem do 1. rundy

$$\triangle P = \triangle U_1 = [0000 \ 1011 \ 0000 \ 0000]$$

Výstup z prvních S-boxů je

$$\triangle V_1 = [0000\ 0010\ 0000\ 0000]$$



## DK - konstrukce diferenční charakteristiky III

• a po permutaci v 1. rundě dostáváme vstup do 2. rundy

$$\triangle U_2 = [0000\ 0000\ 0100\ 0000]$$

- Výstup s 1. rundy je dán s pravděpodobnosti 8/16 = 1/2 dané diference △P OT.
- Výstup s 2. S-boxů (aktivní S<sub>23</sub>) je

$$\triangle V_2 = [0000\ 0000\ 0110\ 0000]$$

a po permutace vstup do 3, rundy máme

$$\triangle U_1 = [0000\ 0010\ 0010\ 0000]$$

s pravděpodobnosti 6/16 dané  $\triangle U_2$  a pravděpodobnosti  $8/16 \times 6/16 = 3/16$  danou  $\triangle P$  OT.

## DK - konstrukce diferenční charakteristiky IV

- Předpokládáme přitom, že diferenciál 1. a 2. rundy jsou nezávislé, potom celková pravděpodobnost je součin obou pravděpodobnosti.
- Pro S-boxy S<sub>32</sub> a S<sub>33</sub> permutaci v 3. rundě dostáváme

$$\triangle V_3 = [0000\ 0101\ 0101\ 0000]$$
 a  $\triangle U_4 = [0000\ 0110\ 0000\ 0110]$ 

- s pravděpodobnosti  $(6/16)^2$  danou  $\triangle U_3$  a potom pro pravděpodobnost  $8/16 \times 6/16 \times (6/16)^2 = 27/1024$  danou diferenci  $\triangle P$  a kde opět předpokládáme nezávislost mezi jednotlivými S-boxy ve všech rundách.
- V procesu kryptoanalýzy budeme uvažovat dvojice OT (a jejich ŠT) takových, kterých  $\triangle P = [0000\ 1011\ 0000\ 0000]$ . Výskyt takových dvojic je 27/1024 pravděpodobný.
- Takové dvojice budeme nazývat pravé dvojice a dvojice, které nevyhovuji této podmínce budeme nazývat nepravé dvojice.

# Ukázka diferenciální charakteristiky



### DK - extrakce bitů klíče I

- V případě existence diferenciální charakteristiky pro R 1 rund šifry SPN můžeme provést kryptoanalýzu šifry s cílem extrahovat některé bity podklíče K<sub>5</sub>.
- Tento proces vyžaduje částečnou dešifraci ŠT xorovaného s podklíčem K<sub>5</sub> z dvojice OT/ŠT.
- Hodnoty diferenciálů \(\triangle U\_{4,5} \ldots \triangle U\_{4,8}\) a \(\triangle U\_{4,13} \ldots \triangle U\_{4,16}\) daných diferenční charakteristikou z hodnot \(\triangle P\) pravých dvojic OT porovnáváme s diferencemi hodnot získaných částečnou dešifraci hodnot ŠT (příslušných k pravým dvojicím OT) a xoru vybraných bitů \(K\_5\).
- Toto srovnávaní děláme pro každou pravou dvojici OT (a jejich ŠT) se všemi možnými hodnotami 8 bitů podklíče K<sub>5</sub> (256hodnot) K<sub>5,5</sub>...K<sub>5,8</sub> a K<sub>5,13</sub>...K<sub>5,16</sub>.
- Pokud nastane shoda, potom inkrementujeme čítač pro danou kombinaci bitů podklíče.

### **SPN**

#### Experimentální výsledky DK

| partial subkey                       | prob   | partial subkey                       | prob   |
|--------------------------------------|--------|--------------------------------------|--------|
| $[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$ |        | $[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$ |        |
| 1 C                                  | 0.0000 | 2 A                                  | 0.0032 |
| 1 D                                  | 0.0000 | 2 B                                  | 0.0022 |
| 1 E                                  | 0.0000 | 2 C                                  | 0.0000 |
| 1 F                                  | 0.0000 | 2 D                                  | 0.0000 |
| 2 0                                  | 0.0000 | 2 E                                  | 0.0000 |
| 2 1                                  | 0.0136 | 2 F                                  | 0.0000 |
| 2 2                                  | 0.0068 | 3 0                                  | 0.0004 |
| 2 3                                  | 0.0068 | 3 1                                  | 0.0000 |
| 2 4                                  | 0.0244 | 3 2                                  | 0.0004 |
| 2 5                                  | 0.0000 | 3 3                                  | 0.0004 |
| 2 6                                  | 0.0068 | 3 4                                  | 0.0000 |
| 2 7                                  | 0.0068 | 3 5                                  | 0.0004 |
| 2 8                                  | 0.0030 | 3 6                                  | 0.0000 |
| 2 9                                  | 0.0024 | 3 7                                  | 0.0008 |

## DK - extrakce bitů klíče - experiment I

- V tabulce na předchozím slide je tabulka s některými hodnotami podklíče s pravděpodobnosti "shody"v experimentu s 5000 pravými dvojicemi.
- Pravděpodobnost je vypočtena z: prob = count/5000.
- Z tabulky je zřejmé, že podklíč hex 24 má největší pravděpodobnost shod (0,0244) blízkou teoretické stanovené hodnoty 27/1024 = 0,0264.