(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年9 月15 日 (15.09.2005)

PCT

(10) 国際公開番号 WO 2005/084794 A1

(51) 国際特許分類⁷: **B01J 19/00**, B01D 57/02, B03C 5/00, G01N 21/05, 27/447, 37/00 // C23C 14/12

(21) 国際出願番号: PCT/JP2005/003604

(22) 国際出願日: 2005年3月3日(03.03.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-060215 2004年3月4日(04.03.2004) JP

(71) 出願人 *(*米国を除く全ての指定国について*)*: 独立 行政法人産業技術総合研究所 (NATIONAL INSTI-TUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY) [JP/JP]; 〒1008921 東京都千代田区 霞が関一丁目3番1号 Tokyo (JP). 学校法人片柳学園 (KATAYANAGI INSTITUTE) [JP/JP]; 〒1920981 東京 都八王子市片倉町1404番1号 Tokyo (JP). 凸版印 刷株式会社 (TOPPAN PRINTING CO., LTD.) [JP/JP]; 〒1108560 東京都台東区台東1丁目5番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 横山 憲二 (YOKOYAMA, Kenji) [JP/JP]; 〒3058562 茨城県つく ば市東 1-1-1 中央第 4 独立行政法人産業技術 総合研究所内 Ibaraki (JP). 小出 哲 (KOIDE, Satoshi) [JP/JP]; 〒3058562 茨城県つくば市東 1-1-1 中央 第 4 独立行政法人産業技術総合研究所内 Ibaraki (JP). 坂入幸司 (SAKAIRI, Koji) [JP/JP]; 〒1108560 東 京都台東区台東1丁目5番1号凸版印刷株式会社内

/続葉有/

(54) Title: MICRO FLOW CHANNEL CHIP PRODUCING METHOD, MICRO FLOW CHANNEL CHIP, METHOD OF SEPARATING BIOMOLECULES USING SUCH MICRO FLOW CHANNEL CHIP, AND ELECTROPHORESIS DEVICE HAVING SUCH MICRO FLOW CHANNEL CHIP

(54) 発明の名称: マイクロ流路チップの製造方法、マイクロ流路チップ、そのマイクロ流路チップを用いる生体分子の分離方法、およびそのマイクロ流路チップを有する電気泳動装置

(57) Abstract: A micro flow channel chip producing method characterized by comprising a step in which the surface of a substrate formed with a groove-like flow channel in the surface is screened with a mask exposing the entire flow channel and the exposed substrate surface is formed with a film of high molecular compound, and a step in which a cover material is stuck to the surface of the substrate on the side formed with the flow channel.

(57) 要約: 本発明に係るマイクロ流路チップの製造方法は、表面に溝状の流路が形成された基材の表面を、該流路全体が露出するマスクで遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程、および前記基材の流路が形成されている側の表面に、カバー材を貼り合わせる工程を含むことを特徴としている。

Tokyo (JP). 矢野 和義 (YANO, Kazuyoshi) [JP/JP]; 〒1550031 東京都世田谷区北沢 1-1 2-6 Tokyo (JP). 輕部 征夫 (KARUBE, Isao) [JP/JP]; 〒2250002 神奈川県横浜市青葉区美しが丘 2-5 4-1 O Kanagawa (JP).

- (74) 代理人: 清水 初志, 外(SHIMIZU, Hatsushi et al.); 〒 3000847 茨城県土浦市卸町 1 1 1 関鉄つくばビル 6 階 Ibaraki (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受領の際には再公開される。

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2005/084794 1 PCT/JP2005/003604

明細書

マイクロ流路チップの製造方法、マイクロ流路チップ、そのマイクロ流路チップを用いる生体分子の分離方法、およびそのマイクロ流路チップを有する電気 泳動装置

技術分野

[0001] 本発明は、マイクロ流路チップの製造方法に関する。また、本発明は、マイクロ流路 チップ、該マイクロ流路チップを用いる生体分子の分離方法および電気泳動装置に 関する。

背景技術

- [0002] キャピラリー電気泳動あるいはマイクロ流路チップ電気泳動は、微量の生体分子を 分離分析する方法として非常に優れており、分析の自動化、高速化が可能になるた め、これまで数多くの研究がなされている。(非特許文献1)
- [0003] キャピラリー電気泳動あるいはマイクロ流路チップ電気泳動に使用される一般的な 材料は、ガラスが挙げられるが、蛋白質を分離するためには、解決すべき課題が数 多くある。

たとえば、ガラスにより作成されたキャピラリー電気泳動あるいはマイクロ流路チップ 電気泳動は、電気浸透流の影響があった。

- [0004] このため、たとえばキャピラリー内部に発生する電気浸透流の抑制のために、キャピラリーの内壁にポリマーをコーティングする試みがなされている(特許文献1、2、3)。 コーティング方法としては、化合物を化学的に表面に結合させる方法や、物理的な吸着による方法が試みられている。
- [0005] 化学的なコーティング方法としては、ガラスを用いたキャピラリーあるいはマイクロ流路チップを用いる場合に、シランカップリング剤を被覆する方法が知られている。この方法は、共有結合によりシランカップリング剤を結合させるため、非常に強くマイクロ流路内をコーティングすることができるが、均一にコーティングすることが困難であり、高い再現性が求められるキャピラリーあるいはマイクロ流路チップを作製することができない。また、化学反応によるため、複雑なコーティング方法となり、製品化する上で

有効な方法とはいえなかった。

[0006] また、物理的なコーティング方法として、流路内にコーティング剤を流して、被覆する方法が知られている。たとえば、コーティング剤を混合した泳動緩衝液を流して被覆する方法がある。この方法は非常に簡便な方法であるが、静電相互作用、あるいは疎水性相互作用による吸着であるため、吸着状態が非常に弱く、簡単にコーティングが剥がれるという問題があった。また、静電的相互作用による場合、pHの影響を受けやすいため、適用範囲が狭いという問題もあった。

[0007] このため、基材表面に均一で安定なコーティングを行う方法が求められていた。たと えば、ガラスの基材表面にマイクロ流路が存在するチップの基材表面全体を、プラズ マ重合膜でコーティングする試みがなされている(非特許文献2)。

[0008] しかし、ガラスの基材およびカバー上にプラズマ重合膜をコーティングする場合、基材とカバーとの貼り合わせを熱圧着で行おうとすると、極めて高温(たとえば、500~600℃)の温度が必要となり、プラズマ重合膜が劣化する場合がある。このため、基材とカバー材とを接着剤で結合させる方法が採られている(非特許文献2)が、接着剤を使用すると、接着剤の使用量あるいは塗布する場所によっては、マイクロ流路内に接着剤が滲出する場合があり、使用量や塗布箇所等を制御するなど製造プロセスが煩雑となる場合があった。

非特許文献1:ジャーナル オブ クロマトグラフィー(F. E. P. Mikkers, F. M.

Everaerts, Th. P. E. M. Veerheggen, J. Chromatogr.), 169, 11, 1979

非特許文献2:Analyst, 2003, 128, 237-244

特許文献1:特表平5-503989号公報

特許文献2:特表平7-506432号公報

特許文献3:特表平9-504375号公報

発明の開示

発明が解決しようとする課題

[0009] マイクロ流路チップは、通常、表面に流路を有する基材とカバー材とを貼り合わせ て得られるが、本件発明者らは、基材表面全体を、プラズマ重合膜、表面重合膜など の高分子化合物膜でコーティングすると、貼り合わせにおける接着強度が弱いあるい は低下し易く、基材にカバー材を貼り合わせても、流路を流れる媒体が、流路から基材とカバーとの隙間に滲出する可能性があることを見出している(本件出願時非公知)。

すなわち、本件発明は、高分子化合物膜で該基材表面をコーティングした場合に おいて、基材とカバー材との貼り合わせの際の接着強度を向上させることが可能な、 簡便なマイクロ流路チップの製造方法を提供することを課題とする。

課題を解決するための手段

- [0010] 本件発明者らは、上記課題を解決すべく鋭意研究し、以下の工程を経ることにより、基材とカバー材との貼り合わせの際の接着強度を向上させることが可能で、しかも、 簡便なマイクロ流路チップの製造方法を提供できることを見出し、本件発明を完成するに至った。すなわち、本件発明は以下を含む。
- [0011] 〔1〕表面に溝状の流路が形成された基材の表面を、該流路が露出するマスクで 遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程、および 前記基材の流路が形成されている側の表面に、カバー材を貼り合わせる工程 を含む、マイクロ流路チップの製造方法。
 - [2] 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程を含む、[1]に記載の方法。
 - [3] 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成するに際し、

前記カバー材の表面を、前記基材のマスクの露出部分の一部又は全部と露出部分が同一形状のマスクで遮蔽し、露出したカバー材表面に、高分子化合物膜を形成する、[2]に記載のマイクロ流路チップの製造方法。

- [4] 前記基材表面の高分子化合物膜が、
- (a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜 、
- (b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
- (c)基材表面に高分子化合物を結合して形成する高分子結合膜である、[1]~[3]のいずれかに記載の方法。

- [5] 前記基材表面の高分子化合物膜が、プラズマ重合膜である、[1]~[4]のいずれかに記載の方法。
- [6] 前記カバー材表面の高分子化合物膜が、
- (a) 基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜
- (b) 基材表面で重合性モノマーを重合して形成する表面重合膜、または
- (c) 基材表面に高分子化合物を結合して形成する高分子結合膜である、[2]~[5]のいずれかに記載の方法。
- [7] 前記カバー材表面の高分子化合物膜が、プラズマ重合膜である、[2]~[6]のいずれかに記載の方法。
- [8] 前記基材の表面に形成する高分子化合物膜と、前記カバー材の表面に形成する高分子化合物膜とが、同一の高分子化合物膜である、[2]~[7]のいずれかに記載の方法。
- [9] 前記貼り合わせを、圧着または熱圧着により行う、[1]~[8]のいずれかに記載の方法。
- [10] 前記基材および前記カバー材の少なくとも一方が、プラスチックである[1]〜[9]のいずれかに記載の方法。
- [11] 前記基材およびカバー材が、プラスチックである、[1]~[10]のいずれかに 記載の方法。
- [12] 前記基材およびカバー材のいずれもが、熱可塑性樹脂であり、 前記貼り合わせる工程が、基材とカバー材とを、熱圧着により貼り付ける方法である、 [11]に記載の方法。
- [13] 前記熱圧着を200℃以下の温度で行う、[12]に記載の方法。
- [14] 前記基材およびカバー材のいずれか一方がケイ素樹脂であり、残りの一方がガラスまたはプラスチックであり、

前記貼り合わせる工程が、基材とカバー材とを、圧着により貼り付ける方法である、〔1 0〕に記載の方法。

〔15〕 前記マスクが、フォトレジストマスクまたは金属マスクである、〔1〕〜〔14〕のい

ずれかに記載の方法。

- [16] 表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の一部又は全部の表面に高分子化合物膜が被覆されている、マイクロ流路チップ。
- [17] 前記カバー材の基材側の表面に、高分子化合物膜が被覆されている、[16] に記載のマイクロ流路チップ。
- [18] 前記カバー材の基材側の表面の、基材の高分子化合物膜が形成されている 領域と対向する領域に、前記基材の高分子化合物膜が形成されている部分の一部 又は全部と同一形状の高分子化合物膜が被覆されている、[17]に記載のマイクロ 流路チップ。
- [19] 次の工程を含む生体分子の分離方法:
- a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップに、分析すべき生体分子を加える工程、および
- b) 分離媒体に分離圧を加える工程。
- [20] 前記分離圧が電気泳動によるものである、[19]に記載の方法。
- [21] 前記電気泳動が、キャピラリー電気泳動である、[20]に記載の方法。
- [22] 前記生体分子が、蛋白質である、[19]~[21]のいずれかに記載の方法。
- [23] 次の要素で構成される電気泳動分析装置:
- a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップ、
- b) 該マイクロ流路チップを保持するための支持体、および
- c)支持体に保持されたマイクロ流路チップに電圧を印加するための電極。

図面の簡単な説明

[0012] [図1]プラズマ重合膜が、200 μ mの幅で成膜されたことを示す電子顕微鏡写真である。電子顕微鏡の加速電圧5. 00kV、写真倍率100倍である。

[図2]電子プローブマイクロアナライザによる成膜部の元素マッピング分析組成を示

す写真である。

[図3]チップへの試料導入時、分離時における電圧の加え方を示す模式図である。 [図4]プラズマ重合膜を有するチップと、成膜なしのチップとで、Cy5染色したカルボニックアンヒドラーゼを電気泳動した結果を示す図である。図4中、Aはプラズマ重合膜(HMDS)を有するチップの場合を示し、Bは成膜なしのチップの場合を示す。 発明を実施するための最良の形態

[0013] <マイクロ流路チップの製造方法>

本発明に係るマイクロ流路チップの製造方法は、表面に溝状の流路が形成された 基材の表面を、該流路が露出するマスクで遮蔽し、露出した基材表面に、高分子化 合物膜を形成する工程、および前記基材の流路が形成されている側の表面に、カバ ー材を貼り合わせる工程を含むことを特徴としている。

[0014] この場合、流路を露出させるマスクは、流路の全部、または流路の全部および流路 の近傍が露出するマスクであることが好ましく、流路近傍の露出部分は小さいほど好 ましい。

マスクの種類は限定されず、たとえば、フォトレジストマスク、金属マスクなどを用いることができる。

- [0015] このようにして得られるマイクロ流路チップでは、基材の表面は、流路が高分子化合物膜で被覆され、他の部分は高分子化合物膜で被覆されていないので、カバー材との貼り合わせの際の接着強度に優れている。
- [0016] この場合、前記基材と貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程が含まれていてもよい。すなわち、基材とカバー材の表面は、ともに、高分子化合物膜が形成されていてもよい。カバー材の表面にも高分子化合物膜が形成されていれば、マイクロ流路チップを用いて分離すべき試料の分解能をより高めることができる。
- [0017] また、カバー材の表面に、高分子化合物膜を形成する場合、前記カバー材の表面 を、前記基材のマスクの露出部分の一部又は全部と露出部分が同一形状のマスクで 遮蔽し、露出したカバー材表面に、高分子化合物膜を形成することが好ましい。
- [0018] この場合において、カバー材の露出部分は小さいほど好ましいが、前記基材のマ

スクの露出部分の全部と露出部分が同一形状であることがより好ましい。

- [0019] また、基材表面に設けた流路内、あるいはカバー材表面には、分離能を向上させるため、高分子化合物膜を各種のパターン、グラジュエントで形成させることができる。 この場合は、たとえば、カバー材側に、基材のマスク形状とは異なる形状の高分子化合物膜を形成させてもよい。
- [0020] このようにして得られるマイクロ流路チップでは、基材およびカバー材のいずれの表面も、高分子化合物膜で被覆されていない領域が存在するため、基材とカバー材との貼り合わせの際の接着強度により優れている。
- [0021] 貼り合わせは、基材とカバー材の表面に被覆された高分子化合物膜同士が、相対 する形状でちょうど重なるように行うことが好ましい。
- [0022] 前記基材表面に形成させる前記高分子化合物膜は、
 - (a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜
 - (b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
 - (c)基材表面に高分子化合物を結合して形成する高分子結合膜
 - のいずれかであることが好ましい。

これらのうちでは、プラズマ重合膜が好ましい。プラズマ重合膜であると、より均一で、安定性に優れた膜を形成できる。

- [0023] また、前記カバー材表面に形成させる高分子化合物膜は、
 - (a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜
 - (b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
 - (c)基材表面に高分子化合物を結合して形成する高分子結合膜
 - のいずれかであることが好ましい。

これらのうちでは、プラズマ重合膜が好ましい。プラズマ重合膜であると、より均一で、安定性に優れた膜を形成できる。

[0024] 基材およびカバー材

カバー材表面にも高分子化合物膜を形成させる場合、基材とカバー材とに設けら

れる高分子化合物膜の種類の組み合わせは特に限定されず、同一の高分子化合物膜を用いても、異なる高分子化合物膜を用いてもよい。このうち、前記基材の表面に形成する高分子化合物膜と、前記カバー材の表面に形成する高分子化合物膜とは、同一の高分子化合物膜であることが好ましい。同一の高分子化合物膜の場合、ともにプラズマ重合膜であることが好ましく、プラズマ重合膜のうちでも、同一のモノマー原料からなるプラズマ重合膜であることがより好ましい。

- [0025] 前記基材を構成する素材は任意である。本発明においては、少なくとも、基材表面に形成された流路表面がプラズマ重合膜、表面重合膜または高分子結合膜によって改質されている。そのため、基材そのものの素材は電気泳動等の分離の結果には直接的な影響を与えない。したがって、たとえば次に示すような最低限の条件を満たす任意の素材を選択することができる。
 - -電気泳動等の泳動に伴う発熱に耐えなければならないこと、
 - ――定の物理的な強度を有すること
 - 絶縁体であること
- [0026] また基材には、一般に透明な素材が利用される。透明な素材を利用することによって、外部からの光学的な観測が可能となる。具体的には、たとえば、ガラスやプラスチックなどを基材として利用することができる。
- 「0027」 プラスチックとしては、たとえば、熱可塑性樹脂、ケイ素樹脂などが挙げられる。
- [0028] 熱可塑性樹脂としては、たとえば、ポリメタクリル酸メチル (PMMA) などのポリ(メタ) アクリル酸エステル;ポリカーボネート (PC);ポリエチレンテレフタレート (PET);ポリ エチレン、ポリプロピレンなどのポリビニル系化合物;ポリスチレンなどが挙げられる。
- [0029] 熱可塑性樹脂は、種類にもよるが、熱変形温度が好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは120℃以下である。このような温度範囲であると、高分子化合物膜の性能劣化を防ぐことができる。
- [0030] ケイ素樹脂としては、ポリジメチルシロキサン(PDMS)などのシリコーンゴムが挙げられる。このようなケイ素樹脂を用いると、基材あるいはカバー材表面が粘着性を有し、圧着による接着が可能となる。
- [0031] 基材の形状は、板状の平面基板が好ましい。基材の厚さは限定されないが、たとえ

ば、好ましくは1~20mm程度の範囲である。

[0032] 前記カバー材としては、前記基材と同様の材質のものを用いることができる。 カバー材は、基材をカバーするものであるため、その形状、大きさは基材と同一で あることが好ましい。

カバー材の厚さは限定されないが、たとえば、好ましくは1~20mm程度の範囲である。

- [0033] 基材とカバー材の材質の組み合わせは特に限定されず、同一の材質を用いても、 異なる材質を用いてもよい。
 - このうち、前記基材および前記カバー材の少なくとも一方が、プラスチックであること が好ましい。
- [0034] また、前記基材およびカバー材は、ともに、プラスチックであることが好ましく、この場合、ともに熱可塑性樹脂であることがより好ましい。
- [0035] また、前記基材およびカバー材の一方がケイ素樹脂の場合、残りの一方はガラスまたはプラスチックであってもよく、残りの一方はプラスチックであることがより好ましい。
- [0036] たとえば、前記基材およびカバー材のいずれもが、熱可塑性樹脂である場合、前記貼り合わせる方法としては、基材とカバー材とを、熱圧着する方法が採用できる。 熱圧着の際の温度は、用いるプラスチックの種類にもよるが、好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは120℃以下である。
- [0037] またたとえば、前記基材およびカバー材のいずれか一方がケイ素樹脂であり、残り の一方が任意のプラスチックまたはガラスである場合、貼り合わせる方法としては、基 材とカバー材とを圧着する方法が採用できる。
- [0038] このような基材とカバー材の材質における好ましい組み合わせ(基材:カバー材、またはカバー材:基材)としては、たとえば、下記のものが挙げられる。
 PMMA:PMMA、PDMS:PDMS、PDMS:PMMA、PDMS:ガラス、PET:PET、PMMA:PET、PDMS:PET、PC:PC、PDMS:PC、PMMA:PC、PS:PS、PDMS:PS、PMMA:PS
- [0039] これらのうちでは、PMMA:PMMA、PDMS:PDMS、PDMS:PMMA、PMM A:PET、PDMS:PET、PDMS:PC、PMMA:PC、PDMS:PS、PMMA:PSな

どの組み合わせを好ましく用いることができる。

- [0040] これらのうちでは、PDMSと他のプラスチックの組み合わせ、PMMAとPMMAの 組み合わせが特に好ましい。
- [0041] 上記のような組み合わせであると、低温で、しかも、接着剤を使用しなくても、接着 強度に優れた接着が可能となる。具体的には、このような材料を適宜組み合わせるこ とにより、基材とカバー材との貼り合わせを、上述のように圧着または熱圧着で行うこ とができる。
- [0042] さらに、本発明に係るマイクロ流路チップの製造方法では、マスクにより基材表面等 への高分子化合物膜の形成領域を最小限にしているため、このようなプラスチックの 接着効果を最大限に発揮することができる。

[0043] <u>流路</u>

前記流路は、基材の表面に形成される溝である。たとえば溝の幅は、1~100 μ m といった微細な空間とすることができる。溝の断面は、三角形や四角形のような多角形、あるいはU字型や半円状とすることができる。このような微細な構造の溝をガラス、プラスチック等の基材に設けるには、次のような方法を利用することができる。

- ・半導体加工技術のウェットエッチング法(フッ酸を使う方法)
- ・半導体加工技術のドライエッチング法(イオンスパッタリング、リアクティブイオンエッチング(ICPエッチングなど))
 - •レーザーせん孔
 - •ダイシングソー
- [0044] ウエットエッチング、ドライエッチング、あるいはレーザーせん孔の方法を利用すれば、自由な形状を有する微細な構造を容易に設けることができる。たとえば、10~10 0μmの幅、ならびに深さを有する溝を、ガラス表面に設ける技術が公知である。たとえば本発明者らは、リアクティブイオンエッチング (reactive ion etching)を利用した微小流路の作製に成功している。基材の素材に応じた異なる種類のエッチングガスを利用して、選択性の良い、またエッチレートの大きいエッチングが可能となっている。
- 「0045〕 基材表面に形成された溝は、カバー材を重ねることにより閉鎖系とすることができる

0

[0046] また、カバー材表面にも、溝を設けることができる。この場合、基材に設けられた溝 と重なるように設けることが好ましい。

[0047] さらに、カバー材に、基材またはカバー材に設けられた溝と重なる位置に穴を設けることによって、溝に試料や分離媒体を供給するための連絡流路を形成することができる。あるいは、カバー材に設けられた穴は、試料や緩衝液を保持するリザーバーとして利用することもできる。

[0048] 高分子化合物膜

本発明に係るマイクロ流路チップの製造方法は、表面に溝状の流路が形成された 基材の表面を、該流路全体が露出するマスクで遮蔽し、露出した基材表面に、高分 子化合物膜を形成する工程を含む。また、前記基材と貼り合わせる側のカバー材表 面に、高分子化合物膜を形成する工程を含んでもよい。前記のとおり高分子化合物 膜としては、プラズマ重合膜、表面重合膜または高分子結合膜などが挙げられる。

[0049] プラズマ重合によれば、微細な溝表面に対しても、プラズマ重合膜を形成することが可能である。しかもプラズマ重合によれば、得られる膜は極めて均質なものとなる。 このため、基材表面のピンホールの発生を抑制し、信頼性の高い分離分析用基材を 作成することができる。

表面重合によれば、膜の剥離が抑制された所望の表面重合膜を、基材表面の所望の位置に、形成させることができる。

さらに、基材表面に高分子化合物を結合させる高分子結合膜によれば、基材表面 に、膜厚の制御をしながら、所望の高分子化合物膜を、所望の位置に形成させること ができる。

[0050] これらのプラズマ重合膜、表面重合膜または高分子結合膜で被覆された基材、あるいはカバー材は、公知の方法によって得ることができる。以下、それぞれの膜について説明する。

[0051] (プラズマ重合膜)

具体的には、プラズマ重合は、真空中でモノマー物質をプラズマ励起によって直接支持体表面に成膜を行う技術である。モノマー物質の成分を換えることによって、さま

ざまな特徴を持つプラズマ重合膜を得ることができる。プラズマ重合では原理的には どのようなモノマーを用いても、重合が可能である。通常のポリマーを得るためには二 重結合の開裂が必要となるのに対して、プラズマ中ではモノマー物質がばらばらにな り多くの活性種を介した重合反応が起きるためである。

- [0052] 本発明におけるプラズマ重合膜のためのモノマー物質は、基材あるいはカバー材表面に電気泳動分離等の分離に応じた好適な性状を与える重合膜を形成できるものであればよい。たとえば電気泳動分離に応じた好適な性状としては、以下に示すような性状を示すことができる。これらの性状のうち、いずれかの任意の性状を与えることができるモノマー物質は、本発明に利用することができる。
 - -被分離物質の基材への吸着の抑制
 - -被分離物質に対する親和性
- [0053] 基材あるいはカバー材がプラスチックの場合、上記表面重合膜または高分子結合膜を形成することは困難な場合があるが、プラズマ重合によれば、プラスチック表面であっても、微細な溝表面に対しても、プラズマ重合膜を形成することが可能である。しかも得られる膜は極めて均質であり、プラスチックへのコーティングに特に優れる。
- [0054] プラズマ重合膜が被覆された基材とカバー材との貼り合わせは、他の高分子化合物膜が被覆された場合と比較して貼り合わせ強度の向上が必要な場合があったが、本発明に係るマイクロ流路チップの製造方法では、マスクにより基材表面等への高分子化合物膜の形成領域を最小限にしているので、前記プラスチックを用いる接着効果を最大限に発揮することができる。
- [0055] したがって、本発明に係るマイクロ流路チップの製造方法においては、好ましくはプラズマ重合膜でコーティングされた流路を用い、前記プラスチックの組み合わせを採用することが望ましく、これにより、極めて均一にコーティングされた流路を有し、しかも基板とカバー材との接着強度にも優れるマイクロ流路チップを、簡便かつ歩留まりよく製造することができる。
- [0056] なお、キャピラリー電気泳動に利用されるガラスは、表面に蛋白質を吸着しやすい。 蛋白質の基材への吸着はプラズマ重合膜によって制御することができる。たとえば、 基材の疎水性度や表面電荷によって制御可能である。

- [0057] 前記条件を満足するプラズマ重合膜を与えるモノマー物質としては、以下のようなものを示すことができる(「プラズマ重合」長田義人・編、角田光雄、中島薫、宮村雅隆、森田慎三、他著、東京化学同人1986年発行)。
- [0058] アルカン、またはシクロアルカンとして、次の化合物を示すことができる。 メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ネオペンタン 、ヘキサン、イソヘキサン、3ーメチルペンタン、2,2ージメチルブタン、2,3ージメチルブタ ン、ヘプタン、2,2,3ートリメチルブタン、オクタン、ノナン、デカン、メタンーd1、メタンーd2 、メタンーd3、メタンーd4、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサ ン、メチルシクロヘキサン、シクロオクタン、cisーデカリン、およびtransーデカリン。
- [0059] アルケン、アルキン、あるいはシクロアルケンとしては、次の化合物を示すことができる。

エチレン、プロピレン、1ーブテン、(Z)-2ーブテン、(E)-2ーブテン、2ーメチルプロペン、1ーペンテン、2ーメチルー1ーブテン、3ーメチルー1ーブテン、2ーメチルー2ーブテン、1ーへキセン、(E)-2ーヘキセン、(E)-3ーヘキセン、3ーメチルー1ーペンテン、2,3ージメチルー2ーブテン、1ーヘプテン、1ーオクテン、(E)-2ーオクテン、1ーデセン、1,3ーブタジエン、(Z)-1,3ーペンタジエン、(E)-1,3ーペンタジエン、イソプレン、2,3ージメチルー1,3ーブタジエン、ヘキサジエン、アセチレン、プロピン、1ーブチン、2ーブチン、1ーペンチン、3ーメチルー1ーブチン、ビニルアセチレン、シクロプロペン、シクロブテン、シクロペンタジエン、1,3ーシクロヘプタジエン、およびシクロオクタテトラエン。

[0060] アルコール、アルデヒド、ケトン、カルボン酸、あるいはエステルとしては次の化合物 を示すことができる。

メタノール、エタノール、1ープロパノール、2ープロパノール、1ーブタノール、2ーブタノール、2ーメチルー1ープロパノール、2ーメチルー2ープロパノール、アリルアルコール、1,3ーブタンジオール、2,3ーブタンジオール、2,3ーエポキシー1ープロパノール、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、アクリルアルデヒド、クロトンアルデヒド、グリオキサール、アセトン、2ーブタノン、2ーペンタノン、3ーメチルー2ーブタノン、3ーペンタノン、2ーペキ

WO 2005/084794 14 PCT/JP2005/003604

サノン、4ーメチルー2ーペンタノン、2ーへプタノン、シクロブタノン、シクロペンタノン、シクロへキサノン、シクロへプタノン、シクロオクタノン、4ーメチルー3ーペンテンー2ーオン、2,3ーブタンジオン、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、アクリル酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸オチル、酢酸イソブチル、酢酸オチル、酢酸オチル、酢酸メチル、酢酸メチル、酢酸メチル、酢酸メチル、酢酸アリル。

[0061] エーテル、アミン、あるいはその他のモノマー物質として利用可能な化合物を以下に示す。

ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、エチレンオキシド、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、メチルビニルエーテル、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、イソプロピルアミン、ブチルアミン、イソプチルアミン、s-ブチルアミン、t-ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジプロピルアミン、ジイソプロピルアミン、トリプロピルアミン、ジブチルアミン、デリルアミン、ボルムアミド、アセトアミド、Nーメチルアセトアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、メタンチオール、エタンチオール、硫化ジメチル、硫化ジエチル、硫化ジプロピル、二硫化ジメチル、二硫化ジエチル、メタンジチオール、1,2-エタンジチオール、ニトロメタン、ニトロエタン、1-ニトロプロペン、2ーニトロプロパン、1-ニトロブタン、2ーニトロプロパン、1-ニトロブタン、アセトニトリル、プロピオニトリル、アクリロニトリル、アミノアセトアルデヒドジメチルアセタール、ヘキサメチルジシロキサンなどが挙げられる。

[0062] また、次のようなハロゲン化物をモノマー物質に利用することができる。

フルオロメタン、ジフルオロメタン、フルオロホルム、テトラフルオロメタン(四フッ化炭素)、フッ化ビニル、1,1-ジフルオロエチレン、(Z)-1,2-ジフルオロエチレン、(E)-1,2-ジフルオロエチレン、トリフルオロエチレン、テトラフルオロエチレン、1,1,4,4-テトラフルオロブタジエン、ペルフルオロブタジエン、2-フルオロエタノール、トリフルオロ酢酸、1,1,1-トリフルオロー2-プロパノン、ペルフルオロアセトン、クロロメタン、ジクロロメタン、クロロホルム、テトラクロロメタン(四塩化炭素)、クロロエタン、1,1-ジクロロエタ

ン、1,2-ジクロロエタン、1-クロロプロパン、2-クロロプロパン、1,2-ジクロロプロパン、 1,3-ジクロロプロパン、1-クロロブタン、2-クロロブタン、1-クロロ-2-メチルプロパン 、2-クロロ-2-メチルプロパン、クロロシクロプロパン、1,1-ジクロロシクロプロパン、塩 化ビニル、1,1-ジクロロエチレン、(Z)-1,2-ジクロロエチレン、(E)-1,2-ジクロロエ チレン、トリクロロエチレン、テトラクロロエチレン、3-クロロプロペン、1,3-ジクロロプロ ペン、クロロアセチレン、ジクロロアセチレン、1-クロロプロピン、2-クロロエタノール、 クロロアセトアルデヒド、クロロアセトニトリル、ジクロロアセトニトリル、トリクロロアセトニト リル、ブロモメタン、ジブロモメタン、ブロモホルム、テトラブロモメタン(四臭化炭素)、 ブロモエタン、1,1-ジブロモエタン、1,2-ジブロモエタン、1-ブロモプロパン、2-ブロ モプロパン、1,3-ジブロモプロパン、1-ブロモブタン、2-ブロモブタン、1-ブロモ-2-メチルプロパン、2-ブロモ-2-メチルプロパン、1,4-ジブロモブタン、1-ブロモビシク ロ[2.2.1]ヘプタン、1-ブロモビシクロ[2.2.2]オクタン、臭化ビニル、3-ブロモプロペ ン、1,3-ジブロモプロペン、ブロモアセチレン、ジブロモアセチレン、1-ブロモプロピ ン、2-ブロモエタノール、ヨードメタン、ジョードメタン、ヨードホルム、テトラヨードメタン (四ヨウ化炭素)、ヨードエタン、1-ヨードプロパン、2-ヨードプロパン、1-ヨードブタン 、2-ヨードブタン、1-ヨード-2-メチルプロパン、2-ヨード-2-メチルプロパン、1-ヨー ドペンタン、3-ヨードプロペン、ヨードアセチレン、ジョードアセチレン、2-ヨードエタノ ール、1-ブロモ-2-クロロエタン、1,1,1-トリフルオロ-2-ヨードエタン、2-クロロ-1,1 ージフルオロエチレン、1*-*クロロー1,2,2-トリフルオロエチレン、1,1-ジクロロー2,2-ジフ ルオロエチレン、1-ブロモ-2-クロロアセチレン、1-クロロ-2-ヨードアセチレン、およ び1-ブロモー2-ヨードアセチレン。

[0063] 更に、以下のような芳香族炭化水素がモノマー物質として利用できる。

ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、クメン、ブチルベンゼン、s ーブチルベンゼン、tーブチルベンゼン、oーキシレン、mーキシレン、pーキシレン、oージ エチルベンゼン、mージエチルベンゼン、pージエチルベンゼン、メシチレン、1,2,4,5ー テトラメチルベンゼン、スチレン、フェニルアセチレン、(E)-1-プロペニルベンゼン、 (E)-1-フェニルブタジエン、2-フェニルブタジエン、ビフェニル、ナフタレン、1-メチ ルナフタレン、2-メチルナフタレン、アントラセン、フェナントレン、ピレン、ナフタセン、 クリセン、およびペンタセン。

[0064] 加えて、次のベンゼン誘導体等も本発明のモノマー物質に有用である。

フェノール、ベンズアンデヒド、アセトフェノン、アニソール、ベンジルメチルエーテル、アニリン、ペンジルアミン、チオフェノール、ベンゾニトリル、フルオロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、oージクロロベンゼン、mージクロロベンゼン、pージクロロベンゼン、oージブロモベンゼン、mージブロモベンゼン、pージブロモベンゼン、hリフルオロベンゼン、ヘキサフルオロベンゼン、oーフルオロトルエン、mーフルオロトルエン、pーフルオロトルエン、oーブロモトルエン、pーブロモトルエン、oーヨードトルエン、mーヨードトルエン、pーヨードトルエン、pーフロロフルオロベンゼン、およびoークロロヨードベンゼン。

[0065] また、次のような複素環式化合物がモノマー物質として利用できる。

ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,6-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、ピリジン、ピリミジン、ピラジン、1,3,5-トリアジン、ピリジンN-オキシド、2-メチルピリジンN-オキシド、3-メチルピリジンN-オキシド、カーオキシド、4-メチルピリジンN-オキシド、2,6-ジメチルピリジンN-オキシド、フラン、メチルフラン、テトラヒドロフラン、ピロール、ピロリジン、チオフェン、および2-クロロチオフェン。

- [0066] その他、トロポンやトロポロンのようなトロポノイド化合物、またテトラメチルシラン、テトラメチルスズ、テトラメチル鉛に代表される有機金属化合物をモノマー物質に用いることもできる。
- [0067] これらのうちpHが中性付近の条件において基材表面が中性付近の電荷を持つ場合には、アセトニトリル、ヘキサジエンを好ましく用いることができる。

pHが中性付近の条件において基材表面が負の電荷を持つ場合には、ヘキサメチルジシロキサンを好ましく用いることができる。

pHが中性付近の条件において基材表面が正の電荷を持つ場合には、ヘキシルアミンやアミノアセトアルデヒドジメチルアセタールを好ましく用いることができる。

[0068] これらのモノマー物質によってプラズマ重合膜を成膜する条件は公知である。具体的には、プラズマ重合反応の再現性に影響を与える主な要因として、たとえば流速、

放電電力、放電時間、そして圧力といった条件が重要であるとされている。プラズマ 重合においては、装置やモノマーに合わせて最適な重合条件を設定する必要があ る。W/FM(ここでWは放電電力、Fは流速、Mはモノマーの分子量)が同じであれば、 膜質はほぼ同じであるとする報告(Yasuda, Plasma Polymerization, Academic Press, New York,1985)がある。

- [0069] 利用するモノマー物質や、最終的に必要なプラズマ重合膜の膜厚等を考慮して、これらの条件を適切に調整することは当業者が日常的に行っていることである。また文献的にも各種のパラメーターがプラズマ重合膜の性質に及ぼす影響は明らかにされている(Surface and Coatings Technology 82:1-15,1996, Polymer Engineering and Science 37/7:1188-1194,1997)。後にポリヌクレオチドの固定化を目的とする場合に有利なモノマー物質として説明するヘキサメチルジシロキサンでプラズマ重合膜を作成するには、たとえば次のような範囲のもとで最適な条件を選択することにより、およそ0を超えて240Å以下のプラズマ重合膜を形成することができる。
- [0070] 流速:0~50cm³/min.

放電電力:0~300W

圧力:10⁻⁶~10 Torr

放電時間0~5分

(温度:0~100℃)

[0071] あるいは、0を超えて240Å以下のプラズマ重合膜を形成するための、より望ましい 条件として、次の条件を示すことができる。

流速:0~50cm³/min.

放電電力:20~100W

圧力:0.05~0.6Torr

放電時間30秒~5分

(温度:室温)

[0072] このようなプラズマ重合によれば、モノマー物質の選択によって、種々の官能基を 基材表面に付与することができるので、種々の性状を有する膜を容易に形成すること ができる。たとえば、種々の範囲の表面電荷、疎水性/親水性を有する基材表面を 得ることができる。

[0073] たとえば、pHにより異なるが、物質の荷電状態を示すゼータ電位を好ましくは-10 0~+100mVの範囲にコントロールすることができる。

またたとえば、表面の接触角を、好ましくは1度~140度の範囲にコントロールすることができる。

このようなプラズマ重合膜の膜厚は、たとえば、好ましくは1〜200nmの範囲にある ことが望ましい。

また、このようにして得られるプラズマ重合膜は、極めて均質な膜であり、ピンホール の発生が著しく抑制されている。

またプラズマ重合によれば、プラズマ重合膜を任意の形状の基材表面に形成させることができる。

- [0074] 導入された官能基を利用して、蛋白質と多様な相互作用をさせながら各種方法による分離が可能となる。例えば、アセトニトリルのような窒素原子を持つ有機物質をモノマー物質とすると、表面にアミノ基を持つプラズマ重合膜が合成できることが公知である。このようなプラズマ重合膜コート表面を利用して、静電的な相互作用(膜のプラス電荷と蛋白質のマイナス電荷)を行わせながら蛋白質の電気泳動等を行うことが可能である。
- [0075] また酢酸などカルボン酸やエステルなどの有機物質をモノマー物質とすると、表面 にカルボキシル基を持つプラズマ重合膜が合成される。その結果、膜のマイナス電 荷と蛋白質のプラス電荷の間での相互作用による電気泳動分離等が可能になる。
- [0076] さらにアルカンやシクロアルカン、芳香族炭化水素などをモノマー物質とすると、表面が極めて疎水的なプラズマ重合膜が合成されるので、疎水的相互作用に基づく分離が可能である。すなわち上記3つの例では、それぞれ陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー、疎水クロマトグラフィーと類似の作用を有する表面を実現できる。
- [0077] 本発明に係るマイクロ流路チップの製造方法において、表面に溝状の流路が形成された基材の表面を、該流路全体が露出するマスクで遮蔽し、露出した基材表面に 、高分子化合物膜を形成する工程を含むが、フォトマスクのパターンを光で一括転写

すること(フォトファブリケーション:楢岡清威、二瓶公志、フォトエッチングと微細加工 、総合出版社、1989)により、マイクロ流路チップを大量生産することができる。

フォトファブリケーションを利用すれば、超LSIに代表されるように数百万個からなる 部品が組み立てられたデバイスを、数mm角のシリコン基板上に、一体構造として作 製可能である。更にフォトファブリケーションにおいては、複数のフォトマスクのパター ンを組み合せて利用することができる。この特徴を利用すれば、付着加工、表面改質 加工といった異なる処理工程を組み合せることが可能である。

[0078] フォトファブリケーションに応用される表面改質や薄膜形成のための技術は、ドライプロセスである。前記プラズマ重合法はドライプロセスなので、フォトファブリケーションによるデバイス作成に好適である。更にプラズマ重合法を利用すれば、適切なモノマー物質を選択することにより表面に官能基を持つ薄膜を作製することができる。またプラズマ重合膜は、高度な橋かけ構造を持つピンホールフリーな膜であることから流路内部の修飾薄膜として最適である。

[0079] (表面重合膜)

表面重合膜は、前記基材表面上で重合性モノマーを重合して得られる重合膜である。

重合は、基材表面上の、末端に二重結合を有する疎水性官能基に重合性モノマーを重合して実施することが好ましい。

[0080] 前記疎水性官能基としては、好ましくは炭素原子数2〜6、さらに好ましくは炭素原子数3〜6、特に好ましくは4〜6の末端に二重結合を有するアルケニル基が挙げられる。

このような疎水性官能基としては、ビニル基、アリル基、1-ブテニル基、1-ペンテニル基、1-ヘキシニル基などが挙げられる。

- [0081] このような疎水性官能基と重合性モノマーとを重合させることにより、表面重合膜は、該疎水性官能基をスペーサーとして、炭素-炭素単結合により共有結合することとなる。
- [0082] したがって、このような表面重合膜が結合した基材は、疎水性のスペーサーにより 水分子の接近が抑制されているので、pH等の影響による加水分解による疎水性ス

- ペーサー自体の脱離が抑制される。また、疎水性スペーサーと表面重合膜とが炭素 一炭素結合により結合しているので、表面重合膜が疎水性スペーサーとの結合位置 で剥離することもない。
- [0083] したがって、分析すべき物質がタンパク質の場合に、水溶性溶媒中で分析を行って もpHの影響による表面重合膜の剥離がなく、信頼性の高い分析を行うことができる。
- [0084] また、表面重合法では、重合性モノマーを重合させて表面のポリマー膜を形成させるので、ポリマー自体を結合させる場合と比較して、ポリマーの凝集がないので、基材表面との結合を効率的に行うことができる。
- [0085] 疎水性官能基の基材表面への導入は、トルエン、メタノール、エタノール等の溶媒に、前記末端に二重結合を有する疎水性官能基を誘導する化合物を溶解し、ガラス等の基材を接触させて実施することができる。接触反応は、たとえば、室温(25℃程度)~100℃程度の温度で、たとえば、1~24時間程度の時間実施する。
- [0086] このような前記末端に二重結合を有する疎水性官能基を誘導する化合物は、一方の末端がガラス表面のシラノール基と反応しうるものであることが好ましい。このような化合物としては、たとえば、トリエトキシビニルシラン、トリエトキシアリルシラン、トリエトキシブテニルシラン、トリエトキシペンテニルシラン、トリエトキシへキシルシランなどのアルケニルシランが挙げられる。
- [0087] これらのうちでは、より好ましくはトリエトキシアリルシラン、トリエトキシブテニルシラン、トリエトキシペンテニルシラン、トリエトキシへキシルシラン、特に好ましくはトリエトキシブテニルシラン、トリエトキシペンテニルシラン、トリエトキシへキシルシランを用いることが望ましい。これらのアルケニルシランは、市販品又は公知の方法により製造することができる。たとえば、溶媒の存在下、所望のアルケニル基を含有するグリニャール試薬又はアルキルリチウム化合物と、クロロシラン等のハロゲン化シラン又はアルコキシシランとを反応させて、容易に合成することができる。
- [0088] 前記重合性モノマーとしては、ビニル基、アリル基、ジエンなどを有するものであればよく、限定されない。
- [0089] このような重合性モノマーとしては、ノニオン性モノマー、アニオン性モノマー、カチ オン性モノマーなどが挙げられる。

[0090] ノニオン性(疎水性、親水性など)表面を作るノニオン性モノマーとしては、たとえば

アクリルアミド、メタクリルアミドなどのアミド類:

アクリル酸メチル、メタクリル酸メチル、酢酸ビニル、酢酸アリル、アセト酢酸アリル、トリメチル酢酸ビニル、ビニル蟻酸、ヘキサン酸ビニル、ラウリン酸ビニル、メタクリル酸ビニル、オクタン酸ビニル、パルミチン酸ビニル、ピバル酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、ヘキサヒドロフタル酸モノ2-(メタクリロイルオキシ)エチル、フタル酸モノ-2-(メタクリロイルオキシ)エチル、安息香酸ビニル、p-ビニル安息香酸、酪酸ビニル、カプリン酸ビニル、カプロン酸ビニル、クロトン酸ビニル、デカン酸ビニル、けい皮酸ビニル、アリルブチレート安息香酸アリル、n-酪酸アリル、n-カプリン酸アリル、n-カプロン酸アリル、エナント酸アリル、ヘプタン酸アリル、イソフタル酸アリル、イソチオシアン酸アリル、イソ吉草酸アリル、n-吉草酸アリルなどのエステル類;

ビニルメチルケトンなどのケトン類;

ビニルブチルエーテル、アリルエーテル、アリルエチルエーテル、アリルブチルエー テル、ビニルエチルエーテル、n-デカン酸 アリルなどのエーテル類;

ビニルアルコール、アリルアルコールなどのアルコール類:

塩化ビニル、塩化アリル、塩化メタクリロイル、クロロ酢酸ビニル、塩化アクリロイル、 臭化アリル、よう化アリル、クロロ酢酸アリル、クロロぎ酸アリル、アリルクロロホルメート などのハロゲン化物;

スチレン、アリルベンゼン、4-メタアクリルオキシ-2-ヒドロキシベンゾフェノン、ビニルトルエン、アリルベンジルエーテル、4-アリル-2,6-ジメトキシフェノール、アリルアリソール、4-アリル-1,2-ジメトキシベンゼンなどのベンゼン環を有する芳香族化合物;

3-メタクリルオキシプロピルトリメトキシシラン、ビニルトリクロロシラン、アリルクロロジメチルシラン、アリルクロロメチルジメチルシランなどのシラン類;

メタクリロニトリル、ビニルアセトニトリル、アクリロニトリル、シアノ酢酸アリル、シアン 化アリルなどのシアン類:

2-アリルシクロヘキサノン、1-アリルシクロヘキサノール、アリルシクロペンタンなどのシクロアルカン誘導体:

その他、ビニルアントラセン、ビニルスルホン、アリルアルコールプロポキシレート、 アリルーLーシステイン、アリルエチレン、アリルグリシジルエーテル、アリルトリフルオロ 酢酸、アリルシクロペンタジエニルニッケル、ジエチルホスホノ酢酸アリル、アリルジフェニルホスフィン、アリルジフェニルホスフィンオキシド、アリルジスルフィドなどが挙げられる。

- [0091] これらのうち、親水性ノニオン性表面として、アクリルアミドやビニルアルコール、疎水性ノニオン性表面として、スチレンやアリルベンゼンなどを好ましく用いることができる。
- [0092] アニオン性表面を作るアニオン性モノマーとしては、たとえば、 アクリル酸、メタクリル酸、モノ-2-(アクリロイルオキシ)エチルスクシネートなどのカルボキシル基含有化合物;

アリルスルホン酸、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸、p-ビニルベンゼンスルホン酸などのスルホン酸基含有化合物などが挙げられる。

- [0093] これらのうち、強アニオン性として、ビニルスルホン酸やアリルスルホン酸、弱アニオン性としてアクリル酸やメタクリル酸などを好ましく用いることができる。
- [0094] カチオン性表面を作るカチオン性モノマーとしては、たとえば、 アリルアミン、3-アクリルアミド-N,N-ジメチルプロピルアミン、アリルシクロヘキシル アミン、3-メタクリルアミド-N-ジメチルプロピルアミンなどの第一級アミン; メチルアリルアミンなどの第二級アミン:

N-アリルジエチルアミン、N-アリルジメチルアミンなどの第三級アミン;

アリルトリエチルアンモニウム、(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、ビニルトリメチルアンモニウムブロミド、3-(メタクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、メタクリル酸エチルトリメチルアンモニウムクロリド、ジアリルジメチルアンモニウムなどの第四級アンモニウムが挙げられる。

[0095] また、上記ノニオン性モノマー、アニオン性モノマー、カチオン性モノマーの他、たとえば、複素環式化合物を側鎖に有する、アリルヒドラジン、2-ビニルピラジン、2-ビニルピリジン、4-ビニルピリジン、N-ビニル-2-ピロリドン、1-アリルベンゾトリアゾール

- 、アリル-1-ベンゾトリアゾールカーボネートなどを用いることもできる。
- [0096] これらのうち、強カチオン性としてジアリルジメチルアンモニウム塩、弱カチオン性と して、アリルアミンなどを好ましく用いることができる。
- [0097] このような重合性モノマーは、1種単独で、または複数を併用して用いることができる。
- [0098] 基材表面上での前記重合性モノマーのラジカル重合は、公知の方法を採用することができる。たとえば、溶媒の存在下又は非存在下で、必要に応じ重合開始剤を添加して、重合性モノマーを重合性官能基が導入された基材表面で重合させて行うことができる。
- [0099] 溶媒としては、重合性モノマーが溶解するものであればよく、限定されない。たとえば、THF、メタノール、DMF、DMSOなどを用いることができる。
- [0100] 重合開始剤としては、たとえば2, 2'-アゾビス(イソブチロニトリル)(AIBN)、1, 1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2, 2'-アゾビス(2-メチルブチロニトリル)などを用いることができる。また、このようなアゾ化合物の他に、過酸化物、有機金属化合物などを用いることもできる。
- [0101] 上記THF等の溶媒に溶解しない重合性モノマーを用いる場合は、たとえば、超純水を溶媒として用い、N, N, N', N'ーテトラメチルエチレンジアミン、4, 4'ーアゾビスシアノ吉草酸などの重合開始剤を用いて重合を行うことができる。
- [0102] 重合は、重合性モノマーの種類により異なり限定されないが、通常、たとえば、室温 ~100℃程度の温度範囲で、1~72時間程度の時間で実施することができる。
- [0103] このようにして得られる表面重合膜を、用いる重合性モノマーの種類あるいは複数 のポリマーの組み合わせにより、種々の範囲の電荷、疎水性/親水性の表面とさせ ることができる。
- [0104] たとえば、pHにより異なるが、物質の荷電状態を示すゼータ電位を好ましくは-10 0〜+100mVの範囲にコントロールすることができる。 またたとえば、表面の接触角を、好ましくは1〜140度の範囲にコントロールすること
- [0105] 表面重合膜においては、ピンホールなどのモノマー未修飾部分が発生する場合が

ができる。

ある。このため、さらに、重合性モノマーまたはポリマーを結合させることができる。

[0106] 本発明で用いることができる表面重合膜では、さらに、表面重合膜のポリマー側鎖中の官能基に、別のポリマーまたはモノマーを反応させてもよい。

導入された官能基を利用して、蛋白質と多様な相互作用をさせながら電気泳動による分離が可能となる。例えば、前記カチオン性モノマーを重合性モノマーとして用いることにより、表面にカチオン性官能基を有する表面重合膜が合成できる。このような表面重合膜が被覆された表面を利用して、静電的な相互作用(膜のプラス電荷と蛋白質のマイナス電荷)を行わせながら蛋白質の電気泳動を行うことが可能である。

- [0107] また、アニオン性モノマーを重合性モノマーとして用いることにより、表面にアニオン性官能基を有する表面重合膜が合成される。その結果、膜のマイナス電荷と蛋白質のプラス電荷の間での相互作用による電気泳動分離が可能になる。
- [0108] さらにノニオン性の重合性モノマーを適宜使い分けることにより、表面が極めて疎水 的あるいは親水的な表面重合膜が合成されるので、疎水的相互作用あるいは親水 的相互作用に基づく分離が可能である。
- [0109] したがって、すなわち上記3つの例では、それぞれ陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー、疎水/親水クロマトグラフィーと類似の作用を有する表面を実現できる。
- 「0110」(高分子<u>結合膜)</u>

高分子結合膜は、基材表面に反応性官能基を導入し、該官能性反応基にポリマーを共有結合させて得られるものである。

- [0111] 高分子化合物を結合させる部位となる反応性官能基としては、アミノ基、エポキシ 基、カルボキシル基、アルデヒド基などが挙げられる。これらのうちでは、アミノ基、エ ポキシ基を好ましく用いることができる。
- [0112] このような反応性官能基を有する結合基は、さらに、疎水性のスペーサーを介して 基材表面に結合していることが好ましい。
- [0113] 疎水性スペーサーとしては、好ましくは炭素原子数2~6、さらに好ましくは炭素原子数3~6、特に好ましくは炭素原子数4~6のアルキル基を含むことが望ましい。
- [0114] このような疎水性スペーサーを介した反応性官能基に、高分子化合物を結合した

25

PCT/JP2005/003604

[0115] 前記スペーサーを有する反応性官能基の基材表面への導入は、基材の種類により 異なるが、たとえば、基材がガラスの場合シランカップリング法により行うことができ、 基材が金属であればセルフアセンブルモノレイヤー法により行うことができる。

WO 2005/084794

- [0116] シランカップリング法を用いる場合は、たとえば、トルエン、メタノール、水等の溶媒に、アミノプロピルトリエトキシシラン、アミノブチルトリエトキシシラン、アミノペンチルトリエトキシシラン、アミノへキシルトリエトキシシランなどのアミノアルキル系シランカップリング剤、あるいは、3ーグリシドキシプロピルトリエトキシシラン、3ーグリシドキシブチルトリエトキシシラン、3ーグリシドキシブチルトリエトキシシラン、3ーグリシドキシペンチルトリエトキシシラン、3ーグリシドキシへキシルトリエトキシシランなどのエポキシアルキル系シランカップリング剤を溶解し、ガラス等の基材を接触させて実施することができる。これらは、市販品又は公知の方法により製造することができる。たとえば、アミノアルキル系シランカップリング剤あるいはエポキシアルキル系シランカップリング剤は、溶媒の存在下、所望のアルキル基および官能基を含有するグリニャール試薬又はアルキルリチウム化合物と、クロロシラン等のハロゲン化シラン又はアルコキシシランとを反応させて、容易に合成することができる
- [0117] 接触反応は、たとえば、室温(25℃程度)~100℃程度の温度で、たとえば、1~24時間程度の時間実施する。
- [0118] セルフアセンブルモノレイヤー法を用いる場合は、たとえばスパッタリングなどによって基材表面に金などの金属薄膜を形成し、その金属薄膜表面に官能基とチオール基を有するスペーサーを導入し、さらにポリマー(あるいは重合開始剤を官能基と反応させ、モノマーを用いて重合することも可能である。)を反応させ、高分子結合膜を形成することができる。また、チオール基を有するポリマーを先に調製しておき、これを金属表面に修飾させて高分子膜を形成することができる。
- [0119] 金属としては、金、銀、銅などが挙げられる。スペーサーとしては、アミノ基を有する アミノエタンチオール、カルボキシル基を有するチオクト酸などが挙げられる。
- [0120] 基材上にスペーサーあるいは、チオール基を修飾したポリマーを導入するための

- 溶媒はDMSO、水などの溶媒中にスペーサーを溶解し、金属薄膜に接触させて実施することができる。
- [0121] 接触反応は、例えば室温〜100℃程度の温度で、例えば1〜24時間程度の時間実施する。
- [0122] 前記ポリマーとしては、前記表面重合において用いる重合性モノマーを、あらかじ め重合して得られるポリマーが挙げられる。これらのうちでは、好ましくは、ポリスチレ ン、ポリアリルベンゼン、ポリビニルアルコール、ポリアクリルアミド、ポリビニルスルホン 酸、ポリアクリル酸、ポリジアリルジメチルアンモニウム塩、ポリアリルアミン、ポリエチレングリコールなどを好ましく用いることができる。
- [0123] これらのうち、ノニオン性表面として、ポリビニルアルコール、ポリアリルアルコールを さらに好ましく用いることができる。
- [0124] 強アニオン性表面として、ポリアクリル酸などをさらに好ましく用いることができる。 強カチオン性表面として、ポリアリルアミンをさらに好ましく用いることができる。
- [0125] このようなポリマーは、1種単独で、または複数を組み合わせて用いることができる。 このようなポリマーの重量平均分子量としては、たとえば、好ましくは5000~5000 00、さらに好ましくは10000~250000の範囲にあることが望ましい。
- [0126] ポリマーを基材あるいはカバー材に結合させて得られる高分子結合膜においては 、ピンホールのような反応性官能基がポリマーと結合していないポリマー未修飾部分 が発生する場合がある。このため、さらに、ポリマーを結合させることができる。
- [0127] このような高分子結合膜の製造は公知の方法が採用でき限定されない。たとえば、 前記ポリマーを溶媒に溶解し、前記表面に反応性官能基を導入した基材を溶液に 接触させて製造することができる。
- [0128] 溶媒としては、ポリマーを溶解するものであれば限定されないが、たとえば、DMS O(ジメチルスルホキシド)、HEPES(2-[4-(2-ヒドロキシエチル)1-ピペラジニル] エタンスルホン酸) 緩衝液、などが挙げられる。
- [0129] また、結合反応には、必要に応じ活性化剤を用いることもできる。たとえば、アミノ基が導入された基材に、ポリアクリル酸を結合させる場合、HEPESにポリアクリル酸を溶解させた後、Nーヒドロキシスクシンイミド、塩酸1-エチル-3-(3-ジメチルアミノプ

ロピル)カルボジイミドを添加して結合させる。

- [0130] このようにして得られる高分子結合膜は、ポリマーが未修飾部分を有する場合があるが、該ポリマー未修飾部分に対し、別のポリマーを結合させることもできる。さらに、結合したポリマー側鎖中の官能基に、別のポリマーまたはモノマーを反応させることもできる。
- [0131] このようにポリマーの種類、あるいは複数のポリマーの組み合わせによって種々の 範囲の電荷、疎水性/親水性の表面を有する高分子結合膜を得ることができる。 たとえば、pHにより異なるが、物質の荷電状態を示すゼータ電位を好ましくは-10 0〜+100mVの範囲にコントロールすることができる。

またたとえば、表面の接触角を、好ましくは1~140度の範囲にコントロールすること ができる。

- [0132] このような高分子結合膜は、予め結合すべきポリマーを調製することにより、膜厚を 容易に制御することができる。
- [0133] 導入された官能基を利用して、蛋白質と多様な相互作用をさせながら電気泳動等による分離が可能となる。例えば、前記カチオン性モノマーに由来するポリマーを用いることにより、表面にカチオン性官能基を有する高分子結合膜が合成できる。このような高分子結合膜が被覆された表面を利用して、静電的な相互作用(膜のプラス電荷と蛋白質のマイナス電荷)を行わせながら蛋白質の電気泳動等を行うことが可能である。
- [0134] アニオン性モノマーに由来するポリマーを用いることにより、表面にアニオン性官能基を有する高分子結合膜を合成することができる。その結果、アミノ基と同様の静電的な相互作用であり、かつ膜のマイナス電荷と蛋白質のプラス電荷の間での相互作用による電気泳動分離等が可能になる。
- [0135] ノニオン性の重合性モノマーに由来するポリマーを適宜使い分けることにより、表面が極めて疎水的あるいは親水的な高分子結合膜を合成できるので、疎水的相互作用あるいは親水的相互作用に基づく分離が可能である。
- [0136] また、アニオン性官能基を有するポリマーを修飾した後、該アニオン性官能基に、たとえば、疎水性(または親水性)の官能基を有するノニオン性ポリマーまたはノニオ

ン性モノマーを結合させることにより、アニオン性と疎水性(または親水性)の性質を併せ持つ基材表面を形成することができる。また、ノニオン性ポリマー又はモノマーの修飾率を変えれば、疎水性(または親水性)のバランスをコントロールすることができる。

[0137] このようにして得られるマイクロ流路チップでは、基材、さらに好ましくは基材および カバー材の表面において、高分子化合物膜で被覆されていない領域が存在するた め、基材とカバー材との貼り合わせの際の接着強度に優れている。

[0138] <マイクロ流路チップ>

本発明に係るマイクロ流路チップは、表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の一部又は全部の表面に高分子化合物膜が被覆されている。

また、前記カバー材の基材側の表面には、高分子化合物膜が被覆されていることが好ましい。

- [0139] さらに、前記カバー材の基材側の表面の、基材の高分子化合物膜が形成されている領域と対向する領域に、前記基材の高分子化合物膜が形成されている部分の一部又は全部と同一形状の高分子化合物膜が被覆されていることがより好ましい。 このようなマイクロ流路チップは、前記本発明に係るマイクロ流路チップの製造方法により製造することが好ましい。
- [0140] 前記基材、前記カバー材、前記流路、前記高分子化合物膜は、前記マイクロチップの製造方法で示したものと同意義である。

[0141] <生体分子の分離方法>

本発明に係る生体分子の分離方法は、次の工程を含む。

- a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップに、分析すべき生体分子を加える工程、および
- b) 分離媒体に分離圧を加える工程。
- [0142] 該生体分子の分離方法で用いることのできるマイクロ流路チップは、本発明に係る 前記マイクロ流路チップである。また、前記基材、前記カバー材、前記流路、前記高

分子化合物膜は、前記マイクロチップの製造方法で示したものと同意義である。

- [0143] 分離媒体としては、電気泳動等における泳動媒体として公知のものを採用でき限定されない。たとえば分離媒体としては、有機溶媒、ポリアクリルアミド、アガロースなどのゲル、緩衝液等の液体が挙げられる。好ましくは電気泳動媒体を用いる。電気泳動媒体としては、たとえば、ゲル、緩衝液などを用いることが好ましい。圧送の場合、用いる分離媒体に特に限定はない。
- [0144] 分離圧としては、用いる分離媒体などにより異なり特に限定されず、電気泳動、圧 送などを採用することができる。このうち電気泳動が好ましい。
- [0145] 生体分子としては、蛋白質、DNA、ウィルス、細菌、糖類、アミノ酸、その他の代謝 産物などが挙げられ、これらのうち、本発明は蛋白質の分離に有効である。
- [0146] 前記電気泳動方法の分離原理は限定されない。前記表面に高分子化合物膜が被覆された基材を用いる電気泳動分離は、分離媒体の条件によって、様々な性状に基づく分離を可能とする。電気泳動分離の分離条件として、pH勾配、分子篩(ふるい)、分離媒体中で接触する官能基との相互作用等を示すことができる。pH勾配を備えた分離媒体中における電気泳動を蛋白質に利用すれば、等電点電気泳動となる。またポリアクリルアミドゲルのような分子篩効果を持つ媒体中で電気泳動を行うとき、SDS、尿素、あるいはグアニジンのような蛋白質変性剤を共存させれば、変性条件下での分子篩電気泳動が成立する。あるいは、変性剤を用いなければ、ネイティブな条件下での電気泳動が成立する。
- [0147] 同様に分子篩(ふるい)に基づいて核酸を泳動するとき、核酸は長さに基づいて分離される。PCR-SSCPのように非変性条件と変性条件下で同じ核酸を電気泳動分離して、両者の結果を比較して立体構造の違いを明らかにする分析方法も公知である
- [0148] 更に、さまざまな官能基を備えた分離媒体の利用も可能である。具体的には、静電的相互作用、水素結合、疎水結合、あるいは任意の組み合わせの親和性物質などを示すことができる。親和性物質としては、抗原-抗体、相補的な塩基配列からなる核酸のハイブリダイゼーション、アビジン-ビオチンや、糖-レクチンのような親和性物質の組み合わせ等がある。

- [0149] 本発明に好適な電気泳動の原理の一つに、キャピラリー電気泳動を示すことができる。本発明に基づいてキャピラリー電気泳動を行う場合、前記高分子化合物膜が施されているので、電気浸透流を制御することのできる流路を形成できる。
- [0150] 本発明において、キャピラリー電気泳動に有用な好ましいモノマー物質には、例えば、プラズマ重合膜の場合、ヘキサジエン、ヘキサメチルジシロキサン、アセトニトリル、ヘキシルアミン、アミノアセトアルデヒドジメチルアセタールを示すことができる。

表面重合膜の場合、スチレン、アクリルアミド、ビニルスルホン酸、アクリル酸、ジアリルジメチルアンモニウム塩、アリルアミンが挙げられる。

高分子結合膜の場合、ポリビニルアルコール、ポリアクリル酸、ポリアリルアミンが挙 げられる。

- [0151] 以下は、プラズマ重合膜を用いる例である。陽極液と、陰極液を両端に導入し、両端に電圧を印加する。陽極液には、電解質の中で最も酸性の強いものよりも低いpHを与える酸性の溶液が用いられる。一方、陰極液には、最も塩基性の強いものよりも高いpHを与えるアルカリ性の溶液を利用する。それぞれの両性電解質は等電点の位置すで移動した後停止する。蛋白質成分は、流路内に形成されたpH勾配上の等電点の位置で濃縮され、細いゾーンとして観測される。
- [0152] キャピラリーゾーン電気泳動(CZE)では、1種類の電解質溶液を流路内に導入することにより、流路内壁および内壁に接する電解質溶液の間に電気二重層が形成される。電圧がかけられると電解質溶液が溶媒を伴って移動し、電気浸透流が生じる。電気浸透流は分離された成分イオンを移動させる駆動力となる。試料成分はそれぞれの電荷とサイズに応じた静電気力を受けて対極へ引き寄せられ、電荷とサイズの違いが移動度の違いとなり成分が分離される。
- [0153] CZEでは、電気浸透流を用いて生体分子の分離を行っているが、電気浸透流はp Hによって大きく変わり、キャピラリー間の個体差もあるため問題である。この電気浸透流をコントロールすることができれば、様々なモード(キャピラリー電気泳動全般(CZE、キャピラリーゲル電気泳動(CGE)、キャピラリー等電点電気泳動(CIFE)など)及び、クロマトグラフィー的な分離(イオン交換、逆相、順相、アフィニティークロマトグラフィー等))で生体分子を分離することが可能になると考えられる。本発明で用いる

高分子化合物膜(特にプラズマ重合膜)によってコーティングされた流路は、電気浸 透流をコントロールすることができるため非常に有効である。

[0154] <電気泳動分析装置>

更に本発明は、次の要素で構成される電気泳動分析装置に関する。

- a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップ、
 - b) 該マイクロ流路チップを保持するための支持体、および
 - c) 支持体に保持されたマイクロ流路チップに電圧を印加するための電極。
- [0155] 該電気泳動分析装置で用いることのできるマイクロ流路チップは、本発明に係る前記マイクロ流路チップである。また、前記基材、前記カバー材、前記流路、前記高分子化合物膜は、前記マイクロチップの製造方法で示したものと同意義である。支持体は特に限定されず、マイクロ流路チップが安定に固定されるものであればよい。

なお本明細書において引用された全ての先行技術文献は、参照として本明細書に 組み入れられる。

実施例

- [0156] 以下実施例により本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。実施例において用いた装置等は下記の通りである。
- [0157] 「プラズマ重合装置]

実施例において、プラズマ重合膜の重合方式として、RF電源、外部電極方式によるAfter glow方式を利用した。サムコ社製のプラズマ基礎研究装置BP-1をベースに種々のユニットを追加して、流量、圧力、およびパワーマッチングを自動で制御可能な装置を作製した。装置の構成を以下に示す。

[0158] 反応器(チャンバー):パイレックス(登録商標)製210mm φ、
 試料ステージ:チャンバー下部に、SUS304製、ヒーター加熱制御ステージ設置排気系:ファイファー社製ターボ分子ポンプ+エドワーズ社製ロータリーポンプRF電源:サムコ社製13.56MHz、300W、水晶発振マッチング:サムコ社製オートマッチング方式

圧力コントロール:MKS社製バラトロン真空計からの圧力をVAT社製オートマチック プレッシャーコントロール(APC)バルブユ ニットで自動制御

ガス導入系:試料モノマー、アルゴン、酸素ラインをSTEC社製電磁弁とマスフローコントロール(MFC)ユニットで自動制御

[0159] [電子顕微鏡]

電子プローブマイクロアナライザーJXA-8100(日本電子社製)

- [0160] [電子プローブマイクロアナライザ] 電子プローブマイクロアナライザーJXA-8100(日本電子社製)
- [0161] [実施例1]

[マスクを用いてプラズマ重合膜が成膜されたチップの作製]

ポリメチルメタクリレート (PMMA) (クラレックス000 (商品名)、日東樹脂社製、厚さ $3mm \times 縦70mm \times 横70mm$) 基板に、幅200 μ mのステンレス製マスクを載せ、これら を、プラズマ重合装置のチャンバー内に入れた。チャンバー内の真空度を 3×10^{-5} Torrとした。ヘキサメチルジシロキサン (HMDS) をチャンバー内に満たし、放電電力 (RFパワー) 150W、圧力0. 1Pa、流速100sccmとし、180秒放電を行い、プラズマ 重合膜を成膜した。膜厚は100nmであった。

- [0162] 図1に示すように、プラズマ重合膜が、 $200 \mu m$ の幅で成膜されたことが、電子顕微鏡により確認できた。
- [0163] 図2に示すように、電子プローブマイクロアナライザにより、成膜部の元素マッピング 組成分析を行ったところ、基材のPMMAには含まれず、HMDSに含まれるSiが、 200μm幅で強く検出された。また基材のPMMAに比較してHMDSでは含有が少 ないCの検出が小さくなっており、マスク幅で膜が形成されていることが確認された。
- [0164] 〔実施例2〕

[マイクロ流路チップの製造]

成型チップ(ポリメチルメタクリレート: PMMA)とポリジメチルシロキサン: PDMSとの貼り付けによって電気泳動用チップを作製し、これを用いてタンパク質の分離を行った

[0165] PMMA(厚さ8mm)を射出成型することによって、十字型のマイクロ流路を設けたプ

ラズマ重合用チップ (基材)を作製した (小林精工社製、図3を参照)。マイクロ流路の深さと幅は、それぞれ $100\,\mu$ m、リザーバーの径:4mm、導入チャネル:10mm、分離チャネル:50mmである。

- [0166] カバー材は、ポリジメチルシロキサン(PDMS)(商品名SYLGARD 184:信越シリコーン社製)をポリスチレンケース内で重合することにより作製した。重合は、モノマーと触媒を10:1で混合し、真空ポンプにて脱気後、ポリエチレンケースにキャストし、70℃で1時間反応させて蓋材であるPDMSを得た。
- [0167] プラズマ重合用チップのマイクロ流路内へ成膜するため、3種類の金属マスク(幅 150、200、1000 μ m) (ステンレス製:健正堂社製)を使用した。

基材とカバー材の両方に、3種類の金属マスク(幅150、200、1000 μ m)を施し、重合用モノマーを用い、各プラズマ重合膜が100nm程度の膜厚になるようプラズマ重合を行った。重合用モノマーとして、HMDS、ヘキシルアミン、アセトニトリルを用いた。

[0168] 各モノマーのプラズマ重合の条件は下記の通りである。

HMDS

- RFパワー:150W
- ・MF:100sccm (HMDSに対する値、アセトニトリル用マスフローメーターの値は 22.0sccm)
 - 時間:180秒

[0169] <u>ヘキシルアミン</u>

- RFパワー:200W
- ・MF:4.0sccm(アセトニトリル用マスフローメーターの値)
- 時間:900秒

[0170] アセトニトリル

- ・RFパワー:200W
- ・MF:10.0sccm(アセトニトリル用マスフローメーターの値)
- 時間:180秒
- [0171] 成膜後、金属マスクをはがし、基材とカバー材のアライメントを取りながら貼り付け、 電気泳動用チップを作製した。

作製したマイクロ流路チップのマイクロ流路内に、泳動バッファー (0.6%セルロースを含む0.1Mリン酸緩衝液 (pH8.5))を流したところ、全てのプラズマ重合膜、および幅150、200、1000 μ mの全てにおいてチャネル外への泳動バッファーの漏出がなく、基材とカバー材の貼り付けは十分であることが確認できた。

[0172] 〔実施例3〕

「マイクロ流路チップを用いる電気泳動によるタンパク質の分離】

実施例2で、HMDS、幅1000 μ mの金属マスクを使用して調製したマイクロ流路チップを用い、タンパク質としてカルボニックアンヒドラーゼを用いて分離実験を行った。 比較対照用に、被膜していないチップを用いた。

カルボニックアンヒドラーゼ1mgを下記の蛍光試薬(Cy5)によって染色し、これを用いた。

[0173] 蛍光試薬による染色方法

(Cy5によるタンパク質の染色方法)

蛍光色素であるCy5はタンパク質染色用としてキット化されており、安定で量子効率の良い蛍光試薬である。このため、Cy5を蛍光色素としてタンパク質を染色し、これを使用した。染色方法を以下に示す。カルボニックアンヒドラーゼ1mg(タンパク質重量) (等電点pI=7.3、分子量30kDa(Sigma社製))とアマシャムCy5染色キット1パックを0.1M炭酸緩衝液(pH9.2)1mL中に溶解し、室温、1時間攪拌下で反応させた。反応後、未反応Cy5を除去するため、マイクロコンYM3(ミリポア社製、分画分子量3000)中に 500μ L入れ、14000Gで100分間遠心し(限外ろ過)、その後、同じ炭酸緩衝液を 400μ L加えて遠心を行った。これを4回繰り返し精製した。最終液量を1mLとし、Cy5染色タンパク質を調製した。

[0174] 泳動バッファーのチップへの導入方法

図3に示すように、チップのリザーバー3に泳動バッファーを17 µ L入れ、シリンジで 圧を加えることによってチャネル内を泳動バッファーで満たした(気泡が入らないよう に注意して行った)。

[0175] それぞれのリザーバーまでのチャネル内を泳動バッファーで満たした後、泳動バッファーをリザーバー1、2には 17μ L、リザーバー4には 15.5μ L、それぞれ添加した。

リザーバー4にサンプルを1.5 μ L添加し、ピペッティングしてよく攪拌した。

[0176] 各リザーバーに白金線で作った電極を入れ、ハイボルテージ・シーケンサーで電圧を制御しながら電気泳動を実施した。電気泳動の検出は、リザーバー4に入る直前の流路で行った。導入時の電圧、分離時の電圧、導入時間、分離時間は、以下の通りである。電圧の加え方は図3の通りである。

導入電圧 600V

導入時間 60秒

分離電圧 V1 130V

V2 750V

分離時間 1200秒

[0177] 結果

図4にサンプルとしてカルボニックアンヒドラーゼを用いたときの電気泳動結果を示す。最初に検出されたピークは、未反応Cy5によるものと考えられる(成膜なし:約160秒、HMDS成膜:約180秒)。続いて検出された複数のピークがカルボニックアンヒドラーゼによるものであると考えられるが、成膜なしチップで検出されたピーク群(約170~1200秒)とHMDS成膜チップで検出されたピーク群(約190~460秒)ではCy5のピークを基準にしてみた場合、ほぼ同じ時間に検出された(約10秒後)。分離能は、HMDS成膜チップの方が速く多数のピークが検出されたことから良好であると判断される。ここでの分離能とは、電気泳動パターンの相違とピークの数(多いほど分離能が高いと解釈される)を示している。Cy5によるピークを基準として検出されたタンパク質のピークを考察した。

産業上の利用可能性

[0178] 本発明に係るマイクロ流路チップの製造方法は、基材、さらに好ましくは基材およびカバー材の表面において、高分子化合物膜で被覆されていない領域が存在するようにして高分子化合物膜を形成するため、基材とカバー材との貼り合わせにおいて接着強度に優れ、また、簡便である。

請求の範囲

- [1] 表面に溝状の流路が形成された基材の表面を、該流路が露出するマスクで遮蔽し、 露出した基材表面に、高分子化合物膜を形成する工程、および 前記基材の流路が形成されている側の表面に、カバー材を貼り合わせる工程 を含む、マイクロ流路チップの製造方法。
- [2] 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程を含む、請求項1に記載の方法。
- [3] 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成するに際し、 前記カバー材の表面を、前記基材のマスクの露出部分の一部又は全部と露出部分 が同一形状のマスクで遮蔽し、露出したカバー材表面に、高分子化合物膜を形成す る、請求項2に記載のマイクロ流路チップの製造方法。
- [4] 前記基材表面の高分子化合物膜が、
 - (a) 基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合 膜、
 - (b) 基材表面で重合性モノマーを重合して形成する表面重合膜、または
 - (c) 基材表面に高分子化合物を結合して形成する高分子結合膜である、請求項1~3のいずれかに記載の方法。
- [5] 前記基材表面の高分子化合物膜が、プラズマ重合膜である、請求項1〜4のいずれかに記載の方法。
- [6] 前記カバー材表面の高分子化合物膜が、
 - (a) 基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜
 - (b) 基材表面で重合性モノマーを重合して形成する表面重合膜、または
 - (c)基材表面に高分子化合物を結合して形成する高分子結合膜である、請求項2~5のいずれかに記載の方法。
- [7] 前記カバー材表面の高分子化合物膜が、プラズマ重合膜である、請求項2~6のいずれかに記載の方法。
- [8] 前記基材の表面に形成する高分子化合物膜と、前記カバー材の表面に形成する高

- 分子化合物膜とが、同一の高分子化合物膜である、請求項2~7のいずれかに記載 の方法。
- [9] 前記貼り合わせを、圧着または熱圧着により行う、請求項1~8のいずれかに記載の 方法。
- [10] 前記基材および前記カバー材の少なくとも一方が、プラスチックである請求項1~9 のいずれかに記載の方法。
- [11] 前記基材およびカバー材が、プラスチックである、請求項1~10のいずれかに記載 の方法。
- [12] 前記基材およびカバー材のいずれもが、熱可塑性樹脂であり、 前記貼り合わせる工程が、基材とカバー材とを、熱圧着により貼り付ける方法である、 請求項11に記載の方法。
- [13] 前記熱圧着を200℃以下の温度で行う、請求項12に記載の方法。
- [14] 前記基材およびカバー材のいずれか一方がケイ素樹脂であり、残りの一方がガラスまたはプラスチックであり、 前記貼り合わせる工程が、基材とカバー材とを、圧着により貼り付ける方法である、請求項10に記載の方法。
- [15] 前記マスクが、フォトレジストマスクまたは金属マスクである、請求項1~14のいずれかに記載の方法。
- [16] 表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の一部又は全部の表面に高分子化合物膜が被覆されている、マイクロ流路チップ。
- [17] 前記カバー材の基材側の表面に、高分子化合物膜が被覆されている、請求項16に 記載のマイクロ流路チップ。
- [18] 前記カバー材の基材側の表面の、基材の高分子化合物膜が形成されている領域と 対向する領域に、前記基材の高分子化合物膜が形成されている部分の一部又は全 部と同一形状の高分子化合物膜が被覆されている、請求項17に記載のマイクロ流 路チップ。
- [19] 次の工程を含む生体分子の分離方法:

- a) 表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップに、分析すべき生体分子を加える工程、および
- b)分離媒体に分離圧を加える工程。
- [20] 前記分離圧が電気泳動によるものである、請求項19に記載の方法。
- [21] 前記電気泳動が、キャピラリー電気泳動である、請求項20に記載の方法。
- [22] 前記生体分子が、蛋白質である、請求項19~21のいずれかに記載の方法。
- [23] 次の要素で構成される電気泳動分析装置:
 - a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップ、
 - b) 該マイクロ流路チップを保持するための支持体、および
 - c) 支持体に保持されたマイクロ流路チップに電圧を印加するための電極。

WO 2005/084794 PCT/JP2005/003604

2/4

[図2]

WO 2005/084794 PCT/JP2005/003604

3/4

WO 2005/084794 PCT/JP2005/003604

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/003604

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ B01J19/00, B01D57/02, B03C5/00, G01N21/05, 27/447,	
37/00//C23C14/12	
According to International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ B01J19/00, B01D57/02, B03C5/00, G01N21/05, 27/447, 37/00//C23C14/12	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI (DIALOG)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
	where appropriate, of the relevant passages Relevant to claim No.
A JP 2001-252896 A (Hitach 18 September, 2001 (18.09 (Family: none)	
Further documents are listed in the continuation of Box C	. See patent family annex.
* Special categories of cited documents: "A" document defining the general state of the art which is not const to be of particular relevance "E" earlier application or patent but published on or after the internatifiling date "L" document which may throw doubts on priority claim(s) or which cited to establish the publication date of another citation or of special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other and document published prior to the international filing date but later the priority date claimed Date of the actual completion of the international search 29 June, 2005 (29.06.05)	the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone ther "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a parent glilled in the act.
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.CL⁷ B01J19/00, B01D57/02, B03C5/00, G01N21/05, 27/447, 37/00 // C23C14/12

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. B01J19/00, B01D57/02, B03C5/00, G01N21/05, 27/447, 37/00 // C23C14/12

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPI (DIALOG)

 C. 関連すると認められる文献

 引用文献のカテゴリー*
 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示
 関連する 請求の範囲の番号

 A
 JP 2001-252896 A (株式会社日立製作所) 200 1-23

 1.09.18 (ファミリーなし)

T C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

29.06.2005

国際調査報告の発送日

19. 7. 2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

a \

4D | 8418

豊永 茂弘

電話番号 03-3581-1101 内線 3421