Table 1. Mediation Estimand Definitions, Descriptions, and Assumptions

Estimand

Controlled direct effect

 $E(Y_{a,m}) - E(Y_{a^*,m})$

Natural direct effect

 $E(Y_{aM*}) - E(Y_{a*M*})$

Natural indirect effect $E(Y_{a,M_a}) - E(Y_{a,M_{a^*}})$	naturally be under a^* Difference in the expected value of Y in both cases setting A to a and contrasting M under a versus a^*	
Interventional direct effect $E\left(Y_{a,g_{M a^*,W}}\right) - E\left(Y_{a^*,g_{M a^*,W}}\right)$ Interventional indirect effect $E\left(Y_{a,g_{M a,W}}\right) - E\left(Y_{a,g_{M a^*,W}}\right)$	Difference in the population average of Y setting A to a versus a^* and in both cases drawing the value of M from a distribution of M conditional on $A = a^*$ and the individual's set of covariate values, W Difference in the population average of Y in both cases setting A to a and contrasting drawing the value of M from a distribution of M conditional on $A = a$ versus $A = a^*$ and the individual's set of covariate values, W	
Abbreviations: A , treatment; M , mediator; W , covariates; Y , outcome.		

Description

Difference in the expected value of Y setting A to a versus

Difference in the expected value of Y setting A to a versus

 a^* and in both cases letting M be the value that it would

a* and in both cases setting M to m

 $(A \perp Y_{am}|W)$. 2. No unmeasured confounding between M and Y $(M \perp Y_{am} | W, A)$. 3. No unmeasured confounding of A - M $(A \perp M_a \mid W)$. 4. No measured or unmeasured posttreatment confounding of the M-Y relationship $(M_{a^*} \perp Y_{a m} | W)$. 5. Y_a is equivalent to Y_{a,M_a} .

Identifying Assumptions in Addition to Positivity and

Consistency

1. No unmeasured confounding between A and Y

2. No unmeasured confounding between M and Y

1. No unmeasured confounding between A and Y

1. No unmeasured confounding between A and Y

2. No unmeasured confounding between M and Y

3. No unmeasured confounding of A - Mof Y in both cases the value of M from a $(A \perp M_a \mid W)$. versus $A = a^*$ and the

 $(A\perp Y_{a.m}|W)$.

 $(M \perp Y_{a,m} | W, A)$.

 $(A\perp Y_{am}|W)$.

 $(M \perp Y_{a,m} | W, A)$.