

Deep Learning: Project 3

Aviation Engine Failure Prediction Deep Learning Model

Project submitted to

Dr. Vinit Jakhetiya

Head of Department | Computer Science & Engineering

INDIAN INSTITUTE OF TECHNOLOGY, JAMMU, INDIA

Project Team: Kumari Anjali Hitesh Humane Narayanan V M.Tech(AI & ML) 2022-24

Aviation Engine RUL Prediction Model

- Industry 4.0:
- Artificial Intelligence (AI) revolutionized industries by introducing smarter, more efficient methodologies for solving complex problems.
- In aviation maintenance, AI, particularly through Deep Learning, plays a pivotal role.
- Deep Learning, which involves neural networks with many layers, uses a specific type called Long Short-Term Memory (LSTM) to analyse sequential data over time.
- LSTMs possess the remarkable ability to remember patterns over prolonged periods, making them exceptionally suitable for time-series data, such as the consistent monitoring of aircraft engine performance metrics.

The Four Industrial Revolutions

Industry 1.0

Mechanization and the introduction of steam and water power

From late 18th century to start of the 19th century

Industry 2.0

Mass production assembly lines using electrical power

From late 19th century to start of the 20th century

Industry 3.0

Automated production, computers, IT-systems and robotics

> During 2nd half of 20th century

Industry 4.0

The Smart Factory. Autonomous systems, IoT, machine learning

Started around 2016

Goal, Analysis, Modelling & Application

Goal:

To predict the Remaining Useful Life (RUL) of Aviation/Turbo Engine.

Analysis:

Exploratory Data Analysis (EDA), Feature Engineering

Modelling:

Used LSTM models for direct RUL prediction.

Evaluation:

For classification, employ accuracy, precision, recall. Use MAE (Mean Absolute Error) for regression. Evaluate regression models using the coefficient of determination (R^2).

Implementation:

LSTM Networks CNNs Traditional Models

Application:

Benefits for aerospace companies, airlines, and maintenance organizations include:

Predictive Maintenance: Proactive scheduling reduces downtime. **Safety:** Ensure servicing or replacement before critical failures. **Cost Efficiency:** Optimize resource usage and avoid unnecessary maintenance.

Data Source & Data Details

- **Data Source:** NASA Prognostics Data Repository. The data set is provided by the NASA Ames Prognostics Centre of Excellence (PCoE).
- **Data Link**: https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
- Name of Data: C-MAPSS dataset (Commercial Modular Aero-Propulsion System Simulation).
- **Application:** Commonly used for developing and validating predictive maintenance algorithms.
- Data Features:

Time-Series: Each series represents a different engine run-to-failure simulation.

Operational Settings: Includes throttle settings.

• **Sensor Measurements:** The data set includes timeseries measurements of various pressures, temperatures, and rotating equipment speeds that for the jet engine.

Data capture mechanism in latest Aircraft Engine

Above left figure: shows the main elements of the engine model

Right figure: The flow chart shows how various subroutines are assembled in the simulation, a layout showing various modules and their connections as modelled in the simulation

LSTM neural network diagram for Deep Learning Model

Our Deep Learning Model

In this project, our primary focus is to detect the faults in the aircraft engine using LSTM deep learning model.

1. INPUT DATA

 Downloaded from Repository of NASA with 21 individual sensor value as discussed earlier.

2. DATA PRE-PROCESSING

- Data wrangling for unused, redundant and null values
- Rescaling using Min-Max scaler

3. MODEL TRAINING AND TESTING

- Used LSTM first layer of 100 units followed by another LSTM layer with 50 units.
- Dropout has been applied after each LSTM layer to control overfitting.
- Final layer is a Dense output layer with single unit.

5. OUTPUT

- Accuracy measured:
 - Accuracy & Loss performance
 - Mean Absolute Error (MAE) and
 - Rsquared (R^2) error.

Model Flow Chart

Classification (LSTM):

Accuracy: 0.97812 precision: 0.9181

recall: 0.9767

Confusion matrix:

[[12261 270]

[72 3028]]

Regression:

MAE: 13.8566 R^2: 0.8091

Regression Vs Classification (LSTM):

Predicted vs Actual:

भारतीय प्रौद्योगिकी संस्थान जम्मू INDIAN INSTITUTE OF TECHNOLOGY JAMMU

Thank You !!!