MSBA7003 Quantitative Analysis Methods

01 Probability & Bayesian Learning

New Product Pricing with Limited Data

- Suppose Chow Tai Fook introduced a new gold ring. Historical sales data of similar rings suggest that customers' willingness to pay (WTP) follows a normal distribution with a standard deviation of \$1,000. However, the mean WTP of this new ring is unknown. It can be anywhere between \$2,000 to \$5,000.
- The introductory price for this ring is \$4,000. The cost for this ring is \$2,000. There is sufficient inventory.
- If the first customer who showed interested in this ring did not buy it, how should the price be adjusted afterwards?

Agenda

- Probability Concepts
 - Events and Venn Diagram
 - Conditional Probability and Independence
- Bayes' Theorem
- Random Variables and Distributions
 - Joint, Marginal, and Conditional Distributions
- Bayesian Inference & Application
 - The Authorship Problem
 - New Product Pricing

Probability

- Probability is a numerical statement about the likelihood that an event will be seen.
 - 10% chance of rain tomorrow
 - 20% chance the Hang Seng Index will not go down next week
 - 30% chance there are aliens in the universe

- Notation: P(A) = Pr(A) = Probability of event A occurring.
- $0 \le P(A) \le 1$.

Determination of Probability

- Objective approach
 - Classical or logical method
 - P(head) = 0.5
 - P(spade) = 0.25
 - *P*(type AB blood given father type A & mother type B) =?
 - Relative frequency
 - Use data or experiments

Daily Sales Statistics of A Newspaper at a Newsstand

Events and Venn Diagram

- Mutually exclusive: Events are mutually exclusive if only one of the events can occur in any one statistical trial or only one can occur at a time.
- Collectively exhaustive: Events are collectively exhaustive if they include every possible outcome in a statistical trial (i.e., they cover all the possibilities).

Events that are mutually exclusive

Events that are collectively exhaustive

MECE events

Union and Intersection

- The **union** of two events is the set of all possible outcomes that are contained in either of the two events.
- $P(\text{Union of } A\&B) = P(A \text{ or } B) = P(A \cup B)$

- $P(\text{Intersection of } A\&B) = P(A \text{ and } B) = P(A \cap B) = P(AB)$; it is called joint probability.
- $P(A \cup B) + P(A \cap B) = P(A) + P(B)$

Conditional Probability

• A conditional probability is the probability of an event A occurring given that another event B has already happened.

• Notation:
$$P(A|B) = \frac{P(AB)}{P(B)}$$
. Why?

•
$$P(AB) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$$
.

- Independent events:
- If $A \perp B$, then P(A|B) = P(A).
- If $A \perp B$, then $P(AB) = P(A) \cdot P(B)$.

Conditional Independence

• For three different events, A, B, and C, if

$$P(AB|C) = P(A|C) \cdot P(B|C)$$

• Then A and B are **conditionally independent** given C.

- Example 1: A = lung cancer; B = yellow finger; C = smoking
- Example 2: A = Scotland; B = male; C = wearing a skirt

Basic Probability Rules

- $0 \le P(A) \le 1$ for any event A.
- $P(A \cap B) = 0$ if A and B are mutually exclusive.
- $P(A \cup B) = 1$ if A and B are collectively exhaustive.
- $P(A \cup B) + P(A \cap B) = P(A) + P(B)$.
- $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$.
- P(A|B) = P(A) if A and B are independent.
- $P(A \cap B) = P(A) \cdot P(B)$ if A and B are independent.

Bayes' Theorem

• How to revise your probability assessment when you have new information?

Diagnostic test for the Human Immuno-deficiency Virus (HIV)

	Infected	Not Infected
Test Positive	90% (conditional)	
Test Negative		95% (conditional)
HK Prevalence Rate	0.1% (marginal)	99.9% (marginal)

• *P*(Infected|Test Positive) =?

Bayes' Theorem

- A = Infected; A' = Not Infected.
- B = Test Positive; B' = Test Negative.

•
$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A)P(A)}{P(BA) + P(BA')} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$$

• Note:
$$P(BA) + P(BA') = P((BA) \cup (BA')) + P((BA) \cap (BA')) = P(B) + 0$$

•
$$P(Infected|Test Positive) = \frac{0.9 \times 0.001}{0.9 \times 0.001 + 0.05 \times 0.999}$$

Bayes' Theorem: An Intuitive Way

- Draw a matrix for possible events related to two types (dimensions) of information.
- Calculate the joint probabilities
- Calculate conditional probabilities

	Infected	Not Infected
Test Positive		
Test Negative		

Bayes' Theorem: An Exercise

- The Monty Hall Problem
 - Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Bayes' Theorem: An Exercise

You picked door 1	(1)	(2)	(3)	
Α				
В				
С				

Random Variables

- For a set of events that are mutually exclusive and collectively exhaustive (MECE), if we assign a unique number/value to every possible event, then the number/value corresponding to the event occurring is a random variable (RV).
- A discrete RV can assume only a finite or countable set of values.
 - E.g., X = the number of newspapers sold during the day.
- A continuous RV has an uncountable set of possible values.
 - E.g., Y = the lifespan of a light bulb.
- When the outcome itself is not numerical or quantitative, it is necessary to define an RV that associates each outcome with a unique real number.
 - For tossing a coin, X = 1 if head and 0 if tail;
 - For consumers' response to how they like a product, Y = 1 if poor, 2 if average, and 3 if good;
 - For the brand of soda purchased by a consumer, Z=1 if Pepsi, 2 if Coca-Cola, and 3 if Dr. Pepper.

Discrete Distributions

- For each possible outcome X_i , there is a probability value $P(X_i)$.
- These values must be between 0 and 1: $0 \le P(X_i) \le 1$.
- They must sum up to 1: $\sum_{i=1}^{n} P(X_i) = 1$.

Discrete Distributions

- Binomial distribution
- Among N independent trials with the same success probability p, the number of successes follows Binomial distribution.

- Poisson distribution
- It is often used to describe the number of arrivals during a given period.
- If the average number of arrival during a unit time period is m, then the average is mt during t units of time.

Continuous Distributions

- The sum of the probability values must equal 1.
- A continuous RV can take on an uncountable set of values such that the probability of each value must be 0.

- The probability distribution is defined by continuous mathematical functions, the cumulative distribution function (CDF), and its derivative, the probability density function (PDF).
 - CDF is denoted by $F(\cdot)$ and $F(x) = P(X \le x)$.
 - PDF is denoted by $f(\cdot) = F'(\cdot)$ and $f(x) \approx P(x < X \le x + \Delta)/\Delta$.

Continuous Distributions

- Normal distribution
- If X follows Normal distribution with mean m and s.d. It is often used to describe time intervals and s, then the random variable Z = (X - m)/s follows standard normal distribution.

- Exponential distribution
- durations.
- If the time intervals follows exponential, the number of arrivals during a given period follows Poisson distribution.
- It is memoryless.

Multiple Random Variables

- Each random variable represents one way to divide the state of the world into a set of MECE events.
- Different ways of division can be either independent or correlated.
- The collection of joint probabilities (or densities) between the two sets of MECE events respectively represented by two random variables is called the <u>joint</u> <u>distribution</u> between the two random variables.
- The <u>marginal distribution</u> of a random variable is the collection of probabilities for the associated MECE events without knowing other information.
- The <u>conditional distribution</u> of a random variable is the collection of probabilities for the associated MECE events given the information of a related event.

Joint, Marginal, & Conditional Distribution

Joint Distribution

	\ \			
f(x,y)	X = 1	X = 2	X=3	f_Y
Y = 1	0.3	0.2	0.1	0.6
Y = 2	0.1	0.2	0.1	0.4
f_X	0.4	0.4	0.2	Marginal Distributions
Y = 1 X	0.75	0.5	0.5	Conditional Distributions
Y = 2 X	0.25	0.5	0.5	Conditional Distributions
E[Y X]	1.25	1.5	1.5	E[Y] = 1.4

Law of iterative expectations: E[E[Y|X]] = E[Y].

In-Class Exercise

• Consider a high school playground. Suppose we know the following conditional distributions of Y (the gender) and the marginal distribution of X (the class number):

f(x,y)	X = 1	X = 2	X=3	f_Y
Y = 1 X	0.75	0.5	0.4	?
Y = 2 X	0.25	0.5	0.6	?
f_X	1/3	1/3	1/3	

- For a random student, what is the probability of Y = 1 (marginal probability)?
- For a random student, what is the probability of X = 1 (i.e., from class 1) given Y = 1?
- Suppose we fix the value of X by a random draw: only one class is on the playground. We do not know X. If the first student has Y = 1, then what is the probability of X = 1? What is the probability of the second student having Y = 1 again?

Bayesian Inference

- We are interested in knowing the "state of the world X" (e.g., demand is high or low), and there are K possible states, which we call the *Alternative Hypotheses*.
- The alternative hypotheses are mutually exclusive and collectively exhaustive. We have a prior subjective belief on each state (i.e., a marginal distribution of X).
- Under each hypothesis, a random variable Y will follow a known, distinct distribution.
- We wish to identify the state X by collecting samples of Y given the unknown state.
- After observing each value of Y, our subjective belief (marginal distribution) of X can be updated according to the Bayes' rule. The posterior becomes the new prior.
- With enough data points, we can use the posterior distribution of X to evaluate the probability of making the correct or wrong conclusion, and the posterior distribution of Y will converge to the conditional distribution given the "true" state X.

Bayesian Inference

- What is the probability of getting a head?
- Suppose there are three possible hypotheses: 1/3, 1/2, and 2/3.
- We can think of the index of the true hypothesis as a random variable, the distribution of which will be updated as we collect more information.

What if we are allowed to toss the coin only once?

Bayesian Inference

- Let p denote the probability of getting a head
- The three possible distributions are equally likely
- Suppose you toss the coin once and get a head.
- Which is the hypothesis with the largest posterior?

	p = 1/3	p = 1/2	p = 2/3	Marginal
Head	(1/3)*(1/3)	(1/2)*(1/3)	(2/3)*(1/3)	1/2
Tail	(2/3)*(1/3)	(1/2)*(1/3)	(1/3)*(1/3)	1/2
Prior Prob.	1/3	1/3	1/3	
Conditional	2/9	1/3	4/9	

• E[p | Head] = (1/3)*(2/9) + (1/2)*(1/3) + (2/3)*(4/9) = 29/54.

Case: The Authorship Problem

- Federalist Papers (Published anonymously during 1787 1788)
 - Total: 77 papers
 - John Jay: 5
 - Alexander Hamilton: 43
 - James Madison: 14
 - Unknown: 12 + 3
- Bayesian Inference
 - Establish hypotheses: H_h vs. H_m
 - Determine the prior belief: 0.5 vs. 0.5 (or 0.75 vs. 0.25)
 - Collect data (the wording pattern in each paper)
 - Compute the probability of observing the data under each hypothesis
 - Using the papers with a known author
 - Compute the posterior of each hypothesis (for the papers in question)

James Madison (1751 - 1836)

Alexander Hamilton (1757 - 1840)

Case: The Authorship Problem

- Focus on non-contextual words
 - Rate of use is nearly invariant under change of topic.
 - Focus on the word [upon]
 - In paper 54, occurrence rate PTW = 0.996

•
$$\frac{\Pr(H_h|data)}{\Pr(H_m|data)} = \frac{\Pr(data|H_h) \cdot \Pr(H_h)}{\Pr(data|H_m) \cdot \Pr(H_m)}$$

TABLE 2.3. FREQUENCY DISTRIBUTION FOR upon

Rate/1000	Н	M
0 (exactly)		41
0 + -1	1	7
1 -2	10	2
2 $^{-3}$	11	
3 -4	11	
4 -5	10	
5 -6	3	
6 -7	1	
7 -8	1	
	<u> </u>	
Totals	48	50

TABLE 2.5. FUNCTION WORDS AND THEIR CODE NUMBERS FOR THE FEDERALIST STUDY

1 a	8 as	15 do	22 has	29 is	36 no	43 or	50 than	57 this	64 when
2 all	9 at	16 down	23 have	30 it	37 not	44 our	51 that	58 to	65 which
3 also	10 be	17 even	24 her	31 its	38 now	45 shall	52 the	59 up	66 who
4 an	11 been	18 every	25 his	32 may	39 of	46 should	53 their	60 upon	67 will
5 and	12 but	19 for	26 if	33 more	40 on	47 so	54 then	61 was	68 with
6 any	13 by	20 from	27 in	34 must	41 one	48 some	55 there	62 were	69 would
		20 from 21 had	27 in 28 into	34 must 35 my	41 one 42 only	48 some 49 such	55 there 56 thing	62 were 63 what	69 would 70 your

TABLE 2.6. ADDITIONAL WORDS AND CODE NUMBERS FOR THE FEDERALIST STUDY

			1		
*71 affect	*79 city	*87 direction	*94 innovation	102 perhaps	*110 vigor
*72 again	*80 commonly	*88 disgracing	*95 join	*103 rapid	*111 violate
*73 although	*81 consequently	89 either	*96 language	104 same	*112 violence
74 among	*82 considerable	*90 enough (and in	97 most	105 second	*113 voice
75 another	*83 contribute	sample of 20)	98 nor	106 still	114 where
76 because	*84 defensive	*91 fortune	*99 offensive	107 those	115 whether
77 between	*85 destruction	*92 function	100 often	*108 throughout	*116 while
78 both	86 did	93 himself	*101 pass	109 under	*117 whilst
10 DOM	30 ulu	30 mmsen	TOT pass	105 under	TI' WILLSO

TABLE 2.7. NEW WORDS FROM THE WORD INDEX STUDY TOGETHER WITH THEIR CODE NUMBERS

118 about	130 choice	142 intrust +s+ed+ing	154 proper
119 according	131 common	143 kind	155 propriety
120 adversaries	132 danger	144 large	156 provision+s
121 after	133 decide +s+ed+ing	145 likely	157 requisite
122 aid	134 degree	146 matter+s	158 substance
123 always	135 during	147 moreover	159 they
124 apt	136 expence+s	148 necessary	160 though
125 asserted	137 expense+s	149 necessity+ies	161 truth+s
126 before	138 extent	150 others	162 us
127 being	139 follow+s+ed+ing	151 particularly	163 usage + s
128 better	140 I	152 principle	164 we
129 care	141 imagine +s+ed+ing	153 probability	165 work+s

Case: The Authorship Problem

- $Pr(data|H_h) = 1/48$; $Pr(data|H_m) = 7/50$
- Hence, if $Pr(H_h) : Pr(H_m) = 1:1$, then
 - $Pr(H_h|data) = 0.13$
 - $Pr(H_h|data) / Pr(H_m|data) = 0.13:0.87 = 0.15 < 1$
- If $Pr(H_h): Pr(H_m) = 0.75:0.25$, then
 - $Pr(H_h|data) = 0.31$
 - $Pr(H_h|data) / Pr(H_m|data) = 0.31:0.69 = 0.4464 < 1$

Conclusion: the author is more likely to be Madison.

More on Bayesian Inference

- A new product is introduced but demand is unknown.
- There are two possible price points: 0.5 and 1.0.
- But the distribution of customer willingness-to-pay (i.e., the highest acceptable price) is unknown. There are three possible distributions, which are equally likely:
 - (i) P(wtp < 0.5) = P(0.5 < wtp < 1.0) = P(wtp > = 1.0) = 1/3
 - (ii) P(wtp<0.5) = 1/2; $P(0.5 \le wtp \le 1.0) = 1/3$; $P(wtp \ge 1.0) = 1/6$
 - (iii) P(wtp<0.5) = 1/6; $P(0.5 \le wtp \le 1.0) = 1/3$; $P(wtp \ge 1.0) = 1/2$
- Suppose the population size is large.

- The price was set at 1.0 at the beginning.
- Two customer arrived. The first left and the second bought the product.
- Should you lower the price to 0.5 to maximize your profit?

• First update:

Scenarios	(i)	(ii)	(iii)	Marginal
Buy at 1.0	(1/3) * (1/3)	(1/6) * (1/3)	(1/2) * (1/3)	1/3
Leave	(<mark>2/3)</mark> * (1/3)	(5/6) * (1/3)	(1/2) * (1/3)	2/3
Prior	1/3	1/3	1/3	
Conditional	1/3	5/12	1/4	

Note that we do not observe WTP.

• Second update:

Scenarios	(i)	(ii)	(iii)	Marginal
Buy at 1.0	(1/3) * (1/3)	(1/6) * (5/12)	(1/2) * (1/4)	11/36
Leave	(2/3) * (1/3)	(5/6) * (5/12)	(1/2) * (1/4)	25/36
Prior	1/3	5/12	1/4	
Conditional	4/11	5/22	9/22	

• Expected revenue of pricing at 1.0 =

$$(4/11)*(1/3)+(5/22)*(1/6)+(9/22)*(1/2) = 4/11 = 24/66$$

• Expected revenue of pricing at 0.5 =

$$0.5*[(4/11)*(2/3)+(5/22)*(1/2)+(9/22)*(5/6)] = 23/66$$

After-Class Exercise

- Suppose P(A) = 0.4 and P(B) = 0.6. Are A and B mutually exclusive?
- Suppose A and B are mutually exclusive and P(A) = 0.4. Then P(B) = ?
- Suppose A and B are mutually exclusive. In addition, P(A) = 0.4 and P(B) = 0.6. Suppose C and D are also mutually exclusive and collectively exhaustive. Further, P(C|A) = 0.2 and P(D|B) = 0.4. What are P(C) and P(D)?
- There are two fortune tellers, A & B. According to historical data, A's predictions were correct in 90% cases, while B's predictions were correct only in 30% cases. Now, without communicating with each other, both A & B predict that Donald Trump will be elected again. Without any information, your prior belief about Donald Trump being elected again is 0.5. Now knowing A & B's predictions, what should be your corrected belief?

After-Class Exercise

- When a man passes the airport security check, they discover a bomb in his bag. He explains. "Statisticians show that the probability of a bomb being on an airplane is 1/10,000. However, the chance that there are two bombs on one plane is 1/10,000,000. So, I am much safer ..."
- Suppose the statisticians are right and it is impossible to have more than two bombs on an airplane. Do you agree with the man?
- If event A and B are independent given event C happens, then A and B are also independent given C does not happen. True or False?
- In the introductory example, what is the best price to set if the first customer did not buy? Consider three possible means of WTP: \$2,000, \$3,500, and \$5,000.