DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH2140 Mathematics on the Computer

Assignment 9

5 Oct 2015

1. Gamma function

Check out the syntax and definition of the Gamma function $\Gamma[z]$ in Mathematica.

- 1. Verify that, for positive integers N, $\Gamma[N] = (N-1)!$.
- 2. The Gamma function can be extended to real numbers through it's integral representation. Plot $\Gamma[x]$ and note it's singular points.
- 3. Using the series expansion of $\Gamma[x]$, establish the Sterling's approximation:

$$N! \approx \sqrt{2\pi N} e^{-N} N^N \qquad (N \gg 1) \tag{1}$$

Note: This approximation is very widely used in statistical physics. Check how good the above approximation is by plotting log[N!] vs. log of the RHS above. You can use ListPlot for this.

4. (a) A N sphere of radius R is a sphere in N dimensions, defined as a locus of points whose distances from a given point are less than or equal to R. Show that the volume of a N sphere of radius R is given by

$$V_N(R) = \frac{\pi^{N/2}}{\Gamma(N/2+1)} R^N$$
 (2)

- (b) Check the above expression gives the desired result for N=3.
- (c) Plot $V_N(1)$ as a function of N (you may assume N take all real values, or try a ListPlot).
- (d) While you are at it, use the above result to calculate the surface area $S_N(R)$ of a N sphere. For N=3, you should get $4\pi R^2$.

2. Legendre Polynomials

Check out the syntax and definition of Legendre polynomials $P_{\ell}(x)$ in Mathematica.

1. Show that these are solutions of the differential equation:

$$\frac{d}{d\theta} \left(\sin \theta \frac{dy}{d\theta} \right) = -\ell \left(\ell + 1 \right) \left(\sin \theta \right) y \tag{3}$$

$$y = P_{\ell}(\cos \theta) \tag{4}$$

2. Verify Rodrigues formula:

$$P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \left(\frac{d}{dx}\right)^{\ell} \left(x^2 - 1\right)^{\ell} \tag{5}$$

3. Establish the orthogonality of these polynomials:

$$\int_{-1}^{1} P_{\ell}(x) P_{\ell'}(x) dx = \left(\frac{2}{2\ell+1}\right) \delta_{\ell\ell'} \tag{6}$$

- 4. Given that the defining differential is second order, you must expect two linearly independent solution. Find the second solution, and show that it is generically unphysical. *Hint*: Check out the $\ell=0$ case first.
- 5. Given two points with position vectors \boldsymbol{x} and \boldsymbol{x}' , calculate the multipole expansion of

$$\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|}$$

in terms of $P_{\ell}(\cos\Omega)$, for the case when $|x|\gg |x'|$. Here,

$$\cos \Omega = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - \phi')$$

6. Find the electrostatic potential outside a sphere of radius a, with surface charge density $\sigma(\theta') = (\text{constant}) \cos \theta'$ pasted on it.

3. Spherical harmonics

Check out the syntax and definition of spherical harmonics Y_{ℓ}^{m} in Mathematica.

1. Verify that

$$Y_{\ell}^{m}(\theta,\phi) = (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\phi}$$
 (7)

where $P_{\ell}^{m}(x)$ are the associated Legendre polynomials (check in Mathematica).

- 2. Make a polar plot of $|Y_{\ell}^m(\theta,0)|$. That is, plot the curve $r=|Y_{\ell}^m(\theta,0)|$ in the x-z plane.
- 3. Show that

$$\int Y_{\ell}^{m}(\theta,\phi)Y_{\ell'}^{m'}(\theta,\phi)\,d\Omega = \delta_{\ell\ell'}\delta_{mm'} \tag{8}$$

4. Show that

$$\sum_{m=-\ell}^{\ell} (Y_{\ell}^{m}(\theta,\phi))^{*} Y_{\ell}^{m}(\theta,\phi) = \frac{2\ell+1}{4\pi}$$
 (9)

5. Show that

$$\sum_{m=-\ell}^{\ell} (Y_{\ell}^{m}(\theta', \phi'))^{*} Y_{\ell}^{m}(\theta, \phi) = \frac{2\ell + 1}{4\pi} P_{\ell}(\cos \Omega)$$
 (10)

where $\cos\Omega$ was defined in previous exercise.