ITESM Campus Monterrey Mathematical Physical Modelling F4005 Cheat sheet for the first partial exam

Instructions: you are allowed to consult this sheet during the whole time duration of the first partial exam; you **cannot** add any annotations on it.

- 1. The rank of a matrix is the number of nonzero rows in its row echelon form (or row reduced echelon form).
- 2. **Theorem**. Let A be a square matrix of size n. A is invertible if and only if the reduced row echelon form of A is I_n , where I_n denotes the identity matrix of size n.
- 3. **Theorem.** Let AX = B be a linear system, where A is a matrix of size $m \times n$ (not necessarily square).
 - (a) If rank(A) < rank([A|B]), then the system has **no solution**.
 - (b) If rank(A) = rank([A|B]) and **both** are less than n, then the system has **infinitely many solutions**.
 - (c) If rank(A) = rank([A|B]) = n, then the system has a **unique solution**.
 - (d) If the system is homogeneous and n > m (more variables than equations), then the system has **infinitely** many solutions.
- 4. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear transformation** if
 - (a) T(u+v) = T(u) + T(v) for all $u, v \in \mathbb{R}^n$ and
 - (b) T(cv) = cT(v) for all $v \in \mathbb{R}^n$ and all scalars c.
- 5. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $T(0_n) = 0_m$ where 0_n is the zero vector corresponding to \mathbb{R}^n and 0_m is the zero vector corresponding to \mathbb{R}^m .
- 6. **Theorem.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by T(x,y) = (ax + by, cx + dy) where a, b, c, d are arbitrary real numbers.
 - (a) If a = b = c = d = 0, then the range of T is simply the origin in \mathbb{R}^2 .
 - (b) If $ad bc \neq 0$, then the range of T is the whole plane \mathbb{R}^2 .
 - (c) If ad bc = 0, and if at least one of the constants a, b, c, d is non-zero, then the range of T is a line through the origin (either a diagonal line, the y-axis or the x-axis).