Correction TD 5.2 - Suites réelles

Entraînements

Exercice 1. Étudier la monotonie des suites définies par

1.
$$\forall n \in \mathbb{N}, \ u_n = \left(\sum_{k=0}^n \frac{1}{2^k}\right) - n$$
 4. $\forall n \in \mathbb{N}, \ u_n = \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$ 5. $\forall n \in \mathbb{N}, \ u_n = n+2(-1)^n$

4.
$$\forall n \in \mathbb{N}, \ u_n = \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$$

$$2. \ \forall n \in \mathbb{N}, \ u_n = \frac{n!}{2^{n+1}}$$

5.
$$\forall n \in \mathbb{N}, \ u_n = n + 2(-1)^n$$

3.
$$\forall n \in \mathbb{N}^*, \ u_n = \frac{\ln(n)}{n}$$

6.
$$\forall n \in \mathbb{N}, \ u_n = \sum_{k=2}^n \frac{1}{k \ln(k)}$$

Correction 1. Étude de la monotonie des suites suivantes.

1. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par une somme, on étudie donc le signe de $u_{n+1}-u_n$.

$$u_{n+1} - u_n = \sum_{k=0}^{n+1} \frac{1}{2^k} - (n+1) - \sum_{k=0}^{n} \frac{1}{2^k} + n = \frac{1}{2^{n+1}} - 1.$$

Or, pour tout $n \in \mathbb{N}$, on a : $\frac{1}{2^{n+1}} < 1$. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

2. La suite $(u_n)_{n\in\mathbb{N}}$ est plutôt de type produit. Comme tous ses termes sont strictement positifs, on compare $\frac{u_{n+1}}{u_n}$ à 1. On obtient

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{2^{n+2}} \times \frac{2^{n+1}}{n!} = \frac{n+1}{2}.$$

Un calcul rapide donne

$$\frac{n+1}{2} < 1 \Leftrightarrow n+1 < 2 \Leftrightarrow n < 1.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante ou encorrectione la suite $(u_n)_{n\in\mathbb{N}}$ est croissante à partir du rang 1.

3. La suite $(u_n)_{n\in\mathbb{N}^*}$ est une suite définie explicitement et $u_n=f(n)$ avec

$$f: x \mapsto f(x) = \frac{\ln x}{x}.$$

L'étude de la monotonie de la fonction f sur $[1, +\infty[$ permet d'en déduire directement la monotonie de la suite.

La fonction f est dérivable sur $\mathbb{R}^{+\star}$ comme quotient dont le dénominateur ne s'annule pas de fonctions dérivables. On obtient

$$\forall x \in \mathbb{R}^{+\star}, \ f'(x) = \frac{1 - \ln x}{x^2}.$$

Étudions le signe de $1 - \ln x$ ($x^2 \ge 0$ donc le signe de la dérivée est bien le signe de $1 - \ln x$): $1 - \ln x > 0 \Leftrightarrow \ln x < 1 \Leftrightarrow x < e$ car la fonction exponentielle est strictement croissante. Ainsi, la fonction f est strictement décroissante sur $[e, +\infty[$. Ainsi, à partir du rang 3, la suite $(u_n)_{n\geq 3}$ est décroissante.

4. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par une somme, on étudie donc le signe de $u_{n+1}-u_n$.

$$u_{n+1} - u_n = \sum_{k=0}^{2(n+1)} \frac{(-1)^k}{k+1} - \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$$
$$= \sum_{k=0}^{2n+2} \frac{(-1)^k}{k+1} - \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$$
$$= \frac{1}{2n+3} - \frac{1}{2n+2}$$
$$= \frac{-1}{(2n+3)(2n+2)}.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

5. On remarque que

$$u_{n+1} - u_n = n + 1 + 2(-1)^{n+1} - n - 2(-1)^n = 1 + 2(-1)^{n+1} + 2(-1)^{n+1} = 1 + 4(-1)^{n+1}.$$

Ainsi, si n=2p pair, on obtient : $u_{2p+1}-u_{2p}=5>0$ et si n=2p+1 impair, on obtient : $u_{2p+2}-u_{2p+1}=-3<0$. Ainsi la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas monotone.

6. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par une somme, on étudie donc le signe de $u_{n+1}-u_n$.

$$u_{n+1} - u_n = \sum_{k=2}^{n+1} \frac{1}{k \ln k} - \sum_{k=2}^{n} \frac{1}{k \ln k} = \frac{1}{(n+1)\ln(n+1)} > 0.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Exercice 2. Étudier le comportement en $+\infty$ des suites suivantes :

1.
$$u_n = \frac{n}{\cos\left(\frac{1}{n}\right)}$$
2. $u_n = \sqrt{n+1} - \sqrt{n}$
3. $u_n = \ln(n+1) - \ln(n^2)$
4. $u_n = \left(1 + \frac{2}{n}\right)^n$
5. $u_n = \frac{2^n + n}{2^n}$
6. $u_n = \frac{n+(-1)^n}{n-\ln(n^3)}$
7. $u_n = \frac{1}{n^2} \sum_{k=1}^n k$
9. $u_n = \frac{\sin n}{n}$
10. $u_n = \frac{1+(-1)^n}{n}$
11. $u_n = n^2 - n\cos n + 2$
12. $u_n = \frac{n! + (n+1)!}{(n+2)!}$
15. $u_n = \ln(2^n + n)$
16. $u_n = \frac{n^3 + 2^n}{3^n}$
17. $u_n = (n^2 + n + 1)^{\frac{1}{n}}$
18. $u_n = \frac{1}{a^n} \sum_{k=1}^n b^k$

Correction 2. Je ne donne ici que les réponses et quelques indications pour trouver les limites demandées. Une telle rédaction dans une copie serait très insuffisante.

- 1. $\lim_{n\to+\infty}\frac{n}{\cos\left(\frac{1}{n}\right)}=+\infty$ par composée et produit de limite car $\cos\left(0\right)=1$.
- 2. On a ici une forme indéterminée avec une différence de racines. L'idée est d'utiliser la quantitée conjuguée :

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$

Par quotient de limites, on obtient donc : $\lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n} = 0$.

3. $\lim_{n\to+\infty} \ln(n+1) - \ln(n^2) = -\infty$ en utilisant $\ln\left(\frac{n+1}{n^2}\right)$ et le théorème des monômes de plus haut degré.

- 4. $\lim_{n\to+\infty} \left(1+\frac{2}{n}\right)^n = e^2$ en utilisant le fait que $\ln\left(1+\frac{2}{n}\right) \sim \frac{2}{n}$ (limite très classique fait en cours).
- 5. $\lim_{n\to+\infty}\frac{2^n+n}{2^n}=1$ en mettant en facteur en haut et en bas le terme dominant, à savoir 2^n et en utilisant une croissance comparée car $2^n=e^{n\ln 2}$.
- 6. $\lim_{n \to +\infty} \frac{n + (-1)^n}{n \ln(n^3)} = 1$ en mettant en facteur en haut et en bas n et en remarquant que $\lim_{n \to +\infty} \frac{(-1)^n}{n} = 1$

0 par le théorème des gendarmes et que $\lim_{n\to+\infty}\frac{\ln{(n^3)}}{n}=\lim_{n\to+\infty}\frac{3\ln{(n)}}{n}=0$ par croissance comparée.

- 7. $\lim_{n\to+\infty} \frac{1}{n^2} \sum_{k=1}^n k = \frac{1}{2}$ en écrivant que $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ et d'après le théorème sur les monômes de plus haut degré.
- 8. $\lim_{n\to+\infty} \frac{3^n-4^n}{3^n+4^n} = -1$ en mettant en facteur en haut et en bas 4^n le terme dominant et appliquant le théorème sur les suites géométriques.
- 9. $\lim_{n\to +\infty} \frac{\sin n}{n} = 0$ en utilisant un correctionollaire du théorème des gendarmes car $\left|\frac{\sin n}{n}\right| \leq \frac{1}{n}$ ou le théorème des gendarmes.
- 10. $\lim_{n \to +\infty} \frac{1 + (-1)^n}{n} = 0$ en utilisant le théorème des gendarmes car : $0 \le \frac{1 + (-1)^n}{n} \le \frac{2}{n}$.
- 11. $\lim_{n \to +\infty} n^2 n \cos n + 2 = +\infty$ en mettant en facteur le terme dominant n^2 et en utilisant le correctionollaire du théorème des gendarmes avec $\left|\frac{\cos n}{n}\right| \leq \frac{1}{n}$.
- 12. $\lim_{n\to+\infty} \frac{n!+(n+1)!}{(n+2)!}=0$ en utilisant la définition des factorielles.
- 13. $\lim_{n \to +\infty} \ln(2^n + n) = +\infty$ par propriété sur les somme et composée de limites.
- 14. $\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$ car $n^{1/n} = e^{1/n \ln n}$ puis par croissance comparée, on a : $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$.
- 15. $\lim_{\substack{n \to +\infty \\ e^{n \ln(\ln n)}}} (\ln n)^n = +\infty$. Il n'y a pas de forme indéterminée ici, il suffit d'écrire que $(\ln n)^n =$
- 16. $\lim_{n\to+\infty}\frac{n^3+2^n}{3^n}=0$ en mettant 2^n en facteur au numérateur et en utilisant ensuite le théorème sur la convergence des suites géométriques et les croissances comparées car $\lim_{n\to+\infty}\frac{n^3}{2^n}=\lim_{n\to+\infty}\frac{n^3}{e^{n\ln 2}}=0$.
- 17. $\lim_{n \to +\infty} (n^2 + n + 1)^{\frac{1}{n}} = 1$ en transformant l'expression en mettant le terme dominant n^2 en facteur :

$$(n^2 + n + 1)^{\frac{1}{n}} = e^{1/n \ln (n^2 + n + 1)}.$$

Le terme en exposant dans l'exponentielle est alors

$$\frac{\ln(n^2 + n + 1)}{n} = \frac{\ln(n^2)}{n} + \frac{\ln(1 + \frac{1}{n} + \frac{1}{n^2})}{n}.$$

On obtient alors la limite voulue en utilisant les croissances comparées.

18.
$$\lim_{n \to +\infty} \frac{1}{a^n} \sum_{k=1}^n b^k.$$

On suppose ici que a>0 et b>0. Commençons par calculer l'expression dont on cherche la limite. On obtient, si $b\neq 1$

$$\frac{1}{a^n} \sum_{k=1}^n b^k = \frac{b}{1-b} \frac{1-b^n}{a^n}.$$

Et si b = 1, on obtient $\frac{1}{a^n} \sum_{i=1}^n b^k = \frac{n}{a^n}$. Etudions alors des cas :

$$\star \ \mathrm{Si}\ b > 1$$
 :

On a alors : $u_n \sim \frac{-b}{1-b} \left(\frac{b}{a}\right)^n \operatorname{car} 1 - b^n \sim -b^n$ et en utilisant ensuite les propriétés sur le produit et le quotient d'équivalent. Ainsi, on obtient les cas suivants :

Si
$$b < a$$
, alors $\lim_{n \to +\infty} u_n = 0$

Si
$$b = a$$
, alors $\lim_{n \to +\infty} u_n = \frac{-b}{1-b}$
Si $b > a$, alors $\lim_{n \to +\infty} u_n = +\infty$

Si
$$b > a$$
, alors $\lim_{n \to +\infty} u_n = +\infty$

* Si
$$0 < b < 1$$
:

On a alors : $u_n \underset{+\infty}{\sim} \frac{b}{1-b} \left(\frac{1}{a}\right)^n$ car $1-b^n \underset{+\infty}{\sim} 1$ et en utilisant ensuite les propriétés sur le produit et le quotient d'équivalent.. Ainsi, on obtient les cas suivants :

Si
$$a > 1$$
, alors $\lim_{n \to +\infty} u_n = 0$

Si
$$a = 1$$
, alors $\lim_{n \to +\infty} u_n = \frac{b}{1 - b}$
Si $a < 1$, alors $\lim_{n \to +\infty} u_n = +\infty$

Si
$$a < 1$$
, alors $\lim_{n \to +\infty} u_n = +\infty$

$$\star$$
 Si $b=1$:

On a alors: $u_n \sim \frac{n}{a^n}$. Ainsi, on obtient les cas suivants:

Si
$$a > 1$$
, alors $\lim_{n \to +\infty} u_n = 0$ par croissance comparée
Si $a = 1$, alors $\lim_{n \to +\infty} u_n = +\infty$
Si $a < 1$, alors $\lim_{n \to +\infty} u_n = +\infty$

Si
$$a = 1$$
, alors $\lim_{n \to +\infty} u_n = +\infty$

Si
$$a < 1$$
, alors $\lim_{n \to +\infty} u_n = +\infty$

19.
$$\lim_{n \to +\infty} n^2 \left(\cos \left(\frac{1}{n^2} \right) - 1 \right)$$
: on utilise ici les équivalents usuels. On a : $u_n \underset{+\infty}{\sim} n^2 \times \left(-\frac{1}{2n^2} \right) = -\frac{1}{2}$, donc $\lim_{n \to +\infty} u_n = -\frac{1}{2}$.

Exercice 3. Calculer les limites des suites suivantes.

1
$$u_{-} = e^{n^2 + n + 1}$$

$$2 \quad u = e^{2n} - e^n$$

2.
$$u_n = e^{2n} - e^n$$

3.
$$u_n = \frac{e^n + n^2 + n + 1}{e^{2n} + 1}$$

4.
$$u_n = \frac{n}{n-1}e^{\frac{1}{n}}$$

5.
$$u_n = e^n - e^{n+1}$$

6. $u_n = \ln\left(\frac{e^n + 1}{e^n - 1}\right)$

Exercice 3. Calculer les limites des suites suivantes.

1.
$$u_n = e^{n^2 + n + 1}$$
2. $u_n = e^{2n} - e^n$
3. $u_n = \frac{e^n + n^2 + n + 1}{e^{2n} + 1}$
4. $u_n = \frac{n}{n-1}e^{\frac{1}{n}}$
5. $u_n = e^{n^2} - e^{n+1}$
6. $u_n = \ln\left(\frac{e^n + n^2}{2n+1}\right)$
7. $u_n = \ln\left(\frac{e^n + n^2}{2n+1}\right)$
8. $u_n = \ln\left(\frac{2-n}{n+4}\right)$
9. $u_n = \frac{2^n}{n^2 + 1}$
10. $u_n = \left(\frac{1}{2}\right)^n \ln n$
11. $u_n = \frac{e^{\sqrt{n}}}{n^2}$
12. $u_n = e^n - n^{\frac{2}{3}}$
13. $u_n = e^{\frac{1}{n-2}}$
14. $u_n = (2n-1)e^{\frac{1}{n-2}}$
15. $u_n = \frac{\ln(n^2 + 1)}{n}$

8.
$$u_n = \ln\left(\frac{2-n}{n+4}\right)$$

8.
$$u_n = \ln\left(\frac{2-n}{n+4}\right)$$

8.
$$u_n = \ln\left(\frac{2-n}{n+4}\right)$$

9.
$$u_n = \frac{\binom{n+1}{2}}{\binom{n^2+1}{2}}$$

$$10. \ u_n = \left(\frac{1}{2}\right)^n \ln n$$

11.
$$u_n = \frac{e^{\sqrt{n}}}{n^2}$$

$$12. \ u_n = e^n - n^{\frac{n}{2}}$$

13.
$$u_n = e^{\frac{1}{n-2}}$$

14.
$$u_n = (2n-1)e^{\frac{1}{n-2}}$$

14.
$$u_n = (2n-1)e^{\frac{n}{n-2}}$$

15.
$$u_n = \frac{\ln(n^2 + 1)}{n}$$

Correction 3. Je ne détaille pas tous les calculs.

1.
$$u_n = e^{n^2 + n + 1}$$
:

• Par propriété sur les sommes et composée de limites, on obtient que $\lim_{n \to +\infty} u_n = +\infty$.

$$2. \ \mathbf{u_n} = \mathbf{e^{2n}} - \mathbf{e^n}$$

• FI donc on met en facteur le terme dominant à savoir e^{2n} . On obtient que : $u_n = e^{2n}(1 - e^{2n})$ e^{-n}). Puis par propriété sur les composition, somme et produit de limites, on obtient que : $\lim_{n \to +\infty} u_n = +\infty.$

3.
$$u_n = \frac{e^n + n^2 + n + 1}{e^{2n} + 1}$$

• FI donc on met en facteur le terme dominant au numérateur (e^n) et au dénominateur e^{2n} . On obtient alors que par propriété sur les composée, sommes et quotient de limites $\lim_{n \to +\infty} u_n = 0.$

4.
$$\mathbf{u_n} = \frac{\mathbf{n}}{\mathbf{n} - 1} \mathbf{e}^{\frac{1}{\mathbf{n}}}$$
:

• Par le théorème du monôme de plus haut degré, on a : $\lim_{n \to +\infty} \frac{n}{n-1} = 1$. Donc par propriété sur les composée et produit de limites : $\lim_{n \to +\infty} u_n = 1$.

5.
$$u_n = e^{n^2} - e^{n+1}$$

FI donc on met en facteur le terme dominant à savoir e^{n²}. On obtient que u_n = e^{n²}(1 - e^{-n²+n+1}). Par le théorème du monôme de plus haut degré, on a : lim_{n→+∞} -n²+n+1 = -∞.
 Ainsi par propriété sur les sommes, composées etb produit de limites, on obtient que : lim_{n→+∞} u_n = +∞.

6.
$$\mathbf{u_n} = \ln\left(\frac{\mathbf{e^n} + 1}{\mathbf{e^n} - 1}\right)$$

• FI donc on met en facteur le terme dominant au numérateur et au dénominateur à savoir e^n . On obtient alors $u_n = \ln\left(\frac{1+e^{-n}}{1-e^{-n}}\right)$. Puis par propriétés sur les composées, sommes, quotient de limites, on obtient que : $\lim_{n\to+\infty}u_n=0$.

7.
$$\mathbf{u_n} = \ln\left(\frac{\mathbf{e^n} + \mathbf{n^2}}{2\mathbf{n} + 1}\right)$$

- FI donc on met en facteur le terme dominant au numérateur et au dénominateur à savoir e^n au numérateur et n au dénominateur. On obtient que : $u_n = \ln\left(\frac{e^n}{n} \times \frac{1 + \frac{n^2}{e^n}}{2 + \frac{1}{n}}\right)$. Par croissance comparée, on a : $\lim_{n \to +\infty} \frac{e^n}{n} = +\infty$ et $\lim_{n \to +\infty} \frac{n^2}{e^n} = 0$. Puis par propriété sur les sommes, quotients, produit et composée de limites, on obtient que $\lim_{n \to +\infty} u_n = +\infty$.
- 8. $\mathbf{u_n} = \ln \left(\frac{\mathbf{2} \mathbf{n}}{\mathbf{n} + \mathbf{4}} \right)$: Pas définie pour n > 2!

9.
$$\mathbf{u_n} = \frac{\mathbf{2^n}}{\mathbf{n^2} + \mathbf{1}}$$
:

• FI donc on fait apparaître une croissance comparée en mettant en facteur n^2 terme dominant au dénominateur. On obtient que $u_n = \frac{e^{\ln 2n}}{n^2} \times \frac{1}{1 + \frac{1}{n^2}}$. Par croissance comparée, on a : $\lim_{n \to \infty} \frac{e^{\ln 2n}}{n^2} = +\infty$. Puis par propriété sur les quotients, somme et produit de limites, on

 $\lim_{n\to+\infty} \frac{e^{\ln 2n}}{n^2} = +\infty.$ Puis par propriété sur les quotients, somme et produit de limites, on obtient que : $\lim_{n\to+\infty} u_n = +\infty.$

10.
$$\mathbf{u_n} = \left(\frac{1}{2}\right)^{\mathbf{n}} \ln \mathbf{n}$$

• FI car $u_n = \ln(n)e^{-n\ln 2}$. On va faire apparaître une croissance comparée en multipliant et divisant par n. On obtient que : $u_n = \frac{n}{e^{\ln 2n}} \times \frac{\ln n}{n}$. Par croissances comparées, on a : $\lim_{n \to +\infty} \frac{n}{e^{\ln 2n}} = 0 = \lim_{n \to +\infty} \frac{\ln n}{n}$. Ainsi par propriété sur le produit de limite, on a : $\lim_{n \to +\infty} u_n = 0$.

11.
$$\mathbf{u_n} = \frac{\mathbf{e}^{\sqrt{n}}}{\mathbf{n^2}}$$

- FI donc on transforme l'enpression afin de faire apparaître une croissance comparée. On pose par enemple $n=\sqrt{n}$ et on obtient que $u_n=u_n=\frac{e^n}{n^4}$. Ainsi par croissance comparée : $\lim_{n\to+\infty}u_n=+\infty$. Puis par propriété sur la composition de limites : $\lim_{n\to+\infty}u_n=+\infty$.
- 12. $\mathbf{u_n} = \mathbf{e^n} \mathbf{n^{\frac{2}{3}}}$:

• FI donc on met en facteur le terme dominant à savoir e^n . On obtient que : $u_n = e^n \left(1 - \frac{n^{\frac{2}{3}}}{e^n}\right)$. Par croissance comparée, on a : $\lim_{n \to +\infty} \frac{n^{\frac{2}{3}}}{e^n} = 0$. Puis par propriété sur les somme et produit de limites, on obtient que : $\lim_{n \to +\infty} u_n = +\infty$.

13.
$$\mathbf{u_n} = e^{\frac{1}{n-2}}$$

•
$$\lim_{n \to +\infty} u_n = 1$$

14.
$$\mathbf{u_n} = (2\mathbf{n} - 1)e^{\frac{1}{\mathbf{n} - 2}}$$
:

$$\bullet \lim_{n \to +\infty} u_n = +\infty$$

15.
$$\mathbf{u_n} = \frac{\ln\left(\mathbf{n^2 + 1}\right)}{\mathbf{n}}$$

• FI donc on met en facteur le terme dominant n^2 dans le logarithme afin de faire apparaître une croissance comparée. On obtient que : $u_n = 2\frac{\ln n}{n} + \frac{\ln (1 + \frac{1}{n^2})}{n}$. Par croissance comparée, on a : $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$ et par propriété sur les quotients, somme et composée de limites : $\lim_{n \to +\infty} \frac{\ln (1 + \frac{1}{n^2})}{n} = 0$. Donc par propriété sur les sommes de limites, on a : $\lim_{n \to +\infty} u_n = 0$.

Type DS

Exercice 4. Suites homographiques.

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{5u_n - 2}{u_n + 2} \quad \text{ et } \quad \forall n \in \mathbb{N}, \ v_n = \frac{u_n - 2}{u_n - 1}.$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\geq 3, u_n>1$.
- 2. En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est bien définie sur \mathbb{N} .
- 3. Montrer que $(v_n)_{n\in\mathbb{N}}$ est géométrique.
- 4. En déduire l'expression explicite de $(v_n)_{n\in\mathbb{N}}$ puis de $(u_n)_{n\in\mathbb{N}}$.
- 5. Etudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.

Correction 4.

- 1. Comme toujours pour ce genre de question, on fait une récurrence.
 - On montre par récurrence sur $n \geq 3$ la propriété $\mathcal{P}(n)$: u_n défini et $u_n > 1$.
 - Initialisation : pour n=3 : On a : $u_1=-1$ puis $u_2=-7$ et $u_3=\frac{37}{5}>1$. Ainsi, $\mathcal{P}(3)$ est vraie.
 - Hérédité : soit $n \geq 3$, on suppose la propriété vraie à l'ordre n, montrons que $\mathcal{P}(n+1)$ est vraie. Par hypothèse de récurrence, on sait que $u_n > 1$, donc $u_n 1 \neq 0$ et u_{n+1} est bien défini. De plus, on a

$$u_{n+1} > 1 \Leftrightarrow \frac{5u_n - 2}{u_n + 2} > 1 \Leftrightarrow 5u_n - 2 > u_n + 2 \Leftrightarrow u_n > 1.$$

Ici on a utilisé le fait que $u_n > 1$ d'après $\mathcal{P}(n)$, et donc que $u_n + 2 > 0$. On arrive $u_n > 1$ qui est bien vrai, donc par équivalences, $u_{n+1} > 1$ est vrai aussi. Ainsi, $\mathcal{P}(n+1)$ est vraie.

- Conclusion : il résulte du principe de récurrence que $\forall n \geq 3, u_n > 1$.
- 2. La suite $(v_n)_{n\in\mathbb{N}}$ est bien définie car u_0 , u_1 , u_2 ne sont pas égaux à 1 et ensuite on a $\forall n \geq 3, u_n > 1$. Ainsi pour tout $n \in \mathbb{N}$, on a bien $u_n 1 \neq 0$ et v_n bien défini.

3. Soit $n \in \mathbb{N}$:

$$v_{n+1} = \frac{u_{n+1} - 2}{u_{n+1} - 1} = \frac{\frac{5u_n - 2 - 2u_n - 4}{u_n + 2}}{\frac{5u_n - 2 - u_n - 2}{u_n + 2}} = \frac{3u_n - 6}{4u_n - 4} = \frac{3}{4} \frac{u_n - 2}{u_n - 1} = \frac{3}{4} v_n.$$

Ainsi la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{3}{4}$ et de premier terme 2.

4. On en déduit la formule explicite de v_n :

$$\forall n \in \mathbb{N}, \quad v_n = 2\left(\frac{3}{4}\right)^n.$$

En remarquant que : $u_n(v_n - 1) = v_n - 2$ et que la suite $(v_n)_{n \in \mathbb{N}}$ était toujours différente de 1, on obtient que

$$\forall n \in \mathbb{N}, \ u_n = \frac{v_n - 2}{v_n - 1} \Rightarrow u_n = \frac{2(\frac{3}{4})^n - 2}{2(\frac{3}{4})^n - 1}.$$

5. Comme $-1 < \frac{3}{4} < 1$, la suite $(v_n)_{n \in \mathbb{N}}$ converge vers 0 et ainsi, on a : $\lim_{n \to \mathbb{N}} u_n = 2$.

Exercice 5. Soit une suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie la relation de récurrence

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, \ u_{n+1} = -u_n^2 + 2u_n \end{cases}$$

- 1. Calculer $1 u_{n+1}$ en fonction de $1 u_n$.
- 2. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$, si elle existe, en fonction du premier terme u_0 .

Correction 5.

- 1. Soit $n \in \mathbb{N}$, on a : $1 u_{n+1} = 1 + u_n^2 2u_n = (1 u_n)^2$.
- 2. On pose $v_n = 1 u_n$. On a alors $v_{n+1} = v_n^2$. Essayons de calculer v_n : on a $v_1 = v_0^2$, $v_2 = v_0^4$, $v_3 = v_0^8$. On conjecture donc: $\forall n \in \mathbb{N}, \ v_n = v_0^{2^n}$. Montrons par récurrence sur $n \in \mathbb{N}$ la propriété: $\mathcal{P}(n)$: $v_n = v_0^{2^n}$.
 - Initialisation : pour n = 0 : On a : $v_0^{2^0} = v_0$. Donc $\mathcal{P}(0)$ est vraie.
 - Hérédité : Soit $n \in \mathbb{N}$. On suppose la propriété vraie à l'ordre n, montrons qu'elle est vraie à l'ordre n+1. On a vu que : $v_{n+1}=v_n^2$. On utilise alors l'hypothèse de récurrence et on obtient

$$v_{n+1} = (v_0^{2^n})^2 = v_0^{2^{n+1}}$$

Donc $\mathcal{P}(n+1)$ est vraie.

• Conclusion : il résulte du principe de récurrence que

$$\forall n \in \mathbb{N}, \quad v_n = v_0^{2^n}.$$

On obtient donc pour tout $n \in \mathbb{N}$: $u_n = 1 - (1 - u_0)^{2^n}$.

- Si $1 u_0 > 1 \Leftrightarrow u_0 < 0$, alors : $\lim_{n \to +\infty} (1 u_0)^{2^n} = +\infty$, donc $\lim_{n \to +\infty} u_n = -\infty$.
- Si $u_0 = 0$, alors $1 u_0 = 1$ et ainsi : $\forall n \in \mathbb{N}$, $u_n = 0$ et donc $\lim_{n \to +\infty} u_n = 0$.
- Si $-1 < 1 u_0 < 1 \iff 0 < u_0 < 2$, alors : $\lim_{n \to +\infty} u_n = 1$.
- Si $u_0 = 2$, alors $1 u_0 = -1$ et $(1 u_0)^{2^n} = 1$, et ainsi : $\forall n \in \mathbb{N}$, $u_n = 0$ et donc $\lim_{n \to +\infty} u_n = 0$.

• Si $1 - u_0 < -1 \Leftrightarrow u_0 > 2$, alors $(1 - u_0)^2 > 1$, et donc $\lim_{n \to +\infty} (1 - u_0)^{2^n} = +\infty$, soit $\lim_{n \to +\infty} u_n = -\infty$.

Exercice 6. On définit deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ par

$$u_1 = 1$$
 $v_1 = 12$ $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{u_n + 2v_n}{3}$ $v_{n+1} = \frac{u_n + 3v_n}{4}.$

- 1. On pose, pour tout $n \in \mathbb{N}^*$, $w_n = v_n u_n$. Donner l'expression de $(w_n)_{n \in \mathbb{N}^*}$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- 3. On pose pour tout $n \in \mathbb{N}^*$, $t_n = 3u_n + 8v_n$. Donner l'expression de $(t_n)_{n \in \mathbb{N}^*}$ et en déduire la limite de $(u_n)_{n \in \mathbb{N}^*}$ et $(v_n)_{n \in \mathbb{N}^*}$.

Correction 6. On définit deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ par

$$u_1 = 1 \quad v_1 = 12 \quad \forall n \in \mathbb{N}^\star, \ u_{n+1} = \frac{u_n + 2v_n}{3} \quad v_{n+1} = \frac{u_n + 3v_n}{4}.$$

1. On pose, pour tout $n \in \mathbb{N}^*$, $w_n = v_n - u_n$. Donner l'expression de $(w_n)_{n \in \mathbb{N}^*}$: Soit $n \in \mathbb{N}^*$, on a :

$$w_{n+1} = \frac{u_n + 3v_n}{4} - \frac{u_n + 2v_n}{3} = \frac{v_n - u_n}{12} = \frac{1}{12}w_n.$$

Ainsi la suite $(w_n)_{n\in\mathbb{N}^*}$ est une suite géométrique de raison $\frac{1}{12}$ et de premier terme $w_1=v_1-u_1=11$. On en déduit donc l'expression explicite de w_n :

$$\forall n \ge 1, \ w_n = w_1 \left(\frac{1}{12}\right)^{n-1} = 11 \left(\frac{1}{12}\right)^{n-1}.$$

- 2. Montrer que $(\mathbf{u_n})_{\mathbf{n} \in \mathbb{N}^*}$ et $(\mathbf{v_n})_{\mathbf{n} \in \mathbb{N}^*}$ sont adjacentes :
 - Étude de la monotonie de la suite $(u_n)_{n\in\mathbb{N}^*}$: Soit $n\geq 1$, on a :

$$u_{n+1} - u_n = \frac{u_n + 2v_n}{3} - u_n = \frac{2(v_n - u_n)}{3} = \frac{2}{3}w_n.$$

Or on connaît l'expression de w_n , on obtient donc :

$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = \frac{2}{3} \times 11 \left(\frac{1}{12}\right)^{n-1} \ge 0.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.

• Étude de la monotonie de la suite $(v_n)_{n\in\mathbb{N}^*}$: Soit $n\geq 1$, on a :

$$v_{n+1} - v_n = \frac{u_n + 3v_n}{4} - v_n = \frac{u_n - v_n}{4} = \frac{-1}{4}w_n.$$

Or on connaît l'expression de w_n , on obtient donc :

$$\forall n \in \mathbb{N}, \ v_{n+1} - v_n = \frac{-11}{4} \left(\frac{1}{12}\right)^{n-1} \le 0.$$

Ainsi, la suite $(v_n)_{n\in\mathbb{N}^*}$ est décroissante.

• Montrons que $\lim_{n \to +\infty} v_n - u_n = 0$:

On a montré à la question précédente que pour tout $n \in \mathbb{N}^*$: $v_n - u_n = 11 \left(\frac{1}{12}\right)^{n-1}$.

Comme : $-1 < \frac{1}{12} < 1$, on a : $\lim_{n \to +\infty} \left(\frac{1}{12}\right)^{n-1} = 0$. Puis par propriété sur le produit de limites, on obtient que : $\lim_{n \to +\infty} v_n - u_n = 0$.

Ainsi, on a donc montré que les deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes. D'après le théorème sur les suites adjacentes, elles convergent donc vers la même limite.

- 3. On pose pour tout $n \in \mathbb{N}^*$, $t_n = 3u_n + 8v_n$. Donner l'expression de $(t_n)_{n \in \mathbb{N}^*}$ et en déduire la limite de $(u_n)_{n \in \mathbb{N}^*}$ et $(v_n)_{n \in \mathbb{N}^*}$:
 - Expression de t_n pour tout $n \ge 1$: Soit $n \ge 1$, on a : $t_{n+1} = 3\frac{u_n + 2v_n}{3} + 8\frac{u_n + 3v_n}{4} = 3u_n + 8v_n = t_n$. Ainsi la suite $(t_n)_{n \in \mathbb{N}^*}$ est constante égale à $t_1 = 3u_1 + 8v_1 = 99$.
 - Calcul de la valeur de la limite l:
 Comme la suite (t_n)_{n∈N*} est constante, on a : ∀n ∈ N*, 3u_n + 8v_n = 99. De plus on a démontré à la question 2 que les deux suites (u_n)_{n∈N*} et (v_n)_{n∈N*} convergent vers la même limite l et ainsi par propriété sur les produits et somme de limites, on obtient que : lim 3u_n + 8v_n = 11l. Par passage à la limite dans l'égalité : 3u_n + 8v_n = 99, on obtient donc que

$$11l = 99 \Leftrightarrow \boxed{l = 9.}$$

Exercice 7. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites telles que $a_0=0, b_0=1$ et pour tout $n\in\mathbb{N}$

$$a_{n+1} = -2a_n + b_n$$
 et $b_{n+1} = 3a_n$.

- 1. Démontrer que la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est constante.
- 2. Pour tout $n \in \mathbb{N}$, exprimer a_n en fonction de n.
- 3. Pour tout $n \in \mathbb{N}$, déterminer b_n en fonction de n.

Correction 7. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites telles que $a_0=0,\ b_0=1$ et pour tout $n\in\mathbb{N}$

$$a_{n+1} = -2a_n + b_n$$
 et $b_{n+1} = 3a_n$.

1. Démontrer que la suite $(\mathbf{a_n} + \mathbf{b_n})_{\mathbf{n} \in \mathbb{N}}$ est constante : Soit $n \in \mathbb{N}$, on a :

$$a_{n+1} + b_{n+1} = -2a_n + b_n + 3a_n = a_n + b_n$$
.

Ainsi la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est constante et donc pour tout $n \in \mathbb{N}$: $a_n + b_n = a_0 + b_0 = 1$. Donc $\forall n \in \mathbb{N}, \ a_n + b_n = 1$.

2. Pour tout $n \in \mathbb{N}$, exprimer a_n en fonction de n:

Soit $n \in \mathbb{N}$. On a, en utilisant le fait que pour tout $n \in \mathbb{N}$, $a_n + b_n = 1$, que pour tout $n \in \mathbb{N}$: $b_n = 1 - a_n$. Ainsi on obtient que pour tout $n \in \mathbb{N}$:

$$a_{n+1} = -2a_n + b_n \Leftrightarrow a_{n+1} = 1 - 3a_n.$$

On reconnaît une suite arithmético-géométrique .

- Calcul de la limite éventuelle : on résout : $l = 1 3l \Leftrightarrow l = \frac{1}{4}$.
- Étude d'une suite auxiliaire : pour tout $n \in \mathbb{N}$, on pose $v_n = a_n \frac{1}{4}$. Montrons que $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison -3. Soit $n \in \mathbb{N}$, on a :

$$v_{n+1} = a_{n+1} - \frac{1}{4} = 1 - 3a_n - \frac{1}{4} = -3\left(a_n - \frac{1}{4}\right) = -3v_n.$$

Ainsi la suite $(v_n)_{n\in\mathbb{N}}$ est bien une suite géométrique de raison $\frac{1}{4}$ et de premier terme $v_0=a_0-\frac{1}{4}=-\frac{1}{4}$. On en déduit l'expression explicite de la suite $(v_n)_{n\in\mathbb{N}}$: pour tout $n\in\mathbb{N}$, on a: $v_n=-\frac{1}{4}(-3)^n$.

- Expression explicite de a_n pour tout $n \in \mathbb{N}$: Pour tout $n \in \mathbb{N}$, on a : $a_n = v_n + \frac{1}{4} = -\frac{1}{4}(-3)^n + \frac{1}{4}$. On a donc : $\forall n \in \mathbb{N}, \ a_n = \frac{1}{4}(1 - (-3)^n)$.
- 3. Pour tout $n \in \mathbb{N}$, déterminer b_n en fonction de n:

Comme pour tout $n \in \mathbb{N}$, on a : $b_{n+1} = 3a_n$, on a : $b_n = 3a_{n-1}$. Puis en utilisant le résultat de la question précédente, on obtient que $\forall n \in \mathbb{N}, \ b_n = \frac{3}{4} \left(1 - (-3)^{n-1}\right)$.

Exercice 8. Soit $(a, b) \in \mathbb{R}^2$ tels que 0 < a < b. On pose $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. INFO Ecrire une fonction Python qui prend en argument un entier n et deux flottants (a,b) et retourne la valeur de u_n .
- 2. Montrer que pour tout $(x,y) \in (\mathbb{R}_+)^2$ on a

$$\sqrt{xy} \le \frac{x+y}{2}$$

- 3. Montrer que : $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$.
- 4. Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ et décroissante.
- 5. Montrer que pour tout $(x,y) \in (\mathbb{R}_+)^2$ tel que $x \geq y > 0$ on a

$$\frac{x+y}{2} - \sqrt{xy} \le \frac{1}{2}(x-y)$$

- 6. Montrer que : $\forall n \in \mathbb{N}, v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$.
- 7. En déduire que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers la même limite.
- 8. INFO On note ℓ la limite commune des deux suites. Ecrire une fonction Python qui prend en argument un flottant eps et retourne la valeur de ℓ à eps prés.

Correction 8. 11 from math import sqrt

- def suite_u(n,a,b):
- u=a
- ₄ v=b
- for i in range(n):
- u, v = sqrt(u*v), (u+v)/2 #affectation simultanee
- return (u)
- 2. On va procéder par équivalence :

$$\sqrt{xy} \le \frac{x+y}{2}$$

$$\iff xy \le \left(\frac{x+y}{2}\right)^2 \quad \text{car} x+y > 0$$

$$\iff xy \le \frac{x^2+y^2+2xy}{4}$$

$$\iff 4xy \le x^2+y^2+2xy$$

$$\iff 0 \le x^2+y^2-2xy$$

$$\iff 0 < (x-y)^2$$

Cette dernière inégalité étant vérifiée pour tout $(x,y) \in \mathbb{R}^2$ et comme on a procédé par équivalence on a bien pour tout $(x,y) \in (\mathbb{R}_+)^2$

$$\sqrt{xy} \le \frac{x+y}{2}$$

3. Montrons par récurrence la propriété $\mathcal{P}(n)$ définie pour tout n par : « $0 \le u_n \le v_n$ ». Initialisation : Pour n = 0, la propriété est vraie, d'après l'hypothèse faite dans l'énoncé 0 < a < b.

Hérédité:

Soit $n \geq 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$ est vraie. On a $u_{n+1} = \sqrt{u_n v_n}$ qui est bien défini car u_n et v_n sont positifs par hypothèse de récurrence. Cette expression assure aussi que u_{n+1} est positif.

De plus,

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n}$$
 Par définition.
 ≥ 0 d'après la question précédente.

Ainsi $v_{n+1} \ge u_{n+1}$ La propriété \mathcal{P} est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \geq 0$:

$$0 \le u_n \le v_n$$

4. On a $u_{n+1} - u_n = \sqrt{u_n v_n} - u_n = \sqrt{u_n} (\sqrt{v_n} - \sqrt{u_n})$ Or comme $u_n \le v_n$ et que la fonction racine est croissante on a

$$u_{n+1} - u_n \ge 0$$

Autrement dit
$$(u_n)_{n\in\mathbb{N}}$$
 est croissante

On a $v_n + 1 - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2}$ Or comme $u_n \le v_n$ on a

$$v_{n+1} - v_n \le 0$$

Autrement dit
$$(v_n)_{n\in\mathbb{N}}$$
 est décroissante

5. On va procéder par équivalence :

$$\frac{x+y}{2} - \sqrt{xy} \le \frac{1}{2}(x-y)$$

$$\iff y \le \sqrt{xy}$$

$$\iff y^2 \le xy$$

$$\iff y < x$$

$$\operatorname{car} y \ge 0$$

$$\operatorname{car} y > 0$$

Cette dernière inégalité étant vérifiée par hypothèse et comme on a procédé par équivalence on a bien pour tout $(x,y) \in (\mathbb{R}_+)^2$ tel que $0 \le y \le x$

$$\boxed{\frac{x+y}{2} - \sqrt{xy} \le \frac{1}{2}(x-y)}$$

6. Montrons par récurrence la propriété définie $\mathcal{P}(n)$ définie pour tout n par : « $v_n - u_n \leq \frac{1}{2^n}(v_0 - u_0)$. ». **Initialisation :** Pour n = 0, la propriété est vraie car le terme de gauche vaut $v_0 - u_0$ et le terme de droite vaut $\frac{1}{1}(v_0 - u_0)$.

Hérédité :

Soit $n \geq 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$ est vraie. On a

On applique l'hypothèse de récurrence, on a alors

$$v_{n+1} - u_{n+1} \le \frac{1}{2} \times \frac{1}{2^n} (v_0 - u_0)$$

 $\le \frac{1}{2^{n+1}} (v_0 - u_0)$

La propriété P est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \geq 0$:

$$v_n - u_n \le \frac{1}{2^n} (v_0 - u_0).$$

```
\begin{array}{lll} {}_{1}\;\; from\;\; math\;\; import\;\; sqrt\;,\;\; abs\\ {}_{2}\;\; def\;\; limite\,(eps\;,a\;,b\;):\\ {}_{3}\;\;\; u=a\\ {}_{4}\;\;\; v=b\\ {}_{5}\;\;\; while\;\; abs\,(u-v){>}\,eps:\\ {}_{6}\;\;\;\; u\;,v=sqrt\,(u*v\;)\;,\;\; (u+v\;)/2\\ {}_{7}\;\;\; return\,(u\;) \end{array}
```