Statistique en grande dimension - partie non supervisée

Laurent Rouvière

30 novembre 2022

Présentation

Définition

Action de répartir en classes, en catégories, des choses, des objets, ayant des caractères communs afin notamment d'en faciliter l'étude.

Nombreuses applications

- Astronomie : classification d'étoiles
- Médecine : diagnostic de maladies à partir d'observation cliniques
- Géographie : délimitation de zones homogènes
- Marketing : détermination de segments de marchés (groupes de consommateurs ayant les mêmes habitudes)
- Réseaux sociaux : extraction de communautés
- ...

Documents/supports

MOOC de François Husson

- disponible ici https://husson.github.io/MOOC_AnaDo/classif.html
- vidéos Quiz Supports

Objectifs divers

lacksquare Beaucoup de groupes avec peu d'individus à l'intérieur (réduire n)

Objectifs divers

- Beaucoup de groupes avec peu d'individus à l'intérieur (réduire n)
- Peu de groupes avec beaucoup d'individus à l'intérieur (extraire des profils que l'on interprète par la suite).

Objectifs divers

- lacktriangle Beaucoup de groupes avec peu d'individus à l'intérieur (réduire n)
- Peu de groupes avec beaucoup d'individus à l'intérieur (extraire des profils que l'on interprète par la suite).

Conséquence

Les algorithmes seront proches mais pas calibrés de la même façon.

Modélisation statistique

• n observations x_1,\ldots,x_n à valeurs dans $\mathbb{R}^d.$

Le problème

Trouver une partition de $\{x_1,\dots,x_n\}$: on cherche donc $\mathcal{C}_1,\dots,\mathcal{C}_K$ tels que

$$\bigcup_{k=1}^K \mathcal{C}_k = \{x_1, \dots, x_n\} \quad \text{et} \quad \mathcal{C}_k \cap \mathcal{C}_{k'} = \emptyset \quad \text{si} \quad k \neq k'.$$

Chaque élément de la partition \mathcal{C}_k est appelé cluster.

5

Modélisation statistique

• n observations x_1,\ldots,x_n à valeurs dans $\mathbb{R}^d.$

Le problème

Trouver une partition de $\{x_1,\dots,x_n\}$: on cherche donc $\mathcal{C}_1,\dots,\mathcal{C}_K$ tels que

$$\bigcup_{k=1}^K \mathcal{C}_k = \{x_1, \dots, x_n\} \quad \text{et} \quad \mathcal{C}_k \cap \mathcal{C}_{k'} = \emptyset \quad \text{si} \quad k \neq k'.$$

Chaque élément de la partition \mathcal{C}_k est appelé cluster.

- Notions de ressemblance, similarité, hiérarchie.
- Choix du nombre de classes K.

Un exemple jouet

1. Méthodes de partitionnement (k-means)

- 1. Méthodes de partitionnement (k-means)
- 2. Méthodes hiérarchiques (CAH)

- 1. Méthodes de partitionnement (k-means)
- 2. Méthodes hiérarchiques (CAH)
- 3. Algorithmes basés sur les densités (DBSCAN)

- 1. Méthodes de partitionnement (k-means)
- 2. Méthodes hiérarchiques (CAH)
- 3. Algorithmes basés sur les densités (DBSCAN)
- 4. Approches basées sur les graphes (clustering spectral)

Partitionnement : les k-means

Le critère des k-means

- Idée : Définir les clusters \mathcal{C}_k à partir de représentants c_k .
- Nombre de groupes K fixé.

Le critère des k-means

- Idée : Définir les clusters \mathcal{C}_k à partir de représentants c_k .
- Nombre de groupes K fixé.

Le critère des k-means

On cherche la partition $\mathcal C$ et les représentants c qui minimise le critère

$$g(\mathcal{C},c) = \sum_{k=1}^K \sum_{i \in \mathcal{C}_k} \|x_i - c_k\|^2.$$

Le critère des k-means

- Idée : Définir les clusters \mathcal{C}_k à partir de représentants c_k .
- Nombre de groupes K fixé.

Le critère des k-means

On cherche la partition $\mathcal C$ et les représentants c qui minimise le critère

$$g(\mathcal{C},c) = \sum_{k=1}^K \sum_{i \in \mathcal{C}_k} \|x_i - c_k\|^2.$$

• Impossible de trouver $(\mathcal{C}^\star, c^\star)$ qui minimise $g(\mathcal{C}, c)$.

Équivalences

1. Quand on fixe une partition \mathcal{C}^* , les meilleurs représentants [2] sont les moyennes $\hat{c}=(\bar{x}_{\mathcal{C}_1},\dots,\bar{x}_{\mathcal{C}_K})$

$$\forall c \quad g(\mathcal{C}^*,c) \geq g(\mathcal{C}^*,\hat{c})$$

Équivalences

1. Quand on fixe une partition \mathcal{C}^* , les meilleurs représentants [2] sont les moyennes $\hat{c}=(\bar{x}_{\mathcal{C}_1},\dots,\bar{x}_{\mathcal{C}_K})$

$$\forall c \quad g(\mathcal{C}^*,c) \geq g(\mathcal{C}^*,\hat{c})$$

2. Quand on fixe des représentants c, la meilleure partition $\widehat{\mathcal{C}}=\{\widehat{\mathcal{C}}_1,\dots,\widehat{\mathcal{C}}_K\}$ est celle de la distance minimale (partition de Voronoi) définie par

$$\widehat{\mathcal{C}}_k = \{i \in \{1,\dots,n\} \text{ tels que } \|x_i - c_k\|^2 = \min_i \|x_i - c_j\|^2\}$$

Elle réalise le minimum à représentants fixés:

$$\forall \mathcal{C} \quad g(\mathcal{C},c) \geq g(\widehat{\mathcal{C}},c)$$

Idée

Construire les centres et la partition de manière récursive.

Idée

Construire les centres et la partition de manière récursive.

Comment?

En utilisant un algorithme :

- Lloyd [7]
- Forgy [4]
- MacQueen [9]
- HARTIGAN et WONG [5]

on pourra consulter https://towardsdatascience.com/three-versions-of-k-means-cf939b65f4ea.

Lloyd [7]

- 1. Initialisation : choix de k points au hasard comme centroïde.
- 2. Affectation de chaque observation au centroïde le plus proche.
- 3. Mise à jour des centroïdes.

Hartigan et Wong [5]

- 1. Initialisation : choix de K points au hasard comme centroïde
- 2. Pour i = 1, ..., n
 - a. Pour $k = 1, \dots, K$
 - $\bullet \ \ \mathsf{Affecter} \ x_i \ \mathsf{\grave{a}} \ c_k$
 - \bullet calculer $\alpha_k = \sum_{i=1}^n \|x_i c_{k,i}\|^2$
 - b. Affecter \boldsymbol{x}_i au centroïde qui minimise $\boldsymbol{\alpha}_k$
 - c. Mettre à jour les centroïdes
- 3. Répéter 2 jusqu'à convergence

Hartigan et Wong [5]

- 1. Initialisation : choix de K points au hasard comme centroïde
- 2. Pour i = 1, ..., n
 - a. Pour $k = 1, \dots, K$
 - $\bullet \quad \text{Affecter } x_i \,\, \mathbf{\grave{a}} \,\, c_k$
 - \bullet calculer $\alpha_k = \sum_{i=1}^n \|x_i c_{k,i}\|^2$
 - b. Affecter \boldsymbol{x}_i au centroïde qui minimise $\boldsymbol{\alpha}_k$
 - c. Mettre à jour les centroïdes
- 3. Répéter 2 jusqu'à convergence

Remarque

Généralement recommandé avec plusieurs initialisations.

Le coin R

Bilan

Avantages

- Facile à mettre en œuvre
- $\qquad \qquad \textbf{Faible complexité } O(n)$

Bilan

Avantages

- Facile à mettre en œuvre
- Faible complexité O(n)

Inconvénients

- Clusters "sphériques".
- Choix de k.
- Choix de la distance (grande dimension ?).

Méthodes hiérarchiques

Méthodes hiérarchiques

Objectif

Créer une suite de partitions emboitées en partant de la partition la plus fine (n classes) jusqu'à obtenir une seule classe.

Le processus hiérarchique

Le processus hiérarchique

Visualisation

Méthodes hiérarchiques

La Classification Ascendante Hiérarchique

Algorithme

Entrées : données, distance (entre individus et clusters d'individus)

1. Calculer une matrice de distances entre individus.

Algorithme

- 1. Calculer une matrice de distances entre individus.
- 2. Chaque observation forme 1 singleton.

Algorithme

- 1. Calculer une matrice de distances entre individus.
- 2. Chaque observation forme 1 singleton.
- 3. Agréger les deux objets les plus proches.

Algorithme

- 1. Calculer une matrice de distances entre individus.
- 2. Chaque observation forme 1 singleton.
- 3. Agréger les deux objets les plus proches.
- 4. Mettre à jour la matrice de distances.

Algorithme

- 1. Calculer une matrice de distances entre individus.
- 2. Chaque observation forme 1 singleton.
- 3. Agréger les deux objets les plus proches.
- 4. Mettre à jour la matrice de distances.
- 5. Itérer jusqu'à obtenir un seul groupe.

Algorithme

Entrées : données, distance (entre individus et clusters d'individus)

- 1. Calculer une matrice de distances entre individus.
- 2. Chaque observation forme 1 singleton.
- 3. Agréger les deux objets les plus proches.
- 4. Mettre à jour la matrice de distances.
- 5. Itérer jusqu'à obtenir un seul groupe.

Sorties : une suite de partitions emboîtées.

De quoi a t-on besoin?

Pas grand chose...

De quoi a t-on besoin?

Pas grand chose... il suffit de savoir calculer des distances et/ou indicateurs de similarités entre

- des observations. On notera d une telle distance
- des groupes d'observations, *i.e.* entre clusters. On notera Δ une telle distance.

Méthodes hiérarchiques

Mesures de dissemblances

Saut minimum

Également appelé minimu linkage ou single linkage.

Commentaires

- Groupes généralement "étirés".
 - "Le voisin de mon voisin est mon voisin".

Saut maximum

• Également appelé complete linkage.

Commentaires

Groupes généralement "compacts".

Saut moyen (average linkage)

Moyenne de toutes les distances entre deux objets des deux groupes :

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{x_i \in \mathcal{C}_i, x_j \in \mathcal{C}_j} d(x_i, x_j)$$

Commentaires

Intermédiaires entre le min et le max...

Idée

Se baser sur l'inertie :

$$\begin{split} \mathcal{I}_{\text{tot}} = & \frac{1}{n} \sum_{i=1}^{n} d^2(x_i - \bar{x}) \\ = & \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{C}_k} d^2(x_i, \bar{x}_{\mathcal{C}_k}) + \frac{1}{n} \sum_{k=1}^{K} n_k d^2(\bar{x}_{\mathcal{C}_k}, \bar{x}) \\ = & \mathcal{I}_{\text{intra}} + \mathcal{I}_{\text{inter}} \end{split}$$

en minimisant $\mathcal{I}_{\text{intra}}$ et/ou maximisant $\mathcal{I}_{\text{inter}}$.

Cas extrêmes

- $\bullet \quad K = n \Longrightarrow \mathcal{I}_{\mathsf{intra}} = 0 \text{ et } \mathcal{I}_{\mathsf{inter}} = \mathcal{I}_{\mathsf{tot}}.$
- $\bullet \quad K=1 \Longrightarrow \mathcal{I}_{\mathrm{intra}}=\mathcal{I}_{\mathrm{tot}} \text{ et } \mathcal{I}_{\mathrm{inter}}=0.$

Assembler les clusters de manière à minimiser la perte de $\mathcal{I}_{\text{inter}}$

Assembler les clusters de manière à minimiser la perte de $\mathcal{I}_{\text{inter}} \iff$ minimiser le lien de Ward :

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \frac{|\mathcal{C}_i| \, |\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} d^2(\bar{x}_{\mathcal{C}_i}, \bar{x}_{\mathcal{C}_j})$$

Assembler les clusters de manière à minimiser la perte de $\mathcal{I}_{\text{inter}} \iff$ minimiser le lien de Ward :

$$\Delta(\mathcal{C}_i,\mathcal{C}_j) = \frac{|\mathcal{C}_i| \, |\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} d^2(\bar{x}_{\mathcal{C}_i},\bar{x}_{\mathcal{C}_j})$$

Commentaires

- Bien adapté à la distance euclidienne
- liens forts avec l'ACP.

Exemple


```
> class1 <- hclust(D,method = "single > class2 <- hclust(D,method = "ward")</pre>
```

> ggdendrogram(class1)

> ggdendrogram(class2)

Choix du nombre de classes

Toujours difficile...

Choix du nombre de classes

 Toujours difficile... On se base généralement sur la perte d'inertie inter obtenue en agrégeant les clusters :

```
> tibble(perte=rev(class2$height),x=1:60,
+ col=as.factor(c(1:3,rep(4,57)))) |>
+ ggplot()+aes(x=x,y=perte,fill=col)+
+ geom_bar(stat = "identity",show.legend = FALSE)
```


Le coin R : hclust

```
> DD <- dist(tbl)
> classif <- hclust(DD,method = "ward.D2")
> library(ggdendro)
> ggdendrogram(classif,labels = FALSE)
```


Le coin R : agnes de cluster

```
> library(cluster)
> classif1 <- agnes(DD,method = "ward")
> plot(classif1,which.plots=2)
```

Dendrogram of agnes(x = DD, method = "ward")

Bilan

Avantages

- Pas besoin de connaître le nombre de classes a priori
- Visualisation dendrogramme

Bilan

Avantages

- Pas besoin de connaître le nombre de classes a priori
- Visualisation dendrogramme

Inconvénients

- Coupure du dendrogramme pas toujours simple
- Complexité algorithmique élevée lorsque n est grand $\Longrightarrow O(n^3)$.

Méthodes hiérarchiques

Compléments

$n \text{ grand} \Longrightarrow \text{Classification mixte}$

 \blacksquare La CAH est souvent trop couteuse en temps de calcule lorsque n est grand.

$n \text{ grand} \Longrightarrow \text{Classification mixte}$

■ La CAH est souvent trop couteuse en temps de calcule lorsque *n* est grand.

Classification Mixte

- 1. Faire un k-means sur les données avec k grand (par exemple k=1000)
- 2. Lancer la CAH sur les centroïdes obtenus dans le k-means (en prenant en considération les effectifs des clusters)

$n \text{ grand} \Longrightarrow \text{Classification mixte}$

■ La CAH est souvent trop couteuse en temps de calcule lorsque *n* est grand.

Classification Mixte

- 1. Faire un k-means sur les données avec k grand (par exemple k=1000)
- 2. Lancer la CAH sur les centroïdes obtenus dans le k-means (en prenant en considération les effectifs des clusters)
- Sur **R** on peut utiliser la fonction HCPC du package **FactoMineR**.

Exemple

```
> dim(tbl)
[1] 70000 2
> aa <- dist(tbl)</pre>
Error: vecteurs de mémoire épuisés (limite atteinte ?)
> library(FactoMineR)
> classif <- HCPC(tbl,kk=100,nb.clust = 5,</pre>
                 description = FALSE, graph = FALSE)
> summary(classif$data.clust)
      V1
                       V2
                           clust
Min. :-3.8960 Min. :-2.9089 1: 9968
 1st Qu.: 0.7978 1st Qu.: 0.2049 2: 8851
Median: 4.4625 Median: 4.0371 3:11027
Mean : 3.5691 Mean : 2.8530 4: 9986
3rd Qu.: 5.4406 3rd Qu.: 5.1447 5:30168
Max.: 8.3466 Max.: 8.6905
```

d grand

• CAH et *k*-means reposent sur des distances entre individus.

d grand

- CAH et k-means reposent sur des distances entre individus.
- Les distances standards ne sont pas forcément pertinentes en grande dimension.

d grand

- CAH et k-means reposent sur des distances entre individus.
- Les distances standards ne sont pas forcément pertinentes en grande dimension.

Réduction de dimension

- Souvent pertinent d'effectuer une analyse factorielle au préalable(ACP-ACM...) pour réduire la dimension.
- On fait ensuite le k-means et/ou la CAH sur les premiers axes de l'analyse factorielle.
- Sur R: fonction HCPC de FactoMineR.

Fastcluster et flashClust

Packages qui proposent d'autres algorithmes pour le calcul de la CAH.

```
> tbl1 <- tbl |> slice(sample(70000,10000));D <- dist(tbl1)
> system.time(aa <- stats::hclust(D,method = "ward.D2"))
    user system elapsed
2.555    0.163    2.732
> system.time(bb <- fastcluster::hclust(D,method="ward.D2"))
    user system elapsed
1.087    0.097    1.188
> system.time(cc <- flashClust::flashClust(D,method="ward"))
    user system elapsed
3.653    0.169    3.856</pre>
```

Méthodes fondées sur la densité - DBSCAN

Introduction

- Le principe est de déterminer les classes d'une partition à partir des zones de forte densité.
- Les zones de faible densité sont utilisées pour délimiter les classes.

Introduction

- Le principe est de déterminer les classes d'une partition à partir des zones de forte densité.
- Les zones de faible densité sont utilisées pour délimiter les classes.
- Les éléments sont regroupés de proche en proche et les éléments éloignés des zones de forte densité sont ignorés et considérés comme des outliers.
- ESTER et al. [3]: DBSCAN (Density-based spatial clustering of applications with noise)

L'idée

L'idée

Noyaux et points de bordure

- Soit $\varepsilon > 0$ et MinPts $\leq n$ fixés.
- $\bullet \ \, \text{ On note } B_\varepsilon(y) \text{ le voisinage centré sur } y \text{ et de rayon } \varepsilon \text{ et } |B_\varepsilon(y)| \text{ le nombre de points dans } B_\varepsilon(y).$

Noyaux et points de bordure

- Soit $\varepsilon > 0$ et MinPts $\leq n$ fixés.
- $\hbox{ On note $B_\varepsilon(y)$ le voisinage centré sur y et de rayon ε et $|B_\varepsilon(y)|$ le nombre de points dans $B_\varepsilon(y)$. }$

Définition

- Si $|B_{\varepsilon}(y)| \geq$ MinPts alors y est un noyau et est dans une zone de forte densité.
- Si $|B_{\varepsilon}(y)|<$ MinPts alors y est un point bordure et n'est pas dans une zone de forte densité.

Accéssibilité

Définition

• x est directement accessible depuis y si $x \in B_{\varepsilon}(y)$ et y est un noyau.

Accéssibilité

Définition

- x est directement accessible depuis y si $x \in B_{\varepsilon}(y)$ et y est un noyau.
- * x est accessible depuis y si il existe une chaîne de points $p_1=y,p_2,\dots,p_k=x \text{ telle que } \forall i,p_{i+1} \text{ est directement accessible depuis } p_i.$

Accéssibilité

Définition

- x est directement accessible depuis y si $x \in B_{\varepsilon}(y)$ et y est un noyau.
- x est accessible depuis y si il existe une chaîne de points $p_1=y,p_2,\ldots,p_k=x$ telle que $\forall i,p_{i+1}$ est directement accessible depuis p_i .

Définition

- Deux éléments x et y sont connectés s'ils sont tous les deux accessibles depuis un même élément z (l'éléments z peut éventuellement être x ou y).
- Un cluster est constitué par un ensemble d'éléments connectés.

$\overline{\text{Exemple}: \text{MinPts}} = 4$

Exemple: MinPts = 4

 \boldsymbol{x} bordure, \boldsymbol{y} noyau

 $\begin{array}{c} x \text{ accessible depuis } y \\ y \text{ non accessible depuis } \\ x \end{array}$

 $x \ {\rm et} \ y \ {\rm connect\'es}$

Un exemple

6 0.64 0.82 0.63 0.55 0.41

Un exemple

```
> round(dist(tbl[,1:2]),2)
    1 2 3 4 5
                                          5
2 0.18
                                       0.4
                                                                    3
3 0.11 0.22
4 0.10 0.28 0.17
5 0.60 0.76 0.66 0.50
                                       0.2
6 0.64 0.82 0.63 0.55 0.41
                                             0.25
                                                       0.50
                                                                 0.75
                                                         X1
> is.corepoint(tbl[,1:2],eps=0.25,minPts = 4)
    TRUE FALSE TRUE FALSE FALSE
[1]
```

Résultats

```
> (db <- dbscan(tbl[,1:2],eps=0.25,minPts = 3))
DBSCAN clustering for 6 objects.
Parameters: eps = 0.25, minPts = 3
Using euclidean distances and borderpoints = TRUE
The clustering contains 1 cluster(s) and 2 noise points.
0 1
2 4
Available fields: cluster, eps, minPts, dist, borderPoints
> db$cluster
[1] 1 1 1 1 0 0
```

Résultats

1 cluster de 4 points et 2 outliers.

• 2 paramètres sont à calibrer ε et minPts ; Leur choix est crucial...

- 2 paramètres sont à calibrer ε et minPts ; Leur choix est crucial...
- $\bullet \ \, \mathsf{minPts} \nearrow \Longrightarrow \mathsf{moins} \; \mathsf{de} \; \mathsf{noyaux} \Longrightarrow \mathsf{moins} \; \mathsf{de} \; \mathsf{clusters}$

- 2 paramètres sont à calibrer ε et minPts ; Leur choix est crucial...
- minPts $\nearrow \Rightarrow$ moins de noyaux \Rightarrow moins de clusters
- $\varepsilon \searrow \Longrightarrow$ moins de noyaux \Longrightarrow plus d'outliers

- 2 paramètres sont à calibrer ε et minPts ; Leur choix est crucial...
- minPts $\nearrow \Longrightarrow$ moins de noyaux \Longrightarrow moins de clusters
- $\bullet \ \varepsilon \searrow \Longrightarrow \text{moins de noyaux} \Longrightarrow \text{plus d'outliers}$

Conséquence

Il faut calibrer ces paramètres

• On devra bien entendu faire plusieurs essais et analyser les résultats.

• On devra bien entendu faire plusieurs essais et analyser les résultats.

Heuristique

Choisir minPts de l'ordre de la dimension des données + 1

• On devra bien entendu faire plusieurs essais et analyser les résultats.

Heuristique

- Choisir minPts de l'ordre de la dimension des données + 1
- Tracer le graphe des kNNdisplot en utilisant k = minPts 1.

• On devra bien entendu faire plusieurs essais et analyser les résultats.

Heuristique

- Choisir minPts de l'ordre de la dimension des données + 1
- Tracer le graphe des kNNdisplot en utilisant $k = \min \mathsf{Pts} 1$.
- Utiliser un critère du coude pour choisir ε .

Exemple 1

 \Longrightarrow on pourra prendre arepsilon autour de 1

Résultats

```
> db <- dbscan(tbl[,2:3],eps=1,minPts = 3)
> noyau <- is.corepoint(tbl[,2:3],eps=1,minPts = 3)
> tbl_db <- tbl |> mutate(dbscan=as.factor(db$cluster),noyau=noyau)
> ggplot(tbl_db)+aes(x=V1,y=V2,color=dbscan,shape=noyau)+geom_point()
```


Exemple 2

> kNNdistplot(tbl1[,2:3],k=2)

Points (sample) sorted by distance

 \Longrightarrow on pourra prendre arepsilon autour de 1

Résultats

```
> db1 <- dbscan(tbl1[,2:3],eps=1,minPts = 3)
> noyau <- is.corepoint(tbl1[,2:3],eps=1,minPts = 3)
> tbl_db <- tbl1 |> mutate(dbscan=as.factor(db1$cluster),noyau=noyau)
> ggplot(tbl_db)+aes(x=V1,y=V2,color=dbscan,shape=noyau)+geom_point()
```


Exemple 3

> kNNdistplot(tbl,k=2)

Points (sample) sorted by distance

 \Longrightarrow on pourra prendre ε autour de 0.3.

Résultats

```
> db1 <- dbscan(tbl,eps=0.3,minPts = 3)
> noyau <- is.corepoint(tbl,eps=0.3,minPts = 3)
> tbl_db <- tbl |> mutate(dbscan=as.factor(db1$cluster),noyau=noyau)
> ggplot(tbl_db)+aes(x=V1,y=V2,color=dbscan,shape=noyau)+geom_point()
```


Compléments

• Le nombre de groupes n'est pas un paramètre de l'algorithme.

Compléments

• Le nombre de groupes n'est pas un paramètre de l'algorithme.

Si trop de groupes ou d'outliers

- assembler les groupes à faibles effectifs à des groupes aux effectifs plus conséquents
- affecter les outliers aux clusters les plus proches.

Compléments

• Le nombre de groupes n'est pas un paramètre de l'algorithme.

Si trop de groupes ou d'outliers

- assembler les groupes à faibles effectifs à des groupes aux effectifs plus conséquents
- affecter les outliers aux clusters les plus proches.

 \implies par exemple avec un algorithme du 1 plus proche voisin.

Avantages

Permet d'identifier différentes structures géométriques.

Avantages

- Permet d'identifier différentes structures géométriques.
- Inutile de spécifier le nombre de clusters.

Avantages

- Permet d'identifier différentes structures géométriques.
- Inutile de spécifier le nombre de clusters.
- Identifie les potentiels outliers.

Avantages

- Permet d'identifier différentes structures géométriques.
- Inutile de spécifier le nombre de clusters.
- Identifie les potentiels outliers.

Inconvénients

2 paramètres à choisir (comme toujours...).

Avantages

- Permet d'identifier différentes structures géométriques.
- Inutile de spécifier le nombre de clusters.
- Identifie les potentiels outliers.

Inconvénients

- 2 paramètres à choisir (comme toujours...).
- Trouver la "bonne" distance, en particulier en grande dimension.

Clustering spectral

• Cadre identique : G=(V,E) un graphe et on veut trouver une partition de V en clusters ou communautés.

- Cadre identique : G=(V,E) un graphe et on veut trouver une partition de V en clusters ou communautés.
- Approche basée sur la décomposition spectrale du Laplacien du graphe.

- Cadre identique : G = (V, E) un graphe et on veut trouver une partition de V en clusters ou communautés.
- Approche basée sur la décomposition spectrale du Laplacien du graphe.
- Approche utilisée dans un cadre plus large :
 - **Problème** : clustering sur un jeu de données standards $n \times p$;
 - L'approche peut être appliquée à une matrice de similarité.

- Cadre identique : G = (V, E) un graphe et on veut trouver une partition de V en clusters ou communautés.
- Approche basée sur la décomposition spectrale du Laplacien du graphe.
- Approche utilisée dans un cadre plus large :
 - lacktriangle Problème : clustering sur un jeu de données standards n imes p ;
 - L'approche peut être appliquée à une matrice de similarité.
- On pourra consulter [8] dont cette partie est fortement inspirée.

Notations

- G = (V, E) un graphe non dirigé valué avec n = |V|.
- $w_{ij} \geq 0$ poids de l'arête entre i et j et $W = (w_{ij})_{1 \leq i, i \leq n}$ la matrice d'adjacence.
- $d_i = \sum_{j \neq i} w_{ij}$ degré du nœud i et $D = \mathrm{diag}(d_i)_{1 \leq i \leq n}$ la matrice des degrés.

Notations

- $\bullet \ G = (V,E) \ \hbox{un graphe non dirig\'e valu\'e avec} \ n = |V|.$
- $w_{ij} \ge 0$ poids de l'arête entre i et j et $W = (w_{ij})_{1 \le i, i \le n}$ la matrice d'adjacence.
- $d_i = \sum_{j \neq i} w_{ij}$ degré du nœud i et $D = \mathrm{diag}(d_i)_{1 \leq i \leq n}$ la matrice des degrés.

Laplacien non normalisé

Le Laplacien non normalisé de G est la matrice $n \times n$ définie par :

$$L = D - W$$
.

Quelques propriétés

Les deux propositions suivantes sont fondamentales pour l'algorithme de clustering spectral.

Proposition 1

1. Pour tout vecteur $f \in \mathbb{R}^n$ on a

$$f'Lf = \frac{1}{2} \sum_{1 \le i,j \le n} w_{ij} (f_i - f_j)^2.$$

2. L est symétrique et semi définie positive.

Quelques propriétés

Les deux propositions suivantes sont fondamentales pour l'algorithme de clustering spectral.

Proposition 1

1. Pour tout vecteur $f \in \mathbb{R}^n$ on a

$$f'Lf = \frac{1}{2} \sum_{1 \le i,j \le n} w_{ij} (f_i - f_j)^2.$$

- 2. L est symétrique et semi définie positive.
- 3. La plus petite valeur propre de L est 0, le vecteur propre correspondant est $\mathbf{1}_n$.
- **4.** L a n valeurs propres non nulles $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$.

Valeurs propre et nombre de compo. connexes

Proposition 2

Soit G un graphe non dirigé. Alors

1. le degrés de multiplicité k de la valeur propre 0 de L est égal au nombre de composantes connexes A_1, \ldots, A_k dans G.

Valeurs propre et nombre de compo. connexes

Proposition 2

Soit G un graphe non dirigé. Alors

- 1. le degrés de multiplicité k de la valeur propre 0 de L est égal au nombre de composantes connexes A_1,\ldots,A_k dans G.
- 2. l'espace propre associé à la valeur propre 0 est engendré par les vecteurs d'indicatrices $\mathbf{1}_{A_1},\dots,\mathbf{1}_{A_k}$.

Valeurs propre et nombre de compo. connexes

Proposition 2

Soit G un graphe non dirigé. Alors

- 1. le degrés de multiplicité k de la valeur propre 0 de L est égal au nombre de composantes connexes A_1, \ldots, A_k dans G.
- 2. l'espace propre associé à la valeur propre 0 est engendré par les vecteurs d'indicatrices $\mathbf{1}_{A_1},\ldots,\mathbf{1}_{A_k}$.

Conséquence importante

Le spectre de L permet d'identifier les composantes connexes de G..

- En pratique : 1 communauté n'est pas forcément égale à une composante connexe.
- On peut par exemple vouloir extraire des communautés dans un graphe à une composante connexe.

- En pratique : 1 communauté n'est pas forcément égale à une composante connexe.
- On peut par exemple vouloir extraire des communautés dans un graphe à une composante connexe.

Idée

Considérer les k plus petites valeurs propres du Laplacien.

Spectral clustering non normalisé

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

1. Calculer le Laplacien non normalisé L de G.

Spectral clustering non normalisé

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

- 1. Calculer le Laplacien non normalisé L de G.
- 2. Calculer les k premiers vecteurs propres u_1, \dots, u_k de G.
- 3. On note U la matrice $n \times k$ qui contient les u_k et y_i la iieme ligne de U.

Spectral clustering non normalisé

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

- 1. Calculer le Laplacien non normalisé L de G.
- 2. Calculer les k premiers vecteurs propres u_1, \ldots, u_k de G.
- 3. On note U la matrice $n \times k$ qui contient les u_k et y_i la iieme ligne de U.
- 4. Faire un k-means avec les points $y_i, i=1,\ldots,n\Longrightarrow A_1,\ldots,A_k.$

Sortie : clusters C_1, \dots, C_k avec

$$C_j = \{i | y_i \in A_j\}.$$

- Si G ne possède pas k composantes connexes alors U n'est pas composé que de 1 et de 0.
- On ne peut donc pas extraire directement les composantes à cette étape.

- Si G ne possède pas k composantes connexes alors U n'est pas composé que de 1 et de 0.
- On ne peut donc pas extraire directement les composantes à cette étape.
- Mais

- Si G ne possède pas k composantes connexes alors U n'est pas composé que de 1 et de 0.
- On ne peut donc pas extraire directement les composantes à cette étape.
- Mais si il existe (presque) k composantes, alors les $y_i \in \mathbb{R}^k$ risquent de se rapprocher de cette configuration 0-1.

- Si G ne possède pas k composantes connexes alors U n'est pas composé que de 1 et de 0.
- On ne peut donc pas extraire directement les composantes à cette étape.
- Mais si il existe (presque) k composantes, alors les $y_i \in \mathbb{R}^k$ risquent de se rapprocher de cette configuration 0-1.
- C'est pourquoi on fait un *k*-means en 4.

- Il existe plusieurs versions d'algorithme de clustering spectral.
- Les plus utilisées s'appliquent à une version normalisée du Laplacien, par exemple :

$$L_{\text{norm}} = I - D^{-1/2}WD^{-1/2}.$$

 $\, \blacksquare \,$ Les propriétés de $L_{\rm norm}$ sont proches de celles de L. On a par exemple la propriété suivante.

- Il existe plusieurs versions d'algorithme de clustering spectral.
- Les plus utilisées s'appliquent à une version normalisée du Laplacien, par exemple :

$$L_{\text{norm}} = I - D^{-1/2}WD^{-1/2}$$
.

 $\, \blacksquare \,$ Les propriétés de $L_{\rm norm}$ sont proches de celles de L. On a par exemple la propriété suivante.

Proposition 3

Soit G un graphe non dirigé. Alors

1. le degrés de multiplicité k de la valeur propre 0 de L_{norm} est égal au nombre de composantes connexes A_1, \dots, A_k dans G.

- Il existe plusieurs versions d'algorithme de clustering spectral.
- Les plus utilisées s'appliquent à une version normalisée du Laplacien, par exemple :

$$L_{\text{norm}} = I - D^{-1/2}WD^{-1/2}$$
.

 \blacksquare Les propriétés de $L_{\rm norm}$ sont proches de celles de L. On a par exemple la propriété suivante.

Proposition 3

Soit G un graphe non dirigé. Alors

- 1. le degrés de multiplicité k de la valeur propre 0 de L_{norm} est égal au nombre de composantes connexes A_1, \dots, A_k dans G.
- 2. l'espace propre associé à la valeur propre ${f 0}$ est engendré par les vecteurs d'indicatrices $D^{1/2}{f 1}_{A_1},\ldots,D^{1/2}{f 1}_{A_k}.$

Clustering spectral normalisé

 On déduit de cette propriété la version la plus courante de clustering spectral du à [10].

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

1. Calculer le Laplacien normalisé L_{norm} de G.

Clustering spectral normalisé

 On déduit de cette propriété la version la plus courante de clustering spectral du à [10].

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

- 1. Calculer le Laplacien normalisé L_{norm} de G.
- 2. Calculer les k premiers vecteurs propres u_1,\ldots,u_k de G. On note U la matrice $n\times k$ qui les contient.
- 3. Calculer T en normalisant les lignes de $U: t_{ij} = u_{ij}/(\sum_{\ell} u_{i\ell}^2)^{1/2}$.

Clustering spectral normalisé

 On déduit de cette propriété la version la plus courante de clustering spectral du à [10].

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

- 1. Calculer le Laplacien normalisé L_{norm} de G.
- 2. Calculer les k premiers vecteurs propres u_1,\dots,u_k de G. On note U la matrice $n\times k$ qui les contient.
- 3. Calculer T en normalisant les lignes de U : $t_{ij}=u_{ij}/(\sum_\ell u_{i\ell}^2)^{1/2}$.
- 4. Faire un k-means avec les points $y_i, i=1,\dots,n$ (iieme ligne de T) $\Longrightarrow A_1,\dots,A_k.$

Sortie: clusters C_1, \dots, C_k avec

$$C_j = \{i | y_i \in A_j\}.$$

Remarques

- Algorithme quasi similaire au clustering spectral non normalisé.
- Une étape de normalisation en plus.
- Cette étape se justifie par la théorie de la perturbation du spectre d'une matrice.
- On pourra consulter [8] pour des justifications.

Choix de k

 Comme souvent en clustering, cet algorithme nécessite de connaître le nombre de groupes.

Choix de k

- Comme souvent en clustering, cet algorithme nécessite de connaître le nombre de groupes.
- Utilisation de connaissances métier pour ce choix
- ou

Choix de k

- Comme souvent en clustering, cet algorithme nécessite de connaître le nombre de groupes.
- Utilisation de connaissances métier pour ce choix
- ou étude des valeurs propres du Laplacien.

Remarque importante

• L'algorithme n'utilise pas nécessairement la structure du graphe.

Remarque importante

- L'algorithme n'utilise pas nécessairement la structure du graphe.
- Il est entièrement basé sur la matrice (d'adjacence) W des poids qui contient des arêtes.

Remarque importante

- L'algorithme n'utilise pas nécessairement la structure du graphe.
- Il est entièrement basé sur la matrice (d'adjacence) W des poids qui contient des arêtes.
- Cette matrice peut également être vue comme une matrice de similarité.

Remarque importante

- L'algorithme n'utilise pas nécessairement la structure du graphe.
- Il est entièrement basé sur la matrice (d'adjacence) W des poids qui contient des arêtes.
- Cette matrice peut également être vue comme une matrice de similarité.

Conséquence

- On peut donc généraliser cet algorithme à n'importe quel problème où on possède une matrice de similarité.
- **Exemple** : problème de clustering standard sur des données $n \times p$ (il "suffit" de construire une matrice de similarité).

Clustering spectral sur un tableau de données

- Données : tableau $n \times p$ n individus, p variables.
- Problème : classification non supervisée des n individus.

Clustering spectral sur un tableau de données

- Données : tableau $n \times p$ n individus, p variables.
- Problème : classification non supervisée des n individus.
- Méthodes classiques : k-means, CAH...

Clustering spectral sur un tableau de données

- Données : tableau $n \times p$ n individus, p variables.
- Problème : classification non supervisée des n individus.
- Méthodes classiques : k-means, CAH...

Alternative: clustering spectral

- 1. construire un graphe de similarité;
- lancer l'algorithme de clustering spectral sur ce graphe (ou plutôt sur sa matrice de similarité.

Construction du graphe de similarités

On peut utiliser les techniques vues dans la section ?? :
 ε-neighborhood graph ou plus proches voisins (mutuels ou non).

Construction du graphe de similarités

- On peut utiliser les techniques vues dans la section ?? :
 ε-neighborhood graph ou plus proches voisins (mutuels ou non).
- De façon plus générale, la matrice de similarités s'obtient souvent à partir d'un noyau K:

$$\begin{split} K: \mathbb{R}^p \times \mathbb{R}^p &\to \mathbb{R} \\ (x,y) &\mapsto \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}} \end{split}$$

où $\Phi:\mathbb{R}^p o \mathcal{H}$ est une fonction qui plonge les observations dans un espace de Hilbert \mathcal{H} appelé feature space.

Exemples de noyau

- Linéaire (vanilladot) : $K(x,y) = \langle x,y \rangle$.
- $\qquad \qquad \textbf{Gaussien (rfbdot)}: K(x,y) = \exp(-\sigma \|x-y\|^2).$
- Polynomial (polydot) : $K(x,y) = (\text{scale}\langle x,y\rangle + \text{offset})^{\text{degree}}$.

• ..

Exemples de noyau

- Linéaire (vanilladot) : $K(x,y) = \langle x,y \rangle$.
- Gaussien (rfbdot) : $K(x, y) = \exp(-\sigma ||x y||^2)$.
- Polynomial (polydot) : $K(x,y) = (scale\langle x,y\rangle + offset)^{degree}$.
- ...

Références

On pourra trouver dans exemples de noyau dans [6].

Matrice de similarités avec un noyau

- Etant données n observations $x_i \in \mathbb{R}^p$ et un noyau K
- on peut construire une matrice de similarité, par exemple pour un noyau Gaussien :

$$w_{ij} = \left\{ \begin{array}{ll} \exp(-\sigma \|x_i - x_j\|^2) & \text{si } i \neq j \\ 0 & \text{sinon.} \end{array} \right.$$

Matrice de similarités avec un noyau

- Etant données n observations $x_i \in \mathbb{R}^p$ et un noyau K
- on peut construire une matrice de similarité, par exemple pour un noyau Gaussien :

$$w_{ij} = \left\{ \begin{array}{ll} \exp(-\sigma \|x_i - x_j\|^2) & \text{si } i \neq j \\ 0 & \text{sinon.} \end{array} \right.$$

Clustering spectral

Le clustering spectral consiste à appliquer l'algorithme vu précédemment en calculant le Laplacien normalisé à partir de cette matrice de similarités (voir [10, 1]).

Clustering spectral sur des données $n \times p$

Algorithme

Entrées : tableau de données $n \times p$, K un noyau, k le nombre de clusters.

- 1. Calculer la matrice de similarités W sur les données avec le noyau K.
- 2. Calculer le Laplacien normalisé L_{norm} à partir de W.

Clustering spectral sur des données $n \times p$

Algorithme

Entrées : tableau de données $n \times p$, K un noyau, k le nombre de clusters.

- 1. Calculer la matrice de similarités W sur les données avec le noyau K.
- 2. Calculer le Laplacien normalisé L_{norm} à partir de W.
- 3. Calculer les k premiers vecteurs propres u_1,\ldots,u_k de G. On note U la matrice $n\times k$ qui les contient.
- 4. Calculer T en normalisant les lignes de U : $t_{ij} = u_{ij}/(\sum_\ell u_{i\ell}^2)^{1/2}$.
- 5. Faire un k-means avec les points $y_i, i=1,\dots,n$ (iieme ligne de T) $\Longrightarrow A_1,\dots,A_k.$

Sortie: clusters C_1, \dots, C_k avec

$$C_j=\{i|y_i\in A_j\}.$$

Le coin R

 La fonction specc du package kernlab permet de faire le clustering spectral.

Le coin R

- La fonction specc du package kernlab permet de faire le clustering spectral.
- Exemple : données spirals

```
> library(kernlab)
> data(spirals)
> spirals1 <- data.frame(spirals)</pre>
> head(spirals1)
##
             X 1
                         X2
## 1 0.8123568 -0.98712687
## 2 -0.2675890 -0.32552004
## 3 0.3739746 -0.01293652
## 4 0.2576481 0.04130805
## 5 -0.8472613 0.32939461
## 6 0.4097649 0.03205686
```

Visualisation du nuage de points

> ggplot(spirals1)+aes(x=X1,y=X2)+geom_point()+theme_classic()

Le clustering spectral

```
> groupe <- specc(spirals,centers=2,kernel="rbfdot")
> head(groupe)
## [1] 2 2 1 1 2 1
> spirals1 <- spirals1 %>% mutate(groupe=as.factor(groupe))
> ggplot(spirals1)+aes(x=X1,y=X2,color=groupe)+geom_point(size=2)+theme_clas
```

Le clustering spectral

```
> groupe <- specc(spirals,centers=2,kernel="rbfdot")
> head(groupe)
## [1] 2 2 1 1 2 1
> spirals1 <- spirals1 %>% mutate(groupe=as.factor(groupe))
> ggplot(spirals1)+aes(x=X1,y=X2,color=groupe)+geom_point(size=2)+theme_clas
```


Références

- [1] E. ARIAS-CASTRO. "Clustering based on pairwise distances when the data is of mixed dimensions". In : *IEEE Transaction on Information Theory* 57.3 (2011), p. 1692-1706.
- [2] Hans-Hermann BOCK. "Origins and extensions of the k-means algorithm in cluster analysis". In : Electronic journal for history of probability and statistics 4 (2008), p. 1-18.
- [3] M. ESTER et al. "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). 1996.

Références

- [4] E. W. FORGY. "Cluster analysis of multivariate data: efficiency vs interpretability of classifications". In: *Biometrics* 21 (1965), p. 768-769.
- [5] J. A. HARTIGAN et M. A. WONG. "Algorithm AS 136: A K-means clustering algorithm". In : *Applied Statistics* 28 (1979), p. 100-108.
- [6] A KARATZOGLOU et al. "kernlab An S4 Package for Kernel Methods in R". In: Journal of Statitstical Software 11.9 (2004).
- [7] S. P. LLOYD. "Least squares quantization in PCM". In: *IEEE Transactions on Information Theory* 28 (1982), p. 128-137.
- [8] U. von Luxburg. "A tutorial on spectral clustering". In: Statistics and computing 17 (2017), p. 395-416.

Références

- [9] J. MACQUEEN. "Some methods for classification and analysis of multivariate observations". In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Sous la dir. de L. M. Le Cam & J. NEYMAN. T. 28. Berkeley, 1967, p. 281-297.
- [10] A. NG, M. JORDAN et Y. WEISS. "On spectral clustering analysis". In: Advances in Neural Information Processing Systems (NIPS), t. 14. 2002, p. 849-856.