

EQUILIBRIO QUÍMICO

QUÍMICA GENERAL E INORGÁNICA

FACULTAD DE INGENIERÍA
FACULTAD DE CIENCIAS EXACTAS Y NATURALES
UNIVERSIDAD NACIONAL DE CUYO

Equilibrio químico

$$aA + bB \longrightarrow cC + dD$$

Existe equilibrio químico cuando dos reacciones opuestas ocurren de manera simultánea a la misma velocidad.

El equilibrio del sistema N₂O₄-NO₂

El equilibrio químico es la condición donde las concentraciones de todas las especie son constantes

- Dado que NO₂ es color pardo oscuro y el N₂O₄ es incoloro, se verifica la reversibilidad de la reacción, con el cambio de color en uno y otro sentido de reacción.
- Se puede reconocer el equilibrio cuando ya no hay un cambio visible de color.
- Se puede conocer la cantidad de NO₂ a través de la intensidad del color en la mezcla gaseosa.

El estado en el cual la velocidad de descomposición: $N_2O_{4(g)} \rightarrow 2NO_{2(g)}$ es igual a la velocidad de dimerización: $2NO_{2(g)} \rightarrow N_2O_{4(g)}$ constituye un *EQUILIBRIO DINÁMICO*.

Los equilibrios químicos son equilibrios dinámicos: las moléculas individuales reaccionan en forma continua, aunque no cambie la composición global de la mezcla de reacción.

En el Equilibrio químico las concentraciones de reactivos y productos permanecen constantes y las velocidades directa e inversa son iguales.

Equilibrio químico

Concepto: condición en la cual las **concentraciones de reactivos y productos** en un **sistema cerrado** se mantienen **constantes** con el tiempo, sin cambio visible del sistema.

Considerando reacciones reversibles y elementales, es posible plantear:

Reacción directa: A → B

 $Velocidad = k_d[A]$

Reacción inversa: B → A

 $Velocidad = k_i[B]$

$$K_d[A] = Ki[B]$$
Velocidad Velocidad directa inversa

$$\frac{[B]}{[A]} = \frac{K_d}{K_i} = \text{una constante}$$

Proceso Haber

$$N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$$

Las cantidades relativas de N_2 , H_2 y NH_3 presentes en el equilibrio no dependen de la cantidad de catalizador presente, pero sí de las cantidades relativas de H_2 y N_2 al inicio de la reacción.

Si se pone sólo NH_3 en el tanque en las mismas condiciones de reacción, se obtiene de nuevo una mezcla de N_2 , H_2 y NH_3 en equilibrio.

En el equilibrio, las concentraciones relativas de H_2 , N_2 y NH_3 son las mismas, sin que Importe si la mezcla inicial tenía una proporción molar de 3:1 de H_2 y N_2 o era NH_3 puro.

La condición de equilibrio se puede alcanzar desde uno u otro sentido.

La constante de Equilibrio

A
$$\longrightarrow$$
 B $\frac{[B]}{[A]} = \frac{K_d}{K_i} = \text{una constante}$

Ley de acción de masas. Guldberg y Waage, 1864. Expresión de equilibrio:

$$aA + bB \implies cC + dD$$

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$
 Condición de equilibrio: reactivos y productos en disolución. []son las concentraciones molares de las especies en equilibrio elevadas a sus coeficientes estequiométricos. Kc: Constante de equilibrio

$$K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$
 Condición de equilibrio: reactivos y productos en fase gaseosa. (P) son las presiones parciales (atm) de las especies en equilibrio elevadas a sus coeficientes estequiométricos. Kp: Constante de equilibrio

Los valores numéricos de Kc y Kp son diferentes.

La expresión de la constante de equilibrio sólo depende de la estequiometria de la reacción, no así de su mecanismo.

El valor de Keq (Kc o Kp) varía únicamente con la temperatura.

Para el proceso Haber: $N_{2^{(g)}} + 3H_{2^{(g)}} \leftrightarrow 2NH_{3^{(g)}}$

$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$
 $K_p = \frac{(P_{NH_2})^2}{(P_{N_2})(P_{H_2})^3}$

Para el equilibrio: $N_2O_{4(g)} \rightarrow 2NO_{2(g)}$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$
 $K_p = \frac{(P_{NO_2})^2}{(P_{N_2}O_4)}$

DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO

$$N_2O_4(g) \longleftrightarrow 2NO_2(g)$$
 $Kc = \frac{[NO_2]^2}{[N_2O_4]}$

El sistema NO ₂ -N ₂ O ₄ a 25°C					
Concentraciones iniciales (M)		Concentraciones en el equilibrio (M)		Relación de concentraciones en el equilibrio	
[NO ₂]	[N ₂ O ₄]	[NO ₂]	[N ₂ O ₄]	$\frac{[NO_2]}{[N_2O_4]}$	$\frac{[NO_2]^2}{[N_2O_4]}$
0.000	0.670	0.0547	0.643	0.0851	4.65 × 10 ⁻³
0.0500	0.446	0.0457	0.448	0.102	4.66×10^{-3}
0.0300	0.500	0.0475	0.491	0.0967	4.60×10^{-3}
0.0400	0.600	0.0523	0.594	0.0880	4.60×10^{-3}
0.200	0.000	0.0204	0.0898	0.227	4.63×10^{-3}

$$Kc = \frac{[NO_2]^2}{[N_2O_4]} = \frac{[0,0547]^2}{[0,643]} = 4,65 \times 10^{-3}$$

Magnitud de la K_{eq}

Proporciona información acerca de la composición de una mezcla en equilibrio.

$$aA + bB \iff cC + dD \qquad \kappa_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

(a)
$$K_{eq} \gg 1$$

Equilibrio desplazado a la derecha: hacia los productos

(b)
$$K_{eq} < 1$$

Equilibrio desplazado a la izquierda: hacia los reactivos

Cómo relacionar K_c y K_p

$$A \rightleftharpoons B$$

$$K_c = \frac{[B]^b}{[A]^a}$$

$$K_c = \frac{[B]^b}{[A]^a} \qquad K_p = \frac{(P_B)^b}{(P_A)^a}$$

suponiendo comportamiento de gas ideal

$$PV = nRT$$
 Por lo tanto: $P = \frac{n}{v}RT = MRT$

$$P_A = [A]RT$$
 y $P_B = [B]RT$

Sustituyendo:
$$Kp = \frac{[[B]RT]^b}{[[A]RT]^a}$$

Sustituyendo:
$$Kp = \frac{[[B]RT]^b}{[[A]RT]^a}$$
 Reordenando: $Kp = \frac{[B]^b}{[A]^a}(RT)^{b-a}$

$$Kp = \frac{[B]^b}{[A]^a} (RT)^{\Delta n} \implies Kp = Kc (RT)^{\Delta n}$$
 donde $\Delta n = b - a$

