Regular Expressions

Recap from Last Time

Regular Languages

- A language L is a **regular language** if there is a DFA D such that $\mathcal{L}(D) = L$.
- *Theorem:* The following are equivalent:
 - *L* is a regular language.
 - There is a DFA for *L*.
 - There is an NFA for *L*.

Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the *concatenation* of w and x.
- If L_1 and L_2 are languages over Σ , the **concatenation** of L_1 and L_2 is the language L_1L_2 defined as

```
L_1L_2 = \{ wx \mid w \in L_1 \text{ and } x \in L_2 \}
```

• Example: if $L_1 = \{ a, ba, bb \}$ and $L_2 = \{ aa, bb \}$, then

```
L_1L_2 = \{ aaa, abb, baaa, babb, bbaa, bbbb \}
```

Language Exponentiation

- If L is a language over Σ , the language L^n is the concatenation of n copies of L with itself.
 - Special case: $L^0 = \{\epsilon\}$.
- The *Kleene closure* of a language L, denoted L^* , is defined as

$$L^* = \{ w \mid \exists n \in \mathbb{N}. w \in L^n \}$$

- Intuitively, all strings that can be formed by concatenating any number of strings in L with one another.
- Example: if $L = \{ a, bb \}$, then

Closure Properties

- Theorem: If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - *L*₁*
- These properties are called closure properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language is regular.
 - Construct a DFA for it.
 - Construct an NFA for it.
 - Apply closure properties to existing languages.
- We have not spoken much of this last idea.

Constructing Regular Languages

- Idea: Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Constructing Regular Languages

• *Idea*: Build up all regular languages as follows:

• Start with a small set of simple languages we

already

 Using c simple elabora

• A bottom language

Regular Expressions

- **Regular expressions** are a way of describing a language via a string representation.
- Used extensively in software systems for string processing and as the basis for tools like grep and flex.
- Conceptually, regular languages are strings describing how to assemble a larger language out of smaller pieces.

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset .
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ε is a regular expression that represents the language $\{\varepsilon\}$.
 - Remember: $\{\epsilon\} \neq \emptyset$!
 - Remember: $\{\epsilon\} \neq \epsilon!$

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \cup R_2$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, R^* is a regular expression for the *Kleene closure* of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

Regular expression operator precedence:

$$(R)$$
 R^*
 R_1R_2
 $R_1 \cup R_2$

So ab*cUd is parsed as ((a(b*))c)Ud

Regular Expression Examples

- The regular expression trickUtreat represents the regular language { trick, treat }.
- The regular expression booo* represents the regular language { boo, booo, boooo, ... }.
- The regular expression candy!(candy!)*
 represents the regular language { candy!,
 candy!candy!, candy!candy!, ... }.

Regular Expressions, Formally

- The *language of a regular expression* is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathcal{L}(\mathbf{a}) = \{\mathbf{a}\}$
 - $\mathscr{L}(R_1R_2) = \mathscr{L}(R_1) \mathscr{L}(R_2)$
 - $\mathscr{L}(R_1 \cup R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathscr{L}((R)) = \mathscr{L}(R)$

Worthwhile activity: Apply this recursive definition to

a(bUc)((d))

and see what you get.

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $(0 \cup 1)*00(0 \cup 1)*$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

```
(0 \cup 1)*00(0 \cup 1)*
```

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $(0 \cup 1)*00(0 \cup 1)*$

 $11011100101\\0000\\11111011110011111$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $(0 \cup 1)*00(0 \cup 1)*$

 $\begin{matrix} 11011100101 \\ 0000 \\ 11111011110011111 \end{matrix}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $\Sigma * 00\Sigma *$

 $\begin{matrix} 11011100101 \\ 0000 \\ 11111011110011111 \end{matrix}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

```
Let \Sigma = \{0, 1\}
Let L = \{ w \in \Sigma^* \mid |w| = 4 \}
```

```
Let \Sigma = \{0, 1\}

Let L = \{ w \in \Sigma^* \mid |w| = 4 \}
```

The length of a string w is denoted | w|

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

 Σ^4

```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$

 Σ^4

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 \cup \epsilon)1*$$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 \cup \epsilon)1*$$

Designing Regular Expressions

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 \cup \epsilon)1*$$

```
11110111
111111
0111
0
```

Designing Regular Expressions

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 \cup \epsilon)1*$$

```
11110111
111111
0111
0
```

Designing Regular Expressions

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

```
11110111
111111
0111
0
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

aa*

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

aa*

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
aa*(.aa*)*
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
aa*(.aa*)*@aa*.aa*
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
aa*(.aa*)*@aa*.aa*
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
aa*(.aa*)*@aa*.aa*(.aa*)*
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
a+ (.aa*)*@aa*.aa*(.aa*)*
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
a+ (.aa*)*@aa*.aa*(.aa*)*
```

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^+$$
 (. a^+)* @ $a^+.a^+$ (. a^+)*

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^+$$
 (.a⁺)* @ a^+ (.a⁺)⁺

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^+$$
 (.a⁺)* @ a^+ (.a⁺)⁺

- Let $\Sigma = \{a, ., 0\}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^{+}(.a^{+})^{*}@a^{+}(.a^{+})^{+}$$

Regular Expressions are Awesome

$$a^{+}(.a^{+})*@a^{+}(.a^{+})^{+}$$
@, .

 q_{2}
@, .

 q_{3}
 q_{4}
 q_{5}
 q_{6}
 q_{6}
 q_{6}
 q_{6}
 q_{6}
 q_{7}
 q_{8}
 q_{8}
 q_{9}
 q_{1}
 q_{2}
 q_{3}
 q_{4}
 q_{4}
 q_{5}
 q_{6}
 q_{6}
 q_{6}

Shorthand Summary

- R^n is shorthand for $RR \dots R$ (n times).
 - Edge case: define $R^0 = \varepsilon$.
- Σ is shorthand for "any character in Σ ."
- R? is shorthand for $(R \cup \varepsilon)$, meaning "zero or one copies of R."
- R^+ is shorthand for RR^* , meaning "one or more copies of R."

Time-Out for Announcements!

Problem Sets

- Problem Set Five was due at 3:00PM today.
 - Want to use late days? Submit by Monday at 3:00PM.
- Problem Set Six goes out today. It's due next Friday at 3:00PM.
 - Play around with DFAs, NFAs, regular expressions, and properties of regular languages.
 - Please use our online tools to design and submit your automata and regexes. They're really, really useful!

Mental Health Tea

- DiversityBase is holding a Mental Health Tea event next Wednesday, February 17, at 8:00PM in the Kimball Lounge.
- Want to destress a bit? Like tea and cookies? Feel free to show up!
- They recommend bringing a fun mug if you happen to have one.

PS4: Common Mistakes

What does the Hasse diagram for the < relation over R look like?

What does the Hasse diagram for the < relation over R look like?

1

3/4

1/2

1/4

There are no lines in this Hasse diagram!

1/8

What does the Hasse diagram for the > relation over R look like?

0

1/8

1/4

1/2

There are no lines in this Hasse diagram!

3/4

What does the Hasse diagram for the > relation over R look like?

0

1/8

It's exactly the same as the Hasse diagram for $< over \mathbb{R}$!

1/4

1/2

There are no lines in this Hasse diagram!

3/4

What does the Hasse diagram for the > relation over R look like?

0

1/8

It's exactly the same as the Hasse diagram for $< over \mathbb{R}$!

1/4

1/2

There are no lines in this Hasse diagram!

Conclusion: It's not safe to reason about a strict order purely by talking about its Hasse diagram.

3/4

1

Your Questions

"Ultimately, which do you think is more important: career or love? Professional life or personal life?"

In some sense I think this question is like this one: who should you love more, your spouse(s), your child(ren), or your parent(s)? The correct answer is "you should love all of them."

I think that the real question is how best to strike a balance between your personal life and professional life. From experience, you do not want to get into a position where you're ignoring everyone around you to purely focus on your job. You also don't want to let your personal commitments disablingly interfere with your career. There's a lot of public conversation about employers creating environments that are amenable to new parents, and there's a lot of private conversations about how couples and families will find a way to manage competing priorities. I don't think anyone has a good answer for how to do this right.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Show how to convert a regular expression into an NFA.

Thompson's Algorithm

- *Thompson's algorithm* is an algorithm for converting any regular expression into an NFA.
- *Theorem:* For any regular expression *R*, there is an NFA *N* such that
 - $\mathscr{L}(R) = \mathscr{L}(N)$
 - *N* has exactly one accepting state.
 - N has no transitions into its start state.
 - *N* has no transitions out of its accepting state.

Thompson's Algorithm

Thompson's algorithm is an algorithm for converting any regular expression into an NFA.

Theorem: For any regular expression R, there is an NFA N such that

$$\mathscr{L}(R) = \mathscr{L}(N)$$

- N has exactly one accepting state.
- N has no transitions into its start state.
- *N* has no transitions out of its accepting state.

Thompson's Algorithm

Thompson's algorithm converting any regular

Theorem: For any reguis an NFA N such that

$$\mathscr{L}(R) = \mathscr{L}(N)$$

These are stronger requirements than are necessary for a normal NFA. We enforce these rules to simplify the construction.

- N has exactly one accepting state.
- N has no transitions into its start state.
- *N* has no transitions out of its accepting state.

Base Cases

Automaton for ε

Automaton for Ø

Automaton for single character a

Why This Matters

- Many software tools work by matching regular expressions against text.
- One possible algorithm for doing so:
 - Convert the regular expression to an NFA.
 - (Optionally) Convert the NFA to a DFA using the subset construction.
 - Run the text through the finite automaton and look for matches.
- This is actually used in practice! The compiled matching automata run extremely quickly.

The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

Generalizing NFAs

Generalizing NFAs

Generalizing NFAs

These are all regular expressions!

Note: Actual NFAs aren't allowed to have transitions like these. This is just a thought experiment.

a a b a b b

b

а

b

b

а

b

b

b

Key Idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Key Idea 2: If we can convert an NFA into a generalized NFA that looks like this...

...then we can easily read off a regular expression for that NFA.

Here, R11, R12, R21, and R22 are arbitrary regular expressions.

Question: Can we get a clean regular expression from this NFA?

The first step is going to be a bit weird...

Could we eliminate this state from the NFA?

Note: We're using concatenation and Kleene closure in order to skip this state.

Note: We're using union to combine these transitions together.

The Construction at a Glance

- Start with an NFA *N* for the language *L*.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add an ϵ -transition from $q_{\rm s}$ to the old start state of N.
 - Add ϵ -transitions from each accepting state of N to $q_{\rm f}$, then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by "shortcutting" them until only two states remain: q_s and q_f .
- The transition from q_s to q_f is then a regular expression for the NFA.

Eliminating a State

- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q.
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $(R_{in}(R_{stay})*R_{out})$.
 - If there isn't, add a new transition from q_0 to q_1 labeled $(R_{in}R_{out})$
- If a pair of states has multiple transitions between them labeled $R_1, R_2, ..., R_k$, replace them with a single transition labeled $R_1 \cup R_2 \cup ... \cup R_k$.

Our Transformations

Theorem: The following are all equivalent:

- \cdot L is a regular language.
- · There is a DFA D such that $\mathcal{L}(D) = L$.
- · There is an NFA N such that $\mathcal{L}(N) = L$.
- · There is a regular expression R such that $\mathcal{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Tools like grep and flex that use regular expressions capture all the power available via DFAs and NFAs.
- This also is hugely theoretically significant: the regular languages can be assembled "from scratch" using a small number of operations!

Next Time

- Applications of Regular Languages
 - Answering "so what?"
- Intuiting Regular Languages
 - What makes a language regular?
- The Myhill-Nerode Theorem
 - The limits of regular languages.