

(1) Hick's Law

The time it takes to make a decision increases with the number of options.

(2) Fitts's Law

The time required to move to a target area depends on the distance and size of the target.

(3) Miller's Law

The average person can only keep 7 (plus or minus 2) items in their working memory.

(4) Peak-End Rule

People judge an experience mainly by its peak and end, not by the total sum or average of every moment.

Corner Radius or Border Radius?

In CSS this property is known as 'border-radius', but in Figma or in other design programs are known as corner radius.

Better Nested Corner Radius

Works if both radius have the same center point. Or use a multiplier. To test, scale up your inner frame to the size of your outer frame.

Math Formula OT

(8, Outer Thickness)

IR
(16, Inner Radius)

$$OR = IR + OT$$
(24 = 16 + 8)

Use the following formula to calculate the perfect corner radius for your inner element.

Visual Formula

The outer corner should have a larger radius which "flows" round the one on the inside.

Without wanting to go into mathematical formulae try visualizing a central point, the "origin", around which your first radius curves. Now use that same point to round your outer corner.