Geodezja wyższa – ćwiczenie 4

Jan Żmuda 311640

15 Grudnia 2021

Wyniki obliczeń:

1. zestawienie współrzędnych

	Xgk	Ygk	X2000	Y2000	X1992	Y1992
p1	5570120.597	124812.228	5568256.030	7482170.562	266221.513	624724.859
p2	5542315.026	125464.201	5540450.350	7482077.452	238435.405	625376.376
р3	5571077.960	160469.907	5568256.030	7517829.438	267178.206	660357.578
p4	5543273.892	161308.283	5540450.350	7517922.548	239393.600	661195.368
p5	5556666.778	143014.239	5554323.110	7500000.000	252777.111	642914.129
p6	5556698.104	143059.987	5554353.190	7500046.555	252808.416	642959.845

	2. zestawienie pól powierzchni (km^2)				
P elipsoidalne	P gk	P 20000	P1992		
994.265196	994.760761	994.108282	993.368584		

3. elementarna skala długości i zniekształcenia na 1km

	mgk	Kgk(1km)	m2000	K2000(1km)	m1992	K1992(1km)
p1	1.000191	0.191	0.999927	-0,073	0.999491	-0,509
p2	1.000193	0.193	0.999927	-0,073	0.999493	-0,507
p3	1.000316	0.316	0.999927	-0,073	0.999616	-0,384
p4	1.000319	0.319	0.999927	-0,073	0.999619	-0,381
p5	1.000251	0.251	0.999923	-0,077	0.999551	-0,449
p6	1.000251	0.251	0.999923	-0,077	0.999551	-0,449

4. elementarna skala długości i zniekształcenia na 1ha

Emeropearoema na 11a						
	mgk^2	Kgk^2(1ha)	m2000^2	K2000^2(1ha)	m1992^2	K1992^2(1ha)
p1	1.000383	3,825	0.999854	-1,462	0.998982	-10,175
p2	1.000387	3,865	0.999854	-1,461	0.998986	-10,135
р3	1.000632	6,323	0.999854	-1,462	0.999232	-7,681
p4	1.000639	6,390	0.999854	-1,461	0.999239	-7,614
p5	1.000502	5,022	0.999846	-1,540	0.999102	-8,980
p6	1.000503	5,026	0.999846	-1,540	0.999102	-8,977

Wnioski:

- Współrzędne Gaussa-Krugera choć liczone są dla obu układów w bardzo podobny sposób, trzeba jednak liczyć osobno dla układu 2000 i osobno dla 1992, ponieważ różni się we wzorze południk osiowy, która dla układu 1992 wynosi 19°, a dla układu może wynosić kolejno 15°, 18°, 21° i 24° (w danym zadaniu występowały punkty tylko dla południka osiowego 21°)
- Ponieważ badane przez nas punkty znajdują się w bardzo bliskiej odległości od południka 21°, te punkty w układzie 2000 posiadają najmniejsze zniekształcenia będące blisko wartości 1

- Ponieważ punkty znajdują się dalej od południka 19 ° niż od południka 21°, zniekształcenia w układzie 1992 i w punktach Gaussa-Krugera będą większe niż przy układzie 2000
- Nie da się w sposób bezpośredni przejść z układu 1992 na 2000 i odwrotnie. Aby przeliczyć punkty na inny układ trzeba ja najpierw przeliczyć na współrzędne Gaussa-Krugera, a następnie na współrzędne fi i lambda. Dopiero z tych wartości można przeliczać współrzędna na konkretne układy