

FKAConv: Kernel-Feature Alignment for Point Cloud Convolution

Alexandre Boulch, Gilles Puy and Renaud Marlet

ACCV 2020

Introduction

Image processing

Introduction

Image processing

CNNs for image processing

Point cloud processing

Point clouds: Invariance by permutation Density variations From 1K to 100M points

Introduction

Image processing

Point cloud processing

Convolution for image processing

$$\mathbf{h}[n] = \sum_{f \in \{1, \dots, F\}} \mathbf{K}_f^{\top} \qquad \mathbf{f}_f(n)$$
Kernel space Feature space

Identity matrix: one to one alignment matrix

$$\mathbf{h}[n] = \sum_{f \in \{1, \dots, F\}} \mathbf{K}_f^{\top} \begin{bmatrix} I \end{bmatrix} \mathbf{f}_f(n)$$
Kernel space Feature space

Toward convolution for point clouds

$$\mathbf{h}[n] = \sum_{f \in \{1, \dots, F\}} \mathbf{K}_f^{\top} \underbrace{I}_{\text{Kernel space}} \underbrace{\mathbf{f}_f(n)}_{\text{Feature space}}$$

Permutation of two points in the input ⇒ different result

Permutation of two points in the input ⇒ different result

Toward convolution for point clouds

Alignment matrix prediction

Toward convolution for point clouds

$$\mathbf{h}[n] = \sum_{f \in \{1, \dots, F\}} \mathbf{K}_f^{\top} \underbrace{A}_{\text{Kernel space}} \mathbf{f}_f(n)$$

Alignment matrix A
Invariance to permutation
⇒ estimated based in inputs

ACCV 2020 | 10

Alignment matrix prediction

Toward convolution for point clouds

$$\mathbf{h}[n] = \sum_{f \in \{1, \dots, F\}} \mathbf{K}_f^{\top} \begin{bmatrix} A \\ \end{bmatrix} \mathbf{f}_f(n)$$
Feature space

SplatNet [43]

- Kernel on grid
- Nearest neighbor interpolation

Alignment matrix A

Invariance to permutation

⇒ estimated based in inputs

KPConv [47]

- Kernel elements on geodesic ball
- A computed according to distances from input to kernel

ConvPoint [3]

- Kernel elements randomly initialized and optimized
- A computed with a learnable function

Implicit formulation of the kernel location

Estimation of A using a point-wise MLP with context aggregation

⇒ invariance to point permutation

$$\mathbf{A} = \phi(\mathbf{p}_i, \{\mathbf{p}_i\})$$

- Point-wise linear
- Max-Pooling
- Concatenation

Convolutions operates on local neighborhoods around support point.

Two common strategies for neighborhood computation:

• K-nearest neighbors

- Fast
- Loss of scale information
- Influence of outliers

Radius search

- Slower for large scenes
- Different sizes of neighborhoods
 - ⇒ memory consuming strategy

Convolutions operates on local neighborhoods around support points

Use K-nearest neighbor search (large scenes: usually faster than radius search)

- Use K-nearest neighbors search (large scenes: usually faster than radius search)
- Normalize using average neighborhood radius ⇒ scale information preserved

- Use K-nearest neighbors search (large scenes: usually faster than radius search)
- Normalize using average neighborhood radius ⇒ scale information preserved
- Learn to weight influence of outliers according to distance to support point

Implicit formulation of the kernel location

Estimation of A using a point-wise MLP with context aggregation.

- ⇒ invariance to point permutation
- ⇒ reduced influence of outliers

- Point-wise linear
- Weight estimation
- Max-Pooling

- Element-wise multiplication
- Concatenation

Reduction of point cloud size through the network (grid data: convolution with stride)

Common approach: Furthest Point Sampling [35] → slow (requires to maintain distance maps)

valeo.ai

Input

objective: 20 support points

- 1. Quantization of the space
- 2. Select one point in each voxel

- 1. Quantization of the space
- 2. Select one point in each voxel
- 3. Reduce voxel size and iterate until the number of support points is reach

Fast sampling ⇒ A good initial voxel size

Objective: get almost all support points at first iteration without over-voxelization

Voxel size is estimated at point-cloud level

Model based on a simple case (planar surface) and validated on experimental data

Network

Experimental results: S3DIS

2nd on S3DIS

- 1st K-nn-based method
- o 1st on 3/15 categories

Method	Search	IoU
Pointnet [31]	Knn	47.6
RSNet [17]	-	56.5
PCCN [48]	- 5	58.3
SPGraph [20]	Super pt.	62.1
PointCNN [23]	Knn	65.4
PointWeb [56]	Knn	66.7
ShellNet [55]	Knn	66.8
ConvPoint [3]	Knn	68.2
KPConv [45]	Radius	70.6
FKAConv (Ours fusion)	Knn	68.4
Rank		2

Experimental results: Semantic8

2nd on Semantic8

o 1st on 3/8 classes

Method	Av. OA
	IoU
TML-PC [30]	39.1 74.5
TMLC-MS [15]	49.4 85.0
PointNet++ [33]	63.1 85.7
EdgeConv [8]	64.4 89.6
SnapNet [4]	67.4 91.0
PointGCR [28]	69.5 92.1
FPCR [46]	72.0 90.6
SPGraph [20]	76.2 92.9
ConvPoint [3]	76.5 93.4
FKAConv* (ours fusion)	74.6 94.1
Rank	3 1

Experimental results: NPM3D

1st on NPM3D

o 1st on 7/9 classes

Method	Av.IoU
RF MSSF [44]	56.3
MS3 DVS [37]	66.9
HDGCN [25]	68.3
ConvPoint [3]	75.9
KPConv [45]	82.0
FKAConv (ours fusion)	82.7
Rank	1

Conclusion

FKAConv: Feature-Kernel Alignment for Point Cloud Convolution

- A simple formulation of convolution for point cloud using an alignment matrix
- An adaptive normalization using an average radius and a learned outlier filter
- A quantized sampling: a fast an efficient point-cloud sampling

Code available at

https://github.com/valeoai/FKAConv

using LightConvPoint, a library for convolution on points (PyTorch):

https://github.com/valeoai/LightConvPoint