Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-10-30

What does it mean?

- _⊑_ is an order
- s is a state
- *P* is valid
- *P* is a sentence
- $P \Rightarrow [C]Q$

Plan for Today

- Textbook Section 8.1: Typing
- **Sequences** (Textbook Chapter 13)
 - Inductive view from empty sequence (ϵ) and "cons" (\lhd)

Types

A type denotes a set of values that

- can be associated with a variable
- an expression might evaluate to

Some basic types: \mathbb{B} , \mathbb{Z} , \mathbb{N} , \mathbb{Q} , \mathbb{R} , \mathbb{C}

Every expression has a type.

"E: t" means: "Expression E is declared to have type t".

Examples:

- constants: $true : \mathbb{B}, \quad \pi : \mathbb{R}, \quad 2 : \mathbb{Z}, \quad 2 : \mathbb{N}$
- variable declarations: $p : \mathbb{B}$, $k : \mathbb{N}$, $d : \mathbb{R}$
- type annotations in expressions:
 - $\bullet \ (x+y)\cdot x$ $(x: \mathbb{N} + y) \cdot x$
 - \bullet $(x+y)\cdot x$ $(((x:\mathbb{N}+y:\mathbb{N}):\mathbb{N})\cdot x:\mathbb{N}):\mathbb{N}$

Function Types — <u>Textbook Version</u>

- If the parameters of function f have types t_1, \ldots, t_n
- and the result has type *r*,
- then f has type $t_1 \times \cdots \times t_n \rightarrow r$

We write:

$$f: t_1 \times \cdots \times t_n \to r$$

Examples:

$$\neg_:\mathbb{B} o\mathbb{B}$$

$$\underline{} + \underline{} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

$$_{<}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}$$

Forming expressions using $_<_: \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}$:

- if expression a_1 has type \mathbb{Z} , and a_2 has type \mathbb{Z}
- then $a_1 < a_2$ is a (well-typed) expression
- \bullet and has type \mathbb{B} .

In general: For $f: t_1 \times \cdots \times t_n \rightarrow r$,

- if expression a_1 has type t_1 , and ..., and a_n has type t_n
- then function application $f(a_1, ..., a_n)$ is an expression
- and has type *r*.

Function Types — Mechanised Mathematics Version

- If the parameters of function f have types t_1, \ldots, t_n
- and the result has type *r*,
- then f has type $t_1 \rightarrow \cdots \rightarrow t_n \rightarrow r$

We write:

Examples:

$$f: t_1 \to \cdots \to t_n \to r$$

The function type constructor \rightarrow associates to the right!

 $\neg: \mathbb{B} \to \mathbb{B} \qquad \qquad _+_: \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \qquad \qquad _<_: \mathbb{Z} \to \mathbb{Z} \to \mathbb{B}$

Forming expressions using $_<_:\mathbb{Z}\to\mathbb{Z}\to\mathbb{B}$:

- if expression a_1 has type \mathbb{Z} , and a_2 has type \mathbb{Z}
- then $a_1 < a_2$ is a (well-typed) expression
- \bullet and has type \mathbb{B} .

In general: For $f: t \rightarrow r$,

- if expression *a* has type *t*,
- then function application f a is an expression
- and has type r.

Modeling English Propositions

- The number x is less than y or z.
 - Obvious assumptions: $x : \mathbb{Z}$
 - $y : \mathbb{Z}$ $z : \mathbb{Z}$
 - Since $_<_: \mathbb{Z} \to \mathbb{Z} \to \mathbb{B}$: $(x < y) : \mathbb{B}$
 - $(x < z) : \mathbb{B}$
 - Since $_\vee_: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$: $((x < y) \lor (x < z)) : \mathbb{B}$
 - Since $_\vee_: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$ and $y, z : \mathbb{Z}$:

The number x is less than y or z.

Type Error!

CALCCHECK does not yet flag all type errors.

Function Application — <u>Textbook Version</u>

:-(

Consider function *g* defined by:

- $(1.6) g(z) = 3 \cdot z + 6$
- Special function application syntax for argument that is identifier or constant:

$$g.z = 3 \cdot z + 6$$

• Function application via substitution: If

$$(1.7) \quad g.z \coloneqq E$$

defines function *g*, then for any argument *X*:

$$g.X = E[z \coloneqq X]$$

Variant for function application:

(1.8) **Leibniz:**
$$\frac{X = Y}{g.X = g.Y}$$

$Function\ Application\ --\ Mechanised\ Mathematics\ Version$

Consider function *g* defined by:

- $(1.6) gz = 3 \cdot z + 6$
- Function application is denoted by juxtaposition
- ("putting side by side")
- Lexical separation for argument that is identifier or constant: space required:

$$hz = g(gz)$$

Superfluous parentheses (e.g., "h(z) = g(g(z))") are allowed, **ugly**, and bad style.

- Function application still has higher precedence than anything but substitution.
- Typing rule for function application:

$$\frac{f:A\to B \qquad x:A}{fx:B}$$

Sequences

• We consider the type Seq *A* of sequences with elements of type *A* as generated inductively by the following two constructors:

```
\epsilon : Seq A \eps empty sequence 
 \_ \lhd \_ : A \to \operatorname{Seq} A \to \operatorname{Seq} A \cons "cons"
```

- Therefore: $[33,22,11] = 33 \triangleleft [22,11]$ = $33 \triangleleft 22 \triangleleft [11]$ = $33 \triangleleft 22 \triangleleft 11 \triangleleft \epsilon$
- Appending single elements "at the end":

$$_ \triangleright _$$
 : Seq $A \rightarrow A \rightarrow \operatorname{Seq} A$ \snoc "snoc" \triangleright associates to the left.

• (Con-)catenation:

```
\_ \smallfrown \_ : Seq A \to \operatorname{Seq} A \to \operatorname{Seq} A \catenate \smallfrown associates to the right.
```

Concatenation

Membership

```
Axiom "Membership in \epsilon": x \in \epsilon \equiv false Axiom "Membership in \triangleleft": x \in y \triangleleft ys \equiv x = y \lor x \in ys
```

Subsequences Axiom (13.25) "Empty subsequence": ⟨ ⊆ ys Axiom (13.26) "Subsequence" "Cons is not a subsequence of ⟨ ": ¬ (x ⊲ xs ⊆ ⟨) Axiom (13.27) "Subsequence anchored at head": x ⊲ ys ⊆ x ⊲ zs ≡ ys ⊆ zs Axiom (13.28) "Subsequence without head": x ≠ y ⇒ (x ⊲ xs ⊆ y ⊲ ys ≡ x ⊲ xs ⊆ ys)

Prefixes and Segments — "Contiguous Subsequences"

```
Axiom (13.36) "Empty prefix":
   isprefix ε xs

Axiom (13.37) "Not Prefix" "Cons is not prefix of ε":
   isprefix (x ⊲ xs) ε ≡ false

Axiom (13.38) "Prefix" "Cons prefix":
   isprefix (x ⊲ xs) (y ⊲ ys) = x = y ∧ isprefix xs ys

Axiom (13.39) "Segment" "Segment of ε": isseg xs ε ≡ xs = ε

Axiom (13.40) "Segment" "Segment of ⊲":
   isseg xs (y ⊲ ys) ≡ isprefix xs (y ⊲ ys) v isseg xs ys
```