Dustin V. Tran

CONTACT Information Child Hall, RM 110

26 Everett Street, Cambridge, MA 02138

RESEARCH INTERESTS

Machine learning, algorithms, numerical analysis, convex optimization, nonparametrics, stochastic processes

EDUCATION

Harvard University

2014 - 2015 (Expected)

E-mail: dtran@g.harvard.edu

Website: dustinvtran.com

S.M., Computational Science and Engineering

University of California, Berkeley

2010 - 2014

B.A., Double Major in Mathematics with Highest Honors, Statistics

• Relevant Graduate-Level Coursework: Machine Learning, Convex Optimization, Linear Models, Network Theory, Numerical Methods, Distributed Computing, Stochastic Processes

AWARDS AND HONORS

- 2010 2014: Regents' and Chancellor's Scholarship (Top 0.5% of Applicants)
- 2013: Rose Hills Foundation Science & Engineering Grant
- 2010: Cal Alumni Leadership Scholarship

RESEARCH EXPERIENCE

Earnest, San Francisco, CA

Data Scientist

May 2014 - Present

• Currently working on data mining and active learning problems on financial transactions data at a technology startup

University of California, Berkeley, Berkeley, CA

Nonlinear Programming

January 2014 - May 2014

- Explored different algorithms to automate model selection in machine learning, particularly via solving the convex relaxation of the conditions, with Prof. Ben Recht
- Wrote a research paper entitled, "Convex Techniques for Model Selection"

Statistical Computing

August 2013 – December 2013

- Designed an adaptive-rejection sampler for any log-concave probability density function, minimizing function calls under a team of three graduate statisticians
- Managed large databases using UNIX shell scripting, SQL, and computer networks
- Implemented formal testing software in R with revision control, following the official CRAN package guidelines with OOP methods

Numerical Linear Algebra

August 2013 – December 2013

- Examined applications to signal processing with fast Fourier transforms under Prof. John Strain
- Analyzed conditioning and stability of iterative solvers, e.g., conjugate gradient and GMRES, and drew comparisons to direct methods
- Explored modern decomposition methods for parallel computing which apply divide and conquer techniques

Symplectic Geometry

January 2012 - May 2012

- Surveyed motivations of symplectic geometry from Hamiltonian mechanics, and continued onto spectral flow and the Maslov index, 3-dimensional contact geometry, and holomorphic curves under Prof. Michael Hutchings.
- Wrote a research paper entitled, "Non-Standard Symplectic Structures via Symplectic Cohomology"

Talks & Presentations

- [1] Contagion and systemic risk in financial networks, Stat 206A (Spatial Networks), Berkeley, CA, December 11, 2013.
- [2] Holonomy, Math 240 (Riemannian Geometry), Berkeley, CA, May 7, 2013.
- [3] Products in cohomology and related examples, Math 215A (Algebraic Topology), Berkeley, CA, November 16, 2011.

TEACHING EXPERIENCE

University of California, Berkeley, Berkeley, CA

Teaching Assistant

January 2013 - May 2013

- Math 10B (Methods: Calculus, Statistics, and Combinatorics)
 - Assisted in developing the course material with Prof. Craig Evans

Teaching Assistant

June 2011 - August 2011

- Math 128A (Numerical Analysis)
 - Assisted in grading and teaching supplementary sections

Programming Skills

- Languages: Python (NumPy, pandas), C/C++, R, MATLAB, UNIX shell scripting
- Software: Vim, Git, SVN, MongoDB, PostgreSQL
- Operating Systems: GNU/Linux, BSD, Windows NT