The three-step text mining process

Test Pre-processing

0	Why text preprocessing is needed?

- Why text preprocessing is needed?
- Let's look into the following sentence:

"The apple pie was AMAZING and the Food Was Really YuMmY too! You can Checkout the entire Menu @ this Restaurant; you can each out to its website at https://www.zomato.com."

- Why text preprocessing is needed?
- Let's look into the following sentence:

"The apple pie was AMAZING and the Food Was really YuMmY too! You can Checkout the entire Menu @ this Restaurant; you can each out to its website at https://www.zomato.com."

- Text encoding (ASCII, Unicode, etc.)
- Converting to lower case
- Removing symbols and punctuations
- Handling numbers
- Stop-word removal
- O Tokenisation
- Stemming and Lemmatisation

- O Text encoding (ASCII, Unicode, etc.)
- Converting to lower case
- Removing symbols and punctuations
- Handling numbers
- Stop-word removal
- O Tokenisation
- Stemming and Lemmatisation

• We human can read the sentences and characters like:

• We human can read the sentences and characters like:

- What about machines?
- Do they understand the characters of English (a-b, A-B) or any other language?

• We human can read the sentences and characters like:

- What about machines?
- Do they understand the characters of English (a-b, A-B) or any other language?
- The answer is NO, as they only understand numeric and digits.

• We human can read the sentences and characters like:

- What about machines?
- Do they understand the characters of English (a-b, A-B) or any other language?
- The answer is NO, as they only understand numeric and digits.
- More specifically, Bits (0 or 1).

• We human can read the sentences and characters like:

- What about machines?
- Do they understand the characters of English (a-b, A-B) or any other language?
- The answer is NO, as they only understand numeric and digits.
- More specifically, Bits (0 or 1).
- So, how machines will be able to understand the text as they works upon bits?

• What if we are able to convert characters into group of bits (or numeric form).

O What if we are able to convert characters into group of bits (or numeric form).

- A: '01000001'

- d: '01100100'

- &: '00100110'

US-ASCII: American Standard Code for Information Interchange

US-ASCII: American Standard Code for Information Interchange

• It assigns 0 to 127 decimal values to the symbols.

US-ASCII: American Standard Code for Information Interchange

• It assigns 0 to 127 decimal values to the symbols.

Character	Decimal Value
Α	65
K	75
d	100
Z	122
8	56
&	38

US-ASCII: American Standard Code for Information Interchange

- It assigns 0 to 127 decimal values to the symbols.
- These symbols can be:

- Letter (a-z, A-Z)

Character	Decimal Value
Α	65
K	75
d	100
Z	122
8	56
&	38

US-ASCII: American Standard Code for Information Interchange

- It assigns 0 to 127 decimal values to the symbols.
- These symbols can be:
- Letter (a-z, A-Z)
- Numbers (0-9)

Character	Decimal Value
А	65
K	75
d	100
Z	122
8	56
&	38

US-ASCII: American Standard Code for Information Interchange

- It assigns 0 to 127 decimal values to the symbols.
- O These symbols can be:
- Letter (a-z, A-Z)
- Numbers (0-9)
- Punctuation marks
- Special and control characters

Character	Decimal Value
А	65
K	75
d	100
Z	122
8	56
&	38

US-ASCII: American Standard Code for Information Interchange

US-ASCII: American Standard Code for Information Interchange

Character	Decimal	Binary	Hexadecimal
А	65	01000001	41

US-ASCII: American Standard Code for Information Interchange

Character	Decimal	Binary	Hexadecimal
A	65	01000001	41
K	75	01001011	4B

US-ASCII: American Standard Code for Information Interchange

Character	Decimal	Binary	Hexadecimal
Α	65	01000001	41
K	75	01001011	4B
d	100	01100100	64

US-ASCII: American Standard Code for Information Interchange

Character	Decimal	Binary	Hexadecimal
(A)	65	> 01000001	41
K	75	01001011	4B
d	100	01100100	64
Z	122	01111010	7A
8	56	00111000	38
&	38	0010 0110	26

US-ASCII: American Standard Code for Information Interchange

• Each symbols can be represented by **decimal values** or its equivalent **binary**, **octal** or **hexadecimal** values.

The group of 8 bits can form numbers from **0** (**00000000**)- **255(11111111)** but ASCII does not use the decimal values from 128 to 255.

Unicode: UTF-8

• Let's consider the following word in German language:

'Schrödinger'

Unicode: UTF-8

• Let's consider the following word in German language:

'Schrödinger'

• It covers almost all of the characters and symbols.

Unicode: UTF-8

• Let's consider the following word in German language:

'Schrödinger'

- It covers almost all of the characters and symbols.
- Which is not the case with ASCII.

Unicode: UTF-8

Let's consider the following word in German language:

'Schrödinger'

- It covers almost all of the characters and symbols.
- Which is not the case with ASCII.
- O ASCII is the subset of UTF-8 for decimal value 0 to 127.

COMMON TEXT ENCODERS

INPUT English alphabets 'A'

TEXT PRE-PROCESSING

- Text encoding (ASCII, Unicode, etc.)
- O Converting to lower case
- O Removing symbols and punctuations
- O Handling numbers
- Stop-word removal
- O Tokenisation
- Stemming and Lemmatisation

TEXT PRE-PROCESSING

"The apple pie was AMAZING and the Food Was Really YuMmY too! You can Checkout the entire Menu at this Restaurant; ."

LOWERCASING

O Converting to lower case:

"The apple pie was AMAZING and the Food Was Really YuMmY too! You can Checkout the entire Menu at this Restaurant; ."

LOWERCASING

Converting to lower case:

"The apple pie was AMAZING and the Food Was Really YuMmY too! You can Checkout the entire Menu at this Restaurant;

"the apple pie was amazing and the food was really yummy too! you can checkout the entire menu at this restaurant, "

SYMBOLS AND PUNCTUATION REMOVAL

• Removing symbols and punctuations:

"the apple pie was amazing and the food was really yummy too! you can checkout the entire menu at this restaurant; ."

SYMBOLS AND PUNCTUATION REMOVAL(FACESHOT)

• Removing symbols and punctuations:

"the apple pie was amazing and the food was really yummy too! you can checkout the entire menu at this restaurant; ."

the apple pie was amazing and the food was really yummy too you can checkout the entire menu at this restaurant.

HANDLING NUMBERS (FACESHOT)

O Handling numbers:

- Convert the number into English letter
- Use Regex
- Numeric/Alphanumeric filters based on context

TEXT PRE-PROCESSING (FACESHOT)

- Text encoding (ASCII, Unicode, etc.)
- Converting to lower case
- Removing symbols and punctuations

J Andogon to

- Handling numbers
- **Ø** Stop-word removal
- Tokenisation
- Stemming and Lemmatisation

Leaders keep on coming and going. Every once in a while, we come across someone as pre-eminent as APJ Abdul Kalam. His name will certainly go down in history as one of the greatest presidents that India has ever seen. Moreover, people will also remember him as a brilliant scientist. The man was a precious gem for each and every Indian.

Source: https://www.toppr.com/guides/speech-for-students/apj-abdul-kalam-speech/

Leaders keep on coming and going. Every once in a while, we come across someone as pre-eminent as APJ Abdul Kalam. His name will certainly go down in history as one of the greatest presidents that India has ever seen. Moreover, people will also remember him as a brilliant scientist. The man was a precious gem for each and every Indian.

Source: https://www.toppr.com/guides/speech-for-students/apj-abdul-kalam-speech/

O Highly frequent words: Such as 'His', 'an', 'was' or 'the'

Reduce

noise

Reduce size

Highly frequent words: Such as 'His', 'an', 'was' or 'the'

- O Highly frequent words: Such as 'His', 'an', 'was' or 'the'
- O Significant words: Typically more important to understand the text

- O Highly frequent words: Such as 'His', 'an', 'was' or 'the'
- O Significant words: Typically more important to understand the text Example: 'leaders', 'coming', 'going', 'greatest' or 'Indian' etc.

- O Highly frequent words: Such as 'His', 'an', 'was' or 'the'
- O Significant words: Typically more important to understand the text Example: 'leaders', 'coming', 'going', 'greatest' or 'Indian' etc.
- Rarely occurring words: Less important than significant words

- O Highly frequent words: Such as 'His', 'an', 'was' or 'the'
- O Significant words: Typically more important to understand the text Example: 'leaders', 'coming', 'going', 'greatest' or 'Indian' etc.
- O Rarely occurring words: Less important than significant words Example: 'pre-eminent', 'brilliant', 'Abdul' or 'gem' etc.

Leaders keep on coming and going. Every once in a while, we come across someone as pre-eminent as APJ Abdul Kalam. His name will certainly go down in history as one of the greatest presidents that India has ever seen. Moreover, people will also remember him as a brilliant scientist. The man was a precious gem for each and every Indian.

Source: https://www.toppr.com/guides/speech-for-students/apj-abdul-kalam-speech/

Zipf's Law: f(word) * r(word) ~ constant

TEXT PRE-PROCESSING (FACESHOT)

- Text encoding (ASCII, Unicode, etc.)
- Converting to lower case
- Removing symbols and punctuations
- Handling numbers
- Stop-word removal
- **O** Tokenisation
- Stemming and Lemmatisation

Tokenisation: Splitting text into smaller elements (characters, words, sentences, paragraphs)

Tokenisation: Splitting text into smaller elements (characters, words, sentences, paragraphs)

the apple pie was amazing and the food was really yummy too you can checkout the entire menu at this restaurant.

Tokenisation: Splitting text into smaller elements (characters, words, sentences, paragraphs)

the apple pie was amazing and the food was really yummy too you can checkout the entire menu at this restaurant.

fink of one of modeling

[the, apple, pie, was, amazing, and, the, food, was, really, yummy, too, you, can, checkout, the, entire, menu, at, this, restaurant]

Tokenisation: Splitting text into smaller elements (characters, words, sentences, paragraphs)

Word tokeniser splits text into different words.

Tokenisation: Splitting text into smaller elements (characters, words, sentences, paragraphs)

- Word tokeniser splits text into different words.
- O Sentence tokeniser splits text into different sentences.

Why tokenisation?

- Features have to be extracted based on the unit of modeling.
- O Unit of modeling can be word or sentence or paragraphs based on learning objective.
- O Hence, after deciding learning objective, tokenization has to be done at the respective level.

TEXT PRE-PROCESSING

- Text encoding (ASCII, Unicode, etc.)
- Converting to lower case
- Removing symbols and punctuations
- Handling numbers
- Stop-word removal
- O Tokenisation
- **O** Stemming and Lemmatisation

STEMMING

Stemming: It removes or stems the last few characters of a word.

STEMMING

Stemming: It removes or stems the last few characters of a word.

Mayar /

	Stemmed
playing	play
plays	play
played	play
am	am
are	are
is	is
goes	goe
going	go
went	went
gone	gone

STEMMING

Stemming: It removes or stems the last few characters of a word.

Often leading to incorrect meanings and spelling.

	Stemmed				
playing	play				
plays	play				
played	play				
am	am				
are	are				
is	is				
goes	-> goe				
going	go				
went	went				
gone	gone				

	Stemmed	Lemmatised
playing	play	
plays	play	
played	play	
am	am	
are	are	
is	is	
goes	goe	
going	go	
went	went	
gone	gone	

	Stemmed	Lemmatised			
playing	play	play			
plays	play	play			
played	play	play			
am	am	be			
are	are	be			
is	is	be			
goes	goe	go			
going	go	go			
went	went went				
gone	gone	go			

Lemmatisation: It considers the context and converts the word into its meaningful base form.

• The base form is called 'Lemma'.

	Stemmed	Lemmatised		
playing	play	play		
plays	play	play		
played	play	play		
am	am	be		
are	are	be		
is	is	be		
goes	goe	go		
going	go	go		
went	went	go		
gone	gone	go		

- The base form is called 'Lemma'.
- A lemma is the canonical form, dictionary form, or citation form of a set of words.

	Stemmed	Lemmatised
playing	play	play
plays	play	play
played	play	play
am	am	be
are	are	be
is	is	be
goes	goe	go
going	go	go
went	went	go
gone	gone	go

- The base form is called 'Lemma'.
- O A lemma is the canonical form, dictionary form, or citation form of a set of words.
- O Sometimes, the same word can have multiple and different lemmas.

	Stemmed	Lemmatised
playing	play	play
plays	play	play
played	play	play
am	am	be
are	are	be
is	is	be
goes	goe	go
going	go	go
went	went	go
gone	gone	go

"Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, [1][2] similar to data mining."

"Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, [1][2] similar to data mining."

Stemmed sentence:

"Data science is an interdisciplinari field that use scientif method, process, algorithm and system to extract knowledg and insight from data in variou form, both structur and unstructur, [1][2] similar to data mine."

"Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, [1][2] similar to data mining."

Lemmatised sentence:

"Data science is an interdisciplinary field that use scientific method, process, algorithm and system to extract knowledge and insight from data in various form, both structure and unstructure, [1][2] similar to data mine."

NLP TOOLKITS

NLTK - https://www.nltk.org/

Spacy - https://spacy.io/

TEXT PRE-PROCESSING

The three-step text mining process

TEXT PRE-PROCESSING

O Features Creation

- Bag of Word Model
- TF-IDF Model

You have pre-processed text!!

- You have pre-processed text!!
- O How you can use this textual data for model building (like Logistic Regression) which can predict something like sentiments.

- You have pre-processed text!!
- O How you can use this textual data for model building (like Logistic Regression) which can predict something like sentiments.
- For model, you need features.

- You have pre-processed text!!
- O How you can use this textual data for model building (like Logistic Regression) which can predict something like sentiments.
- For model, you need features.
- O How do you create features using textual data?

Phone's review	Sentiment
camera, not, good	
screen, awesome, microprocessor, slow, happy	
hotspot, not, connect	
•••	

Phone's review	Sentiment
camera, not, good	Negative
screen, awesome, microprocessor, slow, happy	Positive
hotspot, not, connect	Negative
•••	•••
	•••

	Phone's review	Sentiment
Doc_1	camera, not, good	Negative
Doc_2	screen, awesome, microprocessor, slow, happy	Positive
Doc_3	hotspot, not, connect	Negative

	camera	not	good	screen	awesome	microprocessor	slow	happy	hotspot	connect	 Sentiment
Doc_1											Negative
Doc_2											Positive
Doc_3											Negative
Doc_4											
Doc_5											

	Phone's review	Sentiment
Doc_1	camera, not, good	Negative
Doc_2	screen, awesome, microprocessor, slow, happy	Positive
Doc_3	hotspot, not, connect	Negative

	camera	not	good	screen	awesome	microprocessor	slow	happy	hotspot	connect	 Sentiment
Doc_1	value	value	value								Negative
Doc_2				value	value	value	value	Value			Positive
Doc_3		value				value				value	Negative
Doc_4											
Doc_5											

	Phone's review	Sentiment
Doc_1	camera, not, good	Negative
Doc_2	screen, awesome, microprocessor, slow, happy	Positive
Doc_3	hotspot, not, connect	Negative

	camera	not	good	screen	awesome	microprocessor	slow	happy	hotspot	connect		Sentiment
Doc_1	value	value	value	0	0	0	0	0	0	0	0	Negative
Doc_2	0	0	0	value	value	value	value	Value	0	0	0	Positive
Doc_3	0	value	0	0	0	value	0	0	0	value	0	Negative
Doc_4												
Doc_5												

	Phone's review	Sentiment
Doc_1	camera, not, good	Negative
Doc_2	screen, awesome, microprocessor, slow, happy	Positive
Doc_3	hotspot, not, connect	Negative

	camera	not	good	screen	awesome	microprocessor	slow	happy	hotspot	connect		Sentiment
Doc_1	value	value	value	0	0	0	0	0	0	0	0	Negative
Doc_2	0	0	0	value	value	value	value	Value	0	0	0	Positive
Doc_3	0	value	0	0	0	value	0	0	0	value	0	Negative
Doc_4												
Doc_5												
•••												

To fill these values, we have two models:

- 1. Bag of Words Model (BOW)
- 2. TF-IDF Model

TEXT PRE-PROCESSING

- Features Creation
- Bag of Word Model
- TF-IDF Model

• The bag of words model is used to create features from text.

- The bag of words model is used to create features from text.
- It is a cross-tab of frequency of each unique word with respect to all documents.

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party.

Stop Words

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party.

Tokenisation

Document 1

[quick. brown fox, jump, over, lazy, dog, back]

Document 2

[now, time, all good, men, come, aid, their, party]

Document 1

[quick. brown fox, jump, over, lazy, dog, back]

	aid	all	brown	come	dog	fox	good	jump	lazy	men	now	over	party	quick	their	time
Document1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	0	0
Document2																

Document 2

[now, time, all good, men, come, aid, their, party]

	aid	all	brown	come	dog	fox	good	jump	lazy	men	now	over	party	quick	their	time
Document1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	0	0
Document2	1	1	0	1	0	0	1	0	0	1	1	0	1	0	1	1

	aid	all	brown	come	dog	fox	good	jump	lazy	men	now	over	party	quick	their	time
Document1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	0	0
Document2	1	1	0	1	0	0	1	0	0	1	1	0	1	0	1	1

Count Vector

TEXT PRE-PROCESSING

- Features Creation
- Bag of Word Model
- TF-IDF Model

O There are two terms for TF-IDF:

O Stop words can't give the relative importance of a word in a particular document but the TF-IDF can give.

O There are two terms for TF-IDF:

1. Term Frequency (TF):

2. Inverse Document Frequency (IDF):

- O Stop words can't give the relative importance of a word in a particular document but the TF-IDF can give.
- O There are two terms for TF-IDF:

1. Term Frequency (TF):

(Number of times a word appears in a document/ Total number of words in that document)

2. Inverse Document Frequency (IDF):

- O Stop words can't give the relative importance of a word in a particular document but the TF-IDF can give.
- O There are two terms for TF-IDF:

1. Term Frequency (TF):

(Number of times a word appears in a document/ Total number of words in that document)

2. Inverse Document Frequency (IDF):

IDF= Log(Total number of documents(N)/ Number of documents containing the word)

- O Stop words can't give the relative importance of a word in a particular document but the TF-IDF can give.
- O There are two terms for TF-IDF:

1. Term Frequency (TF):

(Number of times a word appears in a document/ Total number of words in that document)

2. Inverse Document Frequency (IDF):

IDF= Log(Total number of documents(N)/ Number of documents containing the word)

TF-IDF Score = TF X IDF

Let's look into the following three documents:

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1															
2															
3															

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1															
2															
3															

- TF Score (movie, document1):

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1															
2															
3															

- TF Score (movie, document1): 1

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1															
2															
3															

- TF Score (movie, document1): 1/

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1															
2															
3															

- TF Score (movie, document1): 1/7

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1															
2															
3															

- TF Score (movie, document1): 1/7

- IDF Score (movie): log(3/2)

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	new	release	song	success	life	harry	watch	week
1						0.025									
2															
3															

- TF Score (movie, document1): 1/7

- IDF Score (movie): log(3/2)

- TF- IDF Score (movie, document1): $1/7 \times \log(3/2) = 0.025$

Document1: "Harry Potter is a great movie. It is based on Harry's life."

Document2: "The success of a song depends on the music."

Document3: "There is a new movie releasing this week. The movie is fun to watch."

	Based	depend	fun	potter	great	movie	music	New	release	song	success	life	harry	watch	week
1	0.08	0	0	0.032	0.67	0.025	0	0	0	0	0	0.078	0.123	0	0
2	0	0.8	0	0	0	0	0.55	0	0	0.02	0.054	0	0	0	0
3	0	0	0.10	0	0	0.078	0	0.87	0.032	0	0	0	0	0.41	0.078

- TF Score (movie, document1): 1/7

- IDF Score (movie): log(3/2)

- TF- IDF Score (movie, document1): $1/7 \times \log(3/2) = 0.025$

Note: The TF-IDF values may be incorrect in the matrix.

TEXT PRE-PROCESSING

The three-step text mining process

