1 Seperierbare Filter

1.1 2D Faltung

Wir können den 2D-Kernel Algorithmus folgend grob in Code schreiben:

Bild der Grösse $M \times N$ und Filtermaske der Grösse $k \times k$

Dabei muss durch jedes Pixel im Originalbild gegangen werden und jeweils $k \cdot k$ Operationen pro Pixel durchgeführt werden (Inhalt des Filter-Kernels). In \mathcal{O} -Notation sieht das folgend aus: $\mathcal{O}(M \cdot N \cdot k^2) \geq \mathcal{O}(k^2)$

Es handelt sich also um eine quadratische Laufzeit.

TODO empirische daten

1.2 1D Faltung

Der 1D Algorithmus unterscheidet sich nicht gross von der 2D implementation, er ist jedoch weitaus schneller. Dies kann man im folgenden Pseudo-Code Block und in der darauffolgenden \mathcal{O} -Notation sehen:

```
// zuerst die erste Faltung ausfuehren
for (int i = 0; i < M; i++) {
  for (int j = 0; j < N; j++) {
  // durch jedes Pixel des Bildes iterieren
     for (int p = 0; p < k; p++) {
        // 1D Filter anwenden -> p Operationen
        applyFilter(i, j, p);
     }
  }
}
// dann die zweite Faltung auf das entstandene Bild
for (int i = 0; i < M; i++) {
  for (int j = 0; j < N; j++) {
     // durch jedes Pixel des Bildes iterieren
     for (int p = 0; p < k; p++) {
       // 1D Filter anwenden -> p Operationen
        applyFilter(i, j, p);
     }
```

```
}
}
```

Der grosse Unterschied ist, dass im inneren der beiden Loops, die über die einzelnen Pixel des Bildes iterieren, nicht p^2 Operationen ausgeführt werden müssen, sonder nur p (und das zweimal; einmal bei der ersten Faltung und danach in der zweiten). Dies führt jedoch zu einer massiven Verbesserung in der Laufzeit des Algorithmus:

$$\mathcal{O}(M\cdot N\cdot k+M\cdot N\cdot k)=\mathcal{O}(2\cdot M\cdot N\cdot k)\geq \mathcal{O}(1)$$
 TODO: empirisch