שעור 11 שונות

11.1 לכסון אורתוגונית

הגדרה 11.1 מטריצה לכסינה אורתוגונלית

-טכסונית אלכסונית ומטריצה ומטריצה אורתוגונלית אן קיימת אן קיימת אורתוגונלית לכסינה אלכסונית אורתוגונלית אורתוגונלית או

$$A = UDU^{-1} = UDU^t .$$

הגדרה 11.2 מטריצה סימטרית

מטריעה סימטרית גקראת נקראת ל $A \in \mathbb{F}^{n \times n}$ מטריצה מטריצה

$$A = A^t$$
.

משפט 11.1 מטריצה לכסינה אורתוגונלית היא סימטירת

מטריעה מטירצה מטריצה אורתוגונלית אורתוגונלית שלכסינה אלכסינה שלכסינה אורתוגונלית אורתוגונלית אורתוגונלית מטירצה אורתוגונלית מטריצה אורתוגונלית מטירצה מימטרית.

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ז"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

לפיכד

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A.$$

משפט 11.2 תנאי מספיק למטירצה סימטרית

מטריצה אם ורק אם היא מטירצה איא $A \in \mathbb{R}^{n \times n}$

$$(Ax, y) = (x, Ay)$$

 \mathbb{R}^n לכל , $x,y\in\mathbb{R}^n$ לכל , $x,y\in\mathbb{R}^n$ לכל

הוכחה: נניח כי A סימטרית. אזי

$$(Ax, y) = (Ax)^t y = x^t A^t y = (x, A^t y) = (x, Ay)$$

נניח כי (Ax,y)=(x,Ay). נרשום

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{pmatrix}$$

A באשר של המטריצה $a_i \in \mathbb{R}^n$ כאשר

$$(Ae_i,e_j)=(a_i,e_j)=A_{ji}=\ A$$
 של (j,i) -רכיב ה-

$$(e_i,Ae_j)=(e_i,a_j)=A_{ij}=\ A$$
 של (i,j) -מיב ה-

לכן

$$(Ae_i, e_j) = (e_i, Ae_j) \quad \Rightarrow \quad A_{ji} = A_{ij} \quad \Rightarrow \quad A^t = A .$$

. סימטרית A א"ג

כלל 11.1 תכונות של מספרים מרוכבים

- z=a+i כאשר בצורה ניתן לרשום בצורה $z\in\mathbb{C}$ כאשר ססםר כל
 - $.i^2 = -1 \bullet$
- $ar{z}=a-ib$ נתון מסםר מרוכב $z\in\mathbb{C}$ מצורה z=a+ib מצורה $z\in\mathbb{C}$
 - $ar{z}=z$ אם ורק אם $z\in\mathbb{R}$
 - $\mathbb{R} \subseteq \mathbb{C}$ •
 - $|z|=\sqrt{a^2+b^2}$ ומוגדר ומון מסומן של של הערך מוחלט . $z\in\mathbb{C}$ נתון
 - $.z\bar{z} = a^2 + b^2 = |z|^2 \bullet$
 - $\overline{zw}=ar{z}ar{w}$ מתקיים $z,w\in\mathbb{C}$ לכל

משפט 11.3 הערכים עצמיים של מטריצה סימטרית ממשיים

. ממשיים A סימטרית אז כל הערכים עצמיים של $A \in \mathbb{R}^{n \times n}$

. (לא בהכרח שונים) $\lambda_1,\dots,\lambda_n$ לפי עצמיים איים ל-4 יש ערכים הפירוק הפרימרי, ל-8 ולא הפירוק הפרימרי, ל-

: ממשי:
$$a=ar{u}Au$$
 הסקלר הסקלר , $u=egin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ לכל

$$a = (u^*)^t A u = (u^*)^t A^t u$$
 (סימטרית) אינטרית) (משפט A) $= (Au^*)^t u = u^t (Au^*)$ (11.2 משפט) $= u^t A^* u^*$ (משפי) $= a^*$.

נניח כי
$$\lambda_i$$
 ווקטור עצמי של A ששייך ווקטור $u=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ נניח כי

$$\bar{u}Az = \bar{u}\lambda_i u = \lambda_i \bar{u}u = \lambda_i (\bar{u}, u) = \lambda_i (|z_1|^2 + \dots + |z_n|^2)$$

 $.(|z_1|^2+\cdots+|z_n|^2)\neq 0 \Leftarrow z_k\neq 0\;\exists \Leftarrow u\neq 0 \Leftarrow u$ ווקטור עצמי עצמי ווקטור ע ממשי, ו- $\bar{u}Az$ ממשי, ו- $(|z_1|^2+\cdots+|z_n|^2)$ ממשי.

משפט 11.4 מטריצה ממשית לכסינה אורתוגונלית אם"ם היא סימטרית

. נתונה מטריתה מטריתה אם ורק אם ורק אורתוגונלית לכסינה לכסינה מטריתה מטריתה מטריתה לתונה $A \in \mathbb{R}^{n \times n}$

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ט"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

אזי

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A.$$

נניח כי n כי היא אורתוגונלית. נוכיח באמצעות סימטרית. נוכיח באמצעות סימטרית. נוכיח אורתוגונלית $A \in \mathbb{R}^{n \times n}$

שלב הבסיס

עבור $a \in \mathbb{R}$ כאשר A = a סקלר, גלומר אבור , $A \in \mathbb{R}^{1 imes 1}$

$$A = a = UDU^t$$

. אלכסונית $D=(a)\in\mathbb{R}^{1 imes 1}$ - אורתוגונלית ע $U=(1)\in\mathbb{R}^{1 imes 1}$ כאשר

שלב האינדוקציה

נניח כי כל מטריצה סימטרית מסדר (n-1) imes (n-1) imes (n-1) לכסינה אורתוגונלית (ההנחת האינדוקציה).

לכל מטריצה קיימת לפחות ווקטור עצמי אחד.

 $\|\mathbf{v}_1\|=1$ לכן נניח כי λ_1 ווקטור עצמי של A ששייך לערך עצמי עניח כי \mathbf{v}_1 ווקטור עצמי לכן $\lambda_1\in\mathbb{R}$ סימטרית לכן $\lambda_1\in\mathbb{R}$ (משפט 11.3).

 $:\mathbb{R}^n$ נשלים $\{\mathrm{v}_1\}$ לבסיס אל

$$\{\mathbf v_1,\mathbf v_2,\ldots,\mathbf v_n\}$$
 .

 $:\mathbb{R}^n$ נבצע התהליך של גרם שמידט כדי להמיר בסיס זו לבסיס שמידט מידט על נבצע התהליך

$$B = \{u_1, u_2, \dots, u_n\} ,$$

. וכן הלאה $u_2=\mathrm{v}_2-rac{(\mathrm{v}_2,u_1)}{\|u_1\|^2}u_1$, $u_1=\mathrm{v}_1$ כאשר

$$P = \begin{pmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & & | \end{pmatrix} .$$

.B נשים לב כי P היא המטריצה המעבר המעבר המטריצה לבסיס נשים לב כי $P^{-1}=P^t$ לכו אורתוגונלי לכו P

ית סימטרית לכ כי נשים לכ $.P^{-1}AP=P^{t}AP$ מעריעה לכ כי היא נתבונן על

$$(P^t A P)^t = P^t A^t (P^t)^t = P^t A^t P = P^t A P.$$

והעמודה הראשונה הינה

$$P^{-1}APe_1 = P^{-1}Au_1 = P^{-1}\lambda_1u_1 = \lambda_1P^{-1}u_1 = \lambda_1[u_1]_B = \lambda_1\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} \lambda_1\\0\\\vdots\\0 \end{pmatrix}.$$

לפי ההנחת האינדוקציה B לכסינה אורתוגונלית.

 $B=U'D'U'^{-1}=U'D'U'^t$ שלכסונית כך ש- $D'\in\mathbb{R}^{(n-1) imes(n-1)}$ אורתוגונלית ו- אורתוגונלית ו- $U'\in\mathbb{R}^{(n-1) imes(n-1)}$

לכן

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & B \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & U'D'U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1}$$

 $:P^{-1}$ -ב ומצד ימין בP ומצד ימין ב

$$A=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} egin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1} P^{-1} \\ \mathbf{N}'' \mathbf{r} & D=egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix}$$
 -1 $U=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}$ נגדיר

 $A = UDU^{-1} .$

. נשים לכ בי A אורתוגונלית ו- D אלכסונית לפיכך אורתוגונלית ו- עשים לכ בי אורתוגונלית ו- עשים לכ

11.2 שילוש לכיסון של מטריצה לפי פולינום מינימלי

הגדרה 11.3 צמצום של העתקה

.V שמור של תת-מרחב תת-מרחב ווקטורי אופרטור $T:V\to V$ ונתונה אופרטור ווקטורי על מרחב ווקטור אופרטור $V:V\to V$ ווקטור של על ווקטור של יי $v\in V$

נגדיר קבוצת פולינומים $g\in S_{T}\left(\mathbf{v},W\right)$ פולינום אכל כך את מקיים את פולינומים פולינומים אכל פולינומים את מ

$$g(T)\mathbf{v} \in W$$
.

T המנחה תקרא תקרא $S_T(\mathbf{v},W)$ הקבוצה

הגדרה 11.4

. מינימלי. ביותר הפולינום המתוקן של דרגה הקטנה ביותר ב- $S_T\left(\mathbf{v},W\right)$ נקרא מנחה-T מינימלי.

משפט 11.5

נניח כי Tהמנחה-T של יונניח של ד conductor $S_{T}\left(\mathbf{v},W\right)$ נניח כי

$$f \in S_T(\mathbf{v}, W) \Leftrightarrow g \mid f$$
.

, אוקליד, $g \nmid f$ נוכיח כי $g \nmid f$ נוכיח כי $g \mid f$ נוכיח כי $f \in S_T (\mathbf{v}, W)$ נניח כי נניח כי

$$f(x) = g(x)q(x) + r(x)$$
 \Rightarrow $f(x) - q(x)g(x) = r(x)$.

 $\deg(r) < \deg(g) \leq \deg(f)$ כאשר

תת-מרחב T שמור. g(T)ע פון לכן גם g(T)ע פון לכן גם $f,g\in S_T$ עת-מרחב אור. f(T)ע פותר המקיים אור. אור המקיים המקיים אור. אור המקיים אור. אור המקיים המקיים אור. אור המקיים אור המקיים אור המקיים אור המקיים אור. אור המקיים אור. אור המקיים אור המק

נניח כי $g\mid f$ נניח כי f(T)v = q(T)g(T)v $\Leftarrow f(x)=q(x)g(x)$ \Leftarrow f(T)v $\in W$ לכן g(T)v $\in W$ תת-מרחב g(T)v $\in W$ לכן g(T)v $\in W$

משפט 11.6

 $g\mid m_T$ נניח כי T-conductor $S_T({f v},W)$ הפולינום המינימלי של .T-conductor T

הוכחה: נוכיח כי $g\mid m_T$ דרך השלילה.

נניח כי $g \nmid m_T$. לפי כלל אוקליד:

$$m_T(x) = q(x)g(x) + r(x) ,$$

 $\deg(r) < \deg(g) \le \deg(m_T)$

$$0 = m_T(T) = g(T)q(T) + r(T) = 0 + r(T) \implies r(T) = 0$$

בסתירה לכך כי $m_T(T)$ הפולינום המינימלי.

משפט 11.7

 $.m_T \in S_T(\mathbf{v}, W)$

 $g\mid m_T$,11.6 מינימלי. לפי משפט g(x) המנחה. g(x) המנחה: נניח כי $m_T\in S_T(\mathbf{v},W)$,11.5 לכן לפי משפט

משפט 11.8

 $lpha \in V
otin T$ נניח כי V מרחב ווקטורי T:V o V אופרטור. נניח כי ע $W \subset V$ תת מרחב T:V o V שמור. קיים כד ש-

$$(T - \lambda)\alpha \in W$$

T ערך עצמי של λ

הוכחה:

נוכיח כי המנחה-T המינימלי של α ל- W הוא פולינום לינארי.

נניח כי eta כל ווקטור שב- V אבל לא ב- W, כלומר B כל ווקטור שב- B יהי B המנחה-B המינימלי של B ל- B.

. פולינום h(x) -ו T ערך עצמי של λ_i כאשר $g(x) = (x - \lambda_i)h(x) \Leftarrow g \mid m_T \Leftarrow$ 11.6 משפט

 $.\alpha = h(T)\beta \notin W$ לכן לכן פולינום של ביותר כך ש- ביותר כך הפולינום של דרגה קטנה ביותר g

לכן

$$(T - \lambda_i I)\alpha = (T - \lambda_i)h(T)\beta = g(T)\beta \in W$$

etaבגלל ש- g(T) המנחה המינימלי של

משפט 11.9

לכסינה אם ורק אם m_T מתפרק לגורמים לינאריים שונים:

$$m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
.

 $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$ נניח כי

 $W \neq V$ -ו ,T בניח כי u_1,\ldots,u_k כאשר באשר עבמיים של $W=\mathrm{span}\{u_1,\ldots,u_k\}$ נניח כי $\beta=(T-\lambda_iI)\alpha\in W$ בי משפט 11.8 קיים $\alpha\notin W$ וערך עצמי א של $\alpha\notin W$ בי משפט 11.8

 $1 \leq i \leq k$ לכל לכל ד $u_i = \lambda_i u_i$ כאשר הא $\beta = u_1 + \ldots + u_k$ אז א $\beta \in W$ מכיוון ש-

לכן

$$h(T)\beta = h(\lambda_1)u_1 + \ldots + h(\lambda_k)u_k \in W . \tag{*}$$

h לכל פולינום

$$m_T(x)\beta = (x - \lambda_i)q(x) \tag{**}$$

. כאשר q(x) פולינום

לפי מפשט השארית,

$$q(x) = (x - \lambda_i)h(x) + q(\lambda_i) \tag{***}$$

כאשר q(x) פולינום. לכן

$$q(T)\alpha - q(\lambda_i)\alpha = h(T)(T - \lambda_i I)\alpha = h(T)\beta$$
(****)

 $.h(T)eta\in W$,(*), לפי

-מכיוון ש

$$0 = m_T(T)\alpha = (T - \lambda_i)q(T)\alpha,$$

 $.q(T)\alpha \in W$ אז אג, אוך לערך ששייך ששייך עצמי ווקטור $q(T)\alpha$ ווקטור כלומר כלומר

 $q(\lambda_i)\alpha \in W$,(****), לכן לפי

$$g(\lambda_i)=0$$
 אבל אבל $q(\lambda_i)=0$ אבל

אז לפי (**), לא כל השורשים של m_T שונים. סתירה!

משפט 11.10

(לא בהכרח שונים): מתפרק לגורמים לינאריים שם ורק אם m_T מתפרק לינאריים (לא בהכרח שונים):

$$m_T(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_k)^{r_k}$$
.

 $m_T(x)=(x-\lambda_1)^{r_1}\cdots(x-\lambda_k)^{r_k}$ נניח כי נניח כי אנחנו רוצים למצוא בסיס $\beta_1,\ldots\beta_n$ כך ש

$$[T]_{\beta}^{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

נדרוש כי

$$T(\beta_i) = a_{1i}\beta_1 + \ldots + a_{ii}\beta_i .$$

 $.T(eta_i) \in \{eta_1, \ldots, eta_i\}$ א"ר

 $.W=\{0\}\subset V$ יהי

 $.(T-\lambda_1)\alpha\in\{0\}$ -כך ש- $\exists \alpha\in V\notin\{0\}$ 11.8 לפי

ז"א

$$(T - \lambda_1 I)\alpha = 0 \quad \Rightarrow \quad T\alpha = \lambda_1 \alpha ,$$

T ווקטור עצמי של lpha

$$[T(eta_1)]_eta=egin{pmatrix} \lambda_1 \ 0 \ dots \ 0 \end{pmatrix}$$
 אז $eta_1=lpha$ נבחור $eta_1=lpha$

. שמור T מרחב W_1 כי לב כי נשים $W_1=\{\beta_1\}\subset V$ יהי

 $(T-\lambda_2)\alpha\in W_1$ -כך ש- $\exists lpha\in V
otin W_1$ בי משפט 11.8 לפי

ז"א

$$(T - \lambda_2 I)\alpha = k\beta_1 \quad \Rightarrow \quad T(\alpha) = k\beta_1 + \lambda_2 \alpha$$

 $T(eta_2)=keta_1+\lambda_2eta_2$ גבחור $eta_2=lpha$ אז

. שימו לב, $\{\beta_1,\beta_2\}$ לכן לכן $\beta_1\in W$ -ו $\beta_2\notin W_1$ בלתי שימו שימו שימו לב, אויים

$$.[T(\beta_2)]_{\beta} = \begin{pmatrix} k \\ \lambda_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נמשיד עם התהליד הזה:

. שמור שמור מרחב א W_i לב כי $W_i = \{\beta_1, \dots, \beta_i\} \subset V$ יהי

 $.(T-\lambda_j)\alpha\in W_i$ פך ש- ש
 $\exists \alpha\in V\notin W_i$ 11.8 לפי

ז"א

$$(T - \lambda_j I)\alpha = c_1 \beta_1 + \ldots + c_i \beta_i \quad \Rightarrow \quad T(\alpha) = c_1 \beta_1 + \ldots + c_i \beta_i + \lambda_j \alpha \alpha.$$

 $.\{\beta_1,\ldots,\beta_i\}$ -ם לינאריית תלוי בלתי הלכן $\alpha\notin W_i$ לב, שימו שימו שימו

 $.\beta_{i+1}=\alpha$ נבחור

$$.[T(\beta_{i+1})]_{\beta} = \begin{pmatrix} c_1 \\ \vdots \\ c_i \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נניח כי T ניתנת לשילוש.

לכסין. [T] איים בסיס עבורו המטריצה המייצגת \Leftarrow

. מתפרק שונים). הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרלח שונים).

מתפרק לגורמים ליניאריים (לא בהכרח שונים). $m \Leftarrow m \mid p$