SEGUNDO EXAMEN PARCIAL

NOMBRE:	MATRICULA:

Lea las instrucciones y conteste con claridad. Respuestas ilegibles serán consideradas incorrectas.

1.- Simplifique e implemente el circuito mediante mapa de Karnaugh la siguiente tabla de verdad (20pts).

Entradas			Salidas			
Α	В	С	D	X	Υ	Z
0	0	0	0	0	1	1
0	0	0	1	1	0	1
0	0	1	0	0	1	1
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	1	1	1
0	1	1	0	0	1	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	0	1	0	0	0

- 2.- Conversor de código: mediante un circuito combinacional diseñar e implementar un conversor de código Gray de 4 bits a código Binario natural. (30pts).
- 3.- Diseñe un decodificador de BCD a 7 segmentos (30pts).
- 4.-Realice las siguientes operaciones aritméticas binarias (20pts).

Resta por el método a complemento 2 de los siguientes registros binarios:

1010110 menos 0110110

y por otro lado la multiplicación de:

101 por 111