Considere o seguinte sistema de equações lineares escrito na forma A.x=b, e a sua solução obtida pelo método de eliminação de Gauss:

	Α		b	X
18	-1	1	10	0.552949
3	-5	4	2	-0.15347
6	8	29	-1	-0.10655

Faça o estudo da estabilidade externa do sistema, considerando que todos os coeficientes das incógnitas e todos os termos independentes estão afectados de igual erro $\delta A = \delta b = 0.1$

$\delta x_1 =$	0,00320	→
$\delta x_2 =$	-0,00885	-
$\delta x_3 =$	0,00422	

Correto

Pontuou 1,000 de 1,000

P Destacar pergunta

Seja dado o sistema de equações lineares:

$$A. x = b$$

em que

Usando os valores iniciais x0, calcule uma iteração pelo Método de Gauss-Seidel.

A resposta são números em vírgula fixa, com pelo menos 5 decimais.

O integral da função, dada na forma tabelada, foi calculado por aplicação do método de Simpson:

$$\int_0^{2,0} f(x) \, dx$$

x 0,00 0,25 0,50 0,75 1.00 1,25 1,50 1,75 2,00

f(x) 1,040,370,381,491,080,130,640,840,12

Escolha a opção que apresenta os valores corretos para, por esta ordem, o valor do integral e o erro estimado para o menor passo de integração.

Selecione uma opção de resposta:

- a. Nenhuma das respostas está correcta / None of the answers is correct.
- b. 1,3900; 0,0104
- o c. 1,2180; -0,0143
- o d. 1,3900; -0,0104
- e. 2,2040; -0,0180
- f. 2,2040; 0,0180
- g. Não sei, não respondo / Don't know (no penalty)
- h. 1,2180; 0,0143

Destacar pergunta

A tabela abaixo representa os valores de uma função f(x,y) calculados segundo uma grelha de igual espaçamento, em que a coordenada x (última linha) deve ser lida segundo a horizontal, e y (primeira coluna) segundo a vertical.

2	7,3	1.5	1.2
1	2.1	3,1	2.2
0	1.1	1.4	7,7
y/x	0	1	2

Calcule o integral duplo da função, no domínio rectangular de integração especificado na tabela,

$$\int_{D_x} \int_{D_y} f(x, y) \, dy \, dx$$

usando a Regra dos Trapézios.

Resposta: 11,02500

Pergunta 5

Respondida

Pontuou 0,000 de 1,000

Destacar pergunta

Quais as estratégias que seguiria para garantir um determinado erro absoluto máximo no cálculo numérico de um integral definido? Discuta métodos, técnicas de verificação, algoritmos, controle do erro. Seja conciso na resposta.

Responda na área de texto. Se quiser entregar um ficheiro complementar **APENAS para esta resposta**, faça-o na área de entrega abaixo.

Pontuou 0,516 de 1,000

P Destacar pergunta

Calcule dois passos de integração numérica da seguinte equação diferencial de 2ª ordem, usando a configuração da tabela:

$$\frac{d^2y}{dt^2} = A + t^2 + t \frac{dy}{dt}$$

A	h	t ₀	У ₀	y' ₀
2	0.25	1	1	0

Calcule usando o Método de Euler:

n	t	у
0	1,00000	1,00000
1	1,25000	1,00000
2	1,50000	1,18750

Calcule usando o Método de Runge-Kutta de 4ª ordem:

n	t	у
0	1,00000	1,00000
1	1,25000	1,00000
2	1,50000	1,22873