Interpretasi Kombinasi

1. C(n, r) = banyaknya himpunan bagian yang terdiri dari r elemen yang dapat dibentuk dari himpunan dengan n elemen.

Misalkan
$$A = \{1, 2, 3\}$$

Jumlah Himpunan bagian dengan 2 elemen:

$$\{1, 2\} = \{2, 1\}$$

$$\{1, 3\} = \{3, 1\}$$

$$\{2, 3\} = \{3, 2\}$$
3 buah
$$\{3, 3\} = \{3, 2\}$$

atau
$$\binom{3}{2} = \frac{3!}{(3-2)!2!} = \frac{3!}{1!2!} = 3$$
 buah

1

2. C(n, r) = cara memilih r buah elemen dari n buah elemen yang ada, tetapi urutan elemen di dalam susunan hasil pemilihan tidak penting.

Contoh: Berapa banyak cara membentuk panitia (komite, komisi, dsb) yang beranggotakan 5 orang orang dari sebuah fraksi di DPR yang beranggotakan 25 orang?

Penyelesaian:

Panitia atau komite adalah kelompok yang tidak terurut, artinya setiap anggota di dalam panitia kedudukannya sama.

Misal lima orang yang dipilih, A, B, C, D, dan E, maka urutan penempatan masing-masingnya di dalam panitia tidak penting (ABCDE sama saja dengan BACED, ADCEB, dan seterusnya). Banyaknya cara memilih anggota panitia yang terdiri dari 5 orang anggota adalah C(25,5) = 53130 cara.

- **Contoh 10.** Di antara 10 orang mahasiswa Teknik Informatika Angkatan 2002, berapa banyak cara membentuk sebuah perwakilan beranggotakan 5 orang sedemikian sehingga:
- (a) mahasiswa bernama A selalu termasuk di dalamnya;
- (b) mahasiswa bernama A tidak termasuk di dalamnya;
- (c) mahasiswa bernama A selalu termasuk di dalamnya, tetapi B tidak;
- (d) mahasiswa bernama B selalu termasuk di dalamnya, tetapi A tidak;
- (e) mahasiswa bernama A dan B termasuk di dalamnya;
- (f) setidaknya salah satu dari mahasiswa yang bernama *A* atau *B* termasuk di dalamnya.

- (a) C(9, 4) = 126 cara untuk membentuk perwakilan yang beranggotakn 5 orang sedemikian sehingga A selalu termasuk di dalamnya.
- (b) C(9, 5) = 126 cara untuk membentuk perwakilan yang beranggotakn 5 orang sedemikian sehingga A tidak termasuk di dalamnya.
- (c) C(8, 4) = 70 cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga A termasuk di dalamnya, tetapi B tidak.
- (d) C(8, 4) = 70 cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga B termasuk di dalamnya, tetapi A tidak.
- (e) C(8, 3) = 56 cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga A dan B selalu termasuk di dalamnya.

- (f) Jumlah cara membentuk perwakilan sedemikian sehingga setidaknya salah satu dari *A* atau *B* termasuk di dalamnya
 - = jumlah cara membentuk perwakilan sehingga *A* termasuk di dalamnya, *B* tidak
 - + jumlah cara membentuk perwakilan sehingga *B* termasuk di dalamnya, *A* tidak
 - + jumlah cara membentuk perwakilan sehingga *A* dan *B* termasuk di dalamnya

$$=70+70+56=196$$

Prinsip inklusi-eksklusi:

X = jumlah cara membentuk perwakilan yang menyertakan A

Y = jumlah cara membentuk perwakilan yang menyertakan B

 $X \cap Y$ = jumlah cara membentuk perwakilan yang menyertakan A dan B, maka

$$|X| = C(9, 4) = 126; |Y| = C(9, 4) = 126;$$

 $|X \cap Y| = C(8, 3) = 56;$

$$|X \cup Y| = |X| + |Y| - |X \cap Y| = 126 + 126 - 56 = 196$$

Latihan:

- Kursi-kursi di sebuah bioskop disusun dalam baris-baris, satu baris berisi 10 buah kursi. Berapa banyak cara mendudukkan 6 orang penonton pada satu baris kursi:
 - (a) jika bioskop dalam keadaan terang
 - (b) jika bioskop dalam keadaan gelap

- 2. Ada 5 orang mahasiswa jurusan Matematika dan 7 orang mahasiswa jurusan Informatika. Berapa banyak cara membentuk panitia yang terdiri dari 4 orang jika:
 - (a) tidak ada batasan jurusan
 - (b)semua anggota panitia harus dari jurusan Matematika
 - (c)semua anggota panitia harus dari jurusan Informatika
 - (d)semua anggota panitia harus dari jurusan yang sama
 - (e) 2 orang mahasiswa per jurusan harus mewakili.

3. Berapa banyak cara membentuk sebuah panitia yang beranggotakan 5 orang yang dipilih dari 7 orang pria dan 5 orang wanita, jika di dalam panitia tersebut paling sedikit beranggotakan 2 orang wanita?

Permutasi dan Kombinasi Bentuk Umum

Misalkan: ada *n* buah bola yang tidak seluruhnya berbeda warna (jadi, ada beberapa bola yang warnanya sama - *indistinguishable*).

 n_1 bola diantaranya berwarna 1, n_2 bola diantaranya berwarna 2,

 n_k bola diantaranya berwarna k,

dan
$$n_1 + n_2 + ... + n_k = n$$
.

Berapa jumlah cara pengaturan *n* buah bola ke dalam kotak-kotak tersebut (tiap kotak maks. 1 buah bola)?

Jika n buah bola itu kita anggap berbeda semuanya, maka jumlah cara pengaturan n buah bola ke dalam n buah kotak adalah:

$$P(n, n) = n!$$
.

Dari pengaturan n buah bola itu,

ada $n_1!$ cara memasukkan bola berwarna 1 ada $n_2!$ cara memasukkan bola berwarna 2

ada $n_k!$ cara memasukkan bola berwarna k

Permutasi n buah bola yang mana n_1 diantaranya berwarna 1, n_2 bola berwarna 2, ..., n_k bola berwarna k adalah:

$$P(n; n_{1}, n_{2}, ..., n_{k}) = \frac{P(n, n)}{n_{1}! n_{2}! ... n_{k}!} = \frac{n!}{n_{1}! n_{2}! ... n_{k}!}$$

Jumlah cara pengaturan seluruh bola kedalam kotak adalah:

$$C(n; n_{1}, n_{2}, ..., n_{k}) = C(n, n_{1}) C(n - n_{1}, n_{2}) C(n - n_{1} - n_{2}, n_{3})$$

$$... C(n - n_{1} - n_{2} - ... - n_{k-1}, n_{k})$$

$$= \frac{n!}{n!! (n - n_{1})!} \frac{(n - n_{1})!}{n!! (n - n_{1} - n_{2})!}$$

$$\frac{(n - n_{1} - n_{2})!}{n!! (n - n_{1} - n_{2} - ... - n_{k-1})!}$$

$$... \frac{(n - n_{1} - n_{2} - ... - n_{k-1})!}{n!! (n - n_{1} - n_{2} - ... - n_{k-1} - n_{k})!}$$

$$= \frac{n!}{n!! n! n! ... n_{k}}$$

Kesimpulan:

$$P(n; n_{1}, n_{2}, ..., n_{k}) = C(n; n_{1}, n_{2}, ..., n_{k}) = \frac{n!}{n! n! ... n!}$$

Contoh 11. Berapa banyak "kata" yang dapat dibentuk dengan menggunakan huruf-huruf dari kata *MISSISSIPPI*?

$$S = \{M, I, S, S, I, S, S, I, P, P, I\}$$

huruf $M = 1$ buah (n_1)
huruf $I = 4$ buah (n_2)
huruf $S = 4$ buah (n_3)
huruf $P = 2$ buah (n_4)
 $n = 1 + 4 + 4 + 2 = 11$ buah $= |S|$

Cara 1: Jumlah
$$string = P(11; 1, 4, 4, 2)$$

$$= \frac{11!}{(1!)(4!)(2!)} = 34650 \text{ buah.}$$

Cara 2: Jumlah
$$string = C(11, 1)C(10, 4)C(6, 4)C(2, 2)$$

$$= \frac{11!}{(1!)(10!)} \cdot \frac{10!}{(4!)(6!)} \cdot \frac{6!}{(4!)(2!)} \cdot \frac{2!}{(2!)(0!)}$$

$$= \frac{11!}{(1!)(4!)(4!)(2!)}$$

$$= 34650 \text{ buah}$$

Contoh 12. Berapa banyak cara membagikan delapan buah mangga kepada 3 orang anak, bila Billy mendapat empat buah mangga, dan Andi serta Toni masing-masing memperoleh 2 buah mangga.

$$n = 8$$
, $n_1 = 4$, $n_2 = 2$, $n_3 = 2$, dan $n_1 + n_2 + n_3 = 4 + 2 + 2 = 8$

Jumlah cara membagi seluruh mangga =
$$\frac{8!}{(4!)(2!)(2!)}$$
 = 420 cara

Contoh 13. 12 buah lampu berwarna (4 merah, 3 putih, dan 5 biru) dipasang pada 18 buah soket dalam sebuah baris (sisanya 6 buah soket dibiarkan kosong). Berapa jumlah cara pengaturan lampu?

$$n = 18$$
; $n_1 = 4$, $n_2 = 3$, $n_3 = 5$, dan $n_4 = 6$ (socket kosong)

Jumlah cara pengaturan lampu =
$$\frac{16!}{(4!)(3!)(5!)(6!)}$$
 cara

Latihan:

 1. 100 orang mahasiswa dikirim ke 5 negara, masing-masing negara 20 orang mahasiswa. Berapa banyak cara pengiriman mahasiswa?

2. Berapa banyak *string* yang dapat dibentuk dari huruf-huruf kata "CONGRESS" sedemikian sehingga dua buah huruf "S" tidak terletak berdampingan?

- 3. Tentukan banyaknya cara agar 4 buku matematika, 3 buku sejarah, 3 buku kimia, dan 2 buku sosiologi dapat disusun dalam satu baris sedemikian sehingga (untuk masing-masing soal)
 - (a)semua buku yang topiknya sama letaknya bersebelahan,
 - (b) urutan buku dalam susunan bebas.

Kombinasi Dengan Pengulangan

Misalkan terdapat *r* buah bola yang semua warnanya sama dan *n* buah kotak.

(i) Masing-masing kotak hanya boleh diisi paling banyak satu buah bola.

Jumlah cara memasukkan bola: C(n, r).

(ii) Masing-masing kotak boleh lebih dari satu buah bola (tidak ada pembatasan jumlah bola)

Jumlah cara memasukkan bola: C(n + r - 1, r).

$$C(n+r-1, r) = C(n+r-1, n-1).$$

Contoh 14. Pada persamaan $x_1 + x_2 + x_3 + x_4 = 12$, x_i adalah bilangan bulat ≥ 0 . Berapa jumlah kemungkinan solusinya?

Penyelesaian:

- Analogi: 12 buah bola akan dimasukkan ke dalam 4 buah kotak (dalam hal ini, n = 4 dan r = 12).
- Bagilah keduabelas bola itu ke dalam tiap kotak. Misalnya,

Kotak 1 diisi 3 buah bola $(x_1 = 3)$ Kotak 2 diisi 5 buah bola $(x_2 = 5)$ Kotak 3 diisi 2 buah bola $(x_3 = 2)$ Kotak 4 diisi 2 buah bola $(x_4 = 2)$ $x_1 + x_2 + x_3 + x_4 = 3 + 5 + 2 + 2 = 12$

Ada C(4 + 12 - 1, 12) = C(15, 12) = 455 buah solusi.

Contoh 15. 20 buah apel dan 15 buah jeruk dibagikan kepada 5 orang anak, tiap anak boleh mendapat lebih dari 1 buah apel atau jeruk, atau tidak sama sekali. Berapa jumlah cara pembagian yang dapat dilakukan?

Penyelesaian:

n=5, $r_1=20$ (apel) dan $r_2=15$ (jeruk) Membagi 20 apel kepada 5 anak: C(5+20-1, 20) cara, Membagi 15 jeruk kepada 5 anak: C(5+15-1, 15) cara.

Jumlah cara pembagian kedua buah itu adalah

$$C(5+20-1,20) \times C(5+15-1,15) = C(24,20) \times C(19,15)$$

Latihan:

- 1. Ada 10 soal di dalam ujian akhir *Matematika Diskrit*. Berapa banyak cara pemberian nilai (bilangan bulat) pada setiap soal jika jumlah nilai keseluruhan soal adalah 100 dan setiap soal mempunyai nilai paling sedikit 5. (Khusus untuk soal ini, nyatakan jawaban akhir anda dalam *C*(*a*, *b*) saja, tidak perlu dihitung nilainya)
- 2. Di perpustakaan Teknik Informatika terdapat 3 jenis buku: buku Algoritma dan Pemrograman, buku Matematika Diskrit, dan buku Basisdata. Perpustakaan memiliki paling sedikit 10 buah buku untuk masingmasing jenis. Berapa banyak cara memilih 10 buah buku?
- 3. Dari sejumlah besar koin 25-an, 50-an, 100-an, dan 500an, berapa banyak cara lima koin dapat diambil?

Koefisien Binomial

$$(x+y)^n = C(n,0) x^n + C(n,1) x^{n-1} y^1 + \dots + C(n,k) x^{n-k} y^k + \dots + C(n,n) y^n = \sum_{k=0}^n C(n,k) x^{n-k} y^k$$

Koefisien untuk $x^{n-k}y^k$ adalah C(n, k). Bilangan C(n, k) disebut **koefisien binomial**.

Segitiga Pascal

Contoh 16. Jabarkan $(3x - 2)^3$.

Penyelesaian:

Misalkan $a = 3x \operatorname{dan} b = -2$,

$$(a+b)^3 = C(3,0) a^3 + C(3,1) a^2b^1 + C(3,2) a^1b^2 + C(3,3) b^3$$

= 1 (3x)³ + 3 (3x)² (-2) + 3 (3x) (-2)² + 1 (-2)³
= 27 x³ - 54x² + 36x - 8

Contoh 17. Tentukan suku keempat dari penjabaran perpangkatan $(x - y)^5$.

Penyelesaian:

$$(x - y)^5 = (x + (-y))^5.$$

Suku keempat adalah: $C(5, 3) x^{5-3} (-y)^3 = -10x^2y^3$.

Contoh 18. Buktikan bahwa $\sum_{k=0}^{n} C(n,k) = 2^{n}$.

Penyelesaian:

Dari persamaan (6.6), ambil x = y = 1, sehingga

$$\Leftrightarrow (x+y)^n = \sum_{k=0}^n C(n,k) x^{n-k} y^k$$

$$\Leftrightarrow (1+1)^n = \sum_{k=0}^n C(n,k) \, 1^{n-k} \, 1^k = \sum_{k=0}^n C(n,k)$$

$$\Leftrightarrow 2^n = \sum_{k=0}^n C(n,k)$$

Latihan:

Perlihatkan bahwa $\sum_{k=0}^{\infty} 2^k C(n, k) = 3^n$

Pigeonhole Principle

Pigeonhole principle = prinsip sarang burung merpati

 Prinsip Sarang Merpati. Jika n + 1 atau lebih objek ditempatkan di dalam n buah kotak, maka paling sedikit terdapat satu kotak yang berisi dua atau lebih objek.

Bukti: Misalkan tidak ada kotak yang berisi dua atau lebih objek. Maka, total jumlah objek paling banyak adalah n. Ini kontradiksi, karena jumlah objek paling sedikit n + 1.

Gambar Kandang merpati dengan 14 buah sarang (pigeonhole) dan 16 ekor merpati.

- Prinsip sarang merpati, jika diterapkan dengan baik, akan memberikan hanya objek-objek yang ada, dan bukan memberitahukan bagaimana mencari objek tersebut dan berapa banyak.
- Pada masalah sarang burung merpati, prinsip ini tidak memberitahukan di sarang merpati mana yang berisi lebih dari dua ekor merpati.

Contoh 19. Dari 27 orang mahasiswa, paling sedikit terdapat dua orang yang namanya diawali dengan huruf yang sama, karena hanya ada 26 huruf dalam alfabet. Jika kita menganggap 27 huruf awal dari nama-nama mahasiswa sebagai merpati dan 26 huruf alfabet sebagai 26 buah lubang merpati, kita bisa menetapkan pemasangan 27 huruf awal nama ke 26 huruf alfabet seperti halnya pemasangan merpati ke sarang merpati.

Menurut prinsip sarang merpati, beberapa huruf awal alfabet dipasangkan dengan paling sedikit dua huruf awal nama mahasiswa.

Contoh 20. Misalkan terdapat banyak bola merah, bola putih, dan bola biru di dalam sebuah kotak. Berapa paling sedikit jumlah bola yang diambil dari kotak (tanpa melihat ke dalam kotak) untuk menjamin bahwa sepasang bola yang berwarna sama terambil?

Penyelesaian:

Jika setiap warna dianggap sebagai sarang merpati, maka n=3. Karena itu, jika orang mengambil paling sedikit n+1=4 bola (merpati), maka dapat dipastikan sepasang bola yang berwarna sama ikut terambil. Jika hanya diambil 3 buah, maka ada kemungkinan ketiga bola itu berbeda warna satu sama lain. Jadi, 4 buah bola adalah jumlah minumum yang harus diambil dari dalam kotak untuk menjamin terambil sepasang bola yang berwarna sama.

Prinsip Sarang Merpati yang Dirampatkan. Jika M objek ditempatkan di dalam n buah kotak, maka paling sedikit terdapat satu kotak yang berisi minimal $\lceil M / n \rceil$ objek.

• **Contoh 21.** Di antara 50 orang mahasiswa, terdapat paling sedikit $\lceil 50/12 \rceil = 5$ orang yang lahir pada bulan yang sama.

Contoh 22. Tinjau kembali Contoh 18. Berapa paling sedikit jumlah bola yang harus diambil dari dalam kotak sehingga 3 pasang bola yang setiap pasangnya berwarna sama terambil?

<u>Penyelesaian</u>:

Tiga pasang bola yang setiap pasang berwarna sama berarti semuanya 6 buah bola. Pada masalah ini, *n* masih tetap sama dengan 3 (yaitu jumlah warna), dan kita perlu mengambil paling sedikit M buah bola untuk memastikan bahwa $\lceil M/3 \rceil =$ 6 bola mengandung setiap pasang bola yang berwarna sama. Nilai $M = 3 \cdot 5 + 1 = 16$. Jika kita hanya mengambil 15 bola, maka mungkin saja hanya terambil 2 macam bola yang berwarna sama. Jadi, jumlah 16 buah bola adalah jumlah minimal yang perlu kita ambil dari dalam kotak untuk memastikan bahwa 3 pasang bola yang setiap pasang berwarna sama terambil.