Déduction automatique en logique propositionnelle classique

David Delahaye

Faculté des Sciences David. Delahaye@lirmm.fr

Master Informatique M2 2022-2023

Méthode naïve

Tester toutes les assignations

- On donne toutes les valeurs possibles aux variables propositionnelles;
- Les valeurs d'une variable propositionnelle sont \top et \bot ;
- La proposition est valide si elle donne ⊤ dans tous les cas;
- La proposition est insatisfiable si elle donne ⊥ dans tous les cas;
- La proposition est non valide si elle donne ⊥ dans certains cas;
- La proposition est satisfiable si elle donne ⊤ dans certains cas.

Remarques

- Méthode naïve car exponentielle (donc inefficace);
- Pour *n* variables, on a 2ⁿ cas à tester.

Exemple

Tester la validité d'une formule

- $A \wedge B \Rightarrow A$;
- On fait une table de vérité :

Α	В	$A \wedge B$	$A \wedge B \Rightarrow A$
T	Т	Т	Т
Т	1	上	T
上	Т	上	T
1	1	上	T

• On peut faire un arbre aussi, puis annoter les noeuds/feuilles par les valeurs de vérité, c'est plus visuel.

Méthode de Davis-Putnam-Logemann-Loveland

Principe des méthodes clausales par réfutation

- On n'utilise pas la formule initiale en entrée;
- On nie la formule (on prend sa négation);
- On la met sous forme clausale (ensemble de clauses);
- Une clause est disjonction de littéraux;
- Un littéral est un axiome ou la négation d'un axiome;
- Un axiome est une variable (propositionnelle);
- Puis on cherche si la forme clausale est insatisfiable;
- Si elle l'est alors sa négation (la formule initiale) est valide.

Mise en forme clausale

Règles de transformation

$$\neg \neg F \to F \quad \neg \top \to \bot \quad \neg \bot \to \top
\neg (F_1 \land F_2) \to \neg F_1 \lor \neg F_2 \quad \neg (F_1 \lor F_2) \to \neg F_1 \land \neg F_2
F_1 \Rightarrow F_2 \to \neg F_1 \lor F_2
F_1 \land \top \to F_1 \quad \top \land F_1 \to F_1 \quad F_1 \land \bot \to \bot \quad \bot \land F_1 \to \bot
F_1 \lor \top \to \top \quad \top \lor F_1 \to \top \quad F_1 \lor \bot \to F_1 \quad \bot \lor F_1 \to F_1
(F_1 \land F_2) \lor F_3 \to (F_1 \lor F_3) \land (F_2 \lor F_3)
F_3 \lor (F_1 \land F_2) \to (F_3 \lor F_1) \land (F_3 \lor F_2)$$

Mise en forme clausale

Exemple

- Proposition : $A \wedge B \Rightarrow A$.
- Étapes de clausification :

$$A \wedge B \Rightarrow A \rightarrow \neg (A \wedge B) \vee A \rightarrow \neg A \vee \neg B \vee A$$

• L'ensemble de clauses est : $\{\neg A \lor \neg B \lor A\}$.

La règle de base de DPLL : le « splitting »

Principe du « splitting »

- On considère un ensemble de clauses S et une variable A;
- On note $S[A := \top]$ l'ensemble obtenu en enlevant de S toutes les clauses contenant le littéral A et en effaçant le littéral $\neg A$ dans les clauses restantes ;
- On note $S[A := \bot]$ l'ensemble obtenu en enlevant de S toutes les clauses contenant le littéral $\neg A$ et en effaçant le littéral A dans les clauses restantes ;
- ullet On notera que S est satisfiable ssi $S[A:=\top]$ ou $S[A:=\bot]$ l'est;
- ullet On notera que S est insatisfiable ssi $S[A:=\top]$ et $S[A:=\bot]$ le sont;
- On peut « splitter » selon toutes les variables de S, mais on retombe exactement sur la méthode naïve, qui est exponentielle;
- Le but de DPLL est donc d'éviter à tout prix le « splitting ».

La règle de base de DPLL : le « splitting »

Simplifications implicites

- On considère des simplifications implicites lorsqu'on réalise les opérations $S[A := \top]$ et $S[A := \bot]$;
- Si \top appartient à une clause alors cette clause est éliminée de S (du coup, S peut devenir vide et il sera satisfiable);
- Si \perp appartient à une clause alors on élimine \perp de la clause (du coup, on peut avoir une clause vide \square et S sera alors insatisfiable).

Une règle de simplification : la résolution unitaire

Principe de la résolution unitaire

- Une clause est unitaire si elle contient un unique littéral A ou $\neg A$;
- Si $A \in S$ alors on peut remplacer S par $S[A := \top]$;
- En effet, si $A \in S$, S est satisfiable ssi S[A := T] l'est;
- Si $\neg A \in S$ alors on peut remplacer S par $S[A := \bot]$;
- En effet, si $\neg A \in S$, S est satisfiable ssi $S[A := \bot]$ l'est.

Une règle de simplification : les clauses pures

Principe des clauses pures

- Un atome A est pur dans S ssi il apparaît toujours avec le même signe;
- Autrement dit, pour un atome A, soit $A \notin S$, soit $\neg A \notin S$;
- On dira que A ou $\neg A$ est un littéral pur dans S;
- Une clause contenant un littéral pur sera dite pure;
- Si P est le sous-ensemble des clauses pures de S, alors on peut remplacer S par $S \setminus P$;
- En effet, S est satisfiable ssi $S \setminus P$ l'est.

Une règle de simplification : les clauses pures

Principe des clauses pures

- Un atome A est pur dans S ssi il apparaît toujours avec le même signe;
- Autrement dit, pour un atome A, soit $A \notin S$, soit $\neg A \notin S$;
- On dira que A ou $\neg A$ est un littéral pur dans S;
- Une clause contenant un littéral pur sera dite pure;
- Si P est le sous-ensemble des clauses pures de S, alors on peut remplacer S par $S \setminus P$;
- En effet, S est satisfiable ssi $S \setminus P$ l'est.

Une dernière simplification : les tautologies

- Une tautologie est une clause contenant à la fois A et $\neg A$;
- Si T est le sous-ensemble des tautologies de S, alors on peut remplacer S par $S \setminus T$;
- En effet, S est satisfiable ssi $S \setminus T$ l'est.

Procédure de DPLL

Algorithme

```
DPLL(S) =
   si S = \emptyset alors retourner « satisfiable »;
   sinon si \square \in S alors retourner « insatisfiable » ;
   sinon si S contient une tautologie C alors retourner DPLL(S \setminus C);
   sinon si S contient une clause unitaire avec A (resp. \neg A) alors
       retourner DPLL(S[A := \top]) (resp. DPLL(S[A := \bot]));
   sinon si A (resp. \neg A) est pur dans S alors
       retourner DPLL(S[A := \top]) (resp. DPLL(S[A := \bot]));
   sinon choisir une variable A de S
      et retourner DPLL(S[A := \top]) ou DPLL(S[A := \bot]).
```

Exécution

Exemple

- Démontrer la validité de la formule : $A \land B \Rightarrow A$;
- On nie la formule : $\neg(A \land B \Rightarrow A)$;
- On la met sous forme clausale : $\neg(A \land B \Rightarrow A) \rightarrow \neg(\neg(A \land B) \lor A) \rightarrow \neg\neg(A \land B) \land \neg A \rightarrow A \land B \land \neg A$
- $S = \{A, B, \neg A\}$;
- On applique DPLL:
 - On a une clause unitaire A, on calcule $S[A := \top] : S[A := \top] = \{\top, B, \neg \top\} = \{B, \bot\} = \{B, \Box\}$ On appelle $\mathsf{DPLL}(S[A := \top]) = \mathsf{DPLL}(\{B, \Box\})$
 - ightharpoonup On a la clause vide \square , on retourne « insatisfiable ».

Résolution

Principe de la méthode

- Méthode clausale par réfutation (comme DPLL) :
 - On nie la proposition initiale;
 - On la met ensuite en forme clausale.
- Règle de résolution entre deux clauses :

$$\frac{C \vee A \qquad \neg A \vee C'}{C \vee C'}$$

- Les clauses au-dessus de la barre sont les prémisses;
- La clause en dessous est le résolvant entre les clauses prémisses.

Procédure de résolution

Algorithme

```
Sat := \emptyset:
tant que S \neq \emptyset faire
   choisir C \in S:
   S := S \setminus \{C\}:
   si C = \square alors retourner « insatisfiable » :
   si C est une tautologie alors; (* passer à la clause suivante *)
   sinon, si C \in Sat alors; (* idem *)
   sinon pour tout résolvant C_1 entre C
   et une clause de Sat \cup \{C\} faire
       S := S \cup \{C_1\};
   Sat := Sat \cup \{C\};
retourner « satisfiable ».
```

Exécution

Exemple

- Démontrer la validité de la formule : $A \land B \Rightarrow A$;
- $S = \{A, B, \neg A\}$;
- On applique la résolution :
 - ► $Sat = \emptyset$, $S = \{A, B, \neg A\}$;
 - On choisit la clause $A: Sat = \{A\}, S = \{B, \neg A\}$;
 - ▶ On choisit la clause $B : Sat = \{A, B\}$, $S = \{\neg A\}$;
 - \triangleright On choisit la clause $\neg A$:
 - * Résolution entre $\neg A$ et A: résolvant \square ;
 - * $Sat = \{A, B, \neg A\}, S = \{\Box\};$
 - ▶ On choisit la clause □, on retourne « insatisfiable ».

Un peu d'histoire

- Méthode plus ancienne que la résolution;
- Introduite par les pionniers Hintikka et Beth (années 50);
- Perfectionnée ensuite par Smullyan et Fitting;
- À partir du calcul des séquents de Gentzen sans coupure.

Principe

• Par réfutation sur la proposition initiale et par cas.

De LKO aux règles de la méthode des tableaux

- α -règles (pas de branchement);
- β -règles (branchement).

De LKO aux règles de la méthode des tableaux

$$\frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \Rightarrow B} \Rightarrow_{\mathsf{right}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{\Gamma \vdash \Delta, A \Rightarrow B}{\Gamma, A \vdash \Delta, B} \Rightarrow_{\mathsf{right}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{\vdash A \Rightarrow B}{A \vdash B} \Rightarrow_{\mathsf{right}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{\neg (A \Rightarrow B) \vdash \bot}{A, \neg B \vdash \bot} \Rightarrow_{\mathsf{right}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{\neg (A \Rightarrow B)}{A, \neg B} \alpha_{\neg \Rightarrow}$$

De LKO aux règles de la méthode des tableaux

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{\mathsf{left}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{\Gamma, A \Rightarrow B \vdash \Delta}{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta} \Rightarrow_{\mathsf{left}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{A \Rightarrow B \vdash \bot}{\vdash A \quad B \vdash \bot} \Rightarrow_{\mathsf{left}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{A \Rightarrow B \vdash \bot}{\neg A \vdash \bot} \Rightarrow_{\mathsf{left}}$$

De LKO aux règles de la méthode des tableaux

$$\frac{A \Rightarrow B}{\neg A \mid B} \beta_{\Rightarrow}$$

Règles de clôture et règles analytiques

$$\frac{\bot}{\odot}\odot\bot \qquad \frac{\neg\top}{\odot}\odot\neg\top \qquad \frac{P \qquad \neg P}{\odot}\odot$$

$$\frac{\neg\neg P}{P}\alpha\neg\neg \qquad \frac{P\Leftrightarrow Q}{\neg P,\neg Q\mid P,Q}\beta\Leftrightarrow \qquad \frac{\neg(P\Leftrightarrow Q)}{\neg P,Q\mid P,\neg Q}\beta\neg\Leftrightarrow$$

$$\frac{P\land Q}{P,Q}\alpha\land \qquad \frac{\neg(P\lor Q)}{\neg P,\neg Q}\alpha\neg\lor \qquad \frac{\neg(P\Rightarrow Q)}{P,\neg Q}\alpha\neg\Rightarrow$$

$$\frac{P\lor Q}{P\mid Q}\beta\lor \qquad \frac{\neg(P\land Q)}{\neg P\mid \neg Q}\beta\neg\land \qquad \frac{P\Rightarrow Q}{\neg P\mid Q}\beta\Rightarrow$$

Exemple

$$\frac{\neg (A \land B \Rightarrow A)}{A \land B, \neg A} \alpha_{\land} \xrightarrow{A, B, \neg A} \alpha_{\land}$$