

Improving word mover's distance by leveraging self-attention matrix

Hiroaki Yamagiwa¹, Sho Yokoi^{2,3}, Hidetoshi Shimodaira^{1,3} ¹Kyoto University ²Tohoku University ³RIKEN AIP

Background

- Word Mover's Distance (WMD) [1] uses the Wasserstein distance to measure semantic textual similarity.
- WMD cannot address the order of words within a sentence.

Approach

- Use the Self-Attention Matrix (SAM) from BERT-based models as structure information.
- Propose a novel method that combines WMD and SAM using the Fused Gromov-Wasserstein distance [2].

Results

The method improved the performance of WMD-like methods in a paraphrase identification task [3],

sentence2 sentence 1 obama the speaks press media to greets president the the illinois speaks president media in in greets chicago illinois •••• OT of WMD (proposal) OT of SMD or WSMD

Methods

Let A and A' be the **SAM**s for sentences s and s'. Define the Word and sentence Structure Mover's Distance (WSMD) as follows:

Head Selection

The performance varies significantly among different attention heads.

By selecting layers and using the heads within them, we average the WSMD to evaluate the performance.

- For paraphrase identification, we used the PAWS [3] dataset, which contains sentence pairs gray with high word overlap.
- **WSMD** was effective for WMDlike methods such as WMD, WRD, and SynWMD.

References

- Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From word embeddings to document distances. ICML.
- Titouan Vayer, Nicolas Courty, Romain Tavenard, Laetitia Chapel, and Rémi Flamary. 2019. Optimal transport for structured data with application on graphs. PMLR.
- Yuan Zhang, Jason Baldridge, and Luheng He. 2019. PAWS: Paraphrase adversaries from word scrambling. NAACL.