1 Cosmology

1.1 Cosmological Parameters

$$\Omega_x(t) = \frac{\rho_x(t)}{\rho_{\rm crit}(t)}$$

Sum to one: $\Omega_m + \Omega_{\lambda} + \Omega_{\kappa} = 1$

Values measured today:

Matter: $\Omega_m \approx 30\%$

Dark matter: $\Omega_{DM} = \Omega_m - \Omega_b = 25\%$

Baryonic density: $\Omega_b \approx 5\%$

Cosm. const.: $\Omega_{\Lambda} = 70\%$

Curvature: $|\Omega_{\kappa}| < 1\%$

Measured via standard candles and standard rulers.

1.2 Standard Candles

SNIa explode at same Chandrasekhar mass. High luminosity fluctuations exist.

Phillips: SNIa with higher peak M take longer to fade. Gives luminosity distance d_L up to an overall factor.

1.3 Distances

Luminosity distance:

$$F = \frac{L}{4\pi d_L^2(z)}$$

Angular diameter distance

$$d_A(z) = \frac{l_{\text{phys}}}{\delta \theta}$$

where $l_{\rm phys}$ is the physical size of the small edge of the triangle. units the angle is measured in radians!

Their relation is

$$d_L = d_A (1+z)^2$$

where the angular diameter distance is smaller. Scale factor relates physical and comoving distances

$$r_{\rm phys} = a(t)r_{\rm comoving}$$

For the local group $(z \ll 1)$, all distances agree:

$$d_{\text{phys}} = d_{\text{comoving}} = d_A = d_L$$

1.4 Magnitudes

Bigger magnitude means fainter object. Dimming: magnitude increases $m+\Delta m_{15}$

Apparent magnitude: $m = -2.5 \log_{10}(\frac{F}{F_{\text{ref}}})$

Absolute magnitude is apparent magnitude at distance of 10pc

$$M = -2.5 \log_{10}\left(\frac{L}{L_{\text{ref}}}\right)$$

Distance modulus is difference between apparent and absolute magnitudes:

$$\mu = m - M = 5\log_{10}\left(\frac{d_L}{\text{Mpc}}\right) + 25$$

1.5 Scale Factor

Hubble's law:

$$v = H_0 d$$

with $H(t) = \frac{\dot{a}}{a}$

Relationship between redshift and scale factor

$$1 + z = \frac{1}{a}$$

Blackbody temperature and scale factor

$$T = \frac{T_0}{a}$$

1.6 Curvature

flat: $\kappa = 0$ closed: $\kappa > 0$ open: $\kappa < 0$

For a flat universe, $\rho = \rho_{crit} = \frac{H^2(t)}{(8\pi G/3)}$.

1.7 Matter

matter: $\rho_m = \frac{\rho_{m,0}}{a^3}$ radiation: $\rho_r = \frac{\rho_{r,0}}{a^4}$

Matter-radiation equality z_{eq}

1.8 CMB

Ionised early universe. Thomson scattering of photons with free electrons gives Photon-baryon fluid. At recombination, z=1100, hydrogen forms and photons travel freely \Rightarrow CMB. Temperature $T_{CMB}=2.72 \mathrm{K}$

Recombination $z_{\text{rec}} = 1100$ at energy scale $T_{CMB}(z+1) = 3000K$. Later than ionisation energy due to Wien tail.

BAO: photon pressure against grav. collapse \Rightarrow sound waves with wavelength: Comoving sound horizon: $\lambda_S \approx 150 \mathrm{Mpc}$ Standard ruler (2-point correlation in CMB), first peak, used to measure d_A and thus cosmological parameters (curvature).

1.9 Large Scale Structure

CMB anisotropies $\frac{\delta T}{T} \sim 10^5$

Perturbations (relative matter density contrast) grow as

- matter: $\delta \sim t^{2/3} \sim a$
- radiation domination: $\delta \sim \ln t$, $a \sim t^{1/2}$
- cosmological constant: $\delta \sim 1$

Need dark matter (not affected by BAO's) to explain structures today.

1.10 Equations

Acceleration Equation

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho(1+3w)$$

Friedmann Equation

$$H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa c^2}{a^2} = H_0^2 \left[\frac{\Omega_m}{a^3} + \frac{\Omega_r}{a^4} + \frac{\Omega_\kappa}{a^2} + \Omega_\Lambda \right]$$

1.11 Horizon and Flatness Problem

Horizon: Horizon distance at recombination with $\Omega_m=0.3$ subtends 1° on the sky. These places were never in causal contact but still have the same CMB temperature.

Flatness: In order for $\Omega = \frac{\rho}{\rho_{crit}} \approx 1$, the initial density must have a particular fine-tuned value giving a flat universe.

Inflation solves these by enlarging a small patch in causal contact to larger than the observable universe, flattening any curvature.

Number of e-folds N_i :

$$\frac{a(t_{\rm end})}{a(t_{\rm start})} = e^{N_i}$$

Energy density of inflation: $\rho_i^{ed} = 10^{101} [\frac{TeV}{m^3}]$

1.12 Neutron Freeze-out

Weak force falls as $\Gamma_W \sim t^{-5/2}$, Hubble (expansion) parameter as $H \sim t^{-1}$. When $Gamma_W < H$, weak interactions do not keep up with expansion and comoving baryon number density is constant.

Helium Mass fraction: 25% of baryonic mass is primordial 4He

$$Y = \frac{\text{(Helium mass density)}}{\text{(total baryon mass density)}} = \frac{4n_{He}}{4n_{He} + n_{H}} \approx 25\%$$

Can measure Ω_b and thus $\Omega_{DM} = \Omega_m - \Omega_b$

1.13 Dark Matter

Evidence:

- flat rotation curves: expect $v^2 \sim r^{-1}$, but observe $v \sim const. \Rightarrow dark halo$
- gravitational lensing ⇒ total mass determined via strong lensing much larger than baryonic mass
- structure formation
- BBN and CMB
- absence of microlensing rules out MACHOs

WIMPS: non-relativistic (cold) at freeze-out. Neutrinos: relativistic (hot) at freeze-out.

WIMP miracle: relic density of right magnitude.

Cosmological constant domination for $z \ll z_{\star}$ matter- Λ equality

2 Particle Physics

2.1 Feynman Diagrams

• electrical quark charge is written e_q at vertex

2.2 Scattering

Measure $R = \frac{\sigma(\text{hadrons})}{\sigma(\mu^+\mu^-)}$ to cancel out errors in beam intensity and detector efficiency.

2.3 Proton Structure

Each parton carries xp momentum, then

- 1. initially, have $E_{cm} = E_1 + E_2 = 2pc$ and $p_T = 0$
- 2. partons carry $E'_T = (x_1 + x_2)pc$ and

$$p_T' = p_1 - p_2 = (x_1 - x_2)p$$

3. Centre of mass energy is then

$$E'_{cm} = \sqrt{s} = \sqrt{(x_1 + x_2)^2 - (x_1 - x_2)^2} pc = \sqrt{x_1 x_2} E_{cm}$$

4. for creation of 2 particles, condition is $E'_{cm} \geq 2mc^2$, so

$$\sqrt{x_1 x_2} \ge 2 \frac{mc^2}{E_{cm}}$$

3 Fluid Dynamics

3.1 Fundamentals

• Mass conservation / continuity equation

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} = 0$$

• material / Lagrangian derivative following a fluid parcel

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})$$

3.2 Types of Flow

• angular momentum conserving flow

$$u_{\theta} = \frac{L}{r}$$

• source / sink flow

$$u_r = \frac{Q}{2\pi r}$$

• solid body rotation

$$u_r = u_z = 0$$
 $u_\theta = \Omega r$

3.3 Navier-Stokes I

• body forces (long range)

$$\mathbf{F}_B = \iiint \rho \mathbf{f}_B \, \mathrm{d}V$$

- force per unit mass
- for gravity $f_B = g$
- surface forces (short range)

$$\mathbf{F}_S = \iint \mathbf{f}_S \, \mathrm{d}S = \iint (-P\mathbf{n} + \boldsymbol{\tau}) \, \mathrm{d}S$$

- force per unit area (i.e. stress)
- pressure contribution

$$-\iint P\,\mathrm{d}\boldsymbol{S} = -\iiint \boldsymbol{\nabla} P\,\mathrm{d}V$$

• hydrostatic balance: fluid at rest, external forces (gravity) balanced by pressure gradient force

3.4 Viscosity

• Newtonian fluid

$$\tau = \mu \frac{\mathrm{d}u}{\mathrm{d}z}$$

- viscous stress is tangential (in x-direction)
- viscous force $F = \tau A$, where A is the area of the walls
- viscosity: $\mu > 0$
- kinematic viscosity: $\nu = \mu/\rho$ in $m^2 s^{-1}$

water: $\nu_{\rm water} \sim 10^{-6} \, {\rm m}^2 \, {\rm s}^{-1}$ air: $\nu_{\rm air} \sim 10^{-5} \, {\rm m}^2 \, {\rm s}^{-1}$

- 1D viscous force (change in momentum) per unit mass is

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial z^2}$$

In general, viscous force per unit mass is given by

$$\frac{\boldsymbol{F}}{m} = \nu \nabla^2 \boldsymbol{u}.$$

For divergence-free flows, $-\nu \nabla \times \zeta$.

Viscosity measures the momentum flow, so constant vorticity flows do not mix / rearrange fluid parcels.

3.5 Boundary Conditions

No-slip: u = 0 at boundaries (e.g. strong friction)

Free-slip: $u \neq 0$ at boundaries

no normal flow: $u \cdot \hat{n}$ flow cannot penetrate boundary

3.6 Navier-Stokes II

• constant density + continuity \implies divergence-free

$$\frac{D\rho}{Dt} = 0 \implies \nabla \cdot \boldsymbol{u} = 0$$

 for Newtonian fluid of const. density, viscous force per unit volume is

$$\mathrm{d}F = \mu \nabla^2 \boldsymbol{u} \, \mathrm{d}V$$

• Navier-Stokes equation (constant ρ, μ)

$$\frac{D\boldsymbol{u}}{Dt} = \boldsymbol{f}_B - \frac{\boldsymbol{\nabla}P}{\rho} + \nu \nabla^2 \boldsymbol{u}$$

– kinematic viscosity $\nu = \mu/\rho$ in $m^2 s^{-1}$

3.7 Flow in Long Channel

Assumptions:

1. Steady-state: $\partial/\partial t = 0$

2. No edge effects: $\mathbf{u} = u\mathbf{i}$

3. Flow is slab: $\partial u/\partial z = 0$

4. no slip BC: u = 0

- Parabolic solution $u(y) = \frac{F}{2\mu}(1 (y/a)^2)$
- hydrodynamic lubrication: $\Delta P = \tau \ l/a \gg \tau$

3.8 Reynolds number

$$R_e = \frac{\text{inertia}}{\text{viscosity}} = \frac{(\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u}}{\nu \nabla^2 \boldsymbol{u}} = \frac{UL}{\nu}$$

3.8.1 Low R_e : Stokes flow

- neglect inertia compared to viscosity
- Steady-state Navier-Stokes for $R_e \ll 1$

$$\mathbf{0} \approx -\frac{\mathbf{\nabla}P'}{\rho} + \nu \nabla^2 u$$

- gravity: background pressure $g = \frac{1}{a} \nabla P_{\text{ref}}$
- perturbation pressure $P' = P P_{ref}$
- solution determined by
 - continuity $\nabla \cdot \boldsymbol{u} = 0$
 - no-slip u = 0 at boundary
 - $\nabla^2 \boldsymbol{\zeta} = \nabla^2 (\boldsymbol{\nabla} \times \boldsymbol{u}) = \mathbf{0}$
- features
 - long range r^{-1} effect
 - reversibility $(\boldsymbol{u}, P') \leftrightarrow (-\boldsymbol{u}, -P')$

3.8.2 High R_e

- neglect viscosity compared to inertia
- Navier-Stokes for $R_e >> 1$

$$rac{Doldsymbol{u}}{Dt} pprox -rac{oldsymbol{
abla}P}{
ho} + oldsymbol{g}$$

- boundary layer $\delta \approx L/\sqrt{R_e}$
- Bernoulli function

$$B = \frac{P}{\rho} + \frac{1}{2}u^2 + \Phi$$

- gravitational potential Φ satisfies $g = -\nabla \Phi$
- conserved by fluid parcel in steady flow: $\boldsymbol{u} \cdot \boldsymbol{\nabla} B = 0$

3.9 Drag and Lift

$$F_{\text{drag}} = \iint_{\text{object}} (-P \boldsymbol{n} + \boldsymbol{\tau}) \cdot \boldsymbol{i} \, dS$$

• Stokes' law for low R_e :

$$F_{\rm drag} = 6\pi\mu ua$$

- reduce drag: streamline the object, or create rough surface to generate turbulent boundary layer
- viscosity is key to drag: sets pressure field and controls drag indirectly. No drag when viscosity is zero.

3.10 Circulation and Vorticity

$$C = \oint \boldsymbol{u} \cdot d\boldsymbol{l} = \iint \boldsymbol{\zeta} \cdot d\boldsymbol{S}$$

- generated by viscous stresses on surface of body
- Kelvin's circulation theorem: when viscous effects are neglected, for constant density fluid,

$$DC/Dt = 0$$

along material contour

- \implies for small circuit δS , $\zeta \delta S =$ constant following the flow
- ⇒ in the absence of viscosity, a fluid of constant density cannot gain circulation or vorticity

3.10.1 Hurricane Formation

$$u = u_R + \Omega \times r \implies \zeta = \zeta_R + 2\Omega$$

• Kelvin's circulation thm \implies choosing $\delta S \perp k$:

$$\mathbf{k} \cdot (\mathbf{\zeta}_R + 2\mathbf{\Omega})\delta S = \text{const.}$$

• close to equator $f_0 = 2\mathbf{\Omega} \cdot \mathbf{k} \approx 0$, so if initially $\mathbf{k} \cdot \mathbf{\zeta}_R = 0$, the vorticity will stay that way indep. of δS

3.11 Geophysical Fluid Dynamics

• Navier-Stokes in rotating frame

$$\frac{D\boldsymbol{u}}{Dt} = -\underbrace{\boldsymbol{\nabla}\Phi'}_{\boldsymbol{f}_B} - \frac{\boldsymbol{\nabla}P}{\rho} + \nu \nabla^2 \boldsymbol{u} \underbrace{-2\boldsymbol{\Omega} \times \boldsymbol{u}}_{\text{Coriolis}}$$

$$\boldsymbol{g} = -\boldsymbol{\nabla}\Phi$$
 and $\Phi' = \Phi - \Omega^2 r_H^2/2$

• Rossby number

$$R_o = \frac{\text{inertia}}{\text{Coriolis}} = \frac{U}{2\Omega L}$$

• Geostrophic balance equation

$$-fv \approx -\frac{1}{\rho}\frac{\partial P}{\partial x} + fu \approx -\frac{1}{\rho}\frac{\partial P}{\partial y}$$

- valid for $R_e\gg 1\gg R_o$ (Coriolis \gg inertia \gg viscosity), e.g. Oceans, cyclones in atmosphere, but not hurricanes
- also assumes steady state
- Coriolis parameter: $f = 2\mathbf{\Omega} \cdot \mathbf{k}$
- Taylor columns: $R_e \gg 1 \gg R_0$