CONSERVATION HAMILTONIAN RTS-RK

ASSYR ABDULLE* AND GIACOMO GAREGNANI†

1. Mean Hamiltonian. Consider the Hamiltonian $Q: \mathbb{R}^d \to \mathbb{R}$ and the ODE

(1)
$$y' = J^{-1}\nabla Q(y), \quad y(0) = y_0.$$

Applying a symplectic Runge Kutta method identified by its numerical flow Ψ , we have that the modified equation is still Hamiltonian and there exist functions Q_j , $j = 2, \ldots$, such that

(2)
$$\tilde{Q}(y) = Q(y) + hQ_2(y) + h^2Q_3(y) + \dots,$$

where h is the time step. The series in (2) does not converge, hence we consider the truncation after N terms

(3)
$$\tilde{Q}(y) = Q(y) + hQ_2(y) + \dots + h^{N-1}Q_N(y).$$

Moreover, if q is the order of convergence for Ψ , we have that $Q_i \equiv 0$ for $i = 2, \ldots, q$, hence

(4)
$$\tilde{Q}(y) = Q(y) + h^q Q_{q+1}(y) + \dots + h^{N-1} Q_N(y).$$

Let us assume that Q is analytic in a neighbourhood of y_0 and denoting $f = J^{-1}\nabla Q$ that there exist positive constants R and M such that $||f(y)|| \leq M$ for all $y \in B_{2R}(y_0) \subset \mathbb{R}^d$. Let us moreover introduce the constants μ and κ given by

(5)
$$\mu = \sum_{i=1}^{s} |b_i|, \quad \kappa = \max_{i=1,\dots,s} \sum_{j=1}^{s} |a_{ij}|,$$

where $\{b_i\}_{i=1}^s$ and $\{a_{ij}\}_{i,j=1}^s$ are the coefficients of the Runge-Kutta method. Finally, let us introduce the constant $\eta = \max\{\kappa, \mu/(2\log 2 - 1)\}$. Denoting by $\tilde{\varphi}_{N,t}(y)$ the exact flow of the equation corresponding to \tilde{Q} , we have that the local error satisfies [2, Theorem IX.7.6]

(6)
$$\|\Psi_h(y_0) - \tilde{\varphi}_{N,h}(y_0)\| \le h\gamma M e^{-\kappa/h},$$

for all $h \le \kappa/4$, where $\kappa = R/(eM\eta)$ and $\gamma = e(2+1.65\eta + \mu)$. [...]

LEMMA 1.1. Under the assumption ADD THEM, there exist constants $C_i > 0$, i = 1, ..., 4, such that

(7)
$$\mathbb{E}|\tilde{Q}(Y_n) - \tilde{Q}(y_0)| \le C_1 e^{-\kappa/2h} \left(1 + C_2 h^{2p-1}\right).$$

(8)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le C_1 e^{-\kappa/2h} (1 + C_2 h^{2p-1}) + C_3 h^q + C_4 h^{q+p-1/2},$$

over exponentially long time intervals $nh \leq e^{\kappa/h}$.

Proof. We exploit the conservation of \tilde{Q} along the trajectories of its corresponding dynamical system, i.e., $\tilde{Q}(\tilde{\varphi}_{N,z}(y)) = \tilde{Q}(y)$ for $y \in \mathbb{R}^d$ and z > 0 and employ a telescopic sum to obtain

(9)
$$\mathbb{E}|\tilde{Q}(Y_{n}) - \tilde{Q}(y_{0})| \leq \sum_{j=1}^{n} \mathbb{E}|(\tilde{Q}(Y_{j}) - \tilde{Q}(Y_{j-1})|)$$

$$= \sum_{j=1}^{n} \mathbb{E}|\tilde{Q}(Y_{j}) - \tilde{Q}(\tilde{\varphi}_{N,H_{j-1}}(Y_{j-1}))|$$

$$= \sum_{j=1}^{n} \mathbb{E}\mathbb{E}\left(|\tilde{Q}(Y_{j}) - \tilde{Q}(\tilde{\varphi}_{N,H_{j-1}}(Y_{j-1}))| \mid H_{j-1}\right),$$

^{*}Institute of Mathematics, École Polytechnique Fédérale de Lausanne (assyr.abdulle@epfl.ch)

[†]Institute of Mathematics, École Polytechnique Fédérale de Lausanne (giacomo.garegnani@epfl.ch)

where we applied the total expectation with respect to H_{j-1} for the last equality. Then, as Q is Lipschitz with constant independent of h and under the assumptions on $\{H_i\}_{i>0}$ and (6) we have

(10)
$$\mathbb{E}|\tilde{Q}(Y_n) - \tilde{Q}(y_0)| \le C \sum_{j=0}^{n-1} \mathbb{E}\left(H_j e^{-\kappa/H_j}\right)$$
$$= Cn \,\mathbb{E}\left(H_0 e^{-\kappa/H_0}\right),$$

where the equality is given by the assumption of the random time steps being i.i.d. We can now consider the function $g(x) = xe^{-\kappa/x}$ and the bound

(11)
$$g(x) \le g(h) + g'(h)(x - h) + \frac{1}{2} \max_{x>0} g''(x)(x - h)^2$$
$$\le e^{-\kappa/h} \left(h + \frac{h + \kappa}{h} (x - h) \right) + \frac{27}{2\kappa} e^{-3} (x - h)^2, \quad x > 0,$$

which is valid as $\max_{x>0} g''(x) = 27e^{-3}/\kappa$. Hence

(12)
$$\mathbb{E}|\tilde{Q}(Y_n) - \tilde{Q}(y_0)| \leq Cn \,\mathbb{E}\left(e^{-\kappa/h}\left(h + \frac{h + \kappa}{h}(H_0 - h)\right) + \frac{27}{\kappa}e^{-3}(H_0 - h)^2\right)$$
$$= Cnhe^{-\kappa/h}\left(1 + \frac{27}{\kappa}e^{-3}h^{2p-1}\right)$$
$$\leq Ce^{-\kappa/2h}\left(1 + \frac{27}{\kappa}e^{-3}h^{2p-1}\right),$$

where the equality is given by the assumptions on H_0 . Hence, the first result is proved with $C_1 = C$ and $C_2 = 27e^{-3}/\kappa$. Let us now consider the original Hamiltonian and introduce the notation

(13)
$$R(y) = h^{-q} \left(\tilde{Q}(y) - Q(y) \right),$$

i.e., $R(y) = Q_{q+1}(y) + hQ_{q+2}(y) + \ldots + h^{N-q-1}Q_N(y)$. We then have by the triangular inequality

(14)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le \mathbb{E}|\tilde{Q}(Y_n) - \tilde{Q}(y_0)| + h^q \, \mathbb{E}|R(Y_n) - R(y_0)|.$$

The first term in the sum above is bounded thanks to (12). For the second term, we add and subtract the function R evaluated at exact solution of the modified equation to obtain

(15)
$$\mathbb{E}|R(Y_n) - R(y_0)| \le \mathbb{E}|R(Y_n) - R(\tilde{\varphi}_{N,nh}(y_0))| + |R(\tilde{\varphi}_{N,nh}(y_0)) - R(y_0)|,$$

where the expectation on the second term disappears and there exists C > 0 independent of h and N such that

$$(16) |R(\tilde{\varphi}_{N,nh}(y_0)) - R(y_0)| \le C.$$

For the first term, as R is Lipschitz with a constant independent of h and N we have

(17)
$$\mathbb{E}|R(Y_n) - R(\tilde{\varphi}_{N,nh}(y_0))| \le C \,\mathbb{E}||Y_n - \tilde{\varphi}_{N,nh}(y_0)||$$

$$\le \hat{C}e^{Lhn}h^{\min\{p-1/2,N\}},$$

where the second bound is given by the strong order of convergence of the RTS-RK when applied to the modified equation, as the deterministic component in this case has order N. Since N is arbitrary, we can assume that $\min\{p-1/2, N\} = p-1/2$. Hence, we have the final decomposition of the error on the original Hamiltonian for positive constants C_i , i = 1, ..., 4, i.e.

(18)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le C_1 e^{-\kappa/2h} (1 + C_2 h^{2p-1}) + C_3 h^q + C_4 e^{Lhn} h^{q+p-1/2}.$$

Alternative proof of an alternative result. By Taylor expansion of the numerical solution and since $\tilde{Q}(y)$ is bounded we have

(19)
$$\mathbb{E}\,\tilde{Q}(Y_n) \le \mathbb{E}\,\tilde{Q}(Y_{n-1}) + C\,\mathbb{E}\,H_{n-1},$$

hence denoting by $\tilde{\Delta}_n := \tilde{Q}(Y_n) - \tilde{Q}(y_n)$ where y_n constant time steps

(20)
$$\mathbb{E}\,\tilde{\Delta}_n \leq \mathbb{E}\,\tilde{\Delta}_{n-1} + C\,\mathbb{E}\,H_{n-1},$$

which implies by Brouwer's argument [1, 3]

(21)
$$\mathbb{E}|\tilde{\Delta}_n| \le Cn^{1/2}h^p.$$

By triangular inequality

(22)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le \mathbb{E}|Q(Y_n) - \tilde{Q}(Y_n)| + \mathbb{E}|\tilde{Q}(Y_n) - \tilde{Q}(y_n)| + |\tilde{Q}(y_n) - Q(y_n)| + |Q(y_n) - Q(y_0)|.$$

Now $|Q(y) - \tilde{Q}(y)| \leq Ch^q$ for any y and result on fixed time steps

(23)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le Ch^q + Cn^{1/2}h^p.$$

Remark 1.2. The two results implied by Lemma 1.1 are consistent with the theory of deterministic symplectic integrators. In fact, in the limit $p \to \infty$, we have

(24)
$$\mathbb{E}|\tilde{Q}(Y_n) - \tilde{Q}(y_0)| = \mathcal{O}(e^{-\kappa/h}),$$

(25)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| = \mathcal{O}(h^q),$$

and the expectation $\mathbb{E}Q(Y_n) \to Q(y_n)$, where y_n is the numerical solution given by the deterministic method.

Remark 1.3. In the bound (18) it is possible that $C_3 \ll C_4$, i.e., for large values of h the term corresponding to the randomness of the RTS-RK method can be dominating. On the other hand, the higher order of convergence q + p - 1/2 makes this term negligible when h tends to zero. In particular, implementing the reasonable choice p = q + 1/2 and disregarding the first term which decreases exponentially with h, we have

(26)
$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le C_3 h^q + C_4 h^{2q}.$$

1.1. Numerical experiment. Let us consider the Hénon-Heiles system, which is given by the Hamiltonian $Q: \mathbb{R}^4 \to \mathbb{R}$ defined by

(27)
$$Q(p,q) = \frac{1}{2} ||p||^2 + \frac{1}{2} ||q||^2 + q_1^2 q_2 - \frac{1}{3} q_2^3,$$

where $y = (p,q)^{\top} \in \mathbb{R}^4$. We consider an initial condition such that $Q(y_0) = 0.13$ and integrate the equation employing the RTS-RK method with on the Gauss collocation method on two stages (q = 4) and the noise scale $p = \{2, 4\}$. We vary the mean time step $h_i = 0.2 \cdot 2^{-i}$ for $i = 0, \ldots, 7$ and consider the final time $T = 10^4$ for both values of p. We then compute the value of Q at final time and compare it with $Q(y_0)$ to check numerically the validity of Lemma 1.1. Results are shown in Figure 1, where the dashed and dotted lines are given by (18) disregarding the first term and setting $C_3 = 3 \cdot 10^{-2}$, $C_4 = 2 \cdot 10^{-4}$. It is possible to remark that for small values of h the slope of the error decreases as the asymptotic regime is reached.

Fig. 1: Convergence of the mean error on the Hamiltonian for the Hénon-Heiles problem.

Fig. 2: Time evolution of the mean error, pendulum problem

1.2. Numerical experiment. Let us consider the pendulum problem, which is given by the Hamiltonian $Q: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$Q(p,q) = \frac{p^2}{2} - \cos q,$$

where $y=(p,q)^{\top}\in\mathbb{R}^2$. We consider the initial condition $(p_0,q_0)=(1.5,-\pi)$ and integrate the equation employing RTS-RK based on the implicit midpoint method (q=2) and the noise scale p=2. We vary the mean time step $h\in\{0.2,0.1,0.05,0.025\}$ and consider the final time $T=10^6$. We then

study the time evolution of the numerical error on the Hamiltonian Q. Results are shown in Figure 2, where it is possible to notice

REFERENCES

- [1] D. Brouwer, On the accumulation of errors in numerical integration, The Astronomical Journal, 46 (1937), pp. 149–153.
- [2] E. HAIRER, C. LUBICH, AND G. WANNER, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, second ed., 2006.
- [3] E. HAIRER, R. McLachlan, and A. Razakarivony, Achieving Brouwer's law with implicit Runge-Kutta methods, BIT, 48 (2008), pp. 231–243.