Exercise 1:

a) basic descriptive statistics for **restingbp** for all of the data

Variable: restingbp

Moments						
N	270 Sum Weights					
Mean	131.344444	Sum Observations	35463			
Std Deviation	on 17.8616083 Variance		319.037051			
Skewness	6kewness 0.72261801 Kurto		0.92309674			
Uncorrected SS	4743689	Corrected SS	85820.9667			
Coeff Variation	13.5990588	Std Error Mean	1.08702286			

	Basic Statistical Measures					
Loc	Location Variability					
Mean	131.3444	Std Deviation	17.86161			
Median	130.0000	Variance	319.03705			
Mode	120.0000	Range	106.00000			
		Interquartile Range	20.00000			

While the mean and median are somewhat close at 132.34 and 130, there is a noticeable positive skew of 0.72. The positive skew indicates a tail to the right and the median and IQR should be used to describe location and spread.

Half of resting blood pressure values are expected to be above 130 and half below based on this data, and the difference between 75th and 25th percentiles is expected to be 20.

b) The same analysis as in part a) by heartdisease variable.

heartdisease=absence

Moments						
N	150	150				
Mean	128.866667	Sum Observations	19330			
Std Deviation	iation 16.4576604 Variance		270.854586			
Skewness	0.41352706	Kurtosis	0.26136044			
Uncorrected SS	2531350	Corrected SS	40357.3333			
Coeff Variation	12.7710764	Std Error Mean	1.34376235			

	Basic Statistical Measures					
Loc	Location Variability					
Mean	128.8667	Std Deviation	16.45766			
Median	130.0000	Variance	270.85459			
Mode	120.0000	Range	86.00000			
		Interquartile Range	20.00000			

In the absence of heartdisease we see that the mean and median are somewhat close at 128.89 and 130 (same as before), there is a some positive skew of 0.41. The positive skew indicates a tail to the right and the median and IQR should be used to describe location and spread.

Half of resting blood pressure values are expected to be above 130 and half below based on this data, and the difference between 75th and 25th percentiles is expected to be 20 (same as before).

heartdisease=presence

Moments						
N	120	120				
Mean	134.441667	Sum Observations	16133			
Std Deviation	iation 19.0954242 Variance		364.635224			
Skewness	0.8886235	Kurtosis	0.96280272			
Uncorrected SS	Corrected SS	43391.5917				
Coeff Variation	14.2035015	Std Error Mean	1.74316576			

	Basic Statistical Measures					
Loc	Location Variability					
Mean	134.4417	Std Deviation	19.09542			
Median 130.0000		Variance	364.63522			
Mode	120.0000	Range	100.00000			
		Interquartile Range	25.00000			

Note: The mode displayed is the smallest of 2 modes with a count of 13.

In the presence of **heartdisease** we see that the mean and median are somewhat close at 134.44 (similar to part a) and 130 (same as before), there is a high positive skew of 0.889. The positive skew indicates a tail to the right and the median and IQR should be used to describe location and spread.

Half of resting blood pressure values are expected to be above 130 and half below based on this data, and the difference between 75th and 25th percentiles is expected to be 25.

Exercise 2:

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	w	0.964922	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.10037	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	0.364616	Pr > W-Sq	<0.0050	
Anderson-Darling	A-Sq	2.286146	Pr > A-Sq	<0.0050	

a) Resting blood pressure in general appear to be far from normal. All the hypothesis tests also reject a null normal distribution. However, the histogram looks bell-shaped, and the probability appears to be not so straight. So, an assumption of normality is not reasonable for resting blood pressure in general.

b) In the absence of heart disease, we see that resting blood pressure is also not normal. The histogram does not appear bell-shaped, while the probability plot appears to be straight. The normality tests also all fail to reject an assumption of normality. All the tests imply that the distribution is not normal, especially if we take Kolmogorov-Smirnov for out sample (n=270).

Variable: restingbp

heartdisease=absence

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	w	0.978975	Pr < W	0.0213	
Kolmogorov-Smirnov	D	0.091639	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	0.152709	Pr > W-Sq	0.0224	
Anderson-Darling	A-Sq	0.899307	Pr > A-Sq	0.0221	

Variable: restingbp

heartdisease=presence

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	w	0.948046	Pr < W	0.0002	
Kolmogorov-Smirnov	D	0.110494	Pr > D	<0.0100	
Cramer-von Mises	0.253846	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	1.610518	Pr > A-Sq	<0.0050	

In the presence of heart disease, we see that resting blood pressure is also not normal. It is also can be observed from the histogram plot and probability plot. All the tests imply that the distribution is not normal as well. So, normality should not be assumed in this case. In conclusion, we can say that group with heartdisease=presence is considered to be significantly far from the normality, based on the tests.

Exercise 3:

a) Based on the analysis from Exercise 2 we do not have normality assumption (cannot use t-test), so we can perform all the tests to check whether we can accept average resting blood pressure of 120 (129). So, we can consider sign test (since we have skewness and non-symmetricity). The null hypothesis is median of resting blood pressure = 120; alternative hypothesis is significantly higher than 120. The test suggest that we fail to accept null hypothesis for group with heartdisease = presence.

Variable: restingbp

heartdisease = presence

Tests for Location: Mu0=120						
Test	Statistic p Value					
Student's t	t	8.284735	Pr > t	<.0001		
Sign	М	33.5	Pr >= M	<.0001		
Signed Rank	S	2244	Pr >= S	<.0001		

Similar to the first case, we can consider sign test (since we have skewness and non-symmetricity). The null hypothesis is median of resting blood pressure = 129; alternative hypothesis is significantly higher than 129. The test suggest that accept null hypothesis for group with heartdisease=presence. p-value = 0.1203 > significant value of 5%.

heartdisease = presence

Tests for Location: Mu0=129						
Test	Statistic p Value					
Student's t	t	3.121715	Pr > t	0.0023		
Sign	М	9	Pr >= M	0.1203		
Signed Rank	s	934	Pr >= S	0.0137		

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable restingbp Classified by Variable heartdisease							
heartdisease N Scores Under H0 Std Dev Scores Under H0 Scores							
absence	150	18957.50	20325.0	635.75955 4	126.38333 3		
presence 120 17627.50 16260.0 635.75955 4 146.8958							
Average scores were used for ties.							

Wilcoxon Two-Sample Test						
t Approximation						
Statistic	Z	Pr > Z	Pr > Z	Pr > Z	Pr > Z	
17627.5 2.1502 0.0158 0.0315 0.0162 0.0324						
Z includes a continuity correction of 0.5.						

b) As our resting blood pressure values were far from normal, we use rank sum test to compare restingbp of group with heart disease with group without heart disease. We almost have the same of number absences and presences. The null hypothesis is: "those with heart disease have higher resting blood pressure than those without heart disease". The one-sided test is significant, so the conclusion is that group having heart disease had lower restingbp than the group without heart disease. Therefore, we fail to accept null hypothesis.

Exercise 4:

- a) We first created pairwise scatter plot for **restingbp**, **serumchol and maxheartrate** variables. As can be seen from the plot above, there is not much linear trends in the data, and there are some extreme values. So, I think it would be better to consider Spearman correlation for the data.
 - Below is the output of Spearman correlation test. Spearman correlation should tell us about the general tendency if the variable will go up/down as the other variable increases. Null hypothesis will be as the ranks of one variable increase, the ranks of the other variable do not increase (or decrease) (don't covary).
 - (Ranks) restingbp and serumchol has some positive relationship (slightly might increase if other increases). However, it is significant since we have p-value=0.0017<alpha=0.05. We fail to accept null hypothesis.
 - (Ranks) restingbp and maxheartrate are negatively correlated (almost not, small value) and p-value=0.4832>alpha, we accept null hypothesis.
 - (Ranks) serumchol and maxheartrate also are negatively correlated (almost not, small value) and p-value = 0.3553 >alpha, we accept null hypothesis.

The CORR Procedure

3 Variables: restingbp serumchol maxheartrate

Simple Statistics						
Variable	N	Mean	Std Dev	Median	Minimum	Maximum
restingbp	270	131.34444	17.86161	130.00000	94.00000	200.00000
serumchol	270	249.65926	51.68624	245.00000	126.00000	564.00000
maxheartrate	270	149.67778	23.16572	153.50000	71.00000	202.00000

Spearman Correlation Coefficients, N = 270 Prob > r under H0: Rho=0							
	restingbp serumchol maxheartrate						
restingbp	1.00000	0.19048 0.0017	-0.04294 0.4823				
serumchol	0.19048 0.0017	1.00000	-0.05647 0.3553				
maxheartrate	-0.04294 0.4823	-0.05647 0.3553	1.00000				

b) We repeated the same analysis as in part a): pairwise scatter plot and Spearman correlation test based on different groups.

heartdisease=absence

3 Variables: restingbp serumchol maxheartrate

Simple Statistics						
Variable N Mean Std Dev Median Minimum Maximum						
restingbp	150	128.86667	16.45766	130.00000	94.00000	180.00000
serumchol	150	244.21333	54.01909	236.00000	126.00000	564.00000
maxheartrate	150	158.33333	19.28336	161.00000	96.00000	202.00000

Spearman Correlation Coefficients, N = 150 Prob > r under H0: Rho=0							
	restingbp serumchol maxheartrate						
restingbp	1.00000	0.11422 0.1640	0.04808 0.5590				
serumchol	Serumchol 0.11422 1.00000 0.1640		-0.01894 0.8181				
maxheartrate	0.04808 0.5590	-0.01894 0.8181	1.00000				

heartdisease=presence

|--|

Simple Statistics						
Variable	N	Mean	Std Dev	Median	Minimum	Maximum
restingbp	120	134.44167	19.09542	130.00000	100.00000	200.00000
serumchol	120	256.46667	47.96917	255.50000	149.00000	409.00000
maxheartrate	120	138.85833	23.13072	141.50000	71.00000	195.00000

Spearman Correlation Coefficients, N = 120 Prob > r under H0: Rho=0							
	restingbp serumchol maxheartrate						
restingbp	1.00000	0.25154 0.0056	-0.02543 0.7828				
serumchol	0.25154 0.0056	1.00000	0.02042 0.8248				
maxheartrate	-0.02543 0.7828	0.02042 0.8248	1.00000				

In the absence of heart disease, we see that p-values are larger than alpha, hence we accept the null hypothesis that the ranks of variables do not convary. In the presence of heart disease:

- (Ranks) Restingbp and serumchol are slightly positive correlated, and one variable might slighly increase if other increase. So, we fail to accept null hypothesis.
- (Ranks) restingbp and maxheartrate do not covary, so we accept null hypothesis, wih p-value = 0.7828.
- (Ranks) serumchol and maxheartrate do not covary, so we also accept null hypothesis, with p-value = 0.8248.

In conclusion, we see that in the absence of heart disease, all variables did not have any correlation, and in the presence of heart disease, we had slight correlation between cholesterol and resting blood pressure. The latter's output was similar to the output from the first part of the problem, where we considered the data without grouping.