

DEPARTAMENTO DE MATEMÁTICA MÉTODOS ESTATÍSTICOS

2.° Semestre - 2022/2023 2.° Teste

Data: 13 de junho de 2023 Duração: 2 horas

Resolução

O teste foi resolvido recorrendo ao software R: ver script_2Teste_ME_22_23.

1. (a) População: p = proporção de profissionais de TI que recebe benefícios extra salário.

Amostra Aleatória: n = 114

Estimativa pontual para a percentagem de profissionais de TI que recebe benefícios extra salário:

$$p^* \times 100\% = 64.04\%$$

Como temos uma população binomial e $n=144 \geq 30$ o intervalo de confiança a $(1-\alpha) \times 100\%$ para p é dado por:

logo, o intervalo de confiança a 96% para p é:

ou seja, a percentagem de profissionais de TI que recebem benefícios está entre 54.80% e 73.27%, com 96% de confiança.

(b) População: X = salário dos profissionais de TI Juniores

Amostra Aleatória: $n_x = 44$

Como $n_x=44\geq 30$ e considerando População Qualquer com σ desconhecido, o Intervalo de confiança a $(1-\alpha)\times 100\%$ para μ fica

$$\left] \overline{x} - z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}; \overline{x} + z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \right[$$

logo, o Intervalo de confiança a 99% para μ , média do salário inicial dos profissionais de TI Juniores, é

Desta forma, como 1050 pertence ao intervalo de confiança calculado, pode-se afirmar que, para um grau de confiança de 99%, o salário médio mensal de entrada no mercado de trabalho em 2020 indicado pelo Banco de Portugal é um valor admissível quando se considera os profissionais de TI Juniores.

Alternativa de resolução:

Verificar primeiro a normalidade dos dados

$$H_0: X \sim Normal$$
 contra $H_1: X \nsim Normal$

Escolha do Teste: Como se pretende saber se X tem comportamento normal, e sabendo que de acordo com uma Distribuição Normal (sem mais informação) e $n_x = 44 < 50$, recorre-se ao teste de ajustamento Shapiro-Wilk.

Tomada de Decisão: Como valor - p = 0.089 > 0.01, então Não se rejeita H_0 .

Conclusão: Com base na amostra e para um nível de significância de 1% há evidência estatística que os dados podem vir de uma população com distribuição Normal.

Desta forma, pode-se ainda considerar População Normal e σ desconhecido, então o Intervalo de confiança a $(1-\alpha) \times 100\%$ para μ é

$$\left] \overline{x} - t_{1 - \frac{\alpha}{2}} \frac{s}{\sqrt{n}}; \overline{x} + t_{1 - \frac{\alpha}{2}} \frac{s}{\sqrt{n}} \right[$$

logo, o Intervalo de confiança a 99% para μ , média do salário inicial dos profissionais de TI Juniores, é

A conclusão será a mesma, pois como 1050 pertence ao intervalo de confiança calculado, pode-se afirmar que, para um grau de confiança de 99%, o salário médio mensal de entrada no mercado de trabalho em 2020 indicado pelo Banco de Portugal é um valor admissível quando se considera os profissionais de TI Juniores.

(c) População: Y = salário dos profissionais de TI

Amostra aleatória: $n_y = 114$

Hipóteses:

 $\begin{cases} H_0: \mu_y \leq 1439 \longrightarrow & \text{salário médio atual dos profissionais de TI não é superior} \\ & \text{à média dos salários em Portugal.} \end{cases}$ contra $H_1: \mu_y > 1439 \longrightarrow & \text{salário médio atual dos profissionais de TI é superior} \\ & \text{à média dos salários em Portugal.}$

Nível de significância = $\alpha = 0.01$

Tipo de teste: o teste é Unilateral Direito

Estatística de Teste: Tendo em conta que $n_y = 114 > 30$, pode-se considerar População Qualquer e σ_y desconhecido, desta forma, a estatística de teste é:

$$Z = \frac{\overline{Y} - \mu_y}{\frac{s_y}{\sqrt{n_y}}} \stackrel{\cdot}{\sim} N(0, 1)$$

Tomada de Decisão pelo valor-p: Como valor-p = $0 < 0.10 = \alpha$, então Rejeita-se H_0 OU

Tomada de Decisão pela Região crítica:

$$RC = [z_{1-\alpha}, +\infty[= [z_{1-0.01}, +\infty[= [z_{0.99}, +\infty[= [2.3263, +\infty[$$

Como $Z_{obs} = 7.6859 \in RC$, então Rejeita-se H_0

Conclusão: Com base na amostra e para um nível de significância de 10%, há evidência estatística que o salário médio atual dos profissionais de TI é superior à média dos salários em Portugal.

Alternativa de resolução

Verificar a normalidade dos dados:

$$H_0: Y \sim Normal$$
 contra $H_1: Y \nsim Normal$

Escolha do Teste: Como se pretende saber se Y tem comportamento normal, e não se dispõe de mais informação então, como $n_y = 144 > 50$, recorre-se ao teste de ajustamento Lilliefors.

Tomada de Decisão: Como valor - p = 0.9359 > 0.01, então Não se rejeita H_0 ,

Conclusão: Com base na amostra e para um nível de significância de 1% há evidência estatística que os dados podem vir de uma população com distribuição Normal.

Estatística de Teste: Pode-se assim considerar População Normal e σ_y desconhecido, pelo que, a estatística de teste é:

 $T = \frac{\overline{Y} - \mu_y}{\frac{s_y}{\sqrt{n_y}}} \sim t_{(n_y - 1)}$

Tomada de Decisão pelo valor-p: Como valor-p = $0 < 0.10 = \alpha$, então Rejeita-se H_0 .

OU

Tomada de Decisão pela Região crítica:

$$RC = [t_{n_y-1;1-\alpha}, +\infty[=[t_{114-1;1-0.01}, +\infty[=[t_{113;0.99}, +\infty[=[2.3598, +\infty[$$

Como $T_{obs} = 7.6859 \in RC$, então Rejeita-se H_0 .

Conclusão: Com base na amostra e para um nível de significância de 10%, há evidência estatística que o salário médio atual dos profissionais de TI é superior à média dos salários em Portugal.

(d) Populações:

- X_{In} salário inicial dos profissionais de TI Seniores do género feminino
- X_{atual} salário atual dos profissionais de TI Seniores do género feminino

Amostras emparelhadas, com n = 16

Verificar a normalidade dos dados:

$$H_0: X_{atual} \sim Normal$$
 contra $H_1: X_{atual} \nsim Normal$

Escolha do Teste: Como se pretende saber se X_{atual} tem comportamento normal, e sabendo que de acordo com uma Distribuição Normal (sem mais informação) e n=16<50, recorre-se ao teste de ajustamento Shapiro-Wilk.

Tomada de Decisão: Como valor - p = 0.085589 < 0.1, então Rejeita-se H_0

Conclusão: Com base na amostra e para um nível de significância de 10% há evidência estatística que os dados podem não vir de uma população com distribuição Normal.

Como a normalidade foi rejeitada, então é necessário recorrer aos testes de hipóteses não paramétricos. Como as amostras podem ser consideradas emparelhadas, então o teste de hipóteses não paramétrico adequado é o teste de Wilcoxon. Vamos considerar

$$D = X_{atual} - X_{In}$$

Hipóteses:

 $H_0: Mediana_D = 0 \longrightarrow$ não existem diferenças significativas entre o salário inicial e o salário atual dos profissionais de TI Seniores do género feminino contra $H_1: Mediana_D \neq 0 \longrightarrow$ existem diferenças significativas entre o salário inicial e o salário atual dos profissionais de TI Seniores do género feminino

Teste bilateral

Tomada de Decisão: Como valor - p = 0.0000305 < 0.1, então Rejeita-se H_0

Conclusão: Com base nas amostras e para um nível de significância de 10% há evidência estatística de que existem diferenças significativas entre o salário inicial e o salário atual dos profissionais de TI Seniores do género feminino.

(e) Variáveis a estudar: Genero (variável qualitativa nominal) e Be (variável qualitativa nominal) Hipóteses a testar:

 H_0 : não há discriminação de género em relação à concessão de benefícios extra salário, ou seja, o género e a concessão de benefícios extra salário são independentes.

contra

 H_1 : há discriminação de género em relação à concessão de benefícios extra salário, ou seja, o género e a concessão de benefícios extra salário não são independentes.

nível de significância = $\alpha = 0.01$

Escolha do Teste: Como as variáveis são qualitativas e pretende-se testar se existe ou não independência entre as variáveis, vamos recorrer ao teste de independência do Qui-Quadrado.

Tabela de contingência:

	Benefícios Extra		
Género	não	\sin	Total
masculino	31	53	84
feminino	10	20	40
Total	41	73	114

Tomada de Decisão pelo valor-p: Como valor-p = $0.7264 > 0.01 = \alpha$, então Não se Rejeita H_0 . OU

Tomada de Decisão pela Região crítica: a tabela de contingência tem r=2 linhas e c=2 colunas

$$RC = [x_{(r-1)\times(c-1);1-\alpha}^2, +\infty[=[x_{(2-1)\times(2-1);1-0.01}^2, +\infty[=[x_{(1);0.99}^2, +\infty[=[6.6349, +\infty[=1.00]]$$

Como $Q_{obs} = 0.12243 \notin RC$, então Não se Rejeita H_0 .

Conclusão: Com base nas amostras e para um nível de significância de 1%, há evidência estatística de que as empresas não fazem discriminação de género em relação à concessão de benefícios extra salário.

Como não se considera existir associação entre o género e a concessão de benefícios extra salário, não se irá medir essa associação.

2. População: p = proporção de avarias devido a má utilização de um certo equipamento

Amostra: n = 200 processos de reparação, 30 desses casos a avaria ocorreu devido a má utilização

(a) Interpretação das Hipóteses:

$$\left\{ \begin{array}{l} H_0: p=0.16 \rightarrow \quad \text{a proporção de avarias devido a má utilização é 0.16} \\ \text{contra} \\ H_1: p<0.16 \rightarrow \quad \text{a proporção de avarias devido a má utilização é inferior a 0.16} \end{array} \right.$$

Teste das Hipóteses:

$$H_0: p = 0.16$$
 contra $H_1: p < 0.16$

Estatística de Teste: População Binomial e $n=200 \ge 30$

$$Z = \frac{p^* - p}{\sqrt{\frac{pq}{n}}} \stackrel{\cdot}{\sim} N(0, 1)$$

Estatística de Teste observada sob $H_0\colon\thinspace Z_{\rm obs}=-0.3858$

nível de significância = $\alpha = 0.02$

Tipo de teste: o teste é Unilateral Esquerdo

Região Crítica: $RC = [-\infty, z_{\alpha}] = [-\infty, z_{0.02}] = [-\infty, -2.0537]$

Decisão: como $Z_{\rm obs} = -0.3858 \not\in RC$, então Não se Rejeita H_0

Com 2% de significância e com base na amostra, conclui-se que existe evidência estatística que a proporção de avarias devido a má utilização é 0.16.

(b) População: X = duração, em horas, da bateria, $X \sim N(\mu, 0.4)$ pois $\sigma = \sqrt{V[X]} = 0.4$ Pretende-se estimar μ através de um intervalo de confiança:

População Normal e $\sigma=0.4$ conhecido, então o Intervalo de confiança a $(1-\alpha)\times 100\%$ para μ é

$$\left] \overline{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right[$$

pretende-se determinar n de modo que o intervalo de confiança a 90% tenha uma amplitude que não ultrapasse as 0.2 horas:

- grau de confiança = $1 \alpha = 0.90$, logo o nível de significância = $\alpha = 0.10$
- quantil de probabilidade: $z_{1-\frac{\alpha}{2}}=z_{1-\frac{0.10}{2}}=1.6449$
- amplitude do IC ≤ 0.2
- amplitude do IC = $\left(\overline{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \left(\overline{x} z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 2z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 2 \times 1.6449 \times \frac{0.4}{\sqrt{n}}$

logo

amplitude do IC
$$\leq 0.2 \Leftrightarrow 2 \times 1.6449 \times \frac{0.4}{\sqrt{n}} \leq 0.2 \Leftrightarrow n \geq \left(\frac{2 \times 1.6449 \times 0.4}{0.2}\right)^2 \Leftrightarrow n \geq 43.2887$$

É necessário recolher uma amostra de dimensão $n \ge 44$.

(c) Populações:

Amostras:

 $X \to {\rm duração},$ em horas, da bateria XX

dimensão da amostra de $X = n_x = 8$

 $Y \rightarrow$ duração, em horas, da bateria YY

dimensão da amostra de $Y = n_y = 6$

amostras aleatórias independentes

i. Hipóteses: $H_0: X \sim Normal$ contra $H_1: X \not\sim Normal$

Escolha do Teste: Como pretende-se testar se X comporta-se de acordo com uma Distribuição Normal (sem mais informação) e $n_x=8<50$, vamos recorrer ao teste de ajustamento Shapiro-Wilk.

Tomada de Decisão: se valor $-p \le \alpha$, então Rejeita-se H_0

Como valor-p=0.9782, então a partir de $\alpha \geq 0.9782$ Rejeita-se H_0 , ou seja, a partir de $\alpha \geq 0.9782$ rejeita-se a hipótese da duração das baterias XX seguir uma distribuição Normal.

Hipóteses: $H_0: Y \sim Normal$ contra $H_1: Y \nsim Normal$

Escolha do Teste: Como pretende-se testar se Y comporta-se de acordo com uma Distribuição Normal (sem mais informação) e $n_y=6<50$, vamos recorrer ao teste de ajustamento Shapiro-Wilk:

Tomada de Decisão: se valor $-p \le \alpha$, então Rejeita-se H_0

Como valor-p=0.8673, então a partir de $\alpha \geq 0.8673$ Rejeita-se H_0 , ou seja, a partir de $\alpha \geq 0.8673$ rejeita-se a hipótese da duração das baterias XX seguir uma distribuição Normal.

ii. Pretende-se determinar o grau de confiança utilizado para obter o seguinte intervalo de confiança para o quociente de desvios padrão:]0.20346; 0.94058[

Como as Populações podem ser consideradas Normais (na alínea anterior vimos que, para os níveis de significância usuais, a Normalidade é válida) e Amostras independentes, então o Intervalo de confiança a $(1-\alpha)\times 100\%$ para $\frac{\sigma_{xx}^2}{\sigma_{yy}^2}$ é

$$\left] \frac{1}{f_{n_x - 1; n_y - 1; 1 - \frac{\alpha}{2}}} \times \frac{s_x^2}{s_y^2}, \frac{1}{f_{n_x - 1; n_y - 1; \frac{\alpha}{2}}} \times \frac{s_x^2}{s_y^2} \right[$$

e sabe-se que o intervalo de confiança obtido para o quociente de variâncias é [0.20346²; 0.94058²], então considerando, por exemplo, o limite superior tem-se

$$\frac{1}{f_{n_x - 1; n_y - 1; \frac{\alpha}{2}}} \times \frac{s_x^2}{s_y^2} = 0.94058^2 \Leftrightarrow \frac{1}{f_{8 - 1; 6 - 1; \frac{\alpha}{2}}} \times \frac{0.0713}{0.3347} = 0.94058^2 \Leftrightarrow f_{7; 5; \frac{\alpha}{2}} = 0.2406 \Leftrightarrow \frac{\alpha}{2} = F(0.2406) \Leftrightarrow \frac{\alpha}{F \sim F(7, 5)} \approx \frac{\alpha}{2} = 0.045 \Leftrightarrow \alpha = 0.09 \Leftrightarrow 1 - \alpha = 0.91$$

O grau de confiança utilizado foi de 91%.

iii. Intervalo de confiança:]0.20346; 0.94058[

margem de erro do IC
$$=$$
 $\frac{\text{amplitude do IC}}{2} = \frac{0.94058 - 0.20346}{2} = 0.36856 \text{ horas}$

Sugestões para diminuir a margem de erro: aumentar o número de elementos nas amostras ou diminuir o grau de confiança do intervalo.

iv. 30 minutos = $\frac{30}{60}$ = 0.5 horas Hipóteses:

$$\begin{cases} H_0: \mu_x \leq \mu_y + 0.5 \longrightarrow & \text{em média, a duração das baterias do tipo XX não ultrapassa a duração das baterias do tipo YY em mais de 30 minutos \\ & \text{contra} \end{cases}$$

$$H_1: \mu_x > \mu_y + 0.5 \longrightarrow & \text{em média, a duração das baterias do tipo XX ultrapassa a duração das baterias do tipo YY em mais de 30 minutos}$$

$$H_1: \mu_x > \mu_y + 0.5 \longrightarrow \text{ em média, a duração das baterias do tipo XX ultrapassa a duração das baterias do tipo YY em mais de 30 minutos$$

Pretende-se testar

$$\begin{cases} H_0: \mu_x \le \mu_y + 0.5 \\ contra \\ H_1: \mu_x > \mu_y + 0.5 \end{cases} \Leftrightarrow \begin{cases} H_0: \mu_x - \mu_y \le 0.5 \\ contra \\ H_1: \mu_x - \mu_y > 0.5 \end{cases}$$

nível de significância = $\alpha = 0.10$

Tipo de teste: o teste é unilateral direito

Estatística de Teste:

Populações Normais (*)
$$\sigma_x, \sigma_y \text{ desconhecidos} \\ \sigma_x \neq \sigma_y \text{ (**)}$$
 Amostras independentes
$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_y)}{\sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}}} \sim t_{(gl_2)} \Leftrightarrow T \sim t_{(6.604)}$$

- (*) As Populações podem ser consideradas Normais, na alínea i. vimos que para $\alpha=0.10$ não se rejeita a hipótese de Normalidade.
- (**) Os desvios padrão podem ser considerados diferentes, pela alínea ii. podemos ver que $1 \notin]0.20346; 0.94058[$ quando o grau de confiança é de 91%, logo para um grau de confiança inferior, como é 90% $(1 - \alpha = 1 - 0.10 = 0.90)$, o 1 também não pertence pois o intervalo ficou com uma margem de erro menor.

Tomada de Decisão pelo valor-p:

Como valor-p = $0.9454 > 0.10 = \alpha$, então Não se Rejeita H_0 .

Tomada de Decisão pela Região crítica:

$$RC = [t_{gl_2;1-\alpha}, +\infty[=[t_{6.604;1-0.10}, +\infty[=[1.4238, +\infty[$$

Como $T_{obs} = -1.8513 \notin RC$, então Não se Rejeita H_0 .

Então, com 10% de significância e com base nas amostras, conclui-se que não existe evidência estatística que, em média, a duração das baterias do tipo XX ultrapasse a duração das baterias do tipo YY em mais de 30 minutos.