Weekly Homework 12

Yevgeniy Terentyev, Miriam Gaetano Softwaretechnik

July 19, 2025

We have engaged with tasks

Task 12-3: Project planning

a) Create a network plan that makes the logical dependencies between the tasks visible. Represent each of the above tasks as a rectangle and enter the ID, the task duration and the earliest possible start date.

Figure 1: Network plan

b) Create a Gantt chart that visualizes the time dependencies of the tasks.

Figure 2: Gantt chart

c) Determine the critical path(s), the shortest project duration and the slack time for all activities.

Critical_Path_Analysis

Task ID	Early Start (ES)	Early Finish (EF)	Late Start (LS)	Late Finish (LF)	Slack Time	Critical
A	0	3	0	3	0	True
В	0	2	0	2	0	True
E	0	3	5	8	5	False
F	0	2	4	6	4	False
С	2	8	2	8	0	True
D	3	6	3	6	0	True
Н	6	10	6	10	0	True
G	8	12	8	12	0	True
1	10	12	10	12	0	True
J	12	15	12	15	0	True

d) Suppose you aim to maximize parallelization (while respecting dependencies), in order to minimize total project duration. What is the maximum useful team size (Pmax) — the smallest team size beyond which adding more people does not shorten the project? Show a possible task assignment for n = Pmax in graphical form. Indicate the slack time for each task and the total project duration.

Slack Time per Task (in weeks):

 $A: 0 \to Critical$

B: $0 \to \text{Critical}$

 $C: 0 \to Critical$

 $D: 0 \to Critical$

E: 5

F: 4

 $G: 0 \to Critical$

 $H: 0 \to Critical$

I: $0 \to Critical$

J: $0 \rightarrow Critical$

e) Suppose you only have two developers available for this project. What would be the shortest possible project duration? Show a possible task assignment for n=2 in graphical form. Indicate slack time and total duration as well.

Task Assignment with 2 Developers

P2 A B E F D H G J

O 5 10 15 20 25

Weeks

Slack Time per Task (in weeks):

 $A: 0 \to Critical$

B: $0 \to Critical$

 $C: 0 \to Critical$

D: $0 \to Critical$

E: 5

F: 4

 $G: 0 \to Critical$

 $H: 0 \to Critical$

I: $0 \to Critical$

J: 0 \rightarrow Critical

f) Provide task assignments for all other possible team sizes (2; n; Pmax) in graphical form, so that the project duration is as short as possible in each case. Indicate total duration and slack times for each assignment.

Slack Time per Task (in weeks):

A: $0 \rightarrow \text{Critical}$

B: $0 \to Critical$

 $C: 0 \to Critical$

D: $0 \to Critical$

E: 5

F: 4

 $G: 0 \to Critical$

 $H: 0 \to Critical$

I: $0 \to Critical$

 $J: 0 \to Critical$