46 Derivatives

A tangent line to a circle is a line that meets the circle at exactly one point. A secant line to a circle is a line that meets the circle at exactly two points.

Figure 1: Tangent Line to a Circle

Figure 2: Secant Line to a Circle

We can generalize the concept of a tangent and secant line to an arbitrary curve.

Figure 3: Tagent and Secant line to a curve

Given an arbitrary curve we cannot simply say "a line that meets the curve at exactly 1 point" in order to be a tangent.

Let the curve C in Figure 4 be the graph of the function y = f(x), and let P(a, f(a)) be a point on the curve. Let further Q(a+h, f(a+h)) be another point on the curve. A line through PQ is called a *secant*. Now, keep P fixed and let Q move along the curve approaching P. The secant line will rotate about P. The limiting straight line is called the *tangent line* to the curve y = f(x) at the point P(a, f(a)).

Figure 4: Tangent line as a limit of secant lines

The slope of the secant line PQ is given by

$$m_{PQ} = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

Definition: The slope of the tangent line t to the curve y = f(x) at the point (a, f(a)) is given by

$$m_{tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if the limit exists.

Remark: If $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists, then the equation of the tangent line to the curve y=f(x) at the point (a, f(a)) is given by

$$y - f(a) = m_{tan}(x - a).$$

Example 1: Find the equation of the tangent line to $f(x) = x^2 + x$ at (1, 2).

Solution:

$$m_{tan} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 + (1+h) - 2}{h} = \dots = \lim_{h \to 0} \frac{h^2 + 3h}{h}$$
$$= \lim_{h \to 0} \frac{K(h+3)}{K} = 3$$

So, the tangent line to $y = x^2 + x$ at the point (1,2) is

$$y - 2 = 3(x - 1),$$

or equivalently y = 3x - 1.

Example 2: Show that

$$f(x) = |x| = \begin{cases} x & , x \ge 0 \\ -x & , x < 0 \end{cases}$$

does not have a tangent line at (0,0).

Solution: The slope of the tangent line to f(x) = |x| at the point (0,0) is given by

$$m_{tan} = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

if this limit exists. We claim that this limit doesn't exist and we will prove the claim by showing that

$$\lim_{h \to 0^+} \frac{|h|}{h} \neq \lim_{h \to 0^-} \frac{|h|}{h}.$$

We have

$$\lim_{h \rightarrow 0^+} \frac{|h|}{h} = \lim_{h \rightarrow 0^+} \frac{\cancel{h}}{\cancel{k}} = \lim_{h \rightarrow 0^+} 1 = 1$$

$$\lim_{h\to 0^-}\frac{|h|}{h}=\lim_{h\to 0^-}\frac{-\cancel{h}}{\cancel{h}}=\lim_{h\to 0^-}(-1)=-1$$

which proves the claim.

Definition: Given a function y = f(x), the *derivative* of f(x) with respect to (w.r.t.) x is denotes by f'(x) (pronounced f prime of x) and it is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided that this limit exists.

Remark:

- Given y = f(x), f'(x) is also a function and $Dom(f') \subseteq Dom(f)$
- \bullet Derivatives are also denoted by $y', \frac{dy}{dx}, D_x$
- At the point $a \in Dom(f)$ where f'(x) exists, $f'(a) = m_{tan}$ is the slope of the tangent line to y = f(x) at x = a.

Example 1: Compute f'(x) for $f(x) = x^2$

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{\mathcal{K}(h+2x)}{\mathcal{K}}$$
$$= \lim_{h \to 0} (h+2x) = 2x.$$

Remark: In general,

if
$$f(x) = x^n$$
, then $f'(x) = nx^{n-1}$, $n \in \mathbb{Q}$ (1)

Example 2: Compute f'(x) for $f(x) = \frac{1}{x}$ Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{-\mathcal{K}}{\mathcal{K}x(x+h)}$$
$$= \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2} \qquad \text{for } x \neq 0$$

Example 3: Compute f'(x) using formula (1), if $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ Solution: Plugging $n = \frac{1}{2}$ into formula (1) we get

$$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}.$$

We see that $Dom(f') = (0, \infty) \subseteq Dom(f) = [0, \infty)$.

Example 4: Compute f'(x) if $f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$

Solution: If x < 0, f(x) = -x and we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = -1$$

If x > 0, f(x) = x and we similarly have f'(x) = 1. If x = 0, $f'(x) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ does not exist. So,

$$f'(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0. \end{cases}$$

Example 5: Compute f'(x) if $f(x) = e^x$

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{(x+h)} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h}$$

$$= e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h} = e^x$$

Remark: If $f(x) = a^x$, then $f'(x) = a^x \cdot \ln a$

Example 6: Let $f(x) = \sqrt[3]{x}$.

- a) Compute f'(x).
- b) Does f'(0) exist? Why or why not?

Solution: a) $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$. Using formula (1) for $n = \frac{1}{3}$ we have

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}, \text{ for } x \neq 0.$$

Figure 5: The graph of $y = \sqrt[3]{x}$

b) At x = 0, we have

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{\frac{1}{3}} - 0}{h} = \lim_{h \to 0} \frac{1}{h^{\frac{2}{3}}}.$$

 $\lim_{h\to 0} \frac{1}{h^{\frac{2}{3}}}$ does not exist! We have

$$\lim_{h \to 0^+} \frac{1}{h^{\frac{2}{3}}} = \lim_{h \to 0^-} \frac{1}{h^{\frac{2}{3}}} = +\infty.$$

So, f'(0) does not exist and therefore the function $f(x) = \sqrt[3]{x}$ does not have a tangent line at x = 0.

Definition: We say that a function y = f(x) is differentiable at x = a if f'(a) exists, i.e., f(x) has a derivative at a.

Example 7: For f(x) = |x| we have:

f(x) = |x| is continuous on \mathbb{R} .

f(x) = |x| is differentiable for all $x \neq 0$.

So, f(x) = |x| is continuous on \mathbb{R} but it is not differentiable on \mathbb{R} .

In general

CONTINUITY \Rightarrow DIFFERENTIABILITY DIFFERENTIABILITY \Rightarrow CONTINUITY

Remark: Usually a continuous function fails to have a derivative at a point a if a graph makes an abrupt change of direction at (a, f(a)). We call such a point a *corner*.

Figure 6: No derivative at x = a

Figure 7: Undefined slope of the tangent at x = a

Example 8: Given

$$f(x) = \begin{cases} x^2 + ax + b & , \ x \le 0 \\ x - 1 & , \ x > 0 \end{cases}$$

find the values of a and b such that f(x) is continuous and has a derivative at x = 0.

Solution: For $x \neq 0$, f(x) is a polynomial and hence continuous.

For x = 0, we want $\lim_{x\to 0} f(x) = f(0) = b$.

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x-1) = -1,$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2} + ax + b) = b.$$

Therefore, we must have b = -1.

Conclusion: f is continuous on \mathbb{R} iff b = -1.

For
$$x \neq 0$$
, $f'(x) = \begin{cases} 2x + a & , x < 0 \\ 1 & , x > 0 \end{cases}$

For x = 0,

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{h^{2} + ah - 1 + 1}{h} = \lim_{h \to 0^{-}} (h+a) = a.$$

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h - 1 + 1}{h} = \lim_{h \to 0^+} 1 = 1.$$

So, f has a derivative at x = 0 iff a = 1 and b = -1.