Hw week9

106022103

2021/4/25

Assist

- Helped by 106000199
 - Discussion of systematic and random error.
 - How to explain the problem 1-ii.
- Helped by 106022213
 - Discussion of type I and type II error in problem 1-b-iv
 - How to explain the converage error different to random or systemitic error in probelm 1-i.
- Helped by 106070038
 - The part of ANOVA test in problem 2-e.

Set up

import libary

library(ggplot2)
library(plyr)
require(qqplotr)

i. It's systematic or random error?			ii. Which part would be affected? (The real compared with samples)	iii. Power increase or decrease?	iv. Which kind of error?
	a	It should be the converage error instead of neithor systematic or random error .	 diff: Smaller since the part of olders' usage time is smaller than mean sd: Larger since the part of olders' usage time is different to the origin part 	Decrease.	Type II error. Since the uncover part of older users should be append.
	b	The more data we get, the less error will have in this case, so it's random error.	 n: Larger since the part of wrong data were removed in samples. 	Decrease	Type I error Since the wrong data should be removed.
	С	This situation has only changed the way we interpret it, so it's neithor systematic or random error.	• α: Change from 0.05 to 0.1.since the confidence level is changed from 0.95 to 0.9.	No change.	Type I error. Since confidence level affect the type I error.
	d	It should be the converage error instead of neithor systematic or random error .	 diff: Larger since the part of not-olders' usage time is bigger than the origin part. sd: Larger since the part of usage time in weekend is different to the origin part. 	Decrease.	Type II error. Since the uncover part of weekend's data should be append.

Note: Since there are two different ways to explain the influence in part ii and the answer will be totally opposite,

1 is how this effect the observed-data will chagne since the reason occurs.

2 is how the real world data compared with the samples we observed.

I choose the way 2 to expalin the answer in this case.

Read file

```
experiment <- read.csv('study2Data.csv', header=TRUE)
BY_data <- with(experiment, data.frame(Subject, Axis='BY', Emotion_Cond
ition, ACC=BY_ACC, SAD_ESRI))
RG_data <- with(experiment, data.frame(Subject, Axis='RG', Emotion_Cond
ition, ACC=RG_ACC, SAD_ESRI))

BY_data_sad <- BY_data[BY_data$Emotion_Condition == "Sadness",]
BY_data_neu <- BY_data[BY_data$Emotion_Condition == "Neutral",]
RG_data_sad <- RG_data[RG_data$Emotion_Condition == "Sadness",]
RG_data_neu <- RG_data[RG_data$Emotion_Condition == "Neutral",]

BY_data_sad$Group <- "BY_sad"
BY_data_neu$Group <- "BY_neu"
RG_data_sad$Group <- "RG_sad"
RG_data_neu$Group <- "RG_sad"
RG_data_neu$Group <- "RG_neu"</pre>
```

(a) Visulize

ANSWER: The BY_data is more concentrated than RG_data. The RG_neu group is the least concentrated.

(b) Trational t-test in blue-yellow accuracy between sad and neutral.

```
t.test(BY_data_sad$ACC, BY_data_neu$ACC, var.equal = FALSE, conf.level
= 0.95)

##

## Welch Two Sample t-test

##

## data: BY_data_sad$ACC and BY_data_neu$ACC

## t = -2.0435, df = 125.61, p-value = 0.04309

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.086308149 -0.001384159

## sample estimates:

## mean of x mean of y

## 0.5690769 0.6129231
```

ANSWER: Since the p-value 0.04309 < 0.05, so we can reject H_0 . It means that there is a significant difference in blue-yellow accuracy between sad and neutral participants at 95% confidence.

(c) Trational t-test in red-green accuracy between sad and neutral.

ANSWER: Since the p-value 0.3833 > 0.05, so we can NOT reject H_0 . It means that there is NOT a significant difference in red-green accuracy between sad and neutral participants at 95% confidence.

(d) (not graded) Do the above t-tests support a claim that there is an interaction between emotion and color axis?

ANSWER: Not necessarily. While there is a significant difference between blue-yellow, there is not between red-green.

(e) ANOVA

```
all_data <- rbind(BY_data, RG_data)</pre>
summary(aov(formula = ACC ~ Axis + Emotion_Condition + Axis:Emotion_Con
dition, data=all_data))
##
                          Df Sum Sq Mean Sq F value Pr(>F)
## Axis
                           1 0.017 0.01745
                                              0.806 0.3703
## Emotion_Condition
                           1 0.079 0.07893
                                              3.644 0.0574 .
## Axis:Emotion_Condition 1 0.005 0.00526
                                              0.243 0.6224
## Residuals
                         256 5.545 0.02166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANSWER: As shown by ANOVA, the significance level of Emotion_Condition was between (0.05,0.1).

This means that if we change the applicable confidence level from 95% to 90%, then we can say that color has a significant effect on emotion.

Reference

• Random vs Systematic Error