Logique et Théorie des Ensembles Série 02-B

Automne 2024 Série 02-B Buff Mathias

Exercice 1. En partant de l'ensemble vide, construire à l'aide des axiomes des ensembles à 10 et 2^{10} éléments. Pensez-vous pouvoir construire des ensembles de taille finie quelconque?

Exercice 2. (Différence symétrique). L'opération \triangle est définie sur les ensembles $A, B \subset E$ par $A \triangle B = (A \cap (E \setminus B)) \cup (B \cap (E \setminus A))$.

- 1. Montrer que : $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- 2. Vérifier que : $A \triangle B = \emptyset \iff (A = B)$.

Exercice 3. Soient E, F, et G trois ensembles.

- 1. Montrer que $E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$.
- 2. Montrer que $E \setminus (F \cup G) = (E \setminus F) \cap (E \setminus G)$.
- 3. Montrer que $E \setminus (F \cap G) = (E \setminus F) \cup (E \setminus G)$.

Exercice 4. Montrer que E = F si et seulement si $\mathcal{P}(E) = \mathcal{P}(F)$.

Exercice 5. Expliciter les éléments de l'ensemble $\mathcal{P}(\mathcal{P}(\{0\}))$.

Exercice 6. Montrer qu'il n'existe pas d'ensemble F de tous les ensembles (on pourra raisonner par l'absurde et considérer la partie de F composée des ensembles ne s'appartenant pas).