Bruno F. Lourenço ISM

July 30th, 2021 SOMA

$$\min_{x} \quad f(x)$$
  
subject to 
$$h(x) = 0$$

- Suppose I use my favourite solver and obtain  $x^*$ .
- The solver tells me that the KKT conditions are satisfied to  $\epsilon = 10^{-6}$ .
- It also tells me that  $||h(x^*)|| \le 10^{-7}$ .

## Question 1

Is  $x^*$  close to the set of **optimal** solutions?

## Question 2

Is  $x^*$  close to the set of **feasible** solutions?

Distance to a set  $C: \operatorname{dist}(x, C) := \inf_{y \in C} ||x - y||$ .

# An example by Sturm

$$\min_{x} \quad x_{22}$$
subject to 
$$x_{22} = 0$$

$$x_{12} = x_{33}$$

$$x \in \mathcal{S}_{+}^{3}$$

•  $S^3_+$ : 3 × 3 positive semidefinite matrices.

# An example by Sturm

$$\begin{array}{ccc} \min_{x} & 0 \\ \text{subject to} & \begin{pmatrix} x_{11} & x_{33} & x_{13} \\ x_{33} & 0 & 0 \\ x_{13} & 0 & x_{33} \end{pmatrix} \succeq 0.$$

• Feasible set: matrices  $\begin{pmatrix} x_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  with  $x_{11} \geq 0$ .

# An example by Sturm

Let  $\epsilon > 0$ 

$$x_{\epsilon} := \begin{pmatrix} 3 & \sqrt{\epsilon} & \sqrt[4]{\epsilon} \\ \sqrt{\epsilon} & \epsilon & 0 \\ \sqrt[4]{\epsilon} & 0 & \sqrt{\epsilon} \end{pmatrix}$$

- The constraints are " $x_{22} = 0$ ", " $x_{12} = x_{33}$ " and " $x \in S^3_+$ ".
- Suppose we measure the violation of constraints by x using

$$\operatorname{Res}(x) := \left[x_{22}^2 + (x_{12} - x_{33})^2 + \max\{-\lambda_{\min}(x), 0\}^2\right]^{1/2}$$

 $(\text{Res}(x) = 0 \Leftrightarrow x \text{ is feasible.}) \ X_{\epsilon} \text{ does not seem a bad point:}$ 

$$\operatorname{Res}(x_{\epsilon}) = \epsilon$$

But...

$$\operatorname{dist}(x_{\epsilon}, \operatorname{Feas}) \geq \sqrt[4]{\epsilon}.$$

If  $\epsilon = 10^{-5}$ , we have  $\operatorname{Res}(x_{\epsilon}) = 10^{-5}$ , but  $\operatorname{dist}(x_{\epsilon}, \operatorname{Feas}) \geq 0.1$ .

$$\min_{x} \quad f(x)$$
  
subject to 
$$h(x) = 0$$

- Suppose I use my favourite solver and obtain  $x^*$ .
- The solver tells me that the KKT conditions are satisfied to  $\epsilon=10^{-6}$  .
- It also tells me that  $||h(x^*)|| \le 10^{-7}$ .

#### Question 1

Is  $x^*$  close to the set of **optimal** solutions?

## Question 2

Is  $x^*$  close to the set of **feasible** solutions?

Answer: **Not necessarily!** Also  $\operatorname{Res}(x_{\epsilon}) \to 0$  does not imply  $\operatorname{dist}(x_{\epsilon}, \operatorname{Feas}) \to 0...$ 

## Conclusions

• Using solvers, we input the constraints one by one:

$$h_1(x) = 0, \ldots, h_n(x) = 0, g_1(x) \le 0, g_2(x) \le 0, \ldots, g_m(x) \le 0.$$

- Solvers can only compute the residuals with respect the  $g_i$  and  $h_j$ . (Backward error)
  - Some measure of error using  $|h_j(x)|$ ,  $\max\{g_i(x),0\}$ , or similar quantities are used
- The true distance to the feasible region is almost never computable.
   (Forward error)

**Backward Error**: Res(x) :=  $[x_{22}^2 + (x_{12} - x_{33})^2 + \max\{-\lambda_{\min}(x), 0\}^2]^{1/2}$  **Forward Error**: dist (x, Feas).

## Key point

## Forward error $\neq O(Backward Error)$

## What next?

Motivation

**Error bounds** provide relations between **Forward error** and **Backward error**.

# Feasibility problems over convex cones

Consider the following feasibility problem over a convex cone K.

find 
$$x$$
 subject to  $x \in (\mathcal{L} + a) \cap \mathcal{K}$ 

- $\mathcal{K}$ : closed convex cone contained in some space  $\mathcal{E}$ .
- $\mathcal{L}$ : subspace contained in  $\mathcal{E}$ .
- $\bullet$   $a \in \mathcal{E}$ .

 $(\mathcal{L} + a)$  is an affine space)

## Motivation

Let  $\|\cdot\|$  be the Euclidean norm and fix  $x \in \mathcal{E}$ .

$$\operatorname{dist}(x, \mathcal{L} + a) = \inf\{\|x - y\| \mid y \in \mathcal{L} + a\}$$
$$\operatorname{dist}(x, \mathcal{K}) = \inf\{\|x - y\| \mid y \in \mathcal{K}\}$$
$$\operatorname{dist}(x, (\mathcal{L} + a) \cap \mathcal{K}) = \inf\{\|x - y\| \mid y \in (\mathcal{L} + a) \cap \mathcal{K}\}$$

## Fundamental question

Can we estimate  $\operatorname{dist}(x,(\mathcal{L}+a)\cap\mathcal{K})$  using  $\operatorname{dist}(x,\mathcal{L}+a)$  and  $\operatorname{dist}(x,\mathcal{K})$ ?



- ٠X
- Backward error:  $\operatorname{dist}(x, \mathcal{L} + a) + \operatorname{dist}(x, \mathcal{K})$
- Forward error:  $\operatorname{dist}(x,(\mathcal{L}+a)\cap\mathcal{K})$

## Hoffman's Lemma

Polyhedral set: a set that can be writen as the set of solutions of a finite



number of linear inequalities.

## Theorem (Hoffman's Lemma '52)

If K is polyhedral, there is a constant  $\kappa > 0$  such that

$$\operatorname{dist}(x, (\mathcal{L} + \mathbf{a}) \cap \mathcal{K}) < \kappa \operatorname{dist}(x, \mathcal{L} + \mathbf{a}) + \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \mathcal{E}$$

# Application to Linear Programming

$$\begin{aligned} & \min_{x} & c^{T}x \\ \text{subject to} & & Ax = b \\ & & x \in \mathbb{R}_{+}^{n} \end{aligned}$$

- $\mathbb{R}^n_+$ : nonnegative orthant.
- Feas =  $\{x \mid Ax = b, x \in \mathbb{R}^n_+\}$ .

$$\operatorname{Res}(x) := \|Ax - b\| + \sum_{i=1}^{n} \max(-x_i, 0).$$

Because of Hoffman's Lemma:

$$\operatorname{dist}(x, \operatorname{Feas}) \le \kappa \operatorname{Res}(x).$$

#### LPs are nice!

In LP, Forward error = O(Backward error)

$$\min_{x} c^{T}x$$
subject to 
$$Ax = b$$

$$x \in \mathbb{R}^{n}_{+}$$

- $\bullet$   $\theta$ : optimal value
- Opt =  $\{x \mid c^T x = \theta, Ax = b, x \in \mathbb{R}^n_+ \}$ .

$$\operatorname{Res}_{\operatorname{opt}}(x) := \|c^T x - \theta\| + \|Ax - b\| + \sum_{i=1}^n \max(-x_i, 0).$$

Because of Hoffman's Lemma:

$$\operatorname{dist}(x, \operatorname{Opt}) \le \kappa(\operatorname{Res}_{\operatorname{opt}}(x)).$$

#### LPs are nice!

Even for optimal sets we have **Forward error** = O(Backward Error)

# Lipschitzian error bound

 $C_1$ ,  $C_2$ : closed convex sets.

 $C:=C_1\cap C_2$ 

## Definition (Lipschitzian error bound)

 $C_1$ ,  $C_2$  satisfy a **Lipschitzian error bound**  $\stackrel{\text{def}}{\Longleftrightarrow}$  for every bounded set B there exist  $\theta_B > 0$ such that

$$\operatorname{dist}(x, C) \leq \theta_B(\operatorname{dist}(x, C_1) + \operatorname{dist}(x, C_2)) \quad \forall \ x \in B.$$

If  $\theta_B$  is the same for all B, the bound is **global**.

#### Some known results:

- $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 \neq \emptyset \Rightarrow \operatorname{local Lipschitzian}$
- $C_1$ ,  $C_2$  are polyhedral  $\Rightarrow$  global Lipschitzian (Hoffman's Lemma)
- $C_1$  is polyhedral and  $C_1 \cap (\operatorname{ri} C_2) \neq \emptyset \Rightarrow \operatorname{local Lipschitzian}$

# Consequences to conic programming

$$\min_{x} \quad c^{T}x$$
subject to 
$$Ax = b$$

$$x \in \mathcal{K}$$

- K: closed convex cone.
- Feas =  $\{x \mid Ax = b, x \in \mathcal{K}\}.$
- Slater's condition: Feas  $\cap$  ri  $\mathcal{K} \neq \emptyset$

#### Define

$$\operatorname{Res}(x) := \|Ax - b\| + \operatorname{dist}(x, \mathcal{K})$$

If Slater's condition holds, for every bounded set B,  $\exists \kappa_B$ 

$$\operatorname{dist}(x,\operatorname{Feas}) \leq \kappa_B \operatorname{Res}(x).$$

## Under Slater's

**Forward error** = O(Backward error) over every fixed bounded set

# Consequences to conic programming - optimal sets

$$\min_{x} \quad c^{T}x$$
subject to 
$$Ax = b$$

$$x \in \mathcal{S}_{+}^{n}$$

- $\bullet$   $\theta$ : optimal value
- Opt =  $\{x \mid c^T x = \theta, Ax = b, x \in \mathcal{S}^n_+\}$ .
- Suppose Slater's condition holds.

In general, 
$$\operatorname{Opt} \cap \operatorname{ri} \mathcal{S}^n_{\perp} = \emptyset$$

If x is primal optimal and s is dual optimal then

$$xs = 0$$

so  $s \neq 0$  implies x is **not positive definite**.

## Optimal sets are hard

**Even under Slater**, we may have **Forward error**  $\neq$  O(Backward Error)

# In conic linear programming...

- For feasible regions: Slater's condition holds ⇒ Forward error = O(Backward error) over every fixed bounded set
- For optimal sets: even under Slater's, Forward error and **Backward error** might be quite different.

#### Key point

We need error bounds that hold when Slater fails!

 $C_1$ ,  $C_2$ : closed convex sets.  $C := C_1 \cap C_2$ 

## Definition (Hölderian error bound)

 $C_1$ ,  $C_2$  satisfy a **Hölderian error bound**  $\stackrel{\text{def}}{\iff}$  for every bounded set B there exist  $\theta_B > 0$ ,  $\gamma_B \in (0,1]$  such that

$$\operatorname{dist}(x, C) \leq \theta_B(\operatorname{dist}(x, C_1) + \operatorname{dist}(x, C_2))^{\gamma_B} \quad \forall \ x \in B.$$

If  $\gamma_B = \gamma \in (0,1]$  for all B, the bound is **uniform**. If the bound is uniform with  $\gamma = 1$ , we call it a **Lipschitzian** error bound.

## Sturm's bound

 $S^n$ :  $n \times n$  symmetric matrices.

 $S_{+}^{n}$ :  $n \times n$  positive semidefinite matrices.

## Theorem (Sturm's Error Bound)

Suppose  $(\mathcal{L} + \mathbf{a}) \cap \mathcal{S}_+^n \neq \emptyset$ . There exists  $\gamma \geq 0$  such that for every bounded set B, there exists  $\kappa_B$  such that

$$\operatorname{dist}\left(x, (\mathcal{L} + \mathbf{a}) \cap \mathcal{S}_{+}^{n}\right) \leq \kappa_{B}\left(\operatorname{dist}\left(x, \mathcal{L} + \mathbf{a}\right) + \operatorname{dist}\left(x, \mathcal{S}_{+}^{n}\right)\right)^{(2^{-\gamma})}, \quad \forall \ x \in B$$
where  $\gamma < \min\{n - 1, \dim(\mathcal{L}^{\perp} \cap \{a\}^{\perp}), \dim\operatorname{span}\left(\mathcal{L} + \mathbf{a}\right)\}.$ 



J. F. Sturm.

Error bounds for linear matrix inequalities.

SIAM Journal on Optimization, 10(4):1228-1248, Jan. 2000.

Consequence for optimal sets: if **strict complementarity holds**, over a fixed bounded set we have

Forward error =  $O(\sqrt{\mathsf{Backward Error}})$ 

# Beyond Sturm's error bound

## Today's goals

• Prove error bounds for general cones beyond  $\mathcal{S}^n_{\perp}$ 



• Constraint qualifications are **forbidden!** 





Amenable cones: error bounds without constraint qualifications. Mathematical Programming, 186:1-48, 2021.



Scott B. Lindstrom; L and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone arXiv:2010.16391



# Review of faces

- K: closed convex cone
- $\mathcal{F} \subseteq \mathcal{K}$ : closed convex cone

## Definition (Face of a cone)

 $\mathcal{F}$  is a face of  $\mathcal{K} \Leftrightarrow \text{if } x + y \in \mathcal{F}$ , with  $x, y \in \mathcal{K}$ , then  $x, y \in \mathcal{F}$ .

If  $\mathcal{F} \subset \mathcal{K}$  is a face, we write  $\mathcal{F} \triangleleft \mathcal{K}$ .



find 
$$x$$
 (CFP) subject to  $x \in (\mathcal{L} + \mathbf{a}) \cap \mathcal{K}$ 

## Proposition (An error bound for when a face satisfying a CQ is known)

Let  $\mathcal{F} \triangleleft \mathcal{K}$  be such that

$$(\operatorname{ri} \mathcal{F}) \cap (\mathcal{L} + a) \neq \emptyset$$

Then, for every bounded set B, there exists  $\kappa_B > 0$  such that

$$\operatorname{dist}(x,\mathcal{K}\cap(\mathcal{L}+a))\leq \kappa_{\mathcal{B}}(\operatorname{dist}(x,\mathcal{F})+\operatorname{dist}(x,\mathcal{L}+a)), \quad \forall x\in\mathcal{B}.$$

It is not an error bound with respect to  $\mathcal{L} + a$  and  $\mathcal{K}$ , but it is close.

**Goal**: We want to bound dist  $(x, (\mathcal{L} + a) \cap \mathcal{K})$  using dist  $(x, \mathcal{L} + a)$  and  $\operatorname{dist}(x,\mathcal{K}).$ 

- Find F such that
  - $\mathcal{F} \cap (\mathcal{L} + a) = \mathcal{K} \cap (\mathcal{L} + a)$
  - $(ri \mathcal{F}) \cap (\mathcal{L} + a) \neq \emptyset$

Therefore.

$$\operatorname{dist}(x, \mathcal{K} \cap (\mathcal{L} + a)) \leq \kappa_{B}(\operatorname{dist}(x, \mathcal{F}) + \operatorname{dist}(x, \mathcal{L} + a)), \quad \forall x \in B.$$
(1)

- ② Upper bound dist  $(x, \mathcal{F})$  using dist  $(x, \mathcal{K})$  and dist  $(x, \mathcal{L} + a)$ .
- Plug the upper bound in (1).

We want  $\mathcal{F}$  such that

- $\bullet$  (ri  $\mathcal{F}$ )  $\cap$  ( $\mathcal{L} + a$ )  $\neq \emptyset$

## Idea:

- Let  $\mathcal{F}_1 = \mathcal{K}$  and  $i \leftarrow 1$ .
- ② If  $(\mathcal{L} + \mathbf{a}) \cap \operatorname{ri} \mathcal{F}_i \neq \emptyset$ , we are done.
- **3** If  $(\mathcal{L} + \mathbf{a}) \cap \operatorname{ri} \mathcal{F}_i = \emptyset$ , we invoke a separation theorem.
  - There exists  $z_i \in \mathcal{F}_i^* \setminus \mathcal{F}_i^{\perp}$  and  $z_i \in \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ .
  - Let  $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_i \cap \{z_i\}^{\perp}$  and  $i \leftarrow i+1$ . Go to Step 2.



## How to find $\mathcal{F}$ ? - Facial Reduction

#### Theorem (The facial reduction theorem)

Suppose (CFP) is feasible. There is a chain of faces

$$\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$$

and vectors  $(z_1, \ldots, z_{\ell-1})$  such that:

 $\bigcirc$  For all  $i \in \{1, \dots, \ell-1\}$ , we have

$$z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp},$$

$$\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}.$$



L, M. Muramatsu and T. Tsuchiya.

Facial reduction and partial polyhedrality.

SIAM Journal on Optimization, 28(3), 2018 (http://arxiv.org/abs/1512.02549).



J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.

# Facial Reduction - Example

$$\sup_{t,s} -s \tag{D}$$

$$\text{s.t.} \quad \begin{pmatrix} t & 1 & s-1 \\ 1 & s & 0 \\ s-1 & 0 & 0 \end{pmatrix} \succeq 0$$

$$\mathcal{K} = \mathcal{S}_{+}^{3},$$

$$\mathcal{L} + \mathbf{a} = \left\{ \begin{pmatrix} t & 1 & s-1 \\ 1 & s & 0 \\ s-1 & 0 & 0 \end{pmatrix} \mid t, s \in \mathbb{R} \right\}$$

$$\mathcal{S}_{+}^{3} \cap (\mathcal{L} + \mathbf{a}) = \left\{ \begin{pmatrix} t & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid \begin{pmatrix} t & 1 \\ 1 & 1 \end{pmatrix} \succeq 0 \right\}.$$

(D)

## Facial Reduction - Continued

$$sup_{t,s} - s$$
s.t.  $\begin{pmatrix}
t & 1 & s - 1 \\
1 & s & 0 \\
s - 1 & 0 & 0
\end{pmatrix} \succeq 0$ 

Let

$$z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then

$$S^3_{\perp} \cap (\mathcal{L} + a) \subseteq \{z\}^{\perp}$$
.

So, the feasible region is contained in

$$\mathcal{S}_+^3 \cap \{z\}^\perp = \left\{ \begin{pmatrix} a & b & 0 \\ b & c & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid \begin{pmatrix} a & b \\ b & c \end{pmatrix} \succeq 0 \right\}$$

 $\mathcal{F} = \mathcal{S}_{+}^{3} \cap \{z\}^{\perp}$  is the face we want, since  $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F} \neq \emptyset$ .

# General strategy

**Goal**: We want to bound dist  $(x, (\mathcal{L} + a) \cap \mathcal{K})$  using dist  $(x, \mathcal{L} + a)$  and  $\operatorname{dist}(x,\mathcal{K}).$ 

- $\bullet$  Find  $\mathcal{F}$  such that
  - $\mathcal{F} \cap (\mathcal{L} + a) = \mathcal{K} \cap (\mathcal{L} + a)$
  - $(\operatorname{ri} \mathcal{F}) \cap (\mathcal{L} + a) \neq \emptyset$

Therefore.

$$\operatorname{dist}(x, \mathcal{K} \cap (\mathcal{L} + \mathbf{a})) \le \kappa_{\mathcal{B}}(\operatorname{dist}(x, \mathcal{F}) + \operatorname{dist}(x, \mathcal{L} + \mathbf{a})), \quad \forall x \in \mathcal{B}.$$
(1)

- ② Upper bound dist  $(x, \mathcal{F})$  using dist  $(x, \mathcal{K})$  and dist  $(x, \mathcal{L} + a)$ .
- Open Plug the upper bound in (1).

## Step 1 done!

## Facial Residual Functions

#### Let

- K: closed convex pointed cone.
- $\mathcal{F}$ : face of  $\mathcal{K}$
- o  $z \in \mathcal{F}^*$

#### Fact:

$$\mathcal{F} \cap \{z\}^{\perp} = \mathcal{K} \cap \operatorname{span} \mathcal{F} \cap \{z\}^{\perp}.$$

### Definition (Facial residual function for $\mathcal{F}$ and z with respect to $\mathcal{K}$ )

If  $\psi_{\mathcal{F},z}: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$  satisfies

- $\Phi$   $\psi_{\mathcal{F},\mathcal{F}}$  is nonnegative, monotone nondecreasing in each argument and  $\psi(0,\alpha)=0$ for every  $\alpha \in \mathbb{R}_+$ .
- 2 whenever  $x \in \operatorname{span} \mathcal{K}$  satisfies the inequalities

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \langle x,z \rangle \leq \epsilon, \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon$$

we have:

$$\operatorname{dist}(x, \mathcal{F} \cap \{z\}^{\perp}) \leq \psi_{\mathcal{F}, z}(\epsilon, ||x||).$$

## Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let  $\mathcal{K}$  be a closed convex cone such that  $\mathcal{K} \cap (\mathcal{L} + \mathbf{a}) \neq \emptyset$ . Let

$$\mathcal{F}_\ell \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$$

be a chain of faces of K together with  $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$  such that

$$(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$$

and  $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$  for every i. Let  $\psi_i$  be a facial residual function for  $\mathcal{F}_i$ ,  $z_i$ . Then, after positive rescaling the  $\psi_i$ , for every bounded set B there are constants  $\kappa > 0$ , M > 0 such that if  $x \in \operatorname{span} \mathcal{K} \cap B$  satisfies the inequalities

$$\operatorname{dist}(x, \mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x, \mathcal{L} + a) \leq \epsilon,$$

we have

dist 
$$(x, (\mathcal{L} + \mathbf{a}) \cap \mathcal{K}) \le \kappa(\epsilon + \varphi(\epsilon, M)),$$

where  $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$ , if  $\ell \ge 2$ . If  $\ell = 1$ , we let  $\varphi$  be the function satisfying  $\varphi(\epsilon, ||x||) = \epsilon$ .

$$(f \diamondsuit g)(a, b) := f(a + g(a, b), b).$$

### Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let  $\mathcal{K}$  be a closed convex cone such that  $\mathcal{K} \cap (\mathcal{L} + \mathbf{a}) \neq \emptyset$ . Let

$$\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_{1} = \mathcal{K}$$

$$(\mathcal{L}+a)\cap \mathrm{ri}\,\mathcal{F}_\ell
eq\emptyset.$$

 $z_i$ . Then, after positive rescaling the  $\psi_i$ , for every bounded set B there are constants  $\kappa > 0$ , M > 0 such that if  $x \in \operatorname{span} \mathcal{K} \cap B$  satisfies the inequalities

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x,\mathcal{L} + a) \leq \epsilon,$$

we have

dist 
$$(x, (\mathcal{L} + \mathbf{a}) \cap \mathcal{K}) \le \kappa(\epsilon + \varphi(\epsilon, M)),$$

where  $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$ , if  $\ell \ge 2$ . If  $\ell = 1$ , we let  $\varphi$  be the function satisfying  $\varphi(\epsilon, ||x||) = \epsilon$ .

$$(f \diamondsuit g)(a, b) := f(a + g(a, b), b).$$

Suppose  $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$ . Let

$$d(x) := \operatorname{dist}(x, \mathcal{L} + \mathbf{a}) + \operatorname{dist}(x, \mathcal{K}).$$

Then, for every B, we have

dist 
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \le \kappa_B(d(x) + \varphi(d(x), M_B)), \forall x \in B$$

where  $\varphi$  is a composition of **facial residual functions**.

• If K is a symmetric cone, then

$$\psi_{\mathcal{F},z}(\epsilon,t) = \kappa \epsilon + \kappa \sqrt{\epsilon t}$$

is a FRF, for some  $\kappa > 0$ . (L'21)

• If K is polyhedral, then  $\psi_{\mathcal{F},z}(\epsilon,||x||) = \kappa \epsilon$  is a FRF, for some  $\kappa > 0$ .

Reminder:

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \langle x,z \rangle \leq \epsilon, \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon$$

implies

$$\operatorname{dist}(x, \mathcal{F} \cap \{z\}^{\perp}) \leq \psi_{\mathcal{F}, z}(\epsilon, ||x||).$$

- K: symmetric cone (psd matrices, second order cone and etc)
- Facial residual function (FRFs):  $\psi_{\mathcal{F},z}(\epsilon,t) = \kappa \epsilon + \kappa \sqrt{\epsilon t}$

Suppose  $(\mathcal{L} + \mathbf{a}) \cap \mathcal{K} \neq \emptyset$ . There exists  $\gamma \geq 0$  such that for every bounded set B. there exists  $\kappa_B$  such that

$$\operatorname{dist}(x,(\mathcal{L}+a)\cap\mathcal{K})\leq \kappa_B(\operatorname{dist}(x,\mathcal{L}+a)+\operatorname{dist}(x,\mathcal{K}))^{(2^{-\gamma})},\quad\forall\ x\in B$$

where  $\gamma$  is the number of facial reduction steps.

# Consequences for symmetric cone programming

$$\min_{x} c^{T}x$$
subject to 
$$Ax = b$$

$$x \in \mathcal{K}$$

#### For the feasible set:

- Under Slater: Forward error = O(Backward Error).
- Without Slater: Forward error =  $O((Backward Error)^{2^{-\gamma}})$

## For the optimal set:

- Strict complementarity holds:  $x^* + s^* \in \operatorname{ri} \mathcal{K} \Leftrightarrow x^* \in \operatorname{ri} (\mathcal{K} \cap \{s^*\}^{\perp})$ 
  - Opt =  $\{x \mid c^T x = \theta, Ax = b, x \in \mathcal{K}\}\$  intersects  $\operatorname{ri}(\mathcal{K} \cap \{s^*\}^{\perp})$
  - Facial reduction finishes in 1 step.
- Under Strict complementarity: Forward error =  $O(\sqrt{Backward Error})$

 $g: \mathbb{R}_+ \to \mathbb{R}_+$ : monotone nondecreasing function with g(0) = 0.

#### Definition (g-amenability)

 $\mathcal{F} \subseteq \mathcal{K}$  is g-amenable if for every bounded set B, there exists  $\kappa > 0$  such that  $\operatorname{dist}(x,\mathcal{F}) < \kappa \mathfrak{g}(\operatorname{dist}(x,\mathcal{K})), \quad \forall x \in (\operatorname{span}\mathcal{F}) \cap B.$ 

If all faces of K are g-amenable, then K is an g-amenable cone.

Suppose  $\mathcal{K}^1$  and  $\mathcal{K}^2$  are  $\mathfrak{g}$ -amenables

- There are calculus rules for the FRFs of  $\mathcal{K}^1 \times \mathcal{K}^2$ .
- A FRF of a **face** of  $\mathcal{K}^1$  can be lifted to a FRF of the whole cone  $\mathcal{K}^1$ .

## Definition (Amenable cones)

 $\mathcal{K}$  is **amenable** if for every face  $\mathcal{F}$  of  $\mathcal{K}$  there is  $\kappa > 0$  such that

$$\operatorname{dist}(x, \mathcal{F}) \le \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}.$$

- Symmetric cones (e.g., PSD cone) are amenable ( $\kappa = 1$ )
- Polyhedral cones are amenable
- Strictly convex cones are amenable. (p-cones, second order cones and so on)
- $\mathcal{K}_1, \mathcal{K}_2 \Rightarrow \mathsf{FRFs}$  of  $\mathcal{K}_1 \times \mathcal{K}_2$  are sums of FRFs of  $\mathcal{K}_1$  and  $\mathcal{K}_2$ .

The exponential cone •0000

$$K_{\mathsf{exp}} := \left\{ (x, y, z) \mid y > 0, z \geq y e^{x/y} \right\} \cup \left\{ (x, y, z) \mid x \leq 0, z \geq 0, y = 0 \right\}.$$



# The exponential cone

$${\mathcal K}_{\rm exp} := \left\{ (x,y,z) \mid y > 0, z \geq y {\rm e}^{x/y} \right\} \cup \left\{ (x,y,z) \mid x \leq 0, z \geq 0, y = 0 \right\}.$$

- Applications to entropy optimization, logistic regression, geometric programming and etc.
- Available in Alfonso, Hypatia, Mosek. https://docs.mosek.com/modeling-cookbook/expo.html.
- V. Chandrasekaran, P. Shah Relative entropy optimization and its applications. Math. Program. 161, 1–32 (2017)

# Error bounds for the exponential cone - LLP'20

find 
$$x$$
 (CFP) subject to  $x \in (\mathcal{L} + a) \cap K_{exp}$ 

Four types of error bounds are possible:

- Lipschitzian error bound
- Hölderian error bound with exponent 1/2
- Entropic error bound: for every bounded set B, there exists  $\kappa_B > 0$  dist  $(x, (\mathcal{L} + a) \cap \mathcal{K}_{exp}) \le \kappa_B \mathfrak{g}_{-\infty}(\max(\operatorname{dist}(x, \mathcal{L} + a), \operatorname{dist}(x, \mathcal{K}_{exp}))), \quad \forall x \in B.$
- Logarithmic error bound: for every bounded set B, there exists  $\kappa_B > 0$  dist  $(x, (\mathcal{L} + a) \cap K_{exp}) \le \kappa_B \mathfrak{g}_{\infty}(\max(\operatorname{dist}(x, \mathcal{L} + a), \operatorname{dist}(x, K_{exp}))), \forall x \in B$ .

The results above are optimal.

$$\mathfrak{g}_{-\infty}(t) := \begin{cases} 0 & \text{if } t = 0, \\ -t \ln(t) & \text{if } t \in \left(0, 1/e^2\right], \quad \mathfrak{g}_{\infty}(t) := \begin{cases} 0 & \text{if } t = 0, \\ -\frac{1}{\ln(t)} & \text{if } 0 < t \leq \frac{1}{e^2}, \end{cases} \\ t + \frac{1}{e^2} & \text{if } t > 1/e^2. \end{cases}$$

From the exponential cone we can:

 Obtain sets that do not have a Hölderian error bound, but have a logarithmic error bound:

$$\mathcal{F}_{\infty} = K_{\mathsf{exp}} \cap \{\mathsf{z}\}^{\perp},$$

where z = (0, 0, 1).

• Obtain sets that satisfy a Hölderian bound for all  $\gamma \in (0,1)$  but not  $\gamma = 1$ . Furthermore, the best error bound is an entropic one.

$$\mathcal{F}_{-\infty} = \mathcal{K}_{\mathsf{exp}} \cap \{\mathsf{z}\}^{\perp},$$

where z = (0, 1, 0).

## Final remarks

 Much more stuff in the paper! Ex: direct products, techniques for obtaining FRFs and so on.



Scott B. Lindstrom; L and Ting Kei Pong Error bounds, facial residual functions and applications to the exponential cone arXiv:2010.16391

#### Other advertisement:



T. Liu and L.

Convergence analysis under consistent error bounds arXiv:2008.12968



L: Vera Roshchina and James Saunderson Amenable cones are particularly nice arXiv:2011.07745

## Amenable cones

## Definition (Amenable cones)

 $\mathcal K$  is **amenable** if for every face  $\mathcal F$  of  $\mathcal K$  there is  $\kappa>0$  such that

$$\operatorname{dist}(x, \mathcal{F}) \le \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}.$$

- Symmetric cones (e.g., PSD cone) are amenable ( $\kappa=1$ )
- Polyhedral cones are amenable
- Strictly convex cones are amenable. (p-cones, second order cones and so on)
- Amenability is preserved under linear isomorphism and direct products

## Facial exposedness

$$\mathcal{F}$$
 is a face of  $\mathcal{K} \stackrel{\text{def}}{\Longleftrightarrow} \mathcal{F} \unlhd \mathcal{K}$   
 $\mathcal{K}^* := \{ y \mid \langle y, x \rangle \geq 0, \forall x \in \mathcal{K} \}$ 

- **1** Projectionally exposed cone  $\stackrel{\text{def}}{\iff} \forall \mathcal{F} \unlhd \mathcal{K}$  there exists a projection such that  $P\mathcal{K} = \mathcal{F}$ .
- ② Amenable cones  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$  for every face  $\mathcal F$  of  $\mathcal K$  there is  $\kappa>0$  such that

$$\operatorname{dist}(x, \mathcal{F}) \le \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}.$$

- $\bullet \text{ Nice cone } \stackrel{\text{def}}{\iff} \forall \mathcal{F} \triangleleft \mathcal{K}, \quad \mathcal{F}^* = \mathcal{K}^* + \mathcal{F}^{\perp}.$
- **●** Facially exposed cone  $\stackrel{\text{def}}{\Longleftrightarrow}$   $\forall \mathcal{F} \subseteq \mathcal{K}, \exists z \in \mathcal{K}, \text{ s.t. } \mathcal{F} = \mathcal{K} \cap \{z\}^{\perp}.$

# Comparison of exposedness properties

#### Known results:

- Facially exposed ← Nice ← Amenable ← Projectionally exposed.
- dim  $K \le 3$ : Facially exposed  $\Leftrightarrow$  Projectionally exposed (Barker and Poole, SIADM'87)
- There exists a 4D cone that is facially exposed but not nice (Vera, SIOPT'14).

#### New results (see LRS'20):

- There exists a 4D cone that is nice but not amenable
- In dimension 4 or less: Amenable ⇔ Projectionally exposed.



Figure: A 3D slice of a 4D convex cone that is nice but not amenable

Amenable cones

# Hyperbolicity cone

#### Let

- $p: \mathbb{R}^n \to \mathbb{R}$ : homogenous polynomial
- $e \in \mathbb{R}^n$ , with p(e) > 0

## Hyperbolic polynomial

if for every  $x \in \mathbb{R}^n$ 

$$t \mapsto p(te - x)$$

has only real roots, then p is **hyperbolic** along e.

For  $x \in \mathbb{R}^n$ , denotes the roots of

$$t \mapsto p(te - x)$$

by  $\lambda_1(x), \ldots, \lambda_r(x)$ .

## Hyperbolicity cones

$$\Lambda_+(p,e) := \{x \in \mathbb{R}^n \mid \lambda_i(x) \ge 0, i = 1, \dots, r\}.$$

Let

• 
$$p(X): S^n \to \mathbb{R}, \ p(X) = \det X.$$

• 
$$e = I_n$$
.

The roots of

$$t\mapsto p(tI_n-X)=\det(tI_n-X)$$

are the eigenvalues of X.

$$\Lambda_+(p,e)=\mathcal{S}^n_+.$$

# Some history

- Studied in the 50's by Gårding in the context of partial differential equations.
- Güler brought them to attention of optimizers in 97.
  - $-\log p$  is a self-concordant barrier for the interior of  $\Lambda_+(p,e)$ .
- Renegar proved key results on the structure of  $\Lambda_+(p,e)$  in 2005.

Amenable cones 00000000000

## Some classes of cones

| More general | Hyperbolicity cone     |
|--------------|------------------------|
|              | Homogeneous cone       |
|              | Symmetric cone         |
|              | PSD cone               |
|              | Second order cone      |
| Less general | $\mathbb{R}^n_{\perp}$ |

- Example of cone that is not a hyperbolicity cone: exponential cone
- Renegar proved that hyperbolicity cones are facially exposed.

|                                     | Hyperbolicity cone              |
|-------------------------------------|---------------------------------|
|                                     | Homogeneous cone Symmetric cone |
| Slice of a PSD cone (spectrahedral) | PSD cone                        |
|                                     | Second order cone               |
|                                     | $\mathbb{R}^n_+$                |

#### Spectrahedral cone

 $\mathcal{K}$  is spectrahedral  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$   $A(\mathcal{K}) = \mathcal{S}^n_+ \cap V$  holds for some injective linear map A, subspace V and n.

#### Spectrahedral cone

 $\mathcal{K}$  is spectrahedral  $\stackrel{\text{def}}{\iff} A(\mathcal{K}) = \mathcal{S}_+^n \cap V$  holds for some injective linear map A, subspace V and n.

#### Generalized Lax Conjecture

Is every hyperbolicity cone spectrahedral?

## cent results on amenability

#### A few results (L, Roshchina and Saunderson)

- Hyperbolicity cones and spectrahedral cones are amenable.
- Amenability is preserved by intersections and taking slices.
- A cone constructed from an amenable compact convex set is amenable.



# Open questions

- Is there an amenable cone that is not projectionally exposed? (dim  $K \ge 5$  must hold!)
- Which cones are projectionally exposed?



L, V. Roshchina and J. Saunderson Amenable cones are particularly nice.

arxiv:2011.07745



L, V. Roshchina and J. Saunderson Hyperbolicity cones are amenable.

arxiv:2102.06359

# Thank you!



Figure: The exponential cone, its faces and exposing vectors

## FRFs without projection - LLP'21



$$\inf \left\{ \frac{\|w - v\|^{\alpha}}{\|w - u\|} \right\} > 0 \quad \Rightarrow \quad \varphi(\epsilon, t) \coloneqq \kappa_t \epsilon + \kappa_t \epsilon^{\alpha} \text{ is FRF}$$

$$\inf \left\{ \frac{\mathfrak{g}(\|w-v\|)}{\|w-u\|} \right\} > 0 \quad \Rightarrow \quad \varphi(\epsilon,t) \coloneqq \kappa_t \epsilon + \kappa_t \mathfrak{g}(2\epsilon) \text{ is FRF}$$