Системный анализ процессов переработки нефти и газа

Лабораторная работа №3

Введение в библиотеку NumPy

Задание 1

Заполните матрицу $a\ (5,\ 10)$ случайными целыми числами $\in [-10;\ 10]$. Выведите значения ее элементов на экран.

- 1. Найдите произведение минимального элемента матрицы на сумму ее четных элементов. Выведите результат.
- 2. Найдите столбец матрицы с минимальной суммой положительных элементов и выведите индекс этого столбца.

Задание 2

По имеющимся исходным данным, используя массивы NumPy, определите:

1. Состав потока в мольных долях:

$$\chi_i = rac{\dfrac{\omega_i}{M_i}}{\sum\limits_{i=1}^n \dfrac{\omega_i}{M_i}}$$

где χ_i - мольная доля i-го компонента; ω_i - массовая доля i-го компонента; M_i - молярная масса i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

2. Плотность потока:

$$ho = rac{1}{\sum\limits_{i=1}^{n}rac{\omega_{i}}{
ho_{i}}}$$

где ρ - плотность потока; ω_i - массовая доля i-го компонента; ρ_i - плотность i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

3. Среднюю молекулярную массу потока:

$$m = rac{1}{\sum\limits_{i=1}^{n}rac{\omega_{i}}{M_{i}}}$$

где m - средняя молекулярная масса потока; ω_i - массовая доля i-го компонента; M_i - молярная масса i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

Исходные данные

Параметр	C_1	C_2	C_3	iC_4	nC_4	iC_5	nC_5	nC_6
ω_i	0.1	0.1	0.1	0.4	0.2	0.05	0.03	0.02
$ ho_i$, г/см 3	0.416	0.546	0.585	0.5510	0.6	0.616	0.6262	0.6594
M_i , г/моль	16	30	44	58	58	72	72	86

Вычисления необходимо реализовать в виде функций.

Задание 3

Дана температурная зависимость кинематической вязкости воды:

T [°C]	0	21.1	37.8	54.4	71.1	87.8	100
$\mu_k \left[10^{-3} \mathrm{m}^2/\mathrm{c} ight]$	1.79	1.13	0.696	0.519	0.338	0.321	0.296

1. Используя метод fit() класса numpy.polynomial.Polynomial подберите степень полинома (ограничим поиск в пределах 1-4). В качестве критерия используйте среднеквадратичную ошибку:

$$MSE = rac{1}{n} imes \sum_{i=1}^n \left(y_i - ilde{y}_i
ight)^2$$

где MSE - среднеквадратичная ошибка; n - количество наблюдений; y_i - фактическое значение; \tilde{y}_i - предсказанное значение.

2. Используя полином с выбранной в пункте 1 степенью, определите значения μ_k при $T=10\degree,\ 30\degree,\ 60\degree$ и $90\degree$ С.

Задание 4

Уравнение Ван-дер-Ваальса, описывающее состояние газа, можно записать в виде следующей формулы как зависимость давления p газа от его молярного объема V и температуры T:

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

где a и b – специальные молекулярные константы, а $R=8.314~{\rm Дж/}~({\rm моль\cdot K})$ – универсальная газовая постоянная.

Формулу легко преобразовать для вычисления температуры по заданному давлению и объему, но ее форма, представляющая молярный объем в отношении к давлению и

температуре, является кубическим уравнением:

$$pV^3 - (pb + RT)V^2 + aV - ab = 0$$

Все три корня этого уравнения ниже критической точки (T_c, p_c) являются действительными: наибольший и наименьший соответствуют молярному объему газообразной фазы и жидкой фазы соответственно. Выше критической точки, где не существует жидкая фаза, только один корень является действительным и соответствует молярному объему газа (в этой области его также называют сверхкритической жидкостью, или сверхкритической средой).

Критическая точка определяется по условию $(\partial p/\partial V)_T = \left(\partial^2 p/\partial V^2\right)_T = 0$ и для идеального газа Ван-дер-Ваальса выводятся формулы:

$$T_c=rac{8a}{27Rb} \qquad p_c=rac{a}{27b^2}$$

Для этана (C_2H_6) константы Ван-дер-Ваальса $a=0.5580~ n^2\cdot \Pi a\cdot {\it M}^6\cdot {\it Monb}^{-2}$ и $b=65.1\times 10^{-6}~{\it M}^3\cdot {\it Monb}^{-1}.$

- Реализовать функцию для нахождения критической точки газа по уравнению Вандер-Ваальса.
- Реализовать функцию для нахождения молярного объема газа с учетом критической точки. Определить молярный объем при комнатной температуре и давлении (298 $\rm K,~101325~\Pi a)$ и при следующих условиях: температура $500~\rm K,$ давление $12 \times 10^6~\rm \Pi a.$

Cosem: используйте класс numpy.polynomial.Polynomial для кубического уравнения и нахождения его корней. Проверить является ли число действительным можно при помощи функции numpy.isreal() (https://numpy.org/doc/stable/reference/generated/numpy.isreal.html). Получить действительную часть числа, представленного в комплексном виде, можно при помощи атрибута real:

```
import numpy as np
a = np.array([1+0.5j, 10, 2+0j])
print(a.real) # array([ 1., 10., 2.])
```

Задание 5

Двухпараметрическое уравнение состояния Редлиха-Квонга имеет следующий вид:

$$P=rac{RT}{V-b}-rac{a}{T^{0.5}V\left(V+b
ight)}$$

где P - давление, $\Pi a; T$ - абсолютная температура, K; V - мольный объем, $M^3/MOЛЬ; R=8.314$ - универсальная газовая постоянная, $\mathcal{L} \# / (MOЛЬ \cdot K)$.

Константы a и b зависят от конкретного вещества и вычисляются по следующим формулам:

$$a = rac{1}{9 \cdot \left(\sqrt[3]{2} - 1
ight)} rac{R^2 T_c^{2.5}}{P_c} \ b = rac{\sqrt[3]{2} - 1}{3} rac{R T_c}{P_c}$$

где T_c - критическая температура, К; P_c - критическое давление, Πa .

Уравнение состояния Редлиха-Квонга можно записать относительно коэффициента сжимаемости Z:

$$Z^3 - Z^2 + (A - B^2 - B)Z - AB = 0$$

где
$$A=rac{aP}{R^2T^{2.5}}$$
; $B=rac{bP}{RT}.$

С учетом того, что коэффициент сжимаемости $Z = \frac{PV}{RT}$, плотность газа может быть выражена следующим образом:

$$\rho = \frac{M \cdot P}{R \cdot T \cdot Z}$$

где ρ - плотность газа, кг/м 3 ; M - молярная масса газа, кг/моль.

- 1. Необходимо реализовать функции для вычисления коэффициента сжимаемости и плотности реального газа с использованием библиотеки NumPy.
- 2. Рассчитать плотность пропана при атмосферном давлении, значения T принять принадлежащими интервалу $[273.15, 298.15]~\mathrm{K}, 10$ элементов.

Свойства пропана

Свойство	Значение	Единицы измерения
Молярная масса	0.0441	кг/моль
Критическая температура, T_c	370	K
Критическое давление, P_c	4.27	МПа

Примичание: при решении кубического уравнения выбирается максимальный действительный корень.