Machine Learning Lab 02

Maximilian Pfundstein (maxpf364) 2018-11-29

Contents

	ssignment 2: Analysis of Credit Scoring	1
	1 Import creditscoring.xls	
	2 Decision Tree Fitting	1
	1.2.1 Deviance	1
	1.2.2 Gini	2
	1.2.3 Conclusions	2
2	ssignment 3: Uncertainty Estimation	3
3	ssignemnt 4: Principal Components	3

1 Assignment 2: Analysis of Credit Scoring

1.1 Import creditscoring.xls

Let's import the data and have a look at it.

Table 1: creditscoring.xls

resident	property	age	other	housing	exister	job	depends	telephon	for eign	${\rm good_bad}$
4	1	67	3	2	2	3	1	2	1	good
2	1	22	3	2	1	3	1	1	1	bad
3	1	49	3	2	1	2	2	1	1	good
4	2	45	3	3	1	3	2	1	1	good
4	4	53	3	3	2	3	2	1	1	bad
4	4	35	3	3	1	2	2	2	1	good

1.2 Decision Tree Fitting

Task: Fit a decision tree to the training data by using the following measures of impurity:

- a. Deviance
- b. Gini index

1.2.1 Deviance

The model for the decision tree using deviance.

```
##
## Classification tree:
## tree(formula = good_bad ~ ., data = train, split = "deviance")
## Variables actually used in tree construction:
```

```
## [1] "duration" "history" "marital" "existcr" "amount" "purpose"
## [7] "savings" "resident" "age" "other"
## Number of terminal nodes: 22
## Residual mean deviance: 0.7423 = 277.6 / 374
## Misclassification error rate: 0.1869 = 74 / 396
```

The confusion matrix looks as follows:

	bad	good
bad	49	56
good	43	152

Therefore the error rate is:

[1] 0.33

1.2.2 Gini

The model for the decision tree using gini

```
##
## Classification tree:
## tree(formula = good_bad ~ ., data = train, split = "gini")
## Variables actually used in tree construction:
## [1] "foreign" "coapp" "depends" "telephon" "existcr" "savings"
## [7] "history" "property" "amount" "marital" "duration" "resident"
## [13] "job" "installp" "purpose" "employed" "housing"
## Number of terminal nodes: 53
## Residual mean deviance: 0.9468 = 324.7 / 343
## Misclassification error rate: 0.2247 = 89 / 396
```

The confusion matrix looks as follows:

	bad	good
bad	25	43
good	67	165
Therefo	re the	error rate is:

[1] 0.3666667

1.2.3 Conclusions

Question: Report the misclassification rates for the training and test data. Choose the measure providing the better results for the following steps.

Answer: The misqualification rate for the decision tree with deviance is 0.33 compared to the decision tree with gini as the classifier which has a misqualification rate of 0.3666667. Therefor we will continue with using the decision tree that uses **deviance** as the classifier.

2 Assignment 3: Uncertainty Estimation

set.seed(12345)

3 Assignemnt 4: Principal Components

set.seed(12345)