微分積分学・同演習 A

演習問題 10

 $1! \quad m,n \geq 1$ を任意の自然数とするとき,次の定積分を計算せよ *1 .

(1)
$$\int_0^{2\pi} \cos mx \cos nx \, dx$$
 (2) $\int_0^{2\pi} \cos mx \sin nx \, dx$ (3) $\int_0^{2\pi} \sin mx \sin nx \, dx$

2. 次の不定積分を計算せよ(部分積分).

(1)
$$\int \operatorname{Arcsin} x \, dx$$
 (2) $\int \log x \, dx$ (3) $\int x \operatorname{Arctan} x \, dx$

3. 次の不定積分を計算せよ.ただし,a は正の実数である(置換積分).

(1)
$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$
 (2) $\int \frac{dx}{x^2 - 2ax + a^2 + 1}$ (3) $\int \sqrt{a^2 - x^2} dx$

4. 次の不定積分を計算せよ*2.

(1)
$$\int \frac{dx}{1+x^2}$$
 (2) $\int \frac{dx}{(1+x^2)^2}$ (3) $\int \frac{dx}{(1+x^2)^3}$

5. 次の有理関数を部分分数分解せよ*3

(1)
$$\frac{1}{x^2 - 1}$$
 (2) $\frac{1}{1 - x^3}$ (3) $\frac{x + 1}{x(x^2 + 1)}$ (4) $\frac{x}{x^3 - 1}$ (5) $\frac{x^3 + 2}{x^2 - 1}$

6 問題 5 の有理関数の不定積分を求めよ.

7. $x^4+1=(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1)$ であることを利用して,次の有理関数を部分分数分解せよ.

(1)
$$\frac{1}{x^4+1}$$
 (2) $\frac{x^2}{x^4+1}$ (3)* $\frac{x^3+x}{x^4+1}$

 8^{\dagger} 次の関数の原始関数を求めよ.ただし,aは正の実数である.

(1)
$$x^3 e^{ax}$$
 (2) $x^3 e^{-x^2}$ (3) $\frac{1}{e^x + 4e^{-x} + 5}$ (4) $\frac{x}{\sqrt{a^4 - x^4}}$

(5)
$$\frac{1}{\sqrt{x^2 - a^2}}$$
 (6) $\frac{1}{(x^2 - 1)^2}$ (7) $x \log x$ (8) $(\operatorname{Arctan} x)^2$

6月27日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017C.html

^{*1} 三角関数の和積の公式を用いる.また,場合分けも必要である.

^{*2} 教科書 p.96 を参照のこと.

^{*3 (5)} はまず分子の多項式の次数を分母のものよりも小さくする.