HUBERT KIM

Research Scientist, Haptics

E-mail: jk.hubert.kim@gmail.com

Mobile: 917.834.0377

Home: Bay Area, CA (willing to relocate)

Web: hubertjkim.com

LinkedIn: ~/hubertjkim

SKILLS

Human subject testing

User interface design

Digital signal processing

Bare-metal programming

Adaptive control and machine learning

Numerical simulation and path planning

EDUCATION

PhD,

Mechanical Engineering Virginia Tech, Blacksburg, VA Sept 2021

Dissertation: Joint Torque Feedback for Motion Training with an Elbow Exoskeleton

BS, cum laude, Mechanical Engineering **NYU Tandon**, *Brooklyn*, *NY* May 2015

SUMMARY

A haptic researcher with specialties in human experiments, mechatronics, and control theory. Seeks to join research/engineering team with project—driven environment to improve human and robot perception. Competent in:

- Designing and executing human subject research with analytical tools resulting in two journal articles
- **Developing concepts into prototypes** with manufacturing and programming skills resulting in open—sourced publication
- Solving problems in frequency-domain with modeling and simulation skill, contributing to one peer—reviewed journal and four coauthored papers

RESEARCH INTERESTS

• Haptic Interfaces • Physical Human-Robot Interactions

Wearables

AREAS OF EXPERTISE

Human—centered Research

Gained as PhD Researcher | Assistive Robotics Laboratory at Virginia Tech

- Managed quantitative human subject studies to discover human perceptual threshold when wearing exoskeleton, as described in paper in Scientific Reports
- Oversaw design iterations of adaptive User Interface to measure kinesthetic perception resulting in 2020 ICRA conference presentation
- Analyzed user data resulting in discovery of active human joint stiffness, as evidenced by journal paper in *IEEE Access*.

Mechatronic Product Development

Gained as PhD Researcher | Assistive Robotics Laboratory at Virginia Tech

- Led Arm Haptic Feedback Team with rapid prototyping and embedded programming as evidenced by open—source paper, HardwareX
- Collaborated with motor expert to solve Initial Pose Detection problem of Brushless DC motor as exhibited in HardwareX
- Mentored two professionals in mechatronics topics and advised two senior design teams, including team that participated in 2019 Cornell Cup Robotics

Modeling and Simulation of Physical Human-robot Interaction

Gained as PhD Researcher | Assistive Robotics Laboratory at Virginia Tech

- Operated project assessing physical Human—Robot Interaction via control design technique ending with poster presentation at 2016 IROS conference
- Carried out system identification of wearables as demonstrated by development of impedance controller in poster

HUBERT KIM

Research Scientist, Haptics

TECHNICAL SKILLS

Embedded Programming (C/C++ via CCStudio):

- UART/I2C/CAN
- Oscilloscopes/ logic analyzers

Data Acquisition and Simulation:

MATLAB/LabVIEW

3D CAD:

NX/SolidWorks

Statistics:

- JMP
- SPSS

Data Processing with NN:

- Pvthon
- Tensorflow (Jupiter)

Physiological Sensors:

EMG/IMU

HONORS

Doctoral Scholarship ICTAS, Virginia Tech March 2016–July 2020

Best Mechanical Engineering Experience Award for Undergraduate NYU Tandon May 2015

OTHER ACTIVITIES

- Basketball
- Weightlifting
- Reading Science Fiction
- NCEES: FE, NY, 2015

AREAS OF EXPERTISE continued

Signal Processing and Analysis

Gained as Undergraduate Researcher | Dynamic System Laboratory at NYU

- Conducted transfer function identification of smart material that led to validating physics-based model in energy harvesting field
- Configured custom and off-shelf data acquisition systems leading to several journal publications (one first author, four authorships) and resulting in ICTAS funding (four-plus-year scholarship) for doctoral study

SELECTED PUBLICATIONS

The Effects of Torque Magnitude and Stiffness in Arm Guidance through Joint Torque Feedback

Kim, H., Asbeck, A. [Under review]

• 2022 • IEEE Access

Just Noticeable Differences for Elbow Joint Torque Feedback

Kim, H., Asbeck, A.

• 2021 • Scientific Report

An Elbow Exoskeleton for Haptic Feedback Made with a Direct Drive Hobby Motor

Kim, H., Asbeck, A.

2020HardwareX

Just Noticeable Differences for Joint Torque Feedback During Static Poses Kim, H., Guo, H., Asbeck, A.

• 2020 • ICRA

Voltage Attenuation along the Electrodes of Ionic Polymer Metal Composites Kim, H., Cha, Y., Porfiri, M.

2016
Journal of Intell Mater Syst Struct

SCHOLARLY REVIEWS

Machine Learning Model Comparisons of User Independent & Dependent Intent Recognition Systems for Powered Prostheses

• 2020 • IEEE Robotics and Automation

Probabilistic Model-based Learning Control for Task-oriented Intention-driven Training with Soft Rehabilitation Robots

2020
Transactions on Mechatronics