CONCOURS D'ADMISSION 2010

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Sur quelques questions de calcul différentiel

Notations et conventions

Pour tout entier n > 0, on note $\langle ., . \rangle$ le produit scalaire euclidien usuel et ||.|| la norme associée sur \mathbf{R}^n , \mathbf{S}^{n-1} la sphère de rayon 1 dans \mathbf{R}^n , $\mathcal{M}_n(\mathbf{R})$ l'espace des matrices réelles à n lignes et n colonnes, I_n la matrice identité dans $\mathcal{M}_n(\mathbf{R})$, $\mathrm{GL}_n(\mathbf{R})$ le sous-ensemble de $\mathcal{M}_n(\mathbf{R})$ des matrices inversibles, et $\mathrm{SL}_n(\mathbf{R})$ celui des matrices de déterminant 1. On note $\mathrm{Tr}(M)$ la trace d'une matrice M de $\mathcal{M}_n(\mathbf{R})$, tM sa transposée, \widetilde{M} la matrice de ses cofacteurs, et l'on rappelle la formule

$$M^{t}\widetilde{M} = \det(M) I_n$$
.

Si M est une matrice de $\mathcal{M}_n(\mathbf{R})$, on désigne par $\exp M$ son exponentielle, définie par $\exp M = \sum_{k=0}^{+\infty} \frac{M^k}{k!}$. On rappelle que l'application $t \mapsto \exp(tM)$ de \mathbf{R} dans $\mathcal{M}_n(\mathbf{R})$ est de classe \mathcal{C}^1 , et que sa dérivée en 0 est M. De même, si φ est un endomorphisme d'un \mathbf{R} -espace vectoriel de dimension finie, on note $\exp(\varphi)$ son exponentielle donnée par la série $\sum_{k=0}^{+\infty} \frac{\varphi^k}{k!}$.

Soit U un ouvert de \mathbf{R}^n . Si $f:U\to\mathbf{R}^p$ est une application de classe \mathcal{C}^1 , on note df_x sa différentielle au point x, soit :

$$\forall h \in \mathbf{R}^n, \quad df_x(h) = \lim_{t \to 0} \frac{1}{t} (f(x+th) - f(x)).$$

Préliminaires

1a. Soient α et β deux formes linéaires sur \mathbf{R}^n telle que $\ker \beta \subset \ker \alpha$. Montrer qu'il existe un réel λ tel que $\alpha = \lambda \beta$.

1b. Soient $\alpha, \beta_1, \ldots, \beta_r$ des formes linéaires sur \mathbf{R}^n telles que $\bigcap_{i=1}^r \ker \beta_i \subset \ker \alpha$. Montrer que α est combinaison linéaire de β_1, \ldots, β_r . (Une méthode possible est de raisonner par récurrence sur r, en considérant, pour $r \geq 2$, la restriction de α et β_r à $F = \bigcap_{i=1}^{r-1} \ker \beta_i$).

Première partie

2. Soit $\gamma:]-1,1[\to {\bf R}^n$ une application de classe ${\mathcal C}^1$ telle que

$$\forall t \in]-1,1[, ||\gamma(t)|| = 1.$$

Montrer que pour tout t dans $]-1,1[,\langle \gamma(t),\gamma'(t)\rangle=0.$

- **3.** Soit $x \in \mathbf{R}^n$ tel que ||x|| = 1 et soit $v \in \mathbf{R}^n$, non nul, orthogonal à x. Montrer qu'il existe une application $\gamma :]-1,1[\to \mathbf{R}^n$ de classe \mathcal{C}^1 telle que $\forall t \in]-1,1[, ||\gamma(t)|| = 1, \gamma(0) = x$ et $\gamma'(0) = v$.
- **4.** Soit $f: \mathbf{R}^n \to \mathbf{R}$ une fonction de classe \mathcal{C}^1 , et soit g sa restriction à \mathbf{S}^{n-1} . Montrer que g admet des extremums. Si x est un extremum, en considérant une application γ comme ci-dessus, montrer qu'il existe un réel λ tel que

$$df_x(h) = \lambda \langle x, h \rangle, \quad (\forall h \in \mathbf{R}^n)$$
.

5. Soit A une matrice symétrique de $\mathcal{M}_n(\mathbf{R})$. On définit

$$f: \begin{cases} \mathbf{R}^n \to \mathbf{R} \\ x \mapsto \langle x, Ax \rangle \end{cases}.$$

- **5a.** Montrer que f est de classe \mathcal{C}^1 et calculer sa différentielle.
- **5b.** Soit x un extremum de la restriction de f à S^{n-1} . Montrer que x est vecteur propre de A.

Deuxième partie

Dans cette partie, on considère les fonctions suivantes :

$$q: egin{cases} \mathcal{M}_n(\mathbf{R})
ightarrow \mathbf{R} \ M \mapsto \sum_{1 \leq i,j \leq n} m_{ij}^2 \end{cases}$$

où m_{ij} est le coefficient de M sur la i-ème ligne et j-ième colonne,

$$f: \begin{cases} \mathcal{M}_n(\mathbf{R}) \to \mathbf{R} \\ M \mapsto \det(M) - 1 \end{cases}$$

2

ainsi que la restriction de q à $SL_n(\mathbf{R})$, que l'on note g.

- **6a.** Montrer que $q(M) = \text{Tr}(^t M M)$.
- **6b.** Vérifier que $(A, B) \mapsto \operatorname{Tr}({}^{t}AB)$ définit un produit scalaire sur $\mathcal{M}_{n}(\mathbf{R})$.
- **6c.** Montrer que q est de classe \mathcal{C}^1 et calculer sa différentielle.

- 7. On note E_{ij} la matrice de $\mathcal{M}_n(\mathbf{R})$ ayant pour coefficient 1 à la *i*-ième ligne et *j*-ième colonne, et 0 partout ailleurs. Soient $M \in \mathcal{M}_n(\mathbf{R})$ et $t \in \mathbf{R}$. Exprimer $\det(M + tE_{ij})$ en fonction de $\det(M)$, de t et des coefficients de la matrice \widetilde{M} . En déduire que pour tout $H \in \mathcal{M}_n(\mathbf{R})$, $df_M(H) = \operatorname{Tr}({}^t\widetilde{M}H)$.
- 8. Montrer que $SL_n(\mathbf{R})$ est fermé dans $\mathcal{M}_n(\mathbf{R})$ et que la restriction g de q à $SL_n(\mathbf{R})$ possède un minimum.
 - **9.** Soit $M \in \mathcal{M}_n(\mathbf{R})$. Montrer que $\det(\exp M) = e^{\operatorname{Tr}(M)}$.
 - 10. Soit $M \in \mathrm{SL}_n(\mathbf{R})$ et soit $H \in \mathcal{M}_n(\mathbf{R})$ tels que $df_M(H) = 0$. Montrer que l'application

$$\gamma: \begin{cases}]-1, 1[\to \mathcal{M}_n(\mathbf{R}) \\ t \mapsto M \exp(tM^{-1}H) \end{cases}$$

est à valeurs dans $\mathrm{SL}_n(\mathbf{R})$, de classe \mathcal{C}^1 et vérifie $\gamma(0)=M,\,\gamma'(0)=H.$

- 11. Soit $M \in \mathrm{SL}_n(\mathbf{R})$ un point où la fonction g atteint son minimum, et soit H dans $\mathcal{M}_n(\mathbf{R})$ tels que $df_M(H) = 0$.
 - **11a.** Montrer que $dq_M(H) = 0$.
 - 11b. Déduire de ce qui précède que M est une matrice orthogonale. Que vaut alors g(M)?

Troisième partie

Dans cette partie, on se propose de calculer la différentielle en un point quelconque de l'application $\exp: \mathcal{M}_n(\mathbf{R}) \to \mathcal{M}_n(\mathbf{R})$. On rappelle que $\mathrm{GL}_n(\mathbf{R})$ est un ouvert de $\mathcal{M}_n(\mathbf{R})$.

12a. Soient $C_1, C_2 : \mathbf{R} \to \mathcal{M}_n(\mathbf{R})$ deux applications de classe \mathcal{C}^1 . Posons $B(t) = C_1(t)C_2(t)$. Montrer que B est de classe \mathcal{C}^1 et que pour tout t dans \mathbf{R} ,

$$B'(t) = C_1'(t)C_2(t) + C_1(t)C_2'(t) .$$

12b. Soit $C: \mathbf{R} \to \mathcal{M}_n(\mathbf{R})$ une application de classe \mathcal{C}^1 . On suppose que pour tout $t \in \mathbf{R}$, C(t) est inversible et on pose $D(t) = C(t)^{-1}$. Montrer que D est de classe \mathcal{C}^1 et que pour tout t dans \mathbf{R} ,

$$D'(t) = -C(t)^{-1}C'(t)C(t)^{-1} .$$

- 13. Soient $C_1, C_2 : \mathbf{R} \to \mathcal{M}_n(\mathbf{R})$ des applications de classe \mathcal{C}^2 telles que $C_1(0) = C_2(0) = I_n$.
- **13a.** Soient $\alpha, \beta \in \mathbf{R}$. Trouver une application $A : \mathbf{R} \to \mathcal{M}_n(\mathbf{R})$ de classe \mathcal{C}^1 telle que $A(0) = I_n$ et $A'(0) = \alpha C'_1(0) + \beta C'_2(0)$.
- 13b. Montrer qu'il existe $\epsilon > 0$ tel que $C_1(t)$ et $C_2(t)$ soient inversibles pour tout t dans l'intervalle $]-\epsilon,\epsilon[$.
- **13c.** Pour tous s,t dans $]-\epsilon,\epsilon[$, posons $L(s,t)=C_1(s)C_2(t)C_1(s)^{-1}C_2(t)^{-1}.$ Calculer $\frac{\partial^2 L}{\partial s \partial t}(0,0)$ en fonction de $C_1'(0)$ et $C_2'(0)$.

14. Soit $\Phi: \operatorname{GL}_n(\mathbf{R}) \to \operatorname{GL}(\mathcal{M}_n(\mathbf{R}))$ défini, pour tout X dans $\operatorname{GL}_n(\mathbf{R})$ par

$$\Phi(X): Y \mapsto XYX^{-1} \ .$$

14a. Montrer que Φ est un morphisme de groupes. Montrer que les coefficients de XYX^{-1} sont des fractions rationnelles des coefficients de X et de Y. En déduire que Φ est de classe \mathcal{C}^1 .

14b. Montrer que $d\Phi_{I_n}: \mathcal{M}_n(\mathbf{R}) \to L(\mathcal{M}_n(\mathbf{R}))$ est donné, pour tous $X,Y \in \mathcal{M}_n(\mathbf{R})$ par $d\Phi_{I_n}(X)(Y) = XY - YX \ .$

Dans la suite du problème, on pose $\varphi(X) = d\Phi_{I_n}(X) : \begin{cases} \mathcal{M}_n(\mathbf{R}) \to \mathcal{M}_n(\mathbf{R}) \\ Y \mapsto XY - YX \end{cases}$.

15. Soit V un \mathbf{R} -espace vectoriel de dimension finie et soit $f: \mathrm{GL}_n(\mathbf{R}) \to \mathrm{GL}(V)$ un morphisme de groupes de classe \mathcal{C}^1 .

15a. Montrer que pour tout $X \in GL_n(\mathbf{R})$, pour tout $H \in \mathcal{M}_n(\mathbf{R})$,

$$df_X(H) = f(X) df_{I_n}(X^{-1}H) = df_{I_n}(HX^{-1}) f(X)$$
.

15b. On fixe $X \in \mathcal{M}_n(\mathbf{R})$. On considère les applications $a, b : \mathbf{R} \to \mathrm{GL}(V)$ définies pour tout $t \in \mathbf{R}$ par

$$a(t) = f(\exp tX), \quad b(t) = \exp(t df_{I_n}(X)).$$

Montrer que a = b.

15c. Retrouver le résultat de la question 9 en utilisant le résultat de la question 7.

15d. Montrer qu'avec les notations de la question **14**, $\Phi(\exp X) = \exp(\varphi(X))$, pour tout $X \in \mathcal{M}_n(\mathbf{R})$.

16. On fixe $X, Y \in \mathcal{M}_n(\mathbf{R})$. Pour tout $s, t \in \mathbf{R}$, on pose

$$u(s,t) = \exp(s(X+tY)), \quad A(s,t) = \exp(-sX)\frac{\partial u}{\partial t}(s,t).$$

16a. Montrer que $A(1,0) = \exp(-X) d \exp_X(Y)$.

16b. Déduire du calcul de $\frac{\partial A}{\partial s}(s,t)$ que $\frac{\partial A}{\partial s}(s,0) = \exp(-s\varphi(X))(Y)$.

16c. Montrer que
$$A(s,0) = \sum_{n=0}^{\infty} (-1)^n s^{n+1} \frac{\varphi(X)^n}{(n+1)!} (Y).$$

16d. En déduire une formule (sous forme de série) pour $d \exp_X(Y)$.

* *