SQL-Befehle

Erste Übungen

Zunächst einmal zur Erinnerung die Syntax eines Standard-SELECT-Befehls in Backus-Naur-Form:

```
SELECT [ALL|DISTINCT]{spalten|*}
FROM tabelle [alias] [tabelle[alias]]...
[WHERE {bedingung|unterabfrage}]
[GROUP BY spalten[HAVING {bedingung|unterabfrage}]]
[ORDER BY spalten[ASC|DESC]...];
```

Aufgabe 1

Gegeben seien folgende Relationen:

Student(<u>MatrNr</u>, Name) Professor(<u>PersNr</u>, Name)

Vorlesung(<u>VorlNr</u>, Titel, PersNr) hört(<u>MatrNr</u>, <u>VorlNr</u>)

Erörtere jeweils, was die folgenden SQL-Anweisungen bewirken:

a) SELECT *
FROM Student

b) SELECT *

FROM Student

WHERE (MatrNr LIKE "156-*") OR (Name LIKE "Ab*")

c) SELECT DISTINCT PersNr

FROM Vorlesung

d) SELECT Name, MatrNr AS MatrikelnummerFROM Student

e) SELECT Titel, VorlNr FROM Vorlesung WHERE PersNr = 12

f) SELECT Titel, VorlNr FROM Vorlesung ORDER BY PersNr

- g) SELECT Vorlesung.VorlNr, Vorlesung.Titel, Professor.Name, Professor.PersNr FROM Professor INNER JOIN Vorlesung ON Professor.PersNr = Vorlesung.PersrNr
- h) SELECT Vorlesung.VorlNr, Vorlesung.Titel, Professor.Name, Professor.PersNr FROM Professor LEFT OUTER JOIN Vorlesung ON Professor.PersNr = Vorlesung.PersrNr
- i) SELECT Professor.Name, Professor.PersNr
 FROM Professor LEFT OUTER JOIN Vorlesung ON Professor.PersNr = Vorlesung.PersrNr
 WHERE Vorlesung.PersNr IS NULL
- j) SELECT Professor.Name, Professor.PersNr

FROM Professor

WHERE NOT EXISTS (SELECT * FROM Vorlesung WHERE Vorlesung.PersNr = Professor.PersNr)

k) SELECT COUNT (Vorlesung.PersNr) AS Anzahl, Professor.Name, Professor.PersNr FROM Professor LEFT OUTER JOIN Vorlesung ON Professor.PersNr = Vorlesung.PersrNr GROUP BY Professor.Name, Professor.PersNr

Aufgabe 2

Folgende Tabellen seien gegeben:

Abteilung

ID	Name	Leiter
0	Raumfahrt	1
1	Fuhrpark	4
2	Verwaltung	2

arbeitet_an

ı	ID	Mitarbeiter	Projekt
	0	1	0
	1	1	1
	2	2	2
	3	5	0
	4	0	1
	5	0	2

Mitarbeiter

r	ID	Name	Vorname	Abteilung
	0	Müller	Anton	NULL
	1	Geiger	Sven	0
	2	Schwab	Anita	2
	4	Görgens	Margit	1
	5	Hurz	Willy	NULL

Projekt

ID	Bezeichner	Abteilung	Verantwortlicher
0	Apollo 13	0	5
1	Challenger	0	4
2	Webseiten	2	0

- a) Erstelle ein Entity-Relationship-Diagramm (ERD).
- b) Entwickle zu folgenden Abfragen mögliche zugehörige und im Zusammenhang sinnvolle SQL-Befehle und gib die sich aus diesen resultierenden Tabellen an.
 - 1. Finde den Leiter der Raumfahrtabteilung.
 - 2. Gib alle Abteilungsleiter aus.
 - 3. Notiere alle Projekte, die zur Verwaltungsabteilung gehören.
 - 4. Finde heraus, wer für das Apollo 13 Projekt verantwortlich ist.
 - 5. Schreibe alle Namen von Leuten nieder, die am Challenger Projekt arbeiten.
 - 6. Gib alle Projektverantwortlichen aus.
 - 7. Erörtere, ob es eine Person gibt, die am Challenger Projekt arbeitet und gleichzeitig Leiter einer Abteilung ist.
 - 8. Liste alle Mitarbeiter auf, die am Apollo 13 Projekt oder am Webseiten-Projekt arbeiten.