Tarea 02

Kevin Hernández

Exercise 2.5.1: What is the communication cost of each of the following algorithms, as a function of the size of the relations, matrices, or vectors to which they are applied?

- a. The matrix-vector multiplication algorithm of Section 2.3.2.
- b. The union algorithm of Section 2.3.6.
- c. The aggregation algorithm of Section 2.3.8.

Exercise 3.4.1: Evaluate the S-curve $1 - (1 - s^r)^b$ for $s = 01, 02, \dots, 09$, for the following values of r and b:

- r = 3 and b = 10.
- r = 6 and b = 20.
- r = 5 and b = 50.

Solución 3.4.1

■ Para r = 3 y b = 10

s	$1 - (1 - s^r)^b$
.1	0.00995512
.2	0.077180588
.3	0.239448893
.4	0.483870732
.5	0.736924424
.6	0.912267475
.7	0.985015105
.8	0.999234054
.9	0.999997864

 \blacksquare Para r=6 y b=20

S	$1 - (1 - s^r)^b$
.1	0.000019999810001669616
.2	0.001279222058761964
.3	0.014479466504172311
.4	0.07880932311056221

S	$1 - (1 - s^r)^b$
.5	0.27018714400947597
.6	0.6154146360312677
.7	0.9181859965846739
.8	0.9977121251546806
.9	0.9999997398129465

\bullet Para r=5 y b=50

\mathbf{s}	$1 - (1 - s^r)^b$
.1	0.0004998775195954597
.2	0.01587519984502117
.3	0.11453988231042189
.4	0.4022839522088044
.5	0.7955506304323648
.6	0.9825338277068608
.7	0.9998989958361557
.8	0.9999999976077777
.9	1