MTI Egzamin:

Opracowanie wszystkiego!!! (Prawie ;P)

Wykład 1 - Podstawowe problemy i zagadnienia Standardy ITU H.32X; Projekt OpenH323

Podstawowe problemy związane z przesyłaniem danych audio/wideo w sieci:

Bandwidth - przepustowość

- Konferencja ISDN potrzebuje 128-384 Kbps
- W standardzie H.323 bazująca na standardzie IP około 384-768 Kbps
- Pakietyzacja powoduje nadłożenia informacji (20% więcej przez nagłówki)
- Wyższe jakości H.323 nawet 1.5 4 Mbps
- 6-20Mbps NTSC/PAL (MPEG1/2/4)
- 20-50Mbps dla HDTV
- Szerokość pasma powinna być symetryczna przy odbiorze i wysyłaniu,
- MCU/bridge odbiera wszystkie strumienie jednocześnie (bardzo obciążone)
- Najmniej wymagająca jakość dla 8 osób wymaga 8 * 384Kbps = 3Mbps (na te czasy to drobne, ale znajdźcie mi takie łącze symetryczne (ściąganie i wysyłanie z taką samą prędkością))

Packet loss - utrata pakietów

- Mała szerokość pasma, przez co routery odrzucają niektóre pakiety oglądasz film online, a tu brakuje części informacji, zazwyczaj włacza się buforowanie.
- Zdarzają się na łączach satelitarnych lub bezprzewodowych (wiadomo, burza jest i są zakłócenia)

 W konferencjach nie ma buforowania, więc ucina fragmenty filmów, albo są zkałócenia dźwięku.

Latency - opóźnienia

- Czas od zajścia zdarzenia (ktoś mrugnął) do momentu aż urządzenie końcowe się o tym dowie (Twój komputer zacznie przetwarzać to, że ktoś mrugnął)
- Opóźnienia wynikają z:
 - kodowanie/dekodowanie (można zainwestować w lepszy sprzęt)
 - przesył pakietów
- Czasami problemem jest brak synchronizacji dźwięku i obrazu

Jitter - wariacja opóźnień

- pakiety przychodzą w niewłaściwej kolejności
- powoduje zakłucenia dzwięku ("metaliczny" dzwięk)
- można zminimalizować zwiększając bufor, ale powoduje to wzrost opóżnienia

Policies - zabezpieczenia

• Firewall/NAT mogą blokować porty, co uniemożliwi ustanowienie połączenia (zewnętrzne IP i te sprawy)

Do lania wody:

- Elementy:
 - Bandwith potrzebna duża prędkość neta,
 - o Packet loss- pakiety lubią się gubić, więc tracimy informacje
 - Jitter opóźnienia się zmieniają mamy mieszankę kolejności pakietów,
 - o Policies Firewalle i inne zabezpieczenia blokują porty
- Potrzebujemy symetrycznego łącza, które ma przepustowość minimum liczba_osób*384kbs. MCU bardzo obciążone, ciężko o łącze z dużą prędkością udostępniania.
- Znikają nam pakiety, przez wszelkie problemy w przesyłaniu, mamy buforowanie które to rozwiązuje, ale nie w konferencjach,
- Opóźnienia spowodowane są kodowania/dekodowania i samego przesyłu.

ITU H.323

Komponenty:

Terminale

Komputery PC - klienci

Gatekeepers

- gatekeepery + terminale + gateways + MCU = strefa lokalna
- terminale rejestrują się gatekeeperze
- mapuje aliasy na adresy,
- akceptuje, albo odrzuca połączenia,
- może odrzucić połączenie, gdy jest już zbyt dużo połączeń
- kontroluje jakie urządzenia mają dostęp do local zone
- przetwarzanie sygnałów kontrolnych (?)
- logowanie połączeń
- przekierowanie połączeń

Gateways

- Może być mostem między H.323 i innymi technologiami,
- tłumaczy usługi, oraz transkoduje audio i wideo

MCU (multipoint control units)

- "Virtual meeting room" łączy wiele rozmów w jednąk onferencję,
- Dwa komponenty wg H.323 scentralizowany i niescentralizowany
- MC (multipoint controller):
 - o określa wspólne możliwości uczestników,
- MP (multipoint processor)
 - o miksuje audio i przesyła spowrotem

Protokoły użwane w H.323

RTP/RTCP (Real-Time Transport Protocol / Real-Time Transport Control Protocol)

• Opisuje transport danych w czasie rzeczywistym

H.225 (RAS - Registration, Admission and Status)

- wykorzystywany do połączenia między urządzeniem końcowym, a gatekeeperem
- najważniejsze komunikaty:
 - żąda nawiązania połączenia
 - odpowiedź odmowna
 - odpowiedź zatwierdzająca
- korzysta z UDP

H.255.0

• protokół używany m.in. do opisania sygnalizaci, mediów, pakietyzacji, synchronizacji.

H.245

komunikaty do otwierania i zamykania kanałów audio video

Q.931

Sygnalizacja połączenia

RSVP (Resource ReSerVation Protocol)

rezerwacja zasobów sieciowych

T.120

• przesyłanie danych i kontrola konferencji podczas interaktywnej komunikacji

KODEKI:

G.711 i inne – audio

H.261, H.263 - video

Do lania wody:

- Elementy:
 - Terminale to zwykłe komputery,
 - Gatekeepers (jak bramkarze na dyskotece), mogą odrzucać połączenia, gdy jest ich już za dużo, i kontrolują kto ma dostęp,
 - Gateways pozwalają się łączyć między standardami
 - MCU Sprawdza kto ma jakiego kompa, odbiera wszystkie strumienie, miksuje je i odsyła.

Wykład 2 - SIP, kompresja mowy

SIP (Session Initiation Protocol)

Opis:

- Zaprojektowany do nawiązywania, utrzymywania i rozłączania sesji,
- Zapewnia podstawowe funkcje (wybieranie numeru, sygnał zjaętości itp.)

Adres:

- Adres SIP SIP URL podobne do adresu e-mail 3847362378@89.76.81.12
- pierwsza część numer, lub nazwa użytkownika,
- druga część domena, lub adres sieciowy

Komponenty

- Agenci Użytkownika
 - User-Agent Client iniciuje rządania i pdziałą od strony użytkownika
 - User-Agent Server odbiera żądania i zwraca odpowiedzi od strony użytkownika
- Serwery sieciowe
 - Proxy server pracuje w imieniu innych klientów. Interpretuje, oraz przypisuje nagłówki żądań zanim prześle je do innych serwerów, zapewnia otrzymanie odpowiedzi tą samą trasą,
 - Redirect server pomaga znaleźć użytkownika w sieci. Akceptuje żądania SIP i odsyła adres serwera obsługującego poszukiwanego użytkownika

Komunikaty

- Żądania
 - o INVITE zaproszenie do sesji, sprawdzanie możliwości sprzętowej
 - o ACK potwierdzenie połączenia
 - OPTIONS zbiera informacje o agentach i możliwościach serwerów
 - o BYE rozłącza połączenia
 - o CANCEL odwołuje żadanie
 - o REGISTER żąda rejestracji w serwerze SIP
- Odpowiedzi:
 - o SUCCESS
 - CLIENT-ERROR
 - SERVER-ERROR

Kompresja dźwięku

Opis:

- Człowiek słyszy 20Hz do 20kHz
- Dźwięk jest ciągły w czasie
- Kompresja to, to kompromis między jakością, a przepływnością strumienia danych,
- Koder koduje, dekoder rekonstruuje (dekoduje)
- PCM (Puls Code Modulation) format przekazywany do kodera
- Schemat: Przetwornik PCM -> KODER SIEĆ -> DEKODER PCM -> Przetwornik
- Dzielimy metody na kompresję mowy i szerokopasmowego sygnału.
- VO(ices)CODERS modelują źródło dźwięu,
- Układy kompresji szerokopasmowego dźwięku nie robią założeń odnośnie dźwięu.
- Często kompresuje się następujące po sobie ramki/segmenty/bloki (trwają 20ms)

Próbkowanie

Pomiar wartości amplitudy co stały odcinek czasu

- Im większa częstotliwość próbkowania tym dokładniejsze przybliżenie dźwięku,
- Teoria Nysquista próbkowanie dźwięku musi być conajmniej dwa razy większa od

- największej częstotliwości sygnału odwzorowywanego.
- Za duże częstotliwości mogą powodować zakłócenia o niżych częstotliwościach,

Niektóre częstotliwości próbkowania:

- 44.10 (Cd-Audio) Pełen zakres pasma (muzyczka w końcu), ucina o tyle częstotliwość, żeby filtry poprawiające sobie radziły,
- 16kHz (komunikacja multimedialna) Odwzorowuje szerokopasmowy sygnał mowy o zakresie pasma 50Hz - 7kHz.
- 8kHz (GSM) pozwala odwzorować wąskopasmowy sygnał mowy o zakresie częstotliwości 200Hz - 3.2 kHz

Kwantyzacja

- Konwersja ciągłego zakresu amplitudy na skończony zbiór wartości (dyskretyzacja)
- Szum kwantyzacji różnica pomiędzy dźwiękiem analogowym, a cyfrowym
- Czym więcej bitów na których reprezentujemy amplitudę, tym lepsza jakość
- 16 bitów wystarczy do dźwięku wysokiej jakości, 12-14 dla mowy w telekomunikacji.

Miary jakości

- SNR (Signal to Noise Ratio) wyrażany w dB. Stosunek sygnałów wejściowych, do różnicy sygnałów wejściowych i wyjściowych.
- Subiektywna percepcja 40 słuchaczy wystawia oceny.

Wymagana przepustowość

- próbki an sekundę * bitów na próbkę * kanały
- Sterefonia 44100 * 16 * 2 = 1.41Mbps
- Wąskopasmowa 8000*12*1 = 96kbps

Wykład 3 - Kodowanie mowy

Metody kompresji mowy

VOicesCODERS

Metoda kompresji dynamiki amplitudy,

- Przy kwantyzacji równomiernej potrzebujemy 12 bitów
- Używając logarytmicznej możemy ograniczyć rozdzielczość do 8 bitów,
- Wady:
 - Mały stopień kompresji,
- Zalety
 - Prawie nie do usłyszenia,

- Prosta obliczeniowo,
- Małe opóźnienia.

Metoda predykcji liniowej LPC,

- Dzielenie ramek na dźwięczne (ton krtaniowy, struny) i bezdźwięczne (szum),
- Zamodelowanie kanału głosowego człowieka,
- Klasyfikacja ramek:
 - Etap 1: Badanie energii sygnału (duży -> dźwięczna)
 - Etap 2: Rozstrzyganie niepewnych (dźwięczne częściej przecinają oś X)
 - Etap 3: Analiza otoczenia: Głoski bezdźwięcznej nie otaczają dźwięczne
- Okreslenie okresu drgań struny głosowej podczas mówienia, do dekodowania dźwięcznych ramek,
- Skorzystanie z AMDF (jakiejś dziwnej funkcji ;)) która ma minimum, gdy argument jest równy okresowi drgań (częstotliwości), oraz pozwala klasyfikować na dźwięczne / bezdźwięczne
- Filtr dekodujący bazuje na współczynnikach wyznaczanych podczas kodowania (trzeba przesłać razem z dźwiękiem)
 - o 10 parametrów dla dźwięcznych, 4 dla bezdźwięcznych
- Sygnał wejściowy nazywany jest sygnałem pobudzenia.
- Współczynniki wyznaczamy minimalizując średni błąd kwantowy,
- Każdą próbkę można przedstawić jako kombinację M poprzednich próbek.
- Model LPC jest uproszczony, stąd strata jakości.

Metoda pobudzenia równomiernego RPE,

- Z grupy analiza synteza (AbS)
- Syntezuje się taki sygnal pobudzenia, który po przejściu przez LPC będzie najbliższy oryginałowi,
- Zamiast podziału na dźwięczne/bezdźwięczne sygnał pobudzenia jest zbiorem stałej liczby impulsów pobudzających, określanych przez koder.
- Koder okresla położenie pierwszego impulsu i amplitudy kolejnych.
- Czym więcej impulsów na ramkę, tym lepsza jakość,
- Używane w GSM

Metoda pobudzenia kodowego CELP.

- Rozwinięcie CELP
- Użycie książek kodowych, zawierający "sygnały resztkowe".
- Z książki są dobierane najlepsze sygnał pobudzenia (minimalizacja błędu)
- Wady:
 - Długa książka kodowa -> Długi czas przeszukiwania, Długie kody

waveform codecs

- Nie wykorzystują informacji o sposobie powstania dźwięu,
- Produkują sygnał, łatwy do zrekonstruowania.

Metoda predykcji adaptacyjnej ADPCM

- szacowanie amplitudy próbki na podstawie amplitudy próbki poprzedzającej,
- Zastępuje wartość amplitudy, różnicą amplitud sąsiednich,
- Korzystając z kodowania entropijnego (Hufmana) można uzyskać dużą wierność reprezentacji,
- Adaptacja polega na dostosowywaniu się do lokalnych właściwości sygnału,
- Feedforward parametry adaptacji przesyłane w strumieniu danych,
- Feedbackward adaptacja na zakodowanej wersji sygnału (więcej błędów, ale większa kompresja)

SB-ADPCM

- Dzielenie sygnału na podpasma częstotliwościowe,
- Bardziej znaczące częstotliwości, kodowane dokłądniej z większą ilościąbitów.

Kodery mowy – podsumowanie

Protocol	Bit Rate / Kbps	End to End Delay in Ms	Coding
G.711	48, 56, 64	0.125	PCM / A and m
G.726	16/24/32/40	0.250 0.375	ADPCM
G.721	32		ADPCM
GSM	13	20	RPELTP
G.722	48		ADPCM
G.727	16, 24, 32, 40	60	ADPCM
G.728	16	2.5	LD Celp
G.729	8	15	CS ACELP
G.723.1	5.3 and 6.3	-	MPMLQ

Do lania wody:

- Vocodery próbują odzworować mowę czlowieka,
- LPC:
 - o Dzieli na dźwięczne/bezdźwięczne, przez badanie energii,
 - Wyznaczanie okresu maksymalnej wysokości dźwięku
 - Budujemy filtr budujący dźwięk na podstawie zbioru współczynników
 - Łaczymy parametry

Wykład 4 - Kompresja dźwięku szerokopasmowego

Standard kompresji MPEG-1

- MPEG Moving Pictures Experts Group Ruszające się obrazki grupa ekspertów kurwa!
- Standard kompresji zsynchronizowanych sekwencji obrazów i dźwięku
- MPEG-1 składa sięz 5-ciu części. Trzecia poświęcona jest kompresji dźwięku.
- Opisuje: Syntatykę strumienia danych, dekompresję i testy zgodności
- 3 warstwy kompresji
- Dekoder warstwy wyższej dekoduje strumień danych warstwy niższej.

Model psychoakustyczny

- Założenie kompresji dźwięku szerokopasmowego: Usuwanie tego czego nie słyszy człowiek (informacje percepcyjnie nieistotne)
- Człowiek słyszy od 20Hz do 20kHz (najwięcej 2 4kHz) dlatego kodujemy z różną dokładnością,
- Wyznacza funkcję częstotliwości i czasu poniżej których dźwięk nie jest słyszalny,
- Nieliniowe sklalowanie dziedziny czestotliwości,
- Kwantujemy sygnał w każdym podpaśmie tak, aby nie tworzyć szumów,
- Trzeba uwzględnić maskowanie czasowe.

Efekt maskowania

- próg słyszenia (najniższy słyszalny dźwięk) jest zależny od odbieranych dźwięków
- Efekt maskowania następuje w dziedzinie częstotliwości,
- Zakres zależy od amplitudy (skoku) dźwięku,

Maskowanie wyprzedzające (forward masking)

Dźwięk maskuje dźwięki następujące po nim, sięga do 200ms,

Maskowanie wsteczne (backward masking)

Dźwięk maskuje inny, występujący wcześniej, 2 do 10 ms

Maskowanie tymczasowe (temporal masking)

Maskowanie występujące zaraz po głośnym dźwięku, 5ms

Koder MPEG-1

Wykorzystuje model wierności percepcyjnej dźwięku,

Schemat blokowy układu kodera MPEG-1

Algorytm kompresji MPEG-1

- Jest używany niezależnie dla każdego kanału
- Aby zmniejszyć przepływność strumienia korzysta sięz trybów
 - Intensity stereo wysyła się zsumowany sygnał i czynniki skalującep ozwalające je rozdzielić,
 - M/S stereo (Middle/Side) lewy kanał transmituje sumę, prawy różnicę. Może być stosowany w Layer 3
- Składowe ramki: bity synchronizacji (12) + bity informacji systemowej (20), bity CRC (16) do detekcji błędów, Opis alokacji bitów (4), Czynniki skalujące (6), Zakodowane próbki każdej częstotliwości
- W dekoderze nie trzeba robić analizy psychoakustycznej, dlatego jest mniejsza złożoność.

Layer1

- 1. Filtracja sygnału wejściowego przez 32 filtry na 32 podpasma po 12 próbek
- 2. Analizujemy wyznaczone podpasma (wyznaczamy alokację bitów i progi maskowania dla każdego podpasma)
- 3. Skalowanie sygnału dla 12 próbek (współczynnik skalowania równy maksymalnej z próbek)
- 4. Kodowanie próbek i tworzenie wyjściowego strumienia łącznie z informacją organizacyjna i synchronizacyjna,
- 5. Obliczanie transformacji FFT dla 512 próbek sygnału oraz składowych tonalnych i nietonalnych,
- 6. W każdym podpaśmie z 32 wyznaczonych, progi porównywane są z maksyalną wartością w tym podpaśmie (ten stosunek to inaczej SMR Sitgnal to Mask ratio), jest to wejście układu kwantyzacji.
- 7. Iteracyjna minimalizacja MNR (Mask to Noise Ratio), równa SNR-SMR (różnca sugnal mask i signal noise ratio).
- 8. Podobno zapewna minimalną słyszalność szumu, dzięki maskowaniu szumów z sąsiadujących podpasm.

Layer2

- Wykorzystuje się podobieństwa między współczynnikami skalowania, i dla pasm o wyższej częstotliwości,
- lepsza kompresja, większa złożoność

Layer3 - MP3

- Bloki długie (12 próbek) dla gwałtownych zmian sygnału
- Bloki krótkie (36 próbek) do reprezentacji stacjonarnych fragmentów
- Zbieżność podpasm częstotliwościowych i krytycznych,

- Stosowane kwantyzacja nierównomierna (np logarytmicna) i kodowanie entropijne (np. Huffman)
- Algorytm kompresji iteracyjnie dokonuje alokacji tak, aby uzyskać największą korzyść w percepcji dźwięu.

MPEG-1, warstwy

Layer1

- Filtry DCT tylko z jedną ramką,
- takie samo rozłożenie częstotliwości dla każdego pasma,
- Model psychoakustyczny wykorzystuje tylko maskowanie częstotliwości

Layer2

- Używa trzech ramek na filtr,
- korzysta częściowo z maskowania tymczasowego,

Layer3

- Lepszy filtr krytycznych pasm (nierówne częstotliwości)
- model psychoakustyczny używa maskowania tymczasowego,
- używa kodowania huffmana,

KODER MP3

KODER MP3 Legend Data Control Perceptual Model Bitstream Multiplex Joint Stereo Coding Iteration Leope MP3 Coded Audio Stream Scale Factors Rate/Distortion Quantizer Control Process Noiseless Coding

Wykład 5 - formaty audio

Różnice części 3-ciej MPEG-2 w stosunku do MPEG-1

- Zwiększenie liczby kanałów do 5.1,
- Dodatkowe czestotliwości próbkowania (16, 22.05, 24kHz),
- Rozszerzenie rozdzielczości próbki do 16-24 bitów
- Obniżenie przepływności strumienia danych do 8 Kbps
- Dodatkowe kanały komentatorskie (do 8 kanalów) tzn. lektor
- MPEG-2 mogą dekodować MPEG-1
- MPEG-1 mogą dekodować 2 głowne kanały MPEG-2

MPEG-2 AAC

- do 48 kanałów
- do 16 kanałów LFE (low fegency enhancment)
- 16 kanalów wielojęzycznych
- 16 strumieni danych
- Możliwe użycie 7.1
- Częstotliwość próbkowania do 96 kHz
- Lepsza jakość niż dla
 - MPEG1 warstwy 3 128Kbps
 - MPEG1 warstwy 2 192Kbps
- Ulepszenia w stosunku do MP3:
 - Lepsze filtry MDCT zamiast hybrydowych
 - Większe rozmiary bloków długich mniejsze krótkich
 - Lepsze tryby łączące kanały (M/S), może być kodowane w podpasmach, a nie jako głowny kanał,
 - Wprowadzono predykcję LTP

Ogg Vorbis

- bezstratna kompresja konkurująca z mp3,
- Ogg jest ogólnie metodą przesyłu multimediów

- Vorbis jest formatem audio dla Ogg
- Tworzony przez Xiph.org Foundation
- Open source
- Przedział jakości od -1 do 10, domyślnie 3. Określana jako lepsza od 128 MP3 a zajmująca jedynie 10% jej rozmiaru,

•

WMA

- używany jest model psychoakustyczny, format stratny, drugi najpopularniejszy po mp3 format dźwięku
- Korzysta ze zmodyfikowanej dyskretnej transformacji cosinusowej, (MDCT)
- Każda ramka zawiera 128, 256, 512, 1024, 2048 próbek po przetransformowaniu przez MDCT (punkt wyżej)
- kodowanie Huffmanem
- Istnieje wersja bezstratna WMA Lossless
- Ścieżki stereo są łączone za pomocą M/S (midside) jedna ścieżka zawiera sumę sygnałów audio, a druga różnicę - można kompresowac je niezależnie (podobno lepiej). Później można wyłuskać z tego stereo

Mousepack

- M/S encoding
- Ulepszone kodowanie huffmana
- Usuwanie szumów jak w MPEG4 AAC V2
- w pełni modyfikowalny bitrate pomiędzy 0 a 1300 kbit/s
- Całkowicie bezstratne,

Wavpack

• opis jak mousepack

FLAC

- Darmowy bezstratny,
- zmniejszenie transferu bez zmniejszenia integralności,
- free/open source
- silny
- PCM, do 8 kanałów,
- CRC, run length coding,

Monkey's Audio

- .ape, .cue, .apl
- lepsza kompresja,
- Nie otwarty, ani nie darmowy,

AC-3 (Audio Code number 3) (kinowy)

- Inaczej Dolby Digital,
- wiernoć percepcyjna,
- standard dźwięku HDTV w USA,
- próbkowanie 32, 44.1, 48kHz
- Zakres przepływności od 32 do 640 Kbps,
- Sześc kanałów niezależnych,
- AC3
 - o kompresja od 1:3 do 1:13
 - Korzysta z transformaty TDAC (Time DOmain Aliasing Cancelation)
 - o zmienna rozdzielczość czasowo-częstotliwościowa,
 - Kontrola CRC
 - Dodatkowe dane okreslające typ materiału,

Dolby Digital - Surround EX(kinowy)

- Rozwinięcie DD
- dodatkowy kanał surround po bokach,
- polepszenie strefy najlepszego odsłuchu,
- rozwiązania problemów z lokalizacją dźwięków,

DTS - Digital Theater System(kinowy)

- system kinowy i domowy
- do ośmiu kanałów,
- przetwarzanie sygnału algorytmem Coherent Acoustic Coding,
- DTSExtendedSurround
 - Rozszerzony DTS + dodatkowe centralny tylny
 - DTS-ES Tylny niezależny

Dolby Digital Plus

- Możliwość miksowania dodatkowych ścieżek dźwiękowych,
- Wysoka przepustowość dla Blue-Ray
 - o 640kbps dla core audio,
 - o 1024 kbs dla extension packet

Dolby TrueHD

- Rozwinięcie bezstratnej kompresji dźwięku MLP Lossless na DVD-Audio
- techniki
 - o wykorzystanie podobieństw w kanałach,
 - o predykcja,
 - kodowanie Huffmana.

- buforowanie danych
- Do 14 kanałów,
- Przepływność 18 Mbit/s
- Kompresja: 2:1 4:1
- Wykorzystanie metadanych, normalizacji dialogów, kompresji dynamiki,

DTS-HD Audio

- Podział na core i extension,
- ddatkowe kanały,
- Większa przepływność
- Dodatkowe ścieżki,

Przegląd formatów

Wykład 6 - Standard JPEG

Opis ogólny

- JPEG Joint Photographics Expert Group Fotograficzna grupa experckich dżojntów
- Definiuje koder, dekoder i sposoby przejścia,
- Definiuje stratne i bezstratne procesy kompresji,
- PNG i tak wymiata.

JPEG – kompresja obrazów kolorowych

- Proces kompresji obrazu o wielu składowych koloru realizuje się niezależnie dla każdej ze składowych,
- Dlatego kolorowe obrazki trzeba rozdzielić na składowe YCbCr (Y luminacji, CbCr chrominacji)
- Zmniejsza to zależność składowych obrazu.
- Jako, że zmiana chrominacji jest mniej widoczna dla ludzi, stosuje się downsampling tzn, skaczemy sobie co dwie składowe chrominacji w pionie i poziomie, bo skok co jeden byłby zbyt mały żeby go dostrzec... a po co, jak można oszczędzać.

Koder JPEG

- Obraz dzielimy na bloki 8x8
 - Przesuwamy ich zera do połowy zakresu, czyli jak mamy piksel 8-bitowy (256) to odejmujemy sobie 128. Czyli z zakresu od 0 do 256, dostajemy zakres od -128

do 128.

- Każdy blok przekształcamy do bloku $S = DsD^T$, gdzie D jest macierza współczynników DCT (rozmiar NxN,N=8).
 - \circ Elementy S_{00} nazywamy współczynnikiem DC (cirect current), pozostałe 63 elementy w S noszą nazwę współczynników AC (alternative current)
 - AC są później układane w kolejności zig-zag

- AC są kodowane za pomocą RLE (Run Length Code) i Huffmana
- W fazie kwantyzacji, każdy współczynnik bloku S dzielimy przez odpowiadający mu element z tablicy kwantyzacji Q, zaokrąglamy i podstawiamy do bloku Sq
 - JPEG okresla tablicę kwantyzacji Q, ale nie narzuca jej stosowania, można zrobić własna.
- W i-tym bloku wartość współczynnika DC^i zastępujemy różnicą $DC^i DC^{i-1}$ i tą różnicę się koduje,
 - Współczynniki AC w każdym bloku ustawiamy wg porządku zyg-zag, a następnie kodujemy mieszanką technik RLE i Huffmana, lub arytmetycznym. Proces jest wspierany tablicami kodowymi.

Dekodowanie JPEG

- 1. Dostaje blok Sq
- 2. W fazie dekwantyzacji rekonstruuje blok R mnożąc elementy Sq przez odpowiednie elementy z Q
- 3. do R stosowana jest odwrotna transformata kosninusowa DCT tworząc blok zrekonstruowany $r = D^T RD$
- 4. Blok r różni się od s, ponieważ etap kwantyzacji wprowadza stratę informacji (zastępuje przedział liczb pojedynczym reprezentantem tzn. zmienia funkcję ciągłą na zbiór liczb (chyba))

Uproszczony schemat dekodera JPEG

Ťrochę o DCT

- Właśności
 - Utrzymanie poziomu błędu kwantyzacji,
 - Skupienie energii sygnału wiele współczynników jest mała i łatwo je się kompresuje, ponieważ wartości są skupione,
 - Dekorelacja współczynników traktowanych jako zmienne losowe
 - Istnieja szybkie algorytmy obliczania
- Normalne monożenie macierzy w DCT wymaga od nas $2N^3$ natomiast dodawań $2N^2(N-1)$
 - Dla N = 8 odpowiednio to 1024 mnożenia i 896 dodawań (dużo)
- Dzięki szybkim algorytmom możemy zmniejszyć tą ilośc d0
 - o grupowanie działań trygonometrycznych (353* i 448+)
 - Arai (206* i 464+)
 - Dwuwymiarowy algorytm Feiga (54* i 464+ i 6 arytmetycznych przesunięć)

Tryby pracy stratnego kodera JPEG

- SEKWENCYJNY jeden po drugim, wierszami, po zakodowaniu idą na wyjście, a na wejście wchodza kolejne,
- PROGRESYWNY Blok Z uzyskany po kwantyzacji jest kodowany w kilku przeglądach obrazu.
 - Podział na zakresy spektralne Z każdym obiegiem dorzucane są informacje o szczegółach bloku, biorąc dodatkowe współczynniki z kolejnych zakresów spektralnych,
 - Sukcesywna aproksymacja wartości współczynników kolejny przebieg orzuca mneisjz naczące bity współczynników w bloku
- Hierarchiczny onbraz jest reprezentowany przez sekwencję ramek
 - Ramkę wyżej uzyskujemy przez downsampling (jak wcześniej w dźwięku, przewidywanie na podstawie poprzedniej)
 - Proces odwrotny (upsampling) daje rekonstrukcję tej ramki w psotaci obrazu referencyjnego,
 - Za wyjątkiem ramki najwyższej w hierarchii, różnice są kodowane DCT

Segmenty danych

- Dzielimy na:
 - Segmenty parametrów,
 - Segmenty danych kodowych,
- Segment parametrów rozpoczyna się od znacznika (markera), który mówi nam co po nim następuje, Np. rozpoczęcie wartości elementów tablicy kwantyzacyjnej,
- Dane mogą być dizelone markerem restartu. Pozwala to dekodować dalej, gdy wystapił bład.
- Poza danymi pikselowymi mamy jeszcze markery dla wszystkich tablcic kodowych i kwantyzacjo
- Skrócony format pomija niektóre z markerów,

Wykład 7 - Kodowanie obrazów cyfrowych (formaty)

Grafika rastrowa vs. wektorowa

Grafika rastrowa (bitmapowa)-obraz składa się z siatki punktów o okreslonym kolorze Grafika wektorowa-obraz składa sie z obietków opisanych równaniami matematycznymi

Typy obrazów

BMP(BitMap Picture)

- Bitmapa-obraz w grafice rastrowej, w którym zakodowana jest wartość(kolor) każdego piksela
- format opracowany pierwotnie dla systemu OS/2 (IBM), obecnie podstawowy format systemów Windows
- rozszerzenie *.bmp
- kompresja
 - o z reguły nie stosuje sie
 - Obrazy 4- i 8-bitowe można kompresować metodą RLE (Run Length Encoding)
- nagłówek(54B), opcjonalna paleta barw 768B, 3B na piksel, linie zapisywane od dołu do gory(jest to wada)
- zalety: duża paleta barw
- wady:duży rozmiar pliku, długi czas ladowania, brak przezroczystości, brak animacji

GIF(Graphics Interchange Format)

- pozwala na kompresję obrazu(LZW -matematycznie bezstratna). *.gif
- maksymalnie 256 kolorów(8b)
- Palety barw:
 - paleta dokładna- skonwertowana w oparciu o barwy identyczne z wystepującymi w obrazie i należącymi do RGB, dla ilustracji <=256 kolorów
 - paleta bezpieczna www- opiera sie na 216 barwach indeksowanej palety kolorów, zapewnia jednakowe wyświetlanie w dowolnym systemie i przegladarce
 - paleta systemowa- 8b paleta kolorów opartą na ujednoliconych próbkach kolorów RGB wykorzystywaną przez każdy z systemów operacyjnych
 - paleta adaptacyjna- tworzy palete barw na podstawie próbkowania kolorów najcześciej wystepujących w obrazie, redukuje barwy wraz z zachowaniem spektróm kolorystycznego ilustracji
- Roztrząsanie- uzyskiwanie barw wystepujących w obrazie ale niedostępnych dla srodowiska operacyjnego, oparta na złudzeniu optycznym
- Przezroczystość- ustawienie jednego/kilku kolorów jako niewidocznego tła ,brak regulalcji stopnia przezroczystości
- Przeplot-wyswietlanie co ntej lini podczas ladowania obrazu, mózg uzupełnia braki
- Animacja- wyswietlanie kolejno wielu obrazów, regulacji podlega czas regulacji
- wady- tylko 256v kolorów, licencja na format, ryzyko niewlaściwego wyswietlania
- zalety-mała objetość(dzieki kompresji), przezroczystość, animacja, przeplot, optymalizacja palety kolorów

PNG (Portable Network Graphics)

- odpowiedź na GIF (ma być bezpłatny i pozbawiony ograniczeń GIF-a), *.png
- 48b kolorów, dla szarości 16b

- obsługa korekcji gamma- wspiera prezentowanie jasnosci i kontrastu bez zmian w różnych systemach prezentacji obrazu
- przezroczystość- możliwosć określania stopnia przezroczystości(do 256 stopni)
- Przeplot-pierwszy obraz pojawia sie 8x szybciej niż przy GIFie(kosztem jakości), tekst 2x szybciej czytelny niż w GIFie
- wyswietlanie sekwencji(progresywne)- najpierw wyswietlane są kontury, potem szczegóły, obraz zapisany progresywnie jest nieco większy
- animacja-png nie obsługuje
- bezstratna 24b kompresja, kombinacja LZ77 i kodowania Huffmana stąd wyniki kompresji sa lepsze od 5 do 25% niż w GIFie
- zalety-ilosc kolorów, bezstratna kompresja,przezroczystość, przeplot, brak płatnych licencii
- wady-brak animacji, nie obsługiwany przez starsze przeglądarki

DjVu

- komkurencja dla GIF i JPEG, kompresja nierzadko przewyższa wspomniane formaty a przy tym umożliwia zapis bez utraty jakości
- fromat przewidziany do skanowania książek, konkurencja dla PDF-a

TIFF(Tagged Image File Format)

• stosowany w poligrafii, wiele odmian pod wzgledem palet kolorów(1,2,4,8,24b/px) i kompresji (Huffman, LZW, Fax, Group 3, Fax Group 4)

SVG

- brak kompresji, format wektorowy, oparty na XML, konkurencja GIFa, *.svq
- pliki można tworzyć za pomoca zwyklego edytora tekstu

FLASH

- pliki wektorowe, *.swf, wysoka jakość obrazów, możliwa interaktywność
- filmy *.swf(kilka minut, z dźwiekiem) zajmuje zaledwie kilka kilobajtówb

Wykład 8 - Kompresja bezstratna

Ogólnie

- Zapakowane tak informacje można odtworzyć do postaci identycznej jak przed rozpakowaniem,
- Pakuja dobrze, jeżeli mamy nadmiarowość informacji

Kodowanie entropowe

Kodowanie binarne

- Strumień kodowany zmieniamy na sekwencję bitów,
- Najłatwiej użyć słownika,
- Jeżeli nie ma w słowniku, to używamy drzew binarnych
- Dekodując kolejne symbole schodzimy w dół 0 do lewego, 1 do prawego,
- W liściu znajduje się nasz symbol
- Sposoby:
 - Słowakodowe na stałe w koderze i dekoderze
 - Słowa kodowe wyznaczane na podstawie statystyki występowania symboli
- szukamy drzewa jak najbardziej płytkiego na to rozwiązanie znalazł Huffman, stąd nazwa.

kodowania Huffmana

Wejście:

- n symboli
- W, waga i-tego symbolu

Wyjście:

• C_i słowo kodowe i-tego symbolu, takie że poprzednie słowa mają minimalną średnią długość kodu.

Algorytm:

- 1. Tworzymy las z wag
- 2. Dla m = n + 1, 2n 1 wybierz z lasu L dwa drzewa o najmniejszych wagach i zastępujemy je drzewem, którego waga jest sumą wag wybranych drzew,
- 3. Dla i = 1, n tworzymy słowo kodowe idąc od korzenia do i-tego węzła wg zasady na lewo 0, na prawo 1

Huffmana z ograniczeniem na długośc słowa kodowego

- Gdy wagi symboli się bardzo różnią słowniki mogą być spore,
- dlatego używamy Huffmana z ograniczoną długością słowa, (w PNG długość kodu = 15)

Dynamiczne kodowanie Huffmana

- Budujemy statystyke podczas napływania danych i co znak poprawiamy drzewo,
- Takie samo drzewo buduje się u odbiorcy,
- Mamy dwa algorytmy poprawiające drzewo: Gallera-Gallera-Knuta i algorytm Vittera

Kodowanie słownikowe

- Mamy sekwencję symboli
- Adres sekwencji w dynamicznym słowniku
- Zmieniamy sekwencje strumieni wejściowych na adresy tych sekwencji
- Kod adresu musi być niewielki w porównaniu do sekwencji.
- Koder i dekoder budują taki sam słownik
- Nie potrzebujemy analizy statystycznej,
- Algorytmy glównie różnią się strukturą słownika, jego tworzeniem, aktualizacją i adresowaniem,
- LZ w nazwach pochodzi od twórców,

LZ 77

- 1. Bufor słownikowy wypełniony pierwszym symbolem wejściowym i przerzucany na wyjście,
- 2. Do bufora wejściowego wrzucane jest pierwsze n symboli,
- 3. Dopóki mamy jakieś dane w buforze wejściowym:
 - a. W buforze słownika szukamy najdłuższy podciąg taki jak początek bufora wejścia. Znajdujemy indeks początku tego podciągu i jego długość. Jeżeli nie znajdziemy podciągu, to ustawiamy długość na 0 :
 - Na wyjście wyrzucamy początek podciągu, długość i symbol następujący po dopasowanym ciągu,
 - c. Przesuwamy bufory o tyle symboli ile zakodowaliśmy.
- 4. Aby zdekodować bufor słownikowy wypełniamy pierwszym symbolem, doklejamy do niego odpoowiednie literki (o zapamiętanej pozycji i długości)

LZ78

- Slownik jest rozszerzany -> korzystamy z przetworzonych wczesniej danych
- Skomplikowany słownik, ale kompresja jest lepsza.

LZW

Wprowazdony słownik ciągów zakodowanych,

- Elementy słownika uprzednio zakodowanego są ponumerowane,
- Początkowy słownik składa się ze wszystkich mozliwych pojedynczych znaków
- W trakcie kodowania do słownika dochodzą ciągi,
- Do kodera są wysyłane tylko numery ciągów ze slownika,
- Koder i dekoder buduja ten sam słownik.

Wykład 9 - Standardy H.261 i H.263

Przestrzenie kolorów

- Używa przestrzeni RGB
 - gorsze przedstawienie, gdyż czułość percepsji jest mniejsza niż przypadku luminancji
- YCC, YIQ, YUV

0

Tryb intra

Trym inter

Formaty koderów

Przykład analizy wymaganego stopnia kompresji

Koder H.261

Wykład 10 - MPEG-1

Ogólny opis

- Szybkie przewijanie w obie strony + swobodny dostęp dzięli GOP (Group Of Pictures) każdy blok musi zawierać ramke typu I
- jakość VHS przy bitrate 1.5Mbps
- względnie szybkie (de)kodowanie
- brak przeplotu
- próbkowanie chrominancji w formacie 4:2:0
- Dla tanich dekoderów powstał CPB (Constrained Parameters Bitstream), obkrojone

parametry, musi być akceprowane przez każdy dekoder

Max res: 720x576Max FPS: 30

Max bitrate: 1,86Mbps

Porównanie z H.261

- H.261 służy tylko do kodowania video, a MPEG1 do video i Audio
- H.261 przewiduje tylko predykcje w przód. MPEG-1 ma predykcje w przód i w tył (B-pictures).
- ramki typu D też są tylko w MPEG-1 (miniaturki dla szybkiego podglądu). (tego nie było w wykładach)
- MPEG-1 posiada unikatowy typ klatki, która nie występuje w późniejszych standardach wideo.
 Nazywane również obrazkami DC (**DC-pictures**) są niezależne od zdjęcia (intra-frames), które
 zostały zakodowane tylko dla DC. Klatki typu D są bardzo niskiej jakości. Klatki typu D nigdy nie
 są zamienne z klatkami typu I, P, B. Ten typ klatek jest wykorzystywany jedynie do szybkiego
 podglądu wideo.
- H.261 obługuje jedynie rozdzielczości CIF(352x288), QCIF (176x144)
- MPEG-1 obsługuje SIF (352x244 (dla NTSC) lub 352x288 dla PAL)
- Zamiast GOB (Group Of Blocks) w H.261, MPEG-1 może być podzielony na jeden lub więcej pasków (slices) (Slice - inaczej: GOB - Group Of Macroblocks)
 - każdy pasek jest kodowany niezależnie
 - o możą zawierać różną liczbę makrobloków na klatke
 - o mogą zaczynać i kończyć się w dowolnym miejscu
 - o umożliwia wielowatkowe przetwarzanie
 - o poprawiają odporność na błędy
- MPEG-1 posiada różne tablice kwantyzacji dla kodowania Inter i Intra
- MPEG-1 posiada wektory ruchu (MVs Motion Vectors) z dokładnością do ½ px lub 1 px
- H.261 posiada max zasięg MV ± 15 px, MPEG-1 [-512, 511.5] dla ½ px dokładności oraz [-1024, 1023] dla 1 px dokładności
- MPEG-1 posiada swobodny dostęp do pliku dzięki GOP (Group Of Pictures), ponieważ każdy GOP posiada znacznik czasu
- H.261 posiada jedynie ramki typu I oraz P, natomiast MPEG-2 ma dodatkowo ramki B

Slices in an MPEG-1 picture

Struktura danych

- Wyróżnia stróktórę pośrednią slice złożona z wielu kolejnych w porządku rastrowym makrobloków, może zaczynac i kończyć się w dowolnym miejscu
- Blok 8x8
- Makroblok 4bloki luminacji i 2 chrominacji (4:2:0)
- Obraz
- Grupa obrazów GOP
- Sekwencja

Warstwa zawiera informacje resynchonizacji dla korekcji błędów transmicji

Tryb intra (I)

- standard określa stosowanie tablic kwantyzacji dla współczynników transformaty kosinusowej
- tablica kwantyzacji może być przesłana w nagłówku sekwencji lub może być użyta standardowa
- zalecane jest podanie współczynnika przemnarzającego tablice dla obrazu/warstwy/makrobloku

Tryb inter

- kompensuje ruch na podstawie obrazu referencyjnego
- transormata DCT między aktualnym blokiem 8x8, a najlepiej pasującym referencyjnym
- oprócz delty zapamiętuje wektor przesunięcia z dokładnością do ½ px

Typy obrazów/klatek

- I obraz intra
- P braz z 1 poprzedzającym obrazem referencyjnym typu I lub P
- **B** 2 obrazy referencyjne 1 poprzedzający P lub I, kolejny wyprzedza w czasie

Wykład 11 - MPEG-2

Formaty obrazu, poziomy pracy

- Dopuszcza przeplot
- Poziomy pracy:

Poziom	Max rozdzielczość	FPS
Niski (low)	352x288	30
Główny (main)	720x576 //576=2·288, 720=2·360	30
Wysoki 1440 (high 1440)	1440x1152 //1152=2·576, 1440=2·720	60
Wysoki (high)	1920x1152	60

Przeplot

Przeplot jaki jest, każdy wie...

- Film 1080i z przeplotem (interlaced), 1080p bez przeplotu (progressive)
- przeplot zwiększa płynność przy dużej dynamice (wft!?)
- nakładane są 2 klatki o połowicznej rozdzielczości są przeplatane:

Skalowalność

- Podział na warstwy, warstwa podstawowa jest obowiązkowa i zachowuje zgodność z przestarzałymi odtwarzaczami
- Warstwy rozszerzeń rozbudowują warstwe podstawową dodatkowymi informacjami polepszającymi jakość nagrania (na różne sposoby) w odtwarzaczach obsługujących dane rozszerzenie
- Lepsza odporność na błędy (efekt uboczny, kożystny)
- Rodzaje skalowalności (nazwa skalowalności co robi rozszerzenie)
 - o Przestrzenna zwiększa rozdzielczość
 - SNR zwiększa dokładność, lepsze odwzorowanie rzeczywistości
 - Czasowa dodatkowe ramki typu B, zwiększa FPS
 - o Podział danych więcej współczynników transformaty

Profile

- Proste urządzenia nie muszą obsługiwać pełnej specyfikacji
- Dekoder obsługujący pewien format musi obsługiwać wszystkie niższego poziomu (model hierarchiczny) oraz <u>musi dekodować MPEG-1 w specyfikacji CPB</u>.
- Nie wszystkie kombinacje profili i poziomów są dozwolone

Profile:

- 1. **Prosty** nieskalowalny, <u>bez ramek B</u>, format 4:2:0, szybkie (de)kodowanie
- 2. **Główny** nieskalowalny, <u>ramki B</u>, format 4:2:0, najczęściej używany
- 3. **SNR** skalowalność SNR, ramki B, format 4:2:0
- 4. Przestrzenny skalowalności: SNR oraz przestrzenna, ramki B, format 4:2:0
- 5. **Wysoki** skalowalny, dwie warstwy rozszerzeń (patrz wyżej↑), ramki B, <u>format 4:2:0 lub</u> 4:2:2
- 6. **4:2:2** <u>nieskalowalny</u>, ramki B, format 4:2:0 lub 4:2:2, do zastosowań produkcji filmów i programów
- 7. **Wielowidokowy** <u>skalowalny</u>, <u>dozwolone 1 rozrzeżenie</u>, do kodowania sekwencji stereowizyjnych

	Prosty	Główny	Snr-skal.	Przest-skal.	Wysoki
Wysoki		X			X
Wysoki 1440		X		X	X
Główny	X	X	X		X
Niski		X	X		

Kodowanie

- Współczynniki DC są kodowane predykcyjnie. Kwantowane równomiernie, ze stałym krokiem.
- Współczynniki AC są kodowane krokiem zmiennym:
 - krok określa tablica kwantyzacji przemnożona przez współczynnik skalujący warstwy lub bloku
 - podobnie dla współczynników transformaty
- MPEG-2 definiuje kilka tablic kodów
- Kodek może pracować w 2 trybach:
 - CBR (const bitrate) koder dopasowuje jakość poszczególnych bloków aby uzyskać określony bitrate
 - VRB (variable bitrate)

Wykład 12 - MPEG-4

Czemu nie MPEG-3?

 MPEG3 był przewidziany do HDTV, ale w TV przyjął się MPEG-2, więc jego rozwój został porzucony.

Ogólny opis

Video Objects (VO)

- Nagranie składa się z zbioru obiektów wideo z których jest budowana scena
- Sposób podziału sceny na obiekty nie jest opisany w standardzie
- Każdy obiekt posiada kształt, ruch oraz texture
- Może składać się z obrazka (normalne lub "duszki"), nagrania oraz syntetycznych tworów: twarz, obiekty 2D, 3D

Media Objects (MO)

- Statyczne obrazy
- Video
- Audio
- Text i grafika
- "Gadające syntetyczne głowy"
- Syntetyczny głos
- Obiekty 3D

Kompozycja sceny

Scena zbudowana jest przez MO

- posiadają lokalizacje w przestrzeni
- mogą mieć nakładane transformacje (wizualne oraz dźwiękowe)
- mogą być grupowane
- obiekt może być dorzucany z strumienia (?)
- użytkownik może interaktywnie zmienić swoje położenie w scenie

H.264

- ~50% mniejszy bitrate od MPEG2 (przy tej samej jakości)
- wysoka jakość dla niskich bitrate
- lepsza korekcja błędów
- bitrate 64kbps 240Mbps
- przystosowany do broadcastu (MPEG2 nie)

Two-Layer Structure

- Video Coding Layer (VCL)
 - o efektywnie reprezentuje materiał wideo
 - dzieli wideo na paski o różnych wymiarach, każdy pasek posiada wszystkie informacje do jego prawidłowego zdekodowania, co umożliwia wielowątkowe dekodowanie, oraz minimalizuje błędy
 - paski mogą być wysyłane w dowolnej kolejności, bufor w odbiorniku je układa (podobnie jak przy jitterze)
 - o Deblocking Filter: kompresja ruchu, używając transformacji 4x4 oraz block based
- Network Adaptation Layer (NAL) (pojebane to)
 - Umożliwia przesyłanie przez różne rodzaje sieci
 - Głównym założeniem, to w opakowaniu formatów usunąć duplikaty nagłówków

H.264 vs. MPEG-2

	MPEG-2	H.264
Rozmiar makrobloku	16x16 (tryb ramki) 16x8 (tryb pola)	16x16
Transformacja	8x8	(16 8 4)x(16 8 4)
Kwantyzacja	8x8 DCT	4x4, 8x8 int DCT 4x4, 2x2 Hadamard
Kodowanie entropii	Skalarna z rozmiarem kroku o strałym przyroście	skalarna z rozmiarem kroku o wzroście na poziomie 12.5%
Estymacja i kompensacja	VLC	VLC, CAVLC, CABAC
Swobodny dostęp	TAK	TAK
Dokładność wektorów	½ px	1⁄4 px

ruchu		
Ramki do predykcji ramek B	2	32

H.264 ma ~50% lepszy stosunek jakość/bitrate

Intra-Picture Prediction

- Generowane przestrzennie
- Tryby:
 - o intra 4x4 dla detali
 - o intra 16x16 dla bardziej jednolitych
 - I_PCM bez predykcji, dane surowe, stosuje sie aby zalimitować ilość danych na blok

Inter-Picture Prediction

MV - Motion Vector

- do 16 MVs
- MVs są różnie kodowane
- Wymaga dużo optymalizacji aby znaleźć najlepszą konfiguracje (ustawienie)

Entropy Coding

- CAVLC (Context Adaptive Variable Length Coding)
 - o Na podstawie zakodowanych informacji w sąsiednich blokach
 - Zoptymalizowane tabele VLC są dostarczane dla każdego regionu aby zakodować współczynniki na podstawie analizy statystycznej (?)
- CABAC (Context Adaptive Binary Arithmetic Codes)
 - o arytmetyka binarna
 - o lepsza kompresja kontekstowa
 - o oszczędność bitrate względem CAVLC 5~15%