LITERATURE SURVEY

S.NO	TITLE	PROPOSED WORK	TOOLS USED/ALGORITHM	TECHNOLOGY	ADVANTAGES/DISADVANTAGES
1.	Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS	This research proposes two machine learning models for the prediction of food production. The adaptive network-based fuzzy inference system and multilayer perceptron methods are used to advance the prediction models. Time-series data related to livestock and agricultural productions in Iran from 1961 to 2017 have been collected from the FAOSTAT database. First, 70% of this data was used to train ANFIS and MLP, and the remaining 30% of the data was used to test the models. The results disclosed that the ANFIS model with generalized bell-shaped built-in membership functions has the lowest error level in predicting food production.	1.Multilayer Perceptron (MLP) 2.The Adaptive Network- based Fuzzy Inference System (ANFIS)	Data Science	ADVANTAGES This study contributes to food security research by providing a repayable tool to predict the future of agricultural and livestock production. DISADVANTAGES One of the limitations of this study is that forecasts for agricultural and livestock production are based only on time series data. Another limitation of this article is the generalization of the finding that the ANFIS model outperforms the MLP model because this finding is limited to the time series data of Iran and the result may differ in data related to another country. ADVANTAGES It is an effective technique for building prediction models of time series. It can support the rational control of food inventory and production while reducing waste and costs in the supply chain. DISADVANTAGES The main limitation of the developed models is the lack of the possibility of analysing small datasets (below 100 rows of data).
2.	Food Demand Prediction Using the Nonlinear Autoregressive Exogenous Neural Network	The aim of this research is to develop models for food demand prediction based on a nonlinear autoregressive exogenous neural network. The research focuses on processed foods, such as bread or butter. The architectures of the developed models differed in the number of hidden layers and the number of neurons in the hidden layers, as well as with different sizes of the delay line, were tested for a given product. The results of the research show that depending on the type of product, the prediction performance slightly differed. The results of the R2 measure ranged from 96,2399 to 99,6477, depending on particular products. The proposed models can be used in a company's intelligent management system for the rationalcontrol of inventories and food production. This can also lead to a reduction in food waste.	1.NARXNN (Nonlinear Autoregressive Exogenous Neural Network) 2.MLFNN	Artificial Intelligence, Data Science	
3.	Food Demand Prediction Using Machine Learning	In this paper, number of order is used to forecast stock of items, using machine learning with internal and external data. In this we provide an appropriate algorithm for demand forecasting which is capable of overpowering the wastage of short life items. Proposed algorithm like Bayesian Linear Regression, LASSO, XG Boost algorithm are used that considerably improves the forecasting performance. Here we are researching food demand forecasting methods using internal data such as number of orders.	1.Bayesian Linear Regression 2.Random Forest 3.Support Vector Machine (SVM) 4.LASSO 5.XGBoost	Data Science, Machine Learning	ADVANTAGES In this paper we presented penalized regression method, Bayesian Linear Regression K-nearest Neighbour, Decision tree approach as a food demand method. As we go through different algorithm for prediction the accuracy rate keeps on improving. There was not big difference other than precision rate of forecasting. XG boost is a decision-based boosting algorithm which is used for increasing the accuracy rate. DISADVANTAGES Refined prediction can be done based on many other factors like cultural habits, religious holiday, consumer preferences etc. This method can be used for predicting work force requirement, automated food ordering based on forecasting results.

LITERATURE SURVEY

4.	Models for predicting	To analyse forecasting models and	1.Causal Models	Data Science	ADVANTAGES
	perishable products	techniques to determine the demand	2.Soft computing models		These models contribute to improve
	demands in food	for perishable food products in small	3.Hybrid models		the production plans of
	trading companies	and medium sized food retail business.	4.Time series method		organizations, reduce product
		Small and medium-sized enterprises			losses and increase customer
		(SMEs) have economic, structural and			satisfaction. It determined that the
		organizational characteristics that put			Asian continent and Latin America
		them at a disadvantage compared to			are the geographic areas with the
		large corporations (Erum, Rafique and			greatest number of publications on
		Ali, 2017). In addition, SMEs make up			forecasting models during the
		the majority of the global business			period.
		sector and constitute an important			DISADVANTAGES
		source of employment and income,			The number of studies on this
		primarily for developing economies			subject in the field of perishable
		Accurate forecasting of perishable			foods is smaller than other fields of
		foods prevents the loss of these			application.
		products and contributes to increased			
		customer satisfaction. In this article, we			
		conducted a systematic review of the			
		literature on the main models for			
		forecasting perishable food demands in			
		small and medium enterprises			
		developed during the period 2013-2018			
	Food Downsond	Toward in the consideration with a confidence for a	4 Dua diation	Data asiana	ADVANITACES
5.	Food Demand	Target is to predict number of orders for	1.Prediction	Data science,	ADVANTAGES
	Forecasting Using	given data. As this problem falls under	2. Random Forest	Machine learning	The model was able to predict the
	Machine Learning And	regression category which deals with a	3.Xg Boost		number of orders for requested and
	Statistical	continuous value output, there are	4.Support Vector Machines		given next 10 weeks of input data as
	Analysis	certain methods or algorithms which	5.Clustering		a test validation data. All the three
		are built for same purpose. Random Forest Regressor, XG Boost Regressor,			algorithms were able to make prediction model and out of them
					i i
		Support Vector Regressor are the three methodologies to be considered. Based			Random Forest Regressor was able to outstand as a robust and reliable
		on certain condition it makes decisions.			predictive model for the same.
		A decision tree is a kind of structure that			DISADVANTAGES
		looks like a hierarchical tree system. It is			There is a huge demand and need of
		based on certain conditions, has a node			Data Science in Food Industry as
		as a function, and has parameters that			meals are one of important basic
		are used to make some decisions that			need for a human being. Reducing
		lead to decisions.			food wastage is an challenge and
		lead to decisions.			absolute way of making profit for
					the food delivery or manufactures.
					Manufacturing of raw products
					generally depends upon features
					like price, discount, area and many
					things.
				l	umgs.