If any answer contains any of the following, they will be given **0 marks** for that section of the answer:

- 1. Pictorial representation or graph of a function on $\mathbb R$
- 2. Arithmetic operations on ∞ or $-\infty$ or similar undefined numbers on \mathbb{R}
- 3. Converse of known theorem, that is not true
- 4. Incorrect definitions used
- 5. L'Hôpital's rule or any of its variants
- 6. Differentiation or properties of differentiable functions
- 7. Integration of properties of Riemannn integrable functions

Q.4) a) Let
$$f:[0,\pi]\to\mathbb{R}$$
 be defined by $f(0)=0$ and $f(x)=x\sin\left(\frac{1}{x}\right)-\frac{1}{x}\cos\left(\frac{1}{x}\right)$ for $x\neq 0$. Is f continuous at $x=0$?

Ans: For $f:[0,\pi]\to\mathbb{R}$, such that

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) - \frac{1}{x}\cos\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Desmos: Graph of $f(x):[0, \pi] \to \mathbb{R}$

f(x) is not continuous at x=0.

+0.5 marks

Proof 1: Let us consider the sequence $\alpha_n = \frac{1}{2n\pi} \ \forall \ n \in \mathbb{N},$ +0.25 marks

$$f(\alpha_n) = \frac{1}{2n\pi} \sin(2n\pi) - 2n\pi \cos(2n\pi) = -2n\pi \ \forall \ n \in \mathbb{N}$$

Since
$$\alpha_n = \frac{1}{2\pi} \left(\frac{1}{n} \right)$$
 and $f(\alpha_n) = 2\pi(-n)$,
 $\lim_{n \to \infty} \alpha_n = 0$ and $f(\alpha_n)$ diverges to $-\infty$ +0.25 marks

Since there exists a sequence α_n such that $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} f(\alpha_n)$ does not exist, i.e. cannot be f(0) = 0. +0.5 marks

Hence f(x) is not continuous at x=0.

Note: This proof completely changes based on the choice of α_n ; any valid sequence α_n in $[0,\pi]$ such that $\alpha_n \to 0$ but $f(\alpha_n) \not\to 0$ will be given 1.5 marks

Proof 2: Let us assume for the sake of contradiction that f(x) is continuous at x=0, $\implies \lim_{x \to 0} f(x) = 0$

Let $g:[0,\pi]\to\mathbb{R}$, such that

$$g(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Claim:
$$\lim_{x\to 0} g(x) = 0$$
 +0.25 marks If $x = 0$, $g(x) = x = 0$

If
$$x = 0$$
, $g(x) = x = 0$

If
$$x \neq 0$$
, $g(x) = x \sin\left(\frac{1}{x}\right) \Longrightarrow -x \leq g(x) \leq x$
 $\Longrightarrow \forall x \in [0, \pi], -x \leq g(x) \leq x$

Therefore by Sandwich Theorem,
$$\lim_{x\to 0} g(x) = 0$$
 +0.25 marks

Let $h:[0,\pi]\to\mathbb{R}$, such that h(x)=x(g(x)-f(x))

$$h(x) = \begin{cases} \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

By Algebra of Limits,
$$\lim_{x\to 0} h(x) = 0$$
 +0.25 marks

But this leads to a contradiction by taking $\beta_n = \frac{1}{2n\pi} \ \forall \ n \in \mathbb{N}$,

$$h(\beta_n) = \cos(2n\pi) = 1 \ \forall \ n \in \mathbb{N}$$

Since
$$\beta_n = \frac{1}{2\pi} \left(\frac{1}{n} \right)$$
 and $h(\beta_n) = 1$, $\lim_{n \to \infty} \beta_n = 0$ and $\lim_{n \to \infty} h(\beta_n) = 1$ +0.25 marks

Since there exists a sequence β_n such that $\lim_{n\to\infty}\beta_n=0$ and $\lim_{n\to\infty}h(\beta_n)=1$, i.e. not be h(0) = 0, we contradict the fact that $\lim_{x \to 0} h(x) = 0$

Hence, f(x) is not continuous at x=0.

Note: This proof completely changes based on the choice of β_n ; if all the steps before substitution and any valid sequence β_n in $[0,\pi]$ such that $\beta_n \to 0$ but $f(\beta_n) \not\to 0$ will be given 1.5 marks

Proof 3: Let us assume for the sake of contradiction that f(x) is continuous at x=0,

$$\implies \lim_{x \to 0} f(x) = 0$$

$$\Longrightarrow \forall \varepsilon > 0, \exists \delta_{\varepsilon} \in \mathbb{R}_{>0} \text{ such that } |f(x) - 0| < \varepsilon \ \forall \ x \in (-\delta_{\varepsilon}, \delta_{\varepsilon})$$

Taking
$$\varepsilon = \frac{1}{2}$$
,

For any possible $\delta_{\varepsilon} > 0$, $\exists j \in \mathbb{N}$ such that $0 < \frac{1}{2i\pi} < \delta_{\varepsilon}$ (By Archimedean Property)

But
$$\left| f\left(\frac{1}{2j\pi}\right) \right| = \left| -2j\pi \right| = 2j\pi \ge 2\pi > \frac{1}{2}$$
 (Contradiction)

Hence, f(x) is not continuous at x = 0

+1 mark

Note: This proof completely changes based on the choice of substitution; all the previous steps and any valid substitution will be given 1.5 marks

Q.4) b) If $\lim_{x\to 0^+} f(x) = A$ and $\lim_{x\to 0^+} f(x) = B$ and A may not be equal to B, then what is $\lim_{x \to 0^+} f(x^3 - x)?$ (1.5 marks)

Ans: The final limit is B.

+0.5 marks

Let x_n be any sequence converging to 0 such that $\exists N \in \mathbb{N}, x_n \geq 0 \ \forall n \geq N \ (x_n \to 0^+),$

Claim: $x_n^3 - x_n \to 0^-$

+0.25 marks

Proof 1:

 $\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } x_n = |x_n - 0| < \varepsilon \ \forall \ n \geq N_{\varepsilon}$

Taking $\varepsilon = 1$, $\exists N_1$ such that $x_n < 1 \ \forall n \geq N_1$

And for all $x \in [0, 1)$, $x^3 \le x^2 \le x \le 1 \implies x^3 - x \le 0$

$$\implies x_n^3 - x_n \le 0 \ \forall \ n \ge N_1$$

Furthermore, $y_n = x_n^3 - x_n$ converges to 0 (By Algebra of Convergent Sequences)

 $\implies y_n$ converges to 0 from the left hand side or $x_n^3 - x_n \to 0^-$

+0.5 marks

Proof 2:

 $\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } x_n = |x_n - 0| < \varepsilon \ \forall \ n \geq N_{\varepsilon}$

Taking $\varepsilon = 1$, $\exists N_1$ such that $x_n < 1 \ \forall n \ge N_1$

And for all $x \in [0,1)$, $x^3 \le x^2 \le x \le 1 \implies x^3 - x \le 0$

$$\implies x_n^3 - x_n \le 0 \ \forall \ n \ge N_1$$

$$\implies 0 \le |x_n^3 - x_n| = x_n - x_n^3 \le x_n = |x_n - 0| \ \forall \ n \ge N_1$$

$$\Longrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon}^* = \max\{N_{\varepsilon}, N_1\} \in \mathbb{N} \text{ such that } |x_n^3 - x_n - 0| \le |x_n - 0| < \varepsilon \ \forall \ n \ge N_{\varepsilon}^*$$

$$\Rightarrow x_n^3 - x_n \text{ converges to } 0 \text{ and } \exists N_1 \in \mathbb{N} \text{ such that } x_n^3 - x_n \leq 0 \ \forall \ n \geq N_1$$

And for all
$$x \in [0, 1)$$
, $x^3 \le x^2 \le x \le 1 \implies x^3 - x \le 0$
 $\implies x_n^3 - x_n \le 0 \ \forall \ n \ge N_1$
 $\implies 0 \le |x_n^3 - x_n| = x_n - x_n^3 \le x_n = |x_n - 0| \ \forall \ n \ge N_1$
 $\implies \forall \ \varepsilon > 0, \ \exists \ N_\varepsilon^* = \max\{N_\varepsilon, N_1\} \in \mathbb{N} \text{ such that } |x_n^3 - x_n - 0| \le |x_n - 0| < \varepsilon \ \forall \ n \ge N_\varepsilon^*$
 $\implies x_n^3 - x_n \text{ converges to } 0 \text{ and } \exists \ N_1 \in \mathbb{N} \text{ such that } x_n^3 - x_n \le 0 \ \forall \ n \ge N_1$
 $\implies x_n^3 - x_n \to 0^-$
+0.5 marks

Proof 3:

$$g(x): \mathbb{R} \to \mathbb{R}$$
 where $g(x) = x^3 - x$ is a continous function

$$\implies \lim_{n \to \infty} x_n^3 - x_n = \lim_{n \to \infty} g(x_n) = g\left(\lim_{n \to \infty} x_n\right) = g(0) = 0$$

But for $x \in [0, 1), x^3 < x \implies q(x) < 0$

Since x_n is a convergent sequence,

 $\implies \exists N_1 \in \mathbb{N} \text{ such that } 0 \leq x_n = |x_n - 0| < 1 \ \forall \ n \geq N_1$

 $\implies \exists N_1 \in \mathbb{N} \text{ such that } x_n \in [0,1) \ \forall \ n \geq N_1$

 $\implies \exists N_1 \in \mathbb{N} \text{ such that } g(x_n) = x_n^3 - x_n \leq 0 \ \forall \ n \geq N_1$ $\implies g(x_n) \text{ converges to 0 from the left hand side or } g(x_n) = x_n^3 - x_n \to 0^- + \mathbf{0.5} \text{ marks}$

Therefore, since $x_n^3 - x_n \to 0^-$ for any arbitrary $x_n \to 0^+$, $\lim_{x \to 0^+} f(x^3 - x) = \lim_{n \to \infty} f(x_n^3 - x_n) = \lim_{x \to 0^-} f(x) = B$

+0.25 marks

Q.5) a) Using the ε - δ definition, can you prove that $f:(0,\infty)\to\mathbb{R}$ be defined by $f(x) = \frac{1}{\sqrt{x}}$ is a continuous function (2 marks)

Ans: $f:(0,\infty)\to\mathbb{R}$, such that $f(x)=\frac{1}{\sqrt{x}}$

Let $c \in (0, \infty)$ and ε such that $\varepsilon > 0$,

We take
$$\delta_{\varepsilon} = \min\{\frac{c}{2}, \frac{c\sqrt{c\varepsilon}}{\sqrt{2}}\}$$

+0.5 marks

For any
$$x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon})$$
,
 $\frac{c}{2} \le c - \delta_{\varepsilon} < x < c + \delta_{\varepsilon} \le \frac{3c}{2} \ (\delta_{\varepsilon} \le \frac{c}{2})$
 $\implies \frac{c}{2} < x < \frac{3c}{2}$

+0.25 marks

$$|f(x) - f(c)| = |\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{c}}|$$

$$\leq \frac{|\sqrt{x} - \sqrt{c}|(\sqrt{x} + \sqrt{c})}{\sqrt{x}\sqrt{c}(\sqrt{x} + \sqrt{c})}$$

$$< \frac{\sqrt{2}|x - c|}{\sqrt{c}\sqrt{c}(\sqrt{x} + \sqrt{c})} \text{ since } x > \frac{c}{2} \implies \sqrt{x} > \frac{\sqrt{c}}{\sqrt{2}}$$

$$\leq \frac{\sqrt{2}|x - c|}{c\sqrt{c}} \text{ since } \sqrt{x} + \sqrt{c} \geq \sqrt{c}$$

$$< \frac{\sqrt{2}\delta_{\varepsilon}}{c\sqrt{c}} \text{ since } |x - c| < \delta_{\varepsilon}$$

$$\leq \varepsilon \text{ since } \delta_{\varepsilon} \leq \frac{c\sqrt{c}\varepsilon}{\sqrt{2}}$$

- +1 mark for all inequalities to hold
- -0.25 marks for any one incorrect inequality

Thus, $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} = \min \left\{ \frac{c}{2}, \frac{c\sqrt{c\varepsilon}}{\sqrt{2}} \right\}$ such that $|f(x) - f(c)| < \varepsilon \ \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon})$

 $\implies f(x)$ is at continuous at x = c

And since our choice of point $c \in (0, \infty)$, i.e. domain of f was arbitrary,

f(x) is a continuous function

+0.25 marks

Note: Since the question explicitly mentions that you must use the $\varepsilon - \delta$ definition, this is the only correct way to get **1.5 marks**. However if any other method is used, the solution would be graded out of **0.75 marks**, half of the original **1.5 marks**.