Improving Model Perfromance / Tuning Parameters

Abhishek Chaturvedi 05/24/2017

Tuning Parameter

Generically and regardless of model type, what are the purposes of a model tuning parameters?

Process of adjusting vrious model options to identify the best fit model

reducing model bias

reducing errors

Caret Models

This assignment demonstrates the use of caret for constructing models. Each model should be built and compared using using Kappa as the performance metric calculated using 10-fold repeated cross-validation with 3 folds.

Using the rectangular data that you created for the NYCF lights to create a model for arr_delay >= 15 minutes.

- glm
- rpart
- knn
- C50
- randomForest
- adaBoost
- Two methods of your choice from the Caret Model List (you will need to install any dependencies)

Save the caret objects with the names provided.

```
# Your work here.
library('data.table')
library('rpart')
library('caret')

## Loading required package: lattice

## Loading required package: ggplot2

flightsDataJoined <- readRDS("flightsDataJoined.rds")
y <- "arr_delay"

# using xs generated from previous exercise
xs <- c('humid','dep_time', 'sched_dep_time','sched_arr_time','dep_delay','origin')
yx <- flightsDataJoined[,c(y,xs),with=FALSE]
yx <- na.omit(yx)
yx <- within(yx, gt15 <- ifelse(arr_delay>=15, "GT15", "LT15"))
```

```
set.seed(333)
inTraining <- createDataPartition(yx[,gt15], p = .75, list = FALSE)</pre>
trainingData <- yx[inTraining, ]</pre>
testingData <- yx[-inTraining, ]</pre>
myCtrl <- trainControl(method="repeatedcv",number = 10,repeats = 3)</pre>
fit.glm <- train(gt15~humid+dep time+sched dep time+sched arr time+dep delay+origin, data = trainingDat
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
fit.knn <- train(gt15~humid+dep_time+sched_dep_time+sched_arr_time+dep_delay+origin, data = trainingDat
fit.rpart <- train(gt15~humid+dep_time+sched_dep_time+sched_arr_time+dep_delay+origin, data = trainingD
#fit.rf <- train(qt15~humid+dep_time+sched_dep_time+sched_arr_time+dep_delay+origin, data = trainingDat
#fit.myown1 <- ...
#fit.myown1 <- ..
Compare the models?
yhat.fit.glm <- predict(fit.glm,testingData,type="raw")</pre>
yhat.fit.knn <- predict(fit.knn,testingData,type="raw")</pre>
yhat.fit.rpart <- predict(fit.rpart,testingData,type="raw")</pre>
#yhat.fit.rf <- predict(fit.rf, testingData, type="raw")</pre>
confusionMatrix(data = yhat.fit.glm, reference = testingData$gt15)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction GT15 LT15
##
         GT15 867 124
##
         LT15 622 6220
##
##
                  Accuracy : 0.9048
##
                    95% CI: (0.898, 0.9112)
##
       No Information Rate: 0.8099
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6453
## Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.5823
##
               Specificity: 0.9805
##
            Pos Pred Value: 0.8749
            Neg Pred Value: 0.9091
##
```

```
##
                Prevalence: 0.1901
##
           Detection Rate: 0.1107
##
     Detection Prevalence: 0.1265
        Balanced Accuracy: 0.7814
##
##
##
          'Positive' Class : GT15
confusionMatrix(data = yhat.fit.knn, reference = testingData$gt15)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction GT15 LT15
        GT15 794 105
##
##
        LT15 695 6239
##
##
                  Accuracy : 0.8979
##
                    95% CI: (0.8909, 0.9045)
##
      No Information Rate: 0.8099
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.609
## Mcnemar's Test P-Value : < 2.2e-16
##
##
              Sensitivity: 0.5332
              Specificity: 0.9834
##
##
            Pos Pred Value: 0.8832
##
            Neg Pred Value: 0.8998
##
                Prevalence: 0.1901
##
           Detection Rate: 0.1014
##
     Detection Prevalence: 0.1148
        Balanced Accuracy: 0.7583
##
##
##
          'Positive' Class : GT15
confusionMatrix(data = yhat.fit.rpart, reference = testingData$gt15)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction GT15 LT15
##
        GT15 863 119
##
        LT15 626 6225
##
##
                  Accuracy: 0.9049
##
                    95% CI: (0.8982, 0.9113)
##
      No Information Rate: 0.8099
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6448
  Mcnemar's Test P-Value : < 2.2e-16
##
##
##
               Sensitivity: 0.5796
```

```
##
               Specificity: 0.9812
##
            Pos Pred Value : 0.8788
##
            Neg Pred Value: 0.9086
##
                Prevalence : 0.1901
            Detection Rate : 0.1102
##
##
     Detection Prevalence : 0.1254
         Balanced Accuracy : 0.7804
##
##
##
          'Positive' Class : GT15
##
```

#confusionMatrix(data = yhat.fit.rf, reference = testingData\$gt15)

Which is best? Why?

based on confusion matrix rpart is best model