

ASSIGNMENT 2 FRONT SHEET

Qualification	BTEC Level 5 HND Diploma in Computing		
Unit number and title	Unit 2: Networking Infrastructure		
Submission date		Date Received 1st submission	
Re-submission Date		Date Received 2nd submission	
Student Name	Bùi Hương Linh	Student ID	GBH200662
Class	GCH1002	Assessor name	Michael Omar

Student declaration

I certify that the assignment submission is entirely my own work and I fully understand the consequences of plagiarism. I understand that making a false declaration is a form of malpractice.

Student's signature

Grading grid

P5	P6	P7	P8	M3	M4	D2	D3

⇔ Summative Feedback:		♥ Resu	bmission Feedback:
Grade:	Assessor Signature:		Date:
Lecturer Signature:			

Introduction:

After being employed as a network engineer by Nguyen Networking Limited, a firm that creates high-tech networking solutions, I finished my first report. My next task will be to study the organizational requirements that I provided before. In this report, I plan to build and create a network project that I am very much looking forward to.

Task 1 - Provide a logical/physical design of the networked system with a clear explanation and addressing table (P5)

- 1. Explain the difference between logical and physical design. (Alex Heath, 2021)
- Logical design:
 - The logical design of a system pertains to an abstract representation of the data flows, inputs and outputs of the system. This is often conducted via modeling, using an over-abstract model of the actuall system.
- Physical design:
 - The physical design is a graphical representation of a system showing the system's internal and external entities, and the flows of data into and out of these entities.

2. Discuss and explain the user requirements for general network design.

• A logical design of the network based on the specific requirements of the user.

Image 1: Logical design

- In the logical design consists of three main network floors each with one router.(assumption)
 - + The first floor is the staff floor . This floor consists of 2 computers connected together.
 - + The second floor is the student lab floor. This floor consists of 3 computers connected together.
 - + The third floor is the student lab floor. This floor consists of 2 computers connected together.
 - + These rooms are all connected to the network and connected to the server, the machines are all linked together, stable network connection.

• The physical design of this network is based on the specific requirements of the user.

Image 2: Physical design

- In physical design, the devices are divided into floors. The design is completely linked together through wires.
- For floor 1 I use switch 24 ports because this floor contains 2 computers and 1 printer.
- For floor 2 I use switch 24 ports because this floor contains 3 computers and 3 printers.
- For floor 3 use switch 24 ports because this floor contains 2 computer and 2 servers.

• The address table of the network devices used in your design above.

Addressing table 1 floor

Device	Address
Default gateway first floor	192.168.10.1/24
PC_F1	192.168.10.3/24
PC_F2	192.168.10.2/24
Printer_F	192.168.10.4/24

Addressing table 2 floor

Decive	Address
Default gateway second floor	195.168.10.1/24
PC_SEF1	195.168.10.2/24
PC_SEF2	195.168.10.7/24
PC_SEF3	195.168.10.4/24
Printer_SEF1	195.168.10.3/24
Printer_SEF2	195.168.10.5/24
Printer_SEF3	195.168.10.6/24

Addressing table 3 floor

Decive	Address
Default gateway third floor	198.168.10.1/24
PC5	198.168.10.3/24
PC6	198.168.10.4/24
IP Web	198.168.10.2/24
Mail and DNS	198.168.10.5/24

Task 2: Evaluate the design to meet the requirements (P6)

Prepare a written step-by-step plan of how you are going to design a Local Area Network including a blueprint of your LAN.

- Steps to create a LAN Network:
- Justify the choice of devices for your network design.
 - Router 1841:
 - Switches 2960:
 - + Allow internal connection configured as a firewall
 - + Connected via straight copper cable
 - Generic PC:

- + End device for user connecting into the network
- Produce a test plan to evaluate this design for the requirements of bandwidth and cost constraints as per user specifications.
- 3. A test plan for the design above without specific results.
- Evaluation of network design based on user requirements.
 - Bandwidth utilization
 - Security
 - Network flexibility and complexity
- Clarity of network topology for logical and physical design
 - Pros:
 - + The networked system is divided clearly into three different floors: third floor, first floor, and second floor.
 - + The network layout has been effectively indicated.
 - Cons
 - + No security
- 4. For this design network to work effectively, provide any advice or solutions to the users?

Task 3 - Implement a networked system based on a prepared design (P7)

- 5. A screenshot of this realization as proof of the network implementation designed above
- Ping
 - E.g Router to PCa, PCa to PCb, through Switches and other devices
- Extended ping
- Trace route
- Telnet
- SSH
- 6. Diagram of the overall network realization, which contains all of the network devices active based on the original user requirements.

Task 4 - Document and analyze test results against expected results (P8)

- 7. Based on the network realization diagram above, write down the above implementation process into the logbook, so that later on when you need to expand the network or have a network problem, you can easily handle it.
 - Table: logbook
- 8. Test results, based on the test plan done above.