import pandas as pd
import numpy as np
import pickle
import warnings

warnings.filterwarnings("ignore")

In [2]: a=pd.read_csv(r"C:\Users\reshma_koduri\Downloads\archive (5)\Customer Churn.csv")
 a

Out[2]:

0	Call Failure	Complains	Subscription Length	Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group
	0 8	0	38	0	4370	71	5	17	3
	1 0	0	39	0	318	5	7	4	2
	2 10	0	37	0	2453	60	359	24	3
	3 10	0	38	0	4198	66	1	35	1
	4 3	0	38	0	2393	58	2	33	1
	•••								
31	45 21	0	19	2	6697	147	92	44	2
31	46 17	0	17	1	9237	177	80	42	5
31	47 13	0	18	4	3157	51	38	21	3
31	48 7	0	11	2	4695	46	222	12	3
31	49 8	1	11	2	1792	25	7	9	3

3150 rows × 16 columns

In [3]:

a.head(10)

Out[3]:

	Call Failure	Complains		Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group	Tar Pl
0	8	0	38	0	4370	71	5	17	3	
1	0	0	39	0	318	5	7	4	2	
2	10	0	37	0	2453	60	359	24	3	
3	10	0	38	0	4198	66	1	35	1	
4	3	0	38	0	2393	58	2	33	1	
5	11	0	38	1	3775	82	32	28	3	
6	4	0	38	0	2360	39	285	18	3	
7	13	0	37	2	9115	121	144	43	3	
8	7	0	38	0	13773	169	0	44	3	

	Call Failure	Complains	Subscription Length	Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group	Tar Pl
9	7	0	38	1	4515	83	2	25	3	

In [4]:

a.tail(10)

Out[4]:

	Call Failure	Complains	Subscription Length	_	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group
3140	16	0	29	0	1005	31	17	9	3
3141	5	0	28	0	1130	16	28	5	4
3142	15	0	27	1	1530	38	26	15	2
3143	7	0	27	1	3530	67	15	25	3
3144	7	0	20	1	2000	32	35	16	3
3145	21	0	19	2	6697	147	92	44	2
3146	17	0	17	1	9237	177	80	42	5
3147	13	0	18	4	3157	51	38	21	3
3148	7	0	11	2	4695	46	222	12	3
3149	8	1	11	2	1792	25	7	9	3
4									

In [5]:

a.describe()

Out[5]:

	Call Failure	Complains	Subscription Length	Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS
count	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000
mean	7.627937	0.076508	32.541905	0.942857	4472.459683	69.460635	73.174921
std	7.263886	0.265851	8.573482	1.521072	4197.908687	57.413308	112.237560
min	0.000000	0.000000	3.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	0.000000	30.000000	0.000000	1391.250000	27.000000	6.000000
50%	6.000000	0.000000	35.000000	0.000000	2990.000000	54.000000	21.000000
75%	12.000000	0.000000	38.000000	1.000000	6478.250000	95.000000	87.000000
max	36.000000	1.000000	47.000000	10.000000	17090.000000	255.000000	522.000000

In [6]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3150 entries, 0 to 3149
Data columns (total 16 columns):

```
#
    Column
                             Non-Null Count Dtype
0
    Call Failure
                             3150 non-null
                                             int64
1
    Complains
                            3150 non-null
                                             int64
                            3150 non-null
2
    Subscription Length
                                             int64
3
   Charge Amount
                            3150 non-null
                                             int64
4
   Seconds of Use
                            3150 non-null
                                             int64
5
    Frequency of use
                            3150 non-null
                                             int64
6
    Frequency of SMS
                            3150 non-null
                                             int64
7
   Distinct Called Numbers 3150 non-null
                                             int64
8
   Age Group
                             3150 non-null
                                             int64
9
    Tariff Plan
                             3150 non-null
                                             int64
10 Status
                             3150 non-null
                                            int64
                            3150 non-null
11 Age
                                            int64
12 Customer Value
                             3150 non-null
                                             float64
13
   FN
                             3150 non-null
                                            float64
14 FP
                             3150 non-null
                                             float64
15 Churn
                             3150 non-null
                                             int64
```

dtypes: float64(3), int64(13)
memory usage: 393.9 KB

```
In [7]: a.select_dtypes(include=['float', 'int']).head()
```

```
Out[7]:
                                                                                            Distinct
                Call
                                 Subscription
                                                Charge Seconds Frequency
                                                                              Frequency
                                                                                                       Age
                                                                                                             Tar
                      Complains
                                                                                             Called
             Failure
                                       Length
                                                                                                              Pl
                                               Amount
                                                           of Use
                                                                       of use
                                                                                  of SMS
                                                                                                     Group
                                                                                           Numbers
          0
                  8
                              0
                                           38
                                                             4370
                                                                          71
                                                                                       5
                                                                                                 17
                                                                                                          3
          1
                  0
                              0
                                           39
                                                                           5
                                                                                       7
                                                                                                  4
                                                                                                          2
                                                      0
                                                             318
          2
                                           37
                 10
                              0
                                                      0
                                                             2453
                                                                          60
                                                                                     359
                                                                                                 24
                                                                                                          3
          3
                 10
                              0
                                           38
                                                      0
                                                            4198
                                                                                       1
                                                                                                 35
                                                                                                          1
                                                                          66
                  3
                              0
                                           38
                                                      0
                                                             2393
                                                                          58
                                                                                       2
                                                                                                 33
                                                                                                          1
```

```
In [9]: #a.select_dtypes(include=['object']).head()
```

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(a.corr(), vmax=1, vmin=-1, cmap='Purples', annot=True)
plt.show()
```



```
In [11]:
          a.isna().sum()
         Call Failure
Out[11]:
         Complains
                                      0
          Subscription Length
                                      0
          Charge Amount
          Seconds of Use
                                      0
          Frequency of use
                                      0
          Frequency of SMS
                                      0
         Distinct Called Numbers
                                      0
          Age Group
                                      0
          Tariff Plan
                                      0
          Status
                                      0
                                      0
          Age
          Customer Value
                                      0
          FN
                                      0
          FΡ
                                      0
          Churn
                                      0
          dtype: int64
In [13]:
          a['Churn'].unique()
          array([0, 1], dtype=int64)
Out[13]:
In [14]:
          x=a.drop(['Churn'],axis=1)
```

Out[14]:		Call Failure	Complains	Subscription Length	Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group
	0	8	0	38	0	4370	71	5	17	3
	1	0	0	39	0	318	5	7	4	2
	2	10	0	37	0	2453	60	359	24	3
	3	10	0	38	0	4198	66	1	35	1

	Call Failure	Complains	Subscription Length	_	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group
4	3	0	38	0	2393	58	2	33	1
•••	•••		•••	•••	•••				•••
3145	21	0	19	2	6697	147	92	44	2
3146	17	0	17	1	9237	177	80	42	5
3147	13	0	18	4	3157	51	38	21	3
3148	7	0	11	2	4695	46	222	12	3
3149	8	1	11	2	1792	25	7	9	3

3150 rows × 15 columns

```
In [16]:
       y=a['Churn']
             0
Out[16]:
       2
             0
       3
             0
       4
       3145
            0
       3146
             0
       3147
             0
       3148
             0
       3149
      Name: Churn, Length: 3150, dtype: int64
In [17]:
       from sklearn.model_selection import train_test_split
       x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=56)
In [18]:
       from sklearn.linear_model import LogisticRegression
       classifier=LogisticRegression()
       classifier.fit(x_train, y_train)
Out[18]:
       ▼ LogisticRegression
       LogisticRegression()
In [19]:
       y_pred=classifier.predict(x_test)
       y pred
       Out[19]:
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
```

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,
    0,
    0,
     0,
      0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
     0,
      0,
        0,
         0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0,
  0,
    0,
     0,
      0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
     1,
    0,
  0,
    0,
     0,
      1,
        0,
         1,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  0,
    0,
     0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0.
    0.
     0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0,
  0,
    0,
     0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 1,
              1,
                          1,
    0,
     0,
      0,
        0,
         0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0,
 1,
  0,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
dtype=int64)
```

```
In [20]:
          from sklearn.metrics import confusion matrix
          confusion_matrix(y_test,y_pred)
         array([[772,
                       11],
Out[20]:
                       30]], dtype=int64)
                 [132,
In [21]:
          from sklearn.metrics import accuracy_score
          accuracy_score(y_test,y_pred)
         0.8486772486772487
Out[21]:
In [22]:
          from sklearn.model_selection import GridSearchCV
          from sklearn.ensemble import RandomForestClassifier
          cls=RandomForestClassifier()
          n estimators=[25,50,75,100,125,150,175,200]
          criterion=['gini','entropy']
          max depth=[3,5,10]
          parameters={'n_estimators': n_estimators,'criterion':criterion,'max_depth':max_depth
          RFC_cls = GridSearchCV(cls, parameters)
          RFC_cls.fit(x_train,y_train)
```

```
GridSearchCV
Out[22]:
        ▶ estimator: RandomForestClassifier
              ▶ RandomForestClassifier
In [23]:
        RFC_cls.best_params_
        {'criterion': 'gini', 'max_depth': 10, 'n_estimators': 75}
Out[23]:
In [24]:
        cls=RandomForestClassifier(n_estimators=75,criterion='gini',max_depth=10)
        cls.fit(x_train,y_train)
Out[24]:
                       RandomForestClassifier
        RandomForestClassifier(max_depth=10, n_estimators=75)
In [25]:
        y_pred2=cls.predict(x_test)
        y pred2
        Out[25]:
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
              1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
              1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                  1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
              0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
              1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1,
              0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
              1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
```

```
1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
              dtype=int64)
In [26]:
         from sklearn.metrics import confusion_matrix
         confusion_matrix(y_test,y_pred2)
        array([[762, 21],
Out[26]:
               [ 38, 124]], dtype=int64)
In [27]:
         from sklearn.metrics import accuracy_score
         accuracy_score(y_test,y_pred2)
        0.9375661375661376
Out[27]:
In [28]:
         from sklearn.tree import DecisionTreeClassifier
In [29]:
         cls=DecisionTreeClassifier()
         cls.fit(x_train,y_train)
Out[29]:
        ▼ DecisionTreeClassifier
        DecisionTreeClassifier()
In [30]:
         y_pred3=cls.predict(x_test)
         y_pred3
        Out[30]:
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
              0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
              1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
              1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                   1,
                      0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                              0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                   1,
                      0, 0, 1,
              1, 0, 0,
                      0,
                        0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
              0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
              0,
                        0, 0,
                              0, 0, 0, 0, 0,
                                           1, 0, 0, 0, 0, 1,
                                                           0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
              0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 1,
                      0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                   0, 0, 0, 1,
                              1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
```

```
1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
              1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
              1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
              dtype=int64)
In [31]:
         from sklearn.metrics import confusion matrix
         confusion_matrix(y_test,y_pred3)
        array([[758, 25],
Out[31]:
               [ 37, 125]], dtype=int64)
In [32]:
         from sklearn.metrics import accuracy_score
         accuracy_score(y_test,y_pred3)
        0.9343915343915344
Out[32]:
In [33]:
         from sklearn.svm import SVC
         svm_classifier = SVC(kernel='linear', random_state=42)
         svm_classifier.fit(x_train, y_train)
Out[33]:
                         SVC
        SVC(kernel='linear', random_state=42)
In [34]:
         y_pred4 = svm_classifier.predict(x_test)
         confusion_matrix(y_pred4,y_test)
        array([[755, 57],
Out[34]:
               [ 28, 105]], dtype=int64)
In [35]:
         accuracy_score(y_test,y_pred4)
        0.91005291005291
Out[35]:
In [ ]:
```