Das Rucksack Problem

Ein Rucksack hat ein Fassungsvermögen von genau 10 kg. Welche Items sollte man einpacken, damit der Gesamtwert **maximal** wird?

Idee 1: Je mehr Items im Rucksack desto besser

⇒ Beginne mit dem leichtesten Item und packe so viele ein wie möglich

Idee 2: Je wertvoller die Items im Rucksack desto besser

⇒ Nimm (falls möglich) zuerst das wertvollste Item, dann das zweitwertvollste etc.

Idee 3:

Wähle die Items in der Reihenfolge ihre Wertedichte aus, d.h. nach ihrem "Wert pro Kilogramm" Bester Greedy Algorithmus

bei großer Rucksack-Kapazität

Beste Lösung

\$1 Million 2kg

\$1 Million 2kg

\$1 Million 2kg

\$7 Million 3kg

\$13 Million 8kg

Mathematische Formulierung des Problems

Gegeben sei eine Menge von Items I

Das i-te Item habe den Wert v_i und das Gewicht w_i

Wähle eine Teilmenge aus I so aus, dass die Summe

$$\sum_{i \in I} v_i \ x_i \quad \text{mit} \quad x_i \in \{0, 1\} \quad (i \in I)$$

maximal wird unter der Bedingung

wurde oder nicht 1: ausgewählt

x_i zeigt an, ob das

Item *i* ausgewählt

0: nicht ausgewählt

$$\sum_{i \in I} w_i x_i \le K \qquad \text{(K = Kapazität des Rucksacks)}$$

Die Lösung des Optimierungsproblems ist ein Vektor \overrightarrow{X}

Mathematische Formulierung des Problems

Unser Beispiel:

Math. Formulierung:

Maximiere

 $1x_1 + 1x_2 + 1x_3 + 7x_4 + 10x_5 + 13x_6 + 10x_7$

(Gesamtwert)

unter der Bedingung

 $2x_1 + 2x_2 + 2x_3 + 3x_4 + 5x_5 + 8x_6 + 5x_7 \le 10$

(Gesamtgewicht)

mit

 $x_i \in \{0, 1\} \quad i \in \{1, 2, ... 7\}$

Lösung:

 $\vec{x} = (0, 0, 0, 0, 1, 0, 1)$ (\Rightarrow Gesamtwert : 20)

Wie viele Lösungen muss ein Brute Force Algo prüfen?

Dynamic Programming

Idee (Richard Bellman):

Löse das Optimierungsproblem durch **Aufteilung in Teilprobleme** und systematische **Speicherung von Zwischenresultaten**.

Funktioniert immer, wenn das Optimierungsproblem aus vielen gleichartigen Teilproblemen besteht und eine optimale Lösung sich aus optimalen Lösungen der Teilprobleme zusammensetzt.

Dynamic programming

Idee (Richard Bellman):

Löse das Optimierungsproblem durch **Aufteilung in Teilprobleme** und systematische **Speicherung von Zwischenresultaten**.

Teilproblem hier:

Weniger Items und geringere Kapazität

Dynamic programming

Teilproblem hier:

Weniger Items und geringere Kapazität

Algorithmus

Löse das Problem für **null** Items und Kapazität **0** Löse das Problem für **null** Items und Kapazität **1** Löse das Problem für **null** Items und Kapazität **2**

...

Löse das Problem für **null** Items und Kapazität **10** Löse das Problem für **ein** Item und Kapazität **0** Löse das Problem für **ein** Item und Kapazität **1**

..

Löse das Problem für **ein** Item und Kapazität **10** Löse das Problem für **zwei** Items und Kapazität **0** Löse das Problem für **zwei** Items und Kapazität **1**

...

Löse das Problem für zwei Items und Kapazität 10

..

Löse das Problem für **sieben** Items und Kapazität **9** Löse das Problem für **sieben** Items und Kapazität **10**

Lege hierfür eine Tabelle an (siehe Arbeitsblatt)

Ein einfaches Beispiel

5 €

4 kg

Item 1

4€

5 kg

Item 2

3 €

2 kg

Item 3

Rucksack fasst **9 kg**

Maximiere $5x_1 + 4x_2 + 3x_3$

Bedingung $4x_1 + 5x_2 + 2x_3 \le 9$ mit $x_i \in \{0, 1\}$ $i \in \{1, 2, 3\}$

Lösung aller Teilprobleme und des Gesamtproblems mit Hilfe einer **Tabelle**!

(siehe prakt. Übung Arbeitsblatt)

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11
		$v_1 = 5$	$v_2 = 6$	$v_3 = 3$

$$v_1 = 5$$
 $v_2 = 6$ $v_3 = 3$
 $w_1 = 4$ $w_2 = 5$ $w_3 = 2$

Ein einfaches Beispiel

Welche Items wurden ausgewählt?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11
$ \begin{array}{ccccccccccccccccccccccccccccccccc$				

Rucksack fasst **9 kg**

5 €

4 kg

Item 1

4 €

5 kg

Item 2

3 €

2 kg

Item 3

Ein einfaches Beispiel

Welche Items wurden ausgewählt?

Backtracing!!

Capacity	0	1	2	3
0	0	0	0	0
1	0\	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	,5	5	5
5	0	5	6	6
6	0	5 \	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	` 11 ←	— 11
$ \begin{array}{ccccccccccccccccccccccccccccccccc$				

Rucksack fasst **9 kg**

5 €

4 kg

Item 1

4 €

5 kg

Item 2

3 €

2 kg

Item 3

Weitere Beispiele

Siehe Übungsblatt

Auszuwählen sind die Items,	
der Gesamtwert der Items im Rucksack beträgt dann:	_

9

o)	maximize	$16x_1 + 19x_2 + 23x_3 + 28x_3$
	subject to	$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 7$
		$x_i \in \{0, 1\} (i \in 14)$

Capacity	0	1 v1 = w1 =	v ₂ = w ₂
0			
1			
2			
3			
4			
5			
6			
7			

Auszuwählen sind die Items,	
der Gesamtwert der Items im Rucksack beträat dann:	