Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

Representation over \mathbb{F}_{28}

Oleksandr Kazymyrov, Valentyna Kazymyrova

Selmer Center, Department of Informatics, University of Bergen, Norway Oleksandr.Kazymyrov@uib.no

CTCrypt 2013

Agenda

- Introduction
- 2 Description of Stribog
- lacksquare Representation over \mathbb{F}_{2^8}
- 4 Conclusions

Basic Operations and Functions

GOST R 34.11-2012 (Stribog) is based on SP-network block cipher with block and key length equal 512 bits

- SubBytes (S): nonlinear bijective mapping.
- Transposition (P): byte permutation.
- MixColumns (L): linear transformation.
- AddRoundKey (X): addition with the round key using bitwise XOR.

Other basic functions

- \boxplus : addition modulo 2^{512} .
- $MSB_s(A)$: getting s most significant bits of vector A.
- A||B: concatenation of two vectors A and B.

Grøstl

Introduction

 $a_0 \mid a_8 \mid a_{16} \mid a_{24} \mid a_{32} \mid a_{40} \mid a_{48} \mid a_{56}$ $a_1 \ a_9 \ a_{17} \ a_{25} \ a_{33} \ a_{41} \ a_{49} \ a_{57}$ $a_2 | a_{10} | a_{18} | a_{26} | a_{34} | a_{42} | a_{50} | a_{58}$ $a_3 |a_{11}| a_{19} |a_{27}| a_{35} |a_{43}| a_{51} |a_{59}|$ $a_4 | a_{12} | a_{20} | a_{28} | a_{36} | a_{44} | a_{52} | a_{60}$ $a_5 |a_{13}| a_{21} |a_{29}| a_{37} |a_{45}| a_{53} |a_{61}|$ $a_6 |a_{14}| a_{22} |a_{30}| a_{38} |a_{46}| a_{54} |a_{62}|$ $a_7 |a_{15}| a_{23} |a_{31}| a_{39} |a_{47}| a_{55} |a_{63}|$

Stribog

 $a_3 | a_4 | a_5 | a_6 | a_7$ $a_9 |a_{10}| a_{11} |a_{12}| a_{13} |a_{14}| a_{15}$ $|a_{16}|a_{17}|a_{18}|a_{19}|a_{20}|a_{21}|a_{22}|a_{23}$ $|a_{24}|a_{25}|a_{26}|a_{27}|a_{28}|a_{29}|a_{30}|a_{31}$ $a_{32}|a_{33}|a_{34}|a_{35}|a_{36}|a_{37}|a_{38}|a_{39}$ $|a_{40}|a_{41}|a_{42}|a_{43}|a_{44}|a_{45}|a_{46}|a_{47}$ $|a_{48}|a_{49}|a_{50}|a_{51}|a_{52}|a_{53}|a_{54}|a_{55}$ $|a_{56}|a_{57}|a_{58}|a_{59}|a_{60}|a_{61}|a_{62}|a_{63}$

$$A = a_0 ||a_1|| \dots ||a_{63}||$$

Agenda

- 1 Introduction
- 2 Description of Stribog
- lacksquare Representation over lacksquare 28
- 4 Conclusions

Hash Function Stribog. Stage 1

Hash Function Stribog. Stage 2

Hash Function Stribog. Stage 3

Construction of the Compression Function g

Representation of E

Transposition (P)

Transposition transformation has a form

MixColumns (L)

MixColumns transformation has a form

Multiplying the vector by the constant 64×64 matrix M over \mathbb{F}_2

$$B = A \cdot M$$

Agenda

- Introduction
- 2 Description of Stribog
- lacksquare Representation over \mathbb{F}_{2^8}
- 4 Conclusions

Motivation

Representation over \mathbb{F}_{2^8} $\bullet \circ \circ \circ \circ \circ \circ \circ \circ \circ$

Motivation

Motivation

State Representation

Alternative representation

- Reverse input bits
- AES-like transformations (state as in Grøstl)
- Reverse output bits

Representation over \mathbb{F}_{28}

Transposition and SubBytes Operations

- Transposition is invariant operation.
- Substitution has the form $F(x) = D \circ G \circ D(x)$ for linearized polynomial $D: \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$.

Representation over \mathbb{F}_{28}

Transposition and SubBytes Operations

- Transposition is invariant operation.
- Substitution has the form $F(x) = D \circ G \circ D(x)$ for linearized polynomial $D : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$.

Representation over \mathbb{F}_{28}

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	3F	FB	D7	E0	9F	E5	A8	04	97	07	AD	87	A0	B5	4C	9A
1	DF	EB	4F	0C	81	58	CF	D3	E8	3B	FD	B1	60	31	В6	8B
2	F3	7C	57	61	47	78	08	B4	C9	5E	10	32	C7	E4	FF	67
3	C4	3E	BF	11	D1	26	B9	7D	28	72	39	53	FE	96	C3	9C
4	BB	24	34	CD	A6	06	69	E6	0F	37	70	C1	40	62	98	2E
5	5F	6B	16	D6	3C	1C	1E	A4	8F	14	C8	55	B7	A5	63	F5
6	8C	C2	12	B8	F7	46	59	90	99	0D	6E	1F	F1	AA	51	2D
7	20	9D	73	E7	71	64	4D	36	FA	50	BA	A1	CB	A9	B0	C6
8	77	AF	2C	1A	18	E9	85	8E	EE	F0	0E	D8	21	A2	ΑE	65
9	23	9E	54	EC	38	1D	89	D9	6C	17	4E	CA	D0	C5	2A	66
Α	76	15	13	35	3A	00	DE	D4	74	29	30	FC	56	7A	AC	2F
В	A3	44	5C	9B	80	F9	79	A7	В3	CC	ED	1B	2B	AB	BD	D2
С	88	95	8A	02	5A	CE	94	25	DB	7B	6A	92	75	49	BC	4B
D	5B	6F	45	27	42	41	F6	0B	DD	0A	E2	09	19	BE	01	43
E	68	93	D5	EF	84	22	E3	DA	5D	3D	48	7F	05	F4	7E	03
F	B2	C0	33	91	F2	82	8D	4A	83	52	E1	86	F8	DC	EA	6D

Table : The Substitution F for AES-like Description

Representation over \mathbb{F}_{28}

Representation of MixColumns (1/4)

The are exist at least three forms:

- representation over \mathbb{F}_{2^n}
- 2 representation over \mathbb{F}_2
 - matrix form
 - 2 system of equations

Representation of MixColumns (1/4)

The are exist at least three forms:

- representation over \mathbb{F}_{2^n}
- 2 representation over \mathbb{F}_2
 - matrix form
 - 2 system of equations

$$\xrightarrow{easy}$$

$$\mathbb{F}_{2^n} \qquad \mathbb{F}_2$$

Representation over \mathbb{F}_{28}

Representation of MixColumns (1/4)

The are exist at least three forms:

- representation over \mathbb{F}_{2^n}
- representation over \mathbb{F}_2
 - matrix form
 - 2 system of equations

Representation over \mathbb{F}_{28}

Representation of MixColumns (2/4)

Let $L: \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$ be a linear function of the form

$$L(x) = \sum_{i=0}^{n-1} \delta_i x^{2^i}, \quad \delta_i \in \mathbb{F}_{2^n}.$$

Proposition

Any linear function $L: \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^m}$ can be converted to a matrix with the complexity O(n).

$$L(x) = \delta x$$
, $\delta_i = 0$, for $1 < i < n - 1$.

Any multiplication mapping $\mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$ is a linear transformation of a vector space over \mathbb{F}_2 for specified basis.

Multiplication by arbitrary $\delta \in \mathbb{F}_{2^8}$ can be represented as multiplication by a matrix

$$\delta x = \begin{pmatrix} k_{0,0} & \cdots & k_{0,7} \\ k_{1,0} & \cdots & k_{1,7} \\ \vdots & \ddots & \vdots \\ k_{7,0} & \cdots & k_{7,7} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ \cdots \\ x_7 \end{pmatrix}$$

where $x_i, k_{j,s} \in \mathbb{F}_2$.

Representation of MixColumns (3/4)

Any multiplication mapping $\mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$ is a linear transformation of a vector space over \mathbb{F}_2 for specified basis.

Multiplication by arbitrary $\delta \in \mathbb{F}_{2^8}$ can be represented as multiplication by a matrix

$$\delta = \begin{pmatrix} k_{0,0} & \cdots & k_{0,7} \\ k_{1,0} & \cdots & k_{1,7} \\ \vdots & \ddots & \vdots \\ k_{7,0} & \cdots & k_{7,7} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$

where $x_i, k_{j,s} \in \mathbb{F}_2$.

Representation of MixColumns (4/4)

The main steps of proposed algorithm for obtaining MDS matrix over \mathbb{F}_{2^8} from 64×64 matrix over \mathbb{F}_2

- for every irreducible polynomial (30)
 - lacktriangle convert each of 8×8 submatrices to the element of the filed
 - check MDS property of the resulting matrix

Representation of MixColumns (4/4)

The main steps of proposed algorithm for obtaining MDS matrix over \mathbb{F}_{2^8} from 64×64 matrix over \mathbb{F}_2

- for every irreducible polynomial (30)
 - \bullet convert each of 8×8 submatrices to the element of the filed
 - check MDS property of the resulting matrix

Hint

It is necessary to transpose matrix of Stribog before applying the algorithm.

MixColumns

71	05	09	B9	61	A2	27	0E	a_{40}	a_{48}	a_{56}
04	88	5B	B2	E4	36	5F	65	a_{41}	a_{49}	a_{57}
5F	СВ	ΑD	0F	ВА	2C	04	A5			
E5	01	54	ВА	0F	11	2A	76	a_{43}	u_{51}	a_{59}
D4									a_{52}	
05	71	5E	66	17	1C	D0	02	a_{46}	a_{53}	a_{62}
2D										
0E	02	F6	8A	15	9D	39	71		a_{55}	

	b_0	b_8	b_{16}	b_{24}	b_{32}	b_{40}	b_{48}	b_{56}
	b_1	b_9	b_{17}	b_{25}	b_{33}		b_{49}	
	b_2	b_{10}	b_{18}	b_{26}	b_{34}	b_{42}	b_{50}	b_{58}
_	b_3	b_{11}	b_{19}	b_{27}	b_{35}	b_{43}	b_{51}	b_{59}
	b_4	b_{12}	b_{20}	b_{28}	b_{36}			b_{60}
	b_5	b_{13}	b_{21}	b_{29}	b_{37}	b_{45}	b_{52}	b_{61}
	b_6			b_{30}		b_{46}	o_{53}	b_{62}
	b_7	b_{15}	b_{23}	b_{31}	b_{39}	b_{47}	b_{54}	b_{63}
							b_{55}	

Representation over \mathbb{F}_{28} 00000000

Multiplying the vector by the constant 8×8 matrix G over \mathbb{F}_{2^8} with the primitive polynomial $f(x) = x^8 + x^6 + x^5 + x^4 + 1$

$$B = G \cdot A$$

AES-like Form of Compression Function

Agenda

- 1 Introduction
- Description of Stribog
- lacksquare Representation over \mathbb{F}_{2^8}
- 4 Conclusions

Conclusions

• GOST R 34.11-2012 is based on GOST 34.11-94 as well as on Whirlpool/ Grøstl/AES.

Conclusions

- GOST R 34.11-2012 is based on GOST 34.11-94 as well as on Whirlpool/ Grøstl/AES.
- Performance of GOST R 34.11-2012 is based on the message length.

Conclusions

- GOST R 34.11-2012 is based on GOST 34.11-94 as well as on Whirlpool/ Grøstl/AES.
- Performance of GOST R 34.11-2012 is based on the message length.
- Proposed method has many application fields.

Introduction

- GOST R 34.11-2012 is based on GOST 34.11-94 as well as on Whirlpool/ Grøstl/AES.
- Performance of GOST R 34.11-2012 is based on the message length.
- Proposed method has many application fields.
- More details on https://github.com/okazymyrov

