

DIGITAL TALENT SCHOLARSHIP 2019

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Classification: Decision Tree

M. Ramli & M. Soleh

Bagian Satu

Apa itu Decision Tree?

Pengantar Deision Tree

- Apa itu Decision Tree?
- Bagaimana cara menggunakannya untuk melakukan klasifikasi?
- Bagaimana caranya untuk menumbuhkan Decision Tree kita sendiri?
- Mungkin beberapa pertanyaan tersebut muncul dalam benak kita ketika mendengan kata Decision Tree
- Materi ini akan menjawab semua pertanyaan tersebut.

Studi Kasus Decision Tree

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	М	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	М	Low	Normal	Drug B
p10	Senior	M	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A
p15	Middle-age	F	Low	Normal	?

- Bayangkan anda sebagai peneliti medis yang sedang melakukan observasi data pasien.
- Data pasien telah terkumpul, dimana pasien-pasien tersebut memiliki penyakit yang sama.
- Selama penanganan, setiap pasien harus menerima salah satu dari dua obat yang tersedia.
 - Drug A
 - Drug B
- Tugas anda: memberikan saran obat kepada pasien yang baru.

Studi Kasus Decision Tree

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	M	Low	Normal	Drug B
р6	Senior	M	Low	High	Drug A
р7	Middle-age	M	Low	High	Drug B
р8	Young	F	Normal	Normal	Drug A
р9	Young	М	Low	Normal	Drug B
p10	Senior	M	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A
p15	Middle-age	F	Low	Normal	?

• Fitur:

- Age
- Sex
- Blood Pressure (BP)
- Cholesterol

Target/Class:

• Drug A atau Drug B

Studi Kasus Decision Tree

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	М	Low	Normal	Drug B
p6	Senior	М	Low	High	Drug A
p7	Middle-age	М	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	М	Low	Normal	Drug B
p10	Senior	М	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A
p15	Middle-age	F	Low	Normal	?

Bentuk Decision Tree

- Kita ingin melakukan klasifikasi pasien baru
- Keputusan obat yang akan diterimanya akan tergantung dari bentuk pohon.
- Tree memiliki node akar, Age
 - Age dianggap sebagai variable paling berpengaruh

Bentuk Decision Tree

- Setiap Node mendeskripsikan sebuah tindakan observasi
 - Apa gender/sex pasien tsb.
- Setiap Branch mendeskripsikan hasil observasi
 - Pasien ternyata seorang pria
- Setiap *Leaf* mendeksripsikan hasil
 klasifikasi.

Bagaimana Bentuk Decision Tree

- 1. Pilih salah satu atribut dari dataset
- Hitung nilai signifikasi atribut dalam pemecahan data
 - Nilai signifikansi mendeskripsikan seberapa besar pengaruh atribut tersebut dalam sebaran data
 - Kalkulasi ini akan kita bahas di bagian selanjutnya
- 3. Pecah data berdasarkan atribut yang memiliki nilai signifikansi terbesar
- 4. Kembali ke langkah 1

Bagian Dua

Algoritma Membangun Decision Tree

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
p3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	М	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
p7	Middle-age	М	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	М	Low	Normal	Drug B
p10	Senior	М	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A
p15	Middle-age	F	Low	Normal	?

Atribut apa yang paling terbaik memisahkan data?

- Decision tree dibuat dengan menggunakan teknik recursive partitioning untuk klasifikasi data
- Berdasarkan dataset, kita memiliki 14 pasien dengan 7 diklasifikasikan Drug A, 7 lagi diklasifikasikan Drug B.
- Algoritma harus bisa memilih fitur/atribut yang paling baik dalam melakukan klasifikasi

Apakah atribut cholesterol terbaik?

- Untuk mengetahui mana atribut yang terbaik, yang kita lakukan adalah kita coba satu persatu.
- Pertama kita mulai dari Cholesterol.

Apakah atribut cholesterol terbaik?

- Klasifikasi yang dihasilkan jika kita memiliki Cholesterol sebagai atribut pertama adalah:
 - Untuk High: 3 buah Drug A; 4 buah Drug B
 - Untuk Normal: 2 buah Drug A, 4 buah Drug B

Sekarang kita coba atribut yang lain.

Apakah atribut sex yang terbaik?

- Klasifikasi yang dihasilkan jika kita memiliki Sex sebagai atribut pertama adalah:
 - Untuk Female: 1 buah Drug A; 7 buah Drug B
 - Untuk Male: 4 buah Drug A, 2 buah Drug B

Apakah atribut sex yang terbaik?

- More Predictive = Lebih dapat diprediksi klasifikasinya
- Less Impurity = Berkurang ketidak-murniannya
- Less Entropy = Berkurang keacakannya

Apakah atribut sex yang terbaik?

 Secara kualitatif, atribut Sex dikatakan memiliki nilai signifikasni lebih banyak dibanding atribut Cholesterol

Ayo melangkah lebih dalam lagi.

Kemurnian suatu node

- Jika kita tambahkan satu atribut lagi, Cholesterol, klasifikasi menjadi terbagi sangat baik.
- jika seorang pasien merupakan Pria dengan Cholesterol Tinggi, maka kita bisa sarankan ia menggunakan Drug A dengan tingkat confident yang sangat tinggi

18/07/2019 Classification: Decision Tree

Kemurnian suatu node

• Sebuah node dari Decision Tree dikatakan murni atau *pure* jika node tersebut membelah class secara spesifik di 100% kasus.

18/07/2019 Classification: Decision Tree

Kemurnian dan Entropy

secara spesifik

- Semakin kebawah, Decision Tree seharusnya semakin kecil Entropynya
- Semakin teratur klasifikasinya.

18/07/2019 Classification: Decision Tree

Bagian Tiga

Pemahaman Entropy

- Entropy = Pengukuran tingkat ketidak-aturan
- Semakin rendah entropy, semakin teratur dan seragam distribusi data yang kita punya.
- Semakin tinggi entropy, semakin tidak teratur dan acak distribusi data yang kita punya.

$$E = -p(a)\log(p(a)) - p(b)\log(p(b))$$

• Dengan $p(\cdot)$ probabilitas atau rasio proporsional Drug A atau Drug B

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1 p2	Young	F	High		Drug A Drug A
	Young	F	High		
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	М	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
р7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9 p10 p11	Young	М	Low	Normal	Drug B Drug B Drug B
	Senior	M	Normal	Normal	
	Young	M	Normal	High [
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	M	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

Patient ID	Age	Sex	BP	P Cholesterol		
p1 p2	Young	F H	High	High High	Drug A	
	Young	F	High		Drug A	
р3	Middle-age	F	Hiigh	Normal	Drug B	
p4	Senior	F	Normal	Normal	Drug B	
p5	Senior	М	Low	Normal	Drug B	
p6	Senior	M	Low	High	Drug A	
p7	Middle-age	M	Low	High	Drug B	
p8	Young	F	Normal	Normal Normal	Drug A	
p 9	Young	M			Drug B	
p10	Senior	M		Normal	Drug B	
p11	Young	M F	Normal	High	Drug B Drug B	
p12	Middle-age		Normal	High		
p13	Middle-age	М	High	Normal	Drug B	
p14	Senior	F	Normal	High	Drug A	

S: [9 B, 5 A]

E = -p(B)log(p(B)) - p(A)log(p(A))

 $E = -(9/14)\log(9/14) - (5/14)\log(5/14)$

E = 0.940

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	M	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	M	Low	Normal	Drug B
p10	Senior	M	Normal	Normal	Drug B
p11	Young	M	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
p3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	M	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	М	Low	Normal	Drug B
p10	Senior	М	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

Bagian 4

Menentukan Node yang Terbaik

Mana Node yang Terbaik?

Decision Tree dengan Information Gain lebih besar yang kita pilih!

Information Gain

- Information Gain adalah sebuah nilai yang menspesifikasikan tingkat informasi yang dimiliki oleh decision tree.
- Nilai yang akan meningkatkan tingkat kepastian setelah dibelah.

Information Gain = (Entropy sebelum dibelah) - (Entropy setelah dibelah)

 Membangun Decision Tree adalah tentang menemukan atribut yang memberikan perolehan informasi tertinggi.

Weighted entropy after split

Weighted Entropy

Information Gain

Information Gain untuk Pemilihan Node Terbaik

S: [3 B, 4 A] E = 0.985 S: [6 B, 1 A] E = 0.592

Gain (s, Sex) = 0.940 - [(7/14)0.985 + (7/14)0.592] =0.151

Gain (s, Cholesterol) = 0.940 - [(8/14).811 + (6/14)1.0] =0.048

18/07/2019

Bagian 5

Praktikum Lab

ML0101EN-Clas-Decision-Trees-drug-py-v1.ipynb

IKUTI KAMI

- digitalent.kominfo
- digitalent.kominfo
- DTS_kominfo
- Digital Talent Scholarship 2019

Pusat Pengembangan Profesi dan Sertifikasi Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika Jl. Medan Merdeka Barat No. 9 (Gd. Belakang Lt. 4 - 5) Jakarta Pusat, 10110

