

Math for Machine Learning

Linear algebra - Week 4

Bases

Span

Orthogonal and orthonormal bases

Orthogonal and orthonormal matrices

Determinants and Eigenvectors

Machine learning motivation

PCA

8 dimensions

Determinants and Eigenvectors

Singularity and rank of linear transformations

Non-singular transformation

Singular and non-singular transformations

Singular and non-singular transformations

Singular and non-singular transformations

Singular and non-singular transformations

Determinants and Eigenvectors

$$Det = 3 \cdot 2 - 1 \cdot 1$$

$$Det = 5$$

$$Det = 3 \cdot 2 - 1 \cdot 1$$

$$Det = 5$$

Negative determinants?

Negative determinants?

3	1
1	2

$$Det = 3 \cdot 2 - 1 \cdot 1$$

$$Det = 5$$

Negative determinants?

 $Det = 3 \cdot 2 - 1 \cdot 1$ Det = 5

$$Det = 1 \cdot 1 - 3 \cdot 2$$

$$Det = -5$$

$$Det = 1 \cdot 1 - 3 \cdot 2$$

Determinant as an area

Determinants and Eigenvectors

3	1	5	2	_	16	8
1	2	1	2	_	7	6

3	1
1	2

3	1	5	2	_
1	2	1	2	_

$$det = 5$$

$$3 \cdot 2 - 1 \cdot 1$$

3	1
1	2

$$det = 5$$
 $det = 8$

$$det = 8$$

$$3 \cdot 2 - 1 \cdot 1$$

$$3 \cdot 2 - 1 \cdot 1$$
 $5 \cdot 2 - 2 \cdot 1$

3	1
1	2

$$det = 5$$

$$det = 5$$
 $det = 8$ $det = 40$

$$3 \cdot 2 - 1 \cdot 1$$
 $5 \cdot 2 - 2 \cdot 1$ $16 \cdot 6 - 8 \cdot 7$

$$det(AB) = det(A) det(B)$$

Quiz

- The product of a singular and a non-singular matrix (in any order) is:
 - Singular
 - Non-singular
 - Could be either one

Solution

If A is non-singular and B is singular, then det(AB) = det(A) x det(B) =
 0, since det(B) = 0. Therefore det(AB) = 0, so AB is singular.

5

5 · 0

$$5 \cdot 0 = 0$$

When one factor is singular...

Non-singular		Sing	jular		Singular		
	3	1	1	2	_	4	8
	1	2	1	2	_	3	6
Det = 5		Det	= 0		Det	= 0	

1	2
1	2
Det	= 0

Determinants and Eigenvectors

Determinant of inverse

Quiz

Find the determinants of the following matrices

0.4	-0.2		
-0.2	0.6		

0.25 -0.25 -0.125 0.625

Solution

det = 5

det = 0.2

$$det = 5$$

$$det = 5$$
 $det = 0.2$

$$5^{-1} = 0.2$$

$$det = 5$$

$$det = 0.2$$

$$5^{-1} = 0.2$$

$$det = 5$$

det = 0.2

$$det = 8$$

$$5^{-1} = 0.2$$

det = 5det = 0.2

$$det = 0.2$$

$$5^{-1} = 0.2$$

det = 8det = 0.125

$$det = 5$$
 $det = 0.2$

$$5^{-1} = 0.2$$

$$det = 8$$

$$det = 8$$
 $det = 0.125$

$$8^{-1} = 0.125$$

$$det = 5$$
 $det = 0.2$

$$det = 8$$

$$det = 0.125$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$det = 5$$

$$det = 0.2$$

$$det = 0.125$$

$$det = 0$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$det = 5$$
 $det = 0.2$

$$det = 8$$

$$det = 0.125$$

$$det = 0$$

$$det = ???$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$det = 0.2$$

$$det = 8$$
 $det = 0.125$

$$det = 0$$
 $det = ???$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$det(AB) = det(A) det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$det(AB) = det(A) det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A)\det(A^{-1})$$

$$\det(AB) = \det(A)\det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$det(AB) = det(A) det(B)$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

$$\frac{1}{\det(A)}$$

Why is this?

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A)\det(A^{-1})$$

det(AB) = det(A) det(B)

$$\det(I) = \det(A) \det(A^{-1})$$

$$\downarrow_{1}$$

$$\downarrow_{1}$$

$$\frac{1}{\det(A)}$$

Determinant of the identity matrix

$$\det \begin{bmatrix} \frac{1}{0} & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1$$

Determinant of the identity matrix

$$\det \begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \\ \end{array} = 1 \cdot 1 - 0 \cdot 0 = 1$$

$$det(I) = 1$$

Determinants and Eigenvectors

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

Determinants and Eigenvectors

Is this a basis?

Is this a basis?

Is this a basis?

Is this a basis for something?

Bases

Is this a basis for something?

Bases

Is this a basis for something?

Not a basis

Dimension = 1

2 elements in the basis Dimension = 2

Determinants and Eigenvectors

Determinants and Eigenvectors

Eigenvalues and eigenvectors

2103

If λ is an eigenvalue:

2	1
0	3

If λ is an eigenvalue:

2	1
0	3

λ	0
0	λ

If λ is an eigenvalue:

2	1	Х	_	λ	0	X
0	3	У	_	0	λ	у

If λ is an eigenvalue:

2	1	Χ	_	λ	0	X
0	3	у	=	0	λ	у

For infinitely many (x,y)

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y & \end{array} = \begin{array}{c|cccc} 0 \\ \hline 0 & \end{array}$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0
\end{array}$$

Has infinitely many solutions

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2 - \lambda & 1 & x \\
\hline
0 & 3 - \lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2 - \lambda & 1 & x \\
0 & 3 - \lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2 - \lambda & 1 & x \\
\hline
0 & 3 - \lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \qquad \lambda = \lambda = \lambda = 0$$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$2x + y = 2x$$
$$0x + 3y = 2y$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

$$x = 1$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

$$y = 0$$

x = 1

$$0x + 3y = 3y$$

2x + y = 3x

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

2x + y = 3x

$$x = 1$$

$$y = 0$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

943

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

9	4
4	3

• The characteristic polynomial is

$$\det \frac{9-\lambda}{4} \frac{4}{3-\lambda} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

- Which factors as $\lambda^2 12\lambda + 11 = (\lambda 11)(\lambda 1)$
- The solutions are $\lambda = 11$ $\lambda = 1$

Determinants and Eigenvectors

Conclusion

2103

2	1
0	3

λ	0
0	λ

$$\begin{array}{c|cccc}
2 - \lambda & 1 & x \\
\hline
0 & 3 - \lambda & y
\end{array} = \begin{array}{c|cccc}
0 & \\
\hline
0 & \\
\end{array}$$

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y \end{array} = \begin{array}{c|cccc} 0 \\ \hline 0 \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y \end{array} = \begin{array}{c|cccc} 0 \\ \hline 0 \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y \end{array} = \begin{array}{c|cccc} 0 \\ \hline 0 \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial $(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
\hline
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial
$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$
 $\lambda = 2$ $\lambda = 3$

If λ is an eigenvalue:

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y & = & 0 \\ \hline \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\lambda = 2$$

$$\lambda = 3$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y & = & 0 \\ \hline \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\lambda = 2$$

$$\lambda = 3$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \qquad \lambda = \lambda = \lambda = 0$$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$2x + y = 2x$$
$$0x + 3y = 2y$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

$$x = 1$$

y = 0

. .

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

$$x = 1$$

1

$$y = 0$$

0

$$2x + y = 3x$$

$$0x + 3y = 3y$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

$$x = 1$$

$$y = 0$$

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

9443

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

9	4
4	3

• The characteristic polynomial is

det
$$\frac{9-\lambda}{4} \frac{4}{3-\lambda} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

- Which factors as $\lambda^2 12\lambda + 11 = (\lambda 11)(\lambda 1)$
- The solutions are $\lambda = 11$ $\lambda = 1$

Row span of a matrix

3 2

1 2

Rows

3 2

1 2

Row span of a matrix

3 2

1 2

Rows

3 2

1 2

Span of the rows

Basis vectors

3D

Math for Machine Learning

Linear algebra - Week 4

Vectors

Matrices

Dot product

Matrix multiplication

Linear transformations

	1
1	1
1	2

Ď	
1	1
1	2

1	1
1	2

1	1
2	2

Č	
1	1
1	2

Č	
1	1
2	2

Č	
0	0
0	0

System 1

•
$$a + 2b = 0$$

1	1
2	2

System 1

)

System 2

•	-
2	2

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

ď	<u></u>
1	1
1	2

System 2

2	2

System 3

•
$$0a + 0b = 0$$

The only two numbers a, b, such that

- a+b=0
- and
- a+2b = 0

are:

a=0 and b=0

System 1

ď	<u></u>
1	1
1	2

System 2

1	1
2	2

System 3

•
$$0a + 0b = 0$$

The only two numbers a, b, such that

- a+b = 0
- and
- a+2b = 0

are:

a=0 and b=0

Any pair (x, -x) satisfies that

- a+b=0
- and
- a+2b = 0

For example:

(1,-1), (2,-2), (-8,8), etc.

System 1

System 2

System 3

•
$$0a + 0b = 0$$

0

The only two numbers a, b, such that

- a+b=0 and
- a+2b = 0

are:

a=0 and b=0

Any pair (x, -x) satisfies that

- a+b=0 and
- a+2b = 0

For example: (1 -1) (2 -2) (...

(1,-1), (2,-2), (-8,8), etc.

Any pair of numbers satisfies that

- 0a+0b = 0 and
- 0a+0b = 0

For example:

(1,2), (3,-9), (-90,8.34), etc.

System 1

•
$$a + 2b = 0$$

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

$$a = 0$$

$$b = 0$$

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

$$a = 0$$

$$b = 0$$

System 2

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

System 2

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$b = 0$$

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

$$a = 0$$

$$b = 0$$

System 2

Solutions

•
$$b = -a$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a + 2b = 0$$

System 2

Solutions

• any *a*

$$\bullet \ b = -a$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$b = 0$$

System 2

Solutions

•
$$b = -a$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$b = 0$$

System 2

Solutions

- any *a*
- b = -a

- 0a + 0b = 0
- any a
- 0a + 0b = 0
- any *b*

1	1	Null space
2	2	• any a • $b = -a$

Č		
0	0	Null space
0	0	any aany b

Dimension = 0

Dimension = 1

Dimension = 2

Dimension = 0

Dimension = 1

Dimension = 2

Non-singular

Dimension = 0

Non-singular

Dimension = 1

Singular

Dimension = 2

Dimension = 0

Non-singular

Null space • any *a* • b = -a

Dimension = 1

Singular

Dimension = 2

Singular

Singular

Dimension = 2

Singular

More conceptual explanation of the null space

Elaborate here

Quiz: Null space of a matrix

Problem: Determine the dimension of the null space of the following two matrices

Matrix 1

5	1
-1	3

Matrix 2

2 -1 -6 3

Solutions: Null space of a matrix

Matrix 1: Notice that this is a non-singular matrix, since the determinant is 16. Therefore, the null space is only the point (0,0). The dimension is 0.

5 1

-1 3

Matrix 2: The corresponding system of equation has the equations 2ab=0 and -6a+3b=0. Some inspection shows that the first equation has the points (1,2), (2,4), (3,6), etc. as solutions. All of them are also solutions to the second equation, -6a+3b=0. Therefore the null space is all the points of the form (x, 2x). The dimension of this null space is 1, and the matrix is singular. 2 -1

-6 3

DeepLearning.Al

Systems of linear equations

Systems of linear equations

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

Systems of linear equations

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

1	1	1
1	1	2
1	1	3

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

1	1	1
1	1	2
1	1	3

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

1	1	1
2	2	2
3	3	3

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

1	1	1
2	2	2
3	3	3

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

0	0	0
0	0	0
0	0	0

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

Dimension = 2

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

Dimension = 2

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

Dimension = 3

Null space for matrices

Matrix 1

1	1	1
1	2	1
1	1	2

Null space

Dimension = 0

Matrix 2

1	1	1
1	1	2
1	1	3

Null space

Dimension = 1

Matrix 3

1	1	1
2	2	2
3	3	3

Null space

Dimension = 2

Matrix 4

0	0	0
0	0	0
0	0	0

Null space

Dimension = 3

Quiz: Null space

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$b = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$c = 0$$

•
$$3c = 0$$

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

$$\cdot$$
 C = 0

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1
2	2
0	3
	2

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

$$\cdot$$
 C = 0

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form

$$(x, -x, 0)$$

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$b = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form

$$(x, -x, 0)$$

Dimension = 1

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form

$$(x, -x, 0)$$

Dimension = 1

The point

(0,0,0)

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$b = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form

$$(x, -x, 0)$$

Dimension = 1

The point

(0,0,0)

Dimension = 0

Null space **a+2b** а 3a+b Null space **a+2b** 3a+b Null space **a+2b** 3a+b

Null space

Dot product as an area

Row space a+2b $(0,0) \rightarrow (0,0)$ $(1,0) \rightarrow (3,1)$ 3a+b $\begin{array}{c} a & (1,0) \\ (0,1) \rightarrow & (1,2) \end{array}$ $(1,1) \rightarrow (4,3)$

Row space

$$(1,0) \rightarrow (3,1)$$

$$(0,1) \rightarrow (1,2)$$

$$(1,1) \rightarrow (4,3)$$

Row space

Orthogonal matrix

Orthogonal matrix

Orthogonal matrices have orthogonal columns

6 -1 2 3

$$\begin{array}{c|c} 6 & -1 \\ \hline 2 & 3 \end{array} = 0$$

Orthogonal matrix

$$a + b + c = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

3a - 5b + 2c = 0

$$3a - 5b + 2c = 0$$

$$3a - 5b + 2c = 0$$

$$3(0) + 5(0) + 2(0) = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 1

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

Solution space

- a = 0
- b = 0
- c = 0

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

•
$$a = 0$$

•
$$b = 0$$

•
$$c = 0$$

The point (0,0,0)

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

System 2

• a + b + c = 0

- a + b + 2c = 0
- a + b + 3c = 0

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

- $\cdot c = 0$
- b = -a

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

•
$$c = 0$$

$$b = -a$$

All points of the form

(x, -x, 0)

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

•
$$c = 0$$

$$b = -a$$

All points of the form

$$(x, -x, 0)$$

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System 3

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

Solution space

$$a + b + c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

•
$$a + b + c = 0$$

Solution space All points of the form (x, y, -x - y)

$$(x, y, -x - y)$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

•
$$a + b + c = 0$$
 $(x, y, -x - y)$

All points of the form

$$(x, y, -x - y)$$

