Supplementary Materials

A. Proof of Lemma 3

Note that the evolution $V_2^{k+1} - V_2^k$ can be structurally decomposed into two constituent terms:

$$V_2^{k+1} - V_2^k = C_3 + \frac{1}{m} (g(\mathbf{1}\bar{x}^k, z^{k+1}) - g(\mathbf{1}\bar{x}^k, z^k)), \quad (A.1)$$

where $C_3 = \frac{1}{m}g(\mathbf{1}\bar{x}^{k+1},z^{k+1}) - \frac{1}{m}g(\mathbf{1}\bar{x}^{k+1},\theta^*(\mathbf{1}\bar{x}^{k+1})) - \frac{1}{m}(g(\mathbf{1}\bar{x}^k,z^{k+1}) - g(\mathbf{1}\bar{x}^k,\theta^*(\mathbf{1}\bar{x}^k)))$. Thus, we begin by bounding the last term in (A.1) using the smoothness of g_i and the recursion (2) as follows:

$$\frac{1}{m}g\left(\mathbf{1}\bar{x}^{k},z^{k+1}\right) - \frac{1}{m}g\left(\mathbf{1}\bar{x}^{k},z^{k}\right) \tag{A.2}$$

$$\leq -\frac{\gamma}{m}\left\langle\nabla_{\theta}g\left(\mathbf{1}\bar{x}^{k},z^{k}\right),\nabla_{\theta}g\left(x^{k},z^{k}\right)\right\rangle + \frac{L_{g,1}}{2m}\|z^{k+1} - z^{k}\|^{2}$$

$$\leq \frac{L_{g,1}^{2}\gamma}{2}\frac{1}{m}\|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} - \frac{\gamma}{2}\frac{1}{m}\|\nabla_{\theta}g(\mathbf{1}\bar{x}^{k},z^{k})\|^{2},$$

where the last inequality is derived through application of the polarization identity $-a^{\mathrm{T}}b=\frac{1}{2}\|a-b\|^2-\frac{1}{2}\|a\|^2-\frac{1}{2}\|b\|^2$, combined with the gradient-Lipschitz continuity of g_i and the condition that $\gamma\leqslant\frac{1}{L_{g,1}}$. For the term C_3 in (A.1), it follows from the smoothness of the functions g_i and $g_i^*(\hat{x})$ that

$$C_{3} \leq \frac{1}{m} \langle \nabla_{x} g(\mathbf{1}\bar{x}^{k}, z^{k+1}) - \nabla_{x} g(\mathbf{1}\bar{x}^{k}, \theta^{*}(\mathbf{1}\bar{x}^{k})), \mathbf{1}\bar{x}^{k+1} - \mathbf{1}\bar{x}^{k} \rangle$$

$$+ \frac{L_{g,1} + L_{g^{*}}}{2} \|\bar{x}^{k+1} - \bar{x}^{k}\|^{2}$$

$$\leq 16\alpha L_{g,1}^{2} \frac{1}{m} \|z^{k+1} - \theta^{*}(\mathbf{1}\bar{x}^{k})\|^{2} + \frac{\alpha}{16} \|\bar{x}^{k+1} - \bar{x}^{k}\|^{2}$$

$$\leq \frac{16\alpha L_{g,1}^{2}}{m} \|z^{k+1} - \theta^{*}(\mathbf{1}\bar{x}^{k})\|^{2} + \frac{\alpha\lambda^{2}L_{g,1}^{2}}{4m} \|z^{k+1} - \theta^{*}(\mathbf{1}x^{k})\|^{2}$$

$$+ \frac{\alpha L_{p\theta,\lambda}^{2}}{4m} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} + \frac{\alpha}{4} \|\nabla_{x} p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k})\|^{2},$$

where the second step follows form Cauchy-Schwart inequality and the condition that $\alpha\leqslant\frac{1}{16(L_g,1+L_{g^*})}$. In what follows, our analysis focuses on bounding the inner-level optimality gap $\|z^{k+1}-\theta^*(1\bar{x}^k)\|^2$. To this end, we let $g^*(x^k)\triangleq\sum_{i=1}^m g_i^*(x_i^k)$. Then, considering the condition $\gamma<\min\{\frac{1}{L_{g,1}},\frac{1}{\mu_g}\}$, we can derive from the smoothness of g_i , the PL-condition in θ and the recursion (2) that the following the exponential convergence property holds [25]:

$$g(x^k, z^{k+1}) - g^*(x^k) \le (1 - \mu \gamma)^N (g(x^k, z^k) - g^*(x^k)).$$
 (A.4)

Then, we have that

$$||z^{k+1} - \theta^*(\bar{x}^k)||^2$$

$$\leq \frac{1}{2\mu_g} (1 - \gamma \mu_g)^N (g(\mathbf{1}\bar{x}^k, z^k) - g(\mathbf{1}\bar{x}^k, \theta^*(\mathbf{1}\bar{x}^k)))$$

$$\leq \frac{(1 - \gamma \mu_g)^N}{4\mu_g^2} ||\nabla_{\theta} g(\mathbf{1}\bar{x}^k, z^k)||^2,$$
(A.5)

where the first inequality harnesses the the quadratic growth property induced by the PL condition of g_i [25] and the inequality (A.4) with the condition that $\gamma \leqslant \frac{1}{\mu_g}$. Then, substituting the boundedness (A.2) and (A.3) into (A.1) and synthesizing the inequality (A.5) yields the derived result. This completes the proof.

B. Proof of Lemma 4

This proof proceeds through tri-variate descent analysis of the function $p_{\lambda}(\hat{x},\theta,\hat{s})$. First, leveraging the smoothness of the function $p_{\lambda}(\hat{x},\theta,\hat{s})$ in \hat{x} from Lemma (1) and incorporating the fact that $\bar{y}^k = \bar{q}^k + c(\bar{x}^k - \bar{s}^k) = J_n \nabla_x P_{\lambda}(1\bar{x}^k,\theta^{k+1},z^{k+1};1\bar{s}^k)$ derived by the gradient tracking step (5), we obtain that:

$$\begin{aligned} & p_{\lambda}(\bar{x}^{k+1}, \theta^{k+1}; \bar{s}^{k}) - p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k}) \\ & \leqslant -\alpha \left\langle \nabla_{x} p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k}), \bar{y}^{k} \right\rangle + \frac{L_{ps, \lambda}}{2} \|\bar{x}^{k+1} - \bar{x}^{k}\|^{2} \\ & \leqslant 2\alpha L_{p\theta, \lambda}^{2} \frac{1}{m} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} + \frac{\alpha\lambda^{2} L_{g, 1}^{2}}{4\mu_{g}^{2}} \frac{1}{m} \|\nabla_{\theta} g(\mathbf{1}\bar{x}^{k}, z^{k})\|^{2} \\ & - \frac{1}{2}\alpha \|\nabla_{x} p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k})\|^{2}, \end{aligned}$$

where the last step employs the polarization identity and the condition that $\alpha\leqslant\frac{1}{L_{ps,\lambda}}$ as well as the following boundedness:

$$\|\nabla_{x} p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k}) - \bar{y}^{k}\|^{2}$$

$$\leq 4L_{p\theta, \lambda}^{2} \frac{1}{m} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} + 2\lambda^{2} L_{g, 1}^{2} \frac{1}{m} \|z^{k+1} - \theta^{*}(\mathbf{1}\bar{x}^{k})\|^{2},$$

$$\leq \frac{4L_{p\theta, \lambda}^{2}}{m} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} + \frac{2\lambda^{2} L_{g, 1}^{2} (1 - \mu\gamma)^{N}}{4\mu_{q}^{2} m} \|\nabla_{\theta} g(\mathbf{1}\bar{x}^{k}, z^{k})\|^{2}.$$

where the first step employs the gradient-Lipschitz continuity of f_i and g_i , and the second step follows from the result (A.5). Similarly, using the smoothness of the function $p_{\lambda}(\hat{x}, \theta, \hat{s})$ in \hat{x} from Lemma 1 and the fact that $\theta^{k+1} - \theta^k = -\beta \nabla_{\theta} P_{\lambda} \left(x^k, \theta^k; \mathbf{1}\bar{s}^k \right)$ from the recursion (3), we obtain that:

$$p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k}) - p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k})$$

$$\leq -\beta \langle \nabla_{\theta} p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k}), \nabla_{\theta} P_{\lambda}(x^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k}) \rangle$$

$$+ \frac{L_{p\theta, \lambda}}{2m} \|\theta^{k+1} - \theta^{k}\|^{2}$$

$$\leq \frac{1}{2} \beta L_{p\theta, \lambda}^{2} \frac{1}{m} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} - \frac{1}{2} \beta m \|\nabla_{\theta} p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k})\|^{2},$$

$$(A.8)$$

where the last step utilizes the polarization identity and applies the condition $\alpha \leqslant \frac{1}{L_{p\theta,\lambda}}$ along with the expression $\nabla_{\theta}p_{\lambda}(\bar{x}^k,\theta^k;\bar{s}^k) = \frac{1}{m}\nabla_{\theta}P_{\lambda}(1\bar{x}^k,\theta^k;1\bar{s}^k)$. Additionally, it follows from the definition of the function $p_{\lambda}(\hat{x},\theta,\hat{s})$ that:

$$p_{\lambda}(\bar{x}^{k+1}, \theta^{k+1}; \bar{s}^{k+1}) - p_{\lambda}(\bar{x}^{k+1}, \theta^{k+1}; \bar{s}^{k})$$

$$\begin{split} &= \frac{c}{2} \frac{1}{m} \sum_{i=1}^{m} (\|\bar{x}^{k+1} - \bar{s}^{k+1}\|^2 - \|\bar{x}^{k+1} - \bar{s}^k\|^2) \\ &= \frac{c}{2} (\frac{1-\eta}{\eta^2} \|\bar{s}^{k+1} - \bar{s}^k\|^2 - \frac{1}{\eta^2} \|\bar{s}^{k+1} - \bar{s}^k\|^2) \\ &= -\frac{c}{2\eta} \|\bar{s}^{k+1} - \bar{s}^k\|^2, \end{split} \tag{A.9}$$

where the first step applies the recursion (7). Subsequently, by aggregating the descent inequalities (A.6), (A.8), and (A.9), we obtain the desired result. This completes the proof.

C. Proof of Lemma 5

By the fact that $\psi_{\lambda}(\theta^{k+1}; \bar{s}^{k+1}) = p_{\lambda}(x^*(\theta^{k+1}, \bar{s}^{k+1}), \theta^{k+1}; \bar{s}^{k+1})$ as well as the expression of the function $p_{\lambda}(\hat{x}, \theta, \hat{s})$, we can derive that

$$\begin{aligned} & \psi_{\lambda}(\theta^{k+1}; \bar{s}^{k+1}) - \psi_{\lambda}(\theta^{k+1}; \bar{s}^{k}) \\ \leqslant & p_{\lambda}(x^{*}(\theta^{k+1}, \bar{s}^{k}), \theta^{k+1}; \bar{s}^{k+1}) - p_{\lambda}(x^{*}(\theta^{k+1}, \bar{s}^{k}), \theta^{k+1}; \bar{s}^{k}) \\ & = \frac{c}{2} \left\langle \bar{s}^{k+1} - \bar{s}^{k}, \bar{s}^{k+1} - \bar{s}^{k} - 2x^{*}(\theta^{k+1}, \bar{s}^{k}) \right\rangle. \end{aligned} \tag{A.10}$$

Furthermore, by synthesizing the smoothness property of the value function $\psi_{\lambda}(\theta; \hat{s})$ in θ , as established in Lemma 1, with the recursion $\theta^{k+1} - \theta^k = \beta \nabla_{\theta} P_{\lambda}(x^k, \theta^k; \mathbf{1}\bar{s}^k)$ in (3), we derive the following critical descent relationship:

$$\psi_{\lambda}(\theta^{k+1}; \bar{s}^{k}) - \psi_{\lambda}(\theta^{k}; \bar{s}^{k}) \tag{A.11}$$

$$\leq \langle \nabla_{\theta} \psi_{\lambda}(\theta^{k}; \bar{s}^{k}), \theta^{k+1} - \theta^{k} \rangle + \frac{L_{\psi_{\lambda}}}{2m} \|\theta^{k+1} - \theta^{k}\|^{2} \triangleq C_{1} + C_{2},$$

where $C_1 \triangleq -\beta \langle \nabla_{\theta} p_{\lambda}(x^*(\theta^k, \bar{s}^k), \theta^k; \bar{s}^k), \nabla_{\theta} P_{\lambda}(x^k, \theta^k; \mathbf{1}\bar{s}^k) \rangle$ and $C_2 \triangleq \frac{L_{\psi_{\lambda}}}{2m} \beta^2 \|\nabla_{\theta} P_{\lambda}(x^k, \theta^k; \mathbf{1}\bar{s}^k)\|^2$. Noting that

$$-\beta \left\langle \nabla_{\theta} p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k}), \nabla_{\theta} P_{\lambda}(x^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k}) \right\rangle$$

$$\leq \frac{L_{p\theta,\lambda}^{2} \beta}{2m} \|\mathbf{1}x^{k} - x^{k}\|^{2} - \frac{\beta}{2m} \|\nabla_{\theta} P_{\lambda}(\mathbf{1}\bar{x}^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k})\|^{2},$$

$$(A.12)$$

then it follows from the term C_1 that:

$$C_{1} \leqslant -\beta \langle \mathcal{A}_{1}, \nabla_{\theta} P_{\lambda}(x^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k}) \rangle + \frac{\beta}{2} L_{p\theta, \lambda}^{2} \frac{1}{m} \|\mathbf{1}x^{k} - x^{k}\|^{2} - \frac{\beta}{2} \frac{1}{m} \|\nabla_{\theta} P_{\lambda}(\mathbf{1}\bar{x}^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k})\|^{2}, \tag{A.13}$$

where $A_1 = \nabla_{\theta} p_{\lambda}(x^*(\theta^k, \bar{s}^k), \theta^k; \bar{s}^k) - \nabla_{\theta} p_{\lambda}(\bar{x}^k, \theta^k; \bar{s}^k)$. For the first term on the right-hand side of (A.13), we obtain the following bound

$$-\beta \left\langle \mathcal{A}_{1}, \nabla_{\theta} P_{\lambda}(x^{k}, \theta^{k}; 1_{m} \bar{s}^{k}) \right\rangle$$

$$\leq \frac{L_{p\theta,\lambda}}{w} \|x^{*}(\theta^{k}, \bar{s}^{k}) - \bar{x}^{k}\|^{2} + \frac{\beta^{2} L_{p\theta,\lambda} w L_{p\theta,\lambda}^{2}}{2m} \|\mathbf{1} \bar{x}^{k} - x^{k}\|^{2}$$

$$+ \frac{\beta^{2}}{2} L_{p\theta,\lambda} w m \|\nabla_{\theta} p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k})\|^{2}$$

$$\leq \frac{\beta^{2}}{2} L_{p\theta,\lambda} (w + \frac{3\sigma_{2}^{2}}{w}) m \|\nabla_{\theta} p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k})\|^{2}$$

$$+ \frac{3L_{p\theta,\lambda} \sigma_{3}^{2}}{w} \|\nabla_{x} p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k})\|^{2}$$

$$+ \frac{\beta^{2}}{2} L_{p\theta,\lambda}^{3} (w + \frac{6\sigma_{2}^{2}}{w}) \frac{1}{m} \|\mathbf{1} \bar{x}^{k} - x^{k}\|^{2},$$

where the first step applies the Cauchy-Schwarz inequality and exploits the gradient-Lipschitz continuity of $p_{\lambda}(\hat{x},\theta,\hat{s})$ in the inner-level variables, followed by Young's inequality with the parameter $w=\frac{\beta L_{p\theta,\lambda}}{8}$; subsequently, we introduce the term $\nabla_{\theta}P_{\lambda}(\mathbf{1}\bar{x}^k,\theta^k;\mathbf{1}\bar{s}^k)$ and leverage its Lipschitz continuity in the outer-level variables in the first step; the last step leverages the boundedness of the term $\|x^*(\theta^k,\bar{s}^k)-\bar{x}^k\|$ given by:

$$||x^{*}(\theta^{k}, \bar{s}^{k}) - \bar{x}^{k}||$$

$$\leq ||x^{*}(\theta^{k+1}, \bar{s}^{k}) - \bar{x}^{k}|| + ||x^{*}(\theta^{k}, \bar{s}^{k}) - x^{*}(\theta^{k+1}, \bar{s}^{k})||$$

$$\leq \sigma_{3}||\nabla_{x}p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k})|| + \sigma_{2}\beta\sqrt{m}||\nabla_{\theta}p_{\lambda}(\bar{x}^{k}, \theta^{k}; \bar{s}^{k})||$$

$$+ \sigma_{2}\beta L_{p\theta, \lambda} \frac{1}{\sqrt{m}}||\mathbf{1}x^{k} - x^{k}||,$$
(A.15)

where the last inequality follows from the strong convexity of $p_{\lambda}(\hat{x},\theta,\hat{s})$ in \hat{x} with the parameter $\sigma_{3}=\frac{1}{c-L_{px,\lambda}}$ and the Lipschitz continuity of $x^{*}(\theta,\hat{s})$ in θ . In what follows, we aim to bound the term C_{2} :

$$C_{2} \leqslant L_{\psi_{\lambda}} \beta^{2} \frac{1}{m} \|\nabla_{\theta} P_{\lambda}(\mathbf{1}\bar{x}^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k})\|^{2}$$

$$+ L_{\psi_{\lambda}} L_{p\theta, \lambda}^{2} \beta^{2} \frac{1}{m} \|\mathbf{1}\bar{x}^{k} - \bar{x}^{k}\|^{2}.$$
(A.16)

Then, by substituting the inequalities (A.13), (A.14), (A.16) and the expression $\nabla_{\theta}p_{\lambda}(\bar{x}^k,\theta^k;\bar{s}^k)=\frac{1}{m}\nabla_{\theta}P_{\lambda}(1\bar{x}^k,\theta^k;1\bar{s}^k)$ into (A.11) and combining the results (A.10) and (A.11), the desired result can be derived. This completes the proof.

D. Proof of Lemma 6

We begin by employing the definition of the value function $\phi_{\lambda}(\hat{s})$ in (8):

$$\begin{split} & \varphi_{\lambda}(\bar{s}^{k}) - \varphi_{\lambda}(\bar{s}^{k+1}) \\ \leqslant & \psi_{\lambda}(\theta_{\lambda}^{*}(\bar{s}^{k+1}); \bar{s}^{k}) - \psi_{\lambda}(\theta_{\lambda}^{*}(\bar{s}^{k+1}); \bar{s}^{k+1}) \\ \leqslant & p_{\lambda}(x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1})\bar{s}^{k+1}), \theta^{*}(\bar{s}^{k+1}); \bar{s}^{k}) \\ & - p_{\lambda}(x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k+1}), \theta_{\lambda}^{*}(\bar{s}^{k+1}); \bar{s}^{k+1}) \\ \leqslant & - \frac{c}{2} \left\langle \bar{s}^{k+1} - \bar{s}^{k}, \bar{s}^{k+1} - \bar{s}^{k} - 2x^{*}(\theta^{k+1}, \bar{s}^{k}) \right\rangle + C_{3}, \end{split}$$

where $C_3 \triangleq c \langle \bar{s}^{k+1} - \bar{s}^k, x^*(\theta^*_{\lambda}(\bar{s}^{k+1}), \bar{s}^{k+1}) - x^*(\theta^{k+1}, \bar{s}^k) \rangle$; the first inequality follows from the optimality of $\theta_{\lambda}(\bar{s}^k)$, while the second inequality is derived from the definition of the value function $\psi_{\lambda}(\theta^*_{\lambda}(\bar{s}^{k+1}); \bar{s}^k)$ in section III-A and the fact that $\psi_{\lambda}(\theta^*_{\lambda}(\bar{s}^{k+1}); \bar{s}^k) \leqslant p_{\lambda}(x^*(\theta^*_{\lambda}(\bar{s}^{k+1})\bar{s}^{k+1}), \theta^*(\bar{s}^{k+1}); \bar{s}^k)$. Next, we proceed with a further analysis of the term C_3 in (A.17):

$$C_{3} = c \left\langle \bar{s}^{k+1} - \bar{s}^{k}, x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k+1}) - x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k}) \right\rangle$$

$$+ c \left\langle \bar{s}^{k+1} - \bar{s}^{k}, x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k}) - x^{*}(\theta^{k+1}, \bar{s}^{k}) \right\rangle$$

$$\leq (c\sigma_{1} + \frac{c}{12\eta}) \|\bar{s}^{k+1} - \bar{s}^{k}\|^{2}$$

$$+ 3c\eta \|x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k}) - x^{*}(\theta^{k+1}, \bar{s}^{k})\|^{2},$$
(A.18)

where we employ the Lipschitz continuity of $x^*(\theta, \hat{s})$ in \hat{s} along with Young's inequality. In what follows, we aim to bound the last term in (A.18).

To this end, we introduce an auxiliary variable $\theta_{\lambda}^{+}(\bar{s}^{k}) \triangleq \theta^{k} - \beta \nabla_{\theta} P_{\lambda}(\mathbf{1}x^{*}(\theta^{k}, \bar{s}^{k}), \theta^{k}; \mathbf{1}\bar{s}^{k})$. Then, we obtain the following result:

$$||x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k}) - x^{*}(\theta^{k+1}, \bar{s}^{k})||^{2}$$

$$\leq C_{4} + \underbrace{4||x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k}), \bar{s}^{k}) - x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k})||^{2}}_{C_{5}}$$

$$+ \underbrace{4||x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k}) - x^{*}(\theta^{k+1}, \bar{s}^{k})||^{2}}_{C_{5}},$$
(A.20)

where $C_4=4\|x^*(\theta^*_\lambda\left(\bar{s}^{k+1}\right),\bar{s}^k)-x^*(\theta^*_\lambda(\bar{s}^{k+1}),\bar{s}^{k+1})\|^2+4\|x^*(\theta^*_\lambda(\bar{s}^{k+1}),\bar{s}^{k+1})-x^*(\theta^*_\lambda(\bar{s}^k),\bar{s}^k)\|^2$. For the term C_4 in (A.19), it follows from the Lipschitz continuity of $x^*(\theta,\hat{s})$ and $x^*(\hat{s})$ in \hat{s} that

$$4\|x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k}) - x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k+1})\|^{2}$$

$$+ 4\|x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k+1}), \bar{s}^{k+1}) - x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k}), \bar{s}^{k})\|^{2}$$

$$\leq 8\sigma_{1}^{2}\|\bar{s}^{k+1} - \bar{s}^{k}\|^{2}.$$
(A.21)

In addition, the term C_5 can be bounded by:

 C_{F}

$$\begin{split} &\leqslant 8\sigma_{2}^{2}L_{p\theta,\lambda}^{2}\beta^{2}\|x^{*}(\theta^{k},\bar{s}^{k}) - \bar{x}^{k}\|^{2} + 8\sigma_{2}^{2}L_{p\theta,\lambda}^{2}\beta^{2}\frac{1}{m}\|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} \\ &\leqslant 24\sigma_{2}^{2}\sigma_{3}^{2}L_{p\theta,\lambda}^{2}\beta^{2}\|\nabla_{x}p_{\lambda}(\bar{x}^{k},\theta^{k+1};\bar{s}^{k})\|^{2} \\ &\quad + 24\sigma_{2}^{4}L_{p\theta,\lambda}^{2}\beta^{4}m\|\nabla_{\theta}p_{\lambda}(\bar{x}^{k},\theta^{k};\bar{s}^{k})\|^{2} \\ &\quad + 24\sigma_{2}^{4}L_{p\theta,\lambda}^{4}\beta^{4}\frac{1}{m}\|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2} + 8\sigma_{2}^{2}L_{p\theta,\lambda}^{2}\beta^{2}\frac{1}{m}\|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2}, \end{split}$$

where the first step follows from the Lipschitz continuity of $x^*(\theta, \hat{s})$ with respect to θ , while leveraging the definition of $\theta_{\lambda}^+(\bar{s}^k)$ and the recursion (3); the second step incorporates the recursion (A.15). Next, for the term C_6 , we can further derive that:

$$C_{6}$$

$$\leq 8\sigma_{3}(\varphi_{\lambda}(x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k}); \bar{s}^{k}) - \varphi_{\lambda}(x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k}), \bar{s}^{k}); \bar{s}^{k}))$$

$$\leq 8\sigma_{3}(p_{\lambda}(x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k}), \theta_{\lambda}^{+}(\bar{s}^{k}); \bar{s}^{k}) - \varphi_{\lambda}(x^{*}(\theta_{\lambda}^{*}(\bar{s}^{k}), \bar{s}^{k}); \bar{s}^{k}))$$

$$\leq \frac{8\sigma_{3}}{\mu_{p}} m \|\nabla_{\theta}p_{\lambda}(x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k}), \theta_{\lambda}^{+}(\bar{s}^{k}); \bar{s}^{k})\|^{2}$$

$$\leq \frac{8\sigma_{3}}{\mu_{p}} \tau^{2} m \|\nabla_{\theta}p_{\lambda}(x^{*}(\theta^{k}, \bar{s}^{k}), \theta^{k}; \bar{s}^{k})\|^{2},$$

where $\tau \triangleq 1 + \sigma_2 L_{p\theta,\lambda}\beta + L_{p\theta,\lambda}\beta$; the first step follows from the strong convexity of $p_{\lambda}(\hat{x},\theta,\hat{s})$ in \hat{x} ; the third step is derived by the PL-condition of $p_{\lambda}(\hat{x},\theta,\hat{s})$ in θ ; the last step is obtained by the following result:

$$\|\nabla_{\theta}p_{\lambda}(x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k}), \theta_{\lambda}^{+}(\bar{s}^{k}); \bar{s}^{k})\|$$

$$\leq \|\nabla_{\theta}p_{\lambda}(x^{*}(\theta^{k}, \bar{s}^{k}), \theta^{k}; \bar{s}^{k})\| + L_{p\theta, \lambda}\frac{1}{m}\|\theta_{\lambda}^{+}(\bar{s}^{k}) - \theta^{k}\|$$

$$+ L_{p\theta, \lambda}\|x^{*}(\theta_{\lambda}^{+}(\bar{s}^{k}), \bar{s}^{k}) - x^{*}(\theta^{k}, \bar{s}^{k})\|$$

$$\leq \tau \|\nabla_{\theta}p_{\lambda}(x^{*}(\theta^{k}, \bar{s}^{k}), \theta^{k}; \bar{s}^{k})\|,$$

where the first step introduces the term $\nabla_{\theta} p_{\lambda}(x^*(\theta^k, \bar{s}^k), \theta^k; \bar{s}^k)$ and leverages the gradient Lipschitz continuity of $p_{\lambda}(\hat{x}, \theta, \hat{s})$ in θ , and the second step

exploits the Lipschitz continuity of $x^*(\hat{x}, \theta)$ in θ along with the definition of $\theta_{\lambda}^+(\bar{s}^k)$. Next, by substituting the boundedness of the terms C_4 , C_5 , and C_6 , incorporating the inequality (A.19) into (A.18), and combining the resulting inequality with (A.17), we obtain the desired result. This completes the proof.

E. Proof of Lemma 7

We begin the proof by deriving the relationship between the consensus errors of the outer-level variables and the proximal variables. First, by incorporating the recursion of the variable s^k in (7), we obtain $1\bar{s}^{k+1} - s^{k+1} = (\mathcal{W} - \mathcal{J}_n)(1\bar{s}^k - s^k) + \eta(1\bar{x}^{k+1} - x^{k+1} - (1\bar{s}^k - s^k))$ with $\mathcal{W} = W \otimes I_n$. Applying Young's inequality with parameter $\frac{1-\rho}{2\rho}$ and the fact $\|\mathcal{W} - \mathcal{J}_n\|^2 = \|W - \frac{1_m^T 1_m}{m}\|^2 = \rho \in [0, 1)$, this further yields the following evolution of the consensus errors:

$$\begin{split} &\|\mathbf{1}\bar{s}^{k+1} - s^{k+1}\|^2 \\ \leqslant &\frac{1+\rho}{2}\|\mathbf{1}\bar{s}^k - s^k\|^2 + \frac{4\eta^2}{1-\rho}\|\mathbf{1}\bar{s}^k - s^k\|^2 \\ &+ \frac{4\eta^2}{1-\rho}\|\mathbf{1}\bar{x}^{k+1} - x^{k+1}\|^2. \end{split}$$

Then, through recursive derivation, we obtain

$$(1 - \frac{1+\rho}{2}) \sum_{k=0}^{K} \|\mathbf{1}\bar{s}^k - s^k\|^2$$

$$\leq \|\mathbf{1}\bar{s}^0 - s^0\|^2 + \frac{4\eta^2}{1-\rho} \sum_{k=0}^{K} \|\mathbf{1}\bar{s}^k - s^k\|^2$$

$$+ \frac{4\eta^2}{1-\rho} \sum_{k=0}^{K} \|\mathbf{1}\bar{x}^k - x^k\|^2.$$
(A.23)

With the initialization $s_i^0 = s_i^0, \forall i \in \mathcal{V}$, it follows that

$$\sum_{k=0}^{K} \|\mathbf{1}\bar{s}^k - s^k\|^2 \leqslant b_1 \sum_{k=0}^{K} \|\mathbf{1}\bar{x}^k - x^k\|^2, \tag{A.24}$$

where $b_1 \triangleq \frac{1}{1-\frac{8\eta^2}{(1-\rho)^2}} \frac{8\eta^2}{(1-\rho)^2}$. Similarly, leveraging the recursion of the outer-level variable in (6) and the initialization $x_i^0 = x_j^0$ for all $i \in \mathcal{V}$, we obtain:

$$\sum_{k=0}^{K} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2}$$

$$\leq \frac{8\alpha^{2}}{(1-\rho)^{2}} \sum_{k=0}^{K} \|\mathbf{1}\bar{q}^{k} - q^{k}\|^{2} + \frac{16\alpha^{2}\eta^{2}}{(1-\rho)^{2}} \sum_{k=0}^{K} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2}$$

$$+ \frac{16\alpha^{2}\eta^{2}}{(1-\rho)^{2}} \sum_{k=0}^{K} \|\mathbf{1}\bar{s}^{k} - s^{k}\|^{2}.$$
(A.25)

Then, substituting (A.24) into (A.25) and utilizing the condition $1 - \frac{16\alpha^2\eta^2}{(1-\rho)^2}(1+b_1) \geqslant \frac{1}{2}$ which follows from $\alpha\eta \leqslant \frac{1-\rho}{8}$ and $\eta \leqslant \frac{1-\rho}{4}$, we can derive an upper bound for the consensition.

sus error term associated with the outer-level variable:

$$\sum_{k=0}^{K} \left\| \mathbf{1} \bar{x}^k - x^k \right\|^2 \leqslant \frac{16\alpha^2}{\left(1 - \rho\right)^2} \sum_{k=0}^{K} \left\| \mathbf{1} \bar{q}^k - q^k \right\|^2. \quad (A.26)$$

Similarly, leveraging the recursion of the variable q^k in (5) along with the initialization condition $q_i^0 = q_j^0, \forall i \in \mathcal{V}$, we obtain:

$$\left(1 - \frac{1+\rho}{2}\right) \sum_{k=0}^{K} \|\mathbf{1}\bar{q}^k - q^k\|^2 \le \frac{2}{1-\rho} \sum_{k=0}^{K} \|u^{k+1} - u^k\|^2.$$
(A.27)

where the last term can be bounded by

$$||u^{k+1} - u^{k}||^{2}$$

$$\leq 6L_{px,\lambda}^{2} ||x^{k} - x^{k-1}||^{2} + 3L_{p\theta,\lambda}^{2}\beta^{2}||\nabla_{\theta}P_{\lambda}(x^{k}, \theta^{k}; s^{k})||^{2}$$

$$+ 3\lambda^{2}L_{g,1}^{2}\gamma^{2}||\nabla_{\theta}g(x^{k}, z^{k})||^{2}.$$
(A.28)

Furthermore, for the first term on the right-hand side of (A.28), it can be rewritten as $x^k - x^{k-1} = (I_{mn} - \mathcal{W})(\mathbf{1}\bar{x}^{k-1} - x^{k-1}) + \alpha(\mathbf{1}\bar{q}^{k-1} - q^{k-1}) - \alpha\mathbf{1}\bar{y}^{k-1}$. Thus, we can derive that

$$||x^{k} - x^{k-1}||^{2}$$

$$\leq 12||\mathbf{1}\bar{x}^{k-1} - x^{k-1}||^{2} + 3\alpha^{2}||\mathbf{1}\bar{q}^{k-1} - q^{k-1}||^{2} + 3m\alpha^{2}||\bar{y}^{k-1}||^{2}$$

$$\leq 15||\mathbf{1}\bar{x}^{k-1} - x^{k-1}||^{2} + 3\alpha^{2}||\mathbf{1}\bar{q}^{k-1} - q^{k-1}||^{2}$$

$$+ 9\alpha^{2}m||\nabla_{x}p_{\lambda}(\bar{x}^{k-1}, \theta^{k}; \bar{s}^{k-1})||^{2}$$

$$+ \frac{9\lambda^{2}L_{g,1}^{2}\alpha^{2}(1 - \mu\gamma)^{N}}{4\mu^{2}}||\nabla_{\theta}g(\mathbf{1}\bar{x}^{k-1}, z^{k-1})||^{2},$$
(A.29)

where the last step exploits the relation $\bar{y}^{k-1} = J_n \nabla_x P_\lambda(x^{k-1}, \theta^k, z^k; s^{k-1})$ and introduces the term $\nabla_x p_\lambda(\bar{x}^{k-1}, \theta^k; \bar{s}^{k-1})$ to upper bound $\|\bar{y}^{k-1}\|^2$, leveraging the gradient-Lipschitz continuity of the involved functions and the result (A.5). Before addressing the second term on the right-hand side of (A.28), we first establish an upper bound for the term $\|x^*(\theta^k, \bar{s}^k) - \bar{x}^k\|$. By combining the inequality $\|\nabla_\theta p_\lambda(\bar{x}^k, \theta^k; \bar{s}^k)\| \leqslant \frac{L_{p\theta,\lambda}}{\sqrt{m}} \|x^*(\theta^k, \bar{s}^k) - \bar{x}^k\| + \|\nabla_\theta p_\lambda(x^*(\theta^k, \bar{s}^k), \theta^k; \bar{s}^k)\|$ with the result in (A.15) and applying the condition $1 - 2\sigma_2 L_{p\theta,\lambda} \geqslant \frac{1}{2}$ which follows from $\beta \leqslant \frac{1}{2\sigma_2 L_{p\theta,\lambda}}$, we can derive the following result:

$$||x^*(\theta^k, s^k) - x^k||$$

$$\leq 2\sigma_3 ||\nabla_x p_\lambda(\bar{x}^k, \theta^{k+1}; s^k)|| + \frac{2\sigma_2 \beta L_{p\theta, \lambda}}{\sqrt{m}} ||\mathbf{1}\bar{x}^k - x^k||$$

$$+ 2\sigma_2 \beta \sqrt{m} ||\nabla_\theta p_\lambda(x^*(\theta^k, \bar{s}^k), \theta^k; \bar{s}^k)||.$$
(A.30)

Next, by employing the upper bound of the term $\|x^*(\theta^k, \bar{s}^k) - x^k\|^2$ in (A.30) and the condition $\beta \leqslant \frac{1}{2\sigma_2 L_{p\theta,\lambda}}$, we can bound the second term on the right-hand side of (A.28) as:

$$\|\nabla_{\theta} P_{\lambda} \left(x^{k}, \theta^{k}; \mathbf{1}\bar{s}^{k}\right)\|^{2}$$

$$\leq 2m^{2} \|\nabla_{\theta} p_{\lambda} \left(\bar{x}^{k}, \theta^{k}; \bar{s}^{k}\right)\|^{2} + 2L_{p\theta, \lambda}^{2} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2}$$

$$\leq 8m^{2} \|\nabla_{\theta} p_{\lambda} (x^{*}(\theta^{k}, \bar{s}^{k}), \theta^{k}; \bar{s}^{k})\|^{2} + 48L_{p\theta, \lambda}^{4} \sigma_{2}^{2} \beta^{2} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2}$$

$$+ 48L_{px, \theta}^{2} \sigma_{3}^{2} m \|\nabla_{x} p_{\lambda} \left(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k}\right)\|^{2} .$$

$$(A.31)$$

Then, by resorting to the fact that $\|\nabla_{\theta}P_{\lambda}(x^k, \theta^k; \mathbf{1}\bar{s}^k)\|^2 = m^2 \|\nabla_{\theta}p_{\lambda}(\bar{x}^k, \theta^k; \bar{s}^k)\|^2$, we can obtain an upper bound for the term $\|\nabla_{\theta}P_{\lambda}(x^k, \theta^k; \mathbf{1}\bar{s}^k)\|^2$ in (A.28). Then, we deal with the last term in (A.28) as follows:

$$\|\nabla_{\theta}g(x^k, z^k)\| \le \|\nabla_{\theta}g(\mathbf{1}\bar{x}^k, z^k)\| + L_{g,1}\|\mathbf{1}\bar{x}^k - x^k\|.$$
 (A.32)

Then, substituting the result (A.29), (A.31) and (A.32) into (A.28), we can derive that:

$$(1 - \frac{1+\rho}{2} - \frac{36L_{p\theta,\lambda}^{2}\alpha^{2}}{1-\rho}) \frac{4}{1-\rho} \sum_{k=0}^{K} \|\mathbf{1}\bar{q}^{k} - q^{k}\|^{2}$$

$$\leq \frac{8}{(1-\rho)^{2}} \sum_{k=0}^{K} d_{1}m \|\nabla_{x}p_{\lambda}(\bar{x}^{k}, \theta^{k+1}; \bar{s}^{k})\|^{2} \qquad (A.33)$$

$$+ \frac{8}{(1-\rho)^{2}} \sum_{k=0}^{K} d_{2}m^{2} \|\nabla_{\theta}p_{\lambda}(x^{*}(\theta^{k}, \bar{s}^{k}), \theta^{k}; \bar{s}^{k})\|^{2}$$

$$+ \frac{8}{(1-\rho)^{2}} \sum_{k=0}^{K} d_{3} \|\nabla_{\theta}g(\mathbf{1}\bar{x}^{k}, z^{k})\|^{2}$$

$$+ \frac{8}{(1-\rho)^{2}} \sum_{k=0}^{K} d_{4} \|\mathbf{1}\bar{x}^{k} - x^{k}\|^{2},$$

where $d_4=90L_{p\theta,\lambda}^2+144L_{p\theta,\lambda}^6\sigma_2^2\beta^4+6\lambda^2L_{g,1}^4\gamma^2\leqslant 108L_{p\theta,\lambda}^2\triangleq \tilde{d}_4$ by the condition that $\gamma\leqslant\frac{1}{L_{g,1}}$ and $\beta\leqslant\min\{\frac{1}{4\sigma_2L_{p\theta,\lambda}},\frac{1}{L_{p\theta,\lambda}}\}$. Noting that $(1-\frac{1+\rho}{2}-\frac{36L_{p\theta,\lambda}^2\alpha^2}{1-\rho})\frac{4}{1-\rho}\geqslant 1$ holds by the condition $\alpha\leqslant\frac{1-\rho}{12L_{p\theta,\lambda}}$ and $1-\frac{8}{(1-\rho)^2}\frac{16\alpha^2}{(1-\rho)^2}\tilde{d}_4\geqslant\frac{1}{2}$ holds by the condition $\alpha\leqslant\frac{(1-\rho)^2}{120L_{p\theta,\lambda}}$, the derived result can be obtained by substituting (A.33) into (A.26). This completes the proof.

F. Proof of Corollary 2

First, building upon the result in [15], when Assumptions 1–3 hold, along with an additional assumption on the smoothness of ∇f_i and ∇g_i , we establish the relationship between the gradient of the penalty function and the hypergradient as follows: $\|\nabla\phi(\hat{x})-\nabla p_\lambda(\hat{x})\| \leqslant \mathcal{O}(\frac{\kappa^3}{\lambda})$. Furthermore, leveraging Corollary 1 and the discussion in Remark 6, we derive $\frac{1}{K+1}\sum_{k=0}^K \nabla p_\lambda(\bar{x}^k) \leqslant \mathcal{O}(\frac{\kappa}{\alpha K}+\frac{\kappa}{\alpha K}(1-\frac{1}{\kappa})^{(\kappa K)}) \approx \mathcal{O}(\frac{\kappa}{\alpha K})$. Thus, integrating the above result, we obtain an upper bound for the hypergradient measure:

$$\frac{1}{K+1} \sum_{k=0}^{K} \nabla \phi(\bar{x}^k) \leqslant \mathcal{O}(\frac{\kappa}{\alpha K} + \frac{\kappa^6}{\lambda^2}). \tag{A.34}$$

Next, we determine the dependence of the relevant parameters on the condition number. Notably, when $N \geqslant \frac{-3\ln\kappa}{\ln(1-\mu\gamma)}$ is satisfied, it follows that $\frac{\mu_g^2}{(1-\mu\gamma)^NL_{g,1}^2} \geqslant \kappa$. Under this setting, one of the step size conditions on α in Theorem 1 requires that $\alpha \leqslant \mathcal{O}(\frac{(1-\rho)\kappa\gamma}{\lambda^2})$, while the condition $\frac{\lambda^2L_{g,1}^2(1-\mu\gamma)^N}{\mu_g^2} \geqslant 1$ in Corollary 1 imposes the requirement $\lambda^2 \geqslant \mathcal{O}(\kappa^{-1})$. Accordingly, we set the step sizes as $\alpha = \mathcal{O}((1-\rho)^2\kappa^{-2.5}K^{-\frac{1}{3}}), \quad \beta = \mathcal{O}((1-\rho)^2\kappa^{-2.5}K^{-\frac{1}{3}}), \quad \gamma = \mathcal{O}(1-\rho), \quad \lambda = \mathcal{O}(\kappa^{1.5}K^{\frac{1}{6}})$, which

Limited circulation. For review only

ensures that the step size condition in Theorem 1 is satisfied. Substituting these parameter choices into (A.34) yields the desired result. This completes the proof.