

### 第四章

# 常微分方程的数值解法

Numerical Solutions to Ordinary Differential Equations



### 概述

Chapter 4 Initial -value problems for ODE

>一阶常微分方程初值问题:

Problem I:  $\begin{cases} \frac{dy}{dx} = f(x,y) & 求函数y = y(x)满足: \\ y(x_0) = y_0 & y'(x) = f(x,y(x)) \end{cases}$ 



> f(x,y)在D={(x,y)|a≦x≦b, -∞≦y≦∞}上连续,且满足Lipschitz
条件: ∃L,∀y₁,y₂, s.t. |f(x,y₁)-f(x,y₂)| ≤ L|y₁-y₂|

则初值问题Problem I有唯一解y(x), 称为积分曲线。

》实际工程技术、生产、科研上会出现大量的微分方程问题 很难得到其解析解,有的甚至无法用解析表达式来表示, 因此只能依赖于数值方法去获得微分方程的数值解。

-

Chapter 4 Initial -value problems for ODE

### ▶ 微分方程数值解法:

- □不求y(x)的精确表达式,而求在X<sub>0</sub>, X<sub>1</sub>, ..., X<sub>n</sub>处的函数值
- □设Problem I的解y(x)的存在区间是[a,b],初始点 $x_0$ =a,取 [a,b]内的一系列节点 $x_0$ ,  $x_1$ ,..., $x_n$  a=  $x_0$ <  $x_1$ <...<  $x_n$  =b,一般采用等距步长。



- □用数值方法,求得y(x)在每个节点 $x_k$ 的值 $y(x_k)$ 的近似值, 用 $y_k$ 表示,即 $y_k \approx y(x_k)$ ,
- □这样y<sub>0</sub>, y<sub>1</sub>, ..., y<sub>n</sub>称为微分方程的数值解。
- $\square xy(x) \longrightarrow xy_0, y_1, ..., y_n$

BHUST



► W 文法, 空田 朱进 戈 和

Chapter 4 Initial -value problems for ODE

▶☆方法: 采用步进式和递推法

将[a,b]n等分,  $a=x_0 < x_1 < ... < x_n = b$ , 步长 $h=\frac{b-a}{n}$  ,  $x_k = a+kh$   $\begin{cases} y_0 = y(x_0) \\ y_{n+1} = g(h,x_n,y_n,y_{n-1},y_{n-2},...,y_{n-m}) \end{cases}$ 

▶ 计算过程:

 $y_0 \rightarrow y_1 \rightarrow y_2 \rightarrow \cdots \rightarrow y_{n-m} \rightarrow y_{n-m+1} \rightarrow \cdots \rightarrow y_n \rightarrow y_{n+1} \rightarrow \cdots$ 

- > 怎样建立递推公式?
  - ✓Taylor公式
  - ✓数值积分法
  - √神经网络 (Kanupriya Goswami et al. Solving Differential Equations using Neural Network,

ICRITO 2021



### 4.1 欧拉公式

Chapter 4 Initial -value problems for ODE

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

$$y'(x_n) \approx \frac{y(x_{n+1})-y(x_n)}{h}$$
  $h=x_{n+1}-x_n$ 

$$\therefore f(x_n, y(x_n)) \approx \frac{y(x_{n+1}) - y(x_n)}{h}.$$

$$\therefore y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

$$\begin{cases} y(x_0) = y_0 \\ y_{n+1} = y_n + hf(x_n, y_n) \end{cases} n = 0, 1, 2, \dots$$



PHUST

### 几何意义

Chapter 4 Initial -value problems for ODE

- 1. y(x)过点P<sub>0</sub>(x<sub>0</sub>,y<sub>0</sub>)且 在任意点(x,y)的切线 斜率为f(x,y),
- 2. y(x)在点P<sub>0</sub>(x<sub>0</sub>,y<sub>0</sub>)的 切线方程为:  $y=y_0+f(x_0,y_0)(x-x_0)$

在切线上取点P<sub>1</sub>(X<sub>1</sub>, Y<sub>1</sub>)

 $y_1 = y_0 + hf(x_0, y_0)$ 

y₁正是Euler 公式所求。



- 3. 类似2,过 $P_1$ 以 $f(x_1,y_1)$ 为斜率作直线,近似平行于y(x)在 $x_1$  的切线,在其上取点 $P_2(x_2,y_2)$ ,依此类推...
- 4.折线P<sub>n</sub> P<sub>1</sub> P<sub>2</sub> ...P<sub>n</sub>...作为曲线y(x)的近似 ——欧拉折线法

-value problems for ODE

欧拉法(续) Chapter 4 Initial value problems for C 
$$\chi$$
用向后差商近似代替徽商: 
$$y'(x_{n+1}) \approx y[x_n, x_{n+1}] = \frac{y(x_{n+1}) - y(x_n)}{h} \quad h = x_{n+1} - x_n$$
 
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

$$f(x_{n+1},y(x_{n+1})) \approx \frac{y(x_{n+1})-y(x_n)}{n} \Rightarrow y(x_{n+1}) \approx y(x_n) + hf(x_{n+1},y(x_{n+1}))$$

$$\therefore \mathbf{y}_{n+1} = \mathbf{y}_n + \mathbf{hf}(\mathbf{x}_{n+1}, \mathbf{y}_{n+1}) - \mathbf{e}$$
 意式欧拉公式

$$\begin{cases} y(x_0) = y_0 \\ y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}) \end{cases} n = 0, 1, 2, \dots$$

注: 用隐式欧拉法, 每一步都需解方程 (或先解出yn+1的显式表达式),但其稳定性好。

PHUST

# 欧拉法 (续)

Chapter 4 Initial -value problems for ODE

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

≪用中心差商近似代替微商:

$$y'(x_n) \approx y[x_{n-1}, x_{n+1}] = \frac{y(x_{n+1}) - y(x_{n-1})}{2h} \quad \Rightarrow f(x_n, y(x_n)) \approx \frac{y(x_{n+1}) - y(x_{n-1})}{2h}$$

注: 计算时, 先用欧拉法求出y<sub>1</sub>, 以后再用二步欧拉法计算。

•

### 欧拉法 (续)

Chapter 4 Initial -value problems for ODE

公式

单步否 显式否 截断误差y(X<sub>n+1</sub>)-y<sub>n+1</sub>

 $y_{n+1} = y_n + hf(x_n, y_n)$ 

单步 显式

 $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ 

单步 隐式

 $y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$  二步

二步 显式

**PHUST** 



# 局部截断误差

Chapter 4 Initial -value problems for ODE

定义1 假设yn=y(Xn),即第N步计算是精确的前提下,称 Rn+1=y(Xn+1)-yn+1为欧拉法的局部截断误差。

注: 无yn=y(Xn) 前提下, 称Rn+1为整体截断误差。



定义2 若某算法的局部截断误差为O(hp+1),称该算法有p阶精度。

定义3 假设 $y_n=y(x_n)$ ,  $y_{n-1}=y(x_{n-1})$ , 称 $R_{n+1}=y(x_{n+1})$ - $y_{n+1}$ 为 二步欧拉法的局部截断误差.

定理 欧拉法的精度是一阶。

•

### 局部截断误差

Chapter 4 Initial -value problems for ODE

定理 欧拉法的精度是一阶。

分析:证明其局部截断误差为O(h²),可通过Taylor展开式分析。

证明: Euler 公式为 y<sub>n+1</sub>=y<sub>n</sub>+hf(x<sub>n</sub>,y<sub>n</sub>)

 $$\phi_{N}=y(x_n)$, 下证: <math>y(x_{n+1})-y_{n+1}=O(h^2)$ 

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + \frac{y''(\xi)}{2!}h^2, \xi \in (x_n, x_{n+1})$$

: 
$$y(x_{n+1})-y_{n+1} = \frac{y''(\xi)}{2}h^2 = O(h^2)$$



**PHUST** 

定理 隐式欧拉法的精度是一阶,二步欧拉法的精度是二阶。

证明: 对二步欧拉法进行证明,考虑其局部截断误差,

$$y_n = y(x_n), y_{n-1} = y(x_{n-1}),$$

 $y_{n+1} = y_{n-1} + 2hf(x_n, y_n) = y(x_{n-1}) + 2hf(x_n, y(x_n)) = y(x_{n-1}) + 2hy'(x_n)$ 

$$y(x_{n+1}) = y(x_n + h) = = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \frac{y'''(\xi)}{3!}h^3, \xi \in (x_n, x_{n+1})$$

$$y(x_{n-1})=y(x_n-h)=y(x_n)-hy'(x_n)+\frac{(-h)^2}{2!}y''(x_n)+\frac{y'''(\eta)}{3!}(-h)^3, \eta \in (x_{n-1},x_n)$$

将上两式左右两端同时相减:

$$\therefore y(x_{n+1}) - y(x_{n-1}) = 2hy'(x_n) + \frac{y''(\xi) + y''(\eta)}{3!}h^3 \qquad \therefore y(x_{n+1}) - y_{n+1} = O(h^3)$$

:.二步欧拉法的局部截断误差为O(h3),其精度是二阶。

SHIIST

Chapter 4 Initial -value problems for ODE

例: 求 
$$\left\{ \frac{dy}{dx} = y - \frac{2x}{y}, \quad x = 0.1, 0.2, \dots, 1.0 \right\}$$
 的近似值。  $y(0) = 1$ ,

解: 这儿 
$$f(x,y) = y - \frac{2x}{y}$$
,  $x_0 = 0$ ,  $y_0 = 1$ ,  $h = 0.1$ 

由欧拉公式得: 
$$y_{n+1} = y_n + hf(x_n, y_n)$$
,  $y_0 = 1$ 

$$y_1 = y_0 + hf(x_0, y_0) = 1 + 0.1 \times (1 - \frac{0}{1}) = 1.1$$

$$y_2 = y_1 + hf(x_1, y_1) = 1.1 + 0.1 \times (1.1 - \frac{2 \times 0.1}{1.1}) = 1.191818$$

$$y_3 = y_2 + hf(x_2, y_2) = 1.277438$$
 .....

又其精确解为 
$$y = \sqrt{2x+1}$$

整体误差  $e_{k+1} = y(x_{k+1}) - y_{k+1}$  , 下面对其加以分析。

BHUST



Chapter 4 Initial -value problems for ODE

| $x_k =$ | $y_k$ $\phi$       | $y(x_k)$ $\phi$    | <b>e</b> <sub>k</sub> ≠ |
|---------|--------------------|--------------------|-------------------------|
| 0.1     | 1.1 ₽              | 1.0954451          | 0.0045548               |
| 0.2     | 1.191818           | 1.183216 ∉         | 0.0086022 +             |
| 0.3 @   | 1.2774379          | 1.2649111 -        | 0.012527                |
| 0.4     | 1.3582127          | 1.3416408          | 0.016572 +              |
| 0.5 ∅   | 1.4351330 @        | 1.4142136 <i>a</i> | 0.0209194               |
| 0.6     | 1.5089664          | 1.4831397 <i>-</i> | 0.0257267               |
| 0.7 ₽   | 1.5803384          | 1.5491933 -        | 0.0311906               |
| 0.8     | 1.6497836          | 1.6124519          | 0.037332                |
| 0.9     | 1.7177795          | 1.6722301          | 0.044594                |
| 1.0     | 1.7847710 <i>-</i> | 1.7320508 -        | 0.0527201               |

从表中看出误差在逐步增加、积累

$$\tilde{y}_{10} = y(x_9) + hf(x_9, y(x_9)) = 1.7330815$$

局部截断误差:  $y(x_{10}) - \tilde{y}_{10} = 0.00103$  而误差是  $y(x_{10}) - y_{10} = 0.05272$ 

SHIIST

Chapter 4 Initial -value problems for ODE

$$\begin{cases} \frac{dy}{dx} = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

 $\frac{dy}{dx} = f(x,y)$  求:  $y(x) \Rightarrow$  数值解  $y_1, y_2, ..., y_n$ 

 公式
 单步否
 显式否
 局部截断误差y(x<sub>n+1</sub>)-y<sub>n+1</sub>

 y<sub>n+1</sub>=y<sub>n</sub>+hf(x<sub>n</sub>,y<sub>n</sub>)
 单步
 显式
 O(h²)

 y<sub>n+1</sub>=y<sub>n</sub>+hf(x<sub>n+1</sub>,y<sub>n+1</sub>)
 单步
 隐式
 O(h²)

$$y_{n+1} = y_n + hf(x_n, y_n)$$

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

 $O(h^3)$ 

定义1 假设yn=y(Xn),即第N步计算是精确的前提下,称 Rn+1=y(Xn+1)-yn+1为欧拉法的局部截断误差。

定义2 假设 $y_n = y(x_n), y_{n-1} = y(x_{n-1}), 称 R_{n+1} = y(x_{n+1}) - y_{n+1}$ 为 二步欧拉法的局部截断误差。

定义3 若某算法的局部截断误差为O(hp+1), 称该算法有p阶精度。

HUST

Chapter 4 Initial -value problems for ODE

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases} y_{n+1} = y_n + hf(x_n,y_n) y_{n+1} = y_n + hf(x_{n+1},y_{n+1})$$

$$\therefore \int_{x_n}^{x_{n+1}} y'(x) dx = \int_{x_n}^{x_{n+1}} f(x,y) dx \Rightarrow y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x,y(x)) dx$$

对右端的定积分用数值积分公式求近似值:

(1) 用左矩形数值积分公式:

$$\int_{x_n}^{x_{n+1}} f(x,y(x)) dx \approx (x_{n+1} - x_n) f(x_n,y(x_n))$$

$$\therefore y(x_{n+1}) - y(x_n) \approx hf(x_n,y(x_n))$$

$$\Rightarrow y(x_{n+1}) \approx y(x_n) + hf(x_n,y(x_n))$$

$$\Rightarrow y_{n+1} = y_n + hf(x_n, y_n)$$

# 数值积分法

Chapter 4 Initial -value problems for ODE

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} y_{n+1} = y_n + hf(x_n, y_n) y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

$$\therefore \int_{x_n}^{x_{n+1}} y'(x) dx = \int_{x_n}^{x_{n+1}} f(x,y) dx \Rightarrow y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x,y(x)) dx$$

(2) 用梯形公式:

$$\int_{x_{n}}^{x_{n+1}} f(x,y(x)) dx \approx \frac{(x_{n+1}-x_{n})}{2} [f(x_{n},y(x_{n})) + f(x_{n+1},y(x_{n+1}))]$$

$$\therefore y(x_{n+1})-y(x_n) \approx \frac{h}{2} [f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1}))]$$

$$\therefore y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
 ——梯形公式

ar 梯形公式:将显示欧拉公式, 隐式欧拉公式平均可得

↔ 梯形公式是隐式、单步公式, 其精度为二阶

HUST

### 梯形公式的精度

Chapter 4 Initial -value problems for ODE

定理: 梯形公式  $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$  的精度是2阶的.

分析:证明其局部截断误差为O(h³);用二元函数的Taylor公式。

证法一(了解): 
$$\diamond y_n = y(x_n)$$
,由Taylor公式有  $f(x_{n+1}, y_{n+1}) = f(x_{n+1}, y(x_{n+1}) + (y_{n+1} - y(x_{n+1}))$ 

=
$$f(x_{n+1},y(x_{n+1}))+f_y(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))$$
,**η**介于 $y_{n+1}$ 与 $y(x_{n+1})$ 之间

$$=y'(x_{n+1})+f_v(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))$$

=
$$y'(x_n)+hy''(x_n)+O(h^2)+f_y(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))$$

=
$$f(x_{n},y_{n})+hy''(x_{n})+f_{y}(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))+O(h^{2})$$

$$\sqrt[\mathbf{x}]{y(x_{n+1})} = y(x_n + h) = y(x_n) + hy'(x_n) + h^2y''(x_n) / 2 + O(h^3)$$

$$=y_n+hf(x_n,y_n)+h^2y''(x_n)/2+O(h^3)$$

 $= y_n + hf(x_n, y_n)/2 + h[f(x_n, y_n) + hy''(x_n)]/2 + O(h^3)$ 

Chapter 4 Initial value problems for ODE 定理: 梯形公式  $y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$  的精度是2阶的。 分析: 证明其局部截断误差为 $O(h^3)$ ; 用一元函数的Taylor公式。 证法二: 令  $y_n = y(x_n)$ , 公式右边的  $y_{n+1} = y(x_{n+1})$ , 由Taylor公式有  $f(x_{n+1}, y_{n+1}) = f(x_{n+1}, y(x_{n+1}))$   $= y'(x_{n+1}) = y'(x_n) + hy''(x_n) + O(h^2)$   $y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$   $= y(x_n) + \frac{h}{2}[f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1}))]$   $= y(x_n) + hy'(x_n) + h^2y''(x_n)/2 + O(h^3)$  又由Talor公式有:  $y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + h^2y''(x_n)/2 + O(h^3)$  因此局部截断误差  $y(x_{n+1}) - y_{n+1} = O(h^3)$ ,梯形公式的精度为2阶。

### 梯形公式的应用

Chapter 4 Initial -value problems for ODE

例4.1 用梯形公式求初值问题  $\frac{dy}{dx} = y$ , y(0) = 1. 的解在x = 0.01上的值y(0.01).

解: 取h=0.01, x<sub>0</sub>=0, y<sub>0</sub>=y(0)=1. 则 y(0.01)≈y<sub>1</sub>

f(x,y)=y, 由梯形公式,

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})] = y_n + \frac{h}{2} [y_n + y_{n+1}] \Rightarrow y_1 = y_0 + \frac{h}{2} [y_0 + y_1]$$

$$y_1 = \frac{1 + \frac{h}{2}}{1 - \frac{h}{2}} y_0$$
 基于幂级数理论  $y_1 = (1 + \frac{h}{2})(1 + \frac{h}{2} + \frac{h^2}{4} + ...) y_0$  
$$\approx (1 + \frac{h}{2})^2 + \frac{h^2}{4} = 1.01005$$

解析解 y=e<sup>x</sup> y(0.01)=e<sup>0.01</sup>=1+0.01+
$$\frac{0.01^2}{2!}$$
+ $\frac{0.01^3}{3!}$ +...

$$\approx 1 + 0.01 + \frac{0.01^2}{2!} = 1.01005$$

HUST

# 欧拉公式的比较

Chapter 4 Initial -value problems for ODE

| 欧拉法   | 简单,精度低                                       |
|-------|----------------------------------------------|
| 隐式欧拉法 | 稳定性好                                         |
| 二步欧拉法 | 显式,但需要两步初值,且第2个初值只能由<br>其它方法给出,可能对后面的递推精度有影响 |
| 梯形公式法 | 精度有所提高,但隐式公式需迭代求解                            |

思考与阅读

#证明: 隐式欧拉法的精度为一阶。

### 4.2 改进的Euler法

Chapter 4 Initial -value problems for ODE

► Euler公式 y<sub>n+1</sub>=y<sub>n</sub>+hf(x<sub>n</sub>,y<sub>n</sub>)

- 显式 一阶
- 梯形公式 y<sub>n+1</sub>=y<sub>n</sub>+h[f(x<sub>n</sub>,y<sub>n</sub>)+f(x<sub>n+1</sub>,y<sub>n+1</sub>)]/2 隐式 二阶
- ▶Euler公式 计算量小,精度低。 综合两个公式,提出
- >梯形公式 计算量大,精度高。 预报-校正公式:

预报 
$$\bar{y}_{n+1} = y_n + hf(x_n, y_n)$$
   
校正  $y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$    
— 改进的Euler法

嵌套形式:  $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n))]$ 显式单步法  $y_{n+1} = \frac{1}{2} [y_n + hf(x_n, y_n) + y_n + hf(x_{n+1}, y_n + hf(x_n, y_n))]$ 

平均化形式: 
$$\begin{cases} y_p = y_n + hf(x_n, y_n) \\ y_c = y_n + hf(x_{n+1}, y_p) \\ y_{n+1} = \frac{1}{2}(y_p + y_c) \end{cases}$$

Chapter 4 Initial

 $\frac{d}{dt}$ 4.4 用改进的Euler法解初值问题在区间[0,0.4]上,  $\frac{d}{dx}$ y(0) = 1步长h=0.1的解,并比较与精确解的差异。

说明: 精确解 y=1/(1-x)。

解: Euler法的具体形式为:  $y_{n+1}=y_n+hy_n^2$ ,

$$\begin{cases} y_c = y_n + hy_p^2 & \therefore x_1 = 0.1, x_2 = 0.2, x_3 = 0.3, x_4 = 0.4 \end{cases}$$

$$\begin{cases} y_p = y_n + hy_n^2 & \therefore x_0 = 0, h = 0.1, \text{ M} \\ y_c = y_n + hy_p^2 & \therefore x_1 = 0.1, x_2 = 0.2, x_3 = 0.3, x_4 = 0.4 \\ y_{n+1} = \frac{1}{2}(y_p + y_c) & \text{ if } y_{1:} \quad y_p = y_0 + 0.1y_0^2 = 1 + 0.1 \cdot 1^2 = 1.1 \end{cases}$$

$$y_c = 1 + 0.1 \times 1.1^2 = 1.121$$

 $y_1 = (1.1 + 1.121)/2 \approx 1.1118$ 

同样可求y2 y3 y4, 见P93表

| n | $x_n$ | <i>y</i> <sub>n</sub> | $y(x_n)$ | $y_n - y(x)$ |
|---|-------|-----------------------|----------|--------------|
| 1 | 0.1   | 1.1118                | 1.1111   | 0.0007       |
| 2 | 0.2   | 1.2521                | 1.2500   | 0.0021       |
| 3 | 0.3   | 1.4345                | 1.4236   | 0.0059       |
| 4 | 0.4   | 1.6782                | 1.6667   | 0.015        |

•

Chapter 4 Initial -value problems for ODE

$$y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n))]$$

### 注:

- (1) 令 $y_n = y(x_n)$ ,可推导改进的Euler法的局部截断误差为  $O(h^3)$ ,具有二阶精度。
- (2) 改进的Euler法也可写成如下平均化形式

$$y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$$
  
 $k_1 = hf(x_n, y_n)$   
 $k_2 = hf(x_{n+1}, y_n + k_1)$ 

HW: 作业四 #1

M HUST

# 二元函数泰勒公式复习

Chapter 4 Initial -value problems for ODE

$$f(x_0 + h, y_0 + k)$$

$$= f(x_0, y_0) + (h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})f(x_0, y_0) +$$

$$\frac{1}{2!}(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^2 f(x_0, y_0) + \dots + \frac{1}{n!}(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^n f(x_0, y_0) +$$

$$\frac{1}{(n+1)!}(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^{n+1} f(x_0 + \theta h, y_0 + \theta k), \qquad (0 < \theta < 1)$$

$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})f(x_0, y_0) \, \bar{\otimes} \, \bar{\pi} \, hf_x(x_0, y_0) + hf_y(x_0, y_0)$$

$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^2 f(x_0, y_0) \, \bar{\otimes} \, \bar{\pi} \, h^2 f_{xx}(x_0, y_0) + 2hhf_{xy}(x_0, y_0) + k^2 f_{yy}(x_0, y_0)$$

PHUST

龙格一库塔方法  $\begin{cases} y'=f(x,y) & \text{Chapter 4 Initial} \\ y(x_{\theta})=y_{\theta} & \text{value problems for ODE} \end{cases}$ Euler公式:  $y_{n+1}=y_n+hf(x_{n,}y_n)$  写成  $\begin{cases} y_{n+1}=y_n+k_1 \\ k_1=hf(x_n,y_n) \end{cases}$  精度: 一阶 改进的Euler公式:  $\begin{cases} y_{n+1}=y_n+\frac{1}{2}(k_1+k_2) \\ k_1=hf(x_n,y_n) \end{cases}$  精度: 二阶

 $k_2 = hf(x_{n+1}, y_n + k_1)$ 

由Lagrange中值定理,  $\exists \xi \in (X_n, X_{n+1})$   $y(\xi) = \frac{y_{(X_{n+1})} - y_{(X_n)}}{h}$  $\therefore y(x_{n+1}) = y(x_n) + hy'(\xi)$ 

而 $y'(\xi) = f(\xi, y(\xi))$  称为y(x)在[ $x_n, x_{n+1}$ ]上的平均斜率,  $\therefore y(x_{n+1}) = y(x_n) + hf(\xi, y(\xi)) \Rightarrow y(x_{n+1}) = y(x_n) + k^*$ 

▶取 $k^* = hf(x_n, y_n) = k_1$  —Euler公式 ▶ 取 $k^* = \frac{k_1}{2} + \frac{k_2}{2}$  —改进Euler公式

Euler公式用一点的值k,作为k\*的近似值,而改进的Euler公式 用二个点的值k,和k,的平均值作为k\*近似值,其精度更高。

### 龙格-库塔法

Chapter 4 Initial -value problems for ODE

Runge-Kutta法的思想:在[x<sub>n</sub>, x<sub>n+1</sub>]内多预报几个点的k<sub>i</sub>值 并用其加权平均作为k\*近似而构造出具有更高精度的公式。

其中 $W_1$ ,  $W_2$ ,  $Q_3$ ,  $Q_4$ ,  $Q_5$ 

为二阶,即使其局部截断误差为O(h3)

令  $y_n = y(x_n)$ ,由泰勒公式:  $y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + Q(h^3)$ 

$$y'(x_n) = f(x_n, y(x_n)) = f(x_n, y_n) \quad y''(x_n) = f_x(x_n, y_n) + f_y(x_n, y_n) f(x_n, y_n)$$

$$(y'(x) = (y'(x))' = [f(x, y)]'_x = f_x + f_y y'(x) = f_x + f_y f(x, y)$$

 $\therefore y(x_{n+1}) = y_n + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n)f(x_n, y_n)] + O(h^3)$ 

**PHUST** 

# 二阶龙格-库塔法

Chapter 4 Initial -value problems for ODE

$$y(x_{n+1}) = y_n + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n) f(x_n, y_n)] + Q(h^3)$$
 (1)
$$\begin{cases} y_{n+1} = y_n + w_1 k_1 + w_2 k_2 \\ k_1 = hf(x_n, y_n) \end{cases}$$
 (\*) 由多元函数的泰勒公式 
$$k_2 = hf(x_n + \alpha h, y_n + \beta k_1)$$

 $k_2 = hf(x_n + \alpha h, y_n + \beta k_1) = h\{f(x_n, y_n) + \alpha hf_x(x_n, y_n) + \beta k_1 f_y(x_n, y_n) + O(h^2)\}$ 

$$y_{n+1} = y_n + w_1 hf(x_n, y_n) + w_2 hf(x_n, y_n) + w_2 \alpha h^2 f_x(x_n, y_n)$$

$$+ w_2 \beta h^2 f_y(x_n, y_n) f(x_n, y_n) + O(h^3)$$

$$y_{n+1} = y_n + (w_1 + w_2) h f(x_n, y_n) + \frac{h^2}{2} [2w_2 \alpha f_x(x_n, y_n)]$$

$$+2W_2\beta f_y(x_n,y_n)f(x_n,y_n)]+O(h^3)$$
 (2)

比较(1)与(2)要使:
$$y(x_{n+1})-y_{n+1}=O(h^3)$$
 则有  $\begin{cases} w_2 a = 1/2 \\ w_2 \beta = 1/2 \end{cases}$ 

注:上述方程组有四个未知量,只有三个方程,有无穷多组解。

# 二阶龙格 - 库塔法

Chapter 4 Initial -value problems for ODE

$$\begin{cases} y_{n+1} = y_n + w_1 k_1 + w_2 k_2 \\ k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + \alpha h, y_n + \beta k_1) \end{cases} \begin{cases} w_1 + w_2 = 1 \\ w_2 a = 1/2 \\ w_2 \beta = 1/2 \end{cases}$$

- > 取任意一组解便得一种二阶龙 库公式。
- $\Rightarrow$  当 $w_1$ = $w_2$ =1/2,  $\alpha$ = $\beta$ =1时二阶Runge-Kutta公式为  $y_{n+1}$ = $y_n$ + $k_1$ /2+ $k_2$ /2  $k_1$ =hf( $x_n$ , $y_n$ ) 此即改进的Euler法

 $k_2$ =hf(x<sub>n</sub>+h,y<sub>n</sub>+k<sub>1</sub>) ➤ 取w<sub>1</sub>=0 , w<sub>2</sub>=1, α=β=1/2,

 $y_{n+1}=y_n+k_2$  $k_1=hf(x_n,y_n)$  此为中点法或变形的 Euler公式  $k_2=hf(x_n+h/2,y_n+k_1/2)$ 

SHUST

### 三阶龙格-库塔法

Chapter 4 Initial -value problems for ODE

→三阶龙格 - 库塔法是用k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>的加权平均来近似k\*, 即有: y<sub>n+1</sub>=y<sub>n</sub>+C<sub>1</sub>k<sub>1</sub>+C<sub>2</sub>k<sub>2</sub>+C<sub>3</sub>k<sub>3</sub>

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + a_2h, y_n + b_{21}k_1)$$

$$k_3 = hf(x_n + a_3h, y_n + b_{31}k_1 + b_{32}k_2)$$

- ▶要使其具有三阶精度,必须使局部截断误差为O(h⁴)
- 》类似二阶龙格 库塔法的推导, $c_1,c_2,c_3,a_2,a_3,b_{21},b_{31},b_{32}$ 应满足

$$c_1+c_2+c_3=1$$
  
 $a_2=b_{21}$   
 $a_3=b_{31}+b_{32}$   
 $c_2a_2+c_3a_3=1/2$   
 $c_2a_2^2+c_3a_3^2=1/3$   
 $c_3b_{32}a_2=1/6$   
由其任意解可得  
 $y_{n+1}=y_n+(k_1+4k_2+k_3)/6$   
 $k_1=hf(x_n,y_n)$   
 $k_2=hf(x_n+h/2,y_n+k_1/2)$   
 $k_3=hf(x_n+h,y_n-k_1+2k_2)$ 

### 四阶龙格-库塔法

Chapter 4 Initial -value problems for ODE

> 类似可推出四阶龙格-库塔公式,常用的有

例: 经典Runge-Kutta法

$$y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6$$
  
 $k_1 = hf(x_n, y_n)$   
 $k_2 = hf(x_n + h/2, y_n + k_1/2)$  局部截断误差  $O(h^5)$   
 $k_3 = hf(x_n + h/2, y_n + k_2/2)$   
 $k_4 = hf(x_n + h, y_n + k_3)$ 

- ▶还有: Gill公式及m (m>4)阶龙格-库塔法。
- ▶ m>4时: 计算量太大,精确度不一定提高,有时会降低。

**PHUST** 

### dy/dx=f(x,y) a≤x≤b Chapter 4 Initial 求解: $y(a)=y_0$ -value problems for ODE 对于经典的四阶Runge-Kutta法给出如下算法: ➤ Step 1: 输入a,b,y<sub>0</sub>及N > Step 2: (b-a)/N=>h,a=>x,y\_0=>y ➤ Step 3: 输出(x,y) ➤ Step 4: For i=1 T0 N $\square$ hf(x,y)=> $k_1$ $\Box$ hf(x+h/2,y+ k<sub>1</sub>/2)=> k<sub>2</sub> $\Box$ hf(x+h/2,y+k<sub>2</sub>/2)=>k<sub>3</sub> $y+(k_1+2k_2+2k_3+k_4)/6=>y$ $\Box$ x+h=>x □ 输出(x,y) > END

Chapter 4 Initial -value problems for ODE

(1) 
$$\not x$$
  $y_1$ ,  $x_0 = 0, y_0 = 1, h = 0.2$ 

$$K_1 = hf(x_0, y_0) = h(y_0 - \frac{2x_0}{y_0}) = 0.2$$

$$K_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{1}{2}K_2\right)$$

$$K_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{1}{2}K_1\right)$$

$$=h(y_0 + \frac{1}{2}K_2 - \frac{2\left(x_0 + \frac{h}{2}\right)}{y_0 + \frac{1}{2}K_2}) = 0.1817275$$

$$K_{1} = hf\left(x_{0}, y_{0}\right) = h\left(y_{0} - \frac{2x_{0}}{y_{0}}\right) = 0.2$$

$$K_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}K_{1}\right)$$

$$= h\left(y_{0} + \frac{1}{2}K_{1} - \frac{2\left(x_{0} + \frac{h}{2}\right)}{y_{0} + \frac{1}{2}K_{1}}\right) = 0.18363636$$

$$K_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}K_{2}\right)$$

$$= h\left(y_{0} + \frac{1}{2}K_{2} - \frac{2\left(x_{0} + \frac{h}{2}\right)}{y_{0} + \frac{1}{2}K_{2}}\right) = 0.1817275$$

$$K_{4} = hf\left(x_{0} + h, y_{0} + K_{3}\right)$$

$$= h[y_{0} + K_{3} - \frac{2(x_{0} + h)}{y_{0} + K_{3}}] = 0.16864798$$

$$y_{1} = y_{0} + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

$$= 1.1832293$$

$$= h[y_0 + K_3 - \frac{2(x_0 + h)}{y_0 + K_3}] = 0.16864798$$

$$y(x_1) = \sqrt{2x_1 + 1} = \sqrt{1.4} = 1.1832160$$
  $e_1 = y(x_1) - y_1 \approx 1.3 \times 10^{-5}$ 

Chapter 4 Initial -value problems for ODE

龙格 - 库塔法
(2)求  $y_2$ ,  $x_1 = 0.2$ , h = 0.2  $y_1 = 1.1832293$ 

 $K_1 = hf(x_1, y_1) = h(y_1 - \frac{2x_1}{y_1}) = 0.16903428$   $K_2 = hf(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}K_1) = 0.15893312$ 

HW: 作业四 #2

 $K_3 = hf(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}K_2) = 0.1574989$   $K_4 = hf(x_1 + h, y_1 + K_3) = 0.1488075$ 

 $y_2 = y_1 + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 1.3416803$ 

 $y(x_2) = \sqrt{2x_2 + 1} = 1.3416408$   $e_2 = 4.0 \times 10^{-5}$ 

| x <sub>k</sub> | y <sub>k</sub> | $y(x_k)$   | $e_k$                |
|----------------|----------------|------------|----------------------|
| 0.2            | 1.1832293      | 1.1832160  | 1.3×10 <sup>-5</sup> |
| 0.4            | 1.3416803      | 1.3416408  | 4.0×10 <sup>-5</sup> |
| 0.6            | 1. 4832838     | 1. 4832397 | 4.4×10 <sup>-5</sup> |
| 0.8            | 1.6125172      | 1.6124515  | 6.6×10 <sup>-5</sup> |
| 1.0            | 1.7321463      | 1.7320508  | 9.6×10 <sup>-5</sup> |

### 变步长龙格-库塔法

Chapter 4 Initial -value problems for ODE

) 问题I: 求数值解 y'=f(x,y) 要求误差< $\epsilon=10^{-8}$ 

问题: ①: 如何判断|y(x<sub>n</sub>)-y<sub>n</sub>|<ε ②: 如何取h=?

解①:如用p阶龙格-库塔法计算,局部截断误差为O(hp+1)

$$\Rightarrow$$
  $y_n = y(x_n)$   $y_{n+1}^{(h)} \Rightarrow y_n = y(x_n)$   $y_{n+1}^{(h)} \Rightarrow y_n = y(x_n)$   $y(x_{n+1}) - y_{n+1}^{(h)} \Rightarrow y_n = y_n + y$ 

步长折半 $x_n \rightarrow x_{n+h/2} \rightarrow x_{n+1}$ 分两步计算 $y(x_{n+1})$ 的近似值 $y_{n+1}^{(h/2)}$ 。

则  $y(x_{n+1})-y_{n+1}^{(h/2)} \approx 2c(h/2)^{p+1}$ 

$$\therefore \frac{y(x_{n+1}) - y_{n+1}^{(\frac{h}{2})}}{y(x_{n+1}) - y_{n+1}^{(h)}} \approx \frac{1}{2^p} \implies y(x_{n+1}) - y_{n+1}^{(\frac{h}{2})} \approx \frac{1}{2^p - 1} [y_{n+1}^{(\frac{h}{2})} - y_{n+1}^{(h)}] = \underline{\Lambda}$$

M HUST

# 变步长龙格-库塔法

Chapter 4 Initial -value problems for ODE

定理:对于问题I若用P阶龙格-库塔法计算 $y(x_{n+1})$ 在步长折半前后的近似值分别为 $y_{n+1}^{(h)}$ ,  $y_{n+1}^{(h/2)}$ 则有误差公式

$$|y(x_{n+1})-y_{n+1}^{(\frac{h}{2})}| \approx \frac{1}{2^{p}-1}|y_{n+1}^{(\frac{h}{2})}-y_{n+1}^{(h)}| = \Delta$$

注: 10 误差的事后估计法

2<sup>0</sup> 停机准则: Δ <ε (可保证|y(x<sub>n+1</sub>)-y<sub>n+1</sub><sup>(h/2)</sup>|<ε)

解②: (1) h取大,局部截断误差chp+1大,不精确;

(2) h取小,运算量大(步数多),舍入误差积累大。

解决策略:变步长龙格-库塔法

if ( $\Delta > \epsilon$ ) 将步长折半反复计算,直至 $\Delta < \epsilon$ 为止,取h为最后一次的步长, $y_{n+1}$ 为最后一次计算的结果。

else if  $(\Delta < \varepsilon)$  将步长增倍反复计算,直至  $\Delta > \varepsilon$  为止,

最后一次运算的前一次计算结果即为所需。

SHUST

### 4.5 收敛性与稳定性

Chapter 4 Initial -value problems for ODE

数值解法:

 $x_n = x_0 + nh$ 

单步法: 计算Y<sub>n+1</sub>时只用到前一步的结果Y<sub>n</sub>。

例: Euler法,改进的Euler法,龙格-库塔法都是单步法。

▶ 显式单步法: y<sub>n+1</sub>=y<sub>n</sub>+hφ(x<sub>n</sub>,y<sub>n</sub>,h)

 $\phi(x,y,h)$ 为增量函数,它依赖于f,仅是 $x_n$ , $y_n$ ,h的函数。

▶ Def:若某数值方法对于任意固定的 $x_n = x_0 + nh$ ,当  $h \rightarrow 0 (n \rightarrow \infty)$ 时,  $y_n \rightarrow y(x_n)$ ,则称该法是收敛的。

即  $\lim_{\substack{h\to 0\\n\to\infty}} (y(x_n) - y_n) = 0$   $(x_n = x_0 + nh为固定值)$ 。

HUST

### 整体截断误差与收敛性

Chapter 4 Initial -value problems for ODE

注:数值方法是否收敛取决于误差 $y(x_n)$ - $y_n$ 的变化情况。对于p阶公式,其局部截断误差为 $O(h^{p+1})$ ,即 $y(x_{n+1})$ - $y_{n+1}$ = $O(h^{p+1})$ ,其前提假定 $y_n$ = $y(x_n)$ .

虽h->0时,局部截断误差 $y(x_{n+1})-y_{n+1}\to 0$ ,并不能说明其收敛 (因其前提 $y_n=y(x_n)$ 不成立),为此我们引入——

局部截断误差与整体截断误差有何区别?

单步法收敛⇔  $\lim_{\substack{n\to 0\\n\to\infty}} (y(x_n)-y_n)=0$ 

即h→0时,整体截断误差 $y(x_{n+1})-y_{n+1}\to 0$ 

复习

Chapter 4 Initial -value problems for ODE

显式单步法:  $y_{n+1}=y_n+h\phi(x_n,y_n,h)$ 

定义1 假设yn=y(Xn),即第N步计算是精确的前提下,称 Rn+1=y(Xn+1)-yn+1为单步法的局部截断误差。

定义2 若某算法的局部截断误差为 $O(h^{p+1})$ ,称该算法有p阶精度。 单步法收敛 $\Leftrightarrow \lim_{n\to 0} (y(x_n)-y_n)=0$ ,整体截断误差 $y(x_n)-y_n\to 0$ 

**PHUST** 



### 收敛性的判定

Chapter 4 Initial -value problems for ODE

单步法收敛⇔  $\lim_{\substack{h\to 0\\n\to\infty}} (y(x_n) - y_n) = 0$ 

Th: 若单步法 $y_{n+1} = y_n + h \phi(x_n, y_n, h)$ 具有p阶精度,且增量函数  $\phi(x, y, h)$ 关于y满足Lipschitz条件:

$$|\Phi(x,y,h) - \Phi(x,\overline{y},h)| \leq L_{\Phi} |y - \overline{y}|$$

若初值 $y_0$ 是准确的 $(y_0=y(x_0))$ ,则其整体截断误差为:

$$y(x_n)-y_n=O(h^p).$$

注: 若单步法满足以上条件,显然其收敛。



# 改进Euler法的收敛性

Chapter 4 Initial -value problems for ODE

 $y_{n+1} = y_n + h[f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]/2$ 则 $\phi(x, y, h) = [f(x, y) + f(x + h, y + hf(x, y))]/2$ 

若: ①y₀=y(x₀) ②f(x,y)关于y满足李--条件:|f(x,y)-f(x,¬)|≤L|y-¬|

则:  $|\Phi(x,y,h)-\Phi(x,\overline{y},h)|$ 

 $\leq \frac{1}{2}[|f(x,y)-f(x,\overline{y})|+|f(x+h,y+hf(x,y))-f(x+h,\overline{y}+hf(x,\overline{y}))|]$ 

 $\leq \frac{1}{2} \left[ L \left| y - \overline{y} \right| + L \left| y + hf(x,y) - \overline{y} - hf(x,\overline{y}) \right| \right]$ 

 $\leq \frac{1}{2}[L|y-\overline{y}|+L|y-\overline{y}|+L^{2}h|y-\overline{y}|]=L(1+\frac{h}{2}L)|y-\overline{y}|$ 

限定 $h \le h_0$ ,则  $|\Phi(x,y,h) - \Phi(x,y,h)| \le L(1 + \frac{h_0}{2}L)|y-y|$ 

即Φ(x,y,h) 满足李普希兹条件,由定理知改进的Euler法收敛。



### 其它方法的收敛性

Chapter 4 Initial -value problems for ODE

- 同样可验证,
- ①若f(x,y)关于y满足李普希兹条件且 ② y<sub>0</sub>=y(x<sub>0</sub>)时, Euler法,标准四阶龙格-库法也收敛。
- ≥ 当方程中的f(x,v)给定时,可具体验证条件①的满足性。

BHUST



### 稳定性

Chapter 4 Initial -value problems for ODE

- > 讨论收敛性时一般认可:数值方法本身计算过程是准确的。
- 但: ① 初始值 $y_0$ 有误差  $\delta_0 = y_0 y(x_0)$ .
  - ② 计算的每一步有舍入误差。
- > 初始误差在计算过程传播中,是逐步衰减,还是恶性增长, 这就是稳定性问题。
- Def: 设在节点 $x_n$ 处用数值法得到的理想数值解为 $y_n$ ,而实际计 算得到的近似值为 $\tilde{y}_{n}$ , 称  $\delta_{n} = \tilde{y}_{n} - y_{n}$ 为第n步数值解的扰动。
- Def: 若一种数值方法在节点 $x_n$ 处的数值解 $y_n$ 的扰动 $\delta_n \neq 0$ , 而在以后的各节点值 $y_m(m>n)$ 上有扰动 $\delta_m$ .
- 当 $|\delta_m|$ ≤ $|\delta_n|$ , (m=n+1,n+2,...), 则称该数值算法是稳定的。
- 分析算法的数值稳定性常考察模型方程: y'=λy , (λ<0)</p>



### Euler法的稳定性

Chapter 4 Initial -value problems for ODE

Euler法:  $y_{n+1} = y_n + hf(x_n, y_n)$ 

考察模型方程 y'=λy, (λ<0)

$$p y_{n+1} = (1+h\lambda)y_n$$

假设在节点值 $y_n$ 上有扰动 $\delta_n$ , 在 $y_{n+1}$ 上有扰动 $\delta_{n+1}$ ,

且 $\delta_{n+1}$ 仅由 $\delta_n$ 引起(计算过程不再引进新的误差)。

$$\delta_{n+1} = \tilde{y}_{n+1} - y_{n+1} = (1 + h\lambda) \tilde{y}_n - (1 + h\lambda) y_n$$

$$\therefore \delta_{n+1} = (1+h\lambda)(\tilde{y}_n - y_n) = (1+h\lambda)\delta_n$$

Euler法稳定  $\Leftrightarrow |\delta_{n+1}| \leq |\delta_n| \Leftrightarrow |1 + h\lambda| \leq 1$ 

∴ Euler法的稳定的条件为 0<h≤-2/λ.

**PHUST** 



# 隐式Euler稳定性

Chapter 4 Initial -value problems for ODE

例:隐式Euler法: y<sub>n+1</sub>=y<sub>n</sub>+hf(x<sub>n+1</sub>,y<sub>n+1</sub>)
 对于模型方程 y'=λy (λ<0)</li>

则
$$y_{n+1} = y_n + h\lambda y_{n+1} = y_n + y_{n+1} = y_n / (1-h\lambda)$$

 $\sim$  $\triangleright$ 设 $y_n$ 的扰动为  $\alpha = y_n - y_n$ ,则 $y_{n+1}$ 的扰动

$$\delta_{n+1} = y_{n+1}^{\sim} - y_{n+1} = \frac{\delta_n}{1 - h\lambda}$$

▶∴要使隐式Euler法稳定 ⇔ |1/(1-hλ)|≤1

▶∵λ<0, ∴ ∀h>0 上式均成立,隐式Euler法无条件稳定。





# 边值问题的数值解法 (了解)

Chapter 4 Initial -value problems for ODE

>一阶常微分方程初值问题:

Problem I: 
$$\begin{cases} \frac{dy}{dx} = f(x,y) & 求函数y = y(x)满足: \\ y(x_0) = y_0 & y'(x) = f(x,y(x)) \end{cases}$$

局部截断误差 整体截断误差

▶数值微分(中心差商):

$$f'(a) \approx \frac{G(h)}{2h} = \frac{f(a+h) - f(a-h)}{2h} \qquad f'(a) - \frac{G(h)}{6} = -\frac{f''(\xi)}{6}h^2$$

$$f[x_0, x_1, ..., x_n] = \frac{f^{(n)}(\xi)}{n!} \quad \xi \in [\min_{0 \le i \le n} x_i, \max_{0 \le i \le n} x_i]$$

HUST



### >二阶线性常微分方程边值问题:

Chapter 4 Initial -value problems for ODE

$$y''+p(x)y'+q(x)y=r(x)$$
, a< x< b y(a)= $\alpha$ , y(b)= $\beta$  ——边值条件

其中p(x), q(x), r(x)为区间  $\left[a, b\right]$  上足够光滑的已知函数, 且 $q(x) \le 0$ ,  $\alpha$ 、 $\beta$ 为已知常数。

在上述条件下,边值问题存在唯一的连续可微解 y(x).

- ▶有限差分法: /\* finite difference method \*/
- (1)将区间[a,b]离散化,取节点  $x_n = a + nh \ (n = 0, ..., N)$  ——求 $y(x_n)$   $y''(x_n) + p(x_n) y'(x_n) + q(x_n) y(x_n) = r(x_n)$  , (n = 0, ..., N)
- (2)用2阶差商近似 $y''(x_n)$ ; 1阶差商近似 $y'(x_n)$ ; 数值解 $y_n$  近似 $y(x_n)$ (n=0,...,N) — 求 $y_n$
- (3) 解关于 $y_n(n=0,...,N)$ 的差分方程组

SHUST

# 差分方程组 Chapter 4 Initial value problems for ODE $\frac{y(x_{n+1}) - 2y(x_n) + y(x_{n-1})}{h^2} + p(x_n) \frac{y(x_{n+1}) - y(x_{n-1})}{2h} + q(x_n)y(x_n)$ $= r(x_n) + \left[\frac{y^{(4)}(\xi_a)}{12} + p(x_n) \frac{y^{(3)}(\eta_a)}{6}\right]h^2 \quad (4)$ 记 $p(x_n) = p_n$ $q(x_n) = q_n$ $q(x_n) = r_n$ $q(x_n) = r_n$ $q(x_n) = q_n$ $q(x_n) = r_n$ $q(x_n) = q_n$ $q(x_$

差分解的截断误差

the (4)-(5) 得:
$$\begin{cases}
\frac{e_{n+1}-2e_n+e_{n-1}}{h^2}+p_n\frac{e_{n+1}-e_{n-1}}{2h}+q_ne_n=R_n & n=1,2,\cdots,N-1; \\
e_0=0; e_N=0
\end{cases}$$

$$y''+p(x)y'+q(x)y=r(x), a< x< b$$

$$y(a)=\alpha, y(b)=\beta$$

$$\exists p(x)=0 \text{ or } £ 分方程(4) 的截断误差  $R_n=\frac{y^{(4)}(\xi_n)}{12}h^2$ 
此时  $(q(x)\leq 0)$  ,差分解的截断误差有结论:
$$|e_n|=|y(x_n)-y_n|\leq \frac{\max_{a\leq x\leq b}|y^{(4)}(x)|}{96}(b-a)^2h^2, n=1,2,\cdots,N-1$$
特別地,  $R_n=0$  ,  $n=1,2,\cdots,N-1\Rightarrow e_n=0$  ,  $n=1,2,\cdots,N-1$ 

$$\begin{cases}
e_{n+1}+(-2+h^2q_n)e_n+e_{n-1}=0, n=1,2,\cdots,N-1; \\
e_0=0; e_N=0
\end{cases}$$
(7)$$



•

Chapter 4 Initial -value problems for ODE

### 用差分解的截断误差公式分析:

$$|e_n| = |y(x_n) - y_n| \le \frac{\max_{a \le x \le b} |y^{(4)}(x)|}{96} (b - a)^2 h^2, \quad n = 1, 2, \dots, N - 1$$
  
 $y'' - y = x \implies y'' = x + y \implies y^{(4)}(x) = y''$ 

$$\therefore y^{(4)}(x) = y(x) + x$$

$$\therefore \max_{0 \le x \le 1} \left| y^{(4)}(x) \right| \le 2$$

$$|y(x_n) - y_n| \le \frac{1}{48} \times 10^{-2} \approx 2.083 \times 10^{-4}, \quad n = 1, 2, \dots, N - 1$$

以上是关于第一类边值条件边值问题差分法 类似,可导出第二,三类边值条件边值问题差分方程

| 小结                                                                    |                |              | ter 4 Initial<br>e problems fo | or ODE |
|-----------------------------------------------------------------------|----------------|--------------|--------------------------------|--------|
| $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$ Ta            | ylor公式         | 数值积分》        | 法                              |        |
| 公式                                                                    | 单步否            | 显式否          | 精度                             |        |
| $y_{n+1} = y_n + hf(x_n, y_n)$                                        | 单步             | 显式           | 一阶                             | _      |
| $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$                                | 单步             | 隐式           | 一阶                             |        |
| $y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$                                   | 二步             | 显式           | 二阶                             |        |
| $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$     | 单步             | 隐式           | 二阶                             |        |
| $y_{n+1} = y_n + \frac{1}{2}k_1 + \frac{1}{2}k_2$                     |                |              |                                |        |
| $\left\{ \mathbf{k}_{1} = hf(\mathbf{x}_{n}, \mathbf{y}_{n}) \right.$ | 单步             | 显式           | 二阶                             |        |
| $(k_2 = hf(x_n + h, y_n + k_1)$                                       | 局部截断误          | <b>羊 敕休樹</b> | 新误差                            |        |
| Runge - Kutta方法                                                       | <b>收敛性与稳</b>   |              | 四人工                            |        |
| THUST                                                                 | <b>八双江</b> 一亿) | CII          |                                |        |