5	$\frac{1}{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{24}} = \frac{n}{24!}$
	25 Hall 241 FAR.
	$24! + \frac{24!}{2} + \frac{24!}{3} + \dots + \frac{24!}{24} = 1$
	11 - 1
	$\frac{24!}{1+\frac{24!}{2}+\frac{24!}{3}+\cdots+\frac{24!}{24}}=11 \pmod{13}$
	24! = 1 x2x 3x4x 5x6x 7x x 13x x 24 01=3
	$\frac{24!}{1} \equiv 0 \pmod{13}$
	$\frac{24!}{z} = 0 \text{(mod 13)}$
	$\frac{24!}{13} \neq 0 \pmod{13}$
	29: = 0 (mod 13) atrett 4 08
) 13 = M (mod 13) of Sel.
	by Wilson's Theorem,
	13名 基本 5年 01区 (13-1)! = -1 (mod 13)
	121 = -1 (mod 13)

h

m

$ \frac{74!}{13} = M \pmod{13} \rightarrow 12! \underbrace{14 \cdot 15 \cdot 16 \cdot 11}_{13} \underbrace{18 \cdot 19 \cdot 20 \cdot 21 \cdot 22 \cdot 23 \cdot 24}_{13} = M \pmod{13} $ $ \rightarrow Q_{13}(72!) \cdot \varphi_{13}(14) \not \varphi_{13}(5) + \cdot \cdot \times \varphi_{13}(24) = M \pmod{13} $
$\longrightarrow -111 \equiv N \pmod{3}$
$\longrightarrow 11! \equiv N \left(\text{mod} \frac{13}{9c4 (12,18)} \right) 7'9cd \left([2,18) = 1 \right)$
$\rightarrow -121 = 12n \pmod{3}$
$-\phi_{13}(12!) = 12n \pmod{13}$
$(-1)(-1) = 12n \pmod{13}$
$\frac{1}{\sqrt{1}} = 15 \text{ (mod 13)}$
$-999 = \phi_{13}(12) 21 \pmod{13}$
$1 = 1 \pmod{13}$
$-1 \qquad (\text{mod } 13)$
n=12 (mod 13)
Marky Market