一、正态总体 $X \sim N(\mu, \sigma^2)$ 中均值 $\mu(\sigma^2$ 已知)的检验

1. 双边检验:

(1) 检验:
$$H_0: \mu = \mu_0$$
, $H_1: \mu \neq \mu_0$

(2) 取检验统计量
$$U = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$
,

(3) H_0 的拒绝域: $|u| \ge u_{1-\alpha/2}$.

2. 右边检验:

- (1) 检验: $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$
- (2) 如何决定接受还是拒绝H₀?

$$ar{X} > k (k 待定) \longrightarrow \mu > \mu_0 \longrightarrow 拒绝H_0.$$
 $ar{X} \le k \longrightarrow \mu = \mu_0 \longrightarrow 接受H_0.$

(3) 控制犯错的概率 $P\{拒绝H_0|H_0为真\} \leq \alpha$ 以确定k, 得 H_0 的拒绝域:

$$P{拒绝H_0|H_0为真} = P{\overline{X} > k|H_0: \mu \le \mu_0 \ddagger}$$

$$= P\left\{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} > \frac{k - \mu}{\sigma/\sqrt{n}}|H_0: \mu \le \mu_0 \ddagger\right\} \le P\left\{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} > \frac{k - \mu_0}{\sigma/\sqrt{n}}\right\} = \alpha$$

$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1) \longrightarrow \frac{k - \mu_0}{\sigma/\sqrt{n}} = u_{1-\alpha} \implies k = \mu_0 + \frac{\sigma}{\sqrt{n}} u_{1-\alpha} \implies H_0$$
的拒绝域: $\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > u_{1-\alpha}$

原假设	检验统计量	备择假设	H ₀ 的拒绝域
$H_0: \mu = \mu_0$	$ar{\mathbf{V}}$	$H_1: \mu \neq \mu_0$	$ u > u_{1-\alpha/2}$
$H_0: \mu \leq \mu_0$	$\mathbf{U} = \frac{X - \mu_0}{\sigma / \sqrt{n}}$	$H_1: \mu > \mu_0$	$u > u_{1-\alpha}$
$H_0: \mu \geq \mu_0$		$H_1: \mu < \mu_0$	$u < u_{\alpha}$

- 二、假设检验中的"检验统计量 $T(\theta_0)$ "与区间估计中的"枢轴量 $T(\theta)$ "的区别
- 1. 枢轴量 $T(\theta)$ 中含待估未知参数 θ ,因此不是统计量,只是随机变量; 而检验统计量 $T(\theta_0)$ 中的 θ_0 为已知数,因此它是统计量.
- 2. 枢轴量 $T(\theta)$ 的分布是已知的;

而检验统计量 $T(\theta_0)$ 的分布则需在 θ 明确时分布才已知。

三、正态总体参数检验

对一个正态总体 $X \sim N(\mu, \sigma^2)$, 抽取样本 X_1, X_2, \dots, X_n ;

对两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$,X与Y独立,分别抽取样本 X_1, X_2, \dots, X_n 与 Y_1, Y_2, \dots, Y_n 。

总体	H_0	H_1	剩余参数	检验统计量	H ₀ 的否定域
	$\mu = \mu_0$	$\mu \neq \mu_0$	σ ² 已知	$u=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$	$ u > u_{1-\alpha/2}$ $u > u_{1-\alpha}$ $u < u_{\alpha}$
一个	$\mu \le \mu_0$ $\mu \ge \mu_0$	$\mu > \mu_0$ $\mu < \mu_0$	σ ² 未知	$t = \frac{\bar{X} - \mu_0}{S_* / \sqrt{n}}$	$ t > t_{1-\alpha/2}(n-1)$ $t > t_{1-\alpha}(n-1)$ $t < t_{\alpha}(n-1)$
正态总体	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	μ 已知	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma_{0}^{2}}$	$\chi^2 < \chi^2_{lpha/2}(n)$ 或 $\chi^2 > \chi^2_{1-lpha/2}(n)$ $\chi^2 > \chi^2_{1-lpha}(n)$ $\chi^2 < \chi^2_{lpha}(n)$
	$\sigma^2 \le \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$		μ 未知	$\chi^2 = \frac{(n-1)S_*^2}{\sigma_0^2}$	$\chi^{2} < \chi_{\alpha/2}^{2}(n-1)$ 或 $\chi^{2} > \chi_{1-\alpha/2}^{2}(n-1)$ $\chi^{2} > \chi_{1-\alpha}^{2}(n-1)$ $\chi^{2} < \chi_{\alpha}^{2}(n-1)$

第三	章 假设	大检验 \$	32 正态总值	本参数检验	20170124 制作/	人:中国民用航空飞行学院 曾丰
		$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	σ ₁ ² ,σ ₂ ² 已知	$u = \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$ u > u_{1-\alpha/2}$ $u > u_{1-\alpha}$ $u < u_{\alpha}$
	两个	$\mu_1 \le \mu_2$ $\mu_1 \ge \mu_2$	$\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$\sigma_1^2 = \sigma_2^2$ 未知	$t = \frac{(\overline{X} - \overline{Y})}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$ t > t_{1-\alpha/2}(n_1 + n_2 - 2)$ $t > t_{1-\alpha}(n_1 + n_2 - 2)$ $t < t_{\alpha}(n_1 + n_2 - 2)$
	正态总体	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$	μ ₁ , μ ₂ 已知	$F = \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2}$	$F < F_{lpha/2}(n_1, n_2)$ 或 $F > F_{1-lpha/2}(n_1, n_2)$ $F > F_{1-lpha}(n_1, n_2)$ $F < F_{lpha}(n_1, n_2)$
	r		$\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$	μ ₁ , μ ₂ 未知	$F = rac{S_{1^*}^2}{S_{2^*}^2}$	$F < F_{\alpha/2}(n_1 - 1, n_2 - 1)$ $F > F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$ $F > F_{1-\alpha}(n_1 - 1, n_2 - 1)$ $F < F_{\alpha}(n_1 - 1, n_2 - 1)$
	(配对 数据)	$\mu_D = 0$ $\mu_D \le 0$ $\mu_D \ge 0$	$\mu_D \neq 0$ $\mu_D > 0$ $\mu_D < 0$	σ2未知	$t = \frac{\overline{D} - 0}{S_{D^*} / \sqrt{n}}$	$ t > t_{1-\alpha/2}(n-1)$ $t > t_{1-\alpha}(n-1)$ $t < t_{\alpha}(n-1)$

n对相互独立的观测
$$(X_i,Y_i)$$
, $i=1,\dots,n$, $D_i=X_i-Y_i\sim N(\mu_D,\sigma_D^2)$.

其中,
$$S_w^2 = \frac{(n_1-1)S_{1*}^2 + (n_2-1)S_{2*}^2}{n_1+n_2-2}$$
.

上表的简写

总体	被检验参数	另外的参数	借用的分布	检验名称	
$X \sim N(\mu, \sigma^2)$	μ	σ已知	N(0,1)	U检验	
		σ未知	t(n-1)	t检验	
	σ	μ已知	$\chi^2(n)$	χ²检验	
		μ未知	$\chi^2(n-1)$		
$X \sim N(\mu_1, \sigma_1^2)$ $Fraction Y \sim N(\mu_2, \sigma_2^2)$	$\mu_1 - \mu_2$	σ_1^2, σ_2^2 已知	N(0,1)	U检验	
		$\sigma_1^2 = \sigma_2^2 未知$	$t(n_1+n_2-2)$	t检验	
	σ_1^2/σ_2^2	μ1,μ2已知	$F(n_1,n_2)$	F检验	
		μ1,μ2未知	$F(n_1-1,n_2-1)$	1 /15 /15	

【*例3.5(P79)】某部门对当前市场的价格情况进行调查. 以鸡蛋为例,所抽查的全省20个集市上,售价分别为(单位:元/500克)

3.05, 3.31, 3.34, 3.82, 3.30, 3.16, 3.84, 3.10, 3.90, 3.18,

3.88, 3.22, 3.28, 3.34, 3.62, 3.28, 3.30, 3.22, 3.54, 3.30.

已知往年的平均售价一直稳定在3.25元/500克左右,假设全省鸡蛋价格服从正态分布 $X \sim N(\mu, \sigma^2)$,问在显著性水平 $\alpha = 0.025$ 下,能否认为全省当前的鸡蛋售价明显高于往年?

【*例3.6(P81)】某工厂生产某种电器材料.要检验原来使用的材料与一种新研制的材料的疲劳寿命有无显著性差异,各取若干样品,做疲劳寿命试验,所得数据如下(单位:小时):

原材料: 40, 110, 150, 65, 90, 210, 270

新材料: 60, 150, 220, 310, 380, 350, 250, 450, 110, 175.

一般认为材料的疲劳寿命服从对数正态分布,故设 $\lg X \sim N(\mu_1, \sigma_1^2)$, $\lg Y \sim N(\mu_2, \sigma_2^2)$, 并假定 $\sigma_1^2 = \sigma_2^2$. 在显著性水平 $\alpha = 0.05$ 下, 能否认为 两种材料的疲劳寿命没有显著性差异?

【补例1(成对数据)】有两台光谱仪 I_x 与 I_y ,用来测量材料中某种金属 的含量,为鉴定它们的测量结果有无显著的差异,制备了9件试块 (它们的成份、金属含量、均匀性等均各不相同), 现在分别用这两 台仪器对每一试块测量一次,得到9对观察值如下

x(%)	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
y(%)	0.10	0.21	0.52	0.32	0.78	0.59	0.68	0.77	0.89
d=x-y(%)	0.10	0.09	-0.12	0.18	- 0.18	0.11	0.12	0.13	0.11

问能否认为这两台仪器的测量结果有显著的差异(取 $\alpha = 0.01$)?

【例3.7(P_{84})】一台机床大修前曾加工一批零件, 共 $n_1 = 10$ 件, 加工尺 寸的样本方差为 $s_{1}^2 = 2500(\mu^2)$, 大修后加工一批零件,共 $n_2 = 12$ 件, 加 工尺寸的样本方差为 $s_{2*}^2 = 400(\mu^2)$. 问此机床大修后精度有明显提高 的最小显著性水平 α (即p值)大致有多大?

- 解: (1) 检验假设: H_0 : $\sigma_1^2 = \sigma_2^2$, H_1 : $\sigma_1^2 > \sigma_2^2$
 - (2) 取检验统计量: $F = S_{1*}^2/S_{2*}^2$;
 - (3) H_0 的拒绝域为: $F > F_{1-\alpha}(n_1-1,n_2-1)$;
 - (4) 代入样本: F = 2500/400 = 6.25,

当 $\alpha = 0.005$ 时, $6.25 > F_{1-0.005}(9,11) = 5.54$, 拒绝 H_0 ;

当 $\alpha = 0.001$ 时, $6.25 < F_{1-0.001}(9,11) = 8.12$, 接受 H_0 ;

当 $\alpha = 0.0031$ 时, $6.25 = F_{1-0.0031}(9,11)$, 此时F值处于拒绝域与接

受域分界点处.

 $rac{f pf d}{m d}$ 一假设检验问题的p值(probability value)是指在当前样本观察值下拒绝 $f H_0$ 的最小显著性水平m lpha.