

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH

DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS

Nama	Provinsi	Tanggal Lahir	
Kelas & Sekolah	Kabupaten/Kota	Tanda Tangan	

Naskah ini terdiri dari dua bagian soal (soal A dan B), tabel matematika, daftar konstanta, data astronomi, serta dilampiri poster Light Echo V838 Monocerotis (V838 Mon). Pergunakan tabel, grafik, dan kotak-kotak isian di lembar jawaban! Bila perlu, gunakan kertas tambahan dan tulislah dengan lengkap identitasmu serta beri nomor jawaban dengan jelas!

Soal A.

Seorang astronom melihat sebuah asteroid NEA ($Mars\ Crosser$) pecah di langit malam. Pecahan bergerak berlawanan arah gerak asteroid sebesar kecepatan lepas $v_{\rm lepas}$. Selanjutnya orang menyimpulkan bahwa asteroid telah meninggalkan Tata Surya. Lakukanlah telaah berapa besar massa pecahan Δm agar keduanya (asteroid dan pecahannya) dapat terlepas meninggalkan Tata Surya. Sederhanakan persoalan menjadi sebagai berikut:

Sebuah asteroid bermassa m mengedari Matahari bermassa M seperti pada gambar. Asteroid berjarak p dari Matahari saat di perihelium dan berjarak q saat di aphelium. Kecepatan asteroid saat di perihelium adalah v_p , saat di aphelium adalah v_q .

A. 1. Jika
$$v_q=rac{p}{q}v_p$$
, buktikan bahwa $q=rac{p}{\left(\left(rac{v_{
m lepas}}{v_p}
ight)^2-1
ight)}$

A. 2. Gangguan yang timbul di struktur dalam asteroid menyebabkan terlontarnya massa sebesar Δm dengan kecepatan lepas $u=v_{\rm lepas}$, berlawanan arah gerak asteroid, saat di perihelium. Berapa kecepatan dan jarak asteroid saat berada di aphelium?

- **A. 3.** Hitung kecepatan dan jarak asteroid itu jika p=1 SA, q=2 SA! Berapa persentase Δm terhadap m agar asteroid lepas meninggalkan Tata Surya?
- **A. 4.** Tabel berikut dari IAU *Minor Planet Center* berisi lima asteroid yang jarak periheliumnya diketahui. Besaran v_q dan $v_{\rm lepas}$ juga diberikan. Jarak Aphelium q dan persentase $\Delta m/m$ harus ditentukan (asteroid Anonim diberikan hanya untuk contoh). Manakah dari kelima asteroid tersebut yang paling kecil massa pecahannya untuk lepas dari Tata Surya? Jelaskan jawabanmu!

Nama	q (SA)	p (SA)	v_q (km/s)	$v_{ m lepas}$ (km/s)	$\Delta m/m$ (%)
2004XG		1,0	30	42	
1989VA		2,8	25	35	
2001RV17		4,5	15	20	
2004SW26		7,9	11	15	
2006WO3		9,7	10	14	
Anonim	1	1	30	42	0,23

Soal B.

Soal ini diberikan bersamaan dengan poster *Light Echo* V838 Monocerotis (V838 Mon). Citra tersebut diambil menggunakan *Hubble Space Telescope* (HST) dengan *Advanced Camera System* (ACS) dan *Wide Field Camera* (WFC).

Untuk memahami model kulit bola (*spherical shell*) dalam penentuan jarak bintang V838 Mon, perhatikan gambar di bawah ini:

Gambar 1. Kiri: posisi bintang V838 Mon (A) dan beberapa bintang di sekitarnya (utara ke atas). Jarak sudut bintang B dan C adalah 0.8' = 48''. Kanan: selubung awan berukuran r_0 memantulkan cahaya bintang V838 Mon yang meledak tiba-tiba. Parabola dengan titik fokus di pusat bintang menandai selubung awan dengan gema yang teramati pada waktu t. Gema tersebut memiliki diameter D = 2y.

Misalkan ledakan V838 Mon terjadi pada $t_0 = 0$ dan gema cahaya terdeteksi pada t. Hal ini terjadi karena gema cahaya harus menempuh jarak yang lebih jauh dibandingkan cahaya dari bintang.

B. 1. Bila r_0 menyatakan radius selubung dan y menyatakan radius gema cahaya, tunjukkan bahwa

$$y^2 = 2r_0 ct - (ct)^2 (1)$$

B. 2. Tunjukkan pula bahwa diameter sudut gema cahaya memenuhi persamaan:

$$\delta(t) = \frac{2}{d} \sqrt{2r_o ct - (ct)^2} \tag{2}$$

- **B. 3.** Anggap V838 Mon meledak pada tanggal 1 Februari 2002. Hitung waktu jeda (*t*) untuk setiap citra gema cahaya yang ditunjukkan dalam poster! Nyatakan dalam hari dan tulis pada tabel yang diberikan di lembar jawaban!
- **B. 4.** Ukur diameter sudut gema cahaya (δ) untuk setiap citra! Nyatakan dalam satuan detik busur dan tulis pada tabel yang diberikan di lembar jawaban!
- **B. 5.** Pada Grafik 1, buatlah plot hubungan δ terhadap t! Apakah hubungan tersebut sesuai dengan persamaan (2)?
- **B. 6.** Untuk memperkirakan jarak objek (*d*), lakukan langkah-langkah sebagai berikut:
 - **B. 6. a.** Ketika *t* kecil, persamaan (2) dapat direduksi menjadi:

$$\delta^2 = \frac{8r_o ct}{d^2},\tag{3}$$

yang merupakan persamaan parabola.

Pada Grafik 1, gambarlah parabola yang berimpit dengan titik-titik data yang telah didapatkan! Tentukan letak titik fokus parabola tersebut!

- **B. 6. b.** Berdasarkan letak titik fokus yang didapatkan serta berpedoman pada persamaan (3), perkirakan perbandingan r_0/d^2 . Nyatakan dalam satuan parsec⁻¹.
- **B. 6. c.** Bila seorang astronom mengatakan bahwa radius selubung r_0 tidak melebihi 10 pc, perkirakan jarak maksimum objek tersebut!

Tabel Matematika

Parabola adalah salah satu bangun datar irisan kerucut dengan eksentrisitas e = 1. Bangun ini dibentuk oleh kumpulan titik ekuidistan antara sebuah garis L dan titik fokus F (lihat gambar).

Sebuah parabola dengan titik vertex di (0,0) dan titik fokus di (a,0) sebagaimana tampak pada gambar dapat dinyatakan dengan persamaan:

$$y^2 = 4ax$$
.

Sedangkan parabola dengan vertex di (x0,y0) memenuhi persamaan:

$$(y - y_0)^2 = 4a(x - x_0),$$

di mana titik fokus berjarak a dari vertex.

Daftar Konstanta dan Data Astronomi

Nama konstanta	Simbol	Harga
Kecepatan cahaya	С	2,997925 x 10 ⁸ m s ⁻¹
Konstanta gravitasi	G	6,67 x 10 ⁻¹¹ N m ² kg ⁻²
Konstanta Planck	h	6,6256 x 10 ⁻³⁴ J s
Konstanta Boltzmann	k	1,3805 x 10 ⁻²³ J K ⁻¹
Konstanta kerapatan radiasi	а	7,5643 x 10 ⁻¹⁶ J m ⁻³ K ⁻⁴
Konstanta Stefan-Boltzmann	σ	5,6693 x 10 ⁻⁸ J s ⁻¹ m ⁻² K ⁻⁴
Muatan elektron	е	1,6021 x 10 ⁻¹⁹ C
Massa elektron	m _e	9,1091 x 10 ⁻³¹ kg
Massa proton	$m_{ m p}$	1,6725 x 10 ⁻²⁷ kg
Massa neutron	m_{n}	1,6748 x 10 ⁻²⁷ kg
Massa atom ₁ H ¹	m _H	1,6734 x 10 ⁻²⁷ kg
Massa atom ₂ He ⁴	m_{He}	6,6459 x 10 ⁻²⁷ kg
Konstanta gas	R	8,3143 J K ⁻¹ mol ⁻¹

Nama besaran	Notasi	Harga
Satuan astronomi	SA	1,49597870 x 10 ¹¹ m
Parsek	рс	3,0857 x 10 ¹⁶ m
Tahun cahaya	ly	0,9461 x 10 ¹⁶ m
Joule		10 ⁷ erg
Tahun sideris		365,2564 hari
Tahun tropik		365,2422 hari
Tahun Gregorian		365,2425 hari
Tahun Julian		365,2500 hari
Bulan sinodis (synodic month)		29,5306 hari
Bulan sideris (sidereal month)		27,3217 hari
Hari Matahari rerata (mean solar day)		24 ^j 3 ^m 56 ^d ,56
Hari sideris rerata (mean sidereal day)		23 ^j 56 ^m 4 ^d ,09
Massa Matahari	${\sf M}_{\odot}$	1,989 x 10 ³⁰ kg
Jejari Matahari	${\sf R}_{\odot}$	6,96 x 10 ⁸ m
Temperatur efektif Matahari	$T_{eff,_{\odot}}$	5.785 K
Luminositas Matahari	L_{\odot}	3,9 x 10 ²⁶ J s ⁻¹
Magnitudo semu visual Matahari	V	-26,78
Indeks warna Matahari	B - V	0,62
	U - B	0,10
Magnitudo mutlak visual Matahari	M∨	4,79

Hak Cipta
Dilindungi Undang-undang

Nama besaran	Notasi	Harga
Magnitudo mutlak bolometrik Matahari	M_{bol}	4,72
Massa Bulan	M _∍	7,35 x 10 ²² kg
Jejari Bulan	$R_{\mathfrak{D}}$	1738 km
Jarak rerata Bumi–Bulan		384399 km
Konstanta Hubble	H_0	69,3 km/s/Mpc

Objek	Massa	Jejari	Periode	Periode	Periode
Objek	(kg)	(km)	Rotasi	Sideris (hari)	Sinodis (hari)
Merkurius	$3,30 \times 10^{23}$	2439	58,6 hari	87,97	115,9
Venus	4,87 x 10 ²⁴	6052	243,0 hari	244,70	583,9
Bumi	5,98 x 10 ²⁴	6378	23 ^j 56 ^m 4 ^d ,1	365,25	-
Mars	6,42 x 10 ²³	3397	24 ^j 37 ^m 22 ^d ,7	687,02	779,9
Jupiter	1,90 x 10 ²⁷	71398	9 ^j 55 ^m 30 ^d	4333	398,9
Saturnus	5,69 x 10 ²⁶	60000	10 ^j 30 ^m	10743	378,1
Uranus	8,70 x 10 ²⁵	26320	17 ^j 14 ^m	30700	369,7
Neptunus	1,03 x 10 ²⁶	24300	18 ^j	60280	367,5