네트워크 분석

홍익 대학교 Hyun-Sun Ryu

네트워크 분석

네트워크 분석

니

개인과 집단들 간의 관계를 모형화하여 그것의 구조나 확산 및 진화과정을 계량적으로 분석하는 방법

네트워크 분석의 기본 요소

네트워크 분석의 기본 요소

Source	Target
A	С
В	A
В	D
В	D
C	В
****	*****
	30000

	Α	В	C	D	Ε	ĝ.
Α	-	0	1	0	0	1
В	1	-	0	1	1	3
C	0	1	-	1	0	2
D	0	0	0	-	0	0
E	1	0	0	1	-	2
얍	2	1	0	3	1	

테이블

인접 행렬

네트워크 그래프

네트워크 분석의 평가 척도

- 관계의 주체가 되는 행위자들은 Node로, 관계들은 Node 사이를 연결하는
 는 Edge로 나타내어 그래프의 형태를 가지면 중심성 계산이 가능
- 중심성은 그래프 상에서 어떤 Node가 가장 중요한지를 살피는 척도

네트워크 분석의 평가 척도

연결 중심성 Degree Centrality

근접 <u>중심성</u> Closeness Centrality

네트워크 분석의 평가 척도

연결 <u>중심성</u> Degree Centrality 근접 중심성 Closeness Centrality

네트워크 분석의 적용사례1

네트워크 분석의 적용사례1

네트워크 분석의 적용사례2

네트워크 분석 알아보기

네트워크 분석 위젯 설치하기

네트워크 분석 위젯 설치하기

Network file Network explorer **Network Generator Network Analysis Network Clustering** Network From distances Network of Groups Single Mode 위젯 설명 입력 출력 Network. 네트워크 그래프 파일을 불러온다. Items Items Network File

- 네트워크 파일을 읽고 입력 데이터를 출력 채널로 보냄.
- 위젯에서 가장 최근에 연 파일의 기록이 유지 관리
- 위젯에는 추가 기능과 함께 사전 설치되는 샘플 데이터 세트가 있는 디렉토리도 포함

 Network file
 Network explorer
 Network Generator
 Network Analysis
 Network Clustering

 Network of Groups
 Network From distances
 Single Mode

위젯	설명	입력	출력
Network Explorer	네트워크와 해당 속성을 시각적으로 탐색한다.	Node Data, Node Subset, Network, Node Distances	Selected Data, Data, Selected Sub-network, Remaining Sub-network, Distance matrix

- 네트워크 그래프를 시각화하는 기본 위젯
- Fruchterman-Reingold 레이아웃 최적화 그래프를 표시하고 노드의 색, 크기 및 레이블을 설정

 Network file
 Network explorer
 Network Generator
 Network Analysis
 Network Clustering

 Network of Groups
 Network From distances
 Single Mode

위젯	설명	입력	출력
Network Generator	예제 그래프를 구성한다.	х	Network

- Network Generator 위젯을 사용하면 모범적인 네트워크를 구성
- 대부분 네트워크에 대해 강의/학습하기 위한 것

Network file **Network Analysis** Network explorer **Network Generator Network Clustering** Network of Groups Network From distances Single Mode 위젯 설명 입력 출력 14. Network. Network. 네트워크 데이터의 통계적 분석을 수행한다. Items Items Network Analysis

- 네트워크에 대한 노드 수준 및 그래프 수준 요약 통계를 계산
- 새롭게 계산된 통계와 확장된 항목 데이터 테이블을 사용하여 네트워크를 출력

 Network file
 Network explorer
 Network Generator
 Network Analysis
 Network Clustering

 Network of Groups
 Network From distances
 Single Mode

위젯	설명	입력	출력
Network Clustering	네트워크에서 커뮤니티를 감지한다.	Network	Network, Items

- 네트워크에서 클러스터를 찾음.
- 클러스터링은 Raghavan, Leung의 두 개의 알고리즘과 함께 작동
- 레이블 전파를 사용하여 적절한 클러스터를 찾고 Raghavan, Leung의 작업을 기반으로 하며 클러스터 형성을 위한 매개변수로 hop attenuation을 추가

Network Generator Network file Network explorer **Network Analysis Network Clustering Network of Groups** Network From distances Single Mode 위젯 설명 입력 출력 Network. Network, feature 별로 인스턴스를 그룹화하고 관련 그룹을 연결한다. Data Data Network Of Groups

- 그룹별 작업의 네트워크 버전
- 드롭다운에서 선택한 속성의 값이 동일한 노드는 단일 노드로 표시

Network file

Network explorer

Network Generator

Network Analysis

Network Clustering

Network of Groups

Network From distances

Single Mode

위젯	설명	입력	출력
Network From Distances	지정된 임계값 사이의 거리가 있는 데이터 테이블에서 노드를 연결하여 그래프 개체를 구성한다.	Distances	Network, Data, Distances

- 지정된 거리 행렬에서 네트워크 그래프를 구성
- 그래프는 노드 간 거리가 지정된 임계값보다 낮은 매트릭스에서 노드를 연결하여 구성된다. 즉, 거리가 선택한 임계값보다 낮은 모든 인스턴스가 연결

네트워크 분석 위젯 설치하기

- 이분법 네트워크에서 작동하며, 하위 집합은 이진 이산 특성으로 표시
- 위젯은 노드가 선택한 값(예: 사람)을 나타내고 나머지 값(예: 이벤트)을 에지로 표 시하는 네트워크를 출력

네트워크 분석의 실제

Metwork Analysis		?	×
Graph-level indices	Node-level indices		
✓ Number of nodes			42
✓ Number of edges			460
Average degree			21,9
✓ Density			0,5343
✓ Diameter			inf
✓ Radius			inf
Average shortest pa	-		inf
	connected components		
☐ Number of weakly o	onnected components		
? 🗎			
Metwork Analysis			? ×
Graph-level indices	Node-level indices		
✓ Degree			
☐ In-degree			
☐ Out-degree			
Average neighbor d	egree		
Degree centrality			
☐ In-degree centrality			
Out-degree centrali	•		
Closeness centralit	У		
? 🖹			

나만의 프로젝트

AI문제 확인	AI솔루션 탐색	AI솔루션 설계	AI솔루션 개발	평가 및 피드백
●문제 인지 •AI문제 분석	•솔루션 수집 •솔루션 분석 •솔루션 선택	•학습모델 선택 •학습 알고리즘 선택 •예측 모델 설계	•예측 모델 개발 •예측 모델 실행 •실행 결과 분석 및 수정	●평가 ●피드백

AI 문제 확인

AI 솔루션 탐색

AI 솔루션 설계

AI 솔루션 개발

퍙가 및 피드백

- 해결해야할 문제 인식
- 해결해야할 문제의 현재 상태와 목표 상태에 대해 정의하기
- 문제를 기술적, 경제적, 윤리적으로 분석하여 인공지능을 활용하여 해결해야 할 문제인지 판단하기

AI 문제 확인

AI 솔루션 탐색

AI 솔루션 설계

AI 솔루션 개발

퍙가 및 피드백

- 해결해야 할 문제와 관련하여 기존에 제시된 해결 방안이 있는지 탐색
- 해결해야 할 문제를 인공지능으로 해결하기 위하여 신뢰도 있는 데이터
- 탐색 (공공데이터 등을 이용하여 인공지능 학습을 위한 데이터 수집)
- 데이터를 탐색적데이터 분석을 통해 이해하고 최선의 솔루션을 선택함

AI 문제 확인

AI 솔루션 탐색

AI 솔루션 설계

AI 솔루션 개발

평가 및 피드백

AI 솔루션 탐색 단계에서 실시한 데이터 분석을 토대로 문제해결을위한 가장
 우수한 예측 모델을 평가하고 선택하는 단계 (알고리즘 작성 및 예측 모델 설정)

AI 문제 확인

AI 솔루션 탐색

AI 솔루션 설계

AI 솔루션 개발

퍙가 및 피드백

- AI 솔루션 설계 단계에서 구상한 해결 방안을 실제로 구현하는 단계
- Train data와 test data를 구분하여 AI 예측 모델프로그램을 만듬.
- 예측 모델을 학습하고 테스트 결과를 확인
- 모델의 성능을 분석하여 프로그램을 오류를 수정

AI 문제 확인

AI 솔루션 탐색

AI 솔루션 설계

AI 솔루션 개발

퍙가 및 피드백

- AI 솔루션을 실제 실행해 보고 이루어진 결과와 과정을 평가하는 단계
- AI 문제 확인 단계에서 정의한 목표 상태에 도달했는지 정량적, 정성적으로 평가함
- 실행과정과 검증하고 전 과정에서 필요한 부분과 필요하지 않은 부분을 확 인하고 수정 및 보안함

나만의 프로젝트 안내

단계	내용	Ч	아니 요
	나는 생활 속에서 해결해야 할 문제를 발견할 수 있다.		
	내가 발견한 문제는 인공지능으로 해결하는 것이 효과적이다.		
AI문제 확인	나는 문제를 인공지능으로 해결한 결과를 예상할 수 있다.		
	나는 인공지능으로 문제를 해결하기 위해 필요한 데이터조건을 알고 있다.		
	나는 인공지능 문제의 특성(인식/분류/예측)을 분석할 수 있다.		
	나는 문제를 해결하기 위해 적합한 데이터를 수집할 수 있다.		
	나는 위젯을 사용하여 수집한 데이터의 정보를 파악할 수 있다.		
Al솔루션 탐색	나는 위젯을 사용하여 데이터를 활용하기 적합한 형태로 전처리할 수 있다.		
72 T C G 4	나는 수집된 데이터 타입(이미지,숫자,텍스트 등)을 알맞게 지정할 수 있다.		
	나는 위젯을 사용하여 데이터의 정보를 시각화하고 패턴을 발견하거나 분석할 수 있다.		
	나는 문제를 해결하는데 필요한 학습 모델의 유형과 특성을 알고 있다.		
스크 너 뭐 뭐	나는 문제 해결을 위해 적합한 학습 알고리즘을 선택할 수 있다.		
AI솔루션 설계	나는 인공지능 문제를 해결하는데 필요한 핵심요소(Feature 또는 독립변수)를 추출할 수 있다.		
	나는 문제를 해결하는데 적합한 예측 모델을 설계할 수 있다.		
	나는 인공지능 모델을 구현할 수 있는 도구를 선택할 수 있다.		
	나는 위젯을 사용하여 문제해결을 위한 데이터를 추출할 수 있다.		
Al솔루션 개발	나는 알맞은 위젯을 사용하여 워크플로우를 작성할 수 있다.		
	나는 위젯을 사용하여 문제해결 예측 결과를 확인할 수 있다.		
	나는 위젯을 사용하여 문제해결 예측 결과의 신뢰도를 확인할 수 있다.		
	나는 위젯을 사용하여 개발한 모델이 문제를 해결하였는지 확인할 수 있다.		
평가 및 피드백	나는 작성한 워크플로우에서 오류를 발견하여 수정할 수 있다.		
	나는 인공지능 솔루션의 성능을 개선하기 위하여 새로운 솔루션을 제안할 수 있다.		

질문 있나요?

hsryu13@hongik.ac.kr