计算复杂性简介

引子

- 你是某大公司的骨干, 经常得到大老板的赏识。
- 某天大老板给你个简单的问题,很快你就给出了答案。
- 不久,大老板给你同样的问题,只不过这次数据变大了,你满怀信心的说"So easy!"。
- 一小时过去了,一天过去了,一个月过去了,一 年过去了……结果……???

集合划分问题

- · 给定一个数集A, 问是否可以将其分成两个不相交的子集, 使得两个子集中的元素之和相等?
- 若所有元素之和为奇数,则显然不行。但是,元素之和为偶数呢?
- {1, 3, 6, 8} 1+8=3+6=9
- {2, 7, 15, 28, 34, 48, 56, 77, 106, 113}
 2+7+15+106+113=28+34+48+56+77=243

• {1, 5, 9, 16, 18, 23, 28, 29, 35, 37, 39, 41, 45, 48, 49, 55, 56, 67, 68, 69, 72, 75, 78, 79, 81, 86, 88, 95, 100, 106, 112, 115, 118, 122, 125, 127, 135, 138, 140, 145, 149, 155, 162, 168, 177, 178, 180, 195, 199, 201, 205, 209, 215, 220, 224, 228, 229, 233, 238, 239, 245, 248} 共62个数

1+5+....+168+177=178+180+....+245+248=3686

枚举法 (穷举法)

- 集合总共有 $\sum_{i=0}^{n} \frac{1}{2} \binom{n}{i}$ 种不同分法。
- · 假定检查和计算每种分法是否可行只需1微 秒(10⁶微秒=1秒)。
- 当n=50,约需35.7年!
- 当n=60,约需366个世纪!!!

旅行售货商问题(TSP) The Traveling Salesman Problem

- 一个商人从某个城市出发,到其他城市去售卖商品,他 希望在旅途中恰好路过每个城市一次,最后返回出发地。 如何安排旅行线路,使得所走路线总长度最短。
- 枚举法: 找出所有的可行路线, 然后比较找出最短的。
- N个城市, 可行的路线有(N-1)!/2.
- 计算一个可行路线只需1纳秒(10~9纳秒=1秒)。
- 遍历23个城市大概需要 178个世纪!!!

若干 定义

- 定义1: 优化问题 π是一个极小化(极大化)问题,它由下述三部分组成:
 - (1) 实例集合;
 - (2) 对每一个实例I,有一个有穷的可行解集合S(I);
- (3) 目标函数f, 它对每一个实例I和每一个可行解 $\sigma \in S(I)$, 赋予一个有理函数 $f(I,\sigma)$.
- 定义2: 算法是指一步步求解问题的通用程序, 它是解决问题的程序步骤的一个清晰描述.

- 定义3:对于一个优化问题,如果给定任意一个实例,算法总能找到一个可行解,那么就称之为近似算法;如果进一步这个可行解的目标值总等于最优值,则称之为最优算法.
- 问:是否任何数学问题都有算法求解呢?
- 答案是否定的.
- 停机问题:是否存在一个算法,对于任意给定的图 灵机都能判定任意的初始格局是否会导致停机?
- · 著名英国数学家图灵(Turing)证明了不存在一个 算法,它能对该问题的一切实例给出正确答案.

- 定义4: 算法时间复杂性是关于实例输入长度n的函数f(n), 用来表示算法的时间需求. 对于每一个可能的输入长度, 它是该算法解此输入长度的最坏可能的实例所需的时间(基本运算步数)。
- 定义5: 若存在一个常数 C,使得对所有 $n \ge 0$,都 有 $|f(n)| \le C|g(n)|$,则称函数 f(n)是 O(g(n)). 时间复杂性是 O(p(n)) 的算法称为多项式时间算法. 不能这样限制时间复杂性函数的算法称为指数时间算法.

 $O(n \log n), O(n^{3.7}), O(n^2), O(n^{\log n}), O(n!), O(2^n)$

几个多项式和指数时间复杂性函数增长情况 规模n的近似值 函数 10 100 1000 1000 10 100 n $n \log n$ 33 9966 664 n^3 10^{3} 10^{6} 10^{9} $1.27*10^{30}$ $1.05*10^{301}$ 1024 2^n n! 10^{158} $4*10^{2567}$ 3628800

1小时内可解的问题实例的规模							
函数	用现在计算机	用快10倍的计 算机	用快100倍的计 算机				
n	$N_{\scriptscriptstyle 1}$	$10N_1$	$100N_1$				
$n \log n$	N_2	$8.2N_{2}$	$67N_2$				
n^3	N_3	$2.15N_{3}$	$4.64N_{3}$				
2^n	N_4	$N_4 + 3.32$	$N_4 + 6.64$				
n!	N_{5}	$\leq N_5 + 2$	$\leq N_5 + 3$				

	10	20	30	40	50	60
n	.00001	.00002	.00003	.00004	.00005	.00006
n^2	.0001	.0004	.0009	.0016	.0025	.0036
n^3	.001	.008	.027	.064	.125	.216
n^5	.1	3.2	24.3	1.7分	5.2分	13分
2^n	.001	1.0	17.9分	12.7天	35.7年	366世纪
3 ⁿ	.059	58分	6.5年	3855世纪	2×10 ⁸ 世纪	1.3×10 ¹³ 世纪

- 定义6: 一个优化问题如果已经找到了多项式时间算法,那么就称它为多项式时间可解问题. 把所有这样的问题集合记为P,因此多项式时间可解问题就称为P类问题.
- 定义7: 答案为"是"或"否"的问题称为判定问题.
- 问:优化问题与其相应的判定问题的困难程度 是否相当?