Contents

1 A B C	Hybridization: The Shape Of Things To Come Introduction Electron Counting In Atoms In Molecules, and Valency Mixing Atomic Orbitals To Maximize Overlap In Molecules Combining s- and p-Orbitals Geometric Shapes Shapes Of Molecules Based On Geometric Shapes Multiple Bonds	15 15 16 16 17 19 19 19 20 23
2 A B	Saturated Acyclic Hydrocarbons Introduction Conformations Of Acyclic Hydrocarbons Ethane Propane Butane Art In Organic Chemistry Three Dimensional Diagrams Of Organic Molecules Alkyl Fragments Conclusion	28 29 29 29 31 33 35 39 40 43
3 A B C D	Fragments And Functional Groups Introduction Fragments Expanded Forms Of Functional Groups Abbreviated Forms Of Functional Groups	44 44 45 48 50
4 A B C D	Conformations Of Cyclic Hydrocarbons Introduction Angle Strain Torsional Strain Cyclohexanes Unsubstituted Cyclohexane Monosubstituted Cyclohexanes Disubstituted Cyclohexanes Cyclohexenes Cyclohexenes Other Rings	55 55 56 56 57 57 62 64 66 67
<u>5</u> A B	Curly Arrows And Electron Flow Introduction Electron Flow Affecting Only One Bond Affecting Two Bonds Affecting Four Bonds Representations Of Charged Hydrocarbon Scaffolds Heteroatoms, Lone Pairs, And Moving Electrons	68 68 69 69 72 73 74 76
<u>6</u>	Acids And Bases	80

	Introduction Log Scales To Measure Proton Dissociation From Organic Molecules	80 81 81 84 85 89 90
<u>7</u>	Resonance: Practicing Curly Arrows	95
A B C D E F	Introduction Resonance Resonance Stabilized Anions Hopping Across Atoms In Search Of Electronegativity How Resonance Stabilization Of Anions Influences Acidity Resonance Stabilized Cations Resonance In Neutral Molecules Resonance Stabilizes Some Conformations	95 96 96 96 101 105 108 109
<u>8</u>	Stereochemistry	111
AB CDEF	Introduction Priority Rules Substituents Without Multiple Bonds Substituents Connected To Multiple Bonds Classifying Alkene Geometries Chiral Centers Combinations Of Chiral Centers Prochirality	111 112 112 112 115 115 118 120
<u>9</u>	S _N 1 Displacement At sp ³ Centers	124
A B	Introduction Types Of Nucleophilic Substitutions Negatively Charged Nucleophiles Neutral Nucleophiles Charges On Leaving Groups	124 125 125 125 126
С	S _N 1 Introduction Into The Key Steps Kinetics Of S _N 1 Stereochemistry And S _N 1	127 127 133 136

<u>10</u>	S _N 2 Displacement At sp ³ Centers	138
Α	Introduction	138
В	Differentiating S _N 1 and S _N 2	139
	Stereochemical Inversion In S _N 2 Reactions	139
	Kinetics And S _N 2 Pathways	140
С	Interconversion Of Enantiomers And Diastereomers	141
	Conversion Of Alcohols Into Leaving Groups	141
	Stereoelectronic Effects	145
D	Making Amines Via S _N 2 Reactions	146
	Cyanide: A Useful C-Nucleophile	146
	Phthalimide: Useful N-Nucleophile For Syntheses Of Primary Amines	147
<u>11</u>	Elimination Reactions To Form Alkenes	149
Α	Introduction	149
В	E1 Mechanisms	150
_	Kinetics	150
С	E2 Mechanisms	152
	Kinetics	152
	Stereoselectivity	153
D	Factors That Favor E1, E2, S _N 1, or S _N 2	156
	Basicity vs Nucleophilicity	156
	Nucleophilicity Temperature (and Entropy)	156
Е	Temperature (and Entropy) E1cB	157 157
F	Eliminations To Give Allenes, Alkynes, Ketenes And Sulfenes	157
12	Reactions Of Alkenes Via Protonation	159
A		159
В	Protonation Of Alkenes	160
	Generation Of Carbocations Via Protonation	160
	A Molecular Orbital Picture Of Alkene Protonation	161
С	Carbocation Stabilities	162
D	Alkenes Stabilities	163
	Heats Of Hydrogenation	164
Е	Acid-mediated Alkene Isomerization	164
F	Carbocation Rearrangements	166
	Hydride Shifts	166
	Alkyl Shifts	168
	Electrophilic Addition Mechanisms	169
Н	Acid-mediated Hydration Of Alkenes	171
<u>13</u>	Oxidation States, Hydrogenation, And Hydrogenolysis	175
Α	Introduction	175
В	Oxidation States In Organic Chemistry	176
С	Addition Of H ₂	177
	Hydrogenation And Hydrogenolysis	177
D	Hydrogenation	178
Е	Hydrogenolysis	180
F	Double Bond Equivalents	183
G	Hydridic Reductions	184
<u>14</u>	Halogenation Of Alkenes	185

A B	Introduction Mechanism	185 186
Ь	Chlorination and Bromination	186
	Iodination	194
С	Kinetic And Thermodynamic Control	195
	Kinetic Control	195
	Thermodynamic Control	196
	Non-coincident Kinetic And Thermodynamic Control	197
D	Halogenations In Nucleophilic Solvents	199
<u>15</u>	Epoxidation Of Alkenes, And Epoxides	201
Α	Introduction	201
В	Reagents And Mechanism	202
С	Rates Of Epoxidation	205
D	Stereospecificity	206
Е	Regioselectivity Of Epoxide Ring Opening Reactions	209
	Under Neutral Or Basic Conditions	209
	Under Acidic Conditions	210
<u>16</u>	Cycloadditions To Alkenes And Alkynes	212
Α	Introduction	212
	Nomenclature Of Cycloadditions	213
	Carbene Additions [2 + 1] (Cyclopropanations)	213
	Ozonolysis [2 + 3]	215
Е	Dihydroxylation [2 + 3]	220
F	Periodate Cleavage	224
G	Azide-Alkyne "Click Reactions" [2 + 3]	225
<u>17</u>	Benzene And Aromaticity	228
Α	Introduction	228
В	Common Aromatic Compounds	229
С	Heats Of Hydrogenation And Aromaticity	232
D	Predicting Aromaticity	234
	Carbocycles	234
<u>18</u>	B Electrophilic Attack On Benzene	237
Α	Introduction	237
В	Electrophilic Bromination Of Alkenes And Benzene Compared	238
	First Step: Approach Of Electrophile	238
	Second Step: Loss Of Positive Charge	238
С	Halogenation Of Benzene	241
D	Sulfonation And Nitration Of Benzene	242
Е	Acylation Of Benzene (Friedel-Crafts)	243
F	Alkylation (Friedel-Crafts)	245

19 <u>Ultraviolet And Fluorescence Spectroscopy</u>	248
A Introduction	248
B Fundamental Physics	249
C Molecular Orbital Diagrams Of Alkenes, Dienes, and Polyenes	249
D UV Spectroscopy	253
E Fluorescence Spectroscopy	254
20 Infrared (IR) Spectroscopy	257
A Introduction	257
B Origin Of IR Absorbance	258
C Functional Group Assignments	260
D Assigning Structures From Spectra	262
21 ¹³ C NMR Spectroscopy	268
A Introduction	268
B Fundamental Physics Of NMR (Nuclear Magnetic Resonance)	269
C Chemical Shifts In General	270
D Chemical Shifts In ¹³ C Spectra	271
E Coupling In ¹³ C NMR	274
F Some Problems Involving Interpretation Of ¹³ C Spectra	278
22 ¹ H NMR Spectroscopy	281
A Introduction	281
B Chemical Shifts In ¹ H Spectra	282
C Coupling In ¹ H NMR	287
Heteronuclear Coupling To ¹³ C Is Unimportant	287
Homonuclear ¹ H Coupling	287
Spin Systems	288
D Diastereotopic Protons	294
E Some Problems Involving Spectral Interpretation	295
23 Mass Spectrometry (MS)	297
A Introduction	297
B Components Of Mass Spectrometers	298
C Primary Ions Formed In Different Ionization Techniques	299
D Isotopes In Mass Spectrometry	300
Illustrative Interpretation Of Isotopes In MS	301
E Fragmentation	303
α-Cleavage	305
The McLafferty Rearrangement	310