## EE359 – Lecture 8 Outline

#### • Announcements:

- Last makeup lecture; no class next week
- HW posted, due next Th 5pm, extensions possible
- Scheduling our midterm 11/2, 8:45-10:45, 4-6, 5-7, 6-8?
- Shannon Capacity
- Capacity of Flat-Fading Channels
  - Fading Statistics Known
  - Fading Known at RX
  - Fading Known at TX and RX
  - Optimal Rate and Power Adaptation
  - Channel Inversion with Fixed Rate
- Capacity of Freq.-Selective Fading Channels

## Review of Last Lecture

- Scattering Function:  $s(\tau, \rho) = F_{\Delta t}[A_c(\tau, \Delta t)]$ 
  - Used to characterize  $c(\tau,t)$  statistically



- Multipath Intensity Profile
  - Determines average ( $T_M$ ) and rms ( $\sigma_{\tau}$ ) delay spread
  - Coherence bandwidth B<sub>c</sub>=1/T<sub>M</sub>



- Doppler Power Spectrum:  $S_c(\rho) = F[A_c(\Delta t)]$ 
  - Power of multipath at given Doppler

## Shannon Capacity

- Defined as the maximum MI of channel
- Maximum error-free data rate a channel can support.
- Theoretical limit (not achievable)
- Channel characteristic
  - Not dependent on design techniques

## Capacity of Flat-Fading Channels

- Capacity defines theoretical rate limit
  - Maximum error free rate a channel can support
- Depends on what is known about channel
- Fading Statistics Known
  - Hard to find capacity
- Fading Known at Receiver Only

$$C = \int_{0}^{\infty} B \log_{2}(1+\gamma)p(\gamma)d\gamma \le B \log_{2}(1+\gamma)$$

## Fading Known at Transmitter and Receiver

- For fixed transmit power, same as with only receiver knowledge of fading
- Transmit power S(y) can also be adapted
- Leads to optimization problem

$$C = \max_{S(\gamma): E[S(\gamma)] = \overline{S}} \int_{0}^{\infty} B \log_{2} \left( 1 + \frac{\gamma S(\gamma)}{\overline{S}} \right) p(\gamma) d\gamma$$

## Optimal Adaptive Scheme

Power Adaptation

$$\frac{S_{\gamma}}{\bar{S}} = \begin{cases} \frac{1}{5} - \frac{1}{\gamma} & \gamma \geq \frac{1}{5} \\ 0 & \text{els} \end{cases}$$

Capacity

$$\frac{R}{B} = \int_{\gamma_0}^{\infty} \log \left( \frac{\gamma}{\gamma_0} \right) p(\gamma) d\gamma.$$



## Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
  - Capacity is zero in Rayleigh fading
- Truncated inversion
  - Invert channel above cutoff fade depth
  - Constant SNR (fixed rate) above cutoff
  - Cutoff greatly increases capacity
    - Close to optimal

## Capacity in Flat-Fading





#### Log-Normal



# Frequency Selective Fading Channels

- For TI channels, capacity achieved by water-filling in frequency
- Capacity of time-varying channel unknown
- Approximate by dividing into subbands
  - Each subband has width B<sub>c</sub> (like MCM).
  - Independent fading in each subband
  - Capacity is the sum of subband capacities



## Main Points

- Fundamental capacity of flat-fading channels depends on what is known at TX and RX.
  - Capacity when only RX knows fading same as when TX and RX know fading but power fixed.
  - Capacity with TX/RX knowledge: variable-rate variablepower transmission (water filling) optimal
  - Almost same capacity as with RX knowledge only
  - Channel inversion practical, but should truncate
- Capacity of wideband channel obtained by breaking up channel into subbands
  - Similar to multicarrier modulation