Example Session for Supervised Classification

Andreas Borg, Murat Sariyar July 27, 2016

This document shows an example session for using supervised classification in the package *RecordLinkage* for deduplication of a single data set. Conducting linkage of two data sets differs only in the step of generating record pairs.

See also the vignette on Fellegi-Sunter deduplication for some general information on using the package.

1 Generating comparison patterns

In this session, a training set with 50 matches and 250 non-matches is generated from the included data set RLData10000. Record pairs from the set RLData500 are used to calibrate and subsequently evaluate the classifiers.

- > data(RLdata500)
- > data(RLdata10000)
- > train_pairs=compare.dedup(RLdata10000, identity=identity.RLdata10000,
- + n_match=500, n_non_match=500)
- > eval_pairs=compare.dedup(RLdata500,identity=identity.RLdata500)

2 Training

trainSupv handles calibration of supervised classificators which are selected through the argument method. In the following, a single decision tree (rpart), a bootstrap aggregation of decision trees (bagging) and a support vector machine are calibrated (svm).

- > model_rpart=trainSupv(train_pairs, method="rpart")
- > model_bagging=trainSupv(train_pairs, method="bagging")
- > model_svm=trainSupv(train_pairs, method="svm")

3 Classification

classifySupv handles classification for all supervised classificators, taking as arguments the structure returned by trainSupv which contains the classification model and the set of record pairs which to classify.

- > result_rpart=classifySupv(model_rpart, eval_pairs)
- > result_bagging=classifySupv(model_bagging, eval_pairs)
- > result_svm=classifySupv(model_svm, eval_pairs)

4 Results

4.1 Rpart

alpha error 0.000000

 $\mathbf{beta}\ \mathbf{error}\ 0.013392$

accuracy 0.986613

	N	Р	L
FALSE	123030	0	1670
TRUE	0	0	50

4.2 Bagging

alpha error 0.000000

beta error 0.001516

 $\mathbf{accuracy} \ 0.998485$

	N	Р	L
FALSE	124511	0	189
TRUE	0	0	50

4.3 SVM

alpha error 0.000000

 $\mathbf{beta}\ \mathbf{error}\ 0.002253$

 $\mathbf{accuracy} \ \ 0.997747$

	N	Р	$_{\rm L}$
FALSE	124419	0	281
TRUE	0	0	50