Department of Probability and Mathematical Statistics

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Daniel Jahn

Existence of Gibbs-Laguerre-Delaunay Tetrahedrizations

Point and empty sphere property

Geometrical interpretation

where for $p, q \in \mathbb{R}^3 \times S$

$$Prod(p, q) = ||p' - q'||^2 - p'' - q''.$$

Range condition

- *Range condition.* There exist constants ℓ_B , $n_B \in \mathbb{N}$ and $\delta_B < \infty$ such that for all $(\eta, x) \in \mathcal{E}$ there exists a finite horizon Δ satisfying: For every $x, y \in \Delta$ there exist ℓ open balls B_1, \ldots, B_{ℓ} (with $\ell < \ell_B$) such that
 - the set $\bigcup_{i=1}^{\ell} \bar{B}_i$ is connected and contains x and y, and
 - for each i, either diam $B_i < \delta_B$ or $N_{B_i}(x) < n_B$.

Stability

Stability. The hyperedge potential φ is called *stable* if there exists a constant $c_S \ge 0$ such that

$$H_{\Lambda,x}(\zeta) \geq -c_S \#(\zeta \cup \partial_{\Lambda}x)$$

for all $\Lambda \in \mathcal{B}_0, \zeta \in \mathcal{N}_{\Lambda}, \mathbb{X} \in \mathcal{N}_{cr}^{\Lambda}$.

Upper regularity

- Upper regularity. M and Γ can be chosen so that the following holds.
 - Uniform confinement: $\bar{\Gamma} \subset N_{cr}^{\Lambda}$ for all $\Lambda \in \mathcal{B}_0$ and

$$r_{\Gamma} := \sup_{\Lambda \in \mathcal{B}_0} \sup_{x \in \bar{\Gamma}} r_{\Lambda,x} < \infty$$

Uniform summability:

$$\mathbf{C}_{\Gamma}^{+} := \sup_{\mathbf{x} \in \bar{\Gamma}} \sum_{\eta \in \mathcal{E}(\mathbf{x}): \eta \cap \mathbf{C} \neq \emptyset} \frac{\varphi^{+}(\eta, \mathbf{x})}{\#(\hat{\eta})} < \infty,$$

where $\hat{\eta} := \{k \in \mathbb{Z}^3 : \eta \cap C(k) \neq \emptyset\}$ and $\varphi^+ = \max(\varphi, 0)$ is the positive part of φ .

Strong non-rigidity: $e^{z|C|}\Pi_C^z(\Gamma) > e^{c_\Gamma}$, where c_Γ is defined as in (U2) with φ in place of φ^+ .

M and Γ^A in \mathbb{R}^3 Creates a octahedral-tetrahedral honeycomb tessellation

Alternative upper regularity

- Alternative upper regularity. M and Γ can be chosen so that the following holds.
 - Lower density bound: There exist constants c, d > 0 such that $\#(\zeta) \geq c|\Lambda| - d$ whenever $\zeta \in N_f \cap N_\Lambda$ is such that $H_{\Lambda,x}(\zeta) < \infty$ for some $\Lambda \in \mathcal{B}_0$ and some $x \in \overline{\Gamma}$.
 - = (U2) Uniform summability.
 - Weak non-rigidity: $\Pi_C^z(\Gamma) > 0$.