Algebra liniowa

 Z_{12}

- 1. Czy wektor (3,0,3,-3) jest wektorem własnym przekształcenia $\phi: \mathbb{R}^4 \to \mathbb{R}^4$, $\phi((x,y,z,t)) = (x+z,x+t,x-t,t-z)$?
- 2. Czy wektor (6,1,3) jest wektorem własnym macierzy $A=\begin{bmatrix}5&0&-6\\-2&2&4\\3&0&-4\end{bmatrix}$? Czy macierz A jest diagonalizowalna? Wyznaczyć f(A), jeśli $f(x)=x^5-3x^4+4x^2+5x-6$.
- 3. Wyznaczyć wszystkie wartości i wektory własne macierzy $A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -3 & -2 \\ -1 & 5 & 4 \end{bmatrix}$. Czy A jest diagonalizowalna? Wyznaczyć wartości i wektory własne macierzy A^2 . Wyznaczyć (jeśli istnieja) stałe $p, q \in \mathbb{R}$, dla których zachodzi $A^4 = pA^2 + qA$.
- 4. Dane jest przekształcenie liniowe $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, $\phi((x,y,z)) = (x+y-z,2x+2y-2z,0)$. Wyznaczyć jądro i obraz tego przekształcenia oraz ich bazy. Znaleźć taką bazę B, by ϕ miało w tej bazie macierz w postaci kanonicznej Jordana. Wyznaczyć wzór przekształcenia ϕ^{100} oraz jego wartości i wektory własne.
- 5. Niech $x^8(x-3)^2$ będzie wielomianem charakterystycznym macierzy A. Jaka jest maksymalna liczba niezerowych wyrazów w macierzy J^5 , gdzie J postać kanoniczna Jordana macierzy A?
- 6. Dane jest przekształcenie liniowe $\psi: \mathbb{R}^5 \to \mathbb{R}^5$, $\psi((x,y,z,t,w)) = (x-y,x-y,t-w,-t,z+t-2w)$. Znaleźć taką bazę B, by ψ miało w tej bazie macierz w postaci kanonicznej Jordana.
- 7. Załóżmy, że wielomian charakterystyczny dla pewnej macierzy A jest postaci $(\lambda+3)^{12}$ i $\dim N_{-3}^{(4)}=12$. Czy jest możliwe, aby:
 - (a) $\dim N_{-3}^{(3)} = 8$, $\dim N_{-3}^{(2)} = 7$, $\dim N_{-3}^{(1)} = 3$;
 - (b) $\dim N_{-3}^{(3)} = 11$, $\dim N_{-3}^{(2)} = 9$, $\dim N_{-3}^{(1)} = 5$?

Jeśli jest to możliwe, to podać postać kanoniczną Jordana dla macierzy A.