School of Computing and Information Systems The University of Melbourne

COMP90049 Introduction to Machine Learning (Semester 1, 2021)

Workshop: Week 11

- 1. When do we use semi-supervised learning? What is self-training?
- 2. What is the logic behind active learning, and what are some methods to choose instances for the oracle?
- One of the strategies for Query sampling was query-by-committee (QBC). Using the equation below, which captures vote entropy, determine the instance that our active learner would select first.

$$x_{VE}^* = \underset{x}{\operatorname{argmax}} \left(-\sum_{y_i} \frac{V(y_i)}{C} log_2 \frac{V(y_i)}{C} \right)$$

Respectively y_i , $V(y_i)$, and C are the possible labels, the number of "votes" that a label receives from the classifiers, and the total number of classifiers.

classifier	Instance 1			Instance 2			Instance 3		
	y_1	y_2	y_3	y_1	y_2	y_3	y_1	y_2	y_3
\mathcal{C}_1	0.2	0.7	0.1	0.2	0.7	0.1	0.6	0.1	0.3
C_2	0.1	0.3	0.6	0.2	0.6	0.2	0.21	0.21	0.58
C_3	0.8	0.1	0.1	0.05	0.9	0.05	0.75	0.01	0.24
C_4	0.3	0.5	0.2	0.1	0.8	0.1	0.1	0.28	0.62

4. Given the following univariate dataset, calculate a statistical model based on the assumption that your data is coming from a normal distribution. Determine whether the instance x=1.2 is anomalous or not if we use the boxplot test?

$$X = \{2, 2.5, 2.6, 3, 3.1, 3.2, 3.4, 3.7, 4, 4.1, 4.8\}$$

5. Given the following univariate dataset, determine the outlier score for instances (x=0.5) and (x=4) using the following strategies:

 $Dataset = \{1, 1.05, 1.1, 1.15, 1.2, 1.21, 1.3, 1.4, 1.45, 1.5, 4.55, 5.6, 6.8, 7.58, 8.6, 9.7, 10.3, 11.4, 12.3, 13.5\}$

- (a) Inverse Relative density using 2-NN (Manhattan distance)
- (b) Distance to 2nd nearest neighbor (Manhattan distance)
- 6. In Assignment 1 we worked with the 'animals' dataset. Suggest a suitable method to detect anomalies among animal instances. Would you use a supervised, semi-supervised or unsupervised approach? Can you think of a way to make anomaly detection more reliable?