Coding Challenge 7

Challenge Situation

You're a Boeing Engineer and your job is to model the flight profile of a tiny model 737-800 max aircraft!

Luckily due to the nature of the aircraft we can make some simplifying assumptions...

- The model aircraft is falling down vertically out of the sky.
- Assume a uniform cross section
 - We're trying to learn ode45 not how to build an accurate drag polar
- Sea Level Conditions apply

Tasks:

- 1) Set an initial condition velocity
- 2) Set values for constants
- 3) Propagate freefall w/ drag for 20 seconds
 Use ode45 matlab function
- 4) Plot the velocity vs. time
- 5) Calculate the change kinetic energy vs. time
- 6) Plot the change in kinetic energy vs. time

Why were using ode45 => Drag

Drag Equation:

$$D = CD * .5 (\rho * V^2) * A$$

- Drag is a function of velocity
- Velocity changes due to drag

Values You May Need:

Mass = .3 kg

 $\rho = 1.225 \text{ kg/m}^3$

CD = 1.2

Cross Sectional Area = .0046 m²

Initial Velocity = 0 m/s

