ANÁLISE DAS CARACTERÍSTICAS ONDULATÓRIAS DA TÉCNICA DE BRUÇOS COM SNORKEL

Ana Conceição^{1,2}, António Silva^{3,2}, José Boaventura^{3,2}, João Freitas^{1,2}, Telmo Matos^{1,2}, Nuno Batalha ⁴, Victor Milheiro^{1,2} e Hugo Louro^{1,2}

¹Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Santarém, Portugal

² Centro de Investigação em Desporto, Saúde e Desenvolvimento Humano, Vila Real, Portugal

³Departamento de Ciências do Desporto, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal

⁴ Departamento de Ciências do Desporto, Universidade de Évora, Portugal

PALAVRAS CHAVE: Natação; Observação; Técnica de Bruços; Snorkel; Ondulação; Análise de Fourier.

Resumo: O objectivo do estudo consistiu em analisar em que medida é que a utilização do snorkel influencia a eficiência da onda céfalo-caudal, assim como as componentes do movimento ondulatório na técnica de bruços, pela análise de fourier e do número de strouhal. A amostra foi constituída por 8 nadadores portugueses do género masculino (21.25±6.73 anos de idade, 1.77±0.03 m de estatura; 71.14±12.39 kg; 14.89±6.41 %MG; 1.84±0.03 m de envergadura), especialistas na técnica de bruços, com elevado nível competitivo. O protocolo consistiu em realizar dois percursos máximos de 25m em nado global com snorkel ou válvula especifica para natação A $QUATRAINER^{@}$. Foi efectuada a análise cinemática (Ariel Performance Analysis System, Ariel Dynamics Inc., Califórnia, EUA) de um ciclo gestual completo, com uma frequência de 50 Hz. Recorreu-se ao método de digitalização em planos separados (aéreo e subaquático) e subsequente reconstrução pela aplicação do algoritmo 2D-DLT. A velocidade do deslocamento do centro de massa (CM) apresenta um valor médio de 0.91 m.s.-1 (DP= 0.30), no que diz respeito à distância que o nadador percorre, durante um ciclo completo de membros superiores, é em média de 1.22 m.c⁻¹ (DP=0.44), a frequência gestual foi de 45.34 ciclos por unidade de tempo (DP= 9.21). Em média o número de Strouhal foi igual a 0.53 com uma amplitude média de 0.12 m variando entre 0.08 m e 0.18 m . Na análise de Fourier (H1), o valor da frequência apresenta valores próximos de 0.78 Hz e em H2, a frequência apresenta valores médios de 1.56 Hz.

1. Introdução

A onda céfalo-caudal na técnica de bruços, tem vindo a ser explorada progressivamente^[1] Sanders *et al.* [2,3] investigaram o deslocamento da onda no sentido cefálo-caudal em bruços, concluindo que a percentagem de força contida na frequência fundamental do vértex da cabeça e dos ombros aumenta, à medida que os nadadores alteram a sua técnica de um estilo convencional para uma acção ondulatória, e que os nadadores com melhores performances, ondulam a sua anca espontaneamente.

Partindo do pressuposto que o padrão do movimento vertical dos segmentos corporais dos nadadores de elite é, em grande parte, definido por duas frequências fundamentais e seus

harmóni $\cos^{[2]}$, é sugerido que os nadadores de elite apresentam um padrão de movimento semelhante à uma onda harmóni $\cos^{[3,4,5]}$.

O recurso á válvula específica para natação ou snorkel (K4 b², Rome, Italy), designado por AQUATRAINER® tem vindo a ser um

instrumento muito utilizado por investigadores e avaliadores na comunidade científica em natação. A validade deste novo instrumento tem vindo a ser estudada desde os anos 90 no que diz respeito às manifestações mecânicas e cinemáticas que a utilização deste instrumento pode provocar na técnica de nado^[6,7,8,9].

O objectivo do estudo consistiu em analisar em que medida é que a utilização do snorkel influencia a eficiência da onda céfalo-caudal, assim como as componentes do movimento ondulatório na técnica de bruços, pela análise de fourier e do número de strouhal.

2. METODOLOGIA

2.1 AMOSTRA

8 nadadores portugueses do género masculino(21.25±6.73 anos de idade, 1.77±0.03 m de estatura; 71.14±12.39 kg; 14.89±6.41 %MG; 1.84±0.03 m de envergadura), especialistas na técnica de bruços, com elevado nível competitivo.

2.2 PROTOCOLO

O protocolo consistiu em realizar dois percursos máximos de 25m em nado global com snorkel ou válvula específica para natação AQUATRAINER^{®8} (figura 1). A partida foi realizada dentro de água e a ordem de realização foi efectuada de forma aleatória entre os nadadores pertencentes à amostra.

Figura 1: Válvula específica para natação Aquatrainer (Cosmed, Rome, Italy)

2.3 RECOLHA DOS DADOS

Duas câmaras registaram respectivamente imagens aéreas (Sony *Mini DV*) e subaquáticas (Sony *Mini DV*) no plano sagital, a 25 metros da parede testa de partida e a 10 metros da trajectória de deslocamento do bruçista. Foi efectuada a análise cinemática (Ariel Performance Analysis System, Ariel Dynamics Inc., Califórnia, EUA) de um ciclo gestual completo, com uma frequência de 50 Hz. A reconstrução das imagens utilizou-se um objecto de calibração com uma volumetria de 27 m³ e 12 pontos. Recorreu-se ao método de digitalização em planos separados (aéreo e subaquático) e subsequente reconstrução pela aplicação do algoritmo 2D-DLT(figura 2). Foi adoptado o modelo antropométrico de Zatsiorsky, adaptado por de Leva^[10].

Figura 2: Digitalização através do sistema cinemétrico da imagem da imagem APAS(Ariel Performance Analysis System)

2.4 PROCEDIMENTOS ESTATÍSTICOS

Na análise de Fourier $^{[2]}$, após a subtracção do valor médio do sinal (componente contínua), encontrar a noção vertical de qualquer ponto do corpo dos nadadores de modo a verificarmos os valores de ondulação. Os resultados compreendem ao coeficiente do seno e do co-seno das frequências fundamentais e dos seus respectivos harmónicos. Para estimar o espectro em frequência, H(f), de um determinado sinal contínuo no domínio do tempo, h(t), usa-se a transformada de Fourier definida por Brigham^[11]:

$$H(f) = \int_{-\infty}^{+\infty} h(t) e^{-j2\pi f t} dt$$

Figura 3: Espectro em frequência, H(f), de um determinado sinal contínuo no domínio do tempo

Para a estimação do espectro em frequência dos sinais discretos no domínio do tempo, h(kT), aplica-se a transformada discreta de Fourier (DFT – Discrete Fourier Transform) [11] definida por:

$$H(n) = \sum_{k=0}^{N-1} h(kT) e^{-\frac{j2\pi nk}{N}}$$

Figura 4:Espectro em frequência dos sinais discretos no domínio do tempo h(kT)

onde: a transformada discreta de Fourier H(n), com n a variar de 0 até N-1, é uma função discreta aproximada de H(f), onde N é o número de amostras do sinal e T o período de amostragem. Note-se que H(0) corresponde à T.F. em f=0 Hz, H(1) à T.F. em f=fs/N, e assim sucessivamente.

Utilizou-se o cálculo da DFT dos sinais em estudo para determinar as componentes principais em frequência, ou seja os harmónicos mais relevantes, de vários sinais recolhidos de um conjunto de nadadores.

3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

A velocidade do deslocamento do centro de massa (CM) apresenta um valor médio de 0.91 m.s. (DP= 0.30), no que diz respeito à distância que o nadador percorre, durante um ciclo completo de membros superiores, é em média de 1.22 m.c⁻¹ (DP=0.44), a frequência gestual foi de 45.34 ciclos por unidade de tempo (DP= 9.21).

Em média os nadadores demoram 1.31 segundos a concluíram um ciclo de nado com snorkel. Este valor é superior ao valor médio de 1.02s apresentado por D'Acquisto *et al.* [12] com brucistas e ao valor médio de 1.2s apresentado por Sanders *et al.* [2], com mariposistas, mas sem a utilização deste instrumento.

O número de Strouhal (St) é um número adimensional que traduz o padrão de movimento oscilatório, baseando-se na frequência gestual (Hz) multiplicada pela amplitude dos MI (dada pelo tornozelo) e dividida pela velocidade de nado. Em média o número de Strouhal foi igual a 0.53 com uma amplitude média de 0.12 m variando entre 0.08 m e 0.18 m.

Na análise de Fourier (H1), o valor da frequência apresenta valores próximos de 0.78 Hz e em H2, a frequência apresenta valores médios de 1.56 Hz.

O período de ondulação (quadro 1) em H1 demonstra uma ligeira variação entre nadadores, sendo que o sujeito 2 é aquele que precisa de mais tempo até que seja formada a onda (1.49 s); e o sujeito 4 (1.08 s) aquele cuja onda se forma mais rapidamente. Estes resultados de H1 são semelhantes aos dos de H2, onde se verifica que o sujeito 2 (0.75 s) é o que demora mais tempo até que seja formada a onda e, o sujeito 4 (0.54 s) aquele em que mais rapidamente se forma a oscilação.

Quadro 1 - Período de ondulação (s) no primeiro e segundo harmónico (H1 e H2) para todos os nadadores

Segmento Corporal								
	Suj 1	Suj 2	Suj 3	Suj 4	Suj 5	Suj 6	Suj 7	Suj 8
Todos	1.32	1.49	1.35	1.08	1.28	1.30	1.25	1.27
Segmento Corporal								
	Suj 1	Suj 2	Suj 3	Suj 4	Suj 5	Suj 6	Suj 7	Suj 8
Todos	0.66	0.75	0.68	0.54	0.64	0.65	0.63	0.63

A amplitude de movimento (quadro 2) nos vários segmentos produzido pelo sinal original foi bastante superior à amplitude de ondulação proveniente da análise de fourier (entre duas a quatro vezes superior), o que se verificou também com Sanders *et al.*^[3] . De referir que este valor superior, no sinal original, ocorre uma vez que o coeficiente de fourier é equivalente a metade do deslocamento, a partir da posição de equilíbrio até à máxima ondulação ^[3].

Quadro 2- Amplitude (m) dos movimentos dos nadadores em estudo de H1+H2.

Segmento Corporal	Vértex	Cervical	Ombro	Tronco	Anca	Joelho	Tornozelo	Dedo do Pé
X ± DP	0.71±0.59	0.28±0.15	0.17±0.07	0.04±0.01	0.02±0.01	0.10±0.03	0.12±0.02	0.15±0.04

Uma elevada percentagem da potência total da onda, está contida na frequência fundamental de Fourier (H1) para a cervical, ombro e joelho, o que poderá significar que a amplitude da cervical até ao joelho, correspondem a fases importantes para o movimento sinusoidal.

4. CONCLUSÕES

Através deste estudo podemos concluir que a utilização do snorkel influencia a eficácia da técnica de nado, como podemos verificar com os resultados cinemáticos e ondulatórios.

5. Referências

- [1] Vilas-Boas JP, Cunha P, Figueiras T, Ferreira M, Duarte J. (1997). *Movement analysis in simultaniously swimming technique*. In: Daniel K, Hoffman U, Klauck J (eds). ölner Schwimmsporttage. Symposiumsbericht Sport Fahneman Verlag. Bockenem;95-103.
- [2]Sanders RH, Cappaert, JM, Devlin, RK.(1995). Wave characteristics of butterfly swimming. Journal of Biomechanics; 28(1): 9-16.
- [3] Sanders R, Cappaert JM, Pease DL.(1998). Wave characteristics of Olympic breaststroke Swimmers. Journal of Applied Biomechanics; 14(1):40-51.
- [4] Ungerechts BE (1982). A comparison of the movements of the rear parts of dolphins and butterfly swimmers. In: A.P. Hollander et al., Biomechanics and medicine in swimming. Champaign. Human Kinetics; 215-221.
- [5] Thornton KM. (1984). Learning from the the Olympians: Butterfly stroke rhythm. Swimming World; 28-30.
- [6] Oxford, SW; James, R; Price, M; Payton (2010). Coordination Changes during a maximal effort 100m Short Course Breaststroke. Proceedings of: XIth International Symposium for Biomechanics and Medicine and Swimming, Oslo, 64.
- [7] McLaughling JE, King GA, Howley ET, Basset DR Jr, Ainsworth BE. (2001). *Validation of the Cosmed K4b*² *portable metabolic system*. International Journal Sports Medicine; 22:280-284.
- [8] Keskinen KL, Rodriguez FA, Keskinen OP (2003) Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming. Scand Journal Medicine Science Sports;13:322–329.
- [9] Barbosa, T.;Silva, AJ; Reis, A.; Costa, M.; Garrido, N.; Policarpo, F.; Reis. V.(2010). *Kinematical changes in swimming front crawl and breakstroke with the Aquatrainer snorkel*. European Journal of Applied Phsiology.
- [10] de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of Biomechanics; 29: 1223-1230.
- [11] Brigham, EO (1974). *The Fast Fourier Transform* (Englewood Cliffs, NJ: Prentice-Hall).
- [12] D'Acquisto LJ, Costill DL, Gehlsen GM, Young WT & Lee G.(1988). Breaststroke economy, skill and performance: study of breaststroke mechanics using a computer based "Velocity-video" system. Journal of Swim Research; 4: 9-13.