Importing Libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df = pd.read_csv("FineTech_appData.csv")
```

In [3]:

```
df.head()
```

Out[3]:

screen	age	hour	dayofweek	first_open	user	
idscreen,joinscreen,Cycle,product_review,Sca	23	02:00:00	3	2012-12-27 02:14:51.273	235136	0
joinscreen,product_review,product_review2,Sc	24	01:00:00	6	2012-12-02 01:16:00.905	333588	1
Splash,Cycle,	23	19:00:00	1	2013-03-19 19:19:09.157	254414	2
product_review,Home,product_review,Loan3,Fir	28	16:00:00	4	2013-07-05 16:08:46.354	234192	3
idscreen,joinscreen,Cycle,Credit3Container,S	31	18:00:00	1	2013-02-26 18:50:48.661	51549	4
•						4

In [4]:

```
df.isnull().sum()
```

Out[4]:

user	0
first_open	0
dayofweek	0
hour	0
age	0
screen_list	0
numscreens	0
minigame	0
used_premium_feature	0
enrolled	0
enrolled_date	18926
liked	0
dtype: int64	

```
In [5]:
```

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	user	50000 non-null	int64
1	first_open	50000 non-null	object
2	dayofweek	50000 non-null	int64
3	hour	50000 non-null	object
4	age	50000 non-null	int64
5	screen_list	50000 non-null	object
6	numscreens	50000 non-null	int64
7	minigame	50000 non-null	int64
8	used_premium_feature	50000 non-null	int64
9	enrolled	50000 non-null	int64
10	enrolled_date	31074 non-null	object
11	liked	50000 non-null	int64
		`	

dtypes: int64(8), object(4)
memory usage: 4.6+ MB

In [6]:

df.describe()

Out[6]:

	user	dayofweek	age	numscreens	minigame	used_premium
count	50000.000000	50000.000000	50000.00000	50000.000000	50000.000000	5000
mean	186889.729900	3.029860	31.72436	21.095900	0.107820	1
std	107768.520361	2.031997	10.80331	15.728812	0.310156	1
min	13.000000	0.000000	16.00000	1.000000	0.000000	1
25%	93526.750000	1.000000	24.00000	10.000000	0.000000	(
50%	187193.500000	3.000000	29.00000	18.000000	0.000000	(
75%	279984.250000	5.000000	37.00000	28.000000	0.000000	(
max	373662.000000	6.000000	101.00000	325.000000	1.000000	
4						+

In [7]:

df2 = df.copy()

Droping string data for data visualization

```
In [8]:
```

```
df2.drop(["user","first_open","screen_list","enrolled_date"],axis=1,inplace=True)
```

```
In [9]:
```

```
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 8 columns):
    Column
                          Non-Null Count Dtype
_ _ _
    _____
                          _____
 0
    dayofweek
                          50000 non-null int64
 1
    hour
                          50000 non-null object
                          50000 non-null int64
 2
    age
                          50000 non-null int64
 3
    numscreens
 4
    minigame
                          50000 non-null int64
 5
    used_premium_feature 50000 non-null int64
 6
    enrolled
                          50000 non-null int64
                          50000 non-null int64
    liked
dtypes: int64(7), object(1)
memory usage: 3.1+ MB
```

Converting datatype of hour to int

```
In [10]:
df2['hour'] = df2.hour.str.slice(1,3).astype(int)
In [11]:
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 8 columns):
    Column
                          Non-Null Count Dtype
---
    -----
                           -----
 0
    dayofweek
                          50000 non-null int64
 1
    hour
                          50000 non-null int32
 2
                          50000 non-null int64
    age
 3
    numscreens
                          50000 non-null int64
 4
                          50000 non-null int64
    minigame
 5
    used_premium_feature 50000 non-null int64
 6
    enrolled
                          50000 non-null int64
 7
    liked
                          50000 non-null int64
dtypes: int32(1), int64(7)
memory usage: 2.9 MB
```

In [12]:

```
plt.figure(figsize=(16,9))
sns.heatmap(df2.corr(),annot=True,cmap="coolwarm")
plt.title("Heatmap using Correlation",fontsize=25)
```

Out[12]:

Text(0.5, 1, 'Heatmap using Correlation')

The heatmap above shows there is little correlation between 'numscreens' and 'enrolled'. It means that those customers saw more screen they are taking premium app. There is a slight correlation between 'minigame' with 'enrolled' and 'used_premium_feature'. The slightly negative correlation between 'age' with 'enrolled' and 'numscreens'. It means that older customers do not use the premium app and they don't see multiple screens.

In [13]:

```
sns.pairplot(df2, hue='enrolled',diag_kws={'bw': 0.2})
```

Out[13]:

<seaborn.axisgrid.PairGrid at 0x1bcda5d0a08>

In pair plot we can see, the maximum features have two values like 0 and 1 and orange dots show the enrolled customer's features

In [14]:

```
plt.figure(figsize=(16,9))
features=df2.columns
for i,j in enumerate(features):
    plt.subplot(3,3,i+1)
    plt.title("Histogram of {}".format(j),fontsize=15)
    bins=len(df2[j].unique())
    plt.hist(df2[j],bins=bins,rwidth=0.8,edgecolor="y",linewidth=2)
plt.subplots_adjust(hspace=0.5)
```


In the above histogram, we can see minigame, used_primium_feature, enrolled, and like they have only two values and how they distributed. The histogram of 'dayofweek' shows, on Tuesday and Wednesday slightly fewer customer registered the app. The histogram of 'hour' shows the less customer register on the app around 10 AM. The 'age' histogram shows, the maximum customers are younger. The 'numsreens' histogram shows the few customers saw more than 40 screens.

In [15]:

```
sns.set()
plt.figure(figsize=(12,9))
plt.title("correlation with 'enrolled'",fontsize=18)
df3 = df2.drop(["enrolled"],axis=1)
ax= sns.barplot(df3.columns,df3.corrwith(df2.enrolled))
ax.tick_params(labelsize=15,labelrotation=20,color="k")
```


We saw the heatmap correlation matrix but this was not showing correlation clearly but you can easily understand which feature is how much correlated with 'enrolled' feature using the above barplot. The 'numscreens' and 'minigame' is strongly positively correlated with 'enrolled' feature than other feature. The 'hour', 'age' and 'used_premium_feature' are strongly negatively correlated with the 'enrolled' feature.

Now, convert date data into timestamp

```
In [19]:
```

```
df4 = df2.copy()
```

In [22]:

```
df4.head()
```

Out[22]:

	dayofweek	hour	age	numscreens	minigame	used_premium_feature	enrolled	liked
0	3	2	23	15	0	0	0	0
1	6	1	24	13	0	0	0	0
2	1	19	23	3	0	1	0	1
3	4	16	28	40	0	0	1	0
4	1	18	31	32	0	0	1	1

In [16]:

```
from dateutil import parser
```

In [17]:

```
df["first_open"] = [parser.parse(i) for i in df["first_open"]]
```

In [23]:

```
df["enrolled_date"] = [parser.parse(i) if isinstance(i,str) else i for i in df["enrolle
d_date"]]
```

In [25]:

```
df['hour'] = df.hour.str.slice(1,3).astype(int)
```

```
In [26]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 12 columns):
    Column
                          Non-Null Count Dtype
    -----
                          -----
 0
                          50000 non-null int64
    user
    first_open
                          50000 non-null datetime64[ns]
 1
                          50000 non-null int64
 2
    dayofweek
 3
    hour
                          50000 non-null int32
 4
                          50000 non-null int64
    age
 5
    screen_list
                          50000 non-null object
                          50000 non-null int64
    numscreens
 7
    minigame
                          50000 non-null int64
    used_premium_feature 50000 non-null int64
    enrolled
                          50000 non-null int64
 9
                          50000 non-null datetime64[ns]
 10 enrolled date
 11 liked
                          50000 non-null int64
dtypes: datetime64[ns](2), int32(1), int64(8), object(1)
memory usage: 4.4+ MB
In [42]:
df5 = df.copy()
In [43]:
df5.head()
```

Out[43]:

screen_lis	age	hour	dayofweek	first_open	user	
idscreen,joinscreen,Cycle,product_review,ScanP.	23	2	3	2012-12-27 02:14:51.273	235136	0
joinscreen,product_review,product_review2,Scan.	24	1	6	2012-12-02 01:16:00.905	333588	1
Splash,Cycle,Loa	23	19	1	2013-03-19 19:19:09.157	254414	2
product_review,Home,product_review,Loan3,Finan.	28	16	4	2013-07-05 16:08:46.354	234192	3
idscreen,joinscreen,Cycle,Credit3Container,Sca.	31	18	1	2013-02-26 18:50:48.661	51549	4
>						4

We'll subtract enrolled date from first_open to check how much time enrolled in the premium feature app after registration

In [44]:

```
df5.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 13 columns):
    Column
                          Non-Null Count Dtype
    -----
                          -----
 0
                          50000 non-null int64
    user
                          50000 non-null datetime64[ns]
 1
    first_open
 2
                          50000 non-null int64
    dayofweek
 3
    hour
                          50000 non-null int32
 4
                          50000 non-null int64
    age
 5
    screen_list
                          50000 non-null object
                          50000 non-null int64
    numscreens
 7
    minigame
                          50000 non-null int64
    used_premium_feature 50000 non-null int64
    enrolled
                          50000 non-null int64
 9
 10 enrolled date
                          50000 non-null datetime64[ns]
 11 liked
                          50000 non-null int64
 12 time to enroll
                          50000 non-null float64
dtypes: datetime64[ns](2), float64(1), int32(1), int64(8), object(1)
memory usage: 4.8+ MB
In [46]:
df5["time to enroll"] = (df5['enrolled_date']-df5["first_open"]).astype('timedelta64
[h]')
In [51]:
df5["time to enroll"].unique()
Out[51]:
array([0.])
```

In [48]:

```
plt.hist(df5['time to enroll'].dropna())
```

Out[48]:


```
In [57]:
```

```
plt.hist(df5['time to enroll'].dropna(), range = (0,100))
```

Out[57]:

In [58]:

```
df5.loc[df['time to enroll'] > 48, 'enrolled'] = 0
```

we'll drop 'time to enroll', 'enrolled_date', 'first_open' feauture as they are not correlated to determine result

```
In [60]:

df5.drop(columns = ['time to enroll', 'enrolled_date', 'first_open'], inplace=True)
```

As next step we are going to import screen list, make them into columns and assign 0 and 1 according to screen usuage

```
In [61]:
```

```
df_screen_list =pd.read_csv("top_screens.csv").top_screens.values
```

In [62]:

```
df_screen_list
```

Out[62]:

In [69]:

```
df5['screen_name'] = df['screen_list'].astype(str)+','
```

In [70]:

```
df5.screen_name.unique()
```

Out[70]:

array(['idscreen, joinscreen, Cycle, product_review, ScanPreview, VerifyDateOfB irth, VerifyPhone, VerifyToken, ProfileVerifySSN, Loan2, Settings, ForgotPassword, Login, ',

'joinscreen,product_review,product_review2,ScanPreview,VerifyDateOf Birth,location,VerifyCountry,VerifyPhone,VerifyToken,Institutions,Loan2,', 'Splash,Cycle,Loan,', ...,

'joinscreen,product_review,product_review2,ScanPreview,VerifyCountry,VerifyPhone,VerifyToken,VerifyDateOfBirth,location,Home,',

'Cycle, Home, product_review, product_review, product_review3, ScanPreview, VerifyDateOfBirth, location, VerifyCountry, VerifyPhone, VerifyToken, product_review, product_review, VerifySSN, product_review, SelectInstitution, BankVerification, product_review, product_review, ',

'product_review,ScanPreview,VerifyDateOfBirth,VerifyCountry,Profile VerifySSN,ProfilePage,ProfileEducation,ProfileEducationMajor,Saving2Amount,Saving8,ProfileMaritalStatus,ProfileChildren,Saving2,Saving9,Saving7,Saving6,Saving5,Home,Loan2,'],

dtype=object)

```
In [72]:
```

```
df5.columns
```

```
Out[72]:
```

In [73]:

```
for screen_name in df_screen_list:
    df5[screen_name] = df5.screen_list.str.contains(screen_name).astype(int)
    df5['screen_list'] = df5.screen_list.str.replace(screen_name+",", "")
```

In [75]:

```
df5.head()
```

Out[75]:

numscreens	screen_list	age	hour	dayofweek	user	
1:	$joinscreen, product_review, Scan Preview, Verify To$	23	2	3	235136	0
10	joinscreen,product_review,product_review2,Scan	24	1	6	333588	1
;		23	19	1	254414	2
40	$product_review, Home, product_review, Referral Con$	28	16	4	234192	3
32	joinscreen,ScanPreview,VerifySSN,Home,SelectIn	31	18	1	51549	4

5 rows × 69 columns

→

In [77]:

```
df5.shape
```

Out[77]:

(50000, 69)

In [78]:

```
df5.loc[0,"screen_list"]
```

Out[78]:

'joinscreen,product_review,ScanPreview,VerifyToken,ProfileVerifySSN,Settings,ForgotPassword,'

In [79]:

```
df5['remain_screen_list'] = df5.screen_list.str.count(",")
```

```
In [81]:
```

```
df5.drop(columns=["screen_list",'screen_name'],axis=0,inplace=True)
```

In [82]:

In [83]:

In [86]:

In [87]:

In [89]:

```
df5.shape
```

Out[89]:

(50000, 50)

In [91]:

```
plt.figure(figsize=(12,9))
sns.heatmap(df5.corr(),annot=True,linewidth=3)
```

Out[91]:

<matplotlib.axes._subplots.AxesSubplot at 0x1bce347c388>

Data Preprocessing

```
In [92]:
Clean_fintech_data = df5.copy()

In [93]:
target = Clean_fintech_data["enrolled"]
fin_t_data = Clean_fintech_data.drop(columns= 'enrolled',axis=1)

In [94]:
target.count()
Out[94]:
```

50000

```
In [95]:
fin_t_data.shape
Out[95]:
(50000, 49)
In [96]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(fin_t_data,target,test_size=0.2,random
_state=0)
In [99]:
y_test.count()
Out[99]:
10000
In [100]:
# take User ID in another variable
train_userID = x_train['user']
x_train.drop(columns= 'user', inplace =True)
test_userID = x_test['user']
x_test.drop(columns= 'user', inplace =True)
C:\Users\shubh\anaconda3\lib\site-packages\pandas\core\frame.py:3997: Sett
ingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy
  errors=errors,
In [ ]:
Feature Scalling
In [104]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x train sc = sc.fit transform(x train)
x_test_sc = sc.transform(x_test)
In [105]:
```

from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

In [106]:

```
from sklearn.linear_model import LogisticRegression
lr_model = LogisticRegression(random_state = 0)
lr_model.fit(x_train, y_train)
y_pred_lr = lr_model.predict(x_test)
accuracy_score(y_test, y_pred_lr)
```

C:\Users\shubh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.
py:940: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown i
n:

https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression

extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

Out[106]:

0.7505

In [107]:

```
cm_lr_pt2 = confusion_matrix(y_test, y_pred_lr)
sns.heatmap(cm_lr_pt2, annot = True, fmt = 'g')
plt.title("Confussion Matrix", fontsize = 20)
```

Out[107]:

Text(0.5, 1, 'Confussion Matrix')

In [108]:

```
final_result = pd.concat([test_userID, y_test], axis = 1)
```

In [109]:

```
final_result['predicted result'] = y_pred_lr
print(final_result)
```

	user	enrolled	predicted result
11841	239786	1	1
19602	279644	1	1
45519	98290	0	0
25747	170150	1	1
42642	237568	1	1
• • •			
25091	143036	1	0
27853	91158	1	1
47278	248318	0	0
37020	142418	1	1
2217	279355	1	1

[10000 rows x 3 columns]

In []: