ساختمان داده و الگوریتم ها

مبحث سیزدهم: درخت دودویی جستجو

> سجاد شیرعلی شهرضا پاییز 1402 شنبه، 27 آبان 1402

اطلاع رساني

• بخش مرتبط كتاب براى اين جلسه: 12

نقشه راهما

روز افكر من اين است وبمه شب سخم كه چرا فافل از احوال دل خويشتم از كيا آمده ام آمد نم ببر چه بود به كيا مى روم آخر نمايى وطنم «رَحِمَ اللّهُ إِمْراً عَلِمَ مِن أينَ وَفَى أينَ وَ إلى أينَ»

درخت دودویی جستجو

د.د.ج. چیست و چگونه از آن استفاده میکنیم؟

Here are some data structures that can store objects like 5

Here are some data structures that can store objects like 5

(aka, **nodes** with **keys**)

Sorted Arrays

Linked Lists

$$+EAD \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 7 \rightarrow 2$$

Here are some data structures that can store objects like

(aka, nodes with keys)

Sorted Arrays

O(n) INSERT/DELETE: first, find the relevant element (via SEARCH) and move a bunch of elements in the array

O(log n) SEARCH: use binary search to see if an element is in A

Linked Lists

$$+EAD \rightarrow \boxed{3} \rightarrow \boxed{5} \rightarrow \boxed{1} \rightarrow \boxed{4} \rightarrow \boxed{7} \rightarrow \boxed{2}$$

Here are some data structures that can store objects like

(aka, **nodes** with **keys**)

Sorted Arrays

O(n) INSERT/DELETE: first, find the relevant element (via SEARCH) and move a bunch of elements in the array

O(log n) SEARCH: use binary search to see if an element is in A

Linked Lists

O(1) INSERT: just insert the element at the head of the linked list

O(n) SEARCH/DELETE: since the list is not necessarily sorted, you need to scan the list (delete by manipulating pointers)

BINARY SEARCH TREE MOTIVATION

OPERATION	SORTED ARRAY	UNSORTED LINKED LIST
SEARCH	O(log(n))	O(n)
DELETE	O(n)	O(n)
INSERT	O(n)	O(1)

BINARY SEARCH TREE MOTIVATION

OPERATION	SORTED ARRAY	UNSORTED LINKED LIST	BST (WORST CASE)
SEARCH	O(log(n))	O(n)	O(n)
DELETE	O(n)	O(n)	O(n)
INSERT	O(n)	O(1)	O(n)

BINARY SEARCH TREE MOTIVATION

OPERATION	SORTED ARRAY	UNSORTED LINKED LIST	BST (WORST CASE)	BST (BALANCED)
SEARCH	O(log(n))	O(n)	O(n)	O(log(n))
DELETE	O(n)	O(n)	O(n)	O(log(n))
INSERT	O(n)	O(1)	O(n)	O(log(n))

(Balanced) Binary Search Trees can give us the best of both worlds!

مرور اصطلاحات درخت

تعریف درخت دودویی جستجو

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

جستجو در درخت دودویی جستجو

Compare **4** with **root**: 4 is smaller → go left!

Compare **4** with **root**: 4 is smaller → go left!

Compare **4** with **3**: 4 is larger → go right!

Compare **4.5** with **root**: 4.5 is smaller \rightarrow go left!

4.5 is smaller \rightarrow go left!

4.5 is larger \rightarrow go right!

SEARCH in BSTs

What happens if we search for a non-existent key? search for 4.5 6

Compare **4.5** with **root**: 4.5 is smaller \rightarrow go left!

Compare **4.5** with **3**: 4.5 is larger → go right!

Compare **4.5** with **4**: 4.5 is larger \rightarrow go right!

Oops, we hit **NIL**!
We can just return the last node seen before we fell off the tree (4)

SEARCH in BSTs

Compare **4.5** with **root**: 4.5 is smaller \rightarrow go left!

Compare **4.5** with **3**: 4.5 is larger → go right!

Compare **4.5** with **4**: 4.5 is larger → go right!

Oops, we hit **NIL**! We can just return the last node seen before we fell off the tree (4)

What's the runtime?

SEARCH in BSTs

Compare **4.5** with **root**: 4.5 is smaller \rightarrow go left!

Compare **4.5** with **3**: 4.5 is larger \rightarrow go right!

Compare **4.5** with **4**: 4.5 is larger → go right!

Oops, we hit **NIL**! We can just return the last node seen before we fell off the tree (4)

Runtime of **SEARCH** = **O(height)**

درج در درخت دودویی جستجو


```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
      return
```

Example: Insert 4.5


```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
       return
```

Example: Insert 4.5


```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
       return
```



```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
       return
```

What's the runtime?

Example: Insert 4.5


```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
      return
```

Runtime of **INSERT** = runtime of **SEARCH**


```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
      return
```

Runtime of INSERT = runtime of SEARCH = O(height)

حذف از درخت دودویی جستجو


```
DELETE(root, key):
    x = SEARCH(root, key)
    if key = x.key:
        ...delete x...
```



```
DELETE(root, key):
    x = SEARCH(root, key)
    if key = x.key:
        ...delete x...
```

This is a bit more complicated... we need to consider 3 cases


```
DELETE(root, key):
    x = SEARCH(root, key)
    if key = x.key:
        CASE 1: x is a leaf
        CASE 2: x has 1 child
        CASE 3: x has 2 children
```

CASE 1: x is a leaf

CASE 2: x has 1 child

CASE 1: x is a leaf

Just delete x!

CASE 2: x has 1 child

CASE 1: x is a leaf

Just delete x!

CASE 2: x has 1 child

CASE 1: x is a leaf Just delete x!

CASE 2: x has 1 child

CASE 1: x is a leaf Just delete x!

CASE 2: x has 1 child Move its child up!

CASE 1: x is a leaf Just delete x!

CASE 2: x has 1 child

CASE 1: x is a leaf Just delete x!

CASE 2: x has 1 child

Move its child up!

CASE 1: x is a leaf Just delete x!

CASE 2: x has 1 child

Move its child up!

CASE 3: x has 2 children

Replace x with its successor

CASE 1: x is a leaf Just delete x!

CASE 2: x has 1 child Move its child up! 5 This triangle is a cartoon for a subtree

CASE 1: x is a leaf CASE 2: x has 1 child

Details for CASE 3:

This maintains the BST property!

How do we find the immediate successor?

CASE 3: x has 2 children Replace x with its successor aka next biggest thing after x

CASE 1: x is a leaf CASE 2: x has 1 child

Details for CASE 3:

This maintains the BST property!

How do we find the immediate successor? **SEARCH for 3 in the subtree under 3.right**

CASE 3: x has 2 children Replace x with its successor aka next biggest thing after x

CASE 1: x is a leaf CASE 2: x has 1 child

Details for CASE 3:

This maintains the BST property!

How do we find the immediate successor? **SEARCH for 3 in the subtree under 3.right**

How do we remove it when we find it?

CASE 1: x is a leaf CASE 2: x has 1 child

Details for CASE 3:

This maintains the BST property!

How do we find the immediate successor? **SEARCH for 3 in the subtree under 3.right**

How do we remove it when we find it?

If [3.1] has 0 or 1 children, do CASE 1 or 2.

CASE 1: x is a leaf CASE 2: x has 1 child

Details for CASE 3:

This maintains the BST property!

How do we find the immediate successor? **SEARCH for 3 in the subtree under 3.right**

How do we remove it when we find it?

If [3.1] has 0 or 1 children, do CASE 1 or 2.

What if [3.1] has two children?

CASE 1: x is a leaf CASE 2: x has 1 child

Details for CASE 3:

This maintains the BST property!

How do we find the immediate successor? **SEARCH for 3 in the subtree under 3.right**

How do we remove it when we find it?

If [3.1] has 0 or 1 children, do CASE 1 or 2.

What if [3.1] has two children? It doesn't! Otherwise it's not the immediate successor.

زمان اجرای درج، جستجو، و حذف از درخت دودویی جستجو

INSERT and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

INSERT and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)**

INSERT and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)**

Sometimes SEARCH takes O(log n)

INSERT and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)**

would take O(n) here

5

6

But this is also a valid

BST, and SEARCH

Sometimes SEARCH takes O(log n)

INSERT and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)**

What do we do? We want fast SEARCH/INSERT/DELETE but sometimes the height might be big (O(n))!!!

We like balanced trees... will introduce

SELF-BALANCING BINARY SEARCH TREE!

o a valid EARCH (n) here

2

6

8

7

Sometimes SEARCH takes O(log n)

