Ayudantía Teoría de Integración

August 17, 2025

Contents

1	Ayudantia 14 de Agosto												3
2	Ejercicio 11 (Guia) (i) .												3
3	Ejercicio 11 (Guia) (ii) .												3
	Ejercicio 11 (Guia) (i) .												

0.1 Ayudantia 14 de Agosto

0.1.1 Ejercicio 11 (Guia) (i)

- (A) Para ver que C es cerrado, veremos que cada C_n lo se. Notamos que si $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ tales que $f(x) \coloneqq frac13x$ y $g(x) \coloneqq frac23 + frac13$ son continuas y $C_n = f(C_{n-1}) \cup g(C_{n-1}) \Rightarrow C_n$ es compacto \Rightarrow es cerrado, $\forall n$
- (B) Para ver que es no numerable, vamos a construir una inyeccion $\Phi: X \to X$ con X no numerable. Sea entonces $X := 0, 2^{\mathbb{N}}$ y dado $w \in X$, definimos:

$$C_n(w) := \frac{C_0}{3^n} + \sum_{k=1} n \frac{w_k}{3^k}$$

Si
$$n = 2$$
: $C_2(w) = [0, \frac{1}{9}] + \frac{w_1}{3} + \frac{w_2}{9} = \begin{cases} [0, \frac{1}{9}] \\ [\frac{2}{3}, \frac{7}{9}] \\ [\frac{2}{9}, \frac{1}{3}] \\ [\frac{8}{9}, 1] \end{cases}$

Basicamente, $C_n(w)$ referencia siempre a alguno de los 2^n intervalos de C_n . Luego, es claro que para w fijo, $C_{n+1}(w) \subseteq C_n(w) \subseteq C_n(*)$ y $diam(C_n(w)) \xrightarrow{n \to \infty} 0$. Por el Teorema de interseccion de Cantor: $|\cap_{n \in \mathbb{N}} C_n(w)| = 1$. Sea C(w) tal elemento. Luego, por (*), $C(w) \in C$.

Sea entonces $\Phi:0,2^{\mathbb{N}}\to C$ tal que $\Phi(w)\coloneqq C(w)$ y Φ es inyectiva (basta ver que pasa si $w^{(1)},w^{(2)}$ difieren en una coordenada). Como $|0,2^{\mathbb{N}}|=C$, se concluye.

(C) Si suponemos que existe $(a,b)\subset C$. SPG, a=0. Consideremos $n\in\mathbb{N}$ suficientemente grande.

$$3^{-n} < b \Rightarrow (0, b) \nsubseteq [0, \frac{1}{3^n}] \cup [\frac{2}{3^n}, \frac{3}{3^n}] \subseteq C_n$$

Luego, $z \in (0, b): z \notin C_n, nz \notin C$ (Contradiccion).

0.1.2 Ejercicio 11 (Guia) (ii)

Por (i), sabemos que $C=\overline{C}=\partial C$. El resultado se sigue de lo siguiente: Si (X,d) espacio metrico y $A\subseteq XD=\partial A$ (donde D son los puntos de discontinuidad de X_A .

0.1.3 Ejercicio 11 (Guia) (iii)

Consideremos entonces 1_C . Veamos sus integrales superior e inferior.

$$\underline{\int_0^1} 1_C(x) dx = \sup \{ L(P, 1_C) : P \text{ particion de } [0, 1] \}$$

$$L(P, 1_C) = \sum m_i(x_{i+1} - x_i) = 0$$
 siempre, $\forall P$.

Por lo tanto,
$$\int_0^1 1_C(x) dx = 0$$
.

Ahora, para la integral superior:

$$\overline{\int_0^1} 1_C(x) dx = \inf \{ U(P, mathds 1_X) : P \text{ particion} \}$$