MATH 8254 Homework V

David DeMark

2 (well, 8) April 2018

1	١
L	,

a.)

4.)

I'm only convinced that this is even true if

5.)

a.)

Prompt. Determine the Čech cohomology of the structure sheaf of X, the affine line with doubled origin with respect to the usual open affine cover \mathcal{U} consisting of two open affine subsets isomorphic to \mathbb{A}^1_k .

Computation. We name our two open affines U_0 and U_1 with each $U_i \cong \operatorname{Spec} k[x] = \mathbb{A}^1_k$. We have that $C^0(\mathcal{U}, \mathcal{O}_X) = \mathcal{O}_X(U_1) \otimes \mathcal{O}_X(U_2) = k[x] \oplus k[x]$. We also have only one nontrivial twofold intersection of the sets in our cover and thus an element of $C^1(\mathcal{U}, \mathcal{O}_X)$ is uniquely determined by its U_{01} component, that is $C^1(\mathcal{U}, \mathcal{O}_X) = \mathcal{O}_X(U_{01}) = k[x, x^{-1}]$. We now compute our only nontrivial differential d^0 on an arbitrary element $(g_0(x), g_1(x)) \in C^0(\mathcal{U}, \mathcal{O}_X)$ and have that $d^0: (g_0(x), g_1(x)) = g_1(x) - g_0(x)$ as our restriction maps are both the standard localization maps $x \mapsto x$. Thus, $H^0(\mathcal{U}, \mathcal{O}_X) = \ker d^0$, which is the diagonal subring $D(k[x] \oplus k[x]) = \{(g(x), g(x)) : g(x) \in k[x]\} \cong k[x]$. We also have that (as $C^2 = 0$) $H^1(\mathcal{U}, \mathcal{O}_X) = \operatorname{coker} d^0 = k[x, x^{-1}]/k[x]$ as an Abelian group (or module over the ring of global sections k[x]).

Prompt. Determine the Čech cohomology of the structure sheaf of \mathbb{P}^1_k with respect to the usual open affine cover \mathcal{U} consisting of two open affine subsets $D_+(x_0), D_+(x_1)$ isomorphic to \mathbb{A}^1_k .

Computation. We keep our setup from before, only changing our restriction map ρ_{01}^1 on U_1 to the map $x\mapsto x^{-1}$. We have still that $C^0(\mathcal{U},\mathcal{O}_X)=\mathcal{O}_X(U_1)\otimes\mathcal{O}_X(U_2)=k[x]\oplus k[x]$ and $C^1(\mathcal{U},\mathcal{O}_X)=\mathcal{O}_X(U_{01})=k[x,x^{-1}]$. We now compute our only nontrivial differential d^0 on an arbitrary element $(g_0(x),g_1(x))\in C^0(\mathcal{U},\mathcal{O}_X)$ and have that $d^0:(g_0(x),g_1(x))=g_1(x^{-1})-g_0(x)$, with the x^{-1} in the argument of g_1 forced by our restriction map ρ_{01}^1 . We note that if g_1 is homogenous of positive degree, then $g_1(x^{-1})$ is homogenous of negative degree, while $g_0(x)$ is of nonnegative degree. Thus, only degree 0 elements are in the kernel of d^0 , that is $\ker d^0=H^0(\mathcal{U},\mathcal{O}_X)=k$. We claim that d^0 is a surjection. Indeed, $C_1(\mathcal{U},\mathcal{O}_X)$ is the ring of Laurent polynomials in k; we let $g(x)=a_mx^m+\cdots+a_{-n}x^{-n}$ be an arbitrary element. Then, we let $g_1(x)=\sum_{k=0}^n a_{-k}x^k$ and $g_0(x)=\sum_{k=1}^m -a_kx^k$ and have that $d^0(g_0,g_1)=g$, thus showing that $H^1(\mathcal{U},\mathcal{O}_X)=0$.