

运动控制技术研究院 Institute Of Motion Control

从物理层,数据链路层,应用层讨论工业 控制器硬件接口的可靠性

	物理层	方向	上层协议	物理层特性	带宽	- 距离	隔离	数据链路层特性
		7	1/41/4		1,1-3-2	,		.,
串行	PCI DI	半双工 单工		单端信号 单端信号	1064M	工控机内 300米	无隔离 光耦隔离	奇偶校验 滤波
		単工 単工			1K	150米	7 - 11 - 11 - 1	滤波
	DO PCTe	年工 全双工	<u> </u>	单端信号 差分信号	ļ	/	光耦隔离	CRC校验
			 		4000M	工控机内	无隔离	
	USB	半双工	 	差分信号		3米	无隔离	CRC校验
	PS2	单工	VZ EE IH IN EE AA	单端信号		1米	无隔离	
	AI	単工	通用模拟量输入	单端信号				滤波
			正余弦编码器	差分信号			无隔离	滤波
	AO	单工	通用模拟量输出	单端信号				滤波
			VGA	单端信号		3米	无隔离	滤波
	RS232	全双工		单端信号	19.2K	10米		根据应用层协议
	RS485	半双工	绝对值编码器 等	差分信号	100k-10M	1000米-10米		根据应用层协议
		全双工	200协议		500K	50米*16	隔离	奇偶校验
			300协议	1	2M	50米*16	隔离	CRC校验
			gLink-I	1	6.25M	50米*16	隔离	CRC校验
			脉冲方向输出	差分信号	10M	10米	无隔离	滤波
	RS422		ABZ编码器输入		8M	10米	无隔离	滤波
			手轮脉冲输入	1	500K	10米	高速光耦隔离	滤波
			PWM输出	单端/差分	10M	10米	高速光耦隔离	滤波
			绝对值编码器	差分信号	100k-10M	1000米-10米	无隔离	CRC校验
	CAN	全双工		差分信号	1 M	40米	隔离	CRC校验
		全双工	标准以太网 LAN		100M/1000M	100米	变压器隔离	CRC校验
	ethern		EHMI	* 差分信号	1000M	40米	变压器隔离	CRC校验
	et		EtherCAT		100M	100米	变压器隔离	CRC校验
			gLink-II	ĺ	1000M	100米	变压器隔离	CRC校验+环网

RS422特性

- **干扰信号一般以共模的形式存在**,差分信号在共模输入电压范围内只以差分信号的差值作为01判断,因此,差分信号传输可以有效消除小于共模输入电压范围的共模干扰。
- 左图的共模输入电压范围为光耦的隔离电压(一般为3500V)
- 右图的RS422接收芯片共模输入电压范围为-7V~+7V。另外,为了保证两端的共模输入电压范围尽可能小,**务必连接两端芯片的参考地**

驱动器控制信号线LG—GND

■ 下图中的LG连到了0V(下图蓝色虚线),导致GUC出现启动概率性 异常,应该连到GND(下图绿色)

驱动器控制信号线屏蔽双绞

- RS422差分信号双绞,包括控制器发出的DIR+\DIR-,PULSE+\PULSE-, A+\A-, B+\B-, C+\C-必须正负双绞
- ALM、RESET、ENABLE信号必须与OGND或OVCC双绞,DAC信号必须与GND双绞,三菱驱动器的24V和0V无需从外部引入,直接从DB25取用24V
- 24V IO电源域还剩下一个ALM,5V信号域还剩下一个GND,由于双绞线都是成对出现的,因此结果变成了ALM和GND双绞在了一起。。

DB	25 Pin			CN1连接器-三菱	
				42	EM2
			法拉力 .	43	LSP
			连接在一起	44	LSM
				46	DOCOM
驱动器报警	ALM	2	双绞	48	ALM
24V电源	OVCC	14	从纹	20	DICOM
		15			
驱动器报警复位	RESET	10	双绞	19	RES
电源地	OGND	1		43	LSP
驱动器允许	ENABLE	3	双绞	15	SON
电源地	OGND	1	从权	42	EM2
数字地	GND	10	双绞	3	LG
数字地	GND	10	MS	3	LG
步进方向输出+	DIR+	9	双绞	35	NP
步进方向输出-	DIR-	22	从权	36	NG
步进脉冲输出+	PULSE+	23	双绞	10	PP
步进脉冲输出	PULSE-	11	从以	11	PG
编码器输入A+	A+	4	双绞	5	LAR
编码器输入A-	A-	17	M以	4	LA
编码器输入B+	B+	5	双绞	7	LBR
编码器输入B-	B-	18	MEX	6	LB
编码器输入C+	C+	6	双绞	9	LZR
编码器输入C-	C-	19	从以	8	LZ

Page 5

错误的屏蔽-猪尾巴

- 拆开一段,确认双绞
- 拆开连接器,确认屏蔽

正确的屏蔽

要点

- 从电缆的连接器接线部看到的连接器针脚排列图
- 在对CN1用连接器进行配线时,请将屏蔽电缆的外部导体可靠的连接到接地板 上并安装到连接器的外壳上。

1径的3倍 1抗120欧

驱动器控制信号线屏蔽双绞

- 等环网GNM模块,EFT屏蔽不良500V VS 屏蔽良好2000V
- https://zhuanlan.zhihu.com/p/351640513
- 电容耦合不平衡,共模干扰变为差模干扰
- 磁力线引入感应电流,共模干扰变为差模干扰
- 屏蔽--抵抗外部干扰,抑制内部干扰
- 双绞-抵抗外部干扰,抑制内部干扰,在驱动器线缆上,抑制24V双绞线的干扰影响GND信号

屏蔽线良好接地

- 电柜背板推荐使用导电的镀锌板
- 参考下图将屏蔽线良好接地
- 特别是针对动力线、编码器线、大功率电磁阀线(使用屏蔽线缆)、EHMI线缆、推荐使用下图所示屏蔽接地,可以提高抗干扰效果
- S7-300屏蔽电缆为1000米,非屏蔽电缆为600米,推荐使用屏蔽双绞线
- S7-200数字量扩展模块输入 屏蔽 500米, 未屏蔽 300米
- S7-200数字量扩扎模块输出 屏蔽 500米,未屏蔽 150米

屏蔽接地

(1) 连接主电源电缆,电机动力电缆和抱闸电缆。

② 使用卡箍将电缆固定于屏蔽板上。

https://www.beckhoff.com/en-en/products/i-o/accessories/further-accessories/assembly/zb85xx.html

德克斯弗包气

结构解析

屏蔽接地端子和接地部件

EMC 屏蔽接地端子, 大范围

MSKL

EMC 屏蔽接地端子,单只

SKL / RCL|SKL

EMCH型导轨的屏蔽接地端子 SFZ|SKL/SF|SKL/SFS|SKL

EMC 汇流排屏蔽接地端子

PFSZ|SKL / PFS|SKL / PFSZ2|SKL / PFS2|SKL

EMC 螺钉固定的屏蔽接地端子

LFZ|SKL / LFZ-U|SKL / LF|SKL

EMC 屏蔽接地端子 (可插拔)

PFKZ|SKL / PFK|SKL / PFKZ2|SKL / PFK2|SKL

EMC 电路板屏蔽接地端子

PCB|SKL

EMC - 终端接地端子

STFZ|SKL/STFZ2|SKL STFZ-U|SKL / STFZ-SP|SKL / STFZ2-SP|SKL

服务工具箱

EMC ServiceBox multi **EMC ServiceBox**

EMC 接地组合

RLFZ-(M) - EMC具有张紧力的屏蔽夹 SCIRLFZ(-M) - EMC 适用DIN C导轨的屏蔽夹 SFIRLFZ-EMC 适用DIN H导轨的屏蔽夹

EMC 接地组合对于电缆引入原件

KEL-EMC-Z / KEL-EMC-PF / KEL-EMC / KVT-EMC

EMC 屏蔽接地端子

SK/SKZ/SKS

EMC 接地组合

KAFM

EMC 对于ZL应变消除板屏蔽板

ZL|SB-EMC

编织铜带

MB

不同屏蔽的实验结果

数据线滤波器

■驱动器的编码器线缆和驱动器与控制器之间的控 制线缆推荐使用磁环滤波器

阻抗 [Ω]						
10 MHz ~ 100 MHz	100 MHz ~ 500 MHz					
80	150					

外形尺寸图 (ZCAT3035-1330)

电磁阀浪涌吸收器

■继电器、液压阀推荐使用合适的浪涌吸收 器

另外,在DC继电器上安装二极管。

最大电压:继电器等驱动电压的4倍以上 最大电流:继电器等驱动电流的2倍以上

驱动器EMC滤波器

布线原则

- 高电压与低电压分开走线
- 大电流与小电流分开走线
- 高频信号线应独立走线
- 分开走线推荐并行走线保持30CM距离,交叉走线呈90度交叉

DI-DO

- 左图为高电平有效,PNP
- 右图为低电平有效, NPN
- 数字量输入输出,数字量产生量化误差
- 左图DI<5V 关断-无效 DI>15V 导通-有效
- 右图DI>19V 关断-无效 DI<9V 导通-有效
- PLC规范, 0-无效, 1-有效
- 历史原因,GTS,低电平有效,0-低电平有效,1-无效,高阻

DI干扰

- 信号幅度和宽度
- 干扰信号电平幅度介于5和15V
- 干扰信号宽度大于10us

PE接地

系统上下电次序

■ 系统上电次序: 先给控制系统(弱电)供电,再给外部设备(强电) 供电

控制系统中的CPU DSP FPGA等IC在上电后有配置过程,在配置时间内引脚信号属于不可控状态,根据内部电路结构不同,可能是弱上拉电平、弱下拉电平、高阻状态。而接口电路没有配置时间,会先开始工作。因此在配置时间外部IO可能有短时间的有效状态,导致外部设备短暂动作。

系统下电次序: 先断外部设备(强电)供电,再断控制系统(弱电)供电

断电时供电电压是逐渐降低,CPU DSP FPGA等IC在电压降低到一定值时会先停止工作,引脚不可控,接口电路可能此时还在工作,就有可能导致外部设备短暂动作。

系统上下电次序

■ 系统上下电瞬间在输出端口可能会出现有效窄脉冲或电平变化

系统上下电次序

■ 无法保证上电顺序时,使用继电器使能电路

浮地和通地

- 当外壳保护地和内部数字地不连接时,会电位不相同,此时在非预期
- 的位置连通(例如USB或VGA),在连接处就会有较大的电流通过, 导致损坏接口器件或端子。
- 解决方案:设备工作时不插USB和VGA;控制器的保护地PE端子和 内部数字地SG端子直接连接,形成PE和SG等电位,这样会导致控制 器内部抗干扰性能减弱。

浮地和通地

- 现场问题为编码器干扰
- 左图为正常工作波形,右图为绿色信号与PE短路

出厂检查

- ■断电情况下用万用表通断档检查0V、PE、SG、IO0V之间的通断
- ■通电情况下用万用表测量24V、0V、PE、SG、IO0V之间的压差

■ 逐一确认压差来源,确认是否正常,对比有问题 和没有问题设备的区别

示波器

- 对工业设备的**浮地系统**引入额外接地通路导致被测系统受扰动**→**断开 三芯插头的PE;
- 潜在危险,尽量不要测量24V以上电压

Page 30

示波器使用

- 减小地环路面积
 - 地线连接到信号源附近的参考地
 - 地线尽量短

定位问题思路-最小化系统

- 逐级取下可能引入问题的连接器,比如DO,COM,USB,MPG,GLINK-I,LAN等等,一直到整个系统只剩下控制器,驱动器,显示器,电源这4个能显示问题的部分,而且这4个部分能够完全独立与机
- 在逐级最小化系统过程中,问题消失时,需要判断是哪一个步骤导致 了问题消失

LOGO

床设备

谢谢

