Motor Pilot 的一些參數控制

在 Advance Configuration 內有 Speed PID (速度 PID)、Torque PID (轉矩 PID)、Flux PID (磁通 PID)、Set Flux reference、State Observer (OBSERVER) 和 PLL 參數

- ▶ 先說明 State Observer with PLL 是一種 Sensorless FOC (Field Oriented Control) 中估算轉子 位置與速度 的方法,總共有 C1 、C2、 PLL Kp 、 PLL Ki 可以調整。
- 1. Observer c1 / c2:

d/dt [BEMF_alpha, BEMF_beta] = -c1 * [BEMF_alpha, BEMF_beta] + c2 * (V_alpha_beta - R * I_alpha_beta - L * dI_alpha_beta/dt)

參數名稱	功能	調大效果	調小效果
C1	決定 BEMF 動態的衰減速度	收斂更快,可能不穩定	收斂慢但穩定
C2	決定 BEMF 估算時對輸入	追蹤更敏銳,噪聲變大	追蹤平滑但慢
	電壓與電流響應的增益		

2. PLL Kp / Ki : θ _est_dot = ω _est = Kp * Phase_Error + Ki * \int (Phase_Error)

參數名稱	功能	調大效果	調小效果
Кр	調整響應速度	角速度追蹤更快,容易抖動	追蹤慢但平滑
Ki	調整穩態誤差	積分收斂更快,穩態誤差小	積分慢,穩態誤差大但穩定

▶ Speed Pi regulator 的 PI 控制器公式

speed_error = speed_ref - speed_feedback

PI_output = (Kp * speed_error) + (Ki * \(\) speed_error)

▶ 為了方便 MCU 運算會調整公式為以下

PI_output = (Kp * speed_error) / Kp_Divisor + (Ki * speed_error_integral) / Ki_Divisor

參數名稱	功能	調大效果	調小效果
SPEED Kp	比例增益,調整速度追蹤快慢	追蹤更快,容易震盪	追蹤慢,穩定
SPEED Ki	積分增益,消除穩態誤差	積分更快,易積分飽和	積分慢,穩定性好
Kp Divisor	縮放 SPEED Kp 用,數值大 →	Kp 實際變小	Kp 實際變大
	Kp 實際變小		
Ki Divisor	縮放 SPEED Ki 用,數值大 →	Ki 實際變小	Ki 實際變大
	Ki 實際變小		

➤ Torque (Iq) PI regulator: Torque Iq 代表直接控制馬達的「扭矩」

Iq error = Iq ref - Iq feedback

Vq_output = (Torque_Kp * Iq_error) + (Torque_Ki * \(\) Iq_error)

▶ Vq_output → 最後會經過 Park 反變換 → 產生對應的 αβ 軸電壓 → 轉成 PWM Duty

參數名稱	作用	調大效果	調小效果
Torque Kp	比例增益,控制 lq 誤差響照	lq 誤差快速收斂,易震盪	lq 誤差慢收斂, 穩定
Torque Ki	積分增益,消除穩態誤差	積分快,穩態誤差小, 可能震盪	積分慢,穩定 但可能有殘餘誤差

➤ Flux (Id) PI 公式:

Id_error = Id_ref - Id_feedback

Vd = (Flux_Kp * Id_error) + (Flux_Ki * ʃld_error)

▶ Vd → 輸出給 Park 反變換 → 最終產生 PWM Duty 控 Vd 軸

參數名稱	功能	調大效果	調小效果
Flux Kp	控制磁通量誤差收斂速度	收斂快,可能震盪	收斂慢,穩定
Flux Ki	消除磁通穩態誤差	積分快,穩態誤差小	積分慢,穩定性好
		,易震盪	
Id_ref	設定目標磁通量 (電流值)	>0 強磁 → 大扭矩	視應用需求
		0 弱磁 → 節能	
		< 0 弱磁擴速	

全表格

參數名稱	功能	調大效果	調小效果
Ob C1	決定 BEMF 動態的衰減速度	收斂更快,可能不穩定	收斂慢但穩定
Ob C2	決定 BEMF 估算時對輸入	追蹤更敏銳,噪聲變大	追蹤平滑但慢
	電壓與電流響應的增益		
PLL Kp	調整響應速度	角速度追蹤更快,容易抖動	追蹤慢但平滑
PLL Ki	調整穩態誤差	積分收斂更快,穩態誤差小	積分慢,穩態
			誤差大但穩定
SPEED Kp	比例增益,調整速度追蹤快慢	追蹤更快,容易震盪	追蹤慢,穩定
SPEED Ki	積分增益,消除穩態誤差	積分更快,易積分飽和	積分慢,穩定好
Kp Divisor	縮放 SPEED Kp 用,數值大	Kp 實際變小	Kp 實際變大
	→Kp 實際變小		
Ki Divisor	縮放 SPEED Ki 用,數值大	Ki 實際變小	Ki 實際變大
	→ Ki 實際變小		
Torque Kp	比例增益,控制 lq 誤差響應	 Iq 誤差快速收斂,易震盪	Iq 誤差慢收斂,
Torque Kp	速度	9 跃足仍处状然 勿辰盈	穩定
Torquo Ki	 積分增益,消除穩態誤差	積分快,穩態誤差小,	積分慢,穩定但
Torque Ki		可能震盪	可能有殘餘誤差
Flux Kp	控制磁通量誤差收斂速度	收斂快,可能震盪	收斂慢,穩定
Flux Ki	消除磁通穩態誤差	積分快,穩態誤差小	積分慢,穩定好
		,易震盪	
Id_ref	設定目標磁通量 (電流值)	>0 強磁 → 大扭矩	視應用需求
		0 弱磁 → 節能	
		< 0 弱磁擴速	

各參數調整時的比對數據建議

速度 PID (Speed PID)	速度参考值 (Speed Ref, rpm)速度回授值 (Speed Feedback, rpm)速度誤差 (Speed Error)	- Speed Feedback 是否能快速追上 Speed Ref - 是否穩定收斂、不振盪、不 Overshoot - Speed Error 收斂至接近 0
轉矩 PID (Torque PID, Iq PI)	1 q 参考值(q Ref, A) 2 q 回授值(q Feedback, A) 3 Vq 電壓指令(Vq, V)	- lq Feedback 是否能快速跟随 lq Ref - Vq 是否平滑、不飄、不飽和(飽和 = Vq 接近母線電壓) - 無明顯高頻震盪
磁通 PID (Flux PID, ld PI)	1 Id 参考值(Id Ref, A) 2 Id 回授值(Id Feedback, A) 3 Vd 電壓指令(Vd, V)	- Id Feedback 是否能穩定保持在 Id Ref (如 Id Ref=0 時,Id Feedback ≈ 0) - Vd 是否平滑 - 弱磁(Id Ref < 0)時,Id 是否能穩定負值
磁通參考值 (Flux Reference, ld Ref)	同上 ld Ref / ld Feedback	- 確認 設定的 ld Ref → ld Feedback 是否 能穩定跟隨 - 弱磁時,ld Feedback 能穩定負值,不出 現抖動
狀態觀察器參數 (State Observer c1/c2)	估算轉子角度 θ_est估算轉速 ω_estBEMF 估算值 (BEMF α/β)	- θ_est / ω_est 是否平滑、連續、不亂跳 - BEMF 估算是否穩定、無亂震 - θ_est 與實際馬達反應一致(例如突然轉 速改變時 θ _est 反應快)
PLL 參數 (PLL Kp / Ki)	 θ_est (PLL 輸出角度) ω_est (PLL 輸出轉速) Phase Error (若有圖表) 	- θ_est 是否平滑(不要突然跳變) - ω_est 能正確追蹤速度變化 - Phase Error 收斂快,震盪小

各參數在 CODE 中的位置 → 在 inc/ drive_parameters.h 内

```
Observer C1 C2 + PLL KP KI
/* State observer constants */
#define GAIN1
                                          -20908
#define GAIN2
                                          31563
/* Only in case PLL is used, PLL gains */
#define PLL KP GAIN
                                           637
#define PLL KI GAIN
                                           15
SPEED KP KI ,KP KI divisor
#define SPEED UNIT U 01HZ → 10
/* Speed PID parameter dividers */
#define PID SPEED KP DEFAULT
                                            2260/(SPEED UNIT/10)
/* Workbench compute the gain for 01Hz unit*/
```

```
#define PID SPEED KI DEFAULT
                                                3/(SPEED UNIT/10)
/* Workbench compute the gain for 01Hz unit*/
#define PID SPEED_KD_DEFAULT
                                                0/(SPEED UNIT/10)
/* Workbench compute the gain for 01Hz unit*
/* Speed PID parameter dividers */
#define SP KPDIV
                                               4096
#define SP KIDIV
                                               16384
Torque KP KI ,FLUX KP KI
/* Gains values for torque and flux control loops */
#define PID TORQUE KP DEFAULT
                                                2991
#define PID TORQUE KI DEFAULT
                                                3571
#define PID TORQUE KD DEFAULT
                                                100
#define PID FLUX KP_DEFAULT
                                                2991
#define PID FLUX KI DEFAULT
                                                3571
#define PID FLUX KD DEFAULT
                                                100
/* Torque/Flux control loop gains dividers*/
#define TF_KPDIV
                                               4096
#define TF KIDIV
                                               16384
#define TF KDDIV
                                               8192
實際影響結構位置
➤ Observer C1 C2 → MotorControl/sto pll speed pos fdbk.h 內的
> typedef struct
int16 t hC1;
                      /* State observer constant c1 */
int16 t hC2;
                      /* State observer constant c2 */
STO PLL Handle t;
▶ PLL KP KI → MotorControl/pid regulator.h 内的
> typedef struct
int16 t hKpGain;
                       /* State observer constant c1 */
int16 t hKiGain;
                         /* State observer constant c2 */
} PID Handle t;
```

參考資料:https://wiki.st.com/stm32mcu/wiki/STM32MotorControl:STM32 MC Motor Pilot - Start-up guide