Interpretability in Artificial Intelligence

SOUL course proposal, Milton Lin

Course Description

As artificial intelligence models like chatGPT become increasingly capable and ubiquitous, the need to understand their inner workings intensifies. Imagine an autonomous vehicle taking an unexpected turn or a medical AI diagnosing a life-altering condition; the importance cannot be overstated. Despite their widespread applications, our grasp of these models remains alarmingly limited. This course is designed to survey this gap. A special emphasis is placed on mechanistic interpretability, a subfield that rigorously investigates AI networks at the neuronal level.

The course will engage students through rigorous reading assignments, interactive discussions, and a hands-on project, providing multiple avenues for grasping the complexities and nuances of interpretability in AI. Papers from researchers/groups in this area, such as AnthropicAI, OpenAI, and MIT's Tegmark Group, form the cornerstone of our course.

Course Topics

Various research papers and articles to be distributed during the course.

- 1. Introduction to Interpretability in AI [1 week] and basics of transformed language models. [1 Week]
- 2. Mechanistic Interpretability [4 weeks], example papers include, [2], and a good collection of articles is collected here.
- 3. Concept-based Interpretability [1 week] example papers include, [1].

Required Background

Students are expected to have a basic understanding of calculus, linear algebra, probability theory, and coding. A reading list will be provided to be completed before the commencement of the course.

Assessment

Student assessment will be based on both weekly reading assignments and a course-long project. Students can opt for either a coding project or a written project, aimed at deeply exploring a sub-field of interpretability. The grade distribution will be as follows: Weekly Readings: 60%, Course-long Project: 40%.

References

- [1] Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt, Discovering latent knowledge in language models without supervision, 2022.
- [2] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter, *Zoom in: An introduction to circuits*, Distill (2020). https://distill.pub/2020/circuits/zoom-in.