# Classification ML Model

Predictive Analysis for Customer Retention in Brazilian E-Commerce

# Index

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Conclusions
- Business Recommendations

# Business Understanding



# Problem Definition

Predictability of customer loyalty to the e-commerce

# Project Objective

Making predictions about customer repurchase trends using ML

### Marketplace Benchmarking

• ¹Customers who make repeat purchases buy 67% more than first-time buyers.

- <sup>1</sup>For marketplace sellers, the repeat purchase ratio is 20-40%
- <sup>2</sup> The retention rate for Walmart and Target over 16 months is 14%, for Temu it's 28%, and for Amazon it's 56%.

### Marketplace Benchmarking

<sup>3</sup> Approximately 90% of transactions involve disintermediation after the first purchase.

4 Less priority on delivery speed and more on delivery reliability.

• <sup>4</sup> Importance of free shipping and discounts, and retention programs.

<sup>5</sup> Mercado Livre: Brazilian Marketplace Example

Good coupon policy.

Good customer communication policy.

Good free shipping policy.



# Data Understanding

# Olist Database Schema



#### Tables Selection

#### **Customers**



No Missing Values

#### **Reviews**



review\_comment\_title 88.3% missing values review\_comment\_message 58.7% missing values

#### **Orders**



Order\_delivered\_carrier\_date 1.8% missing values Order\_delivered\_customer\_date 3.0% missing values



No Missing Values

#### **Payments**



**No Missing Values** 





#### Difference in Dates (Days)





#### Payment Value by No of Installments



#### Payment Value by No of Installments

**Insights** 

600



order\_id

character varying (50)



Nº of Installments

11121314151617182021222324

# Data Preparation

# Star Schema Building



T dim\_payments

FK order id payment\_installments payment\_sequential payment\_type payment\_value

#### olist\_order\_dataset

- ORDER\_ID (Unique)

#### olist\_order\_items

- ORDER\_ID (Repeated)
- ORDER\_ITEM\_ID (Each row represents a product)

### Data Hierarchization

#### fact\_order

- ORDER\_ID (Unique)
- Product information aggregated by ORDER\_ID

#### features table

- CUSTOMER\_UNIQUE\_ID (Unique)
- Order information aggregated by CUSTOMER\_UNIQUE\_ID
- Orders with "delivered" status only

### **TARGET**

- 1- A temporal separation was made in the data, in order to create a 'past' moment and a 'future' moment.
- 2- We chose the date 05/31/2017 to be the dividing point
- 3 We created an SQL query that builds the predict\_next\_order\_delivered table.

- 4 The granularity of this table is each customer in the Olist database who made a purchase up to 05/31/2017.
- 5 The TARGET variable ('retention') receives the value 0 if the customer who purchased up to 05/31/2017 did not buy again after that date, and the value 1 if they did buy again...
- 6 The remaining columns are the features that describe the behavior of these customers.

Note: The first order was placed on 09/04/2016 and the last one on 10/17/2018.

### Features Table Preview

| Customer   | Retention | Products | Types of<br>Products | Freight | Avg<br>Waiting<br>Days | Avg Delivery<br>Compliance<br>Days | Avg<br>Installments | Avg_<br>Review | Day/Night | Week/Wee<br>kends | Payment<br>Type | State           |
|------------|-----------|----------|----------------------|---------|------------------------|------------------------------------|---------------------|----------------|-----------|-------------------|-----------------|-----------------|
| client_123 | 1         | 5        | 3                    | 35.00   | 7                      | 2                                  | 2                   | 4.5            | day       | weekdays          | credit_car<br>d | sp_rj_mg        |
| client_456 | 0         | 2        | 2                    | 18.50   | 10                     | 1                                  | 1                   | 3.0            | night     | weekend           | boleto          | other_sta<br>te |
| client_789 | 1         | 1        | 1                    | 12.00   | 5                      | 3                                  | 3                   | 5.0            | day       | weekdays          | credit_car<br>d | sp_rj_mg        |
| client_abc | 0         | 3        | 2                    | 25.00   | 8                      | 0                                  | 1                   | 4.0            | day       | weekdays          | debit_card      | other_sta<br>te |

No retention: 97% Retention: 3%

# Correlation for Feature Selection

#### Spearman Correlation



# Modelling

# Clustering

**Customer Segmentation** 

### K-Means Methodology

Feature Selection

- Various feature combinations across multiple iterations
- Features related to customer characteristics, such as location and spending habits

Data
Preprocessing

- One-hot encoding
- Scaling numerical features to the 0-1 range

Cluster Analysis

• Elbow method and Silhouette score

Challenges

- High cardinality in categorical variables (K-Modes for future reference)
- Monetary value distribution: Highly skewed

# Cluster Analysis

#### Snake plot



### Cluster Analysis

#### Long-Lapsed Spenders

Cluster 0

#### Characteristics:

- · Smallest segment
- Low spending
- · Long inactivity

#### Marketing Strategy:

 Evaluate if the effort to re-engage them is cost-effective

#### New Value Spenders

Cluster 1

#### Characteristics:

- · Largest segment
- Recent purchases

#### **Marketing Strategy:**

 Onboarding and Welcome campaigns

#### Premium Installment Spenders

Cluster 2

#### Characteristics:

- High Spending
- Comfortable with spreading out payments

#### **Marketing Strategy:**

- Offer flexible payment options
- Premium products

#### Reactivation-Ready Spenders

Cluster 3

#### **Characteristics:**

 Recent buyers but not brand new

#### **Marketing Strategy:**

Re-Engagement campaigns

# Classification

### Random Forest Methodology

#### Feature Selection

- Various feature combinations across multiple iterations
- Features that could impact customer's likelihood to make a repeat purchase

#### Data Preprocessing

- One-hot encoding
- Numerical imputation for average score feature
- Pipeline to avoid data leakage

#### **Model Training**

- Train/ Test split
- RandomSearchCV (K-fold = 10) trained on the training dataset with Recall score and then evaluated on the independent test dataset

#### Challenges

- Introducing bias through mean and median imputation (Other imputation for future reference)
- Imbalanced class

### RF Retention Analysis



| Train Recall | Test Recall |
|--------------|-------------|
| 0.68         | 0.64        |



| Test Set | Recall | Precision |  |  |
|----------|--------|-----------|--|--|
| 0        | 0.43   | 0.97      |  |  |
| 1        | 0.64   | 0.03      |  |  |

### Retention Analysis



0.1

0.0

0.2

0.3

0.4

0.5

0.6

### LR - Retention Analysis



| Test Set | Recall | Precision |
|----------|--------|-----------|
| 0        | 0.57   | 0.97      |
| 1        | 0.49   | 0.03      |



| Train Recall | Test Recall |
|--------------|-------------|
| 0.57         | 0.49        |

# Conclusions

# Conclusion: Key Takeaways



Imbalanced Data Impact

The dataset's imbalance caused the model to favor the majority class, affecting its performance.



Missing Data Challenges

Absence of data limited the model's ability to learn comprehensive patterns, contributing to performance constraints.



Best Performance Model

Random Forest performed better than Logistic Regression for this case scenario.



+ Retention Data

To predict the next order more accurately, more retention data was needed.

# Conclusion: The diamond customers

True Positive = 41 customers

The model detected correctly 41 customers that purchased again.

These customers are very important because they represent direct revenue to the business and must be nurtured by the marketing department.

# Conclusion: Possible hidden opportunities

False Positive = 1189 customers

The model detected that 1189 customers purchased again, but actually they didn't.

Even though this detection is incorrect, it's important to conduct a cost analysis in order to potentially run campaigns to attract these customers.

# Conclusion: Black Friday Insights

Orders at BF = 1176

Number of customers that purchased before the time split (31/05/2017) and purchased again at BF



2 Customers

Based on the numbers above, it is possible to see that Black Friday is an excellent tool for a massive injection of revenue at one time.

However, it did not prove to be a good tool for increasing customer retention.

# Business Recommendations

The client needs to increase the customer retention rate in order to have a Classification Model with better performance metrics.

# Some recommendations based on client data



**Customer Segments** 

 Use the information from the clusters to apply marketing campaigns adapted to each type of customer.



Logistic improvements

- Work with sellers to improve logistic KP1s (On-time delivery rate)
- Create "free freight" campaigns



Loyalty programs

Create loyalty
 programs to
 prevent customers
 from bypassing the
 marketplace and
 buying directly
 from the Seller

# Bibliographic References

- 1 https://salesduo.com/blog/customer-retention-on-amazon/
- <sup>2</sup> https://www.earnestanalytics.com/insights/temus-retention-grows-over-time-leads-walmart-trails-amazon
- <sup>3</sup> <a href="https://mackinstitute.wharton.upenn.edu/wp-content/uploads/2021/03/Gu-Grace\_Technology-and-Disintermediation-in-Online-Marketplaces.pdf">https://mackinstitute.wharton.upenn.edu/wp-content/uploads/2021/03/Gu-Grace\_Technology-and-Disintermediation-in-Online-Marketplaces.pdf</a>
- 4 https://www.mckinsey.com/industries/logistics/our-insights/what-do-us-consumers-want-from-e-commerce-deliveries
- <sup>5</sup> https://www.mercadolivre.com.br/l/promocoes

# Thank you!

Do you have any questions?