

M2M Communication in Smart Grid

- Smart Grid: next-generation power system
 - a large-scale cyber-physical system

Challenge: Security vs Cost

- Different domains in smart grid
- Example: transmission and distribution domain
 - Communication-enabled control between devices
 - Message authentication is critical
 - Devices are using embedded computers
 - Typical CPU speed: a few hundred MHz
 - Cost is a big issue for both manufacturers and customers.

M2M Authentication in Transmission / Distribution Domain

- Authentication schemes for control devices
 - Direct cost: delay performance
 - Indirect cost: Money
- Test: RSA vs Hash to Obtain Random Subsets (HORS)
 - Secure the GOOSE communication protocol in IEC 61850
 - Time-critical with timing requirements 3-10ms.
 - For protection control.

RSA vs HORS in M2M Communication

Security across Large Areas

End-to-end security vs hierarchical security

Conclusions

- Smart grid features appealing applications of M2M communication and networking
- Fine grained security required in different domains
 - Security vs communication performance vs cost
- M2M in smart grid
 - Heterogeneous capabilities
 - End-to-end security vs hierarchical security