MAXimal

home

algo

bookz

forum

about

Поиск мостов

Пусть дан неориентированный граф. Мостом называется такое ребро, удаление которого делает граф несвязным (или, точнее, увеличивает число компонент связности). Требуется найти все мосты в заданном графе.

добавлено: 10 Jun 2008 19:28 редактировано: 23 Aug 2011 11:23

Содержание [скрыть]

- Поиск мостов
 - О Алгоритм
 - О Реализация
 - О Задачи в online judges

Неформально эта задача ставится следующим образом: требуется найти на заданной карте дорог все "важные" дороги, т.е. такие дороги, что удаление любой из них приведёт к исчезновению пути между какой-то парой городов.

Ниже мы опишем алгоритм, основанный на поиске в глубину, и работающий за время O(n+m), где n — количество вершин, m — рёбер в графе.

Заметим, что на сайте также описан онлайновый алгоритм поиска мостов — в отличие от описанного здесь алгоритма, онлайновый алгоритм умеет поддерживать все мосты графа в изменяющемся графе (имеются в виду добавления новых рёбер).

Алгоритм

Запустим обход в глубину из произвольной вершины графа; обозначим её через root. Заметим следующий факт (который несложно доказать):

• Пусть мы находимся в обходе в глубину, просматривая сейчас все рёбра из вершины v. Тогда, если текущее ребро (v,to) таково, что из вершины to и из любого её потомка в дереве обхода в глубину нет обратного ребра в вершину v или какого-либо её предка, то это ребро является мостом. В противном случае оно мостом не является. (В самом деле, мы этим условием проверяем, нет ли другого пути из v в to, кроме как спуск по ребру (v,to) дерева обхода в глубину.)

Теперь осталось научиться проверять этот факт для каждой вершины эффективно. Для этого воспользуемся "временами входа в вершину", вычисляемыми алгоритмом поиска в глубину.

Итак, пусть tin[v] — это время захода поиска в глубину в вершину v. Теперь введём массив fup[v], который и позволит нам отвечать на вышеописанные запросы. Время fup[v] равно минимуму из времени захода в саму вершину tin[v], времён захода в каждую вершину p, являющуюся концом некоторого обратного ребра (v,p), а также из всех значений fup[to] для каждой вершины to, являющейся непосредственным сыном v в дереве поиска:

$$fup[v] = \min \begin{cases} tin[v], \\ tin[p], & \text{for all (v,p)} -- \text{back edge} \\ fup[to], & \text{for all (v,to)} -- \text{tree edge} \end{cases}$$

```
(здесь "back edge" — обратное ребро, "tree edge" — ребро дерева)
```

Тогда, из вершины v или её потомка есть обратное ребро в её предка тогда и только тогда, когда найдётся такой сын t_O , что $fup[to] \leq tin[v]$. (Если fup[to] = tin[v], то это означает, что найдётся обратное ребро, приходящее точно в v; если же fup[to] < tin[v], то это означает наличие обратного ребра в какого-либо предка вершины v.)

Таким образом, если для текущего ребра (v,to) (принадлежащего дереву поиска) выполняется fup[to] > tin[v], то это ребро является мостом; в противном случае оно мостом не является.

Реализация

Если говорить о самой реализации, то здесь нам нужно уметь различать три случая: когда мы идём по ребру дерева поиска в глубину, когда идём по обратному ребру, и когда пытаемся пойти по ребру дерева в обратную сторону. Это, соответственно, случаи:

- used[to] = false критерий ребра дерева поиска;
- $used[to] = true \&\& to \neq parent$ критерий обратного ребра;
- to = parent критерий прохода по ребру дерева поиска в обратную сторону.

Таким образом, для реализации этих критериев нам надо передавать в функцию поиска в глубину вершину-предка текущей вершины.

```
const int MAXN = ...;
vector<int> g[MAXN];
bool used[MAXN];
int timer, tin[MAXN], fup[MAXN];
void dfs (int v, int p = -1) {
        used[v] = true;
        tin[v] = fup[v] = timer++;
        for (size t i=0; i<g[v].size(); ++i) {</pre>
                int to = g[v][i];
                if (to == p) continue;
                 if (used[to])
                         fup[v] = min (fup[v], tin[to]);
                 else {
                         dfs (to, v);
                         fup[v] = min (fup[v], fup[to]);
                         if (fup[to] > tin[v])
                                 IS BRIDGE(v, to);
void find bridges() {
        timer = 0;
        for (int i=0; i<n; ++i)
                used[i] = false;
        for (int i=0; i<n; ++i)</pre>
                if (!used[i])
```

dfs (i);

Здесь основная функция для вызова — это find_bridges — она производит необходимую инициализацию и запуск обхода в глубину для каждой компоненты связности графа.

При этом $IS_BRIDGE(a,b)$ — это некая функция, которая будет реагировать на то, что ребро (a,b) является мостом, например, выводить это ребро на экран.

Константе MAXN в самом начале кода следует задать значение, равное максимально возможному числу вершин во входном графе.

Стоит заметить, что эта реализация некорректно работает при наличии в графе **кратных рёбер**: она фактически не обращает внимания, кратное ли ребро или оно единственно. Разумеется, кратные рёбра не должны входить в ответ, поэтому при вызове IS_BRIDGE можно проверять дополнительно, не кратное ли ребро мы хотим добавить в ответ. Другой способ — более аккуратная работа с предками, т.е. передавать в df_S не вершину-предка, а номер ребра, по которому мы вошли в вершину (для этого надо будет дополнительно хранить номера всех рёбер).

Задачи в online judges

Список задач, в которых требуется искать мосты:

- UVA #796 "Critical Links" [сложность: низкая]
- UVA #610 "Street Directions" [сложность: средняя]