VERS UNE GÉOMÉTRIE DES FORMES A. GROTHENDIECK

Vers une Géométrie des Formes

Cote n° 156-1 — 156-9

https://grothendieck.umontpellier.fr/archives-grothendieck/

Ce texte a été déchiffré et transcrit par Mateo Carmona

https://agrothendieck.github.io/

TABLE DE MATIÈRES

I. Vers une géométrie des formes (topologiques)
II. Réalisations topologiques des réseaux
III. Réseaux via découpages
IV. Analysis situs (première mouture)
V. Algèbre des figures
VI. Analysis situs (deuxième mouture)
VII. Analysis situs (troisième mouture)
VIII. Analysis situs (quatrième mouture)

§ I. — VERS UNE GÉOMÉTRIE DES FORMES (TOPOLOGIQUES)

[Apprendre] vers une construction récouvrante (sur l'action naturelles) d'une "géométrie des formes de dimension $\leq n$ ".

Une "forme de dim 0" soit pour définition [] dont les éléments sont appelés les "lieux" de la forme.

Modèle de dimension 1. — Une tel modèle

[]

- 1) Deux ensembles de [] L_{α} (ensemble des *lieux* de modèles) et S (ensemble des *segments* des modèle)
- 2) Une application $S \longrightarrow \mathfrak{P}(L)$, $I \longrightarrow \widetilde{I}$ (lieux sur un segment) i.e. une relation entre S et L.
- 3) Une application $S \longrightarrow \mathfrak{P}_2(L)$ []

N.B. J'ignore s'il faut supposer que I est connu, quand on connaît

Modèle d'une forme 1-dimensionnelle

L ensemble de "lieux"
S ensemble de "segments"

§ II. – RÉALISATIONS TOPOLOGIQUES DES RÉSEAUX

1. -[] topologique

Soit X un espace topologique, $A \subset X$ partie fermée non vide de X. $X_{/A}$ l'espace déduit de X en [] A en un point, a le point déduit de A par []. Si X' est une partie de X contenant A, alors $X'_{/A} \hookrightarrow X_{/A}$ identifié $X'_{/A}$ à un sous-espace topologique de X.

Les fermées de $X_{/A}'$ s'identifient aux fermées de X' qui on bien contient A

§ III. – RÉSEAUX VIA DÉCOUPAGES

Je voudrais définir une [] axiomatique a structure [] réseaux sur un [] L ([] de "lieux").

Exemple 2 Soit L un ensemble ordonnée, on suppose L filtrant croissante, filtrant décroissant, sans plus grand [] plus petit élément, localement filtrant croissante et filtrant décroissante divisible.

On appellera un tel ensemble une [] ordonnée.

§ IV. — ANALYSIS SITUS (première mouture)

§ V. − ALGÈBRE DES FIGURES

§ VI. — ANALYSIS SITUS (deuxième mouture)

Avant de décrire ce qu'est une [], je vais décrire ce qui sera [] avec notion de multistrates" - la famille des multistrates choisies jouant un peu le rôle des une famille d'ouverts [] donc une topologie, ou une famille génératrice d'éléments d'un topos. Je vais donc commencer pas

I. "Algèbre des figures" ou "Ateliers".

1. — Une algèbre des figures implique avant tout trois types d'objets, les lieux, les multistrates, les figures, formant trois ensembles

$$(1.1) L, M, F$$

liées entre eux par diverses applications, et [] muni de diverses structures. Ainsi, on a des applications canoniques invectives

$$(1.2) L \stackrel{b)}{\hookrightarrow} M \stackrel{a)}{\hookrightarrow} F$$

que nous utiliserons souvent pour identifier un lieu à une multistrate particulière, et une multistrate à une figure particulière ou L à une sous-ensemble de M, M à un sous-ensemble de F.

Il y a d'autre part deux entre paires d'applications, que voici :

où Fig(M) désigne la partie de $\mathfrak{P}(\mathfrak{P}(M))$ formée des figures ensemblistes dans M. On peut considérer que le première application correspond à une relation entre M et F, appelée relation d'incidence. Pour une figure F, \widetilde{T} s'appelle l'ensemble des *multistrates incidentes*, ou le *déployement* de la figure F. Si $X \in M$, $F \in \widetilde{F}$, on dire que le multistrate X est *incidente* à la figure F ou encore que c'est une *strate de la figure* F, si $X \in \widetilde{F}$. D'autre part, tout élément X de M (i.e. toute multistrate), [] comme une figure par (1.2), admet un déployement \widetilde{X} , et on pose

$$[]$$

et il résultera des axiomes que c'est une figure ensembliste des M, [] fidèlement par l'un \widetilde{F} des strates de F.

En fait, M sera muni d'une relation d'ordre \leq , [] plus bas, et $\widetilde{F} \subset M$ sera une partie fermée de M, et pour tout $X \in \widetilde{F}$, on aura

$$(1.5) \widetilde{X} = \{ Y \in M \mid Y \le X \}$$

À cause de cette interpolation, la passage de $\widetilde{F} \subset M$ à $\operatorname{Fig}_M(F)$ est à tout [], que cette figure ensembliste des M un semble revenant important - mais à voir...

§ VII. — ANALYSIS SITUS (troisième mouture)

§ VIII. — ANALYSIS SITUS (quatrième mouture)