Александр Безносиков

ИСП РАН

27 февраля 2025

Задача оптимизации

•0000000000000

$$\min_{w \in \mathbb{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \ell(g(w, x_i), y_i)$$
 (1)

Задача оптимизации

•0000000000000

$$\min_{w \in \mathbb{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \ell(g(w, x_i), y_i)$$
 (1)

Вопрос: что можно сказать про эту задач? сложная ли эта задача?

Задачи оптимизации. Первые наблюдения.

- В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min w$ не имеет решения. $w \in \mathbb{R}$
- 2 Задачи оптимизации часто нельзя решить аналитически.
- $oldsymbol{3}$ Их сложность зависит от вида целевой функции f, а также от размерности w.

Задача оптимизации

Задачи оптимизации. Первые наблюдения.

- В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min w$ не имеет решения. $w \in \mathbb{R}$
- Задачи оптимизации часто нельзя решить аналитически.
- 🔞 Их сложность зависит от вида целевой функции f, а также от размерности w.

Если же задача оптимизации имеет решение, то на практике её обычно решают, вообще говоря, приближённо. Для этого применяются специальные алгоритмы, которые и называют методами оптимизации.

Задача оптимизации

Методы оптимизации

Задача оптимизации

- Нет смысла искать лучший метод для решения конкретной задачи. Например, лучший метод для решений задачи сходится за 1 итерацию: этот метод просто всегда выдаёт ответ $w^* = 0$. Очевидно, что для других задач такой метод не пригоден.
- Эффективность метода определяется для класса задач, т.к. обычно численные методы разрабатываются для приближённого решения множества однотипных задач.
- Метод разрабатывается для класса задач \Longrightarrow метод не может иметь с самого начала полной информации о задаче. Вместо этого метод использует модель задачи, например, формулировку задачи, описание функциональных компонент, множества, на котором происходит оптимизация и т.д.

 Предполагается, что численный метод может накапливать специфическую информацию о задаче при помощи некоторого устройства (программы, процедуры), которое отвечает на последовательные вопросы численного метода.

Задача оптимизации

 Предполагается, что численный метод может накапливать специфическую информацию о задаче при помощи некоторого устройства (программы, процедуры), которое отвечает на последовательные вопросы численного метода.

Вопрос: Какого рода информацию о функции можно запросить у устройства?

Задача оптимизации

Bonpoc: Какого рода информацию о функции можно запросить у устройства?

Примеры

Задача оптимизации 000•000000000000

- В запрашиваемой точке w возвращает значение целевой функции f(w).
- В запрашиваемой точке возвращает значение функции f(w) и её градиент в данной точке $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \dots, \frac{\partial f(w)}{\partial w_w}\right)^{\top}$.
- В запрашиваемой точке возвращает значение и градиент функции $f(w), \nabla f(w)$, а также её гессиан в данной точке $\left[\nabla f^2(w)\right]_{ii} = \frac{\partial^2 f(w)}{\partial w_i \partial w_i}.$

Входные данные: начальная точка w^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Задача оптимизации

Входные данные: начальная точка w^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Задача оптимизации

Входные данные: начальная точка w^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$. Настройка. Задать k = 0 (счётчик итераций) и $I_{-1} = \varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

 $oldsymbol{0}$ Задать вопрос к оракулу \mathcal{O} в точке w^k .

Входные данные: начальная точка w^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- $oldsymbol{0}$ Задать вопрос к оракулу \mathcal{O} в точке w^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (w^k, \mathcal{O}(w^k))$.

Входные данные: начальная точка w^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- $oldsymbol{0}$ Задать вопрос к оракулу \mathcal{O} в точке w^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (w^k, \mathcal{O}(w^k))$.
- $oldsymbol{3}$ Применить правило метода ${\cal M}$ для получения новой точки w^{k+1} по модели I_k .

Входные данные: начальная точка w^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\emptyset$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- **1** Задать вопрос к оракулу \mathcal{O} в точке w^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (w^k, \mathcal{O}(w^k))$.
- $oldsymbol{3}$ Применить правило метода ${\mathcal M}$ для получения новой точки w^{k+1} по модели I_k .
- 4 Проверить критерий остановки $\mathcal{T}_{\varepsilon}$. Если критерий выполнен, то выдать ответ \bar{w} , иначе положить k := k + 1 и вернуться на шаг 1.

Задача оптимизации 00000000000000

По аргументу:

$$\|w^k - w^*\| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

Задача оптимизации

00000000000000

• По аргументу:

$$\|w^k - w^*\| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• w^* – неизвестно, но можно так

$$||w^{k+1} - w^k|| \le ||w^{k+1} - w^*|| + ||w^k - w^*|| \le 2\varepsilon.$$

Из $\|w^{k+1}-w^k\|\leq \|w^k-w^*\|\leq \varepsilon/2$, следует $\|w^{k+1}-w^k\|\leq \varepsilon$ (в обратную сторону, очевидно, неверно). $\|w^{k+1}-w^k\|\leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|w^k-w^*\|\to 0$.

Задача оптимизации

00000000000000

По аргументу:

$$\|w^k - w^*\| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• w^* – неизвестно, но можно так

$$||w^{k+1} - w^k|| \le ||w^{k+1} - w^*|| + ||w^k - w^*|| \le 2\varepsilon.$$

Градиентный спуск

Из $\|w^{k+1} - w^k\| \le \|w^k - w^*\| \le \varepsilon/2$, следует $\|w^{k+1} - w^k\| < \varepsilon$ (в обратную сторону, очевидно, неверно). $||w^{k+1} - w^k|| < \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $||w^k - w^*|| \to 0$.

• w^* – не уникально. Тогда можно поменять критерий

Задача оптимизации

00000000000000

• По функции:

$$f(w^k) - f^* \le \varepsilon$$
.

Часто f^* известно, например, для $f(w) = \|Aw - b\|^2$. На практике можно использовать $|f(w^k) - f(w^{k+1})|$.

Задача оптимизации

00000000000000

По функции:

$$f(w^k) - f^* \le \varepsilon$$
.

Часто f^* известно, например, для $f(w) = \|Aw - b\|^2$. На практике можно использовать $|f(w^k) - f(w^{k+1})|$.

По норме градиента:

$$\|\nabla f(\mathbf{w}^k)\| \leq \varepsilon.$$

Класс задач минимизации липшицевых функций

$$\min_{w \in B_d} f(w) \tag{2}$$

- $B_d = \{ w \in \mathbb{R}^d \mid 0 \le x_i \le 1, \quad i = 1, ..., d \}$
- ullet Функция f(w) является M-липшицевой на B_d относительно ℓ_∞ -нормы:

$$\forall x, y | f(x) - f(y) | \le M ||x - y||_{\infty} = M \max_{i=1,...,d} |x_i - y_i|.$$

Задача оптимизации

Класс задач минимизации липшицевых функций

<u>На</u>блюдение

Задача оптимизации

00000000000000

Множество B_d является ограниченным и замкнутым, т.е. компактом, а из липшицевости функции f следует и её непрерывность, поэтому задача (2) имеет решение, ибо непрерывная на компакте функция достигает своих минимального и максимального значений. Введем обозначение $f^* = \min_{w \in B_d} f(w)$.

- **Класс методов.** Для данной задачи рассмотрим методы нулевого порядка.
- Цель: найти $\bar{w} \in B_d$: $f(\bar{w}) f^* \le \varepsilon$.

Метод перебора

Задача оптимизации

00000000000000

Рассмотрим один из самых простых способов решения этой задачи — метод равномерного перебора.

Алгоритм 1 Метод равномерного перебора

Вход: целочисленный параметр перебора $p \geq 1$

- 1: Сформировать $(p+1)^d$ точек вида $w_{(i_1,\ldots,i_d)}=\left(\frac{i_1}{p},\frac{i_2}{p},\ldots,\frac{i_d}{p}\right)^{\top}$, где $(i_1,\ldots,i_d)\in\{0,1,\ldots,p\}^d$
- 2: Среди точек $w_{(i_1,\dots,i_d)}$ найти точку \bar{w} с наименьшим значением целевой функции f .

Выход: $\bar{w}, f(\bar{w})$

Задача оптимизации

000000000000000

Теорема

Алгоритм 1 с параметром p возвращает такую точку \bar{w} , что

$$f(\bar{w}) - f^* \le \frac{M}{2p},\tag{3}$$

откуда следует, что методу равномерного перебора нужно в худшем случае

$$\left(\left\lfloor \frac{M}{2\varepsilon}\right\rfloor + 2\right)^d \tag{4}$$

обращений к оракулу, чтобы гарантировать $f(\bar{w}) - f^* \leq \varepsilon$.

Пример функции

Задача оптимизации 00000000000000

Задача оптимизации

00000000000000

Вопрос: хороший результат получили или нет?

• Предположим M=2, d=13 и $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.

Задача оптимизации

00000000000000

- Предположим M=2, d=13 и $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу:

$$\left(\left\lfloor \frac{M}{2\varepsilon}\right\rfloor + 2\right)^d = 102^{13} > 10^{26}.$$

Задача оптимизации

0000000000000000

- Предположим M=2, d=13 и $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее d операции.

Задача оптимизации 00000000000000

- Предположим M=2, d=13 и $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее d операции.
- Производительность компьютера: 10¹¹ арифметических операций в секунду.

Задача оптимизации 00000000000000

Вопрос: хороший результат получили или нет?

- Предположим M=2, d=13 и $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2c}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее d операции.
- Производительность компьютера: 10¹¹ арифметических операций в секунду.
- Общее время: хотя бы 10¹⁵ секунд, что больше 30 миллионов лет.

27 февраля 2025

Верхние и нижние оценки

Задача оптимизации 00000000000000

> Вопрос: что мы сейчас получили? верхнюю или нижнюю оценку? что такое верхняя оценка?

Задача оптимизации

- **Bonpoc**: что мы сейчас получили? верхнюю или нижнюю оценку? что такое верхняя оценка?
- Верхняя оценка гарантии нахождения решения <u>определенным</u> методом из рассматриваемого класса методов (например, методы с оракулом нулевого порядка) для <u>любой</u> задачи из класса (Липшецева целевая функция на кубе).
- Нижняя оценка гарантия, что для <u>любого</u> метода из класса <u>существует</u> «плохая» задача из класса такая, что метод будет сходиться не лучше, чем утверждает нижняя оценка.
- Возникает вопрос: может мы плохо вывели верхнюю оценку (неидеальный анализ), может ли предложить другой метод из рассматриваемого класса, который будет находить приближённое решение существенно быстрее? На этот вопрос и даст ответ нижняя оценка.

Задача оптимизации

0000000000000000

Теорема

Пусть $\varepsilon < \frac{M}{2}$. Тогда аналитическая сложность описанного класса задач, т.е. аналитическая сложность метода на «худшей» для него задаче из данного класса, составляет по крайней мере

$$\left(\left\lfloor \frac{M}{2\varepsilon} \right\rfloor\right)^d$$
 вызовов оракула. (5)

Итак, в указанном классе у любого метода оценки на скорость сходимости весьма пессимистичные. Возникает вопрос: какие свойства нужно потребовать от класса оптимизируемых функций, чтобы оценки стали более оптимистичными?

Сильная выпуклость и гладкость: определения

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d o \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu > 0)$, если для любых $x, y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu>0)$, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Определение L-гладкой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (т.е является L-гладкой), если для любых $x,y \in \mathbb{R}^d$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

4 H Y 4 DY Y 4 E Y 4 E Y 4

Теорема (свойство L - гладкой функции)

Пусть дана L - гладкая функция $f:\mathbb{R}^d \to \mathbb{R}$. Тогда для любых $x,y \in \mathbb{R}^d$ выполнено

$$|f(y)-f(x)-\langle \nabla f(x),y-x\rangle|\leq \frac{L}{2}||x-y||_2^2.$$

Градиентный спуск

Алгоритм 2 Градиентный спуск

Вход: размеры шагов $\{\gamma_k\}_{k=0}>0$, стартовая точка $w^0\in\mathbb{R}^d$, количество итераций K

Градиентный спуск •0000000000

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $\nabla f(w^k)$
- $w^{k+1} = w^k \gamma_k \nabla f(w^k)$
- 4: end for

Выход: w^K

Пример

Градиентный спуск 0000000000

Вопрос: куда направлен градиент в точке w_1 ? w_2 ?

Пример

Направления градиентов

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205 0.225 0.245

Пример

Градиентный спуск 000•0000000

Зависимость от шага

Лекция 3

Зависимость от шага

Сходимость

Теорема: сходимость градиентного спуска для L-гладких и μ -сильно выпуклых функций

Пусть задача безусловной оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f решается с помощью градиентного спуска с $\gamma_k \leq \frac{1}{L}$. Тогда справедлива следующая оценка сходимости $\|w^{k+1}-w^*\|^2 \leq (1-\gamma_k\mu)\|w^k-w^*\|^2$.

Сходимость GD: анализ

Возьмем постоянный шаг $\gamma_k \equiv \gamma = \frac{1}{I}$, тогда

$$||w^{k} - w^{*}||^{2} \le (1 - \gamma \mu) ||w^{k-1} - w^{*}||^{2}$$

$$\le (1 - \gamma \mu)^{2} ||w^{k-2} - w^{*}||^{2}$$

$$\le \dots$$

$$\le (1 - \gamma \mu)^{k} ||w^{0} - w^{*}||^{2}.$$

ullet Возьмем постоянный шаг $\gamma_k \equiv \gamma = rac{1}{L}$, тогда

$$||w^{k} - w^{*}||^{2} \le (1 - \gamma \mu) ||w^{k-1} - w^{*}||^{2}$$

$$\le (1 - \gamma \mu)^{2} ||w^{k-2} - w^{*}||^{2}$$

$$\le \dots$$

$$\le (1 - \gamma \mu)^{k} ||w^{0} - w^{*}||^{2}.$$

Получилась линейная сходимость (скорость геометрической прогрессии) к решению.

В доказательстве градиентного спуска получаем следующее:

$$\|w^{k+1} - w^*\|_2^2 \le \|w^k - w^*\|_2^2 - 2\gamma_k \left(f(w^k) - f(w^*)\right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2$$

В доказательстве градиентного спуска получаем следующее:

$$\|w^{k+1} - w^*\|_2^2 \le \|w^k - w^*\|_2^2 - 2\gamma_k \left(f(w^k) - f(w^*)\right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации?

В доказательстве градиентного спуска получаем следующее:

$$\|w^{k+1} - w^*\|_2^2 \le \|w^k - w^*\|_2^2 - 2\gamma_k \left(f(w^k) - f(w^*)\right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации? $\arg\min_{\gamma_k} \left(-2\gamma_k \left(f(w^k) - f(w^*) \right) + \gamma_k^2 ||\nabla f(w^k)||_2^2 \right) ?$

В доказательстве градиентного спуска получаем следующее:

$$\|w^{k+1} - w^*\|_2^2 \le \|w^k - w^*\|_2^2 - 2\gamma_k \left(f(w^k) - f(w^*)\right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2$$

Градиентный спуск 00000000000

Вопрос: как можно подобрать γ_k оптимально в этой ситуации? $\arg\min_{\gamma_k} \left(-2\gamma_k \left(f(w^k) - f(w^*) \right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2 \right) ?$

$$\gamma_k = \frac{f(w^k) - f(w^*)}{\|\nabla f(w^k)\|_2^2}$$

Вопрос: какие видите проблемы?

В доказательстве градиентного спуска получаем следующее:

$$\|w^{k+1} - w^*\|_2^2 \le \|w^k - w^*\|_2^2 - 2\gamma_k \left(f(w^k) - f(w^*)\right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации? arg $\min_{\gamma_k} \left(-2\gamma_k \left(f(w^k) - f(w^*) \right) + \gamma_k^2 \|\nabla f(w^k)\|_2^2 \right)$?

$$\gamma_k = \frac{f(w^k) - f(w^*)}{\|\nabla f(w^k)\|_2^2}$$

Вопрос: какие видите проблемы? $f(w^*)$ – иногда известно, а иногда можно оценить.

Подбор шага

Шаг Поляка-Шора:

$$\gamma_k = rac{f(w^k) - f(w^*)}{lpha \|
abla f(w^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

Подбор шага

Шаг Поляка-Шора:

$$\gamma_k = rac{f(w^k) - f(w^*)}{lpha \|
abla f(w^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(w^k - \gamma \nabla f(w^k))$$

• Шаг Поляка-Шора:

$$\gamma_k = rac{f(w^k) - f(w^*)}{lpha \|
abla f(w^k) \|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(w^k - \gamma \nabla f(w^k))$$

Вопрос: как решать?

Подбор шага

• Шаг Поляка-Шора:

$$\gamma_k = rac{f(w^k) - f(w^*)}{lpha \|
abla f(w^k) \|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(w^k - \gamma \nabla f(w^k))$$

Вопрос: как решать? Иногда есть явная формула, а так нужно решать одномерную задачу.

.

Шаг Поляка-Шора:

$$\gamma_k = rac{f(w^k) - f(w^*)}{lpha \|
abla f(w^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(w^k - \gamma \nabla f(w^k))$$

Вопрос: как решать? Иногда есть явная формула, а так нужно решать одномерную задачу.

- Правила Армихо, Вульфа и Гольдстейна.
- Адаптивный подбор, например, онлайн оценка локальной константы L.

Александр Безносиков Лекция 3 27 февраля 2025 29 / 50

Верхняя оценка

Верхняя оценка на сходимость градиентного спуска для L-гладких и μ -сильно выпуклых задач, чтобы найти ε -решение:

$$O\left(rac{L}{\mu}\lograc{\|w^0-w^*\|_2}{arepsilon}
ight)$$
 итераций/оракульных вызовов.

Верхняя оценка

Верхняя оценка на сходимость градиентного спуска для L-гладких и μ -сильно выпуклых задач, чтобы найти ε -решение:

Градиентный спуск 0000000000

$$O\left(rac{L}{\mu}\lograc{\|w^0-w^*\|_2}{arepsilon}
ight)$$
 итераций/оракульных вызовов.

Вопрос: а можно ли лучше?

Метод тяжелого шарика

• Б.Т. Поляк в 1964 году предложил метод тяжелого шарика.

Алгоритм 3 Метод тяжелого шарика

Вход: размер шагов $\{\gamma_k\}_{k=0}>0$, моментумы $\{\tau_k\}_{k=0}\in[0;1]$, стартовая точка $w^0=w^{-1}\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(w^k)$
- 3: $w^{k+1} = w^k \gamma_k \nabla f(w^k) + \tau_k (w^k w^{k-1})$
- 4: end for

Выход: w^K

• Б.Т. Поляк в 1964 году предложил метод тяжелого шарика.

Алгоритм 4 Метод тяжелого шарика

Вход: размер шагов $\{\gamma_k\}_{k=0}>0$, моментумы $\{\tau_k\}_{k=0}\in[0;1]$, стартовая точка $w^0=w^{-1}\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(w^k)$
- 3: $w^{k+1} = w^k \gamma_k \nabla f(w^k) + \tau_k (w^k w^{k-1})$
- 4: end for

Выход: w^K

• Добавим к градиентному спуску моментумный член — предположим, что у точки, отвечающей за текущее положение значение w^k есть инерция.

Александр Безносиков Лекция 3 27 февраля 2025 31/50

Сравнение тяжелого шарика и градиентного спуска

heavy-ball method

Сравнение тяжелого шарика и градиентного спуска

Сравнение тяжелого шарика и градиентного спуска

Интерактивный пример доступен в ноутбуке, а также по нажатию данной кнопки

• В библиотеке pytorch (основная библиотека Deep Learning) реализован следующий метод:

$$v^{k+1} = \beta v^k + \nabla f(w^k) \quad \beta \in [0; 1)$$
$$w^{k+1} = w^k - \gamma v^{k+1}$$

 В библиотеке pytorch (основная библиотека Deep Learning) реализован следующий метод:

$$v^{k+1} = \beta v^k + \nabla f(w^k) \quad \beta \in [0; 1)$$
$$w^{k+1} = w^k - \gamma v^{k+1}$$

Вопрос: как это метод связан с методом тяжелого шарика?

 В библиотеке pytorch (основная библиотека Deep Learning) реализован следующий метод:

$$v^{k+1} = \beta v^k + \nabla f(w^k) \quad \beta \in [0; 1)$$

 $w^{k+1} = w^k - \gamma v^{k+1}$

Градиентный спуск

Вопрос: как это метод связан с методом тяжелого шарика? Это практически он и есть. Поставим первую строку во вторую:

$$w^{k+1} = w^k - \gamma \nabla f(w^k) - \gamma \beta v^k$$

 В библиотеке pytorch (основная библиотека Deep Learning) реализован следующий метод:

$$v^{k+1} = \beta v^k + \nabla f(w^k) \quad \beta \in [0; 1)$$
$$w^{k+1} = w^k - \gamma v^{k+1}$$

Градиентный спуск

Вопрос: как это метод связан с методом тяжелого шарика? Это практически он и есть. Поставим первую строку во вторую:

$$w^{k+1} = w^k - \gamma \nabla f(w^k) - \gamma \beta v^k$$

Из второй строки для k шага:

$$-\gamma v^k = w^k - w^{k-1}$$

• В библиотеке pytorch (основная библиотека Deep Learning) реализован следующий метод:

$$v^{k+1} = \beta v^k + \nabla f(w^k) \quad \beta \in [0; 1)$$
$$w^{k+1} = w^k - \gamma v^{k+1}$$

Вопрос: как это метод связан с методом тяжелого шарика? Это практически он и есть. Поставим первую строку во вторую:

$$w^{k+1} = w^k - \gamma \nabla f(w^k) - \gamma \beta v^k$$

Из второй строки для k шага:

$$-\gamma v^k = w^k - w^{k-1}$$

Тогда подставим в предыдущие и получим

$$w^{k+1} = w^k - \gamma \nabla f(w^k) + \beta (w^k - w^{k-1})$$

Это показывает еще одну физику метода тяжелого шарика – мы идем по аккумулированному градиенту (старые забываются).

Плюсы и минусы

Вопрос: какие плюсы и минусы видите у методы тяжелого шарика?

Плюсы и минусы

Вопрос: какие плюсы и минусы видите у методы тяжелого шарика?

Плюсы

- Понятная физика и интуиция.
- Легкость в имплантации.
- Дешевизна вычислений.

Минусы

- Нужно подбирать теперь 2 параметра. Мы сейчас умеем только в теории оценивать γ_k . Теперь что-то нужно делать с τ_k ... Типично au_k берут близким к единице или устремляют к единице.
- Мы шли за ускорением градиентного спуска. А оно вообще есть в общем случае?

Плюсы и минусы

Вопрос: какие плюсы и минусы видите у методы тяжелого шарика? Плюсы

- Понятная физика и интуиция.
- Легкость в имплантации.
- Дешевизна вычислений.

Минусы

- Нужно подбирать теперь 2 параметра. Мы сейчас умеем только в теории оценивать γ_k . Теперь что-то нужно делать с τ_k ... Типично au_k берут близким к единице или устремляют к единице.
- Мы шли за ускорением градиентного спуска. А оно вообще есть в общем случае? Нет...

Ускоренный градиентный метод

• Ю.Е. Нестеров в 1983 году предложил ускоренный градиентный метод.

Градиентный спуск

Алгоритм 5 Ускоренный градиентный метод

Вход: размер шагов $\{\gamma_k\}_{k=0} > 0$, моментумы $\{\tau_k\}_{k=0} \in$ [0; 1],стартовая точка $w^0 = y^0 \in \mathbb{R}^d$, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $\nabla f(y^k)$ 2:
- $\mathbf{w}^{k+1} = \mathbf{v}^k \gamma_k \nabla f(\mathbf{v}^k)$ 3:
- $v^{k+1} = w^{k+1} + \tau_k (w^{k+1} w^k)$
- 5: end for
- Выход: w^K

<u> Ускоренный градиентный метод и тяжелый шарик</u>

Вопрос:В чем ключевое отличие метода Нестерова от тяжелого шарика?

Тяжелый шарик:

$$w^{k+1} = w^k - \gamma_k \nabla f(w^k) + \tau_k (w^k - w^{k-1})$$

Ускоренный градиентный метод:

$$w^{k+1} = y^k - \gamma_k \nabla f(y^k)$$

$$y^{k+1} = w^{k+1} + \tau_k (w^{k+1} - w^k)$$

<u> Ускоренный градиентный метод и тяжелый шарик</u>

Вопрос:В чем ключевое отличие метода Нестерова от тяжелого шарика?

Тяжелый шарик:

$$w^{k+1} = w^k - \gamma_k \nabla f(w^k) + \tau_k (w^k - w^{k-1})$$

Ускоренный градиентный метод:

$$w^{k+1} = y^k - \gamma_k \nabla f(y^k)$$

$$y^{k+1} = w^{k+1} + \tau_k (w^{k+1} - w^k)$$

Перепишем ускоренный градиентный метод:

$$w^{k+1} = w^k + \tau_k(w^k - w^{k-1}) - \gamma_k \nabla f(w^k + \tau_k(w^k - w^{k-1})).$$

Моментум в точке подсчета градиента/«взгляд вперед»/экстраполяция

Сходимость

Теорема: сходимость ускоренного градиентного метода

Пусть задача безусловной оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f решается с помощью ускоренного градиентного метода. Тогда при $\gamma_k=rac{1}{L}$ и $au_k=rac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$, чтобы добиться точности ε по функции $(f(x) - f(w^*) \le \varepsilon)$, необходимо

$$O\left(\sqrt{rac{L}{\mu}}\lograc{f(w^0)-f(w^*)}{arepsilon}
ight)$$
 вызовов оракула.

Сравнение ускоренных методов

Вопросы остаются

- Метод лучше градиентного спуска.
- Но можно ли еще лучше?

Стохастическая оптимизация: постановка

Вспомним, что f имеет следующий вид:

$$\min_{w \in \mathbb{R}^d} f(w) = \frac{1}{n} \sum_{i=1}^n f_i(w) = \frac{1}{n} \sum_{i=1}^n \ell(g(w, x_i), y_i).$$

Этот вид оптимизационной задачи также называется оффлайн постановкой машинного обучения.

Вопрос. Зачем разбивать функцию f на сумму функций f_i ?

- Если *п* велико (т.е. данных очень много), то искать полный градиент вычислительно затратно, поэтому в большинстве случаев используется градиент по какому-то набору сэмплов.
- Борьба с переобучением. Использование полных градиентов ведет к быстрой минимизации f на обучающей выборке, что в свою очередь приводит к переобучению (обсуждалось на предыдущей лекции).

Стохастический градиентный спуск

 Простая идея – модифицировать градиентный спуск и посмотреть, что будет.

Алгоритм 6 Стохастический градиентный спуск (SGD)

Вход: размеры шагов $\{\gamma_k\}_{k=0}>0$, стартовая точка $w^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Сгенерировать независимо $\xi^k = (x_i, y_i)$, где i генерируется независимо и равномерно из [n]
- Вычислить стохастический градиент $\nabla f(w^k, \xi^k)$ 3:
- $w^{k+1} = w^k \gamma_k \nabla f(w^k, \xi^k)$
- 5: end for

Выход: w^K

Теорема сходимость SGD в случае ограниченной дисперсии

Пусть задача безусловной стохастической оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f решается с помощью SGD с $\gamma_k \leq \frac{1}{L}$ в условиях несмещенности и ограниченности дисперсии стохастического градиента. Тогда справедлива следующая оценка сходимости

$$\mathbb{E}\left[\|\boldsymbol{w}^{k+1}-\boldsymbol{w}^*\|^2\right] \leq (1-\gamma_k\mu)\mathbb{E}\left[\|\boldsymbol{w}^k-\boldsymbol{w}^*\|^2\right] + \gamma_k^2\sigma^2.$$

ullet Возьмем постоянный шаг $\gamma_k \equiv \gamma$, тогда

$$\mathbb{E}\left[\|w^{k} - w^{*}\|^{2}\right] \leq (1 - \gamma\mu)\mathbb{E}\left[\|w^{k-1} - w^{*}\|^{2}\right] + \gamma^{2}\sigma^{2}$$

$$\leq (1 - \gamma\mu)^{2}\mathbb{E}\left[\|w^{k-2} - w^{*}\|^{2}\right]$$

$$+ (1 - \gamma\mu)\gamma^{2}\sigma^{2} + \gamma^{2}\sigma^{2}$$

$$\leq \dots$$

$$\leq (1 - \gamma\mu)^{k}\mathbb{E}\left[\|w^{0} - w^{*}\|^{2}\right] + \gamma^{2}\sigma^{2}\sum_{i=0}^{k-1}(1 - \gamma\mu)^{i}.$$

ullet Возьмем постоянный шаг $\gamma_k \equiv \gamma$, тогда

$$\mathbb{E}\left[\|w^{k} - w^{*}\|^{2}\right] \leq (1 - \gamma\mu)\mathbb{E}\left[\|w^{k-1} - w^{*}\|^{2}\right] + \gamma^{2}\sigma^{2}$$

$$\leq (1 - \gamma\mu)^{2}\mathbb{E}\left[\|w^{k-2} - w^{*}\|^{2}\right]$$

$$+ (1 - \gamma\mu)\gamma^{2}\sigma^{2} + \gamma^{2}\sigma^{2}$$

$$\leq \dots$$

$$\leq (1 - \gamma\mu)^{k}\mathbb{E}\left[\|w^{0} - w^{*}\|^{2}\right] + \gamma^{2}\sigma^{2}\sum_{i=0}^{k-1}(1 - \gamma\mu)^{i}.$$

Вопрос: как оценить второе слагаемое?

ullet Возьмем постоянный шаг $\gamma_k \equiv \gamma$, тогда

$$\mathbb{E}\left[\|w^{k} - w^{*}\|^{2}\right] \leq (1 - \gamma\mu)\mathbb{E}\left[\|w^{k-1} - w^{*}\|^{2}\right] + \gamma^{2}\sigma^{2}$$

$$\leq (1 - \gamma\mu)^{2}\mathbb{E}\left[\|w^{k-2} - w^{*}\|^{2}\right]$$

$$+ (1 - \gamma\mu)\gamma^{2}\sigma^{2} + \gamma^{2}\sigma^{2}$$

$$\leq \dots$$

$$\leq (1 - \gamma\mu)^{k}\mathbb{E}\left[\|w^{0} - w^{*}\|^{2}\right] + \gamma^{2}\sigma^{2}\sum_{i=0}^{k-1}(1 - \gamma\mu)^{i}.$$

• Вопрос: как оценить второе слагаемое? Геометрическая прогрессия: $\sum_{i=0}^{k-1} (1-\gamma\mu)^i \leq \sum_{i=0}^{+\infty} (1-\gamma\mu)^i = \frac{1}{\gamma\mu}$:

$$\mathbb{E}\left[\|w^{k}-w^{*}\|^{2}\right] \leq (1-\gamma\mu)^{k}\mathbb{E}\left[\|w^{0}-w^{*}\|^{2}\right] + \frac{\gamma\sigma^{2}}{\mu}.$$

• Результат вида:

$$\mathbb{E}\left[\|w^{k}-w^{*}\|^{2}\right] \leq (1-\gamma\mu)^{k}\mathbb{E}\left[\|w^{0}-w^{*}\|^{2}\right] + \frac{\gamma\sigma^{2}}{\mu},$$

похож на то, что мы уже видели для градиентного спуска.

• Первый член – линейная сходимость к решению

Результат вида:

$$\mathbb{E}\left[\|w^{k}-w^{*}\|^{2}\right] \leq (1-\gamma\mu)^{k}\mathbb{E}\left[\|w^{0}-w^{*}\|^{2}\right] + \frac{\gamma\sigma^{2}}{\mu},$$

похож на то, что мы уже видели для градиентного спуска.

- Первый член линейная сходимость к решению
- Второй член говорит о том, что некоторую точность (зависящую от γ , σ и μ) метод преодолеть не может и начинает осциллировать, больше не приближаясь к решению.

Как можно попробовать решить проблемы неточной сходимости?

Как можно попробовать решить проблемы неточной сходимости?

• Уменьшить шаг. Например, брать $\gamma_k = \frac{1}{k+1}$ или $\gamma_k = \frac{1}{\sqrt{k+1}}$. Вопрос: какой видно плюс и минус?

46 / 50

Сходимость SGD: проблема сходимости

Как можно попробовать решить проблемы неточной сходимости?

• Уменьшить шаг. Например, брать $\gamma_k = \frac{1}{k+1}$ или $\gamma_k = \frac{1}{\sqrt{k+1}}$. Вопрос: какой видно плюс и минус?

Плюс – точнее сходимость, минус - потеря линейной сходимости в начале.

Как можно попробовать решить проблемы неточной сходимости?

Как можно попробовать решить проблемы неточной сходимости?

• Уменьшить σ . **Вопрос**: а как?

Как можно попробовать решить проблемы неточной сходимости?

• Уменьшить σ . **Вопрос:** а как? С помощью техники батчинга/батчирования:

$$\nabla f(w^k, \xi^k) \quad \to \quad \frac{1}{b} \sum_{j \in S^k} \nabla f(x, \xi_j),$$

где S^k – набор индексов из [n], $|S^k| = b$, и все индексы генерируются независимо друг от друга.

Сходимость SGD: батчинг

• Вопрос: что можем сказать про

$$\mathbb{E}\left[\frac{1}{b}\sum_{j\in S^k}\nabla f(x,\xi_j)\mid w^k\right],\quad \mathbb{E}\left[\left\|\frac{1}{b}\sum_{j\in S^k}(\nabla f(x,\xi_j)-\nabla f(x))\right\|_2^2\mid w^k\right]?$$

• Вопрос: что можем сказать про

$$\mathbb{E}\left[\frac{1}{b}\sum_{j\in S^k}\nabla f(x,\xi_j)\mid w^k\right],\quad \mathbb{E}\left[\left\|\frac{1}{b}\sum_{j\in S^k}(\nabla f(x,\xi_j)-\nabla f(x))\right\|_2^2\mid w^k\right]?$$

Независимость дает

$$\mathbb{E}\left[\frac{1}{b}\sum_{j\in S^k}\nabla f(x,\xi_j)\mid w^k\right] = \nabla f(x),$$

$$\mathbb{E}\left[\left\|\frac{1}{b}\sum_{j\in S^k}(\nabla f(x,\xi_j) - \nabla f(x))\right\|_2^2\mid w^k\right] \leq \frac{\sigma^2}{b}$$

• Получается дисперсию можно уменьшить в b раз, но тогда и вычисление стохастического градиента подорожает.

Александр Безносиков Лекция 3 27 февраля 2025 48 / 50

Сходимость SGD: батчинг

 В итоге можно подобрать стратегию выбора шагов и добиться следующей оценки сходимости:

$$\mathbb{E}\left[\|w^{k} - w^{*}\|^{2}\right] \leq \left(1 - \frac{\mu}{L}\right)^{k} \mathbb{E}\left[\|w^{0} - w^{*}\|^{2}\right] + \frac{\sigma^{2}}{\mu^{2}bk}.$$

Линейная по «детерминистической» части и сублинейная по «стохастической».

 В итоге можно подобрать стратегию выбора шагов и добиться следующей оценки сходимости:

$$\mathbb{E}\left[\|w^{k} - w^{*}\|^{2}\right] \leq \left(1 - \frac{\mu}{L}\right)^{k} \mathbb{E}\left[\|w^{0} - w^{*}\|^{2}\right] + \frac{\sigma^{2}}{\mu^{2}bk}.$$

Линейная по «детерминистической» части и сублинейная по «стохастической».

• Ускорение Нестерова возможно:

$$\mathbb{E}\left[\|w^k - w^*\|^2\right] \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^k \mathbb{E}\left[\|w^0 - w^*\|^2\right] + \frac{\sigma^2}{\mu^2 b k}.$$

 В итоге можно подобрать стратегию выбора шагов и добиться следующей оценки сходимости:

$$\mathbb{E}\left[\|\boldsymbol{w}^k - \boldsymbol{w}^*\|^2\right] \leq \left(1 - \frac{\mu}{L}\right)^k \mathbb{E}\left[\|\boldsymbol{w}^0 - \boldsymbol{w}^*\|^2\right] + \frac{\sigma^2}{\mu^2 b k}.$$

Линейная по «детерминистической» части и сублинейная по «стохастической».

• Ускорение Нестерова возможно:

$$\mathbb{E}\left[\|w^{k} - w^{*}\|^{2}\right] \leq \left(1 - \sqrt{\frac{\mu}{L}}\right)^{k} \mathbb{E}\left[\|w^{0} - w^{*}\|^{2}\right] + \frac{\sigma^{2}}{\mu^{2}bk}.$$

Важной деталью является улучшение/ускорение только первого члена, второй член (который и возникает из-за стохастики) остался прежним. Оказывается, его нельзя изменить и результат выше является оптимальным.