Independent Submission Request for Comments: 6114 Category: Informational

ISSN: 2070-1721

M. Katagi S. Moriai Sony Corporation March 2011

The 128-Bit Blockcipher CLEFIA

Abstract

This document describes the specification of the blockcipher CLEFIA. CLEFIA is a 128-bit blockcipher, with key lengths of 128, 192, and 256 bits, which is compatible with the interface of the Advanced Encryption Standard (AES). The algorithm of CLEFIA was published in 2007, and its security has been scrutinized in the public community. CLEFIA is one of the new-generation lightweight blockcipher algorithms designed after AES. Among them, CLEFIA offers high performance in software and hardware as well as lightweight implementation in hardware. CLEFIA will be of benefit to the Internet, which will be connected to more distributed and constrained devices.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6114.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents

2. Notations 3 3. CLEFIA Algorithm 4 4. CLEFIA Building Blocks 4 4.1. GFN_{d,r} 4 4.2. F-Functions 6 4.3. S-Boxes 7 4.4. Diffusion Matrices 9 5. Data Processing Part 9 5.1. Encryption/Decryption 9 5.2. The Numbers of Rounds 10 6. Key Scheduling Part 10 6.1. DoubleSwap Function 10 6.2. Overall Structure 11 6.3. Key Scheduling for a 128-Bit Key 11 6.5. Key Scheduling for a 192-Bit Key 11 6.5. Key Scheduling for a 256-Bit Key 12 6.6. Constant Values 13 7. Security Considerations 18 8. Informative References 18 Appendix A. Test Vectors 19	1.	Introduction
3. CLEFIA Algorithm	2.	Notations
4. CLEFIA Building Blocks 4.1. GFN_{d,r} 4.2. F-Functions 6.3. S-Boxes 7.4.4. Diffusion Matrices 5. Data Processing Part 5.1. Encryption/Decryption 5.2. The Numbers of Rounds 6. Key Scheduling Part 6.1. DoubleSwap Function 6.2. Overall Structure 6.3. Key Scheduling for a 128-Bit Key 6.4. Key Scheduling for a 192-Bit Key 6.5. Key Scheduling for a 256-Bit Key 6.6. Constant Values 7. Security Considerations 8. Informative References	3.	
4.1. GFN_{d,r} .4 4.2. F-Functions .6 4.3. S-Boxes .7 4.4. Diffusion Matrices .9 5. Data Processing Part .9 5.1. Encryption/Decryption .9 5.2. The Numbers of Rounds .10 6. Key Scheduling Part .10 6.1. DoubleSwap Function .10 6.2. Overall Structure .11 6.3. Key Scheduling for a 128-Bit Key .11 6.4. Key Scheduling for a 192-Bit Key .11 6.5. Key Scheduling for a 256-Bit Key .12 6.6. Constant Values .13 7. Security Considerations .18 8. Informative References .18	4.	CLEFIA Building Blocks4
4.2. F-Functions 6 4.3. S-Boxes .7 4.4. Diffusion Matrices .9 5. Data Processing Part .9 5.1. Encryption/Decryption .9 5.2. The Numbers of Rounds .10 6. Key Scheduling Part .10 6.1. DoubleSwap Function .10 6.2. Overall Structure .11 6.3. Key Scheduling for a 128-Bit Key .11 6.4. Key Scheduling for a 192-Bit Key .11 6.5. Key Scheduling for a 256-Bit Key .12 6.6. Constant Values .13 7. Security Considerations .18 8. Informative References .18	• •	
4.3. S-Boxes		
4.4. Diffusion Matrices		
5. Data Processing Part		
5.1. Encryption/Decryption	5	
5.2. The Numbers of Rounds 10 6. Key Scheduling Part 10 6.1. DoubleSwap Function 10 6.2. Overall Structure 11 6.3. Key Scheduling for a 128-Bit Key 11 6.4. Key Scheduling for a 192-Bit Key 11 6.5. Key Scheduling for a 256-Bit Key 12 6.6. Constant Values 13 7. Security Considerations 18 8. Informative References 18	J.	5 1 Encryption/Decryption
6. Key Scheduling Part 10 6.1. DoubleSwap Function 10 6.2. Overall Structure 11 6.3. Key Scheduling for a 128-Bit Key 11 6.4. Key Scheduling for a 192-Bit Key 11 6.5. Key Scheduling for a 256-Bit Key 12 6.6. Constant Values 13 7. Security Considerations 18 8. Informative References 18		5.1. Elici ypttoli/ Deci ypttoli
6.1. DoubleSwap Function .10 6.2. Overall Structure .11 6.3. Key Scheduling for a 128-Bit Key .11 6.4. Key Scheduling for a 192-Bit Key .11 6.5. Key Scheduling for a 256-Bit Key .12 6.6. Constant Values .13 7. Security Considerations .18 8. Informative References .18	c	
6.2. Overall Structure .	ο.	key Scheduling Part
6.3. Key Scheduling for a 128-Bit Key		6.1. DoubleSwap Function10
6.3. Key Scheduling for a 128-Bit Key		6.2. Overall Structure
6.4. Key Scheduling for a 192-Bit Key		6.3. Key Scheduling for a 128-Bit Key
6.5. Key Scheduling for a 256-Bit Key		
6.6. Constant Values		
7. Security Considerations		6.6 Constant Values
8. Informative References	7	Security Considerations
ADDENDIX A. 1851 VECIDIS		
Annendix R Test Vectors (Intermediate Values)		

1. Introduction

Due to the widespread use of the Internet, devices with limited capabilities, e.g., wireless sensors, are connected to the network. In order to realize enough security for the network, cryptographic technologies suitable for such constrained devices are very important. This recent technology is called "lightweight cryptography", and the demand for lightweight cryptography is increasing.

In order to satisfy these needs, a 128-bit blockcipher, CLEFIA, was designed based on state-of-the-art techniques [FSE07]. CLEFIA is a 128-bit blockcipher, with key lengths of 128, 192, and 256 bits, which is compatible with the interface of AES [FIPS-197]. Since the cipher algorithm was published in 2007, its security has been scrutinized in the public community, but no security weaknesses have been reported so far.

CLEFIA is a lightweight blockcipher, since it can be implemented within 3 Kgates using a 0.13-um standard Complementary Metal Oxide Semiconductor (CMOS) Application-Specific Integrated Circuit (ASIC) library. Many of the lightweight cryptographic algorithms sacrifice security and/or speed; however, CLEFIA provides high-level security of 128, 192, and 256 bits and high performance in software and hardware. CLEFIA will be of benefit to the Internet, which will be connected to more distributed and resource-constrained devices.

CLEFIA is proposed in ISO/IEC 29192-2 [ISO29192-2] and the CRYPTREC project for the revision of the e-Government recommended ciphers list in Japan [CRYPTREC].

Further information about CLEFIA, including reference implementation, test vectors, and security and performance evaluation, is available from http://www.sony.net/clefia/.

2. Notations

This section describes mathematical notations, conventions, and symbols used throughout this document.

: A prefix for a binary string in hexadecimal form

a|b or (a|b) : Concatenation of a and b

(a,b) or (a b) : Vector style representation of a|b a <- b : Updating a value of a by a value of b trans(a) : Transposition of a vector or a matrix a a XOR b : Bitwise exclusive-OR operation

~a : Logical negation
a <<< b : b-bit left cyclic shift operation
a ^ b : a raised to the power of b</pre>

: Multiplication in GF(2^n) over a defined polynomial a * b

3. CLEFIA Algorithm

The CLEFIA algorithm consists of two parts: a data processing part and a key scheduling part. The data processing part of CLEFIA consists of functions ENCr for encryption and DECr for decryption. The encryption/decryption process is as follows:

Step 1. Key scheduling

Step 2. Encrypting/decrypting each block of data using ENCr/DECr

The process of the key scheduling is described in Section 6, and the definitions of ENCr and DECr are explained in Section 5. CLEFIA supports 128-bit, 192-bit, and 256-bit keys, and the key scheduling and ENCr/DECr should be appropriately selected for its key length.

4. CLEFIA Building Blocks

4.1. GFN $\{d,r\}$

We first define the function GFN_{q}, r , which is a fundamental structure for CLEFIA, and then define a data processing part and a key scheduling part.

CLEFIA uses a 4-branch and an 8-branch generalized Feistel network. The 4-branch generalized Feistel network is used in the data processing part and the key scheduling for a 128-bit key. The 8-branch generalized Feistel network is applied in the key scheduling for a 192-bit/256-bit key. We denote the d-branch r-round generalized Feistel network employed in CLEFIA as GFN_{d,r}.

For d pairs of 32-bit inputs Xi and outputs Yi (0 \leq i \leq d), and dr/2 32-bit round keys RK {i} $(0 \le i < dr/2)$, GFN {d,r} (d = 4.8) is defined as follows.

```
GFN_{4,r}(RK_{0}, ..., RK_{2r-1}, X0, X1, X2, X3)
     output: 32-bit data Y0, Y1, Y2, Y3
  Step 1. T0 | T1 | T2 | T3 <- X0 | X1 | X2 | X3
  Step 2. For i = 0 to r - 1 do the following:
     Step 2.1. T1 <- T1 XOR F0(RK_{2i},T0),
               T3 < - T3 \times F1(RK \{2i + 1\}, T2)
     Step 2.2. T0 | T1 | T2 | T3 <- T1 | T2 | T3 | T0
  Step 3. Y0 | Y1 | Y2 | Y3 <- T3 | T0 | T1 | T2
GFN_{8,r}(RK_{0}, ..., RK_{4r-1}, X0, X1, ..., X7)
     output: 32-bit data Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7
  Step 1. T0 | T1 | ... | T7 <- X0 | X1 | ... | X7
  Step 2. For i = 0 to r - 1 do the following:
     Step 2.1. T1 <- T1 XOR F0(RK_{4i}, T0),
               T3 <- T3 XOR F1(RK_{4i + 1}, T2),
T5 <- T5 XOR F0(RK_{4i + 2}, T4),
T7 <- T7 XOR F1(RK_{4i + 3}, T6)
     Step 2.2. T0 | T1 | ... | T6 | T7 <- T1 | T2 | ... | T7 | T0
  Step 3. Y0 | Y1 | ... | Y6 | Y7 <- T7 | T0 | ... | T5 | T6
The inverse function GFNINV_{4,r} is obtained by changing the order
```

of RK_{i} and the direction of word rotation at Step 2.2 and Step 3 in GFN_{4,r}.

4.2. F-Functions

Two F-functions F0 and F1 used in $GFN_{d,r}$ are defined as follows: FO(RK, x)

input : 32-bit round key RK, 32-bit data x,
output: 32-bit data y

Step 1. T <- RK XOR x

Step 3. Let $y = y0 \mid y1 \mid y2 \mid y3$, where yi is 8-bit data, $y \leftarrow M0 \text{ trans}((T0, T1, T2, T3))$

F1(RK, x)

input: 32-bit round key RK, 32-bit data x,

output: 32-bit data y

Step 1. T <- RK XOR x

Step 3. Let $y = y0 \mid y1 \mid y2 \mid y3$, where yi is 8-bit data, $y \leftarrow M1 \text{ trans}((T0, T1, T2, T3))$

SO and S1 are nonlinear 8-bit S-boxes, and MO and M1 are 4x4 diffusion matrices described in the following section. In each F-function, two S-boxes are used in the different order, and a different matrix is used.

4.3. S-Boxes

CLEFIA employs two different types of 8-bit S-boxes: S0 is based on four 4-bit S-boxes, and S1 is based on the inverse function over GF(2^8) [CLEFIA1].

Tables 1 and 2 show the output values of SO and S1, respectively. In these tables, all values are expressed in hexadecimal form. For an 8-bit input of an S-box, the upper 4 bits indicate a row and the lower 4 bits indicate a column. For example, if a value 0xab is input, 0x7e is output by SO because it is on the cross line of the row indexed by "a." and the column indexed by ".b".

Table 1: S-Box S0

```
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f 0. 57 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c
1. 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af
2. bf a1 19 65 f7 7a 32 20 06 ce e4 83 9d 5b 4c d8 3. 42 5d 2e e8 d4 9b 0f 13 3c 89 67 c0 71 aa b6 f5 4. a4 be fd 8c 12 00 97 da 78 e1 cf 6b 39 43 55 26
5. 30 98 cc dd eb 54 b3 8f 4e 16 fa 22 a5 77 09 61 6. d6 2a 53 37 45 c1 6c ae ef 70 08 99 8b 1d f2 b4
7. e9 c7 9f 4a 31 25 fe 7c d3 a2 bd 56 14 88 60 0b
8. cd e2 34 50 9e dc 11 05 2b b7 a9 48 ff 66 8a 73
9. 03 75 86 f1 6a a7 40 c2 b9 2c db 1f 58 94 3e ed
a. fc 1b a0 04 b8 8d e6 59 62 93 35 7e ca 21 df 47 b. 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de 24 52 c. 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9
d. 6e 84 72 bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a
e. 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90
f. 9a 36 e5 29 c3 4f ab 64 51 f8 10 d7 bc 02 7d 8e
```

Table 2: S-Box S1

```
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f 0. 6c da c3 e9 4e 9d 0a 3d b8 36 b4 38 13 34 0c d9
1. bf 74 94 8f b7 9c e5 dc 9e 07 49 4f 98 2c b0 93
2. 12 eb cd b3 92 e7 41 60 e3 21 27 3b e6 19 d2 0e
3. 91 11 c7 3f 2a 8e a1 bc 2b c8 c5 0f 5b f3 87 8b
4. fb f5 de 20 c6 a7 84 ce d8 65 51 c9 a4 ef 43 53
5. 25 5d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c
6. 6e 54 15 62 f6 35 30 52 a3 16 d3 28 32 fa aa 5e
7. cf ea ed 78 33 58 09 7b 63 c0 c1 46 1e df a9 99 8. 55 04 c4 86 39 77 82 ec 40 18 90 97 59 dd 83 1f
9. 9a 37 06 24 64 7c a5 56 48 08 85 d0 61 26 ca 6f
a. 7e 6a b6 71 a0 70 05 d1 45 8c 23 1c f0 ee 89 ad b. 7a 4b c2 2f db 5a 4d 76 67 17 2d f4 cb b1 4a a8 c. b5 22 47 3a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae
d. f8 5f ab f1 1b 42 81 d6 be 44 29 a6 57 b9 af f2
e. d4 75 66 bb 68 9f 50 02 01 3c 7f 8d 1a 88 bd ac
f. f7 e4 79 96 a2 fc 6d b2 6b 03 e1 2e 7d 14 95 1d
```

4.4. Diffusion Matrices

The multiplications of a diffusion matrix M0 or M1, and a vector T in Section 4.2, are obtained as follows.

In the above equations, * denotes a multiplication in $GF(2^8)$ defined by the lexicographically first primitive polynomial $z^8 + z^4 + z^3 + z^2 + 1$. The constants 0x02, 0x04, 0x06, 0x08, and 0x0a are represented in hexadecimal form of finite field polynomials. For example, 0x02 identifies the finite field element z. 8-bit data Ti is also interpreted as a finite field element.

The mathematical background of two diffusion matrices and their choices are explained in [CLEFIA2].

5. Data Processing Part

5.1. Encryption/Decryption

The data processing part of CLEFIA consists of ENCr for encryption and DECr for decryption. ENCr and DECr are based on the 4-branch generalized Feistel structure $GFN_{4,r}$. Let P,C be 128-bit plaintext and ciphertext, and let Pi, Ci (0 <= i < 4) be divided 32-bit plaintexts and ciphertexts where P = P0 | P1 | P2 | P3 and C = C0 | C1 | C2 | C3, and let WK0, WK1, WK2, WK3 be 32-bit whitening keys and RK_{i} (0 <= i < 2r) be 32-bit round keys provided by the key scheduling part. Then, r-round encryption function ENCr is defined as follows:

The decryption function DECr is defined as follows:

5.2. The Numbers of Rounds

The number of rounds, r, is 18, 22, and 26 for 128-bit, 192-bit, and 256-bit keys, respectively. The total number of RK_{i} depends on the key length. The data processing part requires 36, 44, and 52 round keys for 128-bit, 192-bit, and 256-bit keys, respectively.

6. Key Scheduling Part

The key scheduling part of CLEFIA supports 128-bit, 192-bit, and 256-bit keys and outputs whitening keys WKi (0 \leq i \leq 4) and round keys RK_{j} (0 \leq j \leq 2r) for the data processing part.

6.1. DoubleSwap Function

We first define the DoubleSwap function, which is used in the key scheduling part.

The DoubleSwap Function Sigma(X):

For 128-bit data X,

$$Y = Sigma(X)$$

= $X[7-63] | X[121-127] | X[0-6] | X[64-120],$

where X[a-b] denotes a bit string cut from the a-th bit to the b-th bit of X. Bit 0 is the most significant bit.

6.2. Overall Structure

The key scheduling part of CLEFIA provides whitening keys and round keys for the data processing part. Let K be the key and L be an intermediate key, and the key scheduling part consists of the following two steps.

- 1. Generating L from K.
- Expanding K and L (Generating WKi and RK_{j}).

To generate L from K, the key schedule for a 128-bit key uses a 128-bit permutation GFN_{4,12}, while the key schedules for 192/256-bit keys use a 256-bit permutation GFN_{8,10}.

6.3. Key Scheduling for a 128-Bit Key

The 128-bit intermediate key L is generated by applying GFN_{4,12}, which takes twenty-four 32-bit constant values CON_128[i] (0 <= i < 24) as round keys and K = K0 | K1 | K2 | K3 as an input. Then, K and L are used to generate WKi (0 <= i < 4) and RK_{j} (0 <= j < 36) in the following steps. In the latter part, thirty-six 32-bit constant values CON_128[i] (24 <= i < 60) are used. The generation steps of CON_128[i] are explained in Section 6.6.

(Generating L from K)

```
Step 1. L <- GFN_{4,12}(CON_128[0], ..., CON_128[23], K0, ..., K3)
(Expanding K and L)
```

Step 2. WK0 | WK1 | WK2 | WK3 <- K

6.4. Key Scheduling for a 192-Bit Key

Two 128-bit values KL and KR are generated from a 192-bit key K = K0 \mid K1 \mid K2 \mid K3 \mid K4 \mid K5, where Ki is 32-bit data. Then, two 128-bit values LL and LR are generated by applying GFN_{8,10}, which takes CON_192[i] (0 <= i < 40) as round keys and KL \mid KR as a 256-bit input.

Then, KL,KR and LL,LR are used to generate WKi (0 <= i < 4) and RK_{j} (0 <= j < 44) in the following steps. In the latter part, forty-four 32-bit constant values $CON_192[i]$ (40 <= i < 84) are used.

The following steps show the 192-bit/256-bit key scheduling. For the 192-bit key scheduling, the value of k is set as 192.

6.5. Key Scheduling for a 256-Bit Key

The key scheduling for a 256-bit key is almost the same as that for a 192-bit key, except for constant values, the required number of RKi, and the initialization of KR.

For a 256-bit key, the value of k is set as 256, and the steps are almost the same as in the 192-bit key case. The difference is that we use $CON_256[i](0 \le i \le 40)$ as round keys to generate LL and LR, and then to generate RK_{j} (0 <= j < 52), we use fifty-two 32-bit constant values $CON_256[i](40 \le i \le 92)$.

(Generating LL, LR from KL, KR for a k-bit key)

```
Step 1. Set k = 192 or k = 256
```

(Expanding KL, KR and LL, LR for a k-bit key)

Step 4. WK0 | WK1 | WK2 | WK3 <- KL XOR KR

6.6. Constant Values

32-bit constant values $CON_k[i]$ are used in the key scheduling algorithm. We need 60, 84, and 92 constant values for 128-bit, 192-bit, and 256-bit keys, respectively. Let P(16) = 0xb7e1 (= $(e-2)2^16$) and Q(16) = 0x243f (= $(pi-3)2^16$), where e is the base of the natural logarithm (2.71828...) and pi is the circle ratio (3.14159...). $CON_k[i]$, for k = 128,192,256, are generated as follows (see Table 3 for the repetition numbers l_k and the initial values IV_k).

```
Step 1. T_k[0] <- IV_k
Step 2. For i = 0 to l_k - 1 do the following:
    Step 2.1. CON_k[2i] <- (T_k[i] XOR P) | (~T_k[i] <<< 1)
    Step 2.2. CON_k[2i + 1] <- (~T_k[i] XOR Q) | (T_k[i] <<< 8)
    Step 2.3. T_k[i + 1] <- T_k[i] * (0x0002^{-1})</pre>
```

In Step 2.3, the multiplications are performed in the field GF(2^16) defined by a primitive polynomial $z^16 + z^15 + z^13 + z^11 + z^5 + z^4 + 1$ (=0x1a831). 0x0002^{-1} denotes the multiplicative inverse of the finite field element z. The selection criteria of IV and the primitive polynomial are shown in [CLEFIA1].

Table 3: Required Numbers of Constant Values

k	# of CON_k[i]	l_k	IV_k
128	60	30	0x428a
192	84	42	0x7137
256	92	46	0xb5c0

Tables 4-6 show the values of $T_k[i](k = 128,192,256)$, and Tables 7-9 show the values of $CON_k[i](k = 128,192,256)$.

Table 4: T_128[i]

T 128[i] 428a 2145 c4ba 625d e536 729b ed55 a2b2 8 9 10 11 T 128[i] 5159 fcb4 7e5a 3f2d cb8e 65c7 e6fb a765 T 128[i] 87aa 43d5 f5f2 7af9 e964 74b2 3a59 c934 26 27 T 128[i] 649a 324d cd3e 669f e757 a7b3

Table 5: T 192[i]

```
2
                        3
T_192[i] 7137 ec83 a259 8534 429a 214d c4be 625f
                            12
               9
                  10
                       11
                                 13
                                      14
                                           15
T 192[i] e537 a683 8759 97b4 4bda 25ed c6ee 6377
                       19
         16
             17
                  18
                            20
                                 21
                                      22
                                           23
T_192[i] e5a3 a6c9 877c 43be 21df c4f7 b663 8f29
         24
             25
                  26
                       27
                            28
                                29
                                      30
                                          31
T 192[i] 938c 49c6 24e3 c669 b72c 5b96 2dcb c2fd
                 34 35 36
              33
                                37 38 39
T_192[i] b566 5ab3 f941 a8b8 545c 2a2e 1517 de93
        40
             41
T 192[i] bb51 89b0
```

Table 6: T 256[i]

i 0 1 2 3 4 5 6 7 T_256[i] b5c0 5ae0 2d70 16b8 0b5c 05ae 02d7 d573 8 9 10 11 12 13 14 15 T_256[i] bea1 8b48 45a4 22d2 1169 dcac 6e56 372b i 16 17 18 19 20 21 22 23 T_256[i] cf8d b3de 59ef f8ef a86f 802f 940f 9e1f i 32 33 34 35 36 37 38 39 T_256[i] d0db bc75 8a22 4511 f690 7b48 3da4 1ed2 40 41 42 43 44 45 T 256[i] 0f69 d3ac 69d6 34eb ce6d b32e

Table 7: CON 128[i] (0 <= i < 60)

CON_128[i] f56b7aeb 994a8a42 96a4bd75 fa854521 t 4 5 6 7 CON_128[i] 735b768a 1f7abac4 d5bc3b45 b99d5d62 i 8 9 10 11 CON_128[i] 52d73592 3ef636e5 c57a1ac9 a95b9b72 12 13 14 15 CON_128[i] 5ab42554 369555ed 1553ba9a 7972b2a2 i 16 17 18 19
CON_128[i] e6b85d4d 8a995951 4b550696 2774b4fc
i 20 21 22 23 CON_128[i] c9bb034b a59a5a7e 88cc81a5 e4ed2d3f 24 25 26 27 CON_128[i] 7c6f68e2 104e8ecb d2263471 be07c765 28 29 30 31 CON_128[i] 511a3208 3d3bfbe6 1084b134 7ca565a7 i 32 33 34 35 CON_128[i] 304bf0aa 5c6aaa87 f4347855 9815d543 36 37 38 39 CON_128[i] 4213141a 2e32f2f5 cd180a0d a139f97a 40 41 42 43 CON_128[i] 5e852d36 32a464e9 c353169b af72b274 44 45 46 47 CON_128[i] 8db88b4d e199593a 7ed56d96 12f434c9 48 49 50 51 CON_128[i] d37b36cb bf5a9a64 85ac9b65 e98d4d32 52 53 54 55 CON_128[i] 7adf6582 16fe3ecd d17e32c1 bd5f9f66 56 57 58 59 CON 128[i] 50b63150 3c9757e7 1052b098 7c73b3a7

Table 8: CON_192[i] (0 <= i < 84)

i	0	1	2	3
CON_192[i]	c6d61d91	aaf73771 5	5b6226f8	374383ec 7
CON_192[i]	15b8bb4c	799959a2	32d5f596 10	5ef43485 11
CON_192[i]	f57b7acb	995a9a42	96acbd65	fa8d4d21 15
CON_192[i]	735f7682 16	1f7ebec4	d5be3b41 18	b99f5f62 19
CON_192[i]	52d63590 20	3ef737e5 21	1162b2f8 22	7d4383a6
CON_192[i]	30b8f14c 24	5c995987 25	2055d096 26	4c74b497
CON_192[i]	fc3b684b	901ada4b	920cb425 30	fe2ded25
CON_192[i]	710f7222 32	1d2eeec6 33	d4963911 34	b8b77763 35
CON_192[i]	524234b8 36	3e63a3e5 37	1128b26c 38	7d09c9a6 39
CON_192[i]	309df106	5cbc7c87 41	f45f7883 42	987ebe43 43
CON_192[i]	963ebc41	fa1fdf21 45	73167610 46	1f37f7c4 47
CON_192[i]	01829338 48	6da363b6	38c8e1ac	54e9298f
CON_192[i]	246dd8e6	49 484c8c93	50 fe276c73	51 9206c649
CON_192[i]	52 9302b639	53 ff23e324 57	54 7188732c 58	55 1da969c6 59
CON_192[i]	56 00cd91a6	6cec2cb7	ec7748d3	8056965b
CON_192[i]	60 9a2aa469	61 f60bcb2d	751c7a04	63 193dfdc2
CON_192[i]	64 02879532	65 6ea666b5	66 ed524a99	67 8173b35a
CON_192[i]	68 4ea00d7c	69 228141f9	70 1f59ae8e	71 7378b8a8
CON_192[i]	e3bd5747	73 8f9c5c54	74 9dcfaba3	75 f1ee2e2a
CON_192[i]	76 a2f6d5d1	77 ced71715	78 697242d8	79 055393de
ι CON_192[i]	80 0cb0895c	81 609151bb	82 3e51ec9e	83 5270b089

Table 9: CON 256[i] (0 <= i < 92)

i 0 1 2 3 CON_256[i] 0221947e 6e00c0b5 ed014a3f 8120e05a CON 256[i] 9a91a51f f6b0702d a159d28f cd78b816 CON_256[i] bcbde947 d09c5c0b b24ff4a3 de6eae05 12 13 14 CON_256[i] b536fa51 d917d702 62925518 0eb373d5 16 17 CON_256[i] 094082bc 6561a1be 3ca9e96e 5088488b 20 21 22 23 CON_256[i] f24574b7 9e64a445 9533ba5b f912d222 24 25 26 CON_256[i] a688dd2d caa96911 6b4d46a6 076cacdc 28 29 30 31 CON_256[i] d9b72353 b596566e 80ca91a9 eceb2b37 32 33 34 CON_256[i] 786c60e4 144d8dcf 043f9842 681edeb3 i 36 37 38 39 CON_256[i] ee0e4c21 822fef59 4f0e0e20 232feff8 i 40 41 42 43 CON_256[i] 1f8eaf20 73af6fa8 37ceffa0 5bef2f80 t 44 45 46 47
CON_256[i] 23eed7e0 4fcf0f94 29fec3c0 45df1f9e 48 49 50 CON_256[i] 2cf6c9d0 40d7179b 2e72ccd8 42539399 56 57 58 CON_256[i] fbd9678f 97f8384c 91fdb3c7 fddc1c26 60 61 62 63 CON_256[i] a4efd9e3 c8ce0e13 be66ecf1 d2478709 i 64 65 66 67 CON_256[i] 673a5e48 0b1bdbd0 0b948714 67b575bc 68 69 70 CON_256[i] 3dc3ebba 51e2228a f2f075dd 9ed11145 72 73 74 CON_256[i] 417112de 2d5090f6 cca9096f a088487b 76 77 78 79 CON_256[i] 8a4584b7 e664a43d a933c25b c512d21e 80 81 82 CON_256[i] b888e12d d4a9690f 644d58a6 086cacd3 84 85 86 CON 256[i] de372c53 b216d669 830a9629 ef2beb34 88 89 90 91 CON 256[i] 798c6324 15ad6dce 04cf99a2 68ee2eb3

7. Security Considerations

The security of CLEFIA has been scrutinized in the public community, but no security weaknesses have been found for full-round CLEFIA to date, neither by the designers nor by independent cryptographers. Security evaluation by the designers is described in [CLEFIA3], and a list of published cryptanalysis results by external cryptographers is available from http://www.sonv.net/Products/cryptography/clefia/technical/

http://www.sony.net/Products/cryptography/clefia/technical/ related_material.html.

8. Informative References

- [CLEFIA1] The 128-bit Blockcipher CLEFIA Algorithm Specification, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-spec-1.0.pdf.
- [CLEFIA3] The 128-bit blockcipher CLEFIA Security and Performance Evaluations, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-eval-1.0.pdf.
- [CRYPTREC] Cryptography Research and Evaluation Committees, http://www.cryptrec.go.jp/.
- [FIPS-197] National Institute of Standards and Technology, "Advanced Encryption Standard (AES)", FIPS 197, November 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
- [FSE07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and T. Iwata, "The 128-bit Blockcipher CLEFIA", proceedings of Fast Software Encryption 2007 FSE 2007, LNCS 4593, pp. 181-195, Springer-Verlag, 2007.
- [IS029192-2]

ISO/IEC 29192-2, "Information technology - Security techniques - Lightweight cryptography - Part 2: Block ciphers", http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552.

Appendix A. Test Vectors

In this appendix, we give test vectors of CLEFIA for each key length. The data are expressed in hexadecimal form. For the intermediate values of these vectors, refer to Appendix B.

128-bit key:

```
key ffeeddcc bbaa9988 77665544 33221100 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext de2bf2fd 9b74aacd f1298555 459494fd
```

192-bit key:

key	ffeeddcc	bbaa9988	77665544	33221100
•	f0e0d0c0	b0a09080		
plaintext				
ciphertext	e2482f64	9f028dc4	80dda184	fde181ad

256-bit key:

key	ffeeddcc	bbaa9988	77665544	33221100
•	f0e0d0c0	b0a09080	70605040	30201000
plaintext	00010203	04050607	08090a0b	0c0d0e0f
ciphertext				

Appendix B. Test Vectors (Intermediate Values)

128-bit key:

key plaintext ciphertext	00010203	bbaa9988 04050607 9b74aacd	08090a0b	33221100 0c0d0e0f 459494fd
L	8f89a61b	9db9d0f3	93e65627	da0d027e
WK_{0,1,2,3} RK_{0,1,2,3} RK_{4,5,6,7} RK_{8,9,10,11} RK_{12,13,14,15} RK_{16,17,18,19} RK_{20,21,22,23} RK_{24,25,26,27} RK_{28,29,30,31} RK_{32,33,34,35}	f3e6cef9 6a27e20a 59cd17c4 7e8e7eec e75eb039 9f98d11e 3438f93b 24d6406d	5a791b90 28565583 8be7e949 0d657eb9	41c06256 e8c528dc 312a37cc d3f463d6 018002e2 b0369efa	00336ea3 c08abd77 a0aad6aa 9117d009 d3aaef0d b869b4a7 16de4795

plaintext initial whitening key after whitening				ffeeddcc	08090a0b 08090a0b	bbaa9988
Round	1 F-function input round key after key after S after M		00010203 F0 00010203 f3e6cef9 f3e7ccfa 290246e1 547a3193		08090a0b F1 08090a0b 8df75e38 85fe5433 777de8e8 abf12070	b7a79787
Round	2 F-function input round key after key after S after M		af91ea58 F0 af91ea58 41c06256 ee51880e cb5d2b0c f51cebb3		1c56b7f7 F1 1c56b7f7 640ac51b 785c72ec 63a5edd2 82dfe347	00010203
Round	3 F-function input round key after key after S after M	ı [']	fd15e1b8 F0 fd15e1b8 6a27e20a 973203b2 c2c7c6c2 d8dfd8de		82dee144 F1 82dee144 5a791b90 d8a7fad4 be59e10d e15ea81c	af91ea58
Round	4 F-function input round key after key after M		F0 c4896f29 e8c528dc		4ecf4244 F1 4ecf4244 00336ea3 4efc2ce7 43bce638 b65c519a	fd15e1b8
Round	5 F-function input round key after key after S after M		376c6fd2 F0 376c6fd2 59cd17c4 6ea17816 f26ad3e5 29f08afd	4ecf4244	4b49b022 F1 4b49b022 28565583 631fe5a1 62af9f1b be01d127	c4896f29

Round	6 F-function input round key after key after S after M	673fc8b9 F0 673fc8b9 312a37cc 5615ff75 b39c8e58 5999a79e		7a88be0e F1 7a88be0e c08abd77 ba020379 2dd1e9a2 0429b329	376c6fd2
Round	7 F-function input round key after key after S after M	12d017bc F0 12d017bc 7e8e7eec 6c5e6950 8b737025 6ed11b09		3345dcfb F1 3345dcfb 8be7e949 b8a235b2 67a08eba dfd3cd32	673fc8b9
Round	8 F-function input round key after key after S after M	1459a507 F0 1459a507 d3f463d6 c7adc6d1 e7ee5a5f 8c9d011c		b8ec058b F1 b8ec058b a0aad6aa 1846d321 9e97f1a1 93684eec	12d017bc
Round	9 F-function input round key after key after S after M	bfd8dde7 F0 bfd8dde7 e75eb039 58866dde 4e821daf e6d6501e		81b85950 F1 81b85950 0d657eb9 8cdd27e9 59c56044 6d5839b4	1459a507
Round	10 F-function input round key after key after S after M	5e3a5595 F0 5e3a5595 018002e2 5fba5777 612d8f7b 3a1b0e97		79019cb3 F1 79019cb3 9117d009 e8164cba 0185a49c b9b479c8	bfd8dde7
Round	F-function input round key after key after M	bba357c7 F0 bba357c7 9f98d11e 243b86d9 f70f1144 28974052	79019cb3	066ca42f F1 066ca42f babee8cf bcd24ce0 cb72a481 4a6700b1	5e3a5595

Round	12 F-function input round key after key after S after M	ı [']	F0 5196dce1 b0369efa		145d5524 F1 145d5524 d3aaef0d c7f7ba29 72642dce 907d3820	bba357c7
Round	F-function input round key after key after S after M	ı [']	F0 f9d97f1d 3438f93b		2bde6fe7 F1 2bde6fe7 f9cea4a0 d210cb47 ab28e0da 1c3e38a3	5196dce1
Round	F-function input round key after key after M	ı [']	1e29190c F0 1e29190c 68df9029 76f68925 fe6db7e7 aaa2c803		4da8e442 F1 4da8e442 b869b4a7 f5c150e5 fc0c25f6 c4315b8d	f9d97f1d
Round	15 F-function input round key after key after S after M	ı [']	817ca7e4 F0 817ca7e4 24d6406d a5aae789 8d233818 7bd4cced		3de82490 F1 3de82490 e74bc550 daa3e1c0 2904757b eac2f0fb	1e29190c
Round	16 F-function input round key after key after S after M	1 [*]	367c28af F0 367c28af 41c28193 77bea93c 7c4a935b 598e6940		f4ebe9f7 F1 f4ebe9f7 16de4795 e235ae62 669b8953 c119609f	817ca7e4
Round	17 F-function input round key after key after S after M		64664dd0 F0 64664dd0 a34a20f5 c72c6d25 e7e61de7 2ac01b0a	f4ebe9f7	4065c77b F1 4065c77b 33265d14 73439a6f 788c85b4 c755adfa	367c28af

Round 18 input F-function input round key after key add after S after M	de2bf2fd 40 F0 de2bf2fd b19d0554 6fb6f7a9 b44d648c ac7738f2	F 1 5	f1298555 F1 f1298555 5142f434 a06b7161 7e99ea2a 12d0c82d	64664dd0
output final whitening key after whitening ciphertext	de2bf2fd 9b	7665544 b74aacd 1	f1298555	76b685fd 33221100 459494fd 459494fd
192-bit key:				
key plaintext ciphertext	ffeeddcc bk f0e0d0c0 b0 00010203 04 e2482f64 91	0a09080 4050607 (33221100 0c0d0e0f fde181ad
LL LR WK_{0,1,2,3} RK_{0,1,2,3} RK_{4,5,6,7} RK_{4,5,6,7} RK_{12,13,14,15} RK_{12,13,14,15} RK_{16,17,18,19} RK_{20,21,22,23} RK_{24,25,26,27} RK_{28,29,30,31} RK_{28,29,30,31} RK_{32,33,34,35} RK_{36,37,38,39} RK_{40,41,42,43}	db05415a 80 1ca9b2e1 b4 0f0e0d0c 0k 4d3bfd1b 7a 73c2eeb8 dc 38c46a07 fc 38351b2f 74 509b31a6 4c 419a74b9 1c 6e3ff82a 74 ed785cbd 9c 4bbd5f6a 31 521213ce 4f 17f68fde f6	00082db 7 4606829 6 b0a0908 7 a1f5dfa 6 d429ec5 6 c2ce4ba 3 4bd6e1e 1 c5ad53c 6 dd79e0e 2 4ac3ffd k c077c13 6 1fe8de8 k f1f59d8 6	7cb8186c c92dd35e 7777777 0fae6e7c e220b3af 370abf2d 1b7c7dce 6fc2ba33 240a33d2 b9696e2e 04978d83 b76da574	d788c5f3 2258a432 7777777 c8bf3237 c9135e73 b05e627b 92cfc98e e1e5c878 9dabfd09 cc0b3a38 2ec058ba 3a6fa8e7 ee91f6a4
plaintext initial whitening key after whitening	00010203 04 01 00010203 0b	f0e0d0c		0b0a0908
Round 1 input F-function input round key after key add after S after M	00010203 0b F0 00010203 4d3bfd1b 4d3aff18 43c58e9e b5021a3b		08090a0b F1 08090a0b 7a1f5dfa 721657f1 ed85d736 c397f62b	07070707

Round	2 input F-function input round key after key add after S after M	be091130 08090a0b F0 be091130 0fae6e7c b1a77f4c f3d10ba4 9fba69c1	c490f12c 00010203 F1 c490f12c c8bf3237 0c2fc31b 13d83a3d 6683cae3
Round	3 input F-function input round key after key add after S after M	97b363ca c490f12c F0 97b363ca 73c2eeb8 e4718d72 79ea66ed 61c21ea5	6682c8e0 be091130 F1 6682c8e0 dd429ec5 bbc05625 f47b0d7a 120e06e2
Round	4 input F-function input round key after key add after S after M	a552ef89 6682c8e0 F0 a552ef89 e220b3af 47725c26 daeda541 28a43c63	ac0717d2 97b363ca F1 ac0717d2 c9135e73 651449a1 355c651b cb1ab573
Round	5 input F-function input round key after key add after S after M	4e26f483 ac0717d2 F0 4e26f483 38c46a07 76e29e84 fe663e39 5ce7dafe	5ca9d6b9 a552ef89 F1 5ca9d6b9 fc2ce4ba a0853203 7edcc7c6 ac7f4e3e
Round	6 input F-function input round key after key add after S after M	f0e0cd2c 5ca9d6b9 F0 f0e0cd2c 370abf2d c7ea7201 e77f9fda b9869270	092da1b7 4e26f483 F1 092da1b7 b05e627b b973c3cc 174a3a46 8fc7e089
Round	7 input F-function input round key after key add after S after M	e52f44c9 092da1b7 F0 e52f44c9 38351b2f dd1a5fe6 c5496150 33d8590f	c1e1140a f0e0cd2c F1 c1e1140a 74bd6e1e b55c7a14 5aa5c15c e62eb913

Round 8 input F-function input round key after key add after S after M	F0 3af5f8b8 1b7c7dce	16ce743f e52f44c9 F1 16ce743f 92cfc98e 8401bdb1 3949b1f3 04f9e827
Round 9 input F-function input round key after key add after S after M	F0 31703427 509b31a6	e1d6acee 3af5f8b8 F1 e1d6acee 4c5ad53c ad8c79d2 eeffc072 8bebfe3d
Round 10 input F-function input round key after key add after S after M	F0 efadeeaf 6fc2ba33	b11e0685 31703427 F1 b11e0685 e1e5c878 50fbcefd 25d7fe02 26a4e16d
Round 11 input F-function input round key after key add after S after M	40d64fb5 b11e0685 F0 40d64fb5 419a74b9 014c3b0c 49a4c013 51c0208f	17d4d54a efadeeaf F1 17d4d54a 1dd79e0e 0a034b44 b4c6c912 f1a2c339
Round 12 input F-function input round key after key add after S after M	e0de260a 17d4d54a F0 e0de260a 240a33d2 c4d415d8 801beebe 8a9aef34	1e0f2d96 40d64fb5 F1 1e0f2d96 9dabfd09 83a4d09f 86b8f8ed 3e451646
Round 13 input F-function input round key after key add after S after M	9d4e3a7e 1e0f2d96 F0 9d4e3a7e 6e3ff82a f371c254 29ea68e8 17524741	7e9359f3 e0de260a F1 7e9359f3 74ac3ffd 0a3f660e b4f530a8 4b8c607e

Round 14 input F-function input round key after key add after S after M	F0 F1 095d6ad7 ab524674 b9696e2e cc0b3a38
Round 15 input F-function input round key after key add after S after M	897dd878 e44cc995 ed785cbd 9c077c13
Round 16 input F-function input round key after key add after S after M	F0 F1 eb669888 0b75d703 04978d83 2ec058ba
Round 17 input F-function input round key after key add after S after M	F0 F1 ae2b4f9c 8ccf6cd1 4bbd5f6a 31fe8de8 e59610f6 bd31e139 f6a5286d b15d7589 720df49d bad65e22
round key	7978239e 8ccf6cd1 51b0c6aa ae2b4f9c F0 F1 7978239e 51b0c6aa b76da574 3a6fa8e7 ce1586ea 6bdf6e4d 919c117f 283aaa43 ef24fe56 08916103
Round 19 input F-function input round key after key add after S after M	63eb9287 51b0c6aa a6ba2e9f 7978239e F0 F1 63eb9287 a6ba2e9f 521213ce 4f1f59d8 31f98149 e9a57747 5d03e265 3c8d7bda b7464b63 e1d086a7

Round 20 input F-function input round key after key add after S after M	e6f68dc9 a6ba2e9f 98a8a539 63eb9287 F0 F1 e6f68dc9 98a8a539 c13624f6 ee91f6a4 27c0a93f 7639539d 20b5938b 09893194 3cae819e b603c454
Round 21 input F-function input round key after key add after S after M	9a14af01 98a8a539 d5e856d3 e6f68dc9 F0 F1 9a14af01 d5e856d3 17f68fde f6c360a9 8de220df 232b367a 6666bff2 b383a1bd 7ae08a5d 662b2c4d
Round 22 input F-function input round key after key add after S after M	e2482f64 d5e856d3 80dda184 9a14af01 F0 F1 80dda184 6288bc72 c0ad856b 80c09316 407024ef cdb5f1e5 fbe99290 3d9dac60 108259db
output final whitening key after whitening ciphertext	e2482f64 e875fab3 80dda184 8a96f6da 77777777 7777777 e2482f64 9f028dc4 80dda184 fde181ad e2482f64 9f028dc4 80dda184 fde181ad

256-bit key:

key			ffeeddcc f0e0d0c0	bbaa9988 b0a09080	77665544 70605040	33221100 30201000
plaint cipher			00010203	04050607 289de80c		
LL LR			477e8f09 d6c10b89	66ee5378 4eeab575	2cc2be04 84bd5663	bf55e28f cc933940
RK_{20 RK_{24 RK_{28 RK_{32 RK_{36 RK_{40 RK_{44	1,2,3} 1,2,3} 5,6,7} 9,10,11} ,13,14,15} ,17,18,19} ,21,22,23} ,25,26,27} ,29,30,31} ,33,34,35} ,37,38,39} ,41,42,43} ,45,46,47} ,49,50,51}		b05bd737 581b3e34 b523d4e9 25d80df2 b304eb20 d71ff7e9 4dd7cfb7 2c664a7a	15413cd0 8846231b 0e3da2ee 8de1f2d0 03263f89 176d7c44 a646bba2 44f8824e aca1fb0c ae71c9f6 8cb5cf6b	aacf9abb 8ffee0f6 2f7100cd 6d7ba5d7 6a3a95e1 c7557cbc 2deff35d 4e911fef	e4bacd0f 7c81a45b 8ec0aad9 b70b47ea 05cee171 f797b2f3 3e3a47f0 47401e21 6ca3a830 90aa95de 43b9caef
	ext l whitenin whitening	g key	00010203 00010203	04050607 0f0e0d0c 0b0b0b0b		0c0d0e0f 0b0a0908 07070707
Round	1 F-functio input round key after key after S after M		00010203 F0 00010203 58f02029 58f1222a 4ee41927 2db2101b	0b0b0b0b	08090a0b F1 08090a0b 15413cd0 1d4836db 2c78a1ac d87ee718	07070707
Round	2 F-functio input round key after key after S after M		26b91b10 F0 26b91b10 1b0c41a4 3db55ab4 aa5afadb 317e029c	08090a0b	df79e01f F1 df79e01f e4bacd0f 3bc32d10 0f1e1928 c0cc96ba	00010203

Round	3 F-function input round key after key after S after M	39770897 F0 39770897 6c498393 553e8b04 5487484e c3a7ac1d		c0cd94b9 F1 c0cd94b9 8846231b 488bb7a2 d84876a0 7ae05884	26b91b10
Round	4 F-function input round key after key after S after M	1cde4c02 F0 1cde4c02 1fc716fc 03195afe c607fa95 5edee0ce		5c594394 F1 5c594394 7c81a45b 20d8e7cf 12f002c9 4cfb0e90	39770897
Round	5 F-function input round key after key after S after M	9e137477 F0 9e137477 fa37c259 6424b62e 4592c8d2 adfd33ae		758c0607 F1 758c0607 0e3da2ee 7bb1a4e9 46f3a044 42450650	1cde4c02
Round	6 F-function input round key after key after S after M	f1a4703a F0 f1a4703a aacf9abb 5b6bea81 22285e04 0fa52ed4		5e9b4a52 F1 5e9b4a52 8ec0aad9 d05be08b f822d448 aa7a0a9c	9e137477
Round	7 F-function input round key after key after S after M	7a2928d3 F0 7a2928d3 b05bd737 ca72ffe4 23ed8e68 8b158630		34697eeb F1 34697eeb 8de1f2d0 b9888c3b 172b59c0 334e2af2	f1a4703a
Round	8 F-function input round key after key after S after M	d58ecc62 F0 d58ecc62 8ffee0f6 5a702c94 facf9d64 72c2027e	34697eeb	c2ea5ac8 F1 c2ea5ac8 b70b47ea 75e11d22 586f2c19 a582d5f0	7a2928d3

Round 9 input F-function input round key after key add after S after M	F0 46ab7c95 581b3e34	5ac8 dfabfd23 d58ecc62 F1 dfabfd23 03263f89 dc8dc2aa 57664735 110287d7
Round 10 input F-function input round key after key add after S after M	F0 933f2ec2 2f7100cd	fd23 c48c4bb5 46ab7c95 F1 c48c4bb5 05cee171 c142aac4 22fd2380 b6ae4f2b
Round 11 input F-function input round key after key add after S after M	F0 78c32e09 b523d4e9	4bb5 f00533be 933f2ec2 F1 f00533be 176d7c44 e7684ffa 02ef5310 2fdb3f65
Round 12 input F-function input round key after key add after S after M	F0 cc31d0b4 6d7ba5d7	33be bce411a7 78c32e09 F1 bce411a7 f797b2f3 4b73a354 c94a71eb 81ca0b59
Round 13 input F-function input round key after key add after S after M	8c294595 bce4 F0 8c294595 25d80df2 a9f14867 93e47852 4a87c858	11a7 f9092550 cc31d0b4 F1 f9092550 a646bba2 5f4f9ef2 5c26cae5 54bc68d5
Round 14 input F-function input round key after key add after S after M	f663d9ff f909 F0 f663d9ff 6a3a95e1 9c594c1e 58ff39b0 d82301d4	2550 988db861 8c294595 F1 988db861 3e3a47f0 a6b7ff91 054d1d75 085d5025

Round 15 input F-function input round key after key add after S after M	212a2484 b304eb20	861 847415b0 f663d9ff F1 847415b0 44f8824e c08c97fe b5ff567d 87e2a6a2
Round 16 input F-function input round key after key add after S after M	F0 4378d812 c7557cbc	5b0 71817f5d 212a2484 F1 71817f5d 47401e21 36c1617c a10c5414 e177d3a8
Round 17 input F-function input round key after key add after S after M	F0 e3e5b653 d71ff7e9	f5d c05df72c 4378d812 F1 c05df72c aca1fb0c 6cfc0c20 32bc13bf 6fec0aab
Round 18 input F-function input round key after key add after S after M	F0 56c29070 2deff35d	72c 2c94d2b9 e3e5b653 F1 2c94d2b9 6ca3a830 40377a89 fb13c1b7 5e3245b7
Round 19 input F-function input round key after key add after S after M	2e3ee1d6 2c94d F0 2e3ee1d6 4dd7cfb7 63e92e61 373c4c54 87aab08e	2b9 bdd7f3e4 56c29070 F1 bdd7f3e4 ae71c9f6 13a63a12 8fe6c54b 8f8d16f3
Round 20 input F-function input round key after key add after S after M	ab3e6237 bdd7f F0 ab3e6237 4e911fef e5af7dd8 f6ad88be 0889df33	3e4 d94f8683 2e3ee1d6 F1 d94f8683 90aa95de 49e5135d 65f68f77 f418c84f

Round 21 input F-function input round key after key add after S after M	b55e2cd7 da262999 2c664a7a 8cb5cf6b
Round 22 input F-function input round key after key add after S after M	50d661f1 716a77e5 14c8de1e 43b9caef
Round 23 input F-function input round key after key add after S after M	2fc9f107 c114b03a 568c5a33 07ef7ddd
Round 24 input F-function input round key after key add after S after M	F0 F1 99251a7e 9eb183fb 608dc860 ac9e50f8 f9a8d21e 322fd303 f84572b0 c7d8f1c6 20634b77 591b3f55
Round 25 input F-function input round key after key add after S after M	e177fb4d 9eb183fb 76d2ce52 99251a7e F0 F1 e177fb4d 76d2ce52 c0c18358 4f53c80e 21b67815 3981065c a14dd39c c8e20aa5 3f88fbef 89ff5caf
Round 26 input F-function input round key after key add after S	a1397814 76d2ce52 10da46d1 e177fb4d F0 F1 a1397814 10da46d1 33e01cb9 80251e1c 92d964ad 90ff58cd 864445ee 9a8e803f

 output
 a1397814
 2f9bed08
 10da46d1
 f94ab28a

 final whitening key
 07060504
 03020100

 after whitening ciphertext
 a1397814
 289de80c
 10da46d1
 fa48b38a

Authors' Addresses

Masanobu Katagi System Technologies Laboratories Sony Corporation 5-1-12 Kitashinagawa Shinagawa-ku Tokyo, 141-0001, Japan

EMail: Masanobu.Katagi@jp.sony.com

Shiho Moriai System Technologies Laboratories Sony Corporation 5-1-12 Kitashinagawa Shinagawa-ku Tokyo, 141-0001, Japan

Phone: +81-3-5448-3701

EMail: clefia-q@jp.sony.com