A guide to the numerical zoo

AMCS 252, Spring 2022 David Ketcheson

The purpose of this lecture

 Introduce some general classifications of numerical methods

- Give you a basic idea of how each kind works and what their advantages are
- We won't go into details

Three types of problems

- Steady state
 - boundary -value problem
 - Solution doesn't change in time

$$\nabla^{2} u(\mathbf{x}) = f$$

$$\Omega$$

$$\partial \Omega$$

$$u(\mathbf{x}) = g(\mathbf{x}) \quad (\mathbf{x} \in \partial \Omega)$$

- Time-dependent
 - Initial-value problem
 - Solution changes in time

$$u'(t) = f(t, u)$$
$$u(0) = u_0$$

 Initial boundary value problem

$$u_t = \nabla^2 u(\mathbf{x}) - f$$
 $u(t, \mathbf{x} \in \partial \Omega) = g(\mathbf{x})$
 $u(t = 0, \mathbf{x}) = u_0(\mathbf{x})$

Linear vs. Nonlinear problems

- Linear problems
 - May be exactly solvable
 - Can use techniques like superposition
 - Discretizations lead to linear algebra
 - Examples:
 - diffusion of heat
 - electromagnetic waves
 - acoustic waves
 - gravitational potential

Linear vs. Nonlinear problems

- Nonlinear problems
 - Rarely have exact solutions
 - No superposition
 - Discretizations lead to nonlinear algebra
 - Solution may not be unique
 - Examples:
 - Pendulum
 - Spread of disease
 - Water waves
 - Fluid dynamics

Discretization

- Solutions of ODEs and PDEs live in continuous, infinitedimensional spaces!
- To compute with them, we must replace those with discrete spaces that are finite-dimensional

Discretization of boundary value problems

3 "finite"s

Finite differences

$$u(x_i,t)$$

Finite volumes

$$\int_{x_{i-1/2}}^{x_{i+1/2}} u(x,t) dx$$

Finite elements

$$\int_{x_{i-1/2}}^{x_{i+1/2}} u(x,t)\phi_j(x)dx$$

3 "finite"s

FDM

- Easier to code
- Lower computational cost
- Works best with simple geometries
- Simplest to understand

FVM

Falls somewhere in-between

FEM

- Harder to code
- Higher computational cost
- Works easily with complex geometries
- More sophisticated mathematical foundation

Basis functions

- Spectral methods
 - Basis functions have global support
 - More accurate for smooth solutions
 - Work best in simple geometries
 - Dense linear algebra

- "Local" methods
 - Basis functions have compact support
 - More suited to nonsmooth solutions
 - More suited to complex geometries
 - Sparse linear algebra

Grids

- Structured grid
 - Natural ordering
 - Neighbors are obvious
 - Computationally efficient

- Unstructured grids
 - Need lookup table for neighbors
 - Arbitrary geometries
 - Local refinement

Explicit vs. Implicit

$$u'(t) = f(u)$$

$$u_{n+1} = u_n + \Delta t f(u_n)$$

$$u_{n+1} = u_n + \Delta t f(u_{n+1})$$

- Explicit
 - Easier to program
 - Low cost per step
 - Efficient for wave equations
 (hyperbolic PDEs)

- Implicit
 - Harder to program
 - Higher cost per step
 - Efficient for stiff probems (elliptic, parabolic PDEs)