

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA AMBIENTAL

Plano de Ensino

Universidade Federal do Espírito Santo

Campus de Goiabeiras

Curso: Engenharia de Computação

Departamento Responsável: Departamento de Engenharia Ambiental

Data de Aprovação (Art. nº 91):

DOCENTE PRINCIPAL : BRUNO FURIERI Matrícula: 1238759

Qualificação / link para o Currículo Lattes: http://lattes.cnpq.br/6585455298349085

Disciplina: INTRODUÇÃO À MECÂNICA DOS FLUIDOS Código: DEA07780

Período: 2020 / 1 **Turma:** 5.5

Pré-requisito: Carga Horária Semestral: 60

Disciplina: FIS09057 - FÍSICA EXPERIMENTAL

Disciplina: MAT09582 - CÁLCULO III A

Disciplina: MCA08765 - TERMODINÂMICA E TRANSMISSÃO DE CALOR

Distribuição da Carga Horária Semestral

Créditos: 4 Teórica Exercício Laboratório 60 0 0

Ementa:

Estática dos Fluidos. Escoamento de Fluidos. Transporte em meios em movimento. Equações básicas de escoamento de fluidos. Difusão. Máguinas hidráulicas.

Objetivos Específicos:

Ao final desta unidade curricular, o aluno deve poder compreender os aspectos relacionados a movimentação de fluidos, inclusive no seu uso em máquinas, seu impacto na geração e dissipação de calor, e os problemas decorrentes das ondas de pressão em tubos.

Conteúdo Programático:

INTRODUÇÃO
 Definição de fluido
 Sistemas de dimensões e unidades
 Propriedades dos fluidos
 A hipótese do contínuo
 Métodos de análise

PLANO DE ENSINO - UFES Página 1 de 5

2. FUNDAMENTOS DA ESTÁTICA DOS FLUIDOS

Pressão em um ponto

Equação básica da estática dos fluidos e suas aplicações

Instrumentos de medição de pressão

Forças sobre superfícies planas submersas

Empuxo e flutuação

3. CINEMÁTICA DOS FLUIDOS

Classificação e descrição do campo de velocidades Classificação e descrição do escoamento de fluidos

Campo de tensões

4. EQUAÇÕES DE CONSERVAÇÃO

Leis físicas de conservação

A conservação de massa

A segunda lei de Newton

A primeira lei da termodinâmica

A Lei de Fick

O teorema do transporte de Reynolds

Equações de conservação na forma integral

Conservação de massa

Conservação de quantidade de movimento

Conservação da energia

Conservação de massa da espécie química

Equações de conservação na forma diferencial

Conservação de massa

Conservação de quantidade de movimento

Conservação da energia

Conservação de massa da espécie química

5. ANÁLISE DIMENSIONAL E SEMELHANÇA

Teorema dos π de Buckingham

Números adimensionais importantes em mecânica dos fluidos

Semelhança geométrica, cinemática e dinâmica

Metodologia:

Estão previstas atividades síncronas e assíncronas para o cumprimento da carga horária da disciplina.

As atividades síncronas terão um total de 22,5 horas (37,5%) contendo:

 Encontros online com os estudantes matriculados via plataforma digital Google Meets utilizando-se dos seguintes meios: slides, anotações e resolução de exercícios com mesa digitalizadora, vídeos e seminários de discussão de tópicos da disciplina;

As atividades assíncronas terão um total de 37,5 horas (62,5%) contendo:

 Resolução e entrega para correção de exercícios teóricos e práticos da disciplina;

 Construção de experimentos práticos e caseiros de mecânica dos fluidos com medições de variáveis de

interesse e elaboração de relatório prático;

 Uso do Ambiente Virtual de Aprendizagem para realização de questionários de fixação do conteúdo e

avaliação:

 Leitura de artigos científicos correlatos aos assuntos teóricos da disciplina

Critérios / Processo de avaliação da Aprendizagem :

Avaliações no período síncrono:

: Apresentação de solução de exercícios teóricos e práticos 10% da nota total:

 Apresentação de seminários 20% da nota total;

Avaliações no período assíncrono:

 Avaliações escritas em período fixo e pré-determinado [30% da nota total;

 Preenchimento de questionários no Ambiente Virtual de Aprendizagem 20% da nota total;

 Relatório de atividades práticas 20% da nota total.

Bibliografia básica:

PLANO DE ENSINO - UFES Página 2 de 5

ÇENGEL, Y. A. / CIMBALA, J. M., Mecânica dos Fluidos: fundamentos e aplicações – 3ª Ed., 2015, McGrawHill Education. FOX, R. W. / PRITCHARD, P. J. / Mcdonald, A. T., Introdução à Mecânica dos Fluidos - 8ª Ed. 2014, LTC. INCROPERA, F. P. / DEWITT, D. P., Fundamentos de Transferência de Calor e de Massa - 6ª Ed. 2008, LTC.

Bibliografia complementar:

VERSTEEG H., MALALASEKERA W., Introduction to computational fluid dynamics: the finite volume method. 2. ed. Pearson Education. 2007.

MALISKA C., Transferência de calor e mecânica dos fluídos computacional. 2. ed. Rio de Janeiro: LTC, 2004.

BIRD, B.; STEWART, W.; LIGHTFOOT, E., Fenômenos de Transporte. 2. ed. Rio de Janeiro: LTC, 2004.

ROMA, W., Fenômenos de Transporte para Engenharia. 2. ed. São Carlos: RiMa, 2006.

MORAN, M. J./SHAPIRO, H. N. Princípios de Termodinâmica para Engenharia - 7ª Ed. 2013, LTC.

Cronograma:

Aula	Data	Descrição	Exercícios	Observações
01	09/09/2020	Introdução à disciplina. Ementa.		
		Material didático. Datas das		
		avaliações. Aplicação de		
		exercícios preliminares de		
		revisão. Analogias entre os		
02	16/09/2020	fenômenos de transporte Dimensões e unidades. Campo		
02	10/09/2020	•		
		de velocidades. Hipótese do		
		contínuo. Propriedades dos fluidos. Fluidos Não-Newtonianos.		
		Classificação de escoamentos.		
		Dedução da Lei da Viscosidade de Newton. Tensão vs. Taxa de		
		deformação.		
		, ,		
		Aplicação da lei da Viscosidade de Newton.		
03	23/09/2020	Escoamentos e perfis de		
00	20/00/2020	velocidade. Camada limite e		
		Escoamento livre. Número		
		adimensional de Reynolds.		
		Viscosímetros de cilindros		
		concêntricos. Cálculo do número		
		de Reynolds para escoamentos		
		internos em tubulações.		
04	30/09/2020	Resolução de exercícios em sala		
		de aula: fluidos e viscosidade.		
		Introdução à estática dos fluidos.		
		Dedução da equação geral da		
		estática dos fluidos.		
		Princípio de Stevin.		
05	07/10/2020	Estática dos fluidos: forças sobre		
		superfícies submersas. Estática		
		dos fluidos: forças sobre		
		superfícies submersas.		
06	14/10/2020	Resolução de exercícios em sala:		
		estática dos fluidos. Dedução do		
		cálculo do ponto de		
		aplicação da força resultante		
		hidrostática submersa.		
07	21/10/2020	Leis básicas da física para um		
		sistema fechado: conservação da		

PLANO DE ENSINO - UFES Página 3 de 5

Aula	Data	Descrição	Exercícios	Observações
		massa e segunda lei de Newton. Dedução do Teorema do		
08	28/10/2020	Transporte de Reynolds Leis básicas da física para um sistema fechado: conservação da massa e segunda lei de Newton. Dedução do Teorema do Transporte de Reynolds. Aplicação da Equação da Conservação da Massa na forma integral para um volume de controle: regime transiente. Aplicação ao viscosímetro capilar em desenvolvimento.		
09	04/11/2020			
10	11/11/2020	Resolução de exercícios das Equações de Conservação de Massa e Quantidade de Movimento. Aplicações a tanques com escoamento em regime transiente e órgãos acessórios hidráulicos com necessidade de fixação. Equação da Conservação da Energia para um volume de controle na forma integral.		
11	18/11/2020	Introdução à análise diferencial de movimento de fluidos. Equação da continuidade. Introdução à análise diferencial de movimento de fluidos. Equação da quantidade de movimento - Navier-Stokes. Equação na forma diferencial da energia e massa de espécie química.		
12	25/11/2020	Introdução à análise diferencial de movimento de fluidos. Equação da quantidade de movimento - Navier-Stokes. Equação na forma diferencial da energia e massa de espécie química. Introdução à simulação numérica computacional para resolução das equações diferenciais governantes de movimento de fluidos, transporte de calor e massa de espécie química.		
13	02/12/2020			

PLANO DE ENSINO - UFES

Aula	Data	Descrição	Exercícios	Observações
		análise diferencial e simulação numérica.		
14	09/12/2020	Análise dimensional e semelhança. Apresentação de seminários.		
15	16/12/2020	Apresentação de seminários.		

Observação:

 Contatos do docente: E-mail: bruno.furieri@ufes.br/Sala: CT IV \(\text{25} \) (NQualiAr)

 Os encontros online serão realizados às Quartas-Feiras das 17h até as 18h30;

 O link dos encontros é: https://meet.google.com/lookup/cctpgniy7x

PLANO DE ENSINO - UFES Página 5 de 5