Appendix A-C. Vectors and Matrices

- 1. Gram-Schmidt theorem: basis x_1, \ldots, x_n of a vector space \mathcal{M} .
- (a) Can construct an orthonormal basis {y1,..., yn}.
- (b) If N is a subspace, an orthonormal basis {v₁,...,v_r} for N can be extended to an orthonormal basis {v₁,...,v_r, v₁,...,v_{r,N},...,v_{r,N},...,v_{r,N} of M with v_j ∈ N[⊥].
- (c) Any $x \in \mathcal{M}$ can be uniquely decomposed as $x = x_0 + x_1, x_0 \in \mathcal{N}, x_1 \in \mathcal{N}^{\perp}$.
- SVD of a symmetric matrix A = A^{*}: A = PDP^{*}, with orthogonal P = [v₁···v_n] and diagonal D = diag(λ_j). The v_j are orthonomal eignevectors of A to eigenvalues λ₁····λ_n $\Rightarrow \operatorname{tr}(A) = \sum_{j} \lambda_{j}$
- 3. SVD of rectangular $(n \times p)$ matrix X: X = UDV' with
- (a) $D = \operatorname{diag}(\lambda_j)$, where λ_j^2 the eigenvalues of X'X
- pseudo Ax= XV
- (b) $(p \times p) V = [v_1 \cdots v_p]$, with $v_j = \text{orthon eigenvectors of } X'X$, i.e., $X'XV = VD^2$
- Orthogonal projections: \underline{Def} M is perpendicular projection matrix (p.p.m.) onto C(X) if Mv=v for all $v\in C(X)$ and Mw=0 for all $w\perp C(X)$. (c) $(n \times p)$ $U = [u_1 \cdots u_p]$, with $u_j = \text{orthon eigenvectors of } XX'$, with $XX'U = UD^2$
- (a) M is a p.p.m iff M = M' and MM = M.
- (b) If M is p.p.m. onto $C(X) \Rightarrow C(M) = C(X)$.
- (c) M = OO', with $O = [o_1 \cdots o_p]$ where $\{o_1, \dots, o_p\}$ is an orthonormal basis of C(X).
- (d) $M = X^{\dagger}(X'X)^{-}X'$
- (e) tr(M) = r(M) = r(X) (eigenvalues are 1 and 0 only)
- Nested subspaces: If M₀, M are p.p.m. with C(M₀) ⊂ C(M) then M − M₀ is a p.p.m. with C(M − M₀) ⊂ C(M) and C(M − M₀) ⊥ C(M₀) (we did not see this in class, but will need it later).

§2. Estimation

- 6. Estimable function: Def: $\lambda'\beta$ is estimable if $\lambda'\beta = \rho'X\beta$. ($\Leftrightarrow \exists \rho \text{ such that } E(\rho'Y) = \lambda\beta$).
- 7. LS: $Y = X\beta + \epsilon$, and $\epsilon \sim [0, \sigma^2 I]$. Let ESS(b) = (Y Xb)'(Y Xb).
- (a) Def: β is LS estimate if ESS(β) = min_β ESS(β)
- (b) β is LS \Leftrightarrow $X\beta = MY$, where M is p.p.m. onto C(X).
- 8. LS of estimable function $\lambda'\beta$: LS estimate $\lambda'\beta = \rho'X\beta = \rho'MY$ (for $\lambda' = \rho'X$).
- (a) it is unbiased, i.e., $E(\lambda'\beta) = E(\rho'MY) = \lambda'\beta$
- (b) if $\epsilon \sim N(0, \sigma^2 I)$ then
- i. X \beta is BLUE
- ii. B is m.l.e.
- iii. $\lambda'\dot{\beta} \sim N(\lambda'\beta, \lambda'(X'X)^{-}\lambda\sigma^{2})$. Some special cases:
- If $(X'X)^{-1}$ exists then $\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1})$ and $E\{(\hat{\beta} \beta)'(\hat{\beta} \beta)\} = \operatorname{tr}[\sigma^2(X'X)^{-1}]$.
- $\hat{Y} = X\hat{\beta} \sim N(X\beta, \sigma^2 M)$.
- (c) β is LS $\Leftrightarrow X'Y = X'X\beta$ (normal equations)

(a)
$$E(MSE) = E[Y'(I - M)Y/(n - r)] = \sigma^2$$

(b) quadratic form
$$Y'(I-M)Y/\sigma^2 \sim \chi^2(\pi(I-M))$$
 and $Y'(I-M)Y$ is indep of MY

10. More Sampling distributions: Combine the last two results to find that for estimable $\lambda\beta$,

$$t = \frac{X\beta - X\beta}{\sqrt{\text{MSE } X(X'X) - \lambda}} \sim t(n-\tau),$$

with r = r(M). Some special cases and applications:

(a) if
$$\beta_j$$
 is estimable, then $t=\frac{\beta_j-\beta_{j-1}}{\sqrt{MSE}\, \beta_{j,j}}\sim t(n-r)$ with $H=(X^2X)^{-1}$

(b) Let
$$Y = X\beta$$
, and let z'_i denote the i -th row of X . Then $t = \frac{Y_i - z'_i\beta}{\text{MSE } z'_i\beta z_i} \sim t(n-r)$

(c) C.I. for
$$X/\beta$$
 by $p(-t_{\alpha/2} \le t \le t_{\alpha/2}) = 1 - \alpha \Rightarrow p(\dots \le X/\beta \le \dots) = 1 - \alpha$

(d) Test
$$H_0: \lambda'\beta = \lambda'\beta_0$$
 with rejection region $R = \{Y: t \ge t_{\alpha/2} \text{ or } t \le -t_{\alpha/2}\}$ (one-sided similarly)

11. Generalized LS: Consider
$$Y = X\beta + \epsilon$$
 with $\epsilon \sim [0, \sigma^2 V]$, for non-singular V .

$$\underline{Dct}_{\cdot}\beta$$
 is a gen LS estimator if $(Y - X\hat{\beta})V^{-1}(Y - X\hat{\beta}) = \min_{\beta}(Y - X\hat{\beta})V^{-1}(Y - X\hat{\beta})$.
Using $V = QQ'$ (from the SVD) and left multiplication with Q^{-1} we find:

(a)
$$\lambda'\beta$$
 is estimable $\Leftrightarrow \lambda' = \rho'X$ (same as under $cov(\epsilon) = \sigma^2I$).

(b) For estimable
$$\lambda'\beta$$
 the gen LS estimate is $\lambda'\dot{\beta}=\rho'AY$ with

$$A = X(X'V^{-1}X) - X'V^{-3}.$$
 (c) A is a projection onto $C(X)$

(e) If
$$\epsilon \sim N(0, \sigma^2 V)$$
 then

$$u \in \mathcal{N}(0, \sigma, V)$$
 the

ii.
$$\lambda' \dot{\beta} \sim N(\lambda' \beta, \sigma^2 \lambda' H \lambda)$$
 with $H = (X'V^{-1}X)^{-1}$

iii. Let
$$MSE = Y'(I - A)Y^{-1}(I - A)Y/(n - r)$$
.
Similar to the LS estimator we have $MSE(n - r)\sigma^2 \sim \chi^2(n - r)$ and $E(MSE) = \sigma^2$.
 MSE and AY are independent.

iv. Let
$$H = (X'Y^{-1}X)^{-}$$
; similar to before: $t = \frac{X^{\frac{1}{2}-X^{\frac{3}{2}}}}{\text{MSE}_{X,HX}} \sim t(n-r)$

(f)
$$\beta$$
 is gen LS es $X'V^{-1}Y = X'V^{-1}X\dot{\beta}$ (normal equations).

§15. Canonical regression & ridge regression

- 12. Regression in canonical form: Consider a regression (full rank X) model $Y = X\beta + \epsilon$, $\epsilon \sim [0, \sigma^2 I]$ and recall the SVD, X = UDV'.
- (a) $Y = X\beta + \epsilon \Leftrightarrow Y = UL\gamma + \epsilon$, with $\gamma = V'\beta$;

i.e., can write the above model as a regression on the eigenvectors $u_j\lambda_j$ (canonical form regression)

(b) I.S $\dot{\gamma} = D^{-1}(U'Y)$ or $\dot{\gamma}_j = u_j'Y/\lambda_j, j = 1, \dots, p$.

and see this in class, but it's an easy of

13. Ridge regression: Recall 8(b)iii, and use SVD for X (item 3.)

$$E[(\mathring{\beta}-\beta)'(\mathring{\beta}-\beta)] = \sigma^2 \mathrm{tr}[(X'X)^{-1}] = \sigma^2 \sum_j \lambda_j^{-2}.$$

This motivates

Def: $\tilde{\beta} = (X'X + kI)^{-1}X'Y$ (ridge regression), replacing λ_j by $\tilde{\lambda}_j^2 = \lambda_j^2 + k$.

Baysian inference for the linear model (P. Hoff, §9)

Throughout assume $p(Y \mid \beta, \sigma^2) = N(X\beta, \sigma^2 I)$ with full rank X (regression problem).

14. Some useful results:

Normal/normal model: sampling model $p(Y \mid \mu) = N(\mu, V)$; prior $p(\beta) = N(m_0, \Sigma_0)$, implies posterior $p(\beta \mid Y) = N(m_1, \Sigma_1)$ with $\Sigma_1^{-1} = \Sigma_0^{-1} + V^{-1}$ and $m_1 = \Sigma_1(\Sigma_0^{-1} m_0 + V^{-1}Y)$. Candidate's formula: $p(\theta_2) = p(\theta_1, \theta_2)/p(\theta_1 \mid \theta_2)$ (this is useful, for example for (β, σ^2) in $p(\beta, \sigma^2 \mid Y)$.

15. Fixed σ^2 : sampling model $p(Y \mid \beta) = N(X\beta, \sigma^2 I)$; prior $p(\beta) = N(b_0, \Sigma_0)$; then posterior $p(\beta \mid Y) = N(b_1, \Sigma_1)$ with $\Sigma_1^{-1} = \Sigma_0^{-1} + (X'X)\frac{1}{\sigma^2}$ and $b_1 = \Sigma_1(\Sigma_0^{-1}b_0 + \frac{1}{\sigma^2}X'Y)$

16. Random σ^2 : sampling model $p(Y \mid \beta, \sigma)$ as before, let $\gamma = 1/\sigma^2$; and prior $p(\beta, \gamma) = \text{Ga}(\gamma \mid \nu_0/2, \sigma_0^2 \nu_0/2) \times N(\beta \mid b_0, \Sigma_0)$; then the posterior is characterized by

(a) $p(\beta \mid \sigma^2, Y) = N(b_1, \Sigma_1)$, as before;

(b) $p(\gamma \mid \beta, Y) = \text{Ga}\left[(\nu_0 + n)/2, \frac{1}{2}(\nu_0 \sigma_0^2 + ESS(\beta))\right]$

Use a Gibbs sampler to alternatingly generate from (a) and (b). Averaging the generated values (β, γ) across iterations approximates $E(\beta, \gamma)$ Y).

(a) $p(\beta \mid \sigma^2, Y) = N(b_1, \Sigma_1)$, as before;

(a) $p(\gamma \mid Y) = Ga\left[(\nu_0 + n)/2, \frac{1}{2} \left\{ \nu_0 \sigma_0^2 + ESS(b_1) + (b_1 - b_0)' \tilde{\Sigma}^{-1} (b_1 - b_0) \right\} \right]$

Hoff does the same with $\hat{\Sigma} = g(X'X)^{-1}$, in which case the expression for Σ_1 , above, simplifies