Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ЛАБОРАТОРНАЯ РАБОТА №2 ПО КУРСУ «АНАЛИЗ АЛГОРИТМОВ»

Умножение матриц

Выполнил: Сорокин А.П., гр. ИУ7-52Б

Преподаватели: Волкова Л.Л., Строганов Ю.В.

Оглавление

B	веде					
1	Ана	алитическая часть	3			
	1.1	Задачи	3			
	1.2 Описание алгоритмов					
		1.2.1 Классический алгоритм умножения	3			
		1.2.2 Алгоритм Винограда	4			
		1.2.3 Оптимизированный алгоритм Винограда	4			
		1.2.4 Модель вычислений	5			
2	Koı	нструкторская часть	6			
	2.1	Схемы алгоритмов	6			
	2.2	Оценка трудоёмкости	9			
		2.2.1 Классический алгоритм	9			
		2.2.2 Алгоритм Винограда	9			
		2.2.3 Оптимизированный алгоритм Винограда	9			
	2.3	Список оптимизаций алгоритма Винограда	10			
	2.4	Замер используемой памяти	10			
3	Tex	нологическая часть	11			
	3.1	Требования к программному обеспечению	11			
	3.2	Средства реализации	11			
	3.3	Реализации алгоритмов	11			
	3.4	Тесты	14			
3	Экспериментальная часть					
	4.1	Примеры работы	15			
	4.2	Сравнение работы алгоритмов при чётных размерах матрицы	15			
	4.3	Сравнение работы алгоритмов при нечётных размерах матрицы	16			
За	аклю	очение	18			
Л	итер	атура	19			

Введение

В огромном количестве областей научной и технической сферы деятельности человека при различных математических расчетах используют такую операцию как умножение матриц. Это довольно трудоемкий процесс даже при небольших размерах матриц, так как требуется большое количество операций умножения и сложения различных чисел. По этой причине человек озадачен проблемой оптимизации умножения матриц и ускорения процесса вычисления.

Таким образом, эффективное умножение матриц по времени и затратам ресурсов является актуальной проблемой для науки и техники.

1. Аналитическая часть

1.1 Задачи

Цель лабораторной работы - изучение трех алгоритмов умножения матриц: классического, алгоритма Винограда и его оптимизации.

Для того чтобы добиться этой цели, были поставлены следующие задачи:

- изучить и реализовать классический алгоритм умножения матриц и алгоритм Винограда;
- оптимизировать работу алгоритма Винограда;
- выполнить сравнительный анализ трудоёмкостей алгоритмов;
- сравнить эффективность алгоритмов по времени и памяти.

1.2 Описание алгоритмов

1.2.1 Классический алгоритм умножения

Матрицей называют математический объект, эквивалентный двумерному массиву. Матрица является таблицей, на пересечении строк и столбцов находятся элементы матрицы. Количество строк и столбцов является размерностью матрицы.

Пусть даны две прямоугольные матрицы A и B размерности $m \times n$, $n \times q$ соответственно:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1q} \\ b_{21} & b_{22} & \dots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nq} \end{bmatrix}$$

Тогда произведением матриц A и B называется матрица C размерностью $m \times q$

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mq} \end{bmatrix}, [1]$$

$$(1.1)$$

в которой:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad (\overline{i} = 1 \dots m; \ \overline{j} = 1 \dots q).$$

1.2.2 Алгоритм Винограда

Исходя из равенства 1.1, видно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее. [2] Рассмотрим два вектора U и V:

$$U = A_i = (u_1, u_2, \dots, u_n), \tag{1.2}$$

где $U=A_i$ – i-ая строка матрицы A,

 $u_k = a_{ik}, \overline{k = 1 \dots n}$ – элемент і-ой строки k-ого столбца матрицы A.

$$V = B_j = (v_1, v_2, \dots, v_n), \tag{1.3}$$

где $V=B_j$ – j-ый столбец матрицы B, $v_k=b_{kj},\overline{k=1\dots n}$ – элемент k-ой строки j-ого столбца матрицы B.

По определению их скалярное произведение равно:

$$U \cdot V = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4. \tag{1.4}$$

Равенство 1.4 можно переписать в виде:

$$U \cdot V = (u_1 + v_2)(u_2 + v_1) + (u_3 + v_4)(u_4 + v_3) - u_1u_2 - u_3u_4 - v_1v_2 - v_3v_4. \tag{1.5}$$

В равенстве 1.4 насчитывается 4 операции умножения и 3 операции сложения, в равенстве 1.5 насчитывается 6 операций умножения и 9 операций сложения. Однако выражение $-u_1u_2-u_3u_4$ используются повторно при умножении і-ой строки матрицы A на каждый из столбцов матрицы B, а выражение $-v_1v_2-v_3v_4$ - при умножении ј-ого столбца матрицы B на строки матрицы A. Таким образом, данные выражения можно вычислить предварительно для каждых строк и столбцов матриц для сокращения повторных вычислений. В результате повторно будут выполняться лишь 2 операции умножения и 7 операций сложения (2 операции нужны для добавления предварительно посчитанных произведений).

1.2.3 Оптимизированный алгоритм Винограда

Для оптимизации алгоритма Винограда могут использоваться такие стратегии, как:

- предварительные вычисления повторяющихся одинаковых действий;
- использование более быстрых операций при вычислении (такие, как смещение битов вместо умножения или деления на 2);
- уменьшения количества повторных проверок;
- использование аналогичных конструкций, уменьшающих трудоёмкость операций (к примеру, замена сложения с 1 на инкремент).

Ниже представлен список личностей, проводивших оптимизацию алгоритма:

- в 2010 Эндрю Стотерс усовершенствовал алгоритм до $O(n^{2.374})$;
- в 2011 году Вирджиния Уильямс усовершенствовала алгоритм до $O(n^{2.3728642})$;
- в 2014 году Франсуа Ле Галль упростил метод Уильямса и получил новую улучшенную оценку $O(n^{2.3728639})$.

1.2.4 Модель вычислений

В рамках данной работы используется следующая модель вычислений:

- операции, имеющие трудоемкость 1: <, >, =, <=, =>, ==, ! =,+, -, *, /, +=, -=, *=, /=, [];
- оператор условного перехода имеет трудоёмкость, равную трудоёмкости операторов тела условия;
- оператор цикла for имеет трудоемкость:

$$F_{for} = F_{init} + F_{check} + N * (F_{body} + F_{inc} + F_{check}), \tag{1.6}$$

где F_{init} – трудоёмкость инициализации, F_{check} – трудоёмкость проверки условия, F_{inc} – трудоёмкость инкремента аргумента, F_{body} – трудоёмкость операций в теле цикла, N – число повторений. [3]

2. Конструкторская часть

2.1 Схемы алгоритмов

На рисунках 2.1, 2.2, 2.3 представлены схемы алгоритмов трёх алгоритмов умножения матриц.

Рис. 2.1: Классический алгоритм

Рис. 2.2: Алгоритм Винограда

Рис. 2.3: Оптимизированный алгоритм Винограда

2.2 Оценка трудоёмкости

Пусть даны две матрицы A и B размерностью $M \times N$ и размерностью $N \times Q$ соответственно. Рассмотрим трудоемкость трёх алгоритмов умножения матриц.

2.2.1 Классический алгоритм

$$f_{classic} = 13MNQ + 4MQ + 4M + 1 \tag{2.1}$$

2.2.2 Алгоритм Винограда

Трудоёмкости составных частей алгоритма:

- цикл создания вектора MulH: $f_I = \frac{15}{2}MN + 4M + 2$;
- цикл создания вектора MulV: $f_{II} = \frac{15}{2}NQ + 4Q + 2;$
- ullet основной цикл: $f_{III}=13MNQ+4MQ+4M+2;$
- условный переход при чётном N: $f_{IV}=2$;
- ullet условный переход и цикл при нечётном N: $f_{IV}=17MQ+4M+4$.

Общая трудоемкость алгоритма:

• при чётном N:

$$f_{vin} = f_I + f_{II} + f_{III} + f_{IV} = 13MNQ + \frac{15}{2}MN + \frac{15}{2}NQ + 4MQ + 8M + 4Q + 8$$
 (2.2)

• при нечётном N:

$$f_{vin} = f_I + f_{II} + f_{III} + f_{IV} = 13MNQ + \frac{15}{2}MN + \frac{15}{2}NQ + 21MQ + 12M + 4Q + 10 \quad (2.3)$$

2.2.3 Оптимизированный алгоритм Винограда

Трудоёмкости составных частей алгоритма:

- цикл создания вектора MulH: $f_I = \frac{11}{2}MN + 4M + 2$;
- цикл создания вектора MulV: $f_{II} = \frac{11}{2}NQ + 4Q + 2;$
- ullet основной цикл при чётном N: $f_{III}=10MNQ+17MQ+4M+6;$
- основной цикл при нечётном N: $f_{III} = 10MNQ + 10NQ + 4M + 2$.

Общая трудоемкость алгоритма:

• при чётном N:

$$f_{opt} = f_I + f_{II} + f_{III} = 10MNQ + \frac{11}{2}MN + \frac{11}{2}NQ + 17MQ + 8M + 4Q + 10$$
 (2.4)

• при нечётном N:

$$f_{opt} = f_I + f_{II} + f_{III} = 10MNQ + \frac{11}{2}MN + \frac{11}{2}NQ + 10NQ + 8M + 4Q + 6$$
 (2.5)

2.3 Список оптимизаций алгоритма Винограда

Алгоритм Винограда был оптимизирован с помощью следующих модификаций:

- 1. Замена конструкций вида a=a+b (трудоёмкость =2) на a+=b (трудоёмкость =1).
- 2. Вычисление повторно используемых величин выполняется предварительно (N/2, N-1, 2*k).
- 3. Цикл вычислений для нечётных элементов включён в основной цикл, добавив дополнительные операции. Данная модификация исключает повторные проверки на нечётность N.

2.4 Замер используемой памяти

Пусть даны две матрицы A и B размерностью $M \times N$ и размерностью $N \times Q$ соответственно и для хранения целого числа требуется 4 байта памяти.

В каждом из алгоритмов требуется хранить исходные матрицы A и B и матрицу результата умножения C, которая имеет размеры $M \times Q$. Таким образом, под хранение матриц требуется $4 \cdot (MN + NQ + MQ)$ байт памяти.

Для алгоритма Винограда и его оптимизированного варианта требуется также хранить два дополнительных вектора MulH и MulV. Их размеры M и Q соответственно, следовательно требуется дополнительно $4\cdot (M+Q)$ байт памяти. В итоге для алгоритмов Винограда требуется $4\cdot (MN+NQ+MQ+M+Q)$ байт памяти. Таким образом, при больших размерах матриц (больше 100) алгоритмы Винограда будут значительно проигрывать по памяти классическому алгоритму.

3. Технологическая часть

3.1 Требования к программному обеспечению

На вход подаются размеры двух матриц. Матрицы генерируются случайным образом и выводятся на экран. На выход программа выдаёт три матрицы, которые являются результатами работы трёх различных алгоритмов умножения.

3.2 Средства реализации

Для реализации программы был использован язык C++ [4]. Для замера процессорного времени была использована функция rdtsc() из библиотеки stdrin.h.

3.3 Реализации алгоритмов

В листингах 3.1, 3.2, 3.3 представлены коды реализации алгоритмов умножения матриц.

Листинг 3.1: Классический алгоритм

```
void multiply_classic(int **A, int **B, int **C, unsigned M, unsigned N, unsigned Q)

for (unsigned i = 0; i < M; i++)

for (unsigned j = 0; j < Q; j++)

{
    C[i][j] = 0;
    for (unsigned k = 0; k < N; k++)
    C[i][j] += A[i][k] * B[k][j];
}</pre>
```

Листинг 3.2: Алгоритм Винограда

```
void multiply_vinograd(int **A, int **B, int **C, unsigned M, unsigned Q)

{
    int *MulH = new int[M];
    for (unsigned i = 0; i < M; i++)

    {
        MulH[i] = 0;
        for (unsigned k = 0; k < N / 2; k++)
            MulH[i] = MulH[i] + A[i][2 * k] * A[i][2 * k + 1];

    }

int *MulV = new int[Q];
    for (unsigned i = 0; i < Q; i++)

{
        Constant int *MulV = new int[Q];
        for (unsigned i = 0; i < Q; i++)
        for (unsigned i = 0; i < Q; i++)
</pre>
```

```
MuIV[i] = 0;
14
       for (unsigned k = 0; k < N / 2; k++)
15
         MuV[i] = MuV[i] + B[2 * k][i] * B[2 * k + 1][i];
16
    }
17
18
    for (unsigned i = 0; i < M; i++)
19
       for (unsigned j = 0; j < Q; j++)
20
21
         C[i][j] = -MulH[i] - MulV[j];
22
         for (unsigned k = 0; k < N / 2; k++)
23
           C[i][j] = C[i][j] + (A[i][2 * k] + B[2 * k + 1][j]) *
                 (A[i][2 * k + 1] + B[2 * k][j]);
       }
27
28
    if (N \% 2 == 1)
29
       for (unsigned i = 0; i < M; i++)
30
         for (unsigned j = 0; j < Q; j++)
31
           C[i][j] = C[i][j] + A[i][N - 1] * B[N - 1][j];
32
33
    delete ∏ MulH;
34
    delete ∏ MulV;
35
36 }
```

Листинг 3.3: Оптимизированный алгоритм Винограда

```
void multiply vinograd opt(int **A, int **B, int **C, unsigned M, unsigned N, unsigned Q)
2 {
     int *MulH = new int[M];
3
    for (unsigned i = 0; i < M; i++)
     {
5
       MulH[i] = 0;
6
       for (unsigned k = 0; k < N; k < < = 1)
         MulH[i] += A[i][k] * A[i][k + 1];
    }
9
10
    int *MuIV = new int[Q];
11
    for (unsigned i = 0; i < Q; i++)
12
13
       MuIV[i] = 0;
14
       for (unsigned k = 0; k < N; k < < = 1)
15
         MuIV[i] += B[k][i] * B[k + 1][i];
16
       }
17
18
19
    if (N % 2)
20
21
       unsigned N minus 1 = N - 1;
22
       for (unsigned i = 0; i < M; i++)
23
         for (unsigned j = 0; j < Q; j++)
25
           C[i][j] = A[i][N \text{ minus } 1] * B[N \text{ minus } 1][j] - MulH[i] - MulV[j];
26
           for (unsigned k = 0; k < N; k < < = 1)
27
             C[i][j] += (A[i][k] + B[k + 1][j]) * (A[i][k + 1] + B[k][j]);
28
```

```
}
29
    }
30
31
    else
32
      for (unsigned i = 0; i < M; i++)
         for (unsigned j = 0; j < Q; j++)
34
35
           C[i][j] = -MulH[i] - MulV[j];
36
           for (unsigned k = 0; k < N; k < < 1)
37
             C[i][j] += (A[i][k] + B[k + 1][j]) * (A[i][k + 1] + B[k][j]);
         }
39
    }
40
41
    delete [] MulH;
42
    delete MulV;
43
44 }
```

3.4 Тесты

Для проверки корректности работы были подготовлены функциональные тесты, представленные в таблице 3.1. Входные данные удовлетворяют условиям, необходимым для умножения матриц, так как проверка на соответствие их размеров возложена на другую функцию.

Таблица 3.1: Функциональные тесты

Матрица 1	Матрица 2	Ожидание
[5]	[-8]	[-40]
[2 1 1]	$\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$	[6]
$\begin{bmatrix} 5 & 1 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 3 & -5 \\ 10 & 0 \end{bmatrix}$	$\begin{bmatrix} -10 & 25 \\ -10 & 0 \end{bmatrix}$
$\begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 0 & -2 \end{bmatrix}$	$\begin{bmatrix} 7 & 2 \\ 3 & 8 \end{bmatrix}$
$\begin{bmatrix} 1 & 1 & -1 \\ 5 & -3 & -4 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$

В результате проверки реализации всех алгоритмов умножения прошли все поставленные функциональные тесты.

4. Экспериментальная часть

4.1 Примеры работы

На рисунке 4.1 представлен пример работы программы, демонстрирующий корректную работу алгоритмов.

```
Enter 3 size of matrices (M, N, Q): 5 5 5
-86-505
-7 6 5 -4 0
-1 2 -2 -6 -7
76-702
2 5 10 6 -9
-5 -5 -7 5 6
8 -7 10 5 -3
5 4 -2 10 10
7 -6 -6 5 -7
2 -4 -6 -1 -1
73 -42 96 -65 -121
80 37 123 25 18
-45 47 109 -38 17
-18 -113 13 -7 -48
104 -5 34 174 64
73 -42 96 -65 -121
80 37 123 25 18
-45 47 109 -38 17
-18 -113 13 -7 -48
104 -5 34 174 64
73 -42 96 -65 -121
80 37 123 25 18
-45 47 109 -38 17
-18 -113 13 -7 -48
104 -5 34 174 64
```

Рис. 4.1: Пример работы программы

4.2 Сравнение работы алгоритмов при чётных размерах матрицы

Для сравнения времени работы алгоритмов умножения матриц были использованы квадратные матрицы размером от 100 до 1000 с шагом 100. Эксперимент для более точного результата повторялся 100 раз. Итоговый результат рассчитывался как средний из полученных результатов. Результаты измерений показаны в таблице 4.1 и на рисунке 4.2.

Таблица 4.1: Время работы алгоритмов при чётных размерах матриц в тактах процессора

Размер матриц	Классический	Алг-м Виногада	Оптимиз. алг-м Винограда
100	9832603	7754245	7744877
200	83641431	66133497	65139523
300	275961612	222657307	212578053
400	687812610	554745864	524447105
500	1445622837	1145269689	1108285653
600	2535128351	2023845576	1970742658
700	4109751947	3253209027	3200000610
800	6189672669	4885014816	4708955900
900	9779595722	7702124130	7606387468
1000	21459177654	17580178871	16442692055

Рис. 4.2: График времени работы алгоритмов при чётных размерах матриц

Из результатов экспериментов можно сделать вывод о том, что алгоритм Винограда выигрывает классический алгоритм умножения матриц в среднем на 18%. Оптимизированный алгоритм работает незначительно, но быстрее обычного алгоритма Винограда.

4.3 Сравнение работы алгоритмов при нечётных размерах матрицы

Для сравнения времени работы алгоритмов умножения матриц были использованы квадратные матрицы размером от 101 до 1001 с шагом 100. Эксперимент для более точного результата повторялся 100 раз. Итоговый результат рассчитывался как средний из полученных результатов. Результаты измерений показаны в таблице 4.2 и на рисунке 4.3.

Таблица 4.2: Время работы алгоритмов при нечётных размерах матриц в тактах процессора

Размер матриц	Классический	Алг-м Виногада	Оптимиз. алг-м Винограда
101	10547508	8230191	8177305
201	82367567	65381968	64826867
301	336340052	266920865	258607497
401	812787248	651249088	645290661
501	1835189141	1467674147	1409757023
601	3007503824	2395686951	2325860775
701	4931828183	3919747517	3852576801
801	9483733814	7620831752	7551663392
901	13990997406	11309714724	10896364853
1001	23043318998	18788207855	18045078361

Рис. 4.3: График времени работы алгоритмов при нечётных размерах матриц

Для случая с нечётными размерами матриц можно сделать те же выводы, что и для случая с чётными. При этом можно заметить, что классический алгоритм в среднем работает за то же время, что и при чётных размерах, в то время как алгоритм Винограда и его оптимизация работают дольше за счёт дополнительных операций при нечётном случае. Однако по-прежнему классический алгоритм проигрывает по времени на те же величины.

Заключение

В ходе лабораторной работе были изучены и реализованы три алгоритма умножения матриц: классический алгоритм, алгоритм Винограда и его оптимизированный вариант. Сравнительный анализ алгоритмов показал, что алгоритмы Винограда, введя дополнительные векторы и увеличив тем самым расход памяти, добились уменьшения времени выполнения умножения за счёт уменьшения трудоёмких операций: неоптимизированный и оптимизированный варианты работают на 18-20% быстрее классического алгоритма.

Литература

- [1] Бахвалов, Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков М.: Наука, 1987.
- [2] Jelfimova L. A new fast systolic array for modified Winograd algorithm // Proc. Sevens Int. Workshop on Parallel Processing by Cellular Automata and Array, PARCELLA-96 (Berlin, Germany, Sept. 1996). — Berlin: Akad. Verlag. — 1996.
- [3] Кормен, Т. Алгоритмы: построение и анализ / Т. Кормен, Ч. Лейзерсон, Р.М. Ривест: МЦНТО, 1999.
- [4] https://cppreference.com/ [Электронный ресурс]