5 多変数関数の Taylor 展開と極値

なめらかな 1 変数関数は「多項式で近似」することができた、本節では、これを多変数の場合へ一般化する、5.1 Taylor 展開

定義 $\mathbf{5.1.}$ $\mathbf{v} \in \mathbb{R}^2$ $(\mathbf{v} \neq \mathbf{0})$ に対して,

$$(D_{\boldsymbol{v}}f)(\boldsymbol{a}) := \lim_{t \to 0} \frac{f(\boldsymbol{a} + t\boldsymbol{v}) - f(\boldsymbol{a})}{t}$$

が存在するとき , これを点 a における f の v 方向の微分という .

注意 5.2. 関数に作用して別の関数に変化させるものを作用素というが,この D_v は作用素の一種である.

補題 5.3. $v=(v_1,v_2)$ とすると $D_{\boldsymbol{v}}f=v_1\frac{\partial f}{\partial x}+v_2\frac{\partial f}{\partial y}$.

 $D_{\boldsymbol{v}}^2 f = D_{\boldsymbol{v}} \left(D_{\boldsymbol{v}} f \right)$ のようにして計算する.例えば

$$D_{\mathbf{v}}^{2}f = v_{1}^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2v_{1}v_{2} \frac{\partial^{2} f}{\partial x \partial y} + v_{2}^{2} \frac{\partial^{2} f}{\partial y^{2}}.$$

定理 ${f 5.4}$ (Taylor の定理). $n\in \mathbb{N}$ とする . なめらかな 2 変数関数 f(x,y) に対して , 次が成り立つ .

$$f(\boldsymbol{a} + \boldsymbol{h}) = \sum_{k=0}^{n} \frac{1}{k!} (D_{\boldsymbol{h}}^{k} f)(\boldsymbol{a}) + o(\|\boldsymbol{h}\|^{n})$$

これを f(x) の点 a における n 次の Taylor 展開という.

注意 $\mathbf{5.5.}$ $\mathbf{h}=(h_1,h_2)$ とすれば , $D_{\mathbf{h}}^kf(\mathbf{a})$ は h_1,h_2 に関する k 次同次の多項式になる . つまり , なめらかな多変数関数は (多変数の) 多項式によって近似できる .

f(x) の点 a における 2 次の Taylor 展開は

$$f + \nabla f \cdot \boldsymbol{h} + \frac{1}{2}(h_1, h_2) \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + o$$

と書ける *1 .ここで現れる行列が,1変数関数における2階導関数に対応するものである.

定義 5.6.対称行列 $H_f(x):=egin{pmatrix} f_{xx}(x) & f_{xy}(x) \ f_{xy}(x) & f_{yy}(x) \end{pmatrix}$ を関数 f(x) の Hesse 行列という.

例題 5.7. $f(x,y) = \sin(x+y)$ の , 原点 (0,0) における 3 次の Taylor 展開を求めよ .

(考え方) 1 変数関数の Taylor 展開を利用する.解答略.

5.2 多変数関数の極値

定義 5.8.2 変数関数 f(x,y) に対し,点 a に十分近い ところでは常に f(a)>f(x) をみたすとき極大,常に f(a)< f(x) をみたすとき極小という.2 つを合わせて 極値といい,また等号を許すときは広義の極値という.

1 変数のとき x=a が極値ならば f'(a)=0 であり,さらに極大 \Leftrightarrow f''(a)<0,極小 \Leftrightarrow f''(a)>0 であった.ここで $f(a+h)=f(a)+f'(a)h+\frac{1}{2}f''(a)h^2+o(h^2)$ であることを思い出そう.極値であることの必要条件は Taylor 展開の 1 次の項の係数が関係しており,極大極小の情報は 2 次の項が関係している.

定義 5.9. $\nabla f(a) = 0$ となる a を f の停留点という *2 .

命題 $\mathbf{5.10.}$ f(x) が点 a で広義の極値ならば , a は f の 停留点である .

注意 ${\bf 5.11.}$ 停留点は極値の候補を与えるが,必ずしも極値になるとは限らない.また, $f(x,y)=x^2-y^2$ のように,1 変数では見られなかった現象も起きるようになる.実際, $f_x=2x$, $f_y=-2y$ なので停留点は原点のみ.この関数は原点において,x 軸上では極小になるが,y 軸上では原点は極大になる *3 ので,f(x) は極値を持たない.実は ${\bf Hesse}$ 行列を調べることで極値を判定できる.

定義 5.12. 対称行列 $T = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ に対して,

- (1) 正定値 \Leftrightarrow 固有値がすべて正 \Leftrightarrow a>0, $\det T>0$
- (2) 負定値 \Leftrightarrow 固有値がすべて負 \Leftrightarrow a < 0, $\det T > 0$
- (3) 不定符号 \Leftrightarrow 正負の固有値を持つ \Leftrightarrow $\det T < 0$

定理 $\mathbf{5.13.}$ f の停留点 a に対して,(1) $H_f(a)$ が正定値 \Leftrightarrow 点 a で極小,(2) $H_f(a)$ が負定値 \Leftrightarrow 点 a で極大,(3) $H_f(a)$ が不定符号 \Leftrightarrow 点 a は鞍点となる.ただし, $\det H_f(a)=0$ のときは何もわからない.

例題 5.14. $f(x,y) = x^3 + y^3 - 3xy$ の極値を求めよ.

(考え方) まず $\nabla f(x)=\mathbf{0}$ $(f_x=f_y=0)$ を解き,極値の候補 (停留点) を求める.そして,それらの各点に対して $H_f(a)$ を調べ,判定する.解答略.

<u>まとめ</u> (1) なめらかな多変数関数は Taylor 展開を持つ. (2) 多変数関数の極値問題では 1 変数にはなかった現象 (鞍点) が起こる. (3) 極値判定には \mathbf{Hesse} 行列を使う.

¹¹月7日

 $^{^{*1}}$ スペースの関係で引数 (a) を省略している . また o は $o(\parallel h^2 \parallel)$ の略である .

 $^{^{*2}}$ つまり $f_x(oldsymbol{a}) = f_y(oldsymbol{a}) = 0$ となる点 .

 $^{^{*3}}$ このような点を鞍点という .

演習問題 5

問題 1. 次の関数の原点における Taylor 展開を,4次の 項まで求めよ.

(1)
$$e^x \log(1+y)$$
 (2) $e^{2x} \cos x$

(2)
$$e^{2x}\cos x$$

(3)
$$\sqrt{1-x^2-y^2}$$
 (4) $\sin x \cos y$

(4)
$$\sin x \cos y$$

問題 2.[†] 次の関数の停留点を求めよ.また, Hesse 行列 も求め,その行列式を計算せよ.

(1)
$$x^3 + y^3 - 3axy \quad (a \in \mathbb{R})$$
 (2) x^y

$$(2) \quad x^y$$

(3)
$$\sin \frac{y}{x} + \sin(xy)$$
 (4) $\frac{xy}{\sqrt{x^2 + y^2}}$

$$) \quad \frac{xy}{\sqrt{x^2 + y^2}}$$

問題 3. 次の関数の極値を求めよ.

$$(1) \quad x^2 + xy + y^2 - 4x - 2y$$

$$(2)^{\dagger}$$
 $e^{-x^2-y^2}(2x^2+y^2)$

$$(3)^{\dagger} \quad xy + \frac{8}{x} + \frac{8}{y}$$

(3)†
$$xy + \frac{8}{x} + \frac{8}{y}$$

(4)* $\sin x + \sin y + \cos(x+y)$

$$(-\pi \le x, y \le \pi)$$

$$(-\pi \le x, y \le \pi)$$

$$(5)^* \quad x^2 + xy + y^2 + \frac{3(x+y)}{xy}$$

問題 4.* n 次同次多項式 f(x,y) に対し,次を示せ.

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf.$$

鞍点という単語は,英語の a saddle point の直訳 です.サドルといえば,今の時代は自転車が連想さ れますが,元々は乗馬用の鞍(くら)を意味する単 語でした.普段は使われなくなった言葉も,このよ うな専門用語に残っていると考えると何か不思議な 感じがします.

私が数学用語から存在を知った単語に「箙」とい うものがあります. 英語の a quiver の訳で, 日本 語としての意味は"矢を入れて背に負う道具"にな ります.さて,この漢字の読み方はわかりますか?

・ 小レポート ―

(1) 次の関数の原始関数を一つ求めよ.

$$f_1(x) = \frac{1}{x^2 + 1}, \quad f_2(x) = \frac{2x}{x^2 + 1},$$

 $f_3(x) = \frac{1}{\sqrt{1 - x^2}}, \quad f_4(x) = \frac{1}{\sqrt{x^2 - 1}}.$

(2) 2 変数関数 $f(x,y) = x^3 + y^3 - 3x - 3y$ に対し て,極値および鞍点を求めよ.

注意 . (1) f2 以外は逆三角関数,双曲線関数に関す る積分である . (2) 例題 4.11 の解法を参照のこと .

小レポートについて、次回の講義の際に提出すること、 原則として期限を過ぎての提出は認めないが,やむを得 ない事情がある際は、必ずその旨を期限日までにメール により連絡すること.

事務連絡 11月 28日は講義担当者の出張のため休講に なります.そしてその次の週の12月5日に中間試験を 実施します.