Enoncés : Stephan de Bièvre

Corrections: Johannes Huebschmann



# Fonctions et topologie élémentaire de $\mathbb{R}^n$

#### Exercice 1

- 1. Tracer le graphe de la fonction  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  définie par  $f(x,y) = x^2 + y^2$  et tracer les lignes de niveau de cette fonction.
- 2. Tracer les graphes des fonctions f et g définies par  $f(x,y) = 25 (x^2 + y^2)$  et  $g(x,y) = 5 \sqrt{x^2 + y^2}$  sur  $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 25\}$ .
- 3. Tracer le graphe de la courbe paramétrée  $f: \mathbb{R} \longrightarrow \mathbb{R}^2$  définie par  $f(x) = (x \cos x, x \sin x)$ .
- 4. Peut-on représenter graphiquement l'application de la question (3.)? Comment?
- 5. Décrire les surfaces de niveau de la fonction  $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$  définie par  $f(x, y, z) = \exp(x + y^2 z^2)$ .
- 6. Pourquoi ne peut-t-on pas naïvement représenter le graphe de l'application

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ f(x,y) = (-y,x),$$

sur une feuille de papier. Comment peut-on graphiquement représenter cette application ?

Indication ▼ Correction ▼

[002616]

#### Exercice 2

Déterminer si chacune des parties suivantes du plan sont ouvertes ou fermées, ou ni l'un ni l'autre. Déterminer chaque fois l'intérieur et l'adhérence.

- 1.  $A_1 = \{(x, y) \in \mathbb{R}^2 | x^2 y^2 > 1 \},$
- 2.  $A_2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1, y > 0\}.$

Indication ▼ Correction ▼

[002617]

#### Exercice 3

- 1. Soient  $B_1 \subset \mathbb{R}^n$  et  $B_2 \subset \mathbb{R}^m$  des boules ouvertes. Montrer que  $B_1 \times B_2 \subset \mathbb{R}^{n+m}$  est un ouvert.
- 2. Soit *A* un ouvert de  $\mathbb{R}^2$  et *B* un ouvert de  $\mathbb{R}$ . Montrer que  $A \times B$  est un ouvert de  $\mathbb{R}^3$ .

Indication ▼

Correction ▼

[002618]

#### **Exercice 4**

- 1. Soit  $(A_n)$   $(n \in \mathbb{N})$  une suite de parties ouvertes de  $\mathbb{R}^2$ . Est-ce que la réunion des  $A_n$  est encore une partie ouverte? Et leur intersection?
- 2. Même question pour une famille de parties fermées.

 [002619]

#### **Exercice 5**

Soit  $A = \{(t, \sin \frac{1}{t}) \in \mathbb{R}^2; t > 0\}$ . Montrer que A n'est ni ouvert ni fermé. Déterminer l'adhérence  $\overline{A}$  de A.

Indication ▼ Correction ▼ [002620]





# **Indication pour l'exercice 1** ▲

Utiliser le langage de la géométrie élémentaire, y compris les notions de surface de révolution, d'axe de révolution, de sommet d'un paraboloïde, de sommet d'un cône, de concavité vers le haut ou vers le bas, d'hélice, de spirale, etc.

# **Indication pour l'exercice 2** ▲

Exploiter les propriétés géométriques des parties du plan qui définissent  $A_1$  et  $A_2$ . Par exemple, une courbe qui est définie comme étant l'image réciproque d'un point relativement à une fonction continue est une partie fermée du plan.

# Indication pour l'exercice 3 A

Raisonner à partir de la définition d'un ouvert dans le plan.

# Indication pour l'exercice 4 A

Exploiter le fait que le complémentaire d'un ouvert est fermé et que le complémentaire d'un fermé est ouvert.

# **Indication pour l'exercice 5** ▲

Distinguer la partie triviale de l'exercice de la partie non triviale. Dans cet exercice, le seul point délicat est pour le paramètre *t* proche de 0.

### Correction de l'exercice 1 A

- 1. Le graphe est bien un paraboloïde de révolution ayant l'origine pour sommet, d'axe de révolution l'axe des z, et dont la concavité tourne vers le haut. Les lignes de niveau sont les cercles  $x^2 + y^2 = z_0$ ,  $z_0 = c$ , c > 0 étant une constante; pour c = 0 c'est le somment, c.a.d. l'origine.
- 2. Le graphe de la fonction f est un paraboloïde de révolution ayant le point (0,0,25) pour sommet et plafonné par le plan des x et y, d'axe de révolution l'axe des z, et dont la concavité tourne vers le bas. Les lignes des niveau sont les cercles  $x^2 + y^2 = 25 z_0$ ,  $z_0 = c$ , c < 25 étant une constante qui dégénèrent en un point, le sommet, pour c = 25.
  - Le graphe de la fonction g est un demi-cône de révolution ayant le point (0,0,5) pour sommet et plafonné par le plan des x et y, d'axe de révolution l'axe des z, et dont la concavité tourne vers le bas. Les lignes des niveau sont les cercles  $x^2 + y^2 = (5 z_0)^2$ ,  $z_0 = c$  étant une constante telle que  $0 \le c \le 5$  qui dégénèrent en un point, le sommet, pour c = 5.
- 3. Dans  $\mathbb{R}^3$  avec coordonnées (x, y, z), avec f(x) = (y, z), le graphe en discussion est une hélice sur le cône de révolution  $y2 + z^2 = x^2$ .
- 4. Le support de cette courbe paramétrée est une spirale planaire qui rencontre l'origine et dont la pente à l'origine vaut zéro.
- 5. Pour que  $f(x,y,z) = \exp(x+y^2-z^2)$  soit constant il faut et il suffit que  $x+y^2-z^2$  soit constant. Les surfaces de niveau en discussion sont donc les surfaces  $x+y^2-z^2=c$ . Ce sont des paraboloïdes hyperboliques.
- 6. Le graphe de l'application f en discussion est une surface dans  $\mathbb{R}^4$ , et la dimension 4 est trop grande pour représenter, sur une feuille de papier, ce graphe plongé dans  $\mathbb{R}^4$ . L'application f est un champs de vecteurs dans le plan cependant. De façon générale, on peut représenter graphiquement le champ de vecteurs  $X: U \to \mathbb{R}^2$  dans l'ouvert U du plan en dessinant, au point  $(u_1, u_2)$  de U, le vecteur  $X(u_1, u_2) = (x_1(u_1, u_2), x_2(u_1, u_2))$ .
  - N.B. Quand on représente une surface dans l'espace de dimension 3 ordinaire par un dessin sur une feuille de papier, en vérité on ne dessine qu'une projection de l'espace de dimension 3 sur un plan.

### Correction de l'exercice 2

- 1. La partie  $A_1$  est ouverte. Car la courbe  $x^2y^2=1$  a quatre branches, les deux branches de xy=1 et les deux branches de xy=-1; ces quatre branches coupent le plan en cinq parties dont une contient l'origine. La courbe  $x^2y^2=1$  étant une partie fermée, le complémentaire est un ouvert qui est réunion de cinq ouverts. La partie  $A_1$  est la réunion des quatre parties qui ne contiennent pas l'origine. Puisque  $A_1$  est ouvert,  $A_1$  coïncide avec son intérieur. L'adhérence de  $A_1$  est la réunion de  $A_1$  avec les quatre branches de la courbe  $x^2y^2=1$ .
- 2. La partie  $A_2$  est le demi-cercle de rayon 1 ayant l'origine pour centre constitué des angles  $0 < \varphi < \pi$  en radians et ce n'est ni ouvert ni fermé. La partie  $A_2$  n'est pas ouverte car aucun disque de rayon positif n'est dans  $A_2$ ; elle n'est pas fermée car les points  $(\pm 1,0)$  sont des points d'adhérence qui n'appartiennent pas à  $A_2$ . L'adhérence de  $A_2$  est la partie

$$\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1, y \ge 0\}$$

du plan.

#### Correction de l'exercice 3 A

- 1. Soient  $q_1$  un point de  $B_1$  et  $q_2$  un point de  $B_2$ , soient  $d_1$  resp.  $d_2$  la distance de  $q_1$  au bord de  $B_1$  resp. la distance de  $q_2$  au bord de  $B_2$ , et soit  $0 < d \le \min(d_1, d_2)$ . Alors la boule ouverte dans  $\mathbb{R}^{n+m}$  centrée en  $(q_1, q_2)$  et de rayon d est dans  $B_1 \times B_2$ .
- 2. Soient p un point de A, q un point de B, soit  $B_1$  un disque ouvert dans A contenant p, et soit  $B_2$  un intervalle ouvert dans B contenant q. D'après (1.),  $B_1 \times B_2$  est un ouvert de  $\mathbb{R}^3$  tel que  $B_1 \times B_2 \subseteq A \times B$  et (p,q) appartient à  $B_1 \times B_2$ . Par conséquent,  $A \times B$  est un ouvert de  $\mathbb{R}^3$ .

# Correction de l'exercice 4 A

- 1. La réunion  $\bigcup_n A_n$  d'une suite de parties ouvertes  $A_n$  de  $\mathbb{R}^2$  est bien une partie ouverte de  $\mathbb{R}^2$ . En effet, soit q un point de  $\bigcup_n A_n$ . Alors il existe  $n_0$  tel que q appartienne à  $A_{n_0}$ . Puisque  $A_{n_0}$  est ouvert, il existe un disque ouvert D dans  $A_{n_0}$  tel que q appartienne à D. Par conséquent, il existe un disque ouvert D dans  $\bigcup_n A_n$  tel que q appartienne à D.
  - L'intersection  $\cap_n A_n$  d'une suite de parties ouvertes  $A_n$  de  $\mathbb{R}^2$  n'est pas nécessairement ouverte. Par exemple, dans  $\mathbb{R}$ , l'intersection des intervalles ouverts ]-1/n,1/n[ est la partie  $\{0\}\subseteq\mathbb{R}$  qui n'est pas ouverte.
- 2. La réunion  $\bigcup_n B_n$  d'une suite de parties fermées  $B_n$  de  $\mathbb{R}^2$  n'est pas nécessairement une partie fermée de  $\mathbb{R}^2$ . Car le complémentaire  $\mathscr{C}(\bigcup_n B_n)$  de  $\bigcup_n B_n$  est l'intersection  $\bigcap_n \mathscr{C} B_n$  des complémentaires et c'est donc l'intersection d'une suite  $(\mathscr{C}B_n)$  de parties ouvertes de  $\mathbb{R}^2$  qui, d'après (1.), n'est pas nécessairement une partie ouverte de  $\mathbb{R}^2$ . De même, l'intersection  $\bigcap_n B_n$  d'une suite de parties fermées  $B_n$  de  $\mathbb{R}^2$  est bien une partie fermée de  $\mathbb{R}^2$ . Car le complémentaire  $\mathscr{C}(\bigcap_n B_n)$  de  $\bigcap_n B_n$  est la réunion  $\bigcup_n \mathscr{C}B_n$  des complémentaires et c'est donc la réunion d'une suite  $(\mathscr{C}B_n)$  de parties ouvertes de  $\mathbb{R}^2$  qui, d'après (1.), est une partie ouverte de  $\mathbb{R}^2$ .

#### Correction de l'exercice 5 A

La partie A du plan n'est pas ouverte puisqu'elle ne contient aucun disque ouvert. Cette partie A n'est pas fermée non plus : L'origine est un point d'adhérence : Quel que soit le disque ouvert B centré à l'origine, il existe un point de B qui appartient à A. Mais l'origine n'appartient pas à A d'où A n'est pas fermé. L'adhérence  $\overline{A}$  de A est la réunion  $A \cup (\{0\} \times [-1,1])$ . Car quelle que soit la suite  $(x_n)$  de points de  $A \cup (\{0\} \times [-1,1])$  telle que cette suite converge dans le plan, la limite appartient à  $A \cup (\{0\} \times [-1,1])$ .