The µP Cheat Sheet

What is a parametrization?

A parametrization is a set of rules that determine the values of three types of hyperparameter (HP) in a model:

1. parameter multipliers (α)

2. initialization standard deviations (σ) such that

3. learning rates (η)

 $for\ width-parametrizations$

 $W_t = \alpha_W \cdot w_t$

 $w_0 = \mathcal{N}(0, \sigma_W^2)$

 $w_{t+1} = w_t - \eta_W \cdot [\text{update}]$

for depth-parametrizations

residual-block(x) =

 $\alpha_{\rm res} \cdot f_{\rm res}(x) + x$

and $\sigma_{\rm res}$, $\eta_{\rm res}$ apply to all W on the residual branch

These rules are typically functions of the width (d) and/or layers (ℓ) of the model.

Rather than defining rules for individual Ws, parameterizations tend to define rules according to three tensor types:

tensor type	fan-in(W)	fan-out(W)	example
1. Input 2. Hidden	$\Theta(1)$ $\Theta(d)$	$\Theta(d)$ $\Theta(d)$	encoder, embedding, bias, norm params linear layer, convolution
3. Output (Residual)	$\Theta(d)$	$\Theta(1)$	decoder, readout (any parameter tensor on a residual branch)

Definitions of key parametrizations

The following table-pair captures important width-parametrizations from the literature. To derive a parametrization, select its column from the left table and take the entries from the right table of the corresponding color:

Param. feature	SP	NTP-na	NTP-fa	μP-na	μР	и-μР
down-scale $\eta_{\rm in}$	n/a	×	×	Х	X	✓
`full-alignment'	n/a	×	1	Х	1	1
down-scale $\sigma_{\rm out}$	X	X	Х	1	1	/

НР	tensor type						
111	input		hidden		output		
σ	1		$1/\sqrt{d}$		$1/\sqrt{d}$	1/d	
(Adam) η	1	$1/\sqrt{d}$	$1/\sqrt{d}$	1/d	$1/\sqrt{d}$	1/d	

No values are given for α s due to **abc-symmetry**, which states that models are invariant to changes of α, σ, η of the form $\alpha_W \times = \theta, \sigma_W \div = \theta$ for a given W, θ . Different values of θ define different parametrizations in the same equivalence class. θ is always chosen above such that $\alpha = 1$ for the sake of comparison, though other forms are used in the literature (e.g. the Mean Field Parametrization [todo] is in the same equivalence class as μP , but usually presented differently). The only parametrization which specifies a preferred form is u- μP , which uses $\sigma = 1$ for numerical stability. Also note that:

- σ, η are only proportional to the values in the right table—the constant of proportionality is a tunable HP.
- The above η s apply to all **optimizers** which guarantee $\Theta(1)$ -sized updates (e.g. Adam, Shampoo, Muon). Table 1 of [todo] shows adjustments for other optimizers.

TODO: something on depth

- Standard Parametrization (SP)'s rules for η are presented inconsistently in the literature. Hence they are dropped entirely here.
- 'fa/na' denotes full/no-alignment assumptions from [todo]
- The typical presentation of Neural

Tangent Parametrization (NTP) is different to the one shown here (see Table 1 [tp4]) and has been shown to scale poorly. The 'fa/na' variants use more appropriate η s.

• \mathbf{u} - $\mathbf{\mu}$ P's down-scaled $\eta_{\rm in}$ has only been validated on embedding-style input layers.

F.A.Q.

What are parametrizations trying to do? This is some text that will appear in the first column.

What parametrization should I use? This is text for the second column.

Any practical tips for applying this? This is text for the third column.