

Máster Universitario en Big Data y Ciencia de Datos

ASIGNATURA: 02MBID Sistemas de almacenamiento y gestión Big Data

Actividad 1 - Creación del esquema de una base de datos orientada a columnas

Alumno: Bru Montes, Israel

Edición Octubre 2024 a 10/11/2024

1. Parte 1: Creación del esquema de una base de datos orientada a columnas.

Modelo conceptual

Consultas a satisfacer

1. Obtener toda la información de un paciente en base a su nombre.

Tabla1	
Paciente_DNI	Clustering Key
Paciente_Nombre	Partition Key
Paciente_Fecha_Nac	
Paciente_Direccion	
Paciente_Tlf	
Paciente_Alergias	

Justificación:

En la tabla 1: identificamos como "Clustering key" la columna "Paciente_DNI" y como Partition Key la columna "Paciente_Nombre" para poder hacer búsquedas.

2. Obtener según el DNI de un médico todas las citas que atiende.

	Tabla2
Medico_DNI	Partition Key
Cita_ID	Clustering Key
Cita_Fecha_Hora	
Cita_Motivo	

Justificación:

En esta tabla de consulta pondría como Clustering Key la columna Cita_ID y como partition key la columna "medico dni" para realizar búsquedas.

3. Obtener según el DNI de un paciente, todos los tratamientos que tiene incluidos en las citas que tuvo.

Tabla 3		
Paciente_DNI	Partition Key	
Cita_ID	Clustering Key	
Tratamiento_ID	Clustering Key	
Tratamiento_Descripcion		
Tratamiento_Costo		

Justificación:

En la tabla 3, identificamos como Partition key el atributo Paciente_DNI de la entidad Paciente. Como Clustering Key los atributos Cita_ID y Tratamiento_ID que identifican para cada paciente la relacion de sus citas y los tratamientos por cada cita.

A parte mostramos todos los datos de cada tratamiento como información adicional.

4. Obtener cuantas citas tiene un paciente.

Tab	ola 4
Paciente_DNI	Partition Key
num_citas_paciente	+

Justificación:

En la tabla 4 asignamos como partition key el atributo "Paciente_DNI" y el atributo "num_citas_paciente" como columna agregada que contiene el número de citas por paciente.

5. Obtener todas las asociaciones entre recetas y medicamentos a través de la fecha de la receta.

Tabla 5	
Receta_Fecha_Emision	Partition Key
Receta_ID	Clustering Key
Medicamento_Codigo	Clustering Key
Medicamento_Nombre	
Medicamento_Dosis	

Justificación:

En la tabla 5 asignamos como partition key el atributo "Receta_Fecha_Emision" y como Clustering key la Receta_ID y Medicamento_Codigo.

6. Obtener los pacientes que tienen una alergia en concreto

Т	abla 6
Paciente_Alergia	Partition Key
Paciente_DNI	Clustering Key
Paciente_Nombre	

Justificación:

En la tabla 6 asignamos como Partition key el atributo "Paciente_Alergia" ya que contiene la información individual de las alergias que puede contenter un Paciente (Clustering Key → Paciente_DNI), es la representación de un atributo de conjunto (alergias).