

Calibration slide

These slides are meant to help with note-taking They are no substitute for lecture attendance

Smallest font

Big Data

This week

1. Finishing up Big Data infrastructure

2. Introducing Spark

Center for Data Science

DS-GA 1004: Big Data

1) Big Data Infrastructure

Taking a closer look at the Hadoop framework

MapReduce
Processing engine

YARN
Resource manager

HDFS
Storage layer

YARN was added to the Hadoop framework in version 2.0

Hadoop 1.x Hadoop 2.x Hadoop 3.x (until 2012) (2012-2017)(2017-now) **Spark** All Kubernetes Flink **MapReduce** engines **MapReduce** Pods from 2.x Hive, Pig,... YARN YARN **HDFS** Cloud **HDFS HDFS**

storage

YARN has effectively become the operating system of Hadoop

Yarn components:

Resource manager

Resource Application
Scheduler Manager

Actual footage of the interaction between resource manager and the application masters

Cluster resources: Some terminology

Why should you care about implementation details?

Good example: The interplay between HDFS and Map-Reduce

- HDFS shares blocks over data nodes
- Map-Reduce shares jobs over compute nodes
- What would be the case in an ideal world?
- If these were happening on the *same* node
- For big data, bringing compute ⇒ data is cheaper than the other way around!

So job scheduling and input splits can be coordinated / optimized

- A typical map-reduce job runs over one large data file
 - o Each file contains a large number of (independent) records
- MapReduce divides the input into splits

Splits
Input file
Blocks

- Each split maps onto one or more blocks
 - o Optimal: Assign work such that processing of a split is done on a machine with its blocks
- HDFS exposes block layout to the job scheduler to make this possible

Cluster organization: Network topology and interconnections between machines

Where to execute a job?

https://commons.wikimedia.org/wiki/File:CERN_Server.jpg Florian Hirzinger – www.fh-ap.com, <u>CC BY-SA 3.0</u> via Wikimedia Commons

Where to execute a job?

https://commons.wikimedia.org/wiki/File:CERN_Server.jpg Florian Hirzinger – www.fh-ap.com, <u>CC BY-SA 3.0</u> via Wikimedia Commons

Where to execute a job?

https://commons.wikimedia.org/wiki/File:CERN_Server.jpg Florian Hirzinger – www.fh-ap.com, <u>CC BY-SA 3.0</u> via Wikimedia Commons

Tied in with jobs: Replication factors

- Distribution of blocks to data nodes is not random.
- If we copy a block to multiple nodes, scheduling becomes easier
 - o We're more likely to find a free worker that has the data we need for a given job
- HDFS lets you set the replication factor for each file
 - Replication isn't free: cost is a multiple of data size
- Default setup: 3x replication
 - o If possible, 2 nodes in one rack, +1 in a separate rack
 - This protects against both node failure and rack failure

The name of the game: Parallelizing large and complex data analysis tasks

- Everything we have done so far was in the service of doing so.
- Mostly by imposing restrictions.
- Restricting valid data structures (e.g. schemas)
- Restricting valid processing operations (e.g. MapReduce)
- Restricting storage modes (e.g. HDFS)

Is this too restrictive?

2) Spark Socik

What do they think about mapReduce and why did they create Spark?

Good:

- Scalability (allowing for parallel processing of "big data")
- Fault tolerance
- So it works with off-the-shelf hardware (reliable despite unreliable components)
- Takes care of most of the "plumbing" (e.g. scheduling, load-balancing)

The key issue

- The "Stonebraker" criticism notwithstanding ("it's a bad database"):
- mapReduce is built on an "acyclic data flow model"

What do they mean by that? Is Map-Reduce... too low-level?

- Map-Reduce is great for one-time jobs with simple dependencies, just on big data. Fine for search, not for Data Science / Machine Learning:
- What if you want interactive or iterative procedures?
 - Data exploration (EDA)
 - Complex queries with multiple joins and aggregations
 - Optimization and machine learning

Reminder from IDS: Gradient descent algorithm, on extremely *small* data

- $\min_{\mathbf{w}} \sum_{n} f(x_n; \mathbf{w})$
- Initialize w

- $\min_{\mathbf{w}} \sum_{n} f(x_n; \mathbf{w})$
- Initialize w
- Repeat until convergence:

```
o mapper: x_n \rightarrow g_n = \nabla_w f(x_n; w) // N map jobs, compute gradients emit (1, g_n)
```

- $\min_{\mathbf{w}} \sum_{n} f(x_n; \mathbf{w})$
- Initialize w
- Repeat until convergence:

```
o mapper: x_n \rightarrow g_n = \nabla_w f(x_n; w) // N map jobs, compute gradients emit (1, g_n)
```

```
• reducer: \{(1, g_n)\} \rightarrow G = \sum_n g_n // 1 reduce job, accumulate gradients emit G
```

 \circ $W \leftarrow W - G$

- $\min_{\mathbf{w}} \sum_{n} f(x_n; \mathbf{w})$
- Initialize w
- Repeat until convergence:

```
o mapper: x_n \rightarrow g_n = \nabla_w f(x_n; w) // N map jobs, compute gradients emit (1, g_n)
```

```
o reducer: \{(1, g_n)\} \rightarrow G = \sum_n g_n // 1 reduce job, accumulate gradients emit G
```

 \circ $W \leftarrow W - G$

Each gradient step involves a full map-reduce!

And we don't even care about the previous iterations after they're done...

- $\min_{\mathbf{w}} \sum_{n} f(x_n; \mathbf{w})$
- Initialize w
- Repeat until convergence:

```
o mapper: x_n \rightarrow g_n = \nabla_w f(x_n; w) // N map jobs, compute gradients emit (1, g_n)
```

```
o reducer: \{(1, g_n)\} \rightarrow G = \sum_n g_n // 1 reduce job, accumula emit G
```

Each gradient step involves a full map-reduce!

And we don't even care about the previous iterations after they're done...

Reducer can't start until all mappers have finished ⇒ high latency

 \circ $W \leftarrow W - G$

Complex pipelines

Computations can be decomposed into a sequence of MapReduce jobs

But this isn't always the easiest or most natural way to do it!

What if you want to rapidly iterate?

Upshot: Many/most commonly used machine learning methods rely on iterative algorithms (e.g. maximum likelihood estimation, gradient descent, kMeans, E/M algorithm, etc.)

Whereas it is possible to implement these with mapReduce, it is clunky and slow:

10x+ speedup for logistic regression

The proposed solution rests on a more flexible data structure:

Resilient distributed datasets (RDDs)

The key idea: Reusing data

- Complex computations usually have many intermediate steps
- Map-Reduce paradigm favors the following pattern:
 - Compute each step
 - Store intermediate results
 - Move on to the next step
- This can be wasteful and awkward to implement

Resilient distributed datasets (RDDs)

• RDD:

- Data source
- Lineage graph of transformations to apply to data
- + interfaces for data partitioning and iteration

A key concept: Deferred computation

- Nothing is computed until you ask for it
- Nothing is saved until you say so
- This makes optimization possible

Resilient distributed datasets (RDDs)

RDD:

- Linked to a data source
- Lineage graph of transformations to apply to data
- + interfaces for data partitioning and iteration
- Immutable
- Think of this as deferred computation
 - Nothing is computed until you ask for it
 - Nothing is saved until you say so
 - o This makes optimization possible

Some notation:

RDD[T] denotes an RDD with some data of type T, e.g.

- RDD[String]
- RDD[Tuple(String, Float)]

RDD components: Implementing deferred computation

- Transformations: Operations on RDDs that return a new RDD. They are "lazy" (not executed immediately), but the computational steps are recorded in a lineage graph. Allows to efficiently create complex data processing pipelines.
- Examples: map, filter, join
- Actions: Trigger computation and yield results.
- Examples: count, collect, reduce, take, save

RDD example: log processing

around the campfire when the sysadmin says, "Hey, let's take a look at the log and see what's been going on with the system." The math professor responds, "Ah, you mean like the logarithmic function? That's a fascinating topic!"

> The lumberjack chimes in, "No, no, I think he means the logs I've been cutting down. We could use them to keep the fire going."

lines = spark.textFile("hdfs://...")

errors.filter(_.contains("MySQL"))

 $.map(_.split('\t')(3))$.collect()

errors = lines.filter(_.startsWith("ERROR"))

The sysadmin shakes his head and says, "No, I mean the system log files. We can use them to troubleshoot any issues with the computer system."

logs to represent the logarithmic function in a visual way."

A math professor, a lumberjack, and a sysadmin are on a camping trip. They're sitting

The lumberjack looks at the math professor and says, "Wait, what? Logs and logarithms

The math professor looks at the lumberjack and says, "Well, I suppose we could use the

are the same thing?" The sysadmin laughs and says, "No, no, they're not the same thing at all. I just want to take a look at the log files on the computer system."

The math professor, lumberjack, and sysadmin all look at each other, realizing that they've been talking about completely different things. **RDD** Legend: Data **Transformation** Action The lumberjack shrugs and says, "Well, at least we've got plenty of real logs to keep the

fire going!"

Spark code

RDD example: log processing

Spark code

lines = spark.textFile("hdfs://...") errors = lines.filter(_.startsWith("ERROR")) graph errors.filter(_.contains("MySQL")) -meage $.map(_.split('\t')(3))$.collect() No computation happens until you take an action! Legend: **RDD** Data **Transformation Action** Adapted from [Zaharia et al., 2012]

Transformations

Transformations turn one or more RDDs into a new RDD

Transformations are cheap to construct because they don't actually do the computation

Building an RDD is like **writing** (not *running*) a map-reduce script or a SQL query

• Examples:

```
\circ \quad \mathbf{map}(\mathbf{function} \ \mathsf{T} \to \mathsf{U}) \qquad \Rightarrow \mathsf{RDD}[\mathsf{T}] \to \mathsf{RDD}[\mathsf{U}]
```

```
∘ filter(function T \rightarrow Boolean) \Rightarrow RDD[T] \rightarrow RDD[T]
```

 \Rightarrow union() \Rightarrow (RDD[T], RDD[T]) \rightarrow RDD[T]

Actions

Actions are what execute the computations defined by an RDD

Results of actions are *not* RDDs

```
• Examples:
```

```
○ count() \Rightarrow RDD[T] \rightarrow Integer
```

```
\circ collect() \Rightarrow RDD[T] \rightarrow Sequence[T]
```

```
o reduce(function (T, T) \rightarrow T) \Rightarrow RDD[T] \rightarrow T
```

```
    Save(path) ⇒ Save RDD to file system or
```

Spark works backwards from actions towards the data source (through transformations)

- 1. **collect**() depends on **map**()
- 2. map() depends on filter(MySQL)
- 3. filter(MySQL) depends on filter(ERROR)
- 4. filter(ERROR) depends on lines
- 5. **lines** depends on **textfile**

Spark works backwards from actions towards the data source (through transformations)

Any previously computed RDDs can be cached and reused!

Any lost / corrupted RDDs can be rebuilt from scratch by tracing the **lineage**!

- 1. **collect**() depends on **map**()
- **2.** map() depends on filter(MySQL)
- 3. filter(MySQL) depends on filter(ERROR)
- 4. filter(ERROR) depends on lines
- 5. **lines** depends on **textfile**

The concept of a lineage graph

- It's called a "lineage graph", but it need not be linear!
- Any RDD can depend on multiple parent RDDs
- Once a parent RDD has been computed,
 it can be cached and reused by multiple descendents!
- This ability to reuse RDDs is what makes Spark so efficient for iterative algorithms.

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

l	lines	errors	[anonymous filter]
	Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure Status OK ERROR: Utahraptor ate my lunch		

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

ı	lines	errors	[anonymous filter]
ı			
ı	Status OK		
ı	Status OK		
ı	ERROR: Rampaging T-Rex		
ı	Status OK		
ı	ERROR: MySQL failure		
ı	Status OK		
ı	ERROR: Utahraptor ate my lunch		
ı			

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

l	lines	errors	[anonymous filter]
	Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure Status OK ERROR: Utahraptor ate my lunch	ERROR: Rampaging T-Rex	

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

lines	errors	[anonymous filter]
Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure Status OK ERROR: Utahraptor ate my lunch	ERROR: Rampaging T-Rex	

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

lines	errors	[anonymous filter]
Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure Status OK ERROR: Utahraptor ate my lunch	ERROR: Rampaging T-Rex ERROR: MySQL failure	ERROR: MySQL failure

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

lines	errors	[anonymous filter]
Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure Status OK ERROR: Utahraptor ate my lunch	ERROR: Rampaging T-Rex ERROR: MySQL failure	ERROR: MySQL failure

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

lines	errors	[anonymous filter]
Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure Status OK ERROR: Utahraptor ate my lunch	ERROR: Rampaging T-Rex ERROR: MySQL failure ERROR: Utahraptor ate my lunch	ERROR: MySQL failure

- Lineages can be pipelined
- We don't need to wait for all of lines to finish to build errors
- No need for intermediate storage like in Map-Reduce

Status OK Status OK Status OK ERROR: Rampaging T-Rex Status OK ERROR: MySQL failure ERROR: MySQL failure ERROR: Utahraptor ate my lunch ERROR: Utahraptor ate my lunch

An example lineage graph of a multi-parent RDD pipeline

Partitions: Narrow and wide dependencies

Narrow dependencies

Partition of parent RDD goes to at most 1 partition of child RDDs

- Low communication
- Localized
- Easy to pipeline
- Easy failure recovery

Partitions: Narrow and wide dependencies

Narrow dependencies

Partition of parent RDD goes to at most 1 partition of child RDDs

- Low communication
- Localized
- Easy to pipeline
- Easy failure recovery

Wide dependencies

Partition of parent RDD goes to multiple child RDD partitions

- High communication
- High latency
- Difficult to pipeline
- Difficult to recover

Figures adapted from [Zaharia et al., 2012]

Example: RDDs and pipelines in Spark

initialRDD: Creates partitions by using, e.g. parallelize on the data source

filteredRDD: Filtering the initialRDD, e.g. by *filter* primes, a narrow dependency transformation

squaredRDD: Squaring the filteredRDD, e.g. by *map*, a narrow dependency transformation

totalSum: Aggregating the sum by applying *reduce* to the squaredRDD, a wide dependency action

Example: RDDs & Partitions

Caution: Much like "bias" in machine learning, "partition" seems to be the favorite word in Big Data, with many different meanings

- In **Hadoop / CAP theorem**: Network partition, disconnected nodes in a network.
- In Spark: Data partition, a chunk of data
- For disks: Logical division of a hard drive into storage sections
- For databases: Distributing large databases into chunks across nodes (sharding, e.g. MongoDB)
 - ...

RDDs

- Resilient Distributed
 Datasets (RDDs) are the
 fundamental data structure
 of Spark
- Spark uses deferred computation to efficiently construct complex analyses
 - Transformations vs actions!
- RDD partitions are

 analogous to map-reduce
 splits, and allow parallel
 execution

Next week

- Applied Spark
- Column-oriented storage (Parquet)
- Dremel

Q&R Sock