

Test report No.	FCC_SL17110601-SPC-013
Page	101 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	102 of 128

BW 20M QPSK High

Visit us at: www.siemic.com; Follow us at:

#VBW 300 kHz*

Test report No.	FCC_SL17110601-SPC-013
Page	103 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	104 of 128

BW 10M 64QAM High

Test report No.	FCC_SL17110601-SPC-013
Page	105 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	106 of 128

BW 20M 64QAM High

#VBW 300 kHz*

Test report No.	FCC_SL17110601-SPC-013
Page	107 of 128

Chain 2:

Test report No.	FCC_SL17110601-SPC-013
Page	108 of 128

BW 10M QPSK High

Test report No.	FCC_SL17110601-SPC-013
Page	109 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	110 of 128

BW 20M QPSK High

Test report No.	FCC_SL17110601-SPC-013
Page	111 of 128

BW 5M 64QAM High

Test report No.	FCC_SL17110601-SPC-013
Page	112 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	113 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	114 of 128

BW 20M 64QAM High

Span 50.00 MHz Sweep 6.200 ms (1001 pts)

#VBW 300 kHz*

Test report No.	FCC_SL17110601-SPC-013
Page	115 of 128

Test Plots for LTE band 66:

Test report No.	FCC_SL17110601-SPC-013
Page	116 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	117 of 128

Test report No.	FCC_SL17110601-SPC-013
Page	118 of 128

20M 64QAM High

Test report No.	FCC_SL17110601-SPC-013
Page	119 of 128

10.5 Radiated Spurious Emission below 1GHz

Requirement(s):

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) Sandaro of at least 43 + 10 log(P) dB. Substitution method: Semi Amechoic Chamber Semi Amechoic Chamber	Spec	Item	Requirement		Applicable
Test Setup Substitution method:	47CFR27.53	-	operating frequency ra	anges must be attenuated below the transmitting power (P)	\boxtimes
The EUT was switched on and allowed to warm up to its normal operating condition.	Test Setup			3m Antenna	Spectrum Analyzer
Test Date O1/13/2017 – 11/22/2017 Environmental condition Relative Humidity Atmospheric Pressure 1008mbar The EUT was scanned up to 25GHz. Both horizontal and vertical polarities were investigated. The results show only the worst case. Remark Limit calculation: Emission limit = PdBm – [43+ 10 log (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 43 = -13 dBm All different modulation and bandwidth configuration has been verified and only the test data of worst case with QPSK modulation and greatest bandwidth was presented in this report.	Test Procedure	3. I	The EUT was switched on The test was carried out at emissions, was carried out the following manner: a. Vertical or horized was chosen. b. The EUT was to Finally, the anterpretary involved). The cofthe transmitter. Feed the substitution anterpretary can be substituted and the particular spurious freque analyzer. Adjust the level of conditions is obtained.	It the selected frequency points obtained from the EUT characterist by rotating the EUT, changing the antenna polarization, and adjustice to by rotating the EUT, changing the antenna polarization, and adjustice to the higher emission level over then rotated to the direction that gave the maximum emission. The enna height was adjusted to the height that gave the maximum end replace it with a substitution antenna (the antenna should be hastenter of the substitution antenna should be approximately at the senna at the transmitter end with a signal generator connected to the antennas at both ends horizontally polarized, and with the signal generator output until the previously recorded maximum read of the signal generator output until the previously recorded maximum enext frequency point, until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal generator output until all selected frequency points were more than the signal gene	a full rotation of the EUT) a full rotation of the EUT) hission. If-wavelength for each ame location as the center the antenna by means of a gnal generator tuned to a ing at the spectrum mum reading for this set easured.
Remark Limit calculation: Emission limit = PdBm – [43+ 10 log (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 43 = -13 dBm All different modulation and bandwidth configuration has been verified and only the test data of worst case with QPSK modulation and greatest bandwidth was presented in this report.	Test Date			Environmental condition Relative Humidity Atmospheric Pressur	48% e 1008mbar
Result 🛛 Pass 🗆 Fail	Remark	case. Limit calculation line Emission line All differer	ation: mit = PdBm – [43+ 10 log nt modulation and band	g (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 43 = -1	3 dBm
	Result	⊠ Pass	☐ Fail		
Test Data ⊠ Yes (See below) □ N/A	Test Data ⊠`	Yes (See be	elow) □ N/A		

Test was done by Gary Chou at 10m chamber.

Test Plot ⊠ Yes (See below)

(+1) 408 326 1188 • Facsimile (+1)

Test report No.	FCC_SL17110601-SPC-013
Page	120 of 128

Radiated Emission Test Results for LTE band 4

Test specification	below 1GH	z				
	Temp (°C):		Temp (°C): 21			
Environmental Conditions:	Humidity (%)	43				
	Atmospheric (mbar):	Atmospheric (mbar): 1019				
Mains Power:	56VDC	56VDC		Pass		
Tested by:	Gary Chou	Gary Chou				
Test Date:	02/02/2017					
Remarks:	LTE band4-Mid CH-20Mł LTE band66-High CH-20 QPSK					

Radiated Emission Test Results for LTE band 4

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
126	315	153	V	126	-58.69	0	0.35	-59.04	-13	-46.04
126	268	156	Н	126	-58.78	0	0.35	-59.13	-13	-46.13
150	113	158	V	150	-56.55	0	0.4	-56.95	-13	-43.95
150	153	152	Н	150	-57.48	0	0.4	-57.88	-13	-44.88
404	303	153	V	404	-58.69	0	0.7	-59.39	-13	-46.39
404	223	155	Н	404	-60.47	0	0.7	-61.17	-13	-48.17

Radiated Emission Test Results for LTE band 66

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
126	313	167	V	126	-58.74	0	0.35	-59.09	-13	-46.09
126	265	159	Н	126	-57.98	0	0.35	-58.33	-13	-45.33
150	115	157	V	150	-57.64	0	0.4	-58.04	-13	-45.04
150	156	160	Н	150	-58.98	0	0.4	-59.38	-13	-46.38
404	302	156	V	404	-58.12	0	0.7	-58.82	-13	-45.82
404	223	159	Н	404	-59.57	0	0.7	-60.27	-13	-47.27

Note: Dipole antenna was used for substitution method.

Test report No.	FCC_SL17110601-SPC-013
Page	121 of 128

10.6 Radiated Spurious Emissions above 1GHz

Requirement(s):

Test Setup Substitution method:	Spec	Item Requirement	Applicable			
Test Setup Substitution method:	47CFR27.53	- operating frequency ranges must be attenuated below the transmitting power (P) by a	\boxtimes			
The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. a. Vertical or horizontal height was adjusted to the height that gave the maximum emission. a. Vertical or horizontal height was adjusted to the height that gave the maximum emission. a. Vertical or horizontal height was adjusted to the height that gave the maximum emission. a. Vertical or horizontal height was adjusted to the height that gave the maximum emission. a. Vertical or horizontal height was adjusted to the height that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. a. Vertical or horizontal height was adjusted to the height that gave the maximum emission. a. Vert	Test Setup	Radio Absorbing Material Substituting the state of the s	Spectrum Analyzer			
Test Date O1/13/2017 – 11/22/2017 Environmental condition Relative Humidity Atmospheric Pressure 1008mbar The EUT was scanned up to 25GHz. Both horizontal and vertical polarities were investigated. The results show only the worst case. Limit calculation: Emission limit = PdBm − [43+ 10 log (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 43 = -13 dBm All different modulation and bandwidth configuration has been verified and only the test data of worst case with QPSK modulation and greatest bandwidth was presented in this report. Result □ Pass □ Fail	Test Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded 				
worst case. Limit calculation: Emission limit = PdBm – [43+ 10 log (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 43 = -13 dBm All different modulation and bandwidth configuration has been verified and only the test data of worst case with QPSK modulation and greatest bandwidth was presented in this report. Result □ Pass □ Fail	Test Date	01/13/2017 – 11/22/2017 Environmental condition Relative Humidity 48%				
Result ⊠ Pass □ Fail	Remark	worst case. Limit calculation: Emission limit = PdBm – [43+ 10 log (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 43 = -13 All different modulation and bandwidth configuration has been verified and only the test data	dBm			
est Data 🖂 Yes (See below) 🗆 N/A		⊠ Pass □ Fail				
	est Data ⊠ Yes	(See below)				

Test report No.	FCC_SL17110601-SPC-013
Page	122 of 128

Radiated Emission Test Results (Above 1GHz) Internal Antenna:

LTE band 4 Low Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4240	135	156	V	4240	-40.87	9.82	2.15	-33.20	-13	-20.20
4240	235	157	Н	4240	-41.56	9.82	2.15	-33.89	-13	-20.89
6360	79	156	V	6360	-37.87	11.71	2.56	-28.72	-13	-15.72
6360	238	175	Н	6360	-41.68	11.71	2.56	-32.53	-13	-19.53

LTE band 4 Mid Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4265	178	159	V	4265	-40.54	9.82	2.15	-32.87	-13	-19.87
4265	268	155	Н	4265	-40.69	9.82	2.15	-33.02	-13	-20.02
6397.5	255	172	V	6397.5	-40.87	11.71	2.56	-31.72	-13	-18.72
6397.5	213	160	Н	6397.5	-42.12	11.71	2.56	-32.97	-13	-19.97

LTE band 4 High Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4290	15	153	V	4290	-40.25	9.82	2.15	-32.58	-13	-19.58
4290	139	157	Н	4290	-43.97	9.82	2.15	-36.3	-13	-23.30
6435	220	161	V	6435	-42.10	11.71	2.56	-32.95	-13	-19.95
6435	231	172	Н	6435	-42.36	11.71	2.56	-33.21	-13	-20.21

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_SL17110601-SPC-013
Page	123 of 128

LTE band 66 High Channel, 20MHz BW, QPSK

Frequency MHz	Degree	Height	Pol	Frequency MHz	Level dBm	Antenna Gain dBi	Cable Loss dB	Absolute Level dBm	Limit	Margin
4380	145	153	V	4380	-40.35	9.82	2.15	-32.68	-13	-19.68
4380	136	171	Н	4380	-40.77	9.82	2.15	-33.10	-13	-20.10
6570	39	166	V	6570	-41.77	11.71	2.56	-32.62	-13	-19.62
6570	125	151	Н	6570	-42.48	11.71	2.56	-33.33	-13	-20.33

Test report No.	FCC_SL17110601-SPC-013
Page	124 of 128

10.7 Frequency Stability

Requirement(s):

Spec	Item	Requirement			Applicable			
47 CFR 2.1055, 47 CFR	-	percent (±1 ppm) of the c °Celsius to +50 °Celsius primary supply voltage of	The frequency stability of the transmitter shall be maintained within ±0.0001 Dercent (±1 ppm) of the center frequency over a temperature variation of -30 Celsius to +50 °Celsius at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a semperature of 20 °Celsius.					
47 CFR 2.1055, 47 CFR 27.54	-	The frequency stability sh stay within the authorized	nall be sufficient to ensure that I bands of operation.	the fundamental emissions	\boxtimes			
Test Setup		Spectrum Analyzer		EUT				
Test Procedure	The ca	The equipment is turned transmitter. Measureme applying power to the transmitter. Frequency measuremer	mitter is measured at room tem d on in a "standby" condition for nt of the carrier frequency of th ansmitter. nts are made at 10°C intervals ovided to allow stabilization of t	one minute before applying po e transmitter is made within on ranging from -30°C to +50°C.	ower to the e minute after A period of at			
Test Date	01/13/2	2017 – 06/09/2017	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23°C 48% 1008mbar			
Remark	NONE							
Result	⊠ Pa:	ss 🗆 Fail						

Test Data		□ N/A
Test Plot	☐ Yes (See below)	⊠ N/A

Test was done by Gary Chou at RF Test Site.

Test report No.	FCC_SL17110601-SPC-013
Page	125 of 128

Test Data for LTE Band 4:

Voltage (%)	Power (VDC)	Temp. (°)	Frequency (KHz)	Frequency Error (Hz)	Deviation (ppm)
100%		20	2132500.380	380	0.18
100%		0	2132500.400	400	0.19
100%	56	10	2132500.400	400	0.19
100%		30	2132500.420	420	0.20
100%		40	2132500.440	440	0.21
115%	64.4	20	2132500.400	400	0.19
85%	47.6	20	2132500.400	400	0.19

Test Data for LTE Band 4 and Band 66:

Reference Frequency: 2132MHz

Voltage (%)	Power (VDC)	Temp. (°)	Frequency (KHz)	Frequency Error (Hz)	Deviation (ppm)
100%		20	2132000.016	16	0.008
100%		0	2132000.028	28	0.013
100%	56	10	2132000.020	20	0.009
100%		30	2132000.024	24	0.011
100%		40	2132000.020	20	0.009
115%	64.4	20	2132000.016	16	0.008
85%	47.6	20	2132000.016	16	0.008

Test report No.	FCC_SL17110601-SPC-013
Page	126 of 128

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions						
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	08/15/2017	1 Year	08/15/2018	>
Horn Antenna (1-18GHz)	3115	10SL0059	08/25/2017	1 Year	08/25/2018	>
Horn Antenna (18-40 GHz)	AH-840	101013	08/28/2017	1 Year	08/28/2018	>
Pre-Amplifier	LPA-6-30	11140711	02/19/2017	1 Year	02/19/2018	>
Microwave Preamplifier (18-40 GHz)	PA-840	181251	03/10/2017	1 Year	03/10/2018	>
RF Conducted Measurement						
Spectrum Analyzer	N9010A	MY51440112	08/20/2017	1 Year	08/20/2018	>
Agilent Signal Generator	MXG N5182A	MY47071065	04/06/2017	1 Year	04/06/2018	>

Test report No.	FCC_SL17110601-SPC-013
Page	127 of 128

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark	
ISO 17025 (A2LA)	7	Please see the documents for the detailed scope	
ISO Guide 65 (A2LA)	Z	Please see the documents for the detailed scope	
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C	
FCC DoC Accreditation	Z	FCC Declaration of Conformity Accreditation	
FCC Site Registration	7	3 meter site	
FCC Site Registration	Z	10 meter site	
IC Site Registration	7	3 meter site	
IC Site Registration	7	10 meter site	
		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025	
EU NB		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025	
Singapore iDA CB(Certification Body)	13 13	Phase I, Phase II	
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope	
	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom	
HongKong OFCA	7	(Phase I) Conformity Assessment Body for Radio and Telecom	
	7	Radio: Scope A – All Radio Standard Specification in Category I	
Industry Canada CAB	7	Telecom: CS-03 Part I, II, V, VI, VII, VIII	

Test report No.	FCC_SL17110601-SPC-013
Page	128 of 128

Japan Recognized Certification Body Designation		Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law		
		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMIEMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS		
Korea CAB Accreditation	TA	Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68		
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4		
Taiwan NCC CAB Recognition	ħ	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08		
Taiwan BSMI CAB Recognition	7	CNS 13438		
Japan VCCI	ħ	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet		
		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4		
Australia CAB Regocnition		Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771		
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1		
Australia NATA Recognition		AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016,AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2		