Міністерство освіти і науки України

Національний технічний університет України

«Київський Політехнічний Інститут імені Ігоря Сікорського»

Кафедра конструювання електронно-обчислювальної апаратури

Звіт

3 виконання лабораторної роботи №1 з дисципліни "Схемотехніка аналогової та цифрової радіоелектронної апаратури - 1"

Виконав:

студент групи ДК-61

Накоренко А.А

Перевірив:

доц. Короткий \in В.

1. Дослідження суматора напруг на резисторах.

I)Був побудований сумматор напруг на резисторах, за наступною схемою:

Опори резисторів – 100 кОм.

На вхід були подані дві напруги – 4В та 3В, з джерел постійної напруги.

Mi Single Stop Stop Single RMS: 4 Hz to 2.048 kHz						
	Channel 1	Channel 2				
DC	4.006 V	2.993 V				
True RMS	4.006 V	2.993 V				
AC RMS	1 mV	1 mV				

Теоретичний результат: $U_{BUX} = 0.5 * (U_1 + U_2) = 0.5 * (3 + 4) = 3.5 B$

Експериментальний результат:

	Channel 1
DC	3.345 V
True RMS	3.345 V
AC RMS	1 mV

Як бачимо, отримане значення на 4.42% відрізняється від теоретичного, що може бути спричинено точністю вимірювальних приладів, а також не ідеальністю зібраної схеми.

Симуляція в LTSpice:

Синя лінія – U1, зелена – U2, червона – Ивих.

Як видно, результат відповідає теоретичному значенню.

а)Подаємо на входи суматора два сигнали з генераторів.

Перший сигнал імпульсний (меандр) з частотою 1КГц, амплітудою 1В. Другий сигнал синусоїдальний з частотою 5 КГц, амплітудою 1В.

Вихідний сигнал:

Налаштування осцилографу: 0.5В/клітинка, 0.5мс/клітинка.

Симуляція в LTSpice:

Схема:

Налаштування джерел:

На вході:

На виході:

Порівнюючи результати симуляції та результати експерименту, можна відмітити те, що вони майже повністю співпадають.

2. Дослідження RC ланцюжка.

Був складений RC-ланцюжок за наступною схемою:

<u>Ємність конденсатора — 10 нФ, опір резистора — 1 кОм.</u>

Час заряду конденсатора до 0.99Е:

$$5RC = 5 * 1000 * 0,00000001 = 0,00005 c = 50 \text{ MKC}$$

Подаємо на вхід імпульсну напругу з амплітудою 1В та такою частотою, щоб період був в 5 разів більший за розраховану тривалість заряду-розряду.

Значення періоду, яке в 5 разів більше за значення тривалості заряду-розряду:

5 * 0,00005 = 0,00025 c

Шукаємо частоту, при якій період = 5 * тзаряду/розряду.

 $f = 1/T = 1 / 0,00025 = 4000 \Gamma$ ц.

Вхідний сигнал:

На виході отримали:

Як можна бачити, за 50 мкс конденсатор зарядився до 978 мВ, що відповідає очікуванням.

Налаштування осцилографу: 0.5В/клітинка, 0.05мс/клітинка.

Схема:

Параметри джерела:

На виході отримали:

Як видно, за 50 мкс конденсатор зарядився до 984 мВ, що відповідає очікуванням, і відрізняється від експериментального значення всього на 4 мВ.

3. Дослідження RC фільтру низької частоти.

Збираємо схему RC ФНЧ:

<u>Номінали компонентів – ємність конденсатора 10 нФ, опір резистора – 1 кОм.</u>

Розраховуємо частоту зрізу:

$$F_3 = 1 / (2* \pi*R*C) = 15916 \Gamma$$
ц

Розраховуємо Ки:

Nº	f, Гц	Ки теор	Ки практ	δ, %
1	0	1	1	_
2	3000	0,983	0,977	0,58
3	6000	0,936	0,928	0,82
4	9000	0,870	0,862	0,97
5	12000	0,798	0,791	0,94
6	15000	0,728	0,721	0,93
7	15916	0,707	0,701	0,86
8	18000	0,662	0,657	0,82
9	21000	0,604	0,6	0,67
10	24000	0,553	0,55	0,48
11	27000	0,508	0,507	0,16
12	30000	0,469	0,469	0,07

Перевірка, що Ки на частоті близькій до нуля в корінь з двох раз більший, ніж Ки на частоті зрізу:

0.701 * 1.41 = 0.988, що доволі близько до значення Ku на мінімальній частоті з вибірки.

АЧХ фільтра низьких частот:

Як видно, точка частоти зрізу знаходиться на частоті 15.75 к Γ ц, що на 1.04% відрізняється від теоретичного значення.

Швидкість спадання становить -20 дБ/дек, що відповідає очікуванням.

Симуляція в LTSpice:

Схема:

Вигляд АЧХ:

Як видно, точка частоти зрізу знаходиться на частоті 158933 Γ ц, що відрізняється від теоретичних розрахунків всього на 0.25%.

4.Висновок.

На цій лабораторній роботі я експерементально перевірив формулу для знаходження напруги на виході суматора, та порівняв її з теоретичним виводом. Дослідив на практиці та теоретично такі характеристики RC-ланцюжка та RC фільтра низьких частот як: час розряду/заряду, ширину пропускання, AЧХ. Просимулював деякі схеми в LTSpice, та отримав досвід в корисування платою Analog Discovery 2, та підвищив навички конструювання схем.