

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ CURSO DE GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO

SIN110 - ALGORITMOS E GRAFOS RESOLUÇÃO DOS EXERCÍCIOS E12 DO DIA 13/11/2015

ITAJUBÁ 2015

Exercícios E12 – 13/11/15

Aluna: Karen Dantas **Número de matrícula:** 31243

1) Aplicação do Código de Huffman:

<u>1º passo</u>: Ordeno a lista de caracteres em ordem crescente por frequência.

р	r	f	v	S	n	h	d	m	i	0	e	a
1	1	2	2	2	3	4	4	6	6	8	10	15

2º passo: Junto dois caracteres de menor frequência.

f	v	S	p+r	n	h	d	m	i	0	e	a
2	2	2	2	3	4	4	6	6	8	10	15

<u>3º passo:</u> Junto outros dois caracteres de menor frequência.

S	p+r	n	h	d	f+v	m	I	0	e	a
2	2	3	4	4	4	6	6	8	10	15

<u>4º passo:</u> Junto outros dois caracteres de menor frequência.

n	h	d	f+v	p+r+s	m	i	O	e	a
3	4	4	4	4	6	6	8	10	15

5º passo: Junto outros dois caracteres de menor frequência.

Ī	d	f+v	p+r+s	m	i	n+h	0	e	a
	4	4	4	6	6	7	8	10	15

6º passo: Junto um caractere com um conjunto de caracteres de menor frequência.

p+r+s	m	i	n+h	0	f+v+d	е	a
4	6	6	7	8	8	10	15

7º passo: Junto um caractere com um conjunto de caracteres de menor frequência.

i	n+h	0	f+v+d	е	p+r+s+m	a
6	7	8	8	10	10	15

8º passo: Junto um caractere com um conjunto de caracteres de menor frequência.

0	f+v+d	e	p+r+s+m	n+h+i	a
8	8	10	10	13	15

9º passo: Junto um caractere com um conjunto de caracteres de menor frequência.

e	p+r+s+m	n+h+i	a	f+v+d+o
10	10	13	15	16

10° passo: Junto um caractere com um conjunto de caracteres de menor frequência.

n+h+i	a	f+v+d+o	p+r+s+m+e
13	15	16	20

11º passo: Junto um caractere com um conjunto de caracteres de menor frequência.

f+v+d+o	p+r+s+m+e	n+h+i+a
16	20	28

12º passo: Junto um conjunto de caracteres com outro conjunto de caracteres de menor frequência.

p+r+s+m+e+f+v+d+o	n+h+i+a
36	28

13º passo: Junto um conjunto de caracteres com outro conjunto de caracteres restante.

n+h+i+a+p+r+s+m+e+f+v+d+o	
64	

Acima está a árvore de Huffman gerada. A partir dela é possível codificar a seguinte

mensagem: "aprovafoiadiada".

p	r	f	V	S	n	h	d	m	i	0	e	a
111110	111111	10110	10111	11110	0010	0011	1010	1110	000	100	110	01

Codificação da mensagem:

2) Algoritmo:

```
Encontra_casamento (H, M, n)  \begin{array}{l} \text{para } j \leftarrow 1 \text{ at\'e } i \leq n \text{ faça} \\ \text{para } i \leftarrow 1 \text{ at\'e } i \leq n \text{ faça} \\ \text{se } (M[j][i] = H[i][j]) \\ \text{S} \leftarrow S + M[j][i] * H[i][j] \\ \text{devolve } S \end{array}
```

O algoritmo Encontra_casamento retorna a soma máxima dos produtos obtidos com as preferências dos casais formados utilizando-se as tabelas M (Mulheres) e H (Homens). Ele percorre as linhas e colunas de H e M de forma a encontrar preferências em comum. Assim, ele utiliza o método guloso devido a essa constante busca por preferências.

3) Algoritmo:

```
Oito Rainhas (C)
1. k←1
2. Posiciona_C (C, Vet_rainhas)
3. resp ← Encontra_posicao (k, Vet_rainhas)
    devolve resp
Encontra_posicao (k, Vet_rainhas)
1. se k = 8
          então devolve 1
2.
3. senão
4.
          para i \leftarrow 1 até i \leq 8 faça
5.
                  Vet_rainhas[k] \leftarrow i
                  se Verifica_posicao (k, Vet_rainhas) = 1
6.
7.
                        então Encontra_posicao (k + 1, Vet_rainhas)
Verifica_posicao (k, Vet_rainhas)
1. para i \leftarrow 1 até i \le k faça
         se Vet_rainhas[i] = Vet_rainhas[k] ou Encontra_valor_absoluto(Vet_rainhas[i] - Vet_rainhas[k]) = (k - i)
2.
              então devolve 0
3.
4. devolve 1
```

qual ela pode ser atacada, o algoritmo voltará na rainha que foi inserida anteriormente e a mudará de posição.

O Vet_rainhas possui 8 posições e a rainha 'i' é posicionada na linha 'i' e na coluna Vet_rainhas[i]. A função Oito_Rainhas posiciona C no vetor Vet_rainhas e chama a função Encontra_Posicao que retornará 1 quando conseguir alocar todas as rainhas a partir da rainha C já inserida.

Na função Encontra_posicao, na linha 1 é verificado se todas as tentativas possíveis foram feitas e na linha 4 é posicionada a rainha k+1.

Na função Verifica_posicao, é verificado se a posição da rainha inserida é válida, assim, na linha 2 é verificado se há duas rainhas na mesma coluna ou se há duas rainhas na mesma diagonal e, em caso afirmativo, ele retorna 0. Caso contrário, retorna 1.