# **Encryption Modes**



#### **Outline**

- Electronic Code Book mode (ECB)
- Cipher Block Chaining mode (CBC)
- Output Feedback mode (OFB)
- Cipher Feedback mode (CFB)
- Counter mode (CTR)

### **Electronic Code Book mode (ECB)**

- How to encode multiple blocks of a long message?
- Each block is encrypted independently of the others

$$C_i = E_K(P_i)$$



#### **ECB:** advantages/disadvantages

#### Advantages

- no block synchronization between sender and receiver is required
- bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
- Encryption/decryption can be parallelized => high-speed

#### Disadvantages

- ECB encrypts highly deterministically
  - identical plaintexts result in identical ciphertexts
  - an attacker recognizes if the same message has been sent twice

#### **Substitution Attack on ECB**

- Once a particular plaintext to ciphertext block mapping P<sub>i</sub> → C<sub>i</sub> is known, a sequence of ciphertext blocks can easily be manipulated
- Suppose an electronic bank transfer



- the encryption key between the two banks does not change too frequently
- The attacker sends \$1 transfers from his account at bank A to his account at bank B repeatedly
  - He can check for ciphertext blocks that repeat, and he stores blocks 1,3 and 4 of these transfers
- He now simply replaces block 4 of other transfers with the block 4 that he stored before
  - *all transfers* from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

## Cipher Block Chaining mode (CBC)

- There are two main ideas behind the CBC mode:
  - Previous cipher block is chained with current plaintext block
    - ciphertext  $C_i$  depends not only on block  $P_i$  but on ciphertext block  $C_{i-1}$  as well
  - The encryption is randomized by using an Initialization Vector (IV)

$$C_1 = E_K(P_1 \oplus IV)$$
  
 $C_i = E_K(P_i \oplus C_{i-1})$ 

IV should be a non-secret nonce (used only once) value => the CBC mode becomes a
probabilistic encryption scheme, i.e., two encryptions of the same plaintext look entirely
different

# Cipher Block Chaining mode (CBC)



#### **Output Feedback mode (OFB)**

- It is used to build a synchronous stream cipher from a block cipher
- The key stream is not generated bitwise but instead in a blockwise fashion
- The output of the cipher gives us key stream bits  $S_i$  with which we can encrypt plaintext bits using the XOR operation



Encryption (first block):  $s_1 = e_k(IV)$  and  $y_1 = s_1 \oplus x_1$ 

Encryption (general block):  $s_i = e_k(s_{i-1})$  and  $y_i = s_i \oplus x_i$ ,  $i \ge 2$ 

**Decryption (first block)**:  $s_1 = e_k(IV)$  and  $x_1 = s_1 \oplus y_1$ 

Decryption (general block):  $S_i = e_k(s_{i-1})$  and  $X_i = s_i \oplus y_i$ ,  $i \ge 2$ 

## Cipher Feedback mode (CFB)

- It uses a block cipher as a building block for an asynchronous stream cipher
   (similar to the OFB mode), more accurate name: "Ciphertext Feedback Mode"
- The key stream  $S_i$  is generated in a blockwise fashion and is also a function of the ciphertext
- As a result of the use of an IV, the CFB encryption is also nondeterministic



**Encryption (first block)**:  $y_1 = e_k(IV) \oplus x_1$ 

**Encryption (general block)**:  $y_i = e_k(y_{i-1}) \oplus x_i$ ,  $i \ge 2$ 

**Decryption (first block)**:  $x_1 = e_k(IV) \oplus y_1$ 

**Decryption (general block)**:  $x_i = e_k(y_{i-1}) \oplus y_i$ ,  $i \ge 2$ 

It can be used in situations where short plaintext blocks are to be encrypted

## **Counter mode (CTR)**

- It uses a block cipher as a stream cipher (like the OFB and CFB modes)
- The key stream is computed in a blockwise fashion
- The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block



**Encryption**:  $y_i = e_k(\text{IV} \parallel \text{CTR}_i) \oplus x_i, \quad i \ge 1$ **Decryption**:  $x_i = e_k(\text{IV} \parallel \text{CTR}_i) \oplus y_i, \quad i \ge 1$ 

- Unlike CFB and OFB modes, the CTR mode can be parallelized since the 2<sup>nd</sup> encryption can begin before the 1<sup>st</sup> one has finished
  - Desirable for high-speed implementations, e.g., in network routers

#### **Summary**

- There are many different ways to encrypt with a block cipher.
   Each mode of operation has some advantages and disadvantages
- Several modes turn a block cipher into a stream cipher
- The straightforward ECB mode has security weaknesses, independent of the underlying block cipher
- The counter mode allows parallelization of encryption and is thus suited for high speed implementations

#### Wikipedia

http://en.wikipedia.org/wiki/Modes of operation