Нейронные сети

Лекция 3. Несвёрточные слои

Иванов И.Е.

МаТИС

10 октября 2025г.

План лекции

- Субдискретизация
- Иелинейность
- Полносвязный и Softmax слои
- Дропаут
- Пакетная нормализация

Визуализация работы сверточной сети 1

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г.

3 / 30

Основные типы слоев в СНС

С прошлой лекции:

Входной слой INPUT

Необработанные пиксельные значения входной картинки. Это — первый слой в СНС.

Сверточный слой CONV

Скалярное произведение между элементами фильтра (также называемого **ядром** свертки) и ограниченой областью (обычно гораздо меньше всей площади $H \times W$) входного слоя, с которой имеются связи, с помощью скользящего окна (слева направо сверху вниз).

Основные типы слоев в СНС

Сегодня:

Нелинейность ReLU

Нелинейность вида $ReLU(x) = \max(0, x)$, применяемая ко всем нейронам слоя поточечно.

Слой субдискретизации POOL

Уменьшение размерности по пространственным измерениям w, h. Могут использоваться разные подходы: усреднение, взятие максимума по подобласти и т.п.

Полносвязный слой FC (Fully connected)

Матричное умножение — в данном случае каждый нейрон выходного слоя связан со всеми нейронами входного слоя (в отличие от сверточного слоя).

5 / 30

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г.

Субдискретидация

1	3	2	9
7	4	1	5
8	5	2	3
4	2	1	4

Слой субдискретизации решает две проблемы:

- Снижает пространственную размерность
- Помогает не переобучаться

Параметры слоя субдискретизации

Размер фильтра

Пространственная размерность области (по горизонтали и вертикали), внутри которой применяется функция уменьшения размерности (max, avg).

Шаг (stride)

Количество элементов по горизонтали или вертикали, на которое перемещается фильтр для получения результирующей карты признаков.

Иллюстрация уменьшения размерности

Махрооl с шагом 2 и фильтром 2х2

6	8
3	4

Активация

- Применение нелинейной функции (например, ReLU(x) = max(0, x))
- Цель: выделение наиболее значимой информации

Слой нелинейности

- Также называется активацией
- Нужен для увеличения эффективной глубины СНС.
- Применяется поэлементно для нейронов всего слоя.
- Обычно не имеет обучаемых параметров (за редким исключением, например, PReLU)

Примеры активаций

- Rectified Linear Unit ReLU(x) = max(0, x)
- Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$
- ullet Гиперболический тангенс $anh(x) = 2\sigma(2x) 1$
- ullet ReLU с утечкой (Leaky ReLU) $LReLU(x) = (x < 0) * \alpha x + (x \ge 0) * x$
- $Maxout(x) = max(a_1x + b_1, a_2x + b_2)$
- ullet Экспоненциальный Linear Unit $ELU(x)=(x<0)*lpha(\exp(x)-1)+(x\geq0)*x$

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г. 10 / 30

Иллюстрация активаций

Activation Functions

Sigmoid

tanh

ReLU $\max(0, x)$

tanh(x)

 $\sigma(x) = \frac{1}{1 + e^{-x}}$

10

Leaky ReLU max(0.1x, x)

Maxout

max(
$$w_1^T x + b_1, w_2^T x + b_2$$
)

ELU

$$x$$
 $x \ge 0$ $\alpha(e^x - 1)$ $x < 0$

Полносвязный слой

- **①** Для классификации на N классов обычно определяют *вероятность* p_i принадлежности к каждому из классов
- $oldsymbol{ ilde{Q}}$ Для этого сначала вычисляют $oldsymbol{N}$ т.н. логитов $oldsymbol{l}_i$ скалярных значений из $\mathbb R$
- ③ При этом на выходе последней операции СНС (например, свертки) может оказаться тензор X' произвольного размера M=d*w*h, который может быть преобразован для упрощения вычислений в вектор X размера $M\times 1$
- Как раз для преобразования M входов в N выходов-логитов и применяется полносвязный слой, или умножение на матрицу A размера $N \times M$: Y = A * X, $Y_i = I_i$
- ullet Иногда к результату умножения на матрицу добавляют одномерный тензор сдвига b^k длины N

Замечание. Обычно полносвязные слои — самые большие по объему и не очень быстрые, поэтому нужно стараться их избегать (average pooling) либо оптимизировать

12 / 30

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г.

Слой Softmax

Операция Softmax — это обобщение сигмоиды на случай N входов:

$$Softmax(Y)_i = \frac{e^{l_i}}{\sum_{k=1}^{N} e^{l_k}} = p_i$$

2 Теперь p_i — корректный вектор вероятностей:

$$\sum_{k=1}^{N} p_k = 1, \quad 0 \le p_i \le 1 \quad \forall i = 1 \dots N$$

Шаблоны построения СНС

Шаблон глубокой СНС

 $INPUT {\rightarrow} [[CONV {\rightarrow} RELU]*N {\rightarrow} POOL?]*M {\rightarrow} [FC {\rightarrow} RELU]*K {\rightarrow} Softmax$

Замечание. Современные СНС зачастую имеют немного более сложную структуру

- Сети типа ResNet имеют т.н. остаточные (residual) связи
- ② Сети типа Inception предлагают конкатенацию слоев + разделение одной 2D свертки на две 1D свертки
- Слой BatchNormalization выполняет послойную нормализацию
- DropOut борется с переобучением

14 / 30

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г.

Откуда берутся размерности ≥ 4

Размерность 4

Обычно это размерность т.н. пакета (batch) входных данных, над которыми все операции выполняются совершенно идентично и параллельно (в рамках используемой архитектуры). Например, размер пакета из 32 входных картинок

Размерность 5

Дополнительная размерность необходима для обработки видео и задает количество кадров, при этом она будет четвертой размерностью, а на пятую сдвинется размер пакета (он всегда либо первый, либо последний — в зависимости от реализации).

Дропаут 2 (выброс)

- Для уменьшения переобучения, во время обучения нейроны "выключают" с вероятностью $0 \le 1 p \le 1$
- Это можно сделать, зануляя "выключенные" нейроны
- ullet На тесте нейроны не выключаются; при этом выход нейрона умножается на p
 - Матожидание выхода нейрона при обучении px + (1-p)0 = px (т.к. мы либо пропускаем нейрон без изменений, либо зануляем)
 - Поэтому при тестировании, когда все нейроны включены, их выходы нужно шкалировать для такого же матожидания
- ullet Либо при обучении делим выход на p: тогда на тесте ничего домножать не надо

²Srivastava et al. "Dropout: a simple way to prevent neural networks from overfitting" 2014 🕟 🖘 📑

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г. 16 / 30

Схема дропаута

(a) Standard Neural Net

(b) After applying dropout.

Внутренний ковариационный сдвиг

Проблема

- Внутренний ковариационный сдвиг (Internal Covariate Shift, ICS) изменение распределения значений нейронов вследствие изменения параметров нейросети во время обучения
- Более глубокая нейросеть \Rightarrow больший сдвиг

Очевидные пути решения для глубоких нейросетей (следующая лекция)

- Очень аккуратная инициализация параметров нейросети
- Маленький коэффициент скорости обучения (и, как следствие, очень медленное обучение)
- Нормализация входа³ (помогает слабо)

18 / 30

³LeCun Y. A. et al. "Efficient backprop". 1998

Пакетная нормализация⁴

Решение

- Нормализация по пакету (Batch Normalization, BN) та самая 4 размерность
- Можно нормализовать каждый слой (а не только вход)
- Нужно нормализовать на каждом пакете данных (mini-batch)
- Дальше для обучения параметров нейросети будут подаваться уже нормализованные значения (и т.о. уменьшаем ICS)

Преимущества BN

- За счет большего learning rate скорость обучения возрастает в разы
- Не так чувствительна к инициализации
- Не нужен дропаут

 Иванов И.Е. (MaTIS)
 Лекция 03
 10 октября 2025г.
 19 / 30

⁴loffe S., Szegedy C. "Batch normalization: Accelerating deep network training by reducing internal covariates shift". 2015

Когда и где применять ВМ

Когда

- В глубоких нейросетях
- Нужно ускорить скорость обучения

Где

- После операции свертки или других матричных операций
- До применения функции активации (до ReLU) т.к. функция активации сама по себе сильно меняет распределение
- Тем не менее, есть свидетельства, что порой можно применить BN и после активации (хотя и не всегда это работает)

Режимы работы BN

BN работает по-разному во время тестирования (т.н. inference mode) и во время обучения

Обучение

- ullet Подсчитываем μ_B и σ_B на пакете B
- ullet Обновляем глобальные значения (соотв. всему обучающему множеству) $\mu_{\it avg}$ и $\sigma_{\it avg}$

Тестирование

ullet Используем значения μ_{avg} и σ_{avg} вне зависимости от μ_B и σ_B на текущем пакете

21 / 30

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г.

ВN: статистика на пакете

- ullet Предположим, что мы используем пакет размера T
- ullet X_{ij}^{mt} четырехмерный тензор значений для некоторого слоя, где
 - $1 \le i \le H, 1 \le j \le W$ пространственные координаты (ширина и высота),
 - \bullet $m = 1 \dots M$ номер карты признаков,
 - ullet $t=1\dots T$ номер внутри пакета.

Статистика на пакете

- $\mu_B^m = \frac{1}{HWT} \sum_t \sum_{i,j} X_{ij}^{mt}$
- $\sigma_B^{2m} = \frac{1}{HWT} \sum_t \sum_{i,j} (X_{ij}^{mt} \mu_B^m)^2$

BN: режим обучения

Гиперпараметры

- $m{\circ}$ $lpha \in [0,1]$: параметр сглаживания для обновления глобальных параметров
- $\epsilon > 0$ регуляризатор (маленькое число)

Шаг обучения k

- ullet $\mu^m_{\mathsf{avg},k} = lpha \mu^m_{\mathsf{avg},k-1} + (1-lpha) \mu^m_{\mathsf{B}}$ (инициализация $\mu^m_{\mathsf{avg},0} = 0$)
- $\sigma^{2m}_{\mathsf{avg},k} = \alpha \sigma^{2m}_{\mathsf{avg},k-1} + (1-\alpha)\sigma^{2m}_B$ (инициализация $\sigma^{2m}_{\mathsf{avg},0} = 1$)
- ullet Выход нормализованного слоя: $Y_{ij}^{mt} = \gamma^m rac{X_{ij}^{mt} \mu_B^m}{\sqrt{\sigma_B^{2m} + \epsilon}} + eta^m$
- ullet Параметры γ^m (масштаб, scale) и β^m (сдвиг, shift) обучаемые

Замечание. В случае $\gamma^m = \sqrt{\sigma_B^{2m} + \epsilon}, \beta^m = \mu_B^m$ получим $Y_{ij}^{mt} = X_{ij}^{mt}$ и ВN в принципе может обучиться ничего не делать (ничего не портить).

ВN: режим теста

- lacktriangle Используем уже обученные параметры масштаба γ^m и сдвига β^m
- ② Несмотря на то, что в тесте данные тоже могут подаваться пакетами, не обращаем внимание на статистику пакета μ_B^m и σ_B^{2m}
- ullet Не обновляем глобальные параметры $\mu_{ ext{avg}}^{m}$ и $\sigma_{ ext{avg}}^{2m}$
- f 4 Выход нормализованного слоя: $Y_{ij}^{mt} = \gamma^m rac{X_{ij}^{mt} \mu_{avg}^m}{\sqrt{\sigma_{avg}^2 + \epsilon}} + eta^m$

Число параметров для BN

- Для каждой карты признаков нужно хранить 4 числа: 2 глобальные статистики, и 2 — параметры сдвига и масштаба
- ullet Если L слоев по M карт каждый, то число BN параметров составляет $N_{BN}=4LM$
- $N_{BN} \ll N_{CONV}$

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г. 24/30

ВИ: эффект

Использование BN позволило достичь двух целей:

- Ускорить обучение до одинакового качества (вплоть до 15 раз)
- Улучшить качество (на 2.6%)

	Model	Steps to 72.2%	Max accuracy
	Inception	$31.0 \cdot 10^{6}$	72.2%
	BN-Baseline	$13.3 \cdot 10^{6}$	72.7%
$LR = LR \times 5$	$\longrightarrow BN$ -x5	$2.1 \cdot 10^{6}$	73.0%
LR = LR x 30 -	$\longrightarrow BN$ -x30	$2.7 \cdot 10^{6}$	74.8%

Другие виды нормализаций

- Нормализация по слою, а не по пакету⁵ (layer normalization)
- Нормализация по одной карте признаков 6 (instance normalization)
- Нормализация по части слоя⁷ (group normalization)

⁵Ba J. L., Kiros J. R., Hinton G. E. "Layer normalization". 2016

⁶Ulyanov D., Vedaldi A., Lempitsky V. "Instance normalization: The missing ingredient for fast stylization". 2016

⁷Wu Y., He K. "Group normalization". 2018

LN: Нормализация по слою

- ullet Предположим, что мы используем пакет размера T
- ullet X_{ij}^{mt} четырехмерный тензор значений для некоторого слоя, где
 - $1 \le i \le H, 1 \le j \le W$ пространственные координаты (ширина и высота),
 - \bullet $m = 1 \dots M$ номер карты признаков,
 - ullet $t=1\dots T$ номер внутри пакета.

Статистика по слою

- $\mu_B^t = \frac{1}{\mathit{HWM}} \sum_{\mathit{m}} \sum_{\mathit{i,j}} X_{\mathit{ij}}^{\mathit{mt}}$
- $\sigma_B^{2t} = \frac{1}{HWM} \sum_m \sum_{i,j} (X_{ij}^{mt} \mu_B^t)^2$

27 / 30

IN: Нормализация по одной карте признаков

- ullet Предположим, что мы используем пакет размера T
- ullet X_{ij}^{mt} четырехмерный тензор значений для некоторого слоя, где
 - $1 \le i \le H, 1 \le j \le W$ пространственные координаты (ширина и высота),
 - $m = 1 \dots M$ номер карты признаков,
 - ullet $t = 1 \dots T$ номер внутри пакета.

Статистика по одной карте признаков

- $\mu_B^{mt} = \frac{1}{HW} \sum_{i,j} X_{ij}^{mt}$
- $\sigma_B^{2mt} = \frac{1}{HW} \sum_{i,j} (X_{ij}^{mt} \mu_B^{mt})^2$

WS: стандартизация весов⁸

- W_{uv}^{mk} четырехмерный тензор значений для некоторого фильтра, где
 - $1 \le u \le p, 1 \le v \le q$ пространственные координаты (ширина и высота),
 - m = 1...M количество карт входного слоя,
 - \bullet $k=1\ldots K$ количество карт выходного слоя.

Стандартизация весов

•
$$\mu_W^k = \frac{1}{pqM} \sum_m \sum_{u,v} W_{uv}^{mk}$$

•
$$\sigma_W^{2k} = \frac{1}{pqM} \sum_m \sum_{u,v} (W_{uv}^{mk} - \mu_W^k)^2$$

$$ullet \hat{W}^{mk}_{uv} = rac{W^{mk}_{uv} - \mu^k_W}{\sqrt{\sigma^{2k}_W + \epsilon}}$$

Иванов И.Е. (MaTIS) Лекция 03 10 октября 2025г.

29 / 30

⁸Qiao S. et al. "Weight standardization." 2019

Спасибо за внимание!

