ТРЯП 11

Ковалев Алексей

1.

- (a) Грамматика не является LL(1), так как она содержит левую факторизацию (правила $A \to aA|a).$
- (b) Грамматика не является LL(1), так как она содержит левую рекурсию (правила $A \to Aa|Ab$).
- (c) Попытаемся построить LL(1)-анализатор для этой грамматики. Пополним грамматику: $S \to A\$; \ A \to BB; \ B \to ab|A$, аксиома S.

	FIRST	FOLLOW
\overline{S}	<i>{a}</i>	Ø
\overline{A}	$\{a\}$	$\{a,\$\}$
\overline{B}	<i>{a}</i>	$\{a,\$\}$

Управляющая таблица M:

	a	$\mid b \mid$	\$
\overline{S}	$S \to A$ \$	_	_
\overline{A}	$A \rightarrow BB$	_	_
\overline{B}	$B \to ab; \ B \to A$	_	_

Грамматика не является LL(1), так как |M[B, a]| = 2.

(d) Попытаемся построить LL(1)-анализатор для этой грамматики. Пополним грамматику: $S \to B\$; \ B \to aBB|b,$ аксиома S.

$$\begin{array}{c|cc} & \text{FIRST} & \text{FOLLOW} \\ \hline S & \{a,b\} & \varnothing \\ \hline B & \{a,b\} & \{a,b,\$\} \\ \end{array}$$

Управляющая таблица:

$$\begin{array}{c|ccccc} & a & b & \$ \\ \hline S & S \rightarrow B\$ & S \rightarrow B\$ & - \\ \hline B & B \rightarrow aBB & B \rightarrow b & - \\ \hline \end{array}$$

Грамматика является LL(1), так как для нее есть LL(1)-анализатор.

2. Избавимся от левой факторизации в грамматике: $S \to Ab; \ A \to aB; \ B \to A|\varepsilon.$ Пополним грамматику: $C \to S\$; \ S \to Ab; \ A \to aB; \ B \to A|\varepsilon.$ аксиома C.

	FIRST	FOLLOW
S	$\{a\}$	{\$}
\overline{A}	<i>{a}</i>	<i>{b}</i>
B	$\{\varepsilon,a\}$	<i>{b}</i>
\overline{C}	<i>{a}</i>	Ø

Управляющая таблица:

	a	b	\$
\overline{S}	$S \to Ab$	_	_
\overline{A}	$A \rightarrow aB$	_	_
B	$B \to A$	$B \to \varepsilon$	_
\overline{C}	$C \to S$ \$	_	_

На входе аааb:

На входе *aabb*:

C	aaab\$
S\$	aaab\$
Ab\$	aaab\$
aBb\$	aaab\$
Ab\$	aab\$
aBb\$	aab\$
Ab\$	ab\$
aBb\$	ab\$
<i>b</i> \$	<i>b</i> \$
$o_{\mathfrak{D}}$	05

C	aabb\$
S\$	aabb\$
Ab\$	aabb\$
aBb\$	aabb\$
Ab\$	abb\$
aBb\$	abb\$
Ab\$	bb\$

Значит ааав принадлежит грамматике.

Значит *aabb* не принадлежит грамматике.

3. Избавимся от левой рекурсии в грамматике: $S \to baaA|babA; \ A \to B; \ B \to aB|bB|\varepsilon.$ Избавимся от левой рекурсии: $S \to bX; \ X \to aY; \ Y \to aA|bA; \ A \to B; \ B \to aB|bB|\varepsilon.$ Пополним грамматику: $C \to S\$; \ S \to bX; \ X \to aY; \ Y \to aA|bA; \ A \to B; \ B \to aB|bB|\varepsilon,$ аксиома C.

	FIRST	FOLLOW
\overline{S}	<i>{b}</i>	{\$}
\overline{A}	$\{\varepsilon, a, b\}$	{\$}
B	$\{\varepsilon, a, b\}$	{\$}
C	$\{b\}$	Ø
X	$\{a\}$	{\$}
\overline{Y}	$\{a,b\}$	{\$}

Управляющая таблица:

	a	b	\$
\overline{S}	_	$S \to bX$	_
\overline{A}	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow B$
\overline{B}	$B \to aB$	$B \rightarrow bB$	$B \to \varepsilon$
\overline{C}	-	$C \to S$ \$	_
\overline{X}	$X \to aY$	_	_
\overline{Y}	$Y \rightarrow aA$	$Y \to bA$	

На входе baab:

На входе *bbab*:

C	baab\$
\overline{S} \$	baab\$
bX\$	baab\$
aY\$	aab\$
aA\$	ab\$
B\$	<i>b</i> \$
bB\$	<i>b</i> \$
\$	\$
	'

$$\begin{array}{c|c} C & bbab\$ \\ \hline S\$ & bbab\$ \\ \hline bX\$ & bbab\$ \\ \hline X\$ & bab\$ \\ \end{array}$$

Значит bbab не принадлежит грамматике.

Значит baab принадлежит грамматике.

4. Нет. Например, грамматика $S \to aA|aB; \ A \to aA|\varepsilon; \ B \to bB|\varepsilon$ является праволинейной, но не является LL(1)-грамматикой, так как содержит левую факторизацию (правила $S \to aA|aB$).