QUANTITATIVE METHODS

The Future Value of a Single Cash Flow

$$FV_N = PV (1+r)^N$$

The Present Value of a Single Cash Flow

$$PV = \frac{FV}{(1+r)^{N}}$$

$$PV_{Annuity\ Due} = PV_{Ordinary\ Annuity} \times (1+r)$$

$$FV_{Annuity\ Due} = FV_{Ordinary\ Annuity} \times (1+r)$$

Present Value of a Perpetuity

$$PV(perpetuity) = \frac{PMT}{I/Y}$$

Continuous Compounding and Future Values

$$FV_N = PVe^{r_{s*}N}$$

Effective Annual Rates

$$EAR = (1 + Periodic interest rate)^{N} - 1$$

Net Present Value

$$NPV = \sum_{t=0}^{N} \frac{CF_t}{(1+r)^t}$$

where

 CF_t = the expected net cash flow at time t

N = the investment's projected life

r = the discount rate or appropriate cost of capital

Bank Discount Yield

$$r_{BD} = \frac{D}{F} \times \frac{360}{t}$$

where:

 r_{BD} = the annualized yield on a bank discount basis.

D = the dollar discount (face value – purchase price)

F = the face value of the bill

t = number of days remaining until maturity

Holding Period Yield

$$HPY = \frac{P_1 - P_0 + D_1}{P_0} = \frac{P_1 + D_1}{P_0} - 1$$

where:

 P_0 = initial price of the investment.

 P_1 = price received from the instrument at maturity/sale.

 D_1 = interest or dividend received from the investment.

Effective Annual Yield

$$EAY = (1 + HPY)^{365/t} - 1$$

where:

HPY = holding period yield

t = numbers of days remaining till maturity

$$HPY = (1 + EAY)^{t/365} - 1$$

Money Market Yield

$$R_{\text{MM}} = \frac{360 \times r_{\text{BD}}}{360 - (t \times r_{\text{BD}})}$$

$$R_{MM} = HPY \times (360/t)$$

Bond Equalent Yield

$$BEY = [(1 + EAY) ^ 0.5 - 1]$$

Population Mean

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

Where,

 $x_i = is$ the *i*th observation.

Sample Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

Geometric Mean

$$1 + R_G = \sqrt[T]{(1 + R_1) \times (1 + R_2) \times ... \times (1 + R_T)}$$
 OR $G = \sqrt[n]{X_1 X_2 X_3 ... X_n}$

with $X_i \ge 0$ for i = 1, 2, ..., n.

$$R_{G} = \left[\prod_{t=1}^{T} \left(1 + R_{t}\right)\right]^{\frac{1}{T}} - 1$$

Harmonic Mean

Harmonic mean:
$$\overline{X}_H = \frac{N}{\sum_{i=1}^{N} \frac{1}{X_i}}$$
 with $X_i > 0$ for $i = 1, 2,..., N$.

Percentiles

$$L_{y} = \frac{(n+1)y}{100}$$

where

y = percentage point at which we are dividing the distribution $L_y = location$ (L) of the percentile (P_y) in the data set sorted in ascending order

Range

Range = Maximum value - Minimum value

Mean Absolute Deviation

$$MAD = \frac{\sum_{i=1}^{n} \left| X_{i} - \overline{X} \right|}{n}$$

Where:

n = number of items in the data set

 \overline{X} = the arithmetic mean of the sample

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

where:

 X_i = observation i

 μ = population mean

N = size of the population

Population Standard Deviation

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Sample Variance

Sample variance =
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

where:

n = sample size.

Sample Standard Deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Coefficient of Variation

Coefficient of variation = $\frac{s}{\overline{X}}$

where:

s = sample standard deviation

 \overline{X} = the sample mean.

Sharpe Ratio

Sharpe ratio =
$$\frac{\overline{r_p} - r_f}{S_p}$$

where:

 $\overline{\mathbf{r}}_{p}$ = mean portfolio return

 $r_{\rm f} = risk$ -free return

 S_p = standard deviation of portfolio returns

Sample skewness, also known as sample relative skewness, is calculated as:

$$S_{K} = \left[\frac{n}{(n-1)(n-2)}\right] \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{3}}{s^{3}}$$

As n becomes large, the expression reduces to the mean cubed deviation.

$$S_{K} \approx \frac{1}{n} \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{3}}{s^{3}}$$

where:

s = sample standard deviation

Sample Kurtosis uses standard deviations to the fourth power. Sample excess kurtosis is calculated as:

$$K_{E} = \left(\frac{n(n+1)}{(n-1)(n-2)(n-3)} \quad \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{4}}{s^{4}}\right) - \frac{3(n-1)^{2}}{(n-2)(n-3)}$$

As n becomes large the equation simplifies to:

$$K_{E} \approx \frac{1}{n} \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{4}}{s^{4}} - 3$$

where:

s = sample standard deviation

For a sample size greater than 100, a sample excess kurtosis of greater than 1.0 would be considered unusually high. Most equity return series have been found to be leptokurtic.

Odds for an event

$$P(E) = \frac{a}{(a+b)}$$

Where the odds for are given as 'a to b', then:

Odds for an event

$$P(E) = \frac{b}{(a+b)}$$

Where the odds *against* are given as 'a to b', then:

Conditional Probabilities

$$P(A|B) = \frac{P(AB)}{P(B)}$$
 given that $P(B) \neq 0$

Multiplication Rule for Probabilities

$$P(AB) = P(A|B) \times P(B)$$

Addition Rule for Probabilities

$$P(A \text{ or } B) = P(A) + P(B) - P(AB)$$

For Independant Events

$$P(A|B) = P(A)$$
, or equivalently, $P(B|A) = P(B)$

$$P(A \text{ or } B) = P(A) + P(B) - P(AB)$$

P(A and B) = P(A) × P(B)

The Total Probability Rule

$$P(A) = P(AS) + P(AS^{c})$$

$$P(A) = P(A|S) \times P(S) + P(A|S^{c}) \times P(S^{c})$$

The Total Probability Rule for *n* Possible Scenarios

$$P(A) = P(A|S_1) \times P(S_1) + P(A|S_2) \times P(S_2) + ... + P(A|S_n) \times P(S_n)$$

where the set of events $\{S_1, S_2, ..., S_n\}$ is mutually exclusive and exhaustive.

Expected Value

$$E(X) = P(X_1)X_1 + P(X_2)X_2 + \dots P(X_n)X_n$$

$$E(X) = \sum_{i=1}^{n} P(X_i)X_i$$

Where:

 X_i = one of n possible outcomes.

Variance and Standard Deviation

$$\sigma^{2}(X) = E\{[X - E(X)]^{2}\}$$

$$\sigma^{2}(X) = \sum_{i=1}^{n} P(X_{i}) [X_{i} - E(X)]^{2}$$

The Total Probability Rule for Expected Value

1.
$$E(X) = E(X|S)P(S) + E(X|S^{c})P(S^{c})$$

2.
$$E(X) = E(X|S_1) \times P(S_1) + E(X|S_2) \times P(S_2) + ... + E(X|S_n) \times P(S_n)$$

Where:

E(X) = the unconditional expected value of X

 $E(X|S_1)$ = the expected value of X given Scenario 1

 $P(S_1)$ = the probability of Scenario 1 occurring

The set of events $\{S_1, S_2, ..., S_n\}$ is mutually exclusive and exhaustive.

Covariance

$$Cov(XY) = E\{[X - E(X)][Y - E(Y)]\}$$

Cov
$$(R_A, R_B) = E\{[R_A - E(R_A)][R_B - E(R_B)]\}$$

Correlation Coefficient

$$Corr\left(R_{A},R_{B}\right) = \rho(R_{A},R_{B}) = \frac{Cov\left(R_{A},R_{B}\right)}{(\sigma_{A})(\sigma_{B})}$$

Expected Return on a Portfolio

$$E(R_p) = \sum_{i=1}^{N} w_i E(R_i) = w_1 E(R_1) + w_2 E(R_2) + ... + w_N E(R_N)$$

Where:

Weight of asset
$$i = \frac{\text{Market value of investment i}}{\text{Market value of portfolio}}$$

Portfolio Variance

$$Var(R_p) = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j Cov(R_i, R_j)$$

Variance of a 2 Asset Portfolio

$$Var(R_p) = w_A^2 \sigma^2(R_A) + w_B^2 \sigma^2(R_B) + 2w_A w_B Cov(R_A, R_B)$$

$$Var(R_p) = w_A^2 \sigma^2(R_A) + w_B^2 \sigma^2(R_B) + 2w_A w_B \rho(R_A, R_B) \sigma(R_A) \sigma(R_B)$$

Variance of a 3 Asset Portfolio

$$Var(R_{p}) = w_{A}^{2}\sigma^{2}(R_{A}) + w_{B}^{2}\sigma^{2}(R_{B}) + w_{C}^{2}\sigma^{2}(R_{C})$$

$$+ 2w_{A}w_{B}Cov(R_{A}, R_{B}) + 2w_{B}w_{C}Cov(R_{B}, R_{C}) + 2w_{C}w_{A}Cov(R_{C}, R_{A})$$

Bayes' Formula

$$P (Event | Information) = \frac{P (Information | Event) \times P(Event)}{P (Information)}$$

Counting Rules

The number of different ways that the *k* tasks can be done equals $n_1 \times n_2 \times n_3 \times ... n_k$.

Combinations

$$_{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)!(r!)}$$

Remember: The combination formula is used when the order in which the items are assigned the labels is NOT important.

Permutations

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Discrete uniform distribution

 $F(x) = n \times p(x)$ for the *nth* observation.

Binomial Distribution

$$P(X=x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

where:

p = probability of success

1 - p = probability of failure

 ${}_{n}C_{x}$ = number of possible combinations of having x successes in n trials. Stated differently, it is the number of ways to choose x from n when the order does not matter.

Variance of a binomial random variable

$$\sigma_x^2 = n \times p \times (1-p)$$

The Continuous Uniform Distribution

$$P(X < a), P(X > b) = 0$$

P
$$(x_1 \le X \le x_2) = \frac{x_2 - x_1}{b - a}$$

Confidence Intervals

For a random variable X that follows the normal distribution:

The 90% confidence interval is \overline{x} - 1.65s to \overline{x} + 1.65s

The 95% confidence interval is \overline{x} - 1.96s to \overline{x} + 1.96s

The 99% confidence interval is \bar{x} - 2.58s to \bar{x} + 2.58s

The following probability statements can be made about normal distributions

- Approximately 50% of all observations lie in the interval $\mu \pm (2/3)\sigma$
- Approximately 68% of all observations lie in the interval $\mu \pm 1\sigma$
- Approximately 95% of all observations lie in the interval $\mu \pm 2\sigma$
- Approximately 99% of all observations lie in the interval $\mu \pm 3\sigma$

z-Score

 $z = (observed value - population mean)/standard deviation = <math>(x - \mu)/\sigma$

Roy's safety-first criterion

Minimize $P(R_P < R_T)$

where:

 $R_P = portfolio return$

 R_T = target return

Shortfall Ratio

Shortfall ratio (SF Ratio) or z-score =
$$\frac{E(R_p)-R_T}{\sigma_p}$$

Continuously Compounded Returns

$$EAR = e^{r_{cc}} - 1$$
 $r_{cc} = continuously compounded annual rate$

$$HPR_t = e^{r_{cc} \times t} - 1$$

Sampling Error

Sampling error of the mean = Sample mean - Population mean = \overline{x} - μ

Standard Error of Sample Mean when Population variance is Known

$$\sigma_{\bar{x}} = \sqrt[6]{n}$$

where:

 $\sigma_{\bar{x}}$ = the standard error of the sample mean

 σ = the population standard deviation

n =the sample size

Standard Error of Sample Mean when Population variance is Not Known

$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

where:

 $s_{\bar{x}}$ = standard error of sample mean

s = sample standard deviation.

Confidence Intervals

Point estimate \pm (reliability factor \times standard error)

where:

Point estimate = value of the sample statistic that is used to estimate the population parameter

Reliability factor = a number based on the assumed distribution of the point estimate and the level of confidence for the interval $(1-\alpha)$.

Standard error = the standard error of the sample statistic (point estimate)

$$\overline{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where:

 \overline{x} = The sample mean (point estimate of population mean)

 $z_{\alpha/2}$ = The standard normal random variable for which the probability of an observation lying in either tail is α / 2 (reliability factor).

 $\frac{\sigma}{\sqrt{n}}$ = The standard error of the sample mean.

$$\overline{x} \pm t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

where

 \bar{x} = sample mean (the point estimate of the population mean)

$$\frac{t_{\frac{\alpha}{2}}}{\frac{s}{\sqrt{n}}}$$
 = standard error of the sample mean

s = sample standard deviation

Test Statistic

 $Test \ statistic = \frac{Sample \ statistic - Hypothesized \ value}{Standard \ error \ of \ sample \ statistic}$

Power of a Test

Power of a test = 1 - P(Type II error)

Decision Rules for Hypothesis Tests

Decision	H ₀ is True	H ₀ is False	
Do not reject H ₀	Correct decision	Incorrect decision Type II error	
Reject H ₀	Incorrect decision Type I error Significance level = P(Type I error)	Correct decision Power of the test = 1 - P(Type II error)	

Confidence Interval

$$\left[\left(\begin{array}{c} sample \\ statistic \end{array} \right) - \left(\begin{array}{c} critical \\ value \end{array} \right) \left(\begin{array}{c} standard \\ error \end{array} \right) \right] \leq \left(\begin{array}{c} population \\ parameter \end{array} \right) \leq \left[\left(\begin{array}{c} sample \\ statistic \end{array} \right) + \left(\begin{array}{c} critical \\ value \end{array} \right) \left(\begin{array}{c} standard \\ error \end{array} \right) \right]$$

$$\overline{x} \quad - \quad (z_{\alpha/2}) \qquad (s/\sqrt{n}) \qquad \leq \qquad \mu_0 \qquad \leq \qquad \overline{x} \qquad + \quad (z_{\alpha/2}) \qquad (s/\sqrt{n})$$

Summary

Type of test	Null hypothesis	Alternate hypothesis	Reject null if	Fail to reject null if	P-value represents
One tailed (upper tail) test	H_0 : $\mu \le \mu_0$	H_a : $\mu > \mu_0$	Test statistic > critical value	Test statistic ≤ critical value	Probability that lies above the computed test statistic.
One tailed (lower tail) test	H_0 : $\mu \ge \mu_0$	H_a : $\mu < \mu_0$	Test statistic < critical value	Test statistic ≥ critical value	Probability that lies below the computed test statistic.
Two-tailed	H_0 : $\mu = \mu_0$	H_a : $\mu \neq \mu_0$	Test statistic < Lower critical value Test statistic > Upper critical value	Lower critical value ≤ test statistic ≤ Upper critical value	Probability that lies above the positive value of the computed test statistic <i>plus</i> the probability that lies below the negative value of the computed test statistic

t-Statistic

t-stat =
$$\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

Where:

x = sample mean

 μ_0 = hypothesized population mean

s = standard deviation of the sample

n = sample size

z-Statistic

z-stat =
$$\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

Where:

x = sample mean

 μ_0 = hypothesized population mean

 σ = standard deviation of the population

n = sample size

z-stat =
$$\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

Where:

x = sample mean

 μ_0 = hypothesized population mean

s = standard deviation of the sample

n = sample size

Tests for Means when Population Variances are Assumed Equal

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\left(\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}\right)^{1/2}}$$

Where:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

 s_1^2 = variance of the first sample

 s_2^2 = variance of the second sample

 n_1 = number of observations in first sample

 n_2 = number of observations in second sample

degrees of freedom = $n_1 + n_2 - 2$

Tests for Means when Population Variances are Assumed Unequal

t-stat =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^{1/2}}$$

Where:

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1} + \frac{\left(s_2^2/n_2\right)^2}{n_2}}$$

 s_1^2 = variance of the first sample

 s_2^2 = variance of the second sample

 n_1 = number of observations in first sample

 n_2 = number of observations in second sample

Paired Comparisons Test

$$t = \frac{\overline{d} - \mu_{dz}}{s_{\overline{d}}}$$

Where:

d = sample mean difference

 $s_{\bar{d}}$ = standard error of the mean difference= $\frac{s_d}{\sqrt{n}}$

 s_d = sample standard deviation

n = the number of paired observations

Hypothesis Tests Concerning the Mean of Two Populations - Appropriate Tests

Population distribution	Relationship between samples	Assumption regarding variance	Type of test
Normal	Independent	Equal	t-test pooled variance
Normal	Independent	Unequal	t-test with variance not pooled
Normal	Dependent	N/A	t-test with paired comparisons

Chi Squared Test-Statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Where:

n = sample size

 s^2 = sample variance

 σ_0^2 = hypothesized value for population variance

Test-Statistic for the F-Test

$$F = \frac{s_1^2}{s_2^2}$$

Where:

 s_1^2 = Variance of sample drawn from Population 1

 s_2^2 = Variance of sample drawn from Population 2

Hypothesis tests concerning the variance.

Hypothesis Test Concerning	Appropriate test statistic	
Variance of a single, normally distributed population	Chi-square stat	
Equality of variance of two independent, normally distributed populations	F-stat	

Setting Price Targets with Head and Shoulders Patterns

Price target = Neckline - (Head - Neckline)

Setting Price Targets for Inverse Head and Shoulders Patterns

Price target = Neckline + (Neckline - Head)

Momentum or Rate of Change Oscillator

$$M = (V - Vx) \times 100$$

where:

M = momentum oscillator value

V = last closing price

Vx = closing price x days ago, typically 10 days

Relative Strength Index

$$RSI = 100 - \frac{100}{1 + RS}$$

where RS = $\frac{\Sigma \text{ (Up changes for the period under consideration)}}{\Sigma \text{ (|Down changes for the period under consideration|)}}$

Stochastic Oscillator

$$\%K = 100 \left(\frac{C - L14}{H14 - L14} \right)$$

where:

C = last closing price

L14 = lowest price in last 14 days

H14 = highest price in last 14 days

%D (signal line) = Average of the last three %K values calculated daily.

Short Interest ratio

$$Short\ interest\ ratio = \frac{Short\ interest}{Average\ daily\ trading\ volume}$$

Arms Index

$$Arms\ Index = \frac{Number\ of\ advancing\ issues\ /\ Number\ of\ declining\ issues}{Volume\ of\ advancing\ issues\ /\ Volume\ of\ declining\ issues}$$