CHALMERS EXAMINATION/TENTAMEN

Course code/kurskod	Co	ourse name/kursnamn		
DAT 400	High Perfo	rmaka Parally Pr	gramy	
Anonymous code Anonym kod		Examination date Tentamensdatum	Number of pages Antal blad	Grade Betyg
DAT460-0002-	LOP	03/01/2012	9	5

^{*} I confirm that I've no mobile or other similar electronic equipment available during the examination. Jag intygar att jag inte har mobiltelefon eller annan liknande elektronisk utrustning tillgänglig under eximinationen.

Solved task Behandlade u No/nr	uppgifter	Points per task Poäng på uppgiften	Observe: Areas with bold contour are to completed by the teacher. Anmärkning: Rutor inom bred kontur ifylles av lärare.
1	\vee	7	
2	V	10	
3	V	10	
4	\bigvee	9	
5	\bigvee	8	
6	\bigvee	8	
7			
8			
9			
10			
11			
12			,
13			
14			
15			
16			
17			
Bonus poäng			
Total examinat points Summa poäng på tentamen	ion	52	

CHALMERS	Anony	mous co	de					oints for	question y teacher)		Conse	cutive de si	e page d nr	no.
	Anonyi	m kod UCO-07	02-	LDF)			äng på les av lärar	uppgifte	n	Quest Uppgif		0.	3
3 0 L	2	3	4	5	6	η	8	9	10	11 1	2 1	3	14	
2 cores 6 co 1	· 2	13	5	6	15	9	60	11	19 =	22-	23			
c7 3		14	η		16	l	12	18	(20) (:	21)				
Casez Co 1	/	9	7	9	112	13	15	19	197	21-1	23			-
C1 2 4 cores 1			8	r	6 7		9	10			7	2	tine	un7+5
use1 co 1	5			3 17	2) 2									
CI 2	6		.,	£ 18	[22]									
(2 3	n 8	11	15 - 16	1 1								- J 1	7 tim	e centit
C 0 1	2	3	4			C	0 .1	2	9.10	10 0	1)23,		7	
C1 5 C2 9 C3 x	6 10 4	11	8 12 14	(<u>x</u>	C C	3 2 5	4 6 8		180	- X			
8 cores	2	3 4	. 4	5 6	,)									
CO I	9	11/2	1 2											
C1 2 C2 3	Ц	19)												
(3 4 (4 5		LO)	547	ing w	THS			
C5 6	14								J. ř.		. /			
(6n)														

CHALMERS Anonymous code	Points for question (to be filled in by teacher)	Consecutive page not Löpande sid nr
Anonym kod	Poäng på uppgiften	Question no. 2
DAT 400-0002-LDP		Uppgift nr 5
	1 W	
B (b) (pst = px Texe (n)	P=cores, Tex	o(n) parallel
		execution
Efficiency = The best segu	vantial exetine	
E++1clenay =	st	
	-0 [6	
2cores = 605t = 2×12 = 24 tu.	EFF: 16 = 0.	. 66'7
4 cores = cost = 4 x 7 = 28 ta	eff: 16 = 0	511
8 cores = cost = 8x 5 = 40 tu	Eff: 16 = 0	5.4
	4	
		w/d 7 7014 75
the largest number of coles that ca		
@ 12, because at the first level o		
We can phocess maximum 12 task.	s at the same item	aton time.
Critial Path is 5.	- To chalole IM	ids devide the task
(1) For each task, we can apply f even smaller, in this case he should	The gratu schedule in	ich divide the task
(1) For each task, we can apply f even smaller, in this case he should the other approach is that we s	# can use caches so	That
For each task, we can apply f even smaller, in this case he should the other approach is that we s	# can use caches so	That
For each task, we can deapply for even smaller, in this wase we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
For each task, we can dapply f even smaller, in this wase he should the other approach is that we s	# can use caches so	That
For each task, we can deapply for even smaller, in this wase we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
For each task, we can deapply for even smaller, in this wase we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
For each task, we can dapply f even smaller, in this wase he should the other approach is that we a reduce memory accesse the write	# can use caches so	That
For each task, we can dapply f even smaller, in this wase he should the other approach is that we a reduce memory accesse the write	# can use caches so	That
For each task, we can dapply f even smaller, in this wase he should the other approach is that we a reduce memory accesse the write	# can use caches so	That
For each task, we can deapply f even smaller, in this wase we should the other approach is that we s reduce memory accesse the write	# can use caches so	That
For each task, we can deapply f even smaller, in this wase we should the other approach is that we s reduce memory accesse the write	# can use caches so	That
For each task, we can deapply for even smaller, in this wase we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
For each task, we can deapply for even smaller, in this wase we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
(1) For each task, we can deapply of even smaller, in this case we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
(1) For each task, we can deapply of even smaller, in this case we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
(1) For each task, we can deapply of even smaller, in this case we should the other approach is that we should reduce memory accesse the write	# can use caches so	That
(1) For each task, we can deapply of even smaller, in this case we should the other approach is that we should reduce memory accesse the write	# can use caches so	That