Reformulating Constraint Satisfaction Problems with Application to Geospatial Reasoning

K. Bayer ¹ M. Michalowski ² B.Y. Choueiry ^{1,2} C.A. Knoblock ²

¹ Constraint Systems Laboratory University of Nebraska-Lincoln

² Information Sciences Institute University of Southern California

Supported by NSF CAREER Award #0133568 and AFOSR grants FA9550-04-1-0105 and FA9550-07-1-0416

Contributions

BID problem as a CSP

[Michalowski & Knoblock, AAAI 05]

- Improved constraint model
- Showed original BID problem is in P
- Custom solver
- Four new reformulation techniques for CSPs
 - 1. Query reformulation
 - 2. Domain reformulation
 - Constraint relaxation
 - 4. Reformulation via symmetry detection
- Applying the reformulations to the BID problem

Nebraska Lincoln

Outline

- Background
- BID: CSP model & custom solver
- Reformulation techniques
 - Description
 - General use in CSPs
 - Application to BID
 - Evaluation on real-world BID data
- Conclusions & future work

Abstraction & Reformulation

... may be an approximation

Lincoln

Constraint Satisfaction Problems

- Formulation: $\mathcal{F} = (\mathcal{V}, \mathcal{D}, \mathcal{C})$
 - \mathcal{V} = set of variables
 - $-\mathcal{D}$ = set of their domains
 - C = set of constraints restricting the acceptable combination of values for variables
- Query: All solutions, a single solution, etc.
- Solved with
 - Constraint propagation
 - Search

Term: variable-value pair (vvp)

Issue: finding Ken's house

Building Identification (BID) problem

Layout: streets and buildings

= Building
= Corner building
Si = Street

- Phone book
 - Complete/incomplete
 - Assumption: all addresses in phone book must be used

S1#1, S1#4, S1#8, S2#7, S2#8, S3#1, S3#2, S3#3, S3#15, ...

Basic (address numbering) rules

- Ordering
 - Numbers increase/decrease along a street
- Parity
 - Numbers on a given side of a street are odd/even

Additional information

Landmarks

1600 Pennsylvania Avenue

B2

Gridlines

B1

Query

- 1. Given an address, what buildings could it be?
- 2. Given a building, what addresses could it have?

Constraint Systems Laboratory

Lincoln

Outline

- Background
- BID model & custom solver
- Reformulation techniques
- Conclusions & future work

CSP model

- Parity constraints
- Ordering constraints
- Corner constraints

- Phone-book constraints
- Optional: grid constraints

Example constraint network

Nebraska Lincoln

Features of new model & solver

Improvement over previous work

[Michalowski +, 05]

- Model
 - Reflects topology
 - Reduces number of variables and constraint arity
 - Constraints can be declared locally & in restricted 'contexts' (feature important for Michalowski's work)
- Solver
 - Exploits structure of problem (backdoor variables)
 - Implements domains as (possibly infinite) intervals
 - Incorporates all reformulations (to be introduced)

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Query in the BID

Problem: BID instances have many solutions

Phone book: {4,8}

B1	B2	B 3	B 4
2	4	6	8
2	4	8	10
2	4	8	12
4	8	10	12
4	6	8	10
4	6	8	12

Lincoln

We **only** need to know which values (address) appear in **at least one** solution for a variable (building)

Query reformulation

Original BID

Query:
Find **all** solutions,

Collect values for variables

Query reformulation Qu

Reformulated BID

Query:

For each variable-value pair, determine **satisfiability**

Original query	Reformulated query
Single counting problem	Many satisfiability problems
All solutions	Per-variable solution
Exhaustive search	One path
Impractical when there are many solutions	Costly when there are few solutions

Evaluations: real-world data from El Segundo

[Shewale]

Case study	Phone book	Number of				
	Completeness	Buildings	Corner buildings	Blocks		
NSeg125-c	100.0%	125	17	4		
NSeg125-i	45.6%	125	17	4		
NSeg206-c	100.0%	206	20	7		
NSeg206-I	50.5%	206	28			
SSeg131-c	SSeg131-c 100.0%		26	0		
SSeg131-i	Seg131-i 60.3%		36	8		
SSeg178-c	100.0%	178	46	12		
SSeg178-i	65.6%	170	40	IZ		

Previous work did not scale up beyond 34 bldgs, 7 corner bldgs, 1 block

Evaluation: query reformulation

Incomplete phone book → many solutions → better performance

Case study	Original query	New query [s]
NSeg125-i	>1 week	744.7
NSeg206-i	>1 week	14,818.9
SSeg131-i	>1 week	66,901.1
SSeg178-i	>1 week	119,002.4

Complete phone book → few solutions → worse performance

Case study	Original query [s]	New query [s]
NSeg125-c	1.5	139.2
NSeg206-c	20.2	4,971.2
SSeg131-c	1123.4	38,618.4
SSeg178-c	3291.2	117,279.1

Generalizing query reformulation

- Relational (i,m)-consistency, algorithm R(i,m)C
 - For every *m* constraints
 - Compute **all solutions** of length s
 - To generate tuples of length i
 - Space: $O(d^s)$

- Reformulated BID query is R(1,|C|)C
- Query reformulation for Relational (i,m)-consistency
 - For each combination of values for i variables
 - Try to extend to one solution of length s
 - Space: $O(\binom{s}{i}d^i)$, i < s

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Domain reformulation

- Domains in the BID are large
- Min/max value?

Enumerate?

Nebraska Lincoln

AllDiff-Atmost constraint

- AllDiff-Atmost(A, k, d)
 - The variables in \mathcal{A} can be assigned at most k values from the set d

Constraint Systems Laboratory

Lincoln

AllDiff-Atmost reformulation

Replaces

- interval d of values (potentially infinite)
- with k symbolic values

AllDiff-Atmost in the BID

Even side

Phone book: {12,28}

Original domain = {2, 4, ..., 998, 1000}

 12
 28
 30
 32
 34

 12
 14
 16
 28
 36

 10
 12
 14
 20
 28

 2
 4
 6
 12
 28

 ...
 ...
 12
 28
 ...

- Can use at most
 - 3 addresses in [2,12)
 - 3 addresses in (12,28)
 - 3 addresses in (28,1000]

Reformulated domain $\{.s_1, s_2, s_3, 12, s_4, s_5, s_6, 28, s_7, s_8, s_9.\}$ Original domain $\{2, 4, ..., 10, 12, 14, ..., 26, 28, 30, ..., 998, 1000\}$

Evaluation: domain reformulation

Reduced domain size → improved search performance

Case study	Phone-book completeness	Average	domain size	Runtime [s]			
		Original Reformulated		Original	Reformulated		
NSeg125-i	45.6%	1103.1	236.1	2943.7	744.7		
NSeg206-i	50.5%	1102.0	438.8	14,818.9	5533.8		
SSeg131-i	60.3%	792.9	192.9	67,910.1	66,901.1		
SSeg178-i	65.6%	785.5	186.3	119,002.4	117,826.7		

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

BID as a matching problem

Assume we have no grid constraints

— INEDIASKA

BID w/o grid constraints

 BID instances without grid constraints can be solved in *polynomial time*

Case study	Runtime [s]		
	BT search	Matching	
NSeg125-c	139.2	4.8	
NSeg206-c	4971.2	16.3	
SSeg131-c	38618.3	7.3	
SSeg178-c	117279.1	22.5	
NSeg125-i	744.7	2.5	
NSeg206-i	5533.8	8.5	
SSeg131-i	38618.3	7.3	
SSeg178-i	117826.7	4.9	

BID w/ grid constraints

1. Matching reformulation as a *necessary* approximation of the BID

2. Filtering

[Régin, 1994]

Remove vvps that do not appear in a maximum matching

Nebraska Lincoln

Matching reformulation in Solver

- Remove vvps that do not... Preproc1
- For every vvp
 - Consider CSP + vvp
 - Is the relaxed CSP solvable? Preproc2
 - Find one solution using BT search
 - After each variable instantiation,
 remove vvps that do Lookahead

Evaluation: matching reformulation

Generally, improves performance

Case Study	ВТ	Preproc2 +BT	% (from BT)	Lkhd +BT	% (from BT)	Lkhd +Preproc1&2 + BT	% (from Lkhd+BT)
NSeg125-i	1232.5	1159.1	6.0%	726.6	41.0%	701.1	3.5%
NSeg206-c	2277.5	614.2	73.0%	1559.2	31.5%	443.8	71.5%
SSeg178-i	138404.2	103244.7	25.4%	121492.4	12.2%	85185.9	29.9%

Rarely, the overhead exceeds the gains

Case Study	ВТ	Preproc2 +BT	% (from BT)	Lkhd +BT	% (from BT)	Lkhd +Preproc1&2 + BT	% (from Lkhd+BT)
NSeg125-c	100.8	33.2	67.1%	140.2	-39.0%	29.8	78.7%
NSeg131-i	114405.9	114141.3	0.2%	107896.3	5.7%	108646.6	-0.7%

Nebraska Lincoln

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Find all maximum matchings

Find one maximum matching [Hopcroft+Karp, 73]

Identify...

[Berge, 73]

... even alternating paths starting @ a free vertex:

... alternating cycles:

Nebraska Lincoln

Symmetric maximum matchings

All matchings can be produced using the sets of disjoint alternating paths & cycles

→ Compact representation

Symmetric matchings in BID

- Some symmetric solutions do not break the grid constraints
 - Avoid exploring symmetric solutions during search
- Some do, we do not know how to use them...

Conclusions

- We proposed four reformulation techniques
- We described their usefulness for general CSPs
- We demonstrated their effectiveness on the BID
- Lesson: reformulation is an effective approach to improve the scalability of complex systems

Future work

- Empirically evaluate our new algorithm for relational (i,m)-consistency
- Exploit the symmetries we identified
- Enhance the model by incorporating new constraints

Questions?

