Recall							
Let u	us parti	tion	the sample space into two mutually exclusive events. A and A ^c				
	Corolla	ry 1:	Since S= AUA and Ana + \$\phi\$, by axiom 2 and 3 we must have: P(s) = P(A)	+P(A)=	⇒ Pcas)=1-P0	(A:
	Corolla	ry 2:	By axiom 1, we have that P(B) 70. Thus, from corollary 1, we have that:				
			$P(A)=1-P(A^{c}) \le 1 \rightarrow 0 \le P(A) \le 1$				
	Corolla	ru 3.	The empty set has probability zero. $P(\phi) = 1 - P(S) = 0$				
				ANB	X		
	Corollar	y 4:	Union of 2 events P(AUB) that are not necessarily mutually exclusive.		ANB	A OB	
			Decompose AUB. A and B as unions of disjoint events. By axiom 3, we have	e:	X		
			PCAUB) = PCAUBC) + PCBUBC) + PCAUB)				
			$P(A) = P(A \cap B^{c}) + P(A \cap B)$				
			P(B) = P(B(AC) + P(A(B)				
			P(AUB) = P(A) + P(B) - P(A (B)				
	C1						
	Corollo	ry 5:	Since P(ANB) >0. from corollary 4, we must have that P(AUB) ≤ P(A) + P(B)				
	Corollo	ry 6:	Let's say A CB. By axiom 1: P(ACNB) >0				
		1	L, P(A) & P(A) + P(AC (B)=P(B)				
B (A) '	4 UR)	L> P(A) ≤P(B)				
			LA PUNI APUB)				
iscre	te sam	ple sp	oces				
	Recall	our 3	coins example:				
	· s= f	ннн.	4HT,T}				
				e in A			
	· If S	consis	s of n equally likely outcomes, then, for some event A, P(A) = # of element				
	- Consi	der t	ne event A "at least 2 tails in a row"				
	ا الما	has r	=8 posibile oudcomes				
			, ттн, ттт }				
	L, Pu	$A) = \frac{3}{8}$					
Conti	inuous	sampl	e spaces				
	Consid	der a	n experiment where we choose two numbers between 0 and 1 at random:	S= fcx,	WER:	05x41,	7 ≤ u ≤

