Exercises 3.15

Exercise 3.15.1

Let p, p_i, q, q_i be density functions on \mathbb{R} and $\alpha \in \mathbb{R}$. Show that the cross-entropy satisficies the following properties:

a.
$$S(p_1 + p_2, q) = S(p_1, q) + S(p_2, q);$$

b.
$$S(\alpha p, q) = \alpha S(p, q) = S(p, q^{\alpha});$$

c.
$$S(p, q_1q_2) = S(p, q_1) + S(p, q_2)$$
.

Exercise 3.15.2

Show that the cross entropy satisfies the following inequality

$$S(p,q) \ge 1 - \int p(x)q(x)dx$$

Exercise 3.15.3

Let p a fixed density. Show that the symetric relative entropy

$$D_{KL}(p||q) + D_{KL}(q||p)$$

reaches its minimum for p = q, and the minimum is equal to zero.

Exercise 3.15.4

Consider two exponential densities, $p_1 = \xi^1 e^{\xi^1 x}$ and $p_2 = \xi^2 e^{\xi^2 x}$, $x \ge 0$.

a. Show that
$$D_{KL}(p_1 || p_2) = \frac{\xi^2}{\xi^1} - \ln \frac{\xi^2}{\xi^1} - 1$$
.

- b. Verify $D_{KL}(p_1||p_2) \neq D_{KL}(p_2||p_1)$.
- c. Show that the triangle inequality doesn't hold for three arbitrary densities.

Exercise 3.15.5

Let X be a discrete random variable. Show the inequality

$$H(X) \geq 0$$
.

Exercise 3.15.6

Prove that if p and q are the densities of two discrete random variables, then $D_{KL}(p||q) \leq S(p,q)$

Exercise 3.15.7

We assume the target variable Z is \mathcal{E} -mesurable. What is mean squared error function in this case?

Exercise 3.15.8

Asume that a neural network has an input-output function $f_{w,b}$ linear in w and b. Show that the cost function (3.3.1) reaches its minimum for a unique pair (w^*, b^*) , which can be computed explicitly.

Exercise 3.15.9

Show that the Shannon entropy can be retrived from the Reyni entropy as

$$H(p) = \lim_{\alpha \to 1} H_{\alpha}(x).$$

Exercise 3.15.10

Let $\phi_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2\sigma^2}}$. Consider the convolution operation $(f*g)(x) := \int f(t)g(x-t)dt$.

- a. Show that $\phi_{\sigma} * \phi_{\sigma} = \phi_{\sigma\sqrt{2}}$;
- b. Find $\phi_{\sigma} * \phi_{\sigma'}$ in the case $\sigma \neq \sigma'$.

Exercise 3.15.11

Consider two probability densitie, p(x) and q(x). The Cauchy-Schwartz divergence is defined by

$$D_{CS}(p,q) := -\ln(\frac{\int p(x)q(x)dx}{\sqrt{\int p(x)^2 dx}}\sqrt{\int q(x)^2 dx})$$

Show the following:

- a. $D_{CS}(p,q) = 0$ if and only if p = q;
- b. $D_{CS}(p,q) \ge 0$;
- c. $D_{CS}(p,q) = D_{CS}(q,p);$
- d. $D_{CS}(p,q) = -\ln \int pqdx \frac{1}{2}H_2(p) \frac{1}{2}H_2(q)$, where $H_2(\cdot)$ denotes the quadratic Reyni entropy.

Exercise 3.15.12

- a. Show that for any function $f \in L^1[0,1]$ we have the inequality $\|\tanh(f)\|_1 \leq \|f\|_1$.
- b. Show that for any function $f \in L^2[0,1]$ we have the inequality $\|\tanh(f)\|_2 \le \|f\|_2$.

Exercise 3.15.13

Consider two distributions on the sample space $\mathcal{X} = \{x_1, x_2\}$ given by

$$p = \begin{pmatrix} x_1 & x_2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \ q = \begin{pmatrix} x_1 & x_2 \\ \frac{1}{2} & \frac{2}{3} \end{pmatrix}$$

Consider the function $\phi: \mathcal{X} \to \mathbb{R}^2$ defined by $\phi(x_1) = (0,1)$ $\phi(x_2) = (1,0)$. Find the maximum mean discrepancy between p and q.

SOLUTIONS

3.15.1 (a)

The claim follows from the linearity of the integral operator. In symbols we have:

$$S(p_1 + p_2, q) = -\int_{\mathbb{R}} (p_1(x) + p_2(x)) \ln q(x) dx = -\int_{\mathbb{R}} p_1(x) \ln q(x) dx - \int_{\mathbb{R}} p_2(x) \ln q(x) dx$$

= $S(p_1, q) + S(p_2, q)$.

3.15.1 (b)

From the linearity of the integral operator, and the property $c \ln(x) = \ln(x^c)$ we have:

$$S(\alpha p, q) = -\int_{\mathbb{R}} \alpha p(x) \ln q(x) dx = -\alpha \int_{\mathbb{R}} p(x) \ln q(x) dx = \alpha S(p, q)$$
$$= -\int_{\mathbb{R}} \alpha p(x) \ln q(x) dx = -\int_{\mathbb{R}} p(x) \ln q(x)^{\alpha} dx = S(p, q^{\alpha}).$$

3.15.1 (c)

Using the addition identity for the logarithm, we get:

$$S(p, q_1 q_2) = -\int_{\mathbb{R}} p(x) \ln q_1(x) q_2(x) dx = -\int_{\mathbb{R}} p(x) \ln q_1(x) dx - \int_{\mathbb{R}} p(x) \ln q_2(x) dx$$

= $S(p, q_1) + S(p, q_2)$.

3.15.2

By the inequality $\ln(x) \leq x - 1$, $\forall x \in \mathbb{R}^+$, and the definition of cross-entropy follows:

$$\begin{split} S(p,q) &= -\int_{\mathbb{R}} p(x) \mathrm{ln} q(x) dx \geq -\int_{\mathbb{R}} p(x) (q(x)-1) dx \\ &\geq -\int_{\mathbb{R}} -p(x) dx - \int_{\mathbb{R}} p(x) q(x) dx = 1 - \int_{\mathbb{R}} p(x) q(x) dx. \end{split}$$

3.15.3

From proposition 3.5.1 follows that $D_{KL}(p||q) \ge 0$, $D_{KL}(q||p) \ge 0$, then $D_{KL}(p||q) + D_{KL}(q||p) \ge 0$. Clearly the value 0 is a minimum. Let's now prove that this minimum is attained when p = q. It is well known from the cross-entropy definition S(p,p) = H(p) and S(q,q) = H(q) then:

$$D_{KL}(p||q) = D_{KL}(p||p) = S(p,p) - H(p) = 0$$
 and $D_{KL}(q||p) = D_{KL}(q||q) = S(q,q) - H(q) = 0$, which in turn imply $D_{KL}(p||q) + D_{KL}(q||p) = 0$.

3.15.4 (a)

By direct calculation we find:

$$\begin{split} D_{KL}(p_1 \| p_2) &= S(p_1, p_2) - H(p_1) = -\int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^2 e^{-\xi^2 x}) dx - \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^1 e^{-\xi^1 x}) \\ &= -\int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^2) dx + \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \xi^2 x dx + \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^1) dx - \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \xi^1 x dx \\ &= -(\ln(\xi^2) - \ln(\xi^1)) \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} dx + (\xi^2 - \xi^1) \int_{\mathbb{R}} \xi^1 x e^{-\xi^1 x} dx \\ &= -(\ln(\xi^2) - \ln(\xi^1)) \mathbb{E}_{X \sim exp(\xi^1)} \left[1 \right] + (\xi^2 - \xi^1) \mathbb{E}_{X \sim exp(\xi^1)} \left[X \right] = -\ln \frac{\xi^2}{\xi^1} + (\xi^2 - \xi^1) \frac{1}{\xi^1} \\ &= -\ln \frac{\xi^2}{\xi^1} + \frac{\xi^2}{\xi^1} - 1 \end{split}$$

3.15.4 (b)

Suppose the equality $D_{KL}(p||p) = D_{KL}(q||p)$ holds and $\xi^1 \neq \xi^2$, then from exercise 3.14.4.a it follows: $-\ln\frac{\xi^2}{\xi^1} + \frac{\xi^2}{\xi^1} - 1 = -\ln\frac{\xi^1}{\xi^2} + \frac{\xi^1}{\xi^2} - 1 \implies \frac{\xi^2}{\xi^1} = \frac{\xi^1}{\xi^2}$. The later implies $\frac{\xi^1}{\xi^2} = 1$ or equivalently $\xi^1 = \xi^2$, which is a contradiction.

3.15.4 (c)

Let $p_1 = exp(2)$, $p_2 = exp(3)$, $p_3 = exp(4)$. Suppose the triangle inequality holds for these three arbitary exponential distributions. This is:

 $D_{KL}(p_1||p_3) \le D_{KL}(p_1||p_2) + D_{KL}(p_2||p_3)$. By exercise 3.15.4.b we would have:

$$D_{KL}(p_1||p_3) = \frac{4}{2} - \ln\frac{4}{2} - 1 \le D_{KL}(p_1||p_2) + D_{KL}(p_2||p_3) = \frac{3}{2} - \ln\frac{3}{2} - 1 + \frac{4}{3} - \ln\frac{4}{3} - 1$$
$$2 \le \frac{3}{2} + \frac{4}{3} - 1 = \frac{17}{6} - 1 = \frac{11}{6} = \frac{12}{6} - \frac{1}{6} = 2 - \frac{1}{6} \text{ (contradiction!)}$$

3.15.5 (a)

Given that p(x) is a distribution, it follows that p(X) as a r.v satisfies the inequality $0 \le p(X) \le 1$. This means $p(x) \le 1, \forall x \in \sup(X)$. Taking natural logs on both sides of the inequality $p(x) \le 1$ and multiplying by -1, we obtain: $\ln p(x) \ge 0$; Multiplying by p(x) and summing over the support of X, we get:

$$\mathbb{E}\left[-\ln p(X)\right] = H(X) = \sum_{x \in \sup(X)} -p(x) \, \ln(p(x)) \ge 0.$$

3.15.6

This is an inmediate consequence of exercise 3.15.5. Indeed, we have:

$$D_{KL}(p||q) = S(p,q) - H(p) \le S(p,q) - 0 \le S(p,q).$$

3.15.7

If the target variable Z happens to be \mathcal{E} -mesurable, then Y is independent of the sigma algebra \mathcal{E} . From this follows that $C(\omega, b) = d(Z, Y)^2 = \mathbb{E}\left[(Z - \mathbb{E}[Z|\mathcal{E}])^2\right] = \mathbb{E}\left[(Z - Z)^2\right] = 0$.

3.15.8

In this case $f_{\omega,b}(\mathbf{x}) = \omega \cdot \mathbf{x} + b$, definied on a compact subset of \mathbb{R}^n . Therefore, the cost function is given by: $C(\omega,b) := \sum_{0 \le i \le n} (\omega \cdot \mathbf{x}^i + b - \phi(\mathbf{x}^i))^2$. Obviously we have $0 \le C(\omega,b)$ Let \mathbf{x}^i the n-dimensional observations,

i.e $\mathbf{x}^i = (x_1^i, \dots, x_n^i)$. Then, the normal equations for the ω_k (the components of the vector ω), $\forall k \in [n]$ and the bias parameter b are:

$$\begin{cases}
\sum_{0 \le j \le n} \omega_j \sum_{0 \le i \le n} x_j^i x_k^i + b \sum_{0 \le i \le n} x_k^i = \sum_{0 \le i \le n} \phi(\mathbf{x}^i) x_k^i, \forall k \in [n] \\
\sum_{0 \le j \le n} \omega_j \sum_{0 \le i \le n} x_j^i + nb = \sum_{0 \le i \le n} \phi(\mathbf{x}^i)
\end{cases}$$
(1)

This system of equations has the following matricial expression:

$$\begin{cases}
\sum_{0 \le j \le n} \omega_j \sum_{0 \le i \le n} x_j^i x_k^i + b \sum_{0 \le i \le n} x_k^i = \sum_{0 \le i \le n} \phi(\mathbf{x}^i) x_k^i, \forall k \in [n] \\
\sum_{0 \le j \le n} \omega_j \sum_{0 \le i \le n} x_j^i + nb = \sum_{0 \le i \le n} \phi(\mathbf{x}^i)
\end{cases}$$
(2)

Let $\{v_m\}_{m\in[n+1]}$ a collection of vectors in \mathbb{R}^n defined as follows: $\forall m, 0 \leq m \leq n, v_m := (x_m^1, \dots, x_m^n)$. For m = n+1 we define: $v_{n+1} := \mathbf{1} = (1, \dots, 1)$, and a vector $\varphi := (\phi(\mathbf{x}^1), \dots, \phi(\mathbf{x}^n))$; The system of equations can be writen as:

Then, the matrix in system 2 is a Gramm matrix i.e $\mathcal{H}_{C(\omega,b)} = G(v_1, \dots v_{n+1})$, which by the teorem of ... implies this matrix is postively defined. Then, the solution (ω^*, b^*) to such system is unique. Further more, the value of the pair (ω^*, b^*) are analytically obtainable because the system is linear.

3.15.9