COMP90054 Workshop 2

Recap

- Blind search: only use basic search algorithm (BFS, DFS, ID)

	Complete	Optimal	Time Complexity	Space Complexity
BFS	Т	T*	O(b^d)	O(b^d)
DFS	F	F	O(b^D)	O(b*d)
ID	Т	T*	O(b^d)	O(b*d)

b = branching factor, d = depth of the optimal path
D = maximum depth of the problem

- Heuristic Search: additionally use the heuristic function to estimate the remaining cost (distance) to the goal state

A few notations for heuristic search

- s, s', a, c(a)• $n = \langle s, f(n), g(n), n_{parent} \rangle$ • $h \leftrightarrow h(s), h^* \leftrightarrow h^*(s)$
- Uniform cost search: f(n) = g(n)
- Greedy: f(n) = h(s)
- A^* : f(n) = h(s) + g(n)
- WA*: f(n) = W * h(s) + g(n)

Weighted A*

 $\bullet f(n) = g(n) + w * h(s)$

- If w == 0: f(n) = g(n) => uniform cost
- If w == 1: f(n) = g(n) + h(s) => A*
- If w == infinite: f(n) = h(s) => Greedy

Properties of Heuristic functions

Definition (Safe/Goal-Aware/Admissible/Consistent). Let Π be a planning task with state space $\Theta_{\Pi} = (S, L, c, T, I, S^G)$, and let h be a heuristic for Π . The heuristic is called:

- safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$;
- **goal-aware** if h(s) = 0 for all goal states $s \in S^G$;
- **admissible** if $h(s) \leq h^*(s)$ for all $s \in s$;
- **consistent** if $h(s) \le h(s') + c(a)$ for all transitions $s \stackrel{a}{\to} s'$.

Dominant Relation

- If heuristic h1 dominates heuristic h2:
- Then we will have h1(s) >= h2(s), for all s belongs to state space S
- And both h1 and h2 need to be admissible

Problem 1

Task 1

Which heuristics are admissible?

Which are consistent?

- Does any of the heuristics dominate any other?
 - **admissible** if $h(s) \leq h^*(s)$ for all $s \in s$;
 - **consistent** if $h(s) \le h(s') + c(a)$ for all transitions $s \stackrel{a}{\to} s'$.

Problem 1

Task 2

- Choose one Heuristic and perform A*
- Choose one Heuristic and perform Greedy
- Choose one Heuristic and perform WA*

Node expansion order of A*, h1

When pop up a node from the data structure:

- 1. Check if current node n contains the goal state
- 2. Generate children nodes, and put into data structure

Node expansion order of A*, h1

	10	l1	I 2
Open	n0 = <s1, 0,="" 4,="" null=""></s1,>	n1 = <s2, ?,="" n0=""> n2 = <s3, ?,="" n0=""> n3 = <s4, ?,="" n0=""></s4,></s3,></s2,>	
Closed		n0	
	l3	I 4	16
	10	14	I5
Open		14	IS

h

s1

Node expansion order of A*, h1

10	I1	I 2
n0 = <s1, 0,="" 4,="" null=""></s1,>	n1 = <s2, 2,="" 5,="" n0=""> n2 = <s3, 2,="" 7,="" n0=""> n3 = <s4, 1,="" 4,="" n0=""></s4,></s3,></s2,>	n1 = <s2, 2,="" 5,="" n0=""> n2 = <s3, 2,="" 7,="" n0=""> n4 = <s6, 2,="" 4,="" n3=""></s6,></s3,></s2,>
	n0	n0, n3
I 3	I 4	I 5
$n1 = \langle s2, \frac{5}{5}, 2, n0 \rangle$ $n2 = \langle s3, 7, 2, n0 \rangle$ $n5 = \langle s7, 6, 6, n4 \rangle$	n6 = <s5, 4,="" 6,="" n1=""> n2 = <s3, 2,="" 7,="" n0=""> n5 = <s7, 6,="" n4=""></s7,></s3,></s5,>	
n0, n3, n4	n0, n1,n3, n4	n0, n1, n3, n4, n5
	I3 n1 = <s2, 2,="" 5,="" n0=""> n2 = <s3, 2,="" 7,="" n0=""> n5 = <s7, 6,="" n4=""></s7,></s3,></s2,>	

Task 2

- Choose h2 and perform A*
- Choose h2 and perform Greedy
- Choose h2 and perform WA*, weight =2

Node expansion order of A*, h2

```
nodes = [
# (state, fn, accumulated cost,
id of parent node)
('s1', 6, 0, None),
('s4', 6, 1, 0),
('s6', 6, 2, 1),
('s7', 6, 6, 2)
```


Node expansion order of Greedy, h2

```
nodes = [
# (state, fn, accumulated cost, id
of parent node)
('s1', 6, 0, None),
('s4', 5, 1, 0),
('s6', 4, 2, 1),
('s7', 0, 6, 2)
```


Node expansion order of WA*, h2

```
nodes = [
# (state, fn, accumulated cost,
id of parent node)
('s1', 12, 0, None),
('s4', 11, 1, 0),
('s6', 10, 2, 1),
('s7', 6, 6, 2)
```


Task 2

 Which is the path returned as the solution?

Is this the optimal plan?

(using h2 and A* as example)

Recap

Describe a simple example of Travelling Salesman Problem along with its corresponding State Space Model.

Definition should be brief, clear, and *compact* (*compact* means using mathematical notation to define sets, i.e. $S = \{x | x \in V\}$ to define that there are as many states as elements in the set V, and pseudo-code, i.e. to define the transition function.)

- 1. State space S
- 2. Initial state $s_0 \in S$
- 3. Set of goal states $S_G \subseteq S$
- 4. Applicable actions function A(s) for each state $s \in S$
- 5. Transition function f(s, a) for $s \in S$ and $a \in A(s)$
- 6. Cost of each action c(a) for $a \in A(s)$

Hint: Consider a set of cities V to visit in any order, a starting city location v_{start} , and a set of edges E specifying if there's an edge from two cities $\langle v_1, v_2 \rangle$. Let V' be the set of cities has been visited.

Recap

Let V' be the set contain visited cities:

•
$$S = \{\langle v_{current}, V' \rangle | v_{current} \in V \land V' \subseteq V \}$$

$$ullet \ s_0 = \langle v_{start}, \{v_{start}\}
angle$$

$$ullet \ S_G = \{\langle v_{current}, V
angle | v_{current} \in V \}$$

$$\bullet \ \ A(\langle v_{current}, V' \rangle) = \{\langle v_{current}, v_{next} \rangle | \ \langle v_{current}, v_{next} \rangle \in E\}$$

•
$$f(\langle v_{current}, V' \rangle, \langle v_{current}, v_{next} \rangle) = \langle v_{next}, V' \cup \{v_{next}\} \rangle$$

$$ullet c(\langle v_{current}, v_{next}
angle) = cost(\langle v_{current}, v_{next}
angle)$$

Problem 2

- Consider an $m \times m$ Manhattan Grid, and a set of coordinates G to visit in any order.
- Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them
- Formulate a state-based search problem to find a tour of all the desired points (i.e. define a state space, applicable actions, transition and cost functions).
- What is the branching factor of this search?
- What is the size of the state space in terms of *m* and *G*?

	Assume We are here	

 $P = {S, s0, SG, A, T, C}$

Consider 2 ways:

- Using a set of coordinates V' remaining to be visited,
- Or a set of coordinates *V* already visited.
- What's the difference between them

Problem 2

$$ullet S = \{\langle x,y,V'
angle \mid x,y \in \{0,\ldots,m-1\} \, \wedge \, V' \subseteq G\}$$

•
$$s_0 = \langle (0,0), G \setminus \{(0,0)\} \rangle$$

$$ullet \ S_G = \{ \langle (x,y), \{ \}
angle \mid x,y \in \{0,\ldots,m-1\} \}$$

•
$$A(\langle x,y,V'
angle)=\{(dx,dy)\mid$$

- $dx, dy \in \{-1, 0, 1\}$
- $ullet \wedge |dx| + |dy| = 1$
- $ullet \wedge x + dx, y + dy \in \{0, \ldots, m-1\}$
- $\bullet (x+dx,y+dy)\not\in W \ \}$

$$ullet T(\langle x,y,V'
angle,(dx,dy))=\langle x+dx,y+dy,V'\setminus\{(x+dx,y+dy)\}
angle$$

•
$$c(a,s) = 1$$

	Assume We are here	

 $P = {S, s0, SG, A, T, C}$

Consider 2 ways:

- Using a set of coordinates V' remaining to be visited,
- Or a set of coordinates *V* already visited.
- What's the difference between them

	Assume We are here	

- What is the branching factor of this search?
- What is the size of the state space in terms of *m* and *G*?

	Assume We are here	

 What is the branching factor of this search?

- What is the size of the state space in terms of *m* and *G*?

If using V', then $m^2 imes 2^{|G|}$

If using V, then $m^2 imes 2^{|m imes m|}$