

Fortran Code Count™ Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2016

Revision Sheet

Date	Version	Revision Description	Author
2/19/2016	1.0	Original Release	Matthew Swartz
3/9/2016	1.1	Added Complexity Rules and Appendix for differences between UCC and UCC-G	Madhvi Kansagara
7/8/2016	1.2	Updated complexity table	Matthew Swartz
Date	Version No.	Click here to Description.	Name

Table of Contents

No.			Contents	Page No.
1.0	Definitions	5		4
	1.1	SLOC		4
	1.2	<u>Physi</u>	cal SLOC	4
	1.3	Logic	al SLOC	4
	1.4	<u>Data</u>	declaration line	4
	1.5	Comp	oiler directive	5
	1.6	Blank	<u>line</u>	5
	1.7	Comr	nent line	5
	1.8	Execu	table line of code	5
2.0	Checklist f	or source	statement counts	6
3.0	<u>Examples</u>	of logical S	LOC counting	7
	3.1	Execu	table Lines	7
		3.1.1	Selection Statements	7
		3.1.2	<u>Iteration Statements</u>	8
		3.1.3	Jump Statements	9
		3.1.4	Expression Statements	10
	3.2	<u>Decla</u>	ration lines	11
	3.3	Comp	iler directives	11
4.0	Complexit	Y		12

Definitions 1.

- SLOC Source Lines of Code is a unit used to measure the size of software program. SLOC counts the 1.1. program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is also used to calculate productivity and other measurements.
- 1.2. Physical SLOC - One physical SLOC is corresponding to one line starting with the first character and ending by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment line.
- 1.3. Logical SLOC – Lines of code intended to measure "statements", which normally terminate by a semicolon (C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style conventions, but they are language-dependent. In the case of FORTRAN, there is no semicolon terminating every single executable line.

The number of logical SLOC within a source file is defined to be the sum of the number of logical SLOCs classified as compiler directives, data lines, and executable lines. It excludes comments (whole or embedded) and blank lines. Thus, a line containing two or more source statements count as multiple logical SLOCs. A single logical statement that extends over five physical lines counts as one logical SLOC. Specifically, the logical SLOC found within a file containing software written in the free format Fortran programming language (.f90, .F90, .f95, .F95, .f03, .F03, .hpf) is equivalent to the number of physical lines less the number of physical continuation lines.

1.4. Data declaration line or data line - A line that contains declaration of data and used by an assembler or compiler to interpret other elements of the program.

The following table lists the Fortran keywords that denote data declaration lines:

double precision	equivalence	select type	deallocate	reallocate
subroutine	associate	character	dimension	interface
intrinsic	parameter	recursive	allocate	contains
external	function	implicit	namelist	optional
complex	generic	integer	logical	nullify
program	assign	common	import	module
final	data	enum	real	save
type	use			

Table 1 Fortran Data Keywords

1.5. **Compiler Directives** – A statement that tells the compiler how to compile a program, but not what to compile.

The following table lists the Fortran keywords that denote data declaration lines:

!\$pragma sparc	!\$pragma sun	#dictionary	#options
#include	!\$pragma	#ifndef	#define
#ifdef	#undef	#endif	!dir\$&
!\$par&	!mic\$&	#else	#elif
!dir\$!\$omp	!\$par	!mic\$
#if			

Table 2 Fortran Compiler Directive

- 1.6. **Blank Line** A physical line of code, which contains any number of white space characters (spaces, tabs, form feed, carriage return, line feed, or their derivatives).
- 1.7. **Comment Line** A comment is defined as a string of zero or more characters that follow language-specific comment delimiter. All characters following an exclamation mark "!", except in a character string, are comments.
- 1.8. **Executable Line of code** A line that contains software instruction executed during runtime and on which a breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:

- Selection statements (if)
- Iteration statements (do-enddo)
- Jump statements (return, goto, break, continue, exit function)
- Expression statements (function calls, assignment statements, operations, etc.)
- Block statements

An executable line of code may not contain the following statements:

- Compiler directives
- Data declaration (data) lines
- Whole line comments, including empty comments and banners
- Blank lines

Checklist for source statement counts 2.

PHYSICAL SLOC COUNTING RULES				
MEASUREMENT UNIT	ORDER OF PRECEDENCE	PHYSICAL SLOC	COMMENTS	
Executable lines	1	One per line	Defined in 1.8	
Non-executable lines				
Declaration (Data) lines	2	One per line	Defined in 1.4	
Compiler directives	3	One per line	Defined in 1.5	
Comments			Defined in 1.7	
On their own lines	4	Not included (NI)		
Embedded	5	NI		
Banners	6	NI		
Empty comments	7	NI		
Blank lines	8	NI	Defined in 1.6	

	LOGICAL SLOC COUNTING RULES			
NO.	STRUCTURE	ORDER OF PRECEDENCE	LOGICAL SLOC RULES	COMMENTS
R01	"do-x", "while-do" combination, "if", "elseif" statement	1	Count once per structure	
R02	Compiler directive	2	Count once per directive	
R03	data declaration and data assignment	3	Count once per declaration/assignment	
R04	Jump statement	4	Count once per keyword	
R05	Function/Subroutine call	5	Count once per call	
R06	Semicolon in statement	6	Count once per semicolon	_
R07	Multiple statements in a line	7	Count one per executable statement	

3. Examples

	EXECUTABLE LINES	
	SELECTION Statement	
ESS1 - if, else if, else and neste GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
if (logical expression) executable	if (x .lt. 0) x = -x	2
statement	(X .	
or	or	
if (logical expression) then	if (v, go, y) then	1
if (logical expression) then statements	if (x .ge. y) then write(*,*) 'x'	1 1
else	else	0
statements	write(*,*) 'x'	1
endif	endif	0
or	or	
if (logical expression) then	if (x .gt. 0) then	1
statements	if (x .ge. y) then	1
elseif (<i>logical expression</i>) then	write(*,*) 'x'	1
statements	else	0
:	write(*,*) 'x'	1
:	endif	0
:	elseif (x .lt. 0) then	1
:	write(*,*) 'x is neg'	1
else	else	0
statements	write(*,*) 'x is zero'	1
endif	endif	0
ESS2 - select and nested select	statements	
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
Datatype :: selector	integer :: Class	1
select case (selector)	select case (Class)	1
case (label-list-1)	case (1)	0
statements-1	write(*,*) 'Freshman'	1
case (label-list-2)	case (2)	0
statements-2	write(*,*) 'Sophomore'	1

:	case (3)	0
:	write(*,*) 'Junior'	1
case (label-list-n)	case (4)	0
statements-n	write(*,*) 'Senior'	1
case default	case default	0
statements-default	write(*,*) "no class"	1
end select	end select	0

ITERATION Statement

FI	IS1	— d	0-	en	d	H	n

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT do label var = expr1, expr2, expr3 do 20 i = 10, 1, -2 1 write(*,*) 'i=',i 1 1 20 continue 1 1 or or do i = 10, 1, -2 1 statements write(*,*) 'i=',i 1 enddo or or do statements if (logical expr) exit if (logical expr) exit if (i < 1) exit 2 statements i = i - 2 1 enddo 0 0	EIS1 – do-enddo		
statements label continue or or do var = expr1, expr2, expr3 statements enddo or or do i = 10, 1, -2 write(*,*)'i =', i enddo or or i = 10 do statements if (logical expr) exit statements enddo write(*,*)'i =', i if (i < 1) exit t = i - 2 enddo where expr1 specifies the initial value of var, expr2 is the terminating bound, and expr3 is	GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
label continue20 continue1oror1do var = expr1, expr2, expr3 statementsdo i = 10, 1, -2 write(*,*) 'i =', i enddo1enddoor1ori = 10 do statements if (logical expr) exit statementsif (i < 1) exit if (i < 1)	do label var = expr1, expr2, expr3	do 20 i = 10, 1, -2	1
or do var = expr1, expr2, expr3 do i = 10, 1, -2 1 statements write(*,*) 'i =', i 1 enddo or i = 10 do j = 10 j = 10 do			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	label continue	20 continue	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
statementswrite(*,*) 'i =', i1enddo0ori = 101dodo1statementswrite(*,*) 'i =', i1if (logical expr) exitif (i < 1) exit	or	or	
statementswrite(*,*) 'i =', i1enddo0ori = 101dodo1statementswrite(*,*) 'i =', i1if (logical expr) exitif (i < 1) exit			
enddo or or i = 10 do statements if (logical expr) exit statements enddo write(*,*) 'i =', i if (i < 1) exit if (i < 1) exit enddo where expr1 specifies the initial value of var, expr2 is the terminating bound, and expr3 is			
or $ i = 10 \\ do \\ statements \\ if (logical expr) exit \\ statements \\ enddo $ $ write(*,*) 'i = ', i \\ if (i < 1) exit \\ i = i - 2 \\ enddo $ $ var, expr2 is the terminating bound, and expr3 is $ $ value of var, expr2 is the terminating bound, and expr3 is $			
	enddo	enddo	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	or	or	
dodo1statementswrite(*,*) 'i =', i1if (logical expr) exitif (i < 1) exit		i – 10	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	do		
if (logical expr) exit statements enddo if (i < 1) exit i = i - 2 enddo where expr1 specifies the initial value of var, expr2 is the terminating bound, and expr3 is			
statements enddo i = i - 2 enddo where expr1 specifies the initial value of var, expr2 is the terminating bound, and expr3 is			
enddo enddo 0 where <code>expr1</code> specifies the initial value of <code>var</code> , <code>expr2</code> is the terminating bound, and <code>expr3</code> is		· · · · · · · · · · · · · · · · · · ·	
where <i>expr1</i> specifies the initial value of <i>var</i> , <i>expr2</i> is the terminating bound, and <i>expr3</i> is			
value of var, expr2 is the terminating bound, and expr3 is			
value of var, expr2 is the terminating bound, and expr3 is	where <i>expr1</i> specifies the initial		
terminating bound, and expr3 is			
	, .,		

0 0

	dement for a	201
EIS2 – do-while		
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
do label while (logical-expr)	do 20 while (i == 10)	1
statements	write(*,*) 'i =', i	1
label continue	20 continue	1
or	or	
do while (logical expr)	do while (i == 10)	1
statements	write(*,*) 'i =', i	1
enddo	enddo	0
	JUMP Statement	
FIC1 mate label		
EJS1 – goto label	CDECIFIC EVANABLE	SLOC COLINT
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
label if (logical expr) then	10 if (n .le. 100) then	1
statements	n = 2 * n	
:	write (*,*) n	1
goto <i>label</i>	goto 10	
endif	endif	0
Circii	Circui	
EJS2 - Cycle		_
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
cycle <i>label</i>	outer: do i = 1, n	1
_	middle: do j = 1, m	1
Or	inner: do k = 1, l	1
	:	
cycle	:	
	: if (a/i i k) < 0\	
	if $(a(i, j, k) < 0)$ exit outer	2
	if (j == 5) cycle middle	2 2
	if (i == 5) cycle	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	enddo inner	0
	enddo milei	

enddo middle

enddo outer

EJS3 - Exit		
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
exit <i>label</i>	exit 10	1
or	or	
ovit	ovit	
exit	exit	
EJS4 – continue		
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
label continue	20 continue	1
statements	k = 3	1
if (logical expr) goto label	if (k==3) goto 20	2
EES1 - function call or procedur	e call	
EES1 - function call or procedur GENERAL EXAMPLE	e call SPECIFIC EXAMPLE	SLOC COUNT
•		SLOC COUNT 1
GENERAL EXAMPLE <function_name> (<parameters>)</parameters></function_name>	SPECIFIC EXAMPLE cos(4)	1
GENERAL EXAMPLE	SPECIFIC EXAMPLE	
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4)	1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4)	1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>)</parameters></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4)	1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>) EES2 - assignment statement</parameters></subroutine_name></parameters></function_name>	specific example cos(4) call avg(a, b, c)	1 1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>) EES2 - assignment statement GENERAL EXAMPLE</parameters></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4) call avg(a, b, c) SPECIFIC EXAMPLE	1 1 SLOC COUNT
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>) EES2 - assignment statement GENERAL EXAMPLE <name> = <value></value></name></parameters></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4) call avg(a, b, c) SPECIFIC EXAMPLE a = 174.5	1 1 SLOC COUNT 1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>) EES2 - assignment statement GENERAL EXAMPLE <name> = <value> <name> = <value> = <</value></name></value></name></parameters></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4) call avg(a, b, c) SPECIFIC EXAMPLE a = 174.5	1 1 SLOC COUNT 1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>) EES2 - assignment statement GENERAL EXAMPLE <name> = <value> <name> = <value> = <</value></name></value></name></parameters></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4) call avg(a, b, c) SPECIFIC EXAMPLE a = 174.5	1 1 SLOC COUNT 1
GENERAL EXAMPLE <function_name> (<parameters>) call <subroutine_name> (<parameters>) EES2 - assignment statement GENERAL EXAMPLE <name> = <value> <name> = <value>; <name> = <value>; <name> = <value>;</value></name></value></name></value></name></value></name></parameters></subroutine_name></parameters></function_name>	SPECIFIC EXAMPLE cos(4) call avg(a, b, c) SPECIFIC EXAMPLE a = 174.5	1 1 SLOC COUNT 1

DECLARATION OR DATA LINES

DDL1 - function declaration subroutine declaration variable declaration type declaration

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT		
type function name (list-of-	function fact(n)	1		
variables)	fact = 1	1		
declarations	do 10 j = 2, n	1		
statements	fact = fact * j	1		
:	10 continue	1		
:	return	1		
return	end	0		
end				
	subroutine iswap(a, b)	1		
subroutine <i>name</i> (list-of-	integer a, b	1		
arguments)	integer tmp	1		
declarations	tmp = a	1		
statements	a = b	1		
return	b = tmp	1		
end	return	1		
	end	0		
<type> <name></name></type>	real a	1		
type ()	type (person) chairman	1		

COMPILER DIRECTIVES

CDL1 – directive type

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
<pre>package <package_name>; import <package_name>;</package_name></package_name></pre>	package test; import java.io*;	1 1

4. Complexity

Complexity measures the occurrences of different keywords in code baseline. Below table identifies the categories and their respective keywords that are counted as part of the complexity metrics.

Table 3 - Complexity Keywords List

Math Functions	Trig	Log	Calculations	Conditionals	Logic	Pre-processor	Assignment	Pointer
dot_product	acosh	log10	**	select case	.false.	!\$pragma sparc	=	=>
ceiling	asinh	log	+	select type	.neqv.	!\$pragma sun		
matmul	atan2		-	else if	.true.	#dictionary		
modulo	atanh		/	elseif	.and.	#options		
floor	acos		*	forall	.not.	#include		
conjg	asin			else	.eqv.	!\$pragma		
dprod	atan			do	.eq.	#ifndef		
sign	cosh			if	.ne.	#define		
sqrt	sinh				.lt.	#ifdef		
mod	tanh				.gt.	#undef		
abs	cos				.le.	#endif		
dim	sin				.ge.	!dir\$&		
exp	tan				.or.	!\$par&		
max					==	!mic\$&		
min					!=	#else		
					<=	#elif		
					>=	!dir\$		
					&&	!\$omp		
					11	!\$par		
					/=	!mic\$		
					<	#if		
					>			