SAGA

Jiayu Qin | 50477971 | 09/13/2022

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

What is SAGA

- An optimization method
- A kind of incremental gradient algorithm
- Fast linear convergence rate
- Support composite objectives
- Support non-strongly convex problems

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

Some background knowledge

- For a finite sum function
- $f(x) = \sum_{i=1}^{n} f_i(x) + h(x)$
- Where $x \in \mathbb{R}^d$ and $f_i(x)$ are strongly convex and h is convex regularization term that is convex but potentially non-differentiable
- Few incremental method are applicable in this setting

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

SAGA algorithm

- Starting from some known initial vector $x_0 \in \mathbb{R}^d$ and of known derivatives $f_i'(\varphi_i^k)$ with $\varphi_i^0 = x_0$ for each i
- Here φ_i^k is initialized as n copies of x, and during algorithm processing, they are gradually updated
- These derivatives are stored in a table structure of length n, or a n*d matrix
- With a step size of d and initial k=0,do:

SAGA Algorithm: Given the value of x^k and of each $f'_i(\phi^k_i)$ at the end of iteration k, the updates for iteration k+1 is as follows:

- 1. Pick a j uniformly at random.
- 2. Take $\phi_j^{k+1} = x^k$, and store $f'_j(\phi_j^{k+1})$ in the table. All other entries in the table remain unchanged. The quantity ϕ_j^{k+1} is not explicitly stored.
- 3. Update x using $f'_i(\phi_i^{k+1})$, $f'_i(\phi_i^k)$ and the table average:

$$w^{k+1} = x^k - \gamma \left[f_j'(\phi_j^{k+1}) - f_j'(\phi_j^k) + \frac{1}{n} \sum_{i=1}^n f_i'(\phi_i^k) \right], \tag{1}$$

$$x^{k+1} = \operatorname{prox}_{\gamma}^{h} \left(w^{k+1} \right). \tag{2}$$

SAGA algorithm

SAGA Algorithm: Given the value of x^k and of each $f'_i(\phi^k_i)$ at the end of iteration k, the updates for iteration k+1 is as follows:

- 1. Pick a *j* uniformly at random.
- 2. Take $\phi_j^{k+1} = x^k$, and store $f_j'(\phi_j^{k+1})$ in the table. All other entries in the table remain unchanged. The quantity ϕ_j^{k+1} is not explicitly stored.
- 3. Update x using $f'_j(\phi_j^{k+1})$, $f'_j(\phi_j^k)$ and the table average:

$$w^{k+1} = x^k - \gamma \left[f_j'(\phi_j^{k+1}) - f_j'(\phi_j^k) + \frac{1}{n} \sum_{i=1}^n f_i'(\phi_i^k) \right], \tag{1}$$

$$x^{k+1} = \operatorname{prox}_{\gamma}^{h} \left(w^{k+1} \right). \tag{2}$$

• Here, the proximal operator is defined as:

$$\operatorname{prox}_{\gamma}^{h}(y) := \underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ h(x) + \frac{1}{2\gamma} \|x - y\|^{2} \right\}. \tag{3}$$

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

Related work

Comparison between SAGA and similar works

	SAGA	SAG	SDCA	SVRG	FINITO
Strongly Convex (SC)	✓	✓	✓	✓	✓
Convex, Non-SC*	✓	✓	×	?	?
Prox Reg.	✓	?	√ [6]	✓	X
Non-smooth	×	×	✓	X	X
Low Storage Cost	X	X	X	✓	X
Simple(-ish) Proof	✓	×	✓	✓	✓
Adaptive to SC	✓	/	X	?	?

Figure 1: Basic summary of method properties. Question marks denote unproven, but not experimentally ruled out cases. (*) Note that any method can be applied to non-strongly convex problems by adding a small amount of L2 regularisation, this row describes methods that do not require this trick.

What's wrong with SGD?

- Variance of SGD's update direction can only go to zero when decreasing step sizes are used
- Thus preventing a linear convergence rate as in GD
- Use variance reduction process instead to get constant step size
- Some possible ways:

(SAG)
$$x^{k+1} = x^k - \gamma \left[\frac{f_j'(x^k) - f_j'(\phi_j^k)}{n} + \frac{1}{n} \sum_{i=1}^n f_i'(\phi_i^k) \right], \tag{4}$$

(SAGA)
$$x^{k+1} = x^k - \gamma \left[f_j'(x^k) - f_j'(\phi_j^k) + \frac{1}{n} \sum_{i=1}^n f_i'(\phi_i^k) \right],$$
 (5)

(SVRG)
$$x^{k+1} = x^k - \gamma \left[f'_j(x^k) - f'_j(\tilde{x}) + \frac{1}{n} \sum_{i=1}^n f'_i(\tilde{x}) \right].$$
 (6)

A more generalized situation

- Suppose we want to estimate E(x), but hard to compute
- We have Y highly correlated to x, while easier to compute E(Y)
- $\theta_{\alpha} = \alpha(X Y) + (1 \alpha)E(Y)$ to estimate E(X)
- $E(\theta_{\alpha})$ is a convex combination of E(X) and E(Y)
- When $\alpha = 1$, it's a unbiased estimation
- $Var(\theta_{\alpha}) = \alpha^{2}(Var(X) + Var(Y) 2Cov(X, Y))$
- By varying α from 0 to 1, we increase variance but decrease bias

SAGA, SAG and SVRG

(SAG)
$$x^{k+1} = x^k - \gamma \left[\frac{f_j'(x^k) - f_j'(\phi_j^k)}{n} + \frac{1}{n} \sum_{i=1}^n f_i'(\phi_i^k) \right],$$
 (4)

(SAGA)
$$x^{k+1} = x^k - \gamma \left[f_j'(x^k) - f_j'(\phi_j^k) + \frac{1}{n} \sum_{i=1}^n f_i'(\phi_i^k) \right],$$
 (5)

(SVRG)
$$x^{k+1} = x^k - \gamma \left[f'_j(x^k) - f'_j(\tilde{x}) + \frac{1}{n} \sum_{i=1}^n f'_i(\tilde{x}) \right].$$
 (6)

- Both SAG and SAGA can be viewed in such framework:
- X is SGD direction sample $f'_j(x_k)$, and Y is past gradient $f'_j(\varphi_k^j)$
- SAG: $\alpha = 1/n$ biased, low variance
- SAGA: $\alpha = 1$ unbiased, high variance
- SVRG: $\alpha = 1$ while $Y = f'_j(\tilde{x})$, in which \tilde{x} is updated in outer loop

SAGA vs. SVRG

- SAGA updates φ_j value each time j is picked while SVRG updates all φ as a batch
- The usage of SAGA vs SVRG is problem dependent
- Compared to SAGA, SVRG saves memory, but consume more computing power
- SVRG has additional parameter to be tuned
- In NNs, however, memory is more expensive.

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

Implementation tricks

- In many problems, f'_i is just a simple weighing of vector x, such as logistic regression and least square
- So we need only store weighing constants instead of whole derivative matrix
- When data points are introduced one by one in the first round,
 we can compute average based on known ones' gradient
- This also works for SAG

Implementation tricks

- When derivatives are sparse, you may want to update x in time so that sparse updates are done at each iteration
- SAGA assumes that each f_i is strongly convex, but in most cases we have only convex f_i .
- We introduce quadratic regularization term $\frac{\mu}{2}||x^2||$ to maintain strong convexity, and SAGA formula should be changed:

$$x^{k+1} = (1 - \gamma \mu) x^k - \gamma \left[f'_j(x^k) - f'_j(\phi_j^k) + \frac{1}{n} \sum_i f'_i(\phi_i^k) \right]$$

• As if the regularization term is separated into each f_i

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

Proof on convergence

- In this section, all expectations are taken with respect to the choice of j at iteration k+1 and conditioned on x_k and each $f_i'(\varphi_i^k)$.
- Lemma 1: Let $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, Suppose each f_i is μ -strongly convex and has Lipschitz continuous gradients with constant L. Then for all x and x^* :

$$\begin{split} \langle f'(x), x^* - x \rangle & \leq \frac{L - \mu}{L} \left[f(x^*) - f(x) \right] - \frac{\mu}{2} \left\| x^* - x \right\|^2 \\ & - \frac{1}{2Ln} \sum_i \left\| f_i'(x^*) - f_i'(x) \right\|^2 - \frac{\mu}{L} \left\langle f'(x^*), x - x^* \right\rangle. \end{split}$$

Property of convex functions

• Lemma 2. We have that for all φ_i and x^* :

$$\frac{1}{n} \sum_{i} \|f'_{i}(\phi_{i}) - f'_{i}(x^{*})\|^{2} \le 2L \left[\frac{1}{n} \sum_{i} f_{i}(\phi_{i}) - f(x^{*}) - \frac{1}{n} \sum_{i} \langle f'_{i}(x^{*}), \phi_{i} - x^{*} \rangle \right].$$

• Lemma 3. It holds that for any φ_i^k, x^*, x_k and $\beta > 0$, with w^{k+1} :

$$\mathbb{E} \left\| w^{k+1} - x^k - \gamma f'(x^*) \right\|^2 \le \gamma^2 (1 + \beta^{-1}) \mathbb{E} \left\| f'_j(\phi_j^k) - f'_j(x^*) \right\|^2 + \gamma^2 (1 + \beta) \mathbb{E} \left\| f'_j(x^k) - f'_j(x^*) \right\|^2 - \gamma^2 \beta \left\| f'(x^k) - f'(x^*) \right\|^2.$$

 Lemma 4. Let f be μ-strongly convex and have Lipschitz continuous gradients with constant L. Then we have for all x and y:

$$f(x) \ge f(y) + \langle f'(y), x - y \rangle + \frac{1}{2(L - \mu)} \|f'(x) - f'(y)\|^2 + \frac{\mu L}{2(L - \mu)} \|y - x\|^2 + \frac{\mu}{(L - \mu)} \langle f'(x) - f'(y), y - x \rangle.$$

• Lemma 5. Let $f(x) = \sum_{i=1}^n f_i(x)$. Suppose each fi is μ -strongly convex and has Lipschitz continuous gradients with constant L. Then for all x and x^* :

$$\left\langle f'(x), x^* - x \right\rangle \le \frac{L - \mu}{L} \left[f(x^*) - f(x) \right] - \frac{\mu}{2} \|x^* - x\|^2 - \frac{1}{2Ln} \sum_i \left\| f_i'(x^*) - f_i'(x) \right\|^2 - \frac{\mu}{L} \left\langle f'(x^*), x - x^* \right\rangle.$$

• Lemma 6. We have that for all φ i and x^* :

$$\frac{1}{n} \sum_{i} \|f'_{i}(\phi_{i}) - f'_{i}(x^{*})\|^{2} \le 2L \left[\frac{1}{n} \sum_{i} f_{i}(\phi_{i}) - f(x^{*}) - \frac{1}{n} \sum_{i} \langle f'_{i}(x^{*}), \phi_{i} - x^{*} \rangle \right].$$

• Theorem 1. With x^* the optimal solution, define the Lyapunov function T as:

$$T^k := T(x^k, \{\phi_i^k\}_{i=1}^n) := \frac{1}{n} \sum_i f_i(\phi_i^k) - f(x^*) - \frac{1}{n} \sum_i \left\langle f_i'(x^*), \phi_i^k - x^* \right\rangle + c \left\| x^k - x^* \right\|^2.$$

• Then with $\gamma = \frac{1}{2(\mu N + L)}$, $c = \frac{1}{2\gamma(1 - \gamma\mu)n}$, and $\kappa = \frac{1}{\gamma\mu}$, we have the following expected change in the Lyapunov function between steps of the SAGA algorithm (conditional on T^k):

$$\mathbb{E}[T^{k+1}] \le (1 - \frac{1}{\kappa})T^k.$$

• Proof. The first three terms in T^{k+1} are straight-forward to simplify:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i}f_{i}(\phi_{i}^{k+1})\right] = \frac{1}{n}f(x^{k}) + \left(1 - \frac{1}{n}\right)\frac{1}{n}\sum_{i}f_{i}(\phi_{i}^{k}).$$

$$\mathbb{E}\left[-\frac{1}{n}\sum_{i}\left\langle f_{i}'(x^{*}),\phi_{i}^{k+1} - x^{*}\right\rangle\right] = -\frac{1}{n}\left\langle f'(x^{*}),x^{k} - x^{*}\right\rangle - \left(1 - \frac{1}{n}\right)\frac{1}{n}\sum_{i}\left\langle f_{i}'(x^{*}),\phi_{i}^{k} - x^{*}\right\rangle.$$

• For the change in the last term in T^{k+1} , we apply the non-expansiveness of the proximal operator :

$$c \|x^{k+1} - x^*\|^2 = c \|\operatorname{prox}_{\gamma}(w^{k+1}) - \operatorname{prox}_{\gamma}(x^* - \gamma f'(x^*))\|^2$$
$$\leq c \|w^{k+1} - x^* + \gamma f'(x^*)\|^2.$$

• We expand the quadratic and apply $E[w^{k+1}] = x^k - \gamma f'(x^k)$ to simplify the inner product term:

$$c\mathbb{E} \|w^{k+1} - x^* + \gamma f'(x^*)\|^2 = c\mathbb{E} \|x^k - x^* + w^{k+1} - x^k + \gamma f'(x^*)\|^2$$

$$= c \|x^k - x^*\|^2 + 2c\mathbb{E} \left[\left\langle w^{k+1} - x^k + \gamma f'(x^*), x^k - x^* \right\rangle \right] + c\mathbb{E} \|w^{k+1} - x^k + \gamma f'(x^*)\|^2$$

$$= c \|x^k - x^*\|^2 - 2c\gamma \left\langle f'(x^k) - f'(x^*), x^k - x^* \right\rangle + c\mathbb{E} \|w^{k+1} - x^k + \gamma f'(x^*)\|^2$$

$$\leq c \|x^k - x^*\|^2 - 2c\gamma \left\langle f'(x^k), x^k - x^* \right\rangle + 2c\gamma \left\langle f'(x^*), x^k - x^* \right\rangle - c\gamma^2 \beta \|f'(x^k) - f'(x^*)\|^2$$

$$+ \left(1 + \beta^{-1}\right) c\gamma^2 \mathbb{E} \|f'_j(\phi_j^k) - f'_j(x^*)\|^2 + \left(1 + \beta\right) c\gamma^2 \mathbb{E} \|f'_j(x^k) - f'_j(x^*)\|^2. \quad \text{(Lemma 7)}$$

• The value of β shall be fixed later. Now we apply Lemma 1 to bound $-2c\gamma < f'(x^k), x^k - x^* >$ and Lemma 6 to bound $E||f_j'(\varphi_j^k) - f_j'(x^*)||^2$:

$$c\mathbb{E} \|x^{k+1} - x^*\|^2 \le (c - c\gamma\mu) \|x^k - x^*\|^2 + \left((1 + \beta)c\gamma^2 - \frac{c\gamma}{L}\right) \mathbb{E} \|f_j'(x^k) - f_j'(x^*)\|^2$$

$$- \frac{2c\gamma(L - \mu)}{L} \left[f(x^k) - f(x^*) - \left\langle f'(x^*), x^k - x^* \right\rangle\right] - c\gamma^2\beta \|f'(x^k) - f'(x^*)\|^2$$

$$+ 2\left(1 + \beta^{-1}\right)c\gamma^2L \left[\frac{1}{n}\sum_i f_i(\phi_i^k) - f(x^*) - \frac{1}{n}\sum_i \left\langle f_i'(x^*), \phi_i^k - x^* \right\rangle\right].$$

• We can now combine the bounds that we have derived for each term in T, and pull out a fraction 1/k of T^k (for any κ at this point). Together with the inequality $-||f'(x_k) - f'(x^*)||^2 \le -2\mu[f(x_k) - f(x^*) - \langle f'(x^*), x_k - x^* \rangle]$, that yields:

$$\mathbb{E}[T^{k+1}] - T^k \le -\frac{1}{\kappa} T^k + \left(\frac{1}{n} - \frac{2c\gamma(L-\mu)}{L} - 2c\gamma^2\mu\beta\right) \left[f(x^k) - f(x^*) - \left\langle f'(x^*), x^k - x^* \right\rangle\right] \\ + \left(\frac{1}{\kappa} + 2(1+\beta^{-1})c\gamma^2L - \frac{1}{n}\right) \left[\frac{1}{n}\sum_{i} f_i(\phi_i^k) - f(x^*) - \frac{1}{n}\sum_{i} \left\langle f'_i(x^*), \phi_i^k - x^* \right\rangle\right] \\ + \left(\frac{1}{\kappa} - \gamma\mu\right) c \left\|x^k - x^*\right\|^2 + \left((1+\beta)\gamma - \frac{1}{L}\right) c\gamma \mathbb{E} \left\|f'_j(x^k) - f'_j(x^*)\right\|^2.$$
 (10)

- Adaptivity to strong convexity result:
- Note that when using the γ = 1/3L step size, the same c as above can be used with β = 2 and 1/ κ = min(1/4n , μ /3L) to ensure non-positive terms.

University at Buffalo The State University of New York

- Corollary .
- Note that c||x_k x*||² ≤ T^k, and therefore by chaining the expectations, plugging in the constants explicitly and using μ(n 0.5) ≤ μn to simplify the expression, we get:

$$\mathbb{E}\left[\left\|x^{k} - x^{*}\right\|^{2}\right] \leq \left(1 - \frac{\mu}{2(\mu n + L)}\right)^{k} \left[\left\|x^{0} - x^{*}\right\|^{2} + \frac{n}{\mu n + L}\left[f(x^{0}) - \left\langle f'(x^{*}), x^{0} - x^{*}\right\rangle - f(x^{*})\right]\right].$$

• Here the expectation is over all choices of index j^k up to step k.

- 1 What is SAGA
- 2 Some background knowledge
- 3 SAGA algorithm
- 4 Related work
- 5 Implementation
- 6 Convergence
- 7 Experiments

Experiment results

- Finito (perm) performs the best on a per epoch equivalent basis, but it can be the most expensive method per step.
- SVRG is similarly fast on a per epoch basis, but when considering the number of gradient evaluations per epoch is double that of the other methods for this problem, it is middle of the pack.
- SAGA can be seen to perform similar to the non-permuted Finito case, and to SDCA.
- SAG is slower than the other methods with constant step size.
- In general, these tests confirm that the choice of methods should be done based on their properties, rather than their convergence rate

Figure 2: From left to right we have the MNIST, COVTYPE, IJCNN1 and MILLIONSONG datasets. Top row is the L2 regularised case, bottom row the L1 regularised case.

THANKS

