Calcul d'un échangeur de chaleur tubulaire

On veut refroidir par de l'eau du réseau (Température 15°C) un mélange homogène eau-composé organique d'une température de 70°C à 30°C. Le débit du mélange eau/composé organique est de 2 000 kg h⁻¹.

Si on met en œuvre des tubes concentriques de dimensions respectives 25/33 et 50/60, Calculer la longueur de l'échangeur.

On pourra utiliser la procédure suivante :

- 1. Calcul du débit d'eau nécessaire.
- 2. Choix de l'échangeur.
- 3. Calcul du ΔT moyen.
- 4. Calcul des coefficients de convection.
- 5. Calcul du coefficient global d'échange externe.
- 6. Calcul de la surface d'échange.
- 7. Calcul de la longueur de l'échangeur.

Mélange eau/composé organique	
Masse volumique (kg m ⁻³)	900
Viscosité (Pa s)	0,5 10-3
Capacité calorifique (kJ kg ⁻¹ K ⁻¹)	1,20
Conductivité thermique (W m ⁻¹ K ⁻¹)	0,120
Eau de refroidissement	
Température de sortie de l'eau (°C)	25
Masse volumique (kg m ⁻³)	1 000
Viscosité (Pa s)	0,8 10-3
Capacité calorifique (kJ kg ⁻¹ K ⁻¹)	4,18
Conductivité thermique (W m ⁻¹ K ⁻¹)	0,630
Tubes concentriques	
Diamètres du tube intérieur	25/33
Diamètres du tube extérieur	50/60
Conductivité thermique (W m ⁻¹ K ⁻¹)	46,44

Calcul de la longueur de l'échangeur

A_{ext} ? L?

$$\Phi = U_{ext} A_{ext} \overline{\Delta T}$$

$$\Phi = ?$$

$$\overline{\Delta T} = ?$$

$$h_2$$
 h_1

$$U_{ext} = ?$$

$$\frac{1}{\mathbf{U}_{\text{ext}}} = \frac{\mathbf{D}_2}{\mathbf{h}_1 \mathbf{D}_1} + \frac{\mathbf{D}_2 \text{Ln} \begin{pmatrix} \mathbf{D}_2 / \\ / \mathbf{D}_1 \end{pmatrix}}{2\mathbf{K}_{\text{m}}} + \frac{1}{\mathbf{h}_2}$$

$$h_1 = ?$$

 $h_2 = ?$

1. Calcul du débit d'eau nécessaire.

Bilan thermique sur l'échangeur

$$\Phi = Q_{meau}C_{peau}\Delta T_{eau} = Q_{morga}C_{porga}\Delta T_{orga}$$

 $Q_{\text{meau}} = 2 \ 297 \ kg/h$

2. Choix d'un échangeur concentrique contre-courant ou co-courant.

Co-Courant

Contre-Courant

3. Calcul du ΔT moyen.

Contre-Courant

$$\overline{\Delta T} = \frac{\Delta T_1 - \Delta T_2}{Ln\frac{\Delta T_1}{\Delta T_2}}$$

$$\overline{\Delta T}$$
 = 27,31 °C

4. Calcul des coefficients de convection (1)

Calcul de h1

$$Nu = 0.023 Re^{0.8} Pr^{0.3}$$

$$Re = \frac{DU\rho}{\mu}$$

$$Q_v = SU$$

$$Re = \frac{DU\rho}{\mu}$$
 $Q_v = SU$ $U = \frac{Q_v}{S} = \frac{Q_v}{\pi \frac{D^2}{4}} = \frac{2000}{9003600 \frac{\pi (0,025)^2}{4}} = 1,26 \text{ m/s}$

$$Re = \frac{25 \cdot 10^{-3} \cdot 1,26 \cdot 900}{0.5 \cdot 10^{-3}} = 56700$$
 Régime turbulent

$$Pr = \frac{C_p \mu}{K}$$

$$Pr = \frac{C_p \mu}{\kappa} \qquad Pr = \frac{1200 \, 0.5 \cdot 10^{-3}}{0.120} = 5$$

$$Nu = 0,023 56700^{0.8} 5^{0.3} = 236,73 = h_1D/K$$

$$h_1 = 1 \ 136 \ W/m^2 K$$

4. Calcul des coefficients de convection (2)

Calcul de h₂

$$Re = \frac{D_e U \rho}{\mu}$$

$$Q_{v} = SU$$

$$U = \frac{Q_1}{S}$$

$$S = S_{\text{exterieur}} - S_{\text{intérieu}}$$

$$Re = \frac{D_e U \rho}{\mu} \qquad Q_v = SU \qquad U = \frac{Q_v}{S} \qquad S = S_{\text{exterieur}} - S_{\text{intérieur}} \qquad U = \frac{2297}{1000\ 3600\ \frac{\pi}{4} [(50\ 10^{-3})^2 - (33\ 10^{-2})^2]} \quad U = 0,567\ m/s$$

$$U=0.567 \, m/s$$

$$D_e = \frac{D_2^2 - D_1^2}{D_1}$$
 $D_e = 4,275 \ 10^{-2} \ \text{m}$ $Re = 30299$

$$D_e = 4,275 \ 10^{-2} \ m$$

$$Re = 30299$$

Régime turbulent

$$Pr = \frac{C_p \mu}{K} \qquad Pr = 5,30$$

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$

$$Nu = 172,4 = h_2D/K$$

$$h_2 = 2 172 \text{ W/m}^2\text{K}$$

5. Calcul du coefficient global d'échange externe.

$$\frac{1}{U_{ext}} = \frac{D_2}{h_1 D_1} + \frac{D_2 Ln \binom{D_2}{D_1}}{2K_m} + \frac{1}{h_2}$$

$$U_{\rm ext}$$
 = 581 W m⁻¹ K⁻¹

6. Calcul de la surface d'échange.

$$\Phi = U_{ext} A_{ext} \overline{\Delta T}$$

$$\Phi$$
 = 26 666 kW

$$\overline{\Delta T}$$
 = 27,31 °C

$$U_{ext} = 581 \text{ W m}^{-1} \text{ K}^{-1}$$

$$A_{ext}$$
= 1,68 m²

7. Calcul de la longueur de l'échangeur.

$$A_{ext}$$
= 1,68 m²

$$A_{ext}$$
= π DL = 3,14 33 10⁻³ L

$$L = n I$$

Diamètre extérieur du tube (mm)	Longueur maximale non supportée (m)
15,9	1,231
19,0	1,524
25,4	1,880
31,7	2,235
38,1	2,540
50,8	3,175