

Advanced Process Mining

Prof. Dr. Agnes Koschmider

Lecture 4: Conformance Checking

Lecture Overview

- Organization and Introduction
- I Process Discovery
- II Process Conformance
 - III Predictive Process Mining
 - IV Event Log Preparation
 - V Practical Tasks

The Context

Conformance Checking

Conformance checking

- Detect discrepancies between process model and observed information
- Analyse deviations

Perspectives

- Local feedback on deviations at the level of individual traces in the log
- Local feedback on deviations at the level of individual process model parts, e.g., activities
- Global feedback on overall conformance

Motivation

Various drivers for conformance assessment

- Corporate governance, risk, compliance, and legislation such as the Sarbanes-Oxley (US), Basel II/III (EU)
- ISO 9001:2008 requires organizations to model their operational processes
- Business alignment: make sure that the information systems and the real business processes are well aligned

Compliance Initiatives

Sarbanes Oxley Act of 2002 SOX

- US Federal law enacted on 2002 in response to major corporate scandals (e.g., Enron)
- Aims at increasing trust in public reports on company's record
- By following a strict scheme of reporting procedures

Guidelines for Anti Money Laundering

- Money Laundering Control Act (1986), enhanced by USA Patriot Act (2001)
- Aims at preventing money laundering transactions
 - · For instance, defined checks must be made before opening a new bank account

How can this be achieved?

- Ensuring existence of specific execution steps in the business processes
- Ensuring order between specific activities in the processes
- If specific steps are missing or they are executed in a wrong order, a compliance violation is detected

Auditing

Auditing is the evaluation of organizations and their processes

- Ascertain the validity and reliability of process information
- Assess whether business processes are executed within boundaries set by managers, governments, and other stakeholders

Process mining to detect fraud, malpractice, risks, and inefficiencies

- Evidence-based, avoiding bias in the retrieval of information
- On-the-fly, while processes are running

How can this be achieved?

 Again, ensuring existence of specific execution steps in the business processes and their execution in a specific order

Setting

So far, fitness measures to evaluate "goodness" of discovered model

- Measure of the fit of data and model
- Independent of any valuation of the data or the model

Now, assuming that the given process model is normative (i.e., the model is "correct")

- Fitness measures are conformance measures
- Non-fitness is seen as non-conforming process execution
- Non-fitting cases have not been executed as expected

Recall: Replay

Given a trace, try to fire transitions in the model accordingly

Not ok:

- Transition fires although it is not enabled (missing tokens)
- Tokens remain in the net and are not consumed (remaining tokens)

Replay enables feedback on

- Local non-conformance in a trace
- Local non-conformance in the model
- Global view on conformance

Local Feedback in Trace

Christian-Albrechts-Universität zu Kiel

Per trace:

Transitions that are in line with model and those that are not

Log Traces
ABDEA
ACDGHFA
ACGDHFA
→ ACHDFA
ACDHFA

Local Feedback in Model

On the model level:

- Aggregated information about missing and remaining tokens
- Identification of "hotspots" of non-conformance
- Highlights major issues when replaying log and separates some from noise

Global Feedback

Overall conformance assessment based on aggregated fitness measure

- Condenses (non-)conformance into a single value
- Yet, hard to interpret in terms of the absolute value

Recall the definition

- k: number of different traces in the log
- n_i: number of occurrences of trace *i* in the log
- m_i: number of missing tokens
- c_i: number of consumed tokens
- r_i: number of tokens that remain in the net
- p_i: number of produced tokens

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i} \right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i} \right)$$

Alignment-based Conformance Checking

Assessing the conformance of an event log with a model based on an alignment of activities and events

- Consider the set of activities of the model as a set of symbols
- Then, each execution sequence of the model is a sequence of symbols
- Each trace of the event log is also a sequence of symbols

An alignment between two sequences is established by

- Linking pairs of symbols in each sequence
- Such that the order between aligned symbols is preserved

The notion of an alignment allows for quantification of conformance and insights on non-conformance

Christian-Albrechts-Universität zu Kiel

Event log

Idea Cont.

Approach

Steps to realise the idea of alignment-based conformance analysis

- Definition of alignments
- Construction of (optimal) alignments
- Conformance measures

Here, focus is on basic approach, various variations have been presented in the literature:

- For different types of process models
- Using different strategies to construct optimal alignments
- Incorprating weighting schemes to fine-tune the importance of activities for conformance checking

Details:

Wil M. P. van der Aalst, Arya Adriansyah, Boudewijn F. van Dongen: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery (WIDM) 2(2):182-192 (2012)

The Notion of Moves

Alignment is based on "moves" in trace or execution sequence

- Specific symbol ⊥ to denote "no move"
- Set T_{σ} as the transitions of trace σ and $T_{\sigma}^{\perp} = T_{\sigma} \cup \{\perp\}$
- Set T_{π} as the transitions of execution sequence π and $T_{\pi}^{\perp} = T_{\pi} \cup \{\perp\}$

One step is a pair $(x, y) \in T_{\sigma}^{\perp} \times T_{\pi}^{\perp}$ and

- (x,y) is a move in log if $x \in T_{\sigma}$ and $y = \bot$
- (x,y) is a move in model if $x = \bot$ and $y \in T_{\pi}$
- (x, y) is a move in both if $x \in T_{\sigma}$ and $y \in T_{\pi}$
- (x,y) is an illegal move in log if $x = \bot$ and $y = \bot$

 $T_{\sigma\pi} = \{(x,y) \in T_{\sigma}^{\perp} \times T_{\pi}^{\perp} \mid x \in T_{\sigma} \lor y \in T_{\pi}\}$ is the set of all legal moves

Alignment Definition

An alignment of trace σ and execution sequence π is a sequence of steps $\gamma \in T^*_{\sigma\pi}$, such that

- The projection of γ on its first component, ignoring \perp , is σ
- The projection of γ on its second component, ignoring \perp , is π

Note: Given a trace and an execution sequence

- There is more than one alignment
- The set of possible alignments is finite

Alignment Examples

Christian-Albrechts-Universität zu Kiel

$$\gamma_1 = \begin{vmatrix} a & c & d & e & h \\ a & c & d & e & h \end{vmatrix}$$

"Ideal" alignment

$$\gamma_2 = \begin{vmatrix} a & b & \bot & d & e & g & \bot \\ a & \bot & c & d & e & \bot & h \end{vmatrix}$$

"Imperfect" alignment

"Non-optimal" alignment

$$\gamma_4 = \begin{vmatrix} a & \bot & b & d & e & g & \bot \\ a & \bot & c & d & e & \bot & h \end{vmatrix}$$

Not an alignment

Cost of Moves

Introduce cost for legal moves

- Function $\delta \colon T_{\sigma\pi} \to \mathbb{N}$ assigns cost to each move
- Typically, $\delta(x, x) = 0$

Standard cost function, for $x \in T_{\sigma}$ and $y \in T_{\pi}$:

- $\delta(x, \perp) = 1$ (move in log)
- $\delta(\perp, y) = 1$ (move in model)
- $\delta(x, y) = 0$ if x = y (equal move in both)
- $\delta(x, y) = \infty$ if $x \neq y$ (different move in both)

Various further cost functions possible

- Take into account importance of activities (skip payment vs. skip logging)
- Consider similarity of activities (preliminary check vs. partial check)

Examples Again

Christian-Albrechts-Universität zu Kiel

$$\gamma_1 = \begin{vmatrix} a & c & d & e & h \\ \hline a & c & d & e & h \end{vmatrix}$$

Cost: 0

$$\gamma_2 = \begin{vmatrix} a & b & \bot & d & e & g & \bot \\ a & \bot & c & d & e & \bot & h \end{vmatrix}$$

Cost: 4

$$\gamma_3 = \begin{vmatrix} a & b & \bot & d & e & \bot & \bot & g \\ \bot & a & c & d & \bot & e & h & \bot \end{vmatrix}$$

Cost: ∞

Optimal Alignment

So far, cost of *some* alignment of trace with respect to *some* execution sequence

- Optimal alignment of trace σ and execution sequence π : alignment with minimal cost
- Optimal alignment of trace σ and model, i.e., set of complete execution sequences Π: alignment with minimal cost of all optimal alignments of σ and complete execution sequence $\pi \in \Pi$
- Notation: optimal alignment of σ and execution sequence π is $\gamma^*(\sigma,\pi)$, optimal alignment of σ and execution sequences Π is $\gamma^*(\sigma,\Pi)$

Optimal alignment of trace σ and model always exists

- Maybe the trivial alignment that first only moves in trace and then in shortest complete execution sequence, or vice versa
- Not unique, multiple alignments may show minimal cost

Finding the optimal alignment is expensive in general

Christian-Albrechts-Universität zu Kiel

Trace: abefbh

Cost: 3

The Problem of Finding Optimal Alignments

The search space is a "product" of the statespace of the model and the trace

Each node is a combination of a state in the model and the executed events in the trace

Each arc is a move in model, move in log or move in both

Example:

9 states,13 transitions

Trace: < A, A, B, A >

Chapter 3

Christian-Albrechts-Universität zu Kiel

Kaheet! **Game PIN Enter**