

### **PathFormer**

Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting

Yifei Ding November 19, 2024

#### **Contents**

- 1. Introduction
- 2. Related Work
- 3. Methodology

Multi-scale Transformer Block

**Adaptive Pathways** 

4. Experiments

Introduction

#### Introduction

#### Motivations:

- Transformer calls for better designs and adaptations to fulfill its potential.
- Temporal resolution and temporal distance need to be considered.

#### Challengs:

- Incompleteness of multi-scale modeling;
- Fixed multi-scale modeling.

**Related Work** 

#### **Related Work**

#### Time series forecasting:

- Deep learning methods: GNNs, RNNs, DeepAR, CNN, TimesNet, LLM-based methods, etc.
- Transformer models: Informer, Triformer, Autoformer, FEDformer, PatchTST, etc.

#### Multi-scale modeling for time series:

• N-HiTS, Pyraformer, Scaleformer, etc.

# Methodology

### Methodology



Figure 1: The Architecture of PathFormer.



Figure 2: Multi-scale Transformer Block.

#### 1.Multi-scale Division.

- Define a collection of M patch size values as  $\mathcal{S} = \{S_1, S_2, \cdots, S_M\}$ ;
- Define the input time series as  $X \in \mathbb{R}^{H \times d}$ , where H represents the length of the time series and d represents the dimension of features.

For each  $i \in [1, M]$ , divide X into  $(X^1, X^2, \dots, X^{P_i})$ ,  $P_i = H/S_i, X^j \in \mathbb{R}^{S_i \times d}$ ,  $j \in [1, P_i]$ .

#### 2.Dual Attantion.

#### Intra-patch Attantion:

- Embed the patchs along the feature dimension d to get  $X_{\text{intra}}^{j} \in \mathbb{R}^{S_i \times d_m}, \forall j \in [1, P_i];$
- Perform trainable linear transformations on  $X^j_{\text{intra}}$  to get  $K^j_{\text{intra}}, V^j_{\text{intra}} \in \mathbb{R}^{S_i \times d_m}$ ;
- Employ a trainable query matrix  $Q_{ ext{intra}}^j \in \mathbb{R}^{1 imes d_m}$ .

$$\operatorname{Attn}_{\operatorname{intra}}^{j} = \operatorname{Softmax}\left(Q_{\operatorname{intra}}^{j}(K_{\operatorname{intra}}^{j})^{T}/\sqrt{d_{m}}\right)V_{\operatorname{intra}}^{j},$$

$$Attn_{intra} = Concat \left(Attn_{intra}^{1}, \cdots, Attn_{intra}^{P_i}\right).$$

#### 2.Dual Attantion.

#### Inter-patch Attantion:

- Embed feature along the feature dimension d to  $d_m$ ;
- Rearrange the data to combine the two dimensions of  $S_i$  and  $d_m$ , making  $X_{\text{inter}} \in \mathbb{R}^{P_i \times d_m'}, d_m' = S_i \cdot d_m$ ;
- Obtain  $Q_{\mathrm{inter}}, K_{\mathrm{inter}}, V_{\mathrm{inter}} \in \mathbb{R}^{P_i \times d'_m}$  by linear mapping on  $X_{\mathrm{inter}}$ .

$$Attn_{inter} = Softmax \left( Q_{inter} (K_{inter})^T / \sqrt{d'_m} \right) V_{inter}.$$

#### 2.Dual Attantion.

#### Final Output of Dual Attantion:

- Rearrange the outputs of intra-patch attantion to  $\operatorname{Attn}_{\operatorname{intra}} \in \mathbb{R}^{P_i \times S_i \times d_m}$  by performing linear transformations on the patch size dimension from 1 to  $S_i$ ;
- Add  $\operatorname{Attn}_{\operatorname{intra}}$  with  $\operatorname{Attn}_{\operatorname{inter}} \in \mathbb{R}^{P_i \times S_i \times d_m}$  to obtain the final output of dual attantion  $\operatorname{Attn} \in \mathbb{R}^{P_i \times S_i \times d_m}$ .



Figure 3: Multi-scale Router.

#### 1.Multi-scale Router.

#### Seasonality Decomposition:

- Utilize DFT to decompose X into Fourier basis;
- Select the  $K_f$  basis with the largest amplitudes;
- Obtain  $X_{\text{sea}} = \text{IDFT}\left(\{f_1, f_2, \cdots, f_{K_f}\}, A, \Phi\right)$ , where  $\Phi$  and A represent the phase and amplitude of each frequency from DFT(X),  $\{f_1, f_2, \cdots, f_{K_f}\}$  represent the frequencies with top  $K_f$  amplitudes.

#### 1.Multi-scale Router.

#### **Trend Decomposition:**

- Get the remaining part after the seasonality decomposition  $X_{\rm rem} = X X_{\rm sea}$ ;
- Obtain the result from average poolings with different kernels and a weighted operation:

$$X_{\text{trend}} = \operatorname{Softmax}(L(X_{\text{rem}})) \cdot (\operatorname{Avgpool}_{\text{kernel}_1}(X_{\text{rem}}), \cdots, \operatorname{Avgpool}_{\text{kernel}_N}(X_{\text{rem}}));$$

#### 1.Multi-scale Router.

Final Result of Multi-scale Router:

- Add  $X_{\text{sea}}, X_{\text{trend}}$  with X and perform a linear mapping  $\operatorname{Linear}(\cdot)$  to transform and merge them along the temporal dimension to get  $X_{\text{trans}} \in \mathbb{R}^d$ .
- Generate pathway weights:

$$R(X_{\text{trans}}) = \text{Softmax}(X_{\text{trans}}W_r + \varepsilon \cdot \text{Softplus}(X_{\text{trans}}W_{\text{noise}})), \varepsilon \sim \mathcal{N}(0, 1);$$

• Perform top K selection on the pathway weights, keeping the top K pathway weights and setting the rest weights as 0, and denote the final result as  $\overline{R}(X_{\text{trans}})$ .

#### 2.Multi-scale Aggregator.

- Let  $X_{\text{out}}^i$  denote the output of the multi-scale Transformer with the patch size  $S_i$ ;
- Define  $T_i(\cdot)$  as a transformation function to align the temporal dimension from different scales;
- Get the final output of AMS block:

$$X_{\text{out}} = \sum_{i=1}^{M} \mathcal{I}\left(\overline{R}\left(X_{\text{trans}}\right)_{i} > 0\right) R(X_{\text{trans}})_{i} T_{i}(X_{\text{out}}^{i}).$$

# Experiments

### **Experiments**

#### **Time Series Forecasting:**

- The best performance in 81 cases and the second-best performance in 5 cases out of the overall 88 cases;
- Demonstrate a significant improvement when compared with PatchTST;
- Outperform when compared with strong linear models NLinear.

#### **Transfer Learning:**

 Can provide effictive lightweight transfer learning for time series forecasting.

### **Experiments**

#### **Ablation Studies:**

- Verying the Number of Adaptively Selected Patch Sizes:
  - Adaptively modeling critical multi-scale characteristics improves accuracy;
  - Distinct time series samples benefit from feature extraction using varied patch sizes, but not all patch sizes are equally effictive.
- Visualization of Pathways Weights:
  - Underscore PathFormer's adaptability, emphasizing its ability to discern and apply the optimal patch size combinations for the diverse seasonality and trend patterns across samples.

## Acknowledgement

Thank you!