

دانشکده فنی و مهندسی کارشناسی ارشد مهندسی کامپیوتر نرمافزار گروه مهندسی کامپیوتر و فناوری اطلاعات

گزارش درس سمینار

موضوع:

مدیریت پیچیدگی در نرم افزار علمی

نگارش:

بهاره ميرزاخاني

استاد راهنما:

دکتر رضوی ابراهیمی

چکیده

یکی از مزایای مورد انتظار طراحی مدولار ، انعطاف پذیری است. منظور ما از کلمه "انعطاف پذیری" امکان تغییرات شدید در یک ماژول بدون تغییر یا بدون اطلاع از سایر ماژول ها است. بر اساس داده های تکاملی موجود در سیستم های کنترل نسخه ، می توان کیفیت معماری نرم افزار مدولار را تجزیه و تحلیل کرد و تصمیم گرفت که آیا ارزش بازسازی طراحی آن را دارد یا خیر. در این پایان نامه ما این مسئله را با استفاده از یک رویکرد جدید مبتنی بر یک نظریه کلی مدولار که از ماتریس ساختار طراحی (DSM) برای استدلال در مورد ویژگی های کیفیت استفاده می کند ، بررسی می کنیم. با استفاده از روش ما می توانیم توابع را در رده های مختلف طبقه بندی کنیم. این یافته نشان می دهد که تجزیه و تحلیل سطوح مختلف عملکردهای یک سیستم نرم افزاری ممکن است راهنمای توسعه دهندگان در کار چالش برانگیز طراحی مجدد نرم افزار با تشخیص و بازیابی اجزایی باشد که می توانند در پروژه های نرم افزاری دیگر مورد استفاده مجدد قرار گیرند.

كلمات كليدى:

نرم افزار محاسبات علمی، پیچیدگی در نرم افزار، رابطه و وابستگی، ماتریس ساختار طراحی.

فهرست مطالب

عنوانصفحه
فصل اول: معرفي
١-١ مقدمه
١-١-١ نرم افزار محاسبات علمي
٢-١-١ معماری نرم افزار
٣-١-١ رابطه وابستگی
۴–۱–۱ معیارهای نرم افزار
۵–۱–۱ معیار اندازه نرم افزار
9-۱-۱ معیارهای علمی نرم افزار
٧-١-١ معيارهای کنترل جریان
٢-١ مشاركت ما
۳ – ۱ پیچیدگی در نرم افزار
۴ — ۱ سازمان پایان نامه
فصــل دوم: استخراج و مدل سازی وابستگی
١ – ٢ طراحي ساختار ماتريس٢
٢ – ٢ استخراج وابستگی٣
٣ – ٢ روابط ، ماتريس ها و نمودارها۶
۷ ــ ۳ – ۲ وابط

۲ – ۳ – ۲ نمودارها۱۷
٣ – ٣ – ٢ ماتريس ها ١٩
فصــل ســوم: تجزیه و تحلیل وابستگی
۱– ۳ ارزش های ویژه و بردارهای ویژه۳۰
٣٣ ـــــــــــــــــــــــــــــــــــ
۳- ۳ جستجوی موضوعی ناشی از ابرمتن (HTS)
فصــل چهارم: روش و نتایج
۱ – ۴روش شناسی ۳۹
١-١- استخراج وابستگی ها
۲ – ۱ – ۲ ساخت DSM ها
۳ - ۱ - ۴ مرکز محاسبات و رتبه بندی قدرت
۴ – ۱ – ۴ شباهت های محاسبه کسینوس
۵ – ۱ – ۴ الگوريتم
۲ – ۴ تنظیمات
۵۰ های هدف های هدف
٢ – ٢ – ۴ انتخاب آستانه
٣– ۴ نتايج
١ – ٣ – ۴ بحث
فصــل پنجم: جمعبندی

۶۳	مراجعم
, ,	بر·,ع

فهرست اشكال

صفحه	عنوان
١٣	تصویر ۱ - ۲ : نمونه ای از DSM: الف) نمودار وابستگی، ب) ماتریس وابستگی
۱۵	تصویر ۲ - ۲ : رابطه تماس ها
۱۵	تصویر ۳–۲ : وابستگی تابع
۱۵	تصویر ۴-۲ : شرح عملکرد
18	تصویر ۵–۲ : یک مثال شبه برای وابستگی به تابع
١٨	تصویر ۶-۲ :نمونه ای از نمودار : الف)گراف غیرمستقیم، ب) نمودار جهت دار
١٨	تصویر ۲ - ۲ : نمونه ای نمودار باارزش
۲٠	DSM تصویر \wedge - ۲: نمونه ای از
٣١	DSM تصویر ۱–۳: یک مثال: الف) نمودار، ب)ماتریس مجاور معادل یا
۴.	تصویر ۱-۴ : ماتریس پراکنده CS parse
۴.	تصویر ۲-۴ : ماتریس پراکنده ADOL-C
۴۲	تصویر ۳-۴ :نمودار وابستگی CS parse
۴۳	تصویر ۴-۴ :نمودار وابستگی ADOL-C
44	تصویر ۵-۴ :DSM از CS parse
۴۵	تصویر ۶-۴ :نمونه ای از Authority ،Hub
۵۲	تصویر ۲-۴ :DSM از CS parse با پارتیشن های ارائه شده
۵۳	تصویر ۴-۸ :توابع Tiers of Hub، CS parse از DSM انتخاب شده اند
۵۴	تصویر ۹-۴ :توابع Tiers of Authority، CS parse از DSM انتخاب شده اند
۵۵	تصویر ۱۰-۴:توابع Tiers of Hub، CS parse از AA^{T} انتخاب شده اند
۵۶	تصویر ۲-۱۱ :توابع Tiers of Authority، CS parse از ${ m A}^{ m T}{ m A}$ انتخاب شده اند
۵٧	تصویر ۲۱-۲ :توایع Tiers of Hub، ADOL-C انتخاب شده اند

۵۸	نصویر ۱۳-۴ :توابع Tiers of Authority، ADOL-C از ${ m A}^{ m T}$ انتخاب شده اند
۵۹	نصویر ۱۴-۱ \cdot : $ADOL$ ، توابع \cdot
۵۹	صویر ۱۵-۲- : ADOL-C ، ټوابع Authority از A ^T A ، آستانه=۰٫۰ انتخاب شده اند

فهرست جداول

صفحه	عنوان
٣۶	جدول ۱-۳- Hub and Authority Ranking نمرات مربوط به بردار ویژه غالب است
45	جدول ۱-۴: Hub and Authority رتبه پنج عملکرد اول پروژه CS Parse
45	جدول ۴-۲: Hub and Authority رتبه پنج عملکرد اول پروژه
۴۸	جدول ۳-۳ شباهت های کوزین با پنج عملکرد اول (با توجه به مرکز و رتبه اقتدار) پروژه CS Parse
۴۸	جدول ۴-۴ شباهت های کوزین با پنج عملکرد اول (با توجه به مرکز و رتبه اقتدار) پروژه ADOL-C

فهرست علائم اختصاري

شكل مثلثي مسدود شكل مثلثي مسدود

DMM: Domain Mapping Matrix ماتریس نقشه برداری دامنه

ماتریس ساختار طراحی DSM: Design Structure Matrix

جستجوی موضوعی ناشی از ابرمتن HITS: Hypertext Topic Search

ماتریس چند دامنه MDM: Multi-Domain Matrix

SVD: Singular Value Decomposition تجزیه مقدار منفرد

فصل اول

معرفي

امروزه سازمان ها با پیچیدگی های بسیاری در داخل و محیط اطرافشان روبرو هستند که روش های برخورد با پیچیدگی ها و مدیریت آنها به یک مزیت رقابتی کلیدی برای آنها تبدیل شده است. از طرفی مدیریت دانش از راه های بهبود بخشیدن عملکرد سازمانی و بقای سازمان می باشد و بسیاری از سازمان ها سیستم مدیریت دانش را پیاده سازی کرده اند و به آن اهمیت داده اند. سیستم های نرم افزاری را می توان به عنوان شبکه ای از اجزا که با روابط وابستگی به هم پیوسته اند ، مشاهده کرد. در نرم افزار و سایر سیستم های تکنولوژیکی مانند محصول فرآیند یا معماری سازمانی ، برخی از عملکردهای آن توسط الگوی تعامل اجزا یا زیرسیستم ها قابل درک است [۷]. به عنوان مثال ، سیستم های نرم افزاری مدولار امکان ردیابی اشکالات را در تعداد کمی از زیر سیستم ها یا ماژول ها مشخص می کنند.

بسیاری از نرم افزارهای علمی معمولاً توسط متخصصان حوزه نوشته می شوند و برخی از مشکلات محاسبات علمی خاص را برطرف می کنند. به عنوان مثال نرم افزار CSparse پیاده سازی شده در C مربوط به حل سیستم معادله خطی A است که در آن ماتریس ضریب A پراکنده است. A پراکنده است. A پراکنده است. A پراکنده است که به عنوان یک سیستم نرم افزاری برای محاسبه مشتقات ریاضی (ضرایب گرادیان ، ژاکوبیان ، هسیان ، تیلور) از یک عملکرد ریاضی است که به عنوان یک برنامه رایانه ای در یک زبان برنامه نویسی (C) در دسترس است. این نرم افزار از تکنیک های تمایز الگوریتمی برای محاسبه مشتقات عددی دقیق (تا ماشین دقیق) برنامه عملکرد در یک نقطه مشخص استفاده می کند.

یک ابزار مناسب برای نشان دادن و تجزیه و تحلیل پیچیدگی معماری این نرم افزارها که در بین مهندسین سیستم و معماران رایج است ، به اصطلاح ماتریس طراحی ساختار (DSM) و ماتریس نقشه برداری دامنه (DMM) و ماتریس چند دامنه (MDM) است $R^{m \times n}$ از آنجا که $R^{m \times n}$ را می توان با ماتریسی در $R^{m \times n}$ نشان داد ، می توان با روش های جبری خطی پیچیده مانند تجزیه ارزش واحد (SVD) تجزیه و تحلیل کرد. علاوه بر این ، با استفاده از دوگانگی یک ماتریس پراکنده و نمودار آن ، ماتریس پراکنده $R^{m \times n}$ توان (از طریق جایگزینی $R^{m \times n}$) به شکل محاسباتی سودمندی به نام "شکل مثلثی بلوکی $R^{m \times n}$ " (BTF) که در انجمن $R^{m \times n}$ عنوان "تقسیم بندی" نیز شناخته می شود ، مرتب کرد.

پروفسور حسین و گروهش استفاده از DSM را برای مدل سازی و تحلیل پیچیدگی وابستگی سیستم های نرم افزاری علمی پیشنهاد کرده اند [۱۳،۱،۱۵،۱۴]. یکی از انگیزه های اصلی مطالعه کد قدیمی برای تعیین اطلاعات وابستگی از طریق نمودارهای تماس استاتیک بود. اطلاعات جمع آوری شده می تواند برای تجدید ساختار یا استفاده مجدد از اجزاء با تجزیه و تحلیل اطلاعات وابستگی با استفاده از تکنیک های شبکه های پیچیده در حال ظهور مورد استفاده قرار گیرد [۹].

پروفسور حسین و گروهش ویژگی های معماری مجموعه کوچکی از نرم افزارهای علمی نمایشی را مطالعه کرده اند [۱۵]. ابزارهای نرم افزاری مورد مطالعه ، طول مسیر کوتاه تر و گره های کوچک و هزینه های انتشار مشابه نرم افزارهای عمومی مانند سیستم عامل ها را نشان می دهند [۴ ، ۱۹].

به دلایل مختلف ، نرم افزارهای قدیمی ممکن است دارای اسناد فنی کافی نباشند ، به طوری که از دیدگاه قابلیت استفاده ، تشخیص و بازیابی اجزایی که در پروژه های دیگر نرم افزاری مورد استفاده مجدد قرار می گیرند ، دشوار باشد. در این پایان نامه ما سیستم های نرم افزاری را مطالعه می کنیم که به طور خاص برای مشکلات ناشی از برنامه های علمی و مهندسی طراحی شده اند [۱۶]. ابزارهای تجزیه و تحلیل مانند "درک" [۲۱] به ما امکان می دهد ساختار وابستگی نرم افزار را در سطوح مختلف جزئیات مشاهده کنیم: فایل ، کلاس ، عملکرد ، بیانیه و غیره. در کار ما ساختارهای وابستگی برنامه هایی را که در آن تماس گیرنده بین عملکردها ارتباط برقرار می کند ، تجزیه و تحلیل می کنیم. ضبط شده توسط نمودار تماس استاتیک جریان کنترل اساسی در برنامه را به تصویر می کشد.

نمودارهای تماس استاتیک به نمایش وابستگی های مستقیم بین عناصر طراحی (در مورد ما توابع) محدود می شوند. در این مقاله ما علاقه مند به کشف "شباهت" بین عناصر طراحی هستیم. سپس می توانیم از یک متریک تشابه مناسب برای تقسیم بندی عناصر طراحی بین گروه ها یا خوشه ها استفاده کنیم که در آن عناصر در یک گروه به روش خاصی "مشابه" هستند. کاربرد فوری چنین تجزیه ای ، توانایی بازیابی گروهی از توابع "مشابه" از مخزن نرم افزار است. در ترکیب با مفهوم "اهمیت" عناصر طراحی [۱۳] ، هدف ما در این کار گروه بندی یا دسته بندی عناصر طراحی به "ردیف" بر اساس "اهمیت" آنها است.

۱-۱ مقدمه

۱-۱-۱ نرم افزار محاسبات علمي

هزاران تا میلیون ها خط منبع کد ، سیستم های نرم افزاری را به عنوان محصولی پیچیده می سازد. سیستم نرم افزاری به تصمیمات طراحی بستگی دارد محدودیت های داخلی و خارجی مسائل مختلف فنی و غیر فنی [۱۱]. توسعه برنامه های کاربردی نرم افزار محاسبات علمی به عنوان اثبات ابزار مفهومی در نظر گرفته می شود. اما منابع سخت افزاری قوی نرم افزارهای علمی را برای حل و شبیه سازی مشکلات بزرگ تسهیل می کند. توسعه اخیر منابع سخت افزاری قوی تر باعث افزایش تعداد برنامه های علمی می شود که به طور کارآمدتر از برنامه های ساخته شده قبل شبیه سازی می شوند [۱۵]. این نرم افزارهای شبیه سازی بسیار پیچیده هستند و حاوی میلیون ها خط کد کامپیوتر هستند. این برنامه ها سرمایه گذاری قابل توجهی در زمان و دیگر منابع محاسباتی و نیروی

انسانی دارند. قابلیت استفاده مجدد ، کارایی ، قابلیت حمل ، صحت ، استحکام و سهولت استفاده از ویژگی های مختلف نرم افزار علمی است.

یک یا چند ماژول مستقل توسعه یافته یک سیستم نرم افزاری را تشکیل می دهند. ما می توانیم هر ماژول را به عنوان بخشی از نرم افزار در نظر بگیریم. از طریق این ماژول ها می توانیم وابستگی های آنها را پیدا کنیم. به عنوان مثال ما می گوییم ماژول A بستگی به ماژول B دارد وقتی که ماژول A از ماژول B استفاده می کند (فراخوانی می کند)؛ در اینجا ما دو نوع وابستگی نرم افزاری را توصیف می کنیم: استتراج می شود و از کد منبع به عنوان توصیف می کنیم: استقراج می شود و از کد منبع به عنوان ورودی ورودی استفاده می کند. وابستگی های پویا از کد در حالت اجرا استخراج می شوند و از کد اجرایی و حالت برنامه به عنوان ورودی استفاده می کنند. مشکل وابستگی پویا وجود برخی از زیرروالین است که فقط در زمان اجرا می شوند. مزیت در نظر گرفتن وابستگی استفاده از کد منبع به عنوان ورودی است و به وضعیت برنامه وابسته نیست. به همین دلیل است که ما در کار خود وابستگی استفاده از کد منبع به عنوان ورودی است و به وضعیت برنامه وابسته نیست. به همین دلیل است که ما در کار خود وابستگی استاتیک را در نظر گرفته ایم.

۲-۱-۱ معماری نرم افزار

معماری سازمان اساسی یک سیستم است که در اجزای آن روابط آنها با یکدیگر و محیط و اصول راهنمای طراحی و تکامل آن تجسم یافته است [۲۰]. معماری نرم افزاری یک برنامه یا سیستم محاسباتی ، ساختار یا ساختارهای سیستم است که شامل عناصر نرم افزاری است که ویژگی های خارجی آن عناصر و روابط بین آنها را در بر می گیرد [۲].

پیچیدگی سیستم های نرم افزاری بزرگ را می توان با استفاده از معماری نرم افزار به راحتی تشخیص داد. برای یک سیستم نرم افزاری ، معماری آن به عنوان ساختار سطح بالا در نظر گرفته می شود. به عبارت دیگر معماری نرم افزار انتزاعی از یک سیستم پیچیده است. مزایای این انتزاع مانند:

۱. معماری نرم افزار می تواند مبنایی برای تجزیه و تحلیل رفتار سیستم های نرم افزاری باشد.

۲. می تواند هزینه های طراحی را با فراهم آوردن زمینه ای برای استفاده مجدد از عناصر (معماری کامل نرم افزار یا قسمت هایی از
 آن) که ذینفعان به ویژگی ها یا عملکردهای مشابه نیاز دارند ، کاهش دهد.

٣. تصميمات اوليه طراحي مي تواند گرفته شود كه به چرخه عمر توسعه نرم افزار (توسعه ، استقرار و نگهداري) كمك مي كند.

۳-۱ - ۱ رابطه وابستگی

یک رابطه وابستگی می تواند بین عناصر یک سیستم اعمال شود تا نشان دهد که تغییر در یک عنصر در صورت وجود وابستگی ممکن است منجر به تغییر عناصر دیگر شود.

رابطه وابستگی را می توان به عنوان یک شبکه پیچیده در نظر گرفت. این نمای شبکه پیچیده در زمینه های متعددی با موفقیت به کار گرفته شده است. به عنوان مثال از قشر مغزی انسان (یک سیستم پیچیده) در مقاله استفاده شده است [۵]. این کار تفاوت های محلی و جهانی بین بیماران بیمار و گروه کنترل را با ارزیابی اندازه گیری قابلیت انتقال شبکه های وزنی گزارش کرد.

۴-۱ – ۱ معیار های نرم افزار

معیارهای نرم فزار از یک دیدگاه به دو دسته ی معیارهای فرآیند و معیارهای محصول تقسیم میشوند. معیارهای فرآیند به عنوان معیارهای مدیریت شناخته شده اند و برای اندازه گیری مورد استفاده قرار میگیرند و از خواص فرایند برای به دست آوردن اندازه نرم افزار استفاده میشود. معیارهای فرآیند شامل معیارهای هزینه ، معیارهای تلاش، معیارهای پیشرفت و معیارهای استفاده مجدد است . معیارهای فرآیند در پیش بینی اندازه سیستم نهایی و تعیین یک پروژه با توجه به برنامه در حال اجرا کمک میکند. معیارهای محصول نیز به عنوان معیارهای با کیفیت شناخته شده اند و برای اندازه گیری خواص یک نرم افزار استفاده می شوند. معیارهای محصول شامل محصول غیر قابل اطمینان، معیارهای عملکرد، معیارهای قابل استفاده، معیارهای هزینه ، معیارهای اندازه، معیارهای پیچیدگی و معیارهای سبک است . معیارهای محصول در بهبود کیفیت بخش های مختلف سیستم و مقایسه میان سیستم های موجود کمک میکند.

به طور معمول استفاده از معیارهای نرم افزار با اهداف زیر صورت میگیرد:

- مطالعه تطبیقی روش های مختلف طراحی سیستم های نرم افزاری.
- برای تجزیه و تحلیل ، مقایسه و مطالعه زبان های برنامه نویسی مختلف با توجه به ویژگی های آنها.
 - مقایسه و ارزیابی توانایی ها و بهره وری از افراد در گیر در توسعه نرم افزار.
 - تهیه مشخصات از نرم افزار با کیفیت .
 - تأیید انطباق نرم افزار مورد نیاز سیستم ها و مشخصات.
 - ساخت استنتاج در مورد تلاش برای طراحی و توسعه سیستم های نرم افزاری.
 - گرفتن یک ایده در مورد پیچیدگی کد.

- گرفتن تصمیمات مربوط به تقسیم بیشتر ماژول پیچیده که باید انجام شود یا نه .
 - ارائه راهنمایی به مدیر منابع برای بهره برداری مناسب خود.
- مقایسه و مبادلات بین طراحی و توسعه نرم افزار و هزینه های تعمیر و نگهداری.
- ارائه بازخورد به مدیران نرم افزار در مورد پیشرفت و کیفیت در مراحل مختلف چرخه عمر توسعه نرم افزار.
 - تخصیص منابع تست ، برای تست کد.

از طرف دیگر معیارهای نرم افزار محدودیت هایی هم دارند. از آن جمله میتوان به موارد زیر اشاره نمود:

- استفاده از متریک های نرم افزاری همیشه آسان نیست و در برخی موارد دشوار و پر هزینه است .
- تأیید و توجیه معیارهای نرم افزار بر اساس داده های تاریخی.تجربی که اعتبار آن به سختی قابل بررسی است .
 - برای مدیریت محصولات نرم افزاری مفید هستند ولی برای ارزیابی عملکرد کارکنان فنی کارا نیستند.
- تعریف و استخراج معیارهای نرم افزار دقیق نیست و به طور کلی فرض بر این است که معیارهای نرم افزار استاندارد نیستند و به ابزارهای موجود و محیط کار بستگی دارد.
 - اکثر مدل های پیش بینی در برآورد متغیرهای خاصی که اغلب شناخته شده اند تکیه می کنند.
 - بسیاری ازمدل های توسعه نرم افزارها احتمالی وتجربی هستند.

۵–۱ – ۱ معیارهای اندازه نرم افزار

■ تعداد خط کد

تعداد خط کد یکی از اولین و ساده ترین متریک ها برای محاسبه اندازه برنامه های کامپیوتری است . به طـور کلـی از ایـن معیار برای محاسبه و مقایسه بهره وری از برنامه نویسان استفاده می شود. هر خط از متن برنامه بدون در نظر گرفتن توضیحات و یـا خـط خالی یک خط کد در نظر گرفته میشود.

■ تعداد نشانه

در این معیارها، یک برنامه کامپیوتری به عنوان یک مجموعه ای از نشانه ها در نظر گرفته شده است که ممکن است براساس اپراتور یا عملوندها طبقه بندی شده باشد. همه معیارهای نرم افزار را می توان درقالب نمادهای اساسی تعریف کرد. این نمادها به عنوان نشانه نامیده می شود.

مقیاس های اساسی عبارتند از:

۱n = تعداد دفعات مشاهده ایراتورهای منحصر به فرد

rn= تعداد دفعات مشاهده شده از عملوند های منحصر به فرد.

ایراتورها. مشاهده کل وقوع ایراتورها. N

TN= تعداد مجموع تكرار عملوند.

■ تعداد عملکرد

اندازه بزرگ محصول نرم افزاری را می توان از راه بهتری و از طریق یک واحد بزرگتر به نام ماژول تخمین زد. ماژول را می تـوان به عنوان بخشی از کد که ممکن است به طور مستقل وارد شده تعریف کرد.

به عنوان مثال، اجازه دهید یک محصول نرم افزاری به N ماژول احتیاج داشته باشد. به طور کلی توافق شده که انـدازه ماژول بایـد حدود $N \times 8 \cdot N$ خط از کد باشد. بنابراین تخمین اندازه این محصول نرم افزاری حدود $N \times 8 \cdot N$ خط از کد میباشد.

۱-۶ معیارهای علمی نرم افزار

مدل Halstead نیز به عنوان نظریه علم نرم افزار شناخته شده است . بر اساس این فرضیه ساخت و ساز و برنامه شامل یک فرایند فرمنی الله افزار شناخته شده است . بر اساس این فرضیه ساخت و ساز و برنامه شامل یک برنامه از ذهنی دستکاری اپراتورهای منحصر به فرد (۲۱) و عملوند های منحصر به فرد از ۱۱ و عملوند های منحصر به فرد از ۲۱ و عملوند های منحصر به فرد از ۱۱ اساخته شده اند. با استفاده از این مدل، Halstead از تعدادی از معادلات مربوط به برنامه نویسی مانند سطح برنامه ، تلاش زبان پیاده سازی و غیره به دست آمده است . ویژگی مهم و جالب این مدل آن است که برنامه را می توان از ویژگی های مختلف مانند اندازه، تلاش و غیره تجزیه و تحلیل کرد.

واژگان برنامه اینگونه تعریف شده اند :

و طول واقعی برنامه ها به عنوان: یکی از این فرایض این نظریه این است که طول یک برنامه به خوبی ساختار یک تابع فقط ۱nو ۲n است .

این رابطه به عنوان معادله پیش بینی طول شناخته شده و تعریف شده است مانند:

طول پیشنهادی برآورد برخی دیگر محققان: برآورد طول برنامه جنسن

این توسط جنسن و وایرون برای زمان واقعی برنامه های کاربردی نوشته شده توسط پاسکال بکار گرفته و معتبر شـده اسـت وحتی نتایجی دقیق تر از برآورد هالستید کسب کرد.

برآورد طول برنامه جيف [Nz] :

که در آن n به عنوان واژگان برنامه درنظر گرفته شده است .

برآورد طول برنامه بيل مش [Nb] :

= تعدادی ازاپراتورهای منحصربه فرد که شامل عملگرهای اساسی، کلمات وتوابع .روشها.

= تعداد عملوندهای منحصر به فرد.

حجم برنامه (V)

برنامه نویسی لغت منجر به اقدامات یکی دیگر از اندازه ها که ممکن است به عنوان تعریف شود.

حجم پتانسیل (*V)

ممکن است به عنوان تعریف شود که در آن ۱n به معنی حداقل تعداد اپراتورها و ۲n حداقل تعداد عملوند ها است .

1 - 1 - 1 معیارهای کنترل جریان

McCabe's Cyclomatic معيار

McCabe برنامه های کامپیوتری را به عنوان یک مجموعه ی قوی متصل به گراف جهت دار تفسیر می کند. گره ها نشان دهنده بخش هایی از کد منبع هستند که هیچ شعبه و کمان نماینده که ممکن است در حین کنترل جریان اجرای برنامه انتقال یابند، ندارند.

مفهوم گراف برنامه برای اندازه گیری استفاده می شود و آن را برای اندازه گیری و کنترل تعدادی از مسیرها از طریـق یـک برنامـه استفاده میکنند. پیچیدگی یک برنامه کامپیوتری را می توان با پیچیدگی توپولوژیک یک گراف ارتباط داد.

ست. سود و بیچیدگی نرم افزار ارائه شده است. G(V) نظریه گراف به عنوان یک شاخص پیچیدگی نرم افزار ارائه شده است. G(V) نظریه گراف G(V) نظری خطی مستقل از طریق یک برنامه در نمودار آن است. برای کنترل برنامه ، گراف G(V) تعداد G(V) و اینگونه در نظر گرفته شده اند.

۲-۱ مشارکت ما

یک نرم افزار ممکن است به دلایل مختلف حاوی اسناد فنی کافی نباشد. بنابراین ممکن است تشخیص و بازیابی اجزایی که می توانند در پروژه های نرم افزاری دیگر مورد استفاده مجدد قرار گیرند ، دشوار باشد. هدف ما بازیابی گروهی از عناصر طراحی "مشابه" از مخزن نرم افزار به "سطوح" است که بر اساس "اهمیت" آنها طبقه بندی شده است.

مشارکت ما برای رسیدن به این هدف در زیر ذکر شده است.

- ۱. تجزیه و تحلیل ساختار وابستگی نرم افزار با ثبت ارتباط تماس گیرنده بین عملکردها با استفاده از ابزار "درک" [۲۱].
 - ۲. رتبه بندی عناصر طراحی (توابع) با استفاده از مفهوم "اهمیت" آن عناصر طراحی [۱۳].
- ۳. استفاده از یک متریک تشابه مناسب (شباهت کسینوس) برای تقسیم بندی عناصر طراحی (توابع) بین گروه ها یا خوشه ها.
 - ۴. گروه بندی عناصر طراحی به "ردیف" بر اساس "اهمیت" آنها.
 - ۵. آزمایشات عددی برای نشان دادن نتایج پیاده سازی ما.

۱-۳ پیچیدگی در نرم افزار

بدلیل تفاوت ذاتی بین نرم افزار و سخت افزار پیچیدگی خاصی در ابعاد مختلف از جمله تعریف نرم افزار، طراحی و پیادهسازی، تست و نگهداری آن وجود دارد که: با پیچیدگی سیستمهای طبیعی و محصولات فیزیکی ساخت بشر متفاوت است.

یک خاصیت ذاتی سیستم های نرم افزاری بزرگ است که نمی توان این پیچیدگی را از بین برد بلکه باید آنرا کنترل نمود. انواع پیچیدگی:

intelleictually intractivility (تمردپذیری و اجازه پذیرفتن برای آشفتگی): پیچیدگی بطور ذاتی در ساخت سیستم وجود دارد، پیچیدگی ممکن است از بزرگی سیستم ، یا از واسینگیها، بدعتها و پیادهسازی تکنولوژی و . . . بوجود آید.

Management intractivility (تمرد پذیری مدیریتی): پیچیدگی در سازمان و فرآیند بکار گرفته شده در ساخت سیستم، ممکن است از اندازه پروژه (تعداد افردی که در تمام جهات ساخت سیستم در گیر هستند)، وابستگی های پروژه، فاصله جغرافیایی سیستم ها و . . . به عبارتی عوامل تولید کننده نرم افزار غیر قابل کنترل هستند چون سازمان، افراد و فرآیند هستند و ماشین نیستند که کنترل شوند و سرمایههای اولیه برای تولید نرم افزار الزاماً ماشین، سرمایه و پول نیست بلکه یکسری عوامل انسانی متغیری هستند که تحت مدیریت قرار می گیرند.

۴-۱ سازمان پایان نامه

در مجموع ۵ فصل در این پایان نامه وجود دارد. فصل ۱ فصل مقدماتی است که در آن مشکل و اهمیت حل مسئله را به طور کلی معرفی می کنیم. سپس تعاریف و شرح نرم افزارهای محاسبات علمی و معماری آنها و همچنین مفاهیم رابطه وابستگی را ارائه می دهیم. ما همچنین در مورد مشارکت و پایان نامه خود در این فصل بحث می کنیم.

در فصل ۲ ، ما در مورد استخراج و مدل سازی وابستگی بحث می کنیم. ما برخی از ابزارهایی را که برای استخراج و تجسم نمودارهای تماس استفاده می شود ، توصیف می کنیم. در پایان این فصل ، ما به ابزاری که در پایان نامه ما استفاده شد اشاره می کنیم.

شرح مفصل در مورد مرکزیت اجزا با استفاده از یک روش طیفی در فصل ۳ ارائه شده است. قبل از توضیح این روش ها با چند مثال کوچک ، ما مقادیر ویژه ، بردارهای ویژه ، هاب و قدرت را شرح می دهیم.

فصل ۴ شامل یک بحث کوتاه در مورد روش رویکرد جدید ما برای تجزیه و تحلیل نرم افزار علمی و به دنبال آن شرح مفصل سیستم های مورد نظر است. این سیستم ها شامل CSparse و ADOL-C می باشد. سپس در مورد اجرای الگوریتم بحث می کنیم. در نهایت ما نتایج خود را از آزمایشات گزارش و بحث می کنیم. ما نکات پایانی و دستورالعمل های آتی کار را در فصل ۵ ارائه می دهیم.

فصل دوم

استخراج و مدل سازی وابستگی

۱ – ۲ طراحی ساختار ماتریس

طراحی ساختار ماتریس (DSM) یک نمایش ساده فشرده و بصری از یک سیستم یا پروژه در قالب یک ماتریس مربع است [۷]. DSM یک ابزار مدل سازی شبکه است که برای نمایش عناصر متشکل از یک سیستم و برهم کنش های آنها استفاده می شود. با بررسی وابستگی هایی که بین عناصر آن در یک ماتریس مربع وجود دارد ، معماری سیستم ها یا روابط بین عناصر یک سیستم را برجسته می کند.

برای تجزیه و تحلیل یک سیستم ، مدل های DSM را می توان با استفاده از روش های تحلیلی مختلف مانند خوشه بندی و تعیین توالی مجدداً مرتب یا تقسیم بندی کرد.

DSM مزایای زیر را ارائه می دهد:

- DSM یک قالب نمایشی فشرده برای سیستم های پیچیده بزرگ ارائه می دهد.
- DSM نمای سطح سیستم را برای طراح سیستم برجسته می کند که از تصمیم گیری بهینه در سطح جهانی پشتیبانی می کند.
 - ساختار اساسی یک سیستم پیچیده به دلیل DSM قابل درک می شود.
- DSM با استفاده از ماتریس مربع نمایش داده می شود. بنابراین تعدادی از تجزیه و تحلیل های قدرتمند در نظریه نمودارها و ریاضیات ماتریسی و همچنین روش های تجزیه و تحلیل تخصصی DSM برای DSM کاربرد دارد.

ما برای نشان دادن روابط عنصر از یک مثال ساده استفاده می کنیم (شکل ۲٫۱ را ببینید). توجه داشته باشید که سیستم متشکل از پنج عنصر (یا زیر سیستم) است: " "A" "B" ، A"" و "E". ما فرض می کنیم که پنج عنصر به طور کامل سیستم را توصیف می کنند و رفتار آن را مشخص می کنند در حالی که از DSM برای مدل سازی استفاده می کنیم. برای نمایش تصویری این سیستم از فرم گرافیکی استفاده می کنیم. نمودار سیستم با اجازه دادن به یک راس/گره روی نمودار برای نشان دادن یک عنصر سیستم و یک لبه متصل به دو گره برای نشان دادن رابطه بین دو عنصر ساخته می شود. جهت گیری تأثیر از یک عنصر به عنصر عنصر دیگر توسط یک پیکان از عنصر A به عنصر A به عنصر A مشاهده کنیم اگر این عناصر به عنوان تابع در نظر گرفته شوند ، می توانیم بگوییم که تابع A تابع A را فرا می خواند. بنابراین تابع A تماس گیرنده است. نمودار حاصله گراف جهت دار یا صرفاً دیگراف نامیده می شود (در شکل ۲٫۱ الف

شکل ۲٫۱: نمونه ای از DSM: الف) نمودار وابستگی ، ب) ماتریس وابستگی

ما می توانیم DSM را با استفاده از فرم ماتریس نشان دهیم. بازنمایی ماتریس یک گراف جهت دار دارای برخی از خصوصیات است مانند دوتایی (بدون وزن) یا می توان آن را به صورت مربع وزن کرد (دارای n سطر و ستون است که n تعداد گره های دیگراف است). k غیر صفر دارد عناصر k تعداد لبه های دیگراف است).

نام عناصر به عنوان عناوین سطر در پایین ماتریس و در بالای آن به عنوان ستون به همان ترتیب قرار می گیرند (شکل ۲٫۱ ب را ببینید). اگر یک لبه (رابطه) از گره x به گره y وجود داشته باشد ، مقدار عنصر [x][y] با X مشخص می شود. در غیر این صورت مقدار خالی می ماند. عناصر مورب ماتریس تفسیری ندارند اما در برخی موارد به عنوان نماینده خود گره ها در نظر گرفته می شوند. برای ماتریس های دیگر X به معنی مقدار عددی است.

۲ – ۲ استخراج وابستگی

بررسی وابستگی های برنامه مانند فراخوانی عملکردها برای سیستم های بسیار بزرگ چالش برانگیز است [۲۲]. دو طبقه اصلی برای استخراج نمودارهای فراخوانی وجود دارد: سبک وزن و سنگین وزن. بخشی از کل اطلاعات استاتیک با استخراج سبک وزن ارائه می شود ، از طرف دیگر استخراج کننده های سنگین بار دیگر می توانند در دو نوع سختگیرانه و تحمل پذیر طبقه بندی شوند. مانند کامپایلرها ، وقتی یک خطای واژگانی یا نحوی وجود داشته باشد ، استخراج کننده سنگین وزن متوقف می شود. استخراج کننده مدارا نمودارهای تماس کامل را ارائه می دهد.

درک برای تجزیه و تحلیل وابستگی بین مصنوعات نرم افزاری در یک پروژه استفاده می شود. این پایان نامه از این ابزار استفاده کرده ایم. درک برای تجزیه و تحلیل وابستگی بین مصنوعات نرم افزاری در یک پروژه استفاده می شود. این برنامه از طیف گسترده ای از زبان Ada های برنامه نویسی از جمله جاوا ، کلاس های ۲۰۰۴ و بسته های Ada برای اطلاعات وابستگی پشتیبانی می کند و می تواند از API های ۲۰۰۷ و PERL و با استفاده از یک میل PERL و با استفاده از یک ارجاع دقیق متصل کرده و آنها را با استفاده از نمایش های گرافیکی تجسم کنیم. تجزیه و تحلیل هر کد منبع به معنی تجزیه و تحلیل واحدهای مختلف آن است زیرا این واحدها دارای ویژگی های متمایزی هستند که بر روی کد منبع منعکس می شود. تحلیل واحدهای ویژگی های معماری است که به ما کمک می کند مجموعه های سلسله مراتبی واحدهای کد منبع را ایجاد کنیم. وابستگی بین این واحدها را می توان از مرورگر وابستگی مشاهده کرد و توسط نمودارهای وابستگی تجسم کرد. با این حال ، ما می توانیم پارامترهای مختلفی مانند ، گره ها ، فایل ها ، کلاس ها ، بسته ها و رابط ها را برای مشاهده وابستگی بین واحدهای مختلف کد منبع با استفاده از مرورگر وابستگی مشاهده کنیم. این ابزار دارای ویژگی های زیر برای مشاهده وابستگی ها است [۲۱]:

- مرور سریع وابستگی ها برای فایل ها و درک معماری ها
- فهرست موجودیت های "وابسته" و "وابسته به" پرونده ها و معماری ها
 - خروجی صفحه گسترده روابط وابستگی
- داک Dependency Browsing که همه اطلاعات وابستگی را نشان می دهد

برای توضیح مختصر وابستگی هایی که می توان با استفاده از Understand استخراج کرد ، می توانیم یک کد منبع نمایشی را که در شکل ۲٫۵ نشان داده شده است در نظر بگیریم. اکنون می توانیم این مثال را برای نشان دادن وابستگی های مختلف نشان دهیم:

- شامل وابستگی: نمودار Include Dependency فایل هایی را نشان می دهد که برای پیاده سازی مورد نیاز است. برای مثال یک فایل "xyz.c" به فایل دیگری وابسته است "xyz.h" بدین معناست که "xyz.c" فایل "xyz.c" را در بر گرفته است. این وابستگی را می توان با استفاده از Understand پیدا کرد.
- وابستگی به تماس: با استفاده از درک شکل ۲٫۲ رابطه تماس ها از A تا D را نشان می دهد. ما می توانیم بررسی کنیم که آیا بین دو عنصر سیستم رابطه وجود دارد یا خیر. سپس با استفاده از ابزار Understand می توانیم شکل ۲٫۳ را نیز مشاهده کنیم که در آن فایل ها/ عملکردهای با لبه های خروجی به فایل ها/ توابع با لبه های ورودی وابسته هستند. به عنوان مثال با مشاهده شکل ۲٫۳ می توان گفت که تابع A وابسته به توابع A و A است ، زیرا از A تا A و A حاشیه ای وجود دارد. جزئیات این فراخوانی ها یا وابستگی ها را می توان در مرورگر اطلاعات یافت.

شکل ۲٫۲: رابطه تماس ها

• وابستگی اولیه: وابستگی init بر مقداردهی اولیه یک شی تمرکز می کند.

شکل ۲٫۳: وابستگی تابع

- تنظیم وابستگی: با استفاده از Understand می توانیم وابستگی های مجموعه را نیز بیابیم. فرض کنید یک تابع از یک فایل مقدار یک شی را از فایل های مختلف تعیین می کند. سپس می گوییم یک وابستگی بین این دو فایل وجود دارد.
- از وابستگی استفاده می کند: نمودار وابستگی که کاربردهای مختلف بین دو فایل را نشان می دهد، به عنوان مثال با مشاهده نمودار وابستگی استفاده می کند. شکل 7,4 برخی از اطلاعات استفاده وابستگی استفاده می توان گفت که چند بار یک فایل/ تابع از فایل/ تابع دیگری استفاده می کند. شکل 7,4 برخی از اطلاعات استفاده از تابع 1 و 1 و 1 و 1 و 1 و آبای کنیم و توسط تابع 1 فراخوانی شده اند. از نمای گرافیکی می توانیم ببینیم چند بار دیگر توابع را فرا می خواند.

شکل ۲٫۴: شرح عملکرد

```
File Edit View Search Tools Documents
田間出しちゃし米百日しへ火
#include<stdio.h>
int x=0;
void E()
 printf("E");
 D();
void D()
 printf("D");
 A();
void C()
 printf("C");
 E();
void B()
 printf("B");
 D();
 E();
void A()
 if (x!=0) retun;
 X++;
 printf("A");
 B();
 C();
```

شکل ۲٫۵: یک مثال شبه برای وابستگی به تابع

T-T روابط ، ماتریس ها و نمودارها

تجزیه و تحلیل شبکه های پیچیده بزرگ در تجزیه و تحلیل شبکه های اجتماعی رایج است و از این رو نمایش آن ها دغدغه اصلی محققان شده است. علاوه بر این یک نرم افزار علمی همچنین دارای اطلاعات زوجی بین واحدهای خود (ماژول ها) است که نیاز به نمایش زوجی دارد.

زمینه تجزیه و تحلیل اطلاعات جفتی از سه ساختار ریاضی بسیار مرتبط برای نشان دادن آنها استفاده می کند: روابط ، نمودارها و ماتریس ها.

١ - ٣-٢ روابط

رابطه دودویی R را می توان مجموعه ای از جفت های مرتب (۷٬۰ ۱۷) تعریف کرد. برای بیشتر روابط مفید ، عناصر جفت های مرتب شده به طور طبیعی به نوعی مرتبط یا مرتبط هستند. این رابطه (جفت های مرتب شده) دو مجموعه را به هم مرتبط می کند و شامل یک نقشه برداری است.

به عنوان مثال ، یک رابطه در یک تابع نیز یافت می شود. در اینجا y = f(x) = 2x تابعی از همه اعداد زوج است. نماد معادله فقط یک دست کوتاه برای شمارش همه جفت های ممکن در رابطه مانند ، $\{(۲،۴), (۲،۴), (۳٬۶), ...\}$ است.

مثال نشان داده شده در شکل ۲٫۵ را می توان به صورت R = {(A ،C) ، (A ،C) ، (B ،E)، (B ،E)، (B ،E)، (C ،E)}. (B ،E

Y - Y - Y نمودارها

اجازه دهید G(V,E)، یک گراف باشد که V مجموعه محدود رأس ها و E مجموعه ای از لبه ها است که رابطه زوجی بین رئوس را در V نشان می دهد. چند دسته از نمودارها وجود دارد و ما آنها را با توجه به نیاز خود برای تجزیه و تحلیل استفاده می کنیم.

• نمودارهای جهت دار و غیرمستقیم: نمودارهای جهت دار (که دیگراف نیز نامیده می شوند) گرافی است که از مجموعه ای از رأس هایی که توسط لبه هایی به هم متصل شده اند تشکیل شده است که در آن لبه ها جهت مربوط به خود را دارند. این نمودارها از جفت مرتب شده تشکیل شده اند. ما می توانیم از آنها برای نشان دادن روابط غیر متقارن مانند نمودارهای تماس استفاده کنیم. از طرف دیگر یک گراف غیرمستقیم از جفت های بی نظم تشکیل شده است که در آن همه لبه ها دو طرفه هستند. آنها برای روابطی که لزوماً متقارن هستند استفاده می شوند. شکل ۲٫۶ (الف) نمونه ای از یک گراف غیر مستقیم و شکل ۲٫۶ (ب) نمونه ای از یک گراف جهت دار است.

• نمودارهای ارزشمند و بدون ارزش: در نمودارهای دارای ارزش ، لبه ها دارای مقادیری هستند که مشخصات روابط را نشان می دهد ، مانند قدرت ، مدت زمان ، ظرفیت ، جریان و غیره. تماس گرفت. نمودارهای بدون ارزش هیچ ارزشی برای لبه ها بیان نمی کنند. شکل ۲٫۷ نمونه ای از نمودار ارزشمند است که در آن هر لبه مقداری روی خود دارد. از طرف دیگر شکل ۲٫۶ را می توان به عنوان نمونه ای از دو نمودار بدون ارزش در نظر گرفت.

شکل ۲٫۶: نمونه ای از نمودار: الف) گراف غیرمستقیم ، ب) نمودار جهت دار

شکل ۲,۷: نمونه ای از نمودار با ارزش

- نمودارهای بازتابی و غیر بازتابی: نمودارهای بازتابی به حلقه های خود اجازه می دهند. این یک راس است که می تواند یک لبه برای خود داشته باشد. به عنوان مثال اگر یک تابع خود را فراخوانی کند (تابع بازگشتی) ، یک لبه از آن راس به خود (حلقه خود) وجود خواهد داشت.
- چند گراف: اگر بین دو راس بیش از یک لبه وجود داشته باشد ، آن نمودار چند گراف نامیده می شود. اما به جای استفاده از چند گراف ترجیح می دهیم از نمودارهای با ارزش استفاده کنیم. به عنوان مثال اگر تابع A دو بار تابع B را فراخوانی کند ، برچسب ۲ را در لبه بین A و B قرار می دهیم.

اکنون ما نیاز به برخی از تعاریف اولیه داریم.

درجه یک راس تعداد راس هایی است که در مجاورت آن راس قرار دارند. با این حال ، تعداد لبه هایی است که در آن راس قرار می Vertex 3 گیرند. به عنوان مثال در شکل ۲٫۶ (a)، ۷ Vertex دارای درجه ۳ است. یک راس صفر درجه ایزوله نامیده می شود (b) ۲٫۶ (c) چنین رأسی است. در شکل ۲٫۶ (d) چنین رأسی است.

در یک دیگراف (شکل ۲٫۶ (b) را ببینید) درجه نامساوی یک قوس تعداد قوس (یا لبه ها) است که از سایرین به آن راس وارد می شود در حالی که درجه بالاتر تعداد قوس از آن راس به بقیه است. در شکل ۲٫۶ (b)، ۷ertex 2 دارای درجه ۲ درجه بالاتر و درجه ۱ است.

اگر مسیری از هر راس به هر راس دیگر وجود داشته باشد ، نمودار متصل می شود. حداکثر زیرگراف متصل را جزء می نامند. نمودار نشان داده شده در شکل ۲٫۶ (الف) دارای دو جزء است: ۱،۲۰۴،۵} و ۲۳}. حداکثر زیرگراف یک زیرگراف است که برخی از ویژگی های مشخص شده (مانند اتصال) را برآورده می کند و بدون نقض ویژگی نمی توان به آن راس اضافه کرد.

۳ – ۳–۲ماتریس ها

وابستگی های نشان داده شده توسط یک نمودار را می توان با ماتریسی با ابعاد مناسب نشان داد. دلیل استفاده از دو روش مختلف نمودار و ماتریس برای نمایش اطلاعات یکسان این است که یک مبادله وجود دارد. نمودارها نسبت به ماتریس ها بصری تر هستند، اما وقتی تعداد گره ها و لبه ها افزایش می یابد ، درک آنها دشوار است. چند ده گره می تواند برای تولید یک نمودار بسیار پیچیده کافی باشد. از طرف دیگر نمودارهای بزرگ و پیچیده را می توان با یک ماتریس بسیار کارآمد نشان داد.

$$X = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 (2.1)

در شکل ۲٫۸ ما DSM را با توجه به مثال نشان داده شده در شکل ۲٫۵ نشان می دهیم. در اینجا ردیف ها مربوط به توابع تماس فرستنده و ستون ها مربوط به توابع تماس گیرنده است.

	А	В	С	D	E
Α		1	1	0	0
В	0		0	1	1
С	0	0		0	1
D	1	0	0		0
E	0	0	0	1	

شکل ۲٫۸: نمونه ای از DSM

 $Column_j$ تابع را در $X_{ij} = 1$ به این معنی است که تابع در Row تابع را در $X_{ij} = 1$ نمایش ماتریس معادل در رابطه ۲٫۱ ارائه شده است. ورودی فراخوانی می کند.

اگر می خواهیم رابطه در جهت دیگری باشد ، می توانیم ماتریس X را به جابجا کرده و X^T را بدست آوریم (به رابطه ۲٫۲ مراجعه کنید). وقتی X متقارن است X = X داریم.

$$X^{\top} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
 (2.2)

در ابتدای این فصل ما در مورد DSM بحث کرده ایم. DSM یک ماتریس مربعی است که برای نشان دادن دقیق اطلاعات مشابه در نمودار یا ماتریس مجاورت استفاده می شود. در این پایان نامه ما از دوگانگی یک نمودار و ماتریس برای نمایش و محاسبه موثر اطلاعات کمی در مورد معماری یک سیستم نرم افزاری با استفاده از نظریه نمودار و جبر خطی استفاده می کنیم.

فصل سوم

تجزیه و تحلیل وابستگی

زمانی که درمورد پیچیدگی نرم افزار بحث می کنیم باید توجه داشته باشیم که پیچیدگی مفهوم ثابتی نیست و باید در شرایط مختلف مورد برسی قرار گیرداز این رو می گوییم پیچیدیگی نرم افزار اصطلاح غیر استانداری است زیرا از محدوده مشخصی برخوردار نیست، امکان دارد نرم افزار بزرگی با خطوط زیادی از کد و پیمانه های مختلف و مرتبط را پیچیده و همینطور نرم افزار کوچکی با الگوریتمی سخت را نیز پیچیده ارزیابی نماییم برای همین است که نمی توان پیچیدگی را از یک بعد مورد برسی قرار داد. موسسه الگوریتمی از پیچیدگی ارائه داده است که به شرح زیر می باشد" :میزان سختی در درک یک سیستم و یا مؤلفه که طراحی و پیاده سازی شده است ".از این رو باید عنوان کرد که پیچیدگی نرم افزار به فاکتورهایی از اندازه گیری تاثیر گذار در هزینه ، نگهداری و توسعه اطلاق می شود.البته افراردی چون "زئوس" این نظریه را زیر سوال برده و پیچیدگی را از دید روانشناسی نرم افزار مورد برسی قرار داده و دسته بندی نموده اند Zeus پیچیدگی روانشناسی نرم افزار را به سه بخش زیر تقسیم نموده :

۱-پیچیدگی در مساله

۲-پیچیدگی در طراحی سیستم

۳-پیچیدگی رویه ای

مثلا" درمورد پیچیدگی در مساله باید عنوان داشت که این امر به پیچیدگی کلی الگوریتم مساله بر میگرد.یعنی ممکن است یک سیستم پیچیدگی ذاتی کم یا بیشتری داشته باشد که در میزان پیچیدگی کلی آن تاثیرگذار خواهد بود.همینطور می توان به پیچیدگی موجود در طراحی سیستم اشاره داشت که به دو قسمت: ساختاری و داده ای تقسیم می شود .پیچیدگی ساختاری به مفهوم کلی اتصال اشاره دارد و اتصال بین پیمانه های درونی در زبان برنامه نویسی را مورد برسی قرار می دهد. به عنوان مثال ؛ در یک زبان برنامه نویسی (فرض کنید) ++ C ارتباطاتی بین پیمانه های درونی زبان + کلاسها و کتابخانه ها وجود دارد که به خودی خود پیچیدگی هایی را به دنبال خواهد داشت .پیچیدگی داده ای به مفهوم دیگری با عنوان "چسبندگی" اشاره دارد و چسبندگی های درون ساختاری را مورد برسی قرار می دهد .پیچیدگی ساختاری و داده ای ارتباط مبتنی بر IN-FAN و OUT-FAN و داده ای بیپیمانه ها و متغییرهای خروجی/ورودی را مورد برسی قرار می دهند .آنگونه که اشاره شد پیچیدگی های ساختاری و داده ای بیش گام و با به کارگیری OOP یا برنامه نویسی روابط بین پیمانه های درون سیستمی نرم افزار اشاره دارند حال آنکه در زبان های پیش گام و با به کارگیری OOP یا برنامه نویسی شیء گرا از میزان این پیچیدگی ها تا حد زیادی کاسته شده است.

باید اشاره داشت که اغلب پیچیدگی های درونی مانند آنچه گفته شد درصد پایین و ضریب اندکی از پیچیدگی نرم افزار را شامل می شوند و در شکل گیری بحران نرم افزار آنچنان تاثیر گذار نیستند. پیچیدگی رویه ای: این پیچیدگی به ساختار کلی برنامه ، خطوط کد ، حلقه ها و شرط ها و طریقه به کار گیری آنها اشاره می کند .به صورت کلی پیچیدگی بخش غیرقابل اجتناب در تولید نرم افزار است یعنی به هر نحو میزانی از پیچیدگی در نرم افزار وجود دارد اما مشکل بحران نرم افزار زمانی رخ می دهد که این پیچیدگی ها از یک حد بیشتر شوند. وظیفه توسعه دهندگان نرم افزار این است که این پیچیدگی ها را تا حد ممکن کاهش دهد و این یعنی ارائه راهکار و رویه ای مناسب تا یک الگوریتم هر چه ساده تر پیاده سازی شود.

نمونه کد

در ادامه به مثال زیر توجه کنید که در آن یک روش رویه ای در کنترل پیچیدگی اعمال شده است.برنامه زیر دو عدد را مقایسه کرده و عدد بزرگتر را درون متغییری با نام Max میریزد.

```
int _tmain(int argc, _TCHAR* argv[])

{
    int a,b,Max;
    if(a>b)
        Max=a;
    else
        Max=b;
    |
}
```

الگوی اول : این الگو دو عدد را با استفاده از statement if یا همان دستور شرطی if برسی می کند و به پاسخ میرسد،حالا به الگوی زیر توجه کنید:

```
int _tmain(int argc, _TCHAR* argv[])
{
   int a,b,Max;
   (a>b)?Max=a:Max=b;
}
```

در مثال فوق همان برنامه اول منتهی با رویه ای مناسبتر برای جلوگیری از پیچیدگی نوشته شده است و از دستور شرطی یک خطی استفاده شده است .این مثال الگویی ساده برای پی بردن به این نکته است که در بحران نرم افزار ، کنترل پیچیدگی امکان پذیر و راهبردی است .فراموش نکنیدم که هرچه مدل ما حاوی اطلاعات بیشتری باشد، طبیعتا مدل ما پیچیده تر خواهد بود.

ماهیت پیچیدگی نرم افزار

همانطور که در بحث های ابتدایی و الزام آور بودن اصول اندازه گیری نرم افزار (measurement) مطرح شد، شناخت ماهیت نرم افزار باعث می شود از عملیات کورکورانه و به قولی آزمون و خطا جلوگیری شود. عدم رعایت این اصل(شناخت) یکی از مهمترین عوامل پیچیدگی می باشد.زمانی که برنامه ساز در مورد برنامه پیش رو شناخت کافی نداشته باشد و بر ماهیت کلی آن اشراف نداشته باشد قطعا نرم افزار تولیدی او نیز کارایی بالایی نخواهد داشت و امکان بروز اختلالات غیرمرقبه در حین کار با نرم افزار بالا می رود به گونه ای که عدم رضایت مشتریان را به دنبال خواهد داشت.

اجزای کلیدی در پیچیدگی

پیچیدگی برچسبی است که ما به وجود متغییرهای وابسته موجود در یک سیستم نسبت می دهیم،هرچه متغییرها بیشتر باشد وابستگی بین آنها بیشتر می شود. اتصالات بین متغییرها ویژگی های زیادی برای آن واحد می طلبد که منجر به بروز پیچیدگی بیشتر خواهد شد . پیچیدگی چند جزء کلیدی دارد که به شرح زیر می باشد:

۱-مقیاس :مقدار اجزاء سیستم نرم افزاری

۲- تنوع:گستره اجزاء متنوع تشکیل دهنده سیستم

٣- اتصال : ارتباط بين مؤلفه ها را فراهم مي كند

مقیاس : مقیاس به تنهایی مساله نیست و در صورت زیاد بودن مقیاس با استفاده از داده های آماری می توان آن را تعیین و کنترل نمود.

تنوع : این جزء انواع اجزائی را که باید تحلیل شوند افزایش می دهد. هرچه تنوع بیشتر شود تلاش بیشتری برای درک سیستم لازم داریم.

اتصال : با افزایش مقیاس قاعدتا تعداد اتصالات و تعامل بین اجزاء بیشتر خواهد شد و این امر نیز به نحوی موجب پیچیدگی می شود.

بررسی معیارهای پیچیدگی

پیچیدگی به صورت کم و بیش وجود دارد و وجود خواهد داشت به صورت کلی پیچیدگی دارای رابطه مستقیم با گستردگی پروژه می باشد. پر واضح است که هر مقدار که تعداد خطوط کد پروژه بیشتر باشد قاعدتا" از مدل ها ، کلاس های زیادی برخوردار بوده و پیچیدگی ذاتی آن بیشتر است.حالا کافیست مطالب قبلی را به یاد بیاوریم "پیچیدگی به صورت کامل قابل از بین بردن نیست ، از این رو باید آن را کنترل نمود ".

پیچیدگی نرم افزار دارای ویژگی های انحصاری و بارزی به شرح زیر می باشد:

- با پیچیدگی سخت افزاری در وسایل فیزیکی و مکانیکی تفاوت دارد و از یک مفهوم منطقی در نرم افزار نشآت می گیرد
 - یک خاصیت ذاتی در نرم افزارهای بزرگ می باشد
 - ●پیچیدگی حوزه مساله
 - ۱- نیازمندی های گوناگون و متضاد
 - ۲- ارتباط بین کاربر و نرم افزار
 - ۳- تغییر نیازها
 - •پیچیدگی در فرایند تولید
 - •عدم انعطاف پذیری سیستم و استاندارد نبودن اجزاء آن
 - •مشکل در توصیف رفتارهای سیستم های گسسته

پیچیدگی عارضی

پیچیدگی ذاتی عموما مشخصه هر مساله نرم افزاری و الگوریتم های مربوط به آن می باشد، یعنی اگر مساله ای ساده را نیز در نظر بگیریم شامل راه حلی می باشد ، همین راه حل هر چند ساده یک پیچیدگی ذاتی برای نرم افزار محسوب می شود. در مقابل پیچیدگی ذاتی ، پیچیدگی عارضی قرار گرفته است که از انتخاب صورت گرفته در ساخت سیستم ناشی می شود، که به دلایل بروز آن به صورت کامل اشاره شد. به صورت اصولی باید گفت عملی ترین و بهترین راه برای کنترل پیچیدگی عارضی این است که ابتدا مساله را درست تعریف کنیم سپس به دنبال راه حل(چگونگی) انجام مساله برویم .تمام مواردی که در سرفصل های قبلی پیچیدگی مطرح شد به نوع عارضی اشاره دارند و با به کارگیری راهکارهای ذکر شده تا حدود زیادی می توان در مقابل بروز پیچیدگی ها مصون بود. البته برخی راهکارها در مقابله با بروز پیچیدگی عارضی وجود دارد که در ادامه به آن اشاره خواهیم داشت .

پیچیدگی سلسله مراتبی (Hierarchy)

در اغلب سیستم ها ، پیچیدگی به صورت سلسله مراتبی ظاهر می شود. در اینگونه سیستم ها ارتباط بین اجزای درونی سیستم قویتر از ارتباط بین خود زیر سیستم هاست و این یکی از ویژگی های پیچیدگی در ساختار سلسله مراتبی می باشد . شکل زیر نمایانگر یک سیستم پیچیده سلسله مراتبی می باشد.

سیستم های سلسله مراتبی معمولا از تعداد کمی از زیر سیستم های مشخص و متفاوت تشکیل می شوند که این زیر سیستم ها به صورت های گوناگون و ترتیب های مختلف ظاهر می شوند .

باید توجه داشت که سیستم های پیچیده ای که حتی با وجود گستردگی به خوبی عمل می کنند دارای زیر سیستم های ساده و کار آمد و هدفمند می باشند که در تعامل با سایر زیر سیستم ها بوده و از پیچیدگی کنترل شده ای برخوردار می باشند. در غیر این صورت و اگر سیستم دارای زیر سیستم های اصولی و مهندسی شده نباشد ، قطعا ماهیت کلی سیستم به خطر افتاد و نرم افزار مورد نظر کار نخواهد کرد.

شیء گرایی و نقش آن در کنترل پیچیدگی نرم افزار یکی دیگر از مواردی که موجب کاسته شدن از پیچیدگی می شود به کار گیری روش های شیء گرایی(Oriented Object) می باشد. شیء گرایی دارای ۴ اصل کلی می باشد که عبارتند از:

۱-تجرید

۲-محصور سازی

۳–واحد بندی

۴-سلسله مراتب

تج بد(Abstraction)

به صورت کلی به فرآیند تشخیص خصیصه های مهم یک پدیده گویند، در تجرید باید از پرداختن به ویژگی های موقت و غیر مهم جلوگیری کرد و خصیصه ها و ویژگی های مهم یک پدیده را مدنظر قرار دهیم. مثلا یک دانشجو را در نظر بگیرید(پدیده) ویژگی های مهم برای صدور کارنامه برای یک دانشجو شامل مواردی مانند: تعداد واحد ها ، نمرات ، شماره دانشجویی ، شماره شناسنامه می باشد که پس از اعمال اصل تجرید بدست خواهد آمد .در صورتی که ما اصل تجرید را رعایت نکنیم امکان استفاده از ویژگی

های موقت و غیرضروری مثل :شماره تلفن همراه ، وضعیت جسمانی و... را فراهم کرده ایم که این امر به خودی خود موجب بروز پیچیدگی بیشتر خواهد شد .به زبان ساده اصل تجرید مؤلفه های غیرضروری که از اهمیت کمتری برخوردار هستند را حذف و به ویژگی های مؤثر در طراحی صحیح الگوریتم و رسیدن به روشی مناسب برای حل مساله می پردازد.

محصورسازی (Encapsulation)

محصورسازی موجب می شود تا پدیده از اثرات مخرب میحط خارجی به دور بماند و همینطور طریقه دسترسی سایر اشیاء به آن پدیده را نیز کنترل نماییم. محصورسازی با کنترل راه های دسترسی به یک پدیده (شیء) باعث جلوگیری از تاثیرات منفی و احتمالی بر روی پدیده می شود و همینطور از گسترش خطاهای رخ داده در درون پدیده به سایر اشیاء جلوگیری می کند .از جمله سایر نقش های محصورسازی در کنترل پیچیدگی این است که به دلیل ثبات در واسط ارتباطی (Interface) می توان تغییرات زیادی بر روی آن اعمال کرد و همینطور امکان استفاده مجدد را به پدیده می دهد .در کپسوله سازی ، محصور سازی از دو اصطلاح ماژول باز و ماژول بسته استفاده می شود. درواقع به ماژولی که برای اعمال تغییرات آماده باشد باز و به ماژولی که امکان تغییر در آن وجود نداشته باشد ، ماژول بسته می گوییم. در عملیات Encapsulation هر دو ماژول باز و بسته کاربردی و لازم

واحد بندی (Modularity)

یک سیستم را در نظر بگیرید که واحد های کوچکتر آن هر یک به صورت واحدهایی جداگانه دسته بندی شده باشند. به این دسته ها ماژول گفته می شود. سیستم هایی با دسته بندی (Module)و با حداقل ارتباط را سیستم های ماژولار یا واحد بندی شده گویند .به عنوان مثال از فایل ها در زبان زبان ++ C ، یونیت ها در دلفی و پاسکال ،کامپوننتها در NET و جاوا را می توان به عنوان ماژول نام برد. واحد بندی دارای دو خصیصه اصلی می باشد:

- ۱ انسجام :درجه ارتباط عملکردهای داخلی ماژول را گویند.
- ۲ وابستگی : درجه ارتباط ماژول ها با یکدیگر را مشخص می کند.
 - ۳ استقلال یا Independent
 - ۴- Well defined interfaces یا واسط های خوش تعریف

درواقع واحد بندی با شکستن مساله به زیر مساله ها از بروز پیچیدگی جلوگیری می کنند و موجب نظام مند شدن مساله برای کنترل پیچیدگی می شود.البته مواردی که باید در واحد بندی مورد توجه قرار بگیرند این است که

۱ - ماژول بندی نباید با تعداد خیلی زیاد و یا خیلی کم باشد

٢- معياري مشخص براي شكستن مساله بايد لحاظ شود تا ماژول بندي مؤثر واقع شود.

سلسله مراتب (Hierarchy)

به مرتب ساختن Abstract ها در سطوح مختلف سلسله مراتب گفته می شود. باید توجه داشت که نمودار سلسله مراتبی دارای دو ویژگی زیر می باشد :

ساختار كلاس : سلسله مراتبA-IS

ساختار شيء :سلسله مراتبOF-PART

در كل بايد گفت فرمول شكل اصلى يك سيستم پيچيده به اين صورت مى باشد:

OF-PARTشكل اصلى سيستم پيچيده =خواص پنجگانه + سلسله مراتب + سلسله مراتب

سلسله مراتب A-IS :این سلسله مراتب برای مشخص نمودن وراثت ها مورد استفاده قرار میگیرد از لحاظ گفتاری می توان مثال زیر را مطرح کرد ANIMAL A IS CAT : این مشخص کننده وراثتی می باشد که گربه از خانواده حیوانات میگیرد.

سلسله مراتب OF-PART : بيانگر قسمتي از چيزي مي باشد ،از لحاظ گفتاري مي توان به اين صورت نوشت BODY OF :

PART IS HAND، این مثال مشخص کنند شیء یا قطعه ای از یک کلیت می باشد .پیاده سازی در قالب سلسله مراتب ما را در دریافت بهتر مساله و درک بهتر آن کمک کرده لذا موجب کاستن پیچیدگی می شود.

می توان ویژگی های استفاده از شیء گرایی را در کنترل پیچیدگی چنین ارزیابی کرد:

- ۱- منظم کردن فرآیند تولید نرم افزار
- ۲- بالا رفتن درک مساله در سیستم های نرم افزاری
- ۳- ارائه مدلی قدرتمندتر برای کنترل هرچه بیشتر پیچیدگی نرم افزاری
 - ۴- کاهش هزینه های تولید (زمانی مالی)
- ۵- استفاده مجدد و انعطاف پذیری بیشتر همینطور افزودن امکان پشتیبانی آسانتر

در این پایان نامه هدف ما این است که گروه های عملکردهای مهم (اهمیت نسبی اجزاء در نرم افزار علمی) را پیدا کنیم که در آن یک گروه مشابه ترین عملکردها را دارد. به جای استفاده از الگوریتم های خوشه بندی ، ما از رتبه بندی مرکز و قدرت استفاده می کنیم تا توابع را به ترتیب در نظر بگیریم و سپس گروه ها را با ارزیابی شباهت کسینوس آنها ایجاد کنیم. رتبه بندی مرکز و اقتدار (با استفاده از روش های طیفی) بر مقادیر ویژه نمایش ماتریس شبکه ها و جمع آوری اطلاعات جهانی در مورد ساختار تکیه می کند. در این فصل در مورد روش HITS که برای تجزیه و تحلیل خود استفاده کرده ایم بحث خواهیم کرد.

۱- ۳ ارزش های ویژه و بردارهای ویژه

اگر A یک ماتریس $n \times n$ باشد ، یک بردار غیر صفر x در R^n نامیده می شود اگر A یک مقیاس مقیاس x باشد که

$$Ax = \lambda x \tag{3.1}$$

برای برخی از مقیاسهای λ مقیاس λ ارزش ویژه λ و λ گفته می شود که بردار ویژه λ مربوط به λ است.

به عنوان مثال ، بردار $\lambda = 4$ بردار ویژه $\lambda = \lambda = 1$ بردار ویژه $\lambda = \lambda$ می باشد

$$Ax = \begin{bmatrix} 4 & 0 \\ 12 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix} = 4x$$

برای یافتن مقادیر ویژه یک ماتریس $n \times n$ ، معادله n, را به صورت $Ax = \lambda lx$ یا به شرح زیر بازنویسی می کنیم:

$$(\lambda I - A)x = 0 \tag{3.2}$$

بنابراین معادله ۳٫۲ دارای راه حل غیر صفر است اگر و فقط اگر $\det (\lambda I-A) = 0$. در اینجا می توانیم با یک مثال این اصطلاحات ریاضی را مورد بحث قرار دهیم. برای سادگی ، مثال ذکر شده در فصل قبل را به خاطر می آوریم.

شكل ٣,١: يك مثال: الف) نمودار ، ب) ماتريس مجاور معادل يا DSM

از مثال نشان داده شده در شکل ۳٫۱ ما DSM را به عنوان ماتریس A به عنوان معادله زیر دریافت می کنیم:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(3.3)$$

در بخش π, π ما در مورد الگوریتم HITS از [۱۷] بحث خواهیم کرد. برای توصیف آن الگوریتم ما به دو ماتریس ویژه $B1 = AA^T$ از HITS از B2 = A^TA است (ماتریس A یک ماتریس بولی است). در الگوریتم A^T ما بزرگترین A^T ترانسپورس ماتریس های A^T است (ماتریس A یک ماتریس های A^T و A^T ماتریس متقارن هستند. A^T و A^T ماتریس های متقارن دارای مقادیر ویژه (واقعی) هستند.

فرمان (V,λ] =eig(B_1) در Octave ماتریس مورب λ از مقادیر ویژه و ماتریس V را برمی گرداند که ستون های آنها بردارهای $B_1*V=V*\lambda$.

$$V = \begin{bmatrix} 0.00000 & -0.00000 & 0.00000 & 1.00000 & 0.00000 \\ 0.57735 & 0.00000 & -0.00000 & 0.00000 & 0.81650 \\ -0.57735 & 0.00000 & -0.70711 & 0.00000 & 0.40825 \\ 0.00000 & -1.00000 & 0.00000 & 0.00000 & 0.00000 \\ -0.57735 & 0.00000 & 0.70711 & 0.00000 & 0.40825 \end{bmatrix}$$

$$(3.4)$$

$$\lambda = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$
 (3.5)

به طور مشابه ما ماتریس بردارهای اختصاصی V را که با مقادیر ویژه λ ماتریس B_2 مرتبط است ، محاسبه می کنیم.

$$V = \begin{bmatrix} 0.00000 & 1.00000 & 0.00000 & -0.00000 & 0.00000 \\ -0.70711 & 0.00000 & 0.00000 & 0.70711 & 0.00000 \\ 0.70711 & 0.00000 & 0.00000 & 0.70711 & 0.00000 \\ 0.00000 & 0.00000 & -0.70711 & 0.00000 & 0.70711 \\ 0.00000 & 0.00000 & 0.70711 & 0.00000 & 0.70711 \end{bmatrix}$$

$$(3.6)$$

طیف DSM نمودار تماس و بردارهای اختصاصی مربوطه می توانند انبوهی از اطلاعات ساختاری در مورد شبکه زیرین را همانطور که در این پایان نامه نشان می دهیم ، نشان دهند. روش رتبه بندی طیفی که در این پایان نامه (HITS) استفاده می شود از بردارهای اختصاصی مرتبط با مقادیر ویژه انتخابی DSM مرتبط بدست می آید.

Y – X مرکز و اقتدار

در شبکه Hubs و Hubs دو نوع گره مهم هستند. یک نمودار وابستگی همچنین می تواند به عنوان یک شبکه که در آن توابع به عنوان گره در نظر گرفته می شود. هاب ها گره هایی هستند که به گره های زیادی از نوع مهم اشاره می کنند ، جایی که مقامات این گره های مهم هستند. به عنوان مثال شکل ۳٫۱ یک شبکه بین پنج عنصر را نشان می دهد که در آن یک تابع در صورت فراخوانی توابع دیگر ، هاب است و هنگامی که یک تابع با توابع دیگر فراخوانی می شود ، یک تابع است. از اینجا یک تعریف دایره ای به دست می آید: مراکز خوب آنهایی هستند که به بسیاری از مقامات خوب اشاره می کنند و مقامات خوب آنهایی هستند که بسیاری از مراکز خوب به آنها اشاره می کنند [۳].

۳-۳ جستجوی موضوعی ناشی از ابرمتن (HITS)

جستجوی موضوعی ناشی از ابرمتن (HITS) یک الگوریتم است که توسط کلاینبرگ [۱۷] استاد گروه علوم کامپیوتر در کرنل توسعه یافته است. این الگوریتم از ساختار پیوند وب برای کشف و رتبه بندی صفحات مربوط به یک موضوع خاص استفاده کرده است. رتبه بندی HITS متکی بر یک روش تکراری است که به یک راه حل ثابت همگرا می شود. به گفته کلاینبرگ ، به هر گره در شبکه أ دو وزن غیر منفی اختصاص داده می شود: وزن قدرت ((X_i)) و وزن هاب ((Y_i)). در ابتدا به هر (Y_i) یک مقدار غیرجدی دلخواه داده می شود. سپس وزن ها با استفاده از رابطه (Y_i) و معادله (Y_i) به روز می شوند.

$$x_i^{(k)} = \sum_{j: (j,i) \in E} y_j^{(k-1)}$$
(3.7)

$$y_i^{(k)} = \sum_{j:(i,j)\in E} x_j^{(k)} \tag{3.8}$$

- به روز رسانی وزن هاب: از معادله ۳٫۸ در اینجا استفاده می شود. وزن hub جدید $Y_i^{(k)}$ مجموع $X_i^{(k)}$ است که مجموع آن بر روی گره های i که گره i به آنها اشاره می کند ، می گذرد. این برای همه گره های نمودار تکرار می شود.

توجه داشته باشید که وزن های هاب از وزن های قدرت فعلی محاسبه می شوند که در آن وزن های مجاز از وزنهای هاب قبلی محاسبه شده است.

از روشی که در بالا توضیح داده شد ، ما رابطه وابستگی طبیعی بین هاب ها و مقامات را مشاهده می کنیم. مقدار ۷ (هاب) یک گره بزرگ است اگر گره به تعداد زیادی از گره ها با مقادیر X بزرگ (مقادیر) اشاره کند و بالعکس [۱۸].

ما باید تمام هاب و مقادیر قدرت را برای همه گره ها پس از هر تکرار عادی کنیم تا

$$\sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\sum_{i=1}^n y_i^2} = 1.$$

اکنون ، در تکرار k برای n گره ، می توانیم مقدار n و n هنان و از نظر بردارها نشان دهیم. اگر n نشان دهنده بردار n نشان دهنده بردار n نشان دهنده بردار مقادیر مرکز در تکرار n باشد ، برای n گره داریم

$$\vec{x_k} = \begin{bmatrix} x_k(1) \\ x_k(2) \\ \vdots \\ x_k(n) \end{bmatrix}$$
(3.9)

and

$$\vec{y_k} = \begin{bmatrix} y_k(1) \\ y_k(2) \\ \vdots \\ y_k(n) \end{bmatrix}$$
(3.10)

اگر \vec{v}_0 ، سپس با استفاده از معادلات ۳٫۹ و ۳٫۱۰ می توانیم \vec{v}_0 و \vec{v}_0 را مقداردهی کنیم ، به عنوان

 $x_0(1) = x_0(2) = ... = x_0(n) = (1 = \sqrt{n})_{9} y_0(1) = y_0(2) = ... = y_0(n) = (1 = \sqrt{n})_{9}$

بگذارید A یک ماتریس مجاورت نمودار هدایت شده G. باشد سپس با استفاده از معادله ۳,۱۱ و ۳,۱۲ می توانیم الگوریتم گفته شده در بالا را نشان دهیم.

$$\vec{x}_k = c_k A^\top \vec{y}_{(k-1)} \tag{3.11}$$

$$\vec{\mathbf{y}}_k = c_k' A \vec{\mathbf{x}}_k \tag{3.12}$$

و C'_{k} و C'_{k} و C'_{k} و معادله ۳,۱۲ به ترتیب ثابت های نرمال سازی هستند. در تکرار C'_{k} اینها به گونه ای انتخاب می شوند که مجموع مربع وزن های قدرت و وزن توپی برابر ۱ باشد. با در نظر گرفتن این معادلات ، اکنون می توانیم روش HITS را با استفاده از معادلات زیر نشان دهیم [17]:

$$\vec{x}_k = c_k c'_{(k-1)} A^{\top} A \vec{x}_{(k-1)} \quad \text{for } k > 1$$
 (3.13)

$$\vec{y}_k = c_k' c_k A A^\top \vec{y}_{(k-1)} \quad \text{for } k > 0$$
 (3.14)

بنابراین می توان گفت که HITS یک روش قدرت تکراری برای محاسبه بردار ویژه غالب برای A^T و A^T است A^T ابردار ویژه غالب ، ستون ماتریس V (بردار ویژه مربوطه) است که با ارزش ویژه مطابقت دارد.

نمرات هاب و نمرات اقتدار توسط ورودی های بردار ویژه غالب $A^T A$ و $A^T A$ به ترتیب تعیین می شوند [T].

مجدداً می توان شکل ۳٫۱ را به عنوان مثال برای توضیح الگوریتم HITS در نظر گرفت که در آن ماتریس مجاورت آن نمودار در رابطه ۳٫۳ آمده است.

جدول ۳٫۱: Hub and Authority Ranking (نمرات مربوط به بردار ویژه غالب است)

Node	Hub Score	Hub Rank	Authority Score	Authority Rank
A	0.00000	3	0.00000	2
В	0.81650	1	0.00000	2
C	0.40825	2	0.00000	2
D	0.00000	3	0.70711	1
Е	0.40825	2	0.70711	1

بردارهای ویژه A^TA و A^TA مربوط به بزرگترین ارزش ویژه A^TA (به رابطه A^TA مراجعه کنید) رتبه بندی هاب ها و مقامات (با استفاده از الگوریتم HITS) را که در جدول A^TA نشان داده شده است ، به دست می آورند. در معادله A^TA مشاهده می کنیم که ارزش ویژه غالب در ستون A^TA است و از این رو ستون پنجم A^TA در معادلات A^TA و A^TA بردارهای ویژه غالب مربوطه هستند. ما اینها را به ترتیب نمره ای برای محاسبه رتبه بندی مرکز و رتبه در نظر می گیریم. در اینجا رتبه بندی گره های A^TA تا A^TA و رتبه بندی مقامات A^TA است.

فصل چهارم

روش و نتایج

بسیاری از نرم افزارها معمولاً توسط متخصصان حوزه نوشته می شوند و مشکلات خاصی را برطرف می کنند. بیشتر اوقات این نرم افزارها به دلایل مختلف دارای اسناد فنی کافی نیستند. بنابراین از دیدگاه قابلیت استفاده ، تشخیص و بازیابی اجزایی که می توانند در پروژه های نرم افزاری دیگر مورد استفاده مجدد قرار گیرند ، دشوار است. تجزیه و تحلیل چنین نرم افزاری برای محققان چالش برانگیزتر است.

در این پایان نامه ما وابستگی های بین توابع ترسیم شده توسط نمودارهای فراخوانی استاتیک را برای دسته بندی توابع در گروه های "توابع مشابه" (با استفاده از وابستگی های پنهان به شرح زیر) با توجه به "اهمیت" آنها (با رتبه بندی طیفی توابع با استفاده از الگوریتم HITS) تجزیه و تحلیل می کنیم. سیستم نرم افزاری توابع هاب که "مهمترین" طبقه بندی شده اند ، توابعی هستند که خدمات اصلی را به کاربران نهایی ارائه می دهند. توابع مربوطه مهمترین "ارائه دهندگان خدمات" را برای توابع هاب نشان می دهند.

یک تابع Hub به طور مستقیم در اجرای عملکرد اصلی نرم افزار مشارکت می کند. نمونه هایی از توابع Hub در Hub در عبارتند از cs Isolve (یک سیستم خطی مثلثی عبارتند از cs Iusol) و cs Iusol (یک سیستم خطی مثلثی پایین را حل می کند). از طرف دیگر توابع که وظیفه ارائه خدمات پشتیبانی به سیستم نرم افزاری را بر عهده دارند ، توابع پایین را حل می کند). از طرف دیگر توابع که وظیفه ارائه خدمات پشتیبانی به سیستم نرم افزاری را بر عهده دارند ، توابع Authority نامیده می شوند. نمونه هایی از عملکرد Authority در Sparse عبارتند از cs realloc (تغییر اندازه یک بلوک از حافظه) و cs انجام شده (فضای کار را آزاد می کند و یک ماتریس پراکنده را برمی گرداند).

در نمودار فراخوانی اگر تابع i تابع j را فرا می خواند ، می گوییم که به j بستگی دارد. این نوع وابستگی صریح است زیرا می توان آن را مستقیماً از کد منبع استخراج کرد. فرض کنید تابع i و j هر دو تابع k را فراخوانی می کنند. به طور شهودی به این معنی است که توابع i و j به نوعی ارتباط دارند (بسته به زمینه). این یک مثال از وابستگی "پنهان" است که از نمودار تماس قابل تشخیص نیست. ما این نوع وابستگی های پنهان را از ماتریس محصول i i i i i محاسبه می کنیم. مقدار غیر صفر i i داللت بر "وابستگی پنهان" بین توابع i و i دارد.

در این کار ما ساختار وابستگی نرم افزار (رابطه تماس گیرنده بین توابع) را با استفاده از ابزار "درک" [۲۱] و "شباهت" بین عناصر طراحی (توابع) با استفاده از یک متریک شباهت مناسب (شباهت کسینوس) کشف می کنیم. سپس با مفهوم "اهمیت" عناصر طراحی [۱۳] ترکیب می کنیم و عناصر طراحی را بر اساس "اهمیت" آنها در "طبقه" طبقه بندی می کنیم. این فصل تأثیر وابستگی های عملکردی بر معماری نرم افزار و همچنین تأثیر کشف "شباهت" بین عناصر طراحی را مورد بحث قرار می دهد. روش شناسی و نتایج تجربی کار جدید ما نیز در این فصل مورد بحث قرار گرفته است.

۱ – ۴ روش شناسی

این بخش را با توصیف روش استخراج وابستگی و سپس ساخت DSM شروع می کنیم. با استفاده از ابزار تجزیه و تحلیل "درک" [۲۱] ما می توانیم ساختار وابستگی نرم افزار را مشاهده و استخراج کنیم. ما برای تجزیه و تحلیل ساختار وابستگی برنامه ها ، ارتباط بین تماس گیرنده بین عملکردها را استخراج می کنیم. روش یافتن "اهمیت" عناصر طراحی [۱۳] محاسبه رتبه بندی hub و اقتدار است که لیستی از تماس گیرندگان مهم (هاب ها) و تماس گیرندگان مهم (مقامات) را ارائه می دهد. سپس روش کشف "شباهت" بین عناصر طراحی را مورد بحث قرار می دهیم. هدف ما این است که عناصر طراحی را بر اساس "اهمیت" که با استفاده از یک شبه کد ارائه شده است "طبقه بندی" کنیم.

زیرساخت های محاسباتی برای عملیات تحقیقاتی [۸] (COIN-OR) یکی از بزرگترین و گسترده ترین جوامع منبع باز برای نرم افزار Sparse افزارهای تحقیقاتی علمی است. ما پروژه های نرم افزار منبع باز از COIN-OR را مطالعه کردیم. به عنوان مثال نرم افزار و گلسترده کردیم. به عنوان مثال نرم افزار و گلسترده که در C اجرا شده اند به ترتیب در بخش های ۴٫۲٫۱ به طور مختصر شرح داده می شود. سپس نتایج این نرم افزار که از آزمایشات خود بدست آورده ایم در بخش ۴٫۳ مورد بحث قرار می گیرد.

۱-۱-۴ استخراج وابستگی ها

در بخش ۲,۲ مقدماتی در مورد استخراج وابستگی ها ارائه شده است.

در این بخش ما نحوه استخراج وابستگی های فراخوانی بین عملکردها (برای CSparse و ADOL-C) با استفاده از "درک" (۲۱] در این بخش ما نحوه ایم. ما می توانیم این نرم افزارها (۲۱] در مورد بحث قرار می دهیم. ما قبلاً در مورد این ابزار در بخش قبلی بحث کرده ایم. ما می توانیم این نرم افزارها (۲۱] در مورد بحث قرار می دهیم. ما قبلاً در مورد این ابزار در بخش قبلی بحث کرده ایم. ما می توانیم این نرم افزارها (ADOL-C و CSparse و CSparse) را با استفاده از Octave تجسم کنیم. شکل ۴٫۱ و شکل ۴٫۲ ماتریس های Octave و کند.

شکل ۴٫۲: ماتریس پراکنده ADOL-C

برای استخراج وابستگی ها ابتدا بسته کامل (آخرین نسخه) نرم افزار سیستم (CSparse) و CSparse) را بارگیری می کنیم. سپس بسته را در "Understand" SciTool وارد می کنیم. سپس می توان نمودارهای تماس را تجسم کرد (به شکل ۴٫۳ و شکل ۴٫۴ مراجعه کنید). سپس هر تابع را بازرسی کرده و جزئیات آن را از گزینه description مشاهده می کنیم. در این توضیحات ما می توانیم لیستی از توابع را که توسط آن تابع خاص فراخوانی شده اند و همچنین اطلاعات زیادی را بیابیم. ما همچنین می توانیم ماتریس های وابستگی را در قالب های مختلف فایل صادر کنیم.

۲ - ۱ - ۲ ساخت DSM ها

ما DSM را با وابستگی های ایستا ایجاد می کنیم. DSM یک نمایش بصری از یک سیستم و به شکل یک ماتریس مربع است. ما DSM را با DSM را با ADOL-C را با ADOL-C را با ADOL-C بروژه ADOL-C بررسی کرده ایم. بنابراین ADOL-C دارای ADOL-C بروژه ADOL-C برای ADOL-C با ADOL-C ماتریس های وزنی ماتریس های وزنی ADOL-C و ماتریس ADOL-C و ماتریس های وزنی ADOL-C برای ADOL-C است. این ماتریس ها دوتایی هستند زیرا ما ماتریس های وزنی را در نظر نگرفتیم. این بدان معناست که حتی اگر یک تابع i تابع دیگر i را بیش از یک بار فراخوانی کند ، فرض می کنیم i است. i است.

شکل ۴٫۳: نمودار وابستگی CSparse

شکل CSparse را می CSparse نشان می دهد. ترتیب توابع (در سطرها یا ستون ها) در این ماتریس باینری CSparse را می CSparse نشان می دهد. ترتیب توابع (در سطرها یا ستون ها) در این ماتریس باینری CSparse نشان می بینیم CS به معنی تابع CS و فراخوانی تابع CS افزودن است. سلول های خالی CSM توان از ضمیمه CSM یا CSM نیز CSM مشابه (ماتریس دوتایی CSM) داریم.

شكل ۴٫۴: نمودار وابستگى ADOL-C

۳ - ۱ - ۴ مرکز محاسبات و رتبه بندی قدرت

در فصل ۳ با استفاده از یک مثال کوچک ، ما برخی از روش های تجزیه و تحلیل وابستگی بین توابع را مورد بحث قرار داده ایم. برای مثال محاسبه ارزش ویژه و بردار ویژه از ماتریس مشخص شده ، هاب ها و مقامات را مشخص می کند و از روش HITS برای رتبه بندی توابع استفاده می کند. در این بخش ما اهمیت و روش محاسبه مرکز و رتبه بندی قدرت را برای رویکرد خود شرح می دهیم.

 B_2 و $B_1=AA^T$ و $B_1=AA^T$ و محاسبه می کند. ماتریس مشخص ، الگوریتم HITS دو ماتریس های $B_1=AA^T$ و $B_1=AA^T$ و $B_1=AA^T$ به ترتیب نقش مهمی در محاسبه رتبه بندی مرکز و رتبه بندی قدرت دارند.

	DI SAL	COR ED	Indiana No.	meters to	CO COMPANIES	American No.	or sealers	or parties	president to		of second	00100	family to	ACT TO	889,0	sand'to	N M	CL MARIE	on Manual	Č	IN MARK	OC STATE	ON STATE OF	deligna to	or James	an Dear	N Park	in Control	4.0	and to	manham Co.	0.00	100	0000	avante to	or no company to	ŝ	andare to	DEST.D	DOMESTICS.	a de	O. Spinor	Sweeth To	anaph.vo	Anne	044,00	0.000	O.	on other	or control	1000	
in and	3	-	-		-	-	-	\vdash	-	-	-		1			-	-	-	-	-		1	-		-	\Box	-	-	-		-	- 1	-		-		1		-	-	1		-	1		Н,		-		-	-	-
CI CHIE CI CHIESE CI CHIES	-	+		\Box	_	+	+	\vdash	_	+	1		•		\vdash	_	+	+	+	-		1	- '	-	_	\vdash	_	+	+		_	_	-		_	1		-			1.	1			3		•	_	\vdash		_	-
CE CHISTION		1														1		1	1			1						- 1						1.												1				1	1.	
CI CHIMPHIE	\vdash	-	-	\vdash	_ 3	4	-	\vdash	-	-	-		-		Н	-	1.	-	-	-	-	1	-	-	-	\vdash	-	-	-		-	-	-	\Box	-		\vdash		-	-	1		4	-	-	Н.		-	\vdash	-	-	-
CI CHEND	-	+	-	\vdash	+	+	+	\vdash	\rightarrow	-	+	\rightarrow	+	-			•	+	+	-	-	-	+	+	-	\vdash	\rightarrow	-	+		\rightarrow	-	-		+	+	\vdash		_	\rightarrow	+	+	+	+	\vdash	\vdash	*	+	\vdash	\rightarrow	+	\neg
in th in times in times in times in times in times	+	+			-	-	+			-			+			\rightarrow	+	+	+				\rightarrow	+			\rightarrow	-	+		\rightarrow	-	-		\rightarrow	+	\vdash		-	-		+		+			-	+		\rightarrow	\rightarrow	
in departs													1				工						1		1	1							1											3.		1	- 3	. 3	1			
in depth	-	-	-	\vdash	-	-	-	\vdash	-	-	\vdash	-	1	-		-	-	-	-	⊢	-	\vdash	-	-	-	\vdash	-	-	-		-	-	-		-	+	\vdash	-	-	\rightarrow	-	-	-	-	\vdash	\vdash	-	-		\rightarrow	-	-
13.50	+	+	-	\vdash	+	+	+	+	\rightarrow	+	+		•	-	\vdash	+	+	+	+	\vdash		1	+	+	+	\vdash	\rightarrow	+	+		\rightarrow	-	-		+	+	\vdash	+	-	\rightarrow	+	+	1	-	\vdash	1	-	+	\vdash	\rightarrow	+	\neg
on many																	\pm																										1									
CL RESCT																	_																											=								
CI, 6196	+	+	-	\vdash	-	-	+	\rightarrow	\rightarrow	-	+	\vdash	+	-	\vdash	+	+	+	+	\vdash	-	1	+	-	-	\vdash	\rightarrow	-	-		\rightarrow	-	-		+	+	\vdash	+	-	\rightarrow	+	-	1	-	\vdash	\vdash	1	+	\vdash	\rightarrow	+	-
ins, printy Co. 600 600 Co. 600 60 Co. 600 6	1	+	_	\vdash	+	_	-	\vdash	\rightarrow	_	\vdash	\vdash	+	-		\rightarrow	+	+	-	-	-	\vdash	\rightarrow	-	-	\vdash	\rightarrow	+	_		\rightarrow	+	_		\rightarrow		\vdash	+	_	\vdash	+	+	-	4	\vdash	\vdash	+	_		\rightarrow	\rightarrow	\neg
CIL Propose		1			#		\pm		_	1			_			_	_	土	\pm				_	_			_	土			_	#			_			_			_	士					#			\Box	_	
NA THE RESERVE																	_																											\perp			_					
on port	\vdash	-		н	-	-	-	\vdash	-	-	\Box	н	-		н	-	-	-	-	-		\vdash	-	-	-	н	-	-	-		-	-	-		-		н	-	-	-	-	-	-	-		н	-	-	\vdash	\vdash	-	-1
on total	+	+	-	\vdash	+	-	+	\vdash	\rightarrow	1.0	+	\vdash	+	+	\vdash	+	+	+	+	-	-	\vdash	+	+	+	\vdash	\rightarrow	+	-		\rightarrow	+	-	\vdash	+		\vdash	+	-	\vdash	+	4		1	\vdash	\vdash	+	-		\rightarrow	+	\neg
in_neri																																																				
CI BONE	\Box	_	_	\Box	_	_	=	\Box	_		\blacksquare	=	_		\Box	_	-	-	=	=	-		_	-	_	\Box	_	_	_		_	_	_		_		\Box	_	_	=	_	Η.		-		=	_	_	\Box	=	_	=
to be back	+	+	-		+	-	+	\vdash	\rightarrow	-	+	\vdash	+	-		1	+	1	-	1		1	+	+	+	\vdash	\rightarrow	-	-		-	-	-		3 3		\vdash	+	1	\rightarrow	1	- 1	- 1	4	3	1	-	+		1		\neg
na makes	+	+			+	+				+			$^{-}$			*	+	-10		10			\rightarrow	+			\rightarrow	+	+		\rightarrow	+	-				\vdash		- *			+		+			+	+		-	^	
																						1									1.										1.					1	L					
no more poly		-			_	_	_			_			_			_	_	_	_			1	_	_			_	_	_		_	1			_		\Box				1	1 1	- 1	-			_	_		_	_	
OR BARTON	+	+	-	\vdash	+	+	+	\rightarrow	\rightarrow	+	+	\vdash	+	+	\vdash	+	+	+	+	\vdash	-	\vdash	+	+	-	\vdash	\rightarrow	+	-		\rightarrow	-	-	\vdash	+	-	\vdash	+	-	\rightarrow	-		-	+	\vdash	\vdash	-	+	\vdash	\rightarrow	+	-
en prins	-	+			\pm	+	+			+			\pm			\rightarrow	\pm	\pm					\rightarrow	+			\rightarrow	\pm	+		\rightarrow	\pm	-		\rightarrow	-			_	$\overline{}$				+			\pm	+		\rightarrow	\rightarrow	
en_past																						ě.															ă.										ě.					
es, pare	-	-	-		-	-	-	\vdash	-	-	\vdash	\vdash	-	-		-	-	-	-	⊢		\vdash	-		-	\vdash	-	-	-		-	-	-		-	-	\vdash	-	-	\rightarrow	-	-	-	-	\vdash	\vdash	-	-		\rightarrow	-	-
	++	+	-	\vdash	+	+	+	+	\rightarrow	-	+	\rightarrow	+	-		+	+	+	+	-	-	1	\rightarrow	+	+	\vdash	\rightarrow	-	+		\rightarrow	1	-		+	+	\rightarrow	+	-	\rightarrow	1	1		+	3	\vdash	-	+	\vdash	\rightarrow	+	\neg
IN AN A														3		1												- 3	1						- 1			1	1	1	1			1		1				1.	1.	
on temperature						1											_					1																						\mathbf{r}								
on_reach	\rightarrow	-	-		-	3.	+	\vdash	-	-	-	-	-	-	Н	-	-	-	-	-		\vdash	-	-	-		-	-	-		-	-	-		-	-	\vdash	-	-	-	-	-	-	+		\vdash	-	-		-	-	-
CO. SHIP	-	+	-	\vdash	+		+	\vdash	\rightarrow	-	+	-	+	-		\rightarrow	+	-	+	-	-		+	-	-	\vdash	\rightarrow	-	+		\rightarrow	-	-		+	+	\vdash		_	\rightarrow	-	+	+	+		\vdash	-			\rightarrow	+	\neg
CL SCHOOL					1 1							1					士					1				1	1									1					1.			3.		1					3.	
CL SERVE																	_															1																				
CIL. NO		4			1	_	-	\vdash		-	\perp	1				-	-	-	-	-		1		-	1		1		-								H			-	1			3.		1		_		-	3.	
on, result on, souther on, sou	+	+	-	\vdash			+	\vdash	-	+	+	\vdash	+	-	\vdash	+	+	+	+	-	-	\vdash	+	-	-	\vdash	\rightarrow	+	+	\vdash	+	+	-	\vdash	+	-	\vdash	+	-	\vdash		-		+	\vdash	\vdash	+	-	\vdash	\rightarrow	+	-
in harmone					- 3												\pm																								1 3											
IO_NUMBER																	7							=					=															=			-					
on otherine	+	-	-	\vdash	+	-	-	\vdash	\rightarrow	-	\vdash	\vdash	+	\vdash	\vdash	+	+	+	-	\vdash	-	\mapsto	+	-	-	\vdash	\rightarrow	-	-		\rightarrow	+	-	\vdash	-	-	\vdash	+	-	\vdash	+	+	-	+	\vdash	\vdash	+	-	\vdash	\rightarrow	+	-1
CIL CIACC	+	+	-	\vdash	+	-	+	\rightarrow	\rightarrow	+	+	\vdash	+	+	\vdash	+	+	+	+	-	-	\vdash	+	+	+	\vdash	\rightarrow	+	-		\rightarrow	+	-	\vdash	+	+	\vdash	+	-	\rightarrow	+	+	+	+	\vdash	\vdash	+	+	\vdash	\rightarrow	+	\neg
on product on photos on photos on photos on spens																																														1						
CIL IQUIDO																	_					1													_						1											
CI SPRING	+	+	-		+	-	+			+			+			\rightarrow	+	+	+	\vdash		\vdash	+	-			\rightarrow	+	-		\rightarrow	+	-		+	-	\vdash		-	\rightarrow		+		+		1	+	+		\rightarrow		-
in place	1	+			+	-	+			+			+			+	+	+	+			\vdash	+	-			\rightarrow	+	-		+	+	-		-		\vdash		-	\vdash		+		+		1	+	-		\dashv	+	
on, here																																																				
no, Marie		-															4										_				_				_											1						
en, date																	_[1					_														1											
in diam	+	-			-	-	-			-			-			-	-	-	-			\vdash	-	-			-	-	-		-	-			-		\vdash			-		-		-		1	-	-		-	-	
CI STOR CI STOR CI STOR	+	-	-		+	-	+			+			+			+	+	+	+			\vdash	+	-			\rightarrow	-	-		\rightarrow	+	-		+	+	\vdash		-	\vdash		+		-		1 1	-	+		\rightarrow	+	-
GI 1894						_																					\rightarrow				\rightarrow	\rightarrow			\rightarrow											1						
CO. MINERAL																																																				

شکل ۴٫۵: DSM از CSparse

شکل ۴,۶ نمونه ای از نمودار فراخوانی را نشان می دهد که برای آن دریافت می کنیم ،

$$B_1 = AA^{\top} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
(4.1)

$$B_2 = A^{\top} A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 0 \\ 0 & \mathbf{1} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (4.2)

 $_{1}$ بنابراین مقدار مورب ماتریس $_{2}$ $_{3}$ $_{4}$ $_{5}$

C و تابع B و تابع A را می نامند (خط نقطه سبز در شکل ۴٫۶). از طرف دیگر معادله ۴٫۲ بیان می کند که تابع B و تابع A رابطه ای غیر مستقیم دارند هرچند که هر دو با تابع A (خط نقطه آبی در شکل ۴٫۶) نامیده می شوند.

	Α	В	С	D
A	0	1	1	0
В	0	0	0	1
С	1	0	0	0
D	1	0	0	0

شکل ۴٫۶: نمونه ای از Hub و Authority

بنابراین ماتریس های محاسبه B_1 و B_2 رابطه وابستگی معنایی می دهد که در آن DSM فقط رابطه وابستگی نحوی بین توابع را ارائه می دهد.

فرض کنید ما DSM خود را از کد منبع داده شده که A است ساخته ایم. حالا ماتریس $B_1 = AA^T$ و $B_2 = A^T$ را محاسبه کنید ، جایی که A^T ترانسپورس ماتریس A است.

سپس با استفاده از Octave می توان ماتریس مورب λ از مقادیر ویژه و ماتریس V را پیدا کرد که ستونهای آنها بردارهای اختصاصی مربوطه هستند به طوری که V V V V جایی که V V و V است. ما به دنبال ارزش ویژه غالب λ هستیم که بیشترین مقدار λ را در خود دارد. ستون مربوط به V بردار ویژه غالب است که به عنوان مقدار مرکز (برای V) و مقدار قدرت (برای V) در نظر گرفته می شود [۱۳]. ما توابع را به ترتیب نزولی با توجه به مقادیر آنها مرتب می کنیم (بخش V, را ببینید) و از این رو رتبه بندی توابع را بدست می آوریم.

در جداول ۴٫۱ و ۴٫۲ ما ۵ مقام برتر و هاب را با توجه به مقادیر آنها برای هر دو نرم افزار CSparse و ADOL-C گزارش کرده ایم.

جدول ۴٫۱: Hub and Authority رتبه پنج عملکرد اول پروژه

Rank	Hub	Hub Name	Authority	Authority Name
1	42	cs_schol	27	cs_malloc
2	44	cs_sqr	51	cs_calloc
3	37	cs_qrsol	57	cs_free
4	28	cs_maxtrans	53	cs_spalloc
5	29	cs_multiply	63	cs_sfree

جدول ۴٫۲: Hub and Authority رتبه پنج عملکرد اول پروژه

Rank	Hub	Hub Name	Authority	Authority Name
1	36	tape_doc	60	myalloc1
2	4	jacobian	403	fprintf
3	58	forward	64	myfree1
4	29	inverse_Taylor_prop	329	adolc_exit
5	9	hessian	61	myalloc2

۴ - ۱ - ۴ شباهت های محاسبه کسینوس

شباهت با کسینوس معیاری است که برای تعیین میزان شباهت توابع به کار می رود. از نظر ریاضی ، کسینوس زاویه بین دو بردار را که در یک فضای چند بعدی پیش بینی شده اند اندازه گیری می کند. در این زمینه دو بردار (دو ردیف DSM) ماتریسی هستند که اطلاعات تماس دو تابع را شامل می شوند. هنگامی که در یک فضای چند بعدی ترسیم می شود که هر بعد با عملکردی در سیستم مطابقت دارد ، شباهت کسینوس مزیت دارد زیرا حتی اگر دو تابع مشابه از نظر رتبه بندی با هم فاصله داشته باشند ، باز هم می توانند زاویه کوچکتری بین آنها وجود داشته باشد. هرچه زاویه کوچکتر باشد ، شباهت بیشتر است.

$$\cos(\theta) = \frac{\vec{a}\vec{b}}{\|\vec{a}\|\|\vec{b}\|} \tag{4.3}$$

جایی که ||a|| بردارهای یک اندازه هستند ، هنجار اقلیدسی این بردارها هستند و n اندازه این بردارها و تعداد عناصر موجود در سیستم است. DSM شامل اطلاعات تماس بین توابع است که در آن سطرها توابع تماس گیرنده (هاب) و ستون ها توابع تماس گیرنده (اقتدار)

→ هستند. وقتی شباهت کسینوس بین دو تابع تماس گیرنده را محاسبه می کنیم ، دو ردیف متناظر از DSM را به عنوان بردارهای ایستان از DSM را و انتخاب می کنیم. دوباره هنگامی که شباهت کسینوس بین دو تابع callee را محاسبه می کنیم ، دو ستون متناظر از DSM را به عنوان بردارهای و انتخاب می کنیم.

در رویکرد ما DSM و ماتریس $B_1 = AA^T$ (hub) و $B_1 = AA^T$ (hub) و ماتریس $B_1 = AA^T$ (hub) و ماتریس های $B_2 = B_1$ در بخش B_1 , مورد بحث قرار گرفته است ، جایی که ما نشان داده ایم که ماتریس های $B_2 = B_1$ اطلاعات مهم تری نسبت به DSM دارند. بنابراین ما رویکرد خود را برای هر دو نوع ماتریس آزمایش کردیم.

از رابطه ۴,۳ مشاهده می کنیم که برای محاسبه محصول نقطه بین دو بردار ($\sum_{i=1}^{n} ai \ bi$) مجموع حاصل ضرب ورودی های مربوطه دو ردیف یا ستون انتخاب شده را محاسبه می کند.

ما می دانیم $(0^\circ) = 0$ و $(0^\circ) = 0$ و $(0^\circ) = 0$ و اگر دو الم امی دانیم $(0^\circ) = 0$ و $(0^\circ) = 0$ و اگر دو بردار متعامد باشند (مشابه) باشند ، مقدار $(0^\circ) = 0$ خواهد بود. اما اگر مقدار $(0^\circ) = 0$ بین $(0^\circ) = 0$ بین

علاوه بر این شباهت های بین توابع برای هاب ها و مقامات را محاسبه کرده ایم. برای مرکز دو بردار سطر از ماتریس و برای مقامات دو بردار ستون از ماتریس انتخاب می کنیم.

اکنون شباهت های کسینوس بین پنج تابع اول (با توجه به رتبه آنها به جدول ۴٫۱ و جدول ۴٫۲ مراجعه کنید) را با توجه به هاب ها و مقامات (برای پروژه های CSparse و ADOL-C) محاسبه می کنیم.

جدول ۴,۳ و جدول ۴,۴ شباهت های کسینوس بین توابع را نشان می دهد که در آن a و توابع پروژه ها را نشان می دهند (پیوست A و R را ببینید). در اینجا مقدار (a (a) cos (a) را بین a و ۱ بدست می آوریم. بنابراین با تعیین یک آستانه می توان گفت که آیا دو تابع مشابه هستند یا خیر.

جدول ۴٫۳: شباهت های کوزین با پنج عملکرد اول (با توجه به مرکز و رتبه اقتدار) پروژه

H	lub Functions		Authority Functions						
\vec{a}	\vec{b}	$cos(\theta)$	\vec{a}	\vec{b}	$\cos(\theta)$				
cs_schol	cs_sqr	0.982167	cs_calloc	cs_spalloc	0.873418				
cs_sqr	cs_maxtrans	0.798325	cs_free	cs_sfree	0.861267				
cs_schol	cs_maxtrans	0.776425	cs_malloc	cs_calloc	0.848427				
cs_sqr	cs_qrsol	0.722491	cs_malloc	cs_sfree	0.678954				
cs_schol	cs_qrsol	0.696213	cs_malloc	cs_free	0.674013				
cs_maxtrans	cs_multiply	0.69317	cs_malloc	cs_spalloc	0.636215				
cs_qrsol	cs_maxtrans	0.691092	cs_calloc	cs_sfree	0.619324				
cs_schol	cs_multiply	0.590327	cs_calloc	cs_free	0.557076				
cs_sqr	cs_multiply	0.577527	cs_spalloc	cs_sfree	0.262881				
cs_qrsol	cs_multiply	0.400871	cs_free	cs_spalloc	0.220262				

جدول ۴,۴: شباهت های کوزین با پنج عملکرد اول (با توجه به مرکز و رتبه اقتدار) پروژه ADOL-C

Н	ub Functions		Auth	nority Functi	ions
\vec{a}	\vec{b}	$cos(\theta)$	ā	\vec{b}	$cos(\theta)$
jacobian	hessian	0.953637	myalloc1	myfree1	0.970463
inverse_Taylor_prop	hessian	0.89385	fprintf	adolc_exit	0.944289
jacobian	inverse_Taylor_prop	0.822776	myfree1	myalloc2	0.879903
tape_doc	forward	0.68348	myalloc1	myalloc2	0.865987
jacobian	forward	0.529026	myalloc1	adolc_exit	0.359106
forward	hessian	0.504676	myalloc1	fprintf	0.317976
forward	inverse_Taylor_prop	0.407995	adolc_exit	myalloc2	0.243542
tape_doc	hessian	0.315302	myfree1	adolc_exit	0.221187
tape_doc	jacobian	0.295122	fprintf	myalloc2	0.211266
tape_doc	inverse_Taylor_prop	0.234508	fprintf	myfree1	0.190357

۵ – ۱ – ۴ الگوريتم

الگوریتم کامل رویکرد ما برای یافتن توابع مشابه در سطوح مختلف در زیر ارائه شده است.

الگوریتم ۱: گروه بندی توابع مشابه (DSM A)

```
    N ← Number of functions

 2 threshold ← a numeric value between 0 and 1
 3 k \leftarrow 0
                                                                                         Number of tiers
 4 while N > 0 do
         h \leftarrow \text{List of top 5 elements in hub ranking order}
         a \leftarrow \text{List of top 5 elements in authority ranking order}
                           \triangleright U is the list of elements to be removed from A after each iteration
         for i \leftarrow 1 to 5 do
 8
 0
             hub\_Similarity[i] \leftarrow 0
                                                    Store similarity between hub elements from h
             aut\_Similarity[i] \leftarrow 0

    Store similarity between authority elements from a

10
         for i \leftarrow 1 to 4 do
11
             for j \leftarrow i + 1 to 5 do
12
13
                  hub\_Similarity[i] \leftarrow hub\_Similarity[i] + cosineSimilarity[h[i], h[j])

    ▷ cosineSimilarity() is a function as Equation 4.3

14
                  hub\_Similarity[j] \leftarrow hub\_Similarity[j] + cosineSimilarity(h[i], h[j])
15
         for i \leftarrow 1 to 5 do
16
17
             hub\_Similarity[i] \leftarrow hub\_Similarity[i]/4

    ▷ Calculating average similarity

18
         k \leftarrow k + 1
         for i \leftarrow 1 to 5 do
19
             if hub\_Similarity[i] >= threshold then
20
                  Include h[i] in T_k
21
                  U \leftarrow U \cup h[i]
22
23
         for i \leftarrow 1 to 4 do
24
             for j \leftarrow i + 1 to 5 do
25
                  aut\_Similarity[i] \leftarrow aut\_Similarity[i] + cosineSimilarity(a[i], a[j])
                  aut\_Similarity[j] \leftarrow aut\_Similarity[j] + cosineSimilarity(a[i], a[j])
26
         for i \leftarrow 1 to 5 do
27
             aut\_Similarity[i] \leftarrow aut\_Similarity[i]/4

    ▷ Calculating average similarity

28
        k \leftarrow k+1
29
         for i \leftarrow 1 to 5 do
30
31
             if aut\_Similarity[i] >= threshold then
                  Include a[i] in T_k
32
33
                  U \leftarrow U \cup a[i]
         Remove all i \in U from A
34
        N \leftarrow N - |U|
36 return T_1, T_2, ..., T_k
                                                            \triangleright T_i is a tier containing similar functions
```

در این الگوریتم DSM A ورودی است و لیستی از سطوح دارای عملکردهای مشابه خروجی است (T1، T2، T2، (Tk). آستانه یک مقدار عددی از پیش تعریف شده بین ۰ تا ۱ است. در بخش ۴,۱٫۳ ما نحوه محاسبه توزیع مرکز و قدرت توابع را مورد بحث قرار دادیم. با پیروی از روش مشابه در مرحله ۵، یک لیست (h) از ۵ عملکرد برتر را با توجه به رتبه بندی هاب دریافت می کنیم و در مرحله ۶ یک لیست (a) از ۵ عملکرد برتر را با توجه به رتبه بندی بدست می آوریم.

اکنون نحوه محاسبه سطوح هاب را توضیح می دهیم. در مراحل ۱۱ تا ۱۵ شباهت کسینوس بین این ۵ توابع هاب را که در بخش ۴٫۱٫۴ توضیح داده شده است محاسبه می کنیم. سپس میانگین شباهت هر یک از توابع هاب را در مرحله ۱۷ محاسبه می کنیم. در مرحله ۲۰ الگوریتم بررسی می کند که آیا میانگین شباهت تابع [i] (یعنی شباهت هاب [i]) بیشتر یا مساوی با آستانه از پیش

تعریف شده است یا خیر. اگر شرط را برآورده کند ، تابع در ردیف T_k قرار می گیرد و همچنین در U ذخیره می شود تا پس از تکرار فعلی از ماتریس A حذف شود ، در غیر این صورت هیچ کاری برای آن تابع انجام نمی دهد. به طور مشابه برای سطوح اقتدار ، مراحل T تا T را دنبال کردیم. بنابراین در یک تکرار حلقه T while دو ردیف را یکی برای هاب و دیگری برای اقتدار محاسبه می کنیم. الگوریتم تا زمانی ادامه می یابد که هیچ توابع وجود نداشته باشد یا چنین سطحی با شرایط تعیین شده محاسبه نشود.

۲ – ۴ تنظیمات

این بخش جزئیات مربوط به تنظیمات مطالعه ای را که در کار خود استفاده می کنیم آورده است. در اینجا ،در مورد سیستم های هدف خود و انتخاب آستانه برای آزمایش های خود بحث می کنیم.

۱ - ۲ - ۴ سیستم های هدف

برای آزمایش دو نرم افزار پیاده سازی شده در C/C ++ ,CSparse نسخه 5,6,0 و 2.7.2 نسخه ADOL-C و 2.7.2 را انتخاب می کنیم. این نرم افزارهای علمی برای محاسبه مشتقات عددی دقیق (تا ماشین دقیق) از برنامه عملکرد در یک نقطه مشخص استفاده می شوند. نرم افزار 2.7.2 به حل سیستم معادله خطی 2.7.2 می پردازد که در آن ماتریس ضریب A پراکنده است [۶]. از طرف دیگر 2.7.2 می سیستم نرم افزاری برای محاسبه مشتقات ریاضی (ضرایب گرادیان ، ژاکوبیان ، هسیان ، تیلور) یک تابع ریاضی است [۲۲].

CSparse

CSparse یک پروژه است که شامل روش های مستقیم برای سیستم های خطی پراکنده است. مشکلات زیادی در زمینه محاسباتی وجود دارد که به حل سیستم های پراکنده معادلات خطی می پردازد. برای حل موثر این مشکلات ، ما نیاز به دانش عمیق الگوریتم های نظریه و ساختار داده های موجود در کتابخانه های نرم افزار ماتریس پراکنده داریم. CSparse اصول اولیه الگوریتم های ماتریس پراکنده و برای ارائه زمینه لازم ارائه می دهد [۶]. این پروژه بسته ماتریس پراکنده قابل بارگیری است که الگوریتم ها و قضایای ارائه شده [۶] را نشان می دهد. برای کار با این پروژه ، کاربر باید در مورد بسته های نرم افزاری بزرگتر و پیچیده تر و همچنین یک ایده قوی در مورد MATLAB و زبان برنامه نویسی C داشته باشد. برای درک بیشتر در مورد این پروژه (سیستم های خطی پراکنده) پیشنهاد می کنیم از [۶] ایده بگیرید.

توابع توسط نویسنده نرم افزار به شرح زیر طبقه بندی می شوند: ابزار اولیه ، اصلی ، ثانویه ، کاربرد ثانویه ، ابزار سوم و سوم [۶].

ADOL-C

نرم افزار ADOL-C در C + +/C پیاده سازی شده است [۱۲]. این بسته ارزیابی مشتقات اول و بالاتر توابع بردار نوشته شده در C + +/C را تسهیل می کند. با استفاده از C + +/C با Fortran C + +/C یا هر زبان دیگری که می توان با C + +/C همه می توانند از C + +/C همه روال های موجود در این بسته استفاده کنند.

مقادیر عددی عاری از بردارهای مشتق بدون خطا را می توان با زمان اجرای کارآمد و فضای کوچک توسط برنامه ارزیابی عملکرد داده شده محاسبه کرد. ماتریس های مشتق شده توسط ستون ها به صورت سطر یا در قالب پراکنده بدست می آیند. برای منحنی های راه حل تعریف شده توسط معادلات دیفرانسیل معمولی ، روالهای خاصی ارائه شده است که بردارهای ضریب تیلور و ژاکوبیان آنها را با توجه به بردار حالت فعلی ارزیابی می کند. برای توابع صریح یا ضمنی ، تنسورهای مشتق با پیچیدگی بدست می آیند که فقط در درجه خود به صورت درجه دوم رشد می کند. محاسبات مشتق شامل مقدار قابل توجهی از داده اما همیشه قابل پیش بینی است. به صورت متوالی به این داده ها دسترسی داده می شود و بنابراین می تواند به صورت خودکار در پرونده های خارجی صفحه بندی شود.

۲ - ۲ - ۴ انتخاب آستانه

در الگوریتم ۱ ما در مورد یک آستانه (مرحله ۲ در الگوریتم ۱) صحبت کرده ایم که به تصمیم گیری در مورد اینکه آیا یک تابع باید در ردیف قرار گیرد یا خیر (مراحل ۲۰ و ۳۱) کمک می کند. مقدار آستانه باید بین ۰ تا ۱ انتخاب شود زیرا می دانیم که مقدار (Θ) cos (Θ) نمی تواند منفی باشد زیرا بردارها مثبت از آنجا که بردارها از ماتریس وابستگی انتخاب می شوند (وابستگی نمی تواند ارزش منفی داشته باشد) بردارها همیشه در ربع اول قرار دارند. اگر مقدار (Θ) cos (Θ) آنها نزدیک به ۱ باشد دو تابع بیشتر شبیه هم هستند (توجه: اگر دو بردار مشابه یا موازی باشند به این معنی است که زاویه آنها (Θ) است بنابراین (Θ) cos (Θ) . از طرف دیگر ، اگر مقدار (Θ) مقدار (Θ) بین دو بردار نزدیک به (Θ) باشد دو تابع بیشتر شباهت ندارند.

٣ – ۴ نتاىج

در این بخش ما نتایج آزمایشات عددی روی پروژه های منتخب را ارائه می دهیم. نرم افزار آزمایشات از زیرساخت های محاسباتی برای عملیات (COIN OR) [۸] به دست آمده است. آزمایشات با استفاده از رایانه ای با پردازنده 4.2.2 Intel Xeon گیگاهرتز ۸ گیگابایت RAM و لینوکس انجام شد. زبان پیاده سازی GNU Octave بود و کد با کامپایلر نسخه 4.2.2 کامپایل شد.

نتایج آزمایش بسته انتخابی CSparse در شکل های ۴,۱، ۴,۹، ۴,۹، ۴,۹ و ۴,۱۱ گزارش شده است. در اینجا شکل های ۴,۸ و ۴,۹ و آزمایش بسته انتخاب توابع برای بررسی شباهت آنها در نظر تنایج (عملکردهای سطوح مختلف) را نشان می دهد که در آن ما DSM را برای انتخاب توابع برای بررسی شباهت آنها و اقتدار) برای گرفتیم. از طرف دیگر جداول ۴,۱۱ و ۴,۱۱ نتایج را نشان می دهند که در آن A^TA و AA^T (به ترتیب برای هاب و اقتدار) برای انتخاب توابع برای بررسی شباهت آنها در نظر گرفته شده است.

به طور مشابه نتایج آزمایش برای نرم افزار انتخابی ADOL-C در شکل های ۴,۱۴ ، ۴,۱۳ ، ۴,۱۳ و ۴,۱۴ گزارش شده است. در اینجا در همه موارد ما ماتریس A^TA و A^TA و A^TA و A^TA اینجا در همه موارد ما ماتریس A^TA و A^TA و A^TA و A^TA و انتخاب توابع برای بررسی شباهت آنها در نظر گرفتیم. ما نتایج را به صورت جداگانه برای آستانه A^TA در شکل های ۴,۱۴ و ۴,۱۵ و گزارش کردیم. اکنون نتایج مربوط به نرم افزار A^TA مورد بحث قرار می دهیم. شکل های ۴,۱۲ و ۴,۱۴ نشان می دهد که برای مقادیر مختلف آستانه A^TA تعداد سطوح متفاوتی برای توابع هاب دریافت می کنیم. باز هم شکل های ۴,۱۳ و ۴,۱۵ نشان می دهد که برای مقادیر مختلف آستانه A^TA تعداد سطوح متفاوتی برای توابع اقتدار بدست می آوریم.

۱ - ۳ - ۴ بحث

شکل ۴,۷: DSM از CSparse با پارتیشن های ارائه شده [۶]. رنگهای اولیه ، اصلی ، ثانویه ، ثانویه ، ثالث و ثالث با رنگهای قرمز ، بنفش ، سبز ، زرد ، آبی و قهوه ای مشخص می شوند.

شکل ۴,۷ DSM است که پارتیشن ارائه شده در [۶] را نشان می دهد. در اینجا پارتیشن ها اصلی (رنگ قرمز) ، کاربرد اولیه (رنگ بنفش) ، ثانویه (رنگ سبز) ، کاربرد ثانویه (رنگ زرد) ، درجه سوم (رنگ آبی) و درجه سوم (رنگ قهوه ای) هستند. ما می بینیم که توابع اولیه ثانویه و سوم بیشتر توابع دیگر را فرا می خواند. طبق روش HITS این توابع مرکز مهم هستند. از سوی دیگر ما مشاهده می کنیم که خدمات آب و برق بیشتر با توابع دیگر فراخوانی می شوند و طبق روش HITS می توان آنها را به عنوان مقامات در نظر گرفت.

		Thre	eshold	
Hub tiers	0	.3	0	.4
	Name	Category	Name	Category
	cs_schol	Secondary	cs_schol	Secondary
1	cs_sqr	Secondary	cs_sqr	Secondary
	cs_maxtrans	Tertiary		
	cs_qrsol	Primary	cs_qrsol	Primary
2	cs_cholsol	Primary		
	cs_lusol	Primary		
	cs_multiply	Primary	cs_multiply	Primary
	cs_add	Primary	cs_add	Primary
3	cs_lu	Secondary	cs_transpose	Primary
	cs_qr	Secondary	cs_symperm	Secondary
	cs_symperm	Secondary	cs_compress	Primary
	cs_dmperm	Secondary		
4	cs_amd	Secondary		
7	cs_dropzeros	Secondary		
	cs_droptol	Secondary		
	cs_post	Tertiary		
5	cs_counts	Tertiary		
	cs_etree	Tertiary		

شکل ۴٫۸: توابع CSparse، Tiers of Hub انتخاب شده اند

		Thres	shold	
Authority tiers	0	.3	0	.4
	Name	Category	Name	Category
	cs_malloc	Primary_Util	cs_malloc	Primary_Util
1	cs_calloc	Primary_Util	cs_calloc	Primary_Util
	cs_sfree	Secondary_Util		
	cs_free	Primary_Util	cs_free	Primary_Util
	cs_transpose	Primary	cs_nfree	Secondary_Util
2	cs_spfree	Primary_Util	cs_ipvec	Secondary
	cs_nfree	Secondary_Util	cs_sfree	Secondary_Util
	cs_ipvec	Secondary		
	cs_spalloc	Primary_Util	cs_spalloc	Primary_Util
3	cs_done	Tertiary_Util	cs_don e	Tertiary_Util
	cs_sprealloc	Primary_Util		
	cs_scatter	Tertiary		
	cs_fkeep	Tertiary	cs_spfree	Primary_Util
	cs_ddone	Tertiary_Util	cs_ddone	Tertiary_Util
4	cs_dalloc	Tertiary_Util	cs_dalloc	Tertiary_Util
	cs_scc	Tertiary		
	cs_pinv	Secondary		

شکل ۴٫۹: توابع CSparse از DSM انتخاب شده اند

شکل های ۴٫۸ و ۴٫۱۰ نشان می دهد که برای مقادیر مختلف آستانه ، تعداد سطوح متفاوتی برای توابع هاب دریافت می کنیم. این ردیف ها همچنین با مقوله ای که در Sparse ذکر شده مطابقت دارد. به عنوان مثال در شکل ۴٫۸ لسل ۴٫۸ شامل سه عملکرد است: cs post cs count و cs etree که در [۶] به عنوان توابع درجه سوم طبقه بندی شده اند (شکل ۴٫۷). به طور مشابه ، نمودارهای ۴٫۹ و ۴٫۱ نشان می دهد که برای مقادیر مختلف آستانه ، تعداد مختلفی از سطوح توابع اقتدار را بدست می آوریم. این ردیف ها همچنین با مقوله ای که در Sparse ذکر شده مطابقت دارد. به عنوان مثال در شکل ۴٫۹ مرجع درجه ۱ شامل سه عملکرد است: cs malloc cs calloc و cs sfree و cs malloc cs calloc که در [۶] به عنوان توابع مفید طبقه بندی شده اند (شکل ۴٫۷).

Secondary Secondary Category Tertiary cs mextrans cs_schol Name Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary Category Secondary Secondary Secondary Tertiary Tertiary Tertiary Secondary Primary Tentiary cs_multiply
cs_add
cs_transpose
cs_symptem
cs_compress
cs_cholsol
cs_tusol
cs_dupl
cs_dupl cs_schol cs_sqr cs_qrsol cs_maxtrans cs_amd cs_post cs_counts cs_ctree cs_dmperm Secondary Secondary Primary Primary Primary Secondary Secondary Secondary Secondary Secondary Secondary Primary Primary Secondary Tertiary Tertiary Tertiary Tertiary Primary Threshold cs_transpose cs_compress cs_symperm cs_lu cs_dr cs_chol cs_permute cs_load cs_mod cs_post cs_counts cs_counts es_maxtrans cs_multiply cs_add cs_schol cs_sqr Name Category Secondary Secondary Primary Secondary Tertiary Tertiary Primary Primary Secondary Primary Secondary Primary Secondary Tertiary cs_scc cs_counts cs_post cs_transpose cs_compress cs_symperm cs_add cs_add cs_pormute cs_multiply cs_dmperm cs_maxtrans cs_schol cs_sqr cs_qrsd cs amd Name Secondary Secondary Primary Tertiary Secondary Tertiary Tertiary Primary Primary Secondary Primary Secondary Secondary Primary Secondary Category 0.3 cs_post.c cs_transpose.c cs_compress.c cs_symperm.c cs_add.c cs_add.c cs. maxtrans.c cs_dmperm.c cs_amd.c cs_scc.c cs_counts.c es_schol.c es_sqr.c es_qrsd.c Name Hub tiers m 7 4 S)

شكل ۲۰٬۰۹۰ توابع CSparse ، CSparse و شكل ۸۸۰ انتخاب شده اند

		^	3	3				Ξ,	2	3														
	0.7	Category	Primary Util	Primary_Util				Secondary_Util	Secondary	Secondary Util														
		Name	cs_malloc	cs_calloc				cs_sfree	cs_lovec	cs_nfree														
	9.0	Category	Primary Util	Primary_Util	Secondary_Util			Primary_Util	Tertiary_Util	Tertiary	Tertiary		Primary_Util	Secondary	Secondary	Secondary Util	Tertiary	Primary_Util	Tertiary Util	Tertiary_Util	Primary_Util	Tertiary Util	Tertiary	Secondary
		Name	cs malloc	cs_calloc	cs_sfree			cs_spalloc		cs_scatter	cs_cumsum		cs_free	cs_solve	cs_ipvec	cs_nfree	cs_fkeep	cs_spfree	cs_ddone	cs_dalloc	cs_spreelloc	cs_ndone	cs_house	cs happily
Inresnoid	0.5	Category	Primary_Util	Primary_Util	Primary_Util	Secondary_Util		Secondary	Secondary	Secondary_Util	Secondary	Secondary	Tertiary	Primary_Util	Tertiary Util	Tertiary Util	Tertiony_Util	Tertiary						
IIILE		Name	cs_malloc	cs_calloc	cs_free	cs_sfree		cs_usolive	n so	cs_rifree	cs_pvec	cs Itsolive	cs_fkeep	cs_spfree	cs_ddone	cs dalloc	cs_idone	cs_tdfs						
	0.4	Category	Primary_Util	Primary_Util	Primary_Util	Primary_Util	Secondary_Util	Secondary	Secondary	Secondary_Util			Tertiary_Util	Tertiary										
		Name	cs_malloc	cs_calloc	cs free	cs_spalloc	cs_sfree	cs_usolve	3	cs_rufree			cs_done	cs_scatter										
	0.3	Category	Primary_Util	Primary_Util	Primary_Util	Primary_Util	Secondary_Util	Secondary	Secondary	Secondary_Util			Tertiary_Util	Tertiary	Tertiary									
		Name	cs_malloc	cs_calloc	cs_free	cs_spalloc	cs_sfree	cs_usdive	3	cs_rifree			cs_done	CS_CUMBUM	cs_scatter									
Arthority	Tiers				1					2				er.	,			4			5		9	

شکل ۱۰٫۱؛ توابع CSparse، Tiers of Authority را (۲۸ انتخاب شده اند

Hub	Thres	hold
tiers	0.3	0.5
	tape_doc	jacobian
	jacobian	forward
1	forward	inverse_Taylor_prop
	inverse_Taylor_prop	hessian
	hessian	
	operator +	tape_doc
	operator /	filewrite_start
2	operator *	grow
	operator -	reverse
	operator <	hov_ti_reverse
	inverse_tensor_eva	operator +
	jac_solv	pow
3	tensor_eval	operator /
	hov_ti_reverse	operator *
	read_params	operator -
	ADTOOL_AMPI_popGSVinfo	filewrite_ampi
	ADTOOL_AMPI_popReduceInfo	filewrite
4	ADTOOL_AMPI_popGSinfo	filewrite_end
		put_op_reserve
	openTone	ion only
	openTape initNewTape	jac_solv
5	•	inverse_tensor_eva
5	filewrite_start	tensor_eval
	init_rev_sweep	
	getTapeInfos	enarco iac
6		sparse_jac
0		bit_vector_propagation
		sparse_hess

شکل ۴٫۱۲: توابع AA^T از Tiers of Hub ، ADOL-C شکل ۴٫۱۲: توابع

Authority	Threshold	
tiers	0.3	0.5
	myalloc1	myalloc1
	fprintf	myfree1
1	myfree1	myalloc2
	adolc_exit	
	myalloc2	
	loc	adolc_exit
	next_loc	malloc
2	ADOLC_PUT_LOCINT	
	put_op	
	ADOLC_PUT_VAL	
	free	loc
_	malloc	next_loc
3	MINDEC	ADOLC_PUT_LOCINT
		put_op ADOLC_PUT_VAL
	TAPE AMPI read MPI Comm	712020_101_1112
	allocatePack	
4	TAPE_AMPI_read_MPI_Datatype	
	TAPE AMPI read int	
	unpackDeallocate	
	myfroo2	
	myfree3	
5	myalloc3	
	spread1	
	hos_forward	
	fail	
6	begin	
Ŭ	end	
	empty	

شکل ۴,۱۳ از ADOL-C ، توابع Tiers of Authority از ADOL-C ، شکل شکل شکل شده اند

	For Threshold = 0.4						
Hub tiers	Functions	Hub tiers	Functions				
1	jacobian		init_rev_sweep				
	forward	7	init_for_sweep				
	inverse_Taylor_prop		put_op_reserve				
	hessian		get_op_block_f				
2	operator +	8	reg_ext_fct				
	operator /		reg_timestep_fct				
	operator *		cp_fov_reverse				
	operator -		cp_fos_reverse				
	operator <	9	function				
	inverse_tensor_eva		vec_jac				
	jac_solv		gradient				
3	tensor_eval		readConfigFile				
	hov_ti_reverse		close_tape				
	read_params	10	filewrite_end				
	tape_doc		cleanUp				
	ADOLC_TLM_AMPI_Bcast		taylor_close				
4	ADOLC_TLM_AMPI_Allgatherv		lie_covector				
	ADOLC_TLM_AMPI_Scatterv		lie_gradientcv				
	ADOLC_TLM_AMPI_Gatherv	11	lie_bracket				
	ADTOOL_AMPI_popGSVinfo		reverse				
5	ADTOOL_AMPI_popReduceInfo		large_jacobian				
	ADTOOL_AMPI_popGSinfo		grow				
	openTape	12	free_loc				
6	initNewTape		ADTOOL_AMPI_copyActiveBuf				
	filewrite_start		ensure block				
	getTapeInfos		ADTOOL_AMPI_allocateTemp Buf				

شکل ۴٫۱۴: ADOL-C ، توابع Hub توابع ماند =0.4 انتخاب شده اند

	For Threshold = 0.4							
Authority tiers	Functions	Authority tiers	Functions	Authority tiers	Functions			
1	myalloc1 fprintf	6	begin end		fclose strien			
	myfree1 adolc_exit		empty fail	11	strcmp clearTapeBaseNames			
2	myalloc2 loc next_loc	7	fread fseek fopen	12	strncpy BW_AMPI_Barrier BW_AMPI_Wait			
	ADOLC_PUT_LOCINT put_op		cp_hov_forward; cp_fov_forward	12	BW_AMPI_Recv BW_AMPI_Send			
3	ADOLC_PUT_VAL free malloc	8	cp_hos_forward dummy edfoo_iarr_wrapper_fov_ reverse	13	assert emplace_front erase_after			
4	MINDEC TAPE_AMPI_read_MPI_ Detailype TAPE_AMPI_read_int TAPE_AMPI_read_MPI_ Comm	9	spread1 pack1 zos_forward pack2		before_begin edfoo_iarr_wrapper_zos forwerd edfoo_iarr_wrapper_fur tion edfoo_iarr_wrapper_fov forward			
	allocatePack unpackDeallocate		cp_hov_reverse cp_hos_reverse	14	edfoo_wrapper_fov_rev rse edfoo_wrapper_fos_rev rse			
5	myfree2 myfree3 myalloc3 hus furward	10	cp_fos_forward edfoo_iarr_wrapper_fos_ reverse edfoo_iarr_wrapper_fos_ forward					

شکل ALCL-C :۴٫۱۵ توابع Authority از A $^{
m T}$ A آستانه =0.4 انتخاب شده اند

فصل پنجم

جمع بندی

در این پایان نامه ، ما روشی را برای گروه بندی یا دسته بندی عناصر طراحی نرم افزارهای علمی در "ردیف" بر اساس "اهمیت" آنها ارائه کرده ایم. ابتدا ساختار وابستگی نرم افزار را با استفاده از ابزار "Understand" تجزیه و تحلیل کرده و DSM ساخته ایم. DSM نمودار فراخوانی ابزار مناسبی را ارائه می دهد تا بتوان از تکنیک های جبری خطی برای شناسایی تماس فرستندگان و تماس گیرندگان مهم از طریق محاسبه نمایی ماتریس استفاده کرد. با استفاده از مفهوم "اهمیت" عناصر طراحی [۱۳] ، آن عناصر طراحی را رتبه بندی کردیم. سپس ما "شباهت" را در بین عناصر طراحی کشف کردیم. در نهایت با استفاده از "شباهت" بین عناصر طراحی ، آنها را در ردیف های مختلف گروه بندی می کنیم. علاوه بر استفاده از DSM ، ما همچنین از ماتریس $B1 = B2 = A^T$ و برای انتخاب توابعی که بین توابع وابستگی معنایی دارند ، استفاده کردیم. ما الگوریتم خود را بر روی نرم Sparse و CSparse که در C اجرا شده است اعمال کردیم.

مدیریت دانش بر پیچیدگی سازمانی و حوزه های آن تاثیر دارد. اجزای مدیریت دانش (کسب دانش و ذخیره دانش، انتقال و کاربرد دانش) بر پیچیدگی سازمانی تاثیر معناداری دارند. پس می توان گفت مدیریت دانش هم یکی از ابزارهای کاهش و مدیریت پیچیدگی محسوب می شود.

یکی از دلایل اصلی که برنامه های توسعه نرم افزار در نهایت با شکست مواجه میشوند، تخمین ضعیف اندازه نرم افزار است . اندازه عامل مهمی در تعیین هزینه ، زمان و تلاش است . تخمین حجم ، یک فعالیت پیچیده است ، که نتایج آن باید به طور مداوم در سراسر چرخه حیات نرم افزار به روز شده باشد. اقدامات تشخیص حجم نرم افزار شامل تعداد خط کد منبع ، تعداد نقاط تابع و تعداد نقاط ویژه می باشد. پیچیدگی، تابعی از اندازه است ، که تا حد زیادی تحت تاثیر خطاهای طراحی و نقص پنهان هستند که منجر به مشکلات کیفیت و افزایش هزینه ها خواهد شد. پیچیدگی را باید به طور مداوم اندازه گیری، ردیابی و کنترل کرد. معیارهای اندازه گیری نرم افزار جنبه های مختلفی از پیشرفت و پیچیدگی نرم افزار را دارد در نتیجه نقش مهمی در تجزیه و تحلیل و بهبود کیفیت نرم افزارخواهد داشت . معیارهای نرم افزار اغلب به معیارهای محصولات و معیارهای فرآیند طبقه بندی شده اند.

با استفاده از الگوریتم ما می توانیم همه عملکردهای مهم سیستم را دسته بندی کنیم. این دسته به کاربر سیستم کمک می کند تا عملکردهای قابل استفاده (هاب) خود را شناسایی کند. یک سیستم خوب باید مرتباً به روز شود. اما به دلایل مختلف ممکن است نرم افزارهای قدیمی حاوی اسناد فنی کافی نباشند ، بنابراین از دیدگاه قابلیت استفاده ، تشخیص و بازیابی اجزایی که در پروژه های دیگر نرم افزاری مورد استفاده مجدد قرار می گیرند ، دشوار است. بنابراین با استفاده از رویکرد ما ، توسعه دهنده یک سیستم می تواند توابع مهم قدرت را که توسط مراکز مهم نامیده می شوند ، شناسایی کند. این یافته نشان می دهد که تجزیه و تحلیل

سطوح مختلف عملکردهای یک سیستم نرم افزاری ممکن است راهنمای توسعه دهندگان در کار چالش برانگیز طراحی مجدد نرم افزار با تشخیص و بازیابی اجزایی باشد که می توانند در پروژه های نرم افزاری دیگر مورد استفاده مجدد قرار گیرند.

از نظر تحقیقات بیشتر ، ما می خواهیم مشکلات آزمایشی شبکه های بزرگتر را شامل شود. جالب است که مشکلات حوزه های مختلف علمی مانند SNAP و DIMACS10 را برای شناسایی گروه های گره های مهم ذکر کنیم. در این جا ما ماتریس های بدون وزن را در نظر گرفته ایم زیرا برای شناسایی شباهت فقط به اطلاعات مربوط به وابستگی نیاز داریم. برای تحقیقات بیشتر می توان الگوریتم خود را برای ماتریس های وزنی و بدون وزن مقایسه کرد. همچنین در آینده ما می خواهیم روش خود را در کتابخانه نرم افزار کد قدیمی اعمال کنیم که در آن اسناد بسیار کمی وجود دارد یا هیچ گونه اسناد و مدارکی در مورد پروژه در دسترس نیست. روشی که ما در این پایان نامه توسعه دادیم احتمالاً برای این نوع کتابخانه ها مفید خواهد بود.

[1] Lazima Ansari, Shahadat Hossain, and Ahamad Imtiaz Khan. DSMDE: A data exchange

format for design structure models. Sustainability in Modern Project Management: Proceedings of the 18th International DSM Conference, pages 111–121, 2016.

- [2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2e. Addison Wesley, 2003.
- [3] Michele Benzi, Ernesto Estrada, and Christine Klymko. Ranking hubs and authorities using matrix functions. Linear Algebra and its Applications, 438(5):2447–2474, 2013.
- [4] Dan Braha and Yaneer Bar-Yam. The statistical mechanics of complex product development:

Empirical and analytical results. Management Science, 53(7):1127–1145, 2007.

- [5] Jonathan J Crofts and Desmond J Higham. A weighted communicability measure applied to complex brain networks. Journal of the Royal Society, Interface, 6(33):411–414, 2009.
- [6] Timothy A. Davis. Direct methods for sparse linear systems (fundamentals of algorithms
 - 2). SIAM, 2006.
- [7] Steven D Eppinger and Tyson R Browning. Design structure matrix methods and applications. MIT press, 2012.
- [8] John Forrest, Ted Ralphs, Stefan Vigerske, Lou Hafer, Bjarni Kristjansson, jpfasano,

 Edwin Straver, Miles Lubin, Gambini Santos, rlougee, and Matthew Saltzman.

 coinor/cbc: Version 2.9.9, July 2018.

- [9] Linton C Freeman. conceptual clarification." social networks. "Centrality in social networks, 1(3):215–239, 1978.
- [10] Gene H Golub and Charles F Van Loan. Matrix computations. JHU Press, 3, 2012.
- [11] Marco A. Gonzalez. A new change propagation metric to assess software evolvability.

 PhD thesis, University of British Columbia, 2013.
- [12] Andreas Griewank, David Juedes, and Jean Utke. ADOL-C: a package for the automatic
- differentiation of algorithms written in c/c++. ACM Transactions on Mathematical Software, 1996.
- [13] S Hossain, SF Khan, and R Quashem. On ranking components in scientific software.
- In DSM 2015: Modeling and managing complex systems-Proceedings of the 17th International DSM Conference Fort Worth (Texas, USA), 4-6 November 2015, pages 245–254, 2015.
- [14] Shahadat Hossain et al. Efficiently computing with design structure matrices. In DSM 2010: Proceedings of the 12th International DSM Conference, Cambridge, UK, 22.-23.07. 2010, pages 345–358, 2010.
- [15] Shahadat Hossain and Ahmed Tahsin Zulkarnine. Design structure of scientific software–a case study. In DSM 2011: Proceedings of the 13th International DSM Conference, pages 129–141, 2011.
- [16] D. Kelly and R. Sanders. Assessing the quality of scientific software. in Proc of the First International Workshop on Software Engineering for Computational Science and Engineering, 2008.
- [17] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5):604–632, 1999.

- [18] Anany V Levitin. Introduction to design & analysis of algorithms: For anna university,2e. Pearson Education India, 2009.
- [19] Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of complex software designs: An empirical study of open source and proprietary code.

 Management Science, 52(7):1015–1030, 2006.
- [20] M. W. Maier, D. Emery, and R. Hilliard. Software architecture: introducing ieee standard 1471. Computer, 34(4):107–109, 2001.
- [21] Scientific Toolworks Inc. Scitools: Understand. https://scitools.com/.
- [22] Alexandru Telea, Hessel Hoogendorp, Ozan Ersoy, and Dennie Reniers. Extraction and visualization of call dependencies for large C/C++ code bases: A comparative study. In Proceedings of the 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis, VISSOFT 2009, Edmonton, Alberta, Canada, September 25, 2009, pages 81–88. IEEE Computer Society, 2009.

پيوست اول ليست توابع CSparse

Node Number	Function Name	Node Number	Function Name	Node Number	Function Name
1	cs_add	23	cs_Isolve	45	cs_symperm
2	cs_amd	24	cs_ltsolve	46	cs_tdfs
3	cs_chol	25	cs_lu	47	cs_transpose
4	cs_cholsol	26	cs_lusol	48	cs_updown
5	cs_compress	27	cs_malloc	49	cs_usolve
6	cs_counts	28	cs_maxtrans	50	cs_utsolve
7	cs_cumsum	29	cs_multiply	51	cs_calloc
8	cs_dfs	30	cs_norm	52	cs_done
9	cs_dmperm	31	cs_permute	53	cs_spalloc
10	cs_droptol	32	cs_pinv	54	cs_sprealloc
11	cs_dropzeros	33	cs_post	55	cs_spfree
12	cs_dupl	34	cs_print	56	cs_ndone
13	cs_entry	35	cs_pvec	57	cs_free
14	cs_ereach	36	cs_qr	58	cs_idone
15	cs_etree	37	cs_qrsol	59	cs_dalloc
16	cs_fkeep	38	cs_randperm	60	cs_ddone
17	cs_gaxpy	39	cs_reach	61	cs_dfree
18	cs_happly	40	cs_scatter	62	cs_nfree
19	cs_house	41	cs_scc	63	cs_sfree
20	cs_ipvec	42	cs_schol	64	cs_realloc
21	cs_leaf	43	cs_spsolve		
22	cs_load	44	cs_sqr		

شكل A.1: فهرست توابع A.1:

ضمیمه B

ليست توابع ADOL-C

No	Name	No	Name	No	Name	No	Name	No	Name
1	function	31	tensor_eval	61	myalloc2	91	operator >>	121	log10
2	gradient	32	filewrite_start	62	myalloc3	92	operator++	122	sinh
3	vec_jac	33	filewrite	63	myfree3	93	operator	123	tanh
4	jacobian	34	filewrite_ampi	64	myfree1	94	operator +=	124	ceil
5	large_jacobian	35	filewrite_end	65	myfree2	95	operator -=	125	floor
6	jac_vec	36	tape_doc	66	myfreel2	96	operator *=	126	asinh
7	hess_vec	37	lie_scalarcv	67	myalloci2	97	operator /=	127	acosh
8	hess_mat	38	lie_scalarc	68	myalloc1_uint	98	operator !=	128	atanh
9	hessian	39	lie_gradientcv	69	myalloc1_ulong	99	operator ==	129	erf
10	hessian2	40	lie_gradientc	70	myalloc2_ulong	100	operator <=	130	fabs
11	lagra_hess_vec	41	lie_covector	71	myfree1_uint	101	operator >=	131	fmin
12	forodec	42	lie bracket	72	myfree1_ulong	102	operator >	132	fmax
13	forodec_	43	lie_scalar	73	myfree2_ulong	103	operator <	133	ldexp
14	accodec_	44	lie_gradient	74	condassign	104	operator +	134	frexp
15	abs_normal	45	jac_pat	75	condeqassign	105	operator -	135	myquad
	directional_active_grad								
	ient	46	absnormal_jac_pat	76	initInternal	106	operator *	136	operator >>
_	abs_normal_	47	generate_seed_jac	77	adouble	107	operator /	137	adubref
	freecoefflist	48	hess_pat	78	~adub	108	recipr	138	adub
19	tensorpoint	49	generate_seed_hess	79	adubp_from_adub	109	өхр	139	blocker
20	tensorsetup	50	deepcopy_HP	80	getValue	110	log	140	nondecreasing
21	freetensorpoint	51	sparse_jac	81	operator double const&	111	sqrt	141	operator[]
22	freetensor	52	sparse_hess	82	operator double&&	112	cbrt	142	lookupindex
23	summand	53	set_HP	83	operator double	113	sin	143	adolc_vec_cop y
24	coeff	54	get_HP	84	setValue	114	cos	144	adolc_vec_dot
	tensor_address	55	bit_vector_propagation	85	operator =	115	tan	145	adolc_vec_axp y
26	LUFactorization	56	freeSparseHessInfos	86	declareIndependen	116	asin	146	deallocate
27	Gausz Solve	57	ADOLC_get_sparse_j acobian	87	operator <<=	117	acos	147	unpackDealloc ate
28	jac_solv	58	forward	88	operator >>=	118	atan	148	ADOLC_TLM_i nit
29	inverse_Taylor_prop	59	reverse	89	declareDependent	119	atan2	149	ADOLC_TLM_ AMPI_Send
30	inverse_tensor_eva	60	myalloc1	90	operator <<	120	pow	150	ADOLC_TLM_ AMPI_Recv

شكل B.1: فهرست توابع B.1:

No	Name	No	Name	No	Name	No	Name	No	Name
	ADOLC_TLM_AMPL_is		ADTOOL_AMPI_pop_ AMPI_Request		2.5	244	_commonPr	074	
151		101		211	Duffer	241	or all_ext_fct commonPo	271	zos_forward
152	ADOLC_TLM_AMPI_ir	182	ADTOOL_AMPI_push request	212	SubBuffer	242	commonPo st	272	hov forward
153	MUOLC_TEM_AMPI_	183	ADTUOL_AMPI_push comm	213	zeroAll	243	get_ext_dif	273	tov torward
154	ADOLC_TLM_AMPL_B	184	ADTOOL_AMPI_pack DType	214	append	244	edtoo_wrap per_tunctio n	274	hos ti reverse
	ADOLC_TLM_AMPLG		ADTOOL_AMPI_unpa ckDType		getElement	245	edioo_wrap per_tov_tor ward	275	fos_reverse
156	ADOLC_TLM_AMPI_S catter	186	ADTOOL AMPI_getAd jointCount	216	reg_timestep_tct	246	edloo_wrap per_zos_for ward	276	fov_reverse
157	ADOLC_TLM_AMPLA	187	ADTOOL_AMPL setAd jointCountAndTempBu f	217	checkpointing	247	edtoo_wrap per_tos_tor ward	277	callHandleRevers e
158	ADOLC_TLM_AMPI_G atherv	188	ADTOOL_AMPI_alloca teTempBut	218	get_cp_fct	248	edito_wrap per_fos_rev erse editoo_wrap	278	callHandleForwar d
159	ADOLC_TLM_AMPI_S cattery	189	ADTOOL AMPI relea seAdjointTempBuf	219	init_ecf	249	per fov rev	279	caliHandlePrimal
160	ADOLC_TLM_AMPL_A ligathery	190	ADTOOL_AMPLalloca teTempActiveBut	220	cp_zos_forward	250	edito_larr_ wrapper_fu nction edito_larr	280	initTape
161	ADOLC_TLM_AMPI_R educe	191	ADTOOL_AMPI_copy ActiveBuf	221	revolve_for	251	wrapper_fo v_torward cdtoo_iarr_	281	tree Tape
162	ADOLC_TLM_AMPLA lireduce	192	ADTOOL_AMPI_setup Types	222	cp_fos_reverse	252	wrapper_zo s_forward edloo_iarr	282	mediAddHandle
163	ADOLC_TLM_AMPI_B cast	193	ADTOOL_AMPI_clean upTypes MPI_Datatype	223	cp_fov_reverse	253	wrapper_fo s_forward edito larr	283	medilnifTape
164	AMPI_Init_NT	194	MPI Datatype ADTOOL AMPI FW_r awType MPI Datatype	224	cp_clearStack	254	wrapper_to s_reverse edico_iarr_	284	medilnitStatic
165	ADTOOL_AMPI_push Boastinto ADTOOL_AMPI_popB	195	MPI_Datatype ADTOOL_AMPI_BW_r awType	225	cp_takeshot	255	wrapper_fo v_reverse	285	addHandle
166	castinfo ADTOOL AMPI push	196	AMPI_Send	226	cp_restore	256	iteration ID ZOS TORW	286	pdouble
167	DoubleArray	197	AMPI_Recv	227	cp_taping	257	aird _	287	mkparam
168	ADTOOL_AMPI_popD publeArray	198	AMPI_Isend	228	cp_release	258	rp_ros_torw ord	288	mkparam_idx
169	AUTUOL_AMPI_push ReduceInTo	199	AMPI_frecv	229	revolveError	259	rp_tos_reve	289	adjust
170	ADTOOL_AMPI popR educeCountAndType ADTOOL_AMPI popR	200	AMPI_Wait	230	edf_zero	260	to iteration	290	revolve
	educeInfo	201	AMPI_Barrier	231	reg_ext_fct	261	partx	291	rpl_malloc
172	ADTOOL_AMPI_push SRinfo	202	AMPI_Gather	232	update_ext_fct_mem ory	262	_partx	292	rpl_caloc
	Rinto	203	AMPI_Scatter	233	call_ext_fct	263	nos forwar d_partx	293	rpi_realloc
174	AUTOOL_AMPI_push GSinfo	204	AMPI_Allgather	234	get_ext_dift_fct_v2	264	tov_torward _partx	294	Global LapeVarsC L
175	ADTOOL_AMP1_popG ScommSizeForRootOr Null ADTOOL_AMP1_popG	205	AMPI_Gatherv	235	edfoo_v2_wrapper_f unction edfoo_v2_wrapper_z	265	hov_forwar d_partx nos revers	295	free_loc
	Sinto	206	AMPI_Scatterv	236	os_forward	266	е _	296	next_loc
177	AUTOOL_AMPI_push GSVinto	207	AMPI_Allgatherv	237	edtoo_v2_wrapper_t os_forward	267	hov_revers	297	ensure_block
178	AUTOOL_AMPI_popG SVinfo AUTOOL AMPI push	208	AMPI_Bcast	238	edfoo_v2_wrapper_f ov_forward	268	hov_ti_reve rse int_reverse	298	grow Free ree
179	CallCodeReserVe	209	AMPI_Reduce	239	edfloo_vz_wrapper_t os_reverse	269	sāře	299	init i apeintos_kee p
180	ADTOOL_AMPI_push _AMPI_Request	210	AMPI_Allreduce	240	edfoo_v2_wrapper_t ov_reverse	270	nos_torwar	300	initNewTape

شكل B.2: فهرست توابع B.2:

No	Name	No	Name	No	Name	No	Name	No	Name
301	openTape	331	setStoreManagerType	361	set_param_vec	391	spread1	421	get_val_block
302	getTapeInfos	332	reallocStore		read_tape_stats	392	pack1	422	IAPE_AMPI_read int
303	releaseTape	333	fail	363	skip_tracefile_cleanu p	393	MINDEC	423	MPI_Datatype
304	set_nested_ctx	334	printError	364	init_for_sweep	394	pack2	424	MPI_Request
_	currently_nested		clearTapeBaseNames			395	tov_offset_t orward	425	accodeout
306	cached Trace Tags	336	createFileName	366	end_sweep	396	fos_forward	426	acccov
307	setTapeInfoJacSparse	337	duplicatestr	367	put_op_reserve	397	hov_wk_for ward	427	accadj
308	setTapeInfoHessSpars e	338	readConfigFile	368	get_op_block_f	398	free	428	accbrac
309	init_lib	339	take_stock	369	put_loc_block	399	myfree	429	ndopro_forward_ti ght
310	clearCurrentTape	340	keep_stock	370	put_vals_writeBlock	400	spread3	430	ndopro_torward_s afe
311	cleanUp	341	taylor_begin	371	put_val_block	401	accodec	431	ndopro_torward_a bsnormal
312	removeTape	342	taylor_close	372	get_val_block_f	402	pack3	432	nonl_ind_old_forw ard_tight
313	trace_on	343	taylor_back	373	get_val_space	403	fprintf	433	nonl_ind_old_forw ard_safe
314	trace_off	344	write_taylor	374	discard_params_r	404	zos_pi_forw ard	434	noni_ind_forward_t ight
	check InitialStoreSize		write_taylors		reset_val_r	405	fos_pi_reve rse	435	noni_ind_forward_ safe
316	Keeper	346	write_scaylors	3/6	get_op_f	406	memset	436	calloc
317	initADOLC	347	put_tay_block	377	get_op_r	407	ov_pl_forwa. rd	437	int_reverse_tight
	beginParallel		get_taylors		get_locint_f	408	fos_pl_sig_r everse	438	int_reverse_safe
	endParallel	349	get_taylors_p	379	get_locint_r	409	malloc	439	nt_forward_tight
320	TapeInfos	350	get_tay_block_r	380	get_val_f	410	dbinomi	440	nt_forward_safe
	сору		initTapeBuffers		get_num_switches	411	binomi	441	rreeSparseJacInto s
322	Persistant TapeInfos	352	start_trace	382	copy_index_domain	412	convert	442	populate_dpp
323		353	save_params	383		413	multma2vec 1	443	populate_dppp
324	ensureContiguousLoc ations	354	stop_trace	384	combine_2_index_do mains	414	multma2vec 2	444	oc
325	setStoreManagerContr of	355	close_tape	385	merge_3_index_dom ains	415	stmcpy	445	upd_resloc_check
326	consolidateBlocks	356	freeTapeResources	386	free_tree	416	checkPage Break	446	ADOLC_PUT_LO
327		357	tapestats	387	traverse_crs	417	fflush	447	put_op
328	disableMinMaxUsingA bs	358	printTapeStats	388	traverse_unary	418	fclose	448	upd_resloc
329	adolc_exit	359	get_num_param	389	extend_nonlinearity_ domain_binary_ste	419	get_op_blo ck	449	upd_restoc_inc_pr od
330	tree_all_taping_param s	360	read_params	390	extend_nonlinearity_ domain_unary	420	get_loc_blo ck_f	450	ADOLC_PUT_VAL

شكل B.3: فهرست توابع B.3:

No	Name	No	Name	No	Name	No	Name	No	Name
451	value	484	TAPE_AMPI_push_do	517	FW_AMPI_Gatherv	550	BW_AMPL Gather	583	emplace_front
452	ADOLC_init_sparse_p attem	485	TAPE_AMP1_pop_do uble	518	FW_AMPI_Scatterv	551	Scatter	584	dear
453	delete_pa.tem	486	TAPE_AMPI_push_M PLOp	519	FW_AMPI_Aligatherv	552	Allgather	585	pop_front
454	push_back	487	IAPE_AMPI_pop_MP _Comm	520	FW_AMPI_Boast	553	BW_AMPL Gathery	586	next
455	get_pattern_size	488	TAPE_AMPI_pop_MP I_Op	521	FWB_AMPI_Reduce	554	Scattery	587	cend
456	.get_patie m	489	ADIOOL AMPI_pop_ CallCode	522	FW_AMPI_Allreduce	555	Allgathery	588	cbegin
457	begin	490	assert		function_double	556	BW_AMPL Beast	589	front
458	end	491	TAPE_AMPI_push_M PI_Request	524	ADOLC_WRITE_SC AYLOR	557	_Reduce	590	gcTriggerRatio
459	trunc	492	TAPE AMPT_pop_MP Request	525	tummy	558	Alireduce _	591	before_begin
460	size	493	MPI Request ADTOOL_AMPI_pop_ request	526	ppfos forward	559	spread2	592	erase atter
			MFI_Comm ADTOOL_AMPI_pop_				getTapeVec		
-	dubref	494	COMM ADTOOL AMPLISACE	527	tp.tov.torward	560	tor functioners	593	sort
	MPI_Op_create TAPE_AMPI_read_MPI I Comm		veType	528	sp_hos_forward	561 562	runci-orwar	594 595	FatalError StoreManagerLoci nt
	allocatePack		memcpy sDerivedType	529 530	p_hor_forward;	563	funcPrimal	596	strlen
-	TLM AMPI Isend		derivedTypeldk	531	tp_hot_reverse	564	HandleVect	597	sprintf
	TLM_AMPI_Irecv		ADTOOL_AMPI_setA djointCount	532	evolve_for	565	cleari landle	598	strchr
467	TLM_AMPI_Wait	500	MPI_Abort	533	evolve	556	AdolcMediS tatic	599	strtoul
	TLM_AMPL_Berrier	501	ADTOOL_AMPI_ISACT	534	OR OR	567	max	600	stremp
469	TLM_AMPI_Gather	502	getDTypeData	535	empty	568	maxrange	601	stat
470	TLM_AMPI_Scatter	503	MPI_Type_contiguous	536	top	569	numforw	602	put vals_notWrite Bločk
471	TLM_AMPI_Allgather	504	MPI_Type_commit	537	pop	570	realloc	603	ľseek
472	TLM_AMPI_Gatherv	505	MPI_Typic_contiguous	538	saveNonAdoubles	571	init l'apeinto s	604	fread
473	TLM_AMPI_Scatterv	506	MPI_Type_commit	539	restoreNonAdoubles	572	rewind	605	topen
474	TLM_AMPI_Allgatherv		MPI_Type_free	540	populate_dppp_noda ta	573	push	606	fwrite
475	TLM_AMPI_Allreduce	508	FW_AMPI_Send	541	lunction_iArr	574	resize	607	get_tay_block
476	TLM_AMPI_Bcast	509	FW_AMPI_Recv	542	get_ext_diff_fct	575	init	608	markNewTape
477	MPI_Init	510	FW AMPI Isend	543	back	576	pop back	609	put op block
478	TAPE AMPI push int		FW AMPI Irecv		BW AMPI Send	577	remove	610	MIN ADOLC
	TAPE_AMPI_push_M PI_Datatype		FW_AMPI_Wait		BW_AMPL_Recv	578	erase	611	get_val_block_r
480	TAPE_AMPI_push_M PI_Comm	513	FW_AMPI_Barrier	546	BW_AMPI_Isend	579	flush	612	extend_nonlineant y_domain_binary_ step
481	APE_AMPI_pop_MPI_ Comm	514	FW_AMPI_Gather	547	BW_AMPI_Irecv	580	touch		
482	TAPE_AMPI_pop_int	515	FW_AMPI_Scatter	548	BW_AMPI_Wait	581	omp_get_th read_num		
483	TAPE_AMPT_pop_MPT Datatype	516	PW AMPI Allgather	549	BW AMPI Barrier	582	omp_get_n um threads		

شكل B.4: فهرست توابع B.4

واژهنامه فارسی به انگلیسی

ارزيابي الگو

Extraction استخراج

Data Selection انتخاب دادهها

Prediction پیشبینی

Data Transformation تبدیل دادهها

Pattern Evaluation

Diagnosis

Organization

خوشهبندی

Accuracy

Relationships

ماتریس

Calculations

Architecture

Dependence

<u>واژ</u>ەنامە انگلیسی بە فارس<u>ی</u>

Accuracy

Architecture

Calculations

طبقهبندی Classification

Data Itegratin یکپارچهسازی دادهها

Data Mining Techniques تکنیکهای داده کاوی

Data Selection انتخاب دادهها

Data Transformation تبديل دادهها

Dependence

Diagnosis

خطا خطا

Extraction

لرائه دانش Knowledge Presentation

ماتریس

Organization سازمان

Pattern Evaluation ارزيابي الگو

پیشبینی

Relationships

Abstract

One of the expected benefits of a modular design is flexibility. By the word "flexibility" we mean possibility of drastic changes to a module without changing or without knowing other modules. Based on the evolutionary data available on version control systems, it should be possible to analyze the quality of a modular software architecture and decide whether it is worth to restructure its design. In this thesis we investigate this issue using a novel approach based on a general theory of modularity that uses design structure matrices (DSM) for reasoning about quality attributes. Using our approach, we can categorize the functions in different tiers. This finding suggests that the analysis of different tiers of functions of a software system might serve as guidance to developers in the challenging task of redesigning a software by detecting and retrieving components that could be reused in other software projects.

Keywords

Scientific computing software, software complexity, relationship and dependency, design structure matrix.

Payam Noor University

Faculty of Engineering

Seminar Report

Department of Computer Engineering and Information Technology

MANAGING COMPLEXITY IN SCIENTIFIC SOFTWARE

Bahareh Mirzakhani

Supervisor:

Dr. Razavi Ebrahimi

September 2021