# Boolean Algebra

#### Postulate 1 (Definition)

A Boolean Algebra is a closed algebraic system containing a set K of two of more elements and the two operators (.) and (+)

+ is called OR, . is called AND

Postulate 2 (Existance of I and O elements)

For every a in K, there exists unique elements one and zero

a) a + 0 = a b) a · 1 = a

Postulate 3 (Commutativity)

For every a and b in K

a) a+b=b+a a) a.b = b.a

Postulate 4 (Associativity)

For every a, b, and c ink

a) 
$$a + (b+c) = (a+b) + c$$

Postulate 5 (Distributivity)

For every a, b, and c in K

Postviate 6 (Existence of a complement)

For every a in K there exists a unique element called a (complement of a)

a) 
$$a + \bar{a} = 1$$
 b)  $a \cdot \bar{a} = 0$ 

\* Duality

If an expression is valid in Boolean Algebra, the dual of that expression is also valid

Dual is found by replacing + with.

## Theorems of Boolean Algebra

## Theorem 1 (Idempotency)

a) 
$$a + a = a$$
 b)  $a \cdot a = a$ 

## Proof of part a:

$$a + a = (a + a) \cdot 1$$

$$= (a + a) \cdot (a + a)$$

$$= a + a \cdot a$$

$$= a + b$$

$$= a + b$$

$$= a + c$$

$$= a +$$

## Proof of purks:

$$\begin{aligned}
Q \cdot Q &= (\alpha \cdot \alpha) + Q \cdot \overline{\alpha} & P_{2}Q \\
&= (\alpha \cdot \alpha) + (\alpha \cdot \overline{\alpha}) & P_{6}Q \\
&= \alpha \cdot (\alpha + \overline{\alpha}) & P_{6}Q \\
&= \alpha \cdot 1 & P_{6}Q \\
&= Q \cdot 1 & P_{7}Q \cdot \overline{\alpha}
\end{aligned}$$

Proof of part b:

P2a

P2a

P66

Theorem 3 (Involution)

Properties of 0 and 1 elements

| OR    | AND   | Complemen    |
|-------|-------|--------------|
| 9+0=9 | 0.0=0 | <b>⊘</b> = 1 |
| 0+1=1 | 0.1=0 | T = 0        |

## Theorem 4 (Absorption)

Proof of a

$$a + a \cdot b = a \cdot 1 + a \cdot b$$
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot (1 + b)$ 
 $a + a \cdot b = a \cdot ($ 

## Example

$$(x+y) + (x+y) \cdot z = x + y$$

Theorem 5

Proof of part a

$$a + \overline{a} \cdot b = (a + \overline{a}) \cdot (a + \overline{b})$$
 $= (a + \overline{b}) \cdot 1$ 
 $= (a + \overline{b}) \cdot 1$ 
 $= a + \overline{b}$ 
 $= a + \overline{b}$ 
 $= a + \overline{b}$ 
 $= a + \overline{b}$ 

Example

Theorem 6

Proof of part a

$$a \cdot b + a \cdot \overline{b} = a \cdot (b + \overline{b})$$

$$= a \cdot 1$$

$$= a \cdot 1$$

$$= a$$

$$P6a$$

$$= a$$

Example

Theorem 7

Proof of part a

$$a \cdot b + a \cdot b \cdot c = a \cdot (b + b \cdot c)$$
 PSb
$$= a \cdot (b + c)$$
 TSa
$$= a \cdot b + a \cdot c$$
 PSb

Theorem 8: DeMorgan's Law

Generalized Demorgan's

Proof: Postulate 6  $X \cdot \overline{X} = 0$ ,  $X + \overline{X} = 1$ 

Let X = a+b Y = a. b

 $X \cdot Y = (\alpha + b) \cdot (\overline{\alpha} \cdot \overline{b})$ 

= (a.b). (a+b)

P36

= (a.b).a + (a.b).b

PSb

 $= a \cdot (\overline{a} \cdot \overline{b}) + (\overline{a} \cdot \overline{b}) \cdot b \qquad P3b$ 

= (a.a).b + a. (b.b) P46

= 0.b + a.o

P66 [P36]

= 0 + 0

T26

= 0

PZa

$$X+Y = (a+b) + (\bar{a} \cdot \bar{b})$$

=  $(b+a) + (\bar{a} \cdot \bar{b})$ 

=  $b + (a+\bar{a} \cdot \bar{b})$ 

P4 a

=  $b + (a+\bar{b})$ 

T5 a

=  $a + (\bar{b} + b)$ 

P3a, P4 a

=  $a + 1$ 

P6a

T2a

## Example:

$$= \overline{\alpha} + (\overline{b} + \overline{z} \cdot (\overline{x} + \overline{\alpha}))$$

$$= \overline{\alpha} + \overline{b} \cdot (\overline{z} \cdot (\overline{x} + \overline{\alpha}))$$

$$= \overline{\alpha} + \overline{b} \cdot (\overline{z} + (\overline{x} + \overline{\alpha}))$$

$$= \overline{\alpha} + \overline{b} \cdot (\overline{z} + (\overline{x} \cdot \overline{\alpha}))$$

$$= \overline{\alpha} + \overline{b} \cdot (\overline{z} + (\overline{x} \cdot \overline{\alpha}))$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{x} \cdot \alpha$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

$$= \overline{\alpha} + \overline{b} \cdot \overline{z} + \overline{b} \cdot \overline{z}$$

TEG

$$= (\overline{a} + (\overline{b+c})) \cdot (\overline{a} + \overline{b})$$

T86

T80, T3

Theorem 9: Consensus

Proof of Part a

Example:

Tag

A.B.C + A.D + B.D + C.D

P5 b

T8 P

Tag

T8b

PSL

Switching Algebra:

Boolean Algebra with the set of elements k = 20,13

For n variables -> 22n switching functions

2 variables: A B

| AB  | fo | fi | f2 | f3 | fis   |     |
|-----|----|----|----|----|-------|-----|
| 00  | 0  | 1  | 0  | 1  | 1     | A.B |
| 01  | 0  | 0  | l  | ١  | <br>1 | A.B |
| 10  | 0  | 0  | 0  | 0  | 1     | A·B |
| 1 1 | 0  | 0  | 0  | 0  | 1     | A·B |

$$f_o(A,B) = 0$$
  
 $f_i(A,B) = \overline{A} \cdot \overline{B}$   
 $f_o(A,B) = \overline{A} \cdot \overline{B} + A \cdot \overline{B}$ 

f15 (A,B) = A.B + A.B + A.B + A.B

## Truth Table

Tabular form for representing results from evaluating a switching function for all possible input values

$$f(a) = \overline{a}$$

$$A \mid \overline{$$

# f(A,B,C) = A.B.C + A.B + B.C

| ABC                                     | A.B    | ō        | A.B.C     | B.C      | A.B.C+A.B | F(A,B,C) |
|-----------------------------------------|--------|----------|-----------|----------|-----------|----------|
| 000000000000000000000000000000000000000 | 000000 | 10101010 | 00000 - 0 | 000-000- | 000001    | 000-00-  |

| ABC | f(A,B,C) |  |
|-----|----------|--|
| 000 | 0        |  |
| 001 | 0        |  |
| 010 | 0        |  |
| 011 | ١        |  |
| 100 | 0        |  |
| 101 | 0        |  |
| 110 | 1        |  |
| 111 | 1        |  |

Literal: a variable, complemented or uncomplemented

Product Term: a literal or literals that are ANDed together

Sum Term: a literal or literals that are oree together

Sum of Products (SOP)

Oring of product terms

f(A,B,C) = A.B.C + A.C + B.C

Product of Sums (POS)

ANDing of sum terms

f(A,B,C) = (A +B+C) · (A+C) · (B+C)

minterms are product terms in which all variables appear exactly once in either complemented or uncomplemented form

Canonical Sum of Products

expression is represented as a

sum of minterms

uncomplemented variable: 1 complemented variable: 0

| Minterms | Minterm Code | Minterm Number |
|----------|--------------|----------------|
| A·B·C    | 000          | mo             |
| A.B.C    | 001          | mi             |
| A. B. C  | 010          | m <sub>2</sub> |
| A.B.C    | 011          | m <sub>3</sub> |
| A.B.C    | 100          | my             |
| A.B.C    | 101          | ms             |
| A.B.C    | 110          | mo             |
| A.B.C    | 1 1 1        | m <sub>7</sub> |
|          |              |                |
|          | 1            |                |

SOP expression

compact form of canonical SOP

another notation simplification

$$f(A,B,C) = \sum_{m} (2,3,6,7)$$

| ABC | f(A,B,C) = Em(2,3,6,7)  | f'(A,B,c) = Zm (0,1,4,5) |
|-----|-------------------------|--------------------------|
| 000 | 0                       | 1 Emo                    |
| 001 | 0                       | l em,                    |
| 010 | 1 < m2                  | 0                        |
| 011 | l e mg                  | 0                        |
| 100 | 0                       | 1 Emy                    |
| 101 | 0                       | 1 cms                    |
|     | $  \epsilon m_{\phi}  $ | 6                        |
| 111 | 1 c m7                  | 0                        |
|     |                         |                          |

f(A,B,Q,Z) = A.B.Q.Z + A.B.Q.Z + A.B.Q.Z + A.B.Q.Z

Express f(A,B,Q,Z) and f'(A,B,Q,Z)in minterm form

 $f(A,B,Q,Z) = m_0 + m_1 + m_6 + m_7$ =  $\sum_{m} (O_{51}, G_{6,7})$ 

 $f'(A,B,Q,Z) = m_2 + m_3 + m_4 + m_5 + m_8$ +  $m_9 + m_{10} + m_{11} + m_{12} + m_{13}$ +  $m_{14} + m_{15}$ 

= Zm(2,3,4,5,8,9,10,11,12,13,14,15)

Maxterms a sum terms in which all variables appear exactly once in either complemented or uncomplemented form

Canonical Product of Sums

expression is represented as a product of Maxterms

uncomplemented variables: 0 complemented variables: 1

| Maxterms | Maxterm Code | Maxterm Number |
|----------|--------------|----------------|
| A+ B+C   | 000          | Mo             |
| A+B+2    | 001          | M              |
| A+B+C    | 010          | M <sub>2</sub> |
| A+B+C    | 011          | M <sub>3</sub> |
| A+B+C    | 100          | My             |
| A+B+C    | 101          | Ms             |
| A+B+C    | 110          | M <sub>6</sub> |
| A+B+C    | 111          | M7             |
|          |              |                |

# F(A,B,C)= (A+B+C) · (A+B+E) · (A+B+C) · (A+B+E)

= Mo · M, · My · Ms

= TTm (0,1,4,5)

| ABC | A+B+C<br>Mo | A+B+E | A+B+C<br>Mu | A4B+E<br>Ms | f(A,B,C) |
|-----|-------------|-------|-------------|-------------|----------|
| 000 | 0           |       | 1           | 1           | 0 E Mo   |
| 001 | 1           | 0     | 1           |             | O" C MI  |
| 010 | 1           | 1     | 1           |             | 1        |
| 011 | 1           | 1     | 1           |             | đ        |
| 100 | 1 1         | 1 5   | 0           | 1           | 0 C M4   |
| 101 | 1           | 1     | 1           | 0           | 0 E Mg   |
| 110 |             | 1     | 1           | 1           |          |
| 111 | li          | l i   | 1           | 1           |          |

since same truth table output as mintern example

Zm(2,3,6,7) = TTM(0,1,4,5)

mi = Mi

Mi = mi

# Deriving Canonical Forms Using Switching Algebra

# Theorem 10: Shannon's Expansion Theorem

b) 
$$f(x_1, x_2, ..., x_n) = [x_1 + f(0, x_2, ..., x_n)] \cdot [\overline{x_1} + f(1, x_2, ..., x_n)]$$

# Example: f(A,B,C) = A.B + A.E + A.C

Alternatively Use Th 6

Th6: a) a.b + a.b = a

f(A,B,C) = A.B + A.C + A.C

A.B = A.B.C + A.B.C

A.C = A.B.C + A.B.C

A.c = A.B.C + A.B.C

f(A,B,C) = A.B.C + A.B.Z + A.B.Z + A.B.Z + A.B.Z + A.B.C + A.B.C

f(A,B,C)=A·B·C+A·B·C+A·B·C+A·B·C+A·B·C

f(A,B,C) = my + mg + my + my + mi

= Zm (1,3,4,6,7)

Use Th 6 to find canonical POS

Th6: b) (a+b) · (a+b) = a

 $f(A,B,C) = A \cdot (A+E)$ 

A = (A+B) · (A+B) = (A+B+C) · (A+B+C) · (A+B+C) · (A+B+C)

A+T = (A+B+E) · (A+B+E)

f(A,B,C)==(A+B+C)·(A+B+C)·(A+B+C)·(A+B+C)
(A+B+C)·(A+B+C)

F(A,B,C) = (A+B+C)·(A+B+C)·(A+B+C)·(A+B+C)

 $f(A,B,C) = M_0 \cdot M_1 \cdot M_2 \cdot M_3$ =  $T_M(0,1,2,3)$ 

# Incompletely Specified Functions

-> some minterms (Maxterms) are omitted

don't care minterms (Maxterms)

Why don't care?

La some input combinations can never occur

I or o for certain combinations

don't care minterm → di don't care Maxterm → Di Example: F(A,B,C) has minterms mo, m3, m7
and don't cares d4,d5

mintern list: f(A,B,C) = Zm (0,3,7) + d(4,5)

Maxterm list: f(A,B,C) = TTm(1,2,6). D(4,5)

f(A,B,C) = A.B.C + A.B.C + L(A.B.C + A.B.C)
B.C

F(A,B,c) = A.B.C + B.C + d(A.B.C + A.B.C)

B.C

f(A,B,C) = B.C + B.C +MA

# Electronic Signals + Logic Values (ES) (LV)

High Voltage (H)

Low Voltage (L)

Positive logic

a signal set to Logic 1 is asserted, active, true

an active-high signal is asserted when it is high (positive logic)

an active-low signal is asserted when it is low (negative logic)

#### AND

$$a \rightarrow A$$
 $b \rightarrow B$ 
 $Y \rightarrow F(a,b)$ 

| 9 | 6 | f(a,b) |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 1      |

OR

$$a \xrightarrow{A} Y f(a,b)$$

NOT

NAND

$$f(a_0b) = \overline{a \cdot b} \Rightarrow \overline{a} + \overline{b}$$

alternative notation from book (convert to above)

$$a = 2 + 6$$

$$= a + 6$$

$$= a + 6$$

Basic Gates Using NAND Gates Only

$$a \cdot b = \overline{a \cdot b} = \overline{a \cdot b} + \overline{a \cdot b} = \overline{a \cdot b} \cdot \overline{a \cdot b}$$



NOR

alternative notation from book (convert to above)

$$f(a_1b) = \overline{a} \cdot \overline{b}$$

$$= \overline{a} + \overline{b}$$

Basic Gates Using NOR Gates only

$$\overline{a} = \overline{a} \cdot \overline{a} = \overline{a} + \overline{a}$$

## Exclusive - OR (XOR)



$$a \oplus b = \overline{a} \cdot b + a \cdot \overline{b}$$

# Exclusive-NOR (XNOR)

XNOR as SOP and POS

$$aob = \overline{aob} = \overline{a.b} \cdot a.\overline{b}$$

$$= (\overline{a} + \overline{b}) \cdot (\overline{a} + \overline{b}) = (a + \overline{b}) \cdot (\overline{a} + \overline{b})$$
Pos

### Digital Cirwit Design

- · Start from word description
- · transform to switching expressions
- · realize in hardware

## Digital Circuit Analysis

- · Start with hardware realization
- · Find circuit description from various methods including switching expressions, truth tables, and timing diagrams

### Digital Circuit Analysis - Using Switching Algebra

$$P_1 = \overline{a \cdot b}$$
 $P_2 = \overline{a + c}$ 
 $P_3 = b \oplus \overline{c}$ 
 $P_4 = P_1 \cdot P_2 = \overline{a \cdot b} \cdot \overline{a + c}$ 

$$f(a_1b_1c) = \overline{P_3 + P_4}$$

$$= \overline{b \oplus \overline{c} + a \cdot b \cdot \overline{a} + \overline{c}}$$

= 
$$b \cdot \bar{c} + \bar{b} \cdot \bar{c} + (\bar{a} + \bar{b}) \cdot (\bar{a} \cdot \bar{c})$$
  
=  $b \cdot c + \bar{b} \cdot \bar{c} + (\bar{a} + \bar{b}) \cdot (\bar{a} \cdot \bar{c})$   
=  $b \cdot c + \bar{b} \cdot \bar{c} + \bar{a} \cdot \bar{a} \cdot \bar{a} + \bar{a} \cdot \bar{b} \cdot \bar{c}$   
=  $b \cdot c + \bar{b} \cdot \bar{c} + \bar{a} \cdot \bar{b} \cdot \bar{c}$   
=  $b \cdot c + \bar{b} \cdot \bar{c} = b \cdot c$ 

= a.c + a.b + a.b = a.c + abb

### f(a,b,c) = a.c +a@b



### Truth Table Method



| 0 6 6 | ā.c | a # b | t(a,b,c) |
|-------|-----|-------|----------|
| 000   | 0   | 0     | 0        |
| 001   | 1   | 0     |          |
| 010   | 0   | 1     | 1        |
| 011   | 1   |       | l        |
| 100   | 0   | 1     | l        |
| 101   | 0   | 1     | l l      |
| 1 1 0 | 0   | 0     | 0        |
| 111   | 0   | 0     | 0        |

# Analysis of Timing Diagrams

A timing diagram is a graphical representation of input and output signals and their relationships over time

It can also show intermediate signals and propagation delays





| ABC       | fa(A,B,C) | fb(A,B,C) |  |
|-----------|-----------|-----------|--|
| 000       | 0         | 0         |  |
| 001       | 1         | 1         |  |
| 010       | 1         | 0         |  |
| 01.1      | 0         | 1         |  |
| 100       | 0         | 0         |  |
| 101       | 0         | 1         |  |
| 110       | 1         | 1         |  |
| I = I = I |           | 0         |  |

### Propagation Delay

The delay between the time of an input change and the corresponding output change

tph = propagation delay from low-to-high output

tph = propagation delay from high-to-low output

total propagation delay approximation

Ideal (no propagation delay)



tpin = tphi = tpo



tpen < tphe









f(A,B,C) = 2m(1,4,5,6) =A.B.C + A.B.C + A.B.C

= B.C + A.C

f(A,B,c) = TIM (0,2,3,7)

= (A+c)·(B+C) - A.B+ A.C+C.B + C.C = (A+B+C)·(A+B+C)·(A+B+C)·(用意 A.C + B.C

### AND-OR/NAND Network

switching expression in SOP form

$$f(p,q,r,s) = \overline{p,\overline{r}} + \overline{q,r,s} + \overline{p,s}$$
$$= \overline{p,\overline{r}} + \overline{q,r,s} + \overline{p,s}$$

#### OR-AND/ NOR Network

Switching expression in POS form  $f(A,B,C,D) = (\overline{A}+B+C) \cdot (B+C+D) \cdot (\overline{A}+D)$ 



 $f(A,B,C,D) = \overline{(A+B+C) \cdot (B+C+D) \cdot (A+D)}$  $= \overline{(A+B+C) + \overline{(B+C+D)} + \overline{(A+D)}}$ 



# Procedure for Implementing NAND/NOR Logic

- 1 Express the function in minterm/ Maxterm form
- 1 Write out minterms/Maxterms in algebraic form
- 3 Simplify the function to SOP/POS form
- (9) Transform to NAND/NOR form
- 6 Draw the NANDINOR Logic diagram

 $f(X,Y,Z) = \sum_{m} (0,3,4,5,7)$ 

Find NAND implementation

f(x,Y,Z) = x.y.Z + x.y.Z + x.y.Z + x.y.Z + x.y.Z

$$= \overline{X \cdot \overline{Y} \cdot \overline{z}} + \overline{X \cdot \overline{Y} \cdot \overline{z}}$$

= Y.Z + Y.Z + X.Z

$$f(x,y,z) = \overline{y}.\overline{z} \cdot y.\overline{z} \cdot \overline{x}.\overline{z}$$

$$= \overline{y}.\overline{z} \cdot y.\overline{z} \cdot \overline{x}.\overline{z}$$





Sometimes more levels needed due to fan-in/ input constraints



If only allowed to use 2-input AND gates



