L-shape cracking

Mohd Afeef Badri

Abstract

This document details a tutorial of 'fracture mechanics' module of PSD. This tutorial involves cracking of L shaped specimen, where loading is controlled by a point boundary condition.

Figure 1: Geometry of the L-shaped test used in this tutorial.

Preprocessing

You can either solver the problem using vectorial approach (recommended) or using staggered approach. To generate the solver use either from below.

Generation of solver (vectorial)

```
 \begin{array}{c} 1 \ \mathsf{PSD\_PreProcess} \ \mathsf{-dimension} \ 2 \ \mathsf{-problem} \ \mathsf{damage} \ \mathsf{-model} \ \mathsf{hybrid\_phase\_field} \ \\ 2 \ \mathsf{-dirichlet} \mathsf{conditions} \ 1 \ \mathsf{-dirichlet} \mathsf{point} \mathsf{conditions} \ 1 \ \mathsf{-debug} \ \mathsf{-postprocess} \ \mathsf{ud} \ \\ 3 \ \mathsf{-energydecomp} \ \mathsf{-constrainHPF} \ \mathsf{-vectorial} \ \mathsf{-getreactionforce} \ \mathsf{-plotreactionforce} \ \\ 4 \ \mathsf{-reactionforce} \ \mathsf{variational\_based} \end{array}
```

Generating solver (staggered)

```
PSD_PreProcess -dimension 2 -problem damage -model hybrid_phase_field \ 2 -dirichletconditions 1 -dirichletpointconditions 1 -debug -postprocess ud \ 3 -energydecomp -constrainHPF -getreactionforce -plotreactionforce \ 4 -reactionforce variational_based
```

Edit Cycle

Edit ControlParameter.edp:

• Update physical parameter, change

```
real lambda = 121.15e3 , mu = 80.77e3 , \\ Gc = 2.7 ; to real lambda = 6.16e3 , \\ mu = 10.95e3 , \\ Gc = 8.9e-2 ;
```

• Update solver parameter , change

```
real Ifac = 2.0,
maxtr = 7e-3,
tr = 1e-5,
dtr = 1e-5,
lo;
```

to

```
real |fac| = 2.0,

maxtr = 1,

tr = 1e-2,

dtr = 1e-2,

lo;
```

• Enter the correct Point boundary condition, change

to

Edit LinearFormBuilderAndSolver.edp:

• To postprocess correct reaction forces in LinearFormBuilderAndSolver.edp for vectorial solver, change

```
for(int i=0; i < Th.nv; i++){
    if(abs(Th(i).y-1.)<.000001){
    forcetotx = forcetotx + F[][i*3]*DP[i*3];
    forcetoty = forcetoty + F[][i*3+1]*DP[i*3+1];
}
</pre>
```

to

```
if(mpirank==mpirankPCi[0]){
  forcetotx = forcetotx + F[][PCi[0]*3+0]*DP[PCi[0]*3+0];
  forcetoty = forcetoty + F[][PCi[0]*3+1]*DP[PCi[0]*3+1];
}
```

• To postprocess correct reaction forces in LinearFormBuilderAndSolver.edp for staggered solver, change

```
for(int i=0; i < Th.nv; i++){
    if(abs(Th(i).y-1.)<.000001){
    forcetotx = forcetotx + F[][i*2]*DP[i*2];
    forcetoty = forcetoty + F[][i*2+1]*DP[i*2+1];
}
</pre>
```

to

```
if(mpirank==mpirankPCi[0]){
  forcetotx = forcetotx + F[][PCi[0]*2+0]*DP[PCi[0]*2+0];
  forcetoty = forcetoty + F[][PCi[0]*2+1]*DP[PCi[0]*2+1];
}
```

• Finally to include cyclic loading, change

```
1  //-------------------//
2  tr += dtr;
```

to

```
//------//

if(iterout<50)
    tr += dtr;
    if(iterout>=51 && iterout<110)
        tr -= dtr;
    if(iterout>=111)
        tr += dtr;
```


Figure 2: Finite element mesh of the L-shaped test.

Solving

Irrespective of weather vectorial or staggered mode is used solve the problem using PSD_Solve

¹ PSD_Solve -np 4 Main.edp -wg -v 0 -mesh ./../Meshes/2D/L-shaped-crack.msh

Postprocessing

Use ParaView to post process results.

Figure 3: Finite element solution showing: Crack initiation, movement, and development.

On you screen, the force displacement curve which plots (force.data) should look something like this

Figure 4: Force-displacement curve with cyclic loading.