Présenté par:

CAMARA Laby Damaro

Malek Rafrafi

Application De SOM En Python

Pour comparer la sécurité des compagnies aériennes, nous avons dû regrouper les neurones de sortie de cartes autoorganisatrice(SOM) à l'aide d'une technique d'apprentissage automatique non supervisée (kmeans) qui regroupe les compagnies aériennes en différents groupes. Ces groupes sont:

- 1. Safe airlines (Compagnies aériennes sûres) <- 0.
- 2. Doubtfully safe airlines (Compagnies aériennes douteuses) <- 1.
- 3. Risky airlines (Compagnies aériennes risquées) <- 2.

Installation de SOM

```
#!pip install --user -U SimpSOM
```

Importation des packages

```
import pandas as pd
import SimpSOM as sps
from sklearn.cluster import KMeans
import numpy as np
```

Téléchargement du dataset

Nous sommes allés télécharger le dataset des compagnies aériennes sur Kaggle sur lien ci-dessous:

https://www.kaggle.com/danoozy44/airline-safety

Création de dataset

```
df = pd.read_csv("airline-safety.csv")
df.head()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	airline	avail_seat_km_per_week	incidents_85_99	fatal_accidents_85_99	fatalities_85_99	incidents_00_14	fatal_ac
0	Aer Lingus	320906734	2	0	0	0	0
1	Aeroflot*	1197672318	76	14	128	6	1
2	Aerolineas Argentinas	385803648	6	0	0	1	0
3	Aeromexico*	596871813	3	1	64	5	0
4	Air Canada	1865253802	2	0	0	2	0

Data préprocessing

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	avail_seat_km_per_week	incidents_85_99	fatal_accidents_85_99	fatalities_85_99	incidents_00_14	fatal_accidents_00_14	fatalities_(
count	5.600000e+01	56.000000	56.000000	56.000000	56.000000	56.000000	56.000000
mean	1.384621e+09	7.178571	2.178571	112.410714	4.125000	0.660714	55.517857
std	1.465317e+09	11.035656	2.861069	146.691114	4.544977	0.858684	111.332751
min	2.593733e+08	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	4.740362e+08	2.000000	0.000000	0.000000	1.000000	0.000000	0.000000
50%	8.029089e+08	4.000000	1.000000	48.500000	3.000000	0.000000	0.000000
75%	1.847239e+09	8.000000	3.000000	184.250000	5.250000	1.000000	83.250000
max	7.139291e+09	76.000000	14.000000	535.000000	24.000000	3.000000	537.000000

```
train = np.array(df.iloc[:, 1:])
```

Entrainement du modèle Kohonen

```
net = sps.somNet(20, 20, train, PBC=True)
net.train(0.01, 200)
net.save("filename_weights")
net.nodes_graph(colnum=0)
```

```
Periodic Boundary Conditions active.
The weights will be initialised randomly.
Training SOM... done!
```

Node Grid w Feature #0

net.diff_graph()

Nodes Grid w Weights Difference


```
import matplotlib.pyplot as plt

kmeans = KMeans(n_clusters=3, random_state=0).fit(prj)
df["clusters"]=kmeans.labels_

prj=np.array(net.project(train))
plt.scatter(prj.T[0],prj.T[1], c=df.clusters)
plt.show()
```


Les compagnies aériennes sûrs

df[df["clusters"]==0].head()

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	airline	avail_seat_km_per_week	incidents_85_99	fatal_accidents_85_99	fatalities_85_99	incidents_00_14	fatal_accidents_00_14	fa
4	Air Canada	1865253802	2	0	0	2	0	0
8	Alaska Airlines*	965346773	5	0	0	5	1	88
15	Cathay Pacific*	2582459303	0	0	0	2	0	0
16	China Airlines	813216487	12	6	535	2	1	22
27	Iberia	1173203126	4	1	148	5	0	0

Les compagnies aériennes douteuses

```
df[df["clusters"]==1].head()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	airline	avail_seat_km_per_week	incidents_85_99	fatal_accidents_85_99	fatalities_85_99	incidents_00_14	fatal_accidents_00_14
0	Aer Lingus	320906734	2	0	0	0	0
1	Aeroflot*	1197672318	76	14	128	6	1
2	Aerolineas Argentinas	385803648	6	0	0	1	0
3	Aeromexico*	596871813	3	1	64	5	0
7	Air New Zealand*	710174817	3	0	0	5	1

Les compagnies aériennes à risquées

```
df[df["clusters"]==2].head()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	airline	avail_seat_km_per_week	incidents_85_99	fatal_accidents_85_99	fatalities_85_99	incidents_00_14	fatal_accidents_00_14
5	Air France	3004002661	14	4	79	6	2
6	Air India*	869253552	2	1	329	4	1
11	American*	5228357340	21	5	101	17	3
14	British Airways*	3179760952	4	0	0	6	0
19	Delta / Northwest*	6525658894	24	12	407	24	2

```
print('{:.2f} % des compagnies sont sûrs'.format(((len(df[df["clusters"]==0])/len(df))*100)))
```

19.64 % des compagnies sont sûrs

```
print('{:.2f} % des compagnies sont douteuses'.format(((len(df[df["clusters"]==1])/len(df))*100)))
```

62.50 % des compagnies sont douteuses

```
print('{:.2f} % des compagnies sont risquées'.format(((len(df[df["clusters"]==2])/len(df))*100)))
```

17.86 % des compagnies sont risquées

Résumé

L'utilisation des SOM suit les étapes suivantes dans la formation du réseau:

- 1. Initialisez les poids des neurones cachés à de petites valeurs aléatoires ou utilisez l'initialisation du poids PCA.
- 2. Alimentez la ligne xi à la couche d'entrée.
- 3. Itérer à travers chaque neurone dans la couche cachée et trouver le BMU et ses unités voisines.
- 4. Appliquez la mise à jour du poids au BMU et à ses neurones voisins.
- 5. Réduire la fonction de voisinage.
- 6. Répétez les étapes 2 à 5 jusqu'à ce que la limite d'itération atteigne ou que le modèle converge.

Réssources

1. The Ultimate guide to Self organizing maps (SOM's) by SuperDataScience Team. link

https://www.superdatascience.com/blogs/the-ultimate-guide-to-self-organizing-maps-soms

 ${\it 2. Analyzing Climate Patterns with Self-Organizing Maps (SOMs) by Haihan Lan link}\\$

 $\underline{https://towardsdatascience.com/analyzing-climate-patterns-with-self-organizing-maps-soms-8d4ef322705b}$

3. An introduction to self organizing maps by Umut Asan and Secil Ercan link $\,$

https://www.researchgate.net/publication/263084866 An Introduction to Self-Organizing Maps

4. Reach our site

https://www.dalicodes.com/