D-MOSFET can operate in Depletion and Enhancement Mode

• The drain and source are diffused into the substrate material and then connected by a narrow channel adjacent to the insulated gate. Both n-channel and p-channel devices are shown in the figure.

This ppt is created as a reference material (only for the academic purpose) for the students of PICT. It is restricted only for the internal use and any circulation is strictly prohibited.

D-MOSFET...

This ppt is created as a reference material (only for the academic purpose) for the students of PICT. It is restricted only for the internal use and any circulation is strictly prohibited.

D-MOSFET...

- The D-MOSFET can be operated in either of two modes, the <u>depletion mode</u> or the <u>enhancement mode</u>, and is sometimes called a <u>depletion/enhancement MOSFET</u>.
- + V_{GS} /- V_G

 Since the gate is insulated from the channel, either a positive or a negative gate voltage can be applied.
- The n-channel MOSFET operates in the depletion mode when a negative gate-to-source voltage is applied and in the enhancement mode when a positive gate-to-source voltage is applied.
- These devices are generally operated in the depletion mode.

Depletion Mode

- Visualize the gate as one plate of a parallel-plate capacitor and the channel as the other plate. The silicon dioxide insulating layer is the dielectric.
- With a negative gate voltage, the negative charges on the gate repel conduction electrons from the channel, leaving positive ions in their place. Thereby, the n channel is depleted of some of its electrons, thus decreasing the channel conductivity.
- The greater the negative voltage on the gate, the greater the depletion of n-channel electrons. At a sufficiently negative gate-to-source voltage, <u>VGS(off)</u>, the channel is totally depleted, and the drain current is zero.

Enhancement Mode

• With a positive gate voltage, more conduction electrons are attracted into the channel, thus increasing (enhancing) the channel conductivity.

D-MOSFET characteristics

• D-MOSFET can operate with either positive or negative gate voltages.

Joss > Drain to Source Saturation Current

$$ID = IDSS \left(I - \frac{V_{GS}}{V_{GS(OFF)}} \right)^{2}$$

This ppt is created as a reference material (only for the academic purpose) for the students of PICT. It is restricted only for the internal use and any circulation is strictly prohibited.

D-MOSFET characteristics...

- This is indicated on the general transfer characteristic curves in for both n-channel and p-channel MOSFETs.
- The point on the curves where VGS=0 corresponds to IDSS. The point where, ID=0 corresponds to VGS(off).

Numerical Problem

- For a certain D-MOSFET, IDSS 10 mA and VGS(off) = -8 V.
 - (a) Is this an n-channel or a p-channel?
 - (b) Calculate ID at VGS -3 V
 - (c) Calculate ID at VGS 3 V
 - a)The device has a negative VGS(off); therefore, it is an n-channel MOSFET.

b)
$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_{GS(OFF)}})^2 = (10mA) \left(1 - \frac{-3V}{-8V}\right)^2 = \underline{3.91mA}$$

c)
$$I_D = (10mA) \left(1 - \frac{+3V}{-8V}\right)^2 = 18.9mA$$

BJT	MOSFET
It is a current controlled device.	It is a voltage controlled device.
It is a bipolar device (Current flows due to both	It is a unipolar device (Current flows due to only
majority & minority carriers).	majority carriers).
Thermal Runaway can damage the BJT	Thermal Runaway does not take place
Input resistance $(\mathbf{R_i})$ is very \mathbf{low} .	Output resistance (\mathbf{R}_0) is very high .
Transfer characteristics are linear in nature.	Transfer characteristics are non-linear in nature.
BJT is More sensitive than MOSFET	MOSFET is less Sensitive
AC Voltage Gain is HIGH	AC Voltage Gain is Less
Bigger in size.	Smaller in size.
Regions of operation: Saturation – ON Switch, Cut	Regions of operation: Ohmic – ON Switch
off – OFF Switch	,Saturation – Amplifier,
Active – Amplifier	Cut off – OFF Switch
Switching speed is less.	Switching speed is high.
Symbol	Symbol

This ppt is created as a reference material (only for the academic purpose) for the students of PICT. It is restricted only for the internal use and any circulation is strictly prohibited.

MOSFET as a Switch

- Enhancement mode type N-channel MOSFET device. As shown, the MOSFET is switched ON when positive voltage is applied as VGs.
- When zero voltage is applied to the device at VGS, it will be powered OFF.

MOSFET as an Amplifier -> Single stage RC coupled small signal amplifier

This ppt is created as a reference material (only for the academic purpose) for the students of PICT. It is restricted only for the internal use and any circulation is strictly prohibited.

MOSFET as an Amplifier

- The gate is biased with a positive voltage such that $V_{GS} > V_{GS(TH)}$
- The signal voltage produces a swing in VGs above and below its Q-point value, VGSQ.
- This, in turn, causes a swing in ID above and below its Q-point value, IDQ, as illustrated in Figure
- Operation is entirely in the enhancement mode.

Acknowledgements

- 1. Electronic Devices, Thomas L. Floyd
- 2. Web Resources

Thank You..

This ppt is created as a reference material (only for the academic purpose) for the students of PICT.

It is restricted only for the internal use and any circulation is strictly prohibited.