Lecture 29: Basic Sorts

11/4/2020

Sorting Definitions

- An **ordering relation** < for keys a, b, and c has the following properties:
 - Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
 - Law of Transitivity: If a < b, and a < c, then a < c
- An ordering relation with the properties above is known as a "total order"
- A **sort** is a permutation (re-arrangement) of a sequence of elements that puts the keys into nondecreasing order relative to a given ordering relation

Java Note

• Ordering relations are typically given in the form of compareTo or compare methods

```
import java.util.Comparator;

public class LengthComparator implements Comparator<String> {
    public int compare(String x, String b) {
        return x.length() - b.length();
    }
}
```

Sorting: An Alternate Viewpoint

- An **inversion** is a pair of elements that are out of order with respect to <.
 - e,g, 0 1 1 2 3 4 8 6 9 5 7 has 6 inversions out of 55 max
- Another way to state the goal of sorting:
 - Given a sequence of elements with Z inversions
 - Perform a sequence of operations that reduces inversions to 0

Performance Definitions

- Characterizations of the runtime efficiency are sometimes called the **time complexity** of an algorithm. Example:
 - Dijkstra's has time complexity O(E log V)
- Characterizations of the "extra" memory usage of an algorithm is sometimes called the space complexity of an algorithm
 - Dijkstra's has space complexity Theta(V) (for queue, distTo, edgeTo)
 - Note that the graph takes up space Theta(V + E), but we don't count this as part of the space complexity of Dijkstra since the graph itself already exists and is an input to Dijkstra's

Selection Sort and Heapsort

Selection Sort

- We've seen this already
 - Find smallest item
 - Swap this item to the front and "fix" it
 - Repeat for unfixed items until all items are fixed
- Selection sorting N item:
 - Find the smallest item in the unsorted portion of the array
 - Move it to the end of the sorted portion of the array
 - Selection sort the remaining unsorted items
- Sort properties:
 - Theta(N^2) time if we use an array (or similar data structure)
- Seems inefficient: We look through entire remaining array every time to find the minimum

Naive Heapsort: Leveraging a Max-Oriented Heap

- Idea: Instead of rescanning entire array looking for minimum, maintain a heap so that getting the minimum is fast!
- We'll use a max-oriented heap
- Naive heapsorting N items:
 - Insert all items into a max heap, and discard input array. Create output array
 - Repeat N times:
 - Delete largest item from the max heap
 - Put the largest item at the end of the unused part of the output array
- Heapsort runtime and memory:
 - Runtime is O(N log N)
 - Getting items into the heap O(N log N) time
 - Selecting largest item: Theta(1)
 - Removing largest item: O(log N)
 - Memory usage is Theta(N) to build the additional copy of all of our data
 - Worse than selection sort
 - Can eliminate this extra memory cost with some fancy trickery

In-place Heapsort

- Alternate approach, treat input array as a heap
 - Rather than inserting into a new array of length N + 1, use a process known as "bottom-up heapification" to convert the array into a heap
 - To bottom-up heapify, just sink nodes in reverse level order
 - Avoids need for extra copy of all data
 - o Once heapified, algorithm is almost the same as naive heap sort
- Heap sorting N items:
 - Bottom-up heapify input array:
 - Sink nodes in reverse level order: sink(k)
 - After sinking, guaranteed that tree rooted at position k is a heap
 - Repeat N times:
 - Delete largest item from the max heap, swapping root with last item in the heap
 - Since tree rooted at position 0 is the root of a heap, then entire array is a heap

- In-place Heapsort runtime and memory:
 - Runtime is O(N log N), same as regular heapsort
 - Best case runtime of Theta(N)
 - An array of all duplicates will yield linear runtime
 - Extra: the bottom-up heapification is Theta(N) in the worst case
 - Memory complexity is Theta(1)
 - Reuse the same array
 - The only extra memory we need is a constant number of instance variables (e.g. size)
 - Unimportant: If we employ recursion to implement various heap operations, space complexity is Theta(log N) due to need to track recursive calls. The difference between Theta(log N) and Theta(1) space is effectively nothing
 - Has bad cache performance

Mergesort

Mergesort

- Mergesort
 - o Split items into 2 roughly even pieces
 - Mergesort each half (recursively)
 - Merge the two sorted halves to form the final result
- Time complexity: Theta(N log N) runtime
 - Space complexity with auxiliary array: Costs theta(N) memory
- Also possible to do in-place merge sort, but algorithm is very complicated, and runtime performance suffers by a significant constant factor

Insertion Sort

Insertion Sort

- · General strategy:
 - Starting with an empty output sequence
 - Add each item from input, inserting into output at right point
- Naive approach, build entirely new output
 - For naive approach, if output sequence contains k items, worst cost to insert a single item is k
 - Might need to move everything over
- More efficient method:
 - Do everything in place using swapping

In-place Insertion Sort

- · General strategy:
 - Repeat for i = 0 to N 1:
 - Designate item i as the traveling item

 Swap item backwards until traveller is in the right place among all previously examined items

- Runtime analysis:
 - Omega(N), O(N^2)
 - Runtime is at least linear since every item is considered as the "traveler" at least once

Observation: Insertion Sort on Almost Sorted Arrays

- For arrays that are almost sorted, insertion sort does very little work
- Runtime is equal (proportional) to the number of inversions

Insertion Sort Sweet Spots

- On arrays with a small number of inversions, insertion sort is extremely fast
 - One exchange per inversion (and number of comparisons is similar)
 - Runtime is Theta(N + K) where K is number of inversions
 - Define an almost sorted array as one in which number of inversions <= cN for some c. Insertion sort is excellent on these arrays
- Less obvious: For small arrays (N < 15 or so), insertion sort is fastest
 - o More of an empirical fact than a theoretical one
 - Theoretical analysis beyond scope of the course
 - Rough idea: Divide and conquer algorithms like heapsort/mergesort spend too much time dividing, but insertion sort goes straight to the conquest
 - o The Java implementation of mergesort does this

Sorts Table

	Best Case Runtime	Worst Case Runtime	Space	Demo	Notes
Selection Sort	Θ(N ²)	Θ(N ²)	Θ(1)	<u>Link</u>	
Heapsort (in place)	Θ(N)*	Θ(N log N)	Θ(1)	<u>Link</u>	Bad cache (61C) performance.
Mergesort	Θ(N log N)	Θ(N log N)	Θ(N)	<u>Link</u>	Fastest of these.
Insertion Sort (in-place)	Θ(N)	Θ(N ²)	Θ(1)	Link	Best for small N or almost sorted.
Shell's Sort	Θ(N)	Ω(N log N), O(?)	Θ(1)	N/A	Rich theory!