

Université Djilali Liabés- Sidi Bel Abbes 2ème Année Master Probabilités Appliquées

Base de données avancée et système répartis

Mohammed Fethi KHALFI

2023-2024

Fethi.Khalfi@yahoo.fr

Modèle logique des données

Passage du MCD au MLD

Modélisation à plusieurs niveaux

Rappel: Histoire des modèles

Le modèle hiérarchique

Rappel: Histoire des modèles

Le modèle réseau

Rappel: Histoire des modèles

Le modèle relationnel

ETUDIANT

ENSEIGNANT

NO_ET	NOM	ADRESSE	NO_ENS	NOM	CATEGORIE
1215	Anne	Grenoble	101	Boudrault	MC
1218	Pierre	Paris	105	Gispert	MC
1230	Jean	Marseille	110	Sabatier	MC

UNITE

INSCRIPTION

NO_UV	TITRE	NO_ENS	NO_ET	NO_UV	AN	BOOL
152	Bases de données	110	1215	152	1996	Reçu
210	systèmes	105	1215	210	1996	Echec
212	Langage	101	1215	210	1997	Reçu
255	architecture	105	1218	152	1997	Reçu
		,	1230	210	1997	Echec

- Nous abordons maintenant la traduction d'un modèle entité association en un schéma de base de données relationnelle.
- Il s'agit essentiellement de définir une méthode qui permet de représenter les ensembles d'entités et de liens par des tables.

Les premières règles de passage 1 et 2 sont capitales pour transformer un modèle entité-association en un schéma de base de données relationnelle

Règle 1 (ensemble d'entités)

- Chaque ensemble d'entités doit être traduit en une table distincte, dotée d'une clé primaire qui peut être soit la clé correspondante de l'ensemble d'entités, soit une clé candidate.
- Les propriétés de l'entité deviennent les attributs de la table.

Règle 1 (ensemble d'entités)

Règle 1 (ensemble d'entités)

Choix d'une clé candidate comme clé primaire

- La définition d'une table requiert une clé primaire unique.
- Il peut exister dans une table plusieurs clés candidates (candidate keys, en anglais).

- Chaque ensemble de liens (Association) peut être traduit en une table distincte.
- Les clés d'identification des ensembles d'entités participantes doivent y figurer comme clés étrangères.

- La clé primaire de cette table peut être une clé d'identification formée par la concaténation des clés étrangères.
- Les autres attributs de l'ensemble de liens complètent les attributs de la table.

Les clés étrangères traduisent les liens entre les tables

 L'application des règles de passage 1 et 2 ne conduit pas toujours à un schéma de base de données relationnelle optimal.

Représentation des types d'associations :

- Nous devons distinguer les trois classes fonctionnelles de types d'associations :
 - un à- plusieurs,
 - un-à-un,
 - plusieurs-à-plusieurs.

Relations

Relation binaire

Cas spéciaux

Plusieurs relations entre 2 objets

Relations

Relation ternaire

Exemple:

 Toute entité devient une relation ayant pour clé primaire son identifiant. Chaque propriété se transforme en attribut.

Remarque : contrairement aux propriétés, les attributs ne doivent pas comporter d'espaces.

Exemple:

Toute association hiérarchique [1, n] se traduit par une clé étrangère. La clé primaire correspondant à l'entité père (côté n) migre comme clé étrangère dans la relation correspondant à l'entité fils (côté 1).

COMMANDE(<u>numéro_commande</u>, date, état, montant_total, # code_client)

Exemple:

 Les attributs (propriétés) de la relation (PASSER) deviennent des attribut ou elle a migres la clé étrangère.

COMMANDE(<u>numéro_commande</u>, date, état, montant_total, # code_client(,Date)

Profs

Nom	Prénom	Adresse	
Bouganim	Luc	Paris	
Crenn	Isabelle	Paris	

Nom	NomCours	Description	NbreHeures
Bouganim	Info	Informatique	20
Crenn	Math	Mathématique	48
Crenn	Droit	Droit	26

Exemple:

- Département(Nom, Localisation, #MatriculeChef, DateNomination)
- Employé(Matricule, Nom, Prénom)

Exemple:

Toute association non hiérarchique [n, n] devient une relation. La clé primaire est formée par la concaténation l'ensemble des identifiants des entités reliées. Toutes les propriétés éventuelles deviennent des attributs.

CONCERNER (#numéro commande, #référence article, quantité)

Entité-association

Modèle Relationnel:

Client (<u>No Client</u>, Nom, Prenom)
Carte Membre (<u>No Carte</u>, Type_abonnement, date_creation, #*No_Client*)
Clé étrangère de active

Profs

Nom	Prénom	Adresse	NomCours	NbreHeures
Bouganim	Luc	Paris	Info	44
Crenn	Isabelle	Paris	Math	78

Cours

NomCours	Description
Info	Informatique
Math	Mathématiques
Droit	Droit

Entité-association

On duplique la clé d'une des tables dans l'autre

Modèle Relationnel:

```
SALARIE(<u>no Salarié</u>, nomS, prénomS, #no_Entreprise)

OU

ENTREPRISE(<u>no Entreprise</u>, nomE, adresse_siège, #no_Salarié)
```

Cas spéciaux : réflexive

Exemple d'une association réflexive many-to-many

Exemple d'une association réflexive one-to-one

Cas spéciaux : réflexive

Société (NoSocieté, nom, Capital)

Detient (NoSocieté, NoSocieté Mere, Pourcentage de capital)

Cas spéciaux : cas de l'héritage

Exemple:

Véhicule(NumChassis, Marque, Modèle)

- VéhiculeLéger(#NumChassis, CapacitéCoffre)
- VéhiculeLourd(#NumChassis, AvecRemorque)

Cas spéciaux : cas de l'héritage

Exemples

Facturation

Exemples

Geston d'école

Exercices

Exercices

Next...

Sous-types

EMPLOYE(N° employeNom employé)

COMMERCIAL(Commercial, N employe, %vente)

TECHNIQUE(<u>Technique</u>, *N*° *employe*, Qualification, Specialite)

ADMINISTRATIF(<u>Administratif</u>, N° employe, Statut)

EMPLOYE(N° employe,Nom employé,soustype)

COMMERCIAL(N employe,%vente)

TECHNIQUE(N° employe,Qualification,Specialite)

ADMINISTRATIF(N° employe,Statut)