Topic Modelling

Implementation des LDA Modells (Gensim) auf ein Korpus von Interviewfragen des NDR Corona Podcast

Inhalt

- Einführung in Topic Modelling
- LDA-Modell von Gensim
- Anwendung auf Corona Podcast
 - Implementation in Python
 - Ergebnisse
- Fazit/Ausblick

1. Topic Modelling

Topic Modelling

Abb. 1: vereinfachter Ablauf Topic Modelling

- Verfahren zur automatisierten Inhaltsanalyse
- Gebiet des unüberwachten maschinellen Lernens zuzuordnen
- Beschreibung bzw.
 Zusammenfassung der latenten
 Struktur großer Datensammlungen
- Berechnung von Themen aus Worthäufigkeiten in Dokumenten
- bekannteste Verfahren: LDA, CTM,
 STM

Topic Modelling bietet Methoden zum automatischen Organisieren, Verstehen, Suchen und Zusammenfassen großer Datenmengen an.

- Aufdecken latenter
 Themen in Sammlungen
- Klassifizierung der Elemente einer Sammlung
- Optimierung von Suchprozessen

Topic Modelling

Annahme:

Ein Korpus besteht aus D Dokumenten (einzelne Dokumente als d_1 , d_2 , ...) und V Wörtern bzw. Termen (= alle Wörter, die im gesamten Korpus vorkommen, einzelne Wörter als v_1 , v_2 , ...).

Es kommen latente Themen K zu unterschiedlichen Anteilen in den Dokumenten D vor, K wird vor Beginn festgelegt.

Alle Wörter *V* gehören zu unterschiedlichen Wahrscheinlichkeiten zu den Themen *K*.

(Vgl. Unkel 2020)

Topic Modelling

Ziel:

Berechnung der Matrix *D x K*: für jedes Dokument *d* und jedes Thema *k* wird die Wahrscheinlichkeit berechnet, dass das Thema im Dokument vorkommt

Berechnung der Matrix $V \times K$: für jedes Wort w und jedes Thema k wird die Wahrscheinlichkeit berechnet, dass das Wort im Thema vorkommt

→ Beschreibung und Interpretation der Themen

$$\begin{array}{c}
D \times K \\
k_{1} : 0.5 \\
k_{2} : 0.3 \\
k_{3} : 0.1 \\
k_{n} : 0.2
\end{array}$$

$$\begin{array}{c}
V \times K \\
v_{1} : 0.1 \\
v_{2} : 0.4 \\
v_{3} : 0.1 \\
v_{n} : 0.2
\end{array}$$

Abb. 2: Beispielmatrixen

2. Latent Dirichlet Allocation (LDA)

- generatives probabilistisches Modell f
 ür Datensammlungen (z.B. Textkorpora)
 - Technik um Dimension von Datensammlungen zu reduzieren
 - o Anwendung auf Big Data
- Ziel: Finden von kurzen Beschreibungen zu den Elementen einer
 Datensammlung zur effizienten Verarbeitung großer Datenmengen
- Unterschied zu einem einfachen Dirichlet-multinomial Clustermodell:
 Dokumente werden mehrere Themen zugeordnet

(Vgl. Blei et al. 2003)

Annahmen:

- Jedes Dokument ist eine Sammlung von Wörtern bzw. 'Bag-of-Words'.
 - Reihenfolge von Wörtern + grammatische Rollen werden nicht berücksichtigt
 - "assumption of exchangeability" (Blei et al. 2003: 994)
- Anzahl der Themen k ist im Voraus festgelegt
- Alle Themenzuordnungen mit Ausnahme des aktuellen Wortes sind korrekt
 - Zuordnung eines Themas zum aktuellen Wort wird anhand des generativen Modells der Dokumente durchgeführt

	the	red	dog	cat	eats	food
the red dog	1	1	1	0	0	0
cat eats dog	0	0	1	1	1	0
dog eats food	0	0	1	0	1	1
red cat eats	0	1	0	1	1	0

Abb. 3: Beispiel Bag-of-Words

M = Repräsentation von Dokumenten

N = Repräsentation von wiederholter Entscheidung von Topics und Wörtern innerhalb eines Dokuments

Abb. 4: Graphische Repräsentation des LDA-Modells (Blei et al. 2003: 997)

Ablauf - Berechnung der Wortwahrscheinlichkeiten ($V \times K$):

- 1. Jedem Wort *w* eines Dokuments *d* wird eins von *n* Themen *K* zufällig zugeordnet. *n* wurde im Voraus festgelegt.
- 2. Für jedes Dokument d wird für jedes Wort w folgendes berechnet:
 - a. **p(k | d)**: Anteil der Wörter im Dokument d, die dem Thema k zugeordnet sind, das aktuelle Wort wird nicht betrachtet
 - b. **p(w | k)**: Anteil der Zuordnungen zum Thema k an allen Dokumenten, die von diesem Wort w stammen
- 3. Berechnung der Wahrscheinlichkeit für aktuelles Wort mit zugewiesenen Thema:

$$p(w mit k) = p(k \mid d) * p(w \mid k)$$

(Vgl. Kulshrestha 2019)

3. LDA-Modell von Gensim

Was ist Gensim?

URL: https://radimrehurek.com/gensim/_images/gensim_logo_positive_complete _tb.png

- frei verfügbare Open-Source Python-Bibliothek
- aufrufbar unter: https://radimrehurek.com/gensim/
- Bereitstellung unüberwachter maschineller Lernalgorithmen zur Verarbeitung unstrukturierter digitaler Texte
 - Darstellung dieser als semantische Vektoren
 - benötigt keine manuelle Annotation, nur ein "plain-text"-Korpus
 - o z.B. Word2Vec, FastText, LSI, LDA
- Aufdecken semantischer Strukturen von Dokumenten durch Untersuchung statistischer "co-occurrence patterns" innerhalb eines Trainingskorpus

Gensim

Kernkonzepte:

- Dokumente: Textsequenzen (in Python: str)
- Korpora: Sammlungen von Dokumenten
 - Funktionen: Trainingskorpus (Suche nach gemeinsamen Themen, Initialisierung der internen Modellparameter), Testkorpus (Extraktion von Themen, Ähnlichkeitsabfragen, z.B. semantische Ähnlichkeit, Clustering)
- Vektoren: Darstellung der Dokumente als Vektor von Merkmalen (z.B. Anzahl von Wörtern, Absätzen, Schriftarten, etc.) zur mathematischen Verarbeitung
 - o erlaubt Darstellung der Merkmale nur als einzelne Fließkommazahl
 - Nutzen eines Bag-of-Words-Vektors: enthält Häufigkeit jedes Wortes im Wörterbuch, Länge des Vektors entspricht der Anzahl der Einträge im Wörterbuch
 - erlaubt Vergleichbarkeit der Ähnlichkeit von Dokumenten eines Korpus anhand der Ähnlichkeit der Vektorrepräsentation
- Modelle: Algorithmus zur Umwandlung von Vektoren von einer Darstellung in eine andere
 - Transformation zwischen zwei Vektorräumen
 - Erlernen der Transformation während des Trainings

LDA-Modell als eine
Umwandlung von
Bag-of-Words-Zählungen in
einen Themenraum mit
geringerer Dimensionalität

- Themen von LDA als Wahrscheinlichkeitsverteilungen über Wörter
- Ableitungen der Verteilungen aus dem Trainingskorpus
- Dokumente als Mischung dieser Themen

LDA-Modell von Gensim

Abb.5: Ablauf LDA Gensim

4. Implementation LDA Corona Podcasts

Implementation LDA-Modell auf Corona Podcasts

- Implementation in Python 3.9
- Code verfügbar unter: https://github.com/ChristineSchaefer/topicmodel_coronapodcast.git
- Korpus: an die Wissenschaftlerin Sandra Ciesek und an den Wissenschaftler
 Christian Drosten gestellte Fragen im NDR Corona Podcast (Folge 1 Folge 68)
 - o Fragen extrahiert aus verfügbaren PDFs und abgespeichert in csv-Datei
- verwendete Bibliotheken: SpaCy, NLTK, Gensim
 - Training des LDA-Modells mit Lemmata (Unigram) anstelle von N-Grammen

Datengrundlage

	Sandra Ciesek	Christian Drosten
Anzahl der Interviews	8	57
Fragen/Dokumente	285	1135
Unique Tokens (insg.)	288	810
Unique Tokens (filter)	17	67
Dokumente (filter)	219	837

Tab. 1: Anzahl der verfügbaren Interviews, Fragen und Tokens als Input für das LDA-Modell

Implementation

Trainingsparameter:

- num_topics: Anzahl der Themen abhängig von Daten und Anwendung
 - relativ kleines Korpus → Anzahl der Themen gering
- chunksize: Anzahl der Dokumente, die gleichzeitig verarbeitet werden sollen
- passes: Anzahl des Trainings auf das gesamte Korpus
- iterations: Anzahl der Wiederholung einer Schleife über jedes Dokument

```
num_topics = 5
chunksize = 2000
                   # how often the model will be trained
passes = 20
iterations = 400
eval_every = 1
temp = dictionary[0]
id2word = dictionary.id2token
model = LdaModel(
    corpus=corpus,
    id2word=id2word,
    iterations=iterations,
   num_topics=num_topics,
   eval_every=eval_every
```

Abb. 6: Code-Ausschnitt Training LDA

Evaluation

 Vergleich der beiden Modelle durch Berechnung der Perplexity:

$$perplexity(D_{\text{test}}) = \exp\left\{-\frac{\sum_{d=1}^{M} \log p(\mathbf{w}_d)}{\sum_{d=1}^{M} N_d}\right\}.$$

Abb. 7: Formale Darstellung der Perplexity (Brim et al. 2003: 1008)

 Evaluation nach jeder Runde des Trainings, nach 20 Runden:

	Sandra Ciesek	Christian Drosten
Perplexity	7.3	20.5
Perplexity pro Word	-2.870	-4.360
Topic Difference	0.005292	0.016556

Tab. 2: Evalulationsergebnisse LDA

Sind die ermittelten Themen verständlich?
Sind die Themen kohärent?
Dient das Themenmodell dem Zweck, für den es verwendet wird?

Topics Sandra Ciesek

Topics Sandra Ciesek

Topics Sandra Ciesek

Topic 1	0.223
Topic 2	0.188
Topic 3	0.184
Topic 4	0.209
Topic 5	0.188

Tab. 3: Wahrscheinlichkeiten der Themen SC

Topics Christian Drosten

Topics Christian Drosten

Topics Christian Drosten

Topic 1	0.210
Topic 2	0.148
Topic 3	0.211
Topic 4	0.256
Topic 5	0.231

Tab. 4: Wahrscheinlichkeiten der Themen CD

5. Fazit und Ausblick

Fazit und Ausblick

- Anwendung des LDA Modells von Gensim auf ein Korpus von Fragen des NDR Corona Podcast als gute Möglichkeit, latente Themen innerhalb dieser sichtbar zu machen
 - weniger Arbeit als manuelle Einsicht
 - o Interpretation der Themen (und deren Zusammenhänge) als möglich erachtet

Aber:

- o zu kleines Korpus, um Ergebnisse als "wahr" anzuerkennen
- Einbezug von Wörtern, die nicht bedeutungstragend für das Thema sind, aber trotzdem gewichtet wurden (z.B. Frau oder Herr)
- → Anwendung auf ein größeres Korpus zum Trainieren und Testen

Fragen?

Literatur

Blei, David M. et al. (2003): *Latent dirichlet allocation*. J. Mach. Learn. Res. 3, null (3/1/2003). S. 993–1022.

Hoffman, Matthew D. et al. (2010): *Online Learning for Latent Dirichlet Allocation*. Advances in Neural Information Processing Systems. 23. S. 856-864.

Kulshrestha, Ria (2019): A Beginner's Guide to Latent Dirichlet Allocation(LDA). A statistical model for discovering the abstract topics aka topic modeling. Abrufbar unter: https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2 (zuletzt aufgerufen: 18.10.2021)

Unkel, Julian (2020): *Topic Modeling*. In: Computational Methods in der politischen Kommunikationsforschung. Methodische Vertiefung: Computational Methods mit R und RStudio. Abrufbar unter: https://bookdown.org/joone/ComputationalMethods/topicmodeling.html (zuletzt aufgerufen: 18.10.2021)