ARIMAX Modeling - US Economy

Andira Putri

This exercise is taken from **Time Series Analysis and Its Applications: With R Examples** by Shumway and Stoffer. We will be using the econ5 data set from the astsa library. econ5 is a five quarterly economic series containing the following numeric variables: quarterly U.S. unemployment, GNP, consumption, government investment, and private investment. There are 161 observtions spanning from 1948-III to 1988-II.

Consider the data set econ5. The seasonal component has been removed from the data. Concentrating on unemployment (U_t) , GNP (G_t) , and consumption (C_t) , fit a vector ARMA model to the data after first logging each series, and then removing the linear trend. That is, fit a vector ARMA model to $x_t = (x_{1t}, x_{2t}, x_{3t})^t$ where, for example, $x_{1t} = log(U_t) - \hat{\beta}_0 - \hat{\beta}_1 t$, where $\hat{\beta}_0$ and $\hat{\beta}_1$ are the least squares estimates for the regression of $log(U_t)$ on time t. Run a complete set of diagnostics on the residuals.

Curious Plotting

From the plots, GNP and consumption would be interesting variables to use as regressors. We can use time, GNP, and consumption to predict unemployment in the United States.

Model Fitting

log transform
log.u=log(u)
log.g=log(g)
log.c=log(c)

```
log.df=cbind(t,log.u,log.g,log.c)
# fit vector ARMA model
varma=auto.arima(log.u,xreg=log.g+log.c)
summary(varma)
## Series: log.u
## Regression with ARIMA(2,0,2) errors
##
## Coefficients:
##
                     ar2
                             ma1
                                     ma2
                                         intercept
                                                       xreg
##
         1.3402 -0.4594 0.0105 0.1673
                                            -0.5774 0.1519
## s.e. 0.1629
                  0.1505 0.1615 0.1218
                                             1.2475 0.0838
##
## sigma^2 estimated as 0.006463: log likelihood=179.12
                AICc=-343.51 BIC=-322.67
## AIC=-344.24
##
## Training set error measures:
                                   RMSE
                                               MAE
                                                          MPE
                                                                  MAPE
## Training set 0.0002232862 0.07887831 0.05894522 -0.2729806 3.777929
                     MASE
                                ACF1
## Training set 0.8940719 0.01596416
```

Diagnostics

Residuals from Regression with ARIMA(2,0,2) errors

##
Ljung-Box test

```
##
## data: Residuals from Regression with ARIMA(2,0,2) errors
## Q* = 9.3476, df = 4, p-value = 0.05297
##
## Model df: 6. Total lags used: 10
```

Our residuals are normally-distributed for the most part, and there is no clear spike in the ACF diagram. The Ljung-Box test has a p-value of 0.05297 at the 5% level, so the data is independently distributed and there are no remarkable autocorrelations at any lag. This is a desirable result.

Forecasting

We randomly generate vectors for log(g) and log(c) to use as input values for our forecasting model. Both vectors are of length 8, so we aim to forecast the next 8 quarters' log(u) values. Note that for multiple regressors, we have to combine the vectors into a matrix for our forecast() function to work properly.

Forecasts from Regression with ARIMA(2,0,2) errors

