Lecture 5: The CMOS Inverter

Acknowledgements

All class materials (lectures, assignments, etc.) based on material prepared by Prof. Visvesh S. Sathe, and reproduced with his permission

Visvesh S. Sathe
Associate Professor
Georgia Institute of Technology
https://psylab.ece.uw.edu

UW (2013-2022) GaTech (2022-present)

CMOS Gate Design

- Analyze important aspects of CMOS logic
 - Static Operation (Static Noise Margin, Hold resistance)
 - Dynamic operation (Cross-over current, current-drive, delay)
 - Power dissipation
 - Gate sizing basics
 - Effect of voltage scaling
- Use inverter design to understand these various aspects

DC Response

- DC transfer function of a balanced, ideal inverter
 - At each dc value of V_{in}, evaluate V_{out} and record

- Static analysis
 - Assumes load is capacitive (No steady-state current draw)
 - Voltages are dc (Amount of capacitive load is irrelevant)
- Inverter DC analysis
 - Devices operate over a variety of modes across voltage range
 - Governing equation:
 - Both, equation-based and graphical analysis is valuable
 - Useful in determining robustness to noise (Static Noise Margin/Holding Res)

- Static analysis
 - Assumes load is capacitive (No steady-state current draw)
 - Voltages are dc (Amount of capacitive load is irrelevant)
- Inverter DC analysis
 - Devices operate over a variety of modes across voltage range
 - Governing equation:
 - Both, equation-based and graphical analysis is valuable
 - Useful in determining robustness to noise (Static Noise Margin/Holding Res)

- Static analysis
 - Assumes load is capacitive (No steady-state current draw)
 - Voltages are dc (Amount of capacitive load is irrelevant)
- Inverter DC analysis
 - Devices operate over a variety of modes across voltage range
 - Governing equation:
 - Both, equation-based and graphical analysis is valuable
 - Useful in determining robustness to noise (Static Noise Margin/Holding Res)

- Static analysis
 - Assumes load is capacitive (No steady-state current draw)
 - Voltages are dc (Amount of capacitive load is irrelevant)
- Inverter DC analysis
 - Devices operate over a variety of modes across voltage range
 - Governing equation: Pullup current == Pulldown current
 - Both, equation-based and graphical analysis is valuable
 - Useful in determining robustness to noise (Static Noise Margin/Holding Res)

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

- \blacksquare $I_{dsat,n} = I_{dsat,p}$
- $V_{th,n} = V_{th,p} = 200 \text{mV}$
- Mark out locus of operation

• $V_{in} = 0$

• $V_{in} = 0 \rightarrow Nmos in cutoff$

■ $V_{in} = 0 \rightarrow Nmos in cutoff \rightarrow Pmos in linear$

 $ightharpoonup V_{th} < V_{in} < V_{out} - V_{th}$

- $Arr V_{th} < V_{in} < V_{out} V_{th}$
 - Nmos turns on in saturation

- $Arr V_{th} < V_{in} < V_{out} V_{th}$
 - Nmos turns on in saturation
 - Pmos in linear

- \blacksquare $V_{th} < V_{in} < V_{out} V_{th}$
 - Nmos turns on in saturation
 - Pmos in linear

Analytically, approximate
The rate of descent of Vout.
(sub|super) (linear/quadratic/cubic)

 $Arr V_{out} - V_{th} < V_{in} < V_{out} + V_{th}$

- $V_{out} V_{th} < V_{in} < V_{out} + V_{th}$
 - Nmos remains in saturation

- $Arr V_{out} V_{th} < V_{in} < V_{out} + V_{th}$
 - Nmos remains in saturation
 - Pmos transitions to saturation

 $ightharpoonup V_{out} + V_{th} < V_{in} < V_{dd} - V_{th}$

- $ightharpoonup V_{out} + V_{th} < V_{in} < V_{dd} V_{th}$
 - Nmos transitions to linear

- \blacksquare $V_{out} + V_{th} < V_{in} < V_{dd} V_{th}$
 - Nmos transitions to linear
 - Pmos remains in saturation

 $Arr V_{dd} - V_{th} < V_{in} < V_{dd}$

- $V_{dd} V_{th} < V_{in} < V_{dd}$
 - Nmos remains in linear

- $V_{dd} V_{th} < V_{in} < V_{dd}$
 - Nmos remains in linear
 - Pmos transitions to cut-off

Graphical View: I_{ds} vs. V_{in}

Analyze the current flow through NMOS

Graphical View: I_{ds} vs. V_{out}

Analyze the current flow through PMOS

Loadline Analysis

Loadline Analysis

Loadline Analysis

Current across the DC sweep

■ Follow the device in saturation (Even when $\lambda \neq 0$)

Current across the DC sweep

• Follow the device in saturation (Even when $\lambda \neq 0$)

Breakout session

■ If I_{dsat,p}=2*I_{dsat,n}, sketch the the DC transfer curve relative to the balanced case

Breakout session

■ If I_{dsat,p}=2*I_{dsat,n}, sketch the the DC transfer curve relative to the balanced case

Breakout session

■ If I_{dsat,p}=2*I_{dsat,n}, sketch the the DC transfer curve relative to the balanced case

Channel length modulation → Less abrupt DC transfer curve in "transition 50 region" region where both devices are in saturation

Channel length modulation → Less abrupt DC transfer curve in "transition 51 region" region where both devices are in saturation

Channel length modulation → Less abrupt DC transfer curve in "transition 52 region" region where both devices are in saturation

Channel length modulation → Less abrupt DC transfer curve in "transition 53 region" region where both devices are in saturation

• What if $V_{th} = 0.6V_{dd}$?

 V_{IL}

- Static Noise Margin (NM)
- $NM_0 = V_{il} V_{ol}$
- $NM_1 = V_{oh} V_{ih}$

- Static Noise Margin (NM)
- $NM_0 = V_{il} V_{ol}$
- \blacksquare NM₁ = V_{oh} V_{ih}
- What is the best possible NM for an inverter? What would it take?

Some More Thoughts on Noise Margins

- Importance of unity-gain points (Cascade of inverters)
- What happens if noise voltage exceeds noise margin?
- Noise margin vs. V_{dd}

- Static inverter analysis also important for holding resistance analysis
 - Crosstalk analysis

- Static inverter analysis also important for holding resistance analysis
 - Crosstalk analysis
 - Holding resistance impacts peak noise glitch

Why does the glitch matter? What are the key glitch parameters

What are the relevant glitch-determining parameters

- Static inverter analysis also important for holding resistance analysis
 - Crosstalk analysis
 - Holding resistance impacts peak noise glitch

Question

- What happens if a 1V inverter sees a 2V step (common ground)
- What happens if a 2V inverter sees a 1V step (0V->1V)

Reading assignment