

STATPHYS 28 東京都、日本 8月7日・8月11日「2023年」 Alfonso de Miguel-Arribas (BIFI, U. de Zaragoza, Spain), Alberto Aletá (BIFI, U. de Zaragoza, Spain), Yamir Moreno (BIFI, U. de Zaragoza, Spain & CENTAI, Italy) & Esteban Moro (MIT Media Lab, USA & U. Carlos III, Spain)

Background: Epidemics on Metapopulations

Mobility models (typically) assume:

- Markovian random walks.
- Indistinguishable agents.

Metapopulation scheme [from Ventura et al. (2022)]

Background: Advances in human mobility

Vol 453|5 June 2008|doi:10.1038/nature06958

LETTERS

- Last decade: Exploration and preferential return models.
- Analysis of human mobility datasets reveal two main types of behaviors:

EXPLORERS & RETURNERS

Understanding individual human mobility patterns

Marta C. González¹, César A. Hidalgo^{1,2} & Albert-László Barabási^{1,2,3}

Modelling the scaling properties of human mobility

Chaoming Song^{1,2†}, Tal Koren^{1,2†}, Pu Wang^{1,2†} and Albert-László Barabási^{1,2,3}★

Explorers & returners

High exploration probability, High S -> Low visit frequency

Low exploration probability, Low S -> High visit frequency

Our work

 Literature mentions the relevance of these discoveries to epidemics, but have not been thoroughly explored.

- Explore & characterize an epidemic spreading under an EPR mobility model.

- Determine the role of explorers & returners in the spreading of an epidemic disease

SIR model + d-EPR model

Spatial structure: Locations' attractiveness

Left: Field reconstruction from high-resolution individual anonymized trajectories. Right: Attractiveness distribution (log-log).

Effective system size V~1300 of 1km².

Invasions: who, when & where

Explorers outperform returners

Explorers invade substantially

Infections: who, when & where

Explorers & returners deviate from the global average.

Infection times differ much less than invasion times

Explorers tend to be infected in most attractive locations.

Origin of infection, recurrence & attractiveness

Majority of infections occur outside home location \rightarrow Very small recurrence \rightarrow Bad luck? Agents were just around very attractive locations

Where were you infected & where did you infect?

Which groups contribute the most to new infections?

Under the well-mixing assumption, every infected agent contributes to the force of infection \rightarrow new infected cases generation.

Adjusted by size, there is a clear trend: Returners contribute more to trigger contagion events and thus new cases.

Conclusions & Future work

Conclusions:

- **Explorers** deliver the disease across the system, they do it faster & are impacted more.
- Opposite for returners. But they also proportionally contribute more to sustain contagion chains.
- Important part of contagions occurs **outside home** locations.
- Size of effects may depend on:
 - How far we are from homogeneous mixing.
 - Attractiveness distribution & spatial geometry.

Ongoing/future work...

- Compare results with conventional metapopulations models.
- Compare spreading under real trajectories with model predictions.
- Export this analysis to other cities/urban settlements.

Acknowledgements

Alberto Aletá
Ramón y Cajal Fellow
Institute for Biocomputation and Physics
of Complex Systems (BIFI).
Department of Theoretical Physics,
University of Zaragoza, Spain

Prof. Yamir Moreno Institute for Biocomputation and Physics of Complex Systems (BIFI). Department of Theoretical Physics, University of Zaragoza, Spain.

Esteban Moro
Media Lab, Massachusetts Institute of
Technology, Cambridge, MA, USA.
Department of Mathematics; GISC,
Universidad Carlos III de Madrid, Spain

Thank you!

Average degree

Contribution to new cases

Where do agents infect?

Time evolution for incidence & prevalence

dominant locations attractiveness

Targeted vaccination

What's the average invader/infected mobility profile per location?

Explorers absolutely **dominate** when bringing the disease to a new location.

In the **most attractive** locations, the typical infected tends to be an **explorer** (ρ >0.5). In the **least attractive** locations, the typical infected tends to be a returner **lower** (ρ <0.5).