北京交通大学 2021-2022 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 出题教师:《智能计算数学基础》课程组

班级:	姓名:	学号:	上课教师:
注意: 1. 试卷共 49	9 道题,最后一题 4 分,其余每	菲题 2 分,满分 100 分。2.	题目排序与难度无关。3. 判断题请回答"是"或"否"。
1。计算向量(1,	$-1,2,3$)的 l_1 范数。		
	7		
2。计算函数极	限: $\lim_{x \to +\infty} (1 + \frac{1}{2x})^{6x}$.		
	e^3		
3。判断题:级	数 $\sum_{n\geq 1} \frac{n^2+n+1}{n^3+n^2+n+1}$ 收敛	o	
4	描误 :		
4。判断题:集		$y^2 < 1, x + y < 1$ }是尹	·····································
₹	t		
5。计算函数 <i>f</i> (2	$(x,y) = \frac{x}{x^2 + y^2}$ 在 $(0,1)$ 点象	 处的梯度。	
(1,	0)		
6。计算函数 <i>f</i> (a	$(x,y) = x^2 + 2xy + 3y^2 - 3$	 + 4 <i>y</i> 的极小值。	
	f (1, -1) =-2		
7。给出二次函	数 $f(x) = \frac{1}{2}x^t P x + q^t x - \frac{1}{2}x^t P x - \frac{1}{2}x^t P$	 + <i>r</i> 的极小值点,其中	$P \in \mathbb{S}^n_{++}, \ q \in \mathbb{R}^n, \ r \in \mathbb{R}_{\circ}$
	p^-1*(-q)		
8。给定 $P \in \mathbb{S}^n_+$			tPx 的极大值是多少?
9。求出下述优		imize $f(x, y, z) = 3x$ ect to $x + y + z = 1$ -5/2,15/2)	$x^2 + 3y^2 - z^2 + xy + xz$
10。设 $f(A) = 1$			$\times m$ 、 $n \times k$ 和 $m \times k$ 的矩阵,计算 $Df(A)$ 。
-		-	J (21)
 11。判断题 : ra	$\operatorname{ank}(A^t A) = \operatorname{rank}(A) \circ$		
	对		
12。判断题: 设	$\mathcal{L}A,B$ 为列数相同的矩阵	车, $C = \begin{pmatrix} A \\ B \end{pmatrix}$,则他	们的零空间满足: $N(C) = N(A) \cup N(B)$ 。

taran da la companya da la companya da tara Taran da la companya
13。判断题: 如果 u 和 v 是单位向量,则 $u+v$ 和 $u-v$ 是正交的。
对 ·
14。判断题:设 A,B 是 n 阶方阵,则 AB 和 BA 具有相同的特征值。
汹
15 。判断题:设 x 是 A^tA 的特征值不为 0 的特征向量,则 Ax 是 AA^t 的特征向量。
对
16。将向量 $(2,1)$ 以向量 $(1,2)$ 为轴做对称,得到的向量是什么?
-2/5, 11/5
17 。计算矩阵 $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ 的奇异值。
9+/-4*根号5
18。假设 n 阶方阵 A 有 n 个线性无关的特征向量,则随着 $k \to \infty$, $A^k \to 0$ 的充分必要条件是什么?
为一个人,我们就是一个人的一个人,就是一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的
19。假设 $x_1 \sim \mathcal{N}(0, \sigma^2)$, $x_2 \sim \mathcal{N}(0, \sigma^2)$,并且 x_1 和 x_2 独立,则 $y = x_1^2 + x_2^2$ 服从何种分布?
X~X (2) 20。中心极限定理的"中心"是指什么?"极限"是指什么?
中心指都服从均值为miu的分布,极限指样本数趋于∞
21。高斯白噪声中的"白"是什么意思?
指w互相正交,且噪声在频谱上均匀分布
22。假设随机变量 x 和 y 的联合概率密度为 $f(x,y)=1/4$,其中 $0 \le x \le 2, 1 \le y \le 3$ 。请问 x 和 y 是否证交?是否独立?是否相关?
独立,不相关,不正交
23。已知随机变量 $w = \sum_{i=1}^{500} z_i$,其中 z_i 是相互独立的均匀分布随机变量, $z_i \sim \mathcal{U}(-\sqrt{3}/10, \sqrt{3}/10)$ 。已知某一个测量数据 y 和要估计的参数 A 以及随机变量 w 有线性关系: $y = 4A + w$ 。请写出随机变量 w 的近似概率密度函数。
w∼N (0, 5)
24。条件如23题,写出似然函数 $p(y A)$ 的表达式,根据最大似然准则 (ML) 来获取 A 的估计值。
25。条件如23题,利用最小二乘法(LS)来估计 A ,请给出表达式。

26 。条件如 23 题,假设 A 是高斯随机变量, $A \sim \mathcal{N}(0,1)$,且 A 和 w 相互独立。利用线性最小均方误 $\dot{E}(\mathrm{LMMSE})$ 准则来估计 A ,请给出表达式。
27。按照信息的性质,可以把信息分为哪三种基本类型?
· · · · · · · · · · · · · · · · · · ·
28。若一随机事件的概率为 $p(x)$,写出它的自信息 $I(x)$ 的数学定义。
l=-logp 对x的不确定度
29。对于任意三个离散随机事件 x 、 y 与 z ,有 $I(x;yz) = I(x;z) + I(x;y z)$,这表明信息有何种性质?
可加 任何一件事,都可以拆成两件来做
30。已知两个信源分别为 $\binom{X}{P} = \begin{pmatrix} a_1 & a_2 \\ 0.8 & 0.2 \end{pmatrix}$ 和 $\binom{Y}{Q} = \begin{pmatrix} b_1 & b_2 \\ 0.5 & 0.5 \end{pmatrix}$,则在信源熵 $H(X)$ 和 $H(Y)$ 中,较大的是哪一个,其值为多少bit/符号?
-0.8*log0.8-0.2log0.2
31。判断题: 两个离散随机变量 X 与 Y 之间的平均互信息为 $I(X;Y)=H(X)-H(Y X)$ 。
· · · · · · · · · · · · · · · · · · ·
32。判断题:对于固定的信源,平均互信息 $I(X;Y)$ 具有凸状性, $I(X;Y)$ 是信道传递概率分布 $P(Y X)$ 的上凸函数。
错,Px的上凸,P Y X的下凸
33。判断题:假设 $p(x)$ 和 $q(x)$ 是定义在同一概率空间上的两种概率测度,则 p 相对于 q 的信息散度定义为 $D(p q) = \sum_x p(x) \log \frac{p(x)}{q(x)}$ 。
对 对
34 。遍历性马尔柯夫序列的极限熵为 $H_{\infty}(X) = -\sum_{i,j} p_i p_{j,i} \log p_{j,i}$,其中序列间的相关性由公式中的哪个变量描述?
$p_{j,i}\log p_{j,i}$,
35。判断题: 博弈问题中,一个纳什均衡解也是一个帕雷托最优解。
· · · · · · · · · · · · · · · · · · ·
36。判断题:一个有限决策者且有限策略的博弈问题始终能找到至少一个纯策略纳什均衡解。
· · · · · · · · · · · · · · · · · · ·
37。判断题:一个正则型博弈可以等价转化为一个不完美信息的扩展型博弈。

Figure 1: 博弈矩阵(左)和博弈树(右)

对

38。判断题:扩展型博弈问题中,一个纳什均衡解也是一个子博弈精炼均衡解,而一个子博弈精炼均衡解未必是一个纳什均衡解。

错

39。判断题:不完全信息博弈中的不确定性比不完美信息博弈中的不确定性要高。

对

40。简要阐述需要利用逆向归纳法求解扩展型博弈(博弈树)的原因。

逆向归纳可以将信息从底部传递到根,得到最准确的答案,而且y有助于 计算

- 41。从图1左的博弈矩阵中,找出所有纯策略纳什均衡解,并简述判断理由。
- 42。从图1右的博弈树中(MAX和MIN的minimax值已给出),找出可进行 α - β 剪枝操作的三个位置。
- 43。判断题: NP-Complete问题的多项式时间复杂度算法都是近似算法。

错误

44。设X是由有限元素构成的集合,F是由X的非空子集构成的集合且对于任意X中的元素e,都存在一个F中的元素S使得e是S中的元素,即 $X = \cup_{S \in F} S$ 。考虑"集合覆盖问题":求F中的一个子集 $C \subseteq F$,使得 $X = \cup_{S \in C} S$,且E的大小|E|最小。下面是证明"集合覆盖问题"是NP-complete的过程,请补充完善。首先请将"集合覆盖问题"转化为语言描述。

{对于 | C | 为k的F中的子集合,使满足C覆盖X}

45。接上题,请说明"验证集合覆盖问题"的时间复杂度是多项式时间复杂度。

假定F为X的非空子集构成的集合,C为F的子集,检查子集合是否覆盖X,最多判断O | C | 的时间复杂度

图G中的一个点数为k的点集V覆盖了所有的边

47。已知顶点覆盖问题是NP-complete,请将该问题的实例转化为"集合覆盖问题"的实例。

V: X E (u, v) : F中的子集合

48。接上题,说明转化过程是多项式时间复杂度的。

要将上述问题转化的时间复杂度为OV+E

49。利用上题结果,试证明:图 $G = \langle V, E \rangle$ 中存在大小为k的顶点覆盖当且仅当 $\langle X, F \rangle$ 中存在大小为k的集合覆盖。