Diskrétka 8

Hynek Kydlicek

24. listopadu 2020

1 Úkol 1 těžší verze

Z obr. 1 vidíme, že graf je eulerovský a zároveň existuje hranově disjunktní rozklad na 3 a 2 kružnice.

1.1 3 kružnice

Kružnice jsou indukované podgrafy s vrcholy $\{1,3,4\},\{1,2,5\},\{2,3,6\}.$

1.2 2 kružnice

Kružnice jsou indukovaný podgraf s vrcholy $\{1,2,3\}$ a graf s vrcholy $\{1,5,2,6,3,4\}$ a hranami $\{1,5\},\{5,2\},\{2,6\},\{6,3\},\{3,4\},\{4,1\}.$

Obrázek 1: Graf

2 Úkol 2

Stačí dokázat, že pro dva eulerovské grafy G(V,E), H(V',E') je $F=G\times H$ eulerovský. Z definice pokud mezi vrcholy $v_1,v_2\in V'$ vedla hrana v V' povede hrana mezi vrcholy $(u\in V)\{(u,v_1),(u,v_2)\}$ v F. Obdobně, pokud pokud mezi

vrcholy $u_1, u_2 \in V$ vedla hrana v V povede hrana mezi vrcholy $(v \in V')\{(v, u_1), (v, u_2)\}$ v F. Celkově dostáváme že, do každého vrcholu $\{u, v\} \in F, \ u \in V, \ v \in V'$ povede tolik hrana kolik vedlo hran v V do u + kolik vedlo hran v V' do v. Jelikož jsou G, H eulerovské, musí do každého vrcholu v F vést sudý počet hran(sudé číslo + sudé číslo = sudé číslo). Zároveň protože oba grafy G, H jsou souvislé, musí být i F souvislý. Mějme dva vrcholy z $(a_1, b_1), (a_2, b_2) \in F$. Z definice a souvislosti G víme, že existuje sled z (a_1, b_1) do (a_2, b_1) . Z definice a souvislosti H víme, že existuje sled z (a_2, b_1) do (a_2, b_2) . Tedy spojením sledů dostáváme sled z (a_1, b_1) do (a_2, b_2) . Z přednášky víme, že existuje sled právě když existuje cesta a tedy F je souvislý graf. F je proto eulerovské.