

FCC PART 90 RSS-131 ISSUE 3, January 2017,Updated May 2017 RSS-Gen, Issue 5, April 2018

TEST REPORT

For

Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, 518057 China

> FCC ID: YAMDS-9300 IC: 8913A-DS9300

Report Type: **Product Type:** Original Report Digital Repeater Report Number: RDG181009004-00A **Report Date:** 2019-05-31 Jerry Zhang Jerry Zhang Reviewed By: EMC Manager Prepared By: Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SPECIAL ACCESSORIES	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§1.1307 (b)(1) & §2.1091& RSS-102 CLAUSE 4- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
APPLICABLE STANDARD	
CALCULATED FORMULARY:	
RESULT:	11
FCC §90.219 (e)(1) &RSS-131 CLAUSE 6.2- INPUT/OUTPUT POWER AND AMPLIFIER GAIN	12
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	12
FCC §90.219 (e)(4)(ii) &RSS-GEN CLAUSE 6.6–INPUT-VERSUS-OUTPUT SIGNAL COMPARISON OCCUPIED BANDWIDTH	[: 14
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §90.219 (e)(4)(iii) & §90.210 & RSS-131 CLAUSE 6.6–EMISSION MASK	
& §90.221 ADJACENT CHANNEL POWER LIMITS	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §90.219 (e)(3) &RSS-131 CLAUSE 6.5 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §90.219 (e)(3) &RSS-131 CLAUSE 6.5 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §90.219 (e)(3) &RSS-131 CLAUSE 6.3– INTERMODULATION	
1 CO 3/0/21/ (C/O) WINDS-101 CLITOGE ON THE INTODUCATION	

APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	55
FCC§90.219 (e)(2) &RSS-131 CLAUSE 6.4 – NOISE FIGURE MEASUREMENTS	62
APPLICABLE STANDARD	
TEST PROCEDURE	62
TEST DATA	62
FCC§90.219 – OUT-OF-BAND REJECTION	64
APPLICABLE STANDARD	
TEST PROCEDURE	64
Test Data	64

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	Digital Repeater
EUT Model:	DS-9300
Equipment Type:	Class A PLMR Booster(B9A)
Operation Frequency:	Uplink: 450-460MHz(TX), Downlink: 460-470MHz(RX)
Rated Maximum Output Power: (Conducted)	1W
Rated Input Voltage:	AC 120V
External Dimension:	385 mm(L)* 300mm(W)* 142mm(H)
Serial Number:	181009004-1(450-455 MHz) 181009004-2(455-460 MHz)
EUT Received Date:	2019-03-12

Report No.: RDG181009004-00A

Note: the two sample was only difference with passive duplexer, which have difference pass band.

Objective

This test report is prepared on behalf of *Hytera Communications Corporation Limited* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules and RSS-131 Issue 3, January 2017, Updated May 2017, RSS-Gen Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

Related Submittal(s)/Grant(s)

Part of system submittal with FCC ID: YAMDS-9300-R. Part of system submittal with IC: 8913A-DS9300R.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as Part 90.219 – Use of signal boosters, and KDB 935210 D05 Indus Booster Basic Meas v01r03 Measurement Guidance for Industrial and Non-consumer Signal Booster, Repeater, and Amplifier Devices.

And RSS-131 Issue 3, January 2017, Updated May 2017, RSS-Gen Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

FCC Part 90 Page 4 of 65

Measurement Uncertainty

Parameter	uncertainty
Occupied Channel Bandwidth	±5%
Input/output power and amplifier gain	±1.5dB
Unwanted Emission, conducted	±1.5dB
Radiated Emissions Below 1GHz	±4.70dB
Radiated Emissions Above 1GHz	±4.80dB
Internodulation	±1.5dB
Noise Figure Measurements	±1.5dB
Temperature	±1℃
Supply voltages	±0.4%

Report No.: RDG181009004-00A

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

FCC Part 90 Page 5 of 65

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Report No.: RDG181009004-00A

EUT Exercise Software

No exercise software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer Description		Model	Serial Number
Hytera	Remote Unit	DS-9300-R	181009005
Unknown Load		Unknown	Unknown
Agilent	MXG Vector Signal Generator	N5182B	MY51350142

External I/O Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Coaxial Cable	Yes	No	0.5	EUT	Load
Optical Fiber	No	No	3.0	Remote unit	EUT

FCC Part 90 Page 6 of 65

Block Diagram of Test Setup

FCC Part 90 Page 7 of 65

FCC Rules Description of Test Results §1.1307 (b)(1), §2.1091 Maximum Permissible Exposure (MPE) Compliance RSS-102 Clause 4 §90.219 (e)(1)& Compliance Input/output power and amplifier gain RSS-131 Clause 6.2 §90.219 (e)(4)(ii) Input-versus-output signal comparison: Compliance RSS-Gen Clause 6.7 Occupied Bandwidth §90.219 (e)(4)(iii), **Emission Mask** §90.210 & §90.221 Compliance & Adjacent channel power limits RSS-131 Clause 6.6 §90.219 (d)(6) Intermodulation Compliance RSS-131 Clause 6.3 §90.219 (e)(3) Spurious emissions at antenna terminals Compliance RSS-131 Clause 6.5 §90.219 (e)(3) Compliance Radiated spurious emission RSS-131 Clause 6.5 §90.219 (e)(2) Noise Figure Measurements Compliance RSS-131 Clause 6.4 §90.219 Compliance Out-of-band Rejection

Report No.: RDG181009004-00A

FCC Part 90 Page 8 of 65

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	F	Radiated Emission	Test		
R&S	EMI Test Receiver	ESCI	100224	2018-12-11	2019-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2018-09-05	2019-09-05
НР	Amplifier	8447D	2727A05902	2018-09-05	2019-09-05
Agilent	MXG Vector Signal Generator	N5182B	MY51350142	2018-05-04	2019-05-04
Agilent	Spectrum Analyzer	E4440A	SG43360054	2019-01-04	2021-01-04
ETS-Lindgren Horn Antenna		3115	000 527 35	2019-01-05	2021-01-04
Unknown	Unknown Coaxial Cable		C-0800-01	2018-09-05	2019-09-05
MITEQ Amplifier		AFS42- 00101800-25-S- 42	2001271	2018-09-05	2019-09-05
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05
TDK RF	Horn Antenna	HRN-0118	130 084	2018-10-12	2021-10-12
		RF Conducted T	est		
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Agilent	MXG Vector Signal Generator	N5182B	MY51350142	2018-07-19	2019-07-19
Agilent	Signal Generator	E8247C	MY43321350	2018-12-10	2019-12-10
yzjingcheng	Coaxial Cable	KTRFBU-141- 50	41005012	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each	time
E-Microwave	Coaxial Attenuators	EMCA40- 200SN-6	OE01201046	2018-09-06	2019-09-06

Report No.: RDG181009004-00A

FCC Part 90 Page 9 of 65

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§1.1307 (b)(1) & §2.1091& RSS-102 CLAUSE 4- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RDG181009004-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f ²)	30					
30–300	30–300 27.5	0.073	0.2	30					
300–1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

According to RSS-102 § 4Table 4, RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)
$0.003-10^{21}$	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f 0.3417	0.02619f ^{0.6834}	6
6000-15000	5000 61.4 0.163		10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}

Note: f is frequency in MHz.

*Based on nerve stimulation (NS).

** Based on specific absorption rate (SAR).

FCC Part 90 Page 10 of 65

Calculated formulary:

Prediction of power density at the distance of the applicable MPE limit $S = PG/4\pi R^2 =$ power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);
G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain; R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Report No.: RDG181009004-00A

Result:

Frequency	Antenna Gain		Max. Target Power including Tolerance		Evaluation Distance	FCC Power	ISEDC Power	FCC MPE	ISEDC MPE
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	Density (mW/cm ²)	Density (W/m ²)	Limit (mW/cm²)	Limit (W/m ²)
450-460	9	7.94	30	1000	65.00	0.15	1.50	0.30	1.70

Result: Compliance, The device meet FCC MPE at 65 cm distance.

FCC Part 90 Page 11 of 65

FCC §90.219 (e)(1) &RSS-131 CLAUSE 6.2- INPUT/OUTPUT POWER AND AMPLIFIER GAIN

Report No.: RDG181009004-00A

Applicable Standard

FCC §2.1046 and §90.219 (e)(1)

The output power capability of a signal booster must be designed for deployments providing a radiated power not exceeding 5 Watts ERP for each retransmitted channel

RSS-131 Clause 6.2:

The output power of the zone enhancer shall comply with the transmitter output power of the equipment with which it is to be used (as specified in RSS-119) and shall be within \pm 1.0 dB of the zone enhancer manufacturer's rated output power.

Test Procedure

Conducted RF Output Power:

The signal generator was connected to Remote unit, and RF output of the EUT was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	56 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Blake Yang on 2019-03-22.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 90 Page 12 of 65

Band (MHz)	Frequency (MHz)	AGC threshold (dBm)	Input Power (dBm)	Conducted Output Power (dBm)	Max Gain (dB)	Max Antenna Gain (dBi)	ERP (dBm)	Limit (dBm)
450	452.124	AGC	-60.68	28.57	89.25	9	35.42	37
455		AGC+3dB	-57.76	28.67	86.43	9	35.52	37
455	450.220	AGC	-61.67	29.60	91.27	9	36.45	37
460	459.228	AGC+3dB	-58.74	29.66	88.40	9	36.51	37

Note 1: ERP= Measured Conducted Output Power (dBm) + Antenna Gain (dBi) - 2.15 (dB)

Note 2: the Rated Conducted output power is 29 dBm+/- 1dB

FCC Part 90 Page 13 of 65

FCC §90.219 (e)(4)(ii) &RSS-GEN CLAUSE 6.6–INPUT-VERSUS-OUTPUT SIGNAL COMPARISON: OCCUPIED BANDWIDTH

Report No.: RDG181009004-00A

Applicable Standard

According to FCC §90.219 (e)(4)(ii), There is no change in the occupied bandwidth of the retransmitted signals.

According to RSS-Gen §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Test Procedure

Test Method: KDB 935210 D05 Indus Booster Basic Meas v01r03 section 4.4

FCC Part 90 Page 14 of 65

Test Data

Environmental Conditions

Temperature:	26~28 ℃	
Relative Humidity:	56~57 %	
ATM Pressure:	100.3~101.5 kPa	

The testing was performed by Blake Yang on 2019-03-26 & 2019-05-30.

Test Mode: Transmitting

Please refer to the following tables and plots.

			Input		Output	
Signal Type	Frequency (MHz)	Input Signal Level	99% OBW (kHz)	26dB Band width (kHz)	99% OBW (kHz)	26dB Band width (kHz)
FM 6.25k 452.5	AGC	4.128	6.132	4.128	6.132	
	432.3	AGC+3dB	4.128	6.092	4.128	6.132
FM 12.5k	452.5	AGC	7.876	8.267	7.876	8.267
1 W 12.3K	FWI 12.3K 432.3	AGC+3dB	7.876	8.267	7.876	8.267
EM 251-	FM 25k 452.5	AGC	12.425	14.719	12.425	14.719
FIVI 23K		AGC+3dB	12.425	14.719	12.425	14.719
TETD A	452.5	AGC	21.042	23.938	20.942	23.938
TETRA 452.5	432.3	AGC+3dB	21.142	23.938	20.842	23.838
AFCIZ	452.5	AGC	7.094	9.319	7.214	9.439
4FSK		AGC+3dB	7.335	9.259	7.275	9.198
EM (251	457.5	AGC	4.128	6.132	4.128	6.132
FM 6.25k		AGC+3dB	4.128	6.132	4.128	6.132
FM 12.5k 457.5	457.5	AGC	7.876	8.267	7.876	8.327
	437.3	AGC+3dB	7.876	8.267	7.876	8.267
FM 25k	457.5	AGC	12.425	14.719	12.425	14.780
		AGC+3dB	12.425	14.719	12.425	14.729
TETRA	457.5	AGC	21.042	23.848	21.042	23.747
		AGC+3dB	21.042	23.848	20.942	23.848
4FSK	457.5	AGC	7.515	9.679	7.335	9.259
		AGC+3dB	7.395	9.198	7.455	9.138

Report No.: RDG181009004-00A

Note: Input signal level refer to the result of item: Input/output power and amplifier gain

FCC Part 90 Page 15 of 65

FM 6.25K:

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Report No.: RDG181009004-00A

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 16 of 65

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 17 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 18 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 19 of 65

FM 12.5K:

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Report No.: RDG181009004-00A

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 20 of 65

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 21 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 22 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 23 of 65

FM 25K:

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Report No.: RDG181009004-00A

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 24 of 65

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 25 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 26 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 27 of 65

TETRA:

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Report No.: RDG181009004-00A

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 28 of 65

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 29 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 30 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 31 of 65

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Input

Report No.: RDG181009004-00A

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 32 of 65

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Input

Frequency: 452.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 33 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC Output

FCC Part 90 Page 34 of 65

Frequency: 457.5 MHz, 99% Occupied & 26 dB Bandwidth AGC+3 Output

FCC Part 90 Page 35 of 65

Applicable Standard

FCC §90.219 (e)(4)(iii) and §90.210

The retransmitted signals continue to meet the unwanted emissions limits of §90.210 applicable to the corresponding received signals (assuming that these received signals meet the applicable unwanted emissions limits by a reasonable margin)

	Mask for equipment	Mask for equipment
5	with audio low	without audio low
Frequency band (MHz)	pass filter	pass filter
Below 25 ¹	A or B	A or C
25-50	В	С
72-76	В	С
150-174 ²	B, D, or E	C, D or E
150 paging only	В	С
220-222	F	F
421-512 ^{2 5}	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854 ⁶	В	Н
809-824/854-869 ^{3 5}	В	G
896-901/935-940	I	J
902-928	К	K
929-930	В	G
4940-4990 MHz	L or M	LorM
5850-5925 ⁴		
All other bands	В	С

Emission Mask C. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz; At least 83 log (fd/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (fd2/11) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P) dB$

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd-2.88 kHz) dB.

FCC Part 90 Page 36 of 65

- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

RSS-131 Clause 6.6:

The retransmitted signals shall meet the unwanted emission limits in the RSS that applies to the equipment with which the zone enhancer is to be used.

FCC §90.221

(a) For the frequency bands indicated below, operations using equipment designed to operate with a 25 kHz channel bandwidth may be authorized up to a 22 kHz bandwidth if the equipment meets the adjacent channel power (ACP) limits below. The table specifies a value for the ACP as a function of the displacement from the channel center frequency and a measurement bandwidth of 18 kHz.

(b)(1) Maximum adjacent power levels for frequencies in the 450-470 MHz band:

Frequency offset	Maximum ACP (dBc) for devices 1 watt and less	Maximum ACP (dBc) for devices above 1 watt
25 kHz	-55 dBc	-60 dBc
50 kHz	-70 dBc	−70 dBc
75 kHz	−70 dBc	−70 dBc

FCC Part 90 Page 37 of 65

(2) In any case, no requirement in excess of -36 dBm shall apply.

Test Procedure

Test Method: KDB 935210 D05 Indus Booster Basic Meas v01r03 section 4.4

The nominal RBW shall be 300 Hz for 16K0F3E, and 100 Hz for all other emissions types

Report No.: RDG181009004-00A

Test Data

Environmental Conditions

Temperature:	25~28°C
Relative Humidity:	55~61 %
ATM Pressure:	100.2~101.5 kPa

The testing was performed by Blake Yang from 2019-03-26 to 2019-05-30.

Note: the input signal level "AGC" refer to the testing item Output power&Maximum gain.

FCC Part 90 Page 38 of 65

Emission Mask: FM 6.5K:

Frequency 452.5 MHz: Emission Mask E, AGC

Frequency 452.5 MHz: Emission Mask E, AGC+3 dB

FCC Part 90 Page 39 of 65

Frequency 457.5 MHz: Emission Mask E, AGC

Frequency 457.5 MHz: Emission Mask E, AGC+3 dB

FCC Part 90 Page 40 of 65

Frequency 452.5 MHz: Emission Mask D, AGC

Frequency 452.5 MHz: Emission Mask D, AGC+3 dB

FCC Part 90 Page 41 of 65

Frequency 457.5 MHz: Emission Mask D, AGC

Frequency 457.5 MHz: Emission Mask D, AGC+3 dB

FCC Part 90 Page 42 of 65

Frequency 452.5 MHz: Emission Mask C, AGC

Frequency 452.5 MHz: Emission Mask C, AGC+3 dB

FCC Part 90 Page 43 of 65

Frequency 457.5 MHz: Emission Mask C, AGC

Frequency 457.5 MHz: Emission Mask C, AGC+3 dB

FCC Part 90 Page 44 of 65

4FSK:

Frequency 452.5 MHz: Emission Mask D, AGC

Report No.: RDG181009004-00A

Frequency 452.5 MHz: Emission Mask D, AGC+3 dB

FCC Part 90 Page 45 of 65

Frequency 457.5 MHz: Emission Mask D, AGC

Frequency 457.5 MHz: Emission Mask D, AGC+3 dB

FCC Part 90 Page 46 of 65

Adjacent Channel Power:

TETRA

Test Frequency (MHz)	Frequency Offset (kHz)	Reading (dB)	Limit (dB)	Reading (dBm)	Limit (dBm)	Result
	25	60.14	≥55	/	/	Pass
452.5	50	/	/	-37.66	≤-36	Pass
	75	/	/	-36.56	≤-36	Pass
	25	60.14	≥55	/	/	Pass
457.5	50	/	/	-42.72	≤-36	Pass
	75	/	/	-41.09	≤-36	Pass

FCC Part 90 Page 47 of 65

FCC Part 90 Page 48 of 65

FCC Part 90 Page 49 of 65

FCC §90.219 (e)(3) &RSS-131 CLAUSE 6.5 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

According to FCC §90.219 (e)(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth

According to RSS-131Clause 6.5, The spurious emissions of a zone enhancer shall not exceed -13 dBm in any 100 kHz measurement bandwidth

Report No.: RDG181009004-00A

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 1g (TXpwr in Watts/0.001)-the absolute level

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Neil Liao on 2019-03-25.

FCC Part 90 Page 50 of 65

Test Mode: Transmitting

30MHz - 5GHz:

	Receiver		Substituted		Absolute			
Frequency (MHz)	Reading (dBµV)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBd/dBi)	Level (dBm)	Limit (dBm)	Margin (dB)
			4	52.5 MHz				
905.00	44.19	Н	-52.74	1.03	0.00	-53.77	-13.00	40.77
905.00	43.87	V	-55.04	1.03	0.00	-56.07	-13.00	43.07
1357.50	36.79	Н	-66.64	1.18	9.40	-58.42	-13.00	45.42
1357.50	36.70	V	-66.89	1.18	9.40	-58.67	-13.00	45.67
1810.00	37.02	Н	-67.22	1.21	10.93	-57.50	-13.00	44.50
1810.00	36.87	V	-67.30	1.21	10.93	-57.58	-13.00	44.58
2262.50	36.41	Н	-66.97	1.19	11.87	-56.29	-13.00	43.29
2262.50	36.63	V	-67.47	1.19	11.87	-56.79	-13.00	43.79
	457.5 MHz							
915.00	43.74	Н	-52.78	1.00	0.00	-53.78	-13.00	40.78
915.00	44.71	V	-53.71	1.00	0.00	-54.71	-13.00	41.71
1372.50	36.86	Н	-66.69	1.19	9.46	-58.42	-13.00	45.42
1372.50	36.70	V	-66.99	1.19	9.46	-58.72	-13.00	45.72
1830.00	37.17	Н	-67.05	1.20	10.99	-57.26	-13.00	44.26
1830.00	36.80	V	-67.35	1.20	10.99	-57.56	-13.00	44.56
2287.50	36.24	Н	-67.08	1.19	11.90	-56.37	-13.00	43.37
2287.50	36.11	V	-68.00	1.19	11.90	-57.29	-13.00	44.29

Absolute Level = Substituted Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

The unit of antenna gain is dBd for frequency below 1GHz and is dBi for frequency above 1GHz.

FCC Part 90 Page 51 of 65

FCC §90.219 (e)(3) &RSS-131 CLAUSE 6.5 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RDG181009004-00A

Applicable Standard

According to FCC §90.219 (e)(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth

According to RSS-131Clause 6.5, The spurious emissions of a zone enhancer shall not exceed -13 dBm in any 100 kHz measurement bandwidth

Test Procedure

Test Method: KDB 935210 D05 Indus Booster Basic Meas v01r03 section 4.7.3

- a) Connect a signal generator to the input of the EUT.
- b) Configure the signal generator to produce a CW signal.
- c) Set the frequency of the CW signal to the center channel of the EUT passband.
- d) Set the output power level so that the resultant signal is just below the AGC threshold (see 4.2).
- e) Connect a spectrum analyzer to the output of the EUT, using appropriate attenuation as necessary.
- f) Set the RBW = 100 kHz. (i.e., for 30 MHz to 1 GHz PLMRS and/or PSRS booster devices)
- g) Set the VBW = $3 \times RBW$.
- h) Set the Sweep time = auto-couple.
- i) Set the detector to PEAK.
- j) Set the spectrum analyzer start frequency to 30 MHz (or the lowest radio frequency signal generated in the EUT, without going below 9 kHz if the EUT has additional internal clock frequencies), and the stop frequency to 10 times the highest allowable frequency of the EUT passband.
- k) Select MAX HOLD, and use the marker peak function to find the highest emission(s) outside the passband. (This could be either at a frequency lesser or greater than the passband frequencies.)
- 1) Capture a plot for inclusion in the test report.
- m) Repeat steps c) to l) for each authorized frequency band/block of operation.

Test Data

Environmental Conditions

Temperature:	25~27 ℃
Relative Humidity:	52~54 %
ATM Pressure:	100.0~101.0 kPa

The testing was performed by Blake Yang from 2019-03-22 to 2019-03-25.

Test Mode: Transmitting, please refer to the following plots.

FCC Part 90 Page 52 of 65

30MHz - 1 GHz, 452.2MHz Middle Channel

1 GHz - 5 GHz, 452.2MHz Middle Channel

FCC Part 90 Page 53 of 65

30MHz - 1 GHz, 457.5MHz Middle Channel

1 GHz - 4 GHz, 457.5MH Middle Channel

FCC Part 90 Page 54 of 65

FCC §90.219 (e)(3) &RSS-131 CLAUSE 6.3– INTERMODULATION

Applicable Standard

According to FCC §90.219 (e)(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth

According to RSS-131Clause 6.3, The effective radiated power (ERP) of intermodulation products should not exceed -30 dBm in a 10 kHz measurement bandwidth.

Report No.: RDG181009004-00A

Test Procedure

- a) Connect a signal generator to the input of the Remote Unit
- b) Configure the two signal generators to produce CW on frequencies spaced consistent with 4.7.1, with amplitude levels set to just below the AGC threshold
- c) Connect a spectrum analyzer through appropriate attenuation to the EUT output
- d) Set the span to 150 kHz
- e) Set RBW = 1 kHz with VBW \geq 3*RBW
- f) Set the detector to power averaging(RMS)
- g) Place a marker on highest intermodulation product amplitude
- h) Capture the plot for inclusion in the test report
- i) Repeat steps c) to h) with the composite input power lecel set to 3 dB above the AGC threshold
- j) Repeat steps b) to i) for all operational bands

Test Data

Environmental Conditions

Temperature:	25~26.9℃		
Relative Humidity:	55~63 %		
ATM Pressure:	100.1~101.5 kPa		

The testing was performed by Blake Yang on 2019-03-26&2019-04-24.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following plots.

FCC Part 90 Page 55 of 65

452.124MHz, 6.25 kHz channel spacing, AGC+3

FCC Part 90 Page 56 of 65

FCC Part 90 Page 57 of 65

15 kHz/

Center 459.228 MHz

Date:

24.APR.2019 15:21:53

Span 150 kHz

Channel spacing 12.5kHz:

Report No.: RDG181009004-00A

FCC Part 90 Page 58 of 65

FCC Part 90 Page 59 of 65

Channel spacing 25kHz:

452.124MHz, 25 kHz channel spacing, AGC

Report No.: RDG181009004-00A

452.124MHz, 25 kHz channel spacing, AGC+3

FCC Part 90 Page 60 of 65

459.228MHz, 25 kHz channel spacing, AGC

459.228MHz, 25 kHz channel spacing, AGC+3

FCC Part 90 Page 61 of 65

FCC§90.219 (e)(2) &RSS-131 CLAUSE 6.4 – NOISE FIGURE MEASUREMENTS

Applicable Standard

According to FCC§90.219 (e)(2) The noise figure of a signal booster must not exceed 9 dB in either direction

According to RSS-131Clause 6.4,

The ERP of noise within the passband should not exceed -43 dBm in a 10 kHz measurement bandwidth.

Report No.: RDG181009004-00A

The ERP of noise in spectrum more than 1 MHz outside of the passband should not exceed -70 dBm in a 10 kHz measurement bandwidth.

The noise figure of a zone enhancer shall not exceed 9 dB in either direction.

Test Procedure

- a) A spectrum analyzer was connected to EUT output port
- b) The Remote Unit input was terminated
- c) The spectrum analyzer was set to 100 trace average in the RMS average mode
- d) A peak reading was recorded
- e) The noise figure was calculated using the following formula NF= Max reading (-174dBm/Hz +10*log₁₀(RBW)+ Booster gain) Note: 174= Thermal noise for 1Hz RBW at room temperature

RBW= Resolution Bandwidth of Spectrum Analyzer in Hz

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	55 %
ATM Pressure:	101.5 kPa

The testing was performed by Blake Yang on 2019-03-26.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

Analyzer Settings			Max	Booster	Thermal	Noise	Limit
Frequency (MHz)	RBW (MHz)	VBW (MHz)	Reading (dBm/MHz)	Gain (dB)	Noise (dBm/MHz)	Figure (dB)	(dB)
452.5	1	3	-16.16	89.25	-114	8.59	9
457.5	1	3	-18.84	91.27	-114	3.89	9

Note: Noise Figure=Max reading-(-174dBm/Hz+10*Log₁₀(RBW)+booster gain)

FCC Part 90 Page 62 of 65

452.5MHz

457.5MHz

FCC Part 90 Page 63 of 65

FCC§90.219 – OUT-OF-BAND REJECTION

Applicable Standard

According to FCC\$20.21, a frequency selective booster shall have -20 dB at the band edge referenced to the gain in the center of the pass band of the booster, where band edges is the end of the licensee's allocated spectrum.

Report No.: RDG181009004-00A

Test Procedure

- a) Connect a signal generator to the input of the EUT.
- b) Configure a swept CW signal with the following parameters:
- 1) Frequency range = ± 250 % of the manufacturer's specified pass band.
- 2) The CW amplitude shall be 3 dB below the AGC threshold (see 4.2), and shall not activate the AGC threshold throughout the test.
- 3) Dwell time = approximately 10 ms.
- 4) Frequency step = 50 kHz. c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- d) Set the RBW of the spectrum analyzer to between 1 % and 5 % of the manufacturer's rated passband, and $VBW = 3 \times RBW$.
- e) Set the detector to Peak and the trace to Max-Hold.
- f) After the trace is completely filled, place a marker at the peak amplitude, which is designated as f0, and with two additional markers (use the marker-delta method) at the 20 dB bandwidth (i.e., at the points where the level has fallen by 20 dB).
- g) Capture the frequency response plot for inclusion in the test report.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	55 %
ATM Pressure:	101.5 kPa

The testing was performed by Blake Yang on 2019-03-22.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

FCC Part 90 Page 64 of 65

***** END OF REPORT *****

FCC Part 90 Page 65 of 65