Construcciones de autómatas

Clase 02

IIC 2223

Prof. Cristian Riveros

Outline

Definición alternativa

Operaciones de conjuntos

Aplicaciones algorítmicas

Outline

Definición alternativa

Operaciones de conjuntos

Aplicaciones algorítmicas

Definición

Un autómata finito determinista con función parcial de transición (DFAp):

$$A = (Q, \Sigma, \gamma, q_0, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $\gamma: Q \times \Sigma \rightarrow Q$ es una función parcial de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

Sea:

- Un autómata $\mathcal{A} = (Q, \Sigma, \gamma, q_0, F)$ con $\gamma : Q \times \Sigma \rightarrow Q$.
- El input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una ejecución (o run) ρ de \mathcal{A} sobre w es una secuencia:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} p_2 \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$ y
- para todo $i \in \{0, ..., n-1\}$ esta definido $\gamma(p_i, a_{i+1}) = p_{i+1}$.

Una ejecución ρ de \mathcal{A} sobre w es de aceptación si:

$$p_n \in F$$
.

Notar que ahora una palabra puede NO tener ejecución!

Sea un autómata $\mathcal{A} = (Q, \Sigma, \gamma, q_0, F)$ con $\gamma : Q \times \Sigma \rightarrow Q$ y $w \in \Sigma^*$.

Definiciones

- A acepta w si, y solo si,
 existe una ejecución de A sobre w que es de aceptación.
- El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Proposición

Para todo autómata $\mathcal A$ con función parcial de transición, existe un autómata $\mathcal A'$ (con función total de transición) tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, DFA \equiv DFAp.

¿cómo demostramos esta afirmación?

¿DFA ≠ DFAp?

Demostración

Sea $\mathcal{A} = (Q, \Sigma, \gamma, q_0, F)$ un autómata con función parcial de transición.

Sea q_s un nuevo estado tal que $q_s \notin Q$.

Construimos el DFA $\mathcal{A}' = (Q \cup \{q_s\}, \Sigma, \delta', q_0, F)$ tal que:

$$\delta'(p,a) = \begin{cases} \gamma(p,a) & \text{si } p \neq q_s \text{ y } (p,a) \in \text{dom}(\gamma) \\ q_s & \text{si no} \end{cases}$$

para todo $p \in Q \cup \{q_s\}$ y $a \in \Sigma$.

¿cómo demostramos que \mathcal{A} y \mathcal{A}' definen el mismo lenguaje?

Demostración: $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$

Sea $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{A})$.

Entonces existe una ejecución de aceptación ρ de $\mathcal A$ sobre w:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} p_2 \dots \stackrel{a_n}{\to} p_n$$

- $p_0 = q_0$
- para todo $i \in \{0, ..., n-1\}$, esta definido $\gamma(p_i, a_{i+1}) = p_{i+1}$ y
- $p_n \in F$.

Como $\delta(p_i, a_{i+1}) = \gamma(p_i, a_{i+1})$ para todo $i \in \{0, \dots, n-1\}$ (¿por qué?) entonces ρ es también una ejecución de aceptación de \mathcal{A}' sobre w.

Por lo tanto, $w \in \mathcal{L}(\mathcal{A}')$.

Demostración: $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$

Sea $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{A}')$.

Existe una ejecución de aceptación ρ de \mathcal{A}' sobre w:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} p_2 \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$
- para todo $i \in \{0, 1, ..., n-1\}$, $\delta(p_i, a_{i+1}) = p_{i+1}$ y
- $p_n \in F$.

¿cómo demostramos que ρ también es una ejecución de \mathcal{A} sobre w?

¿DFA ≢ DFAp?

Demostración: $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$

Demostraremos que $p_i \neq q_s$ para todo $i \in \{0, \ldots, n\}$.

Por contradición, suponga que existe i tal que $p_i = q_s$.

Entonces, tenemos que
$$p_{i+1} = q_s$$
. (¿por qué?)

Por inducción, podemos demostrar que $p_j = q_s$ para todo $j \ge i$. (¿cómo?)

Por lo tanto,
$$p_n = q_s$$
. (contradicción!) (¿por qué?)

Como $p_i \neq q_s$ para todo $i \in \{0, ..., n\}$ tenemos que:

$$\delta(p_i,a_{i+1})=\gamma(p_i,a_{i+1}) \quad \forall \ i\in\{0,1,\ldots,n-1\}$$

y ρ es una ejecución de aceptación de \mathcal{A} sobre w.

Por lo tanto, concluimos que $w \in \mathcal{L}(A)$.

¿DFA ≢ DFAp?

Proposición

Para todo autómata $\mathcal A$ con función parcial de transición, existe un autómata $\mathcal A'$ (con función total de transición) tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, DFA \equiv DFAp.

Advertencia

Desde ahora, utilizaremos autómatas con funciones totales de transición, pero sin perdida de generalidad en algunos ejemplos utilizaremos funciones parciales de transición por simplicidad.

Outline

Definición alternativa

Operaciones de conjuntos

Aplicaciones algorítmicas

Complemento, intersección y unión de lenguajes

Definiciones

Dado dos lenguajes $L, L' \subseteq \Sigma^*$ se define:

$$L^{C} = \{ w \in \Sigma^{*} \mid w \notin L \}$$

$$L \cap L' = \{ w \in \Sigma^{*} \mid w \in L \land w \in L' \}$$

$$L \cup L' = \{ w \in \Sigma^{*} \mid w \in L \lor w \in L' \}$$

Dado dos autómatas \mathcal{A} y \mathcal{A}' :

- 1. ¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A})^{C}$?
- 2. ¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')$?
- 3. ¿Existe un autómata $\mathcal B$ tal que $\mathcal L(\mathcal B) = \mathcal L(\mathcal A) \cup \mathcal L(\mathcal A')$?

¿existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A})^{C}$?

Construcción de $\mathcal{L}(\mathcal{A})^{C}$

Dado una autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, definimos el autómata:

$$\mathcal{A}^{C} = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

Teorema

Para todo autómata A, se tiene que $\mathcal{L}(A)^{C} = \mathcal{L}(A^{C})$.

Demostración: Ejercicio.

Figura y fondo

Mosaic II, M. C. Escher.

Complemento, intersección y unión de autómatas

Dado dos autómatas \mathcal{A} y \mathcal{A}' :

- 1. ¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A})^{C}$?
- $2. \ \text{¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B})$} = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')?$
- 3. ¿Existe un autómata $\mathcal B$ tal que $\mathcal L(\mathcal B) = \mathcal L(\mathcal A) \cup \mathcal L(\mathcal A')$?

¿existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')$?

Suponga que:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

$$\mathcal{A}' = (Q', \Sigma, \delta', q'_0, F')$$

y considere una palabra $w \in \Sigma^*$.

¿cómo ejecutamos A y A' sobre w al **mismo tiempo**?

Idea

Ejecutar \mathcal{A} y \mathcal{A}' en paralelo.

Producto de autómatas

Suponga que:

$$A = (Q, \Sigma, \delta, q_0, F)$$

$$A' = (Q', \Sigma, \delta', q'_0, F')$$

Se define el autómata $\mathcal{A} \times \mathcal{A}' = (Q^{\times}, \Sigma, \delta^{\times}, q_0^{\times}, F^{\times})$ tal que:

$$Q^{\times} = Q \times Q' = \{(q, q') \mid q \in Q \text{ y } q' \in Q'\}$$

$$\delta^{\times}((q,q'),a) = (\delta(q,a),\delta'(q',a))$$

$$q_0^{\times} = (q_0, q_0')$$

$$F^{\times} = F \times F'$$

$\mathcal{A} \times \mathcal{A}'$ lo llamaremos el **producto** entre \mathcal{A} y \mathcal{A}'

Producto de autómatas

Ejemplo

Todas las palabras sobre $\{a, b\}$ con una cantidad par de *a*-letras tal que no hay dos *a*-letras seguidas.

Producto de autómatas

Suponga que:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)
\mathcal{A}' = (Q', \Sigma, \delta', q'_0, F')$$

Se define el autómata $\mathcal{A} \times \mathcal{A}' = (Q^{\times}, \Sigma, \delta^{\times}, q_0^{\times}, F^{\times})$ tal que:

$$Q^{\times} = Q \times Q' = \{(q, q') \mid q \in Q \text{ y } q' \in Q'\}$$

$$\delta^{\times}((q,q'),a) = (\delta(q,a),\delta'(q',a))$$

$$q_0^{\times} = (q_0, q_0')$$

$$F^{\times} = F \times F'$$

Teorema

Para todo par de autómatas A y A' se tiene que:

$$\mathcal{L}(\mathcal{A} \times \mathcal{A}') = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')$$

Demostración: $\mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A} \times \mathcal{A}')$

Sea $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')$. Entonces $w \in \mathcal{L}(\mathcal{A})$ y $w \in \mathcal{L}(\mathcal{A}')$.

Existen ejecuciones de aceptación ρ y ρ' de \mathcal{A} y \mathcal{A}' sobre w, resp.:

$$\rho: \ p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n \qquad \rho': \ p_0' \stackrel{a_1}{\rightarrow} p_1' \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n'$$

- $p_0 = q_0$ y $p'_0 = q'_0$.
- $\delta(p_{i-1}, a_i) = p_i \text{ y } \delta'(p'_{i-1}, a_i) = p'_i \text{ para todo } i \in \{1, ..., n\}.$
- $p_n \in F$ y $p'_n \in F'$.

Por definición, tenemos que: $\rho^{\times}: (p_0, p_0') \stackrel{a_1}{\to} (p_1, p_1') \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} (p_n, p_n')$

- $(p_0, p'_0) = (q_0, q'_0).$
- $(p_i, p_i') = (\delta(p_{i-1}, a_i), \delta'(p_{i-1}', a_i)) = \delta^{\times}((p_{i-1}, p_{i-1}'), a_i) \ \forall i \in \{1, \ldots, n\}.$
- $(p_n, p'_n) \in F \times F'.$

Por lo tanto, ρ^{\times} es una ejecución de $\mathcal{A} \times \mathcal{A}'$ sobre w y $w \in \mathcal{L}(\mathcal{A} \times \mathcal{A}')$.

Demuestre que $\mathcal{L}(\mathcal{A} \times \mathcal{A}') \subseteq \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')$

Complemento, intersección y unión de autómatas

Dado dos autómatas A y A':

- 1. ¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A})^{C}$?
- 2. ¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')$?
- 3. ¿Existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cup \mathcal{L}(\mathcal{A}')$?

¿existe un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cup \mathcal{L}(\mathcal{A}')$?

Sabemos que:

$$\mathcal{L}(\mathcal{A}) \cup \mathcal{L}(\mathcal{A}') = (\mathcal{L}(\mathcal{A})^{C} \cap \mathcal{L}(\mathcal{A}')^{C})^{C}$$

Para calcular el autómata que acepta el lenguaje $\mathcal{L}(\mathcal{A}) \cup \mathcal{L}(\mathcal{A}')$:

- 1. Complementamos \mathcal{A} y \mathcal{A}' .
- 2. Intersectamos A^C y $(A')^C$.
- 3. Complementamos $\mathcal{A}^{c} \times (\mathcal{A}')^{c}$.

¿existe una forma directa de calcular el autómata B?

Outline

Definición alternativa

Operaciones de conjuntos

Aplicaciones algorítmicas

Algunos problemas fundamentales sobre autómatas

1. Dado un autómata \mathcal{A} , ¿cómo determinar si \mathcal{A} es trivial? $\mathcal{L}(\mathcal{A}) = \varnothing$

2. Dado autómatas
$$\mathcal{A}$$
 y \mathcal{A}' , ¿cómo saber si \mathcal{A} y \mathcal{A}' calculan lo mismo?
$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

3. Dado autómatas \mathcal{A} y \mathcal{A}' , ¿cómo saber si \mathcal{A} es más **restrictivo** que \mathcal{A}' ? $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$

$$\mathcal{L}(\mathcal{A}) = \emptyset$$

Problema: EMPTYNESS-DFA

Input: Un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ Output: TRUE si, y solo si, $\mathcal{L}(\mathcal{A}) = \emptyset$.

¿cómo podemos determinar si existe una palabra $w \in \Sigma^*$ tal que $w \in \mathcal{L}(A)$?

(ejercicio)

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$

Problema: CONTAINMENT-DFA

Input: Dos DFAs $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, F')$

Output: TRUE si, y solo si, $\mathcal{L}(A) \subseteq \mathcal{L}(A')$.

¿es verdad que $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$?

¿cómo determinar si $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$?

¿cómo determinar si
$$\mathcal{L}(A) \subseteq \mathcal{L}(A')$$
?

Dado dos autómatas \mathcal{A} y \mathcal{A}' , tenemos que:

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$
 ssi $\mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')^{C} = \emptyset$

Por lo tanto, los pasos a seguir son los siguientes:

- 1. Construir un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}')^{C}$.
- 2. Construir un autómata $\mathcal C$ tal que $\mathcal L(\mathcal C) = \mathcal L(\mathcal A) \cap \mathcal L(\mathcal B)$.
- 3. Usar nuestro algoritmo de emptiness para verificar si $\mathcal{L}(\mathcal{C})$ = \varnothing .

¿cuál es el tiempo de este algoritmo?