

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

18MAT31: Transform Calculus, Fourier Series and Numerical Techniques Assignment - II

Q. No										Blooms Level	CO'S				
1.	Obtain the Fourier series of the function $f(x) = x - x^2$ in $-\pi \le x \le \pi$ and hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$									L1, L2, L3	CO2				
2.	Obtain the Fourier series of the function $f(x) = x $ in $(-\pi, \pi)$ and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$									L1, L2, L3	CO2				
3.	Obtain the Fourier series of the function $f(x) = \frac{-\pi}{x} - \frac{\pi}{x} < x < 0$ Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$									L1, L2, L3	CO2				
4.	Obtain the Fourier series of the function $f(x) = \frac{\pi - x}{2}$ in $[0,2\pi]$ and hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$									L1, L2, L3	CO2				
5.	Find the Fourier series expansion of the function $f(x) = \frac{\pi x}{\pi (2 - x)}$ $0 < x < 1$ $1 < x < 2$									L1, L2, L3	CO2				
6.	Obtain the Fourier series of the function $f(x) = 2 - x$ $0 < x < 4$ $4 < x < 8$ Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$									L1, L2, L3	CO2				
7.	Obtain the half range Fourier Cosine series for the function $f(x) = \sin x$ in $[0, \pi]$									L1, L2, L3	CO2				
8.	Find the Fourier half range sine series of the function $f(x) = 2x - x^2$ in [0,3]									L1, L2, L3	CO2				
9.	Determine the constant term and the first cosine and sine terms of the Fourier series expansion of y from the following data $x(deg) 0 45 90 135 180 225 270 315$								L1, L2, L3	CO2					
	у	2		1.5	1		0.5	0	0.5		1	1.5			
10.	Express y as a Fourier series up to first harmonic given that										L1, L2, L3	CO2			
	x(deg)	0	30	60	90	120	150	180	210	240	270	300	330		
	у	1.8	1.1	0.3	0.16	1.5	1.3	2.16	1.25	1.3	1.52	1.76	2.0		
													_ _		

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

'n Institute w	: 2001 ith a Difference											
11.	The following table gives the variations of periodic current over a period											CO2
	t(sed	c)	0	$\frac{T}{6}$	$\frac{T}{3}$	$\frac{T}{2}$	$\frac{2T}{3}$	$\frac{5T}{6}$	T			
	A(am	ip)	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98			
	Show that there is a constant part of 0.75A in the current and also obtain the amplitude of the first harmonic.											
12.	Obtain	btain the constant term and the coefficients of the first sine and cosine terms in the ourier expansion of y from the following data							the	L1, L2, L3	CO2	
		x 0 1 2 3 4 5										
		у	9	18	3 24	28	26	20				
13.	Using the Taylor's series method solve $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$ at the point $x = 0.2, 0.3$. Consider up to 4 th degree term								L1, L2, L3	CO4		
14.	Using Runge – Kutta method solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$ by taking the step length as 0.2								L1, L2, L3	CO4		
15.	Using Runge – Kutta method solve $\frac{dy}{dx} = y(x + y)$ with $y(0) = 1$ at $x = 0.2$ by taking the step length as 0.2							L1, L2, L3	CO4			
16.	Using the modified Euler's method solve the IVP $\frac{dy}{dx} = x + y^2$, $y(0) = 1$ at $x = 0.2$ by taking $h = 0.1$. Carry out two iterations at each step							L1, L2, L3	CO4			
17							L1, L2, L3	CO4				
18	Using Milne's predictor – corrector method find y when $x = 0.4$ given that $\frac{dy}{dx} = 2e^x - y$, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$, $y(0.3) = 2.090$. Apply the corrector formula twice.							CO4				
19	Using Milne's predictor – corrector method find y when $x = 1.4$ given that $\frac{dy}{dx} = x^2 + \frac{y}{2}$, $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, $y(1.3) = 2.7514$. Apply the corrector formula twice.					CO4						
20	Using Milne's predictor – corrector method find y when $x = 1.4$ given that $\frac{dy}{dx} = x^2(1+y)$, $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$, $y(1.3) = 1.979$. Apply the corrector formula twice.							CO4				

Submission Last Date: 17.11.2020

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 **DEPARTMENT OF MATHEMATICS**

Multiple choice questions
1. Fourier expansion of an odd function has only terms.
a) Cosine 🕁 sine c) Both cosine and sine d) None
2.If $f(x) = x^4$ in $(-1,1)$, then the Fourier coefficient $b_n =$
$\int 0$ b) $\frac{4(-1)^n}{n^2}$ c) $\frac{1-(-1)^n}{n^2}$ d) None
3. Fourier expansion of an even function $f(x)$ in $(-\pi, \pi)$ has only terms.
(a) Cosine b) Sine c) Both cosine and sine d) None
4. If $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ then $f(0) = -\pi$ a) $x = b - \pi$ d) none
5. If $(x) = x^2$ in $(-2, 2)$, $f(x+4)=f(x)$, then $a_n =$
(a) $\int_0^2 x^2 \cos \frac{n\pi x}{2} dx$ (b) $\int_0^4 x^2 \cos \frac{n\pi x}{4} dx$ (c) $\int_0^2 x^2 \cos \frac{n\pi x}{4} dx$ (d) none
6. If $f(x)$ an odd function in $(-\pi, \pi)$, then the graph of $f(x)$ is symmetric about thea) x- axis b) y-axis g origin d) none
7. The mean value of $f(x)$ cosnx in $(0,2 \pi)$ $b)\frac{b_n}{2}$ c) $\frac{a_0}{2}$ d) none
8. The period of a constant function is a) 2 π b) 2l Inot defined d) none
9. A function f(x) defined for 0 <x<1 (-1,="" 1)="" an="" be="" can="" extended="" function="" if<="" in="" odd="" periodic="" td="" to=""></x<1>
$f(-x)=-f(x)$ b) $f(-x)=f(x)$ c) $f(-x)\neq -f(x)\neq f(x)$ d) none
10. If $f(x)$ is defined in (0, I) then the period of $f(x)$ to expand it as a half-range sine series is
a) 2 π 🚜 2l c) l d) none
11. If x=c is a point of discontinuity then the Fourier series of f(x) at x=c gives f(x)
$f(c) = \int_{-2}^{2} (f(c-0) + f(c+0))$ b) f(c) c) $\frac{f(c)}{2}$ d) none
12. Period of $ \sin x $ is \bigcirc) 2π b) 3π c) π d) none
13. Using sine series for f(x)=1, in $0 < x < \pi$, show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = 1$
a) $\frac{\pi^2}{6}$ b) $\frac{\pi^2}{12}$ g $\frac{\pi^2}{8}$ d) none
14. The term $a_1 cos x + b_1 sin x$ In the Fourier series is called
a) constant term 💋 first harmonic c) second harmonic d) none
15. The value of b_n in the Fourier series of f(x)= x in $-\pi < x < \pi$, $\sqrt[4]{0}$ b) $\pi/2$ c) π d) none
16.If Fourier transform of f(x) is F(s) then the inverse formula is
b) $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s)e^{-isx} dx$ c) $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx$ d) none
17. Fourier sine transform of $1/x$ is $\sqrt[s^2]{\frac{s^2}{2}}$ b) $\frac{s}{2}$ c) s^2 d) none
17. Fourier sine transform of $1/x$ is $\sqrt[3]{\frac{s^2}{2}}$ b) $\frac{s}{2}$ c) s^2 d) none 18. Fourier cosine transform of e^{-x} is $\sqrt[3]{\frac{s}{s^2+1}}$ b) $\frac{1}{s^2+1}$ c) $\frac{1}{s^2-1}$ d)none
19. The value of $\int_0^\infty \frac{\sin x}{x} dx$ is a) $\frac{\pi}{4}$ b) π
20. $e^{-\frac{x^2}{2}}$ is self-reciprocal in respect of
a) Laplace transform b) Fourier transform c) Z-transform d) none