Termodinamica (cont.)

¿ Cómo se obtiene la Transformata de Legendre!

Tenemos
$$Y = Y(x_0, x_1, ..., x_{\ell})$$
 $P_k = \frac{\partial Y}{\partial x_k}$

Overenos cambiar como variables

Overenos cambiar como variables
$$x_k \leftarrow P_k \Rightarrow$$
 olefinimos $Y = Y - P_k x_k$

$$\Rightarrow - \times_{k} = \frac{\partial V}{\partial P_{k}}$$

$$\frac{10}{\cos \rho} = \frac{\partial V}{\partial x} \quad \frac{\partial V}{\partial x} \quad \frac{\partial V}{\partial x} = \frac{V(x)}{x}$$

pendiente =
$$p = \frac{y - \varphi}{x - 0}$$

$$\Rightarrow \varphi = \forall - p \times$$

$$\forall (x) \rightarrow \varphi(p)$$

Ejemplo: Energid libre de Helmholtz

Para obtener una transformación F de Legendre tal que si U=U(S,V,N), sea F= F(T,V,N)

Es d'an la variable conjugade à S es U pasa a ser independiente en F (S \rightarrow 7)

Entonces havenos la transformación F= U-TS

 $(N_i \vee_i T)$

reemplagedo variables extensions por intentivas
reemplagedo variables extension por intentivas
Termo:
termo: * Se minimiza el poderciól termodiránico respecto de les variables independientes.
independientes.
Fin Repado termodinàmica
Tennodinà Mica Sidema Me cànica Establistica
Jennodina Mica Sidema (Sidema) (Establistica)
Description Macroscopics Microscopica
() A de la state de mandishaire to la
Componiarion de variables termodistinios Estados microscópicos del sistema
Mecanica

Espacio med Epacio M » Microsstado " viver" prodicular "vive" microentados

Les integration el sobre todo el espario M pero sólo les reajores con "purlos" de l'espario M recomidal par algune traxectaries (es dein can (±0!) contri buyen restricte al promedio. * En general < F2 poede sen función del Liempo * Un ensemble se dice enterioranio si of =0 \t = 35 i f no depende explicitamende del ot tiempo. * Ensemble estacionario -> panele cervin para reprecular estados
de expilibrio (termodinàmico!) Teorema de Livville y Sus consecuencies Ensideramos un volumen w: volumen relevante en una región con $f \neq 0$ del espacio fTasa de cambio de los (- o (Spolw) (1)

[puntos representativos en w) - ot (Swolw) (1) donde du = (dg3 N dp3N) Por otro lado la tasa nela o la cual los punos representativos "fluyen" a través de la superficie or que delimita el bonde de w está dada pon: ω $\int_{-\infty}^{\infty} d\sigma$

* Ecuación de continuidad para un nacimo de portos reprostativos * La evolución de porto, en el espario (se comporta como un líquido en hidrodinámica.

