Week 2-1

The Standard Cell Methodology

Implementation Choices

Approach taken depends on desired tradeoffs between time-to-market, cost, design complexity, aggressiveness of design specifications

Design for fast time-to-market: design automation techniques
Design for high performance/high density: handcrafted full custom design

The Cell-based Approach (Standard Cell)

- Routing channel requirements are reduced by presence of more interconnect (metal) layers
- Except for the first one or two metal layers, wires in each layer run in one direction (allow for denser packing)
 - Wires in consecutive layers run orthogonal to each other, and are shorted using vias
 - Library of cells designed for:
 - Different Boolean functions
 - Different drive strengths
- Width and height of all cells are defined by rules
 - Height defined by number of M1 signal wires (tracks) that can run horizontally
 - Width is multiple of a common factor
 - Wire endpoints defined on same grid coordinates (enables automated routing)
 - Allow placement to be defined by grid coordinates, (x, y), thus enabling automated placement

Design Rules – Wire Tracks

- The feature size, *f*, is the minimum spacing between the drain and source (min. dimension of gate structure between drain and source)
- Scalable design rules are expressed in terms of $\lambda = f/2$
- A wiring track is the space required for a wire
 - e.g., 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
- This rule applies to transistors as well

Structure of a Row of Standard Cells

Cell mirroring enables sharing of power and ground rails

Standard Cell – Early Example

- Large area overhead for the interconnects
 - Feedthrough cells
 - Large routing channels
- Adding more metal layers
 - Less requirements on routing channels

[Brodersen92]

Standard Cell - The New Generation

Design in a 7 metal layers technology

- Cell structure hidden under interconnect layers
 - Density: 90%
 - Small area overhead for interconnects

Standard Cells

Designing a standard cell library is time consuming, although amortized among a large number of designs

- Today it is common practice to have several cell versions
 - Number of inputs
 - Transistor sizing for different capacitative loads (<u>driving strength</u>)
 - Pull-up/pull-down ratios
 - Technology: V_{TH} , V_{DD} , technology corner cases
- Non-trivial choice of the mix of logic cells
 - Small library with most cells having limited fan-ins?
 - Large library with many versions of the same cell?
 - Conservative large driving capabilities lead to power/area overhead
- Technology libraries are broadly differentiated based on the target design goal (low-power vs high-performance)

Synthesis tools choose the correct cell version in the library based on the speed/area/power constraints

Week 2-2

Interconnects

Load Estimation

L-model (lumped model)

T-model

- Parasitics model the effect of the physical implementation of the circuit on the electrical behavior of the circuit. There are contributions from:
 - 1. Gate capacitance of MOSFETs
 - 2. Junction capacitances of MOSFETs
 - 3. Capacitance and resistance of the interconnect (metal wires for signal routing)

Capacitor Model for the MOSFET

Intrinsic Gate Capacitances

Operating Region	C_{gb}	C_{gs}	C_{gd}
Cutoff	$C_{OX}WL_{EFF}$	0	0
Linear/Triode	0	$\frac{C_{OX}WL_{EFF}}{2}$	$\frac{C_{OX}WL_{EFF}}{2}$
Saturation	0	$\frac{2}{3}C_{OX}WL_{EFF}$	0

Junction Capacitances

 C_{ja0} : zero voltage junction cap. per unit area C_{jp0} : zero voltage junction cap. per unit peri.

 V_j : voltage across the junction (+ve: forward-bias, -ve: reverse-bias)

 ϕ : built-in potential of junction (0.6 ~ 0.9 V)

ma, mp: grading coefficients (0.3 ~ 0.5)

$$C_{diff} = C_{bottom} + C_{sw} = C_j \times AREA + C_{jsw} \times PERIMETER$$

= $C_j L_S W + C_{jsw} (2L_S + W)$

$$C_j = C_{ja0} \left(1 - \frac{V_j}{\phi}\right)^{-ma}$$
 $C_{jsw} = C_{jp0} \left(1 - \frac{V_j}{\phi}\right)^{-mp}$

Parameter	n-diffusion	p-diffusion
C_{ja0}	0.1 fF / μm ²	0.1 fF / μm ²
C_{jp0}	0.9 fF / μm	0.8 fF / μm

Interconnects (Signal Routing Wires)

Physical

Interconnects in Real Chips

e.g. GlobalFoundries and TSMC's 28nm → 10 layers of Metal

Interconnect Capacitance - I

-
$$C_{wire}(PP) = C_{ins}W_wL_w$$
 $C_{ins} = \varepsilon_{ins}/t_{ins}$
- $C_{wire}(PP) = (C_{ins}W_w)L_w = C_W(PP)L_w$

$$- C_{wire}(PP) = (C_{ins}W_w)L_w = C_W(PP)L_w$$

Material	ε_{ins}		
Free space	1	W_w	
Aerogels	~1.5		
Polyimides (organic)	3 ~ 4		
SiO ₂	3.9		
Glass-epoxy (PC board)	5		
Silicon Nitride (Si ₃ N ₄)	7.5		
Alumina (package)	9.5		
Si	11.7	L_{w}	
t_{ins}		Wire	
_		<u> </u>	
1			
		Substrate	

Interconnect Capacitance - III

Wire-wire Capacitance

$$C_{wire} = (C_W(PP) + C_W(FF) + C_W(WW))L_w$$

see Fig. 5.22, Taur and Ning, Fundamentals of VLSI Devices

Wiring Capacitances

CAPACITANCE PARAMETERS Area (substrate) Area (N+active)	N+ 963	P+ 1159	POLY 110 8556	38 1	9 13	м4 8 11	м5 8 9	м6 3 8	D_N_W	N_W 125	UNITS aF/um^2 aF/um^2
Area (N+active) Area (P+active) Area (poly)			8309	58 1		7	5	4			aF/um^2 aF/um^2
Area (metal1) Area (metal2)							7 9	5 7			aF/um^2 aF/um^2
Area (metal3) Area (metal4)						39	15 36	9 14 37			aF/um^2
Area (metal5) Area (r well) Area (no well)	987 143							3/			aF/um^2 aF/um^2 aF/um^2
Fringe (substrate) Fringe (poly)	248	203		64 3		43 24	24 20	17			aF/um aF/um
Fringe (metall) Fringe (metal2) Fringe (metal3)				6		36 54	23 26 34	19 22 28			aF/um aF/um aF/um
Fringe (metal4) Fringe (metal5)			53.5				57	35 53			aF/um aF/um
Overlap (P+active)			636								aF/um

Interconnect Resistances

IR drop in wires due to interconnect resistances can severely impact signal integrity on wires with large current flow (e.g., power supply rails, clock, global and semi-global signaling lines)

Interconnect Materials

Material	ρ (Ω-m)
Silver (Ag)	1.6×10^{-8}
Copper (Cu)	1.7×10^{-8}
Gold (Au)	2.2×10^{-8}
Aluminum (Al)	2.7×10^{-8}
Tungsten (W)	5.5×10^{-8}

Material	Sheet Resistance (Ω/□)
n- or p-well diffusion	1000 - 1500
n^+ , p^+ diffusion	50 – 150
n^+ , p^+ diffusion with silicide	3 – 5
n^+ , p^+ polysilicon	150 – 200
n^+ , p^+ polysilicon with silicide	4 – 5
Aluminum	0.05 - 0.1

PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ 6.6 10.4 40	P+ 7.6 10.9	POLY 7.7 9.7	N+BLK 60.1	PLY+BLK 312.5	M1 0.08	M2 0.08 4.36	UNITS ohms/sq ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance	м3 0.08 9.08	POLY_H 1304.	6	м4 0.07 3.85	M5 0.07 19.37	м6 0.04 22.28	N_W 913	UNITS ohms/sq ohms

Tackling Interconnect Resistances

- Process Technology Solutions
 - Selective technology scaling
 - Use better interconnect materials
 - e.g. transition from aluminum to copper (introduced by IBM ~1997)
 - Future (cobalt, carbon nanotubes, ???)
 - More interconnect layers
 - Reduce average wire-length
 - New schemes
 - Optical
- Design Solutions (e.g. power ring design)
 - Optimize metal width
 - Choosing metal layer

Read more

https://semiengineering.com/all-about-interconnects/ https://semiengineering.com/dealing-with-resistance-in-chips/

Week 2-3

Introduction to Static CMOS Logic

Static Complementary MOS (CMOS) Logic

Key Characteristics

- Inputs and output are analog voltages
 - Voltage level correspond to digital values
- Transfer characteristic (relationship between inputs and output)
 - Described by truth table or Boolean function
- Output responds "immediately" to changes to input signals (with some propagation delay)
- Power must be supplied to the logic gate (i.e., V_{DD} is sufficiently high) for transfer characteristic to hold true
- Output is connected to either \emph{GND} or $\emph{V}_{\mathtt{DD}}$

Static Complementary MOS (CMOS) Logic

Static CMOS Logic

- Static CMOS logic gates formed using both NMOS and PMOS transistors
 - Pull-down network:
 - Consists of NMOS transistors only
 - Determines which input pattern gives Y = '0' (GND)
 - Pull-up network:
 - Consists of PMOS transistors only
 - Determines which input pattern gives $Y = '1' (V_{DD})$
- Every input signal is given to the gates of at least one pair of transistors
 - One PMOS and one NMOS transistor
- Fan-in: number of inputs the logic gate has
- Fan-out: number of inputs receiving the output of the logic gate

Example: The Static CMOS Inverter

Week 2-4

Introduction to the Static CMOS Inverter

- Simplest static CMOS logic gate
 - One p-MOSFET in PUN
 - One n-MOSFETs in PDN
- Gates of MOSFETs are controlled by the same signal
 - Extremely high input impedance
- In the static state, the output node Y is either connected to GND or to V_{DD} (Full rail-to-rail output swing)
 - p-MOSFET and n-MOSFET are complementary switches controlled by the same signal
 - Only one of the MOSFETs is on. The other is off
 - No static power consumption
 - Low output impedance from output to V_{DD} (PMOS is on) or GND (NMOS is on) in steady state

- Simplest static CMOS logic gate
 - One p-MOSFET in PUN
 - One n-MOSFETs in PDN
- Gates of MOSFETs are controlled by the same signal
 - Extremely high input impedance
- In the static state, the output node Y is either connected to GND or to V_{DD} (Full rail-to-rail output swing)
 - p-MOSFET and n-MOSFET are complementary switches controlled by the same signal
 - Only one of the MOSFETs is on. The other is off
 - No static power consumption
 - Low output impedance from output to $V_{\rm DD}$ (PMOS is on) or **GND** (NMOS is on) in steady state

- Simplest static CMOS logic gate
 - One p-MOSFET in PUN
 - One n-MOSFETs in PDN
- Gates of MOSFETs are controlled by the same signal
 - Extremely high input impedance
- In the static state, the output node Y is either connected to **GND** or to V_{DD} (Full rail-to-rail output swing)
 - p-MOSFET and n-MOSFET are complementary switches controlled by the same signal
 - Only one of the MOSFETs is on. The other is off
 - No static power consumption
 - Low output impedance from output to $V_{\rm DD}$ (PMOS is on) or **GND** (NMOS is on) in steady state

Layout View of CMOS Inverter

- Simplest static CMOS logic gate
 - One p-MOSFET in PUN
 - One n-MOSFETs in PDN
- Gates of MOSFETs are controlled by the same signal
 - Extremely high input impedance
- In the static state, the output node Y is either connected to GND or to V_{DD} (Full rail-to-rail output swing)
 - p-MOSFET and n-MOSFET are complementary switches controlled by the same signal
 - Only one of the MOSFETs is on. The other is off
 - No static power consumption
 - Low output impedance from output to V_{DD} (PMOS is on) or GND (NMOS is on) in steady state

contacts (metal)

Layout View of CMOS Inverter

- Simplest static CMOS logic gate
 - One p-MOSFET in PUN
 - One n-MOSFETs in PDN
- Gates of MOSFETs are controlled by the same signal
 - Extremely high input impedance
- In the static state, the output node Y is either connected to GND or to V_{DD} (Full rail-to-rail output swing)
 - p-MOSFET and n-MOSFET are complementary switches controlled by the same signal
 - Only one of the MOSFETs is on. The other is off
 - No static power consumption
 - Low output impedance from output to V_{DD} (PMOS is on) or GND (NMOS is on) in steady state

- Simplest static CMOS logic gate
 - One p-MOSFET in PUN
 - One n-MOSFETs in PDN
- Gates of MOSFETs are controlled by the same signal
 - Extremely high input impedance
- In the static state, the output node Y is either connected to **GND** or to V_{DD} (Full rail-to-rail output swing)
 - p-MOSFET and n-MOSFET are complementary switches controlled by the same signal
 - Only one of the MOSFETs is on. The other is off
 - No static power consumption
 - Low output impedance from output to V_{DD} (PMOS is on) or **GND** (NMOS is on) in steady state

Week 2-5

Introduction to Load Line Analysis

Solving for DC Solution to Non-linear Circuits

- Given this circuit, determine the stead state voltage of the node Y
 - $V_{\rm Y}/V_{\rm DD} = (R_2)/(R_1 + R_2)$
 - Simple problem
- What if R₂ is a non-linear element such as a diode?

Solving for DC Solution to Non-linear Circuits

- Given this circuit, determine the stead state voltage of the node Y
 - $V_{\rm Y}/V_{\rm DD} = (R_2)/(R_1 + R_2)$
 - Simple problem
- What if **R**₂ is a non-linear element such as a diode?
 - $I_{D} = I_{D0} \exp(-V_{Y}/nV_{T})$
 - $I_D = (V_{DD} V_Y)/R_1$
 - $(V_{DD}-V_{Y})/R_{1} = I_{D0} \exp(-V_{Y}/nV_{T})$
- Not trivial to solve!

Load Line Analysis

 V_{DD}

 V_{DD}

Load Line Analysis

$$I_{R1} = I_{R2} \rightarrow (V_{DD} - V_{Y})/R_{1} = V_{Y}/R_{2}$$

- Graphical method to solve for DC solution to circuits
- Use *I-V* characteristics
- Combine the graphs to solve the equation
 - Superimpose graphs

Load Line Analysis

$$I_{R1} = I_{R2} \rightarrow (V_{DD} - V_{Y})/R_{1} = V_{Y}/R_{2}$$

- Graphical method to solve for DC solution to circuits
- Use *I-V* characteristics
- Combine the graphs to solve the equation
 - Superimpose graphs
 - Intersection gives solution

Load Line Analysis

$$I_{R1} = I_{R2} \rightarrow (V_{DD} - V_{Y})/R_{1} = V_{Y}/R_{2}$$

- Graphical method to solve for DC solution to circuits
- Use *I-V* characteristics
- Combine the graphs to solve the equation
 - Superimpose graphs

Week 2-6

Static Response of the Static CMOS Inverter

Static Response of the Static CMOS Inverter

- What is the output voltage, V_{OUT} , as we vary the analog input voltage V_{IN} ?
 - Expectation for $V_{IN} = 0 \text{ V}$:
 - n-MOSFET in cut-off
 - $R_{PDN} = R_{OFF}$
 - p-MOSFET is on
 - $R_{PUN} = R_{ON}$
 - *R*_{OFF} >> *R*_{ON}
 - $V_{\text{OUT}} \approx V_{\text{DD}}$
 - Expectation for $V_{IN} = V_{DD}$:
 - n-MOSFET is on
 - $R_{PDN} = R_{ON}$
 - p-MOSFET is in cut-off
 - $R_{PUN} = R_{OFF}$
 - $R_{ON} \ll R_{OFF}$
 - **V**_{OUT} ≈ 0 ∨
 - What if V_{IN} is a voltage in the range 0 < V_{IN} < V_{DD}?

The Voltage Transfer Characteristic (VTC)

 What is the output voltage, V_{OUT}, as we vary the analog input voltage V_{IN} in the range 0 V < V_{IN} < V_{DD}?

The Voltage Transfer Characteristic (VTC)

- What is the output voltage, V_{OUT}, as we vary the analog input voltage V_{IN} in the range 0 V < V_{IN} < V_{DD}?
 - Mid-point (trip point): $V_{M} = V_{IN} = V_{OUT}$
 - Gain = $\frac{\partial V_{OUT}}{\partial V_{IN}}$
 - Output High Voltage (ideal input): V_{OH}
 - Input Low Voltage: V_{IL}
 - Noise Margin (Low): NM_I
 - Output Low Voltage (ideal input): Vol
 - Input High Voltage: VIH
 - Noise Margin (High): **NM**_H
- How to get the VTC?

Static Behavior of CMOS Inverter

Determination of $V_{\rm M}$

In the inverter, if $V_{IN} = V_{M}$, then $V_{OUT} = V_{M}$ by definition.

For the n-MOSFET in the static CMOS inverter:

$$V_{GSn} = V_{DSn} = V_{M}$$

Also, $V_{DSn} > V_{GSn} - V_{TN}$ so NMOS is in saturation

For the p-MOSFET in the static CMOS inverter:

$$V_{GSp} = V_{DSp} = V_{DD} - V_{M} \label{eq:V_GSp}$$
 Also, $V_{DSp} < V_{GSp} - V_{TP}$ so PMOS is in saturation

Note that both the n-MOSFET and p-MOSFET are in saturation. Moreover, $I_{DSn} = -I_{DSp}$. Assuming short channel device and no channel length modulation,

$$\mu_{n}C_{OX}\frac{W_{N}}{L_{N}}\bigg(V_{GSn}-V_{TN}-\frac{V_{DS,SATn}}{2}\bigg)V_{DS,SATn}=\mu_{p}C_{OX}\frac{W_{P}}{L_{P}}\bigg(V_{GSp}-V_{TP}-\frac{V_{DS,SATp}}{2}\bigg)V_{DS,SATp}$$

$$\mu_{n}C_{OX}\frac{W_{N}}{L_{N}}\bigg(V_{M}-V_{TN}-\frac{V_{DS,SATn}}{2}\bigg)V_{DS,SATn}=\mu_{p}C_{OX}\frac{W_{P}}{L_{P}}\bigg(V_{M}-V_{DD}-V_{TP}-\frac{V_{DS,SATp}}{2}\bigg)V_{DS,SATp}$$

$$\beta_{N}\bigg(V_{M}-V_{TN}-\frac{V_{DS,SATn}}{2}\bigg)V_{DS,SATn}=\beta_{P}\bigg(V_{M}-V_{DD}-V_{TP}-\frac{V_{DS,SATp}}{2}\bigg)V_{DS,SATp}$$

$$(\beta_{N}V_{DS,SATn}-\beta_{P}V_{DS,SATp})V_{M}=\beta_{N}V_{DS,SATn}\bigg(V_{TN}+\frac{V_{DS,SATn}}{2}\bigg)-\beta_{P}V_{DS,SATp}\bigg(V_{DD}+V_{TP}+\frac{V_{DS,SATp}}{2}\bigg)$$

$$\bigg(1-\frac{\beta_{P}V_{DS,SATp}}{\beta_{N}V_{DS,SATn}}\bigg)V_{M}=\bigg(V_{TN}+\frac{V_{DS,SATn}}{2}\bigg)-\frac{\beta_{P}V_{DS,SATp}}{\beta_{N}V_{DS,SATn}}\bigg(V_{DD}+V_{TP}+\frac{V_{DS,SATp}}{2}\bigg)$$

$$V_{M}=\frac{\bigg(V_{TN}+\frac{V_{DS,SATn}}{2}\bigg)+r\bigg(V_{DD}+V_{TP}+\frac{V_{DS,SATp}}{2}\bigg)}{1+r}; r=\frac{-\beta_{P}V_{DS,SATp}}{\beta_{N}V_{DS,SATn}}=\frac{-\mu_{p}(W_{P}/L_{P})V_{DS,SATp}}{\mu_{n}(W_{N}/L_{N})V_{DS,SATn}}$$

Relationship Between $V_{\rm M}$ and β -ratio

$$\beta$$
-ratio = $\frac{\beta_P}{\beta_N} = r$ for when $\left| \frac{V_{DS,SATp}}{V_{DS,SATn}} \right| = 1$

Approximating the VTC

Approximating the VTC - II

Piecewise linear approximation to VTC

$$g = \frac{V_{DD}}{V_{IL} - V_{IH}} = \frac{V_M}{V_M - V_{IH}} = \frac{V_{DD} - V_M}{V_{IL} - V_M} < 0$$

$$\Longrightarrow V_{IH} = V_M - \frac{V_M}{g}$$

$$\Longrightarrow V_{IL} = V_M + \frac{V_{DD} - V_M}{g}$$

Peak gain occurs at $V_{\rm M}$,

$$g(V_M) = \frac{\partial V_{OUT}}{\partial V_{IN}} \Big|_{V_{IN} = V_M}$$

$$= \frac{-1}{I_D(V_M)} \cdot \frac{\beta_N V_{DS,SATn} - \beta_P V_{DS,SATp}}{\lambda_N - \lambda_P}$$

$$\approx -\frac{1}{\left(V_M - V_{TN} - \frac{V_{DS,SATn}}{2}\right)(\lambda_N - \lambda_P)}$$

Peak gain is mostly determined by channel length modulation

Gain and Noise Margins

Noise margins are defined as

$$NM_{L} = V_{IL} = V_{M} + \frac{V_{DD} - V_{M}}{g}$$
 $NM_{H} = V_{DD} - V_{IH} = V_{DD} - V_{M} + \frac{V_{M}}{g}$

$$NM_L + NM_H = V_{DD} + \frac{V_{DD}}{g}$$

Since g < 0, want g to be as negative as possible (maximize magnitude) to maximize noise margin!

Week 2-7

Dynamic Response of the Static CMOS Inverter – Timing

Dynamic Response of the Static CMOS Inverter

- Dynamic response: the transient (time-dependent) change of $V_{\rm OUT}$ when $V_{\rm IN}$ is changed
- Analyze using switch model of MOSFET
 - C_L models the capacitances due to the MOSFET junction, inputs of other logic gates, interconnect wiring, etc.
 - When $V_{IN} = GND$, C_L is charged through PMOS channel (R_D)
 - Propagation delay, $t_{
 m pLH}$

$$t_{pLH} = \gamma R_P C_L$$

- When $V_{IN} = V_{DD}$, C_{L} is discharged through NMOS channel (R_{N})
 - Propagation delay, t_{pHL}

$$t_{pHL} = \gamma R_N C_L$$

 γ depends on our definition of propagation delay (when to stop)

Delay Definitions

$t_{\rm pHL}$ of the Static CMOS Inverter

$t_{\rm pHL}$ of the Static CMOS Inverter

$$V_{OUT}(t) \approx V_{DD} \exp(-t/R_N C_L)$$

To get t_{pHL} , need time when

$$\frac{V_{OUT}(t_{PHL})}{V_{DD}} = \exp(-t_{pHL}/R_NC_L) = 0.5$$

$$t_{pHL} = 0.69R_NC_L$$

At
$$t = 0$$

- $V_{OUT} (t = 0) = V_{DD}$

- $V_{GND} = 0 V$

- $I_{C,L} = (V_{GND} - V_{OUT})/R_{N}$

= $-V_{OUT}/R_{N}$

- For any capacitor

$$- i_c = C \frac{dv_c}{d\tau}$$

- After equating the two we get:

$$C_L \frac{dv}{d\tau} = -\frac{v}{R_N}$$

Rearranging,

$$\frac{1}{v}dv = \frac{-1}{R_N C_L} d\tau$$

- Integrating both sides,

$$\int_{V_{DD}}^{V_{OUT}} \frac{1}{v} dv = \int_{0}^{t} \frac{-1}{R_N C_L} d\tau$$

- After integration,

$$\ln(V_{OUT}) - \ln(V_{DD}) = \frac{-t}{R_N C_L}$$
$$\ln\left(\frac{V_{OUT}}{V_{DD}}\right) = \frac{-t}{R_N C_L}$$

$t_{\rm pLH}$ of the Static CMOS Inverter

t_{pLH} of the Static CMOS Inverter

$$V_{OUT}(t) \approx V_{DD} \left(1 - \exp\left(-\frac{t}{R_P C_L} \right) \right)$$

To get t_{pLH} , need time when

$$\frac{V_{OUT}(t_{pLH})}{V_{DD}} = \left(1 - \exp\left(-\frac{t_{pLH}}{R_P C_L}\right)\right) = 0.5$$

$$t_{pLH} = 0.69R_P C_L$$

Voltage of Node OUT at t = 0

-
$$V_{\text{OUT}}$$
 ($t = 0$) = V_{GND}

$$- I_{C,L} = (V_{DD} - V_{OUT})/R_{P}$$

- For any capacitor

$$- i_c = C \frac{dv_c}{d\tau}$$

- After equating the two we get:

$$C_L \frac{dv}{d\tau} = \frac{V_{DD} - v}{R_P}$$

Rearranging,

$$\frac{1}{v - V_{DD}} dv = \frac{-1}{R_P C_L} d\tau$$

- Integrating both sides,

$$\int_{0}^{V_{OUT}} \frac{1}{v - V_{DD}} dv = \int_{0}^{t} \frac{-1}{R_P C_L} d\tau$$

- After integration,

$$\ln(V_{OUT} - V_{DD}) - \ln(-V_{DD}) = \frac{-t}{R_P C_L}$$

$$\ln\left(\frac{V_{DD} - V_{OUT}}{V_{DD}}\right) = \frac{-t}{R_P C_L}$$

Common Design Requirements

- Balanced propagation delay
 - Design for $t_{pLH} = t_{pHL}$ (i.e., $0.69R_NC_L = 0.69R_pC_L$); achieved by setting $(R_N = R_p)$
 - Since $\frac{R_P}{R_N} \propto \frac{(W_N/L_N)}{(W_P/L_P)}$, we achieve this by adjusting the aspect ratio (W/L ratio) of the MOSFETs
- Fastest speed (i.e., smallest delay)
 - Reduce C₁
 - internal diffusion capacitance of the gate itself
 - keep the drain diffusion as small as possible
 - interconnect capacitance
 - fanout
 - Increase W/L ratio of the transistors
 - the most powerful and effective performance optimization tool in the hands of the designer
 - watch out for self-loading! when the intrinsic capacitance dominates the extrinsic load
 - may come increase input capacitance which loads the gate that generates the input signal
 - Increase V_{DD}
 - trade-off energy for performance
 - increasing V_{DD} above a certain level yields only very minimal improvements
 - reliability concerns enforce a firm upper bound on V_{DD}

Week 2-8

Power Consumption of the Static CMOS Inverter

$t_{\rm pLH}$ of the Static CMOS Inverter

$$V_{OUT}(t) \approx V_{DD} \left(1 - \exp\left(-\frac{t}{R_P C_L} \right) \right)$$

To get t_{pLH} , need time when

$$\frac{V_{OUT}(t_{pLH})}{V_{DD}} = \left(1 - \exp\left(-\frac{t_{pLH}}{R_P C_L}\right)\right) = 0.5$$

$$t_{pLH} = 0.69R_P C_L$$

Voltage of Node OUT at t = 0

-
$$V_{\text{OUT}}(t=0) = V_{\text{GND}}$$

$$- I_{C,L} = (V_{DD} - V_{OUT})/R_{P}$$

-
$$V_{GND} = 0 V$$

$$- I_{C,L} = -V_{OUT}/R_{P}$$

- For any capacitor

$$- i_c = C \frac{dv_c}{d\tau}$$

- After equating the two we get:

$$C_L \frac{dv}{d\tau} = \frac{V_{DD} - v}{R_P}$$

- Rearranging,

$$\frac{1}{V_{DD} - v} dv = \frac{-1}{R_P C_L} d\tau$$

- Integrating both sides,

$$\int_{0}^{V_{OUT}} \frac{1}{V_{DD} - v} dv = \int_{0}^{t} \frac{-1}{R_P C_L} d\tau$$

- After integration,

$$\ln(V_{DD} - V_{OUT}) - \ln(V_{DD}) = \frac{-t}{R_P C_L}$$
$$\ln\left(\frac{V_{DD} - V_{OUT}}{V_{DD}}\right) = \frac{-t}{R_P C_L}$$

Power Consumption of Static CMOS Inverter $(0 \rightarrow 1)$

$$I_{SUPPLY}(t) = I_C(t) \approx \frac{V_{DD}}{R_P} \exp\left(-\frac{t}{R_P C_L}\right)$$

$$E_{SUPPLY} = C_L V_{DD}^2$$

- Power supplied:
 - $V_{DD} \times I_{SUPPLY} = V_{DD} \times I_{C}$
- Energy supplied:

-
$$\int_0^{+\infty} V_{DD} I_C d\tau$$

- Substituting I_C,

$$\int_0^{+\infty} \frac{V_{DD}^2}{R_P} exp\left(-\frac{\tau}{R_P C_L}\right) d\tau$$

$$-\frac{V_{DD}^{2}R_{P}C_{L}}{R_{P}}exp\left(-\frac{\tau}{R_{P}C_{L}}\right)\Big|_{0}^{+\infty}$$

Power Consumption of Static CMOS Inverter $(1\rightarrow 0)$

- Power supplied:
 - $V_{DD} \times I_{SUPPLY}$
- No current is flowing from $V_{\rm DD}$ supply source and so no energy is drawn from power supply

$$E_{SUPPLY} = 0$$

Dynamic Power Dissipation

- During $0 \rightarrow 1$ transition (output node charged to V_{DD})
 - Total supplied = $C_L V_{DD}^2$
 - Stored in load capacitor = $0.5C_LV_{DD}^2$
 - Energy loss = $0.5C_LV_{DD}^2$
- During $1 \rightarrow 0$ transition (output node discharged to **GND**)
 - Total supplied = 0
 - Stored in load capacitor = 0
 - Energy loss = $0.5C_LV_{DD}^2$
- Energy is consumed by circuit (*i.e.* taken from power supply) only when there is 0→1 transition
- Dynamic/active Power = rate of energy consumption = $C_L V_{DD}^2 f_{0 \to 1}$ = $\alpha_{0 \to 1} C_L V_{DD}^2 f_{clk}$

 f_{clk} : operating frequency $\alpha_{0\rightarrow 1}$: activity factor (probability of $0\rightarrow 1$ transition)

Short Circuit Power Dissipation

 $E_{sc} = 2V_{DD}Q = 2V_{DD}\frac{I_{peak}t_{sc}}{2} = V_{DD}I_{peak}t_{sc}$

$$E_{sc} = V_{DD} \cdot \int_{0}^{t_{sc}} I_{sc}(t) dt \quad \Rightarrow P_{sc} = V_{DD} \cdot f \cdot \int_{0}^{t_{sc}} I_{sc}(t) dt$$

$$E_{sc} \approx 2V_{DD} \frac{I_{peak} t_{sc}}{2} = V_{DD} I_{peak} t_{sc}$$

$$P_{sc} = V_{DD}I_{peak}t_{sc}f$$

 \rightarrow P_{SC} is reduced when (1) V_{DD}, (2) t_{sc} and (3) f are lowered

Static (Leakage) Power Dissipation

Subthreshold leakage

- Leakage in CMOS includes drain/source to substrate/well junction leakage current and sub-threshold current;
- The P_{static} is

$$P_{static} = I_{stat}V_{DD} = (I_{junc} + I_{sub})V_{DD}$$

Static (Leakage) Power Dissipation

- Leakage in CMOS includes drain/source to substrate/well junction leakage current and sub-threshold current;
- The P_{static} is

$$P_{static} = I_{stat}V_{DD} = (I_{junc} + I_{sub})V_{DD}$$

Threshold Voltage and Sub-threshold Leakage Current

• The sub-threshold slope, S:

$$I_D \propto e^{q(V_{GS}-V_{TH})/nk_BT}$$

$$ln I_D = {\rm constant} + \frac{V_{GS}}{n(k_BT/q)}$$

$$log_{10} I_D = {\rm constant} + \frac{V_{GS}}{2.3n(k_BT/q)}$$

$$\frac{\partial (log_{10}I_D)}{\partial V_{GS}} = \frac{1}{2.3n(k_BT/q)} \frac{{\rm decades~of~}I_D}{{\rm Volts~of~}V_{GS}}$$

$$S = \left(\frac{\partial (log_{10}I_D)}{\partial V_{GS}}\right)^{-1} = 2.3n\left(\frac{k_BT}{q}\right) \frac{{\rm mV}}{{\rm dec}}$$

$$S \approx \begin{cases} 60 \text{ mV/dec~when } n = 1\\ 90 - 120 \text{ mV/dec, typically} \end{cases}$$

e.g. Assuming $S = 75 \, \text{mV}$ / decade (fixed), reducing V_{TN} from 0.4 V to 0.1 V ($\Delta V_{TN} = -0.3 \, \text{V}$) can lead to $\sim 10^4 \, \text{times higher}$ sub-threshold leakage current