Рубежный контроль №1, Черников Анатолий РТ5-61Б

Задача 3, Вариант 4 Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему? Дополнительные требования по группам: Для студентов группы РТ5-61Б - для пары произвольных колонок данных построить график "Jointplot".

Ввод [4]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler
```

Загрузка датасета и вывод общей информации о нём

Ввод [5]:

```
data = pd.read_csv("states_all.csv")
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1715 entries, 0 to 1714
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype				
0	PRIMARY_KEY	1715 non-null	3				
1	STATE	1715 non-null	object				
2	YEAR	1715 non-null	int64				
3	ENROLL	1224 non-null	float64				
4	TOTAL_REVENUE	1275 non-null	float64				
5	FEDERAL_REVENUE	1275 non-null	float64				
6	STATE_REVENUE	1275 non-null	float64				
7	LOCAL_REVENUE	1275 non-null	float64				
8	TOTAL_EXPENDITURE	1275 non-null	float64				
9	INSTRUCTION_EXPENDITURE	1275 non-null	float64				
10	SUPPORT_SERVICES_EXPENDITURE	1275 non-null	float64				
11	OTHER_EXPENDITURE	1224 non-null	float64				
12	CAPITAL_OUTLAY_EXPENDITURE	1275 non-null	float64				
13	GRADES_PK_G	1542 non-null	float64				
14	GRADES_KG_G	1632 non-null	float64				
15	GRADES_4_G	1632 non-null	float64				
16	GRADES_8_G	1632 non-null	float64				
17	GRADES_12_G	1632 non-null	float64				
18	GRADES_1_8_G	1020 non-null	float64				
19	GRADES_9_12_G	1071 non-null	float64				
20	GRADES_ALL_G	1632 non-null	float64				
21	AVG_MATH_4_SCORE	565 non-null	float64				
22	AVG_MATH_8_SCORE	602 non-null	float64				
23		650 non-null	float64				
24		562 non-null					
dtypes: float64(22), int64(1), object(2)							

dtypes: float64(22), int64(1), object(2)

memory usage: 335.1+ KB

Ввод [6]:

data.head()

Out[6]:

	PRIMARY_KEY	STATE	YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	S
0	1992_ALABAMA	ALABAMA	1992	NaN	2678885.0	304177.0	
1	1992_ALASKA	ALASKA	1992	NaN	1049591.0	106780.0	
2	1992_ARIZONA	ARIZONA	1992	NaN	3258079.0	297888.0	
3	1992_ARKANSAS	ARKANSAS	1992	NaN	1711959.0	178571.0	
4	1992_CALIFORNIA	CALIFORNIA	1992	NaN	26260025.0	2072470.0	

5 rows × 25 columns

Ввод [7]:

data.dtypes

Out[7]:

PRIMARY_KEY object object STATE YEAR int64 float64 **ENROLL** TOTAL_REVENUE float64 FEDERAL_REVENUE float64 STATE_REVENUE float64 LOCAL_REVENUE float64 TOTAL_EXPENDITURE float64 float64 INSTRUCTION EXPENDITURE SUPPORT_SERVICES_EXPENDITURE float64 OTHER_EXPENDITURE float64 CAPITAL_OUTLAY_EXPENDITURE float64 GRADES_PK_G float64 GRADES_KG_G float64 GRADES_4_G float64 float64 GRADES_8_G GRADES_12_G float64 GRADES_1_8_G float64 GRADES_9_12_G float64 GRADES ALL G float64 AVG_MATH_4_SCORE float64 AVG_MATH_8_SCORE float64 AVG_READING_4_SCORE float64 AVG_READING_8_SCORE float64

dtype: object

MinMax масштабирование признака TOTAL_REVENUE

Ввод [8]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['TOTAL_REVENUE']])
plt.hist(data['TOTAL_REVENUE'],50)
plt.show()
```


Как видно, график не изменился, а значения теперь лежат в промежутке от 0 до 1

Ввод [9]:

```
plt.hist(sc1_data, 50)
plt.show()
```


Проведём преобразование категориального признака STATE в количественный посредством label encoding

```
Ввод [10]:
```

```
state_data = data[['STATE']]
state_data.head()
```

Out[10]:

STATE

- 0 ALABAMA
- 1 ALASKA
- 2 ARIZONA
- 3 ARKANSAS
- 4 CALIFORNIA

Ввод [11]:

```
state_data['STATE'].unique()
```

Out[11]:

Ввод [12]:

```
le = LabelEncoder()
state_data_le = le.fit_transform(state_data['STATE'])
```

```
Ввод [13]:
le.classes
Out[13]:
array(['ALABAMA', 'ALASKA', 'ARIZONA', 'ARKANSAS', 'CALIFORNIA',
       'COLORADO', 'CONNECTICUT', 'DELAWARE', 'DISTRICT_OF_COLUMBIA',
       'DODEA', 'FLORIDA', 'GEORGIA', 'HAWAII', 'IDAHO', 'ILLINOIS',
                 , 'IOWA', 'KANSAS', 'KENTUCKY', 'LOUISIANA', 'MAINE', ', 'MASSACHUSETTS', 'MICHIGAN', 'MINNESOTA',
       'MARYLAND',
       'MISSISSIPPI', 'MISSOURI', 'MONTANA', 'NATIONAL', 'NEBRASKA',
       'NEVADA', 'NEW_HAMPSHIRE', 'NEW_JERSEY', 'NEW_MEXICO', 'NEW_YORK',
       'NORTH_CAROLINA', 'NORTH_DAKOTA', 'OHIO', 'OKLAHOMA', 'OREGON',
       'PENNSYLVANIA', 'RHODE_ISLAND', 'SOUTH_CAROLINA', 'SOUTH_DAKOTA'
       'TENNESSEE', 'TEXAS', 'UTAH', 'VERMONT', 'VIRGINIA', 'WASHINGTON', 'WEST_VIRGINIA', 'WISCONSIN', 'WYOMING'], dtype=object)
Ввод [14]:
state_data_le
Out[14]:
array([ 0, 1, 2, ..., 50, 51, 52])
Каждому штату в датасете присваиваем число, которое его заменит
Ввод [15]:
np.unique(state_data_le)
Out[15]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
       34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
       51, 521)
Теперь посредством OneHotEncoding
Ввод [16]:
ohe = OneHotEncoder()
state_data_ohe = ohe.fit_transform(state_data[['STATE']])
Ввод [17]:
state_data.shape
```

Out[17]:

(1715, 1)

Как видно, один столбец преобразился в 53

```
Ввод [18]:
```

```
state_data_ohe.shape
```

Out[18]:

(1715, 53)

Каждая строка датасета теперь имеет только одну единицу среди всех столбцов STATE

Ввод [19]:

```
state_data_ohe.todense()[0:10]
```

Out[19]:

```
0., 0., 0., 0., 0.],
 0., 0., 0., 0., 0.],
 0., 0., 0., 0., 0.],
 0., 0., 0., 0., 0.],
 0., 0., 0., 0., 0.],
 0., 0., 0., 0., 0.],
 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0.]])
```

График JointPlot

Ввод [20]:

sns.jointplot(x="GRADES_ALL_G", y="TOTAL_REVENUE", data=data)

Out[20]:

<seaborn.axisgrid.JointGrid at 0x20f331286d0>

