IMPROVING DESTINATION CHOICE WITH AI

Transportation & Mapping SolutionsMaptitude • TransCAD • TransModeler

CONTEXT OF FHWA TMIP PROJECT

 Acknowledgement and thanks for FHWA sponsorship of this important work

- Part of larger project to improve travel forecasting through the use of big data and AI
 - Review of literature and practice
 - Testing new methods
 - Implementation pilot projects with case studies
 - "Playbook" for incorporating AI in travel models
 - TMIP webinars to promote Playbook methods

CALIPER TEAM

Vince Bernardin, PhD Project Manager

Andrew Rohne

Rama Balakrishna, PhD

Howard Slavin, PhD Senior Advisor

Wuping Xin, PhD Deputy Project Manager

Kyle Ward

Srini Sundaram

Andres Rabinowicz, DSc

EXPERT PANEL

Francisco Pereira, PhD Kara Kockelman, PhD Panel Lead

Mark Bradley

Joshua Auld, PhD

Brian Gregor, PE

Sabya Mishra, PhD

Dan Work, PhD

PROJECT FOCUS

- Focus on AI
 - References to TMIP resources on big data

 Focus on Practical Improvements for the Near- to Mid-Term

- Methods to improve/replace individual model components
- AI-DCMs
- Primary focus on Destination Choice
 - Largest source of error in existing models
 - largest opportunity for improvement

AI-DCM MODELS

- Artificial Intelligence Discrete Choice Models
- Combine neural networks and logit models
- Attempt to combine the best of both traditional and newer methods
 - Theoretical basis and interpretability of traditional models
 - Explanatory power and accuracy of Al
- Six types proposed so far
 - L-MNL

TasteNet

ResLogit

RUMnets

TB-ResNet

e-Logit

TB-RESNETS

- Ensemble of Logit and Deep NN
- Interpretable as a logit or DNN
- Utilities weighted average of logit and DNN
- Weight estimable from data

Fig. 2. Utility functions of MNL-ResNets, MNL, and DNNs. Upper row: visualization of 2D utility functions, and percentages in the parentheses represent the prediction accuracy. Lower row:

(2) δ DNN

Fig. 1. Architecture of TB-ResNet. Both DCM and DNN are flexible

TransCAD TransModeler

LITERATURE REVIEW

LITERATURE REVIEW

- Identified 354 papers from 1993 to present
- Explosion of papers from 2016, peaking in 2020, stabilized around 2018-19 levels
- Needed to prioritize, mostly based on citation rates
- Cursory review of I23 papers and I8 surveys/reviews
- Report summarizes 34 papers
 - Plus, a brief overview of 15 early papers
 - And appendix with 13 paper summaries
- Identified 8 branches of the literature

BRANCHES OF THE LITERATURE

- Eight branches of the literature
 - Based on citations, but vary across many dimensions

BRANCHES METHODOLOGICAL FOCUS

MODEL-BASED META-ANALYSIS

HOW TO COMPARE MODELS?

22 different metrics reported

- 14 goodness-of-fit metrics
- 8 error metrics

Assumption:

 Relative improvement in fit or decrease in error are comparable, though not identical, regardless of fit / error metric used

Approach:

 Model a latent generic fitness measure which minimizes squared error between modeled and published relative comparisons

Metric	Туре	Normalized	% Papers Reporting			
RMSE	Error	No	26.6%			
k-Recall / HR	Fit	Yes	21.1%			
k-Accuracy	Fit	Yes	20.2%			
MAE	Error	No	13.8%			
R2	Fit	Yes	12.8%			
k-MAP	Fit	Yes	11.0%			
k-Precision	Fit	Yes	10.1%			
k-NDCG	Fit	Yes	8.3%			
F1 / DSC	Error	Yes	9.2%			
MAPE	Error	Yes	7.3%			
MSE	Error	No	7.3%			
MRR	Fit	Yes	7.3%			
AUC	Fit	Yes	6.4%			
ARV	Error	No	6.4%			
Distance	Fit	Yes	5.5%			
JSD	Fit	Yes	3.7%			
sMAPE	Fit	Yes	3.7%			
SRMSE	Fit	Yes	2.8%			
LL	Error	Yes	1.8%			
k-Top	Fit	Yes	0.9%			
WMAPE	Error	Yes	0.9%			
k-DCG	Fit	No	0.9%			

LATENT FITNESS MODEL

- Latent fitness score defined on unit interval [0,1]
- Binary logit model
 - Model specific constant
 - 10 methodological dummy variables
 - FCN
- Attention
- RNN
- Embeddings
- CNNSSL
- GNNLLM
- GCN
- GAN
- LSE with regularization term
 - (squared difference from initial score calculated as normalized average of ratio of model's goodness-of-fit to other models)

DATA CONSTRUCT

- 12 metrics used in meta-analysis
- Preference for normalized
 - 78% normalized used in meta-analysis
 - Highest preference for metrics normalized on the unit interval
- Observed Data:
 - 629 relative comparisons
 - Published in 81 papers
 - Which used 176 datasets

Metric	Туре	Normalized	% Papers Reporting	% Comparisons in Meta-Analysis
RMSE	Error	No	26.6%	9.4%
k-Recall / HR	Fit	Yes	21.1%	12.7%
k-Accuracy	Fit	Yes	20.2%	21.8%
MAE	Error	No	13.8%	0.0%
R2	Fit	Yes	12.8%	2.4%
k-MAP	Fit	Yes	11.0%	0.0%
k-Precision	Fit	Yes	10.1%	2.4%
k-NDCG	Fit	Yes	8.3%	0.0%
F1 / DSC	Error	Yes	9.2%	16.5%
MAPE	Error	Yes	7.3%	8.0%
MSE	Error	No	7.3%	0.0%
MRR	Fit	Yes	7.3%	0.0%
AUC	Fit	Yes	6.4%	4.1%
ARV	Error	No	6.4%	0.0%
Distance	Fit	Yes	5.5%	2.2%
JSD	Fit	Yes	3.7%	3.7%
sMAPE	Fit	Yes	3.7%	3.3%
SRMSE	Fit	Yes	2.8%	0.8%
LL	Error	Yes	1.8%	0.0%
k-Top	Fit	Yes	0.9%	0.0%
WMAPE	Error	Yes	0.9%	0.0%
k-DCG	Fit	No	0.9%	0.0%

MODELED SCORE RATIOS VS. PUBLISHED

META-ANALYSIS RESULTS

- Best methods
 - GAI
 - GAN
 - LLM
 - SSL
 - GCN
- Small Sample Size for best
 - GAI (8)
 - SSL (6)
 - LLM (3)

	Utility Coefficient	Factor	Avg. Score
FCN	-0.111	0.89	0.37
RNN	-0.250	0.78	0.35
CNN	0.014	1.01	0.41
GNN	0.046	1.05	0.39
GCN	0.066	1.07	0.44
Attention	-0.155	0.86	0.45
Embeddings	-0.162	0.85	0.41
SSL	0.110	1.12	0.43
GAN	1.790	5.99	0.79
LLM	0.518	1.68	0.66

RECOMMENDATIONS FOR NEXT PHASE

PERFORMANCE MEASUREMENT

- Importance of Out-of-Sample (Holdout Sample) Validation
 - Standard practice of good data science
 - Extremely rare in travel forecasting practice
 - Key opportunity to improve the practice

Choice of Metric

- Huge variety of error/ goodness-of-fit metrics
- Minimum Wasserstein distance
 - Powerful in computer vision, with CNNs
 - Gives credit for getting close

NOW TESTING

- Recommended models for testing in AI-DCMs
 - GAN: MoveSim/TrajGAN, highest scores
 - SSL GCN: STHGCN, #7 highest score, highest non-GAI, high confidence
 - MLP/FCN: DeepGravity, reference, average performance with minimal complexity

Rank	Model	Paper	Final Score	ECN	RNN	CNN	GNN	Atten tion	Embe ddings	991	GAN	нм
	MoveSim	•	0.983	0	0	4	0	1	duliigs 4	0	1	0
1	Movesim	Feng et al. (2020a)		U	U	1	U	1	1	U	1	U
2	TrajGAN	Ouyang et al. (2018)	0.979	0	0	1	1	0	1	0	1	0
3	COLA	Wang et al. (2024)	0.950	1	0	0	0	1	1	0	1	0
4	LLM4POI	Li et al. (2024)	0.851	0	0	0	0	0	1	0	0	1
5	Geo-ALM	Liu et al. (2019b)	0.788	0	0	0	0	0	0	0	1	0
6	LLMove	Feng et al. (2024)	0.697	0	0	0	0	0	1	0	0	1
7	STHGCN	Yan et al. (2023)	0.675	1	0	1	1	0	1	1	0	0
8	CatDM	Yu et al. (2020)	0.669	0	1	0	0	0	1	0	0	0
9	EEDN	Wang et al. (2023b)	0.587	0	0	1	1	1	1	1	0	0
10	DRAN	Wang et al. (2022b)	0.551	0	0	0	1	1	1	0	0	0
43	DeepGravity	Simini et al. (2021)	0.412	1	0	0	0	0	0	0	0	0

CONTACTS

Vince Bernardin, PhD | Vice-President

vince@caliper.com | +1 812-459-3500

1993	A1
1994	A2
1995	A3
1996	A4
1997	A5
1998	A6 A7 A8 // /
1999	A9
2000	A10 - A13 A11 A12
2001	A14
2002	
2003	A15
2004	$ \langle V A16 A17 / A16 $
2005	
2006	/ A18
2007	/ i
2008	
2009	A19 \
2010	A21 / A21
2011	A22
2012	B2
2013	
2014	A23

