PERFORMANCE EVALUATION OF A DEFICIT SCHEDULER

Francesco Mione Leonardo Lossi Andrea Lelli

INTRODUCTION

General view:

Description of the system:

MODEL

Model assumptions:

- Negligible delay between JP and SERVER
- FIFO queue has no losses
- Negligible time to enter/leave Vacation
- Negligible costs in queue management

STABILITY

Thanks to the model we could state that:

$$E[ST'] = ST + \frac{ST}{Q} * V$$

For the Exponential scenario:

$$E[ST'] = E[ST] + \frac{E[ST]}{Q} * E[V]$$

According to this considerations we can formulate a simple stability condition:

Constant scenario:

$$IT = E[ST']$$

Exponential scenario:

$$E[IT] = E[ST'] * 0,8$$

$$E[RT] = E[ST'] = ST + \frac{ST}{Q} * V$$

CONSTANT SCENARIO

CONSTANT SCENARIO

Q=10*ST

For any value of V the system does not obtain large improvements in terms of RT if it is guarateed that each turn serves at least one job.

ST' DISTRIBUTION STUDY

- Histograms
- QQ-Plots
- CoVs varying the Q value

Q/ST	CoV
0,1	1,0375
0,3	1,1125
0,6	1,2087
1	1,333
3	1,765
6	2,084
10	2,2413

EXPONENTIAL SCENARIO

Using relative frequency:

$$\hat{p} = \frac{k}{N}$$

Q	K	N	\hat{p}	CI 99% for \hat{p}	$P\{ST \le Q\}$
0.1s	94544	1000000	0,09544	[0.0949, 0.0962]	0,09516
0.3s	257328	1000000	$0,\!257328$	[0.2562, 0.25845]	$0,\!2591$
0.6s	445717	1000000	0,445717	[0.444, 0.447]	0,4511
1s	622907	1000000	0,622907	[0.6217, 0.62415]	0,6321
2s	852784	1000000	0,852784	[0.8519, 0.8537]	0,8646
3s	937981	1000000	0,937981	[0.9374, 0.9386]	0,9502
4s	969223	1000000	0,969223	[0.9688, 0.9697]	0,9816
5s	980842	1000000	0,980842	[0.9805, 0.9812]	0,9932
6s	985125	1000000	0,985125	[0.9848, 0.9854]	0,9975

EXPONENTIAL SCENARIO

CONCLUSIONS

From our analysis we can state that increasing too much Q w.r.t. ST:

- RT does not reach tangible benefits as Q increases
- Number of Jobs in queue increases with Q

- Number of served Jobs increases

