Title

Analysis of a structure with nonlinear elements

Description

Analyze a structure which is comprised of two frames connected to each other by special displacement conditions.

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis

Unit System

m, kN

Dimension

Length 15 m Height 10m

Element

Beam element, hook element and gap element

Material

Modulus of elasticity $E = 2.0594 \times 10^8 \text{ kN/m}^2$

Poisson's ratio v = 0.3

Weight Density $\rho = 76.98 \text{ kN/m}^3$

Section Property

I-Section $250 \times 255 \times 14/14 \text{ mm}$

Boundary Condition

Nodes 1, 3, 5 and 7: Constrain all DOFs. (Fixed supports)

 $Connectivities \ of two \ frames: Compression-only \ element (Hook) \ and \ tension-only \ element (Gap) \ with \ 0.02m \ space \ are \ used \ separately.$

Load Case

Concentrated loads are applied to the node 2 in the X direction.

Load Case 1; $P_1 = 100kN$ Load Case 2; $P_2 = -100kN$

Results

Deformed shape of the structure (Load Case 1)

Comparison of Results

Unit: kN, m

	Result	Theoretical	MIDAS/Civil
Load Case 1	X displacement at the node 4	0.05826655	0.05826646
	Axial force of the gap element	-39.536	-38.790
Load Case 2	X displacement at the node 4	-0.05826655	-0.05826646
	Axial force of the hook element	39.536	38.790