2- تقدم التفاعل المنمذج لتحول كيميائي

مقاربة اولى لمفهوم التقدم لتحول الكيميائي

يربد ميكانيكي أن يجهز عجلات الدراجات بمحابس التثبيت ، فوجد 12محبس لتجهيز . عجلة

فيجهز العجلة تلو الاخرى ، وبكرر العملية x مرة . فاذا اعتبرنا عدد العجلات : مجانا الملاحظات في الجدول التالي : $n_2 = 12$ ، سجلنا الملاحظات في الجدول التالي :

	X	n ₁ عدد العجلات	n ₂ عدد المحابس
الحالة		13	12
الابتدائية			
	1	13 - 1 = 12	12 - 2 = 10
	2	13 - 2 = 11	12 - 2x2 = 8
	3	13 - 3 = 10	12 - 3x2 = 6
	4	13 - 4 = 9	12 - 4x2 = 4
	5	13 - 5 = 8	12 - 5x2 = 2
الحالة	6	13 - 6 = 7	12 - 6x2 = 0
النهائية			

نستطيع تحديد الحالة النهائية بـ x=6 عجلات مجهزة بالمحابس ، و7 عجلات غير مجهزة . العملية توقفت بسبب نقص في المحابس بعد تكرارها x مرة . نسمى x ب التقدم l'avancement ، فنسجل الملاحظات في الجدول التالي :

	avancement x	n ₁ عجلة	n ₂ محبس	n عملية
الحالة الابتدائية	0	13	12	0
أثناء التحول .	X	13 - x	12 - 2 x	X

لنبحث عن الحالة النهائية .

كمية مادة المتفاعلات تتناقص حتى تنعدم إحداها .

 $13 - x = 0 \Rightarrow x = 13$: اذا انعدم عدد العجلات

اذا انعدم عدد المحابس : $x=6 \Rightarrow x=6$ ، ما هي القيمة التي تحقق المعادلتين ؟

القيمة الأعظمية لـ x حصلنا عليها ، عندما انعدم عدد المحابس ، فنعطيه اسم . Reactif limitant المتفاعل المحد

و نعين التقدم الأعظمي $x_{\text{max}} = 6$. ونكمل الجدول السابق

	التقدم X	n ₁ عجلة	n2 محبس	n عملية
الحالة الابتدائية	0	13	12	0
أثناء التحول	X	13 - x	12 - 2 x	X
الحالة النهائية	$x_{\text{max}} = 6$	7	0	6

أعد التجرية عزيزي التلميذ بمعطيات جديدة (عدد العجلات $n_1 = 6$ ، وعدد المحابس : التالي الجدول التالي : $n_2 = 12$

	X	n_1	n_2
,الحالة الابتدائية		6	12
	1	6 - 1 = 5	12 - 2 = 10
	2	6 - 2 = 4	12 - 2x2 = 8
	3	6 - 3 = 3	12 - 3x2 = 6
	4	6 - 4 = 2	12 - 4x2 = 4
	5	6 - 5 = 1	12 - 5x2 = 2
الحالة النهائية	6	6 - 6 = 0	12 - 6x2 = 0

ونستطيع تقديم النتائج بشكل آخر:

	التقدم X	n_1	n_2	n
الحالة	0	6	12	0
الابتدائية				
	X	6 - x	12 - 2 x	X
الحالة	$x_{max} = 6$	0	0	6
النهائية				

جميع العجلات جهزت بالمحابس ، ولم يبق شيء من المتفاعلات ، فنقول أن العملية تحققت في الشروط الستكيومترية stoechiometriques

نعود الآن إلى تقدم التحول الكيميائي .

من أجل متابعة تحول كيميائي لجملة على المستوى العياني من الحالة الابتدائية الى الحالة النهائية ، يقترح الاتحاد الدولي للكيمياء البحتة و التطبيقية IUPAC وسيلة

تدعى تقدم التفاعل X ، وسندرس في هذا المستوى التفاعلات التامة و السريعة فقط ، أي لا نتعرض لحالة التوازن الكيميائي .

اذن التقدم X يعبر عن تطور الجملة أثناء التحول الكيميائي ، و يتوقف هذا التحول عندما يختفي أحد المتفاعلات ، وبسمى في هذه الحالة المتفاعل المختفى بالمتفاعل . Reactif Limitant المحد

- وحدة التقدم: يعبر عن التقدم بـ المول وهي حدة كمية المادة .
- جدول التقدم: عبارة عن جدول وصفى للجملة ، يوضح حصيلة المادة خلال تحول كيميائي من الحالة البتدائية الى الحالة النهائية .

مثال:

1 / اصطناع الماء : أ- انطلاقا من غازثنائي الهيدروجدين H₂ (6 مول) و غاز ثنائي الأكسجين O2 (3مول) ، يمكن الحصول على الماء H2O ، معادلة التفاعل المنمذج للتحول هي:

$2 H_{2 (g)} + O_{2 (g)} \rightarrow 2 H_{2}O$

- على المستوى المجهري: لنفترض أن التفاعل حدث مرة واحدة: يختفي جزيء . $\mathbf{H_{2}O}$ وجزبئین من $\mathbf{H_{2}}$ لیتشکل جزبئان من $\mathbf{O_{2}}$ (g) واحد من
- على المستوى العيانى : لنفترض أن التفاعل حدث N_A مرة حيث N_A هو عدد N_A آفوقادرو ، اذن يختفي واحد مول من \mathbf{O}_2 مع 2 مول من \mathbf{H}_2 ليتشكل 2 مول آفوقادرو ، اذن يختفي واحد مول من \mathbf{O}_2 من H₂O من
 - مع 2x مول من \mathbf{O}_2 (g مع \mathbf{x} مول من من \mathbf{x} مول من \mathbf{x} من \mathbf{H}_2 و يتشكل 2x مول من \mathbf{H}_2 (g

نسمى x (مقدرة بالمول) في أية مرحلة من مراحل التحول بـ تقدم التفاعل .

يمكن تقديم حصيلة المادة خلال هذا التحول ، بالجدول التالى :

معادلة التفاعل	O_2	+ 2 H ₂	 2H ₂ O
كمية المادة في الحالة	3	6	0
الابتدائية t=0			
كمية المادة أثناء التحول	3- x	6-2x	2 x

لندرس تطور الجملة الموضحة في الجدول أعلاه ولنعين تقدم التفاعل X:

$$3- x = 0 \Rightarrow x = 3 \text{ mol}$$

اذا اختفى O₂ أولا يكون :

$$6-2 x = 0 x = 3 \text{mol} \Rightarrow$$

وإذا اختفى H₂ أولا يكون:

الملاحظ أن في الحالتين $\mathbf{x} = \mathbf{3mol}$ ، اذن غازي O_2 ، H_2 يختفيان معا تكون الحالة النهائية للتحول هي:

n(O ₂)	n(H ₂)	n(H ₂ O)
0	0	6mol

ونسمي في هذه الحالة تقدم التفاعل x ب تقدم التفاعل الأعظمي ونرمز له بالرمز : Xfin وبمثل في هذه الحالة التقدم النهائي و يرمز له بالرمز Xmax

$$\cdot \quad x_{\max} = x_{fin} = 3mol$$

لنرسم المنحنيين:

$$n_{0_2} = 3 - x$$
$$n_{h_2} = 6 - 2x$$

نتيجة : في حالة استعمال المعاملات الستيكيومترية ، يكون التقدم X أعظمي . ب- لنحقق نفس التجربة ، لكن ليس بمعاملات ستيكيومترية حسب الجدول التالي وهي الحالة المدروسة في تطور جملة كيميائية .

الأولى ثانوي جذع مشترك علوم وتكنولوجيا كيمياء

المعادلة الكيميائية	O ₂ +	— → 2H ₂	2 H ₂ O
كمية المادة في الحالة			
$\mathbf{t} = 0$ الابتدائية	7	5	0
كمية المادة أثناء التحول	7- X	5-2 X	2 X

إذا اختفى О2 أولا لدينا:

 $7-X=0 \quad \Rightarrow \quad X=7 \text{ mol}$

إذا اختفى H2 أولا لدينا:

X = 2.5 mol \Rightarrow 5- 2X = 0

في هذه الحالة ، يختفي H_2 أولا، لأن (X=2.5~mol) ، وهو المتفاعل الذي يحد من تطور التحول و يسمى بـ المتفاعل المحد .

ويمثل أيضا التقدم الأعظمي الذي يساوي التقدم النهائي:

 $X_{max} = X_{fin} = 2.5 \text{ mol}$

وتكون الحالة النهائية:

n(O ₂)	n(H ₂)	n(H ₂ O)
4.5	0	5

 $n_{O_2} = 7 - x$: لنرسم المنحنيين

 $n_{H_2} = 5 - 2x$

نتيجة : تكون التفاعلات بمعاملات ليست استكيومتربة بمتفاعل محد .

تطبيق: تطور جملة كيميائية خلال تحول كيميائي

الوسائل: 03 كؤوس (300 mL)، مخبار مدرج، دوق مخروطي، قمع ورق شفاف. : حيث ($Fe^{3+}+3Cl^{-}$) حيث : المحاليل: – محلول كلور الحديد الثلاثي $[Fe^{3+}] = 0.1 \text{ mol.L}^{-1}$

 $[OH^{-}] = 1.5 \text{ mol.L}^{-1}$ حيث $(Na^{+}+OH^{-})$ حيث -- ماء مقطر .

الخطوات التجرببية:

- نضع في كل كأس £50 m من محلول من محلول كلور الحديد الثلاثي.
- نضيف محلول هيدروكسيد الصوديوم إلى الكؤوس الثلاثة على الترتيب 15 .mL, 10 mL, 5 mL

1- أكمل الجدول التالى:

مظهر الراسب	حجم محول Na ⁺ +OH ⁻	حجم المحلول Fe ³⁺ +3Cl	رقم الكأس
	5	50	1
	10	50	2
	15	50	3

2- صف الحالة الابتدائية والحالة النهائية للجملة الكيميائية في كل كأس (المظهر،

$$(n_{0_{OH^{-}}} \cdot n_{0_{Fe^{+3}}})$$

- 3- أكتب معادلة التفاعل المنمذج للتحول الكيميائي الذي يحدث في كل كأس مع تطبيق مبدأ إنحفاظ العنصر ومبدأ إنحفاظ الشحنة.
- ، $n_{\text{Fe+3}} = f(x)$ عين جدول التقدم الكيميائي في كل كأس و أرسم البيانين -4 $n_{OH} = g(x)$

الإجابة:

-1

كمية المادة المحتواة في كل كأس و مظهرها في الحالة الابتدائية:

مظهر الراسب	$n_{Fe^{3+}}$	$n_{_{O\!H}^-}$	رقم الكأس
صدئي	5×10 ⁻³	7.5×10 ⁻³	الأول
صدئي	5×10 ⁻³	15×10 ⁻³	الثاني
صدئي	5×10 ⁻³	22.5×10 ⁻³	الثالث

أما في الحالة النهائية فيكون محتوى كل كأس:

+ (الناتج) **Fe(OH**)₃ من الراسب X mol-+ (OH^- ، Fe^{3+}) ميات من الأفراد الكيميائية المتبقية الأفراد الكيميائية التي لم تتدخل في التفاعل .

2- معادلة التفاعل المنمذج للتحول في كل كأس:

 $Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_{2}$

أما شوارد الكلور ⁻Cl ، وشوارد الصوديوم +Na فتبقى في المحلول ، يمكن الكشف عن وجود 'Cl ، باضافة كمية من محلول نترات الفضة AgNO3

3- بعد ترشيح محتوي كل كأس نحصل على راسب هيدروكسيد الحديد الثلاثي . $Fe(OH)_3$

-4

الكأس الأولى

أ- جدول التقدم: x يمثل تقدم التفاعل.

معادلة التفاعل	$Fe^{+3} + 3OH^{-} \rightarrow Fe(OH)_{3}$			
الحالة الابتدائية	5.10-3	7.5×10 ⁻³	0	
الحالة أثناء التطور	5 . 10 ⁻³ - x	$7.5 \times 10^{-3} - 3x$	x	
الحالة النهائية	5 . 10 ⁻³ - x _f	$7.5 \times 10^{-3} - 3x_f$	Xf	

إذا اختفى -OH أولا:

$$7.5 \times 10^{-3} - 3X_f = 0 \Rightarrow X_f = 2.5 \times 10^{-3} mol$$

إذا اختفى -Fe⁺³ أولا:

$$5 \times 10^{-3} - X_f = 0 \Rightarrow X_f = 5 \times 10^{-3} mol$$

ومنه المتفاعل المحد هو الأقل في عدد المولات أي OH^- ، اذن :

 $X_f = 2.5 \times 10^{-3} mol$

 $n_{OH}^- = g(x)$ ، $n_{Fe+3} = f(x)$ ب – رسم البیانین

في الكأس الأولى:

كل من المعادلتين عبارة عن دالة خطية من الدرجة الأولى في المتغير X (بيانها خط مستقيم) ، من الشكل:

: حث ، Y= m + n X

n يمثل معامل توجيه المستقيم وبكون دوما سالب .

m يمثل كمية مادة المتفاعل الابتدائية (قبل التحول) .

في الكأس الأولى:

 $n_{Fe3+} = n_{0Fe3+} - x = 5.10^{-3} - x$ $n_{OH-} = n_{OOH-} - 3x = 7.5 \cdot 10^{-3} - 3x$

ج- تحليل نتيجة البيانين:

تتناقص كمية مادة كل متفاعل من قيمتيهما الابتدائية (5.10^{-3} ، 5.10^{-3}) لشوارد و تصبح الترتيب الي أن تنعدم كمية مادة OH^- . Fe^{+3} عنده كمية مادة ${\rm Fe^{+3}}$ ، ${\rm Fe^{+3}}$ مول المتبقية و التي تساوي في آن واحد المتفاعلة.

إذن -OH حد من مواصلة التحول لذلك يسمى بالمتفاعل المحد .

و إذا قمنا بحساب ميل كل بيان نجد أن:

$$\frac{\delta n}{\delta X} = \frac{7.5 \times 10^{-3} - 0}{0 - 2.5 \times 10^{-3}} = -3$$

ويمثل (-3) ميل البيان $\mathbf{x} = \mathbf{g}(\mathbf{x})$ ويمثل في آن واحد معامل التقدم في المعادلة . : $n_{Fe+3} = f(x)$ لنحسب ميل البيان الثاني

$$\frac{\delta n}{\delta X} = \frac{5.10^{-3} - 2.5 \times 10^{-3}}{0 - 2.5 \times 10^{-3}} = -1$$

ويمثل (1-) معامل التقدم X للتفاعل في المعادلة .

و الاشارة (-) دلالة على تناقص كمية مادة المتفاعلات أثناء التحول أثناء زبادة التقدم X للتفاعل .

2/ الكأس الثانية:

- جدول التقدم (\mathbf{X}) التفاعل

معادلة التفاعل	$Fe^{+3} + 3OH^{-} \rightarrow Fe(OH)_{3}$			
الحالة الابتدائية	5.10-3	0		
الحالة أثناء التطور	5 . 10 ⁻³ - x	15×10^{-3} - 3x	X	
الحالة النهائية	5 . 10 ⁻³ - x _f	$15 \times 10^{-3} - 3x_f$	Xf	

الملاحظ أن المتفاعلان يختفيان في آن واحد:

$$5 \times 10^{-3} - X_f = 0 \Rightarrow X_f = 5 \times 10^{-3} mol$$

 $15.10^{-3} - 3X_f = 0 \Rightarrow X_f = 5 \times 10^{-3} mol$

إذن المتفاعلات في حالة المعاملات الستكيومترية ، وتكون الحالة النهائية :

n_{Fe}^{+3}	n _{OH}	n _{Fe(OH)3}
0	0	5.10 ⁻³

ليس هناك متفاعل محد .

 $: n_{Fe+3} = f(x)$ ، $n_{OH}^- = g(x)$ ب- رسم البیانین

في الكأس الثانية:

 $n_{\text{Fe}3+} = 5.10^{-3} - x$ $n_{OH-} = 15.10^{-3} - 3x$

ج- تحليل نتيجة البيانين:

بيانها عبارة عن مستقيم ميله سالب ، فهو يتناقص $\mathbf{n}_{\mathrm{Fe+3}} = \mathbf{f}(\mathbf{x})$ من القيمة 5.10^{-3} مول الى أن تختفي كمية المتفاعل .و بنفس الطريقة المتبعة في حساب الميل يكون:

المولات (-) تدل على تناقص عدد المولات ، $\frac{\delta n}{\delta V} = \frac{5.10^{-3} - 0}{0.5 \cdot 10^{-3}} = -1$

مع تزايد التقدم في التفاعل (x).

مادة عبارة عن خط مستقيم ميله سالب ، اذ تتناقص كمية مادة $n_{\mathrm{OH}^-}=g(\mathbf{x})$ المتفاعل زبادة التقدم في التفاعل (x) ، من القيمة 3-15.10مول الى أن تختفي تماما عند نهاية التحول.

ميل المستقيم:

$$\frac{\delta n}{\delta X} = \frac{15.10^{-3} - 0}{0 - 5.10^{-3}} = -3$$

الإشارة (-) تدل على تناقص عدد المولات مع تزايد التقدم في التفاعل (x).

و التفاعل يتم بالمعاملات الستكيومتربة ، في هذه الحالة .

3/ الكأس الثالثة:

أ-جدول التقدم (x) للتفاعل :

معادلة التفاعل	$Fe^{+3} + 3OH^{-} \rightarrow Fe(OH)_{3}$			
الحالة الابتدائية	5.10-3	22.5×10^{-3}	0	
الحالة أثناء التطور	5 . 10 ⁻³ - x	22.5×10^{-3} - 3x	X	
			Xf	

إذا اختفى OH أولا:

$$22.5 \times 10^{-3} - 3X_f = 0 \Rightarrow X_f = 7.5 \times 10^{-3} mol$$

وإذا اختفى Fe⁺³ أولا يكون:

$$X_f = 5.10^{-3} mol$$

. يختفى Fe^{+3} أولا ، فيتوقف التحول ، فهو المتفاعل المحد

 $n_{OH-} = 22.5.10^{-3} - 3x$

تحليل نتائج البيانين:

بیانها عبارة عن مستقیم میله سالب ، فهو یتناقص من $\mathbf{n}_{\mathrm{Fe+3}} = \mathbf{f}(\mathbf{x})$ القيمة 3.10⁻³ مول الي أن تختفي كمية المتفاعل .و بنفس الطريقة المتبعة في حساب الميل يكون:

ترايد على تناقص عدد المولات مع ترايد
$$\frac{\delta n}{\delta X} = \frac{5.10^{-3}-0}{0-5.10^{-3}} = -1$$
 الأشارة (\mathbf{x}) التقدم في التفاعل

مادة عبارة عن خط مستقيم ميله سالب ، اذ تتناقص كمية مادة $n_{OH}^{-}=g(\mathbf{x})$ المتفاعل مع زيادة التقدم في التفاعل (x) ، من القيمة 3-22.5مول الي أن تبقى . مول عند نهایة التحول 7.5×10^{-3}

ميل المستقيم:

$$\frac{\delta n}{\delta X} = \frac{22.5 \times 10^{-3} - 7.5 \times 10^{-3}}{0 - 5 \times 10^{-3}} = -3$$

وتكون الحالة النهائية:

n_{Fe}^{+3}	n _{OH}	n _{Fe(OH)3}
0	7.5×10 ⁻³	5.10 ⁻³

 $n_{OH} = g(x)$ ، $n_{Fe+3} = f(x)$ ملاحظة عن الملاحظ أن ميل البيانين يبقى ثابتا في الحالات الثلاث ، والقيمة المطلقة لكل منها تمثل معامل التناسب (المعامل الستكيومتري).

تطبيق-2-

مراقبة تحول كيميائي بواسطة البالون (مقاربة نوعية ثم كمية)

- الهدف : التأكيد على أن التحول الكيميائي يمكن أن يحدث حتى ولو كانت المتفاعلات ليست في الشروط الستكيومترية . متابعة تأثير كمية المتفاعلات على التقدم الأعظمي.

تعيين المتفاعل المحد . تعيين حصيلة المادة باستعمال جدول التقدم الوصفي لتطور الجملة . مقارنة النتائج التجريبية بالنظرية .

> I - المقاربة النوعية : نعود من جديد الى الجملة (حمض الخل و هيدروجينوكربونات الصوديوم) ، و نعالج حالتين :

الحالة الاولى:

من حمض الخل 60 ، يحتوي 100من الماء على 6g من الحمض 10 ml $.H_2O_{(1)}$ ، HA(aq) ونرمز له بالنقى . ونرمز 5g من هيدوجينوكربونات الصوديوم الصلبة .

الملاحظات:

- حدوث فوران : ما هي طبيعة الغاز المتشكل ؟

 $CO_2(g)$ افرغ محتوى البالون في رائق الكلس . يتعكر . الناتج اذن هو غاز

- يتبقى قليلا من NaHCO_{3 (s)} الصلبة في الحالة النهائية .
- وباستعمال ورق اله pH: نكتشف أن الحمض قد اختفى .

ما هي الأنواع الكيميائية المتشكلة ؟

معادلة التفاعل بتطبيق انحفاظ العنصر:

$$NaHCO_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$$

كمية المادة في الحالة الابتدائية:

$$n_{HA} = \frac{0.6}{60} = 0.01 mol$$

الكتلة المولية لهيدروجينوكربونات الصوديوم هي: 1-84 g.mol ، ناخذ منها 5

$$n_{NaHCO_3} = \frac{5}{84} = 0.06mol \cdot g$$

الجدول الوصفى للجملة أثناء التحول:

	$NaHCO_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$				
الحالة	0.06	0.01	0	0	*
الابتدائي					
ö					
(mol)					
الحالة	*	0	*	*	*
النهائية					
(mol)					

. HA(aq) هو المتفاعل المحد

*تعنى وجود النوع الكيميائي.

الحالة الثانية :100ml من حمض الخل ، 5g من هيدروجينوكربونات الصوديوم.

نفس الملاحظات السابقة ما عدا أن:

ورق الـ pH ، يكشف عن بقاء كمية من الحمض ، في الحالة النهائية .

كمية المادة في الحالة الابتدائية:

$$n_{HA} = \frac{6}{60} = 0.1 mol$$

$$n_{NaHCO_3} = \frac{5}{84} = 0.06mol$$

الحالة النهائية: $CO_2(g)$ NaHCO₃ (s · H₂O (l) NaA(aq)

الجدول الوصفى للجملة:

	$NaHCO_3(s)$)+ HA(aq)—	$\longrightarrow CO_2(g)$	+ NaA(aq)	$+H_2O(l)$
الحالة	0.06	0.1	0	0	*
الابتدائية					
(mol)					
الحالة	0	*	*	*	*
النهائية					
(mol)					

. NaHCO_{3 (s)}

* تعنى وجود الانواع الكيميائية .

Π – المقاربة الكمية:

التجربة الاولى:

الحالة الابتدائية

كمية مادة الحمض: 0.01mol

كمية مادة هيدروجينوكربونات الصوديوم: 0.06mol

الحالة النهائية

كمية الحمض: 0.0 mol يختفي نهائيا.

كمية CO2 النهائية : من قياس قطر البالون تجريبيا ، يمكن الوصول الى أن كمية مادة الغاز هي : .0.009mol .

	$O_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$				
الحالة	0.06	0.01	0	0	*
الابتدائية					
mol					
الحالة	*	0	0.009	*	*
النهائية					
mol					
أثناء التحول	0.06-x	0.01-x	X	X	*
mol					

: ومنه تصبح الحالة النهائية : $0.01 - X_{final} = 0 \Rightarrow X_{final} = 0.01 mol$

0.05 الحالة النهائية	0	0.01	0.01	*
----------------------	---	------	------	---

وتظهر هنا مطابقة النتائج النظرية بالتجرببية .

اثبات المعاملات الستكيومترية: من أجل (NaHCO_{3 (s)} فان لهما نفس المعاملات (متساويان) لان كمية CO2 الناتج تساوي كمية متساويات) المختفى .