1. Explain the concept of score matching and describe how it is used in score-based (diffusion) generative models.

1

Score matching is a method to estimate a probability distribution by matching its score function to that of the data distribution.

The score function of a probability distribution p(x) is the gradient of the log-probability: $\nabla_x log \ p(x)$.

Given data from an unknown true distribution $p_{data}(x)$, and a model $s_{ heta}(x) pprox
abla_x log \ p_{ heta}(x).$

$$\mathcal{L}_{ ext{SM}}(heta) = rac{1}{2} \left \| s_{p_{ ext{data}}} \left [\left \| s_{ heta}(x) -
abla_x \log p_{ ext{data}}(x)
ight \|^2
ight]$$

- Forward (diffusion) process: A known process $q(x_t|x_0)$ corrupts the data $x_0 \; p_{data}$ with noise over time $t \in [0,T]$, typically by adding Gaussian noise.
- Reverse process: The goal is to learn a model that can reverse this diffusion turning noise back into data.

Denoising Score Matching:

To train the score network $s_{\theta}(x_t, t)$, we use denoising score matching, which is more suitable when the noise is added in a known fashion.

DSM loss:

$$\mathcal{L}_{ ext{DSM}} = \mathbb{E}_{x_0 \sim p_{ ext{data}},\,t,\,x_t \sim q(x_t|x_0)} \left[\lambda(t) \Big\| s_ heta(x_t,t) + rac{1}{\sigma_t^2} (x_t - x_0) \Big\|^2
ight]$$

The reverse-time stochastic differential equation can be approximated using Langevin dynamics, which iteratively samples:

$$x_{t-\Delta t} = x_t + \epsilon \, s_ heta(x_t,t) + \sqrt{2\epsilon} \, z, \quad z \sim \mathcal{N}(0,I)$$