Frame Booster

Kamil Barszczak

Frame interpolation

Dataset

- Vimeo90K triplet (256x144px RGB)
 - o 50000 testing samples
 - 3000 testing samples
 - o 1000 validating samples

First image

Image to predict

Second image

Loss function

 $\mathcal{L}_{style} = w_2 E_2(\bar{I}, I^t) + w_3 E_3(\bar{I}, I^t) + w_4 E_4(\bar{I}, I^t) + w_5 E_5(\bar{I}, I^t)$

Perceptual Loss:

PSNR:

PSNR = 40 dBPSNR = 30 dB

PSNR = 10 dBPSNR = 0 dB

MAE:
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$$

MSE:
$$\frac{1}{n}\sum_{i=1}^n (Y_i-\hat{Y}_i)^2$$

Loss = 0.5*Perceptual + PSNR + 5.0*MAE + 10.0*MSE

Trening

- Tested optimizers
 - Nadam (lr=0.0001)
 - Adam (lr=0.0001)
- Epochs: ~5
- Batch size: 2
- Metrics: MAE, MSE, PSNR
- Average epoch time: ~2.5h
- GPU used: GTX970 4GB

Benchmark

- Automatic tool for testing multiple models sequentially
- Saves training progress, model state, and other features such as activation masks
- Executes training on a smaller training dataset (5000 samples of 128x72px RGB images)
- Saves the learning history (measurements for each step)
- Creates png files with training and validating histories
- Evaluates the training on the testing dataset

Example of training progress captured by the benchmark:

Models results (benchmark)

Model V5

- U-Net type architecture (with warping layers between the encoder and the decoder)
- Warping both images
- Feedforward flow prediction CNN
- Encoder with skip connections (same as FILM model)
- Sigmoid activation

Model V6 7

- Attention U-Net type architecture (with warping layers between the encoder and the decoder)
- Warping both images
- DenseNet flow prediction CNN
- Encoder same as model V5
- Clipped linear activation (into the range from 0 to 1)

Model V7_1

- Encoder-Decoder architecture (with U-Net type flow prediction layer between the encoder and the decoder)
- Warping both images
- ResNet flow prediction CNN
- DenseNet encoder
- Partial ResNet decoder
- Activation same as model V6_7

3rd best model (V7_1)

Loss	PSNR	MSE	MAE
0.8502	30.11	0.0013	0.0161

Learning progress of model V7_1

Loss	PSNR	MSE	MAE
0.7803	31.00	0.0010	0.0143

Learning progress of model V6_7

Loss	PSNR	MSE	MAE
0.7342	32.33	0.0007	0.0123

CNN filters of model V5

Results

GT

V6_7

V7_1

V5

Results

GT

V6_7

V7_1

V5

Comparison to SOTA models

Tests

- Batch Normalization dramatically slowed down the training process and decreased the model's performance
- AvgPool2d vs Conv2d (with stride=2) no significant difference was noticed
- Upsample vs ConvTranspose2d (with stride=2) the upsampling layer performed better resulting in a higher PSNR score
- Different net architectures (Feedforward, ResNet, DenseNet, U-Net, Attention U-Net) results presented in the previous slides
- Nadam vs Adam optimizer the Nadam optimizer reached the goal faster and lead to the better result after the same training steps
- Dropout did not make any difference
- LeakyReLU (with a={0.01, 0.1, 0.2, 0.3}) vs PReLU use of the PReLU activation resulted in a lower loss value
- Sigmoid vs Clipped Linear output activation Clipped linear activation lowered the loss value by around 0.5%

ResNet

ResNet Concept

DenseNet

One Dense Block in DenseNet

U-Net

Attention U-Net

Resources

- Frame Booster GitHub repository
- 2. Single Image Super Resolution with deep convolutional neural networks
- 3. Real-Time Intermediate Flow Estimation for Video Frame Interpolation
- 4. <u>Depth-Aware Video Frame Interpolation</u>
- 5. <u>BiFormer: Learning Bilateral Motion Estimation via Bilateral Transformer for 4K Video Frame Interpolation</u>
- 6. Attention is all you need
- 7. <u>Video Frame Interpolation via Adaptive Convolution</u>
- 8. <u>Large Motion Frame Interpolation</u>
- 9. FILM: Frame Interpolation for Large Motion
- 10. <u>Multi-view Image Fusion</u>
- 11. Perceptual Losses for Real-Time Style Transfer and Super-Resolution
- 12. Image Style Transfer Using Convolutional Neural Networks
- 13. Exploring Motion Ambiguity and Alignment for High-Quality Video Frame Interpolation
- 14. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
- 15. Review: DenseNet Dense Convolutional Network (Image Classification)