Калибриране на MEMS Акселерометри

- Запознаване със различни Акселерометри
- MEMS Акселерометри
- Запознаване с проблема
- Първоначално решение
- Създаване на собствена функция за минимизация

Запознаване със различни Акселерометри

• Механични

Solid State

MEMS

MEMS Акселерометри

Запознаване с проблема

Constant Bias

Calibration Errors

• Thermo-Mechanical White Noise / Velocity Random Walk

Flicker Noise / Bias Stability

Temperature Effects

Какво очакваме от сензора?

• Когато е не неподвижен и поставен хоризонтално спрямо XY равнината да дава измерване (X,Y,Z)=(0,0,9.8)

• Това означава, че трябва а обработим суровите данни които идват от сензора.

Как се калибрират данните?

$$\bullet \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix} \cdot \begin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix} + \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix}$$

- Знаем, че правилно сме калибрирали данните когато: (нормамта на вектора на ускорението)- $g^2 \approx 0$.
- Трябва да намерим за кои $M_{\chi\chi}-M_{zz}$ и B_{χ} B_{z} имаме най-малка грешка. Започваме от начално приближение:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Първоначално решение

Използвам метода на най-малките квадрати да намеря за кои $M_{xx} - M_{zz}$ и B_x - B_z имаме най-малка грешка за дадени данни.

Uncalibrated			
X	Υ	Z	
0.686143985	9.693013241	0.146230973	
0.307313184	-9.555131822	0.121707371	
10.20588166	0.146627372	0.293913142	
-9.235730337	0.149835656	-0.153514714	

	Calibrated	
X	Y	Z
-0.21872	9.78756	0.393097
0.23227	-9.79228	-0.00413996
9.7752	0.458216	0.448614
-9.79133	-0.299772	-0.18428

Norms Before Calibration
9.71837
9.56085
10.2112
9.23822
9.72837

Norms After Calibration
9.79789
9.79504
9.79621
9.79765
9.78336

Бъдещо развитие на проекта

• Метода на нютон Създаване на собствена функция за минимизация.

• Извличане на повече данни от собствен сензор.

• Използване на сензора и алгоритъма за калибрация в робот.

Благодаря за вниманието!