Al 2002 Artificial Intelligence

- A CSP consists of variables with constraints on them. It contains
 - Finite set of variables $X_1, X_2, ..., X_n$
 - Nonempty domain of possible values for each variable D_1 , D_2 , ... D_d
 - Finite set of constraints C₁, C₂, ..., C_m
 - Each constraint C_i limits the values that variables can take, e.g., $X_1 \neq X_2$
- A state is defined as an <u>assignment of values</u> to some or all variables.

Assignment:

A state of the problem is defined by assigning values to some or all of the variables, $\{X_i=v_i\ X_j=v_j\}$.

Consistent assignment:

If the assignment does not violate the constraints.

Complete assignment:

An assignment is complete when every variable is assigned a value.

Commutative:

- Variable assignments are commutative
 - e.g. [<u>step 1:</u> WA = red; <u>step 2:</u> NT = green] equivalent to [<u>step 1:</u> NT = green; <u>step 2:</u> WA = red]

Solution to CSP:

- A solution to a CSP is a complete assignment that satisfies all constraints.
- Some CSPs require a solution that maximizes an objective function.

Domain:

- Each variable X_i has a nonempty domain D_i of possible values.
 - e.g. Color is assigned to a variable X_i. Domain D_i may be set of possible colors like {R, G, B}.

Map-Colouring

Variables:

WA, NT, Q, NSW, V, SA, T

Domains:

 D_i = red; green; blue

Constraints:

adjacent regions must have different colours

```
• e.g., WA \neq NT
```

```
    (WA; NT) ∈ [(red; green);
    (red; blue);
    (green; red);
    (green; blue) ... ]
```


Map-Colouring

Solutions are complete and consistent assignments,

e.g., WA = red, NT = green,Q = red,NSW = green,
 V = red,SA = blue,T = green

Sudoku

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
н	8			2		3			9
1			5		1		3		

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
ı	6	9	5	4	1	7	3	8	2

- Variables: empty cells
- Domains: numbers between 1 to 9
- Constraints: rows, columns, boxes contain all different numbers

N-Queens

Variables:

 Q_i

Domains:

$$D_i = \{1, 2, 3, 4\}$$

Constraints:

- Queen can NOT be in same row
- Queen can NOT be in same column
- Queen can NOT be in same diagonal
- **Valid values** for (Q_1, Q_2) are:
 - (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

$$Q_1 = 1$$
 $Q_2 = 3$

Constraint Graph:

- Constraint Satisfaction Problem (CSP) can be visualized as a constrained graph.
 - The nodes of the graph correspond to variables of the problem
 - The arcs correspond to the constraints.

Finite Domain:

- The simplest kind of CSP involves variables that have domains that are limited or restricted.
 - Map coloring problems are of this kind.

Boolean CSP:

Finite-domain CSPs include Boolean CSPs, whose variables can either be true or false.

Continuous Domain:

- Domain in which there is a sequence of assignment to the variables.
 - The scheduling experiments via telescope requires very precise timings of observation

Constraint Language:

- With infinite domains, it is NO longer possible to describe constraints by enumerating all combinations of values.
- Instead, a Constraint Language is used in which set of rules are specified.
 - If $job_{1,}$ which takes 5 days, must precede job_{3} , then a constraint language of algebraic inequalities such as $start\ job_{1} + 5 <= start\ job_{3}$ will be required.

Types of Constraints

Unary Constraint:

- The simplest type of constraint, which restricts the value of a single variable, is called Unary Constraint.
 - e.g. SA ≠ Green

Binary Constraint:

- It relates two variables or involves pair of variables.
 - e.g. SA ≠ NSW

Constraint Hypergraph:

- ▶ Higher order constraints involve three or more variables. A Constraint Hypergraph represents these constraints.
 - e.g., crypt arithmetic column constraints

Crypt-arithmetic

Variables:

D, E, M, N, O, R, S, Y

Domains:

• $D_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

- \circ M \neq 0, S \neq 0
- \circ D \neq E, D \neq M, D \neq N
- Y = D + E OR Y = D + E 10

S E N D
+ M O R E
M O N E Y

Crypt-arithmetic

Variables:

D, E, M, N, O, R, S, Y

Domains:

•
$$D_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Constraints:

- \circ M \neq 0, S \neq 0
- D ≠ E, D ≠ M, D ≠ N
- \circ Y = D + E OR Y = D + E 10

Linear Constraint:

- Constraint in which variable appears only in *linear* form is called <u>Linear Constraint</u>.
- Linear Constraints are solvable.

Non-Linear Constraint:

- Constraint in which variables appear in non-linear form is called Non-linear Constraint.
- Non-linear Constraints are undecidable.

- A CSP can easily expressed as a <u>standard search</u> problem,
 - Initial State: the empty assignment {}
 - Successor function: Assign value to unassigned variable provided that there is no conflict
 - Goal test: the current assignment is complete
 - Path cost: a constant cost for every step
- lacktriangle Solution is found at depth n, for n variables
 - Hence depth first search can be used
 - Only need to consider assignments to a single variable at each node

- State: assignment to k variables.
- Successor: The successor of a state is obtained by assigning a value to variable, keeping others Unchanged
- > Start state: $(V_1 = R,G,B, V_2 = R,G, V_3 = R,G)$
- Goal state: All variables assigned colours (R,G,B) with constraints satisfied.

Depth First Search can be performed

State: assignment to k variables.

Successor: The successor of a state is obtained by assigning a value to variable, keeping others unchanged. (

• Start state: $(V_1 = ?, V_2 = ?, V_3 = ?, V_4 = ?, V_5 = ?, V_6 = ?)$

Goal state: All variables assigned colours (R,G,B) with constraints satisfied.

Depth First Search

can be performed

V ₁	V ₂	V_3	V ₄	V_5	V_6
?	?	٠٠	?	?	?

V ₁	V ₂	V ₃	V ₄	V ₅	V ₆
В	?		?	?	٠٠

V ₁	V ₂	V ₃	V ₄	V ₅	V_6
G	?	?	?	٠.	٠.

V_1	V ₂	V_3	V_4	V_5	V_6
R					٠.

Recursively:

B

- For every possible value in D:
 - Set the next unassigned variable in the successor to that value
- Evaluate the successor of current state with this variable assignment
- Stop as soon as a solution is found

V ₁	V_2	V ₃	V_4	V_5	V_6	
R	B/		٠	7	7	

V₂=B is inconsistent

Backtrack to the previous state because no valid assignment is for V_6

V ₁	V_2	V_3	V_4	V_5	V_6
В	R	~ ·	•	٠.	?

V ₁	V ₂	V ₃	V_4	V_5	V_6
В	R	R	?	?	

V_1	V_2	V_3	V_4	V_5	V_6
В	R	R	В	G	?

- For every possible value for x in D:
 - If assigning x to the next unassigned variable V_{k+1} does not violate any constraint with the k already assigned variables:
 - Set the value of the variable V_{k+1} to x
 - Evaluate the successors of the current state with this variable assignment
- If no valid assignment is found:
 - Backtrack to previous state
- Stop as soon as a solution is found

- Additional computation: At each step, we need to evaluate the constraints associated with the current candidate assignment (variable, value).
- Uninformed search, we can improve by predicting:
 - What is the effect of assigning a variable on all of the other variables?
 - Which variable should be assigned next and in which order should the values be evaluated?
 - When a branch fails, how can we avoid repeating the same mistake?

Consistency

Node Consistency

A single variable (corresponding to a node in the CSP network) is node-consistent if all the values in the variable's domain satisfy the variable's unary constraints.

Example:

- In a map-coloring problem, where
 - SA dislikes green,
 - the variable SA starts with domain {red, green, blue},
 - we can make it node consistent by eliminating green,
 - SA with the reduced domain {red, blue}

Arc Consistency

- A variable in a CSP is **arc-consistent** if every value in its domain satisfies the variable's **binary constraints**.
- Arc consistency eliminates values from the domain of variables that can never be part of a consistent solution.
- Directed arc (V_i, V_j) is arc consistent if $\forall x \in D_i \quad \exists y \in D_j$ such that (x, y) is allowed by constraint
- For every value.

Dr. Hashim Yasin

Northern Territory

Queensland

New South Wale

33

Western

Arc Consistency

Example:

- Consider the constraint $Y = X^2$
- The domain of both X and Y is the set of digits. We can write this constraint explicitly as

$$(X,Y),\{(0,0),(1,1),(2,4),(3,9)\}$$
.

- ▶ To make X arc-consistent with respect to Y, we reduce X's domain to {0, 1, 2, 3}.
- If we also make Y arc-consistent with respect to X, then Y 's domain becomes {0, 1, 4, 9}
- The whole CSP is arc-consistent.

Path Consistency

- Path consistency tightens the binary constraints by using implicit constraints that are inferred by looking at triples of variables.
- A two-variable set $\{X_i, X_j\}$ is path-consistent with respect to a third variable X_m if,
 - for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints on $\{X_i, X_j\}$,
 - there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_j\}$.

k-consistency

- Stronger form of propagation
- ▶ A CSP is *k*-consistent if,
 - \circ for any set of k-1 variables and
 - for any consistent assignment to those variables,
 - $lue{}$ a consistent value can always be assigned to any $k^{ ext{th}}$ variable

1-consistency:

given the empty set, we can make any set of one variable consistent: node consistency.

k-consistency

2-consistency:

- is the same as *arc consistency*.
- Suppose a CSP with n nodes and make it strongly n-consistent (i.e., strongly k-consistent for k=n).

k-consistency:

A CSP is strongly k-consistent if it is k-consistent and is also (k − 1)-consistent, (k − 2)-consistent, . . . all the way down to 1-consistent

Arc Consistency

Different Colour Constraints

Each undirected constraint arc is really two directed constraint arcs, the effects must be then from examining BOTH arcs.

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - Chapter 6.