Volvo sales

Let's plot the time series of sales of Volvo. The sales are of Norway.

```
suppressMessages(library(zoo))
suppressMessages(library(forecast))
df = read.csv('datasets_830_1554_norway_new_car_sales_by_make.csv')
df = subset(df, Make == 'Volvo')
sales = zooreg(data = df$Quantity, as.yearmon("2007-01-01"), freq = 12)
N = length(sales)
t = c(1:N)
Q = factor(c(rep(c(1:12), N/12), c(1:(N%%12))))
plot(sales, main = "Volvo sales", xlab = "t")
```

Volvo sales

The rest of our work will consist in fitting some models in a window of two years and trying to predict the next month. The plots will show the original and the predicted time series.

Regression

It seems reasonable to have seasonality of 12 months, so we will use it.

Seasonal dummies

We will now fit a regression model that consist of trend and seasonality coefficients, using seasonal summies too. Note how we apply the two years window.

```
next_step = function(t) {
  train = data.frame(
    t = t[1:24],
    sales = sales[t[1:24]],
```

```
Q = Q[t[1:24]]
  )
  mod = lm(sales~t+Q, data = train)
  prediction = predict(mod, data.frame(t=t[25], Q=Q[t[25]]))
  return(prediction)
prediction = rollapply(t, 25, next_step)
plot(sales, main = "Seasonal dummies prediction", xlab = "t")
lines(time(sales)[25:length(t)], prediction, col = "red")
legend(
  x = time(sales)[1],
  y = 2000,
  legend = c('Sales', 'Prediction'),
  col = c('black', 'red'),
  pch = c('', ''),
  lty = c(1, 1)
)
```

Seasonal dummies prediction


```
mape = mean(abs((prediction - sales[25:length(sales)])/sales[25:length(sales)]))
paste("MAPE =", mape)
```

[1] "MAPE = 0.214958623085887"

We see a reasonable MAPE and plot.

Polynomial

Now we add a two degree polynomial to the last model.

```
library(zoo)
next_step = function(t) {
```

```
train = data.frame(
    t = t[1:24],
    sales = sales[t[1:24]],
    Q = Q[t[1:24]]
  )
  mod = lm(sales poly(t, 2) + Q, data = train)
  prediction = predict(mod, data.frame(t=t[25], Q=Q[t[25]]))
  return(prediction)
}
prediction = rollapply(t, 25, next_step)
plot(sales, main = "Polynomial 2nd order and seasonal dummies prediction", xlab = "t")
lines(time(sales)[25:length(t)], prediction, col = "red")
legend(
  x = time(sales)[1],
  y = 2000,
  legend = c('Sales', 'Prediction'),
  col = c('black', 'red'),
  pch = c('', ''),
  lty = c(1, 1)
)
```

Polynomial 2nd order and seasonal dummies prediction


```
mape = mean(abs((prediction - sales[25:length(sales)])/sales[25:length(sales)]))
paste("MAPE =", mape)
```

[1] "MAPE = 0.213598454013614"

The results are close to the last one.

Decomposition

We will now use a function to decompose our series.

```
next_step = function(t) {
    mod = stl(sales[t[1:25]], s.window = "periodic")
    prediction = forecast(mod, h=1)
    return(as.numeric(prediction$mean))
}

prediction = rollapply(t, 26, next_step)
plot(sales, main = "Decomposition prediction", xlab = "t")
lines(time(sales)[26:length(t)], prediction, col = "red")
legend(
    x = time(sales)[1],
    y = 2000,
    legend = c('Sales', 'Prediction'),
    col = c('black', 'red'),
    pch = c('', ''),
    lty = c(1, 1)
)
```

Decomposition prediction


```
mape = mean(abs((prediction - sales[26:length(sales)])/sales[26:length(sales)]))
paste("MAPE =", mape)
```

[1] "MAPE = 0.195302561502996"

Interesting results.

Exponential smoothing

Now we will fit some models based on exponential smoothing.

Exponential smoothing

This is the basic exponential smoothing model. It only considerates constant mean.

```
next step = function(t) {
  train = data.frame(
    t = t[1:24],
    sales = sales[t[1:24]],
    Q = Q[t[1:24]]
  )
  mod = HoltWinters(train$sales, beta = F, gamma = F)
  prediction = forecast(mod, 1)
  return(prediction$mean)
}
prediction = rollapply(t, 25, next_step)
plot(sales, main = "Exponential smoothing prediction", xlab = "t")
lines(time(sales)[25:length(t)], prediction, col = "red")
legend(
  x = time(sales)[1],
  y = 2000,
  legend = c('Sales', 'Prediction'),
  col = c('black', 'red'),
  pch = c('', ''),
  lty = c(1, 1)
)
```

Exponential smoothing prediction


```
mape = mean(abs((prediction - sales[25:length(sales)])/sales[25:length(sales)]))
paste("MAPE =", mape)
```

[1] "MAPE = 0.277045393426693"

The MAPE is worse than before.

Holt

Now we have trend in our model.

```
next_step = function(t) {
  train = data.frame(
    t = t[1:24],
    sales = sales[t[1:24]],
    Q = Q[t[1:24]]
  )
  mod = HoltWinters(train$sales, beta = T, gamma = F)
  prediction = forecast(mod, 1)
  return(prediction$mean)
}
prediction = rollapply(t, 25, next_step)
plot(sales, main = "Holt prediction", xlab = "t")
lines(time(sales)[25:length(t)], prediction, col = "red")
legend(
  x = time(sales)[1],
  y = 2000,
  legend = c('Sales', 'Prediction'),
  col = c('black', 'red'),
  pch = c('', ''),
  lty = c(1, 1)
)
```

Holt prediction


```
mape = mean(abs((prediction - sales[25:length(sales)])/sales[25:length(sales)]))
paste("MAPE =", mape)
```

[1] "MAPE = 0.367475797650731"

It's even worse.

Additive Holt-Winters

We will now consider the complete Holt-Winters, with seasonality. This time it's additive.

```
next step = function(t) {
  train = data.frame(
    t = t[1:24],
    sales = sales[t[1:24]],
    Q = Q[t[1:24]]
  )
  mod = HoltWinters(ts(train$sales, frequency = 12), beta = T, gamma = T, seasonal = "additive")
  prediction = forecast(mod, 1)
  return(prediction$mean)
}
prediction = rollapply(t, 25, next_step)
plot(sales, main = "Additive Holt-Winters prediction", xlab = "t")
lines(time(sales)[25:length(t)], prediction, col = "red")
legend(
  x = time(sales)[1],
  y = 2000,
  legend = c('Sales', 'Prediction'),
  col = c('black', 'red'),
  pch = c('', ''),
  lty = c(1, 1)
)
```

Additive Holt-Winters prediction


```
mape = mean(abs((prediction - sales[25:length(sales)])/sales[25:length(sales)]))
paste("MAPE =", mape)
```

[1] "MAPE = 0.247905784030637"

We see improvements.

Multiplicative Holt-Winters

Now the model is multiplicative.

```
next step = function(t) {
  train = data.frame(
    t = t[1:24],
    sales = sales[t[1:24]],
    Q = Q[t[1:24]]
  )
  mod = HoltWinters(ts(train$sales, frequency = 12), beta = T, gamma = T, seasonal = "multiplicative")
  prediction = forecast(mod, 1)
  return(prediction$mean)
}
prediction = rollapply(t, 25, next_step)
plot(sales, main = "Seasonal Holt-Winters prediction", xlab = "t")
lines(time(sales)[25:length(t)], prediction, col = "red")
legend(
  x = time(sales)[1],
  y = 2000,
  legend = c('Sales', 'Prediction'),
  col = c('black', 'red'),
  pch = c('', ''),
  lty = c(1, 1)
)
```

Seasonal Holt-Winters prediction

