Лабораторная работа №1.3.3

Определение вязкости воздуха по скорости течения через тонкие трубки.

Павлов Дмитрий

Апрель 2018

Долгопрудный 2018

1 Предисловие

Цель работы: экспериментально выявить участок сформированного течения, определить режимы ламинарного и турбулентного течения; определить число Рейнольдса.

В работе используются: металлические трубки, укрепленные на горизонтальной подставке; газовый счетчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, и слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta}$$

где v — скорость потока,

r — радиус трубки,

 ρ — плотность движущейся среды,

 η — ее вязкость.

В гладких трубах круглого сечения переход от ламинарного движения к турбулентному происходит при $\mathrm{Re} \approx 1000.$

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q_V = \frac{\pi r^4}{8l\eta} \Delta P$$

Отметим условия, при которых справедлива формула (2). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство $\mathrm{Re} < 1000$. При втекании газа в трубку из большого резервуара скорости слоев вначале постоянны по всему сечению.

По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней слои. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле:

$$a = 0.2r \cdot Re$$

Экспериментальная установка

Рис. 2. Схема установки для определения вязкости воздуха

2 Ламинарное течение.

Оценим расстояние на котором происходит формирование потока при ламинарном течении по формуле:

$$a = 0.2r \cdot Re \tag{1}$$

где r - радиус сечения трубки

Re - число Рейнольдса, для оценки возьмем его равным 1000.

 $a = 0.2r \cdot Re = 0.2 \cdot (0.5 \cdot 3.9mm) \cdot 1000 = 39cm$

3 Вязкость воздуха.

3.1 Измерение зависимости падения давления от расхода воздуха.

ΔP , ед. шкалы	ΔP , Πa	ΔV , π	Δt , c	Q, л/с	Q, м/с
16	31.38	2.5	127	0.0197	0.000020
30	58.84	7.5	206	0.0364	0.000036
39	76.49	7.5	155	0.0484	0.000048
65	127.49	10	122	0.0820	0.000082
80	156.91	15	152	0.0987	0.000099
96	188.29	15	141	0.1064	0.000106
124	243.20	10	90	0.1111	0.000111
153	300.08	10	84	0.1190	0.000119
174	341.27	25	200	0.0125	0.000125
205	402.07	10	76	0.1316	0.000132
261	511.90	25	162	0.1543	0.000154

Результаты измерения зависимости падения давления в трубке от расхода воздуха.

 ΔP - падение давления

 ΔV - объем воздуха

 Δt - время, за которое прошло V литров воздуха

Q - расход воздуха, $Q = \frac{\Delta V}{\Delta t}$

3.2 По данным таблицы построим график P(Q):

Используем данные, при которых течение воздуха в трубке ламинарное (до 200 Па)

График зависимости падения давления в трубке от расхода воздуха.

График линеен, что соответсвует формуле Пуазейля:

$$Q = \frac{\pi R^4}{8\eta l} \Delta P \tag{2}$$

Из коэффициент наклона графика и уравнения (2) можем найти вязкость воздуха:

$$\eta = \frac{\pi R^4}{8lk},\tag{3}$$

 $k = \Delta Q/\Delta P = 1.7 \cdot 10^6$ - коэффициент наклона прямой.

Итого, коэффициент вязкости воздуха равен:

$$\eta = \frac{\pi R^4}{8lk} = \frac{3.14 \cdot (0.5 \cdot 39mm)^4}{8 \cdot 50cm \cdot 1.7 \cdot 10^6} = 1.9 \cdot 10^{-5} \ \mathrm{KF} \cdot \mathrm{M} \ /\mathrm{C}$$

3.3 Погрешности

$$\frac{\sigma_{\eta}}{\eta} = \sqrt{\left(\frac{\sigma_{\frac{\Delta P}{Q}}}{\frac{\Delta P}{Q}}\right)^2 + 4\left(\frac{\sigma_{n}}{r}\right)^2 + \left(\frac{\sigma_{l}}{l}\right)^2} = \sqrt{0.01^2 + 4 \cdot 0.01^2 + 0.01^2} = 0.024 \approx 2.5\%$$

Погрешность измерения складывается из погрешностей измерения длины трубки:

$$\sigma_l = 0.5 \; \mathrm{cm}$$
 $l = 50 \; \mathrm{cm}$ $\epsilon_l = 0.01$

из погрешностей измерения радиуса трубки:

$$\sigma_r = 0.05 \; ext{mm}$$
 $r = 3.9 \; ext{mm}$ $\epsilon_r = 0.01$

и из погрешности определения наклона графика:

$$k = 1.7 \cdot 10^{-6} \pm 1.26 \cdot 10^{-8}$$
$$\epsilon_k = 0.01$$

4 Число Рейнольдса.

4.1 Вычисление.

Вычислим значение числа Рейнольдса для переходной области между ламинарным и турбулентным течениями.

$$Re = \frac{Qnp}{s\eta} = 1211$$

4.2 Погрешности

$$\frac{\sigma_R e}{Re} = \sqrt{(\frac{\sigma_Q}{Q})^2 + (\frac{\sigma_r}{r})^2 + (\frac{\sigma_\eta}{\eta})^2} = 0.1 = 10\%$$

Погрешность измерения складывается из погрешностей вязкости воздуха:

$$\epsilon_n = 0.024$$
 (см. п. 3.3)

из погрешностей измерения радиуса трубки:

$$\sigma_r = 0.05 \; ext{mm}$$
 $r = 3.9 \; ext{mm}$ $\epsilon_r = 0.01$

и из погрешности определения расхода воздуха:

$$\epsilon_Q = 0.1$$

- 5 Экспериментальное определение расстояния на котором устанавливается ламинарное течение.
- 5.1 Измерение зависимости падения давления от длины трубки.

График зависимости падения давления в трубке от длины трубки.

Из графика видно, что ламинарное течение устанавливается на 35 см. Результаты расчета (п. 2) и измерения совпали.

6 Проверка формулы Пуазейля.

6.1 Для всех трубок на участках со сформированным течением снимем зависимости Q=f(P).

d, мм	1, см	$\frac{\Delta Q}{\Delta P}$	$\ln \frac{8l\eta Q}{\pi \Delta P}$	$\ln r$
3.9	50	$5.4\dot{1}0^{-7}$	-25.3	-6.3
3	30	$3.4\dot{1}0^{-7}$	-26.4	-6.5
5.2	50	$1.2\dot{1}0^{-6}$	-24.58	-6.0

d - диаметр трубки

l - длина трубки

r - радиус трубки

6.2 Построим график, по оси ординат $ln(\frac{8l\eta Q}{\pi\Delta P})$, по оси абсцисс ln(r)

График зависимости $\frac{8l\eta Q}{\pi\Delta P}$ от $r_5^{}$ в логарифмическом масштабе.

Коэффициент наклона графика оказался равен 3.6, что немного ниже ожидаемого значения k=4, соответствующего степени n в формуле Пуазейля.

6.3 Погрешности:

При помощи МНК вычисляем ошибку коэффициента наклона прямой:

$$\sigma_k \approx 0.5$$

$$\epsilon_k = 10\%$$

То есть ожидаемый результат (k = 4) лежит в пределах погрешности.

7 Вывод

Определили коэффициент вязкости воздуха:

$$\eta = (19 \pm 0.5) \cdot 10^{-4} \ \mathrm{kr} \cdot \mathrm{m} \ /\mathrm{c}$$

$$\epsilon_{\eta} = 2.5\%$$

Определили число Рейнольдса для данной трубки:

$$Re = 1211 \pm 10$$

$$\epsilon_{Re} = 10\%$$

Проверили формулу Пуазейля, значение радиуса трубки находится в формуле в 4-й степени.