

Optimization

Yann LeCun NYU - Courant Institute & Center for Data Science Facebook AI Research

Gradient descent

Convex, quadratic case.

Gradient descent

► Small learning rate, Large learning rate

Gradient descent

- Non convex objective
- This is not not as much of a problem as you might think for neural nets
 - Because of the high dimension
 - More on this later

Stochastic Gradient (Descent, Optimization)

- ► For when the objective is an average of many similar terms
- Erratic but fast convergence
- Exploits the redundancy in the data
- Difficult to prove the convergence theoretically
 - ▶ Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization methods for large-scale machine learning. Siam Review, 60(2), 223-311.

The Convergence of Gradient Descent

- Batch Gradient
- There is an optimal learning rate
- Equal to inverse 2nd

Optimal learning rate in 1D

Weight change:

$$\Delta\omega=\eta\,\frac{\partial E}{\partial\omega}$$

Assuming E is quadratic:

$$\frac{\partial^2 E}{\partial \omega^2} \Delta \omega = \frac{\partial E}{\partial \omega}$$

 $E(\omega)$

Optimal Learning Rate

$$\eta_{\text{opt}} = \left(\frac{\partial^2 E}{\partial \omega^2}\right)^{-1}$$

earning
$$\eta_{\text{max}} = 2 \eta_{\text{opt}}$$

Let's Look at a single linear unit

- Single unit, 2 inputs
- Quadratic loss

$$ightharpoonup E(W) = 1/p \sum_{p} (Y - W \cdot X_{p})^{2}$$

- Dataset: classification: Y=-1 for blue, +1 for red.
- Hessian is covariance matrix of input vectors

$$\rightarrow$$
 H = 1/p $\sum X_p X_{p^T}$

- To avoid ill conditioning: normalize the inputs
 - Zero mean
 - Unit variance for all variable

Convergence is Slow When Hessian has Different

Eigenvalues

1.8

1.6

1.4

1.2

0.8

0.6

Batch Gradient, small learning rate

Weight space

Batch Gradient, large learning rate

$$\eta = 1.5$$

Hessian largest eigenvalue:

$$\lambda_{\text{max}}\!=\!0.84$$

Maximum admissible Learning rate:

$$\eta_{\text{max}} = 2.38$$

$$\eta = 2.5$$

Hessian largest eigenvalue:

$$\lambda_{\text{max}} \! = 0.84$$

$$\eta_{\text{max}} = 2.38$$

Convergence is Slow When Hessian has Different

Eigenvalues

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Batch Gradient, small learning rate

Weight space

$$\eta = 1.5$$

Hessian largest eigenvalue:

$$\lambda_{\text{max}}\!=\!0.84$$

Maximum admissible Learning rate:

$$\eta_{\text{max}} = 2.38$$

Convergence of GD

- Convergence speed depends on conditioning
- Conditioning: ratio of largest to smallest non-zero eigenvalue of the Hessian
- How to condition?
 - Center all the variables that enter a weight
 - Normalize the variance of all variables that enter a weight

Normalization tricks

- ► N=batch, C=channels, H,W space
- Batch norm: N,H,W
- Layer norm: C,H,W
- Instance norm: H,W
- Group norm: N, C subset

Normalization tricks

- ► N=batch, C=channels, H,W space
- **▶** Batch norm: N,H,W
- Layer norm: C,H,W
- Instance norm: H,W
- Group norm: N, C subset
- Before non-linearity
 - ► Needs scale and shift
- After non-linearity
 - Scale and shift may hurt

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Multilayer Nets Have Non-Convex Objective Functions

- ► 1-1-1 network
 - ► Y = W1*W2*X
- trained to compute the identity function with quadratic loss
 - ► Single sample X=1, Y=1 L(W) = (1-W1*W2)^2
- Solution: W2 = 1/W2 hyperbola.

Deep Nets with ReLUs and Max Pooling

- Stack of linear transforms interspersed with Max operators
- Point-wise ReLUs:

$$ReLU(x) = max(x, 0)$$

Max Pooling

- "switches" from one layer to the next
- nput-output function
- Sum over active paths
- Product of all weights along the path
- Solutions are hyperbolas
- Dbjective function is full of saddle points

