

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 ПО ДИСЦИПЛИНЕ: ТИПЫ И СТРУКТУРЫ ДАННЫХ

ДЛИННАЯ АРИФМЕТИКА

длиппал агифин	LIMA
Студент Жаринов М. А.	
Вариант 2	
Группа ИУ7-32Б	
Название предприятия НУК ИУ МГТ	ГУ им. Н. Э. Баумана
Студент	Жаринов М. А.
Преподаватель	Барышникова М. Ю.

2024

Описание условия задачи

Смоделировать операцию умножения действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 40 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Техническое задание

Исходные данные:

Вещественное число: Строка, содержащая число в формате

[+-]?m.?n(E[-+]?K)?, где (m+n) до 40 значащих цифр, К по модулю не превышает 99999. Если не указан знак, то знак по умолчанию плюс.

Целое число: Строка, содержащая число в в формате [+-]?m1, где m до 30 значащих цифр. Если не указан знак, то знак по умолчанию плюс.

Выходные данные:

Вещественное число в формате $\pm 0.m1$ E $\pm K1$, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Реализуемая задача:

Умножение вещественного числа на целое

Способ обращения к программе:

Строка запуска программы ./арр.ехе

После запуска вводятся по очереди вещественное и целое число. Признак окончания ввода — Enter

Аварийные ситуации:

- 1. Пустой ввод. Код ошибки 1 (ERR_EMPTY_INPUT)
- 2. Слишком большой ввод. Код ошибки 2 (ERR_INPUT_TOO_LONG)
- 3. Неверный формат числа. Код ошибки 3 (ERR_INPUT_INVALID)
- 4. Получение машинного нуля. Код ошибки 4 (WARN_ZERO)
- 5. Получение машинной бесконечности. Код ошибки 5 (WARN_INF)

Внутренние структуры данных

Вещественные числа хранятся в структуре real_t.

```
typedef struct
{
  int8_t mnt_sign;
  uint8_t mantissa[MANTISSA_LEN];
  int32_t exponent;
} real_t;
```

Поле mnt sign - хранит -1 или 1 в зависимости от знака мантиссы

Поле mantissa - массив байтов для хранения мантиссы (одна цифра на байт)

Поле exponent - порядок вещественного числа

Число всегда хранится в нормализованном виде (первый элемент массива цифр – наибольшая значащая цифра)

Целые числа хранятся в структуре int_t.

```
typedef struct
{
  int8_t sign;
  uint8_t digits[INT_LEN];
} int_t;
```

Поле sign - хранит -1 или 1 в зависимости от знака

Поле digits - массив байтов для хранения числа (одна цифра на байт)

Число всегда хранится в следующем виде : последний элемент массива цифр – разряд единиц

Описание алгоритма

- 1. Программа запрашивает вещественное число, считывает его и записывает в структуру в нормлизованном виде
- 2. Программа запрашивает целое число, считывает его и записывает в структуру в нормлизованном виде
- 3. Программа выполняет умножение первого числа на второе, округляет при необходимости до 30 знаков и проверяет переполнение или получение машинного нуля
 - 4. Программа выводит результат на экран

Основные функции:

Функция для умножения вещественного числа на целое (изменяет и принимает структуру вещественного числа по указателю, принимает структуру целого по указателю), возращает код ошибки

```
int multiply_real_by_int(real_t *real_num, int_t *int_num);
```

Функция обработки кода ошибки и печати соответствующего сообщения.

Принимает и возвращает код ошибки

```
int process_error(int err_code);
```

Функция чтения целого числа из потока ввода. Возвращает код ошибки, изменяет структуру по указателю

```
int read_int(int_t *int_num);
```

Функция чтения вещественного числа из потока ввода. Возвращает код ошибки, изменяет структуру по указателю

```
int read_real(real_t *real_num);
```

Функция печати приветствия для целого числа. Принимает длину линейки

```
int read_real(real_t *real_num);
```

Функция печати приветствия для вещественного числа. Принимает длину линейки

```
int read_real(real_t *real_num);
```

Функция печати вещественного числа. Принимает структуру вещественного числа по указателю

int read_real(real_t *real_num);

Набор тестов

Описание теста	Вещественное	Целое число	Вывод
	число		
Умножение	22E3	3	+0.66E+5
положительного			
вещественного числа			
на положительное			
целое			
Умножение	-22E3	3	-0.66E+5
отрицательного			
вещественного числа			
на положительное			
целое			
Умножение	11E4	-45	-0.495E+7
положительного			
вещественного числа			
на отрицательное			
целое			
Умножение	-11E4	-45	+0.495E+7
отрицательного			
вещественного числа			
на отрицательное			
целое			
Умножение целого	13	16	+0.208E+3
числа на целое			
Умножение	+999999999999	1	+0.1E+99999

максимально	9999999999999		
возможного целого	999999999999E		
числа на 1	99958		
Получение	0.11111111111111	9	+0.999999999
максимального	1111111111111111		9999999999
возможного числа	1E99999		999999999E
			+99999
Умножение числа с	0.001E-99999	999999999	+0.999999999
минимально			9999999999
возможной			999999999E
экспонентой и			-99972
мантиссой меньше 1			
на максимальное			
Округление	833333333E0	12	+0.1E+41
результата с			
повышением порядка			
Умножение	999999999999	999999999999	+0.999999999
максимальных	9999999999999	9999999	9999999999
мантисс	99999999999		999999999E
			+70
Умножение на 1	10E99999	1	Машинная
числа, некорректного			бесконечност
при нормализации			ь!
Вещественное число	10E100000	-	Неверный
с слишком большой			ввод!
экспонентой			
Вещественное число	+1999999999999	-	Неверный
с слишком большой	9999999999999		ввод!

мантиссой	9999999999999		
	E99		
Вещественное число	10e10	-	Неверный
с маленькой буквой е			ввод!
Слишком большое	1	1000000000000	Слишком
целое число		0000000000000	большой
		00001	ввод!
Вещественное число	12.1	12.0	Неверный
вместо целого			ввод!
Получение	0.0001E-99999	1	Машинный
машиннного ноля			ноль!
Умножение на 0	12	0	+0.E+0
Получение слишком	0.1E99998	1000	Машинная
большого числа			бесконечност
			ь!
Пустой ввод			Пустой ввод!

Ответы на контрольные вопросы

- 1. Каков возможный диапазон чисел, представляемых в ПК? Для 64-х разрядного процессора можно хранить числа от 0 до 18 446 744 073 709 551 615 (2^{64} -1) или числа со знаком от - 2^{63} до 2^{63} -1 для целых чисел.
- 2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел определяется количеством памяти, выделенной под хранение мантиссы. В языке Си, при использовании типа double, под мантиссу выделено 52 бита, то есть максимальное значение мантиссы может составлять 4 503 599 627 370 496 (2⁵²), примерно 10 десятичных разрядов.

3. Какие стандартные операции возможны над числами? Стандартные операции над числами в Си: сложение, вычитание,

умножение, деление, взятие остатка, операции сравнения, присвоения,

инкремент, декремент

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

В таком случае программист может использовать структуру, содержащую цифры числа в массиве и другую нужную информацию

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Для осуществления таких операций необходимо реализовать собственные типы данных и функции для этого действия (как в данной лабораторной работе), а сами вычисления производить в столбик

Вывод

При необходимости проводить операции над числами, которые слишком велики для стандартных типов в языке программирования, программист должен самостоятельно реализовать необходимые структуры данных и функции для работы с ними. В данной работе реализованы типы данных для целых и вещественных чисел с точностью и размером, превышающей ограничения стандартных типов языка Си, а также функция их умножения. Такие типы данных могут быть необходимы для выполнения физических или финансовых расчетов, где необходима крайне высокая точность и/или большой размер чисел.