Государственное бюджетное общеобразовательное учреждение города Москвы «Школа № 1517»

ДОКУМЕНТАЦИЯ ПО КОМАНДНОМУ КЕЙСУ №1 МОСКОВСКОЙ ПРЕДПРОФЕССИОНАЛЬНОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ

"Модуль наблюдения за стратостатным запуском"

Команда «Bauhaus»

Работу выполнили: Ученики 10 «И» класса ГБОУ Школы № 1517 Хачатуров Илья Алексеевич Лунев Артемий Александрович Шабанов Глеб Михайлович Кокорев Даниил Романович Минаев Александр Владимирович

Научные руководители: ПДО Ткаченко Артем Алексеевич ПДО Смирнов Иван Алексеевич

Оглавление

Оглавление	1
Наша команда	1
Логотип нашей команды	3
Введение	4
Описание устройства	6
Наша цель	7
Задачи	7
Функциональность	8
Функционал, реализованный согласно техническому заданию.	8
Структурная схема	9
Механическое пользовательское взаимодействие пользователя с дисплеем.пользователя с дисплеем	10
Диаграмма последовательности	13
Электрические схемы	14
Таблица электрокомпонентов	14
Монтажная схема системы генератора случайных чисел	15
Принципиальная схема системы генератора случайных чисел	16
Таблицы подключений	17
Литература	18

Наша команда

Хачатуров Илья Алексеевич Электронщик

Логотип нашей команды

Введение

В век высоких технологий люди все больше хотят изучать окружающую их среду. Космос - одно из неизведанных мест нашей галактики, однако разработанный нами прототип Cubesat поможет изучить хотя бы часть неизведанности.

В данный момент на орбите нашей планеты, уже летает огромное количество искусственных спутников (Рис. 1). По статистике на 2020 год уже запущено более пятнадцати тысяч спутников.

Рис. 1 Все орбитальные спутники Земли

Так как мы производим Cubesat крайне малых размеров вывести их на орбиту Земли не будет представлять таких проблем, как с обычными спутниками или аппаратами космического наблюдения. При разработке нескольких десятков наших прототипов за раз можно вывести до 70 штук.

Сейчас кубсаты все больше набирают обороты, мы изучили статистику использования кубсат в промышленной сфере с начала его появления (Puc.2).

Число запусков микро- и нано-спутников

(2000-2015 гг, массой 1-50 кг)

Рис. 2 Плотность использования спутников типа CubeSat за последние 15 лет.

В данный момент, в связи с санкциями, многие компании прекратили поставку оборудования и запчастей в Россию. Таким образом, эксплуатацию и обслуживание стало недостижимым, или очень дорогим.

Как раз поэтому необходимо увеличить количество разработанных отечественных решений данной проблемы.

Описание устройства

Наше устройство представляет собой небольшой куб с направляющими рельсами, предназначенные для помещения спутника в пусковой контейнер. Это и есть главное отличие его среди массы остальных спутников.

Составляющие этого куба - это датчиками температуры высоты и модуля радиопередачи, с помощью которых можно измерять показания в пространстве. Одно из важнейших преимуществ этих аппаратов их мало размерность, но это никак не мешает оснастить аппараты полноценными системами навигации и управления.

Устройство должно снимать и откалибровать показания с датчиков, при получении управляющего радиосигнала. А на станцию должны отправляться показания альтиметра в виде вещественного числа.

Ниже представлен чертеж

Рисунок 3. Чертеж кубсата

Наша цель

Разработка и реализация прототипа модуля наблюдения за стратостатным запуском форм фактора Cubesat 1u.

Задачи

- 1. Проанализировать задание кейса.
- 2. Разработать прототип устройства, в соответствии с техническим заданием.
 - а. Продумать концепт.
 - b. Подобрать электронные компоненты.
 - с. Разработка цепи электро-компонентов.
 - d. Проектирование 3D-моделей.
 - е. Анализ и выбор материалов для проекта.
 - f. Разработка алгоритма работы устройства
 - i. Составление схемы пользовательского взаимодействия.
 - іі. Разработка конечного автомата системы.
 - ііі. Разработка алгоритма работы и диаграммы последовательности.
 - iv. Разработка блок-схем системы.
- 3. Разработка исходного кода системы.
- 4. Макетирование разработанного устройства.
 - а. Изготовление механических узлов.
 - b. Сборка узлов.
 - с. Сборка электронной цепи.
 - d. Написание высокоуровневого и низкоуровневого программного кода.
- 5. Написание документации.

Функциональность

Функционал, реализованный согласно техническому заданию.

- 1. Получение и обработка радиосигнала.
- 2. Отправка сообщения на станцию.
- 3. Установка времени перемешивания костей в барабане;
- 4. Запуска каждой подсистемы отдельно в целях отладки:
 - а. подсистема перемешивания;
 - b. подсистема возврата игральных костей;
 - с. подсистема технического зрения;
- 5. Отображение суммы очков, выпавших на игральных костях на дисплее;
- 6. Сохранение результата броска в удаленной базе данных;

Структурная схема

Рисунок 4. Структурная схема устройства

Механическое пользовательское взаимодействие пользователя с дисплеем

Рисунок 5. Взаимодействие пользователя с дисплеем

Перечень возможных действий.

- 1. Взаимодействия пользователя с дисплеем
 - 1.1. Главный экран
 - 1.1.1. Запуск однократного цикла выполнения итерации.
 - 1.1.2. Запуск многократного цикла выполнения итераций в количестве заданном пользователем
 - 1.1.3. Запуск бесконечного цикла выполнения итераций
 - 1.1.4. Остановка цикла
 - 1.1.5. Переход в меню отладки
 - 1.2. Меню отладки
 - 1.2.1. Выход из меню отладки
 - 1.2.2. Ручной запуск системы технического зрения
 - 1.2.3. Ручной запуск барабана
 - 1.2.4. Ручные спуск и подъем кубиков
 - 1.2.5. Настройка времени вращения в барабане
 - 1.2.6. Ручной запуск кубиков на повторный круг
- 2. Взаимодействия пользователя с системой генератора случайных чисел.
 - 2.1. Ручное размещение кубиков в область СТЗ
 - 2.2. Ручное размещение кубиков в барабан
 - 2.3. Ручное размещение кубиков на подъёмный конвейер

Алгоритм работы Диаграмма состояния

\$0.1 - система отключена
\$0.2 - запуск устройства
\$1 - начало цикла
\$2 - режим приёма сообщений станции
\$3 - обработка полученных данных
\$4 - режим получения данных с лазера и отправки
их на станцию
\$5 - завершение отправки данных
\$6 - завершение цикла

Рисунок 6. Диаграмма состояние устройства

Диаграмма последовательности

Рисунок 7. Диаграмма последовательности устройства

Электрические схемы

Таблица электрокомпонентов

Имя	Устройства	Модель	Параметры	Комментарии
Wemos D1 mini	Отладочная плата	Wemos D1 mini	Используется для управления модулями аппарата	Отладочная плата
Ra-01 SX1278 LORA Module	Приемник- передатчик LORA, тип 2	SX1278	Max 5V 1W	Радиомодуль для получения и передачи информации
Adafruit BME280	Датчик атмосферного давления, температуры и влажности воздуха	BME280	Мах 5V Погрешность: +-1 гр. (С)	Датчик температуры, для наблюдения за ходом запуска аппарата
C1, C2	Конденсаторы	-	0.1 мкФ	Разделительные конденсаторы
U2	Аккумулятор	Li-Po 1s 2000mAh	1s 3.7v - 4.2v 20c 2000mAh	Используется для питания всего аппарата
TP4056	Контролер питания	TP4056	U защиты: 2.5V I защиты: 3A	Используется для регулирования питания от аккумулятора, для сохранения его работоспособности

Монтажная схема системы генератора случайных чисел

Рисунок 8. Монтажная схема устройства

Принципиальная схема системы генератора случайных чисел

Рисунок 9. Принципиальная схемаустройства

Таблицы подключений

Физи- ческий пин	Назначение пина	Устройство	Пин устройства	Комментарий
D8	Цифровой выход	W DI ::	SCK/SCL	Подключение всех модулей
D7	Цифровой выход	Wemos D1 mini	SDI/SDA	и их питание, контроль работы кубсата.
D6	Цифровой выход	Lora Module SX1278	RESET	
D5	Цифровой выход		DIO0	
D4	Цифровой выход		NSS	Отправка и получение
D3	Цифровой выход		MOSI	радиосигнала.
D2	Цифровой выход		MISO	
D1	Цифровой выход		SCK	

Литература

- 1. TinkerCad создание схем и Arduino проектов. URL: https://arduino-tex.ru/news/1/izuchaem-arduino-bez-arduino-c-pomoshchyu-tinkercad-i-ego-servisov.html
- 2. Обучающие уроки и проекты для Arduino, ESP, Raspberry Pi. Текст : электронный. URL: https://lesson.iarduino.ru(дата обращения: 28.01.2023).
- 3. Уроки Autodesk Inventor. : сайт. Текст : электронный. URL: https://autocad-lessons.com/inventor(дата обращения: 28.01.2023).
- 4. Кубсат
 Википедия
 сайт:
 электронный

 URL:
 https://ru.wikipedia.org/wiki/%D0%9A
 %D1%83%D0%B1%D1%81%D0%B0%D1%82

5.