TP Bloque III

<u>Contenidos Conceptuales:</u> Teoría asintótica. Sucesiones de variables aleatorias. Modos de convergencia: casi seguro, en probabilidad, en media cuadrada, en distribución. Ley de los grandes números. Teorema Central del Límite. Aplicaciones.

Ejercicio 1:

Una pequeña tienda vende tres marcas diferentes de yogurt en envases de 8 onzas. De todos los clientes que compran un solo envase, 50% compra el que contiene 160 calorías, 30% compra el de 200 calorías y el otro 20 % compra el de 250 calorías. Denote por \boldsymbol{X}_1 y \boldsymbol{X}_2 el número de calorías de los envases comprados por dos clientes seleccionados independientemente.

- a) Determine la distribución muestral de \overline{X} , calcule $E(\overline{X})$ y compare con μ .
- b) Determine la distribución muestral de la varianza muestral S^2 , calcule $E(S^2)$ y compare con σ^2 .

Ejercicio 2:

Una compañía mantiene tres oficinas en cierta región, cada una de ellas manejada por dos empleados.

La información concerniente a salarios anuales (miles de dólares) es como sigue:

Oficina	1	1	2	2	3	3
Empleado	1	2	3	4	5	6
Salario	19.7	23.6	20.2	23.6	15.8	19.7

- a) Suponga que dos de estos empleados se seleccionan al azar de entre los seis (sin reemplazo). Determine la distribución muestral del salario medio muestral \overline{X} .
- b) Suponga que una de las tres oficinas se selecciona al azar y denote por X_1 y X_2 los salarios de los dos empleados. Determine la distribución muestral de \overline{X} .
- c) ¿Cómo se compara $E(\overline{X})$ de las partes a) y b) con el salario medio poblacional μ ?

Ejercicio 3:

En cada uno de los ítems que siguen suponga que $X_1, ..., X_n$ son variables aleatorias independientes e igualmente distribuidas con la función de probabilidad p(x) o de densidad f(x) descripta en cada caso. En cada ítem se define una variable aleatoria Y_n calculada a partir de las n variables aleatorias $X_1, ..., X_n$ y un parámetro θ de la distribución correspondiente.

En cada caso diga si es cierto o falso que Y_n converge en probabilidad a θ cuando n tiende a infinito y justifique su respuesta.

En los enunciados, la función $I_A(x)$ está definida como $I_A(x) = 1$ si $x \in A$, y $I_A(x) = 0$ si $x \notin A$

A. Se utilizó la siguiente notación:
$$\overline{X}_n = \frac{\displaystyle\sum_{i=1}^n X_i}{n}$$
 .

Lic y Esp. Débora Chan

a)
$$f(x) = \left(\frac{1}{\beta}\right) e^{(-x/\beta)} I_{(0,\infty)}(x)$$

$$\theta = \beta$$

$$Y_n = \frac{1 + \sum_{i=1}^n X_i}{n}$$

b)
$$f(x) = \begin{pmatrix} 1/\beta \end{pmatrix} e^{(-x/\beta)} I_{(0,\infty)}(x)$$

$$\theta = \beta^2 \qquad Y_n = \frac{\sum_{i=1}^n X_i^2}{n}$$

c)
$$f(x) = \left(\frac{1}{\beta}\right) e^{(-x/\beta)} I_{(0,\infty)}(x)$$
 $\theta = \beta^2$ $Y_n = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$

d)
$$p(x) = \begin{cases} p & \text{si } x = 1 \\ 1 - p & \text{si } x = 0 \end{cases}$$
 $\theta = p (1 - p)$ $Y_n = \overline{X} (1 - \overline{X})$

$$e) \quad p(x) = \begin{cases} p & \text{si } x = 0 \\ p & \text{si } x = 1 \\ 1 - p & \text{si } x = 0 \end{cases} \qquad \theta = p \ (1 - p) \qquad Y_n = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n - 1}$$

$$f) \quad f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad \theta = \mu \qquad Y_n = \frac{\left(\sum_{i=1}^n X_i\right) - \sqrt{n}}{n}$$

g) Si
$$E(Xi) = 4$$
 y $Var(Xi) = \frac{i+1}{i}\sigma^2 \cos \sigma > 0 \quad \forall i \in \mathbb{N} \Rightarrow \overline{X}_n + e^{5-\frac{1}{n}} \xrightarrow{p} 4 + e^5$

Ejercicio 4:

- a) Sea X una variable aleatoria con distribución desconocida tal que E(X) = 5 y V(X) = 0.1. Usando la desigualdad de Chebyshev, acote la probabilidad de que X esté entre 4.5 y 5.5.
- **b)** Sea X_1 ,..., X_{10} una muestra aleatoria, es decir, v. a. independientes e idénticamente distribuidas, con $E(X_i) = 5$ y $V(X_i) = 0.1$. Acote la probabilidad de que

$$4.5 \leq \overline{X} \leq 5.5 \qquad \text{ siendo} \qquad \qquad \overline{X}_n = \sum_{i=1}^n X_i / n$$

c) Si se contase con una muestra aleatoria de tamaño n: $X_1, ..., X_{10}$: ¿qué pasaría con la cota hallada en b) cuando n tendiese a infinito?

Ejercicio 5:

Sean X_1 , X_2 , ..., X_{100} los pesos netos de 100 bolsas de fertilizante seleccionadas al azar.

- a) Si el peso esperado de cada bolsa es 50 y la varianza es 1, calcule en forma aproximada (usando el Teorema Central del Límite), $P(49.75 \le \overline{X}_{100} \le 20.25)$.
- **b)** Si el peso esperado es 49.8 libras, en lugar de 50 libras, de modo que en promedio las bolsas tienen menos peso, calcule en forma aproximada la probabilidad pedida en a).

Ejercicio 6:

Ejercicio 6

Sea X una v.a. con distribución Bi(100, 0.8).

Usando el Teorema Central del Límite (con corrección por continuidad), calcule en forma aproximada:

a)
$$P(75 \le X \le 85)$$

b)
$$P(X \ge 80)$$

c)
$$P\left(0.7 \le \frac{X}{100} \le 0.8\right)$$

d)
$$P(X = 80)$$

Ejercicio 7

El tiempo, en minutos, que una persona debe esperar cada día el subte en la estación Catedral durante el horario de oficinas se puede modelar mediante una variable aleatoria $\mathbf{U}(0,10)$. Hallar, en forma aproximada, la probabilidad de que durante treinta días el tiempo que ha esperado el subte supere los 145 minutos.

Ejercicio 8

Sean $\{X_i\}$ e $\{Y_i\}$ dos sucesiones de variables aleatorias independientes.

Enuncie en cada ítem las propiedades que utiliza para obtener el resultado pedido.

- a) Si X_i son variables definidas positivas y $X_n \xrightarrow{}_d Z$ con $Z \sim N(\mu; \sigma^2)$, ¿a qué converge en distribución la sucesión $\ln(X_n)$? ¿Cuáles son los parámetros?
- **b)** Si $X_n \xrightarrow{d} Z$ con $Z \sim N(\mu; \sigma^2)$,, ¿a qué converge en distribución la sucesión $W_n = \frac{X_n \mu}{\sigma}$? ¿Cuáles son los parámetros?
- c) Si $X_n \xrightarrow{d} Z$ con Z ~ N(μ ; σ^2),, ¿a qué converge en distribución la sucesión $R_n = \left(\frac{X_n \mu}{\sigma}\right)^2$? ¿Cuáles son los parámetros?
- **d)** Si $X_n \xrightarrow{d} Z$ con Z ~ N(0; 1), e $Y_n \xrightarrow{d} 5$, ¿a qué converge en distribución la sucesión $X_n + Y_n$? ¿Cuáles son los parámetros?
- e) Si $X_n \xrightarrow{d} Z$ con Z ~ N(0; 1) e $Y_n \xrightarrow{d} 5$, ¿a qué converge en distribución la sucesión $X_n Y_n$? ¿Cuáles son los parámetros?
- f) Si $X_n \xrightarrow{d} Z$ con Z ~ N(0; 1), ¿a qué converge en distribución la sucesión 3n-10 $1-7n^2$

$$S_n = \frac{3n-10}{n} X_n + \frac{1-7n^2}{n^2}$$
? ¿Cuáles son los parámetros?