Bootstrap en el modelo de regresión logística

Contents

1 Bootstrap en regresión logística

1

1 Bootstrap en regresión logística

Vamos a calcular, utilizando bootstrap, el standard error y los intervalos de confianza para los parámetros del modelo:

```
d = read.csv("datos/MichelinNY.csv")
str(d)
## 'data.frame':
                   164 obs. of 6 variables:
                   : int 0001001110...
  $ InMichelin
                          "14 Wall Street" "212" "26 Seats" "44" ...
## $ Restaurant.Name: chr
                    : int 19 17 23 19 23 18 24 23 27 20 ...
  $ Food
## $ Decor
                    : int 20 17 17 23 12 17 21 22 27 17 ...
## $ Service
                    : int 19 16 21 16 19 17 22 21 27 19 ...
                    : int 50 43 35 52 24 36 51 61 179 42 ...
   $ Price
Bootstap:
set.seed(99)
B = 500
n = nrow(d)
beta_e = matrix(0, nrow = B, ncol = 5)
for (b in 1:B){
 pos_b = sample(1:n, n, replace = T)
 d_b = d[pos_b,]
 m_b = glm(InMichelin ~ Food + Decor + Service + Price, data = d_b, family = binomial)
 beta_e[b,] = coef(m_b)
}
```

• Standard errors calculados con bootstrap:

```
apply(beta_e,2,sd)
```

[1] 3.20370046 0.14221078 0.10042618 0.13469161 0.04590046

• Invervalos de confianza calculados con bootstrap:

```
alfa = 0.05

apply(beta_e,2,quantile, probs = c(alfa/2,1-alfa/2))

## [,1] [,2] [,3] [,4] [,5]

## 2.5% -19.322348 0.1867948 -0.08561463 -0.50060459 0.02105848

## 97.5% -6.269294 0.7423821 0.30084908 0.04150634 0.20071627
```

Se puede comprobar que los resultados de bootstrap concuerdan con los obtenidos mediante la distribuciones asintóticas.