			KESIKI	CTED 内部文件	+	T
		Soluti	ons		Marks	
1.	(a)	Median mark = 4	9.5		1 A	
	(b)			1		
		Marks	No. of Students			
		20 - 29	10			
		30 − ₹39	10			
		40 - 49	20			
		50 - 59	30			
		60 - 69	10			
		Mean mark		J	1A+1A	1A for any two correct, 1A for the rest
		$=$ $\frac{24.5 \times 10 + 34}{10}$	1.5 × 10 + 44.5 × 20	$0 + 54.5 \times 30 + 64.5 \times 10$	1M	Accept 25,35,etc,
			80			denominator = Σf
		= \frac{3760}{80}				·
~		= 47	• • • • • • • • • • • • • • • • • • • •	•••••	1A	Must show working
					5	
2.	(a)	$X \propto \frac{y^2}{z}$			1	
		2			1A	For either
		$x = \frac{ky^2}{z}$ for so	ome constant k		4	
		$18 = \frac{k(3)^2}{2} \dots$	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	1M	Substituting for
		k = 4			. 12	k
					1A	
		i.e. $x = \frac{4y^2}{z}$				
	(b)	Putting $y = 1$	$z = 4$, $x = \frac{4(1)}{4}$	<u>2</u>	1M	Substituting for k
			*			
			= 1		1A -5	
					5	
3.	(a)	$\frac{150000}{15} = £1000$	0		1A	
	(b)	$10000(0.146)\left(\frac{30}{36}\right)$	<u> </u>		1A	
		•	5 /			
		= £120	n + 120\		114	
		Amount = £(1000) = £ 10120			1M	Aggart 10100
	/c\		••••••	•••••	1A	Accept 10100 ~ 10120
	(0)	14.50 × 10120 = HK\$146740			17	Aggent 146000 -
		= HK\$146740 .	• • • • • • • • • • • • • • • • • • • •	•••••	1A 	Accept 146000 ~ 147000

-	KESIKICIED 内部文件		
	Solutions	Marks	
4.	(a) $2a = 3b = 5c$		
	$\frac{2a}{30} = \frac{3b}{30} = \frac{5c}{30} \qquad \dots$	1M	
	$\therefore a:b:c=15:10:6$	2A	Correct ratio not in this form, 1A only
	Alternatively		
	$\frac{a}{b} = \frac{3}{2} , \frac{b}{c} = \frac{5}{3}$		
	Writing $\frac{a}{b} = \frac{15}{10}$, $\frac{b}{c} = \frac{10}{6}$	1M	
	$\therefore a:b:c=15:10:6$	2A	See above
	(b) a = 15k		
	b = 10k	1M ·	For either
_	c = 6k		
	a - b + c = (15 - 10 + 6)k		
	= 55	1M	
	k = 5		
	c = 30	1A 	
5.	$\sin^2\theta - 3\cos\theta - 1 = 0$		
	$1 - \cos^2 \theta - 3\cos \theta - 1 = 0 \qquad \dots$	1M	$\sin^2\theta = 1 - \cos^2\theta$
	$\cos^2\theta + 3\cos\theta = 0$	1A	
	$\cos\theta\left(\cos\theta+3\right)=0$		
	$\cos \theta = 0$ or $\cos \theta = -3$ (rejected)	1A+1A	Accept $\cos \theta = 0$
	$\therefore \theta = 90^{\circ} \text{ or } 270^{\circ} \left(\frac{\pi}{2} \text{ or } \frac{3\pi}{2} \right) \qquad \dots$	1A+1A	Withhold 1 mark
			for each extraneous answer
		6	
	l l	ı	

		RESTRICTED 内部文件	=	
		Solutions	Marks	
6.	(a)	Putting $x = 0$, $y = 5$. $\therefore A = (0,5)$	1A	OR The coordinates of A are x=0, y=5
	(-)	$X = 1 \text{ or } 5$ $\therefore B = (1,0)$ $C = (5,0)$	1A 1A	
	(1)	Putting $y = x + 5$ (or $x = y - 5$) $x + 5 = x^2 - 6x + 5$ ($y = (y - 5)^2 - 6(y - 5) + 5$) $x^2 - 7x = 0$ x(x - 7) = 0 x = 0 or 7	1A	
		At D , $x = 7$	1A 1A	
		$y = x^{2} - 6x + 5$ $D(7, 12)$ $O(6, 5)$ $C(6, 0)$		
,=-	(a)	$\alpha + \beta = -\frac{20}{10} (= -2)$	6 1A	
		$4^{\alpha} \times 4^{\beta} = 4^{\alpha + \beta} \qquad \dots$	1A	
		$= 4^{-2} \left(= \frac{1}{16} = 0.0625 \right)$	1A	
	(b)	$\alpha\beta = \frac{1}{10}$	1A	
		$\log_{10}\alpha + \log_{10}\beta = \log_{10}\alpha\beta$	1A	
		$= \log_{10} \frac{1}{10}$		
		= -1	1A 6	
			1 1	

		Solutions	Marks	
i .	(a)	$L_2: y-2=1(x-0)$ x-y=-2 (or $x-y+2=0$, etc.) $L_3: \frac{x}{5}+\frac{y}{5}=1$ i.e. $x+y=5$ (or $x+y-5=0$, etc.)	2A 1A }	2+1
	(b)	The region is determined by the inequalities $x \le 4$ $x - y \ge -2$	1A 1A 1A	Withhold 1 mar if '=' omitted o for each extra neous constrain Note other equivalent form
	(c)	(i) Drawing the line $x + 2y - 3 = c$	1M + 1A	OR Finding th values of P at any vertex
		P is minimum at the point $(4, 1)$ and the minimum value of $P = 4 + 2(1) - 3 = 3$.	1 A	At (4,6), P=13 (4,1), P=3 (1.5,3.5), P=5.
		(ii) $x + 2y - 3 \ge 7$ $x + 2y \ge 10$	1A	(1.3,3.3), F-3.
		Drawing $x + 2y = 10$ in the figure.	1A	
		The possible range of values of x is $2 \le x \le 4$.	1 A	
			6	
		L_1 L_2		
	6		•	

0

1

2

1

--- 3

9.		Solutions	Marks				
9.	(a)	C = (2,1) $A = (2,0)$	1A 1A				
		į,					
		B					
		$\langle c \rangle \langle s \rangle$		·			
		$\left(\begin{array}{c} c \\ + (2,1) \end{array}\right)^{s}$					
			!				
		0 A(2,0)					
	(b)	Putting $y = mx$ in S	1M	Let ∠ COA = θ			
				$\tan\theta = \frac{1}{2}$ 1M			
_		$x^2 + (mx)^2 - 4x - 2mx + 4 = 0$		$ \angle BOA = 2\theta \qquad 1M $ $ \therefore m = \tan 2\theta \qquad 1A $			
_		$(1 + m^2) x^2 - (4 + 2m) x + 4 = 0$,1A	$= \frac{2\tan\theta}{1-\tan^2\theta} \qquad 1A$			
				$2 \times \frac{1}{2}$			
				$=\frac{2}{1-\frac{1}{4}}=\frac{4}{3}$ 1A			
		For tangency, $(4 + 2m)^2 - 4(1 + m^2)(4) = 0$ $3m^2 - 4m = 0$	1M	-			
			1A				
		$m = \frac{4}{3} \text{ as } m \neq 0$	1A				
	(c)	(i) As OA , OB are tangents, $\angle OAC = 90^{\circ}$ and $\angle OBC = 90^{\circ}$	1	For either			
		$\therefore \angle OAC + \angle OBC = 180^{\circ}$					
		So O, A, C, B are concyclic.	1				
		(ii) As \(OAC = 90°, OC is a diameter of the required circle,					
		whose centre = $(1, \frac{1}{2})$ and radius = $\frac{\sqrt{5}}{2}$.	1A+1A				
		Equation of the circle is $(x-1)^2 + (y-\frac{1}{2})^2 = \frac{5}{4}$	1A				
		i.e. $x^2 + y^2 - 2x - y = 0$					
			5				
		Alternatively					
		(1) Let the circle be $x^2 + y^2 + ax + by + c = 0$ Values of a, b, c obtained by substitution	1 A +1	A+1A			
		(2) As OC is a diameter, the circle is $V = 0$, $V = 1$					
		$\frac{y-0}{x-0}\cdot\frac{y-1}{x-2}=-1$	2A				
		i.e. $x^2 + y^2 - 2x - y = 0$	1A				

	Solutions	Marks	
10. (a)	(i) The probability that the candidate fails on the first attempt but passes on the second is $(1-0.7) \times 0.7$ $= 0.21$ (ii) The probability of passing Part A in no more than 2 attempts is $0.7 + 0.21$ $= 0.91$ (iii) The probability of passing Part B in no more than 2 attempts is $0.6 + 0.4 \times 0.6$ $= 0.84$ $\therefore \text{ the required probability } = 0.91 \times 0.84$ $= 0.764 \text{ (0.7644)}$ No, expected = 0.764×10000	1A + 1M 1A	1 - 0.7 $p \times 0.7$ Alternatively 1A for any two: 0.6×0.7 $0.3\times0.6\times0.7$ $0.4\times0.6\times0.7$ $0.3\times0.4\times0.6\times0.$ $p_1+p_2+p_3+p_4=1$ Ans. 2A
	= 7640 (7644)	1A	

	Solutions	Marks	
. (a)	Let $\angle AOA' = \theta$	Marks	
	$OA \times \theta = 40\pi$		
	$OB \times \theta = 80\pi$	- 1A	For either
		1	
	$\frac{OA}{OB} = \frac{40\pi}{80\pi} \left(= \frac{1}{2} \right)$	1A	
	$\frac{OA}{OA + 60} = \frac{1}{2}$		
	<i>OA</i> = 60 cm	1A	
	$60\theta = 40\pi \text{ (or } 120\theta = 80\pi\text{)}$	1M	
	$\theta = \frac{2}{3}\pi \ (= 120^\circ)$	1A	
	3		
		5	
	Alternatively		
	From Fig.5a, by similiar triangles, $\frac{OA}{OB} = \frac{40}{80} \ (= \frac{1}{2})$	2A	
	$\frac{OB}{OA} = \frac{80}{OA} = \frac{1}{2}$	20	
	∴ OA = 60 cm	1A	
	Let $\angle AOA' = \theta$ $60\theta = 40\pi$ (or $120\theta = 80\pi$)		
	$\theta = \frac{2}{3}\pi$	1M 1A	
	3		
(b)	Area of ABB'A' = $\frac{1}{3}\pi 120^2 - \frac{1}{3}\pi 60^2$	1M	Area of secto
	$= 3600\pi \text{cm}^2$	+ 1M 1A	\bigcirc - \bigcirc
(c)	The shortest distance = distance between A and C in		
	Figure 5b.	1M	Attempt to fi
	$\angle AOC = \frac{120}{2} = 60^{\circ}$	1A	
	$AC^2 = OA^2 + OC^2 - 2(OA)(OC)\cos 60^\circ$	1м 7	∠ CAO = 90°
	$= 60^2 + 120^2 - 2(60)(120)(\frac{1}{2})$		$\angle CAO = 90^{\circ}$ $\sin 60^{\circ} = \frac{AC}{OC}$ $\therefore AC = 60\sqrt{3} \text{ cm}$ $(= 104)$
	-	1 1	OC OC
	= 10800 .: AC = 104 cm (103.923)		$\therefore AC = 60\sqrt{3} \text{ cm}$
	AC = 104 cm (103.923)		(= 104)
		4	

•	····		RESTRICTED 内部文件	Ę	
		So	lutions	Marks	
12.	(a)	$d_3 = 0.9 d_1$			
		= 7.2		1A	
		$d_5 = d_3 \times 0.9$	= 6.48	1A	
		$d_{2n-1} = 8(0.9)$	n-1	2 A	
				4	
	(b)	$d_6 = 10 \times 0.9^2$	² = 8.1	1A	
		$d_{2n} = 10 \times 0.9$	n-1	1A	
	(c)	$(i) d_1 + d_3 + d_4 + d_4 + d_5 $	$d_5 + \cdots + d_{2n-1}$		
		= 8 + 8 ($(0.9) + 8(0.9)^2 + + 8(0.9)^{n-1}$		
		= 8[1 -	(0.9) ⁿ]	1M	Attempting to sum
_		= 80(1 -	•••		as G.P.
		$(ii) d_2 + d_4 +$		1A	
			$0(0.9) + 10(0.9)^2 + \cdots + 10(0.9)^{n-1}$		
			- (0.9) ⁿ]		
		-			
		= 100(1	- 0.9 ⁿ)	1A	
				3_	
	(d)	$d_0 + d_1 + d_2 +$			
			$d_3 + d_5 + \cdots + (d_2 + d_4 + d_6 + \cdots)$	1M	Grouping even and odd terms
		$= 10 + \frac{8}{1 - 0}$	$\frac{1}{9} + \frac{10}{1 - 0.9}$	1M	Either infinite
_		= 190	••••••	1A	sum
				3	
			d ₀ = 10		
			d4		
		$d_1 = 8$	d_5 d_3		
			d_6		
			$d_2 = 10$		
				I	

		Solutions	Marks	
13.	(a)	Consider AABC and AABD .		
		AB = AB (common side) BC = BD (radii of the same circle) CA = DA (radii of the same circle)	1A 1A 1A	
		$\therefore \triangle ABC = \triangle ABD (SSS)$	3	
	(b)	(i) $\angle CAD = 2 \angle FED$ (= 110°) $\angle CAB = \frac{1}{2} \angle CAD = \angle FED$	1M	
		= 55°	1A	
		∠ABC = 180 - 95 - 55 = 30°	1M 1A	
		∴ ∠ EFD = ∠ ABC = 30°	1A	
		(ii)(1)		

A labelled diagram showing a cirlce through $\it D$ touching $\it CF$ at $\it F$.	1A		
) Through F draw a diameter FG . Join DG .		<u>OR</u>	
$\angle DGF = 30^{\circ}$ (\angle in alt. segment)	1A	∠ <i>DGF</i> = 30°	1A .
$\angle FDG = 90^{\circ}$ (\angle in a semi-circle)	1A	∠ <i>DFG</i> = 60°	1 A
$\frac{DF}{FG} = \frac{1}{2} \ (= \sin 30')$		∴ ∠ <i>FDG</i> = 90°	
i.e. FG = 2DF	1A	FG = 2DF	1A
	9		
Alternatively			
Through F and D, draw the radii FO and DO. As $OF \perp CF$, $\angle DFO = 90^{\circ} - 30^{\circ} = 60^{\circ}$. As FO and DO are radii of the same circle,	1A		
∠ FDO = 60° ∴ △ DFO is equilateral	1A		
The diameter = $2 \times FO = 2 \times DF$.	1A		
L		 	

R	EST	RIC	TFD	冲机	 文 体
_				rjou	

	RESTRICTED 内部文件					
		Solutions	Marks			
14.	(a)	Consider AAGH .				
		$GH = 1000 \sin \theta m$	1A			
		$AH = 1000\cos\theta$ m	1A			
			2			
	(b)	$\angle HAB = 30^{\circ} \text{ (or } \angle AHB = 60^{\circ}\text{)}$	1A			
		BH = AHsin30°	1A	BH = GH = 1000sinθ		
		$= 1000\cos\theta\sin30^{\circ}$		1M		
		= $500\cos\theta$ m	1A			
		Since $\angle GBH = 45^{\circ}$, $BH = GH$	1M			
		$500\cos\theta = 1000\sin\theta$				
		$\tan\theta=\frac{1}{2}$				
		$\theta = 26.6^{\circ}$ (26.565)	1A	Accept 26°34'~26°36'		
	(c)	$EF = AB = AH\cos 30^{\circ}$				
		= 1000cos26.565° x cos30°				
		= 774.597m ~ 775m	1A	Accept 774m		
		BE = CE		-		
		= DF				
		= 800				
		$EH = 800 - 500 \cos 26.565^{\circ}$				
		= 352.786 = 353m	1A			
		$\tan \angle FHE = \frac{774.597}{352.786} \left(\text{or} \frac{775}{353} \right)$	1M			
*		$\angle FHE \approx 65.5^{\circ}$ (or $\angle EFH = 24.5^{\circ}$)	1A	65°29′~65°30′		
		G is S65.5°E of D (or 114°)	1A	(24°29′ ~ 24°30′)		
		NORTH	5			
	A	$ \begin{array}{c} D \\ E \\ 1000 \text{ m} \end{array} $ $ \begin{array}{c} G \\ H \end{array} $ $ \begin{array}{c} E \\ E \\$				