

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2019 - 2020

C1 : Performances statiques et cinématiques des systèmes composés de chaine de solides

TD 6 - Analyse temporelle des SLCI (1er ordre) (C3-1)

15 Octobre 2019

Compétences

- Analyser; Apprécier la pertinence et la validité des résultats : Grandeurs utilisées : unités du système international; homogénéité des grandeurs
- Analyser; Caractériser des écarts : Quantification des écarts
- Modéliser; Proposer un modèle de connaissance et de comportement : Interprétation des écarts
- Résoudre; Procéder à la mise en oeuvre d'une démarche de résolution analytique : Modèles de comportement

1 Robot 6 axes pour l'usinage robotisé de moules.

a) Présentation

Un robot industriel de la Stäubli est utilisé pour réalisé les perçage d'une grande précision pour les évents de de Moules pour le fabriquant

Sur le centre d'usinage de 8 m de long et de 7 m de large, on peut usiner des moules en acier ou en fonte grise. Les dimensions des moules peuvent aller jusqu'à $4500mm \times 2500mm \times 1000mm$ et peuvent peser jusqu'à $20\,000$ kg.

Un robot de précision Stäubli contrôle toutes les activités dans la cellule. Il dispose d'une broche d'usinage de 37kW. Le robot six axes présente une charge maximale de $100\,\mathrm{kg}$ et un rayon d'action de 2194mm. Afin de pouvoir accéder à toutes les positions d'usinage, le robot a été monté sur un rail motorisé.

b) Modélisation

Pour identifier le comportement global du robot, un test avant réglage de la commande de l'axe linéaire a été réalisé. Le signal d'entrée est un échelon de tension d'amplitude +1,5 V débutant à l'instant t=0,5 s. La réponse est la position du chariot sur l'axe linéaire.

Q 1 : Indiquer l'ordre du modèle auquel peut-être identifié l'axe. Justifier.

Q 2 : Proposer un modèle de comportement de cet axe.