Calcul Différentiel

Mahendra Mariadassou 14 octobre 2019

Introduction

Plan du cours

- · Domaine d'étude
- · Limites, continuité, dérivabilité et variations
- · Comparaison locale de fonction
- · Etude locale des fonctions
- · Retour sur la limite

Rappel: la notion de dérivée

La dérivée en x_0 d'une fonction f dépendant de x est notée $f^\prime(x_0)$ et définie comme suit

$$f'(x_0)=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}$$

- · La dérivée est la limite de deux **petites** quantités qui tendent chacune vers 0.
- Elle est utilisée (via son **signe**) pour étudier les variations (**locales**) de f et essayer de trouver les optimas (minima et maxima de f).
- Elle peut être difficile à calculer rigoureusement

Rappel: le "Formulaire"

Pour éviter de recalculer f' from scratch à chaque fois, on vous a invité à apprendre par coeur **le formulaire**

$$egin{align} orall lpha \in \mathbb{R}, & (x^lpha)' = lpha x^{lpha - 1} \ & \sin'(x) = \cos(x) & cos'(x) = -\sin(x) \ & (e^x)' = e^x & \ln'(x) = rac{1}{x} \ & (u imes v)' = u'v + uv' & \left(rac{u}{v}
ight)' = rac{u'v - uv'}{v^2} \ & (g \circ f)(x) = f'(x)g'(f(x)) & (f^{-1})'(x) = rac{1}{f' \circ f^{-1}(x)} \end{aligned}$$

À propos du "Formulaire"

- Le formulaire utilise des notations compactes et faciles à retenir mais gêne la compréhension
- On va aussi introduire des notations légèrement plus lourdes (très courantes en physique et en sciences expérimentales) qui mettent en évidence les quantités manipulées.
- · Il reste néanmoins nécessaire d'avoir en tête le formulaire lors du calcul "effectif" des dérivées.

Différientielles et dérivées (I)

De façon générale, si deux quantités a et b sont liées entre elles par une relation quelconque (algébrique, géométrique, physique, etc), une infime variation de l'une (de a vers $a+\mathrm{d}a$) va entraîner une infime variation de l'autre (de b vers $b+\mathrm{d}b$).

Si:
$$a \rightarrow a + da$$
 alors $b \rightarrow b + db$

- · La notation d dans da et db signale qu'on parle de variations minuscules et même **infinitésimales**, c'est à dire aussi petites que l'on veut.
- · Les physiciens parlent souvent de **différentielle** (terme emprunté à Leibniz) pour désigner une variation infinitésimale.

Différentielles et dérivées (II)

- · La dérivée peut se concevoir comme le **taux de variation** de b par rapport a, c'est à dire comme le quotient $\dfrac{\mathrm{d}b}{\mathrm{d}a}$ dans la limite où les variations $\mathrm{d}a$ et $\mathrm{d}b$ sont très petites.
- · l'idée **principale** de la dérivée est la suivante Si les différentielles sont suffisamment petites, alors elles sont proportionnelles entre elles et le coefficient de multiplication est la dérivée:

$$db = \frac{db}{da} da$$

Différentielles et dérivées (III)

Dans la notation traditionnelle avec f'(x), on retrouve bien un rapport entre deux variations infinitésimales:

- · $\mathrm{d}f = f(x+h) f(x)$ (petite variation de f)
- dx = (x+h) x (petite variation de x)

On voit souvent les deux notations

- · $rac{\mathrm{d}f(x)}{\mathrm{d}x}$ qui insiste sur le rapport entre une petite variation de $\mathrm{d}f(x)$ et une petite variation de $\mathrm{d}x$
- · $\frac{\mathrm{d}}{\mathrm{d}x}f(x)$ qui insiste sur le fait qu'on dérive par rapport à la quantité x.

Les deux sont à connaître.

Différentielles et dérivées (IV)

On considère un angle qui mesure α radians. Une variation infime de cet angle, notée $d\alpha$, entrainera une minuscule variation de $\sin(\alpha)$, notée $d\sin(\alpha)$. Puisque la dérivée de $\sin(\alpha)$ est cos, on la relation de proportionalité suivante entre les variations infinitésimales

$$d\sin(\alpha) = \cos(\alpha)d\alpha$$

En pratique, la relation précédente est vraie dès que $d\alpha$ est suffisamment petit (dans cet exemple, de l'ordre du centi ou milligradient).

On peut donc adopter une définition, moins rigoureuse mais plus pratique, des différentielles: ce sont des variations **suffisamment petites** pour que la relation de proportionnalité s'appelle (avec une précision raisonnable). [On donnera une définition rigoureuse plus tard]

Interprétation graphique (I)

Interprétation graphique (II)

- Le graphique précédent représente b(a). Localement, entre (a,b) et $(a+\mathrm{d} a,b+\mathrm{d} b)$, la courbe peut-être confondue avec tangente en (a,b) et le coefficient directeur de cette tangente est $\frac{\mathrm{d} b}{\mathrm{d} a}$.
- · Il apparaît clairement sur le graphique précédent, et en toute généralité, que la valeur $\frac{\mathrm{d}b}{\mathrm{d}a}$ **dépend** de a et qu'il faudrait donc la noter $\frac{\mathrm{d}b}{\mathrm{d}a}(a)$.
- · On peut définir la **dérivée de la dérivée** comme $d(\frac{db}{da})/da$. Par souci de simplicité, on abrège la notation en $\frac{d^2b}{da^2}$
- De même, la dérivée troisième est notée $\frac{\mathrm{d}^3b}{\mathrm{d}a^3}$ et plus généralement la dérivée n-ème est notée $\frac{\mathrm{d}^nb}{\mathrm{d}a^n}$

Interprétation graphique (III)

On peut relier les dérivées successives au comportement du graphe de b(a) au voisinage de a

- b(a) indique la **valeur** de b au point a.
- · La dérivée première $\frac{\mathrm{d}b}{\mathrm{d}a}(a)$ indique la **pente** de la courbe au voisinage de a.
 - Une pente positive ($rac{{
 m d}b}{{
 m d}a}>0$) correspond à une fonction **localement** croissante
 - Une pente négative ($rac{{
 m d}b}{{
 m d}a}<0$) correspond à une fonction **localement** décroissante
 - Une pente nulle ($rac{\mathrm{d}b}{\mathrm{d}a}=0$) correspond à une absence de pente et à une fonction **localement** constante

Interprétation graphique (IV)

- La dérivée seconde $\frac{\mathrm{d}^2 b}{\mathrm{d}a^2}(a)$ indique la **concavité** de la courbe au voisinage de a.
 - Une concavité positive ($\frac{\mathrm{d}^2 b}{\mathrm{d}a^2}>0$) correspond à une fonction localement convexe (en forme de creux) en a
 - Une concavité négative ($\frac{\mathrm{d}^2 b}{\mathrm{d}a^2} < 0$) correspond à une fonction localement concave (en forme de bosse) en a
 - Une concavité nulle ($\frac{\mathrm{d}^2 b}{\mathrm{d}a^2}=0$) correspond à une absence de courbure et à une fonction localement **linéaire** en a

Interprétation graphique (V)

Variable de dérivation

Attention à la **variable de dérivation**, les variations de b en réponse aux variations de a ne sont pas les mêmes que celles de b en réponse aux variations de u=g(a).

On considère $b=a^6$ et $u=a^2$, de sorte que $b=u^3$. On a

$$rac{\mathrm{d}b}{\mathrm{d}a}(a)=6a^5 \quad ext{mais} \quad rac{\mathrm{d}b}{\mathrm{d}u}(u)=3u^2(
eq 6a^5)$$

Dérivée de fonctions composées (I)

Il est très facile de manipuler les différentielles pour retrouver des dérivées compliquées. Il arrive souvent que la variation d'une quantité A implique la variation d'une quantité B qui implique la variation d'une quantité C. On a alors des relations de proportionalité entre les différentielles:

$$dB = \frac{dB}{dA}dA$$
 $dC = \frac{dC}{dB}dB$ $dC = \frac{dC}{dA}dA$

d'où on déduit aisément

$$\frac{\mathrm{d}C}{\mathrm{d}A} = \frac{\mathrm{d}C}{\mathrm{d}B} \times \frac{\mathrm{d}B}{\mathrm{d}A}$$

Dérivée de fonctions composées (II)

En alourdissant un peu les notations pour expliciter les points auquels sont calculés les dérivées, on obtient

$$\frac{\mathrm{d}C}{\mathrm{d}A}(A) = \frac{\mathrm{d}C}{\mathrm{d}B}(B) \times \frac{\mathrm{d}B}{\mathrm{d}A}(A)$$

D'où on tire par analogie (avec A=x, B=f(x) et $C=(g\circ f)(x)$ la formule fondamentale du calcul différentiel

$$(g \circ f)'(x) = f'(x)g'(f(x))$$

On peut évidemment généraliser à la composée de plus de deux fonctions.

Exemple

En posant événtuellement $u=\omega t+\phi$, calculer la dérivée par rapport à t de $\sin(\omega t+\phi)$

$$\frac{\mathrm{d}(\sin(\omega t + \phi))}{\mathrm{d}t}(t) = \frac{\mathrm{d}\sin(u)}{\mathrm{d}u}(u) \times \frac{\mathrm{d}u}{\mathrm{d}t}(t)$$
$$= \cos(u) \times \omega$$
$$= \omega\cos(\omega t + \phi)$$

On n'oubliera pas de bien tout exprimer en fonction de la variable de dérivation (ici t).

Lien avec le formulaire

En combinant le mini-formulaire (exception faite de $(f^{-1})'(x)$) et le résultat précédent, on retrouve des dérivées connues uniquement comme cas particuliers

$$(e^{u(x)})' = u'(x)e^{u(x)}$$
 $(\ln(u(x)))' = \frac{u'(x)}{u(x)}$
 $(u^{\alpha}(x))' = \alpha u'(x)u^{\alpha-1}(x)$

Exercice: Dérivées de fonctions angulaires

$$\begin{array}{ccc} \frac{\mathrm{d}(\tan(\alpha))}{\mathrm{d}\alpha} & \frac{\mathrm{d}[1/\cos(\alpha)]}{\mathrm{d}\alpha} \\ \frac{\mathrm{d}[1/\sin(\alpha)]}{\mathrm{d}\alpha} & \frac{\mathrm{d}[1/\tan(\alpha)]}{\mathrm{d}\alpha} \end{array}$$

Solutions

$$\frac{\mathrm{d}(\tan(\alpha))}{\mathrm{d}\alpha} = \frac{1}{\cos^2(\alpha)} = 1 + \tan^2(\alpha)$$

$$\frac{\mathrm{d}[1/\cos(\alpha)]}{\mathrm{d}\alpha} = \frac{\sin(\alpha)}{\cos^2(\alpha)}$$

$$\frac{\mathrm{d}[1/\sin(\alpha)]}{\mathrm{d}\alpha} = -\frac{\cos(\alpha)}{\sin^2(\alpha)}$$

$$\frac{\mathrm{d}[1/\tan(\alpha)]}{\mathrm{d}\alpha} = \frac{-1}{\sin^2(\alpha)}$$

Exercices (dérivées de fonctions de bases)

$$egin{array}{c} rac{\mathrm{d}[u \ln(u) - u]}{\mathrm{d}u} & rac{\mathrm{d}[(v-1)e^v]}{\mathrm{d}v} \ rac{\mathrm{d}[1/(1+\epsilon^2)]}{\mathrm{d}\epsilon} & rac{\mathrm{d}[1/ anlpha]}{\mathrm{d}lpha} \ rac{\mathrm{d}^2[\sin^2(heta)]}{\mathrm{d} heta^2} & rac{\mathrm{d}^2[x\sqrt{x}]}{\mathrm{d}x^2} \ rac{\mathrm{d}^2[\ln(y)]}{\mathrm{d}y^2} & rac{\mathrm{d}^2[z^3+3z^2+3z+1]}{\mathrm{d}z^2} \end{array}$$

Solutions

$$\frac{\mathrm{d}[u\ln(u) - u]}{\mathrm{d}u} = \ln(u)$$

$$\frac{\mathrm{d}[1/(1 + \epsilon^2)]}{\mathrm{d}\epsilon} = \frac{-2\epsilon}{(1 + \epsilon^2)^2}$$

$$\frac{\mathrm{d}^2[\sin^2(\theta)]}{\mathrm{d}\theta^2} = 2\cos(2\theta)$$

$$\frac{\mathrm{d}^2[\ln(y)]}{\mathrm{d}y^2} = \frac{-1}{y^2}$$

$$\frac{\mathrm{d}^2[z^3 + 3z^2 + 3z + 1]}{\mathrm{d}z^2} = 6z + 6$$

Exercices (dérivées de fonctions composées)

$$egin{array}{c} rac{\mathrm{d}[(1+u^3)^4]}{\mathrm{d}u} & rac{\mathrm{d}[\sqrt{1+v^2}]}{\mathrm{d}v} \ rac{\mathrm{d}[\ln(1-x)]}{\mathrm{d}x} & rac{\mathrm{d}[2\sin(lpha-rac{\pi}{8})]}{\mathrm{d}lpha} \ rac{\mathrm{d}[\tan^2(heta)]}{\mathrm{d} heta} & rac{\mathrm{d}[e^{-y^2}]}{\mathrm{d}y} \ rac{\mathrm{d}[1/\sqrt{1+u^2}]}{\mathrm{d}u} & rac{\mathrm{d}[\sqrt{z^3+3z^2+3z+1}]}{\mathrm{d}z} \end{array}$$

Solutions

$$\frac{\mathrm{d}[(1+u^3)^4]}{\mathrm{d}u} = 12u^2(1+u^3)^3 \qquad \frac{\mathrm{d}[\sqrt{1+v^2}]}{\mathrm{d}v} = \frac{v}{\sqrt{1+v^2}}$$

$$\frac{\mathrm{d}[\ln(1-x)]}{\mathrm{d}x} = \frac{-1}{1-x} \qquad \frac{\mathrm{d}[2\sin(\alpha-\frac{\pi}{8})]}{\mathrm{d}\alpha} = 2\cos\left(\alpha-\frac{\pi}{8}\right)$$

$$\frac{\mathrm{d}[\tan^2(\theta)]}{\mathrm{d}\theta} = 2\tan(\theta) + 2\tan^3(\theta)) \qquad \frac{\mathrm{d}[e^{-y^2}]}{\mathrm{d}y} = -2ye^{-y^2}$$

$$\frac{\mathrm{d}[1/\sqrt{1+u^2}]}{\mathrm{d}u} = -\frac{u}{(1+u^2)^{3/2}}$$

$$\frac{\mathrm{d}[\sqrt{z^3+3z^2+3z+1}]}{\mathrm{d}z} = \frac{3z^2+6z+3}{2\sqrt{z^3+3z^2+3z+1}}$$

Dérivées de fonctions réciproques

Les fonctions réciproques jouent un rôle fondamentales en sciences expérimentales. Il est souvent possible d'**inverser** une relation entre deux quantités a et b. C'est à dire qu'on peut exprimer

- · a en fonction de b (a = a(b))
- b en fonction de a (b = b(a))

C'est le cas si a(b) (ou b(a)) est une **bijection** (ou plus simplement une fonctions strictement monotone). Dans ce cas, a(b) et b(a) sont dites **réciproques**.

Dans le formalisme mathématique, on note plutôt y = f(x) et $x = f^{-1}(y)$.

Graphes de fonctions réciproques

Les graphes de fonctions réciproques s'obtiennent aisément en **permutant** les axes des abscisses et des ordonnées.

Dérivées de fonctions réciproques (II)

Au vu des relations de proportionalités entre les différentielles:

$$db = \frac{db}{da}da \qquad da = \frac{da}{db}db$$

On a évidemment la relation suivante:

$$\frac{\mathrm{d}b}{\mathrm{d}a}(a) = \left(\frac{\mathrm{d}a}{\mathrm{d}b}(b)\right)^{-1}$$

Dérivées de fonctions réciproques (III)

Attention à bien calculer les dérivées au point d'intérêt.

Par exemple, si a et b sont des quantités positives, alors $b=\sqrt{a} \Leftrightarrow a=b^2$.

Sachant que $\frac{\mathrm{d}a}{\mathrm{d}b}=\frac{\mathrm{d}(b^2)}{\mathrm{d}b}=2b$, on déduit tout de suite que $\frac{\mathrm{d}b}{\mathrm{d}a}=\frac{1}{2b}$. Mais pour que ce résultat soit intéressant, il faut le **réexprimer** en fonction de a, c'est à dire $\frac{\mathrm{d}b}{\mathrm{d}a}=\frac{1}{2\sqrt{a}}$.

D'un point de formel, on retrouve la formule de la dérivée de la fonction réciproque. Si y=f(x) et $x=f^{-1}(y)$, on a

$$(f^{-1})'(y) = \frac{\mathrm{d}x}{\mathrm{d}y}(y) = \left(\frac{\mathrm{d}y}{\mathrm{d}x}(x)\right)^{-1} = \frac{1}{f'(x)} = \frac{1}{f'\circ f^{-1}(y)}$$

Exercice: Dérivées de fonctions trigonométriques réciproques

Les fonctions $\arcsin(x)$, $\arccos(x)$ et $\arctan(x)$ sont les réciproques (sur un certain intervalle) des fonctions trigonométriques $\sin(x)$, $\cos(x)$, $\tan(x)$.

Montrer que (les résultats sont à connaître)

$$\frac{\mathrm{d}\arcsin(x)}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}\arccos(x)}{\mathrm{d}x} = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}\arctan(x)}{\mathrm{d}x} = \frac{1}{1+x^2}$$

Indice: Quand $\cos(x)>0$, on a $\cos(x)=\sqrt{1-\sin^2(x)}$. Pareil pour $\sin(x)$.

Application des dérivées

Théorème et inégalité des acroissements finis (TAF/IAF)

Soit $f:I=[a,b] o \mathbb{R}$ une fonction dérivable sur I. Il existe alors au moins un point c dans l'intervalle (a,b) tel que

$$f(b) - f(a) = f'(c)(b - a)$$

Soit $f:I=[a,b] o \mathbb{R}$ une fonction dérivable sur I. On suppose que pour tout $x\in (a,b)$, on a $m\leq f'(x)\leq M$. Alors, pour tout $x\in (a,b)$,

$$m(x-a) \le f(x) - f(a) \le M(x-a)$$

TAF et IAF (II)

- TAF: La corde [AB] entre A=(a,f(a)) et B=(b,f(b)) est parallèle à une des tangentes à la courbe (TAF).
- · IAF: Si les tangentes extrêmes ont pour pentes m et M, la courbe est comprise entre a et b entre les droites passant par A et de coefficient directeur m et M.

Tableau de variations

Soit $f:I=[a,b]\to\mathbb{R}$ une fonction continue sur I et dérivable sur I (sauf éventuellement en un nombre **fini** de points).

- $f' \geq 0$ (resp. f>0 sauf éventuellement en un nombre **fini** de points) sur I, alors f est croissante (resp. strictement croissante) sur I
- $f' \leq 0$ (resp. f < 0 sauf éventuellement en un nombre **fini** de points) sur I, alors f est décroissante (resp. strictement décroissante) sur I
- $\cdot \ f' = 0$ sur I, alors f est constante sur I

C'est une conséquence directe du TAF.

Théorème de la bijection

Soit f une fonction **continue** et **strictement monotone** sur un intervalle I. Alors f est bijective de I sur f(I).

De plus f(I) se déduit simplement de I et de la monotonie de f comme suit:

forme de I	f croissante	f décroissante
[a,b]	$f(I) = \left[f(a), f(b)\right]$	f(I) = [f(b), f(a)]
[a,b)	$f(I) = [f(a), \lim_{b^-} f)$	$f(I) = (\lim_{b^-} f, f(a)]$
(a,b]	$f(I) = (\lim_{a^+} f, f(b)]$	$f(I) = [f(b), \lim_{a^+} f)$
(a,b)	$f(I)=(\lim_{a^+}f,\lim_{b^-}f)$	$f(I)=(\lim_{b^-}f,\lim_{a^+}f)$

On utilise souvent le signe de la dérivée pour prouver la stricte monotonie

Exercices (I)

Déterminer l'image de l'intervalle I par les fonctions suivantes:

$$f: x \mapsto e^x - x$$
 $ext{pour } I = \mathbb{R}$ $ext{pour } I = (0, e)$ $g: x \mapsto \ln(x+1) - x$ $ext{pour } I = (-1, 0)$ $ext{pour } I = [0, e]$ $h: x \mapsto \frac{e^x + 1}{x + 2}$ $ext{pour } I = (-\infty, -2)$ $ext{pour } I = \mathbb{R}_+$

Solutions

- · f est strictement décroissante sur \mathbb{R}_- , strictement croissante sur \mathbb{R}_+ . De plus, $\lim_{-\infty} f = \lim_{+\infty} f = +\infty$ et f(0) = 1 donc $f(\mathbb{R}) = [1, +\infty)$ et $f((0,e)) = (1,e^e e)$.
- g est strictement croissante sur (-1,0] et strictement décroissante sur $[0,+\infty)$. De plus, $\lim_{-1}f=-\infty$, f(0)=0 et $f(e)=\ln(1+e)-e$ donc $f((-1,0))=(-\infty,0)$ et $f([0,e])=[\ln(1+e)-e,0]$
- h est strictement décroissante sur $(-\infty,-2)$ et strictement croissante sur $[0,+\infty)$. De plus, $\lim_{-\infty}f=0$, $\lim_{-2}f=-\infty$, f(0)=1 et $\lim_{+\infty}f=+\infty$ donc $f((-\infty,-2))=(-\infty,0)$ et $f([0,\infty))=[1,+\infty)$

Exercices (II)

- · En fonction de la valeur du paramètre m, indiquer le nombre de solutions de l'équation $x^3-x=m$.
- · Montrer que l'équation $x^3+x+1=0$ admet une unique solution (notée α) et que $-1<\alpha<0$.

Solutions

Corrigé en cours

Application (I)

Trouver toutes les applications dérivables de \mathbb{R}_+^* telles que f(xy)=f(x)+f(y) (on peut se rappeler que $\ln(x)$ est une primitive de 1/x)

On raisonne par analyse-synthèse.

Application (II)

Analyse Soit f une telle fonction. Soit y>0, on pose $g_y:x\mapsto f(xy)$. En dérivant g_y , on obtient:

$$g_y'(x) = yf'(xy) = f'(x)$$

Et en particulier, en x=1, f'(y)=f'(1)/y d'où on déduit que $f(y)=a(\ln(y)+C)$ avec a=f'(1) et C une constante à déterminer. On a également $f(1)=f(1\times 1)=2f(1)$ donc f(1)=0 et aC=0, a=0 ou C=0. Au final f doit être de la forme $f(y)=a\ln(y)$.

Synthèse Soit f une fonction de la forme $f(y)=a\ln(y)$ avec $a\in\mathbb{R}$. On vérifie aisément que f est dérivable et satisfait f(xy)=f(x)+f(y) sur \mathbb{R}_+^*

Dérivées successives

On définit les dérivées successives de f en un point $a \in D_f$ (resp. sur $I \subset D_f$) par

$$egin{cases} f^{(0)}&=f\ orall k\in \mathbb{N}^* &f^{(k)}&=[f^{(k-1)}]' \end{cases}$$

- ' On dit que f est k fois dérivable en a (resp. sur I) lorsque $f^{(k)}(a)$ existe (resp. $f^{(k)}$ est définie sur I).
- On dit que f est infiniment dérivable en a (resp. sur I) lorsque $f^{(k)}(a)$ existe (resp. $f^{(k)}$ est définie sur I) pour tout $k \in \mathbb{N}$.

Dérivées successives (II)

- · Une fonction f est dite D^k (en a, sur I) si elle est k-fois dérivable (en a, sur I)
- · Une fonction f est dite C^k (en a, sur I) si elle est k-fois dérivable et que $f^{(k)}$ est continue (en a, sur I).
- · Une fonction f est dite C^∞ (en a, sur I) si elle est infiniment dérivable (en a, sur I) (et on a $D^\infty=C^\infty$)

Exemples

- · Tout polynôme est infiniment dérivable sur ${\mathbb R}$
- Toute fraction rationnelle est infiniment dérivable sur son domaine de définition
- $x\mapsto \sqrt{x}$ est infiniment dérivable sur \mathbb{R}_+^* mais seulement C^0 en 0.
- $\cdot \, \sin, \cos, \tan, \exp, \ln \mathrm{sont} \, C^{\infty}$ sur leurs domaines respectifs

Exercices

Etudier l'existence des dérivées successives de

$$f: x \mapsto (x-1)^{3/2}$$

$$egin{array}{cccc} g:x\mapsto egin{cases} x^2 & \mathrm{si} & x\geq 0 \ x^3 & \mathrm{si} & x<0 \end{cases}$$

$$h: x \mapsto egin{cases} x^2 \sin(1/x) & ext{si} & x
eq 0 \ 0 & ext{si} & x = 0 \end{cases}$$

Solutions

- · f est définie sur $[1,+\infty)$, C^∞ sur $(1,+\infty)$ mais seulement C^1 (dérivable de dérivée continue) en 1.
- g est C^∞ sur \mathbb{R}^* mais seulement C^1 en 0.
- · h est C^{∞} sur \mathbb{R}^* mais seulement C^1 en 0.

Étude de fonctions

Tangentes verticales

Soit $f:I=[a,b] o\mathbb{R}$ une fonction continue sur I, dérivable sur $I\setminus\{a\}$. Si $\lim_{a+}f'=\pm\infty$, alors le graphe f admet une tangente verticale en a.

Recherche de minimums

Soit $f:I\to\mathbb{R}$ une fonction dérivable qu'on cherche à minimiser (typiquement une énergie, un temps, une surface). Il est parfois plus facile de chercher le minimum de f en passant par f' qu'en faisant le tableau de variation complet de f.

Les points critiques de f sont les points d'annulation de f' **et** les bornes de son domaine de définition I.

Les minimums locaux de f sur I sont forcément atteints en un point critique.

Il suffit donc d'étudier les points critiques (généralement peu nombreux) pour savoir où f est (localement) minimum et de comparer ces mininums pour trouver le minimum global.

On note aussi que maximiser f revient à minimiser -f, on se contente donc ici de chercher des minimums.

Point critique et minimum

Attention, un minimum est toujours un point critique mais un point critique n'est pas forcément un minimum.

Nature des points critiques

Si f est deux-fois dérivable, on peut déterminer si un point critique (hors bornes du domaine) est un maximum local ou un minimum local en fonction du signe de f''.

Soit $f:I=[a,b] o \mathbb{R}$ une fonction deux fois dérivable sur I et a un point d'annulation de f' .

- f''(a) > 0, a est un minimum local de f
- f''(a) < 0, a est un maximum local de f
- f''(a) = 0 on peut pas conclure.

Nature du point quand $f''(a) \neq 0$

Nature du point quand f''(a) = 0

Mise en oeuvre

Application (I)

Un pièton peut s'éloigner de x mètres d'une antenne-relais (située en x=0). La puissance f(x) des ondes-relais reçues est donnée par

$$f(x)=rac{e^{-(x-lpha)^2}}{x}$$

avec $\alpha=2$.

- · À quelle distance doit-il se placer pour recevoir le moins d'ondes-relais?
- · Même question s'il ne peut s'éloigner de plus de 3 mètres?
- · Où doit-il se placer pour maximiser la réception?
- · Même question s'il ne peut pas s'approcher de l'antenne à moins de 1 mètre.

Application (II)

Un campeur est situé à 3 kilomètres en aval de sa tente, de l'autre côté d'une rivière qui fait 1 km de large. Il nage à 2 km/h et marche à 4 km/h.

- · Quel est le plus court chemin pour rentrer?
- · Même question s'il existe un pont en face de sa tente.

Exercices (I)

Trouver les minimums et maximums globaux des fonctions suivantes (il est recommandé de s'aider d'un ordinateur pour calculer f en différentes valeurs, les exercices avec un (*) sont difficiles):

$$f(z) = 2z^4 - 16z^3 + 20z^2 - 7$$
 pour $z \in [-2, 6]$
 $f(z) = 2z^4 - 16z^3 + 20z^2 - 7$ pour $z \in [-2, 4]$
 $f(z) = 2z^4 - 16z^3 + 20z^2 - 7$ pour $z \in [0, 2]$
 $f(t) = \frac{3 - 4t}{t^2 + 1}$ pour $t \in [-2, 4]$
 $f(x) = 3\cos(2x) - 5x$ pour $x \in [0, 6]$ (*)
 $f(x) = x\cos(x) - \sin(x)$ pour $x \in [-15, -5]$
 $f(z) = z^2e^{1-z}$ pour $z \in [-1/2, 5/2]$
 $f(t) = \ln(t^2 + t + 3)$ pour $t \in [-2, 2]$

Solutions

f	I	min	max
$2z^4 - 16z^3 + 20z^2 - 7$	[-2,6]	-257	233
$igg 2z^4 - 16z^3 + 20z^2 - 7$	[-2,4]	-199	233
$igg 2z^4 - 16z^3 + 20z^2 - 7$	[0,2]	-23	-1
$\frac{3-4t}{t^2+1}$	[-2,4]	$f(1+\sqrt{2})$	$f(1-\sqrt{2})$
$3\cos(2x) - 5x$	[0,6]	f(0)	f(30)
$x\cos(x)-\sin(x)$	[-15,-5]	f(-5)	f(-15)
x^2e^{1-x}	$\left[-1/2,5/2\right]$	f(0) = 0	f(2)=4/e
$\ln(t^2 + t + 3)$	[-2,2]	$\ln(3.75)$	$2\ln(3)$

Exercices (II)

Calculer, à l'aide de dérivées, les limites suivantes:

$$egin{aligned} \lim_{x o 3} & \ln(x) - \ln(3) \ x - 3 & \lim_{x o 2} & \sqrt{x+2} - 2 \ \lim_{x o 1} & e^x - e \ x o 1 & \lim_{x o -1} & \frac{x^{2017} + 1}{x+1} \end{aligned}$$

Solutions

$$\lim_{x o 3} rac{\ln(x) - \ln(3)}{x - 3} = rac{1}{3}$$
 $\lim_{x o 2} rac{\sqrt{x + 2} - 2}{x - 2} = rac{1}{4}$ $\lim_{x o 1} rac{e^x - e}{x - 1} = e$ $\lim_{x o -1} rac{x^{2017} + 1}{x + 1} = 2017$

Exercices (III)

À l'aide de la méthode de votre choix, montrez les inégalités (dites de convexité) suivantes:

$$egin{aligned} orall x \in \mathbb{R} & e^x \geq 1+x \ orall x \geq 0 & xe^x+1 \geq e^x \geq 1+x+rac{x^2}{2} \ orall x \in (-1,+\infty) & \ln(1+x) \leq x \ orall x \leq 0 & 1+x \leq e^x \leq 1+x+rac{x^2}{2} \end{aligned}$$

Exercices (IV)

On considère la fonction $f(x)=(x+1)e^{-x}$

- · Montrer par récurrence que pour tout entier $n\geq 0$, il existe deux réels a_n et b_n tels que $f^{(n)}(x)=(a_nx+b_n)e^{-x}$.
- Expliciter a_n
- · Vérifier que la suite $c_n=(-1)^nb_n$ est arithmétique. En déduire b_n .