Національний Технічний Університет України «Київський Політехнічний Інститут» Науково-навчальний комплекс «Інститут Прикладного та системного аналізу» Кафедра системного проектування

Лабораторна робота №5

з курсу «МЕТОДИ ОПТИМІЗАЦІЇ»

на тему

"Дослідження методів одновимірного пошуку"

Виконав студент III курсу групи ДА-42 Приставський Костянтин варіант 18

Варіант №18

Завдання:

1) Сформувати індивідуальну квадратичну функцію F5 виду:

$$F5=x^2+(p+q)x+pq$$

де p — перша ,а q — друга цифра в номері варіанту. Якщо номер варіанту менше 10, то p=0.

Дослідити квадратичну F5 та індивідуально задану функцію однієї змінної F6 $F(x)=\sin^4 x+$ sqrt(abs(x)), обрану за варіантом, в приблизних межах [-10.0;10.0].

- 4.2) За допомогою графіків функцій, визначити початкові інтервали пошуку $[a^{(0)},b^{(0)}]$, які містять мінімуми функцій (локальний або глобальний).
- 4.3) Скласти програму пошуку мінімуму функції однієї змінної методом золотого перетину. Результати розрахунку мінімуму двох функцій F5 та F6 з точністю $\varepsilon = 1e 3$ зведені у таблицю.
- .4) Розрахувати значення мінімуму функцій F 5 , F 6 аналітично та порівняти з результатами п.4.3.

квадратичної F5 та індивідуальної функцій F6 на ПЕОМ (табл. 5.2);

5.8) висновки.

Хід роботи

1. Сформулюємо квадратичну функцію

$$F5(x) = x^2 + (p+q)x + pq$$

В нашому випадку, задаємо f5 як:

Будуємо графік функції:

2. Формулювання та графік індивідуальної функції

Задаємо функцію f6:

Будуємо графік функції:

3. Визначення інтервалів пошуку за допомогою графіків функцій.

Мінімум квадратичної функції потрапляє в інтервал [-10,0], що видно за графіком функції.

Глобальний мінімум індивідуальної функції потрапляє в інтервал [-1.5,1.5].

Побудуємо графіки функцій на вказаних

інтервалах:

3. Складемо функцію пошуку мінімума методом золотого перетину:

```
gr = (np.sqrt(5) + 1) / 2
'''змінна, що необхідна для алгоритму пошуку мінімума
методом золотого перетину'''
def gss(f, a, b, tol=1e-3):
    golden section search
    знаходження мінімума функції f на проміжку [a,b]
    f повинна бути унімодальною на проміжку [a,b]
    c = b - (b - a) / gr
    d = a + (b - a) / gr
    iter = 0
    while abs(a - b) > tol:
        print
'{:04d}\t{:020.18f}\t{:020.18f}\'t{:020.18f}'.format(i
ter, a, b, abs(a-b))
        iter +=1
        if f(c) < f(d):
            b = d
        else:
            a = c
        # пересчет с и d производится, чтобы не потерять
точность, что в итоге приводит к бесконечному циклу
        c = b - (b - a) / gr
        d = a + (b - a) / gr
'{:04d}\t{:020.18f}\t{:020.18f}\'t{:020.18f}'.format(i
ter, a, b, abs(a-b))
    return (b + a) / 2
```

Результати роботи програми наведено в таблиці:

	Квадратична функція			Індивідуальна функція		
Iteration	а	b	len	а	b	len
0	-10	0	10	-1.5	1.5	3
1	-6.1803399	0	6.18033989	-0.354102	1.5	1.85410197
2	-6.1803399	-2.360679775	3.81966011	-0.354102	0.79179607	1.14589803
3	-6.1803399	-3.819660113	2.36067977	-0.354102	0.35410197	0.70820393
4	-5.2786405	-3.819660113	1.45898034	-0.0835921	0.35410197	0.4376941
5	-4.7213595	-3.819660113	0.90169944	-0.0835921	0.1869177	0.27050983
6	-4.7213595	-4.16407865	0.5572809	-0.0835921	0.08359214	0.16718427
7	-4.7213595	-4.376941013	0.34441854	-0.0835921	0.01973343	0.10332556
8	-4.5898034	-4.376941013	0.21286236	-0.0441253	0.01973343	0.06385871
9	-4.5898034	-4.4582472	0.13155617	-0.0197334	0.01973343	0.03946685
10	-4.5395534	-4.4582472	0.08130619	-0.0197334	0.00465843	0.02439186
11	-4.5395534	-4.4893034	0.05024999	-0.0104166	0.00465843	0.015075
12	-4.5203596	-4.4893034	0.0310562	-0.0046584	0.00465843	0.00931686
13	-4.5084972	-4.4893034	0.01919379	-0.0046584	0.00109971	0.00575814
14	-4.5084972	-4.496634775	0.01186241	-0.002459	0.00109971	0.00355872
15	-4.5039661	-4.496634775	0.00733137	-0.0010997	0.00109971	0.00219941
16	-4.5011658	-4.496634775	0.00453104	-0.0010997	0.00025961	0.00135931
17	-4.5011658	-4.498365477	0.00280034	-0.0005805	0.00025961	0.0008401
18	-4.5011658	-4.49943511	0.0017307			
19	-4.5005047	-4.49943511	0.00106963			
20	-4.5005047	-4.499843674	0.00066107			
Res	x_min	y_min		x_min	y_min	
	4.50	-12.25		0.00	0.01	