§5.3: MORE SUBSTITUTION

Dr. Mike Janssen

April 23, 2021

ANNOUNCEMENTS

SUBSTITUTION

Since

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x),$$

SUBSTITUTION

Since

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x),$$

we see

$$\int f'(g(x))g'(x)\,dx=f(g(x))+C.$$

SUBSTITUTION

Since

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x),$$

we see

$$\int f'(g(x))g'(x)\,dx=f(g(x))+C.$$

Theorem

With
$$u = g(x)$$
,

$$\int f'(g(x))g'(x) \, dx = \int f'(u) \, du = f(u) + C = f(g(x)) + C.$$

ACTIVITY 5.3.2

EXAMPLES

Let's find

$$\int \frac{2e^{4\sqrt{x}}}{\sqrt{x}} dx$$

EXAMPLES

Let's find

$$\int \frac{2e^{4\sqrt{x}}}{\sqrt{x}} dx$$

Let's find

$$\int \tan x \, dx \text{ and } \int \sec x \, dx$$

ACTIVITY 5.3.3

EVALUATING DEFINITE INTEGRALS

Observe:

$$\int_{\pi/2}^{\pi} e^{\sin x} \cos x \, dx = \int_{x=\pi/2}^{x=\pi} e^{\sin x} \cos x \, dx.$$

EVALUATING DEFINITE INTEGRALS

Observe:

$$\int_{\pi/2}^{\pi} e^{\sin x} \cos x \, dx = \int_{x=\pi/2}^{x=\pi} e^{\sin x} \cos x \, dx.$$

Thus, when we change variables, we need to change limits:

ACTIVITY 5.3.4

CHALLENGE

Calculate
$$\int x\sqrt{1-x}\,dx$$
.