# 数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

# 通知

- ✓ 1、考试时间: 11月28号晚上
  - 2、本周有第4次实验。
  - 3、本次课的学习内容是必考内容。至少有10 分左右的考题。
  - 4、本次作业:
    - 6.3.2
    - 6.3.4
    - 6.3.6
    - 6.3.7

# 通知

### ☞1、考试题型:

单选,填空,卡诺图化简, 组合电路设计题、时序电路分析题、时序电路设计 题、芯片的应用(74LS138,74LS151,74LS161)、 verilog代码编写和分析,等等

2、第六章有30分左右的考题。

# 第6章 时序逻辑电路

# Sequential Logic Circuit

# 6.3 同步时序逻辑电路的设计(期末必考)

- 6.3.1 设计同步时序逻辑电路的一般步骤
- 6.3.2 同步时序逻辑电路设计举例

# 6.3 同步时序逻辑电路的设计

同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。

# 6.3.1 设计同步时序逻辑电路的一般步骤

同步时序电路的设计过程



#### (1)根据给定的逻辑功能建立原始状态图和原始状态表

- ①明确电路的输入条件和相应的输出要求,分别确定输入变量 和输出变量的数目和符号。
  - ②找出所有可能的状态和状态转换之间的关系。
  - ③根据原始状态图建立原始状态表。
  - (2)状态化简-----求出最简状态图;

合并等价状态,消去多余状态的过程称为状态化简



(3)状态编码(状态分配);

给每个状态赋以二进制代码的过程。

根据状态数确定触发器的个数,

 $2^{n-1} < M \le 2^n$  (M:状态数;n:触发器的个数)

- (4)选择触发器的类型
- (5)求出电路的激励方程和输出方程;
- (6)画出逻辑图并检查自启动能力。



时序电路的设计 最终要转换为组 合电路的设计。



如果将D触发器 隐藏起来。

再来看看D1,D0 与Q1,Q0之间的 关系式。



可以看出: $D_1$ 、 $D_0$ 是触发器现态Q1和Q0的函数。这个很关键。

学院

数字逻辑电路

# 6.3.2 同步时序逻辑电路设计举例

例1 用D触发器设计一个8421 BCD码同步十进制加1计数器。

解答: 8421BCD码:对于十进制数中的0---9中的每位用四位二进制数表示。

加1计数器:每次来一个脉冲,系统就加1。





# 6.3.2 同步时序逻辑电路设计举例

例1 用D触发器设计一个8421 BCD码同步十进制加计数器。

8421码同步十进制加计数器的状态表

| 计数脉   |         | 现       | 态       |         |             | 次           | 态           |             |
|-------|---------|---------|---------|---------|-------------|-------------|-------------|-------------|
| /由CP的 | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $Q_3^{n+1}$ | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ |
| 0     | 0       | 0       | 0       | 0       | 0           | 0           | 0           | 1           |
| 1     | 0       | 0       | 0       | 1       | 0           | 0           | 1           | 0           |
| 2     | 0       | 0       | 1       | 0       | 0           | 0           | 1           | 1           |
| 3     | 0       | 0       | 1       | 1       | 0           | 1           | 0           | 0           |
| 4     | 0       | 1       | 0       | 0       | 0           | 1           | 0           | 1           |
| 5     | 0       | 1       | 0       | 1       | 0           | 1           | 1           | 0           |
| 6     | 0       | 1       | 1       | 0       | 0           | 1           | 1           | 1           |
| 7     | 0       | 1       | 1       | 1       | 1           | 0           | 0           | 0           |
| 8     | 1       | 0       | 0       | 0       | 1           | 0           | 0           | 1           |
| 9     | 1       | 0       | 0       | 1       | 0           | 0           | 0           | 0           |

#### (2) 确定激励方程组

| 计数脉  |         | 现       | 态       |         |             | 次           | 态           |             |       | 激励    | 信号    |       |
|------|---------|---------|---------|---------|-------------|-------------|-------------|-------------|-------|-------|-------|-------|
| 油厂产的 | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $Q_3^{n+1}$ | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ |
| 0    | 0       | 0       | 0       | 0       | 0           | 0           | 0           | 1           | 0     | 0     | 0     | 1     |
| 1    | 0       | 0       | 0       | 1       | 0           | 0           | 1           | 0           | 0     | 0     | 1     | 0     |
| 2    | 0       | 0       | 1       | 0       | 0           | 0           | 1           | 1           | 0     | 0     | 1     | 1     |
| 3    | 0       | 0       | 1       | 1       | 0           | 1           | 0           | 0           | 0     | 1     | 0     | 0     |
| 4    | 0       | 1       | 0       | 0       | 0           | 1           | 0           | 1           | 0     | 1     | 0     | 1     |
| 5    | 0       | 1       | 0       | 1       | 0           | 1           | 1           | 0           | 0     | 1     | 1     | 0     |
| 6    | 0       | 1       | 1       | 0       | 0           | 1           | 1           | 1           | 0     | 1     | 1     | 1     |
| 7    | 0       | 1       | 1       | 1       | 1           | 0           | 0           | 0           | 1     | 0     | 0     | 0     |
| 8    | 1       | 0       | 0       | 0       | 1           | 0           | 0           | 1           | 1     | 0     | 0     | 1     |
| 9    | 1       | 0       | 0       | 1       | 0           | 0           | 0           | 0           | 0     | 0     | 0     | 0     |

#### (2) 确定激励方程组

| 计数脉  |         | 现       | 态       |         |             | 次           | 态           |             |       | 输出    | 信号    |       |
|------|---------|---------|---------|---------|-------------|-------------|-------------|-------------|-------|-------|-------|-------|
| 冲CP的 | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $Q_3^{n+1}$ | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ |
| 0    | 0       | 0       | 0       | 0       | 0           | 0           | 0           | 1           | 0     | 0     | 0     | 1     |
| 1    | 0       | 0       | 0       | 1       | 0           | 0           | 1           | 0           | 0     | 0     | 1     | 0     |
| 2    | 0       | 0       | 1       | 0       | 0           | 0           | 1           | 1           | 0     | 0     | 1     | 1     |
| 3    | 0       | 0       | 1       | 1       | 0           | 1           | 0           | 0           | 0     | 1     | 0     | 0     |
| 4    | 0       | 1       | 0       | 0       | 0           | 1           | 0           | 1           | 0     | 1     | 0     | 1     |
| 5    | 0       | 1       | 0       | 1       | 0           | 1           | 1           | 0           | 0     | 1     | 1     | 0     |
| 6    | 0       | 1       | 1       | 0       | 0           | 1           | 1           | 1           | 0     | 1     | 1     | 1     |
| 7    | 0       | 1       | 1       | 1       | 1           | 0           | 0           | 0           | 1     | 0     | 0     | 0     |
| 8    | 1       | 0       | 0       | 0       | 1           | 0           | 0           | 1           | 1     | 0     | 0     | 1     |
| 9    | 1       | 0       | 0       | 1       | 0           | 0           | 0           | 0           | 0     | 0     | 0     | 0     |

 $D_3$ 、 $D_2$ 、 $D_1$ 、 $D_0$ 、是触发器现态还是次态的函数? (具体见上页图形)

 $D_3$ 、 $D_2$ 、 $D_1$ 、 $D_0$ 是触发器现态的函数



# 画出D2触发器激励信号的卡诺图

|            |         | ~E3     | -1-        |         | 4.1.44 | 10 | 1 | 0 | 1       | 0    |          | 0                       |                            |   |
|------------|---------|---------|------------|---------|--------|----|---|---|---------|------|----------|-------------------------|----------------------------|---|
| 计数脉        |         | 现       | 态          |         | 输出作    | 11 | 1 | 0 | 1       | 1    |          | 1                       |                            |   |
| 冲CP的<br>順序 | $Q_3^n$ | $Q_2^n$ | $O^n$      | $Q_0^n$ | $D_2$  | 12 | 1 | 1 | 0       | 0    |          | 1                       |                            |   |
| 70074      |         |         | <b>z</b> 1 | 20      |        | 13 | 1 | 1 | 0       | 1    |          | 1                       |                            |   |
| 0          | 0       | 0       | 0          | 0       | 0      | 14 | 1 | 1 | 1       | 0    |          | 1                       |                            |   |
| 1          | 0       | 0       | 0          | 1       | 0      | 15 | 1 | 1 | 1       | 1    |          | 0                       |                            |   |
| 2          | 0       | 0       | 1          | 0       | 0      |    |   |   |         |      |          |                         |                            |   |
| 3          | 0       | 0       | 1          | 1       | 1      |    |   |   | 2)      |      |          | $Q_1^{''}$              | _                          |   |
| 4          | 0       | 1       | 0          | 0       | 1      |    |   |   | T       | 0    | 0        | 1 0                     | 7                          |   |
| 5          | 0       | 1       | 0          | 1       | 1      |    |   |   | -<      |      | -,       | /                       | _                          |   |
| 6          | 0       | 1       | 1          | 0       | 1      |    |   |   |         |      | <u> </u> | 0 [1                    | $-  \varrho_{z}^{\prime} $ | n |
| 7          | 0       | 1       | 1          | 1       | 0      |    | Ī |   | $Q_3^n$ | ×; > | '        | $\times   \dot{\times}$ |                            | Z |
| 8          | 1       | 0       | 0          | 0       | 0      |    |   |   | 23      | 0    | 0        | ×                       |                            |   |
| 9          | 1       | 0       | 0          | 1       | 0      |    |   |   |         |      | $Q_0^n$  |                         |                            |   |

 $D_2 = Q_2^n Q_1^n + Q_2^n Q_0^n + Q_2^n Q_1^n Q_0^n$ 

# 画出D1触发器激励信号的卡诺图

|             |                                                               |         | 7 -92 - 07. | <i>-</i> + 1.17 | 7  |       |    |           |          |                         |          |       |                |         |
|-------------|---------------------------------------------------------------|---------|-------------|-----------------|----|-------|----|-----------|----------|-------------------------|----------|-------|----------------|---------|
| 21. 44. 03. |                                                               | 现       | 态           |                 | 输出 | 信号    | 10 | 1         | 0        | 1                       | 0        |       |                | 1       |
| 计数脉<br>冲CP的 |                                                               |         |             |                 |    |       | 11 | 1         | 0        | 1                       | 1        |       |                | 0       |
| 顺序          | $Q_3^n$                                                       | $Q_2^n$ | $Q_1^n$     | $Q_0^n$         |    | $D_1$ | 12 | 1         | 1        | 0                       | 0        |       |                | 0       |
|             | -                                                             |         | _           |                 |    | 0     | 13 | 1         | 1        | 0                       | 1        |       |                | 0       |
| 0           | 0                                                             | 0       | 0           | 0               |    |       | 14 | 1         | 1        | 1                       | 0        |       |                | 1       |
| 1           | 0                                                             | 0       | 0           | 1               |    | 1     |    |           |          |                         |          |       |                | +       |
| 2           | 0                                                             | 0       | 1           | 0               |    | 1     | 15 | 1         | 1        | 1                       | 1        |       |                | 0       |
| 3           | 0                                                             | 0       | 1           | 1               |    | 0     |    | $(D_1)$   |          |                         |          | Q     | #<br>1         |         |
| 4           | 0                                                             | 1       | 0           | 0               |    | 0     |    |           | $\vdash$ | 7.                      | F        |       | $\overline{a}$ |         |
| 5           | 0                                                             | 1       | 0           | 1               |    | 1     |    |           | 0        | 11                      |          | 0   { | 1              |         |
| 6           | 0                                                             | 1       | 1           | 0               |    | 1     |    |           |          | 1                       |          | 0     | 1              | )       |
| 7           | 0                                                             | 1       | 1           | 1               |    | 0     |    |           | L        | \\\                     | - '      |       |                | $Q_2^n$ |
| 8           | 1                                                             | 0       | 0           | 0               |    | 0     |    | 11        | x        | : X                     | ( )      | ×   ¦ | ΧÏ             | 2       |
| 9           | 1                                                             | 0       | 0           | 1               |    | 0     |    | $Q_3^{"}$ |          |                         |          |       |                | ,       |
| 路           |                                                               |         |             |                 |    |       |    |           | 0        | •                       | )   >    | ×   ; | X.             |         |
|             | $D_1 = Q_1^n \overline{Q_0^n} + \overline{Q_3^n} Q_1^n Q_0^n$ |         |             |                 |    |       |    | <b>\</b>  |          | <b>Q</b> <sub>0</sub> * | <b>-</b> | 1     |                |         |

#### 画出DO触发器激励信号的卡诺图(Do 输出信号 态 计数脉 冲 CP的 $Q_3^n | Q_2^n | Q_1^n Q_0^n$ 顺序 X X X įΧ $Q_3^{"}$ (X X $D_0 = Q_0^n$

时序电路的设计最终要转换为组合电路的设计。例如此处知道D3、D2、D1和D0的表达式,就可以画出整个的时序电路。

$$D_3 = Q_3^n Q_0^n + Q_2^n Q_1^n Q_0^n$$

$$D_2 = Q_2^n \overline{Q_1^n} + Q_2^n \overline{Q_0^n} + \overline{Q_2^n} Q_1^n Q_0^n$$

$$D_1 = Q_1^n Q_0^n + Q_3^n Q_1^n Q_0^n$$





### 画出完全状态转换表

|   | <br>  计数脉     |         | 现       | 态       |         |             | 次           | 态           |             |       | 输出      | 信号    |       |
|---|---------------|---------|---------|---------|---------|-------------|-------------|-------------|-------------|-------|---------|-------|-------|
|   | 冲 <i>CP</i> 的 | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $Q_3^{n+1}$ | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ | $D_3$ | $ D_2 $ | $D_1$ | $D_0$ |
|   | 0             | 0       | 0       | 0       | 0       | 0           | 0           | 0           | 1           | 0     | 0       | 0     | 1     |
|   | 1             | 0       | 0       | 0       | 1       | 0           | 0           | 1           | 0           | 0     | 0       | 1     | 0     |
|   | 2             | 0       | 0       | 1       | 0       | 0           | 0           | 1           | 1           | 0     | 0       | 1     | 1     |
|   | 3             | 0       | 0       | 1       | 1       | 0           | 1           | 0           | 0           | 0     | 1       | 0     | 0     |
|   | 4             | 0       | 1       | 0       | 0       | 0           | 1           | 0           | 1           | 0     | 1       | 0     | 1     |
|   | 5             | 0       | 1       | 0       | 1       | 0           | 1           | 1           | 0           | 0     | 1       | 1     | 0     |
| - | 6             | 0       | 1       | 1       | 0       | 0           | 1           | 1           | 1           | 0     | 1       | 1     | 1     |
|   | 7             | 0       | 1       | 1       | 1       | 1           | 0           | 0           | 0           | 1     | 0       | 0     | 0     |
|   | 8             | 1       | 0       | 0       | 0       | 1           | 0           | 0           | 1           | 1     | 0       | 0     | 1     |
|   | 9             | 1       | 0       | 0       | 1       | 0           | 0           | 0           | 0           | 0     | 0       | 0     | 0     |
|   | 10            | 1       | 0       | 1       | 0       | 1           | 0           | 1           | 1           | 1     | 0       | 1     | 1     |
|   | 11            | 1       | 0       | 1       | 1       | 0           | 1           | 0           | 0           | 0     | 1       | 0     | 0     |
|   | 12            | 1       | 1       | 0       | 0       | 1           | 1           | 0           | 1           | 1     | 1       | 0     | 1     |
|   | 13            | 1       | 1       | 0       | 1       | 0           | 1           | 0           | 0           | 0     | 1       | 0     | 0     |
|   | 14            | 1       | 1       | 1       | 0       | 1           | 1           | 1           | 1           | 1     | 1       | 1     | 1     |
|   | 15            | 1       | 1       | 1       | 1       | 1           | 0           | 0           | 0           | 1     | 0       | 0     | 0     |

#### (3) 画出逻辑图,并检查自启动能力(找出闭合回路)

#### 画出完全状态图



思考:已知一个同步时序电路的状态转换图如图所示,请选用D触发器设计该时序电路。画出状态转换表,写出激励方程,画出电路对应的逻辑图。怎么设计?



# 设计思路提示



#### 状态转换真值表

| 现       | 态       | 输入 | 次           | 态           | 输出 |                                  |                  |
|---------|---------|----|-------------|-------------|----|----------------------------------|------------------|
| $Q_2^n$ | $Q_1^n$ | X  | $Q_2^{n+1}$ | $Q_1^{n+1}$ | Y  | <b>激</b> 质 <b>D</b> <sub>2</sub> | 信号<br><b>D</b> 1 |
| 0       | 0       | 0  |             |             | 0  | 0                                | 1                |
| 0       | 0       | 1  |             |             | 1  | 1                                | 1                |
| 0       | 1       | 0  |             |             | 0  | 1                                | 0                |
| 0       | 1       | 1  |             |             | 0  | 0                                | 1                |
| 1       | 0       | 0  |             |             | 0  | 1                                | 1                |
| 1       | 0       | 1  |             |             | 0  | 0                                | 1                |
| 1       | 1       | 0  |             |             | 1  | 0                                | 0                |
| 1       | 1       | 1  |             |             | 0  | 1                                | 0                |

例2: 设计一个串行数据检测器。电路的输入信号A是与时钟脉冲同步的串行数据,输出信号为Y;要求电路输入信号A出现110序列时,输出信号Y为1,否则为0。采用JK触发器。



通过A端随机输入一串数:

A: 011001110

Y: 000100001

被测序列可重叠



解: (1)根据给定的逻辑功能建立原始状态图和原始状态表

1.)确定输入、输出变量及电路的状态数:

输入变量: A 输出变量: Y 状态数: 4个

2.) 定义输入、输出逻辑状态和每个电路状态的含义;

a —— 初始状态;

设计110序列检测器

b——A输入1后;

c —— A输入11后;

d —— A输入110后。

#### (2) 列出原始状态转换表





| 现态 | 次态/   | 次态/输出               |  |  |  |  |  |
|----|-------|---------------------|--|--|--|--|--|
| 北心 | A=0   | A=1                 |  |  |  |  |  |
| a  | a / 0 | <b>b</b> / <b>0</b> |  |  |  |  |  |
| b  | a/0   | c/0                 |  |  |  |  |  |
| c  | d/ 1  | c/ 0                |  |  |  |  |  |
| d  | a/ 0  | b/ 0                |  |  |  |  |  |

#### 2. 状态化简(找出等价状态,消去)

#### 合并等价状态,消去多余状态的过程称为状态化简

| 现态 | 次态/   | 次态/输出               |  |  |  |  |  |
|----|-------|---------------------|--|--|--|--|--|
| 地心 | A=0   | A=1                 |  |  |  |  |  |
| a  | a / 0 | <b>b</b> / <b>0</b> |  |  |  |  |  |
| b  | a / 0 | c/0                 |  |  |  |  |  |
| c  | d/ 1  | c/ 0                |  |  |  |  |  |
| d  | a/ 0  | <b>b</b> / <b>0</b> |  |  |  |  |  |

| <br>  现态 | 次态。   | / 输出        |
|----------|-------|-------------|
| 少心心      | A=0   | A=1         |
| a        | a/ 0  | <b>b</b> /0 |
| b        | a / 0 | <b>c</b> /0 |
| c        | a/1   | c/0         |

等价状态:在相同的输入 下有相同的输出,并转换 到同一个次态,这样的两 个状态称为等价状态。





#### (4) 选择触发器的类型

触发器个数:两个。

类型:采用对 CP 下降沿敏感的

JK触发器。

| 现态       | $Q_1^{n+1}Q$ | 0 <sup>n+1</sup> / Y |
|----------|--------------|----------------------|
| $Q_1Q_0$ | A=0          | A=1                  |
| 00       | 00/0         | 01/0                 |
| 01       | 00/0         | 11 /0                |
| 11       | 00 / 1       | 11 /0                |















| $Q_1^n$ | $Q_0^n$ | 4 |       | 激励信号           |       |       |  |  |  |
|---------|---------|---|-------|----------------|-------|-------|--|--|--|
| 21      | 20      | А | $J_1$ | K <sub>1</sub> | $J_0$ | $K_0$ |  |  |  |
| 0       | 0       | 0 |       | .,             |       |       |  |  |  |
| 0       | 0       | 1 | Ī     |                |       |       |  |  |  |
| 0       | 1       | 0 | I     |                |       |       |  |  |  |
| 0       | 1       | 1 |       |                |       |       |  |  |  |
| 1       | 1       | 0 |       |                |       |       |  |  |  |
| 1       | 1       | 1 |       |                |       | _     |  |  |  |

找J0、K0、J1、K1对应的表达式

# JK触发器

#### 1.特性表

| J | K | Q <sup>n</sup> | $Q^{n+1}$ | 说 明               |
|---|---|----------------|-----------|-------------------|
| 0 | 0 | 0              | 0         | (1)<br>(1)<br>(1) |
| 0 | 0 | 1              | 1         | 状态不变              |
| 0 | 1 | 0              | 0         | <b>翠</b> 0        |
| 0 | 1 | 1              | 0         | 置 0               |
| 1 | 0 | 0              | 1         | 置 1               |
| 1 | 0 | 1              | 1         | 置 1               |
| 1 | 1 | 0              | 1         | 翻转                |
| 1 | 1 | 1              | 0         | 田幼 十文             |

2.激励表

| Q <sup>n</sup> | $Q^{n+1}$ | $oldsymbol{J}$ | K |
|----------------|-----------|----------------|---|
| 0              | 0         | 0              | × |
| 0              | 1         | 1              | × |
| 1              | 0         | X              | 1 |
| 1              | 1         | X              | 0 |



#### 卡诺图化简得

#### 输出方程

$$Y = Q_1 \overline{A}$$

#### 激励方程



$$J_1 = Q_0 A$$

#### 状态转换真值表及激励信号

| $Q_1^n$         | $O^n$ $O^n$ | v | 激励信号 |         |       |         |       |
|-----------------|-------------|---|------|---------|-------|---------|-------|
| $\mathcal{Q}_1$ | $Q_0^n$     | A | Y    | $J_{1}$ | $K_1$ | $J_{0}$ | $K_0$ |
| 0               | 0           | 0 | 0    | 0       | ×     | 0       | ×     |
| 0               | 0           | 1 | 0    | 0       | ×     | 1       | ×     |
| 0               | 1           | 0 | 0    | 0       | ×     | ×       | 1     |
| 0               | 1           | 1 | 0    | 1       | ×     | 0       | ×     |
| 1               | 1           | 0 | 1    | ×       | 1     | ×       | 1     |
| 1               | 1           | 1 | 0    | ×       | 0     | ×       | 0     |





 $K_1 = \overline{A}$ 



$$K_0 = \overline{A}$$

激励方程的第

#### (6) 根据激励方程和输出方程画出逻辑图,并检查自启动能力

#### 激励方程

$$\boldsymbol{J}_{\scriptscriptstyle 1} = \boldsymbol{Q}_{\scriptscriptstyle 0} \boldsymbol{A}$$

$$J_{_{\scriptscriptstyle{0}}}=A$$

$$K_{1} = \overline{A}$$

$$K_{\scriptscriptstyle 0} = \overline{A}$$

### 输出方程

$$Y = Q_{1} \overline{A}$$



#### 检查自启动能力和输出是否只有一处输出为1.

#### 画出完全状态转换表

# 当 Q Q 10时

$$\mathbf{Q}^{n+1} = \mathbf{J}\overline{\mathbf{Q}}^n + \overline{\mathbf{K}}\mathbf{Q}^n$$

$$\boldsymbol{J}_{\scriptscriptstyle 1} = \boldsymbol{Q}_{\scriptscriptstyle 0} \boldsymbol{A} \qquad \boldsymbol{K}_{\scriptscriptstyle 1} = \boldsymbol{A}$$

$$\boldsymbol{J}_{\scriptscriptstyle 0} = \boldsymbol{A} \qquad \boldsymbol{K}_{\scriptscriptstyle 0} = \overline{\boldsymbol{A}}$$

$$A=0$$
  $Q_1^{n+1}Q_0^{n+1}=00$   $Y=1$ 

$$A=1$$
  $Q_1^{n+1}Q_0^{n+1}=11$   $Y=0$ 

#### 输出方程

$$Y = Q_{1}\overline{A} \longrightarrow Y = Q_{1}Q_{0}\overline{A}$$

$$Y = Q_{\scriptscriptstyle 1}Q_{\scriptscriptstyle 0}\overline{A}$$

| 现态       | $Q_1^{n+1}Q_0^{n+1} / Y$ |      |  |
|----------|--------------------------|------|--|
| $Q_1Q_0$ | <b>A=0</b>               | A=1  |  |
| 00       | 00/0                     | 01/0 |  |
| 01       | 00/0                     | 11/0 |  |
| 11       | 00/1                     | 11/0 |  |
| 10       | 00/1                     | 11/0 |  |



能自启动

#### Y卡诺图化简得

输出方程 
$$Y = Q_1 A$$



Y卡诺图中有两个地方出现了1.使输出1指代不明。要修订。





输出方程  $Y = Q_1 \overline{A}$ 

卡诺图化简去掉无关项



X

0

