Path and Trajectory Planning
Overview:
Path / Trajectory planning are used to define robot motion along the task.
Consider an example where the robot is performing a task. Starts at home position, moves to a table, welds a circular motion on part on top of the table,
moves back home.
This motion is considered in task space, and has to be specified to the controller in joint or configuration space.
This set of notes considers two general approaches: 1) Path planning using potential fields
2) Trajectory planning via polynomials - Z method. live or Segments up paratelise h
Definitions:
Path – Defines robot motion considering position only.
Trajectory – Defines robot motion consider position and time (i.e., when the robot
is at certain positions, velocity along the path.

1) Pa	ith plan	ning us	sing pot	ential fi	ields							
The id The g path i	dea here oal and s one th	is to tro obstacl at mining the neg	eat the re	obot as a e a poter e potent adient of	a body a	ittracted d that ac gy of the ential an	ts on the	e robot.	Then, t	he desir	ed	

2) Tr	ajectory	Plannir	g Via P	olynom	<u>ials:</u>							
Step	1) Defin	e the G	eneral de	esired m	notion in	tool spa	ace					
	2) Defin											
									oints in			
									describe end con			
	able mot									ditions.	101	
Step	6) Defin	e a real	time co	ntroller	update 1	ate (pro	posed h	ere as 3	00 Hz).			
						tories at	the con	troller ι	apdate-ra	ate to ge	t	
	t positio					innta	to the i	aint lav	el PID c	antralla		
	/								respond			
input	$u = k_p$	$e + k_d$	$\dot{e} + k_i$	e.		(4a 40	1), e.e.,	una con	respond	ing cont		
					eps 1-3 a	s additi	onal too	l-space	trajecto	ry target		
point	s are rec	eived.										
Acce	ptable c	urve fitt	ing									
Acce	ptable ro	obot mo	tion will	be smo	oth alor	ig path a	and velo	city and	d continu	ous thro	ough	
2 nd de	erivative	(finite	input to	rques re	quired).							
Cons	ider the	curve h	elow.									
Cons	idei tiie	cui ve o	CIOW.									
											3	

cubic sp	olines: The joint	motion is defined	d as a cubic polyn	omial,		
		$q(t) = a_0 + q(t) = a_1 - q(t$	$a_1t + a_2t^2 + a_3t + 2a_2t + 3a_3t^2$			
			$2a_2 + 6a_3t$			H
		four boundary co	nditions, generall	y taken as the b	oundary	
Conditio	ns on joint positi	$q(t_0) = q_0$	$q(t_1) = q_1,$ $\dot{q}_0, \ \dot{q}(t_1) = \dot{q}_1,$			П
		$\dot{q}(t_0) = a$	$\dot{q}_0,\ \dot{q}(t_1)=\dot{q}_1,$			L
The coe		abic are solved as				
		$\begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \begin{bmatrix} 1 & t_0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} t_0^2 & t_0^3 \\ 2t_0 & 3t_0^2 \\ t_1^2 & t_1^3 \\ 2t_1 & 3t_1^2 \end{bmatrix}^{-1} \left\{$	$\begin{pmatrix} q_0 \\ \dot{q}_0 \end{pmatrix}$		+
		$ \begin{cases} a_1 \\ a_2 \end{cases} = \begin{vmatrix} 0 & 1 \\ 1 & t_1 \end{vmatrix} $	$\begin{bmatrix} z t_0 & 3 t_0 \\ t_1^2 & t_1^3 \end{bmatrix}$	q_1		
		$\begin{pmatrix} a_3 \end{pmatrix} \begin{bmatrix} 0 & 1 \end{pmatrix}$	$2t_1$ $3t_1^2$	\dot{q}_1)		Т
	ic polynomials me tion but not finite		onditions through	velocity and gu	arantee finite	
		o John.				-
						T
						L

Ouintic spli	ines: To include boundary conditions on position, velocity and acceleration, a
	olynomial can be used:
	$q(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$ $\dot{q}(t) = a_1 + 2a_2 t + 3a_3 t^2 4a_4 t^3 + 4a_5 t^4$
	$\ddot{q}(t) = 2a_2 + 6a_3t + 12a_4t^2 + 20a_5t^3$
The hounder	ry conditions are sixon as:
The boundar	ry conditions are given as: $q(t_0) = q_0, \qquad q(t_1) = q_1$
	$\dot{q}(t_0) = \dot{q}_0, \ \dot{q}(t_1) = \dot{q}_1 \ \ddot{q}(t_0) = \ddot{q}_0, \ \ddot{q}(t_1) = \ddot{q}_1$
and the coeff	ficients of the quintic polynomial are solved as $\begin{bmatrix} 1 & t & t^2 & t^3 & t^4 & t^5 \end{bmatrix}^{-1}$
	The left is of the quantic polynomia are solved as $ \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_3 \\ a_5 \end{pmatrix} = \begin{pmatrix} 1 & t_0 & t_0^2 & t_0^3 & t_0^4 & t_0^5 \\ 0 & 1 & 2t_0 & 3t_0^2 & 4t_0^3 & 5t_0^4 \\ 0 & 0 & 2 & 6t_0 & 12t_0^2 & 20t_0^3 \\ 1 & t_1 & t_1^2 & t_1^3 & t_1^4 & t_1^5 \\ 0 & 1 & 2t_1 & 3t_1^2 & 4t_1^3 & 5t_1^4 \\ 0 & 0 & 2 & 6t_1 & 12t_1^2 & 20t_1^3 \end{pmatrix} \begin{pmatrix} q_0 \\ \dot{q}_0 \\ \ddot{q}_0 \\ \ddot{q}_1 \\ \dot{q}_1 \\ \ddot{q}_1 \end{pmatrix} $
	$\begin{cases} a_2 \\ = \\ 0 & 0 & 2 & 6t_0 & 12t_0^2 & 20t_0^3 \\ \end{cases} \begin{cases} \ddot{q}_0 \\ \ddot{q}_0 \end{cases}$
	$\begin{bmatrix} a_3 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 & t_1 & t_1^2 & t_1^3 & t_1^4 & t_1^5 \\ 0 & 1 & 2t & 2t^2 & 4t^3 & 5t^4 \end{bmatrix} \begin{bmatrix} q_1 \\ \dot{q}_1 \end{bmatrix}$
	$\begin{bmatrix} a_3 \\ a_5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2t_1 & 3t_1^2 & 4t_1^3 & 5t_1^4 \\ 0 & 0 & 2 & 6t_1 & 12t_1^2 & 20t_1^3 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \ddot{q}_1 \end{bmatrix}$

	1 56
1) Given d	esired displacement, travel velocity and ramp, solve for tf, tt, a:
1	$a = V/t_b$
	$q(t_b) = q_b = q_0 + \frac{\alpha}{2} t_b^2 = \frac{V}{2} * ramp * t_f$
	$t_b = t_f * ramp$ $q_f - 2q_b = t_f * (1 - 2ramp) * V$
These lead t	to:
	$t_f = q_f/(V * (1 - ramp))$ $t_b = t_f * ramp$ $a = V/t_b$
	$t_b = t_f * ramp$ $a = V/t$
	w 1740
	declare voirables.
	declare voirables. t, &=, tb, tc, a, V, ranp.
	υ, υ, β, μ, σω, γ, σω, β.
	Setup:
	initialize RTI > Timer over flow interrupts.
	Total Ce 1012 1 man over 1 day 101 map 15
	set outputs to drive stepper
	script print.
	Main: E
	man.
	-> GB 6
	whele(1) {
	3
	3 1 1
	Timer over flow interrupts }
	get current time: $t = t + \Delta t$
	\$ get current posi -> g (cn) use O, O, O)
	convert. Of to steps.
	get Asteps
	-> Move stepper & steps (# steps weeded since la

Sample code:
#include <stdtypes.h></stdtypes.h>
#include "rt_nonfinite.h" #include "main.h"
#include 'MCU.h"
#include "math.h"
interrupt void RealTimeInterrupt(void); // prototype for our RTI interrupt function
float V_x, a_x, q_x, q_x_current, qo_x, qf_x, tb_x, tf_x, new_x, recieved_V_x,
recieved_x, previous_x, x_steps_per_unit, t_current_x; float V_y, a_y, q_y, q_y_current, qo_y, qf_y, tb_y, tf_y, new_y, recieved_V_y,
recieved_y, previous_y, y_steps_per_unit, t_current_y;
float V_z, a_z, q_z, q_z current, qo_z, qf_z, tb_z, tf_z, new_z, recieved_V_z,
recieved_z, previous_z, z_steps_per_unit, t_current_z;
float V_e, a_e, q_e, q_e_current, qo_e, qf_e, tb_e, tf_e, new_e, recieved_V_e,
recieved_e, previous_e, e_steps_per_unit, t_current_e;
float ramp, t, over, recieved V, L, V;
float ramp, t, over, recieved_v, L, v,
int i, ii, step_size, unit;
int dirx, step x;
int diry, step_y;
int dirz, step_z;
int dire, step_e;
void main(void)
{
DDRA=0xff;
DDRH=0xff;
DDRJ=0xff;
DDRP=0xff;
PLL_init();
// setup the realtime interrupt
RTICTL = $0x20$; $//0b00011100$; $//0x28$;
CRGINT = 0b10000000;
EnableInterrupts;
/// INPUT PARAMETERS ///
/// IN OTTAKANETERS ///
9

recieved_x=0; // (units)	
recieved_y=0; // (units)	
recieved_z=-1000.0; // (units) recieved_e=0; // (units)	
recieved_e=o, // (units)	
recieved_V=650.0; // (units/min)	
recieved_V_z=2000.0; // (units/min)	
ramp=0.2; // (unitless)	
unit=0; // unit=1 is inches, unit=0 is milimeters	
step_size=2; // 1,2,4,8,16 step size options	
// CALCULATED PARAMETERS //	
if(recieved_x>0){ // direction to move in x	
dirx=1;	
} else{	
dirx=-1;	
recieved_x=recieved_x*-1;	
if(recieved_y>0){ // direction to move in y	
diry=1; } else{	
diry=-1;	
recieved_y=recieved_y*-1;	
}	
if(recieved_z>0){ // direction to move in z	
dirz=1;	
} else{	
dirz=-1;	
recieved_z=recieved_z*-1;	
if(recieved_e>0){ // direction to move in e	
dire=1;	
} else{ dire=-1;	
recieved_e=recieved_e*-1;	
} - -	
	10
	10

```
recieved V=recieved V/60;
                             // (units/min)
recieved_V_z=recieved_V_z/60; // (units/min)
L=sqrt(((recieved x-previous x)*(recieved x-previous x))+((recieved y-
previous y)*(recieved y-previous y)));
recieved V x=recieved V*((recieved x-previous x)/L); // (in/s)
recieved V y=recieved V*((recieved y-previous y)/L); // (in/s)
if(unit==1){
 x_steps_per_unit = 103; // (steps/in) //////// **ATTENTION** RECHECK THESE
y steps per unit = 103; // (steps/in)
 z_steps_per_unit = 4081.633; // (steps/in)
 e_steps_per_unit =480; // (steps/in)
else{
 x_steps_per_unit = 4; // (steps/mm)
 y steps per unit = 4; // (steps/mm)
 z steps per unit = 160.694; // (steps/mm)
 e steps per unit = 19; // (steps/mm) NOTE: inches/25.4
V x = (recieved V x * x steps per unit)*step size; // (steps/s)
V y = (recieved V y * y steps per unit)*step size; // (steps/s)
V z = (recieved V z * z steps per unit)*step size; // (steps/s)
qf x = (recieved x * x steps per unit)*step size; // (steps)
qf y = (recieved y * y steps per unit)*step size; // (steps)
qf_z = (recieved_z * z_steps per_unit)*step_size; // (steps)
qf e = (recieved e * e steps per unit)*step size; // (steps)
qo_x=(previous_x * x_steps_per_unit)*step_size;
                                                // (steps)
qo y=(previous y * y steps per unit)*step size; // (steps)
qo z=(previous z * z steps per unit)*step size; // (steps)
qo e=(previous e * e steps per unit)*step size; // (steps)
tf_x = qf_x/(V_x*(1-ramp)); //(s)
tf y=qf y/(V y*(1-ramp)); // (s)
tf z=qf z/(V z*(1-ramp)); //(s)
tf e=(tf x+tf y)/2;
                      // (s)
                                                                                 11
```

tb_x=ramp*tf_x; // (s)		
tb_y=ramp*tf_y; // (s)		-
$tb_z=ramp*tf_z;$ // (s)		
$tb_e=ramp*tf_e;$ // (s)		
$V_e = qf_e/(tf_e-tb_e);$		
v_e-qi_e/(ti_e-to_e),		
2 V/4b // (24-1-2/-22)		
$a_x = V_x/tb_x; // (steps/s^2)$		
a_y=V_y/tb_y; // (steps/s^2) a_z=V_z/tb_z; // (steps/s^2)		
a_z=v_z/tb_z, // (steps/s^2) a_e=V_e/tb_e; // (steps/s^2)		
a_e-v_e/tb_e, // (steps/s^2)		_
q_x_current=0; // (steps)		
q_y_current=0; // (steps)		
q_z_current=0; // (steps)		
q_e_current=0; // (steps)		
t=0; // (s)		\vdash
t_current_z=0;		
t_current_x=0;		-
t_current_y=0;		
t_current_e=0;		
i=0;		
over=0;		
cyvitch(cton_cizo) (
switch(step_size){ case 1:		
PTP = 0b00000000; // Full step		_
break;		
		-
case 2: PTP = 0b00000001; // Half step		
break;		
orean,		
case 4:		
PTP = 0b00000010; // Quarter step		+
break;		
case 8:		
PTP = 0b00000011; // eight step		
break;		
case 16:		
PTP = 0b00000111; // sixteeth step		-
		_
	12	


```
else if(t_current_x<=(tf_x-tb_x)){ //(s)
          q_x = ((a_x/2)*tb_x*tb_x)+V_x*(t_current_x-tb_x); // (steps)
     else if(t_current_x<(tf_x)){
         q x = qf x-((a x/2)*tf x*tf x)+a x*tf x*t current x-
((a_x/2)*t_current_x*t_current_x); // (steps)
     else {
     q_x = qf_x;
//// Y Acceleration ///
if(step y==1){
 if (t_current_y<=tb_y){</pre>
                                // (s)
      q_y = qo_y + ((a_y/2)*t_current_y*t_current_y); // (steps)
     else if(t_current_y<=(tf_y-tb_y)){ // (s)
          q_y = ((a_y/2)*tb_y*tb_y)+V_y*(t_current_y-tb_y); // (steps)
     else if(t current y<(tf y)){
         q_y = qf_y-((a_y/2)*tf_y*tf_y)+a_y*tf_y*t_current_y-
((a_y/2)*t_current_y*t_current_y); // (steps)
     else {
     q_y = qf_y;
//// Z Acceleration ///
if(step_z==1){
  if (t current z \le tb z)
                                 // (s)
      q_z = qo_z + ((a_z/2)*t_current_z*t_current_z); // (steps)
     else if(t current z \le (tf z-tb z)){ // (s)
                                                                                 14
```

```
q z = ((a z/2)*tb z*tb z)+V z*(t current z-tb z); // (steps)
     else if(t current z < (tf z)){
          q_z = qf_z-((a_z/2)*tf_z*tf_z)+a_z*tf_z*t_current_z-
((a_z/2)*t_current_z*t_current_z); // (steps)
          t current x=0;
          t current y=0; // These timers start when z move is complete
          t current e=0;
     else {
     q_z = qf_z;
/// E Acceleration ///
if(step e==1){
                            // (s)
  if (t_current_e<=tb_e){
       q = qo e + ((a e/2)*t current e*t current e); // (steps)
     else if(t current e \le (tf e - tb e)){ // (s)
          q_e = ((a_e/2)*tb_e*tb_e)+V_e*(t_current_e-tb_e); // (steps)
     else if(t current e<(tf e)){
          \label{eq:control_e} q\_e = qf\_e - ((a\_e/2)*tf\_e*tf\_e) + a\_e*tf\_e*t\_current\_e-
((a e/2)*t current e*t current e); // (steps)
     else {
     q_e = qf_e;
/// Step the steppers ///
if(step z==1){
                       // Step in Z
   if(q z) = q z current
   if(dirz==1){
     PORTA=0b11011111;
     PORTA=0b11111111;
                                                                                  15
```

}	
if(dirz==-1){	
PORTA=0b11001111; PORTA=0b11111111;	
PORTA-0011111111,	
q_z_current++;	
}	
}	
if(step_y==1){ // Step in Y	
if(q_y >= q_y_current){ if(diry==1){	
PORTA=0b11110111;	
PORTA=0b11111111;	
}	
if(diry==-1){	
PORTA - 01-11111111	
PORTA=0b11111111;	
q_y_current++;	
}	
}	
if(stee	
$if(step_x==1) \{ // Step in X if(q_x >= q_x_current) \}$	
$\inf(\frac{d_1x}{d_1x} = \frac{d_1x}{d_1x} = 1)$	
PTH=0b00000011;	
PTH=0b00000001;	
}	
if(dirx == -1){ PTH=0b00000010;	
PTH=0b00000000;	
}	
q_x_current++;	
}	
,	
if(step_e==1){ // Step in E	
$if(q_e) = q_e current) $	
if(dire==1){	
PTJ=0b00000010;	
PTJ=0b00000000;	
} ; (Vd::	
if(dire==-1){ PTJ=0b00000011;	
PTJ=0b0000001;	
}	
	16

q_e	_current++;							
}							G.	
CRGF }// end F	LG = 0b100 RTI function	00000; // c	lear RTI f	lag				
							0	
							17	

(calcu positio	late coe	efficient velocity	s) for th informa	e upcon ation eve	ning T _{na} ery T _{RTC}	Il first g time per second	eriod, and significant serious serious for the serious serious serious architecture serious se	d then of control	alculate module	desired When	a	
and th	e new p	osition	the end	ing state	for an i	apcomin	ig segme	ent. In t	his man	ner, the		
											19	

This leads to the fol	llowing arrays:				
		$\theta_{1,2}$ $\theta_{1,3}$	$\theta_{1.4}$ $\theta_{1.5}$	1	
	$\mathbf{q}_{kp} = \theta_{2,1}$	$\theta_{2,2}$ $\theta_{2,3}$	$\theta_{2,4}$ $\theta_{2,5}$		
	[θ _{3,;}	$\theta_{3,2} \mid \theta_{3,3}$	$\theta_{3,4}$ $\theta_{3,5}$		
	$\dot{\mathbf{q}}_{1,1} = \dot{\theta}_{2,1}$	$\dot{\theta}_{1,2}$ $\dot{\theta}_{1,3}$ $\dot{\theta}_{2,2}$	$\dot{\theta}_{1,4}$ $\dot{\theta}_{1,5}$		
	$\mathbf{q}_{kp} = egin{bmatrix} heta_{1,:} \ heta_{2,:} \ heta_{3,:} \ heta_{kp} \end{bmatrix} \ \dot{\mathbf{q}}_{kp} = egin{bmatrix} \dot{\theta}_{1,:} \ \dot{\theta}_{2,:} \ \dot{\theta}_{3,:} \ \dot{\theta}_{3,:} \end{bmatrix}$	$\dot{\theta}_{3,2}$ $\dot{\theta}_{3,3}$	$\dot{\theta}_{3,4}$ $\dot{\theta}_{3,5}$		
With q _{kp} solved fro from the Jacobian (kp solved
Step 4) Define via p	points between po	int to point m	otion. (see S	Step 5)	
Step 5)In joint spac					ions. For
desirable motion, the For our problem, w					herefore.
cubic splines are a i			,		,
		$\int_{01}^{a_{01}} a_{02}$	a_{03} a_{04} a_{04}	05]	
	$\mathbf{A}_{kp}(:,:,j) =$	$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$	$\begin{array}{ccccc} a_{13} & a_{14} & a_{13} & a_{24} & a_{24} \end{array}$	15 25	
		a_{31} a_{32}	a_{33} a_{34} a_{34}	35	
as					
	$0 = \begin{bmatrix} 1 & t(i) \\ 0 & 1 \\ 1 & t(i+1) \\ 0 & 1 \end{bmatrix}$ what dof 3 in this	$t^2(i)$	$t^3(i)$	$\mathbf{q}_{kp}(j,i)$	
$\mathbf{A}_{kp}(:,i,j)$	$= \begin{vmatrix} 0 & 1 \\ 1 & t(i+1) \end{vmatrix}$	$t^2(i+1)$	$t^3(i+1)$	$\dot{\mathbf{q}}_{\mathbf{kp}}(j,i)$	
	0 1	2t(i+1)	$3t^2(i+1)$	$\mathbf{q_{kp}}(j, i+1)$	1)]
where $j = 1$: $n (n = r)$	obot dof, 3 in this	s example), i	= 1:m-1 for m	keypoints.	
Note in this setup, t dimensional array				coefficients, A	Λ _{kp} is a 3
Step 6) Define a rea	al-time controller	update rate (p	roposed here	as 300 Hz).	
Step 7) Access the			at the contro	ller update-rat	e to get
target position and For $\mathbf{t_{kp}}(0) < t < = \mathbf{t_{kp}}(0)$	•	input.			
	Ì	(2:1)4:4	(2 : 4)42	1 A (4 ± 4)	43
$\theta_1(t) = R$	$\mathbf{A}_{kp}(1,i,1) + \mathbf{A}_{kp}(t) = \mathbf{A}_{kp}(2,i,1)$				-
		1 kp (-) •)	1	. , , , , ,	
$\dot{ heta}_1$	$\mathbf{A}_{kp}(1,i,2) + \mathbf{A}_{kp}$	(2 2)	(0 (0) 2		2

	$\dot{\theta}_2(t) = \mathbf{A}_{kp}(2, i, 2) + 2\mathbf{A}_{kp}(3, i, 2)t + 3\mathbf{A}_{kp}(4, i, 2)t^2$
	$\theta_3(t) = \mathbf{A}_{kp}(1, i, 3) + \mathbf{A}_{kp}(2, i, 3)t + \mathbf{A}_{kp}(3, i, 3)t^2 + \mathbf{A}_{kp}(4, i, 3)t^3$ $\dot{\theta}_3(t) = \mathbf{A}_{kp}(2, i, 3) + 2\mathbf{A}_{kp}(3, i, 2)t + 3\mathbf{A}_{kp}(4, i, 3)t^2$
1	For $\mathbf{t_{kp}}(1) < t < = \mathbf{t_{kp}}(2)$
	$\theta_1(t) = \mathbf{A}_{kp}(1,2,1) + \mathbf{A}_{kp}(2,2,1)t + \mathbf{A}_{kp}(3,2,1)t^2 + \mathbf{A}_{kp}(4,2,1)t^3$ $\dot{\theta}_1(t) = \mathbf{A}_{kp}(2,2,1) + 2\mathbf{A}_{kp}(3,2,1)t + 3\mathbf{A}_{kp}(4,2,1)t^2$
1	And so on for the remaining segments.
£	Step 8) Pass these target position and velocity inputs to the joint-level PID controller to generate error signal (e^{i} , $e^{$
5	Step 9) Update the time, t , repeat steps 7 and 8 until $t = \mathbf{t_{kp}}(m)$