Curso de Engenharia de Computação Sistemas Operacionais

Gerenciamento de Memória – Parte II

Memória Virtual – Algoritmos de reposição de páginas

Slides da disciplina Sistemas Operacionais Curso de Engenharia de Computação Instituto Mauá de Tecnologia – Escola de Engenharia Mauá Prof. Marco Antonio Furlan de Souza

Conceitos

- Quando ocorre uma falta de página, o sistema operacional deve escolher uma página para remover da memória para liberar espaço para a página a ser inserida (por causa de uma referência de memória);
- Embora seja possível escolher uma página aleatória para ser removida em cada falta de página, o desempenho do sistema aumenta se uma página que não é muito utilizada for escolhida;
- Existem processos similares em outras áreas da computação:
 - Liberação de linhas de memória cache;
 - Liberação de entradas de cache de páginas em um servidor web.

- Algoritmo de substituição ótimo
 - O algoritmo de substituição de página ótimo estabelece que a página com o maior rótulo (representando o número de instruções que serão executadas até que a página seja referenciada em uma instrução) deve ser removida;
 - O único problema com esse algoritmo é que ele é irrealizável. No momento da falta da página, o sistema operacional não tem como saber quando cada uma das páginas será referenciada a seguir;
 - Executando um programa em um simulador e mantendo o controle de todas as referências de página, é possível implementar a substituição de página ótima na segunda execução usando as informações de referência de página coletadas durante a primeira execução;
 - É possível comparar o desempenho de algoritmos realizáveis com o caso ótimo.

- Algoritmo de substituição Não Recentemente Usado (NRU)
 - A maioria dos computadores com memória virtual tem dois bits de status, R e
 M, associados a cada página;
 - O bit R é ligado sempre que a página é referenciada (lida ou escrita). O bit M é ligado quando a página é modificada. Os bits estão contidos em cada entrada da tabela de páginas:

Esses bits devem ser atualizados em cada referência de memória, portanto, é essencial que eles sejam definidos pelo hardware. Depois que um bit é definido como 1, ele permanece 1 até que o sistema operacional o redefina.

- Algoritmo de substituição Não Recentemente Usado (NRU)
 - Quando um processo é inicializado, todas as entradas da tabela de páginas são marcadas como não presentes na memória;
 - Assim quando qualquer página for referenciada, ocorrerá uma falta de página;
 - O sistema operacional liga o bit R (em suas tabelas internas), altera a entrada da tabela de páginas para apontar para a página correta, com o modo READ ONLY e reinicia a instrução;
 - Se a página for modificada depois, outra falta de página ocorrerá, permitindo que o sistema operacional ligue o bit M e altere o modo da página para READ/WRITE;
 - Os bits R e M podem ser usados para construir um algoritmo de paginação.

- Algoritmo de substituição Não Recentemente Usado (NRU)
 - Quando um processo é inicializado, os dois bits de página de todas as suas páginas são definidos como 0 pelo sistema operacional;
 - Periodicamente (exemplo: em cada interrupção do relógio), o bit R é limpo, para distinguir as páginas que não foram referenciadas recentemente das que foram.
 - Em uma falta de página, o sistema operacional inspeciona todas as páginas e as divide em quatro categorias com base nos valores atuais de seus bits R e M:
 - Classe 0: não referenciada, não modificada.
 - Classe 1: não referenciada, modificada.
 - Classe 2: referenciada, não modificada.
 - Classe 3: referenciada, modificada
 - Embora as páginas da classe 1 pareçam, à primeira vista, impossíveis, elas ocorrem quando uma página classe 3 tem seu bit R limpo por uma interrupção do relógio.

- Algoritmo de substituição Não Recentemente Usado (NRU)
 - Algortitmo NRU remove aleatoriamente uma página da classe de número menor não vazia;
 - Implícito neste algoritmo está a ideia de que é melhor remover uma página modificada que não tenha sido referenciada em pelo menos um clock (tipicamente cerca de 20 ms) do que uma página limpa que esteja em uso constante;
 - A principal vantagem do NRU é que ele é fácil de entender, moderadamente eficiente para implementar e oferece um desempenho pode ser adequado.

- Algoritmo de substituição First-In, First-Out (FIFO)
 - A ideia é que o sistema operacional mantenha uma lista de todas as páginas atualmente na memória, com a página que chegou mais recentemente na cauda e a que chegou menos recentemente na cabeça;
 - Em uma falta de página, a página na cabeça é removida e a nova página é adicionada ao final da lista;
 - Problema: o algoritmo FIFO pode remover uma página mais antiga que ainda pode ser referenciada!
 - Por esta razão, o **FIFO** em sua **forma pura** é **raramente usado**.

- Algoritmo de substituição Segunda Chance
 - Uma modificação simples no FIFO que evita o problema de descartar uma página muito usada é inspecionar o bit R da página mais antiga;
 - Se for 0, a página é antiga e não usada, por isso é substituída imediatamente;
 - Se o bit R for 1, o bit será limpo, a página será colocada no final da lista de páginas e seu tempo de carregamento será atualizado como se tivesse acabado de chegar à memória.

- Algoritmo de substituição Segunda Chance
 - Exemplo: as páginas A a H são mantidas em uma lista ligada e ordenadas pelo tempo que elas foram chegaram na memória:

- Algoritmo de substituição Segunda Chance
 - Supor que uma falta de página ocorra no momento 20. A página mais antiga é A, que chegou no tempo 0, quando o processo foi iniciado. Se A tiver o bit R limpo, ele será removido da memória, e gravado no disco (se estiver sujo) ou apenas abandonado (se estiver limpo);
 - Por outro lado, se o bit R estiver definido, A será colocado no final da lista e seu "tempo de carregamento" será redefinido para o tempo atual (20). O bit R também é apagado. A busca por uma página adequada continua com B:

- Algoritmo de substituição Segunda Chance
 - O que este algoritmo está procurando é uma página antiga que não tenha sido referenciada no intervalo de clock mais recente;
 - Se todas as páginas foram referenciadas, o algoritmo degenera em FIFO puro;
 - Se todas as páginas da lista tiverem seus bits R definidos o algoritmo moverá uma a uma as páginas para o final da lista, limpando o bit R cada vez que ele anexa uma página ao final da lista;
 - Eventualmente, ele volta para a página A, que agora tem seu bit R limpo. Neste ponto, A é despejado. Assim, o algoritmo sempre termina.

- Algoritmo de substituição do Relógio
 - O algoritmo Segunda Chance é razoável mas é desnecessariamente ineficiente porque está constantemente movendo páginas em volta de sua lista;
 - Uma abordagem melhor é manter todos os quadros de página em uma lista circular (como em um relógio), onde o "ponteiro" aponta para a página mais antiga:

- Algoritmo de substituição do Relógio
 - Quando ocorre uma falta de página, a página sendo apontada pela ponteiro é inspecionada;
 - Se o bit R for 0, a página é removida, a nova página é inserida em seu lugar e o ponteiro é avançado uma posição;
 - Se R for 1, ele será zerado e o ponteiro avançará para a próxima página;
 - Esse processo é repetido até que uma página seja encontrada com R = 0.

- Algoritmo de substituição Least Recently Used (LRU)
 - As páginas que foram muito usadas nas últimas instruções provavelmente serão muito usadas novamente em breve;
 - Por outro lado, as páginas que não foram usadas por muito tempo provavelmente permanecerão sem uso por muito tempo;
 - Princípio do algoritmo: quando ocorrer uma falta de página, despejar a página que não foi utilizada há mais tempo. Essa estratégia é chamada de LRU (Least Recently Used).
 - Para a implementação, é necessário manter uma lista ligada de todas as páginas na memória, com a página usada mais recentemente na frente e a menos utilizada recentemente na parte traseira;
 - A dificuldade é que a lista deve ser atualizada em todas as referências de memória.
 Encontrar uma página na lista, excluí-la e, em seguida, movê-la para a frente é uma operação muito demorada, mesmo em hardware (supondo que tal hardware possa ser construído).

- Algoritmo de substituição Least Recently Used (LRU)
 - Uma forma de implementar LRU conta com hardware especial, um contador de 64 bits, C, que é automaticamente incrementado após cada instrução ser executada;
 - Cada entrada da tabela de páginas também deve ter um campo grande o suficiente para conter o valor do contador;
 - Após cada referência de memória, o valor atual de C é armazenado na entrada da tabela de páginas, na página que acabou de ser referenciada;
 - Quando ocorre uma falta de página, o sistema operacional examina todos os contadores na tabela de páginas para encontrar o menor. Essa página é a menos usada recentemente.

- Algoritmo de substituição NFU
 - Uma alternativa para LRU é chamada de algoritmo NFU (Not Frequently Used). Requer um contador de software associado a cada página, com valor inicial igual a zero;
 - A cada interrupção do relógio, o sistema operacional verifica todas as páginas na memória. Para cada página, o bit R, que é 0 ou 1, é adicionado ao contador. Os contadores acompanham a frequência com que cada página foi referenciada. Quando ocorre uma falta de página, a página com o contador mais baixo é escolhida para substituição.

- Algoritmo de substituição de Envelhecimento
 - Uma pequena modificação no NFU permite simular a LRU;
 - A modificação tem duas partes. Primeiro, cada contador é deslocado para a direita 1 bit antes que o bit R seja adicionado.
 Segundo, o bit R é adicionado ao bit mais à esquerda, e não ao mais à direita.
 - Este algoritmo é conhecido como envelhecimento (aging).

Algoritmo de substituição de Envelhecimento

R bits for pages 0-5, clock tick 0	R bits for pages 0-5, clock tick 1	R bits for pages 0-5, clock tick 2	R bits for pages 0-5, clock tick 3	R bits for pages 0-5, clock tick 4
1 0 1 0 1 1	110010	1 1 0 1 0 1	100010	011000
Page				i ! !
0 10000000	11000000	11100000	11110000	01111000
1 00000000	10000000	11000000	01100000	10110000
2 10000000	01000000	00100000	00010000	10001000
3 00000000	00000000	10000000	01000000	00100000
4 10000000	11000000	01100000	10110000	01011000
5 10000000	01000000	10100000	01010000	00101000

Algoritmo de substituição de Envelhecimento

- Quando ocorre uma falta de página, a página cujo contador é o menor é removida (o número de zeros à esquerda indicam isso);
- Esse algoritmo difere da LRU por que agora é possível identificar claramente qual é a página menos utilizada;
- A segunda diferença é que no algoritmo de envelhecimento os contadores têm um número finito de bits (8 bits no exemplo do slide anterior) – isso limita seu horizonte passado.
- No entanto, 8 bits geralmente é suficiente se um ciclo de clock for em torno de 20 ms. Se uma página não foi referenciada em 160 ms, provavelmente não é tão importante.

- Algoritmo de substituição do Conjunto de Trabalho
 - O conjunto de páginas que um processo está usando atualmente é seu conjunto de trabalho (working set);
 - Se todo o conjunto de trabalho estiver na memória, o processo é executado executado sem causar muitas faltas até que ele se mova para outra fase de execução;
 - Se a memória disponível for muito pequena para manter um conjunto de trabalho, o processo causará muitas faltas de página e será executado lentamente;
 - Um problema ocorre quando um processo é lido do disco após comutação: o processo causará faltas de página até que seu conjunto de trabalho seja carregado – lentidão – desperdiça tempo considerável da CPU.

- Algoritmo de substituição do Conjunto de Trabalho
 - Modelo do Conjunto de Trabalho: método para acompanhar o conjunto de trabalho de cada processo e certificar de que ele esteja na memória antes de permitir que o processo seja executado (pré-paginação);
 - Lembrar que o conjunto de trabalho muda com o tempo em qualquer instante de tempo t, existe um conjunto que consiste em todas as páginas usadas pelo k-ésimo referência à memória mais recente;
 - Este conjunto, w(k, t), é o conjunto de trabalho.

- Algoritmo de substituição do Conjunto de Trabalho
 - O conjunto de trabalho varia muito lentamente para uma faixa de valores de k:

Então, é possivei aetinir um conjunto de paginas que podem ser prontamente carregadas quando um processo é reinicializado – baseado no conjunto de trabalho quando o processo foi parado pela última vez. Este conjunto é carregado antes do processo executar.

- Algoritmo de substituição do Conjunto de Trabalho
 - A implementação de tal algoritmo poderia levar em conta o conjunto de páginas utilizadas nas últimas k referências de memória e utilizar um registrador que armazenasse os k números de páginas – mas esta solução não é prática;
 - Uma solução prática é utilizar o tempo de execução realmente utilizado (tempo virtual atual) no lugar de contar referências à memória – por exemplo, o conjunto de páginas utilizadas nos últimos 100 ms.

- Algoritmo de substituição do Conjunto de Trabalho
 - A ideia básica é encontrar uma página que não esteja no conjunto de trabalho e removê-la. Como apenas as páginas localizadas na memória são consideradas candidatas à remoção, as páginas que estão ausentes da memória são ignoradas:

Itens principais de informação: o tempo (aproximado) em que a página foi usada pela última vez e o bit R (Referenciado). Um retângulo branco vazio simboliza os outros campos não necessários para esse algoritmo, como o número do quadro da página, os bits de proteção e o bit M (Modificado).

- Algoritmo de substituição do Conjunto de Trabalho
 - Algoritmo
 - Presume-se que o hardware defina os bits R e M. Presume-se que uma interrupção periódica do relógio cause a execução de um software que limpe o bit referenciado em cada tick do relógio;
 - Em cada falha de página, a tabela de páginas é escaneada para procurar uma página adequada para remoção. À medida que cada entrada é processada, o bit R é examinado.
 - Se for 1, o tempo virtual atual é gravado no campo tempo do último uso na tabela de páginas, indicando que a página estava em uso no momento em que a falta ocorreu. Assim, a página foi referenciada durante o tempo atual e está no conjunto de trabalho e não será removida.

- Algoritmo de substituição do Conjunto de Trabalho
 - Algoritmo
 - Se R for 0, a página não foi referenciada durante o tempo atual e pode ser uma candidata para remoção. Para decidir isso, a sua idade (o tempo virtual atual menos o tempo da última utilização) é calculada e comparada com τ (intervalo parametrizado de tempo). Se a idade for maior que τ, a página não estará mais no conjunto de trabalho e a nova página a substituirá. A varredura continua atualizando as entradas restantes.

- Algoritmo de substituição do Conjunto de Trabalho
 - Algoritmo
 - No entanto, se R for 0 mas a idade for menor ou igual a τ, a página ainda estará no conjunto de trabalho. A página é temporariamente poupada, mas a página com a maior idade é anotada. Se a tabela inteira for escaneada sem encontrar um candidato para remover, e uma ou mais páginas com R = 0 forem encontradas, a página com a maior idade será removida;
 - Na pior das hipóteses, todas as páginas foram referenciadas durante o clock atual (e, portanto, todas têm R = 1), portanto, uma é escolhida aleatoriamente para remoção, de preferência uma página limpa, se existir.

Algoritmo de substituição WSClock

- Trata-se de outro algoritmo que utiliza o conjunto de páginas, mas de uma forma mais simples;
- Utiliza uma estrutura de dados tipo lista circular de quadros de página;
- Inicialmente, esta lista está vazia. Quando a primeira página é carregada, ela é adicionada à lista.
- À medida que mais páginas são adicionadas, elas entram na lista para formar um anel;
- Cada entrada contém o campo tempo do último uso do algoritmo básico do conjunto de trabalho, bem como o bit R (mostrado) e o bit M (não mostrado).

Algoritmo de substituição WSClock

last use

2204 Current virtual time

Como no algoritmo do Relógio, a cada falta de página, a página apontada pelo ponteiro é examinada primeiro. Se o bit R for 1, a página foi usada durante o tick atual, por isso não é um candidato ideal para remover. O bit R é então ajustado para 0, o ponteiro avança para a próxima página, e o algoritmo é repetido para essa página:

2084 1 2032 1 2084 1 1620 0 2032 1 2003 1 2003 1 2020 1 2014 0 1213 0 R bit

Algoritmo de substituição WSClock

Se a página apontada tiver R = 0, e se a idade for maior que τ e a página estiver limpa, ela não estará no conjunto de trabalho e existirá uma cópia válida no disco. A página será requisitada a e a nova página será armazenada ali. Se a página estiver suja, ela não poderá ser solicitada imediatamente, pois nenhuma cópia válida está presente no disco. Assim o ponteiro é avançado e o algoritmo continua com a próxima página.

Sumário

Algorithm	Comment		
Optimal	Not implementable, but useful as a benchmark		
NRU (Not Recently Used)	Very crude approximation of LRU		
FIFO (First-In, First-Out)	Might throw out important pages		
Second chance	Big improvement over FIFO		
Clock	Realistic		
LRU (Least Recently Used)	Excellent, but difficult to implement exactly		
NFU (Not Frequently Used)	Fairly crude approximation to LRU		
Aging	Efficient algorithm that approximates LRU well		
Working set	Somewhat expensive to implement		
WSClock	Good efficient algorithm		

Referências bibliográficas

TANENBAUM, Andrew S. **Sistemas operacionais modernos**. 3. ed. São Paulo: Pearson, 2013. 653 p.