Feuille d'exercices nº 12 : calcul matriciel et systèmes linéaires

Exercice 1. Calculer les produits de matrices $A \times B$ et $B \times A$ dans les cas suivants :

1.
$$A = \begin{pmatrix} 1 & 5 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 1 & 2 \end{pmatrix}$.

2. $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 2. On considère les deux matrices suivantes :

$$A = \begin{pmatrix} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} \lambda & a & b & c \\ 0 & \lambda & d & e \\ 0 & 0 & \lambda & f \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

- 1. Déterminer A^n pour tout $n \in \mathbb{N}$.
- 2. En déduire B^n pour $n \in \mathbb{N}$.

Exercice 3. Soit $J_n \in \mathcal{M}_n(\mathbb{C})$ dont tous les coefficients valent 1.

- 1. Calculer J_n^2 , J_n^3 en fonction de J_n .
- 2. Calculer J_n^p pour $p \in \mathbb{N}^*$.

Exercice 4. Calculer les puissances des matrices suivantes :

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Exercice 5. Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
.

- 1. Déterminer une relation entre A^2 , A et I_3 .
- 2. En déduire qu'il existe deux suites (a_n) et (b_n) telles que pour tout $n \in \mathbb{N}$, $A^n = a_n A + b_n I_3$.
- 3. Expliciter (a_n) et (b_n) puis A^n pour tout $n \in \mathbb{N}$.

Exercice 6. On considère la matrice $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Déterminer toutes les matrices B dans $\mathcal{M}_3(\mathbb{R})$ telles que $AB = 0_3$.
- 2. Déterminer toutes les matrices C dans $\mathcal{M}_3(\mathbb{R})$ telles que $AC = CA = 0_3$.

Exercice 7. Déterminer toutes les matrices qui commutent avec chacune des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \qquad B = I_n, \qquad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 8. Soit $A = (a_{ij})_{i,j} \in \mathcal{M}_n(\mathbb{K})$.

- 1. Calculer AE_{ij} et $E_{ij}A$ pour $(i,j) \in [1,n]^2$.
- 2. Montrer que A commute avec toute matrice $M \in \mathcal{M}_n(\mathbb{K})$ si et seulement si A est une matrice scalaire.

Exercice 9. Soit $A = \begin{pmatrix} x & y & z & t \\ -y & x & -t & z \\ -z & t & x & -y \\ -t & -z & y & x \end{pmatrix} \in \mathcal{M}_4(\mathbb{C})$. Calculer AA^T , en déduire à quelle condition A

est inversible et donner alors son inverse. Quelle condition obtient-on si $A \in \mathcal{M}_4(\mathbb{R})$?

Exercice 10. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que il existe $p \in \mathbb{N}^*$, telle que : $A^p = 0_n$.

- 1. Montrer que A n'est pas inversible.
- 2. Calculer $(I_n A)(I_n + A + A^2 + ... + A^{p-1})$.
- 3. En déduire que $I_n A$ est inversible. Quel est son inverse?

Exercice 11. Inverser les matrices suivantes :

Exercice 12. On considère les matrices
$$A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$.

- 1. Montrer que P est inversible et déterminer son inverse.
- 2. Calculer $D = P^{-1}AP$. Montrer que D est inversible.
- 3. Exprimer A en fonction de P et D. Sans calcul, est-ce que A est inversible? Exprimer A^{-1} en fonction de P et D.
- 4. Calculer D^n et exprimer A^n en fonction de D et P.

Exercice 13. Pour
$$\theta \in \mathbb{R}$$
 on note $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ et $S_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$.

- 1. Calculer, pour $\theta \in \mathbb{R}$, la trace et le déterminant des matrices R_{θ} et S_{θ} .
- 2. Soit $\theta, \alpha \in \mathbb{R}$. Calculer $R_{\theta}R_{\alpha}, S_{\theta}S_{\alpha}$ puis pour $n \in \mathbb{N} : R_{\theta}^{n}$ et S_{θ}^{n} .
- 3. Soit $\theta \in \mathbb{R}$. Calculer $R_{\theta}^T R_{\theta}$ et $S_{\theta}^T S_{\theta}$.
- 4. Soit $A \in \mathcal{M}_2(\mathbb{R})$. Montrer que $A^T A = I_2$ si et seulement si il existe $\theta \in \mathbb{R}$ tel que $A = R_\theta$ ou $A = S_\theta$.
- 5. Voyez-vous un lien entre les coordonnées polaires et les matrices R_{θ} ?

Pour s'entrainer

Exercice 14. Déterminer le rang des matrices suivantes, en discutant suivant la valeur de α .

$$A = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 4 & 3 & 6 & 2 \\ -1 & -1 & 4 & 5 & 2 \\ 3 & 3 & 7 & 11 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{pmatrix}$$

Exercice 15. Soit
$$C = \begin{pmatrix} -2 & 1 & 1 \\ 6 & -2 & -4 \\ -4 & 1 & 3 \end{pmatrix}$$
.

- 1. Montrer que : $C^3 = 6C C^2$.
- 2. Montrer qu'il existe deux suites (a_k) et (b_k) telles que $C^k = a_k C^2 + b_k C$ (pour $k \ge 1$).
- 3. Trouver des relations de récurrence pour a_k et b_k et expliciter ces deux suites.
- 4. En déduire l'expression de C^k . Reste-t-elle valable pour k=0?

Exercice 16. Déterminer les matrices qui commutent avec toutes les matrices diagonales de $\mathcal{M}_n(\mathbb{R})$. Déterminer les matrices qui commutent avec toutes les matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

Exercice 17.

- 1. Déterminer le produit de deux matrices diagonales et les puissances d'une matrice diagonale. A quelle condition une matrice diagonale est-elle inversible? Donner alors son inverse.
- 2. Quelle est la diagonale du produit de deux matrices triangulaires supérieures ou d'une puissance d'une matrice triangulaire supérieure ?

Que se passe-t-il pour des matrices triangulaires inférieures?

3. A quelle condition une matrice triangulaire est-elle inversible? Que peut-on alors dire de son inverse? (est-elle triangulaire, et si oui que peut-on dire de sa diagonale?)

Exercice 18. Soit T une matrice triangulaire d'ordre n dont les termes diagonaux sont nuls. Montrer que $T^n = 0$.

Exercice 19. Soit
$$M = \begin{pmatrix} 2a-1 & a & 2a-1 \\ a^2+a-2 & a^2-1 & a-1 \\ a^2+a-1 & a^2+a-1 & a \end{pmatrix}$$
.

- 1. Etudier le rang de la matrice M suivant les valeurs de a.
- 2. Pour quelles valeurs de a, la matrice M est-elle inversible? Calculer M^{-1} dans le cas a=2.

Exercice 20. Calculer les produits matriciels suivants :

1.
$$(\alpha \quad \beta) \begin{pmatrix} u \\ v \end{pmatrix}$$
 et $\begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} \alpha \quad \beta \end{pmatrix}$.

2.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 et $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

3.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
 et $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Exercice 21. Soit
$$A = \begin{pmatrix} 0 & 1 & -\sin x \\ -1 & 0 & \cos x \\ -\sin x & \cos x & 0 \end{pmatrix}$$
 où $x \in \mathbb{R}$.

Calculer A^3 puis les puissances de $I_3 + A$.

Exercice 22. En considérant $f: \begin{cases} \mathbb{R}_n[X] \to \mathbb{R}_n[X] \\ P(X) \mapsto P(X+1) \end{cases}$ inverser la matrice $A = (a_{i,j}) \in \mathcal{M}_{n+1}(\mathbb{K})$ où $a_{i,j} = \begin{cases} 0 \text{ si } i > j \\ \binom{j-1}{i-1} \text{ sinon} \end{cases}$

Exercice 23. Soit $A = (a_{k,l}) \in \mathcal{M}_n(\mathbb{C})$ où $a_{k,l} = \omega^{(k-1)(l-1)}$ avec $\omega = e^{\frac{2i\pi}{n}}$. Calculer $A\overline{A}$ où $\overline{A} = (\overline{a_{k,l}})$ et en déduire A^{-1} .

Exercice 24. On note $S_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}) \mid A = A^T\}$ l'espace des matrices symétriques à coefficients dans \mathbb{K} .

- 1. Vérifier que $0 \in \mathcal{S}_n(\mathbb{K})$ et que si $A, B \in \mathcal{S}_n(\mathbb{K})$ et $\lambda, \mu \in \mathbb{K}$ alors $\lambda A + \mu B \in \mathcal{S}_n(\mathbb{K})$.
- 2. Soit $A, B \in \mathcal{S}_n(\mathbb{K})$. A quelle condition a-t-on $AB \in \mathcal{S}_n(\mathbb{K})$? Les puissances de A sont-elles des matrices symétriques?
- 3. Soit $A \in \mathcal{S}_n(\mathbb{K}) \cap GL_n(\mathbb{K})$. A^{-1} est-elle symétrique?

Exercice 25. Discuter et résoudre les systèmes linéaires suivants :

$$\begin{cases} 3x - y + z &= a \\ x + y - z &= b \\ -x + 2y + z &= c \end{cases} \begin{cases} 3x - 5y + 2z + 4t &= a \\ 7x - 4y + z + 3t &= b \\ 5x + 7y - 4z - 6t &= c \end{cases} \begin{cases} 2x - y + z &= a \\ -x + 3y - 5z &= b \\ 8x - 9y + 13z &= c \end{cases}$$

Exercice 26. Résoudre les systèmes linéaires suivants.

1.
$$\begin{cases} (m+2)x + y = m \\ (m-10)x + (m-4)y = -3m \end{cases}$$
 où $m \in \mathbb{R}$. Interpréter géométriquement.

$$2. \begin{cases} \frac{1}{x-1} + \frac{2}{3-y} &= \frac{-1}{2} \\ \frac{5}{1-x} - \frac{1}{3-y} &= -2 \end{cases}$$

3.
$$\begin{cases} \cos(\theta)x - \sin(\theta)y = u \\ \sin(\theta)x + \cos(\theta)y = v \end{cases}$$

4.
$$\begin{cases} ax + y + z &= 1 \\ x + ay + z &= 1 \\ (2a + 1)x + 3y + (a + 2)z &= 3 \end{cases}$$

5.
$$\begin{cases} x + 2y + az = 1 \\ 3x + 4y + 2z = a \\ 2x + 3y - z = 1 \end{cases}$$

6.
$$\begin{cases} x+y+4z+4t = a \\ 3x+y-4z+6t = 0 \\ x-4z+t = b \end{cases}$$

7.
$$\begin{cases} 2y + 2z & = p \\ -2x + z & = q \\ -2x - y & = r \\ x - 2y + 2z & = s \end{cases}$$

où
$$a, p, q, r, s \in \mathbb{R}$$
.

8.
$$\begin{cases} ax + by + z = 1 \\ x + aby + z = b \\ x + by + az = 1 \end{cases}$$

9.
$$\begin{cases} x - y + 2z + 3t + w = 3\\ x + y + 2z + 7t + 3w = 19\\ -x + 4y - 5z + 12t - 4w = 33\\ 2x - 4y + 5z + t = -12\\ 4x - 3y + 4z + 11t + 9w = 15 \end{cases}$$

10.
$$\begin{cases} 2x - y + 3z = 1 \\ x - y + z = 2 \\ x - 2y + 4z = 1 \end{cases}$$