Logică matematică și computațională

Examen

Partea I. Probleme cu rezolvare clasică

(P1) [1 punct] Fie LP logica propozițională, \mathcal{E} o multime de evaluări și

$$\Gamma = \{ \psi \in Form \mid e \vDash \psi \text{ pentru orice } e \in \mathcal{E} \}.$$

Presupunem că \mathcal{E} are cel puțin două elemente. Demonstrați că există o formulă φ cu proprietatea că $\varphi \notin \Gamma$ și $\neg \varphi \notin \Gamma$.

Demonstrație: Fie e_1, e_2 două evaluări distincte din \mathcal{E} . Atunci există $v \in V$ astfel încât $e_1(v) \neq e_2(v)$. Avem două cazuri:

- (i) $e_1(v) = 0$ și $e_2(v) = 1$, deci $e_2^+(\neg v) = 0$. Deoarece $e \not\vDash v$, avem că $v \notin \Gamma$. Deoarece $e_2 \not\vDash \neg v$, avem că $\neg v \notin \Gamma$.
- (ii) $e_1(v) = 1$ și $e_2(v) = 0$. Similar.

(P2) [1 punct] Fie LP logica propozițională și $\varphi, \psi \in Form$. Demonstrați sintactic că:

$$\vdash \varphi \land \psi \leftrightarrow \psi \land \varphi.$$

Demonstrație: Avem:

 $\{\psi,\varphi\}\vdash\psi\wedge\varphi$ (1)Propoziția 1.68, (48) $\{\varphi,\psi\} \vdash \psi \land \varphi$ (2)deoarece $\{\psi, \varphi\} = \{\varphi, \psi\}$ (3) $\{\varphi \wedge \psi\} \vdash \psi \wedge \varphi$ Propoziția 1.68, (49) și (2) (4) $\vdash \varphi \land \psi \rightarrow \psi \land \varphi$ Teorema deducției: (3) (5) $\vdash \psi \land \varphi \rightarrow \varphi \land \psi$ se demonstrează similar (6) $\{\varphi \land \psi \to \psi \land \varphi, \psi \land \varphi \to \varphi \land \psi\} \vdash \varphi \land \psi \leftrightarrow \psi \land \varphi$ Propoziția 1.68, (48) $(7) \vdash (\varphi \land \psi \to \psi \land \varphi) \to ((\psi \land \varphi \to \varphi \land \psi) \to (\varphi \land \psi \leftrightarrow \psi \land \varphi))$ Teorema deducției: (6)

 $(8) \vdash (\psi \land \varphi \to \varphi \land \psi) \to (\varphi \land \psi \leftrightarrow \psi \land \varphi)$

(9) $\vdash \varphi \land \psi \leftrightarrow \psi \land \varphi$

(MP): (4), (7)(MP): (5), (8).

- (P3) [1 punct] Fie \mathcal{L} un limbaj de ordinul întâi și Γ o mulțime de enunțuri ale lui \mathcal{L} . Demonstrați următoarele:
 - (i) $Mod(\Gamma) = Mod(Th(\Gamma))$.
 - (ii) $Th(\Gamma)$ este o \mathcal{L} -teorie.
- (iii) Fie T o \mathcal{L} -teorie astfel încât $\Gamma \subseteq T$. Atunci $Th(\Gamma) \subseteq T$.

Demonstraţie:

- (i) "\(\text{"}\) "Pentru orice $\varphi \in \Gamma$, avem că $\Gamma \vDash \varphi$, deci $\varphi \in Th(\Gamma)$. Aşadar, $\Gamma \subseteq Th(\Gamma)$. Aplicăm Lema 2.34.(ii).
 "\(\text{"}\) "Fie $\mathcal{A} \in Mod(\Gamma)$ şi $\varphi \in Th(\Gamma)$ arbitrar. Avem că $\mathcal{A} \vDash \Gamma$ şi $\Gamma \vDash \varphi$, deci $\mathcal{A} \vDash \varphi$. Aşadar, $\mathcal{A} \in Mod(Th(\Gamma))$.
- (ii) Demonstrăm că $Th(\Gamma)$ este o \mathcal{L} -teorie. Pentru orice enunț φ , avem că

$$Th(\Gamma) \vDash \varphi \iff Mod(Th(\Gamma)) \subseteq Mod(\varphi) \iff Mod(\Gamma) \subseteq Mod(\varphi) \text{ (conform (i))}$$

 $\iff \Gamma \vDash \varphi \iff \varphi \in Th(\Gamma).$

- (iii) Fie T o \mathcal{L} -teorie care conţine Γ şi $\varphi \in Th(\Gamma)$. Din $Mod(\Gamma) \subseteq Mod(\varphi)$ şi $Mod(T) \subseteq Mod(\Gamma)$ rezultă că $Mod(T) \subseteq Mod(\varphi)$, deci $T \vDash \varphi$. Deoarece T este \mathcal{L} -teorie, obţinem că $\varphi \in T$. Aşadar, $Th(\Gamma) \subseteq T$.
- (P4) [1 punct] Fie \mathcal{L} un limbaj de ordinul întâi și și Γ o mulțime de enunțuri ale lui \mathcal{L} cu proprietatea că
 - (*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$.

Notăm cu \mathcal{M} clasa modelelor finite ale lui Γ . Demonstrați că \mathcal{M} nu este axiomatizabilă.

Demonstrație: Presupunem prin reducere la absurd că \mathcal{M} este axiomatizabilă. Aşadar, există $\Delta \subseteq Sen_{\mathcal{L}}$ astfel încât

(**) pentru orice \mathcal{L} -structură $\mathcal{A}, \quad \mathcal{A} \models \Delta \iff \mathcal{A} \in \mathcal{M}$.

Fie

$$\Sigma := \Gamma \cup \Delta \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Σ este satisfiabilă folosind Teorema de compacitate. Fie Σ_0 o submulțime finită a lui Σ . Atunci

$$\Sigma_0 \subseteq \Gamma \cup \Delta \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie $m := \max\{n_1, \ldots, n_k\}$. Conform (*), Γ are un model finit \mathcal{A} astfel încât $|A| \geq m$. Deoarece $\mathcal{A} \in \mathcal{M}$, avem conform (**), că $\mathcal{A} \models \Delta$. De asemenea, $\mathcal{A} \models \exists^{\geq n_i}$ pentru orice $i = 1, \ldots, k$. Prin urmare, $\mathcal{A} \models \Gamma \cup \Delta \cup \{\exists^{\geq n_1}, \ldots, \exists^{\geq n_k}\}$, de unde rezultă că $\mathcal{A} \models \Sigma_0$. Aşadar, Σ_0 este satisfiabilă.

Aplicând Teorema de compacitate, rezultă că Σ are un model \mathcal{B} .

Deoarece $\mathcal{B} \models \Delta$, avem, conform (**), că $\mathcal{B} \in \mathcal{M}$. În particular, \mathcal{B} este finită.

Deoarece $\mathcal{B} \models \{\exists^{\geq n} \mid n \geq 1\}$, rezultă că \mathcal{B} este infinită.

Am obținut o contradicție.