杭州电子科技大学学生考试卷期末(B)卷

考试课程		概率论与数理统计			考试日期		2009 年 月 日		成绩	ŧ	
课程	号	A0702140	教	师号			任课教师	萨姓名			
考生姓	名	参考答案	学号	(8位)			年级	·	专业	_	
		三	四	五.	六	七	八	t	L	÷	

- 一、选择题,将正确答案填在括号内(每小题3分,共18分)
- 1. 对于任意两事件 A, B, P(A-B) 等于 (

A.
$$P(A) - P(B)$$

B.
$$P(A) - P(B) + P(AB)$$

C.
$$P(A) - P(AB)$$

C.
$$P(A) - P(AB)$$
 D. $P(A) + P(\overline{B}) - P(A\overline{B})$

2. 设随机事件 A , B 满足 P(B) = P(B|A) , 则下列结论中正确的是

A.
$$P(\overline{A}\overline{B}) = P(\overline{A})P(\overline{B})$$

A.
$$P(A \cup B) = P(A) + P(B)$$

B. $P(A \cup B) = P(A) + P(B)$

C.
$$A, B$$
互不相容

$$D. P(A) = P(B|A)$$

3. 随机变量 X的概率密度为 $f(x) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(x+3)^2}{4}}, x \in (-\infty, +\infty)$,则 $Y = (-\infty, +\infty)$

A.
$$\frac{X+3}{2}$$

B.
$$\frac{X+3}{\sqrt{2}}$$

C.
$$\frac{X-3}{2}$$

D.
$$\frac{X-3}{\sqrt{2}}$$

4. 设随机变量 X和 Y相互独立,其分布函数分别为 $F_{X}(x)$ 与 $F_{Y}(y)$,则随机变量

 $Z = \max(X, Y)$ 的分布函数 $F_Z(z)$ 等于

A.
$$\max\{F_{X}(z), F_{Y}(z)\}$$

A.
$$\max\{F_X(z), F_Y(z)\}$$
 B. $\frac{1}{2}[F_X(z) + F_Y(z)]$

C.
$$F_{\nu}(z) \cdot F_{\nu}(z)$$

D.
$$F_X(z) + F_Y(z) - F_X(z) \cdot F_Y(z)$$

5. 设 $X \sim N(0,16)$, $Y \sim N(0,9)$, X和Y相互独立, X_1, X_2, \dots, X_9 和 Y_1, Y_2, \dots, Y_{16} 分

别为X与Y的一个简单随机样本,则 $\frac{{X_1}^2 + {X_2}^2 + \dots + {X_9}^2}{{Y_1}^2 + {Y_2}^2 + \dots + {Y_8}^2}$ 服从的分布为(

A. F(16,16);

B. F(16.9)

C. F(9.9):

- D. F(9.16)
- 6. 设 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, X_1, X_2, \cdots, X_n 为来自总体X的一个样本,则 μ 的 置信度为95%的置信区间为(
 - A. $(\overline{X} \frac{\sigma}{\sqrt{n}} Z_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.025});$ B. $(\overline{X} \frac{\sigma}{\sqrt{n}} t_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.025})$

 - C. $(\overline{X} \frac{\sigma}{\sqrt{n}} Z_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.05})$ D. $(\overline{X} \frac{\sigma}{\sqrt{n}} t_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.05})$
- 二、填空题(每小题3分,共15分)
- 1. 将 3 个相同的球放入 4 个盒子中, 假设每个盒子能容纳的球不限, 而且各种不同的放法 的出现是等可能的,则3个盒子各放一个球的概率是.
- 2. 设 $P(A \cup B) = 0.8$, P(B) = 0.4,则 $P(A|\overline{B}) =$ ______.

- 5. 设随机变量 $X \sim U(-1,2)$,则由切比雪夫不等式 $P\{X \frac{1}{2} | \le 1\} \ge$ ______.
- 三、(本题 5 分) 将两信息分别编码为 A和 B传递出去,接收站收到时, A被误作 B的概 率为0.04,而B被误作A的概率为0.03,信息A与信息B传递的频繁程度为2:1,若 接收站收到的信息是A,求原发信息是A的概率.

四. (本题 10 分) 设随机变量 X的密度函数为 $f(x) = \begin{cases} ax, 0 < x < 1 \\ 0, else \end{cases}$

- (1) 求常数 a;
- (2) 求X的分布函数F(x);
- (3) 方差 D(X).

五. (本题 18分)设随机变量(X,Y)的概率分布律为:

X	0	1	2
-1	0.3	0.1	0.2
1	0.1	0.3	0

求: (1) 关于 X, Y的边缘分布律; 并问 X与 Y是否相互独立?

(2) 相关系数 ρ_{XY} ,并问 X与 Y是否相关?

六. (本题 6 分) 某运输公司有 500 辆汽车参加保险,在一年里汽车出事故的概率为 0.006,参加保险的汽车每年交 800 元的保险费,若出事故由保险公司最多赔偿 50000 元,利用中心极限定理计算:保险公司一年中赚钱不小于 200000 元的概率.

七. (本题 12 分) 设总体 X的密度函数为 $f(x) = \frac{1}{2a}e^{\frac{|x|}{a}}, a > 0, -\infty < x < +\infty$,

 X_1, X_2, \cdots, X_n 是取自总体 X的一个样本, x_1, x_2, \cdots, x_n 为样本值. 试求 a的最大似然估计量; 并问所得的估计量是否为 a的无偏估计.

八. (本题 6 分) 某产品的一项质量指标 $X\sim N(\mu,\sigma^2)$,现从一批产品中随机地抽取 5 件,测得样本方差 $s^2=0.0078$,求方差 σ^2 的置信水平为 95%的置信区间.

$$(\chi_{0.025}^2(4) = 11.143, \chi_{0.975}^2(5) = 0.831, \chi_{0.025}^2(5) = 12.833, \chi_{0.975}^2(4) = 0.484,$$
 $\chi_{0.95}^2(4) = 0.711)$

九. (本题 6 分) 从某种试验物中取来 25 个样品 X_1, X_2, \cdots, X_{25} , 测量其发热量. 若发 热量服从正态分布,且测得样本均值与均方差为 $\overline{X}=1195$, S=323. 试在显著性 水平 0.05 下确定发热量的期望值是否为 1210.

$$(t_{0.025}(24) = 2.0639, t_{0.025}(25) = 2.0595)$$

十. (本题 4 分) 设随机变量 (X,Y) 在矩形 $G = \{(x,y) | 0 < x < 2, 0 < y < 1\}$ 上服从均匀分

布,试证: 随机变量
$$Z = X \cdot Y$$
的概率密度为 $f_Z(z) = \begin{cases} \frac{1}{2} (\ln 2 - \ln z), 0 < z < 2 \\ 0, 其它 \end{cases}$