

Computational Neurobiology

Lecture 4: Neuron models 2

Dmitriy Bozhko

Syllabus

- Modeling channels
- Conductance-based models
- The cable equation
- Multi-compartment models

Modeling channels

- Motivation
- Types of channels and their properties
- Probabilistic description

Motivation

- Hodgkin-Huxley formalism describes voltage-dependent conductances arising from a large number of channels
- With the advent of single-channel studies, microscopic descriptions of the transitions between the conformational states of channel molecules have been developed
- Single-channel models have less limits than voltage-dependent only Hodgkin-Huxley formalism
- We can determine the function with detailed channel models

Types of channels

- Passive/Active classification (pumps, leakage)
- Gating classification (voltage-gated, ligand-gated, lipid-gated, etc)
- Ion types classification (chloride, potassium, sodium, calcium, proton, non-selective)
- Cellular localization classification (plasma membrane, intracellular: endoplasmic, mitochondria)
- Other (e.g. by the duration of their response to stimuli)

Ion channels properties

- High selectivity
- Controlled permeability
- Inactivation
- Blocking
- Plasticity

Channel state

- Models of single channels are based on state diagrams that indicate the possible conformational states that the channel can assume
- Typically, one of the states in the diagram is designated as open and ionconducting, while the other states are nonconducting
- The current conducted by the channel is written as $\bar{g}P(V-E)$, where E is the reversal potential, \bar{g} is the single-channel open conductance, and P is 1 for the open state and 0 otherwise
- If the model is updated in short time steps of duration Δt , the probability that the channel makes a given transition during an update interval is the transition rate times Δt

A model of the delayed-rectifier K^+ channel

Probabilistic description

- We denote the probability that a channel is in state k by p_k , with $k=1,2,\ldots,5$
- The rate of change for a given p_k is equal to the probability per unit time of entry into state k from other states minus the rate for leaving state k
- The entry probability per unit time is the product of the appropriate transition rate times the probability that the state making the transition is occupied
- The probability per unit time for leaving is p_k times the sum of all the rates for possible transitions out of the state

Equations for the state probabilities

Let
$$\dot{p} = \frac{dp}{dt}$$

$$\dot{p_1} = \beta_n p_2 - 4\alpha_n p_1$$

$$\dot{p_2} = 4\alpha_n p_1 + 2\beta_n p_3 - (\beta_n + 3\alpha_n) p_2$$

$$\dot{p}_3 = 3\alpha_n p_2 + 3\beta_n p_4 - (2\beta_n + 2\alpha_n)p_3$$

$$\dot{p}_4 = 2\alpha_n p_3 + 4\beta_n p_5 - (3\beta_n + \alpha_n) p_4$$

$$\dot{p_5} = \alpha_n p_4 - 4\beta_n p_5$$

A model of the fast Na^+ channel

Conductance-based models

- Levels of neuron modeling
- The Connor-Stevens model
- Postinhibitory rebound and bursting

Levels of neuron modeling

- In modeling neurons, we must deal with two types of complexity:
 the intricate interplay of active conductances and the elaborate morphology
- Choosing the most appropriate level of modeling requires a careful assessment of the experimental information available and a clear understanding of the research goals
- Oversimplified models can give misleading results, excessively detailed models can obscure interesting results beneath inessential and unconstrained complexity.

Gating functions

All the gating variables are determined by equations of the form:

$$au_z(V) \frac{dz}{dt} = z_\infty(V) - z$$
, where

z - a generic gating variable, the functions $\tau_z(V)$ and $z_\infty(V)$ are determined from experimental data

For some conductances, these are written in terms of the opening and closing rates $\alpha_z(V)$ and $\beta_z(V)$ as

$$\tau_z(V) = \frac{1}{\alpha_z(V) + \beta_z(V)}$$

$$z_{\infty}(V) = \frac{\alpha_z(V)}{\alpha_z(V) + \beta_z(V)}$$

The Connor-Stevens model

- Provides an alternative description of action-potential generation
- Contains fast Na^+ , delayed rectifier K^+ , and leakage conductances
- Contains an extra K^+ conductance, called the A-current, that is transient

The membrane current:

$$i_m = \bar{g}_L(V_m - E_L) + \bar{g}_{Na}m^3h(V_m - E_{Na}) + \bar{g}_Kn^4(V_m - E_K) + \bar{g}_Aa^3b(V_m - E_A)$$

Firing of action potentials in the Connor-Stevens model

Ca^{2+} role in transmission

Neurotransmission scheme in chemical synapse

Postinhibitory rebound and bursting

- Connor-Stevens model neuron can be extended by including a transient Ca^{2+} conductance
- Model (Huguenard and McCormick; 1992) based on data from thalamic relay cells
- Several different Ca^{2+} conductances (L, T, N and P types) are commonly expressed in neuronal membranes

The membrane current:

$$i_{CaT} = \bar{g}_{CaT} M^2 H (V_m - E_L)$$

A burst of action potentials due to rebound from hyperpolarization

Three activity modes of a model thalamic neuron

Periodic bursting in a model STG (stomatogastric ganglion) neuron

Kabal??? theory

- Motivation
- Dendrite as a cable
- Cable equation

Motivation

- ullet Single-compartment models describe the membrane potential over an entire neuron with a single variable V
- Membrane potentials can vary considerably over the surface of the cell membrane: long and narrow processes, or rapidly changing membrane potentials
- The attenuation and delay within a neuron are most severe when electrical signals travel down the long, narrow, cablelike structures of dendritic or axonal branches
- Dendritic and axonal cables are typically narrow enough that variations of the potential in the radial or axial directions are negligible compared to longitudinal variations

Pyramidal neurons example

CA1 pyramidal cell (A), CA3 pyramidal cell (B), and dentate gyrus granule cell (C). Elizabeth Gould, Catherine S Woolley DOI:10.1523/jneurosci.10-04-01286.1990

Simultaneous intracellular recordings from the soma and apical dendrite of cortical pyramidal neurons in slice preparations

Spatial discretization

$$R_{L} = r_{L} dx$$
$$C = c dx$$

$$I_{ion} = i_{ion} dx$$

 $I^{ext} = i^{ext} dx$

Dendrites as a cable

$$I(t,x) = I_c(t,x) + \sum_{ions} I_{ion}(t,x) = C \frac{dV(t,x)}{dt} + \sum_{ions} I_{ion}(t,x) - \text{current}$$

$$I(t,x) = I^{ext}(t,x) + I_l(t,x) - I_l(t,x+dx) = I^{ext}(t,x) + \frac{V(t,x-dx) - V(t,x)}{R_L},$$

$$-\frac{V(t,x)-V(t,x+dx)}{R_L}$$

where

 I^{ext} - external current, I_l - longtitudal current, R_L - longtitudal resistance, V - membrane potential

$$I^{ext}(t,x) + \frac{V(t,x - dx) - 2V(t,x) + V(t,x + dx)}{R_L} = C\frac{dV(t,x)}{dt} + \sum_{ions} I_{ion}(t,x)$$

Cable equation

$$I^{ext}(t,x) + \frac{V(t,x - dx) - 2V(t,x) + V(t,x + dx)}{R_L} = C\frac{dV(t,x)}{dt} + \sum_{ions} I_{ion}(t,x)$$

$$I^{ext}(t,x) + \frac{V(t,x-dx)-2V(t,x)+V(t,x+dx)}{r_L dx} = c \cdot dx \frac{dV(t,x)}{dt} +$$

$$\sum_{ions} i_{ion}(t, x) dx$$

Lets take $\lim_{dx\to 0}$

$$\frac{\delta^2 V}{\delta x^2} = c r_L \frac{\delta V}{\delta t} + r_L \sum_{ions} i_{ion} - r_L i^{ext} - \text{cable equation}$$

Multi-compartment models

- Motivation and main principle
- Neuron structure approximation
- Multi-compartment models
- Unmyelinated/myelinated axon

Motivation and main principle

- The cable equation can be solved analytically only in relatively simple cases
- When the complexities of real membrane conductances are included, the membrane potential must be computed numerically
- Split the modeled neuron into separate compartments, and approximating the continuous membrane potential V(x,t) by a discrete set of values
- Each compartment is small enough so that there is negligible variation of the membrane potential across it

Neuron structure approximation

A sequence of approximations of the structure of a neuron. The neuron is represented by a variable number of discrete compartments, each representing a region that is described by a single membrane potential.

Membrane potential in multi-compartment models

For a nonbranching cable, each compartment is coupled to two neighbors and the equations for the membrane potentials of the compartments are

$$c_m rac{dV_\mu}{dt} = -i_m^\mu + rac{I_e^\mu}{A_\mu} + g_{\mu,\mu+1}(V_{\mu+1} - V_\mu) + g_{\mu,\mu-1}(V_{\mu-1} - V_\mu)$$
, where

 V_{μ} - membrane potential of compartment μ

 I_e^μ - total electrode current

 A_{μ} - compartment surface area

 $g_{\mu,\mu'}$ determines the resistive coupling from neighboring compartment μ' to compartment μ is determined by computing the current due to Ohm's law.

Single term for each end of a cable. Three terms for branches.

Multi-compartment models

A multi-compartment model of a neuron. The expanded region shows three compartments at a branch point where a single cable splits into two.

Action-potential propagation

Action-potential propagation along an unmyelinated axon

Action-potential propagation along a myelinated axon

The capacitance of a myelinated cylinder of length L:

$$\frac{1}{C_m} = \frac{1}{c_m 2\pi d_m L} \int_{a_1}^{a_2} \frac{da}{a} = \frac{\ln(a_1/a_2)}{c_m 2\pi d_m L}$$

Hay et al. (2011) model

Morphological reconstruction

- Branching points
- 200 compartments
- Spatial distrinution of ion currents

Sodium currents (2 types)

- $I_{Na,transient}$ HH-type (inactivating)
- I_{NaP} persistent (non-inactivating)

Calcium currents (2 types and calcium pump)

Potassium currents (3 types, includes I_M)

Unspecific current