4.9 Antiderivalves Definbon A function F is an antiderivative of f or interval I if F = f $\frac{1}{2}(F) = F' = F$ $\frac{1}{2}(F) = F' = F$ g(F) = F' = f(F is the antiderivative of f) We f = 2x what is the antidemblie of f $\frac{d(x^2)}{dx} = 2x$ antidemblie of fso x is an autidenisable of 1x $\frac{d}{dx}(x^{2}+5) = \frac{2x}{x^{2}+5}$ is an antiderivable of 2x $\frac{d}{dx}(x^2-x) = \frac{1}{2x}$ $\frac{1}{x^2-2}$ is an antiderivalue of 2xSo $\times^2 + C$ is the antidemature of \times where C is a complet Theorem If F is an antiderivative of for I. Then the most general antiderivature of for I is F(x) + C (Cis a Constant) Practical application (guar) 5 = Distance (& function with respect to time t) Sind V = derivative of S

New Section 2 Page

fro 9 = Second derivative of S Here, we are give v, a the artislemative of v is S $\frac{d}{dl}(S) = V$ AFILE Examples Find the antiderwature of the following functions 3 d(SIM(X)) = (03(X) a) f(x) = S(x(x) (b) of ((03(x)) = - Sm(x) we see flent $\frac{d}{dx}\left(-(63(x)) = Sin(x)\right)$ - (08 (x) is an J (- (07 (x)) antiderivable of you will agree = - \frac{d}{d}((0)(x)) = - (-\langle (\chi)) $g\left(-(\omega(x)+1)\right) = Sm(x)$ = Sm(x) The general antiderwhele - (os (x) + ((c) is a constant) $(n \mid x)$ is an antidenvilve of $\frac{1}{x}$ $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$ (b) f(x) = \frac{1}{x} $\frac{\partial}{\partial x}(\ln \omega) = \frac{x}{x}$ on (0,00) o~ (-0,0) d(In(-x)) = 1 The general antidemative of & is In |x | + C $|w|\chi| = \begin{cases} |w(-x)| & \text{if } x < 0 \\ |w(x)| & \text{if } x > 0 \end{cases}$ fue the antidewate of 3 x example x = -5 |n(-1)| = |n(-1)| $\frac{d}{dx}\left(3|n|x|+c\right) = \frac{3}{x}$ =[~(5) 1 2 1 1 1 1 2 1

New Section 2 Page

Lunchon	Antidenvahul		an antiderivative of f
c f(x)	(FW)	/4 } -	
f&) + g(x)	F6) + G(x)		
$\frac{1}{\lambda}$	[n ×		Ande
e ^X	ex		
×	b w(p)		(bx) = bx ln(b)
(6364)	5 m (x)		$\frac{d}{dx}\left(\frac{b^{x}}{\ln(b)}\right)$
Sin(x)	- (eg (x)		= 1 d (bx)
See ¹ (X)	tan (x)		= 1 bx lutto)
Sel (x) tan(x)	(ser (x)		- 6×
J 1 - x	Sm-1cx)		typerbolic Sm (smh(x))
1 1+x^	tan-1(x)		Hyperbother cos ((osh(x))
(08 h(x)	Smh(x)		
Sm (4)	(03 h (x)		

Exercine

Find the antiderivable 9 Such that $g'(x) = 4 \text{ Sm}(x) + 2x^5 - 5x$ $= 4 \text{ Sim}(x) + 2x^5 - 5x$ \times

New Section 2 Page 4

$$2 \frac{d}{dx} \left(\frac{x^5}{5} \right) = 2 x^4$$

$$\frac{d}{dx}\left(\frac{x^{2}}{y_{2}}\right) = \frac{1}{x}$$

$$\frac{d}{dx}\left(\frac{x^{2}}{y_{1}}\right) = x^{4}$$

The antideridable

$$9 = -4 \cos(x) + 2 \times \frac{5}{5} - 2 \sqrt{x} + C$$

from the table

$$2 \frac{d}{dx} \left(\frac{x^{5}}{5} \right) = 2 \times 4$$

$$\times \frac{1}{12} = 1 \times 4$$

2 =x1. 1

$$\frac{1}{2}\left(\frac{x^{+1}}{x^{+1}}\right) = x^{+1}$$

$$= \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}} = \frac$$

$$\frac{d}{dx}\left(\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\right) = x^{-\frac{1}{2}}$$

$$\frac{1}{4}\left(\frac{x^{1/2}}{y_2}\right) = x^{-1/2}$$