VGK SVAR Models

Contents

Setup	2
Load packages & functions	2
Load Data	3
Some SVAR estimations	3
Dummy variable	3
Number of Post	6
Tariff	9
Trade	12
China	15
Interaction number of post and tariff	17
Terms	20
First mandate	20
second mandate	23

Setup

Load packages & functions

```
rm(list=ls())
require(tinytex) #LaTeX
require(ggplot2) #plots
require(AEC) #JP-Renne functions
require(AER) #NW formula
require(forecast) #time series stuff
require(expm) #matrix exponents
require(here) #directory finder
require(stringr) # analysis of strings, important for the detection in tweets
require(dplyr) #data management
require(lubridate) #data dates management
require(zoo) #for lagging
require(jtools) #tables
require(huxtable) #tables
require(lmtest) #reg tests
require(vroom) #for loading data
require(data.table) #for data filtering
require(sysid) #for ARMA-X modeling
require(sandwhich) #regression errors
require(stargazer) #nice req tables
require(tidytext) #text mining
require(textstem) #lemmatization
require(quanteda) #tokenization
require(texreg) #arima tables
require(vars) #VAR models
require(xts) #time series objects
require(tseries) #includes adf test
require(quantmod)
require(TSA)
require(aTSA)
require(tibble)
require(FinTS)
require(kableExtra)
require(writexl)
require(purrr)
getwd()
#setwd("...") -> set wd at base repo folder
#load helper functions
source(here("helperfunctions/data loaders.R"))
source(here("helperfunctions/date_selector.R"))
source(here("helperfunctions/plotters.R"))
source(here("helperfunctions/quick_arma.R"))
source(here("helperfunctions/r.vol_calculators.R"))
source(here("helperfunctions/truths cleaning function.R"))
source(here("helperfunctions/armax_functions.R"))
source(here("helperfunctions/var_irf.R"))
```

Load Data

```
#load final dataset
source(here("helperfunctions/full_data.R"))

#select timeframe
Vdata = filter(data,between(timestamp, as.Date('2014-01-01'), as.Date('2025-05-07')))
```

Some SVAR estimations

Note that this is not an exhaustive list of our VAR estimations, you can find more by going on /modeling/VAR/VAR_SPY_TRUE or VAR_ASHR_TRUE or VAR_VGK_TRUE).

Dummy variable

Here we use a dummy variable which equal to one if Trump has made a post or 0 otherwise, taking into account the closed hour market posts.

```
y = cbind(Vdata$dummy, Vdata$VGK_vol)
colnames(y)[1:2] <- c("dummy", "vol")
est.VAR <- VAR(y,p=6)
mod_vol <- est.VAR$varresult$vol
texreg(mod_vol, digits = 6)</pre>
```

```
Omega <- var(residuals(est.VAR))
#make the B matrix
loss <- function(param){
    #Define the restriction
    B <- matrix(c(param[1], param[2], 0, param[3]), ncol = 2)

    #Make BB' approximatively equal to omega
    X <- Omega - B %*% t(B)

    #loss function
    loss <- sum(X^2)
    return(loss)
}

res.opt <- optim(c(1, 0, 1), loss, method = "BFGS")
B.hat <- matrix(c(res.opt$par[1], res.opt$par[2], 0, res.opt$par[3]), ncol = 2)

print(cbind(Omega,B.hat %*% t(B.hat)))</pre>
```

```
## dummy vol

## dummy 8.5228910167 1.809484e-04 8.522890588 1.808910e-04

## vol 0.0001809484 2.621563e-06 0.000180891 2.697374e-05
```

	Model 1		
dummy.l1	0.000002		
J	(0.000004)		
vol.l1	0.258482***		
	(0.007073)		
dummy.l2	-0.000006		
, and the second	(0.000004)		
vol.l2	0.021449**		
	(0.007302)		
dummy.l3	-0.000015***		
	(0.000004)		
vol.l3	0.028590***		
	(0.007297)		
dummy.l4	0.000005		
	(0.000004)		
vol.l4	0.036605^{***}		
	(0.007295)		
dummy.l5	-0.000016^{***}		
	(0.000004)		
vol.l5	0.032120^{***}		
	(0.007300)		
dummy.l6	-0.000010^{**}		
	(0.000004)		
vol.l6	0.057830^{***}		
	(0.007069)		
const	0.000267^{***}		
	(0.000018)		
\mathbb{R}^2	0.089824		
$Adj. R^2$	0.089277		
Num. obs.	19965		
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$			

Table 1: Statistical models

```
#irf creation
irf_res <- irf(est.VAR, impulse = "dummy", response = "vol",</pre>
                  bmat=b.hat, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf <- extract_varirf(irf_res)</pre>
#the plot
single_varirf %>%
  ggplot(aes(x=period, y=irf_dummy_vol, ymin=lower_dummy_vol, ymax=upper_dummy_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme_light() +
  ggtitle("IRF Dummy on Volatility")+
  ylab("")+
  xlab("") +
  theme_minimal()
```

IRF Dummy on Volatility


```
#does volatility Granger cause dummy mentions
grangertest(y[,c("vol","dummy")], order = 6)
```

```
#does dummy mentions Granger cause volatility
grangertest(y[,c("dummy", "vol")], order = 6)
```

Res.Df	Df	\mathbf{F}	$\Pr(>F)$
2e+04			
2e+04	-6	3.81	0.000846

Res.Df	Df	F	Pr(>F)
2e+04			
2e+04	-6	6.54	6.53 e-07

Number of Post

```
y2 = cbind(Vdata$N , Vdata$VGK_vol)
colnames(y2)[1:2] <- c("N", "vol")
est.VAR2 <- VAR(y2,p=6)
mod_vol2 <- est.VAR2$varresult$vol
texreg(mod_vol2, digits = 6)</pre>
```

```
Omega2 <- var(residuals(est.VAR2))</pre>
#make the B matrix
loss2 <- function(param2){</pre>
  #Define the restriction
  B2 \leftarrow matrix(c(param2[1], param2[2], 0, param2[3]), ncol = 2)
  #Make BB' approximatively equal to omega
  X2 <- Omega2 - B2 %*% t(B2)</pre>
  #loss function
  loss2 <- sum(X2^2)
  return(loss2)
res.opt2 \leftarrow optim(c(1, 0, 1), loss2, method = "BFGS")
B.hat2 \leftarrow matrix(c(res.opt2\$par[1], res.opt2\$par[2], 0, res.opt2\$par[3]), ncol = 2)
print(cbind(Omega2,B.hat2 %*% t(B.hat2)))
##
                               vol
       7.988066e+01 4.527081e-04 7.988066e+01 4.527033e-04
## vol 4.527081e-04 2.623291e-06 4.527033e-04 2.765553e-06
#irf creation
irf_res2 <- irf(est.VAR2, impulse = "N", response = "vol",</pre>
                   bmat=b.hat2, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf2 <- extract_varirf(irf_res2)</pre>
```

	Model 1		
N.l1	0.000001		
	(0.000001)		
vol.l1	0.257940^{***}		
	(0.007071)		
N.l2	-0.000002		
	(0.000001)		
vol.l2	0.021295^{**}		
	(0.007299)		
N.l3	-0.000004^{***}		
	(0.000001)		
vol.l3	0.028552***		
	(0.007296)		
N.l4	-0.000001		
	(0.000001)		
vol.l4	0.037417^{***}		
	(0.007295)		
N.15	-0.000004**		
	(0.000001)		
vol.l5	0.031707^{***}		
	(0.007299)		
N.16	-0.000003^*		
	(0.000001)		
vol.l6	0.057719^{***}		
	(0.007069)		
const	0.000257^{***}		
	(0.000016)		
\mathbb{R}^2	0.089224		
$Adj. R^2$	0.088676		
Num. obs.	19965		
*** ~ < 0.001, **~	< 0.01. *n < 0.05		

***p < 0.001; **p < 0.01; *p < 0.05

Table 2: Statistical models

```
#the plot
single_varirf2 %>%
    ggplot(aes(x=period, y=irf_n_vol, ymin=lower_n_vol, ymax=upper_n_vol)) +
    geom_hline(yintercept = 0, color="red") +
    geom_ribbon(fill="grey", alpha=0.2) +
    geom_line() +
    theme_light() +
    ggtitle("IRF Number of Posts on Volatility")+
    ylab("")+
    xlab("") +
    theme_minimal()
```

IRF Number of Posts on Volatility


```
#does volatility Granger cause N mentions
grangertest(y2[,c("vol","N")], order = 6)
```

Res.Df	Df	${f F}$	$\Pr(>F)$
2e+04			
2e+04	-6	3.33	0.00278

```
#does N mentions Granger cause volatility
grangertest(y2[,c("N", "vol")], order = 6)
```

Res.Df	Df	F	Pr(>F)
2e+04			
2e+04	-6	4.34	0.000217

Tariff

```
y3 = cbind(Vdata$tariff , Vdata$VGK_vol)
colnames(y3)[1:2] <- c("tariff", "vol")
est.VAR3 <- VAR(y3,p=6)
mod_vol3 <- est.VAR3$varresult$vol
texreg(mod_vol3, digits = 6)</pre>
```

```
Omega3 <- var(residuals(est.VAR3))</pre>
#make the B matrix
loss3 <- function(param3){</pre>
 #Define the restriction
 B3 <- matrix(c(param3[1], param3[2], 0, param3[3]), ncol = 2)
  #Make BB' approximatively equal to omega
 X3 <- Omega3 - B3 %*% t(B3)
  #loss function
 loss3 <- sum(X3^2)
 return(loss3)
}
res.opt3 \leftarrow optim(c(1, 0, 1), loss3, method = "BFGS")
B.hat3 <- matrix(c(res.opt3$par[1], res.opt3$par[2], 0, res.opt3$par[3]), ncol = 2)
print(cbind(Omega3,B.hat3 %*% t(B.hat3)))
##
                tariff
                                 vol
## tariff 1.435590e-01 7.070418e-06 1.435583e-01 7.305006e-06
          7.070418e-06 2.622257e-06 7.305006e-06 9.030517e-06
## vol
#irf creation
irf_res3 <- irf(est.VAR3, impulse = "tariff", response = "vol",</pre>
                  bmat=b.hat3, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf3 <- extract_varirf(irf_res3)</pre>
```

	Model 1
tariff.l1	0.000158***
	(0.000030)
vol.l1	0.257819^{***}
	(0.007068)
tariff.l2	0.000051
	(0.000030)
vol.l2	0.021335^{**}
	(0.007297)
tariff.l3	-0.000034
	(0.000030)
vol.l3	0.027037^{***}
	(0.007296)
tariff.l4	0.000043
	(0.000030)
vol.l4	0.036129^{***}
	(0.007298)
tariff.l5	-0.000004
	(0.000030)
vol.l5	0.031088***
	(0.007301)
tariff.l6	-0.000019
	(0.000030)
vol.l6	0.057889^{***}
	(0.007068)
const	0.000218^{***}
	(0.000013)
\mathbb{R}^2	0.089583
$Adj. R^2$	0.089036
Num. obs.	19965
*** 0.004 **	

***p < 0.001; **p < 0.01; *p < 0.05

Table 3: Statistical models

```
#the plot
single_varirf3 %>%
  ggplot(aes(x=period, y=irf_tariff_vol, ymin=lower_tariff_vol, ymax=upper_tariff_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme_light() +
  ggtitle("IRF Tariff on Volatility")+
  ylab("")+
  xlab("") +
  theme_minimal()
```

IRF Tariff on Volatility


```
#does volatility Granger cause tariff mentions
grangertest(y3[,c("vol","tariff")], order = 6)
```

Res.Df	\mathbf{Df}	\mathbf{F}	$\Pr(>F)$
2e+04			
2e+04	-6	5.95	3.19e-06

```
#does tariff mentions Granger cause volatility
grangertest(y3[,c("tariff", "vol")], order = 6)
```

Res.Df	Df	F	Pr(>F)
2e+04			
2e+04	-6	5.66	6.95 e-06

Trade

```
y4 = cbind(Vdata$trade , Vdata$VGK_vol)
colnames(y4)[1:2] <- c("trade", "vol")
est.VAR4 <- VAR(y4,p=6)
mod_vol4 <- est.VAR4$varresult$vol
texreg(mod_vol4, digits = 6)</pre>
```

```
Omega4 <- var(residuals(est.VAR4))</pre>
#make the B matrix
loss4 <- function(param4){</pre>
  #Define the restriction
 B4 <- matrix(c(param4[1], param4[2], 0, param4[3]), ncol = 2)
  #Make BB' approximatively equal to omega
 X4 <- Omega4 - B4 %*% t(B4)
  #loss function
 loss4 <- sum(X4^2)
 return(loss4)
}
res.opt4 \leftarrow optim(c(1, 0, 1), loss4, method = "BFGS")
B.hat4 \leftarrow matrix(c(res.opt4$par[1], res.opt4$par[2], 0, res.opt4$par[3]), ncol = 2)
print(cbind(Omega4,B.hat4 %*% t(B.hat4)))
##
                 trade
                                  Low
## trade 8.349087e-02 -1.622273e-06 8.349086e-02 1.083601e-07
       -1.622273e-06 2.625540e-06 1.083601e-07 3.530968e-05
## vol
#irf creation
irf_res4 <- irf(est.VAR4, impulse = "trade", response = "vol",</pre>
                  bmat=b.hat4, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf4 <- extract_varirf(irf_res4)</pre>
#the plot
single_varirf4 %>%
  ggplot(aes(x=period, y=irf_trade_vol, ymin=lower_trade_vol, ymax=upper_trade_vol)) +
 geom hline(vintercept = 0, color="red") +
 geom_ribbon(fill="grey", alpha=0.2) +
```

	Model 1
trade.l1	0.000017
	(0.000040)
vol.l1	0.258921^{***}
	(0.007067)
trade.l2	0.000042
	(0.000040)
vol.l2	0.020907^{**}
	(0.007301)
trade.l3	-0.000068
	(0.000040)
vol.l3	0.028060***
	(0.007299)
trade.l4	0.000057
	(0.000040)
vol.l4	0.037660***
	(0.007300)
trade.l5	-0.000061
	(0.000040)
vol.l5	0.030651***
	(0.007304)
trade.l6	-0.000030
	(0.000040)
vol.l6	0.058531^{***}
	(0.007076)
const	0.000224^{***}
	(0.000013)
\mathbb{R}^2	0.088443
$Adj. R^2$	0.087895
Num. obs.	19965

***p < 0.001; **p < 0.01; *p < 0.05

Table 4: Statistical models

```
geom_line() +
theme_light() +
ggtitle("IRF Trade on Volatility")+
ylab("")+
xlab("") +
theme_minimal()
```

IRF Trade on Volatility


```
#does volatility Granger cause trade mentions
grangertest(y4[,c("vol","trade")], order = 6)
```

Res.Df	Df	F	$\Pr(>F)$
2e+04			
2e+04	-6	10	4.39e-11

```
#does trade mentions Granger cause volatility
grangertest(y4[,c("trade", "vol")], order = 6)
```

Res.Df	Df	\mathbf{F}	$\Pr(>F)$
2e+04			
2e+04	-6	1.49	0.176

China

```
y5 = cbind(Vdata$china , Vdata$VGK_vol)
colnames(y5)[1:2] <- c("china", "vol")</pre>
est.VAR5 \leftarrow VAR(y5,p=6)
mod_vol5 <- est.VAR5$varresult$vol</pre>
texreg(mod_vol5, digits = 6)
Omega5 <- var(residuals(est.VAR5))</pre>
#make the B matrix
loss5 <- function(param5){</pre>
  #Define the restriction
  B5 <- matrix(c(param5[1], param5[2], 0, param5[3]), ncol = 2)
  #Make BB' approximatively equal to omega
  X5 <- Omega5 - B5 %*% t(B5)
  #loss function
  loss5 \leftarrow sum(X5^2)
  return(loss5)
res.opt5 \leftarrow optim(c(1, 0, 1), loss5, method = "BFGS")
B.hat5 \leftarrow matrix(c(res.opt5$par[1], res.opt5$par[2], 0, res.opt5$par[3]), ncol = 2)
print(cbind(Omega5,B.hat5 %*% t(B.hat5)))
##
                 china
                                 vol
## china 2.022300e-01 1.083104e-05 2.022291e-01 1.085325e-05
         1.083104e-05 2.625418e-06 1.085325e-05 1.294700e-05
#irf creation
irf_res5 <- irf(est.VAR5, impulse = "china", response = "vol",</pre>
                   bmat=b.hat5, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf5 <- extract_varirf(irf_res5)</pre>
#the plot
single_varirf5 %>%
  ggplot(aes(x=period, y=irf_china_vol, ymin=lower_china_vol, ymax=upper_china_vol)) +
  geom hline(vintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
```

	Model 1
china.l1	0.000059^*
	(0.000025)
vol.l1	0.258298***
	(0.007068)
china.l2	0.000016
	(0.000026)
vol.l2	0.021287^{**}
	(0.007298)
china.l3	-0.000040
	(0.000026)
vol.l3	0.028374^{***}
	(0.007295)
china.l4	-0.000025
	(0.000026)
vol.l4	0.037333^{***}
	(0.007295)
china.l5	-0.000013
	(0.000026)
vol.l5	0.031020^{***}
	(0.007299)
china.l6	0.000018
	(0.000025)
vol.l6	0.058227^{***}
	(0.007068)
const	0.000221***
	(0.000013)
\mathbb{R}^2	0.088486
$Adj. R^2$	0.087938
Num. obs.	19965

***p < 0.001; **p < 0.01; *p < 0.05

Table 5: Statistical models

```
geom_line() +
theme_light() +
ggtitle("IRF China on Volatility")+
ylab("")+
xlab("") +
theme_minimal()
```

IRF China on Volatility


```
#does volatility Granger cause china mentions
grangertest(y5[,c("vol","china")], order = 6)
```

Res.Df	Df	\mathbf{F}	$\Pr(>F)$
2e+04			
2e+04	-6	2.01	0.0609

```
#does china mentions Granger cause volatility
grangertest(y5[,c("china", "vol")], order = 6)
```

Interaction number of post and tariff

here is an example of our interaction

Res.Df	Df	F	Pr(>F)
2e+04			
2e+04	-6	1.65	0.13

```
#interaction
##N and tariff, 2 variables
int1 = Vdata$tariff * Vdata$N
y12 = cbind(int1, Vdata$VGK_vol)
colnames(y12)[1:2] <- c("interaction", "vol")</pre>
est.VAR12 \leftarrow VAR(y12,p=6)
mod_vol12 <- est.VAR12$varresult$vol</pre>
texreg(mod_vol12, digits = 6)
Omega12 <- var(residuals(est.VAR12))</pre>
#make the B matrix
loss12 <- function(param12){</pre>
  #Define the restriction
 B12 <- matrix(c(param12[1], param12[2], 0, param12[3]), ncol = 2)
  #Make BB' approximatively equal to omega
 X12 <- Omega12 - B12 %*% t(B12)
  #loss function
 loss12 <- sum(X12^2)
 return(loss12)
}
res.opt12 <- optim(c(1, 0, 1), loss12, method = "BFGS")
B.hat12 <- matrix(c(res.opt12\$par[1], res.opt12\$par[2], 0, res.opt12\$par[3]), ncol = 2)
print(cbind(Omega12,B.hat12 %*% t(B.hat12)))
                interaction
                                      vol
## interaction 7.087427e+02 2.261158e-04 7.087427e+02 2.260725e-04
               2.261158e-04 2.626370e-06 2.260725e-04 4.705363e-06
## vol
#irf creation
irf_res12 <- irf(est.VAR12, impulse = "interaction", response = "vol",</pre>
                  bmat=b.hat12, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf12 <- extract_varirf(irf_res12)</pre>
#the plot
single_varirf12 %>%
  ggplot(aes(x=period, y=irf_interaction_vol, ymin=lower_interaction_vol, ymax=upper_interaction_vol))
```

geom_hline(yintercept = 0, color="red") +

	Model 1
interaction.l1	0.000001
	(0.000000)
vol.l1	0.258605***
	(0.007068)
interaction.l2	0.000000
	(0.000000)
vol.l2	0.021145**
	(0.007298)
interaction.l3	-0.000000
	(0.000000)
vol.l3	0.028385^{***}
	(0.007294)
interaction.l4	-0.000000
	(0.000000)
vol.l4	0.037432^{***}
	(0.007294)
interaction.l5	0.000000
	(0.000000)
vol.l5	0.030800***
	(0.007298)
interaction.l6	-0.000000
	(0.000000)
vol.l6	0.058062^{***}
	(0.007067)
const	0.000222***
	(0.000012)
\mathbb{R}^2	0.088156
$Adj. R^2$	0.087607
Num. obs.	19965
**** < 0.001, ***	0.01, *n < 0.05

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 6: Statistical models

```
geom_ribbon(fill="grey", alpha=0.2) +
geom_line() +
theme_light() +
ggtitle("IRF Interaction on Volatility")+
ylab("")+
xlab("") +
theme_minimal()
```

IRF Interaction on Volatility

Terms

Here we look for the first and second mandate effect of posts. We will use the tariff variable as a proxy for the posts

First mandate

```
# First and Second Mandate

#first term
Vdata_f = filter(data,between(timestamp, as.Date('2017-01-20'), as.Date('2021-01-20')))

#second term
Vdata_s = filter(data,between(timestamp, as.Date('2025-01-20'), as.Date('2025-05-07')))
```

	Model 1
tariff.l1	0.000002
	(0.000062)
vol.l1	0.096600^{***}
	(0.011897)
tariff.l2	-0.000018
	(0.000062)
vol.l2	0.063067^{***}
	(0.011924)
tariff.l3	-0.000034
	(0.000062)
vol.l3	0.071488***
	(0.011910)
tariff.l4	-0.000032
	(0.000062)
vol.l4	0.078845***
	(0.011910)
tariff.l5	-0.000029
	(0.000062)
vol.l5	0.070102***
	(0.011923)
tariff.l6	-0.000017
	(0.000062)
vol.l6	0.077018***
	(0.011897)
const	0.000189***
	(0.000021)
\mathbb{R}^2	0.057712
$Adj. R^2$	0.056101
Num. obs.	7036

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 7: Statistical models

```
y_f_d = cbind(Vdata_f$tariff, Vdata_f$VGK_vol)
colnames(y_f_d)[1:2] <- c("tariff", "vol")
est.VAR_f_d <- VAR(y_f_d,p=6)
mod_vol_f_d <- est.VAR_f_d$varresult$vol
texreg(mod_vol_f_d, digits = 6)</pre>
```

```
Omega_f_d <- var(residuals(est.VAR_f_d))
#make the B matrix
loss_f_d <- function(param_f_d){
    #Define the restriction
    B_f_d <- matrix(c(param_f_d[1], param_f_d[2], 0, param_f_d[3]), ncol = 2)

#Make BB' approximatively equal to omega
X_f_d <- Omega_f_d - B_f_d %*% t(B_f_d)

#loss function
loss_f_d <- sum(X_f_d^2)</pre>
```

```
return(loss_f_d)
}
res.opt_f_d \leftarrow optim(c(1, 0, 1), loss_f_d, method = "BFGS")
B.hat_f_d \leftarrow matrix(c(res.opt_f_dpar[1], res.opt_f_dpar[2], 0, res.opt_f_dpar[3]), ncol = 2)
print(cbind(Omega_f_d,B.hat_f_d %*% t(B.hat_f_d)))
                tariff
                                 vol
## tariff 9.836434e-02 1.368161e-06 9.836268e-02 -2.625023e-07
          1.368161e-06 2.699856e-06 -2.625023e-07 3.523707e-05
#irf creation
irf_res_f_d <- irf(est.VAR_f_d, impulse = "tariff", response = "vol",</pre>
                  bmat=b.hat_f_d, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf_f_d <- extract_varirf(irf_res_f_d)</pre>
#the plot
single varirf f d %>%
  ggplot(aes(x=period, y=irf_tariff_vol, ymin=lower_tariff_vol, ymax=upper_tariff_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme_light() +
  ggtitle("IRF First Mandate tariff on Volatility")+
  ylab("")+
  xlab("") +
  theme_minimal()
```

IRF First Mandate tariff on Volatility

#does vol granger cause tarif
grangertest(y_f_d[,c("vol","tariff")], order = 6)

Res.Df	Df	\mathbf{F}	$\Pr(>F)$
7.02e+03			
7.03e+03	-6	0.138	0.991

#does tarif granger cause vol
grangertest(y_f_d[,c("tariff", "vol")], order = 6)

Res.Df	Df	\mathbf{F}	$\Pr(>F)$
7.02e+03			
7.03e+03	-6	0.219	0.971

second mandate

	Model 1
tariff.l1	0.000204*
	(0.000095)
vol.l1	0.187439^{***}
	(0.044443)
tariff.l2	0.000075
	(0.000095)
vol.l2	0.048019
	(0.045174)
tariff.l3	-0.000063
	(0.000095)
vol.l3	0.046386
	(0.045316)
tariff.l4	0.000028
	(0.000095)
vol.l4	0.049858
	(0.045387)
tariff.l5	-0.000020
	(0.000095)
vol.l5	0.056057
	(0.045359)
tariff.l6	-0.000047
	(0.000095)
vol.l6	0.118803**
	(0.044444)
const	0.000478^{*}
	(0.000216)
\mathbb{R}^2	0.102630
$Adj. R^2$	0.081050
Num. obs.	512

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 8: Statistical models

```
y_s_d = cbind(Vdata_s$tariff, Vdata_s$VGK_vol)
colnames(y_s_d)[1:2] <- c("tariff", "vol")
est.VAR_s_d <- VAR(y_s_d,p=6)
mod_vol_s_d <- est.VAR_s_d$varresult$vol
texreg(mod_vol_s_d, digits = 6)</pre>
```

```
Omega_s_d <- var(residuals(est.VAR_s_d))
#make the B matrix
loss_s_d <- function(param_s_d){
    #Define the restriction
B_s_d <- matrix(c(param_s_d[1], param_s_d[2], 0, param_s_d[3]), ncol = 2)

#Make BB' approximatively equal to omega
X_s_d <- Omega_s_d - B_s_d %*% t(B_s_d)

#loss function
loss_s_d <- sum(X_s_d^2)</pre>
```

```
return(loss_s_d)
}
res.opt_s_d \leftarrow optim(c(1, 0, 1), loss_s_d, method = "BFGS")
B.hat_s_d \leftarrow matrix(c(res.opt_s_dpar[1], res.opt_s_dpar[2], 0, res.opt_s_dpar[3]), ncol = 2)
print(cbind(Omega_s_d,B.hat_s_d %*% t(B.hat_s_d)))
                tariff
## tariff 3.7918282529 1.427712e-04 3.791827516 1.429690e-04
          0.0001427712 1.699179e-05 0.000142969 2.519941e-05
#irf creation
irf_res_s_d <- irf(est.VAR_s_d, impulse = "tariff", response = "vol",</pre>
                  bmat=b.hat_s_d, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf_s_d <- extract_varirf(irf_res_s_d)</pre>
#the plot
single varirf s d %>%
  ggplot(aes(x=period, y=irf_tariff_vol, ymin=lower_tariff_vol, ymax=upper_tariff_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme_light() +
  ggtitle("IRF Second Mandate tariff on Volatility")+
  ylab("")+
  xlab("") +
  theme_minimal()
```

IRF Second Mandate tariff on Volatility

#does vol granger cause tariff
grangertest(y_s_d[,c("vol","tariff")], order = 6)

Res.Df	\mathbf{Df}	\mathbf{F}	$\Pr(>F)$
499			
505	-6	1.11	0.354

#does tariff granger cause vol
grangertest(y_s_d[,c("tariff", "vol")], order = 6)

Res.Df	Df	\mathbf{F}	$\Pr(>F)$
499			
505	-6	0.965	0.448