```
import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
1
   # Load the dataset from the URL
   url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
   data = pd.read_csv(url, sep=';')
3
5
   # Display the first few rows of the dataset
6
   data.head()
```

| ₹ |   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free sulfur<br>dioxide | total sulfur<br>dioxide | density | рН   | sulphates | alcohol | quality |     |
|---|---|------------------|---------------------|----------------|-------------------|-----------|------------------------|-------------------------|---------|------|-----------|---------|---------|-----|
|   | 0 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                   | 34.0                    | 0.9978  | 3.51 | 0.56      | 9.4     | 5       | 117 |
|   | 1 | 7.8              | 0.88                | 0.00           | 2.6               | 0.098     | 25.0                   | 67.0                    | 0.9968  | 3.20 | 0.68      | 9.8     | 5       |     |
|   | 2 | 7.8              | 0.76                | 0.04           | 2.3               | 0.092     | 15.0                   | 54.0                    | 0.9970  | 3.26 | 0.65      | 9.8     | 5       |     |
|   | 3 | 11.2             | 0.28                | 0.56           | 1.9               | 0.075     | 17.0                   | 60.0                    | 0.9980  | 3.16 | 0.58      | 9.8     | 6       |     |
|   | 4 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                   | 34.0                    | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |     |

Next steps: Generate code with data 

• View recommended plots

```
# Check for missing values
data.isnull().sum()

# Basic statistics
data.describe()
```

1 # Split the data into features and target
2 X = data.drop('quality', axis=1)

₹

|            | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides   | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density     | рН          | sulphates   | alcohol     |             |
|------------|------------------|---------------------|----------------|-------------------|-------------|---------------------------|----------------------------|-------------|-------------|-------------|-------------|-------------|
| count      | 1599.000000      | 1599.000000         | 1599.000000    | 1599.000000       | 1599.000000 | 1599.000000               | 1599.000000                | 1599.000000 | 1599.000000 | 1599.000000 | 1599.000000 | 1           |
| mean       | 8.319637         | 0.527821            | 0.270976       | 2.538806          | 0.087467    | 15.874922                 | 46.467792                  | 0.996747    | 3.311113    | 0.658149    | 10.422983   |             |
| std        | 1.741096         | 0.179060            | 0.194801       | 1.409928          | 0.047065    | 10.460157                 | 32.895324                  | 0.001887    | 0.154386    | 0.169507    | 1.065668    |             |
| min        | 4.600000         | 0.120000            | 0.000000       | 0.900000          | 0.012000    | 1.000000                  | 6.000000                   | 0.990070    | 2.740000    | 0.330000    | 8.400000    |             |
| 25%        | 7.100000         | 0.390000            | 0.090000       | 1.900000          | 0.070000    | 7.000000                  | 22.000000                  | 0.995600    | 3.210000    | 0.550000    | 9.500000    |             |
| 50%        | 7.900000         | 0.520000            | 0.260000       | 2.200000          | 0.079000    | 14.000000                 | 38.000000                  | 0.996750    | 3.310000    | 0.620000    | 10.200000   |             |
| <b>75%</b> | 9.200000         | 0.640000            | 0.420000       | 2.600000          | 0.090000    | 21.000000                 | 62.000000                  | 0.997835    | 3.400000    | 0.730000    | 11.100000   | <b>&gt;</b> |

```
3 y = data['quality']
5 # Standardize the features
6 scaler = StandardScaler()
 7 X_scaled = scaler.fit_transform(X)
9 # Split the data into training and testing sets
10 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
1 # Train a Random Forest Classifier
 2 model = RandomForestClassifier(n_estimators=100, random_state=42)
3 model.fit(X_train, y_train)
5 # Predict on the test set
 6 y_pred = model.predict(X_test)
1 # Evaluate the model
 2 print("Accuracy:", accuracy_score(y_test, y_pred))
 3 print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))
4 print("\nClassification Report:\n", classification_report(y_test, y_pred))
Accuracy: 0.65
     Confusion Matrix:
                       0
      [[00100
```

```
[ 0 0 7 3 0 0]
[ 0 0 96 33 1 0]
[ 0 1 32 90 8 1]
[ 0 0 0 19 22 1]
[ 0 0 0 1 4 0]]
```

## Classification Report:

2

3

4

5

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 3            | 0.00      | 0.00   | 0.00     | 1       |
| 4            | 0.00      | 0.00   | 0.00     | 10      |
| 5            | 0.71      | 0.74   | 0.72     | 130     |
| 6            | 0.62      | 0.68   | 0.65     | 132     |
| 7            | 0.63      | 0.52   | 0.57     | 42      |
| 8            | 0.00      | 0.00   | 0.00     | 5       |
|              |           |        |          |         |
| accuracy     |           |        | 0.65     | 320     |
| macro avg    | 0.33      | 0.32   | 0.32     | 320     |
| veighted avg | 0.62      | 0.65   | 0.64     | 320     |
|              |           |        |          |         |

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/\_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and \_warn\_prf(average, modifier, msg\_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/\_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and \_warn\_prf(average, modifier, msg\_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/\_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and \_warn\_prf(average, modifier, msg\_start, len(result))

```
# Plot feature importances
feature_importances = pd.Series(model.feature_importances_, index=data.columns[:-1])
feature_importances.nlargest(10).plot(kind='barh')
plt.show()
```

