Image Processing Fundamentals

Prof. H. Sahli VUB-ETRO 2021-2022

What is an image?

What is an image?

A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
233		233	233	233	233	233	233	233			
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

Image filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3		
4	5	1		
1	1	7		

Local image data

Modified image data

Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

Convolution is commutative and associative

$$G = H * F$$

Identical image

8

CV Source: D. Lowe

Shifted left By 1 pixel

Blur (with a mean filter)

CV Source: D. Lowe

Sharpening filter (accentuates edges)

Original

CV Source: D. Lowe

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Gaussian filters

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving two times with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Source: K. Grauman

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Characterizing edges

An edge is a place of rapid change in the image intensity function

CV

extrema of derivative

Derivatives of 1D functions

First Derivative

(not centered at x)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h=1) \implies \text{mask:}$$
 [-1 1]

$$\mathbf{mask} \ \mathbf{M} = [-1, 0, 1]$$
 (centered at x)

Second Derivative

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} \approx f'(x+1) - f'(x) =$$

$$f(x+2)-2f(x+1)+f(x)$$
 (h=1)

(centered at x+1)

Replace x+1 with x (i.e., centered at x):

$$f''(x) \approx f(x+1) - 2f(x) + f(x-1)$$

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

Implement this as a linear filter

Image gradient

• The *gradient* of an image: $abla f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
ight]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The edge strength is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• how does this relate to the direction of the edge?

Image gradient

f

Magnitude $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

 $\frac{\partial f}{\partial x}$

 $\frac{\partial f}{\partial y}$

Effects of noise

Noisy input image

Where is the edge?

Source: S. Seitz

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- This saves us one operation (smoothing):

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

The Sobel operator

 Common approximation of derivative of Gaussian

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value

Sobel operator: example

Source: Wikipedia