3 - Números Primos

Números primos - definição

Definição

Um inteiro p > 1 diz-se um número primo se 1 e p são os seus únicos divisores positivos.

Exemplo:

- 7 é um número primo porque os seus divisores positivos são 1 e 7.
- 12 não é um número primo uma vez que os seus divisores positivos são: 1, 2, 3, 4, 6, 12.

Note-se que como 12 não é primo, podemos escrevê-lo como o produto de dois factores <u>inteiros</u> maiores do que 1:

$$12 = 3 \times 4$$
 ou $12 = 2 \times 6$

razão pela qual dizemos que 12 é um número composto .

Números primos - propriedades

Teorema

Sejam $a, b \in \mathbb{N}$ e p um número primo. Então:

$$p|ab \implies p|a \lor p|b$$

Exemplo: $3|4 \times 9|$ e como 3 é primo, temos que ter 3|4 (falso) ou 3|9| (verdadeiro).

Exemplo : $6|4 \times 9$ mas no entanto $6 \nmid 4$ e $6 \nmid 9$. Isto acontece porque 6 não é primo.

Corolário

Sejam $a_1, a_2, \dots, a_n \in \mathbb{N}$ e p um número primo. Então:

$$p|a_1 a_2 \cdots a_n \implies p|a_i$$
 para algum i

Decomposição em números primos

Se um número inteiro n não for primo, ou seja, se for composto, então ele pode escrever-se como o produto de dois factores <u>inteiros</u>: a > 1 e b > 1, isto é:

$$n = a b$$

Se a e/ou b não forem primos, então eles próprios podem ser decompostos como o produto de dois factores inteiros > 1.

Repetindo este processo para todos os factores que não são primos, a certa altura iremos obter n como um produto de um número finito de factores primos.

Ordenando os factores primos por ordem <u>crescente</u> e agrupando os primos repetidos numa única potência, obtemos uma decomposição <u>única</u> para n como um produto de factores primos.

Decomposição em números primos - exemplo

O número 792 é composto, uma vez que é divisível por 2.

Vamos decompor 792 num produto de factores primos:

Esta decomposição de 792 em factores primos é única .

Teorema fundamental da Aritmética

Teorema

Todo o inteiro n > 1 pode ser decomposto como um produto de números primos, de forma <u>única</u>:

$$\mathbf{n}=p_1^{\alpha_1}\ p_2^{\alpha_2}\ \cdots\ p_k^{\alpha_k}$$

onde,

 $p_1 < p_2 < \cdots < p_k$ são números primos e $\alpha_1, \alpha_2, \cdots, \alpha_k \in \mathbb{N}$.

Divisores positivos

Proposição

Se um inteiro n > 1 tem decomposição em primos:

$$\mathbf{n}=p_1^{\alpha_1}\ p_2^{\alpha_2}\ \cdots\ p_k^{\alpha_k}$$

então os divisores positivos de n são da forma:

$$p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$$
 com $0 \le \beta_i \le \alpha_i$

e o número de divisores positivos de n é dado por:

$$(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_k+1)$$

Divisores positivos - exemplo

Já vimos que

$$792 = 2^3 \times 3^2 \times 11$$

Logo o número de divisores positivos de 792 é dado por:

$$(3+1) \times (2+1) \times (1+1) = 4 \times 3 \times 2 = 24$$

Para determinarmos todos os divisores positivos de 792, temos que considerar todas as combinações possíveis para os expoentes dos primos $2,3\,$ e $11\,$.

Para o expoente do primo 2 temos as possibilidades: 0, 1, 2, 3

Para o expoente do primo 3 temos as possibilidades: 0, 1, 2

Para o expoente do primo 11 temos as possibilidades: 0,1

Divisores positivos - exemplo

Abaixo temos a lista de todos os divisores positivos do inteiro:

$$792 = 2^3 \times 3^2 \times 11$$

M.D.C. e M.M.C.

Teorema

Sejam n e m inteiros maiores do que 1, com a seguinte decomposição em primos:

$$\mathbf{n} = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \qquad \mathbf{m} = q_1^{\beta_1} q_2^{\beta_2} \cdots q_r^{\beta_r}$$

Então

- 1. O m.d.c.(n,m) é o produto dos primos comuns às duas decomposições, elevados ao menor dos expoentes.
- 2. O m.m.c.(n, m) é o produto dos primos comuns e não comuns às duas decomposições, elevados ao maior dos expoentes.

M.D.C. e M.M.C. - exemplo

Vamos usar a decomposição em primos para calcular m.d.c. e o m.m.c. entre os inteiros 792 e 738.

Temos então que:

$$792 = 2^3 \times 3^2 \times 11$$
 $738 = 2 \times 3^2 \times 41$

e portanto

$$\text{m.d.c.}(792,738) = 2 \times 3^2$$
 $\text{m.m.c.}(792,738) = 2^3 \times 3^2 \times 11 \times 41$

Decomposição em números primos - exemplo

Para decompor um inteiro n > 1 em factores primos, ou para testar se esse inteiro é primo, basta procurar divisores de n que sejam primos , até ao valor \sqrt{n} , uma vez que

$$n = \sqrt{n} \times \sqrt{n}$$

Exemplo: Queremos decompor 1379 em factores primos.

Como $40 \times 40 = 1600$ temos que $\sqrt{1379} < 40$ e portanto basta testar como divisores os primos até 40.

Por exemplo, 41 é primo, mas se 1379 fosse divisível por 41 teríamos

$$1379 = 41 \times a$$

e portanto a seria um divisor inteiro de 1379 menor do que 40.

Decomposição em números primos - exemplo

O inteiro 1379 não é divisível pelos primos 2,3,5 mas é divisível por 7. De facto

$$1379 = 7 \times 197$$

Basta-nos agora decompor 197 e para isso basta-nos procurar divisores primos até $\sqrt{197} < 15$.

Como já testamos os primos 2,3,5 basta então testar como divisores os primos 7,11,13.

Como 197 não é divisível pelos primos 7,11,13 então 197 é um número primo. Logo a decomposição de 1379 em factores primos é:

$$1379 = 7 \times 197$$

Existência de uma infinidade de primos

Teorema

Existe uma infinidade de números primos.

Demonstração - Vamos supor que existe um número finito de números primos

$$p_1 < p_2 < \cdots < p_k$$

e seja

$$\mathbf{n}=(p_1\ p_2\ \cdots\ p_k)+1$$

Como $n > p_k$ então n não é primo e portanto existe um primo p_i tal que $p_i|n$. Então,

$$p_i|n = (p_1 p_2 \cdots p_k) + 1 \wedge p_i|p_1 p_2 \cdots p_k \implies p_i|1$$

o que é uma contradição pois como p_i é primo, temos que $p_i > 1$.

O Crivo de Eratóstenes

O O Crivo de Eratóstenes é um processo para encontrar todos os inteiros primos até um valor previamente fixado.

Vamos usar esse processo para encontrar todos os primos até 100:

- Começamos por listar todos os inteiros até 100 e riscamos o número 1
- O número seguinte da lista é o 2 (que é primo) e riscamos da lista todos os múltiplos de 2
- ➤ O número seguinte da lista é o 3 (que é primo) e riscamos da lista todos os múltiplos de 3
- O número seguinte da lista é o 5 (que é primo) e riscamos da lista todos os múltiplos de 5
- ➤ O número seguinte da lista é o 7 (que é primo) e riscamos da lista todos os múltiplos de 7

A lista dos números não riscados é a lista de todos os *primos* até 100.

O Crivo de Eratóstenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

O Crivo de Eratóstenes

```
3
                    5
                         6
                              7
                                   8
                                             10
11
     12
          13
               14
                    15
                         16
                              17
                                   18
                                        19
                                             20
21
     22
         23
              24
                   25
                         26
                             27
                                  28
                                       29
                                             30
31
    32
         33
              34
                   35
                         36
                             37
                                  38
                                       39
                                             40
41
     42
         43
              44
                   45
                        46
                             47
                                  48
                                       49
                                             50
51
     52
         53
               54
                   55
                         56
                             57
                                  58
                                       59
                                             60
61
     62
         63
              64
                   65
                         66
                             67
                                  68
                                       69
                                             70
71
     72.
         73
              74
                   75
                         76
                             77
                                  78
                                       79
                                             80
81
     82
         83
               84
                   85
                             87
                                  88
                         86
                                       89
                                             90
     92
         93
                   95
91
              94
                         96
                             97
                                  98
                                       99
                                             100
```

Os números a vermelho constituem a lista dos primos até 100.