CS 2009 Design and Analysis of Algorithms

Lecture 2 and 3:

Growth Of Function

September 8-9, 2021

Prepared by: Waheed Ahmed

Edited by: Farrukh Salim Shaikh Email: farrukh.salim@nu.edu.pk

Correct Algorithm

An algorithm is said to be *correct* if, for every input instance, it halts with the correct output.

MULTIPLICATION PROBLEM

How efficient is this algorithm?

(How many single-digit operations are required?)

Algorithm description (informal*):

compute partial products (using multiplication & "carries" for digit overflows), and add all (properly shifted) partial products together

2143

x 9112

4286

21430

214300

19187000

19427016

MULTIPLICATION PROBLEM

How efficient is this algorithm?

(How many single-digit operations are required?)

n partial products: ~2n² ops (at most n multiplications & n additions per partial product)

adding n partial products: ~2n² ops
(a bunch of additions & "carries")

~ 4n² operations in the worst case

2143

x 9112

4286

21430

214300

19187000

19427016

MULTIPLICATION PROBLEM

n digits

12345678998765432101

x 98765432112345678901

How efficient is this algorithm?

(How many single-digit operations are required?)

Which Running Time Is Better?

Computer A (Faster): Run algorithm of $2n^2$ complexity. Run 10 billions instruction per second.

Computer B (**Slower**): Run Algorithm **50 n log n** complexity. Run 10 millions instruction per second.

Input length **n = 10** millions

$$2 \cdot (10^7)^2$$
Instructions
 10^{10} Instructions/second

= 20,000 seconds (> 5.5 hours)

$$\frac{50.10^7 \log 10^7 \ln tructions}{10^7 \ln tructions/second} = 1163 seconds (< 20 minutes)$$

Growth Rate Ranking of Function?

Comparison of running times

For each function f (n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
lg n							
$\frac{\lg n}{\sqrt{n}}$							
n							
$n \lg n$							
n^2							
n^3							
2^n							
n!							

Efficiency of Algorithm

INTRODUCING...

ASYMPTOTIC ANALYSIS

Some guiding principles:

- we want some measure of runtime that's independent of hardware, programming language, memory layout, etc.
 - We want to reason about high-level algorithmic approaches rather than lower-level details
- we care about how the running time/number of operations *scales* with the size of the input (i.e. the runtime's *rate of growth*),
- Not concerned with small values of n, Concerned with VERY LARGE values of n.
- Asymptotic –refers to study of function f as n approaches infinity

We'll express the asymptotic runtime of an algorithm using

BIG-O NOTATION

- We would say Multiplication "runs in time O(n²)"
 - Informally, this means that the runtime "scales like" n²

THE POINT OF ASYMPTOTIC NOTATION

suppress constant factors and lower-order terms

too system dependent irrelevant for large inputs

BIG-O NOTATION

suppress constant factors and lower-order terms

too system dependent irrelevant for large inputs

 $f(n) = O(n^2)$: 2 is constant, n^2 is the dominant term, and the term 4n + 1becomes insignificant as n grows larger.

suppress constant factors and lower-order terms

too system dependent

irrelevant for large inputs

$$f_1(n) = n^2$$

 $f_2(n) = 2n + 20$

Which is better?

n (input size)

- To compare algorithm runtimes in this class, we compare their Big-O runtimes
 - Ex: a runtime of $O(n^2)$ is considered "better" than a runtime of $O(n^3)$
 - Ex: a runtime of $O(n^{1.6})$ is considered "better" than a runtime of $O(n^2)$
 - \circ Ex: a runtime of O(1/n) is considered "better" than O(1)?

Skip in Class

Which Running Time Is Better?

Is 1000000n operations better than 4n²?
Is 0.000001n³ operations better than 4n²?
Is 3n² operations better than 4n²?

- The answers for the first two depend on what value n is...
 - o 1000000n < 4n² only when n exceeds a certain value (in this case, 250000)
- These constant multipliers are too environment-dependent...
 - An operation could be faster/slower depending on the machine, so 3n² ops on a slow machine might not be "better" than 4n² ops on a faster machine

Growth of Function

Skip in Class

n	log ₂ n	n log ₂ n	n ²	2 ⁿ
1	0	0	1	1
2	1	2	4	8
4	2	8	16	16
8	3	24	64	256
16	4	64	256	65536
32	5	160	1024	4294967296

Skip in Class

Growth Rate Ranking of Function?

$$f(n) = n^{n}$$

$$f(n) = 2^{n}$$

$$f(n) = n^{3}$$

$$f(n) = n^{2}$$

$$f(n) = n \log n$$

$$f(n) = n$$

$$f(n) = \sqrt{n}$$

$$f(n) = \log n$$

$$f(n) = 1$$

grow fast

grow slowly