Database Management Systems

April 17, 2025

1 ERD

1.1 Thực thể (Entity)

- Thực thể
- Thực thể yếu (Weak)

1.2 Thuộc tính (Attribute)

- Đơn trị
- Đa trị
- Kết hợp
- Suy diễn
- Khoá chính

1.3 Mối quan hệ (Relationship)

- 1-1
- 1-n
- n-n
- Vòng

2 RDM

2.1 Thành phần

- Lược đồ quan hệ (Schema Relational)
- Thuộc tính (Attributes)
- Miền giá trị (Domain)
- Bộ (Tuples)
- Lược đồ CSDL (Schema DBMS)
- Mô hình dữ liệu quan hệ (RDM)

2.2 Ký hiệu

$$R(A_1:D_1,A_2:D_2,\dots,An:D_n)$$

$$R(A_1,A2,\dots,A_n)$$

$$DOM(A) \text{ or } MGT(A)$$

$$t[A] \text{ or } t.A$$

3 ERD to RDM

3.1 Mối quan hệ

IDEA: Lấy khoá của Rx làm khoá chính Ry

3.1.1 1-1

Đối xứng.

3.1.2 1-n

Khoá chính bên **nhiều** đặt làm khoá ngoại bên **ít**.

3.1.3 n-n

R(< Khoá ngoại 1>,< Khoá ngoại $2>,\ldots,<$ Thuộc tính của quan hệ (nếu có) $>,\ldots)$

3.2 Thực thể yếu

R(<key chính của entity phụ thuộc vào $>, A_1, A_2, \ldots)$

• Thực thể R liên kết với thực thể yếu TTY: R chứa khoá chính của tất cả khoá của TTY.

$$\text{E.g. } TTY(A_1,A_2,\ldots,A_n) \ \rightarrow \ R(A_1,A_2,\ldots,A_n).$$

• Dựa vào phân biệt của thực thể khác \rightarrow thực thể yếu.

3.3 Thuộc tính đa trị

$$R(<{\rm Key}$$
chính của Tuple $>,A_1,A_2,\ldots)$

3.4 Liên kết đa ngôi

 $R(< KEY1>, < KEY2>, < KEY3>, \ldots, <$ Thuộc tính của quan hệ (nếu có) >, ...)

4 Relational Algebra

4.1 Tính khả hợp (Union compatibility)

$$R(A_1, A_2, \dots, A_n)S(B_1, B_2, \dots, B_n)$$

- Cùng bậc n (n attribute).
- $\bullet \ \ DOM(A_i) = DOM(B_i) \quad \forall i \in \overline{1,n}$

4.2 Phép toán

4.2.1 Giao

- Tập hợp: \cap
- Mệnh đề: ∧

4.2.2 Hợp

- Tập hợp: ∪
- Mệnh đề: ∨

4.2.3 Trừ

• Tập hợp, mệnh đề: -

4.2.4 Chọn

$$\sigma_n(R)$$

- p: Điều kiện (Mệnh đề \leftarrow Phép giao hợp trừ).
- Có tính giao hoán.

4.2.5 Chiếu

$$\pi_{A_1,A_2,\dots,A_k}(R)$$

- A_1, A_2, \dots, A_k : Attribute.
- Trong quá trình chiếu loại bỏ bộ (tuples) trùng nhau. $\left(t[\pi_{A_1,A_2,\dots,A_k}(R)] \leq t[R]\right)$
- Không có tính giao hoán.

4.2.6 Chiếu tổng quát

$$\pi_{F_1(A_1),F_2(A_2),...,F_k(A_k)}(R)$$

4.2.7 Gán

 \leftarrow

E.g. $S \leftarrow \sigma_p(R), S \leftarrow \pi_{A_1, A_2, \dots, A_n}(R)$.

4.2.8 Đổi tên

 $\rho_S(R)$

- R: Quan hệ, với R(B,C,D).
- S: Tên thay thế cho R.
- $R(B,C,D) \rightarrow S(B,C,D)$.

 $\rho_{X,C,D}(R)$

• $R(B,C,D) \rightarrow R(X,C,D)$.

 $\rho_{S(X,C,D)}(R)$

• $R(B,C,D) \rightarrow S(X,C,D)$.

4.2.9 Tích Descartesian

 $R \times S$

- Xuất ra table (tổ hợp) mới với
 - -n+m attribute.
 - $-u \times v$ tuble.

4.2.10 Kết

Theta

 $R\bowtie_{\rm DK} S$

• Xuất ra table mới.

Bằng

$$R \bowtie_{R,A=S,B} S$$

• Xuất ra table mới.

Tự nhiên

 $R \bowtie S$

- Attribute:
 - Cùng NAME.
 - Cùng DOM.
- Tự **delete** Attribute trùng tên.
- Xuất ra table mới.

4.2.11 Chia

$$R(Z) \div S(X)$$

- $X \subseteq Z$.
- Xuất ra Q(Z-X). (Loại bỏ ${\cal A}_i$ của S trong R)
- Dùng khi: Lấy ra cái này thoả hết tất cả cái kia.

E.g. R(A,B,C,D,E) và $S(D,E).\ R \div S$ ra Q(A,B,C)

4.2.12 Hàm kết hợp

- $SUM(A_i)$
- $\bullet \ \ AVG(A_i)$
- $COUNT(A_i)$
- $MIN(A_i)$
- $MAX(A_i)$

4.2.13 Gom nhóm

$$G_1, G_2, \dots, G_n \Im_{F_1(A_1), F_2(A_2), \dots, F_n(A_n)}(R)$$

- G_i : Attribute cần gom.
- $F_i(A_i)$: Sử dụng hàm kết hợp lên Ai.
- R: Table nguồn.
- Xuất ra table mới.

4.3 Thao tác

4.3.1 Thêm

$$R_{\text{new}} \leftarrow R_{\text{old}} \cup E$$

- E & R khả hợp.
- E: Biểu thức Đại số quan hệ.

E.g. $PHANCONG \leftarrow PHANCONG('Bancie', 20, 10)$.

4.3.2 Xoá

$$R_{\text{new}} \leftarrow R_{\text{old}} - E$$

 $\text{E.g. PHANCONG} \leftarrow \text{PHANCONG} - \ \sigma_{\text{MANV}='123'}(\text{PHANCONG}).$

4.3.3 Sửa

$$R_{\text{new}} \leftarrow \pi_{F_1(A_1), F_2(A_2), \dots, F_n(A_n)}(R_{\text{old}})$$

4.4 Kiểu thực hiện

4.4.1 Lồng

$$\sigma_p(\pi_{A_1,A_2,\dots,A_k}(\sigma_p(R)))$$

4.4.2 Từng bước

B1:
$$R2 \leftarrow \sigma_p(R1)$$

B2:
$$R3 \leftarrow \pi_{A_1, A_2, ..., A_k}(R2)$$

:

 B_n

5 SQL

5.1 Set up

5.1.1 Tạo bảng

• Constraint **Trực tiếp**

```
CREATE TABLE TableName (
        Column1 DataType Constraints,
        Column2 DataType Constraints,
        ...
)
```

• Constraint Tự định nghĩa

```
CREATE TABLE TableName (
        Column1 DataType,
        Column2 DataType,
        Constraints ConstraintName ConstraintType,
        ...
)
```

- CHAR(x): Số lượng ký tự cố định.
- VARCHAR(x): Số lượng ký tự động (Auto xoá).
- NVARCHAR(x): Tương tự VARCHAR(x) nhưng có dấu được.

5.1.2 RBTV (Constraint)

Tên Con-			
straint	Ý nghĩa tiếng Việt	Cú pháp (Syntax)	Ví dụ (Example)
PRIMARY KEY	Khóa chính – định danh duy nhất cho mỗi dòng	PRIMARY KEY (ColumnName) hoặc ngay sau tên cột	StudentID INT PRIMARY KEY
FOREIGN KEY	Khóa ngoại – liên kết với khóa chính ở bảng khác	FOREIGN KEY (Column) REFERENCES OtherTable(Column)	CustomerID INT FOREIGN KEY REFERENCES Customers(CustomerID)
NOT NULL	Không cho phép NULL – bắt buộc nhập dữ liệu	ColumnName DataType NOT NULL	Name NVARCHAR(100) NOT NULL
UNIQUE	Giá trị không được trùng lặp trong cột	ColumnName DataType UNIQUE	Email NVARCHAR(100) UNIQUE
CHECK	Kiểm tra điều kiện ràng buộc	CHECK (condition) hoặc ColumnName DataType CHECK ()	GPA FLOAT CHECK (GPA BETWEEN O AND 4)
DEFAULT	Gán giá trị mặc định nếu không nhập	ColumnName DataType DEFAULT (value)	CreatedAt DATETIME DEFAULT GETDATE()
IDENTITY	Tự động tăng giá trị, thường dùng cho khóa chính	ColumnName INT IDENTITY(seed, increment)	OrderID INT PRIMARY KEY IDENTITY(1,1)

• GETDATE(): E.g. output: 2025-04-06 14:32:17.897

5.1.3 Sửa Table

Thêm

• Column

ALTER TABLE TableName
ADD ColumnName DataType [CONSTRAINT ...]

• Constraint

ALTER TABLE TableName ADD CONSTRAINT ConstraintName ConstraintType

Xoá

• Column

ALTER TABLE TableName DROP COLUMN ColumnName

• Constraint

ALTER TABLE TableName
DROP CONSTRAINT ConstraintName

Mở rộng

ALTER TABLE TableName
ALTER COLUMN ColumnName NewDomainType

5.1.4 Xoá Table

DROP TABLE TableName

5.2 Truy vấn

 $\pi_A(\sigma_C(B))$

SELECT A FROM B WHERE C

 \wedge \vee \neg

AND

OR

NOT

5.2.1 SELECT

• Chọn Attribute A

SELECT A

• Chọn hết

SELECT *

DISTINCT

• Loại bỏ dòng trùng

SELECT DISTINCT Cot1, Cot2, ... FROM TenBang

\mathbf{AS}

• Đổi tên TenCu AS TenMoi TenCu TenMoi Tính toán SELECT <PHEPTOAN(Attribute)> AS KQ FROM B • E.g. SELECT (Price * Quantity) * (1 - Discount) AS FinalPrice FROM Products Nối chuỗi SELECT FirstName + ' ' + LastName AS FullName FROM Employees SELECT CONCAT(FirstName, ' ', LastName) AS FullName FROM Employees Hàm kết hợp SELECT <Hàm kết hợp> (AS TEN) • Hàm kết hợp: - COUNT() * COUNT(*) * COUNT(A) * COUNT(DISTINCT A) -MIN()- MAX() - SUM() - AVG() • GROUP BY SELECT A, <Hàm kết hợp> FROM WHERE GROUP BY A • HAVING SELECT A, <Hàm kết hợp> FROM WHERE GROUP BY A HAVING <Condition>

5.2.2 FROM

FROM Table1

Tích Descartesian

 $TABLE_1 \times TABLE_2 \times TABLE_3 \times \dots$

FROM TABLE1, TABLE2, TABLE3,...

Lưu ý

A(C)

B(D)

SELECT *
FROM A, B
WHERE A.C = B.D

• Or

SELECT *

FROM A AS x, B AS y

WHERE x.C = y.D

- Lưu ý
 - Số điều kiện dùng để loại **tuple trùng lặp** của $A \times B =$ Số quan hệ (loại trừ quan hệ ko liên quan) giữa A và B.
 - A, B, C, \dots trung Attribute A. Attribute, B. Attribute, C. Attribute, A.

Kết

Kiểu kết	Command
$R_1 \bowtie R_2$: Khớp cả 2 bảng	FROM R1 JOIN R2 ON <condition> or FROM R1 INNER JOIN R2</condition>
	ON <condition></condition>
All bên trái + bên phải (nếu	FROM R1 LEFT JOIN R2 ON <condition></condition>
khớp)	
All bên phải + bên trái (nếu	FROM R1 RIGHT JOIN R2 ON <condition></condition>
khớp)	
All cả 2 bảng	FROM R1 FULL OUTER JOIN R2 ON <condition></condition>
$R_1 \times R_2$: Tích Descartes	FROM R1 CROSS JOIN R2
$R \bowtie R$: Tự kết	SELECT R R1, R R2 FROM R1 (Kết ngoài) JOIN R2 ON
	<condition></condition>

5.2.3 WHERE

BETWEEN

```
• a < x < b
WHERE Column BETWEEN a AND b
  • x < a \land x > b
WHERE Column NOT BETWEEN a AND b
LIKE
```

• Bằng

WHERE Column LIKE 'xyz'

Không bằng

WHERE Column NOT LIKE 'xyz'

```
• Lưu ý
    - Tiếng Việt: N'xyz'
    − Ký tự:
         * '%xyz%': Chứa xyz.
         * 'xyz%': Bắt đầu là xyz.
        \ast'%xyz': Kết thức là xyz.
```

NULL

• Lấy ra Attribute Null trong Column

WHERE Column IS NULL

• Lấy ra Attribute Not Null trong Column

WHERE Column IS NOT NULL

Subquery

Phân cấp

• Subquery độc lập với Outer query.

```
SELECT
FROM
WHERE A operator> (
    SELECT
    FROM
    WHERE B <operator> (
)
```

• Opertators:

```
- IN / NOT IN
- ALL
- ANY
- SOME
```

• Lưu ý: Subquery khả hợp với Outer query.

Tương quan

• Attribute trong Subquery phụ thuộc Outer query.

• Opertators: EXISTS / NOT EXISTS

5.3 OTHERS

5.3.1 ORDER BY

```
SELECT
FROM
WHERE
ORDER BY A, B,...
```

• Tăng ASC

ORDER BY A ASC

• Giảm DESC

ORDER BY A DESC

5.3.2 SET

- ∪ UNION
- \bullet \cap INTERSECT
- - EXCEPT

SELECT

FROM

WHERE

<SET>

SELECT

FROM WHERE

- Giữ lại bộ trùng <SET> + ALL

5.3.3 CASE

CASE

WHEN condition1 THEN result1 WHEN condition2 THEN result2

. . .

ELSE result_default

END

Vị trí dùng CASE	Ý nghĩa
SELECT	Hiển thị dữ liệu theo điều kiện
ORDER BY	Sắp xếp theo logic tùy chỉnh
WHERE	Tạo điều kiện phức tạp (ít dùng hơn)
GROUP BY	Kết hợp với biểu thức tính nhóm

5.3.4 Thứ tự câu lệnh

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY