NPTEL MOOC, JAN-FEB 2015 Week 1, Module 7

DESIGNAND ANALYSIS OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Comparing time efficiency

- * We measure time efficiency only upto an order of magnitude
 - * Ignore constants
- * How do we compare functions with respect to orders of magnitude?

Upper bounds, "big O"

* t(n) is said to be O(g(n)) if we can find suitable constants c and n₀ so that cg(n) is an upper bound for t(n) for n beyond n₀

* $t(n) \le cg(n)$ for every $n \ge n_0$

Examples: Big O

- * $100n + 5 is O(n^2)$
 - * 100n + 5
 - $* \le 100n + n$, for $n \ge 5$
 - * = 101n ≤ 101 n², so $n_0 = 5$, c = 101
- * Alternatively
 - * 100n + 5
 - $* \le 100n + 5n$, for $n \ge 1$
 - $* = 105n \le 105n^2$, so $n_0 = 1$, c = 105
- * n₀ and c are not unique!
- * Of course, by the same argument, 100n+5 is also O(n)

Examples: Big O

- * $100n^2 + 20n + 5$ is $O(n^2)$
 - $*100n^2 + 20n + 5$
 - $* \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $* \leq 125n^2$
 - $* n_0 = 1, c = 125$
- * What matters is the highest term
 - * 20n + 5 dominated by 100n²

Examples: Big O

- * n^3 is not $O(n^2)$
 - * No matter what c we choose, cn^2 will be dominated by n^3 for $n \ge c$

Night

Useful properties

- * If
 - * f₁(n) is O(g₁(n))
 - $* f_2(n) is O(g_2(n))$
- * then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- * $f_1(n) \le c_1g_1(n)$ for all $n > n_1$
- * $f_2(n) \le c_2g_2(n)$ for all $n > n_2$

Why is this important?

- * Algorithm has two phases
 - * Phase A takes time O(gA(n))
 - * Phase B takes time O(gB(n))
- * Algorithm as a whole takes time
 - * $max(O(g_A(n)),O(g_B(n)))$
- * For an algorithm with many phases, least efficient phase is an upper bound for the whole algorithm

Lower bounds, Ω (omega)

* t(n) is said to be $\Omega(g(n))$ if we can find suitable constants c and n_0 so that cg(n) is an lower bound for t(n) for n

beyond no

* $t(n) \ge cg(n)$ for every $n \ge n_0$

Lower bounds

- * n^3 is $\Omega(n^2)$
 - * $n^3 \ge n^2$ for all n
 - $* n_0 = 0$ and c = 1
- * Typically we establish lower bounds for problems as a whole, not for individual algorithms
 - * Sorting requires $\Omega(n \log n)$ comparisons, no matter how clever the algorithm is

Tight bounds, 9 (theta)

- * t(n) is $\Theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$
- * Find suitable constants c₁, c₂, and n₀ so that
 - * $c_2g(n) \le t(n) \le c_1g(n)$ for every $n \ge n_0$

Tight bounds

- * n(n-1)/2 is $\Theta(n^2)$
 - * Upper bound

$$n(n-1)/2 = n^2/2 - n/2 \le n^2/2$$
, for $n \ge 0$

* Lower bound

$$n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \times n/2) \ge n^2/4$$
, for $n \ge 2$

* Choose $n_0 = max(0,2) = 2$, $c_1 = 1/2$ and $c_2 = 1/4$

Summary

- * f(n) = O(g(n)) means g(n) is an upper bound for f(n)
 - * Useful to describe limit of worst case running time for an algorithm
- * $f(n) = \Omega(g(n))$ means g(n) is a lower bound for f(n)
 - * Typically used for classes of problems, not individual algorithms
- * $f(n) = \Theta(g(n))$: matching upper and lower bounds
 - * Best possible algorithm has been found