Skolkovo Institute of Science and Technology

Assignment 2. Conjugate Distributions

Bayesian Methods - Advanced Machine Learning, Spring 2016, Term 3

- 1. Let $x_1, x_2, \ldots, x_N \overset{i.i.d.}{\sim} p(x|\lambda) = \lambda \exp(-\lambda x), \ x \geq 0, \lambda > 0$ (exponential distribution). Find maximum likelihood estimate λ_{ML} , conjugate distribution $p(\lambda)$, posterior $p(\lambda|x_1, \ldots, x_N)$ and Bayesian estimate of λ as $\mathbb{E}p(\lambda|x_1, \ldots, x_N)$.
- 2. Write down the density of Gamma distribution $\mathcal{G}(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx)$ as exponential class distribution. Find $\mathbb{E}x \ \mathbb{E} \log x$ by differentiation of the partition function.