

Adaptações celulares

Prof. Geórgia Muccillo Dexheimer

Introdução à Patologia

Adaptações ——>
Fisiológicas

Respostas celulares à estimulação normal pelos hormônios ou mediadores químicos

Adaptações ->
Patológicas

Respostas celulares ao estresse que permitem às células modularem sua estrutura e função escapando, assim, da lesão.

- Aumento do tamanho das células → aumento do órgão afetado;
 - Incorporação e síntese de novos componentes estruturais intracelulares;

- Ocorre em resposta a:
 - Sensores mecânicos (carga de trabalho)
 - Fatores de crescimento
 - TGF-b, IGF-1
 - Agentes vasoativos
 - A-adrenérgicos, angiotensina II

Aumentam a síntese de proteínas musculares responsáveis pela hipertrofia

- Pode ser fisiológica ou patológica;
 - Vias diferentes
 - Fosfoinositídio 3-cinase/akt (fisiológica)
 - Proteína G (patológica)
 - Hipertrofia muscular em atletas;
 - Hipertrofia miocárdio: hipertensão arterial ou valvas deficientes;
 - Síntese de proteínas aumenta → miofilamentos↑
 - Aumento da capacidade de trabalho;

- Há um limite da hipertrofia cardíaca onde o aumento da massa muscular deixa de ser capaz de compensar a sobrecarga.
 - Lise e perda de elementos contráteis miofibrilares;
 - Morte dos miócitos (apoptose ou necrose);

Insuficiência cardíaca

Uma adaptação ao estresse pode progredir para lesão celular funcionalmente significativa, caso o estresse não seja atenuado.

FIGURA 1-4 Mecanismos bioquímicos da hipertrofia miocárdica. São mostrados as principais vias de sinalização conhecidas e seus efeitos funcionais. Os sensores mecânicos parecem ser os principais desencadeadores para a hipertrofia fisiológica, e agonistas e fatores de crescimento podem ser mais importantes nos estados patológicos. FNA, fator natriurético atrial; IGF-1, fator de crescimento semelhante à insulina.

- Crescimento fisiológico do útero durante a gravidez
 - Induzido por hormônio → estrogênio;
 - Síntese de proteínas musculares lisas;

Hipertrofia fisiológica do útero durante a gravidez. A. aparência macroscópica do útero normal (direita) e do útero grávido removido por hemorragia pós-parto (esquerda). B. Células musculares lisas uterinas, pequenas e fusiformes de útero normal. C. Células musculares lisas do útero grávido, roliças, grandes e hipertrofiadas (B e C no mesmo aumento microscópico).

- Aumento do número de células em um órgão ou tecido;
 - Pode ocorrer juntamente com a hipertrofia sendo induzidas pelos mesmos estímulos externos;
 - Ocorre apenas em tecidos com capacidade replicação (miocárdio ocorre hipertrofia);
 - Pode ser fisiológica ou patológica;

- Hiperplasia hormonal:
 - Necessidade de aumentar a capacidade funcional de órgãos hormônio-sensíveis
 - Epitélio glandular da mama na puberdade e gravidez
 - » Geralmente acompanhado de hipertrofia

- Maior demanda funcional
 - Altitudes elevadas
 - Baixa oxigenação
 - Policitemia secundária;

- Infecções
 - Proliferação de leucócitos;

- Hiperplasia compensatória:
 - Hemorragia: medula óssea sofre hiperplasia;

- Hiperplasia compensatória:
 - Aumento da massa de tecido após lesão ou ressecção parcial.

- Excesso de hormônios ou fatores de crescimento
 - Hiperplasia endometrial
 - Alteração do equilíbrio estrogênio x progesterona;
 - Sangramento menstrual anormal;

- Excesso de hormônios ou fatores de crescimento
 - Hiperplasia prostática benigna
 - Androgênios;
 - *Nestes casos não há mutação gênica, portanto a hiperplasia regride a partir da eliminação da estimulação hormonal.

- Pode regredir se o estímulo hormonal for retirado;
- Diferente de câncer!
 - Porém, é um solo fértil na qual a proliferação cancerosa pode, eventualmente, surgir!

- Resposta a infecções virais
 - Papilomavírus
 - Verrugas cutâneas e lesões de mucosa
 - Fatores de crescimento produzidos por genes virais ou células infectadas estimulam a proliferação

- Diminuição do tamanho de um órgão ou tecido através da diminuição do tamanho e do número de células;
 - Quando um número significativo de células estão envolvidas o tecido ou órgão diminui de tamanho;

• Causa:

- Diminuição da carga de trabalho
 - Imobilização de um membro, diminuição do suprimento sanguíneo, nutrição inadequada, perda de estimulação endócrina, envelhecimento.
 - Fibras musculares esqueléticas sofrem apoptose e/ou diminuem de tamanho;

- Perda da estimulação endócrina
 - Mama e órgãos reprodutores

- Perda da inervação
 - Lesão dos nervos leva à atrofia das fibras musculares;
- Nutrição inadequada
 - Desnutrição profunda
 - Consumo do músculo esquelético como fonte de energia
 - Caquexia
 - Doenças inflamatórias crônicas
 - TNFa → perda de apetite e depleção lipídica

- Suprimento inadequado de oxigênio
 - Isquemia total → morte celular;
 - Isquemia parcial → atrofia;
 - Oclusão parcial de um vaso
 - » Redução crônica do fornecimento de oxigênio;
 - » Viabilidade celular;
 - » Ex.: ao redor de áreas de necrose isquêmica (infartos) do coração, cérebro, rins.
 - Atrofia senil
 - » Cérebro e coração
 - aterosclerose

- Atrofia órgão x Atrofia celular
 - A redução do tamanho de um órgão pode refletir a atrofia celular reversível ou pode ser causada pela perda irreversível de células;
 - Ex.: Atrofia cerebral Alzheimer
 - Secundária à morte celular extensa

- Pressão
 - Tumor benigno em crescimento pode causar atrofia nos tecidos saudáveis adjacentes.
 - Provável relação com isquemia
 - Pressão x comprometimento do suprimento sanguíneo;

- Células em atrofia:
 - Diminuição do tamanho e das organelas
 - Redução das necessidades metabólicas
 - Pode-se restabelecer o equilíbrio (reversível)
 - Isquemia prolongada
 - Lesão celular irreversível
 - Morte celular
 - » Atrofia do órgão;
 - Autofagia

• Resultado da diminuição da síntese proteica e aumento da degradação de proteínas

- Alteração reversível na qual um tipo celular adulto é substituído por outro tipo celular.
 - Substituição de células sensíveis ao estresse por um tipo celular mais capaz de suportar o ambiente hostil

Modificação epitélio colunar para escamoso

Metaplasia epitelial: mudança escamosa que ocorre no epitélio respiratório de fumantes habituais de cigarro.

O epitélio pavimentoso estratificado é mais resistente, torna-se mais capaz de sobreviver às substâncias químicas do cigarro

- Substituição do epitélio escamoso por colunar semelhantes às intestinais (epitélio de Barret)
 - Refluxo crônico
 - Resposta adaptativa que protege o esôfago dos efeitos lesivos do ácido e pepsina gástricos;

WWW.MEDCOMIC.COM

Embora o epitélio escamoso metaplásico possua vantagens de sobrevivência, importantes mecanismos de proteção são perdidos

As influências que induzem a transformação metaplásica, se persistirem, podem predispor à transformação maligna do epitélio.

Mas a metaplasia é reversível se o estímulo for retirado

- Não há modulação fenotípica de células maduras!
 - Reprogramação de células-tronco do tecido ou células mesenquimais indiferenciadas;
 - Estímulos externos promovem a expressão de genes para a diferenciação;