

Universidad Tecnológica de la Mixteca

Clave DGP:

Doctorado en Inteligencia Artificial

00046

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
APRENDIZAJE AUTOMÁTICO EN REDES COMPLEJAS	-

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercero	351306GC	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer diferentes problemas de aprendizaje automático que pueden surgir cuando los conjuntos de datos están representados utilizando grafos. El estudiante aprenderá cómo modelar conjuntos de datos tabulares a través de grafos. El estudiante aprenderá técnicas de aprendizaje automático no-supervisado y supervisado de grafos, incluyendo técnicas de incrustación de grafos y redes neuronales de grafos, y aprenderá a utilizar estas técnicas para resolver problemas prácticos en grafos como detección de comunidades y predicción de enlaces.

TEMAS Y SUBTEMAS

1. Introducción a las redes complejas

- 1.1. Introducción.
- 1.2. Caracterización de redes complejas.
- 1.3. Propiedades de las redes complejas.
- 1.4. Bibliotecas de análisis de grafos.

2. Aprendizaje automático en grafos

- 2.1. Tipos de aprendizaje automático.
- 2.2. Aprendizaje automático en grafos.
- Aplicaciones.

3. Conjuntos de datos de redes complejas

- 3.1. Modelos de grafos aleatorios.
- 3.2. Modelos de construcción de redes.
- 3.3. Conjuntos de datos de redes complejas.

4. Aprendizaje no supervisado en redes

- 4.1. Enfoque basado en características.
- 4.2. Incrustación de grafos.
- 4.3. Autocodificadores.
- 4.4. Redes neuronales de grafos (GNNs).

5. Aprendizaje supervisado en redes

- 5.1. Enfoque basado en características.
- 5.2. Incrustación de grafos.
- 5.3. Redes convolucionales de grafos (GCNs).

6. Problemas de aprendizaje automático en grafos

- 6.1. Detección de comunidades.
- 6.2. Predicción de enlaces.
- 6.3. Similaridad de grafos.

Universidad Tecnológica de la Mixteca

Clave DGP:

Doctorado en Inteligencia Artificial

00047

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

Exposición en clase por parte del profesor, tareas y proyectos individuales.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

El Capítulo II, De las Evaluaciones, del Reglamento General de Posgrado establece que, Artículo 33, la calificación final del alumno se obtendrá de tres evaluaciones parciales (50%) y un examen ordinario (50%), Artículo 32. Para cada evaluación parcial se indicará al inicio de semestre la modalidad de evaluación a utilizar, Artículo 24.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Graph theory and its applications. Jay Yellen, Jonathan L. Gross y Mark Anderson. Chapman & Hall/CRC, 1999.
- 2. Network Science. Albert Laszló-Barabási.. Cambridge University Press, 2016.

Consulta:

- **Graph machine learning.** Claudio Stamile, Aldo Marzullo y Enrico Deusebio. Packt. 2021.
- Graph-powered machine learning. Alessandro Negro. Manning, 2021.
- 3. Machine learning in complex networks. Thiago Christiano Silva y Liang Zhao. Springer, 2016.

PERFIL PROFESIONAL DEL DOCENTE

Estudios de Maestría o Doctorado en Matemáticas o Ciencias de la Computación.

DR. JOSÉ ANÍBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE OIVISION DE ESTUDIOS **POSGRADO**

DE POSGRADO

AUTORIZÓ DR. AGUSTÍN SANTIAGO ALVÁRADO

VICE-RECTOR ACAPÉMICOR ECTORIA