

Efficient feature extraction, encoding and classification for action recognition

Vadim Kantorov, Ivan Laptev INRIA – WILLOW / École Normale Supérieure, Paris, France

Goal

- Fast action recognition.
- State-of-the-art performance.

Motivation

- Huge amounts of video:
 - Decades of TV channels
 - 6000 years of new video each year
 - 5M years of video transfer per month in 2018
- Large-scale applications:
 - Video indexing
 - Surveillance
 - Augmented reality
- Current state-of-the-art methods for action recognition typically process ≈1 frame per second

Contributions

>100x speed-up of video feature extraction.

- 4x real-time action recognition (CPU).
- Minor decrease in recognition accuracy.
- Publicly available implementation http://www.di.ens.fr/willow/research/fastvideofeat

Related work

- [1] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 2013.
- [2] F. Shi, E. Petriu, and R. Laganiere. Sampling strategies for real-time action recognition. In CVPR, pages 2595–2602, 2013.
- [3] F. Perronnin and J. Sanchez. High-dimensional signature compression for large-scale image classification. In CVPR, 2012.
- [4] M. Muja and D. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISSAPP, pp. 331–340, 2009.

Approach

MPEG flow

- Estimated motion vectors are part of the most compressed video representations: MPEG, H-264, VP9.
- MPEG motion vectors are sparse, typically defined on a 16x16 pixel grid.
- The quality of MPEG flow is comparable to motion estimation by standard Optical Flow algorithms.

Motion in the synthetic MPI Sintel Flow dataset:

Motion in movie frames:

Local motion descriptor

- lacktriangle MPEG flow vectors (v_x, v_y) O Interpolated flow vectors $(\tilde{v}_x, \tilde{v}_y)$
- Use sparse MPEG flow vectors to compute **HOF**: Histograms of flow MBH: Motion boundary histograms
- Grid cells of two scales: 16x16 pixels, 5 frames 24x24 pixels, 5 frames

Descriptor aggregation

- Feature encoding and classification schemes: **Histogram** encoding + χ^2 kernel SVM **VLAD** + linear SVM Fisher Vector [3] + linear SVM
- Descriptor assignment using approximate Nearest Neighbor search (FLANN) [4].
- Approximate FV aggregation with updates of five nearest centroids only.

Results

5000 kbit/s

1000 kbit/s

500 kbit/s

Descriptor evaluation

	Classification		Speed	
Hollywood2	(mAP)		(fps)	
Histogram encoding	MF (our)	DT [1]	MF (our)	DT [1]
HOF	47.2%	52.9%	346.8	
MBHx	49.0%	52.0%	330.3	
MBHy	50.4%	56.1%	330.3	
HOF+MBHx+MBHy	53.9%	58.9%	218.7	
HOF+MBHx+MBHy+HOG	56.2%	60.0%	168.4	1.2

	mAP	
HOF+MBHx+MBHy+HOG (V0)	58.0%	-19
HOF+MBHx+MBHy+HOG (V*)	58.9%	-19
HOF+MBHx+MBHy+HOG [1]	60.0%	
HOF+MBHX+MBHY+HOG+TRAJ [1]	60.3%	
	_	

Trajectory information has limited influence on results

Parameter sensitivity

Sampling stride	mAP	fps
16	58.3%	35.2
8	58.6%	24.1
4	59.2%	13.7

	4	59.2%	13.7		250 kł
→ OF stride marginally affects accuracy				,	→ Stable

[→] Stable recognition across codecs and bit-rates

xvid

58.9%

x264

57.5%

57.4%

57.1%

57.0%

Comparison to the state of the art

Hollywood 2

		Feat.	Quant.	Total	
	Acc.	(fps)	(fps)	(fps)	
MF FLANN(4-32)	55.8%		52.4	40.0	
MF VLAD(4)	56.7%	168.4	167.5	84.0	
MF FV(32)	58.2%		40.9	32.9	
DT [1]	59.9%	1.2	5.1	1.0	
		•	•		_

HMDB 51

MF ALL FV(32)

MF MBH FV(32)

MBH [2]

DT [1]

HOG3D [2]

MF ALL VLAD(32)

48.3%

	Feat.	Quant.	Total			
Acc.	(fps)	(fps)	(fps)			
46.7%	455.6	129.7	101.0			
45.4%	683.3	268.0	192.5			
46.3%	455.6	455.6	227.8			
41.1%	33.9	267.1	30.8			
33.3%	49.6	290.8	42.2			

UCF 50

					L
	Acc.	(fps)	(fps)	(fps)	
IF FLANN(4-32)	81.6%		52.4	48.1	
IF VLAD(4)	80.6%	591.8	671.4	314.6	
4F FV(32)	82.2%		171.3	132.8	
OT [1]	85.6%	2.8	5.1	1.8	

