

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- → improved Dijkstra's algorithm demo

Last updated on Sep 8, 2013 6:19 AM

Algorithm Design Jon Kleinberg - Éva tardos

SECTION 4.4

4. GREEDY ALGORITHMS II

- ▶ Dijkstra's algorithm demo
- ▶ improved Dijkstra's algorithm demo

Dijkstra's algorithm demo

Copyright © 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node *v* which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node *v* which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

6

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

9

Algorithm Design

SECTION 4.4

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- ▶ improved Dijkstra's algorithm demo

Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add *u* to *S*

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
- for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
- add *u* to *S*

13

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add *u* to *S*

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
- for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
- add *u* to *S*

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add *u* to *S*

. .

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
- for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
- add *u* to *S*

17

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add *u* to *S*

10

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
- for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
- add *u* to *S*

0 13 14 S 7 8

Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add *u* to *S*

