C++ Special Math Functions 2.0

Generated by Doxygen 1.8.13

Contents

1	Todo) List													1
2	Mod	ule Inde	ex												3
	2.1	Module	es						 	 	 	 	 	 	3
3	Nam	espace	Index												5
	3.1	Names	space List						 	 	 	 	 	 	5
4	Hier	archica	l Index												7
	4.1	Class I	Hierarchy						 	 	 	 	 	 	7
5	Clas	s Index													9
	5.1	Class I	List						 	 	 	 	 	 	9
6	File	Index													11
	6.1	File Lis	st						 	 	 	 	 	 	11
7	Mod	ule Doc	umentatio	on											13
	7.1		/IS29124		atical Sp	oecial f	Function	ons .	 	 	 	 	 	 	13
		7.1.1	Detailed	Descript	tion .				 	 	 	 	 	 	15
		7.1.2	Function	Docume	entation				 	 	 	 	 	 	15
			7.1.2.1	assoc_	_laguerr	e() [1/	/2] .		 	 	 	 	 	 	15
			7.1.2.2	assoc_	_laguerr	e() [2/	/2] .		 	 	 	 	 	 	16
			7.1.2.3	assoc	laguerr	ef() .			 	 	 	 	 	 	18

ii CONTENTS

7.1.2.4	assoc_laguerrel()	 18
7.1.2.5	assoc_legendre()	 19
7.1.2.6	assoc_legendref()	 19
7.1.2.7	assoc_legendrel()	 20
7.1.2.8	beta()	 20
7.1.2.9	betaf()	 21
7.1.2.10	betal()	 21
7.1.2.11	comp_ellint_1()	 22
7.1.2.12	comp_ellint_1f()	 22
7.1.2.13	B comp_ellint_1I()	 23
7.1.2.14	comp_ellint_2()	 23
7.1.2.15	comp_ellint_2f()	 24
7.1.2.16	6 comp_ellint_2l()	 24
7.1.2.17	comp_ellint_3()	 24
7.1.2.18	B comp_ellint_3f()	 25
7.1.2.19	o comp_ellint_3I()	 25
7.1.2.20	o cyl_bessel_i()	 26
7.1.2.21	cyl_bessel_if()	 26
7.1.2.22	? cyl_bessel_il()	 27
7.1.2.23	B cyl_bessel_j()	 27
7.1.2.24	cyl_bessel_jf()	 28
7.1.2.25	cyl_bessel_jl()	 28
7.1.2.26	cyl_bessel_k()	 28
7.1.2.27	' cyl_bessel_kf()	 29
7.1.2.28	B cyl_bessel_kl()	 29
7.1.2.29	cyl_neumann()	 30
7.1.2.30	cyl_neumannf()	 30
7.1.2.31	cyl_neumannl()	 31

CONTENTS

7.1.2.32	? ellint_1()	٠.	31
7.1.2.33	8 ellint_1f()		32
7.1.2.34	ellint_1I()		32
7.1.2.35	6 ellint_2()		32
7.1.2.36	6 ellint_2f()		33
7.1.2.37	' ellint_2I()		33
7.1.2.38	8 ellint_3()		34
7.1.2.39	ellint_3f()		35
7.1.2.40	ellint_3I()		35
7.1.2.41	expint()		35
7.1.2.42	expintf()		36
7.1.2.43	8 expintl()		36
7.1.2.44	hermite()		37
7.1.2.45	6 hermitef()		37
7.1.2.46	6 hermitel()		38
7.1.2.47	/ laguerre()		38
7.1.2.48	B laguerref()		39
7.1.2.49	laguerrel()		39
7.1.2.50	legendre()		39
7.1.2.51	legendref()		40
7.1.2.52	? legendrel()		40
7.1.2.53	riemann_zeta()		41
7.1.2.54	riemann_zetaf()		41
7.1.2.55	riemann_zetal()		42
7.1.2.56	5 sph_bessel()		42
7.1.2.57	7 sph_besself()		43
7.1.2.58	8 sph_bessell()		43
7.1.2.59	9 sph_legendre()		43

iv CONTENTS

		7.1.2.60	sph_legendref()	 44
		7.1.2.61	sph_legendrel()	 44
		7.1.2.62	sph_neumann()	 45
		7.1.2.63	sph_neumannf()	 45
		7.1.2.64	sph_neumannl()	 46
7.2	GNU E	Extended M	Mathematical Special Functions	 47
	7.2.1	Detailed	Description	 60
	7.2.2	Function	Documentation	 60
		7.2.2.1	airy_ai() [1/2]	 60
		7.2.2.2	airy_ai() [2/2]	 61
		7.2.2.3	airy_aif()	 61
		7.2.2.4	airy_ail()	 62
		7.2.2.5	airy_bi() [1/2]	 62
		7.2.2.6	airy_bi() [2/2]	 62
		7.2.2.7	airy_bif()	 63
		7.2.2.8	airy_bil()	 63
		7.2.2.9	assoc_legendre_q()	 64
		7.2.2.10	assoc_legendre_qf()	 64
		7.2.2.11	assoc_legendre_ql()	 65
		7.2.2.12	bell() [1/2]	 65
		7.2.2.13	bell() [2/2]	 66
		7.2.2.14	bernoulli() [1/2]	 66
		7.2.2.15	bernoulli() [2/2]	 66
		7.2.2.16	bernoullif()	 67
		7.2.2.17	bernoullil()	 67
		7.2.2.18	binomial()	 68
		7.2.2.19	binomial_p()	 68
		7.2.2.20	binomial_pdf()	 69

CONTENTS

7.2.2.21	binomialf()	 69
7.2.2.22	binomiall()	 70
7.2.2.23	bose_einstein()	 70
7.2.2.24	bose_einsteinf()	 71
7.2.2.25	bose_einsteinl()	 71
7.2.2.26	chebyshev_t()	 71
7.2.2.27	chebyshev_tf()	 72
7.2.2.28	chebyshev_tl()	 72
7.2.2.29	chebyshev_u()	 73
7.2.2.30	chebyshev_uf()	 73
7.2.2.31	chebyshev_ul()	 74
7.2.2.32	chebyshev_v()	 74
7.2.2.33	chebyshev_vf()	 75
7.2.2.34	chebyshev_vI()	 75
7.2.2.35	chebyshev_w()	 75
7.2.2.36	chebyshev_wf()	 76
7.2.2.37	chebyshev_wl()	 76
7.2.2.38	clausen() [1/2]	 77
7.2.2.39	clausen() [2/2]	 77
7.2.2.40	clausen_cl()	 78
7.2.2.41	clausen_clf()	 78
7.2.2.42	clausen_cll()	 79
7.2.2.43	clausen_sl()	 79
7.2.2.44	clausen_slf()	 80
7.2.2.45	clausen_sll()	 80
7.2.2.46	clausenf() [1/2]	 80
7.2.2.47	clausenf() [2/2]	 81
7.2.2.48	clausenl() [1/2]	 81

vi CONTENTS

7.2.2.49	clausenl() [2/2]	81
7.2.2.50	comp_ellint_d()	81
7.2.2.51	comp_ellint_df()	82
7.2.2.52	comp_ellint_dl()	82
7.2.2.53	comp_ellint_rf() [1/3]	83
7.2.2.54	comp_ellint_rf() [2/3]	83
7.2.2.55	comp_ellint_rf() [3/3]	83
7.2.2.56	comp_ellint_rg() [1/3]	84
7.2.2.57	comp_ellint_rg() [2/3]	84
7.2.2.58	comp_ellint_rg() [3/3]	84
7.2.2.59	conf_hyperg()	85
7.2.2.60	conf_hyperg_lim()	85
7.2.2.61	conf_hyperg_limf()	86
7.2.2.62	conf_hyperg_liml()	86
7.2.2.63	conf_hypergf()	87
7.2.2.64	conf_hypergl()	87
7.2.2.65	cos_pi()	87
7.2.2.66	cos_pif()	88
7.2.2.67	cos_pil()	88
7.2.2.68	cosh_pi()	88
7.2.2.69	cosh_pif()	89
7.2.2.70	cosh_pil()	89
7.2.2.71	coshint()	89
7.2.2.72	coshintf()	90
7.2.2.73	coshintl()	90
7.2.2.74	cosint()	90
7.2.2.75	cosintf()	91
7.2.2.76	cosintl()	91

CONTENTS vii

7.2.2.77 cyl_hankel_1() [1/2]
7.2.2.78 cyl_hankel_1() [2/2]
7.2.2.79 cyl_hankel_1f() [1/2]
7.2.2.80 cyl_hankel_1f() [2/2] 93
7.2.2.81 cyl_hankel_1I() [1/2]
7.2.2.82 cyl_hankel_1l() [2/2]
7.2.2.83 cyl_hankel_2() [1/2]
7.2.2.84 cyl_hankel_2() [2/2]
7.2.2.85 cyl_hankel_2f() [1/2]
7.2.2.86 cyl_hankel_2f() [2/2]
7.2.2.87 cyl_hankel_2l() [1/2]
7.2.2.88 cyl_hankel_2l() [2/2]
7.2.2.89 dawson()
7.2.2.90 dawsonf()
7.2.2.91 dawsonl()
7.2.2.92 debye()
7.2.2.93 debyef()
7.2.2.94 debyel()
7.2.2.95 digamma()
7.2.2.96 digammaf()
7.2.2.97 digammal()
7.2.2.98 dilog()
7.2.2.99 dilogf()
7.2.2.100 dilogl()
7.2.2.101 dirichlet_beta()
7.2.2.102 dirichlet_betaf()
7.2.2.103 dirichlet_betal()
7.2.2.104 dirichlet_eta()

viii CONTENTS

7.2.2.105 dirichlet_etaf()
7.2.2.106 dirichlet_etal()
7.2.2.107 dirichlet_lambda()
7.2.2.108 dirichlet_lambdaf()
7.2.2.109 dirichlet_lambdal()
7.2.2.110 double_factorial()
7.2.2.111 double_factorialf()
7.2.2.112 double_factoriall()
7.2.2.113 ellint_cel()
7.2.2.114 ellint_celf()
7.2.2.115 ellint_cell()
7.2.2.116 ellint_d()
7.2.2.117 ellint_df()
7.2.2.118 ellint_dl()
7.2.2.119 ellint_el1()
7.2.2.120 ellint_el1f()
7.2.2.121 ellint_el1l()
7.2.2.122 ellint_el2()
7.2.2.123 ellint_el2f()
7.2.2.124 ellint_el2l()
7.2.2.125 ellint_el3()
7.2.2.126 ellint_el3f()
7.2.2.127 ellint_el3l()
7.2.2.128 ellint_rc()
7.2.2.129 ellint_rcf()
7.2.2.130 ellint_rcl()
7.2.2.131 ellint_rd()
7.2.2.132 ellint_rdf()

CONTENTS ix

7.2.2.133 ellint_rdl()
7.2.2.134 ellint_rf()
7.2.2.135 ellint_rff()
7.2.2.136 ellint_rfl()
7.2.2.137 ellint_rg()
7.2.2.138 ellint_rgf()
7.2.2.139 ellint_rgl()
7.2.2.140 ellint_rj()
7.2.2.141 ellint_rjf()
7.2.2.142 ellint_rjl()
7.2.2.143 ellnome()
7.2.2.144 ellnomef()
7.2.2.145 ellnomel()
7.2.2.146 euler()
7.2.2.147 eulerian_1() [1/2]
7.2.2.148 eulerian_1() [2/2]
7.2.2.149 eulerian_2()
7.2.2.150 expint()
7.2.2.151 expintf()
7.2.2.152 expintl()
7.2.2.153 exponential_p()
7.2.2.154 exponential_pdf()
7.2.2.155 factorial()
7.2.2.156 factorialf()
7.2.2.157 factoriall()
7.2.2.158 falling_factorial()
7.2.2.159 falling_factorialf()
7.2.2.160 falling_factoriall()

CONTENTS

7.2.2.161 fermi_dirac()
7.2.2.162 fermi_diracf()
7.2.2.163 fermi_diracl()
7.2.2.164 fisher_f_p()
7.2.2.165 fisher_f_pdf()
7.2.2.166 fresnel_c()
7.2.2.167 fresnel_cf()
7.2.2.168 fresnel_cl()
7.2.2.169 fresnel_s()
7.2.2.170 fresnel_sf()
7.2.2.171 fresnel_sl()
7.2.2.172 gamma_p()
7.2.2.173 gamma_pdf()
7.2.2.174 gamma_pf()
7.2.2.175 gamma_pl()
7.2.2.176 gamma_q()
7.2.2.177 gamma_qf()
7.2.2.178 gamma_ql()
7.2.2.179 gamma_reciprocal()
7.2.2.180 gamma_reciprocalf()
7.2.2.181 gamma_reciprocall()
7.2.2.182 gegenbauer()
7.2.2.183 gegenbauerf()
7.2.2.184 gegenbauerl()
7.2.2.185 harmonic()
7.2.2.186 heuman_lambda()
7.2.2.187 heuman_lambdaf()
7.2.2.188 heuman_lambdal()

CONTENTS xi

7.2.2.189 hurwitz_zeta() [1/2]
7.2.2.190 hurwitz_zeta() [2/2]
7.2.2.191 hurwitz_zetaf()
7.2.2.192 hurwitz_zetal()
7.2.2.193 hyperg()
7.2.2.194 hypergf()
7.2.2.195 hypergl()
7.2.2.196 ibeta()
7.2.2.197 ibetac()
7.2.2.198 ibetacf()
7.2.2.199 ibetacl()
7.2.2.200 ibetaf()
7.2.2.201 ibetal()
7.2.2.202 jacobi()
7.2.2.203 jacobi_cn()
7.2.2.204 jacobi_cnf()
7.2.2.205 jacobi_cnl()
7.2.2.206 jacobi_dn()
7.2.2.207 jacobi_dnf()
7.2.2.208 jacobi_dnl()
7.2.2.209 jacobi_sn()
7.2.2.210 jacobi_snf()
7.2.2.211 jacobi_snl()
7.2.2.212 jacobi_theta_1()
7.2.2.213 jacobi_theta_1f()
7.2.2.214 jacobi_theta_1I()
7.2.2.215 jacobi_theta_2()
7.2.2.216 jacobi_theta_2f()

xii CONTENTS

7.2.2.217 jacobi_theta_2l()
7.2.2.218 jacobi_theta_3()
7.2.2.219 jacobi_theta_3f()
7.2.2.220 jacobi_theta_3l()
7.2.2.221 jacobi_theta_4()
7.2.2.222 jacobi_theta_4f()
7.2.2.223 jacobi_theta_4l()
7.2.2.224 jacobi_zeta()
7.2.2.225 jacobi_zetaf()
7.2.2.226 jacobi_zetal()
7.2.2.227 jacobif()
7.2.2.228 jacobil()
7.2.2.229 lah() [1/2]
7.2.2.230 lah() [2/2]
7.2.2.231 lbinomial()
7.2.2.232 lbinomialf()
7.2.2.233 lbinomiall()
7.2.2.234
7.2.2.235 Idouble_factorialf()
7.2.2.236 Idouble_factoriall()
7.2.2.237 legendre_q()
7.2.2.238 legendre_qf()
7.2.2.239 legendre_ql()
7.2.2.240 lerch_phi()
7.2.2.241 lerch_phif()
7.2.2.242 lerch_phil()
7.2.2.243 factorial()
7.2.2.244 factorial f()

CONTENTS xiii

7.2.2.245
7.2.2.246
7.2.2.247
7.2.2.248
7.2.2.249 lgamma() [1/2]
7.2.2.250 lgamma() [2/2]
7.2.2.251 lgammaf() [1/2]
7.2.2.252 lgammaf() [2/2]
7.2.2.253 lgammal() [1/2]
7.2.2.254 lgammal() [2/2]
7.2.2.255 logint()
7.2.2.256 logintf()
7.2.2.257 logintl()
7.2.2.258 logistic_p()
7.2.2.259 logistic_pdf()
7.2.2.260 lognormal_p()
7.2.2.261 lognormal_pdf()
7.2.2.262 Irising_factorial()
7.2.2.263 Irising_factorialf()
7.2.2.264
7.2.2.265 mittag_leffler()
7.2.2.266 normal_p()
7.2.2.267 normal_pdf()
7.2.2.268 owens_t()
7.2.2.269 owens_tf()
7.2.2.270 owens_tl()
7.2.2.271 periodic_zeta() [1/2]
7.2.2.272 periodic_zeta() [2/2]169

xiv CONTENTS

7.2.2.273 periodic_zetaf()
7.2.2.274 periodic_zetal()
7.2.2.275 polygamma()
7.2.2.276 polygammaf()
7.2.2.277 polygammal()
7.2.2.278 polylog() [1/2]
7.2.2.279 polylog() [2/2]
7.2.2.280 polylogf() [1/2]
7.2.2.281 polylogf() [2/2]
7.2.2.282 polylogl() [1/2]
7.2.2.283 polylogl() [2/2]
7.2.2.284 radpoly()
7.2.2.285 radpolyf()
7.2.2.286 radpolyl()
7.2.2.287 rising_factorial()
7.2.2.288 rising_factorialf()
7.2.2.289 rising_factoriall()
7.2.2.290 sin_pi()
7.2.2.291 sin_pif()
7.2.2.292 sin_pil()
7.2.2.293 sinc()
7.2.2.294 sinc_pi()
7.2.2.295 sinc_pif()
7.2.2.296 sinc_pil()
7.2.2.297 sincf()
7.2.2.298 sincl()
7.2.2.299 sincos() [1/2]
7.2.2.300 sincos() [2/2]

CONTENTS xv

7.2.2.301 sincos_pi()
7.2.2.302 sincos_pif()
7.2.2.303 sincos_pil()
7.2.2.304 sincosf()
7.2.2.305 sincosl()
7.2.2.306 sinh_pi()
7.2.2.307 sinh_pif()
7.2.2.308 sinh_pil()
7.2.2.309 sinhc()
7.2.2.310 sinhc_pi()
7.2.2.311 sinhc_pif()
7.2.2.312 sinhc_pil()
7.2.2.313 sinhcf()
7.2.2.314 sinhcl()
7.2.2.315 sinhint()
7.2.2.316 sinhintf()
7.2.2.317 sinhintl()
7.2.2.318 sinint()
7.2.2.319 sinintf()
7.2.2.320 sinintl()
7.2.2.321 sph_bessel_i()
7.2.2.322 sph_bessel_if()
7.2.2.323 sph_bessel_il()
7.2.2.324 sph_bessel_k()
7.2.2.325 sph_bessel_kf()
7.2.2.326 sph_bessel_kl()
7.2.2.327 sph_hankel_1() [1/2]
7.2.2.328 sph_hankel_1() [2/2]

xvi CONTENTS

7.2.2.329 sph_hankel_1f() [1/2]
7.2.2.330 sph_hankel_1f() [2/2]
7.2.2.331 sph_hankel_1l() [1/2]
7.2.2.332 sph_hankel_1I() [2/2]
7.2.2.333 sph_hankel_2() [1/2]
7.2.2.334 sph_hankel_2() [2/2]193
7.2.2.335 sph_hankel_2f() [1/2]
7.2.2.336 sph_hankel_2f() [2/2]
7.2.2.337 sph_hankel_2l() [1/2]
7.2.2.338 sph_hankel_2l() [2/2]
7.2.2.339 sph_harmonic()
7.2.2.340 sph_harmonicf()
7.2.2.341 sph_harmonicl()
7.2.2.342 stirling_1() [1/2]
7.2.2.343 stirling_1() [2/2]
7.2.2.344 stirling_2() [1/2]
7.2.2.345 stirling_2() [2/2]
7.2.2.346 student_t_p()
7.2.2.347 student_t_pdf()
7.2.2.348 tan_pi()
7.2.2.349 tan_pif()
7.2.2.350 tan_pil()
7.2.2.351 tanh_pi()
7.2.2.352 tanh_pif()
7.2.2.353 tanh_pil()
7.2.2.354 tgamma() [1/3]
7.2.2.355 tgamma() [2/3]
7.2.2.356 tgamma() [3/3]

CONTENTS xvii

7.2.2.357 tgamma_lower()
7.2.2.358 tgamma_lowerf()
7.2.2.359 tgamma_lowerl()
7.2.2.360 tgammaf() [1/3]
7.2.2.361 tgammaf() [2/3]
7.2.2.362 tgammaf() [3/3]
7.2.2.363 tgammal() [1/3]
7.2.2.364 tgammal() [2/3]
7.2.2.365 tgammal() [3/3]
7.2.2.366 theta_1()
7.2.2.367 theta_1f()
7.2.2.368 theta_1I()
7.2.2.369 theta_2()
7.2.2.370 theta_2f()
7.2.2.371 theta_2l()
7.2.2.372 theta_3()
7.2.2.373 theta_3f()
7.2.2.374 theta_3I()
7.2.2.375 theta_4()
7.2.2.376 theta_4f()
7.2.2.377 theta_4l()
7.2.2.378 theta_c()
7.2.2.379 theta_cf()
7.2.2.380 theta_cl()
7.2.2.381 theta_d()
7.2.2.382 theta_df()
7.2.2.383 theta_dl()
7.2.2.384 theta_n()

xviii CONTENTS

		7.2.2.385	theta_nf()	2
		7.2.2.386	theta_nl()	2
		7.2.2.387	theta_s()	3
		7.2.2.388	theta_sf()	3
		7.2.2.389	theta_sl()	4
		7.2.2.390	tricomi_u()	4
		7.2.2.391	tricomi_uf()	5
		7.2.2.392	tricomi_ul()	5
		7.2.2.393	weibull_p()	5
		7.2.2.394	weibull_pdf()	6
		7.2.2.395	zernike()	6
		7.2.2.396	zernikef()	7
		7.2.2.397	zernikel()	7
7.3	Mathe	matical Sp	ecial Functions	8
	7.3.1	Detailed	Description	8
	7.3.2	Mathema	tical Special Functions	8
		7.3.2.1	Introduction and History	8
		7.3.2.2	Contents	9
		7.3.2.3	Argument Promotion	3
		7.3.2.4	NaN Arguments	3
		7.3.2.5	Implementation	3
		7.3.2.6	Testing	3
		7.3.2.7	General Bibliography	4

CONTENTS xix

Nam	espace	e Documentation	225
8.1	gnu	_cxx Namespace Reference	. 225
	8.1.1	Enumeration Type Documentation	. 239
		8.1.1.1 gauss_quad_type	. 239
	8.1.2	Function Documentation	. 240
		8.1.2.1fp_is_equal()	. 240
		8.1.2.2fp_is_even_integer()	. 241
		8.1.2.3fp_is_half_integer()	. 241
		8.1.2.4fp_is_half_odd_integer()	. 242
		8.1.2.5fp_is_integer()	. 242
		8.1.2.6fp_is_odd_integer()	. 243
		8.1.2.7fp_is_zero()	. 243
		8.1.2.8fp_max_abs()	. 244
		8.1.2.9parity()	. 244
8.2	std Na	amespace Reference	. 244
8.3	std::	_detail Namespace Reference	. 246
	8.3.1	Detailed Description	. 271
	8.3.2	Function Documentation	. 271
		8.3.2.1airy()	. 271
		8.3.2.2airy_ai()	. 272
		8.3.2.3airy_arg()	. 272
		8.3.2.4airy_bi()	. 273
		8.3.2.5assoc_laguerre()	. 273
		8.3.2.6assoc_legendre_p()	. 274
		8.3.2.7assoc_legendre_q()	. 275
		8.3.2.8bell() [1/2]	. 275
		8.3.2.9bell() [2/2]	. 275
		8.3.2.10bell_series()	. 276
	8.1	8.1gnu 8.1.1 8.1.2 8.2 std Na 8.3 std: 8.3.1	8.1.1 Enumeration Type Documentation 8.1.1.1 gauss_quad_type 8.1.2 Function Documentation 8.1.2.1fp_is_equal() 8.1.2.2fp_is_even_integer() 8.1.2.3fp_is_half_integer() 8.1.2.4fp_is_half_odd_integer() 8.1.2.5fp_is_integer() 8.1.2.6fp_is_odd_integer() 8.1.2.7fp_is_zero() 8.1.2.8fp_max_abs() 8.1.2.9parity() 8.1.2.9parity() 8.1.2.1detail Namespace Reference 8.3 std::detail Namespace Reference 8.3.1 Detailed Description 8.3.2 Function Documentation 8.3.2.1airy() 8.3.2.2airy_ai() 8.3.2.3airy_arg() 8.3.2.4airy_bi() 8.3.2.5assoc_legendre_p() 8.3.2.6assoc_legendre_p() 8.3.2.7assoc_legendre_q() 8.3.2.8bell() [1/2] 8.3.2.9bell() [1/2] 8.3.2.9bell() [1/2]

XX CONTENTS

8.3.2.11bernoulli() [1/2]	276
8.3.2.12bernoulli() [2/2]	277
8.3.2.13bernoulli_2n()	277
8.3.2.14bernoulli_series()	278
8.3.2.15beta()	278
8.3.2.16beta_gamma()	279
8.3.2.17beta_inc()	280
8.3.2.18beta_lgamma()	280
8.3.2.19beta_p()	281
8.3.2.20beta_product()	281
8.3.2.21binomial() [1/2]	282
8.3.2.22binomial() [2/2]	283
8.3.2.23binomial_p()	283
8.3.2.24binomial_pdf()	284
8.3.2.25binomial_q()	284
8.3.2.26bose_einstein()	285
8.3.2.27cauchy_p()	286
8.3.2.28chebyshev_recur()	286
8.3.2.29chebyshev_t()	287
8.3.2.30chebyshev_u()	287
8.3.2.31chebyshev_v()	288
8.3.2.32chebyshev_w()	289
8.3.2.33chi_squared_pdf()	289
8.3.2.34chi_squared_pdfc()	290
8.3.2.35chshint()	290
8.3.2.36chshint_cont_frac()	291
8.3.2.37chshint_series()	291
8.3.2.38clamp_0_m2pi()	291

CONTENTS xxi

8.3.2.39clamp_pi()	}2
8.3.2.40clausen() [1/2]	92
8.3.2.41clausen() [2/2]	92
8.3.2.42clausen_cl() [1/2]	€
8.3.2.43clausen_cl() [2/2]	94
8.3.2.44clausen_sl() [1/2])4
8.3.2.45clausen_sl() [2/2]	€
8.3.2.46comp_ellint_1()	€
8.3.2.47comp_ellint_2()	97
8.3.2.48comp_ellint_3()	98
8.3.2.49comp_ellint_d()	98
8.3.2.50comp_ellint_rf()	99
8.3.2.51comp_ellint_rg()	99
8.3.2.52conf_hyperg()	99
8.3.2.53conf_hyperg_lim())0
8.3.2.54conf_hyperg_lim_series())0
8.3.2.55conf_hyperg_luke())1
8.3.2.56conf_hyperg_series())1
8.3.2.57cos_pi() [1/2])2
8.3.2.58cos_pi() [2/2])2
8.3.2.59cosh_pi() [1/2])3
8.3.2.60cosh_pi() [2/2])3
8.3.2.61coshint())3
8.3.2.62coulomb_CF1())4
8.3.2.63coulomb_CF2())4
8.3.2.64coulomb_f_recur())5
8.3.2.65coulomb_g_recur())5
8.3.2.66coulomb_norm())5

xxii CONTENTS

8.3.2.67cyl_bessel()	ე6
8.3.2.68cyl_bessel_i()	06
8.3.2.69cyl_bessel_ij_series())7
8.3.2.70cyl_bessel_ik()	38
8.3.2.71cyl_bessel_ik_asymp()	38
8.3.2.72cyl_bessel_ik_steed())9
8.3.2.73cyl_bessel_j())9
8.3.2.74cyl_bessel_jn()	10
8.3.2.75cyl_bessel_jn_asymp()	10
8.3.2.76cyl_bessel_jn_neg_arg()	11
8.3.2.77cyl_bessel_jn_steed()	11
8.3.2.78cyl_bessel_k()	12
8.3.2.79cyl_hankel_1() [1/2]	13
8.3.2.80cyl_hankel_1() [2/2]	13
8.3.2.81cyl_hankel_2() [1/2]	14
8.3.2.82cyl_hankel_2() [2/2]	14
8.3.2.83cyl_neumann()	15
8.3.2.84cyl_neumann_n()	15
8.3.2.85dawson()	16
8.3.2.86dawson_cont_frac()	16
8.3.2.87dawson_series()	17
8.3.2.88debye()	17
8.3.2.89debye_region()	18
8.3.2.90digamma() [1/2]	18
8.3.2.91digamma() [2/2]	19
8.3.2.92digamma_asymp()	19
8.3.2.93digamma_series()	20
8.3.2.94dilog()	20

CONTENTS xxiii

8.3.2.95dirichlet_beta() [1/2]
8.3.2.96dirichlet_beta() [2/2]
8.3.2.97dirichlet_eta() [1/2]
8.3.2.98dirichlet_eta() [2/2]
8.3.2.99dirichlet_lambda()
8.3.2.100double_factorial()
8.3.2.101ellint_1()
8.3.2.102ellint_2()
8.3.2.103ellint_3()
8.3.2.104ellint_cel()
8.3.2.105ellint_d()
8.3.2.106ellint_el1()
8.3.2.107ellint_el2()
8.3.2.108ellint_el3()
8.3.2.109ellint_rc()
8.3.2.110ellint_rd()
8.3.2.111ellint_rf()
8.3.2.112ellint_rg()
8.3.2.113ellint_rj()
8.3.2.114ellnome()
8.3.2.115ellnome_k()
8.3.2.116ellnome_series()
8.3.2.117euler() [1/2]
8.3.2.118euler() [2/2]
8.3.2.119euler_series()
8.3.2.120eulerian_1() [1/2]334
8.3.2.121eulerian_1() [2/2]334
8.3.2.122eulerian_1_recur() [1/2]334

xxiv CONTENTS

8.3.2.123eulerian_1_recur() [2/2]
8.3.2.124eulerian_2() [1/2]335
8.3.2.125eulerian_2() [2/2]335
8.3.2.126eulerian_2_recur() [1/2]
8.3.2.127eulerian_2_recur() [2/2]
8.3.2.128exp2()
8.3.2.129expint() [1/2]
8.3.2.130expint() [2/2]
8.3.2.131expint_E1()
8.3.2.132expint_E1_asymp()
8.3.2.133expint_E1_series()
8.3.2.134expint_Ei()
8.3.2.135expint_Ei_asymp()
8.3.2.136expint_Ei_series()
8.3.2.137expint_En_asymp()
8.3.2.138expint_En_cont_frac()
8.3.2.139expint_En_large_n()
8.3.2.140expint_En_recursion()
8.3.2.141expint_En_series()
8.3.2.142exponential_p()
8.3.2.143exponential_pdf()
8.3.2.144exponential_q()
8.3.2.145factorial()
8.3.2.146falling_factorial() [1/2]
8.3.2.147falling_factorial() [2/2]
8.3.2.148fermi_dirac()
8.3.2.149fisher_f_p()
8.3.2.150fisher_f_pdf()

CONTENTS XXV

8.3.2.151fisher_f_q()
8.3.2.152fock_airy()
8.3.2.153fresnel()
8.3.2.154fresnel_cont_frac()
8.3.2.155fresnel_series()
8.3.2.156gamma() [1/2]
8.3.2.157gamma() [2/2]
8.3.2.158gamma_cont_frac()
8.3.2.159gamma_p() [1/2]
8.3.2.160gamma_p() [2/2]
8.3.2.161gamma_pdf()
8.3.2.162gamma_q() [1/2]
8.3.2.163gamma_q() [2/2]
8.3.2.164gamma_reciprocal()
8.3.2.165gamma_reciprocal_series()
8.3.2.166gamma_series()
8.3.2.167gamma_temme()
8.3.2.168gauss()
8.3.2.169gegenbauer_recur()
8.3.2.170gegenbauer_zeros()
8.3.2.171hankel()
8.3.2.172hankel_debye()
8.3.2.173hankel_params()
8.3.2.174hankel_uniform()
8.3.2.175hankel_uniform_olver()
8.3.2.176hankel_uniform_outer()
8.3.2.177hankel_uniform_sum()
8.3.2.178harmonic_number()

xxvi CONTENTS

8.3.2.179hermite()	63
8.3.2.180hermite_asymp()	64
8.3.2.181hermite_recur()	64
8.3.2.182hermite_zeros()	65
8.3.2.183heuman_lambda()	66
8.3.2.184hurwitz_zeta()	66
8.3.2.185hurwitz_zeta_euler_maclaurin()	67
8.3.2.186hurwitz_zeta_polylog()	67
8.3.2.187hydrogen()	68
8.3.2.188hyperg()	68
8.3.2.189hyperg_luke()	69
8.3.2.190hyperg_recur()	69
8.3.2.191hyperg_reflect()	70
8.3.2.192hyperg_series()	71
8.3.2.193ibeta_cont_frac()	71
8.3.2.194jacobi_ellint()	72
8.3.2.195jacobi_recur()	72
8.3.2.196jacobi_theta_1() [1/2]	73
8.3.2.197jacobi_theta_1() [2/2]	74
8.3.2.198jacobi_theta_1_prod()	74
8.3.2.199jacobi_theta_1_sum()	75
8.3.2.200jacobi_theta_2() [1/2]	76
8.3.2.201jacobi_theta_2() [2/2]	77
8.3.2.202jacobi_theta_2_prod()	77
8.3.2.203jacobi_theta_2_sum()	78
8.3.2.204jacobi_theta_3() [1/2]	78
8.3.2.205jacobi_theta_3() [2/2]	79
8.3.2.206jacobi_theta_3_prod()	80

CONTENTS xxvii

8.3.2.207jacobi_theta_3_sum()
8.3.2.208jacobi_theta_4() [1/2]
8.3.2.209jacobi_theta_4() [2/2]
8.3.2.210jacobi_theta_4_prod()
8.3.2.211jacobi_theta_4_sum()
8.3.2.212jacobi_zeros()
8.3.2.213jacobi_zeta()
8.3.2.214kolmogorov_p()
8.3.2.215laguerre() [1/2]
8.3.2.216laguerre() [2/2]
8.3.2.217laguerre_hyperg()
8.3.2.218laguerre_large_n()
8.3.2.219laguerre_recur()
8.3.2.220laguerre_zeros()
8.3.2.221lah() [1/2]
8.3.2.222lah() [2/2]
8.3.2.223lah_recur() [1/2]
8.3.2.224lah_recur() [2/2]390
8.3.2.225lanczos_binet1p()
8.3.2.226lanczos_log_gamma1p()
8.3.2.227legendre_p()
8.3.2.228legendre_q()
8.3.2.229legendre_q_series()
8.3.2.230legendre_zeros()
8.3.2.231log_binomial() [1/2]393
8.3.2.232log_binomial() [2/2]394
8.3.2.233log_binomial_sign() [1/2]
8.3.2.234log_binomial_sign() [2/2]

xxviii CONTENTS

8.3.2.235log_double_factorial() [1/2]	. 396
8.3.2.236 log_double_factorial() [2/2]	. 396
8.3.2.237log_factorial()	. 397
8.3.2.238log_falling_factorial()	. 397
8.3.2.239log_gamma() [1/2]	. 397
8.3.2.240log_gamma() [2/2]	. 398
8.3.2.241log_gamma_bernoulli()	. 399
8.3.2.242log_gamma_sign() [1/2]	. 399
8.3.2.243log_gamma_sign() [2/2]	. 400
8.3.2.244log_rising_factorial()	. 400
8.3.2.245log_stirling_1()	. 400
8.3.2.246log_stirling_1_sign()	. 401
8.3.2.247log_stirling_2()	. 401
8.3.2.248logint()	. 401
8.3.2.249logistic_p()	. 402
8.3.2.250logistic_pdf()	. 402
8.3.2.251lognormal_p()	. 403
8.3.2.252lognormal_pdf()	. 403
8.3.2.253normal_p()	. 403
8.3.2.254normal_pdf()	. 404
8.3.2.255owens_t()	. 404
8.3.2.256periodic_zeta()	. 405
8.3.2.257polar_pi() [1/2]	. 405
8.3.2.258polar_pi() [2/2]	. 406
8.3.2.259polygamma()	. 406
8.3.2.260polylog() [1/2]	. 406
8.3.2.261polylog() [2/2]	. 407
8.3.2.262polylog_exp()	. 408

CONTENTS xxix

8.3.2.263polylog_exp_asymp()
8.3.2.264polylog_exp_neg() [1/2]
8.3.2.265polylog_exp_neg() [2/2]410
8.3.2.266polylog_exp_neg_int() [1/2]
8.3.2.267polylog_exp_neg_int() [2/2]
8.3.2.268polylog_exp_neg_real() [1/2]
8.3.2.269polylog_exp_neg_real() [2/2]
8.3.2.270polylog_exp_pos() [1/3]
8.3.2.271polylog_exp_pos() [2/3]414
8.3.2.272polylog_exp_pos() [3/3]414
8.3.2.273polylog_exp_pos_int() [1/2]
8.3.2.274polylog_exp_pos_int() [2/2]
8.3.2.275polylog_exp_pos_real() [1/2]
8.3.2.276polylog_exp_pos_real() [2/2]
8.3.2.277polylog_exp_sum()
8.3.2.278prob_hermite_recur()
8.3.2.279radial_jacobi()
8.3.2.280radial_jacobi_zeros()
8.3.2.281rice_pdf()
8.3.2.282riemann_zeta()
8.3.2.283riemann_zeta_euler_maclaurin()
8.3.2.284riemann_zeta_glob()
8.3.2.285riemann_zeta_laurent()
8.3.2.286riemann_zeta_m_1()
8.3.2.287riemann_zeta_m_1_glob()
8.3.2.288riemann_zeta_product()
8.3.2.289riemann_zeta_sum()
8.3.2.290rising_factorial() [1/2]

CONTENTS

8.3.2.291rising_factorial() [2/2]
8.3.2.292sin_pi() [1/2]
8.3.2.293sin_pi() [2/2]
8.3.2.294sinc()
8.3.2.295sinc_pi()
8.3.2.296sincos() [1/4]
8.3.2.297sincos() [2/4]
8.3.2.298sincos() [3/4]
8.3.2.299sincos() [4/4]
8.3.2.300sincos_pi()
8.3.2.301sincosint()
8.3.2.302sincosint_asymp()
8.3.2.303sincosint_cont_frac()
8.3.2.304sincosint_series()
8.3.2.305sinh_pi() [1/2]
8.3.2.306sinh_pi() [2/2]
8.3.2.307sinhc()
8.3.2.308sinhc_pi()
8.3.2.309sinhint()
8.3.2.310sph_bessel() [1/2]
8.3.2.311sph_bessel() [2/2]
8.3.2.312sph_bessel_ik()
8.3.2.313sph_bessel_jn()
8.3.2.314sph_bessel_jn_neg_arg()
8.3.2.315sph_hankel()
8.3.2.316sph_hankel_1() [1/2]
8.3.2.317sph_hankel_1() [2/2]
8.3.2.318sph_hankel_2() [1/2]

CONTENTS xxxi

8.3.2.319sph_hankel_2() [2/2]
8.3.2.320sph_harmonic()
8.3.2.321sph_legendre()
8.3.2.322sph_neumann() [1/2]
8.3.2.323sph_neumann() [2/2]
8.3.2.324spouge_binet1p()
8.3.2.325spouge_log_gamma1p()
8.3.2.326stirling_1() [1/2]
8.3.2.327stirling_1() [2/2]
8.3.2.328stirling_1_recur() [1/2]
8.3.2.329stirling_1_recur() [2/2]
8.3.2.330stirling_2() [1/2]443
8.3.2.331stirling_2() [2/2]
8.3.2.332stirling_2_recur() [1/2]
8.3.2.333stirling_2_recur() [2/2]
8.3.2.334stirling_2_series()
8.3.2.335student_t_p()
8.3.2.336student_t_pdf()
8.3.2.337student_t_q()
8.3.2.338tan_pi() [1/2]
8.3.2.339tan_pi() [2/2]
8.3.2.340tanh_pi() [1/2]
8.3.2.341tanh_pi() [2/2]
8.3.2.342tgamma()
8.3.2.343tgamma_lower()
8.3.2.344theta_1()
8.3.2.345theta_2()
8.3.2.346theta_2_asymp()

xxxii CONTENTS

	8.3.2.347theta_2_sum()
	8.3.2.348theta_3()
	8.3.2.349theta_3_asymp()
	8.3.2.350theta_3_sum()
	8.3.2.351theta_4()
	8.3.2.352theta_c()
	8.3.2.353theta_d()
	8.3.2.354theta_n()
	8.3.2.355theta_s()
	8.3.2.356tricomi_u()
	8.3.2.357tricomi_u_naive()
	8.3.2.358weibull_p()
	8.3.2.359weibull_pdf()
	8.3.2.360zernike()
	8.3.2.361znorm1()
	8.3.2.362znorm2()
8.3.3	Variable Documentation
	8.3.3.1max_FGH
	8.3.3.2max_FGH< double >
	8.3.3.3max_FGH< float >
	8.3.3.4 _Num_Euler_Maclaurin_zeta
	8.3.3.5 _Num_Stieltjes
	8.3.3.6 _S_double_factorial_table
	8.3.3.7 _S_Euler_Maclaurin_zeta
	8.3.3.8 _S_factorial_table
	8.3.3.9 _S_harmonic_denom
	8.3.3.10 _S_harmonic_numer
	8.3.3.11 _S_neg_double_factorial_table

CONTENTS xxxiii

			8.3.3.12 _S_num_double_factorials	30
			8.3.3.13 _S_num_double_factorials< double >	31
			8.3.3.14 _S_num_double_factorials< float >	31
			8.3.3.15 _S_num_double_factorials< long double >	31
			8.3.3.16 _S_num_factorials	31
			8.3.3.17 _S_num_factorials < double >	31
			8.3.3.18 _S_num_factorials < float >	32
			8.3.3.19 _S_num_factorials< long double >	32
			8.3.3.20 _S_num_harmonic_numer	32
			8.3.3.21 _S_num_neg_double_factorials	32
			8.3.3.22 _S_num_neg_double_factorials< double >	32
			8.3.3.23 _S_num_neg_double_factorials< float >	33
			8.3.3.24 _S_num_neg_double_factorials< long double >	33
			8.3.3.25 _S_num_zetam1	33
			8.3.3.26 _S_Stieltjes	33
			8.3.3.27 _S_zetam1	34
9	Class	s Docur	nentation 46	6 5
	9.1	gnu_	cxx::airy_t< _Tx, _Tp > Struct Template Reference	35
		9.1.1	Detailed Description	35
		9.1.2	Member Function Documentation	36
			9.1.2.1Wronskian()	36
		9.1.3	Member Data Documentation	36
			9.1.3.1Ai_deriv	36
			9.1.3.2Ai_value	36
			9.1.3.3Bi_deriv	36
			9.1.3.4Bi_value	37
			9.1.3.5x_arg	37

XXXIV CONTENTS

9.2	gnu	_cxx::assoc_legendre_p_t< _Tp > Struct Template Reference
	9.2.1	Detailed Description
	9.2.2	Member Function Documentation
		9.2.2.1 deriv()
	9.2.3	Member Data Documentation
		9.2.3.1l
		9.2.3.2m
		9.2.3.3P_lm
		9.2.3.4P_lm1m
		9.2.3.5P_lm2m
		9.2.3.6phase
		9.2.3.7x
9.3	gnu	_cxx::assoc_legendre_q_t< _Tp > Struct Template Reference
	9.3.1	Detailed Description
	9.3.2	Member Function Documentation
		9.3.2.1 deriv()
	9.3.3	Member Data Documentation
		9.3.3.1I
		9.3.3.2m
		9.3.3.3phase
		9.3.3.4Q_lm
		9.3.3.5Q_lmm1
		9.3.3.6Q_lmm2
		9.3.3.7x
9.4	gnu	_cxx::chebyshev_t_t< _Tp > Struct Template Reference
	9.4.1	Detailed Description
	9.4.2	Member Function Documentation
		9.4.2.1 deriv()

CONTENTS XXXV

		9.4.2.2 deriv2()
	9.4.3	Member Data Documentation
		9.4.3.1n
		9.4.3.2T_n
		9.4.3.3T_nm1
		9.4.3.4T_nm2
		9.4.3.5x
9.5	gnu_	_cxx::chebyshev_u_t< _Tp > Struct Template Reference
	9.5.1	Detailed Description
	9.5.2	Member Function Documentation
		9.5.2.1 deriv()
	9.5.3	Member Data Documentation
		9.5.3.1n
		9.5.3.2U_n
		9.5.3.3U_nm1
		9.5.3.4U_nm2
		9.5.3.5x
9.6	gnu_	_cxx::chebyshev_v_t< _Tp > Struct Template Reference
	9.6.1	Detailed Description
	9.6.2	Member Function Documentation
		9.6.2.1 deriv()
	9.6.3	Member Data Documentation
		9.6.3.1n
		9.6.3.2V_n
		9.6.3.3V_nm1
		9.6.3.4V_nm2
		9.6.3.5x
9.7	gnu_	_cxx::chebyshev_w_t< _Tp > Struct Template Reference

xxxvi CONTENTS

	9.7.1	Detailed Description	. 479
	9.7.2	Member Function Documentation	. 479
		9.7.2.1 deriv()	. 480
	9.7.3	Member Data Documentation	. 480
		9.7.3.1n	. 480
		9.7.3.2W_n	. 480
		9.7.3.3W_nm1	. 480
		9.7.3.4W_nm2	. 480
		9.7.3.5x	. 481
9.8	gnu_	_cxx::coulomb_t< _Teta, _Trho, _Tp > Struct Template Reference	. 481
	9.8.1	Detailed Description	. 481
	9.8.2	Member Function Documentation	. 482
		9.8.2.1Wronskian()	. 482
	9.8.3	Member Data Documentation	. 482
		9.8.3.1eta_arg	. 482
		9.8.3.2F_deriv	. 482
		9.8.3.3F_value	. 482
		9.8.3.4G_deriv	. 483
		9.8.3.5G_value	. 483
		9.8.3.6l	. 483
		9.8.3.7rho_arg	. 483
9.9	gnu_	_cxx::cyl_bessel_t< _Tnu, _Tx, _Tp > Struct Template Reference	. 484
	9.9.1	Detailed Description	. 484
	9.9.2	Member Function Documentation	. 484
		9.9.2.1Wronskian()	. 484
	9.9.3	Member Data Documentation	. 485
		9.9.3.1J_deriv	. 485
		9.9.3.2J_value	. 485

CONTENTS xxxvii

9.9.3.3N_deriv	. 485
9.9.3.4N_value	. 485
9.9.3.5nu_arg	. 486
9.9.3.6x_arg	. 486
9.10gnu_cxx::cyl_hankel_t< _Tnu, _Tx, _Tp > Struct Template Reference	. 486
9.10.1 Detailed Description	. 487
9.10.2 Member Function Documentation	. 487
9.10.2.1Wronskian()	. 487
9.10.3 Member Data Documentation	. 487
9.10.3.1H1_deriv	. 487
9.10.3.2H1_value	. 487
9.10.3.3H2_deriv	. 488
9.10.3.4H2_value	. 488
9.10.3.5nu_arg	. 488
9.10.3.6x_arg	. 488
9.11gnu_cxx::cyl_mod_bessel_t< _Tnu, _Tx, _Tp > Struct Template Reference	. 489
9.11.1 Detailed Description	. 489
9.11.2 Member Function Documentation	. 489
9.11.2.1Wronskian()	. 489
9.11.3 Member Data Documentation	. 490
9.11.3.1l_deriv	. 490
9.11.3.2l_value	. 490
9.11.3.3K_deriv	. 490
9.11.3.4K_value	. 490
9.11.3.5nu_arg	. 491
9.11.3.6x_arg	. 491
9.12gnu_cxx::fock_airy_t< _Tx, _Tp > Struct Template Reference	. 491
9.12.1 Detailed Description	. 492

xxxviii CONTENTS

9.12.2	Member Function Documentation	492
	9.12.2.1Wronskian()	492
9.12.3	Member Data Documentation	492
	9.12.3.1w1_deriv	492
	9.12.3.2w1_value	492
	9.12.3.3w2_deriv	493
	9.12.3.4w2_value	493
	9.12.3.5x_arg	493
9.13gnu_	_cxx::fp_is_integer_t Struct Reference	493
9.13.1	Detailed Description	494
9.13.2	Member Function Documentation	494
	9.13.2.1 operator bool()	494
	9.13.2.2 operator()()	494
9.13.3	Member Data Documentation	494
	9.13.3.1is_integral	494
	9.13.3.2value	495
9.14gnu_	_cxx::gamma_inc_t< _Tp > Struct Template Reference	495
9.14.1	Detailed Description	495
9.14.2	Member Data Documentation	495
	9.14.2.1lgamma_value	495
	9.14.2.2tgamma_value	496
9.15gnu_	_cxx::gamma_temme_t< _Tp > Struct Template Reference	496
9.15.1	Detailed Description	497
9.15.2	Member Data Documentation	497
	9.15.2.1gamma_1_value	497
	9.15.2.2gamma_2_value	497
	9.15.2.3gamma_minus_value	498
	9.15.2.4gamma_plus_value	498

CONTENTS xxxix

9.15.2.5mu_arg	98
9.16gnu_cxx::gappa_pq_t< _Tp > Struct Template Reference	98
9.16.1 Detailed Description	99
9.16.2 Member Data Documentation	99
9.16.2.1gappa_p_value	99
9.16.2.2gappa_q_value	99
9.17gnu_cxx::gegenbauer_t< _Tp > Struct Template Reference	99
9.17.1 Detailed Description	00
9.17.2 Member Function Documentation	00
9.17.2.1 deriv()	00
9.17.3 Member Data Documentation	00
9.17.3.1C_n	00
9.17.3.2C_nm1	01
9.17.3.3C_nm2	01
9.17.3.4lambda	01
9.17.3.5n	01
9.17.3.6x	01
9.18gnu_cxx::hermite_he_t< _Tp > Struct Template Reference	02
9.18.1 Detailed Description	02
9.18.2 Member Function Documentation	02
9.18.2.1 deriv()	02
9.18.2.2 deriv2()	02
9.18.3 Member Data Documentation	03
9.18.3.1He_n	03
9.18.3.2He_nm1	03
9.18.3.3He_nm2	03
9.18.3.4n	03
9.18.3.5x	04

xI CONTENTS

9.19 <u>g</u> r	u_cxx::hermite_t< _Tp > Struct Template Reference
9.19	1 Detailed Description
9.19	2 Member Function Documentation
	9.19.2.1 deriv()
	9.19.2.2 deriv2()
9.19	3 Member Data Documentation
	9.19.3.1H_n
	9.19.3.2H_nm1
	9.19.3.3H_nm2
	9.19.3.4n
	9.19.3.5x
9.20gr	u_cxx::jacobi_ellint_t< _Tp > Struct Template Reference
9.20	1 Detailed Description
9.20	2 Member Function Documentation
	9.20.2.1am()
	9.20.2.2cd()
	9.20.2.3cn_deriv()
	9.20.2.4cs()
	9.20.2.5dc()
	9.20.2.6ds()
	9.20.2.7nc()
	9.20.2.8nd()
	9.20.2.9ns()
	9.20.2.10sc()
	9.20.2.11sd()
	9.20.2.12sn_deriv()
9.20	3 Member Data Documentation
	9.20.3.1cn_value

CONTENTS xli

		9.20.3.2dn_value
		9.20.3.3sn_value
9.21	gnu_	cxx::jacobi_t< _Tp > Struct Template Reference
	9.21.1	Detailed Description
	9.21.2	Member Function Documentation
		9.21.2.1 deriv()
	9.21.3	Member Data Documentation
		9.21.3.1alpha1
		9.21.3.2beta1
		9.21.3.3n
		9.21.3.4P_n
		9.21.3.5P_nm1
		9.21.3.6P_nm2
		9.21.3.7x
9.22	gnu_	cxx::laguerre_t< _Tpa, _Tp > Struct Template Reference
9.22		cxx::laguerre_t< _Tpa, _Tp > Struct Template Reference
9.22	9.22.1	
9.22	9.22.1	Detailed Description
9.22	9.22.1 9.22.2	Detailed Description
9.22	9.22.1 9.22.2	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513
9.22	9.22.1 9.22.2	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513
9.22	9.22.1 9.22.2	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513 9.22.3.1alpha1 .514
9.22	9.22.1 9.22.2	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513 9.22.3.1alpha1 .514 9.22.3.2L_n .514
9.22	9.22.1 9.22.2	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513 9.22.3.1alpha1 .514 9.22.3.2L_n .514 9.22.3.3L_nm1 .514
9.22	9.22.1 9.22.2	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513 9.22.3.1alpha1 .514 9.22.3.2L_n .514 9.22.3.3L_nm1 .514 9.22.3.4L_nm2 .514
	9.22.1 9.22.2 9.22.3	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513 9.22.3.1alpha1 .514 9.22.3.2L_n .514 9.22.3.3L_nm1 .514 9.22.3.4L_nm2 .514 9.22.3.5n .514
	9.22.1 9.22.2 9.22.3	Detailed Description .513 Member Function Documentation .513 9.22.2.1 deriv() .513 Member Data Documentation .513 9.22.3.1alpha1 .514 9.22.3.2L_n .514 9.22.3.3L_nm1 .514 9.22.3.4L_nm2 .514 9.22.3.5n .514 9.22.3.6x .515

xlii CONTENTS

9.23.2.1 deriv()
9.23.2.2 lobatto()
9.23.3 Member Data Documentation
9.23.3.1l
9.23.3.2P_I
9.23.3.3P_lm1
9.23.3.4P_lm2
9.23.3.5x
9.24gnu_cxx::legendre_q_t< _Tp > Struct Template Reference
9.24.1 Detailed Description
9.24.2 Member Function Documentation
9.24.2.1 deriv()
9.24.3 Member Data Documentation
9.24.3.1l
9.24.3.2Q_I
9.24.3.3Q_lm1
9.24.3.4Q_lm2
9.24.3.5x
9.25gnu_cxx::lgamma_t< _Tp > Struct Template Reference
9.25.1 Detailed Description
9.25.2 Member Data Documentation
9.25.2.1lgamma_sign
9.25.2.2lgamma_value
9.26gnu_cxx::quadrature_point_t< _Tp > Struct Template Reference
9.26.1 Detailed Description
9.26.2 Constructor & Destructor Documentation
9.26.2.1quadrature_point_t() [1/2]
9.26.2.2quadrature_point_t() [2/2]

CONTENTS xliii

9.26.3 Member Data Documentation
9.26.3.1point
9.26.3.2weight
9.27gnu_cxx::sincos_t< _Tp > Struct Template Reference
9.27.1 Detailed Description
9.27.2 Member Data Documentation
9.27.2.1cos_v
9.27.2.2sin_v
9.28gnu_cxx::sph_bessel_t< _Tn, _Tx, _Tp > Struct Template Reference
9.28.1 Detailed Description
9.28.2 Member Function Documentation
9.28.2.1Wronskian()
9.28.3 Member Data Documentation
9.28.3.1 <u>j</u> deriv
9.28.3.2 <u>j</u> value
9.28.3.3n_arg
9.28.3.4n_deriv
9.28.3.5n_value
9.28.3.6x_arg
9.29gnu_cxx::sph_hankel_t< _Tn, _Tx, _Tp > Struct Template Reference
9.29.1 Detailed Description
9.29.2 Member Function Documentation
9.29.2.1Wronskian()
9.29.3 Member Data Documentation
9.29.3.1h1_deriv
9.29.3.2h1_value
9.29.3.3h2_deriv
9.29.3.4h2_value

XIIV CONTENTS

		9.29.3.5n_arg
		9.29.3.6x_arg
9.30	gnu_	_cxx::sph_mod_bessel_t< _Tn, _Tx, _Tp > Struct Template Reference
	9.30.1	Detailed Description
	9.30.2	Member Function Documentation
		9.30.2.1Wronskian()
	9.30.3	Member Data Documentation
		9.30.3.1i_deriv
		9.30.3.2i_value
		9.30.3.3k_deriv
		9.30.3.4k_value
		9.30.3.5n_arg
		9.30.3.6x_arg
9.31	gnu_	_cxx::stirling_1_t< _Tp > Struct Template Reference
	9.31.1	Detailed Description
	9.31.2	Member Typedef Documentation
		9.31.2.1 const_iterator
		9.31.2.2 iterator
	9.31.3	Member Function Documentation
		9.31.3.1 begin() [1/2]532
		9.31.3.2 begin() [2/2]533
		9.31.3.3 degree()
		9.31.3.4 end() [1/2]
		9.31.3.5 end() [2/2]533
		9.31.3.6 operator()()
		9.31.3.7 operator[]()
	9.31.4	Member Data Documentation
		9.31.4.1sigma

CONTENTS xlv

9.32gnu_cxx::stirling_2_t< _Tp > Struct Template Reference	. 534
9.32.1 Detailed Description	. 535
9.32.2 Member Typedef Documentation	. 535
9.32.2.1 const_iterator	. 535
9.32.2.2 iterator	. 535
9.32.3 Member Function Documentation	. 535
9.32.3.1 begin() [1/2]	. 535
9.32.3.2 begin() [2/2]	. 536
9.32.3.3 degree()	. 536
9.32.3.4 end() [1/2]	. 536
9.32.3.5 end() [2/2]	. 536
9.32.3.6 operator()()	. 536
9.32.3.7 operator[]()	. 537
9.32.4 Member Data Documentation	. 537
9.32.4.1 _S	. 537
9.33 std::detail::gamma_lanczos_data< _Tp > Struct Template Reference	. 537
9.33.1 Detailed Description	. 537
9.34 std::detail::gamma_lanczos_data< double > Struct Template Reference	. 537
9.34.1 Detailed Description	. 538
9.34.2 Member Data Documentation	. 538
9.34.2.1 _S_cheby	. 538
9.34.2.2 _S_g	. 538
9.35 std::detail::gamma_lanczos_data< float > Struct Template Reference	. 538
9.35.1 Detailed Description	. 539
9.35.2 Member Data Documentation	. 539
9.35.2.1 _S_cheby	. 539
9.35.2.2 _S_g	. 539
9.36 std::detail::gamma_lanczos_data< long double > Struct Template Reference	. 539

xlvi CONTENTS

9.36.1 Detailed Description
9.36.2 Member Data Documentation
9.36.2.1 _S_cheby
9.36.2.2 _S_g
9.37 std::detail::gamma_spouge_data< _Tp > Struct Template Reference
9.37.1 Detailed Description
9.38 std::detail::gamma_spouge_data< double > Struct Template Reference
9.38.1 Detailed Description
9.38.2 Member Data Documentation
9.38.2.1 _S_cheby
9.39 std::detail::gamma_spouge_data< float > Struct Template Reference
9.39.1 Detailed Description
9.39.2 Member Data Documentation
9.39.2.1 _S_cheby
9.40 std::detail::gamma_spouge_data< long double > Struct Template Reference
9.40.1 Detailed Description
9.40.2 Member Data Documentation
9.40.2.1 _S_cheby
9.41 std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 > Struct Template Reference 544
9.41.1 Detailed Description
9.41.2 Member Typedef Documentation
9.41.2.1 _Cmplx
9.41.2.2 _Real
9.41.2.3 _Real_Omega1
9.41.2.4 _Real_Omega3
9.41.2.5 _Tp_Nome
9.41.3 Constructor & Destructor Documentation
9.41.3.1jacobi_lattice_t() [1/3]

CONTENTS xIvii

9.41.3.2jacobi_lattice_t() [2/3]54
9.41.3.3jacobi_lattice_t() [3/3]54
9.41.4 Member Function Documentation
9.41.4.1ellnome()
9.41.4.2omega_1()
9.41.4.3omega_2()
9.41.4.4omega_3()
9.41.4.5reduce()
9.41.4.6tau()
9.41.5 Member Data Documentation
9.41.5.1 _M_omega_155
9.41.5.2 _M_omega_355
9.41.5.3 _S_pi
9.42 std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::arg_t Struct Reference
9.42.1 Detailed Description
9.42.2 Member Data Documentation
9.42.2.1m
9.42.2.2n
9.42.2.3z
9.43 std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::tau_t Struct Reference
9.43.1 Detailed Description
9.43.2 Constructor & Destructor Documentation
9.43.2.1tau_t()
9.43.3 Member Data Documentation
9.43.3.1val
9.44 std::detail::jacobi_theta_0_t< _Tp1, _Tp3 > Struct Template Reference
9.44.1 Detailed Description
9.44.2 Member Typedef Documentation

xlviii CONTENTS

		9.44.2.1 _Cmplx
		9.44.2.2 _Real
		9.44.2.3 _Type
	9.44.3	Constructor & Destructor Documentation
		9.44.3.1jacobi_theta_0_t()
	9.44.4	Member Function Documentation
		9.44.4.1 dedekind_eta()
	9.44.5	Member Data Documentation
		9.44.5.1 eta_1
		9.44.5.2 eta_2
		9.44.5.3 eta_3
		9.44.5.4 th1p
		9.44.5.5 th1ppp
		9.44.5.6 th2
		9.44.5.7 th2pp
		9.44.5.8 th3
		9.44.5.9 th3pp
		9.44.5.10 th4
		9.44.5.11 th4pp
9.45	std::c	detail::weierstrass_invariants_t< _Tp1, _Tp3 > Struct Template Reference
	9.45.1	Detailed Description
	9.45.2	Member Typedef Documentation
		9.45.2.1 _Cmplx
		9.45.2.2 _Real
		9.45.2.3 _Type
	9.45.3	Constructor & Destructor Documentation
		9.45.3.1weierstrass_invariants_t()
	9.45.4	Member Function Documentation

CONTENTS xlix

	9.45.4.1delta()	. 561
	9.45.4.2klein_j()	. 561
9.45.	5 Member Data Documentation	. 561
	9.45.5.1 <u>g_2</u>	. 561
	9.45.5.2 <u>g_3</u>	. 561
9.46 std::_	detail::weierstrass_roots_t< _Tp1, _Tp3 > Struct Template Reference	. 562
9.46.	1 Detailed Description	. 563
9.46.	2 Member Typedef Documentation	. 563
	9.46.2.1 _Cmplx	. 563
	9.46.2.2 _Real	. 563
	9.46.2.3 _Type	. 563
9.46.	3 Constructor & Destructor Documentation	. 564
	9.46.3.1weierstrass_roots_t() [1/2]	. 564
	9.46.3.2weierstrass_roots_t() [2/2]	. 564
9.46.	4 Member Function Documentation	. 564
	9.46.4.1delta()	. 565
9.46.	5 Member Data Documentation	. 565
	9.46.5.1e1	. 565
	9.46.5.2e2	. 565
	9.46.5.3e3	. 565
9.47 std::_	detail::_Airy< _Tp > Class Template Reference	. 566
9.47.	1 Detailed Description	. 566
9.47.	2 Member Typedef Documentation	. 566
	9.47.2.1 scalar_type	. 566
	9.47.2.2 value_type	. 567
9.47.	3 Constructor & Destructor Documentation	. 567
	9.47.3.1 _Airy() [1/3]	. 567
	9.47.3.2 _Airy() [2/3]	. 567

CONTENTS

9.47.3.3 _Airy() [3/3]
9.47.4 Member Function Documentation
9.47.4.1 operator()()
9.47.5 Member Data Documentation
9.47.5.1 inner_radius
9.47.5.2 outer_radius
9.48 std::detail::_Airy_asymp< _Tp > Class Template Reference
9.48.1 Detailed Description
9.48.2 Member Typedef Documentation
9.48.2.1 _Cmplx
9.48.3 Constructor & Destructor Documentation
9.48.3.1 _Airy_asymp()
9.48.4 Member Function Documentation
9.48.4.1 _S_absarg_ge_pio3()
9.48.4.2 _S_absarg_lt_pio3()
9.48.4.3 operator()()
9.49 std::detail::_Airy_asymp_data< _Tp > Struct Template Reference
9.49.1 Detailed Description
9.50 std::detail::_Airy_asymp_data< double > Struct Template Reference
9.50.1 Detailed Description
9.50.2 Member Data Documentation
9.50.2.1 _S_c
9.50.2.2 _S_d
9.50.2.3 _S_max_cd
9.51 std::detail::_Airy_asymp_data< float > Struct Template Reference
9.51.1 Detailed Description
9.51.2 Member Data Documentation
9.51.2.1 S c

CONTENTS

9.51.2.2 _S_d
9.51.2.3 _S_max_cd
9.52 std::detail::_Airy_asymp_data< long double > Struct Template Reference
9.52.1 Detailed Description
9.52.2 Member Data Documentation
9.52.2.1 _S_c
9.52.2.2 _S_d
9.52.2.3 _S_max_cd
9.53 std::detail::_Airy_asymp_series< _Sum > Class Template Reference
9.53.1 Detailed Description
9.53.2 Member Typedef Documentation
9.53.2.1 scalar_type
9.53.2.2 value_type
9.53.3 Constructor & Destructor Documentation
9.53.3.1 _Airy_asymp_series() [1/3]
9.53.3.2 _Airy_asymp_series() [2/3]
9.53.3.3 _Airy_asymp_series() [3/3]578
9.53.4 Member Function Documentation
9.53.4.1 operator()()
9.53.5 Member Data Documentation
9.53.5.1 _S_sqrt_pi
9.54 std::detail::_Airy_default_radii< _Tp > Struct Template Reference
9.54.1 Detailed Description
9.55 std::detail::_Airy_default_radii< double > Struct Template Reference
9.55.1 Detailed Description
9.55.2 Member Data Documentation
9.55.2.1 inner_radius
9.55.2.2 outer_radius

lii CONTENTS

9.56 std::detail::_Airy_default_radii< float > Struct Template Reference
9.56.1 Detailed Description
9.56.2 Member Data Documentation
9.56.2.1 inner_radius
9.56.2.2 outer_radius
9.57 std::detail::_Airy_default_radii< long double > Struct Template Reference
9.57.1 Detailed Description
9.57.2 Member Data Documentation
9.57.2.1 inner_radius
9.57.2.2 outer_radius
9.58 std::detail::_Airy_series< _Tp > Class Template Reference
9.58.1 Detailed Description
9.58.2 Member Typedef Documentation
9.58.2.1 _Cmplx
9.58.3 Member Function Documentation
9.58.3.1 _S_Ai()
9.58.3.2 _S_Airy()
9.58.3.3 _S_Bi()
9.58.3.4 _S_FGH()
9.58.3.5 _S_Fock()
9.58.3.6 _S_Scorer()
9.58.3.7 _S_Scorer2()
9.58.4 Member Data Documentation
9.58.4.1 _N_FGH
9.58.4.2 _S_Ai0
9.58.4.3 _S_Aip0
9.58.4.4 _S_Bi0
9.58.4.5 _S_Bip0

CONTENTS

9.58.4.6 _S_eps
9.58.4.7 _S_Gi0
9.58.4.8 _S_Gip0
9.58.4.9 _S_Hi0
9.58.4.10 _S_Hip0
9.58.4.11 _S_i
9.58.4.12 _S_pi
9.58.4.13 _S_sqrt_pi
9.59 std::detail::_AiryAuxilliaryState< _Tp > Struct Template Reference
9.59.1 Detailed Description
9.59.2 Member Typedef Documentation
9.59.2.1 _Val
9.59.3 Member Data Documentation
9.59.3.1fai_deriv
9.59.3.2fai_value
9.59.3.3gai_deriv
9.59.3.4gai_value
9.59.3.5hai_deriv
9.59.3.6hai_value
9.59.3.7z
9.60 std::detail::_AiryState< _Tp > Struct Template Reference
9.60.1 Detailed Description
9.60.2 Member Typedef Documentation
9.60.2.1 _Real
9.60.3 Member Function Documentation
9.60.3.1 true_Wronskian()
9.60.3.2 Wronskian()
9.60.4 Member Data Documentation

liv CONTENTS

9.60.4.1Ai_deriv	594
9.60.4.2Ai_value	594
9.60.4.3Bi_deriv	594
9.60.4.4Bi_value	594
9.60.4.5z	595
9.61 std::detail::_AsympTerminator< _Tp > Class Template Reference	595
9.61.1 Detailed Description	595
9.61.2 Constructor & Destructor Documentation	595
9.61.2.1 _AsympTerminator()	596
9.61.3 Member Function Documentation	596
9.61.3.1 num_terms()	596
9.61.3.2 operator()()	596
9.61.3.3 operator<<()	596
9.62 std::detail::_Factorial_table< _Tp > Struct Template Reference	597
9.62.1 Detailed Description	597
9.62.2 Member Data Documentation	597
9.62.2.1factorial	597
9.62.2.2log_factorial	597
9.62.2.3n	598
9.63 std::detail::_Terminator< _Tp > Class Template Reference	598
9.63.1 Detailed Description	598
9.63.2 Constructor & Destructor Documentation	598
9.63.2.1 _Terminator()	599
9.63.3 Member Function Documentation	599
9.63.3.1 num_terms()	599

CONTENTS

10	File I	Documen	ntation	601
	10.1	cxx_fp_u	utils/include/ext/math_util.h File Reference	301
		10.1.1	Detailed Description	303
	10.2	include/b	pits/sf_airy.tcc File Reference	303
		10.2.1	Detailed Description	304
		10.2.2 N	Macro Definition Documentation	304
		1	10.2.2.1 _GLIBCXX_BITS_SF_AIRY_TCC	305
	10.3	include/b	bits/sf_bernoulli.tcc File Reference	305
		10.3.1	Detailed Description	306
		10.3.2 N	Macro Definition Documentation	306
		1	10.3.2.1 _GLIBCXX_BITS_SF_BERNOULLI_TCC	306
	10.4	include/b	pits/sf_bessel.tcc File Reference	306
		10.4.1	Detailed Description	308
		10.4.2 N	Macro Definition Documentation	308
		1	10.4.2.1 _GLIBCXX_BITS_SF_BESSEL_TCC	308
	10.5	include/b	bits/sf_beta.tcc File Reference	309
		10.5.1	Detailed Description	310
		10.5.2 N	Macro Definition Documentation	310
		1	10.5.2.1 _GLIBCXX_BITS_SF_BETA_TCC	310
	10.6	include/b	bits/sf_cardinal.tcc File Reference	311
		10.6.1 N	Macro Definition Documentation	312
		1	10.6.1.1 _GLIBCXX_BITS_SF_CARDINAL_TCC	312
	10.7	include/b	bits/sf_chebyshev.tcc File Reference	313
		10.7.1	Detailed Description	314
		10.7.2 N	Macro Definition Documentation	314
		1	10.7.2.1 _GLIBCXX_BITS_SF_CHEBYSHEV_TCC	314
	10.8	include/b	pits/sf_coulomb.tcc File Reference	314
		10.8.1	Detailed Description	315

Ivi CONTENTS

10.8.2 Macro Definition Documentation
10.8.2.1 _GLIBCXX_BITS_SF_COULOMB_TCC616
10.9 include/bits/sf_dawson.tcc File Reference
10.9.1 Detailed Description
10.9.2 Macro Definition Documentation
10.9.2.1 _GLIBCXX_BITS_SF_DAWSON_TCC
10.10include/bits/sf_distributions.tcc File Reference
10.10.1 Detailed Description
10.10.2 Macro Definition Documentation
10.10.2.1 _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC
10.11 include/bits/sf_ellint.tcc File Reference
10.11.1 Detailed Description
10.11.2 Macro Definition Documentation
10.11.2.1 _GLIBCXX_BITS_SF_ELLINT_TCC
10.12include/bits/sf_euler.tcc File Reference
10.12.1 Detailed Description
10.12.2 Macro Definition Documentation
10.12.2.1 _GLIBCXX_BITS_SF_EULER_TCC
10.13include/bits/sf_expint.tcc File Reference
10.13.1 Detailed Description
10.13.2 Macro Definition Documentation
10.13.2.1 _GLIBCXX_BITS_SF_EXPINT_TCC
10.14include/bits/sf_fresnel.tcc File Reference
10.14.1 Detailed Description
10.14.2 Macro Definition Documentation
10.14.2.1 _GLIBCXX_BITS_SF_FRESNEL_TCC
10.15include/bits/sf_gamma.tcc File Reference
10.15.1 Detailed Description

CONTENTS

10.15.2 Macro Definition Documentation
10.15.2.1 _GLIBCXX_BITS_SF_GAMMA_TCC
10.16include/bits/sf_gegenbauer.tcc File Reference
10.16.1 Detailed Description
10.16.2 Macro Definition Documentation
10.16.2.1 _GLIBCXX_BITS_SF_GEGENBAUER_TCC
10.17include/bits/sf_hankel.tcc File Reference
10.17.1 Detailed Description
10.17.2 Macro Definition Documentation
10.17.2.1 _GLIBCXX_BITS_SF_HANKEL_TCC
10.18include/bits/sf_hermite.tcc File Reference
10.18.1 Detailed Description
10.18.2 Macro Definition Documentation
10.18.2.1 _GLIBCXX_BITS_SF_HERMITE_TCC
10.19include/bits/sf_hyperg.tcc File Reference
10.19.1 Detailed Description
10.19.2 Macro Definition Documentation
10.19.2.1 _GLIBCXX_BITS_SF_HYPERG_TCC646
10.20include/bits/sf_hypint.tcc File Reference
10.20.1 Detailed Description
10.20.2 Macro Definition Documentation
10.20.2.1 _GLIBCXX_BITS_SF_HYPINT_TCC
10.21include/bits/sf_jacobi.tcc File Reference
10.21.1 Detailed Description
10.21.2 Macro Definition Documentation
10.21.2.1 _GLIBCXX_BITS_SF_JACOBI_TCC
10.22include/bits/sf_laguerre.tcc File Reference
10.22.1 Detailed Description

Iviii CONTENTS

CONTENTS

10.29.2 Macro Definition Documentation	67
10.29.2.1 _GLIBCXX_BITS_SF_TRIG_TCC	67
10.30 include/bits/sf_trigint.tcc File Reference	67
10.30.1 Detailed Description	68
10.30.2 Macro Definition Documentation	68
10.30.2.1 _GLIBCXX_BITS_SF_TRIGINT_TCC	68
10.31 include/bits/sf_zeta.tcc File Reference	69
10.31.1 Detailed Description	71
10.31.2 Macro Definition Documentation	71
10.31.2.1 _GLIBCXX_BITS_SF_ZETA_TCC	71
10.32include/bits/specfun.h File Reference	71
10.32.1 Detailed Description	87
10.32.2 Macro Definition Documentation	87
10.32.2.1cpp_lib_math_special_functions	87
10.32.2.2STDCPP_MATH_SPEC_FUNCS	88
10.33include/bits/specfun_state.h File Reference	88
10.33.1 Detailed Description	90
dex 6	91

Chapter 1

Todo List

```
Module mathsf
   Provide accuracy comparisons on a per-function basis for a small number of targets.
Member std:: detail:: bell series (unsigned int n)
   Test for blowup in Bell number summation.
Member std:: detail:: debye (unsigned int n, Tp x)
   : We should return both the Debye function and it's complement.
   Find Debye for x < -2pi!
   Find Debye for x < -2pi!
Member std:: detail:: euler series (unsigned int n)
   Find a way to predict the maximum Euler number for a type.
Member std::__detail::__expint (unsigned int __n, _Tp __x)
   Study arbitrary switch to large-n E_n(x).
   Find a good asymptotic switch point in E_n(x).
   Find a good asymptotic switch point in E_n(x).
Member std:: detail:: expint E1 ( Tp x)
   Find a good asymptotic switch point in E_1(x).
Member std::__detail::__expint_En_recursion (unsigned int __n, _Tp __x)
   Find a principled starting number for the E_n(x) downward recursion.
Member std::__detail::__hermite_recur (unsigned int __n, _Tp __x)
   Find the sign of Hermite blowup values.
Member std::__detail::__hurwitz_zeta_polylog (_Tp __s, std::complex < _Tp > __a)
   This __hurwitz_zeta_polylog prefactor is prone to overflow. positive integer orders s?
Member std::__detail::__log_stirling_2 (unsigned int __n, unsigned int __m)
   Find asymptotic expressions for the Stirling numbers.
Member std::__detail::__riemann_zeta (_Tp __s)
   Global double sum or MacLaurin series in riemann zeta?
Member std::__detail::__stirling_1 (unsigned int __n, unsigned int __m)
   Find asymptotic expressions for the Stirling numbers.
```

2 Todo List

```
Member std::__detail::__stirling_2 (unsigned int __n, unsigned int __m)
    Find asymptotic expressions for the Stirling numbers.

Member std::__detail::__stirling_2 (unsigned int __n)
    Find asymptotic expressions for the Stirling numbers.

Member std::__detail::__stirling_2_series (unsigned int __n, unsigned int __m)
    Find a way to predict the maximum Stirling number supported for a given type.

Member std::__detail::_Airy_asymp< _Tp >::_S_absarg_lt_pio3 (_Cmplx __z) const
    Revisit these numbers of terms for the Airy asymptotic expansions.

Member std::__detail::_Airy_series< _Tp >::_S_Scorer (_Cmplx __t)
    Find out what is wrong with the Hi = fai + gai + hai scorer function.
```

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Mathematical Special Functions	 											. :	218
C++17/IS29124 Mathematical Special Functions	 				 								13
GNU Extended Mathematical Special Functions	 				 								47

4 Module Index

Chapter 3

Namespace Index

3.1 Namespace List

Here is a list of all namespaces with brief descriptions:

gn	u_cxx														 																. 2	225
std .															 														 		. 2	244
std::_	_detai	l																														
	Im	nnle	em:	ıer	nta	itic	าท	-SI	กล	ce	h	eta	ail	s																	2	46

6 Namespace Index

Chapter 4

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

gnu_cxx::airy_t< _Tx, _Tp >	465
gnu_cxx::assoc_legendre_p_t< _Tp >	467
gnu_cxx::assoc_legendre_q_t< _Tp >	470
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} chebyshev_t_t<\underline{\hspace{0.5cm}} t<\underline{\hspace{0.5cm}} Tp> \dots \dots$	473
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} chebyshev_u_t < \underline{\hspace{0.5cm}} Tp > \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	475
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} chebyshev_v_t<\underline{\hspace{0.5cm}} t<\underline{\hspace{0.5cm}} Tp>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	477
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} chebyshev_w_t<\underline{\hspace{0.5cm}} Tp>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	479
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} coulomb_t<\underline{\hspace{0.5cm}} Trho,\underline{\hspace{0.5cm}} Tp> \hspace{0.5cm} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	481
$\underline{ } gnu_cxx::\underline{ } cyl_bessel_t<\underline{ } Tnu,\underline{ } Tx,\underline{ } Tp> \dots \dots$	484
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} cyl_hankel_t<\underline{\hspace{0.5cm}} Tnu,\underline{\hspace{0.5cm}} Tx,\underline{\hspace{0.5cm}} Tp> \hspace{0.5cm} \ldots \ldots$	486
$\underline{ } gnu_cxx::\underline{ } cyl_mod_bessel_t < \underline{ } Tnu, \underline{ } Tx, \underline{ } Tp > \dots $	489
gnu_cxx::fock_airy_t< _Tx, _Tp >	491
gnu_cxx::fp_is_integer_t	493
$\underline{ } gnu_cxx::\underline{ } gamma_inc_t < \underline{ } Tp > \dots $	495
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} gamma_temme_t<\underline{\hspace{0.5cm}} Tp>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	496
gnu_cxx::gappa_pq_t< _Tp >	498
gnu_cxx::gegenbauer_t< _Tp >	499
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} hermite_he_t<\underline{\hspace{0.5cm}} Tp>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	502
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} hermite_t<\underline{\hspace{0.5cm}} t>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	504
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} jacobi_ellint_t < \underline{\hspace{0.5cm}} Tp > \dots $	506
gnu_cxx::jacobi_t< _Tp >	510
gnu_cxx::laguerre_t< _Tpa, _Tp >	513
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} legendre_p_t < \underline{\hspace{0.5cm}} Tp > \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	515
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} legendre_q_t<\underline{\hspace{0.5cm}} t<\underline{\hspace{0.5cm}} Tp>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	517
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} lgamma_t<\underline{\hspace{0.5cm}} t>\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	519
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} quadrature_point_t < \underline{\hspace{0.5cm}} Tp > \dots $	521
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sincos_t < \underline{\hspace{0.5cm}} Tp > \ldots \ldots$	522
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sph_bessel_t < \underline{\hspace{0.5cm}} Tn, \underline{\hspace{0.5cm}} Tx, \underline{\hspace{0.5cm}} Tp > \ldots \ldots$	523
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sph_hankel_t<\underline{\hspace{0.5cm}} t,\underline{\hspace{0.5cm}} Tx,\underline{\hspace{0.5cm}} Tp> \hspace{0.5cm} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	526
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sph_mod_bessel_t<\underline{\hspace{0.5cm}} Tn,\underline{\hspace{0.5cm}} Tx,\underline{\hspace{0.5cm}} Tp> \hspace{0.5cm} \ldots \ldots$	529
$_gnu_cxx::_stirling_1_t < _Tp > \dots $	531

8 Hierarchical Index

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

gnu_cxx::airy_t< _Tx, _Tp >
gnu_cxx::_assoc_legendre_p_t< _Tp >
gnu_cxx::chebyshev_t_t< _Tp >
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} chebyshev_u_t<\underline{\hspace{0.5cm}} t<\underline{\hspace{0.5cm}} Tp>\ldots\ldots\ldots\ldots\ldots\ldots\ldots 475$
gnu_cxx::chebyshev_v_t<_Tp>
gnu_cxx::chebyshev_w_t< _Tp >
gnu_cxx::coulomb_t< _Teta, _Trho, _Tp >
gnu_cxx::cyl_bessel_t< _Tnu, _Tx, _Tp >
gnu_cxx::cyl_hankel_t< _Tnu, _Tx, _Tp >
gnu_cxx::cyl_mod_bessel_t< _Tnu, _Tx, _Tp >
gnu_cxx::fock_airy_t<_Tx,_Tp>
gnu_cxx::fp_is_integer_t
gnu_cxx::gamma_inc_t< _Tp >
gnu_cxx::gamma_temme_t< _Tp >
A structure for the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

 10 Class Index

gnu_cxx::laguerre_t< _Tpa, _Tp >
gnu_cxx::legendre_p_t< _Tp >
gnu_cxx::legendre_q_t< _Tp >
gnu_cxx::lgamma_t<_Tp>
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} quadrature_point_t < \underline{\hspace{0.5cm}} Tp > \dots $
gnu_cxx::sincos_t< _Tp >
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sph_bessel_t < \underline{\hspace{0.5cm}} Tn, \underline{\hspace{0.5cm}} Tx, \underline{\hspace{0.5cm}} Tp > \ldots $
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sph_hankel_t<\underline{\hspace{0.5cm}} Tn, \underline{\hspace{0.5cm}} Tx, \underline{\hspace{0.5cm}} Tp> \hspace{0.5cm} \dots \dots$
$\underline{\hspace{0.5cm}} gnu_cxx::\underline{\hspace{0.5cm}} sph_mod_bessel_t<\underline{\hspace{0.5cm}} Tn,\underline{\hspace{0.5cm}} Tx,\underline{\hspace{0.5cm}} Tp> \hspace{0.5cm} \ldots \ldots \ldots \hspace{0.5cm} \ldots \hspace{0.5cm} 529$
gnu_cxx::stirling_1_t< _Tp >
A structure for Stirling numbers of the first kind
gnu_cxx::stirling_2_t< _Tp >
A structure for Stirling numbers of the first kind
std::detail::gamma_lanczos_data< _Tp >
std::detail::gamma_lanczos_data< double >
std::detail::gamma_lanczos_data< float >
std::detail::gamma_lanczos_data< long double >
std::detail::gamma_spouge_data< _Tp >54
std::detail::gamma_spouge_data< double >
$std::_detail::_gamma_spouge_data < float > \dots $
std::detail::gamma_spouge_data< long double >
std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >
$std::_detail::_jacobi_lattice_t < _Tp_Omega1, _Tp_Omega3 > ::_arg_t $
$std::_detail::_jacobi_lattice_t < _Tp_Omega1, _Tp_Omega3 > ::_tau_t \\ \ \ldots \\ $
std::detail::jacobi_theta_0_t< _Tp1, _Tp3 >
$std::_detail::_weierstrass_invariants_t < _Tp1, _Tp3 > \dots $
$std::_detail::_weierstrass_roots_t < _Tp1, _Tp3 > \dots $
std::detail::_Airy< _Tp >
$std::_detail::_Airy_asymp < _Tp > \dots $
$std::_detail::_Airy_asymp_data < _Tp > \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
std::detail::_Airy_asymp_data< double >
$std::_detail::_Airy_asymp_data < float > \dots $
std::detail::_Airy_asymp_data< long double >
std::detail::_Airy_asymp_series< _Sum >
std::detail::_Airy_default_radii<_Tp>579
std::detail::_Airy_default_radii< double >
$std::_detail::_Airy_default_radii < float > \dots $
std::detail::_Airy_default_radii< long double >
$std::_detail::_Airy_series < _Tp > \dots $
std::detail::_AiryAuxilliaryState< _Tp >
std::detail::_AiryState< _Tp >
std::detail::_AsympTerminator< _Tp >
std::detail::_Factorial_table< _Tp >
std: detail: Terminator< Tn > 598

Chapter 6

File Index

6.1 File List

Here is a list of all files with brief descriptions:

cxx_fp_utils/include/ext/math_util.h
include/bits/sf_airy.tcc
include/bits/sf_bernoulli.tcc
include/bits/sf_bessel.tcc
include/bits/sf_beta.tcc
include/bits/sf_cardinal.tcc
include/bits/sf_chebyshev.tcc
include/bits/sf_coulomb.tcc
include/bits/sf_dawson.tcc
include/bits/sf_distributions.tcc
include/bits/sf_ellint.tcc
include/bits/sf_euler.tcc
include/bits/sf_expint.tcc
include/bits/sf_fresnel.tcc
include/bits/sf_gamma.tcc
include/bits/sf_gegenbauer.tcc
include/bits/sf_hankel.tcc
include/bits/sf_hermite.tcc
include/bits/sf_hyperg.tcc
include/bits/sf_hypint.tcc
include/bits/sf_jacobi.tcc
include/bits/sf_laguerre.tcc
include/bits/sf_legendre.tcc
include/bits/sf_mod_bessel.tcc
include/bits/sf_owens_t.tcc
include/bits/sf_polylog.tcc
include/bits/sf_stirling.tcc
include/bits/sf_theta.tcc
include/bits/sf_trig.tcc
include/bits/sf_trigint.tcc
include/bits/sf_zeta.tcc
include/bits/specfun.h
include/hits/specture state h

12 File Index

Chapter 7

Module Documentation

7.1 C++17/IS29124 Mathematical Special Functions

Collaboration diagram for C++17/IS29124 Mathematical Special Functions:

Functions

```
template<typename_Tp>
   gnu cxx::fp promote t < Tp > std::assoc laguerre (unsigned int n, unsigned int m, Tp x)
• template<typename _Talpha , typename _Tp >
   __gnu_cxx::fp_promote_t< _Talpha, _Tp > std::assoc_laguerre (unsigned int __n, _Talpha __alpha1, _Tp __x)
• float std::assoc_laguerref (unsigned int __n, unsigned int __m, float __x)

    long double std::assoc_laguerrel (unsigned int __n, unsigned int __m, long double __x)

• template<typename Tp >
    _gnu_cxx::fp_promote_t< _Tp > std::assoc_legendre (unsigned int __l, unsigned int __n, _Tp __x)
• float std::assoc_legendref (unsigned int __l, unsigned int __m, float __x)
• long double std::assoc_legendrel (unsigned int __l, unsigned int __m, long double __x)
• template<typename _Tpa , typename _Tpb >
   __gnu_cxx::fp_promote_t< _Tpa, _Tpb > std::beta (_Tpa __a, _Tpb __b)

    float std::betaf (float __a, float __b)

    long double std::betal (long double __a, long double __b)

template<typename_Tp>
  __gnu_cxx::fp_promote_t< _Tp > std::comp_ellint_1 (_Tp __k)
```

```
    float std::comp_ellint_1f (float __k)

    long double std::comp ellint 11 (long double k)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > std::comp_ellint_2 (_Tp __k)

    float std::comp_ellint_2f (float __k)

    long double std::comp_ellint_2l (long double ___k)

    template<typename _Tp , typename _Tpn >

    _gnu_cxx::fp_promote_t< _Tp, _Tpn > std::comp_ellint_3 (_Tp __k, _Tpn __nu)

    float std::comp ellint 3f (float k, float nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for float modulus k.

    long double std::comp ellint 3l (long double k, long double nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for long double modulus k.
template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > std::cyl_bessel_i (_Tpnu __nu, _Tp __x)

    float std::cyl_bessel_if (float __nu, float __x)

    long double std::cyl bessel il (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > std::cyl_bessel_j (_Tpnu __nu, _Tp __x)

    float std::cyl bessel if (float nu, float x)

    long double std::cyl bessel jl (long double nu, long double x)

    template<typename _Tpnu , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > std::cyl_bessel_k (_Tpnu __nu, _Tp __x)

    float std::cyl_bessel_kf (float __nu, float __x)

• long double std::cyl_bessel_kl (long double __nu, long double __x)
• template<typename _Tpnu , typename _Tp >
   __gnu_cxx::fp_promote_t< _Tpnu, _Tp > std::cyl_neumann (_Tpnu __nu, _Tp __x)

    float std::cyl neumannf (float nu, float x)

    long double std::cyl_neumannl (long double __nu, long double __x)

• template<typename _Tp , typename _Tpp >
    _gnu_cxx::fp_promote_t< _Tp, _Tpp > std::ellint_1 (_Tp __k, _Tpp __phi)

    float std::ellint 1f (float k, float phi)

    long double std::ellint 11 (long double k, long double phi)

• template<typename Tp, typename Tpp>
    _gnu_cxx::fp_promote_t< _Tp, _Tpp > std::ellint_2 (_Tp __k, _Tpp __phi)

    float std::ellint 2f (float k, float phi)

      Return the incomplete elliptic integral of the second kind E(k,\phi) for float argument.

    long double std::ellint_2l (long double __k, long double __phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi).
- template<typename _Tp , typename _Tpn , typename _Tpp >
   _gnu_cxx::fp_promote_t< _Tp, _Tpn, _Tpp > std::ellint_3 (_Tp __k, _Tpn __nu, _Tpp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).

    float std::ellint_3f (float __k, float __nu, float __phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) for float argument.

    long double std::ellint 3l (long double k, long double nu, long double phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).
template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > std::expint (_Tp __x)

    float std::expintf (float x)

    long double std::expintl (long double x)
```

```
template<typename _Tp >
   gnu cxx::fp promote t< Tp > std::hermite (unsigned int n, Tp x)

    float std::hermitef (unsigned int n, float x)

    long double std::hermitel (unsigned int __n, long double __x)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > std::laguerre (unsigned int __n, _Tp __x)

    float std::laguerref (unsigned int n, float x)

    long double std::laguerrel (unsigned int n, long double x)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > std::legendre (unsigned int __l, _Tp __x)

    float std::legendref (unsigned int __I, float __x)

    long double std::legendrel (unsigned int __I, long double __x)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > std::riemann_zeta (_Tp __s)
• float std::riemann_zetaf (float s)

    long double std::riemann zetal (long double s)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > std::sph_bessel (unsigned int __n, _Tp __x)
• float std::sph besself (unsigned int n, float x)

    long double std::sph_bessell (unsigned int __n, long double __x)

template<typename _Tp >
    gnu cxx::fp promote t< Tp > std::sph legendre (unsigned int I, unsigned int m, Tp theta)

    float std::sph_legendref (unsigned int __l, unsigned int __m, float __theta)

• long double std::sph_legendrel (unsigned int __l, unsigned int __m, long double __theta)
template<typename _Tp >
   __gnu_cxx::fp_promote_t< _Tp > std::sph_neumann (unsigned int __n, _Tp __x)

    float std::sph neumannf (unsigned int n, float x)

    long double std::sph neumannl (unsigned int n, long double x)
```

7.1.1 Detailed Description

A collection of advanced mathematical special functions for C++17 and IS29124.

7.1.2 Function Documentation

Return the associated Laguerre polynomial $L_n^{(m)}(x)$ of nonnegative degree ${\bf n}$, nonnegative order ${\bf m}$ and real argument ${\bf x}$.

The associated Laguerre function of real order $\alpha,$ $L_n^{(\alpha)}(x),$ is defined by

$$L_n^{(\alpha)}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n;\alpha+1;x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

The associated Laguerre polynomial is defined for integral order $\alpha=m$ by:

$$L_n^{(m)}(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

and x >= 0.

See also

laguerre for details of the Laguerre function of degree n

Template Parameters

_Tp The floating-point type of the argument _	_x.
---	-----

Parameters

_~	The degree of the Laguerre function,n >= 0.
_n	
←	The order of the Laguerre function, ${m} >= 0$.
_m	
_~	The argument of the Laguerre function, $\underline{} x >= 0$.
_X	

Exceptions

```
std::domain\_error if \__x < 0.
```

Definition at line 475 of file specfun.h.

7.1.2.2 assoc_laguerre() [2/2]

Return the associated Laguerre polynomial $L_n^{(\alpha)}(x)$ of nonnegative degree n, order α and real argument x.

Template Parameters

_Talpha	The (signed integer or floating-point) type of the degreealpha1.
_Тр	The floating-point type of the argumentx.

Definition at line 492 of file specfun.h.

7.1.2.3 assoc_laguerref()

```
float std::assoc_laguerref (
          unsigned int __n,
          unsigned int __m,
          float __x ) [inline]
```

Return the associated Laguerre polynomial $L_n^{(m)}(x)$ of order n, degree m, and float argument x.

See also

assoc laguerre for more details.

Definition at line 427 of file specfun.h.

7.1.2.4 assoc_laguerrel()

```
long double std::assoc_laguerrel (
         unsigned int __n,
         unsigned int __m,
         long double __x ) [inline]
```

Return the associated Laguerre polynomial $L_n^{(m)}(x)$ of order n, degree m and long double argument x.

See also

assoc_laguerre for more details.

Definition at line 438 of file specfun.h.

7.1.2.5 assoc_legendre()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::assoc_legendre (
         unsigned int __1,
         unsigned int __m,
         _Tp __x ) [inline]
```

Return the associated Legendre function $P_l^m(x)$ of degree 1, order m, and real argument x.

The associated Legendre function is derived from the Legendre function $P_l(x)$ by the Rodrigues formula:

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$$

See also

legendre for details of the Legendre function of degree 1

Note

$$P_l^m(x) = 0@cifm > l.$$

Template Parameters

Τp	The floating-point type of the argument _	х.
~		

Parameters

_~	The degree1 >= 0.
_/	
_~	The orderm.
_m	
_~	The argument, abs (x) <= 1.
_X	

Exceptions

```
std::domain\_error if abs (\__x) > 1.
```

Definition at line 541 of file specfun.h.

7.1.2.6 assoc_legendref()

```
unsigned int __m,
float __x ) [inline]
```

Return the associated Legendre function $P_l^m(x)$ of degree 1, order m, and float argument x.

See also

assoc_legendre for more details.

Definition at line 507 of file specfun.h.

7.1.2.7 assoc_legendrel()

```
long double std::assoc_legendrel (
    unsigned int __1,
    unsigned int __m,
    long double __x ) [inline]
```

Return the associated Legendre function $P_l^m(x)$ of degree 1, order m, and long double argument x.

See also

assoc legendre for more details.

Definition at line 518 of file specfun.h.

7.1.2.8 beta()

```
template<typename _Tpa , typename _Tpb >
__gnu_cxx::fp_promote_t<_Tpa, _Tpb> std::beta (
    __Tpa __a,
    __Tpb __b ) [inline]
```

Return the beta function, B(a,b), for real parameters a, b.

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

where a>0 and b>0

Template Parameters

_Тра	The floating-point type of the parametera.
_Tpb	The floating-point type of the parameterb.

Parameters

_~	The first argument of the beta function, $\a > 0$.
_a	
←	The second argument of the beta function, $$ b $>$ 0 .
_b	

Exceptions

```
std::domain_error | if __a < 0 or __b < 0 .
```

Definition at line 588 of file specfun.h.

7.1.2.9 betaf()

Return the beta function, B(a,b), for float parameters a, b.

See also

beta for more details.

Definition at line 556 of file specfun.h.

7.1.2.10 betal()

```
long double std::betal (
          long double __a,
          long double __b ) [inline]
```

Return the beta function, B(a,b), for long double parameters a, b.

See also

beta for more details.

Definition at line 566 of file specfun.h.

7.1.2.11 comp_ellint_1()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::comp_ellint_1 (
    _Tp __k ) [inline]
```

Return the complete elliptic integral of the first kind K(k) for real modulus k.

The complete elliptic integral of the first kind is defined as

$$K(k) = F(k, \pi/2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

where $F(k,\phi)$ is the incomplete elliptic integral of the first kind and the modulus |k|<=1.

See also

ellint_1 for details of the incomplete elliptic function of the first kind.

Template Parameters

Tp The floating-point type of the modulus k.

Parameters

Exceptions

```
| std::domain\_error | if abs(\__k) > 1 .
```

Definition at line 636 of file specfun.h.

7.1.2.12 comp_ellint_1f()

Return the complete elliptic integral of the first kind E(k) for float modulus k.

See also

comp ellint 1 for details.

Definition at line 603 of file specfun.h.

7.1.2.13 comp_ellint_1I()

```
long double std::comp_ellint_11 (
          long double __k ) [inline]
```

Return the complete elliptic integral of the first kind E(k) for long double modulus k.

See also

comp_ellint_1 for details.

Definition at line 613 of file specfun.h.

7.1.2.14 comp_ellint_2()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::comp_ellint_2 (
    _Tp __k ) [inline]
```

Return the complete elliptic integral of the second kind E(k) for real modulus k.

The complete elliptic integral of the second kind is defined as

$$E(k) = E(k, \pi/2) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta}$$

where $E(k,\phi)$ is the incomplete elliptic integral of the second kind and the modulus |k| <= 1.

See also

ellint_2 for details of the incomplete elliptic function of the second kind.

Template Parameters

__Tp | The floating-point type of the modulus ___k.

Parameters

$$\begin{array}{c|c} _{\leftarrow} & \text{The modulus, abs } (__k) <= 1 \\ _k & \end{array}$$

Exceptions

```
std::domain\_error if abs (___k) > 1.
```

Definition at line 683 of file specfun.h.

7.1.2.15 comp_ellint_2f()

Return the complete elliptic integral of the second kind E(k) for float modulus k.

See also

```
comp ellint 2 for details.
```

Definition at line 651 of file specfun.h.

7.1.2.16 comp_ellint_2I()

```
long double std::comp_ellint_21 (
          long double __k ) [inline]
```

Return the complete elliptic integral of the second kind E(k) for long double modulus k.

See also

comp_ellint_2 for details.

Definition at line 661 of file specfun.h.

7.1.2.17 comp_ellint_3()

Return the complete elliptic integral of the third kind $\Pi(k,\nu)=\Pi(k,\nu,\pi/2)$ for real modulus k.

The complete elliptic integral of the third kind is defined as

$$\Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2} \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

where $\Pi(k,\nu,\phi)$ is the incomplete elliptic integral of the second kind and the modulus |k|<=1.

See also

ellint 3 for details of the incomplete elliptic function of the third kind.

Template Parameters

_Тр	The floating-point type of the modulus \k .
_Tpn	The floating-point type of the argumentnu.

Parameters

k	The modulus, $abs(\underline{}k) <= 1$.
nu	The characteristic.

Exceptions

```
std::domain\_error | if abs (\__k) > 1.
```

Definition at line 734 of file specfun.h.

7.1.2.18 comp_ellint_3f()

Return the complete elliptic integral of the third kind $\Pi(k,\nu)$ for float modulus k.

See also

```
comp_ellint_3 for details.
```

Definition at line 698 of file specfun.h.

7.1.2.19 comp_ellint_3l()

Return the complete elliptic integral of the third kind $\Pi(k,\nu)$ for long double modulus k.

See also

```
comp_ellint_3 for details.
```

Definition at line 708 of file specfun.h.

7.1.2.20 cyl_bessel_i()

Return the regular modified Bessel function $I_{\nu}(x)$ for real order ν and argument x>=0.

The regular modified cylindrical Bessel function is:

$$I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) = \sum_{k=0}^{\infty} \frac{(x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

Template Parameters

_Tpnu	The floating-point type of the ordernu.
_Тр	The floating-point type of the argumentx.

Parameters

nu	The order
X	The argument, $\underline{}$ x $>= 0$

Exceptions

```
std::domain\_error \mid if \__x < 0 .
```

Definition at line 780 of file specfun.h.

7.1.2.21 cyl_bessel_if()

Return the regular modified Bessel function $I_{\nu}(x)$ for float order ν and argument x>=0.

See also

cyl_bessel_i for setails.

Definition at line 749 of file specfun.h.

7.1.2.22 cyl_bessel_il()

Return the regular modified Bessel function $I_{\nu}(x)$ for long double order ν and argument x>=0.

See also

```
cyl_bessel_i for setails.
```

Definition at line 759 of file specfun.h.

7.1.2.23 cyl_bessel_j()

Return the Bessel function $J_{\nu}(x)$ of real order ν and argument x >= 0.

The cylindrical Bessel function is:

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

Template Parameters

_Tpnu	The floating-point type of the ordernu.
_ <i>Tp</i>	The floating-point type of the argumentx.

Parameters

nu	The order
X	The argument, $\underline{}$ x $>= 0$

Exceptions

std::domain_error	ifx	. <	0	
-------------------	-----	-----	---	--

Definition at line 826 of file specfun.h.

7.1.2.24 cyl_bessel_jf()

Return the Bessel function of the first kind $J_{\nu}(x)$ for float order ν and argument x>=0.

See also

```
cyl_bessel_j for setails.
```

Definition at line 795 of file specfun.h.

7.1.2.25 cyl_bessel_jl()

```
long double std::cyl_bessel_jl (
          long double __nu,
          long double __x ) [inline]
```

Return the Bessel function of the first kind $J_{\nu}(x)$ for long double order ν and argument x>=0.

See also

```
cyl_bessel_j for setails.
```

Definition at line 805 of file specfun.h.

7.1.2.26 cyl_bessel_k()

```
template<typename _Tpnu , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpnu, _Tp> std::cyl_bessel_k (
    __Tpnu __nu,
    __Tp __x ) [inline]
```

Return the irregular modified Bessel function $K_{\nu}(x)$ of real order ν and argument x.

The irregular modified Bessel function is defined by:

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu \pi}$$

where for integral $\nu=n$ a limit is taken: $lim_{\nu\to n}$. For negative argument we have simply:

$$K_{-\nu}(x) = K_{\nu}(x)$$

Template Parameters

_Tpnu	The floating-point type of the ordernu.
_Тр	The floating-point type of the argument $\underline{}$ x.

Parameters

nu	The order
x	The argument, $\underline{}$ x $>= 0$

Exceptions

```
std::domain\_error \mid if \__x < 0 .
```

Definition at line 878 of file specfun.h.

7.1.2.27 cyl_bessel_kf()

Return the irregular modified Bessel function $K_{\nu}(x)$ for float order ν and argument x>=0.

See also

cyl_bessel_k for setails.

Definition at line 841 of file specfun.h.

7.1.2.28 cyl_bessel_kl()

Return the irregular modified Bessel function $K_{\nu}(x)$ for long double order ν and argument x>=0.

See also

cyl_bessel_k for setails.

Definition at line 851 of file specfun.h.

7.1.2.29 cyl_neumann()

```
template<typename _Tpnu , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpnu, _Tp> std::cyl_neumann (
    __Tpnu ___nu,
    __Tp ___x ) [inline]
```

Return the Neumann function $N_{\nu}(x)$ of real order ν and argument x>=0.

The Neumann function is defined by:

$$N_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}$$

where x>=0 and for integral order $\nu=n$ a limit is taken: $\lim_{\nu\to n}$.

Template Parameters

_Tpnu	The floating-point type of the ordernu.
_Тр	The floating-point type of the argumentx.

Parameters

nu	The order.
x	The argument, $\underline{} x >= 0$.

Exceptions

```
std::domain\_error \mid if \__x < 0 .
```

Definition at line 926 of file specfun.h.

7.1.2.30 cyl_neumannf()

Return the Neumann function $N_{\nu}(x)$ of float order ν and argument x.

See also

cyl_neumann for setails.

Definition at line 893 of file specfun.h.

7.1.2.31 cyl_neumannl()

Return the Neumann function $N_{\nu}(x)$ of long double order ν and argument x.

See also

cyl_neumann for setails.

Definition at line 903 of file specfun.h.

7.1.2.32 ellint_1()

```
template<typename _Tp , typename _Tpp >
    __gnu_cxx::fp_promote_t<_Tp, _Tpp> std::ellint_1 (
    __Tp ___k,
    __Tpp ___phi ) [inline]
```

Return the incomplete elliptic integral of the first kind $F(k,\phi)$ for real modulus k and angle ϕ .

The incomplete elliptic integral of the first kind is defined as

$$F(k,\phi) = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

For $\phi = \pi/2$ this becomes the complete elliptic integral of the first kind, K(k).

See also

Template Parameters

_Тр	The floating-point type of the modulus $__\mathtt{k}$.
_Трр	The floating-point type of the anglephi.

Parameters

k	The modulus, $abs(\underline{}k) <= 1$.
phi	The integral limit argument in radians.

Exceptions

```
std::domain\_error \mid if abs(\__k) > 1.
```

Definition at line 974 of file specfun.h.

7.1.2.33 ellint_1f()

Return the incomplete elliptic integral of the first kind $E(k,\phi)$ for float modulus k and angle ϕ .

See also

```
ellint 1 for details.
```

Definition at line 941 of file specfun.h.

7.1.2.34 ellint_1I()

```
long double std::ellint_1l (
          long double __k,
          long double __phi ) [inline]
```

Return the incomplete elliptic integral of the first kind $E(k,\phi)$ for long double modulus k and angle ϕ .

See also

```
ellint_1 for details.
```

Definition at line 951 of file specfun.h.

7.1.2.35 ellint_2()

Return the incomplete elliptic integral of the second kind $E(k, \phi)$.

The incomplete elliptic integral of the second kind is defined as

$$E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2 \theta}$$

For $\phi = \pi/2$ this becomes the complete elliptic integral of the second kind, E(k).

See also

```
comp_ellint_2.
```

Template Parameters

_Тр	The floating-point type of the modulus \k .
_Трр	The floating-point type of the anglephi.

Parameters

k	The modulus, abs $(\underline{}$ k) <= 1
phi	The integral limit argument in radians

Returns

The elliptic function of the second kind.

Exceptions

```
std::domain\_error \mid if abs(\__k) > 1.
```

Definition at line 1022 of file specfun.h.

7.1.2.36 ellint_2f()

Return the incomplete elliptic integral of the second kind $E(k,\phi)$ for float argument.

See also

```
ellint_2 for details.
```

Definition at line 989 of file specfun.h.

7.1.2.37 ellint_2l()

```
long double std::ellint_21 (
          long double __k,
          long double __phi ) [inline]
```

Return the incomplete elliptic integral of the second kind $E(k,\phi)$.

See also

```
ellint_2 for details.
```

Definition at line 999 of file specfun.h.

7.1.2.38 ellint_3()

```
template<typename _Tp , typename _Tpn , typename _Tpp >
    __gnu_cxx::fp_promote_t<_Tp, _Tpn, _Tpp> std::ellint_3 (
    __Tp ___k,
    __Tpn ___nu,
    __Tpp ___phi ) [inline]
```

Return the incomplete elliptic integral of the third kind $\Pi(k, \nu, \phi)$.

The incomplete elliptic integral of the third kind is defined by:

$$\Pi(k,\nu,\phi) = \int_0^\phi \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

For $\phi = \pi/2$ this becomes the complete elliptic integral of the third kind, $\Pi(k,\nu)$.

See also

comp_ellint_3.

Template Parameters

_Тр	The floating-point type of the modulusk.
_Tpn	The floating-point type of the argumentnu.
_Трр	The floating-point type of the anglephi.

Parameters

k	The modulus, $abs(\underline{}k) <= 1$.
nu	The characteristic.
phi	The integral limit argument in radians.

Returns

The elliptic function of the third kind.

Exceptions

Definition at line 1075 of file specfun.h.

7.1.2.39 ellint_3f()

Return the incomplete elliptic integral of the third kind $\Pi(k,\nu,\phi)$ for float argument.

See also

```
ellint 3 for details.
```

Definition at line 1037 of file specfun.h.

7.1.2.40 ellint_3I()

```
long double std::ellint_31 (
          long double __k,
          long double __nu,
          long double __phi ) [inline]
```

Return the incomplete elliptic integral of the third kind $\Pi(k, \nu, \phi)$.

See also

ellint_3 for details.

Definition at line 1047 of file specfun.h.

7.1.2.41 expint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::expint (
    __Tp ___x ) [inline]
```

Return the exponential integral Ei(x) for real argument x.

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Template Parameters

_Tp The floating-point type of the argument	х.
---	----

Parameters

```
_ ← The argument of the exponential integral function.
```

Definition at line 1115 of file specfun.h.

7.1.2.42 expintf()

Return the exponential integral Ei(x) for float argument x.

See also

expint for details.

Definition at line 1089 of file specfun.h.

7.1.2.43 expintl()

Return the exponential integral Ei(x) for long double argument x.

See also

expint for details.

Definition at line 1099 of file specfun.h.

7.1.2.44 hermite()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::hermite (
          unsigned int __n,
          _Tp __x ) [inline]
```

Return the Hermite polynomial $H_n(x)$ of order n and real argument x.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

The Hermite polynomial obeys a reflection formula:

$$H_n(-x) = (-1)^n H_n(x)$$

Template Parameters

_Tp The floating-point type of the argument _	_X.
---	-----

Parameters

_←	The order
_n	
_←	The argument
_X	

Definition at line 1163 of file specfun.h.

7.1.2.45 hermitef()

Return the Hermite polynomial $H_n(x)$ of nonnegative order n and float argument x.

See also

hermite for details.

Definition at line 1130 of file specfun.h.

7.1.2.46 hermitel()

Return the Hermite polynomial $H_n(x)$ of nonnegative order n and long double argument x.

See also

hermite for details.

Definition at line 1140 of file specfun.h.

7.1.2.47 laguerre()

Returns the Laguerre polynomial $L_n(x)$ of nonnegative degree ${\bf n}$ and real argument x>=0.

The Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Template Parameters

_Tp The floating-point type of the argument _	_X.
---	-----

Parameters

_~	The nonnegative order	
_n		
_~	The argument $\underline{}$ x $>= 0$	
_X		

Exceptions

std::domain_error	if $\underline{}$ x < 0.
-------------------	--------------------------

Definition at line 1207 of file specfun.h.

7.1.2.48 laguerref()

Returns the Laguerre polynomial $L_n(x)$ of nonnegative degree n and float argument x>=0.

See also

laguerre for more details.

Definition at line 1178 of file specfun.h.

7.1.2.49 laguerrel()

```
long double std::laguerrel (
     unsigned int __n,
     long double __x ) [inline]
```

Returns the Laguerre polynomial $L_n(x)$ of nonnegative degree n and long double argument x >= 0.

See also

laguerre for more details.

Definition at line 1188 of file specfun.h.

7.1.2.50 legendre()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::legendre (
          unsigned int __l,
          _Tp __x ) [inline]
```

Return the Legendre polynomial $P_l(x)$ of nonnegative degree 1 and real argument |x| <= 0.

The Legendre function of order 1 and argument x, $P_l(x)$, is defined by:

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

Template Parameters

_Тр	The floating-point type of the argument _	_x.
-----	---	-----

Parameters

_ `	The degree $l>=0$
_~	The argument abs (x) <= 1
_X	

Exceptions

```
| std::domain\_error | if abs(__x) > 1
```

Definition at line 1252 of file specfun.h.

7.1.2.51 legendref()

Return the Legendre polynomial $P_l(x)$ of nonnegative degree 1 and float argument |x| <= 0.

See also

legendre for more details.

Definition at line 1222 of file specfun.h.

7.1.2.52 legendrel()

Return the Legendre polynomial $P_l(x)$ of nonnegative degree 1 and long double argument |x| <= 0.

See also

legendre for more details.

Definition at line 1232 of file specfun.h.

7.1.2.53 riemann_zeta()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::riemann_zeta (
    _Tp __s ) [inline]
```

Return the Riemann zeta function $\zeta(s)$ for real argument s.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s} \text{ for } s > 1$$

and

$$\zeta(s) = \frac{1}{1-2^{1-s}} \sum_{k=1}^{\infty} (-1)^{k-1} k^{-s} \text{ for } 0 <= s < 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s)$$

Template Parameters

_Tp The floating-point type of the argument _	s.
---	----

Parameters

Definition at line 1303 of file specfun.h.

7.1.2.54 riemann_zetaf()

Return the Riemann zeta function $\zeta(s)$ for float argument s.

See also

riemann_zeta for more details.

Definition at line 1267 of file specfun.h.

7.1.2.55 riemann_zetal()

Return the Riemann zeta function $\zeta(s)$ for long double argument s.

See also

riemann_zeta for more details.

Definition at line 1277 of file specfun.h.

7.1.2.56 sph_bessel()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::sph_bessel (
          unsigned int __n,
          _Tp __x ) [inline]
```

Return the spherical Bessel function $j_n(x)$ of nonnegative order n and real argument x >= 0.

The spherical Bessel function is defined by:

$$j_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{n+1/2}(x)$$

Template Parameters

_Tp	The floating-point type of the argument _	_x.
-----	---	-----

Parameters

_~	The integral order n >= 0
_n	
_~	The real argument $x >= 0$
_X	

Exceptions

std::domain_error	ifx < 0 .	

Definition at line 1347 of file specfun.h.

7.1.2.57 sph_besself()

```
float std::sph_besself (
          unsigned int __n,
          float __x ) [inline]
```

Return the spherical Bessel function $j_n(x)$ of nonnegative order n and float argument x >= 0.

See also

sph bessel for more details.

Definition at line 1318 of file specfun.h.

7.1.2.58 sph_bessell()

```
long double std::sph_bessell (
    unsigned int __n,
    long double __x ) [inline]
```

Return the spherical Bessel function $j_n(x)$ of nonnegative order n and long double argument x >= 0.

See also

sph_bessel for more details.

Definition at line 1328 of file specfun.h.

7.1.2.59 sph_legendre()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::sph_legendre (
         unsigned int __l,
         unsigned int __m,
         _Tp __theta ) [inline]
```

Return the spherical Legendre function of nonnegative integral degree 1 and order m and real angle θ in radians.

The spherical Legendre function is defined by

$$Y_l^m(\theta, 0) = (-1)^m \frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} P_l^m(\cos \theta) e^{im\phi}$$

where $P_l^m(x)$ is the associated Legendre polynomial. The full (complex) spherical harmonic function includes a phase factor in the azimuthal angle ϕ :

$$Y_l^m(\theta,\phi) = Y_l^m(\theta,0)e^{im\phi}$$

Template Parameters

_Тр	The floating-point type of the angle _	_theta.
-----	--	---------

Parameters

/	The order1 >= 0
m	The degreem >= 0 andm <=
	1
theta	The radian polar angle argument

See also

assoc_legendre for the unnormalized associated Legendre polynomial.

Definition at line 1401 of file specfun.h.

7.1.2.60 sph_legendref()

```
float std::sph_legendref (
         unsigned int __1,
         unsigned int __m,
         float __theta ) [inline]
```

Return the spherical Legendre function of nonnegative integral degree 1 and order m and float angle θ in radians.

See also

sph_legendre for details.

Definition at line 1362 of file specfun.h.

7.1.2.61 sph_legendrel()

```
long double std::sph_legendrel (
    unsigned int __1,
    unsigned int __m,
    long double __theta ) [inline]
```

Return the spherical Legendre function of nonnegative integral degree 1 and order m and long double angle θ in radians.

See also

sph_legendre for details.

Definition at line 1373 of file specfun.h.

7.1.2.62 sph_neumann()

Return the spherical Neumann function of integral order n>=0 and real argument x>=0.

The spherical Neumann function is defined by

$$n_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} N_{n+1/2}(x)$$

Template Parameters

Tp The floating-point type of the argument _	_x.
--	-----

Parameters

_~	The integral order n >= 0
_n	
_~	The real argument $\underline{}$ x $>= 0$
_X	

Exceptions

```
std::domain\_error \mid if \__x < 0 .
```

Definition at line 1445 of file specfun.h.

7.1.2.63 sph_neumannf()

```
float std::sph_neumannf (
          unsigned int __n,
          float __x ) [inline]
```

Return the spherical Neumann function of integral order n>=0 and float argument x>=0.

See also

sph_neumann for details.

Definition at line 1416 of file specfun.h.

7.1.2.64 sph_neumannl()

```
long double std::sph_neumannl (
          unsigned int __n,
          long double __x ) [inline]
```

Return the spherical Neumann function of integral order n>=0 and long double <math>x>=0.

See also

sph_neumann for details.

Definition at line 1426 of file specfun.h.

7.2 GNU Extended Mathematical Special Functions

Collaboration diagram for GNU Extended Mathematical Special Functions:

Functions

```
template<typename _Tp >
   gnu cxx::fp promote t < Tp > gnu cxx::airy ai ( Tp x)
template<typename</li>Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::airy_ai (std::complex< _Tp > __x)

    float gnu cxx::airy aif (float x)

    long double __gnu_cxx::airy_ail (long double __x)

template<typename_Tp>
   gnu cxx::fp promote t< Tp> gnu cxx::airy bi (Tpx)
• template<typename_Tp>
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::airy_bi (std::complex< _Tp > __x)

    float __gnu_cxx::airy_bif (float __x)

    long double gnu cxx::airy bil (long double x)

template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::assoc_legendre_q (unsigned int __l, unsigned int __m, _Tp __x)
• float gnu cxx::assoc legendre qf (unsigned int I, unsigned int m, float x)

    long double gnu cxx::assoc legendre gl (unsigned int l, unsigned int m, long double x)

template<typename _Tp >
  std::vector< Tp > gnu cxx::bell (unsigned int n)
ullet template<typename _Tp , typename _Up >
  _Up __gnu_cxx::bell (unsigned int __n, _Up __x)
template<typename</li>Tp >
   __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::bernoulli (unsigned int __n)
template<typename _Tp >
  _Tp __gnu_cxx::bernoulli (unsigned int __n, _Tp __x)

    float gnu cxx::bernoullif (unsigned int n)

    long double gnu cxx::bernoullil (unsigned int n)

template<typename_Tp>
   __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::binomial (unsigned int __n, unsigned int __k)
     Return the binomial coefficient as a real number. The binomial coefficient is given by:
                                                 \binom{n}{k} = \frac{n!}{(n-k)!k!}
```

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

Generated by Doxygen

```
template<typename _Tp >
   gnu cxx::fp promote t< Tp > gnu cxx::binomial p ( Tp p, unsigned int n, unsigned int k)
     Return the binomial cumulative distribution function.
template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::binomial_pdf (_Tp __p, unsigned int __n, unsigned int __k)
     Return the binomial probability mass function.

    float gnu cxx::binomialf (unsigned int n, unsigned int

    long double gnu cxx::binomiall (unsigned int n, unsigned int k)

• template<typename Tps, typename Tp>
    _gnu_cxx::fp_promote_t< _Tps, _Tp > __gnu_cxx::bose_einstein (_Tps __s, _Tp __x)

    float gnu cxx::bose einsteinf (float s, float x)

    long double and cxx::bose einstein! (long double s, long double x)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_t (unsigned int __n, _Tp __x)
• float __gnu_cxx::chebyshev_tf (unsigned int __n, float __x)
• long double gnu cxx::chebyshev tl (unsigned int n, long double x)
template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_u (unsigned int __n, _Tp __x)

    float gnu cxx::chebyshev uf (unsigned int n, float x)

    long double __gnu_cxx::chebyshev_ul (unsigned int __n, long double __x)

template<typename _Tp >
    gnu cxx::fp promote t< Tp > gnu cxx::chebyshev v (unsigned int n, Tp x)

    float gnu cxx::chebyshev vf (unsigned int n, float x)

    long double gnu cxx::chebyshev vl (unsigned int n, long double x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_w (unsigned int __n, _Tp __x)

    float __gnu_cxx::chebyshev_wf (unsigned int __n, float __x)

    long double gnu cxx::chebyshev wl (unsigned int n, long double x)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::clausen (unsigned int __m, _Tp __x)

    template<typename</li>
    Tp >

  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::clausen (unsigned int __m, std::complex< _Tp
  > __z)
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::clausen_cl (unsigned int __m, _Tp __x)

    float gnu cxx::clausen clf (unsigned int m, float x)

    long double gnu cxx::clausen cll (unsigned int m, long double x)

template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::clausen_sl (unsigned int __m, _Tp __x)
• float gnu cxx::clausen slf (unsigned int m, float x)

    long double <u>__gnu_cxx::clausen_sll</u> (unsigned int __m, long double __x)

    float gnu cxx::clausenf (unsigned int m, float x)

• std::complex < float > gnu cxx::clausenf (unsigned int m, std::complex < float > z)

    long double gnu cxx::clausenl (unsigned int m, long double x)

    std::complex < long double > gnu cxx::clausenl (unsigned int m, std::complex < long double > z)

template<typename_Tk >
   __gnu_cxx::fp_promote_t< _Tk > __gnu_cxx::comp_ellint_d (_Tk __k)

    float gnu cxx::comp ellint df (float k)

    long double __gnu_cxx::comp_ellint_dl (long double __k)

    float __gnu_cxx::comp_ellint_rf (float __x, float __y)

    long double gnu cxx::comp ellint rf (long double x, long double y)
```

```
• template<typename _Tx , typename _Ty >
   \underline{\hspace{0.1cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.1cm}} Tx, \underline{\hspace{0.1cm}} Ty > \underline{\hspace{0.1cm}} gnu\_cxx:: comp\_ellint\_rf (\underline{\hspace{0.1cm}} Tx \underline{\hspace{0.1cm}} x, \underline{\hspace{0.1cm}} Ty \underline{\hspace{0.1cm}} y)

    float gnu cxx::comp ellint rg (float x, float y)

    long double __gnu_cxx::comp_ellint_rg (long double __x, long double __y)

• template<typename Tx, typename Ty>
    _gnu_cxx::fp_promote_t< _Tx, _Ty > __gnu_cxx::comp_ellint_rg (_Tx __x, _Ty __y)

    template<typename _Tpa , typename _Tpc , typename _Tp >

   __gnu_cxx::fp_promote_t< _Tpa, _Tpc, _Tp > __gnu_cxx::conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x)
• template<typename _Tpc , typename _Tp >
   __gnu_cxx::fp_promote_t< _Tpc, _Tp > __gnu_cxx::conf_hyperg_lim (_Tpc __c, _Tp __x)

    float gnu cxx::conf hyperg limf (float c, float x)

    long double gnu cxx::conf hyperg liml (long double c, long double x)

    float gnu cxx::conf hypergf (float a, float c, float x)

    long double __gnu_cxx::conf_hypergl (long double __a, long double __c, long double __x)

template<typename</li>Tp >
   gnu cxx::fp promote t< Tp> gnu cxx::cos pi (Tpx)

    float __gnu_cxx::cos_pif (float __x)

    long double <u>gnu_cxx::cos_pil</u> (long double <u>x</u>)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > _ gnu_cxx::cosh_pi (_Tp __x)

    float gnu cxx::cosh pif (float x)

    long double gnu cxx::cosh pil (long double x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::coshint (_Tp __x)

    float gnu cxx::coshintf (float x)

    long double gnu cxx::coshintl (long double x)

template<typename</li>Tp >
   __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::cosint (_Tp __x)

    float gnu cxx::cosintf (float x)

    long double gnu cxx::cosintl (long double x)

• template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx::fp promote t< Tpnu, Tp >> gnu cxx::cyl hankel 1 ( Tpnu nu, Tp z)
template<typename _Tpnu , typename _Tp >
  std::complex< gnu cxx::fp promote t< Tpnu, Tp >> gnu cxx::cyl hankel 1 (std::complex< Tpnu >
   _nu, std::complex< _Tp> __x)

    std::complex< float > __gnu_cxx::cyl_hankel_1f (float __nu, float __z)

• std::complex < float > gnu cxx::cyl hankel 1f (std::complex < float > nu, std::complex < float > x)

    std::complex < long double > __gnu_cxx::cyl_hankel_1l (long double __nu, long double __z)

    std::complex < long double > __nu, std::complex < long double > __nu, std::complex < long</li>

  double > x)
• template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_2 (_Tpnu __nu, _Tp __z)
• template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_2 (std::complex< _Tpnu >
   _nu, std::complex< _Tp > __x)

    std::complex< float > __gnu_cxx::cyl_hankel_2f (float __nu, float __z)

    std::complex < float > __gnu_cxx::cyl_hankel_2f (std::complex < float > __nu, std::complex < float > __x)

    std::complex < long double > gnu cxx::cyl hankel 2l (long double nu, long double z)

• std::complex < long double > __nu, std::complex < long double > __nu, std::complex < long
  double > __x)
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::dawson (_Tp __x)
```

```
    float __gnu_cxx::dawsonf (float __x)

    long double __gnu_cxx::dawsonl (long double __x)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::debye (unsigned int __n, _Tp __x)

    float gnu cxx::debyef (unsigned int n, float x)

    long double __gnu_cxx::debyel (unsigned int __n, long double __x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::digamma (_Tp __x)

    float gnu cxx::digammaf (float x)

    long double gnu cxx::digammal (long double x)

template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::dilog (_Tp __x)

    float __gnu_cxx::dilogf (float __x)

    long double __gnu_cxx::dilogl (long double __x)

template<typename</li>Tp >
  _Tp __gnu_cxx::dirichlet_beta (_Tp __s)

    float gnu cxx::dirichlet betaf (float s)

• long double __gnu_cxx::dirichlet_betal (long double __s)
template<typename _Tp >
  _Tp __gnu_cxx::dirichlet_eta (_Tp __s)

    float gnu cxx::dirichlet etaf (float s)

    long double gnu cxx::dirichlet etal (long double s)

template<typename</li>Tp >
  _Tp __gnu_cxx::dirichlet_lambda (_Tp __s)
• float gnu cxx::dirichlet lambdaf (float s)

    long double __gnu_cxx::dirichlet_lambdal (long double __s)

template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::double_factorial (int __n)
      Return the double factorial n!! of the argument as a real number.
                                                n!! = n(n-2)...(2), 0!! = 1
      for even n and
                                              n!! = n(n-2)...(1), (-1)!! = 1
      for odd n.

    float gnu cxx::double factorialf (int n)

    long double __gnu_cxx::double_factoriall (int __n)

template<typename _Tk , typename _Tp , typename _Ta , typename _Tb >
   _gnu_cxx::fp_promote_t< _Tk, _Tp, _Ta, _Tb > <u>__gnu_cxx::ellint_cel</u> (_Tk <u>__k_c, _Tp __p, _Ta __a, _Tb __b)</u>

    float __gnu_cxx::ellint_celf (float __k_c, float __p, float __a, float __b)

    long double __gnu_cxx::ellint_cell (long double __k_c, long double __p, long double __a, long double __b)

• template<typename Tk, typename Tphi >
   __gnu_cxx::fp_promote_t< _Tk, _Tphi > __gnu_cxx::ellint_d (_Tk __k, _Tphi __phi)

    float __gnu_cxx::ellint_df (float __k, float __phi)

    long double __gnu_cxx::ellint_dl (long double __k, long double __phi)

• template<typename _Tp , typename _Tk >
    _gnu_cxx::fp_promote_t< _Tp, _Tk > __gnu_cxx::ellint_el1 (_Tp __x, _Tk __k_c)

    float gnu cxx::ellint el1f (float x, float k c)

• long double __gnu_cxx::ellint_el1l (long double __x, long double __k_c)
ullet template<typename _Tp , typename _Tk , typename _Ta , typename _Tb >
    gnu_cxx::fp_promote_t< _Tp, _Tk, _Ta, _Tb > __gnu_cxx::ellint_el2 (_Tp __x, _Tk __k_c, _Ta __a, _Tb __b)
• float <u>gnu_cxx::ellint_el2f</u> (float <u>x</u>, float <u>k</u>, float <u>a</u>, float <u>b</u>)
```

```
• long double __gnu_cxx::ellint_el2l (long double __x, long double __k_c, long double __a, long double __b)
• template<typename _Tx , typename _Tk , typename _Tp >
    gnu\_cxx::fp\_promote\_t < _Tx, _Tk, _Tp > \underline{ gnu\_cxx::ellint\_el3} (_Tx \__x, _Tk \__k\_c, _Tp \__p)
• float gnu cxx::ellint el3f (float x, float k c, float p)

    long double gnu cxx::ellint el3l (long double x, long double b)

• template<typename _Tp , typename _Up >
    gnu cxx::fp promote t < Tp, Up > gnu cxx::ellint rc (Tp x, Up y)

    float gnu cxx::ellint rcf (float x, float y)

    long double gnu cxx::ellint rcl (long double x, long double y)

• template<typename Tp, typename Up, typename Vp>
   _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rd (_Tp __x, _Up __y, _Vp __z)

    float gnu cxx::ellint rdf (float x, float y, float z)

• long double <u>gnu_cxx::ellint_rdl</u> (long double <u>__x, long double __y, long double __z)</u>
ullet template<typename _Tp , typename _Up , typename _Vp >
   __gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rf (_Tp__x, _Up__y, _Vp __z)

    float __gnu_cxx::ellint_rff (float __x, float __y, float __z)

    long double __gnu_cxx::ellint_rfl (long double __x, long double __y, long double __z)

template<typename _Tp , typename _Up , typename _Vp >
   \underline{\hspace{0.3cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.3cm}} Tp, \underline{\hspace{0.3cm}} Up, \underline{\hspace{0.3cm}} Vp > \underline{\hspace{0.3cm}} gnu\_cxx:: ellint\_rg (\underline{\hspace{0.3cm}} Tp \underline{\hspace{0.3cm}} x, \underline{\hspace{0.3cm}} Up \underline{\hspace{0.3cm}} y, \underline{\hspace{0.3cm}} Vp \underline{\hspace{0.3cm}} z)

    float __gnu_cxx::ellint_rgf (float __x, float __y, float __z)

    long double gnu cxx::ellint rgl (long double x, long double y, long double z)

- template<typename _Tp , typename _Up , typename _Vp , typename _Wp >
   _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp, _Wp > __gnu_cxx::ellint_rj (_Tp __x, _Up __y, _Vp __z, _Wp __p)

    float gnu cxx::ellint rjf (float x, float y, float z, float p)

    long double gnu cxx::ellint rjl (long double x, long double y, long double z, long double p)

template<typename</li>Tp >
  Tp gnu cxx::ellnome (Tp k)

    float __gnu_cxx::ellnomef (float __k)

    long double <u>gnu_cxx::ellnomel</u> (long double <u>k</u>)

template<typename</li>Tp >
  _Tp __gnu_cxx::euler (unsigned int __n)
      This returns Euler number E_n.
template<typename</li>Tp >
  _Tp __gnu_cxx::eulerian_1 (unsigned int __n, unsigned int __m)
template<typename</li>Tp >
  std::vector< _Tp > __gnu_cxx::eulerian_1 (unsigned int __n)
template<typename _Tp >
  Tp gnu cxx::eulerian 2 (unsigned int n, unsigned int m)
template<typename _Tp >
   gnu cxx::fp promote t< Tp > gnu cxx::expint (unsigned int n, Tp x)

    float gnu cxx::expintf (unsigned int n, float x)

    long double __gnu_cxx::expintl (unsigned int __n, long double __x)

• template<typename Tlam, typename Tp>
  __gnu_cxx::fp_promote_t< _Tlam, _Tp > __gnu_cxx::exponential_p (_Tlam __lambda, _Tp __x)
      Return the exponential cumulative probability density function.
• template<typename _Tlam , typename _Tp >
  __gnu_cxx::fp_promote_t< _Tlam, _Tp > __gnu_cxx::exponential_pdf (_Tlam __lambda, _Tp __x)
      Return the exponential probability density function.
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::factorial (unsigned int __n)
```

Return the factorial n! of the argument as a real number.

```
n! = 1 \times 2 \times ... \times n, 0! = 1
```

```
• float gnu cxx::factorialf (unsigned int n)
```

• long double gnu cxx::factoriall (unsigned int n)

• template<typename _Tp , typename _Tnu >

```
gnu cxx::fp promote t< Tp, Tnu > gnu cxx::falling factorial (Tp a, Tnu nu)
```

Return the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling factorial function is defined by

$$a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k) = \Gamma(a+1)/\Gamma(a-n+1)$$

where $a^{\underline{0}} \equiv 1$. In particular, $n^{\underline{n}} = n!$.

- float __gnu_cxx::falling_factorialf (float __a, float __nu)
- long double gnu cxx::falling factoriall (long double a, long double nu)
- template<typename _Tps , typename _Tp >

```
__gnu_cxx::fp_promote_t< _Tps, _Tp > __gnu_cxx::fermi_dirac (_Tps __s, _Tp __x)
```

- float __gnu_cxx::fermi_diracf (float __s, float __x)
- long double __gnu_cxx::fermi_diracl (long double __s, long double __x)
- ullet template<typename_Tp>

__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::fisher_f_p (_Tp __F, unsigned int __nu1, unsigned int __nu2)

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

template<typename_Tp>

gnu cxx::fp promote t< Tp > gnu cxx::fisher f pdf (Tp F, unsigned int nu1, unsigned int nu2)

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

template<typenameTp >

```
__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::fresnel_c (_Tp __x)
```

- float gnu cxx::fresnel cf (float x)
- long double __gnu_cxx::fresnel_cl (long double __x)
- template<typename
 Tp >

```
\underline{\hspace{0.3cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.3cm}} Tp > \underline{\hspace{0.3cm}} gnu\_cxx:: fresnel\_s \ (\underline{\hspace{0.3cm}} Tp \ \underline{\hspace{0.3cm}} x)
```

- float __gnu_cxx::fresnel_sf (float __x)
- long double <u>__gnu_cxx</u>::fresnel_sl (long double <u>__x</u>)
- template<typename _Ta , typename _Tp >

Return the gamma cumulative propability distribution function or the regularized lower incomplete gamma function.

- template<typename _Ta , typename _Tb , typename _Tp >

```
\underline{\hspace{0.5cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.5cm}} Ta, \underline{\hspace{0.5cm}} Tb, \underline{\hspace{0.5cm}} Tp > \underline{\hspace{0.5cm}} gnu\_cxx:: gamma\_pdf (\underline{\hspace{0.5cm}} Ta \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} alpha, \underline{\hspace{0.5cm}} Tb \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} beta, \underline{\hspace{0.5cm}} Tp \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} x)
```

Return the gamma propability distribution function.

- float gnu cxx::gamma pf (float a, float x)
- long double gnu cxx::gamma pl (long double a, long double x)
- template<typename _Ta , typename _Tp >

```
__gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::gamma_q (_Ta __a, _Tp __x)
```

Return the gamma complementary cumulative propability distribution (or survival) function or the regularized upper incomplete gamma function.

- float gnu cxx::gamma qf (float a, float x)
- long double __gnu_cxx::gamma_ql (long double __a, long double __x)
- template<typename_Ta>

 $_$ gnu_cxx::fp_promote_t< _Ta > $_$ gnu_cxx::gamma_reciprocal (_Ta $_$ a)

```
    float __gnu_cxx::gamma_reciprocalf (float __a)

    long double __gnu_cxx::gamma_reciprocall (long double __a)

• template<typename _Tlam , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tlam, _Tp > __gnu_cxx::gegenbauer (unsigned int __n, _Tlam __lambda, _Tp __x)

    float gnu cxx::gegenbauerf (unsigned int n, float lambda, float x)

    long double __gnu_cxx::gegenbauerl (unsigned int __n, long double __lambda, long double __x)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::harmonic (unsigned int __n)

    template<typename _Tk , typename _Tphi >

   __gnu_cxx::fp_promote_t< _Tk, _Tphi > __gnu_cxx::heuman_lambda (_Tk __k, _Tphi __phi)

    float gnu cxx::heuman lambdaf (float k, float phi)

    long double gnu cxx::heuman lambdal (long double k, long double phi)

    template<typename _Tp , typename _Up >

   _gnu_cxx::fp_promote_t< _Tp, _Up > __gnu_cxx::hurwitz_zeta (_Tp __s, _Up __a)

    template<typename _Tp , typename _Up >

  std::complex< Tp > gnu cxx::hurwitz zeta ( Tp s, std::complex< Up > a)

    float gnu cxx::hurwitz zetaf (float s, float a)

    long double __gnu_cxx::hurwitz_zetal (long double __s, long double __a)

    template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp >

  __gnu_cxx::fp_promote_t< _Tpa, _Tpb, _Tpc, _Tp > __gnu_cxx::hyperg (_Tpa __a, _Tpb __b, _Tpc __c, _Tp
  __x)

    float __gnu_cxx::hypergf (float __a, float __b, float __c, float __x)

• long double gnu cxx::hypergl (long double a, long double b, long double c, long double x)

    template<typename Ta, typename Tb, typename Tp>

    _gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::ibeta (_Ta __a, _Tb __b, _Tp __x)
ullet template<typename _Ta , typename _Tb , typename _Tp >
   gnu cxx::fp promote t < Ta, Tb, Tp > gnu cxx::ibetac ( Ta a, Tb b, Tp x)

    float __gnu_cxx::ibetacf (float __a, float __b, float __x)

    long double __gnu_cxx::ibetacl (long double __a, long double __b, long double __x)

• float gnu cxx::ibetaf (float a, float b, float x)
• long double <u>gnu_cxx::ibetal</u> (long double <u>a</u>, long double <u>b</u>, long double <u>x</u>)

    template<typename _Talpha , typename _Tbeta , typename _Tp >

   gnu cxx::fp promote t< Talpha, Tbeta, Tp > gnu cxx::jacobi (unsigned n, Talpha alpha, Tbeta
   __beta, _Tp __x)

    template<typename _Kp , typename _Up >

    _gnu_cxx::fp_promote_t< _Kp, _Up > __gnu_cxx::jacobi_cn (_Kp __k, _Up __u)
• float gnu cxx::jacobi cnf (float k, float u)

    long double __gnu_cxx::jacobi_cnl (long double __k, long double __u)

• template<typename _Kp , typename _Up >
    _gnu_cxx::fp_promote_t< _Kp, _Up > __gnu_cxx::jacobi_dn (_Kp __k, _Up __u)
• float gnu cxx::jacobi dnf (float k, float u)

    long double __gnu_cxx::jacobi_dnl (long double __k, long double __u)

• template<typename _Kp , typename _Up >
   gnu cxx::fp promote t < Kp, Up > gnu cxx::jacobi sn ( Kp k, Up u)

    float __gnu_cxx::jacobi_snf (float __k, float __u)

    long double __gnu_cxx::jacobi_snl (long double __k, long double __u)

template<typename _Tpq , typename _Tp >
    gnu cxx::fp promote t< Tpq, Tp > gnu cxx::jacobi theta 1 ( Tpq q, Tp x)

    float gnu cxx::jacobi theta 1f (float q, float x)

    long double __gnu_cxx::jacobi_theta_1l (long double __q, long double __x)

    template<typename _Tpq , typename _Tp >

   _gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_2 (_Tpq __q, _Tp __x)
```

```
    float __gnu_cxx::jacobi_theta_2f (float __q, float __x)
    long double __gnu_cxx::jacobi_theta_2l (long double __q, long double __x)
```

• template<typename _Tpq , typename _Tp >

__gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_3 (_Tpq __q, _Tp __x)

- float __gnu_cxx::jacobi_theta_3f (float __q, float __x)
- long double __gnu_cxx::jacobi_theta_3l (long double __q, long double __x)
- template<typename _Tpq , typename _Tp >

__gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_4 (_Tpq __q, _Tp __x)

- float __gnu_cxx::jacobi_theta_4f (float __q, float __x)
- long double __gnu_cxx::jacobi_theta_4l (long double __q, long double __x)
- $\bullet \ \ template {<} typename \ _Tk \ , \ typename \ _Tphi >$

__gnu_cxx::fp_promote_t< _Tk, _Tphi > __gnu_cxx::jacobi_zeta (_Tk __k, _Tphi __phi)

- float __gnu_cxx::jacobi_zetaf (float __k, float __phi)
- long double __gnu_cxx::jacobi_zetal (long double __k, long double __phi)
- float __gnu_cxx::jacobif (unsigned __n, float __alpha, float __beta, float __x)
- long double __gnu_cxx::jacobil (unsigned __n, long double __alpha, long double __beta, long double __x)
- template<typename_Tp>

_Tp __gnu_cxx::lah (unsigned int __n, unsigned int __k)

template<typename_Tp>

std::vector< _Tp > __gnu_cxx::lah (unsigned int __n)

template<typename _Tp >

gnu cxx::fp promote t< Tp > gnu cxx::lbinomial (unsigned int n, unsigned int k)

Return the logarithm of the binomial coefficient as a real number. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

- float __gnu_cxx::lbinomialf (unsigned int __n, unsigned int __k)
- long double __gnu_cxx::lbinomiall (unsigned int __n, unsigned int __k)
- template<typename _Tp >

__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::ldouble_factorial (int __n)

Return the logarithm of the double factorial $\ln(n!!)$ of the argument as a real number.

$$n!! = n(n-2)...(2), 0!! = 1$$

for even n and

$$n!! = n(n-2)...(1), (-1)!! = 1$$

for odd n.

- float gnu cxx::ldouble factorialf (int n)
- long double __gnu_cxx::ldouble_factoriall (int __n)
- template<typename _Tp >

__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::legendre_q (unsigned int __l, _Tp __x)

- float __gnu_cxx::legendre_qf (unsigned int __l, float __x)
- long double __gnu_cxx::legendre_ql (unsigned int __l, long double __x)
- template<typename _Tp , typename _Ts , typename _Ta >
 __gnu_cxx::fp_promote_t< _Tp, _Ts, _Ta > __gnu_cxx::lerch_phi (_Tp __z, _Ts __s, _Ta __a)
- float __gnu_cxx::lerch_phif (float __z, float __s, float __a)
- long double gnu cxx::lerch phil (long double z, long double s, long double a)

```
template<typename _Tp >
   gnu cxx::fp promote t< Tp > gnu cxx::lfactorial (unsigned int n)
      Return the logarithm of the factorial ln(n!) of the argument as a real number.
                                                    n! = 1 \times 2 \times ... \times n, 0! = 1

    float gnu cxx::lfactorialf (unsigned int n)

    long double gnu cxx::lfactoriall (unsigned int n)

• template<typename _{\rm Tp}, typename _{\rm Tnu} >
    _gnu_cxx::fp_promote_t< _Tp, _Tnu > __gnu_cxx::lfalling_factorial (_Tp __a, _Tnu __nu)
      Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The falling factorial function is
      defined by
                                                a^{\underline{n}} = \frac{\Gamma(a+1)}{\Gamma(a-\nu+1)} = \prod_{k=0}^{n-1} (a-k)
      where a^{\underline{0}} \equiv 1. In particular, n^{\underline{n}} = n!. Thus this function returns
                                             ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)]
      where ln[a^{\underline{0}}] \equiv 0. Many notations exist for this function: (a)_{\nu},
                                                                \left\{\begin{array}{c} a \\ \nu \end{array}\right\}
      , and others.

    float gnu cxx::lfalling factorialf (float a, float nu)

    long double gnu cxx::lfalling factoriall (long double a, long double nu)

 template<typename_Ta >

   _gnu_cxx::fp_promote_t< _Ta > __gnu_cxx::lgamma (_Ta __a)

    template<typename</li>
    Ta >

  std::complex< __gnu_cxx::fp_promote_t< _Ta >> __gnu_cxx::lgamma (std::complex< _Ta > __a)

    float __gnu_cxx::lgammaf (float __a)

• std::complex< float > gnu cxx::lgammaf (std::complex< float > a)

    long double gnu cxx::lgammal (long double a)

• std::complex< long double > __gnu_cxx::lgammal (std::complex< long double > __a)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::logint (_Tp __x)

    float gnu cxx::logintf (float x)

    long double <u>__gnu_cxx::logintl</u> (long double <u>__x)</u>

    template<typename _Ta , typename _Tb , typename _Tp >

    _gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > <u>__gnu_cxx</u>::logistic_p (_Ta __a, _Tb __b, _Tp __x)
      Return the logistic cumulative distribution function.

    template<typename _Ta , typename _Tb , typename _Tp >

    _gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > <u>__gnu_cxx::logistic_pdf</u> (_Ta <u>__</u>a, _Tb <u>__b, _</u>Tp <u>__</u>x)
      Return the logistic probability density function.

    template<typename Tmu, typename Tsig, typename Tp >

   __gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > __gnu_cxx::lognormal_p (_Tmu __mu, _Tsig __sigma, _Tp __x)
      Return the lognormal cumulative probability density function.

    template<typename Tmu, typename Tsig, typename Tp >

    _gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > <u>__gnu_cxx::lognormal_pdf</u> (_Tmu __mu, _Tsig __sigma, _Tp
  ___x)
      Return the lognormal probability density function.

    template<typename _Tp , typename _Tnu >

   __gnu_cxx::fp_promote_t< _Tp, _Tnu > __gnu_cxx::Irising_factorial (_Tp __a, _Tnu __nu)
```

Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The rising factorial function is defined for integer order by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), \overline{0} \equiv 1$$

Thus this function returns

$$ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[a^{\overline{0}}] \equiv 0$$

Many notations exist for this function: $(a)_{\nu}$, called the Pochhammer function (esp. in the literature of special functions), and

 $\begin{bmatrix} a \\ \nu \end{bmatrix}$

, and others.

- float __gnu_cxx::lrising_factorialf (float __a, float __nu)
- long double __gnu_cxx::lrising_factoriall (long double __a, long double __nu)
- template<typename _Tp , typename _Ta , typename _Tb >
 std::complex< __gnu_cxx::fp_promote_t< _Tp, _Ta, _Tb >> __gnu_cxx::mittag_leffler (_Ta __alpha, _Tb __
 beta, const std::complex< _Tp > &__z)
- template<typename _Tmu , typename _Tsig , typename _Tp >
 __gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > __gnu_cxx::normal_pdf (_Tmu __mu, _Tsig __sigma, _Tp __x)

 Return the gamma cumulative propability distribution function.
- template<typename _Tph , typename _Tpa >

```
__gnu_cxx::fp_promote_t< _Tph, _Tpa > __gnu_cxx::owens_t (_Tph __h, _Tpa __a)
```

- float __gnu_cxx::owens_tf (float __h, float __a)
- long double gnu cxx::owens tl (long double h, long double a)
- template<typename _Tp , typename _Up >

```
__gnu_cxx::fp_promote_t< std::complex< _Tp >, _Up > __gnu_cxx::periodic_zeta (_Tp __x, _Up __s)
```

- template<typename _Tp , typename _Up >
- std::complex< float > __gnu_cxx::periodic_zetaf (float __x, float __s)
- std::complex < long double > gnu cxx::periodic zetal (long double x, long double s)
- $\bullet \ \ template {<} typename _Tp >$
 - gnu cxx::fp promote t< Tp > gnu cxx::polygamma (unsigned int m, Tp x)
- float gnu cxx::polygammaf (unsigned int m, float x)
- long double gnu cxx::polygammal (unsigned int m, long double x)
- template<typename _Tp , typename _Wp >

```
\_gnu_cxx::fp_promote_t< _Tp, _Wp > \_gnu_cxx::polylog (_Tp \_s, _Wp \_w)
```

template<typename _Tp , typename _Wp >

- float __gnu_cxx::polylogf (float __s, float __w)
- std::complex < float > __gnu_cxx::polylogf (float __s, std::complex < float > __w)
- long double __gnu_cxx::polylogl (long double __s, long double __w)
- std::complex< long double > __gnu_cxx::polylogl (long double __s, std::complex< long double > __w)
- template<typename_Tp>
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::radpoly (unsigned int __n, unsigned int __m, _Tp __rho)
- float gnu cxx::radpolyf (unsigned int n, unsigned int m, float rho)
- long double __gnu_cxx::radpolyl (unsigned int __n, unsigned int __m, long double __rho)
- template<typename _Tp , typename _Tnu >
 - gnu cxx::fp promote t < Tp, Tnu > gnu cxx::rising factorial (Tp a, Tnu nu)

Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)$$

Many notations exist for this function: $(a)_{\nu}$, called the Pochhammer function (esp. in the literature of special functions), and

 $\begin{bmatrix} a \\ \nu \end{bmatrix}$

```
, and others.
```

```
    float __gnu_cxx::rising_factorialf (float __a, float __nu)
```

- long double gnu cxx::rising factoriall (long double a, long double nu)
- template<typename _Tp >

```
__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sin_pi (_Tp __x)
```

- float gnu cxx::sin pif (float x)
- long double <u>gnu_cxx::sin_pil</u> (long double <u>x</u>)
- template<typename _Tp >

```
gnu cxx::fp promote t < Tp > gnu cxx::sinc (Tp x)
```

- template<typename _Tp >
- __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinc_pi (_Tp __x)
- float gnu cxx::sinc pif (float x)
- long double __gnu_cxx::sinc_pil (long double __x)
- float __gnu_cxx::sincf (float __x)
- long double <u>gnu_cxx::sincl</u> (long double <u>x</u>)
- __gnu_cxx::__sincos_t< double > __gnu_cxx::sincos (double __x)
- template<typename
 Tp >

```
__gnu_cxx::_sincos_t< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sincos (_Tp __x)
```

- template<typename_Tp>
 - __gnu_cxx::_sincos_t< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sincos_pi (_Tp __x)
- __gnu_cxx::__sincos_t< float > __gnu_cxx::sincos_pif (float __x)
- __gnu_cxx::__sincos_t< long double > __gnu_cxx::sincos_pil (long double __x)
- __gnu_cxx::_sincos_t< float > __gnu_cxx::sincosf (float __x)
- __gnu_cxx::__sincos_t< long double > __gnu_cxx::sincosl (long double __x)
- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinh_pi (_Tp __x)
- float gnu cxx::sinh pif (float x)
- long double <u>gnu_cxx::sinh_pil</u> (long double <u>x</u>)
- template<typename $_{\rm Tp}>$

```
__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinhc (_Tp __x)
```

- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinhc_pi (_Tp __x)
- float __gnu_cxx::sinhc_pif (float __x)
- long double gnu cxx::sinhc pil (long double x)
- float <u>gnu_cxx::sinhcf</u> (float <u>x</u>)
- long double <u>__gnu_cxx::sinhcl</u> (long double <u>__x)</u>
- $\bullet \ \ template\!<\!typename\,_Tp>$

```
__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinhint (_Tp __x)
```

- float __gnu_cxx::sinhintf (float __x)
- long double __gnu_cxx::sinhintl (long double __x)
- template<typename _Tp >

```
__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinint (_Tp __x)
```

- float __gnu_cxx::sinintf (float __x)
- long double gnu cxx::sinintl (long double x)

```
template<typename _Tp >
      gnu cxx::fp promote t< Tp > gnu cxx::sph bessel i (unsigned int n, Tp x)

    float gnu cxx::sph bessel if (unsigned int n, float x)

    long double __gnu_cxx::sph_bessel_il (unsigned int __n, long double __x)

template<typename</li>Tp >
        gnu\_cxx::fp\_promote\_t < \_Tp > \_gnu\_cxx::sph\_bessel\_k  (unsigned int \_n, Tp x)

    float gnu cxx::sph bessel kf (unsigned int n, float x)

    long double __gnu_cxx::sph_bessel_kl (unsigned int __n, long double __x)

template<typename</li>Tp >
    std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sph_hankel_1 (unsigned int __n, _Tp __z)
template<typename</li>Tp >
    std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sph_hankel_1 (unsigned int __n, std::complex<
    _{\rm Tp} > _{\rm x}

    std::complex < float > gnu cxx::sph hankel 1f (unsigned int n, float z)

    std::complex < float > __gnu_cxx::sph_hankel_1f (unsigned int __n, std::complex < float > __x)

• std::complex < long double > gnu cxx::sph hankel 1l (unsigned int n, long double z)

    std::complex < long double > __gnu_cxx::sph_hankel_1l (unsigned int __n, std::complex < long double > __x)

template<typename</li>Tp >
    std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sph_hankel_2 (unsigned int __n, _Tp __z)
template<typename</li>Tp >
    std::complex< \underline{\quad} gnu\_cxx::fp\_promote\_t< \underline{\quad} Tp>> \underline{\quad} gnu\_cxx::sph\_hankel\_2 \ (unsigned\ int\ \underline{\quad} n,\ std::complex< \underline{\quad} to\ (unsigned\ int\ \underline{\quad} n,\ std::complex< \underline{\quad}
    _{\rm Tp} > _{\rm x}

    std::complex< float > __gnu_cxx::sph_hankel_2f (unsigned int __n, float __z)

    std::complex < float > __gnu_cxx::sph_hankel_2f (unsigned int __n, std::complex < float > __x)

    std::complex < long double > __gnu_cxx::sph_hankel_2l (unsigned int __n, long double __z)

    std::complex < long double > __gnu_cxx::sph_hankel_2l (unsigned int __n, std::complex < long double > __x)

• template<typename Ttheta, typename Tphi >
    std::complex< __gnu_cxx::fp_promote_t< _Ttheta, _Tphi >> __gnu_cxx::sph_harmonic (unsigned int __I, int
      _m, _Ttheta __theta, _Tphi __phi)

    std::complex < float > __gnu_cxx::sph_harmonicf (unsigned int __l, int __m, float __theta, float __phi)

• std::complex< long double > __gnu_cxx::sph_harmonicl (unsigned int __l, int __m, long double __theta, long
    double phi)
template<typename</li>Tp >
    _Tp __gnu_cxx::stirling_1 (unsigned int __n, unsigned int __m)
template<typename</li>Tp >
    std::vector< Tp > gnu cxx::stirling 1 (unsigned int n)
template<typename _Tp >
    _Tp __gnu_cxx::stirling_2 (unsigned int __n, unsigned int __m)

    template<typename</li>
    Tp >

    std::vector< _Tp > __gnu_cxx::stirling_2 (unsigned int __n)
• template<typename _Tt , typename _Tp >
        _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::student_t_p (_Tt __t, unsigned int __nu)
           Return the Students T probability function.
• template<typename _Tt , typename _Tp >
      gnu cxx::fp promote t < Tp > gnu cxx::student t pdf ( Tt t, unsigned int nu)
           Return the complement of the Students T probability function.
• template<typename _Tp >
        gnu cxx::fp promote t < Tp > gnu cxx::tan pi (Tp x)

    float gnu cxx::tan pif (float x)

    long double <u>gnu_cxx::tan_pil</u> (long double <u>x</u>)

template<typename_Tp>
    __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::tanh_pi (_Tp __x)
```

```
    float __gnu_cxx::tanh_pif (float __x)

    long double __gnu_cxx::tanh_pil (long double __x)

• template<typename Ta >
    _gnu_cxx::fp_promote_t< _Ta > __gnu_cxx::tgamma (_Ta __a)

    template<typename</li>
    Ta >

  std::complex< __gnu_cxx::fp_promote_t< _Ta >> __gnu_cxx::tgamma (std::complex< _Ta > __a)

    template<typename _Ta , typename _Tp >

   _gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::tgamma (_Ta __a, _Tp __x)

    template<typename _Ta , typename _Tp >

    _gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::tgamma_lower (_Ta __a, _Tp __x)

    float __gnu_cxx::tgamma_lowerf (float __a, float __x)

    long double __gnu_cxx::tgamma_lowerl (long double __a, long double __x)

    float gnu cxx::tgammaf (float a)

• std::complex< float > gnu cxx::tgammaf (std::complex< float > a)

    float gnu cxx::tgammaf (float a, float x)

    long double gnu cxx::tgammal (long double a)

    std::complex < long double > gnu cxx::tgammal (std::complex < long double > a)

    long double __gnu_cxx::tgammal (long double __a, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > <u>__gnu_cxx::theta_</u>1 (_Tpnu __nu, _Tp __x)

    float gnu cxx::theta 1f (float nu, float x)

    long double __gnu_cxx::theta_1l (long double __nu, long double __x)

template<typename _Tpnu , typename _Tp >
    gnu cxx::fp promote t< Tpnu, Tp > gnu cxx::theta 2 (Tpnu nu, Tp x)

    float <u>__gnu_cxx::theta_2f</u> (float <u>__nu</u>, float <u>__x</u>)

    long double gnu cxx::theta 2l (long double nu, long double x)

    template<typename _Tpnu , typename _Tp >

   _gnu_cxx::fp_promote_t< _Tpnu, _Tp > <u>__gnu_cxx::theta_3</u> (_Tpnu __nu, _Tp __x)

    float __gnu_cxx::theta_3f (float __nu, float __x)

    long double gnu cxx::theta 3l (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    gnu cxx::fp promote t< Tpnu, Tp > gnu cxx::theta 4 ( Tpnu nu, Tp x)

    float gnu cxx::theta 4f (float nu, float x)

    long double gnu cxx::theta 4l (long double nu, long double x)

• template<typename _Tpk , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpk, _Tp > __gnu_cxx::theta_c (_Tpk __k, _Tp __x)

    float gnu cxx::theta cf (float k, float x)

    long double gnu cxx::theta cl (long double k, long double x)

• template<typename _Tpk , typename _Tp >
    gnu cxx::fp promote t< Tpk, Tp > gnu cxx::theta d ( Tpk k, Tp x)

    float gnu cxx::theta df (float k, float x)

    long double gnu cxx::theta dl (long double k, long double x)

• template<typename _Tpk , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpk, _Tp > <u>__gnu_cxx::theta_n</u> (_Tpk <u>__</u>k, _Tp <u>__</u>x)

    float gnu cxx::theta nf (float k, float x)

    long double __gnu_cxx::theta_nl (long double __k, long double __x)

template<typename _Tpk , typename _Tp >
    gnu cxx::fp promote t < Tpk, Tp > gnu cxx::theta s (Tpk k, Tp x)

    float gnu cxx::theta sf (float k, float x)

    long double __gnu_cxx::theta_sl (long double __k, long double __x)

    template<typename _Tpa , typename _Tpc , typename _Tp >

   _gnu_cxx::fp_promote_t< _Tpa, _Tpc, _Tp > <u>__gnu_cxx::tricomi_u</u> (_Tpa __a, _Tpc __c, _Tp __x)
```

```
• float __gnu_cxx::tricomi_uf (float __a, float __c, float __x)
```

long double __gnu_cxx::tricomi_ul (long double __a, long double __c, long double __x)

```
    template<typename _Ta , typename _Tb , typename _Tp >
        __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::weibull_p (_Ta __a, _Tb __b, _Tp __x)
```

Return the Weibull cumulative probability density function.

```
    template<typename _Ta , typename _Tb , typename _Tp >
        __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::weibull_pdf (_Ta __a, _Tb __b, _Tp __x)
        Return the Weibull probability density function.
```

template<typename _Trho , typename _Tphi >
 __gnu_cxx::fp_promote_t< _Trho, _Tphi > __gnu_cxx::zernike (unsigned int __n, int __m, _Trho __rho, _Tphi phi)

- float __gnu_cxx::zernikef (unsigned int __n, int __m, float __rho, float __phi)
- long double __gnu_cxx::zernikel (unsigned int __n, int __m, long double __rho, long double __phi)

7.2.1 Detailed Description

An extended collection of advanced mathematical special functions for GNU.

7.2.2 Function Documentation

```
7.2.2.1 airy_ai() [1/2]
```

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::airy_ai (
    __Tp __x ) [inline]
```

Return the Airy function Ai(x) of real argument x.

The Airy function is defined by:

$$Ai(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt$$

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_~	The argument
X	

Definition at line 2902 of file specfun.h.

```
7.2.2.2 airy_ai() [2/2]
```

Return the Airy function Ai(x) of complex argument x.

The Airy function is defined by:

$$Ai(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt$$

Template Parameters

$ _Tp $ The real type of the a	argument
-----------------------------------	----------

Parameters

_~	The complex argument
_x	

Definition at line 2922 of file specfun.h.

7.2.2.3 airy_aif()

Return the Airy function Ai(x) for float argument x.

See also

airy_ai for details.

Definition at line 2875 of file specfun.h.

7.2.2.4 airy_ail()

Return the Airy function Ai(x) for long double argument x.

See also

airy_ai for details.

Definition at line 2885 of file specfun.h.

```
7.2.2.5 airy_bi() [1/2]
```

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::airy_bi (
    _Tp __x ) [inline]
```

Return the Airy function Bi(x) of real argument x.

The Airy function is defined by:

$$Bi(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\frac{t^3}{3} + xt\right) + \sin\left(\frac{t^3}{3} + xt\right) \right] dt$$

Template Parameters

```
_Tp | The real type of the argument
```

Parameters

_~	The argument
_X	

Definition at line 2964 of file specfun.h.

```
7.2.2.6 airy_bi() [2/2]
```

Return the Airy function Bi(x) of complex argument x.

The Airy function is defined by:

$$Bi(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\frac{t^3}{3} + xt\right) + \sin\left(\frac{t^3}{3} + xt\right) \right] dt$$

Template Parameters

_ <i>Tp</i>	The real type of the argument
-------------	-------------------------------

Parameters

_~	The complex argument
_X	

Definition at line 2985 of file specfun.h.

7.2.2.7 airy_bif()

Return the Airy function Bi(x) for float argument x.

See also

airy_bi for details.

Definition at line 2936 of file specfun.h.

7.2.2.8 airy_bil()

```
long double __gnu_cxx::airy_bil (
          long double __x ) [inline]
```

Return the Airy function Bi(x) for long double argument ${\bf x}.$

See also

airy_bi for details.

Definition at line 2946 of file specfun.h.

7.2.2.9 assoc_legendre_q()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::assoc_legendre_q (
          unsigned int __l,
          unsigned int __m,
          _Tp __x ) [inline]
```

Return the associated Legendre function $Q_l^m(x)$ of degree 1, order ${\bf m}$, and real argument ${\bf x}$.

The associated Legendre function is derived from the Legendre function $Q_l(x)$ by the Rodrigues formula:

$$Q_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} Q_l(x)$$

See also

legendre for details of the Legendre function of degree 1

Note

$$Q_l^m(x)! = 0@cifm > l.$$

Template Parameters

$_Tp$ The floating-point type of the argument \x .

Parameters

_←	The degree1 >= 0.
_'	
_←	The orderm.
_m	
_~	The argument, abs (x) <= 1.
_x	

Exceptions

```
std::domain\_error if abs (__x) > 1.
```

Definition at line 4563 of file specfun.h.

7.2.2.10 assoc_legendre_qf()

```
unsigned int __m,
float __x ) [inline]
```

Return the associated Legendre function $Q_l^m(x)$ of degree 1, order m, and float argument x.

See also

assoc_legendre_q for more details.

Definition at line 4527 of file specfun.h.

7.2.2.11 assoc_legendre_ql()

```
long double __gnu_cxx::assoc_legendre_ql (
          unsigned int __l,
          unsigned int __m,
          long double __x ) [inline]
```

Return the associated Legendre function $Q_l^m(x)$ of degree 1, order m, and long double argument x.

See also

assoc_legendre_q for more details.

Definition at line 4538 of file specfun.h.

7.2.2.12 bell() [1/2]

```
template<typename _Tp >
std::vector<_Tp> __gnu_cxx::bell (
          unsigned int __n ) [inline]
```

Return a vector of the Bell numbers

$$B(n) = \sum_{k=0}^{n} S_n^{(k)}$$

where $S_{n}^{\left(k\right)}$ are the Stirling numbers of the second kind.

Definition at line 7226 of file specfun.h.

7.2.2.13 bell() [2/2]

Evaluate the Bell polynomial

$$B(n,x) = \sum_{k=0}^{n} S_n^{(k)} x^k$$

where $S_n^{\left(k\right)}$ are the Stirling numbers of the second kind.

Definition at line 7238 of file specfun.h.

References std::__detail::__bell().

7.2.2.14 bernoulli() [1/2]

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::bernoulli (
        unsigned int __n ) [inline]
```

Return the Bernoulli number of integer order n.

The Bernoulli numbers are defined by

$$B_{2n} = (-1)^{n+1} 2 \frac{(2n)!}{(2\pi)^{2n}} \zeta(2n), B_1 = -1/2$$

All odd Bernoulli numbers except B_1 are zero.

Parameters

```
\begin{array}{c|c}
- & \text{The order.} \\
n & \end{array}
```

Definition at line 4461 of file specfun.h.

7.2.2.15 bernoulli() [2/2]

Return the Bernoulli polynomial $B_n(x)$ of order n at argument x.

The values at 0 and 1 are equal to the corresponding Bernoulli number:

$$B_n(0) = B_n(1) = B_n$$

The derivative is proportional to the previous polynomial:

$$B_n'(x) = nB_{n-1}(x)$$

The series expansion for the Bernoulli polynomials is:

$$B_n(x) = \sum_{k=0}^{n} B_k \binom{n}{k} x^{n-k}$$

A useful argument promotion is:

$$B_n(x+1) - B_n(x) = nx^{n-1}$$

Definition at line 7073 of file specfun.h.

References std::__detail::__bernoulli().

7.2.2.16 bernoullif()

```
float __gnu_cxx::bernoullif (
          unsigned int __n ) [inline]
```

Return the Bernoulli number of integer order n as a float.

See also

bernoulli for details.

Definition at line 4434 of file specfun.h.

7.2.2.17 bernoullil()

```
long double __gnu_cxx::bernoullil (
          unsigned int __n ) [inline]
```

Return the Bernoulli number of integer order n as a long double.

See also

bernoulli for details.

Definition at line 4444 of file specfun.h.

7.2.2.18 binomial()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::binomial (
          unsigned int __n,
          unsigned int __k ) [inline]
```

Return the binomial coefficient as a real number. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

Parameters

_~	The first argument of the binomial coefficient.	
_n		
_~	The second argument of the binomial coefficient.	
_k		

Returns

The binomial coefficient.

Definition at line 4377 of file specfun.h.

7.2.2.19 binomial_p()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::binomial_p (
    __Tp __p,
    unsigned int __n,
    unsigned int __k)
```

Return the binomial cumulative distribution function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$P(k|n,p) = I_p(k, n - k + 1)$$

Parameters

1	
_p	
_ \	
_n	
_←	
_k	

Definition at line 6926 of file specfun.h.

7.2.2.20 binomial_pdf()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::binomial_pdf (
    _Tp __p,
    unsigned int __n,
    unsigned int __k)
```

Return the binomial probability mass function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$f(k|n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Parameters

_~	
_p	
_←	
_n	
_←	
_k	

Definition at line 6905 of file specfun.h.

7.2.2.21 binomialf()

```
float __gnu_cxx::binomialf (
          unsigned int __n,
          unsigned int __k ) [inline]
```

Return the binomial coefficient as a float.

See also

binomial for details.

Definition at line 4348 of file specfun.h.

7.2.2.22 binomial()

```
long double \_\_gnu\_cxx::binomiall ( unsigned \ int \ \_\_n, unsigned \ int \ \_\_k \ ) \ \ [inline]
```

Return the binomial coefficient as a long double.

See also

binomial for details.

Definition at line 4357 of file specfun.h.

7.2.2.23 bose_einstein()

```
template<typename _Tps , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tps, _Tp> __gnu_cxx::bose_einstein (
    __Tps ___s,
    __Tp __x ) [inline]
```

Return the Bose-Einstein integral of integer or real order s and real argument x.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
http://dlmf.nist.gov/25.12.16
```

$$G_s(x) = \frac{1}{\Gamma(s+1)} \int_0^\infty \frac{t^s}{e^{t-x} - 1} dt = Li_{s+1}(e^x)$$

Parameters

_~	The order $s \ge 0$.
_s	
_~	The real argument.
X	

Returns

The real Bose-Einstein integral G_s(x),

Definition at line 6303 of file specfun.h.

7.2.2.24 bose_einsteinf()

Return the Bose-Einstein integral of float order s and argument x.

See also

bose einstein for details.

Definition at line 6273 of file specfun.h.

7.2.2.25 bose_einsteinl()

Return the Bose-Einstein integral of long double order s and argument x.

See also

bose_einstein for details.

Definition at line 6283 of file specfun.h.

7.2.2.26 chebyshev_t()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::chebyshev_t (
          unsigned int __n,
           _Tp __x ) [inline]
```

Return the Chebyshev polynomial of the first kind $T_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the first kind is defined by:

$$T_n(x) = \cos(n\theta)$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_~	The real argument $-1 \le x \le +1$
_X	

Definition at line 2133 of file specfun.h.

7.2.2.27 chebyshev_tf()

```
float __gnu_cxx::chebyshev_tf (
          unsigned int __n,
          float __x ) [inline]
```

Return the Chebyshev polynomials of the first kind $T_n(x)$ of non-negative order n and float argument x.

See also

chebyshev_t for details.

Definition at line 2104 of file specfun.h.

7.2.2.28 chebyshev_tl()

```
long double __gnu_cxx::chebyshev_tl (
          unsigned int __n,
          long double __x ) [inline]
```

Return the Chebyshev polynomials of the first kind $T_n(x)$ of non-negative order ${\bf n}$ and real argument ${\bf x}$.

See also

chebyshev_t for details.

Definition at line 2114 of file specfun.h.

7.2.2.29 chebyshev_u()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::chebyshev_u (
          unsigned int __n,
           _Tp __x ) [inline]
```

Return the Chebyshev polynomial of the second kind $U_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the second kind is defined by:

$$U_n(x) = \frac{\sin[(n+1)\theta]}{\sin(\theta)}$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Tp	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_←	The real argument $-1 \le x \le +1$
_X	

Definition at line 2177 of file specfun.h.

7.2.2.30 chebyshev_uf()

```
float __gnu_cxx::chebyshev_uf (
          unsigned int __n,
          float __x ) [inline]
```

Return the Chebyshev polynomials of the second kind $U_n(x)$ of non-negative order n and float argument x.

See also

chebyshev_u for details.

Definition at line 2148 of file specfun.h.

7.2.2.31 chebyshev_ul()

```
long double __gnu_cxx::chebyshev_ul (
     unsigned int __n,
     long double __x ) [inline]
```

Return the Chebyshev polynomials of the second kind $U_n(x)$ of non-negative order n and real argument x.

See also

chebyshev_u for details.

Definition at line 2158 of file specfun.h.

7.2.2.32 chebyshev_v()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::chebyshev_v (
          unsigned int __n,
          __Tp __x ) [inline]
```

Return the Chebyshev polynomial of the third kind $V_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the third kind is defined by:

$$V_n(x) = \frac{\cos\left[\left(n + \frac{1}{2}\right)\theta\right]}{\cos\left(\frac{\theta}{2}\right)}$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Tp The real type of the argumen	t
------------------------------------	---

Parameters

_~	The non-negative integral order
_n	
_~	The real argument $-1 \le x \le +1$
_x	

Definition at line 2222 of file specfun.h.

7.2.2.33 chebyshev_vf()

```
float __gnu_cxx::chebyshev_vf (
          unsigned int __n,
          float __x ) [inline]
```

Return the Chebyshev polynomials of the third kind $V_n(x)$ of non-negative order n and float argument x.

See also

chebyshev_v for details.

Definition at line 2192 of file specfun.h.

7.2.2.34 chebyshev_vl()

```
long double __gnu_cxx::chebyshev_vl (
          unsigned int __n,
          long double __x ) [inline]
```

Return the Chebyshev polynomials of the third kind $V_n(x)$ of non-negative order n and real argument x.

See also

chebyshev_v for details.

Definition at line 2202 of file specfun.h.

7.2.2.35 chebyshev_w()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::chebyshev_w (
          unsigned int __n,
           _Tp __x ) [inline]
```

Return the Chebyshev polynomial of the fourth kind $W_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the fourth kind is defined by:

$$W_n(x) = \frac{\sin\left[\left(n + \frac{1}{2}\right)\theta\right]}{\sin\left(\frac{\theta}{2}\right)}$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_~	The real argument $-1 \le x \le +1$
_X	

Definition at line 2267 of file specfun.h.

7.2.2.36 chebyshev_wf()

```
float __gnu_cxx::chebyshev_wf (
          unsigned int __n,
          float __x ) [inline]
```

Return the Chebyshev polynomials of the fourth kind $W_n(x)$ of non-negative order n and float argument x.

See also

chebyshev_w for details.

Definition at line 2237 of file specfun.h.

7.2.2.37 chebyshev_wl()

```
long double __gnu_cxx::chebyshev_wl (
          unsigned int __n,
          long double __x ) [inline]
```

Return the Chebyshev polynomials of the fourth kind $W_n(x)$ of non-negative order n and real argument x.

See also

chebyshev_w for details.

Definition at line 2247 of file specfun.h.

7.2.2.38 clausen() [1/2]

Return the Clausen function $C_m(x)$ of integer order ${\bf m}$ and real argument ${\bf x}$.

The Clausen function is defined by

$$C_m(x) = Sl_m(x) = \sum_{k=1}^\infty \frac{\sin(kx)}{k^m} \text{ for even } m = Cl_m(x) = \sum_{k=1}^\infty \frac{\cos(kx)}{k^m} \text{ for odd } m$$

Template Parameters

Γ	_Тр	The real type of the argument
---	-----	-------------------------------

Parameters

_~	The integral order
_m	
_←	The real argument
_X	

Definition at line 5554 of file specfun.h.

7.2.2.39 clausen() [2/2]

Return the Clausen function $C_m(z)$ of integer order m and complex argument z.

The Clausen function is defined by

$$C_m(z)=Sl_m(z)=\sum_{k=1}^{\infty}rac{\sin(kz)}{k^m}$$
 for even $m=Cl_m(z)=\sum_{k=1}^{\infty}rac{\cos(kz)}{k^m}$ for odd m

Template Parameters

$_{\it Tp}$	The real type of the complex components

Parameters

_~	The integral order
_m	
_←	The complex argument
_Z	

Definition at line 5598 of file specfun.h.

7.2.2.40 clausen_cl()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::clausen_cl (
         unsigned int __m,
         _Tp __x ) [inline]
```

Return the Clausen cosine function $Cl_m(x)$ of order m and real argument x.

The Clausen cosine function is defined by

$$Cl_m(x) = \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^m}$$

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_←	The unsigned integer order
_m	
_←	The real argument
_x	

Definition at line 5509 of file specfun.h.

7.2.2.41 clausen_clf()

```
float __gnu_cxx::clausen_clf (
          unsigned int __m,
          float __x ) [inline]
```

Return the Clausen cosine function $Cl_m(x)$ of order ${\tt m}$ and ${\tt float}$ argument ${\tt x}.$

See also

clausen_cl for details.

Definition at line 5481 of file specfun.h.

7.2.2.42 clausen_cll()

```
long double __gnu_cxx::clausen_cll (
         unsigned int __m,
         long double __x ) [inline]
```

Return the Clausen cosine function $Cl_m(x)$ of order m and long double argument x.

See also

clausen_cl for details.

Definition at line 5491 of file specfun.h.

7.2.2.43 clausen_sl()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::clausen_sl (
         unsigned int __m,
         _Tp __x ) [inline]
```

Return the Clausen sine function $Sl_m(x)$ of order ${\bf m}$ and real argument ${\bf x}$.

The Clausen sine function is defined by

$$Sl_m(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^m}$$

Template Parameters

The real type of the argument	_ <i>Tp</i>
-------------------------------	-------------

Parameters

_~	The unsigned integer order
_m	
_~	The real argument
_X	

Definition at line 5466 of file specfun.h.

7.2.2.44 clausen_slf()

```
float __gnu_cxx::clausen_slf (
          unsigned int __m,
          float __x ) [inline]
```

Return the Clausen sine function $Sl_m(x)$ of order m and float argument x.

See also

clausen_sl for details.

Definition at line 5438 of file specfun.h.

7.2.2.45 clausen_sll()

```
long double __gnu_cxx::clausen_sll (
          unsigned int __m,
          long double __x ) [inline]
```

Return the Clausen sine function $Sl_m(x)$ of order m and long double argument x.

See also

clausen_sl for details.

Definition at line 5448 of file specfun.h.

```
7.2.2.46 clausenf() [1/2]
```

```
float __gnu_cxx::clausenf (
          unsigned int __m,
          float __x ) [inline]
```

Return the Clausen function $C_m(x)$ of integer order ${\tt m}$ and ${\tt float}$ argument ${\tt x}.$

See also

clausen for details.

Definition at line 5524 of file specfun.h.

7.2.2.47 clausenf() [2/2]

```
std::complex<float> __gnu_cxx::clausenf (
          unsigned int __m,
          std::complex< float > __z ) [inline]
```

Return the Clausen function $C_m(z)$ of integer order m and std::complex<float> argument z.

See also

clausen for details.

Definition at line 5569 of file specfun.h.

7.2.2.48 clausenl() [1/2]

```
long double __gnu_cxx::clausenl (
         unsigned int __m,
         long double __x ) [inline]
```

Return the Clausen function $C_m(x)$ of integer order m and long double argument x.

See also

clausen for details.

Definition at line 5534 of file specfun.h.

7.2.2.49 clausenl() [2/2]

Return the Clausen function $C_m(z)$ of integer order m and std::complex<long double> argument z.

See also

clausen for details.

Definition at line 5579 of file specfun.h.

7.2.2.50 comp_ellint_d()

```
template<typename _Tk >
    __gnu_cxx::fp_promote_t<_Tk> __gnu_cxx::comp_ellint_d (
    __Tk ___k ) [inline]
```

Return the complete Legendre elliptic integral D(k) of real modulus k.

The complete Legendre elliptic integral D is defined by

$$D(k) = \int_0^{\pi/2} \frac{\sin^2 \theta d\theta}{\sqrt{1 - k^2 \sin 2\theta}}$$

Template Parameters

```
_Tk The type of the modulus k
```

Parameters

Definition at line 4730 of file specfun.h.

7.2.2.51 comp_ellint_df()

Return the complete Legendre elliptic integral D(k) of float modulus k.

See also

comp_ellint_d for details.

Definition at line 4703 of file specfun.h.

7.2.2.52 comp_ellint_dl()

Return the complete Legendre elliptic integral D(k) of long double modulus k.

See also

comp_ellint_d for details.

Definition at line 4713 of file specfun.h.

```
7.2.2.53 comp_ellint_rf() [1/3]
```

Return the complete Carlson elliptic function $R_F(x,y,z)$ for float arguments.

See also

comp_ellint_rf for details.

Definition at line 3245 of file specfun.h.

7.2.2.54 comp_ellint_rf() [2/3]

Return the complete Carlson elliptic function $R_F(x,y)$ for long double arguments.

See also

comp ellint rf for details.

Definition at line 3255 of file specfun.h.

7.2.2.55 comp_ellint_rf() [3/3]

```
template<typename _Tx , typename _Ty >
    __gnu_cxx::fp_promote_t<_Tx, _Ty> __gnu_cxx::comp_ellint_rf (
    __Tx ___x,
    __Ty __y ) [inline]
```

Return the complete Carlson elliptic function $R_F(x,y)$ for real arguments.

The complete Carlson elliptic function of the first kind is defined by:

$$R_F(x,y) = R_F(x,y,y) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)}$$

Parameters

_~	The first argument.
_X	
_~	The second argument.
y	

Definition at line 3273 of file specfun.h.

```
7.2.2.56 comp_ellint_rg() [1/3]
```

Return the Carlson complementary elliptic function $R_G(x, y)$.

See also

comp_ellint_rg for details.

Definition at line 3478 of file specfun.h.

7.2.2.57 comp_ellint_rg() [2/3]

Return the Carlson complementary elliptic function $R_G(x, y)$.

See also

comp_ellint_rg for details.

Definition at line 3487 of file specfun.h.

7.2.2.58 comp_ellint_rg() [3/3]

```
template<typename _Tx , typename _Ty >
    __gnu_cxx::fp_promote_t<_Tx, _Ty> __gnu_cxx::comp_ellint_rg (
    __Tx ___x,
    __Ty __y ) [inline]
```

Return the complete Carlson elliptic function $R_G(x,y)$ for real arguments.

The complete Carlson elliptic function is defined by:

$$R_G(x,y) = R_G(x,y,y) = \frac{1}{4} \int_0^\infty dt t (t+x)^{-1/2} (t+y)^{-1} \left(\frac{x}{t+x} + \frac{2y}{t+y} \right)$$

Parameters

_~	The first argument.
_x	
_~	The second argument.
_y	

Definition at line 3506 of file specfun.h.

7.2.2.59 conf_hyperg()

```
template<typename _Tpa , typename _Tpc , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpa, _Tpc, _Tp> __gnu_cxx::conf_hyperg (
    __Tpa __a,
    __Tpc __c,
    __Tp __x ) [inline]
```

Return the confluent hypergeometric function ${}_1F_1(a;c;x)$ of real numerator parameter a, denominator parameter c, and argument x.

The confluent hypergeometric function is defined by

$$_{1}F_{1}(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}x^{n}}{(c)_{n}n!}$$

where the Pochhammer symbol is $(x)_k = (x)(x+1)...(x+k-1), (x)_0 = 1$

Parameters

_~	The numerator parameter
_a	
_←	The denominator parameter
_c	
_←	The argument
_X	

Definition at line 1511 of file specfun.h.

7.2.2.60 conf_hyperg_lim()

```
template<typename _Tpc , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpc, _Tp> __gnu_cxx::conf_hyperg_lim (
```

Return the confluent hypergeometric limit function ${}_0F_1(;c;x)$ of real numerator parameter ${}_{\mathbb{C}}$ and argument ${}_{\mathbb{C}}$.

The confluent hypergeometric limit function is defined by

$$_{0}F_{1}(;c;x) = \sum_{n=0}^{\infty} \frac{x^{n}}{(c)_{n}n!}$$

where the Pochhammer symbol is $(x)_k = (x)(x+1)...(x+k-1)$, $(x)_0 = 1$

Parameters

_~	The denominator parameter
_c	
_~	The argument
_X	

Definition at line 1656 of file specfun.h.

7.2.2.61 conf_hyperg_limf()

Return the confluent hypergeometric limit function ${}_0F_1(;c;x)$ of float numerator parameter c and argument x.

See also

conf_hyperg_lim for details.

Definition at line 1627 of file specfun.h.

7.2.2.62 conf_hyperg_liml()

Return the confluent hypergeometric limit function ${}_0F_1(;c;x)$ of long double numerator parameter c and argument x.

See also

conf_hyperg_lim for details.

Definition at line 1637 of file specfun.h.

7.2.2.63 conf_hypergf()

Return the confluent hypergeometric function ${}_1F_1(a;c;x)$ of float numerator parameter a, denominator parameter c, and argument x.

See also

conf_hyperg for details.

Definition at line 1479 of file specfun.h.

7.2.2.64 conf_hypergl()

```
long double __gnu_cxx::conf_hypergl (
          long double __a,
          long double __c,
          long double __x ) [inline]
```

Return the confluent hypergeometric function ${}_1F_1(a;c;x)$ of long double numerator parameter a, denominator parameter c, and argument x.

See also

conf_hyperg for details.

Definition at line 1490 of file specfun.h.

7.2.2.65 cos_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::cos_pi (
    _Tp __x ) [inline]
```

Return the reperiodized cosine function $\cos_{\pi}(x)$ for real argument x.

The reperiodized cosine function is defined by:

$$\cos_{\pi}(x) = \cos(\pi x)$$

Template Parameters

_Тр	The floating-point type of the argument _	_x.
-----	---	-----

Parameters

```
_← The argument
```

Definition at line 6429 of file specfun.h.

7.2.2.66 cos_pif()

Return the reperiodized cosine function $\cos_{\pi}(x)$ for float argument x.

See also

cos_pi for more details.

Definition at line 6402 of file specfun.h.

7.2.2.67 cos_pil()

Return the reperiodized cosine function $\cos_{\pi}(x)$ for long double argument x.

See also

cos_pi for more details.

Definition at line 6412 of file specfun.h.

7.2.2.68 cosh_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::cosh_pi (
    __Tp __x ) [inline]
```

Return the reperiodized hyperbolic cosine function $\cosh_{\pi}(x)$ for real argument x.

The reperiodized hyperbolic cosine function is defined by:

$$\cosh_{\pi}(x) = \cosh(\pi x)$$

Template Parameters

_Тр	The floating-point type of the argument _	x.
-----	---	----

Parameters

_~	The argument
_X	

Definition at line 6471 of file specfun.h.

7.2.2.69 cosh_pif()

Return the reperiodized hyperbolic cosine function $\cosh_{\pi}(x)$ for float argument x.

See also

cosh_pi for more details.

Definition at line 6444 of file specfun.h.

7.2.2.70 cosh_pil()

Return the reperiodized hyperbolic cosine function $\cosh_{\pi}(x)$ for long double argument x.

See also

cosh_pi for more details.

Definition at line 6454 of file specfun.h.

7.2.2.71 coshint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::coshint (
    _Tp __x ) [inline]
```

Return the hyperbolic cosine integral Chi(x) of real argument x.

The hyperbolic cosine integral is defined by

$$Chi(x) = -\int_{x}^{\infty} \frac{\cosh(t)}{t} dt = \gamma_E + \ln(x) + \int_{0}^{x} \frac{\cosh(t) - 1}{t} dt$$

Template Parameters

oe of the real argument	_Тр
-------------------------	-----

Parameters

_~	The real argument
_X	

Definition at line 1939 of file specfun.h.

7.2.2.72 coshintf()

Return the hyperbolic cosine integral of float argument x.

See also

coshint for details.

Definition at line 1911 of file specfun.h.

7.2.2.73 coshintl()

```
long double __gnu_cxx::coshintl (
          long double __x ) [inline]
```

Return the hyperbolic cosine integral Chi(x) of long double argument x.

See also

coshint for details.

Definition at line 1921 of file specfun.h.

7.2.2.74 cosint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::cosint (
    __Tp ___x ) [inline]
```

Return the cosine integral Ci(x) of real argument x.

The cosine integral is defined by

$$Ci(x) = -\int_{x}^{\infty} \frac{\cos(t)}{t} dt = \gamma_E + \ln(x) + \int_{0}^{x} \frac{\cos(t) - 1}{t} dt$$

Parameters

_~	The real upper integration limit
_x	

Definition at line 1856 of file specfun.h.

7.2.2.75 cosintf()

Return the cosine integral Ci(x) of float argument x.

See also

cosint for details.

Definition at line 1830 of file specfun.h.

7.2.2.76 cosintl()

Return the cosine integral Ci(x) of long double argument x.

See also

cosint for details.

Definition at line 1840 of file specfun.h.

```
7.2.2.77 cyl_hankel_1() [1/2]
```

Return the cylindrical Hankel function of the first kind $H_n^{(1)}(x)$ of real order ν and argument x >= 0.

The spherical Hankel function of the first kind is defined by:

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iN_{\nu}(x)$$

where $J_{\nu}(x)@candN_{\nu}(x)$ are the cylindrical Bessel and Neumann functions respectively (see cyl_bessel and cyl_ \leftarrow neumann).

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

nu	The real order
z	The real argument

Definition at line 2629 of file specfun.h.

```
7.2.2.78 cyl_hankel_1() [2/2]
```

Return the complex cylindrical Hankel function of the first kind $H_{\nu}^{(1)}(x)$ of complex order ν and argument x.

The cylindrical Hankel function of the first kind is defined by

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iN_{\nu}(x)$$

Template Parameters

_Tpnu	The complex type of the order
_ <i>Tp</i>	The complex type of the argument

Parameters

nu	The complex order
x	The complex argument

Definition at line 5007 of file specfun.h.

```
7.2.2.79 cyl_hankel_1f() [1/2]
```

Return the cylindrical Hankel function of the first kind $H_{\nu}^{(1)}(x)$ of float order ν and argument x >= 0.

See also

```
cyl_hankel_1 for details.
```

Definition at line 2597 of file specfun.h.

```
7.2.2.80 cyl_hankel_1f() [2/2]
```

```
\label{eq:std:complex} $$ std::complex < float > \__nu, $$ std::complex < float > \__x ) [inline]
```

Return the complex cylindrical Hankel function of the first kind $H^{(1)}_{\nu}(x)$ of std::complex<float> order ν and argument x.

See also

```
cyl hankel 1 for more details.
```

Definition at line 4976 of file specfun.h.

```
7.2.2.81 cyl_hankel_1l() [1/2]
```

Return the cylindrical Hankel function of the first kind $H_{\nu}^{(1)}(x)$ of long double order ν and argument x>=0.

See also

```
cyl_hankel_1 for details.
```

Definition at line 2608 of file specfun.h.

7.2.2.82 cyl_hankel_1l() [2/2]

Return the complex cylindrical Hankel function of the first kind $H_{\nu}^{(1)}(x)$ of std::complex<long double> order ν and argument x.

See also

cyl hankel 1 for more details.

Definition at line 4987 of file specfun.h.

7.2.2.83 cyl_hankel_2() [1/2]

```
template<typename _Tpnu , typename _Tp > std::complex<__gnu_cxx::fp_promote_t<_Tpnu, _Tp> > __gnu_cxx::cyl_hankel_2 ( __Tpnu __nu, __Tp __z ) [inline]
```

Return the cylindrical Hankel function of the second kind $H_n^{(2)}(x)$ of real order ν and argument x>=0.

The cylindrical Hankel function of the second kind is defined by:

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iN_{\nu}(x)$$

where $J_{\nu}(x)@candN_{\nu}(x)$ are the cylindrical Bessel and Neumann functions respectively (see cyl_bessel and cyl_ \leftarrow neumann).

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

nu	The real order
z	The real argument

Definition at line 2677 of file specfun.h.

7.2.2.84 cyl_hankel_2() [2/2]

Return the complex cylindrical Hankel function of the second kind $H_{\nu}^{(2)}(x)$ of complex order ν and argument x.

The cylindrical Hankel function of the second kind is defined by

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iN_{\nu}(x)$$

Template Parameters

_Tpnu	The complex type of the order
_Тр	The complex type of the argument

Parameters

nu	The complex order
x	The complex argument

Definition at line 5054 of file specfun.h.

7.2.2.85 cyl_hankel_2f() [1/2]

Return the cylindrical Hankel function of the second kind $H^{(2)}_{\nu}(x)$ of float order ν and argument x>=0.

See also

cyl_hankel_2 for details.

Definition at line 2645 of file specfun.h.

```
7.2.2.86 cyl_hankel_2f() [2/2]
```

```
\label{eq:std:complex} $$ std::complex < float > \__nu, $$ std::complex < float > \__x ) [inline]
```

Return the complex cylindrical Hankel function of the second kind $H^{(2)}_{\nu}(x)$ of std::complex<float> order ν and argument x.

See also

```
cyl_hankel_2 for more details.
```

Definition at line 5023 of file specfun.h.

```
7.2.2.87 cyl_hankel_2l() [1/2]
```

Return the cylindrical Hankel function of the second kind $H_{\nu}^{(2)}(x)$ of long double order ν and argument x >= 0.

See also

```
cyl hankel 2 for details.
```

Definition at line 2656 of file specfun.h.

```
7.2.2.88 cyl_hankel_2l() [2/2]
```

Return the complex cylindrical Hankel function of the second kind $H^{(2)}_{\nu}(x)$ of std::complex<long double> order ν and argument x.

See also

```
cyl hankel 2 for more details.
```

Definition at line 5034 of file specfun.h.

7.2.2.89 dawson()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::dawson (
    _Tp __x ) [inline]
```

Return the Dawson integral, F(x), for real argument x.

The Dawson integral is defined by:

$$F(x) = e^{-x^2} \int_0^x e^{y^2} dy$$

and it's derivative is:

$$F'(x) = 1 - 2xF(x)$$

Parameters

Definition at line 3946 of file specfun.h.

7.2.2.90 dawsonf()

Return the Dawson integral, F(x), for float argument x.

See also

dawson for details.

Definition at line 3917 of file specfun.h.

7.2.2.91 dawsonl()

```
long double __gnu_cxx::dawsonl (
          long double __x ) [inline]
```

Return the Dawson integral, F(x), for long double argument ${\bf x}$.

See also

dawson for details.

Definition at line 3927 of file specfun.h.

7.2.2.92 debye()

Return the Debye function $D_n(x)$ of positive order n and real argument x.

The Debye function is defined by:

$$D_n(x) = \frac{n}{x^n} \int_0^x \frac{t^n}{e^t - 1} dt$$

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_~	The positive integral order
_n	
_~	The real argument $x>=0$
_X	

Definition at line 7042 of file specfun.h.

7.2.2.93 debyef()

```
float __gnu_cxx::debyef (
          unsigned int __n,
          float __x ) [inline]
```

Return the Debye function $D_n(x)$ of positive order n and float argument x.

See also

debye for details.

Definition at line 7014 of file specfun.h.

7.2.2.94 debyel()

```
long double __gnu_cxx::debyel (
    unsigned int __n,
    long double __x ) [inline]
```

Return the Debye function $D_n(x)$ of positive order n and real argument x.

See also

debye for details.

Definition at line 7024 of file specfun.h.

7.2.2.95 digamma()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::digamma (
    __Tp __x ) [inline]
```

Return the digamma or psi function of argument x.

The the digamma or psi function is defined by

$$\psi(x) = \frac{d}{dx}log\left(\Gamma(x)\right) = \frac{\Gamma'(x)}{\Gamma(x)},$$

the logarithmic derivative of the gamma function.

Parameters

Definition at line 3708 of file specfun.h.

7.2.2.96 digammaf()

Return the digamma or psi function of float argument x.

See also

digamma for details.

Definition at line 3681 of file specfun.h.

7.2.2.97 digammal()

Return the digamma or psi function of long double argument x.

See also

digamma for details.

Definition at line 3691 of file specfun.h.

7.2.2.98 dilog()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::dilog (
    _Tp __x ) [inline]
```

Return the dilogarithm function $Li_2(z)$ for real argument.

The dilogarithm is defined by:

$$Li_2(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}$$

Parameters

_~	The argument.
_X	

Definition at line 3230 of file specfun.h.

7.2.2.99 dilogf()

Return the dilogarithm function $Li_2(z)$ for float argument.

See also

dilog for details.

Definition at line 3204 of file specfun.h.

7.2.2.100 dilogl()

Return the dilogarithm function $Li_2(z)$ for long double argument.

See also

dilog for details.

Definition at line 3214 of file specfun.h.

7.2.2.101 dirichlet_beta()

Return the Dirichlet beta function of real argument $\ensuremath{\mathtt{s}}.$

The Dirichlet beta function is defined by:

$$\beta(s) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^s}$$

An important reflection formula is:

$$\beta(1-s) = \left(\frac{2}{\pi}\right)^s \sin(\frac{\pi s}{2}) \Gamma(s) \beta(s)$$

The Dirichlet beta function, in terms of the polylogarithm, is

$$\beta(s) = \Im[Li_s(i)]$$

Parameters

_~	The order.
_s	

Definition at line 5380 of file specfun.h.

7.2.2.102 dirichlet_betaf()

Return the Dirichlet beta function of real argument s.

See also

dirichlet beta for details.

Definition at line 5347 of file specfun.h.

7.2.2.103 dirichlet_betal()

Return the Dirichlet beta function of real argument s.

See also

dirichlet_beta for details.

Definition at line 5356 of file specfun.h.

7.2.2.104 dirichlet_eta()

Return the Dirichlet eta function of real argument s.

The Dirichlet eta function is defined by

$$\eta(s) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^s} = (1 - 2^{1-s}) \zeta(s)$$

An important reflection formula is:

$$\eta(-s) = 2\frac{1-2^{-s-1}}{1-2^{-s}}\pi^{-s-1}s\sin(\frac{\pi s}{2})\Gamma(s)\eta(s+1)$$

The Dirichlet eta function, in terms of the polylogarithm, is

$$\eta(s) = -\Re[Li_s(-1)]$$

Parameters

_~	The order.
_s	

Definition at line 5333 of file specfun.h.

7.2.2.105 dirichlet_etaf()

Return the Dirichlet eta function of real argument s.

See also

dirichlet_eta for details.

Definition at line 5299 of file specfun.h.

7.2.2.106 dirichlet_etal()

```
long double \__{gnu\_cxx}::dirichlet_etal ( long double \__s ) [inline]
```

Return the Dirichlet eta function of real argument s.

See also

dirichlet_eta for details.

Definition at line 5308 of file specfun.h.

7.2.2.107 dirichlet_lambda()

Return the Dirichlet lambda function of real argument ${\tt s}.$

The Dirichlet lambda function is defined by

$$\lambda(s) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^s} = (1-2^{-s})\zeta(s)$$

In terms of the Riemann zeta and the Dirichlet eta functions

$$\lambda(s) = \frac{1}{2}(\zeta(s) + \eta(s))$$

Parameters

_←	The order.
_s	

Definition at line 5423 of file specfun.h.

7.2.2.108 dirichlet_lambdaf()

Return the Dirichlet lambda function of real argument $\ensuremath{\mathtt{s}}.$

See also

dirichlet_lambda for details.

Definition at line 5394 of file specfun.h.

7.2.2.109 dirichlet_lambdal()

Return the Dirichlet lambda function of real argument s.

See also

dirichlet_lambda for details.

Definition at line 5403 of file specfun.h.

7.2.2.110 double_factorial()

Return the double factorial n!! of the argument as a real number.

$$n!! = n(n-2)...(2), 0!! = 1$$

for even n and

$$n!! = n(n-2)...(1), (-1)!! = 1$$

for odd n.

Definition at line 4255 of file specfun.h.

7.2.2.111 double_factorialf()

Return the double factorial n!! of the argument as a float.

See also

double_factorial for more details

Definition at line 4228 of file specfun.h.

7.2.2.112 double_factoriall()

```
long double __gnu_cxx::double_factoriall (
          int __n ) [inline]
```

Return the double factorial n!! of the argument as a long double .

See also

double_factorial for more details

Definition at line 4238 of file specfun.h.

7.2.2.113 ellint_cel()

Return the Bulirsch complete elliptic integral $cel(k_c, p, a, b)$ of real complementary modulus k_c , and parameters p, a, and b.

The Bulirsch complete elliptic integral is defined by

$$cel(k_c, p, a, b) = \int_0^{\pi/2} \frac{a\cos^2\theta + b\sin^2\theta}{\cos^2\theta + p\sin^2\theta} \frac{d\theta}{\sqrt{\cos^2\theta + k_c^2\sin^2\theta}}$$

Parameters

k⊷	The complementary modulus $k_c = \sqrt{1-k^2}$
_c	
p	The parameter
a	The parameter
b	The parameter

Definition at line 4960 of file specfun.h.

7.2.2.114 ellint_celf()

Return the Bulirsch complete elliptic integral $cel(k_c, p, a, b)$ of real complementary modulus k_c , and parameters p, a, and b.

See also

ellint_cel for details.

Definition at line 4928 of file specfun.h.

7.2.2.115 ellint_cell()

Return the Bulirsch complete elliptic integral $cel(k_c, p, a, b)$.

See also

ellint_cel for details.

Definition at line 4937 of file specfun.h.

7.2.2.116 ellint d()

```
template<typename _Tk , typename _Tphi >
    __gnu_cxx::fp_promote_t<_Tk, _Tphi> __gnu_cxx::ellint_d (
    __Tk __k,
    __Tphi __phi ) [inline]
```

Return the incomplete Legendre elliptic integral $D(k,\phi)$ of real modulus k and angular limit ϕ .

The Legendre elliptic integral D is defined by

$$D(k,\phi) = \int_{0}^{\phi} \frac{\sin^{2}\theta d\theta}{\sqrt{1 - k^{2} \sin^{2}\theta}}$$

Parameters

k	The modulus $-1 <= _k <= +1$
phi	The angle

Definition at line 4773 of file specfun.h.

7.2.2.117 ellint_df()

Return the incomplete Legendre elliptic integral $D(k,\phi)$ of float modulus k and angular limit ϕ .

See also

ellint_d for details.

Definition at line 4745 of file specfun.h.

7.2.2.118 ellint_dl()

```
long double __gnu_cxx::ellint_dl (
          long double __k,
          long double __phi ) [inline]
```

Return the incomplete Legendre elliptic integral $D(k,\phi)$ of long double modulus k and angular limit ϕ .

See also

ellint_d for details.

Definition at line 4755 of file specfun.h.

7.2.2.119 ellint_el1()

```
template<typename _Tp , typename _Tk >
    __gnu_cxx::fp_promote_t<_Tp, _Tk> __gnu_cxx::ellint_el1 (
    __Tp __x,
    __Tk __k_c ) [inline]
```

Return the Bulirsch elliptic integral $el1(x, k_c)$ of the first kind of real tangent limit x and complementary modulus k_c .

The Bulirsch elliptic integral of the first kind is defined by

$$el1(x, k_c) = el2(x, k_c, 1, 1) = \int_0^{\arctan x} \frac{1 + 1 \tan^2 \theta}{\sqrt{(1 + \tan^2 \theta)(1 + k_c^2 \tan^2 \theta)}} d\theta$$

Parameters

x	The tangent of the angular integration limit
k⊷	The complementary modulus $k_c = \sqrt{1-k^2}$
_c	

Definition at line 4819 of file specfun.h.

7.2.2.120 ellint_el1f()

Return the Bulirsch elliptic integral $el1(x,k_c)$ of the first kind of float tangent limit x and complementary modulus k_c .

See also

ellint el1 for details.

Definition at line 4789 of file specfun.h.

7.2.2.121 ellint_el1I()

```
long double __gnu_cxx::ellint_el11 ( long \ double \ \_\_x, \\ long \ double \ \_\_k\_c \ ) \quad [inline]
```

Return the Bulirsch elliptic integral $el1(x,k_c)$ of the first kind of real tangent limit x and complementary modulus k_c .

See also

ellint_el1 for details.

Definition at line 4800 of file specfun.h.

7.2.2.122 ellint_el2()

Return the Bulirsch elliptic integral of the second kind $el2(x, k_c, a, b)$.

The Bulirsch elliptic integral of the second kind is defined by

$$el2(x, k_c, a, b) = \int_0^{\arctan x} \frac{a + b \tan^2 \theta}{\sqrt{(1 + \tan^2 \theta)(1 + k_c^2 \tan^2 \theta)}} d\theta$$

Parameters

x	The tangent of the angular integration limit
k⊷	The complementary modulus $k_c = \sqrt{1-k^2}$
_ <i>c</i>	
a	The parameter
b	The parameter

Definition at line 4865 of file specfun.h.

7.2.2.123 ellint_el2f()

Return the Bulirsch elliptic integral of the second kind $el2(x, k_c, a, b)$.

See also

ellint_el2 for details.

Definition at line 4834 of file specfun.h.

7.2.2.124 ellint_el2l()

Return the Bulirsch elliptic integral of the second kind $el2(x,k_c,a,b)$.

See also

ellint_el2 for details.

Definition at line 4844 of file specfun.h.

7.2.2.125 ellint_el3()

Return the Bulirsch elliptic integral of the third kind $el3(x, k_c, p)$ of real tangent limit x, complementary modulus k_c , and parameter p.

The Bulirsch elliptic integral of the third kind is defined by

$$el3(x, k_c, p) = \int_0^{\arctan x} \frac{d\theta}{(\cos^2 \theta + p \sin^2 \theta) \sqrt{\cos^2 \theta + k_c^2 \sin^2 \theta}}$$

Parameters

x	The tangent of the angular integration limit
k⊷	The complementary modulus $k_c = \sqrt{1-k^2}$
_c	
p	The paramenter

Definition at line 4912 of file specfun.h.

7.2.2.126 ellint_el3f()

Return the Bulirsch elliptic integral of the third kind $el3(x, k_c, p)$ of float tangent limit x, complementary modulus k_c , and parameter p.

See also

ellint_el3 for details.

Definition at line 4881 of file specfun.h.

7.2.2.127 ellint_el3I()

```
long double __gnu_cxx::ellint_el31 (
          long double __x,
          long double __k_c,
          long double __p ) [inline]
```

Return the Bulirsch elliptic integral of the third kind $el3(x,k_c,p)$ of long double tangent limit x, complementary modulus k_c , and parameter p.

See also

ellint el3 for details.

Definition at line 4892 of file specfun.h.

7.2.2.128 ellint_rc()

```
template<typename _Tp , typename _Up >
    __gnu_cxx::fp_promote_t<_Tp, _Up> __gnu_cxx::ellint_rc (
    __Tp ___x,
    __Up ___y ) [inline]
```

Return the Carlson elliptic function $R_C(x,y)=R_F(x,y,y)$ where $R_F(x,y,z)$ is the Carlson elliptic function of the first kind.

The Carlson elliptic function is defined by:

$$R_C(x,y) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first argument.
_X	
_~	The second argument.
_y	

Definition at line 3365 of file specfun.h.

7.2.2.129 ellint_rcf()

Return the Carlson elliptic function $R_C(x, y)$.

See also

ellint_rc for details.

Definition at line 3331 of file specfun.h.

7.2.2.130 ellint_rcl()

Return the Carlson elliptic function $R_C(x, y)$.

See also

ellint_rc for details.

Definition at line 3340 of file specfun.h.

7.2.2.131 ellint_rd()

Return the Carlson elliptic function of the second kind $R_D(x,y,z) = R_J(x,y,z,z)$ where $R_J(x,y,z,p)$ is the Carlson elliptic function of the third kind.

The Carlson elliptic function of the second kind is defined by:

$$R_D(x,y,z) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{3/2}}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first of two symmetric arguments.
_X	
_~	The second of two symmetric arguments.
_y	
_~	The third argument.
_Z	

Definition at line 3464 of file specfun.h.

7.2.2.132 ellint_rdf()

Return the Carlson elliptic function $R_D(x, y, z)$.

See also

ellint_rd for details.

Definition at line 3428 of file specfun.h.

7.2.2.133 ellint_rdl()

```
long double __gnu_cxx::ellint_rdl (
          long double __x,
          long double __y,
          long double __z ) [inline]
```

Return the Carlson elliptic function $R_D(x, y, z)$.

See also

ellint_rd for details.

Definition at line 3437 of file specfun.h.

7.2.2.134 ellint_rf()

Return the Carlson elliptic function $R_F(x,y,z)$ of the first kind for real arguments.

The Carlson elliptic function of the first kind is defined by:

$$R_F(x,y,z) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}}$$

Parameters

_~	The first of three symmetric arguments.
_X	
_~	The second of three symmetric arguments.
_y	
_~	The third of three symmetric arguments.
_Z	

Definition at line 3317 of file specfun.h.

7.2.2.135 ellint_rff()

Return the Carlson elliptic function $R_F(x,y,z)$ of the first kind for float arguments.

See also

ellint_rf for details.

Definition at line 3288 of file specfun.h.

7.2.2.136 ellint_rfl()

```
long double __gnu_cxx::ellint_rfl (
          long double __x,
          long double __y,
          long double __z ) [inline]
```

Return the Carlson elliptic function $R_F(x,y,z)$ of the first kind for long double arguments.

See also

ellint rf for details.

Definition at line 3298 of file specfun.h.

7.2.2.137 ellint_rg()

```
template<typename _Tp , typename _Up , typename _Vp >
   __gnu_cxx::fp_promote_t<_Tp, _Up, _Vp> __gnu_cxx::ellint_rg (
   __Tp __x,
   __Up __y,
   __Vp __z ) [inline]
```

Return the symmetric Carlson elliptic function of the second kind $R_G(x, y, z)$.

The Carlson symmetric elliptic function of the second kind is defined by:

$$R_G(x,y,z) = \frac{1}{4} \int_0^\infty dt t [(t+x)(t+y)(t+z)]^{-1/2} \left(\frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right)$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first of three symmetric arguments.
_X	
_~	The second of three symmetric arguments.
_y	
_←	The third of three symmetric arguments.
_Z	

Definition at line 3555 of file specfun.h.

7.2.2.138 ellint_rgf()

Return the Carlson elliptic function $R_G(x,y)$.

See also

ellint_rg for details.

Definition at line 3520 of file specfun.h.

7.2.2.139 ellint_rgl()

```
long double __gnu_cxx::ellint_rgl (
          long double __x,
          long double __y,
          long double __z ) [inline]
```

Return the Carlson elliptic function $R_G(x, y)$.

See also

ellint_rg for details.

Definition at line 3529 of file specfun.h.

7.2.2.140 ellint_rj()

Return the Carlson elliptic function $R_J(x,y,z,p)$ of the third kind.

The Carlson elliptic function of the third kind is defined by:

$$R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}(t+p)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first of three symmetric arguments.
_x	
_←	The second of three symmetric arguments.
_y	
_~	The third of three symmetric arguments.
_z	
_~	The fourth argument.
_p	

Definition at line 3414 of file specfun.h.

7.2.2.141 ellint_rjf()

Return the Carlson elliptic function $R_J(x, y, z, p)$.

See also

ellint_rj for details.

Definition at line 3379 of file specfun.h.

7.2.2.142 ellint_rjl()

Return the Carlson elliptic function $R_J(x, y, z, p)$.

See also

ellint_rj for details.

Definition at line 3388 of file specfun.h.

7.2.2.143 ellnome()

Return the elliptic nome function q(k) of modulus k.

The elliptic nome function is defined by

$$q(k) = \exp\left(-\pi \frac{K(\sqrt{1-k^2})}{K(k)}\right)$$

where K(k) is the complete elliptic function of the first kind.

Template Parameters

Parameters

$$\begin{array}{|c|c|c|c|c|} \hline _ \leftarrow & \text{The modulus} \ -1 <= k <= +1 \\ \hline _ k & \end{array}$$

Definition at line 5812 of file specfun.h.

7.2.2.144 ellnomef()

Return the elliptic nome function q(k) of modulus k.

See also

ellnome for details.

Definition at line 5785 of file specfun.h.

7.2.2.145 ellnomel()

Return the elliptic nome function q(k) of long double modulus k.

See also

ellnome for details.

Definition at line 5795 of file specfun.h.

7.2.2.146 euler()

This returns Euler number E_n .

Parameters

```
_ ← the order n of the Euler number.
```

Returns

The Euler number of order n.

Definition at line 7084 of file specfun.h.

7.2.2.147 eulerian_1() [1/2]

Return the Eulerian number of the first kind. The Eulerian numbers of the first kind are defined by recursion:

$$\left\langle {n\atop m}\right\rangle = (n-m)\left\langle {n-1\atop m-1}\right\rangle + (m+1)\left\langle {n-1\atop m}\right\rangle \text{ for } n>0$$

Note that A(n, m) is a common older notation.

Definition at line 7100 of file specfun.h.

7.2.2.148 eulerian_1() [2/2]

Return a vector of Eulerian numbers of the first kind.

Definition at line 7108 of file specfun.h.

7.2.2.149 eulerian_2()

Return the Eulerian number of the second kind. The Eulerian numbers of the second kind are defined by recursion:

$$\left\langle \left\langle {n \atop m} \right\rangle \right\rangle = (2n-m-1) \left\langle \left\langle {n-1 \atop m-1} \right\rangle \right\rangle + (m+1) \left\langle \left\langle {n-1 \atop m} \right\rangle \right\rangle \text{ for } n > 0$$

Definition at line 7125 of file specfun.h.

7.2.2.150 expint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::expint (
          unsigned int __n,
          _Tp __x ) [inline]
```

Return the exponential integral $E_n(x)$ of integral order n and real argument x. The exponential integral is defined by:

$$E_n(x) = \int_1^\infty \frac{e^{-tx}}{t^n} dt$$

In particular

$$E_1(x) = \int_1^\infty \frac{e^{-tx}}{t} dt = -Ei(-x)$$

Template Parameters

_*Tp* | The real type of the argument

Parameters

_~	The integral order
_n	
_~	The real argument
_X	

Definition at line 3992 of file specfun.h.

7.2.2.151 expintf()

```
float __gnu_cxx::expintf (
          unsigned int __n,
          float __x ) [inline]
```

Return the exponential integral $E_n(x)$ for integral order n and float argument x.

See also

expint for details.

Definition at line 3961 of file specfun.h.

7.2.2.152 expintl()

```
long double __gnu_cxx::expintl (
    unsigned int __n,
    long double __x ) [inline]
```

Return the exponential integral $E_n(x)$ for integral order n and long double argument x.

See also

expint for details.

Definition at line 3971 of file specfun.h.

7.2.2.153 exponential_p()

Return the exponential cumulative probability density function.

The formula for the exponential cumulative probability density function is

$$F(x|\lambda) = 1 - e^{-\lambda x}$$
 for $x >= 0$

Definition at line 6761 of file specfun.h.

7.2.2.154 exponential_pdf()

Return the exponential probability density function.

The formula for the exponential probability density function is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$
 for $x >= 0$

Definition at line 6745 of file specfun.h.

7.2.2.155 factorial()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::factorial (
          unsigned int __n ) [inline]
```

Return the factorial n! of the argument as a real number.

$$n! = 1 \times 2 \times ... \times n, 0! = 1$$

_

Definition at line 4214 of file specfun.h.

7.2.2.156 factorialf()

Return the factorial n! of the argument as a float.

See also

factorial for more details

Definition at line 4194 of file specfun.h.

7.2.2.157 factoriall()

```
long double __gnu_cxx::factoriall (
          unsigned int __n ) [inline]
```

Return the factorial n! of the argument as a long double.

See also

factorial for more details

Definition at line 4203 of file specfun.h.

7.2.2.158 falling_factorial()

Return the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling factorial function is defined by

$$a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k) = \Gamma(a+1)/\Gamma(a-n+1)$$

where $a^{\underline{0}} \equiv 1$. In particular, $n^{\underline{n}} = n!$.

Definition at line 4180 of file specfun.h.

7.2.2.159 falling_factorialf()

Return the falling factorial $a^{\underline{\nu}}$ for float arguments.

See also

falling_factorial for details.

Definition at line 4153 of file specfun.h.

7.2.2.160 falling_factoriall()

Return the falling factorial $a^{\underline{\nu}}$ for long double arguments.

See also

falling_factorial for details.

Definition at line 4163 of file specfun.h.

7.2.2.161 fermi_dirac()

```
template<typename _Tps , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tps, _Tp> __gnu_cxx::fermi_dirac (
    __Tps ___s,
    __Tp __x ) [inline]
```

Return the Fermi-Dirac integral of integer or real order s and real argument x.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
http://dlmf.nist.gov/25.12.16
```

$$F_s(x) = \frac{1}{\Gamma(s+1)} \int_0^\infty \frac{t^s}{e^{t-x}+1} dt = -Li_{s+1}(-e^x)$$

Parameters

_~	The order $s > -1$.
_s	
_~	The real argument.
_x	

Returns

The real Fermi-Dirac integral $F_s(x)$,

Definition at line 6259 of file specfun.h.

7.2.2.162 fermi_diracf()

Return the Fermi-Dirac integral of float order s and argument x.

See also

fermi_dirac for details.

Definition at line 6229 of file specfun.h.

7.2.2.163 fermi_diracl()

Return the Fermi-Dirac integral of long double order s and argument x.

See also

fermi_dirac for details.

Definition at line 6239 of file specfun.h.

7.2.2.164 fisher_f_p()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::fisher_f_p (
    __Tp __F,
    unsigned int __nu1,
    unsigned int __nu2 )
```

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$Q(F|\nu_1,\nu_2) = I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2})$$

Parameters

nu1	The number of degrees of freedom of sample 1
nu2	The number of degrees of freedom of sample 2
F	The F statistic

Definition at line 6884 of file specfun.h.

7.2.2.165 fisher_f_pdf()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::fisher_f_pdf (
    _Tp __F,
    unsigned int __nu1,
    unsigned int __nu2 )
```

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$P(F|\nu_1,\nu_2) = 1 - I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2}) = 1 - Q(F|\nu_1,\nu_2)$$

Parameters

F	
nu1	
nu2	

Definition at line 6861 of file specfun.h.

7.2.2.166 fresnel_c()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::fresnel_c (
    __Tp __x ) [inline]
```

Return the Fresnel cosine integral of argument x.

The Fresnel cosine integral is defined by

$$C(x) = \int_0^x \cos(\frac{\pi}{2}t^2)dt$$

Parameters

_~	The argument
_X	

Definition at line 3903 of file specfun.h.

7.2.2.167 fresnel_cf()

Definition at line 3884 of file specfun.h.

7.2.2.168 fresnel_cl()

Definition at line 3888 of file specfun.h.

7.2.2.169 fresnel_s()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::fresnel_s (
    __Tp __x ) [inline]
```

Return the Fresnel sine integral of argument \boldsymbol{x} .

The Fresnel sine integral is defined by

$$S(x) = \int_0^x \sin(\frac{\pi}{2}t^2)dt$$

Parameters

_~	The argument
_x	

Definition at line 3875 of file specfun.h.

7.2.2.170 fresnel_sf()

Definition at line 3856 of file specfun.h.

7.2.2.171 fresnel_sl()

Definition at line 3860 of file specfun.h.

7.2.2.172 gamma_p()

```
template<typename _Ta , typename _Tp >
    __gnu_cxx::fp_promote_t<_Ta, _Tp> __gnu_cxx::gamma_p (
    __Ta __a,
    __Tp __x ) [inline]
```

Return the gamma cumulative propability distribution function or the regularized lower incomplete gamma function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}(x/\beta)^{\alpha-1}e^{-x/\beta}$$

Definition at line 4591 of file specfun.h.

7.2.2.173 gamma_pdf()

Return the gamma propability distribution function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}(x/\beta)^{\alpha-1}e^{-x/\beta}$$

Definition at line 6645 of file specfun.h.

References std::__detail::__beta().

7.2.2.174 gamma_pf()

Definition at line 4572 of file specfun.h.

7.2.2.175 gamma_pl()

Definition at line 4576 of file specfun.h.

7.2.2.176 gamma_q()

```
template<typename _Ta , typename _Tp >
    __gnu_cxx::fp_promote_t<_Ta, _Tp> __gnu_cxx::gamma_q (
    __Ta __a,
    __Tp __x ) [inline]
```

Return the gamma complementary cumulative propability distribution (or survival) function or the regularized upper incomplete gamma function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} (x/\beta)^{\alpha-1} e^{-x/\beta}$$

Definition at line 4619 of file specfun.h.

7.2.2.177 gamma_qf()

Definition at line 4600 of file specfun.h.

7.2.2.178 gamma_ql()

Definition at line 4604 of file specfun.h.

7.2.2.179 gamma_reciprocal()

Return the reciprocal gamma function for real argument.

The reciprocal of the Gamma function is what you'd expect:

$$\Gamma_r(a) = \frac{1}{\Gamma(a)}$$

But unlike the Gamma function this function has no singularities and is exponentially decreasing for increasing argument. Definition at line 6999 of file specfun.h.

7.2.2.180 gamma_reciprocalf()

Return the reciprocal gamma function for float argument.

See also

gamma_reciprocal for details.

Definition at line 6974 of file specfun.h.

7.2.2.181 gamma_reciprocall()

Return the reciprocal gamma function for long double argument.

See also

gamma_reciprocal for details.

Definition at line 6984 of file specfun.h.

7.2.2.182 gegenbauer()

```
template<typename _Tlam , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tlam, _Tp> __gnu_cxx::gegenbauer (
          unsigned int __n,
          __Tlam __lambda,
          _Tp __x ) [inline]
```

Return the Gegenbauer polynomial $C_n^{\lambda}(x)$ of degree n and real order $\lambda > -1/2, \lambda \neq 0$ and argument x.

The Gegenbauer polynomial is generated by a three-term recursion relation:

$$C_n^{\lambda}(x) = \frac{1}{n} \left[2x(n+\lambda-1)C_{n-1}^{\lambda}(x) - (n+2\lambda-2)C_{n-2}^{\lambda}(x) \right]$$

and $C_0^{\lambda}(x) = 1$, $C_1^{\lambda}(x) = 2\lambda x$.

Template Parameters

_Tlam	The real type of the order
_Тр	The real type of the argument

Parameters

n	The non-negative integral degree
lambda	The real order
x	The real argument

Definition at line 2388 of file specfun.h.

7.2.2.183 gegenbauerf()

```
float __gnu_cxx::gegenbauerf (
          unsigned int __n,
          float __lambda,
          float __x ) [inline]
```

Return the Gegenbauer polynomial $C_n^{(\lambda)}(x)$ of degree n and float order $\lambda > -1/2, \lambda \neq 0$ and argument x.

See also

gegenbauer for details.

Definition at line 2351 of file specfun.h.

7.2.2.184 gegenbauerl()

```
long double __gnu_cxx::gegenbauerl (
     unsigned int __n,
     long double __lambda,
     long double __x ) [inline]
```

Return the Gegenbauer polynomial $C_n^{\lambda}(x)$ of degree n and long double order $\lambda > -1/2, \lambda \neq 0$ and argument x.

See also

gegenbauer for details.

Definition at line 2362 of file specfun.h.

7.2.2.185 harmonic()

Return the harmonic number H_n .

The the harmonic number is defined by

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

Parameters

_~	The parameter
n	

Definition at line 3767 of file specfun.h.

7.2.2.186 heuman_lambda()

Return the Heuman lambda function $\Lambda(k,\phi)$ of modulus k and angular limit ϕ .

The complete Heuman lambda function is defined by

$$\Lambda(k,\phi) = \frac{F(1-m,\phi)}{K(1-m)} + \frac{2}{\pi}K(m)Z(1-m,\phi)$$

where $m=k^2, K(k)$ is the complete elliptic function of the first kind, and $Z(k,\phi)$ is the Jacobi zeta function.

Template Parameters

_Tk	the floating-point type of the modulus
_Tphi	the floating-point type of the angular limit argument

Parameters

k	The modulus
phi	The angle

Definition at line 4688 of file specfun.h.

7.2.2.187 heuman_lambdaf()

Definition at line 4662 of file specfun.h.

7.2.2.188 heuman_lambdal()

Definition at line 4666 of file specfun.h.

7.2.2.189 hurwitz_zeta() [1/2]

```
template<typename _Tp , typename _Up >
    __gnu_cxx::fp_promote_t<_Tp, _Up> __gnu_cxx::hurwitz_zeta (
    __Tp ___s,
    __Up __a ) [inline]
```

Return the Hurwitz zeta function of real argument s, and parameter a.

The the Hurwitz zeta function is defined by

$$\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(a+n)^s}$$

Parameters

_←	The order.
_s	
_←	The parameter.
_a	

Definition at line 3597 of file specfun.h.

7.2.2.190 hurwitz_zeta() [2/2]

```
template<typename _Tp , typename _Up >
std::complex<_Tp> __gnu_cxx::hurwitz_zeta (
    _Tp __s,
    std::complex< _Up > __a )
```

Return the Hurwitz zeta function of real order s, and complex parameter a.

See also

hurwitz zeta for details.

Definition at line 3611 of file specfun.h.

7.2.2.191 hurwitz_zetaf()

Return the Hurwitz zeta function of float argument s, and parameter a.

See also

hurwitz_zeta for details.

Definition at line 3570 of file specfun.h.

7.2.2.192 hurwitz_zetal()

Return the Hurwitz zeta function of long double argument s, and parameter a.

See also

hurwitz_zeta for details.

Definition at line 3580 of file specfun.h.

7.2.2.193 hyperg()

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ of real numerator parameters a and b, denominator parameter c, and argument x.

The hypergeometric function is defined by

$$_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}x^{n}}{(c)_{n}n!}$$

where the Pochhammer symbol is $(x)_k = (x)(x+1)...(x+k-1)$, $(x)_0 = 1$

Parameters

_~	The first numerator parameter
_a	
_←	The second numerator parameter
_b	
_~	The denominator parameter
_c	
_~	The argument
_x	

Definition at line 1610 of file specfun.h.

7.2.2.194 hypergf()

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ of float numerator parameters a and b, denominator parameter c, and argument x.

See also

hyperg for details.

Definition at line 1577 of file specfun.h.

7.2.2.195 hypergl()

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ of long double numerator parameters a and b, denominator parameter c, and argument x.

See also

hyperg for details.

Definition at line 1588 of file specfun.h.

7.2.2.196 ibeta()

```
template<typename _Ta , typename _Tb , typename _Tp >
   __gnu_cxx::fp_promote_t<_Ta, _Tb, _Tp> __gnu_cxx::ibeta (
   __Ta ___a,
   __Tb __b,
   __Tp __x ) [inline]
```

Return the regularized incomplete beta function of parameters a, b, and argument x.

The regularized incomplete beta function is defined by

$$I_x(a,b) = \frac{B_x(a,b)}{B(a,b)}$$

where

$$B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$$

is the non-regularized incomplete beta function and B(a,b) is the usual beta function.

Parameters

_~	The first parameter
_a	
_~	The second parameter
_b	
_~	The argument
_x	

Definition at line 3816 of file specfun.h.

7.2.2.197 ibetac()

Return the regularized complementary incomplete beta function of parameters a, b, and argument x.

The regularized complementary incomplete beta function is defined by

$$I_x(a,b) = I_x(a,b)$$

Parameters

_~	The parameter
_a	
_~	The parameter
_b	
_~	The argument
_X	

Definition at line 3847 of file specfun.h.

7.2.2.198 ibetacf()

Definition at line 3825 of file specfun.h.

References __gnu_cxx::ibetaf().

7.2.2.199 ibetacl()

```
long double __gnu_cxx::ibetacl (
          long double __a,
          long double __b,
          long double __x ) [inline]
```

Definition at line 3829 of file specfun.h.

References __gnu_cxx::ibetal().

7.2.2.200 ibetaf()

Return the regularized incomplete beta function of parameters a, b, and argument x.

See ibeta for details.

Definition at line 3782 of file specfun.h.

Referenced by __gnu_cxx::ibetacf().

7.2.2.201 ibetal()

```
long double __gnu_cxx::ibetal (
          long double __a,
          long double __b,
          long double __x ) [inline]
```

Return the regularized incomplete beta function of parameters a, b, and argument x.

See ibeta for details.

Definition at line 3792 of file specfun.h.

Referenced by __gnu_cxx::ibetacl().

7.2.2.202 jacobi()

Return the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$ of degree n and float orders $\alpha,\beta>-1$ and argument x.

The Jacobi polynomials are generated by a three-term recursion relation:

$$2n(\alpha+\beta+n)(\alpha+\beta+2n-2)P_{n}^{(\alpha,\beta)}(x) = (\alpha+\beta+2n-1)[(\alpha^{2}-\beta^{2})+x(\alpha+\beta+2n-2)(\alpha+\beta+2n)]P_{n-1}^{(\alpha,\beta)}(x) - 2(\alpha+n-1)(\beta+n-1)(\alpha+\beta+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+2n-2)(\alpha+$$

Template Parameters

_Talpha	The real type of the order α
_Tbeta	The real type of the order β
_Тр	The real type of the argument

Parameters

n	The non-negative integral degree
alpha	The real order
beta	The real order
x	The real argument

Definition at line 2334 of file specfun.h.

References std::__detail::__beta().

7.2.2.203 jacobi_cn()

```
template<typename _Kp , typename _Up >
    __gnu_cxx::fp_promote_t<_Kp, _Up> __gnu_cxx::jacobi_cn (
    __Kp ___k,
    __Up ___u ) [inline]
```

Return the Jacobi elliptic cosine amplitude function cn(k,u) of real modulus k and argument u.

The Jacobi elliptic cn integral is defined by

$$cos(\phi) = cn(k, F(k, \phi))$$

where $F(k,\phi)$ is the Legendre elliptic integral of the first kind (see ellint_1).

Template Parameters

_Кр	The type of the real modulus
_Up	The type of the real argument

Parameters

_←	The real modulus
_k	
_~	The real argument
_u	

Definition at line 2039 of file specfun.h.

7.2.2.204 jacobi_cnf()

Return the Jacobi elliptic cosine amplitude function cn(k,u) of float modulus k and argument u.

See also

jacobi_cn for details.

Definition at line 2004 of file specfun.h.

7.2.2.205 jacobi_cnl()

```
long double __gnu_cxx::jacobi_cnl (
          long double __k,
          long double __u ) [inline]
```

Return the Jacobi elliptic cosine amplitude function cn(k,u) of long double modulus k and argument u.

See also

jacobi_cn for details.

Definition at line 2016 of file specfun.h.

7.2.2.206 jacobi_dn()

```
template<typename _Kp , typename _Up >
    __gnu_cxx::fp_promote_t<_Kp, _Up> __gnu_cxx::jacobi_dn (
    __Kp ___k,
    __Up ___u ) [inline]
```

Return the Jacobi elliptic delta amplitude function dn(k,u) of real modulus ${\bf k}$ and argument ${\bf u}$.

The Jacobi elliptic dn integral is defined by

$$\sqrt{1 - k^2 \sin(\phi)} = dn(k, F(k, \phi))$$

where $F(k,\phi)$ is the Legendre elliptic integral of the first kind (see ellint_1).

Template Parameters

_Кр	The type of the real modulus
_Up	The type of the real argument

Parameters

_← _k	The real modulus
_~	The real argument
_u	

Definition at line 2089 of file specfun.h.

7.2.2.207 jacobi_dnf()

Return the Jacobi elliptic delta amplitude function dn(k,u) of float modulus ${\tt k}$ and argument ${\tt u}.$

See also

jacobi_dn for details.

Definition at line 2054 of file specfun.h.

7.2.2.208 jacobi_dnl()

```
long double __gnu_cxx::jacobi_dnl (
          long double __k,
          long double __u ) [inline]
```

Return the Jacobi elliptic delta amplitude function dn(k,u) of $long_double$ modulus k and argument u.

See also

jacobi_dn for details.

Definition at line 2066 of file specfun.h.

7.2.2.209 jacobi_sn()

```
template<typename _Kp , typename _Up >
    __gnu_cxx::fp_promote_t<_Kp, _Up> __gnu_cxx::jacobi_sn (
    __Kp __k,
    __Up __u ) [inline]
```

Return the Jacobi elliptic sine amplitude function sn(k,u) of real modulus ${\tt k}$ and argument ${\tt u}$.

The Jacobi elliptic sn integral is defined by

$$\sin(\phi) = sn(k, F(k, \phi))$$

where $F(k,\phi)$ is the Legendre elliptic integral of the first kind (see ellint_1).

Template Parameters

_Kp	The type of the real modulus
_Up	The type of the real argument

Parameters

_← _k	The real modulus
_← _u	The real argument

Definition at line 1989 of file specfun.h.

7.2.2.210 jacobi_snf()

Return the Jacobi elliptic sine amplitude function sn(k,u) of float modulus k and argument u.

See also

jacobi_sn for details.

Definition at line 1954 of file specfun.h.

7.2.2.211 jacobi_snl()

```
long double __gnu_cxx::jacobi_snl (
          long double __k,
          long double __u ) [inline]
```

Return the Jacobi elliptic sine amplitude function sn(k,u) of long double modulus k and argument u.

See also

jacobi_sn for details.

Definition at line 1966 of file specfun.h.

7.2.2.212 jacobi_theta_1()

Return the Jacobi theta-1 function $\theta_1(q,x)$ of nome q and argument x.

The Jacobi theta-1 function is defined by

$$\theta_1(q, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(q+j-1/2)^2}{x}\right)$$

Parameters

_~	The periodic (period = 2) argument
_q	
_~	The argument
_x	

Definition at line 6043 of file specfun.h.

7.2.2.213 jacobi_theta_1f()

Return the Jacobi theta-1 function $\theta_1(q,x)$ of nome q and argument x.

See also

```
jacobi_theta_1 for details.
```

Definition at line 6015 of file specfun.h.

7.2.2.214 jacobi_theta_1I()

Return the Jacobi theta-1 function $\theta_1(q,x)$ of nome ${\bf q}$ and argument ${\bf x}$.

See also

```
jacobi_theta_1 for details.
```

Definition at line 6025 of file specfun.h.

7.2.2.215 jacobi_theta_2()

Return the Jacobi theta-2 function $\theta_2(q,x)$ of nome ${\bf q}$ and argument ${\bf x}$.

The Jacobi theta-2 function is defined by

$$\theta_2(q,x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(q+j)^2}{x}\right)$$

Parameters

_~	The periodic (period = 2) argument
_q	
_~	The argument
_x	

Definition at line 6086 of file specfun.h.

7.2.2.216 jacobi_theta_2f()

Return the Jacobi theta-2 function $\theta_2(q,x)$ of nome q and argument x.

See also

```
jacobi_theta_2 for details.
```

Definition at line 6058 of file specfun.h.

7.2.2.217 jacobi_theta_2I()

Return the Jacobi theta-2 function $\theta_2(q,x)$ of nome q and argument x.

See also

```
jacobi theta 2 for details.
```

Definition at line 6068 of file specfun.h.

7.2.2.218 jacobi_theta_3()

```
template<typename _Tpq , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpq, _Tp> __gnu_cxx::jacobi_theta_3 (
    __Tpq ___q,
    __Tp ___x ) [inline]
```

Return the Jacobi theta-3 function $\theta_3(q,x)$ of nome q and argument x.

The Jacobi theta-3 function is defined by

$$\theta_3(q,x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(q+j)^2}{x}\right)$$

Parameters

_~	The elliptic nome
_q	
_~	The argument
_X	

Definition at line 6129 of file specfun.h.

7.2.2.219 jacobi_theta_3f()

Return the Jacobi theta-3 function $\theta_3(q,x)$ of nome q and argument x.

See also

jacobi theta 3 for details.

Definition at line 6101 of file specfun.h.

7.2.2.220 jacobi_theta_3I()

Return the Jacobi theta-3 function $\theta_3(q,x)$ of nome q and argument x.

See also

jacobi_theta_3 for details.

Definition at line 6111 of file specfun.h.

7.2.2.221 jacobi_theta_4()

Return the Jacobi theta-4 function $\theta_4(q,x)$ of nome q and argument x.

The Jacobi theta-4 function is defined by

$$\theta_4(q,x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(q+j+1/2)^2}{x}\right)$$

Parameters

_~	The elliptic nome
_q	
_~	The argument
_x	

Definition at line 6172 of file specfun.h.

7.2.2.222 jacobi_theta_4f()

Return the Jacobi theta-4 function $\theta_4(q,x)$ of nome q and argument x.

See also

```
jacobi_theta_4 for details.
```

Definition at line 6144 of file specfun.h.

7.2.2.223 jacobi_theta_4l()

Return the Jacobi theta-4 function $\theta_4(q,x)$ of nome q and argument x.

See also

```
jacobi_theta_4 for details.
```

Definition at line 6154 of file specfun.h.

7.2.2.224 jacobi_zeta()

Return the Jacobi zeta function of k and ϕ .

The Jacobi zeta function is defined by

$$Z(m,\phi) = E(m,\phi) - \frac{E(m)F(m,\phi)}{K(m)}$$

where $E(m,\phi)$ is the elliptic function of the second kind, E(m) is the complete ellitic function of the second kind, and $F(m,\phi)$ is the elliptic function of the first kind.

Template Parameters

_Tk	the real type of the modulus
_Tphi	the real type of the angle limit

Parameters

k	The modulus
phi	The angle

Definition at line 4653 of file specfun.h.

7.2.2.225 jacobi_zetaf()

Definition at line 4628 of file specfun.h.

7.2.2.226 jacobi_zetal()

Definition at line 4632 of file specfun.h.

7.2.2.227 jacobif()

```
float __gnu_cxx::jacobif (
    unsigned __n,
    float __alpha,
    float __beta,
    float __x ) [inline]
```

Return the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$ of degree n and float orders $\alpha,\beta>-1$ and argument x.

See also

jacobi for details.

Definition at line 2283 of file specfun.h.

References std:: detail:: beta().

7.2.2.228 jacobil()

```
long double __gnu_cxx::jacobil (
         unsigned __n,
         long double __alpha,
         long double __beta,
         long double __x ) [inline]
```

Return the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$ of degree n and long double orders $\alpha,\beta>-1$ and argument x.

See also

jacobi for details.

Definition at line 2297 of file specfun.h.

References std::__detail::__beta().

```
7.2.2.229 lah() [1/2]
```

Return the Lah number. Lah numbers are defined by downward recurrence:

$$L(n, k-1) = \frac{k(k-1)}{n-k+1}L(n, k); L(n, n) = 1$$

Definition at line 7202 of file specfun.h.

```
7.2.2.230 lah() [2/2]
```

```
template<typename _Tp >
std::vector<_Tp> __gnu_cxx::lah (
          unsigned int __n ) [inline]
```

Return a vector of Lah numbers. Lah numbers are defined by downward recurrence:

$$L(n, k-1) = \frac{k(k-1)}{n-k+1}L(n, k); L(n, n) = 1$$

Definition at line 7214 of file specfun.h.

7.2.2.231 | Ibinomial()

```
\label{template} $$ \ensuremath{\texttt{template}}$ $$ \ensuremath{\texttt{typename}}$ $$ \ensuremath{\texttt{Tp}}$ $$ $$ \ensuremath{\texttt{gnu}}$ $$ \ensuremath{\texttt{cxx}}$::lbinomial ( unsigned int $$\_n$, unsigned int $$\_k$ ) [inline]
```

Return the logarithm of the binomial coefficient as a real number. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

Dawawa atawa

Parameters

_←	The first argument of the binomial coefficient.
_n	
_~	The second argument of the binomial coefficient.

Returns

The logarithm of the binomial coefficient.

Definition at line 4420 of file specfun.h.

7.2.2.232 Ibinomialf()

```
float __gnu_cxx::lbinomialf (
          unsigned int __n,
          unsigned int __k ) [inline]
```

Return the logarithm of the binomial coefficient as a ${\tt float}.$

See also

Ibinomial for details.

Definition at line 4391 of file specfun.h.

7.2.2.233 Ibinomial()

```
long double __gnu_cxx::lbinomiall (
          unsigned int __n,
          unsigned int __k ) [inline]
```

Return the logarithm of the binomial coefficient as a long double.

See also

Ibinomial for details.

Definition at line 4400 of file specfun.h.

7.2.2.234 Idouble_factorial()

Return the logarithm of the double factorial ln(n!!) of the argument as a real number.

$$n!! = n(n-2)...(2), 0!! = 1$$

for even n and

$$n!! = n(n-2)...(1), (-1)!! = 1$$

for odd n.

Definition at line 4334 of file specfun.h.

7.2.2.235 Idouble_factorialf()

Return the logarithm of the double factorial ln(n!!) of the argument as a float.

See also

Idouble_factorial for more details

Definition at line 4307 of file specfun.h.

7.2.2.236 Idouble_factoriall()

Return the logarithm of the double factorial ln(n!!) of the argument as a <code>long double</code> .

See also

double_factorial for more details

Definition at line 4317 of file specfun.h.

7.2.2.237 legendre_q()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::legendre_q (
          unsigned int __l,
          __Tp __x ) [inline]
```

Return the Legendre function of the second kind $Q_l(x)$ of nonnegative degree 1 and real argument |x| <= 0.

The Legendre function of the second kind of order 1 and argument x, $Q_l(x)$, is defined by:

$$Q_l(x) = \frac{1}{2} \log \frac{x+1}{x-1} P_l(x) - \sum_{k=0}^{l-1} \frac{(l+k)!}{(l-k)!(k!)^2 s^k} \left[\psi(l+1) - \psi(k+1) \right] (x-1)^k$$

where $P_l(x)$ is the Legendre polynomial of degree 1 and $\psi(x)$ is the digamma or psi function which for integral argument is related to the harmonic number: $\psi(n) = -\gamma_E + H_n$.

Template Parameters

_Тр	The floating-point type of the argument _	x.
-----	---	----

Parameters

_ -	The degree $l>=0$
_← _x	The argument abs (x) <= 1

Exceptions

$ std::domain_error if abs(\x) > 1$

Definition at line 4512 of file specfun.h.

7.2.2.238 legendre_qf()

Return the Legendre function of the second kind $Q_l(x)$ of nonnegative degree 1 and float argument.

See also

legendre_q for details.

Definition at line 4476 of file specfun.h.

7.2.2.239 legendre_ql()

```
long double __gnu_cxx::legendre_ql (
     unsigned int __l,
     long double __x ) [inline]
```

Return the Legendre function of the second kind $Q_l(x)$ of nonnegative degree 1 and long double argument.

See also

legendre_q for details.

Definition at line 4486 of file specfun.h.

7.2.2.240 lerch_phi()

```
template<typename _Tp , typename _Ts , typename _Ta >
   __gnu_cxx::fp_promote_t<_Tp, _Ts, _Ta> __gnu_cxx::lerch_phi (
   __Tp __z,
   __Ts __s,
   __Ta __a ) [inline]
```

Return the Lerch transcendent $\Phi(z, s, a)$.

The series is:

$$\Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(k+a)^s}$$

Parameters

_~	The argument.
_Z	
_~	The order $s! = 1$.
_s	
_~	The scale parameter $a > -1$.
_a	

Definition at line 7274 of file specfun.h.

7.2.2.241 lerch_phif()

Return the Lerch transcendent $\Phi(z,s,a)$ for float arguments.

See also

lerch_phi for details.

Definition at line 7247 of file specfun.h.

7.2.2.242 lerch_phil()

```
long double __gnu_cxx::lerch_phil (
          long double __z,
          long double __s,
          long double __a ) [inline]
```

Return the Lerch transcendent $\Phi(z,s,a)$ for long double arguments.

See also

lerch_phi for details.

Definition at line 7257 of file specfun.h.

7.2.2.243 Ifactorial()

```
template<typename _Tp > 
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::lfactorial ( unsigned int __n ) [inline]
```

Return the logarithm of the factorial ln(n!) of the argument as a real number.

```
n! = 1 \times 2 \times ... \times n, 0! = 1
```

.

Definition at line 4292 of file specfun.h.

7.2.2.244 Ifactorialf()

Return the logarithm of the factorial ln(n!) of the argument as a float.

See also

Ifactorial for more details

Definition at line 4270 of file specfun.h.


```
long double __gnu_cxx::lfactoriall (
          unsigned int __n ) [inline]
```

Return the logarithm of the factorial ln(n!) of the argument as a long double.

See also

Ifactorial for more details

Definition at line 4280 of file specfun.h.

7.2.2.246 Ifalling_factorial()

```
template<typename _Tp , typename _Tnu >
    __gnu_cxx::fp_promote_t<_Tp, _Tnu> __gnu_cxx::lfalling_factorial (
    __Tp __a,
    __Tnu __nu ) [inline]
```

Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The falling factorial function is defined by

$$a^{\underline{n}} = \frac{\Gamma(a+1)}{\Gamma(a-\nu+1)} = \prod_{k=0}^{n-1} (a-k)$$

where $a^{\underline{0}}\equiv 1.$ In particular, $n^{\underline{n}}=n!.$ Thus this function returns

$$ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)]$$

where $ln[a^{\underline{0}}] \equiv 0$. Many notations exist for this function: $(a)_{\nu}$,

$$\left\{ \begin{array}{c} a \\ \nu \end{array} \right\}$$

, and others.

Definition at line 4094 of file specfun.h.

7.2.2.247 Ifalling_factorialf()

Return the logarithm of the falling factorial $ln(a^{\overline{\nu}})$ for float arguments.

See also

Ifalling_factorial for details.

Definition at line 4057 of file specfun.h.

7.2.2.248 | Ifalling_factorial()

Return the logarithm of the falling factorial $ln(a^{\overline{\nu}})$ for float arguments.

See also

Ifalling_factorial for details.

Definition at line 4067 of file specfun.h.

7.2.2.249 Igamma() [1/2]

```
template<typename _Ta >
    __gnu_cxx::fp_promote_t<_Ta> __gnu_cxx::lgamma (
    __Ta __a ) [inline]
```

Return the logarithm of the gamma function for real argument.

Definition at line 3018 of file specfun.h.

Referenced by $std::_detail::_gegenbauer_zeros()$, $std::_detail::_jacobi_zeros()$, and $std::_detail::_laguerre_ \columnwed zeros()$.

7.2.2.250 Igamma() [2/2]

Return the logarithm of the gamma function for complex argument.

Definition at line 3051 of file specfun.h.

7.2.2.251 | Igammaf() [1/2]

Return the logarithm of the gamma function for float argument.

See also

Igamma for details.

Definition at line 3000 of file specfun.h.

```
7.2.2.252 | Igammaf() [2/2]
```

Return the logarithm of the gamma function for std::complex<float> argument.

See also

Igamma for details.

Definition at line 3033 of file specfun.h.

```
7.2.2.253 Igammal() [1/2]
```

Return the logarithm of the gamma function for long double argument.

See also

Igamma for details.

Definition at line 3010 of file specfun.h.

7.2.2.254 Igammal() [2/2]

Return the logarithm of the gamma function for std::complex<long double> argument.

See also

Igamma for details.

Definition at line 3043 of file specfun.h.

7.2.2.255 logint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::logint (
    _Tp __x ) [inline]
```

Return the logarithmic integral of argument x.

The logarithmic integral is defined by

$$li(x) = \int_0^x \frac{dt}{ln(t)} = Ei(ln(x))$$

where Ei(x) is the exponential integral (see std::expint).

Parameters

_ \	The real upper integration limit
_X	

Definition at line 1777 of file specfun.h.

7.2.2.256 logintf()

Return the logarithmic integral of argument \boldsymbol{x} .

See also

logint for details.

Definition at line 1752 of file specfun.h.

7.2.2.257 logintl()

Return the logarithmic integral of argument x.

See also

logint for details.

Definition at line 1761 of file specfun.h.

7.2.2.258 logistic_p()

Return the logistic cumulative distribution function.

The formula for the logistic probability function is

$$P(x|a,b) = \frac{e^{(x-a)/b}}{1 + e^{(x-a)/b}}$$

where b > 0.

Definition at line 6960 of file specfun.h.

7.2.2.259 logistic_pdf()

Return the logistic probability density function.

The formula for the logistic probability density function is

$$f(x|a,b) = \frac{e^{(x-a)/b}}{b[1 + e^{(x-a)/b}]^2}$$

where b > 0.

Definition at line 6943 of file specfun.h.

7.2.2.260 lognormal_p()

```
template<typename _Tmu , typename _Tsig , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tmu, _Tsig, _Tp> __gnu_cxx::lognormal_p (
    __Tmu __mu,
    __Tsig __sigma,
    __Tp __x ) [inline]
```

Return the lognormal cumulative probability density function.

The formula for the lognormal cumulative probability density function is

$$F(x|\mu,\sigma) = \frac{1}{2} \left[1 - erf\left(\frac{\ln x - \mu}{\sqrt{2}\sigma}\right) \right]$$

Definition at line 6729 of file specfun.h.

7.2.2.261 lognormal_pdf()

Return the lognormal probability density function.

The formula for the lognormal probability density function is

$$f(x|\mu,\sigma) = \frac{e^{(\ln x - \mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$$

Definition at line 6711 of file specfun.h.

7.2.2.262 Irising_factorial()

```
template<typename _Tp , typename _Tnu >
    __gnu_cxx::fp_promote_t<_Tp, _Tnu> __gnu_cxx::lrising_factorial (
    __Tp __a,
    __Tnu __nu ) [inline]
```

Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The rising factorial function is defined for integer order by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), \overline{0} \equiv 1$$

Thus this function returns

$$ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[a^{\overline{0}}] \equiv 0$$

Many notations exist for this function: $(a)_{\nu}$, called the Pochhammer function (esp. in the literature of special functions), and

 $\begin{bmatrix} a \\ \nu \end{bmatrix}$

, and others.

Definition at line 4042 of file specfun.h.

7.2.2.263 Irising factorialf()

Return the logarithm of the rising factorial $a^{\overline{\nu}}$ for float arguments.

See also

Irising_factorial for details.

Definition at line 4007 of file specfun.h.

7.2.2.264 Irising_factoriall()

Return the logarithm of the rising factorial $ln(a^{\overline{\nu}})$ for long double arguments.

See also

Irising_factorial for details.

Definition at line 4017 of file specfun.h.

7.2.2.265 mittag_leffler()

Compute the Mittag-Leffer function:

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta + \alpha k)}, \ \alpha > 0, \beta \in \mathbb{C}, z \in \mathbb{C}$$

See also

COMPUTATION OF THE MITTAG-LEFFLER FUNCTION $E_{\alpha,\beta}(z)$ AND ITS DERIVATIVE, Rudolf Gorenflo, Joulia Loutchko & Yuri Luchko

Definition at line 7292 of file specfun.h.

References std::__detail::__beta().

7.2.2.266 normal_p()

Return the normal cumulative probability density function.

The formula for the normal cumulative probability density function is

$$F(x|\mu,\sigma) = \frac{1}{2} \left[1 - erf(\frac{x-\mu}{\sqrt{2}\sigma}) \right]$$

Definition at line 6695 of file specfun.h.

7.2.2.267 normal_pdf()

Return the gamma cumulative propability distribution function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}(x/\beta)^{\alpha-1}e^{-x/\beta}$$

 $\label{template} $$ \text{template} = Ta, typename _Tb, typename _Tp> inline __gnu_cxx::fp_promote_t<_Ta, _Tb, _Tp> gamma \hookrightarrow _p(_Ta __alpha, _Tb __beta, _Tp __x) { using __type = __gnu_cxx::fp_promote_t<_Ta, _Tb, _Tp>; return std::_ <math display="inline">\hookleftarrow \text{detail}::_gamma_p<_type>(_alpha, __beta, __x); } $$ Return the normal probability density function.$

The formula for the normal probability density function is

$$f(x|\mu,\sigma) = \frac{e^{(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$$

Definition at line 6678 of file specfun.h.

7.2.2.268 owens_t()

Return the Owens T function T(h, a) of shape factor h and integration limit a.

The Owens T function is defined by

$$T(h,a) = \frac{1}{2\pi} \int_0^a \frac{\exp\left[-\frac{1}{2}h^2(1+x^2)\right]}{1+x^2} dx$$

Parameters

_ ←	The shape factor
_~	The integration limit
_a	

Definition at line 6215 of file specfun.h.

7.2.2.269 owens_tf()

Return the Owens T function T(h, a) of shape factor h and integration limit a.

See also

owens_t for details.

Definition at line 6187 of file specfun.h.

7.2.2.270 owens_tl()

```
long double __gnu_cxx::owens_tl (
          long double __h,
          long double __a ) [inline]
```

Return the Owens T function T(h,a) of long double shape factor h and integration limit a.

See also

owens_t for details.

Definition at line 6197 of file specfun.h.

7.2.2.271 periodic_zeta() [1/2]

Return the periodic zeta function of real argument x, and parameter s.

The the periodic zeta function is defined by

$$F(x,s) = \sum_{n=1}^{\infty} \frac{e^{i2\pi nx}}{n^s}$$

Parameters

_~	The argument.
_X	
_~	The order.
_s	

Definition at line 3653 of file specfun.h.

Return the periodic zeta function of complex argument z, and real parameter s.

See also

periodic_zeta for details.

 $_{\rm Tp} \ _s$) [inline]

Definition at line 3667 of file specfun.h.

7.2.2.273 periodic_zetaf()

Return the periodic zeta function of float argument x, and parameter s.

See also

periodic_zeta for details.

Definition at line 3626 of file specfun.h.

7.2.2.274 periodic_zetal()

Return the periodic zeta function of long double argument x, and parameter s.

See also

periodic_zeta for details.

Definition at line 3636 of file specfun.h.

7.2.2.275 polygamma()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::polygamma (
          unsigned int __m,
          _Tp __x ) [inline]
```

Return the polygamma function of argument \mathbf{x} .

The the polygamma or digamma function is defined by

$$\psi(x) = \frac{d}{dx}log(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}$$

Parameters

_~	The order
_m	
_←	The parameter
_X	

Definition at line 3749 of file specfun.h.

7.2.2.276 polygammaf()

```
float __gnu_cxx::polygammaf (
          unsigned int __m,
          float __x ) [inline]
```

Return the polygamma function of $\verb"float"$ argument x.

See also

polygamma for details.

Definition at line 3722 of file specfun.h.

7.2.2.277 polygammal()

```
long double __gnu_cxx::polygammal (
     unsigned int __m,
     long double __x ) [inline]
```

Return the polygamma function of long double argument x.

See also

polygamma for details.

Definition at line 3732 of file specfun.h.

7.2.2.278 polylog() [1/2]

```
template<typename _Tp , typename _Wp >
    __gnu_cxx::fp_promote_t<_Tp, _Wp> __gnu_cxx::polylog (
    __Tp __s,
    __Wp __w ) [inline]
```

Return the polylogarithm function of real order ${\tt s}$ and real argument ${\tt w}.$

The polylogarithm function is defined by

$$Li_s(w) = \sum_{k=1}^{\infty} \frac{w^k}{k^s}$$

Parameters

_~	The order.
_s	
_~	Argument.
_ <i>w</i>	

Definition at line 5245 of file specfun.h.

7.2.2.279 polylog() [2/2]

```
template<typename _Tp , typename _Wp >
std::complex<__gnu_cxx::fp_promote_t<_Tp, _Wp> > __gnu_cxx::polylog (
    _Tp __s,
    std::complex< _Tp > __w ) [inline]
```

Return the complex polylogarithm function of real order ${\tt s}$ and complex argument ${\tt w}.$

The polylogarithm function is defined by

$$Li_s(w) = \sum_{k=1}^{\infty} \frac{w^k}{k^s}$$

Parameters

_~	The order.
_s	
_~	Argument.
_ <i>w</i>	

Definition at line 5285 of file specfun.h.

```
7.2.2.280 polylogf() [1/2]
```

Return the real polylogarithm function of real order ${\tt s}$ and real argument ${\tt w}.$

See also

polylog for details.

Definition at line 5218 of file specfun.h.

```
7.2.2.281 polylogf() [2/2]
```

Return the complex polylogarithm function of real order $\mathtt s$ and complex argument $\mathtt w.$

See also

polylog for details.

Definition at line 5258 of file specfun.h.

7.2.2.282 polylogl() [1/2]

Return the complex polylogarithm function of real order s and argument w.

See also

polylog for details.

Definition at line 5228 of file specfun.h.

```
7.2.2.283 polylogl() [2/2]
```

Return the complex polylogarithm function of real order s and complex argument w.

See also

polylog for details.

Definition at line 5268 of file specfun.h.

7.2.2.284 radpoly()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::radpoly (
          unsigned int __n,
          unsigned int __m,
          _Tp __rho ) [inline]
```

Return the radial polynomial $R_n^m(\rho)$ for non-negative degree n, order m <= n, and real radial argument ρ .

The radial polynomials are defined by

$$R_n^m(\rho) = \sum_{k=0}^{\frac{n-m}{2}} \frac{(-1)^k (n-k)!}{k!(\frac{n+m}{2}-k)!(\frac{n-m}{2}-k)!} \rho^{n-2k}$$

for n-m even and identically 0 for n-m odd. The radial polynomials can be related to the Jacobi polynomials:

$$R_n^m(\rho) = (-1)^{(n-m)/2} \rho^m P_{(n-m)/2}^{(m,0)}$$

See also

jacobi for details on the Jacobi polynomials (see jacobi).

Template Parameters

_Тр	The real type of the radial coordinate
-----	--

Parameters

n	The non-negative degree.
m	The non-negative azimuthal order
rho	The radial argument

Definition at line 2499 of file specfun.h.

7.2.2.285 radpolyf()

```
float __gnu_cxx::radpolyf (
          unsigned int __n,
          unsigned int __m,
          float __rho ) [inline]
```

Return the radial polynomial $R_n^m(\rho)$ for non-negative degree n, order m <= n, and float radial argument ρ .

See also

radpoly for details.

Definition at line 2460 of file specfun.h.

References std::__detail::__radial_jacobi().

7.2.2.286 radpolyl()

```
long double __gnu_cxx::radpolyl (
         unsigned int __n,
         unsigned int __m,
         long double __rho ) [inline]
```

Return the radial polynomial $R_n^m(\rho)$ for non-negative degree n, order m <= n, and long double radial argument ρ .

See also

radpoly for details.

Definition at line 2471 of file specfun.h.

References std::__detail::__radial_jacobi().

7.2.2.287 rising_factorial()

Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)$$

Many notations exist for this function: $(a)_{\nu}$, called the Pochhammer function (esp. in the literature of special functions), and

 $\begin{bmatrix} a \\ \nu \end{bmatrix}$

, and others.

Definition at line 4138 of file specfun.h.

7.2.2.288 rising_factorialf()

Return the rising factorial $a^{\overline{\nu}}$ for float arguments.

See also

rising_factorial for details.

Definition at line 4109 of file specfun.h.

7.2.2.289 rising_factoriall()

Return the rising factorial $a^{\overline{\nu}}$ for long double arguments.

See also

rising_factorial for details.

Definition at line 4119 of file specfun.h.

7.2.2.290 sin_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sin_pi (
    _Tp __x ) [inline]
```

Return the reperiodized sine function $\sin_{\pi}(x)$ for real argument x.

The reperiodized sine function is defined by:

$$\sin_{\pi}(x) = \sin(\pi x)$$

Template Parameters

```
_Tp The floating-point type of the argument __x.
```

Parameters

Definition at line 6345 of file specfun.h.

7.2.2.291 sin_pif()

Return the reperiodized sine function $\sin_\pi(x)$ for float argument x.

See also

sin_pi for more details.

Definition at line 6318 of file specfun.h.

7.2.2.292 sin_pil()

Return the reperiodized sine function $\sin_{\pi}(x)$ for long double argument x.

See also

sin_pi for more details.

Definition at line 6328 of file specfun.h.

7.2.2.293 sinc()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinc (
    _Tp __x ) [inline]
```

Return the sinus cardinal function $sinc_{\pi}(x)$ for real argument $\underline{\hspace{1cm}}$ x. The sinus cardinal function is defined by:

$$sinc(x) = \frac{sin(x)}{x}$$

Template Parameters

Tp The real type of the argumen	t
---------------------------------	---

Parameters

_~	The argument
_x	

Definition at line 1697 of file specfun.h.

7.2.2.294 sinc_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinc_pi (
    __Tp ___x ) [inline]
```

Return the reperiodized sinus cardinal function sinc(x) for real argument $\underline{}$ x. The normalized sinus cardinal function is defined by:

$$sinc_{\pi}(x) = \frac{sin(\pi x)}{\pi x}$$

Template Parameters

_Тр	The real type of the argument

Parameters

_ 	The argument
_X	

Definition at line 1738 of file specfun.h.

```
7.2.2.295 sinc_pif()
```

Return the reperiodized sinus cardinal function sinc(x) for float argument $\underline{\hspace{1cm}}$ x.

See also

sinc for details.

Definition at line 1712 of file specfun.h.

```
7.2.2.296 sinc_pil()
```

Return the reperiodized sinus cardinal function sinc(x) for long double argument $\underline{\hspace{1cm}}$ x.

See also

sinc for details.

Definition at line 1722 of file specfun.h.

7.2.2.297 sincf()

Return the sinus cardinal function $sinc_{\pi}(x)$ for float argument ___x.

See also

sinc_pi for details.

Definition at line 1671 of file specfun.h.

7.2.2.298 sincl()

Return the sinus cardinal function $sinc_{\pi}(x)$ for long double argument ___x.

See also

sinc_pi for details.

Definition at line 1681 of file specfun.h.

```
7.2.2.299 sincos() [1/2]
```

Return both the sine and the cosine of a double argument.

See also

sincos for details.

Definition at line 6583 of file specfun.h.

```
7.2.2.300 sincos() [2/2]
```

```
template<typename _Tp >
    __gnu_cxx::__sincos_t<__gnu_cxx::fp_promote_t<_Tp> > __gnu_cxx::sincos (
    __Tp __x ) [inline]
```

Return both the sine and the cosine of a reperiodized argument.

$$sincos(x) = sin(x), cos(x)$$

Definition at line 6594 of file specfun.h.

7.2.2.301 sincos_pi()

```
template<typename _Tp >
    __gnu_cxx::__sincos_t<__gnu_cxx::fp_promote_t<_Tp> > __gnu_cxx::sincos_pi (
    __Tp __x ) [inline]
```

Return both the sine and the cosine of a reperiodized real argument.

$$sincos_{\pi}(x) = sin(\pi x), cos(\pi x)$$

Definition at line 6628 of file specfun.h.

```
7.2.2.302 sincos_pif()
```

Return both the sine and the cosine of a reperiodized float argument.

See also

sincos_pi for details.

Definition at line 6606 of file specfun.h.

```
7.2.2.303 sincos_pil()
```

Return both the sine and the cosine of a reperiodized long double argument.

See also

sincos_pi for details.

Definition at line 6616 of file specfun.h.

7.2.2.304 sincosf()

Return both the sine and the cosine of a float argument.

Definition at line 6565 of file specfun.h.

7.2.2.305 sincosl()

Return both the sine and the cosine of a long double argument.

See also

sincos for details.

Definition at line 6574 of file specfun.h.

7.2.2.306 sinh_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinh_pi (
    _Tp __x ) [inline]
```

Return the reperiodized hyperbolic sine function $\sinh_{\pi}(x)$ for real argument x.

The reperiodized hyperbolic sine function is defined by:

$$\sinh_{\pi}(x) = \sinh(\pi x)$$

Template Parameters

_Tp | The floating-point type of the argument __x.

Parameters

_~	The argument
_X	

Definition at line 6387 of file specfun.h.

7.2.2.307 sinh_pif()

Return the reperiodized hyperbolic sine function $\sinh_{\pi}(x)$ for float argument x.

See also

sinh_pi for more details.

Definition at line 6360 of file specfun.h.

7.2.2.308 sinh_pil()

```
long double __gnu_cxx::sinh_pil (
          long double __x ) [inline]
```

Return the reperiodized hyperbolic sine function $\sinh_{\pi}(x)$ for long double argument x.

See also

sinh_pi for more details.

Definition at line 6370 of file specfun.h.

7.2.2.309 sinhc()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinhc (
    _Tp __x ) [inline]
```

Return the normalized hyperbolic sinus cardinal function sinhc(x) for real argument $__x$. The normalized hyperbolic sinus cardinal function is defined by:

$$sinhc(x) = \frac{\sinh(\pi x)}{\pi x}$$

Template Parameters

Тр	The real type of the argument
_ /-	

Parameters

_~	The argument	
_X		

Definition at line 2581 of file specfun.h.

7.2.2.310 sinhc_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinhc_pi (
    _Tp __x ) [inline]
```

Return the hyperbolic sinus cardinal function $sinhc_{\pi}(x)$ for real argument ___x. The sinus cardinal function is defined by:

$$sinhc_{\pi}(x) = \frac{\sinh(x)}{x}$$

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

Definition at line 2540 of file specfun.h.

7.2.2.311 sinhc_pif()

Return the hyperbolic sinus cardinal function $sinhc_{\pi}(x)$ for float argument ___x.

```
See also
```

```
sinhc_pi for details.
```

Definition at line 2514 of file specfun.h.

7.2.2.312 sinhc_pil()

Return the hyperbolic sinus cardinal function $sinhc_{\pi}(x)$ for long double argument ___x.

See also

```
sinhc_pi for details.
```

Definition at line 2524 of file specfun.h.

7.2.2.313 sinhcf()

Return the normalized hyperbolic sinus cardinal function sinhc(x) for float argument $\underline{\hspace{1cm}}$ x.

See also

sinhc for details.

Definition at line 2555 of file specfun.h.

7.2.2.314 sinhcl()

```
long double __gnu_cxx::sinhcl (
          long double __x ) [inline]
```

Return the normalized hyperbolic sinus cardinal function sinhc(x) for long double argument $\underline{\hspace{1cm}} x$.

See also

sinhc for details.

Definition at line 2565 of file specfun.h.

7.2.2.315 sinhint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinhint (
    _Tp __x ) [inline]
```

Return the hyperbolic sine integral Shi(x) of real argument x.

The hyperbolic sine integral is defined by

$$Shi(x) = \int_0^x \frac{\sinh(t)}{t} dt$$

Template Parameters

Parameters

Definition at line 1897 of file specfun.h.

7.2.2.316 sinhintf()

Return the hyperbolic sine integral of float argument x.

See also

sinhint for details.

Definition at line 1870 of file specfun.h.

7.2.2.317 sinhintl()

Return the hyperbolic sine integral Shi(x) of long double argument x.

See also

sinhint for details.

Definition at line 1880 of file specfun.h.

7.2.2.318 sinint()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sinint (
    _Tp __x ) [inline]
```

Return the sine integral Si(x) of real argument x.

The sine integral is defined by

$$Si(x) = \int_0^x \frac{\sin(t)}{t} dt$$

Parameters

_~	The real upper integration limit
_X	

Definition at line 1816 of file specfun.h.

7.2.2.319 sinintf()

Return the sine integral Si(x) of float argument x.

See also

sinint for details.

Definition at line 1791 of file specfun.h.

7.2.2.320 sinintl()

```
long double __gnu_cxx::sinintl (
          long double __x ) [inline]
```

Return the sine integral Si(x) of long double argument x.

See also

sinint for details.

Definition at line 1801 of file specfun.h.

7.2.2.321 sph_bessel_i()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::sph_bessel_i (
          unsigned int __n,
           _Tp __x ) [inline]
```

Return the regular modified spherical Bessel function $i_n(x)$ of nonnegative order n and real argument x >= 0.

The spherical Bessel function is defined by:

$$i_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} I_{n+1/2}(x)$$

Template Parameters

_Tp The floating-point type of the argume	entx.
---	-------

Parameters

_~	The integral order $n >= 0$
_n	
_~	The real argument $x >= 0$
_x	

Exceptions

```
std::domain\_error \mid if \__x < 0 .
```

Definition at line 2817 of file specfun.h.

7.2.2.322 sph_bessel_if()

Return the regular modified spherical Bessel function $i_n(x)$ of nonnegative order n and float argument x>=0.

See also

sph_bessel_i for details.

Definition at line 2788 of file specfun.h.

7.2.2.323 sph_bessel_il()

```
long double __gnu_cxx::sph_bessel_il (
          unsigned int __n,
          long double __x ) [inline]
```

Return the regular modified spherical Bessel function $i_n(x)$ of nonnegative order n and long double argument x>=0.

See also

sph_bessel_i for details.

Definition at line 2798 of file specfun.h.

7.2.2.324 sph_bessel_k()

Return the irregular modified spherical Bessel function $k_n(x)$ of nonnegative order n and real argument x>=0.

The spherical Bessel function is defined by:

$$k_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} K_{n+1/2}(x)$$

Template Parameters

Parameters

_~	The integral order $n >= 0$
_n	
_←	The real argument $x >= 0$
_x	

Exceptions

std::domain_error	ifx < 0 .
-------------------	-----------

Definition at line 2861 of file specfun.h.

7.2.2.325 sph_bessel_kf()

Return the irregular modified spherical Bessel function $k_n(x)$ of nonnegative order n and float argument x >= 0.

See also

sph bessel k for more details.

Definition at line 2832 of file specfun.h.

7.2.2.326 sph_bessel_kl()

```
long double __gnu_cxx::sph_bessel_kl (
          unsigned int __n,
          long double __x ) [inline]
```

Return the irregular modified spherical Bessel function $k_n(x)$ of nonnegative order n and long double argument x >= 0.

See also

sph_bessel_k for more details.

Definition at line 2842 of file specfun.h.

7.2.2.327 sph_hankel_1() [1/2]

```
template<typename _Tp >
std::complex<__gnu_cxx::fp_promote_t<_Tp> > __gnu_cxx::sph_hankel_1 (
    unsigned int __n,
    _Tp __z ) [inline]
```

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$ of nonnegative order n and real argument x >= 0.

The spherical Hankel function of the first kind is defined by:

$$h_n^{(1)}(x) = \left(\frac{\pi}{2x}\right)^{1/2} H_{n+1/2}^{(1)}(x)$$

or in terms of the cylindrical Bessel and Neumann functions by:

$$h_n^{(1)}(x) = \left(\frac{\pi}{2x}\right)^{1/2} \left[J_{n+1/2}(x) + iN_{n+1/2}(x)\right]$$

Template Parameters

_Tp The real type of the argumen

Parameters

_~	The non-negative order
_n	
_~	The real argument
_Z	

Definition at line 2725 of file specfun.h.

```
7.2.2.328 sph_hankel_1() [2/2]
```

Return the complex spherical Hankel function of the first kind $h_n^{(1)}(x)$ of non-negative integral n and complex argument x.

The spherical Hankel function of the first kind is defined by

$$h_n^{(1)}(x) = \left(\frac{\pi}{2x}\right)^{1/2} H_{n+1/2}^{(1)}(x) = j_n(x) + i n_n(x)$$

where $j_n(x)@candn_n(x)$ are the spherical Bessel and Neumann functions respectively.

Parameters

_~	The integral order >= 0
_n	
_~	The complex argument
_X	

Definition at line 5102 of file specfun.h.

```
7.2.2.329 sph_hankel_1f() [1/2]
```

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$ of nonnegative order n and float argument x >= 0.

See also

```
sph_hankel_1 for details.
```

Definition at line 2692 of file specfun.h.

Return the complex spherical Hankel function of the first kind $h_n^{(1)}(x)$ of non-negative integral n and std \leftarrow ::complex<float> argument x.

See also

```
sph_hankel_1 for more details.
```

Definition at line 5070 of file specfun.h.

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$ of nonnegative order n and long double argument x>=0.

See also

```
sph_hankel_1 for details.
```

Definition at line 2702 of file specfun.h.

7.2.2.332 sph_hankel_1l() [2/2]

Return the complex spherical Hankel function of the first kind $h_n^{(1)}(x)$ of non-negative integral n and std \leftarrow ::complex<long double> argument x.

See also

sph hankel 1 for more details.

Definition at line 5081 of file specfun.h.

7.2.2.333 sph_hankel_2() [1/2]

```
template<typename _Tp >
std::complex<__gnu_cxx::fp_promote_t<_Tp> > __gnu_cxx::sph_hankel_2 (
    unsigned int __n,
    _Tp __z ) [inline]
```

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$ of nonnegative order n and real argument x >= 0.

The spherical Hankel function of the second kind is defined by:

$$h_n^{(2)}(x) = \left(\frac{\pi}{2x}\right)^{1/2} H_{n+1/2}^{(2)}(x)$$

or in terms of the cylindrical Bessel and Neumann functions by:

$$h_n^{(2)}(x) = \left(\frac{\pi}{2x}\right)^{1/2} \left[J_{n+1/2}(x) - iN_{n+1/2}(x)\right]$$

Template Parameters

T	The real type of the argument
ID	I he real type of the argument
/	, ,,

Parameters

_~	The non-negative order
_n	
_~	The real argument
_Z	

Definition at line 2773 of file specfun.h.

7.2.2.334 sph_hankel_2() [2/2]

```
template<typename _Tp >
std::complex<__gnu_cxx::fp_promote_t<_Tp> > __gnu_cxx::sph_hankel_2 (
    unsigned int __n,
    std::complex< _Tp > __x ) [inline]
```

Return the complex spherical Hankel function of the second kind $h_n^{(2)}(x)$ of nonnegative order n and complex argument x.

The spherical Hankel function of the second kind is defined by

$$h_n^{(2)}(x) = \left(\frac{\pi}{2x}\right)^{1/2} H_{n+1/2}^{(2)}(x) = j_n(x) - in_n(x)$$

where $j_n(x)@candn_n(x)$ are the spherical Bessel and Neumann functions respectively.

Parameters

_~	The integral order >= 0
_n	
_~	The complex argument
_x	

Definition at line 5150 of file specfun.h.

```
7.2.2.335 sph_hankel_2f() [1/2]
```

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$ of nonnegative order n and float argument x>=0.

See also

sph hankel 2 for details.

Definition at line 2740 of file specfun.h.

Return the complex spherical Hankel function of the second kind $h_n^{(2)}(x)$ of non-negative integral n and std \leftarrow ::complex<float> argument x.

See also

```
sph_hankel_2 for more details.
```

Definition at line 5118 of file specfun.h.

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$ of nonnegative order n and long double argument x >= 0.

See also

```
sph hankel 2 for details.
```

Definition at line 2750 of file specfun.h.

Return the complex spherical Hankel function of the second kind $h_n^{(2)}(x)$ of non-negative integral n and std \leftarrow ::complex<long double> argument x.

See also

```
sph_hankel_2 for more details.
```

Definition at line 5129 of file specfun.h.

7.2.2.339 sph_harmonic()

```
template<typename _Ttheta , typename _Tphi >
std::complex<__gnu_cxx::fp_promote_t<_Ttheta, _Tphi> > __gnu_cxx::sph_harmonic (
    unsigned int __l,
    int __m,
    _Ttheta __theta,
    _Tphi __phi ) [inline]
```

Return the complex spherical harmonic function of degree 1, order m, and real zenith angle θ , and azimuth angle ϕ .

The spherical harmonic function is defined by:

$$Y_l^m(\theta,\phi) = (-1)^m \frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} P_l^{|m|}(\cos\theta) \exp^{im\phi}$$

Note

$$Y_l^m(\theta, \phi) = 0@cif|m| > l.$$

Parameters

/	The order
m	The degree
theta	The zenith angle in radians
phi	The azimuth angle in radians

Definition at line 5203 of file specfun.h.

7.2.2.340 sph_harmonicf()

```
std::complex<float> __gnu_cxx::sph_harmonicf (
    unsigned int __l,
    int __m,
    float __theta,
    float __phi ) [inline]
```

Return the complex spherical harmonic function of degree 1, order m, and float zenith angle θ , and azimuth angle ϕ .

See also

sph_harmonic for details.

Definition at line 5166 of file specfun.h.

7.2.2.341 sph_harmonicl()

```
std::complex<long double> __gnu_cxx::sph_harmonicl (
    unsigned int __l,
    int __m,
    long double __theta,
    long double __phi ) [inline]
```

Return the complex spherical harmonic function of degree 1, order m, and long double zenith angle θ , and azimuth angle ϕ .

See also

sph_harmonic for details.

Definition at line 5178 of file specfun.h.

```
7.2.2.342 stirling_1() [1/2]
```

Return the Stirling number of the first kind.

The Stirling numbers of the first kind are the coefficients of the Pocchammer polynomials or the rising factorials:

$$(x)_n = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

The recursion is

$$\begin{bmatrix} n+1 \\ m \end{bmatrix} = \begin{bmatrix} n \\ m-1 \end{bmatrix} - n \begin{bmatrix} n \\ m \end{bmatrix}$$

with starting values

$$\begin{bmatrix} 0 \\ 0 \rightarrow m \end{bmatrix} = 1, 0, 0, ..., 0$$

and

$$\begin{bmatrix} 0 \to n \\ 0 \end{bmatrix} = 1, 0, 0, ..., 0$$

The Stirling number of the first kind is denoted by other symbols in the literature, usually $S_n^{(m)}$.

Definition at line 7155 of file specfun.h.

7.2.2.343 stirling_1() [2/2]

Return a vector of Stirling numbers of the first kind.

Definition at line 7163 of file specfun.h.

7.2.2.344 stirling_2() [1/2]

Return the Stirling number of the second kind by series expansion or by recursion.

The series is:

$$\sigma_n^{(m)} = \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^m \frac{(-1)^{m-k} k^n}{(m-k)! k!}$$

The Stirling number of the second kind is denoted by other symbols in the literature: $\sigma_n^{(m)}$, $S_n^{(m)}$ and others. Definition at line 7182 of file specfun.h.

7.2.2.345 stirling_2() [2/2]

Return a vector of Stirling numbers of the second kind.

Definition at line 7190 of file specfun.h.

7.2.2.346 student t p()

```
template<typename _Tt , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::student_t_p (
    __Tt ___t,
    unsigned int ___nu )
```

Return the Students T probability function.

The students T propability function is related to the incomplete beta function:

$$A(t|\nu) = 1 - I_{\frac{\nu}{\nu + t^2}}(\frac{\nu}{2}, \frac{1}{2})$$

(see ibeta).

Parameters

t	
nu	

Definition at line 6836 of file specfun.h.

7.2.2.347 student_t_pdf()

```
template<typename _Tt , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::student_t_pdf (
    __Tt ___t,
    unsigned int ___nu )
```

Return the complement of the Students T probability function.

The complement of the students T propability function is:

$$A_c(t|\nu) = I_{\frac{\nu}{\nu + t^2}}(\frac{\nu}{2}, \frac{1}{2}) = 1 - A(t|\nu)$$

Parameters

Definition at line 6816 of file specfun.h.

7.2.2.348 tan_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::tan_pi (
    _Tp __x ) [inline]
```

Return the reperiodized tangent function $tan_{\pi}(x)$ for real argument x.

The reperiodized tangent function is defined by:

$$\tan_{\pi}(x) = \tan(\pi x)$$

Template Parameters

_Тр	The floating-point type of the argument _	x.
-----	---	----

Parameters

```
_← The argument
```

Definition at line 6513 of file specfun.h.

7.2.2.349 tan_pif()

Return the reperiodized tangent function $\tan_{\pi}(x)$ for float argument x.

See also

tan_pi for more details.

Definition at line 6486 of file specfun.h.

7.2.2.350 tan_pil()

Return the reperiodized tangent function $tan_{\pi}(x)$ for long double argument x.

See also

tan_pi for more details.

Definition at line 6496 of file specfun.h.

7.2.2.351 tanh_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> __gnu_cxx::tanh_pi (
    __Tp __x ) [inline]
```

Return the reperiodized hyperbolic tangent function $tanh_{\pi}(x)$ for real argument x.

The reperiodized hyperbolic tangent function is defined by:

$$\tanh_{\pi}(x) = \tanh(\pi x)$$

Template Parameters

_Tp The floating-point type of the argument	x.
---	----

Parameters

1	The argument
_X	

Definition at line 6555 of file specfun.h.

7.2.2.352 tanh_pif()

Return the reperiodized hyperbolic tangent function $\tanh_{\pi}(x)$ for float argument x.

See also

tanh_pi for more details.

Definition at line 6528 of file specfun.h.

7.2.2.353 tanh_pil()

Return the reperiodized hyperbolic tangent function $\tanh_\pi(x)$ for long double argument x.

See also

tanh_pi for more details.

Definition at line 6538 of file specfun.h.

7.2.2.354 tgamma() [1/3]

```
template<typename _Ta >
    __gnu_cxx::fp_promote_t<_Ta> __gnu_cxx::tgamma (
    __Ta __a ) [inline]
```

Return the gamma function for real argument.

Definition at line 3083 of file specfun.h.

Referenced by std::__detail::__tricomi_u_naive().

7.2.2.355 tgamma() [2/3]

Return the gamma function for complex argument.

Definition at line 3115 of file specfun.h.

7.2.2.356 tgamma() [3/3]

```
template<typename _Ta , typename _Tp >
    __gnu_cxx::fp_promote_t<_Ta, _Tp> __gnu_cxx::tgamma (
    __Ta ___a,
    __Tp __x ) [inline]
```

Return the upper incomplete gamma function $\Gamma(a,x)$. The (upper) incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{x}^{\infty} t^{a-1}e^{-t}dt$$

Definition at line 3152 of file specfun.h.

7.2.2.357 tgamma_lower()

```
template<typename _Ta , typename _Tp >
    __gnu_cxx::fp_promote_t<_Ta, _Tp> __gnu_cxx::tgamma_lower (
    __Ta ___a,
    __Tp __x ) [inline]
```

Return the lower incomplete gamma function $\gamma(a,x)$. The lower incomplete gamma function is defined by

$$\gamma(a,x) = \int_0^x t^{a-1}e^{-t}dt$$

Definition at line 3189 of file specfun.h.

7.2.2.358 tgamma_lowerf()

Return the lower incomplete gamma function $\gamma(a,x)$ for float argument.

See also

tgamma lower for details.

Definition at line 3167 of file specfun.h.

7.2.2.359 tgamma_lowerl()

Return the lower incomplete gamma function $\gamma(a,x)$ for long double argument.

See also

tgamma_lower for details.

Definition at line 3177 of file specfun.h.

Return the gamma function for float argument.

See also

Igamma for details.

Definition at line 3065 of file specfun.h.

Return the gamma function for std::complex<float> argument.

See also

Igamma for details.

Definition at line 3097 of file specfun.h.

Return the upper incomplete gamma function $\Gamma(a,x)$ for float argument.

See also

tgamma for details.

Definition at line 3130 of file specfun.h.

```
7.2.2.363 tgammal() [1/3]
```

Return the gamma function for long double argument.

See also

Igamma for details.

Definition at line 3075 of file specfun.h.

```
7.2.2.364 tgammal() [2/3]
```

Return the gamma function for std::complex<long double> argument.

See also

Igamma for details.

Definition at line 3107 of file specfun.h.

7.2.2.365 tgammal() [3/3]

Return the upper incomplete gamma function $\Gamma(a,x)$ for long double argument.

See also

tgamma for details.

Definition at line 3140 of file specfun.h.

7.2.2.366 theta_1()

```
template<typename _Tpnu , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpnu, _Tp> __gnu_cxx::theta_1 (
    __Tpnu __nu,
    __Tp __x ) [inline]
```

Return the exponential theta-1 function $\theta_1(\nu, x)$ of period ν and argument x.

The exponential theta-1 function is defined by

$$\theta_1(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu + j - 1/2)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
x	The argument

Definition at line 5641 of file specfun.h.

7.2.2.367 theta_1f()

Return the exponential theta-1 function $\theta_1(\nu, x)$ of period ν and argument x.

See also

```
theta_1 for details.
```

Definition at line 5613 of file specfun.h.

7.2.2.368 theta_1I()

Return the exponential theta-1 function $\theta_1(\nu, x)$ of period ν and argument x.

See also

```
theta_1 for details.
```

Definition at line 5623 of file specfun.h.

7.2.2.369 theta_2()

```
template<typename _Tpnu , typename _Tp >
   __gnu_cxx::fp_promote_t<_Tpnu, _Tp> __gnu_cxx::theta_2 (
    _Tpnu __nu,
    _Tp __x ) [inline]
```

Return the exponential theta-2 function $\theta_2(\nu, x)$ of period ν and argument x.

The exponential theta-2 function is defined by

$$\theta_2(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} (-1)^j \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
x	The argument

Definition at line 5684 of file specfun.h.

7.2.2.370 theta_2f()

Return the exponential theta-2 function $\theta_2(\nu, x)$ of period ν and argument x.

See also

theta_2 for details.

Definition at line 5656 of file specfun.h.

7.2.2.371 theta_2I()

```
long double __gnu_cxx::theta_21 (
          long double __nu,
          long double __x ) [inline]
```

Return the exponential theta-2 function $\theta_2(\nu,x)$ of period ν and argument x.

See also

theta_2 for details.

Definition at line 5666 of file specfun.h.

7.2.2.372 theta_3()

```
template<typename _Tpnu , typename _Tp >
   __gnu_cxx::fp_promote_t<_Tpnu, _Tp> __gnu_cxx::theta_3 (
    _Tpnu __nu,
    _Tp __x ) [inline]
```

Return the exponential theta-3 function $\theta_3(\nu, x)$ of period ν and argument x.

The exponential theta-3 function is defined by

$$\theta_3(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(\nu+j)^2}{x}\right)$$

Parameters

nu	The periodic (period = 1) argument
x	The argument

Definition at line 5727 of file specfun.h.

7.2.2.373 theta_3f()

Return the exponential theta-3 function $\theta_3(\nu, x)$ of period ν and argument x.

See also

theta_3 for details.

Definition at line 5699 of file specfun.h.

7.2.2.374 theta_3I()

```
long double __gnu_cxx::theta_31 (
          long double __nu,
          long double __x ) [inline]
```

Return the exponential theta-3 function $\theta_3(\nu,x)$ of period ν and argument x.

See also

theta_3 for details.

Definition at line 5709 of file specfun.h.

7.2.2.375 theta_4()

```
template<typename _Tpnu , typename _Tp >
   __gnu_cxx::fp_promote_t<_Tpnu, _Tp> __gnu_cxx::theta_4 (
    _Tpnu __nu,
    _Tp __x ) [inline]
```

Return the exponential theta-4 function $\theta_4(\nu, x)$ of period ν and argument x.

The exponential theta-4 function is defined by

$$\theta_4(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{j=-\infty}^{+\infty} \exp\left(\frac{-(\nu + j + 1/2)^2}{x}\right)$$

Parameters

nu	The periodic (period = 1) argument
x	The argument

Definition at line 5770 of file specfun.h.

```
7.2.2.376 theta_4f()
```

Return the exponential theta-4 function $\theta_4(\nu,x)$ of period ν and argument x.

See also

theta_4 for details.

Definition at line 5742 of file specfun.h.

7.2.2.377 theta_4I()

Return the exponential theta-4 function $\theta_4(\nu,x)$ of period ν and argument x.

See also

theta_4 for details.

Definition at line 5752 of file specfun.h.

7.2.2.378 theta_c()

Return the Neville theta-c function $\theta_c(k,x)$ of modulus k and argument x.

The Neville theta-c function is defined by

$$\theta_c(k, x) = \sqrt{\frac{\pi}{2kK(k)}} \theta_1 \left(q(k), \frac{\pi x}{2K(k)} \right)$$

where q(k) is the elliptic nome, K(k) is the complete Legendre elliptic integral of the first kind, and $\theta_1(\nu, x)$ is the exponential theta-1 function.

See also

ellnome, std::comp_ellint_1, and theta_1 for details.

Parameters

_← _k	The modulus $-1 <= k <= +1$
_ ` _X	The argument

Definition at line 5906 of file specfun.h.

7.2.2.379 theta_cf()

Return the Neville theta-c function $\theta_c(k,x)$ of modulus k and argument x.

See also

theta_c for details.

Definition at line 5874 of file specfun.h.

7.2.2.380 theta_cl()

```
long double __gnu_cxx::theta_cl (
          long double __k,
          long double __x ) [inline]
```

Return the Neville theta-c function $\theta_c(k,x)$ of long double modulus k and argument x.

See also

theta_c for details.

Definition at line 5884 of file specfun.h.

7.2.2.381 theta_d()

```
template<typename _Tpk , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpk, _Tp> __gnu_cxx::theta_d (
    __Tpk ___k,
    __Tp ___x ) [inline]
```

Return the Neville theta-d function $\theta_d(k,x)$ of modulus k and argument x.

The Neville theta-d function is defined by

$$\theta_d(k,x) = \sqrt{\frac{\pi}{2K(k)}} \theta_3\left(q(k), \frac{\pi x}{2K(k)}\right)$$

where q(k) is the elliptic nome, K(k) is the complete Legendre elliptic integral of the first kind, and $\theta_3(\nu,x)$ is the exponential theta-3 function.

See also

ellnome, std::comp_ellint_1, and theta_3 for details.

Parameters

_~	The modulus $-1 <= k <= +1$
_k	
_~	The argument
_X	

Definition at line 5953 of file specfun.h.

7.2.2.382 theta_df()

Return the Neville theta-d function $\theta_d(k,x)$ of modulus k and argument x.

See also

theta d for details.

Definition at line 5921 of file specfun.h.

7.2.2.383 theta_dl()

```
long double __gnu_cxx::theta_dl (
          long double __k,
          long double __x ) [inline]
```

Return the Neville theta-d function $\theta_d(k,x)$ of long double modulus k and argument x.

See also

theta_d for details.

Definition at line 5931 of file specfun.h.

7.2.2.384 theta_n()

```
template<typename _Tpk , typename _Tp >
    __gnu_cxx::fp_promote_t<_Tpk, _Tp> __gnu_cxx::theta_n (
    __Tpk ___k,
    __Tp ___x ) [inline]
```

Return the Neville theta-n function $\theta_n(k,x)$ of modulus k and argument x.

The Neville theta-n function is defined by

$$\theta_n(k,x) = \sqrt{\frac{\pi}{2k'K(k)}} \theta_4\left(q(k), \frac{\pi x}{2K(k)}\right)$$

where q(k) is the elliptic nome, K(k) is the complete Legendre elliptic integral of the first kind, and $\theta_4(\nu,x)$ is the exponential theta-4 function.

See also

ellnome, std::comp_ellint_1, and theta_4 for details.

Parameters

_ ← _k	The modulus $-1 <= k <= +1$
_ ` _X	The argument

Definition at line 6000 of file specfun.h.

7.2.2.385 theta_nf()

Return the Neville theta-n function $\theta_n(k,x)$ of modulus ${\bf k}$ and argument ${\bf x}.$

See also

theta_n for details.

Definition at line 5968 of file specfun.h.

7.2.2.386 theta_nl()

```
long double __gnu_cxx::theta_nl (
          long double __k,
          long double __x ) [inline]
```

Return the Neville theta-n function $\theta_n(k,x)$ of long double modulus k and argument x.

See also

theta n for details.

Definition at line 5978 of file specfun.h.

7.2.2.387 theta_s()

Return the Neville theta-s function $\theta_s(k,x)$ of modulus k and argument x.

The Neville theta-s function is defined by

$$\theta_s(k,x) = \sqrt{\frac{\pi}{2kk'K(k)}}\theta_1\left(q(k), \frac{\pi x}{2K(k)}\right)$$

where q(k) is the elliptic nome, K(k) is the complete Legendre elliptic integral of the first kind, and $\theta_1(\nu, x)$ is the exponential theta-1 function.

See also

ellnome, std::comp_ellint_1, and theta_1 for details.

Parameters

_~	The modulus $-1 <= k <= +1$
_k	
_~	The argument
_x	

Definition at line 5859 of file specfun.h.

7.2.2.388 theta_sf()

Return the Neville theta-s function $\theta_s(k,x)$ of modulus k and argument x.

See also

theta_s for details.

Definition at line 5827 of file specfun.h.

7.2.2.389 theta_sl()

```
long double __gnu_cxx::theta_sl (
          long double __k,
          long double __x ) [inline]
```

Return the Neville theta-s function $\theta_s(k,x)$ of long double modulus k and argument x.

See also

theta_s for details.

Definition at line 5837 of file specfun.h.

7.2.2.390 tricomi_u()

```
template<typename _Tpa , typename _Tpc , typename _Tp >
   __gnu_cxx::fp_promote_t<_Tpa, _Tpc, _Tp> __gnu_cxx::tricomi_u (
   __Tpa __a,
   __Tpc __c,
   __Tp __x ) [inline]
```

Return the Tricomi confluent hypergeometric function U(a,c,x) of real numerator parameter a, denominator parameter c, and argument x.

The Tricomi confluent hypergeometric function is defined by

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_{1}F_{1}(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_{1}F_{1}(a-c+1;2-c;x)$$

where ${}_{1}F_{1}(a;c;x)$ if the confluent hypergeometric function.

See also

conf_hyperg.

Parameters

_←	The numerator parameter
_a	
_~	The denominator parameter
_c	
_←	The argument
_x	

Definition at line 1561 of file specfun.h.

7.2.2.391 tricomi_uf()

Return the Tricomi confluent hypergeometric function U(a,c,x) of float numerator parameter a, denominator parameter c, and argument x.

See also

tricomi_u for details.

Definition at line 1527 of file specfun.h.

7.2.2.392 tricomi_ul()

Return the Tricomi confluent hypergeometric function U(a,c,x) of long double numerator parameter a, denominator parameter c, and argument x.

See also

tricomi u for details.

Definition at line 1538 of file specfun.h.

7.2.2.393 weibull_p()

```
template<typename _Ta , typename _Tb , typename _Tp >
   __gnu_cxx::fp_promote_t<_Ta, _Tb, _Tp> __gnu_cxx::weibull_p (
   __Ta __a,
   __Tb __b,
   __Tp __x ) [inline]
```

Return the Weibull cumulative probability density function.

The formula for the Weibull cumulative probability density function is

$$F(x|\lambda) = 1 - e^{-(x/b)^a}$$
 for $x >= 0$

Definition at line 6796 of file specfun.h.

7.2.2.394 weibull_pdf()

Return the Weibull probability density function.

The formula for the Weibull probability density function is

$$f(x|a,b) = \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} \exp{-\left(\frac{x}{b}\right)^a} \text{ for } x >= 0$$

Definition at line 6780 of file specfun.h.

7.2.2.395 zernike()

```
template<typename _Trho , typename _Tphi >
    __gnu_cxx::fp_promote_t<_Trho, _Tphi> __gnu_cxx::zernike (
          unsigned int __n,
          int __m,
          __Trho __rho,
          __Tphi __phi ) [inline]
```

Return the Zernike polynomial $Z_n^m(\rho,\phi)$ for non-negative degree n, signed order m, and real radial argument ρ and azimuthal angle ϕ .

The even Zernike polynomials are defined by:

$$Z_n^m(\rho,\phi) = R_n^m(\rho)\cos(m\phi)$$

and the odd Zernike polynomials are defined by:

$$Z_n^{-m}(\rho,\phi) = R_n^m(\rho)\sin(m\phi)$$

for non-negative degree m and m <= n and where $R_n^m(\rho)$ is the radial polynomial (see radpoly).

Template Parameters

_7	Trho	The real type of the radial coordinate
_7	Грhі	The real type of the azimuthal angle

Parameters

n	The non-negative degree.
m	The (signed) azimuthal order

Parameters

rho	The radial coordinate
phi	The azimuthal angle

Definition at line 2444 of file specfun.h.

7.2.2.396 zernikef()

```
float __gnu_cxx::zernikef (
         unsigned int __n,
         int __m,
         float __rho,
         float __phi ) [inline]
```

Return the Zernike polynomial $Z_n^m(\rho,\phi)$ for non-negative degree n, signed order m, and real radial argument ρ and azimuthal angle ϕ .

See also

zernike for details.

Definition at line 2405 of file specfun.h.

7.2.2.397 zernikel()

```
long double __gnu_cxx::zernikel (
        unsigned int __n,
        int __m,
        long double __rho,
        long double __phi ) [inline]
```

Return the Zernike polynomial $Z_n^m(\rho,\phi)$ for non-negative degree n, signed order m, and real radial argument ρ and azimuthal angle ϕ .

See also

zernike for details.

Definition at line 2416 of file specfun.h.

7.3 Mathematical Special Functions

Collaboration diagram for Mathematical Special Functions:

Modules

- C++17/IS29124 Mathematical Special Functions
- GNU Extended Mathematical Special Functions

7.3.1 Detailed Description

7.3.2 Mathematical Special Functions

A collection of advanced mathematical special functions, defined by ISO/IEC IS 29124 and then added to ISO C++ 2017.

7.3.2.1 Introduction and History

The first significant library upgrade on the road to C++2011, TR1, included a set of 23 mathematical functions that significantly extended the standard transcendental functions inherited from C and declared in <cmath>.

Although most components from TR1 were eventually adopted for C++11 these math functions were left behind out of concern for implementability. The math functions were published as a separate international standard IS 29124 - Extensions to the C++ Library to Support Mathematical Special Functions.

Follow-up proosals for new special functions have also been published: A proposal to add special mathematical functions according to the ISO/IEC 80000-2:2009 standard, Vincent Reverdy.

A Proposal to add Mathematical Functions for Statistics to the C++ Standard Library, Paul A Bristow.

A proposal to add sincos to the standard library, Paul Dreik.

For C++17 these functions were incorporated into the main standard.

7.3.2.2 Contents

The following functions are implemented in namespace std:

- assoc laguerre Associated Laguerre functions
- · assoc_legendre Associated Legendre functions
- · assoc_legendre_q Associated Legendre functions of the second kind
- · beta Beta functions
- comp_ellint_1 Complete elliptic functions of the first kind
- · comp ellint 2 Complete elliptic functions of the second kind
- comp_ellint_3 Complete elliptic functions of the third kind
- cyl_bessel_i Regular modified cylindrical Bessel functions
- · cyl_bessel_j Cylindrical Bessel functions of the first kind
- · cyl_bessel_k Irregular modified cylindrical Bessel functions
- · cyl_neumann Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind
- · ellint 1 Incomplete elliptic functions of the first kind
- · ellint 2 Incomplete elliptic functions of the second kind
- ellint_3 Incomplete elliptic functions of the third kind
- · expint The exponential integral
- · hermite Hermite polynomials
- · laguerre Laguerre functions
- · legendre Legendre polynomials
- · riemann zeta The Riemann zeta function
- · sph bessel Spherical Bessel functions
- sph_legendre Spherical Legendre functions
- sph neumann Spherical Neumann functions

The hypergeometric functions were stricken from the TR29124 and C++17 versions of this math library because of implementation concerns. However, since they were in the TR1 version and since they are popular we kept them as an extension in namespace __gnu_cxx:

- · conf_hyperg Confluent hypergeometric functions
- · hyperg Hypergeometric functions

In addition a large number of new functions are added as extensions:

· airy ai - Airy functions of the first kind

- · airy_bi Airy functions of the second kind
- · bell Bell numbers and polynomials
- · bernoulli Bernoulli polynomials
- binomial Binomial coefficients
- bose_einstein Bose-Einstein integrals
- chebyshev_t Chebyshev polynomials of the first kind
- · chebyshev_u Chebyshev polynomials of the second kind
- chebyshev_v Chebyshev polynomials of the third kind
- chebyshev_w Chebyshev polynomials of the fourth kind
- · clausen Clausen integrals
- · clausen cl Clausen cosine integrals
- clausen_sl Clausen sine integrals
- comp_ellint_d Incomplete Legendre D elliptic integral
- conf_hyperg_lim Confluent hypergeometric limit functions
- · cos pi Reperiodized cosine function.
- cosh_pi Reperiodized hyperbolic cosine function.
- coshint Hyperbolic cosine integral
- · cosint Cosine integral
- cyl_hankel_1 Cylindrical Hankel functions of the first kind
- cyl_hankel_2 Cylindrical Hankel functions of the second kind
- dawson Dawson integrals
- debye Debye functions
- · digamma Digamma or psi function
- · dilog Dilogarithm functions
- dirichlet_beta Dirichlet beta function
- · dirichlet_eta Dirichlet beta function
- · dirichlet lambda Dirichlet lambda function
- · double_factorial Double factorials
- ellint_d Legendre D elliptic integrals
- ellint_rc Carlson elliptic functions R_C
- · ellint rd Carlson elliptic functions R D
- ellint_rf Carlson elliptic functions R_F
- ellint rg Carlson elliptic functions R G

- ellint_rj Carlson elliptic functions R_J
- · ellnome Elliptic nome
- euler Euler numbers
- euler Euler polynomials
- · eulerian 1 Eulerian numbers of the first kind
- · eulerian_2 Eulerian numbers of the second kind
- · expint Exponential integrals
- · factorial Factorials
- · falling_factorial Falling factorials
- · fermi_dirac Fermi-Dirac integrals
- fresnel_c Fresnel cosine integrals
- fresnel_s Fresnel sine integrals
- gamma_p Regularized lower incomplete gamma functions
- gamma q Regularized upper incomplete gamma functions
- · gamma_reciprocal Reciprocal gamma function
- · gegenbauer Gegenbauer polynomials
- heuman_lambda Heuman lambda functions
- hurwitz_zeta Hurwitz zeta functions
- · ibeta Regularized incomplete beta functions
- jacobi Jacobi polynomials
- jacobi_sn Jacobi sine amplitude functions
- jacobi_cn Jacobi cosine amplitude functions
- · jacobi dn Jacobi delta amplitude functions
- theta 1 Jacobi theta function 1
- theta_2 Jacobi theta function 2
- theta_3 Jacobi theta function 3
- theta_4 Jacobi theta function 4
- · jacobi_zeta Jacobi zeta functions
- · lah Lah numbers
- · Ibinomial Log binomial coefficients
- Idouble_factorial Log double factorials
- legendre_q Legendre functions of the second kind
- · lerch phi The Lerch transcendent

- · Ifactorial Log factorials
- · Ifalling factorial Log falling factorials
- Igamma Log gamma for complex arguments
- · Irising_factorial Log rising factorials
- · mittag leffler Mittag-Leffler functions
- owens t Owens T functions
- · periodic_zeta Periodic zeta functions
- · radpoly Radial polynomials
- · rising_factorial Rising factorials
- sinhc Hyperbolic sinus cardinal function
- sinhc_pi Reperiodized hyperbolic sinus cardinal function
- · sinc Normalized sinus cardinal function
- sincos Sine + cosine function
- sincos pi Reperiodized sine + cosine function
- sin pi Reperiodized sine function.
- sinh_pi Reperiodized hyperbolic sine function.
- sinc pi Sinus cardinal function
- · sinhint Hyperbolic sine integral
- · sinint Sine integral
- · sph bessel i Spherical regular modified Bessel functions
- sph_bessel_k Spherical iregular modified Bessel functions
- sph_hankel_1 Spherical Hankel functions of the first kind
- sph_hankel_2 Spherical Hankel functions of the first kind
- sph harmonic Spherical
- · stirling_1 Stirling numbers of the first kind
- · stirling_2 Stirling numbers of the second kind
- tan_pi Reperiodized tangent function.
- tanh_pi Reperiodized hyperbolic tangent function.
- · tgamma Gamma for complex arguments
- tgamma Upper incomplete gamma functions
- tgamma lower Lower incomplete gamma functions
- theta_1 Exponential theta function 1
- theta 2 Exponential theta function 2

- theta_3 Exponential theta function 3
- theta_4 Exponential theta function 4
- · tricomi_u Tricomi confluent hypergeometric function
- · zernike Zernike polynomials

7.3.2.3 Argument Promotion

The arguments suppled to the non-suffixed functions will be promoted according to the following rules:

- 1. If any argument intended to be floating point is given an integral value That integral value is promoted to double.
- 2. All floating point arguments are promoted up to the largest floating point precision among them.

7.3.2.4 NaN Arguments

If any of the floating point arguments supplied to these functions is invalid or NaN (std::numeric_limits<Tp>::quiet_ \(\to \) NaN), the value NaN is returned.

7.3.2.5 Implementation

We strive to implement the underlying math with type generic algorithms to the greatest extent possible. In practice, the functions are thin wrappers that dispatch to function templates. Type dependence is controlled with std::numeric_limits and functions thereof.

We don't promote float to double or double to long double reflexively. The goal is for float functions to operate more quickly, at the cost of float accuracy and possibly a smaller domain of validity. Similarly, long double should give you more dynamic range and slightly more pecision than double on many systems.

7.3.2.6 Testing

These functions have been tested against equivalent implementations from the Gnu Scientific Library, GSL and Boost and the ratio

$$\frac{|f - f_{test}|}{|f_{test}|}$$

is generally found to be within 10⁻¹⁵ for 64-bit double on linux-x86 64 systems over most of the ranges of validity.

Todo Provide accuracy comparisons on a per-function basis for a small number of targets.

7.3.2.7 General Bibliography

See also

Abramowitz and Stegun: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables Edited by Milton Abramowitz and Irene A. Stegun, National Bureau of Standards Applied Mathematics Series - 55 Issued June 1964, Tenth Printing, December 1972, with corrections Electronic versions of A&S abound including both pdf and navigable html.

for example http://people.math.sfu.ca/~cbm/aands/

The old A&S has been redone as the NIST Digital Library of Mathematical Functions: $http://dlmf.nist. \leftarrow gov/$ This version is far more navigable and includes more recent work.

The PlanetMath website has a wealth of material. In particular $https://planetmath.org/msc. \leftarrow html #33_Special_functions$

An Atlas of Functions: with Equator, the Atlas Function Calculator 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome

Asymptotics and Special Functions by Frank W. J. Olver, Academic Press, 1974

Numerical Recipes in C, The Art of Scientific Computing, by William H. Press, Second Ed., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Cambridge University Press, 1992

The Special Functions and Their Approximations: Volumes 1 and 2, by Yudell L. Luke, Academic Press, 1969

Chapter 8

Namespace Documentation

8.1 __gnu_cxx Namespace Reference

Classes

- struct __airy_t
- struct __assoc_legendre_p_t
- struct __assoc_legendre_q_t
- struct chebyshev t t
- struct __chebyshev_u_t
- struct __chebyshev_v_t
- struct __chebyshev_w_t
- struct __coulomb_t
- struct __cyl_bessel_t
- struct __cyl_hankel_t
- struct __cyl_mod_bessel_t
- struct __fock_airy_t
- struct __fp_is_integer_t
- struct __gamma_inc_t
- struct __gamma_temme_t

A structure for the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

- struct __gappa_pq_t
- struct __gegenbauer_t
- struct __hermite_he_t
- struct __hermite_t
- struct jacobi ellint t
- struct jacobi t

```
struct __laguerre_t
struct __legendre_p_t
struct __legendre_q_t
struct __lgamma_t
struct __quadrature_point_t
struct __sincos_t
struct __sph_bessel_t
struct __sph_hankel_t
struct __sph_mod_bessel_t
struct __string_1_t
A structure for Stirling numbers of the first kind.
struct __stirling_2_t
A structure for Stirling numbers of the first kind.
```

Enumerations

enum gauss_quad_type { Gauss, Gauss_Lobatto, Gauss_Radau_lower, Gauss_Radau_upper }
 Enumeration gor differing types of Gauss quadrature. The gauss_quad_type is used to determine the boundary condition modifications applied to orthogonal polynomials for quadrature rules.

Functions

```
    template<typename</li>
    Tp >

  constexpr bool __fp_is_equal (_Tp __a, _Tp __b, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr __fp_is_integer_t __fp_is_even_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept

    template<typename</li>
    Tp >

  constexpr __fp_is_integer_t __fp_is_half_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr __fp_is_integer_t __fp_is_half_odd_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept

    template<typename</li>
    Tp >

  constexpr __fp_is_integer_t __fp_is_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr __fp_is_integer_t __fp_is_odd_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
template<typename Tp >
  constexpr bool __fp_is_zero (_Tp __a, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr _Tp __fp_max_abs (_Tp __a, _Tp __b) noexcept

    template<typename _Tp , typename _IntTp >

  constexpr _Tp __parity (_IntTp __k) noexcept
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > airy_ai (_Tp __x)
template<typename Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp > > airy_ai (std::complex< _Tp > __x)

    float airy aif (float x)

    long double airy_ail (long double __x)

template<typename _Tp >
  __gnu_cxx::fp_promote_t< _Tp > airy_bi (_Tp __x)
```

```
template<typename _Tp >
  std::complex < \_gnu\_cxx::fp\_promote\_t < \_Tp > > airy\_bi (std::complex < \_Tp > \__x)

    float airy bif (float x)

    long double airy bil (long double x)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > assoc_legendre_q (unsigned int __l, unsigned int __m, _Tp __x)

    float assoc_legendre_qf (unsigned int __l, unsigned int __m, float __x)

    long double assoc_legendre_ql (unsigned int __l, unsigned int __m, long double __x)

template<typename _Tp >
  std::vector< _Tp > bell (unsigned int __n)
template<typename _Tp , typename _Up >
  _Up <mark>bell</mark> (unsigned int __n, _Up __x)
template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > bernoulli (unsigned int __n)
template<typename _Tp >
  _Tp bernoulli (unsigned int __n, _Tp __x)

    float bernoullif (unsigned int n)

    long double bernoullil (unsigned int __n)

template<typename _Tp >
  __gnu_cxx::fp_promote_t< _Tp > binomial (unsigned int __n, unsigned int __k)
      Return the binomial coefficient as a real number. The binomial coefficient is given by:
                                                    \binom{n}{k} = \frac{n!}{(n-k)!k!}
      The binomial coefficients are generated by:
                                                   (1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > binomial_p (_Tp __p, unsigned int __n, unsigned int __k)
      Return the binomial cumulative distribution function.

    template<typename</li>
    Tp >

  __gnu_cxx::fp_promote_t< _Tp > binomial_pdf (_Tp __p, unsigned int __n, unsigned int __k)
      Return the binomial probability mass function.

    float binomialf (unsigned int n, unsigned int k)

    long double binomiall (unsigned int n, unsigned int k)

template<typename _Tps , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tps, _Tp > bose_einstein (_Tps __s, _Tp __x)

    float bose_einsteinf (float __s, float __x)

    long double bose einsteinl (long double s, long double x)

template<typename</li>Tp >
   __gnu_cxx::fp_promote_t< _Tp > chebyshev_t (unsigned int __n, _Tp __x)

    float chebyshev_tf (unsigned int __n, float __x)

    long double chebyshev_tl (unsigned int __n, long double __x)

• template<typename _{\rm Tp}>
    _gnu_cxx::fp_promote_t< _Tp > chebyshev_u (unsigned int __n, _Tp __x)

    float chebyshev uf (unsigned int n, float x)

    long double chebyshev_ul (unsigned int __n, long double __x)

template<typename _Tp >
    gnu_cxx::fp_promote_t< _Tp > chebyshev_v (unsigned int __n, Tp x)

    float chebyshev vf (unsigned int n, float x)
```

```
    long double chebyshev_vl (unsigned int __n, long double __x)

template<typename _Tp >
    gnu cxx::fp promote t< Tp > chebyshev w (unsigned int n, Tp x)

    float chebyshev wf (unsigned int n, float x)

    long double chebyshev wl (unsigned int n, long double x)

template<typename_Tp>
   _gnu_cxx::fp_promote_t< _Tp > clausen (unsigned int __m, _Tp __x)

    template<typename</li>
    Tp >

  std::complex< __gnu_cxx::fp_promote_t< _Tp > > clausen (unsigned int __m, std::complex< _Tp > __z)
template<typename_Tp>
   gnu cxx::fp promote t< Tp > clausen cl (unsigned int m, Tp x)

    float clausen_clf (unsigned int __m, float __x)

• long double clausen_cll (unsigned int __m, long double __x)
template<typename</li>Tp >
    gnu cxx::fp promote t< Tp > clausen sl (unsigned int m, Tp x)

    float clausen_slf (unsigned int __m, float __x)

    long double clausen_sll (unsigned int __m, long double __x)

• float clausenf (unsigned int m, float x)
• std::complex< float > clausenf (unsigned int m, std::complex< float > z)

    long double clausenl (unsigned int m, long double x)

    std::complex < long double > clausenl (unsigned int m, std::complex < long double > z)

• template<typename_Tk>
    _gnu_cxx::fp_promote_t< _Tk > comp_ellint_d (_Tk __k)

    float comp ellint df (float k)

    long double comp_ellint_dl (long double __k)

    float comp ellint rf (float x, float y)

    long double comp_ellint_rf (long double __x, long double __y)

    template<typename _Tx , typename _Ty >

   _gnu_cxx::fp_promote_t< _Tx, _Ty > comp_ellint_rf (_Tx __x, _Ty __y)

    float comp_ellint_rg (float __x, float __y)

• long double comp_ellint_rg (long double __x, long double __y)

    template<typename _Tx , typename _Ty >

   gnu cxx::fp promote t < Tx, Ty > comp ellint rg (Tx x, Ty y)

    template<typename _Tpa , typename _Tpc , typename _Tp >

   __gnu_cxx::fp_promote_t< _Tpa, _Tpc, _Tp > conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x)
• template<typename _Tpc , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpc, _Tp > conf_hyperg_lim (_Tpc __c, _Tp __x)

    float conf hyperg limf (float c, float x)

    long double conf hyperg liml (long double c, long double x)

    float conf_hypergf (float __a, float __c, float __x)

    long double conf hypergl (long double a, long double c, long double x)

template<typename</li>Tp >
    \_gnu\_cxx::fp\_promote\_t < \_Tp > cos\_pi (\_Tp \_\_x)

    float cos pif (float x)

    long double cos pil (long double x)

template<typename</li>Tp >
   __gnu_cxx::fp_promote_t< _Tp > cosh_pi (_Tp __x)

    float cosh pif (float x)

    long double cosh_pil (long double __x)

template<typename _Tp >
  __gnu_cxx::fp_promote_t< _Tp > coshint (_Tp __x)
```

```
 float coshintf (float __x)

• long double coshintl (long double __x)
template<typename _Tp >
       _gnu_cxx::fp_promote_t< _Tp > cosint (_Tp __x)

    float cosintf (float x)

    long double cosintl (long double __x)

• template<typename _Tpnu , typename _Tp >
    std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> cyl_hankel_1 (_Tpnu __nu, _Tp __z)

    template<typename _Tpnu , typename _Tp >

    std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> cyl_hankel_1 (std::complex< _Tpnu > __nu, std↔
    ::complex< _Tp> __x)

    std::complex< float > cyl hankel 1f (float nu, float z)

    std::complex < float > cyl hankel 1f (std::complex < float > nu, std::complex < float > x)

    std::complex < long double > cyl_hankel_1I (long double __nu, long double __z)

    std::complex < long double > cyl hankel 1l (std::complex < long double > nu, std::complex < long double >

      X)
• template<typename _Tpnu , typename _Tp >
    std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> cyl_hankel_2 (_Tpnu __nu, _Tp __z)

    template<typename _Tpnu , typename _Tp >

    std::complex< \underline{\quad} gnu\_cxx::fp\_promote\_t< \underline{\quad} Tpnu, \underline{\quad} Tp>> cyl\_hankel\_2 \ (std::complex< \underline{\quad} Tpnu> \underline{\quad} nu, std \leftarrow logical complex = logical complex =
    ::complex < _Tp > __x)

    std::complex< float > cyl hankel 2f (float nu, float z)

    std::complex < float > cyl hankel 2f (std::complex < float > nu, std::complex < float > x)

    std::complex < long double > cyl_hankel_2l (long double __nu, long double __z)

    std::complex < long double > cyl_hankel_2l (std::complex < long double > __nu, std::complex < long double >

       X)
template<typename</li>Tp >
      _gnu_cxx::fp_promote_t< _Tp > dawson (_Tp __x)

    float dawsonf (float __x)

    long double dawsonl (long double __x)

template<typename</li>Tp >
     __gnu_cxx::fp_promote_t< _Tp > debye (unsigned int __n, _Tp __x)
• float debyef (unsigned int __n, float __x)

    long double debyel (unsigned int __n, long double __x)

template<typename _Tp >
        _gnu_cxx::fp_promote_t< _Tp > digamma (_Tp __x)

    float digammaf (float x)

    long double digammal (long double x)

template<typename _Tp >
       _gnu_cxx::fp_promote_t< _Tp > dilog (_Tp __x)

    float dilogf (float x)

    long double dilogl (long double __x)

template<typename _Tp >
    Tp dirichlet beta (Tp s)

    float dirichlet_betaf (float __s)

    long double dirichlet_betal (long double __s)

template<typename _Tp >
    _Tp dirichlet_eta (_Tp __s)

    float dirichlet etaf (float s)

    long double dirichlet_etal (long double __s)

template<typename _Tp >
    _Tp dirichlet_lambda (_Tp __s)
```

```
    float dirichlet_lambdaf (float __s)

    long double dirichlet lambdal (long double s)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > double_factorial (int __n)
       Return the double factorial n!! of the argument as a real number.
                                                      n!! = n(n-2)...(2), 0!! = 1
       for even n and
                                                    n!! = n(n-2)...(1), (-1)!! = 1
       for odd n.

    float double factorialf (int n)

    long double double factoriall (int n)

• template<typename Tk, typename Tp, typename Ta, typename Tb>
     \underline{\hspace{0.1cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.1cm}} Tk, \underline{\hspace{0.1cm}} Tp, \underline{\hspace{0.1cm}} Ta, \underline{\hspace{0.1cm}} Tb > \underline{\hspace{0.1cm}} ellint\_cel (\underline{\hspace{0.1cm}} Tk \underline{\hspace{0.1cm}} k\_c, \underline{\hspace{0.1cm}} Tp \underline{\hspace{0.1cm}} p, \underline{\hspace{0.1cm}} Ta \underline{\hspace{0.1cm}} a, \underline{\hspace{0.1cm}} Tb \underline{\hspace{0.1cm}} b)

    float ellint_celf (float __k_c, float __p, float __a, float __b)

    long double ellint_cell (long double __k_c, long double __p, long double __a, long double __b)

• template<typename _Tk , typename _Tphi >
     _gnu_cxx::fp_promote_t< _Tk, _Tphi > ellint_d (_Tk __k, _Tphi __phi)

    float ellint df (float k, float phi)

    long double ellint dl (long double k, long double phi)

• template<typename Tp, typename Tk>
     _gnu_cxx::fp_promote_t< _Tp, _Tk > ellint_el1 (_Tp __x, _Tk __k_c)
• float ellint el1f (float x, float k c)
• long double ellint el11 (long double x, long double k c)
template<typename _Tp , typename _Tk , typename _Ta , typename _Tb >
     _gnu_cxx::fp_promote_t< _Tp, _Tk, _Ta, _Tb > ellint_el2 (_Tp __x, _Tk __k_c, _Ta __a, _Tb __b)

    float ellint_el2f (float __x, float __k_c, float __a, float __b)

• long double ellint el2l (long double x, long double k c, long double a, long double b)

    template<typename _Tx , typename _Tk , typename _Tp >

     _gnu_cxx::fp_promote_t< _Tx, _Tk, _Tp > ellint_el3 (_Tx __x, _Tk __k_c, _Tp __p)
• float ellint el3f (float x, float k c, float p)

    long double ellint_el3l (long double __x, long double __k_c, long double __p)

• template<typename _Tp , typename _Up >
     gnu cxx::fp promote t< Tp, Up > ellint rc (Tp x, Up y)

    float ellint rcf (float x, float y)

    long double ellint_rcl (long double __x, long double __y)

template<typename _Tp , typename _Up , typename _Vp >
    _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > ellint_rd (_Tp __x, _Up __y, _Vp __z)
• float ellint_rdf (float __x, float __y, float __z)

    long double ellint_rdl (long double __x, long double __y, long double __z)

template<typename _Tp , typename _Up , typename _Vp >
    _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > ellint_rf (_Tp __x, _Up __y, _Vp __z)

    float ellint_rff (float __x, float __y, float __z)

    long double ellint_rfl (long double __x, long double __y, long double __z)

- template<typename _Tp , typename _Up , typename _Vp >
     _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > ellint_rg (_Tp __x, _Up __y, _Vp __z)

    float ellint rgf (float x, float y, float z)

    long double ellint_rgl (long double __x, long double __y, long double __z)

ullet template<typename _Tp , typename _Up , typename _Vp , typename _Wp >
     gnu_cxx::fp_promote_t< _Tp, _Up, _Vp, _Wp > ellint_rj (_Tp __x, _Up __y, _Vp __z, _Wp __p)

    float ellint_rjf (float __x, float __y, float __z, float __p)
```

```
    long double ellint_rjl (long double __x, long double __y, long double __z, long double __p)

template<typename _Tp >
  Tp ellnome (Tp k)

    float ellnomef (float _ k)

    long double ellnomel (long double k)

template<typename _Tp >
  _Tp euler (unsigned int __n)
      This returns Euler number E_n.
• template<typename _{\mathrm{Tp}}>
  _Tp eulerian_1 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > eulerian_1 (unsigned int __n)
template<typename_Tp>
  _Tp eulerian_2 (unsigned int __n, unsigned int __m)
template<typename _Tp >
    gnu cxx::fp promote t < Tp > expint (unsigned int n, Tp x)

    float expintf (unsigned int n, float x)

    long double expintl (unsigned int __n, long double __x)

    template<typename _Tlam , typename _Tp >

   __gnu_cxx::fp_promote_t< _Tlam, _Tp > exponential_p (_Tlam __lambda, _Tp __x)
      Return the exponential cumulative probability density function.

    template<typename _Tlam , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tlam, _Tp > exponential_pdf (_Tlam __lambda, _Tp __x)
      Return the exponential probability density function.
template<typename _Tp >
   \_gnu\_cxx::fp\_promote\_t< \_Tp> factorial (unsigned int \_\_n)
      Return the factorial n! of the argument as a real number.
                                                  n! = 1 \times 2 \times ... \times n, 0! = 1

    float factorialf (unsigned int __n)

    long double factoriall (unsigned int __n)

    template<typename _Tp , typename _Tnu >

    _gnu_cxx::fp_promote_t< _Tp, _Tnu > falling_factorial (_Tp __a, _Tnu _ nu)
      Return the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling
      factorial function is defined by
                                          a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k) = \Gamma(a+1)/\Gamma(a-n+1)
      where a^{\underline{0}} \equiv 1. In particular, n^{\underline{n}} = n!.
• float falling factorialf (float a, float nu)

    long double falling_factoriall (long double __a, long double __nu)

- template<typename _Tps , typename _Tp >
    gnu cxx::fp promote t < Tps, Tp > fermi dirac (Tps s, Tp x)

    float fermi_diracf (float __s, float __x)

    long double fermi_diracl (long double __s, long double __x)

template<typename_Tp>
    gnu cxx::fp promote t< Tp > fisher f p (Tp F, unsigned int nu1, unsigned int nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.
template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > fisher_f_pdf (_Tp __F, unsigned int __nu1, unsigned int __nu2)
```

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 . template<typename_Tp> _gnu_cxx::fp_promote_t< _Tp > fresnel_c (_Tp __x) float fresnel_cf (float __x) • long double fresnel cl (long double x) template<typename _Tp > _gnu_cxx::fp_promote_t< _Tp > fresnel_s (_Tp __x) float fresnel_sf (float __x) long double fresnel sl (long double x) • template<typename _Ta , typename _Tp >_gnu_cxx::fp_promote_t< _Ta, _Tp > gamma_p (_Ta __a, _Tp __x) Return the gamma cumulative propability distribution function or the regularized lower incomplete gamma function. • template<typename $_{\rm Ta}$, typename $_{\rm Tb}$, typename $_{\rm Tp}$ >_gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > gamma_pdf (_Ta __alpha, _Tb __beta, _Tp __x) Return the gamma propability distribution function. float gamma_pf (float __a, float __x) long double gamma pl (long double a, long double x) template<typename Ta, typename Tp> __gnu_cxx::fp_promote_t< _Ta, _Tp > gamma_q (_Ta __a, _Tp __x) Return the gamma complementary cumulative propability distribution (or survival) function or the regularized upper incomplete gamma function. • float gamma of (float a, float x) long double gamma_ql (long double __a, long double __x) template<typename
 Ta > gnu cxx::fp promote t< Ta > gamma reciprocal (Ta a) float gamma reciprocalf (float a) long double gamma_reciprocall (long double __a) • template<typename _Tlam , typename _Tp > $_gnu_cxx:: fp_promote_t < _Tlam, _Tp > \underline{gegenbauer} \; (unsigned \; int __n, _Tlam __lambda, _Tp __x)$ float gegenbauerf (unsigned int n, float lambda, float x) • long double gegenbauerl (unsigned int __n, long double __lambda, long double __x) template<typename_Tp> gnu cxx::fp promote t< Tp > harmonic (unsigned int n) template<typename _Tk , typename _Tphi > gnu cxx::fp promote t< Tk, Tphi > heuman lambda (Tk k, Tphi phi) float heuman lambdaf (float k, float phi) • long double heuman lambdal (long double k, long double phi) • template<typename _Tp , typename _Up > _gnu_cxx::fp_promote_t< _Tp, _Up > hurwitz_zeta (_Tp __s, _Up __a) • template<typename Tp, typename Up> std::complex< _Tp > hurwitz_zeta (_Tp __s, std::complex< _Up > __a) float hurwitz_zetaf (float __s, float __a) long double hurwitz_zetal (long double __s, long double __a) template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp > gnu_cxx::fp_promote_t< _Tpa, _Tpb, _Tpc, _Tp > hyperg (_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) • float hypergf (float a, float b, float c, float x) long double hypergl (long double __a, long double __b, long double __c, long double __x)

template<typename _Ta , typename _Tb , typename _Tp >

template<typename _Ta , typename _Tb , typename _Tp >

_gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > ibeta (_Ta __a, _Tb __b, _Tp __x)

__gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > ibetac (_Ta __a, _Tb __b, _Tp __x)

```
 float ibetacf (float __a, float __b, float __x)

    long double ibetacl (long double a, long double b, long double x)

 float ibetaf (float __a, float __b, float __x)

    long double ibetal (long double a, long double b, long double x)

- template < typename \_Talpha , typename \_Tbeta , typename \_Tp >
    _gnu_cxx::fp_promote_t< _Talpha, _Tbeta, _Tp > jacobi (unsigned __n, _Talpha __alpha, _Tbeta __beta, _Tp
   __x)
template<typename _Kp , typename _Up >
   _gnu_cxx::fp_promote_t< _Kp, _Up > jacobi_cn (_Kp __k, _Up __u)

    float jacobi_cnf (float __k, float __u)

    long double jacobi cnl (long double k, long double u)

ullet template<typename _Kp , typename _Up >
    _gnu_cxx::fp_promote_t< _Kp, _Up > jacobi_dn (_Kp __k, _Up __u)

    float jacobi dnf (float k, float u)

    long double jacobi dnl (long double k, long double u)

    template<typename _Kp , typename _Up >

    _gnu_cxx::fp_promote_t< _Kp, _Up > jacobi_sn (_Kp __k, _Up __u)

    float jacobi_snf (float __k, float __u)

    long double jacobi snl (long double k, long double u)

• template<typename _Tpq , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpq, _Tp > jacobi_theta_1 (_Tpq __q, _Tp __x)

    float jacobi theta 1f (float q, float x)

    long double jacobi theta 11 (long double q, long double x)

• template<typename _{\rm Tpq}, typename _{\rm Tp} >
    _gnu_cxx::fp_promote_t< _Tpq, _Tp > jacobi_theta_2 (_Tpq __q, _Tp __x)

    float jacobi_theta_2f (float __q, float __x)

    long double jacobi_theta_2l (long double __q, long double __x)

template<typename _Tpq , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpq, _Tp > jacobi_theta_3 (_Tpq __q, _Tp __x)

    float jacobi theta 3f (float q, float x)

    long double jacobi theta 3l (long double g, long double x)

template<typename _Tpq , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpq, _Tp > jacobi_theta_4 (_Tpq __q, _Tp __x)

    float jacobi_theta_4f (float __q, float __x)

    long double jacobi_theta_4l (long double __q, long double __x)

    template<typename _Tk , typename _Tphi >

    gnu cxx::fp promote t< Tk, Tphi > jacobi zeta (Tk k, Tphi phi)

    float jacobi_zetaf (float __k, float __phi)

    long double jacobi zetal (long double k, long double phi)

    float jacobif (unsigned n, float alpha, float beta, float x)

    long double jacobil (unsigned __n, long double __alpha, long double __beta, long double __x)

    template<typename</li>
    Tp >

  Tp lah (unsigned int n, unsigned int k)

    template<typename _Tp >

  std::vector< _Tp > lah (unsigned int __n)

    template<typename</li>
    Tp >

  __gnu_cxx::fp_promote_t< _Tp > Ibinomial (unsigned int __n, unsigned int __k)
      Return the logarithm of the binomial coefficient as a real number. The binomial coefficient is given by:
```

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

- float lbinomialf (unsigned int __n, unsigned int __k)
- long double lbinomial (unsigned int n, unsigned int k)
- template<typename_Tp>

Return the logarithm of the double factorial ln(n!!) of the argument as a real number.

$$n!! = n(n-2)...(2), 0!! = 1$$

for even n and

$$n!! = n(n-2)...(1), (-1)!! = 1$$

for odd n.

- float Idouble factorialf (int n)
- long double ldouble_factoriall (int __n)
- template<typename _Tp >

$$__gnu_cxx::fp_promote_t<_Tp>legendre_q$$
 (unsigned int $__I$, $_Tp$ $__x$)

- float legendre qf (unsigned int I, float x)
- long double legendre_ql (unsigned int __l, long double __x)
- template<typename _Tp , typename _Ts , typename _Ta >

- float lerch_phif (float __z, float __s, float __a)
- long double lerch phil (long double z, long double s, long double a)
- template<typename_Tp>

Return the logarithm of the factorial ln(n!) of the argument as a real number.

$$n! = 1 \times 2 \times ... \times n, 0! = 1$$

- float Ifactorialf (unsigned int n)
- long double lfactoriall (unsigned int n)
- template < typename $_{\rm Tp}$, typename $_{\rm Tnu}$ >

Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The falling factorial function is defined by

$$a^{\underline{n}} = \frac{\Gamma(a+1)}{\Gamma(a-\nu+1)} = \prod_{k=0}^{n-1} (a-k)$$

where $a^{\underline{0}} \equiv 1$. In particular, $n^{\underline{n}} = n!$. Thus this function returns

$$ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)]$$

where $ln[a^{\underline{0}}] \equiv 0$. Many notations exist for this function: $(a)_{\nu}$,

$$\left\{ \begin{array}{c} a \\ \nu \end{array} \right\}$$

, and others.

- float Ifalling_factorialf (float __a, float __nu)
- long double Ifalling_factoriall (long double __a, long double __nu)
- template<typename _Ta >

gnu cxx::fp promote t
$$<$$
 Ta $>$ Igamma (Ta a)

```
 template<typename _Ta >

  std::complex < gnu cxx::fp promote t < Ta >  | lgamma (std::complex < Ta >  a)

    float Igammaf (float a)

    std::complex< float > lgammaf (std::complex< float > __a)

    long double lgammal (long double a)

    std::complex < long double > lgammal (std::complex < long double > a)

    template<typename</li>
    Tp >

    _gnu_cxx::fp_promote_t< _Tp > logint (_Tp __x)

 float logintf (float __x)

    long double logintl (long double x)

    template<typename _Ta , typename _Tb , typename _Tp >

    _gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > logistic_p (_Ta __a, _Tb __b, _Tp __x)
      Return the logistic cumulative distribution function.

    template<typename _Ta , typename _Tb , typename _Tp >

    _gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > logistic_pdf (_Ta __a, _Tb __b, _Tp __x)
      Return the logistic probability density function.
ullet template<typename _Tmu , typename _Tsig , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > <mark>lognormal_p (_Tmu __mu, _Tsig __sigma, _Tp __x</mark>)
      Return the lognormal cumulative probability density function.
template<typename _Tmu , typename _Tsig , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > lognormal_pdf (_Tmu __mu, _Tsig __sigma, _Tp __x)
      Return the lognormal probability density function.

    template<typename Tp, typename Tnu >

    _gnu_cxx::fp_promote_t< _Tp, _Tnu > <u>lrising_factorial</u> (_Tp __a, _Tnu __nu)
      Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The rising factorial function is
      defined for integer order by
                                           a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), \overline{0} \equiv 1
      Thus this function returns
                                          ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[a^0] \equiv 0
      Many notations exist for this function: (a)_{\nu}, called the Pochhammer function (esp. in the literature of special functions),
      and
      , and others.

    float Irising factorialf (float a, float nu)

    long double <u>lrising_factoriall</u> (long double <u>a, long double _nu)</u>

- template<typename _Tp , typename _Ta , typename _Tb >
  std::complex< __gnu_cxx::fp_promote_t< _Tp, _Ta, _Tb >> mittag_leffler (_Ta __alpha, _Tb __beta, const
  std::complex< Tp > \& z)

    template<typename _Tmu , typename _Tsig , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > <mark>normal_p</mark> (_Tmu __mu, _Tsig __sigma, _Tp __x)
      Return the normal cumulative probability density function.

    template<typename _Tmu , typename _Tsig , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > normal_pdf (_Tmu __mu, _Tsig __sigma, _Tp __x)
      Return the gamma cumulative propability distribution function.
template<typename _Tph , typename _Tpa >
    _gnu_cxx::fp_promote_t< _Tph, _Tpa > owens_t (_Tph __h, _Tpa __a)
```

float owens_tf (float __h, float __a)

long double owens tl (long double h, long double a)

```
    template<typename _Tp , typename _Up >

   gnu cxx::fp promote t< std::complex< Tp >, Up > periodic zeta ( Tp x, Up x)

    template<typename Tp, typename Up>

   _gnu_cxx::fp_promote_t< std::complex< _Tp >, std::complex< _Up > > periodic_zeta (std::complex< _Up >
   _z, _Tp __s)

    std::complex< float > periodic zetaf (float x, float s)

    std::complex < long double > periodic_zetal (long double __x, long double __s)

template<typename _Tp >
    gnu cxx::fp promote t < Tp > polygamma (unsigned int m, Tp x)

    float polygammaf (unsigned int __m, float __x)

    long double polygammal (unsigned int m, long double x)

• template<typename Tp, typename Wp>
   _gnu_cxx::fp_promote_t< _Tp, _Wp > polylog (_Tp __s, _Wp __w)

    template<typename _Tp , typename _Wp >

  std::complex< __gnu_cxx::fp_promote_t< _Tp, _Wp >> polylog (_Tp __s, std::complex< _Tp > __w)
• float polylogf (float s, float w)
• std::complex< float > polylogf (float s, std::complex< float > w)
• long double polylogl (long double __s, long double __w)

    std::complex < long double > polylogl (long double __s, std::complex < long double > __w)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > radpoly (unsigned int __n, unsigned int __m, _Tp __rho)

    float radpolyf (unsigned int __n, unsigned int __m, float __rho)

• long double radpolyl (unsigned int n, unsigned int m, long double rho)
ullet template<typename _Tp , typename _Tnu >
    _gnu_cxx::fp_promote_t< _Tp, _Tnu > rising_factorial (_Tp __a, _Tnu __nu)
      Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by
                                                   a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)
     Many notations exist for this function: (a)_{\nu}, called the Pochhammer function (esp. in the literature of special functions),
      and
      , and others.

    float rising_factorialf (float __a, float __nu)

    long double rising factoriall (long double a, long double nu)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > sin_pi (_Tp __x)

    float sin pif (float x)

    long double sin pil (long double x)

template<typename _Tp >
    gnu\_cxx::fp\_promote\_t < \_Tp > sinc (\_Tp \__x)
template<typename _Tp >
   __gnu_cxx::fp_promote_t< _Tp > sinc_pi (_Tp __x)

 float sinc_pif (float __x)

    long double sinc pil (long double x)

 float sincf (float __x)

    long double sincl (long double __x)

    gnu cxx:: sincos t < double > sincos (double x)

template<typename _Tp >
   _gnu_cxx::__sincos_t< __gnu_cxx::fp_promote_t< _Tp >> sincos (_Tp __x)
template<typename _Tp >
  gnu cxx:: sincos t < gnu cxx::fp promote t < Tp > > sincos pi ( Tp > x)
```

```
    __gnu_cxx::__sincos_t< float > sincos_pif (float __x)

   __gnu_cxx::__sincos_t< long double > sincos_pil (long double __x)
  __gnu_cxx::__sincos_t< float > sincosf (float __x)

    gnu cxx:: sincos t < long double > sincos! (long double x)

• template<typename _{\mathrm{Tp}} >
   gnu cxx::fp promote t < Tp > sinh pi ( Tp x)

    float sinh pif (float x)

    long double sinh pil (long double x)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > sinhc (_Tp __x)
template<typename _Tp >
    gnu cxx::fp promote t < Tp > sinhc pi ( Tp x)

    float sinhc_pif (float __x)

    long double sinhc pil (long double x)

 float sinhcf (float __x)

    long double sinhcl (long double x)

template<typename_Tp>
   __gnu_cxx::fp_promote_t< _Tp > sinhint (_Tp __x)

 float sinhintf (float __x)

    long double sinhintl (long double __x)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > sinint (_Tp __x)

    float sinintf (float x)

    long double sinintl (long double __x)

template<typename_Tp>
    gnu cxx::fp promote t< Tp > sph bessel i (unsigned int n, Tp x)

    float sph bessel_if (unsigned int __n, float __x)

    long double sph bessel il (unsigned int n, long double x)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > sph_bessel_k (unsigned int __n, _Tp __x)

    float sph_bessel_kf (unsigned int __n, float __x)

    long double sph bessel kl (unsigned int n, long double x)

template<typename</li>Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> sph_hankel_1 (unsigned int __n, _Tp __z)
template<typename _Tp >
  std::complex < __gnu_cxx::fp_promote_t < _Tp > > sph_hankel_1 (unsigned int __n, std::complex < _Tp > __x)

    std::complex< float > sph_hankel_1f (unsigned int __n, float __z)

    std::complex < float > sph hankel 1f (unsigned int n, std::complex < float > x)

    std::complex < long double > sph_hankel_1l (unsigned int __n, long double __z)

    std::complex < long double > sph hankel 1l (unsigned int n, std::complex < long double > x)

template<typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> sph_hankel_2 (unsigned int __n, _Tp __z)
template<typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> sph_hankel_2 (unsigned int __n, std::complex< _Tp > __x)

    std::complex< float > sph hankel 2f (unsigned int n, float z)

    std::complex < float > sph_hankel_2f (unsigned int __n, std::complex < float > __x)

    std::complex < long double > sph hankel 2l (unsigned int n, long double z)

    std::complex < long double > sph_hankel_2l (unsigned int __n, std::complex < long double > __x)

    template<typename _Ttheta , typename _Tphi >

  std::complex < __gnu_cxx::fp_promote_t < _Ttheta, _Tphi >> sph_harmonic (unsigned int __I, int __m, _Ttheta
  __theta, _Tphi __phi)
```

```
    std::complex < float > sph_harmonicf (unsigned int __l, int __m, float __theta, float __phi)

• std::complex < long double > sph_harmonicl (unsigned int __l, int __m, long double __theta, long double __phi)
template<typename_Tp>
  _Tp stirling_1 (unsigned int __n, unsigned int __m)
template<typename</li>Tp >
  std::vector< _Tp > stirling_1 (unsigned int __n)
template<typename _Tp >
  _Tp stirling_2 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > stirling_2 (unsigned int __n)
• template<typename _Tt , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > student_t_p (_Tt __t, unsigned int __nu)
      Return the Students T probability function.

    template<typename _Tt , typename _Tp >

   gnu cxx::fp promote t < Tp > student t pdf ( Tt t, unsigned int nu)
      Return the complement of the Students T probability function.

    template<typename</li>
    Tp >

   \_gnu_cxx::fp_promote_t< \_Tp > tan_pi (\_Tp \_\_x)

 float tan_pif (float __x)

    long double tan pil (long double x)

template<typename</li>Tp >
    gnu_cxx::fp_promote_t< _Tp > tanh_pi (_Tp __x)

    float tanh pif (float x)

    long double tanh_pil (long double __x)

• template<typename Ta >
    gnu cxx::fp promote t < Ta > tgamma (Ta a)
template<typename_Ta>
  std::complex< __gnu_cxx::fp_promote_t< _Ta >> tgamma (std::complex< _Ta > __a)
• template<typename _Ta , typename _Tp >
    _gnu_cxx::fp_promote_t< _Ta, _Tp > tgamma (_Ta __a, _Tp __x)

    template<typename _Ta , typename _Tp >

    \_gnu\_cxx::fp\_promote\_t < \_Ta, \_Tp > tgamma\_lower (\_Ta \__a, Tp x)
• float tgamma_lowerf (float __a, float __x)

    long double tgamma_lowerl (long double __a, long double __x)

    float tgammaf (float a)

    std::complex< float > tgammaf (std::complex< float > a)

    float tgammaf (float __a, float __x)

    long double tgammal (long double a)

    std::complex < long double > tgammal (std::complex < long double > a)

    long double tgammal (long double a, long double x)

• template<typename Tpnu, typename Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > theta_1 (_Tpnu __nu, _Tp __x)

 float theta_1f (float __nu, float __x)

    long double theta 11 (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpnu, _Tp > theta_2 (_Tpnu __nu, _Tp __x)

    float theta 2f (float nu, float x)

    long double theta_2l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    gnu_cxx::fp_promote_t< _Tpnu, _Tp > theta_3 (_Tpnu __nu, _Tp __x)

    float theta 3f (float nu, float x)
```

```
    long double theta_3l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > theta_4 (_Tpnu __nu, _Tp __x)

 float theta_4f (float __nu, float __x)

    long double theta 4l (long double nu, long double x)

• template<typename _{\rm Tpk}, typename _{\rm Tp}>
   \_gnu\_cxx::fp\_promote\_t< \_Tpk, \_Tp> theta\_c (\_Tpk \_\_k, \_Tp \_\_x)

    float theta cf (float k, float x)

    long double theta cl (long double k, long double x)

template<typename _Tpk , typename _Tp >
    gnu cxx::fp promote t < Tpk, Tp > theta d ( Tpk k, Tp x)

 float theta_df (float __k, float __x)

    long double theta_dl (long double __k, long double __x)

• template<typename _Tpk , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpk, _Tp > theta_n (_Tpk __k, _Tp __x)
float theta_nf (float __k, float __x)

    long double theta_nl (long double __k, long double __x)

• template<typename _{\rm Tpk}, typename _{\rm Tp} >
    _gnu_cxx::fp_promote_t< _Tpk, _Tp > theta_s (_Tpk __k, _Tp __x)

 float theta_sf (float __k, float __x)

    long double theta sl (long double k, long double x)

    template<typename _Tpa , typename _Tpc , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tpa, _Tpc, _Tp > tricomi_u (_Tpa __a, _Tpc __c, _Tp __x)

    float tricomi uf (float a, float c, float x)

    long double tricomi ul (long double a, long double c, long double x)

    template<typename _Ta , typename _Tb , typename _Tp >

   Return the Weibull cumulative probability density function.

    template<typename _Ta , typename _Tb , typename _Tp >

   _gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > weibull_pdf (_Ta __a, _Tb __b, _Tp __x)
      Return the Weibull probability density function.
• template<typename Trho, typename Tphi >
   _gnu_cxx::fp_promote_t< _Trho, _Tphi > zernike (unsigned int __n, int __m, _Trho __rho, _Tphi __phi)

    float zernikef (unsigned int __n, int __m, float __rho, float __phi)

    long double zernikel (unsigned int n, int m, long double rho, long double phi)
```

8.1.1 Enumeration Type Documentation

```
8.1.1.1 gauss_quad_type
enum __gnu_cxx::gauss_quad_type
```

Enumeration gor differing types of Gauss quadrature. The gauss_quad_type is used to determine the boundary condition modifications applied to orthogonal polynomials for quadrature rules.

Enumerator

Gauss	Gauss quadrature.
Gauss_Lobatto	Gauss-Lobatto quadrature.
Gauss_Radau_lower	Gauss-Radau quadrature including the node -1.
Gauss_Radau_upper	Gauss-Radau quadrature including the node +1.

Definition at line 48 of file specfun_state.h.

8.1.2 Function Documentation

8.1.2.1 __fp_is_equal()

A function to reliably compare two floating point numbers.

Parameters

a	The left hand side
b	The right hand side
mul	The multiplier for numeric epsilon for comparison

Returns

true if a and b are equal to zero or differ only by max(a,b)*mul*epsilon

Definition at line 85 of file math_util.h.

References __fp_max_abs().

Referenced by $_$ fp_is_half_integer(), $_$ fp_is_half_odd_integer(), $_$ fp_is_integer(), std:: $_$ detail:: $_$ polylog_exp_neg(), std:: $_$ detail:: $_$ polylog_exp_neg_int(), std:: $_$ detail:: $_$ polylog_exp_pos_int(), and std \leftarrow :: $_$ detail:: $_$ polylog_exp_pos_real().

8.1.2.2 __fp_is_even_integer()

```
template<typename _Tp >
constexpr __fp_is_integer_t __gnu_cxx::__fp_is_even_integer (
    __Tp __a,
    __Tp __mul = _Tp{1} ) [inline], [noexcept]
```

A function to reliably detect if a floating point number is an even integer.

Parameters

a	The floating point number
mul	The multiplier of machine epsilon for the tolerance

Returns

true if a is an even integer within mul * epsilon.

Definition at line 221 of file math util.h.

References __fp_is_integer().

Referenced by std:: detail:: riemann zeta glob().

8.1.2.3 __fp_is_half_integer()

```
template<typename _Tp >
constexpr __fp_is_integer_t __gnu_cxx::__fp_is_half_integer (
    __Tp __a,
    __Tp __mul = _Tp{1} ) [inline], [noexcept]
```

A function to reliably detect if a floating point number is a half-integer.

Parameters

a	The floating point number
mul	The multiplier of machine epsilon for the tolerance

Returns

true if 2a is an integer within mul * epsilon and the returned value is half the integer, int(a) / 2.

Definition at line 176 of file math_util.h.

References __fp_is_equal().

8.1.2.4 __fp_is_half_odd_integer()

```
template<typename _Tp >
constexpr __fp_is_integer_t __gnu_cxx::__fp_is_half_odd_integer (
    __Tp __a,
    __Tp __mul = _Tp{1} ) [inline], [noexcept]
```

A function to reliably detect if a floating point number is a half-odd-integer.

Parameters

a	The floating point number
mul	The multiplier of machine epsilon for the tolerance

Returns

true if 2a is an odd integer within mul * epsilon and the returned value is int(a - 1) / 2.

Definition at line 199 of file math_util.h.

```
References __fp_is_equal().
```

Referenced by std:: detail:: digamma().

8.1.2.5 __fp_is_integer()

A function to reliably detect if a floating point number is an integer.

Parameters

a	The floating point number
mul	The multiplier of machine epsilon for the tolerance

Returns

true if a is an integer within mul * epsilon.

Definition at line 154 of file math_util.h.

References __fp_is_equal().

Referenced by std::__detail::__conf_hyperg(), std::__detail::__conf_hyperg_lim(), std::__detail::__digamma(), std:-_detail::__detail::__dirichlet_eta(), std::__detail::__falling_factorial(), __fp_is_even_integer(), __fp_is_odd_integer(), std::__detail::__gamma_reciprocal(), std::__detail::__gamma_g(), std::__detail::__gamma_reciprocal(), std::__detail::__gamma_series(), std::__detail::__hyperg(), std::__detail::__hyperg_reflect(), std::__detail::__log__ falling_factorial(), std::__detail::__log_gamma(), std::__detail::__polylog_exp(), std::__detail::__riemann_zeta(), std::__detail::__riemann_zeta_m_1(), std::__detail::__tgamma(), std:

8.1.2.6 __fp_is_odd_integer()

```
template<typename _Tp >
constexpr __fp_is_integer_t __gnu_cxx::__fp_is_odd_integer (
    _Tp __a,
    _Tp __mul = _Tp{1} ) [inline], [noexcept]
```

A function to reliably detect if a floating point number is an odd integer.

Parameters

a	The floating point number
mul	The multiplier of machine epsilon for the tolerance

Returns

true if a is an odd integer within mul * epsilon.

Definition at line 241 of file math util.h.

References __fp_is_integer().

8.1.2.7 __fp_is_zero()

A function to reliably compare a floating point number with zero.

Parameters

a	The floating point number
mul	The multiplier for numeric epsilon for comparison

Returns

true if a and b are equal to zero or differ only by max(a,b)*mul*epsilon

Definition at line 110 of file math_util.h.

Referenced by std::__detail::__periodic_zeta(), std::__detail::__polylog(), std::__detail::__polylog_exp_neg(), std::__detail::__polylog_exp_neg(), std::__detail::__polylog_exp_neg(), std::__detail::__polylog_exp_pos_real(), and std::__detail::__theta_1().

8.1.2.8 __fp_max_abs()

A function to return the maximum of the absolute values of two numbers ... so we won't include everything.

Parameters

_~	The left hand side
_a	
_←	The right hand side
_b	

Definition at line 62 of file math_util.h.

Referenced by __fp_is_equal().

8.1.2.9 __parity()

Return -1 if the integer argument is odd and +1 if it is even.

Definition at line 51 of file math util.h.

8.2 std Namespace Reference

Namespaces

__detail

Implementation-space details.

Functions

```
• template<typename_Tp>
   _gnu_cxx::fp_promote_t< _Tp > assoc_laguerre (unsigned int __n, unsigned int __m, _Tp __x)
• template<typename _Talpha , typename _Tp >
    _gnu_cxx::fp_promote_t< _Talpha, _Tp > assoc_laguerre (unsigned int __n, _Talpha __alpha1, Tp x)

    float assoc laguerref (unsigned int n, unsigned int m, float x)

    long double assoc_laguerrel (unsigned int __n, unsigned int __m, long double __x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > assoc_legendre (unsigned int __I, unsigned int __m, _Tp __x)

    float assoc legendref (unsigned int I, unsigned int m, float x)

    long double assoc_legendrel (unsigned int __l, unsigned int __m, long double __x)

template<typename _Tpa , typename _Tpb >
    _gnu_cxx::fp_promote_t< _Tpa, _Tpb > beta (_Tpa __a, _Tpb __b)

    float betaf (float a, float b)

    long double betal (long double __a, long double __b)

template<typename _Tp >
    gnu cxx::fp promote t< Tp > comp ellint 1 (Tp k)

    float comp ellint 1f (float k)

    long double comp_ellint_1l (long double __k)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > comp_ellint_2 (_Tp __k)

    float comp ellint 2f (float k)

    long double comp_ellint_2l (long double __k)

template<typename _Tp , typename _Tpn >
    _gnu_cxx::fp_promote_t< _Tp, _Tpn > comp_ellint_3 (_Tp __k, _Tpn __nu)

    float comp_ellint_3f (float __k, float __nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for float modulus k.

    long double comp_ellint_3l (long double __k, long double __nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for long double modulus k.

    template<typename _Tpnu , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > cyl_bessel_i (_Tpnu __nu, _Tp __x)

    float cyl bessel if (float nu, float x)

    long double cyl bessel il (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > cyl_bessel_j (_Tpnu __nu, _Tp __x)

    float cyl bessel if (float nu, float x)

    long double cyl_bessel_jl (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > cyl_bessel_k (_Tpnu __nu, _Tp __x)

    float cyl bessel kf (float nu, float x)

    long double cyl_bessel_kl (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > cyl_neumann (_Tpnu __nu, _Tp __x)
• float cyl neumannf (float nu, float x)

    long double cyl_neumannl (long double __nu, long double __x)

template<typename _Tp , typename _Tpp >
    _gnu_cxx::fp_promote_t< _Tp, _Tpp > ellint_1 (_Tp __k, _Tpp __phi)

    float ellint 1f (float k, float phi)

    long double ellint_1l (long double ___k, long double ___phi)

template<typename _Tp , typename _Tpp >
    _gnu_cxx::fp_promote_t< _Tp, _Tpp > ellint_2 (_Tp __k, _Tpp __phi)
```

```
    float ellint_2f (float __k, float __phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi) for float argument.

    long double ellint 2l (long double k, long double phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi).
template<typename _Tp , typename _Tpn , typename _Tpp >
   _gnu_cxx::fp_promote_t< _Tp, _Tpn, _Tpp > ellint_3 (_Tp __k, _Tpn __nu, _Tpp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).
• float ellint_3f (float __k, float __nu, float __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k,\nu,\phi) for float argument.

    long double ellint_3l (long double ___k, long double ___nu, long double ___phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > expint (_Tp __x)

 float expintf (float __x)

    long double expintl (long double x)

template<typename_Tp>
   _gnu_cxx::fp_promote_t< _Tp > hermite (unsigned int __n, _Tp __x)

    float hermitef (unsigned int __n, float __x)

    long double hermitel (unsigned int n, long double x)

template<typename</li>Tp >
    _gnu_cxx::fp_promote_t< _Tp > laguerre (unsigned int __n, _Tp __x)

    float laguerref (unsigned int __n, float __x)

• long double laguerrel (unsigned int __n, long double __x)

    template<typename</li>
    Tp >

    _gnu_cxx::fp_promote_t< _Tp > legendre (unsigned int __l, _Tp __x)

    float legendref (unsigned int __l, float __x)

    long double legendrel (unsigned int I, long double x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > riemann_zeta (_Tp __s)

    float riemann zetaf (float s)

    long double riemann_zetal (long double __s)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > sph_bessel (unsigned int __n, Tp x)

    float sph_besself (unsigned int __n, float __x)

    long double sph_bessell (unsigned int __n, long double __x)

template<typename_Tp>
    gnu cxx::fp promote t< Tp > sph legendre (unsigned int I, unsigned int m, Tp theta)

    float sph legendref (unsigned int I, unsigned int m, float theta)

    long double sph legendrel (unsigned int I, unsigned int m, long double theta)

template<typename_Tp>
   _gnu_cxx::fp_promote_t< _Tp > sph_neumann (unsigned int __n, _Tp __x)

    float sph_neumannf (unsigned int __n, float __x)

    long double sph_neumannl (unsigned int __n, long double __x)
```

8.3 std::__detail Namespace Reference

Implementation-space details.

Classes

```
    struct gamma lanczos data

    struct __gamma_lanczos_data< double >

    struct gamma lanczos data< float >

    struct gamma lanczos data< long double >

    struct gamma spouge data

    struct __gamma_spouge_data< double >

    struct __gamma_spouge_data< float >

    struct __gamma_spouge_data< long double >

    struct __jacobi_lattice_t

    struct __jacobi_theta_0_t

· struct weierstrass invariants t
· struct weierstrass roots t

    class Airy

    class _Airy_asymp

struct _Airy_asymp_data

    struct _Airy_asymp_data< double >

struct _Airy_asymp_data< float >

    struct _Airy_asymp_data< long double >

    class Airy asymp series

• struct _Airy_default_radii

    struct _Airy_default_radii< double >

    struct Airy default radii< float >

    struct _Airy_default_radii< long double >

    class _Airy_series

    struct AiryAuxilliaryState

    struct AiryState

    class _AsympTerminator

· struct Factorial table
· class _Terminator
```

Functions

```
template<typename</li>Tp >
   __gnu_cxx::__airy_t< _Tp, _Tp > __airy (_Tp __z)
      Compute the Airy functions Ai(x) and Bi(x) and their first derivatives Ai'(x) and Bi(x) respectively.
template<typename _Tp >
  std::complex< _Tp > __airy_ai (std::complex< _Tp > __z)
      Return the complex Airy Ai function.
template<typename_Tp>
 void __airy_arg (std::complex< _Tp > __num2d3, std::complex< _Tp > __zeta, std::complex< _Tp > &__argp,
  std::complex < Tp > \& argm)
      Compute the arguments for the Airy function evaluations carefully to prevent premature overflow. Note that the major work
      here is in safe_div. A faster, but less safe implementation can be obtained without use of safe_div.
template<typename</li>Tp >
 std::complex< _Tp > __airy_bi (std::complex< _Tp > __z)
      Return the complex Airy Bi function.

    template<typename _Tpa , typename _Tp >

  _Tp __assoc_laguerre (unsigned int __n, _Tpa __alpha, _Tp __x)
```

This routine returns the associated Laguerre polynomial of degree n, order m: $L_n^{(m)}(x)$.

template<typename_Tp>

```
\begin{tabular}{ll} $\_gnu\_cxx::\_assoc\_legendre\_p\_t<\_Tp>\_assoc\_legendre\_p (unsigned int \__l, unsigned int \__m, \_Tp \__x, \_Tp \__phase=\_Tp\{+1\}) \end{tabular}
```

Return the associated Legendre function by recursion on l and downward recursion on m.

template<typename _Tp >

• template<typename_Tp>

template<typename _Tp , typename _Up >

• template<typename $_{\mathrm{Tp}}$ >

template<typenameTp >

This returns Bernoulli number B_n .

template<typename _Tp >

template<typename_Tp>

This returns Bernoulli number B_2n at even integer arguments 2n.

template<typename_Tp>

This returns Bernoulli numbers from a table or by summation for larger values.

$$B_{2n} = (-1)^{n+1} 2 \frac{(2n)!}{(2\pi)^{2n}} \zeta(2n)$$

template<typename_Tp >

Return the beta function B(a,b).

template<typename _Tp >

Return the beta function: B(a, b).

• template<typename $_{\rm Tp}>$

template<typename
 Tp >

Return the beta function B(a,b) using the log gamma functions.

• template<typename_Tp>

• template<typename _Tp >

Return the beta function B(x, y) using the product form.

template<typename
 Tp >

Return the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

template<typename_Tp>

Return the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

•

template<typename _Tp >

Return the binomial cumulative distribution function.

template<typename _Tp >

Return the binomial probability mass function.

template<typename _Tp >

Return the complementary binomial cumulative distribution function.

• template<typename $_Sp$, typename $_Tp>$

 $\bullet \ \ template {<} typename \ _Tp >$

 $\bullet \ \ template {<} typename \ _Tp >$

$$std::tuple < _Tp, _Tp, _Tp > __chebyshev_recur (unsigned int __n, _Tp __x, _Tp _C0, _Tp _C1)$$

template<typename _Tp >

template<typename _Tp >

template<typename _Tp >

template<typename_Tp>

template<typename _Tp >

Return the chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is less than the value χ^2 .

• template<typename_Tp>

Return the complementary chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is greater than the value χ^2 .

template<typename _Tp >

This function returns the hyperbolic cosine Ci(x) and hyperbolic sine Si(x) integrals as a pair.

template<typename_Tp>

```
void __chshint_cont_frac (_Tp __t, _Tp &_Chi, _Tp &_Shi)
```

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by continued fraction for positive argument.

```
template<typename _Tp >
  void __chshint_series (_Tp __t, _Tp &_Chi, _Tp &_Shi)
      This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by series summation for
      positive argument.
template<typename _Tp >
  std::complex< Tp > clamp 0 m2pi (std::complex< Tp > z)

    template<typename</li>
    Tp >

  std::complex< _Tp > __clamp_pi (std::complex< _Tp > __z)

    template<typename</li>
    Tp >

  std::complex< _Tp > __clausen (unsigned int __m, std::complex< _Tp > __z)

    template<typename _Tp >

  _Tp <u>__clausen</u> (unsigned int __m, _Tp __x)

    template<typename</li>
    Tp >

  _Tp __clausen_cl (unsigned int __m, std::complex< _Tp > __z)
template<typename _Tp >
   _Tp __clausen_cl (unsigned int __m, _Tp __x)

    template<typename _Tp >

  _Tp __clausen_sl (unsigned int __m, std::complex< _Tp > __z)

    template<typename</li>
    Tp >

  _Tp <u>__clausen_sl</u> (unsigned int __m, _Tp __x)
template<typename _Tp >
  _Tp __comp_ellint_1 (_Tp __k)
      Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.

    template<typename</li>
    Tp >

  _Tp __comp_ellint_2 (_Tp __k)
      Return the complete elliptic integral of the second kind E(k) using the Carlson formulation.
template<typename _Tp >
  _Tp <u>__comp_ellint_3</u> (_Tp __k, _Tp __nu)
      Return the complete elliptic integral of the third kind \Pi(k,\nu) = \Pi(k,\nu,\pi/2) using the Carlson formulation.

    template<typename</li>
    Tp >

  _Tp __comp_ellint_d (_Tp __k)
template<typename _Tp >
  _Tp __comp_ellint_rf (_Tp __x, _Tp __y)
template<typename _Tp >
  _Tp __comp_ellint_rg (_Tp __x, _Tp __y)
template<typename _Tp >
  _Tp __conf_hyperg (_Tp __a, _Tp __c, _Tp __x)
      Return the confluent hypergeometric function {}_{1}F_{1}(a;c;x)=M(a,c,x).
template<typename _Tp >
  _Tp __conf_hyperg_lim (_Tp __c, _Tp __x)
      Return the confluent hypergeometric limit function {}_{0}F_{1}(-;c;x).
template<typename_Tp>
  Tp conf hyperg lim series (Tp c, Tp x)
      This routine returns the confluent hypergeometric limit function by series expansion.
template<typename _Tp >
  _Tp __conf_hyperg_luke (_Tp __a, _Tp __c, _Tp __xin)
```

Return the hypergeometric function ${}_1F_1(a;c;x)$ by an iterative procedure described in Luke, Algorithms for the Compu-

tation of Mathematical Functions.

```
template<typename _Tp >
  _Tp __conf_hyperg_series (_Tp __a, _Tp __c, _Tp __x)
      This routine returns the confluent hypergeometric function by series expansion.
template<typename</li>Tp >
  _Tp <u>cos_pi</u> (_Tp __x)

    template<typename</li>
    Tp >

  std::complex< _Tp > __cos_pi (std::complex< _Tp > __z)

 template<typename _Tp >

  _Tp <u>cosh_pi</u> (_Tp __x)

 template<typename _Tp >

  std::complex< Tp > cosh pi (std::complex< Tp > z)
template<typename _Tp >
  Tp coshint (const Tp x)
      Return the hyperbolic cosine integral Chi(x).
• template<typename_Tp>
  std::pair< _Tp, _Tp > __coulomb_CF1 (unsigned int __I, _Tp __eta, _Tp __x)

    template<typename</li>
    Tp >

  std::complex< _Tp > __coulomb_CF2 (unsigned int __I, _Tp __eta, _Tp __x)
template<typename Tp >
  std::pair< _Tp, _Tp > __coulomb_f_recur (unsigned int __l_min, unsigned int __k_max, _Tp __eta, _Tp __x, _Tp
  _F_I_max, _Tp _Fp_I_max)
template<typename _Tp >
  std::pair< _Tp, _Tp > __coulomb_g_recur (unsigned int __l_min, unsigned int __k_max, _Tp __eta, _Tp __x,
  _Tp _G_I_min, _Tp _Gp_I_min)
template<typename _Tp >
  Tp coulomb norm (unsigned int I, Tp eta)
template<typename_Tp>
  std::complex < _Tp > \__cyl\_bessel (std::complex < _Tp > \__nu, std::complex < _Tp > \__z)
      Return the complex cylindrical Bessel function.
template<typename _Tp >
  _Tp __cyl_bessel_i (_Tp __nu, _Tp __x)
      Return the regular modified Bessel function of order \nu: I_{\nu}(x).

    template<typename</li>
    Tp >

  _Tp __cyl_bessel_ij_series (_Tp __nu, _Tp __x, _Tp __sgn, unsigned int __max_iter)
      This routine returns the cylindrical Bessel functions of order \nu: J_{\nu} or I_{\nu} by series expansion.

    template<typename</li>
    Tp >

   <u>_gnu_cxx::__cyl_mod_bessel_t<__Tp,__Tp,__Tp > __cyl_bessel_ik (_Tp __nu,__Tp __x)</u>
      Return the modified cylindrical Bessel functions and their derivatives of order \nu by various means.

    template<typename</li>
    Tp >

   _gnu_cxx::__cyl_mod_bessel_t<_Tp,_Tp,_Tp > __cyl_bessel_ik_asymp (_Tp __nu,_Tp __x)
      This routine computes the asymptotic modified cylindrical Bessel and functions of order nu: I_{\nu}(x), N_{\nu}(x). Use this for
     x >> nu^2 + 1.
template<typename_Tp>
   _gnu_cxx::_cyl_mod_bessel_t< _Tp, _Tp, _Tp > __cyl_bessel_ik_steed (_Tp __nu, _Tp __x)
      Compute the modified Bessel functions I_{\nu}(x) and K_{\nu}(x) and their first derivatives I'_{\nu}(x) and K'_{\nu}(x) respectively. These
      four functions are computed together for numerical stability.
template<typename _Tp >
  _Tp __cyl_bessel_j (_Tp __nu, _Tp __x)
      Return the Bessel function of order \nu: J_{\nu}(x).
template<typename _Tp >
    _gnu_cxx::__cyl_bessel_t< _Tp, _Tp, _Tp > __cyl_bessel_jn (_Tp __nu, _Tp __x)
```

Return the cylindrical Bessel functions and their derivatives of order ν by various means.

```
template<typename _Tp >
    _gnu_cxx::__cyl_bessel_t< _Tp, _Tp, _Tp > __cyl_bessel_jn_asymp (_Tp __nu, _Tp __x)
      This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu: J_{\nu}(x), N_{\nu}(x). Use this for
     x >> nu^2 + 1.
template<typename _Tp >
    _gnu_cxx::__cyl_bessel_t< _Tp, _Tp, std::complex< _Tp >> __cyl_bessel_jn_neg_arg (_Tp __nu, _Tp __x)
      Return the cylindrical Bessel functions and their derivatives of order \nu and argument x < 0.
template<typename _Tp >
    _gnu_cxx::__cyl_bessel_t< _Tp, _Tp, _Tp > __cyl_bessel_jn_steed (_Tp __nu, _Tp __x)
      Compute the Bessel J_{\nu}(x) and Neumann N_{\nu}(x) functions and their first derivatives J'_{\nu}(x) and N'_{\nu}(x) respectively. These
      four functions are computed together for numerical stability.
template<typename _Tp >
  Tp cyl bessel k (Tp nu, Tp x)
      Return the irregular modified Bessel function K_{\nu}(x) of order \nu.
template<typename_Tp>
  std::complex< _Tp > __cyl_hankel_1 (_Tp __nu, _Tp __x)
      Return the cylindrical Hankel function of the first kind H_{\nu}^{(1)}(x).
template<typename</li>Tp >
  std::complex < _Tp > __cyl_hankel_1 (std::complex < _Tp > __nu, std::complex < _Tp > __z)
      Return the complex cylindrical Hankel function of the first kind.
• template<typename _{\rm Tp}>
  std::complex< Tp > cyl hankel 2 ( Tp nu, Tp x)
      Return the cylindrical Hankel function of the second kind H_n^{(2)}u(x).
template<typename _Tp >
  std::complex < _Tp > __cyl_hankel_2 (std::complex < _Tp > __nu, std::complex < _Tp > __z)
      Return the complex cylindrical Hankel function of the second kind.
template<typename _Tp >
  std::complex< Tp > cyl neumann (std::complex< Tp > nu, std::complex< Tp > z)
      Return the complex cylindrical Neumann function.

    template<typename</li>
    Tp >

  _Tp __cyl_neumann_n (_Tp __nu, _Tp __x)
      Return the Neumann function of order \nu: N_{\nu}(x).
template<typename _Tp >
 _Tp __dawson (_Tp __x)
      Return the Dawson integral, F(x), for real argument x.
template<typename _Tp >
  _Tp __dawson_cont_frac (_Tp __x)
      Compute the Dawson integral using a sampling theorem representation.
template<typename _Tp >
 _Tp __dawson_series (_Tp __x)
      Compute the Dawson integral using the series expansion.

    template<typename</li>
    Tp >

  Tp debye (unsigned int n, Tp x)
template<typename _Tp >
  void __debye_region (std::complex< _Tp > __alpha, int &__indexr, char &__aorb)
template<typename _Tp >
 Tp digamma (unsigned int n)
```

Return the digamma function of integral argument. The digamma or $\psi(x)$ function is defined as the logarithmic derivative of the gamma function:

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

The digamma series for integral argument is given by:

$$\psi(n) = -\gamma_E + \sum_{k=1}^{n-1} \frac{1}{k}$$

The latter sum is called the harmonic number, H_n .

• template<typename $_{\mathrm{Tp}}$ >

Return the digamma function. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

For negative argument the reflection formula is used:

$$\psi(x) = \psi(1-x) - \pi \cot(\pi x)$$

•

 $\bullet \ \ template {<} typename \ _Tp >$

Return the digamma function for large argument. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

.

• template<typename $_{\rm Tp}>$

Return the digamma function by series expansion. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

.

template<typename _Tp >

Compute the dilogarithm function $Li_2(x)$ by summation for $x \le 1$.

• template<typename $_{\mathrm{Tp}}>$

• template<typename $_{\rm Tp}>$

• template<typename $_{\rm Tp}>$

• template<typename $_{\mathrm{Tp}}$ >

template<typename _Tp >

template<typename _Tp >

Return the double factorial of the integer n.

• template<typename $_{\rm Tp}>$

Return the incomplete elliptic integral of the first kind $F(k,\phi)$ using the Carlson formulation.

```
template<typename _Tp >
  _Tp <u>__ellint_2</u> (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the second kind E(k, \phi) using the Carlson formulation.
template<typename_Tp>
  _Tp __ellint_3 (_Tp __k, _Tp __nu, _Tp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) using the Carlson formulation.
template<typename _Tp >
  _Tp __ellint_cel (_Tp __k_c, _Tp __p, _Tp __a, _Tp __b)
template<typename_Tp>
  _Tp <u>__ellint_d</u> (_Tp __k, _Tp __phi)

 template<typename _Tp >

  _Tp __ellint_el1 (_Tp __x, _Tp __k_c)
• template<typename _{\mathrm{Tp}} >
  _Tp <u>__ellint_el2</u> (_Tp __x, _Tp __k_c, _Tp __a, _Tp __b)

 template<typename _Tp >

  _Tp __ellint_el3 (_Tp __x, _Tp __k_c, _Tp __p)
• template<typename _{\rm Tp}>
  _Tp __ellint_rc (_Tp __x, _Tp __y)
      Return the Carlson elliptic function R_C(x,y) = R_F(x,y,y) where R_F(x,y,z) is the Carlson elliptic function of the first
• template<typename _{\rm Tp}>
  _Tp __ellint_rd (_Tp __x, _Tp __y, _Tp __z)
      Return the Carlson elliptic function of the second kind R_D(x,y,z) = R_J(x,y,z,z) where R_J(x,y,z,p) is the Carlson
      elliptic function of the third kind.
template<typename_Tp>
  _Tp __ellint_rf (_Tp __x, _Tp __y, _Tp __z)
      Return the Carlson elliptic function R_F(x, y, z) of the first kind.
template<typename _Tp >
  _Tp <u>__ellint_rg</u> (_Tp __x, _Tp __y, _Tp __z)
      Return the symmetric Carlson elliptic function of the second kind R_G(x, y, z).
template<typename_Tp>
  _Tp <u>__ellint_rj</u> (_Tp __x, _Tp __y, _Tp __z, _Tp __p)
      Return the Carlson elliptic function R_J(x,y,z,p) of the third kind.
template<typename _Tp >
  Tp ellnome (Tp k)
template<typename_Tp>
  _Tp __ellnome_k (_Tp __k)
template<typename _Tp >
  _Tp __ellnome_series (_Tp __k)
template<typename_Tp>
  Tp euler (unsigned int n)
      This returns Euler number E_n.
template<typename _Tp >
  _Tp __euler (unsigned int __n, _Tp __x)
template<typename _Tp >
  Tp euler series (unsigned int n)
template<typename_Tp>
  _Tp __eulerian_1 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > __eulerian_1 (unsigned int __n)
```

```
template<typename _Tp >
  Tp eulerian 1 recur (unsigned int n, unsigned int m)
template<typename_Tp>
  std::vector< _Tp > __eulerian_1_recur (unsigned int __n)
template<typename _Tp >
  _Tp <u>__eulerian_2</u> (unsigned int __n, unsigned int __m)
• template<typename _{\mathrm{Tp}} >
  std::vector< Tp > eulerian 2 (unsigned int n)
template<typename _Tp >
  _Tp __eulerian_2_recur (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > __eulerian_2_recur (unsigned int __n)
template<typename _Tp >
  _Tp <u>__exp2</u> (_Tp __x)
template<typename _Tp >
  _Tp __expint (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x).
template<typename _Tp >
  _Tp __expint (_Tp __x)
      Return the exponential integral Ei(x).

    template<typename</li>
    Tp >

  _Tp __expint_E1 (_Tp __x)
      Return the exponential integral E_1(x).
template<typename _Tp >
  _Tp __expint_E1_asymp (_Tp __x)
      Return the exponential integral E_1(x) by asymptotic expansion.

    template<typename</li>
    Tp >

  _Tp __expint_E1_series (_Tp __x)
      Return the exponential integral E_1(x) by series summation. This should be good for x < 1.
template<typename _Tp >
  Return the exponential integral Ei(x).
template<typename _Tp >
  _Tp __expint_Ei_asymp (_Tp __x)
      Return the exponential integral Ei(x) by asymptotic expansion.
template<typename_Tp>
  _Tp __expint_Ei_series (_Tp __x)
      Return the exponential integral Ei(x) by series summation.

    template<typename</li>
    Tp >

  _Tp __expint_En_asymp (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) for large argument.
template<typename _Tp >
  _Tp __expint_En_cont_frac (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by continued fractions.

    template<typename</li>
    Tp >

  _Tp __expint_En_large_n (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) for large order.
template<typename _Tp >
  _Tp __expint_En_recursion (unsigned int __n, _Tp __x)
```

Return the exponential integral $E_n(x)$ by recursion. Use upward recursion for x < n and downward recursion (Miller's algorithm) otherwise.

template<typename _Tp >

Return the exponential integral $E_n(x)$ by series summation.

template<typenameTp >

Return the exponential cumulative probability density function.

template<typename_Tp>

Return the exponential probability density function.

template<typename _Tp >

Return the complement of the exponential cumulative probability density function.

template<typename _Tp >

Return the factorial of the integer n.

template<typename_Tp>

Return the logarithm of the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling factorial function is defined by

$$a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, $n^{\underline{n}} = n!$.

template<typename_Tp>

Return the logarithm of the falling factorial function or the lower Pochhammer symbol for real argument a and order ν . The falling factorial function is defined by

$$a^{\underline{\nu}} = \Gamma(a+1)/\Gamma(a-\nu+1)$$

.

• template<typename _Sp , typename _Tp >

template<typename _Tp >

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

• template<typename $_{\rm Tp}>$

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

template<typename _Tp >

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

template<typename _Tp >

Compute the Fock-type Airy functions $w_1(x)$ and $w_2(x)$ and their first derivatives $w_1'(x)$ and $w_2'(x)$ respectively.

$$w_1(x) = \sqrt{\pi}(Ai(x) + iBi(x))$$

$$w_2(x) = \sqrt{\pi}(Ai(x) - iBi(x))$$

.

template<typename_Tp >
 std::complex< Tp > fresnel (const Tp x)

Return the Fresnel cosine and sine integrals as a complex number f(C(x) + iS(x))

 $\bullet \ \ template {<} typename \ _Tp >$

This function computes the Fresnel cosine and sine integrals by continued fractions for positive argument.

template<typename_Tp>

This function returns the Fresnel cosine and sine integrals as a pair by series expansion for positive argument.

template<typenameTp >

Return the gamma function $\Gamma(a)$. The gamma function is defined by:

$$\Gamma(a) = \int_0^\infty e^{-t} t^{a-1} dt (a > 0)$$

• template<typename_Tp>

$$std::pair < Tp, Tp > \underline{gamma} (Tp \underline{a}, Tp \underline{x})$$

Return the incomplete gamma functions.

template<typename _Tp >

Return the incomplete gamma function by continued fraction.

template<typename
 Tp >

Return the gamma cumulative propability distribution function.

template<typename_Tp>

Return the regularized lower incomplete gamma function. The regularized lower incomplete gamma function is defined by

$$P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\gamma(a,x) = \int_{0}^{x} e^{-t} t^{a-1} dt (a > 0)$$

is the lower incomplete gamma function.

template<typename_Tp>

Return the gamma propability distribution function.

• template<typename $_{\mathrm{Tp}}>$

Return the gamma complementary cumulative propability distribution function.

• template<typename $_{\mathrm{Tp}}>$

Return the regularized upper incomplete gamma function. The regularized upper incomplete gamma function is defined by

$$Q(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

is the upper incomplete gamma function.

template < typename _Tp >
 Tp _gamma reciprocal (Tp _ a)

template<typename _Tp >

_Tp __gamma_reciprocal_series (_Tp __a)

template<typename _Tp >

Return the incomplete gamma function by series summation.

$$\gamma(a,x) = x^a e^{-z} \sum_{k=1}^{\infty} \frac{x^k}{(a)_k}$$

template<typename
 Tp >

Compute the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

- template<typename $_{\rm Tp}>$
 - _Tp <u>gauss</u> (_Tp __x)
- template<typename _Tp >

__gnu_cxx::__gegenbauer_t< _Tp > __gegenbauer_recur (unsigned int __n, _Tp __lambda, _Tp __x)

• template<typename $_{\mathrm{Tp}}$ >

template<typename_Tp>

 $\label{local_complex} $$ _gnu_cxx::_cyl_hankel_t< std::complex<_Tp>, std::complex<_Tp>, std::complex<_Tp>> __hankel (std::complex<_Tp> __nu, std::complex<_Tp> __z)$

template<typename _Tp >

template<typename
 Tp >

 $\label{lem:complex} $$\operatorname{\mathsf{Lomplex}} = \mathsf{Tp} > \mathsf{Lomplex} < \mathsf{Lompl$

Compute parameters depending on z and nu that appear in the uniform asymptotic expansions of the Hankel functions and their derivatives, except the arguments to the Airy functions.

template<typename_Tp>

```
\_gnu\_cxx::\_cyl\_hankel\_t< std::complex<\_Tp>, std::complex<\_Tp>, std::complex<\_Tp>> <math>\_hankel \leftarrow uniform (std::complex< Tp> nu, std::complex< Tp> z)
```

This routine computes the uniform asymptotic approximations of the Hankel functions and their derivatives including a patch for the case when the order equals or nearly equals the argument. At such points, Olver's expressions have zero denominators (and numerators) resulting in numerical problems. This routine averages results from four surrounding points in the complex plane to obtain the result in such cases.

template<typename _Tp >

```
__gnu_cxx::__cyl_hankel_t< std::complex< _Tp >, std::complex< _Tp >, std::complex< _Tp >> __hankel ← 
_uniform_olver (std::complex< _Tp > __nu, std::complex< _Tp > __z)
```

Compute approximate values for the Hankel functions of the first and second kinds using Olver's uniform asymptotic expansion to of order nu along with their derivatives.

```
template<typename _Tp >
  void hankel uniform outer (std::complex < Tp > nu, std::complex < Tp > z, Tp eps, std::complex <
  _Tp > &__zhat, std::complex< _Tp > &__1dnsq, std::complex< _Tp > &__num1d3, std::complex< _Tp >
  &__num2d3, std::complex< _Tp > &__p, std::complex< _Tp > &__p2, std::complex< _Tp > &__etm3h, std\leftrightarrow
  ::complex< _Tp > &__etrat, std::complex< _Tp > &_Aip, std::complex< _Tp > &__o4dp, std::complex< _Tp
  > & Aim, std::complex < Tp > & o4dm, std::complex < Tp > & od2p, std::complex < Tp > & od0dp,
  std::complex < _Tp > &__od2m, std::complex < _Tp > &__od0dm)
     Compute outer factors and associated functions of z and nu appearing in Olver's uniform asymptotic expansions of
     the Hankel functions of the first and second kinds and their derivatives. The various functions of z and nu returned by
     hankel_uniform_outer are available for use in computing further terms in the expansions.

    template<typename</li>
    Tp >

 void hankel uniform sum (std::complex < Tp > p, std::complex < Tp > p2, std::complex < Tp > ←
  __num2, std::complex< _Tp > __zetam3hf, std::complex< _Tp > _Aip, std::complex< _Tp > __o4dp, std↔
 _od0dp, std::complex< _Tp > __od2m, std::complex< _Tp > __od0dm, _Tp __eps, std::complex< _Tp > &\hookleftarrow
 _H1sum, std::complex< _Tp > &_H1psum, std::complex< _Tp > &_H2sum, std::complex< _Tp > &_H2psum)
     Compute the sums in appropriate linear combinations appearing in Olver's uniform asymptotic expansions for the Hankel
     functions of the first and second kinds and their derivatives, using up to nterms (less than 5) to achieve relative error eps.
template<typename</li>Tp >
  _Tp __harmonic_number (unsigned int n)

    template<typename</li>
    Tp >

  _Tp __hermite (unsigned int __n, _Tp __x)
     This routine returns the Hermite polynomial of order n: H_n(x).
template<typename _Tp >
  Tp hermite asymp (unsigned int n, Tp x)
     This routine returns the Hermite polynomial of large order n: H_n(x). We assume here that x >= 0.
template<typename _Tp >
   gnu cxx:: hermite t < Tp > hermite recur (unsigned int n, Tp x)
     This routine returns the Hermite polynomial of order n: H_n(x) by recursion on n.

    template<typename</li>
    Tp >

 std::vector< <u>gnu_cxx</u>:: <u>quadrature_point_t</u>< <u>_Tp</u> >> <u>_hermite_zeros</u> (unsigned int <u>__n</u>, <u>_Tp __proto=_</u>
  Tp{})
template<typename _Tp >
  • template<typename _{\mathrm{Tp}}>
 _Tp __hurwitz_zeta (_Tp __s, _Tp __a)
     Return the Hurwitz zeta function \zeta(s,a) for all s \neq 1 and a > -1.
template<typename _Tp >
  _Tp __hurwitz_zeta_euler_maclaurin (_Tp __s, _Tp __a)
     Return the Hurwitz zeta function \zeta(s,a) for all s = 1 and a > -1.
template<typename _Tp >
  std::complex < Tp > hurwitz zeta polylog ( Tp s, std::complex < Tp > a)
template<typename</li>Tp >
  std::complex < _Tp > __hydrogen (unsigned int __n, unsigned int __l, unsigned int __m, _Tp __Z, _Tp __r, _Tp
  __theta, _Tp __phi)
template<typename</li>Tp >
 _Tp __hyperg (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
     Return the hypergeometric function {}_2F_1(a,b;c;x).
template<typename _Tp >
  _Tp __hyperg_luke (_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
```

Return the hypergeometric function $_2F_1(a,b;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

```
template<typename _Tp >
  _Tp <u>__hyperg_recur</u> (int __m, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric polynomial {}_2F_1(-m,b;c;x) by Holm recursion.
template<typename_Tp>
  _Tp __hyperg_reflect (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric function {}_{2}F_{1}(a,b;c;x) by the reflection formulae in Abramowitz & Stegun formula 15.3.6 for d
      = c - a - b not integral and formula 15.3.11 for d = c - a - b integral. This assumes a, b, c != negative integer.

    template<typename</li>
    Tp >

  _Tp __hyperg_series (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric function {}_2F_1(a,b;c;x) by series expansion.
template<typename_Tp>
  _Tp __ibeta_cont_frac (_Tp __a, _Tp __b, _Tp __x)
template<typename _Tp >
   _gnu_cxx::_jacobi_ellint_t< _Tp > __jacobi_ellint (_Tp __k, _Tp __u)
template<typename _Tp >
   <u>_gnu_cxx::_jacobi_t<_Tp>__jacobi_recur</u> (unsigned int __n, _Tp __alpha1, _Tp __beta1, _Tp __x)
template<typename _Tp >
  std::complex< Tp > jacobi theta 1 (std::complex< Tp > q, std::complex< Tp > x)

    template<typename</li>
    Tp >

  _Tp __jacobi_theta_1 (_Tp __q, const _Tp __x)
template<typename _Tp >
  _Tp __jacobi_theta_1_prod (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp __jacobi_theta_1_sum (_Tp __q, _Tp __x)
template<typename _Tp >
  std::complex < \_Tp > \_\_jacobi\_theta\_2 \ (std::complex < \_Tp > \_\_q, \ std::complex < \ Tp > \quad x)
template<typename _Tp >
  _Tp __jacobi_theta_2 (_Tp __q, const _Tp __x)
\bullet \ \ \mathsf{template} \!<\! \mathsf{typename} \ \_\mathsf{Tp} >
  _Tp __jacobi_theta_2_prod (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp __jacobi_theta_2_sum (_Tp __q, _Tp __x)
template<typename _Tp >
  std::complex < _Tp > \__jacobi\_theta\_3 (std::complex < _Tp > \__q, std::complex < _Tp > \__x)
template<typename _Tp >
  _Tp __jacobi_theta_3 (_Tp __q, const _Tp __x)
template<typename _Tp >
  _Tp __jacobi_theta_3_prod (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp __jacobi_theta_3_sum (_Tp __q, _Tp __x)

    template<typename</li>
    Tp >

  std::complex < _Tp > __jacobi_theta_4 (std::complex < _Tp > __q, std::complex < _Tp > __x)
template<typename_Tp>
  _Tp __jacobi_theta_4 (_Tp __q, const _Tp __x)
template<typename _Tp >
  \_\mathsf{Tp} \, \_\_\mathsf{jacobi\_theta\_4\_prod} \, (\mathsf{\_Tp} \, \_\_\mathsf{q}, \, \mathsf{\_Tp} \, \_\_\mathsf{x})
template<typename _Tp >
  _Tp __jacobi_theta_4_sum (_Tp __q, _Tp __x)
template<typename _Tp >
  std::vector< <u>gnu_cxx</u>:: <u>quadrature_point_t</u>< _Tp >> <u>jacobi_zeros</u> (unsigned int <u>n</u>, _Tp <u>alpha1</u>, _Tp
  beta1)
```

```
template<typename _Tp >
  _Tp __jacobi_zeta (_Tp __k, _Tp __phi)

    template<typename</li>
    Tp >

  _Tp <u>__kolmogorov_</u>p (_Tp __a, _Tp __b, _Tp __x)
• template<typename _{\rm Tpa}, typename _{\rm Tp} >
  _Tp __laguerre (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of degree n, order \alpha: L_n^{(\alpha)}(x).
template<typename_Tp>
  _Tp __laguerre (unsigned int __n, _Tp __x)
      This routine returns the Laguerre polynomial of degree n: L_n(x).

    template<typename _Tpa , typename _Tp >

  _Tp __laguerre_hyperg (unsigned int __n, _Tpa __alpha1, _Tp __x)
      Evaluate the polynomial based on the confluent hypergeometric function in a safe way, with no restriction on the arguments.

    template<typename _Tpa , typename _Tp >

  Tp laguerre large n (unsigned n, Tpa alpha1, Tp x)
      This routine returns the associated Laguerre polynomial of degree n, order \alpha > -1 for large n. Abramowitz & Stegun,
      13.5.21

    template<typename</li>
    Tpa, typename
    Tp >

   <u>_gnu_cxx::_laguerre_t< _Tpa, _Tp > __laguerre_recur</u> (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of degree n, order \alpha: L_n^{(\alpha)}(x) by recursion.
template<typename _Tp >
  std::vector< __gnu_cxx::_quadrature_point_t< _Tp >> __laguerre_zeros (unsigned int __n, _Tp __alpha1)

    template<typename</li>
    Tp >

  Tp lah (unsigned int n, unsigned int k)
template<typename _Tp >
  std::vector< _Tp > __lah (unsigned int n)

    template<typename</li>
    Tp >

  _Tp <u>__lah_recur</u> (unsigned int __n, unsigned int __k)
template<typename _Tp >
  std::vector< _Tp > __lah_recur (unsigned int __n)
template<typename_Tp>
  GLIBCXX14 CONSTEXPR Tp lanczos binet1p (Tp z)
      Return the Binet function J(1+z) by the Lanczos method. The Binet function is the log of the scaled Gamma function
     log(\Gamma^*(z)) defined by
                             J(z) = log(\Gamma^*(z)) = log(\Gamma(z)) + z - \left(z - \frac{1}{2}\right)log(z) - log(2\pi)
      or
                                                  \Gamma(z) = \sqrt{2\pi}z^{z-\frac{1}{2}}e^{-z}e^{J(z)}
      where \Gamma(z) is the gamma function.
template<typename _Tp >
  GLIBCXX14 CONSTEXPR Tp lanczos log gamma1p (Tp z)
      Return the logarithm of the gamma function log(\Gamma(1+z)) by the Lanczos method.
template<typename _Tp >
   _gnu_cxx::_legendre_p_t< _Tp > __legendre_p (unsigned int __l, _Tp __x)
      Return the Legendre polynomial by upward recursion on degree l.
template<typename _Tp >
   gnu cxx:: legendre q t < Tp > legendre q (unsigned int I, Tp x)
      Return the Legendre function of the second kind by upward recursion on degree l.
template<typename_Tp>
  _Tp __legendre_q_series (unsigned int __l, _Tp __x)
```

template < typename _Tp >
 std::vector < gnu cxx:: quadrature point t < Tp >> legendre zeros (unsigned int I, Tp proto= Tp{})

template<typename_Tp>

Return the logarithm of the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

template<typename_Tp>

Return the logarithm of the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

template<typename _Tp >

Return the sign of the exponentiated logarithm of the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\begin{pmatrix} \nu \\ k \end{pmatrix} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

• template<typename_Tp>

std::complex< Tp > log binomial sign (std::complex< Tp > nu, unsigned int k)

template<typename_Tp>

template<typename_Tp>

Return the logarithm of the double factorial of the integer n.

 $\bullet \ \ template {<} typename \ _Tp >$

Return the logarithm of the factorial of the integer n.

 $\bullet \ \ template {<} typename \ _Tp >$

Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The lower Pochammer symbol is defined by

$$a^{\underline{n}} = \Gamma(a+1)/\Gamma(a-\nu+1) = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1$$

In particular, $n^{\underline{n}} = n!$. Thus this function returns

$$ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)], ln[a^{\underline{0}}] = 0$$

Many notations exist for this function:

 $(a)_{\nu}$

,

 $\left\{\begin{array}{c} a \\ \nu \end{array}\right\}$

, and others.

• template<typename $_{\mathrm{Tp}}>$

Return $log(|\Gamma(a)|)$. This will return values even for a < 0. To recover the sign of $\Gamma(a)$ for any argument use $_log_ \leftarrow gamma_sign$.

template<typename _Tp >

Return $log(\Gamma(a))$ for complex argument.

template<typename_Tp>

Return $log(\Gamma(x))$ by asymptotic expansion with Bernoulli number coefficients. This is like Sterling's approximation.

template<typename
 Tp >

Return the sign of $\Gamma(x)$. At nonpositive integers zero is returned indicating $\Gamma(x)$ is undefined.

template<typename _Tp >

template<typename _Tp >

Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The Pochammer symbol is defined for integer order by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), (a)_0 = 1$$

Thus this function returns

$$ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[(a)_0] = 0$$

Many notations exist for this function:

 $(a)_{\nu}$

(especially in the literature of special functions),

$$\begin{bmatrix} a \\ \nu \end{bmatrix}$$

, and others.

template<typename_Tp>

• template<typename $_{\rm Tp}>$

template<typename_Tp>

ullet template<typename _Tp >

Return the logarithmic integral li(x).

template<typename _Tp >

Return the logistic cumulative distribution function.

• template<typename $_{\rm Tp}>$

Return the logistic probability density function.

```
template<typename _Tp >
  _Tp __lognormal_p (_Tp __mu, _Tp __sigma, _Tp __x)
      Return the lognormal cumulative probability density function.
template<typename _Tp >
  _Tp __lognormal_pdf (_Tp __nu, _Tp __sigma, _Tp __x)
      Return the lognormal probability density function.

    template<typename</li>
    Tp >

  _Tp __normal_p (_Tp __mu, _Tp __sigma, _Tp __x)
      Return the normal cumulative probability density function.
template<typename _Tp >
  _Tp <u>__normal_pdf</u> (_Tp __mu, _Tp __sigma, _Tp __x)
      Return the normal probability density function.
template<typename _Tp >
  _Tp __owens_t (_Tp __h, _Tp __a)

    template<typename</li>
    Tp , typename
    ArgType >

  gnu_cxx::fp_promote_t< std::complex< _Tp >, _ArgType > __periodic_zeta (_ArgType __z, _Tp __s)
template<typename _Tp >
  std::complex< _Tp > __polar_pi (_Tp __rho, _Tp __phi_pi)

    template<typename</li>
    Tp >

  std::complex< _Tp > __polar_pi (_Tp __rho, const std::complex< _Tp > &__phi_pi)
template<typename_Tp>
  _Tp __polygamma (unsigned int __m, _Tp __x)
      Return the polygamma function \psi^{(m)}(x).

    template<typename _Tp >

  _Tp __polylog (_Tp __s, _Tp __x)
template<typename _Tp >
  std::complex< _Tp > __polylog (_Tp __s, std::complex< _Tp > __w)

    template<typename _Tp , typename _ArgType >

   _gnu_cxx::fp_promote_t< std::complex< _Tp >, _ArgType > __polylog_exp (_Tp __s, _ArgType __w)
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_asymp (_Tp __s, std::complex< _Tp > __w)

    template<typename</li>
    Tp >

  std::complex< _Tp > __polylog_exp_neg (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_neg (int __n, std::complex< _Tp > __w)
template<typename Tp >
  std::complex< _Tp > __polylog_exp_neg_int (int __s, std::complex< _Tp > __w)
template<typename_Tp>
  std::complex< Tp > polylog exp neg int (int s, Tp w)

    template<typename</li>
    Tp >

  std::complex< _Tp > __polylog_exp_neg_real (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_neg_real (_Tp __s, _Tp __w)

    template<typename</li>
    Tp >

  std::complex< _Tp > __polylog_exp_pos (unsigned int __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > polylog exp pos (unsigned int s, Tp w)

    template<typename</li>
    Tp >

  std::complex<\_Tp>\_\_polylog\_exp\_pos\ (\_Tp\ \_\_s,\ std::complex<\_Tp>\_\_w)
template<typename _Tp >
  std::complex< Tp > polylog exp pos int (unsigned int s, std::complex< Tp > w)
```

```
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_pos_int (unsigned int __s, _Tp __w)
template<typename _Tp >
  std::complex< _Tp > __polylog_exp_pos_real (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > polylog exp pos real (Tp s, Tp w)

    template<typename _PowTp , typename _Tp >

  _Tp __polylog_exp_sum (_PowTp __s, _Tp __w)
template<typename _Tp >
    gnu cxx:: hermite he t< Tp> prob hermite recur (unsigned int n, Tpx)
      This routine returns the Probabilists Hermite polynomial of order n: He_n(x) by recursion on n.

    template<typename</li>
    Tp >

  _Tp <u>radial_jacobi</u> (unsigned int __n, unsigned int __m, _Tp __rho)
template<typename_Tp>
  std::vector< <u>gnu_cxx</u>:: <u>quadrature_point_t</u>< _Tp >> <u>radial_jacobi_zeros</u> (unsigned int __n, unsigned int
   __m)

    template<typename</li>
    Tp >

  _Tp __rice_pdf (_Tp __nu, _Tp __sigma, _Tp __x)
      Return the Rice probability density function.

    template<typename</li>
    Tp >

  _Tp __riemann_zeta (_Tp __s)
      Return the Riemann zeta function \zeta(s).
template<typename_Tp>
  _Tp __riemann_zeta_euler_maclaurin (_Tp __s)
      Evaluate the Riemann zeta function \zeta(s) by an alternate series for s > 0.
template<typename _Tp >
  _Tp __riemann_zeta_glob (_Tp __s)

    template<typename _Tp >

  _Tp __riemann_zeta_laurent (_Tp __s)
      Compute the Riemann zeta function \zeta(s) by Laurent expansion about s = 1.

    template<typename</li>
    Tp >

  _Tp __riemann_zeta_m_1 (_Tp __s)
      Return the Riemann zeta function \zeta(s) - 1.

    template<typename</li>
    Tp >

  _Tp __riemann_zeta_m_1_glob (_Tp __s)
      Evaluate the Riemann zeta function by series for all s != 1. Convergence is great until largish negative numbers. Then the
      convergence of the > 0 sum gets better.
template<typename _Tp >
  _Tp __riemann_zeta_product (_Tp __s)
      Compute the Riemann zeta function \zeta(s) using the product over prime factors.

    template<typename</li>
    Tp >

  _Tp __riemann_zeta_sum (_Tp __s)
      Compute the Riemann zeta function \zeta(s) by summation for s > 1.
template<typename _Tp >
  Tp rising factorial (Tp a, int n)
      Return the (upper) Pochhammer function or the rising factorial function. The Pochammer symbol is defined by
```

$$a^{\overline{n}} = \Gamma(a+\nu)/\Gamma(\nu) = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1$$

Many notations exist for this function:

 $(a)_{\nu}$

```
, (especially in the literature of special functions),
                                                               \left[\begin{array}{c} a \\ n \end{array}\right]
      , and others.
• template<typename _{\rm Tp}>
  _Tp __rising_factorial (_Tp __a, _Tp __nu)
      Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by
                                                        a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)
      Many notations exist for this function:
                                                                (a)_{\nu}
      , (especially in the literature of special functions),
      , and others.
template<typename _Tp >
  _Tp <u>__sin_</u>pi (_Tp __x)
template<typename _Tp >
  std::complex< _Tp > __sin_pi (std::complex< _Tp > __z)
template<typename _Tp >
    _{gnu}cxx::fp_{promote}t< _{Tp} > _{sinc} (_{Tp} _{x})
      Return the sinus cardinal function
                                                         sinc(x) = \frac{\sin(x)}{x}
template<typename _Tp >
   __gnu_cxx::fp_promote_t< _Tp > __sinc_pi (_Tp __x)
      Return the reperiodized sinus cardinal function
                                                       sinc_{\pi}(x) = \frac{\sin(\pi x)}{\pi x}
template<typename _Tp >
   __gnu_cxx::__sincos_t< _Tp > __sincos (_Tp __x)
template<>
   __gnu_cxx::__sincos_t< float > __sincos (float __x)
template<>
    gnu cxx:: sincos t < double > sincos (double x)
template<>
   __gnu_cxx::__sincos_t< long double > __sincos (long double __x)
template<typename</li>Tp >
   __gnu_cxx::__sincos_t< _Tp > __sincos_pi (_Tp __x)
• template<typename _Tp >
  std::pair < _Tp, _Tp > \underline{_sincosint} (_Tp \underline{_x})
      This function returns the sine Si(x) and cosine Ci(x) integrals as a pair.
template<typename _Tp >
  void <u>sincosint_asymp</u> (_Tp __t, _Tp &_Si, _Tp &_Ci)
      This function computes the sine Si(x) and cosine Ci(x) integrals by asymptotic series summation for positive argument.
template<typename</li>Tp >
  void sincosint cont frac (Tp t, Tp & Si, Tp & Ci)
      This function computes the sine Si(x) and cosine Ci(x) integrals by continued fraction for positive argument.
template<typename _Tp >
  void __sincosint_series (_Tp __t, _Tp &_Si, _Tp &_Ci)
```

```
This function computes the sine Si(x) and cosine Ci(x) integrals by series summation for positive argument.
template<typename _Tp >
  Tp sinh pi (Tp x)
template<typename_Tp>
  std::complex< _Tp > __sinh_pi (std::complex< _Tp > __z)

    template<typename</li>
    Tp >

  __gnu_cxx::fp_promote_t< _Tp > __sinhc (_Tp __x)
      Return the hyperbolic sinus cardinal function
                                                   sinhc(x) = \frac{\sinh(x)}{x}
• template<typename _{\rm Tp}>
  gnu cxx::fp promote t< Tp> sinhc pi (Tpx)
      Return the reperiodized hyperbolic sinus cardinal function
                                                 sinhc_{\pi}(x) = \frac{\sinh(\pi x)}{\pi x}
template<typename _Tp >
  _Tp __sinhint (const _Tp __x)
      Return the hyperbolic sine integral Shi(x).
template<typename _Tp >
  _Tp __sph_bessel (unsigned int __n, _Tp __x)
      Return the spherical Bessel function j_n(x) of order n and non-negative real argument x.
template<typename _Tp >
  std::complex< _Tp > __sph_bessel (unsigned int __n, std::complex< _Tp > __z)
      Return the complex spherical Bessel function.
template<typename</li>Tp >
    _gnu_cxx::__sph_mod_bessel_t< unsigned int, _Tp, _Tp > __sph_bessel_ik (unsigned int __n, _Tp __x)
      Compute the spherical modified Bessel functions i_n(x) and k_n(x) and their first derivatives i'_n(x) and k'_n(x) respectively.
template<typename _Tp >
   <u>__gnu_cxx::__sph_bessel_t</u>< unsigned int, _Tp, _Tp > <u>__sph_bessel_j</u>n (unsigned int __n, _Tp __x)
      Compute the spherical Bessel j_n(x) and Neumann n_n(x) functions and their first derivatives j_n(x) and n'_n(x) respec-
      tively.
template<typename _Tp >
    gnu cxx:: sph bessel t< unsigned int, Tp, std::complex< Tp >> sph bessel in neg arg (unsigned
  int __n, _Tp __x)
template<typename_Tp>
    gnu cxx:: sph hankel t< unsigned int, std::complex< Tp >, std::complex< Tp >> sph hankel (un-
  signed int __n, std::complex< _Tp > __z)
     Helper to compute complex spherical Hankel functions and their derivatives.
template<typename</li>Tp >
```

```
std::complex< _Tp > __sph_hankel_1 (unsigned int __n, _Tp __x)
```

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$.

template<typename Tp >

$$std::complex<_Tp>__sph_hankel_1 \ (unsigned\ int\ __n,\ std::complex<_Tp>__z)$$

Return the complex spherical Hankel function of the first kind.

template<typename _Tp >

```
std::complex< Tp > sph hankel 2 (unsigned int n, Tp x)
```

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$.

template<typename _Tp >

```
std::complex< Tp > sph hankel 2 (unsigned int n, std::complex< Tp > z)
```

Return the complex spherical Hankel function of the second kind.

template<typename _Tp >

Return the spherical harmonic function.

template<typename _Tp >

Return the spherical associated Legendre function.

template<typename _Tp >

Return the spherical Neumann function $n_n(x)$ of order n and non-negative real argument x.

template<typename_Tp>

$$std::complex < _Tp > \underline{\hspace{0.5cm}} sph_neumann (unsigned int \underline{\hspace{0.5cm}} n, std::complex < _Tp > \underline{\hspace{0.5cm}} z)$$

Return the complex spherical Neumann function.

template<typename _Tp >

Return the Binet function J(1+z) by the Spouge method. The Binet function is the log of the scaled Gamma function $log(\Gamma^*(z))$ defined by

$$J(z) = \log(\Gamma^*(z)) = \log(\Gamma(z)) + z - \left(z - \frac{1}{2}\right)\log(z) - \log(2\pi)$$

or

$$\Gamma(z) = \sqrt{2\pi}z^{z-\frac{1}{2}}e^{-z}e^{J(z)}$$

where $\Gamma(z)$ is the gamma function.

template<typename_Tp>

Return the logarithm of the gamma function $log(\Gamma(1+z))$ by the Spouge algorithm:

$$\Gamma(z+1) = (z+a)^{z+1/2} e^{-z-a} \left[\sqrt{2\pi} + \sum_{k=1}^{\lceil a \rceil + 1} \frac{c_k(a)}{z+k} \right]$$

where

$$c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}$$

and the error is bounded by

$$\epsilon(a) < a^{-1/2} (2\pi)^{-a-1/2}$$

template<typename _Tp >

template<typename_Tp>

• template<typename $_{\rm Tp}>$

 $\bullet \ \ template {<} typename \ _Tp >$

 $\bullet \ \ template\!<\!typename\,_Tp>$

template<typename Tp >

template<typename_Tp>

template<typename_Tp>

```
template<typename _Tp >
  _Tp <u>__stirling_2_series</u> (unsigned int __n, unsigned int __m)

    template<typename</li>
    Tp >

  _Tp __student_t_p (_Tp __t, unsigned int __nu)
      Return the Students T probability function.
template<typename_Tp>
  _Tp __student_t_pdf (_Tp __t, unsigned int __nu)
      Return the Students T probability density.
template<typename _Tp >
  _Tp __student_t_q (_Tp __t, unsigned int __nu)
      Return the complement of the Students T probability function.
template<typename</li>Tp >
  _Tp <u>tan_pi</u> (_Tp __x)
template<typename</li>Tp >
  std::complex< _Tp > __tan_pi (std::complex< _Tp > __z)
template<typename _Tp >
  _Tp <u>__tanh_</u>pi (_Tp __x)

    template<typename</li>
    Tp >

  std::complex< _Tp > __tanh_pi (std::complex< _Tp > __z)
template<typename _Tp >
  _Tp __tgamma (_Tp __a, _Tp __x)
```

Return the upper incomplete gamma function. The lower incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

template<typename _Tp >

Return the lower incomplete gamma function. The lower incomplete gamma function is defined by

$$\gamma(a,x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

template<typename _Tp > _Tp <u>__theta_1</u> (_Tp __nu, _Tp __x) template<typename _Tp > _Tp <u>__theta_</u>2 (_Tp __nu, _Tp __x) template<typename_Tp> _Tp __theta_2_asymp (_Tp __nu, _Tp __x) template<typename _Tp > _Tp __theta_2_sum (_Tp __nu, _Tp __x)

template<typename _Tp >

• template<typename $_{\rm Tp}>$

template<typename _Tp >

• template<typename $_{\rm Tp}>$

template<typename _Tp >

template<typename_Tp >
_Tp __theta_n (_Tp __k, _Tp __x)
template<typename_Tp >
_Tp __theta_s (_Tp __k, _Tp __x)
template<typename_Tp >
_Tp __tricomi_u (_Tp __a, _Tp __c, _Tp __x)

Return the Tricomi confluent hypergeometric function

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_{1}F_{1}(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_{1}F_{1}(a-c+1;2-c;x)$$

template<typename
 Tp >

Return the Tricomi confluent hypergeometric function

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_{1}F_{1}(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_{1}F_{1}(a-c+1;2-c;x)$$

•

 $\bullet \ \ \mathsf{template} \!<\! \mathsf{typename} \ _\mathsf{Tp} >$

Return the Weibull cumulative probability density function.

template<typename _Tp >

Return the Weibull probability density function.

template<typename_Tp>

template<typename _Tp >

• template<typename _Tp >

Variables

- template<typename _Tp >
 constexpr int __max_FGH = _Airy_series<_Tp>:: N FGH
- template<

template<>

constexpr int
$$\max FGH < \text{float} > = 15$$

- constexpr size_t _Num_Euler_Maclaurin_zeta = 100
- constexpr size_t _Num_Stieltjes = 21
- constexpr Factorial table < long double > S double factorial table [301]
- constexpr long double _S_Euler_Maclaurin_zeta [_Num_Euler_Maclaurin_zeta]
- constexpr _Factorial_table < long double > _S_factorial_table [171]
- constexpr unsigned long long _S_harmonic_denom [_S_num_harmonic_numer]
- constexpr unsigned long long _S_harmonic_numer [_S_num_harmonic_numer]
- constexpr Factorial table< long double > S neg double factorial table [999]
- template<typename_Tp>

constexpr std::size_t _S_num_double_factorials = 0

template<>

constexpr std::size t S num double factorials < double > = 301

```
template<>
  constexpr std::size t S num double factorials < float > = 57
template<>
  constexpr std::size_t _S_num_double_factorials< long double > = 301
template<typename _Tp >
  constexpr std::size t S num factorials = 0
template<>
  constexpr std::size_t _S_num_factorials< double > = 171
template<>
  constexpr std::size t S num factorials < float > = 35
template<>
  constexpr std::size_t _S_num_factorials< long double > = 171

    constexpr unsigned long long _S_num_harmonic_numer = 29

template<typename _Tp >
  constexpr std::size_t _S_num_neg_double_factorials = 0
template<>
  constexpr std::size t S num neg double factorials < double > = 150
  constexpr std::size_t _S_num_neg_double_factorials< float > = 27
template<>
  constexpr std::size t S num neg double factorials < long double > = 999
• constexpr size_t _S_num_zetam1 = 121
• constexpr long double S Stieltjes [ Num Stieltjes]

    constexpr long double _S_zetam1 [_S_num_zetam1]
```

8.3.1 Detailed Description

Implementation-space details.

8.3.2 Function Documentation

```
8.3.2.1 __airy()
```

Compute the Airy functions Ai(x) and Bi(x) and their first derivatives Ai'(x) and Bi(x) respectively.

Parameters

_~	The argument of the Airy functions.
_Z	

Returns

A struct containing the Airy functions of the first and second kinds and their derivatives.

Definition at line 475 of file sf_mod_bessel.tcc.

```
References __cyl_bessel_ik(), and __cyl_bessel_jn().
```

Referenced by __airy_ai(), __airy_bi(), __fock_airy(), and __hermite_asymp().

8.3.2.2 __airy_ai()

Return the complex Airy Ai function.

Definition at line 2629 of file sf_airy.tcc.

References airy().

8.3.2.3 __airy_arg()

Compute the arguments for the Airy function evaluations carefully to prevent premature overflow. Note that the major work here is in $safe_div$. A faster, but less safe implementation can be obtained without use of safe_div.

Parameters

in	num2d3	$ u^{-2/3}$ - output from hankel_params
in	zeta	zeta in the uniform asymptotic expansions - output from hankel_params
out	argp	$e^{+i2\pi/3} u^{2/3}\zeta$
out	argm	$e^{-i2\pi/3} u^{2/3}\zeta$

Exceptions

std::runtime_error	if unable to compute Airy function arguments
--------------------	--

Definition at line 214 of file sf_hankel.tcc.

Referenced by __hankel_uniform_outer().

8.3.2.4 __airy_bi()

Return the complex Airy Bi function.

Definition at line 2641 of file sf_airy.tcc.

References __airy().

8.3.2.5 __assoc_laguerre()

This routine returns the associated Laguerre polynomial of degree n, order m: $L_n^{(m)}(x)$.

The associated Laguerre polynomial is defined for integral order $\alpha=m$ by:

$$L_n^{(m)}(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Template Parameters

_Тра	The type of the order.	
_Тр	The type of the parameter	

Parameters

n	The degree
alpha	The order

x	The argument
---	--------------

Returns

The value of the associated Laguerre polynomial of order n, degree m, and argument x.

Definition at line 367 of file sf_laguerre.tcc.

Referenced by __hydrogen().

8.3.2.6 __assoc_legendre_p()

```
template<typename _Tp >
    __gnu_cxx::__assoc_legendre_p_t<_Tp> std::__detail::__assoc_legendre_p (
        unsigned int __l,
        unsigned int __m,
        _Tp __x,
        _Tp __phase = _Tp{+1} )
```

Return the associated Legendre function by recursion on $\it l$ and downward recursion on m.

The associated Legendre function is derived from the Legendre function $P_l(x)$ by the Rodrigues formula:

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$$

Note

The Condon-Shortley phase factor $(-1)^m$ is absent by default. $P_l^m(x)=0$ if m>l.

Parameters

/	The degree of the associated Legendre function. $l>=0$.
m	The order of the associated Legendre function.
x	The argument of the associated Legendre function.
phase	The phase of the associated Legendre function. Use -1 for the Condon-Shortley phase convention.

Definition at line 241 of file sf_legendre.tcc.

References __legendre_p().

8.3.2.7 __assoc_legendre_q()

Definition at line 299 of file sf_legendre.tcc.

8.3.2.8 __bell() [1/2]

Return a vector of the Bell numbers.

Definition at line 509 of file sf stirling.tcc.

Referenced by bell(), bell series(), and gnu cxx::bell().

8.3.2.9 __bell() [2/2]

Evaluate the Bell polynomial

$$B(n) = \sum_{k=0}^{n} S_n^{(k)} x^k$$

where $S_n^{\left(k\right)}$ are the Stirling numbers of the second kind.

Definition at line 521 of file sf_stirling.tcc.

References __bell().

8.3.2.10 __bell_series()

Return a vector of the Bell numbers by summation.

$$B(n) = \sum_{k=0}^{n} S_n^{(k)} = \sum_{k=1}^{n} \binom{n-1}{k-1} B(n-k)$$

where $S_n^{\left(k\right)}$ are the Stirling numbers of the second kind.

Todo Test for blowup in Bell number summation.

Definition at line 490 of file sf stirling.tcc.

References __bell().

8.3.2.11 __bernoulli() [1/2]

This returns Bernoulli number B_n .

Parameters

Returns

The Bernoulli number of order n.

Definition at line 128 of file sf_bernoulli.tcc.

Referenced by __euler(), and __gnu_cxx::bernoulli().

8.3.2.12 __bernoulli() [2/2]

Return the Bernoulli polynomial $B_n(x)$ of order n at argument x.

The values at 0 and 1 are equal to the corresponding Bernoulli number:

$$B_n(0) = B_n(1) = B_n$$

The derivative is proportional to the previous polynomial:

$$B_n'(x) = n * B_{n-1}(x)$$

The series expansion is:

$$B_n(x) = \sum_{k=0}^{n} B_k binomnkx^{n-k}$$

A useful argument promotion is:

$$B_n(x+1) - B_n(x) = n * x^{n-1}$$

Definition at line 168 of file sf_bernoulli.tcc.

References __binomial().

8.3.2.13 __bernoulli_2n()

This returns Bernoulli number B_2n at even integer arguments 2n.

Parameters

```
 \begin{array}{|c|c|c|c|c|} \hline \_ \leftarrow & \text{the half-order n of the Bernoulli number.} \\ \hline \_ n & \end{array}
```

Returns

The Bernoulli number of order 2n.

Definition at line 140 of file sf_bernoulli.tcc.

8.3.2.14 __bernoulli_series()

```
template<typename _Tp > _GLIBCXX14_CONSTEXPR _Tp std::__detail::__bernoulli_series ( unsigned int __n )
```

This returns Bernoulli numbers from a table or by summation for larger values.

$$B_{2n} = (-1)^{n+1} 2 \frac{(2n)!}{(2\pi)^{2n}} \zeta(2n)$$

.

Note that

$$\zeta(2n) - 1 = (-1)^{n+1} \frac{(2\pi)^{2n}}{(2n)!} B_{2n} - 2$$

are small and rapidly decreasing finctions of n.

Parameters

_←	the order n of the Bernoulli number.
_n	

Returns

The Bernoulli number of order n.

Definition at line 65 of file sf_bernoulli.tcc.

8.3.2.15 __beta()

Return the beta function B(a, b).

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

_~	The first argument of the beta function.
_a	
_~	The second argument of the beta function.
_b	

Returns

The beta function.

Definition at line 215 of file sf_beta.tcc.

References __beta_gamma(), and __beta_lgamma().

Referenced by __fisher_f_pdf(), __gnu_cxx::gamma_pdf(), __gnu_cxx::jacobi(), __gnu_cxx::jacobif(), __gnu_cxx::

8.3.2.16 __beta_gamma()

Return the beta function: B(a, b).

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Parameters

_~	The first argument of the beta function.
_a	
_←	The second argument of the beta function.
_b	

Returns

The beta function.

Definition at line 77 of file sf_beta.tcc.

References __gamma().

Referenced by __beta().

8.3.2.17 __beta_inc()

Return the regularized incomplete beta function, $I_x(a,b)$, of arguments a, b, and x.

The regularized incomplete beta function is defined by:

$$I_x(a,b) = \frac{B_x(a,b)}{B(a,b)}$$

where

$$B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$$

is the non-regularized beta function and B(a,b) is the usual beta function.

Parameters

_~	The first parameter
_a	
_~	The second parameter
_b	
_~	The argument
_X	

Definition at line 311 of file sf_beta.tcc.

References __ibeta_cont_frac(), __log_gamma(), and __log_gamma_sign().

Referenced by $_$ beta_p(), $_$ binomial_p(), $_$ binomial_q(), $_$ fisher_f_p(), $_$ fisher_f_q(), $_$ student_t_p(), and $_$ \leftarrow student_t_q().

8.3.2.18 __beta_lgamma()

Return the beta function B(a,b) using the log gamma functions.

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

_~	The first argument of the beta function.
_a	
_~	The second argument of the beta function.
_b	

Returns

The beta function.

Definition at line 125 of file sf_beta.tcc.

References __log_gamma(), and __log_gamma_sign().

Referenced by __beta().

8.3.2.19 __beta_p()

Definition at line 705 of file sf_distributions.tcc.

References __beta_inc().

8.3.2.20 __beta_product()

Return the beta function B(x, y) using the product form.

The beta function is defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Here, we employ the product form:

$$B(a,b) = \frac{a+b}{ab} \prod_{k=1}^{\infty} \frac{1 + (a+b)/k}{(1+a/k)(1+b/k)} = \frac{a+b}{ab} \prod_{k=1}^{\infty} \left[1 - \frac{ab}{(a+k)(b+k)} \right]$$

_~	The first argument of the beta function.
_a	
-←	The second argument of the beta function.
_b	

Returns

The beta function.

Definition at line 179 of file sf_beta.tcc.

```
8.3.2.21 __binomial() [1/2]
```

Return the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

Parameters

_←	The first argument of the binomial coefficient.
_n	
_~	The second argument of the binomial coefficient.
_k	

Returns

The binomial coefficient.

Definition at line 2540 of file sf_gamma.tcc.

Referenced by __bernoulli().

8.3.2.22 __binomial() [2/2]

Return the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

.

Parameters

nu	The real first argument of the binomial coefficient.
k	The second argument of the binomial coefficient.

Returns

The binomial coefficient.

Definition at line 2600 of file sf_gamma.tcc.

 $References \underline{\hspace{0.4cm}} gamma(), \underline{\hspace{0.4cm}} log_binomial(), \underline{\hspace{0.4cm}} log_binomial_sign(), and std::\underline{\hspace{0.4cm}} detail::\underline{\hspace{0.4cm}} Factorial_table < \underline{\hspace{0.4cm}} Tp >::\underline{\hspace{0.4cm}} n.$

8.3.2.23 __binomial_p()

Return the binomial cumulative distribution function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$P(k|n,p) = I_p(k,n-k+1)$$

_~	
_p	
_~	
_n	
_←	
_k	

Definition at line 614 of file sf_distributions.tcc.

References __beta_inc().

8.3.2.24 __binomial_pdf()

Return the binomial probability mass function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$f(k|n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Parameters

_←	
_p	
_~	
_n	
_~	
k	

Definition at line 578 of file sf_distributions.tcc.

8.3.2.25 __binomial_q()

```
template<typename _Tp >
_Tp std::__detail::__binomial_q (
```

Return the complementary binomial cumulative distribution function.

The binomial cumulative distribution function is related to the incomplete beta function:

$$Q(k|n,p) = I_{1-p}(n-k+1,k)$$

Parameters

_←	
_p	
_←	
_n	
_~	
_k	

Definition at line 644 of file sf_distributions.tcc.

References __beta_inc().

8.3.2.26 __bose_einstein()

Return the Bose-Einstein integral of integer or real order s and real argument x.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
http://dlmf.nist.gov/25.12.16
```

$$G_s(x) = \frac{1}{\Gamma(s+1)} \int_0^\infty \frac{t^s}{e^{t-x} - 1} dt = Li_{s+1}(e^x)$$

Parameters

_←	The order $s \ge 0$.
_s	
_~	The real argument.
X	

Returns

The real Bose-Einstein integral G_s(x),

Definition at line 1493 of file sf_polylog.tcc.

References __polylog_exp().

8.3.2.27 __cauchy_p()

Definition at line 697 of file sf_distributions.tcc.

8.3.2.28 __chebyshev_recur()

Return a Chebyshev polynomial of non-negative order n and real argument x by the recursion

$$C_n(x) = 2xC_{n-1} - C_{n-2}$$

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_~	The real argument $-1 \le x \le +1$
_x	
_C0	The value of the zeroth-order Chebyshev polynomial at \boldsymbol{x}
_C1	The value of the first-order Chebyshev polynomial at \boldsymbol{x}

Definition at line 60 of file sf_chebyshev.tcc.

Referenced by __chebyshev_t(), __chebyshev_u(), __chebyshev_v(), and __chebyshev_w().

8.3.2.29 __chebyshev_t()

Return the Chebyshev polynomial of the first kind $T_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the first kind is defined by:

$$T_n(x) = \cos(n\theta)$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Tp	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_←	The real argument $-1 \le x \le +1$
_x	

Definition at line 88 of file sf_chebyshev.tcc.

References __chebyshev_recur().

8.3.2.30 __chebyshev_u()

Return the Chebyshev polynomial of the second kind $U_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the second kind is defined by:

$$U_n(x) = \frac{\sin[(n+1)\theta]}{\sin(\theta)}$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Тр	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_~	The real argument $-1 \le x \le +1$
_X	

Definition at line 118 of file sf_chebyshev.tcc.

References __chebyshev_recur().

8.3.2.31 __chebyshev_v()

Return the Chebyshev polynomial of the third kind $V_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the third kind is defined by:

$$V_n(x) = \frac{\cos\left[\left(n + \frac{1}{2}\right)\theta\right]}{\cos\left(\frac{\theta}{2}\right)}$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

Parameters

_←	The non-negative integral order
_n	
_~	The real argument $-1 <= x <= +1$
_X	

Definition at line 149 of file sf_chebyshev.tcc.

References __chebyshev_recur().

8.3.2.32 __chebyshev_w()

Return the Chebyshev polynomial of the fourth kind $W_n(x)$ of non-negative order n and real argument x.

The Chebyshev polynomial of the fourth kind is defined by:

$$W_n(x) = \frac{\sin\left[\left(n + \frac{1}{2}\right)\theta\right]}{\sin\left(\frac{\theta}{2}\right)}$$

where $\theta = \arccos(x)$, $-1 \le x \le +1$.

Template Parameters

_Tp	The real type of the argument
-----	-------------------------------

Parameters

_~	The non-negative integral order
_n	
_~	The real argument $-1 \le x \le +1$
_x	

Definition at line 180 of file sf_chebyshev.tcc.

References __chebyshev_recur().

8.3.2.33 __chi_squared_pdf()

Return the chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is less than the value χ^2 .

The chi-squared propability function is related to the normalized lower incomplete gamma function:

$$P(\chi^2|\nu) = \Gamma_P(\frac{\nu}{2}, \frac{\chi^2}{2})$$

Definition at line 75 of file sf distributions.tcc.

References __gamma_p().

8.3.2.34 __chi_squared_pdfc()

Return the complementary chi-squared propability function. This returns the probability that the observed chi-squared for a correct model is greater than the value χ^2 .

The complementary chi-squared propability function is related to the normalized upper incomplete gamma function:

$$Q(\chi^2|\nu) = \Gamma_Q(\frac{\nu}{2}, \frac{\chi^2}{2})$$

Definition at line 99 of file sf distributions.tcc.

References __gamma_q().

8.3.2.35 __chshint()

```
template<typename _Tp >
std::pair<_Tp, _Tp> std::__detail::__chshint (
    _Tp __x,
    _Tp & _Chi,
    _Tp & _Shi )
```

This function returns the hyperbolic cosine Ci(x) and hyperbolic sine Si(x) integrals as a pair.

The hyperbolic cosine integral is defined by:

$$Chi(x) = \gamma_E + \log(x) + \int_0^x dt \frac{\cosh(t) - 1}{t}$$

The hyperbolic sine integral is defined by:

$$Shi(x) = \int_0^x dt \frac{\sinh(t)}{t}$$

Definition at line 166 of file sf_hypint.tcc.

References __chshint_cont_frac(), and __chshint_series().

8.3.2.36 __chshint_cont_frac()

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by continued fraction for positive argument.

Definition at line 53 of file sf_hypint.tcc.

Referenced by __chshint().

8.3.2.37 __chshint_series()

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by series summation for positive argument.

Definition at line 96 of file sf_hypint.tcc.

Referenced by __chshint().

8.3.2.38 __clamp_0_m2pi()

Definition at line 185 of file sf_polylog.tcc.

Referenced by $__polylog_exp_neg_int()$, $__polylog_exp_neg_real()$, $__polylog_exp_pos_int()$, and $__polylog_exp_\leftrightarrow pos_real()$.

8.3.2.39 __clamp_pi()

Definition at line 171 of file sf_polylog.tcc.

Referenced by __polylog_exp_neg_int(), __polylog_exp_neg_real(), __polylog_exp_pos_int(), and __polylog_exp_\top pos_real().

```
8.3.2.40 __clausen() [1/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__clausen (
    unsigned int __m,
    std::complex< _Tp > __z )
```

Return Clausen's function of integer order m and complex argument z. The notation and connection to polylog is from Wikipedia

Parameters

_~	The non-negative integral order.
_m	
_←	The complex argument.
_Z	

Returns

The complex Clausen function.

Definition at line 1288 of file sf_polylog.tcc.

References __polylog_exp().

8.3.2.41 __clausen() [2/2]

Return Clausen's function of integer order m and real argument x. The notation and connection to polylog is from Wikipedia

_~	The integer order $m >= 1$.
_m	
_~	The real argument.
_X	

Returns

The Clausen function.

Definition at line 1315 of file sf_polylog.tcc.

References __polylog_exp().

```
8.3.2.42 __clausen_cl() [1/2]
```

Return Clausen's cosine sum Cl_m for positive integer order m and complex argument w.

See also

https://en.wikipedia.org/wiki/Clausen_function

Parameters

_~	The integer order $m >= 1$.
_m	
_~	The complex argument.
_Z	

Returns

The Clausen cosine sum Cl_m(w),

Definition at line 1399 of file sf_polylog.tcc.

References __polylog_exp().

Return Clausen's cosine sum Cl_m for positive integer order m and real argument w.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
```

Parameters

_~	The integer order $m >= 1$.
_m	
_←	The real argument.
_X	

Returns

The real Clausen cosine sum Cl_m(w),

Definition at line 1427 of file sf_polylog.tcc.

References __polylog_exp().

Return Clausen's sine sum SI_m for positive integer order m and complex argument z.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
```

Parameters

_~	The integer order $m >= 1$.
_m	
_ ←	The complex argument.
Z	

Returns

The Clausen sine sum SI_m(w),

Definition at line 1343 of file sf_polylog.tcc.

References __polylog_exp().

```
8.3.2.45 __clausen_sl() [2/2]
```

Return Clausen's sine sum SI_m for positive integer order m and real argument x.

See also

```
https://en.wikipedia.org/wiki/Clausen_function
```

Parameters

_←	The integer order $m \ge 1$.
_m	
_~	The real argument.
_X	

Returns

The Clausen sine sum SI_m(w),

Definition at line 1371 of file sf_polylog.tcc.

References __polylog_exp().

8.3.2.46 __comp_ellint_1()

Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.

The complete elliptic integral of the first kind is defined as

$$K(k) = F(k, \pi/2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

where $F(\boldsymbol{k},\phi)$ is the incomplete elliptic integral of the first kind.

_~	The modulus of the complete elliptic function.
_k	

Returns

The complete elliptic function of the first kind.

Definition at line 592 of file sf_ellint.tcc.

References __comp_ellint_rf().

Referenced by $_$ ellint $_1()$, $_$ ellnome $_k()$, $_$ heuman $_$ lambda $_0()$, $_$ jacobi $_$ zeta $_0()$, $_$ theta $_$

8.3.2.47 __comp_ellint_2()

```
\label{template} $$ \ensuremath{\sf template}$ < typename $$_Tp > $$ $$ $$ _comp_ellint_2 ($$ $$ _Tp $$ __k )$
```

Return the complete elliptic integral of the second kind E(k) using the Carlson formulation.

The complete elliptic integral of the second kind is defined as

$$E(k, \pi/2) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta}$$

Parameters

 $\begin{array}{c|c} & \leftarrow & \text{The modulus of the complete elliptic function.} \\ k & & \end{array}$

Returns

The complete elliptic function of the second kind.

Definition at line 666 of file sf_ellint.tcc.

References __ellint_rd(), and __ellint_rf().

Referenced by __ellint_2().

8.3.2.48 __comp_ellint_3()

Return the complete elliptic integral of the third kind $\Pi(k,\nu)=\Pi(k,\nu,\pi/2)$ using the Carlson formulation.

The complete elliptic integral of the third kind is defined as

$$\Pi(k,\nu) = \int_0^{\pi/2} \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

Parameters

k	The elliptic modulus.
nu	The characteristic.

Returns

The complete elliptic function of the third kind.

Definition at line 756 of file sf_ellint.tcc.

References __ellint_rf(), and __ellint_rj().

Referenced by __ellint_3().

8.3.2.49 __comp_ellint_d()

$$\label{template} $$ \ensuremath{\sf template}$ < typename $$_Tp > $$ $$ $$ _comp_ellint_d ($$ $$ _Tp $$ _k) $$$$

Return the complete Legendre elliptic integral D.

Definition at line 862 of file sf ellint.tcc.

References __ellint_rd().

```
8.3.2.50 __comp_ellint_rf()
```

Definition at line 252 of file sf_ellint.tcc.

Referenced by __comp_ellint_1(), and __ellint_rf().

8.3.2.51 __comp_ellint_rg()

Definition at line 368 of file sf_ellint.tcc.

Referenced by __ellint_rg().

8.3.2.52 __conf_hyperg()

Return the confluent hypergeometric function ${}_1F_1(a;c;x)=M(a,c,x)$.

Parameters

_~	The <i>numerator</i> parameter.
_a	
_←	The denominator parameter.
_c	
_←	The argument of the confluent hypergeometric function.
_X	

Returns

The confluent hypergeometric function.

Definition at line 337 of file sf_hyperg.tcc.

 $References \underline{\hspace{0.3cm}} conf_hyperg_luke(), \underline{\hspace{0.3cm}} conf_hyperg_series(), and \underline{\hspace{0.3cm}} gnu_cxx::\underline{\hspace{0.3cm}} fp_is_integer().$

Referenced by __tricomi_u_naive().

8.3.2.53 __conf_hyperg_lim()

Return the confluent hypergeometric limit function ${}_{0}F_{1}(-;c;x)$.

Parameters

_~	The denominator parameter.
_c	
_~	The argument of the confluent hypergeometric limit function.
_X	

Returns

The confluent limit hypergeometric function.

Definition at line 163 of file sf_hyperg.tcc.

References conf hyperg lim series(), and gnu cxx:: fp is integer().

8.3.2.54 __conf_hyperg_lim_series()

This routine returns the confluent hypergeometric limit function by series expansion.

$$_{0}F_{1}(-;c;x) = \Gamma(c) \sum_{n=0}^{\infty} \frac{1}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

If a and b are integers and a < 0 and either b > 0 or b < a then the series is a polynomial with a finite number of terms.

_~	The "denominator" parameter.
_c	
_~	The argument of the confluent hypergeometric limit function.
_X	

Returns

The confluent hypergeometric limit function.

Definition at line 130 of file sf_hyperg.tcc.

Referenced by __conf_hyperg_lim().

8.3.2.55 __conf_hyperg_luke()

Return the hypergeometric function ${}_1F_1(a;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

Like the case of the 2F1 rational approximations, these are probably guaranteed to converge for x < 0, barring gross numerical instability in the pre-asymptotic regime.

Definition at line 231 of file sf_hyperg.tcc.

Referenced by __conf_hyperg().

8.3.2.56 __conf_hyperg_series()

This routine returns the confluent hypergeometric function by series expansion.

$$_{1}F_{1}(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

_~	The "numerator" parameter.
_a	
_←	The "denominator" parameter.
_c	
_←	The argument of the confluent hypergeometric function.
_x	

Returns

The confluent hypergeometric function.

Definition at line 196 of file sf_hyperg.tcc.

Referenced by __conf_hyperg().

```
8.3.2.57    __cos_pi() [1/2]

template<typename _Tp >
    _Tp std::__detail::__cos_pi (
```

Return the reperiodized cosine of argument x:

_Tp ___x)

$$\cos_{\pi}(x) = \cos(\pi x)$$

Definition at line 104 of file sf_trig.tcc.

Referenced by $_cos_pi()$, $_cosh_pi()$, $_cyl_bessel_jn()$, $_cyl_bessel_jn_neg_arg()$, $_log_double_factorial()$, $_\leftarrow sin_pi()$, and $_sinh_pi()$.

Return the reperiodized cosine of complex argument z:

$$\cos_{\pi}(z) = \cos(\pi z) = \cos_{\pi}(x)\cosh_{\pi}(y) - i\sin_{\pi}(x)\sinh_{\pi}(y)$$

Definition at line 231 of file sf_trig.tcc.

References __cos_pi(), and __sin_pi().

Return the reperiodized hyperbolic cosine of argument x:

$$\cosh_{\pi}(x) = \cosh(\pi x)$$

Definition at line 133 of file sf_trig.tcc.

Return the reperiodized hyperbolic cosine of complex argument z:

$$\cosh_{\pi}(z) = \cosh_{\pi}(z) = \cosh_{\pi}(x)\cos_{\pi}(y) + i\sinh_{\pi}(x)\sin_{\pi}(y)$$

Definition at line 253 of file sf_trig.tcc.

References __cos_pi(), and __sin_pi().

```
8.3.2.61 __coshint()
```

Return the hyperbolic cosine integral Chi(x).

The hyperbolic cosine integral is given by

$$Chi(x) = (Ei(x) - E_1(x))/2 = (Ei(x) + Ei(-x))/2$$

Parameters

_~	The argument of the hyperbolic cosine integral function.
_X	

Returns

The hyperbolic cosine integral.

Definition at line 561 of file sf_expint.tcc.

References __expint_E1(), and __expint_Ei().

8.3.2.62 __coulomb_CF1()

```
template<typename _Tp >
std::pair<_Tp, _Tp> std::__detail::__coulomb_CF1 (
          unsigned int __1,
          __Tp __eta,
          __Tp __x )
```

Evaluate the first continued fraction, giving the ratio F'/F at the upper I value. We also determine the sign of F at that point, since it is the sign of the last denominator in the continued fraction.

Definition at line 146 of file sf_coulomb.tcc.

8.3.2.63 __coulomb_CF2()

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__coulomb_CF2 (
          unsigned int __1,
          __Tp __eta,
          __Tp __x )
```

Evaluate the second continued fraction to obtain the ratio

$$(G'+iF')/(G+iF) := P+iQ$$

at the specified I value.

Definition at line 204 of file sf_coulomb.tcc.

8.3.2.64 __coulomb_f_recur()

```
template<typename _Tp >
std::pair<_Tp, _Tp> std::__detail::__coulomb_f_recur (
    unsigned int __l_min,
    unsigned int __k_max,
    _Tp __eta,
    _Tp __x,
    _Tp _F_l_max,
    _Tp _Fp_l_max )
```

Evolve the backwards recurrence for F, F'.

$$F_{l-1} = (S_l F_l + F_l') / R_l F_{l-1}' = (S_l F_{l-1} - R_l F_l)$$

where

$$R_l = \sqrt{1 + (\eta/l)^2} S_l = l/x + \eta/l$$

Definition at line 77 of file sf coulomb.tcc.

8.3.2.65 __coulomb_g_recur()

```
template<typename _Tp >
std::pair<_Tp, _Tp> std::__detail::__coulomb_g_recur (
    unsigned int __l_min,
    unsigned int __k_max,
    _Tp __eta,
    _Tp __x,
    _Tp __G_l_min,
    _Tp __Gp_l_min )
```

Evolve the forward recurrence for G, G'.

$$G_{l+1} = (S_l G_l - G_l') / R_l G_{l+1}' = R_{l+1} G_l - S_l G_{l+1}$$

where

$$R_l = \sqrt{1 + (\eta/l)^2} S_l = l/x + \eta/l$$

Definition at line 115 of file sf_coulomb.tcc.

8.3.2.66 __coulomb_norm()

Definition at line 49 of file sf coulomb.tcc.

8.3.2.67 __cyl_bessel()

Return the complex cylindrical Bessel function.

Parameters

in	nu	The order for which the cylindrical Bessel function is evaluated.
in	z	The argument at which the cylindrical Bessel function is evaluated.

Returns

The complex cylindrical Bessel function.

Definition at line 1173 of file sf_hankel.tcc.

References __hankel().

8.3.2.68 __cyl_bessel_i()

Return the regular modified Bessel function of order ν : $I_{\nu}(x)$.

The regular modified cylindrical Bessel function is:

$$I_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{\nu+2k}}{k!\Gamma(\nu+k+1)}$$

Parameters

_nu	The order of the regular modified Bessel function.
_X	The argument of the regular modified Bessel function.

Returns

The output regular modified Bessel function.

Definition at line 371 of file sf_mod_bessel.tcc.

References __cyl_bessel_ij_series(), and __cyl_bessel_ik().

Referenced by ___rice_pdf().

8.3.2.69 __cyl_bessel_ij_series()

This routine returns the cylindrical Bessel functions of order ν : J_{ν} or I_{ν} by series expansion.

The modified cylindrical Bessel function is:

$$Z_{\nu}(x) = \sum_{k=0}^{\infty} \frac{\sigma^{k}(x/2)^{\nu+2k}}{k!\Gamma(\nu+k+1)}$$

where $\sigma = +1$ or -1 for Z = I or J respectively.

See Abramowitz & Stegun, 9.1.10 Abramowitz & Stegun, 9.6.7 (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375

Parameters

nu	The order of the Bessel function.
x	The argument of the Bessel function.
sgn	The sign of the alternate terms -1 for the Bessel function of the first kind. +1 for the modified Bessel function of the first kind.
max_iter	The maximum number of iterations for sum.

Returns

The output Bessel function.

Definition at line 434 of file sf_bessel.tcc.

References __log_gamma().

Referenced by __cyl_bessel_i(), and __cyl_bessel_j().

8.3.2.70 __cyl_bessel_ik()

Return the modified cylindrical Bessel functions and their derivatives of order ν by various means.

Parameters

nu	The order of the Bessel functions.
x	The argument of the Bessel functions.

Returns

A struct containing the modified cylindrical Bessel functions of the first and second kinds and their derivatives.

Definition at line 309 of file sf_mod_bessel.tcc.

```
References __cyl_bessel_ik_asymp(), __cyl_bessel_ik_steed(), and __sin_pi().
```

Referenced by __airy(), __cyl_bessel_i(), __cyl_bessel_k(), and __sph_bessel_ik().

8.3.2.71 __cyl_bessel_ik_asymp()

This routine computes the asymptotic modified cylindrical Bessel and functions of order nu: $I_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

References: (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Section 9 p. 364, Equations 9.2.5-9.2.10

Parameters

nu	The order of the Bessel functions.
x	The argument of the Bessel functions.

Returns

A struct containing the modified cylindrical Bessel functions of the first and second kinds and their derivatives.

Definition at line 79 of file sf_mod_bessel.tcc.

Referenced by __cyl_bessel_ik(), and __cyl_bessel_ik_steed().

8.3.2.72 __cyl_bessel_ik_steed()

Compute the modified Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x)$ and their first derivatives $I'_{\nu}(x)$ and $K'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

Parameters

nu	The order of the Bessel functions.
x	The argument of the Bessel functions.

Returns

A struct containing the modified cylindrical Bessel functions of the first and second kinds and their derivatives.

Definition at line 153 of file sf mod bessel.tcc.

References __cyl_bessel_ik_asymp(), and __gamma_temme().

Referenced by __cyl_bessel_ik().

8.3.2.73 __cyl_bessel_j()

Return the Bessel function of order ν : $J_{\nu}(x)$.

The cylindrical Bessel function is:

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

nu	The order of the Bessel function.
x	The argument of the Bessel function.

Returns

The output Bessel function.

Definition at line 581 of file sf bessel.tcc.

References cyl bessel ij series(), and cyl bessel in().

8.3.2.74 __cyl_bessel_jn()

Return the cylindrical Bessel functions and their derivatives of order ν by various means.

Definition at line 473 of file sf_bessel.tcc.

References __cos_pi(), __cyl_bessel_jn_asymp(), __cyl_bessel_jn_steed(), and __sin_pi().

Referenced by $_airy()$, $_cyl_bessel_j()$, $_cyl_bessel_jn_neg_arg()$, $_cyl_hankel_1()$, $_cyl_hankel_2()$, $_cyl_\leftrightarrow neumann_n()$, and $_sph_bessel_jn()$.

8.3.2.75 __cyl_bessel_jn_asymp()

This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu: $J_{\nu}(x)$, $N_{\nu}(x)$. Use this for $x >> nu^2 + 1$.

$$J_{\nu}(z) = \left(\frac{2}{\pi z}\right)^{1/2} \left(\cos(\omega) \sum_{k=0}^{\infty} (-1)^k \frac{a_{2k}(\nu)}{z^{2k}} - \sin(\omega) \sum_{k=0}^{\infty} (-1)^k \frac{a_{2k+1}(\nu)}{z^{2k+1}}\right)$$

and

$$N_{\nu}(z) = \left(\frac{2}{\pi z}\right)^{1/2} \left(\sin(\omega) \sum_{k=0}^{\infty} (-1)^k \frac{a_{2k}(\nu)}{z^{2k}} + \cos(\omega) \sum_{k=0}^{\infty} (-1)^k \frac{a_{2k+1}(\nu)}{z^{2k+1}}\right)$$

where $\omega = z - \nu \pi/2 - \pi/4$ and

$$a_k(\nu) = \frac{(4\nu^2 - 1^2)(4\nu^2 - 3^2)...(4\nu^2 - (2k - 1)^2)}{8^k k!}$$

There sums work everywhere but on the negative real axis: $|ph(z)| < \pi - \delta$.

References: (1) Handbook of Mathematical Functions, ed. Milton Abramowitz and Irene A. Stegun, Dover Publications, Section 9 p. 364, Equations 9.2.5-9.2.10

nu	The order of the Bessel functions.
x	The argument of the Bessel functions.

Returns

A struct containing the cylindrical Bessel functions of the first and second kinds and their derivatives.

Definition at line 100 of file sf_bessel.tcc.

Referenced by __cyl_bessel_jn(), and __cyl_bessel_jn_steed().

8.3.2.76 __cyl_bessel_jn_neg_arg()

```
template<typename _Tp >
    __gnu_cxx::__cyl_bessel_t<_Tp, _Tp, std::complex<_Tp> > std::__detail::__cyl_bessel_jn_neg_arg (
    __Tp __nu,
    __Tp __x )
```

Return the cylindrical Bessel functions and their derivatives of order ν and argument x < 0.

Definition at line 539 of file sf_bessel.tcc.

References __cos_pi(), __cyl_bessel_jn(), and __polar_pi().

Referenced by __cyl_hankel_1(), __cyl_hankel_2(), and __sph_bessel_jn_neg_arg().

8.3.2.77 __cyl_bessel_jn_steed()

Compute the Bessel $J_{\nu}(x)$ and Neumann $N_{\nu}(x)$ functions and their first derivatives $J'_{\nu}(x)$ and $N'_{\nu}(x)$ respectively. These four functions are computed together for numerical stability.

Parameters

nu	The order of the Bessel functions.
Х	The argument of the Bessel functions.

Returns

A struct containing the cylindrical Bessel functions of the first and second kinds and their derivatives.

Definition at line 229 of file sf bessel.tcc.

References __cyl_bessel_jn_asymp(), and __gamma_temme().

Referenced by cyl bessel in().

8.3.2.78 __cyl_bessel_k()

Return the irregular modified Bessel function $K_{\nu}(x)$ of order ν .

The irregular modified Bessel function is defined by:

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu \pi}$$

where for integral $\nu = n$ a limit is taken: $\lim_{\nu \to n}$. For negative argument we have simply:

$$K_{-\nu}(x) = K_{\nu}(x)$$

Parameters

nu	The order of the irregular modified Bessel function.
x	The argument of the irregular modified Bessel function.

Returns

The output irregular modified Bessel function.

Definition at line 405 of file sf_mod_bessel.tcc.

References __cyl_bessel_ik().

```
8.3.2.79 __cyl_hankel_1() [1/2]
```

Return the cylindrical Hankel function of the first kind $H^{(1)}_{\nu}(x)$.

The cylindrical Hankel function of the first kind is defined by:

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iN_{\nu}(x)$$

Parameters

nu	The order of the spherical Neumann function.
x	The argument of the spherical Neumann function.

Returns

The output spherical Neumann function.

Definition at line 638 of file sf_bessel.tcc.

References __cyl_bessel_jn(), __cyl_bessel_jn_neg_arg(), and __polar_pi().

```
8.3.2.80 __cyl_hankel_1() [2/2]
```

Return the complex cylindrical Hankel function of the first kind.

Parameters

ir	nu	The order for which the cylindrical Hankel function of the first kind is evaluated.
ir	z	The argument at which the cylindrical Hankel function of the first kind is evaluated.

Returns

The complex cylindrical Hankel function of the first kind.

Definition at line 1139 of file sf hankel.tcc.

References __hankel().

Return the cylindrical Hankel function of the second kind $H_n^{(2)}u(x)$.

The cylindrical Hankel function of the second kind is defined by:

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iN_{\nu}(x)$$

Parameters

nu	The order of the spherical Neumann function.
x	The argument of the spherical Neumann function.

Returns

The output spherical Neumann function.

Definition at line 677 of file sf_bessel.tcc.

References __cyl_bessel_jn(), __cyl_bessel_jn_neg_arg(), and __polar_pi().

Return the complex cylindrical Hankel function of the second kind.

Parameters

	in	nu	The order for which the cylindrical Hankel function of the second kind is evaluated.
ſ	in	z	The argument at which the cylindrical Hankel function of the second kind is evaluated.

Returns

The complex cylindrical Hankel function of the second kind.

Definition at line 1156 of file sf_hankel.tcc.

References __hankel().

8.3.2.83 __cyl_neumann()

Return the complex cylindrical Neumann function.

Parameters

in	nu	The order for which the cylindrical Neumann function is evaluated.
in	z	The argument at which the cylindrical Neumann function is evaluated.

Returns

The complex cylindrical Neumann function.

Definition at line 1190 of file sf_hankel.tcc.

References __hankel().

8.3.2.84 __cyl_neumann_n()

Return the Neumann function of order ν : $N_{\nu}(x)$.

The Neumann function is defined by:

$$N_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}$$

where for integral $\nu = n$ a limit is taken: $\lim_{\nu \to n}$.

nu	The order of the Neumann function.
x	The argument of the Neumann function.

Returns

The output Neumann function.

Definition at line 612 of file sf_bessel.tcc.

References __cyl_bessel_jn().

8.3.2.85 __dawson()

Return the Dawson integral, F(x), for real argument x.

The Dawson integral is defined by:

$$F(x) = e^{-x^2} \int_0^x e^{y^2} dy$$

and it's derivative is:

$$F'(x) = 1 - 2xF(x)$$

Parameters

$$\begin{array}{|c|c|c|c|} \hline _ \leftarrow & \text{The argument } -inf < x < inf. \\ _ x & \\ \hline \end{array}$$

Definition at line 235 of file sf_dawson.tcc.

References __dawson_cont_frac(), and __dawson_series().

8.3.2.86 __dawson_cont_frac()

Compute the Dawson integral using a sampling theorem representation.

This array could be built on a thread-local basis.

Definition at line 73 of file sf dawson.tcc.

Referenced by __dawson().

8.3.2.87 __dawson_series()

Compute the Dawson integral using the series expansion.

Definition at line 49 of file sf_dawson.tcc.

Referenced by __dawson().

8.3.2.88 __debye()

Return the Debye function. The Debye functions are related to the incomplete Riemann zeta function:

$$\zeta_x(s) = \frac{1}{\Gamma(s)} \int_0^x \frac{t^{s-1}}{e^t - 1} dt = \sum_{k=1}^{\infty} \frac{P(s, kx)}{k^s}$$

$$Z_x(s) = \frac{1}{\Gamma(s)} \int_x^{\infty} \frac{t^{s-1}}{e^t - 1} dt = \sum_{k=1}^{\infty} \frac{Q(s, kx)}{k^s}$$

where P(a,x), Q(a,x) is the incomplete gamma function ratios. The Debye function is:

$$D_n(x) = \frac{n}{x^n} \int_0^x \frac{t^n}{e^t - 1} dt = \Gamma(n+1)\zeta_x(n+1)$$

Note the infinite limit:

$$D_n(\infty) = \int_0^\infty \frac{t^n}{e^t - 1} dt = n! \zeta(n+1)$$

Todo: We should return both the Debye function and it's complement.

Compute the Debye function:

$$D_n(x) = 1 - \sum_{k=1}^{\infty} e^{-kx} \frac{n}{k} \sum_{m=0}^{n} \frac{n!}{(n-m)!} frac1(kx)^m$$

Abramowitz & Stegun 27.1.2

Compute the Debye function:

$$D_n(x) = 1 - \frac{nx}{2(n+1)} + n \sum_{k=1}^{\infty} \frac{B_{2k}x^{2k}}{(2k+n)(2k)!}$$

for $|x| < 2\pi$. Abramowitz-Stegun 27.1.1

Todo Find Debye for x < -2pi!

Definition at line 916 of file sf_zeta.tcc.

8.3.2.89 __debye_region()

Compute the Debye region in the complex plane.

Definition at line 53 of file sf_hankel.tcc.

Referenced by __hankel().

8.3.2.90 __digamma() [1/2]

Return the digamma function of integral argument. The digamma or $\psi(x)$ function is defined as the logarithmic derivative of the gamma function:

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

The digamma series for integral argument is given by:

$$\psi(n) = -\gamma_E + \sum_{k=1}^{n-1} \frac{1}{k}$$

The latter sum is called the harmonic number, H_n .

Definition at line 3319 of file sf_gamma.tcc.

Referenced by __digamma(), __hyperg_reflect(), and __polygamma().

8.3.2.91 __digamma() [2/2]

Return the digamma function. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

For negative argument the reflection formula is used:

$$\psi(x) = \psi(1-x) - \pi \cot(\pi x)$$

.

Definition at line 3409 of file sf_gamma.tcc.

8.3.2.92 __digamma_asymp()

```
\label{template} $$ \ensuremath{\sf template}$ \ensuremath{\sf template}$
```

Return the digamma function for large argument. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

.

The asymptotic series is given by:

$$\psi(x) = \ln(x) - \frac{1}{2x} - \sum_{n=1}^{\infty} \frac{B_{2n}}{2nx^{2n}}$$

Definition at line 3376 of file sf_gamma.tcc.

Referenced by __digamma().

8.3.2.93 __digamma_series()

Return the digamma function by series expansion. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

The series is given by:

$$\psi(x) = -\gamma_E - \frac{1}{x} \sum_{k=1}^{\infty} \frac{x-1}{(k+1)(x+k)}$$

Definition at line 3344 of file sf gamma.tcc.

8.3.2.94 __dilog()

Compute the dilogarithm function $Li_2(x)$ by summation for x <= 1.

The dilogarithm function is defined by:

$$Li_2(x) = \sum_{k=1}^{\infty} \frac{1}{k^s} \text{ for } s > 1$$

For |x| near 1 use the reflection formulae:

$$Li_2(-x) + Li_2(1-x) = \frac{\pi^2}{6} - \ln(x)\ln(1-x)$$
$$Li_2(-x) - Li_2(1-x) - \frac{1}{2}Li_2(1-x^2) = -\frac{\pi^2}{12} - \ln(x)\ln(1-x)$$

For x < -1 use the reflection formula:

$$Li_2(1-x) - Li_2(1-\frac{1}{1-x}) - \frac{1}{2}(\ln(x))^2$$

Definition at line 246 of file sf_zeta.tcc.

8.3.2.95 __dirichlet_beta() [1/2]

Return the Dirichlet beta function. Currently, s must be real (complex type but negligible imaginary part.) Otherwise std::domain_error is thrown. The Dirichlet beta function, in terms of the polylogarithm, is

$$\beta(s) = \Im[Li_s(i)]$$

_~	The complex (but on-real-axis) argument.
s	

Returns

The Dirichlet Beta function of real argument.

Exceptions

std::domain_error if the argument has a significant imaginary page 1	oart.
--	-------

Definition at line 1227 of file sf_polylog.tcc.

References __polylog().

8.3.2.96 __dirichlet_beta() [2/2]

Return the Dirichlet beta function for real argument. The Dirichlet beta function, in terms of the polylogarithm, is

$$\beta(s) = \Im[Li_s(i)]$$

Parameters

Returns

The Dirichlet Beta function of real argument.

Definition at line 1250 of file sf_polylog.tcc.

References __polylog().

8.3.2.97 __dirichlet_eta() [1/2]

Return the Dirichlet eta function. Currently, s must be real (complex type but negligible imaginary part.) Otherwise std::domain_error is thrown. The Dirichlet eta function, in terms of the polylogarithm, is

$$\eta(s) = -\Re[Li_s(-1)]$$

Parameters

_~	The complex (but on-real-axis) argument.
_s	

Returns

The complex Dirichlet eta function.

Exceptions

std::domain_error	if the argument has a significant imaginary part.
-------------------	---

Definition at line 1167 of file sf_polylog.tcc.

References __polylog().

Referenced by __dirichlet_eta(), and __dirichlet_lambda().

8.3.2.98 __dirichlet_eta() [2/2]

Return the Dirichlet eta function for real argument. The Dirichlet eta function, in terms of the polylogarithm, is

$$\eta(s) = -\Re[Li_s(-1)]$$

Parameters

_~	The real argument.
_s	

Returns

The Dirichlet eta function.

Definition at line 1189 of file sf_polylog.tcc.

References __dirichlet_eta(), __gnu_cxx::__fp_is_integer(), __gamma(), __polylog(), and __sin_pi().

8.3.2.99 __dirichlet_lambda()

Return the Dirichlet lambda function for real argument.

$$\lambda(s) = \frac{1}{2}(\zeta(s) + \eta(s))$$

Parameters

_~	The real argument.
_s	

Returns

The Dirichlet lambda function.

Definition at line 1270 of file sf_polylog.tcc.

References __dirichlet_eta(), and __riemann_zeta().

8.3.2.100 __double_factorial()

Return the double factorial of the integer n.

The double factorial is defined for integral n by:

$$n!! = 135...(n-2)n, noddn!! = 246...(n-2)n, neven - 1!! = 10!! = 1$$

The double factorial is defined for odd negative integers in the obvious way:

$$(-2m-1)!! = 1/(1(-1)(-3)...(-2m+1)(-2m-1)) = \frac{(-1)^m}{(2m-1)!!}$$

for f[n = -2m - 1 f].

Definition at line 1687 of file sf gamma.tcc.

 $References\ std::_detail::_Factorial_table < _Tp >::_factorial,\ __log_double_factorial(),\ std::__detail::_Factorial_\leftrightarrow table < _Tp >::__n,\ _S_double_factorial_table,\ and\ _S_neg_double_factorial_table.$

8.3.2.101 __ellint_1()

Return the incomplete elliptic integral of the first kind $F(k,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the first kind is defined as

$$F(k,\phi) = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

Parameters

k	The elliptic modulus.
phi	The integral limit argument of the elliptic function.

Returns

The elliptic function of the first kind.

Definition at line 621 of file sf_ellint.tcc.

References __comp_ellint_1(), and __ellint_rf().

Referenced by heuman lambda().

8.3.2.102 __ellint_2()

Return the incomplete elliptic integral of the second kind $E(k,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the second kind is defined as

$$E(k,\phi) = \int_0^\phi \sqrt{1 - k^2 sin^2 \theta}$$

Parameters

k	The elliptic modulus.
phi	The integral limit argument of the elliptic function.

Returns

The elliptic function of the second kind.

Definition at line 702 of file sf_ellint.tcc.

References __comp_ellint_2(), __ellint_rd(), and __ellint_rf().

8.3.2.103 __ellint_3()

Return the incomplete elliptic integral of the third kind $\Pi(k,\nu,\phi)$ using the Carlson formulation.

The incomplete elliptic integral of the third kind is defined as

$$\Pi(k,\nu,\phi) = \int_0^\phi \frac{d\theta}{(1-\nu\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}$$

Parameters

k	The elliptic modulus.
nu	The characteristic.
Generaled I	The integral limit argument of the elliptic function.

Returns

The elliptic function of the third kind.

Definition at line 795 of file sf_ellint.tcc.

References __comp_ellint_3(), __ellint_rf(), and __ellint_rj().

8.3.2.104 __ellint_cel()

Return the Bulirsch complete elliptic integrals.

Definition at line 950 of file sf_ellint.tcc.

References __ellint_rf(), and __ellint_rj().

8.3.2.105 __ellint_d()

Return the Legendre elliptic integral D.

Definition at line 836 of file sf_ellint.tcc.

References __ellint_rd().

8.3.2.106 __ellint_el1()

Return the Bulirsch elliptic integrals of the first kind.

Definition at line 878 of file sf_ellint.tcc.

References __ellint_rf().

8.3.2.107 __ellint_el2()

Return the Bulirsch elliptic integrals of the second kind.

Definition at line 899 of file sf ellint.tcc.

References __ellint_rd(), and __ellint_rf().

8.3.2.108 __ellint_el3()

Return the Bulirsch elliptic integrals of the third kind.

Definition at line 924 of file sf ellint.tcc.

References __ellint_rf(), and __ellint_rj().

8.3.2.109 __ellint_rc()

Return the Carlson elliptic function $R_C(x,y)=R_F(x,y,y)$ where $R_F(x,y,z)$ is the Carlson elliptic function of the first kind

The Carlson elliptic function is defined by:

$$R_C(x,y) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

_~	The first argument.
_x	
_~	The second argument.
_У	

Returns

The Carlson elliptic function.

Definition at line 84 of file sf_ellint.tcc.

Referenced by __ellint_rf(), and __ellint_rj().

8.3.2.110 __ellint_rd()

Return the Carlson elliptic function of the second kind $R_D(x,y,z)=R_J(x,y,z,z)$ where $R_J(x,y,z,p)$ is the Carlson elliptic function of the third kind.

The Carlson elliptic function of the second kind is defined by:

$$R_D(x,y,z) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{3/2}}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first of two symmetric arguments.
_X	
_←	The second of two symmetric arguments.
y	
_~	The third argument.
_Z	

Returns

The Carlson elliptic function of the second kind.

Definition at line 175 of file sf_ellint.tcc.

Referenced by $_$ comp $_$ ellint $_$ 2(), $_$ comp $_$ ellint $_$ d(), $_$ ellint $_$ d(), $_$ ellint $_$ ellint $_$ g(), $_$ ellint $_$ rg(), and $_$ \hookleftarrow ellint $_$ rj().

8.3.2.111 __ellint_rf()

Return the Carlson elliptic function $R_F(x,y,z)$ of the first kind.

The Carlson elliptic function of the first kind is defined by:

$$R_F(x,y,z) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}}$$

Parameters

_←	The first of three symmetric arguments.
_X	
_~	The second of three symmetric arguments.
_y	
_~	The third of three symmetric arguments.
_z	

Returns

The Carlson elliptic function of the first kind.

Definition at line 294 of file sf_ellint.tcc.

References __comp_ellint_rf(), and __ellint_rc().

Referenced by __comp_ellint_2(), __comp_ellint_3(), __ellint_1(), __ellint_2(), __ellint_3(), __ellint_cel(), __ellint_el1(), __ellint_el2(), __ellint_el3(), and __heuman_lambda().

8.3.2.112 __ellint_rg()

Return the symmetric Carlson elliptic function of the second kind $R_G(x, y, z)$.

The Carlson symmetric elliptic function of the second kind is defined by:

$$R_G(x,y,z) = \frac{1}{4} \int_0^\infty dt t [(t+x)(t+y)(t+z)]^{-1/2} \left(\frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right)$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first of three symmetric arguments.
_x	
_~	The second of three symmetric arguments.
_y	
_~	The third of three symmetric arguments.
_z	

Returns

The Carlson symmetric elliptic function of the second kind.

Definition at line 430 of file sf ellint.tcc.

References __comp_ellint_rg(), and __ellint_rd().

8.3.2.113 __ellint_rj()

$$_$$
Tp $__z$, $_$ Tp $__p$)

Return the Carlson elliptic function $R_J(x,y,z,p)$ of the third kind.

The Carlson elliptic function of the third kind is defined by:

$$R_J(x, y, z, p) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)^{1/2}(t+y)^{1/2}(t+z)^{1/2}(t+p)}$$

Based on Carlson's algorithms:

- B. C. Carlson Numer. Math. 33, 1 (1979)
- B. C. Carlson, Special Functions of Applied Mathematics (1977)
- Numerical Recipes in C, 2nd ed, pp. 261-269, by Press, Teukolsky, Vetterling, Flannery (1992)

Parameters

_~	The first of three symmetric arguments.
_X	
_←	The second of three symmetric arguments.
_y	
_~	The third of three symmetric arguments.
_z	
_~	The fourth argument.
_p	

Returns

The Carlson elliptic function of the fourth kind.

Definition at line 478 of file sf_ellint.tcc.

References __ellint_rc(), and __ellint_rd().

Referenced by __comp_ellint_3(), __ellint_cel(), __ellint_el3(), __heuman_lambda(), and __jacobi_zeta().

8.3.2.114 __ellnome()

Return the elliptic nome given the modulus k.

$$q(k) = exp\left(-\pi \frac{K(k')}{K(k)}\right)$$

Definition at line 329 of file sf_theta.tcc.

References __ellnome_k(), and __ellnome_series().

Referenced by __theta_c(), __theta_d(), __theta_n(), and __theta_s().

8.3.2.115 __ellnome_k()

Use the arithmetic-geometric mean to calculate the elliptic nome given the elliptic argument k.

$$q(k) = \exp\left(-\pi \frac{K(k')}{K(k)}\right)$$

where $k' = \sqrt{1-k^2}$ is the complementary elliptic argument and is the Legendre elliptic integral of the first kind.

Definition at line 312 of file sf theta.tcc.

References __comp_ellint_1().

Referenced by ellnome().

8.3.2.116 __ellnome_series()

Use MacLaurin series to calculate the elliptic nome given the elliptic argument k.

$$q(k) = \exp\left(-\pi \frac{K(k')}{K(k)}\right)$$

where $k' = \sqrt{1-k^2}$ is the complementary elliptic argument and is the Legendre elliptic integral of the first kind.

Definition at line 291 of file sf_theta.tcc.

Referenced by __ellnome().

8.3.2.117 __euler() [1/2]

This returns Euler number E_n .

```
_ ← the order n of the Euler number.
```

Returns

The Euler number of order n.

Definition at line 119 of file sf euler.tcc.

Return the Euler polynomial $E_n(x)$ of order n at argument x.

The derivative is proportional to the previous polynomial:

$$E_n'(x) = nE_{n-1}(x)$$

$$E_n(1/2)=rac{E_n}{2^n},$$
 where E_n is the n-th Euler number.

Definition at line 137 of file sf_euler.tcc.

References __bernoulli().

8.3.2.119 __euler_series()

Return the Euler number from lookup or by series expansion.

The Euler numbers are given by the recursive sum:

$$E_n = B_n(1) = B_n$$

where
$$E_0 = 1$$
, $E_1 = 0$, $E_2 = -1$

Todo Find a way to predict the maximum Euler number for a type.

Definition at line 61 of file sf_euler.tcc.

8.3.2.120 __eulerian_1() [1/2]

Return the Eulerian number of the first kind. The Eulerian numbers of the first kind are defined by recursion:

$$\left\langle \begin{matrix} n \\ m \end{matrix} \right\rangle = (n-m) \left\langle \begin{matrix} n-1 \\ m-1 \end{matrix} \right\rangle + (m+1) \left\langle \begin{matrix} n-1 \\ m \end{matrix} \right\rangle \text{ for } n>0$$

Note that A(n,m) is a common older notation.

Definition at line 207 of file sf euler.tcc.

```
8.3.2.121 __eulerian_1() [2/2]
```

Return a vector Eulerian numbers of the first kind. The Eulerian numbers are defined by recursion:

$$A(n,m) = (n-m)A(n-1,m-1) + (m+1)A(n-1,m)$$
 for $n > 0$

Definition at line 253 of file sf_euler.tcc.

```
8.3.2.122 __eulerian_1_recur() [1/2]
```

Return the Eulerian number of the first kind. The Eulerian numbers of the first kind are defined by recursion:

Note that A(n, m) is a common older notation.

Definition at line 166 of file sf_euler.tcc.

```
8.3.2.123 __eulerian_1_recur() [2/2]
```

```
template<typename _Tp > std::vector<_Tp> std::__detail::__eulerian_1_recur ( unsigned int __n )
```

Return a vector Eulerian numbers of the first kind by recursion. The recursion is

$$A(n,m) = (n-m)A(n-1,m-1) + (m+1)A(n-1,m)$$
 for $n > 0$

Definition at line 219 of file sf euler.tcc.

```
8.3.2.124 __eulerian_2() [1/2]
```

Return the Eulerian number of the second kind. The Eulerian numbers of the second kind are defined by recursion:

$$\left\langle \left\langle {n \atop m} \right\rangle \right\rangle = (2n-m-1) \left\langle \left\langle {n-1 \atop m-1} \right\rangle \right\rangle + (m+1) \left\langle \left\langle {n-1 \atop m} \right\rangle \right\rangle \text{ for } n>0$$

Definition at line 309 of file sf euler.tcc.

```
8.3.2.125 eulerian 2() [2/2]
```

Return a vector of Eulerian numbers of the second kind.

$$\left\langle \left\langle {n \atop m} \right\rangle \right\rangle = (2n-m-1)\left\langle \left\langle {n-1 \atop m-1} \right\rangle \right\rangle + (m+1)\left\langle \left\langle {n-1 \atop m} \right\rangle \right\rangle \text{ for } n>0$$

Definition at line 363 of file sf euler.tcc.

8.3.2.126 __eulerian_2_recur() [1/2]

Return the Eulerian number of the second kind by recursion:

$$\left\langle \left\langle {n \atop m} \right\rangle \right\rangle = (2n-m-1) \left\langle \left\langle {n-1 \atop m-1} \right\rangle \right\rangle + (m+1) \left\langle \left\langle {n-1 \atop m} \right\rangle \right\rangle \text{ for } n>0$$

Definition at line 269 of file sf_euler.tcc.

8.3.2.127 __eulerian_2_recur() [2/2]

```
template<typename _Tp > std::vector<_Tp> std::__detail::__eulerian_2_recur ( unsigned int __n )
```

Return a vector of Eulerian numbers of the second kind.

$$\left\langle \left\langle {n \atop m} \right\rangle \right\rangle = (2n-m-1) \left\langle \left\langle {n-1 \atop m-1} \right\rangle \right\rangle + (m+1) \left\langle \left\langle {n-1 \atop m} \right\rangle \right\rangle \text{ for } n>0$$

Definition at line 325 of file sf euler.tcc.

8.3.2.128 __exp2()

Make exp2 available to complex and real types.

Definition at line 64 of file sf zeta.tcc.

Referenced by __riemann_zeta().

8.3.2.129 __expint() [1/2]

Return the exponential integral $E_n(x)$.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

_~	The order of the exponential integral function.	
_n		
_~	The argument of the exponential integral function.	
_X		

Returns

The exponential integral.

Todo Study arbitrary switch to large-n $E_n(x)$.

Todo Find a good asymptotic switch point in $E_n(x)$.

Definition at line 476 of file sf_expint.tcc.

References $_$ expint_E1(), $_$ expint_En_asymp(), $_$ expint_En_cont_frac(), $_$ expint_En_large_n(), and $_$ expint_ \hookleftarrow En_series().

Referenced by __logint().

8.3.2.130 __expint() [2/2]

Return the exponential integral Ei(x).

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

_←	The argument of the exponential integral function.
_X	

Returns

The exponential integral.

Definition at line 517 of file sf_expint.tcc.

References __expint_Ei().

8.3.2.131 __expint_E1()

Return the exponential integral $E_1(x)$.

The exponential integral is given by

$$E_1(x) = \int_1^\infty \frac{e^{-xt}}{t} dt$$

Parameters

_ ← The argument of the exponential integral function.

Returns

The exponential integral.

Todo Find a good asymptotic switch point in $E_1(x)$.

Todo Find a good asymptotic switch point in $E_1(x)$.

Definition at line 381 of file sf_expint.tcc.

References __expint_E1_asymp(), __expint_E1_series(), __expint_Ei(), and __expint_En_cont_frac().

Referenced by __coshint(), __expint(), __expint_Ei(), __expint_En_recursion(), and __sinhint().

8.3.2.132 __expint_E1_asymp()

Return the exponential integral $E_1(x)$ by asymptotic expansion.

The exponential integral is given by

$$E_1(x) = \int_1^\infty \frac{e^{-xt}}{t} dt$$

_~	The argument of the exponential integral function.
_X	

Returns

The exponential integral.

Definition at line 114 of file sf_expint.tcc.

Referenced by __expint_E1().

8.3.2.133 __expint_E1_series()

Return the exponential integral $E_1(x)$ by series summation. This should be good for x < 1.

The exponential integral is given by

$$E_1(x) = \int_1^\infty \frac{e^{-xt}}{t} dt$$

Parameters

_ ← The argument of the exponential integral function.

Returns

The exponential integral.

Definition at line 76 of file sf_expint.tcc.

Referenced by __expint_E1().

8.3.2.134 __expint_Ei()

Return the exponential integral Ei(x).

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

_~	The argument of the exponential integral function.
_X	

Returns

The exponential integral.

Definition at line 356 of file sf_expint.tcc.

References __expint_E1(), __expint_Ei_asymp(), and __expint_Ei_series().

Referenced by __coshint(), __expint(), __expint_E1(), and __sinhint().

8.3.2.135 __expint_Ei_asymp()

Return the exponential integral Ei(x) by asymptotic expansion.

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

_~	The argument of the exponential integral function.
_X	

Returns

The exponential integral.

Definition at line 322 of file sf_expint.tcc.

Referenced by __expint_Ei().

8.3.2.136 __expint_Ei_series()

Return the exponential integral Ei(x) by series summation.

The exponential integral is given by

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^t}{t} dt$$

Parameters

_~	The argument of the exponential integral function.
_X	

Returns

The exponential integral.

Definition at line 289 of file sf_expint.tcc.

Referenced by __expint_Ei().

8.3.2.137 __expint_En_asymp()

Return the exponential integral $E_n(x)$ for large argument.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

Parameters

_~	The order of the exponential integral function.	
_n		
_~	The argument of the exponential integral function.	
X		

Returns

The exponential integral.

Definition at line 410 of file sf expint.tcc.

Referenced by __expint().

8.3.2.138 __expint_En_cont_frac()

Return the exponential integral $E_n(x)$ by continued fractions.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

Parameters

_~	The order of the exponential integral function.
_n	
_~	The argument of the exponential integral function.
_X	

Returns

The exponential integral.

Definition at line 198 of file sf_expint.tcc.

Referenced by __expint(), and __expint_E1().

8.3.2.139 __expint_En_large_n()

Return the exponential integral $E_n(x)$ for large order.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

_~	The order of the exponential integral function.	
_n		
_~	The argument of the exponential integral function.	
_X		

Returns

The exponential integral.

Definition at line 442 of file sf_expint.tcc.

Referenced by __expint().

8.3.2.140 __expint_En_recursion()

Return the exponential integral $E_n(x)$ by recursion. Use upward recursion for x < n and downward recursion (Miller's algorithm) otherwise.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

Parameters

_ He order of the exponential integral function.	
_n	
_~	The argument of the exponential integral function.
_x	

Returns

The exponential integral.

Todo Find a principled starting number for the $E_n(x)$ downward recursion.

Definition at line 244 of file sf_expint.tcc.

References __expint_E1().

8.3.2.141 __expint_En_series()

Return the exponential integral $E_n(x)$ by series summation.

The exponential integral is given by

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

Parameters

_~	The order of the exponential integral function.
_n	
_~	The argument of the exponential integral function.
_x	

Returns

The exponential integral.

Definition at line 150 of file sf_expint.tcc.

Referenced by __expint().

8.3.2.142 __exponential_p()

Return the exponential cumulative probability density function.

The formula for the exponential cumulative probability density function is

$$F(x|\lambda) = 1 - e^{-\lambda x}$$
 for $x >= 0$

Definition at line 328 of file sf_distributions.tcc.

8.3.2.143 __exponential_pdf()

Return the exponential probability density function.

The formula for the exponential probability density function is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$
 for $x >= 0$

Definition at line 308 of file sf_distributions.tcc.

8.3.2.144 __exponential_q()

Return the complement of the exponential cumulative probability density function.

The formula for the complement of the exponential cumulative probability density function is

$$F(x|\lambda) = e^{-\lambda x}$$
 for $x >= 0$

Definition at line 350 of file sf_distributions.tcc.

8.3.2.145 __factorial()

Return the factorial of the integer n.

The factorial is:

$$n! = 12...(n-1)n, 0! = 1$$

Definition at line 1617 of file sf_gamma.tcc.

References std::__detail::_Factorial_table < _Tp >::__n, and _S_factorial_table.

8.3.2.146 __falling_factorial() [1/2]

Return the logarithm of the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling factorial function is defined by

$$a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, $n^{\underline{n}} = n!$.

Definition at line 2943 of file sf_gamma.tcc.

References __gnu_cxx::__fp_is_integer(), __log_gamma(), __log_gamma_sign(), and std::__detail::_Factorial_table < __Tp >::__n.

Referenced by __falling_factorial(), and __log_falling_factorial().

8.3.2.147 __falling_factorial() [2/2]

Return the logarithm of the falling factorial function or the lower Pochhammer symbol for real argument a and order ν . The falling factorial function is defined by

$$a^{\underline{\nu}} = \Gamma(a+1)/\Gamma(a-\nu+1)$$

.

Definition at line 2998 of file sf_gamma.tcc.

References __falling_factorial(), __gnu_cxx::__fp_is_integer(), __log_gamma(), and __log_gamma_sign().

8.3.2.148 __fermi_dirac()

Return the Fermi-Dirac integral of integer or real order s and real argument x.

See also

https://en.wikipedia.org/wiki/Clausen_function http://dlmf.nist.gov/25.12.16

$$F_s(x) = \frac{1}{\Gamma(s+1)} \int_0^\infty \frac{t^s}{e^{t-x}+1} dt = -Li_{s+1}(-e^x)$$

_~	The order $s > -1$.
_s	
_~	The real argument.
_X	

Returns

The real Fermi-Dirac integral $F_s(x)$,

Definition at line 1461 of file sf_polylog.tcc.

References __polylog_exp().

8.3.2.149 __fisher_f_p()

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$Q(F|\nu_1,\nu_2) = I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2})$$

Parameters

	nu1	The number of degrees of freedom of sample 1
	nu2	The number of degrees of freedom of sample 2
Ī	F	The F statistic

Definition at line 523 of file sf_distributions.tcc.

References __beta_inc().

8.3.2.150 __fisher_f_pdf()

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$Q(F|\nu_1,\nu_2) = I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2})$$

Parameters

nu1	The number of degrees of freedom of sample 1
nu2	The number of degrees of freedom of sample 2
F	The F statistic

Definition at line 493 of file sf_distributions.tcc.

References __beta().

8.3.2.151 __fisher_f_q()

Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model exceeds the value χ^2 .

The f-distribution propability function is related to the incomplete beta function:

$$P(F|\nu_1, \nu_2) = 1 - I_{\frac{\nu_2}{\nu_2 + \nu_1 F}}(\frac{\nu_2}{2}, \frac{\nu_1}{2}) = 1 - Q(F|\nu_1, \nu_2)$$

Parameters

F	
nu1	
nu2	

Definition at line 552 of file sf_distributions.tcc.

References beta inc().

8.3.2.152 __fock_airy()

Compute the Fock-type Airy functions $w_1(x)$ and $w_2(x)$ and their first derivatives $w_1'(x)$ and $w_2'(x)$ respectively.

$$w_1(x) = \sqrt{\pi}(Ai(x) + iBi(x))$$

$$w_2(x) = \sqrt{\pi}(Ai(x) - iBi(x))$$

Parameters

_ ← The argument of the Airy functions.

Returns

A struct containing the Fock-type Airy functions of the first and second kinds and their derivatives.

Definition at line 560 of file sf_mod_bessel.tcc.

References __airy().

8.3.2.153 __fresnel()

Return the Fresnel cosine and sine integrals as a complex number f[C(x) + iS(x)].

The Fresnel cosine integral is defined by:

$$C(x) = \int_0^x \cos(\frac{\pi}{2}t^2)dt$$

The Fresnel sine integral is defined by:

$$S(x) = \int_0^x \sin(\frac{\pi}{2}t^2)dt$$

_~	The argument
_X	

Definition at line 170 of file sf_fresnel.tcc.

References fresnel cont frac(), and fresnel series().

8.3.2.154 __fresnel_cont_frac()

This function computes the Fresnel cosine and sine integrals by continued fractions for positive argument.

Definition at line 109 of file sf_fresnel.tcc.

Referenced by fresnel().

8.3.2.155 __fresnel_series()

This function returns the Fresnel cosine and sine integrals as a pair by series expansion for positive argument.

Definition at line 51 of file sf_fresnel.tcc.

Referenced by __fresnel().

```
8.3.2.156 __gamma() [1/2]
```

```
template<typename _Tp >
_Tp std::__detail::__gamma (
    _Tp __a )
```

Return the gamma function $\Gamma(a)$. The gamma function is defined by:

$$\Gamma(a) = \int_0^\infty e^{-t} t^{a-1} dt (a > 0)$$

.

```
_ ← The argument of the gamma function. _ a
```

Returns

The gamma function.

Definition at line 2641 of file sf_gamma.tcc.

```
References \_gnu\_cxx::\_fp\_is\_integer(), \_gamma\_reciprocal\_series(), \_log\_gamma(), \_log\_gamma\_sign(), std <math>\leftarrow ::\_detail::\_Factorial\_table < \_Tp >::\_n, and \_S\_factorial\_table.
```

Referenced by __beta_gamma(), __binomial(), __dirichlet_eta(), __gamma_p(), __gamma_pdf(), __gamma_q(), \leftarrow __gamma_reciprocal(), __gamma_reciprocal_series(), __hurwitz_zeta_polylog(), __polylog_exp_pos(), __riemann_ \leftarrow zeta(), __riemann_zeta_glob(), __riemann_zeta_m_1(), __riemann_zeta_sum(), __student_t_pdf(), and std::__detail \leftarrow ::_Airy_series< _Tp >::_S_Scorer2().

8.3.2.157 __gamma() [2/2]

Return the incomplete gamma functions.

Definition at line 2768 of file sf_gamma.tcc.

References __gnu_cxx::__fp_is_integer(), __gamma_cont_frac(), and __gamma_series().

8.3.2.158 __gamma_cont_frac()

Return the incomplete gamma function by continued fraction.

Definition at line 2723 of file sf_gamma.tcc.

```
References __log_gamma(), __log_gamma_sign(), and std::__detail::_Factorial_table< _Tp >::__n.
```

Referenced by __gamma(), __gamma_p(), __gamma_q(), __tgamma(), and __tgamma_lower().

8.3.2.159 __gamma_p() [1/2]

Return the gamma cumulative propability distribution function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}(x/\beta)^{\alpha-1}e^{-x/\beta}$$

Definition at line 141 of file sf distributions.tcc.

References __gamma(), and __tgamma_lower().

Referenced by __chi_squared_pdf().

```
8.3.2.160 __gamma_p() [2/2]
```

Return the regularized lower incomplete gamma function. The regularized lower incomplete gamma function is defined by

$$P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(\boldsymbol{a})$ is the gamma function and

$$\gamma(a,x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

is the lower incomplete gamma function.

Definition at line 2807 of file sf_gamma.tcc.

References __gnu_cxx::__fp_is_integer(), __gamma_cont_frac(), and __gamma_series().

8.3.2.161 __gamma_pdf()

Return the gamma propability distribution function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}(x/\beta)^{\alpha-1}e^{-x/\beta}$$

Definition at line 121 of file sf_distributions.tcc.

References __gamma().

_Tp __beta, _Tp __x)

8.3.2.162 __gamma_q() [1/2]

Return the gamma complementary cumulative propability distribution function.

The formula for the gamma probability density function is:

$$\Gamma(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}(x/\beta)^{\alpha-1}e^{-x/\beta}$$

Definition at line 162 of file sf_distributions.tcc.

References __gamma(), and __tgamma().

Referenced by __chi_squared_pdfc().

8.3.2.163 __gamma_q() [2/2]

Return the regularized upper incomplete gamma function. The regularized upper incomplete gamma function is defined by

$$Q(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\Gamma(a,x) = \int_x^\infty e^{-t} t^{a-1} dt (a>0)$$

is the upper incomplete gamma function.

Definition at line 2841 of file sf_gamma.tcc.

References __gnu_cxx::_fp_is_integer(), __gamma_cont_frac(), and __gamma_series().

8.3.2.164 __gamma_reciprocal()

Return the reciprocal of the Gamma function:

$$\frac{1}{\Gamma(a)}$$

Parameters

_ ← The argument of the reciprocal of the gamma function. _ a

Returns

The reciprocal of the gamma function.

Definition at line 2271 of file sf gamma.tcc.

References std::__detail::_Factorial_table< _Tp >::__factorial, __gnu_cxx::__fp_is_integer(), __gamma(), __gamma \leftarrow _reciprocal_series(), std::__detail::_Factorial_table< _Tp >::__n, __sin_pi(), and _S_factorial_table.

Referenced by __polylog_exp_asymp().

8.3.2.165 __gamma_reciprocal_series()

Return the reciprocal of the Gamma function by series. The reciprocal of the Gamma function is given by

$$\frac{1}{\Gamma(a)} = \sum_{k=1}^{\infty} c_k a^k$$

where the coefficients are defined by recursion:

$$c_{k+1} = \frac{1}{k} \left[\gamma_E c_k + (-1)^k \sum_{j=1}^{k-1} (-1)^j \zeta(j+1-k) c_j \right]$$

where $c_1 = 1$

Parameters

_~	The argument of the reciprocal of the gamma function.
а	

Returns

The reciprocal of the gamma function.

Definition at line 2203 of file sf gamma.tcc.

References __gamma().

Referenced by __gamma(), __gamma_reciprocal(), and __gamma_temme().

8.3.2.166 __gamma_series()

Return the incomplete gamma function by series summation.

$$\gamma(a,x) = x^a e^{-z} \sum_{k=1}^{\infty} \frac{x^k}{(a)_k}$$

Definition at line 2678 of file sf gamma.tcc.

 $\label{loggamma} References \underline{_gnu_cxx::_fp_is_integer(), \underline_log_gamma(), \underline_log_gamma_sign(), and std::_detail::_Factorial_table < \underline_Tp >::_n.$

Referenced by __gamma(), __gamma_p(), __gamma_q(), __tgamma(), and __tgamma_lower().

8.3.2.167 __gamma_temme()

```
template<typename _Tp >
    __gnu_cxx::__gamma_temme_t<_Tp> std::__detail::__gamma_temme (
    __Tp __mu )
```

Compute the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

The accuracy requirements on this are exquisite.

Parameters

	mu	The input parameter of the gamma functions.	
--	----	---	--

Returns

An output structure containing four gamma functions.

Definition at line 188 of file sf bessel.tcc.

References gamma reciprocal series().

Referenced by __cyl_bessel_ik_steed(), and __cyl_bessel_jn_steed().

8.3.2.168 __gauss()

The CDF of the normal distribution. i.e. the integrated lower tail of the normal PDF.

Definition at line 70 of file sf_owens_t.tcc.

8.3.2.169 __gegenbauer_recur()

```
template<typename _Tp >
    __gnu_cxx::__gegenbauer_t<_Tp> std::__detail::__gegenbauer_recur (
          unsigned int __n,
          __Tp __lambda,
          __Tp __x )
```

Return the Gegenbauer polynomial $C_n^{(\lambda)}(x)$ of degree n and real order λ and argument x.

The Gegenbauer polynomials are generated by a three-term recursion relation:

$$C_n^{(\lambda)}(x) = \frac{1}{n} \left[2x(n+\lambda-1)C_{n-1}^{(\lambda)}(x) - (n+2\lambda-2)C_{n-2}^{(\lambda)}(x) \right]$$

and $C_0^{(\lambda)}(x)=1,$ $C_1^{(\lambda)}(x)=2\lambda x.$ This works for $\lambda>-1/2$

Template Parameters

_Tp The real type of the a	rgument and order
------------------------------	-------------------

Parameters

n	The non-negative integral degree
lambda	The order of the Gegenbauer polynomial
x	The real argument

Definition at line 65 of file sf gegenbauer.tcc.

8.3.2.170 __gegenbauer_zeros()

Return a vector containing the zeros of the Gegenbauer or ultraspherical polynomial $C_n^{(\lambda)}$. This works for $\lambda > -1/2$

Template Parameters

Parameters

in _	_n	The degree of the Gegenbauer polynomial
------	----	---

in	lambda	The order of the Gegenbauer polynomial	1
----	--------	--	---

Definition at line 104 of file sf_gegenbauer.tcc.

References __gnu_cxx::lgamma().

8.3.2.171 __hankel()

Parameters

in	nu	The order for which the Hankel functions are evaluated.
in	z	The argument at which the Hankel functions are evaluated.

Returns

A struct containing the cylindrical Hankel functions of the first and second kinds and their derivatives.

Definition at line 1080 of file sf_hankel.tcc.

```
References __debye_region(), __hankel_debye(), and __hankel_uniform().
```

Referenced by __cyl_bessel(), __cyl_hankel_1(), __cyl_hankel_2(), __cyl_neumann(), and __sph_hankel().

8.3.2.172 __hankel_debye()

in	nu	The order for which the Hankel functions are evaluated.	
in	Z	z The argument at which the Hankel functions are evaluated.	
in	alpha		
in	indexr		
out	aorb		
out	morn		

Returns

A struct containing the cylindrical Hankel functions of the first and second kinds and their derivatives.

Definition at line 913 of file sf_hankel.tcc.

References __sin_pi().

Referenced by __hankel().

8.3.2.173 __hankel_params()

```
template<typename _Tp >
void std::__detail::__hankel_params (
             std::complex< _Tp > __nu,
             \verb|std::complex< _Tp| > \__zhat|,
             std::complex< _{Tp} > & _{p},
             std::complex< _{Tp} > & _{p2},
             std::complex< _Tp > & __nup2,
             std::complex< _Tp > & __num2,
             std::complex< _Tp > & __num1d3,
             std::complex < _Tp > & __num2d3,
             std::complex< _{\rm Tp} > & _{\rm mum4d3},
             std::complex < _Tp > & __zeta,
             std::complex< _Tp > & __zetaphf,
             std::complex< _Tp > & __zetamhf,
             std::complex< _Tp > & __zetam3hf,
             std::complex < _Tp > & __zetrat )
```

Compute parameters depending on z and nu that appear in the uniform asymptotic expansions of the Hankel functions and their derivatives, except the arguments to the Airy functions.

Definition at line 108 of file sf_hankel.tcc.

Referenced by __hankel_uniform_outer().

8.3.2.174 __hankel_uniform()

This routine computes the uniform asymptotic approximations of the Hankel functions and their derivatives including a patch for the case when the order equals or nearly equals the argument. At such points, Olver's expressions have zero denominators (and numerators) resulting in numerical problems. This routine averages results from four surrounding points in the complex plane to obtain the result in such cases.

Parameters

in	nu	The order for which the Hankel functions are evaluated.	
in	z	The argument at which the Hankel functions are evaluated.	

Returns

A struct containing the cylindrical Hankel functions of the first and second kinds and their derivatives.

Definition at line 860 of file sf_hankel.tcc.

References __hankel_uniform_olver().

Referenced by __hankel().

8.3.2.175 __hankel_uniform_olver()

Compute approximate values for the Hankel functions of the first and second kinds using Olver's uniform asymptotic expansion to of order nu along with their derivatives.

Parameters

in	nu	The order for which the Hankel functions are evaluated.	
in	z	The argument at which the Hankel functions are evaluated.	

Returns

A struct containing the cylindrical Hankel functions of the first and second kinds and their derivatives.

Definition at line 777 of file sf hankel.tcc.

```
References hankel uniform outer(), and hankel uniform sum().
```

Referenced by __hankel_uniform().

8.3.2.176 __hankel_uniform_outer()

```
template<typename _{\mathrm{Tp}} >
void std::__detail::__hankel_uniform_outer (
             std::complex< _Tp > __nu,
             std::complex < _Tp > __z,
             _Tp ___eps,
             std::complex< _Tp > & __zhat,
             std::complex < _Tp > & __1dnsq,
             std::complex< _Tp > & __num1d3,
             std::complex< _Tp > & __num2d3,
             std::complex< _{Tp} > & _{p},
             std::complex < _Tp > & __p2,
             std::complex < _Tp > & __etm3h,
             std::complex< _Tp > & __etrat,
             std::complex< _Tp > & _Aip,
             std::complex< _{Tp} > & _{_{0}4dp}
             std::complex< _Tp > & _Aim,
             std::complex< _{Tp} > & _{_{0}4dm}
             std::complex< _{\rm Tp} > & _{\rm od2p},
             std::complex < _Tp > & __od0dp,
             std::complex< _{Tp} > & _{_{od2m}}
             std::complex < _Tp > & __od0dm )
```

Compute outer factors and associated functions of z and nu appearing in Olver's uniform asymptotic expansions of the Hankel functions of the first and second kinds and their derivatives. The various functions of z and nu returned by nu form_outer are available for use in computing further terms in the expansions.

Definition at line 247 of file sf hankel.tcc.

```
References __airy_arg(), and __hankel_params().
```

Referenced by __hankel_uniform_olver().

8.3.2.177 __hankel_uniform_sum()

```
template < typename _Tp >
void std::__detail::__hankel_uniform_sum (
             std::complex< _{Tp} > _{p},
              std::complex < _Tp > __p2,
              std::complex< _Tp > __num2,
              std::complex< _Tp > __zetam3hf,
              std::complex< _Tp > _Aip,
              {\tt std::complex<\_Tp} > {\tt \_o4dp},
              \verb|std::complex< _Tp| > _Aim|,
              std::complex < _Tp > __o4dm,
              std::complex< _Tp > __od2p,
              std::complex < _Tp > __od0dp,
              std::complex < _Tp > __od2m,
              std::complex< _Tp > __od0dm,
              _Tp ___eps,
              std::complex< _Tp > & _H1sum,
              \verb|std::complex< _Tp > & _{\it H1psum,} \\
              std::complex< _{\rm Tp} > & _{\it H2sum},
              std::complex< _Tp > & _H2psum )
```

Compute the sums in appropriate linear combinations appearing in Olver's uniform asymptotic expansions for the Hankel functions of the first and second kinds and their derivatives, using up to nterms (less than 5) to achieve relative error eps.

Parameters

in	p	
in	p2	
in	num2	
in	zetam3hf	
in	_Aip	The Airy function value $Ai()$.
in	o4dp	
in	_Aim	The Airy function value $Ai()$.
in	o4dm	
in	od2p	
in	od0dp	
in	od2m	
in	od0dm	
in	eps	The error tolerance
out	_H1sum	The Hankel function of the first kind.
out	_H1psum	The derivative of the Hankel function of the first kind.
out	_H2sum	The Hankel function of the second kind.
out	_H2psum	The derivative of the Hankel function of the second kind.

Definition at line 324 of file sf_hankel.tcc.

Referenced by __hankel_uniform_olver().

8.3.2.178 __harmonic_number()

Definition at line 3288 of file sf_gamma.tcc.

References std::__detail::_Factorial_table < _Tp >::__n, _S_harmonic_denom, _S_harmonic_numer, and _S_num_ \leftarrow harmonic_numer.

8.3.2.179 __hermite()

This routine returns the Hermite polynomial of order n: $H_n(x)$.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

An explicit series formula is:

$$H_n(x) = \sum_{k=0}^m \frac{(-1)^k}{k!(n-2k)!} (2x)^{n-2k} \text{ where } m = \left\lfloor \frac{n}{2} \right\rfloor$$

The Hermite polynomial obeys a reflection formula:

$$H_n(-x) = (-1)^n H_n(x)$$

Parameters

_~	The order of the Hermite polynomial.	
_n		
_~	The argument of the Hermite polynomial.	
_X		

Returns

The value of the Hermite polynomial of order n and argument x.

Definition at line 212 of file sf_hermite.tcc.

References hermite asymp(), and hermite recur().

8.3.2.180 __hermite_asymp()

This routine returns the Hermite polynomial of large order n: $H_n(x)$. We assume here that $x \ge 0$.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

See also

"Asymptotic analysis of the Hermite polynomials from their differential-difference equation", Diego Dominici, ar

Xiv:math/0601078v1 [math.CA] 4 Jan 2006

Parameters

_~	The order of the Hermite polynomial.
_n	
1	The argument of the Hermite polynomial.
_X	

Returns

The value of the Hermite polynomial of order n and argument x.

Definition at line 143 of file sf hermite.tcc.

References __airy().

Referenced by __hermite().

8.3.2.181 __hermite_recur()

This routine returns the Hermite polynomial of order n: $H_n(x)$ by recursion on n.

The Hermite polynomial is defined by:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

The Hermite polynomial has first and second derivatives:

$$H_n'(x) = 2nH_{n-1}(x)$$

and

$$H_n''(x) = 4n(n-1)H_{n-2}(x)$$

The Physicists Hermite polynomials have highest-order coefficient 2^n and are orthogonal with respect to the weight function

$$w(x) = e^{x^2}$$

Parameters

_~	The order of the Hermite polynomial.	
_n		
_~	The argument of the Hermite polynomial.	
_X		

Returns

The value of the Hermite polynomial of order n and argument x.

Todo Find the sign of Hermite blowup values.

Definition at line 86 of file sf_hermite.tcc.

Referenced by __hermite().

8.3.2.182 __hermite_zeros()

Build a vector of the Gauss-Hermite integration rule abscissae and weights.

Definition at line 289 of file sf_hermite.tcc.

8.3.2.183 __heuman_lambda()

Return the Heuman lambda function.

Definition at line 1008 of file sf_ellint.tcc.

References __comp_ellint_1(), __ellint_rf(), __ellint_rf(), __ellint_rj(), and __jacobi_zeta().

8.3.2.184 __hurwitz_zeta()

Return the Hurwitz zeta function $\zeta(s,a)$ for all s = 1 and a > -1.

The Hurwitz zeta function is defined by:

$$\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}$$

The Riemann zeta function is a special case:

$$\zeta(s) = \zeta(s, 1)$$

Parameters

_~	The order $s! = 1$
_s	
_~	The scale parameter $a>-1$
_a	

Definition at line 871 of file sf_zeta.tcc.

References __hurwitz_zeta_euler_maclaurin(), and __riemann_zeta().

Referenced by __digamma(), and __polygamma().

8.3.2.185 __hurwitz_zeta_euler_maclaurin()

Return the Hurwitz zeta function $\zeta(s,a)$ for all s != 1 and a > -1.

See also

An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions, Linas Vep"0160tas

Parameters

_~	The order $s! = 1$
_s	
_←	The scale parameter $a>-1$
_a	

Definition at line 823 of file sf_zeta.tcc.

References _S_Euler_Maclaurin_zeta.

Referenced by hurwitz zeta().

8.3.2.186 __hurwitz_zeta_polylog()

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__hurwitz_zeta_polylog (
    _Tp __s,
    std::complex< _Tp > __a )
```

Return the Hurwitz Zeta function for real s and complex a. This uses Jonquiere's identity:

$$\frac{(i2\pi)^s}{\Gamma(s)} \zeta(a,1-s) = Li_s(e^{i2\pi a}) + (-1)^s Li_s(e^{-i2\pi a})$$

Parameters

_~	The real argument	
_s		
_~	The complex parameter	
а		

Todo This __hurwitz_zeta_polylog prefactor is prone to overflow. positive integer orders s?

Definition at line 1127 of file sf_polylog.tcc.

References __gamma(), and __polylog_exp().

8.3.2.187 __hydrogen()

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__hydrogen (
    unsigned int __n,
    unsigned int __1,
    unsigned int __m,
    _Tp __Z,
    _Tp __r,
    _Tp __theta,
    _Tp __phi )
```

Return the bound-state Coulomb wave-function.

Definition at line 248 of file sf_coulomb.tcc.

References __assoc_laguerre(), __log_gamma(), and __sph_legendre().

8.3.2.188 __hyperg()

Return the hypergeometric function ${}_{2}F_{1}(a,b;c;x)$.

The hypergeometric function is defined by

$$_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

Parameters

_←	The first <i>numerator</i> parameter.	
_a		
_←	The second <i>numerator</i> parameter.	
_b		Generated by Doxygen
_←	The denominator parameter.	, , , , , , , , , , , , , ,
_c		
_←	The argument of the confluent hypergeometric function.	
v		

Returns

The confluent hypergeometric function.

Definition at line 927 of file sf_hyperg.tcc.

```
References __gnu_cxx::__fp_is_integer(), __hyperg_luke(), __hyperg_reflect(), __hyperg_series(), __log_gamma(), and __log_gamma_sign().
```

Referenced by __legendre_q_series().

8.3.2.189 __hyperg_luke()

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by an iterative procedure described in Luke, Algorithms for the Computation of Mathematical Functions.

Definition at line 501 of file sf_hyperg.tcc.

Referenced by __hyperg().

8.3.2.190 __hyperg_recur()

Return the hypergeometric polynomial ${}_2F_1(-m,b;c;x)$ by Holm recursion.

The hypergeometric function is defined by

$$_{2}F_{1}(-m,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(n-m)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

_~	The first <i>numerator</i> parameter.
_m	
_~	The second <i>numerator</i> parameter.
_b	
_~	The denominator parameter.
_c	
_~	The argument of the confluent hypergeometric function.
_X	

Returns

The confluent hypergeometric function.

: go recur!

Definition at line 478 of file sf_hyperg.tcc.

8.3.2.191 __hyperg_reflect()

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by the reflection formulae in Abramowitz & Stegun formula 15.3.6 for d=c-a-b not integral and formula 15.3.11 for d=c-a-b integral. This assumes a,b,c!= negative integer.

The hypergeometric function is defined by

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

The reflection formula for nonintegral d=c-a-b is:

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} {}_{2}F_{1}(a,b;1-d;1-x) + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} {}_{2}F_{1}(c-a,c-b;1+d;1-x)$$

The reflection formula for integral m=c-a-b is:

$${}_{2}F_{1}(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} \sum_{k=0}^{m-1} \frac{(m+a)_{k}(m+b)_{k}}{k!(1-m)_{k}} (1-x)^{k} + (-1)^{m}$$

Definition at line 637 of file sf hyperg.tcc.

References __digamma(), __gnu_cxx::__fp_is_integer(), __hyperg_series(), __log_gamma(), and __log_gamma_\circ sign().

Referenced by hyperg().

8.3.2.192 __hyperg_series()

Return the hypergeometric function ${}_2F_1(a,b;c;x)$ by series expansion.

The hypergeometric function is defined by

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} \frac{x^{n}}{n!}$$

This works and it's pretty fast.

Parameters

_~	The first numerator parameter.
_a	
_←	The second <i>numerator</i> parameter.
_b	
_~	The denominator parameter.
_c	
_~	The argument of the confluent hypergeometric function.
_x	

Returns

The confluent hypergeometric function.

Definition at line 430 of file sf_hyperg.tcc.

Referenced by __hyperg(), and __hyperg_reflect().

8.3.2.193 __ibeta_cont_frac()

Return the regularized incomplete beta function, $I_x(a,b)$, of arguments a, b, and x.

_~	The first parameter
_a	
_~	The second parameter
_b	
_~	The argument
_x	

Definition at line 239 of file sf beta.tcc.

Referenced by __beta_inc().

```
8.3.2.194 __jacobi_ellint()
```

```
template<typename _Tp >
   __gnu_cxx::__jacobi_ellint_t<_Tp> std::__detail::__jacobi_ellint (
    __Tp ___k,
    __Tp ___u )
```

Return a structure containing the three primary Jacobi elliptic functions: sn(k, u), cn(k, u), dn(k, u).

Parameters

_~	The elliptic modulus $ k < 1$.
_k	
_~	The argument.
_ <i>u</i>	

Returns

An object containing the three principal Jacobi elliptic functions, sn(k,u), cn(k,u), dn(k,u) and the means to compute the remaining nine as well as the amplitude.

Definition at line 1649 of file sf_theta.tcc.

8.3.2.195 __jacobi_recur()

```
template<typename _Tp >
    __gnu_cxx::__jacobi_t<_Tp> std::__detail::__jacobi_recur (
        unsigned int __n,
        _Tp __alphal,
```

Compute the Jacobi polynomial by recursion on n:

$$2n(\alpha+\beta+n)(\alpha+\beta+2n-2)P_n^{(\alpha,\beta)}(x) = (\alpha+\beta+2n-1)((\alpha^2-\beta^2)+x(\alpha+\beta+2n-2)(\alpha+\beta+2n))P_{n-1}^{(\alpha,\beta)}(x) - 2(\alpha+n-1)(\beta+n-1)(\alpha+\beta+2n-2)P_n^{(\alpha,\beta)}(x) = (\alpha+\beta+2n-1)((\alpha^2-\beta^2)+x(\alpha+\beta+2n-2)(\alpha+\beta+2n))P_{n-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2n-1)((\alpha^2-\beta^2)+x(\alpha+\beta+2n-2)(\alpha+\beta+2n))P_{n-1}^{(\alpha,\beta)}(x) = (\alpha+\beta+2n-1)(\alpha+\beta+2n-2)(\alpha+2n-2)(\alpha+\beta+2n-2)(\alpha$$

This works for $\alpha, \beta > -1$

Template Parameters

_ <i>Tp</i> The real ty	oe of the argument
---------------------------	--------------------

Parameters

in	n	The degree of the Jacobi polynomial
in	alpha1	The first order parameter of the Jacobi polynomial
in	beta1	The second order parameter of the Jacobi polynomial
in	x	The argument

Definition at line 68 of file sf jacobi.tcc.

Referenced by __radial_jacobi().

```
8.3.2.196 __jacobi_theta_1() [1/2]
```

Return the Jacobi θ_1 function by summation of the series.

The Jacobi or elliptic theta function is defined by

$$\theta_1(q,x) = 2\sum_{n=1}^{\infty} (-1)^n q^{(n+\frac{1}{2})^2} \sin(2n+1)x$$

Regarding the nome and the theta function as functions of the lattice parameter $\tau - ilog(q)/\pi$ or $q = e^{i\pi\tau}$ the lattice parameter is transformed to maximize its imaginary part:

$$\theta_1(\tau+1,x) = -ie^{i\pi/4}\theta_1(\tau,x)$$

and

$$\sqrt{-i\tau}\theta_1(\tau,x) = e^{(i\tau x^2/\pi)}\theta_1(\tau',\tau'x)$$

where the new lattice parameter is $\tau' = -1/\tau$.

The argument is reduced with

$$\theta_1(q, x + (m + n\tau)\pi) = (-1)^{m+n}q^{-n^2}e^{-2inx}\theta_1(q, x)$$

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 980 of file sf_theta.tcc.

Referenced by __jacobi_theta_1().

8.3.2.197 __jacobi_theta_1() [2/2]

Return the Jacobi θ_1 function for real nome and argument.

The Jacobi or elliptic theta function is defined by

$$\theta_1(q,x) = 2\sum_{n=1}^{\infty} (-1)^n q^{(n+\frac{1}{2})^2} \sin(2n+1)x$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1048 of file sf theta.tcc.

References __jacobi_theta_1().

8.3.2.198 __jacobi_theta_1_prod()

```
template<typename _Tp >
_Tp std::__detail::__jacobi_theta_1_prod (
```

Return the Jacobi θ_1 function by accumulation of the product.

The Jacobi or elliptic theta-1 function is defined by

$$\theta_1(q,x) = 2q^{1/4}\sin(x)\prod_{n=1}^{\infty}(1-q^{2n})(1-2q^{2n}\cos(2x)+q^{4n})$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_x	

Definition at line 923 of file sf_theta.tcc.

Referenced by __jacobi_theta_1().

8.3.2.199 __jacobi_theta_1_sum()

Return the Jacobi θ_1 function by summation of the series.

The Jacobi or elliptic theta-1 function is defined by

$$\theta_1(q,x) = 2\sum_{n=1}^{\infty} (-1)^n q^{(n+\frac{1}{2})^2} \sin(2n+1)x$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 888 of file sf_theta.tcc.

Referenced by __jacobi_theta_1().

8.3.2.200 __jacobi_theta_2() [1/2]

Return the Jacobi θ_2 function by summation of the series.

The Jacobi or elliptic theta function is defined by

$$\theta_2(q,x) = 2\sum_{n=1}^{\infty} q^{(n+\frac{1}{2})^2} \cos(2n+1)x$$

Regarding the nome and the theta function as functions of the lattice parameter $\tau - ilog(q)/\pi$ or $q = e^{i\pi\tau}$ the lattice parameter is transformed to maximize its imaginary part:

$$\theta_2(\tau+1,x) = e^{i\pi/4}\theta_2(\tau,x)$$

and

$$\sqrt{-i\tau}\theta_2(\tau,x) = e^{(i\tau x^2/\pi)}\theta_4(\tau',\tau'x)$$

where the new lattice parameter is $\tau' = -1/\tau$.

The argument is reduced with

$$\theta_2(q, x + (m + n\tau)\pi) = (-1)^m q^{-n^2} e^{-2inx} \theta_2(q, x)$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_←	The argument.
_X	

Definition at line 1176 of file sf_theta.tcc.

References __jacobi_theta_2_prod(), __jacobi_theta_2_sum(), __jacobi_theta_4_sum(), __polar_pi(), std::__detail::
__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__reduce(), std::__detail::__jacobi_lattice_t< _Tp_Omega1, _
__
Tp_Omega3 >::__tau(), std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_S_pi, and std::__detail::__jacobi_theta_0_t< Tp_1, Tp3 >::th2.

Referenced by __jacobi_theta_2().

8.3.2.201 __jacobi_theta_2() [2/2]

Return the Jacobi θ_2 function for real nome and argument.

The Jacobi or elliptic theta function is defined by

$$\theta_2(q,x) = 2\sum_{n=1}^{\infty} q^{(n+\frac{1}{2})^2} \cos(2n+1)x$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_←	The argument.
_x	

Definition at line 1249 of file sf_theta.tcc.

References __jacobi_theta_2().

8.3.2.202 __jacobi_theta_2_prod()

Return the Jacobi θ_2 function by accumulation of the product.

The Jacobi or elliptic theta-2 function is defined by

$$\theta_2(q,x) = 2q^{1/4}\sin(x)\prod_{n=1}^{\infty} (1 - q^{2n})(1 + 2q^{2n}\cos(2x) + q^{4n})$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_←	The argument.
_X	

Definition at line 1109 of file sf_theta.tcc.

References __jacobi_theta_4_prod(), and __jacobi_theta_4_sum().

Referenced by __jacobi_theta_2().

8.3.2.203 __jacobi_theta_2_sum()

Return the Jacobi θ_2 function by summation of the series.

The Jacobi or elliptic theta-2 function is defined by

$$\theta_2(q,x) = 2\sum_{n=1}^{\infty} q^{(n+\frac{1}{2})^2} \cos(2n+1)x$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1077 of file sf_theta.tcc.

Referenced by __jacobi_theta_2(), and __jacobi_theta_4().

```
8.3.2.204 __jacobi_theta_3() [1/2]
```

Return the Jacobi θ_3 function by summation of the series.

The Jacobi or elliptic theta function is defined by

$$\theta_3(q, x) = 1 + 2\sum_{n=1}^{\infty} q^{n^2} \cos 2nx$$

Regarding the nome and the theta function as functions of the lattice parameter $\tau - ilog(q)/\pi$ or $q = e^{i\pi\tau}$ the lattice parameter is transformed to maximize its imaginary part:

$$\theta_3(\tau+1,x) = \theta_3(\tau,x)$$

and

$$\sqrt{-i\tau}\theta_3(\tau,x) = e^{(i\tau x^2/\pi)}\theta_3(\tau',\tau'x)$$

where the new lattice parameter is $\tau' = -1/\tau$.

The argument is reduced with

$$\theta_3(q, x + (m + n\tau)\pi) = q^{-n^2}e^{-2inx}\theta_3(q, x)$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_←	The argument.
_X	

Definition at line 1365 of file sf theta.tcc.

 $References __jacobi_theta_3_prod(), __jacobi_theta_3_sum(), std::__detail::__jacobi_lattice_t<_Tp_Omega1, _Tp \leftarrow _Omega3 >::__reduce(), std::__detail::__jacobi_lattice_t<_Tp_Omega3 >::__tau(), std::__detail::__detail::__detail::__jacobi_lattice_t<_Tp_Omega3 >::__tau(), std::__detail::__detail::__jacobi_theta_0_t<_Tp1, _Tp3 >::th3.$

Referenced by jacobi theta 3().

8.3.2.205 __jacobi_theta_3() [2/2]

Return the Jacobi θ_3 function for real nome and argument.

The Jacobi or elliptic theta function is defined by

$$\theta_3(q, x) = 1 + 2\sum_{n=1}^{\infty} q^{n^2} \cos 2nx$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1433 of file sf_theta.tcc.

References __jacobi_theta_3().

```
8.3.2.206 __jacobi_theta_3_prod()
```

Return the Jacobi θ_3 function by accumulation of the product.

The Jacobi or elliptic theta-3 function is defined by

$$\theta_3(q,x) = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + 2q^{2n-1}\cos(2x) + q^{4n-2})$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1309 of file sf_theta.tcc.

Referenced by __jacobi_theta_3().

Return the Jacobi θ_3 function by summation of the series.

The Jacobi or elliptic theta-3 function is defined by

$$\theta_3(q, x) = 1 + 2\sum_{n=1}^{\infty} q^{n^2} \cos 2nx$$

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1277 of file sf_theta.tcc.

Referenced by ___jacobi_theta_3().

8.3.2.208 __jacobi_theta_4() [1/2]

Return the Jacobi θ_4 function by summation of the series.

The Jacobi or elliptic theta-4 function is defined by

$$\theta_4(q,x) = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos 2nx$$

Regarding the nome and the theta function as functions of the lattice parameter $\tau - ilog(q)/\pi$ or $q = e^{i\pi\tau}$ the lattice parameter is transformed to maximize its imaginary part:

$$\theta_4(\tau+1,x) = \theta_4(\tau,x)$$

and

$$\sqrt{-i\tau}\theta_4(\tau,x) = e^{(i\tau x^2/\pi)}\theta_2(\tau',\tau'x)$$

where the new lattice parameter is $\tau'=-1/\tau.$

The argument is reduced with

$$\theta_4(q, z + (m+n\tau)\pi) = (-1)^n q^{-n^2} e^{-2inz} \theta_4(q, z)$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1551 of file sf_theta.tcc.

References __jacobi_theta_2_sum(), __jacobi_theta_4_prod(), __jacobi_theta_4_sum(), std::__detail::__jacobi_ \leftarrow lattice_t< _Tp_Omega1, _Tp_Omega3 >::__reduce(), std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__tau(), std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_S_pi, and std::__detail::__jacobi_ \leftarrow theta_0_t< _Tp1, _Tp3 >::th4.

Referenced by __jacobi_theta_4().

```
8.3.2.209 __jacobi_theta_4() [2/2]
```

Return the Jacobi θ_4 function for real nome and argument.

The Jacobi or elliptic theta function is defined by

$$\theta_4(q,x) = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos 2nx$$

Parameters

_←	The elliptic nome, $ q < 1$.
_q	
_←	The argument.
_x	

Definition at line 1622 of file sf_theta.tcc.

References __jacobi_theta_4().

8.3.2.210 __jacobi_theta_4_prod()

Return the Jacobi θ_4 function by accumulation of the product.

The Jacobi or elliptic theta-4 function is defined by

$$\theta_4(q,x) = \prod_{n=1}^{\infty} (1 - q^{2n})(1 - 2q^{2n-1}\cos(2x) + q^{4n-2})$$

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_X	

Definition at line 1495 of file sf_theta.tcc.

Referenced by __jacobi_theta_2_prod(), and __jacobi_theta_4().

```
8.3.2.211 __jacobi_theta_4_sum()
```

Return the Jacobi θ_4 function by summation of the series.

The Jacobi or elliptic theta function is defined by

$$\theta_4(q,x) = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos 2nx$$

Parameters

_~	The elliptic nome, $ q < 1$.
_q	
_~	The argument.
_x	

Definition at line 1461 of file sf theta.tcc.

Referenced by __jacobi_theta_2(), __jacobi_theta_2_prod(), and __jacobi_theta_4().

8.3.2.212 __jacobi_zeros()

Return a vector containing the zeros of the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$. Thias works for $\alpha,\beta>-1$.

Template Parameters

Tp The rea	al type of the parameters
------------	---------------------------

Parameters

in	n	The degree of the Jacobi polynomial
in	alpha1	The first order parameter of the Jacobi polynomial
in	beta1	The second order parameter of the Jacobi polynomial

Definition at line 142 of file sf_jacobi.tcc.

References __gnu_cxx::lgamma().

Referenced by __radial_jacobi_zeros().

8.3.2.213 __jacobi_zeta()

Return the Jacobi zeta function.

Definition at line 971 of file sf_ellint.tcc.

References __comp_ellint_1(), and __ellint_rj().

Referenced by __heuman_lambda().

8.3.2.214 __kolmogorov_p()

$$P(K \le x) = 1 - e^{-2x^2} + e^{-2 \cdot 4x^2} + e^{-2 \cdot 9x^2} - e^{-2 \cdot 16x^2} + \dots$$

Definition at line 723 of file sf_distributions.tcc.

8.3.2.215 __laguerre() [1/2]

This routine returns the associated Laguerre polynomial of degree n, order α : $L_n^{(\alpha)}(x)$.

The associated Laguerre function is defined by

$$L_n^{(\alpha)}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n;\alpha+1;x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

The associated Laguerre polynomial is defined for integral order $\alpha=m$ by:

$$L_n^{(m)}(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Template Parameters

_Тра	The type of the order.
Тр	The type of the parameter.

Parameters

n	The degree of the Laguerre function.
alpha1	The order of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of degree n, order α , and argument x.

Definition at line 316 of file sf_laguerre.tcc.

References __laguerre_hyperg(), __laguerre_large_n(), and __laguerre_recur().

8.3.2.216 __laguerre() [2/2]

This routine returns the Laguerre polynomial of degree n: $L_n(x)$.

The Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Parameters

_←	The degree of the Laguerre polynomial.
_n	
_←	The argument of the Laguerre polynomial.
_X	

Returns

The value of the Laguerre polynomial of order n and argument x.

Definition at line 387 of file sf laguerre.tcc.

8.3.2.217 __laguerre_hyperg()

Evaluate the polynomial based on the confluent hypergeometric function in a safe way, with no restriction on the arguments.

The associated Laguerre function is defined by

$$L_n^{(\alpha)}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n;\alpha+1;x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

This function assumes x = 0.

This is from the GNU Scientific Library.

Template Parameters

_Tpa The type of the order.	
_Tp	The type of the parameter.

Parameters

n	The degree of the Laguerre function.
alpha1	The order of the Laguerre function.
x	The argument of the Laguerre function.

Returns

The value of the Laguerre function of degree n, order α , and argument x.

Definition at line 131 of file sf_laguerre.tcc.

Referenced by __laguerre().

8.3.2.218 __laguerre_large_n()

This routine returns the associated Laguerre polynomial of degree n, order $\alpha > -1$ for large n. Abramowitz & Stegun, 13.5.21.

Template Parameters

_Тра	The type of the order.	
_Тр	The type of the parameter.	

Parameters

n	The degree of the Laguerre function.
alpha1	The order of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of degree n, order α , and argument x.

This is from the GNU Scientific Library.

Definition at line 75 of file sf_laguerre.tcc.

References __log_gamma(), and __sin_pi().

Referenced by __laguerre().

8.3.2.219 __laguerre_recur()

This routine returns the associated Laguerre polynomial of degree n, order α : $L_n^{(\alpha)}(x)$ by recursion.

The associated Laguerre function is defined by

$$L_n^{(\alpha)}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n;\alpha+1;x)$$

where $(\alpha)_n$ is the Pochhammer symbol and ${}_1F_1(a;c;x)$ is the confluent hypergeometric function.

The associated Laguerre polynomial is defined for integral order $\alpha=m$ by:

$$L_n^{(m)}(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)$$

where the Laguerre polynomial is defined by:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Template Parameters

_Тра	The type of the order.
_Тр	The type of the parameter.

Parameters

n	The degree of the Laguerre function.
alpha1	The order of the Laguerre function.
X	The argument of the Laguerre function.

Returns

The value of the Laguerre function of order n, degree α , and argument x.

Definition at line 189 of file sf_laguerre.tcc.

Referenced by __laguerre().

8.3.2.220 __laguerre_zeros()

Return an array of abscissae and weights for the Gauss-Laguerre rule.

Definition at line 225 of file sf_laguerre.tcc.

References __gnu_cxx::lgamma().

```
8.3.2.221 __lah() [1/2]
```

Return the Lah number. Lah numbers are defined by downward recurrence:

$$L(n, k-1) = \frac{k(k-1)}{n-k+1}L(n, k); L(n, n) = 1$$

Definition at line 440 of file sf stirling.tcc.

```
8.3.2.222 __lah() [2/2]
```

Return a vector of Lah numbers. Lah numbers are defined by downward recurrence:

$$L(n, k-1) = \frac{k(k-1)}{n-k+1}L(n, k); L(n, n) = 1$$

Definition at line 478 of file sf_stirling.tcc.

8.3.2.223 __lah_recur() [1/2]

Return the Lah number by downward recurrence:

$$L(n, k-1) = \frac{k(k-1)}{n-k+1}L(n, k); L(n, n) = 1$$

Definition at line 416 of file sf_stirling.tcc.

```
8.3.2.224 __lah_recur() [2/2]
```

```
template<typename _Tp >
std::vector<_Tp> std::__detail::__lah_recur (
          unsigned int __n )
```

Return a vector of Lah numbers defined by downward recurrence:

$$L(n, k - 1) = \frac{k(k - 1)}{n - k + 1}L(n, k); L(n, n) = 1$$

Definition at line 451 of file sf_stirling.tcc.

8.3.2.225 __lanczos_binet1p()

Return the Binet function J(1+z) by the Lanczos method. The Binet function is the log of the scaled Gamma function $log(\Gamma^*(z))$ defined by

$$J(z) = log(\Gamma^*(z)) = log(\Gamma(z)) + z - \left(z - \frac{1}{2}\right)log(z) - log(2\pi)$$

or

$$\Gamma(z)=\sqrt{2\pi}z^{z-\frac{1}{2}}e^{-z}e^{J(z)}$$

where $\Gamma(z)$ is the gamma function.

```
_ ← The argument of the log of the gamma function.
```

Returns

The logarithm of the gamma function.

Definition at line 2125 of file sf_gamma.tcc.

References std::__detail::_Factorial_table < _Tp >::__n.

Referenced by __lanczos_log_gamma1p().

8.3.2.226 | lanczos log gamma1p()

Return the logarithm of the gamma function $log(\Gamma(1+z))$ by the Lanczos method.

If the argument is real, the log of the absolute value of the Gamma function is returned. The sign to be applied to the exponential of this log Gamma can be recovered with a call to <u>log_gamma_sign</u>.

For complex argument the fully complex log of the gamma function is returned.

Parameters

```
_ ← The argument of the log of the gamma function.
```

Returns

The logarithm of the gamma function.

Definition at line 2159 of file sf_gamma.tcc.

References __lanczos_binet1p(), and __sin_pi().

8.3.2.227 __legendre_p()

```
template<typename _Tp >
    __gnu_cxx::__legendre_p_t<_Tp> std::__detail::__legendre_p (
          unsigned int __l,
          __Tp __x )
```

Return the Legendre polynomial by upward recursion on degree l.

The Legendre function of degree l and argument x, $P_l(x)$, is defined by:

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

This can be expressed as a series:

$$P_l(x) = \frac{1}{2^l l!} \sum_{k=0}^{\lfloor l/2 \rfloor} \frac{(-1)^k (2l-2k)!}{k! (l-k)! (l-2k)!} x^{l-2k}$$

Parameters

_~	The degree of the Legendre polynomial. $l>=0$.
_/	
_~	The argument of the Legendre polynomial.
_X	

Definition at line 85 of file sf legendre.tcc.

Referenced by __assoc_legendre_p(), and __sph_legendre().

8.3.2.228 __legendre_q()

Return the Legendre function of the second kind by upward recursion on degree l.

The Legendre function of the second kind of degree l and argument x, $Q_l(x)$, is defined by:

$$Q_{l}(x) = \frac{1}{2^{l} l!} \frac{d^{l}}{dx^{l}} (x^{2} - 1)^{l}$$

_ _	The degree of the Legendre function. $l>=0$.
_← _x	The argument of the Legendre function. $\vert x \vert <= 1.$

Definition at line 165 of file sf_legendre.tcc.

References __legendre_q_series().

8.3.2.229 legendre q series()

Legendre q series.

Definition at line 133 of file sf_legendre.tcc.

References __hyperg().

Referenced by __legendre_q().

8.3.2.230 __legendre_zeros()

Build a list of zeros and weights for the Gauss-Legendre integration rule for the Legendre polynomial of degree 1. Definition at line 521 of file sf_legendre.tcc.

8.3.2.231 __log_binomial() [1/2]

Return the logarithm of the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

.

_~	The first argument of the binomial coefficient.
_n	
_←	The second argument of the binomial coefficient.
_k	

Returns

The logarithm of the binomial coefficient.

Definition at line 2436 of file sf_gamma.tcc.

References __log_gamma(), and std::__detail::_Factorial_table< _Tp >::__n.

Referenced by __binomial().

8.3.2.232 __log_binomial() [2/2]

Return the logarithm of the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

Parameters

	nu	The first argument of the binomial coefficient.
ſ	k	The second argument of the binomial coefficient.

Returns

The logarithm of the binomial coefficient.

Definition at line 2473 of file sf_gamma.tcc.

References __log_gamma(), and std::__detail::_Factorial_table< _Tp >::__n.

8.3.2.233 __log_binomial_sign() [1/2]

Return the sign of the exponentiated logarithm of the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

.

Parameters

nu	The first argument of the binomial coefficient.	
k	The second argument of the binomial coefficient.	

Returns

The sign of the gamma function.

Definition at line 2504 of file sf_gamma.tcc.

 $References \underline{\hspace{0.3cm}} log_gamma_sign(), and std::\underline{\hspace{0.3cm}} detail::\underline{\hspace{0.3cm}} Factorial_table < \underline{\hspace{0.3cm}} Tp > ::\underline{\hspace{0.3cm}} n.$

Referenced by __binomial().

8.3.2.234 __log_binomial_sign() [2/2]

Definition at line 2519 of file sf_gamma.tcc.

8.3.2.235 __log_double_factorial() [1/2]

Extend double factorial to non-integer arguments. Arkken,

$$log(\nu!!) = \frac{\nu}{2}log(2) + (\cos(\pi\nu) - 1)\log(\pi/2)/4 + \log(\Gamma(1 + \nu/2))$$

Definition at line 1657 of file sf_gamma.tcc.

References __cos_pi(), and __log_gamma().

Referenced by double factorial(), and log double factorial().

8.3.2.236 __log_double_factorial() [2/2]

Return the logarithm of the double factorial of the integer n.

The double factorial is defined for integral n by:

$$n!! = 135...(n-2)n, noddn!! = 246...(n-2)n, neven - 1!! = 10!! = 1$$

The double factorial is defined for odd negative integers in the obvious way:

$$(-2m-1)!! = 1/(1(-1)(-3)...(-2m+1)(-2m-1)) = \frac{(-1)^m}{(2m-1)!!}$$

for f[n = -2m - 1 f].

Definition at line 1727 of file sf_gamma.tcc.

References __log_double_factorial(), std::__detail::_Factorial_table < _Tp >::__log_factorial, std::__detail::_Factorial _table < _Tp >::__n, _S_double_factorial_table, and _S_neg_double_factorial_table.

8.3.2.237 __log_factorial()

```
template<typename _Tp > 
 _GLIBCXX14_CONSTEXPR _Tp std::__detail::__log_factorial ( unsigned int __n )
```

Return the logarithm of the factorial of the integer n.

The factorial is:

$$n! = 12...(n-1)n, 0! = 1$$

Definition at line 1635 of file sf_gamma.tcc.

References $_log_gamma()$, std:: $_detail$:: $_Factorial_table < <math>_Tp >$:: $_n$, $_S_double_factorial_table$, and $_S_$ factorial $_table$.

8.3.2.238 __log_falling_factorial()

Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The lower Pochammer symbol is defined by

$$a^{\underline{n}} = \Gamma(a+1)/\Gamma(a-\nu+1) = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1$$

In particular, $n^{\underline{n}} = n!$. Thus this function returns

$$ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)], ln[a^{\underline{0}}] = 0$$

Many notations exist for this function:

 $(a)_{\nu}$

,

$$\left\{ \begin{array}{c} a \\ \nu \end{array} \right\}$$

, and others.

Definition at line 3052 of file sf gamma.tcc.

References __falling_factorial(), __gnu_cxx::__fp_is_integer(), and __log_gamma().

8.3.2.239 __log_gamma() [1/2]

Return $log(|\Gamma(a)|)$. This will return values even for a < 0. To recover the sign of $\Gamma(a)$ for any argument use $\underline{\hspace{0.5cm}}log_{\hookleftarrow}$ $gamma_sign$.

```
_ ← The argument of the log of the gamma function.
```

Returns

The logarithm of the gamma function.

Definition at line 2327 of file sf_gamma.tcc.

References __sin_pi(), and __spouge_log_gamma1p().

Referenced by __beta_inc(), __beta_lgamma(), __cyl_bessel_ij_series(), __falling_factorial(), __gamma(), __
gamma_cont_frac(), __gamma_series(), __hydrogen(), __hyperg(), __hyperg_reflect(), __laguerre_large_n(), __
log_binomial(), __log_double_factorial(), __log_factorial(), __log_falling_factorial(), __log_gamma(), __log_rising_
factorial(), __polygamma(), __polylog_exp_neg(), __polylog_exp_pos(), __riemann_zeta(), __rising_factorial(), and __sph_legendre().

```
8.3.2.240 __log_gamma() [2/2]
```

Return $log(\Gamma(a))$ for complex argument.

Parameters

```
_ ← The complex argument of the log of the gamma function.
_a
```

Returns

The complex logarithm of the gamma function.

Definition at line 2362 of file sf_gamma.tcc.

References __gnu_cxx::__fp_is_integer(), std::__detail::_Factorial_table< _Tp >::__log_factorial, __log_gamma(), std::__detail::_Factorial_table< _Tp >::__n, __sin_pi(), __spouge_log_gamma1p(), and _S_factorial_table.

8.3.2.241 __log_gamma_bernoulli()

Return $log(\Gamma(x))$ by asymptotic expansion with Bernoulli number coefficients. This is like Sterling's approximation.

Parameters

```
_ ← The argument of the log of the gamma function.
```

Returns

The logarithm of the gamma function.

Definition at line 1759 of file sf_gamma.tcc.

8.3.2.242 __log_gamma_sign() [1/2]

Return the sign of $\Gamma(x)$. At nonpositive integers zero is returned indicating $\Gamma(x)$ is undefined.

Parameters

```
__ The argument of the gamma function.
```

Returns

The sign of the gamma function.

Definition at line 2403 of file sf_gamma.tcc.

8.3.2.243 __log_gamma_sign() [2/2]

Definition at line 2415 of file sf_gamma.tcc.

8.3.2.244 __log_rising_factorial()

Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The Pochammer symbol is defined for integer order by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), (a)_0 = 1$$

Thus this function returns

$$ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[(a)_0] = 0$$

Many notations exist for this function:

 $(a)_{\nu}$

(especially in the literature of special functions),

 $\begin{bmatrix} a \\ \nu \end{bmatrix}$

, and others.

Definition at line 3201 of file sf_gamma.tcc.

References __log_gamma(), and __rising_factorial().

8.3.2.245 __log_stirling_1()

Return the logarithm of the absolute value of Stirling number of the first kind.

Definition at line 387 of file sf stirling.tcc.

8.3.2.246 __log_stirling_1_sign()

Return the sign of the exponent of the logarithm of the Stirling number of the first kind.

Definition at line 405 of file sf_stirling.tcc.

```
8.3.2.247 __log_stirling_2()
```

Return the Stirling number of the second kind.

Todo Find asymptotic expressions for the Stirling numbers.

Definition at line 234 of file sf_stirling.tcc.

8.3.2.248 __logint()

Return the logarithmic integral li(x).

The logarithmic integral is given by

$$li(x) = Ei(\log(x))$$

Parameters

Returns

The logarithmic integral.

Definition at line 538 of file sf_expint.tcc.

References __expint().

8.3.2.249 __logistic_p()

Return the logistic cumulative distribution function.

The formula for the logistic probability function is

$$cdf(x|a,b) = \frac{e^{(x-a)/b}}{1 + e^{(x-a)/b}}$$

where b > 0.

Definition at line 688 of file sf_distributions.tcc.

8.3.2.250 __logistic_pdf()

Return the logistic probability density function.

The formula for the logistic probability density function is

$$p(x|a,b) = \frac{e^{(x-a)/b}}{b[1 + e^{(x-a)/b}]^2}$$

where b > 0.

Definition at line 670 of file sf_distributions.tcc.

8.3.2.251 __lognormal_p()

Return the lognormal cumulative probability density function.

The formula for the lognormal cumulative probability density function is

$$F(x|\mu,\sigma) = \frac{1}{2} \left[1 - erf(\frac{\ln x - \mu}{\sqrt{2}\sigma}) \right]$$

Definition at line 287 of file sf distributions.tcc.

8.3.2.252 __lognormal_pdf()

Return the lognormal probability density function.

The formula for the lognormal probability density function is

$$f(x|\mu,\sigma) = \frac{e^{(\ln x - \mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$$

Definition at line 259 of file sf distributions.tcc.

8.3.2.253 __normal_p()

Return the normal cumulative probability density function.

The formula for the normal cumulative probability density function is

$$F(x|\mu,\sigma) = \frac{1}{2} \left[1 - erf(\frac{x-\mu}{\sqrt{2}\sigma}) \right]$$

Definition at line 238 of file sf_distributions.tcc.

8.3.2.254 __normal_pdf()

Return the normal probability density function.

The formula for the normal probability density function is

$$f(x|\mu,\sigma) = \frac{e^{(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$$

Definition at line 210 of file sf_distributions.tcc.

8.3.2.255 __owens_t()

Return the Owens T function:

$$T(h,a) = \frac{1}{2\pi} \int_0^a \frac{\exp[-\frac{1}{2}h^2(1+x^2)]}{1+x^2} dx$$

This implementation is a translation of the Fortran implementation in

See also

Patefield, M. and Tandy, D. "Fast and accurate Calculation of Owen's T-Function", Journal of Statistical Software, 5 (5), 1 - 25 (2000)

Parameters

in	_~	The scale parameter.
	_h	
in	_~	The integration limit.
	_a	

Returns

The owens T function.

Definition at line 92 of file sf_owens_t.tcc.

References __znorm1(), and __znorm2().

8.3.2.256 __periodic_zeta()

```
template<typename _Tp , typename _ArgType >
    __gnu_cxx::fp_promote_t<std::complex<_Tp>, _ArgType> std::__detail::__periodic_zeta (
    __ArgType __z,
    __Tp __s )
```

Return the periodic zeta function F(z,s) for two real arguments.

The periodic zeta function is defined by

$$F(z,s) = \sum_{k=1}^{\infty} \frac{e^{i2\pi kz}}{k^s} = Li_s(e^{i2\pi kz})$$

Parameters

_~	The real order.
_s	
_~	The real or complex argument.
_Z	

Returns

The complex value of the periodic zeta function.

Definition at line 1102 of file sf_polylog.tcc.

References __gnu_cxx::__fp_is_zero(), __polylog_exp(), and __riemann_zeta().

8.3.2.257 __polar_pi() [1/2]

Reperiodized complex constructor.

Definition at line 401 of file sf_trig.tcc.

```
References \_gnu\_cxx::\_sincos\_t < \_Tp >::\_cos\_v, \_gnu\_cxx::\_sincos\_t < \_Tp >::\_sin\_v, and \_sincos\_pi().
Referenced by \_cyl\_bessel\_jn\_neg\_arg(), \_cyl\_hankel\_1(), \_cyl\_hankel_2(), \_jacobi\_theta_1(), \_jacobi\_theta\_\leftarrow 2(), \_polylog\_exp\_neg(), and <math>\_polylog\_exp\_pos().
```

8.3.2.258 __polar_pi() [2/2]

Reperiodized complex constructor.

Definition at line 413 of file sf_trig.tcc.

References __gnu_cxx::__sincos_t< _Tp >::__cos_v, __gnu_cxx::__sincos_t< _Tp >::__sin_v, and __sincos_pi().

8.3.2.259 __polygamma()

Return the polygamma function $\psi^{(m)}(x)$.

The polygamma function is related to the Hurwitz zeta function:

$$\psi^{(m)}(x) = (-1)^{m+1} m! \zeta(m+1, x)$$

Definition at line 3467 of file sf gamma.tcc.

References $_$ digamma(), $_$ gnu $_$ cxx:: $_$ fp $_$ is $_$ integer(), $_$ hurwitz $_$ zeta(), $_$ log $_$ gamma(), and std:: $_$ detail:: $_$ \leftarrow Factorial $_$ table< $_$ Tp>:: $_$ n.

8.3.2.260 __polylog() [1/2]

Return the polylog $Li_s(x)$ for two real arguments.

The polylog is defined by

$$Li_s(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^s}$$

_~	The real order.
_s	
_~	The real argument.
_X	

Returns

The complex value of the polylogarithm.

Definition at line 1037 of file sf_polylog.tcc.

 $References \underline{gnu_cxx::_fp_is_equal(), \underline{gnu_cxx::_fp_is_integer(), \underline{gnu_cxx::_fp_is_zero(), and \underline{gnu_cxx::_fp_is_zero(), a$

Referenced by __dirichlet_beta(), __dirichlet_eta(), and __polylog().

8.3.2.261 __polylog() [2/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog (
    __Tp ___s,
    std::complex< _Tp > __w )
```

Return the polylog in those cases where we can calculate it.

Parameters

_←	The real order.
_s	
_←	The complex argument.
14/	

Returns

The complex value of the polylogarithm.

Definition at line 1078 of file sf_polylog.tcc.

References __polylog(), and __polylog_exp().

8.3.2.262 __polylog_exp()

```
template<typename _Tp , typename _ArgType >
    __gnu_cxx::fp_promote_t<std::complex<_Tp>, _ArgType> std::__detail::__polylog_exp (
    __Tp __s,
    __ArgType __w )
```

This is the frontend function which calculates $Li_s(e^w)$ First we branch into different parts depending on the properties of s. This function is the same irrespective of a real or complex w, hence the template parameter ArgType.

Note

: I really wish we could return a variant<Tp, std::complex<Tp>>.

Parameters

_~	The real order.
_s	
_~	The real or complex argument.
_ <i>w</i>	

Returns

The real or complex value of Li $s(e^{\wedge}w)$.

Definition at line 996 of file sf_polylog.tcc.

 $References \underline{_gnu_cxx::_fp_is_integer(), \underline{_polylog_exp_neg_int(), \underline{_polylog_exp_pes_real(), \underline{_polylog_exp_pos_real(), \underline{_polylog_exp_pos_real(), and \underline{_polylog_exp_sum().}}$

Referenced by __bose_einstein(), __clausen(), __clausen_cl(), __clausen_sl(), __fermi_dirac(), __hurwitz_zeta_\circ
polylog(), __periodic_zeta(), and __polylog().

8.3.2.263 __polylog_exp_asymp()

This function implements the asymptotic series for the polylog. It is given by

$$2\sum_{k=0}^{\infty} \zeta(2k) w^{s-2k} / \Gamma(s-2k+1) - i\pi w^{s-1} / \Gamma(s)$$

for Re(w) >> 1

Don't check this against Mathematica 8. For real w the imaginary part of the polylog is given by $Im(Li_s(e^w)) = -\pi w^{s-1}/\Gamma(s)$. Check this relation for any benchmark that you use.

_~	the real index s.
_s	
_~	the large complex argument w.
_w	

Returns

the value of the polylogarithm.

Definition at line 603 of file sf_polylog.tcc.

References __gamma_reciprocal().

Referenced by __polylog_exp_neg_int(), __polylog_exp_neg_real(), __polylog_exp_pos_int(), and __polylog_exp_\to pos_real().

8.3.2.264 __polylog_exp_neg() [1/2]

This function treats the cases of negative real index s. Theoretical convergence is present for $|w|<2\pi$. We use an optimized version of

$$Li_s(e^w) = \Gamma(1-s)(-w)^{s-1} + \frac{(2\pi)^{-s}}{\pi} A_p(w)$$
$$A_p(w) = \sum_k \frac{\Gamma(1+k-s)}{k!} \sin\left(\frac{\pi}{2}(s-k)\right) \left(\frac{w}{2\pi}\right)^k \zeta(1+k-s)$$

Parameters

_~	The negative real index
_s	
_~	The complex argument
_w	

Returns

The value of the polylogarithm.

Definition at line 367 of file sf polylog.tcc.

References __log_gamma(), __polar_pi(), and __riemann_zeta_m_1().

Referenced by __polylog_exp_neg_int(), and __polylog_exp_neg_real().

```
8.3.2.265 __polylog_exp_neg() [2/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_neg (
    int __n,
    std::complex< _Tp > __w )
```

Compute the polylogarithm for negative integer order.

$$Li_{-p}(e^w) = p!(-w)^{-(p+1)} - \sum_{k=0}^{\infty} \frac{B_{p+2k+q+1}}{(p+2k+q+1)!} \frac{(p+2k+q)!}{(2k+q)!} w^{2k+q}$$

where q = (p+1)mod2.

Parameters

_~	the negative integer index $n = -p$.
_n	
_~	the argument w.
_w	

Returns

the value of the polylogarithm.

Definition at line 453 of file sf_polylog.tcc.

References $_gnu_cxx::_fp_is_equal()$, $_gnu_cxx::_fp_is_zero()$, $_Num_Euler_Maclaurin_zeta$, and $_S_Euler_{\leftarrow}Maclaurin_zeta$.

```
8.3.2.266 __polylog_exp_neg_int() [1/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_neg_int (
    int __s,
    std::complex< _Tp > __w )
```

This treats the case where s is a negative integer.

_←	a negative integer.
_s	
_~	an arbitrary complex number
_ <i>w</i>	

Returns

the value of the polylogarith,.

Definition at line 789 of file sf_polylog.tcc.

Referenced by __polylog_exp().

```
8.3.2.267 __polylog_exp_neg_int() [2/2]
```

This treats the case where s is a negative integer and w is a real.

Parameters

_~	a negative integer.
_s	
_←	the argument.
1	

Returns

the value of the polylogarithm.

Definition at line 835 of file sf_polylog.tcc.

References __gnu_cxx::__fp_is_zero(), __polylog_exp_asymp(), __polylog_exp_neg(), and __polylog_exp_sum().

8.3.2.268 __polylog_exp_neg_real() [1/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_neg_real (
    __Tp ___s,
    std::complex< _Tp > __w )
```

Return the polylog where s is a negative real value and for complex argument. Now we branch depending on the properties of w in the specific functions

Parameters

_←	A negative real value that does not reduce to a negative integer.
_s	
_~	The complex argument.
_ <i>w</i>	

Returns

The value of the polylogarithm.

Definition at line 936 of file sf_polylog.tcc.

 $References \ _clamp_0_m2pi(), \ _clamp_pi(), \ _polylog_exp_asymp(), \ _polylog_exp_neg(), \ and \ _polylog_exp_\leftrightarrow sum().$

Referenced by __polylog_exp().

```
8.3.2.269 __polylog_exp_neg_real() [2/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_neg_real (
    __Tp ___s,
    __Tp ___w )
```

Return the polylog where s is a negative real value and for real argument. Now we branch depending on the properties of w in the specific functions.

Parameters

_~	A negative real value.
_s	
_~	A real argument.
_ <i>w</i>	

Returns

The value of the polylogarithm.

Definition at line 967 of file sf polylog.tcc.

References __polylog_exp_asymp(), __polylog_exp_neg(), and __polylog_exp_sum().

8.3.2.270 __polylog_exp_pos() [1/3]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_pos (
          unsigned int __s,
          std::complex< _Tp > __w )
```

This function treats the cases of positive integer index s for complex argument w.

$$Li_s(e^w) = \sum_{k=0, k!=s-1} \zeta(s-k) \frac{w^k}{k!} + [H_{s-1} - \log(-w)] \frac{w^{s-1}}{(s-1)!}$$

The radius of convergence is $|w|<2\pi$. Note that this series involves a $\log(-x)$. gcc and Mathematica differ in their implementation of $\log(e^{i\pi})$: gcc: $\log(e^{+-i\pi})=+i\pi$ whereas Mathematica doesn't preserve the sign in this case: $\log(e^{+-i\pi})=+i\pi$

Parameters

_←	the positive integer index.
_s	
_~	the argument.
_w	

Returns

the value of the polylogarithm.

Definition at line 219 of file sf_polylog.tcc.

References __riemann_zeta().

Referenced by __polylog_exp_pos_int(), and __polylog_exp_pos_real().

8.3.2.271 __polylog_exp_pos() [2/3]

This function treats the cases of positive integer index s for real argument w.

This specialization is worthwhile to catch the differing behaviour of log(x).

$$Li_s(e^w) = \sum_{k=0}^{\infty} \frac{\zeta(s-k) \frac{w^k}{k!} + [H_{s-1} - \log(-w)] \frac{w^{s-1}}{(s-1)!}}{(s-1)!}$$

The radius of convergence is $|w|<2\pi$. Note that this series involves a $\log(-x)$. gcc and Mathematica differ in their implementation of $\log(e^{i\pi})$: gcc: $\log(e^{+-i\pi})=+-i\pi$ whereas Mathematica doesn't preserve the sign in this case: $\log(e^{+-i\pi})=+i\pi$

Parameters

_←	the positive integer index.
_s	
_←	the argument.
_w	

Returns

the value of the polylogarithm.

Definition at line 295 of file sf_polylog.tcc.

References __riemann_zeta().

8.3.2.272 __polylog_exp_pos() [3/3]

This function treats the cases of positive real index s.

The defining series is

$$Li_s(e^w) = A_s(w) + B_s(w) + \Gamma(1-s)(-w)^{s-1}$$

with

$$A_s(w) = \sum_{k=0}^{m} \zeta(s-k)w^k/k!$$

$$B_s(w) = \sum_{k=m+1}^{\infty} \sin(\pi/2(s-k))\Gamma(1-s+k)\zeta(1-s+k)(w/2/\pi)^k/k!$$

_~	the positive real index s.
_s	
_~	The complex argument w.
_ <i>w</i>	

Returns

the value of the polylogarithm.

Definition at line 516 of file sf_polylog.tcc.

References __gamma(), __log_gamma(), __polar_pi(), and __riemann_zeta().

```
8.3.2.273 __polylog_exp_pos_int() [1/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_pos_int (
          unsigned int __s,
          std::complex< _Tp > __w )
```

Here s is a positive integer and the function descends into the different kernels depending on w.

Parameters

_~	a positive integer.
_s	
_~	an arbitrary complex number.
W	

Returns

The value of the polylogarithm.

Definition at line 678 of file sf_polylog.tcc.

Referenced by __polylog_exp().

8.3.2.274 __polylog_exp_pos_int() [2/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_pos_int (
          unsigned int __s,
          __Tp __w )
```

Here s is a positive integer and the function descends into the different kernels depending on w.

Parameters

_←	a positive integer
_s	
_←	an arbitrary real argument w
_ <i>w</i>	

Returns

the value of the polylogarithm.

Definition at line 739 of file sf_polylog.tcc.

References __gnu_cxx::__fp_is_zero(), __polylog_exp_asymp(), __polylog_exp_pos(), and __polylog_exp_sum().

```
8.3.2.275 __polylog_exp_pos_real() [1/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_pos_real (
    __Tp ___s,
    std::complex< _Tp > __w )
```

Return the polylog where s is a positive real value and for complex argument.

Parameters

_~	A positive real number.	
_s		
_←	the complex argument.	
_ <i>w</i>		

Returns

The value of the polylogarithm.

Definition at line 862 of file sf polylog.tcc.

References $_$ clamp $_$ 0 $_$ m2pi(), $_$ clamp $_$ pi(), $_$ gnu $_$ cxx:: $_$ fp $_$ is $_$ equal(), $_$ gnu $_$ cxx:: $_$ fp $_$ is $_$ zero(), $_$ polylog $_$ exp $_$ asymp(), $_$ polylog $_$ exp $_$ sum(), and $_$ riemann $_$ zeta().

Referenced by __polylog_exp().

8.3.2.276 __polylog_exp_pos_real() [2/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__polylog_exp_pos_real (
    __Tp ___s,
    __Tp ___w )
```

Return the polylog where s is a positive real value and the argument is real.

Parameters

_~	A positive real number tht does not reduce to an integer.	
_s		
_←	The real argument w.	
_ <i>w</i>		

Returns

The value of the polylogarithm.

Definition at line 902 of file sf polylog.tcc.

References $_gnu_cxx::_fp_is_equal(), _gnu_cxx::_fp_is_zero(), _polylog_exp_asymp(), _polylog_exp_pos(), \leftarrow _polylog_exp_sum(), and <math>_riemann_zeta()$.

8.3.2.277 __polylog_exp_sum()

Theoretical convergence for Re(w) < 0.

Seems to beat the other expansions for $Re(w) < -\pi/2 - \pi/5$. Note that this is an implementation of the basic series:

$$Li_s(e^z) = \sum_{k=1}^{\infty} e^{kz} k^{-s}$$

_~	is an arbitrary type, integral or float.
_s	
_~	something with a negative real part.
_w	

Returns

the value of the polylogarithm.

Definition at line 647 of file sf_polylog.tcc.

Referenced by __polylog_exp(), __polylog_exp_neg_int(), __polylog_exp_neg_real(), __polylog_exp_pos_int(), and \cdot __polylog_exp_pos_real().

8.3.2.278 __prob_hermite_recur()

This routine returns the Probabilists Hermite polynomial of order n: $He_n(x)$ by recursion on n.

The Probabilists Hermite polynomial is defined by:

$$He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$$

or

$$He_n(x) = \frac{1}{2^{-n/2}} H_n\left(\frac{x}{\sqrt{2}}\right)$$

where $H_n(x)$ is the Physicists Hermite function.

The Probabilists Hermite polynomial has first and second derivatives:

$$He'_n(x) = nHe_{n-1}(x)$$

and

$$He_n''(x) = n(n-1)He_{n-2}(x)$$

The Probabilists Hermite polynomial are monic and are orthogonal with respect to the weight function

$$w(x) = e^{x^2/2}$$

_~	The order of the Hermite polynomial.	
_n		
_~	The argument of the Hermite polynomial.	
_X		

Returns

The value of the Hermite polynomial of order n and argument x.

Definition at line 260 of file sf_hermite.tcc.

8.3.2.279 __radial_jacobi()

Return the radial polynomial $R_n^m(\rho)$ for non-negative nandm, and real radial argument ρ is a polynomial of degree m+2n in ρ .

The radial polynomials are defined by

$$R_n^m(\rho) = \sum_{k=0}^{\frac{n-m}{2}} \frac{(-1)^k (n-k)!}{k!(\frac{n+m}{2}-k)!(\frac{n-m}{2}-k)!} \rho^{n-2k}$$

for n-m even and identically 0 for n-m odd.

The radial polynomials are related to the Jacobi polynomials:

$$R_n^m(\rho) = (-1)^n x^m P_n^{(m,0)} (1 - 2\rho^2)$$

for
$$0 <= \rho <= 1$$

The radial polynomials can be related to the Zernike polynomials:

$$Z_n^m(\rho,\phi) = R_n^m(\rho)\cos(m\phi)$$

$$Z_n^{-m}(\rho,\phi) = R_n^m(\rho)\sin(m\phi)$$

for non-negative m, n.

See also

zernike for details on the Zernike polynomials.

Principals of Optics, 7th edition, Max Born and Emil Wolf, Cambridge University Press, 1999, pp 523-525 and 905-910.

Zernike Polynomials: Evaluation, Quadrature, and Interpolation Philip Greengard, Kirill Serkh, Technical Report YALEU/DCS/TR-1539, February 20, 2018

Template Parameters

_Tp	The real type of the radial coordinate
-----	--

Parameters

n	The non-negative degree.	
m	The non-negative azimuthal order	
rho	The radial argument	

Definition at line 295 of file sf_jacobi.tcc.

References __jacobi_recur().

Referenced by __zernike(), __gnu_cxx::radpolyf(), and __gnu_cxx::radpolyl().

8.3.2.280 __radial_jacobi_zeros()

```
template<typename _Tp >
std::vector<__gnu_cxx::__quadrature_point_t<_Tp> > std::__detail::__radial_jacobi_zeros (
    unsigned int __n,
    unsigned int __m )
```

Return a vector containing the zeros of the radial Jacobi polynomial $P_n^{(\alpha,\beta)}(1-2\rho^2).$

Template Parameters

_Тр	The real type of the radial coordinate
-----	--

Parameters

in	_~	The degree of the radial Jacobi polynomial
	_n	
in	_←	The order of the radial Jacobi polynomial
	_m	

Definition at line 326 of file sf_jacobi.tcc.

References __jacobi_zeros().

8.3.2.281 __rice_pdf()

Return the Rice probability density function.

The formula for the Rice probability density function is

$$p(x|\nu,\sigma) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2 + \nu^2}{2\sigma^2}\right) I_0\left(\frac{x\nu}{\sigma^2}\right)$$

where $I_0(x)$ is the modified Bessel function of the first kind of order 0 and $\nu >= 0$ and $\sigma > 0$.

Definition at line 186 of file sf distributions.tcc.

References __cyl_bessel_i().

8.3.2.282 __riemann_zeta()

Return the Riemann zeta function $\zeta(s)$.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^\infty k^{-s} \text{ for } \Re(s) > 1 \frac{(2\pi)^s}{\pi} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) \text{ for } \Re(s) < 1$$

Parameters

_~	The order
_s	

Todo Global double sum or MacLaurin series in riemann zeta?

Definition at line 761 of file sf zeta.tcc.

References $_exp2()$, $_gnu_cxx::_fp_is_integer()$, $_gamma()$, $_log_gamma()$, $_riemann_zeta_glob()$, $_def ()$, $_riemann_zeta_m_1()$, $_riemann_zeta_product()$, $_riemann_zeta_sum()$, and $_sin_pi()$.

Referenced by __dirichlet_lambda(), __hurwitz_zeta(), __periodic_zeta(), __polylog_exp_pos(), and __polylog_exp_\leftarrow pos real().

8.3.2.283 __riemann_zeta_euler_maclaurin()

Evaluate the Riemann zeta function $\zeta(s)$ by an alternate series for s > 0.

This is a specialization of the code for the Hurwitz zeta function.

Definition at line 391 of file sf zeta.tcc.

References _S_Euler_Maclaurin_zeta.

8.3.2.284 __riemann_zeta_glob()

Definition at line 501 of file sf zeta.tcc.

References __gnu_cxx::__fp_is_even_integer(), __gamma(), __riemann_zeta_m_1_glob(), and __sin_pi().

Referenced by __riemann_zeta().

8.3.2.285 __riemann_zeta_laurent()

Compute the Riemann zeta function $\zeta(s)$ by Laurent expansion about s = 1.

The Laurent expansion of the Riemann zeta function is given by:

$$\zeta(s) = \frac{1}{s-1} + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \gamma_k (s-1)^k$$

Where γ_k are the Stieltjes constants, $\gamma_0=\gamma_E$ the Euler-Mascheroni constant.

The Stieltjes constants can be found from a limiting process:

$$\gamma_k = \lim_{n \to \infty} \left\{ \sum_{i=1}^n \frac{(\ln i)^k}{i} - \frac{(\ln n)^{k+1}}{k+1} \right\}$$

Definition at line 314 of file sf_zeta.tcc.

References _Num_Stieltjes, and _S_Stieltjes.

Referenced by __riemann_zeta_m_1().

8.3.2.286 __riemann_zeta_m_1()

Return the Riemann zeta function $\zeta(s) - 1$.

Parameters

_~	The order $s! = 1$
S	

Definition at line 717 of file sf zeta.tcc.

References $_gnu_cxx::_fp_is_integer(), __gamma(), __riemann_zeta_laurent(), __riemann_zeta_m_1_glob(), __ \\color="color: blue;"><math>cstar_1$ and $cstar_2$ and $cstar_3$ and $cstar_4$ and $cstar_4$ and $cstar_5$ and $cstar_6$ are the sum of the

Referenced by __polylog_exp_neg(), and __riemann_zeta().

8.3.2.287 __riemann_zeta_m_1_glob()

Evaluate the Riemann zeta function by series for all s != 1. Convergence is great until largish negative numbers. Then the convergence of the > 0 sum gets better.

The series is:

$$\zeta(s) = \frac{1}{1 - 2^{1 - s}} \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}$$

Havil 2003, p. 206.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = (2\pi)^s \Gamma(1-s)\zeta(1-s)/\pi$$

Definition at line 450 of file sf_zeta.tcc.

Referenced by __riemann_zeta_glob(), and __riemann_zeta_m_1().

8.3.2.288 __riemann_zeta_product()

Compute the Riemann zeta function $\zeta(s)$ using the product over prime factors.

$$\zeta(s) = \prod_{i=1}^{\infty} \frac{1}{1 - p_i^{-s}}$$

where p_i are the prime numbers.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} \text{ for } \Re(s) > 1$$

For (s) < 1 use the reflection formula:

$$\zeta(s) = (2\pi)^s \Gamma(1-s)\zeta(1-s)/\pi$$

Parameters

_~	The order.
_s	

Definition at line 551 of file sf_zeta.tcc.

Referenced by __riemann_zeta().

8.3.2.289 __riemann_zeta_sum()

Compute the Riemann zeta function $\zeta(s)$ by summation for s > 1.

The Riemann zeta function is defined by:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} fors > 1$$

For s < 1 use the reflection formula:

$$\zeta(s) = (2\pi)^s \Gamma(1-s) \zeta(1-s) / \pi$$

Definition at line 348 of file sf_zeta.tcc.

References __gamma(), and __sin_pi().

Referenced by __riemann_zeta().

8.3.2.290 __rising_factorial() [1/2]

Return the (upper) Pochhammer function or the rising factorial function. The Pochammer symbol is defined by

$$a^{\overline{n}} = \Gamma(a+\nu)/\Gamma(\nu) = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1$$

Many notations exist for this function:

 $(a)_{\nu}$

, (especially in the literature of special functions),

 $\left[\begin{array}{c} a \\ n \end{array}\right]$

, and others.

Definition at line 3102 of file sf_gamma.tcc.

References __log_gamma(), __log_gamma_sign(), and std::__detail::_Factorial_table < _Tp >::__n.

Referenced by __log_rising_factorial(), and __rising_factorial().

8.3.2.291 __rising_factorial() [2/2]

Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)$$

Many notations exist for this function:

 $(a)_{\nu}$

, (especially in the literature of special functions),

 $\begin{vmatrix} a \\ n \end{vmatrix}$

, and others.

Definition at line 3157 of file sf_gamma.tcc.

References $_log_gamma()$, $_log_gamma_sign()$, $std::_detail::_factorial_table < <math>_Tp >::_n$, and $__rising_ \leftarrow factorial()$.

```
8.3.2.292 __sin_pi() [1/2]
```

Return the reperiodized sine of argument x:

$$\sin_{\pi}(x) = \sin(\pi x)$$

Definition at line 52 of file sf_trig.tcc.

Referenced by $_cos_pi()$, $_cosh_pi()$, $_cyl_bessel_ik()$, $_cyl_bessel_in()$, $_dirichlet_eta()$, $_gamma_reciprocal()$, $_hankel_debye()$, $_laguerre_large_n()$, $_lanczos_log_gamma1p()$, $_log_gamma()$, $_riemann_zeta()$, $_riemann_zeta_glob()$, $_riemann_zeta_m_1()$, $_riemann_zeta_sum()$, $_sin_pi()$, $_sinc_pi()$, $_sinh_pi()$, and $_spouge_colog_gamma1p()$.

```
8.3.2.293 __sin_pi() [2/2]
```

Return the reperiodized sine of complex argument z:

$$\sin_{\pi}(z) = \sin(\pi z) = \sin_{\pi}(x)\cosh_{\pi}(y) + i\cos_{\pi}(x)\sinh_{\pi}(y)$$

Definition at line 187 of file sf trig.tcc.

References __cos_pi(), and __sin_pi().

8.3.2.294 __sinc()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::__detail::__sinc (
    __Tp ___x )
```

Return the sinus cardinal function

$$sinc(x) = \frac{\sin(x)}{x}$$

.

Definition at line 52 of file sf_cardinal.tcc.

```
8.3.2.295 __sinc_pi()
```

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::__detail::__sinc_pi (
    __Tp ___x )
```

Return the reperiodized sinus cardinal function

$$sinc_{\pi}(x) = \frac{\sin(\pi x)}{\pi x}$$

.

Definition at line 72 of file sf_cardinal.tcc.

References __sin_pi().

```
8.3.2.296 __sincos() [1/4]
```

```
template<typename _Tp >
    __gnu_cxx::__sincos_t<_Tp> std::__detail::__sincos (
    __Tp __x ) [inline]
```

Definition at line 316 of file sf_trig.tcc.

Referenced by __sincos_pi().

```
8.3.2.297 __sincos() [2/4]
```

Definition at line 324 of file sf_trig.tcc.

```
8.3.2.298 __sincos() [3/4]
```

Definition at line 336 of file sf_trig.tcc.

Definition at line 348 of file sf_trig.tcc.

```
8.3.2.300 __sincos_pi()
```

```
template<typename _Tp >
    __gnu_cxx::__sincos_t<_Tp> std::__detail::__sincos_pi (
    __Tp __x )
```

Reperiodized sincos.

Definition at line 360 of file sf_trig.tcc.

 $References \underline{\quad gnu_cxx::_sincos_t < _Tp >::_cos_v, \underline{\quad gnu_cxx::_sincos_t < _Tp >::_sin_v, and \underline{\quad sincos()}.$

Referenced by __polar_pi().

8.3.2.301 __sincosint()

This function returns the sine Si(x) and cosine Ci(x) integrals as a pair.

The sine integral is defined by:

$$Si(x) = \int_0^x dt \frac{\sin(t)}{t}$$

The cosine integral is defined by:

$$Ci(x) = \gamma_E + \log(x) + \int_0^x dt \frac{\cos(t) - 1}{t}$$

Definition at line 226 of file sf_trigint.tcc.

References __sincosint_asymp(), __sincosint_cont_frac(), and __sincosint_series().

8.3.2.302 __sincosint_asymp()

This function computes the sine Si(x) and cosine Ci(x) integrals by asymptotic series summation for positive argument.

The asymptotic series is very good for x > 50.

Definition at line 159 of file sf_trigint.tcc.

Referenced by __sincosint().

8.3.2.303 __sincosint_cont_frac()

This function computes the sine Si(x) and cosine Ci(x) integrals by continued fraction for positive argument.

Definition at line 52 of file sf_trigint.tcc.

Referenced by __sincosint().

8.3.2.304 __sincosint_series()

This function computes the sine Si(x) and cosine Ci(x) integrals by series summation for positive argument.

Definition at line 95 of file sf_trigint.tcc.

Referenced by __sincosint().

```
8.3.2.305 __sinh_pi() [1/2]
```

Return the reperiodized hyperbolic sine of argument x:

$$\sinh_{\pi}(x) = \sinh(\pi x)$$

Definition at line 84 of file sf trig.tcc.

Referenced by __sinhc_pi().

```
8.3.2.306 __sinh_pi() [2/2]
```

Return the reperiodized hyperbolic sine of complex argument z:

$$\sinh_{\pi}(z) = \sinh(\pi z) = \sinh_{\pi}(x)\cos_{\pi}(y) + i\cosh_{\pi}(x)\sin_{\pi}(y)$$

Definition at line 209 of file sf_trig.tcc.

References __cos_pi(), and __sin_pi().

8.3.2.307 __sinhc()

```
template<typename _Tp > __gnu_cxx::fp_promote_t<_Tp> std::__detail::__sinhc ( _Tp __x )
```

Return the hyperbolic sinus cardinal function

$$sinhc(x) = \frac{\sinh(x)}{x}$$

•

Definition at line 97 of file sf_cardinal.tcc.

8.3.2.308 __sinhc_pi()

```
template<typename _Tp >
    __gnu_cxx::fp_promote_t<_Tp> std::__detail::__sinhc_pi (
    __Tp ___x )
```

Return the reperiodized hyperbolic sinus cardinal function

$$sinhc_{\pi}(x) = \frac{\sinh(\pi x)}{\pi x}$$

.

Definition at line 115 of file sf_cardinal.tcc.

References __sinh_pi().

8.3.2.309 __sinhint()

Return the hyperbolic sine integral Shi(x).

The hyperbolic sine integral is given by

$$Shi(x) = (Ei(x) + E_1(x))/2 = (Ei(x) - Ei(-x))/2$$

Parameters

_ ← The argument of the hyperbolic sine integral function.

Returns

The hyperbolic sine integral.

Definition at line 584 of file sf_expint.tcc.

References __expint_E1(), and __expint_Ei().

8.3.2.310 __sph_bessel() [1/2]

Return the spherical Bessel function $j_n(x)$ of order n and non-negative real argument x.

The spherical Bessel function is defined by:

$$j_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{n+1/2}(x)$$

Parameters

_~	The non-negative integral order
_n	
_~	The non-negative real argument
_X	

Returns

The output spherical Bessel function.

Definition at line 781 of file sf_bessel.tcc.

References __sph_bessel_jn().

8.3.2.311 __sph_bessel() [2/2]

Return the complex spherical Bessel function.

Parameters

in	_~	The order for which the spherical Bessel function is evaluated.
	_n	
in	_←	The argument at which the spherical Bessel function is evaluated.
	_Z	

Returns

The complex spherical Bessel function.

Definition at line 1273 of file sf hankel.tcc.

References __sph_hankel().

```
8.3.2.312 __sph_bessel_ik()
```

Compute the spherical modified Bessel functions $i_n(x)$ and $k_n(x)$ and their first derivatives $i'_n(x)$ and $k'_n(x)$ respectively.

Parameters

_~	The order of the modified spherical Bessel function.
_n	
_~	The argument of the modified spherical Bessel function.
_X	

Returns

A struct containing the modified spherical Bessel functions of the first and second kinds and their derivatives.

Definition at line 428 of file sf_mod_bessel.tcc.

References cyl bessel ik().

```
8.3.2.313 __sph_bessel_jn()
```

Compute the spherical Bessel $j_n(x)$ and Neumann $n_n(x)$ functions and their first derivatives $j_n(x)$ and $n'_n(x)$ respectively.

_~	The order of the spherical Bessel function.
_n	
_~	The argument of the spherical Bessel function.
_X	

Returns

The output derivative of the spherical Neumann function.

Definition at line 713 of file sf bessel.tcc.

```
References __cyl_bessel_jn().
```

Referenced by __sph_bessel(), __sph_hankel_1(), __sph_hankel_2(), and __sph_neumann().

8.3.2.314 __sph_bessel_jn_neg_arg()

Return the spherical Bessel functions and their derivatives of order ν and argument x < 0.

Definition at line 737 of file sf_bessel.tcc.

```
References __cyl_bessel_jn_neg_arg().
```

Referenced by __sph_hankel_1(), and __sph_hankel_2().

8.3.2.315 __sph_hankel()

```
template<typename _Tp >
   __gnu_cxx::_sph_hankel_t<unsigned int, std::complex<_Tp>, std::complex<_Tp> > std::__detail::\( \text{unsigned int } __n, \text{std::complex} < _Tp > __z \)
```

Helper to compute complex spherical Hankel functions and their derivatives.

in	_~	The order for which the spherical Hankel functions are evaluated.
	_n	
in	_←	The argument at which the spherical Hankel functions are evaluated.
	_z	

Returns

A struct containing the spherical Hankel functions of the first and second kinds and their derivatives.

Definition at line 1209 of file sf_hankel.tcc.

References __hankel().

Referenced by __sph_bessel(), __sph_hankel_1(), __sph_hankel_2(), and __sph_neumann().

8.3.2.316 __sph_hankel_1() [1/2]

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$.

The spherical Hankel function of the first kind is defined by:

$$h_n^{(1)}(x) = j_n(x) + in_n(x)$$

Parameters

_~	The order of the spherical Neumann function.
_n	
_~	The argument of the spherical Neumann function.
_X	

Returns

The output spherical Neumann function.

Definition at line 842 of file sf_bessel.tcc.

References __sph_bessel_jn(), and __sph_bessel_jn_neg_arg().

8.3.2.317 __sph_hankel_1() [2/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__sph_hankel_1 (
          unsigned int __n,
          std::complex< _Tp > __z )
```

Return the complex spherical Hankel function of the first kind.

Parameters

in	_~	The order for which the spherical Hankel function of the first kind is evaluated.
	_n	
in	_~	The argument at which the spherical Hankel function of the first kind is evaluated.
	_z	

Returns

The complex spherical Hankel function of the first kind.

Definition at line 1239 of file sf_hankel.tcc.

References __sph_hankel().

8.3.2.318 __sph_hankel_2() [1/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__sph_hankel_2 (
          unsigned int __n,
          _Tp __x )
```

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$.

The spherical Hankel function of the second kind is defined by:

$$h_n^{(2)}(x) = j_n(x) - in_n(x)$$

Parameters

_←	The non-negative integral order
_n	
_←	The non-negative real argument
X	

Returns

The output spherical Neumann function.

Definition at line 877 of file sf_bessel.tcc.

References __sph_bessel_jn(), and __sph_bessel_jn_neg_arg().

```
8.3.2.319 __sph_hankel_2() [2/2]
```

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__sph_hankel_2 (
    unsigned int __n,
    std::complex< _Tp > __z )
```

Return the complex spherical Hankel function of the second kind.

Parameters

in	_~	The order for which the spherical Hankel function of the second kind is evaluated.
	_n	
in	_~	The argument at which the spherical Hankel function of the second kind is evaluated.
	Z	

Returns

The complex spherical Hankel function of the second kind.

Definition at line 1256 of file sf_hankel.tcc.

References __sph_hankel().

8.3.2.320 __sph_harmonic()

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__sph_harmonic (
    unsigned int __l,
    int __m,
    _Tp __theta,
    _Tp __phi )
```

Return the spherical harmonic function.

The spherical harmonic function of l, m, and θ, ϕ is defined by:

$$Y_l^m(\theta,\phi) = (-1)^m \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right] P_l^{|m|}(\cos\theta) \exp^{im\phi}$$

Note

$$Y_l^m(\theta,\phi) = 0 \text{ if } |m| > l.$$

Parameters

/	The degree of the spherical harmonic function. $l>=0$.
m	The order of the spherical harmonic function.
theta	The radian polar angle argument of the spherical harmonic function.
phi	The radian azimuthal angle argument of the spherical harmonic function.

Definition at line 502 of file sf_legendre.tcc.

References __sph_legendre().

8.3.2.321 __sph_legendre()

Return the spherical associated Legendre function.

The spherical associated Legendre function of l, m, and θ is defined as $Y_l^m(\theta, 0)$ where

$$Y_l^m(\theta,\phi) = (-1)^m \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right] P_l^m(\cos\theta) \exp^{im\phi}$$

is the spherical harmonic function and $P_l^m(\boldsymbol{x})$ is the associated Legendre function.

This function differs from the associated Legendre function by argument ($x = \cos(\theta)$) and by a normalization factor but this factor is rather large for large l and m and so this function is stable for larger differences of l and m.

Note

Unlike the case for __assoc_legendre_p the Condon-Shortley phase factor $(-1)^m$ is present here. $Y_l^m(\theta)=0$ if m>l.

Parameters

/	The degree of the spherical associated Legendre function. $l>=0$.
m	The order of the spherical associated Legendre function.
theta	The radian polar angle argument of the spherical associated Legendre function.

Definition at line 409 of file sf_legendre.tcc.

References __legendre_p(), and __log_gamma().

Referenced by __hydrogen(), and __sph_harmonic().

```
8.3.2.322 __sph_neumann() [1/2]
```

Return the spherical Neumann function $n_n(x)$ of order n and non-negative real argument x.

The spherical Neumann function is defined by:

$$n_n(x) = \left(\frac{\pi}{2x}\right)^{1/2} N_{n+1/2}(x)$$

Parameters

_~	The order of the spherical Neumann function.
_n	
_~	The argument of the spherical Neumann function.
_X	

Returns

The output spherical Neumann function.

Definition at line 814 of file sf bessel.tcc.

References __sph_bessel_jn().

8.3.2.323 __sph_neumann() [2/2]

```
template<typename _Tp >
std::complex<_Tp> std::__detail::__sph_neumann (
    unsigned int __n,
    std::complex< _Tp > __z )
```

Return the complex spherical Neumann function.

in	_~	The order for which the spherical Neumann function is evaluated.
	_n	
in	_←	The argument at which the spherical Neumann function is evaluated.
	_z	

Returns

The complex spherical Neumann function.

Definition at line 1290 of file sf_hankel.tcc.

References __sph_hankel().

8.3.2.324 __spouge_binet1p()

Return the Binet function J(1+z) by the Spouge method. The Binet function is the log of the scaled Gamma function $log(\Gamma^*(z))$ defined by

$$J(z) = \log(\Gamma^*(z)) = \log\left(\Gamma(z)\right) + z - \left(z - \frac{1}{2}\right)\log(z) - \log(2\pi)$$

or

$$\Gamma(z) = \sqrt{2\pi} z^{z - \frac{1}{2}} e^{-z} e^{J(z)}$$

where $\Gamma(z)$ is the gamma function.

Parameters

	The argument of the log of the gamma function.
_z	

Returns

The logarithm of the gamma function.

Definition at line 1941 of file sf_gamma.tcc.

Referenced by __spouge_log_gamma1p().

8.3.2.325 __spouge_log_gamma1p()

Return the logarithm of the gamma function $log(\Gamma(1+z))$ by the Spouge algorithm:

$$\Gamma(z+1) = (z+a)^{z+1/2} e^{-z-a} \left[\sqrt{2\pi} + \sum_{k=1}^{\lceil a \rceil + 1} \frac{c_k(a)}{z+k} \right]$$

where

$$c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}$$

and the error is bounded by

$$\epsilon(a) < a^{-1/2} (2\pi)^{-a-1/2}$$

.

If the argument is real, the log of the absolute value of the Gamma function is returned. The sign to be applied to the exponential of this log Gamma can be recovered with a call to __log_gamma_sign.

For complex argument the fully complex log of the gamma function is returned.

See also

Spouge, J. L., Computation of the gamma, digamma, and trigamma functions. SIAM Journal on Numerical Analysis 31, 3 (1994), pp. 931-944

Parameters

_~	The argument of the gamma function.
_ <i>Z</i>	

Returns

The the gamma function.

Definition at line 1985 of file sf_gamma.tcc.

References __sin_pi(), and __spouge_binet1p().

Referenced by __log_gamma().

Return the Stirling number of the first kind.

unsigned int $__m$)

The Stirling numbers of the first kind are the coefficients of the Pocchammer polynomials:

$$(x)_n = \sum_{k=0}^n S_n^{(k)} x^k$$

The recursion is

$$S_{n+1}^{(m)} = S_n^{(m-1)} - n S_n^{(m)} \ \mathrm{or} \label{eq:solution}$$

with starting values

$$S_0^{(0 \to m)} = 1, 0, 0, ..., 0$$

and

$$S_{0 \to n}^{(0)} = 1, 0, 0, ..., 0$$

Todo Find asymptotic expressions for the Stirling numbers.

Definition at line 311 of file sf stirling.tcc.

Return a vector of Stirling numbers of the first kind. The recursion is

$$S_{n+1}^{(m)} = S_n^{(m-1)} - nS_n^{(m)} \text{ or }$$

with starting values

$$S_0^{(0 \to m)} = 1, 0, 0, ..., 0$$

and

$$S_{0 \to n}^{(0)} = 1, 0, 0, ..., 0$$

Definition at line 378 of file sf_stirling.tcc.

8.3.2.328 __stirling_1_recur() [1/2]

Return the Stirling number of the first kind by recursion. The recursion is

$$S_{n+1}^{(m)} = S_n^{(m-1)} - nS_n^{(m)}$$
 or

with starting values

$$S_0^{(0\to m)} = 1, 0, 0, ..., 0$$

and

$$S_{0 \to n}^{(0)} = 1, 0, 0, ..., 0$$

Definition at line 263 of file sf_stirling.tcc.

8.3.2.329 __stirling_1_recur() [2/2]

```
template<typename _Tp > std::vector<_Tp> std::__detail::__stirling_1_recur ( unsigned int __n )
```

Return a vector of Stirling numbers of the first kind by recursion. The recursion is

$$S_{n+1}^{(m)} = S_n^{(m-1)} - nS_n^{(m)}$$
 or

with starting values

$$S_0^{(0 \rightarrow m)} = 1, 0, 0, ..., 0$$

and

$$S_{0 \to n}^{(0)} = 1, 0, 0, ..., 0$$

Definition at line 340 of file sf_stirling.tcc.

8.3.2.330 __stirling_2() [1/2]

Return the Stirling number of the second kind from lookup or by series expansion.

The series is:

$$\sigma_n^{(m)} = \sum_{k=0}^m \frac{(-1)^{m-k} k^n}{(m-k)! k!}$$

Todo Find asymptotic expressions for the Stirling numbers.

Definition at line 155 of file sf stirling.tcc.

8.3.2.331 __stirling_2() [2/2]

Return a vector of Stirling numbers of the second kind. or by series expansion.

The series is:

$$\sigma_n^{(m)} = \sum_{k=0}^m \frac{(-1)^{m-k} k^n}{(m-k)! k!}$$

Todo Find asymptotic expressions for the Stirling numbers.

Definition at line 224 of file sf stirling.tcc.

unsigned int $__m$)

Return the Stirling number of the second kind by recursion. The recursion is

$${n \brace m} = m {n-1 \brace m} + {n-1 \brace m-1}$$

with starting values

$$\left\{ \begin{matrix} 0 \\ 0 \rightarrow m \end{matrix} \right\} = 1,0,0,...,0$$

and

$$\left\{ \begin{matrix} 0 \rightarrow n \\ 0 \end{matrix} \right\} = 1,0,0,...,0$$

The Stirling number of the second kind is denoted by other symbols in the literature: $\sigma_n^{(m)}$, $S_n^{(m)}$ and others.

Definition at line 119 of file sf_stirling.tcc.

8.3.2.333 __stirling_2_recur() [2/2]

Return a vector of Stirling numbers of the second kind by recursion. The recursion is

$${n \brace m} = m {n-1 \brace m} + {n-1 \brace m-1}$$

with starting values

$$\left\{ \begin{matrix} 0 \\ 0 \rightarrow m \end{matrix} \right\} = 1,0,0,...,0$$

and

$${0 \to n \brace 0} = 1, 0, 0, ..., 0$$

The Stirling number of the second kind is denoted by other symbols in the literature: $\sigma_n^{(m)}$, $S_n^{(m)}$ and others. Definition at line 189 of file sf_stirling.tcc.

8.3.2.334 __stirling_2_series()

Return the Stirling number of the second kind from lookup or by series expansion.

The series is:

$$\sigma_n^{(m)} = \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^m \frac{(-1)^{m-k} k^n}{(m-k)! k!}$$

The Stirling number of the second kind is denoted by other symbols in the literature: $\sigma_n^{(m)}$, $S_n^{(m)}$ and others.

Todo Find a way to predict the maximum Stirling number supported for a given type.

Definition at line 66 of file sf stirling.tcc.

8.3.2.335 student_t_p()

Return the Students T probability function.

The students T propability function is related to the incomplete beta function:

$$A(t|\nu) = 1 - I_{\frac{\nu}{\nu + t^2}}(\frac{\nu}{2}, \frac{1}{2})A(t|\nu) =$$

Parameters

t	
nu	

Definition at line 444 of file sf_distributions.tcc.

References __beta_inc().

8.3.2.336 __student_t_pdf()

Return the Students T probability density.

The students T propability density is:

$$A(t|\nu) = 1 - I_{\frac{\nu}{\nu + t^2}}(\frac{\nu}{2}, \frac{1}{2})A(t|\nu) =$$

Parameters

Definition at line 419 of file sf_distributions.tcc.

References __gamma().

8.3.2.337 __student_t_q()

Return the complement of the Students T probability function.

The complement of the students T propability function is:

$$A_c(t|\nu) = I_{\frac{\nu}{\nu + t^2}}(\frac{\nu}{2}, \frac{1}{2}) = 1 - A(t|\nu)$$

Parameters

t	
nu	

Definition at line 467 of file sf_distributions.tcc.

References __beta_inc().

```
8.3.2.338 __tan_pi() [1/2]
```

Return the reperiodized tangent of argument x:

$$\tan_p i(x) = \tan(\pi x)$$

Definition at line 153 of file sf_trig.tcc.

Referenced by __digamma(), __tan_pi(), and __tanh_pi().

```
8.3.2.339 __tan_pi() [2/2]
```

Return the reperiodized tangent of complex argument z:

$$\tan_{\pi}(z) = \tan(\pi z) = \frac{\tan_{\pi}(x) + i \tanh_{\pi}(y)}{1 - i \tan_{\pi}(x) \tanh_{\pi}(y)}$$

Definition at line 275 of file sf_trig.tcc.

References __tan_pi().

```
8.3.2.340 __tanh_pi() [1/2]
```

Return the reperiodized hyperbolic tangent of argument x:

$$\tanh_{\pi}(x) = \tanh(\pi x)$$

Definition at line 169 of file sf_trig.tcc.

```
8.3.2.341 __tanh_pi() [2/2]

template<typename _Tp >
std::complex<_Tp> std::__detail::__tanh_pi (
```

Return the reperiodized hyperbolic tangent of complex argument z:

 $std::complex < _Tp > __z)$

$$\tanh_{\pi}(z) = \tanh(\pi z) = \frac{\tanh_{\pi}(x) + i \tan_{\pi}(y)}{1 + i \tanh_{\pi}(x) \tan_{\pi}(y)}$$

Definition at line 298 of file sf_trig.tcc.

References tan pi().

8.3.2.342 __tgamma()

Return the upper incomplete gamma function. The lower incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

•

Definition at line 2905 of file sf_gamma.tcc.

References __gnu_cxx::__fp_is_integer(), __gamma_cont_frac(), and __gamma_series().

Referenced by __gamma_q().

8.3.2.343 __tgamma_lower()

Return the lower incomplete gamma function. The lower incomplete gamma function is defined by

$$\gamma(a,x) = \int_0^x e^{-t} t^{a-1} dt (a>0)$$

.

Definition at line 2870 of file sf_gamma.tcc.

References __gnu_cxx::__fp_is_integer(), __gamma_cont_frac(), and __gamma_series().

Referenced by __gamma_p().

8.3.2.344 __theta_1()

Return the exponential theta-1 function of period nu and argument x.

The exponential theta-1 function is defined by

$$\theta_1(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{+\infty} (-1)^k \exp\left(\frac{-(\nu + k - 1/2)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
x	The argument

Definition at line 212 of file sf_theta.tcc.

References __gnu_cxx::__fp_is_zero(), and __theta_2().

Referenced by __theta_s().

8.3.2.345 __theta_2()

Return the exponential theta-2 function of period nu and argument x.

The exponential theta-2 function is defined by

$$\theta_2(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{+\infty} (-1)^k \exp\left(\frac{-(\nu+k)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
x	The argument

Definition at line 184 of file sf theta.tcc.

References __theta_2_asymp(), and __theta_2_sum().

Referenced by __theta_1(), and __theta_c().

8.3.2.346 __theta_2_asymp()

Compute and return the exponential θ_2 function by asymptotic series expansion:

$$\theta_2(\nu, x) = 2\sum_{k=0}^{\infty} e^{-((k+1/2)\pi)^2 x} \cos((2k+1)\nu\pi)$$

Definition at line 120 of file sf theta.tcc.

Referenced by __theta_2().

8.3.2.347 __theta_2_sum()

Compute and return the exponential θ_2 function by series expansion:

$$\theta_2(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{\infty} (-1)^k e^{-(\nu+k)^2/x}$$

Definition at line 56 of file sf_theta.tcc.

Referenced by __theta_2().

8.3.2.348 __theta_3()

Return the exponential theta-3 function of period nu and argument x.

The exponential theta-3 function is defined by

$$\theta_3(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{+\infty} \exp\left(\frac{-(\nu+k)^2}{x}\right)$$

Parameters

nu	The periodic (period = 1) argument
x	The argument

Definition at line 240 of file sf_theta.tcc.

References __theta_3_asymp(), and __theta_3_sum().

Referenced by __theta_4(), and __theta_d().

8.3.2.349 __theta_3_asymp()

Compute and return the exponential θ_3 function by asymptotic series expansion:

$$\theta_3(\nu, x) = 1 + 2\sum_{k=1}^{\infty} e^{-(k\pi)^2 x} \cos(2k\nu\pi)$$

Definition at line 150 of file sf_theta.tcc.

Referenced by __theta_3().

8.3.2.350 __theta_3_sum()

Compute and return the exponential θ_3 function by series expansion:

$$\theta_3(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{\infty} e^{-(\nu+k)^2/x}$$

Definition at line 89 of file sf_theta.tcc.

Referenced by __theta_3().

8.3.2.351 __theta_4()

Return the exponential theta-4 function of period nu and argument x.

The exponential theta-4 function is defined by

$$\theta_4(\nu, x) = \frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{+\infty} (-1)^k \exp\left(\frac{-(\nu+k)^2}{x}\right)$$

Parameters

nu	The periodic (period = 2) argument
x	The argument

Definition at line 268 of file sf_theta.tcc.

References __theta_3().

Referenced by __theta_n().

8.3.2.352 theta_c()

Return the Neville θ_c function

$$\theta_c(k,x) = \sqrt{\frac{\pi}{2kK(k)}} \theta_1 \left(q(k), \frac{\pi x}{2K(k)} \right)$$

Definition at line 382 of file sf_theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_2().

8.3.2.353 __theta_d()

Return the Neville θ_d function

$$\theta_d(k,x) = \sqrt{\frac{\pi}{2K(k)}} \theta_3\left(q(k), \frac{\pi x}{2K(k)}\right)$$

Definition at line 411 of file sf_theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_3().

8.3.2.354 __theta_n()

Return the Neville θ_n function

The Neville theta-n function is defined by

$$\theta_n(k,x) = \sqrt{\frac{\pi}{2k'K(k)}} \theta_4\left(q(k), \frac{\pi x}{2K(k)}\right)$$

Definition at line 442 of file sf_theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_4().

8.3.2.355 __theta_s()

Return the Neville θ_s function

$$\theta_s(k,x) = \sqrt{\frac{\pi}{2kk'K(k)}}\theta_1\left(q(k), \frac{\pi x}{2K(k)}\right)$$

Definition at line 352 of file sf_theta.tcc.

References __comp_ellint_1(), __ellnome(), and __theta_1().

8.3.2.356 __tricomi_u()

Return the Tricomi confluent hypergeometric function

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_1F_1(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_1F_1(a-c+1;2-c;x)$$

.

Parameters

_~	The numerator parameter.
_a	
_←	The denominator parameter.
_c	
_~	The argument of the confluent hypergeometric function.
_x	

Returns

The Tricomi confluent hypergeometric function.

Definition at line 402 of file sf_hyperg.tcc.

References __tricomi_u_naive().

8.3.2.357 __tricomi_u_naive()

Return the Tricomi confluent hypergeometric function

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_{1}F_{1}(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_{1}F_{1}(a-c+1;2-c;x)$$

Parameters

_~	The <i>numerator</i> parameter.
_a	
_←	The denominator parameter.
_c	
_~	The argument of the confluent hypergeometric function.
_x	

Returns

The Tricomi confluent hypergeometric function.

Definition at line 368 of file sf_hyperg.tcc.

References __conf_hyperg(), __gnu_cxx::_fp_is_integer(), and __gnu_cxx::tgamma().

Referenced by tricomi u().

8.3.2.358 __weibull_p()

Return the Weibull cumulative probability density function.

The formula for the Weibull cumulative probability density function is

$$F(x|\lambda) = 1 - e^{-(x/b)^a}$$
 for $x >= 0$

Definition at line 395 of file sf_distributions.tcc.

8.3.2.359 __weibull_pdf()

Return the Weibull probability density function.

The formula for the Weibull probability density function is

$$f(x|a,b) = \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} \exp{-\left(\frac{x}{b}\right)^a} \text{ for } x >= 0$$

Definition at line 374 of file sf_distributions.tcc.

8.3.2.360 __zernike()

```
template<typename _Tp >
   __gnu_cxx::fp_promote_t<_Tp> std::__detail::__zernike (
          unsigned int __n,
           int __m,
          _Tp __rho,
          _Tp __phi )
```

Return the Zernike polynomial $Z_n^m(\rho,\phi)$ for non-negative integral degree n, signed integral order m, and real radial argument ρ and azimuthal angle ϕ .

The even Zernike polynomials are defined by:

$$Z_n^m(\rho,\phi) = R_n^m(\rho)\cos(m\phi)$$

and the odd Zernike polynomials are defined by:

$$Z_n^{-m}(\rho,\phi) = R_n^m(\rho)\sin(m\phi)$$

for non-negative degree m and m <= n and where $R_n^m(\rho)$ is the radial polynomial (

See also

```
radial jacobi).
```

Principals of Optics, 7th edition, Max Born and Emil Wolf, Cambridge University Press, 1999, pp 523-525 and 905-910.

Template Parameters

_Тр	The real type of the radial coordinate and azimuthal angle
-----	--

Parameters

n	The non-negative integral degree.
m	The integral azimuthal order
rho	The radial coordinate
phi	The azimuthal angle

Definition at line 373 of file sf_jacobi.tcc.

References __radial_jacobi().

8.3.2.361 __znorm1()

Definition at line 58 of file sf_owens_t.tcc.

Referenced by __owens_t().

```
8.3.2.362 __znorm2()
```

Definition at line 47 of file sf_owens_t.tcc.

Referenced by __owens_t().

8.3.3 Variable Documentation

```
8.3.3.1 __max_FGH
```

```
template<typename _Tp >
constexpr int std::__detail::__max_FGH = _Airy_series<_Tp>::_N_FGH
```

Definition at line 178 of file sf_airy.tcc.

```
8.3.3.2 __max_FGH< double >
```

```
template<>
constexpr int std::__detail::__max_FGH< double > = 79
```

Definition at line 184 of file sf_airy.tcc.

```
8.3.3.3 \_max_FGH< float >
```

```
template<>
constexpr int std::__detail::__max_FGH< float > = 15
```

Definition at line 181 of file sf_airy.tcc.

8.3.3.4 _Num_Euler_Maclaurin_zeta

constexpr size_t std::__detail::_Num_Euler_Maclaurin_zeta = 100

Coefficients for Euler-Maclaurin summation of zeta functions.

$$B_{2i}/(2j)!$$

where B_k are the Bernoulli numbers.

Definition at line 117 of file sf zeta.tcc.

Referenced by __polylog_exp_neg().

8.3.3.5 _Num_Stieltjes

constexpr size_t std::__detail::_Num_Stieltjes = 21

Coefficients for the expansion of the Riemann zeta function:

$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n$$

 $\gamma_0 = \gamma_E$ the Euler-Masceroni constant.

http://www.plouffe.fr/simon/constants/stieltjesgamma.txt

Definition at line 83 of file sf_zeta.tcc.

Referenced by __riemann_zeta_laurent().

8.3.3.6 _S_double_factorial_table

constexpr _Factorial_table<long double> std::__detail::_S_double_factorial_table[301]

Definition at line 280 of file sf gamma.tcc.

Referenced by double factorial(), log double factorial(), and log factorial().

8.3.3.7 _S_Euler_Maclaurin_zeta

constexpr long double std::__detail::_S_Euler_Maclaurin_zeta[_Num_Euler_Maclaurin_zeta]

Definition at line 120 of file sf zeta.tcc.

Referenced by __hurwitz_zeta_euler_maclaurin(), __polylog_exp_neg(), and __riemann_zeta_euler_maclaurin().

```
8.3.3.8 _S_factorial_table
constexpr _Factorial_table<long double> std::__detail::_S_factorial_table[171]
Definition at line 90 of file sf_gamma.tcc.
Referenced by __factorial(), __gamma_reciprocal(), __log_factorial(), and __log_gamma().
8.3.3.9 _S_harmonic_denom
constexpr unsigned long std::__detail::_S_harmonic_denom[_S_num_harmonic_numer]
Definition at line 3254 of file sf_gamma.tcc.
Referenced by __harmonic_number().
8.3.3.10 S harmonic numer
constexpr unsigned long std::__detail::_S_harmonic_numer[_S_num_harmonic_numer]
Definition at line 3221 of file sf_gamma.tcc.
Referenced by harmonic number().
8.3.3.11 _S_neg_double_factorial_table
constexpr _Factorial_table<long double> std::__detail::_S_neg_double_factorial_table[999]
Definition at line 601 of file sf_gamma.tcc.
Referenced by __double_factorial(), and __log_double_factorial().
8.3.3.12 _S_num_double_factorials
template<typename _Tp >
constexpr std::size_t std::__detail::_S_num_double_factorials = 0
```

Definition at line 265 of file sf_gamma.tcc.

```
8.3.3.13 _S_num_double_factorials< double >
template<>
constexpr std::size_t std::__detail::_S_num_double_factorials< double > = 301
Definition at line 270 of file sf_gamma.tcc.
8.3.3.14 _{\rm S_num\_double\_factorials} < {\rm float} >
template<>
constexpr std::size_t std::__detail::_S_num_double_factorials< float > = 57
Definition at line 268 of file sf_gamma.tcc.
8.3.3.15 _S_num_double_factorials< long double >
template<>
constexpr std::size_t std::__detail::_S_num_double_factorials< long double > = 301
Definition at line 272 of file sf_gamma.tcc.
8.3.3.16 _S_num_factorials
template<typename _Tp >
constexpr std::size_t std::__detail::_S_num_factorials = 0
Definition at line 75 of file sf_gamma.tcc.
8.3.3.17 _S_num_factorials< double >
template<>
constexpr std::size_t std::__detail::_S_num_factorials< double > = 171
```

Definition at line 80 of file sf_gamma.tcc.

```
8.3.3.18 _{\rm S_num_factorials} < {\rm float} >
template<>
constexpr std::size_t std::__detail::_S_num_factorials< float > = 35
Definition at line 78 of file sf_gamma.tcc.
8.3.3.19 S_num_factorials < long double >
template<>
constexpr std::size_t std::__detail::_S_num_factorials< long double > = 171
Definition at line 82 of file sf_gamma.tcc.
8.3.3.20 _S_num_harmonic_numer
constexpr unsigned long long std::__detail::_S_num_harmonic_numer = 29
Definition at line 3218 of file sf_gamma.tcc.
Referenced by __harmonic_number().
8.3.3.21 S num neg double factorials
template<typename _{\rm Tp} >
constexpr std::size_t std::__detail::_S_num_neg_double_factorials = 0
Definition at line 585 of file sf_gamma.tcc.
8.3.3.22 _S_num_neg_double_factorials< double >
template<>
constexpr std::size_t std::__detail::_S_num_neg_double_factorials< double > = 150
```

Definition at line 590 of file sf_gamma.tcc.

```
8.3.3.23 _S_num_neg_double_factorials< float >
template<>
constexpr std::size_t std::__detail::_S_num_neg_double_factorials< float > = 27
Definition at line 588 of file sf gamma.tcc.
8.3.3.24 _S_num_neg_double_factorials< long double >
template<>
constexpr std::size_t std::__detail::_S_num_neg_double_factorials< long double > = 999
Definition at line 592 of file sf gamma.tcc.
8.3.3.25 S num zetam1
constexpr size_t std::__detail::_S_num_zetam1 = 121
Table of zeta(n) - 1 from 0 - 120. MPFR @ 128 bits precision.
Definition at line 580 of file sf zeta.tcc.
Referenced by __riemann_zeta_m_1().
8.3.3.26 S Stieltjes
constexpr long double std::__detail::_S_Stieltjes[_Num_Stieltjes]
Initial value:
    +0.5772156649015328606065120900824024310421593359L,
    -0.0728158454836767248605863758749013191377363383L,
    -0.0096903631928723184845303860352125293590658061L,
    +0.0020538344203033458661600465427533842857158044L,
    +0.0023253700654673000574681701775260680009044694L,
    +0.0007933238173010627017533348774444448307315394L,
    -0.0002387693454301996098724218419080042777837151L
    -0.0005272895670577510460740975054788582819962534L,
    -0.0003521233538030395096020521650012087417291805L,
    -0.0000343947744180880481779146237982273906207895L,
    +0.00020533281490906479468372228923706530295985371
    +0.0002701844395439035266729020820679556738278420L
    +0.00016727291210514019335350154334118344660780661
    -0.0000274638066037601588600076036933551815267853L,
    -0.0002092092620592999458371396973445849578315442L
    -0.0002834686553202414466429344749971269770687029L,
    -0.0001996968583089697747077845632032403919157649L
    +0.0000262770371099183366994665976305101228160786L,
    +0.0003073684081492528265927547519486256455238112L,
    +0.0005036054530473556290555964377171600353212698L
    +0.0004663435615115594494005948244335505251131434L,
Definition at line 86 of file sf_zeta.tcc.
```

Referenced by __riemann_zeta_laurent().

```
8.3.3.27 _S_zetam1
```

```
constexpr long double std::__detail::_S_zetam1[_S_num_zetam1]
```

Definition at line 584 of file sf_zeta.tcc.

Referenced by __riemann_zeta_m_1().

Chapter 9

Class Documentation

```
9.1 __gnu_cxx::__airy_t< _Tx, _Tp > Struct Template Reference
```

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp __Wronskian () const

Return the Wronskian of this Airy function state.

Public Attributes

_Tp __Ai_deriv

The derivative of the Airy function Ai.

_Tp __Ai_value

The value of the Airy function Ai.

_Tp __Bi_deriv

The derivative of the Airy function Bi.

• _Tp __Bi_value

The value of the Airy function Bi.

• _Tx __x_arg

The argument of the Airy fuctions.

9.1.1 Detailed Description

```
\label{template} \begin{array}{l} template\!<\!typename\ \_Tx, typename\ \_Tp\!>\\ struct\ \_gnu\_cxx::\_airy\_t\!<\!\_Tx, \_Tp> \end{array}
```

Definition at line 472 of file specfun_state.h.

466 Class Documentation

9.1.2 Member Function Documentation

9.1.2.1 __Wronskian()

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__airy_t< _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this Airy function state.

Definition at line 490 of file specfun_state.h.

9.1.3 Member Data Documentation

```
9.1.3.1 Ai_deriv
```

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__airy_t< _Tx, _Tp >::__Ai_deriv
```

The derivative of the Airy function Ai.

Definition at line 481 of file specfun_state.h.

```
9.1.3.2 __Ai_value
```

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__airy_t< _Tx, _Tp >::__Ai_value
```

The value of the Airy function Ai.

Definition at line 478 of file specfun_state.h.

9.1.3.3 __Bi_deriv

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__airy_t< _Tx, _Tp >::__Bi_deriv
```

The derivative of the Airy function Bi.

Definition at line 487 of file specfun_state.h.

9.1.3.4 __Bi_value

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__airy_t< _Tx, _Tp >::__Bi_value
```

The value of the Airy function Bi.

Definition at line 484 of file specfun_state.h.

9.1.3.5 __x_arg

```
template<typename _Tx , typename _Tp >
_Tx __gnu_cxx::__airy_t< _Tx, _Tp >::__x_arg
```

The argument of the Airy fuctions.

Definition at line 475 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun_state.h

9.2 __gnu_cxx::__assoc_legendre_p_t< _Tp > Struct Template Reference

```
#include <specfun state.h>
```

Public Member Functions

• _Tp deriv () const

Public Attributes

```
 unsigned int ____
```

unsigned int __m

• _Tp __P_lm

• _Tp __P_lm1m

 $P_{I}^{(m)}(x)$

• _Tp __P_lm2m

 $P_{\{l-1\}}^{(m)}(x)$

_Tp __phase = 1

 $P_{\{l-2\}}^{(m)}(x)$

• _Tp __x

468 Class Documentation

9.2.1 Detailed Description

```
\label{template} \begin{array}{l} template\!<\!typename\_Tp\!>\\ struct\_gnu\_cxx::\_assoc\_legendre\_p\_t\!<\_Tp> \end{array}
```

A type describing the state of an associated Legendre function.

Definition at line 157 of file specfun_state.h.

9.2.2 Member Function Documentation

```
9.2.2.1 deriv()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_p_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 168 of file specfun_state.h.

9.2.3 Member Data Documentation

```
9.2.3.1 __I
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__assoc_legendre_p_t< _Tp >::__l
```

Definition at line 159 of file specfun_state.h.

```
9.2.3.2 __m
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__assoc_legendre_p_t< _Tp >::__m
```

Definition at line 160 of file specfun_state.h.

```
9.2.3.3 __P_lm
```

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_p_t< _Tp >::__P_lm
```

Definition at line 162 of file specfun_state.h.

9.2.3.4 __P_lm1m

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_p_t< _Tp >::__P_lm1m
```

```
P_I^{(m)}(x)
```

Definition at line 163 of file specfun state.h.

9.2.3.5 __P_lm2m

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_p_t< _Tp >::__P_lm2m
```

$P_{l-1}^{(m)}(x)$

Definition at line 164 of file specfun_state.h.

9.2.3.6 __phase

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_p_t< _Tp >::__phase = 1
```

$P_{l-2}^{(m)}(x)$

Definition at line 165 of file specfun_state.h.

470 Class Documentation

```
9.2.3.7 __x

template<typename _Tp >
   _Tp __gnu_cxx::_assoc_legendre_p_t< _Tp >::__x
```

Definition at line 161 of file specfun state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

```
9.3 __gnu_cxx::_assoc_legendre_q_t< _Tp > Struct Template Reference
```

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp deriv () const

Public Attributes

```
    unsigned int __I
    unsigned int __m
        degree
    _Tp __phase = 1
        Q_l^{(m-2)}(x)
    _Tp __Q_lm
        argument
    _Tp __Q_lmm1
        Q_l^{(m)}(x)
    _Tp __Q_lmm2
        Q_l^{(m-1)}(x)
    _Tp __x
        order
```

9.3.1 Detailed Description

```
\label{template} \begin{array}{l} \text{template}\!<\!\text{typename}\,\_\text{Tp}\!>\\ \text{struct}\,\_\text{gnu}\_\text{cxx::}\,\_\text{assoc}\_\text{legendre}\_\text{q}\_\text{t}\!<\,\_\text{Tp}\,> \end{array}
```

A type describing the state of an associated Legendre function of the second kind.

Definition at line 225 of file specfun state.h.

9.3.2 Member Function Documentation

9.3.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_q_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 236 of file specfun_state.h.

9.3.3 Member Data Documentation

```
9.3.3.1 __I
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__assoc_legendre_q_t< _Tp >::__1
```

Definition at line 227 of file specfun_state.h.

```
9.3.3.2 __m
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__assoc_legendre_q_t< _Tp >::__m
```

degree

Definition at line 228 of file specfun_state.h.

9.3.3.3 __phase

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_q_t< _Tp >::__phase = 1
```

$Q_I^{(m-2)}(x)$

Definition at line 233 of file specfun_state.h.

472 Class Documentation

```
9.3.3.4 __Q_lm
```

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_q_t< _Tp >::__Q_lm
```

argument

Definition at line 230 of file specfun_state.h.

```
9.3.3.5 __Q_lmm1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_q_t< _Tp >::__Q_lmm1
```

 $Q_{I}^{(m)}(x)$

Definition at line 231 of file specfun_state.h.

```
9.3.3.6 __Q_lmm2
```

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_q_t< _Tp >::__Q_lmm2
```

 $Q_I^{(m-1)}(x)$

Definition at line 232 of file specfun_state.h.

```
9.3.3.7 __x
```

```
template<typename _Tp >
_Tp __gnu_cxx::__assoc_legendre_q_t< _Tp >::__x
```

order

Definition at line 229 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.4 __gnu_cxx::__chebyshev_t_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

- _Tp deriv () const
- _Tp deriv2 () const

Public Attributes

- unsigned int __n
- _Tp __T_n
- _Tp __T_nm1
- _Tp __T_nm2
- _Tp __x

9.4.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename \_Tp> \\ struct \_\_gnu\_cxx::\_\_chebyshev\_t\_t < \_Tp> \\ \end{tabular}
```

A type describing the state of a Chebyshev polynomial of the first kind.

Definition at line 321 of file specfun_state.h.

9.4.2 Member Function Documentation

9.4.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_t_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 330 of file specfun_state.h.

9.4.2.2 deriv2()

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_t_t< _Tp >::deriv2 ( ) const [inline]
```

Definition at line 334 of file specfun state.h.

474 Class Documentation

9.4.3 Member Data Documentation

```
9.4.3.1 __n

template<typename _Tp >
unsigned int __gnu_cxx::__chebyshev_t_t< _Tp >::__n
```

Definition at line 323 of file specfun_state.h.

```
9.4.3.2 __T_n

template<typename _Tp >
    _Tp __gnu_cxx::__chebyshev_t_t< _Tp >::__T_n
```

Definition at line 325 of file specfun_state.h.

```
9.4.3.3 __T_nm1

template<typename _Tp >
    _Tp __gnu_cxx::__chebyshev_t_t< _Tp >::__T_nm1
```

Definition at line 326 of file specfun_state.h.

```
9.4.3.4 __T_nm2

template<typename _Tp >
    _Tp __gnu_cxx::__chebyshev_t_t< _Tp >::__T_nm2
```

Definition at line 327 of file specfun_state.h.

```
9.4.3.5 __x
```

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_t_t< _Tp >::__x
```

Definition at line 324 of file specfun state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.5 __gnu_cxx::__chebyshev_u_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp deriv () const

Public Attributes

- unsigned int __n
- _Tp __U_n
- _Tp __U_nm1
- _Tp __U_nm2
- _Tp __x

9.5.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename \_Tp> \\ struct \_\_gnu\_cxx::\_\_chebyshev\_u\_t < \_Tp> \\ \end{tabular}
```

A type describing the state of a Chebyshev polynomial of the second kind.

Definition at line 348 of file specfun_state.h.

9.5.2 Member Function Documentation

476 Class Documentation

9.5.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_u_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 357 of file specfun_state.h.

9.5.3 Member Data Documentation

```
9.5.3.1 __n
template<typename _Tp >
unsigned int __gnu_cxx::__chebyshev_u_t< _Tp >::__n
```

Definition at line 350 of file specfun state.h.

```
9.5.3.2 __U_n
template<typename _Tp >
```

Definition at line 352 of file specfun_state.h.

```
9.5.3.3 _U_nm1

template<typename _Tp >
    _Tp __gnu_cxx::__chebyshev_u_t< _Tp >::__U_nm1
```

Definition at line 353 of file specfun_state.h.

```
9.5.3.4 __U_nm2

template<typename _Tp >
    _Tp __gnu_cxx::__chebyshev_u_t< _Tp >::__U_nm2
```

Definition at line 354 of file specfun_state.h.

```
9.5.3.5 __x

template<typename _Tp >
   _Tp __gnu_cxx::_chebyshev_u_t< _Tp >::__x
```

Definition at line 351 of file specfun state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun state.h

9.6 __gnu_cxx::__chebyshev_v_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp deriv () const

Public Attributes

- unsigned int __n
- _Tp __V_n
- _Tp __V_nm1
- _Tp __V_nm2
- _Tp __x

9.6.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename \_Tp> \\ struct \_gnu\_cxx::\_chebyshev\_v\_t < \_Tp> \\ \end{tabular}
```

A type describing the state of a Chebyshev polynomial of the third kind.

Definition at line 368 of file specfun_state.h.

9.6.2 Member Function Documentation

478 Class Documentation

9.6.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_v_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 377 of file specfun_state.h.

9.6.3 Member Data Documentation

```
9.6.3.1 __n
template<typename _Tp >
unsigned int __gnu_cxx::__chebyshev_v_t< _Tp >::__n
```

Definition at line 370 of file specfun state.h.

```
9.6.3.2 __V_n

template<typename _Tp >
   _Tp __gnu_cxx::__chebyshev_v_t< _Tp >::__V_n
```

Definition at line 372 of file specfun_state.h.

```
9.6.3.3 __V_nm1

template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_v_t< _Tp >::__V_nm1
```

Definition at line 373 of file specfun_state.h.

```
9.6.3.4 __V_nm2

template<typename _Tp >
    _Tp __gnu_cxx::__chebyshev_v_t< _Tp >::__V_nm2
```

Definition at line 374 of file specfun_state.h.

```
9.6.3.5 __x
template<typename _Tp >
```

_Tp __gnu_cxx::__chebyshev_v_t< _Tp >::__x

Definition at line 371 of file specfun state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun state.h

9.7 __gnu_cxx::__chebyshev_w_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

_Tp deriv () const

Public Attributes

- unsigned int __n
- _Tp __W_n
- _Tp __W_nm1
- _Tp __W_nm2
- _Tp __x

9.7.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename \_Tp > \\ struct \_gnu\_cxx::\_chebyshev\_w\_t < \_Tp > \\ \end{tabular}
```

A type describing the state of a Chebyshev polynomial of the fourth kind.

Definition at line 390 of file specfun_state.h.

9.7.2 Member Function Documentation

9.7.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_w_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 399 of file specfun_state.h.

9.7.3 Member Data Documentation

```
9.7.3.1 __n
template<typename _Tp >
unsigned int __gnu_cxx::__chebyshev_w_t< _Tp >::__n
```

Definition at line 392 of file specfun state.h.

```
9.7.3.2 __W_n
```

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_w_t< _Tp >::__W_n
```

Definition at line 394 of file specfun_state.h.

```
9.7.3.3 __W_nm1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_w_t< _Tp >::__W_nml
```

Definition at line 395 of file specfun_state.h.

```
9.7.3.4 __W_nm2
```

```
template<typename _Tp >
_Tp __gnu_cxx::__chebyshev_w_t< _Tp >::__W_nm2
```

Definition at line 396 of file specfun_state.h.

```
9.7.3.5 __x

template<typename _Tp >
   _Tp __gnu_cxx::_chebyshev_w_t< _Tp >::__x
```

Definition at line 393 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.8 __gnu_cxx::__coulomb_t < _Teta, _Trho, _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp __Wronskian () const

Return the Wronskian of this Coulomb function state.

Public Attributes

_Teta __eta_arg

The real parameter of the Coulomb functions.

_Tp __F_deriv

The derivative of the regular Coulomb function.

_Tp __F_value

The value of the regular Coulomb function.

_Tp __G_deriv

The derivative of the irregular Coulomb function.

_Tp __G_value

The value of the irregular Coulomb function.

unsigned int ____

The nonnegative order of the Coulomb functions.

_Trho_arg

The argument of the Coulomb functions.

9.8.1 Detailed Description

```
\label{template} $$ \text{template}$$ < \text{typename} $$_{\text{Trho}}$, typename $$_{\text{Trho}}$, struct $$_{\text{gnu}}$$ cxx::$$_{\text{coulomb}}$$ t< $$_{\text{Teta}}$, $$_{\text{Trho}}$$, $$_{\text{Trho}}$$
```

This struct captures the state of the Coulomb functions at a given order and argument.

Definition at line 555 of file specfun state.h.

9.8.2 Member Function Documentation

9.8.2.1 __Wronskian()

```
template<typename _Teta , typename _Trho , typename _Tp >
_Tp __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this Coulomb function state.

Definition at line 579 of file specfun_state.h.

9.8.3 Member Data Documentation

```
9.8.3.1 eta arg
```

```
template<typename _Teta , typename _Trho , typename _Tp >
_Teta __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__eta_arg
```

The real parameter of the Coulomb functions.

Definition at line 561 of file specfun_state.h.

```
9.8.3.2 __F_deriv
```

```
template<typename _Teta , typename _Trho , typename _Tp >
_Tp __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__F_deriv
```

The derivative of the regular Coulomb function.

Definition at line 570 of file specfun_state.h.

```
9.8.3.3 __F_value
```

```
template<typename _Teta , typename _Trho , typename _Tp >
_Tp __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__F_value
```

The value of the regular Coulomb function.

Definition at line 567 of file specfun_state.h.

```
9.8.3.4 __G_deriv
```

```
template<typename _Teta , typename _Trho , typename _Tp >
_Tp __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__G_deriv
```

The derivative of the irregular Coulomb function.

Definition at line 576 of file specfun_state.h.

```
9.8.3.5 __G_value
```

```
template<typename _Teta , typename _Trho , typename _Tp >
_Tp __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__G_value
```

The value of the irregular Coulomb function.

Definition at line 573 of file specfun_state.h.

```
9.8.3.6 __l
```

```
template<typename _Teta , typename _Trho , typename _Tp >
unsigned int __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__l
```

The nonnegative order of the Coulomb functions.

Definition at line 558 of file specfun_state.h.

```
9.8.3.7 __rho_arg
```

```
template<typename _Teta , typename _Trho , typename _Tp >
_Trho __gnu_cxx::__coulomb_t< _Teta, _Trho, _Tp >::__rho_arg
```

The argument of the Coulomb functions.

Definition at line 564 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.9 __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

• Tp Wronskian () const

Return the Wronskian of this cylindrical Bessel function state.

Public Attributes

• _Tp __J_deriv

The derivative of the Bessel function of the first kind.

_Tp __J_value

The value of the Bessel function of the first kind.

_Tp __N_deriv

The derivative of the Bessel function of the second kind.

• _Tp __N_value

The value of the Bessel function of the second kind.

_Tnu __nu_arg

The real order of the cylindrical Bessel functions.

_Tx __x_arg

The argument of the cylindrical Bessel functions.

9.9.1 Detailed Description

```
\label{template} $$ \ensuremath{\sf template}$ $$ $$ \ensuremath{\sf Tnu}$, typename $$_Tp$ $$ struct $$ $$ gnu_cxx::_cyl_bessel_t< $$ $$ Tnu, $$_Tx, $$_Tp $$ $$
```

This struct captures the state of the cylindrical Bessel functions at a given order and argument.

Definition at line 525 of file specfun_state.h.

9.9.2 Member Function Documentation

9.9.2.1 __Wronskian()

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this cylindrical Bessel function state.

Definition at line 546 of file specfun state.h.

9.9.3 Member Data Documentation

```
9.9.3.1 __J_deriv
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__J_deriv
```

The derivative of the Bessel function of the first kind.

Definition at line 537 of file specfun_state.h.

```
9.9.3.2 __J_value
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__J_value
```

The value of the Bessel function of the first kind.

Definition at line 534 of file specfun_state.h.

```
9.9.3.3 N deriv
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__N_deriv
```

The derivative of the Bessel function of the second kind.

Definition at line 543 of file specfun_state.h.

```
9.9.3.4 __N_value
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__N_value
```

The value of the Bessel function of the second kind.

Definition at line 540 of file specfun state.h.

9.9.3.5 __nu_arg

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tnu __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__nu_arg
```

The real order of the cylindrical Bessel functions.

Definition at line 528 of file specfun state.h.

9.9.3.6 __x_arg

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tx __gnu_cxx::__cyl_bessel_t< _Tnu, _Tx, _Tp >::__x_arg
```

The argument of the cylindrical Bessel functions.

Definition at line 531 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.10 __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

Tp Wronskian () const

Return the Wronskian of this cylindrical Hankel function state.

Public Attributes

_Tp __H1_deriv

The derivative of the cylindrical Hankel function of the first kind.

_Tp __H1_value

The value of the cylindrical Hankel function of the first kind.

• _Tp __H2_deriv

The derivative of the cylindrical Hankel function of the second kind.

_Tp __H2_value

The value of the cylindrical Hankel function of the second kind.

• _Tnu __nu_arg

The real order of the cylindrical Hankel functions.

• _Tx __x_arg

The argument of the modified Hankel functions.

9.10.1 Detailed Description

```
\label{template} $$\operatorname{typename\_Tnu}$, typename\_Tp> $$\operatorname{struct\_gnu\_cxx::\_cyl\_hankel\_t<\_Tnu}$, $$Tx, $$Tp> $$
```

_Tp pretty much has to be complex.

Definition at line 622 of file specfun_state.h.

9.10.2 Member Function Documentation

9.10.2.1 __Wronskian()

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tp __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this cylindrical Hankel function state.

Definition at line 643 of file specfun_state.h.

9.10.3 Member Data Documentation

```
9.10.3.1 __H1_deriv
```

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tp __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__Hl_deriv
```

The derivative of the cylindrical Hankel function of the first kind.

Definition at line 634 of file specfun state.h.

```
9.10.3.2 __H1_value
```

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tp __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__H1_value
```

The value of the cylindrical Hankel function of the first kind.

Definition at line 631 of file specfun_state.h.

9.10.3.3 __H2_deriv

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tp __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__H2_deriv
```

The derivative of the cylindrical Hankel function of the second kind.

Definition at line 640 of file specfun_state.h.

```
9.10.3.4 __H2_value
```

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tp __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__H2_value
```

The value of the cylindrical Hankel function of the second kind.

Definition at line 637 of file specfun_state.h.

```
9.10.3.5 __nu_arg
```

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tnu __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__nu_arg
```

The real order of the cylindrical Hankel functions.

Definition at line 625 of file specfun_state.h.

```
9.10.3.6 __x_arg
```

```
template<typename _Tnu, typename _Tx, typename _Tp>
_Tx __gnu_cxx::__cyl_hankel_t< _Tnu, _Tx, _Tp >::__x_arg
```

The argument of the modified Hankel functions.

Definition at line 628 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.11 __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp > Struct Template Reference

#include <specfun_state.h>

Public Member Functions

• Tp Wronskian () const

Return the Wronskian of this modified cylindrical Bessel function state.

Public Attributes

• _Tp __l_deriv

The derivative of the modified cylindrical Bessel function of the first kind.

_Tp __l_value

The value of the modified cylindrical Bessel function of the first kind.

_Tp __K_deriv

The derivative of the modified cylindrical Bessel function of the second kind.

• _Tp __K_value

The value of the modified cylindrical Bessel function of the second kind.

Tnu nu arg

The real order of the modified cylindrical Bessel functions.

_Tx __x_arg

The argument of the modified cylindrical Bessel functions.

9.11.1 Detailed Description

```
\label{template} $$\operatorname{typename}_{Tnu,\ typename}_{Tx,\ typename}_{Tp}>$$\operatorname{struct}_{gnu}_{cxx::}_{cyl}_{mod}_{bessel}_{t}<_{Tnu,\ Tx,\ Tp}>
```

This struct captures the state of the modified cylindrical Bessel functions at a given order and argument.

Definition at line 588 of file specfun_state.h.

9.11.2 Member Function Documentation

9.11.2.1 __Wronskian()

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this modified cylindrical Bessel function state.

Definition at line 614 of file specfun state.h.

9.11.3 Member Data Documentation

```
9.11.3.1 __I_deriv
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__I_deriv
```

The derivative of the modified cylindrical Bessel function of the first kind.

Definition at line 602 of file specfun_state.h.

```
9.11.3.2 __l_value
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__I_value
```

The value of the modified cylindrical Bessel function of the first kind.

Definition at line 598 of file specfun_state.h.

```
9.11.3.3 __K_deriv
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__K_deriv
```

The derivative of the modified cylindrical Bessel function of the second kind.

Definition at line 610 of file specfun_state.h.

```
9.11.3.4 K_value
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__K_value
```

The value of the modified cylindrical Bessel function of the second kind.

Definition at line 606 of file specfun state.h.

```
9.11.3.5 __nu_arg
```

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tnu __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__nu_arg
```

The real order of the modified cylindrical Bessel functions.

Definition at line 591 of file specfun state.h.

9.11.3.6 __x_arg

```
template<typename _Tnu , typename _Tx , typename _Tp >
_Tx __gnu_cxx::__cyl_mod_bessel_t< _Tnu, _Tx, _Tp >::__x_arg
```

The argument of the modified cylindrical Bessel functions.

Definition at line 594 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.12 __gnu_cxx::__fock_airy_t< _Tx, _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp __Wronskian () const

Return the Wronskian of this Fock-type Airy function state.

Public Attributes

_Tp __w1_deriv

The derivative of the Fock-type Airy function w1.

_Tp __w1_value

The value of the Fock-type Airy function w1.

_Tp __w2_deriv

The derivative of the Fock-type Airy function w2.

_Tp __w2_value

The value of the Fock-type Airy function w2.

_Tx __x_arg

The argument of the Fock-type Airy fuctions.

9.12.1 Detailed Description

```
\label{template} $$ \ensuremath{\sf template}$$ < typename _Tx, typename _Tp> $$ \ensuremath{\sf struct}$ \_gnu_cxx::__fock_airy_t< _Tx, _Tp> $$
```

_Tp pretty much has to be complex.

Definition at line 498 of file specfun_state.h.

9.12.2 Member Function Documentation

```
9.12.2.1 __Wronskian()
```

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__fock_airy_t< _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this Fock-type Airy function state.

Definition at line 516 of file specfun_state.h.

9.12.3 Member Data Documentation

```
9.12.3.1 __w1_deriv
```

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__fock_airy_t< _Tx, _Tp >::__wl_deriv
```

The derivative of the Fock-type Airy function w1.

Definition at line 507 of file specfun state.h.

```
9.12.3.2 __w1_value
```

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__fock_airy_t< _Tx, _Tp >::__wl_value
```

The value of the Fock-type Airy function w1.

Definition at line 504 of file specfun_state.h.

9.12.3.3 __w2_deriv

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__fock_airy_t< _Tx, _Tp >::__w2_deriv
```

The derivative of the Fock-type Airy function w2.

Definition at line 513 of file specfun_state.h.

9.12.3.4 __w2_value

```
template<typename _Tx , typename _Tp >
_Tp __gnu_cxx::__fock_airy_t< _Tx, _Tp >::__w2_value
```

The value of the Fock-type Airy function w2.

Definition at line 510 of file specfun_state.h.

9.12.3.5 __x_arg

```
template<typename _Tx , typename _Tp >
_Tx __gnu_cxx::__fock_airy_t< _Tx, _Tp >::__x_arg
```

The argument of the Fock-type Airy fuctions.

Definition at line 501 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.13 __gnu_cxx::_fp_is_integer_t Struct Reference

```
#include <math_util.h>
```

Public Member Functions

- · constexpr operator bool () const noexcept
- constexpr int operator() () const noexcept

Public Attributes

```
• bool __is_integral = false
```

• int **value** = 0

9.13.1 Detailed Description

A struct returned by floating point integer queries.

Definition at line 127 of file math_util.h.

9.13.2 Member Function Documentation

```
9.13.2.1 operator bool()
```

```
constexpr __gnu_cxx::__fp_is_integer_t::operator bool ( ) const [inline], [noexcept]
```

Definition at line 136 of file math_util.h.

References __is_integral.

9.13.2.2 operator()()

```
constexpr int __gnu_cxx::_fp_is_integer_t::operator() ( ) const [inline], [noexcept]
```

Definition at line 141 of file math_util.h.

References __value.

9.13.3 Member Data Documentation

```
9.13.3.1 __is_integral
```

```
bool __gnu_cxx::__fp_is_integer_t::__is_integral = false
```

Definition at line 130 of file math_util.h.

Referenced by operator bool().

```
9.13.3.2 __value
```

```
int __gnu_cxx::__fp_is_integer_t::__value = 0
```

Definition at line 133 of file math_util.h.

Referenced by operator()().

The documentation for this struct was generated from the following file:

cxx fp utils/include/ext/math util.h

9.14 __gnu_cxx::__gamma_inc_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Attributes

• _Tp __lgamma_value

The value of the log of the incomplete gamma function.

• _Tp __tgamma_value

The value of the total gamma function.

9.14.1 Detailed Description

```
template<typename _Tp> struct __gnu_cxx::__gamma_inc_t< _Tp >
```

The sign of the exponentiated log(gamma) is appied to the tgamma value.

Definition at line 761 of file specfun state.h.

9.14.2 Member Data Documentation

9.14.2.1 __lgamma_value

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_inc_t< _Tp >::__lgamma_value
```

The value of the log of the incomplete gamma function.

Definition at line 766 of file specfun state.h.

9.14.2.2 __tgamma_value

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_inc_t< _Tp >::__tgamma_value
```

The value of the total gamma function.

Definition at line 764 of file specfun state.h.

The documentation for this struct was generated from the following file:

· include/bits/specfun state.h

9.15 __gnu_cxx::__gamma_temme_t < _Tp > Struct Template Reference

A structure for the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

#include <specfun_state.h>

Public Attributes

• _Tp __gamma_1_value

The output function $\Gamma_1(\mu)$.

• _Tp __gamma_2_value

The output function $\Gamma_2(\mu)$.

· Tp gamma minus value

The output function $1/\Gamma(1-\mu)$.

• _Tp __gamma_plus_value

The output function $1/\Gamma(1+\mu)$.

_Tp __mu_arg

The input parameter of the gamma functions.

9.15.1 Detailed Description

template<typename _Tp> struct __gnu_cxx::__gamma_temme_t< _Tp >

A structure for the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

The accuracy requirements on this are high for $|\mu| < 0$.

Definition at line 789 of file specfun_state.h.

9.15.2 Member Data Documentation

```
9.15.2.1 __gamma_1_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_temme_t< _Tp >::__gamma_1_value
```

The output function $\Gamma_1(\mu)$.

Definition at line 801 of file specfun_state.h.

9.15.2.2 __gamma_2_value

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_temme_t< _Tp >::__gamma_2_value
```

The output function $\Gamma_2(\mu)$.

Definition at line 804 of file specfun_state.h.

9.15.2.3 __gamma_minus_value

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_temme_t< _Tp >::__gamma_minus_value
```

The output function $1/\Gamma(1-\mu)$.

Definition at line 798 of file specfun_state.h.

9.15.2.4 __gamma_plus_value

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_temme_t< _Tp >::__gamma_plus_value
```

The output function $1/\Gamma(1+\mu)$.

Definition at line 795 of file specfun_state.h.

```
9.15.2.5 __mu_arg
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gamma_temme_t< _Tp >::__mu_arg
```

The input parameter of the gamma functions.

Definition at line 792 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.16 __gnu_cxx::__gappa_pq_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Attributes

- _Tp __gappa_p_value
- _Tp __gappa_q_value

9.16.1 Detailed Description

```
\label{template} \begin{array}{l} template < typename \ \_Tp> \\ struct \ \_gnu\_cxx:: \ \_gappa\_pq\_t < \ \_Tp> \end{array}
```

Definition at line 734 of file specfun_state.h.

9.16.2 Member Data Documentation

```
9.16.2.1 __gappa_p_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gappa_pq_t< _Tp >::__gappa_p_value
```

Definition at line 737 of file specfun state.h.

```
9.16.2.2 __gappa_q_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gappa_pq_t< _Tp >::__gappa_q_value
```

Definition at line 740 of file specfun state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.17 $__gnu_cxx::__gegenbauer_t < _Tp > Struct Template Reference$

```
#include <specfun_state.h>
```

Public Member Functions

• Tp deriv () const

Public Attributes

```
_Tp __C_n_Tp __C_nm1_Tp __C_nm2
```

• _Tp __lambda

unsigned int __n

• _Tp __x

9.17.1 Detailed Description

```
template<typename _Tp> struct __gnu_cxx::__gegenbauer_t< _Tp>
```

A type describing the state of a Gegenbauer polynomial.

Definition at line 298 of file specfun state.h.

9.17.2 Member Function Documentation

```
9.17.2.1 deriv()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gegenbauer_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 308 of file specfun_state.h.

9.17.3 Member Data Documentation

```
9.17.3.1 __C_n

template<typename _Tp >
_Tp __gnu_cxx::_gegenbauer_t< _Tp >::__C_n
```

Definition at line 303 of file specfun_state.h.

```
9.17.3.2 __C_nm1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gegenbauer_t< _Tp >::__C_nm1
```

Definition at line 304 of file specfun_state.h.

9.17.3.3 __C_nm2

```
template<typename _Tp >
_Tp __gnu_cxx::__gegenbauer_t< _Tp >::__C_nm2
```

Definition at line 305 of file specfun_state.h.

9.17.3.4 __lambda

```
template<typename _Tp >
_Tp __gnu_cxx::__gegenbauer_t< _Tp >::__lambda
```

Definition at line 301 of file specfun state.h.

```
9.17.3.5 __n
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__gegenbauer_t< _Tp >::__n
```

Definition at line 300 of file specfun_state.h.

```
9.17.3.6 __x
```

```
template<typename _Tp >
_Tp __gnu_cxx::__gegenbauer_t< _Tp >::__x
```

Definition at line 302 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun_state.h

9.18 __gnu_cxx::_hermite_he_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

- _Tp deriv () const
- _Tp deriv2 () const

Public Attributes

```
• _Tp __He_n
```

- _Tp __He_nm1
- _Tp __He_nm2
- unsigned int __n
- _Tp __x

9.18.1 Detailed Description

```
\label{eq:top-construct} \begin{split} & template \!<\! typename \_Tp \!> \\ & struct \_\_gnu\_cxx::\_hermite\_he\_t \!<\! \_Tp > \end{split}
```

A type describing the state of a probabilists Hermite polynomial.

Definition at line 98 of file specfun_state.h.

9.18.2 Member Function Documentation

```
9.18.2.1 deriv()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_he_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 107 of file specfun_state.h.

9.18.2.2 deriv2()

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_he_t< _Tp >::deriv2 ( ) const [inline]
```

Definition at line 111 of file specfun state.h.

9.18.3 Member Data Documentation

```
9.18.3.1 __He_n

template<typename _Tp >
    _Tp __gnu_cxx::__hermite_he_t< _Tp >::__He_n
```

Definition at line 102 of file specfun_state.h.

```
9.18.3.2 __He_nm1
template<typename _Tp >
```

Definition at line 103 of file specfun_state.h.

```
9.18.3.3 __He_nm2

template<typename _Tp >
_Tp __gnu_cxx::__hermite_he_t< _Tp >::__He_nm2
```

Definition at line 104 of file specfun_state.h.

```
9.18.3.4 __n

template<typename _Tp >
unsigned int __gnu_cxx::_hermite_he_t< _Tp >::__n
```

Definition at line 100 of file specfun_state.h.

```
9.18.3.5 __x
```

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_he_t< _Tp >::__x
```

Definition at line 101 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.19 __gnu_cxx::__hermite_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

- _Tp deriv () const
- _Tp deriv2 () const

Public Attributes

- _Tp __H_n
- _Tp __H_nm1
- _Tp __H_nm2
- unsigned int __n
- _Tp __x

9.19.1 Detailed Description

```
template<typename _Tp> struct __gnu_cxx::_hermite_t< _Tp >
```

A type describing the state of a Hermite polynomial.

Definition at line 77 of file specfun_state.h.

9.19.2 Member Function Documentation

9.19.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 86 of file specfun_state.h.

9.19.2.2 deriv2()

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_t< _Tp >::deriv2 ( ) const [inline]
```

Definition at line 90 of file specfun_state.h.

9.19.3 Member Data Documentation

```
9.19.3.1 __H_n
```

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_t< _Tp >::__H_n
```

Definition at line 81 of file specfun_state.h.

```
9.19.3.2 __H_nm1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_t< _Tp >::__H_nml
```

Definition at line 82 of file specfun_state.h.

```
9.19.3.3 __H_nm2
```

```
template<typename _Tp >
_Tp __gnu_cxx::__hermite_t< _Tp >::__H_nm2
```

Definition at line 83 of file specfun_state.h.

```
9.19.3.4 __n

template<typename _Tp >
unsigned int __gnu_cxx::__hermite_t< _Tp >::__n
```

Definition at line 79 of file specfun_state.h.

```
9.19.3.5 __x

template<typename _Tp >
_Tp __gnu_cxx::__hermite_t< _Tp >::__x
```

Definition at line 80 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

```
9.20 __gnu_cxx::__jacobi_ellint_t< _Tp > Struct Template Reference
```

```
#include <specfun_state.h>
```

Public Member Functions

- _Tp __am () const
- _Tp __cd () const
- _Tp __cn_deriv () const
- _Tp __cs () const
- _Tp __dc () const
- _Tp __ds () const
- _Tp __nc () const
- _Tp __nd () const
- _Tp __ns () const
- _Tp __sc () const
- _Tp __sd () const
- _Tp __sn_deriv () const

Public Attributes

_Tp __cn_value

Jacobi cosine amplitude value.

_Tp __dn_value

Jacobi delta amplitude value.

• _Tp __sn_value

Jacobi sine amplitude value.

9.20.1 Detailed Description

```
\label{template} $$\operatorname{template}_{\scriptsize{\mbox{typename}}\mbox{-}\mbox{Tp}>}$$ struct $$\underline{\mbox{gnu}}_{\scriptsize{\mbox{cxx::}}\mbox{-}\mbox{jacobi}_{\scriptsize{\mbox{ellint}}\mbox{t}}<\mbox{-}\mbox{Tp}>$$
```

Slots for Jacobi elliptic function tuple.

Definition at line 423 of file specfun_state.h.

9.20.2 Member Function Documentation

```
9.20.2.1 __am()

template<typename _Tp >
    _Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__am ( ) const [inline]
```

Definition at line 434 of file specfun_state.h.

```
9.20.2.2 __cd()

template<typename _Tp >
   _Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__cd ( ) const [inline]
```

Definition at line 452 of file specfun_state.h.

```
9.20.2.3 __cn_deriv()

template<typename _Tp >
    _Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__cn_deriv ( ) const [inline]
```

Definition at line 467 of file specfun_state.h.

```
9.20.2.4 __cs()

template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__cs ( ) const [inline]
```

Definition at line 455 of file specfun_state.h.

```
9.20.2.5 __dc()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__dc ( ) const [inline]
```

Definition at line 461 of file specfun_state.h.

```
9.20.2.6 __ds()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__ds ( ) const [inline]
```

Definition at line 458 of file specfun_state.h.

```
9.20.2.7 __nc()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__nc ( ) const [inline]
```

Definition at line 440 of file specfun_state.h.

```
9.20.2.8 __nd()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__nd ( ) const [inline]
```

Definition at line 443 of file specfun_state.h.

```
9.20.2.9 __ns()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__ns ( ) const [inline]
```

Definition at line 437 of file specfun_state.h.

```
9.20.2.10 __sc()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__sc ( ) const [inline]
```

Definition at line 446 of file specfun_state.h.

```
9.20.2.11 __sd()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__sd ( ) const [inline]
```

Definition at line 449 of file specfun_state.h.

```
9.20.2.12 __sn_deriv()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__sn_deriv ( ) const [inline]
```

Definition at line 464 of file specfun_state.h.

9.20.3 Member Data Documentation

```
9.20.3.1 __cn_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__cn_value
```

Jacobi cosine amplitude value.

Definition at line 429 of file specfun_state.h.

```
9.20.3.2 __dn_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__dn_value
```

Jacobi delta amplitude value.

Definition at line 432 of file specfun_state.h.

```
9.20.3.3 __sn_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_ellint_t< _Tp >::__sn_value
```

Jacobi sine amplitude value.

Definition at line 426 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.21 __gnu_cxx::__jacobi_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp deriv () const

Public Attributes

- _Tp __alpha1
- Tp beta1
- unsigned int __n
- _Tp __P_n
- _Tp __P_nm1
- _Tp __P_nm2
- _Tp __x

9.21.1 Detailed Description

```
template<typename _Tp> struct __gnu_cxx::__jacobi_t< _Tp>
```

A type describing the state of a Jacobi polynomial.

Definition at line 274 of file specfun_state.h.

9.21.2 Member Function Documentation

9.21.2.1 deriv()

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 285 of file specfun_state.h.

9.21.3 Member Data Documentation

```
9.21.3.1 __alpha1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::__alphal
```

Definition at line 277 of file specfun_state.h.

```
9.21.3.2 __beta1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::__beta1
```

Definition at line 278 of file specfun_state.h.

```
9.21.3.3 __n
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__jacobi_t< _Tp >::__n
```

Definition at line 276 of file specfun_state.h.

```
9.21.3.4 __P_n
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::__P_n
```

Definition at line 280 of file specfun_state.h.

```
9.21.3.5 __P_nm1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::__P_nm1
```

Definition at line 281 of file specfun state.h.

```
9.21.3.6 __P_nm2
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::__P_nm2
```

Definition at line 282 of file specfun_state.h.

```
9.21.3.7 __x
```

```
template<typename _Tp >
_Tp __gnu_cxx::__jacobi_t< _Tp >::__x
```

Definition at line 279 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.22 __gnu_cxx::__laguerre_t< _Tpa, _Tp > Struct Template Reference

#include <specfun_state.h>

Public Member Functions

• _Tp deriv () const

Public Attributes

- _Tpa __alpha1
- _Tp __L_n
- _Tp __L_nm1
- _Tp __L_nm2
- unsigned int __n
- _Tp __x

9.22.1 Detailed Description

```
template<typename _Tpa, typename _Tp> struct __gnu_cxx::__laguerre_t< _Tpa, _Tp >
```

A type describing the state of a Laguerre polynomial.

Definition at line 256 of file specfun state.h.

9.22.2 Member Function Documentation

9.22.2.1 deriv()

```
template<typename _Tpa , typename _Tp >
_Tp __gnu_cxx::_laguerre_t< _Tpa, _Tp >::deriv ( ) const [inline]
```

Definition at line 266 of file specfun_state.h.

9.22.3 Member Data Documentation

9.22.3.1 __alpha1

```
template<typename _Tpa , typename _Tp >
_Tpa __gnu_cxx::__laguerre_t< _Tpa, _Tp >::__alpha1
```

Definition at line 259 of file specfun_state.h.

```
9.22.3.2 __L_n
```

```
template<typename _Tpa , typename _Tp >
_Tp __gnu_cxx::__laguerre_t< _Tpa, _Tp >::__L_n
```

Definition at line 261 of file specfun_state.h.

```
9.22.3.3 __L_nm1
```

```
template<typename _Tpa , typename _Tp >
_Tp __gnu_cxx::_laguerre_t< _Tpa, _Tp >::__L_nm1
```

Definition at line 262 of file specfun_state.h.

```
9.22.3.4 __L_nm2
```

```
template<typename _Tpa , typename _Tp >
_Tp __gnu_cxx::_laguerre_t< _Tpa, _Tp >::__L_nm2
```

Definition at line 263 of file specfun_state.h.

```
9.22.3.5 __n
```

```
template<typename _Tpa , typename _Tp >
unsigned int __gnu_cxx::__laguerre_t< _Tpa, _Tp >::__n
```

Definition at line 258 of file specfun_state.h.

```
9.22.3.6 __x
```

```
template<typename _Tpa , typename _Tp >
_Tp __gnu_cxx::__laguerre_t< _Tpa, _Tp >::__x
```

Definition at line 260 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.23 __gnu_cxx::_legendre_p_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

- _Tp deriv () const
- _Tp lobatto () const

 $P_{l-2}(x)$

Public Attributes

- unsigned int ___l
- _Tp __P_I
- _Tp __P_lm1

 $P_{I}(x)$

• _Tp __P_lm2

 $P_{\{l-1\}}(x)$

• _Tp __x

9.23.1 Detailed Description

```
template<typename _Tp>
struct __gnu_cxx::_legendre_p_t< _Tp>
```

A type describing the state of a Legendre polynomial.

The method lobatto() will return the Lobatto polynomial:

$$Lo_l(x) = (1 - x^2)P'_l(x) = l [P_{l-1}(x) - xP_l(x)]$$

Definition at line 124 of file specfun state.h.

9.23.2 Member Function Documentation

```
9.23.2.1 deriv()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_p_t< _Tp >::deriv ( ) const [inline]
```

Definition at line 138 of file specfun_state.h.

9.23.2.2 lobatto()

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_p_t< _Tp >::lobatto ( ) const [inline]
```

 $P_{1-2}(x)$

Definition at line 134 of file specfun_state.h.

9.23.3 Member Data Documentation

```
9.23.3.1 __I
```

```
template<typename _Tp >
unsigned int __gnu_cxx::__legendre_p_t< _Tp >::__l
```

Definition at line 126 of file specfun_state.h.

```
9.23.3.2 __P_I
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_p_t< _Tp >::__P_1
```

Definition at line 128 of file specfun_state.h.

```
9.23.3.3 __P_lm1

template<typename _Tp >
   _Tp __gnu_cxx::__legendre_p_t< _Tp >::__P_lm1

P_l(x)
```

Definition at line 129 of file specfun_state.h.

```
9.23.3.4 __P_lm2

template<typename _Tp >
   _Tp __gnu_cxx::__legendre_p_t< _Tp >::__P_lm2

P_{I-1}(x)
```

Definition at line 130 of file specfun_state.h.

```
9.23.3.5 __x

template<typename _Tp >
   _Tp __gnu_cxx::_legendre_p_t< _Tp >::__x
```

Definition at line 127 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

```
9.24 \_\_gnu\_cxx::\_legendre\_q\_t < \_Tp > Struct Template Reference
```

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp deriv () const Q_{l-2}(x)

Public Attributes

```
unsigned int __I
_Tp __Q_I
_Tp __Q_Im1
_Q_I(x)
_Tp __Q_Im2
_Q_{I-1}(x)
_Tp __x
```

9.24.1 Detailed Description

```
\label{template} \begin{array}{l} \text{template}\!<\!\text{typename}\,\_\text{Tp}\!>\\ \text{struct}\,\_\text{gnu}\,\_\text{cxx}::\!\_\text{legendre}\,\_\text{q}\,\_\text{t}\!<\,\_\text{Tp}\,> \end{array}
```

A type describing the state of a Legendre function of the second kind.

Definition at line 200 of file specfun_state.h.

9.24.2 Member Function Documentation

```
9.24.2.1 deriv()
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_q_t< _Tp >::deriv ( ) const [inline]
Q_{I-2}(x)
```

Definition at line 209 of file specfun_state.h.

9.24.3 Member Data Documentation

```
9.24.3.1 __I

template<typename _Tp >
unsigned int __gnu_cxx::__legendre_q_t< _Tp >::__l
```

Definition at line 202 of file specfun_state.h.

```
9.24.3.2 __Q_I
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_q_t< _Tp >::__Q_1
```

Definition at line 204 of file specfun_state.h.

```
9.24.3.3 __Q_lm1
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_q_t< _Tp >::__Q_lm1
```

 $Q_I(x)$

Definition at line 205 of file specfun state.h.

```
9.24.3.4 Q Im2
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_q_t< _Tp >::__Q_lm2
```

 $Q_{l-1}(x)$

Definition at line 206 of file specfun state.h.

```
9.24.3.5 __x
```

```
template<typename _Tp >
_Tp __gnu_cxx::__legendre_q_t< _Tp >::__x
```

Definition at line 203 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.25 __gnu_cxx::__lgamma_t< _Tp > Struct Template Reference

#include <specfun_state.h>

Public Attributes

```
int __lgamma_sign
```

The sign of the exponent of the log gamma value.

• _Tp __lgamma_value

The value log gamma function.

9.25.1 Detailed Description

```
\label{template} $$ \ensuremath{\sf template}$ < typename $$_{\tt Tp}$ < struct $$\_gnu_cxx::\_lgamma_t < $$_{\tt Tp}$ >
```

The log of the absolute value of the gamma function The sign of the exponentiated log(gamma) is stored in sign.

Definition at line 748 of file specfun state.h.

9.25.2 Member Data Documentation

```
9.25.2.1 __lgamma_sign
```

```
template<typename _Tp >
int __gnu_cxx::__lgamma_t< _Tp >::__lgamma_sign
```

The sign of the exponent of the log gamma value.

Definition at line 754 of file specfun_state.h.

```
9.25.2.2 __lgamma_value
```

```
template<typename _Tp >
_Tp __gnu_cxx::__lgamma_t< _Tp >::__lgamma_value
```

The value log gamma function.

Definition at line 751 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.26 __gnu_cxx::__quadrature_point_t< _Tp > Struct Template Reference

```
#include <specfun_state.h>
```

Public Member Functions

- __quadrature_point_t ()=default
- __quadrature_point_t (_Tp __pt, _Tp __wt)

Public Attributes

- _Tp __point
- _Tp __weight

9.26.1 Detailed Description

```
template<typename _Tp>
struct __gnu_cxx::__quadrature_point_t< _Tp>
```

A structure to store quadrature rules.

Definition at line 60 of file specfun state.h.

9.26.2 Constructor & Destructor Documentation

Definition at line 67 of file specfun state.h.

9.26.3 Member Data Documentation

```
9.26.3.1 __point

template<typename _Tp >
_Tp __gnu_cxx::__quadrature_point_t< _Tp >::__point
```

Definition at line 62 of file specfun_state.h.

```
9.26.3.2 __weight

template<typename _Tp >
_Tp __gnu_cxx::__quadrature_point_t< _Tp >::__weight
```

Definition at line 63 of file specfun state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.27 $__gnu_cxx::_sincos_t < _Tp > Struct Template Reference$

```
#include <specfun_state.h>
```

Public Attributes

_Tp __cos_v_Tp __sin_v

9.27.1 Detailed Description

```
\label{template} \begin{split} & template {<} typename \_Tp {>} \\ & struct \_\_gnu\_cxx::\_sincos\_t {<} \_Tp {>} \end{split}
```

A type describing a cosine and a sine value. A return for sincos-type functions.

Definition at line 413 of file specfun state.h.

9.27.2 Member Data Documentation

```
9.27.2.1 __cos_v

template<typename _Tp>
_Tp __gnu_cxx::__sincos_t< _Tp >::__cos_v
```

Definition at line 416 of file specfun_state.h.

Referenced by std::__detail::__polar_pi(), and std::__detail::__sincos_pi().

```
9.27.2.2 __sin_v

template<typename _Tp>
_Tp __gnu_cxx::__sincos_t< _Tp >::__sin_v
```

Definition at line 415 of file specfun_state.h.

Referenced by std::__detail::__polar_pi(), and std::__detail::__sincos_pi().

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

```
{\tt 9.28 \quad \_gnu\_cxx::\_sph\_bessel\_t<\_Tn, \_Tx, \_Tp} > {\tt Struct \ Template \ Reference}
```

```
#include <specfun_state.h>
```

Public Member Functions

• _Tp __Wronskian () const

Return the Wronskian of this spherical Bessel function state.

Public Attributes

_Tp __j_deriv

The derivative of the spherical Bessel function of the first kind.

_Tp __j_value

The value of the spherical Bessel function of the first kind.

• _Tn __n_arg

The integral order of the spherical Bessel functions.

_Tp __n_deriv

The derivative of the spherical Bessel function of the second kind.

_Tp __n_value

The value of the spherical Bessel function of the second kind.

_Tx __x_arg

The argument of the spherical Bessel functions.

9.28.1 Detailed Description

```
template<typename _Tn, typename _Tx, typename _Tp> struct __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp>
```

Definition at line 648 of file specfun state.h.

9.28.2 Member Function Documentation

```
9.28.2.1 __Wronskian()
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this spherical Bessel function state.

Definition at line 669 of file specfun_state.h.

9.28.3 Member Data Documentation

```
9.28.3.1 __j_deriv
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__j_deriv
```

The derivative of the spherical Bessel function of the first kind.

Definition at line 660 of file specfun_state.h.

```
9.28.3.2 __j_value
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__j_value
```

The value of the spherical Bessel function of the first kind.

Definition at line 657 of file specfun_state.h.

```
9.28.3.3 __n_arg
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tn __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__n_arg
```

The integral order of the spherical Bessel functions.

Definition at line 651 of file specfun state.h.

```
9.28.3.4 __n_deriv
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__n_deriv
```

The derivative of the spherical Bessel function of the second kind.

Definition at line 666 of file specfun state.h.

9.28.3.5 __n_value

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__n_value
```

The value of the spherical Bessel function of the second kind.

Definition at line 663 of file specfun state.h.

9.28.3.6 __x_arg

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tx __gnu_cxx::__sph_bessel_t< _Tn, _Tx, _Tp >::__x_arg
```

The argument of the spherical Bessel functions.

Definition at line 654 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.29 $_gnu_cxx::_sph_hankel_t < _Tn, _Tx, _Tp > Struct Template Reference$

```
#include <specfun_state.h>
```

Public Member Functions

Tp Wronskian () const

Return the Wronskian of this cylindrical Hankel function state.

Public Attributes

• Tp h1 deriv

The derivative of the spherical Hankel function of the first kind.

_Tp __h1_value

The velue of the spherical Hankel function of the first kind.

_Tp __h2_deriv

The derivative of the spherical Hankel function of the second kind.

_Tp __h2_value

The velue of the spherical Hankel function of the second kind.

_Tn __n_arg

The integral order of the spherical Hankel functions.

• _Tx __x_arg

The argument of the spherical Hankel functions.

9.29.1 Detailed Description

```
\label{template} $$ \operatorname{typename\_Tn, typename\_Tp} $$ \operatorname{struct\_gnu\_cxx::\_sph\_hankel\_t<\_Tn,\_Tx,\_Tp} $$
```

_Tp pretty much has to be complex.

Definition at line 708 of file specfun_state.h.

9.29.2 Member Function Documentation

9.29.2.1 __Wronskian()

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this cylindrical Hankel function state.

Definition at line 729 of file specfun_state.h.

9.29.3 Member Data Documentation

```
9.29.3.1 __h1_deriv
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__h1_deriv
```

The derivative of the spherical Hankel function of the first kind.

Definition at line 720 of file specfun state.h.

```
9.29.3.2 __h1_value
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__h1_value
```

The velue of the spherical Hankel function of the first kind.

Definition at line 717 of file specfun_state.h.

9.29.3.3 __h2_deriv

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__h2_deriv
```

The derivative of the spherical Hankel function of the second kind.

Definition at line 726 of file specfun_state.h.

9.29.3.4 __h2_value

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__h2_value
```

The velue of the spherical Hankel function of the second kind.

Definition at line 723 of file specfun_state.h.

9.29.3.5 __n_arg

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tn __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__n_arg
```

The integral order of the spherical Hankel functions.

Definition at line 711 of file specfun_state.h.

```
9.29.3.6 __x_arg
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tx __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >::__x_arg
```

The argument of the spherical Hankel functions.

Definition at line 714 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.30 __gnu_cxx::_sph_mod_bessel_t< _Tn, _Tx, _Tp > Struct Template Reference

#include <specfun_state.h>

Public Member Functions

• _Tp __Wronskian () const

Return the Wronskian of this modified cylindrical Bessel function state.

Public Attributes

Tp i deriv

The derivative of the modified spherical Bessel function of the first kind.

Tp i value

The value of the modified spherical Bessel function of the first kind.

Tp k deriv

The derivative of the modified spherical Bessel function of the second kind.

_Tp __k_value

The value of the modified spherical Bessel function of the second kind.

_Tn __n_arg

The integral order of the modified spherical Bessel functions.

_Tx __x_arg

The argument of the modified spherical Bessel functions.

9.30.1 Detailed Description

```
template<typename _Tn, typename _Tx, typename _Tp> struct __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >
```

Definition at line 674 of file specfun state.h.

9.30.2 Member Function Documentation

```
9.30.2.1 __Wronskian()
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__Wronskian ( ) const [inline]
```

Return the Wronskian of this modified cylindrical Bessel function state.

Definition at line 700 of file specfun state.h.

9.30.3 Member Data Documentation

```
9.30.3.1 __i_deriv
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__i_deriv
```

The derivative of the modified spherical Bessel function of the first kind.

Definition at line 688 of file specfun_state.h.

```
9.30.3.2 __i_value
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__i_value
```

The value of the modified spherical Bessel function of the first kind.

Definition at line 684 of file specfun_state.h.

```
9.30.3.3 __k_deriv
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__k_deriv
```

The derivative of the modified spherical Bessel function of the second kind.

Definition at line 696 of file specfun_state.h.

```
9.30.3.4 k value
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tp __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__k_value
```

The value of the modified spherical Bessel function of the second kind.

Definition at line 692 of file specfun state.h.

```
9.30.3.5 __n_arg
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tn __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__n_arg
```

The integral order of the modified spherical Bessel functions.

Definition at line 680 of file specfun state.h.

```
9.30.3.6 __x_arg
```

```
template<typename _Tn , typename _Tx , typename _Tp >
_Tx __gnu_cxx::__sph_mod_bessel_t< _Tn, _Tx, _Tp >::__x_arg
```

The argument of the modified spherical Bessel functions.

Definition at line 677 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.31 __gnu_cxx::__stirling_1_t< _Tp > Struct Template Reference

A structure for Stirling numbers of the first kind.

```
#include <specfun_state.h>
```

Public Types

- using const iterator = typename std::vector< Tp >::const iterator
- using iterator = typename std::vector< _Tp >::iterator

Public Member Functions

- · iterator begin () noexcept
- · const_iterator begin () const noexcept
- · unsigned int degree () const noexcept
- iterator end () noexcept
- · const iterator end () const noexcept
- template<typename_Up>
 auto operator() (_Up __x) const noexcept
- _Tp operator[] (unsigned int __k) const noexcept

Public Attributes

```
• std::vector< _Tp > __sigma
```

9.31.1 Detailed Description

```
\label{template} \begin{split} & template {<} typename \_Tp {>} \\ & struct \_gnu\_cxx::\_stirling\_1\_t {<} \_Tp {>} \end{split}
```

A structure for Stirling numbers of the first kind.

Definition at line 811 of file specfun_state.h.

9.31.2 Member Typedef Documentation

9.31.2.1 const_iterator

```
template<typename _Tp >
using __gnu_cxx::__stirling_1_t< _Tp >::const_iterator = typename std::vector<_Tp>::const_←
iterator
```

Definition at line 814 of file specfun state.h.

9.31.2.2 iterator

```
template<typename _Tp >
using __gnu_cxx::__stirling_1_t< _Tp >::iterator = typename std::vector<_Tp>::iterator
```

Definition at line 813 of file specfun_state.h.

9.31.3 Member Function Documentation

```
9.31.3.1 begin() [1/2]

template<typename _Tp >
iterator __gnu_cxx::__stirling_1_t< _Tp >::begin ( ) [inline], [noexcept]
```

Definition at line 837 of file specfun state.h.

```
9.31.3.2 begin() [2/2]

template<typename _Tp >
const_iterator __gnu_cxx::__stirling_1_t< _Tp >::begin ( ) const [inline], [noexcept]
```

Definition at line 845 of file specfun_state.h.

9.31.3.3 degree()

```
template<typename _Tp >
unsigned int __gnu_cxx::__stirling_1_t< _Tp >::degree ( ) const [inline], [noexcept]
```

Definition at line 819 of file specfun state.h.

```
9.31.3.4 end() [1/2]

template<typename _Tp >
iterator __gnu_cxx::__stirling_1_t< _Tp >::end ( ) [inline], [noexcept]
```

Definition at line 841 of file specfun_state.h.

```
9.31.3.5 end() [2/2]

template<typename _Tp >
const_iterator __gnu_cxx::__stirling_1_t< _Tp >::end ( ) const [inline], [noexcept]
```

Definition at line 849 of file specfun_state.h.

9.31.3.6 operator()()

Definition at line 828 of file specfun_state.h.

9.31.3.7 operator[]()

Definition at line 823 of file specfun_state.h.

9.31.4 Member Data Documentation

```
9.31.4.1 sigma
```

```
template<typename _Tp >
std::vector<_Tp> __gnu_cxx::__stirling_1_t< _Tp >::__sigma
```

Definition at line 816 of file specfun_state.h.

The documentation for this struct was generated from the following file:

• include/bits/specfun_state.h

9.32 __gnu_cxx::__stirling_2_t< _Tp > Struct Template Reference

A structure for Stirling numbers of the first kind.

```
#include <specfun_state.h>
```

Public Types

- using const_iterator = typename std::vector < _Tp >::const_iterator
- using iterator = typename std::vector< _Tp >::iterator

Public Member Functions

- iterator begin () noexcept
- · const iterator begin () const noexcept
- unsigned int degree () const noexcept
- iterator end () noexcept
- const_iterator end () const noexcept
- template<typename _Up >
 auto operator() (_Up __x) const noexcept

Return the Bell polynomial.

_Tp operator[] (unsigned int __k) const noexcept

Public Attributes

```
std::vector< _Tp > _S
```

9.32.1 Detailed Description

```
\label{template} \begin{array}{l} \text{template} \! < \! \text{typename} \, \_\text{Tp} \! > \\ \text{struct} \, \_\text{gnu\_cxx::} \, \_\text{stirling} \_\text{2\_t} \! < \, \_\text{Tp} > \\ \end{array}
```

A structure for Stirling numbers of the first kind.

Definition at line 857 of file specfun_state.h.

9.32.2 Member Typedef Documentation

9.32.2.1 const_iterator

```
template<typename _Tp >
using __gnu_cxx::__stirling_2_t< _Tp >::const_iterator = typename std::vector<_Tp>::const_←
iterator
```

Definition at line 860 of file specfun state.h.

9.32.2.2 iterator

```
template<typename _Tp >
using __gnu_cxx::__stirling_2_t< _Tp >::iterator = typename std::vector<_Tp>::iterator
```

Definition at line 859 of file specfun_state.h.

9.32.3 Member Function Documentation

```
9.32.3.1 begin() [1/2]

template<typename _Tp >
iterator __gnu_cxx::__stirling_2_t< _Tp >::begin ( ) [inline], [noexcept]
```

Definition at line 884 of file specfun state.h.

```
9.32.3.2 begin() [2/2]

template<typename _Tp >
const_iterator __gnu_cxx::__stirling_2_t< _Tp >::begin ( ) const [inline], [noexcept]
```

Definition at line 892 of file specfun_state.h.

9.32.3.3 degree()

```
template<typename _Tp >
unsigned int __gnu_cxx::__stirling_2_t< _Tp >::degree ( ) const [inline], [noexcept]
```

Definition at line 865 of file specfun_state.h.

```
9.32.3.4 end() [1/2]

template<typename _Tp >
iterator __gnu_cxx::__stirling_2_t< _Tp >::end ( ) [inline], [noexcept]
```

Definition at line 888 of file specfun_state.h.

```
9.32.3.5 end() [2/2]

template<typename _Tp >
const_iterator __gnu_cxx::__stirling_2_t< _Tp >::end ( ) const [inline], [noexcept]
```

Definition at line 896 of file specfun_state.h.

9.32.3.6 operator()()

Return the Bell polynomial.

Definition at line 875 of file specfun_state.h.

9.32.3.7 operator[]()

Definition at line 869 of file specfun_state.h.

9.32.4 Member Data Documentation

9.32.4.1 _S

```
template<typename _Tp >
std::vector<_Tp> __gnu_cxx::__stirling_2_t< _Tp >::_S
```

Definition at line 862 of file specfun_state.h.

The documentation for this struct was generated from the following file:

include/bits/specfun state.h

9.33 std::__detail::__gamma_lanczos_data< _Tp > Struct Template Reference

9.33.1 Detailed Description

```
template<typename _Tp>
struct std::__detail::__gamma_lanczos__data< _Tp >
```

A struct for Lanczos algorithm Chebyshev arrays of coefficients.

Definition at line 2018 of file sf gamma.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf_gamma.tcc

9.34 std::__detail::__gamma_lanczos_data< double > Struct Template Reference

Static Public Attributes

- static constexpr std::array< double, 10 > _S_cheby
- static constexpr double S g = 9.5

9.34.1 Detailed Description

```
\label{lem:condition} \begin{split} & \mathsf{template} <> \\ & \mathsf{struct} \ \mathsf{std::\_detail::\_gamma\_lanczos\_data} < \ \mathsf{double} > \end{split}
```

Definition at line 2040 of file sf_gamma.tcc.

9.34.2 Member Data Documentation

9.34.2.1 _S_cheby

```
constexpr std::array<double, 10> std::__detail::__gamma_lanczos_data< double >::_S_cheby [static]
```

Initial value:

```
{
    5.557569219204146e+03,
    -4.248114953727554e+03,
    1.881719608233706e+03,
    -4.705537221412237e+02,
    6.325224688788239e+01,
    -4.206901076213398e+00,
    1.202512485324405e-01,
    -1.141081476816908e-03,
    2.055079676210880e-06,
    1.280568540096283e-09,
```

Definition at line 2045 of file sf_gamma.tcc.

```
9.34.2.2 _S_g
```

```
constexpr double std::__detail::__gamma_lanczos_data< double >::_S_g = 9.5 [static]
```

Definition at line 2042 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_gamma.tcc

9.35 std::__detail::__gamma_lanczos_data< float > Struct Template Reference

Static Public Attributes

- static constexpr std::array< float, 7 > _S_cheby
- static constexpr float _S_g = 6.5F

9.35.1 Detailed Description

```
\label{lem:cos_data} \begin{tabular}{ll} template <> \\ struct std::\_detail::\_gamma\_lanczos\_data < float > \\ \end{tabular}
```

Definition at line 2023 of file sf_gamma.tcc.

9.35.2 Member Data Documentation

```
9.35.2.1 _S_cheby
```

```
constexpr std::array<float, 7> std::__detail::__gamma_lanczos_data< float >::_S_cheby [static]
```

Initial value:

```
{
    3.307139e+02F,
    -2.255998e+02F,
    6.989520e+01F,
    -9.058929e+00F,
    4.110107e-01F,
    -4.150391e-03F,
    3.417969e-03F,
}
```

Definition at line 2028 of file sf_gamma.tcc.

```
9.35.2.2 _S_g
```

```
constexpr float std::__detail::__gamma_lanczos_data< float >::_S_g = 6.5F [static]
```

Definition at line 2025 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf gamma.tcc

9.36 std::__detail::__gamma_lanczos_data< long double > Struct Template Reference

Static Public Attributes

- static constexpr std::array< long double, 11 > _S_cheby
- static constexpr long double _S_g = 10.5L

9.36.1 Detailed Description

```
\label{lem:condition} \begin{tabular}{ll} template <> \\ struct std::\_detail::\_gamma\_lanczos\_data < long double > \\ \end{tabular}
```

Definition at line 2060 of file sf_gamma.tcc.

9.36.2 Member Data Documentation

```
9.36.2.1 _S_cheby
```

Initial value:

```
{
    1.440399692024250728e+04L,
    -1.128006201837065341e+04L,
    5.384108670160999829e+03L,
    -1.536234184127325861e+03L,
    2.528551924697309561e+02L,
    -2.265389090278717887e+01L,
    1.006663776178612579e+00L,
    -1.900805731354182626e-02L,
    1.150508317664389324e-04L,
    -1.208915136885480024e-07L,
    -1.518856151960790157e-10L,
```

Definition at line 2065 of file sf_gamma.tcc.

```
9.36.2.2 _S_g
```

```
\verb|constexpr| long| double | \verb|std::__detail::__gamma_lanczos_data| < long| double >::_S_g = 10.5L | [static]| \\
```

Definition at line 2062 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf_gamma.tcc

9.37 std::__detail::__gamma_spouge_data< _Tp > Struct Template Reference

9.37.1 Detailed Description

```
template<typename _Tp> struct std::__detail::__gamma_spouge_data< _Tp >
```

A struct for Spouge algorithm Chebyshev arrays of coefficients.

Definition at line 1792 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_gamma.tcc

9.38 std::__detail::__gamma_spouge_data< double > Struct Template Reference

Static Public Attributes

static constexpr std::array< double, 18 > _S_cheby

9.38.1 Detailed Description

```
\label{lem:continuous} \mbox{template}<> \\ \mbox{struct std::\_detail::\_gamma\_spouge\_data} < \mbox{double}>
```

Definition at line 1813 of file sf_gamma.tcc.

9.38.2 Member Data Documentation

9.38.2.1 _S_cheby

```
constexpr std::array<double, 18> std::__detail::__gamma_spouge_data< double >::_S_cheby [static]
```

Initial value:

```
2.785716565770350e+08,
-1.693088166941517e+09,
4.549688586500031e+09,
-7.121728036151557e+09,
7.202572947273274e+09,
-4.935548868770376e+09,
 2.338187776097503e+09,
-7.678102458920741e+08,
1.727524819329867e+08,
-2.595321377008346e+07,
 2.494811203993971e+06,
-1.437252641338402e+05,
 4.490767356961276e+03,
-6.505596924745029e+01,
 3.362323142416327e-01,
-3.817361443986454e-04,
 3.273137866873352e-08,
-7.642333165976788e-15,
```

Definition at line 1817 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_gamma.tcc

9.39 std::__detail::__gamma_spouge_data < float > Struct Template Reference

Static Public Attributes

static constexpr std::array< float, 7 > _S_cheby

9.39.1 Detailed Description

```
\label{lem:continuous} \begin{tabular}{ll} template <> \\ struct std::\_detail::\_gamma\_spouge\_data < float > \\ \end{tabular}
```

Definition at line 1797 of file sf_gamma.tcc.

9.39.2 Member Data Documentation

9.39.2.1 _S_cheby

```
constexpr std::array<float, 7> std::__detail::__gamma_spouge_data< float >::_S_cheby [static]
```

Initial value:

```
{
	2.901419e+03F,
	-5.929168e+03F,
	4.148274e+03F,
	-1.164761e+03F,
	1.174135e+02F,
	-2.786588e+00F,
	3.775392e-03F,
```

Definition at line 1801 of file sf_gamma.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_gamma.tcc

9.40 std::__detail::__gamma_spouge_data< long double > Struct Template Reference

Static Public Attributes

static constexpr std::array< long double, 22 > _S_cheby

9.40.1 Detailed Description

```
template<>> struct std::__detail::__gamma_spouge_data< long double >
```

Definition at line 1840 of file sf_gamma.tcc.

9.40.2 Member Data Documentation

9.40.2.1 _S_cheby

constexpr std::array<long double, 22> std::__detail::__gamma_spouge_data< long double >::_S_ \leftrightarrow cheby [static]

Initial value:

```
1.681473171108908244e+10L,
-1.269150315503303974e+11L,
 4.339449429013039995e+11L,
-8.893680202692714895e+11L,
 1.218472425867950986e+12L,
-1.178403473259353616e+12L,
 8.282455311246278274e+11L,
-4.292112878930625978e+11L,
 1.646988347276488710e+11L,
-4.661514921989111004e+10L,
 9.619972564515443397e+09L,
-1.419382551781042824e+09L,
 1.454145470816386107e+08L,
-9.923020719435758179e+06L,
 4.253557563919127284e+05L,
-1.053371059784341875e+04L,
 1.332425479537961437e+02L,
-7.118343974029489132e-01L,
 1.172051640057979518e-03L,
-3.323940885824119041e-07L,
 4.503801674404338524e-12L,
-5.320477002211632680e-20L,
```

Definition at line 1844 of file sf gamma.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_gamma.tcc

9.41 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 > Struct Template Reference

 $Collaboration\ diagram\ for\ std::__detail::__jacobi_lattice_t < _Tp_Omega1, _Tp_Omega3 >:$

Classes

```
 struct __arg_t struct __tau_t
```

Public Types

```
    using _Cmplx = std::complex < _Real >
    using _Real = __gnu_cxx::fp_promote_t < _Real_Omega1, _Real_Omega3 >
    using _Real_Omega1 = __num_traits_t < _Tp_Omega1 >
    using _Real_Omega3 = __num_traits_t < _Tp_Omega3 >
    using _Tp_Nome = std::conditional_t < __gnu_cxx::is_complex_v < _Tp_Omega1 > &&__gnu_cxx::is_ ⇔ complex_v < _Tp_Omega3 >, _Cmplx, _Real >
```

Public Member Functions

```
    __jacobi_lattice_t (const _Tp_Omega1 &__omega1, const _Tp_Omega3 &__omega3)
        Construct the lattice from two complex lattice frequencies.
    __jacobi_lattice_t (const __tau_t &__tau)
        Construct the lattice from a single complex lattice parameter or half period ratio.
    __jacobi_lattice_t (_Tp_Nome __q)
        Construct the lattice from a single scalar elliptic nome.
    _Tp_Nome __ellnome () const
    _Tp_Omega1 __omega_1 () const
        Return the first lattice frequency.
```

• _Cmplx __omega_2 () const

Return the second lattice frequency.

_Tp_Omega3 __omega_3 () const

Return the third lattice frequency.

- __arg_t __reduce (const _Cmplx &__z) const
- __tau_t __tau () const

Return the acalar lattice parameter or half period ratio.

Public Attributes

```
_Tp_Omega1 _M_omega_1_Tp_Omega3 _M_omega_3
```

Static Public Attributes

static constexpr auto _S_pi = __gnu_cxx::__const_pi<_Real>()

9.41.1 Detailed Description

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>> struct std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >
```

A struct representing the Jacobi and Weierstrass lattice. The two types for the frequencies and the subsequent type calculus allow us to treat the rectangulr lattice (real nome, pure imaginary lattice parameter) specially.

Definition at line 470 of file sf theta.tcc.

9.41.2 Member Typedef Documentation

```
9.41.2.1 _Cmplx
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
using std::__detail::_jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_Cmplx = std::complex<_Real>
```

Definition at line 478 of file sf_theta.tcc.

```
9.41.2.2 _Real
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
using std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_Real = __gnu_cxx::fp_promote
_t<_Real_Omega1, _Real_Omega3>
```

Definition at line 477 of file sf_theta.tcc.

9.41.2.3 _Real_Omega1

```
\label{template} $$ \operatorname{template} \simeq \operatorname{Tp_Omega1}, \ \operatorname{typename} = \operatorname{Tp_Omega3} = \operatorname{std}::\operatorname{complex} < \operatorname{Tp_Omega1}> $$ using $\operatorname{std}::\_\operatorname{detail}::\_\operatorname{jacobi\_lattice\_t}< \operatorname{Tp_Omega1}, \ \operatorname{Tp_Omega3}>::_\operatorname{Real_Omega1} = \operatorname{\__num\_traits\_} \leftrightarrow \operatorname{t<\_Tp_Omega1}> $$
```

Definition at line 475 of file sf_theta.tcc.

9.41.2.4 _Real_Omega3

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
using std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_Real_Omega3 = __num_traits_\(\cup \)
t<_Tp_Omega3>
```

Definition at line 476 of file sf_theta.tcc.

9.41.2.5 _Tp_Nome

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
using std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_Tp_Nome = std::conditional_←
t<__gnu_cxx::is_complex_v<_Tp_Omega1> && __gnu_cxx::is_complex_v<_Tp_Omega3>, _Cmplx, _Real>
```

Definition at line 481 of file sf_theta.tcc.

9.41.3 Constructor & Destructor Documentation

Construct the lattice from two complex lattice frequencies.

Definition at line 508 of file sf_theta.tcc.

Construct the lattice from a single complex lattice parameter or half period ratio.

Definition at line 530 of file sf theta.tcc.

```
9.41.3.3 __jacobi_lattice_t() [3/3]
```

Construct the lattice from a single scalar elliptic nome.

Definition at line 549 of file sf theta.tcc.

9.41.4 Member Function Documentation

9.41.4.1 __ellnome()

```
template<typename _Tp_Omega1 , typename _Tp_Omega3 >
   __jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_Tp_Nome std::__detail::__jacobi_lattice_t< _Tp_\top 
Omega1, _Tp_Omega3 >::__ellnome ( ) const
```

Return the elliptic nome corresponding to the lattice parameter.

Definition at line 593 of file sf_theta.tcc.

Referenced by std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::__jacobi_theta_0_t(), and std::__detail::__jacobi_ \leftarrow lattice_t< _Tp1, _Tp3 >::__omega_3().

```
9.41.4.2 __omega_1()
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
    _Tp_Omega1 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__omega_1 ( ) const [inline]
```

Return the first lattice frequency.

Definition at line 564 of file sf theta.tcc.

Referenced by $std::_detail::_jacobi_theta_0_t< _Tp1, _Tp3 >::_jacobi_theta_0_t(), and <math>std::_detail::_\leftrightarrow weierstrass_roots_t< _Tp1, _Tp3 >::_weierstrass_roots_t().$

```
9.41.4.3 __omega_2()
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
_Cmplx std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__omega_2 ( ) const [inline]
```

Return the second lattice frequency.

Definition at line 569 of file sf theta.tcc.

Referenced by std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::__jacobi_theta_0_t().

```
9.41.4.4 omega 3()
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
   _Tp_Omega3 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__omega_3 () const [inline]
```

Return the third lattice frequency.

Definition at line 574 of file sf theta.tcc.

Referenced by std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::__jacobi_theta_0_t().

9.41.4.5 __reduce()

Reduce the argument to the fundamental lattice parallelogram $(0, 2\pi, 2\pi(1+\tau), 2\pi\tau)$. This is sort of like a 2D lattice remquo.

Parameters

```
\begin{array}{|c|c|c|c|} \hline \_ \leftarrow & \text{The argument to be reduced.} \\ \hline \_ z & & & & \\ \hline \end{array}
```

Returns

A struct containing the argument reduced to the interior of the fundamental parallelogram and two integers indicating the number of periods in the 'real' and 'tau' directions.

Definition at line 616 of file sf theta.tcc.

Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__ellnome(), std::__detail::__jacobi_theta_1(), std:: \leftarrow __detail::__jacobi_theta_2(), std::__detail::__jacobi_theta_3(), std::__detail::__jacobi_theta_4(), and std::__detail::__ \leftarrow jacobi_lattice_t< _Tp1, _Tp3 >::__omega_3().

9.41.4.6 __tau()

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
__tau_t std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__tau ( ) const [inline]
```

Return the acalar lattice parameter or half period ratio.

Definition at line 559 of file sf_theta.tcc.

Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__ellnome(), std::__detail::__jacobi_lattice_t< _
Tp1, _Tp3 >::__jacobi_lattice_t(), std::__detail::__jacobi_theta_1(), std::__detail::__jacobi_theta_2(), std::__detail::__jacobi_theta_2(), std::__detail::__jacobi_theta_2().

9.41.5 Member Data Documentation

9.41.5.1 M_omega_1

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
    _Tp_Omega1 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_M_omega_1
```

Definition at line 584 of file sf_theta.tcc.

Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__jacobi_lattice_t(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__omega_1(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__omega_2(), and std::__detail::__ \leftrightarrow jacobi_lattice_t< _Tp1, _Tp3 >::__tau().

9.41.5.2 _M_omega_3

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
    _Tp_Omega3 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_M_omega_3
```

Definition at line 585 of file sf_theta.tcc.

Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__jacobi_lattice_t(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__omega_2(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__omega_3(), and std::__detail::__ \leftarrow jacobi_lattice_t< _Tp1, _Tp3 >::__tau().

```
9.41.5.3 _S_pi
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
constexpr auto std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_S_pi = __gnu_cxx::
    __const_pi<_Real>() [static]
```

Definition at line 583 of file sf_theta.tcc.

Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__ellnome(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__jacobi_lattice_t(), std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::__jacobi_theta_0_t(), std::__detail:: \rightarrow _ jacobi_theta_1(), std::__detail::__jacobi_theta_2(), std::__detail::__jacobi_theta_3(), std::__detail::__jacobi_theta_ \leftarrow 4(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__reduce(), and std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__weierstrass_roots_t().

The documentation for this struct was generated from the following file:

• include/bits/sf_theta.tcc

9.42 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__arg_t Struct Reference

Public Attributes

- int ___m
- int n
- Cmplx z

9.42.1 Detailed Description

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>> struct std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__arg_t
```

A struct representing a complex argument reduced to the 'central' lattice cell.

Definition at line 500 of file sf theta.tcc.

9.42.2 Member Data Documentation

```
9.42.2.1 __m
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
int std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__arg_t::__m
```

Definition at line 502 of file sf_theta.tcc.

```
9.42.2.2 __n
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
int std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__arg_t::__n
```

Definition at line 503 of file sf_theta.tcc.

```
9.42.2.3 __z
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
_Cmplx std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__arg_t::__z
```

Definition at line 504 of file sf_theta.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf theta.tcc

9.43 std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__tau_t Struct Reference

Public Member Functions

```
__tau_t (_Cmplx __tau)
```

Public Attributes

_Cmplx __val

9.43.1 Detailed Description

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>> struct std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__tau_t
```

A struct representing a complex scalar lattice parameter or half period ratio.

Definition at line 487 of file sf theta.tcc.

9.43.2 Constructor & Destructor Documentation

```
9.43.2.1 __tau_t()
```

Definition at line 491 of file sf theta.tcc.

Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__jacobi_lattice_t(), and std::__detail::__jacobi_← lattice_t< _Tp1, _Tp3 >::__tau().

9.43.3 Member Data Documentation

```
9.43.3.1 __val
```

```
template<typename _Tp_Omega1, typename _Tp_Omega3 = std::complex<_Tp_Omega1>>
_Cmplx std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__tau_t::__val
```

Definition at line 489 of file sf_theta.tcc.

```
Referenced by std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__ellnome(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__ellnome(), std::__detail::__jacobi_lattice_t< _Tp1, _Tp3 >::__reduce().
```

The documentation for this struct was generated from the following file:

· include/bits/sf theta.tcc

9.44 std::__detail::__jacobi_theta_0_t < _Tp1, _Tp3 > Struct Template Reference

Collaboration diagram for std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >:

Public Types

- using _Cmplx = std::complex < _Real >
- using _Real = __num_traits_t< _Type >
- using _Type = typename ___jacobi_lattice_t< _Tp1, _Tp3 >::_Tp_Nome

Public Member Functions

- __jacobi_theta_0_t (const __jacobi_lattice_t< _Tp1, _Tp3 > &__lattice)
- _Type dedekind_eta () const

Public Attributes

- _Type eta_1
- _Cmplx eta_2
- _Cmplx eta_3
- _Type th1p
- _Type th1ppp
- _Type th2
- _Type th2pp
- _Type th3
- _Type th3pp
- _Type th4
- _Type th4pp

9.44.1 Detailed Description

```
\label{template} $$ \textbf{typename}_{p1}, \textbf{typename}_{p3} = \textbf{std}::\textbf{complex} < \textbf{Tp1} >> $$ \textbf{struct} \ \textbf{std}::\underline{\textbf{detail}}:\underline{\textbf{jacobi}}_{t} \textbf{theta}_{0} < \textbf{Tp1}, \textbf{Tp3} > $$ $$ \textbf{Tp1}, \textbf{Tp3} >> $$ \textbf{Tp1}, \textbf{Tp3} > $$ \textbf{Tp1}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp2}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp2}, \textbf{Tp1}, \textbf{Tp2}, \textbf{Tp
```

A struct for the non-zero theta functions and their derivatives at zero argument.

Definition at line 643 of file sf theta.tcc.

9.44.2 Member Typedef Documentation

9.44.2.1 _Cmplx

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
using std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::_Cmplx = std::complex<_Real>
```

Definition at line 649 of file sf_theta.tcc.

9.44.2.2 _Real

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
using std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::_Real = __num_traits_t<_Type>
```

Definition at line 648 of file sf_theta.tcc.

9.44.2.3 _Type

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
using std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::_Type = typename __jacobi_lattice_t<_Tp1,
_Tp3>::_Tp_Nome
```

Definition at line 647 of file sf theta.tcc.

9.44.3 Constructor & Destructor Documentation

9.44.3.1 __jacobi_theta_0_t()

Return a struct of the Jacobi theta functions and up to three non-zero derivatives evaluated at zero argument.

Definition at line 674 of file sf theta.tcc.

```
References std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__ellnome(), std::__detail::__jacobi\leftarrow _lattice_t< _Tp_Omega1, _Tp_Omega3 >::__omega_1(), std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_\leftarrow Omega3 >::__omega_2(), std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__omega_3(), and std \leftarrow ::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::_S_pi.
```

Referenced by std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::dedekind_eta().

9.44.4 Member Function Documentation

9.44.4.1 dedekind_eta()

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::dedekind_eta ( ) const [inline]
```

Definition at line 664 of file sf_theta.tcc.

References std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::__jacobi_theta_0_t().

9.44.5 Member Data Documentation

```
9.44.5.1 eta_1
```

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::eta_1
```

Definition at line 659 of file sf_theta.tcc.

9.44.5.2 eta_2

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Cmplx std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::eta_2
```

Definition at line 660 of file sf_theta.tcc.

9.44.5.3 eta 3

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Cmplx std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::eta_3
```

Definition at line 661 of file sf_theta.tcc.

9.44.5.4 th1p

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::thlp
```

Definition at line 651 of file sf_theta.tcc.

9.44.5.5 th1ppp

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th1ppp
```

Definition at line 652 of file sf theta.tcc.

9.44.5.6 th2

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th2
```

Definition at line 653 of file sf_theta.tcc.

Referenced by $std::_detail::_jacobi_theta_2()$, and $std::_detail::_weierstrass_roots_t< _Tp1, _Tp3 >::_ \leftrightarrow weierstrass_roots_t()$.

9.44.5.7 th2pp

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th2pp
```

Definition at line 654 of file sf theta.tcc.

9.44.5.8 th3

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th3
```

Definition at line 655 of file sf theta.tcc.

Referenced by std:: detail:: jacobi theta 3().

9.44.5.9 th3pp

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th3pp
```

Definition at line 656 of file sf_theta.tcc.

9.44.5.10 th4

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th4
```

Definition at line 657 of file sf theta.tcc.

Referenced by std::__detail::__jacobi_theta_4(), and std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__ \leftarrow weierstrass_roots_t().

9.44.5.11 th4pp

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th4pp
```

Definition at line 658 of file sf_theta.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf theta.tcc

9.45 std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 > Struct Template Reference

Collaboration diagram for std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >:

Public Types

- using _Cmplx = std::complex < _Real >
- using _Real = __num_traits_t< _Type >
- using Type = typename jacobi lattice t< Tp1, Tp3 >:: Tp Nome

Public Member Functions

- __weierstrass_invariants_t (const __jacobi_lattice_t< _Tp1, _Tp3 > &)
- _Type __delta () const

Return the discriminant $\Delta = g_2^3 - 27g_3^2$.

• _Type __klein_j () const

Return Klein's invariant $J = 1738g_2^3/(g_2^3 - 27g_3^2)$.

Public Attributes

- Type g 2
- _Type __g_3

9.45.1 Detailed Description

 $\label{template} $$ \operatorname{template} \to \operatorname{Tp1}, \ typename \ _Tp3> $$ \operatorname{struct} \ std::_ detail::_ weierstrass_invariants_t < \ _Tp1, \ _Tp3> $$$

A struct of the Weierstrass elliptic function invariants.

$$g_2 = 2(e_1e_2 + e_2e_3 + e_3e_1)$$
$$g_3 = 4(e_1e_2e_3)$$

Definition at line 827 of file sf theta.tcc.

9.45.2 Member Typedef Documentation

9.45.2.1 Cmplx

```
template<typename _Tp1 , typename _Tp3 >
using std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::_Cmplx = std::complex<_Real>
```

Definition at line 831 of file sf theta.tcc.

9.45.2.2 Real

```
template<typename _Tp1 , typename _Tp3 >
using std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::_Real = __num_traits_t<_Type>
```

Definition at line 830 of file sf theta.tcc.

9.45.2.3 _Type

```
template<typename _Tp1 , typename _Tp3 >
using std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::_Type = typename __jacobi_lattice←
_t<_Tp1, _Tp3>::_Tp_Nome
```

Definition at line 829 of file sf_theta.tcc.

9.45.3 Constructor & Destructor Documentation

9.45.3.1 __weierstrass_invariants_t()

Constructor for the Weierstrass invariants.

$$g_2 = 2(e_1e_2 + e_2e_3 + e_3e_1)$$
$$g_3 = 4(e_1e_2e_3)$$

Definition at line 865 of file sf_theta.tcc.

```
References std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__e1.
```

Referenced by std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::__klein_j().

9.45.4 Member Function Documentation

Definition at line 839 of file sf_theta.tcc.

```
9.45.4.2 __klein_j()

template<typename _Tp1 , typename _Tp3 >
_Type std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::__klein_j ( ) const [inline]
```

Return Klein's invariant $J = 1738g_2^3/(g_2^3 - 27g_3^2)$.

Definition at line 847 of file sf theta.tcc.

References std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::__weierstrass_invariants_t().

9.45.5 Member Data Documentation

```
9.45.5.1 __g_2

template<typename _Tp1 , typename _Tp3 >
_Type std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::__g_2
```

Definition at line 833 of file sf_theta.tcc.

```
9.45.5.2 __g_3

template<typename _Tp1 , typename _Tp3 >
_Type std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::__g_3
```

Definition at line 833 of file sf_theta.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf theta.tcc

9.46 std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 > Struct Template Reference

Collaboration diagram for std:: __detail:: __weierstrass_roots_t< _Tp1, _Tp3 >:

Public Types

```
using _Cmplx = std::complex < _Real >
```

- using _Real = __num_traits_t< _Type >
- using _Type = typename __jacobi_lattice_t< _Tp1, _Tp3 >::_Tp_Nome

Public Member Functions

```
• __weierstrass_roots_t (const __jacobi_lattice_t< _Tp1, _Tp3 > &__lattice)
```

- __weierstrass_roots_t (const __jacobi_theta_0_t< _Tp1, _Tp3 > &__theta0, _Tp1 __omega1)
- _Type __delta () const

Return the discriminant $\Delta = 16(e_2 - e_3)^2(e_3 - e_1)^2(e_1 - e_2)^2$.

Public Attributes

- _Type __e1
- _Type ___e2
- _Type ___e3

9.46.1 Detailed Description

 $\label{template} $$ \operatorname{typename}_{p1}, \operatorname{typename}_{p3} = \operatorname{std}::\operatorname{complex}_{p1}>> \operatorname{struct}_{p1}, \operatorname{detail}::\underline{\qquad} \operatorname{detail}::\underline{\qquad} \operatorname{detail}:\underline{\qquad} \operatorname{typename}_{p1}, \operatorname{typename}_{p2}>> \operatorname{typename}_{p2}.$

A struct of the Weierstrass elliptic function roots.

$$e_1 = \frac{\pi^2}{12\omega_1^2}(\theta_2^4(q,0) + 2\theta_4^4(q,0))$$

$$e_2 = \frac{\pi^2}{12\omega_1^2} (\theta_2^4(q,0) - \theta_4^4(q,0))$$

$$e_3 = \frac{\pi^2}{12\omega_1^2} (-2\theta_2^4(q,0) - \theta_4^4(q,0))$$

Note that $e_1 + e_2 + e_3 = 0$

Definition at line 747 of file sf theta.tcc.

9.46.2 Member Typedef Documentation

9.46.2.1 Cmplx

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
using std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::_Cmplx = std::complex<_Real>
```

Definition at line 751 of file sf_theta.tcc.

9.46.2.2 _Real

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
using std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::_Real = __num_traits_t<_Type>
```

Definition at line 750 of file sf_theta.tcc.

9.46.2.3 _Type

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>> using std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::_Type = typename __jacobi_lattice_t<_←
Tp1, _Tp3>::_Tp_Nome
```

Definition at line 749 of file sf theta.tcc.

9.46.3 Constructor & Destructor Documentation

Constructor for the Weierstrass roots.

Parameters

lattice	The Jacobi lattice.
---------	---------------------

Definition at line 781 of file sf_theta.tcc.

Referenced by std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__delta().

```
9.46.3.2 __weierstrass_roots_t() [2/2]
```

Constructor for the Weierstrass roots.

Parameters

theta0	Exponential theta functions of argument 0.
omega↔	The first lattice parameter.

Definition at line 800 of file sf theta.tcc.

References std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__omega_1(), std::__detail::__jacobi_ \leftarrow lattice_t< _Tp_Omega1, _Tp_Omega3 >::_S_pi, std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th2, and std::__ \leftarrow detail::__jacobi_theta_0_t< _Tp1, _Tp3 >::th4.

9.46.4 Member Function Documentation

```
9.46.4.1 __delta()
```

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__delta ( ) const [inline]
```

Return the discriminant $\Delta = 16(e_2 - e_3)^2(e_3 - e_1)^2(e_1 - e_2)^2$.

Definition at line 764 of file sf_theta.tcc.

References std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__weierstrass_roots_t().

9.46.5 Member Data Documentation

```
9.46.5.1 __e1
```

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__e1
```

Definition at line 753 of file sf_theta.tcc.

Referenced by std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >::__weierstrass_invariants_t().

```
9.46.5.2 __e2
```

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__e2
```

Definition at line 753 of file sf theta.tcc.

```
9.46.5.3 __e3
```

```
template<typename _Tp1, typename _Tp3 = std::complex<_Tp1>>
_Type std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >::__e3
```

Definition at line 753 of file sf theta.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf theta.tcc

9.47 std::__detail::_Airy< _Tp > Class Template Reference

Public Types

```
using scalar_type = __num_traits_t< value_type >
```

• using value_type = _Tp

Public Member Functions

- constexpr_Airy ()=default
- Airy (const Airy &)=default
- _Airy (_Airy &&)=default
- constexpr _AiryState< value_type > operator() (value_type __y) const

Public Attributes

- scalar_type inner_radius {_Airy_default_radii<scalar_type>::inner_radius}
- scalar_type outer_radius {_Airy_default_radii<scalar_type>::outer_radius}

9.47.1 Detailed Description

```
template<typename _Tp> class std::__detail::_Airy< _Tp >
```

Class to manage the asymptotic expansions for Airy functions. The parameters describing the various regions are adjustable.

Definition at line 2504 of file sf_airy.tcc.

9.47.2 Member Typedef Documentation

9.47.2.1 scalar_type

```
template<typename _Tp>
using std::__detail::_Airy< _Tp >::scalar_type = __num_traits_t<value_type>
```

Definition at line 2509 of file sf_airy.tcc.

9.47.2.2 value_type

```
template<typename _Tp>
using std::__detail::_Airy< _Tp >::value_type = _Tp
```

Definition at line 2508 of file sf_airy.tcc.

9.47.3 Constructor & Destructor Documentation

9.47.4 Member Function Documentation

9.47.4.1 operator()()

Return the Airy functions for complex argument.

Definition at line 2527 of file sf_airy.tcc.

References std::__detail::__beta(), std::__detail::_Airy_series< _Tp >::_S_Ai(), and std::__detail::_Airy_series< _Tp >::_S_Bi().

9.47.5 Member Data Documentation

9.47.5.1 inner_radius

```
template<typename _Tp>
scalar_type std::__detail::_Airy< _Tp >::inner_radius {_Airy_default_radii<scalar_type>::inner←
_radius}
```

Definition at line 2518 of file sf_airy.tcc.

9.47.5.2 outer_radius

```
template<typename _Tp>
scalar_type std::__detail::_Airy< _Tp >::outer_radius {_Airy_default_radii<scalar_type>::outer 
_radius}
```

Definition at line 2519 of file sf_airy.tcc.

The documentation for this class was generated from the following file:

• include/bits/sf_airy.tcc

9.48 std::__detail::_Airy_asymp< _Tp > Class Template Reference

Inheritance diagram for std::__detail::_Airy_asymp< _Tp >:

Collaboration diagram for std::__detail::_Airy_asymp< _Tp >:

Public Types

using _Cmplx = std::complex < _Tp >

Public Member Functions

- constexpr Airy asymp ()=default
- _AiryState< _Cmplx > _S_absarg_ge_pio3 (_Cmplx __z) const

This function evaluates Ai(z), Ai'(z) and Bi(z), Bi'(z) from their asymptotic expansions for $|arg(z)| < 2 * \pi/3$ i.e. roughly along the negative real axis.

 $\bullet _AiryState < _Cmplx > _S_absarg_lt_pio3 \ (_Cmplx __z) \ const$

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for $|arg(-z)| < \pi/3$ i.e. roughly along the negative real axis.

_AiryState< _Cmplx > operator() (_Cmplx __t, bool __return_fock_airy=false) const

9.48.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename $\_Tp$ > \\ class std::$\_detail::$\_Airy$\_asymp < $\_Tp$ > \\ \end{tabular}
```

A class encapsulating the asymptotic expansions of Airy functions and their derivatives.

Template Parameters

Definition at line 1997 of file sf airy.tcc.

9.48.2 Member Typedef Documentation

9.48.2.1 _Cmplx

```
template<typename _Tp >
using std::__detail::_Airy_asymp< _Tp >::_Cmplx = std::complex<_Tp>
```

Definition at line 2002 of file sf_airy.tcc.

9.48.3 Constructor & Destructor Documentation

```
9.48.3.1 _Airy_asymp()
```

```
template<typename _Tp >
constexpr std::__detail::_Airy_asymp< _Tp >::_Airy_asymp ( ) [default]
```

9.48.4 Member Function Documentation

9.48.4.1 _S_absarg_ge_pio3()

This function evaluates Ai(z), Ai'(z) and Bi(z), Bi'(z) from their asymptotic expansions for $|arg(z)| < 2 * \pi/3$ i.e. roughly along the negative real axis.

Template Parameters

```
_Tp | A real type
```

Parameters

in	_~	Complex argument at which Ai(z) and Bi(z) and their derivative are evaluated. This function assumes
	_Z	$ z >15$ and $ (arg(z) <2\pi/3.$

Returns

A struct containing z, Ai(z), Ai'(z), Bi(z), Bi'(z).

Definition at line 2271 of file sf airy.tcc.

References std::__detail::_AiryState< _Tp >::__z.

9.48.4.2 S absarg It pio3()

This function evaluates Ai(z) and Ai'(z) from their asymptotic expansions for $|arg(-z)| < \pi/3$ i.e. roughly along the negative real axis.

For speed, the number of terms needed to achieve about 16 decimals accuracy is tabled and determined for |z|. This function assumes |z| > 15 and $|arg(-z)| < \pi/3$.

Note that for speed and since this function is called by another, checks for valid arguments are not made. Hence, an error return is not needed.

Template Parameters

_Тр	A real type
-----	-------------

Parameters

in	_~	The value at which the Airy function and their derivatives are evaluated.
	_Z	

Returns

A struct containing z, Ai(z), Ai'(z), Bi(z), Bi'(z).

Todo Revisit these numbers of terms for the Airy asymptotic expansions.

Definition at line 2301 of file sf_airy.tcc.

References std::__detail::_AiryState< _Tp >::__z.

9.48.4.3 operator()()

Return the Airy functions for a given argument using asymptotic series.

Template Parameters

```
_Tp | A real type
```

Definition at line 2028 of file sf_airy.tcc.

References std::__detail::_AiryState < _Tp >::__z.

The documentation for this class was generated from the following file:

• include/bits/sf_airy.tcc

9.49 std::__detail::_Airy_asymp_data< _Tp > Struct Template Reference

Inheritance diagram for std::__detail::_Airy_asymp_data< _Tp >:

9.49.1 Detailed Description

```
template<typename _Tp>
struct std::__detail::_Airy_asymp_data< _Tp>
```

A class encapsulating data for the asymptotic expansions of Airy functions and their derivatives.

Template Parameters

```
_Tp A real type
```

Definition at line 631 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.50 std::__detail::_Airy_asymp_data< double > Struct Template Reference

Static Public Attributes

- static constexpr double _S_c [_S_max_cd]
- static constexpr double _S_d [_S_max_cd]
- static constexpr int _S_max_cd = 198

9.50.1 Detailed Description

```
\label{lem:lemplate} \mbox{template} <> \\ \mbox{struct std::\_detail::\_Airy\_asymp\_data} < \mbox{double} >
```

Definition at line 738 of file sf_airy.tcc.

9.50.2 Member Data Documentation

```
9.50.2.1 _S_c
```

```
constexpr double std::__detail::_Airy_asymp_data< double >::_S_c[_S_max_cd] [static]
```

Definition at line 744 of file sf_airy.tcc.

```
9.50.2.2 _S_d
```

```
constexpr double std::__detail::_Airy_asymp_data< double >::_S_d[_S_max_cd] [static]
```

Definition at line 947 of file sf_airy.tcc.

```
9.50.2.3 _S_max_cd
```

```
constexpr int std::__detail::_Airy_asymp_data< double >::_S_max_cd = 198 [static]
```

Definition at line 740 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.51 std::__detail::_Airy_asymp_data< float > Struct Template Reference

Static Public Attributes

- static constexpr float _S_c [_S_max_cd]
- static constexpr float _S_d [_S_max_cd]
- static constexpr int _S_max_cd = 43

9.51.1 Detailed Description

```
\label{lem:lemplate} \mbox{template} <> \\ \mbox{struct std::\_detail::\_Airy\_asymp\_data} < \mbox{float} >
```

Definition at line 635 of file sf_airy.tcc.

9.51.2 Member Data Documentation

```
9.51.2.1 _S_c
```

```
constexpr float std::_detail::_Airy_asymp_data< float >::_S_c[_S_max_cd] [static]
```

Definition at line 641 of file sf_airy.tcc.

```
9.51.2.2 _S_d
```

```
constexpr float std::__detail::_Airy_asymp_data< float >::_S_d[_S_max_cd] [static]
```

Definition at line 689 of file sf_airy.tcc.

```
9.51.2.3 _S_max_cd
```

```
constexpr int std::__detail::_Airy_asymp_data< float >::_S_max_cd = 43 [static]
```

Definition at line 637 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.52 std::__detail::_Airy_asymp_data < long double > Struct Template Reference

Static Public Attributes

- static constexpr long double _S_c [_S_max_cd]
- static constexpr long double _S_d [_S_max_cd]
- static constexpr int _S_max_cd = 201

9.52.1 Detailed Description

```
template<>> struct std::__detail::_Airy_asymp_data< long double >
```

Definition at line 1151 of file sf_airy.tcc.

9.52.2 Member Data Documentation

```
9.52.2.1 _S_c
```

```
constexpr long double std::__detail::_Airy_asymp_data< long double >::_S_c[_S_max_cd] [static]
```

Definition at line 1157 of file sf_airy.tcc.

```
9.52.2.2 _S_d
```

```
constexpr long double std::__detail::_Airy_asymp_data< long double >::_S_d[_S_max_cd] [static]
```

Definition at line 1363 of file sf_airy.tcc.

```
9.52.2.3 _S_max_cd
```

```
constexpr int std::__detail::_Airy_asymp_data< long double >::_S_max_cd = 201 [static]
```

Definition at line 1153 of file sf airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.53 std::__detail::_Airy_asymp_series < _Sum > Class Template Reference

Public Types

- using scalar_type = __num_traits_t< value_type >
- using value_type = typename _Sum::value_type

Public Member Functions

- _Airy_asymp_series (_Sum __proto)
- _Airy_asymp_series (const _Airy_asymp_series &)=default
- _Airy_asymp_series (_Airy_asymp_series &&)=default
- _AiryState< value_type > operator() (value_type ___y)

Static Public Attributes

• static constexpr scalar_type _S_sqrt_pi = __gnu_cxx::__const_root_pi(scalar_type{})

9.53.1 Detailed Description

```
template<typename _Sum> class std::__detail::_Airy_asymp_series< _Sum >
```

Class to manage the asymptotic series for Airy functions.

Template Parameters

```
_Sum | A sum type
```

Definition at line 2364 of file sf airy.tcc.

9.53.2 Member Typedef Documentation

9.53.2.1 scalar_type

```
template<typename _Sum>
using std::__detail::_Airy_asymp_series< _Sum >::scalar_type = __num_traits_t<value_type>
```

Definition at line 2369 of file sf_airy.tcc.

9.53.2.2 value_type

```
template<typename _Sum>
using std::__detail::_Airy_asymp_series< _Sum >::value_type = typename _Sum::value_type
```

Definition at line 2368 of file sf airy.tcc.

9.53.3 Constructor & Destructor Documentation

```
9.53.3.1 _Airy_asymp_series() [1/3]
```

Definition at line 2373 of file sf_airy.tcc.

```
9.53.3.2 _Airy_asymp_series() [2/3]
```

```
9.53.3.3 _Airy_asymp_series() [3/3]
```

9.53.4 Member Function Documentation

9.53.4.1 operator()()

Return an _AiryState containing, not actual Airy functions, but four asymptotic Airy components:

Template Parameters

```
_Sum | A sum type
```

Definition at line 2418 of file sf_airy.tcc.

9.53.5 Member Data Documentation

```
9.53.5.1 _S_sqrt_pi
```

```
template<typename _Sum>
constexpr _Airy_asymp_series< _Sum >::scalar_type std::__detail::_Airy_asymp_series< _Sum >::_
S_sqrt_pi = __gnu_cxx::__const_root_pi(scalar_type{}) [static]
```

Definition at line 2371 of file sf_airy.tcc.

The documentation for this class was generated from the following file:

include/bits/sf airy.tcc

9.54 std::__detail::_Airy_default_radii< _Tp > Struct Template Reference

9.54.1 Detailed Description

```
\label{template} $$ \ensuremath{\sf template}$$ < typename $$_Tp>$ $$ struct std::__detail::_Airy_default_radii< $$_Tp>$ $$
```

Definition at line 2475 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.55 std::__detail::_Airy_default_radii< double > Struct Template Reference

Static Public Attributes

- static constexpr double inner_radius {4.0}
- static constexpr double outer_radius {12.0}

9.55.1 Detailed Description

```
template<>> struct std::__detail::_Airy_default_radii< double >
```

Definition at line 2486 of file sf_airy.tcc.

9.55.2 Member Data Documentation

```
9.55.2.1 inner_radius
```

```
constexpr double std::__detail::_Airy_default_radii< double >::inner_radius {4.0} [static]
```

Definition at line 2488 of file sf_airy.tcc.

9.55.2.2 outer_radius

```
constexpr double std::__detail::_Airy_default_radii< double >::outer_radius {12.0} [static]
```

Definition at line 2489 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf airy.tcc

9.56 std::__detail::_Airy_default_radii< float > Struct Template Reference

Static Public Attributes

- static constexpr float inner_radius {2.0F}
- static constexpr float outer_radius {6.0F}

9.56.1 Detailed Description

```
\label{lem:lemplate} \begin{split} & \mathsf{template}\!<\!> \\ & \mathsf{struct}\; \mathsf{std::\_detail::\_Airy\_default\_radii}\!< \mathsf{float} > \end{split}
```

Definition at line 2479 of file sf_airy.tcc.

9.56.2 Member Data Documentation

```
9.56.2.1 inner_radius
```

```
constexpr float std::__detail::_Airy_default_radii< float >::inner_radius {2.0F} [static]
```

Definition at line 2481 of file sf_airy.tcc.

```
9.56.2.2 outer_radius
```

```
constexpr float std::__detail::_Airy_default_radii< float >::outer_radius {6.0F} [static]
```

Definition at line 2482 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

include/bits/sf airy.tcc

9.57 std::__detail::_Airy_default_radii < long double > Struct Template Reference

Static Public Attributes

- static constexpr long double inner_radius {5.0L}
- static constexpr long double outer_radius {15.0L}

9.57.1 Detailed Description

Definition at line 2493 of file sf_airy.tcc.

9.57.2 Member Data Documentation

9.57.2.1 inner_radius

```
constexpr long double std::__detail::_Airy_default_radii< long double >::inner_radius {5.0L}
[static]
```

Definition at line 2495 of file sf_airy.tcc.

9.57.2.2 outer_radius

```
constexpr long double std::__detail::_Airy_default_radii< long double >::outer_radius {15.0L}
[static]
```

Definition at line 2496 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.58 std::__detail::_Airy_series< _Tp > Class Template Reference

Public Types

using <u>Cmplx</u> = std::complex< <u>Tp</u> >

Static Public Member Functions

```
    static std::pair< _Cmplx, _Cmplx > _S_Ai (_Cmplx __t)
    static _AiryState< _Cmplx > _S_Airy (_Cmplx __t)
    static std::pair< _Cmplx, _Cmplx > _S_Bi (_Cmplx __t)
```

 $\bullet \ \ static _AiryAuxilliaryState < _Cmplx > _S_FGH (_Cmplx __t) \\$

static _AiryState< _Cmplx > _S_Fock (_Cmplx __t)

static _AiryState< _Cmplx > _S_Scorer (_Cmplx __t)

static _AiryState< _Cmplx > _S_Scorer2 (_Cmplx __t)

Static Public Attributes

```
    static constexpr int _N_FGH = 200
```

• static constexpr Tp $\frac{S}{Ai0} = \frac{Tp{3.550280538878172392600631860041831763980e-1L}}{}$

• static constexpr _Tp _S_Aip0 = _Tp{-2.588194037928067984051835601892039634793e-1L}

• static constexpr _Tp _S_Bi0 = _Tp{6.149266274460007351509223690936135535960e-1L}

• static constexpr _Tp _S_Bip0 = _Tp{4.482883573538263579148237103988283908668e-1L}

static constexpr _Tp _S_eps = __gnu_cxx::__epsilon(_Tp{})

• static constexpr _Tp _S _Gi0 = _Tp{2.049755424820002450503074563645378511979e-1L}

• static constexpr _Tp _S_Gip0 = _Tp{1.494294524512754526382745701329427969551e-1L}

static constexpr _Tp _S_Hi0 = _Tp{4.099510849640004901006149127290757023959e-1L}

static constexpr _Tp _S_Hip0 = _Tp{2.988589049025509052765491402658855939102e-1L}

• static constexpr Cmplx S i { Tp{0}, Tp{1}}

• static constexpr Tp S pi = gnu cxx:: const pi(Tp{})

static constexpr _Tp _S_sqrt_pi = __gnu_cxx::__const_root_pi(_Tp{})

9.58.1 Detailed Description

```
template<typename _Tp> class std::__detail::_Airy_series< _Tp >
```

This class orgianizes series solutions of the Airy function.

$$fai(x) = \sum_{k=0}^{\infty} \frac{(2k+1)!!!x^{3k}}{(2k+1)!}$$
$$gai(x) = \sum_{k=0}^{\infty} \frac{(2k+2)!!!x^{3k+1}}{(2k+2)!}$$
$$hai(x) = \sum_{k=0}^{\infty} \frac{(2k+3)!!!x^{3k+2}}{(2k+3)!}$$

This class contains tabulations of the factors appearing in the sums above.

Definition at line 107 of file sf airy.tcc.

9.58.2 Member Typedef Documentation

9.58.2.1 _Cmplx

```
template<typename _Tp >
using std::__detail::_Airy_series< _Tp >::_Cmplx = std::complex<_Tp>
```

Definition at line 111 of file sf airy.tcc.

9.58.3 Member Function Documentation

```
9.58.3.1 S Ai()
```

Return the Airy function of the first kind and its derivative by using the series expansions of the auxilliary Airy functions:

$$fai(x) = \sum_{k=0}^{\infty} \frac{(2k+1)!!!x^{3k}}{(2k+1)!}$$

$$gai(x) = \sum_{k=0}^{\infty} \frac{(2k+2)!!!x^{3k+1}}{(2k+2)!}$$

The Airy function of the first kind is then defined by:

$$Ai(x) = Ai(0)fai(x) + Ai'(0)gai(x)$$

where
$$Ai(0) = 3^{-2/3}/\Gamma(2/3)$$
, $Ai'(0) = -3 - 1/2Bi'(0)$ and $Bi(0) = 3^{1/2}Ai(0)$, $Bi'(0) = 3^{1/6}/\Gamma(1/3)$

Template Parameters

```
_Tp | A real type
```

Definition at line 340 of file sf_airy.tcc.

Referenced by std::__detail::_Airy< _Tp >::operator()().

9.58.3.2 _S_Airy()

Return the Fock-type Airy functions Ai(t), and Bi(t) and their derivatives of complex argument.

Template Parameters

_Tp A real t	type
--------------	------

Parameters

\leftarrow	The complex argument
_←	
\leftarrow	
_←	
t	

Definition at line 608 of file sf_airy.tcc.

9.58.3.3 _S_Bi()

Return the Airy function of the second kind and its derivative by using the series expansions of the auxilliary Airy functions:

$$fai(x) = \sum_{k=0}^{\infty} \frac{(2k+1)!!!x^{3k}}{(2k+1)!}$$

$$gai(x) = \sum_{k=0}^{\infty} \frac{(2k+2)!!!x^{3k+1}}{(2k+2)!}$$

The Airy function of the second kind is then defined by:

$$Bi(x) = Bi(0)fai(x) + Bi'(0)gai(x)$$

where
$$Ai(0)=3^{-2/3}/\Gamma(2/3), Ai'(0)=-3-1/2Bi'(0)$$
 and $Bi(0)=3^{1/2}Ai(0), Bi'(0)=3^{1/6}/\Gamma(1/3)$

Template Parameters

_Tp A real ty

Definition at line 363 of file sf airy.tcc.

Referenced by std::__detail::_Airy< _Tp >::operator()().

9.58.3.4 _S_FGH()

```
template<typename _{\rm Tp} >
_AiryAuxilliaryState< std::complex< _Tp >> std::__detail::_Airy_series< _Tp >::_S_FGH (
            _Cmplx __t ) [static]
```

Return the auxilliary Airy functions:

$$fai(x) = \sum_{k=0}^{\infty} \frac{(2k+1)!!!x^{3k}}{(2k+1)!}$$

$$axi(x) = \sum_{k=0}^{\infty} (2k+2)!!!x^{3k+1}$$

$$gai(x) = \sum_{k=0}^{\infty} \frac{(2k+2)!!!x^{3k+1}}{(2k+2)!}$$

$$hai(x) = \sum_{k=0}^{\infty} \frac{(2k+3)!!!x^{3k+2}}{(2k+3)!}$$

Template Parameters

Definition at line 382 of file sf_airy.tcc.

9.58.3.5 _S_Fock()

```
{\tt template}{<}{\tt typename}~{\tt \_Tp}~>
_AiryState< std::complex< _Tp >> std::__detail::_Airy_series< _Tp >::_S_Fock (
                  \underline{\text{Cmplx}} \underline{\quad} t ) [static]
```

Return the Fock-type Airy functions $w_1(t)$, and $w_2(t)$ and their derivatives of complex argument.

Template Parameters

Parameters

\leftarrow	The complex argument
_←	
\leftarrow	
_←	
t	

Definition at line 620 of file sf_airy.tcc.

9.58.3.6 _S_Scorer()

Return the Scorer functions by using the series expansions of the auxilliary Airy functions:

$$fai(x) = \sum_{k=0}^{\infty} \frac{(2k+1)!!!x^{3k}}{(2k+1)!}$$

$$gai(x) = \sum_{k=0}^{\infty} \frac{(2k+2)!!!x^{3k+1}}{(2k+2)!}$$

$$hai(x) = \sum_{k=0}^{\infty} \frac{(2k+3)!!!x^{3k+2}}{(2k+3)!}$$

The Scorer function is then defined by:

$$Hi(x) = Hi(0) \left(fai(x) + gai(x) + hai(x) \right)$$

where $Hi(0)=2/(3^{7/6}\Gamma(2/3))$ and $Hi'(0)=2/(3^{5/6}\Gamma(1/3))$. The other Scorer function is found from the identity

$$Gi(x) + Hi(x) = Bi(x)$$

Todo Find out what is wrong with the Hi = fai + gai + hai scorer function.

Template Parameters

```
_Tp | A real type
```

Definition at line 463 of file sf airy.tcc.

9.58.3.7 _S_Scorer2()

Return the Scorer functions by using the series expansions:

$$Hi(x) = \frac{3^{-2/3}}{\pi} \sum_{k=0}^{\infty} \Gamma\left(\frac{k+1}{3}\right) \frac{3^{1/3}x}{k!}$$

$$Hi'(x) = \frac{3^{-1/3}}{\pi} \sum_{k=0}^{\infty} \Gamma\left(\frac{k+2}{3}\right) \frac{3^{1/3}x}{k!}$$

$$Gi(x) = \frac{3^{-2/3}}{\pi} \sum_{k=0}^{\infty} \cos\left(\frac{2k-1}{3}\pi\right) \Gamma\left(\frac{k+1}{3}\right) \frac{3^{1/3}x}{k!}$$

$$Gi'(x) = \frac{3^{-1/3}}{\pi} \sum_{k=0}^{\infty} \cos\left(\frac{2k+1}{3}\pi\right) \Gamma\left(\frac{k+2}{3}\right) \frac{3^{1/3}x}{k!}$$

Definition at line 500 of file sf_airy.tcc.

References std::__detail::__gamma().

9.58.4 Member Data Documentation

9.58.4.1 _N_FGH

```
template<typename _Tp >
constexpr int std::__detail::_Airy_series< _Tp >::_N_FGH = 200 [static]
```

Definition at line 113 of file sf_airy.tcc.

9.58.4.2 _S_Ai0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Ai0 = _Tp{3.550280538878172392600631860041831763980e-1←
L} [static]
```

Definition at line 129 of file sf_airy.tcc.

9.58.4.3 _S_Aip0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Aip0 = _Tp{-2.588194037928067984051835601892039634793e-1←
L} [static]
```

Definition at line 131 of file sf_airy.tcc.

588 Class Documentation

9.58.4.4 _S_Bi0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Bi0 = _Tp{6.149266274460007351509223690936135535960e-1←
L} [static]
```

Definition at line 133 of file sf airy.tcc.

9.58.4.5 S Bip0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Bip0 = _Tp{4.482883573538263579148237103988283908668e-1←
L} [static]
```

Definition at line 135 of file sf_airy.tcc.

9.58.4.6 S eps

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_eps = __gnu_cxx::__epsilon(_Tp{}) [static]
```

Definition at line 124 of file sf airy.tcc.

9.58.4.7 S Gi0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Gi0 = _Tp{2.049755424820002450503074563645378511979e-1←
L} [static]
```

Definition at line 141 of file sf airy.tcc.

9.58.4.8 _S_Gip0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Gip0 = _Tp{1.494294524512754526382745701329427969551e-1

L} [static]
```

Definition at line 143 of file sf_airy.tcc.

9.58.4.9 _S_Hi0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_HiO = _Tp{4.099510849640004901006149127290757023959e-1←
L} [static]
```

Definition at line 137 of file sf_airy.tcc.

9.58.4.10 _S_Hip0

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_Hip0 = _Tp{2.988589049025509052765491402658855939102e-1←
L} [static]
```

Definition at line 139 of file sf airy.tcc.

9.58.4.11 _S_i

```
template<typename _Tp >
constexpr std::complex< _Tp > std::__detail::_Airy_series< _Tp >::_S_i {_Tp{0}, _Tp{1}} [static]
```

Definition at line 144 of file sf_airy.tcc.

9.58.4.12 S pi

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_pi = __gnu_cxx::__const_pi(_Tp{}) [static]
```

Definition at line 125 of file sf_airy.tcc.

9.58.4.13 _S_sqrt_pi

```
template<typename _Tp >
constexpr _Tp std::__detail::_Airy_series< _Tp >::_S_sqrt_pi = __gnu_cxx::__const_root_pi(_Tp{})
[static]
```

Definition at line 127 of file sf_airy.tcc.

The documentation for this class was generated from the following file:

include/bits/sf airy.tcc

590 Class Documentation

9.59 std::__detail::_AiryAuxilliaryState < _Tp > Struct Template Reference

Public Types

```
• using _Val = __num_traits_t< _Tp >
```

Public Attributes

- _Tp __fai_deriv
- _Tp __fai_value
- _Tp __gai_deriv
- _Tp __gai_value
- _Tp __hai_deriv
- _Tp __hai_value
- _Tp __z

9.59.1 Detailed Description

```
template<typename _Tp>
struct std::__detail::_AiryAuxilliaryState< _Tp>
```

A structure containing three auxilliary Airy functions and their derivatives.

Definition at line 79 of file sf_airy.tcc.

9.59.2 Member Typedef Documentation

```
9.59.2.1 _Val

template<typename _Tp>
using std::__detail::_AiryAuxilliaryState< _Tp >::_Val = __num_traits_t<_Tp>
```

Definition at line 81 of file sf_airy.tcc.

9.59.3 Member Data Documentation

```
9.59.3.1 __fai_deriv

template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__fai_deriv
```

Definition at line 85 of file sf_airy.tcc.

```
9.59.3.2 __fai_value

template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__fai_value
```

Definition at line 84 of file sf_airy.tcc.

```
9.59.3.3 __gai_deriv

template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__gai_deriv
```

Definition at line 87 of file sf_airy.tcc.

```
9.59.3.4 __gai_value

template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__gai_value
```

Definition at line 86 of file sf_airy.tcc.

```
9.59.3.5 __hai_deriv

template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__hai_deriv
```

Definition at line 89 of file sf_airy.tcc.

592 Class Documentation

```
9.59.3.6 __hai_value
```

```
template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__hai_value
```

Definition at line 88 of file sf_airy.tcc.

```
9.59.3.7 __z
```

```
template<typename _Tp>
_Tp std::__detail::_AiryAuxilliaryState< _Tp >::__z
```

Definition at line 83 of file sf_airy.tcc.

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.60 std::__detail::_AiryState < _Tp > Struct Template Reference

Public Types

• using _Real = __num_traits_t< _Tp >

Public Member Functions

- _Real true_Wronskian ()
- _Tp Wronskian () const

Public Attributes

- _Tp __Ai_deriv
- _Tp __Ai_value
- _Tp __Bi_deriv
- _Tp __Bi_value
- _Tp __z

9.60.1 Detailed Description

```
template<typename _Tp> struct std::__detail::_AiryState< _Tp >
```

This struct defines the Airy function state with two presumably numerically useful Airy functions and their derivatives. The data mambers are directly accessible. The lone method computes the Wronskian from the stored functions. A static method returns the correct Wronskian.

Definition at line 54 of file sf_airy.tcc.

9.60.2 Member Typedef Documentation

```
9.60.2.1 _Real
```

```
template<typename _Tp>
using std::__detail::_AiryState< _Tp >::_Real = __num_traits_t<_Tp>
```

Definition at line 56 of file sf_airy.tcc.

9.60.3 Member Function Documentation

9.60.3.1 true_Wronskian()

```
template<typename _Tp>
_Real std::__detail::_AiryState< _Tp >::true_Wronskian ( ) [inline]
```

Definition at line 69 of file sf_airy.tcc.

9.60.3.2 Wronskian()

```
template<typename _Tp>
_Tp std::__detail::_AiryState< _Tp >::Wronskian ( ) const [inline]
```

Definition at line 65 of file sf_airy.tcc.

References std::__detail::_AiryState< _Tp >::__Ai_deriv.

594 Class Documentation

9.60.4 Member Data Documentation

```
9.60.4.1 __Ai_deriv

template<typename _Tp>
_Tp std::__detail::_AiryState< _Tp >::__Ai_deriv

Definition at line 60 of file sf_airy.tcc.

Referenced by std::__detail::_AiryState< _Tp >::Wronskian().
```

```
9.60.4.2 __Ai_value
```

```
template<typename _Tp>
_Tp std::__detail::_AiryState< _Tp >::__Ai_value
```

Definition at line 59 of file sf_airy.tcc.

```
9.60.4.3 __Bi_deriv

template<typename _Tp>
_Tp std::__detail::_AiryState< _Tp >::__Bi_deriv
```

Definition at line 62 of file sf_airy.tcc.

```
9.60.4.4 __Bi_value

template<typename _Tp>
_Tp std::__detail::_AiryState< _Tp >::__Bi_value
```

Definition at line 61 of file sf_airy.tcc.

```
9.60.4.5 __z
```

```
template<typename _Tp>
_Tp std::__detail::_AiryState< _Tp >::__z
```

Definition at line 58 of file sf_airy.tcc.

Referenced by std::__detail::_Airy_asymp< _Tp >::_S_absarg_ge_pio3(), std::__detail::_Airy_asymp< _Tp >::_S_ \leftarrow absarg_lt_pio3(), and std::__detail::_Airy_asymp< _Tp >::operator()().

The documentation for this struct was generated from the following file:

• include/bits/sf_airy.tcc

9.61 std::__detail::_AsympTerminator< _Tp > Class Template Reference

Public Member Functions

- _AsympTerminator (std::size_t __max_iter, _Real __mul=_Real{1})
- std::size_t num_terms () const

Return the current number of terms summed.

bool operator() (_Tp __term, _Tp __sum)

Detect if the sum should terminate either because the incoming term is small enough or because the terms are starting to grow or.

_Tp operator<< (_Tp __term)

Filter a term before applying it to the sum.

9.61.1 Detailed Description

```
template<typename _Tp> class std::__detail::_AsympTerminator< _Tp >
```

This class manages the termination of asymptotic series. In particular, this termination watches for the growth of the sequence of terms to stop the series.

Termination conditions involve both a maximum iteration count and a relative precision.

Definition at line 107 of file sf_polylog.tcc.

9.61.2 Constructor & Destructor Documentation

596 Class Documentation

9.61.2.1 _AsympTerminator()

Definition at line 120 of file sf_polylog.tcc.

9.61.3 Member Function Documentation

```
9.61.3.1 num_terms()
```

```
template<typename _Tp>
std::size_t std::__detail::_AsympTerminator< _Tp >::num_terms ( ) const [inline]
```

Return the current number of terms summed.

Definition at line 140 of file sf_polylog.tcc.

9.61.3.2 operator()()

Detect if the sum should terminate either because the incoming term is small enough or because the terms are starting to grow or.

Definition at line 147 of file sf polylog.tcc.

9.61.3.3 operator << ()

Filter a term before applying it to the sum.

Definition at line 127 of file sf_polylog.tcc.

The documentation for this class was generated from the following file:

include/bits/sf polylog.tcc

9.62 std::__detail::_Factorial_table < _Tp > Struct Template Reference

Public Attributes

```
    Tp factorial
```

- _Tp __log_factorial
- int __n

9.62.1 Detailed Description

```
template<typename _Tp> struct std::__detail::_Factorial_table< _Tp >
```

Definition at line 67 of file sf_gamma.tcc.

9.62.2 Member Data Documentation

```
9.62.2.1 factorial
```

```
template<typename _Tp >
_Tp std::__detail::_Factorial_table< _Tp >::__factorial
```

Definition at line 70 of file sf_gamma.tcc.

Referenced by std::__detail::__double_factorial(), and std::__detail::__gamma_reciprocal().

```
9.62.2.2 __log_factorial
```

```
template<typename _Tp >
_Tp std::__detail::_Factorial_table< _Tp >::__log_factorial
```

Definition at line 71 of file sf_gamma.tcc.

Referenced by std::__detail::__log_double_factorial(), and std::__detail::__log_gamma().

598 Class Documentation

```
9.62.2.3 __n
```

```
template<typename _Tp >
int std::__detail::_Factorial_table< _Tp >::__n
```

Definition at line 69 of file sf gamma.tcc.

Referenced by $std::_detail::_binomial()$, $std::_detail::_digamma()$, $std::_detail::_double_factorial()$, $std::_detail::_double_factorial()$, $std::_detail::_gamma()$, $std::_detail::_gamma()$, $std::_detail::_gamma_cont_frac()$, $std::_detail::_gamma_reciprocal()$, $std::_detail::_gamma_series()$, $std::_detail::_harmonic_number()$, $std::_detail::_log_binomial()$, $std::_detail::_log_binomial_sign()$, $std::_detail::_log_binomial_sign()$, $std::_detail::_log_binomial_sign()$, $std::_detail::_log_gamma()$, $std::_detail::_polygamma()$, and $std::_detail::_rising_factorial()$.

The documentation for this struct was generated from the following file:

• include/bits/sf_gamma.tcc

9.63 std::__detail::_Terminator< _Tp > Class Template Reference

Public Member Functions

- _Terminator (std::size_t __max_iter, _Real __mul=_Real{1})
- std::size_t num_terms () const

Return the current number of terms summed.

• bool operator() (_Tp __term, _Tp __sum)

Detect if the sum should terminate either because the incoming term is small enough or the maximum number of terms has been reached.

9.63.1 Detailed Description

```
template<typename _Tp> class std::__detail::_Terminator< _Tp >
```

This class manages the termination of series. Termination conditions involve both a maximum iteration count and a relative precision.

Definition at line 62 of file sf_polylog.tcc.

9.63.2 Constructor & Destructor Documentation

9.63.2.1 _Terminator()

Definition at line 73 of file sf_polylog.tcc.

9.63.3 Member Function Documentation

```
9.63.3.1 num_terms()
```

```
template<typename _Tp>
std::size_t std::__detail::_Terminator< _Tp >::num_terms ( ) const [inline]
```

Return the current number of terms summed.

Definition at line 80 of file sf polylog.tcc.

9.63.3.2 operator()()

Detect if the sum should terminate either because the incoming term is small enough or the maximum number of terms has been reached.

Definition at line 86 of file sf_polylog.tcc.

The documentation for this class was generated from the following file:

• include/bits/sf_polylog.tcc

600 Class Documentation

Chapter 10

File Documentation

10.1 cxx_fp_utils/include/ext/math_util.h File Reference

```
#include <bits/c++config.h>
#include <limits>
#include <cmath>
Include dependency graph for math_util.h:
```


This graph shows which files directly or indirectly include this file:

Classes

struct __gnu_cxx::_fp_is_integer_t

Namespaces

__gnu_cxx

Functions

```
template<typename _Tp >
  constexpr bool __gnu_cxx::_fp_is_equal (_Tp __a, _Tp __b, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr __fp_is_integer_t __gnu_cxx::__fp_is_even_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
• template<typename_Tp>
  constexpr __fp_is_integer_t __gnu_cxx::__fp_is_half_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr __fp_is_integer_t __gnu_cxx::__fp_is_half_odd_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept

    template<typename</li>
    Tp >

  constexpr __fp_is_integer_t __gnu_cxx::__fp_is_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
• template<typename _Tp >
  constexpr __fp_is_integer_t __gnu_cxx::__fp_is_odd_integer (_Tp __a, _Tp __mul=_Tp{1}) noexcept
template<typename _Tp >
  constexpr bool __gnu_cxx::__fp_is_zero (_Tp __a, _Tp __mul=_Tp{1}) noexcept
• template<typename _{\mathrm{Tp}} >
  constexpr _Tp __gnu_cxx::__fp_max_abs (_Tp __a, _Tp __b) noexcept
• template<typename _Tp , typename _IntTp >
  constexpr _Tp __gnu_cxx::__parity (_IntTp __k) noexcept
```

10.1.1 Detailed Description

This file is a GNU extension to the Standard C++ Library.

10.2 include/bits/sf_airy.tcc File Reference

```
#include <bits/complex_util.h>
#include <ext/summation.h>
#include <ext/polynomial.h>
Include dependency graph for sf_airy.tcc:
```


This graph shows which files directly or indirectly include this file:

Classes

```
class std::__detail::_Airy< _Tp >
```

- class std::__detail::_Airy_asymp< _Tp >
- struct std::__detail::_Airy_asymp_data< _Tp >
- struct std::__detail::_Airy_asymp_data< double >
- struct std::__detail::_Airy_asymp_data< float >

```
struct std::__detail::_Airy_asymp_data< long double >
class std::__detail::_Airy_asymp_series< _Sum >
struct std::__detail::_Airy_default_radii< _Tp >
struct std::__detail::_Airy_default_radii< double >
struct std::__detail::_Airy_default_radii< float >
struct std::__detail::_Airy_default_radii< long double >
class std::__detail::_Airy_series< _Tp >
struct std::__detail::_AiryAuxilliaryState< _Tp >
struct std::__detail::_AiryState< _Tp >
```

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_AIRY_TCC 1

Functions

```
    template<typename _Tp >
        std::complex< _Tp > std::__detail::__airy_ai (std::complex< _Tp > __z)
        Return the complex Airy Ai function.
    template<typename _Tp >
        std::complex< _Tp > std::__detail::__airy_bi (std::complex< _Tp > __z)
        Return the complex Airy Bi function.
```

Variables

```
    template<typename _Tp >
        constexpr int std::__detail::__max_FGH = _Airy_series<_Tp>::_N_FGH
    template<>
        constexpr int std::__detail::__max_FGH< double > = 79
    template<>
        constexpr int std::__detail::__max_FGH< float > = 15
```

10.2.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

10.2.2 Macro Definition Documentation

10.2.2.1 _GLIBCXX_BITS_SF_AIRY_TCC

#define _GLIBCXX_BITS_SF_AIRY_TCC 1

Definition at line 31 of file sf_airy.tcc.

10.3 include/bits/sf_bernoulli.tcc File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define GLIBCXX BITS SF BERNOULLI TCC 1

Functions

```
    template < typename _Tp >
        _GLIBCXX14_CONSTEXPR _Tp std::__detail::__bernoulli (unsigned int __n)
```

 $\label{eq:theorem} \textit{This returns Bernoulli number B_n.}$ • template<typename _Tp >

• template<typename _Tp >

This returns Bernoulli number B_2n at even integer arguments 2n.

ullet template<typename_Tp>

This returns Bernoulli numbers from a table or by summation for larger values.

$$B_{2n} = (-1)^{n+1} 2 \frac{(2n)!}{(2\pi)^{2n}} \zeta(2n)$$

•

10.3.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.3.2 Macro Definition Documentation

10.3.2.1 _GLIBCXX_BITS_SF_BERNOULLI_TCC

#define _GLIBCXX_BITS_SF_BERNOULLI_TCC 1

Definition at line 35 of file sf_bernoulli.tcc.

10.4 include/bits/sf_bessel.tcc File Reference

#include <complex>
#include <ext/math_const.h>
Include dependency graph for sf_bessel.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

#define GLIBCXX BITS SF BESSEL TCC 1

Functions

```
template<typename _Tp >
 _Tp std::__detail::__cyl_bessel_ij_series (_Tp __nu, _Tp __x, _Tp __sgn, unsigned int __max_iter)
      This routine returns the cylindrical Bessel functions of order \nu: J_{\nu} or I_{\nu} by series expansion.
template<typename _Tp >
  _Tp std::__detail::__cyl_bessel_j (_Tp __nu, _Tp __x)
      Return the Bessel function of order \nu: J_{\nu}(x).
template<typename_Tp>
  gnu_cxx:: cyl_bessel_t< _Tp, _Tp, _Tp > std:: _detail:: _cyl_bessel_jn (_Tp __nu, _Tp __x)
      Return the cylindrical Bessel functions and their derivatives of order \nu by various means.
template<typename _Tp >
   _gnu_cxx::_cyl_bessel_t< _Tp, _Tp, _Tp > std::_detail::_cyl_bessel_jn_asymp (_Tp __nu, _Tp __x)
      This routine computes the asymptotic cylindrical Bessel and Neumann functions of order nu: J_{\nu}(x), N_{\nu}(x). Use this for
     x >> nu^2 + 1.
template<typename _Tp >
   gnu_cxx::_cyl_bessel_t<_Tp, _Tp, std::complex<_Tp >> std::__detail::_cyl_bessel_in_neg_arg (_Tp ←
 __nu, _Tp __x)
     Return the cylindrical Bessel functions and their derivatives of order \nu and argument x < 0.
template<typename _Tp >
  __gnu_cxx::__cyl_bessel_t< _Tp, _Tp, _Tp > std::__detail::__cyl_bessel_jn_steed (_Tp __nu, _Tp __x)
      Compute the Bessel J_{\nu}(x) and Neumann N_{\nu}(x) functions and their first derivatives J'_{\nu}(x) and N'_{\nu}(x) respectively. These
     four functions are computed together for numerical stability.
template<typename _Tp >
  std::complex< _Tp > std::__detail::__cyl_hankel_1 (_Tp __nu, _Tp __x)
     Return the cylindrical Hankel function of the first kind H_{\nu}^{(1)}(x).
template<typename _Tp >
  std::complex< Tp > std:: detail:: cyl hankel 2 ( Tp nu, Tp x)
      Return the cylindrical Hankel function of the second kind H_n^{(2)}u(x).
template<typename_Tp>
  _Tp std::__detail::__cyl_neumann_n (_Tp __nu, _Tp __x)
     Return the Neumann function of order \nu: N_{\nu}(x).
template<typename _Tp >
    gnu cxx:: gamma temme t < Tp > std:: detail:: gamma temme (Tp mu)
```

Compute the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

template<typename _Tp >

```
_Tp std::__detail::__sph_bessel (unsigned int __n, _Tp __x)
```

Return the spherical Bessel function $j_n(x)$ of order n and non-negative real argument x.

template<typenameTp >

```
__gnu_cxx::__sph_bessel_t< unsigned int, _Tp, _Tp > std::__detail::__sph_bessel_jn (unsigned int __n, _Tp __x)
```

Compute the spherical Bessel $j_n(x)$ and Neumann $n_n(x)$ functions and their first derivatives $j_n(x)$ and $n'_n(x)$ respectively.

template<typename _Tp >

```
__gnu_cxx::__sph_bessel_t< unsigned int, _Tp, std::complex< _Tp > > std::__detail::__sph_bessel_jn_neg ← arg (unsigned int __n, _Tp _ x)
```

template<typename _Tp >

```
std::complex < _Tp > std::__detail::__sph_hankel_1 (unsigned int __n, _Tp __x)
```

Return the spherical Hankel function of the first kind $h_n^{(1)}(x)$.

template<typename _Tp >

```
std::complex < _Tp > std::__detail::__sph_hankel_2 (unsigned int __n, _Tp __x)
```

Return the spherical Hankel function of the second kind $h_n^{(2)}(x)$.

template<typename _Tp >

```
_Tp std::__detail::__sph_neumann (unsigned int __n, _Tp __x)
```

Return the spherical Neumann function $n_n(x)$ of order n and non-negative real argument x.

10.4.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.4.2 Macro Definition Documentation

10.4.2.1 _GLIBCXX_BITS_SF_BESSEL_TCC

```
#define _GLIBCXX_BITS_SF_BESSEL_TCC 1
```

Definition at line 47 of file sf bessel.tcc.

10.5 include/bits/sf_beta.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_beta.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_BETA_TCC 1

Functions

```
template<typename _Tp >
  _Tp std::__detail::__beta (_Tp __a, _Tp __b)
     Return the beta function B(a,b).
template<typename _Tp >
  _Tp std::__detail::__beta_gamma (_Tp __a, _Tp __b)
     Return the beta function: B(a,b).
template<typename _Tp >
  _Tp std::__detail::__beta_inc (_Tp __a, _Tp __b, _Tp __x)
• template<typename _{\mathrm{Tp}}>
  _Tp std::__detail::__beta_lgamma (_Tp __a, _Tp __b)
     Return the beta function B(a,b) using the log gamma functions.
template<typename_Tp>
  _Tp std::__detail::__beta_product (_Tp __a, _Tp __b)
     Return the beta function B(x,y) using the product form.
template<typename _Tp >
  _Tp std::__detail::__ibeta_cont_frac (_Tp __a, _Tp __b, _Tp __x)
```

10.5.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.5.2 Macro Definition Documentation

10.5.2.1 _GLIBCXX_BITS_SF_BETA_TCC

```
#define _GLIBCXX_BITS_SF_BETA_TCC 1
```

Definition at line 49 of file sf beta.tcc.

10.6 include/bits/sf_cardinal.tcc File Reference

#include <bits/complex_util.h>
Include dependency graph for sf_cardinal.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_CARDINAL_TCC 1

Functions

template<typename _Tp >
 __gnu_cxx::fp_promote_t< _Tp > std::__detail::__sinc (_Tp __x)

Return the sinus cardinal function

$$sinc(x) = \frac{\sin(x)}{x}$$

.

template<typename_Tp>

Return the reperiodized sinus cardinal function

$$sinc_{\pi}(x) = \frac{\sin(\pi x)}{\pi x}$$

.

 $\bullet \ \ template\!<\!typename\,_Tp>$

$$\underline{\hspace{0.3cm}} gnu_cxx:: fp_promote_t < \underline{\hspace{0.3cm}} t > std::\underline{\hspace{0.3cm}} detail::\underline{\hspace{0.3cm}} sinhc \ (\underline{\hspace{0.3cm}} Tp \ \underline{\hspace{0.3cm}} x)$$

Return the hyperbolic sinus cardinal function

$$sinhc(x) = \frac{\sinh(x)}{x}$$

• template<typename_Tp>

Return the reperiodized hyperbolic sinus cardinal function

$$sinhc_{\pi}(x) = \frac{\sinh(\pi x)}{\pi x}$$

.

10.6.1 Macro Definition Documentation

10.6.1.1 _GLIBCXX_BITS_SF_CARDINAL_TCC

#define _GLIBCXX_BITS_SF_CARDINAL_TCC 1

Definition at line 31 of file sf cardinal.tcc.

10.7 include/bits/sf_chebyshev.tcc File Reference

```
#include <tuple>
#include <ext/math_const.h>
Include dependency graph for sf_chebyshev.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_CHEBYSHEV_TCC 1

Functions

```
template<typename _Tp > std::tuple< _Tp, _Tp, _Tp > std::__detail::__chebyshev_recur (unsigned int __n, _Tp __x, _Tp _C0, _Tp _C1)
template<typename _Tp > ___gnu_cxx::__chebyshev_t_t< _Tp > std::__detail::__chebyshev_t (unsigned int __n, _Tp __x)
template<typename _Tp > ___gnu_cxx::__chebyshev_u_t< _Tp > std::__detail::__chebyshev_u (unsigned int __n, _Tp __x)
template<typename _Tp > ___gnu_cxx::__chebyshev_v_t< _Tp > std::__detail::__chebyshev_v (unsigned int __n, _Tp __x)
template<typename _Tp > ___gnu_cxx::__chebyshev_w_t< _Tp > std::__detail::__chebyshev_w (unsigned int __n, _Tp __x)
```

10.7.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.7.2 Macro Definition Documentation

10.7.2.1 _GLIBCXX_BITS_SF_CHEBYSHEV_TCC

#define _GLIBCXX_BITS_SF_CHEBYSHEV_TCC 1

Definition at line 31 of file sf chebyshev.tcc.

10.8 include/bits/sf_coulomb.tcc File Reference

#include <complex>

Include dependency graph for sf_coulomb.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_COULOMB_TCC 1

Functions

```
template<typename_Tp > std::pair< _Tp, _Tp > std::__detail::__coulomb_CF1 (unsigned int __I, _Tp __eta, _Tp __x)
template<typename_Tp > std::complex< _Tp > std::__detail::__coulomb_CF2 (unsigned int __I, _Tp __eta, _Tp __x)
template<typename_Tp > std::pair< _Tp, _Tp > std::__detail::_coulomb_f_recur (unsigned int __I_min, unsigned int __k_max, _Tp __eta, _Tp __x, _Tp _F l_max, _Tp _Fp_l_max)
template<typename_Tp > std::pair< _Tp, _Tp > std::__detail::_coulomb_g_recur (unsigned int __I_min, unsigned int __k_max, _Tp __eta, _Tp __x, _Tp _G l_min, _Tp _Gp_l_min)
template<typename_Tp > _Tp std::__detail::_coulomb_norm (unsigned int _I, _Tp __eta)
template<typename_Tp > std::_detail::_hydrogen (unsigned int __n, unsigned int __I, unsigned int __m, _Tp __Z, _Tp __r, _Tp __theta, _Tp __phi)
```

10.8.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

10.8.2 Macro Definition Documentation

10.8.2.1 _GLIBCXX_BITS_SF_COULOMB_TCC

#define _GLIBCXX_BITS_SF_COULOMB_TCC 1

Definition at line 31 of file sf_coulomb.tcc.

10.9 include/bits/sf_dawson.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_dawson.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_DAWSON_TCC 1

Functions

```
    template<typename _Tp >
        _Tp std::__detail::__dawson (_Tp __x)
        Return the Dawson integral, F(x), for real argument x.
    template<typename _Tp >
        _Tp std::__detail::__dawson_cont_frac (_Tp __x)
        Compute the Dawson integral using a sampling theorem representation.
    template<typename _Tp >
        _Tp std::__detail::__dawson_series (_Tp __x)
        Compute the Dawson integral using the series expansion.
```

10.9.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.9.2 Macro Definition Documentation

```
10.9.2.1 _GLIBCXX_BITS_SF_DAWSON_TCC
#define _GLIBCXX_BITS_SF_DAWSON_TCC 1
```

Definition at line 31 of file sf dawson.tcc.

10.10 include/bits/sf_distributions.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_distributions.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC 1

Functions

```
template<typename_Tp>
  _Tp std::__detail::__beta_p (_Tp __a, _Tp __b, _Tp __x)
template<typename</li>Tp >
  _Tp std::__detail::__binomial_p (_Tp __p, unsigned int __n, unsigned int __k)
      Return the binomial cumulative distribution function.
template<typename_Tp>
  _Tp std::__detail::__binomial_pdf (_Tp __p, unsigned int __n, unsigned int __k)
      Return the binomial probability mass function.

    template<typename</li>
    Tp >

  _Tp std::__detail::__binomial_q (_Tp __p, unsigned int __n, unsigned int __k)
      Return the complementary binomial cumulative distribution function.
template<typename _Tp >
  Tp std:: detail:: cauchy p (Tp a, Tp b, Tp x)
template<typename _Tp >
  _Tp std::__detail::__chi_squared_pdf (_Tp __chi2, unsigned int __nu)
      Return the chi-squared propability function. This returns the probability that the observed chi-squared for a correct model
      is less than the value \chi^2.

    template<typename</li>
    Tp >

  _Tp std:: __detail:: __chi_squared_pdfc (_Tp __chi2, unsigned int __nu)
      Return the complementary chi-squared propability function. This returns the probability that the observed chi-squared for
      a correct model is greater than the value \chi^2.
template<typename _Tp >
  Tp std:: detail:: exponential p (Tp lambda, Tp x)
      Return the exponential cumulative probability density function.
template<typename _Tp >
  _Tp std::__detail::__exponential_pdf (_Tp __lambda, _Tp __x)
      Return the exponential probability density function.

    template<typename</li>
    Tp >

  _Tp std::__detail::__exponential_q (_Tp __lambda, _Tp __x)
      Return the complement of the exponential cumulative probability density function.
template<typename_Tp>
  Tp std:: detail:: fisher f p (Tp F, unsigned int nu1, unsigned int nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.
template<typename _Tp >
  Tp std:: detail:: fisher f pdf ( Tp F, unsigned int nu1, unsigned int nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.
template<typename_Tp>
  _Tp std::__detail::__fisher_f_q (_Tp __F, unsigned int __nu1, unsigned int __nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.
template<typename_Tp>
  Tp std:: detail:: gamma p (Tp alpha, Tp beta, Tp x)
      Return the gamma cumulative propability distribution function.

    template<typename</li>
    Tp >

  _Tp std::__detail::__gamma_pdf (_Tp __alpha, _Tp __beta, _Tp _ x)
      Return the gamma propability distribution function.
```

```
template<typename _Tp >
  _Tp std::__detail::__gamma_q (_Tp __alpha, _Tp __beta, _Tp __x)
      Return the gamma complementary cumulative propability distribution function.

    template<typename</li>
    Tp >

  _Tp std::__detail::__kolmogorov_p (_Tp __a, _Tp __b, _Tp __x)
template<typename_Tp>
  _Tp std::__detail::__logistic_p (_Tp __a, _Tp __b, _Tp __x)
      Return the logistic cumulative distribution function.
template<typename _Tp >
  _Tp std::__detail::__logistic_pdf (_Tp __a, _Tp __b, _Tp __x)
      Return the logistic probability density function.
template<typename_Tp>
  _Tp std::__detail::__lognormal_p (_Tp __mu, _Tp __sigma, _Tp __x)
      Return the lognormal cumulative probability density function.
template<typename _Tp >
  _Tp std::__detail::__lognormal_pdf (_Tp __nu, _Tp __sigma, _Tp __x)
      Return the lognormal probability density function.

    template<typename</li>
    Tp >

  _Tp std::__detail::__normal_p (_Tp __mu, _Tp __sigma, _Tp __x)
      Return the normal cumulative probability density function.
template<typename _Tp >
  _Tp std::__detail::__normal_pdf (_Tp __mu, _Tp __sigma, _Tp __x)
      Return the normal probability density function.
template<typename _Tp >
  Tp std:: detail:: rice pdf (Tp nu, Tp sigma, Tp x)
      Return the Rice probability density function.

    template<typename</li>
    Tp >

  _Tp std::__detail::__student_t_p (_Tp __t, unsigned int __nu)
      Return the Students T probability function.
template<typename _Tp >
  _Tp std::__detail::__student_t_pdf (_Tp __t, unsigned int __nu)
      Return the Students T probability density.
template<typename_Tp>
  _Tp std::__detail::__student_t_q (_Tp __t, unsigned int __nu)
      Return the complement of the Students T probability function.
template<typename _Tp >
  _Tp std::__detail::__weibull_p (_Tp __a, _Tp __b, _Tp __x)
      Return the Weibull cumulative probability density function.
template<typename _Tp >
  _Tp std::__detail::__weibull_pdf (_Tp __a, _Tp __b, _Tp __x)
      Return the Weibull probability density function.
```

10.10.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.10.2 Macro Definition Documentation

10.10.2.1 _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC

#define _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC 1

Definition at line 49 of file sf_distributions.tcc.

10.11 include/bits/sf_ellint.tcc File Reference

#include <complex>
#include <ext/math_const.h>
Include dependency graph for sf_ellint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

```
    std
```

• std:: detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_ELLINT_TCC 1

Functions

```
    template<typename</li>
    Tp >

  _Tp std::__detail::__comp_ellint_1 (_Tp __k)
      Return the complete elliptic integral of the first kind K(k) using the Carlson formulation.

    template<typename</li>
    Tp >

  _Tp std::__detail::__comp_ellint_2 (_Tp __k)
      Return the complete elliptic integral of the second kind E(k) using the Carlson formulation.
template<typename _Tp >
  Tp std:: detail:: comp ellint 3 (Tp k, Tp nu)
      Return the complete elliptic integral of the third kind \Pi(k,\nu)=\Pi(k,\nu,\pi/2) using the Carlson formulation.
template<typename _Tp >
  Tp std:: detail:: comp ellint d (Tp k)
template<typename_Tp>
  _Tp std::__detail::__comp_ellint_rf (_Tp __x, _Tp __y)
template<typename _Tp >
  _Tp std::__detail::__comp_ellint_rg (_Tp __x, _Tp __y)
template<typename _Tp >
  _Tp std::__detail::__ellint_1 (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the first kind F(k,\phi) using the Carlson formulation.
template<typename_Tp>
  _Tp std::__detail::__ellint_2 (_Tp __k, _Tp __phi)
      Return the incomplete elliptic integral of the second kind E(k,\phi) using the Carlson formulation.

    template<typename</li>
    Tp >

  _Tp std::__detail::__ellint_3 (_Tp __k, _Tp __nu, _Tp __phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) using the Carlson formulation.
template<typename</li>Tp >
  _Tp std::__detail::__ellint_cel (_Tp __k_c, _Tp __p, _Tp __a, _Tp __b)
template<typename_Tp>
  template<typename_Tp>
  _Tp std::__detail::__ellint_el1 (_Tp __x, _Tp __k_c)
template<typename</li>Tp >
  _Tp std::__detail::__ellint_el2 (_Tp __x, _Tp __k_c, _Tp __a, _Tp __b)
template<typename_Tp>
  _Tp std::__detail::__ellint_el3 (_Tp __x, _Tp __k_c, _Tp __p)
template<typename_Tp>
  _Tp std::__detail::__ellint_rc (_Tp __x, _Tp __y)
```

Return the Carlson elliptic function $R_C(x,y) = R_F(x,y,y)$ where $R_F(x,y,z)$ is the Carlson elliptic function of the first kind.

template<typename _Tp >
 _Tp std::__detail::__ellint_rd (_Tp __x, _Tp __y, _Tp __z)

Return the Carlson elliptic function of the second kind $R_D(x,y,z) = R_J(x,y,z,z)$ where $R_J(x,y,z,p)$ is the Carlson elliptic function of the third kind.

template<typename _Tp >

```
_Tp std::__detail::__ellint_rf (_Tp __x, _Tp __y, _Tp __z)
```

Return the Carlson elliptic function $R_F(x, y, z)$ of the first kind.

• template<typename $_{\rm Tp}>$

```
_Tp std::__detail::__ellint_rg (_Tp __x, _Tp __y, _Tp __z)
```

Return the symmetric Carlson elliptic function of the second kind $R_G(x, y, z)$.

ullet template<typename_Tp>

```
_Tp std::__detail::__ellint_rj (_Tp __x, _Tp __y, _Tp __z, _Tp __p)
```

Return the Carlson elliptic function $R_J(x, y, z, p)$ of the third kind.

 $\bullet \ \ \mathsf{template} \!<\! \mathsf{typename} \ _\mathsf{Tp} >$

```
_Tp std::__detail::__heuman_lambda (_Tp __k, _Tp __phi)
```

ullet template<typename_Tp>

```
_Tp std::__detail::__jacobi_zeta (_Tp __k, _Tp __phi)
```

10.11.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.11.2 Macro Definition Documentation

10.11.2.1 _GLIBCXX_BITS_SF_ELLINT_TCC

```
#define _GLIBCXX_BITS_SF_ELLINT_TCC 1
```

Definition at line 47 of file sf ellint.tcc.

10.12 include/bits/sf_euler.tcc File Reference

#include <vector>

Include dependency graph for sf_euler.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_EULER_TCC 1

Functions

```
\bullet \ \ template\!<\!typename\,\_Tp>
  _Tp std::__detail::__euler (unsigned int __n)
      This returns Euler number E_n.
template<typename _Tp >
  _Tp std::__detail::__euler (unsigned int __n, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__euler_series (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__eulerian_1 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > std::__detail::__eulerian_1 (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__eulerian_1_recur (unsigned int __n, unsigned int __m)
template<typename_Tp>
  std::vector< _Tp > std::__detail::__eulerian_1_recur (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__eulerian_2 (unsigned int __n, unsigned int __m)

    template<typename</li>
    Tp >

  std::vector< _Tp > std::__detail::__eulerian_2 (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__eulerian_2_recur (unsigned int __n, unsigned int __m)
template<typename_Tp>
  std::vector< _Tp > std::__detail::__eulerian_2_recur (unsigned int __n)
```

10.12.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.12.2 Macro Definition Documentation

```
10.12.2.1 _GLIBCXX_BITS_SF_EULER_TCC
#define _GLIBCXX_BITS_SF_EULER_TCC 1
```

Definition at line 35 of file sf euler.tcc.

10.13 include/bits/sf_expint.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_expint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_EXPINT_TCC 1

Functions

```
template<typename _Tp >
  _Tp std::__detail::__coshint (const _Tp __x)
      Return the hyperbolic cosine integral Chi(x).

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x).
template<typename _Tp >
  Tp std:: detail:: expint (Tp x)
      Return the exponential integral Ei(x).
template<typename _Tp >
  _Tp std::__detail::__expint_E1 (_Tp __x)
      Return the exponential integral E_1(x).

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_E1_asymp (_Tp __x)
      Return the exponential integral E_1(x) by asymptotic expansion.
template<typename _Tp >
  _Tp std::__detail::__expint_E1_series (_Tp __x)
      Return the exponential integral E_1(x) by series summation. This should be good for x < 1.
template<typename _Tp >
  _Tp std::__detail::__expint_Ei (_Tp __x)
      Return the exponential integral Ei(x).
template<typename _Tp >
  Tp std:: detail:: expint Ei asymp (Tp x)
      Return the exponential integral Ei(x) by asymptotic expansion.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_Ei_series (_Tp __x)
      Return the exponential integral Ei(x) by series summation.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_En_asymp (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) for large argument.
template<typename _Tp >
  _Tp std::__detail::__expint_En_cont_frac (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by continued fractions.

    template<typename</li>
    Tp >

  _Tp std::__detail::__expint_En_large_n (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) for large order.
template<typename _Tp >
  _Tp std::__detail::__expint_En_recursion (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by recursion. Use upward recursion for x < n and downward recursion (Miller's
      algorithm) otherwise.
template<typename _Tp >
  _Tp std::__detail::__expint_En_series (unsigned int __n, _Tp __x)
      Return the exponential integral E_n(x) by series summation.
• template<typename _{\rm Tp}>
  _Tp std::__detail::__logint (const _Tp __x)
      Return the logarithmic integral li(x).
template<typename _Tp >
  _Tp std::__detail::__sinhint (const _Tp __x)
      Return the hyperbolic sine integral Shi(x).
```

10.13.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.13.2 Macro Definition Documentation

```
10.13.2.1 _GLIBCXX_BITS_SF_EXPINT_TCC
```

#define _GLIBCXX_BITS_SF_EXPINT_TCC 1

Definition at line 47 of file sf_expint.tcc.

10.14 include/bits/sf_fresnel.tcc File Reference

#include <complex>
#include <ext/math_const.h>
Include dependency graph for sf_fresnel.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_FRESNEL_TCC 1

Functions

```
    template < typename _Tp >
    std::complex < _Tp > std::__detail::__fresnel (const _Tp __x)
```

Return the Fresnel cosine and sine integrals as a complex number f(C(x) + iS(x)).

```
    template<typename _Tp >
        void std::__detail::__fresnel_cont_frac (const _Tp __ax, _Tp &_Cf, _Tp &_Sf)
```

This function computes the Fresnel cosine and sine integrals by continued fractions for positive argument.

```
    template<typename _Tp >
        void std::__detail::__fresnel_series (const _Tp __ax, _Tp &_Cf, _Tp &_Sf)
```

This function returns the Fresnel cosine and sine integrals as a pair by series expansion for positive argument.

10.14.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.14.2 Macro Definition Documentation

```
10.14.2.1 _GLIBCXX_BITS_SF_FRESNEL_TCC
```

#define _GLIBCXX_BITS_SF_FRESNEL_TCC 1

Definition at line 31 of file sf fresnel.tcc.

10.15 include/bits/sf_gamma.tcc File Reference

```
#include <array>
#include <ext/math_const.h>
#include <bits/complex_util.h>
#include <ext/horner.h>
Include dependency graph for sf_gamma.tcc:
```

include/bits/sf_gamma.tcc

bits/complex_util.h

ext/horner.h

ext/math_const.h

This graph shows which files directly or indirectly include this file:

array

Classes

```
struct std::__detail::__gamma_lanczos_data< _Tp >
struct std::__detail::__gamma_lanczos_data< double >
struct std::__detail::__gamma_lanczos_data< float >
struct std::__detail::__gamma_lanczos_data< long double >
struct std::__detail::__gamma_spouge_data< _Tp >
struct std::__detail::__gamma_spouge_data< double >
struct std::__detail::__gamma_spouge_data< float >
struct std::__detail::__gamma_spouge_data< long double >
struct std::__detail::__gamma_spouge_data< long double >
struct std::__detail::__factorial_table< _Tp >
```

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_GAMMA_TCC 1

Functions

template<typename_Tp >
 _Tp std::__detail::__binomial (unsigned int __n, unsigned int __k)

Return the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

template<typename_Tp>

_Tp std::__detail::__binomial (_Tp __nu, unsigned int __k)

Return the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

• template<typename $_{\mathrm{Tp}}$ >

_Tp std::__detail::__digamma (unsigned int __n)

Return the digamma function of integral argument. The digamma or $\psi(x)$ function is defined as the logarithmic derivative of the gamma function:

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

The digamma series for integral argument is given by:

$$\psi(n) = -\gamma_E + \sum_{k=1}^{n-1} \frac{1}{k}$$

The latter sum is called the harmonic number, H_n .

• template<typename $_{\rm Tp}>$

_Tp std::__detail::__digamma (_Tp __x)

Return the digamma function. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

For negative argument the reflection formula is used:

$$\psi(x) = \psi(1-x) - \pi \cot(\pi x)$$

template<typename _Tp >

Tp std:: detail:: digamma asymp (Tp x)

Return the digamma function for large argument. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

•

template<typename_Tp>

_Tp std::__detail::__digamma_series (_Tp __x)

Return the digamma function by series expansion. The digamma or $\psi(x)$ function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

•

• template<typename_Tp>

_GLIBCXX14_CONSTEXPR _Tp std::__detail::__double_factorial (int __n)

Return the double factorial of the integer n.

template<typename _Tp >

Return the factorial of the integer n.

• template<typename _Tp >

Return the logarithm of the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling factorial function is defined by

$$a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1 = \Gamma(a+1)/\Gamma(a-n+1)$$

In particular, $n^{\underline{n}} = n!$.

template<typename_Tp>

Return the logarithm of the falling factorial function or the lower Pochhammer symbol for real argument a and order ν . The falling factorial function is defined by

$$a^{\underline{\nu}} = \Gamma(a+1)/\Gamma(a-\nu+1)$$

template<typename_Tp>

Return the gamma function $\Gamma(a)$. The gamma function is defined by:

$$\Gamma(a) = \int_0^\infty e^{-t} t^{a-1} dt (a > 0)$$

•

template<typename _Tp >

Return the incomplete gamma functions.

template<typename_Tp >
 std::pair< _Tp, _Tp > std:: __detail:: __gamma_cont_frac (_Tp __a, _Tp __x)

Return the incomplete gamma function by continued fraction.

template<typename _Tp >

Return the regularized lower incomplete gamma function. The regularized lower incomplete gamma function is defined by

$$P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\gamma(a, x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

is the lower incomplete gamma function.

• template<typename_Tp>

Return the regularized upper incomplete gamma function. The regularized upper incomplete gamma function is defined by

$$Q(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}$$

where $\Gamma(a)$ is the gamma function and

$$\Gamma(a,x) = \int_{a}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

is the upper incomplete gamma function.

template<typename _Tp >

ullet template<typename_Tp>

template<typename _Tp >

Return the incomplete gamma function by series summation.

$$\gamma(a,x) = x^a e^{-z} \sum_{k=1}^{\infty} \frac{x^k}{(a)_k}$$

template<typename _Tp >

• template<typename $_{\mathrm{Tp}}$ >

Return the Hurwitz zeta function $\zeta(s,a)$ for all s = 1 and a > -1.

template<typename _Tp >

Return the Binet function J(1+z) by the Lanczos method. The Binet function is the log of the scaled Gamma function $log(\Gamma^*(z))$ defined by

$$J(z) = log(\Gamma^*(z)) = log(\Gamma(z)) + z - \left(z - \frac{1}{2}\right)log(z) - log(2\pi)$$

0

$$\Gamma(z) = \sqrt{2\pi}z^{z-\frac{1}{2}}e^{-z}e^{J(z)}$$

where $\Gamma(z)$ is the gamma function.

template<typename_Tp>

_GLIBCXX14_CONSTEXPR _Tp std::__detail::__lanczos_log_gamma1p (_Tp __z)

Return the logarithm of the gamma function $log(\Gamma(1+z))$ by the Lanczos method.

• template<typename_Tp>

Return the logarithm of the binomial coefficient. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

•

template<typename_Tp>

Return the logarithm of the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\begin{pmatrix} \nu \\ k \end{pmatrix} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by:

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

template<typename _Tp >

Return the sign of the exponentiated logarithm of the binomial coefficient for non-integral degree. The binomial coefficient is given by:

$$\binom{\nu}{k} = \frac{\Gamma(\nu+1)}{\Gamma(\nu-k+1)\Gamma(k+1)}$$

The binomial coefficients are generated by

$$(1+t)^{\nu} = \sum_{k=0}^{\infty} {\nu \choose k} t^k$$

.

template<typename _Tp >

std::complex< _Tp > std::__detail::__log_binomial_sign (std::complex< _Tp > __nu, unsigned int __k)

template<typename_Tp>

template<typename
 Tp >

Return the logarithm of the double factorial of the integer n.

 $\bullet \ \ template {<} typename \ _Tp >$

Return the logarithm of the factorial of the integer n.

• template<typename _Tp >

Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The lower Pochammer symbol is defined by

$$a^{\underline{n}} = \Gamma(a+1)/\Gamma(a-\nu+1) = \prod_{k=0}^{n-1} (a-k), (a)_0 = 1$$

In particular, $n^{\underline{n}} = n!$. Thus this function returns

$$ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)], ln[a^{\underline{0}}] = 0$$

Many notations exist for this function:

$$(a)_{\nu}$$

,

$$\left\{ \begin{array}{c} a \\ \nu \end{array} \right\}$$

, and others.

template<typename_Tp>

Return $log(|\Gamma(a)|)$. This will return values even for a < 0. To recover the sign of $\Gamma(a)$ for any argument use $_log_ \hookleftarrow$ gamma_sign.

template<typename_Tp>

Return $log(\Gamma(a))$ for complex argument.

template<typename_Tp>

Return $log(\Gamma(x))$ by asymptotic expansion with Bernoulli number coefficients. This is like Sterling's approximation.

template<typename_Tp>

Return the sign of $\Gamma(x)$. At nonpositive integers zero is returned indicating $\Gamma(x)$ is undefined.

• template<typename _Tp >

template<typename
 Tp >

Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The Pochammer symbol is defined for integer order by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), (a)_0 = 1$$

Thus this function returns

$$ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[(a)_0] = 0$$

Many notations exist for this function:

$$(a)_{\nu}$$

(especially in the literature of special functions),

$$\begin{bmatrix} a \\ \nu \end{bmatrix}$$

, and others.

template<typename_Tp>

Return the polygamma function $\psi^{(m)}(x)$.

template<typename_Tp>

Return the (upper) Pochhammer function or the rising factorial function. The Pochammer symbol is defined by

$$a^{\overline{n}} = \Gamma(a+\nu)/\Gamma(\nu) = \prod_{k=0}^{n-1} (a+k), (a)_0 = 1$$

Many notations exist for this function:

$$(a)_{\nu}$$

, (especially in the literature of special functions),

$$\begin{bmatrix} a \\ n \end{bmatrix}$$

, and others.

template<typename _Tp >

Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)$$

Many notations exist for this function:

$$(a)_{\nu}$$

, (especially in the literature of special functions),

$$\begin{bmatrix} a \\ n \end{bmatrix}$$

, and others.

• template<typename $_{\rm Tp}>$

Return the Binet function J(1+z) by the Spouge method. The Binet function is the log of the scaled Gamma function $log(\Gamma^*(z))$ defined by

$$J(z) = \log(\Gamma^*(z)) = \log(\Gamma(z)) + z - \left(z - \frac{1}{2}\right)\log(z) - \log(2\pi)$$

or

$$\Gamma(z) = \sqrt{2\pi}z^{z-\frac{1}{2}}e^{-z}e^{J(z)}$$

where $\Gamma(z)$ is the gamma function.

template<typename
 Tp >

Return the logarithm of the gamma function $log(\Gamma(1+z))$ by the Spouge algorithm:

$$\Gamma(z+1) = (z+a)^{z+1/2}e^{-z-a} \left[\sqrt{2\pi} + \sum_{k=1}^{\lceil a \rceil + 1} \frac{c_k(a)}{z+k} \right]$$

where

$$c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}$$

and the error is bounded by

$$\epsilon(a) < a^{-1/2} (2\pi)^{-a-1/2}$$

template<typename _Tp >

Return the upper incomplete gamma function. The lower incomplete gamma function is defined by

$$\Gamma(a,x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt (a > 0)$$

template<typename _Tp >

Return the lower incomplete gamma function. The lower incomplete gamma function is defined by

$$\gamma(a, x) = \int_0^x e^{-t} t^{a-1} dt (a > 0)$$

Variables

```
    constexpr Factorial table < long double > std:: detail:: S double factorial table [301]

• constexpr _Factorial_table < long double > std::__detail::_S_factorial_table [171]
• constexpr unsigned long long std:: detail:: S harmonic denom [ S num harmonic numer]

    constexpr unsigned long long std:: __detail::_S_harmonic_numer [_S_num_harmonic_numer]

\bullet \ \ constexpr\_Factorial\_table < long\ double > std::\_detail::\_S\_neg\_double\_factorial\_table\ [999]
template<typename _Tp >
  constexpr std::size_t std::__detail::_S_num_double_factorials = 0
template<>
  constexpr std::size_t std::__detail::_S_num_double_factorials< double > = 301
template<>
  constexpr std::size t std:: detail:: S num double factorials < float > = 57
• template<>
  constexpr std::size t std:: detail:: S num double factorials < long double > = 301
template<typename Tp >
  constexpr std::size_t std::__detail::_S_num_factorials = 0
template<>
  constexpr std::size_t std::__detail::_S_num_factorials< double > = 171
template<>
  constexpr std::size_t std::__detail::_S_num_factorials< float > = 35
template<>
  constexpr std::size_t std::__detail::_S_num_factorials< long double > = 171

    constexpr unsigned long long std::__detail::_S_num_harmonic_numer = 29

• template<typename _{\rm Tp}>
  constexpr std::size_t std::__detail::_S_num_neg_double_factorials = 0
  constexpr std::size_t std::__detail::_S_num_neg_double_factorials< double > = 150
template<>
  constexpr std::size_t std::__detail::_S_num_neg_double_factorials< float > = 27
template<>
  constexpr std::size t std:: detail:: S num neg double factorials < long double > = 999
```

10.15.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.15.2 Macro Definition Documentation

```
10.15.2.1 _GLIBCXX_BITS_SF_GAMMA_TCC #define _GLIBCXX_BITS_SF_GAMMA_TCC 1
```

Definition at line 49 of file sf gamma.tcc.

10.16 include/bits/sf_gegenbauer.tcc File Reference

```
#include <ext/math_const.h>
#include <ext/math_util.h>
```

Include dependency graph for sf_gegenbauer.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_GEGENBAUER_TCC 1

Functions

```
    template<typename _Tp >
        __gnu_cxx::__gegenbauer_t< _Tp > std::__detail::__gegenbauer_recur (unsigned int __n, _Tp __lambda, _Tp __x)
```

```
    template<typename _Tp >
        std::vector< __gnu_cxx::__quadrature_point_t< _Tp >> std::__detail::__gegenbauer_zeros (unsigned int __n,
        _Tp __lambda)
```

10.16.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.16.2 Macro Definition Documentation

```
10.16.2.1 _GLIBCXX_BITS_SF_GEGENBAUER_TCC
```

```
#define _GLIBCXX_BITS_SF_GEGENBAUER_TCC 1
```

Definition at line 31 of file sf_gegenbauer.tcc.

10.17 include/bits/sf_hankel.tcc File Reference

```
#include <complex>
#include <limits>
#include <vector>
#include <bits/complex_util.h>
Include dependency graph for sf hankel.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_HANKEL_TCC 1

Functions

```
template<typename _Tp >
  void std::__detail::__airy_arg (std::complex< _Tp > __num2d3, std::complex< _Tp > __zeta, std::complex<
  _Tp > &__argp, std::complex< _Tp > &__argm)
      Compute the arguments for the Airy function evaluations carefully to prevent premature overflow. Note that the major work
     here is in safe_div. A faster, but less safe implementation can be obtained without use of safe_div.
template<typename _Tp >
  std::complex< _Tp > std::__detail::__cyl_bessel (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Bessel function.
• template<typename _{\mathrm{Tp}} >
  std::complex< _Tp > std::__detail::__cyl_hankel_1 (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Hankel function of the first kind.
• template<typename _Tp >
  std::complex< _Tp > std::__detail::__cyl_hankel_2 (std::complex< _Tp > __nu, std::complex< _Tp > __z)
      Return the complex cylindrical Hankel function of the second kind.
template<typename _Tp >
  std::complex< Tp > std:: detail:: cyl neumann (std::complex< Tp > nu, std::complex< Tp > z)
      Return the complex cylindrical Neumann function.
template<typename _Tp >
  void std:: detail:: debye region (std::complex < Tp > alpha, int & indexr, char & aorb)
```

- template<typename _Tp >
 __gnu_cxx::__cyl_hankel_t< std::complex< _Tp >, std::complex< _Tp >, std::complex< _Tp >> std::__
 detail::__hankel (std::complex< _Tp > __nu, std::complex< _Tp > __z)
- template<typename _Tp >
 __gnu_cxx::__cyl_hankel_t< std::complex< _Tp >, std::complex< _Tp >, std::complex< _Tp >> std::__
 detail::__hankel_debye (std::complex< _Tp > __nu, std::complex< _Tp > __z, std::complex< _Tp > __alpha, int __indexr, char & __aorb, int & __morn)
- template<typename _Tp > void std::__detail::__hankel_params (std::complex< _Tp > __nu, std::complex< _Tp > __zhat, std::complex< _Tp > &__nup2, std::complex< _Tp > &__nup2, std::complex< _Tp > &__nup2, std::complex< _Tp > &__num2, std::complex< _Tp > &__num1d3, std::complex< _Tp > &__num2d3, std::complex< _Tp > &__num4d3, std ::complex< _Tp > &__zetan, std::complex< _Tp > &__zetanhf, std::complex< _Tp > &__z

Compute parameters depending on z and nu that appear in the uniform asymptotic expansions of the Hankel functions and their derivatives, except the arguments to the Airy functions.

template<typename_Tp >
 __gnu_cxx::__cyl_hankel_t< std::complex< _Tp >, std::complex< _Tp >, std::complex< _Tp >> std::__
 detail::__hankel_uniform (std::complex< _Tp > __nu, std::complex< _Tp > __z)

This routine computes the uniform asymptotic approximations of the Hankel functions and their derivatives including a patch for the case when the order equals or nearly equals the argument. At such points, Olver's expressions have zero denominators (and numerators) resulting in numerical problems. This routine averages results from four surrounding points in the complex plane to obtain the result in such cases.

template<typename _Tp >
 __gnu_cxx::__cyl_hankel_t< std::complex< _Tp >, std::complex< _Tp >, std::complex< _Tp >> std::__
 detail::__hankel_uniform_olver (std::complex< _Tp > __nu, std::complex< _Tp > __z)

Compute approximate values for the Hankel functions of the first and second kinds using Olver's uniform asymptotic expansion to of order nu along with their derivatives.

Compute outer factors and associated functions of z and nu appearing in Olver's uniform asymptotic expansions of the Hankel functions of the first and second kinds and their derivatives. The various functions of z and nu returned by $hankel_uniform_outer$ are available for use in computing further terms in the expansions.

template<typename _Tp >
 void std::__detail::__hankel_uniform_sum (std::complex< _Tp > __p, std::complex< _Tp > __p2, std::complex<
 _Tp > __num2, std::complex< _Tp > __o4dp, std::complex< _Tp > __o4dp, std::complex< _Tp > __o4dp, std::complex< _Tp > __o4dp, std::complex< _Tp > __od2p, std::complex< _Tp > __od0dp, std::complex< _Tp > __od2m, std::complex< _Tp > __od0dm, _Tp __eps, std::complex< _Tp > __od1dm, std::comple

Compute the sums in appropriate linear combinations appearing in Olver's uniform asymptotic expansions for the Hankel functions of the first and second kinds and their derivatives, using up to nterms (less than 5) to achieve relative error eps.

template<typename_Tp >
 std::complex< _Tp > std::__detail::__sph_bessel (unsigned int __n, std::complex< _Tp > __z)
 Return the complex spherical Bessel function.

• template<typename _Tp > __gnu_cxx::__sph_hankel_t< unsigned int, std::complex< _Tp >, std::complex< _Tp >> std::__detail::__ \hookleftarrow sph_hankel (unsigned int __n, std::complex< _Tp > __z)

Helper to compute complex spherical Hankel functions and their derivatives.

```
    template<typename _Tp > std::__detail::__sph_hankel_1 (unsigned int __n, std::complex < _Tp > __z)
        Return the complex spherical Hankel function of the first kind.
    template<typename _Tp > std::__detail::__sph_hankel_2 (unsigned int __n, std::complex < _Tp > __z)
        Return the complex spherical Hankel function of the second kind.
    template<typename _Tp > std::__detail::__sph_neumann (unsigned int __n, std::complex < _Tp > __z)
        Return the complex spherical Neumann function.
```

10.17.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

10.17.2 Macro Definition Documentation

```
10.17.2.1 _GLIBCXX_BITS_SF_HANKEL_TCC #define _GLIBCXX_BITS_SF_HANKEL_TCC 1
```

Definition at line 31 of file sf_hankel.tcc.

10.18 include/bits/sf_hermite.tcc File Reference

```
#include <ext/math_const.h>
Include dependency graph for sf_hermite.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_HERMITE_TCC 1

Functions

```
template < typename _Tp >
_Tp std::__detail::__hermite (unsigned int __n, _Tp __x)
__This routine returns the Hermite polynomial of order n: H_n(x).
template < typename _Tp >
__Tp std::__detail::__hermite_asymp (unsigned int __n, _Tp __x)
__This routine returns the Hermite polynomial of large order n: H_n(x). We assume here that x >= 0.
template < typename _Tp >
__gnu_cxx::__hermite_t < _Tp > std::__detail::__hermite_recur (unsigned int __n, _Tp __x)
__This routine returns the Hermite polynomial of order n: H_n(x) by recursion on n.
template < typename _Tp >
_std::vector < __gnu_cxx::__quadrature_point_t < _Tp > std::__detail::__hermite_zeros (unsigned int __n, _Tp __proto=_Tp{})
template < typename _Tp >
__gnu_cxx::__hermite_he_t < _Tp > std::__detail::__prob_hermite_recur (unsigned int __n, _Tp __x)
__This routine returns the Probabilists Hermite polynomial of order n: Hen(x) by recursion on n.
```

10.18.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.18.2 Macro Definition Documentation

10.18.2.1 _GLIBCXX_BITS_SF_HERMITE_TCC

#define _GLIBCXX_BITS_SF_HERMITE_TCC 1

Definition at line 42 of file sf_hermite.tcc.

10.19 include/bits/sf_hyperg.tcc File Reference

#include <ext/math_const.h>
#include <bits/notsospecfun.h>
Include dependency graph for sf_hyperg.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

• #define GLIBCXX BITS SF HYPERG TCC 1

Functions

```
template<typename _Tp >
  _Tp std::__detail::__conf_hyperg (_Tp __a, _Tp __c, _Tp __x)
      Return the confluent hypergeometric function {}_1F_1(a;c;x)=M(a,c,x).
template<typename _Tp >
  _Tp std::__detail::__conf_hyperg_lim (_Tp __c, _Tp __x)
      Return the confluent hypergeometric limit function {}_{0}F_{1}(-;c;x).

    template<typename</li>
    Tp >

  _Tp std::__detail::__conf_hyperg_lim_series (_Tp __c, _Tp __x)
      This routine returns the confluent hypergeometric limit function by series expansion.
template<typename _Tp >
  Tp std:: detail:: conf hyperg luke (Tp a, Tp c, Tp xin)
      Return the hypergeometric function _1F_1(a;c;x) by an iterative procedure described in Luke, Algorithms for the Compu-
      tation of Mathematical Functions.
template<typename</li>Tp >
  _Tp std::__detail::__conf_hyperg_series (_Tp __a, _Tp __c, _Tp __x)
      This routine returns the confluent hypergeometric function by series expansion.

    template<typename</li>
    Tp >

  _Tp std::__detail::__hyperg (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric function {}_{2}F_{1}(a,b;c;x).
template<typename _Tp >
  Tp std:: detail:: hyperg luke (Tp a, Tp b, Tp c, Tp xin)
      Return the hypergeometric function _2F_1(a,b;c;x) by an iterative procedure described in Luke, Algorithms for the Com-
      putation of Mathematical Functions.
template<typename _Tp >
  _Tp std::__detail::__hyperg_recur (int __m, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric polynomial {}_{2}F_{1}(-m,b;c;x) by Holm recursion.
template<typename_Tp>
  _Tp std::__detail::__hyperg_reflect (_Tp __a, _Tp __b, _Tp __c, _Tp __x)
      Return the hypergeometric function {}_2F_1(a,b;c;x) by the reflection formulae in Abramowitz & Stegun formula 15.3.6 for d
      = c - a - b not integral and formula 15.3.11 for d = c - a - b integral. This assumes a, b, c != negative integer.
template<typename _Tp >
  Tp std:: detail:: hyperg series (Tp a, Tp b, Tp c, Tp x)
      Return the hypergeometric function {}_2F_1(a,b;c;x) by series expansion.
template<typename _Tp >
```

_Tp std::__detail::__tricomi_u (_Tp __a, _Tp __c, _Tp __x)

Return the Tricomi confluent hypergeometric function

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_{1}F_{1}(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_{1}F_{1}(a-c+1;2-c;x)$$

template<typename_Tp>

Return the Tricomi confluent hypergeometric function

$$U(a,c,x) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} {}_{1}F_{1}(a;c;x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} {}_{1}F_{1}(a-c+1;2-c;x)$$

.

10.19.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.19.2 Macro Definition Documentation

10.19.2.1 _GLIBCXX_BITS_SF_HYPERG_TCC

#define _GLIBCXX_BITS_SF_HYPERG_TCC 1

Definition at line 44 of file sf hyperg.tcc.

10.20 include/bits/sf_hypint.tcc File Reference

#include <complex>
#include <ext/math_const.h>
Include dependency graph for sf_hypint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_HYPINT_TCC 1

Functions

```
    template<typename _Tp >
        std::pair< _Tp, _Tp > std::__detail::__chshint (_Tp __x, _Tp &_Chi, _Tp &_Shi)
```

This function returns the hyperbolic cosine Ci(x) and hyperbolic sine Si(x) integrals as a pair.

template < typename _Tp > void std:: detail:: chshint cont frac (Tp t, Tp & Chi, Tp & Shi)

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by continued fraction for positive argument.

```
    template<typename_Tp >
    void std::__detail::__chshint_series (_Tp __t, _Tp &_Chi, _Tp &_Shi)
```

This function computes the hyperbolic cosine Chi(x) and hyperbolic sine Shi(x) integrals by series summation for positive argument.

10.20.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.20.2 Macro Definition Documentation

10.20.2.1 _GLIBCXX_BITS_SF_HYPINT_TCC

#define _GLIBCXX_BITS_SF_HYPINT_TCC 1

Definition at line 31 of file sf_hypint.tcc.

10.21 include/bits/sf_jacobi.tcc File Reference

#include <ext/math_const.h>
#include <ext/math_util.h>
Include dependency graph for sf_jacobi.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_JACOBI_TCC 1

Functions

```
template<typename _Tp >
    __gnu_cxx::_jacobi_t< _Tp > std::__detail::__jacobi_recur (unsigned int __n, _Tp __alpha1, _Tp __beta1, _Tp __x)
template<typename _Tp >
    std::vector< __gnu_cxx::_quadrature_point_t< _Tp >> std::__detail::__jacobi_zeros (unsigned int __n, _Tp __alpha1, _Tp __beta1)
template<typename _Tp >
    __Tp std::__detail::__radial_jacobi (unsigned int __n, unsigned int __m, _Tp __rho)
template<typename _Tp >
    std::vector< __gnu_cxx::_quadrature_point_t< _Tp >> std::__detail::__radial_jacobi_zeros (unsigned int __n, unsigned int __m)
template<typename _Tp >
    __gnu_cxx::fp_promote_t< _Tp > std::__detail::__zernike (unsigned int __n, int __m, _Tp __rho, _Tp __phi)
```

10.21.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.21.2 Macro Definition Documentation

Definition at line 31 of file sf jacobi.tcc.

10.22 include/bits/sf_laguerre.tcc File Reference

```
#include <vector>
#include <ext/math_const.h>
Include dependency graph for sf_laguerre.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_LAGUERRE_TCC 1

Functions

```
    template<typename _Tpa , typename _Tp >

  _Tp std::__detail::__assoc_laguerre (unsigned int __n, _Tpa __alpha, _Tp __x)
      This routine returns the associated Laguerre polynomial of degree n, order m: L_n^{(m)}(x).
• template<typename _Tpa , typename _Tp >
  _Tp std::__detail::__laguerre (unsigned int __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of degree n, order \alpha: L_n^{(\alpha)}(x).
template<typename _Tp >
  _Tp std::__detail::__laguerre (unsigned int __n, _Tp __x)
      This routine returns the Laguerre polynomial of degree n: L_n(x).
• template<typename Tpa, typename Tp>
  _Tp std::__detail::__laguerre_hyperg (unsigned int __n, _Tpa __alpha1, _Tp __x)
      Evaluate the polynomial based on the confluent hypergeometric function in a safe way, with no restriction on the arguments.
ullet template<typename _Tpa , typename _Tp >
  _Tp std::__detail::__laguerre_large_n (unsigned __n, _Tpa __alpha1, _Tp __x)
      This routine returns the associated Laguerre polynomial of degree n, order \alpha > -1 for large n. Abramowitz & Stegun,
      13.5.21.
• template<typename _Tpa , typename _Tp >
   __gnu_cxx::__laguerre_t< _Tpa, _Tp > std::__detail::__laguerre_recur (unsigned int __n, _Tpa __alpha1, _Tp
  __x)
      This routine returns the associated Laguerre polynomial of degree n, order \alpha: L_n^{(\alpha)}(x) by recursion.
template<typename</li>Tp >
  std::vector< __gnu_cxx::_quadrature_point_t< _Tp >> std::__detail::__laguerre_zeros (unsigned int __n, _Tp
  __alpha1)
```

10.22.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.22.2 Macro Definition Documentation

```
10.22.2.1 _GLIBCXX_BITS_SF_LAGUERRE_TCC
#define _GLIBCXX_BITS_SF_LAGUERRE_TCC 1
```

Definition at line 44 of file sf laguerre.tcc.

10.23 include/bits/sf_legendre.tcc File Reference

```
#include <complex>
#include <ext/math_const.h>
#include <vector>
```

Include dependency graph for sf_legendre.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_LEGENDRE_TCC 1

Functions

template<typename _Tp >

```
_gnu_cxx::_assoc_legendre_p_t< _Tp > std::__detail::_assoc_legendre_p (unsigned int __I, unsigned int
  __m, _Tp __x, _Tp __phase=_Tp{+1})
      Return the associated Legendre function by recursion on l and downward recursion on m.
template<typename _Tp >
   __gnu_cxx::__assoc_legendre_q_t< _Tp > std::__detail::__assoc_legendre_q (unsigned int __I, unsigned int
  __m, _Tp __x, _Tp __phase=_Tp{+1})
template<typename</li>Tp >
  __gnu_cxx::_legendre_p_t< _Tp > std::__detail::__legendre_p (unsigned int __l, _Tp __x)
     Return the Legendre polynomial by upward recursion on degree l.
template<typename _Tp >
  gnu_cxx::_legendre_q_t< _Tp > std::__detail::__legendre_q (unsigned int __l, _Tp __x)
      Return the Legendre function of the second kind by upward recursion on degree l.
template<typename _Tp >
  _Tp std::__detail::__legendre_q_series (unsigned int __I, _Tp __x)
template<typename Tp >
  std::vector< _gnu_cxx::_quadrature_point_t< _Tp >> std::__detail::__legendre_zeros (unsigned int __I, _Tp
  proto=_Tp{})

    template<typename</li>
    Tp >

  std::complex < _Tp > std::__detail::__sph_harmonic (unsigned int __l, int __m, _Tp __theta, _Tp __phi)
     Return the spherical harmonic function.
template<typename _Tp >
  _Tp std::__detail::__sph_legendre (unsigned int __I, unsigned int __m, _Tp __theta)
      Return the spherical associated Legendre function.
```

10.23.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.23.2 Macro Definition Documentation

```
10.23.2.1 _GLIBCXX_BITS_SF_LEGENDRE_TCC
#define _GLIBCXX_BITS_SF_LEGENDRE_TCC 1
```

Definition at line 50 of file sf legendre.tcc.

10.24 include/bits/sf_mod_bessel.tcc File Reference

```
#include <complex>
#include <ext/math_const.h>
Include dependency graph for sf_mod_bessel.tcc:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define _GLIBCXX_BITS_SF_MOD_BESSEL_TCC 1

Functions

```
template<typename _Tp >
   _gnu_cxx::__airy_t< _Tp, _Tp > std::__detail::__airy (_Tp __z)
      Compute the Airy functions Ai(x) and Bi(x) and their first derivatives Ai'(x) and Bi(x) respectively.

    template<typename</li>
    Tp >

  _Tp std::__detail::__cyl_bessel_i (_Tp __nu, _Tp __x)
      Return the regular modified Bessel function of order \nu: I_{\nu}(x).
ullet template<typename_Tp>
   _gnu_cxx::__cyl_mod_bessel_t<_Tp, _Tp, _Tp > std::__detail::__cyl_bessel_ik (_Tp __nu, _Tp __x)
      Return the modified cylindrical Bessel functions and their derivatives of order \nu by various means.
template<typename _Tp >
    _gnu_cxx::__cyl_mod_bessel_t< _Tp, _Tp, _Tp > std::__detail::__cyl_bessel_ik_asymp (_Tp __nu, _Tp __x)
      This routine computes the asymptotic modified cylindrical Bessel and functions of order nu: I_{\nu}(x), N_{\nu}(x). Use this for
      x >> nu^2 + 1.
template<typename</li>Tp >
  gnu_cxx:: cyl_mod_bessel_t< Tp, Tp, Tp > std:: detail:: cyl_bessel_ik_steed (Tp __nu, Tp __x)
      Compute the modified Bessel functions I_{\nu}(x) and K_{\nu}(x) and their first derivatives I'_{\nu}(x) and K'_{\nu}(x) respectively. These
      four functions are computed together for numerical stability.
template<typename Tp >
  _Tp std::__detail::__cyl_bessel_k (_Tp __nu, _Tp __x)
      Return the irregular modified Bessel function K_{\nu}(x) of order \nu.

    template<typename</li>
    Tp >

   _gnu_cxx::__fock_airy_t< _Tp, std::complex< _Tp > > std::__detail::__fock_airy (_Tp __x)
      Compute the Fock-type Airy functions w_1(x) and w_2(x) and their first derivatives w'_1(x) and w'_2(x) respectively.
                                                w_1(x) = \sqrt{\pi}(Ai(x) + iBi(x))
                                                w_2(x) = \sqrt{\pi}(Ai(x) - iBi(x))
template<typename _Tp >
   gnu_cxx::_sph_mod_bessel_t< unsigned int, _Tp, _Tp > std::__detail::_sph_bessel_ik (unsigned int __n,
  _Tp __x)
```

10.24.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

Compute the spherical modified Bessel functions $i_n(x)$ and $k_n(x)$ and their first derivatives $i'_n(x)$ and $k'_n(x)$ respectively.

10.24.2 Macro Definition Documentation

```
10.24.2.1 _GLIBCXX_BITS_SF_MOD_BESSEL_TCC
#define _GLIBCXX_BITS_SF_MOD_BESSEL_TCC 1
```

Definition at line 47 of file sf mod bessel.tcc.

10.25 include/bits/sf_owens_t.tcc File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

• #define GLIBCXX BITS SF OWENS T TCC 1

Functions

```
template<typename _Tp >
    _Tp std::__detail::__gauss (_Tp __x)
template<typename _Tp >
    _Tp std::__detail::__owens_t (_Tp __h, _Tp __a)
template<typename _Tp >
    _Tp std::__detail::__znorm1 (_Tp __x)
template<typename _Tp >
    _Tp std::__detail::__znorm2 (_Tp __x)
```

10.25.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

10.25.2 Macro Definition Documentation

```
10.25.2.1 _GLIBCXX_BITS_SF_OWENS_T_TCC
```

```
#define _GLIBCXX_BITS_SF_OWENS_T_TCC 1
```

Definition at line 31 of file sf_owens_t.tcc.

10.26 include/bits/sf_polylog.tcc File Reference

```
#include <complex>
#include <ext/math_const.h>
#include <bits/complex_util.h>
Include dependency graph for sf_polylog.tcc:
```


This graph shows which files directly or indirectly include this file:

Classes

```
class std::__detail::_AsympTerminator< _Tp >class std::__detail::_Terminator< _Tp >
```

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

• #define GLIBCXX BITS SF POLYLOG TCC 1

Functions

```
    template<typename _Sp , typename _Tp >

  _Tp std::__detail::__bose_einstein (_Sp __s, _Tp __x)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__clamp_0_m2pi (std::complex< _Tp > __z)
template<typename_Tp>
  std::complex< _Tp > std::__detail::__clamp_pi (std::complex< _Tp > __z)

    template<typename</li>
    Tp >

  std::complex< _Tp > std::__detail::__clausen (unsigned int __m, std::complex< _Tp > __z)
• template<typename _{\mathrm{Tp}} >
  _Tp std::__detail::__clausen (unsigned int __m, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__clausen_cl (unsigned int __m, std::complex< _Tp > __z)
template<typename_Tp>
  _Tp std::__detail::__clausen_cl (unsigned int __m, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__clausen_sl (unsigned int __m, std::complex< _Tp > __z)
template<typename _Tp >
  _Tp std::__detail::__clausen_sl (unsigned int __m, _Tp __x)
template<typename _Tp >
  _Tp std::_detail::_dirichlet_beta (std::complex< _Tp > _s)
template<typename _Tp >
  _Tp std::__detail::__dirichlet_beta (_Tp __s)
template<typename _Tp >
  std::complex < _Tp > std::__detail::__dirichlet_eta (std::complex < _Tp > __s)
• template<typename _{\rm Tp}>
  _Tp std::__detail::__dirichlet_eta (_Tp __s)
template<typename _Tp >
  _Tp std::__detail::__dirichlet_lambda (_Tp __s)
• template<typename \_Sp , typename \_Tp>
  _Tp std::__detail::__fermi_dirac (_Sp __s, _Tp __x)
template<typename _Tp >
  std::complex < _Tp > std::__detail::__hurwitz_zeta_polylog (_Tp __s, std::complex < _Tp > __a)
```

```
template<typename _Tp , typename _ArgType >
   gnu cxx::fp promote t < std::complex < Tp >, ArgType > std:: detail:: periodic zeta ( ArgType z, ←
  Tp s)
template<typename _Tp >
  _Tp std::__detail::__polylog (_Tp __s, _Tp __x)
template<typename Tp >
  std::complex< _Tp > std::__detail::__polylog (_Tp __s, std::complex< _Tp > __w)
• template<typename _Tp , typename _ArgType >
  gnu_cxx::fp_promote_t< std::complex< _Tp >, _ArgType > std::__detail::__polylog_exp (_Tp __s, _ArgType
   w)
template<typename</li>Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_asymp (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_neg (_Tp __s, std::complex< _Tp > __w)

    template<typename</li>
    Tp >

  std::complex< _Tp > std::__detail::__polylog_exp_neg (int __n, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > std:: detail:: polylog exp neg int (int s, std::complex< Tp > w)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__polylog_exp_neg_int (int __s, _Tp __w)
template<typename _Tp >
  std::complex < Tp > std:: detail:: polylog exp neg real ( Tp s, std::complex < Tp > w)
template<typename Tp >
  std::complex < _Tp > std::__detail::__polylog_exp_neg_real (_Tp __s, _Tp __w)
template<typename _Tp >
  std::complex < \_Tp > std::\_\_detail::\_\_polylog\_exp\_pos \ (unsigned \ int \ \_\_s, \ std::complex < \ Tp > \ \ w)
template<typename _Tp >
  std::complex < _Tp > std::__detail::__polylog_exp_pos (unsigned int __s, _Tp __w)
template<typename _Tp >
  std::complex< _Tp > std:: __detail::__polylog_exp_pos (_Tp __s, std::complex< _Tp > __w)
template<typename_Tp>
  std::complex< _Tp > std::__detail::__polylog_exp_pos_int (unsigned int __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex < _Tp > std::__detail::__polylog_exp_pos_int (unsigned int __s, _Tp __w)

    template<typename</li>
    Tp >

  std::complex< _Tp > std::__detail::__polylog_exp_pos_real (_Tp __s, std::complex< _Tp > __w)
template<typename _Tp >
  std::complex< Tp > std:: detail:: polylog exp pos real (Tp s, Tp w)

    template<typename PowTp, typename Tp >

  _Tp std::__detail::__polylog_exp_sum (_PowTp __s, _Tp __w)
```

10.26.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.26.2 Macro Definition Documentation

10.26.2.1 _GLIBCXX_BITS_SF_POLYLOG_TCC

#define _GLIBCXX_BITS_SF_POLYLOG_TCC 1

Definition at line 41 of file sf_polylog.tcc.

10.27 include/bits/sf_stirling.tcc File Reference

#include <vector>

Include dependency graph for sf_stirling.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

#define GLIBCXX BITS SF STIRLING TCC 1

Functions

```
template<typename _Tp >
  std::vector< _Tp > std::__detail::__bell (unsigned int __n)
• template<typename _Tp , typename _Up >
  _Up std::__detail::__bell (unsigned int __n, _Up __x)
template<typename _Tp >
  std::vector< _Tp > std::__detail::__bell_series (unsigned int __n)

    template<typename</li>
    Tp >

  _Tp std::__detail::__lah (unsigned int __n, unsigned int __k)
template<typename _Tp >
  std::vector< Tp > std:: detail:: lah (unsigned int n)
template<typename _Tp >
  _Tp std::__detail::__lah_recur (unsigned int __n, unsigned int __k)
template<typename</li>Tp >
  std::vector< _Tp > std::__detail::__lah_recur (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__log_stirling_1 (unsigned int __n, unsigned int __m)
• template<typename _{\mathrm{Tp}}>
  Tp std:: detail:: log stirling 1 sign (unsigned int n, unsigned int m)
template<typename _Tp >
  _Tp std::__detail::__log_stirling_2 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  _Tp std:: __detail:: __stirling_1 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > std::__detail::__stirling_1 (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__stirling_1_recur (unsigned int __n, unsigned int __m)

    template<typename _Tp >

  std::vector< _Tp > std::__detail::__stirling_1_recur (unsigned int __n)

    template<typename</li>
    Tp >

  _Tp std::__detail::__stirling_2 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > std::__detail::__stirling_2 (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__stirling_2_recur (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > std::__detail::__stirling_2_recur (unsigned int __n)
template<typename _Tp >
  _Tp std::__detail::__stirling_2_series (unsigned int __n, unsigned int __m)
```

10.27.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.27.2 Macro Definition Documentation

10.27.2.1 _GLIBCXX_BITS_SF_STIRLING_TCC

```
#define _GLIBCXX_BITS_SF_STIRLING_TCC 1
```

Definition at line 35 of file sf_stirling.tcc.

10.28 include/bits/sf_theta.tcc File Reference

```
#include <vector>
#include <tuple>
#include <ext/math_const.h>
Include dependency graph for sf_theta.tcc:
```


This graph shows which files directly or indirectly include this file:

Classes

```
struct std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >
struct std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__arg_t
struct std::__detail::__jacobi_lattice_t< _Tp_Omega1, _Tp_Omega3 >::__tau_t
struct std::__detail::__jacobi_theta_0_t< _Tp1, _Tp3 >
struct std::__detail::__weierstrass_invariants_t< _Tp1, _Tp3 >
struct std::__detail::__weierstrass_roots_t< _Tp1, _Tp3 >
```

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

#define GLIBCXX BITS SF THETA TCC 1

Functions

```
template<typename _Tp >
  _Tp std::__detail::__ellnome (_Tp __k)
template<typename _Tp >
  _Tp std::__detail::__ellnome_k (_Tp __k)
template<typename _Tp >
  _Tp std::__detail::__ellnome_series (_Tp __k)
template<typename _Tp >
   _gnu_cxx::__jacobi_ellint_t< _Tp > std::__detail::__jacobi_ellint (_Tp __k, _Tp __u)
template<typename_Tp>
  std::complex < _Tp > std:: __detail:: __jacobi_theta_1 (std::complex < _Tp > __q, std::complex < _Tp > __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_1 (_Tp __q, const _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_1_prod (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_1_sum (_Tp __q, _Tp __x)
template<typename _Tp >
  std::complex<\_Tp>std::\_detail::\_jacobi\_theta\_2 \ (std::complex<\_Tp>\_\_q, \ std::complex<\_Tp>\_\_x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_2 (_Tp __q, const _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_2_prod (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_2_sum (_Tp __q, _Tp __x)
template<typename _Tp >
  std::complex < _Tp > std::__detail::__jacobi_theta_3 (std::complex < _Tp > __q, std::complex < _Tp > __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_3 (_Tp __q, const _Tp __x)
```

```
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_3_prod (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_3_sum (_Tp __q, _Tp __x)
• template<typename_Tp>
  std::complex < _Tp > std::__detail::__jacobi_theta_4 (std::complex < _Tp > __q, std::complex < _Tp > __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_4 (_Tp __q, const _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_4_prod (_Tp <math>_\_q, _Tp \_\_x)
template<typename _Tp >
  _Tp std::__detail::__jacobi_theta_4_sum (_Tp __q, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_1 (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_2 (_Tp __nu, _Tp __x)
• template<typename _{\mathrm{Tp}} >
  _Tp std::__detail::__theta_2_asymp (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_2_sum (_Tp __nu, _Tp __x)
template<typename</li>Tp >
  _Tp std::__detail::__theta_3 (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_3_asymp (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_3_sum (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_4 (_Tp __nu, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_c (_Tp __k, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_d (_Tp __k, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_n (_Tp __k, _Tp __x)
template<typename _Tp >
  _Tp std::__detail::__theta_s (_Tp __k, _Tp __x)
```

10.28.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.28.2 Macro Definition Documentation

10.28.2.1 _GLIBCXX_BITS_SF_THETA_TCC

#define _GLIBCXX_BITS_SF_THETA_TCC 1

Definition at line 31 of file sf_theta.tcc.

10.29 include/bits/sf_trig.tcc File Reference

#include <bits/complex_util.h>
Include dependency graph for sf_trig.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_TRIG_TCC 1

Functions

```
template<typename_Tp>
  _Tp std::__detail::__cos_pi (_Tp __x)

    template<typename _Tp >

  std::complex< _Tp > std::__detail::__cos_pi (std::complex< _Tp > __z)
template<typename _Tp >
  _Tp std::__detail::__cosh_pi (_Tp __x)
template<typename _Tp >
  std::complex< _Tp > std::__detail::__cosh_pi (std::complex< _Tp > __z)
template<typename _Tp >
  std::complex< Tp > std:: detail:: polar pi (Tp rho, Tp phi pi)
template<typename Tp >
  std::complex < _Tp > std::__detail::__polar_pi (_Tp __rho, const std::complex < _Tp > &__phi_pi)
template<typename _Tp >
  _Tp std::__detail::__sin_pi (_Tp __x)

    template<typename</li>
    Tp >

  std::complex< _Tp > std::__detail::__sin_pi (std::complex< _Tp > __z)
template<typename _Tp >
   \_gnu_cxx::\_sincos_t< \_Tp > std::\_detail::\_sincos (\_Tp \_\_x)
• template<>
   gnu cxx:: sincos t < float > std:: detail:: sincos (float x)
template<>
   __gnu_cxx::__sincos_t< double > std::__detail::__sincos (double __x)
• template<>
   gnu cxx:: sincos t < long double > std:: detail:: sincos (long double x)
template<typename _Tp >
   __gnu_cxx::__sincos_t< _Tp > std::__detail::__sincos_pi (_Tp __x)
template<typename _Tp >
  _Tp std::__detail::__sinh_pi (_Tp __x)
template<typename_Tp>
  std::complex < \_Tp > std::\__detail::\__sinh\_pi \ (std::complex < \_Tp > \_\_z)
template<typename _Tp >
  _Tp std::__detail::__tan_pi (_Tp __x)

    template<typename _Tp >

  std::complex< _Tp > std::__detail::__tan_pi (std::complex< _Tp > __z)
template<typename _Tp >
  _Tp std::__detail::__tanh_pi (_Tp __x)
template<typename Tp >
  std::complex< _Tp > std::__detail::__tanh_pi (std::complex< _Tp > __z)
```

10.29.1 Detailed Description

This is an internal header file, included by other library headers. You should not attempt to use it directly.

10.29.2 Macro Definition Documentation

10.29.2.1 _GLIBCXX_BITS_SF_TRIG_TCC

#define _GLIBCXX_BITS_SF_TRIG_TCC 1

Definition at line 31 of file sf_trig.tcc.

10.30 include/bits/sf_trigint.tcc File Reference

#include <complex>
#include <ext/math_const.h>
Include dependency graph for sf_trigint.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std:: detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_TRIGINT_TCC 1

Functions

```
    template<typename_Tp >
        std::pair< _Tp, _Tp > std::__detail::__sincosint (_Tp __x)
```

This function returns the sine Si(x) and cosine Ci(x) integrals as a pair.

```
    template<typename _Tp >
    void std:: __detail:: __sincosint _asymp (_Tp __t, _Tp &_Si, _Tp &_Ci)
```

This function computes the sine Si(x) and cosine Ci(x) integrals by asymptotic series summation for positive argument.

```
    template<typename _Tp >
        void std::__detail::__sincosint_cont_frac (_Tp __t, _Tp &_Si, _Tp &_Ci)
```

This function computes the sine Si(x) and cosine Ci(x) integrals by continued fraction for positive argument.

```
    template<typename _Tp >
        void std::__detail::__sincosint_series (_Tp __t, _Tp &_Si, _Tp &_Ci)
```

This function computes the sine Si(x) and cosine Ci(x) integrals by series summation for positive argument.

10.30.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

10.30.2 Macro Definition Documentation

```
10.30.2.1 _GLIBCXX_BITS_SF_TRIGINT_TCC
```

```
#define _GLIBCXX_BITS_SF_TRIGINT_TCC 1
```

Definition at line 31 of file sf trigint.tcc.

10.31 include/bits/sf_zeta.tcc File Reference

#include <ext/math_const.h>
Include dependency graph for sf_zeta.tcc:

This graph shows which files directly or indirectly include this file:

Namespaces

- std
- std::__detail

Implementation-space details.

Macros

• #define _GLIBCXX_BITS_SF_ZETA_TCC 1

Functions

```
template<typename _Tp >
  _Tp std::__detail::__debye (unsigned int __n, _Tp __x)

    template<typename</li>
    Tp >

  _Tp std::__detail::__dilog (_Tp __x)
      Compute the dilogarithm function Li_2(x) by summation for x \le 1.
template<typename Tp >
  _Tp std::__detail::__exp2 (_Tp __x)
template<typename _Tp >
  _Tp std::__detail::__hurwitz_zeta (_Tp __s, _Tp __a)
      Return the Hurwitz zeta function \zeta(s, a) for all s = 1 and a > -1.
template<typename_Tp>
  _Tp std::__detail::__hurwitz_zeta_euler_maclaurin (_Tp __s, _Tp __a)
      Return the Hurwitz zeta function \zeta(s,a) for all s \neq 1 and a > -1.

    template<typename _Tp >

  _Tp std::__detail::__riemann_zeta (_Tp __s)
      Return the Riemann zeta function \zeta(s).
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta_euler_maclaurin (_Tp __s)
      Evaluate the Riemann zeta function \zeta(s) by an alternate series for s > 0.
template<typename_Tp>
  _Tp std::__detail::__riemann_zeta_glob (_Tp __s)
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta_laurent (_Tp __s)
      Compute the Riemann zeta function \zeta(s) by Laurent expansion about s = 1.

    template<typename</li>
    Tp >

  _Tp std::__detail::__riemann_zeta_m_1 (_Tp __s)
      Return the Riemann zeta function \zeta(s) - 1.
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta_m_1_glob ( Tp s)
      Evaluate the Riemann zeta function by series for all s != 1. Convergence is great until largish negative numbers. Then the
      convergence of the > 0 sum gets better.
template<typename _Tp >
  _Tp std::__detail::__riemann_zeta_product (_Tp __s)
      Compute the Riemann zeta function \zeta(s) using the product over prime factors.
template<typename_Tp>
  _Tp std::__detail::__riemann_zeta_sum (_Tp __s)
      Compute the Riemann zeta function \zeta(s) by summation for s>1.
```

Variables

```
constexpr size_t std::__detail::_Num_Euler_Maclaurin_zeta = 100
constexpr size_t std::__detail::_Num_Stieltjes = 21
constexpr long double std::__detail::_S_Euler_Maclaurin_zeta [_Num_Euler_Maclaurin_zeta]
constexpr size_t std::__detail::_S_num_zetam1 = 121
constexpr long double std::__detail::_S_Stieltjes [_Num_Stieltjes]
```

10.31.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.31.2 Macro Definition Documentation

```
10.31.2.1 _GLIBCXX_BITS_SF_ZETA_TCC
#define _GLIBCXX_BITS_SF_ZETA_TCC 1
```

Definition at line 46 of file sf_zeta.tcc.

10.32 include/bits/specfun.h File Reference

```
#include <bits/c++config.h>
#include <limits>
#include <bits/stl_algobase.h>
#include <bits/specfun_state.h>
#include <bits/specfun util.h>
#include <type_traits>
#include <bits/numeric_limits.h>
#include <bits/complex_util.h>
#include <bits/sf_prime.tcc>
#include <bits/sf_trig.tcc>
#include <bits/sf_bernoulli.tcc>
#include <bits/sf_gamma.tcc>
#include <bits/sf_euler.tcc>
#include <bits/sf_stirling.tcc>
#include <bits/sf_bessel.tcc>
#include <bits/sf_beta.tcc>
#include <bits/sf_cardinal.tcc>
#include <bits/sf_chebyshev.tcc>
#include <bits/sf_coulomb.tcc>
#include <bits/sf_dawson.tcc>
#include <bits/sf_ellint.tcc>
#include <bits/sf_expint.tcc>
#include <bits/sf_fresnel.tcc>
#include <bits/sf_gegenbauer.tcc>
#include <bits/sf_hyperg.tcc>
#include <bits/sf_hypint.tcc>
#include <bits/sf_jacobi.tcc>
#include <bits/sf_laguerre.tcc>
#include <bits/sf_legendre.tcc>
#include <bits/sf_lerch.tcc>
```

```
#include <bits/sf_mittag_leffler.tcc>
#include <bits/sf_mod_bessel.tcc>
#include <bits/sf_hermite.tcc>
#include <bits/sf_theta.tcc>
#include <bits/sf_trigint.tcc>
#include <bits/sf_zeta.tcc>
#include <bits/sf_owens_t.tcc>
#include <bits/sf_polylog.tcc>
#include <bits/sf_airy.tcc>
#include <bits/sf_hankel.tcc>
#include <bits/sf_distributions.tcc>
Include dependency graph for specfun.h:
```


Namespaces

- __gnu_cxx
- std

Macros

- #define __cpp_lib_math_special_functions 201603L
- #define __STDCPP_MATH_SPEC_FUNCS__ 201003L

Functions

```
template<typename _Tp >
  __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::airy_ai (_Tp __x)
template<typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::airy_ai (std::complex< _Tp > __x)

    float gnu cxx::airy aif (float x)

    long double <u>gnu_cxx::airy_ail</u> (long double <u>x</u>)

• template<typename _Tp >
   __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::airy_bi (_Tp __x)
template<typename</li>Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::airy_bi (std::complex< _Tp > __x)

    float gnu cxx::airy bif (float x)

    long double gnu cxx::airy bil (long double x)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > std::assoc_laguerre (unsigned int __n, unsigned int __n, _Tp __x)
• template<typename _Talpha , typename _Tp >
  gnu cxx::fp promote t< Talpha, Tp > std::assoc laguerre (unsigned int n, Talpha alpha1, Tp x)

    float std::assoc_laguerref (unsigned int __n, unsigned int __m, float __x)

    long double std::assoc_laguerrel (unsigned int __n, unsigned int __m, long double __x)

template<typename _Tp >
  gnu cxx::fp promote t< Tp > std::assoc legendre (unsigned int I, unsigned int m, Tp x)
```

```
template<typename _Tp >
   gnu cxx::fp promote t< Tp > gnu cxx::assoc legendre q (unsigned int I, unsigned int m, Tp x)

    float gnu cxx::assoc legendre qf (unsigned int I, unsigned int m, float x)

    long double <u>gnu_cxx::assoc_legendre_ql</u> (unsigned int <u>l</u>, unsigned int <u>m</u>, long double <u>x</u>)

    float std::assoc legendref (unsigned int I, unsigned int m, float x)

    long double std::assoc_legendrel (unsigned int __l, unsigned int __m, long double __x)

template<typename _Tp >
  std::vector< Tp > gnu cxx::bell (unsigned int n)
• template<typename _Tp , typename _Up >
  _Up __gnu_cxx::bell (unsigned int __n, _Up __x)
template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::bernoulli (unsigned int __n)
template<typename _Tp >
  Tp gnu cxx::bernoulli (unsigned int n, Tp x)

    float gnu cxx::bernoullif (unsigned int n)

    long double gnu cxx::bernoullil (unsigned int n)

    template<typename _Tpa , typename _Tpb >

   __gnu_cxx::fp_promote_t< _Tpa, _Tpb > std::beta (_Tpa __a, _Tpb __b)

    float std::betaf (float a, float b)

    long double std::betal (long double a, long double b)

template<typename _Tp >
  gnu cxx::fp promote t < Tp > gnu cxx::binomial (unsigned int n, unsigned int k)
      Return the binomial coefficient as a real number. The binomial coefficient is given by:
                                                   \binom{n}{k} = \frac{n!}{(n-k)!k!}
      The binomial coefficients are generated by:
                                                 (1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k
template<typename _Tp >
   gnu cxx::fp promote t < Tp > gnu cxx::binomial p ( Tp p, unsigned int n, unsigned int k)
      Return the binomial cumulative distribution function.
template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::binomial_pdf (_Tp __p, unsigned int __n, unsigned int __k)
      Return the binomial probability mass function.

    float gnu cxx::binomialf (unsigned int n, unsigned int k)

    long double gnu cxx::binomiall (unsigned int n, unsigned int k)

• template<typename _Tps , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tps, _Tp > __gnu_cxx::bose_einstein (_Tps __s, _Tp __x)

    float gnu cxx::bose einsteinf (float s, float x)

    long double __gnu_cxx::bose_einsteinl (long double __s, long double __x)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_t (unsigned int __n, _Tp __x)

    float __gnu_cxx::chebyshev_tf (unsigned int __n, float __x)

    long double gnu cxx::chebyshev tl (unsigned int n, long double x)

template<typename</li>Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_u (unsigned int __n, _Tp __x)

    float __gnu_cxx::chebyshev_uf (unsigned int __n, float __x)
```

• long double <u>__gnu_cxx::chebyshev_ul</u> (unsigned int __n, long double __x)

```
template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_v (unsigned int __n, _Tp __x)

    float gnu cxx::chebyshev vf (unsigned int n, float x)

    long double gnu cxx::chebyshev vl (unsigned int n, long double x)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::chebyshev_w (unsigned int __n, _Tp __x)

    float __gnu_cxx::chebyshev_wf (unsigned int __n, float __x)

    long double gnu cxx::chebyshev wl (unsigned int n, long double x)

    template<typename</li>
    Tp >

   __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::clausen (unsigned int __m, _Tp __x)

    template<typename</li>
    Tp >

  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::clausen (unsigned int __m, std::complex< _Tp
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::clausen_cl (unsigned int __m, Tp x)

    float gnu cxx::clausen clf (unsigned int m, float x)

    long double gnu cxx::clausen cll (unsigned int m, long double x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::clausen_sl (unsigned int __m, _Tp __x)

    float gnu cxx::clausen slf (unsigned int m, float x)

    long double __gnu_cxx::clausen_sll (unsigned int __m, long double __x)

    float __gnu_cxx::clausenf (unsigned int __m, float __x)

• std::complex < float > gnu cxx::clausenf (unsigned int m, std::complex < float > z)

    long double gnu cxx::clausenl (unsigned int m, long double x)

    std::complex < long double > gnu cxx::clausenl (unsigned int m, std::complex < long double > z)

template<typename_Tp>
   _gnu_cxx::fp_promote_t< _Tp > std::comp_ellint_1 (_Tp __k)

    float std::comp ellint 1f (float k)

    long double std::comp_ellint_1l (long double __k)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > std::comp_ellint_2 (_Tp __k)

    float std::comp ellint 2f (float k)

    long double std::comp_ellint_2l (long double ___k)

• template<typename _Tp , typename _Tpn >
    gnu cxx::fp promote t < Tp, Tpn > std::comp ellint 3 (Tp k, Tpn nu)

    float std::comp ellint 3f (float k, float nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for float modulus k.

    long double std::comp_ellint_3l (long double __k, long double __nu)

      Return the complete elliptic integral of the third kind \Pi(k,\nu) for long double modulus k.

    template<typename Tk >

    _gnu_cxx::fp_promote_t< _Tk > __gnu_cxx::comp_ellint_d (_Tk __k)

    float gnu cxx::comp ellint df (float k)

    long double __gnu_cxx::comp_ellint_dl (long double __k)

    float __gnu_cxx::comp_ellint_rf (float __x, float __y)

• long double <u>__gnu_cxx::comp_ellint_rf</u> (long double <u>__x</u>, long double <u>__y</u>)
template<typename _Tx , typename _Ty >
    gnu cxx::fp promote t< Tx, Ty> gnu cxx::comp ellint rf (Tx x, Ty y)

    float __gnu_cxx::comp_ellint_rg (float __x, float __y)

    long double __gnu_cxx::comp_ellint_rg (long double __x, long double __y)

    template<typename _Tx , typename _Ty >

  \underline{\hspace{0.5cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.5cm}} Tx, \underline{\hspace{0.5cm}} Ty > \underline{\hspace{0.5cm}} gnu\_cxx:: comp\_ellint\_rg \ (\underline{\hspace{0.5cm}} Tx \underline{\hspace{0.5cm}} x, \underline{\hspace{0.5cm}} Ty \underline{\hspace{0.5cm}} y)
```

```
    template<typename _Tpa , typename _Tpc , typename _Tp >

   _gnu_cxx::fp_promote_t< _Tpa, _Tpc, _Tp > __gnu_cxx::conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x)

    template<typename Tpc, typename Tp >

    _gnu_cxx::fp_promote_t< _Tpc, _Tp > __gnu_cxx::conf_hyperg_lim (_Tpc __c, _Tp __x)

    float __gnu_cxx::conf_hyperg_limf (float __c, float __x)

    long double gnu cxx::conf hyperg liml (long double c, long double x)

    float gnu cxx::conf hypergf (float a, float c, float x)

    long double __gnu_cxx::conf_hypergl (long double __a, long double __c, long double __x)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::cos_pi (_Tp __x)

    float gnu cxx::cos pif (float x)

    long double gnu cxx::cos pil (long double x)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::cosh_pi (_Tp __x)

    float gnu cxx::cosh pif (float x)

    long double gnu cxx::cosh pil (long double x)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::coshint (_Tp __x)

    float gnu cxx::coshintf (float x)

    long double gnu cxx::coshintl (long double x)

template<typename Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::cosint (_Tp __x)

    float __gnu_cxx::cosintf (float __x)

    long double __gnu_cxx::cosintl (long double __x)

    template<typename _Tpnu , typename _Tp >

    gnu cxx::fp promote t< Tpnu, Tp > std::cyl bessel i (Tpnu nu, Tp x)

    float std::cyl bessel if (float nu, float x)

    long double std::cyl_bessel_il (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > std::cyl_bessel_j (_Tpnu __nu, _Tp __x)

    float std::cyl bessel if (float nu, float x)

    long double std::cyl bessel jl (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
    gnu cxx::fp promote t< Tpnu, Tp > std::cyl bessel k ( Tpnu nu, Tp x)

    float std::cyl_bessel_kf (float __nu, float __x)

    long double std::cyl bessel kl (long double nu, long double x)

• template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_1 (_Tpnu __nu, _Tp __z)
• template<typename _Tpnu , typename _Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_1 (std::complex< _Tpnu >
   nu, std::complex < _Tp > __x)

    std::complex< float > __gnu_cxx::cyl_hankel_1f (float __nu, float __z)

    std::complex < float > __gnu_cxx::cyl_hankel_1f (std::complex < float > __nu, std::complex < float > __x)

• std::complex < long double > gnu cxx::cyl hankel 1l (long double nu, long double z)
• std::complex < long double > __gnu_cxx::cyl_hankel_1l (std::complex < long double > __nu, std::complex < long
  double > x)

    template<typename _Tpnu , typename _Tp >

  std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_2 (_Tpnu __nu, _Tp __z)
\bullet \;\; {\sf template}{<} {\sf typename} \; {\sf \_Tpnu} \; , \\ {\sf typename} \; {\sf \_Tp} > \\
  std::complex< __gnu_cxx::fp_promote_t< _Tpnu, _Tp >> __gnu_cxx::cyl_hankel_2 (std::complex< _Tpnu >
   nu, std::complex < Tp > x)
```

```
    std::complex < float > __gnu_cxx::cyl_hankel_2f (std::complex < float > __nu, std::complex < float > __x)

    std::complex < long double > __gnu_cxx::cyl_hankel_2l (long double __nu, long double __z)

• std::complex < long double > gnu cxx::cyl hankel 2l (std::complex < long double > nu, std::complex < long
  double > x)

    template<typename _Tpnu , typename _Tp >

   gnu cxx::fp promote t< Tpnu, Tp > std::cyl neumann ( Tpnu nu, Tp x)

    float std::cyl neumannf (float nu, float x)

    long double std::cyl_neumannl (long double __nu, long double __x)

template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::dawson (_Tp __x)

    float gnu cxx::dawsonf (float x)

    long double <u>__gnu_cxx::dawsonl</u> (long double <u>__x)</u>

template<typename _Tp >
    gnu cxx::fp promote t < Tp > gnu cxx::debye (unsigned int n, Tp x)
• float <u>gnu_cxx::debyef</u> (unsigned int __n, float x)

    long double gnu cxx::debyel (unsigned int n, long double x)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::digamma (_Tp __x)

    float __gnu_cxx::digammaf (float __x)

    long double gnu cxx::digammal (long double x)

ullet template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::dilog (_Tp __x)

    float gnu cxx::dilogf (float x)

    long double gnu cxx::dilogl (long double x)

• template<typename _{\rm Tp}>
  Tp gnu cxx::dirichlet beta (Tp s)

    float gnu cxx::dirichlet betaf (float s)

    long double gnu cxx::dirichlet betal (long double s)

• template<typename _{\rm Tp}>
  Tp gnu cxx::dirichlet eta (Tp s)

    float gnu cxx::dirichlet etaf (float s)

    long double gnu cxx::dirichlet etal (long double s)

template<typename _Tp >
  _Tp __gnu_cxx::dirichlet_lambda (_Tp __s)

    float gnu cxx::dirichlet lambdaf (float s)

    long double __gnu_cxx::dirichlet_lambdal (long double __s)

template<typename _Tp >
  gnu cxx::fp promote t < Tp > gnu cxx::double factorial (int n)
      Return the double factorial n!! of the argument as a real number.
                                              n!! = n(n-2)...(2), 0!! = 1
     for even n and
                                            n!! = n(n-2)...(1), (-1)!! = 1
      for odd n.

    float gnu cxx::double factorialf (int n)

    long double __gnu_cxx::double_factoriall (int __n)

• template<typename Tp, typename Tpp>
    gnu cxx::fp promote t< Tp, Tpp > std::ellint 1 (Tp k, Tpp phi)

    float std::ellint 1f (float k, float phi)

• long double std::ellint_1l (long double __k, long double __phi)

    template<typename _Tp , typename _Tpp >

  __gnu_cxx::fp_promote_t< _Tp, _Tpp > std::ellint_2 (_Tp __k, _Tpp __phi)
```

```
    float std::ellint_2f (float __k, float __phi)

      Return the incomplete elliptic integral of the second kind E(k,\phi) for float argument.

    long double std::ellint 2l (long double k, long double phi)

      Return the incomplete elliptic integral of the second kind E(k, \phi).
template<typename _Tp , typename _Tpn , typename _Tpp >
    gnu cxx::fp promote t< Tp, Tpn, Tpp > std::ellint 3 (Tp k, Tpn nu, Tpp phi)
      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).

    float std::ellint_3f (float __k, float __nu, float __phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi) for float argument.

    long double std::ellint 3l (long double k, long double nu, long double phi)

      Return the incomplete elliptic integral of the third kind \Pi(k, \nu, \phi).
- template<typename _Tk , typename _Tp , typename _Ta , typename _Tb >
    gnu cxx::fp promote t< Tk, Tp, Ta, Tb > gnu cxx::ellint cel (Tk k c, Tp p, Ta a, Tb b)
• float <u>__gnu_cxx::ellint_celf</u> (float <u>__k_c</u>, float <u>__p</u>, float <u>__a</u>, float <u>__b</u>)
• long double gnu cxx::ellint cell (long double k c, long double p, long double a, long double b)
• template<typename _Tk , typename _Tphi >
    _gnu_cxx::fp_promote_t< _Tk, _Tphi > __gnu_cxx::ellint_d (_Tk __k, _Tphi __phi)

    float <u>__gnu_cxx::ellint_df</u> (float <u>__k</u>, float <u>__phi</u>)

• long double gnu cxx::ellint dl (long double k, long double phi)
• template<typename _Tp , typename _Tk >
    gnu cxx::fp promote t< Tp, Tk> gnu cxx::ellint el1 (Tp x, Tk k c)

    float gnu cxx::ellint el1f (float x, float k c)

    long double gnu cxx::ellint el11 (long double x, long double k c)

ullet template<typename _Tp , typename _Tk , typename _Ta , typename _Tb >
     \underline{ gnu\_cxx::fp\_promote\_t < \underline{ Tp, \_Tk, \_Ta, \_Tb > \underline{ gnu\_cxx::ellint\_el2} \ (\underline{ Tp\_\_x, \_Tk\_\_k\_c, \_Ta\_\_a, \_Tb\_\_b) } 
• float gnu cxx::ellint el2f (float x, float k c, float a, float b)

    long double __gnu_cxx::ellint_el2l (long double __x, long double __k_c, long double __a, long double __b)

    template<typename _Tx , typename _Tk , typename _Tp >

    gnu_cxx::fp_promote_t< _Tx, _Tk, _Tp > __gnu_cxx::ellint_el3 (_Tx __x, _Tk __k_c, _Tp __p)

    float gnu cxx::ellint el3f (float x, float k c, float p)

    long double __gnu_cxx::ellint_el3l (long double __x, long double __k_c, long double __p)

• template<typename _Tp , typename _Up >
    _gnu_cxx::fp_promote_t< _Tp, _Up > __gnu_cxx::ellint_rc (_Tp __x, _Up __y)

    float gnu cxx::ellint rcf (float x, float y)

    long double __gnu_cxx::ellint_rcl (long double __x, long double __y)

• template<typename Tp, typename Up, typename Vp>
    _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > __gnu_cxx::ellint_rd (_Tp __x, _Up __y, _Vp __z)

    float __gnu_cxx::ellint_rdf (float __x, float __y, float __z)

    long double __gnu_cxx::ellint_rdl (long double __x, long double __y, long double __z)

template<typename _Tp , typename _Up , typename _Vp >
   _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp > <u>__gnu_cxx::ellint_rf</u> (_Tp __x, _Up __y, _Vp __z)

    float __gnu_cxx::ellint_rff (float __x, float __y, float __z)

    long double gnu cxx::ellint rfl (long double x, long double y, long double z)

template<typename _Tp , typename _Up , typename _Vp >
    gnu\_cxx::fp\_promote\_t < Tp, Up, Vp > gnu\_cxx::ellint_rg (Tp x, Up y, Vp z)

    float __gnu_cxx::ellint_rgf (float __x, float __y, float __z)

• long double gnu cxx::ellint rgl (long double x, long double y, long double z)
template<typename _Tp , typename _Up , typename _Vp , typename _Wp >
   _gnu_cxx::fp_promote_t< _Tp, _Up, _Vp, _Wp > <u>__gnu_cxx::ellint_rj</u> (_Tp __x, _Up __y, _Vp __z, _Wp __p)

    float __gnu_cxx::ellint_rjf (float __x, float __y, float __z, float __p)

• long double __gnu_cxx::ellint_rjl (long double __x, long double __y, long double __z, long double __p)
```

```
template<typename _Tp >
  Tp gnu cxx::ellnome (Tp k)

    float gnu cxx::ellnomef (float k)

    long double <u>gnu_cxx::ellnomel</u> (long double <u>k</u>)

    template<typename</li>
    Tp >

  _Tp __gnu_cxx::euler (unsigned int n)
      This returns Euler number E_n.
template<typename _Tp >
  _Tp __gnu_cxx::eulerian_1 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > __gnu_cxx::eulerian_1 (unsigned int __n)
template<typename _Tp >
  _Tp __gnu_cxx::eulerian_2 (unsigned int __n, unsigned int __m)
template<typename _Tp >
   _gnu_cxx::fp_promote_t< _Tp > std::expint (_Tp __x)
template<typename _Tp >
    gnu cxx::fp promote t< Tp > gnu cxx::expint (unsigned int n, Tp x)

    float std::expintf (float x)

    float __gnu_cxx::expintf (unsigned int __n, float __x)

    long double std::expintl (long double x)

    long double __gnu_cxx::expintl (unsigned int __n, long double __x)

ullet template<typename _Tlam , typename _Tp >
   __gnu_cxx::fp_promote_t< _Tlam, _Tp > __gnu_cxx::exponential_p (_Tlam __lambda, _Tp __x)
      Return the exponential cumulative probability density function.

    template<typename Tlam, typename Tp >

    _gnu_cxx::fp_promote_t< _Tlam, _Tp > __gnu_cxx::exponential_pdf (_Tlam __lambda, _Tp __x)
      Return the exponential probability density function.
template<typename_Tp>
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::factorial (unsigned int __n)
      Return the factorial n! of the argument as a real number.
                                                 n! = 1 \times 2 \times ... \times n, 0! = 1

    float gnu cxx::factorialf (unsigned int n)

    long double <u>__gnu_cxx</u>::factoriall (unsigned int __n)

• template<typename _{\rm Tp}, typename _{\rm Tnu} >
    gnu cxx::fp promote t < Tp, Tnu > gnu cxx::falling factorial (Tp a, Tnu nu)
      Return the falling factorial function or the lower Pochhammer symbol for real argument a and integral order n. The falling
      factorial function is defined by
                                        a^{\underline{n}} = \prod_{k=0}^{n-1} (a-k) = \Gamma(a+1)/\Gamma(a-n+1)
      where a^{\underline{0}} \equiv 1. In particular, n^{\underline{n}} = n!.

    float gnu cxx::falling factorialf (float a, float nu)

    long double gnu cxx::falling factoriall (long double a, long double nu)

• template<typename Tps, typename Tp>
   __gnu_cxx::fp_promote_t< _Tps, _Tp > __gnu_cxx::fermi_dirac (_Tps __s, _Tp _ x)
• float gnu cxx::fermi diracf (float s, float x)

    long double __gnu_cxx::fermi_diracl (long double __s, long double __x)

template<typename _Tp >
  gnu cxx::fp promote t < Tp > gnu cxx::fisher f p (Tp F, unsigned int nu1, unsigned int nu2)
```

```
Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
      exceeds the value \chi^2.
template<typename</li>Tp >
   gnu cxx::fp promote t< Tp > gnu cxx::fisher f pdf (Tp F, unsigned int nu1, unsigned int nu2)
      Return the F-distribution propability function. This returns the probability that the observed chi-square for a correct model
     exceeds the value \chi^2.

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::fresnel_c (_Tp __x)

    float gnu cxx::fresnel cf (float x)

    long double __gnu_cxx::fresnel_cl (long double __x)

• template<typename_Tp>
    gnu cxx::fp promote t < Tp > gnu cxx::fresnel s (Tp x)

    float gnu cxx::fresnel sf (float x)

    long double __gnu_cxx::fresnel_sl (long double __x)

• template<typename Ta, typename Tp>
   _gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::gamma_p (_Ta __a, _Tp __x)
      Return the gamma cumulative propability distribution function or the regularized lower incomplete gamma function.

    template<typename _Ta , typename _Tb , typename _Tp >

  __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::gamma_pdf (_Ta __alpha, _Tb __beta, _Tp __x)
      Return the gamma propability distribution function.

    float gnu cxx::gamma pf (float a, float x)

    long double gnu cxx::gamma pl (long double a, long double x)

    template<typename Ta, typename Tp>

  __gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::gamma_q (_Ta __a, _Tp __x)
      Return the gamma complementary cumulative propability distribution (or survival) function or the regularized upper incom-
      plete gamma function.

    float __gnu_cxx::gamma_qf (float __a, float __x)

    long double gnu cxx::gamma ql (long double a, long double x)

template<typename _Ta >
    _gnu_cxx::fp_promote_t< _Ta > __gnu_cxx::gamma_reciprocal (_Ta __a)

    float gnu cxx::gamma reciprocalf (float a)

    long double gnu cxx::gamma reciprocall (long double a)

• template<typename _Tlam , typename _Tp >
    \_gnu\_cxx:: fp\_promote\_t < \_Tlam, \_Tp > \underline{\_gnu\_cxx}:: gegenbauer (unsigned int \underline\_n, \_Tlam \underline\_lambda, \_Tp \underline\_x)

    float gnu cxx::gegenbauerf (unsigned int n, float lambda, float x)

    long double gnu cxx::gegenbauerl (unsigned int n, long double lambda, long double x)

template<typename Tp >
   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::harmonic (unsigned int __n)
template<typename _Tp >
    gnu cxx::fp promote t < Tp > std::hermite (unsigned int n, Tp x)

    float std::hermitef (unsigned int n, float x)

    long double std::hermitel (unsigned int __n, long double __x)

• template<typename _Tk , typename _Tphi >
    _gnu_cxx::fp_promote_t< _Tk, _Tphi > <u>__gnu_cxx</u>::heuman_lambda (_Tk <u>__</u>k, _Tphi <u>__</u>phi)

    float gnu cxx::heuman lambdaf (float k, float phi)

    long double __gnu_cxx::heuman_lambdal (long double __k, long double __phi)

• template<typename Tp, typename Up>
   _gnu_cxx::fp_promote_t< _Tp, _Up > __gnu_cxx::hurwitz_zeta (_Tp __s, _Up __a)
• template<typename _Tp , typename _Up >
  std::complex< _Tp > __gnu_cxx::hurwitz_zeta (_Tp __s, std::complex< _Up > __a)

    float gnu cxx::hurwitz zetaf (float s, float a)
```

```
    long double __gnu_cxx::hurwitz_zetal (long double __s, long double __a)

    template<typename _Tpa , typename _Tpb , typename _Tpc , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tpa, _Tpb, _Tpc, _Tp > <u>__gnu_cxx::hyperg</u> (_Tpa <u>__a, _</u>Tpb <u>__b, _</u>Tpc <u>__c, _</u>Tp
    _x)

    float gnu cxx::hypergf (float a, float b, float c, float x)

    long double __gnu_cxx::hypergl (long double __a, long double __b, long double __c, long double __x)

- template<typename _Ta , typename _Tb , typename _Tp >
    gnu cxx::fp promote t< Ta, Tb, Tp > gnu cxx::ibeta ( Ta a, Tb b, Tp x)

    template<typename Ta, typename Tb, typename Tp>

   __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::ibetac (_Ta __a, _Tb __b, _Tp __x)
• float gnu cxx::ibetacf (float a, float b, float x)

    long double __gnu_cxx::ibetacl (long double __a, long double __b, long double __x)

• float __gnu_cxx::ibetaf (float __a, float __b, float __x)

    long double gnu cxx::ibetal (long double a, long double b, long double x)

- template < typename _Talpha , typename _Tbeta , typename _Tp >
    _gnu_cxx::fp_promote_t< _Talpha, _Tbeta, _Tp > <u>__gnu_cxx::jacob</u>i (unsigned __n, _Talpha __alpha, _Tbeta
   _beta, _Tp __x)
template<typename _Kp , typename _Up >
    _gnu_cxx::fp_promote_t< _Kp, _Up > __gnu_cxx::jacobi_cn (_Kp __k, _Up __u)

    float gnu cxx::jacobi cnf (float k, float u)

    long double gnu cxx::jacobi cnl (long double k, long double u)

    template<typename _Kp , typename _Up >

    _gnu_cxx::fp_promote_t< _Kp, _Up > __gnu_cxx::jacobi_dn (_Kp __k, _Up __u)

    float <u>gnu_cxx::jacobi_dnf</u> (float <u>k</u>, float <u>u</u>)

    long double gnu cxx::jacobi dnl (long double k, long double u)

• template<typename _Kp , typename _Up >
    gnu cxx::fp promote t < Kp, Up > gnu cxx::jacobi sn ( Kp k, Up u)

    float gnu cxx::jacobi snf (float k, float u)

    long double __gnu_cxx::jacobi_snl (long double __k, long double __u)

template<typename _Tpq , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_1 (_Tpq __q, _Tp __x)

    float __gnu_cxx::jacobi_theta_1f (float __q, float __x)

• long double <u>gnu_cxx::jacobi_theta_1l</u> (long double <u>q</u>, long double <u>x</u>)
• template<typename _Tpq , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_2 (_Tpq __q, _Tp __x)

    float gnu cxx::jacobi theta 2f (float q, float x)

    long double __gnu_cxx::jacobi_theta_2! (long double __q, long double __x)

template<typename _Tpq , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_3 (_Tpq __q, _Tp __x)

    float __gnu_cxx::jacobi_theta_3f (float __q, float __x)

    long double __gnu_cxx::jacobi_theta_3l (long double __q, long double __x)

• template<typename Tpq, typename Tp>
   __gnu_cxx::fp_promote_t< _Tpq, _Tp > __gnu_cxx::jacobi_theta_4 (_Tpq __q, _Tp __x)

    float __gnu_cxx::jacobi_theta_4f (float __q, float __x)

    long double gnu cxx::jacobi theta 4l (long double g, long double x)

• template<typename _Tk , typename _Tphi >
    _gnu_cxx::fp_promote_t< _Tk, _Tphi > <u>__gnu_cxx::jacobi_zeta</u> (_Tk <u>__</u>k, _Tphi <u>__</u>phi)

    float gnu cxx::jacobi zetaf (float k, float phi)

    long double gnu cxx::jacobi zetal (long double k, long double phi)

    float <u>gnu_cxx::jacobif</u> (unsigned <u>n</u>, float <u>alpha</u>, float <u>beta</u>, float <u>x</u>)

    long double gnu cxx::jacobil (unsigned n, long double alpha, long double beta, long double x)
```

- template<typename _Tp >
 __gnu_cxx::fp_promote_t< _Tp > std::laguerre (unsigned int __n, _Tp __x)
- float std::laguerref (unsigned int n, float x)
- long double std::laguerrel (unsigned int __n, long double __x)
- template<typename $_{\rm Tp}>$

template<typename_Tp>

template<typename
 Tp >

Return the logarithm of the binomial coefficient as a real number. The binomial coefficient is given by:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The binomial coefficients are generated by:

$$(1+t)^n = \sum_{k=0}^n \binom{n}{k} t^k$$

- float __gnu_cxx::lbinomialf (unsigned int __n, unsigned int __k)
- long double __gnu_cxx::lbinomiall (unsigned int __n, unsigned int __k)
- template<typename_Tp>

Return the logarithm of the double factorial ln(n!!) of the argument as a real number.

$$n!! = n(n-2)...(2), 0!! = 1$$

for even n and

$$n!! = n(n-2)...(1), (-1)!! = 1$$

for odd n.

- float gnu cxx::ldouble factorialf (int n)
- long double <u>__gnu_cxx::ldouble_factoriall</u> (int <u>__n)</u>
- template<typename_Tp>

template<typename_Tp>

- float __gnu_cxx::legendre_qf (unsigned int __l, float __x)
- long double __gnu_cxx::legendre_ql (unsigned int __l, long double __x)
- float std::legendref (unsigned int I, float x)
- long double std::legendrel (unsigned int __I, long double __x)
- template<typename _Tp , typename _Ts , typename _Ta >

- float __gnu_cxx::lerch_phif (float __z, float __s, float __a)
- long double __gnu_cxx::lerch_phil (long double __z, long double __s, long double __a)
- template<typename_Tp>

Return the logarithm of the factorial ln(n!) of the argument as a real number.

$$n! = 1 \times 2 \times \dots \times n, 0! = 1$$

• float __gnu_cxx::lfactorialf (unsigned int __n)

long double gnu cxx::lfactoriall (unsigned int n)

template < typename _Tp , typename _Tnu >
 gnu cxx::fp promote t < Tp, Tnu > gnu cxx::lfalling factorial (Tp a, Tnu nu)

Return the logarithm of the falling factorial function or the lower Pochhammer symbol. The falling factorial function is defined by

$$a^{\underline{n}} = \frac{\Gamma(a+1)}{\Gamma(a-\nu+1)} = \prod_{k=0}^{n-1} (a-k)$$

where $a^{\underline{0}} \equiv 1$. In particular, $n^{\underline{n}} = n!$. Thus this function returns

$$ln[a^{\underline{n}}] = ln[\Gamma(a+1)] - ln[\Gamma(a-\nu+1)]$$

where $ln[a^{\underline{0}}] \equiv 0$. Many notations exist for this function: $(a)_{\nu}$,

$$\left\{\begin{array}{c} a \\ \nu \end{array}\right\}$$

, and others.

- float gnu cxx::lfalling factorialf (float a, float nu)
- long double gnu cxx::lfalling factoriall (long double a, long double nu)
- template<typename_Ta >

template<typename _Ta >

std::complex< __gnu_cxx::fp_promote_t< _Ta >> __gnu_cxx::lgamma (std::complex< _Ta > __a)

- float gnu cxx::lgammaf (float a)
- std::complex < float > gnu cxx::lgammaf (std::complex < float > a)
- long double gnu cxx::lgammal (long double a)
- std::complex < long double > __a)
- template<typename_Tp>

gnu cxx::fp promote t
$$<$$
 Tp $>$ gnu cxx::logint (Tp x)

- float gnu cxx::logintf (float x)
- long double gnu cxx::logintl (long double x)
- template<typename _Ta , typename _Tb , typename _Tp >
 __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::logistic_p (_Ta __a, _Tb __b, _Tp __x)

Return the logistic cumulative distribution function.

• template<typename $_{\rm Ta}$, typename $_{\rm Tb}$, typename $_{\rm Tp}>$

Return the logistic probability density function.

ullet template<typename _Tmu , typename _Tsig , typename _Tp >

 $\underline{\quad \quad } gnu_cxx:: fp_promote_t < \underline{\quad } Tmu, \underline{\quad } Tsig, \underline{\quad } Tp > \underline{\quad } gnu_cxx:: lognormal_p \ (\underline{\quad } Tmu \underline{\quad } mu, \underline{\quad } Tsig \underline{\quad } sigma, \underline{\quad } Tp \underline{\quad } x)$

Return the lognormal cumulative probability density function.

- template < typename _Tmu , typename _Tsig , typename _Tp >

__gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > __gnu_cxx::lognormal_pdf (_Tmu __mu, _Tsig __sigma, _Tp __x)

Return the lognormal probability density function.

• template<typename Tp, typename Tnu >

Return the logarithm of the rising factorial function or the (upper) Pochhammer symbol. The rising factorial function is defined for integer order by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(n) = \prod_{k=0}^{\nu-1} (a+k), \overline{0} \equiv 1$$

Thus this function returns

$$ln[a^{\overline{\nu}}] = ln[\Gamma(a+\nu)] - ln[\Gamma(\nu)], ln[a^{\overline{0}}] \equiv 0$$

```
Many notations exist for this function: (a)_{\nu}, called the Pochhammer function (esp. in the literature of special functions),
      and
      , and others.

    float __gnu_cxx::lrising_factorialf (float __a, float __nu)

• long double __gnu_cxx::lrising_factoriall (long double __a, long double __nu)
ullet template<typename _Tp , typename _Ta , typename _Tb >
  std::complex< __gnu_cxx::fp_promote_t< _Tp, _Ta, _Tb >> __gnu_cxx::mittag_leffler (_Ta __alpha, _Tb __ ~
  beta, const std::complex < Tp > & z)

    template<typename _Tmu , typename _Tsig , typename _Tp >

  __gnu_cxx::fp_promote_t< _Tmu, _Tsig, _Tp > __gnu_cxx::normal_p (_Tmu __mu, _Tsig __sigma, _Tp __x)
      Return the normal cumulative probability density function.
template<typename _Tmu , typename _Tsig , typename _Tp >
   \underline{\hspace{0.3cm}} gnu\_cxx:: fp\_promote\_t < \underline{\hspace{0.3cm}} Tmu, \underline{\hspace{0.3cm}} Tsig, \underline{\hspace{0.3cm}} Tp > \underline{\hspace{0.3cm}} gnu\_cxx:: normal\_pdf (\underline{\hspace{0.3cm}} Tmu \underline{\hspace{0.3cm}} mu, \underline{\hspace{0.3cm}} Tsig \underline{\hspace{0.3cm}} sigma, \underline{\hspace{0.3cm}} Tp \underline{\hspace{0.3cm}} x)
      Return the gamma cumulative propability distribution function.
template<typename _Tph , typename _Tpa >
   _gnu_cxx::fp_promote_t< _Tph, _Tpa > <u>__gnu_cxx::owens_</u>t (_Tph __h, _Tpa __a)

    float gnu cxx::owens tf (float h, float a)

    long double __gnu_cxx::owens_tl (long double __h, long double __a)

    template<typename _Tp , typename _Up >

   __gnu_cxx::fp_promote_t< std::complex< _Tp >, _Up > __gnu_cxx::periodic_zeta (_Tp __x, _Up __s)
template<typename _Tp , typename _Up >
    gnu cxx::fp promote t< std::complex< Tp >, std::complex< Up >> gnu cxx::periodic zeta (std↔
  ::complex < _Up > __z, _Tp __s)

    std::complex< float > __gnu_cxx::periodic_zetaf (float __x, float __s)

    std::complex < long double > __gnu_cxx::periodic_zetal (long double __x, long double __s)

template<typename _Tp >
    gnu cxx::fp promote t < Tp > gnu cxx::polygamma (unsigned int m, Tp x)

    float __gnu_cxx::polygammaf (unsigned int __m, float __x)

    long double gnu cxx::polygammal (unsigned int m, long double x)

• template<typename _Tp , typename _Wp >
   _gnu_cxx::fp_promote_t< _Tp, _Wp > __gnu_cxx::polylog (_Tp __s, _Wp __w)
template<typename _Tp , typename _Wp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp, _Wp >> __gnu_cxx::polylog (_Tp __s, std::complex< _Tp >
   __w)

    float __gnu_cxx::polylogf (float __s, float __w)

    std::complex < float > gnu cxx::polylogf (float s, std::complex < float > w)

    long double gnu cxx::polylogl (long double s, long double w)

    std::complex < long double > __gnu_cxx::polylogl (long double __s, std::complex < long double > __w)

• template<typename_Tp>
   gnu cxx::fp promote t < Tp > gnu cxx::radpoly (unsigned int n, unsigned int m, Tp rho)

    float gnu cxx::radpolyf (unsigned int n, unsigned int m, float rho)

    long double gnu cxx::radpolyl (unsigned int n, unsigned int m, long double rho)

template<typename _Tp >
    _gnu_cxx::fp_promote_t< _Tp > std::riemann_zeta (_Tp __s)

    float std::riemann zetaf (float s)

    long double std::riemann_zetal (long double __s)

    template<typename _Tp , typename _Tnu >

   _gnu_cxx::fp_promote_t< _Tp, _Tnu > __gnu_cxx::rising_factorial (_Tp __a, _Tnu __nu)
```

Return the rising factorial function or the (upper) Pochhammer function. The rising factorial function is defined by

$$a^{\overline{\nu}} = \Gamma(a+\nu)/\Gamma(\nu)$$

Many notations exist for this function: $(a)_{\nu}$, called the Pochhammer function (esp. in the literature of special functions), and

 $\begin{bmatrix} a \\ \nu \end{bmatrix}$

```
, and others.
```

- float gnu cxx::rising factorialf (float a, float nu)
- long double gnu cxx::rising factoriall (long double a, long double nu)
- template<typename_Tp>

```
__gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sin_pi (_Tp __x)
```

- float gnu cxx::sin pif (float x)
- long double <u>gnu_cxx::sin_pil</u> (long double <u>x</u>)
- template<typename _Tp >

```
gnu cxx::fp promote t < Tp > gnu cxx::sinc (Tp x)
```

- template<typename _Tp >
- __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinc_pi (_Tp __x)
- float gnu cxx::sinc pif (float x)
- long double __gnu_cxx::sinc_pil (long double __x)
- float __gnu_cxx::sincf (float __x)
- long double gnu cxx::sincl (long double x)
- __gnu_cxx::__sincos_t< double > __gnu_cxx::sincos (double __x)
- template<typename
 Tp >

```
gnu cxx:: sincos t < gnu cxx::fp promote t < Tp >> gnu cxx::sincos (Tp x)
```

- template<typename_Tp>
 - __gnu_cxx::__sincos_t< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sincos_pi (_Tp __x)
- __gnu_cxx::__sincos_t< float > __gnu_cxx::sincos_pif (float __x)
- __gnu_cxx::__sincos_t< long double > __gnu_cxx::sincos_pil (long double __x)
- __gnu_cxx::_sincos_t< float > __gnu_cxx::sincosf (float __x)
- __gnu_cxx::__sincos_t< long double > __gnu_cxx::sincosl (long double __x)
- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinh_pi (_Tp __x)
- float gnu cxx::sinh pif (float x)
- long double <u>gnu_cxx::sinh_pil</u> (long double <u>x</u>)
- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinhc (_Tp __x)
- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinhc_pi (_Tp __x)
- float gnu cxx::sinhc pif (float x)
- long double gnu cxx::sinhc pil (long double x)
- float __gnu_cxx::sinhcf (float __x)
- long double <u>__gnu_cxx::sinhcl</u> (long double <u>__x)</u>
- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinhint (_Tp __x)
- float __gnu_cxx::sinhintf (float __x)
- long double <u>gnu_cxx::sinhintl</u> (long double <u>x</u>)
- template<typename _Tp >
 - __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sinint (_Tp __x)
- float __gnu_cxx::sinintf (float __x)
- long double gnu cxx::sinintl (long double x)

```
template<typename _Tp >
   gnu cxx::fp promote t < Tp > std::sph bessel (unsigned int n, Tp x)

    template<typename</li>
    Tp >

    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sph_bessel_i (unsigned int __n, _Tp __x)
• float gnu cxx::sph bessel if (unsigned int n, float x)

    long double gnu cxx::sph bessel il (unsigned int n, long double x)

template<typename_Tp>
    _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::sph_bessel_k (unsigned int __n, _Tp __x)
• float gnu cxx::sph bessel kf (unsigned int n, float x)

    long double __gnu_cxx::sph_bessel_kl (unsigned int __n, long double __x)

    float std::sph_besself (unsigned int __n, float __x)

    long double std::sph bessell (unsigned int n, long double x)

template<typename Tp >
  std::complex < __gnu_cxx::fp_promote_t < _Tp > > __gnu_cxx::sph_hankel_1 (unsigned int __n, _Tp __z)
template<typename _Tp >
  std::complex< gnu cxx::fp promote t< Tp>> gnu cxx::sph hankel 1 (unsigned int n, std::complex<
  _{\rm Tp} > _{\rm x}

    std::complex< float > __gnu_cxx::sph_hankel_1f (unsigned int __n, float __z)

    std::complex < float > gnu cxx::sph hankel 1f (unsigned int n, std::complex < float > x)

    std::complex < long double > __gnu_cxx::sph_hankel_1l (unsigned int __n, long double __z)

    std::complex < long double > __gnu_cxx::sph_hankel_1l (unsigned int __n, std::complex < long double > __x)

template<typename</li>Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sph_hankel_2 (unsigned int __n, _Tp __z)
template<typename Tp >
  std::complex< __gnu_cxx::fp_promote_t< _Tp >> __gnu_cxx::sph_hankel_2 (unsigned int __n, std::complex<
  _{\mathsf{Tp}} > _{\mathsf{x}}

    std::complex< float > __gnu_cxx::sph_hankel_2f (unsigned int __n, float __z)

    std::complex< float > __gnu_cxx::sph_hankel_2f (unsigned int __n, std::complex< float > __x)

• std::complex < long double > gnu cxx::sph hankel 2l (unsigned int n, long double z)

    std::complex < long double > gnu cxx::sph hankel 2l (unsigned int n, std::complex < long double > x)

• template<typename _Ttheta , typename _Tphi >
  std::complex< __gnu_cxx::fp_promote_t< _Ttheta, _Tphi >> __gnu_cxx::sph_harmonic (unsigned int __l, int
  _m, _Ttheta __theta, _Tphi __phi)

    std::complex < float > __gnu_cxx::sph_harmonicf (unsigned int __l, int __m, float __theta, float __phi)

• std::complex < long double > __gnu_cxx::sph_harmonicl (unsigned int __l, int __m, long double __theta, long
  double phi)

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > std::sph_legendre (unsigned int __l, unsigned int __m, _Tp __theta)
• float std::sph_legendref (unsigned int __l, unsigned int __m, float __theta)
• long double std::sph legendrel (unsigned int I, unsigned int m, long double theta)
template<typename</li>Tp >
  __gnu_cxx::fp_promote_t< _Tp > std::sph_neumann (unsigned int __n, _Tp __x)

    float std::sph_neumannf (unsigned int __n, float __x)

    long double std::sph_neumannl (unsigned int __n, long double __x)

template<typename _Tp >
  _Tp __gnu_cxx::stirling_1 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > __gnu_cxx::stirling_1 (unsigned int __n)
template<typename_Tp>
  _Tp __gnu_cxx::stirling_2 (unsigned int __n, unsigned int __m)
template<typename _Tp >
  std::vector< _Tp > __gnu_cxx::stirling_2 (unsigned int __n)
```

```
    template<typename _Tt , typename _Tp >

   gnu cxx::fp promote t< Tp > gnu cxx::student t p ( Tt t, unsigned int nu)
     Return the Students T probability function.

    template<typename Tt, typename Tp>

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::student_t_pdf (_Tt __t, unsigned int __nu)
     Return the complement of the Students T probability function.

    template<typename</li>
    Tp >

   _gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::tan_pi (_Tp __x)

    float gnu cxx::tan pif (float x)

    long double <u>gnu_cxx::tan_pil</u> (long double <u>x</u>)

    template<typename</li>
    Tp >

   __gnu_cxx::fp_promote_t< _Tp > __gnu_cxx::tanh_pi (_Tp __x)

    float __gnu_cxx::tanh_pif (float __x)

    long double __gnu_cxx::tanh_pil (long double __x)

template<typename_Ta>
   __gnu_cxx::fp_promote_t< _Ta > __gnu_cxx::tgamma (_Ta __a)

    template<typename</li>
    Ta >

  std::complex< gnu cxx::fp promote t< Ta >> gnu cxx::tgamma (std::complex < Ta > a)

    template<typename _Ta , typename _Tp >

    _gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::tgamma (_Ta __a, _Tp __x)
• template<typename _Ta , typename _Tp >
   _gnu_cxx::fp_promote_t< _Ta, _Tp > __gnu_cxx::tgamma_lower (_Ta __a, _Tp __x)

    float gnu cxx::tgamma lowerf (float a, float x)

    long double __gnu_cxx::tgamma_lowerl (long double __a, long double __x)

    float gnu cxx::tgammaf (float a)

• std::complex< float > gnu cxx::tgammaf (std::complex< float > a)

    float __gnu_cxx::tgammaf (float __a, float __x)

• long double gnu cxx::tgammal (long double a)

    std::complex < long double > __a)

• long double gnu cxx::tgammal (long double a, long double x)
• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > __gnu_cxx::theta_1 (_Tpnu __nu, _Tp __x)

    float gnu cxx::theta 1f (float nu, float x)

    long double __gnu_cxx::theta_1l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    gnu cxx::fp promote t< Tpnu, Tp > gnu cxx::theta 2 (Tpnu nu, Tp x)

    float gnu cxx::theta 2f (float nu, float x)

    long double gnu cxx::theta 2l (long double nu, long double x)

    template<typename Tpnu, typename Tp >

   _gnu_cxx::fp_promote_t< _Tpnu, _Tp > __gnu_cxx::theta_3 (_Tpnu __nu, _Tp __x)

    float gnu cxx::theta 3f (float nu, float x)

    long double __gnu_cxx::theta_3l (long double __nu, long double __x)

• template<typename _Tpnu , typename _Tp >
    _gnu_cxx::fp_promote_t< _Tpnu, _Tp > <u>__gnu_cxx::theta_4</u> (_Tpnu __nu, _Tp __x)

    float __gnu_cxx::theta_4f (float __nu, float __x)

• long double __gnu_cxx::theta_4l (long double __nu, long double __x)
• template<typename _Tpk , typename _Tp >
    \_gnu_cxx::fp\_promote\_t< \_Tpk, \_Tp> \_ gnu\_cxx::theta\_c (\_Tpk \__k, \_Tp \__x)

    float gnu cxx::theta cf (float k, float x)

    long double gnu cxx::theta cl (long double k, long double x)
```

```
template<typename _Tpk , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpk, _Tp > __gnu_cxx::theta_d (_Tpk __k, _Tp __x)

    float <u>__gnu_cxx::theta_df</u> (float <u>__k</u>, float <u>__x</u>)

    long double gnu cxx::theta dl (long double k, long double x)

• template<typename _{\rm Tpk}, typename _{\rm Tp} >
  __gnu_cxx::fp_promote_t< _Tpk, _Tp > __gnu_cxx::theta_n (_Tpk __k, _Tp __x)

    float gnu cxx::theta nf (float k, float x)

    long double __gnu_cxx::theta_nl (long double __k, long double __x)

• template<typename _Tpk , typename _Tp >
   _gnu_cxx::fp_promote_t< _Tpk, _Tp > __gnu_cxx::theta_s (_Tpk __k, _Tp __x)
float __gnu_cxx::theta_sf (float __k, float __x)
• long double gnu cxx::theta sl (long double k, long double x)

    template<typename _Tpa , typename _Tpc , typename _Tp >

    _gnu_cxx::fp_promote_t< _Tpa, _Tpc, _Tp > __gnu_cxx::tricomi_u (_Tpa __a, _Tpc __c, _Tp __x)

    float __gnu_cxx::tricomi_uf (float __a, float __c, float __x)

    long double __gnu_cxx::tricomi_ul (long double __a, long double __c, long double __x)

- template<typename _Ta , typename _Tb , typename _Tp >
  __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::weibull_p (_Ta __a, _Tb __b, _Tp __x)
      Return the Weibull cumulative probability density function.
• template<typename Ta, typename Tb, typename Tp>
  __gnu_cxx::fp_promote_t< _Ta, _Tb, _Tp > __gnu_cxx::weibull_pdf (_Ta __a, _Tb __b, _Tp __x)
      Return the Weibull probability density function.
• template<typename _Trho , typename _Tphi >
  __gnu_cxx::fp_promote_t< _Trho, _Tphi > __gnu_cxx::zernike (unsigned int __n, int __m, _Trho __rho, _Tphi
  __phi)

    float __gnu_cxx::zernikef (unsigned int __n, int __m, float __rho, float __phi)

    long double __gnu_cxx::zernikel (unsigned int __n, int __m, long double __rho, long double __phi)
```

10.32.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <cmath>.

10.32.2 Macro Definition Documentation

```
10.32.2.1 __cpp_lib_math_special_functions
#define __cpp_lib_math_special_functions 201603L
```

Definition at line 39 of file specfun.h.

10.32.2.2 __STDCPP_MATH_SPEC_FUNCS__

#define __STDCPP_MATH_SPEC_FUNCS__ 201003L

Definition at line 37 of file specfun.h.

10.33 include/bits/specfun_state.h File Reference

#include <cmath>
#include <vector>
Include dependency graph for specfun_state.h:

This graph shows which files directly or indirectly include this file:

Classes

```
struct __gnu_cxx::__airy_t< _Tx, _Tp >
struct __gnu_cxx::__assoc_legendre_p_t< _Tp >
struct __gnu_cxx::__assoc_legendre_q_t< _Tp >
struct __gnu_cxx::__chebyshev_t_t< _Tp >
struct __gnu_cxx::__chebyshev_u_t< _Tp >
struct __gnu_cxx::__chebyshev_v_t< _Tp >
struct __gnu_cxx::_chebyshev_w_t< _Tp >
struct __gnu_cxx::_coulomb_t< _Teta, _Trho, _Tp >
struct __gnu_cxx::_cyl_bessel_t< _Tnu, _Tx, _Tp >
struct __gnu_cxx::_cyl_hankel_t< _Tnu, _Tx, _Tp >
struct __gnu_cxx::_cyl_mod_bessel_t< _Tnu, _Tx, _Tp >
struct __gnu_cxx::_fock_airy_t< _Tx, _Tp >
struct __gnu_cxx::__gamma_inc_t< _Tp >
struct __gnu_cxx::__gamma_temme_t< _Tp >
```

A structure for the gamma functions required by the Temme series expansions of $N_{\nu}(x)$ and $K_{\nu}(x)$.

$$\Gamma_1 = \frac{1}{2\mu} \left[\frac{1}{\Gamma(1-\mu)} - \frac{1}{\Gamma(1+\mu)} \right]$$

and

$$\Gamma_2 = \frac{1}{2} \left[\frac{1}{\Gamma(1-\mu)} + \frac{1}{\Gamma(1+\mu)} \right]$$

where $-1/2 <= \mu <= 1/2$ is $\mu = \nu - N$ and N. is the nearest integer to ν . The values of $\Gamma(1+\mu)$ and $\Gamma(1-\mu)$ are returned as well.

- struct gnu cxx:: gappa pq t< Tp >
- struct gnu cxx:: gegenbauer t< Tp >
- struct __gnu_cxx::_hermite_he_t< _Tp >
- struct gnu cxx:: hermite t< Tp >
- struct __gnu_cxx::__jacobi_ellint_t< _Tp >
- struct gnu cxx:: jacobi t< Tp >
- struct gnu cxx:: laguerre t< Tpa, Tp >
- struct __gnu_cxx::__legendre_p_t< _Tp >
- struct gnu cxx:: legendre q t < Tp >
- struct __gnu_cxx::_lgamma_t< _Tp >
- struct gnu cxx:: quadrature point t< Tp >
- struct __gnu_cxx::_sincos_t< _Tp >
- struct gnu cxx:: sph bessel t< Tn, Tx, Tp >
- struct __gnu_cxx::__sph_hankel_t< _Tn, _Tx, _Tp >
- struct __gnu_cxx::_sph_mod_bessel_t< _Tn, _Tx, _Tp >
- struct __gnu_cxx::_stirling_1_t< _Tp >

A structure for Stirling numbers of the first kind.

struct __gnu_cxx::_stirling_2_t<_Tp>

A structure for Stirling numbers of the first kind.

Namespaces

gnu cxx

Enumerations

enum __gnu_cxx::gauss_quad_type { __gnu_cxx::Gauss, __gnu_cxx::Gauss_Lobatto, __gnu_cxx::Gauss_←
 Radau_lower, __gnu_cxx::Gauss_Radau_upper }

Enumeration gor differing types of Gauss quadrature. The gauss_quad_type is used to determine the boundary condition modifications applied to orthogonal polynomials for quadrature rules.

10.33.1 Detailed Description

This is an internal header file, included by other library headers. Do not attempt to use it directly. Instead, include <math>.

Index

_S	_GLIBCXX_BITS_SF_GEGENBAUER_TC
gnu_cxx::stirling_2_t, 537	sf_gegenbauer.tcc, 639
_Airy	_GLIBCXX_BITS_SF_HANKEL_TCC
std::detail::_Airy, 567	sf_hankel.tcc, 642
_Airy_asymp	_GLIBCXX_BITS_SF_HERMITE_TCC
std::detail::_Airy_asymp, 570	sf_hermite.tcc, 644
_Airy_asymp_series	_GLIBCXX_BITS_SF_HYPERG_TCC
std::detail::_Airy_asymp_series, 577	sf_hyperg.tcc, 646
_AsympTerminator	_GLIBCXX_BITS_SF_HYPINT_TCC
std::detail::_AsympTerminator, 595	sf_hypint.tcc, 648
_Cmplx	_GLIBCXX_BITS_SF_JACOBI_TCC
std::detail::jacobi_lattice_t, 546	sf jacobi.tcc, 649
std::detail::jacobi_theta_0_t, 555	_GLIBCXX_BITS_SF_LAGUERRE_TCC
std::detail::weierstrass_invariants_t, 560	sf_laguerre.tcc, 651
std::detail::weierstrass_roots_t, 563	_GLIBCXX_BITS_SF_LEGENDRE_TCC
std::detail::_Airy_asymp, 570	sf_legendre.tcc, 653
std::detail::_Airy_series, 582	_GLIBCXX_BITS_SF_MOD_BESSEL_TCC
_GLIBCXX_BITS_SF_AIRY_TCC	sf_mod_bessel.tcc, 655
sf_airy.tcc, 604	_GLIBCXX_BITS_SF_OWENS_T_TCC
_GLIBCXX_BITS_SF_BERNOULLI_TCC	sf owens t.tcc, 657
sf_bernoulli.tcc, 606	_GLIBCXX_BITS_SF_POLYLOG_TCC
_GLIBCXX_BITS_SF_BESSEL_TCC	sf_polylog.tcc, 659
sf_bessel.tcc, 608	_GLIBCXX_BITS_SF_STIRLING_TCC
_GLIBCXX_BITS_SF_BETA_TCC	sf_stirling.tcc, 662
sf_beta.tcc, 610	_GLIBCXX_BITS_SF_THETA_TCC
_GLIBCXX_BITS_SF_CARDINAL_TCC	sf_theta.tcc, 664
sf_cardinal.tcc, 612	_GLIBCXX_BITS_SF_TRIGINT_TCC
_GLIBCXX_BITS_SF_CHEBYSHEV_TCC	sf_trigint.tcc, 668
sf_chebyshev.tcc, 614	_GLIBCXX_BITS_SF_TRIG_TCC
_GLIBCXX_BITS_SF_COULOMB_TCC	sf_trig.tcc, 667
sf_coulomb.tcc, 616	_GLIBCXX_BITS_SF_ZETA_TCC
_GLIBCXX_BITS_SF_DAWSON_TCC	sf_zeta.tcc, 671
sf_dawson.tcc, 617	_M_omega_1
_GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC	std::detail::jacobi_lattice_t, 550
sf_distributions.tcc, 621	_M_omega_3
_GLIBCXX_BITS_SF_ELLINT_TCC	std::detail::jacobi_lattice_t, 550
sf_ellint.tcc, 623	_N_FGH
_GLIBCXX_BITS_SF_EULER_TCC	std::detail::_Airy_series, 587
sf_euler.tcc, 625	_Num_Euler_Maclaurin_zeta
_GLIBCXX_BITS_SF_EXPINT_TCC	std::detail, 458
sf_expint.tcc, 628	_Num_Stieltjes
_GLIBCXX_BITS_SF_FRESNEL_TCC	std::detail, 459
sf_fresnel.tcc, 629	_Real
_GLIBCXX_BITS_SF_GAMMA_TCC	std::detail::jacobi_lattice_t, 546
sf gamma.tcc, 637	std:: detail:: jacobi theta 0 t, 555

692 INDEX

std::detail::weierstrass_invariants_t, 560	std::detail::gamma_lanczos_data< long double
std::detail::weierstrass_roots_t, 563	>, 540
std::detail::_AiryState, 593	std::detail::gamma_spouge_data< double >,
_Real_Omega1	541
std::detail::jacobi_lattice_t, 546	std::detail::gamma_spouge_data< float >, 542
_Real_Omega3	std::detail::gamma_spouge_data< long double
std::detail::jacobi_lattice_t, 546	>, 543
_S_Ai	_S_d
std::detail::_Airy_series, 583	std::detail::_Airy_asymp_data< double >, 573
_S_Ai0	std::detail::_Airy_asymp_data< float >, 574
std::detail::_Airy_series, 587	std::detail::_Airy_asymp_data< long double >,
_S_Aip0	575
std::detail::_Airy_series, 587	_S_double_factorial_table
_S_Airy	std::detail, 459
std::detail::_Airy_series, 583	_S_eps
_S_Bi	std::detail::_Airy_series, 588
std::detail::_Airy_series, 584	_S_factorial_table
_S_Bi0	std::detail, 459
std::detail::_Airy_series, 587	_S_g
_S_Bip0	std::detail::gamma_lanczos_data< double >,
std::detail::_Airy_series, 588	538
_S_Euler_Maclaurin_zeta	std::detail::gamma_lanczos_data< float >, 539
std::detail, 459	std::detail::gamma_lanczos_data< long double
_S_FGH	>, 540
std::detail::_Airy_series, 584	_S_harmonic_denom
_S_Fock	std::detail, 460
std::detail::_Airy_series, 585	_S_harmonic_numer
_S_Gi0	std::detail, 460
std::detail::_Airy_series, 588	_\$_i
_S_Gip0	std::detail::_Airy_series, 589
std::detail::_Airy_series, 588	_S_max_cd
_S_Hi0	std::detail::_Airy_asymp_data< double >, 573
std::detail::_Airy_series, 588	std::detail::_Airy_asymp_data< float >, 574
_S_Hip0	std::detail::_Airy_asymp_data< long double >,
std::detail::_Airy_series, 589	575
_S_Scorer	_S_neg_double_factorial_table
std::detail::_Airy_series, 585	std::detail, 460
_S_Scorer2	_S_num_double_factorials
std::detail::_Airy_series, 586	std::detail, 460
_S_Stieltjes	_S_num_double_factorials< double >
std::detail, 463	std::detail, 460
_S_absarg_ge_pio3	_S_num_double_factorials< float >
std::detail::_Airy_asymp, 570	std::detail, 461
_S_absarg_lt_pio3	_S_num_double_factorials< long double >
std::detail::_Airy_asymp, 571	std::detail, 461
_S_c	_S_num_factorials
std::detail::_Airy_asymp_data< double >, 573	std::detail, 461
std::detail::_Airy_asymp_data< float >, 574	_S_num_factorials< double >
std::detail::_Airy_asymp_data< long double >,	std::detail, 461
575	_S_num_factorials< float >
_S_cheby	std::detail, 461
std::detail::gamma_lanczos_data< double >,	_S_num_factorials< long double >
538	std::detail, 462
	_S_num_harmonic_numer

INDEX 693

std::detail, 462	gnu_cxx::coulomb_t, 483
_S_num_neg_double_factorials	H1_deriv
std::detail, 462	gnu_cxx::cyl_hankel_t, 487
_S_num_neg_double_factorials< double >	H1_value
std::detail, 462	gnu_cxx::cyl_hankel_t, 487
_S_num_neg_double_factorials< float >	H2_deriv
std::detail, 462	gnu_cxx::cyl_hankel_t, 487
_S_num_neg_double_factorials< long double >	H2_value
std::detail, 463	gnu_cxx::cyl_hankel_t, 488
_S_num_zetam1	H_n
std::detail, 463	gnu_cxx::hermite_t, 505
_S_pi	H nm1
std::detail::jacobi_lattice_t, 550	gnu_cxx::hermite_t, 505
std::detail::_Airy_series, 589	
S_sqrt_pi	gnu_cxx::hermite_t, 505
std::detail::_Airy_asymp_series, 578	He n
std::detail::_Airy_series, 589	gnu_cxx::_hermite_he_t, 503
S zetam1	He_nm1
std::detail, 463	gnu_cxx::_hermite_he_t, 503
_Terminator	g.tas.tdtststst,
std:: detail:: Terminator, 598	gnu_cxx::hermite_he_t, 503
_Tp_Nome	I deriv
std:: detail:: jacobi lattice t, 547	gnu_cxx::cyl_mod_bessel_t, 490
_Type	I value
std::detail::jacobi_theta_0_t, 555	gnu_cxx::cyl_mod_bessel_t, 490
std::detail::weierstrass_invariants_t, 560	J deriv
std::detail::weierstrass_roots_t, 563	
_Val	gnu_cxx::cyl_bessel_t, 485 J value
	
std::detail::_AiryAuxilliaryState, 590	gnu_cxx::cyl_bessel_t, 485
Ai_deriv	K_deriv
gnu_cxx::airy_t, 466	gnu_cxx::cyl_mod_bessel_t, 490
std::detail::_AiryState, 594	K_value
Ai_value	gnu_cxx::cyl_mod_bessel_t, 490
gnu_cxx::airy_t, 466	L_n
std::detail::_AiryState, 594	gnu_cxx::laguerre_t, 514
Bi_deriv	L_nm1
gnu_cxx::airy_t, 466	gnu_cxx::laguerre_t, 514
std::detail::_AiryState, 594	L_nm2
Bi_value	gnu_cxx::laguerre_t, 514
gnu_cxx::airy_t, 466	N_deriv
std::detail::_AiryState, 594	gnu_cxx::_cyl_bessel_t, 485
C_n	N_value
gnu_cxx::gegenbauer_t, 500	gnu_cxx::_cyl_bessel_t, 485
C_nm1	P_I
gnu_cxx::gegenbauer_t, 500	gnu_cxx::legendre_p_t, 516
C_nm2	P_lm
gnu_cxx::gegenbauer_t, 501	gnu_cxx::assoc_legendre_p_t, 468
F_deriv	P_lm1
gnu_cxx::coulomb_t, 482	gnu_cxx::legendre_p_t, 516
F_value	P_lm1m
gnu_cxx::coulomb_t, 482	gnu_cxx::assoc_legendre_p_t, 469
G_deriv	P_lm2
gnu_cxx::coulomb_t, 482	gnu_cxx::legendre_p_t, 517
G_value	P_lm2m

694 INDEX

gnu_cxx::assoc_legendre_p_t, 469	gnu_cxx::sph_mod_bessel_t, 529
P_n	airy
gnu_cxx::jacobi_t, 512	std::detail, 271
P_nm1	airy_ai
gnu_cxx::jacobi_t, 512	std::detail, 272
P_nm2	airy_arg
gnu_cxx::jacobi_t, 512 Q_l	std::detail, 272
gnu_cxx::legendre_q_t, 518	airy_bi std:: detail, 273
grid_cxxlegeriare_q_t, 516 Q_lm	_alpha1
gnu_cxx::_assoc_legendre_q_t, 471	apna i gnu_cxx::jacobi_t, 511
grid_exxassoc_regendre_q_t, +/1Q_lm1	gnu_cxx::laguerre_t, 513
gnu_cxx::legendre_q_t, 519	am
gna_oxxiogonaro_q_i,	gnu_cxx::jacobi_ellint_t, 507
gnu_cxx::legendre_q_t, 519	gnd_oxxgdoosi_omnt_t, oo7
Q lmm1	std::detail, 273
gnu_cxx::_assoc_legendre_q_t, 472	assoc_legendre_p
Q lmm2	std:: detail, 274
gnu_cxx::_assoc_legendre_q_t, 472	assoc_legendre_q
STDCPP_MATH_SPEC_FUNCS	std::detail, 274
specfun.h, 687	bell
T_n	std::detail, 275
gnu_cxx::chebyshev_t_t, 474	bell_series
T nm1	std::detail, 275
gnu_cxx::chebyshev_t_t, 474	bernoulli
T nm2	std::detail, 276
gnu_cxx::chebyshev_t_t, 474	bernoulli_2n
	 std::detail, 277
gnu_cxx::chebyshev_u_t, 476	bernoulli_series
U_nm1	std::detail, 278
gnu_cxx::chebyshev_u_t, 476	beta
U_nm2	std::detail, 278
gnu_cxx::chebyshev_u_t, 476	beta1
V_n	gnu_cxx::jacobi_t, 511
gnu_cxx::chebyshev_v_t, 478	beta_gamma
V_nm1	std::detail, 279
gnu_cxx::chebyshev_v_t, 478	beta_inc
V_nm2	std::detail, 279
gnu_cxx::chebyshev_v_t, 478	beta_lgamma
W_n	std::detail, 280
gnu_cxx::chebyshev_w_t, 480	beta_p
W_nm1	std::detail, 281
gnu_cxx::chebyshev_w_t, 480	beta_product
W_nm2	std::detail, 281
gnu_cxx::chebyshev_w_t, 480	binomial
Wronskian	std::detail, 282
gnu_cxx::airy_t, 466	binomial_p
gnu_cxx::coulomb_t, 482	std::detail, 283
gnu_cxx::cyl_bessel_t, 484	binomial_pdf
gnu_cxx::cyl_hankel_t, 487	std::detail, 284
gnu_cxx::cyl_mod_bessel_t, 489	binomial_q
gnu_cxx::fock_airy_t, 492	std::detail, 284
gnu_cxx::sph_bessel_t, 524	bose_einstein
gnu_cxx::sph_hankel_t, 527	std::detail, 285

cauchy_p	conf_hyperg_lim_series
std::detail, 286	std::detail, 300
cd	conf_hyperg_luke
gnu_cxx::jacobi_ellint_t, 507	std::detail, 301
chebyshev_recur	conf_hyperg_series
std:: detail, 286	std:: detail, 301
chebyshev_t	cos_pi
std::detail, 287	std::detail, 302
chebyshev_u	cos v
std:: detail, 287	gnu_cxx::sincos_t, 523
chebyshev_v	cosh_pi
std::detail, 288	std::detail, 302, 303
chebyshev_w	coshint
std::detail, 288	std::detail, 303
chi_squared_pdf	coulomb_CF1
std::detail, 289	std::detail, 304
chi_squared_pdfc	coulomb_CF2
std:: detail, 289	std::detail, 304
chshint	coulomb f recur
std::detail, 290	std:: detail, 304
chshint_cont_frac	coulomb_g_recur
std::detail, 290	std:: detail, 305
chshint_series	coulomb norm
std::detail, 291	std::detail, 305
clamp_0_m2pi	cpp_lib_math_special_functions
std::detail, 291	specfun.h, 687
clamp_pi	CS
std::detail, 291	gnu_cxx::jacobi_ellint_t, 507
clausen	
clausen	cyl_bessel
clausen std::detail, 292	cyl_bessel std::detail, 305
clausen std::detail, 292 clausen_cl	cyl_bessel std::detail, 305 cyl_bessel_i std::detail, 306
clausen std::detail, 292clausen_cl std::detail, 293	cyl_bessel std::detail, 305 cyl_bessel_i
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl	cyl_bessel std::detail, 305 cyl_bessel_i std::detail, 306 cyl_bessel_ij_series
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv	cyl_bessel std::detail, 305 cyl_bessel_i std::detail, 306 cyl_bessel_ij_series std::detail, 307
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_derivgnu_cxx::jacobi_ellint_t, 507	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_derivgnu_cxx::jacobi_ellint_t, 507cn_value	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_derivgnu_cxx::jacobi_ellint_t, 507cn_valuegnu_cxx::jacobi_ellint_t, 509	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_derivgnu_cxx::jacobi_ellint_t, 507cn_valuegnu_cxx::jacobi_ellint_t, 509comp_ellint_1	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_derivgnu_cxx::jacobi_ellint_t, 507cn_valuegnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_derivgnu_cxx::jacobi_ellint_t, 507cn_valuegnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298comp_ellint_rf	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310cyl_bessel_jn_neg_arg
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298comp_ellint_rf std::detail, 298	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310cyl_bessel_jn_neg_arg std::detail, 311cyl_bessel_jn_steed std::detail, 311
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298comp_ellint_rf std::detail, 298comp_ellint_rg std::detail, 299conf_hyperg	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310cyl_bessel_jn_neg_arg std::detail, 311cyl_bessel_jn_steed
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cnderiv gnu_cxx::jacobi_ellint_t, 507cnvalue gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298comp_ellint_rf std::detail, 298comp_ellint_rg std::detail, 299conf_hyperg std::detail, 299	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310cyl_bessel_jn_neg_arg std::detail, 311cyl_bessel_jn_steed std::detail, 311cyl_bessel_k std::detail, 311
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cn_deriv gnu_cxx::jacobi_ellint_t, 507cn_value gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298comp_ellint_rf std::detail, 298comp_ellint_rg std::detail, 299conf_hyperg std::detail, 299conf_hyperg_lim	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310cyl_bessel_jn_neg_arg std::detail, 311cyl_bessel_jn_steed std::detail, 311cyl_bessel_k std::detail, 311cyl_bessel_k std::detail, 312cyl_hankel_1
clausen std::detail, 292clausen_cl std::detail, 293clausen_sl std::detail, 294, 295cnderiv gnu_cxx::jacobi_ellint_t, 507cnvalue gnu_cxx::jacobi_ellint_t, 509comp_ellint_1 std::detail, 295comp_ellint_2 std::detail, 297comp_ellint_3 std::detail, 297comp_ellint_d std::detail, 298comp_ellint_rf std::detail, 298comp_ellint_rg std::detail, 299conf_hyperg std::detail, 299	cyl_bessel std::detail, 305cyl_bessel_i std::detail, 306cyl_bessel_ij_series std::detail, 307cyl_bessel_ik std::detail, 307cyl_bessel_ik_asymp std::detail, 308cyl_bessel_ik_steed std::detail, 309cyl_bessel_j std::detail, 309cyl_bessel_jn std::detail, 310cyl_bessel_jn_asymp std::detail, 310cyl_bessel_jn_neg_arg std::detail, 311cyl_bessel_jn_steed std::detail, 311cyl_bessel_k std::detail, 311

cyl_hankel_2	std::detail, 326
std::detail, 314	ellint_d
cyl_neumann	std::detail, 326
std::detail, 315	ellint_el1
cyl_neumann_n	std::detail, 326
std::detail, 315	ellint_el2
dawson	std::detail, 326
std::detail, 316	ellint_el3
dawson_cont_frac	std::detail, 327
std:: detail, 316	ellint rc
dawson_series	std::detail, 327
std::detail, 317	ellint rd
dc	std::detail, 328
gnu_cxx::jacobi_ellint_t, 507	ellint_rf
debye	std::detail, 329
std::detail, 317	ellint_rg
debye_region	std:: detail, 329
std::detail, 318	ellint_rj
delta	std::detail, 330
std::detail::weierstrass_invariants_t, 561	ellnome
std:detail:weierstrass_roots_t, 564	std::detail, 331
digamma	std::detail::jacobi_lattice_t, 548
std::detail, 318	ellnome_k
digamma_asymp	std::detail, 332
std::detail, 319	ellnome_series
digamma_series	std::detail, 332
std::detail, 319	eta_arg
dilog	gnu_cxx::coulomb_t, 482
std::detail, 320	euler
dirichlet_beta	std::detail, 332, 333
std::detail, 320, 321	euler_series
dirichlet_eta	std::detail, 333
std::detail, 321, 322	eulerian_1
dirichlet_lambda	std::detail, 333, 334
dirichlet_lambda std::detail, 323	std::detail, 333, 334 eulerian_1_recur
std::detail, 323 dn_value	std::detail, 333, 334 eulerian_1_recur std::detail, 334
std::detail, 323	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2
std::detail, 323 dn_value	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335
std::detail, 323 dn_value gnu_cxx::jacobi_ellint_t, 509	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2
std::detail, 323dn_valuegnu_cxx::_jacobi_ellint_t, 509double_factorial	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323ds	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorial std::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1 std::detail::weierstrass_roots_t, 565e2 std::detail::weierstrass_roots_t, 565e3	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorial std::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1 std::detail::weierstrass_roots_t, 565e2 std::detail::weierstrass_roots_t, 565e3 std::detail::weierstrass_roots_t, 565	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338expint_E1_asymp
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338expint_E1_asymp std::detail, 338
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1e1std::detail::weierstrass_roots_t, 565e1e1std::detail::weierstrass_roots_t, 565e1e1std::detail::weierstrass_roots_t, 565	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338expint_E1_asymp std::detail, 338expint_E1_series
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565ellint_1std::detail, 324ellint_2	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336expint_E1 std::detail, 338expint_E1_asymp std::detail, 338expint_E1_series std::detail, 339
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1e1std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail::weierstrass_roots_t, 565e1e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail, 324	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338expint_E1_asymp std::detail, 338expint_E1_series std::detail, 339expint_Ei
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1e1std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1lint_1std::detail, 324e1lint_2std::detail, 324e1lint_3	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338expint_E1_asymp std::detail, 338expint_E1_series std::detail, 339expint_Ei std::detail, 339
std::detail, 323dn_valuegnu_cxx::jacobi_ellint_t, 509double_factorialstd::detail, 323dsgnu_cxx::jacobi_ellint_t, 508e1std::detail::weierstrass_roots_t, 565e2std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1e1std::detail::weierstrass_roots_t, 565e3std::detail::weierstrass_roots_t, 565e1e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail::weierstrass_roots_t, 565e1e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail, 324e1e1gnu_cxx::jacobi_ellint_t, 509e1std::detail, 324	std::detail, 333, 334eulerian_1_recur std::detail, 334eulerian_2 std::detail, 335eulerian_2_recur std::detail, 335, 336exp2 std::detail, 336expint std::detail, 336, 337expint_E1 std::detail, 338expint_E1_asymp std::detail, 338expint_E1_series std::detail, 339expint_Ei

ovnint Fi gavias	atdu datail 040
expint_Ei_series	std::detail, 349
std::detail, 340	fresnel_cont_frac
expint_En_asymp	std::detail, 350
std::detail, 341	fresnel_series
expint_En_cont_frac	std::detail, 350
std::detail, 342	_g_2
expint_En_large_n	std::detail::weierstrass_invariants_t, 561
std::detail, 342	_g_3
expint_En_recursion	std::detail::weierstrass_invariants_t, 561
std::detail, 343	gai_deriv
expint_En_series	std::detail::_AiryAuxilliaryState, 591
std::detail, 343	gai_value
exponential_p	std::detail::_AiryAuxilliaryState, 591
std::detail, 344	gamma
exponential_pdf	std::detail, 350, 351
std::detail, 344	gamma_1_value
exponential_q	gnu_cxx::gamma_temme_t, 497
std::detail, 345	gamma_2_value
factorial	gnu_cxx::gamma_temme_t, 497
std::detail, 345	gamma_cont_frac
std::detail::_Factorial_table, 597	std::detail, 351
fai_deriv	gamma_minus_value
std::detail::_AiryAuxilliaryState, 590	gnu_cxx::gamma_temme_t, 497
fai_value	gamma_p
std::detail::_AiryAuxilliaryState, 591	std::detail, 351, 352
falling_factorial	gamma_pdf
std::detail, 345, 346	std::detail, 352
fermi_dirac	gamma_plus_value
std::detail, 346	gnu_cxx::gamma_temme_t, 498
fisher_f_p	gamma_q
std::detail, 347	std::detail, 353
fisher_f_pdf	gamma_reciprocal
std::detail, 347	std::detail, 354
fisher_f_q	gamma_reciprocal_series
std::detail, 348	std::detail, 354
fock_airy	gamma_series
std::detail, 349	std::detail, 355
_fp_is_equal	gamma temme
gnu cxx, 240	std::detail, 355
fp_is_even_integer	gappa_p_value
gnu_cxx, 240	gnu_cxx::gappa_pq_t, 499
fp_is_half_integer	gappa_q_value
gnu_cxx, 241	gnu_cxx::gappa_pq_t, 499
	gauss
gnu_cxx, 241	std::detail, 356
sr fp_is_integer	gegenbauer_recur
gnu cxx, 242	std::detail, 356
grid_oxx, 2 12 fp_is_odd_integer	gegenbauer_zeros
gnu_cxx, 243	std::detail, 357
grid_oxx, 2 To fp_is_zero	gnu_cxx, 225
np_is_zero gnu_cxx, 243	gna_cxx, 225 fp_is_equal, 240
gnu_oxx, 240 fp_max_abs	ip_is_equal, 240 fp_is_even_integer, 240
np_max_abs gnu_cxx, 244	ip_is_even_integer, 240 fp_is_half_integer, 241
gnu_cxx, 244 fresnel	ip_is_nair_integer, 241 fp_is_half_odd_integer, 241
	ip_io_iidii_odd_iiitegei, 271

fp_is_integer, 242	V_nm2, 478
fp_is_odd_integer, 243	n, 478
fp_is_zero, 243	x, 478
fp_max_abs, 244	deriv, 477
parity, 244	gnu_cxx::chebyshev_v_t< _Tp >, 477
gauss_quad_type, 239	gnu_cxx::chebyshev_w_t
gnu_cxx::airy_t	W_n, 480
Ai_deriv, 466	W_nm1, 480
Ai_value, 466	W_nm2, 480
Bi_deriv, 466	n, 480
Bi_value, 466	x, 480
Wronskian, 466	deriv, 479
x_arg, 467	gnu_cxx::chebyshev_w_t< _Tp >, 479
gnu_cxx::airy_t< _Tx, _Tp >, 465	gnu_cxx::coulomb_t
gnu_cxx::assoc_legendre_p_t	F_deriv, 482
P_lm, 468	F_value, 482
P_lm1m, 469	G_deriv, 482
P_lm2m, 469	G_value, 483
	Wronskian, 482
, m, 468	eta_arg, 482
phase, 469	, 483
x, 469	rho_arg, 483
deriv, 468	gnu_cxx::_coulomb_t< _Teta, _Trho, _Tp >, 481
gnu_cxx::assoc_legendre_p_t< _Tp >, 467	gnu_cxx::cyl_bessel_t
gnu_cxx::_assoc_legendre_q_t	
Q_lm, 471	
Q_lmm1, 472	N_deriv, 485
Q_lmm2, 472	N_value, 485
	Wronskian, 484
, 471	nu_arg, 485
phase, 471	x_arg, 486
x, 472	gnu_cxx::_cyl_bessel_t< _Tnu, _Tx, _Tp >, 484
deriv, 471	gnu_cxx::cyl_hankel_t
gnu_cxx::assoc_legendre_q_t< _Tp >, 470	H1deriv, 487
gnu_cxx::_chebyshev_t_t	H1_value, 487
	H2_deriv, 487
T nm1, 474	H2_value, 488
T_nm2, 474	Wronskian, 487
n, 474	nu_arg, 488
, x, 474	x_arg, 488
deriv, 473	gnu_cxx::cyl_hankel_t< _Tnu, _Tx, _Tp >, 486
deriv2, 473	gnu_cxx::cyl_mod_bessel_t
gnu_cxx::chebyshev_t_t< _Tp >, 473	I deriv, 490
gnu_cxx::_chebyshev_u_t	
g.ia_oxxionesyonev_a_t U_n, 476	K_deriv, 490
U_nm1, 476	K_value, 490
U nm2, 476	Wronskian, 489
	nu_arg, 490
, x, 476	x_arg, 491
deriv, 475	gnu_cxx::cyl_mod_bessel_t< _Tnu, _Tx, _Tp >, 489
gnu_cxx::chebyshev_u_t< _Tp >, 475	gnu_cxx::fock_airy_t
gnu_cxx::_chebyshev_v_t	Wronskian, 492
V_n, 478	w1_deriv, 492
V_n, 470 V_nm1, 478	w1_uenv, 402 w1_value, 492

w2_deriv, 492	cn_deriv, 507
w2_value, 493	cn_value, 509
x_arg, 493	cs, 507
gnu_cxx::fock_airy_t< _Tx, _Tp >, 491	dc, 507
gnu_cxx::fp_is_integer_t, 493	dn_value, 509
is_integral, 494	ds, 508
value, 494	nc, 508
operator bool, 494	nd, 508
operator(), 494	ns, 508
gnu_cxx::gamma_inc_t	sc, 508
lgamma_value, 495	sd, 509
tgamma_value, 495	sn_deriv, 509
gnu_cxx::gamma_inc_t< _Tp >, 495	sn_value, 510
gnu_cxx::gamma_temme_t	$_$ gnu_cxx:: $_$ jacobi_ellint_t< $_$ Tp $>$, 506
gamma_1_value, 497	gnu_cxx::jacobi_t
gamma_2_value, 497	P_n, 512
gamma_minus_value, 497	P_nm1, 512
gamma_plus_value, 498	P_nm2, 512
mu_arg, 498	alpha1, 511
gnu_cxx::gamma_temme_t< _Tp >, 496	beta1, 511
gnu_cxx::gappa_pq_t	n, 511
gappa_p_value, 499	x, 512
gappa_q_value, 499	deriv, 511
gnu_cxx::gappa_pq_t< _Tp >, 498	gnu_cxx::jacobi_t< _Tp >, 510
gnu_cxx::gegenbauer_t	gnu_cxx::laguerre_t
C_n, 500	L_n, 514
C_nm1, 500	L_nm1, 514
C_nm2, 501	L_nm2, 514
lambda, 501	alpha1, 513
n, 501	n, 514
, x, 501	, x, 514
deriv, 500	deriv, 513
gnu_cxx::gegenbauer_t< _Tp >, 499	gnu_cxx::laguerre_t< _Tpa, _Tp >, 513
gnu_cxx::_hermite_he_t	gnu_cxx::legendre_p_t
g.id_oxxiiinermiteite_t	g.id_o.aiiiogonia.io_p_t P_I, 516
He nm1, 503	, 516 P_lm1, 516
He_nm2, 503	, 515 P_lm2, 517
n, 503	I, 516
x, 503	, 510 x, 517
, 503 deriv, 502	x, 517 deriv, 516
deriv, 502 deriv2, 502	lobatto, 516
gnu_cxx::hermite_he_t< _Tp >, 502	
	gnu_cxx::legendre_p_t<_Tp>, 515
gnu_cxx::hermite_t	gnu_cxx::legendre_q_t
H_n, 505	Q_l, 518
H_nm1, 505	Q_lm1, 519
H_nm2, 505	Q_lm2, 519
n, 505	I, 518
x, 506	x, 519
deriv, 504	deriv, 518
deriv2, 505	gnu_cxx::legendre_q_t< _Tp >, 517
gnu_cxx::hermite_t< _Tp >, 504	gnu_cxx::lgamma_t
gnu_cxx::_jacobi_ellint_t	lgamma_sign, 520
am, 507	lgamma_value, 520
cd, 507	gnu_cxx::lgamma_t< _Tp >, 519

anu evv:: auadrature point t	operator[], 536
gnu_cxx::quadrature_point_t	
point, 522	gnu_cxx::stirling_2_t< _Tp >, 534
quadrature_point_t, 521	h1_deriv
weight, 522	gnu_cxx::sph_hankel_t, 527
gnu_cxx::quadrature_point_t< _Tp >, 521	h1_value
gnu_cxx::sincos_t	gnu_cxx::sph_hankel_t, 527
cos_v, 523	h2_deriv
sin_v, 523	gnu_cxx::sph_hankel_t, 527
gnu_cxx::sincos_t< _Tp >, 522	h2_value
gnu_cxx::_sph_bessel_t	gnu_cxx::sph_hankel_t, 528
Wronskian, 524	hai_deriv
	std::detail::_AiryAuxilliaryState, 59
j_donv, 62 i j_value, 525	hai_value
	std::detail::_AiryAuxilliaryState, 59
n_arg, 525	
n_deriv, 525	hankel
n_value, 525	std::detail, 358
x_arg, 526	hankel_debye
gnu_cxx::sph_bessel_t< _Tn, _Tx, _Tp >, 523	std::detail, 358
gnu_cxx::sph_hankel_t	hankel_params
Wronskian, 527	std::detail, 359
h1_deriv, 527	hankel_uniform
h1_value, 527	std::detail, 359
h2_deriv, 527	hankel_uniform_olver
h2 value, 528	std::detail, 360
n_arg, 528	hankel_uniform_outer
x_arg, 528	std::detail, 361
gnu_cxx::sph_hankel_t<_Tn, _Tx, _Tp >, 526	hankel_uniform_sum
gnu_cxx::sph_mod_bessel_t	std::detail, 361
Wronskian, 529	harmonic_number
i_deriv, 530	std::detail, 362
i_value, 530	hermite
k_deriv, 530	std::detail, 363
k_value, 530	hermite_asymp
n_arg, 530	std::detail, 363
x_arg, 531	hermite_recur
gnu_cxx::_sph_mod_bessel_t< _Tn, _Tx, _Tp >, 529	std::detail, 364
gnu_cxx::_stirling_1_t	hermite_zeros
sigma, 534	std::detail, 365
begin, 532	heuman_lambda
const_iterator, 532	std::detail, 365
degree, 533	hurwitz_zeta
end, 533	std::detail, 366
iterator, 532	hurwitz_zeta_euler_maclaurin
operator(), 533	std::detail, 366
operator[], 533	hurwitz_zeta_polylog
gnu_cxx::stirling_1_t< _Tp >, 531	std::detail, 367
gnu_cxx::stirling_2_t	hydrogen
_S, 537	std::detail, 368
begin, 535	hyperg
const_iterator, 535	std::detail, 368
degree, 536	hyperg_luke
end, 536	std::detail, 369
iterator, 535	hyperg_recur
operator(), 536	std::detail, 369
operator(), Jou	3.uuetaii, 303

hyperg_reflect	k_value
std::detail, 370	gnu_cxx::sph_mod_bessel_t, 530
hyperg_series	klein_j
std::detail, 370	std::detail::weierstrass_invariants_t, 561
i_deriv	kolmogorov_p
gnu_cxx::sph_mod_bessel_t, 530	std::detail, 384
i_value	
gnu_cxx::sph_mod_bessel_t, 530	gnu_cxx::assoc_legendre_p_t, 468
ibeta_cont_frac	gnu_cxx::assoc_legendre_q_t, 471
std::detail, 371	gnu_cxx::coulomb_t, 483
_is_integral	gnu_cxx::_legendre_p_t, 516
gnu_cxx::fp_is_integer_t, 494	gnu_cxx::_legendre_q_t, 518
i deriv	laguerre
gnu_cxx::sph_bessel_t, 524	std::detail, 384, 385
i value	laguerre_hyperg
gnu_cxx::sph_bessel_t, 525	std::detail, 386
jacobi_ellint	laguerre_large_n
std::detail, 372	std::detail, 387
jacobi_lattice_t	laguerre_recur
std::detail::jacobi_lattice_t, 547	std::detail, 388
_jacobi_recur	_laguerre_zeros
std:: detail, 372	std::detail, 389
jacobi_theta_0_t	lah
std::detail::jacobi_theta_0_t, 555	std::detail, 389
jacobi_theta_1	_lah_recur
std::detail, 373, 374	std::detail, 389, 390
jacobi_theta_1_prod	lambda
std::detail, 374	gnu_cxx::gegenbauer_t, 501
	grid_cxxgegeribader_t, 501lanczos_binet1p
jacobi_theta_1_sum std:: detail, 375	std::detail, 390
jacobi_theta_2	
	lanczos_log_gamma1p
std::detail, 376	std::detail, 391
jacobi_theta_2_prod std::detail, 377	legendre_p std:: detail, 391
	
jacobi_theta_2_sum	legendre_q
std::detail, 378	std::detail, 392
jacobi_theta_3	legendre_q_series std:: detail, 393
std::detail, 378, 379	
jacobi_theta_3_prod	legendre_zeros
std::detail, 380	std::detail, 393
jacobi_theta_3_sum	lgamma_sign
std::detail, 380	gnu_cxx::lgamma_t, 520
jacobi_theta_4	lgamma_value
std:detail, 381, 382	gnu_cxx::gamma_inc_t, 495
jacobi_theta_4_prod	gnu_cxx::lgamma_t, 520
std::detail, 382	log_binomial
jacobi_theta_4_sum	std::detail, 393, 394
std::detail, 383	log_binomial_sign
jacobi_zeros	std::detail, 394, 395
std::detail, 383	log_double_factorial
jacobi_zeta	std::detail, 395, 396
std::detail, 384	log_factorial
k_deriv	std::detail, 396
gnu_cxx::sph_mod_bessel_t, 530	std::detail::_Factorial_table, 597

log_falling_factorial	n deriv
std:: detail, 397	 -
	gnu_cxx::sph_bessel_t, 525 n value
log_gamma std::detail, 397, 398	
log_gamma_bernoulli	gnu_cxx::sph_bessel_t, 525
	nc
std::detail, 398	gnu_cxx::jacobi_ellint_t, 508
log_gamma_sign	nd
std:detail, 399	gnu_cxx::jacobi_ellint_t, 508
log_rising_factorial	normal_p
std::detail, 400	std::detail, 403
log_stirling_1	normal_pdf
std::detail, 400	std::detail, 403
log_stirling_1_sign	ns
std::detail, 400	gnu_cxx::jacobi_ellint_t, 508
log_stirling_2	nu_arg
std::detail, 401	gnu_cxx::cyl_bessel_t, 485
logint	gnu_cxx::cyl_hankel_t, 488
std::detail, 401	gnu_cxx::cyl_mod_bessel_t, 490
logistic_p	omega_1
std::detail, 402	std::detail::jacobi_lattice_t, 548
logistic_pdf	omega_2
std::detail, 402	std::detail::jacobi_lattice_t, 548
lognormal_p	omega_3
std::detail, 402	std::detail::jacobi_lattice_t, 549
lognormal_pdf	owens_t
std::detail, 403	std::detail, 404
m	parity
gnu_cxx::assoc_legendre_p_t, 468	gnu_cxx, 244
gnu_cxx::assoc_legendre_q_t, 471	periodic_zeta
std::detail::jacobi_lattice_t::arg_t, 551	std::detail, 405
max_FGH	phase
std::detail, 458	gnu_cxx::assoc_legendre_p_t, 469
max_FGH< double >	gnu_cxx::assoc_legendre_q_t, 471
std::detail, 458	point
max_FGH< float >	gnu_cxx::quadrature_point_t, 522
std::detail, 458	polar_pi
mu_arg	std::detail, 405
gnu cxx:: gamma temme t, 498	polygamma
n	std::detail, 406
gnu cxx:: chebyshev t t, 474	polylog
gnu_cxx::_chebyshev_u_t, 476	std::detail, 406, 407
gnu_cxx::_chebyshev_v_t, 478	polylog_exp
gnu_cxx::_chebyshev_w_t, 480	std::detail, 407
gnu_cxx::gegenbauer_t, 501	polylog_exp_asymp
gnu_cxx::hermite_he_t, 503	std::detail, 408
gnu_cxx::_ hermite_t, 505	polylog_exp_neg
gnu_cxx:: jacobi_t, 511	std::detail, 409, 410
gnu cxx:: laguerre t, 514	polylog_exp_neg_int
std::detail::jacobi_lattice_t::arg_t, 552	std::detail, 410, 411
std::detail::_Factorial_table, 597	polylog_exp_neg_real
n_arg	std::detail, 411, 412
gnu_cxx::sph_bessel_t, 525	polylog_exp_pos
griu_cxxspir_besser_t, 525 griu_cxx::sph_hankel_t, 528	std::detail, 413, 414
gnu_cxx::sph_mod_bessel_t, 530	polylog_exp_pos_int

std::detail, 415	std::detail, 428
polylog_exp_pos_real	sincosint
std::detail, 416, 417	std::detail, 428
polylog_exp_sum	sincosint_asymp
std::detail, 417	std::detail, 428
prob_hermite_recur	sincosint_cont_frac
std::detail, 418	std::detail, 429
quadrature_point_t	sincosint_series
gnu_cxx::quadrature_point_t, 521	std:: detail, 429
adial_jacobi	sinh_pi
std:: detail, 419	std::detail, 429, 430
_radial_jacobi_zeros	sinhc
std::detail, 420	std::detail, 430
reduce	sinhc_pi
std::detail::jacobi_lattice_t, 549	std::detail, 430
	sinhint
rho_arg	
gnu_cxx::coulomb_t, 483	std::detail, 431
rice_pdf	sn_deriv
std::detail, 420	gnu_cxx::jacobi_ellint_t, 509
riemann_zeta	sn_value
std::detail, 421	gnu_cxx::jacobi_ellint_t, 510
riemann_zeta_euler_maclaurin	sph_bessel
std::detail, 422	std::detail, 431, 432
riemann_zeta_glob	sph_bessel_ik
std::detail, 422	std::detail, 433
riemann_zeta_laurent	sph_bessel_jn
std::detail, 422	std::detail, 433
riemann_zeta_m_1	sph_bessel_jn_neg_arg
std::detail, 422	std::detail, 434
riemann_zeta_m_1_glob	sph_hankel
std::detail, 423	std::detail, 434
riemann_zeta_product	sph_hankel_1
std::detail, 423	std::detail, 435
riemann zeta sum	sph_hankel_2
std::detail, 424	std::detail, 436, 437
rising_factorial	sph_harmonic
std::detail, 424, 425	std::detail, 437
_sc	sph_legendre
gnu_cxx::_jacobi_ellint_t, 508	std:: detail, 438
s.d	sph_neumann
gnu_cxx::_jacobi_ellint_t, 509	std::detail, 439
sigma	spouge_binet1p
signia gnu_cxx::stirling_1_t, 534	std::detail, 440
. 	
sin_pi	spouge_log_gamma1p std::detail, 440
std::detail, 425, 426	
sin_v	stirling_1
gnu_cxx::sincos_t, 523	std::detail, 441, 442
sinc	stirling_1_recur
std::detail, 426	std::detail, 442, 443
sinc_pi	stirling_2
std::detail, 426	std::detail, 443
sincos	stirling_2_recur
std::detail, 427	std::detail, 444
sincos_pi	stirling_2_series

std::detail, 445	gnu_cxx::fock_airy_t, 492
student_t_p	w1_value
std::detail, 445	gnu_cxx::fock_airy_t, 492
student_t_pdf	w2_deriv
std::detail, 446	gnu_cxx::fock_airy_t, 492
student_t_q	w2_value
std::detail, 446	gnu_cxx::fock_airy_t, 493
tan_pi	weibull_p
std::detail, 447	std::detail, 456
tanh_pi	weibull_pdf
std::detail, 447, 448	std::detail, 456
tau	weierstrass_invariants_t
std::detail::jacobi_lattice_t, 550	std::detail::weierstrass_invariants_t, 560
tau_t	weierstrass_roots_t
std::detail::jacobi_lattice_t::tau_t, 553	std::detail::weierstrass_roots_t, 564
tgamma	weight
std::detail, 448	gnu_cxx::quadrature_point_t, 522
tgamma_lower	X
std::detail, 448	gnu_cxx::assoc_legendre_p_t, 469
tgamma_value	gnu_cxx::assoc_legendre_q_t, 472
gnu_cxx::gamma_inc_t, 495	gnu_cxx::chebyshev_t_t, 474
theta_1	gnu_cxx::chebyshev_u_t, 476
std::detail, 449	gnu_cxx::chebyshev_v_t, 478
theta_2	gnu_cxx::chebyshev_w_t, 480
std::detail, 449	gnu_cxx::gegenbauer_t, 501
theta_2_asymp	gnu_cxx::hermite_he_t, 503
std::detail, 450	gnu_cxx::hermite_t, 506
theta_2_sum	gnu_cxx::jacobi_t, 512
std::detail, 450	gnu_cxx::laguerre_t, 514
theta_3	gnu_cxx::legendre_p_t, 517
std::detail, 451	gnu_cxx::legendre_q_t, 519
theta_3_asymp	x_arg
std::detail, 451	gnu_cxx::airy_t, 467
theta_3_sum	gnu_cxx::_cyl_bessel_t, 486
std::detail, 452	gnu_cxx::cyl_hankel_t, 488 gnu_cxx::cyl_mod_bessel_t, 491
theta_4	— • — — • — — —
std::detail, 452 theta_c	gnu_cxx::fock_airy_t, 493
std::detail, 453	gnu_cxx::sph_bessel_t, 526 gnu_cxx::sph_hankel_t, 528
theta_d	gnu_cxx::_sph_mod_bessel_t, 531
std::detail, 453	gnu_cxxspri_mou_besser_t, 501
theta_n	std::detail::jacobi_lattice_t::arg_t, 552
std:: detail, 453	std::detail::laryAuxilliaryState, 592
theta_s	std::detail::_AiryState, 594
std::detail, 454	zernike
tricomi_u	std::detail, 456
std::detail, 454	znorm1
tricomi_u_naive	std::detail, 457
std::detail, 455	znorm2
val	std::detail, 458
std::detail::jacobi_lattice_t::tau_t, 553	
value	airy_ai
gnu_cxx::fp_is_integer_t, 494	GNU Extended Mathematical Special Functions, 60,
w1_deriv	61

airy_aif	GNU Extended Mathematical Special Functions, 69
GNU Extended Mathematical Special Functions, 61	binomiall
airy_ail	GNU Extended Mathematical Special Functions, 70
GNU Extended Mathematical Special Functions, 61	bose_einstein
airy_bi	GNU Extended Mathematical Special Functions, 70
GNU Extended Mathematical Special Functions, 62	bose_einsteinf
airy_bif	GNU Extended Mathematical Special Functions, 71
GNU Extended Mathematical Special Functions, 63	bose_einsteinl
airy_bil	GNU Extended Mathematical Special Functions, 71
GNU Extended Mathematical Special Functions, 63	
assoc_laguerre	C++17/IS29124 Mathematical Special Functions, 13
C++17/IS29124 Mathematical Special Functions, 15,	assoc_laguerre, 15, 16
16	assoc_laguerref, 18
assoc_laguerref	assoc_laguerrel, 18
C++17/IS29124 Mathematical Special Functions, 18	assoc_legendre, 18
assoc_laguerrel	assoc_legendref, 19
C++17/IS29124 Mathematical Special Functions, 18	assoc_legendrel, 20
assoc_legendre	beta, 20
C++17/IS29124 Mathematical Special Functions, 18	betaf, 21
assoc_legendre_q	betal, 21
GNU Extended Mathematical Special Functions, 63	comp_ellint_1, 21
assoc_legendre_qf GNU Extended Mathematical Special Functions, 64	comp_ellint_1f, 22
	comp_ellint_1I, 22
assoc_legendre_ql GNU Extended Mathematical Special Functions, 65	comp_ellint_2, 23 comp_ellint_2f, 24
assoc_legendref	comp_ellint_2l, 24
C++17/IS29124 Mathematical Special Functions, 19	comp_ellint_3, 24
assoc_legendrel	comp_ellint_3f, 25
C++17/IS29124 Mathematical Special Functions, 20	comp_ellint_3l, 25
5 1 1 1 1 1 1 1 1 1	cyl_bessel_i, 25
begin	cyl_bessel_if, 26
gnu_cxx::stirling_1_t, 532	cyl_bessel_il, 26
gnu_cxx::_stirling_2_t, 535	cyl_bessel_j, 27
bell	cyl_bessel_jf, 27
GNU Extended Mathematical Special Functions, 65	cyl_bessel_jl, 28
bernoulli	cyl_bessel_k, 28
GNU Extended Mathematical Special Functions, 66	cyl_bessel_kf, 29
bernoullif	cyl_bessel_kl, 29
GNU Extended Mathematical Special Functions, 67	cyl_neumann, 29
bernoullil	cyl_neumannf, 30
GNU Extended Mathematical Special Functions, 67	cyl_neumannl, 30
beta	ellint_1, 31
C++17/IS29124 Mathematical Special Functions, 20	ellint_1f, 32
betaf	ellint_1I, 32
C++17/IS29124 Mathematical Special Functions, 21	ellint_2, 32
betal	ellint_2f, 33
C++17/IS29124 Mathematical Special Functions, 21	ellint_2l, 33
binomial	ellint_3, 33
GNU Extended Mathematical Special Functions, 67	ellint_3f, 34
binomial_p	ellint_3l, 35
GNU Extended Mathematical Special Functions, 68	expint, 35
binomial_pdf	expintf, 36
GNU Extended Mathematical Special Functions, 69	expintl, 36
binomialf	hermite, 36

hermitef, 37	GNU Extended Mathematical Special Functions, 79
hermitel, 37	clausen_slf
laguerre, 38	GNU Extended Mathematical Special Functions, 80
laguerref, 38	clausen_sll
laguerrel, 39	GNU Extended Mathematical Special Functions, 80
legendre, 39	clausenf
legendref, 40	GNU Extended Mathematical Special Functions, 80
legendrel, 40	clausenl
riemann_zeta, 40	GNU Extended Mathematical Special Functions, 81
riemann_zetaf, 41	comp_ellint_1
riemann_zetal, 41	C++17/IS29124 Mathematical Special Functions, 21
sph_bessel, 42	comp_ellint_1f
sph_besself, 42	C++17/IS29124 Mathematical Special Functions, 22
sph_bessell, 43	comp_ellint_1l
sph_legendre, 43	C++17/IS29124 Mathematical Special Functions, 22
sph_legendref, 44	comp_ellint_2
sph_legendrel, 44	C++17/IS29124 Mathematical Special Functions, 23
sph_neumann, 44	comp_ellint_2f
sph_neumannf, 45	C++17/IS29124 Mathematical Special Functions, 24
sph_neumannl, 45	comp_ellint_2l
chebyshev_t	C++17/IS29124 Mathematical Special Functions, 24
GNU Extended Mathematical Special Functions, 71	comp_ellint_3
chebyshev_tf GNU Extended Mathematical Special Functions, 72	C++17/IS29124 Mathematical Special Functions, 24
•	comp_ellint_3f C++17/IS29124 Mathematical Special Functions, 25
chebyshev_tl GNU Extended Mathematical Special Functions, 72	·
chebyshev_u	comp_ellint_3l C++17/IS29124 Mathematical Special Functions, 25
GNU Extended Mathematical Special Functions, 72	comp_ellint_d
chebyshev_uf	GNU Extended Mathematical Special Functions, 81
GNU Extended Mathematical Special Functions, 73	comp_ellint_df
chebyshev_ul	GNU Extended Mathematical Special Functions, 82
GNU Extended Mathematical Special Functions, 73	comp_ellint_dl
chebyshev_v	GNU Extended Mathematical Special Functions, 82
GNU Extended Mathematical Special Functions, 74	comp_ellint_rf
chebyshev_vf	GNU Extended Mathematical Special Functions, 82
GNU Extended Mathematical Special Functions, 74	83
chebyshev_vl	comp_ellint_rg
GNU Extended Mathematical Special Functions, 75	GNU Extended Mathematical Special Functions, 84
chebyshev_w	conf_hyperg
GNU Extended Mathematical Special Functions, 75	GNU Extended Mathematical Special Functions, 85
chebyshev_wf	conf_hyperg_lim
GNU Extended Mathematical Special Functions, 76	GNU Extended Mathematical Special Functions, 85
chebyshev_wl	conf_hyperg_limf
GNU Extended Mathematical Special Functions, 76	GNU Extended Mathematical Special Functions, 86
clausen	conf_hyperg_liml
GNU Extended Mathematical Special Functions, 76,	GNU Extended Mathematical Special Functions, 86
77	conf_hypergf
clausen_cl	GNU Extended Mathematical Special Functions, 86
GNU Extended Mathematical Special Functions, 78	conf_hypergl
clausen_clf	GNU Extended Mathematical Special Functions, 87
GNU Extended Mathematical Special Functions, 78	const_iterator
clausen_cll	gnu_cxx::stirling_1_t, 532
GNU Extended Mathematical Special Functions, 79	gnu_cxx::stirling_2_t, 535
clausen_sl	cos_pi

GNU Extended Mathematical Special Functions, 87	cyl_hankel_2l
cos_pif	GNU Extended Mathematical Special Functions, 96
GNU Extended Mathematical Special Functions, 88	cyl_neumann
cos_pil	C++17/IS29124 Mathematical Special Functions, 29
GNU Extended Mathematical Special Functions, 88	cyl_neumannf
cosh_pi	C++17/IS29124 Mathematical Special Functions, 30
GNU Extended Mathematical Special Functions, 88	cyl_neumannl
cosh_pif	C++17/IS29124 Mathematical Special Functions, 30
GNU Extended Mathematical Special Functions, 89	
cosh_pil	dawson
GNU Extended Mathematical Special Functions, 89	GNU Extended Mathematical Special Functions, 96
coshint	dawsonf
GNU Extended Mathematical Special Functions, 89	GNU Extended Mathematical Special Functions, 97
coshintf	dawsonl
GNU Extended Mathematical Special Functions, 90	GNU Extended Mathematical Special Functions, 97
coshintl GNU Extended Mathematical Special Functions, 90	debye GNU Extended Mathematical Special Functions, 97
cosint	debyef
GNU Extended Mathematical Special Functions, 90	GNU Extended Mathematical Special Functions, 98
cosintf	debyel
GNU Extended Mathematical Special Functions, 91	GNU Extended Mathematical Special Functions, 98
cosintl	dedekind_eta
GNU Extended Mathematical Special Functions, 91	std::detail::jacobi_theta_0_t, 556
cxx_fp_utils/include/ext/math_util.h, 601	degree
cyl_bessel_i	gnu_cxx::stirling_1_t, 533
C++17/IS29124 Mathematical Special Functions, 25	gnu_cxx::stirling_2_t, 536
cyl_bessel_if	deriv
C++17/IS29124 Mathematical Special Functions, 26	gnu_cxx::assoc_legendre_p_t, 468
cyl_bessel_il	gnu_cxx::_assoc_legendre_q_t, 471
C++17/IS29124 Mathematical Special Functions, 26	gnu_cxx::chebyshev_t_t, 473
cyl_bessel_j	gnu_cxx::chebyshev_u_t, 475
C++17/IS29124 Mathematical Special Functions, 27	gnu_cxx::chebyshev_v_t, 477
cyl_bessel_jf	gnu_cxx::chebyshev_w_t, 479
C++17/IS29124 Mathematical Special Functions, 27	gnu_cxx::gegenbauer_t, 500
cyl_bessel_jl	gnu_cxx::hermite_he_t, 502
C++17/IS29124 Mathematical Special Functions, 28	gnu_cxx::hermite_t, 504
cyl_bessel_k	gnu_cxx::jacobi_t, 511
C++17/IS29124 Mathematical Special Functions, 28	gnu_cxx::laguerre_t, 513
cyl_bessel_kf	gnu_cxx::legendre_p_t, 516
C++17/IS29124 Mathematical Special Functions, 29	gnu_cxx::legendre_q_t, 518
cyl_bessel_kl	deriv2
C++17/IS29124 Mathematical Special Functions, 29	gnu_cxx::chebyshev_t_t, 473
cyl_hankel_1	gnu_cxx::hermite_he_t, 502
GNU Extended Mathematical Special Functions, 91,	gnu_cxx::hermite_t, 505
92	digamma
cyl_hankel_1f	GNU Extended Mathematical Special Functions, 99
GNU Extended Mathematical Special Functions, 92,	digammaf
93 out banks 11	GNU Extended Mathematical Special Functions, 99
cyl_hankel_1l GNU Extended Mathematical Special Functions, 93	digammal GNU Extended Mathematical Special Functions, 100
cyl_hankel_2	dilog
GNU Extended Mathematical Special Functions, 94	GNU Extended Mathematical Special Functions, 100
cyl_hankel_2f	dilogf
GNU Extended Mathematical Special Functions, 95	GNU Extended Mathematical Special Functions, 100

dilogl	GNU Extended Mathematical Special Functions, 107
GNU Extended Mathematical Special Functions, 101	ellint_dl
dirichlet_beta	GNU Extended Mathematical Special Functions, 108
GNU Extended Mathematical Special Functions, 101	ellint_el1
dirichlet_betaf	GNU Extended Mathematical Special Functions, 108
GNU Extended Mathematical Special Functions, 102	ellint_el1f
dirichlet_betal	GNU Extended Mathematical Special Functions, 108
GNU Extended Mathematical Special Functions, 102	ellint_el1l
dirichlet_eta	GNU Extended Mathematical Special Functions, 109
GNU Extended Mathematical Special Functions, 102	ellint_el2
dirichlet_etaf	GNU Extended Mathematical Special Functions, 109
GNU Extended Mathematical Special Functions, 103 dirichlet_etal	ellint_el2f GNU Extended Mathematical Special Functions, 110
GNU Extended Mathematical Special Functions, 103	ellint_el2l
dirichlet_lambda	GNU Extended Mathematical Special Functions, 110
GNU Extended Mathematical Special Functions, 103	ellint_el3
dirichlet lambdaf	GNU Extended Mathematical Special Functions, 110
GNU Extended Mathematical Special Functions, 104	ellint el3f
dirichlet_lambdal	GNU Extended Mathematical Special Functions, 111
GNU Extended Mathematical Special Functions, 104	ellint_el3l
double_factorial	GNU Extended Mathematical Special Functions, 111
GNU Extended Mathematical Special Functions, 104	ellint_rc
double_factorialf	GNU Extended Mathematical Special Functions, 112
GNU Extended Mathematical Special Functions, 105	ellint_rcf
double_factoriall	GNU Extended Mathematical Special Functions, 113
GNU Extended Mathematical Special Functions, 105	ellint_rcl
	GNU Extended Mathematical Special Functions, 113
ne i a	•
ellint_1	ellint_rd
C++17/IS29124 Mathematical Special Functions, 31	ellint_rd GNU Extended Mathematical Special Functions, 113
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1l	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1I C++17/IS29124 Mathematical Special Functions, 32	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1I C++17/IS29124 Mathematical Special Functions, 32 ellint_2	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1I C++17/IS29124 Mathematical Special Functions, 32	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1I C++17/IS29124 Mathematical Special Functions, 32 ellint_2 C++17/IS29124 Mathematical Special Functions, 32	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1l C++17/IS29124 Mathematical Special Functions, 32 ellint_2 C++17/IS29124 Mathematical Special Functions, 32 ellint_2f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f C++17/IS29124 Mathematical Special Functions, 32 ellint_1I C++17/IS29124 Mathematical Special Functions, 32 ellint_2 C++17/IS29124 Mathematical Special Functions, 32 ellint_2f C++17/IS29124 Mathematical Special Functions, 33	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 115
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rgf GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rgl
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rj GNU Extended Mathematical Special Functions, 117
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rj GNU Extended Mathematical Special Functions, 117 ellint_rj GNU Extended Mathematical Special Functions, 117 ellint_rjf
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rj GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 119 ellint_rjf
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 117
C++17/IS29124 Mathematical Special Functions, 31 ellint_1f	ellint_rd GNU Extended Mathematical Special Functions, 113 ellint_rdf GNU Extended Mathematical Special Functions, 114 ellint_rdl GNU Extended Mathematical Special Functions, 114 ellint_rf GNU Extended Mathematical Special Functions, 114 ellint_rff GNU Extended Mathematical Special Functions, 115 ellint_rfl GNU Extended Mathematical Special Functions, 115 ellint_rg GNU Extended Mathematical Special Functions, 116 ellint_rgf GNU Extended Mathematical Special Functions, 117 ellint_rgl GNU Extended Mathematical Special Functions, 117 ellint_rj GNU Extended Mathematical Special Functions, 117 ellint_rjf GNU Extended Mathematical Special Functions, 119 ellint_rjl GNU Extended Mathematical Special Functions, 119

GNU Extended Mathematical Special Functions, 120	fresnel_c
ellnomel	GNU Extended Mathematical Special Functions, 129
GNU Extended Mathematical Special Functions, 120	fresnel_cf GNU Extended Mathematical Special Functions, 129
gnu_cxx::stirling_1_t, 533	fresnel_cl
griu_cxx::stirling_2_t, 536	GNU Extended Mathematical Special Functions, 129
eta 1	fresnel_s
std::detail::jacobi_theta_0_t, 556	GNU Extended Mathematical Special Functions, 129
eta_2	fresnel_sf
std::detail::jacobi_theta_0_t, 556	GNU Extended Mathematical Special Functions, 131
eta_3	fresnel_sl
std::detail::jacobi_theta_0_t, 557	GNU Extended Mathematical Special Functions, 131
euler	
GNU Extended Mathematical Special Functions, 121	GNU Extended Mathematical Special Functions, 47
eulerian_1	airy_ai, 60, 61
GNU Extended Mathematical Special Functions, 121	airy_aif, 61
eulerian_2	airy_ail, 61
GNU Extended Mathematical Special Functions, 122	airy_bi, 62
expint	airy_bif, 63
C++17/IS29124 Mathematical Special Functions, 35	airy_bil, 63
GNU Extended Mathematical Special Functions, 122	assoc_legendre_q, 63
expiritf	assoc_legendre_qf, 64
C++17/IS29124 Mathematical Special Functions, 36	assoc_legendre_ql, 65
GNU Extended Mathematical Special Functions, 123	bell, 65
expintl C++17/IS29124 Mathematical Special Functions, 36	bernoulli, 66 bernoullif, 67
GNU Extended Mathematical Special Functions, 123	bernoullil, 67
exponential_p	binomial, 67
GNU Extended Mathematical Special Functions, 123	binomial_p, 68
exponential_pdf	binomial_pdf, 69
GNU Extended Mathematical Special Functions, 124	binomialf, 69
and Entered manifestation operations, i.e.,	binomiall, 70
factorial	bose_einstein, 70
GNU Extended Mathematical Special Functions, 124	bose_einsteinf, 71
factorialf	bose_einsteinl, 71
GNU Extended Mathematical Special Functions, 124	chebyshev_t, 71
factoriall	chebyshev_tf, 72
GNU Extended Mathematical Special Functions, 125	chebyshev_tl, 72
falling_factorial	chebyshev_u, 72
GNU Extended Mathematical Special Functions, 125	chebyshev_uf, 73
falling_factorialf	chebyshev_ul, 73
GNU Extended Mathematical Special Functions, 125	chebyshev_v, 74
falling_factoriall	chebyshev_vf, 74
GNU Extended Mathematical Special Functions, 126	chebyshev_vI, 75
fermi_dirac	chebyshev_w, 75
GNU Extended Mathematical Special Functions, 126	chebyshev_wf, 76
fermi_diracf	chebyshev_wl, 76
GNU Extended Mathematical Special Functions, 127	clausen, 76, 77
fermi_diracl	clausen_cl, 78
GNU Extended Mathematical Special Functions, 127	clausen_clf, 78
fisher_f_p CNIL Extended Methometical Special Functions 127	clausen_cll, 79
GNU Extended Mathematical Special Functions, 127	clausen_sl, 79
fisher_f_pdf GNU Extended Mathematical Special Functions 128	clausen_slf, 80
GNU Extended Mathematical Special Functions, 128	clausen_sll, 80

clausenf, 80	double_factoriall, 105
clausenl, 81	ellint_cel, 105
comp_ellint_d, 81	ellint_celf, 106
comp_ellint_df, 82	ellint_cell, 106
comp_ellint_dl, 82	ellint_d, 107
comp_ellint_rf, 82, 83	ellint_df, 107
comp_ellint_rg, 84	ellint_dl, 108
conf_hyperg, 85	ellint_el1, 108
conf_hyperg_lim, 85	ellint_el1f, 108
conf_hyperg_limf, 86	ellint_el1I, 109
conf_hyperg_liml, 86	ellint_el2, 109
conf_hypergf, 86	ellint_el2f, 110
conf_hypergl, 87	ellint_el2l, 110
cos_pi, 87	ellint_el3, 110
cos_pif, 88	ellint_el3f, 111
cos_pil, 88	ellint_el3l, 111
cosh_pi, 88	ellint_rc, 112
cosh_pif, 89	ellint_rcf, 113
cosh_pil, 89	ellint_rcl, 113
coshint, 89	ellint_rd, 113
coshintf, 90	ellint_rdf, 114
coshintl, 90	ellint_rdl, 114
cosint, 90	ellint_rf, 114
cosintf, 91	ellint_rff, 115
cosintl, 91	ellint_rfl, 115
cyl_hankel_1, 91, 92	ellint_rg, 116
cyl_hankel_1f, 92, 93	ellint_rgf, 117
cyl_hankel_1I, 93	ellint_rgl, 117
cyl_hankel_2, 94	ellint_rj, 117
cyl_hankel_2f, 95	ellint_rjf, 119
cyl_hankel_2l, <mark>96</mark>	ellint_rjl, 119
dawson, 96	ellnome, 119
dawsonf, 97	ellnomef, 120
dawsonl, 97	ellnomel, 120
debye, 97	euler, 121
debyef, 98	eulerian_1, 121
debyel, 98	eulerian_2, 122
digamma, 99	expint, 122
digammaf, 99	expintf, 123
digammal, 100	expintl, 123
dilog, 100	exponential_p, 123
dilogf, 100	exponential_pdf, 124
dilogl, 101	factorial, 124
dirichlet_beta, 101	factorialf, 124
dirichlet_betaf, 102	factoriall, 125
dirichlet_betal, 102	falling_factorial, 125
dirichlet_eta, 102	falling_factorialf, 125
dirichlet_etaf, 103	falling_factoriall, 126
dirichlet_etal, 103	fermi_dirac, 126
dirichlet_lambda, 103	fermi_diracf, 127
dirichlet_lambdaf, 104	fermi_diracl, 127
dirichlet_lambdal, 104	fisher_f_p, 127
double_factorial, 104	fisher_f_pdf, 128
double_factorialf, 105	fresnel_c, 129

fresnel_cf, 129	jacobi_theta_4f, 151
fresnel_cl, 129	jacobi_theta_4l, 151
fresnel_s, 129	jacobi_zeta, 151
fresnel_sf, 131	jacobi_zetaf, 152
fresnel_sl, 131	jacobi_zetal, 152
gamma_p, 131	jacobif, 152
gamma_pdf, 131	jacobil, 152
gamma_pf, 132	lah, 153
gamma_pl, 132	Ibinomial, 153
gamma_q, 132	Ibinomialf, 154
gamma_qf, 133	Ibinomiall, 154
gamma_ql, 133	Idouble_factorial, 155
gamma_reciprocal, 133	Idouble_factorialf, 155
gamma_reciprocalf, 133	Idouble_factoriall, 155
gamma_reciprocall, 134	legendre_q, 156
gegenbauer, 134	legendre_qf, 157
gegenbauerf, 135	legendre_ql, 157
gegenbauerl, 135	lerch_phi, 157
harmonic, 135	lerch_phif, 158
heuman_lambda, 136	lerch_phil, 158
heuman_lambdaf, 137	Ifactorial, 158
heuman_lambdal, 137	Ifactorialf, 159
hurwitz_zeta, 137	Ifactoriall, 159
hurwitz_zetaf, 138	Ifalling_factorial, 159
hurwitz_zetal, 138	Ifalling_factorialf, 160
hyperg, 138	Ifalling_factoriall, 160
hypergf, 139	lgamma, 160, 161
hypergl, 139	lgammaf, 161
ibeta, 140	lgammal, 162
ibetac, 141	logint, 162
ibetacf, 141	logintf, 163
ibetacl, 141	logintl, 163
ibetaf, 141	logistic_p, 163
ibetal, 142	logistic_pdf, 164
jacobi, 142	lognormal_p, 164
jacobi_cn, 143	lognormal_pdf, 164
jacobi_cnf, 144	Irising_factorial, 165
jacobi_cnl, 144	Irising_factorialf, 165
jacobi_dn, 144	Irising_factoriall, 165
jacobi_dnf, 145	mittag_leffler, 166
jacobi_dnl, 145	normal_p, 166
jacobi_sn, 145	normal_pdf, 166
jacobi_snf, 146	owens_t, 167
jacobi_snl, 146	owens_tf, 168
jacobi_theta_1, 147	owens_tl, 168
jacobi_theta_1f, 147	periodic_zeta, 168, 169
jacobi_theta_1I, 148	periodic_zetaf, 169
jacobi_theta_2, 148	periodic_zetal, 169
jacobi_theta_2f, 149	polygamma, 170
jacobi_theta_2l, 149	polygammaf, 170
jacobi_theta_3, 149	polygammal, 171
jacobi_theta_3f, 150	polylog, 171
jacobi_theta_3I, 150	polylogf, 172
jacobi_theta_4, 150	polylogl, 172, 173

radpoly, 173	student_t_pdf, 198
radpolyf, 174	tan_pi, 198
radpolyl, 174	tan_pif, 199
rising_factorial, 174	tan_pil, 199
rising_factorialf, 175	tanh_pi, 199
rising_factoriall, 175	tanh_pif, 200
sin_pi, 175	tanh_pil, 200
sin_pif, 176	tgamma, 200, 201
sin_pil, 176	tgamma_lower, 201
sinc, 176	tgamma_lowerf, 202
sinc_pi, 177	tgamma_lowerl, 202
sinc_pif, 177	tgammaf, 202, 203
sinc_pil, 178	tgammal, 203, 204
sincf, 178	theta_1, 204
sincl, 178	theta_1f, 205
sincos, 179	theta_1I, 205
sincos_pi, 179	theta_2, 205
sincos_pif, 180	theta_2f, 206
sincos_pil, 180	theta_2I, 206
sincosf, 180	theta_3, 206
sincosl, 181	theta_3f, 207
sinh_pi, 181	theta_3I, 207
sinh_pif, 182	theta_4, 207
sinh_pil, 182	theta_4f, 208
sinhc, 182	theta_4l, 208
sinhc_pi, 183	theta_c, 208
sinhc_pif, 183	theta_cf, 209
sinhc_pil, 184	theta_cl, 209
sinhcf, 184	theta_d, 210
sinhcl, 184	theta_df, 210
sinhint, 184	theta_dl, 211
sinhintf, 185	theta_n, 211
sinhintl, 185	theta_nf, 212
sinint, 185	theta_nl, 212
sinintf, 186	theta_s, 212
sinintl, 186	theta_sf, 213
sph_bessel_i, 186	theta_sl, 213
sph_bessel_if, 187	tricomi_u, 214
sph_bessel_il, 187	tricomi_uf, 215
sph_bessel_k, 188	tricomi_ul, 215
sph_bessel_kf, 189	weibull_p, 215
sph_bessel_kl, 189	weibull_pdf, 215
sph_hankel_1, 189, 190	zernike, 216
sph_hankel_1f, 190, 191	zernikef, 217
sph_hankel_1I, 191	zernikel, 217
sph_hankel_2, 192, 193	gamma_p
sph_hankel_2f, 193	GNU Extended Mathematical Special Functions, 131
sph_hankel_2l, 194	gamma_pdf
sph_harmonic, 194	GNU Extended Mathematical Special Functions, 131
sph_harmonicf, 195	gamma_pf
sph_harmonicl, 195	GNU Extended Mathematical Special Functions, 132
stirling_1, 196	gamma_pl
stirling_2, 197	GNU Extended Mathematical Special Functions, 132
student_t_p, 197	gamma_q

GNU Extended Mathematical Special Functions, 132	ibetaf
gamma qf	GNU Extended Mathematical Special Functions, 141
GNU Extended Mathematical Special Functions, 133	ibetal
gamma ql	GNU Extended Mathematical Special Functions, 142
GNU Extended Mathematical Special Functions, 133	include/bits/sf_airy.tcc, 603
gamma reciprocal	_ •
5 – 1	include/bits/sf_bernoulli.tcc, 605
GNU Extended Mathematical Special Functions, 133	include/bits/sf_bessel.tcc, 606
gamma_reciprocalf	include/bits/sf_beta.tcc, 609
GNU Extended Mathematical Special Functions, 133	include/bits/sf_cardinal.tcc, 611
gamma_reciprocall	include/bits/sf_chebyshev.tcc, 613
GNU Extended Mathematical Special Functions, 134	include/bits/sf_coulomb.tcc, 614
gauss_quad_type	include/bits/sf_dawson.tcc, 616
gnu_cxx, 239	include/bits/sf_distributions.tcc, 618
gegenbauer	include/bits/sf_ellint.tcc, 621
GNU Extended Mathematical Special Functions, 134	include/bits/sf_euler.tcc, 624
gegenbauerf	include/bits/sf_expint.tcc, 626
GNU Extended Mathematical Special Functions, 135	include/bits/sf_fresnel.tcc, 628
gegenbauerl	include/bits/sf_gamma.tcc, 630
GNU Extended Mathematical Special Functions, 135	include/bits/sf_gegenbauer.tcc, 638
	include/bits/sf_hankel.tcc, 639
harmonic	include/bits/sf_hermite.tcc, 642
GNU Extended Mathematical Special Functions, 135	include/bits/sf hyperg.tcc, 644
hermite	include/bits/sf_hypint.tcc, 646
C++17/IS29124 Mathematical Special Functions, 36	include/bits/sf_jacobi.tcc, 648
hermitef	include/bits/sf_laguerre.tcc, 650
C++17/IS29124 Mathematical Special Functions, 37	include/bits/sf_legendre.tcc, 652
hermitel	include/bits/sf_mod_bessel.tcc, 654
C++17/IS29124 Mathematical Special Functions, 37	include/bits/sf_owens_t.tcc, 656
heuman_lambda	include/bits/sf_polylog.tcc, 657
GNU Extended Mathematical Special Functions, 136	_ · · ·
heuman_lambdaf	include/bits/sf_stirling.tcc, 660
GNU Extended Mathematical Special Functions, 137	include/bits/sf_theta.tcc, 662
heuman_lambdal	include/bits/sf_trig.tcc, 665
GNU Extended Mathematical Special Functions, 137	include/bits/sf_trigint.tcc, 667
hurwitz zeta	include/bits/sf_zeta.tcc, 669
GNU Extended Mathematical Special Functions, 137	include/bits/specfun.h, 671
hurwitz zetaf	include/bits/specfun_state.h, 688
GNU Extended Mathematical Special Functions, 138	inner_radius
hurwitz zetal	std::detail::_Airy, 568
GNU Extended Mathematical Special Functions, 138	std::detail::_Airy_default_radii< double >, 579
hyperg	std::detail::_Airy_default_radii< float >, 580
GNU Extended Mathematical Special Functions, 138	$std::\detail::_Airy_default_radii< long double >,$
hypergf	581
GNU Extended Mathematical Special Functions, 139	iterator
hypergl	gnu_cxx::stirling_1_t, 532
GNU Extended Mathematical Special Functions, 139	gnu_cxx::stirling_2_t, 535
GNO Extended Mathematical Special Functions, 139	<u> </u>
ibeta	jacobi
GNU Extended Mathematical Special Functions, 140	GNU Extended Mathematical Special Functions, 142
ibetac	jacobi_cn
GNU Extended Mathematical Special Functions, 141	GNU Extended Mathematical Special Functions, 143
ibetacf	jacobi_cnf
GNU Extended Mathematical Special Functions, 141	GNU Extended Mathematical Special Functions, 144
ibetacl	jacobi_cnl
GNU Extended Mathematical Special Functions, 141	GNU Extended Mathematical Special Functions, 144
CITO ENGLUCU MALICINALICA ODCUALI DICIONS: 141	AINO I AIGUGGI MAIDEUIAIDA DUGGALI UNUIUNS. 144

jacobi_dn	GNU Extended Mathematical Special Functions, 153
GNU Extended Mathematical Special Functions, 144	Ibinomial
jacobi_dnf	GNU Extended Mathematical Special Functions, 153
GNU Extended Mathematical Special Functions, 145	lbinomialf
jacobi_dnl	GNU Extended Mathematical Special Functions, 154
GNU Extended Mathematical Special Functions, 145	Ibinomiall
jacobi_sn	GNU Extended Mathematical Special Functions, 154
GNU Extended Mathematical Special Functions, 145	Idouble_factorial
jacobi_snf	GNU Extended Mathematical Special Functions, 155
GNU Extended Mathematical Special Functions, 146	Idouble_factorialf
jacobi_snl	GNU Extended Mathematical Special Functions, 155
GNU Extended Mathematical Special Functions, 146	Idouble_factoriall
jacobi_theta_1	GNU Extended Mathematical Special Functions, 155
GNU Extended Mathematical Special Functions, 147	legendre
jacobi_theta_1f	C++17/IS29124 Mathematical Special Functions, 39
GNU Extended Mathematical Special Functions, 147	legendre_q
jacobi_theta_1l	GNU Extended Mathematical Special Functions, 156
GNU Extended Mathematical Special Functions, 148	legendre_qf
jacobi_theta_2	GNU Extended Mathematical Special Functions, 157
GNU Extended Mathematical Special Functions, 148	legendre_ql
jacobi_theta_2f	GNU Extended Mathematical Special Functions, 157
GNU Extended Mathematical Special Functions, 149	legendref
jacobi_theta_2l	C++17/IS29124 Mathematical Special Functions, 40
GNU Extended Mathematical Special Functions, 149	legendrel
jacobi_theta_3	C++17/IS29124 Mathematical Special Functions, 40
GNU Extended Mathematical Special Functions, 149	lerch_phi
jacobi_theta_3f	GNU Extended Mathematical Special Functions, 157
GNU Extended Mathematical Special Functions, 150	lerch_phif
jacobi_theta_3l	GNU Extended Mathematical Special Functions, 158
GNU Extended Mathematical Special Functions, 150	lerch_phil
jacobi_theta_4	GNU Extended Mathematical Special Functions, 158
GNU Extended Mathematical Special Functions, 150	Ifactorial CNU Extended Methamatical Special Functions, 159
jacobi_theta_4f	GNU Extended Mathematical Special Functions, 158
GNU Extended Mathematical Special Functions, 151	Ifactorialf GNU Extended Mathematical Special Functions, 159
jacobi_theta_4l GNU Extended Mathematical Special Functions, 151	Ifactorial
jacobi zeta	GNU Extended Mathematical Special Functions, 159
GNU Extended Mathematical Special Functions, 151	Ifalling_factorial
jacobi_zetaf	GNU Extended Mathematical Special Functions, 159
GNU Extended Mathematical Special Functions, 152	Ifalling_factorialf
jacobi_zetal	GNU Extended Mathematical Special Functions, 160
GNU Extended Mathematical Special Functions, 152	Ifalling_factoriall
jacobif	GNU Extended Mathematical Special Functions, 160
GNU Extended Mathematical Special Functions, 152	Igamma
jacobil	GNU Extended Mathematical Special Functions, 160,
GNU Extended Mathematical Special Functions, 152	161
and Exercise manomator operation and one	Igammaf
laguerre	GNU Extended Mathematical Special Functions, 161
C++17/IS29124 Mathematical Special Functions, 38	Igammal
laguerref	GNU Extended Mathematical Special Functions, 162
C++17/IS29124 Mathematical Special Functions, 38	lobatto
laguerrel	gnu_cxx::_legendre_p_t, 516
C++17/IS29124 Mathematical Special Functions, 39	logint
lah	GNU Extended Mathematical Special Functions, 162

logintf	owens_tf
GNU Extended Mathematical Special Functions, 163	GNU Extended Mathematical Special Functions, 168
logintl	owens_tl
GNU Extended Mathematical Special Functions, 163	GNU Extended Mathematical Special Functions, 168
logistic_p	
GNU Extended Mathematical Special Functions, 163	periodic_zeta
logistic_pdf	GNU Extended Mathematical Special Functions, 168,
GNU Extended Mathematical Special Functions, 164	169 periodic_zetaf
lognormal_p	GNU Extended Mathematical Special Functions, 169
GNU Extended Mathematical Special Functions, 164	periodic zetal
lognormal_pdf GNU Extended Mathematical Special Functions 164	GNU Extended Mathematical Special Functions, 169
GNU Extended Mathematical Special Functions, 164 Irising_factorial	polygamma
GNU Extended Mathematical Special Functions, 165	GNU Extended Mathematical Special Functions, 170
Irising_factorialf	polygammaf
GNU Extended Mathematical Special Functions, 165	GNU Extended Mathematical Special Functions, 170
Irising_factoriall	polygammal
GNU Extended Mathematical Special Functions, 165	GNU Extended Mathematical Special Functions, 171
,	polylog
Mathematical Special Functions, 218	GNU Extended Mathematical Special Functions, 171
mittag_leffler	polylogf
GNU Extended Mathematical Special Functions, 166	GNU Extended Mathematical Special Functions, 172
	polylogl
normal_p	GNU Extended Mathematical Special Functions, 172,
GNU Extended Mathematical Special Functions, 166	173
normal_pdf	radpaly
GNU Extended Mathematical Special Functions, 166	radpoly CNIL Extended Mathematical Special Functions, 173
num_terms std::detail::_AsympTerminator, 596	GNU Extended Mathematical Special Functions, 173 radpolyf
std::detail::_Terminator, 599	GNU Extended Mathematical Special Functions, 174
staactaiireminator, 555	radpolyl
operator bool	GNU Extended Mathematical Special Functions, 174
gnu_cxx::fp_is_integer_t, 494	riemann zeta
operator<<	C++17/IS29124 Mathematical Special Functions, 40
std::detail::_AsympTerminator, 596	riemann_zetaf
operator()	C++17/IS29124 Mathematical Special Functions, 41
gnu_cxx::fp_is_integer_t, 494	riemann_zetal
gnu_cxx::stirling_1_t, 533	C++17/IS29124 Mathematical Special Functions, 41
gnu_cxx::stirling_2_t, 536	rising_factorial
std::detail::_Airy, 567	GNU Extended Mathematical Special Functions, 174
std::detail::_Airy_asymp, 571	rising_factorialf
std::detail::_Airy_asymp_series, 578	GNU Extended Mathematical Special Functions, 175
std::detail::_AsympTerminator, 596 std::detail::_Terminator, 599	rising_factoriall
operator[]	GNU Extended Mathematical Special Functions, 175
gnu_cxx:: stirling_1_t, 533	scalar_type
gnu_cxx::stirling_2_t, 536	std::detail::_Airy, 566
outer_radius	std::detail::_Airy_asymp_series, 577
std::detail::_Airy, 568	sf_airy.tcc
std::detail::_Airy_default_radii< double >, 579	_GLIBCXX_BITS_SF_AIRY_TCC, 604
std::detail::_Airy_default_radii< float >, 580	sf_bernoulli.tcc
std::_detail::_Airy_default_radii< long double >,	
581	sf_bessel.tcc
owens_t	_GLIBCXX_BITS_SF_BESSEL_TCC, 608
GNU Extended Mathematical Special Functions, 167	sf_beta.tcc

GLIBCXX_BITS_SF_CARDINAL_TCC, 612 sl_chebyshevitoc GLIBCXX_BITS_SF_CHEBYSHEV_TCC, 614 sl_coulombitoc GLIBCXX_BITS_SF_COULOMB_TCC, 616 sl_dawson.tcc GLIBCXX_BITS_SF_DAWSON_TCC, 617 sl_distributions.tcc GLIBCXX_BITS_SF_DAWSON_TCC, 617 sl_distributions.tcc GLIBCXX_BITS_SF_DAWSON_TCC, 617 sl_colibCXX_BITS_SF_DAWSON_TCC, 617 sl_colibCXX_BITS_SF_DAWSON_TCC, 617 sl_colibCXX_BITS_SF_ELLINT_TCC, 623 sl_cexinit.toc GLIBCXX_BITS_SF_ELLINT_TCC, 628 sl_fresinel.toc GLIBCXX_BITS_SF_EXPINT_TCC, 629 sl_gamma.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 629 sl_anewat.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sl_polytoc. GLIBCXX_BITS_SF_HANKEL_TCC, 642 sl_hermite_toc GLIBCXX_BITS_SF_HANKEL_TCC, 644 sl_hyperg.toc GLIBCXX_BITS_SF_HANKEL_TCC, 644 sl_hyperg.toc GLIBCXX_BITS_SF_HANKEL_TCC, 648 sl_polytoc. GLIBCXX_BITS_SF_HAPERG_TCC, 648 sl_polytoc. GLIBCXX_BITS_SF_HYPERG_TCC, 649 sl_laguerre.toc GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sl_cowens_Ltcc GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sl_cowens_Ltcc GLIBCXX_BITS_SF_COWENS_T_TCC, 657 sl_polytog.toc GLIBCXX_BITS_SF_COWENS_T_TCC, 657 sl_polytog.toc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sl_timig.toc GLIBCXX_BITS_SF_THETA_TCC, 664 sl_ingi.toc GLIBCXX_BITS_SF_THETA_TCC, 664 sl_ingi.toc GLIBCXX_BITS_SF_THETA_TCC, 664 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 667 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 664 sl_ingi.toc GLIBCXX_BITS_SF_THETA_TCC, 667 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 668 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 667 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 667 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 668 sl_tingi.toc GLIBCXX_BITS_SF_THETA_TCC, 667 sl_tingi.toc GLIBCXX_BITS_S	_GLIBCXX_BITS_SF_BETA_TCC, 610	GNU Extended Mathematical Special Functions, 175
sl_plebyshev.tcc _GLIBCXX_BITS_SF_CHEBYSHEV_TCC, 614 sl_coulomb.tcc _GLIBCXX_BITS_SF_COULOMB_TCC, 616 sl_dawson.tcc _GLIBCXX_BITS_SF_DAWSON_TCC, 617 sl_distributions.tcc _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 sl_ellint.tcc _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 622 sl_evelnt.tcc _GLIBCXX_BITS_SF_EULER_TCC, 625 sl_evelnt.tcc _GLIBCXX_BITS_SF_EULER_TCC, 625 sl_egenbauer.tcc _GLIBCXX_BITS_SF_GERENBAUER_TCC, 639 sl_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sl_hermite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sl_hermite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sl_hermite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sl_hermite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 645 sl_hypint.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 649 sl_aguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sl_ogendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 65	sf_cardinal.tcc	
GLIBCXX_BITS_SF_CHEBYSHEV_TCC, 614 st_coulomb.tcc GLIBCXX_BITS_SF_COULOMB_TCC, 616 st_dawson.tcc GLIBCXX_BITS_SF_DAWSON_TCC, 617 st_distributions.tcc GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 st_cellint.tcc GLIBCXX_BITS_SF_ELLINT_TCC, 623 st_celler.tcc GLIBCXX_BITS_SF_ELLINT_TCC, 623 st_despint.tcc GLIBCXX_BITS_SF_ELLINT_TCC, 625 st_expint.tcc GLIBCXX_BITS_SF_EVENT_TCC, 625 st_expint.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 628 st_fresnel.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 st_openbauer.tcc GLIBCXX_BITS_SF_GEGENBAUER_TCC, 637 st_inankel.tcc GLIBCXX_BITS_SF_GEGENBAUER_TCC, 649 st_inprint.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 st_inprint.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 644 st_inprint.tcc GLIBCXX_BITS_SF_HYPINT_TCC, 648 st_inglacc GLIBCXX_BITS_SF_HYPINT_TCC, 648 st_inglacc GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 st_owens_t.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 st_owens_t.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 657 st_oploylog.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 st_owens_t.tcc GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 st_owens_t.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 st_ining.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 st_i		
sl_coulomb.toc _GLIBCXX_BITS_SF_COULOMB_TCC, 616 sf_dawson.toc _GLIBCXX_BITS_SF_DAWSON_TCC, 617 sf_delitributions.toc _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 sf_ellint.toc _GLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_euler.toc _GLIBCXX_BITS_SF_ELLINT_TCC, 625 sf_exprint.toc _GLIBCXX_BITS_SF_EVER_TCC, 625 sf_exprint.toc _GLIBCXX_BITS_SF_EVER_TCC, 625 sf_exprint.toc _GLIBCXX_BITS_SF_EXPINT_TCC, 628 sf_enama.toc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_edepenbauer.toc _GLIBCXX_BITS_SF_HANKEL_TCC, 639 sf_hankel.toc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.toc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.toc _GLIBCXX_BITS_SF_HANKEL_TCC, 644 sf_hypert.toc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_laguerre.toc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_lageorit.toc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_mod_bessel.toc _GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_mod_bessel.toc _GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_mod_bessel.toc _GLIBCXX_BITS_SF_TRIG_TCC, 664 sf_initing_toc _GLIBCXX_BITS_SF_STIRLING_TCC, 665 sf_stirting_toc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_tirigi_nt.co _GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_tirigi_nt.co _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_tirigi_nt.co _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_tirigi_nt.co _GLIBCXX_BITS_S		_
GLIBCXX_BITS_SF_DAWSON_TCC, 616 sf_dawson.tccGLIBCXX_BITS_SF_DAWSON_TCC, 617 sf_distributions.tccGLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 sf_ellint.tccGLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_ellerit.ccGLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_fresnel.tccGLIBCXX_BITS_SF_EVILER_TCC, 625 sf_expint.tccGLIBCXX_BITS_SF_EVILER_TCC, 629 sf_gamma.tccGLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_amma.tccGLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_egenbauer.tccGLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_pegenbauer.tccGLIBCXX_BITS_SF_HANKEL_TCC, 642 st_hermite.tccGLIBCXX_BITS_SF_HANKEL_TCC, 642 st_hermite.tccGLIBCXX_BITS_SF_HANKEL_TCC, 644 sf_hypint.tccGLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tccGLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tccGLIBCXX_BITS_SF_HYPERG_TCC, 649 sf_laquerre.tccGLIBCXX_BITS_SF_HYPERG_TCC, 649 sf_laquerre.tccGLIBCXX_BITS_SF_HYPERG_TCC, 655 sf_legendre.tccGLIBCXX_BITS_SF_HOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_HOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_HOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_HOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_LtccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 663 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 665 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 662 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 663 sf_hetal.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 663 sf_hetal.tc		
sl_distributions.tcc _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 sl_ellint.tcc _GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 sl_ellint.tcc _GLIBCXX_BITS_SF_ELLINT_TCC, 623 sl_euler.tcc _GLIBCXX_BITS_SF_EULER_TCC, 625 sl_expint.tcc _GLIBCXX_BITS_SF_EULER_TCC, 625 sl_expint.tcc _GLIBCXX_BITS_SF_EVPINT_TCC, 628 sl_fesnel.tcc _GLIBCXX_BITS_SF_ERSNEL_TCC, 629 sl_gamma.tcc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sl_eqpenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sl_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sl_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sl_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sl_hypirt.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sl_hypirt.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 649 sl_aguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sl_egendric.tc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sl_owens_t.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sl_owens_t.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sl_owens_t.tcc _GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sl_owens_t.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 664 sl_trig_t.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 664 sl_trig_t.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 665 sl_owens_t.tcc _GLIBCXX_BITS_S	-	
GLIBCXX_BITS_SF_DAWSON_TCC, 617 sf_edistributions.tc GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 sf_ellint.tc GLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_evipint.tc GLIBCXX_BITS_SF_EULER_TCC, 625 sf_ersint.tc GLIBCXX_BITS_SF_EVPINT_TCC, 628 sf_fresnel.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_gamma.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_egenbauer.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_langler.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 629 sf_hankel.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tc GLIBCXX_BITS_SF_HANKEL_TCC, 644 sf_hypint.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_laypint.tcc GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_laguerrs.tcc GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_laguerrs.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_logendre.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 653 sf_mod bessel.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_DOWENS_T_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_NOVENS_T_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_NOVENS_T_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_NOVENS_T_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_TRIG_TCC, 664 sf_thial.tcc GLIBCXX_BITS_SF_TRIG_TCC, 665 sf_leight.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 6667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tcc GLIBCXX_BITS		
sf_eliBCXX_BITS_SF_ELLINT_TCC, 621 sf_eliInticc GLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_euler.tcc _GLIBCXX_BITS_SF_ELLINT_TCC, 625 sf_expint.tcc _GLIBCXX_BITS_SF_EXPINT_TCC, 628 sf_fresnel.tcc _GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_gamma.tcc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_epeinbauer.tc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hypint.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 646 sf_lypint.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_laguerre.tc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_laguerre.tc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 651 sf_lowers_tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_owers_tcc _GLIBCXX_BITS_SF_DOWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tc _GLIBCXX_BITS_SF_TRILING_TCC, 662 sf_trigint.tc _GLIBCXX_BITS_SF_TRILING_TCC, 662 sf_trigint.tc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 6662 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 s	-	
GLIBCXX_BITS_SF_DISTRIBUTIONS_TCC, 621 f_ellint.tcc GLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_evpint.tcc GLIBCXX_BITS_SF_EVPINT_TCC, 625 sf_expint.tcc GLIBCXX_BITS_SF_EVPINT_TCC, 628 sf_fresnel.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_angama.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_egenbauer.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_egenbauer.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hankelt.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 644 sf_hypirt.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypirt.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_lageurer.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_legendre.tcc GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_NOD_BESSEL_TCC, 655 sf_lowens		•
sf_ellentxc GLIBCXX_BITS_SF_ELLER_TCC, 625 sf_expint.tc _GLIBCXX_BITS_SF_EXPINT_TCC, 628 sf_fresnel.tc _GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_gamma.tc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_egenbauer.tc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hermite.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_laguerre.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 653 sf_mod_bessel.tc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_mod_bessel.tc _GLIBCXX_BITS_SF_DOWENS_T_TCC, 655 sf_mod_bessel.tc _GLIBCXX_BITS_SF_OWENS_T_TCC, 655 sf_mod_bessel.tc _GLIBCXX_BITS_SF_DOWENS_T_TCC, 655 sf_mod_bessel.tc _GLIBCXX_BITS_SF_TRIG_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 665 sf_thinitcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS	-	
GLIBCXX_BITS_SF_ELLINT_TCC, 623 sf_euler.tcc GLIBCXX_BITS_SF_EULER_TCC, 625 sf_expint.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 628 sf_fresnel.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_gamma.tcc GLIBCXX_BITS_SF_ERSNEL_TCC, 639 sf_lankel.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_egenbauer.tcc GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 644 sf_hypint.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 648 sf_lacobit.tcc GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_lacobit.cc GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_lowens_t.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_CYPINT_TCC, 665 sf_lowens_t.tcc GLIBCXX_BITS_SF_FOLYLOG_TCC, 659 sf_strifing.tcc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc GLIBCXX_BITS_SF_FTHETA_TCC, 664 sf_trijot.tcc GLIBCXX_BITS_SF_TRIG_TCC, 665 sf_lowens_t.tcc GLIBCXX_BITS_SF_FTHETA_TCC, 664 sf_trijot.tcc GLIBCXX_BITS_SF_TRIG_TCC, 665 sf_lowens_t.tcc GLIBCXX_BITS_SF_TRIG_TCC, 665 sf_lowens_t.tcc GLIBCXX_BITS_SF_FOLYLOG_TCC, 659 sf_trijot.tcc GLIBCXX_BITS_SF_TRIG_TCC, 6662 sf_theta.tcc GLIBCXX_BITS_SF_TRIG_TCC, 6667 sf_trijot.tcc GLIBCXX_BITS_SF_TRIG_TCC, 6662 sf_tritotocc GLIBCXX_BITS_SF_TRIG_TCC, 66		·
sif euler.toc	-	
GLIBCXX_BITS_SF_EVLER_TCC, 625 sf_expint.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 628 sf_fresnel.tcc GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_gamma.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_bankel.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_harmlel.tcc GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hyperg.tcc GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hypint.tcc GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc GLIBCXX_BITS_SF_HYPINT_TCC, 649 sf_laguerre.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_SF_NOD_BESSEL_TCC, 655 sf_lowens_t.tcc GLIBCXX_BITS_SF_SF_NOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_SF_NOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_SF_NOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_FOLYLOG_TCC, 659 sf_strifing.tcc GLIBCXX_BITS_SF_TRILING_TCC, 662 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 6664 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sincos GNU Extended Mathematical Special Functions, 180 sincos GNU Extended Mathematical S		·
sf_expint.tcc _GLIBCXX_BITS_SF_EXPINT_TCC, 629 sf_gamma.tcc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hyperg.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_egendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_egendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_mond_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_COLYLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671		
GLIBCXX_BITS_SF_EXPINT_TCC, 628 sf_fresnel.tcc _GLIBCXX_BITS_SF_RESNEL_TCC, 629 sf_gamma.tcc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_harmite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 644 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_DOWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671		·
sf_resnel.tcc _GLIBCXX_BITS_SF_RESNEL_TCC, 629 sf_gamma.tcc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 644 sf_hypirt.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_jacobi.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_DOLYLOG_TCC, 659 sf_stfiring.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_trigint.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_trigint.tcc _GLIBCXX_BITS_SF	_ ·	
GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_stirting.tcc _GLIBCXX_BITS_SF_TRIEING_TCC, 662 sf_trig.tcc _GLIBCXX_BITS_SF_TRIETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671		•
sf_gamma.tcc _GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 648 sf_laguere.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguere.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_egenbauere.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sincos_pi GNU Extended Mathematical Special Functions, 180 sincos_pi GNU Extended		
GLIBCXX_BITS_SF_GAMMA_TCC, 637 sf_gegenbauer.tcc _GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 6667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 6664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 6664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 6664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 6664 sf_trig.tcc _GLIBCX		•
sf_gegenbauer.tccGLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_hankel.tccGLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tccGLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tccGLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tccGLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tccGLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tccGLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tccGLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_owens_t.tccGLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_oyens_t.tccGLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tccGLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tccGLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_trig.tccGLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tccGLIBCXX_BITS_SF_TRIG_TCC, 665 sf_trigint.tccGLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_ZETA_TCC, 671	— -	
GLIBCXX_BITS_SF_GEGENBAUER_TCC, 639 sf_harnkel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 655 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 665 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 666 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sinh.till _SNU Extended Mathematical Special Functions, 180 sincosf _GNU Extended Mathematical Special Functions, 180 sinh.pif _GNU Extended Mathematical Special Functions, 180 sinhc_pif _GNU Extended Mathematical Special Functions, 184 sinhit _GNU Extended Mathematical Special Functions, 184 sinhit _GN		•
sf_hankel.tcc _GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 655 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 180 sincosf GNU Extended Mathematical Special Functions, 181 sinh_pif GNU Extended Mathematical Special Functions, 182 sinhcpif GNU Extended Mathematical Special Functions, 183 sinhcpif GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 185 sinhcpif GNU Extended Mathematical Special Functions, 180 sinhcpif GNU Extended Mathe	— - -	_
GLIBCXX_BITS_SF_HANKEL_TCC, 642 sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OLYLOG_TCC, 669 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 666 sf_trig.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 180 sincosf GNU Extended Mathematical Special Functions, 181 sinh_pi GNU Extended Mathematical Special Functions, 182 sinhc pi GNU Extended Mathematical Special Functions, 183 sinhc pi GNU Extended Mathematical Special Functions, 183 sinhc pi GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhc pi GNU Extended Mathematical Special Functions, 182 sinhc pi GNU Extended Mathematical Special Functions, 183 sinhc pi GNU Extended Mathematical Special Functions, 183 sinhc pi GNU Extended Mathematical Special Functions, 184 sinhc pi GNU Extended Mathematical Special Fu		•
sf_hermite.tcc _GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OUPLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 Sincosf GNU Extended Mathematical Special Functions, 181 sincosf GNU Extended Mathematical Special Functions, 181 sincosi GNU Extended Mathematical Special Functions, 182 sinh_pil GNU Extended Mathematical Special Functions, 183 sinhc_pil GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 185 sinhcl GNU Extended Mathematical Special Functions, 184 sinhcl	-	
GLIBCXX_BITS_SF_HERMITE_TCC, 644 sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 659 sf_strigin.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 184 sincl GNU Extended Mathematical Special Functions, 184 sincl GNU Extended Mathematical Special Functions, 184 sincl GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 185		·
sf_hyperg.tcc _GLIBCXX_BITS_SF_HYPERG_TCC, 646 sf_hypint.tcc _GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_stirling.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trigit.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigit.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 184 sincbl GNU Extended Mathematical Special Functions, 184 sincbl GNU Extended Mathematical Special Functions, 184 sinhicf GNU Extended Mathematical Special Functions, 184 sinhicf GNU Extended Mathematical Special Functions, 184 sinhicf GNU Extended Mathematical Special Functions, 184 sinhitf GNU Extended Mathematical Special Functions, 185	-	
sf_hypint.tcc GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc GLIBCXX_BITS_SF_OWENS_T_TCC, 659 sf_stirling.tcc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trigi.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 667 sinhintl GNU Extended Mathematical Special Functions, 184 sinhintl GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 184 sinhintl		·
GLIBCXX_BITS_SF_HYPINT_TCC, 648 sf_jacobi.tcc _GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc _GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trigi.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 184 sinhc_pi GNU Extended Mathematical Special Functions, 183 sinhc_pi GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhintl GNU Extended Mathematical Special Functions, 185 sinhclit GNU Extended Mathematical Special Functions, 185 sinhclit GNU Extended Mathematical Special Functions, 185	_GLIBCXX_BITS_SF_HYPERG_TCC, 646	GNU Extended Mathematical Special Functions, 181
sf_jacobi.tcc GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_treg.tcc GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_ZETA_TCC, 671 Sinh_pif GNU Extended Mathematical Special Functions, 182 sinhc G GNU Extended Mathematical Special Functions, 183 sinhcf GNU Extended Mathematical Special Functions, 184 sinhcf GNU Extended Mathematical Special Functions, 184 sinhclf GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185	sf_hypint.tcc	sinh_pi
GLIBCXX_BITS_SF_JACOBI_TCC, 649 sf_laguerre.tcc GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trigi.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 182 sinhc GNU Extended Mathematical Special Functions, 183 sinhc_pi GNU Extended Mathematical Special Functions, 183 sinhc_pi GNU Extended Mathematical Special Functions, 183 sinhc_pi GNU Extended Mathematical Special Functions, 184 sinhch GNU Extended Mathematical Special Functions, 184 sinhc GNU Extended Mathematical Special Functions, 184 sinhtl GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185	_GLIBCXX_BITS_SF_HYPINT_TCC, 648	GNU Extended Mathematical Special Functions, 181
sf_laguerre.tccGLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tccGLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tccGLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tccGLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tccGLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tccGLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tccGLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tccGLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tccGLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_ZETA_TCC, 671 sinhc GNU Extended Mathematical Special Functions, 183 sinhc_pi GNU Extended Mathematical Special Functions, 183 sinhc_pi GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhtl GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185	sf_jacobi.tcc	sinh_pif
GLIBCXX_BITS_SF_LAGUERRE_TCC, 651 sf_legendre.tcc _GLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 182 sinhc _GNU Extended Mathematical Special Functions, 184 sinhcl _GNU Extended Mathematical Special Functions, 184 sinhint _GNU Extended Mathematical Special Functions, 184 sinhint _GNU Extended Mathematical Special Functions, 184 sinhint _GNU Extended Mathematical Special Functions, 185 sinhintl _GNU Extended Mathematical Special Functions, 185	_GLIBCXX_BITS_SF_JACOBI_TCC, 649	GNU Extended Mathematical Special Functions, 182
sf_legendre.tccGLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tccGLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tccGLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tccGLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tccGLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tccGLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tccGLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tccGLIBCXX_BITS_SF_TRIG_TCC, 667 sf_zeta.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_ZETA_TCC, 671 sinhc GNU Extended Mathematical Special Functions, 184 sinhintGNU Extended Mathematical Special Functions, 185 sinhintlGNU Extended Mathematical Special Functions, 185	sf_laguerre.tcc	sinh_pil
gCLIBCXX_BITS_SF_LEGENDRE_TCC, 653 sf_mod_bessel.tcc _GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 184 sinhcf _GNU Extended Mathematical Special Functions, 184 sinhcf _GNU Extended Mathematical Special Functions, 184 sinhcl _GNU Extended Mathematical Special Functions, 184 sinhintl _GNU Extended Mathematical Special Functions, 184 sinhintl _GNU Extended Mathematical Special Functions, 185	_GLIBCXX_BITS_SF_LAGUERRE_TCC, 651	GNU Extended Mathematical Special Functions, 182
sf_mod_bessel.tcc GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_ZETA_TCC, 671 sinhc_pi GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 185 sinhintl	— ·	
GLIBCXX_BITS_SF_MOD_BESSEL_TCC, 655 sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 183 sinhc_pif GNU Extended Mathematical Special Functions, 184 sinhcf GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185		·
sf_owens_t.tcc _GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 sinhc_pil GNU Extended Mathematical Special Functions, 184 sinhcf GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 184 sinhintf GNU Extended Mathematical Special Functions, 185 sinhintf GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185		
GLIBCXX_BITS_SF_OWENS_T_TCC, 657 sf_polylog.tcc _GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sinhc_pil GNU Extended Mathematical Special Functions, 184 sf_stirling.tcc _GLIBCXX_BITS_SF_STIRLING_TCC, 662 sinhcf GNU Extended Mathematical Special Functions, 184 sinhcf GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhcl GNU Extended Mathematical Special Functions, 184 sinhintl GNU Extended Mathematical Special Functions, 184 sinhintl GNU Extended Mathematical Special Functions, 184 sinhintl GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185		·
sf_polylog.tcc	- -	
GLIBCXX_BITS_SF_POLYLOG_TCC, 659 sf_stirling.tcc GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc GLIBCXX_BITS_SF_TRIG_TCC, 668 sf_trigint.tcc GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 184 sinhint GNU Extended Mathematical Special Functions, 184 sinhintf GNU Extended Mathematical Special Functions, 185 sf_zeta.tcc GNU Extended Mathematical Special Functions, 185 sinhintf GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185		·
sf_stirling.tccGLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tccGLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tccGLIBCXX_BITS_SF_TRIG_TCC, 667 sinhintGLIBCXX_BITS_SF_TRIG_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_ZETA_TCC, 671 sinhintfGNU Extended Mathematical Special Functions, 184 sinhintfGNU Extended Mathematical Special Functions, 185 sinhintlGNU Extended Mathematical Special Functions, 185	_, , ,	 -
_GLIBCXX_BITS_SF_STIRLING_TCC, 662 sf_theta.tcc _GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tcc _GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 184 sinhint _GNU Extended Mathematical Special Functions, 184 sinhintf _GNU Extended Mathematical Special Functions, 185 sinhintf _GNU Extended Mathematical Special Functions, 185		
sf_theta.tcc sinhcl GLIBCXX_BITS_SF_THETA_TCC, 664 GNU Extended Mathematical Special Functions, 184 sf_trig.tcc sinhint GNU Extended Mathematical Special Functions, 184 sf_trigint.tcc sinhintf GNU Extended Mathematical Special Functions, 185 sf_zeta.tcc sinhintl GNU Extended Mathematical Special Functions, 185 sf_zeta.tcc sinhintl GNU Extended Mathematical Special Functions, 185	_ ·	
GLIBCXX_BITS_SF_THETA_TCC, 664 sf_trig.tccGLIBCXX_BITS_SF_TRIG_TCC, 667 sinhint GLIBCXX_BITS_SF_TRIG_TCC, 667 sinhintf GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tccGLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 185 sinhintf GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185		·
sf_trig.tcc sinhint GLIBCXX_BITS_SF_TRIG_TCC, 667 GNU Extended Mathematical Special Functions, 184 sf_trigint.tcc sinhintf GLIBCXX_BITS_SF_TRIGINT_TCC, 668 GNU Extended Mathematical Special Functions, 185 sf_zeta.tcc sinhintl GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 185	-	
_GLIBCXX_BITS_SF_TRIG_TCC, 667 sf_trigint.tcc _GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 185 sinhintl _GNU Extended Mathematical Special Functions, 185		
sf_trigint.tcc sinhintf GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc sinhintl GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 185 GNU Extended Mathematical Special Functions, 185	_ ·	
_GLIBCXX_BITS_SF_TRIGINT_TCC, 668 sf_zeta.tcc _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 185 sinhintl GNU Extended Mathematical Special Functions, 185		
sf_zeta.tcc sinhintl _GLIBCXX_BITS_SF_ZETA_TCC, 671 GNU Extended Mathematical Special Functions, 185	_ ·	
		· · · · · · · · · · · · · · · · · · ·
	-	
	sin_pi	sinint

GNU Extended Mathematical Special Functions, 185	C++17/IS29124 Mathematical Special Functions, 44
sinintf	sph_neumannf
GNU Extended Mathematical Special Functions, 186	C++17/IS29124 Mathematical Special Functions, 45
sinintl	sph_neumannl
GNU Extended Mathematical Special Functions, 186	C++17/IS29124 Mathematical Special Functions, 45
specfun.h	std, 244
STDCPP_MATH_SPEC_FUNCS, 687	std::detail, 246
cpp_lib_math_special_functions, 687	_Num_Euler_Maclaurin_zeta, 458
sph_bessel	_Num_Stieltjes, 459
C++17/IS29124 Mathematical Special Functions, 42	_S_Euler_Maclaurin_zeta, 459
sph_bessel_i	_S_Stieltjes, 463
GNU Extended Mathematical Special Functions, 186	_S_double_factorial_table, 459
sph_bessel_if	_S_factorial_table, 459
GNU Extended Mathematical Special Functions, 187	_S_harmonic_denom, 460
sph_bessel_il	_S_harmonic_numer, 460
GNU Extended Mathematical Special Functions, 187	_S_neg_double_factorial_table, 460
sph_bessel_k	_S_num_double_factorials, 460
GNU Extended Mathematical Special Functions, 188	_S_num_double_factorials< double >, 460
sph_bessel_kf	_S_num_double_factorials< float >, 461
GNU Extended Mathematical Special Functions, 189	_S_num_double_factorials< long double >, 461
sph_bessel_kl	_S_num_factorials, 461
GNU Extended Mathematical Special Functions, 189	_S_num_factorials< double >, 461
sph_besself	_S_num_factorials < float >, 461
C++17/IS29124 Mathematical Special Functions, 42	_S_num_factorials< long double >, 462
sph_bessell	_S_num_harmonic_numer, 462
C++17/IS29124 Mathematical Special Functions, 43	_S_num_neg_double_factorials, 462
sph_hankel_1	_S_num_neg_double_factorials< double >, 462
GNU Extended Mathematical Special Functions, 189,	_S_num_neg_double_factorials < float >, 462
190	_S_num_retem1_463
sph_hankel_1f CNILExtended Mathematical Special Functions, 100	_S_num_zetam1, 463
GNU Extended Mathematical Special Functions, 190, 191	_S_zetam1, 463
	airy, 271
sph_hankel_1l	airy_ai, 272
GNU Extended Mathematical Special Functions, 191	airy_arg, 272
sph_hankel_2 GNILExtended Mathematical Special Functions, 193	airy_bi, 273
GNU Extended Mathematical Special Functions, 192, 193	assoc_laguerre, 273
sph hankel 2f	assoc_legendre_p, 274
GNU Extended Mathematical Special Functions, 193	assoc_legendre_q, 274 bell, 275
sph hankel 2l	bell_series, 275
GNU Extended Mathematical Special Functions, 194	bernoulli, 276
sph harmonic	bernoulli_2n, 277
GNU Extended Mathematical Special Functions, 194	bernoulli_series, 278
sph_harmonicf	beta, 278
GNU Extended Mathematical Special Functions, 195	beta_gamma, 279
sph_harmonicl	beta_inc, 279
GNU Extended Mathematical Special Functions, 195	beta_liqamma, 280
sph legendre	beta_p, 281
C++17/IS29124 Mathematical Special Functions, 43	beta_p, 281 beta_product, 281
sph_legendref	binomial, 282
C++17/IS29124 Mathematical Special Functions, 44	binomial_p, 283
sph_legendrel	binomial_pdf, 284
C++17/IS29124 Mathematical Special Functions, 44	binomial_q, 284
sph neumann	bose_einstein, 285
-r	

cauchy_p, 286	debye, 317
chebyshev_recur, 286	debye_region, 318
chebyshev_t, 287	digamma, 318
chebyshev_u, 287	digamma_asymp, 319
chebyshev_v, 288	digamma_series, 319
chebyshev_w, 288	dilog, 320
chi_squared_pdf, 289	dirichlet_beta, 320, 321
chi_squared_pdfc, 289	dirichlet_eta, 321, 322
chshint, 290	dirichlet_lambda, 323
chshint_cont_frac, 290	double_factorial, 323
chshint_series, 291	ellint_1, 324
clamp_0_m2pi, 291	ellint_2, 324
clamp_pi, 291	ellint_3, 325
clausen, 292	ellint_cel, 326
clausen_cl, 293	ellint_d, 326
clausen_sl, 294, 295	ellint_el1, 326
comp_ellint_1, 295	ellint_el2, 326
comp_ellint_2, 297	ellint_el3, 327
comp_ellint_3, 297	ellint_rc, 327
comp_ellint_d, 298	ellint_rd, 328
comp_ellint_rf, 298	ellint_rf, 329
comp_ellint_rg, 299	ellint_rg, 329
conf_hyperg, 299	ellint_rj, 330
conf_hyperg_lim, 300	ellnome, 331
conf_hyperg_lim_series, 300	ellnome_k, 332
conf_hyperg_luke, 301	ellnome_series, 332
conf_hyperg_series, 301	euler, 332, 333
cos_pi, 302	euler_series, 333
cosh_pi, 302, 303	eulerian_1, 333, 334
coshint, 303	eulerian_1_recur, 334
coulomb_CF1, 304	eulerian_2, 335
coulomb_CF2, 304	eulerian_2_recur, 335, 336
coulomb_f_recur, 304	exp2, 336
coulomb_g_recur, 305	expint, 336, 337
coulomb_norm, 305	expint_E1, 338
cyl_bessel, 305	expint_E1_asymp, 338
cyl_bessel_i, 306	expint_E1_series, 339
cyl_bessel_ij_series, 307	expint_Ei, 339
cyl_bessel_ik, 307	expint_Ei_asymp, 340
cyl_bessel_ik_asymp, 308	expint_Ei_series, 340
cyl_bessel_ik_steed, 309	expint_En_asymp, 341
cyl_bessel_j, 309	expint_En_cont_frac, 342
cyl_bessel_in, 310	expint_En_large_n, 342
cyl_bessel_in_asymp, 310	expint_En_recursion, 343
cyl_bessel_jn_neg_arg, 311	expint_En_series, 343
cyl_bessel_in_steed, 311	exponential_p, 344
cyl bessel k, 312	exponential_pdf, 344
cyl_hankel_1, 312, 313	exponential q, 345
cyl_hankel_2, 314	factorial, 345
cyl_neumann, 315	falling_factorial, 345, 346
cyl_neumann_n, 315	fermi_dirac, 346
dawson, 316	fisher f p, 347
dawson cont frac, 316	fisher_f_pdf, 347
dawson_series, 317	fisher_f_q, 348
 - '	

fock_airy, 349	jacobi_zeta, 384
fresnel, 349	kolmogorov_p, 384
fresnel_cont_frac, 350	laguerre, 384, 385
fresnel_series, 350	laguerre_hyperg, 386
gamma, 350, 351	laguerre_large_n, 387
gamma_cont_frac, 351	laguerre_recur, 388
gamma_p, 351, 352	laguerre_zeros, 389
gamma_pdf, 352	lah, 389
gamma_q, 353	 lah_recur, 389, 390
gamma reciprocal, 354	lanczos_binet1p, 390
gamma_reciprocal_series, 354	lanczos_log_gamma1p, 391
gamma_series, 355	legendre_p, 391
gamma_temme, 355	legendre_q, 392
gauss, 356	legendre_q_series, 393
gados, ood gegenbauer_recur, 356	legendre_zeros, 393
gegenbauer_zeros, 357	log_binomial, 393, 394
hankel, 358	log binomial sign, 394, 395
hankel_debye, 358	log_double_factorial, 395, 396
hankel_params, 359	log_factorial, 396
hankel uniform, 359	
hankel_uniform_olver, 360	log_falling_factorial, 397 log_gamma, 397, 398
hankel uniform outer, 361	
 ·	log_gamma_bernoulli, 398
hankel_uniform_sum, 361	log_gamma_sign, 399
harmonic_number, 362	log_rising_factorial, 400
hermite, 363	log_stirling_1, 400
hermite_asymp, 363	log_stirling_1_sign, 400
hermite_recur, 364	log_stirling_2, 401
hermite_zeros, 365	logint, 401
heuman_lambda, 365	logistic_p, 402
hurwitz_zeta, 366	logistic_pdf, 402
hurwitz_zeta_euler_maclaurin, 366	lognormal_p, 402
hurwitz_zeta_polylog, 367	lognormal_pdf, 403
hydrogen, 368	max_FGH, 458
hyperg, 368	max_FGH< double >, 458
hyperg_luke, 369	max_FGH< float >, 458
hyperg_recur, 369	normal_p, 403
hyperg_reflect, 370	normal_pdf, 403
hyperg_series, 370	owens_t, 404
ibeta_cont_frac, 371	periodic_zeta, 405
jacobi_ellint, 372	polar_pi, 405
jacobi_recur, 372	polygamma, 406
jacobi_theta_1, 373, 374	polylog, 406, 407
jacobi_theta_1_prod, 374	polylog_exp, 407
jacobi_theta_1_sum, 375	polylog_exp_asymp, 408
jacobi_theta_2, 376	polylog_exp_neg, 409, 410
jacobi_theta_2_prod, 377	polylog_exp_neg_int, 410, 411
jacobi_theta_2_sum, 378	polylog_exp_neg_real, 411, 412
jacobi_theta_3, 378, 379	polylog_exp_pos, 413, 414
jacobi_theta_3_prod, 380	polylog_exp_pos_int, 415
jacobi_theta_3_sum, 380	polylog_exp_pos_real, 416, 417
jacobi_theta_4, 381, 382	polylog_exp_sum, 417
jacobi_theta_4_prod, 382	prob_hermite_recur, 418
jacobi_theta_4_sum, 383	radial_jacobi, 419
jacobi_zeros, 383	radial_jacobi_zeros, 420

rice_pdf, 420	theta_4, 452
riemann_zeta, 421	theta_c, 453
riemann_zeta_euler_maclaurin, 422	theta_d, 453
riemann_zeta_glob, 422	theta_n, 453
riemann_zeta_laurent, 422	theta_s, 454
riemann_zeta_m_1, 422	tricomi_u, 454
riemann_zeta_m_1_glob, 423	tricomi_u_naive, 455
riemann_zeta_product, 423	weibull_p, 456
riemann_zeta_sum, 424	weibull_pdf, 456
rising_factorial, 424, 425	zernike, 456
sin_pi, 425, 426	znorm1, 457
sinc, 426	znorm2, 458
sinc_pi, 426	std::detail::gamma_lanczos_data< _Tp >, 537
sincos, 427	std::detail::gamma_lanczos_data< double >, 537
sincos_pi, 428	_S_cheby, 538
sincosint, 428	_S_g, 538
sincosint_asymp, 428	std::detail::gamma_lanczos_data< float >, 538
sincosint_cont_frac, 429	_S_cheby, 539
sincosint_series, 429	_S_g, 539
sinh_pi, 429, 430	std::detail::gamma_lanczos_data< long double >,
sinhc, 430	539
sinhc_pi, 430	_S_cheby, 540
sinhint, 431	_S_g, 540
sph_bessel, 431, 432	std::detail::gamma_spouge_data< _Tp >, 541
sph_bessel_ik, 433	std::detail::gamma_spouge_data< double >, 541
sph_bessel_jn, 433	_S_cheby, 541
sph_bessel_jn_neg_arg, 434	std::detail::gamma_spouge_data< float >, 542
sph_hankel, 434	_S_cheby, 542
sph_hankel_1, 435	std::detail::gamma_spouge_data< long double >,
sph_hankel_2, 436, 437	543
sph_harmonic, 437	_S_cheby, 543
sph_legendre, 438	std::detail::jacobi_lattice_t
sph_neumann, 439	_Cmplx, 546
spouge_binet1p, 440	_M_omega_1, 550
spouge_log_gamma1p, 440	_M_omega_3, 550
stirling_1, 441, 442	_Real, 546
stirling_1_recur, 442, 443	_Real_Omega1, 546
stirling_2, 443	_Real_Omega3, 546
stirling_2_recur, 444	_S_pi, 550
stirling_2_series, 445	_Tp_Nome, 547
student_t_p, 445	ellnome, 548
student_t_pdf, 446	jacobi_lattice_t, 547
student_t_q, 446	omega_1, 548
tan_pi, 447	omega_2, 548
tanh_pi, 447, 448	omega_3, 549
tgamma, 448	reduce, 549
tgamma_lower, 448	tau, 550
theta_1, 449	std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_←
theta_2, 449	Omega3 >, 544
theta_2_asymp, 450	std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_
theta_2_sum, 450	Omega3 >::arg_t, 551
theta_3, 451	std::detail::jacobi_lattice_t< _Tp_Omega1, _Tp_
theta_3_asymp, 451	Omega3 >::tau_t, 552
theta_3_sum, 452	std::detail::jacobi_lattice_t::arg_t

m, 551	_Airy_asymp, 570
n, 552	_Cmplx, 570
z, 552	_S_absarg_ge_pio3, 570
std::detail::jacobi_lattice_t::tau_t	_S_absarg_lt_pio3, 571
tau_t, 553	operator(), 571
val, 553	std::detail::_Airy_asymp< _Tp >, 568
std::detail::jacobi_theta_0_t	std::detail::_Airy_asymp_data< _Tp >, 572
_Cmplx, 555	std::detail::_Airy_asymp_data< double >, 573
_Real, 555	_S_c, 573
_Type, 555	_S_d, 573
jacobi_theta_0_t, 555	_S_max_cd, 573
dedekind_eta, 556	std::detail::_Airy_asymp_data< float >, 574
eta_1, 556	_S_c, 574
eta_2, 556	_S_d, 574
eta_3, 557	_S_max_cd, 574
th1p, 557	std::detail::_Airy_asymp_data< long double >, 575
th1ppp, 557	_S_c, 575
th2, 557	_S_d, 575
th2pp, 557	_S_max_cd, 575
th3, 558	std::detail::_Airy_asymp_series
th3pp, 558	_Airy_asymp_series, 577
th4, 558	_S_sqrt_pi, 578
th4pp, 558	operator(), 578
std::detail::jacobi_theta_0_t< _Tp1, _Tp3 >, 554	scalar_type, 577
std::detail::weierstrass_invariants_t	value_type, 577
	std::detail::_Airy_asymp_series< _Sum >, 576
_Real, 560	std::detail::_Airy_default_radii< _Tp >, 579
	std::detail::_Airy_default_radii< double >, 579
delta, 561	inner_radius, 579
g_2, 561	outer_radius, 579
	std::detail::_Airy_default_radii< float >, 580
klein_j, 561	inner radius, 580
weierstrass_invariants_t, 560	outer radius, 580
std::detail::weierstrass_invariants_t< _Tp1, _Tp3 >,	— · · · · · · · · · · · · · · · · · · ·
559	inner_radius, 581
std::detail::weierstrass_roots_t	outer_radius, 581
_Cmplx, 563	std::detail::_Airy_series
_Real, 563	_Cmplx, 582
_Type, 563	_Onpix, 302 _N_FGH, 587
type, 300 delta, 564	S Ai, 583
delta, 504 e1, 565	_S_Ai0, 587
e2, 565	
	_S_Aip0, 587
e3, 565	_S_Airy, 583
weierstrass_roots_t, 564	_S_Bi, 584
std::detail::weierstrass_roots_t< _Tp1, _Tp3 >, 562	_S_Bi0, 587
std::detail::_Airy	_S_Bip0, 588
_Airy, 567	_S_FGH, 584
inner_radius, 568	_S_Fock, 585
operator(), 567	_S_Gi0, 588
outer_radius, 568	_S_Gip0, 588
scalar_type, 566	_S_Hi0, 588
value_type, 566	_S_Hip0, 589
std::detail::_Airy< _Tp >, 566	_S_Scorer, 585
std::detail::_Airy_asymp	_S_Scorer2, 586

_S_eps, 588	tan_pil
_S_i, 589	GNU Extended Mathematical Special Functions, 199
_S_pi, 589	tanh_pi CNU_Futandad Mathematical Special Functions, 100
_S_sqrt_pi, 589	GNU Extended Mathematical Special Functions, 199
std::detail::_Airy_series<_Tp>, 581	tanh_pif CNU Extended Methometical Special Eurotions, 200
std::detail::_AiryAuxilliaryState	GNU Extended Mathematical Special Functions, 200
_Val, 590 fai_deriv, 590	tanh_pil GNU Extended Mathematical Special Functions, 200
fai value, 591	tgamma
aivalde, 351 gai_deriv, 591	GNU Extended Mathematical Special Functions, 200
gai_value, 591	201
gar_valde, 551 hai_deriv, 591	tgamma_lower
nai_value, 591	GNU Extended Mathematical Special Functions, 201
z, 592	tgamma_lowerf
std::detail::_AiryAuxilliaryState< _Tp >, 590	GNU Extended Mathematical Special Functions, 202
std::detail::_AiryState	tgamma_lowerl
	GNU Extended Mathematical Special Functions, 202
Ai_deriv, 594	tgammaf
Ai_value, 594	GNU Extended Mathematical Special Functions, 202
Bi_deriv, 594	203
	tgammal
z, 594	GNU Extended Mathematical Special Functions, 203
true_Wronskian, 593	204
Wronskian, 593	th1p
std::detail::_AiryState< _Tp >, 592	std::detail::jacobi_theta_0_t, 557
std::detail::_AsympTerminator	th1ppp
_AsympTerminator, 595	std::detail::jacobi_theta_0_t, 557
num_terms, 596	th2
operator<<, 596	std::detail::jacobi_theta_0_t, 557
operator(), 596	th2pp
std::detail::_AsympTerminator< _Tp >, 595	std::detail::jacobi_theta_0_t, 557
std::detail::_Factorial_table	th3
factorial, 597	std::detail::jacobi_theta_0_t, 558
log_factorial, 597	th3pp
n, 597	std::detail::jacobi_theta_0_t, 558
std::detail::_Factorial_table< _Tp >, 597	th4
std::detail::_Terminator	std::detail::jacobi_theta_0_t, 558
_Terminator, 598	th4pp
num_terms, 599	std::detail::jacobi_theta_0_t, 558
operator(), 599	theta_1
std::detail::_Terminator< _Tp >, 598	GNU Extended Mathematical Special Functions, 204
stirling_1	theta_1f
GNU Extended Mathematical Special Functions, 196	GNU Extended Mathematical Special Functions, 205
stirling_2	theta_1I
GNU Extended Mathematical Special Functions, 197	GNU Extended Mathematical Special Functions, 205
student_t_p	theta_2
GNU Extended Mathematical Special Functions, 197	GNU Extended Mathematical Special Functions, 205
student_t_pdf	theta_2f
GNU Extended Mathematical Special Functions, 198	GNU Extended Mathematical Special Functions, 206
Annual Colores	theta_2l
tan_pi	GNU Extended Mathematical Special Functions, 206
GNU Extended Mathematical Special Functions, 198	theta_3
tan_pif	GNU Extended Mathematical Special Functions, 206
GNU Extended Mathematical Special Functions, 199	theta_3f

GNU Extended Mathematical Special Functions, 207 zernikef theta 3l GNU Extended Mathematical Special Functions, 217 zernikel GNU Extended Mathematical Special Functions, 207 theta 4 GNU Extended Mathematical Special Functions, 217 GNU Extended Mathematical Special Functions, 207 theta 4f GNU Extended Mathematical Special Functions, 208 theta 4l GNU Extended Mathematical Special Functions, 208 theta_c GNU Extended Mathematical Special Functions, 208 theta cf GNU Extended Mathematical Special Functions, 209 theta cl GNU Extended Mathematical Special Functions, 209 theta d GNU Extended Mathematical Special Functions, 210 theta_df GNU Extended Mathematical Special Functions, 210 theta dl GNU Extended Mathematical Special Functions, 211 theta n GNU Extended Mathematical Special Functions, 211 theta nf GNU Extended Mathematical Special Functions, 212 theta nl GNU Extended Mathematical Special Functions, 212 theta s GNU Extended Mathematical Special Functions, 212 theta sf GNU Extended Mathematical Special Functions, 213 theta sl GNU Extended Mathematical Special Functions, 213 tricomi u GNU Extended Mathematical Special Functions, 214 tricomi uf GNU Extended Mathematical Special Functions, 215 tricomi ul GNU Extended Mathematical Special Functions, 215 true_Wronskian std::__detail::_AiryState, 593 value type std:: detail:: Airy, 566 std::__detail::_Airy_asymp_series, 577 weibull p GNU Extended Mathematical Special Functions, 215 weibull pdf GNU Extended Mathematical Special Functions, 215 Wronskian std::__detail::_AiryState, 593 zernike

GNU Extended Mathematical Special Functions, 216