MLL 100

Introduction to Materials Science and Engineering

Lecture-2

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

What we learnt in Lecture-1?

- Course Policy
- Structure of materials: Different length scales
- Symmetricity and periodicity

An object at an equal and opposite distance through a single point 'i' after an inversion operation.

Glide

Glide = Reflection + Translation

Mirror operation

Glide operation

Makes the molecular packing compact

Glide Symmetries: an Additional Degree of Freedom to Control the Propagation Characteristics of Periodic Structures

Glide symmetry offers a compact, flexible solution for suppression of channel crosstalk in SSPP transmission lines

Twist and Polar Glide Symmetries: an Additional Degree of Freedom to Control the Propagation Characteristics of Periodic Structures

Graphical symbol of symmetry elements

An object has **symmetry** if there is an operation, such as translation, rotation or reflection which maps the object onto itself, i.e., the object remains invariant after the transformation.

- ☐ Symmetry:
 - Translational symmetry
 - Non-translational Symmetry (Inversion, Rotational and Reflectional)
 - Non-translational + Translational symmetry (Glide)

How many alphabets do you think has mirror symmetry?

How many alphabets do you think has mirror symmetry along two planes?

What are the symmetry elements present in these objects?

4-fold rotational symmetry 2-fold rotational symmetry

- ☐ What factor is likely to govern the symmetry of the crystal?
- ☐ Symmetry of a crystal will have either equivalent or lower order than that of the symmetry of a lattice.

2-D crystal

Lattice points: How to repeat?

Translationally periodic arrangement of points

Entity associated with lattice points: What to repeat?

Translationally periodic arrangement of motifs

Atomic order of materials

Inert gases (He, Ar)

No regular atomic order

Amorphous (silicate, metallic glasses)

Short-range order; Lack periodicity in atomic arrangement **Polycrystal**

Periodic across each grain

Crystal (Metals, Ceramics, such as MgO, Al₂O₃; Conductive polymers)

Regular atomic order extending over a large length scale > 100 nm

Increase in atomic order

Liquid crystal

Would you be able to make out the difference between your first and second positions looking at its environment?

NO! ----- Both look identical

Would you be able to make out the difference between your first and second positions looking at its environment?

NO! ----- Both look identical

Translational periodicity

2-D square lattice

2-D square lattice

Motif

Lattice: Translationally periodic arrangement of points in space such that every point has identical surroundings

 Dotted grid is a 2-D Square lattice and the intersection points are called the lattice points

Entity associated with the lattice point is called a motif

