Construção e Análise de Algoritmos

Primeira avaliação remota

Parte assíncrona (entrega até as 12h de sábado, dia 01/08)

Desordenação da panqueca

O centro de dados da UFC foi invadido por um hacker.

Depois de alguma investigação, descobriu-se que o hacker era um ex-aluno da Computação ou da Engenharia da Computação, não se sabe ao certo.

O que se sabe é que ele não queria destruir nada, mas parecia irritado e tentou fazer a maior confusão possível.

Ele sabia que não tinha muito tempo.

E a primeira coisa que lhe veio à cabeça foi o algoritmo de ordenação das panquecas, que ele aprendeu na disciplina de CANA.

Quer dizer, ele pensou em utilizar o algoritmo para desordenar uma base de dados qualquer.

A ideia era simples:

- escolher um ponto de quebra aleatório k
- $e\ fazer\ o\ "flip"\ do\ segmento\ inicial\ V[1..k]$

O esquema foi descoberto depois que ele conseguiu repetir a operação \sqrt{n} vezes (onde n é o número de registros na base de dados).

E agora, os técnicos da UFC, que também eram ex-alunos da Computação e da Engenharia da Computação, estão tentando recolocar a base de dados no estado original.

Uma solução simples seria reordenar a coisa toda novamente, em tempo $\Theta(n \log n)$.

Mas, eles queriam se divertir um pouco tentando resolver o problema mais rápido do que isso.

Eles já descobriram o seguinte:

- 1. As operações de Flip deixam grandes segmentos do vetor ainda ordenados.
- 2. Alguns segmentos estão em ordem crescente, outros estão em ordem decrescente.

3. É possível descobrir pontos de quebra quando passamos de um segmento crescente para um decrescente (ou vice-versa), mas é difícil descobrir todos eles.

Veja o que acontece no exemplo abaixo:

Isto é, após a realização de 3 operações Flip, a inspeção dos segmentos crescentes e decrescentes revela apenas 1 ponto de quebra.

Mas, note que as faixas de valores associadas aos dois segmentos que foram identificados possuem interseção não vazia

e isso significa que existem pontos de quebra que ainda não foram descobertos.

De fato, também é possível que a faixa de valores de um segmento esteja toda contida na faixa de valores de outro segmento

(Você conseque imaginar como isso pode acontecer?)

Os técnicos já entenderam que existem aproximadamente \sqrt{n} pontos de quebra (pois foram realizados \sqrt{n} Flips), e que

- se todos os pontos de quebra forem descobertos
- e todos os segmentos ordenados (sem interseção) forem identificados
- então, colocando os segmentos em ordem, é possível restaurar os dados em tempo O(n) (assumindo que as duas etapas acima também executam em tempo O(n))

Nesse momento, uma técnica falou, com os olhos bem arregalados: "Eu acho que já sei como ordenar os segmentos e descobrir os pontos de quebra, tudo ao mesmo tempo!"

Será?

A sua tarefa é ajudar os técnicos da UFC a resolver esse problema.

Quer dizer, você deve descrever uma solução completa para o problema, mostrando como a base de dados pode ser restaurada corretamente.

Você deve explicar cada etapa da sua solução claramente, na forma de procedimentos de alto nível ou pseudo-código.

E você também deve estimar o tempo de execução da sua solução (levando em conta todas as etapas).

O ideal é que a sua solução execute em tempo O(n), ou alguma coisa menor que $\Theta(n \log n)$, mas isso não é absolutamente necessário.