Estimation of soil nutrient content of Hyperspectral image using Machine learning algorithm

Domain: Machine Learning, Digital Image Processing

B Sudarshini - CB.EN.U4EEE21006 Nivetha K - CB.EN.U4EEE21035 Priyaranjan S - CB.EN.U4EEE21038 Raghavan S - CB.EN.U4EEE21042

Guided by: Dr. Anand R.

Amrita School of Engineering, Coimbatore Amrita Vishwa Vidaypeetham

September 10, 2024

1. Problem Statement

- 2. Literature Review
- 3. Objectives
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame
- 9 References

Problem Statement

- To explore the capabilities of hyperspectral remote sensing technology in enhancing the
 evaluation of soil nutrient levels. This advancement has the potential to contribute to
 sustainable land use planning and effective crop management, particularly in tropical
 regions.
- In this study, we want to establish a systematic approach for utilizing hyperspectral data in order to accurately estimate essential soil nutrient parameters, specifically carbon, nitrogen, phosphorus, and potassium. Our primary emphasis will be on achieving high levels of precision and dependability in the estimation process.
- This study aims to enhance the comprehension of remote sensing techniques' application in treating soil nutrient deficiencies and variability in tropical soils. The findings of this research can have substantial consequences for improving agricultural production and promoting sustainable land use practices in Tamil Nadu, India.

- 1. Problem Statement
- 2. Literature Review
- 3. Objectives
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame
- 9 References

Title	Methodology	Key Findings			
Spectroscopic measure-	This study used digital camera and	The advantages of using			
ments and imaging of soil	Sentinel-2 data to estimate SOC	a digital camera for es-			
colour for field scale es-	through soil color analysis. Random	timating soil organic car-			
timation of soil organic	forest was used for modeling, and	bon (SOC) include cost-			
carbon	models were validated with repeated	effectiveness, efficiency,			
	5-fold cross-validation.	accurate predictions, and			
		convenience compared to			
		traditional spectroscopic			
		methods.			
C': Cl l: l l A C		1/1 . 4 (0000)			

Citation: Gholizadeh, A., Saberioon, M., Rossel, R. A. V., Boruvka, L., Klement, A. (2020). Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma, 357, 113972.

Title	Methodology	Key Findings	
Hyperspectral imag-	This study used hyperspectral imaging	Improved Practical Appli-	
ing for high-resolution	(HSI) to analyze soil C fractions in 16	cability, Data Volume Re-	
mapping of soil carbon	paddy soil profiles. Linear and nonlin-	duction, This reduction	
fractions in intact paddy	ear multivariate techniques were com-	in data volume enhances	
soil profiles with multi-	pared, and CARS was used for spec-	processing speed and effi-	
variate techniques and	tral variable selection. Nonlinear mul-	ciency. Faster Processing	
variable selection	tivariate techniques, combined with	and consistent findings.	
	CARS, were more effective in mapping		
	soil C fractions.		

Citation: Xu, S., Wang, M., Shi, X. (2020). Hyperspectral imaging for high-resolution mapping of soil carbon fractions in intact paddy soil profiles with multivariate techniques and variable selection. Geoderma. 370. 114358.

Title	Methodology	Key Findings			
Regional soil organic	This study proposes a noise removal	the SOC prediction accu-			
carbon prediction model	method for hyperspectral satellite soil	racy using hyperspectral			
based on a discrete	data using DWT. It also implements	satellite data is greatly			
wavelet analysis of hy-	a spectral input selection method and	improved. It is highly			
perspectral satellite data	builds regional-scale SOC prediction	robust and accurate			
	models. The results showed that the method for predi				
	proposed method effectively removes and mapping region				
	noise and improves the accuracy of	SOC contents.			
	SOC prediction.				

Citation: Meng, X., Bao, Y., Liu, J., Liu, H., Zhang, X., Zhang, Y., ... Kong, F. (2020).

Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. International Journal of Applied Earth Observation and Geoinformation. 89. 102111.

Title	Methodology	Key Findings			
Detection of soil organic	PLSR - partial least squares regres-	The paper estimates			
matter using hyperspec-	sion - used to correlate spectral data	soil organic matter con-			
tral imaging sensor com-	from the sensor with SOM contents	centrations at different			
bined with multivariate	obtained from conventional methods.	depths, but doesn't			
regression modeling pro-		analyze specific organic			
cedures citation:		compounds.			

Citation: Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures, Remote Sensing Applications: Society and Environment, Volume 22, 2021, 100492, ISSN 2352-9385.

Estimation of Soil Nutri- ent Content Using Hyper- spectral Data	Various techniques such as PLSR is used as a regression technique to find the optimal screening algorithm from the following three: PCC, LASSO, GBDT	performances were discovered to be optimal in determining the contents of TN and TP for the former and TK for the lat-
		ter.

Citation:Peng, Y.; Wang, L.; Zhao, L.; Liu, Z.; Lin, C.; Hu, Y.; Liu, L. Estimation of Soil Nutrient Content Using Hyperspectral Data. Agriculture 2021, 11, 1129.

Title	Methodology	Key Findings
Usage of Airborne Hyper-	Hyperspectral imaging is performed	The paper only analyzes
spectral Imaging Data for	to get the spatial and spectral imag-	soil nitrogen content, not
Identifying Spatial Vari-	ing information for detecting physical,	other organic matters like
ability of Soil Nitrogen	chemical and biological attributes in	potassium, phosphorus,
Content	the Czech Republic, using laboratory	or carbon.
	and handheld spectrometers.	

Citation:Pechanec, V.; Mráz, A.; Rozkošný, L.; Vyvlečka, P. Usage of Airborne Hyperspectral Imaging Data for Identifying Spatial Variability of Soil Nitrogen Content. ISPRS Int. J. Geo-Inf. 2021, 10, 355.

Title	Methodology	Key Findings
Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Us- ing Regression Models	Essentially, the study is comparing different machine learning methods for predicting soil properties using HSI data, with the goal of finding the most accurate and efficient approach. Principal Component Analysis is used to enhance model performance. Traditional methods like thermogravimetric, mass loss on ignition, Kjeldahl digestion are used for reference measurements of soil properties.	It reduces time and effort compared to conventional sampling techniques. This is advantageous for long-term monitoring and sustainable soil management.

Citation: Datta, D., Paul, M., Murshed, M., Teng, S. W., Schmidtke, L. (2022). Soil moisture, organic carbon, and nitrogen content prediction with hyperspectral data using regression models. Sensors, 22(20), 7998.

Title	Methodology	Key Findings				
Using soil library hyper- spectral reflectance and machine learning to pre- dict SOC: Assessing po-	PLSR, RF, Ridge, KNN, NN, CNN and LSTM are selected to identify the best combination. Vector Normalization, Continuum removal and First or-	High accuracy can facilitate large scale SOC quantification. Imbalanced sample sizes may				
tential of airborne and spaceborne optical soil sensing	der derivative are performed for spectral pre-processing.	impact model error.				

Citation: Wang, S., Guan, K., Zhang, C., Lee, D., Margenot, A. J., Ge, Y., ... Huang, Y. (2022). Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sensing of Environment, 271, 112914.

Regional SOC prediction models based on a multivariate analysis of the Mid-infrared hyperspectral data in the middle Indo-Gangetic plains of India

SOC determined using Wet Oxidation method. To develop predictive models, PLSR,RF,SVR,MARS are used. For pre-processing, FD, SD, SNV, Multiplicative scatter correction methods are used.

MIR spectroscopy allows for a quick analysis and it is very accurate. But instrumentation cost of MIR spectroscopy is very high.

Citation: Ghosh, A. K., Hati, K. M., Sinha, N. K., Mridha, N., Sahu, B. (2022). Regional soil organic carbon prediction models based on a multivariate analysis of the Mid-infrared hyperspectral data in the middle Indo-Gangetic plains of India. Infrared Physics Technology, 127. 104372.

Title	Methodology	Key Findings				
Monitoring Soil Prop-	Data processing involves removing at-	Provides precise mapping				
erties using Enmap	mospheric effects and smoothing re-	of soil properties. Needs				
Spaceborne imaging	flectance spectra. Soil properties such	extensive, resource-				
spectroscopy mission	as soil organic carbon (SOC), clay,	intensive ground data.				
	and carbonate content are mapped us-					
	ing local Partial Least Squares Regres-					
	sion (PLSR) and multitemporal com-					
	posites. Validation is performed with					
	ground truth datasets and spectral li-					
	braries to refine models.					
Citation: Chabrillat, S., Miley	vski, R., Ward, K., Foerster, S., Guillaso,	S. Lov. C Demattê.				

J. A. (2023, July). Monitoring Soil Properties Using EnMAP Spaceborne Imaging Spectroscopy Mission. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 1130-1133). IEEE.

Title	Methodology	Key Findings			
High-Resolution Map-	This study used UAV hyperspectral	UAV hyperspectral imag-			
ping of Soil Organic	imaging to map soil organic matter	ing provides fine spatial			
Matter at the Field Scale	(SOM) in a low-relief black soil area	resolution, enabling de-			
Using UAV Hyperspec-	in Northeast China. The UAV images	tailed mapping of SOM.			
tral Images with a Small	were processed .then Machine learn-	UAVs have restricted			
Calibration Dataset	ing models(RF model)were applied	flight times and coverage			
	to predict SOM from the preprocessed	areas, making them less			
	spectra.	suitable for large-scale			
		mapping.			

Citation: Yan, Y., Yang, J., Li, B., Qin, C., Ji, W., Xu, Y., Huang, Y. (2023). High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sensing, 15(5), 1433.

- 1. Problem Statement
- 3. Objectives
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame

Objectives

- To design an efficient algorithm that can identify the relevant bands using optimization techniques.
- To design an prediction algorithm that estimates the soil nutrient content in hyperspetral spectroscopy data.
- To apply the developed algorithm for the real-world soil data and achieve the best regression model to predict soil nutrients. (in Project Phase 2)

- 1. Problem Statement
- 2. Literature Review
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame

Methodology

- The ground truth data has been obtained from Radhapuram. Tirunelveli.
- The spectral reflectance of the soil samples are recorded into a dataset which is to be processed with the help of ML models
- Various optimization techniques are used to reduce the number of redundant bands from the dataset
- Regression trees are used to select significant bands.
- The resultant algorithm obtained is used to predict the soil organic content from any soil sample.

- 1. Problem Statement
- 2. Literature Review
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame

Block Diagram

Figure: Proposed Methodology

- 1. Problem Statement

- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame

Soil content mapping

Figure: Flowchart of soil content mapping with hybrid optimizations

- 1. Problem Statement
- 2. Literature Review
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame

Results and Discussions

Table: Soil nutrient levels for spectroradiometer data

Soil Nutrients Levels	Low	Medium	High
Organic Carbon	<0.5 %	0.5 - 7.5%	>0.75%
Nitrogen	<240Kg/ha	240- 480kg/ha	>480Kg/ha
Phosphrous	<11.0 Kg/ha	11 – 22 Kg/ha	>22 Kg/ha
Pottasium	<110Kg/ha	110-280Kg/ha	>280Kg/ha

Figure: Organic Carbon with different levels

Figure: Nitrogen levels

Figure: Phosphorous levels

- 1. Problem Statement
- 2. Literature Review
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame

Time Frame

S.No Task Name	TI-N		Project Phase 1			Project Phase 2				
	July	August	September	October	November	December	January	February	March	
1.	Literature Review & Domain Identification									
2.	Data Preprocessing & Band Selection									
3.	Feature Extraction & Regression									
4.	Comparison of results									
5.	Project Report Writing									
6.	Preprocessing of Hyperspectral Satellite images									
7.	Deploy Band Selection Techniques to preprocessed images									
8.	Prediction of Soil Nutrient Content									

- 1. Problem Statement
- 2. Literature Review
- 4. Methodology
- 5. Block Diagram
- 6. Soil content mapping
- 7. Results and Discussions
- 8. Time Frame
- 9. References

References

- Datta, D., Paul, M., Murshed, M., Teng, S. W., Schmidtke, L. (2022). Soil moisture, organic carbon, and nitrogen content prediction with hyperspectral data using regression models. Sensors, 22(20), 7998.
- Gholizadeh, A., Saberioon, M., Rossel, R. A. V., Boruvka, L., Klement, A. (2020). Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma, 357, 113972.
- Xu, S., Wang, M., Shi, X. (2020). Hyperspectral imaging for high-resolution mapping of soil carbon fractions in intact paddy soil profiles with multivariate techniques and variable selection. Geoderma, 370, 114358.
- Meng, X., Bao, Y., Liu, J., Liu, H., Zhang, X., Zhang, Y., ... Kong, F. (2020). Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. International Journal of Applied Earth Observation and Geoinformation, 89, 102111

References

- Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures, Remote Sensing Applications: Society and Environment, Volume 22, 2021, 100492, ISSN 2352-9385,
- Peng Y.; Wang, L.; Zhao, L.; Liu, Z.; Lin, C.; Hu, Y.; Liu, L. Estimation of Soil Nutrient Content Using Hyperspectral Data. Agriculture 2021, 11, 1129.
- Pechanec, V.; Mráz, A.; Rozkošný, L.; Vyvlečka, P. Usage of Airborne Hyperspectral Imaging Data for Identifying Spatial Variability of Soil Nitrogen Content. ISPRS Int. J. Geo-Inf. 2021, 10, 355.
- Wang, S., Guan, K., Zhang, C., Lee, D., Margenot, A. J., Ge, Y., ... Huang, Y. (2022).
 Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sensing of Environment, 271, 112914.

References

- Ghosh, A. K., Hati, K. M., Sinha, N. K., Mridha, N., Sahu, B. (2022). Regional soil organic carbon prediction models based on a multivariate analysis of the Mid-infrared hyperspectral data in the middle Indo-Gangetic plains of India. Infrared Physics Technology, 127, 104372.
- Chabrillat, S., Milewski, R., Ward, K., Foerster, S., Guillaso, S., Loy, C., ... Demattê, J. A. (2023, July). Monitoring Soil Properties Using EnMAP Spaceborne Imaging Spectroscopy Mission. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 1130-1133). IEEE.
- Yan, Y., Yang, J., Li, B., Qin, C., Ji, W., Xu, Y., Huang, Y. (2023). High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sensing, 15(5), 1433.