

CHUNGNAM NATIONAL UNIVERSITY

시스템 프로그래밍

강의 3 : 2.4 실수의 표현 및 처리 II 2014년 9월 23일 http://eslab.cnu.ac.kr

소수 표현 요약

값의 분포 - 6비트 체계

- 6 비트 IEEE 유사한 형식으로 표시하는 경우
 - e = 3 비트 지수
 - f = 2 비트 소수
 - 바이어스 = 3
 - 정규화 최대값은 14
- 0 부근에서 왜 분포가 조밀해 지는지 파악해 보자

값의 분포(확대)

6 비트 IEEE 유사한 형식으로 표시하는 경우

- e = 3 비트 지수
- f = 2 비트 소수
- 바이어스 = 3

간단한 Floating Point 시스템 예제

8-bit Floating Point 표시

- 부호비트는 MSB로 표시.
- 다음 4비트는 바이어스 값 7로 exp로 사용.
- 마지막 3비트는 frac
- IEEE Format 과 동일한 일반적인 형태
 - 정규화, 비정규화 표시 사용
 - 0, NaN, infinity 등 표시 사용

7 6 3 2 0 s 지수(exp) 소수(frac)

지수 값의 범위

Exp	exp	E	2^{E}		bias=7
0 1 2 3 4 5	0000 0001 0010 0011 0100 0101	-6 -6 -5 -4 -3	1/64 1/64 1/32 1/16 1/8 1/4	(비정규화)	E=1-bias
6 7 8 9	0110 0111 1000 1001	-1 0 +1 +2	1/2 1 2 4		E=exp-bias
10 11 12 13 14 15	1010 1011 1100 1101 1110 1111	+3 +4 +5 +6 +7 n/a	8 16 32 64 128	(inf, NaN)	

8비트 시스템 - 표현 가능 수(양수)

	s	exp	frac	Ε	Value		($(-1)^{s} M 2^{E}$
	0	0000	000	-6	0			
	0	0000	001	-6	1/8*1/64	= 1	/512	← 0 에 가장 가까운 값
비정규화	0	0000	010	-6	2/8*1/64	= 2	1/512	
수	0	0000		-6	6/8*1/64			
	0	0000	111	-6	7/8*1/64	= 7	/512	← 최대 비정규화 수
	0	0001	000	-6	<u>8/8</u> *1/64	= 8	/512	← 최소 정규화 수
	0	0001	001	-6	<u>9/8</u> *1/64	= 9	/512	42 0 7 4 1
	•••							
	0	0110	110	-1	14/8*1/2	= 1	4/16	
	0	0110	111	-1	15/8*1/2	= 1	5/16	← 1 에 가장근접한 수
	0	0111	000	0	8/8*1	= 1		
정규화	0	0111	001	0	9/8*1	= 9	/8	← 1에 가장근접한 수
수	0	0111	010	0	10/8*1	= 1	.0/8	
'	•••							
	0	1110	110	7	14/8*128	= 2	24	
	0	1110	111	7	15/8*128	= 2	40	← 최대 정규화 수
	0	1111	000	n/a	inf			

Floating Point 근사(Rounding)

근사 과정

- 먼저 정확한 값을 계산한다
- 그 결과를 원하는 정밀도로 조정한다
 - ◆ 만일 지수부가 너무 크다면 오버플로우일 수 있다
 - ◆ frac 필드의 길이에 맞출 수 있도록 반올림 한다

근사 방법의 선택

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
● 0 방향	\$1	\$1	\$1	\$2	-\$1
● 내림(-∞)	\$1	\$1	\$1	\$2	-\$2
● 올림 (+∞)	\$2	\$2	\$2	\$3	-\$1
● 인접짝수 (default)	\$1	\$2	\$2	\$2	-\$2

Q. **웬 짝수** ?

Note:

- 1. 버림: 근사값은 참값보다 클 수 없다.
- 2. 올림: 근사값은 참값보다 작을 수 없다.

인접 짝수 모드(Round-To-Even)

컴퓨터에서 사용하는 기본(Default) 근사모드

- 어셈블리 언어 수준까지 이해하지 않고는 설명할 수 없다
- 다른 근사 모드들은 모두 통계적으로 편향되어 있다
 - ◆ 여러 개의 근사한 양수들의 합은 과대(또는 과소)평가 하게 된다

십진수에서 근사법의 적용

- 두 개의 가능한 값의 정 중간 값인 경우(그 이외의 경우에는 반올림)
 - ◆ 최소 자리값이 짝수가 되도록 근사
- E.g., 0.01의 자리로 근사하는 경우

```
1.2349999 1.23 (정 중간 보다 작다)
```

1.2350001 1.24 (정 중간보다 크다)

1.2350000 1.24 (정 중간 값 - 올림)

1.2450000 1.24 (정 중간 값— 내림)

이진수에서의 근사법

이진 소수의 표현

- "짝수" 는 최소 유효 값이 0 인 경우를 말함
- 근사의 대상이 되는 중간값의 표시는 근사하는 자리 바로 오른쪽의 비트가 = xxx100...₂

Examples

● 1/4 자리로 근사하는 경우(2 진 소숫점이하 2번째 자리로)

값	이진수	근사값	연산	근사값(10진수)
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

종합 적용 : Floating point 수 만들기

과정

- 1 이 맨 앞에 올 수 있도록 정규화(Normalize)
- 소수점 자리(fraction)에 맞도록 반올림
- 반올림 효과를 반영하기 위한 정규화 후처리(Post-normalize)

예)

- 8-bit 비부호형 수를 아래와 같은 간단한 floating point format 으로 표시해보자
- Example Numbers(128 => 128.0 으로 표시하기)

```
      128
      10000000

      15
      00001101

      33
      00010001

      35
      00010011

      138
      10001010

      63
      00111111
```


1단계:정규화하기

요구사항

- 이진 소수의 위치를 이동해서 <u>1.xxxxx 의 *형태가*</u>되도록 한다
- 자리수 만큼 0 을 채운다
 - → 지수값을 소수점 위치에 맞도록 조정

Value	Binary	M	Ε
128	10000000	1.0000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

2단계: 근사

Guard bit: 결과값의 LSB Sticky bit: 기타 나머지 비트들

* frac 필드가 3비트 이므로, 1/8 위치로 근사해야 한다.

반올림 조건

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → 인접짝수

Value	소수	GRS	올림?	근사값
128	1.0000000	000	N	1.000
13	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

3단계: 정규화 후처리

방법

- 근사화 결과 오버플로우가 발생했을지 모른다
- 우측으로 한 자리 shift 하고, 지수값을 1 증가시킨다(정규화 작업)

Value	근사값	지수	조정후	결과
128	1.000	7		128
13	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64
)

int에서 float으로 타입이 바뀌면 결과값이 달라진다!!!

Practice 5 : IEEE 소수표현 - 인코딩

- ❖ 다음의 이진수들을 소수점 첫째 자리로 짝수 근사법을 이용하여 근사법을 보이시오
 - 1. 10.010₂
 - 2. 10.011₂
 - 3. 10.110₂
 - 4. 11.001₂

Practice 6: IEEE 소수표현 - 인코딩

- ❖ 아래와 같은 시스템이 있다고 할 때 아래소수를 IEEE 소수로 표현하시오. 인접짝수 근사를 이용하시오.
- > 8-bit Floating Point
- ▶ 부호비트는 MSB로 표시.
- 다음 4비트는 바이어스 값 7로 지수부로 사용.
- ➤ 마지막 3비트는 frac
 - 1. 10.010₂
 - 2. 10.011₂
 - 3. 10.110₂
 - 4. 11.001₂

FP 곱셈

```
피연산자
```

 $(-1)^{51} M1 2^{E1}$ * $(-1)^{52} M2 2^{E2}$

정확한 결과

 $(-1)^{s} M 2^{E}$

- Sign *s*. *s1* ^ *s2*
- 소수 *M*: *M1* * *M2*
- 지수 *E*: *E1* + *E2*

정정

- 만일 M ≥ 2, M 을 우측으로 shift, E 를 1 증가
- 만일 *E* 값이 범위를 벗어나면, 오버플로우
- M 을 frac 정밀도에 맞추어 근사

구현

가장 중요한 부분은 소수들 간의 곱셈

FP 덧셈

피연산자

 $(-1)^{s1} M1 2^{E1}$ $(-1)^{s2} M2 2^{E2}$

● E1 > E2 을 가정

정확한 결과

 $(-1)^{s} M 2^{E}$

- ◆ 부호 s, 소수 M:
 ◆ 열 맞춤후의 덧셈의 결과
- 지수 *E*: *E1*

정정

- 만일 M ≥ 2, M 을 우측으로 shift, E 를 1 증가
- 만일 *M* < 1, *M* 을 좌측으로 *k* 자리 shift, *E* 를 *k 만큼 감소*
- 만일 E가 범위를 벗어나면 오버플로우
- *M* 을 근사시켜서 frac 정밀도에 맞춤

C 언어에서의 Floating Point

C 에서는 2개의 정밀도를 제공

float single precision double double precision

변환

- int, float, double 간의 casting 은 값을 변화시킨다
- Double, float 에서 int 로의 변환
 - ◆ 소수 부분을 제거
 - → 0 방향으로의 근사와 동일
 - ◆ 무한대 또는 NaN 의 경우에는 정의 되어 있지 않음
 - 일반적으로 TMin
- int 에서 double 로
 - → 정확한 변환, 정수가 53비트 보다 짧은 경우에만
- int 에서 float 로
 - ◆ 근사 모드에 따라 근사화

C 에서의 Floating Point 숫자

설명	exp	frac	Numeric Value
0	0000	0000	0.0
최소 비정규화 수(+) • Single ≈ 1.4 X 10 ⁻⁴⁵ • Double ≈ 4.9 X 10 ⁻³²⁴	0000	0001	2- {23,52} X 2- {126,1022}
최대 비정규화 수 ● Single ≈ 1.18 X 10 ⁻³⁸ ● Double ≈ 2.2 X 10 ⁻³⁰⁸	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
최소 정규화 수(+)	0001	0000	1.0 X 2 ^{- {126,1022}}
• 최대 비정규화 수보	나 아주	조금 크다	
1	0111	0000	1.0
최대 정규화 수 • Single ≈ 3.4 X 10 ³⁸ • Double ≈ 1.8 X 10 ³⁰⁸	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

인코딩의 특징

FP에서의 0 은 정수에서의 0 과 동일하다

● 모든 비트들 = 0

비부호 정수 비교를 사용할 수 있다(거의)

- 먼저 부호비트를 비교해야 한다
- ◆ -0 = 0 인 점을 고려해야 한다
- NaN의 경우는 문제가 생긴다
 - ◆ 다른 모든 값들보다는 클 것인가
 - → 비교의 결과는 무엇인가?
- 그렇지 않은 다른 경우는 OK
 - ◆ 비정규화 vs. 정규화
 - ◆ 정규화 vs. 무한대

Ariane 5

- 이륙후 37초 후 폭파
- 위성체 손실규모 5천억원

이유

- 수평 속도를 64비트 floating point 형으로 계산한 후에 16-bit int 타입으로 변환한 후에 오버플로우 발생
- Ariane 4 로켓에서는 이 수평속도 값의 범위를 정의하여, 정상동작
- Ariane 5 로켓에서는 치명적 오류로 판단
 - ▼ 동일한 소프트웨어를 사용해서

Floating Point Puzzles

- 다음의 C 수식에서 :
 - ◆ 다음의 수식이 항상 참인지 판별하라
 - ◆ 참이 아니라면, 그 이유를 설명하라

```
int x = ...;
float f = ...;
double d = ...;
```

d,f는NaN가아님

```
• x == (int)(float) x
```

- x == (int)(double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- d < 0.0 \Rightarrow ((d*2) < 0.0)
- d > f \Rightarrow -f > -d
- d * d >= 0.0
- (d+f)-d == f

Summary

컴퓨터에서 부동소숫점의 표시 방식을 이해해야 한다.

IEEE Floating Point 표준은 명쾌한 수학특성을 갖는다

- M X 2^E 형태의 수 표현
- 실제 구현 방법과 관계없이 연산을 적용할 수 있다
 - ◆ 마치 완벽한 정밀도로 계산한 후에 근사화 한 것 처럼
- 실제 연산과 일치하는 것은 아니다
 - → 교환/배분 법칙에 위배되는 경우가 있다
 - ◆ 컴파일러 개발자나 고급 프로그래머들에게는 큰 위협

부동소숫점의 표현도 다른 데이터 타입간의 혼용 또는 변환을 하는 경우에 주의해야 한다.

** 예습 숙제 : pp.193-199, 3.2-3.2.2