Алгебра. ИИИ. Осенний семестр

II. Группы. Группа перестановок

- 1. Найдите порядок группы:
 - а) вращений правильного тетраэдра;
 - б) симметрий правильного тетраэдра;
 - в) вращений куба.
- 2. Найдите порядки всех элементов групп S_2 , D_3 , V_4 , \mathbb{Z}_6 , \mathbb{Z} .
- 3. Докажите, что в любой группе чётного порядка имеется элемент порядка 2.
- 4. Найдите все элементы конечного порядка в группе монотонно возрастающих функций из [0,1] в [0,1], для которых f(0)=0, f(1)=1 (групповая операция композиция).
- 5. Приведите пример двух элементов конечного порядка, произведение которых имеет бесконечный порядок.
- 6. Приведите пример бесконечной группы, в которой все элементы имеют конечный порядок.
- 7. Докажите, что если $g^n=e$, то $o(g)\,|\,n.$
- 8.* В алфавите одного языка есть лишь три буквы: a, b, c. Два разных слова являются синонимами, если одно из них может быть получено из другого с помощью следующих операций: a) в любом месте слова можно заменять друг на друг следующие комбинации букв: aba на bab, aca на cac, bcb на cbc; b0 из любого места можно выкидывать две одинаковые буквы, идущие подряд, а также в любое место можно вставлять две одинаковые буквы. Конечное или бесконечное количество понятий можно выразить с помощью этого языка?
- 9. Найдите порядки элементов группы S_n :

a)
$$n = 5$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$;

6)
$$n=6, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 1 & 6 \end{pmatrix};$$

B)
$$n=10,\; egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \ 3 & 1 & 4 & 2 & 5 & 8 & 10 & 9 & 6 & 7 \end{pmatrix};$$

r)
$$n=12$$
, $egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \ 2 & 11 & 4 & 5 & 6 & 7 & 3 & 9 & 8 & 10 & 12 & 1 \end{pmatrix}$.

10.
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}$.

- а) Найдите $\pi \sigma$ и $\sigma \pi$;
- б) Найдите π^{2025} и σ^{2025} ;
- в) Найдите π^{-1} и σ^{-1} .
- 11. Решите уравнения в группе S_n :

a)
$$n=8$$
, $x\cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 4 & 8 & 2 & 5 & 6 & 1 & 7 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 8 & 7 & 4 & 6 & 3 & 2 & 5 & 1 \end{pmatrix};$

6)
$$n=9$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 6 & 4 & 9 & 2 & 3 & 7 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 7 & 4 & 6 & 3 & 2 & 5 & 1 & 9 \end{pmatrix};$

$$\texttt{B)} \ \ n = 6, \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 3 & 6 & 4 \end{pmatrix} \cdot x \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 1 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix}.$$

- 12. Разложите перестановки в произведение независимых циклов и найдите их декременты:
 - а) (1753)(162)(46)(3574); б) (135)(2467)(147)(2356); в) (184)(253)(67)(142635)(78).
- 13. Определите чётность перестановки:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 2 & 5 & 4 \end{pmatrix}$$
;

$$6) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 6 & 1 & 8 & 3 & 5 & 7 & 4 \end{pmatrix};$$

B)
$$\begin{pmatrix} 1 & 2 & 3 & \dots & n-2 & n-1 & n \\ n & n-1 & n-2 & \dots & 3 & 2 & 1 \end{pmatrix}$$
.

14.* Можно ли в игре «Пятнашки» из позиции слева получить позицию справа?

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

- 15.* В группе S_5 решите уравнение $\sigma^2 = (345)$.
- 16.* В группе S_n решите уравнение $\sigma^3 = (123)$.
- 17^* Элементов какого порядка в S_n больше: чётного или нечётного?
- 18.* Найдите максимально возможный порядок элемента группы S_7 .