

# AULA 16 – RECORRÊNCIAS

MATEMÁTICA PARA COMPUTAÇÃO PROFESSOR PLATÃO GONÇALVES TERRA NETO



### RECURSÃO LINEAR DE SEGUNDA ORDEM

Uma recorrência de segunda É possível mostrar que essa ordem é expressa  $x_{n+1}$  em função equação tem soluções de  $x_n$  e de  $x_{n-1}$  e é dita linear se, formato e somente se, essa função for do primeiro grau.

resolver recursões recorrência: Vamos lineares de segunda ordem com o formato

$$x_{n+1} + bx_n + cx_{n-1} = 0$$

do

$$x_n = q^n$$

Fazendo a devida substituição, temos uma equação associada à

$$q^2 + bq + c = 0$$



### PRIMEIRO CASO: $\Delta > 0$

Exemplo: a sequência de Fibonacci é conhecida por utilizar-se de dois valores iniciais. Dessa forma,

$$x_0 = 0 e x_1 = 1$$

$$x_{n+1} = x_n + x_{n-1}$$
,  $n > 1$ 

Vamos resolver recursões lineares de segunda ordem com o formato

$$x_{n+1} + bx_n + cx_{n-1} = 0$$

Nesse exemplo, fazemos

$$x_{n+1} - x_n - x_{n-1} = 0$$

Nesse exemplo, teríamos b = -1 e c = -1

Fazendo a devida substituição, temos uma equação associada à recorrência:

$$q^2 + bq + c = 0$$

obtemos:  $q^2 - q - c = 0$ 

As raízes dessa equação são:

$$\frac{1\pm\sqrt{5}}{2}$$



### PRIMEIRO CASO: $\Delta > 0$

Quando temos  $\Delta > 0$  a solução é do Nesse exemplo, teríamos formato

$$a_n = c_1 q_1^n + c_2 q_2^n$$

onde q<sub>1</sub> e q<sub>2</sub> são as raízes da e equação anterior. Da mesma forma c<sub>1</sub> e c<sub>2</sub> são determináveis com os termos iniciais.

$$c_1 = \frac{1 + \sqrt{5}}{2\sqrt{5}}$$

$$c_2 = \frac{-1 + \sqrt{5}}{2\sqrt{5}}$$

Fazendo a substitução, obtemos:

$$a_{n} = \frac{1}{\sqrt{5}} \left[ \left( \frac{1 + \sqrt{5}}{2} \right)^{n} - \left( \frac{1 - \sqrt{5}}{2} \right)^{n} \right]$$



### **EXEMPLOS**

a) 
$$a_{n+1} - a_n - 6a_{n-1} = 0$$
, com  $a_0 = 1$  e  $a_1 = -4$ 

b) 
$$a_{n+1} - 5a_n + 6a_{n-1} = 0$$
, com  $a_0 = 4$  e  $a_1 = 7$ 

c) 
$$a_{n+1} - 4a_n + a_{n-1} = 0$$
, com  $a_0 = 2$  e  $a_1 = 4$ 



## SOLUÇÃO

a) 
$$a_{n+1} - a_n - 6a_{n-1} = 0$$
, com  $a_0 = 1$  e  $a_1 = -4$ 

$$1,4(-2)^n - 0,4.3^n$$

b) 
$$a_{n+1} - 5a_n + 6a_{n-1} = 0$$
, com  $a_0 = 4$  e  $a_1 = 7$ 

$$a_n = 5.2^n - 3^n$$

c) 
$$a_{n+1} - 4a_n + a_{n-1} = 0$$
, com  $a_0 = 2$  e  $a_1 = 4$ 

$$a_n = (2 + \sqrt{3})^n + (2 - \sqrt{3})^n$$



### SEGUNDO CASO: $\Delta = 0$

Vamos resolver

$$a_{n+1} + 6a_n + 9a_{n-1} = 0$$
, com  
 $a_0 = 2 e a_1 = 5$ .

Fazendo a devida substituição, temos uma equação associada à recorrência:

$$q^2 + bq + c = 0$$

obtemos:  $q^2 + 6q + 9 = 0$  que tem só uma raiz real, q = -3.

Quando temos  $\Delta = 0$  a solução é do formato

$$a_n = c_1 q_1^n + c_2 n q_2^n$$

No exemplo, obtemos  $c_1 = 2$  e  $c_2 = -11/3$ 



### **EXEMPLOS**

a) 
$$a_{n+1} - 6a_n + 9a_{n-1} = 0$$
, com  $a_0 = 5$  e  $a_1 = 27$ 

b) 
$$a_{n+1} - 2a_n + a_{n-1} = 0$$
, com  $a_0 = 4$  e  $a_1 = 7$ 

c) 
$$a_{n+1} - 4a_n + 4a_{n-1} = 0$$
, com  $a_0 = 2$  e  $a_1 = 4$ 



#### **EXEMPLOS**

a) 
$$a_{n+1} - 6a_n + 9a_{n-1} = 0$$
, com  $a_0 = 5$  e  $a_1 = 27$ 

$$a_n = 3^n . (4 + 5n)$$

b) 
$$a_{n+1} - 2a_n + a_{n-1} = 0$$
, com  $a_0 = 4$  e  $a_1 = 7$ 

$$a_n = 3n + 1$$

c) 
$$a_{n+1} - 4a_n + 4a_{n-1} = 0$$
, com  $a_0 = 2$  e  $a_1 = 4$ 

$$a_n = 2^{n+1}$$



### TERCEIRO CASO: $\Delta < 0$

Vamos resolver

$$a_{n+1} - 2a_n + 4a_{n-1} = 0$$
, com  $a_0 = 1$  e  $a_1 = 1$ .

Fazendo a devida substituição, temos uma equação associada à recorrência:

$$q^2 + bq + c = 0$$

obtemos:  $q^2 - 2q + 4 = 0$  que não temos raízes real, q = -3.

Quando temos  $\Delta < 0$  a equação do segundo grau tem raízes complexas. No exemplo as raízes são  $1 \pm i\sqrt{3}$ .

Nesses casos, a solução é do formato

$$a_n = r^n[c_1cos(n\theta) + c_2sen(n\theta)]$$

onde r e  $\theta$  são, respectivamente, o módulo e o argumento das raízes q na forma trigonométrica.

Nesse exemplo, obteríamos

$$x_n = 2^n \cos(60^\circ n)$$