Approfondimento multiplexer

Approfondimento multiplexer

I multiplexer possono aiutare nella sintesi?

Risposta: si, in quanto se la funzione di partenza è complessa (ha molti ingressi), essa può essere spezzata in due sotto-funzioni più semplici (con una variabile in meno) in ingresso a un mux a 2 vie. La variabile eliminata viene usata come selettore del mux

$$F(x_2, x_1, x_0) = x_2 F_1(x_1, x_0) + \overline{x}_2 F_0(x_1, x_0)$$

Se F è rappresentata come somma di prodotti tutti i termini che contengono x_2 vanno in F_1 , quelli che contengono $\overline{x_2}$ vanno in F_0 , gli altri termini vanno sia in F_0 che in F_1 se in una determinata F non ci sono termini allora essa vale 0

 F_0 I_0 I_1 A X_2

Iterando indefinitamente il procedimento di eliminazione delle variabili (espansione) si arriva ad avere intere funzioni realizzate tramite alberi di multiplexer in cui il primo stadio ha in ingresso i valori della tabella di verità, ad esempio un OR a 2 ingressi con tabella di verità in cui scriviamo prima la variabile A e poi la variabile B diventerebbe pari allo schema a destra. Se vogliamo corrispondenza con la tabella di verità dell'ordine degli 1 e degli 0 letti dall'alto verso il basso nel disegno ad albero di MUX, le variabili di selezione vanno riportate nello schema ad albero in ordine opposto rispetto a quello della tabella di verità, provare con la somma ed il carry out ed albero a 3 stadi

Approfondimento decoder

Voglio un decoder per n ingressi, ma dispongo solo di decoder al massimo con n-p ingressi. E' supposto p << n

Uso un decoder a p ingressi con Enable pari ad 1 le cui uscite sono collegate al segnale di Enable di 2^p decoder ad n-p ingressi. Sopra è riportato un esempio con p = 1

Approfondimento decoder

Dispongo di un decoder a n ingressi e di operatori or. Posso realizzare qualsiasi funzione logica ad n ingressi?

Si, ricordando la forma canonica espressa come somma di prodotti e considerando che le uscite di un decoder corrispondono a dei mintermini. Vediamo come si applica al Full Adder

C _{in} a b	C _{out}	S
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

 m_7

C	d					cd				
ab	\	00	01	11	10	ab	00	01	11	10
C	00	0	0	0	0	00	0	0	0	0
C)1	1	1	1	0	01	0	1	0	1
1	ا 11	0	1	1	1	11	1	1	0	0
1	10	0	0	1	0	10	1	1	0	1
	cd	-	е	f=00		cd		•	ef = 0	1
ab	/	00	01	11	10	ab	00	01	11	10
(00	0	0	0	0	00	1	1	1	0
(01	0	0	0	0	01	0	1	1	0
	11	0	1	0	1	11	1	1	1	0
:	10	0	0	1	0	10	1	1	0	1
			•	ef=10		•			ef =1:	1

Single

 $(b+d+f)(\overline{a}+c+d+f)(b+c+f)(a+\overline{c}+d+f)(a+b+e)(a+b+\overline{c}+d)(a+c+d+e+\overline{f})(\overline{c}+\overline{d}+e+\overline{f})+(\overline{a}+b+\overline{c}+\overline{d}+\overline{f}) \\ (\overline{a}+\overline{b}+\overline{c}+d+\overline{f})(a+\overline{b}+d+\overline{e})(a+\overline{e}+f)(\overline{b}+\overline{c}+\overline{d}+\overline{e}+f) \\ 14 \text{ component 65 connessioni}$

 $(b+d+f)(\overline{a}+c+d+f)(b+c+f)(a+\overline{c}+d+f)(a+b+e)(\overline{c}+\overline{d}+e+\overline{f})(\overline{a}+b+\overline{c}+\overline{d}+\overline{f})(a+\overline{b}+c+d+\overline{f})$ $(\overline{a}+\overline{b}+\overline{c}+d+\overline{f})(a+c+\overline{d}+\overline{e})(a+\overline{e}+f)(\overline{b}+\overline{c}+\overline{d}+\overline{e}+f)$ 13 component 60 connessioni

 $\bar{a}b\bar{c}\bar{e}\bar{f}$ +b $\bar{c}\bar{e}\bar{f}$ + ab \bar{c} d + abc $\bar{d}\bar{f}$ + b \bar{c} d \bar{e} f + $\bar{a}b$ c $\bar{d}\bar{e}$ f + a $\bar{b}\bar{d}$ f + $\bar{b}\bar{c}$ ef + $\bar{a}d$ ef + bdef 12 componenti 58 connessioni

Progettare una rete a 4 ingressi $I_{3..0}$ e 2 uscite U_1 ed U_0 , U0 vale 1 se la configurazione degli ingressi è inferiore a 8 oppure se la configurazione degli ingressi è superiore a 8 e dispari. L'uscita U1 è pari ad I_3 I_2 (I_2 + I_1) + I_2 I_1 $\overline{I_0}$. Usare le mappe di Karnaugh per giungere ad una rete minima

$$U_1 = I_3 I_2 (I_2 + I_1) + I_2 I_1 \overline{I_0} = I_3 I_2 + I_2 I_1 \overline{I_0}$$

I ₃₀	U1	U0
0000	0	1
0001	0	1
0010	0	1
0011	0	1
0100	0	1
0101	0	1
0110	1	1
0111	0	1
1000	0	0
1001	0	1
1010	0	0
1011	0	1
1100	1	0
1101	1	1
1110	1	0
1111	1	1

Descrivere il funzionamento della rete sopra. In particolare provare ad immaginarla applicata ad operandi e/o risultati di una somma in complemento a 2.

$$x1 = AB + \overline{AB}$$
; $x2 = \overline{BS} + B\overline{S}$; OUT = $(AB + \overline{AB})(\overline{BS} + B\overline{S})$ =

 $AB\overline{B}S + ABB\overline{S} + \overline{A}\overline{B}\overline{B}S + \overline{A}\overline{B}B\overline{S} = AB\overline{S} + \overline{A}\overline{B}S$

ABS	OUT
000	0
001	1
010	0
011	0
100	0
101	0
110	1
111	0

Qui ho già un prodotto di somme, posso procedere verso la tabella di verità in a seconda delle mie preferenze con (1)mappe (2) tabella di verità tramite valutazione (3) eseguendo i prodotti e tentando di semplificare. Qui si applica la strategia 3

La rete dà in uscita uno quando A e B sono uguali ed S è diverso. La rete potrebbe ad esempio identificare overflow nella somma in complemento a 2 se gli ingressi fossero i segni degli operandi ed S il segno del risultato

Esercizi proposti

- Si disegni lo schema logico di un sommatore **SUM4** di numeri binari da 4 bit rappresentati in complemento a due realizzato con 4 Full Adder
- Si ridisegni **SUM4** in modo che funzioni anche da comparatore da 4 bit. Si deve quindi aggiungere un ingresso x, una uscita z e si deve opportunamente modificare il sommatore in modo da soddisfare la seguente specifica:
 - $x=0 \rightarrow la$ rete è un sommatore a 4 bit
 - $x=1 \rightarrow la$ rete è un comparatore da 4 bit
 - se i due operandi sono uguali e x=1 allora z=1
 - se x= 0 allora il valore di z è indifferente
- Si ridisegni **SUM4** in modo che funzioni anche da rete che calcola l'and bit a bit dei due operandi. Si deve quindi aggiungere un ingresso x, e si deve opportunamente modificare il sommatore con l'inserimento del minor numero possibile di componenti in modo da soddisfare la seguente specifica:
 - $x=0 \rightarrow la$ rete è un sommatore a 4 bit
 - $x=1 \rightarrow la$ rete genera l'and bit a bit dei due operandi
 - Su quali piedini troviamo il risultato nel caso in cui x=1?

Esercizi proposti

- In un sommatore da 4 bit utilizzato per sommare numeri con segno qual è l'informazione contenuta nel bit di OVERFLOW (cin3 xor cout3)?
- Qual è la rappresentazione grafica di un MUX a due vie in uno schema logico?
- Qual è l'espressione logica della sua uscita?
- Qual è la mappa della sua uscita?
- La rete logica disegnata qui sotto rappresenta due decoder connessi "in cascata". DEC-2 è un decoder di due variabili, mentre DEC-3 è un decoder di 3 variabili. Entrambi i decoder hanno l'ingresso di enable EN.

DEC-3

- Quali sono gli ingressi delle rete logica assegnata?
- Quante sono le righe della sua tdv?
- Quali sono le espressioni logiche dei due ingressi a e b dell'OR?
- a è un mintermine delle variabili di ingresso della rete?
- b è un mintermine delle variabili di ingresso della rete?
- Si dica e si motivi infine se la rete assegnata è combinatoria o sequenziale