

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D	26 JAN 2004
WIPO	PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 16 January 2004

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

THE PATENT OFFICE

A
27 NOV 2002

RECEIVED BY FAX

27NOV02 E766710-1 D02884

P01/7700 0-00-0227645.9

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

1. Your reference

P32912-/CPA/RMC

2. Patent application number

(The Patent Office will fill in this part)

27 NOV 2001

0227645.9

3. Full name, address and postcode of the or of each applicant (underline all surnames)

00807495002Viragen Incorporated
865 SW 78th Avenue
Suite 100
Plantation
Florida 33324, USA

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

USA

4. Title of the invention

"Protein Production in Transgenic Avians"

5. Name of your agent (if you have one)

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Scotland House
165-169 Scotland Street
Glasgow
G5 8PL

Patents ADP number (if you know it)

1198016

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if

Yes

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 24

Claim(s)

Abstract

Drawing(s)

R.M.

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)Request for preliminary examination and search (*Patents Form 9/77*)Request for substantive examination
(*Patents Form 10/77*)Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature *Murgitroyd & Co.*
Murgitroyd & CompanyDate
27 November 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

Roisin McNally

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 "Protein Production in Transgenic Avians"

2
3 The present invention relates to the generation of
4 transgenic avians and the production of recombinant
5 proteins. More particularly, the invention relates
6 to the enhanced transduction of avian cells by
7 exogenous genetic material so that the genetic
8 material is incorporated into an avian genome in
9 such a way that the modification becomes integrated
10 into the germline and results in expression of the
11 encoded protein within the avian egg.

12
13 The ability to manufacture large amounts of
14 pharmaceutical grade proteins is becoming
15 increasingly important in the biotechnology and
16 pharmaceutical arenas. Recent successes of such
17 products in the marketplace, especially those of
18 monoclonal antibodies, have put an enormous strain
19 on already stretched global manufacturing
20 facilities. This heightened demand for
21 manufacturing capacity, the consequential high
22 premiums on capacity and the long wait for

1 production space, plus the cost of and issues
2 involved in producing proteins in cell lines, has
3 prompted companies to look beyond traditional modes
4 of production (Andersson & Myhanan, 2001).

5 Traditional methods for manufacture of recombinant
6 proteins include production in bacterial or
7 mammalian cells. One of the alternative
8 manufacturing strategies is the use of transgenic
9 animals and plants for production of proteins.

10
11 It was by genetic engineering that the first
12 genetically modified (transgenic) animal was
13 produced, by transferring the gene for the protein
14 of interest into the target animal. Current
15 transgenic technology can be traced back to a series
16 of pivotal experiments conducted between 1968 and
17 1981 including: the generation of chimeric mice by
18 blastocyst injection of embryonic stem cells
19 (Gardner et al 1968), the delivery of foreign DNA to
20 rabbit oocytes by spermatozoa (Brackett et al 1971),
21 the production of transgenic mice made by injecting
22 viral DNA into pre-implantation blastocysts
23 (Jaenisch et al 1974) and germline transmission of
24 transgenes in mouse by pronuclear injection (Gordon
25 and Ruddle, 1981). For the early part of
26 transgenics' history, the focus was upon improving
27 the genetic makeup of the animal and thus the yield
28 of wool, meat or eggs (Curtis & Barnes, 1989; Etches
29 & Gibbins, 1993). However in recent years there has
30 been interest in utilising transgenic systems for
31 medical applications such as organ transplantation.

1 models for human disease or for the production of
2 proteins destined for human use.
3 A number of protein based biopharmaceuticals have
4 been produced in the milk of transgenic mice,
5 rabbits, pigs, sheep, goats and cows at reasonable
6 levels, but such systems tend to have long
7 generation times - some of the larger mammals can
8 take years to develop from the founder transgenic to
9 a stage at which they can produce milk. Additional
10 difficulties relate to the biochemical complexity of
11 milk and the evolutionary conservation between
12 humans and mammals, which can result in adverse
13 reactions to the pharmaceutical in the mammals which
14 are producing it (Harvey et al., 2002).

15
16 There is increasing interest in the use of chicken
17 eggs as a potential manufacturing vehicle for
18 pharmaceutically important proteins, especially
19 recombinant human antibodies. Huge amounts of
20 therapeutic antibodies are required by the medical
21 community each year, amounts which can be kilogram
22 or metric tons per year, so a manufacturing
23 methodology which could address this shortage would
24 be a great advantage. Once optimised, a
25 manufacturing method based on chicken eggs has
26 several advantages as compared to mammalian cell
27 culture or use of transgenic mammalian systems.

28 Firstly, chickens have a short generation time (24
29 weeks), which would allow transgenic flocks to be
30 established rapidly. Table 1 shows a comparison
31 between the different types of transgenic systems.
32 Secondly, the capital outlays for a transgenic

animal production facility are far lower than that for cell culture. Extra processing equipment is minimal in comparison to that required for cell culture (BioPharm, 2001). As a consequence of these lower capital outlays, the production cost per unit of therapeutic will be lower than that produced by cell culture. In addition, transgenic systems provide significantly greater flexibility regarding purification batch size and frequency and this flexibility may lead to further reduction of capital and operating costs in purification through batch size optimisation. The third advantage of increased speed to market should become apparent when the technology has been developed to a commercially viable degree. Transgenic mammals are capable of producing several grams of protein product per litre of milk, making large-scale production commercially viable (Weck, 1999). Mammals do not have a significant advantage in terms of the time take to scale up production, since gestation periods for cows and goats are 9 months and 5 months respectively (Dove, 2000) and it can take up to five years to produce a commercially viable herd. However, once the herd is established, the yield of product from milk will be high.

Animal	Gestation	Maturity/ Generation time	Offspring Produced	Time to Production Herd/Flock	Protein (per litre/ egg per day)	Founder animal development cost
Cow	9 months	2 years	1 per year	5+ years	15g	\$5-10M
Goat	5 months	8 months	2-4 per year	3-5 years	8g	\$3M
Sheep	5 months	8 months	2 per year	3-5 years	8g	\$2M
Pigs	4 months	8 months	10	?	4.1g	?
Rabbits	1 month	5 months	8	?	0.05g	?
Chicken	21 days	6 months	21 per month	18 months	0.3g	\$0.25M

Table 1. A comparison between the various transgenic animal production system (Dove, 2000).

1 The short generation time for birds also allows for
 2 rapid scale-up. The incubation period of a chicken
 3 is only 21 days and it reaches maturity within six
 4 months of hatch. Indeed, once the founder animals
 5 of the flock have been established, a flock can be
 6 established within 18 months (Dove, 2000). The
 7 process of scaling up the production capability
 8 should be simpler and far faster than a herd of
 9 sheep, goats or cows.

10

11 A further advantage rests in the fact that eggs are
 12 naturally sterile vessels. One of the inherent
 13 problems with cell culture methods of production is
 14 the risk of microbial contamination, since the
 15 nutrient rich media used tends to encourage

16 microbial growth. Transgenic production offers a
 17 lower risk alternative, since the production of the
 18 protein will occur within the animal itself, whose
 19 own body will combat most infections. Chicken eggs
 20 provide an even lower risk alternative: the eggs are

1 sealed within the shell and membrane and thus
2 separated from the environment. The evolutionary
3 distance between humans and birds means that few
4 diseases are common to both.

5

6 Still a further potential advantage lies in the
7 post-translational modification of chicken proteins.
8 The issue of how well a production process can
9 reproduce the natural sugar profile on the proteins
10 which are produced, is now recognised as a crucial
11 element of the success of a production technology
12 (Morrow, 2001; Raju et al., 2000). The main cell
13 types used in cell culture processes are either
14 hamster or mouse-derived, so do not produce the same
15 sugar pattern on proteins as human cells (Scrip,
16 June 8th 2001). Mammalian and particularly plant
17 transgenic systems produce different types of post-
18 translational modifications on expressed proteins.
19 The sugar profile is crucially important to the
20 manner in which the human immune system reacts to
21 the protein. Raju et al., (2000) found that
22 glycosylated chicken proteins have a sugar profile
23 that is more similar to that of glycosylated human
24 proteins than non-human mammalian proteins, which
25 should be a significant advantage in developing a
26 therapeutic product.

27

28 It can therefore be seen that the avian egg,
29 particularly from the chicken, offers several major
30 advantages over cell culture as a means of
31 production and the other transgenic production
32 systems based upon mammals or plants.

1 Direct application of the methods used in the
2 production of transgenic mammals to the genetic
3 manipulation of birds has not been possible because
4 of specific features of the reproductive system of
5 the laying hen. Following either natural or
6 artificial insemination, hens will lay fertile eggs
7 for approximately 10 days. They ovulate once per
8 day, and fertilisation occurs almost immediately,
9 while the ovum is at the top of the oviduct. The egg
10 spends the next 20-24 hours in the oviduct, where
11 the albumen (egg white) is laid down around the
12 yolk, plumping fluid is added to the albumen and
13 finally the shell membranes and the shell itself are
14 laid down. During this time, cell division is rapid,
15 such that by the time the egg is laid, the embryo
16 comprises a blastoderm, a disc of approximately
17 60,000 relatively undifferentiated cells, lying on
18 the yolk.

19

20 The complexities of egg formation make the earliest
21 stages of chick-embryo development relatively
22 inaccessible. Methods employed to access earlier
23 stage embryos usually involve sacrificing the donor
24 hen to obtain the embryo or direct injection into
25 the oviduct. Methods for the production of
26 transgenic mammals have focused almost exclusively
27 on the microinjection of a fertilised egg, whereby a
28 pronucleus is microinjected in vitro with DNA and
29 the manipulated eggs are transferred to a surrogate
30 mother for development to term, this method is not
31 feasible in hens. Four general methods for the
32 creation of transgenic avians have been developed.

1 A method for the production of transgenic chickens
2 using DNA microinjection into the cytoplasm of the
3 germinal disk was developed. The chick zygotes are
4 removed from the oviduct of laying hens before the
5 first cleavage division, transferred to surrogate
6 shells, manipulated and cultured through to hatch
7 (Perry 1998: Roslin US5011780 and EP0295964). Love
8 et al 1994 analysed the embryos that survived for at
9 least 12 days in culture and showed that
10 approximately half of the embryos contained plasmid
11 DNA, with 6% at a level equivalent to one copy per
12 cell. Seven chicks, 5.5% of the total number of ova
13 injected, survived to sexual maturity. One of these,
14 a cockerel identified as a potential mosaic
15 transgenic bird, transmitted the transgene to 3.4%
16 of his offspring. These birds have been bred to show
17 stable transmission of the transgene. As in
18 transgenic mice generated by pro-nuclear injection,
19 integration of the plasmid DNA is apparently a
20 random event. However, direct DNA microinjection
21 into eggs results in low efficiencies of transgene
22 integration (Sang & Perry, 1989). It has been
23 estimated that only 1% of microinjected ova give
24 rise to transgenic embryos and of these 10% survive
25 to hatch. The efficiency of this method could be
26 improved by increasing the survival rate of the
27 cultured embryos and the frequency of chromosomal
28 integration of the injected DNA.

29

30 A second method involves the transfection of
31 primordial germ cells *in vitro* and transplantation
32 into a suitably prepared recipient. Successful

1 transfer of primordial germ cells has been achieved,
2 resulting in production of viable gametes from the
3 transferred germ cells. Transgenic offspring, as a
4 result of gene transfer to the primordial germ cells
5 before transfer, have not yet been described.

6

7 The third method involves the use of gene transfer
8 vectors derived from oncogenic retroviruses. The
9 early vectors were replication competent (Salter et
10 al.) but replication defective vectors have been
11 developed (see, eg. US Patent 5,162,215 and WO
12 97/47739). These systems use either the
13 reticuloendotheliosis virus type A (REV-A) or avian
14 leukosis virus (ALV). The efficiency of these
15 vectors, in terms of production of founder
16 transgenic birds, is low and inheritance of the
17 vector from these founders is also inefficient
18 (Harvey et al., 2002). These vectors may also be
19 affected by silencing of expression of the
20 transgenes they carry as reports suggest that
21 protein expression levels are low (Harvey et al.,
22 2002).

23

24 The fourth method involves the culture of chick
25 embryo cells *in vitro* followed by production of
26 chimeric birds by introduction of these cultured
27 cells into recipient embryos (Pain et al., 1996).

28 The embryo cells may be genetically modified *in*
29 *vitro* before chimera production, resulting in
30 chimeric transgenic birds. No reports of germline
31 transmission from genetically modified cells are
32 available.

1 Although much work has been carried out on
2 retroviral vectors derived from viruses such as ALV
3 and REV as mentioned previously, the limitations of
4 such vectors have prevented more widespread
5 application. Much of the research and development
6 of viral vectors was based on their use in gene
7 therapy applications and so resulted in the
8 demonstration that vectors based on lentiviruses
9 were able to infect nondividing cells, a clear
10 advantage in clinical gene therapy applications.
11 Lentiviruses are a subgroup of the retroviruses
12 which include a variety of primate viruses eg. human
13 immunodeficiency viruses HIV-1 and 2 and simian
14 immunodeficiency viruses (SIV) and non-primate
15 viruses (eg. maedi-visna virus (MVV), feline
16 immunodeficiency virus (FIV), equine infectious
17 anemia virus (EIAV), caprine arthritis encephalitis
18 virus (CAEV) and bovine immunodeficiency virus
19 (BIV). These viruses are of particular interest in
20 development of gene therapy treatments, since not
21 only do the lentiviruses possess the general
22 retroviral characteristics of irreversible
23 integration into the host cell DNA, but as mentioned
24 previously, also have the ability to infect non-
25 proliferating cells. The dependence of other types
26 of retroviruses on the cell proliferation status has
27 somewhat limited their use as gene transfer
28 vehicles. The biology of lentiviral infection can
29 be reviewed in Coffin et al., 1997 and Sanjay et
30 al., 1996.

1 An important consideration in the design of a viral
2 vector is the ability to be able to stably integrate
3 into the genome of cells. Previous work has shown
4 that oncoretroviral vectors used as gene transfer
5 vehicles have had somewhat limited success due to
6 the gene silencing effects during development.
7 Jahner et al., (1982) showed that use of the vector
8 based on the Moloney murine leukemia virus (MoMLV)
9 for example, is unsuitable for production of
10 transgenic animals due to silencing of the virus
11 during the developmental phase, leading to very low
12 expression of the transgene. It is therefore
13 essential that any viral vector used for production
14 of transgenic birds does not exhibit gene silencing.
15 The work of Pfeifer et al., 2001 and Lois et al.,
16 2002 on mice has shown that a lentiviral vector
17 based on HIV-1 is not silenced during development.

18
19 The bulk of the developmental work on lentiviral
20 vectors has been focused upon HIV-1 systems, largely
21 due to the fact that HIV, by virtue of its
22 pathogenicity in humans, is the most fully
23 characterised of the lentiviruses. Such vectors
24 tend to be engineered as to be replication
25 incompetent, through removal of the regulatory and
26 accessory genes, which render them unable to
27 replicate. The most advanced of these vectors have
28 been minimised to such a degree that almost all of
29 the regulatory genes and all of the accessory genes
30 have been removed. However, due to the
31 pathogenicity of HIV in humans, there has been a
32 move away from HIV as a base. Clearly from the

1 point of view of developing a production technology
2 which will be used to manufacture therapeutics
3 destined for human use, it would be preferable to
4 develop vectors based on lentiviruses which are non-
5 pathogenic to humans. The lentiviral group have
6 many similar characteristics, such as a similar
7 genome organisation, a similar replication cycle and
8 the ability to infect mature macrophages (Clements &
9 Payne, 1994). One such lentivirus is Equine
10 Infectious Anemia Virus (EIAV) Compared with the
11 other viruses of the lentiviral group, EIAV has a
12 relatively simple genome: in addition to the
13 retroviral *gag*, *pol* and *env* genes, the genome only
14 consists of three regulatory/accessory genes (*tat*,
15 *rev* and *S2*). The development of a safe and
16 efficient lentiviral vector system will be dependent
17 on the design of the vector itself. It is important
18 to minimise the viral components of the vector,
19 whilst still retaining its transducing vector
20 function. A vector system derived from EIAV has been
21 shown to transduce dividing and non-dividing cells
22 with similar efficiencies to HIV-based vectors
23 (Mitrophanous et al., 1999). Oncoretroviral and
24 lentiviral vectors systems may be modified to
25 broaden the range of transducible cell types and
26 species. This is achieved by substituting the
27 envelope glycoprotein of the virus with other virus
28 envelope proteins. These include the use of the
29 amphotropic MLV envelope glycoprotein (Page et al.,
30 1990) or the vesicular stomatitis virus G-protein
31 (VSV-G) (Yee et al., 1994). The use of VSV-G
32 pseudotyping also results in greater stability of

1 the virus particles and enables production of virus
2 at higher titres.

3

4 It is an aim of the present invention to provide an
5 efficient method for transferring a transgene
6 construct to avian embryonic cells so as to create a
7 transgenic bird which expresses the gene in its
8 tissues, especially, but not exclusively, in the
9 cells lining the oviduct so that the translated
10 protein becomes incorporated into the produced eggs.

11

12 It is also an aim of the present invention to
13 provide a vehicle and a method for transferring a
14 gene to avian embryonic cells so as to create a
15 transgenic bird which has stably incorporated the
16 transgene into a proportion or all of its germ
17 cells, resulting in transmission of the transgene to
18 a proportion of the offspring of the transgenic
19 bird. This germ line transmission will result in a
20 proportion of the offspring of the founder bird
21 exhibiting the altered genotype.

22

23 According to the present invention there is provided
24 a method for the production of transgenic avians,
25 the method comprising the step of using a lentivirus
26 vector system to deliver exogenous genetic material
27 to avian embryonic cells.

28

29 The lentivirus vector system includes a lentivirus
30 transgene construct in a form which is capable of
31 being delivered to and integrated with the genome of
32 avian embryonic cells.

1 In one embodiment the lentivirus construct is
2 injected into the subgerminal cavity of the contents
3 of an opened egg which is then allowed to develop
4 using the Perry Culture system of surrogate shells.

5

6 In another embodiment the construct is injected
7 directly into the sub-blastodermal cavity of an egg.

8

9 Typically the genetic material encodes a protein.

10

11 The invention thus provides a transgenic avian.

12

13 Preferably the transgenic avian produced by the
14 method of the invention has the genetic material
15 incorporated into at least a proportion of germ
16 cells such that the genetic material will be
17 transmitted to at least a proportion of the
18 offspring of the transgenic avian.

19

20 The invention thus provides further transgenic
21 avians.

22

23 According to the present invention there is also
24 provided a method for production of an heterologous
25 protein in avians, the method comprising the step of
26 delivering genetic material encoding the protein
27 within a lentivirus vector construct to avian
28 embryonic cells so as to create a transgenic avian
29 which expresses the genetic material in its tissues.
30 Preferably the transgenic avian expresses the gene
31 in the oviduct so that the translated protein
32 becomes incorporated into eggs.

1 The protein can then be isolated from eggs by known
2 methods.

3

4 The invention provides the use of a lentivirus
5 construct for the production of transgenic avians.

6

7 The invention also provides the use of a lentivirus
8 vector construct for the production of proteins in
9 transgenic avians.

10

11 Preferably the lentivirus vector construct is used
12 for the expression of heterologous proteins in
13 specific tissues, preferably egg white or yolk.

14

15 The lentivirus as used in this application may be
16 any lentiviral vector but is preferably chosen from
17 the group consisting of EIAV, HIV, SIV, BIV and FIV.

18

19 A particularly preferred vector is EIAV.

20

21 Any commercially available lentivirus vector may be
22 suitable to be used as a basis for a construct to
23 deliver exogenous genetic material.

24

25 Preferably the construct includes suitable enhancer
26 promoter elements for subsequent production of
27 protein.

28

29 Preferably the vector construct particles are
30 packaged using a commercially available packaging
31 system to produce vector with an envelope, typically
32 a VSV-G envelope.

1 Typically the vector may be based on EIAV available
2 from ATCC under accession number VR-778 or other
3 commercially available vectors.

4

5 Commercial lentivirus-based vectors for use in the
6 methods of the invention are capable of infecting a
7 wide range of species without producing any live
8 virus and do not cause cellular or tissue toxicity.

9

10 The methods of the present invention can be used to
11 generate any transgenic avian, including but not
12 limited to chickens, turkeys, ducks, quail, geese,
13 ostriches, pheasants, peafowl, guinea fowl, pigeons,
14 swans and penguins.

15

16 These lentivirus-based vector systems also have a
17 large transgene capacity which are capable of
18 carrying larger protein encoding constructs such as
19 antibody encoding constructs.

20

21 A preferred lentiviral vector system is the
22 LentiVector® system of Oxford BioMedica.

23

24 The invention is exemplified with reference to the
25 following non-limiting examples.

26

27 Freshly laid, fertile hen's eggs were obtained which
28 contain developing chick embryos at developmental
29 stages X-XIII (Eyal-Giladi and Kochav, 1976). An egg
30 was opened, the contents transferred to a dish and
31 2-3 microlitres of a suspension of lentiviral vector
32 virus particles was injected into the subgerminal

1 cavity, below the developing embryo but above the
2 yellow yolk. The vector used was derived from Equine
3 Infectious Anaemia Virus (EIAV) and carried a
4 reporter gene, β -galactosidase (lacZ), under the
5 control of the CMV (cytomegalovirus)
6 enhancer/promoter. The packaging system used to
7 generate the vector viral particles resulted in
8 production of the vector with a VSV-G envelope. The
9 estimated concentration of viral transducing
10 particles was between 5×10^7 and 1×10^9 per ml. The
11 embryos were allowed to develop by culturing them
12 using the second and third phases of the Perry
13 culture system (Perry, 1988). 12 embryos were
14 removed and analysed for expression of lacZ after 2
15 days of incubation and 12 embryos after 3 days of
16 incubation. The embryos and surrounding membranes
17 were dissected free of yolk, fixed and stained to
18 detect expression of the lacZ reporter gene. All
19 embryos showed expression of lacZ in some cells of
20 the embryo and surrounding membranes. The expression
21 was highest in the developing extraembryonic
22 membrane close to the embryo and was limited to a
23 small number of cells in the embryos analysed. These
24 results indicated that all the embryos had been
25 successfully transduced by the injected lentiviral
26 vector.

27
28 In a further experiment 40 laid eggs were injected
29 each with 2-3 microlitres of a suspension of the
30 EIAV vector at a titre of 5×10^8 per ml., into the
31 sub-blastodermal cavity. 13 chicks hatched (33%) and
32 were screened to identify transgenic offspring

1 carrying the lentiviral vector sequence. Samples of
2 the remaining extraembryonic membrane were recovered
3 from individual chicks after hatch, genomic DNA
4 extracted and the DNA analysed by PCR using primers
5 specific to the lentiviral vector sequence. The
6 screen identified 11 chicks as transgenic (85%). The
7 vector sequence was detected in the extraembryonic
8 membrane at a copy number of between 0.4% and 31%,
9 indicating that the chicks were mosaic for
10 integration of the vector. This result was predicted
11 as the embryos were injected with the vector at a
12 stage at which they consisted of at least 60,000
13 cells. It is unlikely that all the cells in the
14 embryo would be transduced by the viral vector,
15 resulting in chicks that were chimeric for
16 integration of the vector. The 11 chicks were raised
17 to sexual maturity and 7 found to be males. Semen
18 samples were obtained from the cockerels when they
19 reached 16-20 weeks of age. DNA from these samples
20 was screened by PCR and the seven cockerels found to
21 have lentiviral vector sequence in the semen at
22 levels estimated as between 0.1% and 80%. The
23 majority of the samples contained vector sequence at
24 a level above 10%. This suggested that at least 10%
25 of the offspring of these cockerels will be
26 transgenic. Semen was collected from one cockerel,
27 code no. LEN5-20, that had been estimated to have a
28 copy number of the viral vector in DNA from a blood
29 sample as 6%. The copy number estimated from the
30 semen sample was 80%. The semen was used to
31 inseminate stock hens, and the fertile eggs
32 collected and incubated. 9 embryos were recovered

1 after 3 days of incubation, screened by PCR to
2 identify transgenic embryos and stained for
3 expression of the lacZ reporter gene. 3 of the 9
4 embryos were transgenic and all 3 expressed lacZ but
5 at a very low level in a small number of cells. 12
6 embryos were recovered after 10 days of incubation
7 and screened as above. 6 embryos were identified as
8 transgenic and lacZ expression detected in 4. The
9 expression was high in several tissues in one embryo
10 and lower in the other 3. These results indicate
11 that 43% of the offspring of cockerel LEN5-20 were
12 transgenic. The expression of the reporter construct
13 carried by the lentiviral vector varied between
14 individual transgenic chicks. It is likely that the
15 individual chicks had copies of the vector genome
16 integrated at different chromosomal sites, which may
17 affect the expression of the transgene. It is also
18 possible that some chicks carried more than one copy
19 of the transgene.

20
21 The results outlined here demonstrate that a
22 specific EIAV-derived lentiviral vector, pseudotyped
23 with the VSV envelope protein, can transduce the
24 germ cells of chick embryos with very high
25 efficiency. The resulting birds then transmit the
26 integrated vector to a high proportion of their
27 offspring. The transgene carried by the vector may
28 be expressed to give a functional protein at
29 relatively high levels. The transgene carried by the
30 vector may be designed to express foreign proteins
31 at high levels in specific tissues.

32

1 The lentiviral vector may be introduced into the
2 chick at different developmental stages, using
3 modifications of the method described in the example
4 above.

5

6 The viral suspension may be injected above the
7 blastoderm embryo in a new laid egg .

8 The viral suspension may be injected into the newly
9 fertilised egg or the early cleavage stages, up to
10 stageX (Eyal-Giladi and Kochav), by utilizing the
11 culture method of Perry (1988) or recovering eggs
12 from the oviduct and then returning them to a
13 recipient hen by ovum transfer.

14

15 The viral suspension may be injected above or below
16 the blastoderm embryo in a freshly laid egg which
17 has been accessed by cutting a window in the shell.
18 The window may be resealed and the egg incubated to
19 hatch (Bosselman et. al., 1989).

20

21 The viral suspension may be injected into the testes
22 of cockerels and semen screened to detect
23 transduction of the spermatogonia and consequent
24 development of transgenic sperm.

25

26 Bibliography

27

28 Andersson, R. & Mynahan, R. May 2001 'The Protein
29 Production Challenge' In Vivo: The Business and
30 Medicine Report 15 (5) Windhover Information Inc.

31

1 Biopharm Cost of Goods Analysis: A Comparison
2 between Transgenic and Cell Culture Manufacture.
3 November 2001.

4

5 Bosselmann, R.A., Hsu, R.Y., Boggs, T., Hu, S.,
6 Bruszewski, J., Ou, S., Kozar, L., Martin, F. Green,
7 C. and Jacobsen, F. 1989 'Germline transmission of
8 exogenous genes in the chicken' *Science* 243 (4890)
9 p533-535.

10

11 Brackett, B.G., Baranska, W., Sawicki, W.,
12 Koprowski, H. 1971 'Uptake of heterologous genome by
13 mammalian spermatozoa and its transfer to ova
14 through fertilization'. *Proc. Natl. Acad. Sci. USA.*
15 68 (2) 353-7.

16

17 Clements, J.E. and Payne, S.L. 1994 'Molecular basis
18 of the pathobiology of lentiviruses' *Virus Research*
19 32 (2) p97-109.

20

21 Coffin, J.M., Hughes, S.M. and Varmus, H.E. 1997
22 'Retroviruses' Cold Spring Harbor Laboratory Press.

23

24 Curtis, H. & Barnes, N.S. 1989 'Biology' 5th Edition
25 Worth Publishers, Inc.

26

27 Dove, A. 2000 'Milking the genome for profit'
28 *Nature Biotechnology* 18 p1045-1050.

29

30 Etches, R.J. & Gibbins, A.M. (Eds) 2000
31 'Manipulation of the Avian Genome' CRC Press.

32

- 1 Eyal-Giladi, H. and Kochav, S. 1976 'From cleavage
- 2 to primitive streak formation..' Developmental
- 3 Biology 49(2) p321-337.
- 4
- 5 Gardner, R.L. 1968 'Mouse chimeras obtained by the
- 6 injection of cells into the blastocyst'. Nature
- 7 220 (167) p596-7.
- 8
- 9 Gordon, J.W. & Ruddle, F.H. 1981 'Integration and
- 10 stable germline transmission of genes injected into
- 11 mouse pronuclei'. Science 214 (4526) p1244-6.
- 12
- 13 Harvey, A.J., Speksnijder, G., Baugh, L. R., Morris,
- 14 J.A. and Ivarie, R. 2002 'Expression of exogenous
- 15 protein in the egg white of transgenic chickens'
- 16 Nature Biotechnology 19 p396-399.
- 17
- 18 Jaenisch, R. & Mintz, B. 1974 'Simian virus 40 DNA
- 19 sequences in DNA of healthy adult mice derived from
- 20 preimplantation blastocysts injected with viral
- 21 DNA'. Proc. Natl. Acad. Sci. USA. 71 (4) 1250-4.
- 22
- 23 Jahner, D., Stuhlmann, H., Stewart, C.L., Harbers,
- 24 K., Lohler, J., Simon, I. and Jaenisch, R. 1982 'De
- 25 novo methylation and expression of retroviral
- 26 genomes during mouse embryogenesis' Nature 298
- 27 (5875) p623-628.
- 28
- 29 Lois, C., Hong, E.J., Pease, S., Brown, E.J. and
- 30 Baltimore, D. 2002 'Germline Transmission and
- 31 Tissue-specific Expression of Transgenes delivered
- 32 by Lentiviral Vectors' Science 295.

1 Love, J., Gribbin, C., Mather, C and Sang, H. 1994
2 'Transgenic Birds by Microinjection' Biotechnology
3 12.

4

5 Mitrophanous, K.A., Yoon, S., Rohl, J.B., Patil, D.,
6 Wilkes, F.J., Kim, V.N., Kingsman, S.M., Kingsman,
7 A.K. and Mazarakis, N.D. 1996 'Stable Gene Transfer
8 to the Nervous System using a Non-Primate Lentiviral
9 Vector' Gene Therapy 6 p1808-1818.

10

11 Morrow, K.J.Jr. 2001 'Antibody Production: Planning
12 Well Ahead to Meet Future Demand' Genetic
13 Engineering News 21(7) April 1.

14

15 Pain, B., Clark, E.M., Shen, M., Nakazawa, H.,
16 Sakurai, M., Samarat, J. and Etches, R.J. 1996
17 'Long-term *in vitro* culture and characterisation of
18 avian embryonic stem cells with multiple
19 morphogenetic potentialities' Development 122 p2339-
20 2348.

21

22 Perry, M.M. 1988 'A complete culture system for the
23 chick embryo' Nature 331 (6151) p70-72.

24

25 Pfeifer, A., Ikawa, M., Dayn, Y. and Verma, I.M.
26 2002 'Transgenesis by Lentiviral vectors: Lack of
27 gene silencing in mammalian embryonic stem cells and
28 preimplantation embryos' Proceedings of the National
29 Academy of Sciences 99(4) p2140-2145.

30

31 Raju, T., Briggs, J., Borge, S., Jones, A. 2000
32 'Species-specific variation in Glycosylation of IgG:

1 evidence for the species-specific sialylation and
2 brand-specific galactosylation and importance for
3 engineering recombinant glycoprotein therapies'.
4 *Glycobiology* 10 477-486.

5

6 Salter, D.W. 1993 In: *Manipulation of the Avian*
7 *Genome*' (Etches, R.J. and Verrinder Gibbins, A.M.
8 eds.) 135-150 CRC Press.

9

10 Sang, H. and Perry, M.M. 1989 'Episomal replication
11 of cloned DNA injected into the fertilised ovum of
12 the hen, *Gallus domesticus*' *Molecular Reproductive*
13 *Development* 1(2) 98-106.

14

15 Sanjay, J.V., Stephens, E.B. and Narayan, O. 1996
16 'Lentiviruses' 3rd Edition. Vol.2. Lippincott-Raven
17 Publishers, Philadelphia.

18

19 SCRIP, June 8th 2001 'Companies face up to biotech
20 manufacturing issues' p6 PJB Publications Ltd.

21

22 Weck, E. 1999 'Transgenic animals: Market
23 Opportunities now a Reality' D&MD Reports.

24

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.