Quiz 7: Recommendation Systems (10 points), **15 minutes**TA handling this quiz: Abhishek Bhatt abhishpb@usc.edu

Consider the following utility matrix M which records ratings from users: A, B, and C on movies: M1, M2, M3, and M4. For all computations below, show how you derive the final result.

	M1	M2	M3	M4
Α	4		2	3
В		5		3
С	2		3	

1. [4 points] Consider finding UV-decomposition of M with a **single** latent factor. Suppose in the initial guess, the values of elements in U and V are all 1's. What is the **squared error** of the guess?

U*V =

1	1	1	1
1	1	1	1
1	1	1	1

squared error =
$$(4-1)^2 + (2-1)^2 + (3-1)^2 + (5-1)^2 + (3-1)^2 + (3-1)^2 = 39$$

2. [4 points] Find a new value for V[1,1] (while holding all others constant) to minimize the error.

У	1	1	1
У	1	1	1
У	1	1	1

minimize $(4-y)^2 + (2-y)^2$ Differentiate wrt y Equate to 0 y = 3

3. [2 points] How much is the **reduction** in the **squared error** with the new value of V[1,1]?

Old SE for 1st column - New SE for 1st column $10 - (4-3)^2 - (2-3)^2 = 8$