A Catchy Title

John Smith Graduate School of Al KAIST Daejeon, South Korea alice@kaist.ac.kr

Mary Thompson School of EE **KAIST** Daejeon, South Korea bpb@kaist.ac.kr

Michael Miller School of Computing KAIST Daejeon, South Korea carol@kaist.ac.kr

ABSTRACT

How similar are two sound-clips? what is the best rhetorical question you can ask? In this project, we develop Some METHOD, older ones. The results are very promising. a fast and effective way of measuring the similarity between two short sound clips.

INTRODUCTION

Specify the problem; Give the motivation; List your main con-

The problem we want to solve is the following:

- GIVEN: a collection of N sound clips, of similar duration, and each having a class label among k=5 classes
- FIND: a clip-to-clip similarity function
- to MINIMIZE: the classification error, in the 1-nearestneighbor classifier.

This is an important problem, because ... millions of dollars ... millions of human lives ...

The contributions of this project are the following:

- our proposed *someMETHOD* is novel, combining wavelets with a spike-removal preprocessing step
- it is effective, achieving 90% classification accuracy
- it is scalable, being linear on the number of sound-clips N.

PROPOSED METHOD

The main motivation behind our method is to handle spikes carefully. Since the input signals are noisy, with bursty noise, traditional methods like time-warping and wavelets will focus on the spikes, and ignore the rest of the signal, giving misleading results.

Our proposed method is as follows: We will use the spikedetection method of ..., to remove spikes, and only then, we use the k strongest Daubechies-4 wavelet coefficients, to compare the two (spike-removed) sound clips.

3. EXPERIMENTS

We implemented our method and compared it with the

Figure 1 shows our results: Figure 1(a) gives a scatterplot of the N sound-clips, where the axis are the two main features we propose to use ... Figure 1(b) shows the wallclock time of our method, versus the size of the database N.

4. CONCLUSIONS

The proposed method some METHOD has the following advantages:

- it gives better classification accuracy than all 10 competitors we tried
- its accuracy is very close to the very best competitor in the UCR Insect Classification Contest.
- it is scalable

REFERENCES

[1] Ingrid Daubechies. Ten Lectures on Wavelets. Capital City Press, Montpelier, Vermont, 1992. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Figure 1: A fictitious dataset (a) and its performance plot (b)

APPENDIX

A. APPENDIX

A.1 Labor Division

The team performed the following tasks

- Implementation of Daubechies-4 [Smith, Thompson]
- Comparison of Daubechies-4 against euclidean distance [Miller]
- Data collection [all]
- Experiments on the real data [Miller]

A.2 Full disclosure wrt dissertations/projects

A.2.0.1 Smith:.

His dissertation is on a music retrieval system ('query by whistle'). Although related to this class's project, Smith never considered wavelets, AutoRegression, or generalized-time-warping, for his dissertation, that he studied and implemented in this project.

A.2.0.2 Thompson:.

She is not doing any project or dissertation related to this project: her thesis is on phylogenetic trees.

A.2.0.3 Miller:.

He is not doing any project or dissertation related to this project: his thesis is on dark matter discovery.