Universidade Federal do Pará

Tópico: Matrizes

Data: 19 a 24 de setembro de 2024 Profa. Paula Cardoso

(pcardoso@ufpa.br)

<u>Lista de exercícios para estudar. Um dia sem estudar é um dia a mais entre você e seu objetivo!</u>

Observação 1:

Criação de uma matriz (lista de listas): Exemplo com a criação de uma matriz de zeros com A linhas e B colunas:

```
matriz = [ ]
for i in range (A):
    matriz.append([ ])
    for j in range (B):
        matriz [i].append(0)
```

Observação 2:

Exemplo com a criação de uma matriz de inteiros com A linhas e B colunas (assumindo que o usuário insira B elementos por linha da entrada padrão):

```
matriz = [ ]
for i in range (A):
    linha = [ ]
    for j in range (B):
        n=int(input("Digite um valor inteiro "))
        linha.append(n)
    matriz.append(linha)
```

Atividades:

- 1. Crie um programa que lê os dados de uma matriz quadrada de inteiros. Depois, o programa deverá imprimir o índice da linha que contém o menor valor da matriz. Entrada:
 - número inteiro representando a ordem da matriz (o número de linhas e de colunas da matriz)
 - os elementos da matriz da esquerda para direita.

Saída:

• o número da linha onde está o menor elemento da matriz

Exemplo de entrada	Exemplo de saída
3 27 10 12 41 34 39 7 12 18	2

^{**} Os códigos acima podem ser implementados de diferentes maneiras.

2. Uma matriz quadrada cujos elementos que não pertencem à diagonal principal são todos diferentes de zero é dita uma matriz diagonal. Faça um programa que dada uma matriz quadrada de números inteiros identifica se ela é diagonal ou não.

Entrada:

- número inteiro representando a ordem da matriz (o número de linhas e de colunas da matriz)
- os elementos da matriz da esquerda para direita.

Saída:

• o programa deverá escrever 1 se a matriz for diagonal, e 0 se não for.

Exemplo de entrada	Exemplo de saída
4 15 7 14 7 17 5 18 0 9 2 10 4 18 19 12 4	0
4 15 7 14 7 17 0 18 7 9 2 0 4 18 19 12 4	1

3. Faça um programa para corrigir provas de múltipla escolha de uma turma com dez alunos.

Cada prova tem oito questões e cada questão vale um ponto. O primeiro conjunto de dados a ser lido é o gabarito da prova. Os outros dados são as respostas que cada aluno deu a cada questão da prova. Calcule e exiba no dispositivo de saída padrão:

- a) A nota de cada aluno.
- b) A percentagem de aprovação da turma, sabendo-se que a nota mínima para aprovação é 60% da prova.

Entrada:

- Sequência de oito caracteres que representam o gabarito da prova
- Sequência de caracteres denotando as respostas de cada aluno. Sabendo-se que inicialmente são fornecidas todas as respostas do primeiro aluno. Depois, todas do segundo, e assim por diante.

Saída:

- Sequência de números em ponto flutuante denotando a nota final de cada aluno. Os valores da nota final devem estar compreendidos no intervalo [0,100].
- Número em ponto flutuante denotando a percentagem de aprovação total da turma, o valor deve estar compreendido no intervalo [0,100].

Exemplo de entrada	Exemplo de saída
ABCDAABE	12.5
BCDAABEA	0
CDAABEAB	25
DAABEABC	25

A A B E A B C D A B E A B C D A B E A B C D A A	25 00 100
BEABCDAA	25
ABCDAABE	87.5
ABBECDAA	
ABCDAABD	20

4. Faça um programa que leia uma matriz de números n x n e escreva a média dos elementos da sua diagonal principal.

Entrada:

- Número inteiro representando a ordem da matriz (número de linhas e colunas)
- Os elementos da matriz (números reais).

Saída:

Média da diagonal principal da matriz

Exemplo de entrada	Exemplo de saída
3 123 456 789	5

5. Faça um programa que leia uma matriz de números inteiros. Em seguida, o programa deve escrever todos os elementos da matriz em zigue-zague, ou seja: inicialmente são escritos todos os valores da primeira linha, da esquerda para direita; depois os valores da segunda linha, da direita para esquerda; e assim por diante.

Entrada:

- Número inteiro que representa quantidade de linhas
- Número inteiro que representa quantidade de colunas
- Os elementos da matriz.

Saída:

Todos os valores da matriz, em ordem de zigue-zague.

Exemplo de entrada	Exemplo de saída
3 6 123456 789012 345678	123456210987345678

6. **Desafio.** Um caçador de Pokémons criou um aparelho para coletar múltiplos Pokémons simultaneamente, entretanto o aparelho tem duas restrições: Só pode ser disparado uma vez e só consegue coletar Pokémons a uma determinada distância (nem menos, nem mais). O caçador tem à sua disposição um mapa no formato de uma matriz. A matriz é

sempre de um tamanho ímpar e o centro da matriz possui sempre o número 9 representando o caçador. As outras posições da matriz possuem números de 0 a 8. Os números representam a importância do Pokémon. Faça um algoritmo que informada a distância do centro da matriz, calcule a soma das importâncias dos Pokémons encontrados.

Os elementos a serem somados são definidos pela distância a partir do centro. No exemplo, esses elementos estão destacados em vermelho. A distância será sempre um número válido, ou seja, que represente um quadrado dentro do tamanho da matriz definida.

Entradas:

- 1. Tamanho da Matriz (sempre será um número ímpar).
- 2. Distância que representa o quadrado que deseja utilizar para calcular a soma das importâncias dos Pokémons.
- 3. Matriz contendo as importâncias dos Pokémons.

Saídas:

1. Soma das importâncias dos Pokémons no quadrado definido.

Exemplo de Entrada:

```
7
2
1111111
1502001
1522201
1049501
1033351
1500301
```

Exemplo de Saída:

25