

COMP2322 Computer Networking

Homework 4

Author Wang Yuqi

Lecturer Dr. LOU Wei

Questions

Question 1

Q: (4 points) Consider a network using 8-bit host addresses. Suppose a router uses the longest prefix matching and has the following forwarding table:

Prefix Match	Interface
00	0
01	1
011	2
10	2
11	3

For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range.

Solution 1

Interface	Range (Binary)	Range (Decimal)	# of Addresses
0	00000000 - 00111111	0 - 63	64
1	01000000 - 01011111	64 - 95	32
2	01100000 - 10111111	96 - 191	96
3	11000000 - 11111111	192 - 255	64

(See Next Page)

Question 2

Q: (1 point) Suppose datagrams are limited to 1,500 bytes (including header) between source Host-A and destination Host-B due to the link has an MTU of 1500 bytes. Assuming a 20-byte IP header, how many datagrams would be required to send an MP3 file that consists of 4M bytes when using TCP? Explain how you computed your answer. (Hint: $1M=10^6$)

Solution 2

Let's assume that each TCP header takes up 20 Bytes.

Then, the amount of TCP data that can be carried by each packet is:

Payload Size = MTU
$$-$$
 IP Header $-$ TCP Header
= $1500 - 20 - 20$
= 1460 Bytes

Then, the total number of datagrams needed to transmit this MP3 file is computed as:

Number of Datagrams =
$$\frac{\text{File Size}}{\text{Payload Size}}$$

= $\left[\frac{4 \times 10^6}{1460}\right]$
= 2740

(See Next Page)

Question 3

Q: Consider the network below. Use Dijkstra's shortest-path algorithm to compute the shortest path from node b to all nodes in the network. Give detailed steps.

Solution 3

	\boldsymbol{a}	b	c	d	e	f	g	h	visiting
Initial	∞	0	∞	∞	∞	∞	∞	∞	-
Step 1	1	0	3	8	∞	6	∞	∞	\boldsymbol{b}
Step 2	1	0	3	8	∞	6	∞	∞	\boldsymbol{a}
Step 3	1	0	3	7	5	6	∞	∞	c
Step 4	1	0	3	7	5	6	11	∞	e
Step 5	1	0	3	7	5	6	8	11	$oldsymbol{f}$
Step 6	1	0	3	7	5	6	8	11	d
Step 7	1	0	3	7	5	6	8	10	$oldsymbol{g}$
Step 8	1	0	3	7	5	6	8	10	h

Table 1: Execution procedure of Dijkstra's algorithm

	Dist	Shortest Path
a	1	b o a
\boldsymbol{b}	0	b
$oldsymbol{c}$	3	b o c
d	7	b o c o d
$oldsymbol{e}$	5	$b \to c \to e$
$oldsymbol{f}$	6	b o f
\boldsymbol{g}	8	b o f o g
$\underline{\hspace{1cm}}^{h}$	10	b o f o g o h

Table 2: Shortest path from node b to all nodes in the network