	Universidade do Estado do Pará Centro de Ciências Biológicas e da Saúde Curso de Terapia Ocupacional Laboratório Morfofuncional		
Disciplina	Ciências Morfofisiológicas III - Fisiopatologia Geral e dos Sistemas e Bases da Farmacologia		
Tema	Noções de Farmacologia e psicofarmacologia e sua relação na prática em TO		
Professores	Letícia Miquilini e Bruno Pinheiro	(TO – 2022) 11 de Agosto de 2022	

Roteiro 7 - Laboratório Morfofuncional (11 de Agosto de 2022)

Os psicofármacos distinguem-se dos outros tipos de medicamentos por obrigatoriamente atuarem no sistema nervoso central (SNC). Isto implica na necessidade de que eles e/ou seus metabólitos (podem ou não permanecer reativos) tenham de atravessar uma barreira adicional – a barreira hematoencefálica (BHE). Os princípios básicos que determinam os demais processos, isto é, absorção, distribuição, biotransformação e eliminação, são essencialmente os mesmos dos demais fármacos utilizados na prática clínica, porém com algumas diferenças.

Baes e Juruena (2017)

Objetivo 1 – Caracterizar os aspectos gerais dos psicofármacos.

1. Descrever a farmacocinética dos psicofármacos dando ênfase a absorção, distribuição, metabolismo e eliminação.

Figura 2-1 Correlações entre absorção, distribuição, ligação, metabolismo e excreção de um fármaco e sua concentração nos locais de ação. A figura não mostra a possível distribuição e ligação dos metabólitos, com relação às suas ações potenciais nos receptores.

- 1.1. Na absorção note parâmetros como: Fatores biológicos (transportes através da membrana, espessura da membrana), inerentes ao fármaco (Lipossolubilidade, Tamanho da molécula, acidez, basicidade e ionização e PH do meio Fisiológico).
- 1.2. Na distribuição note as seguintes informações: Proteinas Plasmáticas, Fração Ligada e Livre

- 1.3. Na Biotransformação note as seguintes informações: Reações de Fase I; Reações de Fase II e Citocromo P450
- 1.4. Eliminação note os seguintes parâmetros: Lipossolubilidade, PH urinário, ionização e acidez e basicidade do fármaco.
- 2. Descrever a farmacodinâmica dos psicofármacos quanto ao:
 - 2.1. Diferenciar agonista (tipos de agonismo) de antagonista (tipos de antagonista);
 - 2.2. A curva dose-resposta;
 - 2.3. Tipos de receptores
 - 2.4. O desenvolvimento de tolerância e sensibilidade;
 - 2.5. O índice terapêutico (Qual o significado?)

Figura 3-4 Mecanismos do antagonismo nos receptores. A. O antagonismo competitivo ocorre quando o ago competem pelo mesmo local de ligação do receptor. As curvas de resposta ao agonista são desviadas pelo anta uma relação dependente de concentração, de tal forma que a EC₅₀ do agonista aumenta (p. ex., L versus L', L" do antagonista. B. Se o antagonista ligar-se ao mesmo local do agonista, mas não de forma irreversível ou pseud lenta, mas sem ligação covalente), causa um desvio à direita na curva de dose-resposta, com redução adiciona efeitos alostéricos ocorrem quando um ligando alostérico I ou P une-se a um local diferente do receptor para ir potencializar (P) a resposta (ver gráfico D). Esse efeito é saturável, pois a inibição ou a potencialização atinge i o local alostérico está totalmente ocupado.

FARMACOLOGIA - 7ª Edição Rang & Dale ISBN: 9788535241723 Elsevier Editora

FAMÍLIA	FAMÍLIA	LIGANDOS FISIOLÓGICOS	EFETORES E	EXEMPLOS DE
ESTRUTURAL	Receptores B-adrenérgicos	NE, Epi, DA	G _s ; AC	PÁRMACOS Dobutamina, propranolol
GPCR	Receptores colinérgicos muscarínicos	ACh	G _i e G _q ; AC, canais iônicos, PLC	Atropina
	Receptores dos eicosanoides	Prostaglandinas, leucotrienos, tromboxanos	Proteínas G _s , G _i e G _q	Misoprostol, montelucaste
	Receptores da trombina (PAR)	Peptideo receptor	G _{12/13} , GEF _s	(em desenvolvimente)
Canais iônicos	Receptores controlados por ligandos	ACh (M ₂), GABA, 5-HT	Na+, Ca2+, K+, Cl-	Nicotina, gabapentina
	Receptores controlados por voltagem	Nenhum (ativado pela despolarização da membrana)	Na+, Ca ²⁺ , K+, outros fons	Lidocaína, verapamil
Enzimas transmembrana	Receptores de tirosinocinase	Insulina, PDGF, EGF, VEGF, fatores de crescimento	Domínio SHA2 e proteinas que contêm PTB	Herceptina, imatinibe
	Tirosinocinases GC acopladas à membrana	Peptideos natriuréticos	GMP cíclico	Neseritida
Não enzimas transmembrana	Receptores de citocinas	Interleucinas e outras citocinas	Jak/STAT, tirosinocinases solúveis	
	Receptores tipo Toll	LPS, produtos bacterianos	MyD88, IARKs, NF-ĸB	
Receptores nucleares	Receptores dos esteroides	Estrogênio, testosterona	Coativadores	Estrogênios, androgênios, cortisol
	Receptores do hormônio tireóideo	Hormônio tireóideo		Hormônio tireóideo
	PPARy	PPARγ		Tiazolidinedionas
Enzimas intracelulares	GC solúvel	NO, Ca ²⁺	GMP cíclico	Nitrovasodilatadores

AC, adenililciclase; GC, guanililciclase; PAR, receptor ativado por proteína; PLC, fosfolipase C; PPAR, receptor ativado pelo proliferador do peroxis-

3. Citar a classificação de acordo com a OMS dos psicofármacos.

Objetivo 2 – Caracterizar o sistema nervoso central e seus transmissores.

- 1. Caracterizar sucintamente os mecanismos da transmissão sináptica.
- 2. Diferenciar neurotransmissores, neuromoduladores e fatores neurotróficos.
- 3. Caracterizar os principais transmissores do sistema nervoso central dando ênfase ao seu mecanismo de ação e interação com os receptores.
 - 3.1. Glutamato
 - 3.2. GABA
 - 3.3. Acetilcolina
 - 3.4. Catecolaminas
 - 3.5. Indolaminas

Figura 14-7 Liberação, ação e ativação de transmissor. A despolarização abre canais de Ca²+ dependentes de voltagem na terminação nervosa pré-sináptica. (1) O influxo de Ca²+ durante um potencial de ação (AP) desencadeia (2) exocitose de pequenas vesículas sinápticas que armazenam neurotransmissor (NT) envolvido na neurotransmissão rápida. O neurotransmissor liberado interage com receptores nas membranas pós-sinápticas que acoplam diretamente com canais iônicos (3) ou atuam através de segundos mensageiros, como (4) GPCR. Os receptores do neurotransmissor na membrana da terminação nervosa pré-sináptica (5) podem inibir ou aumentar a exocitose subsequente. O neurotransmissor liberado é inativado pela receptação na terminação nervosa por (6) uma proteína transportadora acoplada ao gradiente de Na+, por exemplo, DA, NE e GABA; por (7) degradação (ACh, peptídeos); ou por (8) captação e metabolismo por células gliais (Glu). A membrana da vesícula sináptica é reciclada por (9) endocitose mediada por clatrina. Os neuropeptídeos e as proteínas são armazenados em (10) grânulos maiores de núcleo denso na terminação nervosa. Esses grânulos de núcleo denso são liberados de (11) locais diferentes das zonas ativas após estimulação repetitiva.

Figura 14-11 Locais de ligação farmacológica no receptor GABA_A. (Reproduzida com permissão de Nestler EJ, Hyman SE, Malenka RC [eds]. *Molecular Neuropharmacology*. Nova York: McGraw-Hill, **2000**, p 135. Copyright © pela McGraw-Hill Companies, Inc. Todos os direitos reservados.)

SHID

GHID

(SHID)

5-hidroxindol acetaldeido

Receptor 5HT_{1D}

(auto-receptor)

GOLAN, David E. et al. Princípios de farmacologia: a base fisiopatológica da farmacoterapia. 3. ed. Rio de Janeiro: Guanabara Koogan, 2014. ISBN 9788527723657.

RANG, H. P. et al. Rang&Dale farmacologia. 8. ed. Rio de Janeiro: Elsevier, 2016. ISBN 9788535283433.

Videos

https://www.youtube.com/watch?v=rvUKv0D9cdY

 $\underline{https://www.youtube.com/watch?v=QXw0KuxrUvw}$

https://www.youtube.com/watch?v=8lf 5fRhV8

https://www.youtube.com/watch?v=jqdBQRjzPjY

https://www.youtube.com/watch?v=U4FCHaNNWCg

https://www.youtube.com/watch?v=wP9QD-5FL5U

https://www.youtube.com/watch?v=4-DuvwoH2zQ

https://www.youtube.com/watch?v=gbUTgaqwRpM

https://www.youtube.com/watch?v=xuDgRCKeZTE

 $\underline{https://www.youtube.com/watch?v=iqK7dx4JrZs}$