1 Computability

1.1 Recursive Functions

Definition 1.1. The class of **primitive recursive** functions is the smallest class of functions $f: \mathbb{N}^n \to \mathbb{N}$ s.t. they contain

- a. s(x) = x + 1
- b. $P_m^n(x_1,...,x_n) = x_m$
- c. $C_m^n(x_1, ..., x_n) = m$

and is closed under

- a'. Composition: $f(x_1, ..., x_n) = h(g_1(x_1, ..., x_m), ..., g_m(x_1, ..., x_m))$
- b'. Primitive recursive rule:

$$f(0, x_1, \dots, x_n) = g(x_1, \dots, x_n)$$

$$f(n+1, x_1, \dots, x_n) = h(f(n, x_1, \dots, x_m), n, x_1, \dots, x_n)$$

Definition 1.2. A primitive recursive derivation is a list f_0, \ldots, f_n s.t. each f_i is either a.-c. above or defined from previous f_j using a'., b'.

Example.

1. Addition

$$f(0,y) = P_1^1(y)$$

 $f(n+1,y) = S(f(n,y))$

2. Multiplication

$$f(0,y) = 0 = C_0^1(y)$$

$$f(n+1,y) = f(n,y) + y$$

3. Exponentiation

$$f(0,y) = 1$$

$$f(n+1,y) = f(n,y) \cdot y$$

4. Factorial

$$f(0,y) = 1$$

$$f(n+1,y) = f(n) \cdot (n+1)$$

5. Predcessor

$$f(0) = 0$$
$$f(n+1) = n$$

6. Subtraction

$$f(0,y) = y$$

$$f(n+1,y) = Pred(f(h,y))$$

7. SG

$$Sg(0) = 0$$
$$Sg(n+1) = 1$$

8. Equality

$$Eq(x,y) = \overline{Sg}((x-y) + (y-x))$$

$$Ineq(x,y) = Sg(Eq(x,y))$$

9. Minimum

$$\min(x,y) = \operatorname{Eq}(x,y) \cdot x + \operatorname{Ineq}(x,y) \cdot [x \cdot \overline{\operatorname{Sg}}(x-y) + y \cdot \overline{\operatorname{Sg}}(y-x)]$$

$$\min(x_1, \dots, x_n) = \min(\min_{n=1}^{n} (x_1, \dots, x_n), x_n)$$

- 10. Maximum: same as min but replace each \bar{Sg} with just Sg.
- 11. Summation of some f(x, i).

$$g(x,0) = f(x,0)$$

$$g(x, n + 1) = g(x, n) + f(x, n + 1)$$

12. Product of some f(x, i).

$$g(x,0) = f(x,0)$$

$$q(x, n + 1) = q(x, n) \cdot f(x, n + 1)$$

Denote by $\bar{x} = x_1, \dots, x_n$.

Definition 1.3. A **relation** is primitive recursive if its characteristic function f is primitive recursive.

$$f(\bar{x}) = \begin{cases} 1 \text{ if } R(\bar{x}) \\ 0 \text{ if } \neg R(\bar{x}) \end{cases}$$

Let pr stand for primtive recursive.

Theorem 1.1. Let P_1, P_2 be pr relations and f_1, \ldots, f_n be pr functions. Then the following are pr:

- i. $R(\bar{x}) = \neg P(\bar{x})$
- ii. $R(\bar{x}) = P_1(\bar{x}) \wedge P_2(\bar{x})$, similarly for all other logical connectives.
- iii. $R(\bar{x}) = P_1(f_1(\bar{x}), \dots, f_n(\bar{x}))$
- iv. $R(t, \bar{x}) = \exists i \leq t(P_1(i, \bar{x}))$
- v. $R(t, \bar{x}) = \forall i \leq t(P_1(i, \bar{x}))$

Proof. A sketch.

i. Use $\overline{\mathrm{Sg}}(f_p(\bar{x}))$.

ii. Use $f_{P_1}(\bar{x}) \cdot f_{P_2}(\bar{x})$.

iii. Use $f_{P_1}(f_1(\bar{x}), \dots, f_n(\bar{x}))$.

iv. Use $\operatorname{Sg}(\sum f_{P_1}(i,\bar{x}))$.

v. Use $\prod f_{P_1}(i,\bar{x})$.

Corollary 1.2. Two items.

a. x divides y evenly: $\exists i \leq y (x \cdot i = y)$

b. x is prime: $\forall i \leq x (i \mid x \rightarrow (i = 1) \lor (i = x))$

Theorem 1.3. Let f_1, \ldots, f_n and P_1, \ldots, P_n be pr. Suppose that

1. For all \bar{x} , $P_1(\bar{x}) \vee \cdots \vee P_n(\bar{x})$ is true.

2. For no \bar{x} , $i \neq j < n$, $P_i(\bar{x}) \wedge P_i(\bar{x})$ is true.

Then,

$$g(\bar{x}) = \begin{cases} f_1(\bar{x}) \text{ if } P_1(\bar{x}) \\ \vdots \\ f_n(\bar{x}) \text{ if } P_n(\bar{x}) \end{cases}$$

is pr. Essentially, primitive recursion is closed under comprehensive cases.

Proof.

$$g(\bar{x}) = f_{P_1}(\bar{x})f_1(\bar{x}) + \dots + f_{P_n}(\bar{x})f_n(\bar{x})$$

Definition 1.4. $\mu_i P(\bar{x})$ is an operator to mean the least i such that $P(\bar{x})$. Use $\mu_i \leq t$ to denote the least i such that $i \leq t$.

Theorem 1.4. Any function $f(\bar{x}, n) = (\mu_i \le n)(P(\bar{x}, i))$ is pr.

Proof. Define f in the following way:

$$f(\bar{x},0) = 0$$

$$f(\bar{x},n+1) = \begin{cases} f(\bar{x},n) & \text{if } \exists y \le n(P(\bar{x},i)) \\ n+1 & \text{if } \neg \exists i \le n(P(\bar{x},i)) \land P(\bar{x},n+1) \\ 0 & \text{else} \end{cases}$$

Proposition 1.5. The following are pr:

1. Let a = nb + r such that r < b.

a)
$$\operatorname{div}(a,b) = a$$

b)
$$rem(a, b) = a - div(a, b) \cdot b$$

2. p(i) = ith prime number

Proof. Define div and p by the following.

$$\operatorname{div}(a,b) = \mu_n \le a(a - nb < 1)$$

$$p(0) = 2$$

 $p(n+1) = (\mu_i \le (p(n)! + 1))(\text{prime}(i) \land p(n) < i)$

Remark. $p_i = i$ th prime is 1-indexed by

$$p_i = \begin{cases} 0 \text{ for } i = 0\\ p(i-1) \text{ for } i > 0 \end{cases}$$

Definition 1.5. We may define a function using *course of values recursion* where we may use f(n-k) in addition to f(n). That is, we may define a recursive function f by

$$f(0,\bar{x}) = g(\bar{x})$$

$$f(n+1,\bar{x}) = h(f(n,\bar{x}), f(n-1,\bar{x}), \dots, f(0,\bar{x}), n, \bar{x})$$

To make the above definition more concrete, we may code the course of values of f into a new function G and then use G to define f.

$$G(0, \bar{x}) = p_1^{g(\bar{x})}$$

 $G(n+1, \bar{x}) = G(n, x)p_{n+2}^{h(\dagger)}$

where \dagger denotes the next prime power that makes a legitimate Gödel encoding. So then f may be defined as

$$f(n,\bar{x}) = \mu_i \le G(n,\bar{x})[p(n)^{i+1} \nmid G(n,\bar{x})]$$

For example,

$$G(0,x) = 2^{g(x)} = 2^{f(0)}$$
$$G(1,x) = 2^{f(0)} \cdot 3^{f(1)}$$

So f may be defined by "pulliling down" those exponents of prime numbers that make up G.

Theorem 1.6. (the coding theorem) There is an injection $f: \mathbb{N}^{\prec \omega} \to \mathbb{N}$ such that

1. The image of f is pr, that is,

$$seq(z) \Leftrightarrow \exists n_1, \dots, n_m [f(n_1, \dots, n_m) = z]$$

- 2. For each n, $f_n(\bar{x}) = f(\bar{x})$ is pr.
- 3. There exists pr functions
 - a) $\ln(x)$ such that $\ln(f(x_1,\ldots,x_m))=m$ (length).
 - b) $\operatorname{proj}(x,i)$ such that $\operatorname{proj}(f(x_1,\ldots,x_m),i)=x_i$ (projection).
 - c) h(x,y) such that $h(f(\bar{x}), f(\bar{y})) = f(\bar{x}, \bar{y})$, or simply $[\bar{x} * \bar{y}]$ (concatentation).

Proof. Define $f(n_1, \ldots, n_m) = p_1^{n_1+1} \cdot p_2^{n_2+1} \cdot \cdots \cdot p_m^{n_m+1}$. We add 1 to each exponent for the $n_i = 0$ case.

1. We redefine seq(z) by

$$\exists m \leq z [(\forall i \leq m, p_i \mid z) \land (\forall j \leq z, m < j \rightarrow p_i \nmid z)]$$

That is, there is a substring of z where the first m primes divide z and nothing else divides z.

2. Use the following:

$$f_1(n_1) = 2^{n_1+1}$$

$$f_{m+1}(n_1, \dots, n_{m+1}) = f_m(n_1, \dots, n_m) p_{m+1}^{n_{m+1}+1}$$

3. a)

$$\ln(z) = \begin{cases} 0 \text{ if } \neg \text{seq}(z) \\ \mu_i \le z[p_i \mid z \land p_{i+1} \nmid z] \text{ else} \end{cases}$$

b)

$$\operatorname{proj}(z, i, =) \begin{cases} 0 \text{ if } \neg \operatorname{seq}(z) \text{ or } (\operatorname{seq}(z) \wedge \ln(z) < i) \\ (\mu_j \le n[p_i^j \nmid n]) - 2 \text{ else} \end{cases}$$

c)

$$h(x,y) = \begin{cases} 0 \text{ if } \neq \text{seq}(x) \lor \neg \text{seq}(y) \\ x \cdot \prod_{j \le \ln(y)} p_{j+\ln(x)}^{\text{proj}(y,i,+)1} \end{cases}$$

To illustrate part c) of the proof,

$$x = f(3,4,4) = 2^4 \cdot 3^5 \cdot 5^5$$
$$y = f(1,7) = 2^2 \cdot 3^8$$

so, concatenating them,

$$h(x,y) = 2^4 \cdot 3^5 \cdot 5^5 \cdot 7^2 \cdot 11^8$$

Definition 1.6. Let $P(\bar{x}, y)$ be a predicate. We say P is regular if $\forall \bar{x} \exists y P(\bar{x}, y)$.

Definition 1.7. A function is μ -recursive if it can be generated from primitives S (successor), C_m^n , P_m^n by composition, primitive recursion, and applying μ to regular predicates.

Theorem 1.7. Any primitive recursive function is also μ -recursive. Also, the same proofs for the primitive recursive functions prove that μ -recursion is closed under

- 1. $\neg, \land \lor, \rightarrow, \Leftrightarrow, \forall i \leq t, \exists i \leq t,$
- 2. taking cases using μ -recursive functions and predicates,
- 3. and the bounded μ operator.

Theorem 1.8. There are functions which are not μ -recursive.

Proof. By induction on the length of μ -recursive derivations, we show there are only countably many μ -recursive functions. But $\{f \mid f : \mathbb{N} \to \mathbb{N}\} \succ \mathbb{N}$.

Example. Here's the Ackerman function:

$$f_n(x,0) = S(x)$$

 $f_n(x,y+1) = f_{n-1}(f_n(x,y),x)$

The idea behind the Ackerman function is that it generalizes from S to + to \cdot to exponentiation etc. Its μ -recursive but not pr. A primitive recursive function can't keep track of how many times we've composed the preceding operators.

1.2 Turing Machines

Definition 1.8. An alphabet A is a finite list of symbols. Preserve b for blanks.

Definition 1.9. A tape on A is a function $\tau \colon \mathbb{N} \to A \cup \{b\}$ such that $\tau(n) = b$ for all but finitely many n.

Definition 1.10. A Turing machine is a $\langle A, S, \text{beg}, T \text{ where }$

- \bullet A is an alphabet
- S is a finite set of natural numbers (states)
- beg $\in S$ (start state)
- T is a set of $\langle s, x, y, m, s' \rangle$ where s, s' are states, x, y are in $A \cup \{b\}$, and $m \in \{-1, 0, 1\}$. Further, no T_1, T_2 start with the same s, x and every s, x is in some T. In other words, T is our transition function. Think of -1 as going left and 1 as going right.

Definition 1.11. A state is *halting* if for every $x \in A \cup \{b\}$, we have $\langle s, x, x, 0, s \rangle \in T$.

Definition 1.12. A configuration of a machine is a triple $\langle \tau, s, i \rangle$ where τ is a tape, s is a state, and i is a natural number.

Definition 1.13. A computation is a sequence of configurations $\langle \tau_0, s_0, i_0 \rangle, \langle \tau_1, s_1, i_1 \rangle, \ldots$ such that, given $\langle \tau_i, s_i, i_i \rangle$, any $j \in T$ is of the form $\langle s, x, y, m, s' \rangle$ such that $s = s_i$ and $x = \tau_i(i_i)$. Further,

$$\tau_{i+1}(n) = \begin{cases} \tau_i(n) & \text{if } n \neq i_i \\ y & \text{else} \end{cases}$$
$$s_{i+1} = s'$$
$$i_{i+1} = i_i + m$$

1.3 Coding Turing Machines

2 Incompleteness

2.1 Incompleteness and the Undefinability of Truth

Some notation:

- For R μ -recursive, let R be the formula used to arithmetically express it.
- For a number n, $\tilde{n} = \underbrace{0 + 1 + \dots + 1}_{n \text{ times}}$

Theorem 2.1. (first incompleteness theorem) Let Γ be a recursive set of sentences. Suppose $\mathbb{N} \models \Gamma$. Then Γ is incomplete.

Proof. Suppose note. Let Γ be such that

- 1. Γ is recursive
- 2. $\mathbb{N} \models \Gamma$
- 3. Γ is complete

We claim that $\forall \varphi, \mathbb{N} \models \varphi \Leftrightarrow \Gamma \vdash \varphi$. For \Leftarrow , we have that $\Gamma \vdash \varphi$ since $\mathbb{N} \models \Gamma$, then $\mathbb{N} \models \varphi$ by soundness. For \Rightarrow , suppose that $\Gamma \not\vdash \varphi$. Then, by 3. above, $\Gamma \vdash \neg \varphi$. So $\mathbb{N} \models \neg \varphi$ by soundness. So $\mathbb{N} \not\models \varphi$.

So $\exists y T(e, n, y) \Leftrightarrow \Gamma \vdash \exists y \tilde{T}(\tilde{e}, \tilde{n}, \tilde{y})$. Define g(e, n) by

$$g(e,n) = \mu_i[\operatorname{Proof}(\Gamma,j) \wedge ((\operatorname{proj}(j,\ln(j)) = \lceil \exists y \tilde{T}(\tilde{e},\tilde{n},y) \rceil \vee \operatorname{proj}(j,\ln(j)) = \lceil \neg \exists y \tilde{T}(\tilde{e},\tilde{n},x) \rceil))]$$

So define f(e, n) by

$$f(e,n) = \begin{cases} 1 & \text{if } \operatorname{proj}(g(e,n), \ln(g(e,n)) = \lceil \exists y \tilde{T}(\tilde{e}, \tilde{n}, y) \rceil, \\)0 & \text{else} \end{cases}$$

But this solves the halting problem recursively for a contradiction.

Lemma 2.2. There is a primitive recursive function s(f,x) such that if $f = \lceil \varphi(v_0) \rceil$ and x is a number,

$$s(f,x) = \lceil \exists v_0 [(v_0 = \tilde{x}) \land \varphi(v_0)] \rceil$$

Note that $\exists v_0[(v_0 = \tilde{x}) \land \varphi(v_0)] \equiv \varphi(\tilde{x})].$

Proof. Define $\operatorname{num}(x) \colon \mathbb{N} \to \mathbb{N}$ such that $\operatorname{num}(0) = \lceil 0 \rceil$ and $\operatorname{num}(n+1) = \operatorname{num}(n) * \lceil +1 \rceil$. So $\operatorname{num}(n) = \lceil \tilde{n} \rceil$. Then

$$s(f,x) = \begin{cases} 0 & \text{if } \neg \text{Formula}(f) \lor \neg \text{Free}(y,v_0) \lor \exists i < f[(i \neq \lceil v_0 \rceil) \land \text{Free}(f,i)] \\ \lceil \exists v_0(v_0 = \rceil * \text{num}(x) * \lceil \land \rceil * f * \lceil) \rceil & \text{else} \end{cases}$$

Let

 $\operatorname{Truth}_{\mathbb{N}}(x) \Leftrightarrow x \text{ is the code of a sentence } \varphi \text{ and is true}$

Theorem 2.3. (Tarski) Truth_N(x) is not arithmetical.

Proof. Suppose not. Define $R(s) \Leftrightarrow \exists w[S(s,s) = w \land \neg \text{Truth}_{\mathbb{N}}(w)]$. Let e be the code of \tilde{R} . Then

$$s(e,e) = \exists w(S(\tilde{e},\tilde{e}) = w \land \neg \text{Truth}_{\mathbb{N}}(w))$$

So

$$\mathbb{N} \models \exists w [\tilde{S}(\tilde{e}, \tilde{e}) = w \land \neg \widetilde{\mathrm{Truth}_{\mathbb{N}}(w)}]$$

$$\Leftrightarrow \mathbb{N} \models \neg \mathrm{Truth}_{\mathbb{N}}(\widetilde{S(e, e)})$$

$$\Leftrightarrow \mathbb{N} \neg \models \exists w [(\tilde{S}(\tilde{e}, \tilde{e}) = w) \land \neg \mathrm{Truth}_{\mathbb{N}}(w)]$$

For a contradiction.

2.2 The Gödel-Rosser Incompleteness Theorem

Our first proof of the incompleteness theorem involved the requirement $\mathbb{N} \models \Gamma$, i.e. Gödel assumed ω -consistency. Some problems with this:

- 1. $\mathbb{N} \models \varphi$ is very complicated, and it is not arithmetical per Tarski, so it's not recursive.
- 2. What about theories when $\mathbb{N} \not\models \Gamma$? For example, suppose $\mathbb{N} \models \Gamma$. We apply the incompleteness theorem to find a φ such that $\Gamma \not\vdash \varphi$ and $\Gamma \not\vdash \neg \varphi$. This implies that $\Gamma \cup \{\varphi\}$ and $\Gamma \cup \{\neg \varphi\}$ are consistent. Can $\Gamma \cup \{\neg \varphi\}$ be complete? If so, that'd be weird.

Note that we needed $\mathbb{N} \models \Gamma$ for 2 things:

- 1. Γ 's consistency,
- 2. Ensuring pr predicates get coded.

We're allowed 1. since it's what we're interested in assuming, but 2. is harder.

Definition 2.1. A formula $\varphi(x_1,\ldots,x_n)$ numeralwise represents a relation $R(x_1,\ldots,x_n)$ in a theory T if

$$R(n_1, \dots, n_n) \implies T \vdash \varphi(\tilde{n_1}, \dots, \tilde{n_n})$$

$$\neg R(n_1, \dots, n_n) \implies T \vdash \neg \varphi(\tilde{n_1}, \dots, \tilde{n_n})$$

A formula $\varphi(x_1,\ldots,x_n,y)$ numeralwise represents a function $f:\mathbb{N}^n\to\mathbb{N}$ if

$$f(n_1, \ldots, n_n) = m \implies (T \vdash \varphi(\tilde{n_1}, \ldots, \tilde{n_n}) = m) \land (T \vdash \forall x (\varphi(\tilde{n_1}, \ldots, \tilde{n_n}) \to x = \tilde{m}))$$

Usually T can't prove $\forall x_1, \ldots, x_n, y, y(\varphi(x_1, \ldots, x_n, y) \land \varphi(x_1, \ldots, x_n, y') \rightarrow y' = y)$. This is an advantage of numeralwise representability; we can prove this for specific not quantified values.

Definition 2.2. We say T understands < If

- 1. If i < j, then $T \vdash \tilde{i} < \tilde{j}$
- 2. For any $a, T \vdash \forall x (x < \tilde{a} \rightarrow x = 0 \lor x = 1 \lor \cdots \lor x = a 1)$
- 3. For any $a, T \vdash \forall x (x \leq \tilde{a} \text{ or } \tilde{a} \leq x)$

Definition 2.3. We say T is adequate if

- 1. T numeralwise represents all recursive functions
- 2. T understands <

Note that if T is adequate and $T \subseteq T'$, then T' is adequate.

Definition 2.4. We say a set A is Σ_1 if it is semirecursive. In other words, for some recursive P, we have $x \in A \Leftrightarrow \exists y P(x,y)$

Lemma 2.4. Let T be adequate. Let A, B be disjoint Σ_1 sets. Then there is a formula $\varphi(v)$ such that

- 1. $x \in A \Rightarrow T \vdash \varphi(\tilde{x})$
- 2. $x \in B \Rightarrow T \vdash \neg \varphi(\tilde{x})$

Proof. Let $x \in A \Leftrightarrow \exists y P(x,y)$ and $x \in B \Leftrightarrow \exists y Q(x,y)$ since A,B are semirecursive. Let $\widetilde{P},\widetilde{Q}$ numeralwise represent P,Q in T. We define

$$\varphi(v) \equiv \exists y [\widetilde{P}(v, y) \land \forall i (i < y \to \neg \widetilde{P}(v, i) \land \neg \widetilde{Q}(v, i))]$$

1. If $x \in A$, then $\exists y P(x, y)$. Let y_0 be the least such y. Then we know

$$T \vdash \widetilde{P}(\widetilde{x}, \widetilde{y_0}), T \vdash \neg \widetilde{Q}(\widetilde{x}, \widetilde{y_0})$$

$$\forall i < y_0, T \vdash \neg \widetilde{P}(\widetilde{x}, \widetilde{i}) \land \neg \widetilde{Q}(\widetilde{x}, \widetilde{i})$$

By T understands <, then

$$T \vdash \forall i (i < \tilde{y_0} \rightarrow \neg \tilde{P}(\tilde{x}, i) \land \neg \tilde{Q}(\tilde{x}, i))$$

Hence, $T \vdash \varphi(\tilde{x})$ as desired.

2. If $x \in B$, then $\exists y Q(x,y)$. Let y_0 be the least such y. Then

$$\forall i < y_0[T \vdash \neg \widetilde{P}(\widetilde{y}, \widetilde{i})]$$
 by numrep
$$\Rightarrow T \vdash \forall i (i \leq \widetilde{y_0} \rightarrow \neg P(\widetilde{x}, i))$$
 by understands <

Next,

$$T \vdash \widetilde{Q}(\tilde{x}, \tilde{y_0}) \qquad \qquad \text{by numrep}$$

$$\Rightarrow T \vdash (\tilde{y_0} < i \rightarrow \neg \forall j < i(\neg P(\tilde{x}, j) \land \neg Q(\tilde{x}, i))) \qquad \qquad \text{by logic}$$

Finally,

$$T \vdash \forall i (i \leq \tilde{y_0} \lor i \geq \tilde{y_0})$$
 by understands
$$\Rightarrow T \vdash \neg \varphi(\tilde{x})$$
 by logic

Lemma 2.5. Let T be recursive and complete. Then $A = \{ \lceil \varphi \rceil \mid T \vdash \varphi \}$ is recursive.

Proof. Case 1: T is inconsistent. This is trivial since T proves everything, so A is just every sentence.

Case 2: T is consistent. Then define $g: \mathbb{N} \to \mathbb{N}$ by

$$g(x) = \begin{cases} 0 & \text{if } \neg Sentence(x) \\ \mu_y[Proof_T(x,y) \vee Proof_T(2^2 \cdot x,y)] & \text{else} \end{cases}$$

Then $x \in A \Leftrightarrow Sentence(x) \land x = \operatorname{Proj}(g(x), \operatorname{len}(g(x)))$. Essentially, we're checking whether the code of the last line of the proof is x.

Lemma 2.6. Let T be recursive and adequate. Then A is not recursive.

Proof. Let A, B be recursively inseperable Σ_1 sets. Let $\varphi(v)$ be as in the proof of Lemma 2.4. Suppose $C = \{\varphi \mid T \vdash \varphi\}$ is recursive. Then $C' = \{x \mid T \vdash \varphi(\tilde{x})\}$ is also recursive, which contradicts the assumption that A, B are recursively inseperable.

Theorem 2.7. (Gödel -Rosser 1) Let T be recursive and adequate. Then T is incomplete.

Proof. By the last 2 lemmas. \Box

2.3 Diagonalization

Lemma 2.8 (Diagonalization lemma). Let T be adequate. Then for any formula $\varphi(v_0)$, there is a sentence G such that $T \vdash G \leftrightarrow \varphi(|\widetilde{G}|)$

Remark. If we can find an adequate and true T, then we get $\mathbb{N} \models G \leftrightarrow \varphi(\widetilde{[G]})$

Proof. Recall that we have a pr function S(f,x) such that if f is the code of $\varphi(v_0)$, then

$$S(f,x) = [\exists v_0(v_0 = \tilde{x} \land \varphi(v_0))]$$

Given this, we define

$$D(x) = S(x, x)$$

Which is to say substitution, D for diagonalization. So for any $\varphi(v_0)$,

$$D([\varphi(v_0)]) = [\exists v_0(v_0 = \widetilde{\varphi(v_0)}] \land \varphi(v_0))]$$

Let $\varphi(v_0)$ be arbitrary. We let

$$\varphi^d = \exists y (\tilde{D}(v_0, y) \land \varphi(y))$$

Let $n_0 = [\varphi^d]$. Then let G be

$$\exists v_0(v_0 = \tilde{n_0} \land \exists y (\tilde{D}(v_0, y) \land \varphi(y)))$$

Notice that

- 1. G is a sentence.
- 2. Since $n_0 = [\varphi^d]$, $[G] = S(n_0, n_0) = D(n_0)$. I.e., G is the diagonalization of φ^d .
- 3. $G \leftrightarrow \exists y (\widetilde{D}(\widetilde{n_0}, y) \land \varphi(y))$

Now, let $n_1 = [G]$. So $n_1 = D(n_0)$. Since T numeralwise represents all recursive functions,

$$T \vdash \forall y (\widetilde{D}(\widetilde{n_0}, y) \leftrightarrow y = \widetilde{n_1})$$

This means

$$T \vdash G \leftrightarrow \exists y (D(n_0, y) \land \varphi(y))$$

by 3. and logic, which implies

$$T \vdash G \leftrightarrow \varphi(\widetilde{n_1})$$

$$\implies T \vdash G \leftrightarrow \varphi(\widetilde{[G]})$$

Theorem 2.9 (first incompleteness theorem).

Proof. Suppose T is true and adequate. Then, let $Proof_T(x,y)$ hold if x is the code of a formula and y is the code of a proof of that formula. Note that this implies this is pr. So by diagonalization, we can find some G such that

$$T \vdash G \leftrightarrow \neg \exists y (\widetilde{Proof}_T([\tilde{G}], y))$$

So, suppose $T \vdash G$. Then, for m the code of the relevant proof, $T \vdash \widetilde{Proof}_T([\tilde{G}], n)$. So,

$$T \vdash \exists y \widetilde{Proof}_T([\tilde{G}], y)$$

But, by $T \vdash G$ and above,

$$T \vdash \neg \exists y (\widetilde{Proof}_T([\tilde{G}], y))$$

By contradiction, $T \not\vdash G$. But, since T is sound, $T \not\vdash \neg G$ because $\neg G$ is true. So T is incomplete. \square

Theorem 2.10 (Tarski's undefinability of truth).

Proof. Suppose there is a formula $\varphi(v_0)$ such that

$$\mathbb{N} \models \chi \leftrightarrow \mathbb{N} \models \varphi(\widetilde{[\chi]})$$

for any χ . Then, diagonalize on $\neg \varphi(v_0)$. We get

$$G \leftrightarrow \neg \varphi([\widetilde{G}])$$

for a contradiction. So there is no such $\varphi(v_0)$.

Lemma 2.11. Let T be consistent and adquate. Then we have that $A = \{ [\varphi] \mid T \vdash \varphi \}$ is not numeralwise representable in T.

Proof. Suppose \tilde{A} defines A in T. Using diagonalization, we get a sentence G such that

$$T \vdash G \leftrightarrow \neg \tilde{A}([G])$$

Let $n_1 = [G]$. Then,

$$\begin{split} T \vdash G \implies T \vdash \neg \tilde{A}([G]) \\ \implies T \not\vdash G \end{split}$$

by numeralwise representability. Similarly,

$$T \not\vdash G \implies n_1 \notin A$$

 $\implies T \vdash \neg \tilde{A}(n_1)$
 $\implies T \vdash G$

For a contradiction in either case.

Corollary 2.12. Any T that is recursive, consistent, and adequate is incomplete.

Proof. T recursive and consistent means $\{[\varphi] \mid T \vdash \varphi\}$ by an old lemma, so T being recursive, complete, and adequate implies

$$\{[\varphi] \mid T \vdash \varphi\}$$

is numeralwise representable in T by adequateness implying numeralwise representability. By the last lemma, T being recursive, complete, and adequate implies T is inconsistent.

2.4 Gödel's original paper

This was originally a "by hand" diagonalization of $\neg \exists y Proof_T(x, y)$.

- 1. The T in question was not a modern system but a variant of the system in Russell & Whitehead's Principia.
- 2. Gödel knew how to prove, in our terms, that $T \not\vdash G$ although G is true. He did not know how to get $T \not\vdash \neg G$ without using $\mathbb{N} \models T$. What he assumed was ω -consistency.

Definition 2.5. We say T is ω -consistent if there is no formula φ such that

$$T \vdash \neg \varphi(1), T \vdash \neg \varphi(2), \dots$$

But $T \vdash \exists x \varphi(x)$ (T doesn't know that 1, 2, etc are the only natural numbers).

What Gödel proved is that if Principa (PM) is ω -consistent, then PM $\not\vdash \neg G$. Rosser's original proof was concerned with:

- 1. Can we get rid of all uses of $\mathbb{N} \models T$ (replace with consistent, adequate, etc.)?
- 2. Can we get a G such that $T \not\vdash G$ and $T \not\vdash \neg G$ without invoking ω -consistency?

This involved using a slightly different sentence from Gödel.

$$\Psi(v_0) \equiv \forall z (\exists y (S(v_0, v_0, y) \land Proof(y, z) \rightarrow \exists z' < z (\exists y, y' (S(v_0, v_0, y) \land (y' = [\neg] * y) \land Proof(y', z')))))$$

Informally, "if you can prove me, then there is a shorter proof of my negation".

Example. Some examples of things that are adequate, consistent, etc. The basic system (B).

1.

$$\forall x(x+1 \neq 0)$$
$$\forall x \forall y(x+1 = y+1 \rightarrow x = y)$$

2.

$$\forall x(x+0=x)$$
$$\forall x\forall y(x+(y+1)=(x+y)+1)$$

3.

$$\forall x(x \cdot 0 = 0)$$
$$\forall x \forall y(x \cdot (y+1) = x \cdot +1)$$

Robinson's system (R_0) . If B is the set of axioms in the basic system,

$$R_0 = B \cup \forall x (x = 0 \lor \exists y (y + 1 = x))$$

Basically, natural numbers don't start at different places.

Peano arithmetic (PA).

$$PA = R_0 \cup \{\varphi(0,\bar{y}) \land \forall x(\varphi(x,\bar{y}) \rightarrow \varphi(x+1,\bar{y})) \rightarrow \forall x\varphi(x,\bar{x}) \mid y \in \mathcal{L}\}$$

3 The Arithmetic Hierarchy