The Econometrics of DSGE Models

Giuseppe Ragusa Luiss University

EIEF

Lecture 5: Estimate state space models

April 24, 2015

Warning: package 'FKF' was built under R version 3.1.2
Warning: package 'RUnit' was built under R version
3.1.2
Warning: package 'MCMCpack' was built under R version
3.1.2

Warning: package 'coda' was built under R version 3.1.3
Warning: package 'MASS' was built under R version 3.1.2

Likelihood approach

Recall the steps to obtaining a state space representation a DSGE model

- Obtain first order conditions of the model
- (log) linearize the system of equation, to obtain

$$\Gamma_0(\theta)E[x_{t+1}] = \Gamma_1(\theta)x_t + C + \Psi(\theta)z_t$$

Solve the linear rational expectation system, to obtain

$$x_{t+1} = G_0(\theta) + G(\theta)x_t + M(\theta)\varepsilon_{t+1}$$

Measurement equation (linking data to model variables)

$$\underbrace{y_t}_{\text{observables}} = H(\theta)x_t\underbrace{(+m(\theta)\eta_t)}_{\text{meas. error}}$$

Likelihood approach

Recall the steps to obtaining a state space representation a DSGE model

- Obtain first order conditions of the model
- (log) linearize the system of equation, to obtain

$$\Gamma_0(\theta)E[x_{t+1}] = \Gamma_1(\theta)x_t + C + \Psi(\theta)z_t$$

Solve the linear rational expectation system, to obtain

$$x_{t+1} = G_0(\theta) + G(\theta)x_t + M(\theta)\varepsilon_{t+1}$$

Measurement equation (linking data to model variables)

$$\underbrace{y_t}_{\text{observables}} = H(\theta) x_t \underbrace{(+m(\theta)\eta_t)}_{\text{meas. error}}$$

observation equation

Likelihood approach

Recall the steps to obtaining a state space representation a DSGE model

- Obtain first order conditions of the model
- (log) linearize the system of equation, to obtain

$$\Gamma_0(\theta)E[x_{t+1}] = \Gamma_1(\theta)x_t + C + \Psi(\theta)z_t$$

Solve the linear rational expectation system, to obtain

$$x_{t+1} = G_0(\theta) + G(\theta)x_t + M(\theta)\varepsilon_{t+1}$$

Measurement equation (linking data to model variables)

$$\underbrace{y_t}_{\text{observables}} = H(\theta)x_t\underbrace{(+m(\theta)\eta_t)}_{\text{meas. error}}$$

observation equation

Likelihood approach

Recall the steps to obtaining a state space representation a DSGE model

- Obtain first order conditions of the model
- (log) linearize the system of equation, to obtain

$$\Gamma_0(\theta)E[x_{t+1}] = \Gamma_1(\theta)x_t + C + \Psi(\theta)z_t$$

Solve the linear rational expectation system, to obtain

$$x_{t+1} = G_0(\theta) + G(\theta)x_t + M(\theta)\varepsilon_{t+1}$$

Measurement equation (linking data to model variables)

$$\underbrace{y_t}_{\text{observables}} = H(\theta)x_t\underbrace{(+m(\theta)\eta_t)}_{\text{meas. error}}$$

State-space model

Consider a simplified version of the SS:

$$x_{t+1} = g_0 + g_1 x_t + m_1 \varepsilon_{t+1}, \quad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

 $y_t = h_0 + h_1 x_t + \eta_t, \quad \eta_t \sim N(0, \sigma_{\eta}^2)$

The objective is to estimate

$$\theta = \{g_0, g_1, m_1, \sigma_{\varepsilon}, h_0, h_1, \sigma_{\eta}\}$$

from a realization of the observable $\{y\}_{t=1}^{T}$. This can be done in 3 steps:

- Apply the Kalman's filter
- 2 Calculate the likelihood functions
- 3 Apply a MCMC algorithm

Data

Data generation process

The data are generated with

$$g_0 = 0$$

 $g_1 = 1$
 $m_1 = 1$
 $\sigma_{\varepsilon} = 0.2$
 $h_0 = 0$
 $h_1 = 1$
 $\sigma_{\eta} = 0.3$

and

$$y_0 = 0, \quad x_0 = 0$$

Data

Plot generated data

Kalman's filter

- We start by applying the Kalman filter for a given value of the parameter vector
- We start the algorithm at the lung run values

$$x_0 = 0$$
, $\sigma_0^2 = \frac{1}{1 - \rho^2} \sigma_{\varepsilon}^2$

• The output of the Kalman's filter is

$$\{x_{t|t}\}_{t=1}^T$$
, $\{x_{t+1|t}\}_{t=1}^T$, $\log L(\theta)$


```
function [loglik, filt, Ptt, pred, Pt] = kf_{matlab}(x0, s0, g0, g1 \leftarrow
    , m1, sigmae, h0, h1, sigmaeta, y)
    T = size(v,1);
    \% \times_{\{t \mid t\}}
    filt = zeros((T+1),1);
    Ptt = zeros((T+1),0);
    Ptt(1,1) = s0;
    pred = zeros((T+1),1);
    Pt = zeros((T+1),0);
    for j=1:T
        % Predictions step
        pred(j,1) = g0+g1*filt(j,1);
        Pt(j,1) = g1*Ptt(j,1)*g1+m1^2*sigmae^2;
        % Updating step
        K = Pt(j,1)*h1*(h1^2*Pt(j,1)+sigmaeta^2)^(-1);
        filt(j+1,1) = pred(j,1) + K*(y(j,1)-h0-h1*pred(j,1));
        Ptt(j+1,1) = Pt(j,1) - K*(h1*Pt(j,1));
    end:
    mu = h0+h1*pred;
    sd = h1*Pt*h1+sigmaeta^2;
    lik = -T*log(2*pi)/2+sum(-log(sd(1:T))/2-(y-mu(1:T)).^2./(2*\leftarrow)
        sd(1:T)));
```

```
function [chain] = kf_mcmc(sim, y)
% fix m1, h0, h1
% to be estimated g0, g1, sigmae,
par0 = [0 log(.8/(1-.8)) log(0.2)];
[theta_s, FVAL, EXITFLAG, OUTPUT, GRAD, HESSIAN] = fminunc(@(x)-post(x \leftarrow
    , y), par0);
Sigma = inv(HESSIAN);
gamma_s = post(theta_s, y);
for s=1:sim
    % Draw candidate
    theta_star = mvnrnd(theta_s', Sigma);
    % Construct gamma(theta*)
    gamma_star = post(theta_star, y);
    % Construct r
    r = min(exp(gamma_star-gamma_s), 1);
    % Draw U
    U = rand(1);
    if (U<=r)
        theta_s = theta_star;
    end
    chain(s,:) = theta_s;
end
```

```
function [post] = post(par, y)
    x0 = 0;
    rho = exp(par(2))/(1+exp(par(2)));
    sigmae = exp(par(3));
    s0 = sigmae^2/(1-rho^2);

% likelihood
    lLik = kf_matlab(x0, s0, par(1), rho, 1, sigmae^2, 0, 1, \( \to \)
        0.3, y);

% prior
    post = lLik + log(normpdf(par(1), 0, 10)) + log(betapdf(rho, \( \to \)
        5, 1.4)) + gampdf(sigmae^2, 1, 3);
```

Maximum Likelihood

```
## $par
  [1] 0.002221787 1.910342870 -1.597764676
## $value
  [1] 119.8667
##
## $counts
## function gradient
##
        24 24
##
## $convergence
  [1] 0
##
  $message
   [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
           g0 g1
                              sigmae
## 0.002221787 0.871057663 0.202348327
```

MCMC

0.00

-0.04

Trace of g0

Iterations

Fit

