LAWS:

- 1. Commutative: A+B = B+A, AB = BA
- 2. Associative: A+(B+c) = (A+B)+c, A(Bc) = (AB)c
- 3. Distributive: A. (B+C) = (AB) + (AC)A+ $(BC) = (A+B) \cdot (A+C)$
- 4. Idempotent: A+A+A+....+A = A
- S. Identity: $A \cdot A \cdot A \cdot A \cdot A \cdot A \cdot A = A$
- 5. Identity: 1-A=A, O+A=A 6. Null: 0.A=O, 1+A=1
- 7. Inverse: $A \cdot A = 0$, A + A = 1
- 8. Absorption: $A \cdot (A+B) = A$ A + (AB) = A A + AB = A+B Rodundancy law $A \cdot (A+B) = AB$
- 9. Double Complement: $\overline{A} = A$, $\overline{AB} = AB$, $\overline{A+B} = A+B$

* A+ AB = A+B

(4+4) (4+8)

1. (4+B)

 $A \cdot (\bar{4} + 8) = 4B$

A+B

4A + 4B

0+48

48

10. De-Morgan Theoram: $\overline{AB} = \overline{A+B}$ $\overline{A+B} = \overline{A+B}$

Assorption law: (Proofs)

- = A + AB = A
 - A+4B => 4.1 + 4B
 - A · (1+B)
 - 4.1
 - A
- - A (4+B)
 - AA + AB
 - A+4B
 - $4 \cdot (1+B)$
 - 4-1
 - A
- $A+B+\bar{A}+\bar{B}$ Associative $(A+A)+(B+\bar{B})$ (A+A)+(B+B)
- (1) ABC + \overline{ABC} + \overline{ABC} + \overline{ABC} BC (A+ \overline{A}) + \overline{A} (\overline{BC} + \overline{BC}) Inverse BC + \overline{A} (\overline{BC} + \overline{BC}) Identify BC + \overline{A} (\overline{BC} + \overline{BC}).
 - ABC + ABC + ABC + ABC Associative

 ABC + (ABC + ABC + ABC) Distributive

 (ABC + ABC) + (ABC + ABC) + (ABC + ABC) Distributive

 BC (A+A) + AC (B+B) + AB (C+C) Invest (Null

 BC + AC+AB
- Q3. $\overrightarrow{A}A + \overrightarrow{A}B + AB + BB + AAA + AAB$ Invested

 O + $\overrightarrow{A}B + AB + O + AAA + AAB$ Indentity $\overrightarrow{A}B + AB + AAA + AAB$ Indentity $\overrightarrow{A}B + AB + AAA + AAB$ Indentity $\overrightarrow{A}B + AB + A + AB$ B. $(\overrightarrow{A} + A) + A \cdot (\cancel{I} + B)$ => B. $I + A \cdot I$ indentity law

 Tower

 Null B+A Commutative $\overrightarrow{A} + B$

Homework:

- 0) O/N 1B, P32, Q3 (9608) ABC+ ABC+ ABC
- Θ M/J 19, P33, Q3(c) 9608

 ABED+ ABED+ ABCD+ ABCD+ ABCD