EE330 Lab 10 Section 5, 8:00 am

Discrete Semiconductor Amplifiers

Sean Gordon Sgordon4

Part 1: BJT Parameter Extraction

Small signal parameters given for PN2222 transistor at $I_c = 1.0$ mAdc, $V_{ce} = 10$ Vdc:

$$\beta = 50 \Leftrightarrow 300$$

$$g_{\pi} = 2.0 \text{ k}\Omega$$

$$g_0 = 5.0 \text{ uMhos}$$

$$g_0 = 5.0 \text{ uMhos}$$
 $g_m = 50*2 = 100$

Early voltage measured from parameter analyzer:

$$V_{AF} = -185.195$$

Circuit Calculations:

With β = 195, I_B must be small for I_C = 1 mA \Rightarrow I_B = 1 mA / 195 = 5.13 uA

Then, $R_1 = (10+5-.6) \text{ V} / 5,13 \text{ uA} = 2.8 \text{ m}\Omega$

(Will be using 2 x 1 m Ω , 680 k Ω , 150 k Ω in series to build resistor

Picking $V_0 = 3.3V$, then $R_F = 3.3 \text{ k}\Omega$

Circuit Measurements:

 $R_1 = 1.974 \text{ m}\Omega$

 $I_{c} = V_{o}/R_{F} = 3.284 \text{ V} / 3.3 \text{k} = .995 \text{ mA}$

 $I_{R} = 10 \text{ V} / R_{1} = 5.167 \text{ uA}$

Calculated Parameters:

β calculated using parameter analyzer measurements:

 $\beta = 1.95 \text{ mA} / 10 \text{ uA} = 195$

 $g_m = I_C/V_T = .995 \text{ mA} / .026 \text{ V} = 38 \text{ m}$

 $g_{\pi} = g_{m}/\beta = 1.58 / 195 = 196 \text{ m}$

 $g_0 = I_C/V_A = 5.37 \text{ uMhos}$

Comparisons:

 β , at 195, is nicely within the given range (50 - 300).

 g_0 , at 5.37 uMhos is also fairly close to the given 5.0 uMhos

 $g_{\rm m}$ however, at 38 m, is nowhere near the calculated 100

 g_{π} , dependant on g_{m} , is also very far: 196 m \Leftrightarrow 2 k

. . .

Index		Ibase	Vcollector	Icollector	Isubs	Vbase
	90	10.0000 uA	4.4500 V	1.94556 mA	15.847 pA	647.384 mV
	91	10.0000 uA	4.5000 V	1.94588 mA	-23.921 pA	647.372 mV
	92	10.0000 uA	4.5500 V	1.94648 mA	-6.822 pA	647.358 mV
	93	10.0000 uA	4.6000 V	1.94690 mA	-10.184 pA	647.338 mV
	94	10.0000 uA	4.6500 V	1.94728 mA	-159.033 pA	647.330 mV
	95	10.0000 uA	4.7000 V	1.94757 mA	-134.405 pA	647.332 mV
	96	10.0000 uA	4.7500 V	1.94772 mA	-76.274 pA	647.330 mV
	97	10.0000 uA	4.8000 V	1.94786 mA	-61.090 pA	647.350 mV
	98	10.0000 uA	4.8500 V	1.94816 mA	-35.755 pA	647.358 mV
	99	10.0000 uA	4.9000 V	1.94838 mA	-23.902 pA	647.368 mV
	100	10.0000 uA	4.9500 V	1.94864 mA	-19.156 pA	647.370 mV
	101	10.0000 uA	5.0000 V	1.94883 mA	-18.744 pA	647.384 mV
	102	12.000 uA	0 V	-11.9271 uA	-20.149 pA	529.210 mV
	103	12.000 uA	50.0 mV	100.2326 uA	-14.291 pA	578.024 mV
	104	12.000 uA	100.0 mV	642.547 uA	-8.421 pA	620.170 mV
	105	12.000 uA	150.0 mV	1.66775 mA	-6.270 pA	644.526 mV
	106	12.000 uA	200.0 mV	2.17465 mA	-5.593 pA	651.544 mV
	107	12.000 uA	250.0 mV	2.27715 mA	-6.125 pA	652.784 mV
	108	12.000 uA	300.0 mV	2.29375 mA	-4.495 pA	652.982 mV
	109	12.000 uA	350.0 mV	2.29720 mA	-3.436 pA	653.024 mV
	110	12.000 uA	400.0 mV	2.29855 mA	-3.928 pA	653.052 mV
	111	12.000 uA	450.0 mV	2.29962 mA	-3.233 pA	653.060 mV
	112	12.000 uA	500.0 mV	2.30052 mA	-3.393 pA	653.074 mV
	113	12.000 uA	550.0 mV	2.30141 mA	-1.523 pA	653.088 mV

Section of output from the parameter analyzer

Part 2: Boolean Signal Circuit

$$V_{DD} = 10V$$

$$V_{D$$

Part 3: Wireless Optical Link

The audio signal will be transmitted using a photodiode, and the received signal will be amplified using an LM324 op-amp, then directed to the speaker:

The output would then be hooked up to a unity gain amplifier. $R_{\scriptscriptstyle T}$ was set to 1k ~arbitrarily so the diode didn't burn out.