







Verify(

## Digital Signatures





























Verify(









## Security

## Efficiency

# k bits of (multi-user) security

#### preprocessing attacks

### efficient signing/ verification

 The vast majority of real-world crypto systems use one of a handful of groups Adversary with nation-state level resources might spend a lot of time precomputing hints to help break protocols/ solve hard problems using these building blocks





. . .

### **Auxiliary-Input Model**

 $\triangleright$  Offline attacker  $\mathcal{A}_{\mathsf{pre}}$  is unbounded and outputs an S-bit hint for online attacker  $\mathcal{A}_{\mathsf{on}}$ 

 $\triangleright \ \mathcal{A}_{\mathsf{on}}$  will try to win security games using the hint



# of a handful of groups

# a lot of time precomputing hints to help break protocols/

Adversary with nation-state level resources might spend

# solve hard problems using these building blocks

The vast majority of real-world crypto systems use one

# **Short Signature Schemes:**

### iO-based

### **Short Schnorr**

### 

### **RSA-FDH**

### **Schnorr**

# k bits of (multi-user) security

preprocessing attacks

## efficient signing/ verification

short signatures