CS 577 - Graphs

Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

Spring 2023

TopHat Section 001 Join Code: 020205 TopHat Section 002 Join Code: 394523

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

• Complete graph (K₄)

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K₄)
- Cycle (C_4)

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K₄)
- Cycle (C_4)
- Path (P₄)

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K₄)
- Cycle (*C*₄)
- Path (P_4)
- Trees

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (P_4)
- Trees

Digraph

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite

Graphs

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite
- Forests

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the *root* of the tree.
- Any node with degree 1 that is not the root is a *leaf*.

TREES

Definition

- A connected graph without cycles.
- A single node may be designated as the *root* of the tree.
- Any node with degree 1 that is not the root is a *leaf*.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) T has at least 2 leaves.
- For all nodes u and v, there exists one path between them in T.
- **3** |V| = |E| + 1 for $|V| \ge 1$.

TREES

Definition

- A connected graph without cycles.
- A single node may be designated as the *root* of the tree.
- Any node with degree 1 that is not the root is a *leaf*.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) T has at least 2 leaves.
- For all nodes *u* and *v*, there exists one path between them in *T*.
- **3** |V| = |E| + 1 for $|V| \ge 1$.

TopHat 1

Is P_{10} a tree?

What can be represented by graphs?

- Transportation networks
- Communication networks
- Information networks
- Social networks
- Dependency networks

Connectivity

GRAPH CONNECTIVITY

Problem: *s-t* connectivity

Given a graph G = (V, E), and the vertices s and t, is there a path from s to t in G?

GRAPH CONNECTIVITY

Problem: *s-t* connectivity

Given a graph G = (V, E), and the vertices s and t, is there a path from s to t in G?

Connected Graph

If all $(u, v) \in V \times V$ are connected, then G is connected.

GRAPH CONNECTIVITY

Problem: *s-t* connectivity

Given a graph G = (V, E), and the vertices s and t, is there a path from s to t in G?

Connected Graph

If all $(u, v) \in V \times V$ are connected, then G is connected.

Connected Components

Let $H \subset G$ be a subgraph of G. If H is connected and there are no edges between H and $G \setminus H$. Then, H is a connected component of G.

GRAPH EXPLORATION/TRAVERSAL

Determining *s-t* Connectivity

Requires an algorithm that explores or traverses the graph by considering the edges of the graph to find all nodes connected to s.

GRAPH EXPLORATION/TRAVERSAL

Determining *s-t* Connectivity

Requires an algorithm that explores or traverses the graph by considering the edges of the graph to find all nodes connected to *s*.

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v to R
end
return R
```

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

Representations

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

Space Find (u, v) List of neighbours

Adjacency matrix Adjacency list Edge list Incidence matrix

Representations

Incidence matrix

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

Space Find (u,v) List of neighbours Adjacency matrix $O(|V|^2)$ Adjacency list Edge list

Representations

Incidence matrix

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	
Adjacency list			
Edge list			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	., .,		
Edge list			
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$		
Edge list			
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	
Edge list			
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	$\overline{\text{Find }}(u,v)$	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list			
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list	O(E + V)		
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list	O(E + V)	O(E)	
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix			

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix	O(V E)		

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix	O(V E)	O(E)	

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- **Edge list**: List of all node pairs representing the edges (plus list of nodes).
- **Incidence matrix**: |V| by |E| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	O(1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix	O(V E)	O(E)	O(V E)

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v to R
end
return R
```

TopHat 2

Which graph representation would be best suited?

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v to R
end
return R
```

Rough Running Time

• At step *i*: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming *R* is a self-balancing BST.

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v to R
end
return R
```

Rough Running Time

- At step i: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming R is a self-balancing BST.
- At most |E| steps: $O(|E|^2 \log |V|)$

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
    Add v to R
end
return R
```

Rough Running Time

- At step i: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming R is a self-balancing BST.
- At most |E| steps: $O(|E|^2 \log |V|)$

What is this algorithm lacking?

Breadth-First Search (BFS)

Process

- Also referred to as graph flooding.
- Let L_i be all the neighbours at a distance i from s.
- Starting from i = 0, visit all the nodes (not previously visited) in L_i . Increment i and repeat.

Breadth-First Search (BFS)

Process

- Also referred to as graph flooding.
- Let L_i be all the neighbours at a distance i from s.
- Starting from i = 0, visit all the nodes (not previously visited) in L_i . Increment i and repeat.

TopHat 3: This process engenders a BFS tree. Start at 1 and draw such a tree for the following.

Depth-First Search (DFS)

Recursive Process starting at s

- Mark *s* as visited.
- For each $(s, u) \in E$ where u has not been visited, do DFS(u).

Depth-First Search (DFS)

Recursive Process starting at s

- Mark s as visited.
- For each $(s, u) \in E$ where u has not been visited, do DFS(u).

TopHat 4: This process engenders a DFS tree. Start at 1 and draw such a tree for the following.

TopHat 5

Which graph representation would be best for BFS and DFS?

TopHat 5

Which graph representation would be best for BFS and DFS? Why?

BFS Process

- Also referred to as graph flooding.
- Let L_i be all the neighbours at a distance i from s.
- Starting from i = 0, visit all the nodes (not previously visited) in L_i . Increment i and repeat.

DFS Recursive Process starting at *s*

- Mark s as visited.
- For each $(s, u) \in E$ where u has not been visited, do DFS(u).

```
Algorithm: BFS(S)
Initialize v[u] = false for all
 nodes
Set v[s] = \text{true}
Add s to tree T
Add s to queue Q
while Q is not empty do
    u = \text{dequeue}(Q)
    foreach neighbour r of u
     do
        if |v[r]| then
            Add (u, r) to T
            Set v[r] = \text{true}
            Enqueue v
        end
    end
end
return T
```

Implementing BFS and DFS

```
Algorithm: BFS(S)
Initialize v[u] = \text{false for all}
 nodes
Set v[s] = \text{true}
Add s to tree T
Add s to queue Q
while Q is not empty do
    u = \text{dequeue}(Q)
    foreach neighbour r of u
     do
        if |v[r]| then
            Add (u, r) to T
            Set v[r] = \text{true}
             Enqueue v
        end
    end
end
return T
```

```
Algorithm: DFS(S)
Initialize v[u] = \text{false and}
 p[u] = \text{null for all nodes}
Push s to stack S
while S is not empty do
    u = pop(S)
    if |v[u]| then
        Add (p[u], u) to T
        Set v[u] = \text{true}
        foreach neighbour r
         of u do
            Push r to stack S
            Set p[r] = u
        end
    end
end
return T
```

```
Algorithm: BFS(S)
Initialize v[u] = \text{false for all}
 nodes
Set v[s] = \text{true}
Add s to tree T
Add s to queue Q
while Q is not empty do
    u = \text{dequeue}(Q)
    foreach neighbour r of u
     do
        if |v[r]| then
            Add (u, r) to T
            Set v[r] = \text{true}
             Enqueue v
        end
    end
end
return T
```

```
Algorithm: DFS(S)
Initialize v[u] = \text{false and}
 p[u] = \text{null for all nodes}
Push s to stack S
while S is not empty do
    u = pop(S)
    if |v[u]| then
        Add (p[u], u) to T
        Set v[u] = \text{true}
        foreach neighbour r
         of u do
            Push r to stack S
            Set p[r] = u
        end
    end
end
return T
```

Runtime: O(|E| + |V|)

Strongly Connected Components

DIRECTED GRAPHS

Directed Graph

- In a directed graph, the edges have a direction and are often called *arcs*.
- I.e. (u, v) is different than (v, u).

Mutually Reachable

- A pair of nodes (u, v) in a directed graph are *mutually* reachable if there is a path from u to v, and from v to u.
- Note: This property is transitive: if (u, v) and (v, w) are both mutually reachable, then u, w is mutually reachable.

Mutually Reachable

- A pair of nodes (u, v) in a directed graph are *mutually* reachable if there is a path from u to v, and from v to u.
- Note: This property is transitive: if (u, v) and (v, w) are both mutually reachable, then u, w is mutually reachable.

Strongly Connected

A directed graph is *strongly connected* if, for every pair of nodes (u, v), u and v are mutually reachable.

Mutually Reachable

- A pair of nodes (u, v) in a directed graph are *mutually* reachable if there is a path from u to v, and from v to u.
- Note: This property is transitive: if (u, v) and (v, w) are both mutually reachable, then u, w is mutually reachable.

Testing for Mutually Reachable

How might we check if (u, v) is mutually reachable?

Mutually Reachable

- A pair of nodes (u, v) in a directed graph are *mutually* reachable if there is a path from u to v, and from v to u.
- Note: This property is transitive: if (u, v) and (v, w) are both mutually reachable, then u, w is mutually reachable.

Testing for Mutually Reachable

Check if DFS/BFS from u reach v, and DFS/BFS from v reaches u.

Mutually Reachable

- A pair of nodes (u, v) in a directed graph are *mutually* reachable if there is a path from u to v, and from v to u.
- Note: This property is transitive: if (u, v) and (v, w) are both mutually reachable, then u, w is mutually reachable.

Testing for Mutually Reachable

Check if DFS/BFS from u in G reaches v, and DFS/BFS from u in G^{REV} reaches v.

Strongly Connected Component (SCC)

A maximal strongly connected subgraph.

Strongly Connected Component (SCC)

A maximal strongly connected subgraph.

TopHat 6: How many SCC in *G*?

Strongly Connected Component (SCC)

A maximal strongly connected subgraph.

TopHat 6: How many SCC in G? 3

Problem

Find the SCCs in a digraph *G*.

Problem

Find the SCCs in a digraph G.

Kosaraju's Algorithm

- Populate a stack *S* with a DFS on *G*.
- **2** Build G^{REV} for G, and set all nodes to unvisited.
- **3** While *S* is not empty:
 - Pop node v from S.
 - **2** If v is unvisited, run DFS on G^{REV} from v to extract an SCC.

Problem

Find the SCCs in a digraph *G*.

Kosaraju's Algorithm

- Populate a stack *S* with a DFS on *G*.
- **2** Build G^{REV} for G, and set all nodes to unvisited.
- **3** While *S* is not empty:
 - Pop node v from S.
 - **2** If v is unvisited, run DFS on G^{REV} from v to extract an SCC.

TopHat 7: What is the time complexity of Kosaraju's Algorithm?

Problem

Find the SCCs in a digraph *G*.

Kosaraju's Algorithm

- Populate a stack *S* with a DFS on *G*.
- **2** Build G^{REV} for G, and set all nodes to unvisited.
- **3** While *S* is not empty:
 - Pop node v from S.
 - **2** If v is unvisited, run DFS on G^{REV} from v to extract an SCC.

TopHat 7: What is the time complexity of Kosaraju's Algorithm? O(|E| + |V|)

DIRECTED GRAPHS

Directed Graph

- In a directed graph, the edges have a direction and are often called *arcs*.
- I.e. (u, v) is different than (v, u).

DIRECTED GRAPHS

Directed Graph

- In a directed graph, the edges have a direction and are often called *arcs*.
- I.e. (u, v) is different than (v, u).

Directed Acyclic Graph (DAG)

- A directed graph with no directed cycles.
- Precedence relationships.

Getting dressed:

Definition

An ordering of the nodes of a DAG which respected the precedence relations.

Definition

An ordering of the nodes of a DAG which respected the precedence relations.

Getting dressed DAG:

Definition

An ordering of the nodes of a DAG which respected the precedence relations.

Getting dressed DAG:

Topological ordering:

DAGs and Topological Ordering

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

DAGs and Topological Ordering

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

DAGS AND TOPOLOGICAL ORDERING

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

DAGs and Topological Ordering

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

• By way of contradiction, assume all nodes in *G* have an incoming edge.

DAGS AND TOPOLOGICAL ORDERING

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

- By way of contradiction, assume all nodes in *G* have an incoming edge.
- Pick an arbitrary node u and follow the incoming node back to v. Since all nodes have an incoming edge, when can repeat this infinitely.

DAGs and Topological Ordering

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

- By way of contradiction, assume all nodes in G have an incoming edge.
- Pick an arbitrary node u and follow the incoming node back to v. Since all nodes have an incoming edge, when can repeat this infinitely.
- After visiting |V| + 1 nodes, by the Pigeon Hole principle, we have visited some node w twice \implies G contains a cycle.

DAGs and Topological Ordering

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

 The Key Property allows us to show that all DAGs have a topological ordering.

DAGS AND TOPOLOGICAL ORDERING

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

- The Key Property allows us to show that all DAGs have a topological ordering.
- Prove it by induction.

DAGs and Topological Ordering

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

- The Key Property allows us to show that all DAGs have a topological ordering.
- Prove it by induction.
- Does the inductive proof imply an algorithm to build a topological ordering from a DAG? If so, what is it?

Appendix Reference:

Appendix

Appendix References

REFERENCES

PPENDIX REFERENCES

IMAGE SOURCES I

WISCONSIN https://brand.wisc.edu/web/logos/