CSCE 465: Networking Basics

Instructor: Abner Mendoza

Roadmap

- Networking Basics
- Review Sniffing with PCAP
- Demo
- Start Malware (if time permits)

Protocols

- A protocol defines the rules for communication between computers
- Protocols are broadly classified as connectionless and connection oriented
- Connectionless protocol
 - Sends data out as soon as there is enough data to be transmitted
 - E.g., user datagram protocol (UDP)
- Connection-oriented protocol
 - Provides a reliable connection stream between two nodes
 - Consists of set up, transmission, and tear down phases
 - Creates virtual circuit-switched network
 - E.g., transmission control protocol (TCP)

Internet Protocol Stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

Traversing the Network Stack

Encapsulation

- A packet typically consists of
 - Control information for addressing the packet: header and footer
 - Data: payload
- A network protocol N1 can use the services of another network protocol N2
 - A packet p1 of N1 is encapsulated into a packet p2 of N2
 - The payload of p2 is p1
 - The control information of p2 is derived from that of p1

View of Encapsulation

Sockets

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out door
 - sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process

Addressing processes

- to receive messages, process must have *identifier*
- host device has unique 32bit IP address
- Q: does IP address of host on which process runs suffice for identifying the process?
 - A: no, many processes can be running on same host

- identifier includes both IP address and port numbers associated with process on host.
- example port numbers:

• HTTP server: 80

• Telnet server: 23

 to send HTTP message to www.tamu.edu web server:

• IP address: 165.91.22.70

port number: 80

NAT: network address translation

