Database Concepts

Objective

- Need for a Database
- File base systems
- Define DBMS
- Features of DBMS
- Use of DBMS
- RDBMS Basics

Data vs. information

What is data?

- Facts, statistics used for reference or analysis.
- Numbers, characters, symbols, images etc., which can be processed by a computer.
- Data must be interpreted, by a human or machine, to derive meaning
- Latin 'datum' meaning "that which is given"

What is information? • Information is used to reveal

- Information is used to reveal the meaning of data.
- Knowledge derived from study, experience (by the senses), or instruction.
- Communication of intelligence.
- Information is interpreted data

Why do we need a database?

- Keep records of our:
 - Clients
 - Staff
 - Volunteers
- To keep a record of activities and interventions
- Keep sales records
- Develop reports
- Perform research
- Longitudinal tracking

File Based Approach

Every program stores and maintains data in separate

files

Limitations – File Based approach

- Separation and isolation of data
- Duplication of data
- Data dependence
- Incompatibility of files
- Fixed queries / proliferation of application programs

What is DBMS?

- A very large, integrated collection of data.
- Models real-world enterprise.
 - Entities (e.g., students, courses)
 - Relationships (e.g., John is taking CS662)
- A Database Management System (DBMS) is a software package designed to store and manage databases.

Purpose of a DBMS

- Is to transform Data Information Knowledge Action
- Data independence and efficient access.
- Data integrity and security.
- Uniform data administration.
- Concurrent access, recovery from crashes.
- Replication control
- Reduced application development time.

The Database Approach to Manage Data

Advantages of DBMS

- Control of data redundancy
- Data consistency
- Provides multiple views of the same data
- Sharing of data
- Improved data integrity
- Improved security
- Enforcement of standards
- Improved data accessibility and responsiveness
- Improved productivity & maintenance
- Improved backing and recovery services

Limitations – DBMS

- Relatively high cost for purchase, operation & maintaining DBMS
- Size (Substantial space in main memory & large disk space.
- Complexity
- Higher impact of a failure

Database Users

- Database administrators(DBAs):
- Database designers
- End Users
 - Casual
 - Parametric (or naïve)
 - Sophisticated
 - Stand-alone

Relational Database model

- Developed by E.F. Codd, C.J. Date (70s)
- Table = Entity = Relation
- Table row = tuple = instance
- Table column = attribute
- Table linkage by values
- Entity-Relationship Model

The Relational Model

- Each attribute has a unique name within an entity
- All entries in the column are examples of it
- Each row is unique
- Ordering of rows and columns is unimportant
- Each position (tuple) is limited to a single entry.

RDBMS Definitions

- Entity: Object, Concept or event (subject)
- Attribute: a Characteristic of an entity
- Row or Record: the specific characteristics of one entity
- Table: a collection of records
- Database: a collection of tables

- Consider some information the University maintains:

 - NameMajor
- Tuition Paid

- Address
 Courses Taken
 Tuition Owed

- SSN
 Grades Received
 Grants/Scholarships
- HOW is this information stored?

You are an *entity* with *attributes* which *vary*. Within the University, different areas have different interests in you (i.e., the Registrar, the Bursar, etc.). Nonetheless, you are still part of the *University* as a whole.

HOW does this relate to a database?

Database Components:

You are an <u>entity</u>	Record
with <u>attributes</u>	Fields
which <u>Vary</u>	Fields can contain characters, numbers symbols, etc.
Within the University, <u>different areas</u> , have different interests in you	Files
(i.e,. The Registrar, Bursar, etc.)	
Nonetheless, you are still part of the University	Database

Notice that there should always be a Key (Unique) Field

RDBMS Restrictions/Conventions:

Each Relation
 MUST have a unique name

Table Student

StudentID	Name	Address	Major
123456789	Saenz, Lupe	123 Mesa	Finance
234567890	Chung, Mei	37 5 th St.	INFOSYS
345678901	Adams, John	54B Hague	Accounting
456789012	Elam, Mary	123-22 E St.	Accounting
•••••	•••••	•••••	•••••

Table Balance

Student	Owed	Department
103456678	1,502.36	Marketing
123456789	COBA219	Finance
456789012	COBA232	Accounting
••••	•••••	••••

Table Student

3	•••••	epart
987654321	/	Finance
876543210		INFOSYS
7654321.59	•••••	Accounting
	••••	
_		

RDBMS Restrictions /Conventions:

- Each Relation MUST have a unique name
- All Columns (Tuples) MUST have Unique names

Table Student

StudentID	Name	Address	Address	Major
123456789	Saenz, Lupe	123 Mesa	Arlington	Finance
234567890	Chung, Mei	37 5 th St.	New York	INFOSYS
345678901	Adams, John	54B Hague	Dallas	Accounting
456789012	Elam, Mary	123-22 E St.	Ft. Worth	INFOSYS

One of the names MUST be changed

* NOTE: The same field names CAN be used in different Relations

RDBMS Restrictions /Conventions:

- Each Relation *MUST* have a unique name
- All Columns (Tuples) *MUST* have Unique names
- All Column Elements *MUST* be of the same data type

Table Student

StudentID	Name	Address	Major	
123456789	Saenz, Lupe	123 Mesa	24.34	
234567890	Chung, Mei	37 5 th St.	INFOSYS	
345678901	Adams, John	54B Hague	Accounting	
456789012	Elam, Mary	123-22 E St.	INFOSYS	

Unless this is stored as Character String "24.34" (and NOT as the real number 24.34), it MUST be changed

RDBMS Restrictions /Conventions:

- Each Relation *MUST* have a unique name
- All Columns (Tuples) MUST have Unique names
- All Column Elements *MUST* be of the same data type
 - Notice that this means each record requires the SAME number of Bytes of Storage

Table Student

	StudentID	Na	me	Address	ſ	Ма	jor	
	123456789	Saenz	, Lupe	123 Mesa	Fi	ina	nce	
							АТ	otal 64
A Character String Requiring 9 Bytes of Storage A Character String Requiring 20 Bytes of Storage				J			tes of orage	
		•	•	tes of Storage	—			
A Cha	racter String F	Requirin	ig 10 Byt	tes of Storage	←		1	

RDBMS Restrictions /Conventions:

- Each Relation *MUST* have a unique name
- All Columns (Tuples) *MUST* have Unique names
- All Column Elements *MUST* be of the same data type
- The order of Rows is *NOT* important

StudentID	Name	Address	Major	
123456789	Saenz, Lupe	123 Mesa	Finance	_
234567890	Chung, Mei	37 5 th St.	INFOSYS	
345678901	Adams, John	54B Hague	Accounting	Is the Same as

StudentID	Name	Address	Major	
123456789	Saenz, Lupe	123 Mesa	Finace	
345678901	Adams, John	54B Hague	Accounting	
234567890	Chung, Mei	37 5 th St.	INFOSYS	

RDBMS Restrictions /Conventions:

- Each Relation *MUST* have a unique name
- All Columns (Tuples) *MUST* have Unique names
- All Column Elements *MUST* be of the same data type
- The order of Rows is *NOT* important
- The Number of Bytes/Record Must be the same

StudentID	Name	Address	Major		
123456789	Saenz, Lupe	123 Mesa	Finance	├	Each contains
234567890	Chung, Mei	37 5 th St.	INFOSYS	├	64 Bytes
345678901	Adams, John	54B Hague	Accounting	├	

RDBMS Keys:

- Purpose
 - Define entity relationships
 - Determination
 - Knowing the value of a key field means you also know (Determine) the values of the other fields
 - E.g., knowing StudentID means you know StudentName, StudentAddress, etc.

StudentID — StudentName, StudentAddress (StudentID Determines StudentName and StudentAddress)

RDBMS Keys:

- Purpose
 - Define entity relationships
 - Determination
 - Functional Dependence
 - An attribute is functionally dependent on another if can be determined by that attribute

StudentID — StudentAddress (StudentID Determines Student Address)

• NOTE:

(Two Students MAY live at the same address)

RDBMS Keys:

 Each Relation MUST have a unique identifier or PRIMARY KEY

Table Student

StudentID	Name	Address	Major
123456789	Saenz, Lupe	123 Mesa	Finance
234567890	Chung, Mei	37 5 th St.	INFOSYS
345678901	Adams, John	54B Hague	Accounting
456789012	Elam, Mary	123-22 E St.	INFOSYS
••••	•••	••••	••••

No two students can have the same StudentID

RDBMS Keys:

- Each Relation MUST have a unique identifier or PRIMARY KEY
- A COMPOSITE KEY is a combination of keys (Multi-key attributes) used to produce uniqueness

StudentName, StudentAddress — StudentMajor (StudentName AND StudentAddress Determines StudentMajor)

 NOTE: If Student Major is functionally dependent upon StudentName AND StudentAddress, BUT not on either StudentName or StudentName it is <u>FULLY</u> <u>FUNCTIONAL DEPENDENT</u> on the Concatenated key

(Attributes are fully functionally dependent on PRIMARY KEYS)

RDBMS Keys:

- Each Relation *MUST* have a unique identifier or *PRIMARY KEY*
- A is COMPOSITE KEY is a combination of keys (Multi-key attributes) used to produce uniqueness
- A is SUPER KEY is either a PRIMARY or COMPOSITE KEY that uniquely identifies an entity

StudentID — StudentAddress
AND

StudentName,StudentAddress — StudentMajor

Are BOTH Superkeys

RDBMS Keys:

- Each Relation MUST have a unique identifier or PRIMARY KEY
- A is COMPOSITE KEY is a combination of keys (Multi-key attributes) used to produce uniqueness
- A is SUPER KEY is either a PRIMARY or COMPOSITE KEY that uniquely identifies an entity
- A is CANDIDATE KEY is any key or group of keys that could become a SUPER KEY
 - StudentID is a candidate key
 - StudentName,StudentAddress is a candidate key
 - StudentID,StudentAddress is NOT a candidate key

(StudentID by itself is a CANDIDATE KEY)

RDBMS Keys:

- Each Relation MUST have a unique identifier or PRIMARY KEY
- A is COMPOSITE KEY is a combination of keys (Multi-key attributes) used to produce uniqueness
- A is SUPER KEY is either a PRIMARY or COMPOSITE KEY that uniquely identifies an entity
- A is CANDIDATE KEY is any key or group of keys that could become a SUPER KEY
- A is SECONDARY KEY is any field, or combination of fields, which does NOT yield a unique value
 - Used for retrieval/Narrowing purposes only
 - StudentName,StudentZip may yield several records

RDBMS Keys:

 In Order to relate two (or more) tables FOREIGN KEYS must be used

Table Student

→	StudentID	Name	Address	Major
	123456789	Saenz, Lupe	123 Mesa	Finance
	234567890	34567890 Chung, Mei		INFOSYS
	345678901 Adams, John		54B Hague	Accounting

A FOREIGN KEY in one table is a PRIMARY/SUPER KEY In another

Table Department

DeptName	Chairman	Telephone
INFOSYS	Sircar, Sumit	555-1234
Marketing	McDaniel, C.	555-2345
Accounting	Courtney, H.	555-3456

Database Integrity:

- Maintaining wholeness and Unity
- Entity Integrity:
 - All Entries MUST be Unique
 - No NULL values in primary key fields

Table Student

Illegal Entries

	StudentID	Name	Address	Major
	123456789	Saenz, Lupe	123 Mesa	Finance
	234567890	Chung, Mei	37 5 th St.	INFOSYS
	123456789	Adams, John	54B Hague	Accounting
	456789012	Elam, Mary	123-22 E St.	INFOSYS
		Bush, G.W.	555 Austin	Marketing

Database Integrity:

- Maintaining wholeness and Unity
- Entity Integrity
- Relational Integrity:
 - Foreign Key MUST have a valid entry in the corresponding table (or be NULL)

Table Student

Table Department

StudentID	Major	5 55	DeptName	Chairman	Telephone
123456789	Scamming		INFOSYS	Sircar, Sumit	555-1234
234567890	INFOSYS		Marketing	McDaniel, C.	555-2345
345678901			Accounting	Courtney, H.	555-3456
NOT Allowed					

Database Integrity:

- Maintaining wholeness and Unity
- Entity Integrity
- Relational Integrity:
 - Foreign Key MUST have a valid entry in the corresponding table (or be NULL)
 - Primary Key entry CAN NOT be deleted if a foreign key refers to it

Table Student

Table Department

StudentID	Major	DeptName	Chairman	Telephone
123456789	Accounting	INFOSYS	Sircar, Sumit	555-1234
234567890	INFOSYS	Marketing	McDaniel, C.	555-2345
345678901	Finance	INFOSYS can NO	T be deleted	

Summary

- Data one of the most valuable resources a firm possesses.
- DBMS a group of programs used as an interface between a database and application programs.
- The database approach to data management provides significant advantages over the traditional file-based approach.