CADO: Cost-Aware Diffusion Solvers for Combinatorial Optimization through RL Fine-Tuning

Jeong-Hyun Kim

AIOPT
Incheon National University

2025. 4. 25

Overview

- 1. Introduction
- 2. Problem Formulation
- 3. Proposed Method: CADO
- 4. Experiments
- 5. Conclusion

Motivation and Background

- Combinatorial Optimization (CO) problems arise in scheduling, routing, network design, etc.
- Classic examples include:
 - TSP (Traveling Salesman Problem): Visit all cities once with minimal cost.
 - MIS (Maximum Independent Set): Choose largest set of non-adjacent vertices in a graph.
- These problems are **NP-hard**, making exact solvers infeasible at large scales.
- **ML Trend:** Deep generative models (e.g., Transformer, Diffusion) are explored to generate approximate but high-quality solutions.
- However, most models focus on output **structure fidelity**, not cost optimization.

Limitations of Existing Approaches (1/2)

(1) Supervised Learning (SL)

- Learns to imitate optimal solutions using labeled data.
- Used in early neural CO solvers (e.g., Pointer Networks, GCNs).
- Limitations:
 - Two solutions with similar structure can differ significantly in cost.
 - Model minimizes *prediction error*, not *solution quality*.

(2) Reinforcement Learning (RL)

- Trains via interaction with environment to directly minimize cost.
- Limitations:
 - Sparse and delayed rewards make learning unstable and slow.
 - Hard to scale to large instances.

Limitations of Existing Approaches (2/2)

(3) Diffusion-based Models (e.g., DIFUSCO)

- Uses forward noise process and reverse denoising to learn solution generation.
- Good at modeling discrete combinatorial structures.
- Limitations:
 - Ignores cost during training structure is learned, but not cost-aware.
 - Post-processing decoder (e.g., feasibility repair) is used during inference but not reflected in training objective.

Why CADO?

- **SL:** Learns structure, but ignores true cost.
- RL: Optimizes cost, but unstable and data-inefficient.
- **Diffusion models:** Flexible, but unaware of feasibility-decoder.
- CADO bridges the gap:
 - Combines SL training with cost-aware RL fine-tuning.
 - Incorporates decoder directly into training.
 - Produces low-cost, feasible solutions with strong generalization.

CADO: Two-Stage Learning

- 1. SL pretraining (structure imitation)
- 2. RL fine-tuning (decoder-aware cost optimization)

Combinatorial Optimization Objective

- Problem instance: $g \in \mathcal{G}$
- Solution space: $x \in X_g = \{0, 1\}^N$
- Objective function:

$$c_g(x) = cost(x, g) + valid(x, g)$$

• Where the validity term is defined as:

$$\mathsf{valid}(x,g) = \begin{cases} 0 & \text{if } x \text{ is feasible} \\ \infty & \text{otherwise} \end{cases}$$

The Decoder Issue

- The sampled solution x_0 may be infeasible.
- A post-processing decoder $f_g(x_0)$ is used to obtain a feasible solution.
- The actual evaluation is based on $c_g(f_g(x_0))$.
- However, SL training is based solely on x_0 , ignoring the decoder effect.
- ⇒ This can result in suboptimal performance with respect to cost.

SL vs RL: Training Objectives in CO

- Supervised Learning (SL)
 - Objective:

$$\mathcal{L}_{SL}(heta) = \mathbb{E}_{g \sim P(g)}[-\log p_{ heta}(x_g^\star|g)]$$

- Reinforcement Learning (RL)
 - Basic Objective:

$$\mathcal{R}_{RL}(\theta) = \mathbb{E}_{g, x \sim p_{\theta}(x|g)}[-c_g(x)]$$

Decoder-aware Extension:

$$\mathcal{R}_{\mathsf{decoder-aware}}(heta) = \mathbb{E}_{g, x \sim p_{ heta}(x|g)}[-\mathsf{cost}(f_g(x_0), g)]$$

• Takeaway: Decoder-aware RL aligns training with true evaluation objective in CO.

MDP Formulation for Diffusion

MDP Definition

- State: $s_t = (g, t, x_t)$, Action: $a_t = x_{t-1}$
- Policy: $\pi_{\theta}(a_t, s_t) = p_{\theta}(x_{t-1}|x_t, G)$
- Reward: $R(s_t, a_t) = -\cot(f_g(x_0), g)$ at t = 0
- RL objective:

$$abla_{ heta}J = \mathbb{E}\left[\sum_{t}
abla_{ heta}\log p_{ heta}(x_{t-1}|x_{t},g)\cdot (-\mathsf{cost}(f_{g}(x_{0}),g))
ight]$$

MDP Formulation for Diffusion

Fine-Tuning Strategies and Comparison

CADO fine-tuning:

- Freeze first 11 GNN layers, fine-tune only the last layer.
- Efficient even with small updates (supports LoRA if needed).
- Works well with post-processing decoders (e.g., 2-OPT).

Compared to T2T:

- T2T: Requires differentiable cost functions (limits applicability).
- CADO: Uses policy gradients compatible with discrete, heuristic, or black-box objectives.

• Conclusion:

CADO is more flexible, general, and efficient across a wide range of CO problems.

Experiment Settings

- Hardware: NVIDIA Tesla A40 GPU, 2 cores of AMD EPYC 7413 CPU
- Problems:
 - TSP: Shortest round-trip tour visiting all nodes.
 - MIS: Largest set of non-adjacent nodes in a graph.
- Cost Functions:
 - $cost_{TSP}(x, G) = \sum_{i,j} x_{i,j} \cdot w_{i,j}$
 - $cost_{MIS}(x, G) = \sum_{i} (1 x_i)$
- Validity: Ensures that solutions follow TSP or MIS constraints.
- Key Objectives:
 - Evaluate whether RL fine-tuning improves cost-optimization performance.
 - Analyze generalization to larger instances (e.g., TSP-500 / TSP-1000).
 - Test robustness under suboptimal training datasets (e.g., LKH-3 vs. Concorde).

Datasets, Metrics, and Baselines

TSP Data:

- Training from DIFUSCO (Concorde, LKH-3)
- Test from Joshi et al. (TSP-50/100) and Fu et al. (TSP-500/1000)

• MIS Data:

- SATLIB and Erdős-Rényi graphs
- Test instances from Qiu et al. (2022)

Metrics:

- **Length/Size:** Tour length or MIS size (better = lower/higher)
- Drop: Gap from optimal solutions
- Time: Inference runtime

Baselines:

- Classical: Concorde, LKH-3, HGS, OR-Tools
- NCO Models: POMO, MDAM, EAS, SGBS, BQ
- Heatmap: Att-GCN + MCTS

TSP Results

Algorithm	Type	TSP-50		TSP-100		
Algorithm	Турс	Length ↓	Drop ↓	Length \	Drop ↓	
Concorde (Applegate et al., 2006)	Exact	5.69*	0.00%	7.76*	0.00%	
2OPT (Lin & Kernighan, 1973)	Heuristics	5.86	2.95%	8.03	3.54%	
Farthest Insertion	Heuristics	6.12	7.50%	8.72	12.36%	
AM (Kool et al., 2019b)	RL+Grdy	5.80	1.76%	8.12	4.53%	
GCN (Joshi et al., 2019a)	SL+Grdy	5.87	3.10%	8.41	8.38%	
Transformer (Bresson & Laurent, 2021)	RL+Grdy	5.71	0.31%	7.88	1.42%	
POMO (Kwon et al., 2020)	RL+Grdy	5.73	0.64%	7.84	1.07%	
Sym-NCO (Kim et al., 2022)	RL+Grdy	-		7.84	0.94%	
Image Diffusion (Graikos et al., 2022b)	SL+Grdy	5.76	1.23%	7.92	2.11%	
BQ† (Drakulic et al., 2023)	SL+Grdy	-		7.79	0.35%	
LEHD† (Luo et al., 2023)	SL+Grdy	-		7.81	0.58%	
ICAM† (Zhou et al., 2024)	RL+Grdy	-	-	7.83	0.90%	
DIFUSCO (Sun & Yang, 2023)	SL+Grdy	5.72	0.48%	7.84	1.01%	
T2T (Sun & Yang, 2023)	SL+Grdy	5.69	0.04%	7.77	0.18%	
CADO (Ours)	SL+RL+Grdy	5.69	0.01%	7.77	0.08%	
AM (Kool et al., 2019b)	RL+Grdy+2OPT	5.77	1.41%	8.02	3.32%	
GCN (Joshi et al., 2019a)	SL+Grdy+2OPT	5.70	0.12%	7.81	0.62%	
Transformer (Bresson & Laurent, 2021)	RL+Grdy+2OPT	5.70	0.16%	7.85	1.19%	
POMO (Kwon et al., 2020)	RL+Grdy+2OPT	5.73	0.63%	7.82	0.82%	
Sym-NCO (Kim et al., 2022)	RL+Grdy+2OPT	-		7.82	0.76%	
BQ† (Drakulic et al., 2023)		-		-		
LEHD† (Luo et al., 2023)	SL+Grdy+RRC	-		7.76	0.01%	
ICAM† (Zhou et al., 2024)	RL+Grdy+RRC			7.79	0.41%	
DIFUSCO (Sun & Yang, 2023)	SL+Grdy+2OPT	5.69	0.09%	7.78	0.22%	
T2T (Li et al., 2023)	SL+Grdy+2OPT	5.69	0.02%	7.76	0.06%	
CADO (Ours)	SL+RL+Grdy+2OPT	5.69	0.00%	7.76	0.01%	

TSP-50 and TSP-100 Results

Algorithm	Type	TSP-500			TSP-1000		
Algorithm	1,710	Length \	Drop ↓	Time	Length \downarrow	Drop ↓	Time
Concorde (Applegate et al., 2006)	Exact	16.55*	-	37.66m	23.12*		6.65h
Gurobi (Gurobi Optimization, 2020)	Exact	16.55	0.00%	45.63h	-	-	
LKH-3 (default) (Helsgaun, 2017)	Heuristics	16.55	0.00%	46.28m	23.12	0.00%	2.57h
Farthest Insertion	Heuristics	18.30	10.57%	Os	25.72	11.25%	0s
AM (Kool et al., 2019b)	RL+Grdy	20.02	20.99%	1.51m	31.15	34.75%	3.18n
GCN (Joshi et al., 2019a)	SL+Grdy	29.72	79.61%	6.67m	48.62	110.29%	28.52
POMO+EAS-Emb (Hottung et al., 2021)	RL+AS+Grdy	19.24	16.25%	12.80h			-
POMO+EAS-Tab (Hottung et al., 2021)	RL+AS+Grdy	24.54	48.22%	11.61h	49.56	114.36%	63.45
DIMES (Oiu et al., 2022)	RL+Grdy	18.93	14.38%	0.97m	26.58	14.97%	2.08r
DIMES (Oiu et al., 2022)	RL+AS+Grdv	17.81	7.61%	2.10h	24.91	7.74%	4.49
DIMES (Qiu et al., 2022)	RL+Grdy+2OPT	17.65	6.62%	1.01m	24.83	7.38%	2.291
DIMES (Qiu et al., 2022)	RL+AS+Grdy+2OPT	17.31	4.57%	2.10h	24.33	5.22%	4.49
BQ† (Drakulic et al., 2023)	SL+Grdy	16.72	1.18%	0.77m	23.65	2.27%	1.9n
LEHD† (Luo et al., 2023)	SL+Grdy	16.78	1.56%	0.27m	23.85	3.17%	1.6r
LEHD† (Luo et al., 2023)	SL+Grdy+RRC	16.58	0.34%	8.7m	23.40	1.20%	48.6
ICAM† (Zhou et al., 2024)	RL+Grdy	16.78	1.56%	0.03	23.80	2.93%	0.031
ICAM† (Zhou et al., 2024)	RL+Grdy+RRC	16.69	1.01%	2.4m	23.55	1.86%	16.8
DIFUSCO (Sun & Yang, 2023)	SL+Grdy	18.11	9.41%	5.70m	25.72	11.24%	17.33
DIFUSCO (Sun & Yang, 2023)	SL+Grdy+2OPT	16.81	1.55%	5.75m	23.55	1.86%	17.52
T2T (Li et al., 2023)	SL+Grdy	17.69	6.92%	4.90m	25.39	9.83%	17.93
T2T (Li et al., 2023)	SL+G+2OPT	16.68	0.83%	4.83m	23.41	1.26%	18.37
CADO (Ours)	SL+RL+Grdy	16.97	2.56%	2.52m	24.92	7.78 %	18.31
CADO (Ours)	SL+RL+Grdy+2OPT	16.64	0.58%	2.67m	23.35	1.02 %	7.67
EAN (Deudon et al., 2018)	RL+S+2OPT	23.75	43.57%	57.76m	47.73	106.46%	5.39
AM (Kool et al., 2019b)	RL+BS	19.53	18.03%	21.99m	29.90	29.23%	1.64
GCN (Joshi et al., 2019a)	SL+BS	30.37	83.55%	38.02m	51.26	121.73%	51.67
DIMES (Qiu et al., 2022)	RL+S	18.84	13.84%	1.06m	26.36	14.01%	2.38
DIMES (Qiu et al., 2022)	RL+AS+S	17.80	7.55%	2.11h	24.89	7.70%	4.53
DIMES (Qiu et al., 2022)	RL+S+2OPT	17.64	6.56%	1.10m	24.81	7.29%	2.86
DIMES (Qiu et al., 2022)	RL+AS+S+2OPT	17.29	4.48%	2.11h	24.32	5.17%	4.53
BQ† (Drakulic et al., 2023)	SL+BS	16.62	0.58%	11.9m	23.43	1.36%	29.4
ICAM† (Zhou et al., 2024)	RL+BS	16.69	1.01%	1.5m	23.54	1.83%	10.5
ICAM† (Zhou et al., 2024)	RL+S	16.65	0.78%	0.63m	23.49	1.58%	3.8r
DIFUSCO (Sun & Yang, 2023)	SL+S	17.48	5.65%	19.02m	25.11	8.61%	59.18
DIFUSCO (Sun & Yang, 2023)	SL+S+2OPT	16.69	0.37%	19.05m	23.42	1.30%	59.53
T2T (Li et al., 2023)	SL+S	17.14	3.60%	17.05m	24.85	7.51%	1.12
T2T (Li et al., 2023)	SL+S+2OPT	16.62	0.46%	17.02m	23.31	0.85%	1.17
CADO (Ours)	SL+RL+S	16.75	1.27%	6.83m	24.47	5.88 %	24.73
CADO (Ours)	SL+RL+S+2OPT	16,60	0.34%	6.90m	23.28	0.69 %	25.78

TSP-500 and TSP-1000 Results

MIS Results

Algorithm	т Туре	SATLIB			ER-[700-800]		
Algorium		Size ↑	Drop ↓	Time	Size ↑	Drop ↓	Time
KaMIS (Lamm et al., 2016)	Heuristics	425.96*	-	37.58m	44.87*	-	52.13m
Gurobi (Gurobi Optimization, 2020)	Exact	425.95	0.00%	26.00m	41.28	7.78%	50.00m
Intel (Li et al., 2018a)	SL+Grdy	420.66	1.48%	23.05m	34.86	22.31%	6.06m
DIMES (Qiu et al., 2022)	RL+Grdy	421.24	1.11%	24.17m	38.24	14.78%	6.12m
DIFUSCO (Sun & Yang, 2023)	SL+Grdy	424.56	0.33%	8.25m	36.55	18.53%	8.82m
T2T (Li et al., 2023)	SL+Grdy	425.02	0.22%	8.12m	39.56	11.83%	8.53m
CADO (Ours)	SL+RL+Grdy	425.01	0.22%	9.52m	42.96	4.25%	9.50m
Intel (Li et al., 2018a)	SL+TS	-	-	-	38.80	13.43%	20.00m
DGL (Böther et al., 2022)	SL+TS	-	-	-	37.26	16.96%	22.71m
LwD (Ahn et al., 2020a)	RL+S	422.22	0.88%	18.83m	41.17	8.25%	6.33m
GFlowNets (Zhang et al., 2023)	UL+S	423.54	0.57%	23.22m	41.14	8.53%	2.92m
DIFUSCO (Sun & Yang, 2023)	SL+S	425.13	0.19%	26.32m	40.35	10.07%	32.98m
T2T (Li et al., 2023)	SL+S	425.22	0.17%	23.80m	41.37	7.81%	29.73m
CADO (Ours)	SL+RL+S	425.14	0.19%	16.57m	43.53	2.998%	11.90m

Robustness to Low-Quality Training Data

- We compare training results using:
 - An optimal dataset (Drop 0%) and
 - A suboptimal dataset (Drop 1.36%), created by limiting LKH-3 to 1s per instance.
- CADO achieves the best performance under both conditions.
- DIFUSCO suffers a large drop in performance when trained on poor data.
- In contrast, CADO and T2T remain robust due to cost-based training.
- Takeaway: RL fine-tuning enables higher-quality solution generation even from weak data.

Algorithm	Drop 0% Drop↓	Drop 1.36% Drop ↓
DIFUSCO	0.48 %	2.298%
T2T	0.04%	1.001%
CADO(ours)	0.01 %	0.911%

Transfer Learning Results

- We evaluated transferability across tasks:
 - Train on TSP100 \rightarrow fine-tune on TSP500
 - Train on TSP500 \rightarrow fine-tune on TSP1000
- Without fine-tuning: Significant performance degradation observed.
- SL → RL fine-tuning:
 - Matches SL on TSP500 and outperforms on TSP1000.
 - Requires no additional optimal labels for the target task.
- Conclusion: RL fine-tuning is more cost-effective and scalable for CO tasks.

Fine-tuning	$100{\rightarrow}500$	$500 {\rightarrow} 1000$		
	$Drop \downarrow$	$Drop \downarrow$		
SL o imes	3.2%	2.12%		
$\text{SL} \to \text{SL}$	1.55%	1.86%		
$SL \rightarrow RL$	1.59%	1.04%		

Conclusion

• CADO: A two-stage framework combining SL and RL for combinatorial optimization (CO).

Key Innovations:

- Cost-aware: Optimizes solution quality, not just structure.
- Decoder-aware: Considers post-processing effects during training.

• Strong Performance:

- SOTA results on TSP and MIS benchmarks.
- Closes the optimality gap—even without heuristics.

Practical Benefits:

- Robust to low-quality data.
- Generalizes to larger, unseen problem sizes.
- Efficient via partial fine-tuning (e.g., LoRA).
- **Takeaway:** Cost-aware + decoder-aware training makes diffusion-based CO solvers scalable, robust, and effective.