KLPT TWo: Algebraic pathfinding in dimension two (The capitalization is not a mistake)

W. Castryck, T. Decru, P. Kutas, A. Laval, C. Petit, Y.B. Ti

25th of March, 2025

Setting the frame

For the whole presentation, we fix

- A prime $p = 3 \mod 4$ of cryptographic size,
- A small prime ℓ . Typically $\ell \in \{2,3\}$
- \blacksquare $E_0: y^2: x^3 + x$, the curve with j-invariant 1728 over \mathbb{F}_{p^2} ,

■ End(
$$E_0$$
) $\simeq \mathcal{O}_0 = \langle 1, i, \frac{i+j}{2}, \frac{1+k}{2} \rangle$,

- $B_{p,\infty} = \mathcal{O}_0 \otimes \mathbb{Q}$, the underlying quaternion algebra,
- \blacksquare $A_0 := E_0 \times E_0$, our base abelian surface,
- \blacksquare λ_0 , the (principal) product polarization of A_0 .

In this presentation, every elliptic curve is supersingular

Introduction : The ℓ-isogeny path problem

The ℓ-isogeny path problem

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_{p^2} . Let ℓ be a small prime.

Compute an isogeny $\varphi: E_1 \to E_2$ with degree ℓ^e .

$$E_1 \stackrel{\varphi}{\longrightarrow} E_2$$

The quaternion ℓ^e -isogeny path problem

Let $\mathcal{O}_1, \mathcal{O}_2$ be two maximal orders in the quaternion algebra $\mathcal{B}_{p,\infty}$.

 $\overset{\textbf{Deuring}}{\longleftrightarrow}$

Compute an ideal I of norm ℓ^e such that $\mathcal{O}_L(I) \simeq \mathcal{O}_1$ and $\mathcal{O}_R(I) \simeq \mathcal{O}_2$.

$$\mathcal{O}_1 \stackrel{I}{\longrightarrow} \mathcal{O}_2$$

[Isogeny Club – S1E4]: **Antonin Leroux**, A new algorithm for the constructive Deuring correspondence: making SQISign faster

Overview of KLPT

An analogue in dimension 2

- Replace the elliptic curves by abelian surfaces
- Replace the maximal orders by matrices
- Replace the Deuring correpsondence by the Ibukiyama-Katsura-Oort correspondence.
- Replace KLPT by KLPT2

Organization of the talk

1.	Principally polarized superspecial abelian surfaces	(Section 2.2)
2.	The Ibukiyama-Katsura-Oort correspondence	(Section 2.3)
3.	KLPT ²	(Section 3)
4.	Constructive IKO correspondence and applications	(Sections 4 & 5)

Act I – Understanding the objects we manipulate

Act I: Principally Polarized Superspecial Abelian Surfaces?

1.1 – Abelian surfaces

Definition (Abelian varieties)

An abelian variety is an algebraic group that can be embedded in a projective space.

It is an abstract object → scary!

A simple classification of abelian varieties

$$\begin{array}{ll} \text{dim} = 1: & \textit{E} \\ \text{dim} = 2: & \left\{ \begin{array}{ll} \textit{E}_1 \times \textit{E}_2 \\ \text{Jac}(\textit{H}) \end{array} \right., \, \text{or} \\ \text{dim} = 3: & \dots \end{array}$$

with H an hyperelliptic curve of genus 2

An abelian variety of dimension 2 is called an abelian surface.

[Isogeny Club - S1E6] : Sabrina Kunzweiler, Genus 2 Isogenies

1.1 – It's time to d-d-d-dual!

To any abelian variety, we canonically associate a "mirror" variety called its *dual*. Any isogeny $\varphi:A\to B$ induces an isogeny $\hat{\varphi}$ between the duals.

$$A \stackrel{\varphi}{\longrightarrow} B$$

$$A^{\vee} \leftarrow_{\widehat{\varphi}} B^{\vee}$$

Definition (Dual variety)

The dual variety of A is the Picard group $Pic^0(A)$. Its elements are divisors.

Remark

The dual isogeny $\varphi: \mathcal{B}^{\vee} \to \mathcal{A}^{\vee}$ is **not** what we call a dual isogenies for elliptic curves !

[Isogeny Days 2022] : Benjamin Smith, Polarizations

1.2 – Supersingularity vs superspeciality

Let A be an abelian surface (a Jacobian or a product of elliptic curves).

Supersingularity

Superspeciality

A is supersingular if it is *isogenous* to some $E_1 \times E_2$.

A is superspecial if it is isomorphic to some $E_1 \times E_2$.

The supersingular isogeny graph

The superspecial isogeny graph

Contains infinitely many vertices. X

Contains a single vertex. X

Theorem (Deligne)

For all E_1 , E_2 , E_3 , E_4 , we have

$$E_1 \times E_2 \simeq E_3 \times E_4$$

[CDS19]: Castryck-Decru-Smith, Hash functions from superspecial genus-2 curves using Richelot isogenies, eprint: 2019/296

1.3 – Polarizations

Informal Definition (Polarization)

A polarization on A is an isogeny

$$\lambda_D$$
 : $A \rightarrow A^{\vee}$
 $P \mapsto [t_P^*(D) - (D)]$

where D is an ample divisor and t_P^* is the pullback of the translation-by-P map.

Important properties of polarizations

- Not all isogenies $A \rightarrow A^{\vee}$ are polarizations.
- If a polarization has degree 1, it is called *principal*.
- We write PPol(A) for the set of principal polarizations of A.

[CS]: James S. Milne, Arithmetic Geometry, Chapter 5 – Edited by Cornell & Silverman

1.3 – Isogenies between polarized varieties

Definition (Polarized isogeny)

Let (A, λ_A) and (B, λ_B) be two polarized varieties.

An isogeny $\varphi: (A, \lambda_A) \to (B, \lambda_B)$ is an isogeny $\varphi: A \to B$ between the underlying varieties such that the following diagram commutes.

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
 & \downarrow^{\lambda_B} \\
A^{\vee} & \longleftarrow_{\widehat{\varpi}} & B^{\vee}
\end{array}$$

i.e. we have $\hat{\varphi}\lambda_B\varphi=N\lambda_A$, for some integer N called the reduced degree.

1 – Wrapping up

The polarized superspecial isogeny graph

The graph of principally polarized superspecial abelian surfaces over \mathbb{F}_p contains $O(p^3)$ vertices. \checkmark

Among which we have :

- $O(p^3)$ Jacobians.
- $O(p^2)$ products of elliptic curves.

A small sanity check

Example 1 : E_0

 $E_0: y^2 = x^3 + x$. It is a supersingular curve.

It is equipped with a canonical principal polarization

$$\lambda : E_0 \rightarrow E_0^{\vee}$$
 $P \mapsto (P) - (\infty)$

It is the only possible polarization on E_0 .

Example 2 : (A_0, λ_0)

 $A_0 = E_0^2$. It is superspecial.

It can be equipped with a natural polarization λ_0 called the *product polarization* inherited from E_0 .

There are a lot of non-equivalent polarizations on A_0 .

Example 3 : (A, λ)

A = Jac(H) for $H/\mathbb{F}_p : y^2 = x^6 + 1$. It is superspecial if $p = 5 \mod 6$.

The equation for H implicitely induces a polarization λ .

Act II – Stating the problem

Act II: The Ibukiyama-Katsura-Oort Correspondence

$$\left\{\begin{array}{c} \text{Abelian surfaces} \\ (A, \lambda_A) \\ \text{up to polarized} \\ \text{isomorphism} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Polarizations} \\ \lambda \text{ of } A_0 \\ \text{up to equivalence} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Matrices} \\ g \in M_2(\mathcal{O}_0) \\ \text{up to congruence} \end{array}\right\}$$

2.1 – From surfaces to polarizations

Goal

Given an abelian surface (A, λ_A) , encode it as a polarization λ on A_0 .

Polarizations pullbacks

Given (A, λ_A) , A_0 and an **unpolarized** isomorphism $\varphi : A_0 \to A$, one can compute

$$\lambda = \hat{\varphi} \lambda_{\mathsf{A}} \varphi$$

This is a polarization of A_0 .

$$\begin{array}{ccc} A \xleftarrow{\varphi} & A_0 \\ \downarrow^{\lambda_A} & & \downarrow^{\lambda} \\ A^{\vee} & \xrightarrow{\hat{\varphi}} & A_0^{\vee} \end{array}$$

[GSS25]: **Gaudry-Soumier-Spaenlehauer**, *Isogeny-based Cryptography using Isomorphisms of Superspecial Abelian Surfaces*

2.2 – From polarizations to matrices: Deuring for the PPol

Goal

Given a polarization λ on A_0 , encode it as an endomorphism of A_0 . Then, write the endomorphism as a 2x2 matrix with quaternions coefficients.

Step 1:

We simply apply the map

$$\mu$$
 : $\mathsf{PPol}(A_0) \to \mathsf{End}(A_0)$
 $\lambda \mapsto \lambda_0^{-1} \lambda$

$$g\left(\stackrel{\sim}{\underset{\sim}{\longrightarrow}} A_0 \xrightarrow[\lambda_0^{-1}]{\lambda} A_0^{\vee} \right)$$

Step 2:

By the Deuring correspondence, $\operatorname{End}(A_0) = \operatorname{M}_2(\operatorname{End}(E_0))$ is isomorphic to $\operatorname{M}_2(\mathcal{O}_0)$.

2.2 - From polarizations to matrices: Deuring for the PPol

The image of μ (after translating into quaternions) is the set

$$\mathsf{Mat}(A_0) := \left\{ egin{pmatrix} s & r \ ar{r} & t \end{pmatrix}, \quad s,t \in \mathbb{Z}_{>0}, r \in \mathcal{O}_0, st - rar{r} = 1
ight\} \quad \subset \mathsf{GL}_2(\mathcal{O}_0)$$

Elements of this set will be the input of KLPT².

The IKO correspondence

	Geometric world	Quaternion world
Vertices of the graph	(A,λ_A)	$g\in Mat(A_0)$
Edges of the graph	$\begin{array}{c} Isogenies \\ \varphi: (A_1, \lambda_1) \to (A_2, \lambda_2) \end{array}$	Connecting matrices $u \in M_2(\mathcal{O}_0)$
Adjoint map	Adjoint isogeny $ ilde{arphi}=\lambda_1^{-1}\hat{arphi}\lambda_2$	Conjugate-transpose $u = \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}$
Structure-preserving property	$\hat{\varphi}\lambda_2\varphi=\textit{N}\lambda_1$	$u^*g_2u=Ng_1$
Reduced norm	N	$\mathcal{N}(u)$

The quaternion isogeny path problem in dimension 2

Recall: The 2D isogeny path problem

Compute an isogeny $\varphi: (A_1, \lambda_1) \to (A_2, \lambda_2)$ with reduced norm $N = \ell^e$.

$$\begin{array}{ccc}
A_1 & \xrightarrow{\varphi} & A_2 \\
N\lambda_1 \downarrow & & \downarrow \lambda_2 \\
A_1^{\vee} & \longleftarrow_{\widehat{\varphi}} & A_2^{\vee}
\end{array}$$

Theorem

The 2D isogeny path problem reduces to computing $\psi \in \operatorname{End}(A_0)$ such that the following diagram commutes

The quaternion isogeny path problem in dimension 2

Recall: The 2D isogeny path problem

Compute an isogeny $\varphi: (A_1, \lambda_1) \to (A_2, \lambda_2)$ with reduced norm $N = \ell^e$.

$$A_{1} \xrightarrow{\varphi} A_{2}$$

$$N\lambda_{1} \downarrow \qquad \qquad \downarrow \lambda_{2}$$

$$A_{1}^{\vee} \longleftarrow A_{2}^{\vee}$$

Theorem

The 2D isogeny path problem reduces to computing $\psi \in \operatorname{End}(A_0)$ such that the following diagram commutes

i.e. such that $\hat{\psi}\lambda_2'\psi = N\lambda_1'$ ($\longleftrightarrow \gamma^*g_2\gamma = Ng_1$). We can then output $\varphi = \varphi_2 \circ \psi \circ \varphi_1^{-1}$.

Act III - Solving the problem

Act III: The KLPT² algorithm

Main theorem

Let $g_1, g_2 \in \mathsf{Mat}^0(\mathcal{O}_0)$. There is a PPT algorithm that computes $\gamma \in \mathsf{M}_2(\mathcal{O}_0)$ such that

$$\gamma^* g_2 \gamma = N g_1$$

with $N \in O(p^{25})$ is smooth.

3.1 – Some useful lemmas

Definition (Connecting matrix)

Let h_1, h_2, u be matrices in $M_2(\mathcal{O}_0)$.

We say that u is a connecting matrix between h_1 and h_2 if it satisfies

$$u^*h_2u=\mathcal{N}(u)h_1$$

we write $u: h_1 \rightarrow h_2$.

Lemma (Inversion lemma)

If $u: h_1 \to h_2$ is invertible in $\mathsf{M}_2(\mathcal{B}_{p,\infty})$, then $\mathcal{N}(u)u^{-1} \in \mathsf{M}_2(\mathcal{O}_0)$ and $\mathcal{N}(u)u^{-1}: h_2 \to h_1$.

$$h_1 \underbrace{\bigcup_{\mathcal{N}(u)u^{-1}}^{u}}_{h_2} h_2$$

3.1 – Some useful lemmas

Lemma (Composition lemma)

Let h_1, h_2, h_3, u_1, u_2 be matrices such that

$$\left\{
\begin{array}{l}
u_1: h_1 \to h_1 \\
u_2: h_2 \to h_3
\end{array}
\right.$$

Then, $u_1u_2: h_1 \to h_3$.

Proof.

This lemma comes from the fact that $u_i:h_i\to h_{i+1}$ corresponds to the identity

$$u_i^* h_{i+1} u_i = \mathcal{N}(u_i) h_i$$

and from the multiplicativity of the reduced norm \mathcal{N} .

$$h_1 \xrightarrow{u_1} h_2 \xrightarrow{u_2} h_3$$

Outline of the strategy

Let $g_1, g_2 \in Mat(A_0)$. A solution is easily computed in the following case :

Lemma

If $g_1=\left(\begin{smallmatrix} D & r_1 \\ \overline{r}_1 & t_1 \end{smallmatrix}\right)$ and $g_2=\left(\begin{smallmatrix} D & r_2 \\ \overline{r}_2 & t_2 \end{smallmatrix}\right)$, for some $D,t_1,t_2\in\mathbb{Z}$ and $r_1,r_2\in\mathcal{O}_0$, with $\det(g_1)=\det(g_2)$, then $\tau:=\left(\begin{smallmatrix} D & r_1-r_2 \\ 0 & D \end{smallmatrix}\right)$ satisfies

$$\tau^* g_2 \tau = D^2 g_1$$

if D is a power of ℓ , we're done.

The high-level approach

- 1. Find $u_i:h_i\to g_i$ for some h_i of the form $\begin{pmatrix}\ell^{e_2} r_i'\\ \overline{r}_i' t_i'\end{pmatrix}$, with $\mathcal{N}(u_i)=\ell^{e_1}$.
- 2. Compute $\tau: h_1 \to h_2$. Its norm is ℓ^{2e_2} .
- 3. Output $\gamma = \mathcal{N}(u_1)u_2\tau u_1^{-1}$. Its norm is $\ell^{2(e_1+e_2)}$.

Strategy for computing *u*

Given $g = \begin{pmatrix} s & r \\ \bar{r} & t \end{pmatrix} \in \mathsf{Mat}(A_0)$, compute $u \in \mathsf{M}_2(\mathcal{O}_0)$ such that

- 1. $h = u^*gu$ is of the form $\begin{pmatrix} \ell^{e_2} & r' \\ \bar{r}' & t' \end{pmatrix}$
- 2. $\mathcal{N}(u) = \ell^{e_1}$
- 3. e_1 and e_2 don't depend on g.

For $u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, an explicit computation yields

$$u^*gu = \begin{pmatrix} s \cdot \mathbf{n}(a) + t \cdot \mathbf{n}(c) + \mathbf{tr}(\bar{c}\bar{r}a) & r' \\ \bar{r}' & s \cdot \mathbf{n}(b) + t \cdot \mathbf{n}(d) + \mathbf{tr}(\bar{b}\bar{r}d) \end{pmatrix}$$

The top-left entry only depends on a and c!

- \downarrow Fix a and c to satisfy 1.
- \vdash Fix **b** and **d** to satisfy 2.

Strategy for computing u

Let
$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $h := u^* g u = \begin{pmatrix} s' & r' \\ \overline{r}' & t' \end{pmatrix}$.

1. Find $a, c \in \mathcal{O}_0$ such that s' equals some ℓ^{e_2} . \downarrow Solve a diophantine equation.

Strategy for computing u

Let
$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $h := u^* g u = \begin{pmatrix} s' & r' \\ \overline{r}' & t' \end{pmatrix}$.

- 1. Find $a, c \in \mathcal{O}_0$ such that s' equals some ℓ^{e_2} . \downarrow Solve a diophantine equation.
- 2. Given a, c, find values $b, d \in \mathcal{O}_0$ such that $\mathcal{N}(u) = \ell^{e_1}$. \downarrow Solve a pathfinding problem in 1D \longrightarrow KLPT!

We actually start with step 2.

Finding b and d: We put KLPTs in your KLPT 2

Here, we assume we have $u=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)$ with a and c fixed and with coprime norm. We want to find a pair $(b,d)\in\mathcal{O}_0^2$ such that

$$\mathcal{N}(u) = \mathbf{n}(a)\mathbf{n}(d) + \mathbf{n}(b)\mathbf{n}(c) - \mathbf{tr}(\bar{a}b\bar{d}c)$$

Reducing the problem to a pathfinding problem in 1D

- 1. View \mathcal{O}_0^2 as a free right \mathcal{O}_0 -module of rank 2.
- 2. Compute Bézout's coefficients ua + cv = 1.
- 3. Let $M_1 = (a, c)\mathcal{O}_0$ and $M_2 = (u \cdot \mathbf{n}(c)a, -v \cdot \mathbf{n}(a)c)B_{p,\infty} \cap \mathcal{O}_0^2$ be two submodules.
- 4. Note that $\mathcal{O}_0^2 = M_1 \oplus M_2$.

Theorem

The submodule M_2 is isomorphic to the right \mathcal{O}_0 -ideal $I = \mathbf{n}(c)\mathcal{O}_0 + a\bar{c}\mathcal{O}_0$

Finding b and d: We put KLPTs in your KLPT

The isomorphism $f: M_2 \to I$ is a $\mathbf{n}(c)$ -homothety.

Finding b and d from KLPT1

- 5. Using KLPT, we can find some $\omega \in I$ with norm $\mathbf{n}(c)\ell^{e_0} \in O(p^3)$
- 6. We translate ω into an element $(b,d)=f^{-1}(\omega)$ of M_2 with norm $\mathbf{n}(\omega)/\mathbf{n}(c)=\ell^{e_0}$.

The resulting matrix u has norm $\ell^{e_1} \in O(p^6)$ and can be written as

$$u = \begin{pmatrix} a & v \cdot \mathbf{n}(c)x + va\bar{c}y \\ c & -uc\bar{a}x - u \cdot \mathbf{n}(a)y \end{pmatrix}$$

where the quaternion ω equals $\mathbf{n}(c)x + a\bar{c}y$ and $e_1 = 2e_0$.

Remark

$$u$$
 can be rewritten as $\begin{pmatrix} a & x \\ c & -y \end{pmatrix} \begin{pmatrix} 1 & -u\bar{a}x + v\bar{c}y \\ 0 & 1 \end{pmatrix}$.

Since the second matrix has determinant 1, we can wor with the left one only.

Strategy for computing u

Let
$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $h := u^* g u = \begin{pmatrix} s' & r' \\ \overline{r}' & t' \end{pmatrix}$.

- 1. Find $a, c \in \mathcal{O}_0$ such that s' equals some ℓ^{e_2} .

 4 Solve a diophantine equation.
- 2. Given a, c, find values $b, d \in \mathcal{O}_0$ such that $\mathcal{N}(u) = \ell^{e_1} \checkmark$. \downarrow Solve a pathfinding problem in 1D \longrightarrow KLPT!

Finding a and c : Finalising the algorithm

We want to find $a, c \in \mathcal{O}_0$ such that

$$s' := s \cdot \mathbf{n}(a) + t \cdot \mathbf{n}(c) + \mathbf{tr}(\bar{c}\bar{r}a) = \ell^{e_2}$$

Similar to KLPT1

The strategy

- 1. Use the fact that \mathcal{O}_0 contains the suborder $\mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$
- 2. Restrict a and c to subspaces of so the trace vanishes.
- 3. Fix c and use Cornacchia to compute a suitable value for a.

With some pre-processing on g, we can bound its entries and garantee that $s' = \ell^{e_2} \in O(p^{6.5})$ and $\mathbf{n}(a)$ and $\mathbf{n}(c)$ are coprime.

3 – Wrapping up

We showed how to compute $u_i : h_i \rightarrow g_i$ such that

- $\mathbf{u}_i \in \mathcal{O}_0$
- $\mathcal{N}(u_i) = \ell^{e_1} \in O(p^6)$
- $\blacksquare \ h_i = \left(\begin{smallmatrix} \ell^{e_2} & r_i' \\ \overline{r}_i' & t_i' \end{smallmatrix}\right) \text{ with } \ell^{e_2} \in O(p^{6.5}).$

The output matrix

The output $\gamma \in \mathcal{O}_0$ of the algorithm comes from the composition

$$g_1 \xrightarrow{\begin{array}{c} h_1 & \xrightarrow{\tau} & h_2 \\ & & \downarrow \\ & & \downarrow \\ & & \gamma = \mathcal{N}(u_1)\tau u_2 u_1^{-1} \end{array}} g_2$$

Its norm is $\mathcal{N}(\gamma) = \ell^{e_1} \cdot \ell^{e_1} \cdot \ell^{2e_2} \in O(p^{25})$.

Act IV - Constructive IKO Correspondence & Applications

Act IV - Constructive IKO Correspondence & Applications

Constructive IKO Correspondence

- Variety-to-Matrix :
 - Products of elliptic curves : [GSS25]

 ✓,
- Isogeny-to-Matrix :
 - ↓ For (2,2)-isogenies: This work
 ✓
- Matrix-to-Isogeny :
 - → For powersmooth degrees: [Chu21]
 ✓

Applications

- Cryptanalysis of 2D CGL without trusted setup
- Relaxed constraints for isogeny representations in 2D
- A brand new SQISign2D ???

[Chu21]: **Hao-Wei Chu**, Algorithms for abelian surfaces over finite fields and their applications to cryptographyPhd thesis

Thank you for you attention!

P. Kutas, A. Laval, C. Petit, Y.B Ti, Thomas D., Wouter C. KLPT TWo