Assignment (IV)

Due: 8:00 PM Sunday, 2013-11-17

Problem 1

Prove that if B is r.e. and $A \cap B$ is productive, then A is productive.

Problem 2

- 1. Let \mathcal{A} be a set of unary computable functions, and suppose that $g \in \mathcal{A}$ implies for all finite $\theta \subseteq g$, $\theta \notin \mathcal{A}$. Prove that the set $A = \{x \mid \phi_x \in \mathcal{A}\}$ is productive.
- 2. Prove that $\{x \mid \phi_x \text{ is a polynomial function }\}$ is productive.

Problem 3

Let $A_x = \{y \mid \phi_y = \phi_x\}$. Show that there is no total computable function f(x,y) such that $\forall x.(y \in \bar{K} \iff f(x,y) \in A_x)$.

Problem 4

Suppose that A is r.e. and $A \neq \mathbb{N}$. Prove that A is creative if and only if

$$(\forall \text{ r.e. } B)[A \cap B = \emptyset \implies A \equiv A \cup B].$$

Problem 5

A set A is simple if (i) A is r.e., (ii) \bar{A} is infinite, and (iii) \bar{A} contains on infinite r.e. subset. Prove that

- 1. A simple set is neither recursive nor creative.
- 2. Define a function f(x) as follows. Given input x, parallel compute $\phi_x(0), \phi_x(1) \dots$ in a diagonal way; stop if and only if a number z is found such that $\phi_x(z) > 2x$; in that case we put $f(x) = \phi_x(z)$. Prove that A = Ran(f) is simple.

Problem 6

Let C be a compleixty measure. We will say that a total computable function f(x) is C-constructible if there is a program number e s.t. $C_e(x) = f(x)$ for all x. Prove or disprove that every computable function is C-constructible.