

Lecture 6 Recap

Learning Rate: Implications

What if too high?

• What if too low?

Source: http://cs231n.github.io/neural-networks-3/

Training Schedule

Manually specify learning rate for entire training process

- Manually set learning rate every *n*-epochs
- How?
 - Trial and error (the hard way)
 - Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

Basic Recipe for Training

- Given dataset with ground truth labels
 - $\{x_i, y_i\}$
 - x_i is the i^{th} training image, with label y_i
 - Often $\dim(X) \gg \dim(y)$ (e.g., for classification)
 - *i* is often in the 100-thousands or millions
 - Take network f and its parameters W, b
 - Use SGD (or variation) to find optimal parameters \boldsymbol{W} , \boldsymbol{b}
 - Gradients from backprop

Basic Recipe for Machine Learning

Split your data

Over and Underfitting

Source: Deep Learning by Adam Gibson, Josh Patterson, O'Reily Media Inc., 2017

Over and Underfitting

Source: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Hyperparameters

- Network architecture (e.g., num layers, #weights)
- Number of iterations
- Learning rate(s) (i.e., solver parameters, decay, etc.)
- Regularization (more later next lecture)
- Batch size
- •
- Overall: learning setup + optimization = hyperparameters

Hyperparameter Tuning

- Methods:
 - Manual search: most common ©
 - Grid search (structured, for 'real' applications)
 - Define ranges for all parameters spaces and select points
 - Usually pseudo-uniformly distributed
 - → Iterate over all possible configurations
 - Random search:
 - Like grid search but one picks points at random in the predefined ranges
 - Auto-MI:
 - Bayesian, gradient-based etc

10

Lecture 7 Training NN (part 2)

What we have seen so far

Output and Loss Functions

Neural Networks

Regression Losses

• L2 Loss:
$$L^2 = \sum_{i=1}^n (y_i - f(x_i))^2$$

training pairs $[x_i; y_i]$ (input and labels)

•	L1 Loss:	$L^1 = \sum_{i=1}^n$	$ y_i - f(\mathbf{x}_i) $
---	----------	----------------------	---------------------------

12	24	42	23
34	32	5	2
12	31	12	31
31	64	5	13

15	20	40	25
34	32	5	2
12	31	12	31
31	64	5	13

$$f(\mathbf{x}_i)$$

$$y_i$$

$$L^{2}(x,y) = 9 + 16 + 4 + 4 + 0 + \dots + 0 = 33$$

 $L^{1}(x,y) = 3 + 4 + 2 + 2 + 0 + \dots + 0 = 11$

Regression Losses: L2 vs L1

• L2 Loss:

$$L^2 = \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2$$

- Sum of squared differences (SSD)
- Prone to outliers
- Compute-efficient optimization
- Optimum is the mean

• L1 Loss:

$$L^{1} = \sum_{i=1}^{n} |y_{i} - f(x_{i})|$$

- Sum of absolute differences
- Robust (cost of outliers is linear)
- Costly to optimize
- Optimum is the median

Binary Classification: Sigmoid

training pairs $[x_i; y_i]$, $x_i \in \mathbb{R}^D$, $y_i \in \{1,0\}$ (2 classes)

$$p(y_i = 1 | x_i, \theta) = \sigma(s) = \frac{1}{1 + e^{-\sum_{d=0}^{D} \theta_d x_{id}}}$$

training pairs $[x_i; y_i]$, $x_i \in \mathbb{R}^D$, $y_i \in \{1, 2 \dots C\}$ (C classes)

• Softmax $p(y_i|x_i,\Theta) = \frac{e^{\frac{Sy_i}{\sum_{k=1}^C e^{S_k}}}}{\sum_{k=1}^C e^{S_k}} = \frac{e^{x_i\theta_{y_i}}}{\sum_{k=1}^C e^{x_i\theta_k}}$ Probability of the true class

training pairs $[x_i; y_i]$, $x_i \in \mathbb{R}^D$, $y_i \in \{1, 2 \dots C\}$ y_i : label (true class)

Parameters:

$$\mathbf{\Theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_C]$$

C: number of classes

s: score of the class

- 1. Exponential operation: make sure probability>0
- 2. Normalization: make sure probabilities sum up to 1.

Numerical Stability

$$p(y_i|\boldsymbol{x_i},\Theta) = \frac{e^{s_{y_i}}}{\sum_{k=1}^C e^{s_k}} = \frac{e^{s_{y_i}-s_{max}}}{\sum_{k=1}^C e^{s_k-s_{max}}}$$

Try to prove it by yourself ©

Cross-Entropy Loss (Maximum Likelihood Estimate)

$$L_i = -\log(p(y_i|\mathbf{x_i}, \Theta)) = -\log(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}})$$

Example: Cross-Entropy Loss

Cross Entropy
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

Score function
$$s = f(x_i, \boldsymbol{\Theta})$$

$$s = f(x_i, \boldsymbol{\Theta})$$

e.g.,
$$f(x_i, \boldsymbol{\theta}) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_C]$$

Suppose: 3 training examples and 3 classes

<u>ე</u>	cat
Š	chai
S	car

3.2

1.3

4.9

2.0

2.2

2.5

-3.1

Given a function with weights 0, training pairs $[x_i; y_i]$ (input and labels) $\boldsymbol{\theta_k} = \begin{bmatrix} b_k \\ \boldsymbol{w_k} \end{bmatrix}$ parameters for each class with $m{\mathcal{C}}$ classes

Example: Cross-Entropy Loss

Cross Entropy
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

Score function
$$s = f(x_i, \theta)$$

e.g., $f(x_i, \theta) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\theta_1, \theta_2, ..., \theta_C]$

Suppose: 3 training examples and 3 classes

O O	cat	3.2
	chair	5.1
S	car	-1.7

1.3 **4.9** 2.0

2.5 **-3.1**

2.2

Given a function with weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = [\begin{matrix} b_k \\ \boldsymbol{w}_k \end{matrix}]$ parameters for each class with \boldsymbol{C} classes

Image 1

_OSS 2.04

Example: Cross-Entropy Loss

Cross Entropy
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

Score function
$$s = f(x_i, \theta)$$

e.g., $f(x_i, \theta) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\theta_1, \theta_2, ..., \theta_C]$

Suppose: 3 training examples and 3 classes

() ()	cat	3.2
	chair	5.1
SC	car	-1.7

1.3 **4.9** 2.0 2.2 2.5 -3.1

__{OSS} 2.04 0.079 6.156

Given a function with weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = \begin{bmatrix} b_k \\ \boldsymbol{w}_k \end{bmatrix}$ parameters for each class with $\boldsymbol{\mathcal{C}}$ classes

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i = \frac{L_1 + L_2 + L_3}{3}$$

$$=\frac{2.04+0.079+6.156}{3}=$$
$$=2.76$$

Hinge Loss (SVM Loss)

- Score Function $s = f(x_i, \theta)$
 - eg, $f(x_i, \boldsymbol{\theta}) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_C]$

Hinge Loss (Multiclass SVM Loss)

$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

Multiclass SVM loss $L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$

Score function
$$s = f(x_i, \theta)$$

e.g., $f(x_i, \theta) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\theta_1, \theta_2, ..., \theta_C]$

Suppose: 3 training examples and 3 classes

S)	cat	3.2
	chair	5.1
S	car	-1.7

1.3 **4.9** 2.0

2.2 2.5 **-3.1** Given a function with weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = [\begin{matrix} b_k \\ \boldsymbol{w}_k \end{matrix}]$ parameters for each class with $\boldsymbol{\mathcal{C}}$ classes

loss

Multiclass SVM loss $L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$

Score function
$$s = f(x_i, \boldsymbol{\theta})$$

e.g., $f(x_i, \boldsymbol{\theta}) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_C]$

Suppose: 3 training examples and 3 classes

() ()	cat	3.2
	chair	5.1
S	car	-1.7

1.3 4.9 2.0

2.5 **-3.1**

2.2

Given a function with weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = [\begin{matrix} b_k \\ \boldsymbol{w}_k \end{matrix}]$ parameters for

each class with C classes

$$= \max(0, 5.1 - \frac{3.2}{1.7} + 1) + \max(0, -1.7 - \frac{3.2}{1.7} + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

$$= 2.9$$

Loss 2.9

Multiclass SVM loss $L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$

Score function
$$s = f(x_i, \boldsymbol{\theta})$$

e.g., $f(x_i, \boldsymbol{\theta}) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_{\mathcal{C}}]$

Suppose: 3 training examples and 3 classes

(1)	cat	3.2
	chair	5.1
S	car	-1.7

2.2 2.5 **-3.1** Given a function with weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = [\begin{matrix} b_k \\ \boldsymbol{w}_k \end{matrix}]$ parameters for each class with \boldsymbol{C} classes

$$L_2 = \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0 = \mathbf{0}$$

Loss

2.9

0

Multiclass SVM loss $L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$

Score function
$$s = f(x_i, \boldsymbol{\theta})$$

e.g., $f(x_i, \boldsymbol{\theta}) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_{\mathcal{C}}]$

Suppose: 3 training examples and 3 classes

weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = [\begin{matrix} b_k \\ \boldsymbol{w}_k \end{matrix}]$ parameters for each class with $\boldsymbol{\mathcal{C}}$ classes

 $L_3 = \max(0, 2.2 - (-3.1) + 1) +$

 $\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

Given a function with

(I)	cat	
Ö	chair	
S	car	

3.25.1

-1.7

1.3 **4.9**

2.0

2.2

2.5

-3.1

Loss

2.9

 C

12.9

Multiclass SVM loss $L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$

Score function
$$s = f(x_i, \boldsymbol{\theta})$$

e.g., $f(x_i, \boldsymbol{\theta}) = [x_{i0}, x_{i2}, ..., x_{id}] \cdot [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_{\mathcal{C}}]$

Suppose: 3 training examples and 3 classes

weights $\boldsymbol{\theta}$, training pairs $[\boldsymbol{x}_i; \boldsymbol{y}_i]$ (input and labels) $\boldsymbol{\theta}_k = [\begin{matrix} b_k \\ \boldsymbol{w}_k \end{matrix}]$ parameters for each class with \boldsymbol{C} classes

Given a function with

$I = \frac{1}{N} \sum_{i=1}^{N} I_{i,i} = \frac{1}{N}$	$L_1 + L_2 + L_3$	
$L - \frac{1}{N} \sum_{i=1}^{L_i} L_i -$	3	

g cat 3.2 5 chair 5.1 5 car -1.7 1.3 **4.9** 2.0

2.2 2.5 -3.1

$$= \frac{2.9 + 0 + 12.9}{3}$$
$$= 5.3$$

Loss

2.9

 \circ

12.9

Multiclass Classification: Hinge vs Cross-Entropy

• Hinge Loss: $L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$ • Cross Entropy Loss: $L_i = -\log(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}})$

Hinge Loss:
$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

Cross Entropy :
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

For image x_i (assume $y_i = 0$):

Scores

Hinge loss:

Cross Entropy loss:

Model 1

$$s = [5, -3, 2]$$

Model 2

$$s = [5, 10, 10]$$

Model 3

$$s = [5, -20, -20]$$

Hinge Loss:
$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

Cross Entropy: $L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$

For image x_i (assume $y_i = 0$):

	Scores	Hinge loss:	Cross Entropy loss:
Model 1	s = [5, -3, 2]	$\max(0, -3 - 5 + 1) + \max(0, 2 - 5 + 1) = 0$	
Model 2	s = [5, 10, 10]	max(0, 10 - 5 + 1) + max(0, 10 - 5 + 1) = 12	
Model 3	s = [5, -20, -20]	$\max(0, -20 - 5 + 1) + \max(0, -20 - 5 + 1) = 0$	
		Apparently Model 3 is better, bushow no difference between Mo	it losses odel 1&3,

12DI: Prof. Dai

since they all have same loss=0.

Hinge Loss:
$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

Cross Entropy:
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

For image x_i (assume $y_i = 0$):

	Scores	Hinge loss:	Cross Entropy loss:
Model 1	s = [5, -3, 2]	$\max(0, -3 - 5 + 1) + \max(0, 2 - 5 + 1) = 0$	$-\ln\left(\frac{e^5}{e^5 + e^3 + e^2}\right) = 0.05$
Model 2	s = [5, 10, 10]	max(0, 10 - 5 + 1) + max(0, 10 - 5 + 1) = 12	
Model 3	s = [5, -20, -20]	$\max(0, -20 - 5 + 1) + \\ \max(0, -20 - 5 + 1) = 0$	$-\ln\left(\frac{e^5}{e^5 + e^{-20} + e^{-20}}\right)$ $= 2 * 10^{-11}$

Model 3 has a clearly smaller loss now.

Hinge Loss:
$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

Cross Entropy:
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

For image x_i (assume $y_i = 0$):

	Scores	Hinge loss:	Cross Entropy loss:
Model 1	s = [5, -3, 2]	$\max(0, -3 - 5 + 1) + \max(0, 2 - 5 + 1) = 0$	$-\ln\left(\frac{e^5}{e^5 + e^3 + e^2}\right) = 0.05$
Model 2	s = [5, 10, 10]	max(0, 10 - 5 + 1) + max(0, 10 - 5 + 1) = 12	$-\ln\left(\frac{e^5}{e^5 + e^{10} + e^{10}}\right) = 5.70$
Model 3	s = [5, -20, -20]	$\max(0, -20 - 5 + 1) + \\ \max(0, -20 - 5 + 1) = 0$	$-\ln\left(\frac{e^5}{e^5 + e^{-20} + e^{-20}}\right)$ -2×10^{-11}

- Cross Entropy *always* wants to improve! (loss never 0)
- Hinge Loss saturates.

Loss in Compute Graph

 How do we combine loss functions with weight regularization?

 How to optimize parameters of our networks according to multiple losses?

ladu: Prof. Dai

Loss in Compute Graph

Want to find optimal $\boldsymbol{\theta}$. (weights are unknowns of optimization problem)

- Compute gradient w.r.t. **0**.
- Gradient $\nabla_{\theta}L$ is computed via backpropagation

I2DI: Prof. Dai

Loss in Compute Graph

• Score function $s = f(x_i, \theta)$ Given a function with weights θ , Training pairs $[x_i; y_i]$ (input and labels)

• Data Loss - Cross Entropy
$$L_i = -\log(\frac{e^{sy_i}}{\sum_k e^{s_k}})$$

$$L_i =$$

- SVM
$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

- Regularization Loss: e.g., L2-Reg: $R^2(W) = \sum w_i^2$
- Full Loss $L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R^2(W)$
- Full Loss = Data Loss + Reg Loss

Example: Regularization & SVM Loss

Multiclass SVM loss
$$L_i = \sum_{k \neq y_i} \max(0, f(x_i; \theta)_k - f(x_i; \theta)_{y_i} + 1)$$

Full loss
$$L = \frac{1}{N} \sum_{i=1}^{N} \sum_{k \neq y_i} \max(0, f(x_i; \boldsymbol{\theta})_k - f(x_i; \boldsymbol{\theta})_{y_i} + 1) + \lambda R(\boldsymbol{W})$$

$$L1$$
-Reg: $R^1(W) = \sum_{i=1}^D |w_i|$
 $L2$ -Reg: $R^2(W) = \sum_{i=1}^D w_i^2$

Example:

$$x = [1,1,1,1]^T$$
 $R^2(w_1) = 1$
 $w_1 = [1,0,0,0]^T$ $R^2(w_2) = 0.25^2 + 0.25^2 + 0.25^2 + 0.25^2$
 $w_2 = [0.25, 0.25, 0.25, 0.25]^T = 0.25$
 $x^T w_1 = x^T w_2 = 1$ $R^2(W) = 1 + 0.25 = 1.25$

Activation Functions

Neural Networks

Activation Functions or Hidden Units

$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

$$\frac{\partial L}{\partial s} = \frac{\partial \sigma}{\partial s} \frac{\partial L}{\partial \sigma} \qquad \frac{\partial \sigma}{\partial s} \qquad \frac{\partial L}{\partial \sigma}$$

$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

Output is always positive!

• Sigmoid output provides positive input for the next layer

What is the disadvantage of this?

Sigmoid Output not Zero-centered

We want to compute the gradient w.r.t. the weights

Assume we have all positive data:

$$\mathbf{x} = (x_1, x_2)^T > 0$$

It is going to be either positive or negative for all weights' update.

Sigmoid Output not Zero-centered

 w_1 , w_2 can only be increased or decreased at the same time, which is not good for update.

That is also why you need zero-centered data.

Source:

TanH Activation

[LeCun et al. 1991] Improving Generalization Performance in Character Recognition

Rectified Linear Units (ReLU)

[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks

Rectified Linear Units (ReLU)

[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks

Rectified Linear Units (ReLU)

 Initializing ReLU neurons with slightly positive biases (0.01) makes it likely that they stay active for most inputs

$$f\left(\sum_{i}w_{i}x_{i}+b\right)$$

Leaky ReLU

Does not die

[Mass et al., ICML 2013] Rectifier Nonlinearities Improve Neural Network Acoustic Models

Parametric ReLU

Does not die

[He et al. ICCV 2015] Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Maxout Units

$$Maxout = \max(w_1^T x + b_1, w_2^T x + b_2)$$

[Goodfellow et al. ICML 2013] Maxout Networks

Maxout Units

Piecewise linear approximation of a convex function with N pieces

[Goodfellow et al. ICML 2013] Maxout Networks

Maxout Units

In a Nutshell

Source: https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a

Quick Guide

Sigmoid/TanH are not really used in feedforward nets.

ReLU is the standard choice.

Second choice are the variants of ReLU or Maxout.

Recurrent nets will require Sigmoid/TanH or similar.

ladu: Prof. Dai

Weight Initialization

How do I start?

Initialization is Extremely Important!

How do I start?

All Weights Zero

What happens to the gradients?

- The hidden units are all going to compute the same function, gradients are going to be the same
 - No symmetry breaking

Gaussian with zero mean and standard deviation 0.01

- Let's see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data

Small w_i^l cause small output for layer l:

$$f_l\left(\sum_i w_i^l x_i^l + b^l\right) \approx \mathbf{0}$$

Forward

Even activation function's gradient is ok, we still have vanishing gradient problem.

Small outputs of layer l (input of layer l+1) cause small gradient w.r.t to the weights of layer l+1:

$$f_{l+1} \left(\sum_{i} w_i^{l+1} x_i^{l+1} + b^{l+1} \right)$$

$$\frac{\partial L}{\partial w_i^{l+1}} = \frac{\partial L}{\partial f_{l+1}} \cdot \frac{\partial f_{l+1}}{\partial w_i^{l+1}} = \frac{\partial L}{\partial f_{l+1}} \cdot x_i^{l+1} \approx 0$$

Vanishing gradient, caused by small output

Backward

Big Random Numbers

Gaussian with zero mean and standard deviation 1

- Let us see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data

Big Random Numbers

tanh as activation functions

Output saturated to -1 and 1

Big Random Numbers

Output saturated to -1 and 1.
Gradient of the activation
function becomes close to 0.

$$f(s) = f\left(\sum_{i} w_{i} x_{i} + b\right)$$

$$\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial f} \cdot \frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial w_i} \approx 0$$

Vanishing gradient, caused by saturated activation function.

How to solve this?

Working on the initialization

Working on the output generated by each layer

Gaussian with zero mean, but what standard deviation?

$$Var(s) = Var\left(\sum_{i}^{n} w_{i} x_{i}\right) = \sum_{i}^{n} Var(w_{i} x_{i})$$

Notice: n is the number of input neurons for the layer of weights you want to initialized. This n is not the number N of input data $X \in \mathbb{R}^{N \times D}$. For the first layer n = D.

Tips:

$$E[X^2] = Var[X] + E[X]^2$$

If X, Y are independent:
 $Var[XY] = E[X^2Y^2] - E[XY]^2$
 $E[XY] = E[X]E[Y]$

 Gaussian with zero mean, but what standard deviation?

$$Var(s) = Var\left(\sum_{i}^{n} w_{i}x_{i}\right) = \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
Zero mean
$$Zero mean$$

 Gaussian with zero mean, but what standard deviation?

$$Var(s) = Var\left(\sum_{i}^{n} w_{i}x_{i}\right) = \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = n(Var(w) Var(x))$$

$$\text{Identically distributed (each random variable has the same distribution)}$$

 How to ensure the variance of the output is the same as the input?

Goal:

$$Var(s) = Var(x)$$

$$\longrightarrow n \cdot Var(w)Var(x) = Var(x)$$

$$= 1$$

$$Var(w) = \frac{1}{n}$$

n: number of input neurons

$$Var(w) = \frac{1}{n}$$

tanh as activation functions

Xavier Initialization with ReLU (Kaiming Initialization)

$$Var(w) = \frac{1}{n}$$

ReLU kills Half of the Data What's the solution?

When using ReLU, output close to zero again 😌

Kaiming Initialization with ReLU

$$Var(w) = \frac{1}{n/2} = \frac{2}{n}$$

layer 1

layer 2

layer 3

Kaiming Initialization with ReLU

$$Var(w) = \frac{2}{n}$$

It makes a huge difference!

Use ReLU and Xavier/2 initialization

Summary

Image Classification	Output Layer	Loss function
Binary Classification	Sigmoid	Binary Cross entropy
Multiclass Classification	Softmax	Cross entropy

Other Losses:

SVM Loss (Hinge Loss), L1/L2-Loss

Initialization of optimization

- How to set weights at beginning

Next Lecture

- Next lecture
 - More about training neural networks: regularization, dropout, data augmentation, batch normalization, etc.
 - Followed by CNNs

12DL: Prof. Dai

See you next week!

I2DL: Prof. Dai

References

- Goodfellow et al. "Deep Learning" (2016),
 - Chapter 6: Deep Feedforward Networks
- Bishop "Pattern Recognition and Machine Learning" (2006),
 - Chapter 5.5: Regularization in Network Nets
- http://cs231n.github.io/neural-networks-1/
- http://cs231n.github.io/neural-networks-2/
- http://cs231n.github.io/neural-networks-3/

12DL: Prof. Dai