

§6.6

Dr. Basilio

Jutiine

Guiding Questions

nverse Trig

Derivatives nverse Trig

ADRs & Integrals of Inverse Trip

§6.6: Inverse Trigonometric Functions

Ch 6: Exponentials, Logs, & Inverse Trig Functions
Math 5B: Calculus II

Dr. Jorge Eduardo Basilio

Department of Mathematics & Computer Science Pasadena City College

Class #4 Notes

February 28, 2019 Spring 2019

Outline

§6.6

Dr. Basilio

Outline

- **Guiding Questions**
- Review of the Trigonometric Functions
- Derivatives of the Inverse Trigonometric Functions
- 4 Anti-Derivatives and Definite Integrals of the Inverse Trigonometric Functions

Guiding Questions for §6.6

§6.6

Dr. Basilio

Guiding Questions

Guiding Question(s)

- What are the derivatives of the inverse trigonometric functions?
- What are the anti-derivative of the inverse trigonometric functions?

Review of the Trigonometric Function

Recall:

- sin(x) domain = \mathbb{R}
- cos(x) domain = \mathbb{R}
- tan(x) domain $= \cdots \cup (-\pi/2, \pi/2) \cup \cdots$

Restricted domain for inverse trig:

- sin(x) domain = $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- cos(x) domain = $[0, \pi]$
- tan(x) domain = $(-\pi/2, \pi/2)$

§**6.6**

Dr. Basilio

utline

uiding uestions

Inverse Trig

Derivatives Inverse Trig

ADRs & Integrals of Inverse Trig

§**6.6**

Dr. Basilio

utline

Guiding Question:

Inverse Trig

Derivatives Inverse Tri

ADRs & Integrals of Inverse Trip

§**6.6**

Dr. Basilio

Outline

Guiding Questions

Inverse Trig

Derivatives Inverse Trig

ADRs & Integrals of Inverse Trig

Definition 1: Arcsine = Inverse Sine

Let $f(x) = \sin(x)$ with restricted domain $D(f) = [-\frac{\pi}{2}, \frac{\pi}{2}]$. We defined the arcsine function to be $f^{-1}(x)$, that is, it is the inverse of the function $f(x) = \sin(x)$ on D(f). We denote $f^{-1}(x)$ either by $\sin^{-1}(x)$ or $\arcsin(x)$.

- $D(f) = [-\frac{\pi}{2}, \frac{\pi}{2}]$ and R(f) = [-1, 1]
- $D(f^{-1}) = [-1, 1]$ and $R(f^{-1}) = [-\frac{\pi}{2}, \frac{\pi}{2}]$
- $\sin(x)$ with $x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \Leftrightarrow \arcsin(x) = \sin^{-1}(x)$ with $x \in [-1, 1]$
- $y = \sin(x)$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2} \Leftrightarrow x = \sin^{-1}(y)$, $-1 \le y \le 1$
- $y = \sin(x)$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2} \Leftrightarrow x = \arcsin(y)$, $-1 \le y \le 1$

§**6.6**

Dr. Basilio

Outline

Guiding Questions

Inverse Trig

Derivatives Inverse Trig

ADRs & Integrals of Inverse Trig

Example 1: Arcsine = Inverse Sine

- (a) $\arcsin(-\frac{1}{2}) = ?$ \Leftrightarrow $\sin(?) = -\frac{1}{2}$ Using Unit Circle approach, $\arcsin(-\frac{1}{2}) = -\pi/6$
- (b) Find $\tan(\arcsin(\frac{1}{3}))$. We start with $x = \arcsin(1/3)$ and re-write it as $\sin(x) = 1/3$. Draw a right-triangle with Hypothenuse = 3 and Opposite = 1 and angle x. Then $\tan(x) = O/A = 1/2\sqrt{2} = \sqrt{2}/2$.

§**6.6**

Dr. Basilio

Outline

Guiding Questions

Inverse Trig

Derivatives Inverse Trig

ADRs & Integrals of Inverse Trig

Definition 2: Arccosine = Inverse Cosine

Let $f(x) = \cos(x)$ with restricted domain $D(f) = [0, \pi]$. We defined the arccosine function to be $f^{-1}(x)$, that is, it is the inverse of the function $f(x) = \cos(x)$ on D(f). We denote $f^{-1}(x)$ either by $\cos^{-1}(x)$ or $\arccos(x)$.

- $D(f) = [0, \pi]$ and R(f) = [-1, 1]
- $D(f^{-1}) = [-1, 1]$ and $R(f^{-1}) = [0, \pi]$
- cos(x) with $x \in [0, \pi] \Leftrightarrow arccos(x) = cos^{-1}(x)$ with $x \in [-1, 1]$
- $y = \cos(x)$, $0 \le x \le \pi \Leftrightarrow x = \cos^{-1}(y)$, $-1 \le y \le 1$
- $y = \cos(x)$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2} \Leftrightarrow x = \arccos(y)$, $-1 \le y \le 1$

§**6.6**

Dr. Basilio

Outline

Guiding Questions

Inverse Trig

Perivatives Enverse Trig

ADRs & ntegrals of nverse Trig

Definition 3: Arctangent = Inverse Tangent

Let $f(x) = \tan(x)$ with restricted domain $D(f) = (-\frac{\pi}{2}, \frac{\pi}{2})$. We defined the arctangent function to be $f^{-1}(x)$, that is, it is the inverse of the function $f(x) = \tan(x)$ on D(f). We denote $f^{-1}(x)$ either by $\tan^{-1}(x)$ or $\arctan(x)$.

- $D(f)=(-\frac{\pi}{2},\frac{\pi}{2})$ and $R(f)=\mathbb{R}=(-\infty,\infty)$
- $D(f^{-1})=\mathbb{R}=(-\infty,\infty)$ and $R(f^{-1})=(-\frac{\pi}{2},\frac{\pi}{2})$
- tan(x) with $x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \Leftrightarrow arctan(x) = tan^{-1}(x)$ with $x \in \mathbb{R}$
- $y = \tan(x)$, $-\frac{\pi}{2} < x < \frac{\pi}{2} \Leftrightarrow x = \tan^{-1}(y)$, $-\infty < y < \infty$
- $y = \tan(x)$, $-\frac{\pi}{2} < x < \frac{\pi}{2} \Leftrightarrow x = \arctan(y)$, $-\infty < y < \infty$

§**6.6**

Dr. Basilio

Outline

uiding uestions

Inverse Trig

Derivatives nverse Trig

ADRs & Integrals of

Activity 1:

(a) Simplify the expression: cos(arctan(x))

(b) Evaluate: $\lim_{x\to -5^-} \arctan\left(\frac{1}{x+5}\right)$

86.6

Dr. Basilio

Derivatives Inverse Trig

Keeping in mind the domains of each of the inverse trig functions and their graphs look continuous and differentiable, it's not surprising they have derivative rules.

Theorem 1: Derivatives of the Inverse Trig Functions

(DR 1)
$$\frac{d}{dx} [\arcsin(x)] = \frac{1}{\sqrt{1-x^2}}, \quad -1 < x < 1$$

(DR 2)
$$\frac{d}{dx} [\arccos(x)] = \frac{-1}{\sqrt{1-x^2}}, \quad -1 < x < 1$$

(DR 3)
$$\frac{d}{dx} \left[\arctan(x) \right] = \frac{1}{1+x^2}, \quad -\infty < x < \infty$$

(DR 4)
$$\frac{d}{dx} \left[\csc^{-1}(x) \right] = \frac{-1}{x\sqrt{x^2-1}}, \quad -1 < x < 1$$

(DR 5)
$$\frac{d}{dx} \left[\sec^{-1}(x) \right] = \frac{1}{x\sqrt{x^2 - 1}}, \quad -1 < x < 1$$

(DR 6)
$$\frac{d}{dx} \left[\cot^{-1}(x) \right] = \frac{-1}{1+x^2}, \quad -\infty < x < \infty$$

§**6.6**

Dr. Basilio

Outline

Guiding Questions

Inverse Trig

ADRs & Integrals of

ntegrals of nverse Trig

We prove all of these with the same general idea: re-write the equation and use implicit differentiation. This is basically they same proof technique we used for the derivative of ln(x) in 6.4.

DR1:
$$\frac{d}{dx} \left[\arcsin(x) \right] = \frac{1}{\sqrt{1-x^2}}$$

Proof: Proof of Derivative of Arcsine

- $y = \arcsin(x) \Leftrightarrow \sin(y) = x$.
- Implicitly Differentiate:

$$\frac{d}{dx}[\sin(y)] = \frac{d}{dx}[x]$$

$$\cos(y)\frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos(y)}$$

§**6.6**

Dr. Basilio

Outline

Guiding Questions

Inverse Trig

Derivatives Inverse Trig

ADRs &
Integrals of

Proof: Proof of Derivative of Arcsine

Cont.

- So, if we can replace cos(y) with the correct expression involving x, then we're done.
- Draw a right-triangle with angle y and side lengths O=x, H=1 using SOH. The missing adjacent side is then $A=\sqrt{1-x^2}$. So, using CAH, we have $\cos(y)=\sqrt{1-x^2}/1=\sqrt{1-x^2}$.
- Alternatively, we can use trig identities: $\cos(y) = \sqrt{1 \sin^2(y)} = \sqrt{1 x^2}$ since $x = \sin(y)$.
- Done!

§**6.6**

Dr. Basilio

utline

Questions

nverse Trig

Derivatives Inverse Trig

DRs &

DRs & attegrals of averse Trig

Activity 2:

Prove the following formulas:

(a)
$$\frac{d}{dx} [\arccos(x)] = \frac{-1}{\sqrt{1-x^2}}, \quad -1 < x < 1$$

(b)
$$\frac{d}{dx} \left[\operatorname{arctan}(x) \right] = \frac{1}{1+x^2}, \quad -\infty < x < \infty$$

§6.6

Dr. Basilio

Outline

Guiding Questions

Derivatives

Inverse Trig

ADRs &

ntegrals of nverse Trig

Activity 3:

Find the derivatives of the following functions:

- (a) $L(x) = x^3 \arctan(x) + e^x \ln(x)$
- (b) $P(t) = 2^{t \arcsin(t)}$
- (c) $m(z) = \left(\sin^{-1}(5z) + \tan^{-1}(4-z)\right)^{27}$
- (d) $s(y) = \arctan(\log_5(1+y^2))$

Anti-Derivatives and Definite Integrals of the Inverse Trigonometric Functions

§6.6

Dr. Basilio

Outline

Guiding Questions

nverse Trig

erivatives overse Trig

ADRs & Integrals of Inverse Trig

Each of the formulas for the DRs of the inverse trig functions gives rise to its own anti-derivative formula. The two most important are:

Theorem 2: Anti-Derivative Rules for Inverse Trig

(ADR 1)
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C = \sin^{-1}(x) + C$$
(ADR 2)
$$\int \frac{1}{1+x^2} dx = \arctan(x) + C = \tan^{-1}(x) + C$$

Anti-Derivatives and Definite Integrals of the Inverse Trigonometric Functions

§**6.6**

Dr. Basilio

utline

uiding

verse Trig

rivatives

ADRs &

ADRs & Integrals of Inverse Trig

Activity 4:

Evaluate the following anti-derivatives and definite integrals:

- (a) $\int_0^{1/4} \frac{1}{\sqrt{1-4x^2}} dx$
- (b) $\int \frac{1}{t^2 + a^2} dt$
- $(c) \int \frac{1}{w^4 + 16} dw$