Intel Summer Camp 2021

Introduction to Generative Adversarial Networks

IOTG Computer Vision Algo R&D Vladislav Sovrasov

Agenda

- What is a generative model?
- When do we need to generate new data?
- Overview of the GAN learning framework
- How to evaluate GANs?
- Problems and limitations of the approach
- Examples of practical applications

Discriminative and generative learning

- Discriminative model tries to establish a boundary between classes. It learns a conditional distribution p(y|x).
- Generative models can generate new data instances. They learn the joint distribution p(x,y) or p(x) if there are no labels.

When do we need to generate new data?

Image credit: https://arxiv.org/pdf/1702.00783.pdf

Image credit: https://github.com/csxmli2016/SymmFCNet

Why not L2 reconstruction?

THE AVERAGE FACE

MSE + BCE

Avery Allen, Wenchen Li - Generative Adversarial Denoising Autoencoder for Face Completion (2016)

Pioneering works

- Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio -Generative Adversarial Networks (2014)
- Mehdi Mirza, Simon Osindero Conditional Generative Adversarial Nets (2014)
- Alec Radford, Luke Metz, Soumith Chintala Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (2015)

intel

Dynamics of research on the GANs topic

"Generative Adversarial Networks is the most interesting idea in the last 10 years in Machine Learning." — Yann LeCun, Chief Al scientist at Facebook

Cumulative number of paper publications/journals related to GANs per year since its introduction in 2014:

Image credit: Farou, Zakarya & Mouhoub, Noureddine & Horvath, Tomas. (2020). Data Generation Using Gene Expression Generator.

Overview of the GAN learning framework

Image credit: https://medium.com/

Adversarial learning technique

- x real data
- z latent variable
- D discriminator
- G generator

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

How to evaluate GANs?

Internet of Things Group intel® 1

How to evaluate GANs?

- Manual Image Inspection
- Birthday paradox test
- Nearest Neighbors test (find the closest image from a set of real images)
- Inception Score:
 - Collect output of the Inception V3 model on fake images: p(y|x)
 - Compute the marginal distribution of labels p(y)
 - Compute the average KL-divergence between p(y|x) and p(y)

$$\begin{split} D_{KL}(p(y|x)||p(y)) &= \sum_{y=1}^{C} p(y|x) \log \left(\frac{p(y|x)}{p(y)}\right) \\ IS &= \exp \left[\mathbb{E}_x D_{KL}(p(y|x)||p(y))\right] \end{split}$$

Frechet Inception Score

Problems and limitations of GANs

- Optimization process in not always stable and hard to tune
- Mode collapse
- Inconsistent background
- High-frequency artifacts
- Restricted capacity of the generator and discriminator
- Inconsistency between the learned and actual distribution

Internet of Things Group intel

Pix2Pix

Conditional GAN trained on image pairs.

Note: the generator has no additional random input

Phillip Isola et al.: Image-to-Image Translation with Conditional Adversarial Nets, CVPR`2017

Internet of Things Group intel® 1

Pix2Pix

Internet of Things Group 14

Style GAN

Tero Karras et al.: A Style-Based Generator Architecture for Generative Adversarial Networks (2018)

Problem formulation: let wee need to learn to transfer images from one domain to another without implicit pairwise annotation

zebra \rightarrow horse

horse -> zebra

Jun-Yan Zhu et al.: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (2017)

Internet of Things Group intel。 17

Internet of Things Group intel. 18

Internet of Things Group intel。

Live Face De-Identification in Video

Oran Gafni et al.: Live Face De-Identification in Video, ICCV`2019

Other examples of applications

Dragos Costea et al.: Creating Roadmaps in Aerial Images with Generative Adversarial Networks and Smoothing-based Optimization (2017)

Jiajun Wu et al.: Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (2016)

#