Due on May 14, 2024

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 1

- 1. $f(x) f(\bar{x}) = \int_0^1 \langle \nabla f(\mathbf{x} + t(x \bar{x}), x \bar{x}) \rangle dt$ should be $f(x) - f(\bar{x}) = \int_0^1 \langle \nabla f(\bar{x} + t(x - \bar{x}), x - \bar{x}) \rangle dt$
- 2. (continue from the previous equation) ... $|\int_0^1 \langle \nabla f(\bar{x} + t(x \bar{x}) \nabla f(\bar{x}), x \bar{x}) \rangle dt|$ should drop the absolute value sign
- 3. The correct equation consists the previous three errors should be

$$\begin{split} &f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle \\ &= \int_0^1 \langle \nabla f(\bar{x} + t(x - \bar{x}), x - \bar{x}) - \nabla f(\bar{x}), x - \bar{x} \rangle \, dt \\ &\leq \int_0^1 ||\nabla f(\bar{x} + t(x - \bar{x})) - \nabla f(\bar{x})|| \, ||x - \bar{x}|| \, dt \end{split}$$

Cauchy Schwarz Inequality

4. Continue with previous derivation we have

$$\int_{0}^{1} ||\nabla f(\bar{x} + t(x - \bar{x})) - \nabla f(\bar{x})|| \, ||x - \bar{x}|| \, dt$$

$$\leq \int_{0}^{1} L||\bar{x} + t(x - \bar{x}) - \bar{x}|| \, ||x - \bar{x}|| \, dt$$

$$= \int_{0}^{1} L||t(x - \bar{x})|| \, ||x - \bar{x}|| \, dt$$

$$= L||x - \bar{x}||^{2} \int_{0}^{1} t \, dt$$

$$= L||x - \bar{x}||^{2} (\frac{t^{2}}{2}|_{0}^{1})$$

$$= \frac{L}{2}||x - \bar{x}||^{2}$$

 ${\bf Lipschitz} \ {\bf Continuous} \ {\bf Gradient}$

where in the original proof, there is an error at $\dots \int_0^1 \frac{Lt}{2} \dots$

5-10. There are serveral errors in the last part of the proof. In addition to adding a half to Lt. The derivation also does not follow the correct steps of integration. Item 3 and 4 above show the correct derivation and conclude the proof.

Exercise 2

(a)

Since \mathbf{Q} is a square matrix, we can write $\mathbf{Q} = \mathbf{U}\Lambda\mathbf{U}^{\top}$ where \mathbf{U} is an orthogonal matrix and Λ is a diagonal matrix with the eigenvalues of \mathbf{Q} i.e. λ_i on the diagonal. Then, we have

$$\begin{split} \langle \mathbf{x}, \mathbf{Q} \mathbf{x} \rangle &= \langle \mathbf{x}, \mathbf{U} \Lambda \mathbf{U}^{\top} \mathbf{x} \rangle \\ &= \mathbf{x}^{\top} \mathbf{U} \Lambda \mathbf{U}^{\top} \mathbf{x} \\ &= (\mathbf{U}^{\top} \mathbf{x})^{\top} \Lambda \mathbf{U}^{\top} \mathbf{x} \\ &= (\mathbf{U} \mathbf{x})^{\top} \Lambda (\mathbf{U} \mathbf{x}) & \mathbf{U} = \mathbf{U}^{\top} \\ &= \sum_{i=1}^{n} \lambda_{i} ((\mathbf{U} \mathbf{x})_{i})^{2} \\ &\leq \sum_{i=1}^{n} \lambda_{\max}(\mathbf{Q}) ((\mathbf{U} \mathbf{x})_{i})^{2} \\ &= \lambda_{\max}(\mathbf{Q}) \sum_{i=1}^{n} ((\mathbf{U} \mathbf{x})_{i})^{2} \\ &= \lambda_{\max}(\mathbf{Q}) (\mathbf{U} \mathbf{x})^{\top} \mathbf{U} \mathbf{x} \\ &= \lambda_{\max}(\mathbf{Q}) \mathbf{x}^{\top} \mathbf{U}^{\top} \mathbf{U} \mathbf{x} \\ &= \lambda_{\max}(\mathbf{Q}) |\mathbf{x}|^{2} \end{split}$$

$$\mathbf{U}^{\top} \mathbf{U} = \mathbf{I}$$

$$= \lambda_{\max}(\mathbf{Q}) |\mathbf{x}|^{2}$$

Similar derivation can be shown for the smallest eigenvalue: $\langle \mathbf{x}, \mathbf{Q} \mathbf{x} \rangle \geq \lambda_{\min}(\mathbf{Q}) ||\mathbf{x}||^2$.

(b)

Suppose λ is an eigenvalue of **Q** with eigenvector **v**. Then, we have

$$\mathbf{Q}\mathbf{v} = \lambda \mathbf{v} \Rightarrow \tau \mathbf{Q}\mathbf{v} = \tau \lambda \mathbf{v}$$

$$\Rightarrow \mathbf{I}\mathbf{v} - \tau \mathbf{Q}\mathbf{v} = \mathbf{I}\mathbf{v} - \tau \lambda \mathbf{v}$$

$$\Rightarrow (\mathbf{I} - \tau \mathbf{Q})\mathbf{v} = (\mathbf{I} - \tau \operatorname{diag}(\lambda))\mathbf{v}$$

 $\mathbf{I} - \tau \operatorname{diag}(\lambda)$ is a matrix with same diagonal entries $1 - \tau \lambda$

$$\Rightarrow (\mathbf{I} - \tau \mathbf{Q})\mathbf{v} = (1 - \tau \lambda)\mathbf{v}$$

Above shows that $1 - \tau \lambda$ is an eigenvalue of $\mathbf{I} - \tau \mathbf{Q}$.

$$\Rightarrow (\mathbf{I} - \tau \mathbf{Q})(\mathbf{I} - \tau \mathbf{Q})\mathbf{v} = (\mathbf{I} - \tau \mathbf{Q})(1 - \tau \lambda)\mathbf{v}$$

$$\Rightarrow (\mathbf{I} - \tau \mathbf{Q})(\mathbf{I} - \tau \mathbf{Q})\mathbf{v} = (1 - \tau \lambda)(\mathbf{I} - \tau \mathbf{Q})\mathbf{v}$$

$$\Rightarrow (\mathbf{I} - \tau \mathbf{Q})(\mathbf{I} - \tau \mathbf{Q})\mathbf{v} = (1 - \tau \lambda)(1 - \tau \lambda)\mathbf{v}$$

$$\Rightarrow (\mathbf{I} - \tau \mathbf{Q})^{2}\mathbf{v} = (1 - \tau \lambda)^{2}\mathbf{v}$$

Thus $(1 - \tau \lambda)^2$ is an eigenvalue of $(\mathbf{I} - \tau \mathbf{Q})^2$ for each eigenvalue λ of \mathbf{Q} .

Exercise 3

(a)

Projection of \mathbf{v} onto the space spanned by the columns of \mathbf{A} means that we want to find a point in the column space of \mathbf{A} that is closest to \mathbf{v} i.e. for vector \mathbf{p} in the column space we want the distance between \mathbf{v} and \mathbf{p} to be as small as possible

 $\mathop{\rm argmin}_p \, \mathop{\rm dist} \left({\bf v}, {\bf p} \right)$

which is equivalent to

 $\underset{p}{\operatorname{argmin}} \ ||\mathbf{v} - \mathbf{p}||$

or

 $\underset{p}{\operatorname{argmin}} \sqrt{\langle \mathbf{v} - \mathbf{p}, \mathbf{v} - \mathbf{p} \rangle}$

(b)

In case of m=1, the subspace spanned by **u** is just a line $c\mathbf{u}$ for some constant $c\in\mathbb{R}$. We have

$$\underset{c}{\operatorname{argmin}} \sqrt{\langle \mathbf{v} - c\mathbf{u}, \mathbf{v} - c\mathbf{u} \rangle}$$

which by definition of the inner product, is equivalent to

$$\underset{c}{\operatorname{argmin}} \ (\mathbf{v} - c\mathbf{u})^{\top} \mathbf{Q} (\mathbf{v} - c\mathbf{u})$$

To find minimum, we take derivative of function

$$f(c) = (\mathbf{v} - c\mathbf{u})^{\top} \mathbf{Q} (\mathbf{v} - c\mathbf{u}) = \mathbf{v}^{\top} \mathbf{Q} \mathbf{v} - 2(\mathbf{v}^{\top} \mathbf{Q} \mathbf{u}) c + (\mathbf{u}^{\top} \mathbf{Q} \mathbf{u}) c^{2}$$

We have

$$f'(c) = 2(\mathbf{u}^{\top} \mathbf{Q} \mathbf{u})c - 2(\mathbf{v}^{\top} \mathbf{Q} \mathbf{u})$$

and the second derivative

$$f''(c) = 2(\mathbf{u}^{\top} \mathbf{Q} \mathbf{u}) \ge 0$$

which indicate function f is convex now we just have to solve f'(c) = 0

$$\begin{aligned} 2(\mathbf{u}^{\top}\mathbf{Q}\mathbf{u})c - 2(\mathbf{v}^{\top}\mathbf{Q}\mathbf{u}) &= 0 \\ c &= \frac{\mathbf{v}^{\top}\mathbf{Q}\mathbf{u}}{\mathbf{u}^{\top}\mathbf{Q}\mathbf{u}} \end{aligned}$$

and the projection $\mathbf{p} = \frac{\mathbf{v}^{\top} \mathbf{Q} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{Q} \mathbf{u}} \mathbf{u}$

(c)

In case of m > 1, we have a vector $\hat{\mathbf{c}} \in \mathbb{R}^m$ defined by

$$\hat{\mathbf{c}} := \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}$$

where the projection $\mathbf{p} = \mathbf{A}\hat{\mathbf{c}}$. We have

$$\underset{\boldsymbol{\hat{c}}}{\operatorname{argmin}} \ (\mathbf{v} - \mathbf{A} \boldsymbol{\hat{c}})^{\top} \mathbf{Q} (\mathbf{v} - \mathbf{A} \boldsymbol{\hat{c}})$$

To find the minimum, similarly, we define a function

$$g(\hat{\mathbf{c}}) = \mathbf{v}^{\top} \mathbf{Q} \mathbf{v} - 2 \mathbf{v}^{\top} \mathbf{Q} \mathbf{A} \hat{\mathbf{c}} + \hat{\mathbf{c}}^{\top} \mathbf{A}^{\top} \mathbf{Q} \mathbf{A} \hat{\mathbf{c}}$$

We calculate its gradient

$$\nabla g(\mathbf{\hat{c}}) = -2\mathbf{v}^{\mathsf{T}}\mathbf{Q}\mathbf{A} + 2\mathbf{A}^{\mathsf{T}}\mathbf{Q}\mathbf{A}\mathbf{\hat{c}}$$

and its Hessian

$$\nabla^2 g(\mathbf{\hat{c}}) = 2\mathbf{A}^\top \mathbf{Q} \mathbf{A} = \mathbf{H}$$

We can show that ${\bf H}$ is positive semi-definite. Suppose λ is an eigenvalue of ${\bf H}$ and with corresponding eigenvector ${\bf e}$

$$\begin{aligned} \mathbf{H}\mathbf{e} &= \lambda \mathbf{e} \\ 2\mathbf{A}^{\top}\mathbf{Q}\mathbf{A}\mathbf{e} &= \lambda \mathbf{e} \\ 2\mathbf{e}^{\top}\mathbf{A}^{\top}\mathbf{Q}\mathbf{A}\mathbf{e} &= \lambda \mathbf{e}^{\top}\mathbf{e} \\ \lambda &= \frac{2(\mathbf{A}\mathbf{e})^{\top}\mathbf{Q}\mathbf{A}\mathbf{e}}{\mathbf{e}^{\top}\mathbf{e}} \geq 0 \end{aligned}$$

Thus we can get the minimizer $\hat{\mathbf{c}}$ by solving $\nabla g(\hat{\mathbf{c}}) = 0$

$$-2\mathbf{v}^{\top}\mathbf{Q}\mathbf{A} + 2\mathbf{A}^{\top}\mathbf{Q}\mathbf{A}\hat{\mathbf{c}} = 0$$
$$\mathbf{A}^{\top}\mathbf{Q}\mathbf{A}\hat{\mathbf{c}} = \mathbf{v}^{\top}\mathbf{Q}\mathbf{A}$$

Exercise 4

(a)

Define \tilde{A} and \tilde{f} accordingly:

$$\tilde{A} = \begin{pmatrix} A \\ \sqrt{\mu}D \end{pmatrix}, \quad \tilde{f} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

Note the 0 in \tilde{f} denotes a zero vector in \mathbb{R}^{2N}

where $\tilde{A} \in \mathbb{R}^{3N \times N}$ and $\tilde{f} \in \mathbb{R}^{3N}$.

We can verify that the reconstruction is equivalent to the original problem.

$$\begin{split} \frac{1}{2}||\tilde{A}u - \tilde{f}||^2 &= \frac{1}{2}(||\tilde{A}u||^2 - 2(\tilde{A}u)^\top \tilde{f} + ||\tilde{f}||^2) \\ &= \frac{1}{2}(||Au||^2 + ||\sqrt{\mu}Du||^2 - 2(Au)^\top f + ||f||^2 + 0) \\ &= \frac{1}{2}(||Au||^2 + \mu||Du||^2 - 2(Au)^\top f + ||f||^2) \\ &= \frac{1}{2}(||Au||^2 - 2(Au)^\top f + ||f||^2) + \frac{\mu}{2}||Du||^2 \\ &= \frac{1}{2}||Au - f||^2 + \frac{\mu}{2}||Du||^2 \end{split}$$

(b)

We have the following objective function:

$$\begin{split} L(u) &= \frac{1}{2}||\tilde{A}u - \tilde{f}||^2 \\ &= \frac{1}{2}||\tilde{A}u||^2 - \tilde{f}^\top \tilde{A}u + \frac{1}{2}||\tilde{f}||^2 \\ &= \frac{1}{2}\langle u, \tilde{A}^\top \tilde{A}u \rangle + \langle -A^\top f, u \rangle + \frac{1}{2}||f||^2 \end{split}$$

with corresponding standard form $L(u) = \frac{1}{2}\langle u, Qu \rangle + \langle b, u \rangle + c$ where $Q = \tilde{A}^{\top}\tilde{A} = A^{\top}A + \mu D^{\top}D$, $b = -A^{\top}f$ and $c = \frac{1}{2}||f||^2$ and its gradient:

$$\nabla L(u) = Qu + b = (A^{\top}A + \mu D^{\top}D)u - A^{\top}f$$

We can find the optimal step size for exact line search by solving the following minimization problem:

$$\min_{\tau_k > 0} L(u^{(k)} - \tau_k \nabla L(u^{(k)}))$$

which is the derivation is similar to Exercise 1 in Assignment 2. In the end, we get:

$$\tau_k = \frac{\nabla L(u^{(k)})^\top \nabla L(u^{(k)})}{\nabla L(u^{(k)})^\top Q \nabla L(u^{(k)})}$$