Game Theory

Given a pile of n stones. Two players are playing a game of removing 1 or 2 stone from the pile in each turn. The player unable to move will lose the game.

Formula

- 1. A state is winning if it can reach at least one losing position.
- 2. A state is losing if all of the states it can reach are winning.

Nim Game

- 1. Given N piles of stones.
- 2. Number of stones in each pile can be different.
- 3. In one move, you can remove any positive number of stones from a single pile.
- 4. The player unable to move is the loser.

Nim Game

Solution:

```
if xor == 0, 2nd player wins
```

if xor != 0, 1st player wins

Bogus Nim / Poker Nim

- 1. Initially player one has x extra stones and player two has y extra stones.
- In one move a player can add stones from his stock to a single pile or remove some stones from a single pile.
- 3. The Player not able to make a move is the loser.

Misere Nim

- 1. Player who pick the last stone is the loser.
- 2. Same rule as nim game, if xor== 0, 1st player loser if xor!= 0, 1st player winner
- 3. If every pile has one stone, then corner case will occur. if no_of_pile %2 == 0, 1st player loser if no_of_pile %2 == 1, 1st player winner

Staircase Nim

- 1. An array of length N is given.
- 2. Some cell has exactly one coin.
- 3. In one move you can move a coin to a empty cell in left side.
- 4. But you can not jump over another coin.
- 5. The player unable to move is the loser.

Staircase Nim

Solution:

- 1. Even serial piles are useless, ignore them
- 2. Xor the odd serial piles
- 3. if xor == 0 then first player loser else First player winner

Sprague-Grundy theorem

Pre Conditions

- 1 . impartial
- 2 . perfect information
- 3. finite
 - 4 . states as either winning or losing
 - 5. directed acyclic graph

Theorem

- 1. Any perfect-information impartial two-player game can be reduced to the game of Nim.
- 2. The current player has a winning strategy if the xor-sum of the pile sizes is non-zero.

একটা দাবার বোর্ডে k টা কয়েন রাখা আছে। কোনো কয়েন (x,y) ঘরে থাকলে প্রতি চালে কয়েনটিকে (x-2, y+1) অথবা (x-2, y-1) অথবা (x-1, y-2) অথবা (x+1, y-2) ঘরে সরানো যায় , তবে কয়েনটি বোর্ডের বাইরে সরানো যাবে না।

একটা দাবার বোর্ডে k টা কয়েন রাখা আছে। কোনো কয়েন (x,y) ঘরে থাকলে প্রতি চালে কয়েনটিকে (x-2, y+1) অথবা (x-2, y-1) অথবা (x-1, y-2) অথবা (x+1, y-2) ঘরে সরানো যায় , তবে কয়েনটি বোর্ডের বাইরে সরানো যাবে না।

(1,1)

0	0	1	1	0	0	1	1
0	0	2	1	0	0	1	1
1	2((2)	2	3	2	2	2
1)2	1	4	3	2	3
0	0	3	4	0	0	1	1
0		2	3	0	0	2	1
1	1	2	2	1	2	2	2
1	1	2	3	1	1	2	0

(8,8)