Contents

Introduction	2
Task 1: Baseline Model	3
Task 2: Grid Search	7
Task 3: Model Averaging Scheme	
Task 4: Bayesian Optimisation	
Task 5: Open Ended Extension of the Project	
5.1. Spectrogram Augmentation by Masking Blocks of Frequency Channels and Time Steps	
5.2. Guassian Noise and L2 Regularisation with Spectrogram Augmentation	
5.3. Spectrogram Generation from 1 Second .wav Files	
5.4. Custom Voice Testing	
Functions Created & Used	
Objective Function	
SpecAugment Function	
1 U	

Introduction

(NOTE: Functions for Bayesian Optimisation and Spectrogram Augmentation are at the end)

The goal of this project is to design, implement, and evaluate an ASR system utilizing deep learning methodologies. Starting with a basic CNN model, the project iteratively incorporates advanced techniques such as grid search, model averaging, and Bayesian optimization to improve accuracy and robustness. The dataset comprises spectrogram images representing different speech commands, which the model learns to classify. The process involves preprocessing the data, defining and training the model, and systematically tuning the architecture and hyperparameters to meet performance benchmarks.

Preparing the environment and preprocessing the spectrogram images for training and validation.

```
clear all;

% Define paths to your dataset
dataFolder = 'speechImageData';
trainDataFolder = fullfile(dataFolder, 'TrainData');
valDataFolder = fullfile(dataFolder, 'ValData');

% Create imageDatastores for training and validation datasets
adsTrain = imageDatastore(trainDataFolder, 'IncludeSubfolders', true, 'LabelSource',
'foldernames');
adsValidation = imageDatastore(valDataFolder, 'IncludeSubfolders', true, 'LabelSource',
'foldernames');

% Define input size and resize the images in the datastores
inputSize = [98 50 1];
adsTrain.ReadFcn = @(x)imresize(imread(x), inputSize(1:2));
adsValidation.ReadFcn = @(x)imresize(imread(x), inputSize(1:2));
```

Task 1: Baseline Model

Objective: Establish a baseline model with a deep convolutional network architecture.

Description: The baseline model is the starting point for the ASR system. It includes fundamental layers such as convolutional, batch normalization, max pooling, and dropout layers arranged in a sequential manner to process the input spectrogram images.

5 convolutional layers and 16 filters (which is doubled for the second and quadrupled for the remaining layers) are used. Alongside, maxpooling in the first 3 layers is used to downsample the feature maps 'spatially' and a final maxpooling layer with timepooling pools the input feature map globally over time. An accuracy of around 75% is obtained, which is satisfactory as much over 60%.

```
fprintf('Starting Basic Approach...\n');
```

Starting Basic Approach...

```
% Define Network Architecture
numClasses = numel(categories(adsTrain.Labels)); % Use adsTrain to determine the number of
classes dynamically
timePoolSize = ceil(inputSize(1)/8);
numF = 16; % Number of filters for the convolutional layers
dropoutProb = 0.2; % Dropout probability
layers = [
     imageInputLayer(inputSize)
     convolution2dLayer(3, numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
    maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 2*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     maxPooling2dLayer([timePoolSize, 1])
     dropoutLayer(dropoutProb)
```

0.0010

```
fullyConnectedLayer(numClasses)
    softmaxLaver
    classificationLayer];
% Specify Training Options
minibatchsize = 64;
options = trainingOptions('adam', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 15, ...
    'MiniBatchSize', minibatchsize, ...
    'Shuffle', 'every-epoch', ...
    'Plots', 'training-progress', ...
    'Verbose', true, ...
    'ValidationData', adsValidation, ...
    'ValidationFrequency', floor(numel(adsTrain.Files)/minibatchsize));
% Train Network
trainedNet = trainNetwork(adsTrain, layers, options);
Training on single GPU.
```

Initializing input data normalization. |-----========| | Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning (hh:mm:ss) Accuracy Accuracy Loss Loss Rate _____ -----4.69% 1 | 1 | 00:00:04 9.31% 4.2394 2.9211 0.0010 00:00:11 29.69% 35.01% 1 | 31 1.9933 1.9623 0.0010 2 | 50 00:00:13 45.31% 1.8169 0.0010 2 62 00:00:17 46.88% 49.44% 1.5456 1.5394 0.0010 00:00:22 75.00% 56.45% 0.8759 1.3575 | 3 93 0.0010 00:00:23 59.38% 1.3508 4 100 0.0010 | 4 124 00:00:28 57.81% 63.28% 1.1751 1.1674 0.0010 00:00:31 75.00% 0.7099 5 150 0.0010 64.13% | 5 155 00:00:33 71.88% | 0.9039 1.1600 0.0010 | 186 00:00:39 79.69% 69.00% 0.5393 1.0366 6 0.0010 7 | 200 00:00:41 85.94% 0.4945 0.0010 217 00:00:45 85.94% 70.11% | 0.4144 7 0.9876

Registra	ition No: 2	30118234					
Ĭ	8	248	00:00:51	78.12%	68.57%	0.6147	1.0983
0.001	0						
	9	250	00:00:51	87.50%		0.4782	
0.001	0						
	9	279	00:00:57	89.06%	69.09%	0.4600	0.9968
0.001	0						
	10	300	00:01:00	87.50%		0.3499	
0.001	0						
	. '	310	00:01:03	93.75%	72.59%	0.2723	0.9111
0.001							
'	11	341	00:01:08	92.19%	72.84%	0.3020	0.9894
0.001							
	12	350	00:01:10	90.62%	I	0.2866	
0.001							
	12	372	00:01:14	92.19%	73.19%	0.2706	0.9140
0.001							
'	13	400	00:01:18	89.06%		0.2839	
0.001							
'	13	403	00:01:20	92.19%	74.55%	0.3275	0.9472
0.001							
'	14	434	00:01:25	100.00%	74.98%	0.1006	1.0011
0.001		1					
	15	450	00:01:27	93.75%	I	0.3145	I
0.001							
	15	465	00:01:31	98.44%	75.15%	0.1415	0.9322
0.001	•						
1							

Training finished: Max epochs completed.

=========


```
% Plot Confusion Matrix for Validation Set
YValidation = classify(trainedNet, adsValidation);
TValidation = adsValidation.Labels;
figure('Units', 'normalized', 'Position', [0.2 0.2 0.5 0.5]);
```

```
cm = confusionchart(TValidation, YValidation, ...
    'Title', 'Confusion Matrix for Validation Data', ...
    'ColumnSummary', 'column-normalized', 'RowSummary', 'row-normalized');
sortClasses(cm, categories(adsTrain.Labels));
```


Task 2: Grid Search

Objective: Utilize Grid Search to explore and optimize the model's architecture, focusing on the number of convolutional layers and filters per layer, to enhance validation accuracy.

Description: In this task, the model undergoes a systematic optimization process, exploring combinations of 3, 4, or 5 convolutional layers and 16, 24, or 32 filters per layer. Each configuration is constructed and evaluated for performance using Adam optimizer, targeting settings like a 0.001 learning rate, 64 mini-batch size, and up to 20 training epochs. The evaluation focuses on validation accuracy to determine the most effective architecture.

The grid search concludes by identifying and reporting the architecture that achieves the highest accuracy on the validation set. A confusion matrix of this optimal model provides insights into its classification capabilities across different speech commands. This concise approach aims to find the best balance between model complexity and generalization, enhancing performance on new data.

Early stopping is used to enhance computational time; the training stops if the validation loss does not improve for 5 epochs. The accuracy is higher by a percentage or two *without* early stopping, which is expected.

```
fprintf('Starting Grid Search Approach...\n');
```

Starting Grid Search Approach...

```
% Grid Search Parameters
numLayersOptions = [3, 4, 5];
numFiltersOptions = [16, 24, 32];
% Specify Training Options
minibatchsize = 64;
options = trainingOptions('adam', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 20, ...
    'MiniBatchSize', minibatchsize, ...
    'Shuffle', 'every-epoch', ...
    'Plots', 'training-progress', ...
    'Verbose', true, ...
    'ValidationData', adsValidation, ...
    'ValidationFrequency', floor(numel(adsTrain.Files)/minibatchsize), ...
    'ValidationPatience', 5, ... % Early Stopping
    'ExecutionEnvironment', 'auto'); % Utilize GPU if available
% Initialize variables to store the best model's details
bestAccuracy = 0;
bestModel = [];
bestNumLayers = 0;
bestNumFilters = 0;
% Define Network Architecture and Train Models
for numLayers = numLayersOptions
    for numFilters = numFiltersOptions
        numClasses = numel(categories(adsTrain.Labels));
        timePoolSize = ceil(inputSize(1)/8);
```

layers = [
 layers;

end

end

```
maxPooling2dLayer([timePoolSize, 1], 'Padding', 'same')
             dropoutLayer(dropoutProb)
             fullyConnectedLayer(numClasses)
             softmaxLayer
             classificationLayer
         ];
         % Train Network
         trainedNet = trainNetwork(adsTrain, layers, options);
         % Evaluate Model
         YValidation = classify(trainedNet, adsValidation);
         TValidation = adsValidation.Labels;
         accuracy = sum(YValidation == TValidation) / numel(TValidation);
         fprintf('Layers: %d, Initial Filters: %d, Validation Accuracy: %.2f%%\n', numLayers,
numFilters, accuracy * 100);
         % Update best model if current model is better
         if accuracy > bestAccuracy
             bestAccuracy = accuracy;
             bestModel = trainedNet;
             bestNumLayers = numLayers;
             bestNumFilters = numFilters;
         end
```

Epoch It Base Learning		Time Elapsed	Mini-batch	Validation	Mini-batch	Validation
Rate	ĺ	(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss
========	=======			=========	=========	========
 1	1	00:00:05	6.25%	9.31%	6.3612	5.2250
0.0010 1	31	00:00:11	21.88%	21.43%	3.0927	2.4720
2	50	00:00:14	28.12%	1	2.1765	I
2	62	00:00:17	26.56%	29.38%	2.5110	2.3124
3	93	00:00:22	46.88%	37.66%	1.6895	1.9353
4	100	00:00:24	48.44%	1	1.4639	I
4	124	00:00:29	37.50%	41.59%	1.9622	1.8995
0.0010 5	150	00:00:32	59.38%	1	1.3326	
0.0010 5	155	00:00:34	54.69%	46.80%	1.4621	1.7375
.0010 6	186	00:00:40	64.06%	52.43%	1.0661	1.5047
7	200	00:00:42	79.69%	1	0.4939	
7	217	00:00:46	68.75%	53.54%	1.0252	1.4460
8 8	248	00:00:52	71.88%	62.51%	0.8728	1.4067
9	250	00:00:53	75.00%	1	0.8177	
9	279	00:00:59	71.88%	61.66%	0.9827	1.4249
0.0010 10	300	00:01:02	73.44%	1	0.7459	
0.0010 10	310	00:01:04	70.31%	54.23%	1.0466	1.6271
).0010 11	341	00:01:10	68.75%	57.56%	1.0223	1.6276
12	350	00:01:12	79.69%	1	0.7825	
12	372	00:01:16	81.25%	65.93%	0.6290	1.1514
0.0010 13	400	00:01:20	82.81%	1	0.5326	I
13	403	00:01:22	89.06%	65.67%	0.3437	1.1600
0.0010 14	434	00:01:28	81.25%	66.18%	0.5759	1.1925
0.0010 15	450	00:01:30	68.75%	1	1.0251	
0.0010 15	465	00:01:33	76.56%	65.24%	0.6448	1.2745
0.0010 16	40c l	00:01:39	70 60%	66 27%	0 4770	1.2332

Registration No: 2		00.01.40	04 20%	1	0 5612	1
	500	00:01:40	84.38%	I	0.5613	
0.0010						
17	527	00:01:45	90.62%	65.07%	0.3647	1.2499
0.0010						
=========						

Layers: 3, Initial Filters: 16, Validation Accuracy: 65.84% Training on single GPU.

Initializing input data normalization.											
 [noch T+	onation T	ima Flancad	Mini batch	Validation	Mini batch	Validation					
		ime Erapseu	Mini-pattn	validation	Mini-batch	validation					
Base Learning	-	(hh.mm.cc)	Accumacy I	Accumacy	Loss	Loss					
I I Rate	I	(1111:111111:55)	Accuracy	Accuracy	Loss	LOSS					
					:========						
========											
1	1	90.90.91 I	4.69%	9 22%	5 5707 l	6.1418					
0.0010	± 1	00.00.04	4.00%	J. 22/0	3.3707	0.1410					
1 1	31	00:00:09	28.12%	12.81%	2.9134	4.1143					
0.0010	1	,									
2	50	00:00:12	23.44%	I	2.5481						
0.0010	•	·	·		·	•					
2	62	00:00:15	26.56%	12.21%	2.4002	2.5134					
0.0010											
3	93	00:00:21	29.69%	19.81%	2.3265	2.6042					
0.0010											
4	100	00:00:23	26.56%	I	2.4442						
0.0010											
4	124	00:00:28	35.94%	22.89%	2.0781	2.4456					
0.0010											
5	150	00:00:31	53.12%	l	1.4216						
0.0010											

Registration	on No: 23011	8234						
Ĭ	5		00:00:33	45.31%	33.22%	1.8215	2.1796	
0.0010 	6	186	00:00:39	59.38%	36.89%	1.4540	1.8933	
0.0010	•	200	00:00:41	54.69%	I	1.2079		ı
0.0010		-	•		•			
0.0010		217	00:00:45	50.00%	48.25%	1.4934	1.5733	l
 0.0010	8	248	00:00:51	67.19%	57.64%	0.9797	1.3872	
0.0010	9	250	00:00:52	78.12%	I	0.7516		
0.0010	9	279	00:00:57	70.31%	56.02%	1.0667	1.5377	
	10	300	00:01:00	73.44%	1	0.7763		
0.0010	10	310	00:01:04	68.75%	61.74%	0.9005	1.3586	
0.0010 	11	341	00:01:09	73.44%	58.75%	0.9239	1.5030	
0.0010 	12	350	00:01:11	75.00%	1	0.9450		
0.0010 		372	00:01:15	56.25%	61.91%	1.3380	1.4043	
0.0010 	•	400	00:01:19	81.25%	1	0.5729		
0.0010 	•	403	00:01:21	71.88%	62.68%	0.8313	1.3954	I
0.0010 	•	434	00:01:27	87.50%	64.05%	0.5957	1.3649	I
0.0010	•		00:01:30		-	0.6972		
 0.0010		450	00:01:30	02.01/0	I	0.0972		ı
 0.0010	15 	465	00:01:33	96.88%	67.12%	0.2318	1.2575	
	16	496	00:01:40	78.12%	69.26%	0.6910	1.2387	
0.0010 	-	500	00:01:41	67.19%	1	0.9677		
0.0010 		527	00:01:46	82.81%	67.63%	0.5649	1.1942	
0.0010 	-	550	00:01:49	76.56%	I	0.6630		I
0.0010 	-	EEO	00:01:52	04 20% I	64 00%	A 4912	1.3500	ı
0.0010	-	-	•				1.3300	ı
 0.0010	-	589	00:01:58	81.25%	70.45%	0.6017	1.0481	
	20	600	00:02:00	89.06%		0.3885		
0.0010	20	620	00:02:04	89.06%	70.96%	0.4786	1.0796	I
0.0010	I							

|-----

Training finished: Max epochs completed.

Layers: 3, Initial Filters: 24, Validation Accuracy: 70.96%

Training on single GPU.

=====	======				:======			===	========	===
	=====									
	n It arning		Time Elapsed	Mini-batch	Validati	Lon	Mini-batch	ı	Validation	ı
ase Le	١	1	(hh:mm:ss)	Accuracy	Accurac	cy	Loss	I	Loss	
	======= ======				=======	-====		===	=======	===
.0010	. !	1	00:00:03	12.50%	11.	.27%	4.8558		9.7921	
.0010	1	31	00:00:10	17.19%	14.	.77%	3.8850		3.6288	1
.0010	2	50	00:00:12	25.00%		1	2.2700			
	2	62	00:00:16	21.88%	22.	.46%	2.6720		2.5438	
.0010	3	93	00:00:23	35.94%	19	.64%	2.4092		2.9134	
.0010	4	100	00:00:24	35.94%		1	2.2328			
.0010	4	124	00:00:29	42.19%	24.	.77%	1.7444		2.3923	-
.0010	5	150	00:00:33	39.06%		1	2.0413			
.0010	5	155	00:00:35	45.31%	40.	.14%	1.7789	I	1.8363	-
.0010	6	186	00:00:41	59.38%	38.	.94%	1.4794		1.8770	1
.0010	7	200	00:00:44	60.94%		I	1.0817			

Registration	on No: 23011	8234						
0.0010		217	00:00:48	57.81%	48.51%	1.2561	1.7229	
	•	248	00:00:54	62.50%	51.75%	1.2605	1.9501	1
0.0010		0.50		50.040/				
 0.0010		250	00:00:55	60.94%		1.4646		I
	9	279	00:01:01	70.31%	53.80%	0.8345	1.5625	
0.0010 		300	00:01:04	81.25%	1	0.6547		ı
0.0010		300	00.01.04	01.23%	1	0.0347		ı
0.0010		310	00:01:07	71.88%	59.95%	1.0436	1.4663	
0.0010 	11	341	00:01:13	85.94%	61.06%	0.5078	1.2868	I
0.0010	•	250	00 04 45 1	ov 1		0.6530.1		
 0.0010	. '	350	00:01:15	76.56%	I	0.6538		
		372	00:01:20	84.38%	65.93%	0.6514	1.1848	
0.0010 	•	400	00:01:24	79.69%	I	0.7499		ı
0.0010		100	00.01.2.	73.03%	1	0.7.133		1
 0.0010	•	403	00:01:26	92.19%	66.52%	0.2808	1.2150	
	•	434	00:01:33	81.25%	63.62%	0.6215	1.5010	1
0.0010		450	00 01 35 1	04 20%	1	0.4636		
 0.0010		450	00:01:35	84.38%	I	0.4636		I
		465	00:01:39	84.38%	62.43%	0.5344	1.4794	
0.0010 	16	496	00:01:45	84.38%	67.12%	0.4452	1.2436	ı
0.0010		·	·	·	·	·		'
 0.0010	17 	500	00:01:46	90.62%		0.2917		
	17	527	00:01:52	87.50%	70.20%	0.3393	1.2522	
0.0010								

==============

Training finished: Met validation criterion.

Layers: 3, Initial Filters: 32, Validation Accuracy: 70.03% Training on single GPU.

	· =========										
Epoc	:h	Iteration		Time Elapsed		Mini-batch	Validation		Mini-batch		Validation
Base Le	earn:	ing									
		1		(hh:mm:ss)		Accuracy	Accuracy		Loss		Loss
Rate											
1			===		==	:========		===	:=======	===	:========
			ı	00:00:03	ı	7.81%	9 82%	ı	4.9239	ı	5.7623
0.0010		1 -	'	00.00.03	'	7.0170	3.0270	'	7.7233	1	3.7023
	1	31		00:00:10		31.25%	24.34%		2.4027		2.6456
0.0010											
		50		00:00:12		39.06%			2.0269		
0.0010						1					
0.0010		62		00:00:15	ı	59.38%	39.71%	ı	1.4195		1.9341
0.0010	ا 3	93	ı	00:00:21	ı	57.81%	55.85%	ı	1.2593	ı	1.3802
0.0010	_	1 23	ı	00.00.21	ı	37.81%	55.05%	1	1.2333	ı	1.3002
	4	100	1	00:00:22	Ι	70.31%		Ι	0.8658		
0.0010						·					
	4	124		00:00:27		60.94%	45.60%		1.1797		1.6816
0.0010											
		150		00:00:30		67.19%			1.0922		
0.0010		1 155	ı	00.00.22		69.75%	CF 16%	ı	0 9072		1 2020
0.0010	5 I	155	ı	00:00:33	I	68.75%	65.16%	ı	0.8972	I	1.2030
		186	ı	00:00:38	ı	70.31%	66.95%	ı	1.1085	ı	1.3413
0.0010		1	1	33.33.30	1	, 5,5=70	22.7370	'		'	_,,,,,,,
	7	200		00:00:41		85.94%			0.3127		
0.0010											

Registrati	on N	lo: 2301182	234					
	7			00:00:44	70.31%	60.97%	0.6048	1.2533
0.0010								
	8	2	48	00:00:50	78.12%	64.82%	0.6340	1.2781
0.0010								
	9	2	50	00:00:51	87.50%		0.3159	
0.0010								
1	9	2	79	00:00:56	84.38%	68.57%	0.4332	1.4195
0.0010								
	10] 3	00	00:01:00	92.19%		0.2190	
0.0010			•	•	·			-
I	10] 3	10	00:01:03	84.38%	67.89%	0.4796	1.2863
0.0010	1		·				·	•
=====	-===							
======	====	===						

Training finished: Met validation criterion.

Layers: 4, Initial Filters: 16, Validation Accuracy: 68.23% Training on single GPU.

=========						
=======================================						
Epoch Ite	eration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation
Base Learning						
		(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss
Rate						
========			.========	=========		=======================================
=========						
1	1	00:00:04	9.38%	11.36%	5.4208	5.5571
0.0010						
1	31	00:00:10	25.00%	18.36%	3.0396	3.3912
0.0010						
2	50	00:00:12	28.12%		2.4502	
0.0010						
2	62	00:00:16	43.75%	36.72%	2.0235	1.9815
0.0010						

Registration No: 2	230118234					
3		00:00:22	64.06%	58.33%	1.0624	1.3427
0.0010						
4	100	00:00:23	67.19%		0.9917	
0.0010		1	!			!
4	124	00:00:28	59.38%	58.33%	1.1249	1.3098
0.0010	150	00.00.33	74 00%	1	0.7007.	1
5 0.0010	150	00:00:32	71.88%	I	0.7007	I
5	155	00:00:34	73 //%	63.54%	0.9823	1.1190
0.0010	199	00.00.54	73.4470	03.54%	0.3023	1.1150
6	186	00:00:40	76.56%	62.94%	0.6930	1.3914
0.0010		,	1		1	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7	200	00:00:42	93.75%	1	0.2329	
0.0010	•	·		•		
7	217	00:00:46	82.81%	68.57%	0.5225	1.1349
0.0010						
8	248	00:00:53	81.25%	70.45%	0.5610	1.0806
0.0010						
9	250	00:00:53	93.75%		0.2431	
0.0010	a=a	00 00 50 1	05.040/	74 05% I	0 2205	4 0700
9	279	00:00:59	85.94%	71.05%	0.3385	1.0780
0.0010 10	300	00:01:02	92.19%	ı	0.3044	1
0.0010	300	00.01.02	J2.1J%	I	0.3044	I
10	310	00:01:05	82.81%	71.14%	0.4873	1.0188
0.0010	5=5	,		,	,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11	341	00:01:12	87.50%	72.59%	0.3834	1.0095
0.0010		•		•	·	·
12	350	00:01:13	89.06%		0.2836	
0.0010						
12	372	00:01:18	90.62%	70.54%	0.2975	1.1659
0.0010	1					
13	400	00:01:22	85.94%	I	0.4292	I
0.0010	402	00.01.24	02.75%	74 470/ I	0 1020	1 0610
13 0.0010	403	00:01:24	93.75%	74.47%	0.1929	1.0619
14	434 l	00·01·30	95.31%	73 78%	0 11/18 l	1 1735 l
0.0010	ן דכד	00.01.50	JJ.J170	73.70%	0.1140	1.1/33
15	450 l	00:01:33	96.88%		0.1085	I
0.0010	(,		'	,	ı
15	465	00:01:36	96.88%	74.64%	0.0923	1.0537
0.0010	-	•	-	-	-	
16	496	00:01:43	96.88%	70.28%	0.1593	1.2691
0.0010						

|-----

Training finished: Met validation criterion.

Layers: 4, Initial Filters: 24, Validation Accuracy: 70.45%

Training on single GPU.

======												
Epoc	:h I	teration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation					
Base Le	arning											
			(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss					
Rate												
=====			=========				=======================================					
======												
		1	00:00:04	4.69%	13.49%	4.1832	7.9168					
0.0010	' .											
	. '	31	00:00:11	35.94%	17.08%	2.3915	2.9291					
0.0010	' .											
		50	00:00:14	40.62%		1.6640						
0.0010	' .	I	00 00 47 1	42 ==0/	25 250/		0.0704					
0.0010		62	00:00:17	43.75%	35.35%	1.7185	2.2791					
0.0010		02.1	00.00.24	E4 60%	FF F0%	1 1707	4 4730					
0.0010		93	00:00:24	54.69%	55.59%	1.1707	1.4730					
0.0010	' .	100	00:00:25	67.19%		1.0132	I					
0.0010		100	00.00.25	07.19%		1.0132	I					
	' .	124	00:00:30	59 38%	56.53%	1.6257	1.5288					
0.0010		124	00.00.50	33.30%	30:33%	1.0237	1.5200					
	' .	150	00:00:34	75.00%		0.6368	I					
0.0010	- 1			1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ı					
		155	00:00:37	70.31%	62.43%	0.9853	1.3712					
0.0010			,			,						
	' .	186	00:00:44	78.12%	68.32%	0.7242	1.2201					
0.0010		ı	ı			'	ı					
	7	200	00:00:46	78.12%		0.4997						
0.0010												

Registration	on No: 23011	8234					
	7		00:00:50	89.06%	62.94%	0.2864	1.3208
	•	248	00:00:57	89.06%	62.08%	0.4307	1.3480
0.0010 	•	250	00:00:57	81 25% l	I	0.6904	ı
0.0010	. '	230		•	ı	0.0304	ı
 0.0010	. '	279	00:01:04	85.94%	68.32%	0.4542	1.1238
1	10	300	00:01:07	93.75%		0.1924	
0.0010 	1	310	00:01:10	92.19%	63.02%	0.4010	1.5194
0.0010 	1	341	00:01:17	87.50%	71.82%	0.3402	1.2100
0.0010	•	250	00.01.10	00.06%	1	0.2205	1
 0.0010		350	00:01:18	89.06%	I	0.3385	I
 0.0010		372	00:01:23	79.69%	67.63%	0.6006	1.2925
	13	400	00:01:28	93.75%	1	0.1837	1
0.0010 	•	403	00:01:30	92.19%	73.70%	0.2381	1.4052
0.0010 	1	424	00:01:38	02 10% l	71 92% l	0 1054 l	1.2496
0.0010		424	00.01.30	JZ.13/0	/ 1 . 0 2 /0	0.1994	1.2430
=====		========	==========	=========		=========	
======	:=====						

Training finished: Met validation criterion.

Layers: 4, Initial Filters: 32, Validation Accuracy: 72.25% Training on single GPU.

=====														
======	====													
Epoch	Iteration		Time Elapsed		Mini-batch		Validation		Mini-batch		Validation			
Base Lea	rning													
			(hh:mm:ss)		Accuracy		Accuracy		Loss		Loss			
Rate														

0.0010 1 3 0.0010 2 5 0.0010 2 6 0.0010 3 9 0.0010 4 16 0.0010 4 17 0.0010	31 6 50 6 62 6 93 6 00 6 24 6	00:00:23 00:00:27 00:00:31	50.00% 51.56% 60.94%	39.97% 52.95% 60.20%	4.7506 1.5561 1.3941 1.2087 0.6742 0.8923 0.9909	4.3753 1.8262 1.4455 1.2267 1.1285
0.0010 1 3 0.0010 2 5 0.0010 2 6 0.0010 3 9 0.0010 4 16 0.0010 4 17 0.0010	31 6 50 6 62 6 93 6 00 6 24 6	00:00:09 00:00:12 00:00:16 00:00:21 00:00:23 00:00:27 00:00:31	50.00% 51.56% 60.94% 78.12% 68.75% 71.88%	39.97% 52.95% 60.20%	1.5561 1.3941 1.2087 0.6742 0.8923	1.8262
1 3 3 4 6 6 6 6 6 6 6 6 6	50 62 63 64 650	00:00:12 00:00:16 00:00:21 00:00:23 00:00:27 00:00:31	51.56% 60.94% 78.12% 68.75% 71.88%	52.95% 60.20%	1.3941 1.2087 0.6742 0.8923	1.4455 1.2267
2 5 0.0010 2 6 0.0010 3 9 0.0010 4 16 0.0010 4 12	62 62 693 693 694 695 69	00:00:16 00:00:21 00:00:23 00:00:27 00:00:31	60.94% 78.12% 68.75% 71.88%	60.20%	1.2087 0.6742 0.8923	1.2267
2 6 0.0010 3 9 0.0010 4 16 0.0010 4 12	93 6 00 6 24 6	00:00:21 00:00:23 00:00:27 00:00:31	78.12% 68.75% 71.88%	60.20%	0.6742 0.8923	1.2267
0.0010 3 9 0.0010 4 16 0.0010 4 12	93 6 00 6 24 6	00:00:21 00:00:23 00:00:27 00:00:31	78.12% 68.75% 71.88%	60.20%	0.6742 0.8923	1.2267
0.0010 4 10 0.0010 4 12 0.0010	00	00:00:23 00:00:27 00:00:31	68.75% 71.88%	I	0.8923	1
0.0010 4 12 0.0010	24 6	00:00:27 00:00:31	71.88%	65.24%		1.1285
0.0010	50 6	00:00:31		65.24%	0.9909	1.1285
	•	•	81 25% l			•
0.0010	55 6		01.23/0		0.6905	
0.0010 5 15		00:00:33	87.50%	66.87%	0.5148	1.2263
0.0010 6 18	86 6	00:00:39	84.38%	66.10%	0.4077	1.2050
0.0010 7 20	90	00:00:41	82.81%	ı	0.4895	I
0.0010	•	•		co 22%		1 1250
0.0010	•	•	•		0.4039	1.1350
8 24 0.0010	48 6	00:00:51	85.94%	69.09%	0.2820	1.2595
9 25	50 0	00:00:51	95.31%	I	0.1996	
9 27	79 6	00:00:57	96.88%	72.93%	0.1780	1.0862
	00 0	00:01:00	93.75%	I	0.1889	
0.0010 10 31	10 0	00:01:03	98.44%	69.94%	0.1115	1.4167
0.0010 11 34	41 6	00:01:09	96.88%	70.54%	0.1051	1.2577
0.0010		00:01:11		•	0.1845	
0.0010	•	·	·	•		1 0454
12 37 0.0010	72 6	00:01:15	90.62%	71.31%	0.2231	1.2454
13 40 0.0010	00 0	00:01:19	100.00%		0.0394	I
	03 0	00:01:21	96.88%	73.70%	0.0872	1.4102
14 43	34 6	00:01:27	98.44%	74.47%	0.0947	1.1941
0.0010 	========			.=======		

Training finished: Met validation criterion.

Layers: 5, Initial Filters: 16, Validation Accuracy: 73.87%

Training on single GPU.

Initializing input data normalization. 											
======											
				Time Elapsed	Mini-batch	Validation		Mini-batch	Validation		
Base Le Rate	earning 	I		(hh:mm:ss)	Accuracy	Accuracy		Loss	Loss		
===== ======			==	==========		========	==	==========			
 0.0010	1	1		00:00:04	4.69%	11.27%		5.0795	5.6616		
 0.0010	1	31	I	00:00:10	40.62%	41.08%		2.1185	1.7476		
0.0010 0.0010	2	50	I	00:00:14	60.94%			1.3643	1		
0.0010 0.0010	2	62	I	00:00:17	48.44%	51.49%		1.4873	1.5099		
 0.0010	3	93	I	00:00:24	75.00%	61.40%		0.8555	1.3462		
 0.0010	4	100	I	00:00:26	76.56%			0.6795			
 0.0010	4	124	I	00:00:32	71.88%	65.07%		0.6877	1.2031		
 0.0010	5	150	I	00:00:37	82.81%			0.6685	1		
 0.0010	5	155	I	00:00:40	82.81%	70.37%		0.7142	1.2249		
 0.0010	6	186	I	00:00:49	82.81%	70.45%		0.5283	1.1095		
 0.0010	7	200		00:00:52	85.94%			0.4336	I		
0.0010	7	217		00:00:57	90.62%	70.11%		0.4456	1.1346		

Registrati	on I	No: 2301182	34						
Ĭ	8			00:01:05	90.62%	73.87%	0.2630	1.0402	
0.0010	9	1 21	50	00:01:05	96.88%	I	0.1190		ı
0.0010		2:	ן שפ	00:01:05	90.88%	I	0.1190		I
	•	27	79	00:01:12	93.75%	73.87%	0.1678	1.0169	
0.0010									
		36	90	00:01:16	92.19%		0.2252		
0.0010	•					1			
0.0010		33	10	00:01:19	96.88%	75.58%	0.1260	1.1036	
0.0010 	•	l 2	41	00:01:27	95.31%	74 47%	0.1374	1.1156	ı
0.0010] 34	+1	00.01.27	93.31%	74.47/0	0.13/4	1.1130	I
	12] 35	50	00:01:28	96.88%	I	0.1139		I
0.0010					1	ı	,		į
	12	37	72	00:01:34	98.44%	75.41%	0.0580	1.1398	
0.0010									
		40	90	00:01:39	92.19%		0.1239		
0.0010									
	13	40	93	00:01:41	95.31%	71.65%	0.1042	1.4058	
0.0010		1 4:	24	00.01.50	00 62%	74 01% I	a 1002	1 0754	ı
0.0010		1 4:	34	00:01:50	90.02%	/4.01/0	0.1983	1.0754	I
=====	 ===	:=======	=======					======	=====
1									

Training finished: Met validation criterion.

Layers: 5, Initial Filters: 24, Validation Accuracy: 75.15% Training on single GPU.

Initializi	ng input data	no	rmalization.										
======		===		===		===		===		===		=====	
=======	===												
Epoch	Iteration		Time Elapsed		Mini-batch		Validation		Mini-batch		Validation		
Base Learn	ing												
			(hh:mm:ss)		Accuracy		Accuracy		Loss		Loss		
Rate													

=========				=========	:========	=========
=======						
1 .0010	1	00:00:04	7.81%	13.66%	4.4139	7.6053
1	31	00:00:11	43.75%	32.96%	1.6683	2.2205
.0010 2	50	00:00:15	64.06%	1	1.2842	1
.0010 2	62	00:00:19	64.06%	46.54%	1.3282	1.5638
.0010	•		·		·	
3 .0010	93	00:00:26	73.44%	59.78%	0.7749	1.2947
4	100	00:00:27	67.19%		0.8706	
4	124	00:00:33	75.00%	59.44%	0.7123	1.3435
0010 5	150	00:00:37	79.69%		0.5536	1
0010 5	155	00:00:40	82.81%	65.93%	0.5121	1.1825
0010	186	•	87.50%	•		•
6 0010	100	00:00:47	87.50%	71.39%	0.4038	1.0546
7 0010	200	00:00:49	90.62%		0.2192	I
7	217	00:00:53	85.94%	68.92%	0.4452	1.2277
0010 8	248	00:01:00	98.44%	73.87%	0.1883	1.0915
9	250	00:01:01	98.44%		0.0887	
0010 9	279	00·01·07	93.75%	73 36%	0.1458	1.3617
0010	213	·	·	, , , , 0, 0,	·	1.301/
10 0010	300	00:01:11	90.62%		0.2656	
10	310	00:01:14	96.88%	74.81%	0.0902	1.2029
0010 11	341	00:01:21	98.44%	74.55%	0.0415	1.2061
.0010						

=======|

Training finished: Met validation criterion.

Layers: 5, Initial Filters: 32, Validation Accuracy: 74.21%

```
% Display and Plot Best Model
fprintf('\nBest Model: %d Layers, %d Initial Filters, Validation Accuracy: %.2f%%\n',
bestNumLayers, bestNumFilters, bestAccuracy * 100);
```

Best Model: 5 Layers, 24 Initial Filters, Validation Accuracy: 75.15%

```
% Optional: Plot Confusion Matrix for Best Model
YValidationBest = classify(bestModel, adsValidation);
TValidationBest = adsValidation.Labels;
figure;
cm = confusionchart(TValidationBest, YValidationBest, ...
    'Title', ['Best Model Confusion Matrix - Layers: ', num2str(bestNumLayers), ', Filters:
', num2str(bestNumFilters)], ...
    'ColumnSummary', 'column-normalized', 'RowSummary', 'row-normalized');
sortClasses(cm, categories(adsTrain.Labels));
```

						Best	Model Confu	sion Matrix - La	ayers: 5, Filters	s: 24		
background	60											
down		78	2		7	4		1		8	1	
go	2	6	56		17	9			2	5	4	
left		1				6		6		1	2	
no		6	1	1				1		1	1	1
off		3		5				3			4	2
on ø	1	8	1	1	1	21	42	4		20	1	1
True Class		1		4		1		94				1
⊢ stop		3				3				1	9	
unknown	2	3	3	11	1	3	11	45	3	19		
up	2	1	1	6	2	6			1	3	79	
yes	1			1	2	8						89

100.0%	
77.2%	22.8%
55.4%	44.6%
84.2%	15.8%
88.1%	11.9%
83.2%	16.8%
41.6%	58.4%
93.1%	6.9%
84.2%	15.8%
18.8%	81.2%
78.2%	21.8%
88.1%	11.9%

88.2%	70.9%	87.5%	74.6%	74.8%	57.9%	79.2%	61.0%	93.4%	32.8%	78.2%	94.7%
11.8%	29.1%	12.5%	25.4%	25.2%	42.1%	20.8%	39.0%	6.6%	67.2%	21.8%	5.3%
background	down	go	left	no	off	on	right	stop	unknown	up	yes

Task 3: Model Averaging Scheme

Objective: Implement a model averaging scheme with three models to improve the ASR system's generalization on unseen data.

Description: In this task, the focus shifts to improving model generalization through an ensemble method. Three distinct models are trained on randomly split subsets of the training data, encouraging each to learn from a slightly different perspective of the data. These models are designed with a consistent architecture suitable for speech recognition tasks.

Bootstrapping is employed to create several subsets of the original training data and each subset is then used to train a distinctive model. The ensemble's prediction for each input is determined by majority voting - each model casts a "vote" for its predicted class, and the class receiving the majority of votes is selected as the final prediction. This voting mechanism capitalizes on the collective intelligence of multiple models, potentially leading to more accurate and robust predictions.

To assess the effectiveness of this approach, the ensemble's accuracy on the validation dataset is calculated, which is around 75% (similar to the baseline model however with one less layer and more efficient), and compared to the performance of a single model is slightly higher. This comparison aims to highlight the ensemble method's capability to outperform individual models by leveraging their combined strengths, ultimately leading to a more reliable model.

```
fprintf('Starting Model Averaging Approach...\n');
```

Starting Model Averaging Approach...

```
% Define Network Architecture
numClasses = numel(categories(adsTrain.Labels));
layers = [
    imageInputLayer(inputSize)
    convolution2dLayer(3, 16, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
    convolution2dLayer(3, 32, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
    convolution2dLayer(3, 64, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
    convolution2dLayer(3, 64, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer([ceil(inputSize(1)/8), 1])
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
% Specify Training Options
```

0.0010 2 |

0.0010

```
options = trainingOptions('adam', ...
   'InitialLearnRate', 0.001, ...
   'MaxEpochs', 20, ...
   'MiniBatchSize', 64, ...
   'Shuffle', 'every-epoch', ...
   'Plots', 'training-progress', ...
   'Verbose', true, ...
   'ValidationData', adsValidation, ...
   'ValidationFrequency', floor(numel(adsTrain.Files)/128));
% Train and Evaluate Models with Model Averaging
numModels = 3;
models = cell(1, numModels);
% Extract file paths and labels for bootstrapping
allFiles = adsTrain.Files;
allLabels = adsTrain.Labels;
for i = 1:numModels
   % Bootstrap sampling: Generate indices with replacement
   idx = randi([1 numel(allFiles)], numel(allFiles), 1);
   % Create bootstrapped file paths and labels
   bootFiles = allFiles(idx);
   bootLabels = allLabels(idx);
   % Create a new imageDatastore for the bootstrapped dataset
   adsTrainSubset = imageDatastore(bootFiles, 'Labels', bootLabels);
   adsTrainSubset.ReadFcn = adsTrain.ReadFcn;
   % Train model on the subset
   models{i} = trainNetwork(adsTrainSubset, layers, options);
end
Training on single GPU.
Initializing input data normalization.
______
========
 | Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation |
Base Learning
     (hh:mm:ss) | Accuracy | Accuracy |
                                                         Loss
                                                                    Loss
______
========
1 |
               1 | 00:00:04 | 4.69% | 11.19% | 4.0386 | 3.0361 |
0.0010
                      00:00:09 | 37.50% |
                                             23.83% | 2.0875 |
              15 |
                                                                     2.2581
      1 |
0.0010
      1 |
                30
                      00:00:13 | 35.94% |
                                              33.56%
                                                           2.1982
                                                                      1.9969
```

45 | 00:00:16 | 51.56% | 42.87% |

1.3222

1.7865

Registration No: 230118234	00:00:17	59.38%	I	1.2980	1
0.0010	·	50.00%	49.10%		•
2 60 0.0010	00:00:20	30.00%	49.10%	1.5148	1.5979
3 75 0.0010	00:00:24	70.31%	51.49%	1.1207	1.5183
3 90	00:00:28	70.31%	51.67%	1.0341	1.4787
0.0010	00:00:29	64.06%		1.2584	1
0.0010 4 105	00:00:31	76.56%	54.65%	0.8252	1.4047
0.0010	00:00:35	76.56%	56.45%	0.8703	1.3631
0.0010 5 135	00:00:39	78.12%	57.98%	0.6095	1.3128
0.0010 5 150 0.0010	00:00:42	73.44%	61.57%	0.8124	1.2429
6 165	00:00:46	81.25%	59.86%	0.6022	1.2453
0.0010 6 180	00:00:50	82.81%	58.84%	0.5950	1.2241
0.0010 7 195	00:00:54	81.25%	62.08%	0.4962	1.1825
0.0010 7 200	00:00:54	84.38%	I	0.6009	1
0.0010 7 210	00:00:57	79.69%	62.08%	0.6079	1.1744
0.0010 8 225	00:01:01	96.88%	65.07%	0.2198	1.1233
0.0010 8 240	00:01:05	85.94%	63.96%	0.4691	1.1121
0.0010 9 250	00:01:06	87.50%	1	0.3230	1
0.0010 9 255	00:01:09	90.62%	63.28%	0.2920	1.1586
0.0010 9 270	00:01:13	92.19% l	66 . 61%	0.3499	1.1014
0.0010					
10 285 0.0010	00:01:16	89.06%	65.84%	0.2492	1.1450
10 300 0.0010	00:01:20	96.88%	66.18%	0.1639	1.0975
·	00:01:24	98.44%	68.57%	0.1011	1.1160
11 330	00:01:27	90.62%	67.21%	0.3294	1.1669
	00:01:31	93.75%	67.12%	0.2948	1.0824
	00:01:32	96.88%	1	0.1401	1
0.0010 12 360	00:01:35	98.44%	63.79%	0.0899	1.2311
	00:01:38	96.88%	65.16%	0.1706	1.1167
	00:01:42	95.31%	68.15%	0.1242	1.0902
0.0010 13 400 0.0010	00:01:43	95.31%	I	0.1543	I

Ĭ 14	30118234 405	00:01:46	100.00%	66.78%	0.1197	1.1342
0.0010		1		1		
14	420	00:01:49	96.88%	69.09%	0.1486	1.0542
0.0010						
15	435	00:01:53	100.00%	66.95%	0.0713	1.0657
0.0010	450	00 04 55 1	00 440/ 1	50.05%	0.444	4 40=0
15 0.0010	450	00:01:57	98.44%	68.06%	0.1141	1.1072
15	465	00.02.00	98.44%	68.83%	0.0964	1.0731
0.0010	405	00.02.00	30:4470	00.03/0	0.030+	1.0751
16	480	00:02:04	100.00%	68.66%	0.0512	1.1012
0.0010						
16	495	00:02:07	93.75%	69.77%	0.1608	1.0803
0.0010	I		0.5 0.00/ 1	1		
17 0.0010	500	00:02:08	96.88%	I	0.0886	I
17	510	00.02.11	96.88%	67 04% l	0.1065	1.1416
0.0010	310	00.02.11	30.00%	07:0470	0.1005	1,1410
17	525	00:02:15	98.44%	71.73%	0.1095	1.0395
0.0010						
18	540	00:02:19	98.44%	67.63%	0.0820	1.1504
0.0010			00 440/ 1	1	0.0750.1	
18 0.0010	550	00:02:20	98.44%	1	0.0768	I
0.0010 18	555	00.02.22	98.44%	68.15%	0.0676	1.0186
0.0010	333	00.02.22	30:4470	00.15/0	0.0070	1.0100
19	570	00:02:26	100.00%	68.06%	0.0673	1.0628
0.0010						
19	585	00:02:29	95.31%	70.45%	0.2112	1.1201
0.0010	!					
20	600	00:02:33	96.88%	67.98%	0.0925	1.1212
0.0010 20	615	00·02·37	100.00%	68.92%	0.0551	1.0735
0.0010	010	00.02.37	100.00%	00.52%	0.0551	1.0/00
20	620	00:02:39	93.75%	69.26%	0.2273	1.0479
0.0010	·	•	•	•	•	·

========

Registration No: 230118234
Training finished: Max epochs completed.

Training on single GPU.

	Initializing input data normalization.											
======			===	:==========	==:	========	==	=========	===		========	
Epoc	:h	Iteration		Time Elapsed		Mini-batch		Validation		Mini-batch	Validation	
Base Le	earnin	g										
l Rate			ı	(hh:mm:ss)		Accuracy	I	Accuracy	I	Loss	Loss	I
	:====:	========	===	:========	==	========	==	========	===			
======		1										
0.0010	. '	1		00:00:04		9.38%		11.27%	ı	4.3562	3.0890	I
	1	15		00:00:07		32.81%		22.37%		2.2191	2.4072	
0.0010												
0.0010	1	30	ı	00:00:11		35.94%		35.18%		1.9400	2.0333	
	2	45		00:00:14		51.56%		42.78%		1.6116	1.8179	
0.0010												
0.0010		50	ı	00:00:15		48.44%				1.4897		
		60		00:00:18		56.25%		45.09%		1.3878	1.7245	
0.0010	٠.											
0.0010	3 I	75	ı	00:00:22		65.62%		46.80%		1.0031	1.5923	
	3	90	Ι	00:00:25		60.94%		53.46%	ı	1.3010	1.4944	1
0.0010	٠											
0.0010		100		00:00:27		57.81%				1.2596		
	4	105	ı	00:00:29		71.88%	I	55.42%	ı	0.9026	1.3820	I
0.0010	Ι.								•			
0.0010	4	120		00:00:32		64.06%		60.38%		1.0370	1.3243	
	1 5	135	ı	00:00:36		70.31%	I	60.46%	I	0.8765	1.2627	I
0.0010	1						'		'			

Ÿ	No: 23011823		00:00:40	75 00%	60 20%	a 721a	1.2528
0.0010	150	0	00:00:40	75.00%	00.36%	0.7310	1.2526
6 0.0010	16	5	00:00:44	73.44%	62.43%	0.7656	1.2034
0.0010 6 0.0010	18	0	00:00:47	81.25%	63.45%	0.6926	1.1234
7	19	5	00:00:51	90.62%	62.17%	0.3554	1.1666
0.0010 7 0.0010	200	0	00:00:52	71.88%	I	0.7329	1
7	21	0	00:00:54	87.50%	63.79%	0.5474	1.1573
	22	5	00:00:58	79.69%	64.56%	0.5140	1.1555
0.0010 8 0.0010	24	0	00:01:02	82.81%	63.28%	0.4767	1.1447
9	25	0	00:01:03	89.06%		0.3069	1
0.0010 9 0.0010	25	5	00:01:05	92.19%	66.01%	0.3225	1.0664
9	27	0	00:01:09	85.94%	66.44%	0.4072	1.0578
0.0010 10 0.0010	28	5	00:01:13	93.75%	68.32%	0.2223	1.0597
0.0010 10 0.0010	30	0	00:01:16	92.19%	68.23%	0.1936	1.0228
11	31	5	00:01:20	93.75%	68.74%	0.2868	1.0163
0.0010 11	. 330	0	00:01:24	92.19%	69.00%	0.2289	1.0480
0.0010	34	5	00:01:27	96.88%	68.32%	0.1563	0.9992
0.0010 12	350	0	00:01:28	98.44%	I	0.2125	1
0.0010 12 0.0010	36	0	00:01:31	93.75%	68.49%	0.2717	1.0241
0.0010 13 0.0010	37	5	00:01:34	93.75%	68.83%	0.1417	1.0708
13	39	0	00:01:39	96.88%	69.09%	0.1209	0.9862
0.0010	40	0	00:01:40	96.88%	I	0.1480	
0.0010	40	5	00:01:42	98.44%	71.65%	0.1178	0.9869
0.0010 14	42	0	00:01:46	93.75%	69.85%	0.1952	1.0099
0.0010	43	5	00:01:50	100.00%	68.74%	0.0952	1.0172
0.0010	45	0	00:01:53	96.88%	71.22%	0.0952	0.9825
0.0010	•	5	00:01:57	95.31%	68.40%	0.2166	1.0580
	48	0	00:02:00	98.44%	70.54%	0.0902	1.0255
0.0010 16 0.0010		5	00:02:04	98.44%	70.79%	0.0748	1.0097
0.0010 17 0.0010	50	0	00:02:05	98.44%	I	0.0950	I

Registrati	on I	No: 230118	234					
_	17			00:02:07	98.44%	70.79%	0.0744	1.0214
0.0010			1				1	
'	17		525	00:02:11	96.88%	70.71%	0.1877	0.9950
0.0010		1	540 J	00 00 45	06 00%	70 450/	0.4460	4 0540
	18		540	00:02:15	96.88%	70.45%	0.1160	1.0540
0.0010	1 18	ı	550	00:02:16	96.88%	1	0.1040	ı
0.0010		I	7 90	00.02.10	90.88%	I	0.1040	I
	18	I	555	00:02:18	96.88% l	70.79%	0.1138	1.0016
0.0010		1	,	00102120	70,00%	7077270	011130	
	19		570	00:02:22	96.88%	69.68%	0.0726	1.0477
0.0010					•	•		
	19		585	00:02:25	100.00%	70.79%	0.0596	1.0111
0.0010								
	20		600	00:02:29	98.44%	71.05%	0.0786	1.0275
0.0010								
•	20		615	00:02:33	98.44%	70.45%	0.0542	1.0875
0.0010				00 00 05 1	100 00%	50 050/	0.0550	
'	20	I	620	00:02:35	100.00%	69.85%	0.0663	1.0384
0.0010								
=====								

Training finished: Max epochs completed.

Training on single GPU.

```
______
========|
 Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation |
Base Learning
                 (hh:mm:ss)
                            Accuracy
                                      Accuracy
                                                 Loss
                                                          Loss
Rate
========|
                    00:00:03
                               7.81% |
                                        10.93% |
              1 |
                                                  4.6470
                                                           3.7600
0.0010
```

Registration	on No: 23011		00.00.00	40, 63%	20 67%	2 4242	2 2770
0.0010	1	15	00:00:06	40.62%	20.6/%	2.1312	2.3770
 0.0010	1	30	00:00:10	34.38%	31.17%	2.0963	2.0884
0.0010	2	45	00:00:14	40.62%	38.86%	1.5940	1.8705
	2	50	00:00:14	53.12%		1.4068	1
0.0010 0.0010	2	60	00:00:17	62.50%	48.25%	1.2122	1.6613
	3	75	00:00:21	64.06%	53.03%	1.1905	1.5468
0.0010 0.0010	3	90	00:00:24	51.56%	55.85%	1.4992	1.4498
0.0010	4	100	00:00:26	60.94%	I	1.1079	
0.0010	4	105	00:00:28	84.38%	56.96%	0.6894	1.3733
	4	120	00:00:31	59.38%	58.07%	1.1910	1.3510
0.0010	5	135	00:00:35	70.31%	60.55%	0.7378	1.2919
0.0010	5	150	00:00:39	75.00%	63.02%	0.8125	1.2235
0.0010	6	165	00:00:42	87.50%	64.56%	0.4166	1.1590
0.0010	6	180	00:00:46	82.81%	63.28%	0.4712	1.1335
0.0010	7	195	00:00:50	84.38%	66.27%	0.4853	1.1022
0.0010	7	200	00:00:51	89.06%		0.3816	
0.0010	7	210	00:00:53	82.81%	64.13%	0.5020	1.0974
0.0010	8	225	00:00:57	87.50%	64.90%	0.3491	1.1127
0.0010	8	240	00:01:01	92.19%	66.78%	0.2786	1.1090
0.0010	9	250	00:01:02	95.31%	I	0.2537	
0.0010	9	255	00:01:05	87.50%	69.68%	0.3608	1.0461
0.0010	9	270	00:01:08	96.88%	68.57%	0.2354	1.0953
0.0010 0.0010	10	285	00:01:12	93.75%	68.92%	0.2157	1.0509
	10	300	00:01:15	95.31%	67.89%	0.1834	1.0762
	11	315	00:01:19	92.19%	68.66%	0.2500	1.0908
0.0010	11	330	00:01:23	95.31%	67.89%	0.1940	1.0342
0.0010 0.0010	12	345	00:01:26	96.88%	68.23%	0.1164	1.1446
0.0010	12	350	00:01:27	96.88%	I	0.2113	I
0.0010	12	360	00:01:30	95.31%	68.40%	0.2420	1.1156

Registrati	on No: 23011	8234					
0.0010	13	375	00:01:34	92.19%	68.57%	0.2237	1.1119
		390	00:01:37	98.44%	68.66%	0.1037	1.0472
0.0010		400	00.01.20	00 449/	ı	0 1207	1
 0.0010		400	00:01:39	98.44%		0.1307	ı
		405	00:01:41	95.31%	67.81%	0.1588	1.0628
0.0010	•	420	00:01:44	95.31%	69.34%	0.1888	1.0987
0.0010	•		1				
0.0010	15	435	00:01:48	98.44%	68.06%	0.0983	1.0673
	15	450	00:01:52	96.88%	70.79%	0.1173	1.0372
0.0010	•	465	00:01:55	96.88%	69.00%	0.1356	1.0807
0.0010			·				
0.0010	. '	480	00:01:59	96.88%	70.28%	0.1186	1.0674
	16	495	00:02:02	100.00%	69.68%	0.0543	1.1368
0.0010 	 17	500	00:02:03	98.44%		0.0642	1
0.0010		300	·	·	ı	0.0012	'
 0.0010	17	510	00:02:06	98.44%	68.74%	0.0821	1.0548
	17	525	00:02:10	96.88%	70.28%	0.1023	1.0189
0.0010	•	E40	00.02.12 l	98.44%	70 71%	0 0E04	1 0100 l
0.0010	18	540	00:02:13	98.44%	70.71%	0.0594	1.0198
0.0010	18	550	00:02:15	96.88%	I	0.1351	
0.0010 	18	555	00:02:17	98.44%	69.68%	0.1063	1.0385
0.0010	 19	570	00:02:21	100.00%	70 70%	0.0398	1.0660
0.0010		370	00.02.21	100.00%	70.75%	0.0398	1.0000
	19	585	00:02:24	98.44%	71.05%	0.0835	1.0577
0.0010 	•	600	00:02:28	98.44%	68.83%	0.0719	1.0421
0.0010	1	-	·				
 0.0010		615	00:02:31	100.00%	72.59%	0.0433	1.0447
	20	620	00:02:34	100.00%	70.96%	0.0385	1.0544
0.0010							

|------|

Training finished: Max epochs completed.


```
% Model Averaging for Predictions
predictions = zeros(numel(adsValidation.Files), numClasses, numModels);
for i = 1:numModels
    % Get predictions from each model
     [YPred, scores] = classify(models{i}, adsValidation);
     predictions(:, :, i) = scores; % Storing the raw scores for averaging
end
% Average the predictions from all models
meanPredictions = mean(predictions, 3);
% Convert averaged scores to categorical predictions
[~, maxScoreIndices] = max(meanPredictions, [], 2);
averagedYPred = categorical(maxScoreIndices, 1:numClasses,
categories(adsValidation.Labels));
% Evaluate the averaged predictions
TValidation = adsValidation.Labels;
accuracy = sum(averagedYPred == TValidation) / numel(TValidation);
fprintf('Ensemble Model Accuracy: %.2f%%\n', accuracy * 100);
```

Ensemble Model Accuracy: 74.89%

```
% Plot confusion matrix for averaged predictions
figure;
cm = confusionchart(TValidation, averagedYPred, ...
    'Title', 'Confusion Matrix for Averaged Model Predictions', ...
    'ColumnSummary', 'column-normalized', 'RowSummary', 'row-normalized');
```

sortClasses(cm, categories(adsTrain.Labels));

		Confusion Matrix for Averaged Model Predictions											
background	60												
down	1	73	14		6		1	2		4			
go	2	3	73	1	18	1					3		
left				82		1	1	11		3	3		
no		7	5	1			2						
off	2		3	3		64	3	8	1	9	8		
on ø	1		1	1	5	3		2	1	7	2		
HZe Class				1			1			1			
stop	2	2	2			1		1		2	10	1	
unknown	5	8	6	10	4		15	45	1	7			
up	1	1	1		3	1	1	1	1				
yes	1			5	4	1				1		89	

100.0%	
72.3%	27.7%
72.3%	27.7%
81.2%	18.8%
85.1%	14.9%
63.4%	36.6%
77.2%	22.8%
97.0%	3.0%
79.2%	20.8%
6.9%	93.1%
90.1%	9.9%
88.1%	11.9%

80.0%	77.7%	69.5%	78.8%	68.3%	88.9%	76.5%	58.3%	95.2%	20.6%	77.8%	98.9%
20.0%	22.3%	30.5%	21.2%	31.7%	11.1%	23.5%	41.7%	4.8%	79.4%	22.2%	1.1%
background	down	go	left	no	off	on	right Predicted Class	stop	unknown	up	yes

Task 4: Bayesian Optimisation

Objective: Refine by optimising the number of convolutional layers and filters through Bayesian Optimisation.

Description: Bayesian Optimization is employed to efficiently fine-tune the hyperparameters concerning the number of convolutional layers (between 4 and 5) and filters per layer (between 16 and 32). This approach uses a probabilistic model to predict the performance of different configurations and selects the next set of parameters to test based on maximizing the expected improvement in validation accuracy.

The optimization runs for five iterations, evaluating the accuracy of the ASR model under different architectural settings. The process aims to find the optimal configuration that leads to the highest accuracy on the validation dataset with minimal evaluations.

The results provide the best-found number of layers and filters, which is 5 layers and 32 filters per layer, the same as found by the grid search.

objectiveFunction is at the end of this file (Objective Function).

```
fprintf('Starting Bayesian Optimization Approach...\n');
```

Starting Bayesian Optimization Approach...

```
% Set Up and Run Bayesian Optimization
objectiveFunc = @(x) objectiveFunction(x.numLayers, x.numFilters, adsTrain, adsValidation,
inputSize);

numLayers = optimizableVariable('numLayers',[4, 5],'Type','integer');
numFilters = optimizableVariable('numFilters',[16, 32],'Type','integer');

results = bayesopt(objectiveFunc, [numLayers, numFilters], ...
'IsObjectiveDeterministic', false, ...
'MaxObjectiveEvaluations', 5, ...
'AcquisitionFunctionName', 'expected-improvement-plus');
```

Training on single GPU. Initializing input data normalization. ______ ========= | Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning (hh:mm:ss) Accuracy Accuracy Loss Loss Rate I -----------1 | 1 | 00:00:03 20.31% 11.96% 3.0308 4.3961 0.0010 30 00:00:09 32.81% 27.24% 2.1946 2.2314 1 | 0.0010 00:00:11 54.69% 2 50 1.3123 0.0010 38.51% | 2 | 60 00:00:14 62.50% | 1.1026 1.8997 0.0010 73.44% 44.06% 3 90 00:00:20 0.9007 1.7323 0.0010 |

gistration No. 22	0110224					
gistration No: 230		00:00:21	68.75%	1	0.9037	
0.0010				1		
4	120	00:00:25	82.81%	48.33%	0.5500	1.7045
0.0010 5	150	00:00:32	90.62%	50.13%	0.4916	1.5881
0.0010		00100132	7000270	301237	01.520	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6	180	00:00:36	93.75%	53.89%	0.3155	1.5215
0.0010 	200	00.00.20	96.88%	1	0.2021	
).0010	200	00.00.33	90.88%	ı	0.2021	
7	210	00:00:41	100.00%	54.91%	0.1096	1.5242
0.0010						
8 0.0010	240	00:00:46	100.00%	58.33%	0.1211	1.4654
9	250	00:00:47	98.44%	I	0.0879	
0.0010	•				•	
9	270	00:00:52	98.44%	55.25%	0.1601	1.5203
0.0010 10	300	99·99·57	100.00%	57.64%	0.0460	1.4666
0.0010	300		20010077	37.00.00	0.00	
11	330	00:01:02	100.00%	56.62%	0.0502	1.5077
0.0010 12	350	00:01:04	100.00%		0.0195	
).0010	ا هدد	00.01.04	100.00%	ı	0.0195	
12	360	00:01:07	100.00%	57.81%	0.0228	1.4825
0.0010	200	00.04.44.1	100 00%	50 070/ l	0.0454	4 4072
13 0.0010	390	00:01:11	100.00%	59.27%	0.0164	1.4973
13	400	00:01:13	100.00%	I	0.0185	
0.0010						
14	420	00:01:16	100.00%	58.58%	0.0092	1.4920
0.0010 15	450	00:01:21	100.00%	60.29%	0.0099	1.4544
0.0010	•					
16	480	00:01:26	100.00%	59.95%	0.0071	1.4910
0.0010 17	500	00:01:28	100.00%	I	0.0072	
0.0010	300	00.01.20	100.00%	ı	0.0072	
17	510	00:01:31	100.00%	59.35%	0.0068	1.4744
0.0010 18	E40	00:01:36	100 00%	60.46%	0.0062	1 4024
).0010	540	00:01:36	100.00%	00.46%	0.0062	1.4924
18	550	00:01:37	100.00%	I	0.0062	
0.0010	570 I	00.04.44	100 00%	50 450/ 1	0.0004	4.750
19 0.0010	570	00:01:41	100.00%	60.46%	0.0084	1.4750
20	600	00:01:46	100.00%	60.72%	0.0061	1.4982
0.0010		·	•	•		
20	620	00:01:50	100.00%	59.86%	0.0065	1.5060
0.0010 	:=======		.========	=========	=========	=======:
======						
Training finishe	-	•				
		Objective				

======				=========		==========	=========	
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	numLayers	numFilters	
	result		runtime	(observed)	(estim.)			
=====						=======================================		
1	Best	-0.60632	124	-0.60632	-0.60632	4	20	

Registration No: 230118234 Training on single GPU.

Initializing input data normalization.

=======				==		:======	-=-		========	===
Epoch ase Learnin	Iteration	Tin	me Elapsed		Mini-batch	Validation	I	Mini-batch	Validation	I
ate	-	(1	hh:mm:ss)		Accuracy	Accuracy		Loss	Loss	
		=====	=======	==		:=======	-=-		========	===
 1 .0010	1		00:00:01		9.38%	13.41%	I	3.8388	4.2492	
1	30	I	00:00:06		43.75%	29.97%		1.7636	2.0858	
2 .0010	50	I	00:00:08		59.38%			1.4206		
2 .0010	60		00:00:11		57.81%	43.89%		1.1309	1.6308	
3 .0010	90		00:00:15		70.31%	55.25%		0.9150	1.4772	
4 .0010	100	I	00:00:17		85.94%			0.5766		
4	120		00:00:20		·	57.05%	-			
.0010	150		00:00:25		89.06%					
.0010	180		00:00:30			62.77%				
7 .0010	200		00:00:32		98.44%			0.1803		
7 .0010	210		00:00:35							-
8 .0010 9	240 250		00:00:41		98.44%	62.85%	1	0.0519 0.0514		1
.0010 9	270		00:00:42	•	·	65.16%	1			1
.0010	300				100.00%		•			
.0010					100.00%					
.0010					·		-			ı
.0010 12		· I			96.88%					I
.0010	390		00:01:05		·	66.70%	-			
.0010	400	l	00:01:06		100.00%			0.0052		
.0010 14	420	I	00:01:10		100.00%	66.44%		0.0065	1.2341	
.0010 15	450	I	00:01:15		100.00%	66.52%	I	0.0063	1.2619	
.0010 16	480	I	00:01:20		100.00%	65.58%	1	0.0029	1.2749	
.0010 17	500	I	00:01:22		100.00%			0.0043		
.0010										

gistration N 17	No: 230118234 510		00:01:25		100.00%	66.95%	0.0036	1.2704
0.0010 18	540	I	00:01:29	ı	100.00%	65.93%	0.0019	1.2888
0.0010							•	
18 0.0010	550	I	00:01:31	I	100.00%	I	0.0095	I
19 0.0010	570		00:01:34		100.00%	66.78%	0.0047	1.2513
20	600	1	00:01:39		100.00%	65.24%	0.0020	1.3105
0.0010 	620		00:01:43		100.00%	67.04%	0.0024	1.2869
0.0010 	:=======:	====:	========	===:	========	:========	:=========	=========
2 B Training o Initializi	inished: Max e est -0. on single GPU. ng input data	.6669!	5 112			-0.664		
========	:===							
Epoch Base Learn	•	1:	ime Elapsed	ı	Mini-batch	Validation	Mini-batch	Validation
 Rate			(hh:mm:ss)		Accuracy	Accuracy	Loss	Loss
		====:	=======			=======================================		========
======== 1	1		00:00:01		3.12%	11.19%	3.7349	7.1202
0.0010 1] 30	ı	00:00:06	ı	35.94%	25.19%	2.0353	2.4321
0.0010 2					•	•	•	
0.0010		ı	00:00:09		39.06%	•	1.8054	
	60	I	00:00:11		54.69%	38.77%	1.3682	1.9399
3 3.0010	90		00:00:16		53.12%	48.08%	1.6644	1.7102
4	100		00:00:18		81.25%	I	0.6434	I
0.0010 4	120	1						
0010	1		00:00:22		60.94%	46.88%	·	1.7791
							1.0089	
5 0.0010	150	1	00:00:27		71.88%	50.38%	1.0089	1.7533
5 0.0010 6 0.0010	150	 	00:00:27 00:00:32		71.88%	50.38% 54.91%	1.0089 0.7987 0.3469	1.7533
5 3.0010 6 3.0010	150	1	00:00:27 00:00:32		71.88%	50.38% 54.91%	1.0089 0.7987 0.3469	1.7533
5 3.0010 6 3.0010 7 3.0010 7	150 180 200	 	00:00:27 00:00:32 00:00:34	 	71.88% 89.06% 98.44%	50.38% 54.91%	1.0089 0.7987 0.3469	1.7533 1.4745
5 3.0010 6 3.0010 7 3.0010 7 3.0010 8	150 180 200 210	 	00:00:27 00:00:32 00:00:34 00:00:37	 	71.88% 89.06% 98.44%	50.38% 54.91% 	1.0089 0.7987 0.3469 0.1586	1.7533 1.4745 1.6128
5 3.0010 6 3.0010 7 3.0010 7 3.0010 8 3.0010 8	150 180 200 210 240	 	00:00:27 00:00:32 00:00:34 00:00:37 00:00:42	 	71.88% 89.06% 98.44% 89.06% 100.00%	50.38% 54.91% 	1.0089 0.7987 0.3469 0.1586 0.3505 0.1089	1.7533 1.4745 1.6128
5 5 0.0010 6 0.0010 7 0.0010 7 0.0010 8 0.0010 9	150 180 200 210 240 250		00:00:27 00:00:32 00:00:34 00:00:37 00:00:42	 	71.88% 89.06% 98.44% 89.06% 100.00%	50.38% 54.91% 54.74% 59.78%	1.0089 0.7987 0.3469 0.1586 0.3505 0.1089 0.0600	1.7533 1.4745 1.6128 1.4181
5 0.0010 6 0.0010 7 0.0010 7 0.0010 8 0.0010 9 0.0010 9	150 180 200 210 240 250 270		00:00:27 00:00:32 00:00:34 00:00:37 00:00:42 00:00:43		71.88% 89.06% 98.44% 89.06% 100.00% 100.00%	50.38% 54.91% 54.74% 59.78%	1.0089 0.7987 0.3469 0.1586 0.3505 0.1089 0.0600 0.0665	1.7533 1.4745 1.6128 1.4181 1.4068
5 3.0010 6 3.0010 7 3.0010 7 3.0010 8 3.0010 9	150 180 200 210 240 250 270		00:00:27 00:00:32 00:00:34 00:00:37 00:00:42 00:00:43		71.88% 89.06% 98.44% 89.06% 100.00% 100.00%	50.38% 54.91% 54.74% 59.78%	1.0089 0.7987 0.3469 0.1586 0.3505 0.1089 0.0600	1.7533 1.4745 1.6128 1.4181 1.4068

-:	00440004					
gistration No: 23	3011 8234 350	00:01:00	96.88%	1	0.2092	1
0.0010 12	360	00:01:02	100.00%	61.32%	0.0219	1.4368
0.0010 13	390	00:01:08	100.00%	63.45%	0.0194	1.3942
0.0010 13	400	00:01:09	100.00%	1	0.0155	1
0.0010 14	420	00:01:13	100.00%	63.11%	0.0105	1.3810
0.0010 15	450	00:01:18	100.00%	63.11%	0.0069	1.3909
0.0010 16	480	00:01:23	100.00%	63.45%	0.0052	1.4225
0.0010 17	500	00:01:25	100.00%	1	0.0072	1
0.0010 17	510	00:01:28	100.00%	64.05%	0.0066	1.3987
0.0010 18	540	00:01:33	100.00%	63.88%	0.0058	1.3730
0.0010 18	550	00:01:34	100.00%	1	0.0032	1
0.0010 19	570	00:01:38	100.00%	64.05%	0.0051	1.3991
0.0010 20	600	00:01:43	100.00%	63.96%	0.0052	1.4068
0.0010						
0.0010 Training finish	ned: Max epoch	s completed.	100.00%	· 	·	·
0.0010 ========= -============ Training finish 3 Accept Training on sir Initializing ir	ned: Max epoch -0.645 gle GPU. 	s completed. 116.91	· ========		·	·
0.0010 3 Accept 3 Accept Initializing ir	ned: Max epoch: - -0.645 ngle GPU. nput data norm	s completed. 6 116.91 alization.			4	32
0.0010 raining finish 3 Accept raining on sir Initializing ir Epoch It	ned: Max epoch: - -0.645 ngle GPU. nput data norm:	s completed. 6 116.91 alization. ====================================	-0.66695 	-0.66429 -0.66429 	4 	32
0.0010	ned: Max epoch: - -0.645 ngle GPU. nput data norm:	s completed. 6 116.91 alization. ====================================	-0.66695 	-0.66429 -0.66429 	4	32
0.0010	ned: Max epoch: - 0.645 ngle GPU nput data norm	s completed. 6 116.91 alization. ====================================	-0.66695 Mini-batch Accuracy	-0.66429 -0.66429 Validation Accuracy	4 	32
0.0010	ned: Max epoch: - 0.6450 ngle GPU. nput data norm ceration Ti	s completed. 6 116.91 alization	-0.66695 Mini-batch Accuracy	-0.66429 -0.66429 Validation Accuracy	4 Mini-batch Loss	32 Validation Loss
0.0010	ned: Max epoch:0.6450 ngle GPU. nput data norm:	s completed. 6 116.91 alization. ime Elapsed (hh:mm:ss)	-0.66695 Mini-batch Accuracy	-0.66429 -0.66429 Validation Accuracy	4 Mini-batch Loss 3.5055	32
0.0010	ned: Max epoch:0.6450 ngle GPU. nput data norm:	s completed. 6 116.91 alization. ====================================	-0.66695 Mini-batch Accuracy -0.25% 42.19%	-0.66429 -0.66429	4 Mini-batch Loss 3.5055 1.8452	32
 3 Accept 3 Accept 3 Accept Training on sir 	ned: Max epoch: - 0.645 ngle GPU. nput data norm ceration Ta	s completed. 6 116.91 alization. ====================================	-0.66695 Mini-batch Accuracy -0.25% 42.19% 68.75%	-0.66429 -0.66429	4	32 Validation Loss 5.5072 2.1969
0.0010	ned: Max epoch: - 0.645 ngle GPU. nput data norm ceration T: 1 30	s completed. 6 116.91 alization. ====================================	-0.66695 Mini-batch Accuracy -0.25% 42.19% 68.75% 70.31%	-0.66429 -0.66429 -0.66429 Validation Accuracy	4 Mini-batch Loss 3.5055 1.8452 0.9791 1.0086	32 Validation Loss 5.5072 2.1969 1.5946
0.0010	ned: Max epoch: -	s completed. 6 116.91 alization. ====================================	-0.66695 Mini-batch Accuracy -0.25% 42.19% 68.75% 70.31% 64.06%	-0.66429 -0.66429 -0.66429 Validation Accuracy	4 Mini-batch Loss 3.5055 1.8452 0.9791 1.0086	32 Validation Loss 5.5072 2.1969 1.5946
	ned: Max epoch: - 0.6450 ngle GPU. nput data norm:	s completed. 6 116.91 alization. ====================================	-0.66695 Mini-batch Accuracy -2.19% 64.06% 92.19%	-0.66429 -0.66429 -0.66429 Validation Accuracy	A	32 Validation Loss 5.5072 2.1969 1.5946 1.4368

			==========	==========	:========	========
Base Learning		(hh:mm:ss)			Loss	Loss
======		ime Elapsed M				
Γraining on sir Initializing ir	ngle GPU. nput data norm				·	
Training finish		s completed. 8 115.77	-0.69428	-0.69427	5	24
 			========	=========		=======
20 20	620	00:01:45	100.00%	69.26%	0.0032	1.2569
20	600	00:01:42	100.00%	69.85%	0.0009	1.2884
19 0.0010	570	00:01:36	100.00%	69.77%	0.0021	1.2582
18 0.0010	550	00:01:33	100.00%	I	0.0022	
0.0010 18 0.0010	540	00:01:31	100.00%	68.92%	0.0010	1.2733
0.0010 17	510	00:01:26	100.00%	69.60%	0.0031	1.2599
0.0010 17	500	00:01:23	100.00%		0.0013	
16	480	00:01:21	100.00%	68.83%	0.0032	1.2676
15	450	00:01:16	100.00%	69.85%	0.0041	1.2402
14	420	00:01:11	100.00%	69.09%	0.0022	1.2484
13	400	00:01:07	100.00%		0.0041	
13	390	00:01:06	100.00%	69.43%	0.0020	1.2240
0.0010 12	360	00:01:01	100.00%	69.00%	0.0051	1.2344
0.0010 12	350	00:00:58	100.00%		0.0048	
0.0010 11	330	00:00:56	100.00%	68.92%	0.0092	1.2580
0.0010 10	300	00:00:51	100.00%	67.55%	0.0072	1.2801
.0010 9	270	00:00:46	100.00%	67.55%	0.0265	1.3479
9	250	00:00:42	100.00%		0.0130	I
8	240	00:00:41	100.00%	66.27%	0.0366	1.3227
7	210	00:00:36	100.00%	67.12%	0.0692	1.1888
7	200	00:00:33	98.44%		0.0807	I
6 a aa1a	180	00:00:31	92.19%	62.25%	0.1965	1.4222

Registrati		No: 230118234	00.00.00.1	40.040/	42.42%	2 4244	0.4000
0.0010	1	1	00:00:02	10.94%	12.13%	3.1314	8.4928
 0.0010	1 	30	00:00:06	39.06%	27.33%	1.7853	2.2762
0.0010	2	50	00:00:09	76.56%	1	0.9004	1
	2	60	00:00:12	54.69%	41.16%	1.5628	1.8446
0.0010	3	90	00:00:17	65.62%	54.40%	0.9967	1.4181
0.0010 	4	100	00:00:18	70.31%	1	0.7754	1
0.0010 	4	120	00:00:22	87.50%	57.22%	0.4413	1.4494
0.0010 		150	00:00:28	82.81%	61.23%	0.5424	1.3339
0.0010 		180	00:00:33	95.31%	63.36%	0.2074	1.2127
0.0010 	 7	200	00:00:35	100.00%	1	0.0718	1
0.0010 	 7	210	00:00:38	95.31%	67.29%	0.1939	1.2558
0.0010 	8	240	00:00:43	96.88%	67.98%	0.1127	1.1539
0.0010 	9	250	00:00:45	100.00%	1	0.0510	1
0.0010 	9		00:00:49				•
0.0010			00:00:54				•
0.0010			00:00:59				•
0.0010			·				·
0.0010	'		00:01:02			0.0061	•
0.0010	12 		00:01:04		70.28%		•
 0.0010		390	00:01:10	98.44%	68.74%	0.1409	1.2504
 0.0010		400	00:01:11	100.00%	I	0.0027	
 0.0010	14	420	00:01:15	100.00%	69.09%	0.0043	1.2316
0.0010	15	450	00:01:20	100.00%	68.66%	0.0022	1.2819
0.0010	16	480	00:01:25	100.00%	68.57%	0.0016	1.2895
	17	500	00:01:28	100.00%	1	0.0013	1
0.0010	17	510	00:01:30	100.00%	69.34%	0.0020	1.2865
0.0010	18	540	00:01:36	100.00%	68.66%	0.0013	1.3025
0.0010	18	550	00:01:37	100.00%	1	0.0025	1
0.0010	19	570	00:01:41	100.00%	68.57%	0.0008	1.2818
0.0010 	20	600	00:01:46	100.00%	69.17%	0.0013	1.2898
0.0010							

620 00:01:50 100.00% 69.17% | 0.0013 | 1.3139 0.0010 | |------========| Training finished: Max epochs completed.

-0.69428

-0.69427

5 |

29 |

5 | Accept | -0.6883 120.77

Optimization completed.

MaxObjectiveEvaluations of 5 reached.

Total function evaluations: 5

Total elapsed time: 598.1969 seconds

Total objective function evaluation time: 590.2915

```
numLayers
                numFilters
        5
                    24
Observed objective function value = -0.69428
Estimated objective function value = -0.69427
Function evaluation time = 115.7659
Best estimated feasible point (according to models):
    numLayers
                numFilters
        5
                    24
Estimated objective function value = -0.69427
Estimated function evaluation time = 117.9938
% Display Best Parameters
bestParams = bestPoint(results);
fprintf('Best Number of Layers: %d\n', bestParams.numLayers);
Best Number of Layers: 5
fprintf('Best Number of Filters: %d\n', bestParams.numFilters);
```

Best observed feasible point:

Best Number of Filters: 24

Task 5: Open Ended Extension of the Project

5.1. Spectrogram Augmentation by Masking Blocks of Frequency Channels and Time Steps

Objective: Implement and evalueat the impact of spectrogram augmentation to improve model robustness and performance.

Description: This extension uses spectrogram augmentation to enhance training. The created applySpecAugment function masks random frequency channels and time steps in training images, simulating audio input variations and potentially improving model generalisation. Implementing spectrogram augmentation is much easier in Python due to the existing specAugment function.

The network architecture emphasizes convolutional, batch normalization, relu, and max pooling layers, ending with a classification layer. Training includes a mini-batch size of 64, an initial learning rate of 0.001, 30 epochs to accommodate augmentation with early stopping (if validation loss doesn't improve for 5 epochs).

Spectrogram augmentation is integrated into the data preprocessing pipeline (adsTrain.ReadFcn), dynamically altering each image during training for diversity. This technique is expected to enhance the model's robustness against speech input variations.

The effectiveness of this pectrogram augmentation is assessed by training the model with the augmented dataset, evaluating its performance on the validation set, and comparing the results to non-augmented training. The model preicts with a validation accuracy of upto 79% plus, as opposed to the 75% previously, suggesting that the spectrogram augmentation has had a positive impact on the model's ability to generalise from the training data to unseen data.

applySpecAugment function is at the end of this file (SpecAugment Function).

```
% Apply spectrogram augmentation (using specAugment function created)
adsTrain.ReadFcn = \omega(x) applySpecAugment(imresize(imread(x), inputSize(1:2)));
% Define Network Architecture
numClasses = numel(categories(adsTrain.Labels)); % Determine the number of classes
dynamically
timePoolSize = ceil(inputSize(1)/8);
numF = 16; % Number of filters for the convolutional layers
dropoutProb = 0.2; % Dropout probability
layers = [
     imageInputLayer(inputSize)
     convolution2dLayer(3, numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
    maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 2*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
    maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
```

```
Registration No: 230118234
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLaver
     maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     maxPooling2dLayer([timePoolSize, 1])
     dropoutLayer(dropoutProb)
     fullyConnectedLayer(numClasses)
     softmaxLayer
     classificationLayer];
 % Specify Training Options
 minibatchsize = 64;
 options = trainingOptions('adam', ...
      'InitialLearnRate', 0.001, ...
      'MaxEpochs', 30, ...
      'MiniBatchSize', minibatchsize, ...
      'Shuffle', 'every-epoch', ...
      'Plots', 'training-progress', ...
      'Verbose', true, ...
      'ValidationData', adsValidation, ...
      'ValidationFrequency', floor(numel(adsTrain.Files)/minibatchsize))
  options =
    TrainingOptionsADAM with properties:
              GradientDecayFactor: 0.9000
       SquaredGradientDecayFactor: 0.9990
                         Epsilon: 1.0000e-08
                InitialLearnRate: 1.0000e-03
                LearnRateSchedule: 'none'
              LearnRateDropFactor: 0.1000
              LearnRateDropPeriod: 10
                 L2Regularization: 1.0000e-04
          GradientThresholdMethod: 'l2norm'
                GradientThreshold: Inf
                       MaxEpochs: 30
                   MiniBatchSize: 64
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: [1x1 matlab.io.datastore.ImageDatastore]
              ValidationFrequency: 31
               ValidationPatience: Inf
                         Shuffle: 'every-epoch'
```

CheckpointPath: ''

Plots: 'training-progress'

SequenceLength: 'longest'

SequencePaddingValue: 0
SequencePaddingDirection: 'right'
DispatchInBackground: 0
ResetInputNormalization: 1

BatchNormalizationStatistics: 'population'
OutputNetwork: 'last-iteration'

% Train Network

0.0010

trainedNet = trainNetwork(adsTrain, layers, options);

Training on single GPU. Initializing input data normalization. l-------========| | Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning (hh:mm:ss) Accuracy Accuracy Loss Loss Rate |-----------1 | 1 | 00:00:04 3.12% 9.65% 5.8274 3.3561 0.0010 00:00:11 | 29.69% | 1 | 31 | 26.39% 2.2402 2.2275 0.0010 | 50 00:00:13 29.69% 2.2321 2 0.0010 2 | 62 00:00:16 43.75% 40.65% 1.7412 1.8210 0.0010 3 | 93 00:00:22 64.06% 50.04% 1.2517 1.5749 0.0010 | 100 00:00:23 56.25% 1.2448 0.0010 | 124 00:00:28 56.25% 56.45% 1.4704 1.3470 4 0.0010 5 | 150 00:00:32 60.94% 1.2329 0.0010 00:00:34 5 | 155 64.06% 62.94% 1.2708 1.2311 0.0010 6 00:00:40 65.62% 63.79% 0.9974 1.1533 186 0.0010 | 7 | 200 00:00:42 70.31% 1.0312 0.0010 7 | 217 00:00:46 76.56% 67.04% 0.6660 0.9983 0.0010 1.0078 | 8 248 00:00:51 68.75% 69.00% 0.8031 0.0010 00:00:52 70.31% | 0.9266 9 250 0.0010 | 9 | 279 00:00:57 64.06% 72.33% 0.9146 0.9311

7	n No: 23011		00.01.00	04 25%	1	0.5705		
1 0.0010		300	00:01:00	81.25%		0.5795	I	
1 0.0010		310	00:01:03	71.88%	69.94%	0.8679	0.9558	
	11	341	00:01:09	65.62%	73.70%	1.0241	0.9006	
1	12	350	00:01:10	78.12%	1	0.5502		
	12	372	00:01:15	75.00%	72.25%	0.7057	0.8914	
0.0010	13	400	00:01:18	81.25%		0.4851	I	
•	13	403	00:01:20	85.94%	73.87%	0.3802	0.8869	
0.0010 1	L4	434	00:01:26	84.38%	74.47%	0.5482	0.9163	
0.0010 1	L5	450	00:01:28	82.81%		0.4902		
0.0010 1	L5	465	00:01:31	81.25%	73.61%	0.5374	0.8718	
0.0010 1	 16	496	00:01:37	81.25%	76.00%	0.5376	0.8356	
0.0010 1	 L7	500	00:01:38	89.06%		0.3485		
0.0010 1	 L7	527	00:01:43	87.50%	75.41%	0.4253	0.8666	
0.0010 1	L8	550	00:01:46	82.81%	·	0.5232		
0.0010		558	00:01:49	81.25%		0.6625	0.8110	
0.0010				•	-			
0.0010		589	00:01:54	•	74.55%	0.5669	0.8531	
0.0010	'	600	00:01:56	89.06%		0.4229	 	
2 0.0010	20	620	00:02:00	87.50%	76.43%	0.3462	0.8049	
2 0.0010		650	00:02:04	89.06%		0.3678		
2 0.0010		651	00:02:06	85.94%	76.00%	0.3364	0.9217	
0.0010	22	682	00:02:12	85.94%	75.23%	0.4026	0.9362	
0.0010	23	700	00:02:14	89.06%		0.3152		
0.0010	23	713	00:02:17	79.69%	75.66%	0.6150	0.8980	
0.0010	24	744	00:02:23	89.06%	75.92%	0.3512	0.7405	
2	25	750	00:02:24	93.75%	1	0.1715	I	
0.0010	25	775	00:02:29	79.69%	76.94%	0.6277	0.7589	
0.0010	26	800	00:02:32	95.31%	1	0.1792	I	
0.0010	26	806	00:02:35	90.62%	75.66%	0.3134	0.8322	
0.0010	27	837	00:02:41	90.62%	76.09%	0.3470	0.7763	
0.0010								

Registr	ation No: 23	0118234					
	28	850	00:02:43	89.06%		0.3242	
0.00	10						
	28	868	00:02:46	89.06%	79.08%	0.3355	0.7868
0.00	10						
	29	899	00:02:52	84.38%	76.43%	0.3845	0.8033
0.00	10						
	30	900	00:02:52	89.06%		0.3250	
0.00	10						
	30	930	00:02:58	89.06%	76.94%	0.3377	0.8179
0.00	10						
====	=======						

========| Training finished: Max epochs completed.


```
% Plot Confusion Matrix for Validation Set
YValidation = classify(trainedNet, adsValidation);
TValidation = adsValidation.Labels;
figure('Units', 'normalized', 'Position', [0.2 0.2 0.5 0.5]);
cm = confusionchart(TValidation, YValidation, ...
    'Title', 'Confusion Matrix for Validation Data', ...
    'ColumnSummary', 'column-normalized', 'RowSummary', 'row-normalized');
sortClasses(cm, categories(adsTrain.Labels));
```


5.2. Guassian Noise and L2 Regularisation with Spectrogram Augmentation

To further enhance the generalisation and robustness, two additional techniques, Guassian noise and L2 regularisation, were implemented alongisde the previously implemented spectrogram augmentation, which can be found here.

Injecting Guassian noise into the training images introduces randomnes and simulates real-world imperfections in the audio data. This encourages the model to learn more generalised features rather than overfitting to the noise-free data. It tries to mirror distorted audio signals.

By incorporating L2 regularization in the training options, the model penalizes large weights, promoting simpler models that are less prone to overfitting. This regularization technique effectively constrains the model's complexity, encouraging the learning of more generalizable patterns rather than memorizing the training data.

5.3. Spectrogram Generation from 1 Second .wav Files

GitHub Link - https://github.com/mafazsyed/ASR_custom_voice

The ASR_custom_voice repository on GitHub contains the custom audio files recorded using high-quality microphones in Diamond's Media Booths, for all commands. These files, along with their conversions and the relevant MATLAB scripts, are included in the repository. The audio files were then cropped down to exactly 1 second .wav files; this cropping could be done using the AudioFileCropping1s.m script or using Adobe Audition, with the main audio part of each file centered within the one-second duration to match the training data (which remains the same as the provided speechImageData).

The generated one-second .wav files were then processed by a slightly modified version of the provided dataPreProcessing.m file (renamed SpectrogramGeneration.m), which converted them into grayscale spectrograms of size [98 50]. These spectrograms are then used as the validation data (with the training data remaining the same the complete set of generated spectrograms with training data is available at customDataImage.zip) to test the model's accuracy on unseen, custom data, using the CustomAudioASR.m script.

Example Generated Spectrogram for "Down".

```
url_newspec =
'https://raw.githubusercontent.com/mafazsyed/ASR_custom_voice/main/Example%20Down%20Spectrogr
am.png';
img = webread(url_newspec);
url_training =
'https://raw.githubusercontent.com/mafazsyed/ASR_custom_voice/main/Training%20Down%20Spectrog
ram.png';
img_training = webread(url_training);
imshow(img);
```



```
imshow(img_training);
```


The spectrograms vary in their density due to inaccuracies in the dataPreProcessing.m code provided. However, the overall shape, outline, and relative densities between the different areas remain fairly consistent.

5.4. Custom Voice Testing

The model with spectrogram augmentation (masking out frequency and time channels) was used to test the custom voice validation data to for more generalisation and fit to unseen and potentially slightly varying data. An accuracy of 70% was observed, which is plausible, however, three commands could not be detected at all, perhaps due to overfitting to the training data or the inaccuracy in the validation data spectrograms produced by the SpectrogramGeneration.m.

```
clear all;

% Define paths to your dataset
dataFolder = 'owndataImage_test';
trainDataFolder = fullfile(dataFolder, 'TrainData');
valDataFolder = fullfile(dataFolder, 'ValData');

% Create imageDatastores for training and validation datasets
```

```
Registration No: 230118234
 adsTrain = imageDatastore(trainDataFolder, 'IncludeSubfolders', true, 'LabelSource',
'foldernames');
 adsValidation = imageDatastore(valDataFolder, 'IncludeSubfolders', true, 'LabelSource',
'foldernames');
 % Define input size and resize the images in the datastores
 inputSize = [98 50 1];
 adsTrain.ReadFcn = \emptyset(x) applySpecAugment(imresize(imread(x), inputSize(1:2)));
 adsValidation.ReadFcn = @(x)imresize(imread(x), inputSize(1:2));
 % Define Network Architecture
 numClasses = numel(categories(adsTrain.Labels)); % Use adsTrain to determine the number of
classes dynamically
 timePoolSize = ceil(inputSize(1)/8);
 numF = 16; % Number of filters for the convolutional layers
 dropoutProb = 0.2; % Dropout probability
 layers = [
     imageInputLayer(inputSize)
     convolution2dLayer(3, numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 2*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLaver
     maxPooling2dLayer(3, 'Stride', 2, 'Padding', 'same')
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLayer
     convolution2dLayer(3, 4*numF, 'Padding', 'same')
     batchNormalizationLayer
     reluLaver
     maxPooling2dLayer([timePoolSize, 1])
     dropoutLayer(dropoutProb)
     fullyConnectedLayer(numClasses)
     softmaxLayer
     classificationLayer];
```

% Specify Training Options

=======	========					
	1					
		Time Elapsed	Mini-batch	Validation	Mini-batch	Validation
ase Learnir 	0 1	(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss
ate						
		=======================================	==========	========		=========
1	== 1	00:00:03	6.25%	10.00%	4.5546	2.5006
0010 1	23	00:00:07	14.06%	10.00%	2.5338	1.9592
0010 2	46	00:00:10	25.00%	60.00%	2.0886	1.2524
0010 3	50	00:00:10	34.38%	I	1.9997	1
0010 3	69	00:00:13	42.19%	80.00%	1.7501	0.9126
0010 4	92	00:00:16	39.06%	80.00%	1.6940	0.6711
0010 5	100	00:00:17	48.44%	I	1.5829	I
0010 5	115	00:00:19	65.62%	80.00%	1.0684	0.4905
0010 6	138	00:00:22	56.25%	90.00%	1.2975	0.4488
0010 7	150	00:00:24	57.81%		1.1710	ĺ
0010 7	161					
0010 8	184		78.12%			
0010 9	200			1	0.8754	
0010 9	207			90.00%		
0010	,					
10 0010	230		81.25%	80.00%		0.4706
11	250	00:00:39	70.31%	l	0.8684	

Registrati	on No: 23011	8234					
			00:00:39	78.12%	90.00%	0.5489	0.1995
0.0010							
		276	00:00:43	73.44%	80.00%	0.7005	0.3373
0.0010		200	00.00.46	67 10%	00 00% I	0.0267	0 4160
0.0010		299	00:00:46	67.19%	80.00%	0.8367	0.4168
	•	300	00:00:46	75.00%	I	0.6797	I
0.0010		,	,	,	ı	1	'
	14	322	00:00:49	82.81%	90.00%	0.5390	0.1899
0.0010	•						
	. '	345	00:00:53	84.38%	90.00%	0.5329	0.4562
0.0010	· .	250	00.00.52	70 12%	1	0.0054	1
0.0010		350	00:00:53	78.12%	I	0.8054	I
		368	00:00:56	81.25%	90.00%	0.7063	0.3955
0.0010	. '	,	,	, , , ,	,	,	
	17	391	00:00:59	87.50%	90.00%	0.4553	0.2036
0.0010	· .						
	. '	400	00:01:01	81.25%		0.5317	I
0.0010	· .	414	00:01:03	9F 04%	70 00%	0.3861	0.4131
0.0010	. '	414	00:01:03	85.94%	70.00%	0.3801	0.4131
	•	437	00:01:06	87.50%	90.00%	0.5065	0.4185
0.0010					•	'	
	20	450	00:01:08	92.19%		0.3878	
0.0010							
	. '	460	00:01:09	84.38%	90.00%	0.5009	0.2891
0.0010	•						
=====							

========| Training finished: Max epochs completed.


```
TValidation = adsValidation.Labels;
figure('Units', 'normalized', 'Position', [0.2 0.2 0.5 0.5]);
cm = confusionchart(TValidation, YValidation, ...
    'Title', 'Confusion Matrix for Validation Data', ...
    'ColumnSummary', 'column-normalized', 'RowSummary', 'row-normalized');
sortClasses(cm, categories(adsTrain.Labels));
```


Functions Created & Used

Objective Function

```
function objective = objectiveFunction(numLayers, numFilters, adsTrain, adsValidation,
inputSize)
     numClasses = numel(categories(adsTrain.Labels));
    layers = [
         imageInputLayer(inputSize, 'Name', 'input')
    ];
    for i = 1:numLayers
        layerName = ['conv' num2str(i)];
         reluName = ['relu' num2str(i)];
         poolName = ['pool' num2str(i)];
        layers = [
             layers
             convolution2dLayer(3, numFilters * 2^(i-1), 'Padding', 'same', 'Name',
layerName)
             batchNormalizationLayer('Name', ['bn' num2str(i)])
             reluLayer('Name', reluName)
             maxPooling2dLayer(2, 'Stride', 2, 'Padding', 'same', 'Name', poolName)
         ];
     end
```

```
layers = [
        lavers
        fullyConnectedLayer(numClasses, 'Name', 'fc')
        softmaxLayer('Name', 'softmax')
        classificationLayer('Name', 'output')
    ];
    options = trainingOptions('adam', ...
        'InitialLearnRate', 0.001, ...
        'MaxEpochs', 20, ...
        'MiniBatchSize', 64, ...
        'Shuffle', 'every-epoch', ...
        'ValidationData', adsValidation, ...
        'ValidationFrequency', 30, ...
        'Verbose', true, ...
        'Plots', 'none');
   trainedNet = trainNetwork(adsTrain, layers, options);
    YValidation = classify(trainedNet, adsValidation);
    TValidation = adsValidation.Labels;
    accuracy = sum(YValidation == TValidation) / numel(TValidation);
    % Objective is to maximize accuracy, so we minimize the negative accuracy
    objective = -accuracy;
end
```

SpecAugment Function

```
function imgOut = applySpecAugment(imgIn)
    [height, width, ~] = size(imgIn);

% Define size of the masks
    freqMaskWidth = randi([1, floor(width * 0.15)], 1); % up to 15% of the width
    timeMaskHeight = randi([1, floor(height * 0.15)], 1); % up to 15% of the height

% Define starting points of the masks
    freqMaskStart = randi([1, width - freqMaskWidth + 1], 1);
    timeMaskStart = randi([1, height - timeMaskHeight + 1], 1);

% Create copy of the input image to apply masks
    imgOut = imgIn;

% Apply frequency masking
    imgOut(:, freqMaskStart:(freqMaskStart+freqMaskWidth-1), :) = 0;

% Apply time masking
    imgOut(timeMaskStart:(timeMaskStart+timeMaskHeight-1), :, :) = 0;
end
```