Digital Electronics

Class X lab 18

1's complement

One's Complement

Invert all bits. Each 1 becomes a 0, and each 0 becomes a 1.

Original Value	One's Complement	
0	1	
1	0	
1010	0101	
1111	0000	
11110000	00001111	
10100011	01011100	
11110000 10100101	00001111 01011010	

transforming the 0 bit to 1 and the 1 bit to 0

1's complement Examples

1's complement of 7 (0111) is 8 (1000)

1's complement of 12 (1100) is 3 (0011)

2's complement Examples

Example #1 = 00000101 Complement Digits 11111111 11111010 Add 1 -5 = 11111011Example #2 -13 = 11110011**Complement Digits 11111111** 00001100 Add 1 13 = 00001101

1 is added to the 1's complement of the binary number

Boolean Postulates

(1)	A + 0 = A	$A \cdot 1 = A$	identity
(2)	A + NOT[A] = 1	$\mathbf{A} \cdot NOT[\mathbf{A}] = 0$	complement
(3)	A + B = B + A	$A \cdot B = B \cdot A$	commutative law
(4)	A + (B + C) = (A + B) + C	A · (B · C) = (A · B) · C	associative law
(5)	$A + (B \cdot C) = (A + B) \cdot (A + C)$	A · (B + C) = (A · B) + (A · C)	distributive law

Boolean Algebra

(6)	A + A = A	$A \cdot A = A$	
(7)	A + 1 = 1	$\mathbf{A} \cdot 0 = 0$	
(8)	$A + (A \cdot B) = A$	$A \cdot (A + B) = A$	
(9)	$A + (NOT[A] \cdot B) = A + B$	$A \cdot (NOT[A] + B) = A \cdot B$	
(1 0)	$(A \cdot B) + (NOT[A] \cdot C) + (B \cdot C) = (A \cdot B) + (NOT[A] \cdot C)$	$A \cdot (B + C) =$ $(A \cdot B) + (A \cdot C)$	
(1 1)	$NOT[A + B] = NOT[A] \cdot NOT[B]$	$NOT[A \cdot B] =$ $NOT[A] + NOT[B]$	de Morgan's theorem

