Sample Questions for reference (Engineering Chemistry)

Answers till page no 10

Water

 How caustic embrittlement occurs due to the use of hard water? Explain with suitable reactions involved.

'Caustic embrittlement is a type of boiler corrosion which makes boiler material brittle'. This is caused by highly alkaline water in boiler in the boiler. During lime soda process free Na₂CO₃ is usually present in small proportion which decomposed to NaOH under pressure. The water containing NaOH flows into minute hair cracks by capillary action where water evaporates and concentration of NaOH increases progressively. This caustic soda aatckks the metals thereby dissolving the iron in the form of sodium ferroate. This causes embrittlement of boiler parts.

$$Na_2CO_3 + H2O -----> 2 NaOH + CO_2$$

 $2 NaOH + Fe -----> Na_2FeO_2 + H_2$
Sodium hypoferrite
 $6 Na_2FeO_2 + 6 H_2O + O_2 -----> 12 NaOH + 2 Fe_3O_4$ (Black rust)

Caustic embrittlement can be avoided by

- 1. By using sodium phosphate as a softening agent instead of sodium carbonate.
- 2. By adding tannin or lignin to the boiler water, since these substances block the hair cracks, thereby preventing the infiltration of the caustic soda solution in to these.
- What are the disadvantages of hard water in atleast six industries?

Textile Industry	It causes wastage of soap and forms precipitate which stick to cloth giving patch or spot and uneven colour of cloth.
Sugar Industry	Water containing sulphates, nitrates interfere in crystallization of sugar. Ans sugar so produced may undergo decomposition during storage.
Dyeing industry	It causes imperfect shades and uneven spots on fabric
Paper Industry	It causes pigmentation on paper due to presence of heavy metal ions and transition metals.
Concrete	It causes slowdown in hydration of cement and hence final strength of cement reduces.
Industry Food industry	It causes formation of certain undesirable products and thereby reducing the shelf life.
Laundary	Wastage of soaps and water

• Distinguish between temporary and permanent hardness.

	Temporary Hardness		Permanent Hardness
1.	It is due to bicarbonates and carbonates of Ca ²⁺ , Fe ²⁺ , Mg ²⁺ etc.	1.	It is due to chlorides, sulphates, nitrates of Ca ²⁺ , Fe ²⁺ , Mg ²⁺ etc. other than carbonates and bicarbonates.
2.	It is known as carbonate or alkaline hardness.	2.	It is known as non-carbonate or non-alkaline hardness.
3.	Temporary hardness leads to formation of loose deposits of carbonates and hydroxides of Ca ²⁺ , Mg ²⁺ respectively, if used in boilers.	3.	Permanent hardness leads to formation of adherent scales.
4.	Temporary hardness can be removed by simple techniques such as boiling and filtering.	4.	Permanent hardness cannot be removed by simple techniques such as boiling and filtering.

- Distinguish between hard water and soft water

	Hard Water	Soft Water
1.	Hard water is one which does not produce lather with soap solution readily but forms a white curd.	1. Soft water gives lather easily on shaking it with soap solution.
2.	Hard water contains dissolved calcium and magnesium salts.	2. Soft water does not contain dissolved calcium and magnesium salts in it.
3.	Cleansing quality of soap is depressed and a lot of soap is wasted during washing and bathing.	3. Cleansing quality of soap is not depressed and soap is not wasted during washing and bathing.
4.	Due to presence of dissolved hardness producing salt, boiling point of water is elevated. Consequently more fuel and time are required for cooking.	4. Less fuel and time are required for cooking in the soft water.

• Write the reactions of lime and soda with following impurities present in hard water; a) Acids b) CaSO₄ c) CO₂

Followed by

CaSO4 +Na2CO3 >CaCO3+ Na2SO4

 $Cacl2 + na2co3 \square caco3 + 2nacl$

For CaSO4 Same

> CaSO4 +Na2CO3 >CaCO3+ Na2SO4

For CO2

\Box					
		CO2 + Ca(OH)2>	2 CaCO3		
6.	. CO2	+ 2H2O		No Reaction	L

• A sample of water on hardness estimation, found to contain:

Impurity	Ca(HCO ₃) ₂	Mg(HCO ₃) ₂	CaCl ₂	MgSO ₄	CaSO ₄
Quantity	1.62	14.6	1.11	24	13.6
(mg/L)					

Calculate the temporary and permanent hardness of above sample.

Problem 1: Calculate temporary hardness and permanent hardness of water sample from the following data:

$$Mg(HCO_3)_2 = 16.8 \text{ mg/L}, MgCl_2 = 19 \text{ mg/L}, MgSO_4 = 24 \text{ mg/L}, Mg(NO_3)_2 = 29.6 \text{ mg/L}, CaCO_3 = 4 \text{ mg/L}, MgCO_3 = 10 \text{ mg/L}$$

Solution: Conversion into CaCO₃ equivalent:

Constituents	Quantity in mg/L	Multiplication factor	CaCO ₃ equivalent
Mg(HCO ₃) ₂	16.8	100/146	11.5
MgCl ₂	19	100/95	20
MgSO ₄	24	100/120	20
Mg(NO ₃) ₂	29.6	100/148	20
Ca CO ₃	04	100/100	4
MgCO ₃	10	100/84	11.9

Temporary Hardness = Hardness due to
$$[Mg(HCO_3)_2 + CaCO_3 + MgCO_3]$$

= 11.5 + 04 + 11.9
= 27.4 mg CaCO₃ equivalent / litre
Permanent Hardness = Hardness due to $[MgCl_2 + MgSO_4 + Mg(NO_3)_2]$
= 20 + 20 +20
= 60 mg CaCO₃ equivalent / litre

Thus,

Question is similar to this

Write the reaction of lime and soda with following impurities
 A) Mg(HCO₃)₂ B) CO₂ C) Al₂(SO₄)₃ D) H₂SO₄

2. Temp	Mg(HCO ₃) ₂ + 2 Ca(OH) ₂ > Mg(OH)2 + 2CaCO3 + 2 H20	No Reaction	2L
6. CO2	CO2 + Ca(OH)2> 2 CaCO3 + 2H2O	No Reaction	L
4.Perm Al	3Ca(OH)2 +Al2(SO4)3> 2Al(OH)3+ 3 CaSO4	CaSO4 +Na2CO3> CaCO3+ Na2SO4	L+S

1. To neutralize tree acids present in water-
$$2 H(1 + (a(0H)_2 \rightarrow Ca(1_2 + 21_20) + (a(0H)_2 \rightarrow CaSO_4 + 21_20) + (a(0H)_2 \rightarrow CaSO_4 + 21_20)$$

Followed by

• What is equivalence of CaCO₃ hardness? Calcium carbonate is chosen particularly for reporting the hardness of water since it simplifies the calculations as its molecular weight is 100. Moreover, it is the most insoluble salt that can be precipitated in water treatment.

The equivalents of CaCO₃

- [Mass of hardness producing substance] × [Chemical equivalent of CaCO₃]

 Chemical equivalent of hardness producing substance
- = Mass of hardness producing substance × 50 Chemical equivalent of hardness producing substance
- Find the equivalence of CaCO₃ hardness in ppm and degree Clarke from following data;

- a) 73 mg of Ca(CO₃)₂ dissolved in 500 ml water
- b) 34 mg of CaSO₄ dissolved in 1 lit water

$1 \text{ mg/L} = 1 \text{ ppm} = 0.1^{\circ} \text{ Fr} = 0.07^{\circ} \text{ Cl}$

ullet Concentration = 73 mg in 500 mL = $rac{73\,\mathrm{mg}}{0.5\,\mathrm{L}} = 146\,\mathrm{mg/L}$.

Since the molecular weight of ${
m Ca(CO_3)_2}$ is the same as CaCO₃, the ppm value is directly:

146 ppm

Degree Clarke: 10.22

b)
34 mg of CaSO4 is 0.5 milli grams equivalents
Which gives us 50 x 0.5 mgm of CaCO3 in 1 Lit
= 25 ppm = 1.75 degree clark

Define hardness of water.

Hardness of Water (5 Marks Answer in Points):

- 1. **Definition of Hardness**:
 - o Hardness of water is the characteristic that prevents it from lathering easily with soap.
 - o It is primarily caused by dissolved salts of **calcium** and **magnesium**, as well as trace amounts of heavy metals like iron.
- 2. Effect on Soap:
 - o The metal ions in hard water react with the fatty acid components of soap, forming **insoluble precipitates**.
 - o This reduces the **detergent efficiency** of soap, as the insoluble compounds prevent lather formation.
- 3. Types of Salts Involved:
 - o Soap generally consists of sodium salts of long-chain fatty acids like **oleic acid**, **palmitic acid**, and **stearic acid**.
 - o The dissolved calcium and magnesium ions in hard water form insoluble compounds with these soap components.

Chemical Reactions:

• Reaction with Calcium Chloride:

$$2 C_{17} H_{35} COONa + CaCl_2 \rightarrow (C_{17} H_{35} COO)_2 Ca (ppt) + 2 NaCl$$

- Sodium stearate (soap) + calcium chloride (hardness) → calcium stearate (insoluble precipitate) + sodium chloride.
- Reaction with Magnesium Sulfate:

$$2\,\mathrm{C_{17}H_{35}COONa} + \mathrm{MgSO_4} \rightarrow (\mathrm{C_{17}H_{35}COO})_2\mathrm{Mg\,(ppt)} + \mathrm{Na_2SO_4}$$

 Sodium stearate (soap) + magnesium sulfate (hardness) → magnesium stearate (insoluble precipitate) + sodium sulfate.

5. Result of Hardness:

- o Due to these reactions, hard water **loses its detergent value** as the formation of insoluble calcium or magnesium salts prevents soap from lathering effectively, making the water hard.
- Determine temporary, permanent and total hardness of water having following impurities; $Mg(NO_3)_2 = 7.4 \text{ mg/L}$, $CO_2 = 22 \text{ mg/L}$, $KNO_3 = 10 \text{ mg/L}$, $MgCO_3 = 2.05 \text{ mg/L}$, $CaCl_2 = 3.33 \text{ mg/L}$, $NaHCO_3 = 12 \text{ mg/L}$

4.

Problem 7: The water sample contains the following impurities in mg/L.

$$Mg(HCO_3)_2 = 7.3$$
, $MgCl_2 = 9.5$, $Ca(HCO_3)_2 = 16.2$, $CaSO_4 = 13.6$

Calculate the temporary permanent and total hardness.

[Dec 2009]

Solution: Conversion into CaCO3 equivalent:

Constituents	Quantity in mg/L	Multiplication factor	CaCO ₃ equivalent
Mg(HCO ₃) ₂	7.3	100/146	05
MgCl ₂	9.5	100/95	10
Ca(HCO ₃) ₂	16.2	100/162	10
CaSO ₄	13.6	100/136	10

Temporary Hardness = Hardness due to
$$[Mg(HCO_3)_2 + Ca(HCO_3)_2]$$

= 5 + 10
= 15 ppm
Permanent Hardness = Hardness due to $[MgCl_2 + CaSO_4]$
= 10 + 10
= 20 ppm
Total Hardness = Temporary Hardness + Permanent Hardness
= 15 + 20
= 35 ppm

Thus,

Temporary hardness = 15 ppm, Permanent hardness = 20 ppm, Total hardness = 35 ppm

Similar to this, pay attention to which one's temporary, permanent and no hardness

• Explain the process of determining all types of hardness using EDTA titrations derive the necessary formula.

In order to determine the equivalence point, alcoholic solution of blue coloured dye Erichrome Black-T is used which forms unstable wine red complex with Ca²⁺ and Mg²⁺ ions. pH of about 10 is required for this reaction otherwise it will not go to completion.

$$M^{2+} + EBT$$
 $\xrightarrow{pH = 10}$ $M - EBT$ complex

(Ca²⁺ or Mg²⁺ of hard water) Wine red

During the course of titration against EDTA solution, EDTA combines with M²⁺ ions to form stable complex M-EDTA releasing EBT which combines with M²⁺ ions present in the solution and wine red colour is retained.

When all M²⁺ ions formed [M-EDTA] complex, the next drop of EDTA added displaces the EBT indicator from [M-EBT] complex and the wine red colour changes to blue. This is called the equivalence point. Thus, at equivalence point,

Thus, change of wine red colour to distinct blue marks the end point of titration.

Determination of Total Hardness, Temporary Hardness and Permanent Hardness:

Concentration of standard hard water = 1000 ppm = 1000 mg /L

1000 ml of standard hard water sample = 1000 mg of CaCO3

Therefore 1 ml of standard hard water sample = 1 mg of CaCO3

Part 1: Standardization:

$$50 \text{ mL SHW} = V_1 \text{ mL EDTA}$$

$$50 \times 1 \text{ mg of } CaCO_3 = V1 \text{ mL EDTA}$$

Hence, 1 mL EDTA =
$$50/V_1$$
 mg CaCO₃ eq.

Part 2: Determination Of Total Hardness:

Now 50 mL of given hard water = V_2 mL of EDTA = V_2 x 50/ V_1 mg CaCO₃ eq.

1 L of given hard water = $20 \times V_2 \times 50/V_1 \text{ mg CaCO}_3 \text{ eq.}$

Total Hardness of water = $1000 \text{ V}_2/\text{V}_1 \text{ ppm}$

Part 3: Determination of Permanent Hardness

Now, 50 mL of boiled water = V_3 mL of EDTA = $V_3 \times 50/V_1$ mg CaCO₃ eq.

1 L of boiled hard water = $20 \times V_3 \times 50/V_1 \text{ mg CaCO}_3 \text{ eq.}$

Permanent Hardness = $1000 \text{ V}_3/\text{V}_1 \text{ ppm}$

Part 4: Temporary Hardness

Temporary Hardness = Total Hardness - Permanent Hardness = 1000 (V2 - V3)/V1

Q. 50 ml of standard hard water containing 1 mg of pure CaCo3 per ml consumed 20 ml of EDTA. 50 ml water sample consumed 25 ml of the same EDTA solution using eriochrome Black-Tas indicator. Calculate the total hardness of water sample in ppm and of.

Given SHW 50ML 20 ML ~ WS 50 ML 25 ML Strength of S.H.W. Img/ml 1 mL of S. H. W. Contains 1 mg Calog eq. Standardization of EDTA 20 ml of EDTA = 5.0 ml S.H.W 20 ml of EDTA = 50 mg of caco3 eg 1 ml of EDTA = 50 mg of caco3 1 ml of EDTA = 2.5 mg of caco3 Determination of Total Hardness 50 ml water sample = 25 ml of EDTA 50 ml water sample = 25 x 2.5 mg of calog 1 ml. water sample = 25x2.5 mg of caco3 1000 ml water sample = 25 x 2.5 x 1000 mg of cacage = 1250 mg of Calogeq 1250 mg of cacos eq. present in 1 L of water Total Hardness = 1250 mg/L

• If, 50 mL standard hard water having 1000 mg/L CaCO₃ equivalent hardness, requires 25 mL EDTA for titration. 50 mL unknown sample hard water requires 35 mL of same EDTA for titration. After boiling and filtration, 50 mL unknown sample hard water

requires 18 mL of same EDTA for titration. Calculate each type of hardness from the given information.

Total – 1400 ppm Permanent – 720 ppm Temporary – 680 ppm

• 50 ml of standard hard water (1.2 g/lit CaCO₃) required 13 ml of EDTA for titration using EBT indicator. 100 ml of water sample required 18 ml of same EDTA for titration while 50 ml of boiled water sample required 6 ml of EDTA. Calculate the temporary, permanent and total hardness.

Total – 830.77 ppm Permanent – 553.84 Temporary – 276.93

- Give the formulae of finding the quantities of lime and soda requirement. What is the reaction of lime and/or soda with the following constituents in hard water:
 - a) $Ca(HCO_3)_2$,
- b) MgCl₂,
- c) $Ca(NO_3)_2$

Name of Impurities	Reaction with Lime	Reaction With Soda	L & S Requirement
1.Temp Ca	Ca(OH) ₂ +Ca(HCO ₃) ₂ >2CaCO ₃ + 2 H ₂ 0	No Reaction	L
2. Temp Mg	Mg(HCO ₃) ₂ + 2 Ca(OH) ₂ > Mg(OH)2 + 2CaCO3 + 2 H20	No Reaction	2L
3.Perm Mg	Ca(OH)2 +MgSO4>CaSO4+ Mg(OH)2	CaSO4 +Na2CO3> >CaCO3+ Na2SO4	L+ S
4.Perm Al	3Ca(OH)2 +Al2(SO4)3> 2Al(OH)3+ 3 CaSO4	CaSO4 +Na2CO3> >CaCO3+ Na2SO4	L+S
5.Perm Fe	Ca(OH)2 +Fe(SO4)>Fe(OH)2+ CaSO4	CaSO4 +Na2CO3> >CaCO3+ Na2SO4	L+S
6. CO2	CO2 + Ca(OH)2> 2 CaCO3 + 2H2O	No Reaction	L
7. NaHCO3	2NaHCO3 + Ca(OH)2> CaCO3 + Na2CO3 +2H20	No Reaction	L-S
8. NaAlO2	NaAlO2 + H2O> Al(OH)3 + NaOH		(-L)eq to Ca(OH)2

- Calculate the quantities of lime and soda (both 100% pure) for softening of 4 x 10⁶ liters of water containing the following constituents:
 CaCl₂= 2.22 ppm, Mg(HCO₃)₂ = 29.2 ppm, H₂SO₄ = 9.8 ppm, MgCl₂= 95 ppm, CaSO₄ = 2.72 ppm, KCl = 100 ppm
- Calculate the amount of lime (90 % pure) and soda (95 % pure) in kg, required for softening of 100000 litres of hard water having the following chemical constituents: Ca(HCO₃)₂ = 16.2 mg/L, Mg(HCO₃)₂ = 14.6 mg/L, CaSO₄ = 1.36 mg/L, CaCl₂ = 11.1 ppm, MgCl₂ = 9.5 ppm.
- Explain the principle, working of cold lime-soda method / hot lime-soda method with suitable diagram.

- Calculate the quantity of lime (80% pure) and soda (70% pure) for softening of 50000 liter of water having following impurities: Ca(HCO₃)₂= 8.1 ppm, MgCO₃ = 2.1 ppm, H₂SO₄= 4.9 ppm, MgCl₂= 1.9 ppm, Ca(NO₃)₂= 4.1 ppm, KNO₃= 10 ppm
- An exhausted zeolite softener was regenerated by passing 80 litres of 150 g/litre solution of NaCl. Calculate the volume of water softened (having 600 ppm hardness) using this zeolite softener.
- Explain the ion exchange process for removal of hardness with schematic diagram. Write the reactions during softening and regeneration process.
- Explain the demineralization process of softening hard water, with suitable reactions with suitable diagram.
- 50 ml of hard water (1 g CaCO₃/liter) required 22 ml of EDTA solution for titration using EBT. 50 ml of unknown water sample required 18 ml of same EDTA for titration. 100 ml of boiled water sample required 14 ml of same EDTA solution. Calculate temporary hardness.
- Explain with suitable diagram and reactions softening of hard water using Zeolite Permutit Method. Write its 2 advantages over lime soda Method.
- 25000 liter of hard water was softened by ion exchange column. For the regeneration of exhausted column 175 liter of 0.1 N HCl solution was used. Calculate the hardness of hard water.
- For BOD and COD numerical refer study material

Comparison:

BOD	COD
BOD of water is a measure of amount of oxygen required for biological oxidation of organic matter under aerobic condition at 20 °C for a period of 5 days.	COD of water is a measure of amount of oxygen required by organic matter in a water sample for its oxidation by strong oxidizing agent.
It measures the oxygen demand of bio degradable pollutants only.	It measures the oxygen demand for biodegradable pollutants along with non- biodegradable pollutants.
Less stable measurement method as it uses micro organisms which are susceptible to pH, temperature and other variables in the water.	More stable measurement method as it uses potassium dichromate which oxidises regardless of water conditions.
Slow process. It takes five days.	Fast process. It takes 2-3 hours.
BOD values are generally less than COD values.	COD values are generally greater than BOD values.