

planetmath.org

Math for the people, by the people.

a space is T1 if and only if every subset A is the intersection of all open sets containing A

 $Canonical\ name \qquad A Space Is T1 If And Only If Every Subset A Is The Intersection Of All Open Sets Contains the Contains of the Contains of$

Date of creation 2013-03-22 14:20:18 Last modified on 2013-03-22 14:20:18

Owner waj (4416) Last modified by waj (4416)

Numerical id 4

Author waj (4416) Entry type Proof Classification msc 54D10 Related topic T1Space

Related topic ASpaceIsT1IfAndOnlyIfEverySingletonIsClosed

Say we have X, a T^1 -space, and A, a subset of X. We aim to show that the intersection of all open sets containing A equals A. By de Morgan's laws, that would be true if the complement of A, A^c , equalled the union of all closed sets in A^c . Let's call this union of closed sets C.

Each set that makes up C is contained by A^c , so $C \subset A^c$. If we could show $A^c \subset C$, we'd be done.

http://planetmath.org/ASpaceIsT1IfAndOnlyIfEverySingletonIsClosedSince X is T^1 , each singleton in A^c is closed. Their union, a subset of C, contains A^c , so we're through.

Now suppose we know that in some topological space X, any subset A of X is the intersection of all open sets containing A. Given $x \neq y$, we're looking for an open set containing x but not y, to show that X is T^1 .

$$\{x\} = \bigcap_{\substack{U \text{ open} \\ U \ni x}} U$$

by hypothesis. If all open sets containing x contained y, y would be in the intersection; since y isn't in the intersection, X must be T^1 .