

BLG501E – Discrete Mathematics

2021 - 2022 Fall Term

Asst. Prof. Gökhan SEÇİNTİ

Scope of this Course

Introduction

- Inductively Defined Sets
- Peano axioms
- Order-relations
- Principles of mathematical induction
- Recursive functions

Number Theory

- Modular arithmetic
- Euclid algorithm
- Greatest common divisor / least common multiple
- Solving Congruences, Fermat and Chinese remainder theorem
- Euler theorem

Scope of this Course

- Counting
 - Principle of inclusion-exclusion
 - Permutations and combinations
 - Surjective functions
- Algebraic Structures
 - Groups, Rings ...
 - Homomorphism and isomorphism
 - Pólya's inventory theorem
 - Group coding
 - Applications

The context of this course is compiled by Prof. Emre HARMANCI.

Grading and Term Plan

8.10.2021	1st Week	
15.10.2021	2nd Week	
22.10.2021	3rd Week	
29.10.2021	4th Week	Republic Day
5.11.2021	5th Week	
12.11.2021	6th Week	Midterm 1
19.11.2021	7th Week	
26.11.2021		Term Break
3.12.2021	8th Week	
10.12.2021	9th Week	
17.12.2021	10th Week	
24.12.2021	11th Week	Midterm 2
31.12.2021	12th Week	
7.01.2022	13th Week	
14.01.2022	14th Week	

Grading:

- 2 x Midterms : 2 x 30%

- Final Exam: 40%

All exams will be held face-to-face.

Textbooks:

- Discrete Math. and its applications, K.H. Rosen
- Discrete and Combinational Math., R.P. Grimaldi
- Elements of Discrete Math., C.C. Liu

Introduction

Inductively Defined Sets

Definitions:

U: Universal Set

E: Set to be defined $E \subseteq U$

Induction Layout:

$$B_0 = B$$

$$B_1 = B_0 \cup \Omega(B_0)$$

$$B_2 = B_1 \cup \Omega(B_1)$$
...
$$B_{i+1} = B_i \cup \Omega(B_i)$$

$$E = \bigcup_{i>0} B_i$$

Three steps are required:

- 1) Basis: B base set, $x \in B \implies x \in E$ Elements are explicitly defined.
- 2) Set of rules: $\Omega = \{f_{n_1}^1, f_{n_2}^2 \dots f_{n_m}^m\}$ Rules may be n-ary functions.

$$\forall x_i \in E \land x = f_n^j(x_1, x_2 \dots x_n) \Longrightarrow x \in E$$

3) Closure:

Set E is the smallest subset of U, which contains B and is stable in terms of rules Ω .

$$\Omega(E) \subseteq E \iff \forall f \in \Omega, f(E) \subseteq E$$

Introduction

Inductively Defined Sets

Definitions:

U: Universal Set

E: Set to be defined $E \subseteq U$

Induction Layout:

$$B_0 = B$$

$$B_1 = B_0 \cup \Omega(B_0)$$

$$B_2 = B_1 \cup \Omega(B_1)$$
...
$$B_{i+1} = B_i \cup \Omega(B_i)$$

$$E = \bigcup_{i \geq 0} B_i$$

 $B_i = B_{i+1}$ then the set is stable

Definition of height: $h(x) = \min(i|x \in B_i)$

Inductively Defined Sets

Example 1: Even numbers

- i) $0 \in E$
- ii) $n \in E \implies (n+2) \in E$
- iii) There is no other elements in set E.

Example 2: Well-formed formula set

A: Atomic propositions

 $S: \{ \land, \lor, \neg, \rightarrow, \leftrightarrow,), (\}$ operators set

 $U = (A \cup S)^*$ all possible expressions

i)
$$B = A$$

ii)
$$\Omega = \{f_1(x) = \neg x, f_2(x, y) = (x \land y), f_3(x, y) = (x \lor y), f_4(x, y) = (x \to y), f_5(x, y) = (x \leftrightarrow y)\}$$

iii) There is no other elements in set E.

Peano Axioms

Defining natural numbers set N

- $i) \quad 0 \in N$
- *ii)* $\forall n \in B \exists succ(n) \in N$
- $iii) \forall P \subseteq N [0 \in P \land \forall n \in P (succ(n) \in P) \Rightarrow P = N]$

Construct to be formed:

Constructs that can be formed by the rules above:

Peano Axioms

Peano Axioms:

- i) $0 \in N$ and $\neg(\exists n, succ(n) = 0)$
- $ii) \ \forall n, m \in B \ \exists ! \ succ(n) \in N, \ succ(n) \land succ(m) \Rightarrow m = n$
- $\overline{iii}) \forall P \subseteq N \ [0 \in P \land \forall n \in P \ (succ(n) \in P) \Rightarrow P = N]$

Additional Reads

Prerequisites:

- Chap. 1 and 2, Discrete Math. and its applications, K.H. Rosen
- https://ninova.itu.edu.tr/tr/dersler/bilgisayar-bilisim-fakultesi/142/blg-112/ekkaynaklar/

Reads:

- Appendix 1, Discrete Math. and its applications, K.H. Rosen
- https://mathworld.wolfram.com/PeanosAxioms.html