

We will consider a new sort of operation: an interaction between a group and a set (which could be another group, but doesn't have to be). Here are some relevant definitions.

if x~y

• We will call the group G and the set X. An action of G on X is a function that sends pairs in $G \times X$ to things in X. We write $(g, x) \mapsto gx$, satisfying $X = \{1, 2, 3, 4\}$

$$-1$$
. $ex = x$ for all $x \in X$

- 2.
$$(g_1g_2)x = g_1(g_2x)$$
 for all $x \in X$ and all $g_1, g_2 \in G$.

We call
$$X$$
 a G -set. $(\downarrow , \downarrow) \mapsto 2$

g = (1432) h = (12)

- We call X a G-set. $(, 1) \mapsto 2$ $g \cdot 1 = 4$ $g \cdot 2 = 1$ $g \cdot 3 = 2$ $g \cdot 4 = 3$ Two elements $x, y \in X$ are G-equivalent (written $x \sim y$) provided there is some $g \in G$ such 15 2~17 yes b/c g·1=2 for some g & G.
- The orbit of an element $x \in X$ (written \mathcal{O}_x) is the set of all elements $y \in X$ that are G-equivalent to x.

 • The fixed point set of an element $g \in G$ (written X_g) is the set of all $x \in X$ such that gx = x. G-equivalent to x.
- The stabilizer subgroup of an element $x \in X$ (written G_x) is the set of all $g \in G$ such that gx = x. $G_1 = \sum_{i=1}^{n} (1)_i (2i)$

To get used to these new definitions, let's work a few examples.

- 1. Let $X = \{1, 2, 3, 4, 5, 6\}$ and $G = \{(1), (12)(3456), (35)(46), (12)(3654)\}$ (a subgroup of S_6). G acts on X by $(\sigma, x) \mapsto \sigma(x)$.
 - (a) For each $x \in X$, find \mathcal{O}_x , the orbit of x in G.

$$O_1 = \{1, 2\}$$

 $O_2 = \{1, 2\}$

(b) For each $g \in G$, find X_g , the fixed point set of g in X.

$$\times_{(1)} = \times$$

$$\times_{(12)(3456)} = \emptyset = \times_{(12)(3654)}$$

(c) For each $x \in X$, find G_x , the stabilizer subgroup of x in G.

$$G_1 = \{(1), (35)(46)\}$$

$$G_2 = \{(1), (35)(46)\}$$

(d) Do you notice anything about the sizes of the sets you found, how many different sets you found, etc?