

Database Systems Lecture #12

Sang-Wook Kim Hanyang University

Objectives

- ◆ To learn design guidelines for relation schemas and functional dependency
 - Discuss goodness of database schemas
 - Designing good database schemas
 - Concepts of functional dependency

Outline

◆ *Informal* Design Guidelines for Relation

Schemas 7 relational schema .

- Semantics of Attributes in Relations
- Redundant Information and Update Anomalies
- NULL Values in Tuples

ER -> relational

- Spurious Tuples
- Functional Dependencies

Informal Design Guidelines for Relation Schemas

- Designing a relational database
 - Process to define a set of good table schemas for a given application
 - Decide the attributes to be included in each table

Informal Design Guidelines for Relation Schemas

- ◆ Rough criteria for a *good table schema*
 - Semantics of attributes
 - Redundant information in tuples
 - NULL values in tuples
 - Spurious tuples
- ◆ Formal criteria
 - Normalization

Semantics of Attributes in Relations

- ◆ Determining a table schema
 - All the attributes belonging to one relation should have meanings mutually-related in the real-world
 - Ex: STUDENT (name, age, gender, address)

Semantics of Attributes in Relations

◆ Example of a good design

- ◆ Each tuple should correspond to only one entity instance or relationship instance
- ◆ Do not combine attributes from multiple entity types and relationship types into a single relation

◆ Example of violating Guideline 1

(a)

EMP_DEPT

(b)

EMP_PROJ

- Minimizing storage space
 - One of main goals of table schema design
 - By eliminating redundant information

◆ Example of a database instance

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	Dname <u>Dnumber</u>	
Research	5	333445555
Administration	4	987654321
Headquarters	1	888665555

DEPT_LOCATIONS

<u>Dnumber</u>	<u>Dlocation</u>	
1	Houston	
4	Stafford	
5	Bellaire	
5	Sugarland	
5	Houston	

◆ Example of a database instance

WORKS_ON

Ssn	<u>Pnumber</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	Null

PROJECT

Pname	<u>Pnumber</u>	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

◆ Example of tables with redundancy (1:N)

Redundancy

EM	Ρ	D	Е	РΤ

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

◆ Example of tables with redundancy (N:M)

			Reduited	шоу	
EMP_PROJ					
<u>Ssn</u>	<u>Pnumber</u>	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

Redundancy

Redundancy

- Updating tuples won't work as expected
 - Insertion
 - Deletion
 - Modification

- ◆ Insertion anomalies
 - Difficult to insert a new department that has no employees yet in the EMP_DEPT table
 - This problem will not occur if we build separate tables DEPARTMENT and EMPLOYEE

- ◆ Deletion anomalies
 - When deleting the last employee working for a particular department from the EMP_DEPT table
 - Information concerning that department is lost from the database
 - This problem will not occur if we build separate tables DEPARTMENT and EMPLOYEE

- Modification anomalies
 - If we change the manager of a particular department in the EMP_DEPT table
 - Must update those tuples of all employees who work in that department
 - This problem will not occur if we build separate tables DEPARTMENT and EMPLOYEE

- Design base relation schemas so that no update anomalies are present in the relations
- ◆ If any anomalies are present:
 - Note them clearly
 - Make sure that the programs updating the database will operate correctly

NULL Values in Tuples

- ◆ Meanings of NULLs
 - Unknown value
 - Unavailable or withheld value
 - Not applicable attribute

NULL Values in Tuples

- ◆ Problems with NULL values
 - Wasted storage space
 - Ambiguous meaning
 - Difficult to use aggregate functions
 - Each individual NULL value considered to be different

- ◆ Avoid placing attributes in a base relation of their values may frequently be NULL
- ◆ If NULLs are unavoidable:
 - Make sure that they apply in exceptional cases only, not to a majority of tuples
 - Create a new relation for only those tuples with NULL values

◆ Example

- If only 10 percent of employees have their own individual offices
- Method 1:
 - Include Office_number attribute to EMPLOYEE relation
 - 90% of tuples will have NULLs

◆ Example

- If only 10 percent of employees have their own individual offices
- Method 2:
 - Create EMP_OFFICES (Essn, Office_number) relation
 - EMP_OFFICES will have tuples for only the employees with office

Spurious Tuples

- ◆ NATURAL JOIN can produce tuples with invalid information
 - Called spurious tuples
 - Caused by inappropriately designed relations

Spurious Tuples

◆ Example

EMP_LOCS

Ename	Plocation
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston
Borg, James E.	Houston

EMP_PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

Spurious Tuples

◆ Example

Join EMP_LOCS and EMP_PROJ1 with Plocation

	Ssn	Pnumber	Hours	Pname	Plocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	2	10.0	ProductY	Sugarland	Smith, John B.
*	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.

◆ Avoid relations that contain join attributes that are *not (foreign key, primary key) combinations*

- ◆ Concepts
 - Formal tool for analysis of relational schemas
 - Used to define normal forms along with keys

- ◆ Format
 - ullet Denoted by $X \rightarrow Y$
 - X, Y: set of attributes that are subset of R
 - Values of X functionally determine the values of Y
 - Or Y is functionally dependent on X

Meanings

- For any two tuples t_1 and t_2 in a particular relation that have $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$
 - Thus the tuples with same values for X also have same values for Y
 - A value of attribute set X uniquely determines the value of attribute set Y
- Derived from the constraints required in the realworld application
 - Major -> Department
 - Department -> School

- ♦ Note that...
 - If X is a candidate key of R
 - Then $X \rightarrow Y$
 - For any subset of attributes *Y* of *R*
 - If $X \rightarrow Y$ in R
 - This does not say whether or not $Y \rightarrow X$ in R

- ◆ FD is a *property of table schema R*
 - Not of a particular table instance r
 - The constraint must hold for all instance r(R)
 - Cannot be inferred automatically from a given *r*
 - Must defined explicitly before the database is built

◆ Example

- For EMP_PROJ table
 - a. Ssn \rightarrow Ename
 - b. Pnumber \rightarrow {Pname, Plocation}
 - c. $\{Ssn, Pnumber\} \rightarrow Hours$

EMP_PROJ

<u>Ssn</u>	<u>Pnumber</u>	Hours	Ename	Pname	Plocation
FD1		A	A	A	A
FD2					
FD3					

- \bullet F.
 - Set of functional dependencies that are specified on table schema *R*
- **◆** F⁺:
 - Set of all dependencies that can be inferred from F
 - Also include F
 - Called the *closure* of F

◆ Example

- $F = \{Ssn \rightarrow \{Ename, Bdate, Address, Dnumber\},$ Dnumber $\rightarrow \{Dname, Dmgr_ssn\} \}$
- Additional FDs that can be inferred from *F*.
 - Ssn → {Dname, Dmgr_ssn}
 - $Ssn \rightarrow Ssn$
 - Dnumber → Dname

- ◆ Armstrong's inference rules
 - IR1 (reflexive rule): If $X \supseteq Y$, then $X \rightarrow Y$
 - IR2 (augmentation rule): $\{X \rightarrow Y\} = XZ \rightarrow YZ$
 - IR3 (transitive rule): $\{X \rightarrow Y, Y \rightarrow Z\} = X \rightarrow Z$
 - Sound and complete (Proof?)

- ◆ Other inference rules
 - IR4 (decomposition rule): $\{X \rightarrow YZ\} = X \rightarrow Y$
 - IR5 (union rule): $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$
 - IR6 (pseudo-transitive rule): $\{X \rightarrow Y, WY \rightarrow Z\} = WX \rightarrow Z$
 - Can prove IR4~6 by using IR1~3

- **♦** X:
 - Set of attributes that appear as a left-hand side of some
 FD in F
- **♦** X⁺:
 - Set of all the attributes that are functionally determined by X based on F
 - Called closure of X under F
 - Determined for each X
 - Can be calculated by applying inference rules repeatedly

ullet Algorithm for determining X^+

```
X^+ := X;

repeat

\operatorname{old} X^+ := X^+;

for each functional dependency Y \to Z in F do

if X^+ \supseteq Y then X^+ := X^+ \cup Z;

until (X^+ = \operatorname{old} X^+);
```


◆ Example

```
F = \{ Ssn \rightarrow Ename, \\ Pnumber \rightarrow \{ Pname, Plocation \}, \\ \{ Ssn, Pnumber \} \rightarrow Hours \}
```


◆ Example

```
{Ssn} + = {Ssn, Ename}
{Pnumber} + = {Pnumber, Pname, Plocation}
{Ssn, Pnumber} + = {Ssn, Pnumber, Ename, Pname, Plocation, Hours}
```


Summary

- ◆ Informal guidelines for good design
- ◆ Functional dependency
 - Basic tool for analyzing relational schemas
 - Inference rules

References

- 1. Codd, Edgar F. "A relational model of data for large shared data banks." *Communications of the ACM* 13.6 (1970): 377-387.
- 2. Ullman J. *Principles of Database and Knowledge-Base Systems*, Vol. 1, Computer Science Press, 1988.
- Maier, David. *The theory of relational databases*. Vol. 11. Rockville: Computer science press, 1983.
- 4. Atzeni, Paolo, and Valeria De Antonellis. *Relational database theory*. Benjamin-Cummings Publishing Co., Inc., 1993.
- 5. Armstrong, William Ward. "Dependency Structures of Data Base Relationships." *IFIP congress.* Vol. 74. 1974.

Have a nice day!

