

#### Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Chapter 2

ecause learning changes everything."

Sets

Section 2.1

## Section Summary<sub>1</sub>

Definition of sets

**Describing Sets** 

- Roster Method
- Set-Builder Notation

Some Important Sets in Mathematics

**Empty Set and Universal Set** 

Subsets and Set Equality

Cardinality of Sets

Tuples

Cartesian Product

#### Introduction

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

- Important for counting.
- Programming languages have set operations.

Set theory is an important branch of mathematics.

- Many different systems of axioms have been used to develop set theory.
- Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

#### Sets

A set is an unordered collection of objects.

- the students in this class
- the chairs in this room

The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.

The notation  $a \in A$  denotes that a is an element of the set A.

If a is not a member of A, write  $a \notin A$ 

# **Describing a Set: Roster Method**

 $S = \{a,b,c,d\}$ 

Order not important

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

Ellipsis (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a,b,c,d,....,z\}$$

### Roster Method

Set of all vowels in the English alphabet:

$$V = \{a,e,i,o,u\}$$

Set of all odd positive integers less than 10:

$$O = \{1,3,5,7,9\}$$

Set of all positive integers less than 100:

$$S = \{1,2,3,.......99\}$$

Set of all integers less than 0:

$$S = \{...., -3, -2, -1\}$$

## Some Important Sets

**N** = natural numbers = {0,1,2,3....}

$$Z^+ = positive integers = \{1, 2, 3, .....\}$$

**R** = set of *real numbers* 

**R**<sup>+</sup> = set of *positive real numbers* 

**C** = set of *complex numbers*.

**Q** = set of rational numbers

## **Set-Builder Notation**

Specify the property or properties that all members must

 $S = \{x \mid x \text{ is a positive integer less than 100}\}$ 

 $O = \{x \mid x \text{ is an odd positive integer less than 10}\}$ 

 $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$ 

A predicate may be used:  $S = \{x \mid P(x)\}$ 

 $S = \{x \mid Prime(x)\}$ 

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p,q\}$ 

### Interval Notation

$$[a,b] = \{x | a \le x \le b\}$$

$$(a, b) = \{x \mid a \leq x \leq b\}$$

$$[a,b] = \{x | a \le x \le b\}$$

$$[a,b) = \{x | a \le x < b\}$$

$$(a,b] = \{x | a < x \le b\}$$

$$(a,b) = \{x | a < x < b\}$$

closed interval [a,b]

open interval (a,b)

## Universal Set and Empty Set

currently under consideration. The *universal set U* is the set containing everything

Sometimes implicit

Venn Diagram

- Sometimes explicitly stated.
- Contents depend on the context.

V aei

The empty set is the set with no

elements. Symbolized Ø, but {} also used.



John Venn (1834-1923) Cambridge, UK

## Some things to remember

Sets can be elements of sets.

 $\{\{1,2,3\},a,\{b,c\}\}$ 

 $\{N,Z,Q,R\}$ 

the empty set The empty set is different from a set containing

 $\emptyset \neq \{\emptyset\}$ 

#### Set Equality

**Definition**: Two sets are *equal* if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if  $\forall x (x \in A \leftrightarrow x \in B)$
- We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

$$\{1,5,5,5,3,3,1\} = \{1,3,5\}$$

#### Subsets

**Definition**: The set A is a *subset* of B, if and only if every element of A is also an element of B.

- The notation  $A \subseteq B$  is used to indicate that A is a subset of the set B.
- Note
- 1.  $\emptyset \subseteq S$ , for every set S.
- 2.  $S \subseteq S$ , for every set S.

# Showing a Set is or is not a Subset of Another Set

**Showing that A is a subset of B**: To show that  $A \subseteq B$ , show that if x belongs to A, then x also belongs to B.

**Showing that A is not a subset of B**: To show that A is not a subset of B,  $A \nsubseteq B$ , find an element  $x \in A$  with  $x \notin B$ . (Such an x is a counterexample to the claim that  $x \in A$  implies  $x \in B$ .)

#### Examples:

- The set of all computer science majors at your school is a subset of all students at your school.
- 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

### **Proper Subsets**

**Definition**: If  $A \subseteq B$ , but  $A \neq B$ , then we say A is a proper subset of B, denoted by  $A \subseteq B$ .

#### Venn Diagram



### Set Cardinality

**Definition**: If there are exactly n distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise it is *infinite*.

**Definition**: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

#### Examples:

- 1.  $|\phi| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3.  $|\{1,2,3\}| = 3$
- 4.  $|\{\emptyset\}| = 1$
- The set of integers is infinite.

#### **Power Sets**

**Definition**: The set of all subsets of a set A, denoted P(A) (sometimes  $2^{S}$ ), is called the *power set* of A.

**Example**: If  $A = \{a,b\}$  then

$$P(A)=2^A = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

If a set has n elements, then the cardinality of the power set is  $2^n$ .

#### Tuples

The ordered n-tuple  $(a_1, a_2, ...., a_n)$  is the ordered collection that has  $a_1$  as its first element and  $a_2$  as its second element and so on until  $a_n$  as its last element.

Two n-tuples are equal if and only if their corresponding elements are equal.

2-tuples are called ordered pairs.

The ordered pairs (a,b) and (c,d) are equal if and only if a=c and b=d.

## Cartesian Product

**Definition**: The *Cartesian Product* of two sets A and B, denoted by  $A \times B$  is the set of ordered pairs (a,b) where  $a \in A$  and  $b \in B$ .





René Descartes (1596-1650)

#### Example:

$$A = \{a,b\}$$
  $B = \{1,2,3\}$ 

$$A \times B = \{(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)\}$$

**Definition**: A subset R of the Cartesian product  $A \times B$  is called a *relation* from the set A to the set B. (Relations will be covered in depth in Chapter 9.)

## Cartesian Product

**Definition**: The Cartesian products of the sets

 $A_1,A_2,....,A_n$ , denoted by  $A_1\times A_2\times.....\times A_n$ , is the set of ordered n-tuples  $(a_1,a_2,.....,a_n)$  where  $a_i$  belongs to  $A_i$  for i=1,...n.

$$A_1 \times A_2 \times \cdots \times A_n =$$

$$\{(a_1, a_2 \cdots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

**Example**: What is  $A \times B \times C$  where  $A = \{0,1\}, B = \{1,2\}$  and  $C = \{0,1,2\}$ 

**Solution:**  $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$ 

## Set Operations

Section 2.2

## Section Summary<sub>2</sub>

#### **Set Operations**

- Union
- Intersection
- Complementation
- Difference

More on Set Cardinality

Set Identities

**Proving Identities** 

Membership Tables

#### Union

**Definition**: Let A and B be sets. The *union* of the sets A and B, denoted by  $A \cup B$ , is the set:

$$\{x | x \in A \text{ or } x \in B\}$$

**Example**: What is  $\{1,2,3\} \cup \{3,4,5\}$ ?

**Solution**:  $\{1,2,3,4,5\}$  Venn Diagram for  $A \cup B$ 



#### Intersection

 $A \cap B$ , is **Definition**: The *intersection* of sets A and B, denoted by

$$\{x \mid x \in A \text{ and } x \in B\}$$

be disjoint. Note if the intersection is empty, then A and B are said to

**Example**: What is?  $\{1,2,3\} \cap \{3,4,5\}$ ?

Solution: {3}

Example: What is?

Venn Diagram for A ∩B

 $\{1,2,3\} \cap \{4,5,6\}$ ?

Solution: Ø



#### Difference

of A and B, denoted by A - B, is the set containing the elements of A that are not in B. **Definition**: Let A and B be sets. The difference

$$A - B = \{x | x \in A \text{ and } x \notin B\}$$



#### Complement

A (with respect to U), denoted by  $\bar{A}$  is the set **Definition**: If A is a set, then the complement of the

$$U - A = \{x | x \in U \text{ and } x \notin A\}$$

what is the complement of  $\{x \mid x > 70\}$ **Example:** If U is the positive integers less than 100

Solution:  $\{x \mid x \le 70\}$ 



# The Cardinality of the Union of Two

Inclusion-Exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

**Example**: Let A be the math majors in your class and B be the CS

 To count the number of students who are either math majors or of CS majors, and subtract the number of joint CS/math majors. CS majors  $\Longrightarrow$  add the number of math majors and the number

Venn Diagram for A, B, A ∩ B, A ∪ B



#### Set Identities

Identity laws

$$A \cup \emptyset = A$$
  $A \cap U =$ 

$$A \cap U = A$$

Domination laws

$$A \cup U = U$$
  $A \cap \emptyset = \emptyset$ 

Idempotent laws

$$A \cup A = A$$
  $A \cap A = A$ 

Complementation law

$$\left(\overline{A}\right) = A$$

#### Set Identities

Commutative laws

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 

#### Set Identities

De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Absorption laws

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

Complement laws

$$A \cup \overline{A} = U$$

$$=U$$
  $A \cap \overline{A} = \emptyset$ 

## **Proving Set Identities**

Different ways to prove set identities:

- 1. Prove that each set (side of the identity) is a subset of the other.
- 2. Use set builder notation and propositional logic.
- 3. Membership Tables: Verify that elements in the same combination of sets always either belong or Use 1 to indicate it is in the set and a 0 to indicate do not belong to the same side of the identity.

# Proof of Second De Morgan Law

**Example:** Prove that  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

Solution: We prove this identity by showing that:

1.  $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$  and

 $2. \overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ 

# **Proof of Second De Morgan Law**

These steps show that:  $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ 

 $x \in \overline{A \cap B}$  $x \notin A \cap B$ 

by assumption

defn. of complement

 $\neg ((x \in A) \land (x \in B))$  by define of intersection

 $\neg(x \in A) \lor \neg(x \in B)$  1st De Morgan law for Prop Logic

defn. of negation

 $x \in \overline{A} \cup \overline{B}$  $x \in \overline{A} \lor x \in \overline{B}$ 

defn. of complement

by defn. of union

# **Proof of Second De Morgan Law**

These steps show that:  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ 

 $x \in \overline{A} \cup \overline{B}$ 

by assumption

 $\left(x\in\overline{A}\right)\vee\left(x\in\overline{B}\right)$ 

by defn. of union

 $(x \notin A) \lor (x \in \overline{B})$  $\neg (x \in A) \lor \neg (x \in B)$ 

defn. of complement

 $\neg ((x \in A) \land \neg (x \in B))$ 

defn. of negation

 $\neg (x \in A \cap B)$  $x \in \overline{A \cap B}$ 

defn. of intersection 1st De Morgan law for Prop Logic

defn. of complement

### Set-Builder Notation: Second De Morgan Law

by defn. of complement

 $= \{x \mid \neg(x \in (A \cap B))\}$  by defin. of does not belong symbol

 $= \left\{ x \mid \neg \left( x \in A \land x \in B \right) \right\}$ 

by defn. of intersection

= $\{x \mid \neg(x \in A) \lor \neg(x \in B)\}$  by 1st De Morgan law for

 $= \big\{ x \mid x \not \in A \lor x \not \in B \big\}$ 

by defn. of not belong symbol

Prop Logic

 $= \left\{ x \mid x \in \overline{A} \lor x \in \overline{B} \right\}$ 

by defn. of complement

by defn. of union

 $= \left\{ x \mid x \in \overline{A} \cup \overline{B} \right\}$  $= \overline{A} \cup \overline{B}$ 

by meaning of notation

## Membership Table

distributive law holds. **Example:** Construct a membership table to show that the

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution

| 0             | 0   | 0   | 0        | 0   | 0 | 0 | 0 |
|---------------|-----|-----|----------|-----|---|---|---|
| 0             | 1   | 0   | 0        | 0   | 1 | 0 | 0 |
| 0             | 0   | 1   | 0        | 0   | 0 | 1 | 0 |
| 1             | 1   | 1   | 1        | 1   | 1 | 1 | 0 |
| 1             | 1   | 1   | 1        | 0   | 0 | 0 | 1 |
| 1             | 1   | 1   | 1        | 0   | 1 | 0 | 1 |
| 1             | 1   | 1   | 1        | 0   | 0 | 1 | 1 |
| 1             | 1   | 1   | 1        | 1   | 1 | 1 | 1 |
| (A∪B) ∩ (A∪C) | A∪C | A∪B | A∪ (B∩C) | в∩с | C | В | Α |

# **Generalized Unions and Intersections**

Let  $A_1, A_2, ..., A_n$  be an indexed collection of sets.

We define:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

associative. These are well defined, since union and intersection are

Example: For 
$$i = 1,2,...$$
, let  $A_i = \{i, i + 1, i + 2, ....\}$ . Then,

Example: For 
$$i = 1,2,...$$
, let  $A_i = \{i, i+1, i+2, ...\}$ . Then, 
$$\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n \{i, i+1, i+2,...\} = \{1,2,3,...\}$$
$$\bigcap_{i=1}^n A_i = \bigcap_{i=1}^n \{i, i+1, i+2,...\} = \{n, n+1, n+2,...\} = A_n$$

#### **Functions**

Section 2.3

## Section Summary,

Definition of a Function.

- Domain, Codomain
- Image, Preimage

Injection, Surjection, Bijection

Inverse Function

**Function Composition** 

**Graphing Functions** 

Floor, Ceiling, Factorial

Partial Functions (optional)

#### **Functions**

assigned by the function f to the element a of A. write f(a) = b if b is the unique element of B each element of A to exactly one element of B. We **Definition**: Let A and B be nonempty sets. A function f from A to B, denoted  $f:A \rightarrow B$  is an assignment of

Functions are sometimes called mappings or transformations.



#### **Functions**

Given a function  $f: A \rightarrow B$ :

- We say f maps A to B or f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.

b = f(a)

- then b is called the image of a under f.
- - a is called the preimage of b.
- The range of f is the set of all images of points in **A** under f. We
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

## Representing Functions

Functions may be specified in different ways:

- An explicit statement of the assignment.
- Eg. Students and grades in this class.
- A formula, for example

$$f(x) = x + 1$$

- A computer program.
- A Java program that when given an integer n, produces and also in Chapter 5). the nth Fibonacci Number (covered in the next section

#### Injections

= b for all a and b in the domain of f. A function is or *injective*, if and only if f(a) = f(b) implies that a**Definition**: A function f is said to be *one-to-one*, said to be an injection if it is one-to-one.





#### Surjections

**Definition**: A function f from A to B is called *onto* or *surjective*, if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a) = b. A function f is called a *surjection* if it is *onto*.



#### Bijections

**Definition**: A function f is a *one-to-one* correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).



# Showing that f is one-to-one or onto

**Example 1**: Let f be the function from  $\{a,b,c,a\}$  to  $\{1,2,3\}$  defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

**Solution**: Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to  $\{1,2,3,4\}$ , f would not be onto.

**Example 2**: Is the function  $f(x) = x^2$  from the set of integers to the set of integers onto?

**Solution**: No, f is not onto because there is no integer x with  $x^2 = -1$ , for example.

# Showing that f is one-to-one or onto

Suppose that  $f: A \rightarrow B$ .

To show that f is injective Show that if f(x) = f(y) for arbitrary  $x, y \in A$ , then x = y.

To show that f is not injective Find particular elements x,  $y \in A$  such that  $x \neq y$  and f(x) = f(y).

To show that f is surjective Consider an arbitrary element  $y \in B$  and find an element  $x \in A$  such that f(x) = y.

To show that f is not surjective Find a particular  $y \in B$  such that  $f(x) \neq y$  for all  $x \in A$ .

## **Inverse Functions**

**Definition**: Let f be a bijection from A to B. Then the *inverse* of f, denoted  $f^{-1}$ , is the function from B to A defined as  $f^{-1}(y) = x$  iff f(x) = yNo inverse exists unless f is a bijection. Why?



## **Inverse Functions**



#### Composition

**Definition**: Let  $f: B \rightarrow C$ ,  $g: A \rightarrow B$ . The *composition of f with* g, denoted  $f \circ g$  is the function from A to C defined by  $f \circ g(x) = f(g(x))$ 



#### Composition



## Composition $f \circ g \neq g \circ f$

#### Example 1: If

$$f(x) = x^2 \text{ and } g(x) = 2x+1,$$

$$f(g(x)) = (2x+1)^2$$

$$g(f(x)) = 2x^2 + 1$$

## **Graphs of Functions**

graph of the function f is the set of ordered pairs Let f be a function from the set A to the set B. The

$$\{(a,b) \mid a \in A \text{ and } f(a) = b\}.$$





Graph of 
$$f(n) = 2n + 1$$
  
from Z to Z



## Some Important Functions

The floor function, denoted

$$f(x) = \lfloor x \rfloor$$

The ceiling function, denoted is the largest integer less than or equal to x.

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

**Example:** 
$$[3.5] = 4$$
  $[3.5] = 3$ 

$$\begin{bmatrix} -1.5 \end{bmatrix} = -1 \quad \begin{bmatrix} -1.5 \end{bmatrix} = -2$$

## Floor and Ceiling Functions





Graph of (a) Floor and (b) Ceiling Functions

(b) y = [x]

## Floor and Ceiling Functions

(n is an integer, x is a real number) Ceiling Functions **TABLE 1** Useful Properties of the Floor and (1c)(1b) (1d) (3b)(3a)(2)  $\begin{bmatrix} -x \end{bmatrix} = - \begin{bmatrix} x \end{bmatrix}$  $\lceil x \rceil = n$  if and only if n - 1 < x = n $\lceil x+n \rceil = \lceil x \rceil + n$  $\lfloor x + n \rfloor = \lfloor x \rfloor + n$  $x-1 < \lfloor x \rfloor \le x \le |x| < x+1$  $\lceil x \rceil = n$  if and only if x = n < x+1 $\lfloor x \rfloor = n$  if and only if x - 1 < n = x $\lfloor x \rfloor = n$  if and only if n = x < n + 1 $\begin{bmatrix} x \end{bmatrix} = -\begin{bmatrix} x \end{bmatrix}$ 

(4b)

# **Proving Properties of Functions**

**Example**: Prove that x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

**Solution**: Let  $x = n + \varepsilon$ , where n is an integer and  $0 \le \varepsilon < 1$ .

- $2x = 2n + 2\varepsilon$  and [2x] = 2n, since  $0 \le 2\varepsilon < 1$
- [x + 1/2] = n, since  $x + \frac{1}{2} = n + (1/2 + \varepsilon)$  and  $0 \le \frac{1}{2} + \varepsilon < 1$ .
- Hence, [2x] = 2n and [x] + [x + 1/2] = n + n = 2n.

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$  and [2x] = 2n + 1, since  $0 \le 2\varepsilon 1 < 1$ .
- $[x + 1/2] = [n + (1/2 + \varepsilon)] = [n + 1 + (\varepsilon 1/2)] = n + 1 \text{ since } 0 \le \varepsilon 1/2$
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.

## **Factorial Function**

nonnegative integer product of the first n positive integers when n is a **Definition:**  $f: \mathbb{N} \to \mathbb{Z}^+$ , denoted by f(n) = n! is the

$$f(n) = 1 \cdot 2 \dots (n-1) \cdot n$$
 and  $f(0) = 0! = 1$ 

### **Partial Functions**

domain of definition of f, of a unique element b in B. assignment to each element a in a subset of A, called the **Definition**: A partial function f from a set A to a set B is an

- The sets A and B are called the domain and codomain of f, respectively.
- We day that f is undefined for elements in A that are not in the domain of definition of f.
- When the domain of definition of f equals A, we say that f is a total function.

to **R** where the domain of definition is the set of nonnegative integers. Note that f is undefined for negative integers. **Example:**  $f: \mathbb{N} \to \mathbb{R}$  where  $f(n) = \forall n$  is a partial function from **Z** 

# Sequences and Summations

Section 2.4

## Section Summary

#### Sequences.

 Examples: Geometric Progression, Arithmetic Progression

### **Recurrence Relations**

Example: Fibonacci Sequence

#### Summations

#### Introduction

Sequences are ordered lists of elements

- 1, 2, 3, 5, 8
- 1, 3, 9, 27, 81, ......

Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music.

#### Sequences

**Definition**: A *sequence* is a function from a subset of the integers (usually either the set {0, 1, 2, 3, 4, .....} or {1, 2, 3, 4, .....}) to a set *S*.

The notation  $a_n$  is used to denote the image of the integer n. We can think of  $a_n$  as the equivalent of f(n) where f is a function from  $\{0,1,2,....\}$  to S. We call  $a_n$  a *term* of the sequence.

#### Sequences

**Example**: Consider the sequence  $\{a_n\}$  where

$$a_n = \frac{1}{n}$$
  $\{a_n\} = \{a_1, a_2, a_3...\}$   
 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ 

## **Geometric Progression**

**Definition**: A geometric progression is a sequence of the form:  $a, ar^2, ..., ar^n, ...$ 

where the *initial term a* and the *common ratio r* are real numbers.

## **Arithmetic Progression**

**Definition:** A arithmetic progression is a sequence of the form: a, a + d, a + 2d,..., a + nd,...

where the *initial term a* and the *common difference d* are real numbers.

#### Strings

**Definition**: A *string* is a finite sequence of characters from a finite set (an alphabet).

Sequences of characters or bits are important in computer science.

The *empty string* is represented by  $\lambda$ .

The string abcde has length 5.

## **Recurrence Relations**

**Definition:** A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses  $a_n$  in terms of one or more of the previous terms of the sequence, namely,  $a_0$ ,  $a_1$ , ...,  $a_{n-1}$ , for all integers n with  $n \ge n_0$ , where  $n_0$  is a nonnegative integer.

A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.

The *initial conditions* for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

## **Recurrence Relations**

**Example** 1: Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$  for n = 1,2,3,4,... and suppose that  $a_0 = 2$ . What are  $a_1$ ,  $a_2$  and  $a_3$ ?

[Here  $a_0 = 2$  is the initial condition.]

## Fibonacci Sequence

**Definition:** Define the *Fibonacci sequence*,  $f_0$ ,  $f_1$ ,  $f_2$ ,..., by:

- Initial Conditions:  $f_0 = 0$ ,  $f_1 = 1$
- Recurrence Relation:  $f_n = f_{n-1} + f_{n-2}$

## **Solving Recurrence Relations**

Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.

Such a formula is called a closed formula

## Iterative Solution Example

 $a_n = a_{n-1} + 3$  for n = 2,3,4,... and suppose that  $a_1 = 2$ be a sequence that satisfies the recurrence relation **Method 1**: Working upward, forward substitution Let  $\{a_n\}$ 

$$a_2 = 2 + 3$$
  
 $a_3 = (2 + 3) + 3 = 2 + 3 \cdot 2$   
 $a_4 = (2 + 2 \cdot 3) + 3 = 2 + 3 \cdot 3$ 

 $a_n = a_{n-1} + 3 = (2 + 3 \cdot (n-2)) + 3 = 2 + 3(n-1)$ 

## Iterative Solution Example

 $a_{n-1}$  + 3 for n = 2,3,4,... and suppose that  $a_1 = 2$ . Method 2: Working downward, backward substitution Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n$  =

$$a_n = a_{n-1} + 3$$
  
=  $(a_{n-2} + 3) + 3 = a_{n-2} + 3 \cdot 2$   
=  $(a_{n-3} + 3) + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$ 

 $= a_2 + 3(n-2) = (a_1 + 3) + 3(n-2) = 2 + 3(n-1)$ 

#### Summations

Sum of the terms  $a_m$ ,  $a_m + 1$ ,...,  $a_n$ 

from the sequence  $\{a_n\}$ 

The notation:

$$\sum_{j=m}^{n} a_{j} \qquad \sum_{j=m}^{n} a_{j} \qquad \sum_{m \leq j \leq n} a_{j}$$

represents

$$a_m + a_{m+1} + \cdots + a_n$$

limit m and ending with its upper limit n runs through all the integers starting with its lower The variable *j* is called the *index of summation*. It

#### Summations

More generally for a set 
$$S$$
:  $\sum_{j \in S} a_j$   
Examples: 
$$r^0 + r^1 + r^2 + r^3 + \dots + r^n = \sum_{j=0}^n r^j$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{i=1}^{\infty} \frac{1}{i}$$
If  $S = \{2,5,7,10\}$  then  $\sum_{i \in S} a_i = a_2 + a_5 + a_7 + a_{10}$ 

### **Product Notation**

Product of the terms  $a_m, a_m + 1, ..., a_n$ from the sequence  $\{a_n\}$ 

The notation:

$$\prod_{j=m}^{n} a_{j} \qquad \prod_{j=m}^{n} a_{j} \qquad \prod_{m \leq j \leq n}$$

represents

$$a_m \times a_{m+1} \times \cdots \times a_n$$

### **Geometric Series**

Sums of terms of geometric progressions

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & r \neq 1\\ (n+1)a & r = 1 \end{cases}$$

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & r \neq 1 \\ (n+1)a & r = 1 \end{cases}$$
**Proof:** Let  $S_{n} = \sum_{j=0}^{n} ar^{j}$  To compute  $S_{n}$ , first multiply both sides of  $rS_{n} = r\sum_{j=0}^{n} ar^{j}$  the equality by  $r$  and then manipulate the  $s_{n} = \sum_{j=0}^{n} ar^{j+1}$  resulting sum as follows:

### **Geometric Series**

$$= \sum_{j=0}^{n} ar^{j+1}$$
 From previous slide. 
$$= \sum_{k=1}^{n+1} ar^{k}$$
 Shifting the index of summa

$$= \sum_{k=1}^{n-1} ar^k$$
 Shifting the index of summation with  $k = j + 1$ .
$$= \left(\sum_{k=0}^{n} ar^k\right) + \left(ar^{n+1} - a\right)$$
 Removing  $k = n + 1$  term and adding  $k = 0$  term.

$$= \left(\sum_{k=0}^{n-1} ar^k\right) + \left(ar^{n+1} - a\right) \qquad \text{Removing } k = n+1 \text{ term and}$$

$$= S_n + \left(ar^{n+1} - a\right) \qquad \text{adding } k = 0 \text{ term.}$$

$$\therefore \qquad rS_n = S_n + \left(ar^{n+1} - a\right) \qquad \text{Substituting } S \text{ for summation formula}$$

$$S_n = \frac{ar^{n+1} - a}{r-1} \qquad \text{if } r \neq 1$$

$$S_n = \sum_{j=0}^{n} ar^j = \sum_{j=0}^{n} a = (n+1)a \qquad \text{if } r = 1$$

# Some Useful Summation Formulae

| <b>TABLE 2</b> Some Useful Summation Formulae    | summation Formulae.                 |                          |
|--------------------------------------------------|-------------------------------------|--------------------------|
| Sum                                              | Closed From                         | Geometric Series:        |
| $\sum_{k=0}^{n} ar^{k} \left( r \neq 0 \right)$  | $\frac{ar^{n+1}-a}{r-1}, \ r\neq 1$ | We just proved this.     |
| $\sum_{i=1}^{k} \sum_{j=1}^{k} K_{i}$            | $\frac{n(n+1)}{2}$ $n(n+1)(2n+1)$   | Later we will prove some |
| $\sum_{k=1}^{n} k^3$                             | $\frac{n^2\left(n+1\right)^2}{4}$   | induction.               |
| $\sum_{k=0}^{\infty} x^k,  \mathbf{x}  < 1$      | $\frac{1}{1-x}$                     | Proof in text            |
| $\sum_{k=0}^{\infty} kx^{k-1},  \mathbf{x}  < 1$ | $\frac{1}{\left(1-x\right)^2}$      | (requires calculus)      |