Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Fourth Semester

18AIC201J - FOUNDATION OF ARTIFICIAL INTELLIGENCE

(For the candidates admitted during the academic year 2020-2021 & 2021-2022)

	AtA.	
1 3		_

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over (i) to hall invigilator at the end of 40th minute.

(ii)	Par	t - B & Part - C should be answered in	answ	er booklet.			
Time: 3	hours	S		M	ax. Ma	arks	: 100
		$PART - A (20 \times 1 =$	20 M	[arks]	Marks	BL	со
		Answer ALL Qu					
1.	Whi	ich of the following is an applicatio			1	1	1
		It helps to exploit vulnerabilities to secure the firm					
	(C)	Easy to create a website	(D)	It helps to deploy application on the cloud			
2	Δαρ	ents behavior can be best described	hv		1	1	1
۷.	_	Perception sequence		Agent function			
	(C)	Sensors and actuators	(D)	Environment in which agent is performing			
3	Con	sider a problem of preparing a se	chedi	ule for a class of student. What	1	1	1
٥.		es of problem is this?	011041				
		Search problem	(B)	Backtrack problem			
		CSP	(D)	Planning problem			
4	** 71	44.4			1	2	1
4.		at is state space?	(D)	Your definition to a problem			
	, ,	The whole problem	(D)	Representing your problem			
	(C)	Problem you design	(D)	with variable and parameter			
5	Infe	rence algorithm is complete only if		<u>.</u>	1	2	2
٥.		It can derive any sentence	(B)	It can derive any sentence that			
	(0)	It is touth amonomians	(D)	is an entailed version It can derive any sentence that			
	(C)	It is truth preserving	(D)	is an entailed version and It is truth preserving			
_	T	aslate the following statement into	EOI		1	2	2
0.		r every a, if a is a philosopher, then		a scholar"			
		∀ a philosopher(a) scholar(a)		∃ a philosopher(a) scholar(a)			
	` /	F philosopher(a) scholar(a)	` '	^ philosopher(a) scholar(a)			

7.	Forward chaining systems are	_ whe	ereas backward chaining systems	1	2	2
	(A) Goal-driven, goal-driven	(B)	Goal-drive, data-driven			
	(C) Data-driven, goal-driven	. ,	Data-driven, data-driven			
8.	How can the goal be thought of in a ba	ıckwa	rd chaining algorithm?	1	2	2
	(A) Stack	(B)	Queue			
	(C) List	(D)	Vector			
9.	are the compositions for Arti	ficial	Intelligence Agents.	1	1	3
	(A) Only program	(B)	Only architecture			
	(C) Only sensors	(D)	Both Program and Architecture			
10.	In linguistic morphology is the to their root form.	ne pro	cess for reducing inflected words	1	1	3
	(A) Rooting	(B)	Stemming			
	(C) Text-proofing		Fuzzy logic			
11	An algorithms is complete if			1	1	3
11.	(A) It terminates with a solution when one exists	(B)	It starts with a solution	_	-	
	(C) It does not terminate with a solution	(D)	It has a loop			
12.	SOAR stands for			1	1	3
	(A) State-Object-And-Result	(B)	System-Object-And-Resource			
	(C) State-Operator-And-Result	(D)	State-Operator-Agent-Result			
13.	The process by which the brain incomplete a specific task is referred to a		entally orders actions needed to	1	1	4
	(A) Planning problem		Partial order planning			
	(C) Total order planning		Both planning problem and partial order planning			
14.	A is used to demonstrate, of formula is a logical consequence of an			1	1	4
	(A) Deductive systems		Inductive systems			
	(C) Reasoning with Knowledge-		•			
	based systems	()				
15.	Knowledge and reasoning also play environment.	a cru	cial role in dealing with	1	1	4
	(A) Completely observable	(B)	Partially observable			
	(C) Neither completely nor partially observable					
1.0	What is the farm of			1	1	1
10.	What is the frame? (A) A way of representing	(B)	Data structure	1	1	4
	knowledge (C) Data type	(D)	Knowledge			

17.	simulate the process of natural selection.	1	1	5
	(A) Genetic algorithm (B) Mutation			
	(C) Population (D) Knowledge			
18.	What is a perceptron? (A) An auto-associative neural (B) A single-layer feed-forward network neural network with preprocessing (C) A double-layer auto-associative (D) A neural network that contains neural network		1	5
	neural network			
19.	What is an auto-associative network? (A) A neural network that contains (B) A neural network that has only no loops (C) A neural network that contains (D) A single-layer feed-forward feedback neural network with preprocessing		1	5
20.	Though local search algorithms are not systematic, key advantages would	1	1	5
	include (A) Less memory (B) More time (C) Finds a solution in a large (D) Less memory and finds a infinite space solution in large infinite space			
	$PART - B (5 \times 4 = 20 Marks)$	Marks	BL	CO
	Answer ANY FIVE Questions			
21.	Answer ANY FIVE Questions Differentiate an agent function and an agent program.	4	2	1
			2	2
22.	Differentiate an agent function and an agent program. Describe any one of the following problems. What types of control strategy is used in the following problem. I. The Tower of Hanoi			
22.	Differentiate an agent function and an agent program. Describe any one of the following problems. What types of control strategy is used in the following problem. I. The Tower of Hanoi II. 8-queens problem Consider the following sentences: Ram like all kinds of fruits Fish are food Chicken is food Everyone loves everyone Bill eats peanuts and still alive	4	2	2
22.23.24.	Differentiate an agent function and an agent program. Describe any one of the following problems. What types of control strategy is used in the following problem. I. The Tower of Hanoi II. 8-queens problem Consider the following sentences: Ram like all kinds of fruits Fish are food Chicken is food Everyone loves everyone Bill eats peanuts and still alive Translate these sentences into formulae in predicate logic.	4	2	3
22.23.24.25.	Differentiate an agent function and an agent program. Describe any one of the following problems. What types of control strategy is used in the following problem. I. The Tower of Hanoi II. 8-queens problem Consider the following sentences: Ram like all kinds of fruits Fish are food Chicken is food Everyone loves everyone Bill eats peanuts and still alive Translate these sentences into formulae in predicate logic.	4	2 2	3

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

Marks BL CO

28. a. Explain the following algorithms in detail with real time scenario

12 2

- (i) A* algorithm
- (ii) Best first search

(OR)

- b. Define constraint satisfaction problem (CSP). How CSP is formulated as a search problem? Explain with an example.
- 12 2 1

3 2

29. a. Given the following search tree, apply the alpha beta pruning algorithm to it and show that the search tree that would be built by this algorithm. Make sure that you show where the Alpha Beta cuts are applied and display the final pruned tree. Illustrate the algorithm with steps and pseudocode.

(OR)

- b. Consider the following sentences:
 - John likes all kinds of food
 - Apples are food
 - Chicken is food
 - Anything anyone eats and isn't killed is food
 - Bill eats peanuts and is still alive
 - Sue eats everything Bill eats
 - (i) Translate these sentences into formulae in predicate logic.
 - (ii) Convert the above FOL into clause form.
- 30. a. Explain with an example the use of the Unification algorithm to prove the 12 3 3 concept of resolution.

(OR)

b. Describe the trust and reputation in multi-agent systems.

12 3 3

12

3

2

31. a. Define Script. Construct a script for going to the bank and withdrawing 12 3 money.

(OR)

b. We shall look at game trees, and we assume that the root node of the tree in the figure below is representing the current situation of a game (that we do not describe further), and that it is player A's turn to move. The other player is B, and A and B alternately make moves. Player A wants to maximize the values of the nodes while B wants to minimize them. Player A shall make considerations for deciding which move to make from the root situation, and the tree in the figure below shows all situations it is possible to reach with at most four moves from the current situation. A has a heuristic function (that is, a function that for a given situation gives an integer) that he uses to evaluate how good the situation is for him. A uses this function for situations where he terminates the search towards deeper nodes. For each terminal node in the tree below this function is evaluated and the value appears in the nodes.

32. a. Construct a graph with six nodes and demonstrate the Traveling salesman 12 3 problem.

(OR)
b. Discuss Game-theoretic approaches for multi-issue negotiation.

12 3 5

* * * * *

3

