Задание 4 (04.03.2025)

Исследовать помехозащищенность морфологических методов идентификации на примере задачи идентификации рукописных печатных букв (написать 8-10 печатных букв на бумаге и отсканировать/сфотографировать, привести к одинаковому масштабу и передвинуть так, чтобы центр масс каждого изображения — точка, определенная усредненим радиус-векторов пикселей, взятых с весами, равными их яркостям — располагался в центре поля зрения) по их изображениям, пораженным случайным попиксельно независимым шумом. Для идентификации цифры по предъявленному изображению g считать, что на нем изображена цифра

I-VIII.

$$\underset{i \in \{0,1,\dots,9\}}{\operatorname{argmin}} \frac{\|(I - \Pi_i)g\|^2}{\|(\Pi_i - E)g\|^2},$$

IX-XVI.

$$\underset{i \in \{0,1,\dots,9\}}{\operatorname{argmin}} \| (I - \Pi_i) g \|^2,$$

где Π_i — проектор на форму изображения цифры i, E — проектор на форму изображения равномерно яркого поля зрения. Построить график зависимости частоты ошибок идентификации (выборку генерировать так, чтобы в ней было одинаковое число изображений каждой цифры, например, по 100 изображений каждой цифры) от параметра σ , характеризующего величину шума, при увеличении частоты ошибки идентификации до 1/2. Для наибольшей частоты ошибки идентификации также получить матрицу путаницы.

Варианты построения проекторов Π_i :

- I–IV, IX–XII. После бинаризации изображений цифр Π_i строятся как проекторы на формы изображений с двумя областями постоянной яркости.
- V–VIII, XIII-XVI. Π_i строятся как проекторы на формы таких изображений, что яркости f_j пикселей имеют вид $f_j = (1-\alpha_j)f_{\mathrm{bgr}} + \alpha_j f_{\mathrm{fgr}}$, где f_{bgr} яркость фона, f_{fgr} яркость цифры, и при изменении условий освещения изменяются только f_{bgr} и f_{fgr} , но не коэффициенты α_j , в соответствии с предположением, что отличные от f_{bgr} и f_{fgr} яркости пикселей обусловлены дискретизацией изображения.

Варианты генерации шума:

- I, V, IX, XIII. Для генерации аддитивного шума используется нормальное распределение с математическим ожиданием 0 и дисперсией σ^2 .
- II, VI, X, XIV. Для генерации аддитивного шума используется дискретное равномерное распределение с двумя равновероятными значениями отклонений, σ и $-\sigma$.
- III, VII, XI, XV. Для генерации аддитивного шума используется распределение Коши с нулевым коэффициентом сдвига и коэффициентом масштаба σ .
- IV, VIII, XII, XVI. Генерируется шум «соль и перец» (каждый пиксель незашумленного изображения с вероятностью σ заменяется на белый, с вероятностью $1-2\sigma$ заменяется на черный и с вероятностью σ остается неизменным).