ColorCast:
Deterministic Broadcast
in Powerline Networks
with Uncertainties

Yvonne-Anne Pignolet¹, Stefan Schmid², Gilles Tredan³

3- Laboratory for Analysis and Architecture of Systems
 2- TU-Berlin/Deutsche Telekom
 1- ABB Corporate Research, Switzerland

Task

A set of electrical substations V

- All connected through a powergrid.
- Use the powergrid to communicate
- One (say s) has something to say
- Needs to broadcast it to all other stations
- Discrete time model

Metric= Broadcast time: Number of rounds between the first send and the last receive.

Model: Very generic

- A weighted Graph G(V, E, d) of interconnected substations. Weight denotes edge length.
- A noise distribution $ho^t: E \mapsto [0,
 ho_{\it max}]$ between any stations
 - Can be asymmetric $\rho^t(u,v) \neq \rho^t(v,u)$
 - ullet Can vary in **any** way provided $\in [0,
 ho_{ extit{max}}]$
- Any noise impact function $f(d, \rho^t)$
 - ullet Provided f is both monotonic if f and ho
 - ...and $f(d, \rho) \geq d$
 - a "virtual length" of each link at each timestep

Model (2)

 $< G(V, E, d), \{\rho^t, \forall t\}, f >$ defines a dynamic graph:

$$G_1, G_2, G_3 \ldots G_t \ldots$$

We focus on two special graphs:

- $G_{com}^{\perp} = G_t$ when $\rho^t(e) = \rho^{max}, \forall e \in E$ = worst case communication
- $G_{com}^{\top} = G_t$ when $\rho^t(e) = 0, \forall e \in E$ = **best case** communication

N.B.: We require G_{com}^{\perp} to be connected

Problem

Unknown ranges

Problem

Unknown range + Collisions = Problem

Second Problem

Physical grid \neq communication network

Traditional Broadcast Protocols Fail

Figure: Col. stands for collision and \emptyset stand for no message received.

Algorithm

"Hope for worse, prepare for best"

- Create a Connected Dominating set (CDS) of G_{com}^{\perp}
- Divide it into layers according to distance to s
- Schedule each layer separately: i and j
 in layer k can send at the same round
 if:

$$d_{G_{com}^ op}(i,j)>2$$
 (aka a coloring of $(G_{com}^ op)^2\Rightarrow$ ColorCast)

Analysis

- $d_{G_{com}^{\top}}(i,j) > 2 \Rightarrow$ No collision
- No collision, no coin toss ⇒ Deterministic
- Correctness: Layers = CDS and no collision ⇒after last layer send, broadcast is over
- Complexity: Max nodes in the CDS=n, worst case none can talk at same round $\Rightarrow \theta(n)$

Observations:

- (Somehow) Asymptotically optimal when D = n
- No hidden factors!

Simulation Results

Algorithms ColorCast

- Deterministic
- No collision
- \bullet $\theta(n)$

Decay

- Randomized
- $O(D + log(n/\epsilon)log(\Delta))$
- ullet We set $\epsilon=1$

- 3 different scenarios: No noise, Random noise, Max noise
- Averages = 100 runs
- Bigger networks created by "copy-pasting"

Yvonne-Anne Pignolet, Stefan Schmid, Gilles Tredan

Simulation Topology

Simulations

Simulations -2

Simulations -3

Conclusion

We presented ColorCast

- Simple, deterministic algorithm
- Guaranteed convergence and runtime
- Performs well in practical scenarios

Further:

- Identify graph classes where things go well
- Deterministic lower bound

Takeaways:

- 1.01^n vs n^{400} : Beware of asymptotical complexity!
- A glimpse of dynamism can break cathedrals
- 4★ hotel ⇒ Decent internet