Доп. дисциплины. Магистры весна 2021.

Занятие 1

Алгоритмы теории многочленов

11.03.2021

Евклидовы кольца

Определение. Полем Галуа называется любое конечное поле.

Поле Галуа и поле ненулевой характеристики — это не синонимы. Любое поле Галуа имеет конечную характеристику. Но любое бесконечное поле ненулевой характеристики не является полем Галуа.

Найдите в кольце \mathbb{Z}_8 все решения уравнения 4*x = 4

Конечные кольца, т.е. конечные алгебраические множества, где можно складывать, вычитать и умножать элементы, но не на все ненулевые элементы можно делить, очень своеобразные объекты в сравнении с привычными натуральными и действительными числами.

Поскольку кольцо Z_8 конечное и содержит всего 8 элементов, то можно решить уравнение, просто перебрав все элементы этого кольца. Перебрав все элементы, мы убедимся, что решениями являются все нечетные элементы $\{1, 3, 5, 7\}$. Т.е. уравнение первой степени имеет 4 решения.

Другой способ состоит в том, что, если a — решение, то и любой элемент a+2*k, тоже решение. Поскольку a=1 — решение, то мы сразу получаем и другие решения 1+2, 1+4, 1+6. Остается только проверить, что других решений нет.

В нашем случае оба решения приемлемы. Но если бы кольцо содержало много элементов, то первый способ мог бы оказаться неприменимым.

Сколько различных матриц размера 3Х3 существует над кольцом Z6?

Эта задача похожа на задачу про число функций над некоторым конечным множеством. Матрица размера 3X3 имеет 9 элементов. Каждый из элементов может принимать любое значение из кольца **Z**₆. В кольце **Z**₆ всего 6 элементов. Т.к. каждый из 9 элементов матрицы пробегает все эти значения независимо друг от друга, то всего получается $6^9 = 10077696$ различных матриц – примерно 10 млн. штук.

Над полем GF(7) найти матрицу, обратную к матрице

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}.$$

Задача на применение метода Гаусса. Алгоритм нахождения обратной матрицы состоит в том, что нашей матрице мы справа приписываем единичную матрицу такого же размера и элементарными преобразованиями строк приводим исходную матрицу к единичной. Как только это будет сделано, приписанная нами единичная матрица превратится в матрицу, обратную к нашей исходной матрице.

I элементарное преобразование строк над полем. Умножение строки на ненулевой элемент.

II элементарное преобразование строк над полем. Умножение строки на любой элемент и прибавление к другой строке. Иногда добавляют третье преобразование — поменять местами две строки. На самом деле — это не элементарное преобразование, оно может быть заменено некоторой последовательностью первых двух преобразований.

Отметим, что в поле GF(5), над которым мы будем производить преобразования, выполняются равенства $2 \cdot 3 = 1, -1 = 4, 3 \cdot 4 = 2$.

$$\left\langle \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix} \middle| \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rangle \Rightarrow \left\langle \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \middle| \begin{array}{cccc} 1 & 0 & 4 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{array} \right\rangle \Rightarrow \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \middle| \begin{array}{cccc} 1 & 4 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{array} \right\rangle \Rightarrow \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \middle| \begin{array}{cccc} 1 & 4 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{array} \right\rangle$$

Таким образом, матрицей обратной к исходной будет $\begin{pmatrix} 1 & 4 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, что легко

проверить непосредственным умножением.

Решить систему линейных уравнений над полем GF(5)

$$\begin{cases} x + y + z = 1 \\ x - z = 0 \\ x - y = 1 \end{cases}$$

Упражнение на алгоритм Гаусса. Необходимо расширенную матрицу системы линейных уравнений привести элементарным преобразованиями строк к диагональному виду.

На первом шаге в первом столбце нужно выбрать неединичный элемент и строку, в которой он расположен, сделать первой строкой матрицы, переставив ее с другими строками матрицы. После этого используя этот неединичный элемент обнулить весь первый столбец матрицы.

На втором шаге, мысленно вычеркнув 1-ю строку и 1-й столбец, применить первый шаг к матрице, получившейся после этого вычеркивания. Не позднее, чем на n-1 шаге, если матрица имеет размер nXn, у нас получится нужная матрица.

Применим этот алгоритм к расширенной матрице нашей системы линейных уравнений. На первом шаге в качестве основной возьмем 2-ю строку, в ней больше всего нулей, и переместив ее на первое место обнулим первый столбец. Так же заметим, что в поле GF(5) имеет место равенства $2 \cdot 3 = 1, -1 = 4, 3 \cdot 4 = 2$

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & -1 & 0 \\
1 & -1 & 0 & 1
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 0 & 4 & 0 \\
1 & 1 & 1 & 1 \\
1 & 4 & 0 & 1
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 0 & 4 & 0 \\
0 & 1 & 2 & 1 \\
0 & 4 & 1 & 1
\end{pmatrix} \Rightarrow$$

$$\begin{pmatrix}
1 & 0 & 4 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 3 & 2
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 0 & 4 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 4
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 4
\end{pmatrix}$$

Итак, получилось решение $\begin{cases} x = 4 \\ y = 3 \\ z = 4 \end{cases}$

Следствие из алгоритма Евклида. Если в евклидовом кольце d=gcd(a,b), то найдутся такие элементы u, v, что d=ua+vb, т.е. HOД является линейной комбинацией исходных элементов a и b.

По методу Евклида найти элемент обратный к 127 по модулю 256

Задача на использование алгоритма Евклида для нахождения наибольшего общего делителя двух целых чисел. Пусть а и b - натуральные числа. Разделим число «а» с остатком на число «b». Потом число «b» делим на получившийся остаток r и т.д.

Последний остаток r_n и есть наибольший общий делитель чисел а и b. В случае, когда числа а и b взаимно простые последний остаток будет равен 1.

Используя полученные равенства можно выразить элемент r_n через исходные элементы а и b.

Сделаем это для случая, когда n = 3.

$$\begin{cases} a = bq + r \\ b = rq_1 + r_1 \\ r = r_1q_2 + r_2 \Rightarrow \begin{cases} r = a - bq \\ r_1 = b - rq_1 \\ r_2 = r - r_1q_2 \Rightarrow \end{cases} \begin{cases} r = a - bq = a + (-q)b \\ r_1 = b - (a - bq)q_1 = (-q_1)a + (1 + qq_1)b \\ r_2 = (a - bq) - r_1q_2 \end{cases} \Rightarrow \begin{cases} r = a + (-q)b \\ r_1 = r_2q_3 + r_3 \\ r_2 = r_3q_4 \end{cases} \begin{cases} r_2 = r_3q_4 \end{cases} \begin{cases} r_2 = r_3q_4 \end{cases} \begin{cases} r_3 = r_1 - r_2q_3 \\ r_2 = r_3q_4 \end{cases} \begin{cases} r = a + (-q)b \\ r_1 = (-q_1)a + (1 + qq_1)b \\ r_2 = (a - bq) - ((-q_1)a + (1 + qq_1)b)q_2 = (1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b \Rightarrow \end{cases} \\ r_3 = ((-q_1)a + (1 + qq_1)b) - ((1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b)q_3 \end{cases} \end{cases} \\ r_2 = r_3q_4 \end{cases}$$
$$\begin{cases} r = a + (-q)b \\ r_1 = (-q_1)a + (1 + qq_1)b \\ r_2 = (1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b \Rightarrow \end{cases} \Rightarrow \\ r_3 = ((-q_1)a + (1 + qq_1)b) - ((1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b)q_3 \end{cases} \end{cases} \Rightarrow \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} r = a + (-q)b \\ r_1 = (-q_1)a + (1 + qq_1)b - ((1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b)q_3 \end{cases} \Rightarrow \end{cases} \Rightarrow \begin{cases} r = a + (-q)b \\ r_1 = (-q_1)a + (1 + qq_1)b - ((1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b)q_3 \end{cases} \Rightarrow \end{cases} \Rightarrow \begin{cases} r = a + (-q)b \\ r_1 = (-q_1)a + (1 + qq_1)b - ((1 + q_1q_2)a + (-q - (1 + qq_1)q_2)b)q_3 \end{cases} \Rightarrow \end{cases} \Rightarrow \begin{cases} r = a + (-q)b \\ r_1 = (-q_1)a + (1 + qq_1)b - ((1 + q_1q_2)a + (-q - (1 + qq_1)q_2)a + (-q - (1 + qq$$

Применим этот алгоритм к нашим числам 127 и 256:

$$\begin{cases}
\overline{256} = \overline{127} \cdot 2 + \overline{2} \\
\overline{127} = \overline{2} \cdot 63 + \overline{1}
\end{cases} \Rightarrow
\begin{cases}
\overline{256} - \overline{127} \cdot 2 = \overline{2} \\
\overline{127} - \overline{2} \cdot 63 = \overline{1}
\end{cases} \Rightarrow
\begin{cases}
\overline{256} - \overline{127} \cdot 2 = \overline{2} \\
\overline{127} - (\overline{256} - \overline{127} \cdot 2) \cdot 63 = \overline{1}
\end{cases} \Rightarrow$$

$$(1 + 2 \cdot 63) \cdot \overline{127} + (-63) \cdot \overline{256} = \overline{1}$$

Таким образом, получаем $127 \cdot 127 - 63 \cdot 256 = 1 \Rightarrow 127 \cdot 127 = 1 + 63 \cdot 256$, т.е. $127 \cdot 127 = 1 \pmod{256}$

Значит, элементом обратным по умножению к 127 в кольце вычетов Z_{256} будет сам же элемент 127.

Литература

- 1. Шевелев Ю.П. Дискретная математика, 4-е изд. [Электронный ресурс]. СПб.: Лань, 2019. URL: https://e.lanbook.com/reader/book/118616
- 2. Глухов М.М., Елизаров В.П., Нечаев А.А. Алгебра, 3-е изд. [Электронный ресурс]. СПб.: Лань, 2020. URL: https://e.lanbook.com/reader/book/126718/