(19) W rld Intellectual Property Organization International Bureau

(43) International Publication Date 5 April 2001 (05.04.2001)

PCT

(10) International Publication Number WO 01/23582 A1

- (51) International Patent Classification⁷: C12N 15/55, 15/61, C12P 13/00, 13/22, 41/00, C12N 1/21, C12Q 1/68
- (21) International Application Number: PCT/EP00/08473
- (22) International Filing Date: 31 August 2000 (31.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data:
 - 09/407,062 28 September 1999 (28.09.1999) US
- (71) Applicants: DEGUSSA-HŪLS AKTIENGE-SELLSCHAFT [DE/DE]; 60287 Frankfurt am Main (DE). UNIVERSITÄT STUTTGART [DE/DE]; Allmandring 31, 70569 Stuttgart (DE). ROCHE DIAGNOS-TICS GMBH [DE/DE]; Sandhofer Strasse 116, 68298 Mannheim (DE).
- (72) Inventors: ALTENBUCHNER, Josef; Hindenburgstrasse 6, 71154 Nufringen (DE). MATTES, Ralf; Friedrich-Zundel-Strasse 14, 70619 Stuttgart (DE). SYLDATK, Christoph; Reinbeckstrasse 29B, 70565

Stuttgart (DE). WIESE, Anja; Hauptstrasse 11a, 85386 Eching (DE). WILMS, Burkard; Robert-Leicht-Strasse 37b, 70563 Stuttgart (DE). BOMMARIUS, Andreas; Waidmannstrasse 7-9, 60596 Frankfurt am Main (DE). TISCHER, Wilhelm; Finkenweg 5, 82380 Peissenberg (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG-8İ, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- With amended claims.

[Continued on next page]

(54) Title: WHOLE CELL CATALYST COMPRISING A HYDANTOINASE, A RACEMASE AND A CARBAMOYLASE

Chromosomal insertion of hyuH

hyuH integrated into the chromosome (7239 bps)

(57) Abstract: A whole cell catalyst is described comprising a hydantoinase, a racemase and a carbamoylase. Thus this catalyst is able to degrade hydantoins directly into the amino acids. Additionally, a process for the production of this catalysts and for the production of amino acids is claimed.

 With (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description. For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/23582 PCT/EP00/08473

WHOLE CELL CATALYST COMPRISING A HYDANTOINASE, A RACEMASE AND A CARBAMOYLASE

The present invention is directed to a micro-organism, which is able to degrade hydantoins to enantiomerically enriched amino acids. Especially, this micro-organism is equipped with cloned genes coding for the necessary enzymes.

Racemic 5-monosubstituted hydantoins can be chemically synthesized according to Bucherer-Berg method using aldehydes, ammonium bicarbonate and sodium cyanide as reactants. They are important precursors for the enzymatic 10 production of D-and L- amino acids. With the increasing demand for optically pure amino acids a lot of effort has been made towards the isolation of microorganisms capable for stereospecific hydrolysis of the hydantoins and characterization of the enzymes (Syldatk and Pietzsch, 15 "Hydrolysis and formation of hydantoins" (1995), VCH Verlag, Weinhein, pp. 403-434; Ogawa et al., J. Mol. Catal. B: Enzym 2 (1997), 163-176; Syldatk et al., Appl. Microbiol. Biotechnol. 51 (1999), 293-309). The asymmetric bio-conversion to either L- or D- amino acids consists of 20 three steps:

- (i) chemical and/or enzymatic racemization of 5substituted hydantoins
- (ii) ring opening hydrolysis achieved by a hydantoinase
 25 and
 - (iii) hydrolysis of the N-carbamoyl amino acid produced by hydantoinase to the amino acid by carbamoylase.

Arthrobacter aurescens DSM 3747 is one of the few isolated microorganisms capable of converting 5-monosubstituted

30 hydantoins to L-amino acids. The disadvantage of using A. aurescens cells as biocatalyst is the low enzyme activity. Especially the L-N-carbamoylase is the bottleneck for most

substrates leading to an increase of the intermediate L-N-carbamoyl amino acid in the cell, which is not further converted to the corresponding amino acid. By combining the purified enzymes bottlenecks could be avoided but due to the low amounts of enzymes in the cells and loss of activity during the many necessary purification steps this process is not cost-effective.

All three genes encoding for the racemase hyuA (seq. 11), the L-specific hydantoinase hyuH (seq. 9) and the

10 stereoselective L-N-carbamoylase (seq. 7) have been cloned in E. coli separately and expressed to high levels (about 10 % of the total cell protein) (DE 19913741; J. Biotechnol., to be published). For in vitro catalysis the enzymes from the three recombinant strains can be produced and purified more cost-effective then from the Arthrobacter aurescens strain. Regarding the different enzyme activities towards the various substrates the enzymes can be combined in enzyme reactors at ratios optimized for each reaction.

It is an object of this invention to provide a further possibility of how a racemase, a hydantoinase and a D- or L-specific carbamoylase can act together in a process for the production of enantiomerically enriched amino acids from 5-monosubstituted hydantoins. Especially, this possibility should be suitable to be implemented in processes on technical scale, that is to say it has to be most cost-effective.

This is done by using a whole cell catalyst according to claim 1. Further preferred catalysts are subjects to claims depending from claim 1. Claims 6 to 9 are directed to a process for the production of the whole cell catalyst of the invention. Claims 10 and 11 protect a process for the production of enantiomerically enriched amino acids using the catalyst according to the invention.

20

25

Using whole cell catalysts comprising cloned genes encoding for a hydantoinase, for a hydantoin racemase and a D- or L-specific carbamoylase for the conversion of 5-monosubstituted hydantoins to L- or D-amino acids results in a fast and complete conversion of racemic mixtures of hydantoins to the corresponding L- or D-amino acids on industrial scale. This significantly reduces the production costs due to a reduction of fermentation and purification costs because all enzymes are produced in one strain.

Advantageously, a bacteria is used as cell, because of high reproduction rates and easy growing conditions to be applied. There are several bacteria known to the skilled worker which can be utilized in this respect. Preferably a Escheria coli can be used as cell and expression system in this regard (Yanisch-Perron et al. Gene (1985), 33, 103-109).

It is another positive embodiment of this invention that in principle all genes encoding for the hydantoinase, racemase and carbamoylase known to the artisan can be taken to be expressed in the whole cell catalyst. Preferably all genes can be taken from DSM 3747 (seq. 7, 9, 11).

The enzymes to be incorporated in the genetic code of the whole cell catalyst naturally possess different turnover rates. It is a drawback if the rates of co-working enzymes are not in line and intermediates accumulate during the production inside the cell. The overexpression of the hydantoinase gene in E. coli leads to the formation of inclusion bodies (Wiese et al., in preparation), which is unfavourable for a well balanced coexpression of all the three enzymes. Therefore, various attempts to "fine tune" the expression of these genes have been made. This can be done advantageously by overexpressing the hydantoinase genes in question according to their turnover rates.

According to the DSM 3747-System the hydantoinase gene is overexpresses from plasmids with reduced copy numbers.

20

25

30

A further embodiment of the instant invention is directed to a process for the production of the whole cell catalyst according to the invention. In principle all plasmids known to the skilled worker can serve to carry the gene into the expression system. Preferably, plasmids derived from pSC101, pACYC184 or pBR322 are used to produce the catalyst. Most preferably plasmids pBW31 and pBW32, pBW34 and pBW35, pBW34 and pBW53, pBW32 or pBW34 are used in this respect. For the skilled worker plasmids and methods to

- 10 produce plasmids can be deduced from Studier et al.,
 Methods Enzymol. 1990, 185, 61-69 or brochures of Novagen,
 Promega, New England Biolabs, Clontech or Gibco BRL. More
 applicable plasmids, vectors can be found in:
 DNA cloning: a practical approach. Volume I-III, edited by
- D. M. Glover, IRL Press Ltd., Oxford, Washington DC, 1985, 1987; Denhardt, D. T. and Colasanti, J.: A surey of vectors for regulating expression of cloned DNA in E. coli. In: Rodriguez, R.L. and Denhardt, D. T (eds), Vectors, Butterworth, Stoneham, MA, 1987, pp179-204;
- Gene expression technology. In: Goeddel, D. V. (eds), Methods in Enzymology, Volume 185, Academic Press, Inc., San Diego, 1990; Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
- 25 N.Y. They are incorporated by reference herewith.

Over-expression can be accomplished be means known to the skilled artisan, e.g. using constitutive or inducible expression systems as reviewed by Makrides (Makrides, 1996, Microbiol. Rev. 60, no. 3, 512-538)

Preferably, for expression of the enzymes a rhamnose inducible E. coli promoter cassette is used.

In addition, primers useful for the amplification of the gene of the invention in a PCR are protected similarly. Primers which are feasible are for example, primers S988

35 (seq. 6), S2480 (seq. 1), S2248 (seq. 2), S2249(seq. 3),

S2517 (seq. 4) or S2518 (seq. 5). Furthermore, all other primers which could serve to carry out this invention and which are known to the artisan are deemed to be useful in this sense. The finding of a suitable primer is done by 5 comparison of known DNA-sequences or translation of amino acid sequences into the codon of the organism in question (e.g. for Streptomyces: Wright et al., Gene 1992, 113, 55-65). Similarities in amino acid sequences of proteins of so called superfamilies are useful in this regard, too 10 (Firestine et al., Chemistry & Biology 1996, 3, 779-783). Additional information can be found in Oligonucleotide synthesis: a practical approach, edited by M.J. Gait, IRL Press Ltd, Oxford Washington DC, 1984; PCR Protocols: A guide to methods and applications, edited by M.A. Innis, 15 D.H. Gelfound, J.J. Sninsky and T.J. White. Academic Press, Inc., San Diego, 1990. Those strategies are incorporated by reference herewith.

Another aspect of the invention is a process for the production of enantiomerically enriched amino acids, which utilizes a whole cell catalyst according to the invention. Furthermore, a process is preferred that is performed in an enzyme-membrane-reactor (DE 19910691.6).

To adopt the turnover rate of all enzymes expressed in the whole cell catalyst to each other there are different methods to achieve this.

- a) The genes are expressed with different promoters. The gene with the lowest activity is combined with the strongest promoter and vice versa. A disadvantage would be that for each gene a different inductor is necessary to induce the expression of all genes.
- b) The genes are expressed with one promoter on a polycistronic messenger. The ratios of synthesis of the enzymes is influenced by changing or by mutation of the translation initiation region of each gene (the ribosomal

25

binding site) which determines the efficiency of protein synthesis. This principle is realized in operons of microorganisms. The disadvantage is that the efficiency of a translation initiation region can not be predicted which means that for each gene many changes in the translation initiation region have to be made and tested (Grifantini et al., 1998, Microbiology, 144, 947-954).

- c) The enzyme activity of each enzyme can be changed by mutation using error prone PCR (Fromant et al., 1995, Anal. Biochem. 224, 347-353) and DNA shuffling (Stemmer, 1994, Nature 370, 389-391). Again, this is very time consuming and costly.
- d) Instead of mutagenizing genes to optimize their function in a reaction cascade, genes from different origins which
 encode enzymes with appropriate properties could be combined to an operon. This needs a large database describing such enzymes.
- e) All genes are expressed from the same promoter but from replicons with different copy numbers. This can be the
 20 chromosome (single copy) or plasmids with low, moderate and high copy numbers. By constructing various compatible plasmids with different copy numbers and antibiotic markers carrying each the same cassette with the promoter and a polylinker sequence, genes of interest can be integrated into the plasmids in one step and the plasmids combined within one strain. This method allows a fast construction and testing of many combinations and with just one inducer in one fermentation all genes are expressed at different levels according to the plasmid copy number.
- 30 The following paragraphs show the transformation of Hydantoins to enantiomerically enriched amino acids.

Expression of the hyuA gene (seq. 11) is necessary for complete substrate conversion. Figure 1 shows the time

course of conversions with E.coli BW3110 containing pAW229 and pBW31. pAW 229 contains the carbamoylase gene on a pACYC plasmid, pBW31 is a pBR derivative and carries the hydantoinase gene. After consumption of 50% of the 5 substrate, the reaction almost stops completely, since spontanous racemisation of IMH is very slow (Syldatk et. al., "Biocatalytic production of amino acids and derivatives" (1992), Hanser publishers, New York, pp. 75-176). As can be seen from figure 2, bringing the racemase (seq. 11) into the system by using pBW31 and pBW32, the 10 pACYC plasmid with the carbamovlase and the racemase gene, enables complete conversion of the substrate. After 4.5 hours induction at 30°C 200 µl permeabized cells were prepared as described above and were incubated with 800 µl of 2 mM D, L-IMH.

The E. coli strain BW3110H with the chromosomally integrated hydantoinase gene was transformed with pBW32 (Figure 3), the pACYC plasmid containing the carbamoylase and the racemase gene, or with pBW34 (Figure 4), the pBR plasmid containing the carbamoylase and the racemase gene. Cells were induced at 25°C for 8.5 hours (pBW32), or for 11.5 hours (pBW34). Cell harvesting and permeabilization took place as described above.

Figure 5 shows E. coli BW3110 cells with pBW31 (the pBR plasmid which carries the hydantoinase gene) and pBW32 (the 25 pACYC plasmid with the carbamoylase and racemase genes). Cells were induced 10 hours at 30°C.

The combination of pBW31 and 32 enables fast and complete conversion from D-L-IMH to tryptophane. The intermediate is 30 formed up to a concentration of 0.4 mM.

E. coli BW3110 transformed with the plasmids pBW34 (the pBR plasmid with the carbamoylase and the racemase genes) and pBW35 (the pACYC plasmid with the hydantoinase gene) was taken for this conversion. Cells were induced for 10 hours at 30°C (Fig. 6). The combination of pBW34 and 35 shows an

35

15

15

25

accumulation of the intermediate up to over 1mM. The product formation takes place at a lower rate than seen in figure 5.

Plasmid pBW34 (the pBR plasmid with the carbamoylase and the racemase genes) was combined with pBW53 (the pSC101 plasmid with the hydantoinase gene). Induction took place for 10 hours at 30°C (Fig 7). In this case a fast conversion of IMH to tryptophane takes place. Formation of the intermediate is strongly reduced and product formation is faster than seen in figure 5, so that the combination of pBW34 and pBW53 is most favourable for the process.

The present invention shows a new and superior way to combine a hydantoinase, a hydantoin racemase and a carbamoylase in a whole cell catalysator. It is this possibilty that renders instant invention to a proper method for the production of enantiomerically enriched amino acids from hydantoins due to reduction of catalyst production costs.

Enantiomerically enriched means that one antipode of a chiral compound is the major component in a mixture of both antipodes.

Amino acid denotes within the framework of this invention all compounds comprising a primary amine function connected to a carboxylic acid group via one intermediate C-atom (α -C-atom). This α -C-atom bears only one further residue. Nevertheless all natural and unnatural amino acids are deemed to be encompassed. Preferred unnatural amino acids are those mentioned in DE 19903268.8.

Genes encoding for a peptide sequence are to be understood 30 as all genes possible with regard to the degeneration of the genetic code.

The microorganism DSM 3747 is disposited at Deutsche Sammlung für Mikroorganismen und Zellkulturen.

Examples:

Bacterial strains, plasmids and growth conditions: E. coli JM109 (Yanisch-Perron et al. Gene (1985), 33, 103-109) was used for cloning procedures involving the hyuC (seq. 7), hyuH (seq. 9) and hyuA (seq. 11) genes from Arthrobacter aurescens DSM 3747 (Groß et al., Biotech. Tech. (1987), 2, 85-90). E. coli BW3110 (Wilms et al, in preparation), a derivative of E. coli W3110 (Hill and Harnish, 1981 Proc. Natl. Acad. Sci USA 78, 7069-7072) was 10 used for coexpression for the genes mentioned above. E. coli strains were either grown in LB liquid medium or on LB-agar plates (Luria et al., 1960, Virology 12, 348-390), both supplemented with 100 μ g/ml ampicillin and / or 25µg/ml chloramphenicol to select plasmid carrying strains. 15 The cultures were grown at 37°C, for heterologous gene expression growth temperature was reduced to 30°C or 25°C.

General protocols:

All of the recombinant DNA techniques were standard methods (Sambrook et al., Molecular Cloning: A laboratory manual (1989), Cold Spring Habour Laboratory Press, New York). PCR reactions were performed either with Pwo Polymerase or the ExpandTM Long Template PCR System by following the recommendations of Roche Diagnostics.

Coexpression of hyuA, hyuC, and hyuH in E. coli:

For coexpression of the racemase gene hyuA, the carbamoylase gene hyuC, and the hydantoinase gene hyuH in E. coli, several constructions with different features were made. To obtain comparable expression levels of the genes, variations in the copy number of plasmids were used. High copy plasmids like pBR plasmids (Bolivar et al., 1977, Gene 22, 277-288) have a copy number of 40-50. PACYC184 plasmids (Chang and Cohen, 1978, J. Bacteriol.,1141-1156) have a copy number of 10-15. PSC101 plasmids (Cohen et al., 1973, Proc. Natl. Acad. Sci. USA, 70, 3240-3244) have a copy

number of 5-10. A copy number of 1 is achieved by inserting the gene into the E. coli chromosome.

The plasmid features are summarized in table1:

plasmid name	ori	copy number	resistance	hyu - genes
pAW229	pACYC	10-15	cam	hyuC
pBW31	pBR	40-50	amp	һуиН
pBW32	pACYC	10-15	cam	hyuC + hyuA
pBW34	pBR	40-50	amp	hyuC + hyuA
pBW35	pACYC	10-15	cam	hyuH
pBW53	pSC101	5-10	cam	hyuH

5

Abbreviations: hyu: hydantoin utilizing

hyuA: racemase gene (seq. 11)

hyuC: carbamoylase gene (seq. 7)

hyuH: hydantoinase gene (seq. 9)

amp: ampicillin resistance (ß-lactamase

gene)

cam: chloramphenicol resistance

(chloramphenicol acetyl transferase

gene)

The hydantoinase gene hyuH was also expressed using the strain BW3110H, which carries a chromosomal insertion of the hyuH gene.

All constructs enable transcriptional regulation of gene expression by the rhaBAD promoter.

For coexpression of the carbamoylase gene hyuC and the hydantoinase gene hyuH pAW229 and pBW31 are transformed into E. coli BW3110.

For coexpression of the racemase gene hyuA, the

carbamoylase gene hyuC and the hydantoinase gene hyuH,

pBW31 and pBW32, pBW34 and pBW35, or pBW34 and pBW53 are

suitable combinations in E. coli BW3110.

To achieve coexpression of all three Enzymes in E. coli

BW3110H, pBW32 or pBW34 can be used.

- 15 Construction of the plasmids:
 - pAW229 was obtained by cleaving pAW178 (Wilms et al., J. Biotechnol. (1999), 68, 101-113) with the restriction enzymes NdeI and BamHI and ligating the 1241bp fragment containing the hyuC gene into pJOE2962 (Altenbuchner,
- unpublished), which was cut with the same restriction enzymes.

pBW31 was constructed by cleaving pAW92 (Wiese et al., in preparation) with the restriction enzymes EcoRI and BamHI and ligating the 1436bp fragment containing the hyuH gene

into pBW22, which was cut with the same restriction enzymes.

pBW32 was obtained by PCR amplification of the hyuA gene using the primers S988 (5'-AGGCTGAAAATCTTCTCT-3') (seq. 6) and S2480 (5'-AAAAAAGCTTTTAAGAAGGAGATATACATA-3') (seq. 1)

- and pAW210 (Wiese et al., in preparation) as template.

 Included in primer S2480 is a shine dalgarno sequence for translation initiation. The fragment was inserted into the HindIII site of pAW229.
 - pBW34 was created by inserting the hyuA PCR fragment described above into the HindIII site of pBW24. pBW24 was

obtained by cleaving pAW178 (Wilms et al, J. Biotechnol. (1999), 68, 101-113) with NdeI and HindIII and ligating the 1261bp long fragment containing the hyuC gene into pBW22, which was cut with the same restriction enzymes. pBW22 was constructed by PCR amplifying of the "cer"-region from the colE1 plasmid using the primers S2248 (5 '-AAA GCA TGC ATG GCC CTT CGC TGG GAT-3') (seq. 2) and S2249 (5'-AAA GCA TGC ATG GCT ACG AGG GCA-3') (seq. 3). The 268bp fragment was cut with the restriction enzyme SphI and inserted in the vector pJOE2775 (Krebsfänger et al., 1998, Enzyme Microb. 10 Technol. 22, 219-224) which was cut with the same restriction enzyme. pBW35 was constructed by cleaving pBW31 with the restriction enzymes NdeI and BamHI. The 1379bp fragment containing hyuH was inserted into pAW229, which was cut 15 with the same restriction enzymes. pBW53 was obtained by cleaving pBW31 with the restriction enzymes SphI and BamHI. The 1534bp fragment containing the hyuH gene and the rhamnose promoter was inserted into pSB27 (Baumann, Dissertation, Universität Stuttgart, 1996), which 20 was cut with the same restriction enzymes.

Construction of the chromosomal integrate of hyuH into the rhamnose operon:

A 3.5kb fragment from the E. coli rhamnose operon was amplified using the primers S2517 (5´-AAACAAGATCTCGCGACTGG-25 3') (seq. 4) and S2518 (5'-AAAAAGATCTTTATCAGGCCTACAACTGTTG-3') (seq. 5) and E. coli chromosomal DNA as template. The fragment was cut with the restriction enzyme BglII and inserted into the vector pIC20H (Marsh et al., 1984, Gene 32, 481-485), which was cut with the restriction enzymes 30 BamHI and BglII, to get pBW39. PBW31 was cut with the restriction enzymes EcoRI and BamHI. The 1436bp fragment containing the hyuH gene was inserted into the vector pBW39, which was also cut with the same restriction enzymes, to get pBW40. A 2.9kb fragment was amplified using 35 the primers S2517 and S2518 and pBW40 as a template. This

fragment was cut with BglII and inserted into the vector pJOE2114 (Altenbuchner, unpublished) which was also cut with BglII to get pBW45. PBW45 was cut with BglII and SphI. The resulting 2.9kb rhaS-rhaP-hyuH-rhaA fragment was inserted into the gene replacement vector pKO3 (Link et al, 1997, J. Bacteriol., 179, 20, 6228-6237), which was cut with BamHI. The gene replacement was carried out according to the authors' instructions. Positiv insertion events were screened using MacConckey Rhamnose plates.

10 Preparation of cells and activity measurements: For induction of the rhaBAD promoter strains with two plasmids were grown in LB_{amp+cam}, strains with one plasmid in LB_{amp} or LB_{cam} respectively to $OD_{600} = 0.3-0.5$. Then Lrhamnose was added to a final concentration of 0.1 g 1-1 15 and the cultivation was continued to a final OD of approximately 5. If not indicated seperately, for small scale enzyme measurements cells corresponding to OD600 of 20 were harvested, washed in 1 ml 0.2 M Tris pH 7.0 and resuspended in 1 ml 0.2 M Tris pH 7.0, 1 mM MnCl₂. 10 μl 20 toluene was added for permeabilizing the cell membranes. After 30min of incubation at 37°C 200 µl of this cell suspension were added to 800 µl of 2 mM D, L-Indolylmethylhydantoin (IMH) in 0.1 M Tris pH 8.5, mixed and shaked at 37°C. This cell amount corresponds to 25 approximately 5-6 mg cell wet weight. Samples were taken regularly. The reaction was stopped by adding 14% trichloracetic acid. The time course of product and educt concentrations was determined using HPLC analysis. The HPLC-system was equipped with a RP-18 column as described 30 previously for the determination of hydantoin derivatives and N-carbamoyl amino acids (May et al., 1998, J. Biotechnol., 26, 61 (1): 1-13). UV-absorption was measured at 280 nm and the mobile phase (0.3% (v/v) phosphoric acid (80%) and methanol (20%; v/v)) was pumped with a flow rate 35 of 1.0 ml min^{-1} .

PCT		990160 AN
	Original (for SUE	BMISSION) - printed on 24.08.2000 02:51:38 PM
0-1	Form - PCT/RO/134 (EASY) Indications R lating to Deposited Microorganism(s) r Oth r Biological Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.91
		(updated 01.07.2000)
0-2	International Application No.	
0-3	Applicant's or agent's file reference	990160 AM
1	The indications made below relate to	
1	the deposited microorganism(s) or other biological material referred to in the description on:	
1-1	page	8
1-2	line	32
1-3	Identification of Deposit	•
1-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
	ļ	Mikroorganismen und Zellkulturen GmbH
1-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
		Braunschweig, Germany
1-3-3	Date of deposit	
1-3-4	Accession Number	DSMZ 3747
1-4	Additional Indications	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
	FOR	RECEIVING OFFICE USE ONLY
0-4	This form was received with the	
	international application:	3 L 08. 00
	(yes or no)	
0-4-1	Authorized officer	
		Mrs. T. Bröcker-Tezslaar

EOP IN	ITERNATIO	NAI F	RURFAU	USE	ONLY
FUR III	LICKINALIU		3011670		

0-5	This form was received by the international Bureau on:	
0-5-1	Authorized officer	

Claims:

5

- 1. Whole cell catalyst for the conversion of 5-monosubstituted hydantoins to L- or D-amino acids comprising cloned genes encoding for a hydantoinase, for a hydantoin racemase and a D- or L-specific carbamoylase.
- Catalyst according to claim 1, characterized in that a bacteria is used as cell.
- 10 3. Catalyst according to claim 1 and 2, characterized in that
 Escherichia coli is used as cell.
 - 4. Catalyst according to one or more of preceding claims, characterized in that
- the genes encoding for the hydantoinase, racemase and carbamoylase is taken from DSM 3747.
 - 5. Catalyst according to one or more of preceding claims, characterized in that the genes are overexpressed in the cell according to their turnover rates.
 - 6. Process for the production of a whole cell catalyst, characterized in that plasmids derived from pSC101, pACYC184 or pBR322 are used.
- Process according to claim 6, characterized in that plasmids pBW31 and pBW32, pBW34 and pBW35, pBW34 and pBW53, pBW32 or pBW34 are used.
- 8. Process according to claim 6, characterized in that an
 E. coli strain with a chromosomally insertion of the hydantoinase gene is used.

- 9. Process according to claim 6, characterized in that a rhamnose inducible E. coli promoter cassette is used.
- 5 10. Process according to claim 6, characterized in that primers S2480, S2248, S2249, S2517 or S2518 are used.
 - 11. Process for the production of enantiomerically enriched amino acids,
- 10 characterized in that a whole cell catalyst according to claim 1 is used.
- 12. Process according to claim 11, characterized in that the process is performed in an enzyme-membrane-reactor.
 - 13. Process for the production of whole cell catalysts characterized in that all genes are expressed from the same promotor but from plasmids with replicons with different copy numbers.
 - 14. Plasmids pBW31, pBW32, pBW34, pBW35, pBW53, AW229.
 - 15. Primers S2480, S2248, S2249, S2517, S2518.
 - 16. Microorganisms comprising plasmids according to claim 14.

AMENDED CLAIMS

[received by the International Bureau on 6 February 2001 (06.02.01); original claims 1-16 replaced by new claims 1-15 (2 pages)]

- 1. Whole cell catalyst for the conversion of 5monosubstituted hydantoins to L- or D-amino acids comprising cloned genes encoding for a hydantoinase, for a hydantoin racemase and a D- or L-specific carbamoylase, wherein the genes are overexpressed in the cell according to their turnover rates.
- Catalyst according to claim 1, characterized in that a bacteria is used as cell.
- 3. Catalyst according to claim 1 and 2, characterized in that Escherichia coli is used as cell.
- 4. Catalyst according to one or more of preceding claims, characterized in that the genes encoding for the hydantoinase, racemase and carbamoylase is taken from DSM 3747.
- 5. Process for the production of a whole cell catalyst according to claim 1, characterized in that plasmids derived from pSC101, pACYC184 or pBR322 are used.
- 6. Process according to claim 5, characterized in that plasmids pBW31 and pBW32, pBW34 and pBW35, pBW34 and pBW53, pBW32 or pBW34 are used.
- 7. Process according to claim 5, characterized in that an E. coli strain with a chromosomally insertion of the hydantoinase gene is used.
- 8. Process according to claim 5, characterized in that a rhamnose inducible E. coli promoter cassette is used.

WO 01/23582 PCT/EP00/08473 18

- Process according to claim 5. characterized in that primers S2480, S2248, S2249, S2517 or S2518 are used.
- 10. Process for the production of enantiomerically enriched amino acids, characterized in that a whole cell catalyst according to claim 1 is used.
- 11. Process according to claim 10, characterized in that the process is performed in an enzyme-membrane-reactor.
- 12. Process for the production of whole cell catalysts according to claim 1 characterized in that all genes are expressed from the same promotor but from plasmids with replicons with different copy numbers.
- 13. Plasmids pBW31, pBW32, pBW34, pBW35, pBW53, AW229.
- 14. Primers S2480, S2248, S2249, S2517, S2518.
- 15. Microorganisms comprising plasmids according to claim 13.

PCT/EP00/08473

1/10

Fig 1:

5

2.4 2.2 2.0 1.8 1.6 concentration [mM] 1.4 1.2 1.0 8.0 0.6 0.4 0.2 0.0 time (h) Trp IMH CaTrp sum

10

Fig. 2:

15

Fig. 3:

10

Fig. 4:

15

sum

WO 01/23582 PCT/EP00/08473

3110

Fig. 5:

5

10

Fig.6:

15

Fig. 7:

5

WO 01/23582 PCT/EP00/08473

5/10

Fig. 8:

6/10

Fig. 9:

PCT/EP00/08473

7110

Fig. 10:

9/10

Fig. 11:

PCT/EP00/08473

9110

Fig. 12:

10/10

Fig. 13:

Chromosomal insertion of hyuH

hyuH integrated into the chromosome (7239 bps)

SEQUENCE LISTING <110> Degussa-Huels Aktiengesellschaft 5 <120> Whole Cell Catalyst <130> 990160 AM 10 <140> <141> <160> 11 <170> PatentIn Ver. 2.1 <210> 1 <211> 30 <212> DNA 20 <213> Artificial Sequence <223> Description of Artificial Sequence:Primer <400> 1 25 30 aaaaaagctt ttaagaagga gatatacata <210> 2 30 <211> 27 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Primer 35 <400> 2 27 aaagcatgca tggcccttcg ctgggat 40 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence:Primer <400> 3 24 50 aaagcatgca tggctacgag ggca <210> 4 <211> 20 55 <212> DNA <213> Artificial Sequence

١

PNSDOCID <WO 0123582A1 1 >

	<220> <223> Description of Artificial Sequence:Primer	
5	<400> 4 aaacaagatc tcgcgactgg	20
10	<210> 5 <211> 31 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence:Primer <400> 5	
20	aaaaagatct ttatcaggcc tacaactgtt g <210> 6 <211> 1239 <212> DNA	31
25	<213> Arthrobacter aurescens <220> <221> CDS <222> (1)(1239)	
30	<pre><400> 6 atg acc ctg cag aaa gcg caa gcg gcg cgc att gag aaa gag atc cgg Met Thr Leu Gln Lys Ala Gln Ala Ala Arg Ile Glu Lys Glu Ile Arg 1 5 10 15</pre>	48
35	gag ctc tcc cgg ttc tcg gca gaa ggc ccc ggt gtt acc cgg ctg acc Glu Leu Ser Arg Phe Ser Ala Glu Gly Pro Gly Val Thr Arg Leu Thr 20 25 30	96
40	tac act cca gag cat gcc gcc gcg cgg gaa acg ctc att gcg gct atg Tyr Thr Pro Glu His Ala Ala Ala Arg Glu Thr Leu Ile Ala Ala Met 35 40 45	144
45	aaa gcg gcc gcc ttg agc gtt cgt gaa gac gca ctc gga aac atc atc Lys Ala Ala Ala Leu Ser Val Arg Glu Asp Ala Leu Gly Asn Ile Ile 50 55 60	192
43	ggc cga cgt gaa ggc act gat ccg gag ctt cct gcg atc gcg gtc ggt Gly Arg Arg Glu Gly Thr Asp Pro Glu Leu Pro Ala Ile Ala Val Gly 65 70 75 80	240
50	tca cac ttc gat tct gtc cga aac ggc ggg atg ttt gat ggc act gca Ser His Phe Asp Ser Val Arg Asn Gly Gly Met Phe Asp Gly Thr Ala 85 90 95	288
55	ggc gtg gtg tgc gcc ctt gag gct gcc cgg gtg atg ctg gag aac ggc Gly Val Val Cys Ala Leu Glu Ala Ala Arg Val Met Leu Glu Asn Gly 100 105 110	336
	tac gtg aat cgg cat cca ttt gag ttc atc gcg atc gtg gag gag gaa Tyr Val Asn Arg His Pro Phe Glu Phe Ile Ala Ile Val Glu Glu Glu	384

			115					120					125				
5	ggg	gcc Ala 130	cgc Arg	ttc Phe	agc Ser	agt Ser	ggc Gly 135	atg Met	ttg Leu	ggc Gly	ggc Gly	cgg Arg 140	gcc Ala	att Ile	gca Ala	ggg Gly	432
10	ttg Leu 145	gtc Val	gcc Ala	gac Asp	agg Arg	gaa Glu 150	ctg Leu	gac Asp	tct Ser	ttg Leu	gtt Val 155	gat Asp	gag Glu	gat Asp	gga Gly	gtg Val 160	480
10	tcc Ser	gtt Val	agg Arg	cag Gln	gcg Ala 165	gct Ala	act Thr	gcc Ala	ttc Phe	ggc Gly 170	ttg Leu	aag Lys	ccg Pro	ggc Gly	gaa Glu 175	ctg Leu	528
15	cag Gln	gct Ala -	gca Ala	gcc Ala 180	cgc Arg	tcc Ser	gcg Ala	gcg Ala	gac Asp 185	ctg Leu	cgt Arg	gct Ala	ttt Phe	atc Ile 190	gaa Glu	cta Leu	576
20	cac His	att Ile	gaa Glu 195	caa Gln	gga Gly	ccg Pro	atc Ile	ctc Leu 200	gag Glu	cag Gln	gag Glu	caa Gln	ata Ile 205	gag Glu	atc Ile	gga Gly	624
25	gtt Val	gta Val 210	acc Thr	tcc Ser	atc Ile	gtt Val	ggc Gly 215	gtt Val	cgc Arg	gca Ala	ttg Leu	cgg Arg 220	gtt Val	gcc Ala	gtc Val	aaa Lys	672
30	ggc Gly 225	aga Arg	agc Ser	gac Asp	cac His	gcc Ala 230	ggc Gly	aca Thr	acc Thr	ccc Pro	atg Met 235	cac His	ctg Leu	cgc Arg	cag Gln	gat Asp 240	720
	gcg Ala	ctg Leu	gta Val	ccc Pro	gcc Ala 245	gct Ala	ctc Leu	atg Met	gtg Val	agg Arg 250	gag Glu	gtc Val	aac Asn	cgg Arg	ttc Phe 255	gtc Val	768
35	aac Asn	gag Glu	atc Ile	gcc Ala 260	gat Asp	ggc Gly	aca Thr	gtg Val	gct Ala 265	acc Thr	gtt Val	ggc Gly	cac His	ctc Leu 270	aca Thr	gtg Val	816
40	gcc Ala	ccc Pro	ggt Gly 275	gga Gly	ggc Gly	aac Asn	cag Gln	gtc Val 280	ccg Pro	ggg ggg	gag Glu	gtg Val	gac Asp 285	ttc Phe	aca Thr	ctg Leu	864
45	gac Asp	ctg Leu 290	cgt Arg	tct Ser	ccg Pro	cat His	gag Glu 295	gag Glu	tcg Ser	ctc Leu	cgc Arg	gtg Val 300	ctg Leu	atc Ile	gac Asp	cgc Arg	912
50	atc Ile 305	tcg Ser	gtc Val	atg Met	gtc Val	ggc Gly 310	gag Glu	gtc Val	gcc Ala	tcc Ser	cag Gln 315	gcc Ala	ggt Gly	gtg Val	gct Ala	gcc Ala 320	960
	gat Asp	gtg Val	gat Asp	gaa Glu	ttt Phe 325	ttc Phe	aat Asn	ctc Leu	agc Ser	ccg Pro 330	gtg Val	cag Gln	ctg Leu	gct Ala	cct Pro 335	acc Thr	1008
55	atg Met	gtg Val	gac Asp	gcc Ala 340	gtt Val	cgc Arg	gaa Glu	gcg Ala	gcc Ala 345	tcg Ser	gcc Ala	ttg Leu	Gln	ttc Phe 350	aca Thr	cac His	1056
	cgg	gat	atc	agc	agt	ggg	gcg	ggc	cac	gac	tcg	atg	ttc	atc	gcc	cag	1104

Ч

	Arg	Asp	Ile 355	Ser	Ser	Gly	Ala	Gly 360		Asp	Ser	Met	Phe 365		e Ala	Gln	
5	gtc Val	acg Thr 370	Asp	gtc Val	gga Gly	atg Met	gtt Val 375	Phe	gtt Val	cca Pro	ago Ser	cgt Arg 380	Ala	ggc Gly	cgg Arg	g agc g Ser	1152
10	cac His 385	Val	ccc Pro	gaa Glu	gaa Glu	tgg Trp 390	acc Thr	gat Asp	ttc Phe	gat Asp	gac Asp 395	Leu	cgc	aaa Lys	gga Gly	act Thr 400	1200
15	gag Glu	gtt Val	gtc Val	ctc Leu	cgg Arg 405	gta Val	atg Met	aag Lys	gca Ala	ctt Leu 410	Asp	cgg Arg	taa				1239
20	<21 <21	0> 7 1> 4: 2> -Pi 3> A:	RT	obac	ter a	aures	scen	s	-							- ·	
	<40	0> 7															
25	Met 1	Thr	Leu	Gln	Lys 5	Ala	Gln	Ala	Ala	Arg 10	Ile	Glu	Lys	Glu	Ile 15		
23	Glu	Leu	Ser	Arg 20	Phe	Ser	Ala	Glu	Gly 25	Pro	Gly	Val	Thr	Arg 30	Leu	Thr	
30	Tyr	Thr	Pro 35	Glu	His	Ala	Ala	Ala 40	Arg	Glu	Thr	Leu	Ile 45	Ala	Ala	Met	
	Lys	Ala 50	Ala	Ala	Leu	Ser	Val 55	Arg	Glu	Asp	Ala	Leu 60	Gly	Asn	Ile	Ile	
35	Gly 65	Arg	Arg	Glu	Gly	Thr 70	Asp	Pro	Glu	Leu	Pro 75	Ala	Ile	Ala	Val	Gly 80	
40	Ser	His	Phe	Asp	Ser 85	Val	Arg	Asn	Gly	Gly 90	Met	Phe	Asp	Gly	Thr 95	Ala	
40	Gly	Val	Val	Cys 100	Ala	Leu	Glu	Ala	Ala 105	Arg	Val	Met	Leu	Glu 110	Asn	Gly	
45	Tyr	Val	Asn 115	Arg	His	Pro	Phe	Glu 120	Phe	Ile	Ala	Ile	Val 125	Glu	Glu	Glu	
	Gly	Ala 130	Arg	Phe	Ser	Ser	Gly 135	Met	Leu	Gly	Gly	Arg 140	Ala	Ile	Ala	Gly	
50	Leu 145	Val	Ala	Asp	Arg	Glu 150	Leu	Asp	Ser	Leu	Val 155	Asp	Glu	Asp	Gly	Val 160	
. .	Ser	Val	Arg	Gln	Ala 165	Ala	Thr	Ala	Phe	Gly 170	Leu	Lys	Pro	Gly	Glu 175	Leu	
55	Gln	Ala	Ala	Ala 180	Arg	Ser	Ala	Ala	Asp 185	Leu	Arg	Ala	Phe	Ile 190	Glu	Leu	
	His	Ile	Glu	Gln	Glv	Pro	Ile	Len	Glu	Gln	Glu	Gla	Tle	G) v	Tla	Gly	

			195					200					205				
5	Val	Val 210	Thr	Ser	Ile	Val	Gly 215	Val	Arg	Ala	Leu	Arg 220	Val	Ala	Val	Lys	
J	Gly 225	Arg	Ser	Asp	His	Ala 230	Gly	Thr	Thr	Pro	Met 235	His	Leu	Arg	Gln	Asp 240	
10	Ala	Leu	Val	Pro	Ala 245	Ala	Leu	Met	Val	Arg 250		Val	Asn	Arg	Phe 255		
	Asn	Glu	Ile	Ala 260	Asp	Gly	Thr	Val	Ala 265	Thr	Val	Gly	His	Leu 270		Val	
15	Ala	Pro	Gly 275	Gly	Gly	Asn	Gln	Val 280	Pro	Gly	Glu	Val	Asp 285	Phe	Thr	Leu	
20	Asp	Leu 290	Arg	Ser	Pro	His	Glu 295	Glu	Ser	Leu	Arg	Val 300	Leu	Ile	Asp	Arg	
20	Ile 305	Ser	Val	Met	Val	Gly 310	Glu	Val	Ala	Ser	Gln 315	Ala	Gly	Val	Ala	Ala 320	
25	Asp	Val	Asp	Glu	Phe 325	Phe	Asn	Leu	Ser	Pro 330	Val	Gln	Leu	Ala	Pro 335	Thr	
	Met	Val	Asp	Ala 340	Val	Arg	Glu	Ala	Ala 345	Ser	Ala	Leu	Gln	Phe 350	Thr	His	
30	Arg	Asp	Ile 355	Ser	Ser	Gly	Ala	360	His	Asp	Ser	Met	Phe 365	Ile	Ala	Gln	
35	Val	Thr 370	Asp	Val	Gly	Met	Val 375	Phe	Val	Pro	Ser	Arg 380	Ala	Gly	Arg	Ser	
	His 385	Val	Pro	Glu	Glu	Trp 390	Thr	Asp	Phe	Asp	Asp 395	Leu	Arg	Lys	Gly	Thr 400	
40	Glu	Val	Val	Leu	Arg 405	Val	Met	Lys	Ala	Leu 410	Asp	Arg	•				
45	<211 <212)> 8 .> 13 !> DN !> Ar	77 IA	bact	er a	ures	cens	3									
50		> CD		(1377	')												
55	_	ttt	_	_		_	aag Lys		_	_				_	_		48
							ctg Leu										96

	Ser Ala Asp Thr Arg Asp Val Glu Ala Ser Arg Thr Ile Asp Ala Gly 35 40 45
	ggc aag ttc gtg atg ccg ggc gtg gtc gat gaa cat gtg cat atc atc 192 Gly Lys Phe Val Met Pro Gly Val Val Asp Glu His Val His Ile Ile 50 55 60
•	10 gac atg gat ctc aag aac cgg tat ggc cgc ttc gaa ctc gat tcc gag 240 Asp Met Asp Leu Lys Asn Arg Tyr Gly Arg Phe Glu Leu Asp Ser Glu 65 70 75 80
1	tot gcg gcc gtg gga ggc atc acc acc atc atc gag atg ccg atc acc 288 Ser Ala Ala Val Gly Gly Ile Thr Thr Ile Ile Glu Met Pro Ile Thr 90 95
2	100 105 Lys Lys Gln
25	123
	ccg gga aac ctg ccc gag atc cgc aaa atg cac gac gcc ggc gct gtg 432 Pro Gly Asn Leu Pro Glu Ile Arg Lys Met His Asp Ala Gly Ala Val 130 135 140
30	Gly Phe Lys Ser Met Met Ala Ala Ser Val Pro Gly Met Phe Asp Ala 150 150
35	gtc agc gac ggc gaa ctg ttc gaa atc ttc caa gag atc gca gcc tgt 528 Val Ser Asp Gly Glu Leu Phe Glu Ile Phe Gln Glu Ile Ala Ala Cys 175
40	ggt tca gtc atc gtg gtt cat gcc gag aat gaa acg atc att caa gcg 576 Gly Ser Val Ile Val Val His Ala Glu Asn Glu Thr Ile Ile Gln Ala 180 185 190
45	ctc cag aag cag atc aag gcc gct ggc ggc aag gac atg gcc gcc tac 624 Leu Gln Lys Gln Ile Lys Ala Ala Gly Gly Lys Asp Met Ala Ala Tyr 200 205
	gag gca tcc caa cca gtt ttc cag gag aac gag gcc att cag cgt gcg 672 Glu Ala Ser Gln Pro Val Phe Gln Glu Asn Glu Ala Ile Gln Arg Ala 210 215 220
50	Leu Leu Leu Gln Lys Glu Ala Gly Cys Arg Leu Ile Val Leu His Val 230 235
55	agc aac cct gac ggc gtc gag tta ata cat cag gcg caa tcc gag ggt 768 Ser Asn Pro Asp Gly Val Glu Leu Ile His Gln Ala Gln Ser Glu Gly
	cag gac gtc cac tgc gag tcg ggt ccg cag tat ctg aat atc acc acg 816 Gln Asp Val His Cys Glu Ser Gly Pro Gln Tyr Leu Asn Ile Thr Thr

				260					265					270			
5	gac Asp	gac Asp	gcc Ala 275	gaa Glu	cga Arg	atc Ile	gga Gly	ccg Pro 280	tat Tyr	atg Met	aag Lys	gtc Val	gcg Ala 285	ccg Pro	ccc Pro	gtc Val	864
10	cgc Arg	tca Ser 290	gcc Ala	gaa Glu	atg Met	aac Asn	gtc Val 295	agg Arg	tta Leu	tgg Trp	gaa Glu	caa Gln 300	ctc Leu	gag Glu	aac Asn	ggt Gly	912
10	gtc Val 305	atc Ile	gac Asp	acc Thr	ctt Leu	gga Gly 310	tca Ser	gat Asp	cat His	ggc Gly	gga Gly 315	cat His	cct Pro	gtc Val	gag Glu	gac Asp 320	960
15	aaa Lys	gaa Glu	ccc Pro	ggc Gly	tgg Trp 325	aag Lys	gac Asp	gtg Val	tgg Trp	aaa Lys 330	gcc Ala	ggc Gly	aac Asn	ggt Gly	gcg Ala 335	ctg Leu	1008
20	ggc Gly	ctt Leu	gag Glu	aca Thr 340	tcc Ser	ctg Leu	cct Pro	atg Met	atg Met 345	ctg Leu	acc Thr	aac Asn	gga Gly	gtg Val 350	aac Asn	aag Lys	1056
25	ggc Gly	agg Arg	cta Leu 355	tcc Ser	ttg Leu	gaa Glu	cgc Arg	ctc Leu 360	gtc Val	gag Glu	gtg Val	atg Met	tgc Cys 365	gag Glu	aaa Lys	cct Pro	1104
20	gcg Ala	aag Lys 370	ctt Leu	ttt Phe	ggt Gly	atc Ile	tat Tyr 375	ccg Pro	cag Gln	aag Lys	ggc Gly	acg Thr 380	cta Leu	cag Gln	gtt Val	ggt Gly	1152
30	tcc Ser 385	gac Asp	gcc Ala	gat Asp	cta Leu	ctc Leu 390	atc Ile	ctc Leu	gat Asp	ctg Leu	gac Asp 395	att Ile	gac Asp	acc Thr	aaa Lys	gtg Val 400	1200
35	gat Asp	gcg Ala	tcg Ser	cag Gln	ttc Phe 405	cga Arg	tcc Ser	ctg Leu	cat His	aag Lys 410	tac Tyr	agc Ser	ccg Pro	ttc Phe	gac Asp 415	G]Å aaa	1248
40	atg Met	ccc Pro	gtc Val	acg Thr 420	ggt	gca Ala	ccg Pro	gtt Val	ctg Leu 425	acg Thr	atg Met	gtg Val	cgc Arg	gga Gly 430	acg Thr	gtg Val	1296
45	gtg Val	gcc Ala	gag Glu 435	Gln	gga Gly	gaa Glu	gtt Val	ctg Leu 440	Val	gag Glu	cag Gln	gga Gly	ttc Phe 445	ggc Gly	cag Gln	ttc Phe	1344
50	gtc Val	acc Thr 450	Arg	cac His	cac His	tac Tyr	gag Glu 455	Ala	tcg Ser	aag Lys	tga						1377
30	<21	0> 9 1> 4 2> P	59														
55		3> A		obac	ter	aure	scen	ıs									
	<40 Met 1		Asp	Val	. Ile		. Lys	. Asn	Cys	Arg		Val	Ser	Ser	Asp 15	Gly	

	Ile	Thr	Glu	20	Asp	Ile	Leu	Val	Lys 25	Asp	Gly	Lys	vai	30	Ата	116
5	Ser	Ala	Asp 35	Thr	Arg	Asp	Val	Glu 40	Ala	Ser,	Arg	Thr	Ile 45	Asp	Ala	Gly
10	Gly	Lys 50	Phe	Val	Met	Pro	Gly 55	Val	Val	Asp	Glu	His 60	Val	His	Ile	Ile
	Asp 65	Met	Asp	Leu	Lys	Asn 70	Arg	Tyr	Gly	Arg	Phe 75	Glu	Leu	Asp	Ser	Glu 80
15	Ser	Ala	Ala	Val	Gly 85	Gly	Ile	Thr	Thr	Ile 90	Ile	Glu	Met	Pro	Ile 95	Thr
	Phe	Pro	Pro	Thr 100	Thr	Thr	Leu	Asp	Ala 105	Phe	Leu	Glu	Lys	Lys 110	Lys	Gln
20	Ala	Gly	Gln 115	Arg	Leu	Lys	Val	Asp 120	Phe	Ala	Leu	Tyr	Gly 125	Gly	Gly	Val
25	Pro	Gly 130	Asn	Leu	Pro	Glu	Ile 135	Arg	Lys	Met	His	Asp 140	Ala	Gly	Ala	Val
	Gly 145	Phe	Lys	Ser	Met	Met 150	Ala	Ala	Ser	Val	Pro 155	Gly	Met	Phe	Asp	Ala 160
3 0	Val	Ser	Asp	Gly	Glu 165	Leu	Phe	Glu	Ile	Phe 170	Gln	Glu	Ile	Ala	Ala 175	Cys
	Gly	Ser	Val	Ile 180	Val	Val	His	Ala	Glu 185	Asn	Glu	Thr	Ile	Ile 190	Gln	Ala
35	Leu	Gln	Lys 195	Gln	Ile	Lys	Ala	Ala 200	Gly	Gly	Lys	Ásp	Met 205	Ala	Ala	Tyr
40	Glu	Ala 210	Ser	Gln	Pro	Val	Phe 215	Gln	Glu	Asn	Glu	Ala 220	Ile	Gln	Arg	Ala
•	Leu 225	Leu	Leu	Gln	Lys	Glu 230	Ala	Gly	Cys	Arg	Leu 235	Ile	Val	Leu	His	Val 240
45	Ser	Asn	Pro	Asp	Gly 245	Val	Glu	Leu	Ile	His 250	Gln	Ala	Gln	Ser	Glu 255	Gly
	Gln	Asp	Val	His 260	Cys	Glu	Ser	Gly	Pro 265	Gln	Tyr	Leu	Asn	11e 270	Thr	Thr
50	Asp	Asp	Ala 275	Glu	Arg	Ile	Gly	Pro 280	Tyr	Met	Lys	Val	Ala 285	Pro	Pro	Val
55	Arg	Ser 290	Ala	Glu	Met	Asn	Val 295	Arg	Leu	Trp	Glu	Gln 300	Leu	Glu	Asn	Gly
<i>-</i>	Val 305	Ile	Asp	Thr	Leu	Gly 310	Ser	Asp	His	Gly	Gly 315	His	Pro	Val	Glu	Asp 320
	Tuc	Cl.:	Dro	Clv	Tro-	Lve) co	Un I	Trn.	Lvc	λla	Gly	Acn	Glv	Δla	Len

										\mathcal{L}							
					325					330					335		
	Gly	Leu	Glu	Thr 340	Ser	Leu	Pro	Met	Met 345	Leu	Thr	Asn	Gly	Val 350	Asn	Lys	
5	Gly	Arg	Leu 355	Ser	Leu	Glu	Arg	Leu 360	Val	Glu	Val	Met	Cys 365	Glu	Lys	Pro	
10	Ala	Lys 370	Leu	Phe	Gly	Ile	Tyr 375	Pro	Gln	Lys	Gly	Thr 380	Leu	Gln	Val	Gly	
	Ser 385	Asp	Ala	Asp	Leu	Leu 390	Ile	Leu	Asp	Leu	Asp 395	Ile	Asp	Thr	Lys	Val 400	
15	Asp	Ala	Ser	Gln	Phe 405	Arg	Ser	Leu	His	Lys 410	Tyr	Ser	Pro	Phe	Asp 415	Gly	
	Met	Pro	Val	Thr 420	Gly	Ala	Pro	Val	Leu 425	Thr	Met	Val	Arg	Gly 430	Thr	Val-	-
20	Val	Ala	Glu 435	Gln	Gly	Glu	Val	Leu 440	Val	Glu	Gln	Gly	Phe 445	Gly	Gln	Phe	
25	Val	Thr 450	Arg	His	His	Tyr	Glu 455	Ala	Ser	Lys							
30	<213	0> 10 l> 7: 2> DI 3> A:	11 NA	obac	ter a	aure	scen	s									
35		1> C		(711)												
40	ato	Arg	atc	ctc Leu	gtg Val 5	atc Ile	aac Asn	ccc Pro	aac Asn	agt Ser 10	tcc Ser	agc Ser	gcc Ala	ctt Leu	act Thr 15	gaa Glu	48
	tcg Ser	gtt Val	gcg Ala	gac Asp 20	Ala	gca Ala	caa Gln	caa Gln	gtt Val 25	gtc Val	gcg Ala	acc Thr	ggc	acc Thr 30	TTE	att Ile	96
45	tct Ser	gcc Ala	atc Ile 35	Asn	ccc	tcc Ser	aga Arg	gga Gly 40	Pro	gcc Ala	gtc Val	att Ile	gaa Glu 45	ggc Gly	agc Ser	ttt Phe	144
50	gac Asp	gaa Glu 50	Ala	ctg Leu	gcc Ala	acg Thr	tto Phe	cat His	ctc Leu	att Ile	gaa Glu	gag Glu 60	Val	gag Glu	cgc Arg	gct Ala	192
55	gag Glu 65	Arg	gaa Glu	aac Asn	ccg Pro	ccc Pro	Asp	gcc Ala	tac Tyr	gtc Val	ato Ile	: Ala	tgt Cys	ttc Phe	: Gly	gat Asp 80	240
	ccg Pro	gga Glv	ctt Lev	gac Ast	gcg Ala	gto Val	aag Lys	g gag s Glu	ctg Lev	act Thr	gac Asp	agg Arg	cca Pro	gtg Val	gta Val	gga Gly	288

					85					90)				99	5	
5	gtt Val	gcc Ala	gaa Glu	gct Ala 100	gca Ala	atc Ile	cac His	atg Met	tct Ser 105	Ser	ttc Phe	gtc Val	gcg Ala	gcc Ala 110	Thr	ttc Phe	336
10	tcc Ser	att Ile	gtc Val 115	agc Ser	atc Ile	ctc Leu	ccg Pro	agg Arg 120	gtc Val	agg Arg	aaa Lys	cat His	ctg Leu 125	His	gaa Glu	ctg Leu	384
	gta Val	cgg Arg 130	caa Gln	gcg Ala	ggg	gcg Ala	acg Thr 135	aat Asn	cgc Arg	ctc Leu	gcc Ala	tcc Ser 140	atc Ile	aag Lys	cto Leu	cca Pro	432
15	aat Asn 145	ctg Leu	Gly ggg	gtg Val	atg Met	gcc Ala 150	ttc Phe	cat His	gag Glu	gac Asp	gaa Glu 155	cat His	gcc Ala	gca Ala	ctg Leu	gag Glu 160	480
20	acg Thr	ctc Leu	aaa Lys	caa Gln	gcc Ala 165	gcc Ala	aag Lys	gag Glu	gcg Ala	gtc Val 170	cag Gln	gag Glu	gac Asp	ggc Gly	gcc Ala 175	gāg Glu	528
25	tcg Ser	ata Ile	gtg Val	ctc Leu 180	gga Gly	tgc Cys	gcc Ala	ggc Gly	atg Met 185	gtg Val	ggg Gly	ttt Phe	gcg Ala	cgt Arg 190	caa Gln	ctg Leu	576
30	agc Ser	gac Asp	gaa Glu 195	ctc Leu	ggc Gly	gtc Val	cct Pro	gtc Val 200	atc Ile	gac Asp	ccc Pro	gtc Val	gag Glu 205	gca Ala	gct Ala	tgc Cys	624
	cgc Arg	gtg Val 210	gcc Ala	gag Glu	agt Ser	ttg Leu	gtc Val 215	gct Ala	ctg Leu	ggc Gly	tac Tyr	cag Gln 220	acc Thr	agc Ser	aaa Lys	gcg Ala	67 2
35	aac Asn 225	tcg Ser	tat Tyr	caa Gln	aaa Lys	ccg Pro 230	aca Thr	gag Glu	aag Lys	cag Gln	tac Tyr 235	ctc Leu	tag				711
40	<211 <212)> 11 l> 23 ?> PF B> Ar	17 RT	bact	er a	ures	cens	i.									
45)> 11 Arg		Leu	Val 5	Ile	Asn	Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu	
50	Ser	Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile	
	Ser	Ala	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe	
5,5	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala	
	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala		Phe	Gly	Asp 80	

	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly	
5	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser,	Phe	Val	Ala	Ala 110	Thr	Phe	
1.0	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu	
10	Val	Arg 130	Gln	Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	
15	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
	Thr	Leu -	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu .	
20	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu	
25	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys	
23	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala	
30	Asn 225	Ser	Tyr	Gln	Lys	Pro 230	Thr	Glu	Lys	Gln	Tyr 235	Leu					
		33!	5														
35	atg Met	gtg Val	gac Asp	gcc Ala 340	gtt Val	cgc Arg	gaa Glu	gcg Ala	gcc Ala 345	tcg Ser	gcc Ala	ttg Leu	cag Gln	ttc Phe 350	aca Thr	cac His	1056
40	cgg Arg	gat Asp	atc Ile 355	agc Ser	agt Ser	Gly ggg	gcg Ala	ggc Gly 360	cac His	gac Asp	tcg Ser	atg Met	ttc Phe 365	atc Ile	gcc Ala	cag Gln	1104
45	gtc Val	acg Thr 370	gac Asp	gtc Val	gga Gly	atg Met	gtt Val 375	ttc Phe	gtt Val	cca Pro	agc Ser	cgt Arg 380	gct Ala	ggc Gly	cgg Arg	agc Ser	1152
50	cac His 385	gtt Val	ccc Pro	gaa Glu	gaa Glu	tgg Trp 390	acc Thr	gat Asp	ttc Phe	gat Asp	gac Asp 395	ctt Leu	cgc Arg	aaa Lys	gga Gly	act Thr 400	1200
55	gag Glu	gtt Val	gtc Val	ctc Leu	cgg Arg 405	gta Val	atg Met	aag Lys	gca Ala	ctt Leu 410	gac Asp	cgg Arg	taa				1239
	<21	0> 7 1> 4 2> P	13									• .	÷.				

<213> Arthrobacter aurescens

	<400															
5	Met 1	Thr	Leu	Gln	Lys 5	Ala	Gln	Ala	Ala	Arg 19	Ile	Glu	Lys	Glu	Ile 15	Arg
	Glu	Leu	Ser	Arg 20	Phe	Ser	Ala	Glu	Gly 25	Pro	Gly	Val	Thr	Arg 30	Leu	Thr
10	Tyr	Thr	Pro 35	Glu	His	Ala	Ala	Ala 40	Arg	Glu	Thr	Leu	Ile 45	Ala	Ala	Met
15	Lys	Ala 50	Ala	Ala	Leu	Ser	Val 55	Arg	Glu	Asp	Ala	Leu 60	Gly	Asn	Ile	Ile
	Gly 65	Arg	Arg	Glu	Gly	Thr 70	Asp	Pro	Glu	Leu	Pro 75	Ala	Ile	Ala	Val	Gly 80
20	Ser	His	Phe	Asp	Ser 85	Val	Arg	Asn	Gly	Gly 90	Met	Phe	Asp	Gly	Thr 95	Ała
	Gly	Val	Val	Cys 100	Ala	Leu	Glu	Ala	Ala 105	Arg	Val	Met	Leu	Glu 110	Asn	Gly
25	Tyr	Val	Asn 115	Arg	His	Pro	Phe	Glu 120	Phe	Ile	Ala	Ile	Val 125	Glu	Glu	Glu
30	Gly	Ala 130	Arg	Phe	Ser	Ser	Gly 135	Met	Leu	Gly	Gly	Arg 140	Ala	Ile	Ala	Gly
	Leu 145	Val	Ala	Asp	Arg	Glu 150	Leu	Asp	Ser	Leu	Val 155	Asp	Glu	Asp	Gly	V al 160
35	Ser	Val	Arg	Gln	Ala 165	Ala	Thr	Ala	Phe	Gly 170	Leu	Lys	Pro	Gly	Glu 175	Leu
	Gln	Ala	Ala	Ala 180	Arg	Ser	Ala	Ala	Asp 185	Leu	Arg	Ala	Phe	Ile 190	Glu	Leu
40	His	Ile	Glu 195	Gln	Gly	Pro	Ile	Leu 200	Glu	Gln	Glu	Gln	Ile 205	Glu	Ile	Gly
45	Val	Val 210	Thr	Ser	Ile	Val	Gly 215	Val	Arg	Ala	Leu	Arg 220	Val	Ala	Val	Lys
	Gly 225	Arg	Ser	Asp	His	Ala 230	Gly	Thr	Thr	Pro	Met 235	His	Leu	Arg	Gln	Asp 240
50	Ala	Leu	Val	Pro	Ala 245	Ala	Leu	Met	Val	Arg 250	Glu	Val	Asn	Arg	Phe 255	Val
	Asn	Glu	Ile	Ala 260	Asp	Gly	Thr	Val	Ala 265	Thr	Val	Gly	His	Leu 270	Thr	Val
55	Ala	Pro	Gly 275	Gly	Gly	Asn	Gln	Val 280	Pro	Gly	Glu	Val	Asp 285	Phe	Thr	Leu
	Asp	Leu 290	Arg	Ser	Pro	His	Glu 295	Glu	Ser	Leu	Arg	Val 300	Leu	Ile	Asp	Arg

	11e 305	Ser	Val	Met	Vai	310	Glu	Val	Ala	Ser	315	Ala	GIY	Vai	AIA	320	
5	Asp	Val	Asp	Glu	Phe 325	Phe	Asn	Leu	Ser	Pro, 330	Val	Gln	Leu	Ala	Pro 335	Thr	
10	Met	Val	Asp	Ala 340	Val	Arg	Glu	Ala	Ala 345	Ser	Ala	Leu	Gln	Phe 350	Thr	His	
LU	Arg	Asp	Ile 355	Ser	Ser	Gly	Ala	Gly 360	His	Asp	Ser	Met	Phe 365	Ile	Ala	Gln	
15	Val	Thr 370	Asp	Val	Gly	Met	Val 375	Phe	Val	Pro	Ser	Arg 380	Ala	Gly	Arg	Ser	
	His 385	Val -	Pro	Glu	Glu	Trp 390	Thr	Asp	Phe	Asp	Asp 395	Leu	Arg	Lys	Gly	Thr 40 0	
20	Glu	Val	Val	Leu	Arg 405	Val	Met	Lys	Ala	Leu 410	Asp	Arg					
25	<212	l> 13 2> Di		obact	ter a	aure:	scens	S									
30		1> C1	DS 1)	(137	7)												
35	ato	0> 8 ttt Phe	gac Asp	gta Val	ata Ile 5	gtt Val	aag Lys	aac Asn	tgc Cys	cgt Arg 10	atg Met	gtg Val	tcc Ser	agc Ser	gac Asp 15	gga Gly	48
40	atc Ile	acc Thr	gag Glu	gca Ala 20	Asp	att Ile	ctg Leu	gtg Val	aaa Lys 25	gac Asp	ggc Gly	aaa Lys	gtc Val	gcc Ala 30	gca Ala	atc Ile	96
45	agc Ser	gcg Ala	gac Asp 35	Thr	cgt Arg	gat Asp	gtc Val	gag Glu 40	gcc Ala	agc Ser	cga Arg	acc Thr	att Ile 45	gac Asp	gcg Ala	ggt Gly	144
40	ggc	aag Lys 50	Phe	gtg Val	atg Met	ccg Pro	ggc Gly 55	Val	gtc Val	gat Asp	gaa Glu	cat His 60	gtg Val	cat His	atc Ile	atc Ile	192
50	gac Asp 65	Met	gat Asp	ctc Leu	aag Lys	aac Asn 70	Arg	tat Tyr	Gly	cgc Arg	ttc Phe 75	Glu	ctc Leu	gat Asp	tcc Ser	gag Glu 80	240
55	tct Ser	gcg Ala	gcc Ala	gtg Val	gga Gly 85	Gly	ato Ile	acc Thr	acc Thr	atc Ile 90	Ile	gag Glu	atg Met	ccg Pro	atc Ile 95	acc Thr	288
	ttc Phe	cca Pro	ccc Pro	acc Thr	acc Thr	act	ctg Leu	gac Asp	gcc Ala	ttc Phe	ctt Leu	gaa Glu	aag Lys	aag Lys	aag Lys	cag Gln	336

				100	,				105	•				110)		
5	gcg Ala	éja aaa	Cag Gln 115	Arg	ttg Leu	aaa Lys	gtt Val	gac Asp 120	Phe	gcg Ala	r cto Lev	tat Tyr	gga Gly 125	Gl _y	gga Gly	a gtg 7 Val	384
10	ccg Pro	gga Gly 130	Asn	ctg Leu	ccc Pro	gag Glu	ato Ile 135	Arg	aaa Lys	atg Met	cac His	gac Asp 140	Ala	ggo Gly	gct Ala	gtg Val	432
	ggc Gly 145	Phe	aag Lys	tca Ser	atg Met	atg Met 150	Ala	gcc Ala	tca Ser	gtg Val	Pro	Gly	atg Met	ttc Phe	gac Asp	gcc Ala 160	480
15	gtc Val	agc Ser	gac Asp	ggc Gly	gaa Glu 165	Leu	ttc Phe	gaa Glu	atc Ile	ttc Phe 170	Gln	gag Glu	atc Ile	gca Ala	gcc Ala 175	tgt Cys	528
20	ggt Gly	tca Ser	gtc Val	atc Ile 180	gtg Val	gtt Val	cat His	gcc Ala	gag Glu 185	aat Asn	gaa Glu	acg Thr	atc Ile	att Ile 190	Gln	gcg Ala	576
25	ctc Leu	cag Gln	aag Lys 195	cag Gln	atc Ile	aag Lys	gcc Ala	gct Ala 200	ggc	ggc Gly	aag Lys	gac Asp	atg Met 205	gcc Ala	gcc Ala	tac Tyr	624
30	gag Glu	gca Ala 210	tcc Ser	caa Gln	cca Pro	gtt Val	ttc Phe 215	cag Gln	gag Glu	aac Asn	gag Glu	gcc Ala 220	att Ile	cag Gln	cgt Arg	gcg Ala	672
	ttg Leu 225	ctt Leu	ctg Leu	cag Gln	aaa Lys	gaa Glu 230	gcc Ala	ggc	tgt Cys	cga Arg	ctg Leu 235	atc Ile	gtg Val	ctt Leu	cac His	gtg Val 240	720
35	agc Ser	aac Asn	cct Pro	gac Asp	ggc Gly 245	gtc Val	gag Glu	tta Leu	ata Ile	cat His 250	cag Gln	gcg Ala	caa Gln	tcc Ser	gag Glu 255	ggt Gly	768
40	cag Gln	gac Asp	gtc Val	cac His 260	tgc Cys	gag Glu	tcg Ser	ggt Gly	ccg Pro 265	cag Gln	tat Tyr	ctg Leu	aat Asn	atc Ile 270	acc Thr	acg Thr	816
45	gac Asp	gac Asp	gcc Ala 275	gaa Glu	cga Arg	atc Ile	gga Gly	ccg Pro 280	tat Tyr	atg Met	aag Lys	gtc Val	gcg Ala 285	ccg Pro	ccc Pro	gtc Val	864
50	cgc Arg	tca Ser 290	gcc Ala	gaa Glu	atg Met	aac Asn	gtc Val 295	agg Arg	tta Leu	tgg Trp	gaa Glu	caa Gln 300	ctc Leu	gag Glu	aac Asn	ggt Gly	912
	gtc Val 305	atc Ile	gac Asp	acc Thr	ctt Leu	gga Gly 310	tca Ser	gat Asp	cat His	ggc Gly	gga Gly 315	cat His	cct Pro	gtc Val	gag Glu	gac Asp 320	960
55	aaa Lys	gaa Glu	ccc Pro	ggc Gly	tgg Trp 325	aag Lys	gac Asp	gtg Val	Trp	aaa Lys 330	gcc Ala	ggc Gly	aac Asn	ggt Gly	gcg Ala 335	ctg Leu	1008
	ggc	ctt	gag	aca	tcc	ctg	cct	atg	atg	ctg	acc	aac	gga	gtg	aac	aag	1056

	Gly	Leu	Glu	Thr 340	Ser	Leu	Pro	Met	Met 345	Leu	Thr	Asn	Gly	Val 350	Asn	Lys	
5					ttg Leu												1104
10					ggt Gly												1152
15					cta Leu												1200
13					ttc Phe 405												1248
20					ggt Gly												1296
25					gga Gly												1344
30					cac His						tga						1377
35	<212	l> 49 2> PI	?Т	obacı	er a	ures	scens	5									
40	<400 Met	_	Asp	Val	Ile 5	Val	Lys	Asn	Cys	Arg 10	Met	Val	Ser	Ser	Asp 15	Gly	
	Ile	Thr	Glu	Ala 20	Asp	Ile	Leu	Val	Lys 25	Asp	Gly	Lys	Val	Ala 30	Ala	Ile	
45																	
	Ser	Ala	Asp 35	Thr	Arg	Asp	Val	Glu 40	Ala	Ser	Arg	Thr	Ile 45	Asp	Ala	Gly	
5.0			35		Arg Met			40					45				
50	Gly	Lys 50	35 Phe	Val		Pro	Gly 55	40 Val	Val	Asp	Glu	His 60 Glu	45 Val	His	Ile	Ile	
50	Gly Asp 65	Lys 50 Met	35 Phe Asp	Val Leu	Met	Pro Asn 70	Gly 55 Arg	40 Val Tyr	Val Gly	Asp Arg	Glu Phe 75	His 60 Glu	45 Val Leu	His Asp	Ile Ser	Ile Glu 80	

	Ala	Gly	Gln 115	Arg	Leu	Lys	Val	Asp 120		Ala	Leu	Туг	Gly 125		Gly	Val	٠.
5	Pro	Gly 130		Leu	Pro	Glu	Ile 135		Lys	Met	His	Asp 140		Gly	Ala	Val	
	Gly 145		Lys	Ser	Met	Met 150		Ala	Ser	Val	Pro 155		Met	Phe	Asp	Ala 160	
10	Val	Ser	Asp	Gly	Glu 165	Leu	Phe	Glu	Ile	Phe 170		Glu	Ile	Ala	Ala 175	Cys	
15	Gly	Ser	Val	Ile 180		Val	His	Ala	Glu 185		Glu	Thr	Ile	Ile 190		Ala	
23	Leu	Gln	Lys 195	Gln	Ile	Lys	Ala	Ala 200	Gly	Gly	Lys	Asp	Met 205		Ala	Tyr	
20	Glu	Ala 210		Gln	Pro	Val	Phe 215	Gln	Glu	Asn	Glu	Ala 220	Ile	Gln	Arg	Ara	
	Leu 225	Leu	Leu	Gln	Lys	Glu 230	Ala	Gly	Cys	Arg	Leu 235	Ile	Val	Leu	His	Val 240	
25	Ser	Asn	Pro	Asp	Gly 245	Val	Glu	Leu	Ile	His 250	Gln	Ala	Gln	Ser	Glu 255	Gly	
30	Gln	Asp	Val	His 260	Суѕ	Glu	Ser	Gly	Pro 265	Gln	Tyr	Leu	Asn	Ile 270	Thr	Thr	
	Asp	Asp	Ala 275	Glu	Arg	Ile	Gly	Pro 280	Tyr	Met	Lys	Val	Ala 285	Pro	Pro	Val	
35	Arg	Ser 290	Ala	Glu	Met	Asn	Val 295	Arg	Leu	Trp	Glu	Gln 300	Leu	Glu	Asn	Gly	
	Val 305	Ile	Asp	Thr	Leu	Gly 310	Ser	Asp	His	Gly	Gly 315	His	Pro	Val	Glu	Asp 320	
40	Lys	Glu	Pro	Gly	Trp 325	Lys	Asp	Val	Trp	Lys 330	Ala	Gly	Asn	Gly	Ala 335	Leu	
45	Gly	Leu	Glu	Thr 340	Ser	Leu	Pro	Met	Met 345	Leu	Thr	Asn	Gly	Val 350	Asn	Lys	
	Gly	Arg	Leu 355	Ser	Leu	Glu	Arg	Leu 360	Val	Glu	Val	Met	Cys 365	Glu	Lys	Pro	
50	Ala	Lys 370	Leu	Phe	Gly	Ile	Tyr 375	Pro	Gln	Lys	Gly	Thr 380	Leu	Gln	Val	Gly	
	Ser 385	Asp	Ala	Asp	Leu	Leu 390	Ile	Leu	Asp	Leu	Asp 395	Ile	Asp	Thr	Lys	Val 400	
55	Asp	Ala	Ser	Gln	Phe 405	Arg	Ser	Leu	His	Lys 410	Tyr	Ser	Pro	Phe	Asp 415	Gly	
	Met	Pr															

Inten nai Application No PCT/EP 00/08473

A. CLASSIF IPC 7	C12N1/21 C12Q1/68	C12P13/22	C12P41/00
According to	International Patent Classification (IPC) or to both national classification	on and IPC	
B. FIELDS S	SEARCHED		
IPC 7	cumentation searched (classification system followed by classification C12N C12P C12Q		
	ion searched other than minimum documentation to the extent that su		
Electronic da	ata base consulted during the international search (name of data base	and, where practical, search te	rms used)
BIOSIS	, MEDLINE, EPO-Internal, WPI Data, PA	AJ, STRAND, EMBL	
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category "	Citation of document, with indication, where appropriate, of the rele	vant passages	Rejevant to claim No.
х	WATABE K ET AL: "IDENTIFICATION SEQUENCING OF A GENE ENCODING A H RACEMASE FROM THE NATIVE PLASMID	YDANTOIN	1-3,5,6, 11
	PSEUDOMONAS-SP STRAIN NS671" JOURNAL OF BACTERIOLOGY,		
	vol. 174, no. 11, 1992, pages 346 XP000944037 ISSN: 0021-9193	1-3400,	
	page 3461, left-hand column, para -page 3463, right-hand column, pa	graph 2 ragraph	
	2; figures 3,4 page 3465, right-hand column page 3466, left-hand column, para 3-5	graphs	
Y	page 3465, right-hand column, par -page 3466, left-hand column, par	agraph 1 agraph 1	1-3,5,6, 11,13
Y	page 3462 left-hand column, para	graph 5	9
Y	-page 3462, right-hand column, pa page 3462	_	4
		·/	
X Fur	ther documents are tisted in the continuation of box C.	Patent family members	are tisted in annex.
Special c	ategones of cited documents:	"T" later document published aff	ter the international filing date
A docum	nent defining the general state of the art which is not addred to be of particular relevance	cited to understand the prir invention	onflict with the application but nciple or theory underlying the
E earlier	r document but published on or after the international date	"X" document of particular releving cannot be considered nove	ance; the claimed invention of or cannot be considered to then the document is taken alone
where	nent which may throw doubts on priority claim(s) or h is caled to establish the publication date of another on or other special reason (as specified)	"Y" document of particular relev	ance; the claimed invention
•O. qocnt	ment reterring to an oral disclosure, use, exhibition or r means	document is combined with ments, such combination b in the art.	n one or more other such docu- leing obvious to a person skilled
P docum	nent published prior to the international filling date but than the priority date claimed	*&* document member of the sa	
Date of the	e actual completion of the international search	Date of mailing of the intern	
	11 December 2000	1 6. 01.	01
Name and	d mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
1	NL - 2280 HV Rijswijk Tet (+31-70) 340-2040, Tx. 31 651 epo nl.	Steffen, P	

<! ומניביניין האם היהוחהם יב

PCT/EP 00/08473

		PCI/EP UU	, 001, 0
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		10-1
Category *	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No.
Y	GRIFANTINI RENATA ET AL: "Efficient conversion of 5-substituted hydantoins to D-alpha-amino acids using recombinant Escherichia coli strains." MICROBIOLOGY (READING), vol. 144, no. 4, April 1998 (1998-04), pages 947-954, XP002154848 ISSN: 1350-0872 page 949; figure 1 page 950, right-hand column, paragraph 2 -page 952, right-hand column, paragraph 1; table 4 page 953, left-hand column		1-3,5,6, 11,13
X	SIEMANN MARTIN ET AL: "Characterization of serological properties of polyclonal antibodies produced against enzymes involved in the L-selective cleavage of hydantoin derivatives." BIOTECHNOLOGY LETTERS, vol. 15, no. 1, 1993, pages 1-6, XP000944249 ISSN: 0141-5492 page 1, paragraph 1 -page 2, paragraph 4 page 5; table 1		14,16
Y	page 2; table 1		4
Y	WILMS BURKHARD ET AL: "Cloning, nucleotide sequence and expression of a new L-N-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli." JOURNAL OF BIOTECHNOLOGY, vol. 68, no. 2-3, 19 February 1999 (1999-02-19), pages 101-113, XP004164275 ISSN: 0168-1656 page 102, right-hand column, paragraph 4-page 103, left-hand column, paragraph 1 page 109, left-hand column page 103 -page 104, left-hand column		9
X	BLATTNER FREDERICK R ET AL: "The complete genome sequence of Escherichia coli K-12." SCIENCE (WASHINGTON D C), vol. 277, no. 5331, 1997, pages 1453-1462, XP002069950 ISSN: 0036-8075 page 1454, right-hand column, paragraph 3		15

PCT/EP 00/08473

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Сканов он оосшпени, with indication, where appropriate, от the resevant passages	
X	DATABASE GENBANK 'Online! NCBI; Acc No: J01566, 8 February 1996 (1996-02-08) LEBOWITZ, J.: "Plasmid ColE1, complete genome" retrieved from NCBI, accession no. http://www.ncbi.nlm.nih.gov:80/ Database accession no. http://www.ncbi.nlm.nih.gov:80/Genbank/ind ex.html XP002154850 the whole document	15
P,X	MAY OLIVER ET AL: "Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine." NATURE BIOTECHNOLOGY, vol. 18, no. 3, March 2000 (2000-03), pages 317-320, XP002154849 ISSN: 1087-0156 page 318, right-hand column, paragraph 2 -page 319, left-hand column, paragraph 1 page 319, right-hand column, paragraph 3 -page 320, left-hand column, paragraph 1	1-16
P,X	WIESE ANJA ET AL: "Hydantoin racemase from Arthrobacter aurescens DSM 3747: Heterologous expression, purification and characterization." JOURNAL OF BIOTECHNOLOGY, vol. 80, no. 3, 2000, pages 217-230, XP000943983 ISSN: 0168-1656 page 220, right-hand column, paragraph 2-page 222, left-hand column, paragraph 1; figures 2,4	1-16
A	WATABE K ET AL: "CLONING AND SEQUENCE OF THE GENES INVOLVED IN THE CONVERSION OF 5-SUBSTITUTED HYDANTOINS TO THE CORRESPONDING L AMINO ACIDS FROM THE NATIVE PLASMID OF PSEUDOMONAS-SP STRAIN NS671" JOURNAL OF BACTERIOLOGY, vol. 174, no. 3, 1992, pages 962-969, XP000944036 ISSN: 0021-9193 the whole document	
		· · ·

PCT/EP 00/08473

Box I	Observations wher certain claims wer found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: 6,8,9,13 (partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
з. 🔲	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	emational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
	· ·

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 6,8,9,13 (partially)

Present claims 6, 8, 9 and 13 relate to an extremely large number of possible methods. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the methods claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely when the whole cell catalyst as referred to in claims 6, 8, 9 and 13 is restricted to a whole cell catalyst according to claim 1.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.