

ReCap: Properties of LS Estimators

• LS estimators are unbiased: For all values of
$$\beta_0, \beta_1$$
,

$$E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1.$$

• Variances of $\hat{\beta}_0, \hat{\beta}_1$:

$$\sigma^{2}\{\hat{\beta}_{0}\} = \sigma^{2}\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right]$$

$$\sigma^{2}\{\hat{\beta}_{1}\} = \frac{\sigma^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}.$$

• Replace σ^2 by MSE:

$$s^{2}\{\hat{\beta}_{0}\} = MSE\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right],$$

$$s^{2}\{\hat{\beta}_{1}\} = \frac{MSE}{\sum_{i=1}^{n}(X_{i} + \overline{X})^{2}}.$$

- $s\{\hat{\beta}_0\}$ and $s\{\hat{\beta}_1\}$ are SE of $\hat{\beta}_0$ ad $\hat{\beta}_1$, respectively.
- SEs decrease with the increase of $\sum_{i=1}^{n} (X_i \overline{X})^2 = (n-1)s_x^2$, which in turn increase with the increase of sample size n and sample variance s_{χ}^2 of X.
- SEs tend to increase with the increase of error variance.

What are the implications?

A Simulation Study

Simulate 100 data sets.

• n = 5 cases with the X values

$$X_1 = 1.86, X_2 = 0.22, X_3 = 3.55, X_4 = 3.29, X_5 = 1.25,$$

fixed throughout all data sets.

- For each data set, the response variable is generated by:
 - First generate $\epsilon_1, \dots, \epsilon_5$ i.i.d. from N(0, 1).
 - Then set the response variable as:

$$Y_i = 2 + X_i + \epsilon_i, \quad i = 1, \cdots, 5.$$

• For each data set, derive the LS estimators $\hat{\beta}_0$, $\hat{\beta}_1$ and MSE.

We calculate the sample mean and sample standard deviation of these 100 realizations of $\hat{\beta}_0$, $\hat{\beta}_1$, respectively. Then compare them to the respective theoretical values.

 \hat{eta}_0 : Theoretical mean and standard deviation:

$$E(\hat{\beta}_0) = \beta_0 = 2, \quad \sigma(\hat{\beta}_0) = \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right]} = 0.854.$$

Sample mean and sample standard deviation: 1.99, 0.847.

$$\hat{\beta}_1$$
: Theoretical mean and standard deviation:

$$E(\hat{\beta}_1) = \beta_1 = 1, \quad \sigma\{\hat{\beta}_0\} = \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} = 0.358.$$

Sample mean and sample standard deviation: 1.002, 0.36.

Normal Error Model

Normal error model: Simple regression model + Normality assumption.

Model equation:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \qquad i = 1, \dots, n.$$

Model assumptions: The error terms ϵ_i s are independently and identically distributed (i.i.d.) $N(0, \sigma^2)$ random variables.

Notes: LS estimators $\hat{\beta}_0, \hat{\beta}_1$ are maximum likelihood estimator (MLE) of β_0, β_1 , respectively. The MLE of σ^2 is SSE/n.

Sampling Distributions of LS Estimators

Under the Normal error model:

 $+ \hat{\beta}_0, \hat{\beta}_1$ are normally distributed:

$$\hat{\beta}_0 \sim N(\beta_0, \sigma^2\{\hat{\beta}_0\}), \quad \hat{\beta}_1 \sim N(\beta_1, \sigma^2\{\hat{\beta}_1\}).$$

Notes: Use the facts (i) linear combinations of independent normal random variables are still normal random variables; (ii) $\hat{\beta}_0$, $\hat{\beta}_1$ are linear combinations of the Y_i s.

- SSE/σ^2 follows a χ^2 distribution with n-2 degrees of freedom, denoted by $\chi^2_{(n-2)}$.
- Moreover, SSE is independent with both $\hat{\beta}_0$ and $\hat{\beta}_1$.

Inference of Regression Coefficients

All inferences are under the Normal error model.

Studentized pivotal quantity:

$$\frac{\hat{\beta}_1 - \beta_1}{s\{\hat{\beta}_1\}} \sim t_{(n-2)},$$

where $t_{(n-2)}$ denotes the t-distribution with n-2 degrees of freedom.

- The numerator is the difference between the estimator and the parameter.
- The denominator is the standard error of the estimator.
- This quantity follows a known distribution, i.e., the t-distribution.

Notes: Use the fact that if $Z \sim N(0, 1)$, $S^2 \sim \chi^2_{(k)}$ and Z, S^2 are independent, then $\frac{Z}{\sqrt{S^2/k}} \sim t_{(k)}$.

Confidence Interval

$$(1-\alpha)\text{-Confidence interval of }\beta_1:$$

$$\hat{\beta}_1 \pm t(1-\alpha/2;n-2)s\{\hat{\beta}_1\},$$
 where $t(1-\alpha/2;n-2)$ is the $(1-\alpha/2)$ th percentile of $t_{(n-2)}$.

4 D > 4 B > 4 E > 4 E > E 9 Q Q