

### Primenjeno Softversko Inženjerstvo



# Modbus komunikacioni protokol

Osnove softvera sa kritičnim odzivom u elektroenergetskim sistemima

#### Modbus protokol

- Modbus je industrijski komunikacioni protokol
  - Nalazi se na aplikacivnom nivou komunikacionog stack-a (ISO OSI; TCP/IP).
  - Klijent-server komunikacija između uređaja povezanih na različite vrste magistrala ili mreža.
- Primarno je telemetrijski protokol za komunikaciju između akviziciono upravljačkog bloka SCADA stanice (AUB) i procesnih kontrolera (PK)
  - AUB (eng. FEP Front End Processor).
  - PK (eng. RTU Remote Terminal Unit, PLC Programmable Logic Controller).
- Modbus spada među najstarije i najrasprostranjenije od svih aktuelnih industrijskih protokola
  - popularnost duguje jasnom modelu podataka koji garantuje laku programsku implementaciju i visoku fleksibilnost u primeni.
  - predstavljen 1979. godine Modicon (sada Schneider Electric).

#### Modbus protokol

Veza jedan master (AUB) na više slave uređaja (RTU/PLC)



Modbus sistem sa jednim master uređajem i više slave uređaja

#### Modbus protokol

- Prilagođen je za rad u lokalnoj mreži na TCP/IP komunikacionom stack-u.
  - Originalno razvijen za komunikaciju preko asinhrone serijske magistrale.



Pozicija Modbus-a u OSI referentnom modelu

#### Model podataka komunikacionog uređaja

- Model podataka predstavlja spoljnu sliku uređaja (komunikacionog entiteta) koji ga implementira
  - obuhvata sve spolja dostupne atribute i funkcije datog uređaja
  - suštinski definiše njegov logički automat vidljiv spoljnim klijentima
- Zato je model podataka u samom jezgru svakog protokola, jer određuje tipove podataka i aplikativne funkcije koje protokol podržava.
- Najbrži način za upoznavanje sa suštinom nekog protokola je analiza modela podataka iza njega.

#### Modbus model podataka

- Modbus model podataka je u uskoj vezi sa internom strukturom RTU/PLC uređaja.
  - obuhvata sve spolja dostupne atribute i funkcije datog uređaja
  - suštinski definiše njegov logički automat vidljiv spoljnim klijentima.
- Modbus logički model (Modbus Register Map)



- Četiri grupe podataka u RTU/PLC adresnom prostoru
  - dužine 1 ili 16 bita
- Reprezentuju najvažnije podatke
  - procesne ulaze i izlaze
- Dve osnovne operacije
  - čitanje (read) za sve tipove
  - upis (write) za izlaze

# Modbus registarska mapa

| Adresa |       | Oznaka                   | Dužina | Pristup    | Opis                     |
|--------|-------|--------------------------|--------|------------|--------------------------|
| 00001  | 10000 | Discrete Outputs (Coils) | 1 bit  | Read/Write | Digitalni izlazi         |
| 10001  | 20000 | Discrete Inputs          | 1 bit  | Read       | Digitalni ulazi          |
| 30001  | 40000 | Input Registers          | 16 bit | Read       | Analogni ulazi i Brojači |
| 40001  | 50000 | Holding Registers        | 16 bit | Read/Write | Analogni izlazi          |

#### Format Modbus podataka

- Binaran (sirov), neoznačen (unsigned), podrazumevano u big endian rasporedu.
- Prenos samo sirovih podataka je verovatno i najveća mana modbus modela podataka.
- U praksi često treba preneti neki 32-bitni integer, float ili string.
- Smeštanje 32-bitnih podataka, celobrojnih ili u pokretnom zarezu, može se uraditi korišćenjem dve susedne lokacije. Podatak se deli na dva dela od po 16 bita i smešta se na dve uzastopne adrese u dva registra.
- Identični postupak se radi i kod smeštanja tekstualne (string) promenljive, jedino se koristi veći broj registara.

#### Primer smeštanja podataka dužih od 16 bita

- Svođenje broja u pokretnom zarezu na broj u fiksnom (inferred decimal point)
  - 16 bita dovoljno za smeštanje značajnog dela informacije

| 40000 |        |
|-------|--------|
|       | 0x0102 |
| 40100 | 0x0304 |
| 40101 |        |
| 40102 | 0x5465 |
| 40103 | 0x7874 |
| 40104 | 0x3100 |
| 40105 |        |
| 40106 | 0x05FB |
| 40107 |        |
|       |        |



### Modbus transakcija i opšti format poruke

- Tipičan nebalansirani protokol (upit/odgovor)
  - AUB je klijent (master) koji šalje upit
  - RTU/PLC je server (slave) koji odgovara
- Adrese uređaja:
  - master nema adresu
  - slave ima dodeljenu adresu 1-247
  - adresa 0 je rezervisana za *broadcast* poruke (primenjivo na multidrop veze 1 master, više slave uređaja, 1 komunikaciona veza)



# Format Modbus poruka

|                 | Read<br>Discrete<br>Inputs | Read Coils  | Write<br>Single Coil | Read<br>Input<br>Register | Read<br>Holding<br>Registers | Write<br>Single<br>Register | Write<br>Multiple<br>Registers |
|-----------------|----------------------------|-------------|----------------------|---------------------------|------------------------------|-----------------------------|--------------------------------|
| Kod<br>Funkcije | 2                          | 1           | 5                    | 4                         | 3                            | 6                           | 16                             |
|                 |                            |             |                      |                           |                              |                             |                                |
| Upit 0          | 2                          | 1           | 5                    | 4                         | 3                            | 6                           | 16                             |
| 1 2             | Input<br>Adr               | Coil<br>Adr | Coil Adr             | InReg<br>Adr              | HoldReg<br>Adr               | HoldReg<br>Adr              | HoldReg<br>Adr                 |
| 3<br>4          | Num                        | Num         | Value                | Num                       | Num                          | Value                       | Num                            |
| 5               |                            |             |                      |                           |                              |                             | ByteCount                      |
|                 |                            |             |                      |                           |                              |                             | Registers<br>Values<br>Num*2   |
|                 |                            |             |                      |                           |                              |                             |                                |
| Odgovor 0       | 2                          | 1           | 5                    | 4                         | 3                            | 6                           | 16                             |
| 1               | ByteCount                  | ByteCount   | C-:  A               | ByteCount                 | ByteCount                    | HoldReg                     | HoldReg                        |
| 2               |                            |             | Coil Adr             |                           |                              | Adr                         | Adr                            |
| 3<br>4          | Inputs                     | Coils       | Value                | Input                     | Holding                      | Value                       | Num                            |
| 5               | Num/8                      | Num/8       |                      | Registers                 | Registers                    |                             |                                |

Num\*2

Num\*2

6

#### **Modbus TCP Format**

- TCP/IP varijanta RTU verzije Modbus protokola
  - TCP je stream protokol sa pouzdanim prenosom
  - Više klijenata (mastera) mogu imati istovremeni pristup jednom serveru, što može biti korisno (multidrop veza)



# Modbus TCP zaglavlje

| Fields                 | Length  | Description                                                                   | Client                              | Server                                                |
|------------------------|---------|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|
| Transaction Identifier | 2 bytes | Identification of a MODBUS request/response transaction                       | Initialized by the client           | Copied by the server from the request to the response |
| Protocol Identifier    | 2 bytes | 0 = MODBUS protocol                                                           | Initialized by<br>the client        | Copied by the server from the request to the response |
| Length                 | 2 bytes | Number of following bytes                                                     | Initialized by the client (request) | Initialized by the server (response)                  |
| Unit identifier 1 byte |         | Identification of a remote slave connected on a serial line or on other buses | Initialized by<br>the client        | Copied by the server from the response                |

# Kod funkcije

| lme funkcije           | Identifikator funkcije | Tip registra    |
|------------------------|------------------------|-----------------|
| Read Coils             | 0x01                   | Digitalni izlaz |
| Read Discrete Inputs   | 0x02                   | Digitalni ulaz  |
| Read Holding Registers | 0x03                   | Analogni izlaz  |
| Read Input Registers   | 0x04                   | Analogni ulaz   |
| Write Single Coil      | 0x05                   | Digitalni izlaz |
| Write Single Register  | 0x06                   | Analogni izlaz  |

# Format Modbus poruka – Read

|                              | Request              |                         |                               | Response             |                     |                             | Error                      |                         | Comment                                         |
|------------------------------|----------------------|-------------------------|-------------------------------|----------------------|---------------------|-----------------------------|----------------------------|-------------------------|-------------------------------------------------|
| Function                     | Function code 1 byte | Starting address 2 byte | Quantity<br>to read<br>2 byte | Function code 1 byte | Byte count N 1 byte | Status /<br>Value<br>N byte | Function<br>code<br>1 byte | Exception code 1 byte   |                                                 |
| Read<br>coils                | 0x01                 | 0x0000 to<br>0xFFFF     | 1 to 2000<br>(0x7D0)          | 0x01                 | N                   | Status of coils             | Function code<br>+ 0x80    | 01 or 02 or<br>03 or 04 | N = Quantity of points / 8                      |
| Read<br>discrete<br>inputs   | 0x02                 | 0x0000 to<br>0xFFFF     | 1 to 2000<br>(0x7D0)          | 0x02                 | N                   | Status of discrete inputs   | Function code<br>+ 0x80    | 01 or 02 or<br>03 or 04 | If remainder is different of 0 then $N = N + 1$ |
| Read<br>holding<br>registers | 0x03                 | 0x0000 to<br>0xFFFF     | 1 to 125<br>(0x7D)            | 0x03                 | N                   | Value of holding registers  | Function code<br>+ 0x80    | 01 or 02 or<br>03 or 04 | N = Quantity of registers * 2                   |
| Read<br>Input<br>registers   | 0x04                 | 0x0000 to<br>0xFFFF     | 1 to 125<br>(0x7D)            | 0x04                 | N                   | Value of input registers    | Function code<br>+ 0x80    | 01 or 02 or<br>03 or 04 | or registers 2                                  |

# Format Modbus poruka – Write

|                             |                       | Request                          |                                         | Response              |                                  |                                         | Error                      |                         |
|-----------------------------|-----------------------|----------------------------------|-----------------------------------------|-----------------------|----------------------------------|-----------------------------------------|----------------------------|-------------------------|
| Function                    | Function code  1 byte | Output / Register address 2 byte | Output /<br>Register<br>value<br>2 byte | Function code  1 byte | Output / Register address 2 byte | Output /<br>Register<br>value<br>2 byte | Function code  1 byte      | Exception code  1 byte  |
| Write<br>single<br>coil     | 0x05                  | 0x0000 to<br>0xFFFF              | 0x0000 = OFF<br>0xFF00 = ON             | 0x05                  | 0x0000 to<br>0xFFFF              | 0x0000 = OFF<br>0xFF00 = ON             | Function<br>code<br>+ 0x80 | 01 or 02 or<br>03 or 04 |
| Write<br>single<br>register | 0x06                  | 0x0000 to<br>0xFFFF              | 0x0000 to<br>0xFFFF                     | 0x06                  | 0x0000 to<br>0xFFFF              | 0x0000 to<br>0xFFFF                     | Function<br>code<br>+ 0x80 | 01 or 02 or<br>03 or 04 |

### Modbus ASCII/RTU Format

- Implementacija protokola Modbus nad serijskim asinhronim kanalom
- Modbus ASCII tekstualan format
- Modbus RTU binaran format sveden na minimalan obim podataka zbog sporog prenosa
- Provera ispravnog prenosa kontrolnom LRC/CRC sekvencom

| Start | Adresa | Funkcija | Podaci     | LRC    | Kraj  |
|-------|--------|----------|------------|--------|-------|
| :     | 2 char | 2 char   | n x 2 char | 2 char | CR LF |

| Pauza      | Adresa | Funkcija | Podaci    | CRC    |
|------------|--------|----------|-----------|--------|
| 3.5-4 char | 8 bit  | 8 bit    | n x 8 bit | 16 bit |

#### Modbus UDP Format

- Modbus nema svoju standardnu UDP implementaciju
- U dScada-i je serijski kanal prosto zamenjen UDP kanalom.
- Prednost UDP prenosa je praktičnost, ali velika mana je nepouzdanost isporuke

| Adresa | Funkcija | Podaci    | CRC    |
|--------|----------|-----------|--------|
| 8 bit  | 8 bit    | n x 8 bit | 16 bit |

#### Literatura

- 1. Софтвер са критичним одзивом Пројектовање SCADA система, Бранислав Атлагић, 2015.
- 2. MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3
  <a href="http://www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf">http://www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf</a>
- 3. MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE V1.0b <a href="http://www.modbus.org/docs/Modbus Messaging Implementation Guide V1 0b.pdf">http://www.modbus.org/docs/Modbus Messaging Implementation Guide V1 0b.pdf</a>

Primenjeno Softversko Inženjerstvo 2019.

19