5. İrrasyonel Fonksiyonların İntegralleri

 $I.\int \frac{dx}{\sqrt{ax^2+bx+c}}$ tipindeki integralleri hesaplamak için; $b^2-4ac>0$ ve a<0 ise, ax^2+bx+c ifadesi k bir sabit ve $u\left(x\right)$ birinci dereceden bir polinom olmak üzere $k^2 - u^2$ biçiminde yazılabilir. Böylece:

$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \int \frac{du}{\sqrt{k^2 - u^2}} = \arcsin\frac{u}{k} + C$$

olarak hesaplanır. a>0 olması durumunda; ax^2+bx+c ifadesi p bir sabit ve u(x) birinci dereceden bir polinom olmak üzere $u^2 + p$ veya $u^2 - p$ biçiminde yazılabilir. Böylece;

$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \int \frac{du}{\sqrt{u^2 \mp p^2}} = \ln\left(u + \sqrt{u^2 \mp p^2}\right) + C$$

olarak hesaplanır.

II. $\int \frac{mx+n}{\sqrt{ax^2+bx+c}}dx$ tipindeki integralleri hesaplamak için; basit cebirsel işlemler ile integrand

$$\frac{mx + n}{\sqrt{ax^2 + bx + c}} = \frac{m}{2a} \frac{2ax + 2a\frac{n}{m}}{\sqrt{ax^2 + bx + c}} = \frac{m}{2a} \frac{2ax + b}{\sqrt{ax^2 + bx + c}} - \left(n - \frac{mb}{2a}\right) \frac{1}{\sqrt{ax^2 + bx + c}}$$

biçiminde ifade edilebilir.

$$\frac{m}{2a} \int \frac{2ax+b}{\sqrt{ax^2+bx+c}} dx$$

integrali

$$u = ax^2 + bx + c$$

değişken değiştirmesi ile kolaylıkla hesaplanır.

$$\left(n - \frac{mb}{2a}\right) \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

integrali ise,
$$(I.)$$
 de verilen yöntem ile hesaplanır.
 $III.$ $\int \frac{dx}{(px+q)\sqrt{ax^2+bx+c}}$ tipindeki integraller

$$t = \frac{1}{px + q}$$

değişken değiştirmesi ile (a) da verilen forma dönüştürülerek hesaplanır.

Örnek 10. (a) $\int \frac{dx}{\sqrt{8-2x-x^2}}$ integralini hesaplamak için; $8-2x-x^2=$ $9 - (x+1)^2$ yazılarak

$$\int \frac{dx}{\sqrt{8 - 2x - x^2}} = \frac{1}{3} \int \frac{dx}{\sqrt{1 - \left(\frac{x+1}{3}\right)^2}}$$

elde edilir. $t = \frac{x+1}{3}$ değişken değiştirmesi ile integral kolaylıkla hesaplanır.

(b) $\int \frac{dx}{\sqrt{x^2+6x+10}}$ integralini hesaplamak için; $x^2+6x+10=(x+3)^2+1$ yazılarak u=x+3 değişken değiştirmesi yapılırsa

$$\int \frac{dx}{\sqrt{x^2 + 6x + 10}} = \int \frac{du}{\sqrt{u^2 + 1}}$$

$$= \ln\left(u + \sqrt{u^2 + 1}\right) + C$$

$$= \ln\left(x + 3 + \sqrt{(x+3)^2 + 1}\right) + C$$

olarak hesaplanır. $(c) \int \frac{3x+2}{\sqrt{x^2+4x+1}} dx \text{ integralini hesaplamak için}$

$$x^2 + 4x + 1 = u$$

değişken değiştirmesi yapılırsa (2x+4) dx = du olup verilen integral

$$\int \frac{3x+2}{\sqrt{x^2+4x+1}} dx = \frac{3}{2} \int \frac{2x+4}{\sqrt{x^2+4x+1}} dx - 4 \int \frac{dx}{\sqrt{x^2+4x+1}}$$

formunda yazılarak hesaplanır.

5. Binom İntegralleri

a ve b iki reel sayı, p, q ve r rasyonel sayılar olmak üzere

$$\int x^r \left(a + bx^p\right)^q dx$$

formunda verilen integrallere binom integralleri adı verilir. Bu tip integralleri basitleştirmek için aşağıda verilen dönüşümler kullanılabilir:

 $I. q \in \mathbb{Z}$ ise, r ve p sayılarının paydalarının en küçük ortak katı k olmak üzere $x=t^k$ dönüşümü verilen integrantı bir rasyonel fonksiyona dönüştürür.

 $II.\ q \notin \mathbb{Z}$ ise, $x^p = y$ dönüşümü yardımıyla

$$\int \left(a+by\right)^q y^{\frac{r+1}{p}-1} dy$$

integrali elde edilir. $\frac{r+1}{p} \in \mathbb{Z}$ ise, q sayısının paydası n olmak üzere $a+by=t^n$ dönüşümü verilen integrantı bir rasyonel fonksiyona dönüştürür. $III. \int x^r \left(a+bx^p\right)^q dx \text{ integrali } \int \left(\frac{a+by}{y}\right)^q y^{\frac{r+1}{p}+q-1} dy \text{ formunda yazıla-}$

III.
$$\int x^r (a+bx^p)^q dx$$
 integrali $\int \left(\frac{a+by}{y}\right)^q y^{\frac{r+1}{p}+q-1} dy$ formunda yazıla-

bilir. $\frac{r+1}{p} \notin \mathbb{Z}$ ve $\frac{r+1}{p} + x \in \mathbb{Z}$ ise q sayısının paydası n olmak üzere $\frac{a+by}{n} = t^n$ dönüşümü verilen integrantı bir rasyonel fonksiyona dönüştürür. $\frac{r+1}{p} + q$ tamsayı ise $ax^{-p} + b = t^n$ dönüşümü verilen integrantı bir rasyonel fonksiyona dönüştürür.

Örnek 11. (a) $\int \sqrt[3]{x} (1+3\sqrt{x})^2 dx$ integralini hesaplamak için; $x=t^6$ dönüşümü uygulanırsa;

$$\int \sqrt[3]{x} \left(1 + 3\sqrt{x}\right)^2 dx = 6 \int t^2 \left(1 + 3t^3\right)^2 t^5 dt$$

eşitliği elde edilir.