Nome, Cognome	Matricola

Compito 43

Scritto di esercizi di Istituzioni di Matematica del 19/01/2022 Corso di Laurea Triennale in Informatica – a.a. 2021/2022

Svolgere <u>solo ed esclusivamente</u> il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. <u>NON</u> si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = \frac{2x^2 - 20x + 42}{9x^2 - 90x + 270},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

c l'insieme dei punti $x \in D$ in cui f'(x) > 0; Esercizio 2 (2 punti) Calcolare i seguenti limiti.

> a) $\lim_{n \to +\infty} \frac{(n!)^{16} e^{16n}}{n^{16n+8}}$ b) $\lim_{x \to 0^+} \frac{\sin(4x)}{x - \frac{4}{5}\sin(5x)}$

Esercizio 3 (1 punto) Calcolare il valore della seguente somma finita.

$$\sum_{n=1}^{5} 4^n$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} n^2 \left(1 - \cos\left(\frac{1}{n^3}\right)\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie diverge.

c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = \frac{1}{2} + \frac{1}{2}\sqrt{3}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{x-1}{x-6} > \frac{x-1}{x+6} \right\}$$
$$C = \left\{ x \in \mathbb{R} : \sqrt{2x^2 + 4x - 6} \le \sqrt{4x^2 + 20x + 24} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int \arctan(x) dx$$
b)
$$\int_{1}^{2} \frac{e^{t}(e^{t} - 1)}{e^{2t} - 1} dt$$
c)
$$\int_{0}^{+\infty} x^{3} e^{-x} dx$$

$$\begin{cases} y''(x) + y'(x) - 30 = 0\\ y(0) = 4\\ y'(0) = 1 \end{cases}$$

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri interi Z è ordinato e completo.

F

Enunciato 2. La controimmagine di $Y \subseteq B$ tramite una funzione $f: A \to B$ è dato da $f(X) = \{y \in B: \exists x \in X \ t.c. \ y = f(x)\} = \{f(x): x \in X\}.$

* 7

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$

V

Enunciato 4. Quello riportato di seguito è il grafico di $f(x) = \arctan(x)$.

V

Enunciato 5. $\sin\left(\frac{\pi}{3}\right) = \frac{1}{2}$

F

Enunciato 6. Se $z \in \mathbb{C}$, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

V

Enunciato 7. $\lim_{x\to 0} \frac{\arctan(x)}{x} = \frac{1}{2}$

r

Enunciato 8. $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$

* 7

Enunciato 9. Tutte le successioni numeriche divergenti non sono limitate.

V

Enunciato 10. Se $\sum_{n\geqslant 1} b_n$ diverge $e\ 0\leqslant a_n\leqslant b_n$, allora anche $\sum_{n\geqslant 1} a_n$ diverge.

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è continua, allora l'immagine di un intervallo aperto è un intervallo aperto.

,

Enunciato 12. $\frac{d}{dx}\arctan(x) = \frac{1}{\cos(x)^2}$

F

F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in [a,b]$ un punto di minimo, allora $f'(x_0) = 0$.

F

Enunciato 14. $\int \cos(x) \, \mathrm{d}x = -\sin(x) + c$

F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V								Bittak	,	a Cara e				
F														

Nome, Cognome	
Nome, Cognome	Matricola

Compito 44

Scritto di esercizi di Istituzioni di Matematica del 19/01/2022 Corso di Laurea Triennale in Informatica – a.a. 2021/2022

Svolgere solo ed esclusivamente il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. NON si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = \frac{5+4x}{2+2x},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

c l'insieme dei punti $x \in D$ in cui f'(x) > 0;

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti. V

F

F

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \left(-4n - \frac{1}{n} \right) \ln \left(1 + \frac{11}{n} \right)$$

b)
$$\lim_{x \to 0^+} \frac{e^{3x} - e^{-2x}}{\sin(x)}$$

Esercizio 3 (1 punto) Calcolare il valore della serie numerica $\sum_{n\geqslant 0} (a_n-a_{n+1})$ con

$$a_n = \frac{-4n^2 + 4n + 2}{(-9n - 5)^2}.$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} (-1)^n n^4 \sin\left(\frac{1}{n^3}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie non converge.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = \frac{1}{2} + \frac{1}{2}\sqrt{3}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 + 5x + 6}{3x^2 + 24x + 45} > 0 \right\}$$
$$C = \left\{ x \in \mathbb{R} : \sqrt{2x^2 - 32} < \sqrt{3x^2 + 2x - 47} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int \frac{\ln(x)}{\sqrt{x}} dx$$

b) $\int_0^1 \frac{x+2}{x^2+1} dx$
c) $\int_3^{+\infty} \frac{x^3 - 8x^2 + 21x - 18}{(x-2)^3 (x-3)^2} dx$

$$\begin{cases} y''(x) - 6y'(x) + 10y(x) = 0\\ y(0) = 1\\ y'(0) = 4 \end{cases}$$

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali N è totalmente ordinato.

Enunciato 2. $f: A \rightarrow B$ è monotona se è crescente o decrescente.

Enunciato 3. $\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} q(x) \geqslant 0 \\ p(x) \geqslant q(x). \end{cases}$

Enunciato 4. $\cot\left(\frac{\pi}{4}\right) = 1$

V

V

F

Enunciato 5. $\sin(-x) = \sin(x)$

Enunciato 6. L'equazione $x^2 + 1 = 0$ non ha soluzioni in \mathbb{C} .

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

Enunciato 8. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^+} f(x) = f(x_0)$.

Enunciato 9. $\{a_n\}_n$ converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \ t.c. \ |a_n - a_m| < \varepsilon \ \forall n, m > N.$

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} a_n$ diverge.

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, allora essa ammette massimo e minimo assoluti.

Enunciato 12. $\frac{d}{dx}\sin(x) = -\cos(x)$

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è continua ed f(a) = f(b), allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$.

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora esiste $c \in [a,b]$ tale che

$$\int_{a}^{b} f(x) dx = (b - a)f(c).$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V	0.77									y 100 yr		-		
F														

Nome C	
Nome, Cognome	Matricola
Compito 45	
Scritto di esercizi di Istituzioni di Mate	ematica del 19/01/2022
Corso di Laurea Triennale in Informa	tica – a.a. 2021/2022
Svolgere solo ed esclusivamente il compito associato alla propria matric	ola, come indicato nel file che si trova nello stream di
Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Ri	iportare le soluzioni degli esercizi dietro questa pagina.

 \underline{NON} si devono includere gli svolgimenti. Il punteggio massimo è 25. Esercizio 1 (5 punti) Data la funzione

$$f(x) = \frac{21 + 16x}{-5 - 4x},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

c l'insieme dei punti $x \in D$ in cui f'(x) > 0; Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \frac{(n!)^{14} e^{14n}}{n^{14n+7}}$$

b)
$$\lim_{x\to 0} \frac{7x^{18}}{(x-\sin(x))^4}$$

Esercizio 3 (1 punto) Calcolare il valore della serie numerica $\sum_{n>0} (a_n - a_{n+1})$ con

$$a_n = \frac{(-3n-4)^2}{(-7n-1)(2n+3)}$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} (-1)^n n^5 \tan\left(\frac{1}{n^4}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie non converge.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = -1$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{2x^2 - 2x - 24}{3x^2 + 24x + 45} \ge 0 \right\}$$

$$C = \left\{ x \in \mathbb{R} : \sqrt{4x^2 + 24x + 22} > \sqrt{2x^2 + 16x + 32} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int x^2 \sin(x) dx$$

b) $\int_0^2 \frac{e^x \ln(1 + e^x)}{1 + e^x} dx$
c) $\int_{2^{-1/6}}^{+\infty} \frac{-2x^5}{1 + 4x^{12}} dx$

$$\begin{cases} y''(x) - 10y'(x) + 25 = 0\\ y(0) = -7\\ y'(0) = 9 \end{cases}$$

Compito 45

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi C è un campo.

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(x-a).

V

F

F

F

F

V

F

V

Enunciato 3. Siano $a, b, c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 - 4ac > 0$, allora

$${x \in \mathbb{R} : ax^2 + bx + c > 0} = (-\infty, x_1) \cup (x_2, +\infty),$$

dove $x_1 = \frac{-b - \sqrt{\Delta}}{2a} e x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Enunciato 4. $\nexists tan(0)$

Enunciato 5.
$$\sin(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Enunciato 6. La moltiplicazione tra numeri complessi è un'operazione binaria commutativa.

Enunciato 7.
$$\lim_{x \to x_0} f(x) = -\infty se$$

 $\exists M > 0 \ t.c. \ \forall \delta = \delta(M) > 0 \ \exists x \in D \ con \ 0 < |x - x_0| < \delta \ t.c. \ f(x) > -M.$

Enunciato 8.
$$\lim_{x \to 0} \frac{\sqrt[a]{1+x}-1}{x} = 1 \ \forall a > 0$$

Enunciato 9. Tutte le successioni numeriche monotone sono convergenti.

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = +\infty$, allora anche $\sum_{n \ge 1} a_n$ diverge.

Enunciato 11. Se
$$f: [a,b] \to \mathbb{R}$$
 è crescente, allora $f([a,b]) = [f(a),f(b)]$.

Enunciato 12.
$$\frac{d}{dx} \arctan(x) = \frac{1}{\cos(x)^2}$$

Enunciato 13. Se
$$f:[a,b] \to \mathbb{R}$$
 è derivabile ed ha in $x_0 \in (a,b)$ un punto di massimo, allora $f'(x_0) = 0$.

Enunciato 14. Se
$$f: [a,b] \to \mathbb{R}$$
 è continua, allora $f(x) = \frac{d}{dx} \int_x^b f(x) dx$.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Nome, Cognome	Matricola
Compito 46	
Scritto di esercizi di Istituzioni di Mate Corso di Laurea Triennale in Informa	

Svolgere <u>solo ed esclusivamente</u> il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. <u>NON</u> si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = -\frac{4x^2 + 16x - 180}{8x^2 + 32x + 88},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

c l'insieme dei punti $x \in D$ in cui f'(x) > 0;

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \ln \left(\frac{1}{\sqrt[9]{3^n}} \right) \ln \left(\left(\frac{n-6}{n} \right)^4 \right)$$

b) $\lim_{x \to 1} \frac{\ln(x^2)}{x-1}$

Esercizio 3 (1 punto) Calcolare il valore della serie numerica $\sum_{n\geqslant 0} (a_n-a_{n+1})$ con

$$a_n = \frac{-3n^2 - 6n}{4n^2 + 6n + 5}$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} (-1)^n \arctan\left(\frac{1}{n^7}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie non converge.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica

$$z^3 = \frac{125}{2}\sqrt{2} - \frac{125}{2}\sqrt{2}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 - 2x - 15}{2x^2 + 8x + 6} < 0 \right\}$$

$$C = \left\{ x \in \mathbb{R} : \sqrt{5x^2 + 21x - 2} > \sqrt{3x^2 + 15x + 18} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int xe^{x} dx$$

b) $\int_{0}^{\frac{\pi}{3}} \frac{1}{\cos^{4}x (1 + \tan(x)^{2})} dx$
c) $\int_{2^{-1/4}}^{+\infty} \frac{x^{3}}{1 + 4x^{8}} dx$

$$\begin{cases} y''(x) + 10y'(x) + 25 = 0\\ y(0) = 3\\ y'(0) = 5 \end{cases}$$

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è un campo.

V

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(x-a).

F

17

Enunciato 3. L'estremo inferiore di un insieme è il più grande dei minoranti.

Enunciato 4. cos(0) = 0

F

Enunciato 5. $\cot\left(\frac{\pi}{3}\right) = \sqrt{3}$

F

Enunciato 6. Se $z = a + ib \in \mathbb{C}$, allora $z \cdot \overline{z} = a^2 - b^2$.

 $=a^2-b^2.$

r

Enunciato 7. Quello riportato di seguito è il grafico di una funzione continua.

I

Enunciato 8. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^+} f(x) = f(x_0)$.

F

Enunciato 9. Ogni successione numerica limitata è convergente.

F

Enunciato 10. Se $\sum_{n\geqslant 1} b_n$ converge $e\ 0\leqslant a_n\leqslant b_n$, allora anche $\sum_{n\geqslant 1} a_n$ converge.

V

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R}\}$.

V

Enunciato 12. $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$

V

Enunciato 13. Se $f:(a,b) \to \mathbb{R}$ è continua e concava, allora ammette un massimo.

F

Enunciato 14. $\int \frac{\mathrm{d}x}{\cos(x)^2} = \tan(x) + c$

V

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														