人工智能中的数学讲义

方聪

北京大学

摘要

本讲义收录了人工智能中的数学课程中的主要概念与课程习题。概率与统计讲义内容摘录于陈家鼎、郑忠国《概率与统计》教材与复熹和张原概率与统计课程课件。图论内容摘录于耿素云、屈婉玲、王捍贫《离散数学教程》。本讲义版权归上述作者,不会出版。讲义仅供于上该课程的同学们学习参考,讲义的错误会不断修正。感谢张乙沐、张海涵对讲义整理的帮助。

1.1 随机事件及其运算

1.1.1 随机事件

样本空间和样本点: 随机实验 E 中所有可能结果组成的集合称为 E 的**样本空间**,记为 Ω 。样本空间中的元素称为样本点,记为 ω

• E_1 : 抛掷硬币, 观察正面 H, 反面 T 出现的情况。

$$\Omega_1 = \{H, T\}.$$

• E_2 : 抛掷一枚硬币 3 次, 观察正面 H, 反面 T 出现的情况。

 $\Omega_2 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

• E₃: 抛掷一枚硬币 3 次, 观察正面出现的次数。

$$\Omega_3 = \{0, 1, 2, 3\}.$$

随机现象的某些样本点组成的集合称为**随机事件**,简称为事件,常用 A, B, C, \cdots 表示

例如,E 为抛掷一枚骰子,事件 A = "出现奇数点",即 A = $\{1,3,5\}$,是样本空间 Ω = $\{1,2,3,4,5,6\}$ 的一个子集

事件的频率:设 μ 是n次实验中事件A发生的次数,则事件A发生的频率 $\frac{\mu}{n}$,随着实验次数n增大,频率会在某一数值p附近摆动,称为该事件的概率,记为P(A)=p

由于频率 $\frac{\mu}{n}$ 总在 0,1 之间, 我们有:

$$0 \leqslant P(A) \leqslant 1$$

例如投一枚硬币 n 次,出现 μ 次正面,则 $\frac{\mu}{n} \stackrel{n \to \infty}{\to} p$ 。其中,主观概率 p 为事件的置信度,概率是可能性大小的度量。大概率事情易发生,小概率事情不易发生。

1.1.1.1 事件的交和并

定义 2.1 设有事件 A 和事件 B, 如果 A 发生,则 B 必发生,那么称事件 B 包含事件 A (或称事件 A 在 B 中),并记为

$$A \subset B \ (\mbox{\it id}\ B \supset A)$$

定义 2.2 如果事件 A 包含事件 B, 同时事件 B 包含事件 A, 则事件 A 和事件 B 相等, 并记为

$$A = B$$

定义 2.3 设 A 和 B 都是事件,则 "A 或 B" 表示这样的事件 C: C 发生当且仅当 A 或 B 中至少有一个发生,该事件 C 叫做 A 与 B 的并,记为 $A \cup B$ 。

例 2.1 (对应郑书例 2.1) 在桌面上,投掷两枚匀称的硬币,A 表示"恰好一枚国旗朝上",B 表示"两枚国旗朝上",C 表示"至少一枚国旗朝上",则 $C = A \cup B$.

对于并运算,有以下性质,我们恒记必然事件为U,不可能事件为V:

$$A \cup B = B \cup A$$

$$A \cup U = U \,, \ A \cup V = V$$

定义 2.4 设 A 和 B 都是事件,则 "A 且 B" 表示这样的事件 C: C 发生当且仅当 A 和 B 都发生,该事件 C 叫做 A 与 B 的交,记为 $A \cap B$,也简记为 AB。

在例 2.1 中, $A \cap C = A$, $B \cap C = C$, $A \cap B = A$

对于交运算,有以下性质:

$$A \cap B = B \cap A$$
$$A \cap U = A, \ A \cap V = V$$

1.1.1.2 事件的余和差

定义 2.5 设 A 是事件,称"非 A"是 A 的对立事件(或称余是事件),其含义为,"非 A"发生当且仅当 A 不发生,常常用 \overline{A} 表示"非 A",也用 A^c 表示"非 A"。

由定义知 $\overline{(A)} = A$, $\overline{U} = V$, $\overline{V} = U$

定义 2.6 设 A 和 B 都是事件,则两个事件的差 "A 减去 B" 表示这样的事件 C: C 发生当且仅 当 A 发生而 B 不发生,该事件 C 记为 A - B (或 $A \setminus B$)

由定义知, $A - B = A \cap \overline{B}$ 画图法确定关系。

1.1.1.3 事件运算的性质

事件的基本运算还有以下性质:

- $A \cup (B \cup C) = (A \cup B) \cup C$ "并"的结合律
- $A \cap (B \cap C) = (A \cap B) \cap C$ "交"的结合律
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 分配律
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 分配律
- $A \cup A = A$, $A \cap A = A$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 对偶律
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 対偶律

多个事件的交和并:

设 A_1,A_2,\cdots,A_n 是 n 个事件,则 " A_1,A_2,\cdots,A_n " 的并是指这样的事件: 它发生当且仅当 A_1,A_2,\cdots,A_n 中至少一个发生,常常用 $\mathop{\cup}_{i=1}^n A_i$ 表示 A_1,A_2,\cdots,A_n 的并

设 A_1, A_2, \dots, A_n 是 n 个事件,则 " A_1, A_2, \dots, A_n " 的交是指这样的事件: 它发生当且仅当 A_1, A_2, \dots, A_n 这 n 个事件都发生,常常用 $\bigcap_{i=1}^n A_i$ 表示 A_1, A_2, \dots, A_n 的交,也用 $A_1A_2 \dots A_n$ 表示这个 "交"

实际应用中, 还需定义无穷多事件的并与交

设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 B 是指这样的事件:B 发生当且仅当这些 $A_i(i=1,2,\cdots)$ 中至少一个发生,这个 B 叫做诸 A_i 的并,记为 $\underset{i=1}{\overset{\infty}{\cup}}A_i$,有时也写为 $A_1\cup A_2\cup\cdots$ 设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i(i=1,2,\cdots)$

设 $A_1, A_2, \cdots, A_i, \cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i (i = 1, 2, \cdots)$ 都发生,这个 C 叫做诸 A_i 的交,记为 $\bigcap_{i=1}^{\infty} A_i$,有时也写为 $A_1 A_2 \cdots$

例: 取 $X \in \mathbb{R}$, 事件 A_i 为 $X \in [\frac{1}{i+1}, \frac{1}{i}]$, 事件 B_i 为 $X \in [0, \frac{1}{i}]$ 。则事件 $\overset{n}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in [\frac{1}{n+1}, 1]$,事件 $\overset{n}{\underset{i=1}{\cap}} B_i$ 发生等价于 $X \in [0, \frac{1}{n}]$ 。进而当 $n \to \infty$ 时事件 $\overset{\infty}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in (0, 1]$,事件 $\overset{\infty}{\underset{i=1}{\cap}} B_i$ 发生等价于 X = 0。

并的更一般定义是,设 $\{A_a, a \in \Gamma\}$ 是一族事件(其中 Γ 是任何非空集,每个 $a \in \Gamma$ 对应一个事件 A_a),这些事件 A_a 的 "并" 是指这样的事件 B: B 发生当且仅当至少一个 A_a 发生,这个 B 常常 记为 $\bigcup_{a \in \Gamma} A_a$,类似可以定义一族事件的交 $\bigcap_{a \in \Gamma} A_a$

例 2.3: (对应郑书例 2.3) 一射手向一个目标连续射击,设 A_1 = "第一次射击,命中", A_i = "前 i-1 次射击都未命中,第 i 次射击命中"($i=2,3,\cdots$),B= "终于命中",则 $B= \underset{i=1}{\overset{\infty}{\cup}} A_i$ **例 2.4:** (对应郑书例 2.4) 一射手向一个目标连续射击,设 A_i = "第 i 次射击,未命中目标"($i=2,3,\cdots$)则 $\underset{i=1}{\overset{\infty}{\cap}} A_i$ = "每次均未命中目标" 不难验证,对可列个事件的并和交有以下规律:

- $A \cup (\bigcap_{i=1}^{\infty} B_i) = \bigcap_{i=1}^{\infty} (A \cup B_i)$ 分配律
- $A \cap (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A \cap B_i)$ 分配律
- $\overline{(\bigcup_{i=1}^{\infty} A_i)} = \bigcap_{i=1}^{\infty} \overline{A_i}$ 对偶律
- $(\bigcap_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} \overline{A_i}$ 对偶律

1.1.1.4 互斥事件

互不相容的事件

如果事件 A 和事件 B 不能都发生,即 $A \cap B = V$,则称 A 和 B 是互不相容的事件(也称互斥的事件)

称事件 $A_1, \cdots A_n$ 互不相容,若对任何 $i \neq j (i, j = 1, \cdots n)$, A_i 与 A_j 互不相容

例如,抛掷两枚硬币,事件"恰好一枚国徽朝上"和事件"两枚都是国徽朝上"是互不相容的。不难看出,对任何事件 A,A 和 \overline{A} 是互不相容的

• 加法公式: $A_1, A_2, ...$ 互不相容, 则:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

• $P(A \cup B) = P(A) + P(B) - P(AB)$

1.2 概率的公理化定义

概率空间子类: 设 Ω 为样本空间, \mathcal{F} 为 Ω 的一些子集构成的集类。若 \mathcal{F} 满足以下三个条件: (1) $\Omega \in \mathcal{F}$, (2) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, (3) $\{A_n\}_{n \in \mathbb{N}} \subsetneq \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, 则称 \mathcal{F} 为概率空间子类

例:

- $\mathcal{F} = \{\emptyset, \Omega\}$ 平凡概率空间子类
- $\mathcal{F} = \{\emptyset, \Omega, A, \overline{A}\}$ 包含 A 的最小概率空间子类
- $\mathcal{F} = \{A | A \subset \Omega\}$ Ω 上的最大概率空间子类
- $\Omega = \{\omega_1, \dots, \omega_n\}$,则 Ω 所有子集构成的概率空间子类共有 2^n 个元素

定义:设 \mathcal{F} 是满足上述条件的概率空间子集类。概率 $P = P(\cdot)$ 是 \mathcal{F} 上面定义的实值函数,满足:

- 非负性: $P(A) \ge 0$ 对于一切 $A \in \mathcal{F}$
- 规范性: P(Ω) = 1
- 可列可加性: 若 $A_n \in \mathcal{F}(n=1,2,\cdots)$ 两两不相交,则

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

 (Ω, \mathcal{F}, P) 为概率空间

例 1: 假定 $\Omega = \{\omega_1, \dots, \omega_n\}$, \mathcal{F} 为全体子集构成的概率空间子类。设 p_1, \dots, p_n 为 n 个非负实数,且满足 $\sum_{i=1}^n p_i = 1$ 。令

$$\mathbb{P}(\emptyset) = 0, \quad \mathbb{P}(A) = \sum_{j=1}^{k} p_{i_j}, \quad A = \{\omega_{i_1}, \dots, \omega_{i_k}\}, k = 1, \dots, n$$

则 \mathbb{P} 为 (Ω, \mathcal{F}) 上概率。

概率 P 有以下性质:

- $(1) P(\emptyset) = 0;$
- (2) 若 $A \in \mathcal{F}$, 则 $P(A^c) = 1 P(A)$;
- (3) 若 A_1, \dots, A_n 都属于 \mathcal{F} 且两两不相交,则

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
 (1.2.1)

(4) 若 $A \subset B$, $A \in \mathcal{F}$, $B \in \mathcal{F}$, 则 $P(A) \leqslant P(B)$, 且

$$P(B - A) = P(B) - P(A)$$
(1.2.2)

(5) 若 $A_n \subset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.3)

(6) 若 $A_n \supset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.4)

$$P(\bigcup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} P(A_n)$$
 (1.2.5)

2.1 古典概型

模型定义: 若随机现象有如下两个特征:

- (1) 在实验中它的全部可能性只有有限个;
- (2) 基本事件发生或出现是等可能的;

则称其对应的数学模型为古典概型

取

$$\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}, \quad \mathcal{F} = \{A | A \subset \Omega\}$$

 $\Diamond P$ 为 (Ω, \mathcal{F}) 上的概率测度,满足

$$P(\{w_1\}) = \dots = P(\{w_n\})$$

则 $(\Omega, \mathcal{F} P)$ 为古典概型对应的概率空间。

计算公式: 对 $A = \{\omega_{i_1}, \dots, \omega_{i_k}\} \in \mathcal{F}$,利用概率的有限可加性可知:

$$P(A) = \sum_{j=1}^{k} P(\{\omega_{i_j}\}) = \frac{k}{n} = \frac{|A|}{|\Omega|}$$

排列: 从含有 n 个不同元素的总体中抽取 r 个进行排列

- (1) 放回情形: 共有 n^r 种排列方式
- (2) 不放回情形: 共有 $A_n^r := n(n-1)\cdots(n-r+1)$ 种排列方式 当 r=n 时,为全排列,此时 $A_n^n=n!$ 。

组合: (1) 从 n 个不同元素中取出 r 个而不考虑其顺序,称为组合,其总数为 $C_n^r = \frac{n!}{r!(n-r)!} = \frac{A_n^r}{r!}$ (2) 把 n 个不同元素分成 k 个部分,且第 i 个部分有 r 个元素, $1 \le i \le k$,且 $r_1 + r_2 + \cdots + r_k = n$,则有 $\frac{n!}{r_1!r_2\cdots r_k!}$ 种方法

- (3) 把 n 个元素全部带有标注,其中 n_1 个带标注 1, n_2 个带标注 2, \cdots , n_k 个带标注 k。现在从此 n 个元素中取出 r 个,使得带有标注 i 的元素有 r_i 个,其中 $1 \le i \le k$ 且 $r_1 + r_2 + \cdots + r_k = r$ 。则不同取法的总数为 $C_{n_1}^{r_1}C_{n_2}^{r_2}\cdots C_{n_k}^{r_k}$ 。
- (4) 从 n 个不同元素中有重复的取出 r 个,不计顺序,则不同的取法有 C_{n+r-1}^r (有重复组合数) **组合公式**: 对一切正整数 a,b,

$$\sum_{i=0}^{n} C_{a}^{i} C_{b}^{n-i} = C_{a+b}^{n}$$

约定当 k > n 时, $C_n^k = 0$ 。特别地,

$$\sum_{i=0}^{n} (C_n^i)^2 = C_{2n}^n$$

例 1: (对应郑书例 3.1) 某人同时抛掷两枚骰子,问:得到 7点(两颗骰子的点数之和的概率是多少?)

解: 我们用甲乙分别表示这两颗骰子,每颗骰子共有 6 种可能的点数: 1,2,3,4,5,6,两颗骰子共有 6×6=36 种可能结果: $(i,j)(i=1,\cdots,6)(j=1,\cdots,6)$,这里 i 表示骰子甲的点数,j 表示骰子乙的点数,显然这些结果出现的机会是相等的,它们构成了等概完备事件组,事件"得到 7点"由 6 种结果(基本事件)组成: (1,6),(2,5),(3,4),(4,3),(5,2),(6,1),故事件"得到 7点"的概率为 $\frac{6}{36}=\frac{1}{6}$ \square

例 2: 甲口袋有 5 个白球, 3 个黑球, 乙口袋中有 4 个白球, 6 个黑球, 从两个口袋中各任取一球, 求取到的两个球颜色相同的概率。

解:从两个口袋中各取一球,共有 $C_8^1C_1^10$ 种等可能取法。两球颜色相同可能情况为:从甲乙口袋均取出白球,从甲乙口袋均取出黑球,共有 $C_5^1C_4^1+C_3^1C_6^1$ 种取法,于是

$$P$$
(取到的两个球颜色相同) = $\frac{C_5^1C_4^1 + C_3^1C_6^1}{C_8^1C_{10}^1} = \frac{19}{40}$

例 3: (巴拿赫问题) 某数学家有两盒火柴,每盒有 n 根,每次使用时,他任取一盒并从中抽出一根,问他发现一盒空而同时另一盒还有 $r(0 \le r \le n)$ 的概率为多少 (发现为空表示最后一次抽到空盒)?

解: 设两盒火柴分别为 A, B, 由对称性,所求概率为事件 E = "发现 A 盒空而 B 盒还有 r 根" 的概率的 2 倍。

先计算样本空间中的样本点个数,由于共取了2n-r+1次,故有 2^{2n-r+1} 个样本点。

考察事件 E,等效为前 2n-r 次 A 盒恰好取 n 次,次序不论,最后一次必定取到 A 盒,此种样本点共有 C_{2n-r}^n 个,因此

$$P(E) = \frac{C_{2n-r}^n}{2^{2n-r+1}}.$$

所求概率为 $\frac{C_{2n-r}^n}{2^{2n-r}}$.

2.2 条件概率与独立性

2.2.1 条件概率

条件概率:设 $(\Omega, \mathcal{F} P)$ 为概率空间, $B \in \mathcal{F}$ 满足 P(B) > 0。称

$$P(A|B) = \frac{P(AB)}{P(B)}, A \in \mathcal{F}$$

为 B 发生条件下 A 发生的条件概率。

条件概率 $P(\cdot|B)$ 为 \mathcal{F} 上的概率, 即满足:

- $P(A|B) \geqslant 0$, $\forall A \in \mathcal{F}$
- $P(\Omega|B) = 1$
- $\forall \{A_n\} \subset \mathcal{F}, A_n \cap A_m = \emptyset, \forall n \neq m,$

$$P(\sum_{n=1}^{\infty} A_n | B) = \sum_{n=1}^{\infty} P(A_n | B)$$

容易得到, $P(B|\Omega) = P(B)$ 。

乘法公式: $P(AB) = P(B \mid A)P(A)$

乘法公式的推广: $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$, 其中 $P(A_1A_2\cdots A_{n-1}>0$ 。

例 1: 将 52 张扑克牌 (不含大王、小王) 随机地分为 4 堆, 每堆 13 张, 问: 各堆都含有 A 牌 (即 1 点) 的概率是多少?

解: 将 4 堆扑克牌编号: 第 1 堆,第 2 堆,第 3 堆,第 4 堆,用 A_1, A_2, A_3, A_4 依次表示 4 个 A 牌,设 i_1, i_2, i_3, i_4 是 1,2,3,4 的一个排列,令 $E_{i_1 i_2 i_3 i_4}$ = "第 i_1 堆有 A_1 但没有 A_2, A_3, A_4 ,第 i_2 堆有 A_2 但没有 A_1, A_3, A_4 ,第 i_3 堆有 A_3 但没有 A_1, A_2, A_4 ,第 i_4 堆有 A_4 但没有 A_1, A_2, A_3 ",E = "各堆都含有 A",则

$$E = \bigcup_{i_1 i_2 i_3 i_4} E_{i_1 i_2 i_3 i_4}$$

这些事件两两不相容,易知 $P(E) = 4!P(E_{1234})$,令 $E_k = \{$ 第 k 堆含有 A_k 但不含有其他的 $A_i(j \neq k)\}$ (k = 1, 2, 3, 4),则

$$P(E_{1234}) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)P(E_4|E_1E_2E_3)$$

易知

$$P(E_1) = C_{48}^{12}/C_{52}^{13}, \quad P(E_2|E_1) = C_{36}^{12}/C_{39}^{13},$$

$$P(E_3|E_1E_2) = C_{24}^{12}/C_{26}^{13}, \quad P(E_4|E_1E_2E_3) = 1,$$

于是

$$P(E_{1234}) = \frac{C_{48}^{12}C_{36}^{12}C_{24}^{12}}{C_{52}^{13}C_{39}^{13}C_{26}^{13}} = \frac{13^4}{52 \times 51 \times 50 \times 49},$$

$$P(E) = 4!P(E_{1234}) \approx 0.105$$

例 2: (罐子模型)设罐中有b个黑球,r个红球,每次随机取出一个球,取出后将原球放回,还加进c个同色球和d个异色球,记 B_i 为"第i次取出的是黑球", R_j 为"第j次取出的是红球"。若连续从罐中取出三个球,其中有两个红球,一个黑球,则由乘法公式我们可得

$$P(B_1R_2R_3) = P(B_1)P(R_2|B_1)P(R_3|B_1R_2) = \frac{b}{b+r} \cdot \frac{r+d}{b+r+c+d} \cdot \frac{r+d+c}{b+r+2c+2d},$$

$$P(R_1B_2R_3) = P(R_1)P(B_2|R_1)P(R_3|R_1B_2) = \frac{r}{b+r} \cdot \frac{b+d}{b+r+c+d} \cdot \frac{r+d+c}{b+r+2c+2d},$$

$$P(R_1R_2B_3) = P(R_1)P(R_2|R_1)P(B_3|R_1R_2) = \frac{r}{b+r} \cdot \frac{r+c}{b+r+c+d} \cdot \frac{b+2d}{b+r+2c+2d},$$

以上概率与黑球在第几次被抽出有关。罐子模型也称波利亚(Polya)模型,这个模型的各种变化如下:

(1) 当 c = -1, d = 0 时,为不返回抽样,此时前次抽取结果会影响后次抽取结果,但只要抽取的黑球和红球个数确定,则概率不依赖其抽出球的次序,有

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r-1)}{(b+r)(b+r-1)(b+r-2)}$$

(2) 当 c=0, d=0 时,为返回抽样,此时前次抽取结果不会影响后次抽取结果,上述三种概率相等,有

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br^2}{(b+r)^3}$$

(3) 当 c > 0, d = 0 时,为传染病模型,此时每次取出球后会增加下一次取到同色球的概率,或者说,每发现一个传染病患者,以后都会增加再传染的概率。同样的,上述三种概率相等,且都等于

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r+c)}{(b+r)(b+r+c)(b+r+2c)}$$

可以看出,当 d=0 时,只要取出的黑球和红球个数确定,则概率不依赖于其抽出球的顺序。

(4) 当 c = 0, d > 0 时,为安全模型,可以解释为,每当事故发生,会抓紧安全工作,从而下一次发生事故的概率会减少,而当事故未发生时,安全工作会松懈,下一次发生事故的概率会增大,上述三种概率分别为:

$$P(B_1R_2R_3) = \frac{b}{(b+r)} \cdot \frac{r+d}{b+r+d} \cdot \frac{r+d}{b+r+2d},$$

M

$$P(R_1 B_2 R_3) = \frac{r}{(b+r)} \cdot \frac{b+d}{b+r+d} \cdot \frac{r+d}{b+r+2d},$$

$$P(R_1 R_2 B_3) = \frac{r}{(b+r)} \cdot \frac{r}{b+r+d} \cdot \frac{b+2d}{b+r+2d}$$

例:设 n 件产品中有 m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率。

 \mathbf{M} : 记事件 A "有一件是合格品",B "另一件也是合格品"。则

P(A) = P (取出一件合格品,一件不合格品) +P (取出两件都是合格品)

$$= \frac{C_m^1 C_{n-m}^1}{C_n^2} + \frac{C_{n-m}^2}{C_n^2} = \frac{2m(n-m) + (n-m)(n-m-1)}{n(n-1)}$$
$$= \frac{(n-m)(n+m-1)}{n(n-1)}$$

$$P(AB) = P$$
 (取出两件都是合格品) = $\frac{C_{n-m}^2}{C_n^2} = \frac{(n-m)(n-m-1)}{n(n-1)}$

于是所求概率为

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{\frac{(n-m)(n-m-1)}{n(n-1)}}{\frac{(n-m)(n+m-1)}{n(n-1)}} = \frac{n-m-1}{n+m-1}$$

2.2.2 事件的独立性

事件的独立性: 设 $(\Omega, \mathcal{F} P)$ 为概率空间,称 $A, B \in \mathcal{F}$ 相互独立(独立),若

$$P(AB) = P(A)P(B)$$

性质: (1) 若 A, B 独立, 且 P(B) > 0, 则

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

即条件概率等于无条件概率。

(2) 若 A, B 独立,则 $A 与 \overline{B}$, $\overline{A} 与 B$, $\overline{A} 与 \overline{B}$ 亦独立。

$$P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A)P(B) = P(A)P(\overline{B})$$

(3) 零概率事件及其对立的事件与任意的事件都独立。

例: 袋中有 a 只黑球和 b 只白球,令 A: "第一次摸到黑球",B: "第二次摸到黑球"。讨论 A 和 B 的独立性。

(1) 放回情形。因为

$$P(A) = \frac{a}{a+b}, P(AB) = \frac{a^2}{(a+b)^2}, P(\overline{A}B) = \frac{ab}{(a+b)^2},$$

所以

$$P(B) = P(AB) + P(\overline{A}B) = \frac{a^2 + ab}{(a+b)^2} = \frac{a}{a+b}$$

故

$$P(A)P(B) = P(AB)$$

(2) 不放回情形。易知

$$P(A) = P(B) = \frac{a}{a+b}, P(\overline{A}B) = \frac{ab}{(a+b)(a+b-1)}$$

故

$$P(A)P(B) \neq P(AB)$$

定义: 设 $\{A_k\}_{k \leq n} \subset \mathcal{F}$ 。称 A_1, A_2, \cdots, A_n 相互独立,若

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j}), \quad 1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n, k \leqslant n$$

注意:独立 ⇒ 两两独立,但是反之不对:

伯恩斯坦反列:一个均匀的正四面体,其第一、二、三面分别涂上红、黄、蓝三种颜色第四面同时涂上以上三种颜色。以 A,B,C 分别表示投一次四面体出现红、黄、蓝颜色朝下的事件,则

$$P(A) = P(B) = P(C) = \frac{1}{2}, \quad P(AB) = P(BC) = P(AC) = \frac{1}{4}$$

从而 A, B, C 两两独立, 但是,

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C)$$

独立性与概率计算: 设 A_1, A_2, \cdots, A_n 相互独立, 则

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - \prod_{i=1}^n P(\overline{A_i})$$

例:设有某型号的高射炮,每门炮(发射一发)击中敌机的概率为 0.6,现在若干门炮同时发射(每炮射一发),问:若要以 99%的把握击中来犯的一架敌机,至少需要配置几门高射炮?

解: 设 n 是需要配置的高射炮的门数,记 A_i = "第 i 门炮击中敌机" $(i=1,\cdots,n)$,A = "敌机被击中"。由于 $A=\bigcup\limits_{i=1}^n A_i$,于是要找到 n,使得

$$P(A) = P(\bigcup_{i=1}^{n} A_i) \geqslant 0.99$$

由于 $P(A) = 1 - P(\overline{A}) = 1 - P(\bigcup_{i=1}^{n} \overline{A_i})$, 且 $\overline{A_1}, \dots, \overline{A_n}$ 相互独立, 故

$$P(A) = 1 - P(\overline{A_1}) \cdots P(\overline{A_n}) = 1 - 0.4^n$$

为使不等式成立,必须且只需 $1-0.4^n \ge 0.99$ 。由此得

$$n \geqslant \lg 0.01/\lg 0.4 = 5.026$$

故至少需配置 6 门高射炮方能以 99% 的把握击中敌机。

例: 设 A, B, C 三事件相互独立, 证明 A - B 与 C 独立。

解: 因为

$$P((A - B)C) = P(AC - BC) = P(AC) - P(ABC)$$

$$= P(A)P(C) - P(A)P(B)P(C)$$

$$= (P(A) - P(A)P(B))P(C)$$

$$= (P(A) - P(AB))P(C) = P(A - B)P(C).$$

所以 A-B 与 C 独立。

2.3 全概率公式和贝叶斯公式

2.3.1 全概率公式

完备事件组: 若 $\{B_n\}_{n\geqslant 1}\subset \mathcal{F}$ 满足两两互斥且 $\sum\limits_{n=1}^{\infty}B_n=\Omega$,则称 $\{B_n\}_{n\geqslant 1}$ 为完备事件组。

全概率公式: 假定 $\{B_n\}_{n\geqslant 1}$ 为完备事件组,则

$$P(A) = \sum_{n=1}^{\infty} P(B_n) P(A|B_n), \forall A \in \mathcal{F}$$

注意: 在上式中, 若 $P(B_n) = 0$, 则规定 $P(B_n)P(A|B_n) = 0$ 。

例: 一保险公司相信人群可以分为 2 类: 一类是容易出事故的; 另一类是不容易出事故的。已知前者在一年内出事故的概率为 0.4, 后者在一年内出事故的概率为 0.2。前者约占人群的 30%。今有一人前来投保, 他在一年内出事故的可能性有多大?

解: 设 A = "他在一年内出事故",B = "他是容易出事故的",则 B, \overline{B} 构成完备事件组,有

$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$$

图 2.1: 完备事件组

图 2.2: 全概率公式

由于
$$P(B)=0.3, P(A|B)=0.4, P(\overline{B})=0.7, P(A|\overline{B})=0.2$$
,于是
$$P(A)=0.3\times0.4+0.7\times0.2=0.26$$

例: 甲口袋有 1 个黑球,2 个白球,乙口袋有 3 个白球,每次从两口袋中任取一球,交换后放入另一口袋中,求交换 n 次之后,黑球仍然在甲口袋的概率。

设事件 A_i 为 "第 i 次交换后黑球仍然在甲口袋中",记 $p_i=P(A), i=0,1,2,\cdots$,则有 $p_0=1$,且

$$P(A_{i+1} \mid A_i) = \frac{2}{3}, \quad P(A_{i+1} \mid A_i^c) = \frac{1}{3}$$

由全概率公式得

$$p_n = \frac{2}{3}p_{n-1} + \frac{1}{3}(1 - p_{n-1}) = \frac{1}{3}p_{n-1} + \frac{1}{3}, \quad n \geqslant 1$$

得到递推公式

$$p_n - \frac{1}{2} = \left(\frac{1}{3}\right) \left(p_{n-1} - \frac{1}{2}\right), \quad n \geqslant 1$$

将 $p_0 = 1$ 代入上式可得

$$p_n - \frac{1}{2} = \left(\frac{1}{3}\right)^n \left(\frac{1}{2}\right)$$

因此

$$p_n = \frac{1}{2} \left[1 + \left(\frac{1}{3} \right)^n \right]$$

2.3.2 贝叶斯公式

贝叶斯公式: 假定 $\{B_n\}_{n\geqslant 1}$ 为完备事件组, $A\in\mathcal{F}$ 满足 P(A)>0,则

$$P(B_n|A) = \frac{P(B_n)P(A|B_n)}{\sum_{n=1}^{\infty} P(B_n)P(A|B_n)}$$

例: 一项血液化验有 95% 的把握诊断某种疾病,但这项化验用于健康人也会有 1% 的"假阳性"结果(即如果一个健康人接受这项化验,化验结果误诊此病人患该疾病的概率为 1%)。假定该疾病的患者事实上只占总人口的 0.5%。若某人化验结果为阳性,则此人确实患有该疾病的概率是多少?**解:** 令 A 表示"此人确实患该疾病",B 表示"其化验结果为阳性",则所求概率为

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$
$$= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.01 \times 0.995}$$
$$= \frac{95}{294} \approx 0.323$$

 \Box **例:** 一架飞机失踪了,推测它等可能的坠落在 3 个区域。令 $\alpha_i(i=1,2,3)$ 表示飞机在第 i 个区域坠落但没有被发现的概率。已知对区域 1 的搜索没有发现飞机,求在此条件下,飞机坠落在第 i(i=1,2,3) 个区域的条件概率。

 \mathbf{M} : 令 B_i 表示 "飞机坠毁在第 i 个区域", i=1,2,3, A 表示 "在第 1 个区域没有搜索到飞机", 则

$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{\sum_{i=1}^{3} P(B_i)P(A|B_i)} = \frac{\frac{\alpha_1}{3}}{\frac{\alpha_1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{\alpha_1}{\alpha_1 + 2}$$

对 j = 2, 3,

$$P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^{3} P(B_i)P(A|B_i)} = \frac{\frac{1}{3}}{\frac{\alpha_1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{1}{\alpha_1 + 2}$$

随机游走:考虑数轴上一质点,假定它只在整数点上运动。当前时刻它处于位置 a (整数),下一时刻(单位间隔时间)以概率 p 向正向,概率 1-p 向负向运动一个单位,称这样的质点运动为随机游动,当 $p=q=\frac{1}{2}$ 时,称为对称随机游走。

(1) 无限制随机游走:对随机游走,以 S_n 表示 n 时刻质点的位置,假定 $S_0=0$ 。我们计算经过 n 次运动后到达位置 k 的概率。

由于质点在 n 时刻位于 k, 在 n 次游动中, 质点向右移动次数 x 比向左运动 y 多 k 次:

$$x - y = k$$
, $x + y = n$
$$x = \frac{n+k}{2}$$
, $y = \frac{n-k}{2}$

为使 x 为整数, k 和 n 的奇偶性需要相同, 即

$$P(S_n = k) = \begin{cases} C_n^{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}}, & n, k$$
奇偶性相同 0, n, k 奇偶性不同

(2) 两端带有吸收壁的随机游走:设a,b为正整数。假定质点初始位置为a,在位置0和a+b均有一个吸收壁,求质点被吸收的概率。

记 q_n 为质点初始位置是 n 而最终在 a+b 被吸收的概率,显然,

$$q_0 = 0, \quad q_{a+b} = 1$$

若质点某时刻位于 n, $n = 1, \dots, a+b-1$ 。则其在位置 a+b 被吸收有两种可能: (1) 运动到 n-1 位置被 a+b 吸收, (2) 运动到 n+1 位置被 a+b 吸收, 由全概率公式得

$$q_n = q_{n-1}q + q_{n+1}p, \quad n = 1, \dots, a+b-1$$

由于 p+q=1, 上式可以写为

$$p(q_{n+1}-q_n)=q(q_n-q_{n-1}), \quad n=1,\cdots,a+b-1$$

记 $r = \frac{q}{p}$,则

$$q_{n+1} - q_n = r(q_n - q_{n-1}), \quad n = 1, \dots, a+b-1$$

可以分两种情况讨论:(i)若 r=1,即 $p=q=\frac{1}{2}$ 。则

$$q_{n+1} - q_n = q_n - q_{n-1} = \dots = q_1 - q_0$$

 $q_{n+1} = q_0 + (n+1)(q_1 - q_0), \quad n = 1, \dots a + b - 1$

结合边值条件,有

$$q_n = \frac{n}{a+b}, n = 1, \cdots, a+b-1$$

(ii) 若 $r \neq 1$, 即 $p \neq q$:

$$q_{n+1} - q_n = r(q_n - q_{n-1}) = \dots = r^n(q_1 - q_0)$$

即

$$q_n - q_0 = \sum_{i=0}^{n-1} (q_{i+1} - q_i) = \sum_{i=0}^{n-1} r^i (q_1 - q_0) = \frac{1 - r^n}{1 - r} (q_1 - q_0), \quad n = 1, \dots, a + b - 1$$

结合边值条件,得

$$q_1 = \frac{1 - r}{1 - r^{a+b}}$$

则

$$q_n = \frac{1 - r^n}{1 - r^{a+b}}$$

3.1 随机变量

为了进一步研究随机现象,我们需要引入随机变量的概念。

定义:(随机变量的直观描述)如果条件 S 下的结果可以用某个变量 X 来描述,X 的值不能预先确定,而随着条件 S 的不同可能变化,但是对任何实数 c,事件 "X 取值不超过 c" 是有概率的,将这样一种变量 X 称为随机变量。

定义:(随机变量的数学描述)如果条件 S 下的所有可能结果组成了集合 $\Omega = \{\omega\}$, $X = X(\omega)$ 是 在 Ω 上有定义的实值函数,而且对任何实数 c,事件 " $\{\omega: X(\omega) \leq c\}$ "是有概率的,将 X 称为随机变量。

例:(对应郑书例 1.2)盒中有 5 个球, 其中有 2 个白球, 3 个黑球. 从中任取 3 个球, 将其中所含的白球的数目记为 X.

建模: 将球编号, 1~3 表示黑球, 4,5 表示白球.

记摸到球的编号为 $\omega = (i, j, k)$, 其中 $1 \le i < j < k \le 5$. $|\Omega| = C_5^3 = 10$.

其中满足 X=0 的 ω 有 $C_2^0C_3^3=1$ 个; 满足 X=1 的 ω 有 $C_2^1C_3^2=6$ 个; 满足 X=2 的 ω 有 $C_2^2C_3^1=3$ 个.

设事件: $\{X=1\}=\{\omega:X(\omega)=1\},\quad \{X\leqslant 1\}=\{\omega:X(\omega)\leqslant 1\}.$

将 $P({X = 1})$ 简记为 P(X = 1).

$$P(X=1) = \frac{6}{10}, \ P(X \le 1) = \frac{7}{10}.$$

例:(对应郑书例 1.6) 某公共汽车站每隔 10 min 会有一两某路公交车到达. 某乘客随机在任意时刻到达车站.

显然,他的候车时间 X (单位: min) 为随机变量. X 的取值范围 $0 \le X \le 10$ 。事件 $\{X \le c\}$ 是有概率的,这是一种几何概型,我们会在后面给出计算过程,例如:

$$P(X \leqslant 3) = \frac{3}{10}, \quad P(2 \leqslant X \leqslant 6) = \frac{4}{10}.$$

3.2 离散型随机变量

定义: X 是离散型随机变量指: X 取有限个值 x_1, \dots, x_n , 或可列无穷个值 $x_1, x_2, \dots . X$ 的概率分 布 (列) 指:

$$p_k = P(X = x_k), \quad k = 1, \dots, n \ \ \vec{\boxtimes} k = 1, 2, \dots.$$

将 X 的可能值以及相应的概率列为表3.1。表3.1称为 X 的概率分布表,它能够清楚完整的表示 X

表 3.1: 概率分布表

的取值以及概率的分布情况。

定义: 设 X 的可能取值是 x_1, x_2, \cdots (有限个或者可列无穷个),则称

$$p_k = P(X = x_k) \quad (k = 1, 2, \cdots)$$

为 X 的概率分布,这时也称为 X 的概率函数或者概率分布律

关于 $\{p_k\}$, 有以下性质:

(1)
$$p_k \ge 0 \ (k = 1, 2, \cdots)$$
 (2) $\sum_k p_k = 1$

回忆本讲例 1 的 X (抽到的白球数) 它的概率分布表如表3.2所示:

$$\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline p & 0.1 & 0.6 & 0.3 \end{array}$$

表 3.2: X 的概率分布表

对离散型随机变量,有以下几种常见的概率分布:

3.2.1 两点分布(伯努利分布)

定义随机变量 X 的可能值是 0 和 1 且概率分布为:

$$P(X = 1) = p, \quad P(X = 0) = 1 - p.$$

称 X 服从**两点分布**(也称伯努利分布),记为 $X \sim B(1,p)$ (参数 $0 \le p \le 1$)

我们定义示性函数 1_A : 事件 A 发生则取 1; A 不发生则取 0.

例: (对应郑书例 2.1) 100 件产品中有 3 件次品. 从中任取一件.

设事件 A= "取到合格品",,随机变量 $X=1_A, X$ 的可能取值为 0 和 1。取到每件产品的概率 均等,概率分布为

$$P(X=1) = \frac{97}{100}, P(X=0) = \frac{3}{100}$$

X 服从参数 p=0.97 的两点分布。

3.2.2 二项分布

设随机变量所有可能值为 0,1,…,n,且

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, k = 0, 1, \dots, n$$

称 X 服从参数为 n, p 的二项分布,记作 $X \sim B(n, p)$ (参数 $n \ge 1, 0 \le p \le 1$)

二项分布有明显的实际背景,例如在单次实验中事件 A 发生的概率是 p,进行独立重复实验 n 次,记事件 A 发生的次数为 X,则 $X \sim B(n,p)$ 。

定理 2.1: 对于二项分布, 分布列 P(X = k) 的最大值点 k_0 如下:

若 $(n+1)p \notin \mathbb{Z}$, 则 $k_0 = [(n+1)p]$;

若 $(n+1)p \in \mathbb{Z}$, 则 $k_0 = (n+1)p$ 或 (n+1)p-1.

证明: 显然

$$\frac{p_n(k+1)}{p_n(k)} = \frac{n-k}{k+1} \cdot \frac{p}{1-p}$$

由于 $\frac{n-k}{k+1}\cdot\frac{p}{1-p}>1$ 等价于 k<(n+1)p-1, 于是有:

- (a) $\leq k < (n+1)p-1$ $\forall p_n(k+1) > p_n(k)$
- (b) $\leq k > (n+1)p-1$ $\exists k > (n+1)p-1$
- (c) $\stackrel{\text{def}}{=} k = (n+1)p-1$ $\stackrel{\text{def}}{=} p_n(k+1) = p_n(k)$

(i) 若 $(n+1)p \notin \mathbb{Z}$,设 $k_0 = [(n+1)p] < (n+1)p < k_0+1$,当 k < m 时, $k \le k_0-1 < (n+1)p-1$, 因此 $p_n(k) < p_n(k+1)$;当 $k \ge k_0$ 时,k > (n+1)p-1,因此 $p_n(k) > p_n(k+1)$,所以 k_0 为最大值。

(ii) 若 $(n+1)p \in \mathbb{Z}$,设 $k_0 = (n+1)p$,有 $p_n(k_0) = p_n(k_0+1)$,进而利用性质 (a) 和性质 (b) 知 k_0 为最大值。

3.2.3 泊松分布

定义:设随机变量 X 的所有可能取值是全体非负整数,且

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

则称 X 服从参数为 λ 的泊松分布,记为 $X \sim \mathcal{P}(\lambda)$ (参数: $\lambda > 0$)。

泊松分布常见于生物学,物理学,工业的应用中,例如电话交换台收到的电话呼唤次数,放射性物质在一定时间内放出的粒子数。

定理: 泊松分布的分布列最大值点 $k_0 = [\lambda]$ 。

证明: 注意到 $p_{k+1} = \frac{\lambda}{k+1} p_k$, 故由分布函数知

若 $k+1 \leqslant \lambda$,则 $p_{k+1} \geqslant p_k$

若 $k+1 \ge \lambda$,则 $p_{k+1} \le p_k$

因此当 $k_0 = [\lambda]$ 时,分布列取最大值。

例: 已知某商场一天来的顾客服从参数为 λ 的泊松分布,而每个来商场的顾客购物概率为 p,证明此商场一天内购物的顾客数服从参数为 λp 的泊松分布。

 \mathbf{M} : 用 Y 表示商场内一天购物的顾客数,则由全概率公式知,对任意正整数 k 有

$$P(Y = k) = \sum_{i=k}^{\infty} P(X = i) P(Y = k \mid X = i) = \sum_{i=k}^{\infty} \frac{\lambda^i e^{-\lambda}}{i!} C_i^k p^k (1 - p)^{i-k}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{i=k}^{\infty} \frac{[\lambda (1 - p)]^{i-k}}{(i - k)!} = \frac{(\lambda p)^k}{k!} e^{-\lambda} e^{\lambda (1 - p)} = \frac{(\lambda p)^k}{k!} e^{-\lambda p}$$

3.2.4 超几何分布

定义:若随机变量 X 的概率分布满足:

$$P(X = k) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}, \quad k = 0, 1, \dots, n.$$

则称 X 服从超几何分布, 记为 $X \sim H(N, D, n)$ (参数 N, D, n 满足 $N \geqslant D \geqslant 0$)

设一批产品有 N 个产品, D 个次品, 任取 n 个, 抽到的次品数为 X。如果进行放回抽样则 X 服从二项分布, 如果进行不放回抽样则 X 服从超几何分布。

定理 2.3: 给定 n. 当 $N \to \infty$, $\frac{D}{N} \to p$ 时,

$$\lim_{N \to \infty} \frac{C_D^k C_{N-D}^{n-k}}{C_N^n} = C_n^k p^k (1-p)^{n-k}, \quad k \geqslant 0$$

证明:由于0 ,当<math>N充分大时,n < D < N,且n是固定的,易知

$$\begin{split} \frac{C_D^k C_{N-D}^{n-k}}{C_N^n} &= \frac{D!}{k!(D-k)!} \cdot \frac{(N-D)!}{(n-k)!(N-D-n+k)!} \cdot \frac{n!(N-n)!}{N!} \\ &= \frac{n!}{k!(n-k)!} \cdot \frac{D(D-1) \cdots (D-k+1)}{N^k} \\ &\cdot \frac{(N-D)(N-D-1) \cdots (N-D-n+k+1)}{N^{n-k}} \\ &\cdot \frac{N^n}{N(N-1) \cdots (N-n+1)} \\ &= C_n^k (\prod_{i=1}^k \frac{D-i+1}{N}) (\prod_{i=1}^{n-k} \frac{N-D-i+1}{N}) (\prod_{i=1}^n \frac{N}{N-i+1}) \\ &\to C_n^k p^k (1-p)^{n-k} \quad (N\to\infty) \end{split}$$

该定理的直观解释是,如果一批产品的总量 N 很大,其中次品占比为 p,则从整批产品随机抽取 n 个,抽到次品的个数 k 近似服从参数为 p,n 的二项分布。

3.2.5 几何分布

定义:若随机变量 X 的所有可能值是全体整数,且概率分布满足:

$$P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \cdots.$$

则称 X 服从几何分布,记为 $X \sim G(p)$,参数 0 。

例如,某个射手向目标连续射击,如果他单次射中目标的概率为 p,则他首次射中目标所需要的射击次数 X 是一个随机变量,且满足几何分布。

几何分布具备无记忆性: $P(X - n = k \mid X > n) = P(X = k)$.

例:设 X 是只取自然数的离散随机变量,若 X 的分布具有无记忆性,证明 X 的分布一定为几何分布。

证明: 由无记忆性知

$$P(X > n + m | X > m) = \frac{P(X > n + m)}{P(X > m)} = P(X > n),$$

将n换为n-1仍有

$$P(X > n + m - 1) = P(X > n - 1)P(X > m).$$

两式相减有

$$P(X = n + m) = P(X = n)P(X > m).$$

设 P(X = 1) = p, 若取 n = m = 1 有

$$P(X=2) = p(1-p).$$

若取 n=2, m=1 则有

$$P(X = 3) = P(X = 2)P(X > 1) = p(1 - p)^{2}.$$

若令 $P(X = k) = p(1 - p)^{k-1}$, 则用数学归纳法得

$$P(X = k + 1) = P(X = k)P(X > 1) = p(1 - p)^{k}, \quad k = 0, 1, \dots$$

这表明 X 的分布为几何分布。

3.2.6 离散均匀分布

定义: 若随机变量 X 的概率分布满足:

$$P(X = k) = \frac{1}{N}, \quad k = 1, \dots, N.$$

则称 X 服从离散均匀分布。

3.3 连续随机变量

定义: 连续型随机变量指: 存在 p(x) 使得

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} p(x)dx, \quad \forall a < b.$$

称 $p(\cdot)$ 为 X 的概率密度 (函数), 也记为 $p_X(\cdot)$.

连续随机变量有以下性质:

- (1) 非负: $p(x) \ge 0$
- (2) 规范: $\int_{-\infty}^{\infty} p(x)dx = 1$
- (3) P(X = x) = 0 在任意一点选中的概率都为 0.
- (4) $p(\cdot)$ 在 x 连续, 即 $P(X \in [x, x + \Delta x]) = p(x)\Delta x + o(\Delta x)$,

以下是常见的连续随机变量:

3.3.1 均匀分布

定义: 如果随机变量 X 的分布密度为:

$$p(x) = \begin{cases} \frac{1}{b-a}; & \text{ 若} a \leqslant x \leqslant b \\ 0, & \text{ 其他.} \end{cases}$$

则称 X 服从区间 [a,b] (或 (a,b)) 上的均匀分布,记为 $X \sim U(a,b)$ (参数 a < b):

均匀分布的分布函数也可以写为 $p(x) = \frac{1}{b-a} 1_{\{a \le x \le b\}}$.

例如,某公共汽车站每隔 10 分钟会有一班公交车到达,一位搭乘该车的乘客在任意时刻到达车站 是等可能的,则他的候车时间 X 是一个随机变量,且满足 [0,10] 上的均匀分布。

3.3.2 指数分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

则称 X 服从参数为 λ 的指数分布, 记为 $X \sim \text{Exp}(\lambda)$ (参数 $\lambda > 0$)

若 X 服从参数为 λ 的指数分布,则对任何 $0 \le a < b$ 有:

$$P(a < X < b) = \lambda \int_{a}^{b} e^{-\lambda x} dx = e^{-\lambda a} - e^{-\lambda b}$$
$$P(X > a) = e^{-\lambda a}$$

定理: (无记忆性): $P(X - s > t \mid X > s) = e^{-\lambda t}, \forall t, s \ge 0.$

不难看出,
$$P(X-s>t\mid X>s)=rac{P(X-s>t)}{P(X>s)}=rac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda t}=P(X>t)$$

注意到, 无记忆性是指数分布独有的, 即设 X 是非负的随机变量, $P(X-s>t\mid X>s)=P(X>s)$ 对 $\forall t,s\geqslant 0$ 恒成立的充分必要条件是 X 服从指数分布。

证明:之前已经证明了充分性,现只需证明必要性:设X是非负随机变量满足 $P(X-s>t\mid X>s)=e^{-\lambda t}$,则

$$P(X > s) > 0$$
, $P(X > s + t) = P(X > s)P(X > t)$

 $\diamondsuit f(u) = P(X > u), \ \ \emptyset \ \ f(s+t) = f(s)f(t)$

于是 $f(1) = f(\frac{1}{n} \times n) = (f(\frac{1}{n}))^n$

从而
$$f(\frac{m}{n}) = f(\frac{1}{n} \times m) = (f(\frac{1}{n}))^m = (f(1))^{\frac{m}{n}}$$

故对任意正有理数 r,有 $f(r) = (f(1))^r$ 。由于 0 < f(1) < 1 且 f(u) 是关于 u 的减函数,因此对任意 $u \ge 0$,有 $f(u) = (f(1))^u$ 。

令 $\lambda = -\ln f(1)$, 则 $f(u) = e^{-\lambda u}$, 即

$$P(X > u) = e^{-\lambda u} = \int_{+\infty}^{u} e^{-\lambda x} dx$$

$$P(a < X < b) = \int_{a}^{b} \lambda e^{-\lambda x} dx \quad (0 \le a < b)$$

说明 X 服从指数分布。

3.3.3 正态分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

则称 X 服从参数为 μ , σ 的正态分布,记为 $X \sim N\left(\mu,\sigma^2\right)$ (参数 $\mu \in \mathbb{R},\sigma > 0$)

参数 $\mu = 0$, $\sigma^2 = 1$ 时的正态分布称为标准正态分布 N(0,1) , 分布密度是:

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

归一性: $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$:

设 $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, 将积分的平方写为二重积分:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \frac{1}{2\pi} \iint_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2}} dx dy.$$

做极坐标变换:

$$x = r \cos \theta, y = r \sin \theta \Rightarrow \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{vmatrix} = r.$$

因此, 二重积分可以写为

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^{\infty} e^{-\frac{r^2}{2}} r dr \right) d\theta = \int_0^{\infty} e^{-R} dR = 1$$

对于其他正态分布的密度函数 $p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$:令 $y=\frac{x-\mu}{\sigma}$,则

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = 1.$$

定义函数 Φ:

$$\Phi(x) = \int_{-\infty}^{x} \phi(x) dx.$$

容易看出 $\Phi(-x) = 1 - \Phi(x)$.

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma} \phi\left(\frac{x - \mu}{\sigma}\right) dx = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

推论: 设随机变量 $X \sim N(\mu, \sigma^2)$, 则对一切正数 k, 有

$$P(\mu - k\sigma < X < \mu + k\sigma) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1$$

例如查表得 $\Phi(3) = 0.9987$, 因此

$$P(\mu - 3\sigma < X < \mu + 3\sigma) = \Phi(3) - \Phi(-3) = 0.9974$$

该结果说明正态随机变量 X 的取值基本落在区间 $(\mu - 3\sigma, \mu + 3\sigma)$ 内。

3.3.4 伽马分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0.$$

则称随机变量 X 服从伽马分布,记为 $X \sim \Gamma(\alpha, \beta)$ (参数 $\alpha, \beta > 0$)

其中, 称 $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$ 为 Γ 函数。

若 $\Gamma(\alpha)$ 为 Γ 函数,则函数具备以下性质:

(1)
$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

证明:

$$\int_{0}^{\infty} y^{\alpha} e^{-y} dy = -y^{\alpha} e^{-y} \Big|_{0}^{\infty} + \int_{0}^{\infty} \alpha y^{\alpha - 1} e^{-y} dy = \alpha \int_{0}^{\infty} y^{\alpha - 1} e^{-y} dy$$

(2) $\Gamma(1) = 1; \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

证明:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{1}{\sqrt{y}} e^{-y} dy = \sqrt{2} \int_0^\infty e^{-\frac{x^2}{2}} dx = \sqrt{\pi}.$$

(3) $\alpha = 1$ 时就是指数分布参数为 β .

3.4 随机变量的严格定义

定义: 假设 (Ω, \mathcal{F}, P) 是概率空间, $X : \Omega \to \mathbb{R}$ 满足:

对任意
$$x \in \mathbb{R}$$
 都有 $\{X \leq x\} \in \mathcal{F}$,

则称 X 是一个随机变量.

定义: 令 $F(x) = P(X \le x), x \in \mathbb{R}$. 称 F 为随机变量 X 的分布函数, 也记为 F_X .

定理: 分布函数 $F = F_X$ 的三条性质:

- (1) 单调性: 若 $x \leq y$, 则 $F(x) \leq F(y)$.
- (2) 规范性: $\lim_{x\to-\infty} F(x) = 0$; $\lim_{x\to\infty} F(x) = 1$.
- (3) 右连续性: $\lim_{y\to x+} F(y) = F(x)$.
- 离散型: $P(X = x_i) = p_i$. $x_i 为 F_X$ 的跳点, p_i 为跳跃幅度.
- 连续型: $F_X(x) = \int_{-\infty}^x p(z)dz$, 且

$$p(x) = F_X'(x).$$

反过来, 若 F_X "几乎" 连续可导, 则为连续型 (定理 4.3, 4.4).

- 尾分布函数: G(x) = P(X > x) = 1 F(x). 连续型: p(x) = -G'(x).
- \emptyset . $X \sim \text{Exp}(\lambda)$.

$$G(x) = e^{-\lambda x}, \quad \forall x > 0,$$

$$\Rightarrow G'(x) = -\lambda G(x). \quad \lambda : \ \text{x.e.}$$

- 由 $F_X(x)$ 可求出 $P(X \in B), \forall B$.
- 若 $F_X = F_Y$, 则称 X 与 Y 同分布, 记为 $X \stackrel{d}{=} Y$.
- X = Y, 即 P(X = Y) = 1, 则 $F_X = F_Y$. 反之不然.

4.1 随机变量的函数

随机变量的函数: 设 g = g(x) 是定义在 \mathbb{R} 上的一个函数,X 是一个随机变量,那么 Y = g(X) 作为 X 的函数,同样也是一个随机变量。

在实际问题中,如果已知随机变量 X 的分布,我们可以求出另一个随机变量 Y = g(X) 的分布。我们将从离散和连续两种场合分别讨论随机变量函数的分布。

注: 为了让 Y 是数学意义上严格定义的随机变量,必须对函数 f(x) 有所假定才能使得 $\{Y \leq c\}$ 是有概率的事件,通常假定 f(x) 是 Borel 函数,即对于任何实数 c, $\{x:f(x)\leq c\}$ 是 Borel 集,有以下定理:

定理: 设 $X=X(\omega)$ 是概率空间 (Ω,\mathcal{F},P) 上的随机变量,则对任何 Borel 函数 f(x), $Y=f(X(\omega))$ 也是这个概率空间上的随机变量。

证明:给定任意实数 c,令

$$B = \{x : f(x) \leqslant c\}$$

则 $\{\omega:Y\leqslant c\}=\{\omega:f(X(\omega))\leqslant c\}=\{\omega:X(\omega)\in B\},$ 由于 B 是 Borel 集,则由定理 [?] 知 $\{\omega:X(\omega)\in B\}\in\mathcal{F},$ 所以 $\{Y\leqslant c\}\in\mathcal{F},$ Y 是随机变量。

我们遇到的随机函数一般都是 Borel 函数,所以 $Y = X(\omega)$ 一般都是随机变量。

4.1.1 离散随机变量函数的分布

设 X 是离散随机变量, X 的分布列为: 则 Y = g(X) 也是一个离散随机变量, 此时 Y 的分布列可

以简单表示为: 若 $p_{x_1}, p_{x_2}, \cdots, p_{x_k}, \cdots$ 中有某些值相等时,把那些相等的值分别合并,并将对应概

率相加。

例: 已知随机变量 X 的分布如下, 求 $Y = X^2 + X$ 的分布列。

\overline{X}	-2	-1	0	1	2
p	0.2	0.1	0.1	0.3	0.3

解: $Y = X^2 + X$ 的分布列为

\overline{Y}	2	0	0	2	6
\overline{p}	0.2	0.1	0.1	0.3	0.3

合并得到

$$\begin{array}{c|ccccc} Y & 0 & 2 & 6 \\ \hline p & 0.2 & 0.5 & 0.3 \\ \end{array}$$

定理: (离散卷积公式) 若 ξ , η 是相互独立的随机变量,且取非负整数值,分布列分别为 $\{k; a_k\}$ 和 $\{k; b_k\}$ 。则随机变量 $\zeta = \xi + \eta$ 的分布列为 $P(\zeta = k) = \sum_{i=0}^k a_i b_{k-i}$,称为**卷积公式**。

证明: 注意到 $P(\zeta = k) = P(\xi = 0, \eta = k) + P(\xi = 1, \eta = k - 1) + \dots + P(\xi = k, \eta = 0)$ 。 其中 $= P(\xi = i, \eta = k - i) = a_i b_{k-i}$,因此 $P(\zeta = k) = \sum_{i=0}^{k} a_i b_{k-i}$ 。

例: (泊松分布可加性) 设 $X \sim \mathcal{P}(\lambda_1), Y \sim \mathcal{P}(\lambda_2)$, 且 X, Y 相互独立, 证明 $X + Y \sim \mathcal{P}(\lambda_1 + \lambda_2)$.

解: 泊松分布函数 $P(X=k)=\frac{\lambda_1^k}{k!}e^{-\lambda_1},\ P(Y=k)=\frac{\lambda_2^k}{k!}e^{-\lambda_2},$ 由卷积公式,

$$P(X+Y=k) = \sum_{i=0}^{k} P(X=i)P(X=k-i) = \sum_{i=0}^{k} \frac{\lambda_1^i}{i!} e^{-\lambda_1} \frac{\lambda_2^{k-i}}{(k-i)!} e^{-\lambda_2}$$

由二项式展开,上式整理为

$$\frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{i=0}^k \frac{\lambda_1^i \lambda_2^{k-i} k!}{i!(k-i)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} (\lambda_1 + \lambda_2)^k$$

4.1.2 连续随机变量函数的分布

对于连续随机变量,一般先求分布函数,如果能写出分布密度就写出分布密度。

例: 设 $X \sim N(\mu, \sigma^2)$, 试求 $Y = \frac{1}{\sigma}(X - \mu)$ 的概率分布。

解: 对任何实数 y, 由于 $\{Y \le y\} = \{X \le \sigma y + \mu\}$, 于是

$$P(Y \leqslant y) = P(X \leqslant \sigma y + \mu)$$

$$= \int_{-\infty}^{\mu+\sigma y} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\} dx$$

变量替换 $\frac{x-\mu}{\sigma} = t$ 得

$$P(Y \leqslant y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dx$$

说明 $Y \sim N(0,1)$

定理: 设随机变量 X 有分布密度 p(x),且在区间 $(a,b)(-\infty \le a < b \le +\infty)$ 上满足 P(a < X < b) = 1。又 Y = f(X),其中 f(x) 是 (a,b) 上严格单调的连续函数,g(y) 是 f(x) 的反函数,且 g'(y) 处处存在,令

$$q(y) = \begin{cases} p(g(y))|g'(y)|, & y \in (\alpha, \beta), \\ 0, & 其他 \end{cases}$$

其中 (α, β) 是反函数 g(y) 的存在区间,即 $\alpha = \min\{A, B\}, \beta = \max\{A, B\}, A \triangleq \lim_{x \to a+} f(x), B \triangleq \lim_{x \to b-} f(x), 则 <math>q(y)$ 是 Y 的分布密度。

证明: 设 f(x) 是严格增函数 (当 f(x) 是严格减函数时,可以类似的证明)。那么对于 $u \in (\alpha, \beta)$ 有

$$P(Y \leqslant u) = P(f(X) \leqslant u) = P(X \leqslant g(u))$$
$$= \int_{-\infty}^{g(u)} p(x)dx = \int_{a}^{g(u)} p(x)dx$$

做变量替换 x = g(y), 则

$$P(Y \leqslant u) = \int_a^u p(g(y)) \mid g'(y) \mid dy = \int_{-\infty}^u q(y)dy$$

$$P(Y \leqslant u) = P(X \leqslant a) = 0 = \int_{-\infty}^{u} q(y)dy$$

当 $u \geqslant \beta$ 时

$$P(Y \leqslant u) = P(X \leqslant b) = 1 = \int_{a}^{b} p(x)dx$$
$$\int_{\alpha}^{\beta} p(g(y)) \mid g'(y) \mid dy = \int_{-\infty}^{u} q(y)dy$$

综上,对于一切实数 u,有 $P(Y\leqslant u)=\int_{-\infty}^u q(y)dy$,故 g(y) 是 Y=f(X) 的密度函数。

例:(对应郑书例 5.3)研究水箱内某种微生物的增长情况。设在时 0 微生物的总数是 v(v>0),增长率是 X,在时刻 t 微生物总数是 $Y=ve^{Xt}(t>0)$ 。若 X 有分布密度

$$p(x) = \begin{cases} 3(1-x)^2, & 0 < x < 1, \\ 0, & \text{其他}, \end{cases}$$

试求 Y 的概率分布。

解: 反函数的求解需要注意函数和区间的变化。

令 $f(x) = ve^{Xt}(0 < x < 1)$, 则其反函数为:

$$g(y) = \frac{1}{t} \ln \frac{y}{v} \quad (v < y < ve^t)$$

易知 $g'(y) = \frac{1}{ty}$,根据定理知, $Y = ve^{xt}$ 的分布密度是:

$$q(y) = \begin{cases} 3(1 - \frac{1}{t} \ln \frac{y}{v})^2 \frac{1}{ty}, & v < y < ve^t, \\ 0, & \not\equiv \text{th}, \end{cases}$$

例:(对应郑书例 5.4,对数正态分布)设 X 是只取正值的随机变量,使得 $Y = \ln X$ 服从正态分布 $N(\mu, \sigma^2)$,试求出 X 的分布函数和分布密度。

解:对任何 x > 0,有

$$F_X(x) = P(X \leqslant x) = P(\ln X \leqslant \ln x) = P(Y \leqslant \ln x)$$
$$= \int_{-\infty}^{\ln x} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\} dy$$

做变量替换 $y = \ln u$, 得

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma u} \exp\left\{-\frac{1}{2\sigma^2} (\ln u - \mu)^2\right\} du$$

当 $x \le 00$ 时,称变量 X 服从对数正态分布。不难看出,X 的分布密度 p(u) 为: 当 $u \le 0$ 时,p(u) = 0,当 u > 0 时,p(u) 是上式中的被积函数。

例: 设 $\theta \sim U(-\frac{\pi}{2}, \frac{\pi}{2}), \ \psi = tan\theta, \ \$ 求 ψ 的密度函数。

解: 设 $\psi = tan\theta$ 的反函数为 g(y), 则 $g(y) = \arctan y$ 。由定理得 $p_{\psi}(y) = p_{U(-\frac{\pi}{2},\frac{\pi}{2})}(g(y))g'(y) = p_{U(-\frac{\pi}{2},\frac{\pi}{2})}(\arctan y)\frac{1}{1+y^2} = \frac{1}{\pi(1+y^2)}, \ y \in \mathbb{R}, \$ 称该变量 ψ 符合 Cauchy 分布。

4.2 随机变量的反函数

随机变量的反函数: 设 F(x) 是任何分布函数(即 F(x) 非减,右连续,且 $\lim_{x\to-\infty} F(x)=0$, $\lim_{x\to+\infty} F(x)=1$),令

$$F^{-1}(p) \triangleq \min \{x : F(x) \ge p\} \quad (0$$

则称 $F^{-1}(p)$ 是 F(x) 的广义反函数。

注意,F(x) 是右连续增函数,满足不等式 $F(x) \ge p$ 的 x 中必有最小者,当 F(x) 是严格增的连续函数时, $F^{-1}(p)$ 正好是方程 F(x) = p 的唯一根,此时 $F^{-1}(p)$ 是 F(x) 的普通反函数。

引理: $F^{-1}(p)(0 有如下性质:$

- (1) $F^{-1}(p)$ 是 p 的增函数。
- (2) $F(F^{-1}(p)) \geqslant p$, 若 F(x) 在点 $x = F^{-1}(p)$ 处连续,则

$$F(F^{-1}(p)) = p.$$

(3) $F^{-1}(p) \leq x$ 的充分必要条件是 $p \leq F(x)$ 。

证明: (2) 由于 $F(F^{-1}(p) + \varepsilon) \ge p$ ($\forall \varepsilon > 0$),令 $\varepsilon \to 0$,利用 F(x) 的右连续性知 $F(F^{-1}(p)) \ge p$ 。 若 F(x) 在点 $F^{-1}(p)$ 处连续,从 $F(F^{-1}(p) - \varepsilon) < p$ ($\varepsilon > 0$) 推知 $F(F^{-1}(p)) = \lim_{\varepsilon \to 0} F(F^{-1}(p) - \varepsilon) \le p$,从而 $F(F^{-1}(p)) = p$ 。

(3) 若 $F(x) \ge p$,从非减性质知 $x \ge F^{-1}(p)$;反之若 $x \ge F^{-1}(p)$,则 $F(x) \ge F(F^{-1}(p)) \ge p$,故性质 (3) 成立。

定理: 设 F(x) 是任何分布函数,若 U 是服从区间 [0,1] 上的均匀分布的随机变量,且

$$X = F^{-1}(U)$$

则 X 的分布函数恰好是 F(x)。

证明:对任何 $y \in (0,1)$,从性质 (3) 知 $x \ge F^{-1}(y)$ 的充分必要条件是 $F(x) \ge y$,于是

$$P(X\leqslant x)=P(F^{-1}(U)\leqslant x)=P(U\leqslant F(x))=F(x).$$

这表明 X 的分布函数是 F(x)。

5.1 随机变量的数学期望

实际问题的概率分布比较难以确定,有时只需掌握随机变量的数学特征就足够了。随机变量的数学期望 (expectation) 的含义是,随机变量平均取值 (mean) 的大小。

• X 的大量独立观测值 (记为 a_1, a_2, \dots, a_n) 的算术平均,当样本数无穷大时,算术平均收敛于期望值:

$$\bar{a} = \frac{1}{n} \left(a_1 + \dots + a_n \right).$$

• X 的所有可能值的加权平均(总和).

5.1.1 离散型随机变量的数学期望

离散型随机变量的数学期望:假设X是离散型随机变量,分布列为

$$P(X = x_k) = p_k, \quad k = 1, \dots, n \ \ \vec{\boxtimes} k = 1, 2, \dots.$$

其中 X 的可能值是 x_1, x_2, \cdots ,如果 $\sum_k |x_k| p_k < \infty$,那么,称 X 的期望存在,称 $\sum_k x_k p_k$ 为 X 的数学期望,记为 EX.

注意,级数 $\sum_k |x_k| p_k$ 收敛可以保证和数 $\sum_k x_k p_k$ 与加项的先后次序无关。更一般的假定是级数 $\sum_k x_k^+ p_k$ 和 $\sum_k x_k^- p_k$ 中至少一个收敛(这里 $x_k^+ = \max\{x_k, 0\}, \ x_k^- = \max\{-x_k, 0\}$)这时和数 $\sum_k x_k p_k$ 与加项的先后次序无关。

注意到 E(X) 完全由 X 的概率分布确定,因此 E(X) 也称为相应概率分布的期望,下面计算几个常见的概率分布的期望:

(1) 两点分布

设随机变量 X 服从两点分布, P(X=1) = p, P(X=0) = 1 - p. 则,

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p.$$

(2) 二项分布

设随机变量 X 服从二项分布: $P(X=k) = C_n^k p^k q^{n-k} := b(n;k), k = 0, 1, \dots, n, (q=1-p).$

对于 $\forall 1 \leq k \leq n$,

$$k \cdot b(n;k) = k \cdot \frac{n!}{k!(n-k)!} p^k q^{n-k} = \frac{n!}{(k-1)!(n-k)!} p^k q^{n-k}$$
$$= \frac{n \cdot (n-1)!}{(k-1)!(n-k)!} p \cdot p^{k-1} q^{n-k} = np \cdot b(n-1;k-1)$$

因此,

$$E(X) = \sum_{k=0}^{n} k \cdot b(n; k) = \sum_{k=1}^{n} np \cdot b(n-1; k-1)$$
$$= np \sum_{\ell=0}^{n-1} b(n-1, \ell) = np.$$

(3) 泊松分布

设随机变量 X 服从泊松分布:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} =: p_k, \quad k = 0, 1, 2, \dots$$

则对于 $\forall k \geq 1$,

$$x_k p_k = k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda p_{k-1}.$$

因此,

$$E(X) = \sum_{k=0}^{\infty} k p_k = \sum_{k=1}^{\infty} \lambda p_{k-1} = \lambda \sum_{\ell=0}^{\infty} p_{\ell} = \lambda.$$

(4) 几何分布

设随机变量 X 满足几何分布,即

$$P(X = k) = q^{k-1}p =: p_k, \quad k = 1, 2, \dots, (q = 1 - p).$$

直接计算期望:

$$E(X) = \sum_{k=1}^{\infty} k p_k = \frac{1}{p}.$$

(5) 离散均匀分布

设随机变量 X 的可能值是 $1, \dots, N$, 且

$$P(X = k) = \frac{1}{N}$$
 $(k = 1, \dots, N).$

直接计算

$$E(X) = \sum_{k=1}^{N} kP(X = k) = \frac{N+1}{2}.$$

(6) 超几何分布

设随机变量 X 满足超几何分布,即

$$P(X = k) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}, \quad k = 0, 1, \dots, n.$$

记 $h(N,D,n;k) = A_1 \cdot A_2 \cdot A_3$

$$= \frac{D!}{k!(D-k)!} \cdot \frac{(N-D)!}{(n-k)!(N-D-(n-k))!} \cdot \frac{n!(N-n)!}{N!}.$$

记 x' = x - 1. 则, $\forall 1 \leq k \leq n$,

$$k \cdot A_1 = \frac{D!}{(k-1)!(D-k)!} = D \times \frac{D'!}{k'!(D'-k')!}.$$

进一步,

$$A_{2} = \frac{(N' - D')!}{(n' - k')! (N' - D' - (n' - k'))!},$$

$$A_{3} = \frac{n \cdot n'! (N' - n')!}{N \cdot N'!} = \frac{n}{N} \times \frac{n'! (N' - n')!}{N'!}.$$

记 x' = x - 1. 则 $\forall 1 \leq k \leq n$,

$$k \cdot h(N, D, n; k) = \frac{nD}{N} \times h(N', D', n'; k').$$

因此,

$$E(X) = \sum_{k=1}^{n} k \cdot h(N, D, n; k) = \frac{nD}{N} \sum_{k'=0}^{n'} h(N', D', n'; k') = \frac{nD}{N}$$

对于该期望, 当 D=1 时, 退化为伯努利分布, $E(X)=p=\frac{D}{N}$.

当 $D \ge 2$ 时, 不放回抽样, 仍有 E(X) = np.

5.1.2 一般随机变量的数学期望

若 X 为任意随机变量. 做如下近似: 对于 $\forall n \in \mathbb{Z}$,

该假设的直观含义是: $X^* \leq X < X^* + \varepsilon$, 因此 $EX^* \leq EX < EX^* + \varepsilon$.

一般随机变量的数学期望: 若 EX^* 存在且当 $\varepsilon \to 0$ 时有极限, 则称 X 的期望存在, 且称该极限为 X 的期望, 记为 E(X)。

对离散型随机变量, 离散型随机变量期望的定义和一般随机变量的数学期望的定义一致。

例: 对于连续性随机变量 X,且 $X \ge 0$. 证明 $E(X) = \int_0^{+\infty} P(X > x) dx$.

解:令

$$G(x) = P(X > x) = \int_{x}^{\infty} p(y)dy$$

则 G'(x) = -p(x). 于是,

$$\int_0^\infty x p(x) dx = \int_0^\infty x dG(x) = \int_0^\infty G(x) dx.$$

接下来,我们计算一些常见连续型随机变量的数学期望:

(1) 均匀分布

设随机变量 X 服从区间 [a,b] 上的均匀分布,即 X 有密度分布:

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & 其他 \end{cases}$$

由定义知

$$E(X) = \int_b^a x \frac{1}{b-a} dx = \frac{a+b}{2}.$$

(2) 指数分布

设随机变量 X 有分布密度

$$p(x) = \lambda e^{-\lambda x}, \quad x > 0, \lambda > 0.$$

由定义知 $E(X) = \int_0^\infty x \cdot \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x} = \int_0^\infty e^{-\lambda x} dx = \frac{1}{\lambda}.$

(3) 正态分布

设随机变量 X 有分布密度

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

对于 $X \sim N(0,1)$, 由对称性直接计算得,

$$E(X) = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0$$

同理, $X \sim N(\mu, \sigma^2)$, 则 $p(\mu + x) = p(\mu - x)$, 因此 $E(X) = \int_{-\infty}^{\infty} (x + \mu)p(\mu + x)d(x + \mu) = \int_{-\infty}^{\infty} xp(x + \mu)dx + \mu \int_{-\infty}^{\infty} p(x + \mu)dx = \mu$.

例,对于柯西分布,

$$p(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}.$$

但是, $\int_{-\infty}^{\infty} |x| p(x) dx = \infty$. 因此, EX 不存在!

(4) 伽马分布

设随机变量 X 有分布密度

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0$$

对于 $\forall x > 0$,

$$xp(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha} e^{-\beta x} = \frac{\Gamma(\alpha+1)}{\beta \Gamma(\alpha)} \cdot \frac{\beta^{\alpha+1}}{\Gamma(\alpha+1)} x^{\alpha} e^{-\beta x} = \frac{\alpha}{\beta} \cdot \hat{p}(x).$$

因此,

$$E(X) = \int_0^\infty x p(x) dx = \frac{\alpha}{\beta} \int_0^\infty \hat{p}(x) dx = \frac{\alpha}{\beta}$$

5.1.3 数学期望的性质

定理: (1) 若 $X \equiv a$, 则 E(X) = a;

- (2) 若 $X \ge 0$, 且 E(X) 存在, 则 $EX \ge 0$;
- (3) 若 $F_X = F_Y$ (或, 若 X = Y), 且 E(X) 存在, 则 E(Y) 存在, 且 E(X) = E(Y);
- (4) 线性: 假设 E(X), E(Y) 存在. 则,

$$E(a(X)) = aE(X), \quad E(X+Y) = E(X) + E(Y).$$

- (5) 单调性: 假设 E(X),E(Y) 存在, 又若 $X \ge Y$, 则 $E(X) \ge E(Y)$;
- (6) $E|X| \ge |E(X)|$;
- (7) 若随机变量 X,Y 独立,且期望 E(X),E(Y) 存在,则

$$E(XY) = E(X)E(Y).$$

推论: (1) 线性: 假设 E(X), E(Y) 存在. 则,

$$E(aX + bY) = aE(X) + bE(Y).$$

(2) 和的期望: 假设 $E(X_1), \cdots, E(X_n)$ 都存在, $\eta = X_1 + \cdots + X_n$. 则 $E(\eta)$ 存在, 且

$$E(\eta) = \sum_{i=1}^{n} E(X_i)$$

推论(1)可以由性质(4)推出,推论(2)可以由数学归纳法和性质(4)推出。

例: 超几何分布 $\eta \sim H(N, D, n)$ 的期望可以使用推论 (2) 计算: 若第 i 个产品是次品,则令 $X_i = 1$; 否则,令 $X_i = 0$.则,

$$\eta = X_1 + \dots + X_n \Rightarrow E(\eta) = np$$

马尔科夫不等式:设 $X \ge 0$,且EX存在.则对任意C > 0,有

$$P(X \geqslant C) \leqslant \frac{1}{C}EX.$$

证明: \diamondsuit $A = \{X \geqslant C\}$. 则 $1_A \leqslant \frac{X}{C}$. 于是,

$$P(A) = E1_A \leqslant E\frac{X}{C} = \frac{1}{C}EX.$$

例: 若 $X \ge 0$, 且EX = 0, 证明P(X > 0) = 0。

解:

$$\begin{split} P\left(X\geqslant\frac{1}{n}\right)\leqslant nEX &=0\\ \Rightarrow &P(X>0)=\lim_{n\to\infty}P\left(X\geqslant\frac{1}{n}\right)=0. \end{split}$$

5.2 随机变量函数的期望

定理: (1) X 是离散型随机变量,且下面的级数绝对收敛,则

$$Ef(X) = \sum_{k} f(x_k) p_k$$
 (5.2.1)

(2) X 是连续型随机变量, 且下面的积分绝对收敛, 则

$$Ef(X) = \int_{-\infty}^{\infty} f(x)p(x)dx.$$
 (5.2.2)

例: (对应郑书例 6.1) 设 $X \sim U(0, 2\pi)$, 求 $E(\sin X)$.

解: $\Diamond p(x)$ 是 x 的分布密度,用公式:

$$E \sin X = \int_{-\infty}^{\infty} \sin x \cdot p(x) dx = \frac{1}{2\pi} \int_{0}^{2\pi} \sin x dx = 0$$

例: (对应郑书例 6.2) 设随机变量 X 服从参数为 λ 的指数分布,又 $v_0 > 0$,

$$Y = \begin{cases} X, & X < v_0, \\ v_0, & X \geqslant v_0, \end{cases}$$

求 E(Y)。

解:设 $f(x) = \min\{x, v_0\}$,则 Y = f(X),由于 X 的分布密度是

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & X \le 0, \end{cases}$$

由式5.2.2知

$$E(Y) = \int_{-\infty}^{+\infty} f(x)p(x)dx = \int_{0}^{+\infty} f(x)\lambda e^{-\lambda x} dx$$
$$= \int_{0}^{v_0} x\lambda e^{-\lambda x} dx + \int_{v_0}^{+\infty} v_0\lambda e^{-\lambda x} dx$$
$$= \frac{1}{\lambda} (1 - e^{-\lambda v_0})$$

琴生不等式: 若 ϕ 为凸函数,则

$$\phi(E(X)) \leqslant E(\phi(X)).$$

将期望等价于平均,代入琴生不等式即可证明。

例: 连续型随机变量 X, Y 的概率密度函数分别为 p(x), q(x) 且 $p(x), q(x) \neq 0, f$ 为一凸函数, f(1) = 0, 证明: $E_{x \sim q} f\left(\frac{p(x)}{q(x)}\right) \geqslant 0$.

证明: 由琴生不等式,

$$E_{x \sim q} f\left(\frac{p(x)}{q(x)}\right) \geqslant f\left(E_{x \sim q}\left(\frac{p(x)}{q(x)}\right)\right) = f\left(\int_{-\infty}^{+\infty} \frac{p(x)}{q(x)} q(x) dx\right) = f(1) = 0.$$

例: 连续型随机变量 X,Y 的概率密度函数分别为 p(x),q(x) 且 $p(x),q(x)\neq 0$,我们定义 X 关于 Y 的 KL-divergence 为 $\mathrm{KL}(X||Y)=E_X\left(\ln\frac{p(x)}{q(x)}\right)$,试证明 $\mathrm{KL}(X||Y)\geqslant 0$ 。

证明:

$$\mathrm{KL}(X||Y) = \int p(x) \left(-\ln\frac{q(x)}{p(x)}\right) dx,$$

由于 - ln x 是凸函数, 由琴生不等式知

$$\int p(x) \left(-\ln \frac{q(x)}{p(x)} dx \right) \geqslant -\ln \left(\int p(x) \frac{q(x)}{p(x)} dx \right) = -\ln 1 = 0.$$

例: 设随机变量 X 服从参数为 λ 的泊松分布,证明

$$E(X^n) = \lambda E((X+1)^{n-1}).$$

利用此结果计算 $E(X^3)$ 。

证明:

$$E(X^n) = \sum_{k=0}^{\infty} k^n \frac{\lambda^n}{k!} e^{-\lambda} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} k^{n-1} \frac{\lambda^{k-1}}{(k-1)!}$$

设 k' = k - 1, 则

$$E(X^n) = \lambda e^{-\lambda} \sum_{k'=0}^{\infty} (k'+1)^{n-1} \frac{\lambda^{k'}}{k'!} = \lambda E((X+1)^{n+1}).$$

由此得

$$E(X^3) = \lambda E(X+1)^2 = \lambda (E(X^2) + 2E(X) + 1) = \lambda (\lambda E(X+1) + 2\lambda + 1) = \lambda^3 + 3\lambda^2 + \lambda.$$

例:设 X 是仅取非负整数的离散随机变量,若其数学期望存在,证明

$$(1)E(X) = \sum_{k=1}^{\infty} P(X \geqslant k).$$

$$(2)\sum_{k=0}^{\infty} kP(X > k) = \frac{1}{2}[E(X^2) - E(X)].$$

证明: (1) 由于 $E(X) = \sum_{k=1}^{\infty} kP(X=k)$ 存在,所以该级数绝对收敛,从而

$$E(X) = \sum_{k=1}^{\infty} k P(X = k) = \sum_{k=1}^{\infty} \left[\sum_{i=1}^{k} P(X = k) \right]$$
$$= \sum_{i=1}^{\infty} \left[\sum_{k=i}^{\infty} P(X = k) \right] = \sum_{k=1}^{\infty} P(X \geqslant k).$$

(2)

$$\begin{split} \sum_{k=0}^{\infty} kP(X>k) &= \sum_{k=0}^{\infty} k \sum_{i=k+1}^{\infty} P(X=i) = \sum_{i=1}^{\infty} \sum_{k=0}^{i-1} kP(X=i) \\ &= \sum_{i=1}^{\infty} P(X=i) \frac{(i-1)i}{2} = \frac{1}{2} \sum_{i=1}^{\infty} i^2 P(X=i) - \frac{1}{2} \sum_{i=1}^{\infty} iP(X=i) \\ &= \frac{1}{2} E(X^2) - \frac{1}{2} E(X). \end{split}$$

例: 甲乙两人进行象棋比赛,每局甲胜的概率为 p,乙胜的概率为 q=1-p,比赛进行到有一人连胜两局为止,求平均比赛局数。

解: 设 X 为决定胜负所需的局数,可以取值为 $2,3,\cdots$,事件 $\{X \ge k\}$ 表示"到 k-1 局时没有一人连胜两局",所以

$$P(X \ge 1) = 1,$$

$$P(X \ge 2k) = p^k q^{k-1} + p^{k-1} q^k = (pq)^{k-1}, \quad k = 1, 2, \cdots,$$

$$P(X \ge 2k + 1) = 2p^k q^k, \quad k = 1, 2, \cdots.$$

利用上一题第一问提供的公式,可得

$$E(X) = \sum_{k=1}^{\infty} P(X \ge k) = 1 + \sum_{k=1}^{\infty} (pq)^{k-1} + 2\sum_{k=1}^{\infty} (pq)^k$$
$$= 1 + \frac{1}{1 - pq} + \frac{2pq}{1 - pq} = \frac{2 + pq}{1 - pq}.$$

注意到对任意的 $0 总有 <math>p(1-p) \leqslant \frac{1}{4}$, 故由 E(X) 关于 pq 单调增可得

$$E(X) \leqslant \frac{2 + \frac{1}{4}}{1 - \frac{1}{4}} = 3$$

故这种比赛最终决定胜负的平均局数不超过 3 局,在 $p=\frac{1}{2}$ 时达到上界。

5.3 随机变量的方差

随机变量的方差和标准差: 假设 E(X) 存在, 且 $E(X-EX)^2$ 也存在. 则称 $E(X-EX)^2$ 为 X 的 方差, 记为 var(X) 或 D(X). 称 $\sqrt{var(X)}$ 为标准差。

切比雪夫不等式: 设 X 是随机变量, 如果 E(X) 和 var(X) 都存在, 则 $\forall \varepsilon > 0$, 有

$$P(|X - EX| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \operatorname{var}(X).$$
 (5.3.1)

证明: $\{|X-EX|\geqslant \varepsilon\}=\left\{(X-EX)^2\geqslant \varepsilon^2\right\}$, 对 $Y=(X-EX)^2$ 用马尔可夫不等式,得

$$P(|X - EX| \ge \varepsilon) = P(Y \ge \varepsilon^2) \le \frac{1}{\varepsilon^2} E(Y).$$

推论: 若 var(X) = 0, 则

$$P(X = E(X)) = 1.$$

证明: 由切比雪夫不等式知

$$P(|X - E(X)| \ge \frac{1}{n}) = 0 \quad (n = 1, 2, \dots),$$

于是

$$P(X \neq E(X)) = P(\bigcup_{n=1}^{\infty} \left\{ |X - E(X)| \geqslant \frac{1}{n} \right\})$$

$$\leqslant \sum_{n=1}^{\infty} P(|X - E(X)| \geqslant \frac{1}{n}) = 0.$$

所以 P(X = E(X)) = 1。

对于方差的计算方法,有以下定理:

定理: X 为一般随机变量,且期望 $E(X^2)$ 和 E(X) 存在,则

$$var(X) = E(X^{2}) - (EX)^{2}.$$
(5.3.2)

证明:

$$var(X) = E(X^{2} - 2X \cdot EX + (EX)^{2})$$
$$= E(X^{2}) - 2E(X) \cdot E(X) + (E(X))^{2} = E(X^{2}) - (EX)^{2}$$

具体地, 离散型或连续型的公式如下:

$$\operatorname{var}(X) = \sum_{k} x_{k}^{2} p_{k} - (EX)^{2}$$
$$\operatorname{var}(X) = \int_{-\infty}^{\infty} x^{2} p(x) dx - (EX)^{2}$$

定理: X 的线性变换的方差:

$$var(aX + b) = a^2 var(X)$$

该定理可以利用式5.3.2计算。

$$var(aX + b) = E((aX + b)^{2}) - (E(aX + b))^{2}$$

$$= (a^{2}E(X^{2}) + 2abE(X) + b^{2}) - (a^{2}(E(X))^{2} + 2abE(X) + b^{2})$$

$$= a^{2}(E(X^{2}) - a^{2}(E(X))^{2}) = a^{2} var(X)$$

定理: 设 X 为随机变量,则方差 $D(X) = \inf_{c \in \mathbb{R}} E(X - c)^2$ 。

证明:【方法一】利用 E(X+c) = E(X) + c 与 D(X+c) = D(X), 可得

$$D(X) = D(X - c) = E(X - c)^{2} - (E(X - c))^{2} \leqslant E(X - c)^{2}.$$

等号成立条件是 E(X) = c。

【方法二】利用

$$E(X - c)^{2} = E(X - E(X) + E(X) - c)^{2}$$

$$= D(X) + 2E[(X - E(X))(E(X) - c)] + (E(X) - c)^{2}$$

$$= D(X) + (E(X) - c)^{2}.$$

在 c = E(X) 处取得最小值 D(X)。

下面计算常见随机变量的方差:

(1) 两点分布

设随机变量 X 服从两点分布,即 $X \sim B(1,p)$,根据之前的计算 E(X) = p, $E(X^2) = 0^2 \cdot P(X = 0) + 1^2 \cdot P(X = 1) = p$,由式5.3.2知

$$D(X) = E(X^{2}) - (E(X))^{2} = p - p^{2} = p(1 - p)$$

(2) 二项分布

设随机变量 X 服从参数为 n,p 的二项分布,即

$$P(X = k) = C_n^k p^k q^{n-k} =: b(n; k), \quad k = 0, 1, \dots, n, (q = 1 - p).$$

已经计算期望 EX = np, 且由分布函数知, 对于 $\forall 1 \leq k \leq n$,

$$k \cdot b(n; k) = np \cdot b(n-1, k-1).$$

那么对于 $\forall 2 \leq k \leq n$,

$$k(k-1) \cdot b(n;k) = np \cdot (k-1) \cdot b(n-1,k-1)$$

= $np \cdot (n-1)p \cdot b(n-2,k-2)$

于是,

$$E(X(X-1)) = \sum_{k=2}^{n} k(k-1) \cdot b(n;k) = np(n-1)p \sum_{k=2}^{n} b(n-2:k-2) = np(n-1)p = (np)^{2} - np^{2},$$

从而

$$D(X) = E(X^{2}) - (E(X))^{2} = E(X(X-1)) + E(X) - (E(X))^{2} = npq.$$

(3) 泊松分布

设随机变量 X 服从参数为 λ 的泊松分布,即

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

已经计算 X 的期望 $E(X)=\lambda$, 且由分布函数, $\forall k\geqslant 1, kp_k=\lambda p_{k-1}$. 因此, 对于 $\forall k\geqslant 2$,

$$k(k-1)p_k = \lambda(k-1)p_{k-1} = \lambda^2 p_{k-2}$$

于是,

$$E(X(X-1)) = \sum_{k=2}^{\infty} k(k-1) \cdot p_k = \lambda^2 \sum_{k=2}^{\infty} p_{k-2} = \lambda^2,$$

从而

$$Dvar(X) = E(X^{2}) - (E(X))^{2} = E(X(X-1)) + E(X) - (E(X))^{2} = \lambda.$$

(4) 均匀分布

设随机变量 X 服从区间 [a,b] 上的均匀分布,即 X 有密度分布:

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & \sharp \& \end{cases}$$

已经计算 X 的期望 $E(x) = \frac{a+b}{2}$, 且

$$\int_{-\infty}^{+\infty} x^2 p(x) dx = \frac{1}{b-a} \int_a^b x^2 dx = \frac{b^2 + ab + a^2}{3}.$$

由式5.3.2得

$$D(X) = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{(b-a)^2}{12}.$$

(5) 指数分布

设随机变量 X 服从参数为 λ 的指数分布, 即 X 的分布函数为:

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & X \leq 0, \end{cases}$$

已经计算期望 $E(X) = \frac{1}{\lambda}$, 且

$$\int_{-\infty}^{+\infty} x^2 p(x) dx = \lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

由式5.3.2得

$$D(X) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

(6) 正态分布

设随机变量 X 服从正态分布, 即 X 的分布函数为:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

若 $\mu = E(X) = 0, \sigma^2 = 1,$ 则,

$$D(X) = E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$
$$= -\frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x de^{-\frac{x^{2}}{2}} = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} dx = 1$$

一般情形, 做变量替换 $Y = \frac{X-\mu}{\sigma} \sim N(0,1)$. 则

$$X - E(X) = (\mu + \sigma Y) - (\mu + \sigma E(Y)) = \sigma(Y - E(Y))$$

$$\Rightarrow D(X) = E((X - E(X))^{2}) = E(\sigma(Y - E(Y))^{2}) = \sigma^{2}D(Y) = \sigma^{2}$$

(7) 伽马分布

设随机变量 X 服从伽马分布,有分布密度

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0$$

已经计算 X 的期望 $E(X) = \frac{\alpha}{\beta}$, 由式5.3.2知

$$D(X) = \int_0^{+\infty} x^2 \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} dx - \left(\frac{\alpha}{\beta}\right)^2$$

做变量替换 $\beta x = t$, 易知

$$D(X) = \frac{1}{\Gamma(\alpha)\beta^2} \int_0^{+\infty} t^{\alpha+1} e^{-t} dt - \left(\frac{\alpha}{\beta}\right)^2$$
$$= \frac{1}{\Gamma(\alpha)\beta^2} \Gamma(\alpha+2) - \left(\frac{\alpha}{\beta}\right)^2$$
$$= \frac{(\alpha+1)\alpha\Gamma(\alpha)}{\Gamma(\alpha)\beta^2} - \left(\frac{\alpha}{\beta}\right)^2 = \frac{\alpha}{\beta^2}$$

随机变量的标准化: 一般地, 若 X 的方差存在, 且 $\mathrm{var}(X) > 0$, 则

$$X^* = \frac{X - E(X)}{\sqrt{\operatorname{var}(X)}}$$

满足 $E(X^*) = 0$, $var(X^*) = 1$. 称 X^* 为 X 的标准化。

例: 设随机变量 $X \sim N(0,1)$, 则对一切正整数 k,

$$E(X^{2k-1}) = 0$$
, $E(X^{2k}) = (2k-1)(2k-3)\cdots 3\cdot 1$.

证明:对任何 $m\geqslant 1$,积分 $\int_{-\infty}^{+\infty}|x|^me^{-x^2/2}dx$ 收敛,因此 $E(X^m)$ 存在,由于

$$x^{2k-1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

是x的奇函数,故

$$E(X^{2k-1}) = \int_{-\infty}^{+\infty} x^{2k-1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0$$

$$E(X^{2k}) = \int_{-\infty}^{+\infty} x^{2k} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} x^{2k-1} d(e^{-x^2/2})$$

$$= (2k-1) \int_{-\infty}^{+\infty} x^{2k-2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= (2k-1)E(X^{2k-2}).$$

这是递推公式, 故

$$E(X^{2k}) = (2k-1)(2k-3)\cdots 3\cdot 1$$

例: 设随机变量 X 的概率密度函数为 $f(x) = \frac{k\theta^k}{x^{k+1}}, x > \theta > 0, k > 2$ 为正整数, 求 (1)E(X), (2)D(X).

解: (1):

$$E(X) = \int_{\theta}^{+\infty} \frac{k\theta^k}{x^{k+1}} x dx = \frac{k\theta}{k-1}.$$

(2):

$$D(X) = \int_{\theta}^{+\infty} \frac{k\theta^k}{x^{k+1}} x^2 dx - (E(X))^2 = \frac{3k - 2k^2}{(k-2)(k-1)^2}.$$

例: 设连续随机变量 X 的分布函数为 F(x), 且数学期望存在,证明:

$$E(X) = \int_0^\infty [1 - F(x)] dx - \int_{-\infty}^0 F(x) dx.$$

证明:

$$E(X) = \int_{-\infty}^{\infty} xp(x)dx = \int_{-\infty}^{0} xp(x)dx + \int_{0}^{\infty} xp(x)dx.$$

将第一个积分改写为:

$$\int_{-\infty}^{0} x p(x) dx = \int_{-\infty}^{0} -\left(\int_{x}^{0} dy\right) p(x) dx$$
$$= -\int_{-\infty}^{0} \int_{-\infty}^{y} p(x) dx dy$$
$$= -\int_{-\infty}^{0} F(y) dy.$$

第二个积分同理,

$$\int_0^\infty x p(x) dx = \int_0^\infty \left(\int_0^x dy \right) p(x) dx$$
$$= \int_0^\infty \int_y^\infty p(x) dx dy$$
$$= \int_0^\infty [1 - F(y)] dy.$$

将二式加和即可得

$$E(X) = \int_0^\infty [1 - F(x)]dx - \int_{-\infty}^0 F(x)dx.$$

5.4 随机变量的其他数学特征

原点矩和中心矩:

设 X 是随机变量,如果 $E(X^k)$ 存在 (k 是正整数),则称 $E(X^k)$ 是 X 的 k **阶原点矩**,常常记为 ν_k 。

设 X 是随机变量,如果 E(X) 存在,且 $E(X-E(X))^k$ 存在(k 是正整数),则称 $E(X-E(X))^k$ 为 X 的 k **阶中心矩**,常常记为 μ_k 。

显然, $E(X) = \nu_1$, $var(X) = \mu_2$ 。

随机变量的 p 分位数: 若 X 是随机变量, 0 , 且

$$P(X < a) \le p \le P(X \le a),$$

则称 a 为 X 的一个 p **分位数**。

p = 0.5 时, 也称 a 为一个中位数.

例: 设随机变量 X 的可能值是 1,2,3 且

$$P(X = 1) = \frac{1}{3}, \quad P(X = 2) = \frac{1}{6}, \quad P(X = 3) = \frac{1}{2}.$$

则 $E(X) = \frac{13}{6}$, 中位数有无穷个, 区间 [2,3] 中的每个数都是 X 的中位数。

例: (对应郑书例 8.3) 设随机变量 $X \sim N(0,1)$,则对一切正整数 k,

$$E(x^{2k-1}) = 0$$
, $E(X^{2k}) = (2k-1)(2k-3) \cdot \dots \cdot 3 \cdot 1$.

定理: 设 $X=X(\omega)$ 是随机变量,对某个 $\alpha\geqslant 1$, $E(|X|^{\alpha})$ 存在,则 E(X) 存在,且

$$E(|X|) \leqslant (E(|X|^{\alpha}))^{1/\alpha}.$$

证明: 首先指出,对一切 $x \ge 0$, $\alpha \ge 0$,如下不等式成立:

$$x^{\alpha} \geqslant a^{\alpha} + \alpha a^{\alpha - 1} (x - a). \tag{5.4.1}$$

实际上,令 $f(x) = x^{\alpha} - a^{\alpha} - \alpha a^{\alpha-1}(x-a)$,则 $f'(x) = \alpha(x^{\alpha-1} - a^{\alpha-1})$,从而 f(x) 在 x = a 处达到最小值,由于 f(a) = 0,因此式5.4.1成立。

由于 $\alpha \geqslant 1$,有 $|X(\omega)| \leqslant |X(\omega)|^{\alpha} + 1$,知 E(X) 存在。 \diamondsuit a = E(X),由式5.4.1知

$$|X(\omega)|^{\alpha} \geqslant (E(|X|))^{\alpha} + \alpha(E(|X|))^{\alpha-1}(|X(\omega)| - E(|X|)).$$

两侧取数学期望,得 $(E(|X|))^{\alpha} \leq E(|X|^{\alpha})$,表明定理成立。

6.1 随机向量的定义

n 维随机向量: 称 n 个随机变量 X_1, \dots, X_n 的整体 $\xi = (X_1, \dots, X_n)$ 为 n 维随机向量(或者 n 维随机变量),一维随机向量简称随机变量。

n **维随机变量数学上的精确定义:** 设 $X_1 = X_1(\omega), \dots, X_n = X_n(\omega)$ 都是概率空间 (Ω, \mathcal{F}, P) 上的随机变量,则称

$$\xi = \xi(\Omega) \triangleq (X_1(\omega), \cdots, X_n(\omega))$$

为概率空间 (Ω, \mathcal{F}, P) 上的 n **维随机向(变)**量。

例如,用炮弹向远处目标攻击,炮弹的落点用平面坐标系中的坐标表示为 (X,Y) ,是一个二维随机向量。

随机向量的函数: 设 $X_1 = X_1(\omega), \dots, X_n = X_n(\omega)$ 是 n 个随机变量, $f(x_1, \dots, x_n)$ 是 n 元实值函数,则称随机变量 $Y \triangleq f(x_1, \dots, x_n)$ 为随机变量 X_1, \dots, X_n 的函数(即随机向量 (X_1, \dots, X_n) 的函数)。

6.2 二维随机变量的联合分布和边缘分布

6.2.1 离散情形

离散型二维随机向量: 称二维随机向量 $\xi = (X,Y)$ 是离散型的,若它只取至多可列个不同的值,即 ξ 可能取的值可以排成一个(有限或无穷序列)。

二维离散型随机向量的概率分布: 设 $\xi = (X,Y)$ 是二维离散型随机向量,其可能值是 a_1, a_2, \cdots (有限个或者无穷可列个), $p_1 \triangleq P(\xi = a_i)(i = 1, 2, \cdots)$, 则称

$$\{p_i: i = 1, 2, \cdots\}$$

为 ξ 的概率分布,也称为 ξ 的概率函数或概率分布律。 $\xi = (X,Y)$ 的概率分布也叫做(X,Y)的**联合概率分布**(简称联合分布)。

今

$$p_{ij} = P(X = x_i, Y = y_i) \quad (i, j = 1, 2, \cdots),$$

 $\{p_{ij}\}$ 就是 $\xi = (X, Y)$ 的概率分布,可以用表6.3来表示,表6.3也称 $\xi = (X, Y)$ 的概**率分布表**。 联合分布满足性质:

表 6.3: (X,Y) 的概率分布表。

(1) 非负性: $p_{ij} \ge 0, i, j = 1, 2, \cdots$;

(2) 规范性: $\sum_{i,j} p_{ij} = 1$.

例: (三项分布) 设二维随机向量 $\xi = (X,Y)$ 取值于集合 $E = \{(k_1,k_2): k_1 \pi k_2 \text{ 都是非负整数且} k_1 + k_2 \leq n\}$, ξ 的概率分布是:

$$P((X,Y) = (k_1, k_2)) = \frac{n!}{k_1! k_2! (n - k_1 - k_2)!} p_1^{k_1} p_2^{k_2} (1 - p_1 - p_2)^{n - k_1 - k_2},$$

其中 $n \ge 1, 0 < p_1, 0 < p_2, p_1 + p_2 < 1, (k_1, k_2) \in E$, 这时称 ξ 服从三项分布。

例: 有一大批量粉笔,其中 60% 是白的,25% 是黄的,15% 是红的,现从中随机的依次取出 6 支,问:其中恰有 3 支白色,1 支黄色,2 支红色的概率是多少?

解: 令 X = "6 支中白粉笔的个数",Y = "6 支中黄粉笔的个数",则事件 "6 支中恰有 3 支白色,1 支黄色,2 支红色"就是事件

由三项分布, 概率可表示为

$$P((X,Y) = (3,1)) = \frac{6!}{3!1!2!} 0.6^3 \times 0.25 \times 0.15^2.$$

用组合数方法同样可以得到上述结果。

一般的,对于满足 $k_1 \ge 0, k_2 \ge 0$ 及 $k_1 + k_2 \le 6$ 的 k_1, k_2 ,由三项分布有

$$P((X,Y) = (k_1, k_2)) = \frac{6!}{k_1! k_2! (6 - k_1 - k_2)!} 0.6^{k_1} \times 0.25^{k_2} \times 0.15^{6 - k_1 - k_2}.$$

二**维随机向量的边缘分布:** 对于二维随机向量 $\xi = (X, Y)$, 分量 X 的概率分布称为 ξ 关于 X 的**边缘分布**, 分量 Y 的概率分布称为 ξ 关于 Y 的**边缘分布**。

二维随机向量 $\xi = (X, Y)$ 的两个边缘分布均由 ξ 的概率分布完全确定。

例: 从 1,2,3,4 中任取一数记为 X,再从 $1,\cdots,X$ 中任取一数记为 Y,求 (XY) 的联合分布列及 P(X=Y)。

 \mathbf{M} : 易知 X 的分布列为:

$$P(X=i) = \frac{1}{4}, \quad i = 1, 2, 3, 4.$$

显然, P(X = i, Y = j) = 0, j > i, i = 1, 2, 3, 4, 当 $1 \le j \le i \le 4$ 时, 由乘法公式得

$$P(X = i, Y = j) = P(X = i)P(Y = j|X = i) = \frac{1}{4} \times \frac{1}{i} = \frac{1}{4i}.$$

从而 (X,Y) 的分布列为 由此可算得

$$P(X = Y) = \sum_{i=1}^{4} P(X = Y = i) = \sum_{i=1}^{4} \frac{1}{4i} = \frac{25}{48}.$$

例: (对应郑书例 2.5) 设随机变量 X 取值是 0 或 1, 随机变量 Y 取值也是 0 或 1, 且二维随机向量 (X,Y) 的概率分布是

$$P((X,Y) = (0,0)) = \frac{1}{4} + \varepsilon, \quad P((X,Y) = (0,1)) = \frac{1}{4} - \varepsilon,$$

$$P((X,Y) = (1,0)) = \frac{1}{4} - \varepsilon, \quad P((X,Y) = (1,1)) = \frac{1}{4} + \varepsilon,$$

其中 $0 \leqslant \varepsilon \leqslant \frac{1}{4}$ 。

易知不同的 ε 对应不同的联合分布, 但是

$$P(X = 0) = P((X, Y) = (0, 0)) + P((X, Y) = (0, 1)) = \frac{1}{2},$$

$$P(X = 1) = P((X, Y) = (1, 0)) + P((X, Y) = (1, 1)) = \frac{1}{2}.$$

同理,

$$P(Y = 0) = P(Y = 1) = \frac{1}{2},$$

由此可见,两个边缘分布均与 ε 无关,表明有无穷多个不同的联合分布具有相同的边缘分布。

6.2.2 连续情形

连续型随机向量及其联合密度函数: 设 $\xi = (X,Y)$ 为二维随机向量,若存在非负函数 p(x,y) 使得

$$P(\xi \in D) = \iint_D p(x, y) dx dy,$$

对任意开矩形 D 成立,则称 ξ 为**连续型随机向量**,称 p(x,y) 为 ξ 的**联合密度** (函数),也称概率分布密度函数,记为 $p_{X,Y}(x,y)$.

对于二维连续型随机向量 $\xi = (X,Y)$, 对于平面上任意的集合 A, 有

$$P(\xi \in A) = \iint_A p(x, y) dx dy, \tag{6.2.1}$$

联合密度满足归一性:

$$p(x,y) \geqslant 0;$$

$$\iint_{\mathbb{R}^2} p(x,y) dx dy = 1.$$

例:(对应郑书例 2.6)设二维随机向量 $\xi = (X,Y)$ 的联合密度为

$$p(x,y) = \begin{cases} ce^{-(x+y)}, & x \ge 0 \\ 0, & \text{其他}, \end{cases}$$

其中 c 是一个常数, 求:

(1) c 的值; (2) P(0 < X < 1, 0 < Y < 1).

解:(1)由归一性知

$$1 = \int_{0}^{+\infty} \int_{0}^{+\infty} ce^{-(x+y)} dx dy = c \int_{0}^{+\infty} e^{-x} dx \cdot \int_{0}^{+\infty} e^{-y} dy$$

于是 c=1。

(2) 取 $D = \{(x,y): 0 < x < 1, 0 < y < 1\}$, 由定义知

$$P(0 < X < 1, 0 < Y < 1) = P((X, Y) \in D) = \int_{0}^{1} \int_{0}^{1} e^{-(x+y)} dx dy$$

$$= \int_0^1 e^{-x} dx \cdot \int_0^1 e^{-y} dy = (1 - e^{-1})^2.$$

定义: 设 G 是平面上面积为 $a(0 < a < +\infty)$ 的区域,称二维随机向量 $\xi = (X,Y)$ 服从 G 上的均匀分布,若 $P((X,Y) \in G) = 1$,且 (X,Y) 取值属于 G 的任何部分 A (A 是 G 的子区域)的概率与 A 的面积成正比。容易推知二维随机向量 $\xi = (X,Y)$ 有联合密度为

$$p(x,y) = \begin{cases} \frac{1}{a}, & (x,y) \in G, \\ 0, & \text{ 其他,} \end{cases}$$
 (6.2.2)

连续型随机向量的边缘分布: 设 p(x,y) 是二维随机向量 $\xi = (X,Y)$ 的联合密度,则

$$p_X(x) \triangleq \int_{-\infty}^{+\infty} p(x,y)dy, \quad p_Y(y) \triangleq \int_{-\infty}^{+\infty} p(x,y)dx$$

分别是 X,Y 的分布密度。

证明: 对任何 a < b, 令 $A = \{(x,y) : a < x < b, -\infty < y < +\infty\}$, 由式6.2.1知

$$P((X,Y) \in A) = P(a < X < b) = \int_a^b \int_{-\infty}^{+\infty} p(x,y) dx dy$$
$$= \int_a^b \left(\int_{-\infty}^{+\infty} p(x,y) dy \right) dx = \int_a^b p_X(x) dx.$$

这表明 $p_X(x)$ 是 X 的分布密度, 同理知 $p_Y(y)$ 是 Y 的分布密度。

例:(对应郑书例 2.7)设 G 是由抛物线 $y=x^2$ 和直线 y=x 所围成的区域(图6.3)若二维随机向量 $\xi=(X,Y)$ 服从 G 上的均匀分布,试求 ξ 的联合分布和两个边缘分布密度。

图 6.3: 区域 G 的示意图

M: 由于 G 的面积为

$$\int_0^1 (x - x^2) dx = \frac{1}{6},$$

由式6.2.2知联合密度为

$$p(x,y) = \begin{cases} 6, & (x,y) \in G, \\ 0, & 其他, \end{cases}$$

得 X 的分布密度 $p_X(x)$ 和 Y 的分布密度 $p_Y(y)$ 分别如下:

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy$$

$$= \int_{x^2}^{x} 6 dy = 6(x - x^2) \quad (0 \le x \le 1),$$

$$p_X(x) = 0 \quad (x \notin [0, 1]),$$

$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx$$

$$= \int_{y}^{\sqrt{y}} 6 dx = 6(\sqrt{y} - y) \quad (0 \le y \le 1),$$

$$p_Y(y) = 0 \quad (y \notin [0, 1]).$$

由定义知边缘密度函数由联合密度确定,但是不同的联合密度可能有相同的边缘分布密度,即联合密度不能由两个边缘分布密度完全确定。

例:设二维随机向量 $\xi = (X, Y)$ 有联合密度

$$p_1(x,y) = \frac{1}{2\pi} \exp\{-\frac{1}{2}(x^2 + y^2)\},$$

二维随机向量 $\eta = (U, V)$ 有联合密度

$$p_2(x,y) = \begin{cases} 2p_1(x,y), & xy \ge 0, \\ 0, & \sharp \text{ 性}. \end{cases}$$

则 X 与 U 有相同的分布密度,Y 与 V 有相同的分布密度。

一方面, 当 $x \leq 0$ 时,

$$\int_{-\infty}^{+\infty} p_2(x,y)dy = \int_{-\infty}^{0} 2p_1(x,y)dy = \frac{1}{\pi} \int_{-\infty}^{0} e^{-(x^2+y^2)/2}dy$$
$$= \frac{1}{\pi} e^{-x^2/2} \int_{-\infty}^{0} e^{-y^2/2} = \frac{1}{\pi} e^{-x^2/2} \frac{1}{2} \int_{-\infty}^{+\infty} e^{-y^2/2} = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

类似的, 当 x > 0 时,

$$\int_{-\infty}^{+\infty} p_2(x,y)dy = \int_0^{+\infty} 2p_1(x,y)dy$$
$$= \frac{1}{\pi} \int_0^{+\infty} e^{-(x^2+y^2)/2}dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

即, 对一切 x, $\int_{-\infty}^{+\infty} p_2(x,y) dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

同理, 对一切 y, $\int_{-\infty}^{+\infty} p_2(x,y) dx = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$.

6.2.3 一般情形

一般二维随机向量及其联合分布函数:设 $\xi = (X,Y)$ 是二维随机向量,则称

$$F(x,y) = P(X \leqslant x, Y \leqslant y) \quad (x, y \in \mathbb{R})$$

为 ξ 的分布函数。也称为(X,Y)的**联合分布函数**。

分布函数 F(x,y) 有以下性质:

- (1) $0 \leqslant F(x,y) \leqslant 1$;
- (2) F(x,y) 是 x 的右连续增函数, 也是 y 的右连续增函数;
- (3) $\lim_{x \to -\infty} F(x, y) = 0, \lim_{y \to -\infty} F(x, y) = 0;$
- (4) $\lim_{x\to+\infty} F(x,y) = P(Y \leqslant y), \lim_{y\to+\infty} F(x,y) = P(X \leqslant x);$
- (5) 对任何 $x_1 \leq x_2, y_1 \leq y_2$,有

$$F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1) \ge 0.$$

对性质(1)-(4)可以效仿一维随机变量的证明。

现在证明性质 (5), 我们指出,对一切 $x_1 \leqslant x_2, y_1 \leqslant y_2$,有

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = P(x_1 < X \le x_2, Y \le y_2) - P(x_1 < X \le x_2, Y \le y_1)$$

$$= P(X \le x_2, Y \le y_2) - P(X \le x_1, Y \le y_2)$$

$$- [P(X \le x_2, Y \le y_1) - P(X \le x_1, Y \le y_1)]$$

$$= F(x_2, y_2) - F(x_1, y_2) - [F(x_2, y_1) - F(x_1, y_1)]$$

由 $P(x_1 < X \le x_2, y_1 < Y \le y_2) \ge 0$ 知性质 (5) 成立。

若二维随机向量 $\xi = (X,Y)$ 有联合密度 p(x,y),则 ξ 的联合分布函数 F(x,y) 与联合密度 p(x,y) 有关系式

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v) du dv.$$
 (6.2.3)

例:设二维随机向量 (X,Y) 有密度函数

$$p(x,y) = \begin{cases} Ce^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

求(1)常数 C 的值;(2)联合分布函数 F(x,y);(3)概率 $P(X \leq Y)$ 。

解: (1) 由于

$$1 = C \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) dx dy = C \int_{0}^{+\infty} e^{-2x} dx \int_{0}^{+\infty} e^{-y} dy = \frac{C}{2}$$

得 C=2。

(2) 利用公式

$$\begin{split} F(x,y) &= \int_{-\infty}^{y} \int_{-\infty}^{x} p(t,r) dt dr \\ &= \begin{cases} \int_{0}^{y} \int_{0}^{x} 2e^{-2t-r} dt dr, & x > 0, y > 0, \\ 0, & \text{\sharp th}, \end{cases} \\ &= \begin{cases} (1 - e^{-2x})(1 - e^{-y}), & x > 0, y > 0, \\ 0, & \text{\sharp th}. \end{cases} \end{split}$$

(3) 设区域 $G = \{(x, y) | x \leq y\}$,则

$$P(X\leqslant Y)=P((X,Y)\in G)=\iint_G p(x,y)dydx=\int_0^{+\infty}\int_x^{+\infty}2e^{-2x-y}dydx=\frac{2}{3}.$$

例:设(X,Y)的联合密度函数为

$$p(x,y) = \begin{cases} 1, & 0 < x < 1, |y| < x, \\ 0, & \text{ 其他.} \end{cases}$$

求边际密度函数。

解:根据定义

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \begin{cases} \int_{-x}^{x} 1 dy = 2x & x \in (0, 1), \\ 0, & x \notin (0, 1). \end{cases}$$

$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \int_y^1 1 dx = 1 - y & y \in [0, 1), \\ \int_{-y}^1 1 dx = 1 + y, & y \in (-1, 0), \\ 0, & y \notin (-1, 1). \end{cases}$$

6.2.4 二维正态分布

二维正态分布: 若 $\xi = (X,Y)$ 的联合密度 p(x,y) 有如下表达式, 则称 ξ 服从二维 (元) 正态分布。

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{-\frac{u^2+v^2-2\rho uv}{2(1-\rho^2)}\right\},\tag{6.2.4}$$

其中,

$$u = \frac{x - \mu_1}{\sigma_1}, \quad v = \frac{y - \mu_2}{\sigma_2},$$

共有 5 个参数: $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0, \rho \in (-1, 1)$

例: 设二维随机向量 $\xi = (X, Y)$ 服从二维正态分布, 试求出 X 的分布密度和 Y 的分布密度。

解: 设 X 的分布密度为 $p_X(x)$,做变量代换 $v = \frac{y-\mu_2}{\sigma_2}$,得

$$p_X(x) = \int_{-\infty}^{+\infty} p(x,y)dy$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\}$$

$$\cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho \frac{y-\mu_2}{\sigma_2} \frac{x-\mu_1}{\sigma_1}\right]\right\} dy$$

$$= \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\} \cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} [v^2 - 2\rho v \frac{x-\mu_1}{\sigma_1}]\right\} dv$$

其中

$$\int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[v^2 - 2\rho v \frac{x-\mu_1}{\sigma_1}\right]\right\} dv$$

$$= \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(v - \rho \frac{x-\mu_1}{\sigma_1}\right)^2 - \rho^2 \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right]\right\} dv$$

$$= \exp\left\{\frac{\rho^2}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\} \cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(v - \rho \frac{x-\mu_1}{\sigma_1}\right)^2\right\} dv$$

$$= \exp\left\{\frac{\rho^2}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\} \sqrt{2\pi(1-\rho^2)}.$$

于是

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\}.$$

同理知

$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

这表明 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$

例: 假定 $(\xi_1, \xi_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,试求 (ξ_1, ξ_2) 落在

$$D = \left\{ (x,y) \left| \left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \frac{(x - \mu_1)(y - \mu_2)}{\sigma_1 \sigma_2} + \left(\frac{y - \mu_2}{\sigma_2} \right)^2 \leqslant \lambda^2 \right\} \right\}$$

内的概率。

解: 所求概率

求概率
$$\iint_D p(x,y)dxdy = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\times \iint_D \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right\} dxdy$$

做变量代换 $u = \frac{x-\mu_1}{\sigma_1} - \rho \frac{y-\mu_2}{\sigma_2}, \quad v = \sqrt{1-\rho^2} \frac{y-\mu_2}{\sigma_2}, \quad$ 则

$$\left| \frac{\partial(u,v)}{\partial(x,y)} \right| = \left| \begin{array}{cc} \frac{1}{\sigma_1} & 0 \\ -\frac{\rho}{\sigma_2} & \frac{\sqrt{1-\rho^2}}{\sigma_2} \end{array} \right| = \frac{\sqrt{1-\rho^2}}{\sigma_1 \sigma_2}, \quad |J| = \frac{\sigma_1 \sigma_2}{\sqrt{1-\rho^2}}.$$

从而

$$\begin{split} \iint_D p(x,y) dx dy &= \frac{1}{2\pi (1-\rho^2)} \iint_{\{u^2+v^2\} \leqslant \lambda^2} \exp\left\{-\frac{u^2+v^2}{2(1-\rho^2)}\right\} du dv \\ &= \frac{1}{2\pi (1-\rho^2)} \int_0^{2\pi} \int_0^{\lambda} \exp\left\{-\frac{r^2}{2(1-\rho^2)}\right\} r dr d\theta \\ &= \int_0^{\frac{\lambda^2}{2(1-\rho^2)}} e^{-t} dt = 1 - \exp\left\{-\frac{\lambda^2}{2(1-\rho^2)}\right\}. \end{split}$$

6.3 条件分布

条件分布函数: 设 X 和 Y 是两个随机变量,给定实数 y,如果 P(Y = y) > 0),则称 x 的函数 $P(X \le x|Y = y)$ 为在 Y = y 的条件下 X 的**条件分布函数**,记作 $F_{X|Y}(x|y)$,显然,根据条件概率 的定义,有

$$F_{X|Y}(x|y) = \frac{P(X \leqslant x, Y = y)}{P(Y = y)}.$$

6.3.1 离散型情形

设(X,Y)是二维离散型随机向量,其概率分布为

$$P(X = x_i, Y = y_j) = p_{ij}$$
 $(i = 1, 2, \dots; j = 1, 2, \dots),$

这里 $P(Y = y_i) > 0$ $(j \ge 1)$,则在 $Y = y_i$ 的条件下 X的条件分布为

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{\sum_k p_{kj}} \quad (i = 1, 2, \dots).$$

例: 设随机变量 X 与 Y 相互独立,X 服从参数为 λ_1 的泊松分布,Y 服从参数为 λ_2 的泊松分布,试求在 X+Y=n 条件下 X 的条件分布(n 为正整数)。

解: 由于 X + Y 服从参数为 $\lambda_1 + \lambda_2$ 的泊松分布, 故对 $k = 0, 1, \dots, n$ 有

$$P(X = k | X + Y = n) = \frac{P(X = k, X + Y = n)}{P(X + Y = n)}$$

$$= \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}$$

$$= \frac{\lambda_1^k}{k!} e^{-\lambda_1} \frac{\lambda_2^{n-k}}{(n-k)!} e^{-\lambda_2} / \left[\frac{1}{n!} (\lambda_1 + \lambda_2)^n e^{-(\lambda_1 + \lambda_2)} \right]$$

$$= C_n^k \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-k}.$$

这表明, 在 X + Y = n 的条件下 X 的条件分布列为参数为 n, $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ 的二项分布。

例: 设随机变量 X 与 Y 相互独立,都服从参数是 n,p 的二项分布,试求在 $X+Y=m(0\leqslant m\leqslant 2n)$ 条件下 X 的条件分布。

解: 记 $l = \min\{n, m\}$, 易知

$$P(X + Y = m) = \sum_{i=0}^{l} P(X = i, Y = m - i)$$

$$= \sum_{i=0}^{l} P(X=i)P(Y=m-i)$$

$$= \sum_{i=0}^{l} C_n^i p^i (1-p)^{n-i} C_n^{m-i} p^{m-i} (1-p)^{n-m+i}$$

$$= p^m (1-p)^{2n-m} \sum_{i=0}^{l} C_n^i C_n^{m-i}$$

$$= C_{2n}^m p^m (1-p)^{2n-m}.$$

于是, 当 $k = 0, 1, \dots, l$ 时,

$$\begin{split} P(X=k|X+Y=m) &= \frac{P(X=k,X+Y=m)}{P(X+Y=m)} \\ &= \frac{C_n^k p^k (1-p)^{n-k} C_m^{m-k} p^{m-k} (1-p)^{n-m+k}}{C_{2n}^m p^m (1-p)^{2n-m}} \\ &= \frac{C_n^k C_n^{m-k}}{C_{2n}^m}. \end{split}$$

当 k > l 时,显然 P(X = k | X + Y = m) = 0。

由此可见, 在X + Y = m条件下X的条件分布是超几何分布。

例: 一射手进行射击,击中目标的概率 $p \in (0,1)$,射击至击中目标两次为止。若以 X 表示首次击中目标所进行的射击次数,以 Y 表示总共进行的射击次数。试求 X 和 Y 的联合分布列及条件分布列。

W: Y = n 表示第 n 次击中目标且前 n-1 次恰有一次击中目标,

$$P(X = m, Y = n) = p^{2}(1-p)^{n-2}, \quad n = 2, 3, \dots, m = 1, \dots, n-1.$$

从而

$$P(X = m) = \sum_{n=m+1}^{\infty} P(X = m, Y = n)$$
$$= \sum_{n=m+1}^{\infty} p^{2} (1 - p)^{n-2}$$
$$= p(1 - p)^{m-1}, \quad m = 1, 2, \dots$$

且

$$P(Y = n) = \sum_{m=1}^{n-1} P(X = m, Y = n)$$

$$= \sum_{m=1}^{n-1} p^{2} (1 - p)^{n-2}$$

$$= (n-1)p^{2} (1-p)^{n-2}, \quad n = 2, 3, \dots$$

于是当 $n = 2, 3, \cdots$ 时,

$$P(X = m|Y = n) = \frac{p^2(1-p)^{n-2}}{(n-1)p^2(1-p)^{n-2}} = \frac{1}{n-1}, \quad m = 1, \dots, n-1.$$

$$P(Y = n | X = m) = \frac{p^2 (1 - p)^{n-2}}{p(1 - p)^{m-1}} = p(1 - p)^{n-m-1}, \quad n = m + 1, m + 2, \dots$$

6.3.2 连续型情形

设二维随机向量 (X,Y) 有联合分布函数 F(x,y),联合密度 p(x,y),若 $p_Y(y)>0$,则在 Y=y 条件下 X 的条件分布函数为

$$F_{X|Y}(x|y) = \int_{-\infty}^{x} \frac{p(u,y)}{p_Y(y)} du.$$

自然, 在Y = y条件下X的条件分布密度为

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}.$$

连续场合的全概率公式: 由基本公式

$$p(x,y) = p_Y(y)p(x|y) = p_X(x)p(y|x),$$

连续场合的全概率公式为:

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{-\infty}^{+\infty} p_Y(y) p(x|y) dy,$$
$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{-\infty}^{+\infty} p_X(x) p(y|x) dx.$$

连续场合的贝叶斯公式:

$$p(y|x) = \frac{p_Y(y)p(x|y)}{\int_{-\infty}^{+\infty} p_Y(y)p(x|y)dy},$$
$$p(x|y) = \frac{p_X(x)p(y|x)}{\int_{-\infty}^{+\infty} p_X(x)p(y|x)dx}.$$

M: 设二维随机向量 (X,Y) 满足二维正态分布,易知 Y 的分布密度为

$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

则在 Y = y 条件下 X 的分布密度为

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$$

$$= \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_1} \exp\left\{-\frac{(x-m)^2}{2(1-\rho^2)\sigma_1^2}\right\},\,$$

其中 $m = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y - \mu_2)$.

例: 设二维随机向量 (X,Y) 的联合密度为

$$p(x,y) = \begin{cases} \frac{1}{y}e^{-y} \cdot e^{-\frac{x}{y}}, & x > 0, y > 0, \\ 0, & \text{ 其他} \end{cases}$$

给定 y > 0,试求出条件概率 P(X > 1|Y = y)。

解: 在Y = y条件下X的条件分布密度是

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}.$$

其中 $p_Y(y) = \int_{-\infty}^{+\infty} p(x,y) dx = \int_0^{+\infty} \frac{1}{y} e^{-y} \cdot e^{-\frac{x}{y}} dx = e^{-y}$,于是

$$p_{X|Y}(x|y) = \begin{cases} \frac{1}{y}e^{-\frac{x}{y}}, & x > 0, y > 0\\ 0, & x \le 0, y > 0 \end{cases}$$

因此

$$P(X > 1|Y = y) = \int_{1}^{+\infty} \frac{1}{y} e^{-\frac{x}{y}} dx = e^{-\frac{1}{y}}.$$

例: 设随机变量 X 在区间 (0,1) 上随机取值,当观察到 X = x(0 < x < 1) 时,随机变量 Y 在区间 (x,1) 上随机取值,求 Y 的概率密度函数 $p_Y(y)$ 。

解: X 服从区间 (0,1) 上的均匀分布,对任意的 $x \in (0,1)$,在 X = x 条件下,Y 的条件概率密度为

$$p(y|x) = \begin{cases} \frac{1}{1-x}, & y \in (x,1), \\ 0, & \text{ 其他.} \end{cases}$$

从而,

$$p(x,y) = p(y|x)p_X(x) = \begin{cases} \frac{1}{1-x}, & 0 < x < y < 1, \\ 0, & 其他. \end{cases}$$

故

$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \int_0^y \frac{1}{1 - x} dx = -\ln(1 - y), & 0 < y < 1, \\ 0, & y \notin (0, 1). \end{cases}$$

6.4 随机变量的独立性

随机变量的独立性: 设 X 和 Y 都是随机变量,如果对任何 a < b, c < d,事件 $\{a < X < b\}$ 和事件 $\{c < Y < d\}$ 相互独立,则称 X 与 Y 相互独立。

定理: 设随机变量 X 的可能值是 x_1, x_2, \cdots (有限个或无穷可列个), 随机变量 Y 的可能值是 y_1, y_2, \cdots (有限个或无穷可列个), 则 X 与 Y 相互独立的充分必要条件是, 对一切 i, j 下式成立:

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j).$$

定理: 设随机变量 X, Y 分别有分布密度 $p_X(x)$, $p_Y(y)$, 则 X 与 Y 相互独立的充分必要条件是二元函数 $p(x,y) = p_X(x)p_Y(y)$ 是二维随机向量 (X,Y) 的联合密度。

证明: 充分性: 设 $p_X(x)p_Y(y)$ 是 (X,Y) 的联合密度,则对于任何 a < b, c < d 有

$$P(a < X < b, c < Y < d) = \int_{a}^{b} \int_{c}^{d} p_{X}(x)p_{Y}(y)dxdy$$
$$= \int_{a}^{b} p_{X}(x)dx \cdot \int_{c}^{d} p_{Y}(y)dy = P(a < X < b)P(c < Y < d).$$

表明 X 与 Y 相互独立

必要性:设 X 与 Y相互独立,则对任何 a < b, c < d 有

$$P(a < X < b, c < Y < d) = P(a < X < b)P(c < Y < d)$$

$$= \int_{a}^{b} p_{X}(x)dx \cdot \int_{c}^{d} p_{Y}(y)dy = \int_{a}^{b} \int_{c}^{d} p_{X}(x)p_{Y}(y)dxdy$$

表明 $p_X(x)p_Y(Y)$ 是 (X,Y) 的联合密度。

推论: 设二维随机向量 (X,Y) 的联合密度 p(x,y) 可以表示为

$$p(x,y) = f(x)g(y),$$

其中 $f(x) \ge 0$, $g(y) \ge 0$, 且 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛,则 X 与 Y 相互独立。

证明: 由于 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x,y) dx dy = 1$,记 $c \triangleq \int_{-\infty}^{+\infty} f(x) dx > 0$,推知 X 的分布密度是 $p_X(x) = \frac{1}{c} f(x)$,Y 的分布密度是 $p_Y(y) = cg(y)$,则 $p(x,y) = f(x)g(y) = p_X(x)p_Y(y)$,因此 X 与 Y 相互 独立。

定理: 设 $\xi = (X, Y)$ 是二维随机向量, X 的分布函数是 $F_X(x)$, Y 的分布函数是 $F_Y(y)$, 则 X 和 Y 相互独立的充分必要条件是 ξ 的分布函数 F(x, y) 等于 $F_X(x)$ 与 $F_Y(y)$ 之积, 即

$$F(x,y) = F_X(x)F_Y(y).$$
 (6.4.1)

证明: 必要性: 设 X 与 Y 相互独立,则对任何 $n \ge 1$,事件 $\{-n < X \le x\}$ 与事件 $\{-n < Y \le x\}$ 相互独立,于是

$$P(-n < X \le x, -n < Y \le y) = P(-n < X \le x)P(-n < Y \le y).$$

充分性:设6.4.1式成立,对任何a < b, c < d,有

$$P(a < X \le b, c < Y \le d) = F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

$$= F_X(b)F_Y(d) - F_X(a)F_Y(d) - F_X(b)F_Y(c) + F_X(a)F_Y(c)$$

$$= (F_X(b) - F_X(a))(F_Y(d) - F_Y(c))$$

$$= P(a < X \le b)P(c < Y \le d).$$

由此知 X 与 Y 相互独立。

定理: 若随机变量 X 和 Y 相互独立, 且方差 D(X) 和 D(Y) 存在, 则 D(X+Y) = D(X) + D(Y)。

证明: 由式5.3.2知

$$D(X+Y) = E(X+Y)^2 - (E(X+Y))^2 = (E(X^2) + E(Y^2) - 2E(XY)) - ((E(X))^2 + (E(Y))^2 + 2E(X)E(Y)) - (E(X+Y))^2 + (E(X+Y))^$$

由独立的性质知 E(XY) = E(X)E(Y), 则

$$D(X + Y) = E(X^{2}) - (E(X))^{2} + E(Y^{2}) - (E(Y))^{2} = D(X) + D(Y).$$

例: 设二维随机向量 (X,Y) 服从参数为 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二维正态分布,则 X 与 Y 相互独立的 充分必要条件是 $\rho = 0$ 。

证明: 已求出 X 和 Y 的分布密度:

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\}.$$
$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

于是

$$p_X(x)p_Y(y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

结合联合密度 p(x,y) (式6.2.4), 知当 $\rho = 0$ 时,

$$p(x,y) = p_X(x)p_Y(y).$$

故 X 与 Y 相互独立。

若 X 与 Y 相互独立,则 $p_X(x)p_Y(y)$ 是 (X,Y) 的联合密度,由于 $p_X(x),p_Y(y),p(x,y)$ 均为连续函数,故

$$p(x,y) \equiv p_X(x)p_Y(y).$$

特别地 $p(\mu_1, \mu_2) = p_X(\mu_1)p_Y(\mu_2)$,于是

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} = \frac{1}{2\pi\sigma_1\sigma_2},$$

从而 $\rho = 0$ 。

例:设(X,Y)联合密度为

$$p(x,y) = \begin{cases} 8xy, & 0 \leqslant x \leqslant y \leqslant 1, \\ 0, &$$
其他.

问 X 与 Y 是否独立?

解:易得

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \begin{cases} \int_x^1 8xy dy = 4x(1 - x^2), & x \in [0, 1], \\ 0, & \text{ 其他.} \end{cases}$$
$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \int_0^y 8xy dx = 4y^3, & y \in [0, 1], \\ 0, & \text{ 其他.} \end{cases}$$

从而,

$$p(x,y) \neq p_X(x)p_Y(y) = \begin{cases} 16x(1-x^2)y^3, & x,y \in [0,1], \\ 0, & \text{ 其他.} \end{cases}$$

故 X, Y 不独立。

例: 假定一天内进入邮局的人数为服从参数 λ 的泊松分布的随机变量,如果每个进入邮局的人为男性的概率为 p,为女性的概率为 1-p,证明进入邮局的男人数和女人数是相互独立的泊松随机变量,且参数分别为 λp 和 $\lambda (1-p)$ 。

解:设X和Y分别是进入邮局的男人数和女人数,则对任意的自然数i和j,

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j).$$

注意到

$$P(X+Y=i+j) = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}.$$

且在给定 i+j 人进入邮局的条件下,恰有 i 个男人和 j 个女人的概率是 $C^i_{i+j}p^i(1-p)^j$,从而

$$P(X=i,Y=j) = C_{i+j}^{i} p^{i} (1-p)^{j} e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!} = e^{-\lambda p} \frac{(\lambda p)^{i}}{i!} e^{-\lambda (1-p)} \frac{(\lambda (1-p))^{j}}{j!}.$$

故

$$P(X=i) = e^{-\lambda p} \frac{(\lambda p)^i}{i!} \sum_{j=0}^{+\infty} e^{-\lambda(1-p)} \frac{(\lambda(1-p))^j}{j!} = e^{-\lambda p} \frac{(\lambda p)^i}{i!}, \quad i \in \mathbb{N}.$$

且

$$P(X=j)=e^{-\lambda(1-p)}\frac{(\lambda(1-p))^j}{j!}\sum_{i=0}^{+\infty}e^{-\lambda p}\frac{(\lambda p)^i}{i!}=e^{-\lambda(1-p)}\frac{(\lambda(1-p))^j}{j!},\quad j\in\mathbb{N}.$$

6.5 两个随机变量的函数

6.5.1 随机向量函数的概率分布

随机向量函数的概率分布: 假设二维随机向量 (X,Y) 有联合密度 p(x,y) (对于离散型情形,有类似的结论),随机变量 Z=f(X,Y),对于任何实数 z,令 $A=\{(x,y):f(x,y)\leqslant z\}$,则 Z 的分布函数的计算公式为

$$P(Z \leqslant z) = P(Z \in A) = \iint_A p(x, y) dx dy. \tag{6.5.1}$$

定理: 设二维随机向量 (X,Y) 有联合密度 p(x,y),随机变量 Z=X+Y,则 Z 的分布密度为

$$p_Z(z) = \int_{-\infty}^{+\infty} p(x, z - x) dx,$$

证明:令

$$A = \{(x, y) : x + y \leqslant z\}$$

由式6.5.1知

$$P(Z \leqslant z) = P((X,Y) \in A) = \iint_{\{x+y \leqslant z\}} p(x,y) dx dy.$$

利用变量替换 u = x + y 有

$$\begin{split} \iint_{\{x+y\leqslant z\}} p(x,y) dx dy &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{z-x} p(x,y) dy \right) dx \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{z} p(x,u-x) du \right) dx \\ &= \int_{-\infty}^{z} \left(\int_{-\infty}^{+\infty} p(x,u-x) dx \right) du. \end{split}$$

因此

$$P(Z \leqslant z) = \int_{-\infty}^{z} \left(\int_{-\infty}^{+\infty} p(x, u - x) dx \right) du.$$

因此 Z 的分布函数为 $p_Z(z) = \int_{-\infty}^{+\infty} p(x, z - x) dx$.

推论: 设随机变量 X 和 Y 分别有分布密度 $p_X(x)$ 和 $p_Y(y)$, 且 X 和 Y 相互独立,则随机变量 Z = X + Y 有分布密度

$$p_Z(z) = \int_{-\infty}^{+\infty} p_X(x) p_Y(z - x) dx.$$

例: 设 (X,Y) 服从二维正态分布,联合密度 p(x,y) 为 $p(x,y) = \hat{C} \exp\left\{-\frac{u^2-2\rho u v+v^2}{2(1-\rho^2)}\right\}$, 其中 $u = \frac{x-\mu_1}{\sigma_1}, v = \frac{y-\mu_2}{\sigma_2}, \ \hat{C} = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}.$ 求 Z = X + Y 的密度。

解: 由定理知 Z 的分布密度为 $p_Z(z) = \int_{-\infty}^{\infty} p(x, z - x) dx$. 当 y 取 z - x 时,

$$v = \frac{y - \mu_2}{\sigma_2} = \frac{z - (\mu_1 + \sigma_1 u) - \mu_2}{\sigma_2} = C - \frac{\sigma_1}{\sigma_2} u,$$

其中, $C = (z - \mu_1 - \mu_2) / \sigma_2$.

此时,

$$u^{2} - 2\rho uv + v^{2} = u^{2} - 2\rho u \left(C - \frac{\sigma_{1}u}{\sigma_{2}}\right) + \left(C - \frac{\sigma_{1}u}{\sigma_{2}}\right)^{2}$$
$$= \left(1 + 2\rho \frac{\sigma_{1}}{\sigma_{2}} + \left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{2}\right) u^{2} - 2\left(\rho + \frac{\sigma_{1}}{\sigma_{2}}\right)Cu + C^{2}.$$

现在计算 $p_Z(z) = \int_{-\infty}^{\infty} p(x, z - x) dx$,已知:

$$p(x, z - x) = \hat{C} \left\{ -\frac{Au^2 - 2Bu + C^2}{2(1 - \rho^2)} \right\}, \quad \text{\sharp.} + u = \frac{x - \mu_1}{\sigma_1},$$

$$A = 1 + 2\rho \frac{\sigma_1}{\sigma_2} + \left(\frac{\sigma_1}{\sigma_2}\right)^2, \quad B = \left(\rho + \frac{\sigma_1}{\sigma_2}\right)C, \quad C = \frac{z - (\mu_1 + \mu_2)}{\sigma_2}.$$

配方:

$$Au^{2} - 2Bu + C^{2} = A\left(u - \frac{B}{A}\right)^{2} - \left(\frac{B^{2}}{A} - C^{2}\right)$$

于是,

$$p_Z(z) = \hat{C} \exp\left\{\frac{\frac{B^2}{A} - C^2}{2(1 - \rho^2)}\right\} \times \int_{-\infty}^{\infty} \exp\left\{-\frac{A\left(u - \frac{B}{A}\right)^2}{2(1 - \rho^2)}\right\} \sigma_1 du$$
$$= \tilde{C} \exp\left\{\frac{B^2 - AC^2}{2(1 - \rho^2)A}\right\}. \quad \tilde{C} = \hat{C}\sigma_1 \sqrt{2\pi \frac{1 - \rho^2}{A}} = \frac{1}{\sqrt{2\pi\sigma_2^2 A}}$$

已有: $p_Z(z) = \tilde{C} \exp\left\{\frac{B^2 - AC^2}{2(1-\rho^2)A}\right\}$, 其中 \tilde{C} 是常数,

$$A = 1 + 2\rho \frac{\sigma_1}{\sigma_2} + \left(\frac{\sigma_1}{\sigma_2}\right)^2, B = \left(\rho + \frac{\sigma_1}{\sigma_2}\right)C, C = \frac{z - (\mu_1 + \mu_2)}{\sigma_2}.$$

$$B^2 - AC^2 = \left(\left(\rho + \frac{\sigma_1}{\sigma_2}\right)^2 - A\right)C^2 = \left(\rho^2 - 1\right)\frac{(z - (\mu_1 + \mu_2))^2}{\sigma_2^2}.$$

因此,

$$p_Z(z) = \tilde{C} \exp\left\{-\frac{(z-\mu)^2}{2\sigma^2}\right\} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(z-\mu)^2}{2\sigma^2}\right\}.$$

其中, $\mu = \mu_1 + \mu_2$, $\sigma^2 = \sigma_2^2 A = \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2$.

特别地, 若 $\rho = 0$ (即 X, Y 相互独立), 则

$$X + Y \sim N \left(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 \right).$$

M: 设随机变量 X 与 Y 相互独立, 且 X, Y 分别有分布密度:

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases} (\lambda > 0),$$

$$p_Y(y) = \begin{cases} \mu e^{-\mu y}, & y > 0, \\ 0, & y \le 0, \end{cases} (\mu > 0),$$

试求随机变量 X + Y 的分布密度。

解: 随机变量 Z = X + Y 的分布密度为

$$p(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z - x) dx.$$

易知, 当 $z \le 0$ 时, p(z) = 0, 设 z > 0, 则

$$p(z) = \int_0^z \lambda e^{-\lambda x} \mu e^{-\mu(z-x)} dx = \lambda \mu e^{-\mu z} \int_0^z e^{-(\lambda-\mu)x} dx$$

$$= \left\{ \begin{array}{ll} \lambda^2 e^{-\lambda z} z, & \lambda = \mu, \\ \frac{\lambda \mu}{\lambda - \mu} (e^{-\mu z} - e^{-\lambda z}), & \lambda \neq \mu. \end{array} \right.$$

定理: 设二维随机向量 (X,Y) 有联合密度 p(x,y). 令 Z=X/Y(当Y=0 时, 规定Z=0). 则 Z 为 连续型,且

$$p_Z(z) = \int_{-\infty}^{\infty} |y| p(zy, y) dy.$$

证明: 首先, $\frac{x}{y} \leqslant z$ 当且仅当 "y > 0 且 $x \leqslant yz$ " 或者 "y < 0 且 $x \geqslant yz$." 于是,

$$F_Z(z) = P(Y > 0, X \le Yz) + P(Y < 0, X \ge Yz).$$

其中,

$$\begin{split} P(Y>0,X\leqslant Yz) &= \int_0^\infty \int_{-\infty}^{yz} p(x,y) dx dy = \int_0^\infty \int_{-\infty}^z p(yu,y) y du dy \\ &= \int_{-\infty}^z \left(\int_0^\infty y p(yu,y) dy \right) du \end{split}$$

类似的,

$$\begin{split} P(Y<0,X\geqslant Yz) &= \int_{-\infty}^{0} \int_{yz}^{\infty} p(x,y) dx dy = \int_{-\infty}^{0} \int_{-\infty}^{z} p(yu,y) |y| du dy \\ &= \int_{-\infty}^{z} \left(\int_{-\infty}^{0} |y| p(yu,y) dy \right) du \end{split}$$

于是,

$$F_Z(z) = \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} |y| p(yu, y) dy \right) du$$
$$p_Z(z) = \int_{-\infty}^{\infty} |y| p(zy, y) dy.$$

例: 随机变量 X,Y 相互独立, 都服从 N(0,1). 求随机变量 Z=X/Y 的概率密度.

解:联合密度为:

$$p(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{x^2 + y^2}{2}\right\}.$$

因此,

$$p_Z(z) = \int_{-\infty}^{\infty} |y| p(zy, y) dy = \int_{-\infty}^{\infty} |y| \frac{1}{2\pi} \exp\left\{-\frac{(zy)^2 + y^2}{2}\right\} dy$$
$$= \frac{2}{2\pi} \int_{0}^{\infty} y \exp\left\{-\frac{(z^2 + 1)y^2}{2}\right\} dy$$
$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-(z^2 + 1)u} du = \frac{1}{\pi (z^2 + 1)}.$$

例: 设随机变量 X 与 Y 独立同分布,共同分布是 N(0,1),试求随机变量 $Z = \sqrt{X^2 + Y^2}$ 的概率分布。

解: 对任何 $z \le 0$,易知 $P(Z \le z) = 0$,设 z > 0,则

$$P(Z\leqslant z)=\iint_{\{x^2+y^2\leqslant z^2\}}\frac{1}{2\pi}\exp\left\{-\frac{x^2+y^2}{2}\right\}dxdy$$

做极坐标变换 $x = r \cos \theta$, $y = r \sin \theta (0 \le \theta < 2\pi, r \ge 0)$, 于是

$$P(Z \le z) = \int_0^{2\pi} \left(\int_0^z \frac{1}{2\pi} e^{-r^2/2} r dr \right) d\theta = \int_0^z r e^{-r^2/2} dr.$$

可见, $Z = \sqrt{X^2 + Y^2}$ 有分布密度

$$p(z) = \begin{cases} 0, & z \leq 0, \\ ze^{-z^2/2}, & z > 0. \end{cases}$$

这样的概率分布也称为瑞利分布。

定理: 假设 $\xi = (X,Y)$ 为连续型, 有密度 p(x,y), 区域 A 满足 $P((X,Y) \in A) = 1$, 假设

$$\eta = (U, V), \quad \sharp + U = f(X, Y), \quad V = g(X, Y).$$

如果: (1) $P(\xi \in A) = 1$ 且 $(f,g): A \rightarrow G$ 是一对一的;

(2) $f, g \in C^1(A)$, $\coprod \frac{\partial(u,v)}{\partial(x,y)} \neq 0, \forall (x,y) \in A$,

那么, η 是连续型, 且

$$p_{U,V}(u,v) = p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|, (u,v) \in G.$$

证明: 对于 $\forall D \subseteq G$, 设 $D^* = \{(x,y) : (f(x,y),g(x,y)) \in D\}$, 易知 $D^* \subseteq A$, (f(x,y),g(x,y)) 是 D^* 到 D 上的一一映射,其逆映射是 (x(u,v),y(u,v)),根据重积分的变量替换公式,

$$\iint_{D^*} p(x,y) dx dy = \iint_{D} p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$

于是,

$$P((U,V) \in D) = P((X,Y) \in D^*) = \iint_{D^*} p(x,y) dx dy = \iint_{D} p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$

因此

$$p_{U,V}(u,v) = p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|, (u,v) \in G.$$

6.5.2 两个随机变量函数的数学期望

我们首先考虑一个特殊情形: f(x,y) = xy。

定理: 设随机变量 X 与 Y 相互独立, 且 E(X) 与 E(Y) 都存在, 则

$$E(XY) = E(X)E(Y).$$

连续情形的证明:

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy p_X(x) p_Y(y) dx dy = (E(X))(E(Y)).$$

定理: 若随机变量 X 与 Y 相互独立, 则

$$var(X + Y) = var(X) + var(Y).$$

证明: 由于 E(X + Y) = E(X) + E(Y), 得

$$var(X + Y) = E(X + Y - (EX + EY))^{2}$$

$$= var(X) + var(Y) + 2E(X - E(X))(Y - E(Y)).$$

由 X 与 Y 相互独立得

$$E(X - E(X))(Y - E(Y)) = E(X - E(X))E(Y - E(Y)) = 0$$

因此等式成立。

均值公式: (1) 设二维随机向量 (X,Y) 的可能值是 a_1,a_2,\cdots (有限个或可列无穷个), f(x,y) 是任何二元函数,则

$$E(f(X,Y)) = \sum_{i} f(a_i)P((X,Y) = a_i).$$

(当 a_i 有无穷个时,要求此级数绝对收敛)。

(2) 设二维随机向量 (X,Y) 有联合分布密度 p(x,y), 二元函数 p(x,y) 满足积分

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(x,y)| p(x,y) dx dy$$

收敛,则

$$E(f(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)p(x,y)dxdy.$$

例: 在长为 a 的线段上, 任取两个点 X 和 Y, 求此两点间的平均距离。

 \mathbf{M} : 显然 X 和 Y 服从区间 (0,a) 上的均匀分布,且相互独立,从而 X 和 Y 的联合密度为

$$p(x,y) = \begin{cases} \frac{1}{a^2} & x, y \in (0,a), \\ 0, & 其他. \end{cases}$$

从而,两点间的平均长度为

$$E|X - Y| = \iint_{\mathbb{R}^2} |x - y| p(x, y) dx dy$$

$$= \int_0^a \int_0^a |x - y| \frac{1}{a^2} dx dy$$

$$= \frac{1}{a^2} \int_0^a \left(\int_0^x (x - y) dy + \int_x^a (y - x) dy \right) dx$$

$$= \frac{1}{a^2} \int_0^a \left(x^2 - ax + \frac{a^2}{2} \right) dx = \frac{a}{3}.$$

例: x, y, z 为相互独立的随机变量, h, l, f, g 为任意确定性映射。判断

- (1) 令 a = f(x, y), b = g(x, z), a 与 b 是否独立, a, b | x 是否独立?
- (3) h(l(x,y),z) 与 x 是否独立? h(l(x,y),z) 与 x 在 l(x,y) 给定条件下是否独立?

解:

- (1) a 与 b 不独立,都依赖于 x, a, b | x 独立。
- (2) 不独立
- (3) h(l(x,y),z) 与 x 不独立, 给定 l(x,y) 则独立。

6.6 二维随机向量的数字特征

两个随机变量的协方差: 假设随机变量 X,Y 的期望和方差存在,则称

$$E(X - E(X))(Y - E(Y))$$

为 X 与 Y 的**协方差**, 记为 cov(X,Y)或 σ_{XY} .

若 $\sigma_{XY} = 0$, 则称 X 与 Y 不相关.

注: 协方差存在, 因为

$$2(X - EX)(Y - EY) \le (X - EX)^2 + (Y - EY)^2$$
.

协方差的计算公式为:

$$cov(X,Y) = E(XY) - (EX)(EY).$$

注意: 协方差为 0 不等价于随机变量 X 和 Y 独立。

例如, 今随机变量 $X \sim U(0, 2\pi)$, 设 $Y = \sin X$, $Z = \cos X$, Y 和 Z 的协方差为

$$cov(Y, Z) = E(YZ) - E(Y)E(Z) = \frac{1}{2}E(\sin 2X) - E(\sin X)E(\cos X) = 0.$$

而 Y 和 Z 显然是不独立的。

定理: 假设 X,Y 的方差存在,则

$$(\operatorname{cov}(X,Y))^2 \leqslant \operatorname{var}(X) \cdot \operatorname{var}(Y). \tag{6.6.1}$$

证明: 若 var(X) = 0, 则 $X \equiv c$, 于是 cov(X, Y) = 0. 若 var(X) > 0, 则设

$$g(t) := E(t(X - EX) + (Y - EY))^{2}$$

= $t^{2} \operatorname{var}(X) + 2t \operatorname{cov}(X, Y) + \operatorname{var}(Y) \ge 0$

由于不等式恒成立, 故 g(t) 的判别式 ≤ 0 , 即 $(cov(X,Y))^2 \leq var(X) \cdot var(Y)$.

随机变量的相关系数: 设 $0 < var(X), var(Y) < \infty$, 则称

$$\frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}}$$

为 X 与 Y 的**相关系数**, 记为 ρ_{XY} , 简记为 ρ 。

定理: 设 ρ 是随机变量 X 与 Y 的相关系数,则有

- (1) $|\rho| \leq 1$;
- (2) X 与 Y 独立, 则不相关, 从而 $\rho = 0$;
- (3) $|\rho| = 1$ 当且仅当存在 a, b 以概率 1 使得 Y = a + bX.

证明: (1) 可以直接由式6.6.1推知成立。

(2) 若 X 与 Y 相互独立,则

$$E(X - E(X))(Y - E(Y)) = E(X - E(X))E(Y - E(Y)) = 0,$$

从而 $\rho = 0$ 。

(3) 设

$$g(t) := E(t(X - EX) + (Y - EY))^{2}$$
$$= t^{2} \operatorname{var}(X) + 2t \operatorname{cov}(X, Y) + \operatorname{var}(Y)$$

则 $|\rho| = 1$ 当且仅当 g(t) 的判别式为 0, 即存在 t_0 使得

$$g(t_0) = E(t_0(X - EX) + (Y - EY))^2 = 0$$

$$\Leftrightarrow Y = -t_0X + EY + t_0EX.$$

例:设(X,Y)服从二维正态分布,联合密度为

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}(u^2+v^2-2\rho uv)} \quad u = \frac{x-\mu_1}{\sigma_1}, v = \frac{y-\mu_2}{\sigma_2}.$$

求 ρ_{XY} 。

解: 由之前的结论, $\mu_1 = E(X), \mu_2 = E(Y), \sigma_1^2 = \text{var}(X), \sigma_2 = \text{var}(Y).$

故

$$\rho_{XY} = \frac{E(X - \mu_1)(Y - \mu_2)}{\sigma_1 \sigma_2} = E\left(\frac{X - \mu_1}{\sigma_1} \frac{Y - \mu_2}{\sigma_2}\right)$$
$$= \frac{1}{2\pi\sqrt{1 - \rho^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} uv \cdot e^{-\frac{1}{2(1 - \rho^2)}(u^2 + v^2 - 2\rho uv)} dv du.$$

先对 v 积分, $v^2 - 2\rho uv + u^2 = (v - \rho u)^2 + (1 - \rho^2) u^2$,

$$\int_{-\infty}^{\infty} uv \cdot e^{-\frac{1}{2(1-\rho^2)} (u^2 + v^2 - 2\rho uv)} dv = ue^{-\frac{u^2}{2}} \times \int_{-\infty}^{\infty} ve^{-\frac{(v-\rho u)^2}{2(1-\rho^2)}} dv$$
$$= ue^{-\frac{u^2}{2}} \times \sqrt{2\pi (1-\rho^2)} \cdot \rho u.$$

代入积分式,再对u积分,

$$\rho_{XY} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \rho u^2 e^{-\frac{u^2}{2}} du = \rho.$$

例:设二维随机向量 (X,Y) 的联合密度是

$$p(x,y) = \begin{cases} \frac{2}{2\pi} \exp\left\{-\frac{1}{2}(x^2 + y^2)\right\}, & xy > 0, \\ 0, & \text{其他.} \end{cases}$$

求 ρ_{XY} 。

解: 上一讲第二节已经指出 $X \sim N(0,1), Y \sim N(0,1),$ 故

$$E(X) = E(Y) = 0$$
, $var(X) = var(Y) = 1$.

因此

$$\begin{aligned} \cot(X,Y) &= E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyp(x,y)dxdy \\ &= \iint_{\{(x,y):xy>0\}} xy\frac{2}{2\pi} \exp\left\{-\frac{1}{2}(x^2+y^2)\right\} dxdy \\ &= \int_{0}^{\infty} ye^{-y^2/2} \left(\int_{0}^{\infty} \frac{2}{2\pi}xe^{-x^2/2}dx\right) dy \\ &+ \int_{-\infty}^{0} ye^{-y^2/2} \left(\int_{-\infty}^{0} \frac{2}{2\pi}xe^{-x^2/2}dx\right) dy \\ &= \int_{0}^{+\infty} \frac{2}{2\pi}ye^{-y^2/2}dy - \int_{-\infty}^{0} \frac{2}{2\pi}ye^{-y^2/2}dy \\ &= \int_{0}^{+\infty} \frac{2}{\pi}ye^{-y^2/2}dy = \frac{2}{\pi} \end{aligned}$$

故相关系数为 $\rho_{XY} = \frac{2}{\pi}$ 。

6.7 条件期望

条件期望的定义: 设X和Y是两个随机变量。

(1) 若在 Y=y 的条件下 X 的可能值是 x_1,x_2,\cdots (有限个或无穷可列个),条件概率分布是 $P(X=x_i|Y=y_i)(i=1,2,\cdots)$ 则称

$$\sum_{i} x_i P(X = x_i | Y = y)$$

为在 Y = y 条件下 X 的**条件期望**,记为 E(X|Y = y)。

(2) 若在 Y = y 的条件下 X 有条件分布密度 $p_{X|Y}(x|y)$, 则称积分

$$\int_{-\infty}^{\infty} x p_{X|Y}(x|y) dx$$

为在 Y = y 的条件下 X 的**条件期望**, 记为 E(X|Y = y)。

设二维随机向量 (X,Y) 有联合密度 p(x,y), 有

$$E(X|Y=y) = \frac{1}{p_Y(y)} \int_{-\infty}^{\infty} x p(x,y) dx.$$

定理: 设二维随机向量 (X,Y) 有联合密度 p(x,y), 则

$$E(X) = \int_{\{y: p_Y(y) > 0\}} E(X|Y = y) p_Y(y) dy.$$

证明: 首先, 若 $p_Y(y) = 0$, 则对任何 A > 0 有

$$\left| \int_{-A}^{A} x p(x, y) dx \right| \leqslant A \int_{-A}^{A} p(x, y) dx \leqslant A \int_{-\infty}^{+\infty} p(x, y) dx = A p_{Y}(y) = 0,$$

于是

$$\int_{-\infty}^{+\infty} x p(x, y) dx = \lim_{A \to \infty} \int_{-A}^{A} x p(x, y) dx = 0$$

可见

$$\begin{split} &\int_{\{y:p_Y(y)>0\}} E(X|Y=y)p_Y(y)dy = \int_{\{y:p_Y(y)>0\}} \left(\int_{-\infty}^{+\infty} x p(x,y) dx\right) dy \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x p(x,y) dx\right) dy = \int_{-\infty}^{+\infty} x \left(\int_{-\infty}^{+\infty} p(x,y) dy\right) dx \\ &= \int_{-\infty}^{+\infty} x p_X(x) dx = E(X). \end{split}$$

对于离散情形,有类似的定理。

定理: 设 (X,Y) 是二维随机向量, Y 的可能值是 y_1, y_2, \cdots (有限个或可列无穷个), $P(Y = y_i) > 0$ $(i = 1, 2, \cdots)$, X 的可能值是 x_1, x_2, \cdots (有限个或可列无穷个), 且 E(X) 存在, 则

$$E(X) = \sum_{i} E(X|Y = y_i)P(Y = y_i).$$

证明: 由于 $P(X = x_k, Y = y_i) = P(X = x_k | Y = y_i) P(Y = y_i)$, 知

$$E(X) = \sum_{k} x_{k} P(X = x_{k}) = \sum_{k} x_{k} \sum_{i} P(X = x_{k}, Y = y_{i})$$

$$= \sum_{k} \sum_{i} x_{k} P(X = x_{k} | Y = y_{i}) P(Y = y_{i})$$

$$= \sum_{i} E(X | Y = y_{i}) P(Y = y_{i}).$$

例: 设 (X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} \frac{e^{-x/y}e^{-y}}{y}, & x,y \in (0,+\infty), \\ 0, &$$
其他.

求 E(X|Y=y)。

解: 对给定的 $y \in (0, +\infty)$, 在 Y = y 条件下 X 的条件密度函数为

$$p(x|y) = \begin{cases} \frac{p(x,y)}{p_Y(y)} = \frac{\frac{1}{y}e^{-x/y}e^{-y}}{\int_0^{+\infty} \frac{1}{y}e^{-x/y}e^{-y}dx} = \frac{e^{-x/y}}{y} & x \in (0,+\infty), \\ 0, & x \notin (0,+\infty), \end{cases}$$

因此,X 在给定 Y=y 条件下的条件分布恰好是参数为 $\frac{1}{y}$ 的指数分布。从而

$$E(X|Y=y) = \int_0^{+\infty} \frac{xe^{-x/y}}{y} dx = y.$$

例: (对应郑书例 7.7) 一矿工在有三个门的矿井中迷了路,第 1 个门通到一个通道,走 2 个小时可到达地面;第 2 个门通到另一个通道,走 3 个小时又回到原处;第 3 个门通到第 3 个通道,沿它走 5 个小时也回到原处,假定该矿工总是等可能从 3 个门选择任意一个进入通道,试问,该矿工到达地面平均需要多长时间。

解: 设矿工到达地面所需时间为 X , 选择门的编号为 Y , 则 $P(Y=1) = P(Y=2) = P(Y=3) = \frac{1}{3}$, 于是

$$E(X) = \sum_{i=1}^{3} P(Y=i)E(X|Y=i) = \frac{1}{3} \sum_{i=1}^{3} E(X|Y=i).$$

易知,E(X|Y=1)=2,E(X|Y=2)=E(X)+3,E(X|Y=3)=E(X)+5,于是

$$E(X) = \frac{1}{3}(2 + E(X) + 3 + E(X) + 5)$$

推知 E(X) = 10, 即矿工到达地面平均要 10 小时。

7.1 n 维随机向量

n 维随机向量及其联合分布函数: 设 $\xi = (X_1, \dots, X_n)$ 是 n 维向量, 称

$$F(x_1, \dots, x_n) = P(X_1 \leqslant x_1, \dots, X_n \leqslant x_n), \quad x_1, \dots, x_n \in \mathbb{R}^n$$

为 ξ 的**联合分布函数**, 也记为 F_{ξ} 或 F_{X_1,\dots,X_n} .

离散型 n 维随机向量: 若 ξ 取有限个或可列个值 (n 维向量), 则称 ξ 为离散型.

连续型 n 维随机向量: 若存在非负可积函数 $p(x_1, \dots, x_n)$ 使得对任意 n 维矩形 D 都有

$$P(\xi \in D) = \int \cdots \int_{D} p(x_{1}, \cdots, x_{n}) dx_{1} \cdots dx_{n},$$

则称 ξ 为连续型随机向量, 称 $p(x_1,\dots,x_n)$ 为 ξ 的**联合密度**, 也记为 P_{X_1,\dots,X_n} .(注:上式对一般集合 D 都成立).

n **维随机向量的边缘分布:** 设 $\xi = (X_1, \dots, X_n)$ 是 n 维向量,对任意 $1 \le k < n, 1 \le i_1 < \dots < i_k \le n$,则称 $(X_{i_1}, \dots, X_{i_k})$ 为 ξ 的 (--- k 维) 边缘,其分布被称为 ξ 的**边缘分布**。

例: (多项分布) 设 U_1, \dots, U_n 是取值 $1, \dots, t$ 的随机变量,且相互独立,都服从如下分布:

$$P(U_i = k) = p_k, \quad k = 1, \dots, t,$$

其中 $t \ge 2, p_k > 0, \forall k$ 且 $p_1 + \dots + p_t = 1$.

记

$$X_k = |\{1 \le i \le n : U_i = k\}| = \sum_{i=1}^n 1_{\{U_i = k\}}.$$

 $\xi = (X_1, \cdots, X_t)$ 的联合分布列:

$$P(\xi = (i_1, \dots, i_t)) = \frac{n!}{i_1! \dots i_t!} p_1^{i_1} \dots p_t^{i_t}.$$

因为 $X_t = n - \sum_{s=1}^{t-1} X_s$, $p_t = 1 - \sum_{s=1}^{t-1} p_s$, 所以 ξ 与 (X_1, \dots, X_{t-1}) 等价.

本例的背景模型为: n 次独立重复试验 (投郑一枚 t 面股子).

例: 口袋中有 5 个白球,8 个黑球,从中不放回的依次取出 3 个,若第 i 次取出白球,则 $X_i = 1$,否则令 $X_i = 0$, i = 1, 2, 3,求 (X_1, X_2, X_3) 的联合分布列。

解:

$$P(X_1 = 0, X_2 = 0, X_3 = 0) = \frac{8 \times 7 \times 6}{13 \times 12 \times 11} = 0.1958$$

$$P(X_1 = 1, X_2 = 0, X_3 = 0) = P(X_1 = 0, X_2 = 1, X_3 = 0)$$

$$= P(X_1 = 0, X_2 = 0, X_3 = 1) = \frac{8 \times 7 \times 5}{13 \times 12 \times 11} = 0.1632$$

$$P(X_1 = 1, X_2 = 1, X_3 = 0) = P(X_1 = 0, X_2 = 1, X_3 = 1)$$

$$= P(X_1 = 1, X_2 = 0, X_3 = 1) = \frac{5 \times 4 \times 8}{13 \times 12 \times 11} = 0.0932$$

$$P(X_1 = 1, X_2 = 1, X_3 = 1) = \frac{5 \times 4 \times 3}{13 \times 12 \times 11} = 0.0.035$$

独立性: 若对任意 $a_i < b_i, i = 1, \dots, n$ 都有

$$P(a_1 < X_1 < b_1, \dots, a_n < X_n < b_n)$$

$$= P(a_1 < X_1 < b_1) \dots P(a_n < X_n < b_n)$$

则称 n 个随机变量 X_1, \dots, X_n 相互独立.

若 X_1, \dots, X_n 相互独立, 且 $F_{X_i} = F_{X_1}, i = 2, \dots, n$, 则称 X_1, \dots, X_n 独立同分布.

若相互独立, 则上式中的 $a_i < X_i < b_i$ 可以改为 $X_i \in B_i$, 其中 B_1, \dots, B_n 为任意一维 Borel 集。

定理: 设 $X_1, \dots, X_n (n \ge 2)$ 都是随机变量,分别有分布密度 $p_1(x_1), \dots, p_n(x_n)$,则 X_1, \dots, X_n 相互独立的充分必要条件是 n 元函数

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n) = p_1(x_1)\dots p_n(x_n).$$

为 n 维随机向量 (X_1, \dots, X_n) 的联合密度。

对于离散型随机向量,有类似的结论,设 n 个随机变量的取值分别为 $X_1=x_1^{(1)},x_2^{(1)},\cdots;\cdots;X_n=x_1^{(n)},x_2^{(n)},\cdots,$ 则 X_1,\cdots,X_n 相互独立的充分必要条件是

$$P\left(X_{1} = x_{i_{1}}^{(1)}, \cdots, X_{n} = x_{i_{n}}^{(n)}\right)$$

$$= P\left(X_{1} = x_{i_{1}}^{(1)}\right) \cdots P\left(X_{n} = x_{i_{n}}^{(n)}\right) = p_{i_{1}}^{(1)} \cdots p_{i_{n}}^{(n)}$$

定义: 若 X_i 与 X_j 相互独立, $\forall i \neq j$, 则称 X_1, \dots, X_n 两两独立.

例: 甲、乙玩石头剪刀布. 甲出 X, 乙出 Y, 结局为 Z. 则 X,Y,Z 两两独立, 但不相互独立.

例: 设随机向量 (X, Y, Z) 在矩形区域 a < x < b, c < y < d, e < z < f 内服从均匀分布,求 X, Y, Z 的分布密度函数,以及 X, Y, Z 是否相互独立。

解: 由均匀分布定义

$$p(x, y, z) = \frac{1}{(b-a)(d-c)(f-e)} \quad a < x < b, c < y < d, e < z < f.$$

当 x,y,z 所在边界矩形是独立的,且在矩形内时有:

$$p_X(x) = \int_e^f \int_c^d \frac{1}{(b-a)(d-c)(f-e)} dy dz = \frac{1}{b-a}$$

$$p_Y(y) = \int_e^f \int_a^b \frac{1}{(b-a)(d-c)(f-e)} dx dz = \frac{1}{d-c}$$

$$p_Z(z) = \int_c^d \int_a^b \frac{1}{(b-a)(d-c)(f-e)} dx dy = \frac{1}{f-e}.$$

由于 $p(x,y,z) = p_X(x)p_Y(y)p_Z(z)$, 因此 X,Y,Z 之间相互独立。

定义: 设 **X** = (X_1, \dots, X_m) 和 **Y** = (Y_1, \dots, Y_n) 分别是 m 维和 n 维随机向量,给定 **y** = (y_1, \dots, y_n) ,若 $P(\mathbf{Y} = \mathbf{y}) > 0$,则 x_1, \dots, x_m 的函数

$$P(X_1 \leqslant x_1, \cdots, X_m \leqslant x_m | \mathbf{Y} = \mathbf{y})$$

称为在 $\mathbf{Y} = \mathbf{y}$ 条件下 \mathbf{X} 的条件分布函数, 记为 $F_{\mathbf{X}|\mathbf{Y}}(x_1, \dots, x_m|\mathbf{y})$.

若 $\mathbf{X} = (X_1, \dots, X_m)$ 和 $\mathbf{Y} = (Y_1, \dots, Y_n)$ 有联合密度 $p(x_1, \dots, x_m, y_1, \dots, y_n)$,则

$$F_{\mathbf{X}|\mathbf{Y}}(x_1,\cdots,x_m|y_1,\cdots,y_n) = \int_{-\infty}^{x_1}\cdots\int_{-\infty}^{x_m}\frac{p(u_1,\cdots,u_m,y_1,\cdots,y_n)}{p_Y(y_1,\cdots,y_n)}du_1\cdots du_m,$$

这里 $p_Y(y_1, \dots, y_n)$ 是 $\mathbf{Y} = (Y_1, \dots, Y_n)$ 的联合密度,称这里的被积函数为在 $\mathbf{Y} = (y_1, \dots, y_n)$ 条件下 \mathbf{X} 的条件分布密度。

例: 设 X_1, X_2, X_3 为独立同分布的连续型随机变量,求 $P(X_3 < X_1 | X_1 = \min \{X_1, X_2\})$.

解:

$$P(X_3 < X_1 | X_1 = \min \{X_1, X_2\}) = \frac{P(X_3 < X_1, X_1 = \min \{X_1, X_2\})}{P(X_1 = \min \{X_1, X_2\})}$$

$$= \frac{\int_{-\infty}^{+\infty} \int_{x_3}^{+\infty} \int_{x_1}^{+\infty} p(x_2) dx_2 p(x_1) dx_1 p(x_3) dx_3}{\int_{-\infty}^{+\infty} \int_{x_1}^{+\infty} p(x_2) dx_2 p(x_1) dx_1}$$

$$= \frac{\int_{-\infty}^{+\infty} \int_{x_3}^{+\infty} (1 - F(x_1)) dF(x_1) dF(x_3)}{\int_{-\infty}^{+\infty} (1 - F(x_1)) dF(x_1)}$$

$$= \frac{\int_{-\infty}^{+\infty} \frac{1}{2} - F(x_3) + \frac{1}{2} F^2(x_3) dF(x_3)}{1/2} = \frac{1/6}{1/2} = \frac{1}{3}$$

7.1.1 n 维随机向量的数字特征

设 $\xi = (X_1, \dots, X_n)$ 是 n 维随机向量,每个 X_i 都有期望和方差,易知协方差

$$\sigma_{X_i X_j} = E((X_i - E(X_i))(X_j - E(X_j))) \quad (i \neq j)$$

必然存在。

期望: 称 $(E(X_1), \dots, E(X_n))$ 为 ξ 的期望, 记为 $E(\xi)$.

协方差阵: 记 $\sigma_{ij} = \operatorname{cov}(X_i, X_j)$, $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$. 称 $\Sigma = (\sigma_{ij})_{n \times n}$ 为 ξ 的**协方差阵**, $\mathbf{R} = (\rho_{ij})_{n \times n}$ 为 ξ 的相关系数阵。

例: 设随机变量 *X*₁, *X*₂, *X*₃ 满足

$$aX_1 + bX_2 + cX_3 = 0,$$

 $E(X_1) = E(X_2) = E(X_3) = d,$
 $var(X_1) = var(X_2) = var(X_3) = \sigma^2.$

求相关系数 $\rho_{12}, \rho_{23}, \rho_{31}$.

解: 对等式 $aX_1 + bX_2 = -cX_3$ 两侧求方差得 $a^2\sigma^2 + b^2\sigma^2 + 2ab\sigma^2\rho_{12} = c^2\sigma^2$, 由此解得

$$\rho_{12} = \frac{c^2 - a^2 - b^2}{2ab},$$

同理,对等式 $aX_1 + cX_3 = -bX_2$ 两侧求方差得

$$\rho_{13} = \frac{b^2 - a^2 - c^2}{2ac},$$

同理,对等式 $bX_2 + cX_3 = -aX_1$ 两侧求方差得

$$\rho_{23} = \frac{a^2 - b^2 - c^2}{2bc}.$$

特别的, 当 $d \neq 0$ 时, 有 (a+b+c)d=0, 因此 a+b+c=0, 由此可得

$$c^2 = a^2 + b^2 + 2ab$$
, $b^2 = a^2 + c^2 + 2ac$, $a^2 = b^2 + c^2 + 2bc$

代人 ρ_{12} , ρ_{23} , ρ_{31} 表达式得 $\rho_{12} = \rho_{23} = \rho_{31} = 1$.

7.1.2 n 个随机变量的函数

定理: 设 $Y = f(X_1, \dots X_n)$ 的分布函数是 F(y), 令

$$A(y) = \{(x_1, \dots, x_n) : f(x_1, \dots, x_n) \le y\}$$

其中 y 是任意实数,则

$$F_Y(y) = P(f(\xi) \leqslant y) = \int \cdots \int_{A(y)} p(x_1, \dots, x_n) dx_1 \cdots dx_n$$

定理: (均值公式) 设 $Y = f(X_1, \dots X_n)$, n 维随机向量 (X_1, \dots, X_n) 有联合密度 $p(x_1, \dots, x_n)$, 则

$$EY = \int \cdots \int f(x_1, \cdots, x_n) p(x_1, \cdots, x_n) dx_1 \cdots dx_n.$$

例: $(\chi^2 \text{ 分布})$ 假设 X_1, \dots, X_n 独立同分布, 都服从 N(0,1). 于是, $Y_n := X_1^2 + \dots + X_n^2 \sim \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$, 密度为

$$p_n(x) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}x^{n/2-1}e^{-x/2}, \quad x > 0.$$

其中

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx$$

证明: 利用数学归纳法,已经证明(郑书例 5.2) $Y_1 = X_1^2$ 的分布密度是

$$p_1(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}, \quad x > 0.$$

设 n=k 时结论成立,考虑 n=k+1 的情形,由于 $Y_{k+1}=Y_k+X_{k+1}^2$, Y_k 与 X_{k+1}^2 相互独立,则 Y_{k+1} 的分布密度为

$$\begin{split} p_{k+1}(x) &= \int_{-\infty}^{+\infty} p_k(u) p_1(x-u) du \\ &= \int_0^x \frac{1}{2^{k/2} \Gamma\left(\frac{k}{2}\right)} u^{k/2-1} e^{-u/2} \frac{1}{\sqrt{2\pi}} (x-u)^{-1/2} e^{-(x-u)/2} du \\ &= \int_0^x \frac{e^{-x/2}}{2^{(k+1)/2} \Gamma\left(\frac{k}{2}\right) \sqrt{\pi}} u^{k/2-1} (x-u)^{-1/2} du \\ &= \frac{x^{(k+1)/2-1} e^{-x/2}}{2^{(k+1)/2} \Gamma\left(\frac{k}{2}\right) \sqrt{\pi}} \int_0^1 v^{k/2-1} (1-v)^{-1/2} dv \quad (做变量替换u = xv) \\ &= C x^{(k+1)/2-1} e^{-x/2} \quad (C 是与x 无关的常数). \end{split}$$

由归一性

$$1 = \int_0^{+\infty} Cx^{(k+1)/2-1} e^{-x/2} dx = C2^{(k+1)/2} \int_0^{+\infty} t^{(k+1)/2-1} e^{-t} dt$$

故

$$C = \frac{1}{2^{(k+1)/2} \Gamma\left(\frac{k+1}{2}\right)}.$$

因此 n = k+1 时结论成立。对一切 $n \ge 1$, Y_n 均服从 $\Gamma\left(\frac{n}{2},\frac{1}{2}\right)$ 。称 Y_n 服从 n 个自由度的 χ^2 (卡**方)** 分布。

例: 假设 X_1, \dots, X_n 独立同分布, 都服从参数为 λ 的指数分布,则 $Y_n := \sum_{i=1}^n X_i \quad (n \ge 1)$ 的分布密度是

 $p_n(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}, \quad (x > 0).$

证明: 利用数学归纳法,当 n=1 时,结论显然成立。设 n=k 时结论成立,考虑 n=k+1 的情形,由于 $Y_{k+1}=Y_k+X_{k+1}$, Y_k 与 X_{k+1} 相互独立,则 Y_{k+1} 的分布密度为

$$p_{k+1}(x) = \int_{-\infty}^{+\infty} p_k(u) p_1(x - u) du$$

$$= \int_0^x \frac{\lambda^k}{(k-1)!} u^{k-1} e^{-\lambda u} \lambda e^{-\lambda(x-u)} du$$

$$= \frac{\lambda^{k+1}}{(k-1)!} e^{-\lambda x} \int_0^x u^{k-1} du = \frac{\lambda^{k+1}}{k!} x^k e^{-\lambda x}.$$

因此 n=k+1 时结论成立。对一切 $n\geqslant 1$, Y_n 的概率密度均为 $p_n(x)=\frac{\lambda^n}{(n-1)!}x^{n-1}e^{-\lambda x}$, (x>0)。 并且随机变量 $Z_n=2\lambda Y_n$ 服从 2n 个自由度的 χ^2 分布。

例: N 件产品中有 D 件次品. 随机抽取 n 件, 设包含 X 件次品. 可以利用期望的性质,求 E(X) 与 var(X). (其中, $N \ge n \ge 2$).

解: 随机数目的分解: $X = X_1 + \cdots + X_n$, 其中

$$X_i = \begin{cases} 1, \text{ 若第}i \text{ 件是次品;} \\ 0, \text{ 若第}i \text{ 件是合格品.} \end{cases}$$

由期望的线性、伯努利分布的期望,

$$E(X) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} P($$
 第 i 件是次品 $) = n \frac{D}{N}.$

由于 $var(X) = EX^2 - (EX)^2$. 根据对称性,

$$E(X^{2}) = \sum_{i=1}^{n} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}) = nE(X_{1}^{2}) + n(n-1)E(X_{1}X_{2})$$

由乘法公式,

$$E(X_1X_2) = P($$
 前两件都是次品 $) = \frac{D}{N} \cdot \frac{D-1}{N-1}.$

因此,

$$\operatorname{var}(X) = n \frac{D}{N} + n(n-1) \frac{D}{N} \cdot \frac{D-1}{N-1} - \left(n \frac{D}{N}\right)^{2}$$
$$= \frac{n(N-n)D(N-D)}{N^{2}(N-1)} \quad (N > 1)$$

例: 随机向量 $\mathbf{X} = (X_i)_{n \times 1}$, $E(\mathbf{X}) = \mu$, $var(\mathbf{X}) = \mathbf{\Sigma}$, 矩阵 $\mathbf{A}_{n \times n}$, 证明: $E(\mathbf{X}^{\top} \mathbf{A} \mathbf{X}) = tr(\mathbf{A} \mathbf{\Sigma}) + \mu^{\top} \mathbf{A} \mu$. 证明:

$$\begin{split} E(\mathbf{X}^{\top}\mathbf{A}\mathbf{X}) &= E(\operatorname{tr}(\mathbf{X}^{\top}\mathbf{A}\mathbf{X})) = E(\operatorname{tr}(\mathbf{A}\mathbf{X}\mathbf{X}^{\top})) \\ &= \operatorname{tr}(E(\mathbf{A}\mathbf{X}\mathbf{X}^{\top})) = \operatorname{tr}(\mathbf{A}E(\mathbf{X}\mathbf{X}^{\top})) \\ &= \operatorname{tr}(\mathbf{A}(\operatorname{var}(\mathbf{X}) + \mu\mu^{\top})) = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \operatorname{tr}(\mathbf{A}\mu\mu^{\top}) \\ &= \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \mu^{\top}\mathbf{A}\mu. \end{split}$$

7.1.3 n 个随机变量的多个函数

定理: 设 $\xi = (X_1, \dots, X_n)$ 为连续型随机向量,且 \mathbb{R}^n 中的区域 A 满足 $P(\xi \in A) = 1$,函数 $f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n)$ 满足下列条件:

(1) 对任何实数 u_1, \cdots, u_n , 方程组

$$f_k(x_1, \dots, x_n) = u_k, \quad (k = 1, \dots, n)$$

在 A 中至多有一个解 $x_i = x_i(u_1, \dots, u_n), \quad i = 1, \dots, n;$

- (2) 对一切 $k = 1, \dots, n, f_k$ 在 A 中有连续偏导数;
- (3) 雅可比行列式

$$J = \frac{\partial (y_1, \dots, y_n)}{\partial (x_1, \dots, x_n)} \neq 0.$$

设 $Y_k = f_k(X_1, \dots, X_n)(k=1, \dots, n), G = \{(u_1, \dots, u_n) : 方程组f_k(x_1, \dots, x_n) = u_k, (k=1, \dots, n)$ 在A中有解 $\}$,则 $\eta = (Y_1, \dots, Y_n)$ 是连续型,且联合密度

$$p_{\eta}(y_1, \dots, y_n) = p_{\xi}(x_1, \dots, x_n) |J^{-1}|, (y_1, \dots, y_n) \in G.$$

定理: 设 $\xi = (X_1, \dots, X_n)$ 的协方差阵为 Σ , 且

$$Y_i = \sum_{j=1}^{n} a_{ij} X_j, j = 1, \cdots, m.$$

记 $\mathbf{A} = (a_{ij})_{m \times n}, \ \eta = (Y_1, \cdots, Y_m), \$ 则

$$(E(\eta))^{\top} = \mathbf{A}(E(\xi))^{\top},$$

$$cov(\eta, \eta) = \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top}.$$

证明:由于 $E(Y_i) = \sum_{j=1}^n a_{ij} E(X_j)$,故 $(E(\eta))^{\top} = \mathbf{A}(E(\xi))^{\top}$ 成立,又由于 $Y_i - E(Y_i) = \sum_{j=1}^n a_{ij} (X_j - E(X_j))$,知

$$(Y_i - E(Y_i))(Y_k - E(Y_k)) = \sum_{j=1}^n \sum_{l=1}^n a_{ij} a_{kl} (X_j - E(X_j))(X_l - E(X_l)).$$

于是

$$cov(Y_i, Y_k) = \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij} a_{kl} E(X_j - E(X_j)) (X_l - E(X_l))$$
$$= \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij} a_{kl} \sigma_{jl},$$

这里 $\sigma_{jl} = \text{cov}(X_j, X_l)$.

由于 $\Sigma = (\sigma_{jl})_{n \times n}$, 知 $\operatorname{cov}(\eta, \eta) = \mathbf{A} \Sigma \mathbf{A}^{\top}$ 成立。

次序统计量: 设n个随机变量 X_1, \cdots, X_n ,将它们从小到大排列:

$$X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)},$$

称 $X_{(k)}$ 为第 k 个次序统计量.

例: 设 X_1, \dots, X_n 独立同分布, 都服从 U(0,1). 已知对于 $\forall 0 < x < 1$,

$$P(X_{(k)} \le x) = \sum_{i=k}^{n} \frac{n!}{i!(n-i)!} x^{i} (1-x)^{n-i}.$$

求 $E(X_{(k)})$ 与 $\operatorname{var}(X_{(k)})$.

解: 由于对于 $\forall 0 < x < 1$,

$$P(X_{(k)} \le x) = \sum_{i=k}^{n} \frac{n!}{i!(n-i)!} x^{i} (1-x)^{n-i}.$$

 $k \le i \le n-1$, 上式单项的导数是

$$\frac{n!}{i!(n-i)!} \left(ix^{i-1} (1-x)^{n-i} - x^{i} (n-i)(1-x)^{n-i-1} \right)$$

$$= \frac{n!}{(i-1)!(n-i)!} x^{i-1} (1-x)^{n-i} - \frac{n!}{i!(n-i-1)!} x^{i} (1-x)^{n-i-1}$$

$$= a_{i-1} - a_{i},$$

 $i = n \text{ ff}, (x^n)' = a_{n-1}, \text{ ff}, \forall 0 < x < 1,$

$$p_{X_{(k)}}(x) = \sum_{i=k}^{n-1} (a_{i-1} - a_i) + a_{n-1} = a_{k-1}.$$

已有 $q_k(x) := p_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}$,且对于 $\forall \ell, m \geqslant 1$,由分部积分

$$\int_0^1 x^{\ell} (1-x)^m dx = \frac{m}{\ell+1} \int_0^1 x^{\ell+1} (1-x)^{m-1} dx$$
$$= \dots = \frac{m!}{(\ell+1)\cdots(\ell+m)} \int_0^1 x^{\ell+m} dx = \frac{\ell! m!}{(\ell+m+1)!}$$

期望: 取 $\ell = k, m = n - k,$ 知

$$EX_{(k)} = \int_0^1 x q_k(x) dx = \frac{n!}{(k-1)!(n-k)!} \int_0^1 x^k (1-x)^{n-k} dx$$
$$= \frac{n!}{(k-1)!(n-k)!} \cdot \frac{k!(n-k)!}{(n+1)!} = \frac{k}{n+1}.$$

二阶矩: 取 $\ell = k + 1, m = n - k$,

$$EX_{(k)}^{2} = \int_{0}^{1} x^{2} q_{k}(x) dx = \frac{n!}{(k-1)!(n-k)!} \int_{0}^{1} x^{k+1} (1-x)^{n-k} dx$$
$$= \frac{n!}{(k-1)!(n-k)!} \cdot \frac{(k+1)!(n-k)!}{(n+2)!} = \frac{k(k+1)}{(n+1)(n+2)}.$$

方差:

$$\operatorname{var}(X_{(k)}) = EX_{(k)}^2 - (EX_{(k)})^2 = \frac{k(k+1)}{(n+1)(n+2)} - \frac{k^2}{(n+1)^2}$$
$$= \frac{k^2(n+1) + k(n+1) - k^2(n+2)}{(n+1)^2(n+2)} = \frac{k(n+1-k)}{(n+1)^2(n+2)}.$$

7.1.4 n 维正态分布

我们已经定义过n维正态分布。

n **维正态分布**: 假设 n 维随机向量 ξ 有如下的联合密度,则称 ξ 服从 n 维正态分布,记为 $\xi \sim N(\mu, \Sigma)$.

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right\}.$$

定理 8.1: 设 $(X_1, \dots, X_n)^{\top} \sim N(\mu, \Sigma)$, $\mathbf{A} = (a_{ij})_{n \times n}$, $|\mathbf{A}| \neq 0$, $Y_i = \sum_{j=1}^n a_{ij} X_j (i = 1, \dots, n)$, 则

$$(Y_1, \cdots, Y_n)^{\top} \sim N(\mathbf{A}\mu, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}).$$
 (7.1.1)

证明: 设 $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}, \mathbf{x} = (x_1, \dots, x_n)^{\mathsf{T}},$ 对于任意 n 维矩形 D, 记

$$D^* = \{\mathbf{x} = (x_1, \cdots, x_n)^\top : \mathbf{A}\mathbf{x} \in D\},\$$

则

$$P((Y_1, \cdots, Y_n)^{\top} \in D) = P((X_1, \cdots, X_n)^{\top} \in D^*) = \iint_{D^*} \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)\right\} d\mathbf{x}$$

做变量替换 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$, 雅可比行列式为

$$\frac{\partial(x_1,\cdots,x_n)}{\partial(y_1,\cdots,y_n)}=|A^{-1}|=|A|^{-1}.$$

于是

$$P((Y_1, \dots, Y_n)^{\top} \in D) = \int \dots \int_D \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{A}^{-1} \mathbf{y} - \mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{A}^{-1} \mathbf{y} - \mu)\right\} ||A||^{-1} d\mathbf{y}$$

$$= \int \dots \int_D \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top}|}} \exp\left\{-\frac{1}{2} (\mathbf{y} - \mathbf{A} \mu)^{\top} (\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top})^{-1} (\mathbf{y} - \mathbf{A} \mu)\right\} d\mathbf{y}.$$

这表明
$$(Y_1, \dots, Y_n)^{\top} \sim N(\mathbf{A}\mu, \mathbf{A}\Sigma \mathbf{A}^{\top}).$$

推论: 若 ξ 服从 n 元正态分布 $N(\mu, \Sigma)$,则存在一个正交变换 \mathbf{U} ,使得 $\eta = \mathbf{U}\xi$ 是一个具有独立正态分布分量的随机向量,它的数学期望为 $\mathbf{U}\mu$,方差分量是 Σ 的特征值。

证明: 对实对称矩阵 Σ ,存在正交矩阵 \mathbf{U} ,使得 $\mathbf{U}\Sigma\mathbf{U}^{\mathsf{T}} = \mathbf{D}$,其中 \mathbf{D} 为对角矩阵,对角元是 Σ 的特征值,若 Σ 的秩为 r,则有 r 个特征值不为零。

将这里的 U 作为定理 8.1 的变换矩阵,则可得推论结果。

推论:正交变换下,多维标准正态变量保持其独立性,同方差性不变。

证明: 设 $\mathbf{X} = (X_1, \dots, X_n)^{\top}$ 服从 n 元正态分布,且 X_i 相互独立有相同的方差 σ^2 ,则协方差矩阵 $D(\mathbf{X}) = \sigma^2 \mathbf{I}$,若 \mathbf{U} 是正交阵, $\mathbf{Y} = \mathbf{U}\mathbf{X}$,由定理 8.1 知 \mathbf{Y} 服从正态分布,协方差为

$$\mathbf{U}\sigma^2\mathbf{I}\mathbf{U}^{\top} = \sigma^2\mathbf{I}$$

因此 η 仍然是相互独立且具有相同方差。

推论: 若 $\xi \sim N(\mu, \Sigma)$, 其中 Σ 是 n 阶正定阵, 则

$$(\xi - \mu)^{\top} \mathbf{\Sigma}^{-1} (\xi - \mu) \sim \chi_n^2$$

证明:设正定阵 $\Sigma = LL^{T}$,则

$$(\xi - \mu)^{\top} \mathbf{\Sigma}^{-1} (\xi - \mu) = (\xi - \mu)^{\top} (\mathbf{L} \mathbf{L}^{\top})^{-1} (\xi - \mu)$$
$$= [\mathbf{L}^{-1} (\xi - \mu)]^{\top} [\mathbf{L}^{-1} (\xi - \mu)] = \eta^{\top} \eta$$

其中 $\eta = \mathbf{L}^{-1}(\xi - \mu)$, 由定理 8.1 知它是均值为 $\mathbf{0}$ 的 n 维正态变量, 协方差矩阵为

$$\mathbf{L}^{-1}\mathbf{\Sigma}(\mathbf{L}^{-1})^{\top} = \mathbf{I}$$

从而 η 的各个分量是相互独立的标准状态变量,因此

$$\eta^{\top} \eta = \chi_1^2 + \dots + \chi_1^2 \sim \chi_n^2.$$

定理 8.2: 设 $(X_1, \dots, X_m, X_{m+1}, \dots, X_n)^{\top} \sim N(\mu, \Sigma) (1 \leqslant m < n)$, 且

$$\mu = \left[egin{array}{c} \mu^{(1)} \\ \mu^{(2)} \end{array}
ight], \quad oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}^{(1)} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{\Sigma}^{(2)} \end{array}
ight],$$

其中 $\mu^{(1)}$ 是 m 维列向量, $\mu^{(2)}$ 是 n-m 维列向量, $\Sigma^{(1)}$ 是 m 阶矩阵, $\Sigma^{(2)}$ 是 n-m 阶矩阵, 则

$$\mathbf{X}^{(1)} = (X_1, \cdots, X_m)^{\top} \sim N(\mu^{(1)}, \mathbf{\Sigma}^{(1)}), \quad \mathbf{X}^{(2)} = (X_{m+1}, \cdots, X_n)^{\top} \sim N(\mu^{(2)}, \mathbf{\Sigma}^{(2)}).$$

证明: 记 $\mathbf{x}^{(1)} = (x_1, \dots, x_m)^\top$, $\mathbf{x}^{(2)} = (x_{m+1}, \dots, x_n)^\top$, 易知 $(X_1, \dots, X_m, X_{m+1}, \dots, X_n)^\top$ 的联合密度为

$$p(x_1, \dots, x_m, x_{m+1}, \dots, x_n) = \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}^{(1)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(1)} - \mu^{(1)})^\top (\mathbf{\Sigma}^{(1)})^{-1} (\mathbf{x}^{(1)} - \mu^{(1)})\right\}$$
$$\cdot \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}^{(2)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(2)} - \mu^{(2)})^\top (\mathbf{\Sigma}^{(2)})^{-1} (\mathbf{x}^{(2)} - \mu^{(2)})\right\}.$$

于是

$$P((X_1, \cdots, X_m)^{\top} \in D) = \int \cdots \int_D \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}^{(1)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(1)} - \mu^{(1)})^{\top} (\mathbf{\Sigma}^{(1)})^{-1} (\mathbf{x}^{(1)} - \mu^{(1)})\right\} d\mathbf{x}^{(1)}$$

$$\begin{split} & \cdot \int \cdots \int_{\mathcal{R}^{n-m}} \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}^{(2)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} (\mathbf{\Sigma}^{(2)})^{-1} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right\} d\mathbf{x}^{(2)} \\ & = \int \cdots \int_{D} \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}^{(1)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} (\mathbf{\Sigma}^{(1)})^{-1} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})\right\} d\mathbf{x}^{(1)}. \end{split}$$

这表明 $(X_1, \dots, X_m)^{\top} \sim N(\mu^{(1)}, \Sigma^{(1)})$,同理知 $(X_{m+1}, \dots, X_n)^{\top} \sim N(\mu^{(2)}, \Sigma^{(2)})$ 。

在上述定理的假设条件下, $(X_1, \dots, X_m)^{\mathsf{T}}$ 与 $(X_{m+1}, \dots, X_n)^{\mathsf{T}}$ 相互独立。进而推知多元正态分布 (X_1, \dots, X_n) 两两独立的充分必要条件是两两不相关。

定理 8.3:
$$(X_1, \cdots, X_m, \cdots, X_n)^{\top} \sim N(\mu, \Sigma)(1 \leqslant m < n)$$
, 则

$$(X_1, \cdots, X_m) \sim N(\mu^{(1)}, \Sigma_{11})$$

其中

$$oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight], \quad \mu = \left[egin{array}{c} \mu^{(1)} \ \mu^{(2)} \end{array}
ight].$$

证明:令

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0} \\ -\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1} & \mathbf{I}_{n-m} \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \mathbf{B} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

则由式7.1.1知

$$(Y_1, \cdots, Y_n)^{\top} \sim N(\mathbf{B}\mu, \mathbf{B}\Sigma\mathbf{B}^{\top}).$$

易知

$$\mathbf{B}\mu = \mathbf{B} \left[egin{array}{c} \mu^{(1)} \\ \mu^{(2)} \end{array}
ight], \quad \mathbf{B}\mathbf{\Sigma}\mathbf{B}^{ op} = \left[egin{array}{ccc} \mathbf{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} - \mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12} \end{array}
ight].$$

根据定理知

$$(X_1, \cdots, X_m) \sim N(\mu^{(1)}, \Sigma_{11}).$$

定理 8.4: 设 $(X_1, \dots, X_n)^{\top} \sim N(\mu, \Sigma)$, **A** 是 $m \times n$ 的矩阵且 **A** 的秩等于 m, $(Y_1, \dots, Y_m)^{\top} = \mathbf{A}(X_1, \dots, X_m)^{\top}$, 则

$$(Y_1, \cdots, Y_m)^{\top} \sim N(\mathbf{A}\mu, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}).$$

证明: 若 m=n, 则结论与式7.1.1相同;若 m< n, 则在 A 下方添加 n-m 行使得到的矩阵

$$\mathbf{B} = \left[egin{array}{c} \mathbf{A} \\ \mathbf{C} \end{array}
ight]$$

非奇异,令

$$(Z_1, \cdots Z_n)^{\top} = \mathbf{B}(X_1, \cdots, X_n)^{\top}.$$

由式7.1.1知

$$(Z_1, \cdots Z_n)^{\top} \sim N(\mathbf{B}\mu, \mathbf{B}\Sigma \mathbf{B}^{\top}).$$

注意到

$$\mathbf{B}\mu = \left[egin{array}{c} \mathbf{A}\mu \ \mathbf{C}\mu \end{array}
ight], \quad \mathbf{B}oldsymbol{\Sigma}\mathbf{B}^{ op} = \left[egin{array}{c} \mathbf{A}oldsymbol{\Sigma}\mathbf{A}^{ op} & \mathbf{A}oldsymbol{\Sigma}\mathbf{C}^{ op} \ \mathbf{C}oldsymbol{\Sigma}\mathbf{C}^{ op} \end{array}
ight], \ \left(Z_1, \cdots Z_m
ight)^{ op} = \left(Y_1, \cdots Y_m
ight)^{ op}.$$

由定理 8.3 知定理成立。

定理 8.5: 设 $(X_1, \cdots, X_n)^{\top} \sim N(\mu, \Sigma)$,则有

- (1) $E(\mathbf{X}) \triangleq (E(X_1), \cdots, E(X_n))^{\top} = \mu;$
- (2) $cov(\mathbf{X}, \mathbf{X}) = \mathbf{\Sigma}$.

证明: 先考虑 $\Sigma = \mathbf{I}$ 的情形, 此时 X_1, \dots, X_n 独立同分布, 且 $X_i \sim N(\mu_i, 1)$, 于是

$$(E(X_1), \cdots, E(X_n))^{\top} = \mu, \quad \operatorname{cov}(\mathbf{X}, \mathbf{X}) = \mathbf{I},$$

故 $\Sigma = I$ 时定理成立。

现考虑一般情形,设 Σ 是任何 n 阶正定矩阵,存在方阵 A,使得 $A\Sigma A = I$,令 Y = AX,由定理 8.1 知 $Y \sim N(A\mu, A\Sigma A)$,即

$$Y \sim N(\mathbf{A}\mu, \mathbf{I}),$$

因此

$$E(\mathbf{Y}) = \mathbf{A}\mu, \quad \text{cov}(\mathbf{Y}, \mathbf{Y}) = \mathbf{I}.$$

由于 $\mathbf{X} = \mathbf{A}^{-1}\mathbf{Y}$,利用期望的线性性质得到

$$E(\mathbf{X}) = \mathbf{A}^{-1}E(\mathbf{Y}) = \mu,$$

$$\mathrm{cov}(\boldsymbol{X},\boldsymbol{X}) = \boldsymbol{A}^{-1}\,\mathrm{cov}(\boldsymbol{Y},\boldsymbol{Y})(\boldsymbol{A}^{-1})^\top = \boldsymbol{\Sigma}.$$

例: 若 $\xi \sim N(0, I_d)$, 试证明 $\frac{\xi}{||\xi||}(\xi \neq 0)$ 为 $||x||_2 = 1$ 上的均匀分布。

证明: 只需说明 $\forall ||x||_2 = 1$, $R^{\top}R = I_d$, 有 $p_{\frac{\xi}{||\xi||}}(x) = p_{\frac{\xi}{||\xi||}}(Rx)$.

由于概率密度函数 $p_{\frac{\xi}{||\xi||}}(Rx)$ 等价于 $\frac{\xi}{||\xi||}$ 经过线性变换 R^{\top} 后,得到的变量 $Z=\frac{R^{\top}\xi}{||\xi||}$ 的概率密度函数,

$$p_{\frac{\xi}{||\xi||}}(Rx) = p_{\frac{R^{\top}\xi}{||\xi||}}(x),$$

注意到 $||R^{\mathsf{T}}\xi|| = ||\xi||$, 故

$$p_{\frac{\xi}{||\xi||}}(Rx) = p_{\frac{R^{\top}\xi}{||R^{\top}\xi||}}(x)$$

由定理 8.1 有 $R^{\mathsf{T}}\xi \sim N(0,I_d)$, 因此

$$p_{\frac{\xi}{||\xi||}}(Rx) = p_{\frac{R^{\top}\xi}{||R^{\top}\xi||}}(x) = p_{\frac{\xi}{||\xi||}}(x).$$

例: 若 ξ_1 , ξ_2 是相互独立的随机变量,均服从标准正态分布,而

$$\eta_1 = a\xi_1 + b\xi_2, \quad \eta_2 = c\xi_1 + d\xi_2,$$

则由于

$$E(\eta_1) = 0, \quad D(\eta_1) = a^2 D(\xi_1) + b^2 D(\xi_2) = a^2 + b^2$$

$$E(\eta_2) = 0, \quad D(\eta_2) = c^2 D(\xi_1) + d^2 D(\xi_2) = c^2 + d^2$$

$$\operatorname{cov}(\eta_1, \eta_2) = ac + bd, \quad \rho_{\eta_1, \eta_2} = \frac{ac + bd}{\sqrt{a^2 + b^2} \sqrt{c^2 + d^2}}$$

因此 $\eta_1 \sim N(0, a^2 + b^2)$, $\eta_2 \sim N(0, c^2 + d^2)$, 且

$$(\eta_1, \eta_2) \sim N(0, 0, a^2 + b^2, c^2 + d^2, \frac{ac + bd}{\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}})$$

当 ac + bd = 0 时, $\rho_{\eta_1,\eta_2} = 0$, η_1 与 η_2 独立。

当 $\rho_{\eta_1,\eta_2}=\pm 1$,即 $(ac+bd)^2=(a^2+b^2)(c^2+d^2)$ 时, $(\eta_1,\eta_2)(\eta_1,\eta_2)$ 退化为一个点。退化为一维分布,而当 a=b=c=d=0 时, (η_1,η_2) 退化为一个点。

条件分布: 若 $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$ 服从n 元正态分布 $N(\mu, \Sigma), E(\xi_1) = \mu_1, E(\xi_2) = \mu_2, \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$,则在给定 $\xi_1 = x_1$ 下, ξ_2 的分布仍然为正态分布,条件数学期望

$$\mu_{2|1} = E(\xi_2|\xi_1 = x_1) = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1)$$

条件方差

$$oldsymbol{\Sigma}_{22|1} = oldsymbol{\Sigma}_{22} - oldsymbol{\Sigma}_{21} oldsymbol{\Sigma}_{11}^{-1} oldsymbol{\Sigma}_{12}$$

这里 $E(\xi_2|\xi_1=x_1)$ 称为 ξ_2 关于 ξ_1 的回归,注意到它是 x_1 的线性函数。又有条件方差与 x_1 无关。

证明:考虑

$$\left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right] \left[\begin{array}{cc} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{array}\right] = \boldsymbol{I}.$$

其中, $\mathbf{\Sigma}_{12} = \mathbf{\Sigma}_{21}^{\top}$ 和 $\mathbf{A}_{12} = \mathbf{A}_{21}^{\top}$ 。则有

$$\Sigma_{11}A_{12} + \Sigma_{12}A_{22} = 0.$$

则 $\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{12}^{\top} = -\boldsymbol{\Sigma}_{12}^{\top}\boldsymbol{\Sigma}_{11}^{-1}$. 所以 $\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21} = -\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}$. 另外有

$$\Sigma_{12}A_{12} + \Sigma_{22}A_{22} = I.$$

则有

$$(oldsymbol{\Sigma}_{22} - oldsymbol{\Sigma}_{21}oldsymbol{\Sigma}_{11}^{-1}oldsymbol{\Sigma}_{12})oldsymbol{A}_{22} = oldsymbol{I}.$$

而配方有

$$(x_2 - \mu_2)^{\top} \mathbf{A}_{22} (x_2 - \mu_2)^{\top} + 2(x_2 - \mu_2)^{\top} \mathbf{A}_{21} (x_1 - \mu_1)$$

$$= \left[x_2 - \mu_2 + \mathbf{A}_{22}^{-1} \mathbf{A}_{21} (x_1 - \mu_1) \right]^{\top} \mathbf{A}_{22} \left[x_2 - \mu_2 + \mathbf{A}_{22}^{-1} \mathbf{A}_{21} (x_1 - \mu_1) \right]$$

$$+ f(x_1).$$

得到证明。

例: 二元场合,若 $(\xi_1, \xi_2)^{\mathsf{T}}$ 服从正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}.$$

在给定 $\xi_1 = x_1$ 条件下, ξ_2 的条件分布还是正态分布而且其条件期望由定理可以推知

$$E(\xi_2|\xi_1 = x_1) = \mu_2 \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1)$$

条件方差可以推知为

$$\sigma_2^2 - \frac{(\rho \sigma_1 \sigma_2)^2}{\sigma_1^2} = \sigma_2^2 (1 - \rho^2).$$

8.1 随机序列的收敛性

设随机变量 $\eta = \eta(\omega), \xi_1 = \xi_1(\omega), \xi_2 = \xi_2(\omega), \cdots$ 都是概率空间 (Ω, \mathcal{F}, P) 上的实值函数,我们在表述上常常省去 ω 。

定义: 称随机变量 ξ_1, ξ_2, \cdots 依概率收敛于 η , 若对任何 $\varepsilon > 0$, 有

$$\lim_{n\to\infty} P(\{\omega : |\xi_n(\omega) - \eta(\omega)| \geqslant \varepsilon\}) = 0.$$

此时记作 $\xi_n \stackrel{P}{\longrightarrow} \eta$.

定义: 称随机变量 ξ_1, ξ_2, \cdots 概率为 1 (或几乎必然) 的收敛于 η , 若

$$P(\{\omega : \lim_{n \to \infty} \xi_n(\omega) = \eta(\omega)\}) = 1.$$

此时记作 $\xi_n \xrightarrow{a.s.} \eta.$, 其中 a.s. 是 almost surely 的缩写。

定义: 称随机变量 ξ_1, ξ_2, \cdots 弱收敛于 η , 若对于 η 的分布函数 F(x) 的任何连续点 x, 下式皆成立:

$$\lim_{n \to \infty} P(\{\omega : \xi_n(\omega) \leqslant x\}) = P(\{\omega : \eta(\omega) \leqslant x\}).$$

此时记作 $\xi_n \xrightarrow{\omega} \eta$ 。弱收敛也称为依分布收敛。

定理: 设 $\xi_n \xrightarrow{a.s.} \eta$, 则 $\xi_n \xrightarrow{P} \eta$ 。

证明(不做要求): 研究集合 $A = \{\omega : \xi_{(\omega)}, \xi_{2}(\omega), \cdots$ 不收敛于 $\eta(\omega)\}$,假设 $\xi_n \xrightarrow{a.s.} \eta$,知 P(A) = 0,对任何 $\varepsilon > 0$,令

$$B = \{\omega : 有无穷多个n, 使得|\xi_n(\omega) - \eta(\omega)| \ge \varepsilon\},$$

$$B_m = \{\omega : \exists n \geq m, \notin \exists |\xi_n(\omega) - \eta(\omega)| \geq \varepsilon\},\$$

则 $B_m \supset B_{m+1}$, $B = \bigcap_{m=1}^{\infty} B_m$, 于是

$$\lim_{m \to \infty} P(B_m) = P(B) \leqslant P(A) = 0,$$

因为 $P(|\xi_n - \eta| \ge \varepsilon) \le P(B_m)$, 所以

$$\lim_{m \to \infty} P(|\xi_n - \eta| \geqslant \varepsilon) = 0.$$

表明 $\xi_n \stackrel{P}{\longrightarrow} \eta$ 。

注意, 逆定理不成立:

例 (不做要求): 设 $\Omega = (0,1)$, \mathcal{F} 由 (0,1) 中所有 Borel 子集组成, P 是这样的概率测度: 对任何 区间 $(a,b)(0 \le a < b \le 1)$, P((a,b)) = b - a, 在概率空间 (Ω,\mathcal{F},P) 上考虑下列随机变量序列:

对任何正整数 k 及 $j=1,\cdots,2^k$,令

$$X_{k1} = \begin{cases} 1, & 0 < \omega < \frac{1}{2^k}, \\ 0, & \sharp \text{ th}; \end{cases}, \quad X_{kj} = \begin{cases} 1, & \frac{j-1}{2^k} < \omega < \frac{j}{2^k}, \\ 0, & \sharp \text{ th}; \end{cases} (j > 1).$$

这些 $X_{kj}: k \geqslant 1, j = 1, \cdots, 2^k$ 可排成一个序列: $X_{11}, X_{12}, X_{21}, X_{22}, X_{23}, X_{24}, \cdots$ (按照字典排列 法,将第一个足标从小到大排,若相同则按第二个足标从小到大排),将该序列记为 ξ_1, ξ_2, \cdots ,其中 $\xi_n = X_{k_n j_n}$,则对任何 $\varepsilon \in (0,1)$ 有:

$$P(|\xi_n| \geqslant \varepsilon) = P(\xi_n = 1) = \frac{1}{2_n^k}$$

在 $n \to \infty$ 时 $k_n \to \infty$, 故有 $\lim_{n \to \infty} P(|\xi_n| \ge \varepsilon) = 0$, 这表明 $\xi_n \xrightarrow{P} 0$.

而对于任何 $\omega \in (0,1)$, $\lim_{n\to\infty} \xi_n(\omega)$ 不存在。实际上对任何 ω 和 k, 存在唯一的 j_k 使得 $X_{kj_k}(\omega) = 1$, 而 $j \neq j_k$ 时 $X_{kj}(\omega) = 0$, 由此可见, $\lim_{n\to\infty} \xi_n(\omega)$ 不存在。即 $\xi_n \stackrel{a.s.}{\longrightarrow} \eta$ 不成立。

定理 (不做要求): 设 $\xi_n \xrightarrow{P} \eta$, 则 $\xi_n \xrightarrow{\omega} \eta$.

证明: 设 x_0 是 η 的分布函数 F(x) 的连续点,记

$$F_n(x) = P(\xi_n \leqslant x) \quad (n = 1, 2, \cdots).$$

易知,对任何 $\varepsilon > 0$,有

$$\{\xi_n \leqslant x_0\} \subset \{\xi_n - \eta \leqslant -\varepsilon\} \cup \{\eta \leqslant x_0 + \varepsilon\},$$

于是 $P(\xi_n \leqslant x_0) \leqslant P(\xi_n - \eta \leqslant -\varepsilon) + P(\eta \leqslant x_0 + \varepsilon)$.

故

$$F_n(x_0) - F(x_0) \leqslant P(|\xi_n - \eta| \geqslant \varepsilon) + F(x_0 + \varepsilon) - F(x_0).$$

类似地,有

$$\{\xi_n \leqslant x_0\} \supset \{\xi_n - \eta \leqslant \varepsilon, \eta \leqslant x_0 - \varepsilon\},\$$

于是

$$P(\xi_n \leqslant x_0) \geqslant P(\xi_n - \eta \leqslant \varepsilon, \eta \leqslant x_0 - \varepsilon) \geqslant P(\eta \leqslant x_0 - \varepsilon) - P(\xi_n - \eta > \varepsilon)$$

故

$$F_n(x_0) - F(x_0) \geqslant F(x_0 - \varepsilon) - F(x_0) - P(|\xi_n - \eta| \geqslant \varepsilon).$$

因此

$$|F_n(x_0) - F(x_0)| \le F(x_0 + \varepsilon) - F(x_0 - \varepsilon) + P(|\xi_n - \eta| \ge \varepsilon).$$

由于 x_0 是 F(x) 的连续点,因此对任何 $\delta > 0$,有 $\varepsilon > 0$,满足

$$F(x_0 + \varepsilon) - F(x_0 - \varepsilon) < \frac{\delta}{2}.$$

取 n_0 , 当 $n \ge n_0$ 时,

$$P(|\xi_n - \eta| \geqslant \varepsilon) < \frac{\delta}{2}.$$

于是对一切 $n \ge n_0$, 有

$$|F_n(x_0) - F(x_0)| < \delta.$$

这表明 $F_n(x_0) \to F(x_0)(n \to \infty)$, 故 $\xi_n \xrightarrow{\omega} \eta$.

注意, 逆定理不真:

例: 设随机变量 $X \sim N(0,1)$, 令

$$\xi_{2n-1} = X$$
, $\xi_{2n} = -X$ $(n = 1, 2, \cdots)$.

易知所有的 ξ_n 有相同的分布函数 $\phi(x)$,为标准正态分布函数,显然 $\xi_n \xrightarrow{\omega} \eta$. 但是对 $\varepsilon > 0$,有

$$P(|\xi_n - X| \ge \varepsilon) = \begin{cases} 0, & n$$
是奇数, $P(|X| \ge \frac{\varepsilon}{2}), & n$ 是偶数.

可见 ξ_1, ξ_2, \cdots 并不依概率收敛于 X。

设 X_1, X_2, \cdots 是随机变量序列, 令

$$S_n = X_1 + \dots + X_n.$$

定义: 若 $E(X_n), n = 1, 2, \cdots$ 都存在, 且

$$\frac{1}{n}\left(S_n - E(S_n)\right) \stackrel{P}{\to} 0$$

则称 X_1, X_2, \cdots 服从 (弱) 大数律 (Weak Law of Large Numbers, WLLN)。

定义: 若 $E(X_n), n = 1, 2, \cdots$ 都存在, 且

$$\frac{1}{n}\left(S_n - E(S_n)\right) \stackrel{\text{a.s.}}{\to} 0,$$

则称 X_1, X_2, \cdots 服从强大数律 (SLLN)。

定义: 若对任意 $n \ge 2$ 都有 X_1, \dots, X_n 相互独立,则称 X_1, X_2, \dots 是相互独立的随机变量序列。

若 X_1, X_2, \cdots 相互独立, 且 $X_n \stackrel{d}{=} X_1, \forall n \geq 2$, 则称 X_1, X_2, \cdots 独立同分布, 记为 i.i.d. (independent and identically distributed).

例: 设随机变量序列 $\{X_n\}$ 独立同分布,其密度函数为

$$p(x) = \begin{cases} \frac{1}{\beta}, & 0 < x < \beta, \\ 0, & \text{ 其他.} \end{cases}$$

其中常数 $\beta > 0$, 令 $Y_n = \max\{X_1, X_2, \dots, X_n\}$, 证明 $Y_n \xrightarrow{P} \beta$.

证明: 因为当 x < 0 时,有 $P(Y_n \le x) = 0$,当 $x \ge \beta$ 时,有 $P(Y_n \le x) = 1$,当 $0 \le x < \beta$ 时,有

$$P(Y_n \leqslant x) = \prod_{i=1}^n P(X_i \leqslant x) = \prod_{i=1}^n \int_0^x \frac{1}{\beta} dx = \left(\frac{x}{\beta}\right)^n,$$

所以对任意的 $\varepsilon > 0(\varepsilon < \beta)$, 当 $n \to \infty$ 时,有

$$P(|Y_n - \beta| \ge \varepsilon) = P(Y_n \le \beta - \varepsilon) = \left(\frac{\beta - \varepsilon}{\beta}\right)^n \to 0,$$

所以有 $Y_n \stackrel{P}{\longrightarrow} \beta$.

大数定律 8.2

切比雪夫大数定律: 假设 X_1, X_2, \cdots 相互独立, 且存在 M 使得 $\mathrm{var}(X_i) \leqslant M, \forall i$. 设 $S_n = X_1 + X_2 + X_3 + X_4 + X_4 + X_5 +$ $\cdots + X_n$.,那么,

$$\frac{1}{n}\left(S_n - ES_n\right) \stackrel{P}{\to} 0 \quad (n \to \infty).$$

证明: $\diamondsuit A_n = \{ \left| \frac{1}{n} \left(S_n - E S_n \right) \right| \ge \varepsilon \}.$ 需验证 $P(A_n) \to 0$.

由切比雪夫不等式,
$$P(A_n) = P(|S_n - ES_n| \ge n\varepsilon) \le \frac{1}{(n\varepsilon)^2} \operatorname{var}(S_n)$$

由于 X_1, X_2, \cdots 两两不相关,所以 $\text{var}(S_n) = \sum_{i=1}^n \text{var}(X_i) \leqslant nM$,于是

$$P(A_n) \leqslant \frac{nM}{n^2 \varepsilon^2} = \frac{M}{\varepsilon^2} \cdot \frac{1}{n} \to 0.$$

由此知定律成立。

其中定律里的条件"相互独立"可减弱为"两两不相关"。

推论:设 X_1, X_2, \cdots 独立同分布, $var(X_1) < \infty$, 则当 $n \to \infty$ 时,

$$\frac{S_n}{n} \stackrel{P}{\to} E(X_1).$$

推论: (伯努利大数律) 单次试验中 A 发生的概率为 p, 设在 n 次试验中事件 A 发生了 ν_n 次,则 当 $n \to \infty$ 时,

$$\frac{\nu_n}{n} \stackrel{P}{\to} p.$$

证明:令

$$X_i = \begin{cases} 1, & \text{第i次试验中A发生,} \\ 0, & \text{第i次试验中A不发生,} \end{cases} (i = 1, 2, \cdots),$$

则 $\frac{\nu_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$ 由于 X_1, X_2, \cdots 是独立同分布的随机变量序列, $E(X_i) = p$, $var(X_i) = p(1-p)(i=1,2,\cdots)$,故由上一推论知本推论成立。

如果不假定 $E(X_i)$ 存在,上述推论是否成立?

例: 设 X_1, X_2, \cdots 独立同分布, 密度为 $p(x) = \frac{1}{\pi(x^2+1)}$. 可以证明, $\frac{S_n}{n}$ 与 X_1 有相同的密度. 于是, 对任何 a 和 $\varepsilon > 0$,有

$$P\left(\left|\frac{S_n}{n}-a\right|>\varepsilon\right)=P\left(\left|X_1-a\right|>\varepsilon\right)$$
 不趋于0.

故 $\frac{S_n}{n}$ 不能以概率收敛于 a。

定理: (Cantelli 强大数定律) 假设 X_1, X_2, \cdots 相互独立, $E(X_i)$ 存在, 且 $E(X_i - E(X_i))^4 \leq M$, $\forall i$. 那么

$$\frac{1}{n}(S_n - ES_n) \stackrel{a.s.}{\rightarrow} 0.$$

推论: 设 X_1, X_2, \cdots 独立同分布, $E(X_1^4)$ 存在, 则 $\frac{S_n}{n} \stackrel{\text{a.s.}}{\to} E(X_1)$.

本推论可以由 Cantelli 强大数定律直接推出。

推论: (Borel 强大数律) 单次小试验中事件 A 发生的概率为 p. 在独立重复试验中, 前 n 次试验中 A 发生的次数为 ν_n , 则

$$\frac{\nu_n}{n} \stackrel{\text{a.s.}}{\to} p.$$

定理 2.4. (Kolmogorov's SLLN). 假设 X_1, X_2, \cdots 独立同分布, 期望存在, 则 $\frac{1}{n}S_n \stackrel{\text{a.s.}}{\to} EX_1$.

例: 设 X_1, X_2, \cdots 是相互独立的随机变量序列, $X_1 \equiv 0$, 对一切 $n \geq 2$, X_n 只取三个可能值 n, -n, 0, 且

$$P(X_n) = n = P(X_n = -n) = \frac{1}{2n \ln n}, \quad P(X_n = 0) = 1 - \frac{1}{n \ln n}.$$

证明 X_1, X_2, \cdots 服从切比雪夫大数定律。

证明: 易知

$$E(X_n) = 0$$
, $var(X_1) = 0$, $var(X_n) = \frac{n}{\ln n} (n = 2, 3, \dots)$.

令 $S_n = \sum_{i=1}^n X_i$,则 $\text{var}(S_n) = \sum_{i=1}^n \text{var}(X_i) = \sum_{i=2}^n \frac{i}{\ln i}$. 由于 $x \ge 3$ 时 $\frac{x}{\ln x}$ 是 x 的增函数,故 $\text{var}(S_n) \leqslant \frac{2}{\ln 2} + \frac{n^2}{\ln n}$,利用切比雪夫不等式,有

$$P\left(\left|\frac{S_n - E(S_n)}{n}\right| \geqslant \varepsilon\right) \leqslant \frac{1}{n^2 \varepsilon} \operatorname{var}(S_n) \to 0 \quad (\varepsilon > 0, n \to \infty).$$

这表明 X_1, X_2, \cdots 服从切比雪夫大数定律。

大数定律和强大数定律有广泛的应用:

(1): 统计方法的理论依据. 假设采集到数据数据: X_1, \dots, X_n 为 X 的 n 次独立观测值, 它们独立同分布.

常用 $\frac{1}{n}(X_1+\cdots+X_n)$ 估计期望:

$$\bar{X} := \frac{1}{n} (X_1 + \dots + X_n) \stackrel{\text{a.s.}}{\to} E(X).$$

常用 $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2$ 估计方差:

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\bar{X})^2 \stackrel{\text{a.s.}}{\to} E(X^2) - (E(X))^2 = \text{var}(X).$$

(2): 用于计算机模拟期望、概率.

例: 设有 m 枚炮弹同时射击, 第 i 枚炮弹落点为 (x_i, y_i) ,

$$\varphi(x_1, y_1; \dots; x_m, y_m) = \begin{cases} 1, & \text{若落点造成有效毁伤;} \\ 0, & \text{否则.} \end{cases}$$

设第 i 枚炮弹的瞄准点为 (a_i,b_i) , 实际落点 (X_i,Y_i) . 模型假设: $X_1,\cdots,X_n;Y_1,\cdots,Y_n$ 相互独立,且

$$X_i \sim N\left(a_i, \sigma_1^2\right), \quad Y_i \sim N\left(b_i, \sigma_2^2\right).$$

根据 SLLN:

$$P\left(\varphi\left(X_{1}, Y_{1}; \cdots; X_{m}, Y_{m}\right) = 1\right)$$

$$\approx \frac{1}{n} \sum_{k=1}^{n} \varphi\left(X_{1}^{(k)}, Y_{1}^{(k)}; \cdots; X_{m}^{(k)}, Y_{m}^{(k)}\right).$$

利用数据 $X_1^{(k)}, Y_1^{(k)}; \cdots; X_m^{(k)}$ 即可用计算机计算概率的估计值。

(3): 估计积分 $I = \int_a^b f(x) dx$.

利用变量替换 x=a+(b-a)u 得, $I=\int_0^1 f(a+(b-a)u)(b-a)du$,因此不妨假设 a=0,b=1.

得到 $I = \int_0^1 f(x) \cdot 1 dx = E(f(U))$. 其中 U 为服从区间 (0,1) 上均匀分布的随机变量。

根据 SLLN:

$$I \approx \frac{1}{n} \sum_{i=1}^{n} \left(f\left(U_{1}\right) + \dots + f\left(U_{n}\right) \right)$$

因此只需得到服从区间 (0,1) 上均匀分布的随机数 u_1, \dots, u_n ,即可得到积分的近似值。该方法还可以推广到高维的数值积分。

8.3 中心极限定理

中心极限定理: 设 X_1, X_2, \cdots 为随机变量序列,若 $E(X_n), \text{var}(X_n), n = 1, 2, \cdots$ 都存在, $\text{var}(X_n)$ 不全为 0 , 令 $S_n = \sum_{i=1}^n X_i$,且

$$S_n^* = \frac{S_n - E(S_n)}{\sqrt{\operatorname{var}(S_n)}} \xrightarrow{\omega} Z \sim N(0, 1),$$

则称 X_1, X_2, \cdots 服从中心极限定理 (Central Limit Theorem, CLT)(或适合中心极限定理)。

定理: (Linderberg-Levy 中心极限定理) 假设 X_1, X_2, \cdots 独立同分布, $E(X_1)$ 存在且 $0 < \text{var}(X_1) < \infty$. 那么,

$$S_n^* \stackrel{\omega}{\to} Z \sim N(0,1).$$

例: 加法器同时收到 20 个噪声电压 $V_k, k=1,\cdots,20$, 它们独立同分布, $V_1 \sim U(0,10)$. 记 $V=\sum_{k=1}^{20} V_k$, 求 P(V>105).

解: 易知 $E(V_1) = 5$, $var(V_1) = \frac{10^2}{12}$.

设

$$V^* = \frac{V - 20 \times 5}{\sqrt{20 \times \frac{100}{12}}}$$

根据中心极限定理,

$$P(V > 105) = P\left(V^* > \frac{105 - 20 \times 5}{\sqrt{20 \times \frac{100}{12}}}\right) \approx 1 - \Phi(0.387)$$

查表得 $\Phi(x^*) = 0.652$, 从而所求的 p = 1 - 0.652 = 0.348.

例: 旅馆有 500 间客房, 每间有一台 2 千瓦的空调. 入住率为 80%. 问: 需多少千瓦的电力能有 99% 的把握保证电力足够?

解: 假设提供 x 千瓦.

设事件 A_i = "第 i 间房开空调", $P(A_i) = 80\%, X_i = 2 \times 1_{A_i}$.

则易知 $E(X_1) = 1.6$, $var(X_1) = 4 \times 0.8 - 1.6^2 = 0.64$.

要求 x 满足: $P(S_n \leq x) \geq 99\%$. 设

$$S_n^* = \frac{S_n - 500 \times 1.6}{\sqrt{500 \times 0.64}}$$

根据根据中心极限定理, 要求

$$P\left(S_{n} \leqslant x\right) = P\left(S_{n}^{*} \leqslant x^{*}\right) \approx \Phi\left(x^{*}\right) \geqslant 0.99$$

其中

$$x^* = \frac{x - 500 * 1.6}{\sqrt{500 * 0.64}}.$$

查表得 $\Phi(2.33) = 0.99$. 即, 要求 $x^* \geqslant 2.33$.

即,要求 $x \ge 800 + 2.33 * \sqrt{320} = 841.68$,从而需 842 千瓦.

9.1 统计学若干基本概念

定义: 所考察的对象的总和称为总体, 在统计学中可以归结为随机变量或其他形式的随机量。

例如,考察电子产品的使用寿命,于是将所有电子产品的使用寿命作为总体。所谓总体特性,就是使用寿命的特性,或者是刻画使用寿命的随机变量 X 的特性,该随机变量的分布称为**总体分布**。可以假定 X 的分布为指数分布,其分布密度有下列形式:

$$p(x,\theta) = \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\} \quad (x > 0, \theta > 0),$$

式中 θ 是分布的**参数**。

设用 $F(x,\theta)$ 表示随机变量 X 分布密度相应的分布函数,用 F_{θ} 表示相应的分布。为获取分布 F_{θ} 的信息,我们假定 F_{θ} 属于一个**分布族**,用 $\mathcal{G} = \{F_{\theta}, \theta \in \Theta\}$ 表示这个分布族。在分布族 \mathcal{G} 的表达式中 θ 称为参数, Θ 称为**参数空间**。在统计学中,随机变量 X 称为总体,它的分布 F_{θ} 称为**总体 分布**。这样, $X \sim F_{\theta} \in \mathcal{G}$ 形成了这个统计问题的**模型**,称为总体模型。

例如,电子产品的使用寿命 X 的分布 F_{θ} 由分布密度确定,其中参数 $\theta \in (0, +\infty)$ 。当 θ 确定后,我们获得了电子产品使用寿命的全部信息。

总体模型只涉及 X 这个随机变量,而没有涉及数据。观察数据 $\mathbf{x} = (x_1, \dots, x_n)$ 是 $\mathbf{X} = (X_1, \dots, X_n)$ 的观察值。其中 X_1, \dots, X_n 是独立同分布的,这由样本的产生所确定,其共同的分布为 F_{θ} 。在统计学中,我们称 $\mathbf{X} = (X_1, \dots, X_n)$ 为**样本**,称 n 为**样本量**,称 \mathbf{X} 的取值 $\mathbf{x} = (x_1, \dots, x_n)$ 为**样本值**。称 \mathbf{X} 的所有可能取值的集合为样本空间 \mathcal{X} ,在样本空间上的分布为 P_{θ} ,我们称 $\mathbf{X} \sim P_{\theta}(\theta \in \Theta)$ 为统计模型。

模型的参数 θ 可以是常数向量或者其他的量,主要特征是: 一旦参数的值确定后,统计模型中的分布就完全确定了。在某些统计问题中,我们需要了解与参数有关的量,即 θ 的函数 $g(\theta)$,为了简便,将 $g(\theta)$ 也称为参数。

例: (测量问题) 对某待估量 a 重复独立测量 n 次, 得到测量值 x_1, \dots, x_n .

测量值带有误差,总体分布 X = a + e, 其中 $e \sim N\left(0, \sigma^2\right)$. 即, $X \sim N\left(a, \sigma^2\right)$. 相应的参数空间为 $\Theta = \{\theta = (a, \sigma^2) : a \in \mathbb{R}, \sigma^2 > 0\}$ 。

参数 $\theta = (a, \sigma^2)$. 其中, σ^2 不是所关心的, 称为讨厌参数。

 $P_{\theta}: \vec{X}$ 的联合密度为

$$f_{\theta}(x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x_i - a)^2}{2\sigma^2}\right\}.$$

这样, $\mathbf{X} \sim P_{\theta}$, $\theta = (a, \sigma^2) \in \Theta$ 形成了统计模型。

研究对象 θ 或 $g(\theta)$. 例, $g(a, \sigma^2) = a$.

定义:设 $\mathbf{X} \sim P_{\theta}(\theta \in \Theta)$ 是一个统计模型,则定义在样本空间 \mathcal{X} 上的任何函数 $T(\mathbf{x})(\mathbf{x} \in \mathcal{X})$ 都称为统计量。

在统计学中统计量通常是指具体的函数,不能泛指,尤其不能含有未知参数。从数学上,统计量是一个只依赖数据的函数,当 (x_1, \dots, x_n) 的值给定后根据函数关系可以算出 $T(\mathbf{x})$ 的值。

然而,如果将统计量看成样本 X 的函数,T(X) 还是一个随机变量,具有分布,且在不同参数值下具有不同的分布。严格意义下,统计量具有分布族。

例如在测量问题中,最常见的统计量为样本均值 $T=\frac{1}{n}(X_1+\cdots+X_n)$,当观察值为 x_1,\cdots,x_n 时, $T=\frac{1}{n}(x_1+\cdots+x_n)$ 为一个数值。当 $\mathbf{X}=(X_1,\cdots,X_n)$ 时,统计量是样本的函数,为随机变量。 我们可以计算 T 的分布, $T\sim N\left(a,\frac{\sigma^2}{n}\right)$ 。注意统计量的分布含有未知参数 (a,σ^2) 。

9.2 若干统计问题

估计问题: 依赖于样本的统计量就可以作为参数 a 的估计,在估计问题中,估计参数的统计量也称为估计量。

例:(测量问题续)测量问题中待测量 a 的一个估计为 $T_1 = \frac{1}{n} \sum_{i=1}^n x_i$ 。当 (X_1, \dots, X_n) 服从多元正态分布时,其常系数线性组合的分布也是正态分布,利用 $X_i (i=1,\dots,n)$ 独立同分布的特性,计算 T_1 的期望和方差,可得

$$E(T_1) = \frac{1}{n} \left[\sum_{i=1}^n E(X_i) \right] = a,$$

$$\operatorname{var}(T_1) = \frac{1}{n^2} \left[\sum_{i=1}^n \operatorname{var}(X_i) \right] = \frac{\sigma^2}{n},$$

这样我们得到 $T_1 \sim N\left(a, \frac{\sigma^2}{n}\right)$.

假设检验: 对假设 H_0 回答 "是"或"否"。

例如, 规定不合格率不能超过 3%. 现有 200 件产品, 从中任意抽取 10 件, 发现 2 件不合格. 问:是 否可以出厂? **线性回归:** 研究变量 Y 对 x 的线性依赖关系,

$$Y = b_0 + b_1 x + e, \quad e \sim N(0, \sigma^2).$$