

Forecasting Process

IDS 552

Instructor: Boxiao (Beryl) Chen

Discussion Outline

- Forecasting setup
- Performance evaluation
- Communication and maintenance
- Neural networks for forecasting (video + notes)
 - https://www.youtube.com/watch?v=aircAruvnKk&t=633s

Forecasting Setup

What are we forecasting?

- 1. Number of orders (?)
- 2. Number of shipments (?)
- Examples of issues:
 - An unfilled order may be rolled ahead to a future time bucket orders overstate demand and shipments understate demand
 - If shortages are anticipated, customers may artificially inflate their orders to capture a larger share of an allocation – orders and shipments overstate demand
 - If shortages are anticipated, customers may withhold orders or direct their orders to substitute products or competitors – orders and shipments understate demand
 - Special Promotions typically increase customer orders and shipments during a particular season – orders and shipments understate demand if promotion is no longer in effect
- Shipments have an advantage over orders because they are less likely to be manipulated

Self-reported demand

Week	1	2	3	4	Month Total
Orders	50	50	60	60	220
Shipments	50	40	55	40	185
Shortages		10	5	20	35

- 1. Demand = (shipments + orders)/2 = (220 + 185)/2 = 202.5
- 2. Demand = Shipments + latest shortages = 205
- Second definition avoids over-counting shortages
- The best definition of self-reported demand depends on the specific situation
- Since forecasting errors can be 20% or more, an operational definition of demand that is a few percent off is perfectly fine!

Forecast horizon and updating

- Forecast horizon (k): Number of periods ahead that we forecast
- F_{t+k} is a k-step ahead forecast made a time t
- Amtrak example: One month ahead forecast (i.e. F_{t+1}) may suffice for revenue management but longer forecasts are likely needed for procurement and staffing decisions (e.g. F_{t+3})
- Forecast updating: How recent is the data that you are using for prediction?
 - Suppose the goal is to predict next month ridership for Amtrak
 - Monthly updates of data implies that you are relying on 2-step ahead forecasts
 - Updating data every 3 months could mean that you are using 4-step ahead forecasts

Data collection and frequency

- Data collection is not a one-time effort in business and typically requires multiple sources to reconcile quality
- Temporal frequency: At what time scale do you want to collect data?
 - Stock ticker data is available minute-by-minute and online purchases in a retail are recorded in real time
 - Is higher data frequency always better? Why or why not?
 - Suppose the goal is to forecast daily sales, then is minute-by-minute data appropriate?

Frequency selection for forecasting

Top performer quote at NN5 time series competition:

"To simplify the forecasting problem, we performed a time aggregation step to convert the time series from daily to weekly Once the forecast has been produced, we convert the weekly forecast to a daily one by a simple linear interpolation scheme"

• Takeaway: Aggregation of the data may be useful even if the forecast is required at a more granular level (e.g. due to lack of data and/or excessive noise)

Granularity

- Refers to the coverage of data (e.g. geographically)
- Amtrak ridership could be measured at the route-level, station-level, or state-level.
- Very fine granularity may lead to lack of observations
- Suppose track daily Amtrak ridership of senior citizens who require assistance on a specific route.
 - How might the series look?
 - Any issues?

Tunnel Traffic Data (by day)

Tunnel Traffic Data (aggregate by week)

Tunnel Traffic Data (aggregate by month)

Visualizing time series: Initial step

- Visualization helps detect initial patterns, inform models, and spot potential problems such as extreme values, unequal spacing, and missing values
- First step: Plot the time series
- Some additional operations to learn about the data:
 - Zooming in to shorter time periods
 - Adding trend lines
 - Suppressing seasonality via aggregation and averaging

Amtrak Ridership Data

	S S
Month	Ridership
Jan-91	1708.917
Feb-91	1620.586
Mar-91	1972.715
Apr-91	1811.665
May-91	1974.964
Jun-91	1862.356
Jul-91	1939.86
Aug-91	2013.264
Sep-91	1595.657
Oct-91	1724.924
Nov-91	1675.667
Dec-91	1813.863
Jan-92	1614.827
Feb-92	1557.088
Mar-92	1891.223
Apr-92	1955.981
May-92	1884.714
Jun-92	1623.042
Jul-92	1903.309

2-Nov	1858.345
2-Dec	1996.352
3-Jan	1778.033
3-Feb	1749.489
3-Mar	2066.466
3-Apr	2098.899
3-May	2104.911
3-Jun	2129.671
3-Jul	2223.349
3-Aug	2174.36
3-Sep	1931.406
3-Oct	2121.47
3-Nov	2076.054
3-Dec	2140.677
4-Jan	1831.508
4-Feb	1838.006
4-Mar	2132.446

Data Plots

2001

Time

Quadratic Regression

Time

Data pre-processing

- Missing values: Holes in the series
- Is this an issue?
 - Yes, for linear regression
 - Not necessarily for methods such as neural networks
- Possible methods for filling in missing values
 - Average neighboring values
 - Create a forecast of missing values using past data

Tunnel Traffic Missing Data

Irregularities

- Extreme values: What makes them extreme?
 - Difficult to justify removal without knowing the source (e.g. data entry error or rare event?)
 - Practical solution: Create forecasts with and without extreme values and understand its impact

Performance Evaluation

Revisit data partitioning: Model calibration and choice

Partition data into training and validation sets

- We calibrate models on the training set and test it on the validation set
- Validation period is typically chosen to mimic the forecast horizon

Validation

Time

Let's forecast?

- Suppose we have chosen the "best" model based on the training and validation partition
- Do we start forecasting?
- No!! We need to recalibrate on the complete data set, that is, without partitioning
- Mhys
 - You have more data to calibrate the model parameters
 - Throwing away the validation period amounts to removing the most recent data
 - If a model is calibrated using only the training set, then it must forecast further than the validation period to be useful

Naïve forecast benchmarks

k-step ahead naïve forecast at time t:

• k-step seasonal naïve forecast [assume we have M (> k) seasons]:

$$F_{t+1} = D_{t-M+1}$$

$$F_{t+2} = D_{t-M+2}$$

$$F_{t+k} = D_{t-M+k}$$

Prediction accuracy

- We discussed error measures in the last class (e.g. MAPE)
- Forecast error: $E_t = F_t D_t$
- Mean absolute deviation: $MAD = \frac{1}{n} \sum_{t=1}^{n} |E_t|$
- MAD is also known as mean absolute error (MAE)
- R has an "accuracy" function to automatically compute prediction accuracy measures, including average error, MAD, and MAPE

MASE

 Mean absolute scaled error (MASE) compares a forecasting method relative to a naïve forecast

ullet Assume an n period training set and a v period validation set

$$MASE = \frac{\text{validation MAD } (v \text{ periods})}{\text{training MAD of naive forecasts (n periods)}} = \frac{\frac{1}{v} \sum_{t=n+1}^{n+v} |E_t|}{\frac{1}{n} \sum_{t=1}^{n} |D_{t-1} - D_t|}$$

• MASE greater than 1 indicates worse performance than naïve forecast, while a value less than 1 indicates an improvement over the naïve forecast

Forecast accuracy vs profitability

• When using error measures (e.g. MSE), large errors typically carry more weight than small errors

- Is this always true?
- No, underage and overage costs resulting from errors may differ
- Example: inventory systems

Prediction intervals

• Compare methods based on prediction intervals

 Don't just display a point forecast but intervals around this number indicating the level of uncertainty

Common choice is to construct a 95% confidence interval

Holt Winters

Forecasts from HoltWinters

Forecasting Communication and Maintenance

Presenting forecasts

- Typically involves an oral presentation accompanied by slides
- What kind of audience might the presentation target in a business?
 - Managerial
 - Technical
- Goal of the presentation?
 - Make recommendations or observations (you have a clear desired outcome)
 - Promote discussion on an issue (unclear outcome but presentation is still geared towards highlighting specific issues)

Tailored content

- Identify a few key points you would like to highlight in the concluding slide
- Each slide of your presentation should play a role towards making these key points in a convincing and appealing manner
- Set the stage for what's coming
 - Outline and provide general context for the presentation (e.g. Is your presentation addressing a specific action item raised in the last meeting?)
 - Need to establish why the remaining material is important
- Managerial audience: Avoid too much technical detail and keep the focus on the forecasts
- Technical audience: Include a high-level description of the forecasting method, the data used for generating forecasts, and the performance evaluation and results

Charts and figures

- Use charts as opposed to tables when possible
- Dynamic plots are quite useful to drill down and make the presentation interactive
- When showing forecasts, choose the scale of each chart carefully to highlight the main trend that you want to talk about, and avoid showing meaningless details
- If you want to highlight uncertainty, use prediction intervals

Monitoring forecasts

- It is imperative that you periodically reassess the performance of the forecast being generated
- Useful to create two graphs:
 - 1. Plot of the actual and forecast values
 - 2. Plot of forecast errors
- The first graph is useful to detect deterioration of forecast precision, while the second directly indicates the direction of deviation and their magnitude

Written reports and records

- There needs to be clear documentation of the forecasting process used in your firm or department
- This document should include the steps used in either creating or modifying a forecast
- Create a repository of past forecasts as it will allow you to evaluate how your firm's forecasting performance changes over time

Neural Network for forecasting

• Time series neural network

Neural Network for forecasting

- Time series neural network can be extended to include external information by specifying additional input nodes.
- For instance, to better forecast the annual Japanese tourist arrivals in Hong Kong, a neural network structure can be constructed including six nodes:
 - service price
 - average Hotel rate
 - foreign exchange rate
 - population
 - marketing expenses
 - gross domestic expenditure

(R. Law and N. Au. A neural network model to forecast Japanese demand for travel to Hong Kong.)