Lecture 3

(P49-59)

(1

4.4 Martingales

Let $\{\mathcal{F}_t\}_{t\geqslant 0}$ be a filtration ("flow of information") (formally \mathcal{F}_t is a σ -algebra of events, and $\mathcal{F}_s\subseteq\mathcal{F}_t$ for $s\le t$). If Y is a random variable, then $E[Y|\mathcal{F}_t]$ denotes the conditional expectation of Y given \mathcal{F}_t , i.e. the expected value of Y given all information up to t.

 $Ex: E[W_t | x_s] = E[W_s | x_s] + E[W_t - W_s | x_s] = W_s$

Def 4.7 X_t is an F_t-martingale if

- · X is x-adapted
- · E[|X,1] < 00 for all +>0
- · E[X, 195] = X, for set.

Ex: 1. Brownian motion W is a martingale.

2. Y := W2-t is a martingale:

 $E[Y_{1}|Y_{5}] = E[W_{1}^{2} - t|Y_{5}] = E[(W_{1} - W_{2})^{2} + 2W_{5}W_{1} - W_{5}^{2}|Y_{5}] - t$

 $- = t - s + 2 E[W_s W_t | Y_s] - E[W_s^2 | Y_s] - t$

 $= 2W_s E[W_E|_{F_s}] - W_s^2 - s$

 $= \sqrt{2} = \sqrt{2}$

(2)

$$E[Y_{t} \mid x_{s}] = E[Sg_{u}dW_{u}\mid x_{s}] + E[Sg_{u}dW_{u}\mid x_{s}]$$

$$= Sg_{u}dW_{u} = Y_{s}$$

$$E[W_{t}^{3} | Y_{s}] = E[W_{s}^{3} + W_{t} - W_{s}]^{3} - 3W_{t}W_{s}^{2} + 3W_{t}^{2}W_{s} | Y_{s}]$$

$$= W_{s}^{3} + 0 - 3W_{s}^{2} E[W_{t} | Y_{s}] + 3W_{s} E[W_{t}^{2} | Y_{s}]$$

$$= W_{s}^{3} + 3(t - s)W_{s} + W_{s}^{3}$$

$$= W_{s}^{3} + 3(t - s)W_{s} + W_{s}^{3}$$

Remark A martingale is a l'fair game".

Ito's formula

Assume X = a + Jus ds + Jos dws

for some adapted processes Mz and of.

Let f(t,x) be a $C^{1,2}$ -function and define $Z_t := f(t,X_t)$.

Question: What does dZt look like?

Recall:
$$\int_{0}^{t} W_{s} dW_{s} = \frac{W_{t}^{2}}{2} - \frac{t}{2}$$

so $W_{t}^{2} = t + 2 \int_{0}^{t} W_{s} dW_{s}$.

Thus $d(W_{t}^{2}) = dt + 2W_{t} dW_{t}$

Fix n and let
$$t_k = \frac{1}{n}t$$

Let $\Delta W_t = W_t - W_t$ and consider

 $S_n := \frac{1}{k=0} (\Delta W_t)^2$.

We have
$$E[S_n] = \underbrace{E[(\Delta W_{t_n})^2]}_{k=0} = \underbrace{E[(\Delta W_{t$$

and

$$Var(S_n) = \sum_{k=0}^{n-1} Var((\Delta W_{t_n})^2) = n \cdot Var((\Delta W_{t_0})^2)$$

indep.

$$= n \cdot 2 + \frac{\xi^2}{n^2} \rightarrow 0$$
 as $n \rightarrow \infty$.

Thus $S_n \to t$ as $n \to \infty$ (in l^2). This motivates to write $\int_0^1 (dW_s)^2 = t$, or

$$dW_{t}^{2} = dt$$

$$dZ_{t} = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_{t} + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} (dX_{t})^{2} + \frac{\partial^{2} f}{\partial t^{2}} (dX)^{2}$$

$$+ \frac{\partial^{2} f}{\partial t} dt dX_{t} + higher order terms$$

$$= \left(\frac{\partial f}{\partial t} + \mu_{t} \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_{t}^{2} \frac{\partial^{2} f}{\partial x^{2}}\right) dt + \sigma_{t} \frac{\partial f}{\partial x} dW + higher terms$$

Thm 4.11 (Ito's formula) If
$$dX_t = \mu_t dt + \sigma_t dW_t$$
, and $Z_t := f(t, X_t)$, then $dZ_t = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \sigma_t \frac{\partial f}{\partial x} dW_t$. (here $\partial f = \partial f(t, X_t)$ and similarly for other derivatives of f).

Alternative formulation:

$$dZ_{t} = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_{t} + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} (dX_{t})^{2},$$
where $(dX_{t})^{2}$ is calculated using $(dt)^{2} = 0$

$$dt dW_{t} = 0$$

$$(dW_{t})^{2} = dt.$$

Solution: Let Z = W2: By Ito's formula, dZ = 2W dW + 1 . 2(dW)2

Thus
$$W_{\pm}^{2} = Z_{\pm} = \pm +2SW_{s}dW_{s}$$
 so $\frac{1}{2}W_{s}dW_{s} = \frac{W_{\pm}^{2}}{2} - \frac{1}{2}$

$$\int_{0}^{\pm} W_{s} dW_{s} = \frac{W_{s}^{2}}{2} - \frac{\pm}{2}$$

Ex 4.16 Compute E[W]]. Edution: Let Z= W. By Ito's formula, 95 = 4 Mg ANT + 7 15 Mg (AMF) = 6 m3 9F + 4 m3 9m4 $W_{\pm}^{4} = Z_{\pm} = 6 \int_{3}^{4} W_{s}^{2} ds + 4 \int_{3}^{4} W_{s}^{3} dW_{s}$. Taking expectations gives $E[W_{\pm}] = 6 \int_{S} E[W_{s}] ds + 4 E[\int_{O}^{\pm} W_{s}^{3} dW_{s}]$ $= 65 \text{ s ds} = 3t^2$ [Alternatively, without using, Ito's formula, $E[W_t] = \int_{\mathbb{R}} x^{t} \int_{2\pi t}^{t} e^{-\frac{x}{2t}} dx = \{ \text{integration } \}$

 $= \left[x^{3} + \frac{t}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} \right]^{-\infty} + \int_{0}^{3} x^{2} \frac{t}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} dx$

 $= 3tVar(W_{+}) = 3t^{2}$

Ex 4.17 Compute E[exWt].

6

Dolution: Let Z_t = e^{\alpha W_t}. It de formula gives

 $dZ_{t} = \alpha e^{\alpha W_{t}} dW_{t} + \frac{1}{2} \alpha^{2} e^{\alpha W_{t}} (dW_{t})^{2}$ $= \alpha^{2} e^{\alpha W_{t}} dt + \alpha e^{\alpha W_{t}} dW_{t}$ $= \alpha^{2} Z_{t} dt + \alpha Z_{t} dW_{t}$

Integrating gives

 $Z_{t} = 1 + \sum_{s=0}^{t} Z_{s} ds + \alpha \int_{s}^{t} Z_{s} dW_{s}$

 $E[Z_{t}] = 1 + E[x^{2} \int Z_{s} ds] + E[x \int Z_{s} dW_{s}]$ $= 1 + x^{2} \int E[Z_{s}] ds$

Denote m(t) := E[Z_t]. Then

 $\int_{0}^{\infty} \dot{m}(t) = \frac{x^{2}}{2} m(t)$ m(0) = 1

which has the solution $m(t) = e^{\frac{\alpha^2 t}{2}}$

Answer: $E[e^{\alpha W_L}] = e^{\frac{\alpha^2 t}{2}}$