NOTE ON CW COMPLEXES

1. F-Projective n-Space

Definition 1.1. Let F be a division ring and let $n \ge 0$. The quotient set $(F^{n+1} - \{0\}) / \sim$, in which \sim is an equivalence relation such that $x \sim y$ iff $x = \lambda y$ for some $\lambda \in F - \{0\}$, is called **F-projective n-space** and is denoted by FP^n .

There are three division rings which would be considered: the reals \mathbb{R} , the complexes \mathbb{C} and the quaternions \mathbb{H} .

Theorem 1.2. For every $n \geq 0$, $\mathbb{R}P^n$, $\mathbb{C}P^n$ and $\mathbb{H}P^n$ are compact Hausdorff.

2. Attaching Cells

Definition 2.1. Let X and Y be spaces, let A be a closed subset of X and let $f: A \to Y$ be continuous. The space obtained from Y by **attaching** X via f is $(X \coprod Y)/\sim$, in which \sim is the equivalence relation generated by the binary relation $a \sim f(a)$ $(a \in X \coprod Y)$. This space is denoted by $X \coprod_f Y$. The map f is called the **attaching map**.

Definition 2.2. The map $\Phi: X \to X \coprod_f Y$, which is the composition of the embedding $X \to X \coprod Y$ and the natural projection $X \coprod Y \to X \coprod_f Y$, is called the **characteristic** map.

Definition 2.3. An *n*-cell e^n (or simply e) is a homeomorphic copy of the open *n*-disk $D^n - S^{n-1} \cong \mathbb{R}^n$.

Definition 2.4. Let Y be a Hausdorff space and let $f: S^{n-1} \to Y$ be continuous. Then $D^n \coprod_f Y$ is called the space obtained from Y by **attaching an** n-cell via f, and is denoted by Y_f .

Theorem 2.5. (1) $\Phi:(D^n,S^{n-1})\to (Y_f,Y)$ is a function of pairs.

- (2) Y_f is a Hausdorff space, which is compact if Y is.
- (3) $\Phi|_{S^{n-1}}$ is the attaching map f.

Definition 2.6. A continuous map $g:(X,A)\to (Y,B)$ is a **relative homeomorphism** if $g|_{X-A}:X-A\to Y-B$ is a homeomorphism.

Theorem 2.7. Let Z be a compact Hausdorff space, let Y be a closed subset of Z and let e be an n-cell in Z with $e \cap Y = \emptyset$. If there is a relative homeomorphism $\Phi : (D^n, S^{n-1}) \to (e \cup Y, Y)$, then $Y_f \cong e \cup Y$.

Theorem 2.8. (1) For each $n \geq 1$, $\mathbb{R}P^n$ is obtained from $\mathbb{R}P^{n-1}$ by attaching an n-cell; moreover, there is a disjoint union

$$\mathbb{R}P^n = e^0 \cup e^1 \cup \dots \cup e^n.$$

(2) For each $n \geq 1$, $\mathbb{C}P^n$ is obtained from $\mathbb{C}P^{n-1}$ by attaching a 2n-cell; moreover, there is a disjoint union

$$\mathbb{C}P^n = e^0 \cup e^2 \cup \dots \cup e^{2n}.$$

(3) For each $n \geq 1$, $\mathbb{H}P^n$ is obtained from $\mathbb{H}P^{n-1}$ by attaching a 4n-cell; moreover, there is a disjoint union

$$\mathbb{H}P^n = e^0 \cup e^4 \cup \cdots \cup e^{4n}.$$

3. Homology and Attaching Cells

Theorem 3.1. Let $n \geq 1$. There there is an exact sequence

$$\cdots \to H_p(S^{n-1}) \xrightarrow{f_*} H_p(Y) \xrightarrow{\iota_*} H_p(Y_f) \to H_{p-1}(S^{n-1}) \to \cdots$$
$$\cdots \to H_0(S^{n-1}) \to \mathbb{Z} \oplus H_0(Y) \to H_0(Y_f) \to 0.$$

Corollary 3.2. Suppose $n \geq 2$ and Y is a compact Hausdorff space.

(1) If $p \neq n, n-1$, then

$$H_p(Y) \cong H_p(Y_f).$$

(2) There is an exact sequence

$$0 \to H_n(Y) \xrightarrow{\iota_*} H_n(Y_f) \to \mathbb{Z} \xrightarrow{f_*} H_{n-1}(Y) \to H_{n-1}(Y_f);$$

moreover, the last map is surjective if $n \geq 3$.

Remark 3.3. Rotman easily computed homology of $\mathbb{C}P^n$ and $\mathbb{H}P^n$ by induction with above results. Meanwhile, he used more tools just to compute $\mathbb{R}P^2$.

3

4. CW Complexes

Definition 4.1. Let X be a set and $X = \bigcup_{j \in J} A_j$ s.t.

- (1) Each A_j is a topological space;
- (2) For each $j, k \in J$, the topologies of A_j and of A_k agree on $A_j \cap A_k$;
- (3) For each $j, k \in J$, the intersection $A_j \cap A_k$ is closed in A_j and A_k .

Then the **weak topology** on X **determined** by $\{A_j | j \in J\}$ is the topology whose closed sets are those subsets F s.t. $F \cap A_j$ is closed in A_j for all $j \in J$.

Notice that A_j is a closed subset of X under weak topology. Hence, if J is finite, there exists only one topology on X satisfying the three conditions and it must be the weak topology.

Definition 4.2. Assume that a topological space X i a disjoint union of cells: $X = \bigcup \{e | e \in E\}$. For each $k \geq 0$, the k-skeleton $X^{(k)}$ if X is defined by

$$X^{(k)} = \bigcup \{ e \in E | \dim(e) \le k \}.$$

Definition 4.3. A **CW** complex is an ordered triple (X, E, Φ) , where X is a Hausdorff space, E is a family of cells in X and $\Phi = {\Phi_e | e \in E}$ s.t.

- (1) $X = \bigcup \{e | e \in E\}$ (disjoint union);
- (2) For each k-cell $e \in E$, the map $\Phi_e : (D^k, S^{k-1}) \to (e \cup X^{(k-1)}, X^{(k-1)})$ is a relative homeomorphism;
- (3) If $e \in E$, then its closure \bar{e} is contained in a finite union of cells of E (this is called closure finiteness);
- (4) X has the weak topology determined by $\{\bar{e}|e\in E\}$.

In particular, X is called a CW-space, (E, Φ) is called a CW decomposition of X and $\Phi_e \in \Phi$ is called the characteristic map of e.

Theorem 4.4. Let X be a space, and let

$$X^0 \subset X^1 \subset X^2 \subset \dots$$

be a sequence of subsets with $X = \bigcup_{n \geq 0} X^n$. Assume the following:

(1) X^0 is discrete;

(2) For each n > 0, there is an index set A_n and a family of continuous functions $\{f_{\alpha}^{n-1}: S^{n-1} \to X^{n-1} | \alpha \in A_n\}$ so that

$$X^n = (\coprod_{\alpha} D^n) \coprod_f X^{n-1},$$

where $f = \prod f_{\alpha}^{n-1}$;

(3) X has the weak topology determined by $\{X^n | n \ge 0\}$.

If Φ_{α}^{n} denotes the composite

$$D^n \to \coprod_\alpha D^n \to (\coprod_\alpha D^n) \coprod X^{n-1} \to (\coprod_\alpha D^n) \coprod_f X^{n-1},$$

then (X, E, Φ) is a CW complex, where

$$E = X^0 \cup (\cup_{n \ge 1} \{ \Phi_{\alpha}^n (D^n - S^{n-1}) | \alpha \in A_n \})$$

and

$$\Phi = \{\text{constant maps to } X^0\} \cup (\cup_{n\geq 1} \{\Phi_{\alpha}^n | \alpha \in A_n\}).$$

Notice that the converse of this theorem is also true.

Definition 4.5. Let (X, E, Φ) be a CW complex. If $E' \subset E$, define

$$|E'| = \cup \{e | e \in E'\} \subset X,$$

and define $\Phi' = \{\Phi_e | e \in E'\}$. Call $(|E'|, E', \Phi')$ a **CW subcomplex** if $\bar{e} \subset |E'|$ for every $e \in E'$. Note that a CW subcomplex is itself a CW complex.

Theorem 4.6. Let (X, E) be a CW complex and E' be a subset of E. Then |E'| is a CW subcomplex if and only if |E'| is closed.

Corollary 4.7. Let (X, E) be a CW complex, n > 0 and $E' \subset E$. Then

- (1) $|E'| \cup X^{(n-1)}$ is closed in X;
- (2) Every *n*-skeleton $X^{(n)}$ is closed in X;
- (3) Every n-cell e is open in $X^{(n)}$;
- (4) $X^{(n)} X^{(n-1)}$ is open in $X^{(n)}$.

Theorem 4.8. Let X be a CW complex.

- (1) Every path component of X is a CW subcomplex;
- (2) The path components of X are closed and open;
- (3) The path components of X are the components of X;
- (4) X is connected if and only if X is path connected.

Theorem 4.9. Every CW complex X is locally path connected.

Theorem 4.10. Every CW complex X is paracompact and perfectly normal (T_6) .

Theorem 4.11. If (X, E, Φ) is a CW complex, (Y, E', Φ') is its CW subcomplex and $v: X \to X/Y$ be the natural map, then X/Y is a CW complex constructed as follows:

$$(X/Y)^0 = \{v(e)|e \in E_0 - E_0'\} \cup \{v(Y)\},\$$
$$(X/Y)^n = \{v(e)|e \in E_n - E_n'\}$$

for n > 0. The characteristic map of v(e) is the composite $v\Phi_e$.

Theorem 4.12. (Homotopy Extension Theorem) Let X be a CW complex, Y be a CW subcomplex and Z be a space. For every continuous $f: X \to Z$ and every homotopy $h: Y \times [0,1] \to Z$ with h(y,0) = f(y) for all $y \in Y$, there exists a (extending) homotopy $H: X \times [0,1] \to Z$ with

$$H(y,t) = h(y,t)$$
 for all $(y,t) \in Y \times [0,1]$

and

$$H(x,0) = f(x)$$
 for all $x \in X$.

5. Cellular Homology

Definition 5.1. A filtration of a topological space X is a sequence of subspaces $\{X_n|n\in\mathbb{Z}\}$ with $X^n\subset X^{n+1}$ for all n. A filtration is **cellular** if:

- (1) $H_p(X^n, X^{n-1}) = 0$ for all $p \neq n$;
- (2) For every $m \geq 0$ and every continuous $\sigma : \Delta^m \to X$, there is an integer n with $Im(\sigma) \subset X^n$.

Definition 5.2. A **cellular space** is a topological space with a cellular filtration. If X and Y are cellular spaces, then a **cellular map** is a continuous function $f: X \to Y$ with $f(X^n) \subset Y^n$ for all $n \in \mathbb{Z}$.

Definition 5.3. If X is a cellular space and $k \geq 0$, define

$$W_k(X) = H_k(X^k, X^{k-1})$$

and define $d_k: W_k(X) \to W_{k-1}(X)$ to be the composite (of connecting homomorphism and inclusion ???)

$$H_k(X^k, X^{k-1}) \to H_{k-1}(X^{k-1}) \to H_{k-1}(X^{k-1}, X^{k-2}).$$

Lemma 5.4. $(W_*(X), d)$ is a chain complex, called the **cellular chain complex**.

Definition 5.5. Let X be a CW complex with CW subcomplex Y. Define

$$X_Y^k = X^{(k)} \cup Y.$$

 $W_*(X,Y)$ is the chain complex determined by the filtration of X by X_Y^k , that is $W_k(X,Y) = H_k(X_Y^k, X_Y^{k-1})$.

Theorem 5.6. Let X be a CW complex with CW subcomplex Y.

- (1) The filtration of X by X_Y^k is a cellular filtration.
- (2) There are isomorphisms for all $k \geq 0$,

$$H_k(W_*(X,Y)) \cong H_k(X,Y).$$

Theorem 5.7. Let (X, E) be a CW complex with CW subcomplex (Y, E'). For each $k \geq 0$,

$$W_k(X,Y) \cong \mathbb{Z}^{r_k}$$

in which r_k is the number of k-cells in E - E' (possibly infinite).

Definition 5.8. A CW complex (X, E, Φ) is **finite** if E is a finite set.

Theorem 5.9. If (X, E) is a CW complex, then X is compact if and only if E is finite for every CW decomposition E.

Theorem 5.10. (Corollary of Theorem 5.7) If X is a compact CW complex of dimension m, then

- (1) $H_p(X)$ is f.g. for every $p \ge 0$;
- (2) $H_p(X) = 0$ for all p > m;
- (3) $H_m(X)$ is free abelian.

Remark 5.11. With Theorem 5.7, we can compute $H_k(\mathbb{C}P^n)$ and $H_k(\mathbb{H}P^n)$ instantly. In the case of $\mathbb{R}P^n$, we need to inspect the differentiations explicitly.

Theorem 5.12. If n is odd, then

$$H_p(\mathbb{R}P^n) = \begin{cases} \mathbb{Z} & \text{if } p = 0, n \\ \mathbb{Z}/2\mathbb{Z} & \text{if } p \text{ is odd and } 0$$

If n is even, then

$$H_p(\mathbb{R}P^n) = \begin{cases} \mathbb{Z} & \text{if } p = 0\\ \mathbb{Z}/2\mathbb{Z} & \text{if } p \text{ is odd and } 0$$

Idea: Let $v: S^n \to \mathbb{R}P^n$ be the usual identification, which identifies the antipodal points. We have the commutative diagram

$$W_k(S^n) \xrightarrow{d_k} W_{k-1}(S^n)$$

$$\downarrow^{v_*} \qquad \qquad \downarrow^{v_*}$$

$$W_k(\mathbb{R}P^n) \xrightarrow{D_k} W_{k-1}(\mathbb{R}P^n)$$

We computed $W_k(\mathbb{R}P^n) = \mathbb{Z}$, hence we only care about a generator a. We can prove that $D_k(a) = \pm (1 + (-1)^k)a$. Let W_k denote $W_k(\mathbb{R}P^n)$, we have

$$0 \longrightarrow W_n \xrightarrow{D_n} W_{n-1} \longrightarrow \dots \longrightarrow W_3 \xrightarrow{D_3} W_2 \xrightarrow{D_2} W_1 \xrightarrow{D_1} W_0 \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \parallel$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{1+(-1)^n} \mathbb{Z} \longrightarrow \dots \longrightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0.$$

Theorem 5.13. For i=1,2, let X_i be a CW complex with CW subcomplex Y_i ; let $f:(X_1,Y_1)\to (X_2,Y_2)$ be a continuous map of pairs that induces a homeomorphism $\bar{f}:X_1/Y_1\to X_2\to Y_2$. Then f induces isomorphisms for all $k\geq 0$

$$H_k(X_1, Y_1) \cong H_k(X_2, Y_2).$$

Corollary 5.14. (Excision) If X is a CW complex and Y_1, Y_2 are CW subcomplexes with $X = Y_1 \cup Y_2$, then

$$H_k(Y_1, Y_1 \cap Y_2) \cong H_k(X, Y_2).$$

Definition 5.15. Let (X, E) be a finite CW complex and let α_i denote the number of *i*-cells in E. The **Euler characteristics** of (X, E) is

$$\chi(X) = \sum_{i>0} (-1)^i \alpha_i.$$

Example 5.16. $\chi(\mathbb{C}P^n) = \chi(\mathbb{H}P^n) = n+1, \ \chi(\mathbb{R}P^n) = (1+(-1)^n)/2.$