Models of Limited Dependent Variables

Zhentao Shi

The Chinese University of Hong Kong

Limited 1 / 41

Fundamental Task

- Use X to predict y
- Beyond continuous random variables
 - Binary
 - Multi-responses
 - Integer
 - Mixed type: censoring, truncation
 - Self-selection
- Applied microeconomics
- Biostatistics

Limited 2 / 41

Panoramic View

- MLE is a unifying framework
- Regressors X_i enter the model as a **single index** $X_i'\beta$
- Distributional assumptions are chosen for convenience
- Economics interprets the single index as utility
- Numerical demon: Normal MLE https://www.kaggle.com/code/frankshi0/normal-mle

Limited 3 / 41

Section 1

Binary Choices

Binary Outcome

- Outcome $y_i \in \{0, 1\}$
- Classification
 - Unsupervised learning: k-means algorithms
- Binary regression (Supervised learning)
 - College entrance
 - Loan decision
 - Spam filter

Limited 5 / 41

Linear Probability Models

- Keep using linear regression $y_i = X_i'\beta + \varepsilon_i$
- Conditional mean

$$\Pr\left[y_i = 1 \mid X_i\right] = E\left[y_i \mid X_i\right] = X_i'\beta$$

- Error term $\varepsilon_i \in \{-X_i'\beta, 1 X_i'\beta\}$ is binary.
- Conditional heteroskedastic.
- Predicted range: $E[y_i \mid X_i] = X_i'\beta$ can go beyond [0,1].
 - $X_i'\beta$ is a single index.
- Ironically, the linear model is popular (for causal inference)!

Limited 6/41

Generalized Linear Model

 To ensure predicted probability inside [0,1], pick some $G(\cdot): \mathbb{R} \to [0,1]$ to model

$$E(y_i = 1 \mid X_i) = G(X_i'\beta)$$

- Popular choices
 - **Probit**: $G(x) \sim \text{Normal CDF}$
 - **Logit**: $G(x) \sim \text{Logistic CDF}$
- Facts about Logistic CDF
 - $\Lambda = \Lambda(x) = \frac{1}{1 + \exp(-x)}$
 - $\frac{d\Lambda}{d\pi} = \Lambda (1 \Lambda)$

7/41

Latent Utility Model 😊

- Latent utility $y_i^* = X_i'\beta + \varepsilon_i$
- Observed outcome $y_i = \mathbb{I} \{ y_i^* > 0 \}$
- If $\varepsilon_i \mid X_i \sim \text{Logistic}$, then

$$\Pr(y_i = 1 \mid X_i) = \Pr(X_i'\beta + \varepsilon_i \ge 0 \mid X_i)$$
$$= \Pr(-\varepsilon_i \le X_i'\beta \mid X_i)$$
$$= \Lambda(X_i'\beta)$$

where the last line holds if ε_i is symmetric around 0.

• The scale of β is not identifiable. Normalization is needed.

Limited 8/41

Log-Likelihood

Conditional likelihood of $y_i|X_i$ is

$$\left\{\Lambda\left(X_{i}^{\prime}\beta\right)\right\}^{y_{i}}\left\{1-\Lambda\left(X_{i}^{\prime}\beta\right)\right\}^{1-y_{i}}$$

A sample of N observations is

$$L(\beta) = \prod_{i=1}^{N} \left\{ \Lambda \left(X_{i}' \beta \right) \right\}^{y_{i}} \left\{ 1 - \Lambda \left(X_{i}' \beta \right) \right\}^{1 - y_{i}}$$

Log-likelihood

$$\ell_{N}\left(eta
ight) = \sum_{i=1}^{N} \left\{y_{i} \log \left(\Lambda\left(X_{i}^{'}eta
ight)\right) + (1-y_{i}) \log \left(1-\Lambda\left(X_{i}^{'}eta
ight)\right)\right\}$$

Limited 9 / 41

Properties

• The score $(\Lambda(X_i'\beta)$ is simplified as $\Lambda_i)$

$$S_N(\beta) = \sum_{i=1}^N \left\{ \frac{y_i}{\Lambda_i} \cdot \Lambda_i \left(1 - \Lambda_i \right) X_i - \frac{(1 - y_i)}{1 - \Lambda_i} \cdot \Lambda_i \left(1 - \Lambda_i \right) X_i \right\}$$

$$= \sum_{i=1}^N \left\{ y_i \left(1 - \Lambda_i \right) - (1 - y_i) \Lambda_i \right\} X_i$$

$$= \sum_{i=1}^N \left(y_i - \Lambda_i \right) X_i$$

Negative-definite second derivative

$$\frac{\partial L(\beta)}{\partial \beta \partial \beta'} = -\sum_{i=1}^{N} \Lambda_i (1 - \Lambda_i) X_i X_i'.$$

Globally concavity implies uniqueness of maximizer.

Limited 10 / 41

Goodness of Fit for Binary Classification

McFadden
$$R^2 = 1 - \log L_1 / \log L_0$$

- $\log L_1$: maximum of likelihood
- $\log L_0$: the null model (no X, intercept only)

$$\log L_0 = N_1 \log \hat{p}_1 + (N - N_1) \log (1 - \hat{p}_1)$$

where
$$\hat{p}_1 = N_1/N$$

• $\log L_0 < \log L_1 < 0$ implies $\frac{\log L_1}{\log L_0} \in [0,1]$

Limited 11 / 41

Maximum Likelihood

- All nice properties of ML hold
 - Consistency
 - Asymptotic normality
- Misspecification?
- Choices of loss functions

$$\min_{\theta \in \Theta} \sum_{i=1}^{N} Loss(\theta; data_i)$$

12 / 41

Hastie, Tibshirani, Friedman (2008): The Elements of Statistical Learning

FIGURE 10.4. Loss functions for two-class classification. The response is $y=\pm 1$; the prediction is f, with class prediction $\operatorname{sign}(f)$. The losses are misclassification: $I(\operatorname{sign}(f) \neq y)$; exponential: $\exp(-yf)$; binomial deviance: $\log(1+\exp(-2yf))$; squared error: $(y-f)^2$; and support vector: $(1-yf)_+$ (see Section 12.3). Each function has been scaled so that it passes through the point (0,1).

Prediction and Evaluation

Natural prediction:

$$\hat{y}_i = 1 \text{ if } \Pr\left(y_i \mid X_i\right) \ge 0.5$$

Outcomes: n_{11} : correct positive; n_{01} : false positive

	$\hat{y}_i = 0$	1	Total
$y_i = 0$	n_{00}	n_{01}	N_0
1	n_{10}	n_{11}	N_1
Total			\overline{N}

• Hendrick-Merton: $\frac{n_{00}}{N_0} + \frac{n_{11}}{N_1}$

• Kuiper Score: $\frac{n_{11}}{N_1} - \frac{n_{01}}{N_0}$

Limited 14 / 41

Data Example

https://www.kaggle.com/code/jipann/logistic-regression

Limited 15 / 41

Section 2

Multiple Choices

Ordered Response

- More than two categories
- Categories are naturally ordered

Limited 17 / 41

Utility

• Latent utility: $y_i^* = X_i'\beta + \varepsilon_i$ while the observed outcome

$$y_i = j, \quad \text{if } c_j < y_i^* \le c_{j+1}$$

- Normalization is needed for identification
- M categories
- $c_1 = -\infty$, $c_{M+1} = +\infty$, $c_2 = 0$

18 / 41

Probability

• Parameter: $\theta = (\beta, c_3, \dots, c_M)$

$$P_{ij} = \Pr(c_j < y_i^* \le c_{j+1} \mid X_i)$$

$$= \Pr(c_j < X_i'\beta + \varepsilon_i \le c_{j+1} \mid X_i)$$

$$= \Pr(c_j - X_i'\beta < \varepsilon_i \le c_{j+1} - X_i'\beta \mid X_i)$$

$$= G(c_{j+1} - X_i'\beta) - G(c_j - X_i'\beta)$$

Limited 19 / 41

Likelihood

- Unobservable error $\varepsilon_i \mid X_i$ is assumed to be either logistic or normal
- Likelihood of individual observation

$$\Pr(y_i = j) = \sum_{j=1}^{M} P_{ij} \mathbb{I} \{ y_i = j \}$$

• Likelihood of the *N*-observation sample

$$L(\theta) = \prod_{i=1}^{N} \Pr(y_i = j)$$

Limited 20 / 41

Choice of Transportation

Limited 21 / 41

Machine Learning: Handwriting

FIGURE 1.2. Examples of handwritten digits from U.S. postal envelopes.

Limited 22 / 41

Multinomial Choice

Level of individual-choice utility

$$\mu_{ij} = W'_{ij}\beta + Z'_i\beta_j$$

- Choice-specific regressors W_{ij}
 - e.g. Distance to stations (β is value of time)
- Choice-invariant regressors Z_i
 - ullet e.g. Motion sickness (eta_j is the effect; bus is bad)

Limited 23 / 41

Latent Utility

- For each $j=1,2,\ldots,M$, the utility $y_{ij}^*=\mu_{ij}+\varepsilon_{ij}$, where μ_{ij} is the choice level index, and for ε_{ii} is the error term.
- The observed choice

$$y_{ij} = \mathbb{I}\left\{y_{ij}^* \ge \max_{k=1,\dots,M} y_{ik}^*\right\}$$

• $\Pr(y_i = j \mid \mu_{i1}, \dots, \mu_{iM}) = \Pr(y_{ij}^* \geq y_{i1}^*, \dots, y_{ij}^* \geq y_{iM}^*)$

Limited 24 / 41

Distributional Assumption

- ullet The probability depends on the joint distribution of $(arepsilon_{ij})_{i=1}^M$
- If $\varepsilon_{ij}\sim$ Type I extreme value distribution and ε_{ij} i.i.d. across choices, then

$$\Pr(y_{ij} = j \mid \mu_{i1}, ..., \mu_{iM}) = \frac{\exp(\mu_{ij})}{\sum_{k=1}^{M} \exp(\mu_{ik})}$$

• Full Probit specification will be a nightmare. Don't use.

Limited 25 / 41

Normalization

- Normalize $\mu_{i1} = 0$ for all i. Usually for the "other" group.
- Equivalent to $\beta_{i=1} = 0$ (including intercept)
- Parameters: $(\beta; \text{ and } \beta_2, \beta_3, \dots, \beta_M)$

$$L\left(\theta\right) = \prod_{i=1}^{N} \left\{ \sum_{j=1}^{M} \mathbb{I}\left(y_{i} = j\right) \left(\frac{\exp\left(\mu_{ij}\right)}{1 + \sum_{k=2}^{M} \exp\left(\mu_{ik}\right)}\right) \right\}$$

26 / 41

Independence of Irrelevant Alternative

- The concise form leverages that ε_{ij} is i.i.d. across choices $j=1,2,\ldots,M$
- Dilemma of "red bus" versus "blue bus"
- Must pay attention to the specification of choice set
- There are methods to fix it; still depending on specification.
- Daniel McFadden (Nobel Prize 2000)

Limited 27 / 41

Section 3

Integer Outcomes

Counting Model

- Outcomes take non-negative integers
 - Number of children
 - Number of hospital visits
 - Number of patents
- Poisson model: $y \sim \mathsf{Poisson}(\lambda)$:

$$\Pr(y = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
, for $k = 0, 1, 2, ...$

29 / 41

Poisson Regression

Poisson regression: Suppose

$$\lambda_i = \exp(X_i'\beta).$$

Model the single index λ_i by $\exp(X_i'\beta)$ gives log-likelihood

$$\log \Pr(y_i|X_i) = -\exp(X_i'\beta) + y_i \cdot X_i'\beta - \log k!$$

ullet Log-likelihood function of an N-observation sample:

$$\ell_N(\beta) = -\sum_{i=1}^N \exp(X_i'\beta) + \sum_{i=1}^N y_i X_i'\beta$$

where $\log k!$ can be omitted.

Limited 30 / 41

Poisson MLE

Score:

$$s_N(\beta) = \frac{\partial \ell_N(\beta)}{\partial \beta} = -\sum_{i=1}^N \exp(X_i'\beta)X_i + \sum_{i=1}^N y_i X_i.$$

Second derivative is negative definite:

$$\frac{\partial^2 \ell_N(\beta)}{\partial \beta \partial \beta'} = -\sum_{i=1}^N \exp(X_i'\beta) X_i X_i'$$

• $\ell_N(\beta)$ is strictly concave in β .

Limited 31 / 41

Pseudo Poisson MLE

- Conditional mean model $E[y|X] = \exp(X'\beta)$
- ullet If y is continuously distributed, the Poisson model must be misspecified
- e.g., Bilateral international trade between pairs of countries.

Data example:

https://www.kaggle.com/code/jipann/poisson-regression

Limited 32 / 41

Section 4

Incomplete Data

Censored or Truncated Data

- Latent utility: $y_i^* = X_i'\beta + \varepsilon_i$
- Observed outcome: $\begin{cases} y_i = y_i^*, & \text{if } y_i^* > c \\ y_i = c, & \text{if } y_i^* \leq c \end{cases}$
- Real example https://www.kaggle.com/datasets/ lightonkalumba/us-womens-labor-force-participation

Probabilities

- Assume $\varepsilon_i \mid X_i \sim N\left(0, \sigma^2\right)$
- The probability mass

$$\Pr(y_i = c) = \Pr(y_i^* \le c) = \Pr\left(X_i'\beta + \varepsilon_i \le c\right)$$
$$= \Pr\left(\frac{\varepsilon_i}{\sigma} \le \frac{c - X_i'\beta}{\sigma}\right) = \Phi\left(\frac{c - X_i'\beta}{\sigma}\right)$$

where $\Phi(\cdot)$ is the CDF of N(0,1).

• The density of the continuous region remains the same.

Limited 35 / 41

Likelihood

The likelihood consists of two components:

$$f(y_i \mid X_i) = \Phi\left(\frac{c - X_i'\beta}{\sigma}\right) \times \mathbb{I}(y_i = c) + \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(y_i - X_i'\beta\right)^2\right) \times \mathbb{I}(y_i > c)$$

- Mixed type of discrete and continuous random variable
- Mixed of probability mass function and density

$$\int_{-\infty}^{\infty} f(y \mid X) \, \mathrm{d}y = 1$$

Limited 36 / 41

Truncation

- If data of those with $y_i = c$ are completely unobservable
- We have data (Y_i, X_i) for those $y_i > c$ only.
- The likelihood with a condition on the outcome:

$$f(y_i \mid y_i \ge c, X_i) = \frac{\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(y_i - X_i'\beta\right)^2\right)}{1 - \Phi\left(\frac{c - X_i'\beta}{\sigma}\right)}$$

- Due to truncation, OLS cannot consistently estimate β
- Must use MLE

37 / 41

Tobit II Models

- Wage (continuous): $y_i^* = X_{1i}' \beta_1 + \varepsilon_{1i}$
- Choice (binary) : $h_i^* = X'_{2i}\beta_2 + \varepsilon_{2i}$ and the observed outcome

$$h_i = \begin{cases} 1, & \text{if } h_i^* \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- Observe $y_i = y_i^*$ if $h_i = 1$
- The two equations have different regressors, coefficients and and errors terms.
- More flexible than the Tobit I model

Limited 38 / 41

Joint Normal

- Assume $\begin{pmatrix} \varepsilon_{1i} \\ \varepsilon_{2i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{11}^2 & \sigma_{12} \\ \sigma_{12} & 1 \end{pmatrix} \end{pmatrix}$ where $\sigma_{22}=1$ is a normalization
- Parameter $\theta = (\beta_1, \beta_2, \sigma_{11}^2, \sigma_{12})$ can be estimated by MLE
- The conditional likelihood involves the bivariate normal distribution and its integrals
- No existing routine in py::statmodels

Limited 39 / 41

Conditional Expectation

The conditional mean

$$E(y_i^* | h_i = 1) = X'_{1i}\beta_1 + E(\varepsilon_{1i} | h_i = 1)$$

= $X'_{1i}\beta_1 + \sigma_{12}\lambda (X'_{2i}\beta_2)$

due to the joint normality, where $\lambda\left(x\right)=\phi\left(x\right)/\Phi\left(x\right)$ is called the **inverse Mill's ratio**. $\phi(\cdot)$ is the pdf of N(0,1)

- The regression model can be estimated by heckit.
- In theory, heckit is inefficient...
- Real example: https: //www.kaggle.com/code/jipann/censored-regression
- James Heckman (Nobel Prize 2000)

Limited 40 / 41

Summary

- Binary choice
- Multiple choices: ordered or unordered
- Poission regression
- Censored data and truncated data
- Selection model
- All are applications of MLE

Limited 41 / 41