Error Function

Machine Learning Course Dennis A. Christie

Mengenal Error Function

Apa dan Bagaimana?

• Function yang menunjukkan seberapa buruk performa kita.

Contoh:

- Saya mau pergi ke meja terdekat
- Error function saya = Jarak posisi saya ke posisi meja.

Setelah mengetahui Error Function:

- Setelah mengetahui bahwa posisi saya jauh, saya melihat sekitar untuk mengetahui arah mana yang terbaik menuju posisi meja.
- Saya ambil langkah untuk bergerak mendekati meja.

Illustrasi Error Function

Permasalahan Error Function

Kudu piye...

Mengenal FF

Diskrit vs Kontinyu

$$E = \bullet + \bullet + \bullet + \bullet + \bullet + \bullet$$

$$E = \bullet + \bullet + \bullet + \bullet + \bullet + \bullet$$

Step Function

Sigmoid Function

Pemetaan Nilai Error

Klasifikasi Multi-class

Dari Binary Classifier menjadi Multi-class Classifier

Ringkasan Sejauh Ini

Berat Badan x_1

Tinggi Badan χ_2

Score

 $w_1x_1 + w_2x_2 + b$

Probabilitas

 $\sigma(Wx + b)$

Klasifikasi Multiclass

Score

Probabilitas

 $\mathbf{W}_1\mathbf{x} + b$

 $?(W_1x + b)$

 $W_2x + b$

 $?(W_1x + b)$

Ukuran Badan

Lokasi tinggal

 $W_3x + b$

 $?(W_1x + b)$

Total = 1

Klasifikasi Multiclass

$$\frac{0}{0+2+1}$$

$$\frac{2}{0+2+1}$$

$$\frac{1}{0+2+1}$$

Bermasalah pada saat

$$\frac{1}{1+0+(-1)}$$

Fungsi yang selalu memberikan hasil positif?

- Sin
- Cos
- Log
- Exp

Klasifikasi Multiclass

$$\frac{e^0}{e^0 + e^2 + e^1}$$

Total = 1

$$\frac{e^2}{e^0 + e^2 + e^1}$$

$$\frac{e^1}{e^0 + e^2 + e^1}$$

Sigmoid Function (Binary)

Softmax Function (Multiclass)

$$\sigma(\hat{y}) = \frac{1}{1 + e^{-\hat{y}}}$$

$$S(\hat{y}_i) = \frac{e^{\hat{y}_i}}{\sum_j e^{\hat{y}_j}}$$

Maximum Likelihood

Memberi tahu komputer model yang baik dan buruk.

$$E = \bullet + \bullet + \bullet + \bullet + \bullet + \bullet$$

$$E = \bullet + \bullet + \bullet + \bullet + \bullet + \bullet$$

Maksudnya apa coba? Sangat tidak spesifik bagi komputer.

Maximum Likelihood

Menentukan Model yang Baik dan Buruk

Tapi bagaimana cara kita memberitahu komputer bahwa ini model yang buruk?

Menentukan Model yang Baik dan Buruk

$$\hat{y} = \sigma(Wx + b)$$

P(blue) = $\sigma(Wx + b)$

Dengan asumsi warna-warna titik merupakan independent event

$$P(red) = 0.1$$
 $P(blue) = 0.6$
 $P(red) = 0.7$
 $P(blue) = 0.2 \times$
 $P(all) = 0.0084$

Menentukan Model yang Baik dan Buruk

$$0.1 \times 0.6 \times 0.7 \times 0.2 = 0.0084$$

$$0.8 \times 0.7 \times 0.9 \times 0.6 = 0.3024$$

Spesifik dan mudah dimengerti komputer

Penentuan ini disebut dengan Maximum Likelihood

Maximum Likelihood

Menentukan Model yang Baik dan Buruk

$$0.1 \times 0.6 \times 0.7 \times 0.2 = 0.0084$$

$$0.8 \times 0.7 \times 0.9 \times 0.6 = 0.3024$$

- Sekarang kita tahu bahwa grafik kiri lebih buruk dari kanan berdarkan operasi product seluruh probabilitas point terklasifikasi sesuai warnanya.
- Semakin besar probabilitasnya semakin bagus model kita.
- Apakah kita berhasil menemukan Error Function yang kita cari?

Kelemahan Maximum Likelihood

$$0.1 \times 0.6 \times 0.7 \times 0.2 = 0.0084$$

$$0.8 \times 0.7 \times 0.9 \times 0.6 = 0.3024$$

- Sekarang bayangkan jika kita memiliki ribuan data poin.
- Masing-masing poin memiliki nilai probabilitas 0 < P < 1.
- $0.0 \dots \times 0.0 \dots \times 0.0 \dots \times \dots = 0.0000000 \dots$
- Sangat tidak baik untuk perhitungan.

Error Function yang Sebenarnya

$$0.1 \times 0.6 \times 0.7 \times 0.2 = 0.0084$$

$$0.8 \times 0.7 \times 0.9 \times 0.6 = 0.3024$$

$$\ln(0.1) + \ln(0.6) + \ln(0.7) + \ln(0.2)$$

$$\ln(0.8) + \ln(0.7) + \ln(0.9) + \ln(0.6)$$

$$-2.3$$

$$-0.51$$

$$-0.36$$

$$-1.61$$

$$-0.22$$

$$-0.36$$

$$-0.1$$

$$-0.51$$

$$-\ln(0.1) - \ln(0.6) - \ln(0.7) - \ln(0.2)$$

$$-\ln(0.8) - \ln(0.7) - \ln(0.9) - \ln(0.6)$$

$$+0.51$$

$$+0.36$$

$$+1.61$$

$$+0.36$$

$$+0.1$$

$$+0.51$$

Formulasi Error Function

$$0.1 \times 0.6 \times 0.7 \times 0.2 = 0.0084$$

$$0.8 \times 0.7 \times 0.9 \times 0.6 = 0.3024$$

$$-\ln(0.1) - \ln(0.6) - \ln(0.7) - \ln(0.2)$$

$$-\ln(0.8) - \ln(0.7) - \ln(0.9) - \ln(0.6)$$

4.8

Cross Entropy

1.2

			Probabilitas	-In(Probabilitas)
0.8	0.7	0.1	0.0568	2.88
0.8	0.7	X 0.9	0.504	0.69
0.8	X 0.3	0.1	0.024	3.73
X 0.2	0.7	0.1	0.014	4.27
0.8	X 0.3	X 0.9	0.216	1.53
X 0.2	0.7	X 0.9	0.126	2.07
X 0.2	X 0.3	0.1	0.006	5.12
X 0.2	X 0.3	X 0.9	0.054	2.92

Formulasi Error Function

8.0

0.7

0.7

× 0.9

 $1-\hat{y}_3$

Label y_i

$$y_1 = 1$$

 \hat{y}_1

$$y_2 = 1$$

 \hat{y}_2

$$y_3 = 0$$

Cross Entropy ---

$$-\ln(0.8) - \ln(0.7) - \ln(0.9)$$

 $\begin{array}{l} \text{sum} = 0 \\ \text{for i in data:} \\ \text{if (y==1):} \\ \text{nilai} = \ln(\hat{y}_i) \\ \text{else:} \\ \text{nilai} = \ln(1-\hat{y}_i) \\ \text{sum} = \text{sum} + \text{nilai} \\ \text{CE} = \text{sum/length(sum)} \end{array}$

Formulasi Error Function

8.0

 \hat{y}_1

0.7

 \hat{y}_2

X 0.9

 $1 - \hat{y}_3$

Label

$$y_1 = 1$$

$$y_2 = 1$$

$$y_3 = 0$$

Cross Entropy ---

$$-\ln(0.8) - \ln(0.7) - \ln(0.9)$$

sum = 0for i in data: if (y==1): $nilai = ln(\hat{y}_i)$ else: $nilai = ln(1 - \hat{y}_i)$ sum = sum + nilaiCE = sum/length(sum)

 y_i

Formula Cross Entropy

$$-\frac{1}{m}\sum_{i=1}^{m}(y_{i}\ln(\hat{y}_{i})+(1-y_{i})\ln(1-y_{i}))$$

Formulasi Error Function

 y_i

Label

$$p_1$$

 $y_{i} = 1$

$$p_2$$

$$y_{i} = 1$$

$$1 - p_{13}$$

$$y_i = 0$$

$$-\ln(0.8) - \ln(0.7) - \ln(0.9)$$

$$\begin{aligned} &\text{sum} &= 0 \\ &\text{for i in data:} \\ &\text{sum} &= &\text{sum} &+ y_i * \ln(\hat{y}_i) + (1 - y_i) * \ln(1 - y_i) \end{aligned}$$

$$&\text{CE} &= &\text{sum/length(sum)}$$

Formula Cross Entropy ---

$$-\frac{1}{m}\sum_{i=1}^{m}(y_{i}\ln(\hat{y}_{i})+(1-y_{i})\ln(1-y_{i}))$$