Logistic Regression

Multi-class classification: One-vs-all

WEEK 4, COHORT 4

Machine Learning

Logistic Regression

Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

Multiclass Classification: One-vs-all

$$y \in \{0,1,\ldots,n\}$$
 $y \in \{0,1\ldots n\}$ $h_{ heta}^{(0)}(x) = P(y=0|x; heta)$ $h_{ heta}^{(1)}(x) = P(y=1|x; heta)$ \ldots $h_{ heta}^{(n)}(x) = P(y=n|x; heta)$ prediction $= \max_i (h_{ heta}^{(i)}(x))$

Machine Learning

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
(g = sigmoid function)

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 \overline{x_1} x_2)$$

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{1}^{2} + \theta_{3}x_{1}^{2}x_{2} + \theta_{4}x_{1}^{2}x_{2}^{2} + \theta_{5}x_{1}^{2}x_{2}^{3} + \theta_{6}x_{1}^{3}x_{2} + \dots)$$

Addressing overfitting:

```
x_1 =  size of house
x_2 = {\sf no.\,of\,bedrooms}
x_3 = \text{ no. of floors}
x_4 = age of house
x_5 =  average income in neighborhood
x_6 = kitchen size
x_{100}
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
- Manually select which features to keep.
- —> Model selection algorithm (later in course).
- 2. Regularization.
 - \rightarrow Keep all the features, but reduce magnitude/values of parameters $\theta_{\dot{r}}$
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Intuition

Suppose we penalize and make θ_3 , θ_4 really small.

$$\longrightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \log_{\theta} \Theta_{3} + \log_{\theta} \Theta_{4}$$

Regularization.

Regularization.
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
 regularization
$$\min_{\theta} J(\theta)$$
 Size of house

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

Addressing Overfitting

- Reduce the number of features
 - a. Manually select which features to keep
 - Use a model selection algorithm(studied later in course)

- 2. Regularization
 - a. $^{-}$ Keep all the features, but reduce the parameters $\, heta_{j}.$

Machine Learning

