Let $A_1, A_2, ..., A_n$ be airports, and let A_0 denote the air.

Let $B_1,...,B_m$ represent airplanes, and $C_1,...,C_p$ represent passenger transportation needs.

1 Encoding airplane flights

Let the binary variable P_{t_1,A_i,B_k} encode in 0-1 values (1-true, 0-false) whether airplane B_k is at state A_j at time t_1 . More precisely, if j=0, then the airplane is in the air; if $j \in \{1,...,n\}$, it is at airport A_j .

The condition $\sum_{i=1}^{\{0,\ldots,n\}} P_{t_1,A_j,B_k}=1$ for each time point $t_1 \in \{0,\ldots\}$ and airplane number $k \in \{1,...,m\}$ ensures that each airplane is in only one state at each time.

Let $d(a_1,a_2)$ represent the time required for a flight from airport A_{a_1} to A_{a_2} , where $a_1, a_2 \in \{1, ..., n\}, a_1 \neq a_2$ (for $a_1 = a_2$, we assume 0). We have noted that the distance (time in minutes) between airports does not need to be the same in both directions.

The condition $P_{t_1,A_i,B_k} \cdot P_{t_2,A_j,B_k} = 0$ for $|t_1 - t_2| < d(i,j)$, where $t_1,t_2 \in \{0,...\}$ and $k \in \{1,...,m\}$ and $i,j \in \{1,...,n\}, i \neq j$, ensures that the time between the airplane's presence at two airports is greater than or equal to the minimum possible travel time.

2 Encoding passengers

Let L_{C_r,t_1,A_j,B_k} be a binary variable that encodes by 1 the situation where passenger C_r , where $r \in \{1,...,p\}$ is at time $t_1 \in \{0,...\}$ in state A_j , $j \in \{0,1,...,n\}$ and in airplane B_k , where $k \in \{1, ..., m\}$.

Let A_{x_r} denote the destination airport of the r-th passenger. Additionally, we add the airplane B_{m+1} , which "stands" at every airport A_j , meaning $P_{t_1,A_j,B_{m+1}}=1$ for $j\in\{1,...,n\}$ and $P_{t_1,A_0,B_{m+1}}=0$ for every $t_1\in\{0,...\}$. Furthermore, we assume $L_{C_r,t_1,A_0,B_{m+1}}=0$ for each C_r and t_1 .

We impose the condition $\sum_{j,k} L_{C_{r,t_1,A_j,B_k}} = 1$ for each t_1,C_r .

- We maximize the sum of the following expressions: (1) $\sum_{k} \sum_{j}^{\{0,1,\ldots,n\}} L_{C_r,t_1,A_j,B_k} P_{t_1,A_j,B_k}$ the passenger is where the airplane is.
- (2) $\sum_{k} \sum_{j}^{\{0\} \cup \{1,\dots,n\}} L_{C_r,t_1,A_0,B_k} L_{C_r,t_1+1,A_j,B_k}$ if the passenger is in the air in a given airplane, then in the next moment, they are also in the same airplane.
- (3) $\sum_{u,k} \sum_{j}^{\{1,\ldots,n\}\setminus\{x_r\}} L_{C_r,t_1,A_j,B_u} L_{C_r,t_1+1,A_j,B_k}$ the passenger at a given airport can change airplanes, unless they are at the destination airport.
- (4) $\sum_{u} \sum_{i}^{\{1,\dots,n\}\setminus\{x_r\}} L_{C_r,t_1,A_j,B_u} L_{C_r,t_1+1,A_0,B_u}$ the passenger follows the departing airplane, unless they have already arrived at their destination.
- (5) $\sum_{u,k} L_{C_r,t_1,A_{x_r},B_u} L_{C_r,t_1+1,A_{x_r},B_k}$ the passenger remains at the destination airport.

Regarding the above constraints:

- (1) is always equal to 1 for each C_r, t_1
- (2)+(3)+(4)+(5) is always equal to 1 for each C_r,t_1