PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/52, 15/53, 15/54, 1/21 // (C12N 1/21, C12R 1:05, 1:09)

(11) International Publication Number:

WO 99/36547

A1 (

(43) International Publication Date:

22 July 1999 (22.07.99)

(21) International Application Number:

PCT/KR99/00031

(22) International Filing Date:

19 January 1999 (19.01.99)

(30) Priority Data:

1998/1422 19 January 1998 (19.01.98) KR 1998/1423 19 January 1998 (19.01.98) KR 1998/58760 26 December 1998 (26.12.98) KR LEE, Yong-Hyun [KR/KR]; #7-403 Kyoungnam-Town, 320, Boemoh 4-dong, Soosung-ku, Taegu-si 706-014 (KR). HUH, Tae-Lin [KR/KR]; #255-107 Dongsuh-Town Apt., Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KR). HONG, Sung-Kook [KR/KR]; #206-1101 Palgong Bosung Apt., Zimyo-dong, Dong-ku, Taegu-si 701-480 (KR).

1998/58760 26 December 1998 (26.12.98) KF

- (74) Agent: LEE, Won-Hee; Suite 805, Sung-ji Heights II, 642-16, Yoksam-dong, Kangnam-ku, Seoul 135-080 (KR).
- (71) Applicant (for all designated States except US): LG CHEMI-CAL LTD. [KR/KR]; 20, Yoido-dong, Youngdeungpo-ku, Seoul 150-010 (KR).
- (81) Designated States: JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(72) Inventors; and

(75) Inventors, and (75) Inventors/Applicants (for US only): LEE, Sang, Yup [KR/KR]; #212-702 Expo Apt., 464-1, Chunmin-dong, Yusong-ku, Taejon-si 305-390 (KR). CHOI, Jong-il [KR/KR]; 331-13, Shingil 5-dong, Youngdeungpo-ku, Seoul 150-055 (KR). CHOO, Seung-Ho [KR/KR]; #7-501 LG Apt., 386-42, Doryong-dong, Yusong-ku, Taejon-si 305-340 (KR). YOON, Hye-Sung [KR/KR]; #107-302 Hana Apt., Shinsung-dong, Yusong-ku, Taejon-si 305-345 (KR). HAN, Kyuboem [KR/KR]; #102-1002 Lucky Hana Apt., Shinsung-dong, Yusong-ku, Taejon-si 305-345 (KR). SONG, Ji-Yong [KR/KR]; #102-205 Lucky Hana Apt., Shinsung-dong, Yusong-ku, Taejon-si 305-345 (KR).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: POLYHYDROCYALKANOATE BIOSYNTHESIS-RELATED GENES DERIVED FROM ALCALIGENES LATUS

PHA synthase (536 aa) thiolase (343 aa) reductase (245 aa)

(57) Abstract

There is diclosed a PHA biosynthesis-related DNA fragment, which comprises the genes for PHA synthase, β -ketothiolase and acetoacetyl-CoA reductase, which are all derived from *Alcaligenes latus*. The DNA fragment is inserted in an expression vector. *E. coli* which is transformed with the expression vector carrying the DNA fragment can produce the PHA biosynthesis-related enzymes as well as accumulate PHA at a large quantity by culturing it in one-step.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania	ES	Spain	LS	Lesotho	SI	Slovenia
Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
Austria	FR	France	LU		SN	Senegal
Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
Barbados	GH	Ghana	MG		T.J	Tajikistan
Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
Benin	IE	Treland	MN	Mongolia	UA	Ukraine
Brazil	IL	Israel	MR	Mauritania	UG	Uganda
Belarus	IS	Iceland	MW	Malawi	US	United States of America
Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
	JР	Japan	NE	Niger	VN	Viet Nam
	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	KG	Kyrgyzstan	NO	Norway '	zw	Zimbabwe
	KP	Democratic People's	NZ	New Zealand		
		Republic of Korea	PL	Poland		
	KR	Republic of Korea	PT	Portugal		
	KZ	Kazakstan	RO	Romania		
Czech Republic	LC	Saint Lucia	RU	Russian Federation		
Germany	LI	Liechtenstein	SD	Sudan		
Denmark	LK	Sri Lanka	SE	Sweden		
Estonia	LR	Liberia	SG	Singapore		
				- •		
_	Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark	Armenia FI Austria FR Australia GA Azerbaijan GB Bosnia and Herzegovina GE Barbados GH Belgium GN Burkina Faso GR Bulgaria HU Benin IE Brazil IIL Belarus IS Canada IT Central African Republic JP Congo KE Switzerland KG Côte d'Ivoire KP Cameroon China KR Cuba KZ Czech Republic LC Germany LI Denmark LK	Armenia FI Finland Austria FR France Australia GA Gabon Azerbaijan GB United Kingdom Bosnia and Herzegovina GE Georgia Barbados GH Ghana Belgium GN Guinea Burkina Faso GR Greece Bulgaria HU Hungary Benin IE Ireland Brazil IL Israel Belarus IS Iceland Canada IT Italy Central African Republic JP Japan Congo KE Kenya Switzerland KG Kyrgyzstan Côte d'Ivoire KP Democratic People's Cameroon Republic of Korea China KR Republic of Korea Cuba KZ Kazakstan Czech Republic LC Saint Lucia Germany LI Liechtenstein Denmark	Armenia FI Finland LT Austria FR France LU Australia GA Gabon LV Azerbaijan GB United Kingdom MC Bosnia and Herzegovina GE Georgia MD Barbados GH Ghana MG Belgium GN Guinea MK Burkina Faso GR Greece Bulgaria HU Hungary ML Benin IE Ireland MN Brazil IL Israel MR Belarus IS Iceland MW Canada IT Italy MX Central African Republic JP Japan NE Congo KE Kenya NL Switzerland KG Kyrgyzstan NO Côte d'Ivoire KP Democratic People's NZ Cameroon REPublic of Korea PL China KR Republic of Korea PT Cuba KZ Kazakstan RO Czech Republic LC Saint Lucia RU Germany LI Liechtenstein SD Denmark LK Sri Lanka SE	Armenia FI Finland LT Lithuania Austria FR France LU Luxembourg Australia GA Gabon LV Latvia Azerbaijan GB United Kingdom MC Monaco Bosnia and Herzegovina GE Georgia MD Republic of Moldova Barbados GH Ghana MG Madagascar Belgium GN Guinea MK The former Yugoslav Burkina Faso GR Greece Republic of Macedonia Bulgaria HU Hungary ML Mali Benin IE Ireland MN Mongolia Brazil IL Israel MR Mauritania Belarus IS Iceland MW Malawi Canada IT Italy MX Mexico Central African Republic Congo KE Kenya NE Niger Congo KE Kenya NL Netherlands Switzerland KG Kyrgyzstan NO Norway Cote d'Ivoire KP Democratic People's NZ New Zealand Cameroon Republic of Korea PL Poland China KR Republic of Korea PL Poland China KR Republic of Korea PT Portugal Cuba KZ Kazakstan RO Romania Czech Republic Germany LI Liechtenstein SD Sudan Denmark LK Sri Lanka SE Sweden	Armenia FI Finland LT Lithuania SK Austria FR France LU Luxembourg SN Australia GA Gabon LV Latvia SZ Azerbaijan GB United Kingdom MC Monaco TD Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Barbados GH Ghana MG Madagascar TJ Belgium GN Guinea MK The former Yugoslav TM Burkina Faso GR Greece Republic of Macedonia TR Bulgaria HU Hungary ML Mali TT Benin IE Ireland MN Mongolia UA Brazil IL Israel MR Mauritania UG Belarus IS Iceland MW Malawi US Canada IT Italy MX Mexico UZ- Central African Republic JP Japan NE Niger VN Congo KE Kenya NL Netherlands YU Switzerland KG Kyrgyzstan NO Norway ZW Côte d'Ivoire KP Democratic People's NZ New Zealand Cameroon Republic of Korea PL Poland China KR Republic of Korea PT Portugal Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany LI Liechtenstein SD Sudan Denmark LK Sri Lanka SE Sweden

BNSDOCID: <WO

POLYHYDROXYALKANOATE BIOSYNTHESIS-RELATED GENES DERIVED FROM Alcaligenes latus

BACKGROUND OF THE INVENTION

5

Field of the invention

The present invention relates to polyhydroxyalkanoate (hereinafter referred to as "PHA") biosynthesis-related genes for PHA synthase, β-ketothiolase and acetoacetyl-CoA reductase, derived from *Alcaligenes latus*, their amino acid sequences, a recombinant plasmid carrying these genes, and a method for massproducing PHA using these gene. Also, the present invention relates to polyhydroxybutyrate(hereinafter referred to as "PHB") gene derived from *Alcaligenes latus*, its amino acid sequence and a recombinant plasmid carrying PHB gene, and a method for mass-producing PHB using the gene.

15

25

BNSDOCID: <WO

Description of the Prior Art

Petroleum synthetic plastics are so durable that they are not degraded in usual conditions at all. Because the production amount of the petroleum synthetic plastics increases each year, the environmental pollution ascribed to petroleum synthetic plastics wastes are now a big social problem. To solve the problem of non-degradable plastics, active research and development efforts have been and continued to be directed to biodegradable polymers all over the world.

Biodegradable polymers are the high molecular weight materials that are completely degraded under natural conditions after a period of time. Many biodegradable polymers have been developed. Of them, PHA, a natural polyester which is synthesized and accumulated by microorganisms, is of particular interest because it is superior in biodegradability as well as shows

physical properties similar to those of the synthetic plastics in current use (Anderson A.J. and Dawes, E.A., *Microbiol. Rev.*, 1990, 54, 450-472; Lee, S.Y., *Biotechnol. Bioeng.*, 49:1-14,1996; Lee, S.Y., *Trends Biotechnol.*, 14:431-438, 1996).

In detail, PHA is an organic reserve material, which can provide an intracellular store of carbon or energy, usually found in *Pseudomonas*, *Alcaligenes*, *Azotobacter*, and *Bacillus* spp.,etc. It is detectable as granular cytoplasmic inclusions. As a general rule, the cellular content of the reserve material is relatively low in actively growing cells: They accumulate massively when cells are limited in nitrogen, phosphorous, sulfur, oxygen, etc., but still have carbon and energy available. This reserve material was first found in *Bacillus megaterium* by Lemoigne in 1925 (Lemoigne, M., *Bull. Soc. Chem. Biol.*, 8:770-782, 1926). Since then, its chemical and physical properties have been extensively researched. Poly(3-hydroxybutyrate) is the most widely and first known PHA.

According to the number of carbon atoms and the substituents in hydroxyalkanoate, many PHAs were reported. In general, PHAs are divided into two classes; short-chain-length PHAs(SCL PHAs) and medium-chain-length PHAs(MCL PHAs)

SCL PHAs include poly-β-hydroxypropionic acid, poly-β-hydroxybutyric acid, and poly-β-hydroxyvaleric acid, which are produced by *Alcaligenes eutrophus*, *Azotobacter vinelandii*, *methylotrophs*, etc. SCL PHAs are widely used due to their similar properties to polypropylene, a kind of chemically synthesized plastics.

MCL PHAs, composed of 3 to 9 more carbon atoms than SCL PHAs, are produced by *Pseudomonas* spp., by using alkane, 1-alkene, $C_6 \sim C_{12}$ alkanoic acids as a carbon.

5

Since early the 1960s, it was recognized that PHA could work like thermoplastic polymers. Thereafter, attracting a great attention, many types of PHA copolymers were synthesized, which are superior in mechanical properties as well as in biodegradability. By virtue of these advantages and owing to the environmental pollution aggravated by petroleum synthetic polymer wastes, PHA is now actively researched and developed as an alternative for plastics over the world. In addition, biocompatibility and bioabsorptivity allow PHA to be used in a variety of fields, as materials for agriculture, medicinal care, drug transfer system, and package, and as precursors for fine chemical products (Holmes, P.A. in Developments in crystalline polymers. 1-65, 1988).

Taking advantage of various bacteria, molecular biological research has revealed that there are four different biosynthetic pathway for PHA (Steinbuchel, A. in Biomaterials: novel materials from biological sources, 215-262, 1991). For example, for *Alcaligenes eutrophus*, the most widely known bacteria, β-ketothiolase, acetoacetyl-CoA reductase and polyhydroxyalkanoate synthase (PHA synthase) are known to be involved in the biosynthesis of PHA (People, O.P. and Shinskey, A.J., *J. Biol. Chem.*, 264: 15298-15303, 1989; Schubert, P., Steinbuchel, A. and Schlegel, H.G., *J. Bacteriol.*, 170:5837-5847, 1988; Slater, S.C., Voige, W.H. and Dennis, D.E., *J. Bacteriol.*, 170:4431-4436, 1988).

A concrete biosynthetic pathway of PHA in *Alcaligenes eutrophus*, gram negative bacteria, is as follows. Between two molecules of acetyl-CoA, a carbon-carbon bond forms in the presence of β -ketothiolase, the product of gene phbA, according to a biological Claisen condensation. The acetoacetyl-CoA thus formed is converted into D(-)- β -hydroxybutyryl-CoA by the stereoselective reduction of NADPH-dependent acetoacetyl-CoA reductase, the

10

25

BNSDOCID: <WO

product of gene *phbB*. Finally, D(-)- β -hydroxybutyryl-CoA is polymerized via ester bond by PHA synthase, the product of gene *phbC*.

In order to clone the genes which pertain to the biosynthesis of PHA in other bacteria than *Alcaligenes* eutrophus, much effort has been made. That is, the comprehension of the biosynthesis of PHA in bacteria makes it possible efficient production of PHA, versatility of substrates, synthesis of new PHA, and development of biopolymers similar to PHA. Further, recombinant strains which are obtained by utilizing the PHA biosynthesis-related genes can synthesize various PHAs at high efficiencies, resulting in a scientific and industrial significance (Lee, S.Y., *Trends Biotechnol.*, 14:431-438, 1996).

Strain Alcaligenes latus is reported to be so superior in the production of PHA that it accumulates PHA in cells at a proportion of around 90%. Also, Alcaligenes latus has the advantage in that it grows fast and uses inexpensive substrates as carbon sources (Wang, F. and Lee, S.Y., Appl. Environ. Microbiol., 63:3703-3706, 1997). Unlike Alcaligenes eutrophus, Alcaligenes latus can mass-produce PHAs while they are growing. Thus, Alcaligenes latus can mass-produce PHA by one-step culture although the amount is low relative to that upon Alcaligenes eutrophus.

The use of *Alcaligenes latus* to produce PHA began in earnest in the mid-1980s by Chemie Linz AG, Austria. Biotechnologishe forchungesellschaft mbH, Austria, developed a process in which a one-step culture of strain btF-96, a mutant strain of *Alcaligenes latus*., produces PHA, asserting that one ton of PHA is obtained from a 15 m³ fermentor per week (Hrabak, O., *FEMS Microbiol. Rev.*, 103:251-256, 1992). *Alcaligenes latus* also produces poly(3-hydroxybutyrate/3-hydroxypropionate) as well as poly(3-hydroxybutyrate/4-hydroxypropionate) in a medium containing disaccharides as carbon source by addition of 3-hydroxypropionate and γ-butyrolactone (Hiramitsu, M., Koyama, N., and Doi, Y., *Biotechnol. Lett.*, 15:461-464, 1993).

10

PHA can be produced by chemical process as well as biological process. However, Commercially favorable production scale of PHA is possible only by biological process. Since the production cost of PHA is much higher than those of other commercially available synthetic polymers, new technologies are required to reduce the production cost of PHA. Particularly, recombinant DNA technology gives a great contribution to the development and modification of novel strains, showing the production of novel polymers, utility of low-priced substrate, high efficiency of production, and facility in separation and purification. In order to develop such recombinant strains, first of all, it is necessary to understand the enzymes involved in the biosynthetic pathway for PHA.

In order to mass-produce biodegradable, natural PHA and its copolymers, the inventors have cloned genes for polyhydroxyalkanoate synthase, β-ketothiolase, and acetoacetyl-CoA reductase, and determined amino acid sequences and gene sequences. They have made expression vectors carrying the above genes and transformants, whereby polyhydroxyalkanoate can be produced and accumulated.

In addition, the inventors have cloned gene for polyhydroxybutyrate (PHB) and determined gene sequence and amino acid sequence, and made expression vector carrying the PHB gene and transformant, whereby polyhydroxybutyrate can be produced and accumulated.

BRIEF DESCRIPTION OF THE DRAWINGS

25

BNSDOCID: <WO

10

15

20

Fig. 1 is a photograph showing opaque colonies of recombinant *E. coli* containing PHA biosynthesis-related genes derived from *Alcaligenes latus*, formed on a solid medium.

Fig. 2 is a photograph showing that recombinant *E. coli* containing PHA biosynthesis-related genes accumulates PHA in a broth.

Fig. 3 is a base sequence 6.4 kb in size, which contains the whole PHA biosynthesis-related genes derived from *Alcaligenes latus*.

Fig. 4 shows a restriction enzyme map of a 6.4 kb DNA fragment containing PHA biosynthesis-related genes derived from *Alcaligenes latus*, along with a gene structure.

Fig. 5 shows the gene structure of recombinant expression vector pJC1 carrying PHA biosynthesis-related genes derived from *Alcaligenes latus*.

Fig. 6 shows the process of preparing the recombinant expression vector carrying PHB synthase gene derived from *Alcaligenes latus*.

DETAILED DESCRIPTION OF THE INVENTION

10

BNSDOCID: <WO

The present invention provides a polyhydroxyalkanoate biosynthesisrelated gene.

The present invention provides an expression vector containing the polyhydroxyalkanoate biosynthesis- related gene and its transformant.

The present invention provides the method of preparing the polyhydroxyalkanoate synthase.

The present invention provides the method of preparing the polyhydroxyalkanoate.

In addition, the present invention provides a polyhydroxybutyrate gene.

The present invention provides an expression vector containing the polyhydroxybutyrate gene and its transformant.

The present invention provides the method of preparing the polyhydroxybutyrate synthase.

The present invention provides the method of preparing the polyhydroxybutyrate.

In the present invention, genes for the biosynthesis of PHA, are separated from *Alcaligenes latus*, which accumulates PHA while growing, whereby biodegradable, natural and industrially useful PHA and its copolymers can be mass-produced.

In more detail, the total genomic DNA separated from *Alcaligenes latus* is partly digested by restriction enzymes and the resulting DNA fragments are inserted into vector pUC19. *E. coli* is transformed with vector pUC19, followed by the selection of the recombinant vectors with a PHA biosynthesis-related DNA. The bacteria harboring the interest DNA was observed to accumulate PHA on a solid medium and in a liquid medium, as shown in Figs. 1 and 2, respectively.

Isolation of the recombinant vector from the transformed bacteria capable of producing PHA, is the first thing necessary to identify the DNA fragment of interest. Various analytic works show that the DNA fragment of interest is 6.4 kb in size, containing the genes coding for all of the β -ketothiolase, acetoacetyl-CoA reductase and PHA synthase.

Therefore, in accordance with an aspect, the present invention pertains to a PHA biosynthesis-related DNA fragment containing a PHA synthase gene, a β-ketothiolase gene and an acetoacetyl-CoA reductase gene, in due order, which has a size of 1608 bp (corresponding to 536 aa), 1176 bp (392 aa) and 735 bp (245 aa), respectively (see, Fig. 4).

Sequencing analyses reveal that the PHA synthase gene has a base sequence of Sequence 2 with a corresponding amino acid sequence of Sequence 5, as suggested in the accompanying Sequence Lists. The β -ketothiolase gene has a base sequence of Sequence 3 and the β -ketothiolase expressed therefrom

15

20

25

BNSDOCID: <WO.

has an amino acid sequence of Sequence 6. The analyses also give that the acetoacetyl-CoA reductase gene has a base sequence of Sequence 4 which corresponds to an amino acid sequence of Sequence 7(see, Fig. 3 and Sequence Lists).

The recombinant vector anchoring the DNA for biosynthesis of PHA was named pJC1 (see, Fig. 5) and the transformant, *E. coli* XL-1 Blue/pJC1, was deposited in Korean Collection for Type Cultures, Korean Research Institute of Bioscience and Biotechnology on Nov. 5, 1997 and received a Deposition No. KCTC 0398 BP.

In accordance with another aspect, the present invention pertains to the preparation of the PHA biosynthesis-related enzymes by culturing host bacteria which harbor a recombinant expression vector containing the PHA biosynthesis-related genes.

In accordance with a further aspect, the present invention pertains to the production of PHA and its copolymers by use of the above host bacteria which can express the PHA biosynthesis-related genes. To this end, *E. coli* was transformed by the recombinant expression vector and after selecting, the transformed *E. coli* was cultured in a liquid medium containing glucose in suitable concentration to produce PHA. Where the *E. coli* was cultured in this manner, PHA was observed to accumulate until it represent as much as 40 % or more of the dry cell weight.

In addition, this invention provides polyhydroxybutyrate synthase (hereinafter referred to as "PHB synthase") and genes thereof. The total genomic DNA separated from *Alcaligenes latus* is partly digested by restriction enzyme, followed by selecting the DNA fragment showing positive signal by use of PHB gene derived from *Alcaligenes eutrophus* H16 as a probe. Plasmid vector pAL32 is obtained by inserting the above PHB gene into pSK(+).

10

15

The pAL32 is digested with *Eco*RI and *Not*I to obtain the PHB gene and then the resulting gene is inserted into plasmid pK230 of broad host range to obtain the recombinant expression vector pKTC32. This pKTC32 can express the gene in various host cells.(see Fig. 6)

The transformant *Alcaligenes eutrophus* LAR5 obtained by inserting pKTC32 into *Alcaligenes eutrophus* DSM541 which is lacking in PHB gene, was deposited in Korean Collection for Type Cultures, Korean Research institute of Bioscience and Biotechnology on Nov. 11, 1997, with a deposition No. KCTC 0568 BP.

When the above transformant *Alcaligenes eutrophus* DSM541(phb⁻) /pKTC32 is cultured, it is observed that PHB synthase is produced in the cell cytoplasm in the form of white particle.

The invention will now be illustrated by the following examples, but not be limited in scope by reason of any of the following examples.

EXAMPLE I : Separation of Genomic DNA from Alcaligenes latus

The strain *Alcaligenes latus* (Wang, F and Lee, S.Y., *Appl. Envirn. Microbiol.*, 63:3707-3706, 1997) was cultured overnight in 500 ml of an NB medium (8 g/L nutrient broth). The bacteria in an initial stage of exponential growth were harvested by centrifugation and washed twice with saline-EDTA (0.15 M NaCl, 0.1 M EDTA, pH 8.0). The washed bacteria were suspended in 40 ml of 0.1 M saline-Tris-Cl (0.1 M NaCl, 10 mM EDTA, pH 9.0) and 1 ml of lysozyme solution (20 mg/ml) prepared just before use was added to the suspension. This suspension was dropwise added at 37 °C with Tris-SDS buffer (0.4 M NaCl, 1 mM EDTA, 20 mM Tris-Cl, pH 7.5, added with 5% SDS) with slow agitation. When the resulting solution became viscous, 5.5 ml of Proteinase K (10 mg/ml) was added and the total solution was incubated at

5

10

15

20

37 °C for 2 hours to remove proteins. Next, equal volume of phenol was added to the solution and well mixed for 30 min at room temperature with caution. After the solution was centrifuged at 6,000 rpm for 10 min, the supernatant was transferred to a fresh beaker followed by volume-measurement, and slowly added with two times the volume of cold ethanol to precipitate the genomic DNA which was, then, rolled up with a glass bar. The DNA was dried at room temperature and dissolved in 10 ml of TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8.0). Thereafter RNase was added to the above solution until the final concentration became $50\mu g/ml$ and the total solution was incubated at 37 °C for 1 hour. Then the same following process, i.e. mixing with phenol, centrifugation, volume mearsurement, addition of cold ethanol, rolling up, drying, and resuspension in TE buffer, was repeated. The only difference was that the concentration of TE buffer was 2ml.

EXAMPLE II: Cloning of PHA Biosynthesis-Related Genes

The genomic DNA of *Alcaligenes latus*, obtained Example I, was partly digested by restriction enzyme *Sau3AI*. Because restriction enzyme *Sau3AI* recognizes a specific four-base sequence in double-stranded DNA and cleaves both strands of the duplex at a specific site, various DNA fragments ranging from a small size to a large size can be obtained. These DNA fragments were separated according to size by electrophoresis on a low-melting temperature agarose gel.

To obtain the whole PHA biosynthesis-related gene, only the genes which were as large as or larger than 4 kb in size, were selected and inserted in plasmid pUC19 2.68 kb in size. To this end, first, the plasmid was cut with restriction enzyme *Bam*HI which leaves the same end sequence with restriction enzyme *Sau3*AI. Then, the genomic DNA fragments at least 4 kb long were

15

20

ligated with the opened plasmid vector pUC19 by using T4 DNA ligase (New England Biolabs).

The recombinant vector thus obtained was used to transform E. coli XL1-Blue (Stratagene) with the aid of an electroporator. When the recombinant vector pUC19 which contained the whole PHA biosynthesisrelated gene at a BamHI cloning site was taken up by E. coli XL1-Blue, white colonies were formed on a solid LB medium (tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) supplemented with ampicillin, X-gal (5-bromo-4-chloro-3indolyl-β--D-galactopyranoside) and **IPTG** (isopropyl-1-thio-β--Dgalactopyranoside). On the other hand, where the bacteria contained plasmid vector pUC19 without a DNA insert, blue colonies were formed. Through this procedure, colonies containing plasmid vector pUC19 with a partial genomic DNA insert of Alcaligenes latus, were selected. In order to determine whether these colonies were able to produce PHA, they each were inoculated in a broth capable of accumulating PHA.

In result, recombinant E. coli which was able to accumulate PHA, was obtained. From the recombinant E. coli, the recombinant plasmid vector was separated. An analysis data showed that the recombinant plasmid vector pUC19 anchored a partial genomic DNA of *Alcaligenes latus*, 6.4 kb long and that this DNA fragment contained the PHA synthesis-related genes. In addition, base sequencing analysis revealed that the 6.4 kb DNA fragment coded for all of the PHA biosynthesis-related enzymes, that is, β -ketothiolase, acetoacetyl-CoA reductase and PHA synthase.

In the present invention, the recombinant expression vector was named pJC1. The transformant which harbored plasmid pJC1 was deposited in Korean Collection for Type Cultures, Korean Research Institute of Bioscience and Biotechnology on Nov. 5, 1997, with a deposition No. KCTC 0398 BP.

BNSDOCID: <WO

EXAMPLE III: Structure Analysis of PHA Genes Derived from A. latus

The 6.4 kb DNA insert ligated to the plasmid vector pUC19 was analyzed to contain all the genes for β-ketothiolase, acetoacetyl-CoA reductase and PHA synthase. These genes were positioned in the order of PHA synthase, β-ketothiolase and acetoacetyl-CoA reductase from the 5' end to the 3' end.

Regarding the sizes of the PHA biosynthesis genes, the PHA synthase gene, β -ketothiolase gene and acetoacetyl-CoA reductase gene were 1608 bp (536 aa), 1176 bp (392 aa) and 735 bp (245 aa) long, respectively.

10

15

20

25

RNSDOCID: <WO

EXAMPLE IV: PHA-Producing Recombinant E. coli Containing PHA Biosynthesis-Related Genes Derived from A. latus

The recombinant expression vector pJC1 anchoring the 6.4 kb genomic DNA fragment of *Alcaligenes latus* was used to transform *E. coli* XL1-Blue. Since the bacteria which took up the recombinant expression vector could grow in a medium containing ampicillin, selection of the *E. coli* transformants was made on a solid medium containing 100 g/ml ampicillin. The selected *E. coli* was cultured in a defined or complex liquid medium containing 20 g/l glucose to produce PHA. When the strain was cultured at a temperature of 30 or 37 °C in a flask, PHA was accumulated until it represented as much as 40 % or more of the dry cell weight.

As described hereinbefore, the PHA biosynthesis-related genes of the present invention are derived from *Alcaligenes latus* and contains all of the genes for PHA synthase, β -ketothiolase and acetoacetyl-CoA reductase. When *E. coli* is transformed with the PHA biosynthesis-related genes of the present invention, a one-step culture of the transformant *E. coli* can mass-produce

PHA. In addition, these enzymes and the genes are very helpful in understanding the biosynthesis of PHA in a molecular biological level.

The present invention has been described in an illustrative manner, and it is to be understood the terminology used is intended to be in the nature of description rather than of limitation.

Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

10

15

20

25

BNSDOCID: <WO

5

EXAMPLE V: Separation of PHB gene from *Alcaligenes latus* and determination of its DNA and amino acid sequence

In order to separate PHB gene, total DNA extracted from culture of Alcaligenes latus and digested with restriction enzymes such as BamHI, HindIII, Smal, XhoI, and SalI and the DNA fragment was obtained.

Among the resulting DNA fragments digested with *BamHI*, the 3.2 kb DNA showing positive signal, was separated by using 1 kb PHB gene derived from *Alcaligenes eutrophus* as a probe.

Then the separated DNA was ligated to the *Bam*HI restriction site of the vector pSK(+), whereby recombinant plasmid pAL32 was constructed. (see Fig. 5)

As the result of analyzing the pAL32 DNA sequence by Sanger Method (dideoxy-nucleotide chain termination method), it has revealed that the PHB gene derived from Alcaligenes latus consists of 1,608 bp. The amino acid sequence of the PHB synthase encoded by the above PHB gene, was analyzed

by using PC/Gene software program. PHB synthase derived from *Alcaligenes* latus has the amino acid sequence composed by 536 amino acids.

EXAMPLE VI : Construction of recombinant expression vector pKTC32 containing PHB gene

PHB gene is obtained by digesting pAL32 with *EcoRI* and *NotI*, and then the resulting DNA fragment was ligated to the restriction site by *EcoRI* and *NotI*. (see Fig. 5)

10

BNSDOCID: <WO

EXAMPLE VII: Preparation of PHB-producing recombinant Alcaligenes eutrophus LAR5

The recombinant expression vector pKTC32 of Example VI was introduced into the strains of *A. eutrophus* DSM541 which is lacking in PHB gene. When culturing the transformant, PHB particles in the cell were observed.

EXAMPLE VIII: Identification of primer region of PHB gene derived 20 from A. latus

For the purpose of identifying the PHB primer region, the total DNA of Alcaligenes latus was separated. The site wherefrom RNA transcription starts was determined by primer extension method and then the promoter region consisting of 210 bp DNA upstream was obtained. The gene sequence of promoter region of PHB was analyzed by PC/Gene software program.

1120°GO זו በדחס ארוז בידע האוסודא או או האוסידא דרביא או מידיאס ארוז בידע האוסודא או או אוסריביא או אוסריביא א אוטענביטאין דאנידא איט וביסיאטא שוד אסץ באוטא באטא באטא איט ובידע איט ובידע איט ובידע אויט איט איט איט איט איט

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: Lee, Sang Yup

Expo Apt. 212-702, Chunmin-dong, Yusong-ku, Tacjon 305-390,

Republic of Korea

I. IDENTIFICATION OF THE MICROORGANISM

Identification reference given by the

DEPOSITOR:

Escherichia coll XL1-Blue/pJC1

Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:

•

KCTC 0398BP

II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION

The microorganism identified under I above was accompanied by:

[x] a scientific description

[] a proposed taxonomic designation

(Mark with a cross where applicable)

III. RECEIPT AND ACCEPTANCE

This International Depositary Authority accepts the microorganism identified under I above, which was received by it on November 5 1997.

IV. RECEIPT OF REQUEST FOR CONVERSION

The microorganism identified under I above was received by this International Depositary

Authority on and a request to convert the original deposit to a deposit
under the Budapest Treaty was received by it on

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Korea Research Institute of
Bioscience and Biotechnology
Korean Collection for Type Cultures

Address: KCTC, KRIBB

#52, Oun-dong, Yusong-ku.

Taejon 305-333. Republic of Korea Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

Kyung Sook Bae, Curator Date: November 12 1997 RUDATEST TREATY ON THE INTERNATIONAL RECUGNITION OF THE REPOSIT OF MICRORIGANISMS FOR THE PURPOSE OF PARENT PROCEDURE.

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: LEE. Yong-Hyun

Department of Genetic Engineering College of Natural Sciences,

Kyungpook National University, Taegu 702-701,

Republic of Korea

I. IDENTIFICATION OF	THE MICROORGANISM
----------------------	-------------------

Identification reference given by the DEPOSITOR:

Alcaligenes eutrophus LAR5

Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY

KCTC 0568BP

II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION

The microorganism identified under I above was accompanied by:

[x] a scientific description

| | a proposed taxonomic designation

(Mark with a cross where applicable)

III. RECEIPT AND ACCEPTANCE

This International Depositary Authority accepts the microorganism identified under I above, which was received by it on **January 18 1999**.

IV. RECEIPT OF REQUEST FOR CONVERSION

The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Korean Collection for Type Cultures

Address: Korea Research Institute of Bioscience and Biotechnology

(KRIBB)

#52. Oun-dong, Yusong-ku.

Taejon 305-333. Republic of Korea Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

PARK Yong-Ha, Director Date: January 25 1999

PCT/KR99/00031

WHAT IS CLAIMED:

- 1. A polyhydroxyalkanoate biosynthesis-related DNA fragment, comprising a gene for polyhydroxyalkanoate synthase, a gene for β -ketothiolase and a gene for acetoacetyl-CoA reductase, which are all derived from *Alcaligenes latus*.
- 2. A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1, wherein said fragment contain the gene for polyhydroxyalkanoate synthase, the gene for β-ketothiolase and the gene for acetoacetyl-CoA reductase in due order and has a base sequence of Sequence 1.
- 3. A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1 or 2, wherein the gene for polyhydroxyalkanoate synthase has a base sequence of Sequence 2.
 - 4. A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1 or 2, wherein the gene for β -ketothiolase has a base sequence of Sequence 3.

20

- 5. A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1 or 2, wherein the gene for acetoacetyl-CoA reductase has a base sequence of Sequence 4.
- 6. A polyhydroxyalkanoate synthase, having an amino acid sequence of Sequence 5, derived from *Alcaligenes latus*.

7. A β -ketothiolase, having an amino acid sequence of Sequence 6, derived from *Alcaligenes latus*.

- 8. An acetoacetyl-CoA reductase, having an amino acid sequence of Sequence 7, derived from *Alcaligenes latus*.
 - 9. A recombinant expression vector pJC1, containing the polyhydroxyalkanoate biosynthesis-related gene of claim 1.
- 10. A recombinant expression vector pAL32, containing the gene for polyhydroxyalkanoate synthase of claim 3.
 - 11. A recombinant expression vector pKTC32, containing the gene for polyhydroxyalkanoate synthase of claim 3.
 - 12. An *E. coli* transformant XL1-Blue/pJC1 with a deposition No. of KCTC 0398 BP, which is transformed with the recombinant expression vector of claim 9.
- 20 13. An Alcaligenes eutrophus transformant LAR5 (DSM541/pKTC32) with a deposition No. KCTC 0568 BP, which is transformed with the recombinant expression vector of claim 11.
- 14. A method for preparing polyhydroxyalkanoate biosynthesis-related enzymes, by culturing the *E. coli* transformant of claim 12.
 - 15. A method for preparing polyhydroxybutyrate synthase, by culturing *A. eutrophus* transformant of claim 13.

16. A method for producing polyhydroxyalkanoate and its copolymers, by culturing the transformant of claim 12.

17. A method for producing polyhydroxyalkanoate and its copolymers, by culturing the transformant of 13.

FIG. 1

FIG. 2

FIG. 3a

10	20	30	40	50	60
			GCCGAGTTTA		TCGGACGCCC
70		90	100	110	120
CCGGCAGCGT	GCAGGGTTCA	CGCCATGTTC	AAAAGCGCTG	TGAGGCAGGT	ATGCTGCACT
130	140	150	160	170	180
GCGTCAATCC	CGCAGTTCCG	CAGTCATCCC A	AGAAATGCAG (CTGTACAACT	ACTITCGCTC
190	200	210	220	230	240
CTCGGCGTCC	TACCGCGTCC	GCATCGCACT (GGCCCTGAAG (GGTCTGGCCT A	CGAATACAA
250					300
		AGGAGCAGTT	CGCGGANTCG	TATGCGGCCG	TGTCGGCCTC
310		330			360
			CGCGTCGCTG	ACGCAGTCGA	TGGCCATCAT
370		390	400	410	420
			GCCGCTGCTG		
430		450	460	470	480
490			CGCCTGCGAG		
		510	520	530	
550			CAAGGTCGGC		
		570	580 GGTGGTGGAG	590	600
610		630	640		
			GCCCGGCCTG (650	660
670		690	700	710	720
			CCGGCTGGAG		CCGTGATGCG
730		750	760	770	780
CGTGTACGAG	GCCTGCATGC		CTTCGACAAG		
790		810	820	830	840
CGATGCCGAG	TAAGGCTCTG	CAGGGCGTGC	TGAGGCCCGA	GTGGCCGGCA	CCGGCCGGCG
. 850	860	870	880	890	900
TGGGCGCATT	CATGAGCACG	CGCGAGGGCG	GCGTCAGCGC	CGCGCCCTGG	GACGGCGCCA
910	,			950	960
			AGGCTGTGGA	CACCAACCGC	GCCCGATTCG
970	,	990		1010	1020
			GGCTGCGCCA		
1030	1040		1060	1070	1080
10CGATTGCG			CGCAGCCGCC		
		1110	1120	1130	1140
1150		1170	AGGTGGCGGA		
			1180 CGCATGCGGG	1190	1200
1210		1230	1240	1250	1260
			GCGCGCTGGC		
1270		1290	1300	1310	1320
TGCTGGCCTG			CGGAGAGTTT		
1330			1360	1370	1380
TGGAGGGTTT	CGGCGTGGAT		CGGCCGACCC		
1390					1440
GTGCCGACGG	CAGCGCGCGC		ACCTGCCGGG	GCTGGCGCGG	CGCCGGCTCG
1450	1460	1470	1480	1490	1500
AATTGGCAGG	TCTGCGTCAG	ATCAGTGGCG	GACAGTGGTG	CACGGTGCAG	GATCGTTCAC
1510	1520	1530	1540	1550	1560
GGTTCTTCTC	GTTCCGGCGG		CGGGGCGCA	GGCTGCCGCC	GTCTGGCTGC
1570	1580	1590	1600	1610	1620
GCGGATGAAG					
1630	GCGGTGTCCTC	GGCGCGCTTG		GCCGCGCGG	CGTCCCCAGG

FIG. 3b

AAGTACAGGA CGATGGACAA GGGCAGTACG CCATACAGCA GCAGCGTGAA CACCGCGCCG 1700 1710 1720 1730 AGCAAGGTGC CGTTGGGCGC CATGGCTTCG GCCACGGCCA TCATCAGCAC CACGTACAGC 1750 1760 1770 1780 1790 CATGCCAGAG CAACCAAGTA CATAGCAAAA ACCCGCAATT ACGCAGAATG ACGTATTTCG 1810 1820 1830 1840 1850 TACAATGAAA ACTGTTGTCA TGATGCGGTA AGACACGAAG CCTACAACGC GATCCAGCAA 1900 1870 1880 1890 1910 CGGTTTTCGT GAAAAAGTCC TCAGGAGACG AGCGTGACAC TGCATCCCAT TCCCGCACTG 1930 1940 1950 1960 1970 CAACAGCTTG GCGACAACGC CACGGCGCTG AGTGCCGCCA TCTCGGAAGC GCTGCGCGCG 2007 1998 2016 2025 ATG TCG GGC CTG AAC CTG CCG ATG CAG GCC ATG ACC AAG CTG CAG GGC GAG TAC MSGLNLPMQAMTKLQGEY $phaC_{AI} \rightarrow$ 2052 2061 2070 2079 CTC AAC GAG GCG ACG GCG CTG TGG AAC CAG ACG CTG GGC CGC CTG CAG CCC GAC LNEATALWN QTLGRL QPD 2106 2115 2124 GGC AGC GCC CAA CCG GCC AAG CTG GGC GAC CGG CGC TTC TCG GCC GAG GAC TGG G S A Q P A K L G D R R F S A E D W 2169 2160 2178 2187 GCC AAG AAC CCC GCC GCG GCC TAC CTG GCG CAG GTC TAC CTG CTC AAT GCC CGC A K N P A A A Y L A Q V Y L L N A R 2214 2223 2232 2241 ACG CTG ATG CAG ATG GCC GAG TCC ATC GAG GGC GAC GCC AAG GCC AAG GCG CGC T L M Q M A E S I E G D A K A · K A R 2277 2286 2295 2268 GTG CGC TTC GCC GTG CAG CAG TGG ATC GAC GCC GCG GCG CCG AGC AAC TTC CTG V R F A V Q Q W I D A A A P 2340 2349 2331 GCG CTC AAT CCC GAG GCG CAG CGC AAG GCG CTG GAG ACC AAG GGG GAG,AGC ATC ALNPEAQRKALE TKG E 2394 2403 2376 2385 AGC CAG GGC CTG CAG CTG TGG CAT GAC ATC CAG CAG GGC CAC GTG TCG CAG S Q G L Q Q L W H D I Q Q G H V S Q 2430 2439 2448 2457 ACG GAC GAG AGC GTG TTC GAG GTG GGC AAG AAC GTC GCC ACC ACC GAG GGC GCG T D E S V F E V G K N V A T T E 2511 2484 2493 2502 GTC GTG TAC GAG AAC GAC CTG TTC CAG CTC ATC GAG TAC AAG CCG CTG ACG CCC YENDLFQLIEYKPLTP 2538 2547 2556 AAG GTG CAC GAG AAG CCG ATG CTG TTC GTG CCG CCG TGC ATC AAC AAG TAC TAC

FIG. 3c

K	V	н	E	K	P	М	L	F	v	P	P	С	ì	И	K	Y	Υ .
ATC I	CTC L	2583 GAC D	CTG	CAG Q	2592 CCG P	GAC	AAC N	2601 C AGC S	CTC	ATC I	2610 CGC R	TAC	ACC	2619 GTC V	GCC A		2628 GGC G
CAC H	CG(R	2637 G GTG V	TTC	GTG V	2646 GTG V	AGC	TGG	2655 G CGC R	AAC	CCC	2664 GAC D	GCC		2673 GTC V	GCC A	GGC G	2682 AAG K
ACC T	TGC W	2691 GAC D	GAC	TAC Y	2700 GTG V	GAG	CAC Q	G GGC	GTC V	ATC	2718 C CGC R	: GĊC	TA:	2727 C CGC R	GTC		2736 G CAG Q
CAG Q	ATC I	2745 ACG T	GGG	CAC H	GAG	AAG K	GTO	CAAC	GCC	G CTC L	2772 G GGC G	TTC	TGC C	2781 C GTC V	GGC	G G	2790 C ACC T
ATC I	CTG L	2799 AGC S	ACG	GCG	2808 CTG L	GCG	GTG	2817 CTG L	GCC	GCG	2826 G CGC R	GGC	GAC E	2835 G CAG Q	CCC	GCC A	2844 G GCG . A
AGC S	CTG L	2853 ACG T	CTG	CTG L	2862 ACC T	ACG	CTG	2871 CTG L	GAC D	TTC F	2880 AGC . S	AAC. N	ACC	2889 GGC G		CTG L	
CTG L	TTC	2907 ATC (I	GÁC (D	GAG	2916 GCC (A	GGC	GTG V	2925 CGC R	CTG	CGC R	2934 GAG E	ATG M	ACC T	2943 ATC I	ĠĠĊ	GAG E	2952 AAG K
GCG A	CCC P	2961 AAC N	GGC	CCG P	2970 GGC G	CTG	CTC L	N	GGC G	AAG K	GAG E	CTG L	Α	2997 ACC T	ACC T		3006 AGC S
TTC (CTG L	3015 CGC (R	CCG A	AAC	3024 GAC (D	CTG (GTC	TGG.	AAC '	TAC	3042 GTG (V	GTG (GGC	3051 AAC N		CTC L	
GGC G	GAG E	3069 GCG A	CCG	CCG	3078 CCC P	TTC (GAC	3087 CTG L	CTG	TAC	3096 TGG . W	AAC	TCC	3105 GAC D	AGC S	ACC T	
ATG , M	GCC A	3123 GGG G	CCC	ATG	3132 TTC ' F	TGC -	rgg W	3141 TAC Y	CTG	CGC R	3150 AAC / N		TAC Y		GAG E	aac N	3168 AAG K
TTG (CGC R	3177 GTT (V	CCC	GGT	3186 GCC (A	CTG A	LCC.	ATC T	rgc (GC	3204 GAG <i>i</i> E	AAG	GTG V	3213 GAC D	CTC L	TCG	R
ATC (GAG E	3231 GCG A	CCG	GTG	3240 TAC Y	TTC	TAC	3249 GGT G	TCG	CGC	3258 GAG E	GAC	CAC	326 7 ATC	GTG	ccc	3276 TGG
		3285			3294			3303	i		3312			3321			3330

FIG. 3d

GAA TCG GCC TAC GCC GGC ACG CAG ATG CTG AGC GGC CCC AAG CGC TAT GTC CTG

ESAYAGTQMLSGPKRYVL 3357 3366 3375 GGT GCG TCT GGC CAC ATC GCC GGC GTG ATC AAC CCC CCG CAG AAG AAG AAG CGC G A S G H I A G V I N P P Q K K K R 3402 3411 3420 3429 AGC TAC TGG ACC AAC GAG CAG CTC GAC GGC GAC TTC AAC CAG TGG CTG GAA GGC S Y W T N E Q L D G D F N Q W L E G 3456 3465 3474 3483 TCC ACC GAG CAT CCT GGC AGC TGG TGG ACC GAC TGG AGC GAC TGG CTC AAG CAG S T E . H P G S W W T D W S D W L K Q 3510 3519 3528 3537 CAC GCG GGC AAG GAA ATC GCC GCA CCC AAG ACT CCC GGC AAC AAG ACC CAC AAG H A G K E I A A P K T P G N K T H K 3564 3573 3582 CCC ATC GAG CCC GCC CCC GGG CGT TAC GTG AAG CAG AAG GCC PIEPAPGRYVKQKA

3600 3610 3620 3630 3640
TG AGCCGCGGCC CCTGAGCCTT CTTTAACCCG ACCTTGACAA ACGAGGAGAT AAGC

3653 3662 3671 3680 3689 3698 ATG ACC GAC ATC GTC GCC GCC GCC GCC GCC GCC GGC AAG TTC GGC M T D I V I V A A A R T A V G K F G pha $A_{Al} \rightarrow$

3761 3770 3779 3788 3797 3806
CTG CTG GAG AAG ACG GGC GTC AAG CCC GAC CAG ATC GGT GAA GTC ATC ATG GGC
L L E K T G V K P D Q I G E V I M G

3815 3824 3833 3842 3851 3860 CAG GTG CTG GCC GCC GCG GGC CAG AAC CCC GCG CGC CAG GCG ATG ATG AAG Q V L A A G A G Q N P A R Q A M M K

3869 3878 3887 3896 3905 3914 • GCG GGC ATC GCC AAG GAA ACG CCG GCG CTG ACC ATC AAC GCC GTG TGC GGG TCC A G I A K E T P A L T I N A V C G S

3977 3986 3995 4004 4013 4022
ATC GTC ATC GCC GGC GGC CAG GAG AAC ATG AGC GCC AGC CCG CAC GTG CTG ATG
I V I A G G Q E N M S A S P H V L M

FIG. 3e

GGC AGC CGC GAC GGC CAG CGC ATG GGC GAC TGG AAG ATG GTC GAC ACC ATG ATC G S R D G Q R M G D W K M V D T M I AAC GAC GGC CTG TGG GAC GTG TAC AAC AAG TAC CAC ATG GGC ATC ACG GCC GAG N D G L W D V Y N K Y H M G I T A E AAC GTC GCC AAG GAA CAC GAC ATC AGC CGC GAC CAG CAG GAC GCC CTG GCC CTG $\begin{smallmatrix} \mathsf{N} & \mathsf{V} & \mathsf{A} & \mathsf{K} & \mathsf{E} & \mathsf{H} & \mathsf{D} & \mathsf{I} & \mathsf{S} & \mathsf{R} & \mathsf{D} & \mathsf{Q} & \dot{\mathsf{Q}} & \mathsf{D} & \mathsf{A} & \mathsf{L} & \mathsf{A} & \mathsf{L} \\ \end{smallmatrix}$ GCC AGC CAG CAG AAG GCC ACC GCC GCG CAG GAA GCC GGC CGC TTC AAG GAC GAG A S Q Q K A T A A Q E A G R F K D E ATC GTT CCG GTC TCG ATC CCG CAG CGC AAG GGC GAC CCG GTG CTG TTC GAC ACC I V P V S I P Q R K G D P V L F D T GAC GAG TTC ATC AAC AAG AAG ACC ACC GCC GAA GCG CTG GCG GGC CTG CGC CCG DEFINKKTTAEALAGLRP GCC TTC GAC AAG GCC GGC AGC GTG ACC GCG GGC AAC GCC TCG GGC ATC AAC GAC A F D K A G S V T A G N A S G I N D GGC GCC GCT GCG GTG ATG GTG ATG TCC GCC GCC AAG GCG AAG GAG CTG GGC CTG G A A A V M V M S A A K A K E . L G L ACG CCC ATG GCG CGC ATC AAG AGC TTC GGC ACC AGC GGC CTG GAT CCG GCC AAG T P M A R I K S F G T S G L D P A K GTC AAC GTC AAC GGC GGT GCC ATC GCC ATC GGC CAC CCC ATC GGC GCC TCC GGC TGC CGC GTG CTG GTG ACG CTG CTG CAC GAG ATG CAG CGC CGG GAC GCC AAG AAG C R V L V T L L H E M Q R R D A K K GGC CTG GCC GCG CTG TGC ATC GGC GGC GTG GGC GTG TCG CTG ACC GTC GAG G L A A L C I G G G M G V S L T V and the second s CGC R

TGATCAG AAGAACCGGG CGGCCCGCG CCGCCGCCC GGCGTTCCAC GCGGGTGCGC

FIG. 3f

CGGGATACCA GACGAACCAA ACCACCAAGG GCTTCGAGAC GGCCCGAAGA AGGAGAGACA G ATG GCA CAG AAA CTG GCT TAC GTG ACC GGC GGC ATG GGC GGC ATC GGC ACC TCG MAQKLAY V T G G M G G I G T S ATG TGC CAG CGC CTG CAC AAG GAC GGC TTC AAG GTG ATC GCC GGC TGC GGT CCG MCQRLHKDGFKVIAGCGP AGC CGC GAC CAC CAG AAG TGG ATC GAT GAA CAG GCC GCG CTG GGC TAT ACC TTC S R D H Q K W I D E Q A A L G Y T F TAC GCC TCC GTG GGC AAC GTG GCC GAC TGG GAC TCC ACC GTG GCC GCC TTC GAG Y A S V G N V A D W D S T V A A F E AAG GTC AAG GCC GAG CAC GGC ACC GTG GAC GTG CTG GTG AAC AAC GCC GGC ATC K V K A E H G T V D V L V N N A G I ACG CGT GAC GGG CAG TTC CGC AAG ATG AGC AAG GCC GAT TGG CAG GCC GTG ATG $T \cdot R \cdot D \cdot G \cdot Q \cdot F \cdot R \cdot K \cdot M \cdot S \cdot K \cdot A \cdot D \cdot W \cdot Q \cdot A \cdot V \cdot M \\$ TCG ACC AAC CTC GAC AGC ATG TTC AAC GTC ACC AAG CAG GTG ATC GAG GGC ATG CTG GAC AAG GGC TGG GGC CGG ATC ATC AAC ATC TCC TCG GTC AAC GGC GAG AAG LDKGWGRIINISSVNGEK GGC CAG TTC GGC CAG ACC AAC TAC TCC GCC GCC AAG GCC GGC ATG CAC GGC TTC G Q F G 'Q T N Y S A A K A G M H G F TCC ATG GCG CTG GCG GAA GTG GCG GCC AAG GGC GTG ACG GTG AAC ACC GTG 'S M A L A Q E V A A K G V AGC CCG GGC TAC ATC GCC ACG GAC ATG GTC AAG GCC ATC CGC CAG GAC GTG CTG SPGYIATDMVKAIRQDVL GAC AAG ATC ATC GCC ACC ATT CCC ATC CGT CGC CTG GGT ACG CCG GAG GAG ATC D K I I A T I P ! R R L G T P E E !

FIG. 3g

GCC TCC ATC TTC CCC TGG CTG GCC GGC GAA GAA TCG GGC TTC ACC ACC GGT GCC ASIF W L A G E E S G F T T G A GAC TTC AGC TGC AAC GGC GGC CTG CAC ATG GGC DFSCN GGL Η TGAG GCCCGCGGCT CCATGCCCAC CTGCGTGGGC ATGGACGGCC CGAAGGACCG AGCTCTGCGA GGGTGCGGCC TGCAAGGCTG AGGCCTGCTG CGCCGCGTGC CCGCGAGGGC ACGTGCCGAA GCACCAAAAG GCCGCGCATT GCGCGGCCTT TTCC TTTCTG GATCGGTGCG GACGGGTGCC GCGTCAGGCA GGGCAGGCCC CCGGCCTTCA CTCCACCATG CCGGACATGA AGTACTTGAT CACCCTTTGG CCGCGAAGCC CAGCATGCCG AAGCCCAGCG CCAGGAACAG CACGAAGGTG CCGAACTTGC CGGCCTTCGA CTCGCGCGCG AGCTGAAAGA TGATGAATGC CATGTAGAGC ATGAAGGCCG TGACGCCGAC GGTCAGGCCC AGCTGGGCAA TGTTTTCCTC GTTGATTTCG AACATCGTTT GTTGTCTCAG GCTGCTGCCA CGCGGCTGAC GTGCTCGCCG CGCGGCCGGG CCCCAACTGC CCGCAGCGGT TCTCGATCAG GTTCTCAAGG CATCTCGTGC CACTGGGAGG TGTCCACCAG GTCGCGGTAG GCGT GCCAGC TCGAATGCGC CAGCCACGGC ACTACCACGA TCAGGCCCAG CAGCAGCGTG GCCATGCCCA GCAGCGTCAG CGCCATGATC AGCGCCGCCC ACAGCGCCAG CGGCAGTGGG TGCTGCATCA CCACGCGCCA GCTCGTGAGC ACCGCCACCA GCACGCCCAC GTGGCGGTCC AGCAGCATCG GGATCC

FIG. 4

9/11

PCT/KR99/00031

Fig. 5

Fig. 6

11/11

5

10

15

25

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: LG CHEMICAL LTD.

LEE, Sang Yup

CHOI, Jong-il

CHOO, Seung-Ho

YOON, Hye-Sung

HAN, Kyuboem

SONG, Ji-Yong

LEE, Yong-Hyun

HUH, Tae-Lin

HONG, Sung-Kook

(ii) TITLE OF INVENTION: POLYHYDROXYALKANOATE

BIOSYNTHESIS-RELATED GENES DERIVED

FROM Alcaligenes latus

- (iii) NUMBER OF SEQUENCES: 8
- (2) INFORMATION FOR SEQ ID NO.:1:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6436 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULAR TYPE: oligonucleotide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.:1:

	GGATCCTGCT	GCGCTCGGAC	AAAAGCATGG	GCCGAGTTTA	GCGCGCGCCC	TCGGACGCCC	60
	CCGGCAGCGT	GCAGGGTTCA	CGCCATGTTC	AAAAGCGCTG	TGAGGCAGGT	ATGCTGCACT	120
	GCGTCAATCC	CGCAGTTCCG	CAGTCATCCC	AGAAATGCAG	CTGTACAACT	ACTTTCGCTC	180
	CTCGGCGTCC	TACCGCGTCC	GCATCGCACT	GGCCCTGAAG	GGTCTGGCCT	ACGAATACAA	240
5	GCCGGTGCAC	CTGCAGAAGA	AGGAGCAGTT	CGCGGAGTCG	TATGCGGCCG	TGTCGGCCTC	300
	GCGCCTGGTG	CCGCTGCTGC	GCGACGGCGA	CGCGTCGCTG	ACGCAGTCGA	TGGCCATCAT	360
	CGAGTACCTG	GACGAGACCC	ATCCGCAGCC	GCCGCTGCTG	CCCTCGGACC	CGCTGGGCCG	420
	CGCCCGCGTG	CGTGCGCTGG	CGCAGGACAT	CGCCTGCGAG	ATCCACCCGC	TCAACAACCT	480
	GCGCGTGCTG	CGCTACCTGG	CGCACGACCT	CAAGGTCGGC	GAGGACGACA	AGAACCGCTG	540
10	GTACCGCCAC	TGGGTCGAGA	CCGGCCTGGA	GGTGGTGGAG	CGCCAGCTGG	CGGATCACCC	600
	GTCCACCGGC	CGCTTCTGCC	ATGGCGACAC	GCCCGGCCTG	GCCGATTGCG	TGCTGGTGCC	660
	GCAGATCTTC	AACGCCCAGC	GTTTCAACTG	CCGGCTGGAG	CACGTGCCCA	CCGTGATGCG	720
	CGTGTACGAG	GCCTGCATGC	AGCTCGACGC	CTTCGACAAG	ACGCAGCCCT	CCGCCTGTCC	780
	CGATGCCGAG	TAAGGCTCTG	CAGGGCGTGC	TGAGGCCCGA	GTGGCCGGCA	CCGGCCGGCG	840
15	TGGGCGCATT	CATGAGCACG	CGCGAGGGCG	GCGTCAGCGC	CGCGCCCTGG	GACGCCCCA	900
	ACCTGGGCGA	CGCCGTGGGC	GACAGCCCGC	AGGCTGTGGA	CACCAACCGC	GCCCGATTCG	960
	CCGCCGCCGC	CGAGGGCGGC	ACGCCGGTGT	GGCTGCGCCA	GGTCCACGGC	ACGCGGGTGC	1020
	TGCGATTGCG	CGCCGGCGAG	GCCTTGCCGG	CGCAGCCGCC	CGAGGCCGAT	GCCGTGGTCA	1080
	CCGCCGACCC	CGGCCTGGTG	TGCGTGGTGC	AGGTGGCGGA	CTGCCTGCCC	GTGTTCTTCG	1140
20	CAGCGTCCAA	CGGCCGTGCC	GTCGGCGCTG	CGCATGCGGG	CTGGCGCGGC	CTGGCCGGTG	1200
	GCGTGCTCGA	AAACACGCTG	GCCGAGGTGT	GCGCGCTGGC	GCGCTGCGAG	CCCTCCGATG	1260
	TGCTGGCCTG	GATGGGGCCC	TGCATCGGGC	CGGAGAGTTT	CGAGGTGGGG	CGCGACGTGC	1320
	TGGAGGGTTT	CGGCGTGGAT	CCGGACGGTC	CGGCCGACCC	GGÇCTTCGCC	TGGCGTCCGC	1380
	GTGCCGACGG	CAGCGCGCGC	TGGCTGGCGG	ACCTGCCGGG	GCTGGCGCGG	CGCCGGCTCG	1440
25	AATTGGCAGG	TCTGCGTCAG	ATCAGTGGCG	GACAGTGGTG	CACGGTGCAG	GATCGTTCAC	1500
	GGTTCTTCTC	GTTCCGGCGG	GACCGGGTCA	CGGGGCGCA	GGCTGCCGCC	GTCTGGCTGC	1560
	GCGGATGAAG	CGGTGTCCTC	GGCGCGCTTG	CGCGCCCGTC	GCCGCGCCCGG	CGTCCCCAGG	1620
	AAGTACAGGA	CGATGGACAA	GGGCAGTACG	CCATACAGCA	GCAGCGTGAA	CACCGCGCCG	1680
	AGCAAGGTGC	CGTTGGGCGC	CATGGCTTCG	GCCACGGCCA	TCATCAGCAC	CACGTACAGC	1740

	CATGCCAGAG	CAACCAAGTA	CATAGCAAAA	ACCCGCAATT	ACGCAGAATG	ACGTATTTCG	1800
	TACAATGAAA	ACTGTTGTCA	TGATGCGGTA	AGACACGAAG	CCTACAACGC	GATCCAGCAA	1860
	CGGTTTTCGT	GAAAAAGTCC	TCAGGAGACG	AGCGTGACAC	TGCATCCCAT	TCCCGCACTG	1920
	CAACAGCTTG	GCGACAACGC	CACGGCGCTG	AGTGCCGCCA	TCTCGGAAGC	GCTGCGCGCG	1980
5	ATGTCGGGCC	TGAACCTGCC	GATGCAGGCC	ATGACCAAGC	TGCAGGGCGA	GTACCTCAAC	2040
	GAGGCGACGG	CGCTGTGGAA	CCAGACGCTG	GGCCGCCTGC	AGCCCGACGG	CAGCGCCCAA	2100
	CCGGCCAAGC	TGGGCGACCG	GCGCTTCTCG	GCCGAGGACT	GGGCCAAGAA	CCCCGCCGCG	2160
	GCCTACCTGG	CGCAGGTCTA	CCTGCTCAAT	GCCCGCACGC	TGATGCAGAT	GGCCGAGTCC	2220
	ATCGAGGGCG	ACGCCAAGGC	CAAGGCGCGC	GTGCGCTTCG	CCGTGCAGCA	GTGGATCGAC	2280
0	GCCGCGGCGC	CGAGCAACTT	CCTGGCGCTC	AATCCCGAGG	CGCAGCGCAA	GGCGCTGGAG	2340
	ACCAAGGGGG	AGAGCATCAG	CCAGGGCCTG	CAGCAGCTGT	GGCATGACAT	CCAGCAGGGC	2400
	CACGTGTCGC	AGACGGACGA	GAGCGTGTTC	GAGGTGGGCA	AGAACGTCGC	CACCACCGAG	2460
	GGCGCGGTCG	TGTACGAGAA	CGACCTGTTC	CAGCTCATCG	AGTACAAGCC	GCTGACGCCC	2520
	AAGGTGCACG	AGAAGCCGAT	GCTGTTCGTG	CCGCCGTGCA	TCAACAAGTA	CTACATCCTG	2580
5	GACCTGCAGC	CGGACAACAG	CCTCATCCGC	TACACCGTCG	CCCAGGGCCA	CCGGGTGTTC	2640
	GTGGTGAGCT	GGCGCAACCC	CGACGCCTCC	GTCGCCGGCA	AGACCTGGGA	CGACTACGTG	2700
	GAGCAGGGCG	TGATCCGCGC	CATCCGCGTG	ATGCAGCAGA	TCACGGGGCA	CGAGAAGGTC	2760
	AACGCGCTGG	GCTTCTGCGT	CGGCGCACC	ATCCTGAGCA	CGGCGCTGGC	GGTGCTGGCC	2820
	GCGCGCGGCG	AGCAGCCCGC	GGCGAGCCTG	ACGCTGCTGA	CCACGCTGCT	GGACTTCAGC	2880
20	AACACCGGCG	TGCTGGACCT	GTTCATCGAC	GAGGCCGGCG	TGCGCCTGCG	CGAGATGACC	2940
	ATCGGCGAGA	AGGCGCCCAA	CGGCCCGGGC	CTGCTCAACG	GCAAGGAGCT	GGCCACCACC	3000
	TTCAGCTTCC	TGCGCCCGAA	CGACCTGGTC	TGGAACTACG	TGGTGGCAA	CTACCTCAAG	3060
	GGCGAGGCGC	CGCCGCCCTT	CGACCTGCTG	TACTGGAACT	CCGACAGCAC	CAACATGGCC	3120
	GGGCCCATGT	TCTGCTGGTA	CCTGCGCAAC	ACCTACCTGG	AGAACAAGTT	GCGCGTTCCC	3180
25	GGTGCCCTGA	CCATCTGCGG	CGAGAAGGTG	GACCTCTCGC	GCATCGAGGC	GCCGGTGTAC	3240
	TTCTACGGTT	CGCGCGAGGA	CCACATCGTG	CCCTGGGAAT	CGGCCTACGC	CGGCACGCAG	3300
	ATGCTGAGCG	GCCCCAAGCG	CTATGTCCTG	GGTGCGTCTG	GCCACATCGC	CGGCGTGATC	3360
	AACCCCCCGC	AGAAGAAGAA	GCGCAGCTAC	TGGACCAACG	AGCAGCTCGA	CGGCGACTTC	3420
	AACCAGTGGC	TGGAAGGCTC	CACCGAGCAT	CCTGGCAGCT	CCTCCACCCA	CTCGACCGAC	2/190

	TGGCTCAAGC	AGCACGCGGG	CAAGGAAATC	GCCGCACCCA	AGACTCCCGG	CAACAAGACC	3540
	CACAAGCCCA	TCGAGCCCGC	CCCCGGGCGT	TACGTGAAGC	AGAAGGCCTG	AGCCGCGCC	3600
	CCTGAGCCTT	CTTTAACCCG	ACCTTGACAA	ACGAGGAGAT	AAGCATGACC	GACATCGTCA	3660
	TCGTCGCCGC	AGCCCGCACC	GCCGTGGGCA	AGTTCGGCGG	CACGCTGGCC	AAGACCCCCG	3720
5	CTCCGGAGCT	GGGCGCCGTG	GTCATCAAGG	CCCTGCTGGA	GAAGACGGC	GTCAAGCCCG	3780
	ACCAGATCGG	TGAAGTCATC	ATGGGCCAGG	TGCTGGCCGC	CGGCGCGGGC	CAGAACCCCG	3840
	CGCGCCAGGC	GATGATGAAG	GCGGGCATCG	CCAAGGAAAC	GCCGGCGCTG	ACCATCAACG -	3900
	CCGTGTGCGG	CTCCGGCCTC	AAGGCCGTGA	TGCTGGCCGC	CCAGGCCATC	GCCTGGGGCG	3960
	ACAGCGACAT	CGTCATCGCC	GGCGGCCAGG	AGAACATGAG	CGCCAGCCCG	CACGTGCTGA	4020
10	TGGGCAGCCG	CGACGCCAG	CGCATGGGCG	ACTGGAAGAT	GGTCGACACC	ATGATCAACG	4080
	ACGGCCTGTG	GGACGTGTAC	AACAAGTACC	ACATGGGCAT	CACGGCCGAG	AACGTCGCCA	4140
	AGGAACACGA	CATCAGCCGC	GACCAGCAGG	ACGCCCTGGC	CCTGGCCAGC	CAGCAGAAGG	4200
	CCACCGCCGC	GCAGGAAGCC	GGCCGCTTCA	AGGACGAGAT	CGTTCCGGTC	TCGATCCCGC	4260
	AGCGCAAGGG	CGACCCGGTG	CTGTTCGACA	CCGACGAGTT	CATCAACAAG	AAGACCACCG	4320
15	CCGAAGCGCT	GGCGGGCCTG	CGCCCGGCCT	TCGACAAGGC	CGGCAGCGTG	ACCGCGGGCA	4380
	ACGCCTCGGG	CATCAACGAC	GGCGCCGCTG	CGGTGATGGT	GATGTCCGCC	GCCAAGGCGA	4440
	AGGAGCTGGG	CCTGACGCCC	ATGGCGCGCA	TCAAGAGCTT	CGGCACCAGC	GGCCTGGATC	4500
	CGGCCACCAT	GGGCATGGGC	CCGGTGCCGG	CCTCGCGCAA	GGCGCTGGAG	CGCGCCGGCT	4560
	GGCAGGTCGG	TGACGTGGAC	CTGTTCGAGC	TCAACGAAGC	CTTCGCCGCC	CAGGCCTGCG	4620
20	CGGTGAACAA	GGAGCTGGGC	GTGGATCCGG	CCAAGGTCAA	CGTCAACGGC	GGTGCCATCG	4680
	CCATCGGCCA	CCCCATCGGC	GCCTCCGGCT	GCCGCGTGCT	GGTGACGCTG	CTGCACGAGA	4740
	TGCAGCGCCG	GGACGCCAAG	AAGGCCTGG	CCGCGCTGTG	CATCGGCGGC	GGCATGGGCG	4800
	TGTCGCTGAC	CGTCGAGCGC	TGATCAGAAG	AACCGGGCGG	CCCCGCGCCG	CCCGCCCGGC	4860
	GTTCCACGCG	GGTGCGCCGG	GATACCAGAC	GAACCAAACC	ACCAAGGGCT	TCGAGACGGC	4920
25	CCGAAGAAGG	AGAGACAGAT	GGCACAGAAA	CTGGCTTACG	TGACCGGCGG	CATGGGCGGC	4980
	ATCGGCACCT	CGATGTGCCA	GCGCCTGCAC	AAGGACGGCT	TCAAGGTGAT	CGCCGGCTGC	5040
	GGTCCGAGCC	GCGACCACCA	GAAGTGGATC	GATGAACAGG	CCGCGCTGGG	CTATACCTTC	5100
	TACGCCTCCG	TGGGCAACGT	GGCCGACTGG	GACTCCACCG	TGGCCGCCTT	CGAGAAGGTC	5160
	AAGGCCGAGC	ACGGCACCGT	GGACGTGCTG	GTGAACAACG	CCGGCATCAC	GCGTGACGGG	5220

	CAGTTCCGCA	AGATGAGCAA	GGCCGATTGG	CAGGCCGTGA	TGTCGACCAA	CCTCGACAGC	5280
	ATGTTCAACG	TCACCAAGCA	GGTGATCGAG	GGCATGCTGG	ACAAGGGCTG	GGGCCGGATC	5340
	ATCAACATCT	CCTCGGTCAA	CGGCGAGAAG	GGCCAGTTCG	GCCAGACCAA	CTACTCCGCC	5400
	GCCAAGGCCG	GCATGCACGG	CTTCTCGATG	GCGCTGGCGC	AGGAAGTGGC	GGCCAAGGGC	5460
5	GTGACGGTGA	ACACCGTGAG	CCCGGGCTAC	ATCGCCACGG	ACATGGTCAA	GGCCATCCGC	5520
	CAGGACGTGC	TGGACAAGAT	CATCGCCACC	ATTCCCATCC	GTCGCCTGGG	TACGCCGGAG	5580
	GAGATCGCCT	CCATCGTCGC	CTGGCTGGCC	GGCGAGGAGT	CGGGCTTCAC	CACCGGTGCC	5640
	GACTTCAGCT	GCAACGCCG	CCTGCACATG	GGCTGAGGCC	CGCGGCTCCA	TGCCCACCTG	5700
	CGTGGGCATG	GACGGCCGA	AGGACCCGAG	CTCTGCGAGG	GTGCGGCCTG	CAAGGCTGAG	5760
10	GCCTGCTGCG	CCGCGTGCCC	GCGAGGGCAC	GTGCCGAAGC	ACCAAAAGGC	CGCGCATTGC	5820
	GCGGCCTTTT	CCTTTCTGGA	TCGGTGCGGA	CGGGTGCCGC	GTCAGGCAGG	GCAGGGCCCC	5880
	CGGGCCTTCA	CTCCACCATG	CCCGACATGA	AGTACTTGAT	CAGCCCCTTG	GCCGCGAAGC	5940
	CCAGCATGCC	GAAGCCCAGC	GCCAGGAACA	GCACGAAGGT	GCCGAACTTG	CCGGCCTTCG	6000
	ACTCGCGCGC	GAGCTGAAAG	ATGATGAATG	CCATGTAGAG	CATGAAGGCC	GTGACGCCGA	6060
15	CGGTCAGGCC	CAGCTGGGCA	ATGTTTTCCT	CGTTGATTTC	GAACATCGTT	TGTTGTCTCA	6120
	GGCTGCTGCA	CGCGGCTGAC	GTGCTCGCCG	CGCGGCCGGG	CCCCAACTGC	CCGCAGCGGT	6180
	TCTCGATCAG	GTTCTCAAGG	CATCTCGTGC	CACTGGGAGG	TGTCCACCAG	GTCGCGGTAG	6240
	GCGTGCCAGC	TCGAATGCGC	CAGCCACGGC	ACTACCACGA	TCAGGCCCAG	CAGCAGCGTG	6300
	GCCATGCCCA	GCAGCGTCAG	CGCCATGATC	AGCGCCGCCC	ACAGCGCCAG	CGGCAGTGGG	6360
20	TGCTGCATCA	CCACGCGCCA	GCTCGTGAGC	ACCGCCACCA	GCACGCCCAC	GTGGCGGTCC	6420
	AGCAGCATCG	GGATCC					6436

(2) INFORMATION FOR SEQ ID NO.: 2:

(i) SEQUENCE CHARACTERISTICS:

25

(A) LENGTH: 1161 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: oligonucleotide

(xi) SEQUENCE DESCRIPTION : SEQ ID NO. : 2:

	ATGTCGGGCC	TGAACCTGCC	GATGCAGGCC	ATGACCAAGC	TGCAGGGCGA	GTACCTCAAC	60
	GAGGCGACGG	CGCTGTGGAA	CCAGACGCTG	GGCCGCCTGC	AGCCCGACGG	CAGCGCCCAA	120
5	CCGGCCAAGC	TGGGCGACCG	GCGCTTCTCG	GCCGAGGACT	GGGCCAAGAA	CCCCGCCGCG	180
	GCCTACCTGG	CGCAGGTCTA	CCTGCTCAAT	GCCCGCACGC	TGATGCAGAT	GGCCGAGTCC	240
	ATCGAGGGCG	ACGCCAAGGC	CAAGGCGCGC	GTGCGCTTCG	CCGTGCAGCA	GTGGATCGAC	300
	GCCGCGGCGC	CGAGCAACTT	CCTGGCGCTC	AATCCCGAGG	CGCAGCGCAA	GGCGCTGGAG	360
	ACCAAGGGGG	AGAGCATCAG	CCAGGGCCTG	CAGCAGCTGT	GGCATGACAT	CCAGCAGGGC	420
10	CACGTGTCGC	AGACGGACGA	GAGCGTGTTC	GAGGTGGGCA	AGAACGTCGC	CACCACCGAG	480
	GGCGCGGTCG	TGTACGAGAA	CGACCTGTTC	CAGCTCATCG	AGTACAAGCC	GCTGACGCCC	540
	AAGGTGCACG	AGAAGCCGAT	GCTGTTCGTG	CCGCCGTGCA	TCAACAAGTA	CTACATCCTG	600
	GACCTGCAGC	CGGACAACAG	CCTCATCCGC	TACACCGTCG	CCCAGGGCCA	CCGGGTGTTC	660
	GTGGTGAGCT	GGCGCAACCC	CGACGCCTCC	GTCGCCGGCA	AGACCTGGGA	CGACTACGTG	720
15	GAGCAGGGCG	TGATCCGCGC	CATCCGCGTG	ATGCAGCAGA	TCACGGGGCA	CGAGAAGGTC	780
	AACGCGCTGG	GCTTCTGCGT	CGGCGCACC	ATCCTGAGCA	CGGCGCTGGC	GGTGCTGGCC	840
	GCGCGCGCG	AGCAGCCCGC	GGCGAGCCTG	ACGCTGCTGA	CCACGCTGCT	GGACTTCAGC	900
	AACACCGGCG	TGCTGGACCT	GTTCATCGAC	GAGGCCGGCG	TGCGCCTGCG	CGAGATGACC	960
	ATCGGCGAGA	AGGCGCCCAA	CGGCCCGGGC	CTGCTCAACG	GCAAGGAGCT	GGCCACCACC	1020
20	TTCAGCTTCC	TGCGCCCGAA	CGACCTGGTC	TGGAACTACG	TGGTGGCAA	CTACCTCAAG	1080
	GGCGAGGCGC	CGCCGCCCTT	CGACCTGCTG	TACTGGAACT	CCGACAGCAC	CAACATGGCC	1140
	GGGCCCATGT	TCTGCTGGTA	CCTGCGCAAC	ACCTACCTGG	AGAACAAGTT	GCGCGTTCCC	1200
	GGTGCCCTGA	CCATCTGCGG	CGAGAAGGTG	GACCTCTCGC	GCATCGAGGC	GCCGGTGTAC	1260
	TTCTACGGTT	CGCGCGAGGA	CCACATCGTG	CCCTGGGAAT	CGGCCTACGC	CGGCACGCAG	1320
25	ATGCTGAGCG	GCCCCAAGCG	CTATGTCCTG	GGTGCGTCTG	GCCACATCGC	CGGCGTGATC	1380
	AACCCCCCGC	AGAAGAAGAA	GCGCAGCTAC	TGGACCAACG	AGCAGCTCGA	CGGCGACTTC	1440
	AACCAGTGGC	TGGAAGGCTC	CACCGAGCAT	CCTGGCAGCT	GGTGGACCGA	CTGGAGCGAC	1500
	TGGCTCAAGC	AGCACGCGGG	CAAGGAAATC	GCCGCACCCA	AGACTCCCGG	CAACAAGACC	1560
	CACAAGCCCA	TCGAGCCCGC	СССССССССТ	TACGTGAAGC	AGAAGGCCTG	Δ	1611

(2) INFORMATION FOR SEQ ID NO.: 3:

5

BNSDOCID: <WO_

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1179 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULAR TYPE: oligonucleotide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO.:3:

10	ATGACCGACA	TCGTCATCGT	CGCCGCAGCC	CGCACCGCCG	TGGGCAAGTT	CGGCGCACG	60
	CTGGCCAAGA	CCCCCGCTCC	GGAGCTGGGC	GCCGTGGTCA	TCAAGGCCCT	GCTGGAGAAG	120
	ACGGGCGTCA	AGCCCGACCA	GATCGGTGAA	GTCATCATGG	GCCAGGTGCT	GGCCGCCGGC	180
	GCGGGCCAGA	ACCCCGCGCG	CCAGGCGATG	ATGAAGGCGG	GCATCGCCAA	GGAAACGCCG	240
	GCGCTGACCA	TCAACGCCGT	GTGCGGCTCC	GGCCTCAAGG	CCGTGATGCT	GGCCGCCCAG	300
15	GCCATCGCCT	GGGGCGACAG	CGACATCGTC	ATCGCCGGCG	GCCAGGAGAA	CATGAGCGCC	360
	AGCCCGCACG	TGCTGATGGG	CAGCCGCGAC	GGCCAGCGCA	TGGGCGACTG	GAAGATGGTC	420
	GACACCATGA	TCAACGACGG	CCTGTGGGAC	GTGTACAACA	AGTACCACAT	GGGCATCACG	480
	GCCGAGAACG	TCGCCAAGGA	ACACGACATC	AGCCGCGACC	AGCAGGACGC	CCTGGCCCTG	540
	GCCAGCCAGC	AGAAGGCCAC	CGCCGCGCAG	GAAGCCGGCC	GCTTCAAGGA	CGAGATCGTT	600
20	CCGGTCTCGA	TCCCGCAGCG	CAAGGCCGAC	CCGGTGCTGT	TCGACACCGA	CGAGTTCATC	660
	AACAAGAAGA	CCACCGCCGA	AGCGCTGGCG	GGCCTGCGCC	CGGCCTTCGA	CAAGGCCGGC	720
	AGCGTGACCG	CGGGCAACGC	CTCGGGCATC	AACGACGCCG	CCGCTGCGGT	GATGGTGATG	780
	TCCGCCGCCA	AGGCGAAGGA	GCTGGGCCTG	ACGCCCATGG	CGCGCATCAA	GAGCTTCGGC	840
	ACCAGCGGCC	TGGATCCGGC	CACCATGGGC	ATGGGCCCGG	TGCCGGCCTC	GCGCAAGGCG	900
25	CTGGAGCGCG	CCGGCTGGCA	GGTCGGTGAC	GTGGACCTGT	TCGAGCTCAA	CGAAGCCTTC	960
	GCCGCCCAGG	CCTGCGCGGT	GAACAAGGAG	CTGGGCGTGG	ATCCGGCCAA	ĞĞTCÂACĞTĞ	1020
	AACGGCGGTG	CCATCGCCAT	CGGCCACCCC	ATCGGCGCCT	CCGGCTGCCG	CGTGCTGGTG	1080
	ACGCTGCTGC	ACGAGATGCA	GCGCCGGGAC	GCCAAGAAGG	GCCTGGCCGC	GCTGTGCATC	1140
	GGCGGCGCA	TGGGCGTGTC	GCTGACCGTC	GAGCGCTGA			1179

5

(2) INFORMATION FOR SEQ ID NO.	(2)	INFORMATION	FOR	SEQ	ID	NO.	:	4:
--------------------------------	-----	-------------	-----	-----	----	-----	---	----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULAR TYPE: oligonucleotide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 4:

10	ATGGCACAGA	AACTGGCTTA	CGTGACCGGC	GGCATGGGCG	GCATCGCCAC	CTCGATGTGC	60
	CAGCGCCTGC	ACAAGGACGG	CTTCAAGGTG	ATCGCCGGCT	GCGGTCCGAG	CCGCGACCAC	120
	CAGAAGTGGA	TCGATGAACA	GGCCGCGCTG	GGCTATACCT	TCTACGCCTC	CGTGGGCAAC	180
	GTGGCCGACT	GGGACTCCAC	CGTGGCCGCC	TTCGAGAAGG	TCAAGGCCGA	GCACGGCACC	240
	GTGGACGTGC	TGGTGAACAA	CGCCGGCATC	ACGCGTGACG	GGCAGTTCCG	CAAGATGAGC	300
15	AAGGCCGATT	GGCAGGCCGT	GATGTCGACC	AACCTCGACA	GCATGTTCAA	CGTCACCAAG	360
	CAGGTGATCG	AGGGCATGCT	GGACAAGGGC	TGGGGCCGGA	TCATCAACAT	CTCCTCGGTC	420
	AACGGCGAGA	AGGGCCAGTT	CGGCCAGACC	AACTACTCCG	CCGCCAAGGC	CGGCATGCAC	480
	GGCTTCTCGA	TGGCGCTGGC	GCAGGAAGTG	GCGGCCAAGG	GCGTGACGGT	GAACACCGTG	540
	AGCCCGGGCT	ACATCGCCAC	GGACATGGTC	AAGGCCATCC	GCCAGGACGT	GCTGGACAAG	600
20	ATCATCGCCA	CCATTCCCAT	CCGTCGCCTG	GGTACGCCGG	AGGAGATCGC	CTCCATCGTC	660
	GCCTGGCTGG	CCGGCGAGGA	GTCGGGCTTC	ACCACCGGTG	CCGACTTCAG	CTGCAACGGC	720
	GGCCTGCACA	TGGGCTGA					738

(2) INFORMATION FOR SEQ ID NO.:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

8

25

- (ii) MOLECULAR TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 5:

5	Met	Ser	Gly	Leu	Asn	Leu	Pro	Met	Gln	Ala	Met	Thr	Lys	Leu	Gln	Gly
					5					10					15	
	Glu	Tyr	Leu	Asn	Glu	Ala	Thr	Ala	Leu	Trp	Asn	Gln	Thr	Leu	Gly	Arg
				20					25					30		
	Leu	Gln	Pro	Asp	Gly	Ser	Ala	Gln	Pro	Ala	Lys	Leu	Gly	Asp	Arg	Arg
10			35					40					45			
	Phe	Ser	Ala	Glu	Asp	Trp	Ala	Lys	Asn	Pro	Ala	Ala	Ala	Tyr	Leu	Ala
		50					55					60				
	Gln	Val	Tyr	Leu	Leu	Asn	Ala	Arg	Thr	Leu	Met	Gln	Met	Ala	Glu	Ser
	65					70					75					80
15	He	Glu	Gly	Asp	Ala	Lys	Ala	Lys	Ala	Arg	Val	Arg	Phe	Ala	Val	Gln
					85					90					95	
	Gln	Trp	He	Asp	Ala	Ala	Ala	Pro	Ser	Asn	Phe	Leu	Ala	Leu	Asn	Pro
				100					105					110		
	Glu	Ala	Gln	Arg	Lys	Ala	Leu	Glu	Thr	Lys	Gly	Glu	Ser	Ile	Ser	Gln
20			115					120					125			
	Gly	Leu	Gln	Gln	Leu	Trp	His	Asp	He	Gln	Gln	Gly	His	Val	Ser	Gln
		130					135					140				
	Thr	Asp	Glu	Ser	Val	Phe	Glu	Val	Gly	Lys	Asn	Val	Ala	Thr	Thr	Glu
	145					150					155					160
25	Gly	Ala	Val	Val	Tyr	Glu	Asn	Asp	Leu	Phe	Gln	Leu	lle	Glu	Tyr	Lys
					165			•		170					175	
	Pro	Leu	Thr	Pro	Lys	Val	His	Glu	Lys	Pro	Met	Leu	Phe	Val	Pro	Pro
				180					185					190		
	Cys	He	Asn	Lys	Tyr	Tyr	He	Leu	Asp	Leu	Gln	Pro	Asp	Asn	Ser	Leu
30			195					200					205			
	He	Arg	Tyr	Thr	Val	Ala		Gly	His	Arg	Val	Phe	Val	Val	Ser	Trp
		210					215					220				

BNSDOCID: <WO_

	Arg	Asn	Pro	Asp	Ala	Ser	Val	Ala	Gly	Lys		Trp	Asp	Asp	Tyr	Val
	225					230					235					240
	Glu	Gln	Gly	Val	He	Arg	Ala	Ile	Arg	Val	Met	Gln	Gln	Ile	Thr	Gly
					245					250					255	
5	His	Glu	Lys	Val	Asn	Ala	Leu	Gly	Phe	Cys	Val	Gly	Gly	Thr	lle	Leu
				260					265					270		
	Ser	Thi	Ala	Leu	Ala	Val	Leu	Ala	Ala	Arg	Gly	Glu	Gln	Pro	Ala	Ala
			275					280					285			
	Ser	Leu	Thr	Leu	Leu	Thr	Thr	Leu	Leu	Asp	Phe	Ser	Asn	Thr	Gly	Val
10		290					295					300				
	Leu	Asp	Leu	Phe	He	Asp	Glu	Ala	Gly	Val	Arg	Leu	Arg	Glu	Met	Thr
	305					310					315					320
	He	Gly	Glu	Lys		Pro	Asn	Gly	Pro	Gly	Leu	Leu	Asn	Gly	Lys	Glu
					325					330		•			335	
15	Leu	Ala	Thr	Thr	Phe	Ser	Phe	Leu	Arg	Pro	Asn	Asp	Leu	Val	Trp	Asn
				340					345					350		
	Tyr	Val	Val	Gly	Asn	Tyr	Leu	Lys	Gly	Glu	Ala.	Pro	Pro	Pro	Phe	Asp
		_	355					360					365			
	Leu	Leu	Tyr	Trp	Asn	Ser	Asp	Ser	Thr	Asn	Met	Ala	Gly	Pro	Met	Phe
20		370					375					380				
	Cys	Trp	Tyr	Leu	Arg	Asn	Thr	Tyr	Leu	Glu	Asn	Lys	Leu	Arg	Val	Pro
	385					390					395					400
	Gly	Ala	Leu	Thr	He	Cys	Gly	Glu	Lys	Val	Asp	Leu	Ser	Arg	Ile	Glu
					405					410					415	•
25	Ala	Pro	Val	Tyr	Phe	Tyr	Gly	Ser	Arg	Glu	Asp	His	He	Val	Pro	Trp
				420					425					430		
	Glu	Ser	Ala	Tyr	Ala	Gly	Thr	Gln	Met	Leu	Ser	Gly	Pro	Lys	Arg	Tyr
		,	435		-			440					445		:	
	Val	Leu	Gly	Ala	Ser	Gly	His	He	Ala	Gly	Val	He	Asn	Pro	Pro	Gln
30		450					455					460				
	Lys	Lys	Lys	Arg	Ser	Tyr	Trp	Thr	Asn	Glu	Gln	Leu	Asp	Gly	Asp	Phe
	465					470					475					480

Asn Gln Trp Leu Glu Gly Ser Thr Glu His Pro Gly Ser Trp Trp 485 490 495 Asp Trp Ser Trp Leu Lys Gln His Ala Gly Lys Glu Ile Ala Ala Asp 500 505 510 Pro Lys Thr Pro Gly Asn Lys Thr His Lys Pro Ile Glu Pro Ala Pro 515 520 525 Gly Arg Tyr Val Lys Gln Lys Ala 530 535 536

10

15

BNSDOCID: <WO

- (2) INFORMATION FOR SEQ ID NO.: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 392 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULAR TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 6:
- Met Thr Asp Ile Val Ile Val Ala Ala Ala Arg Thr Ala Val Gly Lys 20 5 10 15 Phe Gly Gly Thr Leu Ala Lys Thr Pro Ala Pro Glu Leu Gly 20 25 30 Val Ile Lys Ala Leu Leu Glu Lys Thr Gly Val Lys Pro Asp Gln Ile 25 35 40 45 Glu Val Ile Met Gly Gln Val Leu Ala Ala Gly Ala Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Met Met Lys Ala Gly Ile Ala Lys Glu Thr Pro 65 70 75 80 Ala Leu Thr lle Asn Ala Val Cys Gly Ser Gly Leu Lys Ala Val Met 85 90 95

	Leu	Ala	Ala	Gln	Ala	He	Ala	Trp	Gly	Asp	Ser	Asp	Ile	Val	lle	Ala
				100					105					110		
	Gly	Gly	Gln	Glu	Asn	Met	Ser	Ala	Ser	Pro	His	Val	Leu	Met	Gly	Ser
			115					120					125			
5	Arg	Asp	Gly	Gln	Arg	Met	Gly	Asp	Trp	Lys	Met	Val	Asp	Thr	Met	Ile
		130					135					140				
	Asn	Asp	Gly	Leu	Trp	Asp	Val	Tyr	Asn	Lys	Туг	His	Met	Gly	Ile	Thr
	145					150					155					160
	Ala	Glu	Asn	Val	Ala	Lys	Glu	His	Asp	Ile	Ser	Arg	Asp	Gln	Gln	Asp
10					165					170					175	
	Ala	Leu	Ala	Leu	Ala	Ser	Gln	Gln	Lys	Ala	Thr	Ala	Ala	Gln	Glu	Ala
				180					185					190		
	Gly	Arg	Phe	Lys	Asp	Glu	lle	Val	Pro	Val	Ser	Ile	Pro	Gln	Arg	Lys
			195					200					205			
15	Gly	Asp	Pro	Val	Leu	Phe	Asp	Thr	Asp	Glu	Phe	He	Asn	Lys	Lys	Thr
		210					215					220				
	Thr	Ala	Glu	Ala	Leu	Ala	Gly	Leu	Arg	Pro	Ala	Phe	Asp	Lys	Ala	Gly
	225	••				230					235					240
20	Ser	Val	Thr	Ala	Gly	Asn	Ala	Ser	Gly		Asn	Asp	Gly	Ala	Ala	Ala
20	** *	.,	••		245					250					255	
	Val	Met	Val	Met	Ser	Ala	Ala	Lys		Lys	Glu	Leu	Gly	Leu	Thr	Pro
	W-4	A 1 .		260		_	ъ.		265					270		
	Met	Ala	Arg	He	Lys	Ser	Phe	Gly	Thr	Ser	Gly	Leu	Asp	Pro	Ala	Thr
25	Mot	Clu	275 Wat	C1	D	37 - 1	D	280	0	ā			285			
25	меι		met	ыу	Pro	val		Ala	Ser	Arg	Lys		Leu	Glu	Arg	Ala
	Gly	290 Tun	C1-	Va 1	C1	A	295		,	ъ.	٥.	300				
	305						vai	Asp	Leu	Phe		Leu	Asn	Glu	Ala	
							N: 1	-, A		٥.	315	٥.		-		320
30	nia	SIA	OID	ята		Ala	val	Asn	Γλ.2	Glu	Leu	Gly	Val	Asp		Ala
JU	Lve	Val	Ass	Vo.1	325	C1	C1	A 1	7.1	330	,,	0.	***		335	
	LyS	141	ASII		ASN	GIY	G13.	Ala		Ala	He	Gly	His		lle	Gly
				340					345					350		

WO 99/36547

PCT/KR99/00031

Ala Ser Gly Cys Arg Val Leu Val Thr Leu Leu His Glu Met Gln Arg
355

Arg Asp Ala Lys Lys Gly Leu Ala Ala Leu Cys Ile Gly Gly Gly Met
370

Gly Val Ser Leu Thr Val Glu Arg
385

390

392

(2) INFORMATION FOR SEQ ID NO.: 7

- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 245 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 15 (ii) MOLECULAR TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 7:

Met Ala Gln Lys Leu Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly 5 10 15 20 Cys Gln Arg Leu His Lys Asp Gly Phe Lys Val Ile Ala 20 25 30 Gly Cys Gly Pro Ser Arg Asp His Gln Lys Trp Ile Asp Glu Gln Ala 35 40 45 Ala Leu Gly Tyr Thr Phe Tyr Ala Ser Val Gly Asn Val Ala Asp Trp 25 50 55 60 Asp Ser Thr Val Ala Phe Glu Lys Val Lys Ala Glu His Gly Ala Thr 65 70 75 80 Val Asp Val Leu Val Asn Asn Ala Gly He Thr Arg Asp Gly Gln Phe 85 90 95 30 Arg Lys Met Ser Lys Ala Asp Trp Gln Ala Val Met Ser Thr Asn 100 105 110

Met Phe Asn Val Thr Lys Gln Val Ile Glu Gly Met Leu Asp 115 120 125 Trp Gly Arg Ile Ile Asn Ser Asn Gly Glu Lys Ile Ser Val 130 135 140 Gly Gln Phe Gln Thr Gly Asn Tyr Ser Ala Ala Lys Ala Gly His 145 150 155 160 Gly Phe Ser Met Ala Leu Ala Gln Glu Val Ala Ala Lys Gly Val Thr 165 170 175 Thr Ser Asn Val Pro Gly Tyr He Ala Thr Asp Met Val Lys Ala 10 180 185 190 Gln lle Arg Asp Val Leu Asp Lys He Ile Ala Thr Ile Pro Ile Arg 195 200 205 Leu Gly Thr Pro Glu Glu Ile Ala Ser lle Val Ala Trp Leu Ala 210 215 220 Gly Glu Glu Ser Gly Phe 15 Thr Thr Gly Ala Asp Phe Ser Cys Asn Gly 225 230 235 240 Gly Leu His Met Gly 245

20

(2) INFORMATION FOR SEQ ID NO.: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 315 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS : single
 - (D) TOPOLOGY: linear
- (ii) MOLECULAR TYPE: promoter gene
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 8:

30

25

	ACACCGCGCC	GAGCAAGGTG	CCGTTGGGCG	CCATGGCTTC	GGCCACGGCC	ATCATCAGCA	60
	CCACGTAACA	GCCATGCCAG	AGCAACCAAG	TACATAGCAA	AAACCCGCAA	TTACGCAGAA	120
	TGACGTATTT	CGTACAATGA	AAACTGTTGT	CATGATGCGG	TAAGACACGA	AGCCTACAAC	180
	GCGATCCAGC	AACGGTTTTC	GTGAAAAAGT	CCTCAGGAGA	CGAGCGTGAC	ACTGCAAATC	240
5	CCATTCCCGC	ACTGCAACAG	CTTGGCGACA	ACGCCACGGC	GCTGAGTGCC	GCCATCTGGG	300
	AACGTGCGCG	CGATG			•		315

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 99/00031

A. CLASSIFICATION OF SUBJECT MATTER

IPC⁶: C 12 N 15/52,15/53,15/54,1/21 // (C 12 N 1/21; C 12 R 1:05,1:09)

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC⁶: C 12 N 15/52,15/54,1/21

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI. PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 92/19 747 A1 (IMPERIAL CHEMICAL INDUSTRIES PLC) 12 November 1992 (12.11.92), claims 1,3,5.	1
X	WO 95/05 472 A2 (MICHIGAN STATE UNIVERSITY) 23 February 1995 (23.02.95), claims 1,13,14.	1
X	Patent Abstracts of Japan, Vol.97, No.9, 1997, JP 9-131186 A (AGENCY OF IND. SCIENCE et al.) 30 September 1997 (30.09.97).	1
X	WO 93/02 194 A1 (IMPERIAL CHEMICAL INDUSTRIES PLC) 04 February 1993 (04.02.93), abstract.	1

ш	rurther documents	are	listed	in	the	continuati	on c	of Box	C.
---	-------------------	-----	--------	----	-----	------------	------	--------	----

See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- .L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

04 May 1999 (04.05.99)

Name and mailing adress of the ISA/AT **Austrian Patent Office**

Kohlmarkt 8-10; A-1014 Vienna

Facsimile No. 1/53424/200

31 May 1999 (31.05.99)

Wolf

Telephone No. 1/53424/436

Authorized officer

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/KR 99/00031

angeführtes Patent de in sear Document de	rchenbericht Patentdokument ocument cited ch report e brevet cité port de recherche	Datum der Veröffentlichung Publication date Date de publication	Mitgliedler) der Patentfamilie Patent family sember(s) Membre(s) de la famille de brevets	Datum der Veröffentlichung Publication date Date de publication
WD A1	9219747	12-11-1992	AU A1 15797/92 AU B2 655816 CA AA 2109221 EP A1 589898 GB A0 9108756 JP T2 6510422 US A 5502273	21-12-1992 12-01-1995 25-10-1992 06-04-1994 12-06-1994 24-11-1994 26-03-1996
WO A2	9505472	23-02-1995	A1 76 754 75 72 75 75 75 75 75 75 75 75 75 75 75 75 75	14-07-1999 14-07-1997 17-1997 11-03-1999 11-03-1999 11-03-1999 19-01-1999 19-01-1999 19-01-1999 10-11-02-1999 11-02-1999 11-09-11-1999 11-09-11-1999 11-09-11-1999 11-09-11-1999 11-09-11-1999 11-09-11-1999 11-199 11-1999 11-1999 11-1999 11-1999 11-1999 11-1999
JO A1	9302194	04-02-1993	AU A1 23127/92 AU B2 671595 CA AA 2113432 EP A1 594678 GB AO 9115245 JP T2 7501926	23-02-1993 05-09-1993 04-02-1993 04-05-1993 28-08-1991 02-03-1995