

# WP WORKSHOP1

Politecnico di Torino



















### **Outline**

- 1) Network Models
- 2) case studies
- 3) input needed
- 4) Open Source Modelling
- 5) Out-of Domain

#### PoliTO:

- T.4.2.4 Tool for multi-component gas networks with quality tracking both for low pressure and high pressure networks.
- T.4.3.2 Parametric analysis, uncertainty quantification and out-ofdomain generalization of results



### **Gas Network Models**

# Overview on Fluid-Dynamic Solver for transient gas network modelling

Contribution Task 4.2.1
Definition of network models and case studies

### **Gas Network Model** – transient









# **Gas Network Model** – quality tracking



#### Quality Tracking section:

→ Transport of the concentration vector along the pipelines

Advective transport equation

$$\frac{\partial \mathbf{Y}}{\partial t} + v \frac{\partial \mathbf{Y}}{\partial x} = 0$$

#### with:

- v: gas velocity;

- Y: gas composition vector;

Lagrangian coordinates-based BATCH TRACKING METHOD





→ Mixing at network nodes

Coninutiy equation

for each chemical species

$$y_{c.s._i} = \frac{\left(\sum_{j}^{inward} G_j y_{c.s.,j} - G_{ext_i} y_{c.s.,ext_i}\right)}{\left(\sum_{j}^{outward} G_j - G_{ext_i} + \frac{V_i}{c_{i,j}^2 \Delta t} (p_i^{n+1} - p_i^n)\right)}$$

#### Solving strategy:





# **Input Data Structure**

### **Gas Network Simulation Models** – basic structure



Input

#### **Parameters**

#### - Network Topology

- Junction(nodes)-Pipes connections
- Definition Pipe/Non-Pipe elements
- **Definition of Injection Points**
- Definition of Outlet (consumption) Points
- Definition of Pressure-Controlled nodes

#### - Pipeline Features

- · Inner Diameters
- Length
- Inner Roughness / Material + year of installation /estimation

#### - Non-Pipeline Features

Depending on their control mode/governing equations



#### **Inputs**

#### Gas Profiles\* -

- Gas Injection profiles
- Gas Consumption profiles

#### Pressure Profiles\* -

• At pressure-controlled nodes

#### Composition Profiles\* -

• At injection nodes

*In the framework of* multi-gas system the consumptions to be given in terms of chemical energy supplied to the consumption point.

$$oldsymbol{E_{out}}{oldsymbol{Q_{out}}}$$
 ,  $oldsymbol{HHV_{out}}$ 

time series of the quantity

### Gas Network Simulation Models – basic structure Shimmer





### **Input Data Structure – EDGE TABLE**



#### Non pipeline elements

| nodes |
|-------|
|-------|

| branch | IN | OUT | L (km) | D (m)  | epsi[mm] | СОМР | REG | VAL | RES | n°Grid points |
|--------|----|-----|--------|--------|----------|------|-----|-----|-----|---------------|
| 1      | 1  | 2   | 530.0  | 0.7937 | 0.014    |      |     |     |     | 53            |
| 2      | 2  | 3   | 1.0    | 0.7937 | 0.014    | 1    |     |     |     | 1             |
| 3      | 3  | 4   | 540.0  | 0.7937 | 0.014    |      |     |     |     | 54            |

Topological info: Branch (edges) list and indication of inlet and oulet node

Some additional column may be added as additional information about each pipe:

For example, to take into account the gravitational effect, if the altitude at each node is not available, then the DeltaH or the inclination angle should be indicated for each pipe

Either 0 or 1 to indicate that a specific branch is a Non-pipeline element thus the equations applied are different

Used to create a mesh within each pipe (used both for the fluiddynamic problem and more importantly, for the quality tracking)

#### Non pipeline elements

| Element Types    | Description                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Passive Elements |                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| pipe             | models a section of a pipeline, basic properties are length, diameter, roughness and pipe efficiency                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| resistor         | models passive devices that cause a local pressure drop (e.g. meters, inlet piping, coolers, heaters, scrubbers etc.)                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Active Elements  |                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| compressor       | models a compressor station with generic constraints, allows the specification of a control mode of the station (e.g. outlet pressure control, inlet pressure control, flow rate control etc.)                                                                                              |  |  |  |  |  |  |  |  |
| regulator        | models a pressure reduction and metering station located at the interface of two neighbouring networks with different maximum operating pressures, allows the specification of a control mode of the station (e.g. outlet pressure control, inlet pressure control, flow rate control etc.) |  |  |  |  |  |  |  |  |
| valve •          | models a valve station, which is is either opened or closed                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |

Non-pipeline (NP) elements have not been «structurally» embedded. The structure of the models allows for their integration but a more robust and general organization of the code and the integration of the NP elements should be done

### **Input Data Structure – NODE TABLE**



Others units my be accepted such as kg/s or Sm3/h

#### Vector of the molar composition of natural gas

| Node name    | Node | Height<br>[m] | Gas Flow [kW] | Pressure<br>[bar-g] | <u>CH4</u> | <u>N2</u> | <u>CO2</u> | <u>C2H6</u> | <u>C3H8</u> | <u>H2</u> | <u></u> | <u>H2S</u> |
|--------------|------|---------------|---------------|---------------------|------------|-----------|------------|-------------|-------------|-----------|---------|------------|
| Wafa         | 1    | 0             | -5,203,292    | 100                 | 85.306     | 3.882     | 1.268      | 6.486       | 2.058       | 0         |         | 0          |
| Mellitah     | 2    | 100           | 0             | 65                  |            |           |            |             |             |           |         |            |
| Mellitah_out | 3    | 200           | 0             | 120                 |            |           |            |             |             |           |         |            |
| Gela         | 4    | 150           | 5,203,292     | 70                  | 85.306     | 3.882     | 1.268      | 6.486       | 2.058       | 0.000     |         | 0.000      |

Usually the initial pressure is a given value as a boundary condition

Some additional column may be added
For example, for graphical representation
purposes, colums for x-y coordinates
should be integrated

Usually the outlet gas flow (here given in terms of thermal energy release) is a given value as a boundary condition

Some additional column may be added here as well depending on the number of components of the natural gas we want to consider:
For quality tracking goals I would say that the minimum is 2

This should go together with the choice of the equation of state.

#### **Sign convention**:

- + if it is *exiting* form the network;
- If it is entering in the network



## **Applications**

**Transient + quality tracking model** 

## Tracking of Solar Hydrogen direct injection





Assumptions:



#### **Open questions:**

- Impacts on Gas Quality?
- Transport of the perturbation?

# **Hydrogen Tracking – distribution system**







Simulation of Blended Hydrogen – transnational interconnector







## **Outlet pressure at Gela Terminal**









### **Gas Network Models**

# Overview on Fluid-Dynamic Solver for steady state, highly meshed networks

Contribution Task 4.2.1
Definition of network models and case studies



SIMPLE ALGORITHM

Nodal mass balance for each gas component







## **Applications**

Steady State + quality tracking model

# Distribution Networks: Modulating Pressure + Hydrogen blending











# Regional Networks: De-blending cases







# Translation into Open Source

### System boundaries



Exchanging data is frequently a challenge. We want to get this right from the beginning:

- Gas network data should be stored in an **open & well supported format**
- Data format should guarantee **data correctness** and **integrity**. For example:
  - impossible to insert a pipe between non-existent stations
  - impossible to remove a station with attached pipes
  - impossible to inject a gas from a non-existent station

#### SQLite fullfills all the requirements:

- Widely supported on all main OSs and by most of the scientific tools. Example: native support in Matlab, plug-ins for Octave and R
- Full fledged SQL database, data constraints easily specified & enforced
- Graphical tools for data manipulation & import/export exist

### Oversimplified relational data model



Relational data models are ubiquitous and well-understood:

- Clear and unambiguous entities and relations
- Data integrity automatically checked: impossible to enter an edge if a node does not exist
- We need to discuss the actual data model offline in order to determine if it fits all the requirements

#### **Technologies**

We chose industry standard, portable and widespread technologies.

- SQLite for data storage and exchange: widespread format, extremely portable
- Data manipulation and processing
  - boost::graph for graph manipulation
  - Eigen for linear algebra and numerical methods
- Qt to have a portable graphical toolkit and easy to install development environment

#### **Conclusions**

#### Next tasks:

- Iterate on the data model and finalize its design (DENERG/DISMA)
- Provide formatted & cleaned-up data in Excel/CSV files (DENERG)
- Provide the first two layers of the system (DISMA)
- Re-implement Matlab stuff in the new architecture (DENERG/DISMA)
- Validate the implementation



# Parametric analysis, uncertainty quantification and out-of-domain generalization of results

Road to Task 4.3.2

### **T4.3.2** Background and workplan



#### Parametric analysis and out-of-domain generalization of results

**Time frame: M12 – M35** (...early, but it is extremely important to start collecting info, share ideas and working together)

Subtask of T4.3 Operational strategies for injection and flow transport (lead TNO)

"Evaluation of the effect on operational strategies on variations in the network design and network parameters"

GOAL: support findings and general guidelines in a multi-gas network scenario

Main contribution based on a stable and well-established background experience:

- (1) Generation of synthetic gas networks based on realistic archetypes;
- (2) a robust and efficient **statistical procedure** is suitably designed accounting for **machine learning** tools for parametric analysis and uncertainty quantification.

### **Background publications**



Selection of Journal papers with focus on complex network modeling, machine learning and statistics

- [1] M. Liu, Y. Xie, Y. Chen, R. Trinchero, and I.S. Stievano, "Modeling of Induction in Integrated Power-Gas Systems Due to Geomagnetic Disturbances", IEEE Transactions on Power Delivery, 2023 (in press).
- [2] E. Vaccariello, R. Trinchero, P. Leone, and I.S. Stievano, "Synthetic gas networks for the statistical assessment of low-carbon distribution systems", **Sustainable Energy, Grids and Networks**, vol. 31, September 2022, 100765.
- [3] E. Vaccariello, R. Trinchero, I.S. Stievano, and P. Leone, "A Statistical Assessment of Blending Hydrogen into Gas Networks", Energies 2021, 14(16), 5055.
- [4] E. Vaccariello, P. Leone, F.G. Canavero, and I.S. Stievano, "Topological modelling of gas networks for co-simulation applications in multi-energy systems", **Mathematics and Computers in Simulation**, vol. 183, pp. 244-253, May 2021.
- [5] E. Vaccariello, P. Leone, and I.S. Stievano, "Generation of synthetic models of gas distribution networks with spatial and multi-level features", International Journal of Electrical Power & Energy Systems, vol. 117, May 2020.
- [6] Z.A. Memon, R. Trinchero, P. Manfredi, F. Canavero, and I.S. Stievano, "Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks", **Energies** 2020, 13(18), 4881.
- [7] P. Manfredi and R. Trinchero, "A probabilistic machine learning approach for the uncertainty quantification of electronic circuits based on Gaussian process regression," **IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems**, vol. 41, no. 8, pp. 2638-2651, August 2022.

# (1) Topological modeling & Synthetic Gas Networks [4,5] & Shimmer



- Automatic tool (algorithm) for the **creation of** synthetic gas network topologies [4,5]
- **Synthetic networks mimic** the topological properties and the spatial distribution of a given reference
- (A) Fitting of a Gaussian Mixture Model (GMM) to the coordinates of nodes in a reference grid
- (B) Sampling of (N random) synthetic nodes
- (C) Iterative inclusion of nodes into a growing spanning tree
- (D) Network reinforcement: creation of loops...



### (1) Topological modeling & Synthetic Gas Networks [2]



10 random samples out of the 10,000 synth. grids



- Realistic structural properties (diameters and volumes), comparable with real-world systems
- Hydraulic behavior always comply with target design parameters
- Wide variability of structural properties (D and V) and hydraulic responses (p and v)



## (2) Statistical Assessment of Hydrogen Blending [3]



**H2 injection** is assessed over 100 models of medium-pressure networks at increasing H2 penetrations ranging from 0 - 75% vol (steady-state analysis)

• E.g., H2 is injected nearby the NG city gate (results: Homogeneous composition delivered to users in most cases, injecting 10%vol of H2 does not produce quality violations in most (84%) of cases, systematic violations for penetrations ≥ 20%vol)



- No violations on the system hydraulics are recorded in most cases: structural readiness of the grids
- Main criticality is on the quality of gas
- Larger H<sub>2</sub> volumes are allowed when hydrogen is injected close to the city gate
- Very high sensitivity to injections in peripherical network regions (quality issues)
- Overpressures may arise for H<sub>2</sub> penetrations equal or higher than 40%vol

### (2) Statistical Assessment via Machine Learning



☐ In SHIMMER: machine learning (ML) tools (e.g., Gaussian processes or support vector machine regressions) for the generation of compact macromodels accounting for many parameters (topological and/or physical, related to the gas) from a limited number of simulations and for supporting reliability assessment and design



Application for **sensitivity analysis** to quantitatively assess the impact of design or key network parameters or **robustness and reliability assessments** 

### THANK YOU

