

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE DEVELOPMENT

Title: Exercise 07 Getting Knowing Your Data with Pandas

Name: Chuay Xiang Ze

IC Number: 021224070255

Date: 27/06/2023

Introduction: Learning how to visualize data using Pandas.

Conclusion: Just mainly Pandas functions being used

Ex07 Getting and Knowing your Data with Pandas

This time we are going to pull data directly from the internet. Special thanks to: https://github.com/justmarkham (<a href="https://github.com/justmarkha

Step 1. Import the necessary libraries

In [36]:

import numpy as np
import pandas as pd

Step 2. Import the dataset from this <u>address</u> (<u>https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user</u>).

In [49]:

df = pd.read_csv('https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user' df

Out[49]:

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213
938	939	26	F	student	33319
939	940	32	М	administrator	02215
940	941	20	М	student	97229
941	942	48	F	librarian	78209
942	943	22	М	student	77841

943 rows × 5 columns

Step 3. Assign it to a variable called users and use the 'user_id' as index

In [50]:

```
df.set_index('user_id', inplace= True)
# display
df = users
users
```

Out[50]:

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

943 rows × 4 columns

Step 4. See the first 25 entries

In [4]:

111 [4]	•
users.	head(25)
Out[4]	:
us	er_id age gender occupation zip_code
0	1 24 M technician 85711
1	2 53 F other 94043
2	3 23 M writer 32067
3	4 24 M technician 43537
4	5 33 F other 15213
5	6 42 M executive 98101
6	7 57 M administrator 91344
7	8 36 M administrator 05201
8	9 29 M student 01002
9	10 53 M lawyer 90703

Step 5. See the last 10 entries

In [5]:

users.tail(10)

Out[5]:

user_id|age|gender|occupation|zip_code

933	934 61 M engineer 22902
934	935 42 M doctor 66221
935	936 24 M other 32789
936	937 48 M educator 98072
937	938 38 F technician 55038
938	939 26 F student 33319
939	940 32 M administrator 02215
940	941 20 M student 97229
941	942 48 F librarian 78209
942	943 22 M student 77841

Step 6. What is the number of observations in the dataset?

```
In [7]:
len(users)
Out[7]:
943
Step 7. What is the number of columns in the dataset?
In [51]:
len(users.columns)
Out[51]:
Step 8. Print the name of all the columns.
In [62]:
users.columns
Out[62]:
Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
Step 9. How is the dataset indexed?
In [63]:
users.index
Out[63]:
Int64Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
```

934, 935, 936, 937, 938, 939, 940, 941, 942, 943],

dtype='int64', name='user_id', length=943)

Step 10. What is the data type of each column?

```
In [66]:
```

```
users.dtypes

Out[66]:

age     int64
gender     object
occupation     object
zip_code     object
dtype: object
```

Step 11. Print only the occupation column

```
In [65]:
```

```
users['occupation']
Out[65]:
user_id
1
          technician
2
               other
3
              writer
4
         technician
5
               other
939
             student
    administrator
940
941
             student
942
           librarian
943
             student
```

Name: occupation, Length: 943, dtype: object

Step 12. How many different occupations are in this dataset?

```
In [68]:
```

```
len(users['occupation'].unique())
```

Out[68]:

21

Step 13. What is the most frequent occupation?

In [77]:

```
users['occupation'].value_counts().head(1)

Out[77]:
student 196
```

Name: occupation, dtype: int64

Step 14. Summarize the DataFrame.

```
In [79]:
```

```
users.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 943 entries, 1 to 943
Data columns (total 4 columns):
          Non-Null Count Dtype
# Column
--- -----
             -----
0 age
             943 non-null int64
1
    gender
             943 non-null object
2
  occupation 943 non-null object
3 zip_code 943 non-null
                            object
dtypes: int64(1), object(3)
memory usage: 36.8+ KB
```

Step 15. Summarize all the columns

```
In [82]:
```

```
users.describe(include='all')
```

Out[82]:

	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34.051962	NaN	NaN	NaN
std	12.192740	NaN	NaN	NaN
min	7.000000	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN
50%	31.000000	NaN	NaN	NaN
75%	43.000000	NaN	NaN	NaN
max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

```
In [83]:
users['occupation'].describe(include='all')
Out[83]:
count
             943
unique
               21
         student
top
              196
freq
Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
In [84]:
users['age'].mean()
Out[84]:
34.05196182396607
```

Step 18. What is the age with least occurrence?

```
In [97]:
users['age'].value_counts().sort_values()
Out[97]:
73
       1
7
       1
10
       1
11
       1
66
       1
27
      35
28
      36
22
      37
25
      38
30
Name: age, Length: 61, dtype: int64
In [ ]:
```