Codificación de la información

Sistemas de numeración

Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos.

Los sistemas de numeración actuales son sistemas posicionales. Cada símbolo tiene distinto valor según la posición que ocupa en la cifra.

Ejemplos:

- Decimal: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, ...
- Binario: 000, 001, 010, 011, 100, 101, 110, 111
- Octal: 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13, 14, ...
- Hexadecimal: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F

Sistema binario

Este es el sistema utilizado por la electrónica, donde una serie de interruptores y transistores pueden tener dos estados:

- Tienen corriente o no la tienen.
- El primer caso se representa con un 1 y el segundo con un 0.

El sistema binario utiliza 2 dígitos, y cada dígito tiene distinto valor dependiendo de la posición que ocupe.

Los ordenadores con un sistema binario para:

- Guardar información
- Hacer cálculos
- Enviar y recibir información

Convertir de decimal a binario

Para pasar un número decimal a binario:

- Realizar divisiones sucesivas por 2
- Al final, escribir los restos obtenidos en cada división en orden inverso

Ejemplo Cálculo del equivalente binario del número decimal 60_{10}

Por tanto,
$$60_{10} = 111100_2$$

Convertir de binario a decimal

Ya podéis hacer los ejercicios 1 y 2

Sistema hexadecimal

https://www.rapidtables.com/convert/number/binary-to-hex.html

Este sistema cuenta con 16 dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) y se puede calcular la equivalencia entre el valor decimal de un hexadecimal de forma similar a como se hace con los binarios, pero ahora la base de numeración es 16, valor que habrá que ir elevando a las sucesivas potencias.

A partir del 10, sustituimos el número por una letra:

- 10 será A
- 11 será B
- etc.

Lo que hace interesante el sistema hexadecimal es la inmediatez de transformación entre un número hexadecimal y su equivalente binario natural. Basta con escribir las cuatro cifras binarias de cada dígito para tener la equivalencia

Aplicaciones:

- Direcciones MAC
- Códigos de colores RGB

TABLA DE COLORES CON SUS VALORES HEXADECIMALES

FFFFFF	FFFFCC	FFFF99	FFFF66	FFFF33	FFFF00	GEFFFF	66FFCC	66FF99	66FF66	66FF33	66FF00
FFCCFF	FFCCCC	FFCC99	FFCC66	FFCC33	FFCC00	66CCFF	660000	660099	660066	66CC33	660000
FF99FF	FF99CC	FF9999	FF9966	FF9933	FF9900	6699FF	6699CC	669999	669966	669933	669900
FF66FF	FF66CC	FF6699	FF6666	FF6633	FF6600	6666FF	6666CC	666699	666666	666633	666600
FF33FF	FF33CC	FF3399	FF3366	FF3333	FF3300	6633FF	6633CC	663399	663366	663333	663300
FFOOFF	FFOOCC	FF0099	FF0066	FF0033	FF0000	6600FF	6600CC	660099	660066	660033	660000
CCFFFF	CCFFCC	CCFF99	CCFF66	CCFF33	CCFF00	33FFFF	33FFCC	33FF99	33FF66	33FF33	33FF00
CCCCFF	cccccc	000099	000066	000033	000000	33CCFF	330000	330099	330066	330033	330,000
CC99FF	ссээсс	CC9999	CC9966	CC9933	CC9900	3399FF	339900	339999	339966	339933	339900
CC66FF	006600	CC6699	CC6666	CC6633	CC6600	3366FF	3366CC	336699	336666	336633	336600
CC33FF	ссззсс	CC3399	CC3366	CC3333	CC3300	3333FF	3333CC	333399	333366	333333	333300
C.COOFF	cceace	0.00099	8,00066	CC0033	0.00000	3300FF	3300CC	330099	330066	330033	330000
99FFFF	99FFCC	99FF99	99FF66	99FF33	99FF00	OOFFFF	00FFCC	00FF99	00FF66	00FF33	00FF00
99CCFF	990000	990099	990066	990033	990000	OOCCFF	000000	000099	000066	000033	000000
9999FF	999900	999999	999966	999933	999900	0099FF	009900	009999	009966	009933	009900
9966FF	9966CC	996699	996666	996633	996600	0066FF	006600	006699	006666	006633	006600
9933FF	993300	993399	993366	993333	993300	0033FF	0033CC	003399	003366	003333	003300
9900FF	990000	990099	390066	990033	930000	0000FF	0000CC	000099	000066	000033	000000
FFFFF	EEEEEE	DDDDDDD	вввввв	AAAAAA	888888	777777	555555	44444	222222	111111	000000

Convertir entre binario y hexadecimal

Existe una equivalencia entre código hexadecimal y binario

0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	С
1101	13	D
1110	14	E
1111	15	F

De binario a hexadecimal

Asimismo, la conversión de un número binario a hexadecimal es igual de sencilla: se agrupan los bits de cuatro en cuatro, comenzando por la derecha (por el bit de menor peso), y luego se sustituye cada grupo de cuatro bits por su equivalente hexadecimal.

110110101100 --> 1101 1010 1100 -->DAC

De hexadecimal a binario

La conversión de un número hexadecimal a uno binario es muy sencilla: basta con sustituir cada cifra hexadecimal por su equivalente en binario.

Por ejemplo:

3AFF = 0011 1010 1111 1111

Aquí A corresponde al número 10, y F corresponde al número 15

(Naturalmente, podemos eliminar los dos ceros de la izquierda).

Ya podéis hacer los ejercicios 3 y 4

Códificación de caracteres

Código ASCII

La memoria de un ordenador no guarda caracteres, sino información la guarda en formato binario. Para poder guardar letras, necesito transformarlas a 1s y 0s.

01000101	01110011	01110100
00100000	01101001	01101110
01101111	01110010	01101101
01100011	01101001	11110011
00100000	01110011	01100101
01110100	01110010	01100001
01110101	01100011	01100101
01100101	01101110	00100000
01101100	00100000	01101111
01100100	01100101	01101110
01100100	01101111	01110010

El código ASCII se crea en 1963. Se inventa una tabla en la que a cada letra y una serie de símbolos (alfanuméricos y otros) se le asigna un código binario.

Caracteres de control			Not by				S	ímbolo	mbolos gráficos							
Nombre	Dec	Binario	Hex	Símbolo	Dec	Binario	Hex	Símbolo	Dec	Binario	Hex	Símbelo	Dec	Binario	Hex	
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40		96	1100000	60	
SOH	1	0000001	01	. !	33	0100001	21	A	65	10000001	41	a	97	1100000	61	
STX	2	0000010	02		34	0100010	22	В	66	1000001	42	b	98	1100001	62	
ETX	3	0000011	03	#	35	0100011	23	C	67	1000011	43	c	99	1100010	63	
EOT	4.	0000100	04	S	36	0100100	24	D	68	1000110	44	d	100	1100011	64	
ENQ	5	0000101	05	%	37	0100101	25	E	69	1000101	45	e	101	1100100		
ACK	6	0000110	06	&	38	0100110	26	F	70	1000101	46	f	102	1100101	65	
BEL	7	0000111	07		39	0100111	27	G	71	1000111	47		103		66	
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	g h	103	1100111	67	
HT	9	0001001	09)	41	0101001	29	1	73	1001000	49	n i	105	1101000	68	
LF	10	0001010	0A		42	0101010	2A	j	74	1001011	4A		106	1101001	69	
VT	11	0001011	OB	7+7	43	0101011	2B	K	75	1001011	4B	k	107	1101010	6A	
FF	12	0001100	0C		44	0101100	2C	L	76	1001100	4C	I K		1101011	6B	
CR	13	0001101	0D	1 1	45	0101101	2D	M	77	1001101	4D		108	1101100	6C	
SO	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	m	109	1101101	6D	
SI	15	0001111	0F	1	47	0101111	2F	0	79	1001111	4F	n	110	1101110	6E	
DLE	16	0010000	10	0	48	0110000	30	P	80	1010000	50	0	111	1101111	6F	
DC1	17	0010001	-11	i i	49	0110001	31	Q	81	1010000	51	p	112	1110000	70	
DC2	18	0010010	12	2	50	0110010	32	R	82	1010001		q	113	1110001	71	
DC3	19	0010011	13	3	51	0110011	33	S	83	1010010	52	r	114	1110010	72	
DC4	20	0010100	14	* 4	52	0110100	34	T	84	1010101	53	S	115	1110011	73	
NAK	21	0010101	15	5	53	0110101	35	U	85			t	116	1110100	74	
SYN	22	0010110	16	6	54	0110110	36	v	86	1010101	55	u	117	1110101	75	
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	56	, V	118	1110110	76	
CAN	24	0011000	18	8	56	0111000	38	X	88		57	w	119	1110111	77	
EM	25	0011001	19	9	57	0111001	39	Y	89	1011000	58	X	120	1111000	78	
SUB	26	0011010	1A -	9	58	0111010	3A	Z		1011001	59	У	121	1111001	79	
ESC	27	0011011	1B	-	59	0111010	3B		90	1011010	5A	Z	122	1111010	7A	
FS	28	0011100	1C	2	60	01111011	3C	L	91	1011011	5B	11	123	1111011	7B	
GS	29	0011101	1D	=	61	0111100	3D	1	92	1011100	5C		124	1111100	7C	
RS	30	0011110	1E	>	62	0111110	3E	1	93	1011101	5D	}	125	1111101	7D	
US		0011111	1F	2	63	0111111	3F		94	1011110	5E	175	126	1111110	7E	
-		DOTTITI	11		:03	OHIHH	JF.		95	1011111	5F	Del	127	11111111	7F	

ASCII extendido

El ASCII se desarrolló para utilizarse con inglés. Por tanto no posee:

- Caracteres acentuados
- Caracteres específicos de otros idiomas

Para codificar estos caracteres, se necesitaba un sistema de códigos distinto. Necesitamos más caracteres, con 7 bits no basta (128 máximo) y 32 son caracteres de control

El Código ASCII se extendió a 8 bits (byte). Se pueden codificar más caracteres (ASCII extendido), hasta 256

Para no romper la compatibilidad con ASCII, se hace que el primer bit signifique

- 0: Los 7 bits inferiores siguen la tabla ASCII
- 1: Los 7 bits inferiores siguen otra tabla

Ejercicios

1. Convierte los siguientes números decimales al sistema binario:

```
31
65
100
144
256
```

2. Convierte los siguientes números binarios a decimal:

```
11011101
1000001
11101110
1110001101
```

3. Convierte los siguientes números binarios al sistema hexadecimal:

4. Convierte los siguientes números hexadecimales al sistema binario:

AB34 F22 344

5.Completa la tabla:

DECIMAL	BINARIO (4 BITS)	HEXADECIMAL	DECIMAL	BINARIO (1 BYTE)	HEXADECIMAL
0			16		
1			17		
5			32		
	0011			00010001	
	0110			00110110	
		9			FF
		А			7F
12					81
15			129		

6.Dados dos números binarios: 01001000 y 01000100 ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?

7. Escribe los nombres de tus compañeros de la derecha e izquierda tuyos en ASCII.

8.Convierte la fecha de tu cumpleaños en binario. ¿Cuantos bits necesitarías? El formato es DD/MM/YY, cada número codificado por separado.

9.¿Cuantos bits se necesitan aproximadamente para guardar todos los nombres y fechas de nacimiento de todos los alumnos del colegio?

10.Crea un archivo de texto en el que ponga "me llamo" y tu nombre, y ábrelo con el siguiente programa. Comprueba que tamaño ocupa el archivo:

http://blog.bodurov.com/Bytes-and-Bits-Viewer/

Practicar online

Podéis practicar en estas páginas:

- https://studio.code.org/projects/applab/iukLbcDnzqgoxuu810unLw
- http://flippybitandtheattackofthehexadecimalsfrombase16.com/

0	0	1	1	0	0	1	0	= 158
0	1	1	1	1	1	0	0	= 172
0	1	1	0	0	0	1	0	= 157
0	0	0	0	1	0	1	0	= 69
1	0	0	0	1	0	1	1	= 96
1	0	1	1	0	1	0	0	= 90