Classifier automatiquement des biens de consommation

Introduction

"Place du marché": objectif, lancer une marketplace e-commerce

- Contexte:
 - Attribution de la catégorie d'un article: manuellement par les vendeurs
 - Petit volume de produits
 - Souhait d'automatiser l'attribution de la catégorie

- Démarche globale:
 - Etudier la faisabilité de classification textes et images
 - Classification supervisée des images
 - Elargissement gamme de produits -> Tester une API -> produits base de champagne

Description du jeu de données

- 1050 produits
 - Textes:Descriptions, catégorie ...
 - Images

- Nettoyage:
 - Pas de valeurs manquantes
 - Pas de valeurs aberrantes
 - Pas de doublons

product_name	product_category_tree
Elegance Polyester Multicolor Abstract Eyelet 	["Home Furnishing >> Curtains & Accessories >>
Sathiyas	["Baby Care >> Baby
Cotton Bath	Bath & Skin >> Baby
Towel	Bath T
Eurospa	["Baby Care >> Baby
Cotton Terry	Bath & Skin >> Baby
Face Towel Set	Bath T

Partie 1: Faisabilité classification texte

Démarche de faisabilité commune texte/images

Pré-traitement texte

Mise en minuscules

Tokenisation => fonction word_tokenize (divise un document en mots)

Suppression des stopwords => fonction stopwords.words('english')

• Stemming => classe PorterStemmer() -> réduction des mots à leur racine (suffixe tronqué)

Lemmatisation => classe WordNetLemmatizer -> réduction des mots à leur racine avec dictionnaire

1 texte['preprocessed_product_description'][0]

'elegance polyester multicolor abstract eyelet door curtain key feature elegance polyester multicolor abstract eyelet door curtain floral curtain elegance polyester multicolor abstract eyelet door curtain height pack price curtain enhances look curtain m ade high quality polyester feature eyelet style stitch metal make room environment romantic curtain wrinkle anti shrinkage eleg ant home bright modernistic appeal design surreal attention sure steal heart contemporary eyelet valance curtain slide smoothly

Extraction de features texte - Approche BOW

Comptage simple

Sortie: vecteur dimension 1988

	aapno	ability	able	abode	absorbency	absorbent	abstract
0	0	0	0	0	0	0	5
1	0	0	0	0	0	0	0

sklearn.feature_extraction.text.CountVectorizer

- Tf-idf
 - Méthode de pondération
 - Sortie: vecteur dimension 1988

	aapno	ability	able	abode	absorbency	absorbent	abstract
0	0	0	0	0	0	0	0.200871
1	0	0	0	0	0	0	0

sklearn.feature_extraction.text.TfidfVectorizer

Extraction de features texte - Word Embedding

Word2Vec

- Représentation de mots dans un espace qui rapproche les mots similaires
- Modèle à entraîner
- Entrée: description produits
- Sortie: vecteur de dimension 100

BERT

- Google AI (2018)
- Pré-entrainé avec corpus Wikipedia
- Bibliothèque Transformers dev par HuggingFace
- Entrée: description produits
- Sortie: vecteur dimension 768

USE

- Google USE4 (2020)
- Modèle déjà entraîné
- Sortie: vecteur dimension 512

Réduction 2D et visualisation des produits

Réduction 2D: TSNE

 Visualisation des produits (category_true)

 Analyse graphique: séparation faisable (pour toutes les méthodes d'extraction de features)

Mesure de similarité

ARI: 0.5615100707190486 La mesure de similarité confirme la faisabilité de la classification de produits à partir du texte

Partie 2: Faisabilité classification images

Pré-traitement images

• Egalisation: méthode **CLAHE** meilleure

Extraction de features images avec SIFT

Principes:

- Extraire des features (ou points d'intérêt) de l'image et de calculer leurs descripteurs
- Un descripteur SIFT est composé de 128 valeurs entières

Etapes:

- Extraction des descripteurs de chaque image -> Nombre de descripteurs : (517351, 128)
- Création des clusters de descripteurs (719 clusters)
- Création des histogrammes/features des images -> (1050, 719)

Réduction 2D et visualisation des produits

Réduction 2D:

- o (1050, 719) -> ACP -> (1050, 502)
- o TSNE -> (1050, 2)

 Visualisation des produits (category_true)

Analyse graphique:

pas possible de séparer les images selon leur vraie classe

Category_True: après features extraction SIFT

Mesure de similarité

Le score ARI très faible de 0.04 confirme l'**impossibilité de séparer les images** selon leurs vraies classes après features extraction SIFT

Etapes:

- Preprocessing Keras -> images 224x224x3
- Création du modèle VGG16 à partir du modèle de base
 - o On choisit la sortie de l'avant dernière couche (4096)
- Extraction des features des images
 - Prédiction à partir du modèle VGG16 de base pré-entraîné
 - o Sortie: (1050,4096)

Réduction 2D et visualisation des produits

- Réduction 2D:
 - o (1050, 4096) -> ACP -> (1050, 803)
 - TSNE -> (1050, 2)

 Visualisation des produits (category_true)

 Analyse graphique: possible de séparer les images selon leur vraie classe

Category_True: après extraction de features VGG16

Mesure de similarité

Le score ARI=0.449 confirme la possibilité de séparer les images selon leurs vraies classes après features extraction VGG16

Partie 3: Classification supervisée

Démarche

- Faisabilité par méthode non supervisée (temps) -> Classification supervisée
- CNN VGG16 Keras
- Transfert learning (ImageNet)
- 3 Stratégies possibles
 - 1: Fine-tuning total
 - 2: Extraction de features => Stratégie choisie
 - 3: Fine-tuning partiel

- 2 modèles testés
 - VGG16 sans data augmentation
 - VGG16 avec data augmentation
 - Essais pour optimiser les hyperparamètres (Flip, zoom, ...)

Modèle 1: VGG16 sans data augmentation

• Epoch optimal (min loss):

Validation Accuracy: 0.78 Test Accuracy: 0.72

Baby Care -	21	0	3	1	3	0	1	- 25
Watches -	0	29	0	0	0	0	1	25
Home Furnishing –	6	0	18	1	1	1	0	- 20
Home Decor & Festive Needs -	2	2	1	21	2	1	0	- 15
Kitchen & Dining -	3	0	0	0	25	0	0	- 10
Beauty and Personal Care -	1	0	0	1	2	23	2	- 5
Computers -	0	0	2	3	1	2	20	
	Ó	i	2	3	4	5	6	- 0

	precision	recall	f1-score	support
0	0.64	0.72	0.68	29
1	0.94	0.97	0.95	30
2	0.75	0.67	0.71	27
3	0.78	0.72	0.75	29
4	0.74	0.89	0.81	28
5	0.85	0.79	0.82	29
6	0.83	0.71	0.77	28
accuracy			0.79	200
macro avg	0.79	0.78	0.78	200
weighted avg	0.79	0.79	0.78	200

Modèle 2: VGG16 avec data augmentation

• Epoch optimal (min loss):

Validation Accuracy: 0.82 Test Accuracy: 0.77

_								18-01
Baby Care -	22	0	3	1	1	0	2	- 25
Watches -	0	29	0	0	0	0	1	25
Home Furnishing –	6	0	20	1	0	0	0	- 20
Home Decor & Festive Needs -	0	1	1	26	1	0	0	- 15
Kitchen & Dining -	3	0	0	0	23	0	2	- 10
Beauty and Personal Care -	0	0	0	0	2	23	4	- 5
Computers -	0	1	0	2	2	2	21	
	0	i	2	3	4	5	6	- 0

	precision	recall	f1-score	support
0	0.71	0.76	0.73	20
				29
1	0.94	0.97	0.95	30
2	0.83	0.74	0.78	27
3	0.87	0.90	0.88	29
4	0.79	0.82	0.81	28
5	0.92	0.79	0.85	29
6	0.70	0.75	0.72	28
accuracy			0.82	200
macro avg	0.82	0.82	0.82	200
weighted avg	0.82	0.82	0.82	200

Comparaison des performances

Modèle	Hyperparamètres	Validation Accuracy	Test Accuracy	Temps de train
VGG16 sans data augmentation	optimizer='rmsprop'	0.78	0.72	269 sec
VGG16 avec data augmentation	optimizer='rmsprop' RandomFlip=H RandomRot=0.1 RandomZoom=0.1 Rescaling=[-1,1] Dropout=0.5 Early Stop - Patience=5	0.82	0.77	973 sec

Partie 4: Présentation du test de l'API

Test de l'API "Edamam Food and Grocery Database"

- Clé d'accès personnelle à l'API: header 'X-RapidAPI-Key'
- Requête GET /api/food-database/v2/parser
- Conversion réponse JSON (dictionnaire)
- Traitement de la réponse
 - Dictionnaire -> liste de liste (10 produits)
 - Transformation liste en dataframe
 - Export dans fichier csv
- Prise en compte des normes RGPD (sécurité, minimisation)

imag	foodContentsLabel	category	label	foodld	
https://www.edamam.com/foo img/a71/a718cf3c52		Generic foods	Champagne	food_a656mk2a5dmqb2adiamu6beihduu	0
	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR	Packaged foods	Champagne Vinaigrette, Champagne	food_b753ithamdb8psbt0w2k9aquo06c	1
https://www.edamam.com/foor img/d88/d88b64d973.	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINE	Packaged foods	Champagne Vinaigrette, Champagne	food_b3dyababjo54xobm6r8jzbghjgqe	2
https://www.edamam.com/food img/ab2/ab2459fc2a	CANOLA AND SOYBEAN OIL; WHITE WINE (CONTAINS S	Packaged foods	Champagne Vinaigrette, Champagne	food_a9e0ghsamvoc45bwa2ybsa3gken9	3
	WATER; CANOLA AND SOYBEAN OIL; WHITE WINE (CON	Packaged foods	Champagne Vinaigrette, Champagne	food_an4jjueaucpus2a3u1ni8auhe7q9	4
	SOYBEAN OIL; WHITE WINE (PRESERVED WITH SULFIT	Packaged foods	Champagne Dressing, Champagne	food_bmu5dmkazwuvpaa5prh1daa8jxs0	5
	sugar; butter; shortening; vanilla; champagne;	Generic meals	Champagne Buttercream	food_alpl44taoyv11ra0lic1qa8xculi	6
	Sugar; Lemon juice; brandy; Champagne; Peach	Generic meals	Champagne Sorbet	food_byap67hab6evc3a0f9w1oag3s0qf	7
	butter; cocoa; sweetened condensed milk; vanil	Generic meals	Champagne Truffles	food_am5egz6aq3fpjlaf8xpkdbc2asis	8
	champagne vinegar; olive oil; Dijon mustard; s	Generic meals	Champagne Vinaigrette	food_bcz8rhiajk1fuva0vkfmeakbouc0	9

Conclusion

Classification texte faisable: meilleur score BOW-Tfidf > USE

Classification images: pas faisable avec SIFT, faisable avec VGG16

- Classification images:
 - transfert learning
 - impact data augmentation

Axes d'amélioration: optimisation hyperparamètres data augmentation