Evaluación de la hidrofobicidad de la superficie celular de hongos filamentosos.

David Eduardo Hernández Sánchez¹, Ana Gloria Villalba Villalba², José Ángel Saavedra³

Universidad Autónoma de Chihuahua¹; CONACYT-Departamento de Física, Universidad de Sonora²; Departamento de Física, Universidad de Sonora²; Departamento de Física,

INTRODUCCIÓN

Los hongos filamentosos son microorganismos en los cuales existe un creciente interés por la habilidad de ciertas especies para biodegradar polímeros sintéticos (plásticos). Este proceso es de relevancia debido a la acumulación de millones de toneladas de estos materiales en ambientes acuáticos y terrestres. Los hongos filamentosos son potentes agentes degradadores de materia orgánica en la naturaleza. Sin embargo, a la hora de evaluar su desempeño para degradar materiales sintéticos, resulta de relevancia considerar la hidrofobicidad de la superficie de sus células, esto para asegurar su adhesión a los polímeros, ya que estos últimos son de naturaleza hidrofobica.

OBJETIVO

El objetivo del presente trabajo fue determinar la hidrofobicidad de la superficie celular del hongo filamentoso *Aspergillus spp.* mediante el ensayo de adhesión microbiana a un solvente no polar.

Fig. 1. Hifas y esporas de *Aspergillus spp.*

METODOLOGÍA

- 2 ml de la suspensión de células.
- Agitar x 10 min, dejar reposar durante 5 min y leer absorbancia a 410 nm.
 - Tratamientos por triplicado

Células en suspensión

(buffer, fase acuosa)

rado **TRATAMIENTO**Células es suspensión +

300 μL de cloroformo

(solvente no polar).

El porcentaje de células adheridas a la fase no polar se calculó utilizando la ecuación:

La hidrofobicidad se expresa como el porcentaje de células removidas de la fase acuosa.

 (A_0) : absorbancia de la suspensión de células en buffer (A_t) : absorbancia después de agregar el cloroformo

- Caracterización de las células por FT-IR.
- Prueba de adhesión de las células a poliuretano.

RESULTADOS

Fig. 2. Células (esporas e hifas) de *Aspergillus spp*. en solución acuosa (buffer de fosfato de sodio (A) y en contacto con hexano (B).

Fig. 3. FT-IR de células (esporas e hifas) de Aspergillus spp.

Esporas 50 µm

Fig. 4. Células (esporas e hifas) de *Aspergillus spp.*

Fig. 5. Prueba de adhesión de *Aspergillus spp*. a poliuretano (PU). A) Control: PU sin contacto con *Aspergillus spp.*; B) PU con 14 días de contacto con *Aspergillus spp.*

CONCLUSIÓN

% de Hidrofobicidad = 94.91 ± 0.41

Según los resultados del porcentaje de hidrofobicidad, así como la prueba de adhesión de las células al PU, se concluye que el hongo filamentoso *Aspergillus spp*. presenta potencial de uso como herramienta de biodegradación de polímeros sintéticos, como el poliuretano.

BIBLIOGAFÍA

Rajendran Sangeetha Devi, Velu Rajesh Kannan, Duraisamy Nivas, Kanthaiah Kannan, Sekar Chandru, Arokiaswamy Robert Antony (2015) Biodegradation of HDPE by *Aspergillus spp.* from marine ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin, 96, 32-40.