```
import pandas as pd
from google.colab import drive
drive.mount('/content/gdrive')
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mou

Load the data from wine dataset.

```
wine_data=pd.read_csv('/content/gdrive/MyDrive/wine.csv')
print(wine_data)
```

	Wine	Alcohol	Malic.acid	Ash	 Color.int	Hue	OD	Proline
0	1	14.23	1.71	2.43	 5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	 4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	 5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	 7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	 4.32	1.04	2.93	735
					 			• • •
173	3	13.71	5.65	2.45	 7.70	0.64	1.74	740
174	3	13.40	3.91	2.48	 7.30	0.70	1.56	750
175	3	13.27	4.28	2.26	 10.20	0.59	1.56	835
176	3	13.17	2.59	2.37	 9.30	0.60	1.62	840
177	3	14.13	4.10	2.74	 9.20	0.61	1.60	560

[178 rows x 14 columns]

Check whether all attributes are standardized or not (mean is 0 and standard deviation is 1). If not, standardize the attributes.

```
Mean_result=list()
for i in range(1,wine_data.shape[1]):
    column=wine_data.columns[i]
    Mean_result.append(wine_data[column].mean())
print(Mean_result)
print(len(Mean_result))

    [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.741573
    13

SD_result=list()
for i in range(1,wine_data.shape[1]):
    column=wine_data.columns[i]
    SD_result.append(wine_data[column].std())
print(SD_result)
```

[0.8118265380058577, 1.1171460976144627, 0.2743440090608148, 3.3395637671735052, 14.2824]

```
from matplotlib import pyplot as plt
plt.figure(figsize = [20, 100])
for i in range(1,wine_data.shape[1]):
 column=wine data.columns[i]
 plt.subplot(13, 1, i)
 plt.title(column)
 plt.hist(wine data[column])
import numpy as np
from bokeh.plotting import figure
from bokeh.io import output_notebook, show, output_file
from bokeh.models import ColumnDataSource, HoverTool, Panel
from bokeh.models.widgets import Tabs
from bokeh.io import output notebook
def plot hist(data,column):
 hist,bins = np.histogram(data[column])
 hist info = pd.DataFrame({column: hist,
                          "left": bins[:-1],
                          "right": bins[1:]})
 hist_info['tofrom'] = [f'{left} to {right}' for left,right in zip(hist_info['left'],hist_in
 src = ColumnDataSource(hist info) #Creating a column data source for bokeh plotting
 plot = figure(plot_height = 400, plot_width = 400,title=column)
 plot.quad(bottom = 0, top = column,left = "left", right = "right", source = src, fill_color
   line color = "black", fill alpha = 0.7,
   hover_fill_alpha = 1.0, hover_fill_color = 'blue')
 hover = HoverTool(tooltips = [('Interval', '@tofrom'),
                          ('Count', str("@" + column))])
 plot.add tools(hover)
 show(plot)
 output notebook()
for i in wine data.columns:
 plot hist(wine data,i)
```



```
swine_data=wine_data
from sklearn import preprocessing
#for i in range(1,wine_data.shape[1]):
# column=wine_data.columns[i]
# print(preprocessing.scale(wine_data[column]))
for i in range(1,swine_data.shape[1]):
    column=wine_data.columns[i]
    swine_data[column]=preprocessing.scale(wine_data[column])
swine_data
```

	Wine	Alcohol	Malic.acid	Ash	Acl	Mg	Phenols	Flavanoids	No
0	1	1.518613	-0.562250	0.232053	-1.169593	1.913905	0.808997	1.034819	
1	1	0.246290	-0.499413	-0.827996	-2.490847	0.018145	0.568648	0.733629	
2	1	0.196879	0.021231	1.109334	-0.268738	0.088358	0.808997	1.215533	
3	1	1.691550	-0.346811	0.487926	-0.809251	0.930918	2.491446	1.466525	
4	1	0.295700	0.227694	1.840403	0.451946	1.281985	0.808997	0.663351	
173	3	0.876275	2.974543	0.305159	0.301803	-0.332922	-0.985614	-1.424900	
174	3	0.493343	1.412609	0.414820	1.052516	0.158572	-0.793334	-1.284344	
175	3	0.332758	1.744744	-0.389355	0.151661	1.422412	-1.129824	-1.344582	
176	3	0.209232	0.227694	0.012732	0.151661	1.422412	-1.033684	-1.354622	
177	3	1.395086	1.583165	1.365208	1.502943	-0.262708	-0.392751	-1.274305	

178 rows × 14 columns

SMean_result=list()

from sklearn import preprocessing

```
for i in range(1,swine data.shape[1]):
 column=swine_data.columns[i]
 SMean_result.append(round(swine_data[column].mean()))
print(SMean result)
     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
SSD_result=list()
from sklearn import preprocessing
for i in range(1,swine data.shape[1]):
 column=swine_data.columns[i]
 SSD result.append(round(swine data[column].std()))
print(SSD_result)
     [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
plt.figure(figsize = [20, 100])
for i in range(1,swine data.shape[1]):
 column=swine_data.columns[i]
 plt.subplot(13, 1, i)
 plt.title(column)
 plt.hist(swine_data[column])
```


for i in swine_data.columns:
 plot_hist(swine_data,i)