TMS Annual Meeting: Phase Transformation and Microstructural Evolution Symposium Session: Scale and Subsurface Phase Transformations during High-Temperature Oxidation

Comparison of the High-Temperature Oxidation Behavior of Subsolvus and Supersolvus Treated **Advanced Powder Metallurgy Disk Alloys**

Chantal K. Sudbrack, Tim P. Gabb, and David R. Hull **NASA Glenn Research Center**

> Jonathan D Yu **Stanford University**

Timothy T Gorman **University of Dayton**

Acknowledgements: James Smialek, Jack Telesman, Sue Draper, Mike Nathal for valuable discussions (NASA-GRC); Analytical Science Group for experimental support (NASA-GRC); GE Engines and Honeywell International for providing samples

Funding: NASA's Aviation Safety and Fundamental Aeronautics Programs

Background

• The drive in aerospace propulsion applications towards <u>higher turbine inlet</u> <u>temperatures</u>, which should improve engine efficiency, is leading to <u>higher disk rim temperatures</u>.

Currently at 650 °C → Long-range goal of 800 °C

- Advanced powder metallurgy (P/M) nickel based superalloys have been developed by industry, AFRL and NASA to address the properties needed at these elevated temperatures e.g. Alloy 10, LSHR, ME3 (R104), RR1000
- It is well-established that oxidation can reduce fatigue life in disk alloys above 650°C by accelerated crack initiation and growth at defects, however it is not well-studied yet in disk alloys at 650 °C 800°C Protective coatings?

Turbine stage schematic

Figure 1. A schematic illustrating a cross section of a gas turbine engine.

JOM, 51:1 (1999) 14-17.

Oxidation of Disk Alloys

Mechanical Properties

Temperature

Environmental Resistance

Newer P/M disk alloys have substituted environmental resistance (Al, Cr levels) for strength (Mo, W, Ta, etc.)

High Cr Low Al Cr₂O₃ formers

Disk Alloys wt.%	Cr	Al	Cr+Al	Cr/Al	Ti
Inconel 718	19.0	0.5	19.5	38	0.9
Waspaloy	19.5	1.3	20.8	15.6	3.0
Udimet 720	18.0	2.5	20.5	7.2	2.5
RR1000	14.6	3.0	17.6	5.0	3.6
ME3	13.0	3.4	16.4	3.9	3.8
Alloy 10	11.5	3.5	15.0	3.3	3.5

- Stable, slow growth of **protective Cr₂O₃ external** scale with Al₂O₃ subscale by internal oxidation with fast growth deleterious TiO2 scale
 - Cast-wrought disk alloy comparison shows Ti content is rate controlling
- Mass change data suggests classic parabolic growth (time^{1/2}) consistent with high temperature oxidation of Ni alloys for the external oxide scale
- Simplified models also predict the penetration depth of the internal oxide by precipitation to be proportional to (time^{1/2})

Motivation: Environmental attack has the potential to limit turbine disk durability, particularly in next generation engines which will run hotter.

Understand environmental attack and its effect on the fatigue

resistance of disk alloys

Approach:

- NASA research contracts with GE and Honeywell to identify coatings with good corrosion resistance. In-house work now underway
- Walk before run: oxidation is ubiquitous
- Supersolvus ME3 from GE
- Subsolvus Alloy10 from Honeywell
- Flat coupon exposures in air: 704 °C,
 760 °C and 815 °C up to 2,020 hours
- NASA progress on fatigue response published in <u>Superalloys 2012</u>

Dwell Notched LCF: Telesman et al. in Superalloys 2012, 853.

Both fine grained and coarse grained disks are in flight

A fine grain size provides superior yield, tensile and low cycle fatigue strength → Subsolvus heat treated

A coarse grain size provides superior creep and crack growth resistance → Supersolvus heat treated

Dual-structure processing techniques to produce a <u>fine grain bore</u> in combination with a <u>coarse grain web and rim</u> offer significant benefits for advanced engine designs

Dual microstructure heat treatment (DMHT) technology

J. Gayda et al. in <u>Superalloys</u> 2004, 323

Fig. 1. Schematic of dual microstructure heat treatment (DMHT) assembly used for solution heat treatment of disk, with location of grain size transition zone indicated.

As-processed microstructure prior to exposures

wt.%	Cr	Co	Al	Ti	Nb	Ta	Мо	W	С	В	trace	Ni
ME3	13	21	3.4	3.7	0.8	2.4	3.8	2.1	0.05	0.02	Si, Fe, N, O, S, Zr	49.6
Alloy 10	12	19	3.4	3.5	1.4	1.4	2.5	4.6	0.03	0.03	0.06 Zr	bal

Supersolvus ME3

Grain size: 25 um - 34 um

Cr-rich M₂₃C₆

carbides ornament GBs

Ti, Ta, Nb-rich MC

carbides in interior & GBs

Tertiary γ' , 18 – 39 nm

GS: 5.26 ± 0.28 um (95%CI) Micron sized W₃B₂

Subsolvus A10

Cr-rich M₂₃C₆

carbides ornament GBs

Ti,Ta,Nb-rich MC

carbides in interior & GBs

How these disk alloys oxidize

Supersolvus ME3

X-Ray Diffraction confirmed

Cr₂O₃+TiO₂

y'-precipitate dissolution laver

- Cr₂O₃ external scale is intermixed with TiO₂ grains
- Ti is driven towards the surface to form primarily superficial TiO₂ grains
- Branched Al₂O₃ forms an internal oxide underneath the external scale causing γ' precipitates to dissolve in the near surface region

Cr_2O_3 TiO₂ Plan view

From cross sections, track evolution of

- 1.Cr₂O₃-TiO₂ external scale thickness
- 2.Al₂O₃ finger penetration depth
- 3.y'-precipitate dissolution layer thickness

k is the rate constant **Simple Power Law Fit** $\mathbf{v} = (k \cdot t)$ *n* is the temporal exponent

Track layer thicknesses precisely

Supersolvus ME3

704 °C for 2020 h

760 °C for 2020 h

815 °C for 2020 h

Three Areas

→ SEM, DIC

- 1. Avg. Oxide Scale Thickness (µm)
- 2. Avg. Al₂O₃ Finger Depth (μm)

Binary selection

3. Avg. γ '-dissolution layer thickness (μ m)

Differential Interference Contrast: 815 °C for 440 h

National Aeronautics and Space Administration Track layer thicknesses precisely

Supersolvus ME3

704 °C for 2020 h

760 °C for 2020 h

815 °C for 2020 h

Subsolvus A10

704 °C for 2020 h

760 °C for 2020 h

815 °C for 2020 h

2020 h end points for three isotherms

Supersolvus ME3	Scale Thickness (um)	Alumina Penetration Depth (um)	γ'-Dissolution Layer (um)		
Technique	SEM (3840)	SEM (24)	DIC (24)		
Distributed	Log normal	Normal	Normal		
704°C	1.32 ± 0.61	2.88 ± 0.81	3.14 ± 1.01		
760°C	1.97 ± 0.67	5.23 ± 0.67	5.96 ± 1.20		
815°C	3.79 ± 1.57	10.00 ± 1.16	10.75 ± 1.13		

	Subsolvus A10	Scale Thickness (um)	Alumina Penetration Depth (um)	γ'-Dissolution Layer (um)
	Technique	SEM (3840)	SEM (24)	DIC (24)
Ī	Distributed	Log normal	Normal	Normal
er	704°C	0.69 ± 0.22	1.32 ± 0.38	_
	760°C	1.77 ± 0.14	3.97 ± 0.66	5.80 ± 1.26
ar-	815°C	4.17 ± 0.32	9.43 ± 0.82	12.76 ± 0.60

slower

comparable

How do the reaction kinetics compare?

Supersolvus ME3

- Branched Al₂O₃ penetration depth follows parabolic growth law
- Both external scale thickness and γ'-dissolution layer follow a cubic growth law
 - γ' -dissolution layer is three times thicker than external oxide scale

Grain growth in external oxide may be responsible for t^{1/3} kinetics

Subsolvus A10

Agreement: External scale thickness shows a cubic growth law

Difference: Al₂O₃ penetration depth shows larger temporal exponent \rightarrow Primary γ '-ppts.

Difference: γ '-dissolution layer evolves parabolically \rightarrow short circuit diffusion

Microprobe chemical mapping: insight into diffusional processes

wt.%	Cr	Co	Al	Мо	C
ME3	13	21	3.4	3.8	0.05
Alloy 10	12	19	3.4	2.5	0.03

- GPD: Depletion of the major oxide elements Ti, Al, Cr, Ta
- GPD is γ-like, enriched in Co, Mo, but not Cr
- Partitioning in primary γ'
- Interfacial volume between GPD and and bulk enriched in Cr and Ti
 D(AI) ≈ 3 D(Cr)
- A striking feature is the dissolution of coarsened (Cr, Mo)₂₃C₆ carbides past the GPD
 - Associated GBs are depleted in Cr, Mo and Co
- More analysis planned!

Precise layer measurements give predictive capability for fatigue life models

$y = \left(\kappa_4 \cdot TDD\right)^{m4}$

By substitution

$$y = \left(\kappa_n \cdot (k_n(T) \cdot t)^{1/3}\right)^{-3} \propto t^{-1}$$

Supersolvus ME3: Notched LCF data at 704 °C

Sudbrack et al. in Superalloys 2012, 863

Future work → characterization of fatigue response for subsolvus Alloy 10

Conclusions

- For isothermal static oxidation of such alloys at 704 °C, 760 °C, and 815 °C, finegrained subsolvus disks oxidize similarly to coarse-grained supersolvus disks despite their differences in alloy chemistry and microstructure:
 - > Oxidation by-products: A continuous Cr₂O₃ external scale forms with superficial, faceted TiO₂ grains primarily at the exposed surface with an internal subscale of branched Al₂O₃ extends into a layer where the γ' -precipitates are dissolved.
 - External oxide growth: Sustained partially by dissolution of Cr-rich M₂₃C₆ grain boundary carbides, it has a cubic growth likely due to non-negligible oxide grain growth.
- However, the fine-grained subsolvus disks with primary γ'-precipitates can respond differently than coarse-grained supersolvus for:
 - Internal oxide growth: Larger temporal exponent for penetration depth of (time)^{2/3} for subsolvus compared to (time)^{1/2} for supersolvus
 - \nearrow y'-dissolution layer growth: Larger temporal exponent of (time)^{1/2} compared to (time)^{1/3}
- Interestingly, over certain temperature exposures, the penetration depth of the internal oxide could be smaller for the subsolvus than supersolvus, suggesting that in addition to coarse γ '-precipitates other factors influence the growth process
 - Additional experiments: subsolvus ME3 and supersolvus Alloy 10