INTEGER LINEAR PROGRAMMING - INTRODUCTION

Integer Linear Programming

Integer Linear Programming

- Relaxation to a (real-valued) Linear Program
 - How does the LP relaxation answer relate to the ILP answer?
 - Integrality Gap
- Complexity of Integer Linear Programs
 - NP-Completeness
 - Some special cases of ILPs.
- Algorithms:
 - Branch-And-Bound
 - Gomory-Chvatal Cuts

INTEGER LINEAR PROGRAMMING: LP RELAXATION

- I. Relax an ILP to an LP
- 2. Examples with same answers and different answers.
- 3. Integrality gap.

Integer Linear Programming

Integer Linear Program

- Feasibility of ILP:
 - Integer feasible solution.

- Unbounded ILP:
 - Integer feasible solutions can achieve arbitrarily large values for the objective.

Linear Programming Relaxation

Q:What happens to the answer if we take away the integrality constraints?

Feasible Regions

ILP feasible region ⊆ LP feasible region

Case-I: Both LP and ILP are feasible.

Case-I

Optimal Objective of ILP ≤ Optimal solution of LP relaxation.

Example-I

Example-2

Case-II: LP relaxation is feasible, ILP is infeasible.

 $\max x$

s.t.

3 < 10x < 5

ILP is infeasible.

LP relaxation has optimal solution: 0.5

Case III: ILP is infeasible, LP is unbounded.

Example:

 $\begin{array}{ccc}
\max & y \\
3 \le & 10x & \le 5 \\
0 \le & y
\end{array}$

ILP is infeasible.

LP relaxation is unbounded

ILP outcomes vs. LP relaxation outcomes

Integer Linear Program (ILP)

LP Relaxation

	Infeasible	Unbounded	Optimal
Infeasible	Possible	Impossible	Impossible
Unbounded	Possible	Possible	Possible (*)
Optimal	Possible	Impossible	Possible

(*) Impossible if ILP has rational coefficients

Summary (LP relaxation)

• LP relaxation: ILP minus the integrality constraints.

 LP relaxation's feasible region is a super-set of ILP feasible region.

 Analysis of various outcomes for ILP vs. outcomes for LP relaxations.

LP RELAXATION VS. ILP RELAXATION

Claim

LP relaxation's answer can be arbitrarily larger than the ILP's answer.

COMPLEXITY OF ILP

Complexity of Integer Linear Programs

Integer Linear Programming problems are NP-complete

Implications of P vs NP question

- P=NP
 - Considered an unlikely possibility by experts.
 - In this case, we will be able to solve ILPs in polynomial time.

- P != NP
 - In this case, we can show a non-polynomial lower bound on the complexity of solving ILPs.

Current State-of-the-art

- We have some very good algorithms for solving ILPs
 - They perform well on some important instances.
 - But, they all have exponential worst-case complexity.
- Compared to LPs,
 - The largest ILPs that we can solve are a 1000-fold smaller.

- Two strategies:
 - Try to solve the ILP
 - Find approximate answers for some special ILP instances.

ILPAND COMBINATORIAL OPTIMIZATION

Reducing 3-SAT to ILP

3-SAT Problem

$$x_1, x_2, x_3, x_4$$
 Boolean Variables

$$\begin{vmatrix} (x_1 \text{ OR } x_2 \text{ OR } \neg x_3) \\ (\neg x_2 \text{ OR } \neg x_4 \text{ OR } x_1) \\ (x_1 \text{ OR } x_2 \text{ OR } \neg x_3) \end{vmatrix}$$

$$(\neg x_2 \text{ OR } \neg x_4 \text{ OR } x_1)$$

Find values for Boolean variables

such that

All the Clauses are True.

3-SAT Problem (Infeasible/Unsat)

$$x_1, x_2, x_3, x_4$$
 Boolean Variables

$$(x_1 \text{ OR } \neg x_4 \text{ OR } x_2)$$

$$(\neg x_1 \text{ OR } \neg x_4 \text{ OR } x_2)$$

$$(x_4 \text{ OR } x_2)$$

$$(\neg x_2)$$

No Boolean valuation satisfies all 4 clauses.

Reducing 3-SAT to ILP

```
x_1, \ldots, x_n are Boolean variables. C_1: (\ell_{1,1} \text{ OR } \ell_{1,2} \text{ OR } \ell_{1,3}) \vdots \cdots m Clauses. C_m: (\ell_{m,1} \text{ OR } \ell_{m,2} \text{ OR } \ell_{m,3})
```

 $\ell_{i,j}$ stands for a variable x_k or its negation $\neg x_k$

ILP reduction.

$$x_j o y_j \in \{0,1\}$$
 False = 0 True = 1
$$\neg x_j \equiv (1-y_j)$$
 Clauses
$$(x_1 ext{ OR } x_2 ext{ OR } \neg x_5) o y_1 + y_2 + (1-y_5) \ge 1$$

Example-I

$$(x_1 \text{ OR } x_2 \text{ OR } \neg x_3)$$

$$(\neg x_2 \text{ OR } \neg x_4 \text{ OR } x_1)$$

$$(x_1 \text{ OR } x_2 \text{ OR } \neg x_3)$$

Example-2

```
(x_1 \text{ OR } \neg x_4 \text{ OR } x_2)
(\neg x_1 \text{ OR } \neg x_4 \text{ OR } x_2)
(x_4 \text{ OR } x_2)
(\neg x_2)
```

ILP AND VERTEX COVER

A flavor of approximation algorithms

Rounding Schemes

• LP relaxation yields solutions with fractional parts.

However, ILP asks for integer solution.

- In some cases, we can approximate ILP optimum by "rounding"
 - Take optimal solution of LP relaxation
 - Round the answer to an integer answer using rounding scheme.
 - Deduce something about the ILP optimal solution.

Vertex Cover Problem

Choose smallest subset of vertices Every edge must be "covered"

```
Eg, { 1, 2, 3, 5 } or {1, 2, 3, 7 }
```

ILP for the vertex cover problem (Example)

ILP decision variables

$$x_1,\ldots,x_8$$

$$x_i = \begin{cases} 0 & \text{Vertex } \# i \text{ not chosen in subset} \\ 1 & \text{Vertex } \# i \text{ is chosen in subset} \end{cases}$$

ILP for the vertex cover problem (Example)

Vertex Cover to ILP

- Vertices { I,..., n}
 - Decision variables: x_1, \ldots, x_n

$$x_i \in \{0, 1\}$$

min
$$\sum_{i=1}^{n} x_i$$
s.t.
$$0 \le x_i \le 1 \quad \forall i \in V$$

$$x_i + x_j \ge 1 \quad \forall (i, j) \in E$$

$$x_i \in \mathbb{Z} \quad \forall i \in V$$

LP relaxation of a vertex cover

Problem: we may get fractional solution.

x_1	1
x_2	1
x_3	$\frac{3}{4}$
$ x_4 $	0
$ x_5 $	$\frac{5}{6}$
x_6	Ŏ
$ x_7 $	$\frac{1}{6}$
x_8	$\frac{1}{4}$
'	$\begin{array}{ c c }\hline \frac{1}{6} \\ \hline \frac{1}{4} \\ \hline \end{array}$

Objective value: 4

But solution meaningless for vertex cover.

Rounding Scheme

Simple rounding scheme:

$$x_i^* \ge \frac{1}{2} \quad \to \quad x_i = 1$$

Real-Optimal Solution is at least 0.5

Include vertex in the cover.

$$x_i^* < \frac{1}{2} \rightarrow x_i = 0$$

LP relaxation of a vertex cover

Problem: we may get fractional solution.

Rounding Scheme

Rounding scheme takes optimal fractional solution from LP relaxation and produces an integral solution.

$$\mathbf{x}^* \xrightarrow{\text{rounding}} \hat{\mathbf{x}}$$

- I. Does rounding always produces a valid vertex cover?
- 2. How does the rounded solution compare to the opt. solution?

Rounding Scheme Produces a Cover

$$\mathbf{x}^* \xrightarrow{\text{rounding}} \hat{\mathbf{x}}$$

$$x_i^* + x_i^* \ge 1$$
, for each $(i, j) \in E$

$$\hat{x}_i = 1 \text{ or } \hat{x}_j = 1 \text{ for each } (i, j) \in E$$

To Prove: The solution obtained after rounding covers every edge.

Rounding Scheme Approximation Guarantee

Fact: $2x_i^* \ge \hat{x_i}$ for all vertices i.

$$2\sum_{i=1}^{n} x^* \ge \sum_{i=1}^{n} \hat{x_i}$$

 $2 * (Cost of LP relaxation) \ge (Cost of Rounded Scheme Vertex Cover)$

Approximation Guarantee

- Theorem #1: Rounding scheme yields a vertex cover.
- Cost of the solution obtained by rounding: C
- Optimal vertex cover cost: C*
- Theorem #2: $C^* \le C \le 2 C^*$
- LP relaxation + rounding scheme:
 - 2-approximation for vertex cover!!

SOLVING ILP USING GLPK

Specifying integer variables in Mathprog

GLPK integer solver

- GLPK has a very good integer solver.
 - Uses branch-and-bound + Gomory cut techniques
 - We will examine these techniques soon.

- In this lecture,
 - Show how to solve (mixed) integer linear programs
 - Continue to use AMPL format.

This is the best option for solving ILPs/MIPs

Example-I (ILP)

Specifying variable type

var x; # specifies a real-valued decision variable var y integer; # specifies an integer variable var z binary; # specifies a binary variable

Example – I expressing in AMPL

```
var x\{1..6\} integer;
# Declare 6 integer variables
minimize obj: sum{i in 1..6} x[i];
c1: x[1] + x[2] >= 1;
c2: x[1] + x[2] + x[6] >= 1;
c4: x[3] + x[4] >= 1;
c5: x[3] + x[4] + x[5] >= 1;
c6: x[4] + x[5] + x[6] >= 1;
c7: x[2] + x[5] + x[6] >= 1;
solve:
display{i in 1..6} x[i];
end
```

```
\min
               +x_2 +x_3 +x_4 +x_5 +x_6
               +x_2
        x_1
                                             \begin{array}{ccc} +x_6 & \stackrel{-}{\geq} & 1 \\ & \stackrel{\geq}{\geq} & 1 \end{array}
               +x_2
                               +x_4
                               +x_4 +x_5
                                        +x_5 +x_6 > 1
                                x_4
                                        +x_5
                                                +x_6 \geq 1
                x_2
                       x_3,
                                x_4,
                                        x_5,
       x_1,
               x_2,
```

Example-I Solving using GLPK

glpsol -- math ip1.math

```
Display statement at line 25
x[1].val = 0
x[2].val = 1
x[3].val = 0
x[4].val = 1
x[5].val = 0
x[6].val = 0
Model has been successfully processed
```

Example -2

Vertex Cover Problem

source mathpuzzle.com

Vertex Cover to ILP

- Vertices { I,..., n}
 - Decision variables: x_1, \ldots, x_n

$$x_i \in \{0, 1\}$$

min
$$\sum_{i=1}^{n} x_i$$
s.t.
$$0 \le x_i \le 1 \quad \forall i \in V$$

$$x_i + x_j \ge 1 \quad \forall (i, j) \in E$$

$$x_i \in \mathbb{Z} \quad \forall i \in V$$

Vertex Cover AMPL (Model + Data)

```
param n;
var x \{1..n\} binary;
                                                       data:
# binary specifies that the variables are binary
                                                       param n := 16;
set E within \{i \text{ in } 1..n, j \text{ in } 1..n : i < j\};
                                                       set E := (2,3)(3,5)(5,8)
# specify that the edges will be a set.
                                                                (4,16)(5,16)(8,14)
# each edge will be entered as (i,j) where i < j
                                                             (1,8)(4,12)(3,12)(4,14)
                                                            (1,12)(2,14)(2,15)(1,15)(15,16);
minimize obj: sum\{i in 1..n\} x[i];
# minimize cost of the cover
s.t.
c\{(i,j) \text{ in } E\}: x[i] + x[j] >= 1;
                                                       end;
solve;
display\{i in l..n\} x[i];
```

Running GLPK ...

glpsol -m vertexCover.model

$$x[1].val = 0$$

$$x[2].val = 1$$

$$x[3].val = 0$$

$$x[4].val = 1$$

$$x[5].val = 1$$

$$x[6].val = 0$$

$$x[7].val = 0$$

$$x[8].val = 1$$

$$x[9].val = 0$$

$$x[10].val = 0$$

$$x[11].val = 0$$

$$x[12].val = 1$$

$$x[13].val = 0$$

$$x[14].val = 0$$

$$x[15].val = 1$$

$$x[16].val = 0$$

SOLVING ILPS IN MATLAB/OCTAVE

MATLAB Optimization Package

- Supports solving binary integer programming problem
- "bintprog function"
- Same interface as linprog.
 - Except that all variables are assumed binary.

- Uses branch-and-bound
 - Not considered to be a good implementation.

CVX

 Unfortunately, does not support integer programming in the free version.

- Links to commercial tools Gurobi/MOSEK/CPLEX
 - Powerful state of the art integer solvers.
 - They make it available to academic users for free.

We will continue to use GLPK for MATLAB/Octave.

Solution for MATLAB

 We will use glpkmex: a glpk interface to matlab and octave.

http://sourceforge.net/projects/glpkmex/

Octave users may already know about this interface.

It implements a convenient function glpk(..)

Over to matlab demo...