Príklad na celočíselné (resp. v tomto prípade bivalentné) programovanie: Výber zákaziek

V skúmanom období môže podnik prevziať 6 rôznych zákaziek, ktoré sa líšia spotrebou času a materiálu. Kapacity výrobného zariadenia a zásob materiálu sú obmedzené. Úlohou je rozhodnúť, ktoré zákazky má podnik prevziať.

Zakazka	1	2	3	4	5	6	Kapacita
Zisk	11	63	9	5	4	8	-
Cas	1	7	1	1	1	5	15
Material	15	70	10	5	3	2	100

(0)

$$f(\bar{x}) = 11x_1 + 63x_2 + 9x_3 + 5x_4 + 4x_5 + 8x_6 \stackrel{!}{=} MAX$$

$$x_1 + 7x_2 + x_3 + x_4 + x_5 + 5x_6 \le 15$$

$$15x_1 + 70x_2 + 10x_3 + 5x_4 + 3x_5 + 2x_6 \le 100$$

OBRÁZOK:

VÝPOČET:

1. Vetvenie

11+63
$$x_2$$
+9 x_3 +5 x_4 +4 x_5 +8 x_6 =MAX
7 x_2 + x_3 + x_4 + x_5 +5 x_6 ≤ 14 f_H = 100
70 x_2 +10 x_3 +5 x_4 +3 x_5 +2 x_6 ≤ 85 f_S = $f(1,0,0,0,0,0)$ =11

2. Vetvenie (rozhodli sme sa pre lebo dáva nádej na väčší zisk.)
Vychádzajúc z :

$$\begin{array}{c}
4 \\
11 + 9x_3 + 5x_4 + 4x_5 + 8x_6 \stackrel{!}{=} MAX \\
x_3 + x_4 + x_5 + 5x_6 \le 14 \\
10x_3 + 5x_4 + 3x_5 + 2x_6 \le 85
\end{array}$$

$$f_H = 37$$

$$f_S = f(1,0,0,0,0,0) = 11$$

3. Vetvenie (rozhodli sme sa pre (3) lebo dáva nádej na väčší zisk.) - Vychádzajúc z (3):

6
$$74 + 5x_4 + 4x_5 + 8x_6 = MAX$$

 $x_4 + x_5 + 5x_6 \le 7$ $f_H = 91$
 $5x_4 + 3x_5 + 2x_6 \le 15$ $f_S = f(1,1,0,0,0,0) = 74$

4. Vetvenie (rozhodli sme sa pre 5 lebo dáva nádej na väčší zisk.)
 Vychádzajú z 5

$$\begin{array}{ccc}
8 & & & & & & & \\
83 + 4x_5 + 8x_6 & = MAX & & & & \\
x_5 + 5x_6 & \leq 6 & & & & f_H = 95 \\
3x_5 + 2x_6 & \leq 5 & & & f_S = f(1,1,1,0,0,0) = 83
\end{array}$$

 5. Vetvenie (rozhodli sme sa pre Vychádzajú zo ⁷ : 	7 lebo dáva nádej na väčší zisk.)
$9 92 + 8x_6 = MAX$	

$$5x_6 \le 4$$
 $2x_6 \le -3$ => nemôže byť splnené, takže riešenie v tejto podmnožine neexistuje

$$\begin{array}{ll}
10 & 88 + 8x_6 = MAX \\
5x_6 \le 5 & f_H = 96 \\
2x_6 \le 0 & f_S = f(1,1,1,0,0) = 88
\end{array}$$

6. Vetvenie (rozhodli sme sa pre 10 lebo dáva nádej na väčší zisk.) - Vychádzajú z 10 :

$$f(\bar{x}) = 96$$

$$5 \le 5$$

$$2 \le 0 \qquad => \text{nespĺňa, takže riešenie v tejto podmnožine neexistuje}$$

$$\begin{array}{ll}
f(x) = 88 \\
0 \le 5 \\
0 \le 0
\end{array}$$

$$f_H = 88 \\
f_S = f(1,1,1,1,0,0) = 88$$

7. Vetvenie (rozhodli sme sa pre 8 lebo dáva nádej na väčší zisk.)
- Vychádzajú z 8:

$$\begin{array}{ll}
 & 87 + 8x_6 = MAX \\
 & 5x_6 \le 5 \\
 & 2x_6 \le 2
\end{array} \qquad f_H = 95 \\
 & f_S = f(1,1,1,0,1,0) = 87
\end{array}$$

14
$$83 + 8x_6 = MAX$$

 $5x_6 \le 6$
 $2x_6 \le 5$
 $f_H = 91$
 $f_S = f(1,1,1,0,0,0) = 83$

8. Vetvenie (rozhodli sme sa pre (13) lebo dáva nádej na väčší zisk.)
Vychádzajú z (13) :

$$\begin{array}{ll}
f(x) = 95 \\
0 \le 0 \\
0 \le 0
\end{array}$$

$$f_s = f(1,1,1,0,1,1) = 95$$

16
$$f(\bar{x}) = 87$$

 $0 \le 5$
 $0 \le 2$
 $f_S = f(1,1,1,0,1,0) = 87$