Student's Code [Your Code] January 3, 2024 Assignment [X] ON [COURSE NAME] Deadline [Date, Time]

1 Solution of Exercise 1

Let V and W be two vectors spaces over a field K and $T:V\longrightarrow W$ be a linear map. Show that:

- a) $T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i)$ where $a_i \in K, \forall i = 1, 2,, n(x_1,, x_n) \in V$, To show this, let's use the linearity property of the linear transformation T. A linear transformation T satisfies two properties: additivity and homogeneity.
 - 1. Additivity: T(u+v) = T(u) + T(v) for all vectors u,v in the domain V.
 - 2. **Homogeneity:** T(cu) = cT(u) for all vectors u in the domain V and all scalars c in the field K.

Now, let's prove the given statement: Given: $(a_1, ..., a_n) \in K$ and $(a_1, ..., a_n) \in V$, we want to show that: $T(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^n a_i T(x_i)$ We can use induction to prove this statement. The base case is n = 1, where the statement is trivially true.

Base case (n=1): $T(a_1x_1) = a_1T(x_1)$ This holds true by linearity property of T.

Inductive Step : Assume that the statement holds for n=k, i.e., $T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i)$

Now, consider
$$n = k + 1$$
: $(\sum_{i=1}^{k+1} a_i x_i) = T(\sum_{i=1}^{k+1} a_i x_i + a_{k+1} x_{k+1})$

By the additivity property of T, this is equal to:

$$T(\sum_{i=1}^{k} a_i x_i) + T(a_{k+1} x_{k+1})$$

Now, apply the inductive assumption: $\sum_{i=1}^{k} a_i T(x_i) + T(a_{k+1} x_{k+1})$ Now, by the homogeneity property, $T(a_{k+1} x_{k+1}) = a_{k+1} T(x_{k+1})$:

$$\sum_{i=1}^{k} a_i T(x_i) + a_{k+1} T(x_{k+1})$$

Lecturer: [CheikhOmar BA]

b) if $(v_1, ..., v_n) \in V$ is a dependent family of vectors then $(T(v_1), ..., T(v_n))$ is also dependent, if $(v_1, ..., v_n) \in V$ is a dependent family of vectors then, here exist scalars $c_1, ..., c_n$, not all zero, such that:

 $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$ Now, let's apply the linear transformation T to both sides of this equation:

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = T(0)$$

Using the linearity property of T, we get:

$$c_1T(v_1) + c_2T(v_2) + \dots + c_nT(v_n) = 0$$

This shows that $(T(v_1), ..., T(v_n))$.

So, the dependence of the original family of vectors is preserved under the linear transformation T.

c) if, moreover, T is one to one and $(v_1, ..., v_n) \in V$ is an independent family of vectors then $(T(v_1), ..., T(v_n))$ is also independent,

Let's prove this: Suppose $(v_1,, v_n)$ is an independent family of vectors in V. This means that the equation

 $c_1v_1 + c_2v_2 + + c_nv_n = 0$ implies that all the coefficients $c_1, c_2,, c_n$ are zero.

Now, consider the image of this equation under the linear transformation T:

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = T(0)$$

Using the linearity property of T, this becomes:

$$c_1T(v_1) + c_2T(v_2) + \dots + c_nT(v_n) = 0$$

Since T is injective, the only way the linear combination $c_1T(v_1) + c_2T(v_2) + ... + c_nT(v_n)$ can equal zero is if all the coefficients $c_1, c_2,, c_n$ are zero. This follows from the injectivity of T.

Therefore, $(T(v_1), ..., T(v_n))$ is an independent family of vectors in the range of T.

d) if, moreover, T is onto and $S \subset V$ is a spanning set for V then T(S) is spanning set for W.

Let's prove this:

1. $S \subset V$ is a spanning set for V: This means that every vector $v \in V$ can be expressed as a linear combination of vectors in S. Mathematically, for any $v \in V$, there exist scalars $c_1, c_2,, c_n$ and vectors $s_1, s_2,, s_n \in S$ such that:

$$v = c_1 s_1 + c_2 s_2 + \dots + c_n s_n$$

2. T is onto (surjective):

This means that every vector in the codomain W is the image of at least one vector in V under T. Now, consider an arbitrary vector $w \in W$. Since T is onto, there exists a vector $v \in V$ such that T(v) = w. By the spanning property of $S \in V$, we can express v as a linear combination of vectors in S:

$$v = c_1 s_1 + c_2 s_2 + \dots + c_n s_n$$

Now, apply T to both sides: $w = T(v) = c_1 T(s_1) + c_2 T(s_2) + \dots + c_n T(s_n)$

This shows that w can be expressed as a linear combination of vectors in T(S). Since w was arbitrary, it follows that T(S) is a spanning set for W.

Therefore, if T is onto and $S \subset V$ is a spanning set for V, then T(S) is a spanning set for W.

2 Solution of Exercise 2

Let P_2 be the set of polynomials of degree less or equal to two and

$$T: \mathbb{P}_2 \longrightarrow \mathbb{P}_2$$
$$f \longmapsto f'$$

be a linear map. Consider the family:

$$\beta_{\mathbb{P}_2} = \{2 + x, 1 + x, \frac{1}{2}x^2\}$$

a) Prove that $\beta_{\mathbb{P}_2}$ is a basis of \mathbb{P}_2 . The first thing to do is prove that the vectors in $\beta_{\mathbb{P}_2}$ are linearly independent. We want to show that for scalars, c_1, c_2, c_3 , if $c_1(2+x) + c_2(1+x) + c_3(\frac{1}{2}x^2) = 0$, then $c_1 = c_2 = c_3 = 0$

$$c_1(2+x) + c_2(1+x) + c_3(\frac{1}{2}x^2) = 0$$

Expand this equation:

$$2c_1 + c_2 + \frac{1}{2}c_3x^2 + (c_1 + c_2)x = 0$$

The only way for this polynomial to be identically zero for all x is if each coefficient is zero.

So, we set each coefficient to zero:

$$\begin{cases} 2c_1 + c_2 = 0 \\ c_1 + c_2 = 0 \\ \frac{1}{2}c_3 = 0 \end{cases}$$

The solutions to this system are $c_1 = c_2 = c_3 = 0$, which means that the vectors in $\beta_{\mathbb{P}_2}$ are linearly independent.

The second condition is to show that $\beta_{\mathbb{P}_2}$ Spanning set: Any polynomial f in \mathbb{P}_2 can be expressed as a linear combination of vectors in $\beta_{\mathbb{P}_2}$.

It is not necessary to prove the second condition, because $\beta_{\mathbb{P}_2}$ dimension is equal to three and vectors of $\beta_{\mathbb{P}_2}$ are linearly independent, then we can conclude that $\beta_{\mathbb{P}_2}$ spans \mathbb{P}_2 .

b) Determine the matrix M_T of the map T with respect to the basis to the basis $\beta_{\mathbb{P}_2}$.

To find the matrix representation of f with respect to the canonical basis $\gamma = e_1, e_2, e_3$ where $e_1 = (1, 0, 0), e_2 = (0, 1, 0) and e_3 = (0, 0, 1) 1$, we apply f to each vector in γ . $T(e_1) = (2, 1, 0) = 2e_1 + e_2$

$$T(e_2) = (1, 1, 0) = e_1 + e_2$$

 $T(e_3) = (0, 0, \frac{1}{2}) = \frac{1}{2}e_3$

Therefore, the matrix M_T representing f with respect to γ is:

$$M_T = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

3 Solution of exercice 3

Is the set of matrices over a field K with m rows and n columns, denoted by $M_{m\times n}(\mathbb{K})$, a vector space? Justify your answer clearly

To show this, we need to verify the ten axioms of a vector space. Here's a brief justification for each axiom:

- 1. Closure under Addition:
 - . If A and B are matrices in $M_{m\times n}(\mathbb{K})$, then A+B is also in $M_{m\times n}(\mathbb{K})$ because the sum of two mxn matrices is still an mxn matrix.
- 2. Associativity of Addition:
 - . Matrix addition is associative, i.e., (A+B)+C=A+(B+C) for any matrices A, B and C in $M_{m\times n}(\mathbb{K})$.
- 3. Existence of an Additive Identity:

- . The zero matrix (O), where all entries are zero, serves as the additive identity. For any matrix A in $M_{m\times n}(\mathbb{K})$, we have A+0=A
- 4. Existence of Additive Inverses:
 - . For any matrix in $M_{m\times n}(\mathbb{K})$,, the additive inverse ?A exists, and A+(-A)=0.
- 5. Closure under Scalar Multiplication:
 - . If A is a matrix in $M_{m \times n}(\mathbb{K})$ and c is a scalar in K, then cA is also in $M_{m \times n}(\mathbb{K})$ because scalar multiplication of a matrix by a scalar produces another matrix of the same size.
- 6. Compatibility of Scalar Multiplication with Field Multiplication:
 - . Scalar multiplication is compatible with field multiplication, i.e., (cd)A = c(dA) for any scalars c and d in K and any matrix $A \in M_{mxn}(\mathbb{K})$.
- 7. Identity Element for Scalar Multiplication:
 - . The identity element for scalar multiplication is 1 in the field K.1A = A for any matrix $A \in M_{mxn}(\mathbb{K})$
- 8. Distributivity of Scalar Multiplication with Respect to Vector Addition:
 - . Scalar multiplication distributes over vector addition, i.e., c(A+B)=cA+cB for any scalar c and matrices $AandB \in M_{mxn}(\mathbb{K})$. K.1A=A for any matrix $A \in M_{mxn}(\mathbb{K})$
- 9. Distributivity of Scalar Multiplication with Respect to Field Addition:
 - . Scalar multiplication distributes over field addition, i.e., (c+d)A = cA + dA for any scalars c and d in for any scalar c and $d \in K$ and any matrix $A \in M_{mxn}(\mathbb{K})$.
- 10. Compatibility of Scalar Multiplication with Matrix Multiplication:
 - . Scalar multiplication is compatible with matrix multiplication, i.e., (cd)A = c(dA) for any scalars c and d in for any scalar c and $d \in K$ and any matrix $A \in M_{mxn}(\mathbb{K})$ for any scalars c and d $\in K$ and any matrix $A \in M_{mxn}(\mathbb{K})$.

Since all ten axioms are satisfied, $M_{mxn}(\mathbb{K})$ is indeed a vector space over the field K