Let $h^* \in \mathcal{H}$ be the optimal hypothesis.

- $b^* = min_{h_i \in \mathcal{H}} \mathcal{R}(h_i)$

What does the term PAC mean in statistical learning theory?

- Probably Almost Correct.
- Probably Approximately Correct.
- Open Potentially Approximately Correct.

In the following generalization bound

$$\mathcal{R}(h) \leq \hat{\mathcal{R}}(h) + \sqrt{\frac{1}{2m}log\frac{2|\mathcal{H}|}{\delta}},$$

- $\hat{\mathcal{R}}(h)$ represents:
 - \bullet A measure of complexity of h.
- The bias.
- The variance.

The VC-dimension of a hyperplane in \mathbb{R}^3 is equal to:

- **a** 3
- 4
- **3** !

Which statement is true?

- $\hat{\mathcal{R}}(h^*) \leq \hat{\mathcal{R}}(h)$

The Bayesian error is supposed to be $\epsilon_B = 3\%$. A classifier h has a training error=5% and a validation error=10%.

- The avoidable error is 2% and the variance is 5%.
- The avoidable error is 5% and the variance is 2%.
- The avoidable error is 3% and the variance is 7%.

In the following optimization problem:

arg
$$\min_{h_{ heta} \in \mathcal{H}} \hat{\mathcal{R}}^{\ell}(h_{ heta}) + \lambda ||\theta||_{p}^{p}$$

- \bullet θ , ℓ , λ and p are all parameters.
- **o** θ , ℓ and p are parameters and λ is a hyperparameter.
- **(a)** θ is a parameter and p, ℓ and λ are hyperparameters.