This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CSD 4 H 03 K 5/156

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- $(2\overline{1})$ 3927112/24-21
- (22) 03.07.85
- (46) 07.02.88. Бюл. № 5
- (72) Н.Н. Леготин и Б.Д. Кузьмин
- (53) 621.374.4(088.8)
- (56) Авторское свидетельство СССР 1231594, кл. Н 03 К 5/156, 1983. Патент США 1 3605025, кл. 328-48, 1971.
- (54) УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ СЛЕДОВАНИЯ ИМПУЛЬСОВ
- (57) Изобретение относится к радиоэлектронной технике, где требуется получать токи частот f_c , находящиеся в дробно-рациональной кратности с исходной частотой $f_{\rm NC}$. Целью изобретения является повышение надежности

. устройства путем уменьшения объема оборудования в результате изменения алгоритма расчета. Для достижения поставленной цели в устройство дополнительно введены вентиль 4 запрета и делитель 5 частоты. Кроме того, устройство содержит генератор 1 импульсов. М делителей 2.1-2.М частоты, (М-1) вентилей 3.1-3.М-1 запрета. Устройство может быть также использовано для синтеза двух или более кратных частот одновременно, так как двоичная импульсная последовательность вида квазимеандра формируется не только на выходе введенного делителя частоты, но и на выходе последнего делителя частоты. 2 ил.

Фиг.1

Изобретение относится к радиоэлектронике и электронной технике,
где требуется получать токи частот (f_0) , находящиеся в дробно-рациональ- 5
ной кратности с исходной частотоы (f_{NC}) , причем, в ряде случаев, когда
эначение P — простое число (где $f_{NC}/f_0 = P/Q$, a $Q = 2^9$, где $Q = 2^9$, гд

Целью изобретения является повышение надежности устройства за счет уменьшения объема оборудования вслед-15 ствие изменения алгоритма расчета.

На фиг. 1 изображено устройство для преобразования частоты следования импульсов; на фиг. 2 — временные диаграммы, поясняющие работу устройства.

Устройство для преобразования частоты следования импульсов содержит генератор 1 импульсов, М делителей 25 2.1-2.М. частоты (М-1) вентилей (3.1.-3.М-1) запрета, выход каждого і-го из которых соединен с входом соответствующего і-го делителя частоты, причем выход i-го делителя частоты (і = 2,3,...,М) соединен с управ- 30 ляющим входом (i-1)-го вентиля запрета, дополнительный вентиль 4 запрета и делитель 5 частоты, причем вход дополнительного вентиля 4 запрета соединен с выходом генератора 1 импульсов, управляющий вход - с выхо-дом первого делителя 2.1 частоты, выход которого подключен к входам (М-1) вентиля запрета и является выходом устройства.

Введение таких дополнительных элементов и связей приводит к изменению функциональной зависимости между числами Р и Q с, а также коэффициентов деления (КД) ДЧ и их количеством. Аналитически эти зависимости могут быть представлены для известного устройства в виде

$$\frac{Q}{P} = \frac{1}{n_{ij}} + \sum_{i=1}^{N-1} \frac{(-1)^i}{n_1 n_2 \dots n_{i+1}},$$

а для предлагаемого

$$\frac{Q}{P} = \frac{1}{m_1 + \frac{1}{m_2} + \sum_{i=2}^{M-1} \frac{(-1)^{i-i}}{m_1 m_2 + \cdots + m_{i+1}}},$$

где n_1 , m_1 - КД ДЧ в схемах известного и предлагаемого устройств соответственно.

Введение дополнительных элементов и изменение функциональной связи приводят к изменению алгоритма расчета параметров схемы синтеза и, в конечном итоге, к упрощению схемы, заключающемуся в уменьшении количества ДЧ и вентилей запрета, которые требуются для получения заданного отношения Р/Q, так как М < N, и в уменьшении КД отдельных ДЧ, т.е. к уменьшению аппаратурных затрат, необходимых для реализации устройства в целом.

Коэффициенты деления ДЧ предлагаемой схемы рассчитываются по следующим формулам:

$$m_{0} = \left[\frac{P}{Q}\right];$$

$$m_{1} = 2 \qquad , \quad r_{1} = P - m_{0}Q;$$

$$m_{2} = 2^{\left[\log_{2}\frac{Q}{r_{1}}\right]}, \quad r_{2} = Q - m_{1}r_{1};$$

$$m_{3} = 2^{\left[\log_{2}\frac{Q}{r_{m}}\right]}, \quad r_{3} = Q - m_{2}r_{2};$$

$$r_{m+1} = 0,$$

где [X] - целая часть X.

На фиг. 2 показаны временные диаграммы, поясняющие работу устройства для случая Р = 19, Q = 8. Устройство содержит генератор 1 импульсов, делители 2.1 и 2.2 частоты, вентиль 3.1 запрета, управляющий вход которого соединен с выходом делителя 2.2, а выход - с входом делителя 2.1, дополнительный вентиль 4 запрета, управляющий вход которого соединен с выходом делителя 2.1, а вход - с выходом генератора 1 импульсов, дополнительный делитель 5 частоты, вход которого подключен к выходу дополнительного вентиля 4 запрета, а выход - к входу вентиля 3.1 запрета, входу делителя 2.2 частоты и является выходом 6 уст-

Временные диаграммы (фиг. 2) относятся к выходу генератора і импульсов а, к выходу вентиля запрета 4 б, к выходу дополнительного делителя 5 частоты в,к выходу делителя 2.2 частоты 2, к выходу вентиля 3.1 запрета д, к выходу делителя 2.1 частоты е.

Устройство (фиг. 2) для случая $f_{\text{NC}} = 3800 \text{ КГц (P = 19); } f_{\text{C}} = 1600 \text{ кГц (Q = 8) работает следующим образом.}$

Пусть в начальный момент времени на выходах всех элементов установлен уровень логического нуля. Как видно из временных диаграмм, представленных 5 на фиг. 2, после появления каждого спада у двоичной импульсной последовательности (ДИП), формируемой на выходе делителя 2.2 частоты с КД, равным четырем, вентили 3.1 и 4 запрета поглощают по одному импульсу из последовательностей, поступающих на их сигнальные входы. Причем дополнительный вентиль 4 запрета поглощает импульсы из исходной ДИП, а вентиль 3.1. запрета - из последовательности, сформированной на выходе дополнительного делителя 5 частоты. Остальные элементы (делители 5.2.1, 5.2.2) осуществляют деление частот следования импульсов последовательностей, поступающих на их входы, на два или четыре. На выходе устройства, обозначенного клеммой, формиру-

3

может быть рассчитан по формуле
$$U_{m} = \frac{hU}{m^{\frac{2}{n}}} \left[\frac{\sin \frac{m\pi}{2P}}{\cos \left[\frac{m\pi}{2PQ} (2Ph+P-1) \right]} \right], (1)$$

ется ДИП вида квазимеандра, спектр

частоты повторения $(F_c = f_{wc}/P = f_c/Q)$

которого (амплитуда ш-й гармоники

где U - размах квазимеандра; h - решение сравнения вида

2Ph ≡ -(P+Q-1) mod Q. (2) При этом, нормированное относительно первой гармоники меандра значение полезной компоненты

$$A_{Q} = \frac{1}{Q} \left| \frac{\sin \frac{Q \hat{n}}{2P}}{\sin \frac{\hat{n}}{2P}} \right|. \tag{3}$$

Анализ выражения (3) показывает, что уровни полезной компоненты спект- 45 ра при любых значениях величин Р и Q лежат в пределах $\frac{2}{T} < A_Q \le 1$.

Необходимо отметить, что предлагаемое устройство может быть использовано для синтеза двух и более (кратных) частот одновременно, так как ДИП вида квазимеандра формируется не только на выходе введечного ДЧ, но и на выходе последнего ДЧ.

Формула изобретения

Устройство для преобразования частоты следования импульсов, содержащее генератор импульсов, М делителей частоты, М-1 вентилей запрета, выход каждого і-го из которых соединен с входом соответствующего і-го делителя частоты, причем выход і-го делителя частоты (і = 2,3...,М) соединен с управляющим входом (i-1)-го вентиля запрета, отличающееся тем, что, с целью повышения надежности устройства путем уменьшения : объема оборудования, в него введены дополнительные вентиль запрета и делитель частоты, причем вход дополнительного вентиля запрета соединен с выходом генератора импульсов, управляющий вход - с выходом первого делителя частоты, выход которого подключен к входам (М-1)-го вентиля запрета и является выходом устройства,причем для преобразования исходной частоты следования в Р/Q раз (где Р простое, a Q = 2^3 , 3 = 2,3,...) ко-- эффициент деленая дополнительного делителя частоты и [P/Q], где [X] - целая часть Х, а коэффициенты деления с первого до М-го пелителей частот определяются по формулам

$$\begin{bmatrix} \log_1 \frac{Q}{r_1} \end{bmatrix}$$
 по формулам $\begin{bmatrix} \log_1 \frac{Q}{r_2} \end{bmatrix}$, где $r_1 = P - m_0 Q$; $m_2 = 2$, где $r_2 = Q - m_1 r_1$; $m_n = 2$ $\begin{bmatrix} \log_1 \frac{Q}{r_m} \end{bmatrix}$, где $r_n = Q - m_n r_n r_n$; $r_{m+1} = Q - m_n r_n = 0$.

Составитель Ю. Акаткин
Редактор Н. Гунько Техред М.Дидык КорректорМ. Шароши

Заказ 499/55 Тираж 928 Подписное
ВНИИПИ Гесударственного комитета СССР
по делам изобретеный и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5