EE 458/533 – Power Electronics Controls Homework 6

Kevin Egedy

1 Modeling the Digital Controller

Figure 1: Feed Forward Boost Converter

1.1 Discretize the controller

$$K_{i} = \omega_{cg}R_{L}$$

$$K_{p} = \omega_{cg}L$$

$$G(s) = \frac{d(s)}{e(s)} = K_{p} + \frac{K_{i}}{s}$$

$$G(z) = \frac{d(s)}{e(s)} \Big|_{s=\frac{2}{T_{samp}}} \frac{1 - z^{-1}}{1 + z^{-1}} = K_{p} + \frac{K_{i}}{\frac{2}{T_{samp}} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}}$$

$$= K_{p} + \frac{K_{i}}{\frac{2}{T_{samp}} \cdot \frac{(1 - 1/z)}{(1 + 1/z)}}$$

$$= K_{p} + \frac{K_{i}}{\frac{2}{T_{samp}} \cdot \frac{(z - 1)/z}{(z + 1)/z}}$$

$$= K_{p} + \frac{K_{i}}{\frac{2}{T_{samp}} \cdot \frac{z - 1}{z + 1}}$$

$$G(z) = K_{p} + \frac{K_{i}T_{samp}(z + 1)}{2(z - 1)}$$

$$G(z) = \frac{2K_{p}(z - 1) + K_{i}T_{samp}(z + 1)}{2(z - 1)}$$

$$G(z) = \frac{2K_p z - 2K_p + K_i T_{samp} z + K_i T_{samp}}{2(z-1)}$$

$$G(z) = \frac{(2K_p z + K_i T_{samp}) z - 2K_p + K_i T_{samp}}{2(z-1)}$$

1.2 PLECS Model

Figure 2: Boost Converter Top Level View

Figure 3: Digital Controller

1.3 Digital Controller PWM Response

Figure 4: Feed Forward [[iref, i, $i_m],\,[y_m,\,{\rm carrier},\,{\rm PWM}]]$

2 4-Pole Machine

Part i)

Clarification, each coil sees two times the respective back emf. So coil A sees $2e_a$, coil B sees $2e_b$, and coil C sees $2e_c$.

Flux linkage 2 must come out of paper for CCW direction

coil a: -d la dt	= -NOpkweshBe	- Ldia dt		
coll $e^{\frac{1}{2}} - \frac{d}{dt} \lambda_c$	= -NOpk we sinle	+ 211) - Ld i	Ċ	
R A Va ea	ta= NOpk	we sin Oe)		
R 0 W 2 2 4 + + + V b e b	$\mathcal{E}_{6} = NC$)pkowe sin (Oe-	- 2u)	
R o-MM-sn t t	E = NO	Dokwesin(Oe+	201	
	coll b: $-\frac{d}{dt}\lambda_b$ = coll c: $-\frac{d}{dt}\lambda_c$ R Va ea t Vb eb o R T T T T T T T T T T T T	coll b: $-\frac{d}{dt}\lambda_{b} = -N\Phi_{pk}\omega_{e}\sin(\theta_{e})$ coll c: $-\frac{d}{dt}\lambda_{c} = -N\Phi_{pk}\omega_{e}\sin(\theta_{e})$ R V_{a} V_{a} V_{b} V_{b	R Va ea P Ea = NOpkwesinloe) R Vb eb R L ia t Ea = NOpkwesinloe) R C	coil b: $-\frac{d}{dt}\lambda_{b} = -N\Phi_{pk}\omega_{e}\sin(\theta_{e}-\frac{2\pi}{3}) - L\frac{d}{dt}i_{b}$ coil c: $-\frac{d}{dt}\lambda_{c} = -N\Phi_{pk}\omega_{e}\sin(\theta_{e}+\frac{2\pi}{3}) - L\frac{d}{dt}i_{c}$ $R \qquad \qquad$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

$$\begin{array}{c} \times dq = \frac{2}{3} \left\lceil dq \right\rceil \left(\Theta d \right) \times a_1 6_{1} c \\ \end{array}$$

Figure 2: Magnetic ring with two pole pairs.

g.) For positive torque, must excite negative q axis current.

E leads 20° (CCW) roter flux (
$$\lambda = NO_{pk}$$
)

(h) Complete the table by filling the black spaces. CCW denotes counter-clockwise rotation of the rotor. Along which axis (d- or q-) should you excite a current and is the excited current positive, negative or zero, to ensure positive torque and hence positive power ($\omega_m > 0$ indicates counter-clockwise rotation). Assume q axis leads d axis and all angles are measured with respect to \perp_a (as in class notation).

Orientation	Machine rotation	$i_d^\star(+,-,0)$	$i_q^\star(+,-,0)$
$\theta_{\rm d}(t) = \theta_e(t) + \pi/2$	CCW	-	0
$ heta_{ m d}(t) = heta_e(t) + \pi$	CCW	٥	+
$\theta_{\rm d}(t) = \theta_e(t) + 3\pi/2$	CCW	+	0
$\theta_{\rm d}(t) = \theta_e(t)$	CW	U	+

(i) Now add the coils for the a,b and c phases for $180^{\circ} < \theta_m < 360^{\circ}$ and show the connection of those with the existing coils in Fig. 2 so that the back-emfs of these two coils add up. With these new coils, compare the power developed with the one you obtained in (d)

