Energy:- IKg

$$IN \rightarrow IM$$
 $A \leftarrow IM$
 ID^{3}
 IU
 I

Power:
$$\frac{dE}{dt}$$
, $N = \frac{920 - 230V}{180V - 290V}$, $100V$
 $V = mA$, $V = \sqrt{100}$, $V = \sqrt{100}$
 $V = mA$, $V = \sqrt{100}$, $V = \sqrt{100}$
 V

Voltage: - Is a force from an electric ckt power Source that pushes changed et this a conductive loop, enabling to do a work [pumping 420, bulb lighting, ett.]

bulb lighter, ett

2) Voltage is the Potentral difference blw 2 points

3) Voltage = Workedone = IV = II

Quantity
Charge
Current
Voltoge
Frequency

Unit
coloumb(c)
Ampere(A)
Volts (V)
Hertz (Hz)

= 50 cycles/sec

Inductance	Henry (H)	, L
Inductive Reactance	0hms (_2)	$X_{L} = \omega L$ $= (2 \times f) L$
Capacitance	Farad (F)	
Capacitive Reactance	Ohms (1)	$X_{c} = \frac{1}{\omega c}$ $= \frac{1}{2\pi f c}$
Impedance	Ohms (s)	$Z = R + j \times L$ $(or) = R + j \times C$ $(or) = R + j (x + x_c)$ $= \sum_{k=1}^{\infty} (x_k + x_c)$
Conductance Mho (v) $G = \frac{1}{R}$ Seinens $\frac{1}{2}$ (on $\frac{1}{2}$		
Ground	-	= (on \
Resistance:	Material Zer	o Resitance
Tung		02°C
	11	-34 .5 C
K	iuminium / - >	_> 1 -

Electric Circuit Elemente

Active Elements (Capable of generating energy) Battery, Amplifier, Generator 1 Voltoge, Current Source Source

Passive Elements (Unable to generate energy)

R, L, C

SOURCE

-> Solar energy -> DC vottage Source

-> Battery

-> AC Generator -> 3\$ AC; 1\$ AC

Independent Voltage Source 100/50 = 2A -> (A 50x-100x

Class2 Page 7

Ideal Voltage Source

Voltage Source

ideal Voltage

Total

