Rappels: lemme des noyaux

Soient P_1 et P_2 deux polynômes non nuls premiers entre eux et posons $P = P_1P_2$. Soit u un endomorphisme de l'espace vectoriel E. Posons

$$F := \ker(P_1 P_2)(u)$$
, $E_1 := \ker(P_1(u))$ et $E_2 := \ker(P_2(u))$.

Alors

$$F = E_1 \oplus E_2$$
.

En particulier, si P est un polynôme annulateur de u alors

- 1. $E = E_1 \oplus E_2$.
- 2. la projection π_1 de E sur E_1 parallèlement à E_2 et la projection π_2 de E sur E_2 parallèlement à E_1 sont des polynômes en u et

$$\pi_1 + \pi_2 = id_E$$
 et $\pi_1 \pi_2 = \pi_2 \pi_1 = 0.$

Rappels: lemme des noyaux

Soient P_1, P_2, \dots, P_m des polynômes non nuls deux à deux premiers entre eux et posons $P = P_1 P_2 \cdots P_m$. Alors pour tout endomorphisme $u \in \mathcal{L}(E)$ on a

$$\ker (P(u)) = \bigoplus_{i=1}^m \ker(P_i(u)).$$

En particulier, si P est un polynôme annulateur pour u alors

- 1. $E = \bigoplus_{i=1}^{m} \ker(P_i(u))$.
- 2. Pour tout $i=1,\dots,m$, la projection π_i de E sur $E_i=\ker(P_i(u))$ parallèlement à $\bigoplus_{j\neq i}\ker(P_j(u))$ s'exprime comme un polynôme en u.
- $3. \sum_{i=1}^{m} \pi_i = id_E$
- 4. Pour tout $i, j \in \{1, \dots, m\}$, si $i \neq j$ alors $\pi_i \pi_j = \pi_j \pi_i = 0$.

Théorème (Critère de diagonalisabilité par un polynôme annulateur)

Un endomorphisme u est diagonalisable si, et seulement si, u admet un polynôme annulateur scindé à racines simples.

Démonstration : (i) Supposons que u est diagonalisable et notons $\lambda_1, \dots, \lambda_r$ ses valeurs propres distinctes. Alors $E = \bigoplus_{i=1}^r E_{\lambda_i}$. Prenons $\omega(X) = \prod_{i=1}^r (\lambda_i - X)$. On a, pour tout $x \in E_{\lambda_j}$,

$$\omega(u)(x) = \prod_{i=1}^{r} (\lambda_i \cdot \mathrm{id}_E - u)(x) = \left(\prod_{i=1, i \neq j}^{r} (\lambda_i \cdot \mathrm{id}_E - u)\right) (\lambda_j \cdot \mathrm{id}_E - u)(x) = 0.$$

(ii) Réciproquement, supposons que $\omega(X) = c \prod_{i=1}^{r} (\lambda_i - X), c, \lambda_i \in \mathbb{K}$ est un polynôme annulateur de u. Les facteurs $\lambda_i - X$ sont premiers entre eux et le lemme des noyaux implique que

$$E = \bigoplus_{i=1}^r \ker(\lambda_i \cdot \mathrm{id}_E - u).$$

Ainsi on peut construire une base de E formé de vecteurs propres de u est ce dernier est diagonalisable.

Remarque

Dans (ii) de la preuve précédente certains des $\ker(\lambda_i \cdot \mathrm{id}_E - u)$ peuvent être réduit au vecteur nul. Dans ce cas, les λ_i correspondants ne sont pas des valeurs propres de u. Pour s'en convaincre, il suffit de voir que pour tout scalaire λ le polynôme $(\lambda - X)w(X)$ est aussi un polynôme annulateur de u.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$

- 1. Calculer $(A + I_3)(A 2I_3)(A I_3)$.
- 2. En déduire que u est diagonalisable.
- 3. Trouver une base dans laquelle la matrice de u est diagonale.
- 4. Calculer u^{-1} en fonction de u.
- 1. Un calcul direct montre que $(A + I_3)(A 2I_3)(A I_3) = 0$.
- 2. Le théorème précédent montre que u est diagonalisable.
- 3. Les valeurs propres de u sont des racines du polynôme P = (X 2)(X 1)(X + 1), donc $\sigma(u) \subset \{-1, 1, 2\}$. On cherche donc E_{-1} , E_1 et E_2 . On montre que $\ker(u 2\mathrm{id}_2) = \{0\}$ et 2 n'est pas une valeur propre de u. En revanche 1 et -1 sont bien des valeurs propres de u. En effet, E_1 est la droite vectorielle engendrée par $v_1 = (1, 1, 1)$ et E_{-1} est le plan vectoriel engendré par $v_2 = (1, -1, 0)$ et (0, 1, 1). Ainsi $V = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 dans laquelle la matrice de u est

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

4. D'après ce qui précède on déduit que $A^2 - I = 0$, ce que l'on peut vérifier par le calcul. Donc A est inversible et $A^{-1} = A$. En particulier, u est bijectif et $u^{-1} = u$. En fait, u est la symétrie par rapport à la droite E_1 parallèlement au plan E_{-1} .

Exercice

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 9 & 8 & -8 \\ 8 & 9 & -8 \\ 8 & 8 & -7 \end{pmatrix}$$

- 1. Calculer (A-I)(A-9I).
- 2. En déduire que u est diagonalisable.
- 3. Trouver une base dans laquelle la matrice de u est diagonale.
- 4. Calculer u^{-1} en fonction de u.

Exercice

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 5 & 2 & 2 \\ 2 & 5 & 2 \\ -2 & -2 & 1 \end{pmatrix}$$

- 1. Calculer (A 3I)(A 5I).
- 2. En déduire que u est diagonalisable.
- 3. Trouver une base dans laquelle la matrice de u est diagonale.
- 4. $Calculer u^{-1}$ en fonction de u.

Exemples

Trouver toutes les matrices $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^3 = A$.

Solution : D'abord $A^3-A=0$ implique que le polynôme $P(X)=X^3-X$ est un polynôme annulateur de A. Mais P(X)=X(X-1)(X+1) est scindé à racines simples. La matrices A est diagonalisable. De plus, si λ est une valeur propre de A alors λ est racine de P et donc $\lambda=-1,0$ ou 1. Donc toute solution est de la forme

$$A = PDP^{-1}$$

avec P une matrice inversible et D une matrice diagonale dont la diagonale est constituée de -1,0, ou 1. La réciproque est facile à vérifier.

Exemples

Trouver toutes les matrices $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^3 = I$.

Solution : D'abord $A^3 - I = 0$ implique que le polynôme $P(X) = X^3 - 1$ est un polynôme annulateur de A. Mais $P(X) = X(X - j)(X - j^2)$ est scindé à racines simples. La matrices A est diagonalisable dans \mathbb{C} . De plus, si λ est une valeur propre de A alors λ est racine de P et donc $\lambda = 0, j$ ou j^2 . Donc toute solution est de la forme

$$A = PDP^{-1}$$

avec P une matrice inversible et D une matrice diagonale dont la diagonale est constituée de 0, j ou j^2 . La réciproque est facile à vérifier.

Corollaire

Soit u un endomorphisme diagonalisable et F un sous espace vectoriel de E stable par u. Alors la restriction $u_{|F}$ de u à F est diagonalisable.

Démonstration : Comme u est diagonalisable, il admet un polynôme annulateur P scindé à racines simples. Il est clair que $P(u_{|F}) = 0$. Le théorème précédent permet de conclure.

3

Corollaire

Supposons que u et v sont des endomorphismes de E diagonalisables qui commutent, i.e. $u \circ v = v \circ u$. Alors

- 1. il existe une base de E dans laquelle les matrices de u et de v sont simultanément diagonales.
- 2. En particulier, toute combinaison linéaire de u et v est diagonalisable, et $u \circ v$ également.
- (i) Soit λ une valeur propre de u. Si $x \in E_{\lambda}(u) = \ker(u \lambda id_E)$ alors

$$u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x).$$

Ainsi $v(x) \in \ker(u - \lambda i d_E)$ et $E_{\lambda}(u)$ est stable par v. Donc $v_{|E_{\lambda}(u)}$ est diagonalisable. Finalement il existe une base B_{λ} de $E_{\lambda}(u)$ formée de vecteurs propres de v.

(ii) En juxtaposant les bases B_{λ} des $E_{\lambda}(u)$, $\lambda \in \sigma(u)$ on obtient une base de E car u est diagonalisable. Cette base est formée de vecteurs propres communs pour u et v.

Exemples

1. La condition que u et v commutent est indispensable. Par exemple les matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

sont diagonalisables mais ne commutent pas, et la matrice $A + B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ n'est pas diagonalisable.

2. Les matrices $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ commutent et sont diagonalisables donc $C + D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ est diagonalisable.

On remarque qu'il existe des bases de diagonalisation pour C qui ne sont pas des bases de diagonalisation pour D.

Théorème de Cayley-Hamilton

Soit $u \in \mathcal{L}(E)$ un endomorphisme. Alors le polynôme caractéristique P_u de u est un polynôme annulateur pour u, i.e. $P_u(u) = 0$.

Exercice: démonstration en dimension 2

Montrer le théorème de Cayley-Hamilton dans le cas où E est de dimension 2.

Il faut et il suffit de montrer que

$$\forall x \in E, \quad P_u(u)(x) = 0_E.$$

Si x=0 alors le résultat est évident. Soit x un vecteur non nul de E.

1. Si (x, u(x)) est liée alors x est un vecteur propre. Donc il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$. La valeur propre λ est une racine de P_u . Donc $P_u(u)(x) = P_u(\lambda)(x) = 0$.

2. Si (x, u(x)) est libre et donc une base de E supposé de dimension 2. Alors il existe a_0, a_1 deux scalaires tels que

$$u^2(x) = a_0 x + a_1 u(x).$$

Ainsi la matrice de u dans la base (x, u(x)) est $\begin{pmatrix} 0 & a_0 \\ 1 & a_1 \end{pmatrix}$ de sorte que

$$P_u(X) = \begin{vmatrix} -X & a_0 \\ 1 & a_1 - X \end{vmatrix} = X^2 - a_1 X - a_0.$$

Ainsi $P_u(u) = u^2 - a_1 u - a_0 \mathrm{id}_E$ et

$$P_u(u)(x) = u^2(x) - a_1 u(x) - a_0 x = 0.$$

Exercice: 2ème démonstration en dimension 2

Soit u l'endomorphisme de \mathbb{K}^2 . Montrer que

$$P_u(u) = u^2 - tr(u)u + \det(u)id_E = 0.$$

Supposons que la matrice de u dans la base canonique est $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Donc

$$tr(u) = a + d$$
 et $det(u) = ad - bc$.

De plus,

$$P_u(\lambda) = \lambda^2 - (a+d)\lambda + (ad-bc).$$

On a

$$A^{2} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^{2} + bc & c(a+d) \\ b(a+d) & d^{2} + bc \end{pmatrix}$$

. Alors

$$A^{2} - (a+d)A = \begin{pmatrix} a^{2} + bc & c(a+d) \\ b(a+d) & d^{2} + bc \end{pmatrix} - \begin{pmatrix} a(a+d) & c(a+d) \\ b(a+d) & d(a+d) \end{pmatrix} = \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix}.$$

D'où

$$A^{2} - (a+d)A + (ad - bc)I_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Preuve du théorème de Cayley-Hamilton (hors programme)

Il faut et il suffit de montrer que

$$\forall x \in E, \quad P_u(u)(x) = 0_E.$$

Si x=0 alors le résultat est évident. Soit x un vecteur non nul de E. Alors, il existe un plus petit entier p tel que la famille $\{x, u(x), u^2(x), \cdots u^p(x)\}$ est liée. On pose alors, pour

$$e_k(x) = u^k(x) , \quad 0 \le k \le p - 1.$$

Par définition de p, la famille $(e_0(x), e_1(x), \dots, e_{p-1}(x))$ est libre, et peut donc être complétée en une base B(x) de E. De plus, il existe des scalaires $a_0, a_1, \dots a_{p-1}$ tels que

$$u^{p}(x) + \sum_{k=0}^{p-1} a_k u^{k}(x) = 0$$

Autrement dit,

$$u(e_{p-1}(x)) = -\sum_{k=0}^{p-1} a_k e_k(x)$$

Pour les p-1 premiers vecteurs de B(x), on a $u(e_k(x)) = e_{k+1}(x)$ et on a calculé ci-dessus $u(e_{p-1}(x))$. On obtient ainsi que la matrice de u dans la base B(x) est triangulaire supérieure par blocs :

$$\operatorname{Mat}_{B(x)}(u) = \begin{pmatrix} A_x & B_x \\ 0 & C_x \end{pmatrix}, \quad \operatorname{avec} A_x = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 & -a_{p-2} \\ 0 & \cdots & 0 & 0 & 1 & -a_{p-1} \end{pmatrix}.$$

Or le polynôme caractéristique de A_x , selon l'exemple suivant, est donné par

$$P_{A_x}(X) = \det(A_x - XI_p) = (-1)^p (X^p + \sum_{k=0}^{p-1} a_k X^k).$$

Il vient que $P_u(u)(x) = P_{A_x}(u)P_{C_x}(u)(x) = P_{C_x}(u)P_{A_x}(u)(x)$ et donc

$$P_u(u)(x) = P_{C_x}(u) \left[u^p(x) + \sum_{k=0}^{p-1} a_k u^k(x) \right] = P_{C_x}(u)(0_E) = 0_E$$

et la preuve et terminée.

Exemple: matrice compagnon

Soit $P = a_0 + a_1X + \cdots + a_{p-1}X^{p-1} + X^p$ un polynôme unitaire à coefficients dans \mathbb{K} . On considère la matrice avec $A \in M_p(\mathbb{K})$ donnée par

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 & -a_{p-2} \\ 0 & \cdots & 0 & 0 & 1 & -a_{p-1} \end{pmatrix}.$$

Cette matrice est appelée matrice compagnon de P. Son polynôme caractéristique est donné par

$$P_A(X) = \det(A - XI_p) = (-1)^p P = (-1)^p (X^p + a_{p-1}X^{p-1} + \dots + a_1X + a_0).$$

Démonstration: D'abord

$$P_A(X) = \begin{vmatrix} -X & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & -X & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & -X & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -X & -a_{p-2} \\ 0 & \cdots & 0 & 0 & 1 & -a_{p-1} - X \end{vmatrix}.$$

On ajoute à la première ligne L_1 la combinaison linéaire des autres lignes donnée par $XL_2+\cdots+X^{p-1}L_p$. Il vient que

$$P_A(X) = \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & -P(X) \\ 1 & -X & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & -X & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -X & -a_{p-2} \\ 0 & \cdots & 0 & 0 & 1 & -a_{p-1} - X \end{vmatrix} = (-1)^p P(X).$$

Corollaire

Un endomorphisme u est inversible si et seulement det $u \neq 0$. Dans ce cas, u^{-1} est un polynôme de u, c-à-d il existe $P \in \mathbb{K}[X]$ tel que $u^{-1} = P(u)$.

Démonstration : On sait déjà que u est inversible si, et seulement si, det $u \neq 0$. Dans ce cas, montrons que u^{-1} est un polynôme de u. En effet, le polynôme caractéristique de u est de la forme

$$P_u(X) = \det(u - X \mathrm{id}_E) = (-1)^n X^n + (-1)^{n-1} \mathrm{tr}(u) \cdot X^{n-1} \cdot \dots + \det(u).$$

Le théorème de Cayley-Hamilton nous dit que

$$0 = P_u(u) = (-1)^n u^n + (-1)^{n-1} \operatorname{tr}(u) \cdot u^{n-1} \cdot \dots + \det(u) \cdot \operatorname{id}_E.$$

Il vient que

$$id_{E} = u \cdot \frac{1}{\det(u)} \left((-1)^{n-1} u^{n-1} + (-1)^{n-2} tr(u) \cdot u^{n-2} \cdots \right)$$

$$= \underbrace{\frac{1}{\det(u)} \left((-1)^{n-1} u^{n-1} + (-1)^{n-2} tr(u) \cdot u^{n-2} \cdots \right)}_{u^{-1}} \cdot u.$$

Exemple

Soit u l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. On a

$$P_A(\lambda) = \lambda^2 - (a+d)\lambda + (ad-bc).$$

Supposons que $ad - bc \neq 0$. Alors

$$A^{-1} = \frac{1}{ad - bc}(-A + (a+d)I_2) = \frac{1}{ad - bc}\begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

On retrouve la formule donnée par la comatrice de A.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 2 & -3 & 3 \\ 9 & -10 & 9 \\ 5 & -5 & 4 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de u. En déduire l'ensemble des valeurs propres de u.
- 2. L'endomorphisme u est-il bijectif? Si oui donner son inverse comme polynôme de u.
- 3. Déterminer les sous espaces propres de u. L'endomorphisme u est-il diagonalisable?
- 4. Déterminer une matrice inversible P et une matrice diagonale D telles que $P^{-1}AP = D$.
- 5. Soit F la droite vectorielle engendrée par le vecteur $v_1 = (3, 9, 5)$ et G le plan vectoriel engendrée par $v_2 = (1, 1, 0)$ et $v_3 = (0, 1, 1)$.
 - (a) Montrer que F et G sont supplémentaires.
 - (b) Exprimer la projection π_F de E sur F parallèlement à G comme polynôme de u. De même, pour la projection π_G de E sur G parallèlement à F.
 - (c) En déduire que $-2\pi_F \pi_G = u$.

Solution: (1) Le polynôme caractéristique:

$$P_{u}(X) = \begin{vmatrix} 2 - X & -3 & 3 \\ 9 & -10 - X & 9 \\ 5 & -5 & 4 - X \end{vmatrix}$$

$$= \begin{vmatrix} 2 - X & -3 & 0 \\ 9 & -10 - X & -1 - X \\ 5 & -5 & -1 - X \end{vmatrix} \quad (C3 \cap C3 + C2)$$

$$= \begin{vmatrix} 2 - X & -3 & 0 \\ 4 & -5 - X & 0 \\ 5 & -5 & -1 - X \end{vmatrix} \quad (L2 \cap L2 - L3)$$

$$= -(1 + X)(X^{2} + 3X + 2) = -(1 + X)^{2}(X + 2).$$

Ainsi $\sigma_{\mathbb{R}}(u) = \{-2, -1\}$. La valeur propre $\lambda = -2$ est simple et le valeur propre $\lambda = -1$ est double.

(2) Par ailleurs, $\det(u) = P_u(0) = -2 \neq 0$ et donc u est bijectif. De plus, grâce au théorème de Cayley-Hamilton on a

$$0 = P_u(u) = -u^3 - 4u^2 - 5u - 2id_E.$$

Donc

$$id_E = u \cdot \frac{1}{2}(-u^2 - 4u - 5id_E) = \frac{1}{2}(-u^2 - 4u - 5id_E)u.$$

Finalement

$$u^{-1} = \frac{1}{2}(-u^2 - 4u - 5\mathrm{id}_E).$$

Ce qui se traduit pour la matrice A par le fait qu'elle est inversible et

$$A^{-1} = \frac{1}{2}(-A^2 - 4A - 5I_3).$$

(3) Recherche du sous espace propre E_{-2} : Un vecteur $(x, y, z) \in E_{-2}$ si, et seulement si,

$$(A+2I)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3\\9 & -8 & 9\\5 & -5 & 6 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

ce qui équivaut à

$$\begin{cases} 3x = y \\ 3z = 5x \end{cases}$$

Finalement, le sous espace propre E_{-2} est la droite vectorielle engendrée par $v_1 = (3, 9, 5)$.

Recherche du sous espace propre E_{-1} : Un vecteur $(x, y, z) \in E_{-1}$ si, et seulement si,

$$(A+I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 & -3 & 3 \\ 9 & -9 & 9 \\ 5 & -5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut à

$$x - y + z = 0.$$

Finalement, le sous espace propre E_{-1} est le plan vectoriel engendré par $v_2 = (1, 1, 0)$ et $v_3 = (0, 1, 1)$. Comme

$$m_a(-2) = m_q(-2) = 1$$
 et $m_a(-1) = m_q(-1) = 2$

on déduit que u est diagonalisable.

(4) Par ailleurs, la famille (v_1, v_2, v_3) est une base de E formée de vecteurs propres de u. La matrice de u dans cette base est la matrice diagonale :

$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(5)(a) Il suffit de remarquer que $F = E_{-2}$ et $G = E_{-1}$ et on a vu que $E = E_{-2} \oplus E_{-1}$.

(5)(b)&(c) On a

$$(X+1)^2 - X(X+2) = 1$$

Donc en posant $P(X) = (X+1)^2$ et Q(X) = -X(X+2) on a P+Q=1. Ainsi

$$P(u) + Q(u) = (u + id_E)^2 - u(u + 2id_E) = id_E.$$

En particulier, tout $x \in E$ sécrit

$$P(u)(x) + Q(u)(x) = x$$

D'après le théorème de Cayley-Hamilton on a $P(u)(x) \in E_{-2} = F$ et $Q(u)(x) \in E_{-1} = G$. Donc

$$\pi_F(x) = P(u)(x)$$
 et $\pi_G(x) = Q(u)(x)$.

Finalement,

$$\pi_F = P(u) = (u + id_E)^2$$
 et $\pi_G = Q(u) = -u(u + 2id_E)$.

On remarque que

$$\pi_F + \pi_G = \mathrm{id}_E$$
 et $\pi_F \pi_G = \pi_G \pi_F = 0$.

De plus,

$$-2\pi_F - \pi_G = u.$$

En effet, pour tout $x \in E$,

$$u(x) = u(\pi_F(x) + \pi_G(x)) = u(\pi_F(x)) + u(\pi_G(x)) = -2\pi_F(x) - \pi_G(x).$$

Ainsi

$$u = -2(u + id_E)^2 + u(u + 2id_E) = -u^2 - 2u - 2id_E.$$

Finalement,

$$0 = u^2 + 3u + id_E = (u + 2id_E)(u + id_E).$$

Ainsi la polynôme (X+2)(X+1) est un polynôme annulateur de u, il s'agit de son polynôme minimal.

Sous-espaces caractéristiques d'un endomorphisme

Soit E un espace vectoriel sur \mathbb{K} de dimension finie, $u \in \mathcal{L}(E)$ un endomorphisme de E et P_u le polynôme caractéristique.

Définition

Soit λ une valeur propre de u de multiplicité algébrique (i.e. comme racine de P_u) $m_a(\lambda)$. On appelle sous-espace caractéristique de u associé à la valeur propre λ le sous-espace vectoriel

$$\mathcal{N}_{\lambda} = \ker \left((u - \lambda \mathrm{id}_E)^{m_a(\lambda)} \right).$$

Théorème

Supposons que le polynôme caractéristique P_u de u est scindé et λ une valeur propre de u.

- 1. Le sous-espace caractéristique $\mathcal{N}_{\lambda} = \ker \left((u \lambda i d_E)^{m_a(\lambda)} \right)$ est un sous espace vectoriel de E stable par u de dimension $m_a(\lambda)$.
- 2. \mathcal{N}_{λ} contient le sous-espace propre $E_{\lambda} = \ker (u \lambda i d_E)$ associé à la valeur propre λ .
- 3. L'espace E est somme directe des sous-espaces caractéristiques : $E = \bigoplus_{\lambda \in \sigma(u)} \mathcal{N}_{\lambda}$.
- 4. La projection π_{λ} de E sur \mathcal{N}_{λ} parallèlement à $\bigoplus_{\mu \in \sigma(u) \setminus \{\lambda\}} \mathcal{N}_{\mu}(u)$ est un polynôme en u, c-à-d il existe $P \in \mathbb{K}[X]$ tel que $\pi_{\lambda} = P(u)$.
- 5. Pour tout λ et μ deux valeurs propres distinctes de u, $\pi_{\lambda}\pi_{\mu} = \pi_{\mu}\pi_{\lambda} = 0$.

Démonstration: (i) Il est clair que

$$\mathcal{N}_{\lambda} = \ker((u - \lambda \mathrm{id}_E)^{m_a(\lambda)})$$

est un sous-espace vectoriel stable par u. De plus, pour tout $x \in E_{\lambda}$,

$$(u - \lambda \mathrm{id}_E)^{m_a(\lambda)}(x) = (u - \lambda \mathrm{id}_E)^{m_a(\lambda) - 1} \circ (u - \lambda \mathrm{id}_E)(x) = 0_E.$$

Autrement dit, $E_{\lambda} \subset \mathcal{N}_{\lambda}$.

(ii) Le polynôme caractéristique de u est scindé et donc

$$P_u(X) = \prod_{\lambda \in \sigma(u)} (\lambda - X)^{m_a(\lambda)}.$$

Les facteurs $(\lambda - X)^{m_a(\lambda)}$, $\lambda \in \sigma(u)$ sont deux à deux premiers entres eux. De plus, d'après le théorème de Cayley-Hamilton, P_u est un polynôme annulateur de u. Finalement, le lemme des noyaux permet de conclure les points 3), 4) et 5) du théorème. Reste à montrer que $\dim(\mathcal{N}_{\lambda}) = m_a(\lambda)$ (voir théorème ci-dessous).

Théorème

Supposons que le polynôme caractéristique P_u de u est scindé soit λ une valeur propre de u. Notons la restriction de u à \mathcal{N}_{λ} par u_{λ} .

- 1. u_{λ} admet une seule valeur propre et cette valeur propre est λ .
- 2. Le polynôme caractéristique de u_{λ} est donné par $P_{u_{\lambda}}(X) = (\lambda X)^{\dim(\mathcal{N}_{\lambda})}$.
- 3. dim $\mathcal{N}_{\lambda} = m_a(\lambda)$.
- 4. Il existe une base B_{λ} de \mathcal{N}_{λ} dans laquelle la matrice de u_{λ} s'écrit

$$T_{\lambda} = Mat_{B_{\lambda}}(u_{\lambda}) = \begin{pmatrix} \lambda & * & * & * \\ 0 & \lambda & * & * \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda \end{pmatrix} = \lambda I_{m_{a}(\lambda)} + N_{\lambda},$$

avec N_{λ} une matrice triangulaire supérieure stricte (u_{λ} est trigonalisable).

Démonstration: (i) Comme $E_{\lambda} \subset \mathcal{N}_{\lambda}$, il existe un vecteur non nul $x \in E_{\lambda} \subset \mathcal{N}_{\lambda}$ tel que

$$u_{\lambda}(x) = u(x) = \lambda x.$$

Donc λ est une valeur propre de u_{λ} . Comme les \mathcal{N}_{λ} sont en somme directe la seule valeur propre possible pour u_{λ} est λ .

(ii) Puisque le polynôme caractéristique $P_{u_{\lambda}}(X)$ de u_{λ} divise $P_{u}(X)$ qui est scindé, $P_{u_{\lambda}}(X)$ est scindé aussi. Ainsi, u_{λ} est trigonalisable avec une seule valeur propre λ . Ainsi son polynôme caractéristique est

$$P_{u_{\lambda}}(X) = (\lambda - X)^{\dim \mathcal{N}_{\lambda}}.$$

(ii) Maintenant $P_{u_{\lambda}} = (\lambda - X)^{\dim \mathcal{N}_{\lambda}}$ divise P_u et donc λ est une racine de P_u de multiplicité au moins $\dim \mathcal{N}_{\lambda}$. Mais λ est une racine de multiplicité $m_a(\lambda)$ de P_u et donc

$$\dim \mathcal{N}_{\lambda} \leq m_a(\lambda).$$

Or

$$\dim E = \sum_{\lambda \in \sigma(u)} \dim \mathcal{N}_{\lambda} \quad \text{et} \quad \sum_{\lambda \in \sigma(u)} m_a(\lambda) = \deg(P_u) = \dim E.$$

Ainsi

$$0 = \sum_{\lambda \in \sigma(u)} \underbrace{(m_a(\lambda) - \dim \mathcal{N}_{\lambda})}_{\geq 0}$$

Par conséquent dim $\mathcal{N}_{\lambda} = m_a(\lambda)$.

(v) Le polynôme caractéristique $P_{u_{\lambda}}(X)$ de u_{λ} est scindé et donc u_{λ} est trigonalisable. Autrement dit, il existe une base B_{λ} de \mathcal{N}_{λ} dans laquelle la matrice de u_{λ} est de la forme

$$T_{\lambda} = \operatorname{Mat}_{B_{\lambda}}(u_{\lambda}) = \begin{pmatrix} \lambda & * & * & * \\ 0 & \lambda & * & * \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda \end{pmatrix} = \lambda I_{m_{a}(\lambda)} + N_{\lambda}.$$

Corollaire

Supposons que le polynôme caractéristique P_u de u est scindé. Alors il existe une base de E dans laquelle la matrice de u est diagonale par blocs où chaque bloc est une matrice triangulaire supérieure de la forme $T_{\lambda} = \lambda I_{m_a(\lambda)} + N_{\lambda}$, et N_{λ} est une matrice triangulaire supérieure stricte.

Démonstration : Comme $E = \bigoplus_{\lambda \in \sigma(u)} \mathcal{N}_{\lambda}$, en juxtaposant les bases B_{λ} décrites dans le théorème cidessus, on obtient une base B de E. La matrice de u dans cette base est diagonale par blocs, chaque bloc étant de dimension $m_a(\lambda)$ et la matrice dans chaque bloc est donnée par celle de u_{λ} dans la base B_{λ} , qui est la matrice T_{λ} décrite ci-dessus.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

- 1. L'endomorphisme u est-il diagonalisable? Trigonalisable?
- 2. Trouver les sous espaces caractéristiques de u.
- 3. Trouver une matrice inversible P et une matrice triangulaire T telles que $P^{-1}AP = T$.
- 4. Montrer que u est bijectif et donner u^{-1} comme un polynôme de u.
- 5. Trouver les puissances de $u^n, n \in \mathbb{N}$.
- 6. Soit F la droite vectorielle engendrée par le vecteur $v_1 = (1, -2, 0)$ et G le plan vectoriel engendré par $v_2 = (1, -2, 1)$ et $v_3 = (1, -1, 1)$.
 - (a) Montrer que F et G sont supplémentaires.
 - (b) Exprimer la projection π_F de E sur F parallèlement à G comme polynôme de u. De même, pour la projection π_G de E sur G parallèlement à F.
 - (c) Montrer que $d = 2\pi_F + \pi_G$ est diagonalisable.
 - (d) Posons n = u d. Calculer n^2 .