Semana6 - Concavidad y Optimización

Abelardo Jordán Liza

Maestría en Matemáticas Aplicadas PUCP

Lima, Setiembre 19, 2023

Caracterización de funciones C^2 fuertemente convexas

Sea $\emptyset \neq C \subset \mathbb{R}^n$ convexo y abierto, f una función de clade C^2 en C. Entonces f es fuertemente convexa de módulo c>0 en C, si y solo si

$$d'Hf(x)d \ge c||d||^2, \qquad \forall x \in C, d \in \mathbb{R}^n$$
 (1)

Caracterización de funciones C^2 fuertemente convexas

Sea $\emptyset \neq C \subset \mathbb{R}^n$ convexo y abierto, f una función de clade C^2 en C. Entonces f es fuertemente convexa de módulo c>0 en C, si y solo si

$$d'Hf(x)d \ge c||d||^2, \qquad \forall x \in C, d \in \mathbb{R}^n$$
 (1)

Dem: f es fuertemenete convexa de módulo c>0 en C, si y solo si, la función g definida por $g(x)=f(x)-\frac{c}{2}\|x\|^2$ es convexa en C, donde Hg(x)=Hf(x)-cI la cual debe ser positiva semidefinida. Esto significa

$$d'Hf(x) \ge c||d||^2, \quad \forall d \in \mathbb{R}^n$$

Caracterización de funciones C^2 fuertemente convexas

Sea $\emptyset \neq C \subset \mathbb{R}^n$ convexo y abierto, f una función de clade C^2 en C. Entonces f es fuertemente convexa de módulo c>0 en C, si y solo si

$$d'Hf(x)d \ge c||d||^2, \qquad \forall x \in C, d \in \mathbb{R}^n$$
 (1)

Dem: f es fuertemenete convexa de módulo c>0 en C, si y solo si, la función g definida por $g(x)=f(x)-\frac{c}{2}\|x\|^2$ es convexa en C, donde Hg(x)=Hf(x)-cI la cual debe ser positiva semidefinida. Esto significa

$$d'Hf(x) \ge c||d||^2, \quad \forall d \in \mathbb{R}^n$$

NOTA:

Sea A simétrica, $b \in \mathbb{R}^n$ y $\alpha \in \mathbb{R}$, entonces la función $f(x) = \frac{1}{2}x'Ax + b'x + \alpha$ es fuertemente convexa, si y solo si A es positiva definida.

Retomando la optimización no restringida de funciones cuadráticas

Sean A matriz simétrica de orden $n,\,b\in\mathbb{R}^n,\alpha\in\mathbb{R}$ y el problema de optimización no restringida

(P_A)
$$\min f(x) = \frac{1}{2}x'Ax + b'x + \alpha$$
$$x \in \mathbb{R}^n$$
 (2)

Denotemos por

 $F^*:=argmin\{f(x):x\in\mathbb{R}^n\}=\{x^*\in\mathbb{R}^n:f(x^*)\leq f(x),\ \forall x\in\mathbb{R}^n\}\ \text{y sea}\ v(P_A)\ \text{el valor óptimo del problema}.$

Proposición

Respecto al problema (P_A) :

- (i) Si A no es positiva semidefinida, entonces $v(P_A) = -\infty$
- (ii) Si A es positiva semidefinida, $F^* \neq \emptyset \Leftrightarrow -b \in Im(A)$ y $argmin\{f\} = \{x \in \mathbb{R}^n : Ax + b = 0\}$
- (iii) A es positiva definida $\Leftrightarrow F^*$ es un conjunto unitario y $F^* = \{-A^{-1}(b).\}$

Proposición

Respecto al problema (P_A) :

- (i) Si A no es positiva semidefinida, entonces $v(P_A) = -\infty$
- (ii) Si A es positiva semidefinida, $F^* \neq \emptyset \Leftrightarrow -b \in Im(A)$ y $argmin\{f\} = \{x \in \mathbb{R}^n : Ax + b = 0\}$
- (iii) A es positiva definida $\Leftrightarrow F^*$ es un conjunto unitario y $F^* = \{-A^{-1}(b).\}$

NOTA:

Sea g una función de valorf real y creciente(estricta) en el rango de la función f definida en $C\subset\mathbb{R}^n$, entonces $x^*\in C$ resuelve el problema $\frac{\min}{x\in C}\frac{f(x)}{x\in C}$ y solo si x^* resuelve el problema $\frac{\min}{x\in C}\frac{g(f(x))}{x\in C}$

Ejemplos

Regresión de mínimos cuadrados:

Ejemplos

Regresión de mínimos cuadrados:

Problema básico:

Dada una muestra de observaciones $\{(t_i,s_i)\in\mathbb{R}\times\mathbb{R}:i=1,\cdots,m\}$ y se asume que s depende linealmente de t. Se desea encontrar dos números reales x_1 y x_2 tales que al construir los valores residuales $r_i=x_1+x_2t_i-s_i$, aún más, el vector residual $r=(r_1,\cdots,r_m)$ tenga norma mínima. Se genera el problema de optimización

$$\min ||r|| x = (x_1, x_2) \in \mathbb{R}^2$$

Ejemplos

Regresión de mínimos cuadrados:

Problema básico:

Dada una muestra de observaciones $\{(t_i,s_i)\in\mathbb{R}\times\mathbb{R}:i=1,\cdots,m\}$ y se asume que s depende linealmente de t. Se desea encontrar dos números reales x_1 y x_2 tales que al construir los valores residuales $r_i=x_1+x_2t_i-s_i$, aún más, el vector residual $r=(r_1,\cdots,r_m)$ tenga norma mínima. Se genera el problema de optimización

$$\min ||r|| x = (x_1, x_2) \in \mathbb{R}^2$$

por la Nota anterior, este problema equivale a resolver

$$\min ||r||^2$$
$$x = (x_1, x_2) \in \mathbb{R}^2$$

¿Cuál es la ventaja?

Problema general:

Una variable escalar y se va a representar como una función lineal de la forma $y=\sum_{i=1}^n x_i u_i$ para ciertos coeficientes x_1,\cdots,x_n desconocidos.

Se tiene N observaciones input-output $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Para $x=(x_1,\cdots,x_n)'$, dados los valores residuales $r_j:=x'u^j-y^j$, se propone minimizar la norma de $r=(r_1,\cdots,r_N)'$. Empleando la norma euclidiana, se genera el problema

$$\min \sqrt{\sum_{j=1}^{N} (y^j - \sum_{i=1}^{n} x_i u_i^j)^2}$$

$$x = (x_1, \dots, x_n)' \in \mathbb{R}^n$$
(3)

Sea U la matriz de orden $N \times n$ cuyas filas son los vectores u^j , el problema equivale a

$$\min_{x = (x_1, \dots, x_n)' \in \mathbb{R}^n} f(x) = \|y - Ux\|^2 = x'U'Ux - 2y'Ux + \|y\|^2
 x = (x_1, \dots, x_n)' \in \mathbb{R}^n$$
(4)

Por ser f convexa y diferenciable, aplicamos las condiciones necesarias y suficientes de optimlaidad, por lo que se establece $\nabla f(x) = 2U'Ux - 2U'y = 0$.

Problema general:

Una variable escalar y se va a representar como una función lineal de la forma $y=\sum_{i=1}^n x_i u_i$ para ciertos coeficientes x_1,\cdots,x_n desconocidos.

Se tiene N observaciones input-output $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Para $x=(x_1,\cdots,x_n)'$, dados los valores residuales $r_j:=x'u^j-y^j$, se propone minimizar la norma de $r=(r_1,\cdots,r_N)'$. Empleando la norma euclidiana, se genera el problema

$$\min \sqrt{\sum_{j=1}^{N} (y^{j} - \sum_{i=1}^{n} x_{i} u_{i}^{j})^{2}}
x = (x_{1}, \dots, x_{n})' \in \mathbb{R}^{n}$$
(3)

Sea U la matriz de orden $N\times n$ cuyas filas son los vectores $\boldsymbol{u}^j,$ el problema equivale a

$$\min_{x = (x_1, \dots, x_n)' \in \mathbb{R}^n} f(x) = \|y - Ux\|^2 = x'U'Ux - 2y'Ux + \|y\|^2 \tag{4}$$

Por ser f convexa y diferenciable, aplicamos las condiciones necesarias y suficientes de optimlaidad, por lo que se establece $\nabla f(x) = 2U'Ux - 2U'y = 0$. Si U tiene rango n, entonces $x^* = (U'U)^{-1}U'y$ resuelve el problema.

Problema general:

Una variable escalar y se va a representar como una función lineal de la forma $y=\sum_{i=1}^n x_i u_i$ para ciertos coeficientes x_1,\cdots,x_n desconocidos.

Se tiene N observaciones input-output $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Para $x=(x_1,\cdots,x_n)'$, dados los valores residuales $r_j:=x'u^j-y^j$, se propone minimizar la norma de $r=(r_1,\cdots,r_N)'$. Empleando la norma euclidiana, se genera el problema

$$\min \sqrt{\sum_{j=1}^{N} (y^j - \sum_{i=1}^{n} x_i u_i^j)^2}$$

$$x = (x_1, \dots, x_n)' \in \mathbb{R}^n$$
(3)

Sea U la matriz de orden $N \times n$ cuyas filas son los vectores u^j , el problema equivale a

$$\min_{x = (x_1, \dots, x_n)' \in \mathbb{R}^n} f(x) = \|y - Ux\|^2 = x'U'Ux - 2y'Ux + \|y\|^2 \tag{4}$$

Por ser f convexa y diferenciable, aplicamos las condiciones necesarias y suficientes de optimlaidad, por lo que se establece $\nabla f(x) = 2U'Ux - 2U'y = 0$. Si U tiene rango n, entonces $x^* = (U'U)^{-1}U'y$ resuelve el problema. i Qué ocurre si U tiene rango menor que n?

Solución aproximada de un sistema lineal sobre determinado

Considere el sistema lineal Ax=b dende A es una matriz de orden $m\times n$ y $b\in\mathbb{R}^m$ y se asume que m>n. Se trata de encontrar $x\in\mathbb{R}^n$ tal que minimice $\|Ax-b\|$. Esto da lugar al problema

$$\min_{x = (x_1, \dots, x_n)' \in \mathbb{R}^n} ||Ax - b||^2 \tag{5}$$

Siguiendo los procedmientos análogos, la solución x^* debe satisfacer $A'Ax^*=A'b$. Si A tiene rango n, entonces la solución es única.

Solución aproximada de un sistema lineal sobre determinado

Considere el sistema lineal Ax=b dende A es una matriz de orden $m\times n$ y $b\in\mathbb{R}^m$ y se asume que m>n. Se trata de encontrar $x\in\mathbb{R}^n$ tal que minimice $\|Ax-b\|$. Esto da lugar al problema

$$\min_{x = (x_1, \dots, x_n)' \in \mathbb{R}^n} ||Ax - b||^2 \tag{5}$$

Siguiendo los procedmientos análogos, la solución x^* debe satisfacer $A'Ax^* = A'b$. Si A tiene rango n, entonces la solución es única. Considerando la factorización QR de A de rango n. Existen matrices Q de orden m ortogonal y R triangular superior e invertible de orden n tal que $A = Q \left(\begin{array}{c} R \\ 0 \end{array} \right)$, se requiere minimizar

 $\|Ax-b\|=\|Q(\begin{array}{c}R\\0\end{array})x-b\|=\|Q'b-(\begin{array}{c}R\\0\end{array})x\|$ Escribiendo $Q'b=(\begin{array}{c}c\\d\end{array})$ con c de n componentes, entonces

$$||r||^2 = ||c - Rx||^2 + ||d||^2$$

Minimizar $||r||^2$ se reduce a resolver Rx = c.

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{6}$$

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{6}$$

El conjunto de las direcciones tangente a X en el punto x se denota por $T_X(x)$.

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{6}$$

El conjunto de las direcciones tangente a X en el punto x se denota por $T_X(x)$. Equivalentemente, $d \in T_X(x)$ si y solo si: existe una sucesión d^k que converge a d y una sucesión de números reales positivos t_k con $t_k \downarrow 0$ y $x + t_k d^k \in X$.

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{6}$$

El conjunto de las direcciones tangente a X en el punto x se denota por $T_X(x)$. Equivalentemente, $d \in T_X(x)$ si y solo si: existe una sucesión d^k que converge a d y una sucesión de números reales positivos t_k con $t_k \downarrow 0$ y $x + t_k d^k \in X$.

Proposición

 $T_X(x)$ es un cono cerrado.

Definición

El cono de direcciones factibles en $x \in X$ está dado por

$$K_X(x) := \{ d \in \mathbb{R}^n : d = \alpha(y - x), y \in X, \alpha \ge 0 \}$$

Definición

El cono de direcciones factibles en $x \in X$ está dado por

$$K_X(x) := \{ d \in \mathbb{R}^n : d = \alpha(y - x), y \in X, \alpha \ge 0 \}$$

Proposición

Sea X un subconjunto convexo no vacío de \mathbb{R}^n y $x \in X$, entonces

$$T_X(x) = \overline{K_X(x)} \tag{7}$$

Definición

El cono de direcciones factibles en $x \in X$ está dado por

$$K_X(x) := \{ d \in \mathbb{R}^n : d = \alpha(y - x), y \in X, \alpha \ge 0 \}$$

Proposición

Sea X un subconjunto convexo no vacío de \mathbb{R}^n y $x \in X$, entonces

$$T_X(x) = \overline{K_X(x)} \tag{7}$$

Dem: Sea $d\in K_X(x)$, si d=0 obviamente $d\in T_X(x)$, si $d\neq 0$, entonces existen $y\in X, \alpha>0$ tales que $d=\alpha(y-x)$. Sean $x^k:=x+\frac{1}{k}d\in X$ y cumple $\frac{x^k-x}{\frac{1}{k}}=d$, entonces $d\in T_X(x)$. Lo que significa que $K_X(x)\subset T_X(x)$ y así $K_X(x)\subset T_X(x)$. La otra inclusión (ejercicio).

Optimización restringida

Sea X un subconjunto no vacío de \mathbb{R}^n y f una función de valor real definida en un conjunto del cual X es un subconjunto.

Se generan los problemas de optimización restringida:

Optimización restringida

Sea X un subconjunto no vacío de \mathbb{R}^n y f una función de valor real definida en un conjunto del cual X es un subconjunto.

Se generan los problemas de optimización restringida:

$$\begin{array}{lll}
\min & f(x) & \max & f(x) \\
s.a. & x \in X & s.a. & x \in X
\end{array} \tag{8}$$

Enseguida nos enfocamos al problema $(P): \begin{array}{cc} \min & f(x) \\ s.a. & x \in X \end{array}$

¿Cómo se describe X ?

X puede tener una descripción funcional como for ejemplo es el conjunto solución de un sistema de ecuaciones o inecuaciones que involucren a las variables de decisión.

Teorema: Condición necesaria de optimalidad

Sea $X\subset \mathbb{R}^n$ no vacío y f continuamente diferenciable en $\overline{x}\in X.$ Considere el problema

$$\begin{array}{ll}
\min & f(x) \\
s.a. & x \in X
\end{array} \tag{9}$$

Si \overline{x} resuelve (9) entonces

$$-\nabla f(\overline{x}) \in (T_X(\overline{x}))^o \tag{10}$$

Recíprocamente, si X es convexo y la función f es convexa en X, y \overline{x} satisface (10), entonces \overline{x} resuelve (9).

Teorema: Condición necesaria de optimalidad

Sea $X\subset \mathbb{R}^n$ no vacío y f continuamente diferenciable en $\overline{x}\in X.$ Considere el problema

$$\begin{array}{ll}
\min & f(x) \\
s.a. & x \in X
\end{array} \tag{9}$$

Si \overline{x} resuelve (9) entonces

$$-\nabla f(\overline{x}) \in (T_X(\overline{x}))^o \tag{10}$$

Recíprocamente, si X es convexo y la función f es convexa en X, y \overline{x} satisface (10), entonces \overline{x} resuelve (9).

Dem:(Por el absurdo) Suponga que $-\nabla f(\overline{x}) \notin (T_X(\overline{x}))^o$, entonces existe $d \in T_X(\overline{(x)})$ tal que $\langle \nabla f(\overline{x}), d \rangle < 0$. Para d, existe una sucesión x^k en X (convergente a \overline{x}) y una sucesión $t_k \downarrow 0$ tales que $\lim_{k \to \infty} \frac{x^k - \overline{x}}{t_k} = d$. Para cada x^k , existe $a_k \in \mathbb{R}$ tal que

$$f(x^k) - f(\overline{x}) = \langle \nabla f(\overline{x}), x^k - \overline{x} \rangle + a_k$$

 $\text{donde } \frac{a_k}{\|x^k - \overline{x}\|} \to 0 \text{ y además } \lim_{k \to \infty} \frac{a_k}{t_k} = \lim_{k \to \infty} \frac{a_k \|d\|}{\|x^k - \overline{x}\|} = 0.$

Teorema: Condición necesaria de optimalidad

Sea $X\subset \mathbb{R}^n$ no vacío y f continuamente diferenciable en $\overline{x}\in X.$ Considere el problema

$$\begin{array}{ll}
\min & f(x) \\
s.a. & x \in X
\end{array} \tag{9}$$

Si \overline{x} resuelve (9) entonces

$$-\nabla f(\overline{x}) \in (T_X(\overline{x}))^o \tag{10}$$

Recíprocamente, si X es convexo y la función f es convexa en X, y \overline{x} satisface (10), entonces \overline{x} resuelve (9).

Dem:(Por el absurdo) Suponga que $-\nabla f(\overline{x}) \notin (T_X(\overline{x}))^o$, entonces existe $d \in T_X(\overline{(x)})$ tal que $\langle \nabla f(\overline{x}), d \rangle < 0$. Para d, existe una sucesión x^k en X (convergente a \overline{x}) y una $x^k - \overline{x}$

sucesión $t_k\downarrow 0$ tales que $\lim_{k\to\infty}\frac{x^k-\overline{x}}{t_k}=d$. Para cada x^k , existe $a_k\in\mathbb{R}$ tal que

$$f(x^k) - f(\overline{x}) = \langle \nabla f(\overline{x}), x^k - \overline{x} \rangle + a_k$$

donde $\frac{a_k}{\|x^k-\overline{x}\|} o 0$ y además $\lim_{k \to \infty} \frac{a_k}{t_k} = \lim_{k \to \infty} \frac{a_k \|d\|}{\|x^k-\overline{x}\|} = 0$. Siendo

$$\frac{f(x^k)-f(\overline{x})}{t_k} = \langle \nabla f(\overline{x}), d \rangle + \langle \nabla f(\overline{x}), \frac{x^k-\overline{x}}{t_k} - d \rangle + \frac{a_k}{t_k}$$

se sigue que $\lim_{k \to \infty} \frac{f(x^k) - f(\overline{x})}{t_k} < 0$ y esto genera una contradicción.

Recíprocamente, para cada $y\in X$, $d:=y-\overline{x}\in T_X(\overline{x})$ entonces $\langle \nabla f(\overline{x}), y-\overline{x}\rangle \geq 0$, y por la convexidad de f es sabido que

$$f(y) \ge f(\overline{x}) + \langle \nabla f(\overline{x}), y - \overline{x} \rangle$$

en consecuencia $f(y) \geq f(\overline{x}), \ \forall y \in X.$

Recíprocamente, para cada $y \in X, \ d := y - \overline{x} \in T_X(\overline{x})$ entonces $\langle \nabla f(\overline{x}), y - \overline{x} \rangle \geq 0$, y por la convexidad de f es sabido que $f(y) > f(\overline{x}) + \langle \nabla f(\overline{x}), y - \overline{x} \rangle$

en consecuencia $f(y) \geq f(\overline{x}), \ \forall y \in X.$

¿Qué ocurre con (10) si \overline{x} es un punto interior de X ?

¿Cómo se describe X

X como el conjunto solución de un sistema de inecuaciones/ecuaciones algebraicas en las variables de decisión.

Teorema de la Alternativa

Sean $f_i:\mathbb{R}^n\to\mathbb{R},\ i=1,\cdots,p$ funciones convexas y $C\subset\mathbb{R}^n$ un subconjunto convexo. Considere los siguientes sistemas :

- (I) $f_1(x) < 0, \dots, f_p(x) < 0, x \in C$;
- (II) $\exists 0 \neq \lambda = (\lambda_1, \cdots, \lambda_p) \in \mathbb{R}^p_+$ tal que $\sum_{i=1}^p \lambda_i f_i(x) \geq 0, \, \forall x \in C.$

Entonces, uno y solo uno de los sistemas tiene solución y no ambos.

Teorema de la Alternativa

Sean $f_i:\mathbb{R}^n\to\mathbb{R},\ i=1,\cdots,p$ funciones convexas y $C\subset\mathbb{R}^n$ un subconjunto convexo. Considere los siguientes sistemas :

- (I) $f_1(x) < 0, \dots, f_p(x) < 0, x \in C$;
- (II) $\exists 0 \neq \lambda = (\lambda_1, \cdots, \lambda_p) \in \mathbb{R}_+^p$ tal que $\sum_{i=1}^p \lambda_i f_i(x) \geq 0, \, \forall x \in C.$

Entonces, uno y solo uno de los sistemas tiene solución y no ambos.

Esto significa: Si (I) no tiene solución, entonces (II) tiene solución, y si (II) no tiene solución entonces (I) tiene solución.

Condiciones de Fritz John

Considere el problema

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n . Si x^* resuelve (Pmin), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

(i)
$$\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0$$

(ii) $\lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$ (12)

Condiciones de Fritz John

Considere el problema

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n . Si x^* resuelve (Pmin), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

(i)
$$\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0$$

(ii) $\lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$ (12)

Dem: Considere el sistema de inecuaciones en la variable $v \in \mathbb{R}^n$:

$$(I): \langle \nabla f(x^*), v \rangle < 0 \; ; \; g_i(x^*) + \langle \nabla g_i(x^*), v \rangle < 0, \; i = 1, \dots, m$$

se prueba que este sistema no tiene solución en \mathbb{R}^n . Pues, caso contrario existe $v \in \mathbb{R}^n$ tal que satisface (I), se prueba que para t>0 suficientemente pequeño : $g_i(x^*+tv)<0$ lo que significa que x^*+tv es factible para (Pmin) y de $\langle \nabla f(x^*),v\rangle<0$ se sigue que $f(x^*+tv)< f(x^*)$ lo que significa una contradicción.

Por el teorema de la alternativa, existen $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos nulos tales que

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^m \lambda_i (g_i(x^*) + \langle \nabla g_i(x^*), v \rangle) \ge 0, \ \forall v \in \mathbb{R}^n$$
 (13)

En particular para v=0 se obtiene $\sum_{i=1}^m \lambda_i(g_i(x^*) \geq 0 \text{ y asi se concluye con}$ $\lambda_i g_i(x^*) = 0$ para cada $i=1,\cdots,m$.

Por el teorema de la alternativa, existen $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos nulos tales que

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^m \lambda_i (g_i(x^*) + \langle \nabla g_i(x^*), v \rangle) \ge 0, \ \forall v \in \mathbb{R}^n$$
 (13)

En particular para v=0 se obtiene $\sum_{i=1}^m \lambda_i(g_i(x^*) \geq 0 \text{ y asi se concluye con}$ $\lambda_i g_i(x^*) = 0$ para cada $i=1,\cdots,m$. De este modo (13) se reduce a

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^m \lambda_i \langle \nabla g_i(x^*), v \rangle \ge 0, \ \forall v \in \mathbb{R}^n$$

lo que da lugar a
$$\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0$$

Por el teorema de la alternativa, existen $\lambda_0, \lambda_1, \cdots, \lambda_m$ no negativos y no todos nulos tales que

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^m \lambda_i (g_i(x^*) + \langle \nabla g_i(x^*), v \rangle) \ge 0, \ \forall v \in \mathbb{R}^n$$
 (13)

En particular para v=0 se obtiene $\sum_{i=1}^{m}\lambda_i(g_i(x^*)\geq 0$ y así se concluye con $\lambda_i g_i(x^*) = 0$ para cada $i = 1, \dots, m$. De este modo (13) se reduce a

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^m \lambda_i \langle \nabla g_i(x^*), v \rangle \ge 0, \ \forall v \in \mathbb{R}^n$$

lo que da lugar a $\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0$ Note que si $\lambda_0 \neq 0$, entonces podemos sostener que \cdots

Considere el problema

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n y C es un subconjunto convexo no vacío de \mathbb{R}^n . Si x^* resuelve (P), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$(i)0 \in \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + N_C(x^*)$$

$$(ii) \lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$
(15)

Considere el problema

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n y C es un subconjunto convexo no vacío de \mathbb{R}^n . Si x^* resuelve (P), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$(i)0 \in \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + N_C(x^*)$$

$$(ii) \ \lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$
(15)

Dem: Análogo a la demostración de la proposición anterior, probando que el sistema

(I):
$$\langle \nabla f(x^*, v) \rangle < 0 \; ; \; g_i(x^*) + \langle \nabla g_i(x^*), v \rangle < 0, \; i = 1, \dots, m$$
 (16)

no tiene solución para $v \in T_C(x^*)$.

Considere el problema

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n y C es un subconjunto convexo no vacío de \mathbb{R}^n . Si x^* resuelve (P), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$(i)0 \in \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + N_C(x^*)$$

$$(ii) \ \lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$
(15)

Dem: Análogo a la demostración de la proposición anterior, probando que el sistema

(I):
$$\langle \nabla f(x^*, v) \rangle < 0 \; ; \; g_i(x^*) + \langle \nabla g_i(x^*), v \rangle < 0, \; i = 1, \dots, m$$
 (16)

no tiene solución para $v\in T_C(x^*)$. Aplicando el teorema de la alternativa, existen $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^m \lambda_i (g_i(x^*) + \langle \nabla g_i(x^*), v \rangle) \ge 0, \ \forall v \in T_C(x^*)$$
 (17)

lo que indica que

$$-(\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*)) \in (T_C(x^*))^{\circ}$$

Para el problema (P), denotemos por $I(x^*)$ al conjunto $\{i\in\{1,\cdots,m\}:g_i(x^*)=0\}$ llamado el conjunto de los índices de las restricciones activas en x^* .

Corolario

Si en el problema (P), $x^* \in int(C)$ y los vectores $\{\nabla g_i(x^*)\}_{i \in I(x^*)}$ son l.i. Entonces existen $\lambda_1, \dots, \lambda_m \geq 0$ tales que

$$\nabla f(x^*) + \sum_{i \in I(x^*)} \lambda_i \nabla g_i(x^*) = 0$$
$$\lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$