The Extended Krylov subspace method for large-scale Lyapunov equations

Davide Palitta

Dipartimento di Matematica, Università di Bologna davide.palitta3@unibo.it

Lyapunov equation: Preliminaries

Lyapunov equation

$$AX + XA^T + C = 0,$$
 $A, C, X \in \mathbb{R}^{n \times n}$

10/06/2016

Lyapunov equation: Preliminaries

Lyapunov equation

$$AX + XA^T + C = 0,$$
 $A, C, X \in \mathbb{R}^{n \times n}$

Well-posedness:
$$\Lambda(A) = \{\lambda_k\}_{k=1}^n$$

$$\lambda_j + \lambda_i \neq 0, \quad \forall i, j = 1, \dots, n$$

Usually, A stable (from applications): Re (λ_k) < 0, $\forall k = 1, ..., n$

Lyapunov equation: Preliminaries

Lyapunov equation

$$AX + XA^T + C = 0,$$
 $A, C, X \in \mathbb{R}^{n \times n}$

Well-posedness:
$$\Lambda(A) = \{\lambda_k\}_{k=1}^n$$

$$\lambda_j + \lambda_i \neq 0, \quad \forall i, j = 1, \dots, n$$

Usually, A stable (from applications): $Re(\lambda_k) < 0, \forall k = 1, ..., n$

Many others:

- Sylvester equation: AX + XB + C = 0
- Generalized Lyapunov equation: $AXE^T + EXA^T + C = 0$
- Generalized Sylvester equation: AXD + EXB + C = 0

Large-scale Lyapunov equation

$$A\mathbf{X} + \mathbf{X}A^T + bb^T = 0 \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ is (very) large, sparse, A < 0 and $b \in \mathbb{R}^n$

Large-scale Lyapunov equation

$$A\mathbf{X} + \mathbf{X}A^T + bb^T = 0 \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ is (very) large, sparse, A < 0 and $b \in \mathbb{R}^n$

$$\Rightarrow \exists ! \ \mathbf{X} \in \mathbb{R}^{n \times n}$$
 solution to (1), $\mathbf{X} \geq 0$, $\mathbf{X} = \mathbf{X}^T$

3 / 11

Large-scale Lyapunov equation

$$A\mathbf{X} + \mathbf{X}A^T + bb^T = 0 \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ is (very) large, sparse, A < 0 and $b \in \mathbb{R}^n$

$$\Rightarrow \exists ! \ \mathbf{X} \in \mathbb{R}^{n \times n}$$
 solution to (1), $\mathbf{X} \geq 0$, $\mathbf{X} = \mathbf{X}^T$

Remark 1: Even if A is sparse, **X** is, in general, dense

Large-scale Lyapunov equation

$$A\mathbf{X} + \mathbf{X}A^T + bb^T = 0 \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ is (very) large, sparse, A < 0 and $b \in \mathbb{R}^n$

$$\Rightarrow \exists ! \ \mathbf{X} \in \mathbb{R}^{n \times n}$$
 solution to (1), $\mathbf{X} \geq 0$, $\mathbf{X} = \mathbf{X}^T$

Remark 1: Even if A is sparse, **X** is, in general, dense

Remark 2: Under certain hypotheses on $\Lambda(A)$, **X** presents a fast eigenvalue decay

 \Rightarrow Look for a low-rank approximation: $\mathbf{X} \approx \widetilde{\mathbf{X}} = \mathbf{Z}\mathbf{Z}^T$, \mathbf{Z} "tall"

10/06/2016

• Look for $\widetilde{\mathbf{X}} = \mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$ where $\mathcal{K}_m = \operatorname{Range}(V_m)$, $V_m \in \mathbb{R}^{n \times m}$, $m \ll n$, w/ orthonormal columns, and $\mathbf{Y}_m \in \mathbb{R}^{m \times m}$

- Look for $\widetilde{\mathbf{X}} = \mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$ where $\mathcal{K}_m = \operatorname{Range}(V_m)$, $V_m \in \mathbb{R}^{n \times m}$, $m \ll n$, w/ orthonormal columns, and $\mathbf{Y}_m \in \mathbb{R}^{m \times m}$
- ullet To compute \mathbf{Y}_m , impose a Galerkin condition on the residual matrix

$$R_m := A\mathbf{X}_m + \mathbf{X}_m A^T + BB^T \perp \mathcal{K}_m \iff V_m^T R_m V_m = 0$$
 (2)

4 / 11

- Look for $\widetilde{\mathbf{X}} = \mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$ where $\mathcal{K}_m = \operatorname{Range}(V_m)$, $V_m \in \mathbb{R}^{n \times m}$, $m \ll n$, w/ orthonormal columns, and $\mathbf{Y}_m \in \mathbb{R}^{m \times m}$
- ullet To compute $oldsymbol{Y}_m$, impose a Galerkin condition on the residual matrix

$$R_m := A\mathbf{X}_m + \mathbf{X}_m A^T + BB^T \perp \mathcal{K}_m \iff V_m^T R_m V_m = 0 \quad (2)$$

• Assuming Range(V_1) = Range(b), (2) is equivalent to solving

$$T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 e_1 e_1^T = 0$$

$$T_m := V_m^T A V_m, \ \mathbf{Y}_m = V_m^T \mathbf{X}_m V_m \\ V_m^T b = \gamma e_1, \ \gamma = \|b\|, \ e_1 \ \text{first column of} \ I_m$$

- Look for $\widetilde{\mathbf{X}} = \mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$ where $\mathcal{K}_m = \mathsf{Range}(V_m)$, $V_m \in \mathbb{R}^{n \times m}$, $m \ll n$, w/ orthonormal columns, and $\mathbf{Y}_m \in \mathbb{R}^{m \times m}$
- ullet To compute $old Y_m$, impose a Galerkin condition on the residual matrix

$$R_m := A\mathbf{X}_m + \mathbf{X}_m A^T + BB^T \perp \mathcal{K}_m \iff V_m^T R_m V_m = 0 \quad (2)$$

• Assuming Range(V_1) = Range(b), (2) is equivalent to solving

$$T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 e_1 e_1^T = 0$$

$$T_m := V_m^T A V_m, \ \mathbf{Y}_m = V_m^T \mathbf{X}_m V_m \ V_m^T b = \gamma e_1, \ \gamma = \|b\|, \ e_1 \ \text{first column of } I_m$$

ullet Check the residual norm \leftarrow compute it cheaply (no details here)

4 / 11

Is
$$T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T = \gamma^2 e_1 e_1^T$$
 well-posed?

10/06/2016

Is
$$T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T = \gamma^2 e_1 e_1^T$$
 well-posed? $A < 0 \Rightarrow T_m$ stable!

Is
$$T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T = \gamma^2 e_1 e_1^T$$
 well-posed? $A < 0 \Rightarrow T_m$ stable!

How to solve it?

5 / 11

Is
$$T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T = \gamma^2 e_1 e_1^T$$
 well-posed? $A < 0 \Rightarrow T_m$ stable!

How to solve it? Bartels-Stewart

- Compute $T_m = Q_m U_m Q_m^T$, $Q_m Q_m^T = I_m$, U_m upper triangular
- Solve

$$U_m \tilde{\mathbf{Y}} + \tilde{\mathbf{Y}} U_m^T = \gamma^2 Q_m^T e_1 e_1^T Q_m, \quad \tilde{\mathbf{Y}} := Q_m^T \mathbf{Y}_m Q_m$$

by substitution

Set

$$\mathbf{Y}_m = Q_m \tilde{\mathbf{Y}} Q_m^T$$

$$\mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$$
 is never computed!

$$\mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$$
 is never computed!

Remark:
$$\mathbf{Y}_m$$
 solution to $T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 e_1 e_1^T = 0$

$$\mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$$
 is never computed!

Remark:
$$\mathbf{Y}_m$$
 solution to $T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 e_1 e_1^T = 0$

$$\Rightarrow$$
 $\mathbf{Y}_m \ge 0$, $\mathbf{Y}_m = \mathbf{Y}_m^T$ and possibly low-rank

At convergence

$$\mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$$
 is never computed!

Remark:
$$\mathbf{Y}_m$$
 solution to $T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 \mathbf{e}_1 \mathbf{e}_1^T = 0$

$$\Rightarrow$$
 $\mathbf{Y}_m \ge 0$, $\mathbf{Y}_m = \mathbf{Y}_m^T$ and possibly low-rank

• Low-rank factor of \mathbf{Y}_m : $\mathbf{Y}_m \approx \widehat{Y} \widehat{Y}^T$, $\widehat{Y} \in \mathbb{R}^{m \times t}$, $t \leq m$

$$\mathbf{X}_m = V_m \mathbf{Y}_m V_m^T$$
 is never computed!

Remark:
$$\mathbf{Y}_m$$
 solution to $T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 e_1 e_1^T = 0$

- \Rightarrow $\mathbf{Y}_m \ge 0$, $\mathbf{Y}_m = \mathbf{Y}_m^T$ and possibly low-rank
 - Low-rank factor of \mathbf{Y}_m : $\mathbf{Y}_m \approx \widehat{Y} \widehat{Y}^T$, $\widehat{Y} \in \mathbb{R}^{m \times t}$, $t \leq m$
 - Low-rank factor of X_m :

$$\mathbf{X}_{m} = V_{m} \mathbf{Y}_{m} V_{m}^{T} \approx \left(V_{m} \widehat{Y}\right) \left(V_{m} \widehat{Y}\right)^{T} = \mathbf{Z}_{m} \mathbf{Z}_{m}^{T}, \ \mathbf{Z}_{m} = V_{m} \widehat{Y} \in \mathbb{R}^{n \times t}$$

Algorithm: Galerkin projection method for the Lyapunov matrix equation

Input: $A \in \mathbb{R}^{n \times n}$, A < 0, $b \in \mathbb{R}^n$

Output: $\mathbf{Z}_m \in \mathbb{R}^{n \times t}$, $t \leq m$

- **1.** Set $\beta = ||b||_2$ and $\mathcal{V}_1 \equiv V_1 = b/\beta$
- **3.** For $m = 2, 3, \ldots$, till convergence, **Do**
- **4.** Compute next basis block V_m and set $V_m = [V_{m-1}, V_m]$
- $\mathbf{5.} \qquad \mathsf{Update} \ T_m = V_m^T A V_m$
- 6. Convergence check:
- Solve $T_m \mathbf{Y}_m + \mathbf{Y}_m T_m^T + \gamma^2 e_1 e_1^T = 0$, $e_1 \in \mathbb{R}^m$
- **6.2** Compute $||R_m||_F$
- **6.3** If $||R_m||_F/\beta^2$ is small enough **Stop**, otherwise **Continue**
- 7. EndDo
- **8.** Compute the eigendecomposition of \mathbf{Y}_m and retain $\widehat{Y} \in \mathbb{R}^{m \times t}$, $t \leq m$
- **9.** Set $\mathbf{Z}_m = V_m \widehat{Y}$

A rich space

A good subspace \mathcal{K}_m is crucial in the solution process

A rich space

A good subspace \mathcal{K}_m is crucial in the solution process

$$\mathcal{K}_m = EK_m(A, b) = \text{Range}([b, A^{-1}b, \dots, A^{m-1}b, A^{-m}b])$$

REMARKS:

- $EK_m(A, b) = K_{2m}(A, A^{-m}b)$
- dim $(EK_m(A, b)) \leq 2m$
- More expensive basis construction due to linear system solves

Basis construction

• Compute an economy-size QR of $[b, A^{-1}b]$, that is

$$V_1\theta_{1,1} = [b, A^{-1}b]$$

where $V_1 \equiv \mathcal{V}_1 = [v_1^{(1)}, v_1^{(2)}] \in \mathbb{R}^{n \times 2}$ is orthogonal and $\theta_1 \in \mathbb{R}^{2 \times 2}$ upper triangular

- For $m = 1, \ldots$, till convergence
 - **1** Set $\widehat{\mathcal{V}}_{m+1} = [Av_m^{(1)}, A^{-1}v_m^{(2)}]$
 - ② Orthogonalize $\widehat{\mathcal{V}}_{m+1}$ wrt the whole $V_m \leadsto \widetilde{\mathcal{V}}_{m+1}$
 - **3** Compute economy-size QR of $\mathcal{V}_{m+1} \leadsto$ new basis block \mathcal{V}_{m+1}
 - **4** Set $V_{m+1} = [V_m, V_{m+1}]$

The orthonormalization coefficients θ 's are collected in the block upper Hessenberg matrix $\mathcal{H}_m \in \mathbb{R}^{2m \times 2m}$

The orthonormalization coefficients θ 's are collected in the block upper Hessenberg matrix $\mathcal{H}_m \in \mathbb{R}^{2m \times 2m}$

REMARK: $\mathcal{H}_m \neq V_m^T A V_m!$

The orthonormalization coefficients θ 's are collected in the block upper Hessenberg matrix $\mathcal{H}_m \in \mathbb{R}^{2m \times 2m}$

REMARK: $\mathcal{H}_m \neq V_m^T A V_m!$

The (block) Arnoldi relation doesn't hold

$$\mathcal{V}_{m+1}\theta_{m+1,m} \neq A\mathcal{V}_m - V_m\mathcal{H}_m[e_{2m-1}, e_{2m}]$$

but

$$V_{m+1}\theta_{m+1,m} = [Av_m^{(1)}, A^{-1}v_m^{(2)}] - V_m\mathcal{H}_m[e_{2m-1}, e_{2m}]$$

The orthonormalization coefficients θ 's are collected in the block upper Hessenberg matrix $\mathcal{H}_m \in \mathbb{R}^{2m \times 2m}$

REMARK: $\mathcal{H}_m \neq V_m^T A V_m!$

The (block) Arnoldi relation doesn't hold

$$\mathcal{V}_{m+1}\theta_{m+1,m} \neq A\mathcal{V}_m - V_m\mathcal{H}_m[e_{2m-1}, e_{2m}]$$

but

$$\mathcal{V}_{m+1}\theta_{m+1,m} = [Av_m^{(1)}, A^{-1}v_m^{(2)}] - V_m\mathcal{H}_m[e_{2m-1}, e_{2m}]$$

 \Rightarrow Recover $T_m = V_m^T A V_m$ from \mathcal{H}_m (SUPER TECHNICAL!)

References

References:

- A new iterative method for solving large-scale Lyapunov matrix equations
 - V. Simoncini
 - SIAM J. Sci. Comput., Vol. 29, No. 3, pp. 1268-1288, 2007
- Computational methods for linear matrix equations (Survey article)
 V. Simoncini
 - To appear in SIAM Review, Vol. 58, No. 3, 2016

10/06/2016