
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=8; day=8; hr=17; min=33; sec=32; ms=215;]

Validated By CRFValidator v 1.0.3

Application No: 10612665 Version No: 2.0

Input Set:

Output Set:

Started: 2008-07-03 12:49:22.058 **Finished:** 2008-07-03 12:49:26.101

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 43 ms

Total Warnings: 205
Total Errors: 0

No. of SeqIDs Defined: 211

Actual SeqID Count: 211

Error code		Error Description									
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(23)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(24)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(25)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(26)

Input Set:

Output Set:

Started: 2008-07-03 12:49:22.058

Finished: 2008-07-03 12:49:26.101

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 43 ms

Total Warnings: 205

Total Errors: 0

No. of SeqIDs Defined: 211

Actual SeqID Count: 211

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> Nielsen, J
      Pedersen, J.
      Gerwien, J.
      Bay, K.
      Pedersen, L.
      Leist, M.
      Geist, M.
      Kallunki, P.
      Christensen, S.
      Sager, T.
      Brines, M.
      Cerami, A.
      Cerami, C.
<120> RECOMBINANT TISSUE PROTECTIVE CYTOKINES AND ENCODING NUCLEIC
      ACIDS THEREOF FOR PROTECTION, RESTORATION, AND ENHANCEMENT OF
      RESPONSIVE CELLS, TISSUES AND ORGANS
<130> 10165-022-999
<140> 10612665
<141> 2003-07-01
<150> 60/392,455
<151> 2002-07-01
<150> 60/393,423
<151> 2002-07-03
<160> 211
<170> PatentIn version 3.2
<210> 1
<211> 5
<212> PRT
<213> Homo sapiens
<400> 1
Val Leu Gln Arg Tyr
<210> 2
<211> 8
<212> PRT
<213> Homo sapiens
<400> 2
Thr Lys Val Asn Phe Tyr Ala Trp
```

```
<210> 3
<211> 9
<212> PRT
<213> Homo sapiens
<400> 3
Ser Gly Leu Arg Ser Leu Thr Thr Leu
<210> 4
<211> 6
<212> PRT
<213> Homo sapiens
<400> 4
Ser Asn Phe Leu Arg Gly
<210> 5
<211> 6059
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: plasmid
<400> 5
ctagagtcga cccgggcggc cgcttccctt tagtgagggt taatgcttcg agcagacatg
                                                                     60
ataagataca ttgatgagtt tggacaaacc acaactagaa tgcagtgaaa aaaatgcttt
                                                                    120
atttgtgaaa tttgtgatgc tattgcttta tttgtaacca ttataagctg caataaacaa
                                                                     180
gttaacaaca acaattgcat tcattttatg tttcaggttc agggggagat gtgggaggtt
                                                                     240
                                                                     300
ttttaaagca agtaaaacct ctacaaatgt ggtaaaatcc gataaggatc gatccgggct
                                                                     360
ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca acagttgcgc agcctgaatg
gcgaatggac gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag
                                                                     420
cgtgaccgct acacttgcca gcgccctagc gcccgctcct ttcgctttct tcccttcctt
                                                                     480
tetegecaeg ttegeegget tteeeegtea agetetaaat egggggetee etttagggtt
                                                                     540
ccgatttagt gctttacggc acctcgaccc caaaaaactt gattagggtg atggttcacg
                                                                     600
tagtgggcca tcgccctgat agacggtttt tcgccctttg acgttggagt ccacgttctt
                                                                     660
taatagtgga ctcttgttcc aaactggaac aacactcaac cctatctcgg tctattcttt
                                                                     720
                                                                     780
tgatttataa gggattttgc cgatttcggc ctattggtta aaaaatgagc tgatttaaca
```

aaaatttaac	gcgaatttta	acaaaatatt	aacgcttaca	atttcctgat	gcggtatttt	840
ctccttacgc	atctgtgcgg	tatttcacac	cgcatacgcg	gatctgcgca	gcaccatggc	900
ctgaaataac	ctctgaaaga	ggaacttggt	taggtacctt	ctgaggcgga	aagaaccagc	960
tgtggaatgt	gtgtcagtta	gggtgtggaa	agtececagg	ctccccagca	ggcagaagta	1020
tgcaaagcat	gcatctcaat	tagtcagcaa	ccaggtgtgg	aaagtcccca	ggctccccag	1080
caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	aaccatagtc	ccgcccctaa	1140
ctccgcccat	cccgccccta	acteegeeca	gttccgccca	ttctccgccc	catggctgac	1200
taatttttt	tatttatgca	gaggccgagg	ccgcctcggc	ctctgagcta	ttccagaagt	1260
agtgaggagg	cttttttgga	ggcctaggct	tttgcaaaaa	gcttgattct	tctgacacaa	1320
cagtctcgaa	cttaaggcta	gagccaccat	gattgaacaa	gatggattgc	acgcaggttc	1380
teeggeeget	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	1440
ctctgatgcc	gccgtgttcc	ggctgtcagc	gcagggggg	ccggttcttt	ttgtcaagac	1500
cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	gcgcggctat	cgtggctggc	1560
cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	1620
gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	ctcctgccga	1680
gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	acgcttgatc	cggctacctg	1740
cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	tggaagccgg	1800
tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	ctcgcgccag	ccgaactgtt	1860
cgccaggctc	aaggcgcgca	tgcccgacgg	cgaggatctc	gtcgtgaccc	atggcgatgc	1920
ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	ggattcatcg	actgtggccg	1980
gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	acccgtgata	ttgctgaaga	2040
gcttggcggc	gaatgggctg	accgcttcct	cgtgctttac	ggtatcgccg	ctcccgattc	2100
gcagcgcatc	gccttctatc	gccttcttga	cgagttcttc	tgagcgggac	tctggggttc	2160
gaaatgaccg	accaagcgac	gcccaacctg	ccatcacgat	ggccgcaata	aaatatcttt	2220
attttcatta	catctgtgtg	ttggtttttt	gtgtgaatcg	atagcgataa	ggatccgcgt	2280
atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagccagc	cccgacaccc	2340
gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	cttacagaca	2400
agctgtgacc	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	caccgaaacg	2460

cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	tgataataat	:
ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	ctatttgttt	:
atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	gataaatgct	:
tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	cccttattcc	:
cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	tgaaagtaaa	:
agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	tcaacagcgg	:
taagatcctt	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	cttttaaagt	:
tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	teggtegeeg	:
catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	agcatcttac	:
ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	ataacactgc	
ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	ttttgcacaa	
catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	aagccatacc	
aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	gcaaactatt	
aactggcgaa	ctacttactc	tagcttcccg	gcaacaatta	atagactgga	tggaggcgga	
taaagttgca	ggaccacttc	tgegetegge	ccttccggct	ggctggttta	ttgctgataa	
atctggagcc	ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	cagatggtaa	
gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg	atgaacgaaa	
tagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	cagaccaagt	
ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	ggatctaggt	
gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	cgttccactg	
agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	ttctgcgcgt	
aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	tgccggatca	
agagctacca	actcttttc	cgaaggtaac	tggcttcagc	agagcgcaga	taccaaatac	
tgttcttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	caccgcctac	
atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	agtcgtgtct	
taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	gctgaacggg	
gggttcgtgc	acacagccca	gcttggagcg	aacgacctac	accgaactga	gatacctaca	
gcgtgagcta	tgagaaagcg	ccacgcttcc	cgaagggaga	aaggcggaca	ggtatccggt	
aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	acgcctggta	

tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	tgtgatgctc	4260
gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	ggttcctggc	4320
cttttgctgg	ccttttgctc	acatggctcg	acagatette	aatattggcc	attagccata	4380
ttattcattg	gttatatagc	ataaatcaat	attggctatt	ggccattgca	tacgttgtat	4440
ctatatcata	atatgtacat	ttatattggc	tcatgtccaa	tatgaccgcc	atgttggcat	4500
tgattattga	ctagttatta	atagtaatca	attacggggt	cattagttca	tagcccatat	4560
atggagttcc	gcgttacata	acttacggta	aatggcccgc	ctggctgacc	gcccaacgac	4620
ccccgcccat	tgacgtcaat	aatgacgtat	gttcccatag	taacgccaat	agggactttc	4680
cattgacgtc	aatgggtgga	gtatttacgg	taaactgccc	acttggcagt	acatcaagtg	4740
tatcatatgc	caagtccgcc	ccctattgac	gtcaatgacg	gtaaatggcc	cgcctggcat	4800
tatgcccagt	acatgacctt	acgggacttt	cctacttggc	agtacatcta	cgtattagtc	4860
atcgctatta	ccatggtgat	gcggttttgg	cagtacacca	atgggcgtgg	atagcggttt	4920
gactcacggg	gatttccaag	tctccacccc	attgacgtca	atgggagttt	gttttggcac	4980
caaaatcaac	gggactttcc	aaaatgtcgt	aacaactgcg	ategeeegee	ccgttgacgc	5040
aaatgggcgg	taggcgtgta	cggtgggagg	tctatataag	cagagetegt	ttagtgaacc	5100
gtcagatcac	tagaagcttt	attgcggtag	tttatcacag	ttaaattgct	aacgcagtca	5160
gtgcttctga	cacaacagtc	tcgaacttaa	gctgcagtga	ctctcttaag	gtagccttgc	5220
agaagttggt	cgtgaggcac	tgggcaggta	agtatcaagg	ttacaagaca	ggtttaagga	5280
gaccaataga	aactgggctt	gtcgagacag	agaagactct	tgcgtttctg	ataggcacct	5340
attggtctta	ctgacatcca	ctttgccttt	ctctccacag	gtgtccactc	ccagttcaat	5400
tacagctctt	aaggctagag	tacttaatac	gactcactat	aggctagcct	cgagcgcgga	5460
gatgggggtg	cacgaatgtc	ctgcctggct	gtggcttctc	ctgtccctgc	tgtcgctccc	5520
tctgggcctc	ccagtcctgg	gcgcccacc	acgcctcatc	tgtgacagcc	gagtcctgga	5580
gaggtacctc	ttggaggcca	aggaggccga	gaatatcacg	acgggctgtg	ctgaacactg	5640
cagcttgaat	gagaatatca	ctgtcccaga	caccgacgtt	aatttctatg	cctggaagag	5700
gatggaggtc	gggcagcagg	ccgtagaagt	ctggcagggc	ctggccctgc	tgtcggaagc	5760
tgtcctgcgg	ggccaggccc	tgttggtcaa	ctcttcccag	ccgtgggagc	ccctgcagct	5820
gcatgtggat	aaagccgtcg	agggccttcg	cagcctcacc	actctgcttc	gggctctgcg	5880

ageccagaag gaagecatet eccetecaga tgeggeetea getgetecae teegaacaat 5940
caetgetgae acttteegea aactetteeg agtetaetee aattteetee ggggaaaget 6000
gaagetgtae acaggggagg eetgeaggae aggggaeeat cateaceate accattgat 6059

<210> 6 <211> 193 <212> PRT <213> Homo sapiens

<400> 6

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1.0 Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 2.5 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 40 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 55 Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 90 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 105 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 120 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 135 140 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 150 155 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 185 180 Arg

<210> 7 <211> 580

<212> DNA

<213> Homo sapiens

<400> 7

atgggggtge acgaatgtee tgeetggetg tggettetee tgteeetget gtegeteeet 60
etgggeetee cagteetggg egeeceacea egeeteatet gtgacageeg agteetggag 120
aggtacetet tggaggeeaa ggaggeegag aatateacga egggetgtge tgaacactge 180
agettgaatg agaatateae tgteecagae accaaagtta atttetatge etggaagagg 240
atggaggteg ggeageagge egtagaagte tggeagggee tggeeetget gteggaaget 300

```
360
gtcctgcggg gccaggccct gttggtcaac tcttcccagc cgtgggagcc cctgcactgc
atgtggataa agccgtcagt ggccttcgca gcctcaccac tctgcttcgg gctctgggag
                                                                     420
cccagaagga agccatctcc cctccagatg cggcctcagc tgctccactc cgaacaatca
                                                                     480
                                                                     540
ctgctgacac tttcgcaaac tcttccgagt ctactccaat ttcctccggg gaaagctgaa
gctgtacaca ggggaggcct gcaggacagg ggacagatga
                                                                     580
<210> 8
<211> 35
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: primer
<400> 8
                                                                       35
agctctcgag gcgcggagat gggggtgcac gaatg
<210> 9
<211> 36
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: primer
<400> 9
                                                                       36
atgctctaga cacacctggt catctgtccc ctgtcc
<210> 10
<211> 166
<212> PRT
<213> Artificial Sequence
<220>
<223> mutein
<400> 10
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
1
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
                                25
Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
                        55
Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
                    70
                                        75
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
                85
                                    90
                                                        95
```

```
Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
                               105
           100
Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
                           120
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
                       135
                                           140
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
145
                   150
                                       155
                                                           160
Cys Arg Thr Gly Asp Arg
               165
<210> 11
<211> 45
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: primer
<400> 11
catgtggata aagccgtcga gggccttcgc agcctcacca ctctg
                                                                      45
<210> 12
<211> 45
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: primer
<400> 12
                                                                      45
cagagtggtg aggctgcgaa ggccctcgac ggctttatcc acatg
<210> 13
<211> 45
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: primer
<400> 13
                                                                      45
gagaatatca ctgtcccaga caccgacgtt aatttctatg cctgg
<210> 14
<211> 45
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: primer
```

<400> 14

```
<210> 15
<211> 166
<212> PRT
<213> Artificial Sequence
<220>
<223> mutein
<400> 15
Ala Pro Pro Arg Leu Ala Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
                                   10
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
                               25
Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
                           40
Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
                       55
Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
                   70
                                       75
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
               85
                                  90
Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
                              105
Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
                                     125
       115
                           120
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
                       135
                                           140
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
                                      155
                  150
Cys Arg Thr Gly Asp Arg
               165
<210> 16
<211> 166
<212> PRT
<213> Artificial Sequence
<220>
<223> mutein
<400> 16
Ala Pro Pro Arg Leu Ile Ala Asp Ser Arg Val Leu Glu Arg Tyr Leu
1
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
          20
                              25
Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
```

55

70

85

Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp

75

90

 Lys
 Ala
 Val
 Ser
 Gly
 Leu
 Arg
 Ser
 Leu
 Thr
 Thr
 Leu
 Leu
 Arg
 Ala
 Leu

 Gly
 Ala
 Gly
 Ala
 Ile
 Ser
 Pro
 Pro
 Asp
 Ala
 Ala
 Ala
 Ala

 Pro
 Leu
 Arg
 Thr
 Ile
 Thr
 Ala
 Asp
 Thr
 Phe
 Arg
 Lys
 Leu
 Lys
 Leu
 Phe
 Arg
 Val

 Tyr
 Ser
 Asn
 Phe
 Leu
 Arg
 Gly
 Lys
 Leu
 Lys
 Leu
 Tyr
 Thr
 Gly
 Ala

 Tyr
 Arg
 Thr
 Asp
 Arg
 Arg
 Leu
 Lys
 Leu
 Tyr
 Thr
 Gly
 Ala

 Arg
 A

<210> 17

<211> 166

<212> PRT

<213> Artificial Sequence

<220>

<223> mutein

<400> 17

Ala Pro Pro Arg Leu Ile Cys Asp Ser Ile Val Leu Glu Arg Tyr Leu
1 5 10 15

Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45

Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 50 55

Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 80

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95

Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105