Programmation Avancée - Introduction

T.DUFAUD

UVSQ - IUT Vélizy - Informatique

INF3 S5 - 8 /09 / 2025

Plan

Présentation du module Applications et systèmes répartis -

généralités Programmation répartie

Présentation du module

2 Applications et systèmes répartis - généralités

Programmation répartie

Présentation

Applications et systèmes répartis généralités

Programmation répartie

Présentation du module

Contexte et objectif

Présentation

du module

Applications et systèmes

généralités Programmation répartie

Contexte

- PPN BUT Informatique Parcours A
- R5.A.05 Programmation Avancée avec un focus sur la programmation répartie
- Prérequis: M3101 (Système d'exploitation) M3102 (Service Réseau) M3105 (COOAv)

Objectif

- utiliser un environnement de développement indispensable à une fonction de développement de niveau 6...
- ...S'avoir programmer une application répartie

Contenu

- Modèles et problématiques des applications réparties
- Programmation concurrente (Multiprocessus, multithread, par évènements, etc.)
 - Programmation Client/Serveur

Organisation

Présentation

Applications et systèmes répartis généralités

Programmation répartie

Séances et modalités

- Chaque semaine 3h TD/TP FI (bloc de 4h en FA)
 - Contrôle continu
 - 1 rapports à faire sur l'ensemble des séances en TP avec un oral
 - 4 contrôles courts (20 minutes)
 - préparation à la SAE

Enseignants

- Thomas Dufaud: MCF UVSQ IUT, https://cv.hal.science/thomas-dufaud LI-PaRAD et Maison de la Simulation (resp. module, CM, TD/TP, SAE)
- contact : thomas.dufaud@uvsq.fr

Présentation

Programmation répartie

Applications et systèmes répartis - généralités

du module

Programmation répartie

Application Répartie - à votre avis

Du point de vue du logiciel

En terme d'architecture logicielle, comment sont généralement conçues les applications aujourd'hui ?

- les applications web
- les systèmes informatiques pour les systèmes d'informations
- flux de travail pour la simulation numérique

Du point de vue des architectures matérielles

Sur quelles architectures matérielles de votre connaissance sont portées ces applications ?

- processeur multicore/manycore
- smart phone
- cloud
- grille
- système HPC
- carte graphique
- FPGA

IUT-Vélizy T.Dufaud INF3 S5 - 8 /09 / 2025 7/21

< A →

Présentation du module

Applications systèmes répartis -

Programmation répartie

Definition 1 (Application Répartie).

Une application répartie peut permettre l'interaction de plusieurs applications séparées. Elle peut également être déployée par nécessitée sur d'importantes ressources de traitement.

Definition 2 (Système Répartie).

"Un système réparti est un ensemble de machines autonomes connectées par un réseau et équipées d'un logiciel dédié à la coordination des activités du système ainsi qu'au partage des ses ressources." [Coulouris et al, 1994]

"Un système réparti est un système qui s'exécute sur un ensemble de machines sans mémoire partagée, mais que pourtant l'utilisateur voit comme une seule et unique machine." [Tanenbaum,1994]

Principe de conception

Présentation du module

Applications e systèmes répartis généralités

Programmation répartie

Principe de conception et apport

Sources (Singhoff) (Mauran, 2005)

- Transparence à la localisation : ignorer la localisation réelle, utiliser une ressource qu'elle soit locale ou distante
- Transparence d'accès: utilisation d'interface pour un accès à une ressource de manière identique (exemples: open, lp...)
- Transparence à l'hétérogénéité: Interopérabilité ne pas tenir compte des différences matérielles ou logicielles
- Transparence aux pannes (réseaux, machines, logiciels): Les pannes et réincarnations sont cachées à l'utilisateur
- Transparence à l'extension des ressources: le système peut être étendu ou réduit, seules les performances peuvent être impactée.

Exemple, comment se traduisent les principes pour le

Présentation du module

systèmes répartis généralités

Programmation répartie

Web

- Transparence à la localisation :
 - Transparence d'accès :
 - Désignation :
- Interopérabilité :

Exemple, comment se traduisent les principes pour le

Présentation du module

Applications of systèmes répartis généralités

Programmation répartie

Web

- Transparence à la localisation : lien hypertexte
 - Transparence d'accès : URL
- Désignation : URL, DNS
- Interopérabilité : pages HTML, web service

Problématique de la programmation répartie

Présentation du module

Application systèmes répartis généralités

Programmation répartie

Difficultés

source (Krakowiak,2005)

- Asynchronisme du système de communication ⇒ détection des défaillances difficile
- Dynamisme (la composition du système change en permanence) ⇒ définir un état global est difficile
- Grande taille ⇒ scalabilité des applications peut être difficile a réaliser

Programmation d'une application distribuée

- Traitement : des processus, support d'exécution d'application qui communiquent entre eux
- Données : mémoire partagée ou distribuée
- Interconnection : mécanisme de communication
- Méthode de résolution : algorithme d'élection, comptage, etc. (graphe)

15

Présentation

Applications systèmes répartis généralités

Programmatio répartie

Programmation répartie

Contexte d'exécution : 1 core

Présentation du module Applications et systèmes

répartis généralités Programmation répartie

Figure: Mono core : plusieurs tâches sur une unité centrale (Source : National Instrument, 2008)

Contexte d'exécution : multi core

Présentation du module

Applications et systèmes répartis généralités

Figure: Multi core : Ici deux tâches peuvent être exécutées simultanément (Source : National Instrument, 2008)

4 🗇 →

Contexte d'exécution : multi thread

Présentation du module Applications et systèmes

répartis généralités Programmati

Figure: Multi thread : multi tâche au sein des applications grâce au multi thread (Source : National Instrument, 2008)

Type d'application I

Présentation du module Applications et systèmes répartis -

généralités Programmatio répartie

Application séquentielle

L'application est définie par une séquence d'action suivant les structures algorithmiques que sont :

- la séquence
- la sélection (if then else)
- les boucles (for, while)

Contexte mono processeur

Type d'application II

Présentation du module Applications et systèmes

généralités Programmation Application parallèle

L'application possède un potentiel de parallélisme. Des opérations peuvent s'effectuer indépendemment des autres.

- Exemple: la somme de deux vecteurs z = x + y s'écrit comme la somme élément par élément z_i = x_i + y_i
 Chaque somme i peut être réalisé en parallèle.
- les tâches concourent à la réalisation d'une même application.
 Necessite la gestion :
 - des synchronisations
 - des echanges d'informations entre tâches
 - du traitement sélectif
- Contexte multi processeur

Classification des architectures/algorithmes parallèles

Présentation du module Applications et systèmes répartis -

généralités Programmatio

Type de mémoire

- Architecture : mémoire distribuée Vs. mémoire partagée
- Algorithme : passage de message Vs. sémaphores, moniteurs, ...

Type de processeur

- Tâche Vs. Données
- Granularité taille des tâches

Première partie du cours : thread et mémoire partagée

Présentation du module Applications et systèmes

généralités Programmatio répartie

Tâche et mémoire partagée

- processus léger : support d'exécution d'une tâche
- collaboration par communication via la mémoire
- mise en oeuvre par les Thread en Java

Remarques

- nous verrons plus tard une architecture distribuée
- la communication entre processus via un réseau

Remarques II

• nous finirons par une ouverture vers le calcul parallèle

Références

Présentation du module Applications et systèmes répartis -

généralités

- (Coulouris et. al., 1994) G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts and Design, 2nd Ed. Addison-Wesley Publishers Ltd., 1994.
- (Tanenbaum, 1994) A. Tanenbaum. Systèmes d'exploitation : systèmes centralisés et systèmes distribués. Interéditions, Paris, 1994.
- (F. Singhoff) F. Singhoff, UE systèmes répartis, Université de Brest, http://beru.univ-brest.fr/~singhoff/ENS/UE_systemes_ repartis/CM/sd.pdf
- (F. Guinand) F. Guinand, H. Boukachour, Programmation répartie une introduction, université Le Havre http://litis.univ-lehavre.fr/ ~guinand/Enseignement/ProgRep/docs/cours-intro.pdf
- (Mauran, 2005) Introduction aux systèmes répartis 3ième Année Informatique et Multimédia, 5 octobre 2005, http: //mauran.perso.enseeiht.fr/pages/cours/3AI/introrep.pdf
- (Krakowiak, 2005) S. Krakowiak Introduction aux systèmes et applications répartis, 2005-2006. Université Joseph Fourier,
 - http://lig-membres.imag.fr/krakowia/Files/Enseignement/ M2P-GI/Flips/1-Intro-objets-1pp.pdf
- (National Instrument, 2008) Différences entre le multithread et le multitâche pour les programmeurs, National Instrument, 2008,
 - http://www.ni.com/white-paper/6424/fr/

