

FIGURE 1

00000000000000000000

FIGURE 2

FIGURE 3

Effect of Anti-Staph MAB 96-110 on
Survival in a Lethal *S.aureus* Sepsis Model

FIGURE 4 Survival of CF-1 Mice

FIGURE 4

FIGURE 5

6MER SEQ		10	20	30
41[13.6mer2-1	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	SEQ ID NO 4
61	C A H A D R V	Y G A		SEQ ID NO 5
42{ 14.6mer2-2	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	
65	C A H A D R V	Y C A		
43% 15.6mer2-3	GGGGCTCATG	CGGATACCCG	TTATGGGCC	
66	G A H A D R V	Y G A		
44% 16.6mer2-4	GGGA-TCATG	CGGATAGGGT	TTATGGGCC	SEQ ID NO. 6
62	G ? H A D R V	Y C A		SEQ ID NO. 7
45% 17.6mer2-5	CCCCCTCATG	CGGATACCCG	TTATCCCCC	
67	G A H A D R V	Y G A		
46% 18.6mer2-6	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	
68	G A H A D R V	Y G A		
47% 19.6mer2-7	GGGGCTCATG	CGGATACCCG	TTATCCCCC	
69	G A H A D R V	Y G A		
48% 20.6mer2-8	CCCCCTCATG	CGGATAGGGT	TTATCCCCC	
70	G A H A D R V	Y C A		
49% 21.6mer2-9	CCCCCTCATG	CGGATACCCG	TTATCCCCC	
71	G A H A D R V	Y G A		
51% 23.6mer2-1	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	
72	G A H A D R V	Y C A		
52% 24.6mer2-1	GGGGCTCATG	CGGATACCCG	TTATGGGCC	
73	G A H A D R V	Y G A		
53% 25.6mer2-1	CCCCCTCATG	CGGATAGGGT	TTATGGGCC	
74	G A H A D R V	Y C A		
54% 26.6mer2-1	GGGGCTCATG	CGGATACCCG	TTATGGGCC	
75	G A H A D R V	Y G A		
55% 27.6mer2-1	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	
76	G A H A D R V	Y C A		
56% 28.6mer2-1	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	
77	G A H A D R V	Y G A		
58% 30.6mer2-1	CCCCCTCATG	CGGATAGGGT	TTATGGGCC	
78	G A H A D R V	Y G A		
59% 31.6mer2-1	CCCCCTCATG	CGGATAGGGT	TTATGGGCC	
79	G A H A D R V	Y G A		
60% 32.6mer2-2	GGGGCTCATG	CGGATAGGGT	TTATGGGCC	
80	G A H A D R V	Y G A		

D 999999 - 999999

FIGURE 6

15MER2 . SEQ		10	20	30	40	50	60
50{ 07.15mer2-1/0	GGGGCTTGGC	ATTCGGCTCA	TCTGATTCCCT	CTTCACCTTG	CTGCTGGTCG	TGGGGCCC	SEQ ID NO. 8
70	C A W	H W R H R I P	L Q L	A A G R I C A	SEQ ID NO. 9		
52{ 09.15mer2-3/0	GGGGCTTGGC	CCCATCCCAA	TTTTTCAT	TTTTTCATC	CTTCAGCTTCAT	TGGGGCCC	SEQ ID NO. 10
72	G A R	R H G N	F S H	F F H R	R S L I	C A	SEQ ID NO. 11
53{ 10.15mer2-4/0	GGGGCTTGGC	AGGCTTTCTT	TATTCATCT	TATCGTCCTC	CTGGGTTCGGC	TGGGGCCC	SEQ ID NO. 12
73	C A W	K A L F	S H S Y R	P R G S A G	C A	SEQ ID NO. 13	
54{ 11.15mer2-5/0	GGGGCTTGGC	ATTCGGCTCA	TCCTATTCCCT	CTTCAGCTTC	CTGCTGGTCG	TGGGGCCC	SEQ ID NO. 14
74	G A R	H W R H R I P	L O L	A A G R C A	SEQ ID NO. 15		
56{ 13.15mer2-7/0	GGGGCTTGGC	ATTCGGCTCA	TCCTATTCCCT	CTTCAGCTTC	CTTCAGCTTC	TGGGGCCC	SEQ ID NO. 16
76	G A W	H W R H R I P	L O L	A A G R C A	SEQ ID NO. 17		
57{ 14.15mer2-8/0	GGGGCTTGGC	ATTCGGCTCA	TCCTATTCCCT	CTTCAGCTTC	CTGCTGGTCG	TGGGGCCC	SEQ ID NO. 18
77	G A W	H W R H R I P	L O L	A A G R C A	SEQ ID NO. 19		
58{ 15.15mer2-9/0	GGGGCTCACC	TCCCTCTTT	CTATCCCTCT	TTGCTGATC	CTACTCACCT	TGGGGCCC	SEQ ID NO. 20
78	G A Q	V A V L Y P P	L A D	A T E L C A	SEQ ID NO. 21		
59{ 16.15mer2-10/0	GGGGCTCGTC	GGCATCTAA	TTTTCAT	TTTTTCATC	GGTCGTTGAT	TGGGGCCC	SEQ ID NO. 22
79	G A R	R H G N F S H	F F H R S L I	G A	SEQ ID NO. 23		
60{ 17.15mer2-11/0	GGGGCTCGTC	GGCATGGTAA	TTTTTCAT	TTTTTCATC	GGTCGTTGAT	TGGGGCCC	SEQ ID NO. 24
80	G A R	R H G N F S H	F F H R S L I	G A	SEQ ID NO. 25		
61{ 18.15mer2-12/0	GGGGCTTGGC	GTATGTATTT	TTCTCATCGT	CATGCCATC	TTCTACTTC	TGGGGCCC	SEQ ID NO. 26
81	G A W	R M Y P	S H R H A H	L R S P G	A	SEQ ID NO. 27	
62{ 19.15mer2-13/0	GGGGCTTGGC	GTATCTATT	TTCTCATCGT	CATGCCATC	TTCTACTTC	TGGGGCCC	SEQ ID NO. 28
82	G A W	R M Y F S H R	H A H L R S P G	A	SEQ ID NO. 29		
63{ 20.15mer2-14/0	GGGGCTTGGC	GGAGGTATTT	TTCTTATCAT	CATGCCATC	TTCTACTTC	TGGGGCCC	SEQ ID NO. 30
83	G A W	R K Y F S Y H	H A H L C S P G	A	SEQ ID NO. 31		
64{ 21.15mer2-15/0	GGGGCTTGGC	GTATGTATTT	TTCTCATCGT	CATGCCATC	TTCTACTTC	TGGGGCCC	SEQ ID NO. 32
84	G A W	R M Y F S H R	H A H L R S P G	A	SEQ ID NO. 33		
65{ 22.15mer2-16/0	GGGGCTTGGC	GTATCTATT	TTCTCATCGT	CATGCCATC	TTCTACTTC	TGGGGCCC	SEQ ID NO. 34
85	G A W	R M Y F S H R	H A H L R S P G	A	SEQ ID NO. 35		
66{ 23.15mer2-17/0	GGGGCTTGGC	GTATCTATT	TTCTCATCGT	CATGCCATC	TTCTACTTC	TGGGGCCC	SEQ ID NO. 36
86	G A W	R M Y F S H R	H A H L R S P C	A	SEQ ID NO. 37		
67{ 24.15mer2-18/0	GGGGCTCGTC	GGCATGGTAA	TTTTTCAT	TTTTTCATC	GGTCGTTGAT	TGGGGCCC	SEQ ID NO. 38
87	G A R	R H C N F S H F	H R S L I	G A	SEQ ID NO. 39		
68{ 25.15mer2-19/0	GGGGCTTGGC	ATTCGGCTCA	TCCTATTCCCT	CTTCAGCTTC	CTGCTGGTCG	TGGGGCCC	SEQ ID NO. 40
88	G A W	H W R H R I P	L Q L	A A G R C A	SEQ ID NO. 41		
69{ 26.15mer2-20/0	GGGGCTCGTC	GGCATGGTAA	TTTTTCAT	TTTTTCATC	GGTCGTTGAT	TGGGGCCC	SEQ ID NO. 42
89	G A R	R H G N F S H	F F H R S L I	G A	SEQ ID NO. 43		

FIGURE 7

SMER1_SEQ		10	20	30	40	50	60
11 20.15mer1-2	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						SEQ ID NO. 44
12	C A D W I T F H R R H H D R V L S G A						SEQ ID NO. 45
13 29.15mer1-3	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						SEQ ID NO. 46
14	C A C W I T F H R R H H D R V L S G A						SEQ ID NO. 47
15 32.15mer1-6	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
16	C A G W I T F H R R H H D R V L S G A						
17 13.15mer1-7	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
18	C A G W I T F H R R H H D R V L S G A						
19 14.15mer1-8	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
20	C A G W I T F H R R H H D R V L S G A						
21 15.15mer1-9	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
22	C A C W I T F H R R H H D R V L S G A						
23 16.15mer1-10	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
24	C A G W I T F H R R H H D R V L S G A						
25 17.15mer1-11	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
26	C A G W I T F H R R H H D R V L S G A						
27 18.15mer1-12	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
28	C A C W I T F H R R H H D R V L S G A						
29 19.15mer1-13	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
30	C A C W I T F H R R H H D R V L S G A						
31 20.15mer1-14	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
32	C A G W I T F H R R H H D R V L S G A						
33 21.15mer1-15	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
34	C A G W I T F H R R H H D R V L S G A						
35 22.15mer1-16	CGGGCTGGGA AGGCTATGTT TAGTCATCTCT TATCGTCATC CGGGCTGGGC TGGGGCCC						SEQ ID NO. 48
36	C A G K A M F S H S Y R H R G S A G A						SEQ ID NO. 49
37 23.15mer1-17	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
38	C A C W I T F H R R H H D R V L S G A						
39 24.15mer1-18	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
40	C A G W I T F H R R H H D R V L S G A						
41 25.15mer1-19	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
42	C A G W I T F H R R H H D R V L S G A						
43 26.15mer1-20	CGGGCTGGTT GGATTACTTT TCATCGTCGT CATCATGATC CTCTTCTTTC TCCCCCCC						
44	C A G W I T F H R R H H D R V L S G A						

106290 " 51366350

FIGURE 8

masterlist	10	20	30	40	50	60	70
54 15mer 1st.1	GGGGCTTTT CGATTACCTT TCACTGCTGT CATCATCATE GTCCTTC TCAGCCC						
57	C A D W I T F H R R D R V L S G A						
90 15mer 1st.2	GGCCCTAATC GCTATATGCT TGCCTCGCTC TCCCTTTC TCCCTTC TCCCTTC						
91	G A S R H M L A R W S R L A V P G A						
75 15mer 1st.16	GGGGCTCGA ACCGATATGTT TACTCTATCT TATCTCTATC GCGCTTCGGC TCCCTC						
85	C A G K A M F S H S Y R H R G S A C A						
92 15mer 2nd.1	GGGGCTTGGC ATGGGCTCA TGGTATCTT CTTCACCTC CTGGCTGGCG TCCCTC						
98	G A H W R H R I P L Q L A A G R G A						
93 15mer 2nd.3	GGGGCTGTC CGGATAGTA TTTTTCATC TTATTCATC GGTCGTTGAT TGGGCC						
99	G A R H G N F S H F F R E L I G A						
94 15mer 2nd.4	GGGGCTTGA AGGGTTCTT TAGCTATTCT TATCTCTCT GGGCTTCGGC TGGGCC						
100	G A W X A L F S H S Y R P R G S A G A						
95 15mer 2nd.9	GGGGCTGGC TGGCTGTTT CTATCTCTT TTGGCTGATC CTACTGACTT TGGGCC						
101	G A O V A V L Y P P L A O A T E L G A						
96 15mer 2nd.12	GGGGCTTCCTT CTATCTATT TTCTCTCTGT CATGGCCATC TGGCTACTC TGGGCC						
102	G A W R M Y F S H R H A H L R S P G A						
97 6mer 2nd.1	GGGGCTATC CGGATAGGT TTATCGCC						
103	G A H A D R V Y G A						

FIGURE 9

Comparison of Signals at 6.25×10^9 vir/mL.

FIGURE 10: General Cloning Strategy

Drafting by Dinesh

FIGURE 11

Mouse Heavy Chain "front" primers

JSS1

5'-ATTCAGGGCCAGCCGGCATGGCCGARGTRMAGCTSAKGAGWC-3' SEQ ID NO 68

JSS2

5'-ATTCAGGGCCAGCCGGCATGGCCGARGTYCARCTKCARCARYC-3' SEQ ID NO 69

JSS3

5'-ATTCAGGGCCAGCCGGCATGGCCAGGTGAAGCTKSTSGARTC-3' SEQ ID NO 70

JSS4

5'-ATTCAGGGCCAGCCGGCATGGCCAVGTGMWGCTKGTGGAGWC-3' SEQ ID NO 71

JSS8

5'-ATTCAGGGCCAGCCGGCATGGCCAGGTBCARCTRMARSARTC-3' SEQ ID NO 72

Mouse Heavy chain "back" primers

JS160

5'-GCTGCCACCGCCACCTGMRGAGACDGTGASTGARG-3' SEQ ID NO 73

JS161

5'-GCTGCCACCGCCACCTGMRGAGACDGTQASMGTG-3' SEQ ID NO 74

JS162

5'-GCTGCCACCGCCACCTGMRGAGACDGTGASCAGRG-3' SEQ ID NO 75

Mouse Light Chain Leader "front" primers

PMC12

5'-CCCGGGCCACCATGGAGACAGACACACTCCTG-3' SEQ ID NO 76

PMC13

5'-CCCGGGCCACCATGGATTTCAAGTCCAQATTTC-3' SEQ ID NO 77

PMC14

5'-CCCGGGCCACCATGGAGWCACAKWCTCAGGTC-3' SEQ ID NO 78

PMC15

5'-CCCGGGCCACCATGKCCCCWRCTCAGYTTCTKG-3' SEQ ID NO 79

PMC55

5'-CCCGGGCACCATGAAGTTGCCTGTTAGGCTG-3' SEQ ID NO 80

Mouse Light Chain "back" primer

ORA57

5'-GCACCTCCAGATGTTAACTGCTC-3' SEQ ID NO 81

"96-110" Specific Primers

96110HF2

5'-TAATATCAGGACAGCTACAGGTGTCCACTCCGAAGTGATGCTGGAGWCCTG-3' SEQ ID NO 82

96110HB

5'-TTATAGAATTCTGAGGGAGACGGTGAGTGAG-3' SEQ ID NO 83

96110BLF

5'-TTAGGCQATAATCGTTCTCTCCCAGTCTCC-3' SEQ ID NO 84

96110BLB

5'-GTAACCGTTTCAAAAAGTGTACTTACGTTTATTCCAGCATGGTCC-3' SEQ ID NO 85

ପାତ୍ରବିଦ୍ୟା ମଧ୍ୟ କାନ୍ତି ପାତ୍ରବିଦ୍ୟା

FIGURE 12

96-110 anti-staph (HAY) heavy chain variable region (type IIIA)

96-110 anti-staph (HAY) light chain variable region (type VI)

CDR Regions Demand

FIGURE 13

FIGURE 14

1000 900 800 700 600 500 400 300 200 100 0

FIGURE 15: Antibody Production ELISA

Anti-Staph HAY Activity ELISA

FIGURE 16: Anti-Staph HAY Activity ELISA

Opsonic Activity of HuMAB 96-110 for *S. epidermidis*
in a Neutrophil Mediated Opsonophagocytic
Bactericidal Assay Using Human Complement

Pilot Study to Compare the Effect of Mouse MAB 96-110 and HuMAB 96-110 in a Lethal Model of *S. Enteritidis* Sepsis

MAB dose: 1d mg/kg given IP, 24 and 1 hour prior to infection

Survival of C57BL/6J Mice after Intraperitoneal Challenge with 3×10^9 *S. enteritidis* (Hay)

18 mg/kg/dose, IP, 24 and 11 hour prior to infection

Effect of HuMAB 96-110 on Bacteremia in a Lethal *S. epidermidis* Sepsis Model

Geometric Mean Bacteremia Level

HuMAB 96-110 18 mg/kg/dose or saline given IP, 24 and 1 hour prior to IP infection with 3x10⁹ *S. epidermidis* (Hay)

Bacteremia levels 4 hrs after infection with $3 \times 10^9 S. epidermidis$ *

* CF-1 mice infected IP with strain Flay-HuMAB given IP x 2

The Effect of Hu 96-110 on Survival in a Lethal Neonatal *S. epidermidis** Sepsis Model: Study II

20
SCANNED #

FIGURE 12

96-110 anti-staph (HAY) heavy chain variable region (type II A)

96-110 anti-staph (HAY) light chain variable region (type VI)

CDR Regions Underlined