

COMP20008 Elements of Data Processing

Semester 2 2018

Lecture 9: Assessing Correlations

Plan today

- Discuss about finding correlations between pairs of features in a dataset
 - Why useful and important
 - Pitfalls
- · Review methods for computing correlation
 - Euclidean distance
 - Pearson correlation
- · Next lecture
 - Mutual information (another method to compute correlation)

What is Correlation?

Correlation is used to detect pairs of variables that might have some relationship

Ice Cream Sales vs Temperature				
Temperature °C	Ice Cream Sales			
14.2°	\$215			
16.4°	\$325			
11.9°	\$185			
15.2°	\$332			
18.5°	\$406 \$522			
22.1°				
19.4°	\$412			
25.1°	\$614			
23.4°	\$544			
18.1°	\$421			
22.6°	\$445			
17.2°	\$408			

https://www.mathsisfun.com/data/correlation.html

What is Correlation?

Visually can be identified via inspecting scatter plots

https://www.mathsisfun.com/data/correlation.html

What is Correlation?

THE UNIVERSITY OF MELBOURNE Example of Correlated Variables

· Linear relations

https://www.mathsisfun.com/data/correlation.html

- Can hint at potential causal relationships (change in one variable is the result of change in the other)
- Business decision based on correlation: increase electricity production when temperature increases

THE UNIVERSITY OF MELBOURNE

Example of non-linear correlation

It gets so hot that people aren't going near the shop, and sales start dropping

https://www.mathsisfun.com/data/correlation.html

Example of non-linear correlation

It gets so hot that people aren't going near the shop, and **sales start dropping**

https://www.mathsisfun.com/data/correlation.html

Wealth and happiness
[from https://www.economist.com/blogs/dailychart/2010/11/daily_chart_1]

Climate change
[https://climate.nasa.gov/evidence/]

THE UNIVERSITY OF MELBOURNE

Example of Correlated Variables

• Correlation does not necessarily imply causality!

Example of Correlated Variables

Correlation does not necessarily imply causality!

Example: Predicting Sales

THE UNIVERSITY OF MELBOURNE

Example: Predicting Sales

· https://www.kaggle.com/c/rossmann-store-sales/data

1	Store	DayOfWeek	Date	Sales	Customers	Open	Promo	StateHoliday	SchoolHolida
2	1	5	31/07/2015	5263	555	1	1		1
3	2	5	31/07/2015	6064	625	1	. 1		1
4	3	5	31/07/2015	8314	821	1	1	. 0	1
5	4	5	31/07/2015	13995	1498	3	. 1		1
6	5	5	31/07/2015	4822	559	1	1	. 0	1
7	6	5	31/07/2015	5651	589	3	1	. 0	1
8	7	5	31/07/2015	15344	1414	1	. 1	. 0	1
9	8	5	31/07/2015	8492	833	3	. 1	. 0	1
10	9	5	31/07/2015	8565	687	1	1	. 0	1
11	10	5	31/07/2015	7185	681	3	. 1	. 0	1
12	11	5	31/07/2015	10457	1236	1	1	. 0	1
13	12	5	31/07/2015	8959	962	1	. 1		1
14	13	5	31/07/2015		568	1	1	. 0	0
15	14	5	31/07/2015		710	1	. 1		1
16	15	5	31/07/2015		766		1	0	1
17	16	5	31/07/2015		979	1	1	. 0	1
18	17	5	31/07/2015		946	1	1	0	1
19	18	5	31/07/2015		936	1	1	. 0	1
20	19	5	31/07/2015	8234	718	1	1	0	1
21	20	5	31/07/2015		974	1	1	. 0	0
22	21	5	31/07/2015	9515	682	1	1	0	1
23	22	5	31/07/2015		633	1	1	. 0	0
24	23	5	31/07/2015		560	1	1	0	1
25	24	5	31/07/2015		1082	1	1	. 0	1
26	25	5	31/07/2015	14180	1586	1	1		1

Example: Predicting Sales

THE UNIVERSITY OF MELBOURNE

Example: Predicting Sales

- · Other correlations
 - Sales vs. holiday
 - Sales vs. day of the week
 - Sales vs. distance to competitors
 - Sales vs. average income in area

Example rank correlation

 "If a university has a higher-ranked football team, then is it likely to have a higher-ranked basketball team?"

Football ranking	University team
1	Melbourne
2	Monash
3	Sydney
4	New South Wales
5	Adelaide
6	Perth

Basketball ranking	University team
1	Sydney
2	Melbourne
3	Monash
4	New South Wales
5	Perth
6	Adelaide

Why is correlation important?

- · Discover relationships
- One step towards discovering causality

A causes B

Examples:

Gene A causes lung cancer

- Feature ranking: select the best features for building better predictive models
 - A good feature to use, is a feature that has high correlation with the outcome one is trying to predict

Case study: Microarray data

Measure genes' level of activity

https://en.wikipedia.org/wiki/Bio-MEMS

The Central Dogma of Molecular Biology

• DNA makes RNA makes proteins

luco

- DNA contains multiple genes containing information to produce different types of proteins
- To much or too little proteins of certain type can cause diseases
- Gene chips can measure the amount or mRNA (a proxy for protein level) – activity level (expression level)

http://www.atdbio.com/content/14/Transcription-Translation-and-Replication

Microarray data

 Each chip contains thousands of tiny probes corresponding to the genes (20k - 30k genes in humans). Each probe measures the activity (expression) level of a gene

Gene 1 expression	Gene 2 expression	 Gene 20K expression
0.3	1.2	 3.1

Microarray dataset

	Gene 1	Gene 2	Gene 3	 Gene n
Time 1	2.3	1.1	0.3	 2.1
Time 2	3.2	0.2	1.2	 1.1
Time 3	1.9	3.8	2.7	 0.2
Time m	2.8	3.1	2.5	 3.4

- Each row represents measurements at some time
- Each column represents levels of a gene

Correlation analysis on Microarray data

 Can reveal genes that exhibit similar patterns ⇒ similar or related functions ⇒ Discover functions of unknown genes

Problem of Euclidean distance

Objects can be represented with different measure scales

	Day 1	Day 2	Day 3	 Day m
Temperature	20	22	16	 33
#Ice-creams	50223	55223	45098	 78008
#Electricity	102034	105332	88900	 154008

d(temp,ice-cr)= 540324 d(temp,elect)= 12309388

 Euclidean distance: does not give a clear intuition about how well variables are correlated

$$\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Problem of Euclidean distance

 Cannot discover variables with similar behaviours/dynamics but at different scale

THE UNIVERSITY OF MELBOURNE

Problem of Euclidean distance

 Cannot discover variables with similar behaviours/dynamics but in the opposite direction (negative correlation)

Assessing linear correlation – Pearson correlation

- We will define a correlation measure $r_{xy}, \ \mbox{assessing samples}$ from two features x and y
 - Assess how close their scatter plot is to a straight line (a linear relationship)
- Range of r_{xy} lies within [-1,1]:
 - 1 for perfect positive linear correlation
 - -1 for perfect negative linear correlation
 - 0 means no correlation
 - Absolute value |r| indicates strength of linear correlation
- http://www.bc.edu/research/intasc/library/correlation.shtml

Pearson's correlation coefficient (r)

$$r = \mathbf{r}_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) \cdot \left(\sum_{i=1}^{n} (y_i - \bar{y})^2\right)}}$$

- x and y are the two attributes in your dataset
- Sample means $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$

Pearson coefficient example

Height (x)	Weight (y)
1.6	50
1.7	66
1.8	77
1.9	94

- · How do the values of x and y move (vary) together?
- Big values of x with big values of y?
- Small values of x with small values of y?

 $\bar{x} = 1.75$ $\bar{y} = 71.75$

Pearson coefficient example

$$\mathbf{r}_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \bar{x})^2) \cdot (\sum_{i=1}^{n} (y_i - \bar{y})^2)}}$$

x_i	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$
1.6	50	-0.15	-21.75	3.2625	0.0225	473.0625
1.7	66	-0.05	-5.75	0.2875	0.0025	33.0625
1.8	77	0.05	5.25	0.2625	0.0025	27.5625
1.9	94	0.15	22.25	3.3375	0.0225	495.0625

<u> </u>		$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	= (7.15) = 0,996933	₹
,,	ку — -	$(\sum_{i=1}^{n} (x_i - \bar{x})^2) \cdot (\sum_{i=1}^{n} (y_i - \bar{y})^2)$	√0.05 x 1028.75	,

 $(\sum_{i=1}^{n} (x_i - \bar{x})^2) \cdot (\sum_{i=1}^{n} (y_i - \bar{y})^2)$

 $https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient$

Interpreting Pearson correlation values

- In general it depends on your domain of application. Jacob Cohen has suggested
 - 0.5 is large
 - 0.3-0.5 is moderate
 - 0.1-0.3 is small
 - less than 0.1 is trivial

Properties of Pearson's correlation

- Range within [-1,1]
- Scale invariant: r(x,y)= r(x, Ky)
 - Multiplying a feature's values by a constant K makes no difference
- Location invariant: r(x,y)= r(x, K+y)
 - Adding a constant K to one feature's values makes no difference
- Can only detect linear relationships
 y = a.x + b + noise

Cannot detect <u>non-linear</u> relationship $y = x^3 + noise$

2017 Exam question 3a

Instance ID	Predicted class	Actual class
1	X	X
2	X	Y
3	Y	Y
4	X	X
5	X	Y
6	Y	X
7	X	X
8	Y	Y
9	Y	X
10	Y	Y

a) (1 mark) Would Pearson correlation be suitable to compute the correlation between the *Predicted class* and *Actual class*? Why or why not?

2016 exam question 2a)

 a) Richard is a data wrangler. He does a survey and constructs a dataset recording average time/day spent studying and average grade for a population of 1000 students:

Student Name	Average time per day studying	Average Grade

i) (3 marks) Richard computes the Pearson correlation coefficient between Average time per day studying and Average grade and obtains a value of 0.85. He concludes that more time spent studying causes a student's grade to increase. Explain the limitations with this reasoning and suggest two alternative explanations for the 0.85 result.

Notes

- Interactive correlation calculator
 - http://www.bc.edu/research/intasc/library/correlation.shtml
- Correlation <> Causality

http://tylervigen.com/spurious-correlations

Google trends correlation

Points you should know from today

- be able to explain why identifying correlations is useful for data wrangling/analysis
- · understand what is correlation between a pair of features
- understand how correlation can be identified using visualisation
- understand the concept of a linear relation, versus a non linear relation for a pair of features
- understand why the concept of correlation is important, where it is used and understand why correlation is not the same as causation
- understand the use of Euclidean distance for computing correlation between two features and its advantages/disadvantages

Point to know - cont.

- understand the use of Pearson correlation coefficient for computing correlation between two features and its advantages/disadvantages
- understand the meaning of the variables in the Pearson correlation coefficient formula and how they can be calculated.
 Be able to compute this coefficient on a simple pair of features.
 The formula for this coefficient will be provided on the exam.
- be able to interpret the meaning of a computed Pearson correlation coefficient
- understand the advantages and disadvantages of using the Pearson correlation coefficient for assessing the degree of relationship between two features