

LoRa Networking In Mobile Scenarios Using UAV Gateways

Master Candidate:

Marco Stellin

Supervisors:

Prof. António Grilo Sergio Sabino, M.Sc.

- Introduction
- UAV Mobility Algorithm
- Simulation Model
- Results
- Conclusions and Future Work

Problem Description

Contributions

Rescuers in Wildfire Scenario

Related Work: DF Algorithm

- Comparison with DF spring forces algorithm proposed by Di Felice et al.
- Weights of forces assigned differently

Fixed Weight

$$k_{AtG} = \frac{n_i}{\max(n_j) \forall j \in Neigh_i}$$

Layers of the algorithm

Movement Prediction (MP) Layer

Connection Recovery and Maintenance (CRM) Layer

Virtual Spring Forces (VSF) Layer

VSF Layer (1)

Objectives

Avoid collisions, limit disconnections of drones

VSF Layer (2)

$$\vec{F} = K \cdot (LB_{ij} - LB_{req})$$

$$K_{AtA} = K_p \left(\frac{N_{neighs}^{max}}{n_{neighs}} \right)$$
$$K_{AtG} = \frac{u_{max}}{u_i}$$

CRM Layer (1)

Problem Solution Isolation of Move towards BS drones Avoid further Limit mobility of drones closer to BS disconnections Preserve coverage Allow short of GNs disconnections Better drone **Exploit redundant** drones distribution

CRM Layer (2)

Objective

Recover isolated Ground Nodes

Metodology

- k-means + silhouette
- Prediction, kinematic equations
- Virtual Forces

MP Layer (2)

Track lost GNs

Create clusters Estimate velocity

Send information to other drones

Create holograms, Generate forces

Simulation Model

- New ns-3 loravsf module
- New mobility model of rescuers based on teams

Simulation Example

Simulation Parameters

LoRa Spreading Factor	7
Packet Size	10 bytes
Packet Period	30 s
Number of Teams	1-5
Units Per Team	20
Number of Drones	4-6-8-10-12
Simulation Time	2000 / 3000 s
Simulation Area (m ²)	2000x2000 / 2500x2500

Impact of K_p on PRR (1)

Impact of K_p on PRR (2)

Impact of K_p on PRR (3)

3 Teams of 40 GNs

LoRaUAV VSF vs DF VSF (1)

LoRaUAV VSF vs DF VSF (2)

Impact of CRM and MP on PRR

Disconnections Analysis (1)

Disconnections Analysis (2)

Conclusions and Future Work

- The developed VSF layer
 - Effectively pursues ground nodes coverage
 - Slightly outperform DF algorithm in PRR
- The addition of CRM and MP
 - Significantly increases the average PRR
 - Reduces isolation of Ground Nodes

Future developments

- More realistic mobility model of drones
- Hybrid centralized-distributed approach
- K_p optimization routine