IRIS VISUALIZATION USING SEABORN & MATPLOTLIB

```
import warnings
In [1]:
          warnings.filterwarnings('ignore')
          import pandas as pd
In [2]:
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          iris=pd.read_csv("Iris.csv")
In [3]:
In [4]:
          iris
Out[4]:
                 Id SepalLengthCm SepalWidthCm
                                                       PetalLengthCm
                                                                        PetalWidthCm
                                                                                            Species
             0
                  1
                                  5.1
                                                  3.5
                                                                   1.4
                                                                                   0.2
                                                                                         Iris-setosa
             1
                  2
                                  4.9
                                                  3.0
                                                                   1.4
                                                                                   0.2
                                                                                         Iris-setosa
             2
                  3
                                  4.7
                                                  3.2
                                                                   1.3
                                                                                   0.2
                                                                                         Iris-setosa
             3
                  4
                                  4.6
                                                  3.1
                                                                   1.5
                                                                                   0.2
                                                                                         Iris-setosa
             4
                  5
                                  5.0
                                                                   1.4
                                                                                   0.2
                                                  3.6
                                                                                         Iris-setosa
          145
                146
                                  6.7
                                                  3.0
                                                                   5.2
                                                                                   2.3
                                                                                       Iris-virginica
                                                  2.5
                147
          146
                                  6.3
                                                                   5.0
                                                                                   1.9
                                                                                        Iris-virginica
                148
          147
                                  6.5
                                                  3.0
                                                                   5.2
                                                                                       Iris-virginica
          148
               149
                                  6.2
                                                  3.4
                                                                   5.4
                                                                                   2.3
                                                                                        Iris-virginica
          149 150
                                  5.9
                                                  3.0
                                                                   5.1
                                                                                   1.8 Iris-virginica
         150 rows × 6 columns
          iris.head()
In [5]:
              Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[5]:
                                                                                      Species
          0
              1
                                              3.5
                              5.1
                                                               1.4
                                                                               0.2 Iris-setosa
                              4.9
                                              3.0
                                                               1.4
                                                                                   Iris-setosa
          2
              3
                              4.7
                                              3.2
                                                               1.3
                                                                               0.2 Iris-setosa
          3
              4
                              4.6
                                              3.1
                                                               1.5
                                                                               0.2 Iris-setosa
              5
                              5.0
                                              3.6
                                                               1.4
                                                                               0.2 Iris-setosa
         iris.info()
In [6]:
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
```

Non-Null Count Dtype Column _ _ _ ----------0 Ιd 150 non-null int64 1 SepalLengthCm 150 non-null float64 2 SepalWidthCm 150 non-null float64 3 PetalLengthCm 150 non-null float64 float64 4 PetalWidthCm 150 non-null Species 150 non-null object dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

In [7]: iris.describe()

Out[7]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75 %	112.750000	6.400000	3.300000	5.100000	1.800000

4.400000

6.900000

2.500000

7.900000

```
In [8]: iris.drop('Id',axis=1,inplace=True)
```

```
In [9]: iris['Species'].value_counts()
```

max 150.000000

Out[9]: Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50

Name: Species, dtype: int64

In [10]: sns.countplot(x ='Species',data=iris)
plt.show()

In [11]: x = sns.jointplot(x='SepalLengthCm',y='SepalWidthCm',data=iris)

In [12]: sns.jointplot(x = "SepalLengthCm", y = "SepalWidthCm", data=iris, kind="reg")

Out[12]: <seaborn.axisgrid.JointGrid at 0x1d13534a150>

In [13]: x1 = sns.jointplot(x='SepalLengthCm',y='SepalWidthCm',kind='hex',data=iris)

FacetGrid Plot

```
In [14]: g = sns.FacetGrid(iris, hue='Species', height=5)
    g.map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm')
    g.add_legend()
    plt.show()
```


In [15]: fig=plt.gcf()
 fig.set_size_inches(10,7)
 fig=sns.boxplot(x='Species',y='PetalLengthCm',data=iris,order=['Iris-virginica','Ir


```
In [16]: iris.boxplot(by="Species", figsize=(12, 6))
```


Strip Plot

Combining Box And Strip Plots

```
In [18]: fig=plt.gcf()
    fig.set_size_inches(10,7)
    fig=sns.boxplot(x='Species',y='SepalLengthCm',data=iris)
    fig=sns.stripplot(x='Species',y='SepalLengthCm',data=iris,jitter=True,edgecolor='bl
```



```
In [19]: ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris)

# Add stripplot on same axes
sns.stripplot(x="Species", y="PetalLengthCm", data=iris,jitter=True, edgecolor="bla"

# Get all box patches
boxes = ax.patches # correct for new Seaborn/Matplotlib

# Change colors
boxes[0].set_facecolor('green')
boxes[0].set_edgecolor('black')

boxes[1].set_facecolor('red')
boxes[1].set_edgecolor('black')

boxes[2].set_facecolor('yellow')
boxes[2].set_edgecolor('black')
```


Violin Plot

```
In [20]: plt.figure(figsize=(10, 7))
    sns.violinplot(x='Species', y='SepalLengthCm', data=iris, color='green')
    plt.show()
```



```
plt.figure(figsize=(15,10))
In [21]:
         plt.subplot(2,2,1)
         sns.violinplot(x='Species',y='PetalLengthCm',data=iris,color='green')
         plt.subplot(2,2,2)
         sns.violinplot(x='Species',y='PetalWidthCm',data=iris, color='red')
         plt.subplot(2,2,3)
         sns.violinplot(x='Species',y='SepalLengthCm',data=iris, color='purple')
         plt.subplot(2,2,4)
         sns.violinplot(x='Species',y='SepalWidthCm',data=iris,color='yellow')
```

<Axes: xlabel='Species', ylabel='SepalWidthCm'> Out[21]:

Pair Plot

```
sns.pairplot(data=iris,kind='scatter')
In [22]:
```

<seaborn.axisgrid.PairGrid at 0x1d1375e8610> Out[22]:

In [23]: sns.pairplot(iris,hue='Species');

Heat Map

```
In [24]: fig=plt.gcf()
    fig.set_size_inches(10,7)
    fig=sns.heatmap(iris.corr(),annot=True,cmap='cubehelix',linewidths=1,linecolor='k',
```


Distribution Plot

Swarm Plot

```
In [26]: sns.set(style="darkgrid")
    fig=plt.gcf()
    fig.set_size_inches(10,7)
    fig = sns.swarmplot(x="Species", y="PetalLengthCm", data=iris, color='green')
```



```
In [27]: sns.set(style="whitegrid")
    fig=plt.gcf()
    fig.set_size_inches(10,7)
    ax = sns.violinplot(x="Species", y="PetalLengthCm", data=iris, inner=None)
    ax = sns.swarmplot(x="Species", y="PetalLengthCm", data=iris,color="black", edgecol
```


LM Plot

FacetGrid

```
In [29]: g = sns.FacetGrid(iris, hue="Species", height=6)
    g.map(sns.kdeplot, "PetalLengthCm")
    g.add_legend()

Out[29]: <seaborn.axisgrid.FacetGrid at 0x1d13684ed90>
```


Factor Plot


```
In [30]: sns.catplot(x='Species', y='SepalLengthCm', data=iris, kind='box')
    sns.catplot(x='Species', y='SepalWidthCm', data=iris, kind='box')
    sns.catplot(x='Species', y='PetalLengthCm', data=iris, kind='box')
    sns.catplot(x='Species', y='PetalWidthCm', data=iris, kind='box')
    plt.show()
```


Boxen Plot

KDE Plot

```
In [33]: sub = iris[iris['Species'] == 'Iris-setosa']
    sns.kdeplot(x='SepalLengthCm',y='SepalWidthCm',data=sub,fill=True)
    plt.title('Iris-setosa')
    plt.xlabel('Sepal Length (cm)')
    plt.ylabel('Sepal Width (cm)')
    plt.show()
```



```
In [35]: sns.set_style('darkgrid')
    f,axes=plt.subplots(2,2,figsize=(15,15))

k1=sns.boxplot(x="Species", y="PetalLengthCm", data=iris,ax=axes[0,0])
    k2=sns.violinplot(x='Species',y='PetalLengthCm',data=iris,ax=axes[0,1])
    k3=sns.stripplot(x='Species',y='SepalLengthCm',data=iris,jitter=True,edgecolor='gra#axes[1,1].hist(iris.hist,bin=10)
    axes[1,1].hist(iris.PetalLengthCm,bins=100)
#k2.set(xlim=(-1,0.8))
    plt.show()
```


Stacked Histogram

```
In [47]: iris['Species'] = iris['Species'].astype('category')
    iris.head()
```

Out[47]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [48]:
    list1=list()
    mylabels=list()
    for gen in iris.Species.cat.categories:
        list1.append(iris[iris.Species==gen].SepalLengthCm)
        mylabels.append(gen)

h=plt.hist(list1,bins=30,stacked=True,rwidth=1,label=mylabels)
```


Area Plot

In [50]: iris['SepalLengthCm'] = iris['SepalLengthCm'].astype('float')
 iris.plot.area(y='SepalLengthCm', alpha=0.4, figsize=(12, 6))
 iris.plot.area(y=['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'], a
 plt.show()

Distplot

In []:
In []: