

A study of reinforcement learning algorithms in simulated robotics scenarios

Alejandro Pajares Chirre

Masters Thesis submitted to the Faculty of AI at HS Fulda

Matriculation No: 1331534

Supervisor: Prof. Dr. Alexander Gepperth Co-Supervisor: Prof. Dr. David James

Submitted on dd.mm.yyyy

Abstract

The length of a thesis can vary depending on the subject. However, 50-55 pages for a master thesis is common, a little less for a bachelor thesis. Please pay careful attention to visual impression (sufficiently many and nicely made pictures/graphs, elegant formatting) as well as language (flawless English, elegant formulations), since these two points have are important for the grade. Furthermore, the introduction, discussion and conclusion chapters have a high impact on the grade, since people often read only those (which means they should be nice).

Contents

Li	st of Figures	III		
Li	of Tables III			
1	Introduction 1.1 Context	1 1 1 1 1 2		
2	Foundations 2.1 Topic 1 2.2 Topic 2 2.3 Topic 3	2 2 2 2		
3	Implementation	2		
4	Experiments			
5	Discussion			
6	Conclusion			
7	Using LaTeX, erase this chapter later 7.1 Mathematische Gleichungen 7.2 Das ist eine Auflistung 7.3 Das ist eine Bullet-Liste 7.4 Eine Grafik bindet man so ein 7.5 So schreibt man einen Algorithmus 7.6 So gestaltet man eine Tabelle 7.7 Interne Referenzen 7.8 Textformatierung 7.9 Zitieren 7.10 Webquellen zitieren 7.11 Literaturverzichnis erstellen	3 3 4 4 4 5 5 5 5 5 6 6		
A	Code Snippets	7		
R	Thesis defence	7		

List	of Figures	
1 2	Logo der HAW Fulda	
List o	of Tables	
1	Beispielstabelle	5

1 Introduction

Generally, the introduction should be VERY detailed, with a focus on pedagogical value. 10-15 pages are expected here! Everything that contributes to clarity (pictures, diagrams, ...) is allowed or even expected. The introduction is meant for people who DO NOT have a computer science degree, or even any particular affinity to computers, so focus on the "big picture".

1.1 Context

What is the context of the presented work? If you work in a company, present the company first. Then the broad scientific or technological background in which the work is embedded should be presented and explained.

1.2 Problem statement

What is the problem that is being addressed or solved? Why is it important or beneficial to find a solution to this problem?

1.3 Goals

Here, give a list of bullet points of quantifiable goals of the presented work. These achievement of these goals will be shown in the experiments section. The list should have 3-4 entries. No blabla here, hard goals!

1.4 Related Work

List works that have a similar goals, plus a short explanation (3-4 sentences at most) as to how they differ from your work. Do NOT make comparisons here (better than my work or similar), that happens in the discussion section.

Admissible related work is (in descending order of acceptability):

- Peer-reviewed scientific publications, ideally with a DOI. Use Google scholar for searching (GS can export BibTeX entries that you can copy into the .bib file of this project).
- White papers and publicly available documents without review, cite with title, URL and date of access. In addition, you need to submit the PDFs in electronic form.
- Web pages, especially for software projects (e.g., TensorFlow, nginx, react, Django).
 Cite via URL and date of access. A github/gitlab/etc link is acceptable as well.

 Nothing needs to be submitted electronically, but only use such sources of there is no other way.

3 Implementation

Literature is cited like this: as shown in clemen1989combining, blablaba. Or: [1] has a similar scope in the domain of perverted numerical integration, however without considering the aspect of cupidity. Or: In [1], a study of perverted diagonal matrix perversions is presented. You need not include page numbers.

See also Kap. 7.9, 7.10.

1.5 Contribution

Here, you present a bullet ist of your personal contributions to the topic of the thesis. For example:

- Implementation of a bash script that did not work and was hard to read
- Comparison of different implementations for matrix perversion
- Implementation of a web service that provides jokes about professors via a ReST API.

2 Foundations

The targeted group are computer scientists with at least a Bachelor's degree. Here, you explain aspects that go beyond what this group would not usually know. For example:

- Specialized libraries and their use
- Complex concepts of the chosen programming language
- Basics of machine learning, or neural networks, or both
- Description of used databases or datasets

In subsequent chapters, you can reference this one to avoid having to explain everything over and over again. This means that you just include things here that are necessary for the understanding of later chapters, nothing more.

- 2.1 Topic 1
- 2.2 **Topic 2**
- 2.3 Topic 3

3 Implementation

Should refer, where possible, to the preceding chapter, e.e.: Singular value decomposition of the matrix Σ is conducted as explained in Sec. ?? using the *lapack* library (see Sec. 2.2).

For software development: what is the logic of the developed code, which of it was done by yourself? Sequence diagrams or UML are good tools here.

Please give code snippets only if they take up less that 0.25 pages, and only if it is unavoidable. Longer snippets go to the appendix and are referenced like this: see App. 2.

4 Experiments

Show here that the goals from the introduction were achieved (or not achieved), you need at least one experiment per goal. Use screenshots, diagrams, plots, photos, etc. as necessary.

5 Discussion

2-3 pages are a good idea here. Picks up goals from the introduction (see 1.3) and experiments (see 4) and explains what was achieved and what was not (and why not in this case). Compares results with results from related work, see Sec. ??. Draws a preliminary conclusion for the whole thesis.

6 Conclusion

Give an executive summary for important decision makers here, as well as an outlook (what would you do if you had another 3 months). 2-3 pages are ok here.

7 Using LaTeX, erase this chapter later

I was too lazy to translate this, it will be translated later. But I believe the ideas are clear!

7.1 Mathematische Gleichungen

Eine mehrzeilige Gleichung sieht so aus (die Symbole nach den und-Zeichen werden untereinander gesetzt). Die nonmber-Befehle verhindern dass die Gleichung nummertiert wird (Geschmackssache, ist nie falsch wenn eine Gleichung nummeriert ist). Aber: eine Gleichung auf die man refernziert (also die ein Label hat), muss nummeriert sein!

$$A = \sum_{i=1}^{N} x_i$$

$$B = \frac{\pi}{2}$$
(1)

Eine inline-Gleichung: $x=45b+\frac{2}{3}\pi.$ Der Text geht weiter! Auf inline-Gleichungen kann man keine Refernzen erstellen.

7.2 Das ist eine Auflistung

- 1. Element 1
- 2. Element 2

7.3 Das ist eine Bullet-Liste

- Element 1
- Element 2

7.4 Eine Grafik bindet man so ein

Zulässige Formate sind generell eps, pdf und png.

Figure 1: Logo der HAW Fulda

7.5 So schreibt man einen Algorithmus

```
Data: this text
Result: how to write algorithm
initialization;
while not at end of this document do
read current;
if understand then
go to next section;
current section becomes this one;
else
go back to the beginning of current section;
end if
end while
```

7.6 So gestaltet man eine Tabelle

Table 1: Beispielstabelle

A	В	С
D	per gram	11.65
	each	1.01
E	stuffed	32.54
F	stuffed	73.23
G	frozen	8.39

7.7 Interne Referenzen

So wird ein Kapitel oder Unterkapitel referenziert: Kap. 1, Kap. 7.10. Auf Gleichungen bezieht man sich so: Wie in Gl. (1) gezeigt, sehen Gleichungen in der Regel gut aus. Auf Abb. 1 bezieht man sich so. Auf Tab. 1 referenziert man so. Algorithmen sind analog: siehe Alg. 1. Generell kann man alles zitieren was ein Label hat.

7.8 Textformatierung

So wird dick geschrieben und so kursiv.

7.9 Zitieren

Generell zitiert man so: wie in [1] gezeigt, blablaba. Für jedes zitierte Werk ist ein BibTex-Eintrag nötig! Eine gute Quelle ist Google Scholar!!

7.10 Webquellen zitieren

So wird eine Webquelle zitiert: [2], siehe auch den Eintag im BibTeX-File. Wichtig: für jede Web-Quelle ein BibTeX-Eintrag! Wenn Sie das auf die hier gezeigte Art machen, werden URLs (fast) automatisch getrennt. Kontrollieren Sie trotztdem die Literaturliste, es kann sein dass das nicht immer funktioniert.

7.11 Literaturverzichnis erstellen

Hierzu müssen BibTeX-Einträge in die Datei literatur.bib eingefügt werden. Die BibTeX-Keys sind jeweils Argumente für die cite-Kommandos! Wenn Sie literatur.bib ändern müssen Sie alles mindestens 5x compilieren: 3x mit latex, 1x mit BibTex und dann noch 2x mit LaTeX (in der Reihengfolge). Am besten Sie machen ein Skript dafür!

Figure 2: Normalerweise bindet man Snippets als Bilder ein...

References

- [1] Robert T Clemen. Combining forecasts: A review and annotated bibliography. *International journal of forecasting*, 5(4):559–583, 1989.
- [2] RStudio. Welcome to shiny. https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/.

A Code Snippets

B Thesis defence

The defence is 15/20 minutes for Bachelor/Master, followed by questions and a discussion. Both examiners are present, and you can invite external persons since defences are generally public.

Targetted group are non-computer scientists, e.g., from higher management, NOT the examiners. Means that at least $\frac{1}{3}$ if the presentation is introduction/context/problem statement. You should re-use text/images/graphs/etc from the corresponding chapters here!

1 Slide per minute is a good guideline. If you can guess that some questions are going to be asked anyway, prepare some slides specifically for these questions, makes a good impression, and you can show them in the discussion time, not during the 15 minutes of the presentation.

Defences are not graded, you can only pass or not pass.

Students are responsible for finding dates for the defence and coordinating this with both supervisors.

Some common advice is:

- Speak slowly and loadly
- If you do not have enough time left for all slides, leave some out rather than rushing through all of them!!
- Slide numbers!
- In presence: be there 10 minutes ahead of time to check projectors etc. Makes a very bad impression if this is not working. Same for online presentations: be there 5 minutes ahead of time to verify screen sharing works.
- do not read text from the slides. These should contains key words only, and you explain the rest in free presentation

B Thesis defence

- Defences can by all means be online, more convenient for companies
- in presence: always carry a USB key with a PDF of your slides. If you have to use another PC than yours, PowerPoint slides may look very differently (fonts, page setup etc.)
- No-Go: spelling errors on slides!!!
- Do not use animations, they may not work in an online setting