Problemas Indecidibles

Comentario: Hacer mínimamente los ejercicios 1 al 4. Ninguno de los ejercicios del trabajo revisten mucha dificultad, muchas de las soluciones se basan en cosas vistas en clase.

Ejercicio 1. Recordar cómo se mostró en la clase 3 que asumiendo $R \subset RE$ se cumple $RE \subset \mathfrak{L}$.

Ejercicio 2. Probar que los lenguajes $L_U = \{(\langle M \rangle, w) \mid M \text{ acepta } w\}$, y HP = $\{(\langle M \rangle, w) \mid M \text{ para sobre } w\}$ pertenecen a la clase RE. Ayuda: las pruebas son similares a la desarrollada en la clase 3 para demostrar que $D = \{w_i \mid M_i \text{ acepta } w_i\} \in RE$.

Ejercicio 3. En la clase 3 se probó que si HP \in R entonces R = RE, demostrando que si existe una MT M_{HP} que decide HP, entonces para cualquier lenguaje L de la clase RE existe una MT M_L que lo decide. En realidad sólo se construyó M_L. Se pide probar que efectivamente M_L para siempre y que L(M_L) = L.

Ejercicio 4. Responder cada uno de los incisos (justificar).

- a. ¿Se puede decidir si una MT M con una cinta, a partir de la cadena vacía λ, escribe alguna vez un símbolo no blanco? Ayuda: ¿Cuántos pasos puede hacer M antes de entrar en loop?
- b. ¿Se puede decidir si a partir de un input w, una MT M que sólo se mueve a la derecha para? Ayuda: ¿Cuántos pasos puede hacer M antes de entrar en loop?
- c. ¿Se puede decidir si dada una MT M, existe un input w a partir del cual M para en a lo sumo 10 pasos? Ayuda: ¿Hasta qué tamaño de cadenas hay que chequear?
- d. ¿Se puede decidir si dada una MT M, existe un input w de a lo sumo 10 símbolos a partir del cual M para? Ayuda: ¿En este caso se puede acotar la ejecución de M considerando la cantidad de pasos, la cantidad de celdas recorridas u otro parámetro?

Ejercicio 5. Explicar cómo enumeraría los números naturales pares, los números enteros, los números racionales y las cadenas de Σ^* siendo $\Sigma = \{0, 1\}$.

Ejercicio 6. Probar que la MT M_{20} construida en la clase 3 para decidir $L_{20} = \{ < M > | M \text{ es una MT que a partir del input vacío } \lambda$ nunca sale de las celdas 1 a 20}, efectivamente para siempre y acepta dicho lenguaje.

Ejercicio 7. Probar que la MT M_L construida en la clase 3 para aceptar $L = \{ <M > \mid L(M) \neq \varnothing \}$ efectivamente cumple que $L(M_L) = L$.

Ejercicio 8. Probar que las MT M_G y M_F presentadas en la clase 3, deciden la Conjetura de Goldbach y el Ultimo Teorema de Fermat, respectivamente, si se asume que HP es recursivo. En otras palabras, se pide verificar la correctitud de la construcción de ambas MT.

Ejercicio 9. Una función $f: A \to B$ se dice que es total computable, si y sólo si existe una MT M_f que computa f para todo elemento $a \in A$. Sea la función $f_{HP}: \Sigma^* \to \{0, 1\}$, tal que:

```
f(x) = 1, si x = (<M>, w) y M para a partir de w.
```

f(x) = 0, si x = (<M>, w) y M no para a partir de w, o bien $x \ne (<M>, w)$.

Probar que la función f_{HP} no es total computable. Ayuda: Se podría probar que asumiendo que f_{HP} es total computable, se llega a que HP es recursivo. En otras palabras, que se puede construir una MT que decide HP asumiendo que existe una MT que computa totalmente f_{HP} .

Ejercicio 10. Responder cada uno de los incisos (justificar):

- a. Si $L_1 \in RE$ y $L_2 \in RE$, $L_1 L_2 \in RE$?
- b. Si $L_1 \cap L_2 \in RE$, $L_1 \circ L_2 \in RE$?
- c. Si $L_1 \cup L_2 \in RE$, $L_1 \cap L_2 \in RE$?

Ejercicio 11. Explicar (informal pero claramente) cómo sería una MT que genera la n-ésima fórmula booleana satisfactible, cuya sintaxis contiene variables de la forma x_i , los operadores lógicos del conjunto $\{\neg, \land, \lor\}$, y paréntesis.