Московский государственный университет имени М.В.Ломоносова Механико-математический факультет

Курсовая работа Численное решение уравнения

переноса

Студент 521 группы Сенченок Григорий Антонович.

Научный руководитель:

д.ф.-м.н., профессор

Меньшов Игорь Станиславович.

Введение

- В данной работе рассматривается проблема цифрового представления движения твердого тела.
- Digital Geometry (DG): геометрия тела задается характеристической функцией; ее эволюция описывается уравнением переноса; моделирование движения осуществляется путем численного решения уравнения переноса на сетке.
- Цель работы численная реализация схемы THINK для расчета DG в одномерном случае, а также сравнение различных схем
- Данная работа является продолжением предыдущей, в которой был реализован Direct Motion программа точного расчета геометрии.

Digital Geometry и МКЭ

• В промышленных системах расчета (например, CAD) для описания геометрии используется метод конечных элементов: на всей исследуемой области вводится сетка, состоящая из простых элементов: для двумерного случая – это многоугольники, для трехмерного – многогранники. Таким образом происходит точный расчет для большого числа малых конечных элементов, что требует больших вычислительных мощностей для описания каждого примитива и сложного разбиения на эти конечные элементы.

Digital Geometry и МКЭ

• В методе, описанном в данной работе, геометрия тела задается характеристической функцией: так называемая цифровая геометрия, а ее эволюция описывается уравнением переноса. Это сильно упрощает введение сетки и облегчает расчеты, сохраняя при этом точность на достаточно высоком уровне.

Постановка задачи

По известному распределению функции скалярной величины f в начальный момент времени, а также с заданым полем скоростей на каждом моменте времени необходимо рассчитать характеристическую функцию твердого тела и жидкости (скалярную величину f) в рассматриваемой области на каждом временном шаге

1. Поле скоростей твердого тела

О В рамках решения предыдущей задачи было рассчитано поле скоростей в области D, индуцированное твердым телом при движении.

2. Характеристическая функция твердого тела

• Характеристическая функция твердого тела представляет собой функцию - индикатор:

$$f(x,t) = \begin{cases} 0, & \text{если точка } x \text{ принадлежит ТТ в момент времени } t \\ 1, & \text{если точка } x \text{ не принадлежит ТТ в момент времени } t \end{cases}$$

• Уравнение переноса — дифференциальное уравнение в частных производных, описывающее изменение скалярной величины в пространстве и времени:

$$\frac{\partial f}{\partial t} + \nabla \cdot (uf) - f\nabla \cdot u = 0$$

2. Характеристическая функция твердого тела

2. Характеристическая функция твердого тела

- Начальные условия для уравнения переноса:
 - 1. Поле скоростей и
 - 2. Начальное положение точек границы твердого тела
- Необходимо найти:

Характеристическую функцию f в области D на отрезке времени [0; T]

Постановка задачи

• Таким образом, задачу можно представить в виде системы дифференциальных уравнений:

$$\begin{cases} \frac{\partial f}{\partial t} + u\nabla \cdot f = 0\\ \frac{d\vec{x}}{dt} = \vec{v}(t)\\ \vec{v}_k(t) = \vec{v}(t) + [\vec{\omega}(t) \times \vec{r}_k(t)] \end{cases}$$

• С начальными условиями:

$$\begin{cases} f|_{t=0} = f(x,0) \\ x|_{t=0} = \vec{x}(0) \\ \vec{x}_k|_{t=0} = \vec{x}_k(0) \end{cases}$$

1D-Приближение: Дискретизация

- Отрезок [0; X], на котором рассматривается данное уравнение, разбивается на cellCount последовательных подотрезков, длиной ΔХі каждый. ΔХі = X(i+1/2)-X(i-1/2). Положения X(i+1/2), X(i-1/2) являются узлами данной сетки.
- Δt длина шага по времени

Cxema THINC

• Для численного решения уравнения переноса была рассмотрена схема THINC (tangent of hyperbola for interface capturing: гиперболический тангенс для отслеживания поверхности)

$$\frac{\partial f}{\partial t} + \nabla \cdot (uf) - f\nabla \cdot u = 0$$

где u - векторное поле скоростей f - переносимая скалярная величина

$$f(x,t) = \begin{cases} 0, & x \in S(t) \\ 1, & x \notin S(t) \end{cases}$$

• В одномерном случае, для соленоидального поля скоростей:

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = 0$$

• среднее значение функции f на i-ом отрезке ΔXi на n-ом временном шаге:

$$\bar{f}_{i}^{n} = \frac{1}{\Delta x_{i}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x, t^{n}) dx$$

• Аппроксимация f(i)n:

$$F_{i}(x) = \frac{1}{2} (1 + \gamma_{i} \tanh (\beta (\frac{x - x_{i-\frac{1}{2}}}{\Delta x_{i}} - \tilde{x}_{i})))$$

$$\gamma_{i} = sgn(\bar{f}_{i+1}^{n} - \bar{f}_{i-1}^{n})$$

• Параметр $\tilde{x_i}$ — относительное расстояние до середины скачка f от левой границы отрезка X(i-1/2).

$$\bar{f}_i^n = \frac{1}{\Delta x_i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} F_i(x) dx \qquad \qquad \tilde{x}_i = \frac{1}{2\beta} log(\frac{exp\left(\frac{\beta}{\gamma_i} \left(1 + \gamma_i - 2\bar{f}_i^n\right)\right) - 1}{1 - exp\left(\frac{\beta}{\gamma_i} \left(1 - \gamma_i - 2\bar{f}_i^n\right)\right)})$$

Численное решение уравнения переноса в одномерном случае

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = 0$$

$$(\bar{f}^{n+1} - \bar{f}^n) + u \int_{t_n}^{t_{n+1}} \frac{\partial f}{\partial x} dt = 0$$

$$\bar{f}_i^{n+1} - \bar{f}_i^n + \frac{u}{h} (\bar{f}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \bar{f}_{i-\frac{1}{2}}^{n+\frac{1}{2}}) \Delta t = 0$$

$$\frac{\partial f}{\partial x} = \frac{\bar{f}_{i+\frac{1}{2}} - \bar{f}_{i-\frac{1}{2}}}{h}$$

$$\int_{t_n}^{t_{n+1}} F \, dt = F^{n+\frac{1}{2}} \Delta t$$

$$\bar{f}_{i}^{n+1} = \bar{f}_{i}^{n} - \frac{u\Delta t}{h} (\bar{f}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \bar{f}_{i-\frac{1}{2}}^{n+\frac{1}{2}})$$

$$\bar{f}_{i+\frac{1}{2}}^{n+\frac{1}{2}} = \Psi_{i}(x_{i+\frac{1}{2}} - u\frac{\Delta t}{2})$$

$$\bar{f}_{i-\frac{1}{2}}^{n+\frac{1}{2}} = \Psi_{i-1}(x_{i-\frac{1}{2}} - u\frac{\Delta t}{2})$$

Применение различных схем для аппроксимации скачка

- Схема Годунова
- Cxema MUSCL
- Схемы THINC + Годунов
- Схемы THINC + MUSCL

Исследование ошибки и скорости сходимости методов

Если выполняется неравенствс $||x_n - x^*|| \le \alpha h^{\beta}$

То метод имеет порядок сходимости 🗗

Схема Годунова

$$\Psi_{\mathbf{i}}(\mathbf{x}) = \bar{f}_{\mathbf{i}}$$

Таблица ошибок для схемы Годунова

	T1	T2	T3	T4	T5	T6
N24	0.0595699	0.0768529	0.0876215	0.0938853	0.0974552	0.0994732
N48	0.0343195	0.0422635	0.0489433	0.0543952	0.0586747	0.0619692
N96	0.0203693	0.024306	0.0272539	0.0299097	0.0323704	0.0346239
N192	0.0121176	0.0144143	0.015962	0.0171938	0.0182741	0.0192768
N384	0.0072070	0.0085717	0.0094865	0.0101944	0.0107809	0.0112883
N768	0.0042858	0.0050971	0.0056409	0.0060617	0.0064095	0.00670845

Сходимость метода Годунова

Cxema MUSCL

Cxema MUSCL

$$\Psi_{i}(x) = k_{i}x + b_{i}$$

$$k_{i} = minmod(\tilde{f}_{i}^{R}, \tilde{f}_{i}^{L})$$

$$\tilde{f}_{i}^{R} = \frac{\bar{f}_{i+1} - \bar{f}_{i}}{h}$$

$$\tilde{f}_{i}^{L} = \frac{\bar{f}_{i} - \bar{f}_{i-1}}{h}$$

$$minmod(a, b) = \begin{cases} 0 & , ab < 0 \\ sgn(a)min(|a|, |b|) & , ab \ge 0 \end{cases}$$

$$b_{i} = \bar{f}_{i} - k_{i}x_{i}$$

Cxema MUSCL

Таблица ошибок для схемы MUSCL

	T1	T2	T3	T4	T5	T6
N24	0.0392346	0.0445669	0.0490333	0.0534235	0.0576686	0.0616839
N48	0.0223648	0.0253282	0.0271637	0.028482	0.0295385	0.0304656
N96	0.0126646	0.0143063	0.0153512	0.0161337	0.0167661	0.0173002
N192	0.0071531	0.0080667	0.0086490	0.0090856	0.0094384	0.00973635
N384	0.0040333	0.0045428	0.0048681	0.0051122	0.0053096	0.00547623
N768	0.0022714	0.0025561	0.0027381	0.0028747	0.0029852	0.00307853

Сходимость метода MUSCL

Cxeмa THINC + Годунов/MUSCL

$$\begin{cases} \varepsilon < \bar{f}_i^n < 1 - \varepsilon & \bar{f}_i^n \in (0;1) \\ (\bar{f}_{i+1}^n - \bar{f}_i^n) (\bar{f}_i^n - \bar{f}_{i-1}^n) > \varepsilon & \text{(условие мнотонности на отрезке)} \end{cases}$$

Годунов/MUSCL

$$\Psi_{i}(x) = \bar{f}_{min} + F_{i}(x)\Delta \bar{f}_{i}$$

$$\bar{f}_{min} = \min (\bar{f}_{i-1}, \bar{f}_{i+1})$$

$$\bar{f}_{max} = \max (\bar{f}_{i-1}, \bar{f}_{i+1})$$

$$\Delta \bar{f}_{i} = \bar{f}_{max} - \bar{f}_{min}$$

$$\bar{f}_i^{n+1} = \bar{f}_i^n - \frac{u\Delta t}{h} \left(\bar{f}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \bar{f}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \right),$$

, где
$$\bar{f}_{i+\frac{1}{2}}^{n+\frac{1}{2}} = \Psi_{i}\left(\mathbf{x}_{i+\frac{1}{2}} - u\frac{\Delta t}{2}\right)$$
, $\bar{f}_{i-\frac{1}{2}}^{n+\frac{1}{2}} = \Psi_{i-1}\left(\mathbf{x}_{i-\frac{1}{2}} - u\frac{\Delta t}{2}\right)$

THINC + Годунов

Таблица ошибок для схемы THINC + Годунов

	T1	T2	T3	T4	T5	T6
N24	0.0090118	0.0094814	0.0097042	0.0098118	0.0098568	0.00987472
N48	0.00474	0.0051974	0.0055753	0.0058824	0.0061252	0.0063158
N96	0.0026127	0.0030231	0.0033690	0.0036773	0.0039554	0.00420747
N192	0.0015160	0.0018619	0.0021515	0.0023975	0.0026185	0.00282078
N384	0.0009312	0.0012031	0.0014197	0.0016078	0.0017747	0.00192507
N768	0.0006021	0.0008045	0.0009639	0.0010975	0.0012126	0.00131397

Сходимость метода THINC + Годунов

THINC + MUSCL

Таблица ошибок для схемы THINC + MUSCL

	T1	T2	T3	T4	T5	T6
N24	0.0090134	0.0094778	0.0097058	0.0098139	0.0098604	0.009877
N48	0.0047462	0.0052020	0.0055781	0.0058837	0.0061277	0.00631798
N96	0.0026114	0.0030223	0.0033697	0.0036791	0.0039584	0.00421094
N192	0.0015143	0.0018604	0.0021472	0.0023961	0.0026176	0.00282053
N384	0.0009307	0.0012023	0.0014195	0.0016076	0.0017735	0.00192568
N768	0.0006008	0.0008038	0.0009629	0.0010975	0.0012133	0.00131483

Сходимость метода THINC + MUSCL

• Изображения: графики методов

Заключение

- Таким образом, были исследованы методы численного решения уравнения переноса с использованием подхода цифровой геометрии. Был исследован численный метод решения уравнения переноса и реализован его программный алгоритм для одномерного случая.
- Важно отметить, что исследование схем для решения уравнение переноса в одномерном случае позволяет использовать данный подход в двумерном и трехмерном пространстве.
- Для представления цифровой геометрии были исследованы схемы с разным порядком точности, в том числе схема Годунова, MUSCL и THINC.
- Применение схемы THINC в отличие от других схем позволяет с высокой точностью описать поведение геометрии в цифровом виде.
- Программа, написанная для одномерного случая будет использована в дальнейшем как расчетный блок для многомерного случая