MT5823 Semigroup theory: Problem sheet 7 (James D. Mitchell) More Green's relations, simple semigroups, Rees matrix semigroups

More Green's relations

7-1. Let

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 1 & 4 & 3 & 4 & 6 & 3 \end{pmatrix} \in T_8.$$

- (a) Find idempotents $a, b \in T_8$ such that $f \mathcal{R} a$ and $f \mathcal{L} b$. How many different choices for a and b are there?
- (b) Find an inverse $f' \in T_8$ of f such that ff' = a and f'f = b. How many inverses does f have?
- **7-2.** Let D_r be the \mathscr{D} -class of the full transformation semigroup T_n $(n \ge r)$ consisting of all the mappings with rank r. How many \mathscr{L} -classes, \mathscr{R} -classes and \mathscr{H} -classes does D_r contain? What is the size of D_r ?
- **7-3**. Prove that the \mathcal{H} -class H_f of a mapping $f \in T_n$ is a group if and only if $\operatorname{rank}(f) = \operatorname{rank}(f^2)$.
- **7-4**. (a) Prove that the monoid of all partial transformations P_n is regular.
 - (b) Prove that there is a monomorphism from P_n to T_{n+1} . (Hint: replace '-' by n+1.)
 - (c) Prove that the following hold in P_n :

$$\begin{array}{lll} f\mathscr{L}g & \text{if and only if} & \operatorname{im}(f) = \operatorname{im}(g) \\ f\mathscr{R}g & \text{if and only if} & \ker(f) = \ker(g) \\ f\mathscr{H}g & \text{if and only if} & \operatorname{im}(f) = \operatorname{im}(g) & \operatorname{and} & \ker(f) = \ker(g) \\ f\mathscr{D}g & \text{if and only if} & \operatorname{rank}(f) = \operatorname{rank}(g) \\ \mathscr{I} = \mathscr{D}. \end{array}$$

- **7-5**. Let S be a semigroup and let $e \in S$ be an idempotent. Suppose that L_e , R_e and D_e are the \mathcal{L} -, \mathcal{R} -, and \mathcal{D} class of e, respectively. Prove that $L_eR_e = D_e$.
- **7-6.** Let a and b be regular elements of a semigroup S. Prove that
 - (a) $a\mathscr{L}b$ if and only if there are inverses $a',b'\in S$ of a and b, respectively, such that a'a=b'b;
 - (b) $a\Re b$ if and only if there are inverses a' and b' of a and b, respectively, such that aa' = bb';
 - (c) $a\mathcal{H}b$ if and only if there are inverses a' and b' of a and b, respectively, such that a'a = b'b and aa' = bb'.

Inverse semigroups

- 7-7. Let S be an inverse semigroup. Prove that the mapping $\phi: S \longrightarrow S$, $x \mapsto x^{-1}$ is a bijection. Prove that ϕ maps \mathscr{L} -classes onto \mathscr{R} -classes. (Hint: prove that $a\mathscr{L}b$ if and only if $a^{-1}\mathscr{R}b^{-1}$.) Prove that ϕ preserves \mathscr{D} -classes. Conclude that the numbers of \mathscr{L} -classes and \mathscr{R} -classes in a single \mathscr{D} -class are equal. (Can you think of a less technical argument for the same result?)
- 7-8. Prove that a quotient S/ρ (and hence a homomorphic image as well) of an inverse semigroup S is again inverse. (Hint: prove that S/ρ is regular and that the idempotents commute; remember Lallement's Lemma from Problem 6-5.) Prove that $(a/\rho)^{-1} = a^{-1}/\rho$.
- 7-9. Prove that a congruence on an inverse semigroup S is uniquely determined by the classes of idempotents. (Hint: for a congruence ρ prove that $a\rho b \iff aa^{-1}\rho ab^{-1}\rho bb^{-1}$.)
- **7-10**. Let S be an inverse semigroup, let E be the set of idempotents of S, and let ρ be a congruence on S. Prove that the set $T = \bigcup_{e \in E} e/\rho$ is a subsemigroup of S. Also prove that for every $s \in S$, $s^{-1}Ts \subseteq T$.
- **7-11.** Prove that I_n (the symmetric inverse semigroup on the set $\{1, 2, ..., n\}$) has

$$\sum_{r=0}^{n} \binom{n}{r}^2 r!.$$

List the elements of I_2 and prove that this semigroup is generated by the elements

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 \\ 1 & - \end{pmatrix}$.

7-12. Let S be an inverse semigroup, and let E be the set of idempotents of S. Prove that aE = Ea for all $a \in S$. Is it true that ae = ea for all $a \in S$ and all $e \in E$?

1