Lecture 3.2

Phylogenomics

Analysing Large Data Sets

Large data sets

- Tree-space is extremely large
 - Efficient tree-searching heuristics

32,223 taxa7 genes

Zanne et al. (2014) Nature

Large data sets

- Calculation of likelihood is expensive
 - Speed up by grouping sites with identical patterns
 - Approximate likelihood calculation
 - Multithreading/parallelisation

48 taxa 8,295 genes Jarvis *et al*. (2014) *Science*

Large data sets

- Analysis is computationally expensive
- Consider filtering the data
 - Phylogenetic signal
 - Substitution saturation
 - Missing data
 - Model fit
 - Random subsample
- Dividing the tree into subtrees

Gene Trees

Gene trees

- Many phylogenetic methods assume that there is a single tree that describes the evolution of the whole data set
- But recombination complicates this

Coalescent theory

Gene trees in a species

- Gene trees vary by chance among unlinked genes
 - Different trees
 - Different timescales

Species tree

Multispecies coalescent

Gene tree (concordant)

Gene tree (discordant)

Incongruence among gene trees

- Phylogenetic analyses of genome-scale data sets must deal with incongruence among gene trees
 - Incomplete lineage sorting
 - Different direction and strength of selection
 - Stochastic variation in the mutational process
 - Biases in nucleotide composition

Inferring the species tree

- Incomplete lineage sorting can lead to gene trees that do not match the species tree
- We can infer the species tree from multiple gene trees even when they are incongruent
- Three approaches
 - 1. Consensus
 - 2. Concatenation
 - 3. Coalescent

Species tree

1. Consensus

Estimate genealogy from each gene and find the consensus

But the most frequent gene tree does not always match the true species tree ("anomaly zone")

Analysing multiple loci

2. Concatenation

Assume that all genes share the same evolutionary history

But this ignores the occurrence of different gene trees

Species tree

3. Coalescent-based methods

Estimate the species tree based on gene trees

- Gene trees are independent realisations of a stochastic process (the coalescent) on the same species tree
- Various methods
 - Multispecies coalescent in *BEAST
 Joint estimation of gene trees and the species tree
 - Summary coalescent in ASTRAL

ASTRAL

BIOINFORMATICS

Vol. 30 ECCB 2014, pages i541–i548 doi:10.1093/bioinformatics/btu462

ASTRAL: genome-scale coalescent-based species tree estimation

S. Mirarab¹, R. Reaz¹, Md. S. Bayzid¹, T. Zimmermann^{1,2}, M. S. Swenson³ and T. Warnow^{1,*}

- Accurate Species TRee ALgorithm
- Finds the species tree with the highest agreement with 'quartets' among the gene trees
- Can analyse a genome-scale data set in seconds or minutes

Inferring the species tree

- Choosing between concatenation and coalescent-based approaches
- Shallower timescales: gene trees inferred accurately but incomplete lineage sorting is important
- Deeper timescales: gene trees are inferred less accurately (homoplasy) but incomplete lineage sorting is less important
- The choice of methods to use should be informed by the largest sources of error

Useful references

- Lineage sorting in apes
 Mailund et al. (2014) Annu Rev Genet,
 48: 519–535.
- Estimating phylogenetic trees from genome-scale data
 Liu et al. (2015) Annals New York Acad Sci, 1360: 36–53.
- The concatenation question
 Bryant & Hahn (2020) In: Phylogenetics
 in the Genomic Era.

