

World Of Tech 2017

# 

2017年4月14日-15日 北京富力万丽酒店

RHIECOX





出品人及主持人:

51CTO WOT大会主编

网络性能优化实践



# WLAN容量设计和性能 优化实践







# 最小云 Brocade SE manager

#### 分享主题:

WLAN容量设计和性能优化实践



## 常见问题

- 有一个xxxx场景, 多少AP合适?
- 一个AP最多可以带多少人? 2 0 0 @ 4 M可以吗? 不是1个AP单频 5 G都可以到1. 3 Gbps吗?
- 要开一个会, 1000平方米, 2000人大会, 能同时看视频吗?
- 为什么家里无线还好,公司无线差?
- 以前还不错,最近越来越差了?
- 有一个会议室,500人,我们部署了10个AP,怎么有人连接不上呢?
- 在公共区域丢包严重,网页浏览都难
- 为什么我传个文件给旁边同事,很慢呢?上网还行
- 将iPad 固定在桌子视频还行,拿起来咋就看到"请等待..."呢?

• ......



# 内容概要

- WiFi系统简介
- WLAN系统容量设计
- AP部署和信道规划
- WiFi性能优化
- MU-MIMO和OFDMA(802.11ax)







#### WLAN 系统简介









#### 802.11 WLAN的发展





#### 256-QAM (11ac)





# Wi-Fi基本工作原理: CSMA/CA

- 半双工工作模式 (HUB)
- 共享传输媒质/频谱
- 参与者完全平等
- 速率自适应变化











#### 物理速率不能反映WIFI的容量



- 1、速率是根据所处环境自动变化的
- 2、终端能力不同(一致性低)
- 3、竞争机制
- 4、额外开销OverHead高(ACK,重发, RTS/CTS、Beacon等)

吞吐量!=链路的利用率

- 1、链路速率基本是固定的
- 2、终端能力一致性高
- 3、非竞争
- 4、额外开销OverHead很低

吞吐量=链路的利用率



#### WIFi系统容量的评估

- Airtime无线资源的利用率
  - Airtime=实际应用吞吐量/设备吞吐量
  - · Airtime 决定了系统容量和延迟
  - AirTime= 无线链路利用率
- 系统容量=所有不同用户的性能统计和







#### 影响Wi-Fi性能的诸多因素



自身及其他Wi-Fi或非Wi-Fi干扰

#### 影响Wi-Fi体验或性能的常见因素

- 1. **AP性能**: 11ac (SU-MIMO/MU-MIMO), 4x4:4, 3x3:3, 2x2:2
- 2. 终端性能: 手机、平板、电脑不同终端的性能差异很大.
- 3. 终端到AP的距离:SNR、天线类型:具有良好的上下行信号 强度,从而最佳速率
- 4. 同时接入终端数量
- 5. 非WIFI或其他WIFI的干扰!
- 6. 自身WIFI系统的干扰!
- 7. 有线、无线网络架构









#### WLAN 系统容量设计









#### AP和终端的理论链路速率





### 性能@-65 dBm RSSI

| АР                | 终端                 | MCS     | PHY 物理速率 | 吞吐量/TCP/ Xput* |
|-------------------|--------------------|---------|----------|----------------|
| 11ac, 4SS, 80 MHz | 11ac, 3SS, 80 MHz  | 5       | 780 Mbps | 540 Mbps       |
|                   | 11ac, 2SS, 80 MHz  | 5       | 520 Mbps | 360 Mbps       |
|                   | 11ac, 1SS, 80 MHz  | 5       | 260 Mbps | 180 Mbps       |
|                   | 11n, 2SS, 40 MHz   | 6       | 270 Mbps | 160 Mbps       |
|                   | 11n, 1SS, 40 MHz   | 6       | 135 Mbps | 80 Mbps        |
|                   | 11n, 2SS, 20 MHz   | 7       | 144 Mbps | 85 Mbps        |
|                   | 11n, 1SS, 20 MHz   | 7       | 72 Mbps  | 45 Mbps        |
|                   | 11a/g, 1SS, 20 MHz | 54 Mbps | 54 Mbps  | 25 Mbps        |
|                   | 11b, 1SS, 20 MHz   | 11 Mbps | 11 Mbps  | 5 Mbps         |

<sup>\*</sup> TCP Xput is 70%, 60%, and 50% of PHY Rate for 11ac, 11n, and 11a/b/g, respectively

S/N不同,性能不同。



# 不同类型终端的Airtime

-如果要求性能10Mbps, 5GHz,





# 多终端

--AP支持3X3: 3 11ac, 1.3Gbs@5GHz











### 每个AP的容量

- AP 类型和配置
  - 11a/b/g/n/ac, 2/3/4-SS\*
  - 信道带宽
    - 带宽越宽AP(当AP单独部署)的容量越大
      - 非重叠信道越少。多AP部署场景容易导致信道冲突
- 终端类型
  - 11a/b/g/n/ac, 1/2/3-SS
- 覆盖或信号强度(保证最小 RSSI/SNR )
  - 根据用户对不同终端的性能要求(SLA)
  - 对于一般的链接, -80 dBm; 但对多媒体QoS业务, 建议> -60 dBm



#### 可用Airtime

- 不是100% airtime都可用于数据传输
- WiFi管理流量等开销 (Beacon/RTS/CTS/Probe Request/Probe Response/ACK)
- 同信道共享
- 一般, 60-80% 可用airtime
  - 2.4G, 信道带宽为40M/80M的5G的Airtime较低
  - 在高密度部署如Link NYC无线城市,场馆等可用Airtime甚至会只有 40-50%
- 对于 QoS的多媒体业务, 建议 <50%



# 设计案例: 容量要求

| 终端类型    | 应用 (SLA)              | # 关联终端数 | % 同时活跃终端<br>数 | 性能需求     |
|---------|-----------------------|---------|---------------|----------|
| 笔记本     | 在线测试 (100 Kbps)       | 100     | 50%           | 5 Mbps   |
| 平板      | Google Doc (500 Kbps) | 200     | 50%           | 50 Mbps  |
| 手机      | Web/E-mail (500 Kbps) | 200     | 20%           | 20 Mbps  |
| SmartTV | 视频流 (10 Mbps)         | 40      | 50%           | 200 Mbps |
|         |                       |         |               |          |
|         |                       |         |               |          |
|         |                       |         |               |          |
|         |                       |         |               |          |
| 总计吞吐量需求 | 275 Mbps              |         |               |          |



# 需要的AP数量 AP

--AP 3X3: 3 11ac或以上

| 终端类型             | 无线网卡 配置   | 单终端最高吞吐量<br>(Mbps) |     | 每终端性能需 # 同时活跃约 |     | †活跃终<br>5%@2.4G |      |      |     |
|------------------|-----------|--------------------|-----|----------------|-----|-----------------|------|------|-----|
|                  |           | 2.4G               | 5G  |                | 总计  | 2.4G            | 5G   | 2.4G | 5G  |
| 笔记本              | 11ac, 2x2 | 80                 | 360 | 0.1            | 50  | 12              | 38   | 2%   | 1%  |
| 平板               | 11ac, 2x2 | 80                 | 360 | 0.5            | 100 | 25              | 75   | 15%  | 1%  |
| 手机               | 11ac, 1x1 | 45                 | 180 | 0.5            | 100 | 25              | 75   | 28%  | 21% |
| SmartTV(视<br>频流) | 11n, 2x2  | 80                 | 160 | 10             | 20  | 5               | 15   | 59%  | 94% |
|                  |           |                    |     |                |     |                 |      |      |     |
| Airtime 总需求      |           |                    |     |                |     | 104%            | 117% |      |     |
| Airtime/AP       |           |                    |     |                |     | 60%             | 80%  |      |     |
| AP数量             |           |                    |     |                | 2   | 2               |      |      |     |
| 可能的带宽突发或增长       |           |                    |     |                | 1   | 1               |      |      |     |
| AP数量             |           |                    |     |                | 3   | 3               |      |      |     |



#### 设计部署前验证

- 设计、部署的验证
  - 使用实际的终端
  - 使用实际要部署的AP
  - 覆盖范围内的实际应用
    - 不同位置的性能; 尤其是边缘, 非可视点的性能
    - 移动终端尤其是手机,PAD等不同朝向时的性能
  - 实际的应用和场景(多终端同时使用)
  - 使用产品缺省设置













## AP部署和信道规划







#### 提升WiFi性能的基础





### 避免隐藏节点

#### 室内分布对性能影响

- 无法支持MIMO
- 隐藏节点导致碰撞
- 降低了自动信道选择和干扰规避能力



- 无法支持定位
- WIPS安全问题





# 远离非WiFi干扰源





2.4GHz





**Treadmills** 



**Smart Meters** 



2.4 / 5GHz



# 3G/4G等蜂窝基站的干扰







#### 相邻AP尽量不使用相邻信道

fc+20MHz

fc+11MHz

fc+30MHz



Figure 2. IEEE 802.11a Channelization

8m@2.4GHz: -36-58=-94dBm

fc-9MHz

fc+9 MHz

fc-30 MHz

fc-20 MHz

fc-11 MHz

8m@5.2GHz: -36-65=- 101dBm







# WLAN 性能优化







## WiFi本身是最主要的干扰源



102.4



## 避免使用低速、过多SSID

VARIABLES:

Beacon Data Rate (Mbps 802.11b 1 Mbps Beacon Frame Size (Byt 300 Beacon Interval (ms) 102.4

Amount of Overhead: 0-10% Low

| Number of APs<br>on Channel* | 1      | 2      | 3      |
|------------------------------|--------|--------|--------|
| 1                            | 2.60%  | 5.20%  | 7.80%  |
| 2                            | 5.20%  | 10.40% | 15.60% |
| 3                            | 7.80%  | 15.60% | 23.40% |
| 4                            | 10.40% | 20.80% | 31.20% |
| 5                            | 13.00% | 26.00% | 38.99% |
| 6                            | 15.60% | 31.20% | 46.79% |
| 7                            | 18.20% | 36.39% | 54.59% |
| 8                            | 20.80% | 41.59% | 62.39% |
| 9                            | 23.40% | 46.79% | 70.19% |
| 10                           | 26.00% | 51.99% | 77.99% |



VARIABLES:
Beacon Data Rate (Mbps 802.11g 6 Mbps Beacon Frame Size (Byt 300

Beacon Interval (ms)

Amount of Overhead: 0-10% Low

| Number of APs<br>on Channel* | 1     | 2     | 3      |
|------------------------------|-------|-------|--------|
| 1                            | 0.45% | 0.90% | 1.35%  |
| 2                            | 0.90% | 1.80% | 2.70%  |
| 3                            | 1.35% | 2.70% | 4.05%  |
| 4                            | 1.80% | 3.60% | 5.40%  |
| 5                            | 2.25% | 4.50% | 6.75%  |
| 6                            | 2.70% | 5.40% | 8.10%  |
| 7                            | 3.15% | 6.30% | 9.45%  |
| 8                            | 3.60% | 7.20% | 10.80% |
| 9                            | 4.05% | 8.10% | 12.16% |
| 10                           | 4.50% | 9.00% | 13.51% |





# 信道带宽选择: 20MHz, 40MHz, 80MHz?





### 哪个信道好?









**OBSERVED THROUGHPUT (Mbps)** 



# 优先使用5G信道?







### 降低数据包长度







80%的无线数据包<256B



## 集中转发瓶颈







## MAC表更新速度, IP子网规划





```
2960-1#show mac address-table

Mac Address Table

Vlan Mac Address Type Ports

1 001d.70ab.5d60 DYNAMIC Fa0/2
1 001e.f724.a160 DYNAMIC Fa0/3

Total Mac Addresses for this criterion: 2
2960-1#
```



### 配备合适的工具













# MU-MIMO 和OFDMA (802.11ax)





#### MU- MIMO







#### OFDM vs OFDMA

#### **OFDM**



#### **OFDMA** (8 0 2 . 1 1 a x )







#### WIFI网络的性能

- AP和终端的能力
- 根据用户SLA和具体应用进行合理的系统设计
  - 定位、多媒体业务
- AP部署、信道规划和天线的选择
- WiFi性能调优









