

Please use the bookmark to navigate

General information on LVT models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

- Model(s): lvtnfet_acc, lvtpfet_acc
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Sv@1hz: Gate noise voltage spectral density at 1Hz, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Aid: delta_Id/Id * sqrt(W.L)
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*shrink_iana*W/(shrink_iana*L+dlshrink_iana+plashrink_iana*p_la) at Vds=Vdd/4V.
 - ✓ Avt: delta Vt * sqrt(W.L)
 - ✓ Id_sv: Drain current at Vgs = Vgs_ana and Vds = Vdd/4V for which noise voltage and current spectral densities Sv, Si are extracted.
 - ✓ Cbd_off: Bulk-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Cdg_ana: Drain-to-Gate transcapacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Sv@th: Gate thermal noise voltage spectral density, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Abeta: delta_GmMax/GmMax * sqrt(w/L)
 - ✓ Cdd_ana: Total drain capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgg_ana: Total gate capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = vds_cggV, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

lvtnfet_acc Electrical characteristics per geometry

lvtnfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=0, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	491.7 0.0mV	459.6 0.0mV	430.5 0.0mV
Vgs_ana [mV]	607.7 0.0mV	570.3 0.0mV	535.5 0.0mV
GDC_ana []	234.2 0.0%	254.3 0.0%	248.7 0.0%
GBW_QS [GHz]	13.41 0.0%	14.09 0.0%	14.11 0.0%
Ft_ana [GHz]	0.26 0.0%	0.26 0.0%	0.26 0.0%
Gm_ana [μS]	575 0.0%	594.3 0.0%	608.6 0.0%
Gds_ana [μS]	2.46 0.0%	2.34 0.0%	2.45 0.0%
Cgg_ana [fF]	346.1 0.0%	365 0.0%	368.8 0.0%
Cdg_ana [fF]	136 0.0%	143.8 0.0%	145 0.0%
Cdd_ana [fF]	6.82 0.0%	6.71 0.0%	6.86 0.0%
Avt [mV.μm]	7.05 -0.7%	7.46 -0.6%	6.85 -0.7%
Abeta [%.µm]	1.29 1.7%	1.27 1.6%	1.26 1.7%
AId [%.μm]	1.75 -0.1%	1.7 -0.0%	1.52 0.2%
Sv@1Hz [V/√Hz]	1.58e-06 0.0%	1.8e-06 0.0%	2.14e-06 0.0%
Sv@th [V/√Hz]	4.22e-09 0.0%	4.12e-09 0.0%	4.05e-09 0.0%

lvtpfet_acc Electrical characteristics per geometry

dormieub

lvtpfet_acc @ w=0.30e-6, l=0.030e-6, pre_layout_local=1, nf=1, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, devtype=PCELLwoWPE, as=2.55e-14, ad=2.55e-14, ps=7.7e-07, pd=7.7e-07, vbs=1, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	392.7 0.0mV	374.3 0.0mV	360.4 0.0mV
Vgs_ana [mV]	630.5 0.0mV	593 0.0mV	554.9 0.0mV
GDC_ana []	4.25 0.0%	3.78 0.0%	3.22 0.0%
GBW_QS [GHz]	108.8 0.0%	111.3 0.0%	108.9 0.0%
Ft_ana [GHz]	90.18 0.0%	93.47 0.0%	94.45 0.0%
Gm_ana [μS]	126.2 0.0%	128.7 0.0%	128.6 0.0%
Gds_ana [µS]	29.69 0.0%	34.08 0.0%	39.91 0.0%
Cgg_ana [aF]	222.7 0.0%	219.2 0.0%	216.6 0.0%
Cdg_ana [aF]	152.2 0.0%	143.2 0.0%	141.3 0.0%
Cdd_ana [aF]	179.5 0.0%	180 0.0%	183.2 0.0%
Avt [mV.μm]	1.92 0.6%	1.93 0.5%	1.91 0.4%
Abeta [%.µm]	0.38 1.3%	0.49 1.4%	0.63 1.4%
AId [%.μm]	0.31 -0.2%	0.41 0.3%	0.55 0.9%
Sv@1Hz [V/√Hz]	3.41e-05 0.0%	1.15e-04 0.0%	4.11e-04 0.0%
Sv@th [V/√Hz]	1.6e-08 0.0%	1.6e-08 0.0%	1.64e-08 0.0%

lvtpfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=1, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	503.5 0.0mV	477.8 0.0mV	455 0.0mV
Vgs_ana [mV]	644.6 0.0mV	608.8 0.0mV	575.2 0.0mV
GDC_ana []	61.12 0.0%	69.69 0.0%	75.25 0.0%
GBW_QS [GHz]	1.58 0.0%	1.81 0.0%	2.01 0.0%
Ft_ana [GHz]	8.91e-02 0.0%	9.63e-02 0.0%	0.1 0.0%
Gm_ana [µS]	203.3 0.0%	211.2 0.0%	217.6 0.0%
Gds_ana [μS]	3.33 0.0%	3.03 0.0%	2.89 0.0%
Cgg_ana [fF]	363.2 0.0%	348.9 0.0%	333.7 0.0%
Cdg_ana [fF]	149.4 0.0%	142.4 0.0%	135.3 0.0%
Cdd_ana [fF]	20.46 0.0%	18.54 0.0%	17.21 0.0%
Avt [mV.μm]	15.41 0.1%	14.79 0.0%	14.54 0.0%
Abeta [%.µm]	1.82 1.8%	1.81 1.9%	1.89 1.9%
AId [%.μm]	3.24 0.1%	2.47 0.2%	2.01 0.5%
Sv@1Hz [V/√Hz]	1.13e-06 0.0%	1.5e-06 0.0%	2.02e-06 0.0%
Sv@th [V/√Hz]	7.13e-09 0.0%	6.92e-09 0.0%	6.76e-09 0.0%

dormieub

lvtnfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

lvtnfet_acc, VtGmmax [mV] vs "L=W/10 [m]"

ST Confidential

lvtnfet_acc, Vgs_ana [mV] vs "L=W/10 [m]"

lvtnfet_acc, GDC_ana [] vs "L=W/10 [m]"

W/L==10 and Temp==25

ST Confidential

lvtnfet_acc, GBW_QS [GHz] vs "L=W/10 [m]"

lvtnfet_acc, Ft_ana [GHz] vs "L=W/10 [m]"

ST Confidential

dormieub

lvtnfet_acc, Gm_ana/Id_Sv [1/V] vs "L=W/10 [m]"

W/L==10 and Temp==25

lvtnfet_acc, Gm_ana*l/w [S/sq] vs "L=W/10 [m]"

lvtnfet_acc, Gds_ana*l/w [S/sq] vs "L=W/10 [m]"

lvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

lvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

W/L==10 and Temp==25

lvtnfet_acc, Sv@th*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

lvtnfet_acc, Cgg_ana/l [fF/um] vs "L=W/10 [m]"

lvtnfet_acc, Cdg_ana/w [fF/um] vs "L=W/10 [m]"

lvtnfet_acc, Cdd_ana/w [fF/um] vs "L=W/10 [m]"

lvtnfet_acc, Cgd_0V/w [fF/um] vs "L=W/10 [m]"

lvtnfet_acc, Cbd_off/w [fF/um] vs "L=W/10 [m]"

lvtnfet_acc, Avt [mV.um] vs "L=W/10 [m]"

 $W/L{=}10\ and\ Temp{=}{=}25\ and\ stratn{=}{=}2\ and\ devType{=}{=}"PCELLwoWPE"$

lvtnfet_acc, Abeta [%.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

lvtnfet_acc, AId [%.um] vs "L=W/10 [m]"

 $W/L{=}10\ and\ Temp{=}{=}25\ and\ stratn{=}{=}2\ and\ devType{=}{=}"PCELLwoWPE"$

lvtpfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

lvtpfet_acc, VtGmmax [mV] vs "L=W/10 [m]"

lvtpfet_acc, Vgs_ana [mV] vs "L=W/10 [m]"

lvtpfet_acc, GDC_ana [] vs "L=W/10 [m]"

lvtpfet_acc, GBW_QS [GHz] vs "L=W/10 [m]"

lvtpfet_acc, Ft_ana [GHz] vs "L=W/10 [m]"

lvtpfet_acc, Gm_ana/Id_Sv [1/V] vs "L=W/10 [m]"

lvtpfet_acc, Gm_ana*l/w [S/sq] vs "L=W/10 [m]"

lvtpfet_acc, Gds_ana*l/w [S/sq] vs "L=W/10 [m]"

lvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

dormieub

lvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

W/L==10 and Temp==25

lvtpfet_acc, Sv@th*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

lvtpfet_acc, Cgg_ana/l [fF/um] vs "L=W/10 [m]"

"L=W/10 [m]"

lvtpfet_acc, Cdg_ana/w [fF/um] vs "L=W/10 [m]"

lvtpfet_acc, Cdd_ana/w [fF/um] vs "L=W/10 [m]"

lvtpfet_acc, Cgd_0V/w [fF/um] vs "L=W/10 [m]"

lvtpfet_acc, Cbd_off/w [fF/um] vs "L=W/10 [m]"

lvtpfet_acc, Avt [mV.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

dormieub

lvtpfet_acc, Abeta [%.um] vs "L=W/10 [m]"

 $W/L{=}10\ and\ Temp{=}{=}25\ and\ stratn{=}{=}2\ and\ devType{=}{=}"PCELLwoWPE"$

lvtpfet_acc, AId [%.um] vs "L=W/10 [m]"

 $W/L{=}10\ and\ Temp{=}{=}25\ and\ stratn{=}{=}2\ and\ devType{=}{=}"PCELLwoWPE"$

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model lvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 300e-9 A
 - **x** model_version = 1.3.e
 - \mathbf{X} vstep_ivt = 0.005 V
 - **x** iana = 5e-6 A
 - \times vds_mm = 0.05 V
 - **x** ams_release = 2018.3
 - \mathbf{X} vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V

Sep 24, 2018

- **x** mc_nsigma = 3
- \times vgs_start = 0 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- **x** shrink_ivt = 1
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 1
- Model lvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.3.e

- \times vstep_ivt = 0.005 V
- \mathbf{X} iana = 2e-6 A
- \times vds_mm = 0.05 V
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds sat = Vdd V
- **x** mc_nsigma = 3
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- **x** mc_runs = 5000
- **x** shrink_ivt = 1
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \times vbs = 1 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 1

- Model lvtnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 300e-9 A
 - **x** model_version = 1.3.d
 - \mathbf{X} vstep_ivt = 0.005 V
 - \mathbf{X} iana = 5e-6 A
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - \times mc_nsigma = 3
 - \mathbf{x} vgs_start = 0 V
 - **✗** plashrink_ivt = 1
 - \star ithslwi = 10e-9 A
 - x vds_ana = Vdd/4 V
 - \times vds_cbd = 0 V
 - \mathbf{x} vddmax = vdd
 - **x** mc_runs = 5000
 - **x** shrink_ivt = 1

- \times vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt dev = 1
- Model lvtpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V
 - **X** ivt = 70e-9 A
 - **✗** model_version = 1.3.d
 - \times vstep_ivt = 0.005 V
 - \mathbf{X} iana = 2e-6 A
 - **x** vds mm = 0.05 V
 - \times ams_release = 2018.3
 - \times vgs_stop = vdd V
 - X dlshrink ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3

- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- **x** ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- **x** shrink_ivt = 1
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 1 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 1

Sep 24, 2018