TP5 – Estructuras Algebraicas - Aritmética Modular

Agustina Sol Rojas

Ejercicio 1.

Hallar los resultados de las siguientes operaciones realizadas entre enteros módulo 4 y 5:

$$\bar{3} + \bar{1}; \ \bar{5} + \bar{9}; \ \bar{40}.\ \bar{3}; \ (\bar{3} + \bar{2}).\ (\bar{6}.\ \bar{8})$$

Modulo 4:

- $\overline{3} + \overline{1} = \overline{0}$
- $\bullet \quad \overline{5} + \overline{9} = \overline{14} = \overline{2}$
- $\overline{40}.\overline{3} = \overline{120} = \overline{0}$
- $(\overline{3} + \overline{2}).(\overline{6}.\overline{8}) = \overline{5}.\overline{48} = \overline{240} = \overline{0}$

Modulo 5:

- $\overline{3} + \overline{1} = \overline{4}$
- $\overline{5} + \overline{9} = \overline{14} = \overline{4}$
- $\overline{40}.\overline{3} = \overline{120} = \overline{0}$
- $(\overline{3} + \overline{2}).(\overline{6}.\overline{8}) = \overline{5}.\overline{48} = \overline{240} = \overline{0}$

Ejercicio 2.

Construir las tablas de sumar y multiplicar de los enteros módulo 2 y 5:

Modulo 2:

+	ō	ī
ō	ō	1
1	1	ō

	ō	1
ō	ō	ō
<u>1</u>	$\overline{0}$	Ī

Modulo 5:

+	ō	<u>1</u>	<u>-</u> 2	3	$\overline{4}$
ō	ō	1	<u>-</u> 2	3	4
1	Ī	<u>-</u> 2	3	4	ō
2	2	3	4	ō	1
3	3	$\bar{4}$	ō	ī	2
4	4	ō	1	<u>2</u>	3

	ō	1	<u>2</u>	3	$\bar{4}$
ō	ō	ō	ō	ō	ō
1	ō	1	<u>2</u>	3	$\bar{4}$
2	ō	2	4	1	3
3	ō	3	Ī	4	<u>-</u> 2
4	ō	4	3	<u>2</u>	<u>1</u>

Ejercicio 3.

Analizar si las siguientes son estructuras de grupo:

- a) $(Z_4, +)$ enteros módulo 4 con la suma modular
 - Cerrada:

Para todo a,b en Z_4 vale que $\bar{a}+\bar{b}$ pertenece a Z_4

• Asociativa:

La operación + sobre Z_4 es asociativa ya que para cualesquiera sean \bar{a} , \bar{b} y \bar{c} en Z_4 , se cumple, por la asociatividad de los enteros con respeto a la + que:

$$\bar{a} + (\bar{b} + \bar{c}) = \overline{a + (b + c)} = \overline{(a + b) + c} = (\bar{a} + \bar{b}) + \bar{c}$$

• Elemento neutro:

Existe en Z_4 un elemento \bar{e} tal que para todo \bar{a} en Z_4 vale que $\bar{a}+\bar{e}=\bar{e}+\bar{a}=\bar{a}$ y ese $\bar{e}=0$, el mismo elemento neutro de los enteros con respecto a la +.

• Elemento inverso:

Para todo elemento \bar{a} de Z_4 existe \bar{a}' en Z_4 tal que $\bar{a} + \bar{a}' = \bar{a}' + \bar{a} = \bar{e}$:

- $\overline{0} + \overline{0} = \overline{0}$
- $\bar{1} + \bar{3} = \bar{3} + 1 = \bar{0}$
- $\overline{2} + \overline{2} = \overline{0}$

Como + es asociativa, existe un elemento neutro y todos los elementos de Z_4 tienen un inverso $(Z_4, +)$ es un grupo.

- b) (Z_4,\cdot) enteros módulo 4 con el producto modular
 - Cerrada:

Para todo a,b en Z_4 vale que $\bar{a}\cdot\bar{b}$ pertenece a Z_4

Asociativa:

La operación \cdot sobre Z_4 es asociativa ya que para cualesquiera sean \bar{a}, \bar{b} y \bar{c} en Z_4 , se cumple, por la asociatividad de los enteros con respecto a la \cdot que:

$$\bar{a} \cdot \left(\bar{b} \cdot \bar{c} \right) = \overline{a \cdot (b \cdot c)} = \overline{(a \cdot b) \cdot c} = \left(\bar{a} \cdot \bar{b} \right) \cdot \bar{c}$$

• Elemento neutro:

Existe en Z_4 un elemento \bar{e} tal que para todo \bar{a} en Z_4 vale que $\bar{a} \cdot \bar{e} = \bar{e} \cdot \bar{a} = \bar{a}$ y ese $\bar{e} = \bar{1}$, el mismo elemento neutro de los enteros con respecto a la \cdot .

• Elemento inverso:

No se da que para todo elemento \bar{a} de Z_4 existe \bar{a}' en Z_4 tal que $\bar{a}\cdot\bar{a}'=\bar{a}'\cdot\bar{a}=\bar{e}$:

- Operando al $ar{0}$ con cualquier otro elemento $ar{a}$ de Z_4 nunca dará como resultado $ar{1}$

Como en \cdot no todos los elementos de Z_4 tienen un inverso (Z_4,\cdot) no es un grupo.

- c) (Z_3,\cdot) enteros módulo 3 con el producto modular
 - <u>Cerrada:</u>

Para todo a, b en Z_3 vale que $\bar{a} \cdot \bar{b}$ pertenece a Z_3

• Asociativa:

La operación \cdot sobre Z_3 es asociativa ya que para cualesquiera sean \bar{a} , \bar{b} y \bar{c} en Z_4 , se cumple, por la asociatividad de los enteros con respecto a la \cdot que:

$$\bar{a}\cdot\left(\bar{b}\cdot\bar{c}\right)=\overline{a\cdot(b\cdot c)}=\overline{(a\cdot b)\cdot c}=\left(\bar{a}\cdot\bar{b}\right)\cdot\bar{c}$$

• Elemento neutro:

Existe en Z_4 un elemento \bar{e} tal que para todo \bar{a} en Z_3 vale que $\bar{a}\cdot\bar{e}=\bar{e}\cdot\bar{a}=\bar{a}$ y ese $\bar{e}=\bar{1}$, el mismo elemento neutro de los enteros con respecto a la \cdot .

<u>Elemento inverso</u>:

No se da que para todo elemento \bar{a} de Z_3 existe \bar{a}' en Z_3 tal que $\bar{a}\cdot\bar{a}'=\bar{a}'\cdot\bar{a}=\bar{e}$:

- Operando al $\overline{0}$ con cualquier otro elemento \overline{a} de Z_3 nunca dará como resultado $\overline{1}$

Como en \cdot no todos los elementos de Z_3 tienen un inverso (Z_3,\cdot) no es un grupo.

Ejercicio 4.

Sean $A_1 = \{\overline{0}, \overline{5}\}$ y $A_2 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ subconjuntos de Z_{10} .

• Probar que A_1 y A_2 son subgrupos de Z_{10} .

+	ō	5
ō	ō	5
5	<u>5</u>	$\bar{0}$

Elemento neutro:

Existe en A_1 un elemento e tal que para todo \bar{a} en A_1 vale que $\bar{a}+\bar{e}=\bar{e}+\bar{a}=\bar{a}$ y ese $\bar{e}=\bar{0}$ cómo se puede observar en la tabla. El neutro + en Z_{10} , es $\bar{0}$ y este $\in A_1$.

Operación bien definida y elemento inverso:

Para todo $\bar{a}, \bar{b} \in A_1$ se da que $\bar{a} + \bar{b}^{-1} \in A_1$. Se puede observar en la tabla que se cumple que $b^{-1} \in A_1$ (el inverso de $\bar{0}$ es $\bar{0}$ y el de $\bar{5}$ es $\bar{5}$). También se puede observar que para todo $\bar{a}, \bar{b} \in A_1$ se da que $\bar{a} + \bar{b}^{-1} \in A_1$

 $\underline{A_2}$

+	ō	<u>2</u>	<u>4</u>	<u></u> 6	8
ō	ō	<u>2</u>	$\bar{4}$	<u></u> 6	8
2	<u>-</u> 2	4	<u></u> 6	8	ō
4	4	<u>-</u> 6	8	$\overline{0}$	<u>2</u>
<u></u>	<u></u> 6	8	ō	2	4
8	8	ō	2	<u>4</u>	<u></u> 6

Elemento neutro:

Existe en A_2 un elemento e tal que para todo \bar{a} en A_2 vale que $\bar{a}+\bar{e}=\bar{e}+\bar{a}=\bar{a}$ y ese $\bar{e}=\bar{0}$ cómo se puede observar en la tabla. El neutro + en Z_{10} , es $\bar{0}$ y este $\in A_2$.

Operación bien definida y elemento inverso:

Para todo $\bar{a}, \bar{b} \in A_2$ se da que $\bar{a} + \bar{b}^{-1} \in A_2$. Se puede observar en la tabla que se cumple que $b^{-1} \in A_2$ ($\bar{0}$ con $\bar{0}$, $\bar{2}$ con $\bar{8}$, $\bar{4}$ con $\bar{6}$). También se puede observar que para todo $\bar{a}, \bar{b} \in A_2$ se da que $\bar{a} + \bar{b}^{-1} \in A_2$

- Mostrar que todo elemento de Z_{10} puede escribirse como suma de elementos de A_1 y A_2 (es decir, para todo x de Z_{10} , $x=x_1+x_2$ con $x_1\in A_1$ y $x_2\in A_2$.
 - $\overline{0} = \overline{0} + \overline{0} \operatorname{con} \overline{0} \in A_1 \operatorname{y} \overline{0} \in A_2.$
 - $\quad \overline{1} = \overline{5} + \overline{6} \operatorname{con} \overline{5} \in A_1 \operatorname{y} \overline{6} \in A_2.$
 - $\quad \overline{2} = \overline{0} + \overline{2} \operatorname{con} \overline{0} \in A_1 \operatorname{y} \overline{2} \in A_2.$
 - $\quad \overline{3} = \overline{5} + \overline{8} \operatorname{con} \overline{5} \in A_1 \operatorname{y} \overline{8} \in A_2.$
 - $\quad \overline{4} = \overline{0} + \overline{4} \operatorname{con} \overline{0} \in A_1 \text{ y } \overline{4} \in A_2.$
 - $\overline{5} = \overline{5} + \overline{0} \operatorname{con} \overline{5} \in A_1 \vee \overline{0} \in A_2.$
 - $\overline{6} = \overline{0} + \overline{6} \operatorname{con} \overline{0} \in A_1 \vee \overline{6} \in A_2.$
 - $\overline{7} = \overline{5} + \overline{2} \operatorname{con} \overline{5} \in A_1 \vee \overline{2} \in A_2.$
 - $\overline{8} = \overline{0} + \overline{8} \operatorname{con} \overline{0} \in A_1 \vee \overline{8} \in A_2.$
 - $\bar{9} = \bar{5} + \bar{4} \cos \bar{5} \in A_1 \vee \bar{4} \in A_2.$

Ejercicio 5.

Mostrar que 3 es un generador del grupo cíclico $(Z_8,+)$. Cuál es el orden del subgrupo cíclico generado por 2?

$$Z_8 = {\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}}$$

g es un generador del grupo cíclico $(Z_8,+)$ si para todo elemento $a\in Z_8$ existe un entero k tal que $a=g^k$.

Elemento $\in Z_8$	Potencia de $\bar{3}$ que dan		
Etemento e Z ₈	el elemento		
Ō	$\overline{3}^0 = \overline{0}$		
	23 2 2 2 2		
1	$\bar{3}^3 = \bar{3} + \bar{3} + \bar{3} = \bar{9}$		
	$=\overline{1}$		
$\bar{2}$	$\overline{3}^6 = \overline{18} = \overline{2}$		
Z	3° = 18 = 2		
3	$\bar{3}^1 = \bar{3}$		
3	3 – 3		
	$\bar{3}^4 = \bar{3} + \bar{3} + \bar{3} + \bar{3}$		
$\overline{4}$	$=\overline{12}$		
	$= \overline{4}$		
5	$\overline{3}^7 = \overline{21} = \overline{5}$		
<u></u> 6	$\overline{3}^2 = \overline{6}$		
=	55 75 =		
7	$\overline{3}^5 = \overline{15} = \overline{7}$		

$$\bar{2}^0 = \bar{0}$$

$$\bar{2}^1 = \bar{2}$$

$$\bar{2}^2 = \bar{4}$$

$$\overline{2}^3 = \overline{6}$$

$$\bar{2}^4 = \bar{8} = \bar{0}$$

El orden del subgrupo cíclico generado por 2 es 4. Ese subgrupo es $\{\overline{0},\overline{2},\overline{4},\overline{6}\}$ donde $\overline{6}=\overline{2}^{m-1}$ siendo m el orden del subgrupo.

Ejercicio 6.

Encontrar los generadores del grupo cíclico $(Z_6, +)$.

- 1̄
 - $\circ \quad \overline{1}^0 = \overline{0}$
 - $\circ \quad \overline{1}^1 = \overline{1}$
 - $\circ \quad \overline{1}^2 = \overline{2}$
 - $\circ \quad \overline{1}^3 = \overline{3}$
 - $\circ \quad \overline{1}^4 = \overline{4}$
 - $\circ \quad \overline{1}^5 = \overline{5}$
 - Si es
- <u>2</u>
 - $\circ \quad \overline{2}^0 = \overline{0}$
 - $\circ \quad \overline{2}^1 = \overline{2}$
 - $\circ \quad \bar{2}^2 = \bar{4}$
 - $\circ \quad \bar{2}^3 = \bar{0}$
 - No es
- 3
 - $\circ \quad \overline{3}^0 = \overline{0}$
 - $\circ \quad \overline{3}^1 = \overline{3}$
 - $\circ \quad \bar{3}^2 = \bar{0}$
 - No es
- 4̄
 - $\circ \quad \overline{4}^0 = \overline{0}$
 - $\circ \quad \bar{4}^1 = \bar{4}$
 - $\circ \quad \overline{4}^2 = \overline{2}$
 - $\circ \quad \overline{4}^3 = \overline{0}$
 - No es
- 5
 - $\circ \quad \overline{5}^0 = \overline{0}$
 - $\circ \quad \overline{5}^1 = \overline{5}$
 - $\circ \quad \overline{5}^2 = \overline{4}$
 - $\circ \quad \overline{5}^3 = \overline{3}$
 - $\circ \quad \overline{5}^4 = \overline{2}$

$$\circ$$
 $\overline{5}^5 = \overline{1}$

Ejercicio 7.

Si reparto en partes iguales m caramelos entre 3 personas, me sobran 2, mientras que si los reparto entre 7, me sobran 4. Sabiendo que m está entre 30 y 70. ¿ Cuántos caramelos tengo para repartir? (Usar aritmética modular)

- 30 < *m* < 70
- m = 3q + 2
- m = 7t + 4
- 1. Igualo ambas ecuaciones con m en común y despejo alguna de las incógnitas.

$$3q + 2 = 7t + 4$$

$$3q = 7t + 2$$

2. Considero a 3 como el módulo, y a 7t y -2 como los términos de la congruencia.

Además se tiene en cuenta que $\overline{-2} \equiv_3 \overline{1}$

$$\overline{7 \cdot t} \equiv_3 \overline{-2}$$

$$\overline{7} \cdot \overline{t} \equiv_3 \overline{-2}$$

$$\bar{1} \cdot \bar{t} \equiv_3 \bar{1}$$

3. Realizo el algoritmo de Euclides para ver si el $\overline{1}$ que acompaña a la t y el 3 son coprinos

$$(3,1) = (1,0) = 1$$

- 4. Como son coprimos existe en Z_3 un \bar{a} tal que $\bar{a} \cdot \bar{1} \equiv \bar{1}$ y ese $\bar{a} = \bar{1}$ ya que $\bar{1} \cdot \bar{1} \equiv \bar{1}$
- 5. Multiplico ambos lados por $\bar{a} = \bar{1}$

$$\bar{t} \equiv_3 \bar{1}$$

6. Obtengo la cantidad de monedas teniendo en cuenta que 30 < m < 70, para ello reemplazo a t por algún numero perteneciente a $\bar{1}$:

$$m = 7 \cdot 4 + 4 = 32$$

$$m = 7 \cdot \overline{7} + 4 = 53$$

7. Por lo tanto se tienen 32 o 53 caramelos.

https://www.youtube.com/watch?v=EpxyNxAauKE

Ejercicio 8.

Averiguar qué día de la semana cayó 05/11/1968, fecha del natalicio de Ricardo Fort.

- 1. Primero se debe calcular M = días transcurridos:
 - i. Primero se deben calcular los años:

$$2024 - 1968 = 56 \, a\tilde{n}os$$
.

 ii. Se deben tener en cuenta los bisiestos, sacando los seculares no divisibles por 400 (igualmente no están incluidos de por si en los 56 años tenidos en cuenta):

$$\frac{56}{4} = 14$$

iii. Calculo los días transcurridos:

$$M = 56 * 365 + 14 = 20454$$

- 2. A esa cantidad de días obtenidos se le calcula el módulo 7 (por la cantidad de días de la semana)
 - i. $M = 20454 \equiv_7 0$
- 3. Como 05/11 fue martes y desde el 05/11/1968 pasaron 20454días, el cual es congruente modulo 7 con 0, entonces:
 - $martes, si\ M \equiv_7 0$
- 4. Por lo tanto el 05/11 fue martes.

https://www.youtube.com/watch?v=ByWNR2w-wAo

Ejercicio 9.

Mostrar que \mathbb{Z}_m para m natural y las operaciones de suma y producto tiene estructura de anillo

Si tengo dos operaciones binarias, que en general se llaman suma y producto, la terna ordenada (A, +, .) tiene estructura de anillo si (A, +) es un grupo conmutativo, el producto es asociativo y se satisfacen:

1. Distributividad por la izquierda: para cualesquiera $a, b, c \rightarrow a(b+c) = ab + ac$

2. Distributividad por la derecha: para cualesquiera $a, b, c \rightarrow (a + b)c = ac + bc$

Se probo en el ejercicio 4 (se probo para Z_4 pero es la misma demostración) que $(Z_m, +)$ es un grupo y que (Z_m, \cdot) es asociativo (la conmutatividad se prueba haciendo uso de la propia de los enteros con respecto a +).

Falta demostrar la distributividad:

1. Por izquierda: para cualesquiera $\bar{a}, \bar{b} \ y \ \bar{c} \in Z_m$ vale que:

$$\overline{a}\cdot\left(\overline{b}+\overline{c}\right)=\overline{a}\cdot\left(\overline{b+c}\right)=\overline{a\cdot(b+c)}=\overline{a\cdot b+a\cdot c}=\overline{a\cdot b}+\overline{a\cdot c}=\overline{a}\cdot\overline{b}+\overline{a}\cdot\overline{c}$$

2. Por derecha: para cualesquiera $\bar{a}, \bar{b} \; y \; \bar{c} \in Z_m$ vale que:

$$(\bar{a} + \bar{b}) \cdot \bar{c} = (\overline{a + b}) \cdot \bar{c} = \overline{(a + b) \cdot c} = \overline{c \cdot a + c \cdot b} = \overline{c \cdot a} + \overline{c \cdot b} = \bar{c} \cdot \bar{a} + \bar{c} \cdot \bar{b}$$

Por lo tanto $(Z_m, +, \cdot)$ tiene estructura de anillo.

Ejercicio 10.

Dar todos los elementos invertibles de Z_6 .

	ō	1	2	3	<u>4</u>	5
ō	ō	ō	ō	ō	ō	ō
1	ō	<u>1</u>	<u>2</u>	3	4	5
2	ō	<u>-</u> 2	4	ō	<u>-</u> 2	4
3	ō	3	ō	3	ō	3
4	ō	4	<u>-</u> 2	ō	4	<u>-</u> 2
5	ō	5	<u>4</u>	3	<u>2</u>	<u>1</u>

Dado $\bar{a}\in Z_m$, decimos que \bar{a} es invertible (o divisor de la unidad), si: existe $\bar{c}\in Z_m$ tal que $\bar{a}\cdot\bar{c}=\bar{1}$

Los elementos invertibles son $\overline{1}$ y $\overline{5}$.

Ejercicio 11.

Sea m un entero impar, probar que $m^2 \equiv_4 1$

- 1. $m = 2k + 1 \operatorname{con} k \in \mathbb{Z}$.
- 2. Elevando m al cuadrado nos queda:

$$m^2 = (2k+1)^2 = 4k^2 + 4k + 1$$

3. Sacando factor común 4:

$$m^2 = 4(k^2 + k) + 1 = 4t + 1 \operatorname{con} t \in Z$$

- 4. Como $m^2 = 4t + 1$, se esta dividiendo a m^2 por 4.
- 5. Como el resto es 1 y se sabe todo entero es congruente modulo 4 con su resto en la división por 4, entonces $m^2 \equiv_4 1$.

Ejercicio 13.

Si \bar{a} es invertible entonces no es divisor de cero.

- 1. Suponiendo que \bar{a} es invertible y divisor de cero se cumple que:
 - i. Existe un $\bar{b} \in Z_m$ tal que $\bar{a}.\bar{b} = \bar{1}$
 - ii. $\bar{a} \neq 0$ y existe un $\bar{c} \in Z_m$ tal que $\bar{a}.\bar{c} = \bar{0}$ con $\bar{c} \neq 0$.
- 2. Multiplicamos ambos lados de $\bar{a}.\bar{c}=\bar{0}$ por \bar{b} y usamos la propiedad asociativa:
 - i. $(\bar{b}.\bar{a}).\bar{c}=\bar{0}.\bar{b}$
- 3. Recordando que \bar{a} . $\bar{b} = \bar{1}$ nos queda:
 - i. $1.\bar{c}=\bar{0}$
 - ii. $\bar{c} = \bar{0}$
- 4. Nos queda que $\bar{c} = \bar{0}$ y esto contradice la hipótesis de que $\bar{c} \neq \bar{0}$ por lo tanto si \bar{a} es invertible entonces no es divisor de cero.

Ejercicio 14.

Probar que (t, m) = 1 si y sólo si t es invertible módulo m

- 1. $(t,m) = 1 \rightarrow t$ es invertible módulo m
 - i. Si (t,m)=1 por teorema de Bezout sabemos que existen enteros k,w tal que
 - a. 1 = tk + mw
 - ii. Escribiendo esto teniendo en cuenta las clases de equivalencia:
 - a. $\overline{1} = \overline{tk} + \overline{mw}$
 - iii. Como mw es múltiplo de m, sabemos que $\overline{mw} = \overline{0}$
 - iv. Esto nos deja que $\overline{1} = \overline{t}\overline{k} \rightarrow \overline{1} = \overline{t}.\overline{k}$
 - v. \bar{k} es el inverso de \bar{t} por lo tanto \bar{t} es invertible.
- 2. t es invertible módulo $m \rightarrow (t, m) = 1$
 - i. Que t sea invertible quiere decir que existe un $\overline{t'} \in Z_m$ tal que $\overline{t}.$ $\overline{t'} = \overline{1}$
 - ii. Eso quiere decir que t. $t' \equiv_m 1$
 - a. $t.t'-1=m.q \operatorname{con} q \in Z$
 - b. t.t' mq = 1
 - c. t.t' + m(-q) = 1
 - iii. Siguiendo el teorema de Bezout nos deja que (t, m) = 1.

Ejercicio 15.

Si p es primo entonces Z_p es un cuerpo

Debe ser un anillo conmutativo unitario, es decir $(Z_p, +, .)$ es un cuerpo sii:

- $(Z_p, +)$ es grupo conmutativo.
 - o La demostración de esto es la misma que se usó para demostrar que $(Z_m, +, ...)$ es anillo.
- $(Z_p,..)$ "." es asociativa, conmutativa, existe elemento neutro distinto al de la suma, y todos los elementos (menos el $\overline{0}$) tienen inverso:
 - o La demostración de asociatividad es la misma que se usó para demostrar que $(Z_m,+,.)$ es anillo.
 - Conmutativa:
 - Se cumple por la propiedad de conmutatividad de los enteros con respecto a la multiplicación.
 - o Elemento neutro:

- Se cumple y ese elemento es el $\overline{1}$ (el cual es distinto al $\overline{0}$)
- $\circ\quad$ Todos los elementos (distintos a $\overline{0})$ tienen inverso:
 - Como p es primo, y $\bar{a} \neq \bar{0}$, (a, p) = 1, y por lo tanto, \bar{a} es invertible.
- Se satisface la distributividad por izquierda y por derecha.
 - o La demostración de esto es la misma que se usó para demostrar que $(Z_m,+,.)$ es anillo.