TP3 - De boa na Radlândia

17 pontos

Entrega: 03/12/2023

1 Objetivo do trabalho

Neste trabalho, vamos exercitar tópicos do terceiro módulo da disciplina: paradigmas e dificuldade.

Serão fornecidos alguns casos de teste para que você possa testar seu programa, mas eles não são exaustivos! Podem haver situações que não são ilustradas por eles; cabe a você pensar em novos casos e garantir que seu programa esteja correto e implemente um algoritmo de complexidade adequada.

1.1 Informações importantes

O código fonte do seu trabalho deve estar contido em um **único** arquivo na linguagem C++ e deve ser submetido via Moodle na tarefa **Entrega** TP3 até o dia 03/12/2023. Você terá **20 tentativas** para conseguir a nota total de execução; apenas a última submissão será levada em conta para fins de avaliação. Você não terá acesso a todos os casos de teste; determinar estratégias para testar seu programa e suas ideias faz parte do trabalho. Envios com atraso serão aceitos; leia a Seção 4 para a política de atrasos.

Plágio de qualquer natureza não será tolerado. Caso qualquer cola seja encontrada, seu trabalho será zerado e as demais providências cabíveis serão tomadas. Escreva seu próprio código, de maneira legível e com comentários apropriados; ele pode ser útil no futuro próximo.

2 Definição do problema

Além do reino da Baicônia, existe uma outra sociedade fundada e mantida pelos preceitos fundamentais do Deboísmo: a comuna da Radlândia. Ao contrário de nossas amigas capivaras, a população da Radlândia não é a maior fã de ficar de boa na lagoa; ela prefere encontrar a paz universal para mandar bem no skate e falar sobre as manobras mais radicais que podem ser executadas nas infinitas pistas que existem na comuna.

Diná é uma nova moradora da Radlândia, que uma vez foi visitar sua amiga Mica e nunca mais quis ir embora. Ela agora está mergulhada no Deboísmo radlândico, absorvendo toda a cultura de sua nova casa. Como Diná não nasceu nem cresceu cercada de pistas que desafiam as leis da física, ela ainda não tem certeza de qual a sequência de manobras mais radical possível de se atravessar a pista do bairro.

Mas como é medida a radicalidade de uma travessia? Obviamente, a Radlândia tem seu próprio sistema de pontuação, que funciona da seguinte forma:

- Uma pista tem N seções onde sequências de manobras podem ser realizadas (uma sequência pode ser vazia), com cada seção tendo um fator de bonificação c_i e um tempo de travessia ℓ_i .
- Existem apenas K manobras permitidas na comuna, com cada uma tendo uma duração t_j e uma pontuação base p_j . Cuidado: a pontuação base pode ser negativa!
- Uma manobra pode ser realizada no máximo uma vez em cada seção da pista (não é da hora fazer spam), e nenhuma manobra pode ser feita parcialmente: ela deve começar e terminar dentro de uma seção.
- Caso uma manobra seja feita em duas seções seguidas, sua pontuação é reduzida para $\lfloor p_j/2 \rfloor$; por exemplo, se $p_j = 5$, a nova pontuação é 2. Uma manobra feita na seção i mas não feita na seção i+1 tem sua pontuação integral na seção i+2.

• A pontuação final de uma sequência de manobras $\langle m_1, \ldots, m_r \rangle$ na seção com fator de bonificação c_i é dada pelo somatório das pontuações de cada uma das r manobras vezes $c_i r$. Ou seja, se realizamos manobras com pontuações $\langle 1, \lfloor 7/2 \rfloor, 2, 5 \rangle$ em $c_i = 10$, então temos uma sequência de manobras com valor total $(1 + 3 + 2 + 5) \cdot 10 \cdot 4 = 440$.

Ajude Diná a descobrir qual a travessia mais radical que ela pode fazer e impressionar Mica!

3 Casos de teste

3.1 Formatado da Entrada

Cada caso de teste é composto por várias linhas. A primeira linha contém dois inteiros, N e K, que representam, respectivamente, o número de seções de manobra da pista e o número de manobras catalogadas na Radlândia; é garantido que $1 \le N \le 100$ e $1 \le K \le 10$. Cada uma das N linhas seguintes descreve uma seção da pista. A i-ésima dessas linhas contém dois inteiros: c_i , que representa o fator de bonificação da seção ($1 \le c_i \le 100$) e ℓ_i , que representa o tempo de travessia da seção ($1 \le \ell_i \le 10^6$). Em seguida, temos K linhas, cada uma descrevendo uma manobra. A j-ésima dessas linhas contém dois inteiros: a pontuação base p_j ($-10^6 \le p_j \le 10^6$) da manobra e o tempo t_j necessário para executar a manobra ($1 \le t_j \le 10^6$); assuma que as manobras são numeradas de 1 a K na ordem que são dadas na entrada.

Assuma que Diná é brilhante na mecânica do skate e consegue emendar uma manobra em outra sem nenhum problema.

A entrada deve ser lida da entrada padrão.

3.2 Formato da Saída

A saída contém múltiplas linhas. Na primeira linha deve ser impresso um único inteiro T, que representa a pontuação total máxima que Diná pode alcançar. Em seguida, seguem N linhas, cada uma com vários inteiros. A i-ésima dessas linhas representa a i-ésima seção de manobras. O primeiro inteiro n_i nessa linha representa o número de manobras que devem ser feitas na seção; em seguida, devem ser impressos n_i números, cada um representando uma manobra feita na i-ésima seção.

A saída deve ser escrita na saída padrão.

3.3 Limites de execução

Para qualquer caso de teste, seu código deve imprimir a resposta em no máximo 3 segundos. Seu programa deve usar menos de 100MB de memória. Estruturas de dados devem ser alocadas sob demanda; ou seja, não faça vetores estáticos gigantescos para entradas pequenas. Todas as avaliações serão feitas automaticamente via VPL. Programas que não aderirem a essas restrições para um teste terão a nota do mesmo zerada.

Lembre-se: você pode submeter uma solução para a tarefa no máximo 20 vezes e apenas a última submissão será levada em conta para fins de avaliação.

3.4 Exemplos

3.4.1 Exemplo 1

Entrada	Saída
3 2	210050
10 20	1 1
1 60	0
100 60	2 1 2
50 10	
1000 50	

Neste exemplo, temos três seções. A primeira delas tem comprimento 20 e um fator bônus de 10, e podemos fazer apenas a primeira manobra nela, para um total de 500 pontos na seção. A segunda tem

duração de 60 e, a princípio, poderíamos executar ambas as manobras para uma pontuação de (1000+50/2)*2*1=2050. Fazendo o mesmo na terceira seção (de duração 60 e fator 100), teríamos mais (1000/2+50/2)*2*100=105000, levando nosso total a T'=500+2050+105000=107550. Porém, note que, se não fizermos nenhuma manobra na seção 2, podemos dobrar nossa pontuação da seção 3, que nos dá T=500+0+210000=210500.

3.4.2 Exemplo 2

Entrada	Saída
3 2	7800
4 1	1 1
3 3	2 1 2
1 1	1 1
1000 1	
50 2	

4 Atrasos

O trabalho pode ser entregue com atraso, mas será penalizado de acordo com a seguinte fórmula, onde d é o número de dias atrasados:

$$\Delta(d) = \frac{2^{d-1}}{0.32}\% \tag{1}$$

Por exemplo, com um atraso de quatro dias e uma nota de execução de 70% do total, sua nota final será penalizada em 25%, ficando assim igual a $70 \cdot (1 - \Delta(d)) = 52.5\%$. Note que a penalização é exponencial, e um atraso de 6 dias equivale a uma penalidade de 100%.