Linear Block Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 28, 2014

Binary Block Codes

Binary Block Code

Let \mathbb{F}_2 be the set $\{0,1\}$.

Definition

An (n, k) binary block code is a subset of \mathbb{F}_2^n containing 2^k elements

Example

$$n = 3, k = 1, C = \{000, 111\}$$

Example

 $n \ge 2$, C = Set of vectors of even Hamming weight in \mathbb{F}_2^n ,

$$k = n - 1$$

$$n = 3, k = 2, C = \{000, 011, 101, 110\}$$

This code is called the single parity check code

Encoding Binary Block Codes

The encoder maps k-bit information blocks to codewords.

Definition

An encoder for an (n, k) binary block code C is an injective function from \mathbb{F}_2^k to C

Example (3-Repetition Code)

$$0 \to 000, 1 \to 111$$

or

$$1\rightarrow000,0\rightarrow111$$

Decoding Binary Block Codes

The decoder maps *n*-bit received blocks to codewords

Definition

A decoder for an (n, k) binary block code is a function from \mathbb{F}_2^n to C

```
Example (3-Repetition Code) n = 3, C = \{000, 111\}
```

$$000 o 000 111 o 111 \ 001 o 000 110 o 111 \ 010 o 000 101 o 111 \ 100 o 000 011 o 111$$

Since encoding is injective, information bits can be recovered as $000 \rightarrow 0, 111 \rightarrow 1$

Optimal Decoder for Binary Block Codes

- Optimality criterion: Maximum probability of correct decision
- Let $\mathbf{x} \in C$ be the transmitted codeword
- Let $\mathbf{y} \in \mathbb{F}_2^n$ be the received vector
- Maximum a posteriori (MAP) decoder is optimal

$$\hat{\mathbf{x}}_{MAP} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{x} | \mathbf{y})$$

 If all codewords are equally likely to be transmitted, then maximum likelihood (ML) decoder is optimal

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$$

• Over a BSC with $p < \frac{1}{2}$, the minimum distance decoder is optimal if the codewords are equally likely

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

Error Correction Capability of Binary Block Codes

Definition

The minimum distance of a block code C is defined as

$$d_{min} = \min_{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})$$

Example (3-Repetition Code)

$$C = \{000, 111\}, d_{min} = 3$$

Example (Single Parity Check Code)

C = Set of vectors of even weight in \mathbb{F}_2^n , $d_{min} = 2$

Theorem

For a binary block code with minimum distance d_{min} , the minimum distance decoder can correct upto $\lfloor \frac{d_{min}-1}{2} \rfloor$ errors.

Complexity of Encoding and Decoding

Encoder

- Map from \mathbb{F}_2^k to C
- Worst case storage requirement = $O(n2^k)$

Decoder

- Map from \mathbb{F}_2^n to C
- $\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$
- Worst case storage requirement = $O(n2^k)$
- Time complexity = $O(n2^k)$

Need more structure to reduce complexity