Optimization of Emergency Evacuation Planning for Zero-Emission Vehicles

Shuang Feng
University of California, Merced
Xuchang Tang
University of California, Davis

12/05/2024

Agenda

- 1. Problem: Emergency Evacuation Plans for Zero-Emission Vehicles
- 2. State of art
- 3. Methodology
- 4. Results
- 5. Conclusions
- 6. Outlook for future work

1. Problem: Emergency Evacuation Plans for ZEVs

- The objective \rightarrow safe and efficient evacuation for EVs.
- EVs' limited range and recharging needs pose challenges.
- Insufficient, daily-use oriented, or vulnerable charging infrastructure exacerbates these challenges.

[1] Wildfire Evacuees Fill Lake Tahoe Roads in Rush to Flee

EV owners wait in long lines to charge cars after massive windstorm

EV drivers lined up to charge their cars after losing power at home.

[2] A recent Seattle windstorm caused power outages, delaying EV charging.

1. Problem: Emergency Evacuation Plans for ZEVs

- Mobile charging station (MCS)
 - Re-deployable at many locations
 - Does not put stress on grid

2. State of Art

Title	Solution type	Evacuation Use Case	Scheduling and Grouping	Routing	F/MCS Placement	Routing with Recharging/ Refuling	Min travel Time	Min Charging Time	Congestion Aware (consider road capacity)	F/MCS capacity constraint	Microscopic Simulation
A capacitated network flow optimization approach for short notice evacuation planning	heuristic solution	Yes	Yes	Yes	No	No	No	No	Yes	No	No
Dispatch management of portable charging stations in electric vehicle networks	heuristic solution	No	No	No	Yes	No	No	Yes	No	Yes	No
lelectric vehicles considering route choice and	Decompose optimization problem	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Optimization methods for the capacitated refueling station location problem with routing	heuristic solution	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
a bilevel ant colony optimization algorithm for capacitated electric vehicle routing problem	Decompose optimization problem	No	Yes	Yes	No	Yes	No	No	No	Yes	No
Evacuation route planning for alternative fuel vehicles	heuristic solution	Yes	No	Yes	No	Yes	No	No	Yes	No	No
Full cover charging station location problem with routing	Decompose optimization problem	No	No	Yes	Yes	Yes	No	No	No	No	No
	Decompose optimization problem	No	No	Yes	Yes	Yes	No	No	No	No	No
stochastic user equilibrium	linearlize	No	No	No	Yes	No	No	No	Yes	Yes	No
An optimization model for the temporary locations of mobile charging stations	linearlize	No	No	No	Yes	No	No	Yes	No	Yes	No
Dispatch management of portable charging stations in electric vehicle networks	heuristic solution.	No	No	No	Yes	No	Yes	Yes	No	Yes	No
Vehicle routing and scheduling for bushfire emergency evacuation	heuristic solution.	Yes	Yes	Yes	No	No	No	No	No	No	No
Our Approaches	Heuristic solution	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Planned
	Decompose optimization problem	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

3. Methodology - Overview

Objective:

- Minimize the evacuation time (travel time + charging time + number of stops made during evacuation).
- Maximize the number of EVs that can be safely evacuated.
- Minimize the traffics that exceeds road free-flow capacity.

Constraints:

- ZEVs should departure before hazard arrives (scheduling).
- All EVs can safely arrived at evacuation destination without running out of/overcharge the battery.
- Fixed the number of mobile charging stations (MCS) placed for evacuation.
- Conservation of energy.
- MCS capacity.
- •

3. Methodology - Goal

From Previous Workshop

- Formulating in a Mixed Integer linear Programming problem
- Problem:
 - Complexity --> difficult to solve with larger maps
 - Linearity --> difficult to incorporate real-time traffic
 - Global optimum --> not necessary in real-time scenarios

Optimization Math Engine

Mixed Integer Linear Programming Formulation

- Decision Variables
 - x_{wpt} : Number of vehicle evacuated between origin-destination (OD) pair w following path p at time t
 - q_{mnt} : Binary deployment status of MCS labeled m at node n at time t
- Objective:

Summed evacuation time:
$$\sum_{w \in \mathbb{W}} \sum_{p \in \mathbb{P}_{w}} \sum_{t \in \mathbb{T}} (t + \tilde{t}_{wpt}) \times x_{wpt}$$

Constraints

. Evacuation demand:
$$\sum_{p\in\mathbb{P}_{w}}\sum_{t\in\mathbb{T}}x_{wpt}=f_{w}, \forall w\in\mathbb{W}$$

- . MCS single site deployment: $\sum_{n\in\mathbb{N}} |\, q_{mnt}| = 1, \forall m\in\mathbb{M}, \forall t\in\mathbb{T}$
- Port limit: $D_{nt} \leq S_{nt}, \forall n \in \mathbb{N}, \forall t \in \mathbb{T}$
- MCS energy limit: $0 \leq soc_{mt} \leq 1, \forall m \in \mathbb{M}, \forall t \in \mathbb{T}$

Optimization Math Engine

Mixed Integer Linear Programming Formulation (TLDR)

- Objective —> Minimize the summed evacuation time
- Constraints:
 - Fit-the-demand —> All registered vehicles have to be evacuated
 - Pre-deployment —> MCS are placed at a single site throughout the evacuation
 - Port-limit —> charging demands at sites are bounded by number of ports
 - Energy-limit —> MCS SOC is bounded between 0 and 1

Reduction of average evacuation time

- Shaded = 25% and 75% quantile
- More MCS = Reduced time
- Diminishing effect
- Low average ≠ faster evacuation span
 - Question for focus:
 - Average?
 - Longest?

Optimal scheduling strategy

- Vehicle departure
 - Group (fleet) size distribution peaks at number of ports

Optimal deployment strategy

- MCS placement
 - All placed at the the most-visited node
 - The node also has highest centrality measures

3. Methodology – Heuristics: Simulated Annealing

Annealing:

Alters a material's physical properties by heating it to a specific temperature

and then cooling it slowly

• Simulated Annealing (SA):

Inspired by annealing process

• Randomly exploring new solutions by decreasing temperature

• Temperature: probability of accepting worse solutions

3. Methodology – SA Overview

3. Methodology – SA "Isothermal" Scheme

Consideration of Real-time Traffic

- BPR Function: $t = t_o [1 + \alpha \left(\frac{D}{C}\right)^{\beta}]$
- Sensitivity parameters:
- Road Capacity: C = 10
- Demand: 10 Vehicles from Red to Green
- FCS: Yellow
- Average Evacuation Time -->

 $\beta = 0.15$

Decomposed Approach

3. Methodology - Decomposition Overview

3. Methodology – multi-layer optimization problem formulation

- Layer 1 (feasibility check without MCS)
 - Check each OD pairs by:
 - Connectivity (Dijkstra's algorithm)
 - If destination is reachable with existing fixed charging stations (FCS).
- Layer 2 (if some ODs need MCS to reach destination)
 - Optimize MCS location to minimize travel distance for these ODs.
- Layer 3 (routing and charging planning)
 - Optimize the routes with shorter driving distance.
 - Optimize the routes for free-flow condition
 - Optimize the charging stops:
 - Minimize number of stops made
 - Minimize charging time
 - Tracking reference flow size calculated from scheduling layer.

3. Methodology – Hazard Modeling and flow control

$$t_{evacuation\,window} = \frac{d_{o_to_hazard}}{v_{hazard}}$$

$$n_{flow}^* = \frac{R}{t_{evacuation \ window}}$$

 $d_{o_to_hazard}$: distance from hazard to evacuation origin node R: remaining demands that required to evacuated n_{flow}^* : desired traffic flow rate for safe evacuation

3. Methodology – Baseline

- Shortest path from each origin to destination (Dijkstra's algorithm)
 - Maximum of one charging stop at the FCS;
 - Not consider road capacity;
 - No flow size control;

3. Methodology - KPI

• 1) South Florida case (233 edges, 83 od pairs) with map scaled from x1 to x5, demand scaled down by 1/5. No existing FCS.

• Solver time: Optimization problems were solved on MacBook Pro with Apple M2 Chip using Gurobi Optimization Solver. $\frac{T_{travel}}{T_{freeflow}}$

- Actual evacuation time modeled with BPR function.
- Charging demand at each MCS.

$$t_{bpr} = \frac{d_{ij}x_{ij}}{s} \left(1 + \alpha \left(\frac{\left(\sum_{od} x_{ij}^{od} m^{od} \right)}{n_{ff}} \right)^{\beta} \right), \alpha = 0.15, \beta = 4$$

Microscopic Traffic Simulation using SUMO

4. Results – Routing and charging solution example

charged

range

[mile]

6

0

0

0

4. Results – Optimization vs Baseline

			2	4			_			
map scale	1	2	3	4	5	6	7			
solver time (s)										
baseline	0.047	0.038	0.044	0.048	0.051	0.049	0.053			
layer 1										
layer 2				0	0	0	1			
layer 3				59	18	3	11			
layer 2+ 3				59	18	3	12			
single layer	1	16	18	15	21	23	26			
number of baseline										
unrouted OD				22	37	40	40			
avera	ge eva	cuation	n time	(h)						
baseline	0.9	2.2	3.4							
layer 2+ 3	0.9	1.9	2.8							
single layer	0.9	1.7	2.6							
media	an eva	cuation	i time	(h)						
baseline	1.1	2.4	3.4							
layer 2+ 3	1.1	2.3	3.2							
single layer	1.1	2.2	3.3							
total evacuation time (h)										
baseline	65.3	159.6	249.1							
layer 2+ 3	67.6	140.6	207.8							
single layer	67.4	129.2	189.9							

- Solver time increased as map scale grew.
- The layered optimization formulation outperformed the single-layer approach in terms of solver efficiency as map scale grew.
- Single layer optimization returns the best evacuation time.
- Baseline returns the longest evacuation time.

4. Results – Optimization vs Baseline

4. Results – compare with and without free-flow constraint

- Assume all vehicles departure with 20% battery SoC.
- Assume no pre-exist charging stations.

	with free flow constraint	Without free flow constraint		
max t_bpr [h]	6.774	7.683		
std t_bpr [h]	2.150	2.353		
average t_bpr [h]	3.724	4.067		
total t_bpr [h]	275.594	300.973		

4. Results – battery initial SoC

	init bat level = 0.2	init bat level = 0.4	init bat level = 0.6	init bat level = 0.8	
average t_bpr [h]	4.786	3.723	3.728	3.724	
std t_bpr [h]	3.493	2.153	2.147	2.150	
total t_bpr [h]	354.129	275.536	275.879	275.555	
max t_bpr [h]	11.830	6.771	6.769	6.783	

	init bat level = 0.2	init bat level = 0.4	init bat level = 0.6	init bat level = 0.8	
Average t_charging [h]	0.085	0.055	0.036	0.018	
Std t_charging [h]	0.070	0.055	0.037	0.020	
Sum t_charging [h]	6.316	4.093	2.687	1.301	
Max t_charging [h]	0.182	0.143	0.107	0.070	

charging demand 800000

4. Results – number of MCS added to the map

	8	9	10	11	12	13	14	15
max t_bpr	7.074	6.794	6.794	6.802	6.784	6.793	6.787	6.844
average t_bpr	3.876	3.831	3.811	3.791	3.777	3.780	3.774	3.750
std t_bpr	2.249	2.224	2.199	2.204	2.192	2.194	2.197	2.174
total t_bpr	286.826	283.459	281.979	280.556	279.533	279.726	279.290	277.512

4. Results – SUMO Microscopic Traffic Simulation using SUMO

Sioux Falls Google map

Sioux Falls map in SUMO (scaled up by x6)

5. Results – Microscopic Traffic Simulation using SUMO

Network:

- Traffic Node: All-way stop
- Edge: Single lane roads.
- Charging station: detached from Traffic nodes. 50 parking space with L2 Charger [10kw].

Vehicle model:

- Kia Soul EV 2020 [1] with 64000 [wh] battery.
- 243 [mile] driving range.

Traffic Node without charging station

Traffic Node with charging station

Vehicle

5. Results – Microscopic Traffic Simulation using SUMO

Baseline simulation

- Traffic Jam due to:
 - Large vehicle flow size
 - High charging demand at charging station

5. Results – Microscopic Traffic Simulation using SUMO

evacuation time vs # of MCS added

SUMO simulation result (2 MCS added)

5. Conclusions

- MCS Supports ZEV Evacuation During Emergencies:
 - Reduces average evacuation time
 - **Ensures** EVs can complete evacuation routes.
 - Helps reduce traffic congestion and delays.
- Optimization-Based Route and Charging Planning Reduces Evacuation Time:
 - The vehicle grouping is affected by charging infrastructures
 - MCS optimal placement correlates with map centrality measures
 - Incorporates congestion-aware planning with free-flow constraints.
 - Considers limited-capacity MCS for realistic charging stop planning.
- Vehicle initial SOC affects evacuation time.
- Limitations:
 - Heuristics: no guarantee to find global optimum
 - Decomposed: Lack of feedback loop to update planning basing on the latest evacuation status.

6. Outlook for future work

Short-term goals

- Heuristic Approach:
 - Enable vehicle grouping
 - Enable vehicle waiting for hazard spreading
 - Apply algorithm on the Sioux Falls map
 - Fine-tune the hyperparameters
 - Validate result with SUMO
- Decomposed Approach:
 - Close the **feedback** loop for **re-planning**.

Long-term goals

• Mariposa use case.

Feedback loop for re-planning

Mariposa map

Q&A

Previous Results?

Optimization Math Engine

Mixed Integer Linear Programming Formulation

- Decision Variables
 - x_{wpt} : Number of vehicle evacuated between origin-destination (OD) pair w following path p at time t
 - q_{mnt} : Binary deployment status of MCS labeled m at node n at time t
- Objective:

Summed evacuation time:
$$\sum_{w \in \mathbb{W}} \sum_{p \in \mathbb{P}_w} \sum_{t \in \mathbb{T}} (t + \tilde{t}_{wpt}) \times x_{wpt}$$

Constraints

. Evacuation demand:
$$\sum_{p\in\mathbb{P}_{w}}\sum_{t\in\mathbb{T}}x_{wpt}=f_{w}, \forall w\in\mathbb{W}$$

. MCS single site deployment:
$$\sum_{n\in\mathbb{N}} |\, q_{mnt}| = 1, \forall m\in\mathbb{M}, \forall t\in\mathbb{T}$$

- Port limit: $D_{nt} \leq S_{nt}, \forall n \in \mathbb{N}, \forall t \in \mathbb{T}$
- MCS energy limit: $0 \le soc_{mt} \le 1, \forall m \in \mathbb{M}, \forall t \in \mathbb{T}$

Optimization Math Engine

Mixed Integer Linear Programming Formulation (TLDR)

- Objective —> Minimize the summed evacuation time
- Constraints:
 - Fit-the-demand —> All registered vehicles have to be evacuated
 - Pre-deployment —> MCS are placed at a single site throughout the evacuation
 - Port-limit —> charging demands at sites are bounded by number of ports
 - Energy-limit —> MCS SOC is bounded between 0 and 1

Reduction of average evacuation time

- Shaded = 25% and 75% quantile
- More MCS = Reduced time
- Diminishing effect
- Low average ≠ faster evacuation span
 - Question for focus:
 - Average?
 - Longest?

Optimal scheduling strategy

Vehicle departure

- MCS placement
 - All placed at the the most-visited node
 - The node also has highest centrality measures

