§1 Tensor products (§2 n Atiyah-Macdonald)

M.N.P A-modules.

Defn f: M×N - P called A-lituar = \frac{1}{2} \frac(

Defin $f: M \times N \longrightarrow P$ called $A - literar = Vx \in M$, $y \in N$, $f(x, -): N \longrightarrow P$, $f(-, y): M \longrightarrow P$ are A - linear.

Like for vector spaces or abelian groups,

Bitom_A(M, N; P) \longrightarrow Hom_A(M, Hom_A(N, P)) $f \longmapsto [x \longmapsto f(x, -)]$

Prop 1 Gren M, N, there and a pair (T, g) where
i) T an A-module

) g: M × N — T A-bilinear

S. th. for all P and all A-bilinear f: M × N — P,

there is a ringue A-linear h: T— P s. th.

M×N 3 T Jh commuter.

The pair (T,g) is unique up to unique isomorphism. It is called a tenser product of M and N over A.

Example 2 Say M = A and N = A? We have Bitton $A(A^m, A^n; P) \cong M_{m \times n}(P)$ $f \longrightarrow (f(e_i, e_j))_{i=1,...,m}, f=1,...,n$ (This is the matrix representation of bilinear maps.) Pub T = Amxn, call its standard basis (lij). Let g: AM × AM - Amxn be the mique bilinear map that satisfier $g(e_i, e_j) = e_{ij}$. ω $M_{m \times n}(A^{m \times n})$ Hs makix sepserentation & preadely (eij)i, Then (Am×n, g) is a sensor product of A" and A": Gren fan sh (*), he A-linear map h: Amxn - P, eij - f(ei,ej) à the mique one that satisfies & = hog.

Observation g is not sujective, but hu(g) generates T as A-module.

(The latter has to be the case by the universal property.)

Proof of Prop 1 1) (auxides the (huge!) module T := P $A \cdot e_{(x,y)}$ and the map $(x,y) \in M \times N$ $g : M \times N \longrightarrow T$, $(x,y) \longmapsto e_{(x,y)}$ Here, g is just a map of sets, no further properties.

Note that if $f : M \times N \longrightarrow P$ as any map, then there is a migue A-linear map $T : T \longrightarrow P$ Sth. $f = T \circ g$, namely $T \cdot (e_{(x,y)}) = f(x,y)$.

2) Let U = T be the smallest A-submodule sth. the composition $g = [\pi : T \longrightarrow T/U] \circ g$ is an A-bilinear map. Concretely, U is the submodule generated by $\frac{e(x_1,y_1+y_2)}{e(x_1,y_1+y_2)} - \frac{e(x_1,y_1)}{e(x_1,y_2)} - \frac{e(x_1,y_2)}{e(x_1,y_2)} = \frac{e(x_1,y_1)}{e(x_1+x_2,y_2)} - \frac{e(x_1,y_1)}{e(x_2,y_2)} - \frac{e(x_2,y_2)}{e(x_2,y_2)} = \frac{e(x_2,y_2)}{e(x_2,y_2)} - \frac{e(x_2,y_2)}{e(x_2,y_2)} - \frac{e(x_2,y_2)}{e(x_2,y_2)} = \frac{e(x_2,y_2)}{e(x_2,y_2)} - \frac{e(x_2,y_2)}{e(x_2,y_2)} = \frac{e(x_2,y_2)}{e(x_2,y_2)} = \frac{e(x_2,y_2)}{e(x_2,y_2)} - \frac{e(x_2,y_2)}{e(x_2,y_2)} = \frac{e(x_2,y_2)}{e(x_2,y_2)} - \frac{e(x_2,y_2)}{e(x_2,y_2)} = \frac{e(x_2,y_2)}{e(x_2,y$

3) Claim (Tig) is a tensor product.

Proof Gren $f: M \times N \longrightarrow P$, let $h: \widetilde{T} \longrightarrow P$ be the mique A-linear many s.h. $f = \widetilde{h} \circ \widetilde{g}:$ $M \times N \longrightarrow T \longrightarrow T$ $f \longrightarrow T$

We need to show that the factorization hexists. Equivalently, the dam is that $Tr(u) = 0 \forall u \in U$.

But h(z) = 0, where z is any of the generators from a, because f is between. The claim follows. \Box

Definition/ Notation We write

(MON, (x,y) HO XOY)

for the tensor product of M and N over A.

Elements of the form X & M are called elementary tensors.

They generate MEN as A-world.

Example $e_1\otimes e_1 + e_1\otimes e_2 = e_1\otimes (e_1+e_2) \in A^2\otimes_A A^2$ is elementary, while $e_1\otimes e_1 + e_2\otimes e_2$ is not (if $A\neq 0$).

§2 Properties

Functioniality Let $\phi: M_1 - M_2$, $Y: N_1 - N_2$ be A-linear maps. Consider the commutative diagram

 $\begin{array}{c|c}
M_1 \times N_1 & \longrightarrow & M_1 \otimes_{\mathcal{A}} N_1 \\
(\beta, \Psi) & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
M_2 \times N_2 & \longrightarrow & M_2 \otimes_{\mathcal{A}} N_2
\end{array}$

The diagonal map is A-brilinear, so factors through a unique A-linear $\phi \otimes Y : M_1 \otimes_A N_1 \longrightarrow M_2 \otimes_A N_2$.

It is given on elementary tensors by $(\phi \otimes Y)(x \otimes y) = \phi(x) \otimes Y(y)$.

Dustrubs Special care: Let $U \subseteq M$ be an A-submodule. Then $M \in_A N \longrightarrow M_U \otimes_A N$ to surjective because z^g is sujective on elementary tensors and these are generators. How can we describe the bornel? Answer:

Bittom $(M/U, N; P) = \frac{1}{2} f \in Bittom (M, N; P) | f|_{U \times N} = 0$? $= \frac{1}{2} h \in Hom (M \otimes N, P) | h \circ (U \otimes N \multimap M \otimes N) = 0$? $= Hom (M \otimes N/m (U \otimes N \multimap M \otimes N), P)$.

Thus
$$M/u \stackrel{\circ}{\otimes}_{A} N \stackrel{\sim}{\longrightarrow} M \stackrel{\circ}{\otimes}_{A} N / \text{Im}(U \stackrel{\circ}{\otimes}_{A} N \longrightarrow M \stackrel{\circ}{\otimes}_{A} N)$$
 $(x+u) \stackrel{\circ}{\otimes}_{y} \stackrel{\circ}{\longrightarrow}_{1} x \stackrel{\circ}{\otimes}_{y} y$

Example 3 Together with Example 2, thus gives a completely general description for $M \stackrel{\circ}{\otimes}_{A} N$:

Choose presentations $M \cong A^{\otimes J}/u$, $N \cong A^{\otimes J}/V$. Then $M \stackrel{\circ}{\otimes}_{A} N \cong A^{\otimes J}/V = A^{\otimes$

$$M \not = A^{\oplus I} \not = A^{\oplus J} / m (U \not = A^{\oplus J}) + lm (A^{\oplus I} \not = V)$$

Concrete example:

$$A = 2$$
, $M = 2/u2$, $N = 2/v\cdot 2$, $u,v \in 2$.
Let e, f be generators of M , N .
Example 2: $2 \cdot e \otimes 2 \cdot f \longrightarrow 2 \cdot e \otimes f$.

$$lm((uZ.e) \underset{2}{\otimes} Zf \longrightarrow Z.e \otimes f) = u \cdot Z.e \otimes f.$$
 $(ue) \underset{2}{\otimes} f \longleftarrow u \cdot e \otimes f$
 $lm(2e \otimes (v \cdot Zf) \longrightarrow Z.e \otimes f)$
 $e \otimes vf \longmapsto v \cdot e \otimes f$

Conclusion: $Ze/uZe \otimes Zf/vZf$ = Zeof/(u,v)eof = Z/gcd(u,v)Z