

O.D.S. N°9: INFRAESTRUCTURAS RESILIENTES E INNOVACIÓN

Autores:

- Mauro Miguel Ríos (Leg. 84935)
- Lucas Fernando Medrano (Leg. 93907)
- Marcos Raúl Gatica (Leg. 402006)

Curso: 2R4

Asignatura: Química general.

Institución: Universidad Tecnológica Nacional -

Facultad Regional de Córdoba

INTRODUCCIÓN: La O.D.S. 9

- Reducción del crecimiento mundial de la manufactura.
- Aumento de emisiones de CO2.
- P.M.A. no cumplen las metas para el 2030.

- > Reducir huella y emisiones de CO2
- > Construir una economía verde.
- > Innovación y desarrollo sostenible.

LAS ENERGÍAS LIMPIAS

Energía eólica

Energía solar

Energía hidroeléctrica

LAS ENERGÍAS LIMPIAS

Microrredes con energía renovable e I.A.

Captura y almacenamiento de carbono

¿POR QUÉ ES DIFÍCIL LA ADOPCIÓN EN INDUSTRIAS?

Altos costos iniciales:

- Instalación de infraestructuras para energías limpias
- Retorno de la inversión es lento.
- Aunque a largo plazo pueden generar ahorros operativos.

¿POR QUÉ ES DIFÍCIL LA ADOPCIÓN EN INDUSTRIAS?

Discontinuidad de la energía:

- Las fuentes renovables dependen de condiciones climáticas.
- Reto para industrias que requieren energía continua y fiable.
- La tecnología de almacenamiento de energía aún no es lo suficientemente eficiente ni accesible.

¿POR QUÉ ES DIFÍCIL LA ADOPCIÓN EN INDUSTRIAS?

Costos de transición:

- Muchas industrias han invertido en infraestructuras para combustibles fósiles durante décadas.
- Modificar o reemplazar plantas y equipos representa un gasto considerable.

¿POR QUÉ ES DIFÍCIL LA ADOPCIÓN EN INDUSTRIAS?

Altas demandas energéticas:

- Sectores intensivos en energía requieren un suministro estable y de alta densidad energética.
- Aunque se están desarrollando alternativas como el hidrógeno verde, estas tecnologías aún no son viables a gran escala.

CÓMO CONTAMINA EL CO2

CO2 como Gas de Efecto Invernadero

- Función: El CO₂ atrapa calor en la atmósfera, contribuyendo al calentamiento global.
- Mecanismo: Su estructura lineal y simétrica le permite absorber radiación infrarroja y re-irradiar el calor hacia la Tierra, aumentando la temperatura.

CÓMO CONTAMINA EL CO2

Absorción de CO₂ por los Océanos y Acidificación

• Proceso:

CO₂ + H2O = ácido carbónico (H₂CO₃).

Impacto en el pH:

Aumenta la concentración de iones H⁺ en el agua, lo que reduce los iones carbonato (CO₃²⁻) necesarios para organismos marinos que necesitan calcificación (ej. ostras y corales).

CÓMO CONTAMINA EL CO2

Efecto de la Temperatura en la Solubilidad de Gases

 Ley de Henry: La solubilidad de los gases en los líquidos disminuye al aumentar la temperatura.

$$k_H(T) = k_H^{\ 0}.e^{-\frac{\Delta H_{Sol}}{RT}}$$

 Consecuencia: A mayor temperatura, el equilibrio se desplaza hacia la fase gaseosa, reduciendo la cantidad de oxígeno y otros gases disueltos en el agua, lo que afecta la vida marina.

INNOVACIONES QUE LO SOLUCIONARÍAN

Fusión nuclear

INNOVACIONES QUE LO SOLUCIONARÍAN

Hidrógeno Verde

INFRAESTRUCTURAS PARA ESAS INNOVACIONES

INFRAESTRUCTURAS PARA ESAS INNOVACIONES

+ Capacidad de generación

Construir plantas de electrólisis

Sistemas de almacenamiento de Hidrógeno

Redes de distribución de Hidrógeno

Celdas de combustible

Regulación y normativas de seguridad

CONCLUSIÓN

"El O.D.S. 9 es posible con las energías del futuro y con infraestructuras resilientes para los P.M.A."

Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación

Presentación en memoria del todopoderoso y omnipresente Raymond Chang.

1939 - 2017