HIGH POWER SWITCHING USE INSULATED TYPE

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
Α	2.83	72.0
В	2.17±0.01	55±0.25
С	3.58	91.0
D	2.91±0.01	74.0±0.25
Е	0.43	11.0
F	0.79	20.0
G	0.69	17.5
Н	0.75	19.1
J	0.39	10.0
K	0.41	10.5
L	0.05	1.25

Dimensions	Inches	Millimeters
М	0.74	18.7
N	0.02	0.5
Р	1.55	39.3
Q	0.63	16.0
R	0.57	14.4
S	0.22 Dia.	5.5 Dia.
Т	0.32	8.1
U	1.02	26.0
V	0.59	15.0
W	0.20	5.0
Χ	1.61	41.0

Description:

Mitsubishi IGBT Modules are designed for use in switching applications. Each module consists of four IGBTs in an H-Bridge configuration, with each transistor having a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- □ Low Drive Power
- ☐ Low V_{CE(sat)}
- ☐ Discrete Super-Fast Recovery Free-Wheel Diode
- ☐ High Frequency Operation
- ☐ Isolated Baseplate for Easy Heat Sinking

Applications:

- □ AC Motor Control
- ☐ Motion/Servo Control
- ☐ UPS
- □ Welding Power Supplies

Ordering Information:

Example: Select the complete module number you desire from the table - i.e. CM50BU-24H is a 1200V (V_{CES}), 50 Ampere Four-IGBT Module.

	Current Rating	V_{CES}
Type	Amperes	Volts (x 50)
СМ	50	24

HIGH POWER SWITCHING USE INSULATED TYPE

Absolute Maximum Ratings, $T_j = 25$ °C unless otherwise specified

	Symbol	Ratings	Units
Junction Temperature	Тј	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Collector-Emitter Voltage (G-E SHORT)	V _{CES}	1200	Volts
Gate-Emitter Voltage (C-E SHORT)	V _{GES}	±20	Volts
Collector Current (T _C = 25°C)	lc	50	Amperes
Peak Collector Current ($T_j \le 150$ °C)	ICM	100*	Amperes
Emitter Current** (T _C = 25°C)	ΙΕ	50	Amperes
Peak Emitter Current**	I _{EM}	100*	Amperes
Maximum Collector Dissipation (T _c = 25°C)	P _c	400	Watts
Mounting Torque, M4 Main Terminal	_	1.3 ~ 1.7	N⋅m
Mounting Torque, M5 Mounting	_	2.5 ~ 3.5	N⋅m
Weight	_	390	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	V _{iso}	2500	Vrms

^{*} Pulse width and repetition rate should be such that the device junction temperature (Ti) does not exceed Ti(max) rating.

Static Electrical Characteristics, T_j = 25 $^{\circ}$ C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutoff Current	I _{CES}	$V_{CE} = V_{CES}$, $V_{GE} = 0V$	_	-	1	mA
Gate Leakage Voltage	IGES	$V_{GE} = V_{GES}, V_{CE} = 0V$	_	-	0.5	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 5mA, V _{CE} = 10V	4.5	6	7.5	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 50A$, $V_{GE} = 15V$, $T_j = 25^{\circ}C$	_	2.9	3.7	Volts
		$I_C = 50A$, $V_{GE} = 15V$, $T_j = 125$ °C	_	2.85	_	Volts
Total Gate Charge	Q _G	$V_{CC} = 600V$, $I_{C} = 50A$, $V_{GE} = 15V$	-	187	_	nC
Emitter-Collector Voltage*	V _{EC}	I _E = 50A, V _{GE} = 0V	-	-	3.2	Volts

^{*} Pulse width and repetition rate should be such that the device junction temperature (T_j) does not exceed $T_{j(max)}$ rating.

Dynamic Electrical Characteristics, T_i = 25 $^{\circ}$ C unless otherwise specified

Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacita	nce	C _{ies}		_	-	7.5	nF
Output Capacit	ance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V$	_	-	2.6	nF
Reverse Trans	fer Capacitance	C _{res}		_	-	1.5	nF
Resistive	Turn-on Delay Time	t _{d(on)}	$V_{CC} = 600V, I_{C} = 50A,$	-	-	80	ns
Load	Rise Time	t _r	$V_{GE1} = V_{GE2} = 15V,$	-	-	200	ns
Switch	Turn-off Delay Time	t _{d(off)}	$R_G = 6.3\Omega$, Resistive	_	-	150	ns
Times	Fall Time	t _f	Load Switching Operation	-	-	350	ns
Diode Reverse	Recovery Time	t _{rr}	$I_E = 50A$, $di_E/dt = -100A/\mu s$	-	-	300	ns
Diode Reverse	Recovery Charge	Q _{rr}	I _E = 50A, di _E /dt = -100A/μs	_	0.28	_	μС

Thermal and Mechanical Characteristics, T_j = 25 $^{\circ}$ C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)} Q	Per IGBT 1/4 Module	-	-	0.31	°C/W
Thermal Resistance, Junction to Case	$R_{th(j-c)}D$	Per FWDi 1/4 Module	-	-	0.7	°C/W
Contact Thermal Resistance	R _{th(c-f)}	Per Module, Thermal Grease Applied		0.025	-	°C/W

^{**}Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).

HIGH POWER SWITCHING USE INSULATED TYPE

HIGH POWER SWITCHING USE INSULATED TYPE

