Autoencoders

Los autoencoders son redes neuronales que tienen dos partes, un **codificador** y un **decodificador**. El codificador toma los datos de entrada y los reduce de manera progresiva hasta obtener un tamaño determinado. Al espacio reducido se le llama espacio **latente**. Luego el decodificador toma el espacio latente y lo va aumentando de tamaño hasta recuperar el original. La red debe aprender a generar la entrada durante este proceso. En la siguiente figura se ve un diagrama básico de un autoencoder.

Figure 1: autoencoder

Como podemos observar, la entrada (en este caso una imagen) pasa al codificador que consta de varias capas, con salidas cada vez más pequeñas hasta llegar a un tamaño pequeño (espacio latente). Luego entra al decodificador que tiene las misma canditada de capas que el codificador

pero en orden inverso, lo que hace que sus dimensiones vayan aumentando hasta obtener el tamaño original. El objteivo es que la salida sea igual a la entrada.

En este proceso, la parte importante es el codificador, que se usa para hacer la reducción de dimensión. La idea del autoencoder es que la transformación del codificador condense la información de la entrada original en una cantidad más pequeña de espacio. Mientras más información se capte en la representación del espacio latente, mejor será la reconstrucción del decodificador.

Los autoencoders se pueden usar para reducir la dimensión de los datos, al igual que métodos como PCA. La principal diferencia es que las redes neuronales pueden aprender transformaciones no lineales de los datos. También son útiles para extracción de características que se pueden usar como entradas para otros métodos de parendizaje automático.

A continuación veremos un ejemplo de un autoencoder usando una red neuronal de **tensor-**flow.

```
from tensorflow import keras
import matplotlib.pyplot as plt
from tensorflow.keras import layers, models, optimizers
import numpy as np
from sklearn.datasets import fetch_openml
```

Vamos a usar el conjunto de datos MNIST. Note que las imágenes se aplanaron para convertirlas en vectores de 784 dimensiones.

```
mnist = fetch_openml('mnist_784', as_frame=False)

X = mnist.data
y = mnist.target.astype(np.uint8)

X.shape, y.shape
```

```
((70000, 784), (70000,))
```

Aquí definimos la estructura de la red neuronal. Esto se puede hacer usando el modelo Sequential. Se aguegan capas densas usando el método add. Para más información de cómo usar las redes neuronales, puede ver este material.

Todas las usan la función de activación relu. Veamos como definimos el codificador. La primera capa tiene 256 neuronas, el parámetro input_shape debe ir siempre en la primera capa e indica el tamaño del vector de entrada. Luego vienen dos capas de 128 y 64 neuronas.

Luego viene la capa de donde obtenemos la reducción usando la variable latent_dim que en este caso es 8.

Luego viene la parte del decodificador con capas de 64, 128 y 784 neuronas. Note que la entrada y la salida son del mismo tamaño.

```
latent_dim = 8
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(784,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(latent_dim, activation='relu', name='latent_layer'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(784, activation='relu'))
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do no super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Mostramos la estructura final de la red neuronal.

```
model.summary()
```

Model: "sequential_4"

Layer (type)	Output Shape	Param #
dense_25 (Dense)	(None, 256)	200,960
dense_26 (Dense)	(None, 128)	32,896
dense_27 (Dense)	(None, 64)	8,256
latent_layer (Dense)	(None, 8)	520
dense_28 (Dense)	(None, 64)	576
dense_29 (Dense)	(None, 128)	8,320
dense_30 (Dense)	(None, 784)	101,136

Total params: 352,664 (1.35 MB)

Trainable params: 352,664 (1.35 MB)

Non-trainable params: 0 (0.00 B)

Para el entrenamiento usamos el optimizador **Adam** con un **learning_rate** de 0.0005. Puede revisar esto para más información sobre optimizadores. La función de pérdida es la Mean-SquaredError (mse). Entrenamos por 20 épocas y un tamaño del lote de 64. Note que los datos de entrada son los mismos que los de la salida.

```
optimizer = optimizers.Adam(learning_rate=0.0005)
model.compile(optimizer=optimizer, loss='mse')
```

model.fit(X, X, epochs=20, batch_size=64)

Epoch 1/20	
1094/1094	13s 8ms/step - loss: 3808.1067
Epoch 2/20	
1094/1094	11s 9ms/step - loss: 2343.1726
Epoch 3/20	
1094/1094	10s 9ms/step - loss: 2191.0239
Epoch 4/20	
1094/1094	10s 9ms/step - loss: 2104.9836
Epoch 5/20	
1094/1094	10s 9ms/step - loss: 2054.8560
Epoch 6/20	
1094/1094	9s 8ms/step - loss: 2009.3827
Epoch 7/20	
1094/1094	11s 9ms/step - loss: 1953.3242
Epoch 8/20	
1094/1094	10s 9ms/step - loss: 1907.8009
Epoch 9/20	
1094/1094	10s 9ms/step - loss: 1891.9467
Epoch 10/20	
1094/1094	10s 9ms/step - loss: 1876.1587
Epoch 11/20	
1094/1094	9s 8ms/step - loss: 1859.0859
Epoch 12/20	
1094/1094	10s 9ms/step - loss: 1841.9177
Epoch 13/20	

```
1094/1094
                      10s 9ms/step - loss: 1837.1486
Epoch 14/20
                      10s 9ms/step - loss: 1810.3488
1094/1094
Epoch 15/20
1094/1094
                      9s 8ms/step - loss: 1790.7700
Epoch 16/20
1094/1094
                      11s 9ms/step - loss: 1776.5697
Epoch 17/20
1094/1094
                      11s 9ms/step - loss: 1768.7759
Epoch 18/20
                      10s 9ms/step - loss: 1766.5427
1094/1094
Epoch 19/20
                      10s 9ms/step - loss: 1759.1978
1094/1094
Epoch 20/20
1094/1094
                      9s 9ms/step - loss: 1755.8175
```

<keras.src.callbacks.history.History at 0x7ab6037ad950>

Predecimos la salida de las primeras imágenes para ver cómo es la reconstrucción.

```
pred = model.predict(X[0:16])
```

1/1 0s 117ms/step

```
plt.figure(figsize=(5, 10))
for i in range(0, 16, 2):
    plt.subplot(8, 2, i + 1)
    plt.imshow(X[i].reshape(28, 28), )
    plt.axis('off')
    plt.subplot(8, 2, i + 2)
    plt.imshow(pred[i].reshape(28, 28), )
    plt.axis('off')
plt.show()
```


En la figura, la columna de la izquierda es la imagen original y la de la derecha es la reconstruida usando los datos del espacio latente. Podemos ver que en general coinciden las reconstrucciones con los originales, pero se pueden ver que algunos pixeles se pierden.

Esto nos dice que la información contenida en la reducción es suficiente para una buena reconstrucción.

A continuación vamos a usar una reducción a 2 dimensiones para luego graficarla en el plano. Note que usamos un learning rate diferente y entrenamos por 40 epochs.

```
latent_dim = 2
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(784,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(latent_dim, activation='relu', name='latent_layer'))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(784, activation='relu'))
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do no super().__init__(activity_regularizer=activity_regularizer, **kwargs)

```
optimizer = optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss='mse')
model.fit(X, X, epochs=40, batch_size=256)
```

```
Epoch 1/40
274/274
                    5s 7ms/step - loss: 3181.5081
Epoch 2/40
274/274
                    3s 4ms/step - loss: 3156.5073
Epoch 3/40
274/274
                    1s 4ms/step - loss: 3129.7554
Epoch 4/40
274/274
                    2s 5ms/step - loss: 3120.1482
Epoch 5/40
274/274
                    2s 4ms/step - loss: 3090.3901
Epoch 6/40
274/274
                    1s 4ms/step - loss: 3073.7473
Epoch 7/40
```

274/274	1s	4ms/step -	loss:	3080.6035
Epoch 8/40				
274/274	1s	4ms/step -	loss:	3031.1846
Epoch 9/40		4 / 1	-	2044 0246
274/274 Enach 10/40	ls	4ms/step -	loss:	3011.9346
Epoch 10/40 274/274	1 a	4ms/step -	loggi	2008 7258
Epoch 11/40	15	4ms/scep	1055.	2990.1230
274/274	1s	4ms/step -	loss:	2995 . 1233
Epoch 12/40		imb, boop	1000.	2000.1200
274/274	1s	4ms/step -	loss:	2983.1006
Epoch 13/40				
274/274	1s	4ms/step -	loss:	2983.9548
Epoch 14/40		-		
274/274	2s	5ms/step -	loss:	2997.8896
Epoch 15/40				
274/274	1s	4ms/step -	loss:	2960.6470
Epoch 16/40				
274/274	1s	4ms/step -	loss:	2938.8240
Epoch 17/40				
274/274	1s	4ms/step -	loss:	2966.1658
Epoch 18/40				
274/274	1s	4ms/step -	loss:	2951.1213
Epoch 19/40			_	
274/274	1s	4ms/step -	loss:	3010.3672
Epoch 20/40		4	-	0077 4770
274/274	ls	4ms/step -	loss:	2977.1770
Epoch 21/40 274/274	1	1mg /g+on	1000.	2002 4075
Epoch 22/40	18	4ms/step -	TOSS:	2903.4075
274/274	1 c	4ms/step -	1000.	2902 5283
Epoch 23/40	10	тшь, в сер	1055.	2302.0200
274/274	1s	4ms/step -	loss:	2936.9612
Epoch 24/40		, 2 c c p		
274/274	2s	5ms/step -	loss:	2933.1184
Epoch 25/40		. 1		
274/274	2s	4ms/step -	loss:	2886.1003
Epoch 26/40		_		
274/274	1s	4ms/step -	loss:	2856.4785
Epoch 27/40				
274/274	1s	4ms/step -	loss:	2867.4585
Epoch 28/40				
274/274	1s	4ms/step -	loss:	2846.8062

```
Epoch 29/40
274/274
                    1s 4ms/step - loss: 2839.0696
Epoch 30/40
274/274
                    1s 4ms/step - loss: 2839.3430
Epoch 31/40
274/274
                    1s 4ms/step - loss: 2837.2488
Epoch 32/40
274/274
                    1s 4ms/step - loss: 2845.6082
Epoch 33/40
                    2s 5ms/step - loss: 2860.5464
274/274
Epoch 34/40
274/274
                    2s 4ms/step - loss: 2856.4551
Epoch 35/40
                    1s 4ms/step - loss: 2837.8748
274/274
Epoch 36/40
274/274
                    1s 4ms/step - loss: 2811.4495
Epoch 37/40
                    1s 4ms/step - loss: 2813.6243
274/274
Epoch 38/40
274/274
                    1s 4ms/step - loss: 2823.6843
Epoch 39/40
                    1s 4ms/step - loss: 2830.4934
274/274
Epoch 40/40
274/274
                    1s 4ms/step - loss: 2842.7793
```

<keras.src.callbacks.history.History at 0x7fcbfdeb6dd0>

Mostramos las imágenes reconstruidas. Se puede apreciar que las reconstrucciones se parecen a las originales.

```
pred = model.predict(X[0:16])
plt.figure(figsize=(5, 10))
for i in range(0, 16, 2):
    plt.subplot(8, 2, i + 1)
    plt.imshow(X[i].reshape(28, 28), )
    plt.axis('off')
    plt.subplot(8, 2, i + 2)
    plt.imshow(pred[i].reshape(28, 28), )
    plt.axis('off')
plt.show()
```

1/1 1s 582ms/step

Con la siguiente instrucción creamos el modelo reductor_model que lo único que hace es tomar la parte del codificador. Con esto, la salida es la reducción del espacio latente.

```
reductor_model = models.Model(inputs=model.inputs, outputs=model.get_layer('latent_layer').or
```

Aplicamos el codificador a los datos para obtener la reducción a dos dimensiones y lo guardamos en X_t.

X_t = reductor_model.predict(X)

plt.show()

Esta es la reducción del conjunto de datos a dos dimensiones. Podemos ver que los datos se agrupan por color pero hay una zona donde se revuelen las imágenes de 2 clases.