Quant II

Lab 10: Multiple Testing, Missing Data

Junlong Aaron Zhou

April 22, 2021

Outline

- Multiple Testing
 - Multiple hypothesis
 - Summary Index
- Missing Data
 - Classical Approach
 - Modern Approach

Multiple Hypothesis

• There is a positive probability that you can reject the true null.

```
B <- 100
t <- sapply(1:B, function(k){
    x <- rnorm(1000)
    y <- rnorm(1000)
    m <- lm(y~x)
    return(lmtest::coeftest(m)[2,3])
})</pre>
```

Multiple Hypothesis

```
hist(t)
abline(v=1.96)
abline(v=-1.96)
```

Histogram of t

Adjust the p-value

- As discussed in class, we want to adjust the p-value to control the FWER and FDR
- Suppose we have 10 hypothesis.

##		р	bonferroni	fdr
##	1	0.1270730	1	0.915254
##	2	0.2044053	1	0.915254
##	3	0.2745762	1	0.915254
##	4	0.3957679	1	0.945976
##	5	0.6635761	1	0.945976
##	6	0.6757254	1	0.945976
##	7	0.8855755	1	0.945976
##	8	0.8862800	1	0.945976

Junlong Aaron Zhou Quant II April 22, 2021

Adjust the p-value

- This adjustment can be conservative.
- Use bootstrap step-down method discussed in class.

```
# if (!requireNamespace("BiocManager", quietly = TRUE))
      install.packages("BiocManager")
# BiocManager::install("multtest")
library(multtest)
N < -1000
x \leftarrow matrix(rnorm(N*10), ncol = 10)
beta \leftarrow seq(0,2,length.out = 10)
y <- rnorm(N, mean=x\%\%beta,sd=1)
m \leftarrow MTP(X=t(x), Y=y, B=10000, seed = 1234, test = "lm.YvsXZ",
         typeone = "fwer")
```

running bootstrap...
iteration = 100 200 300 400 500 600 700 800 900 1000 1100 :

Adjust the p-value

```
m@adjp
```

[1] 1.0000 0.2646 0.0037 0.0000 0.0000 0.0000 0.0000 0.000

• If we have 10 hypotheses, and 7 of them are rejected, what do we know?

- If we have 10 hypotheses, and 7 of them are rejected, what do we know?
- e.g. we have 10 different measure of ability in an experiment.
- we find treatment has significantly positive effect on 7 of the measure, but not on the rest 3.
- assume we have perfect measure of them, otherwise we have measurement error problem (Gillen et al 2019).

- If we have 10 hypotheses, and 7 of them are rejected, what do we know?
- e.g. we have 10 different measure of ability in an experiment.
- we find treatment has significantly positive effect on 7 of the measure, but not on the rest 3.
- assume we have perfect measure of them, otherwise we have measurement error problem (Gillen et al 2019).
- We may want a summary index to capture the ability and to give us an interpretable result.
- We discussed inverse covariance weighting from Anderson (2008) in class.

- If we have 10 hypotheses, and 7 of them are rejected, what do we know?
- e.g. we have 10 different measure of ability in an experiment.
- we find treatment has significantly positive effect on 7 of the measure, but not on the rest 3.
- assume we have perfect measure of them, otherwise we have measurement error problem (Gillen et al 2019).
- We may want a summary index to capture the ability and to give us an interpretable result.
- We discussed inverse covariance weighting from Anderson (2008) in class.
- The measurement problem is an important topic in social science.

Measuring populism (Monkey Cage, Oct 19, 2017)

Borrowed from Arturas -

Measuring populism (Monkey Cage, Oct 19, 2017)

Borrowed from Arturas -

- We asked respondents whether they agreed or disagreed with nine statements. Populists should agree that:
 - "Politicians need to follow the will of the people"
 - "The people, and not politicians, should make our most important policy decisions"
 - ...
 - "Regardless of the party in power, all governments just favor the bigwigs."
- Populists should disagree that:
 - "Politicians care about what people like me think"
 - ...
 - "Those we elect to public office usually try to keep the promises they made during the election"
- We employed a strict definition of populist: Someone who answered all nine questions in the populist direction. We found that 17 percent of Americans are "populists" according to this measure.

Measurement in social sciences

- Multiple measurements (observables) are used to capture the quantity of interest (latent variable).
- How do we approach this problem in a principled way?
 - Aggregation of measurements (dimension reduction)
 - Measurement error
 - Relating latent variables to other observables

Types of latent variable

Observed	Latent		
	Continuous	Categegorical	
Continuous	Factor analysis	Latent profiling / mix- ture models (mclust)	
Categegorical	Latent traits, (pscl)	IRT Latent class analysis (poLCA, BayesLCA)	

• No matter which case, we are working on dimension reduction!

- No matter which case, we are working on dimension reduction!
- Cyrus has some discussion here: https://cyrussamii.com/?p=2177

- No matter which case, we are working on dimension reduction!
- Cyrus has some discussion here: https://cyrussamii.com/?p=2177
- Suppose you have three variables: College math grade, math GRE, and verbal GRE.
- ICW will give 25% weights to each of the math scores and 50% to the verbal score.
- PCA will generate two (or more) new variables, one for mathematical capability and the other for linguistic capability.
- Which one is more proper depends on the context.

- No matter which case, we are working on dimension reduction!
- Cyrus has some discussion here: https://cyrussamii.com/?p=2177
- Suppose you have three variables: College math grade, math GRE, and verbal GRE.
- ICW will give 25% weights to each of the math scores and 50% to the verbal score.
- PCA will generate two (or more) new variables, one for mathematical capability and the other for linguistic capability.
- Which one is more proper depends on the context.
- Do we want a latent variable to capture the "ability" or other?

Item Response Theory (IRT)

- Say we want to estimate the ideology:
- A spatial model of voting behavior.
- Estimate model from data (structural estimation).
- Item Response Theory (IRT): for i = 1, ..., N legislators (students) you observe j = 1, ..., n binary votes (test answers).

$$y_{ij} \sim Bernoulli(\pi_{ij}),$$
 (1)

$$\pi_{ij} = \Phi(\beta_j \theta_i - \alpha_j) \tag{2}$$

- θ_i : ideal point (ability)
- α_i : item difficulty
- β_i : item discrimination

- PCA is specifically for dimension reduction
- Idea: extract more information from X as possible.

- PCA is specifically for dimension reduction
- Idea: extract more information from X as possible.
- Suppose we have x_1, \ldots, x_M, M features.
- We define the generated y_1, \ldots, y_K are K principle component.

- PCA is specifically for dimension reduction
- Idea: extract more information from X as possible.
- Suppose we have x_1, \ldots, x_M, M features.
- We define the generated y_1, \ldots, y_K are K principle component.
- The first principle component explains the most variation, and then the second, etc.
- the principle component are orthogonal to each other.

- Specifically, $y_k = \sum\limits_{j \in \{1, \dots M\}} \alpha_{j,k} x_j$
- One can show that $\{y_k\}$ is the principle component and:
 - it explains λ_k variation of X, where λ_k is k^{th} large eigen-value of X
 - α_k is k^{th} of X's eigen-vector associated with λ_k .

 As one may know, any linear transformation is a coordinate transformation.

- Easy to implement it in R
- Note we also need to standardize the data.

Proportion of Variance 0.002004037

```
summary(pc.cr <- princomp(mtcars, cor = TRUE))</pre>
## Importance of components:
##
                             Comp.1 Comp.2 Comp.3
## Standard deviation
                         2.5706809 1.6280258 0.79195787 0.519
## Proportion of Variance 0.6007637 0.2409516 0.05701793 0.024
                          0.6007637 0.8417153 0.89873322 0.923
## Cumulative Proportion
##
                              Comp.6 Comp.7
                                                    Comp.8
## Standard deviation
                          0.45999578 0.36777981 0.35057301 0.3
## Proportion of Variance 0.01923601 0.01229654 0.01117286 0.0
                          0.96279183 0.97508837 0.98626123 0.9
## Cumulative Proportion
##
                              Comp.11
                          0.148473587
## Standard deviation
```

Loading required package: ggplot2

Welcome! Want to learn more? See two factoextra-related boo

Missing Data

- Estimation for bounds
 - Manski Bound
 - Lee Bound
- Point estimation
 - Missing data imputation

Bound Estimation

• We put the least assumption on missing data.

Bound Estimation

- We put the least assumption on missing data.
- For example: Lee bound.
 - Assume monotonicity: $S_{1i} \geq S_{0i}$, $\forall i$ or the other direction.

Bound Estimation

- We put the least assumption on missing data.
- For example: Lee bound.
 - Assume monotonicity: $S_{1i} \geq S_{0i}, \forall i$ or the other direction.
- Control group: only observe one strata ($S_1 = S_0 = 1$)
- Treated group: observe two strata ($S_1 = S_0 = 1$, and $\{S_1 = 1, S_0 = 0\}$)
- We can use the treated group to construct the bound for $S_1 = S_0 = 1$ people.

Lee Bound

- This bound can be tightened: if $\{S_1, S_0\}$ is correlated with X.
- Use *X* to predict the principle strata.

Lee Bound

- This bound can be tightened: if $\{S_1, S_0\}$ is correlated with X.
- Use X to predict the principle strata.
- e.g. educated people join labor market anyway, but low educated people only join market when they get special training.
- we can use education level to construct a tighten bound.

Beyond Lee Bound

- Traditional Lee bound only allows few discrete variables.
- because we need to get two quantities
 - $q = Pr(S_1 = S_0 = 1)$
 - $E(Y|D=1, y \ge y_a(1))$
- conditional on X causes curse of dimensionality.

Beyond Lee Bound

- Traditional Lee bound only allows few discrete variables.
- because we need to get two quantities
 - $q = Pr(S_1 = S_0 = 1)$
 - $E(Y|D=1, y \ge y_a(1))$
- conditional on X causes curse of dimensionality.
- Semenova (2021) proposes use LASSO to construct a better lee bound
- Olma (2021) uses kernel method.
- Samii, Wang, Zhou try to use adaptive kernel to incorporate high-dimensional covariate cases.

Point Identification

• We need to impute the missing value.

Point Identification

- We need to impute the missing value.
- Missing Completely At Random (MCAR): We are fine.
 - missing is random assigned.

Point Identification

- We need to impute the missing value.
- Missing Completely At Random (MCAR): We are fine.
 - missing is random assigned.
- Missing At Random (MAR): use X to impute the missing values. $P(Missing|X_{obs}) = P(Missing|X_{complete})$

Multiple Imputation using Mice

• Note: multiple imputation is fine when we have enough data.

```
n <- 10000
m < -10
set.seed(1234)
x <- matrix(rnorm(n*m), nrow=n)
x \leftarrow cbind(1,x)
beta \leftarrow rnorm(m+1, mean=0, sd=3)
y <- rnorm(n, mean=x\%*\%beta)
beta missing <- rnorm(m+1, mean=0, sd=3)
missing <- rbinom(n,size=1, prob= 1/(1+exp(x%*%beta_missing)))
missing ind <- which(missing==1)
v obs <- v
v obs[missing_ind] <- NA</pre>
```

24 / 29

Multiple Imputation using Mice

```
dat <- as.data.frame(cbind(y_obs,x))
library(mice)
m1 <- mice(dat, maxit = 100, printFlag = FALSE)
dat_imp <- complete(m1)
plot(y[missing_ind] ~ dat_imp$y_obs[missing_ind])</pre>
```


dat_imp\$y_obs[missing_ind]

Multiple Imputation using Mice

```
# True beta
beta
## [1] -4.2477948 0.9523207 2.1844025 -5.6986484 -3.4335109
## [7] 0.5949779 3.2236872 1.8769698 -2.0990845 -1.1894860
# with observed data
coef(lm(y[-missing ind] ~ x[-missing ind,]))
                       x[-missing_ind, ]1 x[-missing_ind, ]:
##
          (Intercept)
           -4.2262261
                                                    0.9331533
##
                                       NΑ
                                           x[-missing_ind, ]
##
   x[-missing_ind, ]4
                       x[-missing_ind, ]5
           -5.7097415
                               -3.4336913
                                                    1.7301974
##
##
   x[-missing ind, ]8 x[-missing_ind, ]9 x[-missing_ind, ]10
            3.2289622
                                1.8334263
                                             -2.1116659
##
# with Imputed data
summary(with(m1,lm(y~x)))
```

Not MAR?

- Consider we care about people's attitude towards Trump
- People may refuse to report
- This "not report" is correlated with their underlying attitude towars trump

Not MAR?

- Consider we care about people's attitude towards Trump
- People may refuse to report
- This "not report" is correlated with their underlying attitude towars trump
- Missing is not random.
- $P(Missing|X_{obs}) \neq P(Missing|X_{complete})$

Not MAR?

- Consider we care about people's attitude towards Trump
- People may refuse to report
- This "not report" is correlated with their underlying attitude towars trump
- Missing is not random.
- $P(Missing|X_{obs}) \neq P(Missing|X_{complete})$
- Liu (2020) proposes a latent factor model a missing not at random case.

• Causal inference is a missing data problem.

- Causal inference is a missing data problem.
- We can always apply what we learn from basic causal inference to missing data problem

- Causal inference is a missing data problem.
- We can always apply what we learn from basic causal inference to missing data problem
 - Model assumption?
 - Random assignment (missingness) or CIA?
 - etc.

- Causal inference is a missing data problem.
- We can always apply what we learn from basic causal inference to missing data problem
 - Model assumption?
 - Random assignment (missingness) or CIA?
 - etc.
- Deal with missing data carefully.

