DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446, CS F446 & IS C446)

LECTURE 16- STORAGE

- ELEVATOR_LBN
- CYCLE_LBN
- SSTF_LBN
- ELEVATOR_CYL
- CYCLE_CYL
- SSTF_CYL
- SPTF_OPT
- SPCTF_OPT
- SATF_OPT
- WPTF_OPT
- WPCTF_OPT
- WATF_OPT

- LBN → Logical Block Number
- CYL → Cylinder
- OPT → Optimal
- SSTF → Shortest Seek Time First
- SPTF → Shortest Positioning Time First
- SPCTF → Shortest Positioning and Caching Time First
- SATF → Shortest Access Time First
- Weighted Positioning Time First
- Weighted Positioning and Caching Time First
- Weighted Access Time First

- ASPTF_OPT
- ASPCTF OPT
- ASATF_OPT
- VSCAN LBN
- VSCAN_CYL
- PRI_VSCAN_LBN
- PRI ASPTF_OPT
- PRI ASPCTF OPT
- SDF_APPROX
- SDF_EXACT
- SPTF_ROT_OPT
- SPTF_ROT_WEIGHT
- SPTF_SEEK_WEIGHT

- SATFUF → Shortest
 Access Time First with
 Urgent Forcing
- ASPTF → Aged Shortest Positioning Time First

- ZSPTF → Zone based Shortest Positioning Time First
 - Finish request from same zone before moving to next zone
- Zone based arrival-Time-constrained Shortest Positioning Time First (ZTSPTF)
 - improves the fairness of ZSPTF [similar to FCFS] by only servicing requests that arrive before ZTSPTF begins scheduling requests in a zone

Free Block Scheduling

Taken from "Towards Higher Disk Head Utilization: Extracting Free Bandwidth from Busy Disk Drives", Lumb et. al.

Scheduling – Seek Time

Basic Model:

- □ Seek Time = c*s
 - where s is the seek distance and c is a constant
- Flaw:
 - There is a constant overhead per head movement settling time

More robust Model:

- □ Seek Time = $c_0 + c_1 * s$
 - where s is the seek distance, c₀ is a constant overhead and c₁ is a constant factor.
 - e.g. Seek Time (for a specific disk) = 2 + 0.00009 * s(in ms)

Scheduling – Seek Time

- Practical Model:
 - Non-linear relation between seek-time and seekdistance:
 - Head has to accelerate and decelerate
 - Derive a simple seek time equation!

Scheduling – Seek Time & Rotational Latency

- Scheduling at the OS level:
 - Hard to incorporate rotational latency due to delay in passing information
- Scheduling at the disk (controller) level:
 - Possible to incorporate rotational latency in addition to seek time
 - Shortest Positioning Time First (SPTF)
 - Problems similar to SSTF
 - Algorithms are more complicated.
 - Queue size is often small

Scheduling – Pragmatics

- Some practical parameters:
 - Disks are usually lightly loaded
 - Locality is an important factor
 - Probability that two contiguous requests are for the same cylinder: 2/3
 - It makes sense to store / allocate files to enable sequential access
 - Track to next track requires constant seek time:
 - Sectors on adjacent tracks are skewed so that access can continue w/o rotational latency
 - Head switching may also require time:
 - Sectors on (the same cylinder in) adjacent surfaces may also be skewed

Scheduling – Pragmatics

- Some practical parameters [continued]:
 - Most modern disks include cache
 - Referred to as on-disk cache or disk buffer
 - [Not to be confused with buffer cache which is part of the OS]
 - Minimum buffer required anyway for one logical block a few sectors
 - Uses of disk buffer:
 - Caching
 - retaining previously accessed blocks
 - Prefetching (or read-ahead)
 - Reading the (rest of the) track even if not requested
 - Fast writes
 - Controller confirms write operations before writing onto the disk (i.e. once data is received on cache)

Scheduling – Pragmatics

- Some practical parameters [continued]:
 - Typical I/O workloads:
 - QoS guarantee vs. best effort
 - Typical file access vs. multimedia content
 - Sequential access vs. random access
 - Typical Filesystem storage model
 - Files in the same directory
 - Average size of files
 - File data vs. metadata (inode information)