Algorithm Analysis

What is Algorithm Analysis?

- How to estimate the time required for an algorithm
- Techniques that drastically reduce the running time of an algorithm
- A mathemactical framwork that more rigorously describes the running time of an algorithm

Asymptotic Performance

- In this course, we are interested in *asymptotic performance*
 - How does the algorithm behave as the problem size gets very large?
 - o Running time
 - o Memory/storage requirements
 - o Bandwidth/power requirements/logic gates/etc.

3

Algorithm Analysis Overview

- RAM model of computation
- Concept of input size
- Measuring complexity
 - Best-case, average-case, worst-case
- Asymptotic analysis
 - Asymptotic notation

Assume the RAM Model

- RAM model represents a "generic" implementation of the algorithm
- Each "simple" operation (+, -, =, if, call) takes exactly 1 step.
- Loops and subroutine calls are not simple operations, but depend upon the size of the data and the contents of a subroutine. We do not want "sort" to be a single step operation.
- Each memory access takes exactly 1 step.

Assume the RAM Model - contd.

- Has one processor (uniprocessor -RAM)
- Executes one instruction at a time (no concurrent operations)
- Each instruction takes "unit time"
- Has fixed-size operands, (constant word size)
- All memory equally expensive to access, and
- Has fixed size storage (RAM and disk).

Algorithm Analysis Overview

- RAM model of computation
- Concept of input size
- Measuring complexity
 - Best-case, average-case, worst-case
- Asymptotic analysis
 - Asymptotic notation

Input Size

- Time and space complexity
 - This is generally a function of the input size
 - o E.g., sorting, multiplication
 - How we characterize input size depends:
 - o Sorting: number of input items
 - o Multiplication: total number of bits
 - o Graph algorithms: number of nodes & edges
 - o Etc

Input Size - contd.

- In general, larger input instances require more resources to process correctly
- We standardize by defining a notion of size for an input instance
- Examples
 - What is the size of a sorting input instance?
 - What is the size of an "Odd number" input instance?

Algorithm Analysis Overview

- RAM model of computation
- Concept of input size
- Measuring complexity
 - Best-case, average-case, worst-case
- Asymptotic analysis
 - Asymptotic notation

Measuring Complexity

- The running time of an algorithm is the function defined by the number of steps (or amount of memory) required to solve input instances of size n
 - F(1) = 3
 - F(2) = 5
 - F(3) = 7
 - ..
 - F(n) = 2n+1
- Problem: Inputs of the same size may require different numbers of steps to solve

3 Different Analyses

- The worst case running time of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
- The *best case running time* of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.
- The *average-case running time* of an algorithm is the function defined by an average number of steps taken on any instance of size n.
- Which of these is the best to use?

3 Different Analyses – contd.

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Worst case running time is often comparable to average case running time (see next graph)
 - Counterexamples to above point:
 - o Quicksort
 - o simplex method for linear programming

3 Different Analyses – contd.

Worst case Analysis:

- Provides guarantee that is independent of any assumptions about the input
- Typically much simpler to compute as we do not need to "average" performance on many inputs
 - Instead, we need to find and understand an input that causes worst case performance
- Often reasonably close to average case running time
- The standard analysis performed

3 Different Analyses – contd.

- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - o Random (equally likely) inputs
 - o Real-life inputs
- Average Case Analysis Drawbacks
 - Based on a probability distribution of input instances
 - o The distribution may not be appropriate
 - o Provides little consolation if we have a worst-case input
 - More complicated to compute than worst case running time

Algorithm Analysis Overview

- RAM model of computation
- Concept of input size
- Measuring complexity
 - Best-case, average-case, worst-case
- Asymptotic analysis
 - Asymptotic notation

Motivation for Asymptotic Analysis

- An *exact computation* of worst-case running time can be difficult
 - Function may have many terms:
 - o $4n^2$ $3n \log n + 17.5 n 43 n^{2/3} + 75$
- An *exact computation* of worst-case running time is unnecessary
 - Remember that we are already approximating running time by using RAM model

Asymptotic Analysis

- We focus on the infinite set of large n ignoring small values of n
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

Asymptotic Notation

• Our first task is to define asymptotic notation more formally and completely

"Big Oh" Notation

- O(g(n)) ={f(n): there exist positive constants c and n_0 such that $\forall n \ge n_0$, $0 \le f(n) \le c g(n)$ }
 - What are the roles of the two constants?
 - $o n_0$:
 - o c:

Set Notation Comment

- O(g(n)) is a set of functions.
- However, we will use one-way equalities like $n = O(n^2)$
- This really means that function n belongs to the set of functions $O(n^2)$
- Incorrect notation: $O(n^2) = n$
- Analogy
 - "A dog is an animal" but not "an animal is a dog"

Three Common Sets

```
f(n) = O(g(n)) means c \times g(n) is an Upper Bound on f(n)
```

$$f(n) = \Omega(g(n))$$
 means $c \times g(n)$ is a Lower Bound on $f(n)$

$$\mathbf{f}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{g}(\mathbf{n}))$$
 means $\mathbf{c}_1 \times \mathbf{g}(\mathbf{n})$ is an *Upper Bound* on $\mathbf{f}(\mathbf{n})$ and $\mathbf{c}_2 \times \mathbf{g}(\mathbf{n})$ is a *Lower Bound* on $\mathbf{f}(\mathbf{n})$

These bounds hold for all inputs beyond some threshold n₀.

Asymptotic Notation – contd.

- Upper Bound Notation:
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
 - Formally, $O(g(n)) = \{ f(n) : \exists positive constants c and <math>n_0$ such that $f(n) \le c \cdot g(n) \ \forall \ n \ge n_0$
- Big O fact:
 - A polynomial of degree k is $O(n^k)$

Asymptotic Notation – contd.

- Asymptotic lower bound:
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Asymptotic tight bound:

A function f(n) is $\Theta(g(n))$ if \exists positive constants c1, c2, and n0 such that

$$c1 \text{ g(n)} \le f(n) \le c2 \text{ g(n)} \ \forall \ n \ge n0$$

Asymptotic Notation – contd.

- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$

Other Asymptotic Notations

- A function f(n) is o(g(n)) if \exists positive constants c and n_0 such that $f(n) < c \ g(n) \ \forall \ n \ge n_0$
- A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_0 such that $c g(n) < f(n) \forall n \ge n_0$
- Intuitively,
 - o() is like <
- \bullet ω () is like >
- Θ() is like =

- O() is like ≤
- Ω () is like \geq

Review: Asymptotic Performance

- *Asymptotic performance*: How does algorithm behave as the problem size gets very large?
 - o Running time
 - o Memory/storage requirements
 - Remember that we use the RAM model:
 - o All memory equally expensive to access
 - o No concurrent operations
 - o All reasonable instructions take unit time
 - Except, of course, function calls
 - o Constant word size
 - Unless we are explicitly manipulating bits

Function of Growth rate

Function	Name		
С	Constant		
$\log N$	Logarithmic		
$\log^2 N$	Log-squared		
N	Linear		
$N \log N$	N log N Quadratic Cubic		
N^2			
N^3			
2^N	Exponential		

Functions in order of increasing growth rate

A concrete example The following table shows how long it would take to perform T(n) steps on a computer that does

The following table shows how long it would take to perform T(n) steps on a computer that does 1 billion steps/second. Note that a microsecond is a millionth of a second and a millisecond is a thousandth of a second.

N	T(n) = n	T(n) =	$T(n) = n^2$	$T(n) = n^3$	$Tn = 2^n$
5	0.005	algh	0.03	0.13	0.03
	microsec	microsec	microsec	microsec	microsec
10	0.01	0.03	0.1	1	1
	microsec	microsec	microsec	microsec	microsec
20	0.02	0.09	0.4	8	1 millisec
	microsec	microsec	microsec	microsec	
50	0.05	0.28	2.5	125	13 days
	microsec	microsec	microsec	microsec	
100	0.1	0.66	10	1 millisec	4×10^{13}
	microsec	microsec	microsec		vears

Notice that when $n \ge 50$, the computation time for $T(n) = 2^n$ has started to become too large to be practical. This is most certainly true when $n \ge 100$. Even if we were to increase the speed of the machine a million-fold, 2^n for n = 100 would be 40,000,000 years, a bit longer than you might want to wait for an answer.