Artificial Intelligence, Spring 2017

Homework 3 – CSP

Xinglu Wang 3140102282 ISEE 1403, ZJU

1 Problem 1

Constrains are:

- Alldiff(F, T, U, W, R, O)
- $O + O = R + 10C_1$
- $C_1 + W + W = U + 10C_2$
- $C_2 + T + T = O + 10C_3$
- $F = C_3$
- least-constrain-value heuristics $\Rightarrow C_3 = 1 \Rightarrow F = 1$, after survive forward checking we get,

F	T	U	W	R	О	C_3	C_2	C_1
1	0,2-9	0,2-9	0,2-9	0,2,4,6,8	2-5	1	0-1	0-1

• least-constrain-value heuristics \Rightarrow Choose C_2 or C_3 , choose $C_2 = 0$, we get,

F	T	U	W	R	О	C_3	C_2	C_1
1	0,2-9	0,2-9	0,2-9	0,2,4,6,8	2,4	1	0	0-1

• choose $C_1 = 0$, we get,

F	T	U	W	R	O	C_3	C_2	C_1
1	0,2-9	2,4,6,8	0,2-9	0,2,4,6,8	2,4	1	0	0

• choose O = 4, then T = 7, R = 8

F	T	U	W	R	О	C_3	C_2	C_1
1	7	6	0,2-3,6,9	8	4	1	0	0

Note that $W \neq 1 \Rightarrow U \neq 2$

• U can only be 6, thus W = 3. We get the final solution:

F	T	U	W	R	О	C_3	C_2	C_1
1	7	6	3	8	4	1	0	0

2 Problem 2

- Follow the order A_1 , H, A_4 , F_1 , A_2 , F_2 to A_3 , A_3 has no color to assign.

- A_3 conflicts with $\{A_2, H, A_4\}$. Backtrack to A_2
- A_2 conflicts with $\{A_1, H, A_4\}$. Backtrack to A_4 , continue assign color. Finally, we get,

3 Problem 3

• Representation 1: $x_i \in \{1, 2, 3, 4, 5\}, i = 1 \dots 25$ denote the position of house (left to right correspond 1 to 5).

Attribute	Red	White	 British	•••	Zebra
Belong to	x_1	x_2	x_6		x_{25}

• Representation 2: A_{ij} denote the j attribute of house i.

House	A_1	A_2	A_3	A_4	A_5
1	Water	Norwegian	Yellow	Daunhill	Cat
2	Tea	Danish	Blue	Blend	Horse
3	Milk	English	Red	PallMall	Bird
4	Coffee	German	Green	Prince	Zebra
5	Beer	Swedish	White	BlueMaster	Dog

I prefer first representation. Because we can easily represent the statement in question with something like $x_i = 1$ or $x_i = x_j + 1$. And just solve an linear equation system to get the solution.