Carlingford High School

Mathematics Year 10 5.3 Term Three Examination 2016

Time allowed: 55 minutes

Name:_			Class: 10	MAT3
Please circle your teacher:	Ms Kellahan	Mrs Wilson / Mrs Young	Mrs Lego	Mr Wilson

Instructions:

- Use blue or black pen
- Board approved calculators may be used
- Show all necessary working out in the space provided
- Marks may be deducted for untidy setting out
- Extension level questions are marked with an asterisk (*)

Topic	Trigonometry	Coordinate Geometry	Probability	Inequations & Logarithms	Properties of Geometric Figures	Total
Mark	/12	/6	/7	/9	/10	/44
Extension *	/4	/3	/2	/2	/3	/14
Total	/16	/9	/9	/11	/13	/58

Trigonometry (16 marks)

	rina the v	value of A if $\cos 32^{\circ}46' = \sin A$.
b)	Find the e	exact value of $ heta$ in this triangle.
	$\sqrt{12}$	0
c)	If θ is obt	use, find the value of $ heta$ if $ an 55^\circ = - an heta$.
d)	Solve the	equation $\tan x = 0.4$ correct to the nearest degree if x is between 0° and 180° .
2 a)	In Δ <i>KLM</i> ,	$\angle M = 27^{\circ}51', KL = 8.7 \text{ cm and } LM = 9.8 \text{ cm}.$
	i)	

2

b) To find the length of a lake, a surveyor walks 390 metres from point X to point Z, then turns 80° and walks 450 metres to point Y. Find the length of the lake correct to the nearest metre.

3 a) Calculate the area of the kite below, correct to the nearest square centimetre.

- * b) Find the exact value of $\sin\theta$ if $\cos\theta=\frac{\sqrt{5}}{4}$ and θ is acute.
- * c) Solve the equation $1-3\sin x=0$ correct to the nearest degree if x is between 0° and 180°. **2**

Coordinate Geometry (9 marks)

a)	Find the gra	adient and y-intercept for the linear equation $y = \frac{12-3x}{4}$
b)	Find, in gen $(3, -4)$.	eral form the equation of the line which passes through the points $(-1,2)$ an
c)	Find the eq	uation of the line which is perpendicular to $y=3x-1$ and passes through th .
d)	- - Use calcula	tions to show that the quadrilateral with vertices $A(3,1),\ B(8,4),\ C(5,9)$ and
,		square. Write which test you have used.

Probability (9 marks)

At Xford High School, students who use mobile phones were surveyed. Some of the results are shown in the table.

	Pre-paid	Plan	Total
Female students		147	319
Male students	158	103	261
Total	330	250	and the second s

a'	Com	plete	the	table.
ч,		P		

b) Of the female students surveyed, one is chosen at random. What is the probability that she is on a plan?

c) What is the probability that a student who completed the survey is male, given that they use a pre-paid phone?

d) Ten new male students are surveyed, and are all on a plan. What percentage of male students are now on a plan? Give your answer to the nearest percent.

e) Use the information in the table to complete the Venn Diagram below.

1

1

1

1

		Mary buy:	s one ticket in each of the other two raffles.	
	a)	Fill in the	correct name to make this statement true.	1
			winning with her first ticket and winning with her second ticket are	
		examples	of independent events.	
*	b)		Calculate the probability of Jane winning at least one prize, correct to 4 decimal aces.	1
			Does Mary have a better chance of winning at least one prize than Jane? Show orking to support your answer.	1
			Inequations & Logarithms (11 marks)	
1	a)	Solve each	h inequality:	
		i)	$2t + 1 \ge 5$	1
		ii)	$\frac{3-5x}{4} \le -9$	2
2	a)	Simplify lo	$\log_x 4 + \log_x 5$	1

Three raffles are drawn, each with 100 tickets and 1 prize. Jane buys 2 tickets in one raffle and

b)	Evaluate $\log_2 36 - 2\log_2 3$

c) Solve each equation, writing your answer to 3 decimal places where necessary

 $\log_7 x = 3$

Properties of Geometric Figures (13 marks)

1	a)	A parallelogram has one angle equal to 55° . Give the values of the other three angles.	1
	h۱	Find the values of a and a in the triangle below giving reasons	3
	b)	Find the values of u and v in the triangle below, giving reasons.	3

- 2 a) In the diagram below, AB=19 cm, AE=10 cm, BE=23 cm, EC=15 cm and $AB\parallel DC$.
 - i) Prove that $\triangle AEB$ is similar to $\triangle CED$.

2

2

ii) Find the value of CD.

•				
•				

- b) In the diagram below, O is the centre of a circle of radius 5 cm. BC = BD = 3 cm.
 - i) Prove that $\triangle OCB$ is congruent to $\triangle ODB$.
- * ii) Hence, prove that AC = AD.

3

	 				·
	 	 		· · · · · · · · · · · · · · · · · · ·	
		 		•	
<u></u>		 			
			`		
			`		
			`		
			`		
			`		
			`		
			`		
			`		
			\		
			`		
			`		
			`		
			`		

End of Exam – Please check your work

Carlingford High School

AK Geometry

JY Coord Geom + Prob Q1

PW Prob Q2 + Ineq+Logs

VL Trig

Mathematics Year 10 5.3 Term Three Examination 2016

Time allowed: 55 minutes

Name: Answers	Class: 10MAT3
---------------	---------------

Please circle your

Ms Kellahan

Mrs Wilson /

Mrs Lego

Mr Wilson

teacher:

Mrs Young

Instructions:

- Use blue or black pen
- Board approved calculators may be used
- Show all necessary working out in the space provided
- · Marks may be deducted for untidy setting out
- Extension level questions are marked with an asterisk (*)

Topic	Trigonometry	Coordinate Geometry	Probability	Inequations & Logarithms	Properties of Geometric Figures	Total
Mark	/12	/6	/7	/9	/10	/44
Extension *	/4	/3	/2	/2	/3	/14
Total	/16	/9	/9	/11	/13	/58

Trigonometry (16 marks)

a) Find the value of A if $\cos 32^{\circ}46' = \sin A$.

1

2

1

1

1

2

Find the exact value of θ in this triangle.

c) If θ is obtuse, find the value of θ if $\tan 55^\circ = -\tan \theta$.

 0=180°-55°	
 = 125°	

d) Solve the equation $\tan x = 0.4$ correct to the nearest degree if x is between 0° and 180°.

$$\frac{\tan 3c = 0.4}{x = \tan^{1}(0.4)}$$

$$x \approx 22^{\circ}$$

- a) In ΔKLM , $\angle M = 27^{\circ}51'$, KL = 8.7 cm and LM = 9.8 cm.
 - Complete the diagram below, showing all given information. i)
 - Find $\angle K$ correct to the nearest minute. $\frac{sin K}{9.8} = \frac{sin 27^{\circ}51^{\circ}}{8.7}$ 8.7 and

 9.8 cm $\frac{27^{\circ}51^{\circ}}{K} = \frac{9.8 \sin 27^{\circ}51^{\circ}}{8.7}$ full marks awarded

 for either acute only

 on

 acute + obtuse angles $\frac{OR}{C} = \frac{(K = 31^{\circ}45^{\circ})}{(K = 180^{\circ}-31^{\circ}45^{\circ})}$ = 148° 15'

 check: 180°-148° 15' 27° 51' = 3° 54' > 0 Find $\angle K$ correct to the nearest minute. ii)

for either acute only acute + obtuse angles
$$\frac{OR}{S} = \frac{(K = 180 - 31^{\circ} 45)}{(K = 148^{\circ} 15)} = \frac{148^{\circ} 15}{(S = 148^{\circ} 15)} = \frac{3^{\circ} 54}{(S = 148^{$$

b) To find the length of a lake, a surveyor walks 390 metres from point X to point Z, then turns 80° and walks 450 metres to point Y. Find the length of the lake correct to the nearest metre.

2

2

2

 $\infty \approx 542 \,\text{m} \, (\text{nearest metre})$ The lake is $542 \,\text{m} \, long$.

3 a) Calculate the area of the kite below, correct to the nearest square centimetre.

* b) Find the exact value of $\sin\theta$ if $\cos\theta=\frac{\sqrt{5}}{4}$ and θ is acute.

 $a \int_{100}^{4} \frac{3c^2 + 5 = 16}{3c^2 = 9}$ 5c = 3 $sin \Theta = \frac{3}{4}$ 5c = 3

* c) Solve the equation $1-3\sin x=0$ correct to the nearest degree if x is between 0° and 180°. 2 $\frac{3\sin 3c}{\sin 3c}=\frac{1}{3} \qquad \sin 70 \text{ in } 1^{s+} \text{ and } 2^{n} \text{ degree}$ $\frac{\sin 3c}{\sin 3c}=\frac{1}{3} \qquad \qquad \Theta=19^{\circ} \text{ and } \text{ or } 180^{\circ}-19^{\circ}$ $8m^{-1}(\frac{1}{3})=19.4712... \qquad \Theta=19^{\circ} \text{ or } 161^{\circ}$

Coordinate Geometry (9 marks)

1 a) Find the gradient and y-intercept for the linear equation $y = \frac{12-3x}{4}$

$$y = \frac{12}{4} - \frac{3}{4} \text{ oc}$$
 $m = -\frac{3}{4}$
 $y - int = 3$

2

2

2

3

b) Find, in general form the equation of the line which passes through the points (-1, 2) and (3, -4).

$$m = \frac{-4-2}{3--1} \qquad y-2 = -\frac{3}{2}(x+1)$$

$$= -\frac{3}{2} \qquad 2y-4 = -3x-3$$

$$3x+2y-1 = 0$$

c) Find the equation of the line which is perpendicular to y=3x-1 and passes through the point (6,3).

$$m = -\frac{1}{3} \quad y - 3 = -\frac{1}{3} (0c - 6)$$

$$y = -\frac{1}{3} 0c + 5$$

$$\infty + 3y - 15 = 0$$

* d) Use calculations to show that the quadrilateral with vertices A(3,1), B(8,4), C(5,9) and D(0,6) is a square. Write which test you have used.

$$m_{AB} = \frac{3}{5}$$
 $m_{BC} = -\frac{5}{3}$
 $m_{BC} = -\frac{5}{3}$
 $m_{BC} = \frac{3}{5}$
 $m_{BC} = \frac{3}{5}$
 $m_{BC} = \frac{3}{5}$
 $m_{BC} = \frac{3}{5}$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} = -1$
 $m_{AB} \times m_{BC} = \frac{3}{5} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}$

Probability (9 marks)

1 At Xford High School, students who use mobile phones were surveyed. Some of the results are shown in the table.

	Pre-paid	Plan	Total
Female students	172	147	319
Male students	158	103	261
Total	330	250	<u>580</u>

1

- a) Complete the table.
- b) Of the female students surveyed, one is chosen at random. What is the probability that she is on a plan? $\frac{147}{319}$
- c) What is the probability that a student who completed the survey is male, given that they use a pre-paid phone? $\frac{158}{330} = \frac{79}{165}$
- d) Ten new male students are surveyed, and are all on a plan. What percentage of male students are now on a plan? Give your answer to the nearest percent.
 - 113 ≈ 42% 241 ≈ 42%
- e) Use the information in the table to complete the Venn Diagram below.

2		Three raffles are drawn, each with 100 tickets and 1 prize. Jane buys 2 tickets in one raffle and Mary buys one ticket in each of the other two raffles.
	a)	Fill in the correct name to make this statement true.
		winning with her first ticket and winning with her second ticket are examples of independent events.
*	b)	i) Calculate the probability of Jane winning at least one prize, correct to 4 decimal places. P(Jane loses with both tickets) = $\frac{99}{100} \times \frac{98}{99} = \frac{98}{100}$ P(Jane wins) = $1 - \frac{98}{100} = 0.0200$
		2002000
		ii) Does Mary have a better chance of winning at least one prize than Jane? Show working to support your answer. $ \frac{99}{100} \times \frac{99}{100} $ $ \frac{P(Mary LL) = \frac{99}{100} \times \frac{99}{100} = 0.0199 < 0.02 $ Former har a better chance. Inequations & Logarithms (11 marks)
1	a)	Solve each inequality:
		i) $2t + 1 \ge 5$
		2t 7/4 t 7/2
		ii) $\frac{3-5x}{4} \le -9$ $3-5 \text{ oc } \le -9 \times 4$
		50c-37,36
		50c 71 39 x71 7.8
2	a)	Simplify $\log_x 4 + \log_x 5$

logse (20)

1

2

- b) Evaluate $\log_2 36 2\log_2 3$ $\log_2 36 - 2\log_2 3$ $= \log_2 36 - \log_2 9$ $= \log_2 (\frac{36}{9})$ $= \log_2 \mathcal{H}$
- c) Solve each equation, writing your answer to 3 decimal places where necessary
 - i) $\log_7 x = 3$ $2c = 7^3$ = 343
 - ii) $5^{x-1} = 81$ $x 1 = \frac{\log_{10} 81}{\log_{10} 5}$ $x = 1 + \frac{\log_{10} 81}{\log_{10} 5}$ x = 3.730
 - iii) $\log_2 \sqrt{x} 3\log_2 \left(\frac{1}{x}\right) = 21$ $\frac{1}{2} \log_2 2x + 3\log_2 2x = 21$ $\frac{3\frac{1}{2} \log_2 2x}{\log_2 2x} = 6$ $2x = 2^6 = 64$

AK

Properties of Geometric Figures (13 marks)

1 a) A parallelogram has one angle equal to 55°. Give the values of the other three angles.

55°, 125°, 125°

b) Find the values of u and v in the triangle below, giving reasons.

 $u = 60^{\circ}$ (angle in an equilateral triangle) $\omega = v$ (base angle in isosceles triangle) $u = \omega + v = 2v$ (exterior angle of triangle) $v = 30^{\circ}$

2 a) In the diagram below, AB=19 cm, AE=10 cm, BE=23 cm, EC=15 cm and $AB\parallel DC$.

i) Prove that $\triangle AEB$ is similar to $\triangle CED$.

2

1

3

ii) Find the value of CD.

2

i) In DAEB and ACED

<AEB = < CED (vertically opposite angles)</pre>

< BAE = < DCE (alternate angles, AB 11 DC)

<ABE = (CDE (alternate angles, AB 11 DC)

,'. DAEBIII ACED (3 pairs of corresponding angles and equal)

 $ii) \frac{SP}{19} = \frac{15}{10}$

cD = 28.5 cm.

b) In the diagram below, O is the centre of a circle of radius 5 cm. BC = BD = 3 cm.

2

ii) Hence, prove that AC = AD. 3

i by In AOCB and AODB

OB = OB (common side)

OC = OD (equal radii)

BC = BD (given)

,'. A OCB = AODB (SSS)

 < COB = < DOB (corresponding angles ∆OCB = ∆ODB)
</p> in (B)

< AOC = 180°- < COB (adjacent supplementary orgles

< AOD = 180 - < DOB (sumularly)

:. N'KAOC = KAOD

In AAOC and AAOD

OA = OA (common side)

<AOC = <AOD (proved above)
OC = OD (equal radii)</pre>

I AAOC = AAOD (SAS)

End of Exam - Please check your work

, AC = AD (corresponding sides, DAOC = DAOD