Jchemo.jl

Chemometrics and machine learning on high-dimensional data with Julia

docs stable docs dev CI passing repo status Active

Lesnoff, M. 2024. UMR SELMET, Montpellier, France https://github.com/mlesnoff/Jchemo

julialang.org

Discourse

JuliaHub

- Fast computing
- Easy to learn/read
- Open source

Multiple dispatch Inplace functions Simple multi-threading, GPU High-quality graphics

Packages manager Project environments

Jchemo?

See: https://mlesnoff.github.io/Jchemo.jl/dev/domains

Easy to use

Simple installation procedure

Jchemo ∈ official Julia packages repository (equivalent to R Cran)

Consistent syntax

Generic functions of model tuning

- Grid-search cross-validation, validation-set
- Sampling designs (Kennard-Stone, Duplex, Systematic,

Pipelines

mod = pip(mod1, mod2, mod3)

Each function is documented with examples

Training materials are available (Github)

0.48155 0.48952 0.48953 0.47955 0.47956 0.48952 0.48534 0.48554 0.48554 0.48554 0.48554 0.48555 0.48554 0.4855

IDE: Visual Studio Code


```
## PLS2 with 1e6 observations
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
CPU: 16 \times Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz n = 10^6 # nb. observations (samples)
p = 500  # nb. X-variables (features)
q = 10  # nb. Y-variables to predict
X = rand(n, p)
  = rand(n, q)
.v = 25  # nb. PLS latent variables
mod = model(plskern; nlv)
@time fit! (mod, X, Y)
7.532 seconds (299 allocations: 4.130 GiB, 6.58% gc time)
```


