Proof. If \overline{a} has inverse \overline{b} in $\mathbb{Z}/n\mathbb{Z}$, then $\overline{a}\overline{b}=1$, which means that

$$ab \equiv 1 \pmod{n}$$
,

that is ab = 1 + nk for some $k \in \mathbb{Z}$, which is the Bezout identity

$$ab - nk = 1$$

and implies that gcd(a, n) = 1. Conversely, if gcd(a, n) = 1, then by Bezout's identity there exist $u, v \in \mathbb{Z}$ such that

$$au + nv = 1$$
,

so au = 1 - nv, that is,

$$au \equiv 1 \pmod{n}$$
,

which means that $\overline{a} \, \overline{u} = 1$, so \overline{a} is invertible in $\mathbb{Z}/n\mathbb{Z}$.

Definition 2.14. The group (under multiplication) of invertible elements of the ring $\mathbb{Z}/n\mathbb{Z}$ is denoted by $(\mathbb{Z}/n\mathbb{Z})^*$. Note that this group is abelian and only defined if $n \geq 2$.

The Euler φ -function plays an important role in the theory of the groups $(\mathbb{Z}/n\mathbb{Z})^*$.

Definition 2.15. Given any positive integer $n \geq 1$, the Euler φ -function (or Euler totient function) is defined such that $\varphi(n)$ is the number of integers a, with $1 \leq a \leq n$, which are relatively prime to n; that is, with $\gcd(a, n) = 1$.

Then, by Proposition 2.17, we see that the group $(\mathbb{Z}/n\mathbb{Z})^*$ has order $\varphi(n)$.

For n=2, $(\mathbb{Z}/2\mathbb{Z})^*=\{1\}$, the trivial group. For n=3, $(\mathbb{Z}/3\mathbb{Z})^*=\{1,2\}$, and for n=4, we have $(\mathbb{Z}/4\mathbb{Z})^*=\{1,3\}$. Both groups are isomorphic to the group $\{-1,1\}$. Since $\gcd(a,n)=1$ for every $a\in\{1,\ldots,n-1\}$ iff n is prime, by Proposition 2.17 we see that $(\mathbb{Z}/n\mathbb{Z})^*=\mathbb{Z}/n\mathbb{Z}-\{0\}$ iff n is prime.

2.3 Rings and Fields

The groups $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/n\mathbb{Z}$, and $M_n(\mathbb{R})$ are more than abelian groups, they are also commutative rings. Furthermore, \mathbb{Q}, \mathbb{R} , and \mathbb{C} are fields. We now introduce rings and fields.

Definition 2.16. A ring is a set A equipped with two operations $+: A \times A \to A$ (called addition) and $*: A \times A \to A$ (called multiplication) having the following properties:

- (R1) A is an abelian group w.r.t. +;
- (R2) * is associative and has an identity element $1 \in A$;

¹We allow a = n to accommodate the special case n = 1.