Interpretable Spatial-Temporal Video Transformer for Deepfake Detection (ISTVT)

EE656A - Course Project Presentation

Durgesh Dongre (241040020)

Richik Majumder (241040068)

Saurabh Srivastava (231030609)

Anup Kumar (241010076)

Objective

- Implement and evaluate ISTVT: a transformer-based deepfake detector
- Explore interpretability of attention in video forensics

Dataset

- FaceForensics++ (Subset): 200 Deepfake videos
- Preprocessing: MTCNN face extraction, resized to 128x128

• The model was trained for 5 epochs using video data in C23 compression format, consistent with the FaceForensics++ dataset.

• The goal was to implement the full ISTVT architecture, but the temporal transform module was not included in this version of the model.

ISTVT Architecture Overview

- **Input**: Video frames → Xception CNN (feature extraction).
- **Tokenization**: Split features into patches \rightarrow tokens.
- Transformer Blocks:
- Spatial Self-Attention (within-frame).
- Temporal Self-Attention (across-frame).
- Classification Head: Predicts "real" or "fake".

Pseudo-code for Face Extraction and Preprocessing

Initialize

- ✓ Import required libraries: cv2, os, torch, numpy, PIL, MTCNN
- ✓ Set device to GPU if available, else CPU
- ✓ Initialize MTCNN face detector with:
- Output size = 300
- Margin = 20

Extract Faces from One Video

- ✓ Open the video file
- ✓ For every 5th frame (skip others):
- Detect face in the frame
- If a clear face is found:
- ✓ Save the face image to a folder
- ✓ Stop after saving 270 face images or reaching video end

Batch Process Videos

✓ For Deepfake Videos:

- Loop through video files
- Extract faces and save them
- Track original video IDs

✓ For Original Videos:

- Only process if the original video matches a deepfake
- Extract and save faces similarly

Run the Process

- ✓ Define paths for:
- Deepfake videos
- Original videos
- Output folder

Pseudo-code for Image-to-Tensor Sequence Conversion

Initialization

- ✓ Import required libraries
- ✓ Define:
- Real & fake image directories
- Output directory
- Sequence length
- ✓ Define image transformation:
- Resize to 224×224
- Convert to tensor

Function

- ✓ Create output subfolder
- ✓ Get list of folders
- ✓ For each folder:
- Sort and list all .jpg images
- Loop through images
- * Read consecutive image
- * Apply transformation to each image
- * Stack images into a tensor of shape

Run the transformation

- ✓ Call save sequences() for:
- Real images → save under output_dir/real
- Fake images → save under output dir/fake

Pseudo-code for Vision Transformer for Deepfake Detection

Results

Evaluation Metrics Over Epochs

Video-Level ROC Curve

Conclusion

- The model effectively detects deepfakes with 90% accuracy and an AUC of 0.97, demonstrating robust performance.
- Future work could enhance model sensitivity to challenging samples.

Classification Report

Class	Precision	Recall	F1-Score	Support
0	0.847826	0.975	0.906977	40
1	0.970588	0.825	0.891892	40
Accuracy	0.9	0.9	0.9	0.9
Macro Avg	0.909207	0.9	0.899434	80
Weighted avg	0.909207	0.9	0.899434	80

References

- 1. Zhou, X., Ding, Y., Liu, Y., Yu, N., & Liang, W. (2023). ISTVT: Interpretable spatial-temporal video transformer for deepfake detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, 12345–12355.
- 2. Li, Y., Chang, M. C., & Lyu, S. (2018). In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking. 2018 IEEE International Workshop on Information Forensics and Security (WIFS), 1–7.
- 3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008.
- 4. Bertasius, G., Wang, H., & Torresani, L. (2021). Is space-time attention all you need for video understanding? International Conference on Machine Learning (ICML), 139, 813–824.
- 5. Nguyen, H. H., Yamagishi, J., & Echizen, I. (2019). Multi-task learning for detecting and segmenting manipulated facial images and videos. 2019 International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1–8.

Thank You