jhTAlib

Joost Hoeks

2019-09-18

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Examples	3
Example 1	3
Example 2	4
Example 3	4
Example 4	4
Example 5	4
Example 6	4
Example 7	5
Example 8	5
Example 9	5
Example 10	5
Example 11	6
Test	6
Reference	6
Behavioral Techniques	6
Candlestick	9
Cycle Indicators	11
Data	12
Event Driven	13
Experimental	15
General	16
Information	18
Math Functions	18
Momentum Indicators	23
Overlap Studies	27
Pattern Recognition	30
Price Transform	3/1

Statistic Functions Uncategorised Volatility Indicators Volume Indicators Notebooks Recession Probability Donation and Funding jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
Technical Analysis Software
• Charting Software
• Backtest Software
• Trading Robot Software
• Trading Software in general
Work in progress
Depends only on
• The Python Standard Library
_
Docs
• .html
• .epub
• .json
• .odt
• .pdf
• .rst

• .rtf

• .xml

Install

From PyPI:

\$ [sudo] pip3 install jhtalib

From source:

- \$ git clone https://github.com/joosthoeks/jhTAlib.git
- \$ cd jhTAlib
- \$ [sudo] pip3 install -e .

Update

From PyPI:

\$ [sudo] pip3 install --upgrade jhtalib

From source:

- \$ cd jhTAlib
- \$ git pull [upstream master]

Examples

\$ cd example/

Example 1

\$ python3 example-1-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-1-plot.ipynb

3

Example 2
\$ python3 example-2-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-2-plot.ipynb
Example 3
\$ python3 example-3-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-3-plot.ipynb
Example 4
\$ python3 example-4-plot-quandl.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-4-plot-quandl.ipynb
Example 5
\$ python3 example-5-plot-quandl.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-5-plot-quandl.ipynb

\$ python3 example-6-plot-quandl.py

Example 6

or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-6-plot-quandl.ipynb
Example 7
Example 1
<pre>\$ python3 example-7-quand1-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-7-quandl-2-df.ipynb
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-8-alphavantage-2-df.ipynb
Example 9
<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-9-cryptocompare-2-df.ipynb

Example 10

DF NumPy Pandas

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb

Example 11

Basic Usage	
https://colab.research.google.com/github/joosthoeks/ example/example-11-basic-usage.ipynb	jhTAlib/blob/master/
Test	
<pre>\$ cd test/ \$ python3 test.py</pre>	
Reference	
import jhtalib as jhta	
Behavioral Techniques	
ATH All Time High DONE	
• dict of lists of floats = jhta.ATH(df, pr	ice='High')
LMC Last Major Correction DONE	
• dict of lists of floats = jhta.LMC(df, pr	ice='Low', price_high='High')
PP Pivot Point DONE	
 dict of lists of floats = jhta.PP(df, high close='Close') 	h='High', low='Low',
$\bullet \ {\rm https://en.wikipedia.org/wiki/Pivot_point_(tech}$	nnical_analysis)

\mathbf{F}	IBOPR Fibonacci Price Retracements DONE	
	• dict of lists of floats = jhta.FIBOPR(df, pri	ce='Close')
F	IBTR Fibonacci Time Retracements •	
G	ANNPR W. D. Gann Price Retracements DON	
	• dict of lists of floats = jhta.GANNPR(df, pride	ce='Close')
G	ANNTR W. D. Gann Time Retracements	
JI	DN Julian Day Number DONE	
	jdn = jhta.JDN(utc_year, utc_month, utc_day)https://en.wikipedia.org/wiki/Julian_day	
JI	D Julian Date DONE	
	• jd = jhta.JD(utc_year, utc_month, utc_day, utc_second)	c_hour, utc_minute
	• https://en.wikipedia.org/wiki/Julian_day	
SI	UNC Sun Cycle	
	•	

MERCURYC Mercury Cycle •
VENUSC Venus Cycle •
EARTHC Earth Cycle •
MARSC Mars Cycle •
JUPITERC Jupiter Cycle •
SATURNC Saturn Cycle •
URANUSC Uranus Cycle •
NEPTUNEC Neptune Cycle •

PLUTOC | Pluto Cycle | MOONC | Moon Cycle | Candlestick CDLBODYS | Candle Body Size | DONE • list of floats = jhta.CDLBODYS(df, open='Open', close='Close') • https://www.tradeciety.com/understand-candlesticks-patterns/ CDLWICKS | Candle Wick Size | DONE • list of floats = jhta.CDLWICKS(df, high='High', low='Low') • https://www.tradeciety.com/understand-candlesticks-patterns/ CDLUPPSHAS | Candle Upper Shadow Size | DONE • list of floats = jhta.CDLUPPSHAS(df, open='Open', high='High', close='Close') • https://www.tradeciety.com/understand-candlesticks-patterns/ CDLLOWSHAS | Candle Lower Shadow Size | DONE • list of floats = jhta.CDLLOWSHAS(df, open='Open', low='Low', close='Close') • https://www.tradeciety.com/understand-candlesticks-patterns/

CDLBODYP | Candle Body Percent | DONE

• list of floats = jhta.CDLBODYP(df, open='Open', close='Close')

CDLBODYM | Candle Body Momentum | DONE

- list of floats = jhta.CDLBODYM(df, n, open='Open', close='Close')
- book: Trading Systems and Methods

GAP | Gap | DONE

• list of floats = jhta.GAP(df, high='High', low='Low', close='Close')

QSTICK | Qstick | DONE

- list of floats = jhta.QSTICK(df, n, open='Open', close='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=Qstick.htm$

SHADOWT | Shadow Trends | DONE

- dict of lists of floats = jhta.SHADOWT(df, n, open='Open', high='High', low='Low', close='Close')
- book: The New Technical Trader

IMI | Intraday Momentum Index | DONE

- list of floats = jhta.IMI(df, open='Open', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=IMI.htm

INSBAR | Inside Bar | DONE

• list of booleans = jhta.INSBAR(df, high='High', low='Low')

${ m OUTSBAR} \mid { m Outside~Bar} \mid { m DONE}$
• list of booleans = jhta.OUTSBAR(df, high='High', low='Low')
Cycle Indicators
HT_DCPERIOD Hilbert Transform - Dominant Cycle Period • —————————————————————————————————
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase •
HT_PHASOR Hilbert Transform - Phasor Components •
HT_SINE Hilbert Transform - SineWave •
HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •

TS | Trend Score | DONE

- list of floats = jhta.TS(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm$

Data

CSV2DF | CSV file 2 DataFeed | DONE

• dict of tuples of floats = jhta.CSV2DF(csv_file_path, datetime='datetime', Open='Open', high='High', low='Low', close='Close', volume='Volume')

CSVURL2DF | CSV file url 2 DataFeed | DONE

 dict of tuples of floats = jhta.CSVURL2DF(csv_file_url, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2CSV | DataFeed 2 CSV file | DONE

• csv file = jhta.DF2CSV(df, csv_file_path, datetime='datetime', Open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2DFREV | DataFeed 2 DataFeed Reversed | DONE

• dict of tuples of floats = jhta.DF2DFREV(df, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2DFWIN | DataFeed 2 DataFeed Window | DONE

dict of tuples of floats = jhta.DF2DFWIN(df, start=0, end=10, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

12

$DF_HEAD \mid DataFeed \; HEAD \mid DONE$

• dict of tuples of floats = jhta.DF_HEAD(df, n=5, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF TAIL | DataFeed TAIL | DONE

dict of tuples of floats = jhta.DF_TAIL(df, n=5, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE

• dict of tuples of floats = jhta.DF2HEIKIN_ASHI(df, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

Event Driven

ASI | Accumulation Swing Index (J. Welles Wilder) | DONE

- list of floats = jhta.ASI(df, L, open='Open', high='High', low='Low', close='Close')
- book: New Concepts in Technical Trading Systems

SI | Swing Index (J. Welles Wilder) | DONE

- list of floats = jhta.SI(df, L, open='Open', high='High', low='Low', close='Close')
- book: New Concepts in Technical Trading Systems

SAVGP | Swing Average Price - previous Average Price | DONE

• list of floats = jhta.SAVGP(df, open='Open', high='High', low='Low', close='Close')

SAVGPS	Swing	Average	Price -	previous	Average	Price	Summati	ion
DONE								

 list of floats = jhta.SAVGPS(df, open='Open', high='High', low='Low', close='Close')
SCO Swing Close - Open DONE
• list of floats = jhta.SCO(df, open='Open', close='Close')
SCOS Swing Close - Open Summation DONE • list of floats = jhta.SCOS(df, open='Open', close='Close')
- 11st of 11oats - Jita.scos(df, open- open , close- close)
SMEDP Swing Median Price - previous Median Price DONE
• list of floats = jhta.SMEDP(df, high='High', low='Low')
SMEDPS Swing Median Price - previous Median Price Summation DONE
• list of floats = jhta.SMEDPS(df, high='High', low='Low')
SPP Swing Price - previous Price DONE
• list of floats = jhta.SPP(df, price='Close')
SPPS Swing Price - previous Price Summation DONE
list of floats = jhta.SPPS(df, price='Close')

STYPP | Swing Typical Price - previous Typical Price | DONE

• list of floats = jhta.STYPP(df, high='High', low='Low', close='Close')

STYPPS | Swing Typical Price - previous Typical Price Summation | DONE

• list of floats = jhta.STYPPS(df, high='High', low='Low', close='Close')

SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE

• list of floats = jhta.SWCLP(df, high='High', low='Low', close='Close')

SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

• list of floats = jhta.SWCLPS(df, high='High', low='Low', close='Close')

Experimental

VWAP | Volume Weighted Average Price | DONE

- list of floats = jhta.VWAP(df, open='Open', high='High', low='Low', close='Close', volume='Volume')
- book: An Introduction to Algorithmic Trading

MFAI | Market Facilitation Index | DONE

- list of floats = jhta.MFAI(df, high='High', low='Low', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=MFI.htm

VAMA | Volume Adjusted Moving Average | DONE

- list of floats = jhta.VAMA(df, n, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=VolAdjustedMA. htm

WWMA | Welles Wilder Moving Average | DONE

- list of floats = jhta.WWMA(df, n, price='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=WellesMA.htm$

WWS | Welles Wilder Summation | DONE

- list of floats = jhta.WWS(df, n, price='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=WellesSum.htm$

MFI | Money Flow Index | DONE

- list of floats = jhta.MFI(df, n, high='High', low='Low', close='Close', volume='Volume')

General

NORMALIZE | Normalize | DONE

- list of floats = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \, \text{https://machinelearningmastery.com/normalize-standardize-time-series-data-python/} \\$

STANDARDIZE | Standardize | DONE

- list of floats = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \, \text{https://machinelearningmastery.com/normalize-standardize-time-series-data-python/} \\$

RATIO | Ratio | DONE

- list of floats = jhta.RATIO(df1, df2, price1='Close', price2='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Ratio.htm$

SPREAD | Spread | DONE

• list of floats = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list of floats = jhta.CP(df1, df2, price1='Close', price2='Close')

CRSI | Comparative Relative Strength Index | DONE

- list of floats = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RSIC.htm$

CS | Comparative Strength | DONE

- list of floats = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

Information

INFO | Print df Information | DONE • print = jhta.INFO(df, price='Close') INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list of floats = jhta.EXP(df, price='Close') LOG | Logarithm | DONE • list of floats = jhta.LOG(df, price='Close') LOG10 | Base-10 Logarithm | DONE • list of floats = jhta.LOG10(df, price='Close') SQRT | Square Root | DONE • list of floats = jhta.SQRT(df, price='Close') ACOS | Arc Cosine | DONE • list of floats = jhta.ACOS(df, price='Close')

ASIN | Arc Sine | DONE • list of floats = jhta.ASIN(df, price='Close') ATAN | Arc Tangent | DONE • list of floats = jhta.ATAN(df, price='Close') COS | Cosine | DONE • list of floats = jhta.COS(df, price='Close') SIN | Sine | DONE • list of floats = jhta.SIN(df, price='Close') TAN | Tangent | DONE • list of floats = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list of floats = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list of floats = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list of floats = jhta.ATANH(df, price='Close')

COSH | Hyperbolic Cosine | DONE • list of floats = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list of floats = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list of floats = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI() E | Mathematical constant E | DONE • float = jhta.E() TAU | Mathematical constant TAU | DONE • float = jhta.TAU() PHI | Mathematical constant PHI | DONE • float = jhta.PHI() FIB | Fibonacci series up to n | DONE • list of ints = jhta.FIB(n)

CEIL | Ceiling | DONE • list of floats = jhta.CEIL(df, price='Close') FLOOR | Floor | DONE • list of floats = jhta.FLOOR(df, price='Close') **DEGREES** | Radians to Degrees | **DONE** • list of floats = jhta.DEGREES(df, price='Close') RADIANS | Degrees to Radians | DONE • list of floats = jhta.RADIANS(df, price='Close') ADD | Addition High + Low | DONE • list of floats = jhta.ADD(df, high='High', low='Low') DIV | Division High / Low | DONE • list of floats = jhta.DIV(df, high='High', low='Low') MAX | Highest value over a specified period | DONE • list of floats = jhta.MAX(df, n, price='Close') MAXINDEX | Index of highest value over a specified period | DONE • list of ints = jhta.MAXINDEX(df, n, price='Close')

list of floats = jhta.MIN(df, n, price='Close')
$\label{eq:minimized_minimized} \textbf{MININDEX} \mid \textbf{Index of lowest value over a specified period} \mid \textbf{DONE}$
• list of ints = jhta.MININDEX(df, n, price='Close')
MINMAX Lowest and Highest values over a specified period DONE
• dict of lists of floats = jhta.MINMAX(df, n, price='Close')
MINMAXINDEX Indexes of lowest and highest values over a specified period DONE • dict of lists of ints = jhta.MINMAXINDEX(df, n, price='Close')
MULT Multiply High * Low DONE
• list of floats = jhta.MULT(df, high='High', low='Low')
SUB Subtraction High - Low DONE • list of floats = jhta.SUB(df, high='High', low='Low')
<pre>SUM Summation DONE • list of floats = jhta.SUM(df, n, price='Close')</pre>

 $\operatorname{MIN}\mid \operatorname{Lowest}$ value over a specified period $\mid \operatorname{DONE}$

SLOPE | Slope | DONE • float = jhta.SLOPE(x1, y1, x2, y2) • book: An Introduction to Algorithmic Trading SLOPES | Slopes | DONE • list of floats = jhta.SLOPES(df, n, price='Close') • book: An Introduction to Algorithmic Trading ED | Euclidean Distance | DONE • float = jhta.ED(x1, y1, x2, y2) • book: An Introduction to Algorithmic Trading EDS | Euclidean Distances | DONE • list of floats = jhta.EDS(df, n, price='Close') • book: An Introduction to Algorithmic Trading **Momentum Indicators** ADX | Average Directional Movement Index |

ADXR | Average Directional Movement Index Rating |

APO Absolute Price Oscillator DONE
• list of floats = jhta.APO(df, n_fast, n_slow, price='Close')
$ \bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm} \\ \underline{\hspace{1cm}$
AROON Aroon
AROONOSC Aroon Oscillator
BOP Balance Of Power
CCI Commodity Channel Index
CMO Chande Momentum Oscillator •
DX Directional Movement Index
$\begin{array}{c} \mathbf{MACD} \mid \mathbf{Moving \ Average \ Convergence/Divergence} \mid \\ \bullet \end{array}$

MACDEXT MACD with controllable MA type • ——————————————————————————————————
MACDFIX Moving Average Convergence/Divergence Fix 12/26 •
MINUS_DI Minus Directional Indicator •
MINUS_DM Minus Directional Movement •
MOM Momentum DONE
• list of floats = jhta.MOM(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=Momentum.htm
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator •

RMI | Relative Momentum Index | DONE

- list of floats = jhta.RMI(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RMI.htm$

ROC | Rate of Change | DONE

• list of floats = jhta.ROC(df, n, price='Close')

ROCP | Rate of Change Percentage | DONE

• list of floats = jhta.ROCP(df, n, price='Close')

ROCR | Rate of Change Ratio | DONE

• list of floats = jhta.ROCR(df, n, price='Close')

ROCR100 | Rate of Change Ratio 100 scale | DONE

- list of floats = jhta.ROCR100(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm$

RSI | Relative Strength Index | DONE

- list of floats = jhta.RSI(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=rsi.htm

STOCH | Stochastic | DONE

- list of floats = jhta.STOCH(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm

STOCHF Stochastic Fast •
STOCHRSI Stochastic Relative Strength Index •
TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA •
ULTOSC Ultimate Oscillator •
WILLR Williams' %R DONE
 list of floats = jhta.WILLR(df, n, high='High', low='Low', close='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm} \\ \underline{\hspace{1cm}}$
Overlap Studies
BBANDS Bollinger Bands DONE
 dict of lists of floats = jhta.BBANDS(df, n, f=2, high='High' low='Low', close='Close')
$\bullet \ \rm https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm$

• list of floats = jhta.BBANDW(df, n, f=2, high='High', low='Low' close='Close')
- https://www.fmlabs.com/reference/default.htm?url=BollingerWidth.htm
DEMA Double Exponential Moving Average •
EMA Exponential Moving Average DONE
 list of floats = jhta.EMA(df, n, price='Close')
$ \bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=ExpMA.htm} \\ \underline{\hspace{1cm} }$
ENVP Envelope Percent DONE
• dict of lists of floats = jhta.ENVP(df, pct=.01, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm

BBANDW | Bollinger Band Width | DONE

KAMA | Kaufman Adaptive Moving Average |

•

MA | Moving Average |

•

MAMA | MESA Adaptive Moving Average |

•

MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list of floats = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE • list of floats = jhta.MIDPRICE(df, n, high='High', low='Low') • http://www.tadoc.org/indicator/MIDPRICE.htm MMR | Mayer Multiple Ratio | DONE • list of floats = jhta.MMR(df, n=200, price='Close') • https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/ SAR | Parabolic SAR | DONE • list of floats = jhta.SAR(df, af_step=.02, af_max=.2, high='High', low='Low') • book: New Concepts in Technical Trading Systems SAREXT | Parabolic SAR - Extended |

• list of floats = jhta.SMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm T3 | Triple Exponential Moving Average (T3) | TEMA | Triple Exponential Moving Average | TRIMA | Triangular Moving Average | DONE • list of floats = jhta.TRIMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm WMA | Weighted Moving Average Pattern Recognition CDL2CROWS | Two Crows | CDL3BLACKCROWS | Three Black Crows | CDL3INSIDE | Three Inside Up/Down | CDL3LINESTRIKE | Three-Line Strike |

SMA | Simple Moving Average | DONE

CDL3OUTSIDE | Three Outside Up/Down |

```
CDL3STARSINSOUTH | Three Stars In The South |
CDL3WHITESOLDIERS | Three Advancing White Soldiers |
CDLABANDONEDBABY | Abandoned Baby |
CDLADVANCEBLOCK | Advance Block |
CDLBELTHOLD | Belt-hold |
CDLBREAKAWAY | Breakaway |
CDLCLOSINGMARUBOZU | Closing Marubozu |
CDLCONSEALBABYSWALL | Concealing Baby Swallow |
CDLCOUNTERATTACK | Counterattack |
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
```

```
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
```

```
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
```

CDLTRISTAR | Tristar Pattern | CDLUNIQUE3RIVER | Unique 3 River | CDLUPSIDEGAP2CROWS | Upside Gap Two Crows | CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Methods |

Price Transform

${\bf AVGPRICE} \mid {\bf Average} \ {\bf Price} \mid {\bf DONE}$

- list of floats = jhta.AVGPRICE(df, open='Open', high='High', low='Low', close='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm$

MEDPRICE | Median Price | DONE

- list of floats = jhta.MEDPRICE(df, high='High', low='Low')
- $\bullet \quad https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm$

TYPPRICE | Typical Price | DONE

- list of floats = jhta.TYPPRICE(df, high='High', low='Low', close='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list of floats = jhta.WCLPRICE(df, high='High', low='Low', close='Close')

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list of floats = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list of floats = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE

• list of floats = jhta.MEDIAN(df, n, price='Close')

MEDIAN_LOW | Low median of data | DONE

• list of floats = jhta.MEDIAN_LOW(df, n, price='Close')

MEDIAN_HIGH | High median of data | DONE

• list of floats = jhta.MEDIAN_HIGH(df, n, price='Close')

MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE

• list of floats = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1)

MODE | Mode (most common value) of discrete data | DONE • list of floats = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list of floats = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list of floats = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list of floats = jhta.VARIANCE(df, n, price='Close', xbar=None) COV | Covariance | DONE • float = jhta.COV(list1, list2) • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance COVARIANCE | Covariance | DONE • list of floats = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close') $\bullet \ \, https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance\#$ Covariance

COR | Correlation | DONE

• float = jhta.COR(list1, list2)

CORRELATION | Correlation | DONE

• list of floats = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list of floats = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- $\bullet \ \ https://en.wikipedia.org/wiki/Beta_(finance)$

BETAS | Betas | DONE

- list of floats = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://en.wikipedia.org/wiki/Beta_(finance)$

 ${\bf LSR} \mid {\bf Least \ Squares \ Regression} \mid {\bf DONE}$

- list of floats = jhta.LSR(df, price='Close', predictions_int=0)
- https://www.mathsisfun.com/data/least-squares-regression.html

SLR | Simple Linear Regression | DONE

- list of floats = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \, \text{https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/} \\$

Uncategorised

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \, \rm https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://en.wikipedia.org/wiki/Expected_value$

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

BPPS | Basis Points per Second | DONE

- float = jhta.BPPS(trade_start_price, trade_end_price, trade_start_timestamp, trade_end_timestamp)
- book: An Introduction to Algorithmic Trading

RET | Return | DONE

- list of floats = jhta.RET(df, price='Close')
- book: An Introduction to Algorithmic Trading

RETS | Returns | DONE

- list of floats = jhta.RETS(df, price='Close')
- book: An Introduction to Algorithmic Trading

PRET | %Return | DONE

- list of floats = jhta.PRET(df, price='Close')
- book: An Introduction to Algorithmic Trading

PRETS | %Returns | DONE

- list of floats = jhta.PRETS(df, price='Close')
- book: An Introduction to Algorithmic Trading

Volatility Indicators

AEM | Arms Ease of Movement | DONE

- list of floats = jhta.AEM(df, high='High', low='Low', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ArmsEMV.htm$

ATR | Average True Range | DONE

- list of floats = jhta.ATR(df, n, high='High', low='Low', close='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ATR.htm$

NATR | Normalized Average True Range |

•

RVI | Relative Volatility Index | DONE

- list of floats = jhta.RVI(df, n, high='High', low='Low')
- https://www.fmlabs.com/reference/default.htm?url=RVI.htm

INERTIA | Inertia |

•

$\mathbf{PRANGE} \mid \% \mathbf{Range} \mid \mathbf{DONE}$

- list of floats = jhta.PRANGE(df, n, max_price='High', min_price='Low')
- book: An Introduction to Algorithmic Trading

TRANGE | True Range | DONE

- list of floats = jhta.TRANGE(df, high='High', low='Low', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=TR.htm

Volume Indicators

AD | Chaikin A/D Line | DONE

- list of floats = jhta.AD(df, high='High', low='Low', close='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$

ADOSC | Chaikin A/D Oscillator |

•

OBV | On Balance Volume | DONE

- list of floats = jhta.OBV(df, close='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=OBV.htm$

PVR | Price Volume Rank | DONE

- list of ints = jhta.PVR(df, price='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVrank.htm$

PVT | Price Volume Trend | DONE

- list of floats = jhta.PVT(df, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=PVT.htm

PVI | Positive Volume Index | DONE

- list of floats = jhta.PVI(df, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=PVI.htm

NVI | Negative Volume Index | DONE

- list of floats = jhta.NVI(df, price='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=NVI.htm$

Notebooks

 $\bullet \ \ https://github.com/joosthoeks/jhTAlib/tree/master/notebook$

Recession Probability

 $\bullet \ https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/\\ master/notebook/recession_probability.ipynb$

Donation and Funding

- BTC: 3KCoXMyUDgVABoFSuV8GQT3k8qkUhEDG9X