Utilisation des assignations

L'exemple

$$\mathcal{L} = \mathcal{C} \cup P$$

avec
$$C =_{def} \{a, b, c\}$$
 et $P =_{def} \{P_1, C_2\}$

domaine \mathcal{D} = {Alain, Bob, Charles, Denis}

$$I(a) = Alain \quad I(b) = Bob \quad I(c) = Charles$$

$$I(P_1) = \{Alain, Bob\}.$$

$$I(C_2) = \{(Alain, Bob), (Bob, Charles), (Charles, Charles)\}$$

$$\mathcal{F}$$
: $\forall x (P_1(x) \rightarrow \exists y \ C_2(y,x))$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

• $Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

•
$$Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$$

• et $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I} \ , \theta_a + [x \leftarrow \operatorname{Bob}] = \mathsf{vrai}$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

•
$$Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I} \ , \theta_a + [x \leftarrow \mathrm{Alain}] = \mathsf{vrai}$$

- et $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Bob}] = \text{vrai}$
- et $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \mathrm{Charles}] = \mathsf{vrai}$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

•
$$Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I} \ , \theta_a + [x \leftarrow \mathrm{Alain}] = \mathsf{vrai}$$

- et $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Bob}] = \text{vrai}$
- et $Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \mathrm{Charles}] = \mathsf{vrai}$
- et $Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \mathrm{Denis}] = \mathsf{vrai}$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

• $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$ en effet $I(P_1) = \{Alain, Bob\}$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais $Val(\exists y \ C_2(y,x), \ \mathcal{I}, \theta + [x \leftarrow \mathrm{Alain})) = \mathsf{faux} \ \mathsf{car}$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais $Val(\exists y \ C_2(y,x), \ \mathcal{I}, \theta + [x \leftarrow \text{Alain})) = \text{faux car}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Alain]) = faux et$

$$I(C_2) = \{(Alain, Bob), (Bob, Charles), (Charles, Charles)\}$$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais $Val(\exists y \ C_2(y,x), \ \mathcal{I}, \theta + [x \leftarrow \text{Alain})) = \text{faux car}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Alain]) = faux et$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Bob}]) = \text{faux et}$

$$I(C_2) = \{(Alain, Bob), (Bob, Charles), (Charles, Charles)\}$$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais $Val(\exists y \ C_2(y,x), \ \mathcal{I}, \theta + [x \leftarrow \text{Alain})) = \text{faux car}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Alain]) = faux et$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Bob}]) = \text{faux et}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Charles}]) = \text{faux et}$

$$I(C_2) = \{(Alain, Bob), (Bob, Charles), (Charles, Charles)\}$$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais $Val(\exists y \ C_2(y,x), \ \mathcal{I}, \theta + [x \leftarrow \text{Alain})) = \text{faux car}$
 - $val(C_2(y, x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Alain]) = faux et$
 - $val(C_2(y,x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Bob]) = faux et$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Charles}]) = \text{faux et}$
 - $val(C_2(y, x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Denis]) = faux$

$$I(C_2) = \{(Alain, Bob), (Bob, Charles), (Charles, Charles)\}$$

$$\mathcal{F}: \forall x \ (P_1(x) \to \exists y \ C_2(y,x)) \ \theta_a: \{(\mathsf{x}, \ \mathsf{Bob}), \ (\mathsf{y}, \ \mathsf{Charles})\}$$

- $Val((P_1(x) \to \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{vrai}$ ce qui n'est pas le cas car
 - Alain $\in I(P_1)$
 - mais $Val(\exists y \ C_2(y,x), \ \mathcal{I}, \theta + [x \leftarrow \text{Alain})) = \text{faux car}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Alain}]) = \text{faux et}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow Alain] + [y \leftarrow Bob]) = faux et$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Charles}]) = \text{faux et}$
 - $val(C_2(y,x), I, \theta + [x \leftarrow \text{Alain}] + [y \leftarrow \text{Denis}]) = \text{faux}$
 - donc $Val((P_1(x) \rightarrow \exists y \ C_2(y,x)), \ \mathcal{I}, \theta_a + [x \leftarrow \text{Alain}] = \text{faux}$

$$I(C_2) = \{(Alain, Bob), (Bob, Charles), (Charles, Charles)\}$$

