CS61B Lecture #26

Today:

- Sorting algorithms: why?
- Insertion Sort.
- Inversions

Last modified: Wed Oct 24 13:43:34 2018

Purposes of Sorting

- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same v property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hul est convex polygon enclosing set of points).

Last modified: Wed Oct 24 13:43:34 2018

Some Definitions

- A sorting algorithm (or sort) permutes (re-arranges) a sequelements to brings them into order, according to some total
- A total order, \leq , is:
 - Total: $x \leq y$ or $y \leq x$ for all x, y.
 - Reflexive: $x \leq x$;
 - Antisymmetric: $x \leq y$ and $y \leq x$ iff x = y.
 - Transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$.
- However, our orderings may treat unequal items as equivalent
 - E.g., there can be two dictionary definitions for the same of the
 - A sort that does not change the relative order of equiva tries (compared to the input) is called *stable*.

Classifications

- Internal sorts keep all data in primary memory.
- External sorts process large amounts of data in batches, what won't fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about their order.
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at t propriate positions in the sorted sequence being constructe
- Selection sorting works by repeatedly selecting the next (smaller) item in order and adding it to one end of the sort quence being constructed.

Sorting Arrays of Primitive Types in the Java Lil

- The java library provides static methods to sort arrays in t java.util.Arrays.
- For each primitive type P other than boolean, there are

```
/** Sort all elements of ARR into non-descending of static void sort(P[] arr) { ... }

/** Sort elements FIRST .. END-1 of ARR into non-descending of the void sort(P[] arr, int first, int end) { ... }

/** Sort all elements of ARR into non-descending of the possibly using multiprocessing for speed. */
static void parallelSort(P[] arr) { ... }

/** Sort elements FIRST .. END-1 of ARR into non-descending of the void parallelSort(P[] arr, int first, into static void parallelSort(P[] arr, int first, int static void parallelSort(P[] arr, in
```

Sorting Arrays of Reference Types in the Java L

For reference types, C, that have a natural order (that is, plement java.lang.Comparable), we have four analogous r (one-argument sort, three-argument sort, and two paralimethods):

```
/** Sort all elements of ARR stably into non-desc
* order. */
static <C extends Comparable<? super C>> sort(C[]
etc.
```

• And for all reference types, R, we have four more:

```
/** Sort all elements of ARR stably into non-desc
  * according to the ordering defined by COMP. */
static <R> void sort(R[] arr, Comparator<? super etc.</pre>
```

• Q: Why the fancy generic arguments?

Sorting Arrays of Reference Types in the Java L

For reference types, C, that have a natural order (that is, plement java.lang.Comparable), we have four analogous reference types. Comparable (one-argument sort, three-argument sort, and two paralimethods):

```
/** Sort all elements of ARR stably into non-desc
* order. */
static <C extends Comparable<? super C>> sort(C[]
etc.
```

• And for all reference types, R, we have four more:

```
/** Sort all elements of ARR stably into non-desc
  * according to the ordering defined by COMP. */
static <R> void sort(R[] arr, Comparator<? super etc.</pre>
```

- Q: Why the fancy generic arguments?
- A: We want to allow types that have compareTo methods the also to more general types.

Sorting Lists in the Java Library

• The class java.util.Collections contains two methods si the sorting methods for arrays of reference types:

```
/** Sort all elements of LST stably into non-desc
  * order. */
static <C extends Comparable<? super C>> sort(Listetc.)
```

```
/** Sort all elements of LST stably into non-desc
  * order according to the ordering defined by COS
static <R> void sort(List<R> , Comparator<? super
etc.</pre>
```

Also an instance method in the List<R> interface itself:

```
/** Sort all elements of LST stably into non-desc
* order according to the ordering defined by COI
void sort(Comparator<? super R> comp) {...}
```

Examples

• Assume:

```
import static java.util.Arrays.*;
import static java.util.Collections.*;
```

- Sort X, a String[] or List<String>, into non-descending or sort(X); // or ...
- Sort X into reverse order (Java 8):

```
sort(X, (String x, String y) -> { return y.compare
// or
sort(X, Collections.reverseOrder()); // or
X.sort(Collections.reverseOrder()); // for X a
```

- Sort X[10], ..., X[100] in array or List X (rest unchange sort(X, 10, 101);
- Sort L[10], ..., L[100] in list L (rest unchanged):
 sort(L.sublist(10, 101));

Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence point.
- Very simple, good for small sets of data.
- ullet With vector or linked list, time for find + insert of one ite worst $\Theta(k)$, where k is # of outputs so far.
- ullet This gives us a $\Theta(N^2)$ algorithm (worst case as usual).
- Can we say more?

Last modified: Wed Oct 24 13:43:34 2018

Inversions

- ullet Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

- ullet #times (1) executes for each $j \approx$ how far x must move.
- ullet If all items within K of proper places, then takes O(KN) ope
- Thus good for any amount of nearly sorted data.
- ullet One measure of unsortedness: # of inversions: pairs that of order (= 0 when sorted, N(N-1)/2 when reversed).
- Each execution of (2) decreases inversions by 1.

Shell's sort

Idea: Improve insertion sort by first sorting *distant* element

- First sort subsequences of elements $2^k 1$ apart:
 - sort items #0, $2^k 1$, $2(2^k 1)$, $3(2^k 1)$, ..., then
 - sort items #1, $1+2^k-1$, $1+2(2^k-1)$, $1+3(2^k-1)$, ...
 - sort items #2, $2+2^k-1$, $2+2(2^k-1)$, $2+3(2^k-1)$, ...
 - etc.
 - sort items # $2^k 2$, $2(2^k 1) 1$, $3(2^k 1) 1$, ...,
 - Each time an item moves, can reduce #inversions by as $2^k + 1$.
- Now sort subsequences of elements $2^{k-1} 1$ apart:
 - sort items #0, $2^{k-1}-1$, $2(2^{k-1}-1)$, $3(2^{k-1}-1)$, ..., then
 - sort items #1, $1+2^{k-1}-1$, $1+2(2^{k-1}-1)$, $1+3(2^{k-1}-1)$
 - -:
- End at plain insertion sort ($2^0 = 1$ apart), but with most in gone.
- Sort is $\Theta(N^{3/2})$ (take CS170 for why!).

Example of Shell's Sort

I: Inversions left.

C: Cumulative comparisons used to sort subsequences by insert