Analysis 2 Hausaufgabenblatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 29, 2023)

Problem 1. (Stückweise Integrierbarkeit) Zeigen Sie: ist $f:[a,b] \to \mathbb{R}$ Riemann-integrierbar auf [a,c] und [c,b] für ein $c \in (a,b)$, so auch auf [a,b].

Proof. Sei $\epsilon > 0$ beliebig. Weil f auf sowohl [a, c] als auch [c, b] integrierbar ist, gibt es eine Zerlegung $\mathcal{J}_1 = \{x_0 = a, x_1, \dots, x_n = c\}$ bzw. $\mathcal{J}_2 = \{x_n = c, x_{n+1}, \dots, x_{n+k}\}$ von [a, c] bzw. [c, b], so dass

$$\mathcal{O}_{\mathcal{J}_1} - \mathcal{U}_{\mathcal{J}_1}(f) < rac{\epsilon}{2} \ \mathcal{O}_{J_2} - \mathcal{U}_{J_2} < rac{\epsilon}{2} \$$

Dann ist $\mathcal{J} = \mathcal{J}_1 \cup \mathcal{J}_2$ eine Zerlegung von [a,b] und

$$\mathcal{O}_{\mathcal{J}} - \mathcal{U}_{\mathcal{J}} < \epsilon$$
.

Weil ϵ beliebig war, ist f integrierbar.

Problem 2. (Bestimmte Integrale) Berechnen Sie die folgenden bestimmten und unbestimmten Integrale :

- (a) $\int_1^4 \sin(\sqrt{x}) \, \mathrm{d}x$,
- (b) $\int_0^{1/2} \arcsin(x) dx$,
- (c) $\int \frac{1}{(1+x^2)^2} dx$,
- (d) $\int_0^1 x \sqrt{1 x^2} \, dx$.

Proof. (a) $u = \sqrt{x}$, $du = \frac{1}{2\sqrt{x}} dx$, also dx = 2u du. Wenn x = 1 ist u = 1, und x = 4 ist u = 2. Es gilt

$$\int_{1}^{4} \sin(\sqrt{x}) dx = \int_{1}^{2} \sin(u)(2u du)$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

$$=2 \int_{1}^{2} u \sin u \, du$$

$$=2 \left[u(-\cos u)|_{1}^{2} + \int_{1}^{2} \cos u \, du \right]$$
 partielle Integration
$$=2 \left[(\cos(1) - 2\cos(2)) + [\sin u]_{1}^{2} \right]$$

$$=2 \cos 1 - 4 \cos 2 + 2 \sin 2 - 2 \sin 1$$

(b)

$$\int_0^{1/2} \arcsin(x) \, dx = x \arcsin(x) \Big|_0^{1/2} - \int_0^{1/2} \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= \frac{1}{2} \arcsin\left(\frac{1}{2}\right) - \int_0^{1/2} \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$u = 1 - x^2, \qquad du = -2x \, dx.$$

Wenn x = 0, ist u = 1.

Wenn x = 1/2, ist u = 3/4.

$$\int_0^{1/2} \arcsin(x) \, \mathrm{d}x = \frac{\pi}{2} - \int_1^0 \frac{1}{(-2)} \frac{1}{\sqrt{u}} \, \mathrm{d}u$$

$$= \frac{\pi}{12} + \frac{1}{2} \int_1^{3/4} u^{-1/2} \, \mathrm{d}u$$

$$= \frac{\pi}{12} - \frac{1}{2} \int_{3/4}^1 u^{-1/2} \, \mathrm{d}u$$

$$= \frac{\pi}{12} - \frac{1}{2} \left[2u^{1/2} \right]_{3/4}^1$$

$$= \frac{\pi}{12} - 1 + \sqrt{\frac{3}{4}}$$

$$= -1 + \frac{\sqrt{3}}{2} + \frac{\pi}{12}.$$

(c) Substitution: $x = \tan \theta$, $dx = \sec^2 \theta d\theta$, für $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. Es gilt $\tan^2 \theta + 1 = \sec^2 \theta$. Es folgt

$$\int \frac{1}{(1+x^2)^2} dx = \int \frac{1}{(1+\tan^2 \theta)^2} (\sec^2 \theta d\theta)$$
$$= \int \frac{1}{\sec^4 \theta} \sec^2 \theta d\theta$$
$$= \int \cos^2 \theta d\theta$$
$$= \frac{1}{2} \int (1+\cos 2\theta) d\theta$$

$$=\frac{1}{2}\left[\theta + \frac{1}{2}\sin 2\theta\right]$$

Es gilt auch $\sin \theta = \sin \tan^{-1} x = \frac{x}{\sqrt{1+x^2}}$ und $\cos \theta = \cos \tan^{-1} x = \frac{1}{\sqrt{1+x^2}}$. Daraus folgt

$$\sin 2\theta = \sin \theta \cos \theta = \frac{x}{1 + x^2}.$$

Dann ist

$$\int \frac{1}{(1+x^2)^2} \, \mathrm{d}x = \frac{1}{2} \left(\tan^{-1} x + \frac{x}{1+x^2} \right).$$

(d)

$$\int_0^1 x\sqrt{1-x^2} \, dx = \frac{x^2}{2}\sqrt{1-x^2}|_0^1 + \int_0^1 \frac{x^2}{2} \frac{1}{2\sqrt{1-x^2}}(-2x) \, dx$$

$$= 0 - \frac{1}{2} \int_0^1 \frac{x^3}{\sqrt{1-x^2}} \, dx$$

$$u = 1 - x^2 \qquad du = -2x \, dx$$

$$x^3 \, dx = \frac{1}{-2}x^2(-2x \, dx)$$

$$= -\frac{1}{2}x^2 \, du$$

$$= -\frac{1}{2}(1-u) \, du$$

Wenn x = 0 ist u = 1

Wenn x = 1 ist u = 0

$$\int_{0}^{1} x\sqrt{1-x^{2}} \, dx = +\frac{1}{2} \int_{1}^{0} \left(-\frac{1}{2} \frac{1-u}{\sqrt{u}}\right) du$$

$$= \frac{1}{4} \int_{0}^{1} \frac{1-u}{\sqrt{u}} \, du$$

$$= \frac{1}{4} \left[2\sqrt{u} - \frac{2}{3}u^{\frac{3}{2}}\right]_{0}^{1}$$

$$= \frac{1}{4} \left[2 - \frac{2}{3}\right]$$

$$= \frac{1}{4} \frac{4}{3}$$

$$= \frac{1}{2}.$$

Problem 3. (Der Hauptsatz) Beweisen oder widerlegen Sie die folgenden Aussagen:

(a) Eine integrierbare Funktion $f:[a,b]\to\mathbb{R}$ besitzt eine Stammfunktion.

- (b) Eine stetige Funktion $f:[a,b] \to \mathbb{R}$ besitzt ein Stammfunktion.
- (c) Ein Funktion $f:[a,b] \to \mathbb{R}$, welche eine Stammfunktion auf [a,b] besitzt, ist integrierbar.

Hinweis: $F(x) = \sqrt{x^3} \sin\left(\frac{1}{x}\right)$ für $x \neq 0$

Proof. (a) Falsch. Sei $f:[0,1] \to \mathbb{R}$,

$$f(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x < 1. \end{cases}$$

Es gilt dann

$$\int_0^x f(x) \, \mathrm{d}x = \begin{cases} 0 & x \le \frac{1}{2} \\ x - \frac{1}{2} & x \ge \frac{1}{2} \end{cases}.$$

- (b) Ja (Proposition 6.4.1 und Definition 6.4.2).
- (c) Nein. Sei $F:[0,\infty)\to\mathbb{R}$,

$$F = \begin{cases} \sqrt{x^2} \sin\left(\frac{1}{x}\right) & x > 0\\ 0 & x = 0 \end{cases}$$

und

$$F' = f = -x^{-1/2}\cos\left(\frac{1}{x}\right) + \frac{3\sqrt{x}}{2}\sin\left(\frac{1}{x}\right).$$

Dann ist f nicht integrierbar, weil es nicht auf [0,1] eingeschränkt ist $(x^{1/2} \to \infty$ wenn $x \to 0)$.

Problem 4. (Riemann-Lemma) Es sei $f:[a,b]\to\mathbb{R}$ Riemann-integrierbar. Zeigen Sie, dass

$$\lim_{n \to \infty} \int_a^b f(x) \sin(nx) \, \mathrm{d}x = 0 \tag{5.1}$$

gilt. Verifizieren Sie dazu:

(i) Zeigen Sie, dass zu jedem $\epsilon>0$ eine stückweise konstante Funktion $T:[a,b]\to\mathbb{R}$ existiert mit

$$\int_{a}^{b} |f(x) - T(x)| \, \mathrm{d}x \le \epsilon.$$

(ii) Zeigen Sie (5.1) für beliebige, stückweise konstakte Funktionen.

- (iii) Folgern Sie die Behauptung.
- *Proof.* (i) Weil f integrierbar ist, können wir eine Zerlegung $\mathcal{J} = \{x_0 = a, x_1, \dots, x_n = b\}$ finden, so dass

$$\mathcal{O}_{\mathcal{J}}(f) - \mathcal{U}_{\mathcal{J}}(f) \leq \epsilon.$$

Wir definieren zwei stückweise konstante Funktionen:

$$\tau(x) = \begin{cases} \sup_{x_i \le x \le x_{i+1}} & x_i \le x < x_{i+1}, 0 \le i < n-1 \\ \sup_{x_{n-1} \le x \le x_n} & x_{n-1} \le x \le x_n \end{cases}$$
$$\sigma(x) = \begin{cases} \inf_{x_i \le x \le x_{i+1}} & x_i \le x < x_{i+1}, 0 \le i < n-1 \\ \inf_{x_{n-1} \le x \le x_n} & x_{n-1} \le x \le x_n \end{cases}$$

Dann sind τ und σ Treppenfunktionen mit $\sigma \leq f \leq \tau$ auf [a,b]. Es gilt außerdem per Definition

$$\epsilon \ge \mathcal{O}_{\mathcal{J}}(f) - \mathcal{U}_{\mathcal{J}}(f)$$

$$= \sum_{i=0}^{n-1} \left(\sup_{x_i \le x \le x_{i+1}} f(x) - \inf_{x_i \le x \le x_{i+1}} f(x) \right) (x_{i+1} - x_i)$$

$$= \sum_{i=0}^{n-1} (\tau(x_i) - \sigma(x_i))(x_{i-1} - x_i)$$

$$\ge \sum_{i=0}^{n-1} (\tau(x_i) - f(x_i))(x_{i+1} - x_i)$$

$$= \mathcal{O}_{\mathcal{J}}(\tau - \sigma)$$

$$\ge \mathcal{O}_{\mathcal{J}}(\tau - f)$$

$$\ge \int_a^b (\tau - f)(x) \, \mathrm{d}x$$

$$= \int_a^b |\tau(x) - f(x)| \, \mathrm{d}x$$

(ii) Wir beweisen es zuerst für konstante Funktionen

$$\int_{a}^{b} k \sin nx \, dx = \frac{k}{n} (-\cos nx)|_{a}^{b},$$

also

$$\left| \int_{a}^{b} k \sin nx \, dx \right| = \left| \frac{k}{n} \left(\cos nb - \cos na \right) \right|$$

$$\leq \frac{k}{n} \left[|\cos nb| + |\cos na| \right]$$

$$\leq \frac{k}{n} (2)$$

also

$$\lim_{n \to \infty} \left| \int_a^b k \sin nx \, \mathrm{d}x \right| \le \lim_{n \to \infty} \frac{2k}{n} = 0.$$

Statt eine stückweise konstante Funktion integrieren wir dann mehrere Male eine konstante Funktion. Danach summieren wir die Ergebnisse. Weil alle Ergebnisse geht gegen 0, geht die Summe auch gegen 0, also die Behauptung gilt für stückweise konstante Funktionen.

(iii) Sei

$$\lim_{n \to \infty} \int_a^b f(x) \sin nx \, \mathrm{d}x = \lim_{n \to \infty} \int_a^b \left[f(x) - \tau(x) + \tau(x) \right] \sin nx \, \mathrm{d}x$$

$$= \lim_{n \to \infty} \left[\int_a^b (f(x) - \tau(x)) \sin nx \, \mathrm{d}x + \int_a^b \tau(x) \sin nx \, \mathrm{d}x \right]$$

$$\left| \lim_{n \to \infty} \int_a^b f(x) \sin nx \, \mathrm{d}x \right| \le \lim_{n \to \infty} \left[\left| \int_a^b (f(x) - \tau(x)) \sin nx \, \mathrm{d}x \right| + \left| \int_a^b \tau(x) \sin nx \, \mathrm{d}x \right| \right]$$

$$\le \lim_{n \to \infty} \left[\int_a^b |f(x) - \tau(x)| \, \mathrm{d}x + \int_a^b \sin nx \, \mathrm{d}x \right]$$

Wir nehmen dann $N \in \mathbb{N}$ hinreichend groß, so dass für alle n > N gilt

$$\int_{a}^{b} \tau(x) \sin nx \, \mathrm{d}x \le \frac{\epsilon}{2}$$

(Möglich wegen (b)). Dann ist

$$\left| \lim_{n \to \infty} \int_{a}^{b} f(x) \sin nx \, \mathrm{d}x \right| \le \epsilon.$$

Weil ϵ beliebig war, gilt die Behauptung.

Problem 5. Für eine gegebene Funktion $f:[a,b]\to\mathbb{R}$ kann unter bestimmten Voraussetzungen (z.B. $f\in C^1([a,b])$, wir kommen in der Vorlesung darauf zurück) die Länge des Funktionsgraphen durch

$$L(f) = \int_{a}^{b} \sqrt{1 + |f'(x)|^2} \, \mathrm{d}x$$

bestimmt werden.

- (i) Begründen Sie kurz anschaulich, warum diese Formel wahr sein kann. Hinweis: Pythagoras.
- (ii) Bestimmen Sie über obige Identität den Umfang eines Einheitskreises.

Proof. (i)

also intuitiv wäre

$$L(f) = \int_a^b \sqrt{(\mathrm{d}x)^2 + \left(\frac{\mathrm{d}f}{\mathrm{d}x}\,\mathrm{d}x\right)^2} = \int_a^b \sqrt{1 + f'(x)^2}\,\mathrm{d}x.$$

(ii) Wir berechnen zuerst die Länge eines Hälftes des Kreises, also

Es gilt

$$f'(x) = -\frac{x}{\sqrt{1-x^2}},$$

und

$$L(f) = \int_{-1}^{1} \sqrt{1 + \frac{x^2}{1 - x^2}} \, dx$$
$$= \int_{-1}^{1} \sqrt{\frac{1}{1 - x^2}} \, dx$$

$$= \int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} dx$$
$$= \arcsin(x)|_{-1}^{1}$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi,$$

also der Umfang ist $2\pi.$