ملخص مادة الفيزياء للصف الثاني الثانوي الفصل الدراسي الثاني للعام الدراسي: ٢٠٢٢/٢٠٢١م

ل والغازات).		لاتتخدش	لانسيابو	المائع أيمادة قابلة للا	
	-	خصائص الموائع السائلة			
، يون و به يه يه يه و تنظير بالانتشار - قابلة للانضغاط. بحيز توجد فيه وتتخذ حجمه - تتميز بالانتشار - قابلة للانضغاط.					
$\rho = \frac{m}{V_{ol}} \qquad (kg/m^3)$					
ا العوامل التي تتوقف عليها الكثافة ١-الوزن الذري للعنصر أو الوزن الجزيئي للمركب. ٢-المسافات البينية بين الذرات أو الجزيئات.					
الكثافة تتغير بتغير نوع المادة أودرجة الحرارة لأن تغير درجة حرارة المادة يؤدي إلى تغير المسافات البينية بين الجزيئات وبالتالي					
يتغير الحجم فتتغير الكثافة لثبوت الكتلة.					
، عند وضع جسم صلب في إناء مملوء بالماء فإنه يزيح كمية من الماء حجمها يساوي حجم الجسم الصلب.				تعيين حجم جسم صلب	
لطمادتين	عندخا				
$(ho V_{ol})_{_{f bull ball ball ball ball ball ball ball$	$m_{$ خلیط $}=m_1+m_2$				
$\left(rac{m}{ ho} ight)$ خلیط $=\left(rac{m_1}{ ho_1} ight)+\left(rac{m_2}{ ho_2} ight)$	$(ho V_{ol})_{1} = ho_1 (V_{ol})_1 + ho_2 (V_{ol})_2$ خليط				
	<i>ستدلال على مدى شح</i>	Y I-	81-		
لأنيميا وتركيزا لأملاح في البول	خيص الأمراض مثل الا	ا ف		تطبيقاتعلىالكثا	
ثافة الماء عند نفس درجة الحرارة.	بة بين كثافة المادة وك	النس			
ب المنطقة بين كتلة حجم معين من المادة وكتلة نفس الحجم من الماء عند نفس درجة الحرارة.			، روم درم المراجع المرا		
$ ho_{:}=rac{ ho_{ar{o}}}{-}=rac{m_{ar{o}}}{-}$ كتلة حجم من المادة	$\rho_{\rm halo} m_{\rm halo}$		الكثافة النسبية لمادة		
$ ho_{i_{ m initial}}=rac{r_{ m sid}}{ ho_{ m el}}=rac{r_{ m sid}}{m_{ m el}}$ كتلة نفس الحجم من الماء $r_{ m el}$					
مقدارالقوةالمتوسطة المؤثرة عمودياً على وحدةالمساحات المحيطة بتلك النقطة.		مقدا	الضغط		
$P = \frac{F \cos \theta}{A} \qquad (pa \equiv N/m^2 \equiv kg/m.s^2 \equiv J/m^3)$					
إمس بين الإطار والطريق فتزداد قوى الاحتكاك ويسخن	دة مساحت سطح التلا	واء لزياد	لاينصح بقيادة السيارة وضغط الهواء		
	لاروقد ينفجر.	الإط	داخل الاطارات منخفض		
120 torr			ضغطالدم		
<u>80 torr</u> مقداروزن عمود من الهواء مساحة مقطعه وحدة المساحات وارتفاعه من مستوى سطح البحر حتى					
معد، روري عمود من بهواء مساحه مستعه وحده بمساحات وارتساعه من مستوى ستعي البعار حتى قمة الغلاف الجوي.			الضغط الجوي (Pa)		
ذي قاعد ته وحدة المساحات المحيطة بتلك النقطة وارتفاعه البعد	** - *				
يدربورن حبود مدين الكالنقطة وسطح السائل.					
$P = \rho g h$					
الضغطالمؤثر على قاعي الإناءين هو الضغطالجوي Pa الناتج عن الهواء.		ين الضغ	في حالة إناء ين مختلفين الشكل فارغين الشكل ومتوازي مستطيلات مثلاً)		
$F_1 = Pa.A_1$, $F_2 = Pa.A_2$ \Rightarrow $\frac{F_1}{F_2} = \frac{A_1}{A_2}$					
الضغط داخل الطائرة الضغط ، Pa ، الضغط خارج الطائرة (Pa – P _{air})			فرق الضغط داخل وخارج الطائرة		
$\Delta P = Pa - (Pa - P_{air}) = (\rho gh)_{air}$ نفط	التغيرفيالضغ				
$P = Pa + \rho gh$	نسائل		ة في باط	الضغطالكلي عند نقط	
۱- الضغط كمية قياسية. ملاحظات على الضغط ٢- يؤثر الضغط عند نقطة في باطن سائل في جميع الاتجاهات.				ملاحظات على	

٣- الضغط على جسم في باطن سائل يكون عمودياً على كل نقطة على سطحه.				
٤- جميع النقاط التي تقع في مستوى أفقي واحد في باطن سائل ساكن متجانس يكون لها نفس				
الضغط لأن لها نفس العمق (h) أسفل السطح.				
٥- تبنى السدود بحي تكون أكثر سمكاً عند القاعدة حتى تتحمل الزيادة في الضغط الناتجة عن				
زيادة عمق المياه.				
٦- يحفظ الضغط داخل الطائرات والغواصات بحيث يكون مساوياً للضغط الجوي.				
$F = PA = \rho ghA$	القوة المؤثرة على قاع إناء مملوء بسائل			
$F = \frac{1}{2} \rho ghA$	القوةالمؤثرة على الجوانب الرأسية للإناء			
عبارة عن مجموعة من الأواني مختلفة الشكل ومتصلة معاً عبر قاعدة مشتركة أفقية.				
فمرة عملها: تساوي الضغط عند جميع النقاط الواقعة في مستوى أفقي واحد في باطن	الأواني لمستطرقة			
سائلساكن متجانس.				
$ ho_o h_o = ho_w h_w \Rightarrow rac{ ho_o}{ ho_w} = rac{h_w}{h_o}$ $ ho$ الكثافة $ ho$	أنبوبة ذات شعبتين تحوي ماءوزيت			
جهازيستخدم في قياس الضغط الجوي، يتكون من أنبوبة طولها متر مفتوحة من أحد				
طرفيها – حوض حجمه مناسب - كمية من الزئبق.	(بارومتر تورشيلي)	البارومترالزئبقي		
$Pa = \rho gh = 13595 \times 9.8 \times 0.76 = 1.013 \times 10^5 \text{ pascal}$				
الارتفاع عن سطح البحر - كثافة الهواء - درجة الحرارة - عجلة الجاذبية الأرضية.	العوامل التي يتوقف عليها الضغط الجوي			
$h_{egin{array}{c} egin{array}{c} eta_{Hg} \; (h_{egin{array}{c} egin{array}{c} eta_{egin{array}{c} eta_{Hg} \end{array}} (h_{egin{array}{c} eta_{egin{array}{c} eta_{eta_{egin{array}{c} eta_{egin{array}{c} eta_{egin{arra}{c} eta_{egin{array}{c} eta_{egin{arra}{c} eta_{egin{arra}{c} eta_{egin{arra}}} eta_{egin{arra}{c} eta_{egin{a$	تعيين ارتفاع جبل بواسطة البارومتر			
$n_{egin{subarray}{c} egin{subarray}{c}$				
0.76 m Hg , 76 cm Hg , 760 mm (torr) , $1.013 \times 10^5 \text{ N/m}^2$, 1.013 bar	وحداتالضغطالجوي			
تعيين ضغط غاز محبوس في مستودع بمعلومية الضغط الجوي.	المانومتر			
عندما يؤثر ضغط على سائل محبوس في إناء فإن ذلك الضغط ينتقل بتمامه إلى جميع	قاعدة (مبدأ) باسكال			
أجزاءالسائل كما ينتقل إلى جدران الإناء.				
١ – المكبس الهيد روليكي. ٢ – الفرامل الهيد روليكية في السيارة. ٣ – الرافعة الهيد روليكية	تطبيقات على قاعدة باسكال			
٤-كرسي طبيب الأسنان. ٥-الحفار الهيد روليكي.				
$P = \frac{f}{a} = \frac{F}{A} \implies \frac{F}{f} = \frac{A}{a} = \frac{y_1}{y_2}$	المكبسالهيدروليكي			
$P = \overline{a} = \overline{A} \qquad \Longrightarrow \qquad \overline{f} = \overline{a} = \overline{y_2}$	(أحد تطبيقات قاعدة باسكال)			
$ \eta = \frac{F}{f} = \frac{A}{a} = \frac{R^2}{r^2} = \frac{y_1}{y_2} $				
$\eta - \frac{1}{f} - \frac{1}{a} - \frac{1}{r^2} - \frac{1}{y_2}$	الفائدة الآلية للمكبس الهيدروليكي			
$\frac{Fy_2}{6} = 1000000000000000000000000000000000000$	ک			
$f y_1$ الشغل المبدول على المكبس الصغير $f y_1$				
ئية لجزيئات المائع (سائل أو غاز) في خطوط مستقيمة وفي جميع الاتجاهات.	الحركةالبراونية			
عند ثبوت درجة الحرارة يتناسب حجم مقد ارمعين من غازتناسباً عكسياً معضغطه أو عند ثبوت درجة الحرارة يكون حاصل ضرب حجم مقد ارمعين من غاز وضغطه يساوي مقد ارثابت.				
	قانون بويل			
$V_{ol} \propto \frac{1}{P}$, $PV_{ol} = const$, $P_1(V_{ol})_1 = P_2(V_{ol})_2$,	$\frac{P_1}{P_2} = \frac{(V_{ol})_2}{(V_{ol})_1}$			
		عند خلط غازات لا		
$P_{ t t t t t t t t t t t t t $	تتفاعل مع بعضها			
عند ثبوت الضغط يتناسب حجم مقدار معين من غازتناسباً طردياً مع درجة حرارته المطلقة (الكلفينية).				
ارمعين من غازبمقدار $rac{1}{273}$ من حجمه الأصلي عند 0° C لكل ارتفاع في درجة الحرارة قدره درجة واحدة.	ثبوت الضغط يزداد حجم مقا	قانون شارل أوعند		

$\begin{aligned} V_{vij} &\propto T , & \frac{V_{vij}}{T} = \text{const} , & (V_{vij})_{T_2} = (V_{vij})_{T_1} , & \frac{V_{vij}}{T_1} = \frac{V_{vij}}{T_2} \\ \frac{V_{vij}}{T_1} &= \frac{V_{vij}}{T_2} \\ \frac{V_{vij}}{T_2} &= \frac{V_{vij}}{T_2} \\ \frac{V_{vij}}{V_{vij}} &= \frac{V_{vij}}{V_{vij}} &= \frac{V_{vij}}{V_{vij}} \\ \frac{V_{vij}}{V_{vij}} &= \frac{V_{vij}}{V_{vij}} &= \frac{V_{vij}}{V_{vij}} \\ \frac{V_{vij}}{V_{vij}} &= \frac{V_{vij}}{V_{vij}} $			•			
T = 1 + 273	$V_{ol} \propto T$, $\frac{Vol}{T} = const$, $(V_{ol})_1 T_2 = (V_{ol})_2 T_1$, $\frac{(V_{ol})_1}{T_1} = \frac{(V_{ol})_2}{T_2}$					
T = 1 + 273	لختلفة تتمدد بمقادير متساوية إذا ارتفعت درجة حرارتها بنفس المقدار عند ثبوت الضغط.	الغازات	الحجوم المتساوية من			
المعلق						
صفط ثابت $\frac{(V_{al})_{or}\Delta t}{(V_{al})_{or}\Delta t} = \frac{1+\alpha_{V}t_{1}}{(V_{ol})_{or}\Delta t} = \frac{1}{273}K$ $\frac{(V_{al})_{1}}{(V_{al})_{2}} = \frac{1+\alpha_{V}t_{1}}{1+\alpha_{V}t_{2}} = \frac{1}{273}K$ $\frac{(V_{al})_{1}}{(V_{al})_{2}} = \frac{1+\alpha_{V}t_{1}}{1+\alpha_{V}t_{2}} = \frac{1}{274}K$ $\frac{(V_{al})_{2}}{(V_{al})_{2}} = \frac{1+\alpha_{V}t_{1}}{1+\alpha_{V}t_{2}} = \frac{1}{274}K$ $\frac{(V_{al})_{1}}{(V_{al})_{2}} = \frac{1+\alpha_{V}t_{1}}{1+\alpha_{V}t_{2}} = \frac{1}{274}K$ $\frac{(V_{al})_{1}}{(V_{al})_{2}} = \frac{1+\alpha_{V}t_{1}}{(V_{al})_{2}} = \frac{1}{273}K$ $\frac{(V_{al})_{1}}{(V_{al})_{2}} = \frac{1}{1+\alpha_{V}t_{1}} = \frac{1}{1+\alpha_{V}t_{$	لتمدد الحجمي $(lpha_{ m v})$ لأي غازمن الحجم الأصلي عند $0^{ m o}{ m C}$ يساوي مقدار ثابت عند ثبوت الضغط.	معامل	معاملالتمدد			
التفقدين عجمالغاز ومعامل ($\frac{(V_{al})}{(V_{al})}$ = $\frac{1+\alpha_V t_1}{1+\alpha_V t_2}$ $\frac{(V_{al})}{1+\alpha_V t_2}$ $\frac{1}{1+\alpha_V t_2}$ $\frac{(V_{al})}{1+\alpha_V t_2}$ $\frac{1}{1+\alpha_V t_2}$ $\frac{(C_{ab})}{1+\alpha_V t_2}$ $(C_$	$\alpha = \Delta(V_{ol}) = (V_{ol})_{t^{\circ}C} - (V_{ol})_{0^{\circ}C} = \ell_{t^{\circ}C} - \ell_{0^{\circ}C} = \frac{1}{V_{ol}} V^{-1}$		الحجمي لغازتحت			
التعدد العجميودرجة العرارة التي ينعدم عندها حجم الغاز نظرياً عند ثبوت الضغط. (V_{av}) V_{av} V	$\alpha_{\rm v} - \frac{1}{(V_{ol})_{0^{\circ}\mathbb{C}} \Delta t} - \frac{1}{(V_{ol})_{0^{\circ}\mathbb{C}} \Delta t} - \frac{1}{\ell_{0^{\circ}\mathbb{C}} \Delta t} - \frac{1}{273} \Lambda$		ضغطثابت			
الصفرالمطاق التفسير $->$ (عند $->$ $->$ $->$ $->$ $->$ $->$ $->$ $->$	$(V_{ol})_1 = 1 + \alpha_V t_1$	ومعامل	العلاقة بين حجم الغاز			
الصفر المطاق التفسير — (عند X 0 و يتحول الغاز إلى سائل أو صلب وبالتا لي ينعدم حجم الغاز (الغاز ليس له وجود)).	$(V_{ol})_2 - \frac{1}{1 + \alpha_V t_2}$	الحرارة	التمدد الحجمي ودرجة			
	لحرارة التي ينعدم عندها حجم الغاز نظرياً عند ثبوت الضغط.	درجة				
الغازالذي يتلاشى حجمه وضغطه عند الصفر المطاق هو الغازالثالي الغازالذي يتلاشى حجمه وضغطه عند الصفر المعين من غاز تناسباً طردياً مع درجة حرارته المطاقة . و عند ثبوت الحجم يتناسب ضغط مقدار معين من غاز بمقدار $\frac{1}{273}$ من ضغطه الأصلي عند 0° 0 لكل ارتفاع هي قانون الضغط أحد $P \propto T , \frac{P}{T} = const , \frac{P_1}{T_2} = \frac{P_2}{T_1} , \frac{(V_{ol})_1}{T_2} = \frac{(V_{ol})_2}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_1}{T_2} = \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{(V_{ol})_2}{T_2} = \frac{V_{ol}}{T_2} = \frac{V_{ol}}{T_2} = \frac{V_{ol}}{T_2}$ $A = 1 + \frac{1}{273} , \frac{V_{ol}}{T_2} = V_{o$	$ ext{c} o 0$ ر $ o$ (عند $ ext{min} o 0$ يتحول الغاز إلى سائل أوصلب وبالتالي ينعدم حجم الغاز (الغاز ليس له وجود)).	التفسي	الصفرالمطلق			
عند ثبوت الحجم يتناسب ضغط مقدار معين من غاز تناسباً طروياً مع درجة حرار ته المطلقة. وعند ثبوت الحجم يتناسب ضغط مقدار معين من غاز بمقدار $\frac{1}{273}$ من ضغطه الأصلي عند 0° C كل ارتفاع في المورجة واحدة. $P \propto T , \frac{P}{T} = const , \frac{P_1}{T_1} = \frac{P_2}{T_2} , \frac{(V_{al})_2}{T_1} = \frac{(V_{al})_2}{T_2}$ معامل زيادة الضغط (P_1) لأي غاز من الضغط الأصلي عند 0° C يساوي مقدار الثبيات عند ثبوت الحجم مقدار الزيادة في وحدة الضغط من الغاز عند 0° C عند ما ترتفع درجة حرار ته درجة واحدة عند بوت الحجم ضغط الغاز عند 0° C عند ما ترتفع درجة حرار ته درجة واحدة عند ثبوت الحجم وتساوي 0° C عند ما ترتفع درجة حرار ته درجة واحدة عند ثبوت الحجم وتساوي 0° C عند ما ترتفع درجة حرار ته درجة واحدة عند ثبوت الحجم وتساوي 0° C عند ما ترتفع درجة حرار ته درجة واحدة عند ثبوت الحجم وتساوي وتساوي 0° C عند ما ترتفع درجة حرار ته درجة واحدة عند ثبوت الحجم وتساوي وتساوي 0° C عند ما ترتفع درجة واحدة عند ثبوت الحجم والمغط المتساوية الغازات المختلفة تزداد بنفس المقدار إذا ارتفعت درجة حرارتها بمقاد ير متساوية عند ثبوت الحجم والمغط المتساوية الغازات المختلفة تزداد بنفس المقدار الإلى في ضغطه مقسوماً على درجة حرارتها على تدريج كلفن يساوي مقدار ثابت والغاز والعام والمغط المتساوية العازات من الدرجة العالينية المن المضوط المتساوية المغلاء والمغلقة) والمؤلفة من المغراء والمؤلفة المن الصفر سالمة وموجة (مطلقة) والمؤلفة الحرارة على تدريج كلفن يساوي مقدار تغير درجة الحرارة على تدريج كلفن يساوي مقدار تغير درجة العرارة على تدريج كلفن يساوي مقدار على مقال وحدال المعرو المثالة المؤلفة والمؤلفة والمؤلفة والمؤلفة والمؤلفة والمؤلفة والمؤلفة والم	لحرارة التي ينعدم عندها ضغط الغاز نظرياً عند ثبوت الضغط .	درجة	(0°K)			
قانون الضغط واعداد المعين من غازيمقدار $\frac{1}{273}$ من ضغطه الأصلي عند 0° C كار رتفاع في درجة الحرارة قدرود رجمة واحداد المعين من غازيمقدار $\frac{1}{273}$, $\frac{1}{273}$, $\frac{1}{273}$, $\frac{1}{273}$:ي يتلا <i>شى حجمه وضغطه عند الصفر المطلق هو الغا</i> ز المثالي.	الغازالة				
قاقون الغنفط ورجة الحرارة قدرو درجة واحدة واحدة واحدة واحدة الخرارة قدرو الخراق قدرو درجة واحدة واحدة واحدة واحدة واحدة واحدة واحدة الغنفط والمنازيادة الغنفط ($\frac{P}{T_1} = \frac{P_2}{T_2}$, $\frac{(V_{ol})_1}{T_1} = \frac{(V_{ol})_2}{T_2}$ معامل زيادة الضغط ($\frac{P}{T_1} = \frac{P_2}{T_2}$, $\frac{(V_{ol})_1}{T_1} = \frac{(V_{ol})_2}{T_2}$ مقدار الزيادة في وحدة الضغط الفازيات الغنفط المنازيات والمنازيات الغنوات العجم المنفط الفازيات الغنوات الغنوات الغنوات العجم والمنفط الفازيات الغنوات الغنوات العجم المنفط الفازيات الغنوات الغنوات الغنوات الغنوات الغنوات الغنوات العجم المنفط الفازيات الغنوات الغن	وت الحجم يتناسب ضغط مقد ارمعين من غازتناسباً طردياً مع درجة حرارته المطلقة.	عندث				
قاقون الغنفط ورجة الحرارة قدرو درجة واحدة واحدة واحدة واحدة الخرارة قدرو الخراق قدرو درجة واحدة واحدة واحدة واحدة واحدة واحدة واحدة الغنفط والمنازيادة الغنفط ($\frac{P}{T_1} = \frac{P_2}{T_2}$, $\frac{(V_{ol})_1}{T_1} = \frac{(V_{ol})_2}{T_2}$ معامل زيادة الضغط ($\frac{P}{T_1} = \frac{P_2}{T_2}$, $\frac{(V_{ol})_1}{T_1} = \frac{(V_{ol})_2}{T_2}$ مقدار الزيادة في وحدة الضغط الفازيات الغنفط المنازيات والمنازيات الغنوات العجم المنفط الفازيات الغنوات الغنوات الغنوات العجم والمنفط الفازيات الغنوات الغنوات العجم المنفط الفازيات الغنوات الغنوات الغنوات الغنوات الغنوات الغنوات العجم المنفط الفازيات الغنوات الغن	ثبوت الحجم يزداد ضغط مقدار معين من غاز بمقدار $rac{1}{273}$ من ضغطه الأصلي عند $0^{\circ}\mathrm{C}$ لكل ارتفاع في	أو عند				
معامل زیادة الضغط ((P_0)) لای غاز من الضغط الأصلي عند (P_0) یساوي مقدار ثابت عند ثبوت الحجم. مقدار الزیادة في وحدة الضغط من الغاز عند (P_0) عند ما ترتفع درجة حرارته درجة واحدة عند بوت الحجم ضغط الغاز عند (P_0) عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم ضغط الغاز عند (P_0) الضغط عند (P_0) عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم وتساوي (P_0) الضغط الغاز عند (P_0) عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم (P_0) وتساوي (P_0) عند ما ترقع درجة واحدة عند ثبوت الحجم (P_0) عند من غاز غي ضغطه مقسوماً على درجة حرارته على تدريج كلفن يساوي مقدار ثابت (P_0) الغاز ال			قانونالضغط			
مقدار الزيادة في وحدة الضغوط من الغاز عند 0° عند ما ترتفع درجة حرارته درجة واحدة عند بوت الحجم معامل زيادة سبة زيادة ضغط الغاز عند 0° عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم ضغط الغاز عند 0° عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم وتساوي $\frac{1}{273} K^{-1}$ \frac	$P \propto T$, $\frac{P}{T} = const$, $\frac{P_1}{T_1} = \frac{P_2}{T_2}$, $\frac{(V_{ol})_1}{T_1} = \frac{(V_{ol})_2}{T_2}$					
مقدار الزيادة في وحدة الضغوط من الغاز عند 0° عند ما ترتفع درجة حرارته درجة واحدة عند بوت الحجم معامل زيادة سبة زيادة ضغط الغاز عند 0° عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم ضغط الغاز عند 0° عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم وتساوي $\frac{1}{273} K^{-1}$ \frac	يادة الضغط ($oldsymbol{eta}_{ m P}$) لأي غازمن الضغط الأصلي عند $0^{\circ}{ m C}$ يساوي مقدار ثابت عند ثبوت الحجم.	معاملز				
معامل زیادة معامل زیادة فیساوی $\frac{1}{273} K^{-1}$ سبو و تساوی المعنفط الغاز إلی الضغط عند 0° O عند ما ترتفع درجة حرارته درجة واحدة عند ثبوت العجم وتساوی $\frac{1}{273} K^{-1}$ وتساوی $\frac{1}{273} K^{-1}$						
ر فغطالفازعند ونسبة زيادة ضغطالفازالى الضغط عند 0°C عندما ترتفع درجة حرارته درجة واحدة عند ثبوت الحجم وتساوي $\frac{1}{273} K^{-1}$ وتساوي $\frac{1}{273} K^{-1}$ $\frac{1}{273} K^{-1}$ $\frac{1}{273} K^{-1}$ $\beta_P = \frac{\Delta P}{P_0 \circ c} \Delta t = \frac{P_{1} \circ c}{P_0 \circ c} \Delta t = \frac{1}{273} K^{-1}$ $\frac{1}{273} K^{-1}$ $\frac{1}{273} K^{-1}$ $\frac{P_1}{P_2} = \frac{1}{1 + \beta_P} \frac$	l		معاملزيادة			
$\beta_{\rm P} = \frac{\Delta {\rm P}}{{\rm P}_{\rm 0°C} \Delta {\rm t}} = \frac{{\rm P}_{\rm P°C} - {\rm P}_{\rm 0°C}}{{\rm P}_{\rm 0°C} \Delta {\rm t}} = \frac{1}{273} {\rm K}^{-1}$ $\frac{{\rm P}_{\rm P}}{{\rm P}_{\rm 0°C} \Delta {\rm t}} = \frac{{\rm P}_{\rm P°C} - {\rm P}_{\rm 0°C}}{{\rm P}_{\rm 0°C} \Delta {\rm t}} = \frac{1}{273} {\rm K}^{-1}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 1}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm 1} + \beta_{\rm P}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm P}_{\rm 1}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm P}_{\rm 1}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm P}_{\rm 1}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm P}_{\rm 1}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2} {\rm t}_{\rm 2}} {\rm t}_{\rm 2} {\rm t}_{\rm 2}$ $\frac{{\rm P}_{\rm 1}}{{\rm P}_{\rm 1}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}} {\rm t}_{\rm 2}} $			ضغطالغازعند			
$\beta_P = \frac{\Delta P}{P_{0}^{\circ} C} \Delta t = \frac{P_{t}^{\circ} C - P_{0}^{\circ} C}{P_{0}^{\circ} C} \Delta t = \frac{1}{273} \text{K}^{-1}$ $\frac{P_1}{P_2} = \frac{1 + \beta_P}{1 + \beta_P} t_1$ $\frac{P_1}{P_2} = \frac{1 + \beta_P}{1 + \beta_P} t_2$ $\frac{P_1}{1 + \beta_P} = \frac{1 + \beta_P}{1 + \beta_P} t_2$ $\frac{P_1}{1 + \beta_P} = \frac{1 + \beta_P}{1 + \beta_P} t_2$ $\frac{P_1}{1 + \beta_P} = \frac{1 + \beta_P}{1 + \beta_P} t_2$ $\frac{P_1}{1 + \beta_P} = \frac{1 + \beta_P}{1 + \beta_P} t_2$ $\frac{P_1}{P_2} = \frac{1 + \beta_P}{1 + \beta_P} t_2$ $\frac{P_1}{1 + \beta_P} = \frac{1 + \beta_P}{1 + \beta_P} t_2}$ $\frac{P_1}{P_2} = \frac{P_1}{P_2} = \frac{P_1}{P_2} t_2}$ $\frac{P_1}{P_2} = \frac{P_1}{P_2} = \frac{P_2}{P_2} t_2}$ $\frac{P_1}{P_2} = \frac{P_2}{P_2} = \frac{P_1}{P_2} t_2}$ $\frac{P_1}{P_2} = \frac$			ثبوتالحجم			
$\frac{P_1}{P_2} = \frac{1 + \rho_p}{1 + \beta_p} t_1$ هو معامل زيادة النفعات ودرجة الخوارة ومعامل زيادة النفعات المنطقط المتساوية للغازات المختلفة تزداد بنفس المقدار إذا ارتفعت درجة حرارتها بمقادير متساوية عند ثبوت الحجم. $P(V_{ol}) = Const$ حاصل ضرب حجم مقدار معين من غاز في ضغطه مقسوماً على درجة حرارته على تدريج كلفن يساوي مقدار ثابت $P(V_{ol}) = Const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT \Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_1(V_{ol})_1}{T_1} = \frac{P_1(V_{ol})_2}{T_1} = $	2/3					
الضغوط المتساوية للغازات المختلفة تزداد بنفس المقدار إذاار تفعت درجة حرارتها بمقادير متساوية عند ثبوت الحجم.	$P_1 = 1 + \beta_0 t_1$					
الضغوط المتساوية للغازات المختلفة تزداد بنفس المقدار إذا ارتفعت درجة حرارتها بمقادير متساوية عند ثبوت المحجم.	$\frac{\mathbf{r}_1}{\mathbf{P}_2} = \frac{\mathbf{r}_1 \mathbf{p}_1}{1 + \boldsymbol{\beta}_{\mathbf{p}} \mathbf{t}_2}$					
القانون العام حاصل ضرب حجم مقد ارمعين من غاز في ضغطه مقسوماً على درجة حرارته على تدريج كلفن يساوي مقد ار ثابت $\frac{P(V_{ol})}{T} = const \Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2} \Rightarrow P(V_{ol}) = nRT \Rightarrow \frac{P}{\rho T} = const$ للغازات $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ STP STP يتم تحويل درجة الحرارة في قوانين الغازات من الدرجة السيلزية إلى الدرجة الكلفينية لأن مقياس كلفن قيمه موجبة (مطلقة) ، بينما درجات الحرارة على مقياس سيلزيوس الأقل من الصفر سالبة . $\text{AT} = \Delta t$ مقد ارتغير درجة الحرارة على تدريج كلفن يساوي مقد ارتغير درجة الحرارة على تدريج سيلزيوس تعليا .	ودرجه الحراره					
$\frac{P(V_{ol})}{T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2}$ $\Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ للغازات $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ STP STP $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = 1 \text{ cm} \Rightarrow 1$	144					
$\frac{P(V_{ol})}{T} = const$ $\Rightarrow \frac{P_1(V_{ol})_1}{T_1} = \frac{P_2(V_{ol})_2}{T_2}$ $\Rightarrow P(V_{ol}) = nRT$ $\Rightarrow \frac{P}{\rho T} = const$ للغازات $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ STP STP $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $(V_{ol})_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ $P_{gas} = 1 \text{ cm} \Rightarrow 1$	ضرب حجم مقدار معين من غاز في ضغطه مقسوماً على درجة حرارته على تدريج كلفن يساوي مقدار ثابت	حاصل	4 64 6 74 64			
$P_{gas} = Pa = 76 \text{ cm Hg} = 1 \text{ atm } , t = 0^{\circ}\text{C} \Rightarrow T = 0 + 273 = 2730^{\circ}\text{ K}$ (V_{ol}) $V_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ (معد) V_{ol} $V_{gas} = 22.4 \text{ Liter } , n = 1 \text{ mol}$ V_{ol} $V_{$,			
$P_{\rm gas} - Pa = 70 {\rm cm} {\rm Hg} = 1 {\rm atm} , t = 0 {\rm C} \implies 1 = 0 + 275 = 2750 {\rm K}$ (V_{ol}) V_{ol} (V_{ol}) $V_{gas} = 22.4 {\rm Liter} , n = 1 {\rm mol}$ V_{ol} $V_{$	$\frac{-t \cdot s_0}{T} = const \implies \frac{-t \cdot s_0}{T_1} = \frac{-t \cdot s_0}{T_2} \implies P(V_{ol}) = nRT \implies \frac{-t}{\rho T} = const$		للغازات			
$(V_{ol})_{gas} = 22.4 \text{ Liter} , n = 1 \text{ mol}$ STP STP $n = 1 \text{ mol}$ n	$P_{cos} = Pa = 76 \text{ cm Hg} = 1 \text{ atm}$ $t = 0^{\circ}C \implies T = 0 + 273 = 2730^{\circ} \text{ K}$		الظروف القياسية			
تعلیل یتم تحویل درجة الحرارة في قوانین الغازات من الدرجة السیلزیة إلى الدرجة الكلفینیة $rac{1}{2}$ موجبة (مطلقة) ، بینما درجات الحرارة علی مقیاس سیلزیوس الأقل من الصفر سالبة . مقد ارتغیر درجة الحرارة علی تدریج كلفن یساوي مقد ارتغیر درجة الحرارة علی تدریج سیلزیوس $\Delta T = \Delta t$ تعلیل .						
تعلیل موجبة (مطلقة)، بینما درجات الحرارة علی مقیاس سیلزیوس الأقل من الصفر سالبة. مقدار تغیر درجة الحرارة علی تدریج کلفن یساوی مقدار تغیر درجة الحرارة علی تدریج سیلزیوس $\Delta T = \Delta t$ تعلیل تعلیل	يتم تحويل درجة الحرارة في قوانين الغازات من الدرجة السيلزية إلى الدرجة الكلفينية لأن مقياس كلفن قيمه					
$\Delta T = \Delta t$ مقدار تغیر درجة الحرارة على تدریج كلفن یساوي مقدار تغیر درجة الحرارة على تدریج سیلزیوس						
بعلال ا			A			
		تعلیل لأن تدریجي كلفن وسیلزیوس كل منهما مقسم إلى 100 قسم.				

