Project3-Group3

Dogs, Fried Chicken, or Blueberry Muffins?

Keran Li, Mingming Liu, Zhongxing Xue, Yuhan Zha, Junkai Zhang

- ◆ Feature Selection SIFT, LBP, Image RGB
- Classification Model
- ◆ Result

LBP Feature

(Local Binary Patterns)

Iack of color changeScale & spin VarianceHuge time cost!

Image RGB Feature

RGB position

 $(186,47,255) \rightarrow (9,3,12)$

f(a,b,c) = 144(a-1) + 12(b-1)+c

Color#1188

Range	Subgrp			
0-21	1			
22-42	2			
43-64	3			
65-85	4			
86-106	5			
107-128	6			
129-149	7			
150-170	8			
171-192	9			
193-213	10			
214-234	11			
235-255	12			

Calculate frequency of each number as a RGB feature.

Now we have 1728 new features: Color#1 ~ Color#1728

Time cost: 15~20 mins

Image RGB Visualization

(With feature: Only ImageRGB)

- ◆ Feature Selection
- Classification Model XgBoost
- ◆ Result

Classification Model

67.68%

- ◆ Feature Selection
- Classification Model
- Result

Accuracy(%)+Time(s) Algorithm

	1,5011611111								
carnics		GBM	XgBoost	Adaboost	RF	Logistic	SVM	Tree	NN
	S 2000d	67.68	70.35	65.17	64.64	68.34	71.66	53.77	72.74
	S+I 2512d	83.75	88.69	85.57	86.09	79.45	83.36	78.02	49.37
Control of the last	S+I 3717d	86.24	91.06	89.13	88.31	82.80	83.77	79.50	48.83
	1 1717d	84.30	90.65	87.48	87.21	71.11	74.97	71.11	30.12
The state of the s	S+I+L 3949d	86.73	87.40	86.46	84.85	79.62	54.96	79.62	58.44

Accuracy(%)+Time(s) Algorithm

eatures		GBM	XgBoost	Adaboost	RF	Logistic	SVM	Tree	NN
	S	67.68	70.35	65.17	64.64	68.34	71.66	53.77	72.74
	2000d	178.34	375.78	5.96	188.09	55.54	43.11	2.23	>999
	S+I	83.75	88.69	85.57	86.09	79.45	83.36	78.02	49.37
	2512d	219.04	389.36	503.74	122.98	50.97	36.58	2.79	>999
	S+I	86.24	91.06	89.13	88.31	82.80	83.77	79.50	48.83
	3717d	313.56	440.56	721.95	190.51	146.64	61.21	5.64	>999
	1	84.30	90.65	87.48	87.21	71.11	74.97	71.11	30.12
	1717d	146.32	453.77	284.36	84.90	87.21	25.44	1.79	>999
	S+I+L 3949d	86.73	87.40	86.46	84.85	79.62	54.96	79.62	58.44
		333.12	463.39	932.91	227.16	153.2	27.16	3.83	687.00

Result

About train data

0784.jpg: Chicken, 0/8

Project3-Group3

Dogs, Fried Chicken, or Blueberry Muffins.

Keran Li: Neural Network, Logistic

Mingming Liu: AdaBoost, Random Forest

Zhongxing Xue: GBM

Yuhan Zha: SVM, Classification Tree

Junkai Zhang: XgBoost

ppt: Zhongxing Xue

presenter: Zhongxing Xue