

Pushpendra Kumar Pateriya
School of Computing & Information Technology
Lovely Faculty of Technology & Sciences
Lovely Professional University
E-mail: pushpendra.14623@lpu.co.in

September 17, 2013

Outline

- 1 Forest and Trees
- 2 Rooted trees and Branchings
- 3 Minimum Spanning Tree
 - Kruskal's algorithm
 - Prim's algorithm

Forest and Trees I

Definitions

- A connected acyclic graph is called a tree.
- An acyclic graph is called a forest.
 Thus, every component of a forest is a tree.
- leaf of the tree: vertex of degree exactly one.

Forest and Trees II

Theorem

If T is a tree, then e(T) = v(T) - 1.

Theorem

graph G is a tree if and only if any two vertices are connected by a unique path.

Theorem

A connected graph G is a tree if and only if every edge is a cut-edge.

Rooted trees and Branchings I

- A rooted tree T(x) is a tree T with a specified vertex x, called the root of T.
- An orientation of a rooted tree in which every vertex but the root has indegree one is called a *branching*.

Theorem

For any graph G, the following statements are equivalent.

- (a) G is a tree.
- (b) G is connected and m = n 1.
- (c) G is acyclic and m = n 1.

Number of trees I

Question

How many trees are there on a given set of n vertices, where two trees T_1 and T_2 are counted distinct if $E(T_1) \neq E(T_2)$?

Theorem

(Cayley's formula for the number of distinct trees). The number of distinct trees on n vertices is n^{n-2} .

Number of trees II

Figure: Distinct trees upto four vertices.

Minimum Spanning Tree I

A spanning tree of minimum weight in a connected weighted graph G is called a **minimum spanning tree** of G.

Minimum Spanning Tree II

Figure: A weighted graph G and four of its spanning trees T_1 , T_2 , T_3 , and T_4 , with $W(T_1) = 22$, $W(T_2) = 15$, $W(T_3) = 15$ and $W(T_4) = 17$.

Minimum Spanning Tree III

Two Algorithms to find a MST of a connected weighted graph G.

I Kruskal's algorithm (J.B. Kruskal, 1956)

Input: A weighted connected graph (G, W)

Output: A minimum spanning tree T_k of G.

Step1(Initial): Arrange the edges of G in non-decreasing order, say π . Define H_0 to be the graph with vertex set V (G) and no edges.

Step 2: Select the first edge from π say e_1 and add it to H_0 . Call the resulting graph H_1 .

Step 3 (Recursion): After selecting i edges $e_1, e_2, ..., e_i$ and forming the graph H_i , find the next edge, say e_{i+1} , in the subsequence succeeding e_i in π which does not create a cycle with the edges already selected. Add it to H_i and call the resulting graph H_{i+1} .

Minimum Spanning Tree IV

Step 4 (Stop Rule): Stop when n-1 edges are selected. Output H_{n-1} as T_k .

Figure: Two minimum spanning trees of G constructed by Kruskal's algorithm. Notice that both the trees have the same weight 15 but they are not isomorphic.

Minimum Spanning Tree V

Prim's algorithm (R. C. Prim, 1957)
Input: A weighted connected graph (G, W)
Output: A minimum spanning tree Tp of G.
Step 1: Select a vertex v₁ (arbitrarily). Select an edge of minimum weight in [{v₁}, V - {v₁}], say (v₁, v₂). Define H₁ to be the tree with vertices v₁, v₂ and the edge (v₁, v₂).
Step 2: Having selected the vertices, v₁, v₂, ..., v_k and k - 1 edges, and forming the tree H_{k-1}, select an edge of minimum

Step 3 (Termination): Stop when n-1 edges are selected and output H_{n-1} as T_n .

weight in $[\{v_1, ..., v_k\}, V - \{v_1, ..., v_k\}]$, say (v_i, v_{k+1}) . Define H_k to be the tree obtained by joining v_{k+1} to $v_i \in H_{k-1}$.

Minimum Spanning Tree VI

Figure: MST constructed using Prim's algorithm