Introduction to Mobile Robotics

Landmark-based FastSLAM Implementation in Webots

Project Outline

- Today
 - Recap of FastSLAM
 - Landmark-based FastSLAM algorithm
 - Intro to Webots and code framework
- Following sessions (TBD)
 - Implementation of basic algorithm
 - Efficient data structure
 - Data association
 - Landmark detection
 - **...**

The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map

- Why is SLAM hard?Chicken-or-egg problem:
 - A map is needed to localize the robot
 - A pose estimate is needed to build a map

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resample
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space $\langle x, y, \theta \rangle$
- SLAM: state space $\langle x, y, \theta, map \rangle$
 - for landmark maps = $\langle l_1, l_2, ..., l_m \rangle$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Factored Posterior (Landmarks)

Factored Posterior (Landmarks)

landmark positions

Does this help to solve the problem?

Rao-Blackwellization

Factorization to exploit dependencies between variables:

$$p(a,b) = p(a) \cdot p(b \mid a)$$

• If $p(b \mid a)$ can be computed in closed form, represent only with samples p(a) and compute $p(b \mid a)$ for every sample

It comes from the Rao-Blackwell theorem

Revisit the Graphical Model

Revisit the Graphical Model

Landmarks are Conditionally Independent Given the Poses

Landmark variables are all disconnected (i.e. independent) given the robot's path

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Robot path posterior (localization problem)

Conditionally independent landmark positions

Rao-Blackwellization for SLAM

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

 Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM – Action Update

FastSLAM - Sensor Update

FastSLAM - Sensor Update

FastSLAM - Sensor Update

FastSLAM Complexity - Naive

 Update robot particles based on the control

 $\mathcal{O}(N)$

 Incorporate an observation into the Kalman filters (given the data association) $\mathcal{O}(N)$

Resample particle set

 $\mathcal{O}(NM)$

N = Number of particlesM = Number of map features

 $\mathcal{O}(NM)$

A Better Data Structure for FastSLAM

Courtesy: M. Montemerlo

A Better Data Structure for FastSLAM

FastSLAM Complexity

 Update robot particles based on the control

 Incorporate an observation into the Kalman filters (given the data association)

Resample particle set

N = Number of particlesM = Number of map features

 $\mathcal{O}(N)$

 $\mathcal{O}(N \log M)$

 $rac{\mathcal{O}(N\log M)}{\mathcal{O}(N\log M)}$