Identifying Network Ties / AOM 2025 PDW 15383

Valuing Public Goods in a Populist World

Project Summary

Coordinator

University of Innsbruck (Austria)

Project Partners

- Copenhagen Business School (Denmark)
- WU Vienna (Austria)
- Kozminski University (Poland)
- Sabancı University (Turkey)
- University of Graz (Austria)
- LUISS Guido Carli (Italy)
- Auckland University of Technology (New Zealand)
- IN-JET APS (Denmark)

Democratic Governance Under Siege

Context

- Nations create socio-economic wealth for their citizens by ensuring access to public goods, which are nonexcludable and non-rivalrous benefits for society.
- Countries are the primary providers of these goods, but private firms, NGOs, politicians, and the media also play a role.
- Institutions and the *rule of law are crucial in correcting misallocations* through subsidies, taxes, regulations, and monopolies.
- Populist politics exacerbate inequities by forming in-groups and out-groups, interfering with the creation and distribution of public goods.

Project Goal

 Analyze the interplay of the rule of law, populism, and societal networks in shaping the creation and equitable distribution of public goods.

Tackling Inequities Through Data-Driven Research

Objectives

- Analyze the role of societal networks in misappropriating public goods.
- Increase transparency in governance institutions managing public goods.
- Promote civic engagement to enhance institutional legitimacy.

Methodology

- Key research areas: Mapping societal networks to understand their structure and how the rule of law and populist politics influence the distribution of public goods.
- Data collection: Data on societal networks, along with metrics on biodiversity, public infrastructure, free press, and education, to analyze public goods.
- Innovative concept: Introduce **networked populism** to explore how populist actors influence societal outcomes through their network positions.

Identifying Network Ties

Data Sources

News Reports

- Raw news reports from Factiva
- 100 million news articles
- 500 GB to 1 TB data size
- Coverage: Austria, Belgium, Bulgaria, Denmark, Hungary, Ireland, Lithuania, Poland, Portugal
- Time: 2004/2008 to 2024

Social Media Data

- Requests for API access (X, Meta)
- Existing datasets (e.g., Twitter)
- 2 billion social media posts
- 2 TB data size

Corporate Data

- Annual reports and earnings calls from CapitalIQ and Refinitiv
- Subsidiary data from Orbis
- Management data from BoardEx
- 40 GB data size

Identifying Network Ties

Machine Learning Pipeline

Step 1: Named Entity Recognition

- Goal: Identify key people, organizations, and institutions in documents.
- Approach:
 - Uses AI to scan large volumes of multilingual text (like news articles or reports)
 - Detects and labels entities (e.g., "European Central Bank," "Angela Merkel")
 - Smart text segmentation helps improve accuracy in complex or ambiguous contexts
 - Grouping sentences or paragraphs based on their meaning and thematic content
- Outcome: A comprehensive list of important actors found in the text

Step 2: Relationship Extraction

- Goal: Understand how the identified entities are connected
- Approach:
 - Analyzes text to find who is linked to whom, and how (e.g., partnerships, ownership)
 - Uses structured AI prompts and validation to reduce errors and improve reliability
 - Clear instructions that include examples and standard output formats
 - Supports multiple languages and adapts to different business or policy domains
- Outcome: Verified relationship links between people and organizations

Output: Standardized RDF Knowledge Graphs

- Goal: Turn findings into a structured, analyzable format
- Approach:
 - Outputs standardized graphs that map entities and their relationships over time
 - Compatible with visualization and analysis tools (e.g., Neo4j, GraphDB)
 - Designed to support trend analysis and integration with external databases
- Outcome: A dynamic knowledge network you can explore and analyze

Identifying Network Ties

A Simple Example

Political Connectiveness of Corporations

- Research project by Dario Jugo
 - WU Vienna and TU Vienna
 - eXplore! Big Data Inititiave
- Measure political connectedness based on board connections
- Use data from BoardEx to identify ties between board members and politicians (e.g., work, education)

- BoardEx dataset consists of person and company data
- Transform raw tabular data into a graph network where each node is either a person or a company
- Create person-person and personcompany relationships
- Calculate the final score based on the proposed metric

Workflow

$$\begin{aligned} \text{BDWI-DCP}(c) &= \begin{cases} \frac{\sum_{p \in P} \text{Influence}(c,p)}{|P|}, & \text{if } \exists p \in P \text{ such that } d(c,p) < \infty \\ 0, & \text{if } \not\exists p \in P \text{ connected to } c \end{cases} \\ \text{Influence}(c,p) &= \begin{cases} 1, & \text{if } d(c,p) = 1 \text{ (direct connection)} \end{cases}$$

nfluence
$$(c, p) = \begin{cases} 1, & \text{if } d(c, p) = 1 \text{ (direct connection)} \\ \frac{1}{d(c, p)}, & \text{otherwise} \end{cases}$$

THANK YOU

