## 实训报告: 折叠共源共栅放大器设计

梁盛喜 2020020905027 13095185629 指导老师: 王成

## 一、概述

本实训的要求是在 Cadence Virtuoso 中使用 TSMC 65nm GP 工艺的 2.5V 器件 nmos\_rf\_25 和 pmos\_rf\_25 设计单位增益带宽为 37MHz 的折叠共源共栅放大器。我们通过计算和仿真获得了符合要求的电路,最终达到单位增益带宽为 37MH 的要求。偏置电流为 9uA,输入管尺寸为 (W/L)=50.4um / 280nm,总功率为 127.8uW。依据该电路,我们进行了版图的设计,最终版图通过 DRC 和 LVS。对版图提取参数后获得的 calibre 再次仿真,得到了有寄生参数的电路的仿真结果。

## 二、电路设计与仿真

#### 1. 电路原理与计算公式



图 1 折叠共源共栅放大器电路图和波特图

MN1、MN2: 差分输入

MP3, MP4: 共栅极

MP1, MP2: 电流源负载

MN3-MN6: 大摆幅共源共栅电流镜

MN7: 尾电流源

#### 输入阻抗:

$$R_{O} = R_{O,up} \parallel R_{O,dn}, R_{O,up} = g_{m,MP4} \cdot r_{0,MP4} \cdot (r_{0,MP4} \parallel r_{0,MN2}), R_{O,dn} = g_{m,MN4} \cdot r_{0,MN4} \cdot r_{0,MN6}$$

小信号增益:  $a_{vd} = g_{mMN1} R_O \sim (g_m r_0)^2$ 

主极点: 
$$|\rho_1| = 1/(R_O \cdot C_2) \sim 1/(g_m \cdot r_0^2 \cdot C_2)$$

第二极点:  $|\rho_2| = g_{m,MP3,4} / C_{p,MP3,4}$ 

单位增益带宽:  $GBW = a_{vd} \cdot |\rho_1| = g_{m,MN1} R_O / (R_O \cdot C_2) = g_{m,MN1} / C_2$ 

转换速度:  $SR = \min(I_1, I_2)/C_2$ 

2. 获得不同  $I_{\text{BIAS}}$ 下的跨导 $g_m$ ,本征增益 $g_m r_0$ 和电流增益截止频率 $f_T$ 



图 2 仿真获得不同 Id 下的跨导、本征增益和截止频率

选用的 NMOS 和 PMOS 分别为 TSMC 65nm GP 工艺的 2.5V 器件 nmos\_rf\_25 和 pmos rf 25, 具体的参数: L=280.0nm W=2.8um N=8 total W=22.4um

我们首先为了满足  $f_r >> 10f_u$ ,考虑单位栅宽电流密度的范围,我们发现,我们的电流密度必须大于  $I_a=103$ nA/um。为了避免过大的噪声,且控制功率在可接受的范围,我们希望单位栅宽电流密度在 200nA/um $^{\sim}800$ nA/um 的范围内。



图 3 fT 随 ld 的变化趋势

考虑电路设计的折衷问题,在不使用 MATLAB 的情况下,我们希望找到一个牺牲较小的 Id 进行电路的设计。最终,我们选择单位栅宽电流密度分别在200nA/um 和 600nA/um 的情况下进行设计并对比。



图 4 gm, gmr0 随 ld 的变化趋势

我们发现,在我们规定的单位栅宽电流密度在  $200 \text{nA/um}^{800 \text{nA/um}}$  内的范围里,  $g_{\text{m}}$ 的变化较大,  $g_{\text{m}}$ r。的变化较小,因此主要限制尺寸的因素在于  $g_{\text{m}}$ 。

为了降低输入参考噪声,折叠共源共栅放大器采用了 PMOS 差分输入。我们的设计要求是 37MHz 的 GBW,根据该电路的拓扑结构,我们获得  $2\Pi*37MHz=g_{m,in}/C_L$ 。

我们初步设计了两套参数:

| 单位栅宽电流密度 Id(nA/um)          | 600  | 200  |
|-----------------------------|------|------|
| GBW(MHz)                    | 37   | 37   |
| $C_L \approx C_2(pF)$       | 2    | 1    |
| G <sub>m, inp</sub> (uS)    | 465  | 235  |
| Total W <sub>inp</sub> (um) | 36.0 | 51.5 |
| I <sub>d, inp</sub> (uA)    | 21.6 | 10.3 |

由于直流供电电压 2V, 我们选择 VCM=1V。

### 3. 仿真结果

#### 最终设计结果如下

|                                     | 设计1    | 设计 2   |
|-------------------------------------|--------|--------|
| Midband gain                        | 53     | 46     |
| GBW(MHz)                            | 37.082 | 37.015 |
| Phase Margin                        | 82.38  | 67.75  |
| C <sub>L</sub> ≈C <sub>2</sub> (pF) | 2      | 1      |
| I <sub>BIAS</sub> (uA)              | 17.6   | 9      |
| I <sub>DCtotal</sub> (uA)           | 109.7  | 54.83  |
| V <sub>DC</sub> (V)                 | 2      | 2      |
| POWER(uW)                           | 219.4  | 109.66 |

#### (1) 设计 1 (Id=600nA/um)



图 5 设计 1 原理图和器件尺寸

左侧为直流偏置电路(电流镜)和 Dummy 器件(为保证器件匹配)。 电压偏置电路我们选择与 M1, M30 相同尺寸的 diode-connected 的

# NMOS 来获得, 因为 G 和 D 短接, 保证其在饱和区工作。



图 6 设计 1 搭建 test bench



图 7 设计 1 的全局变量设置与测试结果



图 8 设计 1 的幅频特性曲线和相频特性曲线



图 9 设计1的等效输入噪声

| Device    | Param     | Noise Contribution    | % Of Total                   |  |
|-----------|-----------|-----------------------|------------------------------|--|
|           |           |                       |                              |  |
| /I4/M1    | fn        | 5.37135e-10           | 23.92                        |  |
| /I4/M0    | fn        | 5.29149e-10           | 23.56                        |  |
| /I4/M40   | fn        | 4.82288e-10           | 21.48                        |  |
| /I4/M45   | fn        | 4.82074e-10           | 21.47                        |  |
| /I4/M50   | fn        | 9.93484e-11           | 4.42                         |  |
| /I4/M51   | fn        | 9.79384e-11           | 4.36                         |  |
| /I4/M1    | id        | 2.59341e-12           | 0.12                         |  |
| /I4/M0    | id        | 2.55485e-12           | 0.11                         |  |
| /I4/M30   | fn        | 2.43286e-12           | 0.11                         |  |
| /I4/M34   | fn        | 2.40939e-12           | 0.11                         |  |
| Spot Nois | e Summary | (in V^2/Hz) at 1K Hz  | Sorted By Noise Contributors |  |
| Total Sum | marized N | oise = 2.24567e-09    |                              |  |
| Total Inp | ut Referr | ed Noise = 2.48999e-1 | 4                            |  |
|           |           | mmary info is for noi |                              |  |

图 10 设计 1 噪声贡献分析

PMOS 输入晶体管 M40 和 M45、NMOS 尾电流源 M0 和 M41 的噪声贡献,占据整体噪声的~90%,在后续设计中,可以做相应的优化。

### (2) 设计 2 (Id=200nA/um)



图 11 设计 2 原理图和器件尺寸



图 12 设计 2 的 test bench



图 13 设计 2 的全局变量设置与测试结果



图 14 设计 2 的幅频特性曲线和相频特性曲线



图 15 设计 2 的等效输入噪声

| Device                 | Param                  | Noise Contribution                                                                                  | % Of Total |
|------------------------|------------------------|-----------------------------------------------------------------------------------------------------|------------|
| /I4/M1                 | fn                     | 5.02275e-10                                                                                         | 21.87      |
| /I4/M0                 | fn                     | 4.97129e-10                                                                                         | 21.65      |
| /I4/M40                | fn                     | 4.85946e-10                                                                                         | 21.16      |
| /I4/M45                | fn                     | 4.85808e-10                                                                                         | 21.15      |
| /I4/M50                | fn                     | 1.46074e-10                                                                                         | 6.36       |
| /I4/M51                | fn                     | 1.44636e-10                                                                                         | 6.30       |
| /I4/M1                 | id                     | 7.26392e-12                                                                                         | 0.32       |
| /I4/M0                 | id                     | 7.1895e-12                                                                                          | 0.31       |
| /I4/M40                | id                     | 4.82512e-12                                                                                         | 0.21       |
| /I4/M45                | id                     | 4.82376e-12                                                                                         | 0.21       |
| Total Sum<br>Total Inp | marized N<br>ut Referr | v (in V^2/Hz) at 1K Hz<br>Noise = 2.29662e-09<br>red Noise = 1.63328e-14<br>mmmary info is for nois |            |

图 16 设计 2 的噪声贡献分析

PMOS 输入晶体管 M40 和 M45、NMOS 尾电流源 M0 和 M41 的噪声贡献,占据整体噪声的 $^{\sim}$ 86%,在后续设计中,可以做相应的优化。

### (4) 仿真结果分析

|                             | 设计 1   | 设计 2   |
|-----------------------------|--------|--------|
| W <sub>total,inp</sub> (um) | 30.8   | 50.4   |
| L <sub>inp</sub> (nm)       | 280    | 280    |
| Mid-band gain (dB)          | 53     | 46     |
| GBW (MHz)                   | 37.082 | 37.015 |
| Phase Margin (deg)          | 82.38  | 67.75  |

| $C_L \approx C_2 (pF)$     | 2     | 1      |
|----------------------------|-------|--------|
| I <sub>BIAS</sub> (uA)     | 17.6  | 9      |
| Total I <sub>DC</sub> (uA) | 109.7 | 54.83  |
| V <sub>DC</sub> (V)        | 2     | 2      |
| POWER (uW)                 | 219.4 | 109.66 |
| Noise at 1kHz (V^2/Hz)     | 157.8 | 127.8  |

两种设计都可以达到所要求的 GBW=37MHz, 但他们都有自己的优缺点。

对于设计 1, 我们的 CL 较大, 更加符合实际情况, 并且由于输出级负载晶体管几乎都处于饱和的状态, 直流增益较高, 但由于我们选择了较高的电流密度, 设计尺寸减小的同时, 功率非常大。

对于设计 2,在较小的电流密度下,不仅功率十分可观,是设计 1 的一半,并且输入参考噪声电压下降了 20%左右。但较小的电流密度不仅让我们的尺寸限制在较高的数值,还影响了输出级负载晶体管的工作点,一定程度上让直流增益减小了。同时不可否认的是,如果在实际电路设计中,选择了较小的 CL,可能增加下一级的设计难度。

如果能够借助 MATLAB 绘制出 Id, GBW 分别与 W 的关系,或许可以得到一个适合的 Id,更好地解决折衷问题,用最小的代价获得最好的结果

我选择了我的设计2向下进行版图的绘制和参数的提取。

## 三、Layout 设计与 DRC、LVS 和 PEX





图 17 Layout 设计



图 18 DRC 运行结果

#### 获得的报错结果均可以 Waive。



图 19 LVS 运行结果



图 20 PEX 参数提取



图 21 后仿真测试结果



图 22 后仿真的幅频特性曲线和相频特性曲线



图 23 后仿真的等效输入噪声

可以看到,电路的频率较低,因此参数提取的电路性能影响较小。

# 五、总结与感想

本电路用 TSMC 65nm 工艺 2.5V 器件,实现了 37MHz 带宽的折叠共源共栅放大器,供电电压为 2V,电流为 54.83uA,功耗 109.66uW。

在本次实训中,我体会了模拟电路设计的整个流程。因为电路的设计要求并不严苛,我在电路设计上花费的时间较少,在版图设计上花费的时间较多。特别是对于 LVS 的测试,我经过了很多天的修改,才能得到通过的结果。经过多次的修改和摸索,我熟悉了如何一步步解决报错,每种错误都意味着什么。我得到的经验是:最好直接使用从原理图获得的器件和 pin,不要从工艺库调用放置,因为这样很容易造成无法识别;因为模拟集成电路的设计走线和元件尺寸都较小,一定要放到最大观察是否已经连接;要善用不同层的视图,防止短路。