rs : Difference entre Circuit de Commande et Circuit de Puissance en Automati

1. Contexte en automatisme industriel

Dans un systeme automatise, on trouve deux circuits distincts qui fonctionnent ensemble pour piloter des machines :

- Le circuit de puissance, qui alimente les actionneurs (moteurs, verins, resistances, lampes, etc.)
- Le circuit de commande, qui pilote ces actionneurs via des automates, relais, capteurs, boutons, etc.

2. Circuit de Puissance

- C'est le circuit qui alimente en energie electrique les actionneurs (moteurs, electrovanes, resistances, lampes).
- Il transporte des courants importants necessaires au fonctionnement des charges.
- Ce circuit comprend generalement :
 - Des disjoncteurs ou fusibles pour protection,
 - Des contacteurs (avec contacts puissants) pour commuter la puissance,
 - Des cables et connecteurs dimensionnes pour supporter la puissance.

3. Circuit de Commande

- C'est le circuit de controle qui commande le circuit de puissance.
- Il manipule des tensions et des courants faibles.
- Il est compose de :
- Capteurs (boutons, capteurs inductifs, detecteurs),
- Relais de commande, automates programmables industriels (API ou PLC),
- Interrupteurs, boutons poussoirs, temporisateurs, voyants,
- Bobine de contacteur (partie commande).
- Le circuit de commande recoit les informations (etat des capteurs), traite la logique (dans l'automate) et pilote la puissance via la bobine du contacteur.

4. Schema simplifie en automatisme

Circuit de commande (faible puissance) :

[Capteur/Contacteur] --> [Automate] --> [Sortie automate] --> [Bobine contacteur]

Circuit de puissance (forte puissance) :

[Alimentation] --> [Disjoncteur] --> [Contacts contacteur] --> [Actionneur (moteur)]

5. Role des composants

Element	Circuit de Commande	Circuit de Pui	ssance .	1	
 Automate (PLC) 	Traite la logique de com	 nmande N'inter	 vient pas directe	ement	
Bobine contacte contacteur	eur Recoit la commande	e (faible courant)	Actionne les	contacts du	
Contacts contact	eur N/A	Interrompt ou eta	Interrompt ou etablit la puissance		
Capteurs / Bouto	ns Donnent l'etat du systei	me (entree automate) N	√A	1	
Disjoncteurs puissance	Protection sur la pa	rtie commande (moins	frequent) Prot	ection sur la	
Actionneurs	N/A	Moteurs, electrovand	es, resistances		

- 6. Pourquoi separer ces circuits en automatisme ?
- Protection et securite : L'automate manipule du faible courant, l'operateur est protege.
- Gestion automatique : Le PLC peut controler automatiquement le fonctionnement selon une logique complexe.
- Modularite : On peut modifier la logique dans le PLC sans toucher au circuit de puissance.
- Facilete de depannage : On distingue clairement commande (logique) et puissance (energie).

7. Exemple concret en automatisme

Situation:

Tu veux demarrer un moteur via un bouton poussoir et un automate.

- Circuit de commande :
 - Le bouton pousse un signal d'entree au PLC.
 - Le PLC analyse la logique (ex: si bouton appuye, sortir une commande).
 - La sortie du PLC active la bobine du contacteur.
- Circuit de puissance :
 - Le contacteur ferme les contacts puissants.
 - Le moteur recoit la puissance et demarre.

8. Resume tableau en automatisme

Critere	Circuit de Commande	Circuit de Puissance	
Courant	- Faible (mA a quelques A)	 Fort (dizaines a centaine	s d'Ampere)
Tension	24V, 48V, 110V, 230V selon	norme 230V, 400V, triphase	e
Fonction	Logique et pilotage	Fourniture d'energie aux actionneurs	
Composants cles	l Automate, relais, capteu	rs, boutons Contacteurs, disjo	ncteurs, moteurs

