3-1 Dynamic Programming

(Part I: Examples)

Hengfeng Wei

hfwei@nju.edu.cn

September 10, 2018

1 / 11

Rod Cutting

Rod Cutting Problem

${\sf Rod\ of\ length}\ n$

Rod Cutting Problem

${\sf Rod\ of\ length}\ n$

$\textbf{length} \ i$	1	2	3	4	5	
price p_i	1	5	8	9	10	• • •

Rod Cutting Problem

Rod of length n

$\textbf{length}\ i$	1	2	3	4	5	
price p_i	1	5	8	9	10	

$$n = i_1 + i_2 + \dots + i_k$$

 $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$

Subproblem: R(i): max revenue obtained from cutting a rod of length i Goal: R(n)

Subproblem: R(i): max revenue obtained from cutting a rod of length i

Goal: R(n)

Make Choice: Where is the *first* cut?

Recurrence:

$$R(i) = \max_{1 \le j \le i} \left(p_j + R(i-j) \right)$$

Subproblem: R(i): max revenue obtained from cutting a rod of length i

Goal: R(n)

Make Choice: Where is the *first* cut?

Recurrence:

$$R(i) = \max_{1 \le j \le i} \left(p_j + R(i - j) \right)$$

Init:

$$R(0) = 0$$

Subproblem: $R(i): \max$ revenue obtained from cutting a rod of length i

Goal: R(n)

Make Choice: Where is the *first* cut?

Recurrence:

$$R(i) = \max_{1 \le j \le i} \left(p_j + R(i-j) \right)$$

Init:

$$R(0) = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Rod Cutting Problem (Problem 15.1-3)

Each cut incurs a fixed cost of c.

Rod Cutting Problem (Problem 15.1-3)

Each cut incurs a fixed cost of c.

$$R(i) = \max_{1 \le j \le i} \left(p_j - \frac{c}{c} + R(i - j) \right)$$

$\leq m \, \operatorname{cuts}$

< m cuts

Subproblem: R(i,k): max revenue obtained from

cutting a rod of length i using $\leq k$ cuts

Goal: R(n,m)

< m cuts

Subproblem: R(i,k): max revenue obtained from

cutting a rod of length i using $\leq k$ cuts

Goal: R(n,m)

Make Choice: Where is the first cut?

< m cuts

Subproblem: R(i,k): max revenue obtained from

cutting a rod of length i using $\leq k$ cuts

Goal: R(n,m)

Make Choice: Where is the first cut?

Recurrence:

$$R(i,k) = \max_{i+1 \le j \le i} \left(p_j + R(i-j, k-1) \right)$$

< m cuts

Subproblem: R(i,k): max revenue obtained from

cutting a rod of length i using $\leq k$ cuts

Goal: R(n,m)

Make Choice: Where is the first cut?

Recurrence:

$$R(i,k) = \max_{i+1 \le j \le i} \left(p_j + R(i-j, k-1) \right)$$

Init:

$$R(0,k) = 0 \quad R(i,0) = p_i$$

< m cuts

Subproblem: R(i,k): max revenue obtained from

cutting a rod of length i using $\leq k$ cuts

Goal: R(n,m)

Make Choice: Where is the *first* cut?

Recurrence:

$$R(i,k) = \max_{i+1 \le j \le i} \left(p_j + R(i-j, k-1) \right)$$

Init:

$$R(0,k) = 0 \quad R(i,0) = p_i$$

Time:

$$O(n^2m) = \Theta(nm) \cdot O(n)$$

Matrix-chain Multiplication

Subproblem: $m[i,j]: \min$ cost to compute the matrix $A_{i...j}$

Goal: m[1, n]

Subproblem: m[i,j]: min cost to compute the matrix $A_{i...j}$

Goal: m[1, n]

Make Choice: Where is the *last* parentheses?

Recurrence:

$$m[i,j] = \min_{i \le k < j} \left(m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \right)$$

Subproblem: $m[i,j]: \min$ cost to compute the matrix $A_{i...j}$

Goal: m[1, n]

Make Choice: Where is the *last* parentheses?

Recurrence:

$$m[i,j] = \min_{i \le k < j} \left(m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \right)$$

Init:

$$m[i,i] = 0$$

Subproblem: m[i,j]: min cost to compute the matrix $A_{i...j}$

Goal: m[1, n]

Make Choice: Where is the *last* parentheses?

Recurrence:

$$m[i,j] = \min_{i \le k < j} \left(m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \right)$$

Init:

$$m[i,i] = 0$$

Time:

$$O(n^3) = \Theta(n^2) \cdot O(n)$$

Subproblem Graph for Matrix-chain Multiplication (Problem 15.2-4)

Triangulation

T(i,j) : Cost of triangulating from v_i to v_j

$$T(i,j) = \min_{i < k < j} \left(T[i,k] + T[k,j] + d_{ik} + d_{kj} \right)$$

