IN THE CLAIMS

Please amend the claims to read as follows:

1. (Currently Amended): An oxynitride thermoelectric material, which has an element composition represented by the following formula (A):

$$Al_{z}Ga_{y}In_{x}M_{u}R_{v}O_{s}N_{t}$$
 (A)

wherein M represents a transition element; R represents a rare earth element;

 $0 \le z \le 0.7, \ 0.1 \le y \le 0.3, \ 0.2 \le x \le [[1.0]] \ \underline{0.9}, \ 0 \le u \le 0.7, \ 0 \le v \le 0.05, \ 0.9 \le s+t \le 1.7$ so that the element composition is an oxynitride, and $0.4 \le s \le 1.2$; and x+y+z=1, and

has an absolute value of a Seebeck coefficient of 40 $\mu\text{V/K}$ or more at a temperature of 100°C or more.

- 2. (Previously Presented): The oxynitride thermoelectric material according to claim 1, wherein the element composition has an electrical resistivity of $10^{-3}~\Omega m$ or less.
- 3. (Previously Presented): The oxynitride thermoelectric material according to claim 1, wherein M in formula (A) is at least one transition element selected from Ni, Fe, Co and Mn.
- 4. (Previously Presented): The oxynitride thermoelectric material according to claim 1, wherein R in formula (A) is at least one rare earth element selected from Gd, Sc, Sm, Tb and Dy.
- 5. (Previously Presented): The oxynitride thermoelectric material according to claim 1, which comprises at least one having an amorphous structure.

6. (Previously Presented): A nitride thermoelectric material which has an element composition represented by formula (B):

$$AI_zGa_yIn_xM_uR_vD_wN_m (B)$$

wherein M represents a transition element; R represents a rare earth element; D represents at least one element selected from elements of the Group IV or II; $0 \le z \le 0.7, \ 0 \le y \le 0.7, \ 0.3 \le x \le 0.8, \ 0 \le u \le 0.7, \ 0 \le v \le 0.05, \ 0 \le w \le 0.2, \ and \ 0.9 \le m \le 1.1;$ and x+y+z=1, and

has an absolute value of a Seebeck coefficient of 50 μ V/K or more at a temperature of 100°C or more, and an electrical resistivity of 10⁻³ Ω m or less, wherein the composition has a non-amorphous structure.

- 7. (Previously Presented): The nitride thermoelectric material according to claim 6, wherein M in formula (B) is at least one transition element selected from Ni, Fe, Co and Mn.
- 8. (Previously Presented): The nitride thermoelectric material according to claim 6, wherein R in formula (B) is at least rare earth element selected from Gd, Sc, Sm and Tb.
- 9. (Original): The nitride thermoelectric material according to claim 6, wherein D in formula (B) is at least one element selected from Ge, Si, Mg and Zn.
- 10. (Previously Presented): The nitride thermoelectric material according to claim 6, which comprises at least one having a wurtzite crystal structure.

11. (Canceled)

12. (New): The oxynitride thermoelectric material according to claim 1, wherein $0.3 \le x \le 0.8$.