Package 'MESHr'

March 5, 2019

Type Package

Title pre- and post processing for MESH
Version 1.0.0
Date 2019-03-05
Author Al Pietroniro, Environment Canada
Maintainer Kevin Shook <kevin.shook@usask.ca></kevin.shook@usask.ca>
Description This package contains functions for pre- and post- processing data for the MESH model.
Depends R (>= 3.1)
Imports grid, ggplot2, stringr, knitr, reshape2, hydroGOF, raster, rts, readr, stats, hydroTSM, sp, methods, plyr
License GPL-3
LazyData true
<pre>URL https://github.com/CentreForHydrology/MESHr</pre>
RoxygenNote 6.1.1
NeedsCompilation no
VignetteBuilder knitr
R topics documented:
MESHr-package
basinLapseRates
basinPeakSWE
basinPrecipEvapRunoffPlot
basinRunoffPlot
basinSnowPlot
basinSnowRainPondedPlot
basinSoilWaterIcePlot
basinSoilWaterPlot
basinStoragePlot
basinStorageVariablesPlot
basinWaterBalancePlot

2 MESHr-package

Index		38
	write_tb0	36
	write_r2c_shed	
	win.eol	
	var_present	
	simpleHydrograph	
	read_tb0	
	read_r2c_shed	29
	read_r2c_raster	28
	read_MESH_OutputTimeseries_ts	
	read_MESH_OutputTimeseries_csv	
	read_AEP_csv	
	plotDataCompleteness	
	PBIAS	23
	parseText	23
	parseNums	22
	MESH_streamflows	21
	hydroStats	19
	gridTemp	17
	gridPrecip	16
	findRecord	15
	doubleHydrograph	13
	distribPrecip	12

MESHr-package

Functions for MESH pre- and post- processing

Description

The intent of this package is to contain functions do do common tasks for MESH modelling, such as reading output, plotting, and assessing model quality. The first functions will use .csv files - support for netCDF will be added.

References

To cite **MESHr** in publications, use the command citation("MESHr") to get the current version of the citation.

basinLapseRates 3

Description

This function calculates basin-wide historical lapse rates, by month and hour of day. The intent is to produce a file of rates that can be used for interpolation, when there are insufficient values to determine lapse rates from measured air temperatures. The lapse rates are determined as the slope of a linear regression of delta air temperature vs delta elevation for each time step. The delta air temperature is the difference in air temperature between each station's value and that of the lowest elevation station. The delta elevation is the difference between each station's elevation and that of the lowest-elevation station. Therefore the lapse rate is in K/m.

Usage

```
basinLapseRates(temps = NULL, elevs = NULL)
```

Arguments

temps Required. A time series data frame of air temperatures in Celsius or K, as re-

turned by read_tb0. The first column must be datetime, which is a POSIXct

value. Each station's elevation will be in a separate column.

elevs Required. A data frame of station elevations. Note that the first column must

contain the station names (which must be the same as in the air temperatures),

and the second column must contain the elevation (in m).

Value

If successful, returns a data frame with 24 rows (one for each hour), and 12 columns (one for each month), containing the lapse rates.

Author(s)

Kevin Shook

See Also

```
gridTemp read_tb0
```

```
## Not run:
lapse_rates <- basinLapseRates(temperatures, elevations)
## End(Not run)</pre>
```

basinPeakSWE

Find annual maximum SWE

Description

Find annual maximum SWE

Usage

basinPeakSWE(waterBalance)

Arguments

waterBalance Requried. Data frame of water balance variables as returned by read_MESH_OutputTimeseries_csv.

Value

Returns a data frame of year, date_max_SWE, and max_SWE. Note that the SWE is the sum of the variables SNO and WSNO.

Examples

```
## Not run: waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv",
missingValueThreshold = -1e6)
basinPeakSWE(waterBalance)
## End(Not run)</pre>
```

 $bas in {\tt PrecipEvapRunoffPlot}$

Plots basin precipitation evaporation and runoff

Description

Plots basin precipitation evaporation and runoff

Usage

basinPrecipEvapRunoffPlot(basinWaterBalance)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

basinRunoffPlot 5

Value

Returns a **ggplot2** line plot of the variable values (mm).

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStoragePlot\ basinSoilWaterIcePlot$

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinPrecipEvapRunoffPlot(waterBalance)
## End(Not run)</pre>
```

 $basin {\tt RunoffPlot}$

Plots basin runoff components

Description

Plots basin runoff components

Usage

basinRunoffPlot(basinWaterBalance, cumul = FALSE)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

cumul

Optional. If FALSE, then interval values are plotted. If TRUE (the default) then cumulative values are plotted. Note that the cumulative values are determined by summing the interval values *not* by plotting the MESH cumulative variables.

Value

Returns a ggplot2 line plot of the variable values (mm).

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv basinStoragePlot basinSoilWaterIcePlot

6 basinSnowPlot

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinRunoffPlot(waterBalance)
## End(Not run)</pre>
```

basinSnowPlot

Plots basin snow water equivalent

Description

Plots basin snow water equivalent

Usage

basinSnowPlot(basinWaterBalance)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by $read_MESH_OutputTimeseries_csv$.

Value

Returns a **ggplot2** stacked line plot of the basin SWE (mm).

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv basinStoragePlot
```

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSnowPlot(waterBalance)
## End(Not run)</pre>
```

basinSnowRainPondedPlot

basinSnowRainPondedPlot

Plots basin snow and rain in the canopy and ponded water

Description

Plots basin snow and rain in the canopy and ponded water

Usage

basinSnowRainPondedPlot(basinWaterBalance)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

Value

Returns a **ggplot2** line plot of the basin variables (mm).

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv basinStoragePlot
```

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSnowRainPondedPlot(waterBalance)
## End(Not run)</pre>
```

basinSoilWaterIcePlot Plots basin soil water and ice

Description

Plots basin soil water and ice

Usage

```
basinSoilWaterIcePlot(basinWaterBalance, layers = c(1, 2))
```

8 basinSoilWaterPlot

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

layers

Optional. A vector of the layers to be plotted. By default layers 1 and 2 are used.

Value

Returns a **ggplot2** line plot of the variable values (mm) faceted by Layer number. The name of the variable is layer, so you can change change the facetting.

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv basinStoragePlot

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSoilWaterIcePlot(waterBalance)
## End(Not run)</pre>
```

basinSoilWaterPlot

Plots basin soil liquid water

Description

Plots basin soil liquid water

Usage

```
basinSoilWaterPlot(basinWaterBalance, layers = c(1, 2, 3, 4, 5, 6))
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

layers

Optional. A vector of the layers to be plotted. By default layers 1 though 6 are used.

Value

Returns a ggplot2 line plot of the variable values (mm).

basinStoragePlot 9

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStoragePlot\ basinSoilWaterIcePlot$

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSoilWaterPlot(waterBalance)
## End(Not run)</pre>
```

basinStoragePlot

Plots total basin storage

Description

Plots total basin storage

Usage

```
basinStoragePlot(basinWaterBalance)
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

Value

Returns a **ggplot2** line plot of the value of STG (mm).

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStorageVariablesPlot\ basinSoilWaterIcePlot$

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinStoragePlot(waterBalance)
## End(Not run)</pre>
```

basinStorageVariablesPlot

Plots basin water balance storage components

Description

Creates a **ggplot2** stacked area plot of specified water balance storage components. The variables plotted may include:

variable definition

SNCAN Snow component of precipitation intercepted by the canopy

RCAN Rain component of precipitation intercepted by the canopy mm or kg m-2 of water AVG

SNO Snow water equivalent (SWE) of the snow mass

ZPND Depth of water ponded at the surface

LQWS Water equivalent of the volumetric liquid water content of the soil

FZWS Water equivalent of the volumetric frozen water content of the soil

ALWS Water equivalent of the volumetric liquid and frozen water contents of the soil, sum of LQWS and FZWS

Usage

```
basinStorageVariablesPlot(basinWaterBalance, varNames = "",
  layers = c(1, 2, 3, 4, 5, 6))
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by $read_MESH_OutputTimeseries_csv$.

varNames Optional. A vector of the names of the variables to be plotted. If not specified,

all of the variables listed above will be plotted.

layers Optional. A vector of the layers to be plotted. By default layers 1 through 6 are

used.

Value

Returns a ggplot2 stacked area time plot of the variable values (mm).

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv

basinWaterBalancePlot 11

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinStorageVariablesPlot(waterBalance)
# the plot can have a restricted date range
startDate <- as.Date("2005-10-01", format = "%Y-%m-%d")
endDate <- as.Date("2006-09-30", format = "%Y-%m-%d")
library(ggplot2)
p <- p + xlim(startDate, endDate)
p
# you can also change the colours used, either by
using a defined scale, or by manually specifying them
# This example uses the colours in the package viridis
# which scales from dark to light by reversing the direction
library(viridis)
p <- p + scale_fill_viridis(discrete = TRUE, direction = -1)
p
## End(Not run)</pre>
```

basinWaterBalancePlot Plots basin precipitation cumulative water balance.

Description

As with the basinRunoffPlot, the cumulative values of precipitation, evaporation and runoff (and optionally, delta storage) are computed by the function, rather than by using the MESH variables. This allows the plot to be used on a sub-set of the basin output data.

Usage

basinWaterBalancePlot(basinWaterBalance, accumulate_delta_storage = TRUE)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv. Note that because the value of DTSG (delta storage) can be negative, you need to set a threshold value much smaller than zero when you read in the values.

accumulate_delta_storage

Optional. If TRUE (the default), the delta storage is accumulated from the beginning of the data set. If FALSE, the delta storage values in the file are *not* accumulated as they are assumed to be cumualtive values.

Value

Returns a **ggplot2** line plot of the variable values (mm).

12 distribPrecip

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv basinStoragePlot basinSoilWaterIcePlot

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv",
missingValueThreshold = -1e6)
p <- basinWaterBalancePlot(waterBalance)
## End(Not run)</pre>
```

distribPrecip

Distributes precipitation in time

Description

MESH requires all forcing data to have the same time interval, which prevents the use of precipitation data reported at lower frequencies than the model time step. This function distributes low-frequency precipitation (e.g. daily) according to a set of high frequency precipitation (e.g. hourly). The high-frequency values are summed to have the same time intervals as the low-frequency data. The ratios of low/high frequency precipitations are determined for each time step, and these ratios are multiplied by the high-frequency data. Where the high-frequency total precipitation is zero, the low-frequency data is spread evenly over the high-frequency interval.

Usage

```
distribPrecip(LFprecip = NULL, HFprecip = NULL,
  zero_missing_HF = TRUE, period_threshold = 48)
```

Arguments

LFprecip Required. A data frame of low temporal frequency (e.g. daily) precipitation.

The first column must be a POSIXct date/time called datetime. The second

column must be the precipitation.

HFprecip Required. A data frame of high temporal frequency (e.g. hourly) precipitation.

The first column must be a POSIXct date/time called datetime. The second

column must be the precipitation.

zero_missing_HF

Optional. If TRUE (the default) missing high-frequency precipitation values are

replaced with zeros.

period_threshold

Length of maximum infilled period in hours. Sequences of missing low-frequency values exceeding this length will be set to NA_real_, and the next low-frequency value will be assigned to the next high frequency interval. This is usually required when a gauge is not reported for a seasonal period.

doubleHydrograph 13

Value

Returns a data frame of the adjusted high-frequency precipitation, with the variables datetime and distributedP. Note that the last date/time in the returned data corresponds to the final value in the low-frequency data.

Author(s)

Kevin Shook

See Also

```
read_tb0
```

Examples

```
## Not run: distributed <- distribPrecip(myPrecip[, c(1, 5)],
adjacentP)
## End(Not run)</pre>
```

doubleHydrograph

Creates hydrograph from 2 MESH output files

Description

Creates a **ggplot** hydrograph from MESH output. This function *only* uses values from two MESH data frames (as read in using readOutputTimeseriesCSV). It is assumed that the observed data are the same in both cases - only the simulations differ. Because this function returns a **ggplot** object, you can change its format in any way you like. The plots produced may be faceted using the commands facet_wrap or facet_grid.

Usage

```
doubleHydrograph(MESHvals1, stationNames1 = "", MESHname1 = "MESH1",
    MESHvals2, stationNames2 = "", MESHname2 = "MESH2",
    byStation = TRUE, byYear = FALSE, meas = TRUE, sim = TRUE,
    calStart = "", calEnd = "", alpha = 1)
```

Arguments

MESHvals1	Required. A data frame of output from a MESH run, as produced by read_MESH_OutputTimeseries_csv
stationNames1	Optional. A vector of strings holding station names. If specified, the station names will be used in the plots. Otherwise the MESH station numbers will be used.

MESHname1 Optional. A string giving the name of the first MESH output. Default is "MESH1".

MESHvals2 Required. A data frame of output from a MESH run, as produced by read_MESH_OutputTimeseries_csv

14 doubleHydrograph

stationNames2 Optional. A vector of strings holding station names. Optional. A string giving the name of the second MESH output. Default is MESHname2 "MESH2". byStation Optional. If TRUE (the default) then the plots will be coloured according to the station names. You may want to set this to FALSE if you are facetting by station name. byYear Optional. If TRUE then the plots will be able to be facetted by year. Note that this means that the dates are all plotted using the year 2000, so you will see strange results if you set this to TRUE and don't facet by year. Default is FALSE Optional. Should the measured values be plotted? Default is TRUE. If FALSE, meas they will be omitted. sim Optional. Should the simulated values be plotted? Default is TRUE. If FALSE, they will be omitted. calStart Optional. The start date of the calibration period. Must be a string in the format 'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the Validation period. calEnd Optional. The start date of the calibration period. Must be a string in the format 'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the Validation period. alpha Optional. Sets the alpha channel (transparency) of the plots. The default value is 1, i.e. opaque. Setting alpha to less than 1 makes the plots transparent, which

Value

If successful, returns a **ggplot2** object. If unsuccessful, returns FALSE. The object can be facetted by the name of the station (the variable is called station). If the option by Year = TRUE, then the object can be facetted by the variable YEAR.

can be useful to see overlapping hydrographs.

Note

Specifying the calibration start and/or end dates will allow the resulting plot to be facetted by the variable period.

Author(s)

Kevin Shook

See Also

simpleHydrograph read_MESH_OutputTimeseries_csv hydroStats

findRecord 15

Examples

```
## Not run:
p <- doubleHydrograph(MESHvals1 = capa, MESHname1 = "CaPa precip",
MESHvals2 = kevin, MESHname2 = "Station precip", byStation = TRUE,
alpha = 0.6)
p
# facet by station
p2 <- p + facet_wrap(~station, scales = "free_y", strip.position = "right")
p2
# add scale colour
colours <- c("red", "blue", "black")
p3 <- p2 + + scale_colour_manual(values = colours)
# restrict plot to a range of dates
p3
startDate <- as.Date("2005-04-01")
endDate <- as.Date("2005-10-01")
p4 <- p3 + scale_x_date(limits = c(startDate, endDate))
p4
## End(Not run)</pre>
```

findRecord

Finds record in r2c data specified by string

Description

Finds record in r2c data specified by string

Usage

```
findRecord(recordLines, string, ignore.case = TRUE)
```

Arguments

recordLines Required. Vector of lines from r2c file.

string Required. Record name to searh for.

ignore.case Optional. If TRUE (the default), then case is ignored.

Value

Returns trimmed record.

Author(s)

Kevin Shook

16 gridPrecip

gridPrecip	Grids station precipitation
------------	-----------------------------

Description

Grids station interval precipitation values, so that they can be used as MESH inputs. The station values are distributed over the domain of the basin. Values outside of the basin are set to the missing value. The gridding method is performed by the **hydroTSM** function hydrokrige, using the IDW (inverse distance weighting) algorithm for each time interval. If there are no values present in a given interval, then the entire domain will be set to the missing value. If all of the values are identical, or if there is a single value, then all of the domain will have that value. It is possible that the IDW algorithm will be unable to grid the specified values in a given interval. In this case, the error is trapped, and the mean of the station values is used for the entire domain.

Usage

```
gridPrecip(precip = NULL, source_file_name = "unknown",
    shed_raster = NULL, IDW_file = NULL, missing_value = 0,
    zeromissing = FALSE, quiet = TRUE, progress_bar = TRUE)
```

Arguments

precip	Required. A list containing 3 elements: 1. the header meta data, 2. the column
	meta data, and 3. the precipitation values (in mm). These values are returned
	automatically by the MESHr command read_tb0. Note that the precipitation

values are in mm.

source_file_name

Required. The name of the original . tb0 source file. Default value is unknown.

The name of the source file is written to the r2c file header.

shed_raster Required. A RasterBrick object describing the MESH basin. This can be read

from a MESH r2c shed file using the MESHr command read_r2c_shed with

the parameter as_rasters = TRUE.

IDW_file Required. Name of the output file which will hold the gridded precipitation for

all time intervals.

missing_value Required. Value to be used if all values in an interval are missing. Default is 0.

Also used to code individual missing values.

zeromissing Required. If there are enough precipitation values for gridding to take place, but

there are still missing values, setting zeromissing = TRUE will set the missing

values to zero, before the gridding takes place. The default value is FALSE.

quiet Optional. If TRUE (the default), messages are suppressed. If FALSE, the time

interval and messages from each gridding are listed.

progress_bar Optional. This function can take a long time to execute, depending on the num-

ber of time intervals, and the number of stations. If progress_bar = TRUE (the default), a progress bar is displayed showing the completed fraction of the precip. If you are calling this function from a Notebook which is to be knitted to a file, then you will probably want to set progress_bar = FALSE, to avoid

having multiple copies of the progress bar in the output file.

gridTemp 17

Value

If unsuccessful, returns FALSE. If successful, returns TRUE and the gridded precipitation values are written to the IDW_file. Note that each interval's precipitation is written as it is gridded. This saves on memory, and will save at least some of the values in case there is a crash, but is slow. The gridded precipitation is in mm/s.

Author(s)

Kevin Shook

See Also

```
gridTemp read_r2c_shed read_tb0
```

Examples

```
## Not run:
hourly_precip_file <- "Red_Deer_all_hourly_precip_new.tb0"
precip <- read_tb0(hourly_precip_file, values_only = FALSE, timezone = "Etc/GMT+7", NAvalue = -0.1)
shedfile <- "RedDeer_MESH_drainage_database.r2c"
shed_raster <- read_r2c_shed(shedfile, as_rasters = TRUE, values_only = TRUE)
IDW_file <- "RedDeerPrecip_idw.r2c"
source_file_name <- "Red_Deer_all_hourly_precip_new.tb0"
gridPrecip(precip, source_file_name, shed_raster, IDW_file, missing_value = -999)
## End(Not run)</pre>
```

gridTemp

Grids station temperatures

Description

Grids station interval temperature values, so that they can be used as MESH inputs. The gridding method is performed by the **hydroTSM** function hydrokrige, using the IDW (inverse distance weighting) algorithm. The gridding uses a basin-scale lapse rate, which is determined by fitting a linear model to the difference between each site's temperature and that of the lowest site, and the difference in elevation relative to the lowest site. The procedure is the same as used in the the function basinLapseRates. In effect, all site temperatures are converted to have the same elevation before gridding. After gridding, each temperature is raised to its specified elevation using the same lapse rate. Where there are only 1 or 2 stations with available air temperatures, the hourly x monthly lapse rates returned by basinLapseRates are used.

Usage

```
gridTemp(temp = NULL, source_file_name = "unknown",
    shed_raster = NULL, site_elev = NULL, lapse_rates = NULL,
    IDW_file = NULL, tmin = 223.15, tmax = 313.15,
    missing_value = NA_real_, quiet = TRUE, progress_bar = TRUE)
```

18 gridTemp

Arguments

temp Required. A list containing 3 elements: 1. the header meta data, 2. the column

meta data, and 3. the air temperature values (in K). These values are returned

automatically by the MESHr command read_tb0.

source_file_name

Required. The name of the original . tb0 source file. Default value is unknown.

The name of the source file is written to the r2c file header.

shed_raster Required. A RasterBrick object describing the MESH basin. This can be cre-

ated using the **MESHr** command read_r2c_shed with the parameter as_rasters = TRUE.

site_elev Required. A data frame of station elevations. Note that the first column must

contain the station names (which must be the same as in the air temperatures),

and the second column must contain the elevation (in m).

lapse_rates Optional. If there are 2 or fewer air temperatures in any interval, then the lapse

rate cannot be calculated. In this case, if the historical lapse_rates are specified, then they will be used. If they are not specified, then this function will terminate with an error message. So, if you are confident that your dataset always has at least 3 stations with non-missing values of air temperatures, then you can omit this parameter. Note that the historical lapse rates must be a data frame of 12 columns (monthly) and 24 rows (hourly) values as returned by the

function basinLapseRates.

IDW_file Required. Output file which holds gridded air temperatures for all time steps.

tmin Required. The minimum permitted air temperature of the gridded (and lapsed)

air temperatures. All values exceeding tmin will be set to this value. The default

is 223.15 K, or -50 C.

tmax Required. The maximum permitted air temperature of the gridded (and lapsed)

air temperatures. All values exceeding tmax will be set to this value. The default

is 313.15 K, or 40 C.

missing_value Required. Value to be used if all values in an interval are missing. Default is

NA_real_.

quiet Optional. If TRUE (the default) messages are suppressed. If FALSE, the time

interval and messages from each gridding are listed.

progress_bar Optional. If TRUE (the default), a progress bar is displayed showing the com-

pleted fraction of the temp.

Value

If unsuccessful, returns FALSE. If successful, returns TRUE and the gridded temperatures values are written to the IDW_file. Note that each interval's temperatures are written as they is gridded. This saves on memory, but can be quite slow. Note that the air temperatures in the file are in K.

Author(s)

Kevin Shook

See Also

gridPrecip basinLapseRates read_r2c_shed read_tb0

hydroStats 19

Examples

```
## Not run:
hourly_temp_file <- "Red_Deer_all_hourly_temp_new.tb0"
temp <- read_tb0(hourly_temp_file, values_only = FALSE, timezone = "Etc/GMT+7", NAvalue = -0.1)
source_file_name <- hourly_temp_file
shedfile <- "RedDeer_MESH_drainage_database.r2c"
shed_raster <- read_r2c_shed(shedfile, as_rasters = TRUE, values_only = TRUE)
elev_file <- "site_elevations.csv"
site_elev <- read.csv(elev_file, header = TRUE, stringsAsFactors = FALSE)
lapse_rates_file <- "RedDeerLapseRates.csv"
lapse_rates <- read.csv(lapse_rates_file, header = TRUE, stringsAsFactors = FALSE, row.names = 1)
IDW_file <- "RedDeerTemp.idw"
gridPrecip(temp = temp, source_file_name = source_file_name,
shed_raster = shed_raster, site_elev = site_elev,
lapse_rates = lapse_rates)
## End(Not run)</pre>
```

hydroStats

Calculates Goodness of Fit statistics for MESH output

Description

This function is a wrapper for the function gof in the package **hydroGOF**. It computes several Goodness of Fit statistics for each station. The output of this function may be used on its own, or to annotate a hydrograph.

Usage

```
hydroStats(MESHvals, stationNames = "", calStart = "", calEnd = "",
  removeMissing = TRUE, doSpearman = FALSE, doPBFDC = FALSE,
  doLogNSE = TRUE, epsilon = "Pushpalatha2012", digits = 2, j = 1,
  norm = "sd", s = c(1, 1, 1), method = c("2009", "2012"),
  lQ.thr = 0.7, hQ.thr = 0.2)
```

Arguments

calStart

MESHvals Required. A data frame of output from a MESH run, as produced by readOutputTimeseriesCSV.

StationNames Optional. A vector of strings holding station names. If specified, the station names will be used in the returned data frame, otherwise the MESH station numbers will be used.

Optional. The start date of the calibration period. Must be a string in the format 'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the

Validation period.

calEnd Optional. The start date of the calibration period. Must be a string in the format

'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the

Validation period.

20 hydroStats

Required. Should rows with missing values be removed before statistics are removeMissing calculted? Default is TRUE Optional. Should Spearman correlation be computed? Default is FALSE. doSpearman doPBFDC Optional. Should percent bias of slope of the midsegment of the FDC be computed? Default is FALSE. doLogNSE Optional. Should the NSE of the log-transformed flows be calculated? Default is TRUE. epsilon Optional. Value to be added to flows when calculating LogNSE, to prevent calculating the log of zero. The default is 'Pushpalatha2012', which is 1 percent of the mean observed values. A number may aslo be specified. digits Optional. The number of decimal places for rounding goodness of fit statistics. If 0 the default, then it is not set. Default value is 2. Note that percentages like NRMSE and PBIAS will only use a maximum of one decimal place. j Optional. Argument passed to the mNSE function in **hydroGOF**. Optional. Argument passed to the nrmse function in hydroGOF. norm Optional. Argument passed to the KGE function in hydroGOF. method Optional. Argument passed to the KGE function in hydroGOF. Optional. Argument passed to the pbiassfdc function in hydroGOF. 1Q.thr

Optional. Argument passed to the pbiassfdc function in hydroGOF.

Value

hQ.thr

Returns a data frame with the following variables: #'

station station name or number

me Mean Error

mae Mean Absolute Error

mse Mean Squared Error

rmse Root Mean Square Error

nrmse Normalized Root Mean Square Error (-100% <= nrms <= 100%)

PBIAS Percent Bias

pbiasfdc PBIAS in the slope of the midsegment of the Flow Duration Curve, if selected

RSR Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms / sd(obs). ($0 \le RSR \le +Inf$)

rSD Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE Nash-Sutcliffe Efficiency (-Inf <= NSE <= 1)

mNSE Modified Nash-Sutcliffe Efficiency

rNSE Relative Nash-Sutcliffe Efficiency

d Index of Agreement ($0 \le d \le 1$)

d1 Modified Index of Agreement

rd Relative Index of Agreement

MESH_streamflows 21

```
cp Persistence Index (0 <= PI <= 1)</li>
r Pearson Correlation coefficient (-1 <= r <= 1)</li>
r.Spearman Spearman Correlation coefficient (-1 <= r.Spearman <= 1), if selected</li>
R2 Coefficient of Determination (0 <= R2 <= 1).

Gives the proportion of the variance of one variable that is predictable from the other variable</li>
bR2 R2 multiplied by the coefficient of the regression line between sim and obs (0 <= bR2 #' <= 1)</li>
KGE Kling-Gupta efficiency between sim and obs (0 <= KGE <= 1)</li>
VE Volumetric efficiency between sim and obs (-Inf <= VE <= 1)</li>
```

LogNSE NSE of log-transformed flows, if selected

If the calibration period is specified, then statistics will be computed separately for the Calibration and Validation periods. The period names and dates will be specified in additional columns.

Author(s)

Kevin Shook

See Also

```
simpleHydrograph gof
```

Examples

```
stats <- hydroStats(MESH_streamflows)
stats$NSE
periodStats <- hydroStats(MESH_streamflows, calEnd = "2010-01-01")
periodStats[,1:7]</pre>
```

MESH_streamflows

MESH streamflow data

Description

A data frame containing MESH outputs for the Simonette river, as read in using the function read_MESH_OutputTimeSeries_csv.

Usage

```
MESH_streamflows
```

22 parseNums

Format

A data frame with 4381 rows and 5 variables (including the datetime):

DATE date and time as an R date object

QOMEAS1 measured flows at station 1

QOSIM1 simulated flows at station 1

QOMEAS2 measured flows at station 2

QOSIM2 simulated flows at station 2

Source

This data iwas obtained by running MESH.

parseNums

Parses a string containing numbers

Description

Parses a string containing numbers

Usage

```
parseNums(numString)
```

Arguments

numString

Required. A character string containing numbers separated by any number of spaces.

Value

Returns a numeric vector.

Author(s)

Kevin Shook

```
parseNums(' 1 2 3 4 5 ')
```

parseText 23

parseText

Parses a string containing several sub-strings

Description

Parses a string containing several sub-strings

Usage

```
parseText(textString)
```

Arguments

textString

Required. A character string containing strings separated by any number of spaces.

Value

Returns a character vector.

Author(s)

Kevin Shook

Examples

```
parseText(' red green blue black')
```

PBIAS

Compute bias as a percentage

Description

Compute bias as a percentage

Usage

```
PBIAS(obs, sim)
```

Arguments

obs Observed values as a numeric vector.

sim Simulated values values as a numeric vector.

Value

If successful returns the percentage of bias as an integer. If unsuccessful, returns the value FALSE.

Author(s)

Muluneh A. Mekonnen

Examples

```
obs <- runif(100)
sim <- runif(100)
PBIAS(obs, sim)</pre>
```

Description

Time plots of variable completeness

Usage

```
plotDataCompleteness(MESHdata)
```

Arguments

MESHdata

Required. A data frame of MESH time series, as returned by read_tb0

Value

Returns a **ggplot2** wrapped facetted plot of data completeness (as a line) for each station. Missing periods are indicated by gaps in the line. The plot is facetted by the variable station - so you can change the facetting.

Author(s)

Kevin Shook

See Also

```
read_tb0
```

```
## Not run:
qvals <- read_tb0("MESH_input_streamflow.tb0", NAvalue = -0.01, values_only = TRUE)
p <- plotDataCompleteness(qvals)
# change facetting
# the y-axis is unimportant, so the plots can be squished vertically
library(ggplot2)
p <- p + facet_wrap(~station, ncol = 2)
## End(Not run)</pre>
```

read_AEP_csv 25

read_AEP_csv Re	eads csv file produced by Alberta Environment and Parks
-----------------	---

Description

Reads csv file produced by Alberta Environment and Parks

Usage

```
read_AEP_csv(AEPfile = "", timezone = "", values_only = TRUE)
```

Arguments

AEPfile Required. Name of AEP file to be read in.

timezone Optional. The name of the timezone of the data as a character string. If the

timezone is not specified, your default value (i.e. your time zone) will be used. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain

Standard time. Under Linux you should use 'Etc/GMT+6' or 'Etc/GMT+7'.

values_only optional. If TRUE (the default), only the time series values will be returned. If

FALSE, the meta data will also be returned.

Value

Returns the time series data as a data frame, with the POSIXct variable datetime as the time stamp. Note that the time series interval may be irregular. If values_only = TRUE, then the returned value will be a list conisting of the time series data frame and the header meta data as a list, with the variables values and header_meta, respectively. The meta data are:

variable type
station_site character
station_name character
station_number character
parameter_name character
parameter_type character
parameter_type_name character
time_series_name character
time_series_unit character
longitude numeric
latitude numeric

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv
```

Examples

```
## Not run:
precip <- read_AEP_csv("05CA805 Skoki Lodge - PC - C.Merged - All.csv",
values_only = FALSE)
# show values
head(precip$values)
# show latitude
precip$header_meta$latitude
## End(Not run)</pre>
```

read_MESH_OutputTimeseries_csv

Reads MESH output .csv file containing timeseries

Description

Reads a file containing any output from a MASH model into a standard R data frame. The names of the variables will be trimmed to remove leading and trailing spaces, and the time variables are combined into a single R date or datetime.

Usage

```
read_MESH_OutputTimeseries_csv(outputFile, timezone = "",
   missingValueThreshold = -0.1)
```

Arguments

outputFile

Required. Name of MESH output file. Must be a .csv file.

timezone

Not required for daily time series. Required for sub-daily time series. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. You can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time, respectively. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.

missingValueThreshold

Optional. Any value smaller than this value will be set to NA_real_ when the file is imported. The default value is -0.1 to prevent zero values from being affected.

Value

If successful, returns a data frame. The first columns will be called 'DATE' for daily values, and will contain a standard R date. For sub-daily timeseries the first column will be called 'DATETIME' and will contain a standard POSIXct date/time. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

```
simpleHydrograph
```

Examples

```
## Not run:
timezone <- 'etc/GMT+6'</pre>
outfile <- "Basin_average_water_balance_ts.csv"</pre>
output <- read_MESH_OutputTimeseries_csv(outfile, timezone)</pre>
## End(Not run)
```

read_MESH_OutputTimeseries_ts

Reads MESH output .ts file containing timeseries

Description

Reads a file containing any output from a MESH model as a .ts file into a standard R data frame.

Usage

```
read_MESH_OutputTimeseries_ts(tsFile, variableNames = "",
 timezone = "", missingValueThreshold = -0.1)
```

Arguments

tsFile

Required. Name of MESH output file. Must be a .ts file.

variableNames

Optional. The names of the variables as a string vector. If not specified, the variables will be names 'Var1', 'Var2', etc.

timezone

Not required for daily time series. Required for sub-daily time series. The name of the timezone of the data as a character string. This should be the

timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. You can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time, respectively. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between

standard and daylight savings time.

28 read_r2c_raster

missingValueThreshold

Optional. Any value smaller than this value will be set to NA_real_ when the file is imported. The default value is -0.1 to prevent zero values from being affected.

Value

If successful, returns a data frame. The first columns will be called 'DATE' for daily values, and will contain a standard R date. For sub-daily timeseries the first column will be called 'DATETIME' and will contain a standard POSIXct date/time. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv
```

Examples

```
## Not run:
timezone <- 'etc/GMT+6'
outfile <- "SNO_D_GRD.ts"
output <- read_MESH_ts(outfile, timezone)
## End(Not run)</pre>
```

read_r2c_raster

Reads r2c file to raster brick

Description

This function reads a file containing a time series of 2D values, which is output from a MESH model. It is not intended to read in a file describing a drainage basin. For that purpose, you should be using the function read_r2c_shed. This function returns eiher a **raster** brick or an **rts** rts object, which is a timeseries raster. Each Frame in the original file becomes a separate layer. 'The name of each layer in the **raster** brick is set to the time stamp of each Frame. Because the layer names are standard R variables, they must obey the rules for variable names, inclusing beginning with a character, and not containing spaces. These rule will change the layer names if you are not careful.

Usage

```
read_r2c_raster(r2cFile, NAvalue = NULL, as_rts = FALSE,
   timezone = "", layerNameFormat = NULL)
```

read_r2c_shed 29

Arguments

r2cFile	Required. Name of r2c file containing time series.
NAvalue	Optional. If specified, values smaller than NAvalue will be set to NA_real_
as_rts	Optional. If TRUE, the returned value will be a rts object, which allows the creation of 1-D time series, and for temporal aggregation. If FALSE (the default) a standard raster brick object is returned, which is better for simple plotting of
	a standard raster brick object is returned, which is better for simple plotting of

the layers.

timezone Optional. If the r2cFile contains date values for each Frame, then the Frame

times are returned as R dates. If there are hours and seconds, then they will be converted to POSIXct datetime values. In this case, you may want to specify the timezone of the data. If the timezone is not specified, your default value will

be used.

layerNameFormat

Optional. Sets the layer names when returning the **raster** brick to avoid con-

flicting with the R variable rules.

Value

Returns eiher a raster brick or an rts rts object.

Author(s)

Kevin Shook

See Also

```
rts read_r2c_shed
```

Examples

```
## Not run:
temps <- read_r2c_raster("TA_M.r2c", NAvalue = 0, as_rts = FALSE, layerNameFormat = "%b_%Y")
# convert air temps from K to C
temps <- temps - 273.15
plot(temps)
# create an animation and save it as a file
library(animation)
saveGIF(animate(temps, n = 1))
## End(Not run)</pre>
```

read_r2c_shed

Reads r2c file of a MESH watershed

Description

This function reads in a file containing the layers which define a MESH watershed. To read in a file of timeseries, use the function r2c2raster.

30 read_tb0

Usage

```
read_r2c_shed(r2cFile = "", values_only = TRUE, as_rasters = TRUE)
```

Arguments

r2cFile Required. Name of r2c file.

values_only Optional. If TRUE (the default), then only the values are returned, either as a

raster brick (useful for plotting) or as a 3D array (useful for analysis). If FALSE, then a *list* will be returned, containing the 1) the data, 2) the metadata (the variable names, types and units) are returned for each layer, and 3) the r2c file

header lines.

as_rasters Optional. If TRUE, the layers will be returned as as raster brick. If FALSE, they

will be returned as an array.

Value

Returns either an array or a raster brick of values, and optionally, the meta data and file header.

Author(s)

Kevin Shook

See Also

```
read_r2c_raster
```

Examples

```
## Not run:
# read in basin as a raster brick
basin <- read_r2c_shed("MESH_drainage_database.r2c")
# read in as an array
basin_array <- read_r2c_shed("MESH_drainage_database.r2c", as_rasters = FALSE)
# get meta data as well
basin_array <- read_r2c_shed("MESH_drainage_database.r2c", values_only = FALSE,
as_rasters = FALSE)
## End(Not run)</pre>
```

read_tb0

Reads a MESH tb0 file

Description

Reads in a tb0 file. The time series values, if present, will be stored in a data frame. Optionally, the meta data will be stored as lists. The meta data are of 2 types, the header values, which refer to the entire file and column values, which pertain to individual columns.

simpleHydrograph 31

Usage

```
read_tb0(tb0File = "", values_only = TRUE, timezone = "",
    NAvalue = NULL)
```

Arguments

tb0File Required. The name of the file to be read.

values_only Optional. If TRUE (the default), only the time series values will be returned. If

FALSE, the meta data will also be returned. Note that if the value is set to TRUE, and there are no time series values in the file, as for a reservoir file, then an error

will result.

timezone Optional. The data time series have POSIXct datetime values. You may want to

specify the timezone of the data. If the timezone is not specified, your default

value (i.e. your time zone) will be used.

NAvalue Optional. If specified, values smaller than NAvalue will be set to NA_real_

Value

Returns time series as a data frame. If meta data are specified, they are returned as a list of header data and a data frame of column meta data. In this case all three sets of data are combined in a single

Author(s)

Kevin Shook

See Also

```
read_r2c_raster read_MESH_OutputTimeseries_csv
```

Examples

```
## Not run:
qvals <- read_tb0("MESH_input_streamflow.tb0", NAvalue = -0.01, values_only = TRUE)
## End(Not run)</pre>
```

simpleHydrograph

Creates hydrograph from MESH output

Description

Creates a **ggplot** hydrograph from MESH output. This function *only* uses values from a single MESH data frame (as read in using readOutputTimeseriesCSV), so does not work with outside sources, such as WSC files. Because this function returns a **ggplot** object, you can change its format in any way you like. The plots produced may be faceted using the commands facet_wrap or facet_grid.

32 simpleHydrograph

Usage

```
simpleHydrograph(MESHvals, stationNames = "", byStation = TRUE,
byYear = FALSE, meas = TRUE, sim = TRUE, calStart = "",
calEnd = "", alpha = 1)
```

Arguments

MESHvals	Required. A data frame of output from a MESH run, as produced by read_MESH_OutputTimeseries_csv
stationNames	Optional. A vector of strings holding station names. If specified, the station names will be used in the plots. Otherwise the MESH station numbers will be used.
byStation	Optional. If TRUE (the default) then the plots will be coloured according to the station names. You may want to set this to FALSE if you are facetting by station name.
byYear	Optional. If TRUE then the plots will be able to be facetted by year. Note that this means that the dates are all plotted using the year 2000, so you will see strange results if you set this to TRUE and don't facet by year. Default is FALSE
meas	Optional. Should the measured values be plotted? Default is TRUE. If FALSE, they will be omitted.
sim	Optional. Should the simulated values be plotted? Default is TRUE. If FALSE, they will be omitted.
calStart	Optional. The start date of the calibration period. Must be a string in the format 'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the Validation period.
calEnd	Optional. The start date of the calibration period. Must be a string in the format 'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the Validation period.
alpha	Optional. Sets the alpha channel (transparency) of the plots. The default value is 1, i.e. opaque. Setting alpha to less than 1 makes the plots transparent, which

Value

If successful, returns a **ggplot2** object. If unsuccessful, returns FALSE. The object can be facetted by the name of the station (the variable is called station). If the option by Year = TRUE, then the object can be facetted by the variable YEAR.

can be useful to see overlapping hydrographs.

Note

Specifying the calibration start and/or end dates will allow the resulting plot to be facetted by the variable period.

Author(s)

Kevin Shook

var_present 33

See Also

read_MESH_OutputTimeseries_csv hydroStats

Examples

```
# plot hydrograph of all data on single graph
p1 <- simpleHydrograph(MESH_streamflows)</pre>
# add station names, and replot
stations <- c("Station1", "Station2")</pre>
p2 <- simpleHydrograph(MESH_streamflows, stationNames = stations)</pre>
p2
# remove colouring by station, and facet, changing the axis label format
p3 <- simpleHydrograph(MESH_streamflows, stationNames = stations, byStation = FALSE)
# load in all of ggplot2 to modify plots
library(ggplot2)
p3 <- p3 + facet_wrap(~station, nrow = 2) + scale_x_date(date_labels = "%Y")
p3
# plot by year, then facet
p4 <- simpleHydrograph(MESH_streamflows, stationNames = stations, byYear = TRUE)
p4 <- p4 + facet_wrap(~YEAR, scales = "free_y")
p4
# remove colouring for stations, and facet by station and year
p5 <- simpleHydrograph(MESH_streamflows, stationNames = stations, byStation = FALSE, byYear = TRUE)
p5 <- p5 + facet_grid(YEAR~station, scales = "free_y")
# change colours
plotcols <- c("red", "blue")</pre>
p5 <- p5 + scale_colour_manual(values = plotcols)
p5
```

var_present

Find if variable is present in a data frame

Description

Find if variable is present in a data frame

Usage

```
var_present(dataframe, variable)
```

Arguments

dataframe Required. Dataframe to be checked

variable Required. Variable name as a character string.

Value

Returns TRUE or FALSE

34 win.eol

Examples

```
## Not run: var_present(values, "datetime")
```

win.eol

Gets the Windows end of line characters

Description

Finds the end of line (eol) characters required for writing Windows files, such as CRHM obs files. No parameters are required. This is an internal **CRHMr** function and should *never* need to be called directly.

Usage

```
win.eol()
```

Value

Returns the Windows end of line characters (cr and lf).

Note

This function is used to make the creation of Windows-specific files work on all platforms. CRHM requires its obs and project files to use the Windows end of line characters, which are expressed differently on UNIX-based operating systems such as Linux and OSX.

Author(s)

Kevin Shook

```
windowsEndOfLine <- win.eol()</pre>
```

write_r2c_shed 35

write_r2c_shed Write MESH watershed data to r2c file

Description

Write MESH watershed data to r2c file

Usage

```
write_r2c_shed(basin, header, r2cFile = "")
```

Arguments

basin Required. The values defining the basin parameters, as read in by read_r2c_shed.

Can either be and array or a raster brick.

header Required. The header lines from the basin r2c file, as read in by read_r2c_shed

r2cFile Required. The file to be written.

Value

If successful, returns TRUE. If unsucessful, returns FALSE

Author(s)

Kevin Shook

See Also

```
read_r2c_shed
```

```
## Not run:
# read in basin
shed <- read_r2c_shed("MESH_drainage_database.r2c", values_only = FALSE,
as_rasters = FALSE)
# write as another file
write_r2c_shed(shed$basin, shed$header_lines, "new_basin.r2c")
## End(Not run)</pre>
```

36 write_tb0

write_tb0

Writes a MESH tb0 file

Description

Writes a MESH tb0 file

Usage

```
write_tb0(values = NULL, column_meta = NULL, header = NULL,
   NAvalue = -1, tb0File = "")
```

Arguments

values Optional. A data frame of the values to be written, if the file is to be a time seires.

Note that the first column must be called datetime and must be a POSIXct

date/time.

column_meta Required. A data frame containing the following columns #'

columnUnits required columnType required columnName required columnLocationX required columnLocationY required

DA optionalcoeff1 optionalcoeff2 optionalcoeff3 optionalcoeff4 optionalcoeff5 optional

header Required. A list containing the following variables

filetype optional, default is tb0 ASCII EnSim 1.0

datatype optional, default is Time Series

application optional, default is EnSimHydrologicversion optional, default is default is 2.1.23written_by optional, default is default is MESHrcreation_date optional, default is current date/time

source_file optional, default is nothing

name required

projection required, character string
ellipsoid required, character string

start_time required if values are not specified
delta_t required if values are not specified

write_tb0

attributeunits optional, default is nothing **unitconversion** optional, default is nothing

NAvalue Optional. Value to be used for NA_real_ values in the .tb0 file. The default

value is -1, which is not suitable for air temperatures.

tb0File Required. Name of file to be written.

Value

If successful, returns TRUE. If unsuccessful, returns FALSE

Note

If you have read in the header data from another file, and you want to use the default values, you can just replace the existing values with a NULL value. You might want to do this to use the new start time, and creation date.

Author(s)

Kevin Shook

See Also

read_tb0

```
## Not run:
header$start_time <- NULL
header$creation_date <- NULL
write_tb0(values, column_meta_data, header, "MESH_values.ts0")
## End(Not run)</pre>
```

Index

```
*Topic datasets
                                                 rts, 29
    MESH_streamflows, 21
                                                 simpleHydrograph, 14, 21, 27, 31
basinLapseRates, 3, 18
                                                 var_present, 33
basinPeakSWE, 4
basinPrecipEvapRunoffPlot, 4
                                                 win.eol, 34
basinRunoffPlot, 5
                                                 write_r2c_shed, 35
basinSnowPlot, 6
                                                 write_tb0,36
basinSnowRainPondedPlot, 7
basinSoilWaterIcePlot, 5, 7, 9, 12
basinSoilWaterPlot,8
basinStoragePlot, 5-9, 9, 12
basinStorageVariablesPlot, 9, 10
basinWaterBalancePlot, 11
distribPrecip, 12
doubleHydrograph, 13
findRecord, 15
gof, 21
gridPrecip, 16, 18
gridTemp, 3, 17, 17
hydroStats, 14, 19, 33
MESH_streamflows, 21
MESHr-package, 2
parseNums, 22
parseText, 23
PBIAS, 23
plotDataCompleteness, 24
read_AEP_csv, 25
read_MESH_OutputTimeseries_csv, 5-10,
        12, 14, 26, 26, 28, 31, 33
read_MESH_OutputTimeseries_ts, 27
read_r2c_raster, 28, 30, 31
read_r2c_shed, 17, 18, 29, 29, 35
read_tb0, 3, 13, 17, 18, 24, 30, 37
```