PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 7:		(11) International Publication Number:	WO 00/24782
C07K 19/00, C12N 15/62, 15/70, 1/21	A2	(43) International Publication Date:	4 May 2000 (04.05.00)
 (21) International Application Number: PCT/U (22) International Filing Date: 25 October 1999 (30) Priority Data: 60/105,371 23 October 1998 (23.10.9) 09/428,082 22 October 1999 (22.10.9) (71) Applicant: AMGEN INC. [US/US]; One Amgen Control Thousand Oaks, CA 91320–1799 (US). (72) Inventors: FEIGE, Ulrich; 3117 Deer Valley Avenur Park, CA 91320 (US). LIU, Chuan-Fa; 14 Creek Drive, Longmont, CO 80503 (US). CF Janet; 1695 East Valley Road, Montecito, CA 9 BOONE, Thomas, Charles; 3010 Deer Vallet Newbury Park, CA 91320 (US). (74) Agents: ODRE, Steven, M. et al.; Amgen, Inc., Conter Drive, Thousand Oaks, CA 91320–1799 	8) L 9) L enter Driv e, Newbu 425 Clov HEETHAN 3108 (US ey Avenu	BR, BY, CA, CH, CN, CR, C ES, FI, GB, GD, GE, GH, GM, KE, KG, KP, KR, KZ, LC, LK, MD, MG, MK, MN, MW, MX, SD, SE, SG, SI, SK, SL, TJ, T UZ, VN, YU, ZA, ZW, ARIPO MW, SD, SL, SZ, TZ, UG, ZW, BY, KG, KZ, MD, RU, TJ, TM, CH, CY, DE, DK, ES, FI, FR, NL, PT, SE), OAPI patent (BF, GN, GW, ML, MR, NE, SN, TI Published Without international search re upon receipt of that report.	U, CZ, DE, DK, DM, EE HR, HU, ID, IL, IN, IS, JP LR, LS, LT, LU, LV, MA NO, NZ, PL, PT, RO, RU M, TR, TT, TZ, UA, UG patent (GH, GM, KE, LS), Eurasian patent (AM, AZ), European patent (AT, BE GB, GR, IE, IT, LU, MC BJ, CF, CG, CI, CM, GA D, TG).
		<u> </u>	

The present invention concerns fusion of Fc domains with biologically active peptides and a process for preparing pharmaceutical agents using biologically active peptides. In this invention, pharmacologically active compounds are prepared by a process comprising: a) selecting at least one peptide that modulates the activity of a protein of interest; and b) preparing a pharmacologic agent comprising an Fc domain covalently linked to at least one amino acid of the selected peptide. Linkage to the vehicle increases the half-life of the peptide, which otherwise would be quickly degraded *in vivo*. The preferred vehicle is an Fc domain. The peptide is preferably selected by phage display, E. coli display, ribosome display, RNA-peptide screening, or chemical-peptide screening.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΛZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad	
BA	Bosnia and Herzegovina	CE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil .	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam	
CG	Congo ···	KE	Кепуа .	NL	Netherlands	~ ·~YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
Çυ	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
1								

Modified Peptides as Therapeutic Agents Background of the Invention

Recombinant proteins are an emerging class of therapeutic agents.

Such recombinant therapeutics have engendered advances in protein formulation and chemical modification. Such modifications can protect therapeutic proteins, primarily by blocking their exposure to proteolytic enzymes. Protein modifications may also increase the therapeutic protein's stability, circulation time, and biological activity. A review article describing protein modification and fusion proteins is Francis (1992), Focus on Growth Factors 3:4-10 (Mediscript, London), which is hereby incorporated by reference.

One useful modification is combination with the "Fc" domain of an antibody. Antibodies comprise two functionally independent parts, a variable domain known as "Fab", which binds antigen, and a constant domain known as "Fc", which links to such effector functions as complement activation and attack by phagocytic cells. An Fc has a long serum half-life, whereas an Fab is short-lived. Capon et al. (1989), Nature 337: 525-31. When constructed together with a therapeutic protein, an Fc domain can provide longer half-life or incorporate such functions as Fc receptor binding, protein A binding, complement fixation and perhaps even placental transfer. Id. Table 1 summarizes use of Fc fusions known in the art.

15

20

5

10

Table 1—Fc fusion with therapeutic proteins

E	Fusion	Therapeutic	
Form of Fc	partner	implications	Reference
lgG1	N-terminus of CD30-L	Hodgkin's disease; anaplastic lymphoma; T- cell leukemia	U.S. Patent No. 5,480,981
Murine Fcy2a	IL-10	anti-inflammatory; transplant rejection	Zheng <u>et al</u> . (1995), <u>J.</u> <u>Immunol</u> . 154: 5590-600
lgG1	TNF receptor	septic shock	Fisher et al. (1996), N. Engl. J. Med. 334: 1697-1702; Van Zee, K. et al. (1996), J. Immunol. 156: 2221-30
IgG, IgA, IgM, or IgE (excluding the first domain)	TNF receptor	inflammation, autoimmune disorders	U.S. Pat. No. 5,808,029, issued September 15, 1998
lgG1	CD4 receptor	AIDS	Capon <u>et al.</u> (1989), <u>Nature 337</u> : 525-31
lgG1, lgG3	N-terminus of IL-2	anti-cancer, antiviral	Harvill <u>et al.</u> (1995), <u>Immunotech</u> . 1: 95-105
lgG1	C-terminus of OPG	osteoarthritis; bone density	WO 97/23614, published July 3, 1997
lgG1	N-terminus of leptin	anti-obesity	PCT/US 97/23183, filed December 11, 1997
Human Ig Cγ1	CTLA-4	autoimmune disorders	Linsley (1991), <u>J. Exp.</u> <u>Med</u> . 174:561-9

A much different approach to development of therapeutic agents is peptide library screening. The interaction of a protein ligand with its receptor often takes place at a relatively large interface. However, as demonstrated for human growth hormone and its receptor, only a few key residues at the interface contribute to most of the binding energy. Clackson et al. (1995), Science 267: 383-6. The bulk of the protein ligand merely displays the binding epitopes in the right topology or serves functions unrelated to binding. Thus, molecules of only "peptide" length (2 to 40 amino acids) can bind to the receptor protein of a given large protein ligand. Such peptides may mimic the bioactivity of the large protein ligand ("peptide agonists") or, through competitive binding, inhibit the bioactivity of the large protein ligand ("peptide antagonists").

Phage display peptide libraries have emerged as a powerful method in identifying such peptide agonists and antagonists. See, for example, Scott et al. (1990), Science 249: 386; Devlin et al. (1990), Science 249: 404; U.S. Pat. No. 5,223,409, issued June 29, 1993; U.S. Pat. No. 5,733,731, issued March 31, 1998; U.S. Pat. No. 5,498,530, issued March 12, 1996; U.S. Pat. No. 5,432,018, issued July 11, 1995; U.S. Pat. No. 5,338,665, issued August 16, 1994; U.S. Pat. No. 5,922,545, issued July 13, 1999; WO 96/40987, published December 19, 1996; and WO 98/15833, published April 16, 1998 (each of which is incorporated by reference). In such libraries, random peptide sequences are displayed by fusion with coat proteins of filamentous phage. Typically, the displayed peptides are affinity-eluted against an antibody-immobilized extracellular domain of a receptor. The retained phages may be enriched by successive rounds of affinity purification and repropagation. The best binding peptides may be sequenced to identify key residues within one or more structurally related families of peptides. See, e.g., Cwirla et al. (1997), Science 276: 1696-9, in which two distinct families were identified. The peptide sequences may also suggest which residues may be safely replaced by alanine scanning or by mutagenesis at the DNA level. Mutagenesis libraries may be created and screened to further optimize the sequence of the best binders. Lowman (1997), Ann. Rev. Biophys. Biomol. Struct. 26: 401-24.

10

15

20

25

Structural analysis of protein-protein interaction may also be used to suggest peptides that mimic the binding activity of large protein ligands. In such an analysis, the crystal structure may suggest the identity and relative orientation of critical residues of the large protein ligand, from which a peptide may be designed. See, e.g., Takasaki et al. (1997), Nature Biotech. 15: 1266-70. These analytical methods may also be used to investigate the interaction between a receptor protein and peptides

selected by phage display, which may suggest further modification of the peptides to increase binding affinity.

5

10

15

20

25

Other methods compete with phage display in peptide research. A peptide library can be fused to the carboxyl terminus of the <u>lac</u> repressor and expressed in E. coli. Another E. coli-based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). Hereinafter, these and related methods are collectively referred to as "E. coli display." In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. Hereinafter, this and related methods are collectively referred to as "ribosome display." Other methods employ chemical linkage of peptides to RNA; see, for example, Roberts & Szostak (1997), Proc. Natl. Acad. Sci. USA, 94: 12297-303. Hereinafter, this and related methods are collectively referred to as "RNA-peptide screening." Chemically derived peptide libraries have been developed in which peptides are immobilized on stable, non-biological materials, such as polyethylene rods or solvent-permeable resins. Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides. Hereinafter, these and related methods are collectively referred to as "chemical-peptide screening." Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other unnatural analogues, as well as non-peptide elements. Both biological and chemical methods are reviewed in Wells & Lowman (1992), Curr. Opin. Biotechnol. 3: 355-62.

Conceptually, one may discover peptide mimetics of any protein using phage display and the other methods mentioned above. These methods have been used for epitope mapping, for identification of critical amino acids in protein-protein interactions, and as leads for the discovery of new therapeutic agents. E.g., Cortese et al. (1996), Curr. Opin. Biotech. 7:

616-21. Peptide libraries are now being used most often in immunological studies, such as epitope mapping. Kreeger (1996), <u>The Scientist</u> 10(13): 19-20.

Of particular interest here is use of peptide libraries and other techniques in the discovery of pharmacologically active peptides. A number of such peptides identified in the art are summarized in Table 2. The peptides are described in the listed publications, each of which is hereby incorporated by reference. The pharmacologic activity of the peptides is described, and in many instances is followed by a shorthand term therefor in parentheses. Some of these peptides have been modified (e.g., to form C-terminally cross-linked dimers). Typically, peptide libraries were screened for binding to a receptor for a pharmacologically active protein (e.g., EPO receptor). In at least one instance (CTLA4), the peptide library was screened for binding to a monclonal antibody.

5

10

Table 2—Pharmacologically active peptides

Form of peptide	Binding partner/ protein of interest*	Pharmacologic activity	Reference
intrapeptide disulfide- bonded	EPO receptor	EPO-mimetic	Wrighton et al. (1996), Science 273: 458-63; U.S. Pat. No. 5,773,569, issued June 30, 1998 to Wrighton et al.
C-terminally cross-linked dimer	EPO receptor	EPO-mimetic	Livnah et al. (1996), Science 273: 464-71; Wrighton et al. (1997), Nature Biotechnology 15: 1261-5; International patent application WO 96/40772, published Dec. 19, 1996
linear	EPO receptor	EPO-mimetic	Naranda <u>et al</u> . (1999), <u>Proc. Natl. Acad. Sci.</u> <u>USA</u> , 96: 7569-74
linear	c-Mpl	TPO-mimetic	Cwirla et al. (1997) Science 276: 1696-9; U.S. Pat. No. 5,869,451, issued Feb. 9, 1999; U.S Pat. No. 5,932,946, issued Aug. 3, 1999
C-terminally cross-linked dimer	c-Mpl	TPO-mimetic	Cwirla <u>et al</u> . (1997), <u>Science</u> 276: 1696-9
disulfide- linked dimer		stimulation of hematopoiesis ("G-CSF-mimetic")	Paukovits <u>et al</u> . (1984), <u>Hoppe-Seylers Z.</u> <u>Physiol. Chem</u> . 365: 303 11; Laerum <u>et al</u> . (1988) <u>Exp. Hemat</u> . 16: 274-80
alkylene- linked dimer		G-CSF-mimetic	Bhatnagar et al. (1996), J. Med. Chem. 39: 3814 9; Cuthbertson et al. (1997), J. Med. Chem. 40: 2876-82; King et al. (1991), Exp. Hematol. 19:481; King et al. (1995), Blood 86 (Suppl.): 309a
linear	IL-1 receptor	inflammatory and autoimmune diseases ("IL-1 antagonist" or "IL-1ra-mimetic")	U.S. Pat. No. 5,608,035 U.S. Pat. No. 5,786,331 U.S. Pat. No. 5,880,096 Yanofsky et al. (1996),

^{*}The protein listed in this column may be bound by the associated peptide (e.g., EPO receptor, IL-1 receptor) or mimicked by the associated peptide. The references listed for each clarify whether the molecule is bound by or mimicked by the peptides.

	·		Proc. Natl. Acad. Sci. 93: 7381-6; Akeson et al. (1996), J. Biol. Chem. 271: 30517-23; Wiekzorek et al. (1997), Pol. J. Pharmacol. 49: 107-17; Yanofsky (1996), PNAs, 93:7381-7386.
linear	Facteur thymique serique (FTS)	stimulation of lymphocytes ("FTS-mimetic")	Inagaki-Ohara et al. (1996), Cellular Immunol. 171: 30-40; Yoshida (1984), Int. J. Immunopharmacol, 6:141-6.
intrapeptide disulfide bonded	CTLA4 MAb	CTLA4-mimetic	Fukumoto et al. (1998), Nature Biotech. 16: 267- 70
exocyclic	TNF-α receptor	TNF-α antagonist	Takasaki <u>et al.</u> (1997), <u>Nature Biotech</u> . 15:1266- 70; WO 98/53842, published December 3, 1998
linear	TNF-α receptor	TNF-α antagonist	Chirinos-Rojas (), <u>J.</u> <u>Imm.</u> , 5621-5626.
intrapeptide disulfide bonded	C3b	inhibition of complement activation; autoimmune diseases ("C3b-antagonist")	Sahu <u>et al</u> . (1996), <u>J</u> . <u>Immunol</u> . 157: 884-91; Morikis <u>et al</u> . (1998), <u>Protein Sci</u> . 7: 619-27
linear	vinculin	cell adhesion processes— cell growth, differentiation, wound healing, tumor metastasis ("vinculin binding")	Adey <u>et al.</u> (1997), <u>Biochem. J.</u> 324: 523-8
linear	C4 binding protein (C4BP)	anti-thrombotic	Linse <u>et al</u> . (1997), <u>J.</u> <u>Biol. Chem</u> . 272: 14658- 65
linear	urokinase receptor	processes associated with urokinase interaction with its receptor (e.g., angiogenesis, tumor cell invasion and metastasis); ("UKR antagonist")	Goodson et al. (1994), Proc. Natl. Acad. Sci. 91: 7129-33; International application WO 97/35969, published October 2, 1997
linear	Mdm2, Hdm2	Inhibition of inactivation of p53 mediated by Mdm2 or hdm2; anti-tumor ("Mdm/hdm antagonist")	Picksley <u>et al.</u> (1994), <u>Oncogene</u> 9: 2523-9; Bottger <u>et al.</u> (1997) <u>J.</u> <u>Mol. Biol.</u> 269: 744-56; Bottger <u>et al.</u> (1996), <u>Oncogene</u> 13: 2141-7
linear	p21 ^{WAF1}	anti-tumor by mimicking the activity of p21 ^{war1}	-Ba ll <u>et al</u>. (1997), <u>Curr</u> Biol. 7: 71-80
linear	farnesyl	anti-cancer by preventing	Gibbs et al. (1994), <u>Cell</u>

^b FTS is a thymic hormone mimicked by the molecule of this invention rather than a receptor bound by the molecule of this invention.

PCT/US99/25044

	transferase	activation of the	77:175-178
linear	Ras effector domain	anti-cancer by inhibiting biological function of the ras oncogene	Moodie et al. (1994), <u>Trends Genet</u> 10: 44-48 Rodriguez et al. (1994), <u>Nature</u> 370:527-532
linear	SH2/SH3 domains	anti-cancer by inhibiting tumor growth with activated tyrosine kinases	Pawson et al (1993), <u>Curr. Biol.</u> 3:434-432 Yu et al. (1994), <u>Cell</u> 76:933-945
linear	p16 ^{INK4}	anti-cancer by mimicking activity of p16; e.g., inhibiting cyclin D-Cdk complex ("p16-mimetic")	Fàhraeus <u>et al</u> . (1996), <u>Curr, Biol</u> . 6:84-91
linear	Src, Lyn	inhibition of Mast cell activation, IgE-related conditions, type I hypersensitivity ("Mast cell antagonist")	Stauffer <u>et al</u> . (1997), <u>Biochem</u> . 36: 9388-94
linear	Mast cell protease	treatment of inflammatory disorders mediated by release of tryptase-6 ("Mast cell protease inhibitors")	International application WO 98/33812, published August 6, 1998
linear	SH3 domains	treatment of SH3- mediated disease states ("SH3 antagonist")	Rickles et al. (1994), EMBO J. 13: 5598-5604; Sparks et al. (1994), J. Biol, Chem. 269: 23853- 6; Sparks et al. (1996), Proc. Natl. Acad. Sci. 93: 1540-4
linear	HBV core antigen (HBcAg)	treatment of HBV viral infections ("anti-HBV")	Dyson & Muray (1995), <u>Proc. Natl. Acad. Sci.</u> 92: 2194-8
linear	selectins	neutrophil adhesion; inflammatory diseases ("selectin antagonist")	Martens et al. (1995), J. Biol. Chem. 270: 21129-36; European patent application EP 0 714 912, published June 5, 1996
linear, cyclized	calmodulin	calmodulin antagonist	Pierce et al. (1995), Molec. Diversity 1: 259- 65; Dedman et al. (1993), J. Biol. Chem. 268: 23025-30; Adey & Kay (1996), Gene 169: 133-4 International applications
linear, cyclized-	integrins	tumor-homing; treatment for conditions related to integrin-mediated cellular events, including platelet aggregation, thrombosis, wound healing, osteoporosis, tissue repair, angiogenesis (e.g.,	WO 95/14714, published June 1, 1995; WO 97/08203, published March 6, 1997; WO 98/10795, published March 19, 1998; WO

		for treatment of cancer), and tumor invasion ("integrin-binding")	20, 1999; Kraft <u>et al</u> . (1999), J. Biol. Chem. 274: 1979-1985
cyclic, linear	fibronectin and extracellular	treatment of inflammatory and autoimmune conditions	WO 98/09985, published March 12, 1998
	matrix components of T cells and macrophages	Conditions	·
linear	somatostatin and cortistatin	treatment or prevention of hormone-producing tumors, acromegaly, giantism, dementia, gastric ulcer, tumor growth, inhibition of hormone secretion, modulation of sleep or neural activity	European patent application 0 911 393, published April 28, 1999
linear	bacterial lipopolysac- charide	antibiotic; septic shock; disorders modulatable by CAP37	U.S. Pat. No. 5,877,151, issued March 2, 1999
linear or cyclic, including D-	pardaxin, mellitin	antipathogenic	WO 97/31019, published 28 August 1997
amino acids linear, cyclic	VIP	impotence, neurodegenerative disorders	WO 97/40070, published October 30, 1997
linear	CTLs	cancer	EP 0 770 624, published May 2, 1997
linear	THF-gamma2		Burnstein (1988), Biochem., 27:4066-71.
linear	Amylin		Cooper (1987), <u>Proc.</u> Natl. Acad. Sci., 84:8628-32.
linear	Adrenomedullin		Kitamura (1993), <u>BBRC</u> , 192:553-60.
cyclic, linear	VEGF	anti-angiogenic; cancer, rheumatoid arthritis, diabetic retinopathy, psoriasis ("VEGF antagonist")	Fairbrother (1998), <u>Biochem.</u> , 37:17754- 17764.
cyclic	MMP	inflammation and autoimmune disorders; tumor growth ("MMP inhibitor")	Koivunen (1999), Nature Biotech., 17:768-774.
	HGH fragment		U.S. Pat. No. 5,869,452
	Echistatin	inhibition of platelet aggregation	Gan (1988), <u>J. Biol.</u> Chem., 263:19827-32.
linear	SLE autoantibody	SLE	WO 96/30057, published October 3, 1996
	GD1alpha	suppression of tumor metastasis	Ishikawa et al. (1998), FEBS Lett. 441 (1): 20-4
	antiphospholipid		, Blank <u>et al</u> . (1999), Proc
		Ŷ	

	beta-2- glycoprotein-I (β2GPI) antibodies	antiphospholipid syndrome (APS), thromboembolic phenomena, thrombocytopenia, and recurrent fetal loss	Natl. Acad. Sci. USA 96: 5164-8
linear	T Cell Receptor beta chain	diabetes	WO 96/11214, published April 18, 1996

Peptides identified by peptide library screening have been regarded as "leads" in development of therapeutic agents rather than as therapeutic agents themselves. Like other proteins and peptides, they would be rapidly removed in vivo either by renal filtration, cellular clearance mechanisms in the reticuloendothelial system, or proteolytic degradation. Francis (1992), Focus on Growth Factors 3: 4-11. As a result, the art presently uses the identified peptides to validate drug targets or as scaffolds for design of organic compounds that might not have been as easily or as quickly identified through chemical library screening.

Lowman (1997), Ann. Rev. Biophys. Biomol. Struct. 26: 401-24; Kay et al. (1998), Drug Disc. Today 3: 370-8. The art would benefit from a process by which such peptides could more readily yield therapeutic agents.

5

10

20

25

Summary of the Invention

The present invention concerns a process by which the <u>in vivo</u> halflife of one or more biologically active peptides is increased by fusion with a vehicle. In this invention, pharmacologically active compounds are prepared by a process comprising:

- selecting at least one peptide that modulates the activity of a protein of interest; and
- b) preparing a pharmacologic agent comprising at least one vehicle covalently linked to at least one amino acid sequence of the selected peptide.

The preferred vehicle is an Fc domain. The peptides screened in step (a) are preferably expressed in a phage display library. The vehicle and the

peptide may be linked through the N- or C-terminus of the peptide or the vehicle, as described further below. Derivatives of the above compounds (described below) are also encompassed by this invention.

The compounds of this invention may be prepared by standard synthetic methods, recombinant DNA techniques, or any other methods of preparing peptides and fusion proteins. Compounds of this invention that encompass non-peptide portions may be synthesized by standard organic chemistry reactions, in addition to standard peptide chemistry reactions when applicable.

5

10

15

20

25

The primary use contemplated is as therapeutic or prophylactic agents. The vehicle-linked peptide may have activity comparable to—or even greater than—the natural ligand mimicked by the peptide. In addition, certain natural ligand-based therapeutic agents might induce antibodies against the patient's own endogenous ligand; the vehicle-linked peptide avoids this pitfall by having little or typically no sequence identity with the natural ligand.

Although mostly contemplated as therapeutic agents, compounds of this invention may also be useful in screening for such agents. For example, one could use an Fc-peptide (e.g., Fc-SH2 domain peptide) in an assay employing anti-Fc coated plates. The vehicle, especially Fc, may make insoluble peptides soluble and thus useful in a number of assays.

The compounds of this invention may be used for therapeutic or prophylactic purposes by formulating them with appropriate pharmaceutical carrier materials and administering an effective amount to a patient, such as a human (or other mammal) in need thereof. Other related aspects are also included in the instant invention.

Numerous additional aspects and advantages of the present invention will become apparent upon consideration of the figures and detailed description of the invention.

Brief Description of the Figures

Figure 1 shows a schematic representation of an exemplary process of the invention. In this preferred process, the vehicle is an Fc domain, which is linked to the peptide covalently by expression from a DNA construct encoding both the Fc domain and the peptide. As noted in Figure 1, the Fc domains spontaneously form a dimer in this process.

5

10

15

20

25

Figure 2 shows exemplary Fc dimers that may be derived from an IgG1 antibody. "Fc" in the figure represents any of the Fc variants within the meaning of "Fc domain" herein. "X\dagger" and "X\dagger" represent peptides or linker-peptide combinations as defined hereinafter. The specific dimers are as follows:

A, D: Single disulfide-bonded dimers. IgG1 antibodies typically have two disulfide bonds at the hinge region between the constant and variable domains. The Fc domain in Figures 2A and 2 D may be formed by truncation between the two disulfide bond sites or by substitution of a cysteinyl residue with an unreactive residue (e.g., alanyl). In Figure 2A, the Fc domain is linked at the amino terminus of the peptides; in 2D, at the carboxyl terminus.

B, E: Doubly disulfide-bonded dimers. This Fc domain may be formed by truncation of the parent antibody to retain both cysteinyl residues in the Fc domain chains or by expression from a construct including a sequence encoding such an Fc domain. In Figure 2B, the Fc domain is linked at the amino terminus of the peptides; in 2E, at the carboxyl terminus.

C, F: Noncovalent dimers. This Fc domain may be formed by elimination of the cysteinyl residues by either truncation or substitution.

One may desire to eliminate the cysteinyl residues to avoid impurities formed by reaction of the cysteinyl residue with cysteinyl residues of other

proteins present in the host cell. The noncovalent bonding of the Fc domains is sufficient to hold together the dimer.

5

10

15

20

25

Other dimers may be formed by using Fc domains derived from different types of antibodies (e.g., IgG2, IgM).

Figure 3 shows the structure of preferred compounds of the invention that feature tandem repeats of the pharmacologically active peptide. Figure 3A shows a single chain molecule and may also represent the DNA construct for the molecule. Figure 3B shows a dimer in which the linker-peptide portion is present on only one chain of the dimer. Figure 3C shows a dimer having the peptide portion on both chains. The dimer of Figure 3C will form spontaneously in certain host cells upon expression of a DNA construct encoding the single chain shown in Figure 3A. In other host cells, the cells could be placed in conditions favoring formation of dimers or the dimers can be formed in vitro.

Figure 4 shows exemplary nucleic acid and amino acid sequences (SEQ ID NOS: 1 and 2, respectively) of human IgG1 Fc that may be used in this invention.

Figure 5 shows a synthetic scheme for the preparation of PEGylated peptide 19 (SEQ ID NO: 3).

Figure 6 shows a synthetic scheme for the preparation of PEGylated peptide 20 (SEQ ID NO: 4).

Figure 7 shows the nucleotide and amino acid sequences (SEQ ID NOS: 5 and 6, respectively) of the molecule identified as "Fc-TMP" in Example 2 hereinafter.

Figure 8 shows the nucleotide and amino acid sequences (SEQ. ID. NOS: 7 and 8, respectively) of the molecule identified as "Fc-TMP-TMP" in Example 2 hereinafter.

Figure 9 shows the nucleotide and amino acid sequences (SEQ. ID. NOS: 9 and 10, respectively) of the molecule identified as "TMP-TMP-Fc" in Example 2 hereinafter.

Figure 10 shows the nucleotide and amino acid sequences (SEQ. ID. NOS: 11 and 12, respectively) of the molecule identified as "TMP-Fc" in Example 2 hereinafter.

5

15

20

25

Figure 11 shows the number of platelets generated <u>in vivo</u> in normal female BDF1 mice treated with one 100 μ g/kg bolus injection of various compounds, with the terms defined as follows.

- PEG-MGDF: 20 kD average molecular weight PEG attached by reductive amination to the N-terminal amino group of amino acids 1-163 of native human TPO, which is expressed in <u>E. coli</u> (so that it is not glycosylated);
 - TMP: the TPO-mimetic peptide having the amino acid sequence IEGPTLRQWLAARA (SEQ ID NO: 13);
 - TMP-TMP: the TPO-mimetic peptide having the amino acid sequence IEGPTLRQWLAARA-GGGGGGGG-IEGPTLRQWLAARA (SEQ ID NO: 14);
 - PEG-TMP-TMP: the peptide of SEQ ID NO: 14, wherein the PEG group is a 5 kD average molecular weight PEG attached as shown in Figure 6;
 - Fc-TMP-TMP: the compound of SEQ ID NO: 8 (Figure 8) dimerized with an identical second monomer (i.e., Cys residues 7 and 10 are bound to the corresponding Cys residues in the second monomer to form a dimer, as shown in Figure 2); and
 - TMP-TMP-Fc is the compound of SEQ ID NO: 10 (Figure 9)
 dimerized in the same way as TMP-TMP-Fc except that the Fc
 domain is attached at the C-terminal end rather than the Nterminal end of the TMP-TMP peptide.

Figure 12 shows the number of platelets generated <u>in vivo</u> in normal BDF1 mice treated with various compounds delivered via implanted osmotic pumps over a 7-day period. The compounds are as defined for Figure 7.

5

10

15

20

25

Figure 13 shows the nucleotide and amino acid sequences (SEQ. ID. NOS: 15 and 16, respectively) of the molecule identified as "Fc-EMP" in Example 3 hereinafter.

Figure 14 shows the nucleotide and amino acid sequences (SEQ ID NOS: 17 and 18, respectively) of the molecule identified as "EMP-Fc" in Example 3 hereinafter.

Figure 15 shows the nucleotide and amino acid sequences (SEQ ID NOS:19 and 20, respectively) of the molecule identified as "EMP-EMP-Fc" in Example 3 hereinafter.

Figure 16 shows the nucleotide and amino acid sequences (SEQ ID NOS: 21 and 22, respectively) of the molecule identified as "Fc-EMP-EMP" in Example 3 hereinafter.

Figures 17A and 17B show the DNA sequence (SEQ ID NO: 23) inserted into pCFM1656 between the unique <u>Aat</u>II (position #4364 in pCFM1656) and <u>Sac</u>II (position #4585 in pCFM1656) restriction sites to form expression plasmid pAMG21 (ATCC accession no. 98113).

Figure 18A shows the hemoglobin, red blood cells, and hematocrit generated in vivo in normal female BDF1 mice treated with one 100 μ g/kg bolus injection of various compounds. Figure 18B shows the same results with mice treated with 100 μ g/kg per day delivered the same dose by 7-day micro-osmotic pump with the EMPs delivered at 100 μ g/kg, rhEPO at 30U/mouse. (In both experiments, neutrophils, lymphocytes, and platelets were unaffected.) In these figures, the terms are defined as follows.

Fc-EMP: the compound of SEQ ID NO: 16 (Figure 13) dimerized with an identical second monomer (i.e., Cys residues 7 and 10 are

bound to the corresponding Cys residues in the second monomer to form a dimer, as shown in Figure 2);

EMP-Fc: the compound of SEQ ID NO: 18 (Figure 14) dimerized in the same way as Fc-EMP except that the Fc domain is attached at the C-terminal end rather than the N-terminal end of the EMP peptide.

5

10

15

20

25

"EMP-EMP-Fc" refers to a tandem repeat of the same peptide (SEQ ID NO: 20) attached to the same Fc domain by the carboxyl terminus of the peptides. "Fc-EMP-EMP" refers to the same tandem repeat of the peptide but with the same Fc domain attached at the amino terminus of the tandem repeat. All molecules are expressed in E. coli and so are not glycosylated.

Figures 19A and 19B show the nucleotide and amino acid sequences (SEQ ID NOS: 1055 and 1056) of the Fc-TNF- α inhibitor fusion molecule described in Example 4 hereinafter.

Figures 20A and 20B show the nucleotide and amino acid sequences (SEQ ID NOS: 1057 and 1058) of the TNF- α inhibitor-Fc fusion molecule described in Example 4 hereinafter.

Figures 21A and 21B show the nucleotide and amino acid sequences (SEQ ID NOS: 1059 and 1060) of the Fc-IL-1 antagonist fusion molecule described in Example 5 hereinafter.

Figures 22A and 22B show the nucleotide and amino acid sequences (SEQ ID NOS: 1061 and 1062) of the IL-1 antagonist-Fc fusion molecule described in Example 5 hereinafter.

Figures 23A, 23B, and 23C show the nucleotide and amino acid sequences (SEQ ID NOS: 1063 and 1064) of the Fc-VEGF antagonist fusion molecule described in Example 6 hereinafter.

Figures 24A and 24B show the nucleotide and amino acid sequences (SEQ ID NOS: 1065 and 1066) of the VEGF antagonist-Fc fusion molecule described in Example 6 hereinafter.

Figures 25A and 25B show the nucleotide and amino acid sequences (SEQ ID NOS: 1067 and 1068) of the Fc-MMP inhibitor fusion molecule described in Example 7 hereinafter.

Figures 26A and 26B show the nucleotide and amino acid sequences (SEQ ID NOS: 1069 and 1070) of the MMP inhibitor-Fc fusion molecule described in Example 7 hereinafter.

Detailed Description of the Invention

Definition of Terms

5

10

15

20

25

The terms used throughout this specification are defined as follows, unless otherwise limited in specific instances.

The term "comprising" means that a compound may include additional amino acids on either or both of the N- or C- termini of the given sequence. Of course, these additional amino acids should not significantly interfere with the activity of the compound.

The term "vehicle" refers to a molecule that prevents degradation and/or increases half-life, reduces toxicity, reduces immunogenicity, or increases biological activity of a therapeutic protein. Exemplary vehicles include an Fc domain (which is preferred) as well as a linear polymer (e.g., polyethylene glycol (PEG), polylysine, dextran, etc.); a branched-chain polymer (see, for example, U.S. Patent No. 4,289,872 to Denkenwalter et al., issued September 15, 1981; 5,229,490 to Tam, issued July 20, 1993; WO 93/21259 by Frechet et al., published 28 October 1993); a lipid; a cholesterol group (such as a steroid); a carbohydrate or oligosaccharide; or any natural or synthetic protein, polypeptide or peptide that binds to a salvage receptor. Vehicles are further described hereinafter.

The term "native Fc" refers to molecule or sequence comprising the sequence of a non-antigen-binding fragment resulting from digestion of whole antibody, whether in monomeric or multimeric form. The original immunoglobulin source of the native Fc is preferably of human origin and may be any of the immunoglobulins, although IgG1 and IgG2 are preferred. Native Fc's are made up of monomeric polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgG1, IgG2, IgG3, IgA1, IgGA2). One example of a native Fc is a disulfide-bonded dimer resulting from papain digestion of an IgG (see Ellison et al. (1982), Nucleic Acids Res. 10: 4071-9). The term "native Fc" as used herein is generic to the monomeric, dimeric, and multimeric forms.

The term "Fc variant" refers to a molecule or sequence that is modified from a native Fc but still comprises a binding site for the salvage receptor, FcRn. International applications WO 97/34631 (published 25 September 1997) and WO 96/32478 describe exemplary Fc variants, as well as interaction with the salvage receptor, and are hereby incorporated by reference. Thus, the term "Fc variant" comprises a molecule or sequence that is humanized from a non-human native Fc. Furthermore, a native Fc comprises sites that may be removed because they provide structural features or biological activity that are not required for the fusion molecules of the present invention. Thus, the term "Fc variant" comprises a molecule or sequence that lacks one or more native Fc sites or residues that affect or are involved in (1) disulfide bond formation, (2) incompatibility with a selected host cell (3) N-terminal heterogeneity upon expression in a selected host cell, (4) glycosylation, (5) interaction with complement, (6) binding to an Fc receptor other than a salvage receptor, or

(7) antibody-dependent cellular cytotoxicity (ADCC). Fc variants are described in further detail hereinafter.

5

10

15

20

25

The term "Fc domain" encompasses native Fc and Fc variant molecules and sequences as defined above. As with Fc variants and native Fc's, the term "Fc domain" includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by other means.

The term "multimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two or more polypeptide chains associated covalently, noncovalently, or by both covalent and non-covalent interactions. IgG molecules typically form dimers; IgM, pentamers; IgD, dimers; and IgA, monomers, dimers, trimers, or tetramers. Multimers may be formed by exploiting the sequence and resulting activity of the native Ig source of the Fc or by derivatizing (as defined below) such a native Fc.

The term "dimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two polypeptide chains associated covalently or non-covalently. Thus, exemplary dimers within the scope of this invention are as shown in Figure 2.

The terms "derivatizing" and "derivative" or "derivatized" comprise processes and resulting compounds respectively in which (1) the compound has a cyclic portion; for example, cross-linking between cysteinyl residues within the compound; (2) the compound is cross-linked or has a cross-linking site; for example, the compound has a cysteinyl residue and thus forms cross-linked dimers in culture or in vivo; (3) one or more peptidyl linkage is replaced by a non-peptidyl linkage; (4) the N-terminus is replaced by -NRR¹, NRC(O)R¹, -NRC(O)OR¹, -NRS(O)₂R¹, -NHC(O)NHR, a succinimide group, or substituted or unsubstituted benzyloxycarbonyl-NH-, wherein R and R¹ and the ring substituents are

as defined hereinafter; (5) the C-terminus is replaced by -C(O)R² or -NR³R⁴ wherein R², R³ and R⁴ are as defined hereinafter; and (6) compounds in which individual amino acid moieties are modified through treatment with agents capable of reacting with selected side chains or terminal residues. Derivatives are further described hereinafter.

5

10

15

20

25

The term "peptide" refers to molecules of 2 to 40 amino acids, with molecules of 3 to 20 amino acids preferred and those of 6 to 15 amino acids most preferred. Exemplary peptides may be randomly generated by any of the methods cited above, carried in a peptide library (e.g., a phage display library), or derived by digestion of proteins.

The term "randomized" as used to refer to peptide sequences refers to fully random sequences (e.g., selected by phage display methods) and sequences in which one or more residues of a naturally occurring molecule is replaced by an amino acid residue not appearing in that position in the naturally occurring molecule. Exemplary methods for identifying peptide sequences include phage display, <u>E. coli</u> display, ribosome display, RNA-peptide screening, chemical screening, and the like.

The term "pharmacologically active" means that a substance so described is determined to have activity that affects a medical parameter (e.g., blood pressure, blood cell count, cholesterol level) or disease state (e.g., cancer, autoimmune disorders). Thus, pharmacologically active peptides comprise agonistic or mimetic and antagonistic peptides as defined below.

The terms "-mimetic peptide" and "-agonist peptide" refer to a peptide having biological activity comparable to a protein (e.g., EPO, TPO, G-CSF) that interacts with a protein of interest. These terms further include peptides that indirectly mimic the activity of a protein of interest, such as by potentiating the effects of the natural ligand of the protein of interest; see, for example, the G-CSF-mimetic peptides listed in Tables 2

and 7. Thus, the term "EPO-mimetic peptide" comprises any peptides that can be identified or derived as described in Wrighton et al. (1996), Science 273: 458-63, Naranda et al. (1999), Proc. Natl. Acad. Sci. USA 96: 7569-74, or any other reference in Table 2 identified as having EPO-mimetic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

5

10

15

20

25

The term "TPO-mimetic peptide" comprises peptides that can be identified or derived as described in Cwirla et al. (1997), Science 276: 1696-9, U.S. Pat. Nos. 5,869,451 and 5,932,946 and any other reference in Table 2 identified as having TPO-mimetic subject matter, as well as the U.S. patent application, "Thrombopoietic Compounds," filed on even date herewith and hereby incorporated by reference. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The term "G-CSF-mimetic peptide" comprises any peptides that can be identified or described in Paukovits et al. (1984), Hoppe-Seylers Z. Physiol. Chem. 365: 303-11 or any of the references in Table 2 identified as having G-CSF-mimetic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The term "CTLA4-mimetic peptide" comprises any peptides that can be identified or derived as described in Fukumoto <u>et al</u>. (1998), <u>Nature Biotech</u>. 16: 267-70. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually

disclosed therein by following the disclosed procedures with different peptide libraries.

5

10

15

20

25

The term "-antagonist peptide" or "inhibitor peptide" refers to a peptide that blocks or in some way interferes with the biological activity of the associated protein of interest, or has biological activity comparable to a known antagonist or inhibitor of the associated protein of interest. Thus, the term "TNF-antagonist peptide" comprises peptides that can be identified or derived as described in Takasaki et al. (1997), Nature Biotech. 15: 1266-70 or any of the references in Table 2 identified as having TNF-antagonistic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The terms "IL-1 antagonist" and "IL-1ra-mimetic peptide" comprises peptides that inhibit or down-regulate activation of the IL-1 receptor by IL-1. IL-1 receptor activation results from formation of a complex among IL-1, IL-1 receptor, and IL-1 receptor accessory protein. IL-1 antagonist or IL-1ra-mimetic peptides bind to IL-1, IL-1 receptor, or IL-1 receptor accessory protein and obstruct complex formation among any two or three components of the complex. Exemplary IL-1 antagonist or IL-1ra-mimetic peptides can be identified or derived as described in U.S. Pat. Nos. 5,608,035, 5,786,331, 5,880,096, or any of the references in Table 2 identified as having IL-1ra-mimetic or IL-1 antagonistic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The term "VEGF-antagonist peptide" comprises peptides that can be identified or derived as described in Fairbrother (1998), <u>Biochem.</u> 37:

17754-64, and in any of the references in Table 2 identified as having VEGF-antagonistic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The term "MMP inhibitor peptide" comprises peptides that can be identified or derived as described in Koivunen (1999), Nature Biotech. 17: 768-74 and in any of the references in Table 2 identified as having MMP inhibitory subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

Additionally, physiologically acceptable salts of the compounds of this invention are also encompassed herein. By "physiologically acceptable salts" is meant any salts that are known or later discovered to be pharmaceutically acceptable. Some specific examples are: acetate; trifluoroacetate; hydrohalides, such as hydrochloride and hydrobromide; sulfate; citrate; tartrate; glycolate; and oxalate.

Structure of compounds

<u>In General</u>. In the compositions of matter prepared in accordance with this invention, the peptide may be attached to the vehicle through the peptide's N-terminus or C-terminus. Thus, the vehicle-peptide molecules of this invention may be described by the following formula I:

Ι

5

10

15

20

25

$$(X^1)_a - F^1 - (X^2)_b$$

wherein:

F' is a vehicle (preferably an Fc domain);

 X^{1} and X^{2} are each independently selected from - $(L^{1})_{c}$ - P^{1} , - $(L^{1})_{c}$ - P^{1} - $(L^{2})_{d}$ - P^{2} , - $(L^{1})_{c}$ - P^{1} - $(L^{2})_{d}$ - P^{2} - $(L^{3})_{e}$ - P^{3} - $(L^{4})_{f}$ - P^{4}

P¹, P², P³, and P⁴ are each independently sequences of pharmacologically active peptides;

L1, L2, L3, and L4 are each independently linkers; and

a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1.

Thus, compound I comprises preferred compounds of the formulae

X1-F1

and multimers thereof wherein F^1 is an Fc domain and is attached at the C-terminus of X^1 ;

Ш

10

П

and multimers thereof wherein F^1 is an Fc domain and is attached at the N-terminus of X^2 ;

15 IV

and multimers thereof wherein F^1 is an Fc domain and is attached at the N-terminus of $-(L^1)_c-P^1$; and

V

20

25

$$F^{1}-(L^{1})_{a}-P^{1}-(L^{2})_{a}-P^{2}$$

and multimers thereof wherein F^1 is an Fc domain and is attached at the N-terminus of $-L^1-P^1-L^2-P^2$.

<u>Peptides</u>. Any number of peptides may be used in conjunction with the present invention. Of particular interest are peptides that mimic the activity of EPO, TPO, growth hormone, G-CSF, GM-CSF, IL-1ra, leptin, CTLA4, TRAIL, TGF- α , and TGF- β . Peptide antagonists are also of interest, particularly those antagonistic to the activity of TNF, leptin, any of the interleukins (IL-1, 2, 3, ...), and proteins involved in complement activation (e.g., C3b). Targeting peptides are also of interest, including

tumor-homing peptides, membrane-transporting peptides, and the like.

All of these classes of peptides may be discovered by methods described in the references cited in this specification and other references.

5

10

15

20

Phage display, in particular, is useful in generating peptides for use in the present invention. It has been stated that affinity selection from libraries of random peptides can be used to identify peptide ligands for any site of any gene product. Dedman et al. (1993), J. Biol. Chem. 268: 23025-30. Phage display is particularly well suited for identifying peptides that bind to such proteins of interest as cell surface receptors or any proteins having linear epitopes. Wilson et al. (1998), Can. J. Microbiol. 44: 313-29; Kay et al. (1998), Drug Disc. Today 3: 370-8. Such proteins are extensively reviewed in Herz et al. (1997), J. Receptor & Signal Transduction Res. 17(5): 671-776, which is hereby incorporated by reference. Such proteins of interest are preferred for use in this invention.

A particularly preferred group of peptides are those that bind to cytokine receptors. Cytokines have recently been classified according to their receptor code. See Inglot (1997), <u>Archivum Immunologiae et Therapiae Experimentalis</u> 45: 353-7, which is hereby incorporated by reference. Among these receptors, most preferred are the CKRs (family I in Table 3). The receptor classification appears in Table 3.

PCT/US99/25044

Table 3—Cytokine Receptors Classified by Recept r Code

	Cytokine	s (ligands)	Recept	tor Type
	family	subfamily	family	subfamily
ī.	Hematopoietic cytokines	1. IL-2, IL-4, IL-7, IL-9, IL-13, IL- 15	I. Cytokine R (CKR)	 shared γCr
		2. IL-3, IL-5, GM- CSF		2. shared GP 140 βR
		 IL-6, IL-11, IL- 12, LIF, OSM, CNTF, leptin (OB) 		3. 3.shared RP 130
		4. G-CSF, EPO, TPO, PRL, GH		4. "single chain" R
		5. IL-17, HVS-IL- 17		5. other R°
II.	IL-10 ligands	IL-10, BCRF-1, HSV-IL-10	II. IL-10 R	
III.	Interferons	 IFN-αl, α2, α4, m, t, IFN-β^d 	III. Interferon R	1. IFNAR
		2. IFN-y		2. IFNGR
IV.	IL-1 ligands	1. IL-1α, IL-1β, IL- 1Ra	IV. IL-1R	
V.	TNF ligands	1. TNF-α, TNF-β (LT), FAS1, CD40 L, CD30L, CD27 L	V. NGF/TNF R°	
VI.	Chemokines	1. α chemokines: IL-8, GRO α, β, γ, IF-10,	VI. Chemokine R	1. CXCR
		PF-4, SDF-1 2. β chemokines: MIP1α, MIP1β, MCP-1,2,3,4, RANTES,		2. CCR
		eotaxin 3. γ chemokines: lymphotactin		3. CR
		lymphotaetin		4. DARC'

The Duffy blood group antigen (DARC) is an erythrocyte receptor that can bind s v ral different chem kines. It belongs to the immunoglobulin superfamily but characteristics of its signal transduction events remain unclear.

^c IL-17R belongs to the CKR family but is not assigned to any of the 4 indicated subjamilies.

^d Other IFN type I subtypes remain unassigned. Hematopoietic cytokines, IL-10 ligands and interferons do not possess functional intrinsic protein kinases. The signaling molecules for the cytokines are JAK's, STATs and related non-receptor molecules. IL-14, IL-16 and IL-18 have been cloned but according to the receptor code they remain unassigned.

^e TNE-receptors are multiple distinct introduling molecules for signal transduction is shall be a signal transduction in the distinct introduction.

 $^{^{\}circ}$ TNF receptors use multiple, distinct intracellular molecules for signal transduction including "death domain" of FAS R and 55 kDa TNF- α R that participates in their cytotoxic effects. NGF/TNF R can bind both NGF and related factors as well as TNF ligands. Chemokine receptors are G prot in-coupled, seven transmembrane (7TM, serpentine) domain receptors.

VII. Growth factors		VII. RKF	1.	TK sub-family
	1.1 SCF, M-CSF,		1.1	lgTK III R
	PDGF-AA, AB,			·
	BB, FLT-3L,			
	VEGF, SSV-			
	PDGF			
	1.2 FGFα, FGFβ			IgTK IV R
	1.3 EGF, TGF-a,		1.3	Cysteine-rich
	VV-F19 (EGF-			TK-I
	like)		4.4	Custoine sich
	1.4 IGF-I, IGF-II,		1.4	Cysteine rich
	Insulin		4 5	TK-II
	1.5 NGF, BDNF,		1.5	Cysteine knot TK V
	NT-3, NT-4°		2	
	2. TGF-β1,β2,β3	i	2.	STK subfamily ^h

Exemplary peptides for this invention appear in Tables 4 through 20 below. These peptides may be prepared by methods disclosed in the art. Single letter amino acid abbreviations are used. The X in these 5 sequences (and throughout this specification, unless specified otherwise in a particular instance) means that any of the 20 naturally occurring amino acid residues may be present. Any of these peptides may be linked in tandem (i.e., sequentially), with or without linkers, and a few tandemlinked examples are provided in the table. Linkers are listed as " Λ " and 10 may be any of the linkers described herein. Tandem repeats and linkers are shown separated by dashes for clarity. Any peptide containing a cysteinyl residue may be cross-linked with another Cys-containing peptide, either or both of which may be linked to a vehicle. A few crosslinked examples are provided in the table. Any peptide having more than 15 one Cys residue may form an intrapeptide disulfide bond, as well; see, for example, EPO-mimetic peptides in Table 5. A few examples of intrapeptide disulfide-bonded peptides are specified in the table. Any of these peptides may be derivatized as described herein, and a few derivatized examples are provided in the table. Derivatized peptides in 20

⁹ Th neurotrophic cytokines can associat with NGF/TNF receptors also.

5

10

15

20

25

the tables are exemplary rather than limiting, as the associated underivatized peptides may be employed in this invention, as well. For derivatives in which the carboxyl terminus may be capped with an amino group, the capping amino group is shown as -NH₂. For derivatives in which amino acid residues are substituted by moieties other than amino acid residues, the substitutions are denoted by σ , which signifies anv of the moieties described in Bhatnagar et al. (1996), J. Med. Chem. 39: 3814-9 and Cuthbertson et al. (1997), J. Med. Chem. 40: 2876-82, which are incorporated by reference. The J substituent and the Z substituents (Z_{ω} , Z_{ω} ... Z_n) are as defined in U.S. Pat. Nos. 5,608,035,5,786,331, and 5,880,096, which are incorporated by reference. For the EPO-mimetic sequences (Table 5), the substituents X_1 , through X_{11} and the integer "n" are as defined in WO 96/40772, which is incorporated by reference. The substituents "Y," "O," and "+" are as defined in Sparks et al. (1996), Proc. Natl. Acad. Sci. 93: 1540-4, which is hereby incorporated by reference. X,, X,, and X, are as defined in U.S. Pat. No. 5,773,569, which is hereby incorporated by reference, except that: for integrin-binding peptides, X₁, X₂, X₃, X₄, X₅, X₆, X₇, and X_a are as defined in International applications WO 95/14714, published June 1, 1995 and WO 97/08203, published March 6, 1997, which are also incorporated by reference; and for VIP-mimetic peptides, X₁, X₂, X_1 ", X_2 , X_3 , X_4 , X_5 , X_6 and Z and the integers m and n are as defined in WO 97/40070, published October 30, 1997, which is also incorporated by reference. Xaa and Yaa below are as defined in WO 98/09985, published March 12, 1998, which is incorporated by reference. AA₁, AA₂, AB₁, AB₂, and AC are as defined in International application WO 98/53842, published December 3, 1998, which is incorporated by reference. X1, X2, X3, and X4 in Table 17 only are as defined in European application EP 0 911

^b STKS may encompass many other TGF-β-r lated factors that remain unassigned. The protein kinases are intrinsic part of the intracellular domain of receptor kinase family (RKF). The enzymes participate in the signals transmission via the receptors.

393, published April 28, 1999. Residues appearing in boldface are D-amino acids. All peptides are linked through peptide bonds unless otherwise noted. Abbreviations are listed at the end of this specification. In the "SEQ ID NO." column, "NR" means that no sequence listing is required for the given sequence.

5

Table 4—IL-1 antagonist peptide sequences

Sequence/structure	SEQ
<u>-</u>	ID NO:
Z _{1,} Z,Z ₂ QZ ₂ YZ ₂ Z ₂ Z ₁₀	212
XXQZ _s YZ _s XX	907
Z,XQZ,YZ,XX	908
$Z_{Z_{a}}QZ_{b}YZ_{a}Z_{b}$	909
Z,,Z,Z,QZ,YZ,Z,,	910
Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,QZ,YZ,Z,Z,L	917
Z_NZ_Z_Z_Z_Z_Z_Z_Z_Z_	979
TANVSSFEWTPYYWQPYALPL	213
SWTDYGYWQPYALPISGL	214
ETPFTWEESNAYYWQPYALPL	215
ENTYSPNWADSMYWQPYALPL	216
SVGEDHNFWTSEYWQPYALPL	217
DGYDRWRQSGERYWQPYALPL	218
FEWTPGYWQPY	219
FEWTPGYWQHY	220
FEWTPGWYQJY	221
AcFEWTPGWYQJY	222
FEWTPGWpYQJY	223
FAWTPGYWQJY	224
FEWAPGYWQJY	225
FEWVPGYWQJY	226
FEWTPGYWQJY	227
AcFEWTPGYWQJY	228
FEWTPaWYQJY	229
FEWTPSarWYQJY	230
FEWTPGYYQPY	231
FEWTPGWWQPY	232
FEWTPNYWQPY	233
FEWTPvYWQJY	234
FEWTPecGYWQJY .	235
FEWTPAibYWQJY	236
FEWTSarGYWQJY	237
FEWTPGYWQPY	238
FEWTPGYWQHY	239
FEWTPGWYQJY	240

AcFEWTPGWYQJY	241
FEWTPGW-pY-QJY	242
FAWTPGYWQJY	243
FEWAPGYWQJY	244
FEWVPGYWQJY	245
FEWTPGYWQJY	246
AcFEWTPGYWQJY	247
FEWTPAWYQJY	248
FEWTPSarWYQJY	249
FEWTPGYYQPY	250
FEWTPGWWQPY	251
FEWTPNYWQPY	252
FEWTPVYWQJY	253
FEWTPecGYWQJY	254
FEWTPAibYWQJY	255
FEWTSarGYWQJY	256
FEWTPGYWQPYALPL	257
1NapEWTPGYYQJY	258
YEWTPGYYQJY	259
FEWVPGYYQJY	260
FEWTPSYYQJY	261
FEWTPNYYQJY	262
TKPR	263
RKSSK	264
RKQDK	265
NRKQDK	266
RKQDKR	267
ENRKQDKRF	268
VTKFYF	269
VTKFY	270
VTDFY	271
SHLYWQPYSVQ	671
TLVYWQPYSLQT	672
RGDYWQPYSVQS	673
VHVYWQPYSVQT	674
RLVYWQPYSVQT	675
SRVWFQPYSLQS	676
NMVYWQPYSIQT	677
SVVFWQPYSVQT	678
TFVYWQPYALPL	679
TLVYWQPYSIQR	680
RLVYWQPYSVQR	681
SPVFWQPYSIQI	682
WIEWWQPYSVQS	683
SLIYWQPYSLQM	684
	685
TRLYWQPYSVQR	686
RCDYWQPYSVQT	687
MRVFWQPYSVQN	688
KIVYWQPYSVQT	689
RHLYWQPYSVQR	1 007

PCT/US99/25044

ALVWWQPYSEQI	690
SRVWFQPYSLQS	691
WEQPYALPLE	692
QLVWWQPYSVQR	693
DLRYWQPYSVQV	694
ELVWWQPYSLQL	695
DLVWWQPYSVQW	696
NGNYWQPYSFQV	697
ELVYWQPYSIQR	698
ELMYWQPYSVQE	699
NLLYWQPYSMQD	700
GYEWYQPYSVQR	701
SRVWYQPYSVQR	702
LSEQYQPYSVQR	703
GGGWWQPYSVQR	704
VGRWYQPYSVQR	705
VHVYWQPYSVQR	706
QARWYQPYSVQR	707
VHVYWQPYSVQT	708
RSVYWQPYSVQR	709
TRVWFQPYSVQR	710
GRIWFQPYSVQR	711
GRVWFQPYSVQR	712
ARTWYQPYSVQR	713
ARVWWQPYSVQM	714
RLMFYQPYSVQR	715
ESMWYQPYSVQR	716
HFGWWQPYSVHM	717
ARFWWQPYSVQR	718
RLVYWQ PYAPIY	719
RLVYWQ PYSYQT	720
RLVYWQ PYSLPI	721
RLVYWQ PYSVQA	722
SRVWYQ PYAKGL	723
SRVWYQ PYAQGL	724
SRVWYQ PYAMPL	725
SRVWYQ PYSVQA	726
SRVWYQ PYSLGL	727
SRVWYQ PYAREL	728
SRVWYQ PYSRQP	729
SRVWYQ PYFVQP	730
EYEWYQ PYALPL	731
IPEYWQ PYALPL	732
SRIWWQ PYALPL	733
DPLFWQ PYALPL	734
SRQWVQ PYALPL	735
IRSWWQ PYALPL	736
RGYWQ PYALPL	737
RLLWVQ PYALPL	738
EYRWFQ PYALPL	739
ETRWICETALIL	

DAYWVQ PYALPL	740
WSGYFQ PYALPL	741
NIEFWQ PYALPL	742
TRDWVQ PYALPL	743
DSSWYQ PYALPL	744
IGNWYQ PYALPL	745
NLRWDQ PYALPL	746
LPEFWQ PYALPL	747
DSYWWQ PYALPL	748
RSQYYQ PYALPL	749
ARFWLQ PYALPL	750
NSYFWQ PYALPL	751
RFMYWQPYSVQR	752
AHLFWQPYSVQR	753
WWQPYALPL	754
YYQPYALPL	755
YFQPYALGL	756
YWYQPYALPL	757
RWWQPYATPL	758
GWYQPYALGF	<i>7</i> 59
YWYQPYALGL	760
IWYQPYAMPL	761
SNMQPYQRLS	762
TFVYWQPY AVGLPAAETACN	763
TFVYWQPY SVQMTITGKVTM	764
TFVYWQPY SSHXXVPXGFPL	765
TEVYWQPY YGNPQWAIHVRH	766
TFVYWQPY VLLELPEGAVRA	767
TFVYWQPY VDYVWPIPIAQV	768
GWYQPYVDGWR	769
RWEQPYVKDGWS	770
EWYQPYALGWAR	771
GWWQPYARGL	772
LFEQPYAKALGL	773
GWEQPYARGLAG	774
AWVQPYATPLDE	77 5
MWYQPYSSQPAE	776
GWTQPYSQQGEV	777
DWFQPYSIQSDE	778
PWIQPYARGFG	779
RPLYWQPYSVQV	780
TLIYWQPYSVQI	781
RFDYWQPYSDQT	782
WHQFVQPYALPL	783
EWDS VYWQPYSVQ TLLR	784
WEQN VYWQPYSVQ SFAD	785
SDV VYWQPYSVQ SLEM	786
YYDG VYWQPYSVQ VMPA	787
SDIWYQ PYALPL	788
QRIWWQ PYALPL	789

SRIWWQ PYALPL	790
RSLYWQ PYALPL	791
TIIWEQ PYALPL	792
WETWYQ PYALPL	793
SYDWEQ PYALPL	794
SRIWCQ PYALPL	795
EIMFWQ PYALPL	796
DYVWQQ PYALPL	<i>7</i> 97
MDLLVQ WYQPYALPL	798
GSKVIL WYQPYALPL	799
RQGANI WYQPYALPL	800
GGGDEP WYQPYALPL	801
SQLERT WYQPYALPL	802
ETWVRE WYQPYALPL	803
KKGSTQ WYQPYALPL	804
LQARMN WYQPYALPL	805
EPRSQK WYQPYALPL	806
VKQKWR WYQPYALPL	807
LRRHDV WYQPYALPL	808
RSTASI WYQPYALPL	809
ESKEDQ WYQPYALPL	810
EGLTMK WYQPYALPL	811
EGSREG WYQPYALPL	812
VIEWWQ PYALPL	813
VWYWEQ PYALPL	814
ASEWWQ PYALPL	815
FYEWWQ PYALPL	816
EGWWVQ PYALPL	817
WGEWLQ PYALPL	818
DYVWEQ PYALPL	819
AHTWWQ PYALPL	820
FIEWFQ PYALPL	821
WLAWEQ PYALPL	822
VMEWWQ PYALPL	823
ERMWQ PYALPL	824
NXXWXX PYALPL	825
WGNWYQ PYALPL	826
TLYWEQ PYALPL	827
VWRWEQ PYALPL	828
LLWTQ PYALPL	829
SRIWXX PYALPL	830 831
SDIWYQ PYALPL	
WGYYXX PYALPL	832 833
TSGWYQ PYALPL	834
VHPYXX PYALPL	
EHSYFQ PYALPL	835
XXIWYQ PYALPL	836 837
AQLHSQ PYALPL	838
WANWFQ PYALPL	839
SRLYSQ PYALPL	0.77

GVTFSQ PYALPL	840
SIVWSQ PYALPL	841
SRDLVQ PYALPL	842
	843
HWGH VYWQPYSVQ DDLG	844
SWHS VYWQPYSVQ SVPE	845
WRDS VYWQPYSVQ PESA	846
TWDA VYWQPYSVQ KWLD	847
TPPW VYWQPYSVQ SLDP	848
YWSS VYWQPYSVQ SVHS	849
YWY QPY ALGL	
YWY QPY ALPL	850
EWI QPY ATGL	851
NWE QPY AKPL	852
AFY QPY ALPL	853
FLY QPY ALPL	854
VCK QPY LEWC	855
ETPFTWEESNAYYWQPYALPL	856
QGWLTWQDSVDMYWQPYALPL	857
FSEAGYTWPENTYWQPYALPL	858
TESPGGLDWAKIYWQPYALPL	859
DGYDRWRQSGERYWQPYALPL	860
TANVSSFEWTPGYWQPYALPL	861
SVGEDHNFWTSE YWQPYALPL	862
MNDQTSEVSTFP YWQPYALPL	863
SWSEAFEQPRNL YWQPYALPL	864
QYAEPSALNDWG YWQPYALPL	865
NGDWATADWSNY YWQPYALPL	866
THDEHI YWQPYALPL	867
MLEKTYTTWTPG YWQPYALPL	868
WSDPLTRDADL YWQPYALPL	869
SDAFTTQDSQAM YWQPYALPL	870
GDDAAWRTDSLT YWQPYALPL	871
AIIRQLYRWSEM YWQPYALPL	872
ENTYSPNWADSM YWQPYALPL	873
MNDQTSEVSTFP YWQPYALPL	874
SVGEDHNFWTSE YWQPYALPL	875
QTPFTWEESNAY YWQPYALPL	876
ENPFTWQESNAY YWQPYALPL	877
VTPFTWEDSNVF YWQPYALPL	878
QIPFTWEQSNAY YWQPYALPL	879
QAPLTWQESAAY YWQPYALPL	880
EPTFTWEESKAT YWQPYALPL	881
TITLTWEESNAY YWQPYALPL	882
ESPLTWEESSAL YWQPYALPL	883
ETPLTWEESNAY YWQPYALPL	884
EATFTWAESNAY YWQPYALPL	885
EALFTWKESTAY YWQPYALPL	886
STP-TWEESNAY YWQPYALPL	887
ETPFTWEESNAY YWQPYALPL	888
KAPFTWEESQAY YWQPYALPL	889
IVII I ITTLLOGITI I ITTGI I I IL	

STSFTWEESNAY YWQPYALPL	890
DSTFTWEESNAY YWQPYALPL	891
YIPFTWEESNAY YWQPYALPL	892
QTAFTWEESNAY YWQPYALPL	893
ETLFTWEESNAT YWQPYALPL	894
VSSFTWEESNAY YWQPYALPL	895
QPYALPL	896
Py-1-NapPYQJYALPL	897
TANVSSFEWTPG YWQPYALPL	898
FEWTPGYWQPYALPL	899
FEWTPGYWQJYALPL	900
FEWTPGYYQJYALPL	901
ETPFTWEESNAYYWQPYALPL	902
FTWEESNAYYWQJYALPL	903
ADVL YWQPYA PVTLWV	904
GDVAE YWQPYA LPLTSL	905
SWTDYG YWQPYA LPISGL	906
FEWTPGYWQPYALPL	911
FEWTPGYWQJYALPL	912
FEWTPGWYQPYALPL	913
FEWTPGWYQJYALPL	914
FEWTPGYYQPYALPL	915
FEWTPGYYQJYALPL	916
TANVSSFEWTPGYWQPYALPL	918
SWTDYGYWQPYALPISGL	919
ETPFTWEESNAYYWQPYALPL	920
ENTYSPNWADSMYWQPYALPL	921
SVGEDHNFWTSEYWQPYALPL	922
DGYDRWRQSGERYWQPYALPL	923
FEWTPGYWQPYALPL	924
FEWTPGYWQPY	925
FEWTPGYWQJY	926
EWTPGYWQPY	927
FEWTPGWYQJY	928
AEWTPGYWQJY	929
FAWTPGYWQJY	930
FEATPGYWQJY	931
FEWAPGYWQJY	932
FEWTAGYWQJY	933
FEWTPAYWQJY	934
FEWTPGAWQJY	935
FEWTPGYAQJY	936
FEWTPGYWQJA	937
FEWTGGYWQJY	938
FEWTPGYWQJY	939
FEWTJGYWQJY	940
FEWTPecGYWQJY	941
FEWTPAibYWQJY	942
FEWTPSarWYQJY	943
FEWTSarGYWQJY	944

FEWTPYWQJY FEWTVPYWQJY ACFEWTPGWYQJY ACFEWTPGWYQJY MAPEWTPGYYQJY PSD FEWTPGYYQJY PSD FEWTPGYYQJ PSD FEWTPGYYQJ PSD FEWTPGYYQJ-Bpa PGD FEWTPGYYQJ-Bpa PGD FEWTPGYPGPBA-QJY PSD FEWTPG-Bpa-YQJY ACFEWTPG-Bpa-YQJY ACFEWTPG-Bpa-YQJY ACFEWTPG-Bpa-YQJY ACFEWTPG-Bpa-TPGYYQJY PSD ACFEWTPGYYQJY PSD ACFEWTPGYYQJ PSD FUNDANAWYENFLL PRE RLYY-Nap-OPYSVQR PSD RLY-Nap-OPYSVQR PSD RLYY-Nap-OPYSVQR PSD RLY-Nap-OPYSVQR PSD RLYY-Nap-OPYSVQR PSD RLY-Nap-OPYSVQR RLY-Nap-OPYSVQR RLY-Nap-OPYSVQR RLY-Nap-OPYSVQR RLY-Nap-OPYSVQR RL	FEWTPNYWQJY	945
FEWTVPYWQJY ACFEWTPGYYQJY ACFEWTPGYYQJY P48 ACFEWTPGYYQJY P59 YEWTPGYYQJY P51 FEWVPGYYQJY P52 FEWTPGYYQJY P53 FEWTPSYYQJY P54 FEWTPSYYQJY P55 SHLY-Nap-QPYSQM P56 TLVY-Nap-QPYSQM P57 RGDY-Nap-QPYSQG NMVY-Nap-QPYSQT P59 YYWQPYSQQ P60 VY-Nap-QPYSQQ P61 TFYYWQJYALPL P62 FEWTPGYYQJ-Bpa ACFEWTPGYYQJ-Bpa ACFEWTPGY-Bpa-QJY ACFEWTPG-Bpa-YQJY P66 FEWTPG-Bpa-YQJY P67 ACFEWTPG-Bpa-YQJY P68 ACFE-Bpa-TPGYYQJY P70 Bpa-EWTPGYYQJY P70 RLVYWQPYSQQ P71 RLVYWQPYSQQ P72 RLVYWQPYSQQ P73 RLVYWQPYSQQ P76 RLVYWQPYSQQ P77 RLVYWQPYSQR P76 RLVYWQPYSQR P77 RLVYWQPYSQR P78 DNTAWYENFLL TY P88 SQIP DNTAWYCHEL TY P88 TTYTY DNTAWYENFLL TY P88 TTYTY DNTAWYENFLL TY P88 TTYTY DNTAWYENFLL TY P88 TI DNTAWYENFLL TYP P79 P90 TI DNTAWYENFLL SY P90 TI DNTAWYENFLL SY P90 TI DNTAWYENFLL SY P90 TI DNTAWYENFLL SYAA P94		
AcFEWTPGWYQJY AcFEWTPGYYQJY P990 Nap-EWTPGYYQJY P501 FEWYPGYYQJY P501 FEWYPGYYQJY P501 FEWYPGYYQJY P502 FEWTPGYYQJY P503 FEWTPGYYQJY P503 FEWTPSYYQJY P504 FEWTPNYYQJY P505 FEWTPNYYQJY P505 FEWTPNYYQJY P506 FEWTPNYYQJY P507 FEWTPNYYQJY P507 FEWTPNYYQJY P508 FEWTPNYYQJY P508 FEWTPNYYQJY P508 TLVY-Nap-QPYSVQM P508 NMVY-Nap-QPYSVQS P508 NMVY-Nap-QPYSVQT P509 VY-Nap-QPYSVQT P601 VY-Nap-QPYSVQ P61 TF-YYWQJYALPL P602 FEWTPGYYQJ-Bpa M03 XaaFEWTPGYYQJ-Bpa M04 FEWTPGY-Bpa-QJY P605 AcFEWTPG-Bpa-VQJY AcFEWTPG-Bpa-VQJY AcFEWTPG-Bpa-YQJY AcFEWTPG-Bpa-YQJY AcFEWTPG-Bpa-YQJY AcFE-Bpa-TPGYYQJY P607 AcFEWTPG-Bpa-YQJY AcFE-Bpa-TPGYYQJY P609 AcFE-Bpa-TPGYYQJY P701 Bpa-EWTPGYYQJY P701 Bpa-EWTPGYYQJY P702 VYWQPYSVQ P73 RLVYWQPYSVQR P77 P10 DNTAWYENFLL TY P88 P77 P10 DNTAWYENFLL TY P88 P77 P10 DNTAWYENFLL TY P88 P77 TPFI DNTAWYENFLL TY P88 P77 TPFI DNTAWYENFLL SY P900 TI DNTAWYENFLL SY P901 TI DNTAWYENFLL SYY P903 SQ DNTAWYENFLL SYYA P94		
ACFEWTPGYYQJY P49 INAP-EWTPGYYQJY P50 YEWTPGYYQJY P51 FEWTPGYYQJY P52 FEWTPGYYQJY P53 FEWTPSYYQJY P54 FEWTPSYYQJY P55 FEWTPSYYQJY P55 FEWTPSYYQJY P55 FEWTPSYYQJY P55 FEWTPSYYQJY P55 FEWTPSYYQJY P55 FEWTPSYYQJY P56 TLVY-Nap-QPYSUQT P57 RGDY-Nap-QPYSUQT P59 VYWQPYSVQ P60 VY-Nap-QPYSUQT P59 VYWQPYSVQ P61 TFVYWQJYALPL P62 FEWTPGYYQJ-Bpa P63 XaaFEWTPGYYQJ-Bpa P64 FEWTPGY-Bpa-QJY P65 ACFEWTPGY-Bpa-QJY P66 FEWTPG-Bpa-YQJY P67 ACFEWTPG-Bpa-YQJY P67 ACFE-Bpa-TPGYYQJY P69 ACFE-Bpa-TPGYYQJY P70 RLYYWQPYSVQ P71 RLYYWQPYSVQ P72 VYWQPYSVQ P73 RLVYWQPYSVQR P74 RLVYWQPYSVQR P77 RLVYWQPYSVQR P78 DNTAWYESFLA P88 DNTAWYESFLA P98 TSEY DNTTWYCKFLA SQ P88 SPFI DNTAWYCSFLL HG P98 TTYTY DNTAWYCSFLL HG P98 TTYTY DNTAWYCSFLL HG P99 TI DNTAWYCSFLL SY P99 SQ DNTAWYCSFLL SYKA		
Nap-EWTPGYYQJY 950 YEWTPGYYQJY 951 FEWYPGYYQJY 952 FEWTPGYYQJY 953 FEWTPGYYQJY 953 FEWTPSYYQJY 954 FEWTPNYYQJY 955 FEWTPNYYQJY 955 FEWTPNYYQJY 955 FEWTPNYYQJY 955 SHLY-Nap-QPYSQM 956 TLVY-Nap-QPYSQM 957 RGDY-Nap-QPYSQG 958 NMVY-Nap-QPYSQT 957 VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGYYQJ-Bpa 965 AcFEWTPGY-Bpa-QJY 965 AcFEWTPG-Bpa-YQJY 966 FEWTPG-Bpa-YQJY 967 AcFE-Bpa-TPGYYQJY 968 AcFE-Bpa-TPGYYQJY 970 AcFE-Bpa-TPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVYWQPYSVQR 975 RLUYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 RLVYWQPYSVQR 979 RLVYWQPYSVQR 979 RLVYWQPYSVQR 978 RLVYWQPYSVQR 979 PTO DNTAWYENFLL TY 988 SPFI DNTAWYENFLL TY 988 SPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
YEWTPGYYQJY		
FEWTPGYYQJY 952 FEWTPGYYQJY 953 FEWTPGYYQJY 953 FEWTPNYYQJY 954 FEWTPNYYQJY 955 SHLY-Nap-QPYSVQM 956 TLVY-Nap-QPYSVQM 956 TLVY-Nap-QPYSVQS 958 NMYY-Nap-QPYSVQS 958 NMYY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 963 XaaFEWTPGY-Bpa-QJY 965 FEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 966 FEWTPG-Bpa-YQJY 967 AcFE-Bpa-TPGYYQJY 967 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 975 RLVYWQPYSVQR 976 RLVY-Nap-QPYSVQR 977 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 985 SPFI DNTAWYOFFLL TY 986 TYPY DNTAWYENFLL TY 986 TYPY DNTAWYENFLL TY 986 TYPY DNTAWYENFLL TY 987 TYPY DNTAWYENFLL TY 988 TMTQ DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL TYTP 993		
FEWTPGYYQJY 953 FEWTPSYYQJY 954 FEWTPNYYQJY 954 FEWTPNYYQJY 955 SHLY-Nap-QPYSVQM 956 TLVY-Nap-QPYSVQT 957 RGDY-Nap-QPYSVQS 958 NMVY-Nap-QPYSVQT 959 VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPG-Bpa-YQJY 966 FFWTPG-Bpa-YQJY 966 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 AcFE-Bpa-TPGYYQJY 971 AcBpa-EWTPGYYQJY 971 ACBpa-EWTPGYYQJY 971 RLVYWQPYSVQR 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 981 SGIP DNTAWYQSFLL HG 985 SPFI DNTAWYQSFLL TY 986 SQIP DNTAWYQSFLL TY 986 SQIP DNTAWYQSFLL TY 986 SQIP DNTAWYQSFLL TY 986 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL TY 986 TSEY DNTAWYQSFLL TY 986 TSEY DNTAWYQSFLL TY 986 TTYT DNTAWYENFLL TY 987 TI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL TY 989 TI DNTAWYENFLL TY 989 TI DNTAWYENFLL TYP 990 TI DNTAWYENFLL TYP 991 TI DNTAWYENFLL TYP 993 SQ DNTAWYENFLL TYTP 993		
FEWTPSYYQJY 954 FEWTPNYQJY 955 SHLY-Nap-QPYSVQM 956 TLVY-Nap-QPYSVQM 956 TLVY-Nap-QPYSVQS 958 NMYY-Nap-QPYSVQS 958 NMYY-Nap-QPYSVQT 960 VY-Nap-QPYSVQ 960 VY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 965 AcFEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 967 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 ACBpa-EWTPGYYQJY 971 ACBpa-EWTPGYYQJY 972 RLVYWQPYSVQR 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 981 SGIP DNTAWYQSFLL HG 985 SPFI DNTAWYQSFLL HG 985 SPFI DNTAWYQSFLL TY 986 SQIP DNTAWYQSFLL TY 986 SQIP DNTAWYQSFLL TY 986 SPFI DNTAWYCSFLL TY 986 TTYD DNTAWYCSFLL TY 986 TTYD DNTAWYCSFLL TY 987 TTYD DNTAWYCSFLL TY 988 TTYT DNTAWYCSFLL TY 988 TTYT DNTAWYCSFLL TYPQ 991 TI DNTAWYCSFLL TYPQ 991 TI DNTAWYCSFLL TYPQ 991 TI DNTAWYCSFLL TYPP 993 SQ DNTAWYCSFLL TYPP 993 SQ DNTAWYCSFLL TYPP 993		
FEWTPnYYQJY 955 SHLY-Nap-QPYSVQM 956 TLVY-Nap-QPYSUQT 957 RGDY-Nap-QPYSUQS 958 NMVY-Nap-QPYSUQT 959 NMVY-Nap-QPYSUQT 960 VY-Nap-QPYSUQ 960 VY-Nap-QPYSVQ 961 TF-VYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 963 XaaFEWTPGY-Bpa-QJY 965 ACFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 ACFE-Bpa-TPGYYQJY 967 ACFE-Bpa-TPGYYQJY 969 ACFE-Bpa-TPGYYQJY 969 ACFE-Bpa-TPGYYQJY 971 ACBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 973 RLVYWQPYSVQR 975 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 982 PARE DNTAWYENFLL Y 986 SPFI DNTAWYENFLL TY 986 SPFI DNTAWYENFLL TY 986 SPFI DNTAWYENFLL TY 986 TSEY DNTAWYENFLL TY 986 TFPI DNTAWYENFLL TY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL TY 989 TI DNTAWYENFLL TYP 999 TI DNTAWYENFLL TYPP 993 SQ DNTAWYENFLL TYPP 993 SQ DNTAWYENFLL TYPP 993		
SHLY-Nap-QPYSVQM 956 TLVY-Nap-QPYSLQT 957 RGDY-Nap-QPYSVQS 958 NMVY-Nap-QPYSIQT 959 VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYPQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPG-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 970 AcFE-Bpa-TPGYYQJY 971 AcBpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 973 RLVYWQPYSVQR 973 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVWFQPYSVQR 977 RLVWFQPYSVQR 977 RLVWFQPYSVQR 977 RLVWFQPYSVQR 977 RLVWFQPYSVQR 977 RLVWFQPYSVQR 980 DNTAWYESFLA 981 DNTAWY		
TLVY-Nap-QPYSLQT RGDY-Nap-QPYSUQS 958 NMVY-Nap-QPYSUQT 959 VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TEVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR P76 RLVWFQPYSVQR P77 RLVYWQPYSVQR P77 RLVYWQPYSVQR P78 DNTAWYESFLA 980 DNTAWYESFLA 981 DNTAWYESFLA 982 PARE DNTAWYESFLL HG 985 SPFI DNTAWYENFLL TY 986 TPFI DNTAWYENFLL TY 987 TPFI DNTAWYENFLL TY 987 TPFI DNTAWYENFLL TY 987 TPFI DNTAWYENFLL TY 987 TPFI DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYPP 993 SQ DNTAWYENFLL TYPP 993 SQ DNTAWYENFLL TYPP 993 SQ DNTAWYENFLL TYPP 993		
RGDY-Nap-QPYSVQS 958 NMVY-Nap-QPYSVQT 959 VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TF-VYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 AcFEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 966 AcFEWTPG-Bpa-YQJY 967 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 971 RLVYWQPYSVQ 973 RLVYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 982 PARE DNTAWYDSFLI WC 983 SPFI DNTAWYDSFLI HG 985 SPFI DNTAWYOSFLL TY 986 EQIY DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 986 TTYT DNTAWYENFLL TY 987 TI DNTAWYENFLL SY 989 TIT DNTAWYENFLL SY 989 TIT DNTAWYENFLL SY 989 TIT DNTAWYENFLL SY 991 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL SY 992 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL TYTP 993		
NMVY-Nap-QPYSIQT VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TF-VYWQJYALPL 962 FEWTPGYYQJ-Bpa XaaFEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa AcFEWTPGY-Bpa-QJY AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQ RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR RLVYWQPYSVQR P77 RLVYWQPYSVQR P79 P70 P70 P70 P70 P70 P70 P70		
VYWQPYSVQ 960 VY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 AcFEWTPG-Bpa-YQJY 967 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVYWQPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 986 SQIP DNTAWYENFLL TY 986 SPFI DNTAWYENFLL SY 999 TI DNTAWYENFLL SY 999		
VY-Nap-QPYSVQ 961 TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVYWQPYSVQR 975 RLDYWQPYSVQR 976 RLVWGQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 986 EQIY DNTAWYENFLL SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 <tr< td=""><td></td><td></td></tr<>		
TFVYWQJYALPL 962 FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPG-YQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWGPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 977 RLVYWQPYSVQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYESFLA 981 SPFI DNTAWYDFLL YC 983 SPFI DNTAWYOFFLL YC 985 SPFI DNTAWYCSFLL TY 986 SPFI DNTAWYCSFLL TY 986 EQIY DNTAWYCSFLL TY 987 TPFI DNTAWYENFLL YC 989 TTOTAWYENFLL SY 989 TTOTAWYENFLL SY 999 TI DNTAWYENFLL TYP 993 SQ DNTAWYENFLL TYTP 993		
FEWTPGYYQJ-Bpa 963 XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPG-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQR 973 RLVYWQPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYENFLL TY 986 EQIY DNTAWYENFLL SY 987 TPFI DNTAWYENFLL SY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
XaaFEWTPGYYQJ-Bpa 964 FEWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVYWQPYSVQR 975 RLVWQPYSVQR 976 RLVWQPYSVQR 977 RLVYWQPYSIQR 977 DNSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 986 SPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL CYKA 994 </td <td></td> <td></td>		
REWTPGY-Bpa-QJY 965 AcFEWTPGY-Bpa-QJY 966 FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSIQR 977 RLVYWQPYSIQR 978 DNSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
AcFEWTPGY-Bpa-QJY FEWTPG-Bpa-YQJY AcFEWTPG-Bpa-YQJY AcFE-Bpa-TPGYYQJY AcFE-Bpa-TPGYYQJY Pga-EWTPGYYQJY AcBpa-EWTPGYYQJY AcBpa-EWTPGYYQJY AcBpa-EWTPGYYQJY AcBpa-EWTPGYYQJY AcBpa-EWTPGYYQJY YWQPYSVQ Pfa-EWTPGYYQJY YYWQPYSVQ Pfa-EWTPGYYQJY Pfa-EWTPGYQJY Pfa-EWTPGYYQJY Pfa-EWTPGY		
FEWTPG-Bpa-YQJY 967 AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLVWGPYSVQR 977 RLVWQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
AcFEWTPG-Bpa-YQJY 968 AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSIQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
AcFE-Bpa-TPGYYQJY 969 AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
AcFE-Bpa-TPGYYQJY 970 Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWGPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
Bpa-EWTPGYYQJY 971 AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVYWQPYSIQR 977 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL TY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
AcBpa-EWTPGYYQJY 972 VYWQPYSVQ 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
VYWQPYSVQR 973 RLVYWQPYSVQR 974 RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		
RLVYWQPYSVQR RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 987 TYPI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY TMTQ DNTAWYENFLL SY TI DNTAWYENFLL SY SQ DNTAWYENFLL SYKA		
RLVY-Nap-QPYSVQR 975 RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		974
RLDYWQPYSVQR 976 RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		975
RLVWFQPYSVQR 977 RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		976
RLVYWQPYSIQR 978 DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 990 TI DNTAWYENFLL GYPD 991 TI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		977
DNSSWYDSFLL 980 DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 990 TI DNTAWYENFLL SY 991 TI DNTAWYENFLL TYTP 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		978
DNTAWYESFLA 981 DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYENFLL TYTP 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		980
DNTAWYENFLL 982 PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYENFLL TYTP 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		981
PARE DNTAWYDSFLI WC 983 TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYENFLL AQYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		982
TSEY DNTTWYEKFLA SQ 984 SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYERFLM SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		983
SQIP DNTAWYQSFLL HG 985 SPFI DNTAWYENFLL TY 986 EQIY DNTAWYDHFLL SY 987 TPFI DNTAWYENFLL TY 988 TYTY DNTAWYENFLL TY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYENFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994	The state of the s	984
SPFI DNTAWYENFLL TY EQIY DNTAWYDHFLL SY TPFI DNTAWYENFLL TY 988 TYTY DNTAWYERFLM SY TMTQ DNTAWYENFLL SY TI DNTAWYANLVQ TYPQ TI DNTAWYERFLA QYPD HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA		985
EQIY DNTAWYDHFLL SY TPFI DNTAWYENFLL TY 988 TYTY DNTAWYERFLM SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA		986
TPFI DNTAWYENFLL TY 988 TYTY DNTAWYERFLM SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		987
TYTY DNTAWYERFLM SY 989 TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		988
TMTQ DNTAWYENFLL SY 990 TI DNTAWYANLVQ TYPQ 991 TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		989
TI DNTAWYANLVQ TYPQ 991 TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		990
TI DNTAWYERFLA QYPD 992 HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		991
HI DNTAWYENFLL TYTP 993 SQ DNTAWYENFLL SYKA 994		992
SQ DNTAWYENFLL SYKA 994		993
OG DITITIVE LE GITET		

NQ DNTAWYESFLL QYNT 996 TI DNTAWYENFLL NHNL 997 HY DNTAWYERFLQ QGWH 998 ETPFTWEESNAYYWQPYALPL 999 YIPFTWEESNAYYWQPYALPL 1000 DGYDRWRQSGERYWQPYALPL 1001 py-INap-py-QJYALPL 1002 TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQJYALPL 1005 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGYWQJY 1010 AcFEWTPGYYQJY 1011 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGYYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYYQJY 1018 AcFEWTPGYYQJY 1020 AcFEWTPGYYQJY 1021 AcFEWTPAYYQJY 1021 AcFEWTPAYYQJY 1022 AcFEWTPAYYQJY 1023		····
HY DNTAWYERFLQ QGWH ETPFTWEESNAYYWQPYALPL 999 YIPFTWEESNAYYWQPYALPL DGYDRWRQSGERYWQPYALPL 1001 pY-INap-pY-QJYALPL 1002 TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQJYALPL 1005 FEWTPGYWQJYALPL 1006 FEWTPGYWQJY 1007 ACFEWTPGYWQJY 1007 ACFEWTPGYWQJY 1009 ACFEWTPGYYQJY 1010 ACFEWTPAYWQJY 1011 ACFEWTPAYWQJY 1012 ACFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGYYQJYALPL 1016 TANVSSFEWTPGYWQJY 1017 ACFEWTPGYWQJYALPL 1016 TANVSSFEWTPGYWQJY 1019 ACFEWTPGYWQJY 1019 ACFEWTPGYWQJY 1019 ACFEWTPGYYQJY 1019 ACFEWTPGYYQJY 1019 ACFEWTPGYYQJY 1020 ACFEWTPAYWQJY 1021	NQ DNTAWYESFLL QYNT	996
ETPFTWEESNAYYWQPYALPL 999 YIPFTWEESNAYYWQPYALPL 1000 DGYDRWRQSGERYWQPYALPL 1001 pY-INap-pY-QJYALPL 1002 TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQPYALPLSD 1005 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1007 AcFEWTPGYWQJY 1009 AcFEWTPGYYQJY 1010 AcFEWTPaYWQJY 1011 AcFEWTPaYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWQJYALPL 1016 TANVSSFEWTPGYWQJYALPL 1016 TANVSSFEWTPGYWQJY 1018 AcFEWTPGYWQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAYWQJY 1022	TI DNTAWYENFLL NHNL	997
YIPFTWEESNAYYWQPYALPL 1000 DGYDRWRQSGERYWQPYALPL 1001 pY-INap-pY-QJYALPL 1002 TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQJYALPLSD 1005 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGYYQJY 1010 AcFEWTPAYWQJY 1011 AcFEWTPAYWQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGYYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	HY DNTAWYERFLQ QGWH	998
DGYDRWRQSGERYWQPYALPL 1001 pY-INap-pY-QJYALPL 1002 TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQPYALPLSD 1005 FEWTPGYWQJY 1006 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGWYQJY 1010 AcFEWTPGYYQJY 1011 AcFEWTPAWYQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1021	ETPFTWEESNAYYWQPYALPL	999
pY-INap-pY-QJYALPL 1002 TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQPYALPLSD 1005 FEWTPGYYQJYALPL 1006 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGYYQJY 1010 AcFEWTPAYWQJY 1011 AcFEWTPAWYQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGYYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	YIPFTWEESNAYYWQPYALPL	1000
TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQPYALPLSD 1005 FEWTPGYYQJYALPL 1006 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGWYQJY 1010 AcFEWTPGYYQJY 1011 AcFEWTPAWYQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	DGYDRWRQSGERYWQPYALPL	1001
TANVSSFEWTPGYWQPYALPL 1003 FEWTPGYWQJYALPL 1004 FEWTPGYWQPYALPLSD 1005 FEWTPGYYQJYALPL 1006 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGWYQJY 1010 AcFEWTPAYWQJY 1011 AcFEWTPAYWQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	pY-INap-pY-QJYALPL	1002
FEWTPGYWQPYALPLSD 1005 FEWTPGYYQJYALPL 1006 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGWYQJY 1010 AcFEWTPAYWQJY 1011 AcFEWTPAWYQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022		1003
FEWTPGYYQJYALPL 1006 FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGWYQJY 1009 AcFEWTPGYYQJY 1010 AcFEWTPAYWQJY 1011 AcFEWTPAWYQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQJYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGYWQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYYQJY 1021 AcFEWTPAYYQJY 1021	FEWTPGYWQJYALPL	1004
FEWTPGYWQJY 1007 AcFEWTPGYWQJY 1008 AcFEWTPGWYQJY 1009 AcFEWTPGYYQJY 1010 AcFEWTPAWYQJY 1011 AcFEWTPAWYQJY 1012 AcFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAYWQJY 1021	FEWTPGYWQPYALPLSD	1005
AcFEWTPGYWQJY 1008 AcFEWTPGYYQJY 1009 AcFEWTPGYYQJY 1010 AcFEWTPayWQJY 1011 AcFEWTPawyQJY 1012 AcFEWTPayyQJY 1013 FEWTPGYYQJY 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGWYQJY 1020 AcFEWTPAWYQJY 1021 AcFEWTPAWYQJY 1022	FEWTPGYYQJYALPL	1006
AcFEWTPGWYQJY 1009 AcFEWTPGYYQJY 1010 AcFEWTPayWQJY 1011 AcFEWTPaWYQJY 1012 AcFEWTPayYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	FEWTPGYWQJY	1007
AcFEWTPGYYQJY 1010 AcFEWTPaYWQJY 1011 AcFEWTPaWYQJY 1012 AcFEWTPaYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	AcFEWTPGYWQJY	1008
ACFEWTPAYWQJY 1011 ACFEWTPAYYQJY 1012 ACFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYYQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 ACFEWTPGYWQJY 1018 ACFEWTPGWYQJY 1019 ACFEWTPGYYQJY 1020 ACFEWTPAYWQJY 1021 ACFEWTPAWYQJY 1022	AcFEWTPGWYQJY	
ACFEWTPaWYQJY 1012 AcFEWTPaYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	AcFEWTPGYYQJY	1010
ACFEWTPAYYQJY 1013 FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 ACFEWTPGYWQJY 1018 ACFEWTPGWYQJY 1019 ACFEWTPGYYQJY 1020 ACFEWTPAYWQJY 1021 ACFEWTPAWYQJY 1022	AcFEWTPaYWQJY	1011
FEWTPGYYQJYALPL 1014 FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAYWQJY 1022	AcFEWTPaWYQJY	1012
FEWTPGYWQJYALPL 1015 FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	AcFEWTPaYYQJY	1013
FEWTPGWYQJYALPL 1016 TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	FEWTPGYYQJYALPL	
TANVSSFEWTPGYWQPYALPL 1017 AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	FEWTPGYWQJYALPL	1015
AcFEWTPGYWQJY 1018 AcFEWTPGWYQJY 1019 AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022		1016
AcfewtpgwyQJY 1019 AcfewtpgyyQJY 1020 AcfewtpaywQJY 1021 AcfewtpawyQJY 1022	TANVSSFEWTPGYWQPYALPL	1017
AcFEWTPGYYQJY 1020 AcFEWTPAYWQJY 1021 AcFEWTPAWYQJY 1022	AcFEWTPGYWQJY	1018
ACFEWTPAYWQJY 1021 ACFEWTPAWYQJY 1022	AcFEWTPGWYQJY	
ACFEWTPAWYQJY 1022		
ACI EWIT AVI I GOT	AcFEWTPAYWQJY	
AcFEWTPAYYQJY 1023		
	AcFEWTPAYYQJY	1023

Table 5—EPO-mimetic peptide sequences

Sequence/structure	SEQ
	ID NO:
YXCXXGPXTWXCXP	83
YXCXXGPXTWXCXP-YXCXXGPXTWXCXP	84
YXCXXGPXTWXCXP-A-YXCXXGPXTWXCXP	85
YXCXXGPXTWXCXP-Λ-(ε-amine)	86
ĸ	
βA YXCXXGPXTWXCXP-Λ- (α-amine)	86
GGTYSCHFGPLTWVCKPQGG	87
GGDYHCRMGPLTWVCKPLGG	88
GGVYACRMGPITWVCSPLGG	89
VGNYMCHFGPITWVCRPGGG	90
GGLYLCRFGPVTWDCGYKGG	91
GGTYSCHFGPLTWVCKPQGG- GGTYSCHFGPLTWVCKPQGG	92
GGTYSCHFGPLTWVCKI QGG GGTYSCHFGPLTWVCKPQGG GGTYSCHFGPLTWVCKPQGG	93
GGTYSCHFGPLTWVCKPQGGSSK	94
GGTYSCHFGPLTWVCKPQGGSSK- GGTYSCHFGPLTWVCKPQGGSSK	95
GGTYSCHFGPLTWVCKPQGGSSK-A- GGTYSCHFGPLTWVCKPQGGSSK	96
GGTYSCHFGPLTWVCKPQGGSS (ε-amine)	97
βΑ GGTYSCHFGPLTWVCKPQGGSS (α-amine)	97
GGTYSCHFGPLTWVCKPQGGSSK(-A-biotin)	98
CX,X,GPX,TWX,C	421
GGTYSCHGPLTWVCKPQGG	422
VGNYMAHMGPITWVCRPGG	423
GGPHHVYACRMGPLTWIC	424
GGTYSCHFGPLTWVCKPQ	425
GGLYACHMGPMTWVCQPLRG	426
TIAQYICYMGPETWECRPSPKA	427
YSCHFGPLTWVCK	428
YCHFGPLTWVC	429
X,X,X,GPX,TWX,X,	124
YX,X,X,X,GPX,TWX,X,	461

X,YX,X,X,GPX,TWX,X,X,X,,X,,	419
X,YX,CX,X,GPX,TWX,CX,X,1,X,1	420
GGLYLCRFGPVTWDCGYKGG	1024
GGTYSCHFGPLTWVCKPQGG	1025
GGDYHCRMGPLTWVCKPLGG	1026
VGNYMCHFGPITWVCRPGGG	1029
GGVYACRMGPITWVCSPLGG	1030
VGNYMAHMGPITWVCRPGG	1035
GGTYSCHFGPLTWVCKPQ	1036
GGLYACHMGPMTWVCQPLRG	1037
TIAQYICYMGPETWECRPSPKA	1038
YSCHFGPLTWVCK	1039
YCHFGPLTWVC	1040
SCHFGPLTWVCK	1041
(AX ₂) _x X _x X _x GPX _x TWX _x X _x	1042

Table 6—TPO-mimetic peptide sequences

Sequence/structure	SEQ
ocquerios or acourt	ID NO:
IEGPTLRQWLAARA	13
IEGPTLRQWLAAKA	24
IEGPTLREWLAARA	25
IEGPTLRQWLAARA-A-IEGPTLRQWLAARA	26
IEGPTLRQWLAAKA-A-IEGPTLRQWLAAKA	27
IEGPTLRQCLAARA-A-IEGPTLRQCLAARA	28
IEGPTLRQWLAARA-A-K(BrAc)-A-IEGPTLRQWLAARA	29
IEGPTLRQWLAARA-A-K(PEG)-A-IEGPTLRQWLAARA	30
IEGPTLRQCLAARA-A-IEGPTLRQWLAARA	31
IEGPTLRQCLAARA-A-IEGPTLRQWLAARA	31
IEGPTLRQWLAARA-Λ-IEGPTLRQCLAARA	32
IEGPTLRQWLAARA-Λ-IEGPTLRQCLAARA	32
VRDQIXXXL	33
TLREWL	34
GRVRDQVAGW	35
GRVKDQIAQL	36
GVRDQVSWAL	37
ESVREQVMKY	38
SVRSQISASL	39
GVRETVYRHM	40
GVREVIVMHML	41
GRVRDQIWAAL	42
AGVRDQILIWL	43
GRVRDQIMLSL	44
GRVRDQI(X) ₃ L	45
CTLRQWLQGC	46
CTLQEFLEGC	47
CTRTEWLHGC	48
CTLREWLHGGFC	49
CTLREWVFAGLC	50
CTLRQWLILLGMC	51
CTLAEFLASGVEQC	52
CSLQEFLSHGGYVC	53
CTLREFLDPTTAVC	54
CTLKEWLVSHEVWC	55
CTLREWL(X) ₂₄ C	56-60
REGPTLRQWM	61
EGPTLRQWLA	62
ERGPFWAKAC	63
REGPRCVMWM	64
CGTEGPTLSTWLDC	65

CEQDGPTLLEWLKC	66
CELVGPSLMSWLTC	67
CLTGPFVTQWLYEC	68
CRAGPTLLEWLTLC	69
CADGPTLREWISFC	70
C(X),, EGPTLREWL(X), 2C	71-74
GGCTLREWLHGGFCGG	<i>7</i> 5
GGCADGPTLREWISFCGG	76
GNADGPTLRQWLEGRRPKN	77
LAIEGPTLRQWLHGNGRDT	78
HGRVGPTLREWKTQVATKK	79
TIKGPTLRQWLKSREHTS	80
ISDGPTLKEWLSVTRGAS	81
SIEGPTLREWLTSRTPHS	82

Table 7—G-CSF-mimetic peptide sequences

Sequence/structure	SEQ
	ID NO:
EEDCK	99
EEDCK	99
EEDCK	99
EEDσK	100
EEDσK	100
EED ₀ K	100
pGluEDσK	101
pGluEDσK	101
pGluEDσK	101
PicSDσK	102
PicSDσK	102
	1
PicSDoK	102
EEDCK-A-EEDCK	103
EEDXK-A-EEDXK	104

PCT/US99/25044

Table 8—TNF-antagonist peptide sequences

Sequence/structure	SEQ ID NO:
YCFTASENHCY	106
YCFTNSENHCY	107
YCFTRSENHCY	108
FCASENHCY	109
YCASENHCY	110
FCNSENHCY	111
FCNSENRCY	112
FCNSVENRCY	113
YCSQSVSNDCF	114
FCVSNDRCY	115
YCRKELGQVCY	116
YCKEPGQCY	117
YCRKEMGCY	118
FCRKEMGCY	119
YCWSQNLCY	120
YCELSQYLCY	121
YCWSQNYCY	122
YCWSQYLCY	123
DFLPHYKNTSLGHRP	1085
AA,-AB,	NR
1	
AC	
/	
AA,-AB,	

Table 9—Integrin-binding peptide sequences

Sequence/structure	SEQ
Sequence/structure	ID NO:
RX,ETX,WX,	441
RX,ETX,WX,	442
RGDGX	443
CRGDGXC	444
CX,X,RLDX,X,C	445
CARRLDAPC	446
CPSRLDSPC	447
X,X,X,RGDX,X,X,	448
CX,CRGDCX,C	449
CDCRGDCFC	450
CDCRGDCLC	451
CLCRGDCIC	452
X,X,DDX ₄ X ₅ X,X ₈	453
	454
X,X,X,DDX,X,X,X,X, CWDDGWLC	455
CWDDLWWLC	456
CWDDGLMC	457
CWDDGUMC	458
	459
CSWDDGWLC	460
	NR NR
NGR .	NR NR
GSL	NR NR
RGD	1071
CGRECPRLCQSSC	1072
CNGRCVSGCAGRC	1073
CLSGSLSC	NR
RGD	NR NR
NGR	NR
GSL	1074
NGRAHA	1075
CNGRC CDCRGDCFC	1076
	1077
CGSLVRC	1043
DLXXL	1045
RTDLDSLRTYTL	1053
RTDLDSLRTY	1054
RTDLDSLRT	1078
RTDLDSLR	1079
GDLDLLKLRLTL	1079
GDLHSLRQLLSR	1080
RDDLHMLRLQLW	1081
SSDLHALKKRYG	
RGDLKQLSELTW	1083
RGDLAALSAPPV	1084

Table 10—Selectin antagonist peptide sequences

Sequence/structure	SEQ
	ID NO:
DITWDQLWDLMK	147
DITWDELWKIMN	148
DYTWFELWDMMQ	149
QITWAQLWNMMK	150
DMTWHDLWTLMS	151
DYSWHDLWEMMS	152
EITWDQLWEVMN	153
HVSWEQLWDIMN	154
HITWDQLWRIMT	155
RNMSWLELWEHMK	156
AEWTWDQLWHVMNPAESQ	157
HRAEWLALWEQMSP	158
KKEDWLALWRIMSV	159
ITWDQLWDLMK	160
DITWDQLWDLMK	161
DITWDQLWDLMK	162
DITWDQLWDLMK	163
CQNRYTDLVAIQNKNE	462
AENWADNEPNNKRNNED	463
RKNNKTWTWVGTKKALTNE	464
KKALTNEAENWAD	465
CQXRYTDLVAIQNKXE	466
RKXNXXWTWVGTXKXLTEE	467
AENWADGEPNNKXNXED	468
CXXXYTXLVAIQNKXE	469
RKXXXXWXWVGTXKXLTXE	470
AXNWXXXEPNNXXXED	471
XKXKTXEAXNWXX	472

Table 11—Antipathogenic peptide sequences

C	SEQ
Sequence/structure	ID NO:
	503
GFFALIPKIISSPLFKTLLSAVGSALSSSGGQQ	504
GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE	
GFFALIPKIISSPLFKTLLSAV	505
GFFALIPKIISSPLFKTLLSAV	506
KGFFALIPKIISSPLFKTLLSAV	507
KKGFFALIPKIISSPLFKTLLSAV	508
KKGFFALIPKIISSPLFKTLLSAV	509
GFFALIPKIIS	510
GIGAVLKVLTTGLPALISWIKRKRQQ	511
GIGAVLKVLTTGLPALISWIKRKRQQ	512
GIGAVLKVLTTGLPALISWIKRKRQQ	513
GIGAVLKVLTTGLPALISWIKR	514
AVLKVLTTGLPALISWIKR	515
KLLLLKLLLK	516
KLLLKLLK	517
KLLLKLKLKLK	518
KKLLKLKLKK	519
KLLLKLLKL	520
KLLLKLKLKLK	521
KLLLLK	522
KLLLKLLK	523
KLLLKLKLKLK	524
KLLLKLKLKLK	525
KLLLKLKLKLK	526
KAAAKAAKAAK	527
KVVVKVVVKVVK	528
KVVVKVKVKVVK	529
KVVVKVKVKVK	530
KVVVKVKVKVVK	531
KLILKL	532
KVLHLL .	533
LKLRLL	534
KPLHLL	535
KLILKLVR	536
KVFHLLHL	537
HKFRILKL	538
KPFHILHL	539
KIIIKIKIKIIK	540
KIIIKIKIKIIK	541
KIIIKIKIKIIK	542
KIPIKIKIKIPK	543
KIPIKIKIVK	544
RIJIRIRIRI	545
RIIIRIRIRIR	546
RIIIRIRIRIR	547
RIVIRIRIRIR	548

RIIVRIRLRIIR 549 RIGIRLRVRIIR 550 KIVIRIRIBLIR 551 RIAVKWRLRFIK 552 KIGWKLRVRIIR 553 KKIGWLIIRVRR 554 RIVIRIRIBLIRIR 555 RIIVRIRLRIIRVR 556 RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
KIVIRIRIRLIR 551 RIAVKWRLRFIK 552 KIGWKLRVRIIR 553 KKIGWLIIRVRR 554 RIVIRIRIRILIRIR 555 RIIVRIRLRIIRVR 556 RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
RIAVKWRLRFIK 552 KIGWKLRVRIIR 553 KKIGWLIIRVRR 554 RIVIRIRIRLIRIR 555 RIIVRIRLRIIRVR 556 RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
KIGWKLRVRIIR 553 KKIGWLIIRVRR 554 RIVIRIRIRLIRIR 555 RIIVRIRLARIIRVR 556 RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
KKIGWLIIRVRR 554 RIVIRIRIRLIRIR 555 RIIVRIRLRIIRVR 556 RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
RIVIRIRIRLIRIR 555 RIIVRIRLARIIRVR 556 RIGIRLAVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
RIIVRIRLRIIRVR 556 RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
RIGIRLRVRIIRRV 557 KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
KIVIRIRARLIRIRIR 558 RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
RIIVKIRLRIIKKIRL 559 KIGIKARVRIIRVKII 560
KIGIKARVRIIRVKII 560
NIGHT TOTAL
RIIVHIRLRIIHHIRL 561
HIGIKAHVRIIRVHII 562
RIYVKIHLRYIKKIRL 563
KIGHKARVHIIRYKII 564
RIYVKPHPRYIKKIRL 565
KPGHKARPHIIRYKII 566
KIVIRIRIRIRIRKIV 567
RIIVKIRLRIIKKIRLIKK 568
KIGWKLRVRIIRVKIGRLR 569
KIVIRIRIRLIRIRIRKIVKVKRIR 570
RFAVKIRLRIIKKIRLIKKIRKRVIK 571
KAGWKLRVRIIRVKIGRLRKIGWKKRVRIK 572
RIYVKPHPRYIKKIRL 573
KPGHKARPHIIRYKII 574
KIVIRIRIRIRIRKIV 575
RIIVKIRLRIIKKIRLIKK 576
RIYVSKISIYIKKIRL 577
KIVIFTRIRLTSIRIRSIV 578
KPIHKARPTIIRYKMI 579
cyclicCKGFFALIPKIISSPLFKTLLSAVC 580
CKKGFFALIPKIISSPLFKTLLSAVC 581
CKKKGFFALIPKIISSPLFKTLLSAVC 582
CyclicCRIVIRIRIRLIRIRC 583
CyclicCKPGHKARPHIIRYKIIC 584
CyclicCRFAVKIRLRIIKKIRLIKKIRKRVIKC 585
KLLLKLLL KLLKC 586
KLLLKLLKLK 587
KLLLKLKLKLKC 588
KLLLKLLKLK 589

Table 12—VIP-mimetic peptide sequenc s

Sequence/structure	SEQ
Deque de la constant	ID NO:
HSDAVFYDNYTR LRKQMAVKKYLN SILN	590
NIE HSDAVFYDNYTR LRKQMAVKKYLN SILN	591
X, X, 'X, "X,	592
X, SX, LN	593
NH CH CO KKYX5 NH CH CO X6	594
(CH2)mZ(CH2)n	
KKYL	595
NSILN	596
KKYL	597
KKYA	598
AVKKYL	599
NSILN	600
KKYV	601
SILauN	602
KKYLNIe	603
NSYLN	604
NSIYN	605
KKYLPPNSILN	606
LauKKYL	
CapKKYL	608 NR
KYL	609
KKYNIe	610
VKKYL	611
LNSILN	612
KKYLN	613
KKYLNS	614
KKYLNSI	615
KKYLNSIL	616
KKYL	617
KKYDA	618
AVKKYL	619
NSILN	620
KKYV	621
SILauN	622
NSYLN	623
NSIYN	624
KKYLNIe	625
KKYLPPNSILN	626
KKYL	627
KKYDA	628 -
AVKKYL	629
NSILN	630
KKYV	631
SILauN	632

LauKKYL 633 CapKKYL 634 KYL NR KYL NR KKYNIe 635 VKKYL 636 LNSILN 637 YLNSILN 638 KKYLNIE 639 KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO KKYA KKYA 647 WWTDTGLW 648 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652 RWDDNGLWVVVL 653
KYL NR KYL NR KKYNIe 635 VKKYL 636 LNSILN 637 YLNSILN 638 KKYLNIe 639 KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO KKYA KKYA 647 WWTDTGLW 648 WWTDTGLWWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
KYL NR KKYNIe 635 VKKYL 636 LNSILN 637 YLNSILN 638 KKYLNIE 639 KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO 647 WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
KKYNIe 635 VKKYL 636 LNSILN 637 YLNSILN 638 KKYLNIe 639 KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH,-CO KKYA 647 WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
VKKYL 636 LNSILN 637 YLNSILN 638 KKYLNIe 639 KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO KKYA KWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
LNSILN
YLNSILN 638 KKYLNIe 639 KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO KKYA KWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
KKYLNIe 639
KKYLN 640 KKYLNS 641 KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO KKYA 647 WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
KKYLNS 641 KKYLNS 642 KKYLNS 642 KKYLNS 643 KKYLD 644 CyclicCKKYLC 645 CKKYLK
KKYLNSI 642 KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646 S-CH2-CO 647 KKYA 647 WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
KKYLNSIL 643 KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646
KKKYLD 644 cyclicCKKYLC 645 CKKYLK 646
cyclicCKKYLC 645 CKKYLK 646
CKKYLK 646
CKKYLK 646
KKYA 647 WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
KKYA 647 WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
WWTDTGLW 648 WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
WWTDDGLW 649 WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
WWDTRGLWVWTI 650 FWGNDGIWLESG 651 DWDQFGLWRGAA 652
FWGNDGIWLESG 651 DWDQFGLWRGAA 652
DWDQFGLWRGAA 652
BWBGI GEWINGUT.
RWDDNGI WVVVI 653
SGMWSHYGIWMG 654
GGRWDQAGLWVA 655
KLWSEQGIWMGE 656
CWSMHGLWLC 657
GCWDNTGIWVPC 658
DWDTRGLWVY 659
SLWDENGAWI 660
KWDDRGLWMH 661
QAWNERGLWT 662
QWDTRGLWVA 663
WNVHGIWQE 664
SWDTRGLWVE 665
DWDTRGLWVA 666
SWGRDGLWIE 667
EWTDNGLWAL 668
SWDEKGLWSA 669
SWDSSGLWMD 670

Table 13—Mdm/hdm antag nist peptide sequences

Sequence/structure	SEQ ID NO:
TFSDLW	130
QETFSDLWKLLP	131
QPTFSDLWKLLP	132
QETFSDYWKLLP	133
QPTFSDYWKLLP	134
MPRFMDYWEGLN	135
VQNFIDYWTQQF	136
TGPAFTHYWATF	137
IDRAPTFRDHWFALV	138
PRPALVFADYWETLY	139
PAFSRFWSDLSAGAH	140
PAFSRFWSKLSAGAH	141
PXFXDYWXXL	142
QETFSDLWKLLP	143
QPTFSDLWKLLP	144
QETFSDYWKLLP	145
QPTFSDYWKLLP	146

Table 14—Calmodulin antagonist peptide sequences

Sequence/structure	SEQ ID NO:
SCVKWGKKEFCGS	164
SCWKYWGKECGS	165
SCYEWGKLRWCGS	166
SCLRWGKWSNCGS	167
SCWRWGKYQICGS	168
SCVSWGALKLCGS	169
SCIRWGQNTFCGS	170
SCWQWGNLKICGS	171
SCVRWGQLSICGS	172
LKKFNARRKLKGAILTTMLAK	173
RRWKKNFIAVSAANRFKK	174
RKWQKTGHAVRAIGRLSS	175
INLKALAALAKKIL	176
KIWSILAPLGTTLVKLVA	177
LKKLLKLLKK	178
LKWKKLLKLLKKLL	179
AEWPSLTEIKTLSHFSV	180
AEWPSPTRVISTTYFGS	181
AELAHWPPVKTVLRSFT	182
AEGSWLQLLNLMKQMNN	183
AEWPSLTEIK	184

PCT/US99/25044

Table 15—Mast cell antag nists/Mast cell protease inhibitor peptide sequences

Sequence/structure	SEQ ID NO:
SGSGVLKRPLPILPVTR	272
RWLSSRPLPPLPLPPRT	273
GSGSYDTLALPSLPLHPMSS	274
GSGSYDTRALPSLPLHPMSS	275
GSGSSGVTMYPKLPPHWSMA	276
GSGSSGVRMYPKLPPHWSMA	277
GSGSSSMRMVPTIPGSAKHG	278
RNR .	NR
QT	NR
RQK	NR
NRQ	NR
RQK	NR
RNRQKT	436
RNRQ	437
RNRQK	438
NRQKT	439
RQKT	440

Table 16—SH3 antagonist peptide sequences

Sequence/structure	SEQ
	ID NO:
RPLPPLP	282
RELPPLP	283
SPLPPLP	284
GPLPPLP	285
RPLPIPP	286
RPLPIPP	287
RRLPPTP	288
RQLPPTP	289
RPLPSRP	290
RPLPTRP	291
SRLPPLP	292
RALPSPP	293
RRLPRTP	294
RPVPPIT	295
ILAPPVP	296
RPLPMLP	297
RPLPILP	298
RPLPSLP	299
RPLPSLP	300
RPLPMIP	301
RPLPLIP	302
RPLPPTP	303
RSLPPLP	304
RPQPPPP	305
RQLPIPP	306
XXXRPLPPLPXP	307
XXXRPLPPIPXX	308
XXXRPLPPLPXX	309
RXXRPLPPLPXP	310
RXXRPLPPLPPP	311
PPPYPPPPIPXX	312
PPPYPPPVPXX	313
LXXRPLPXYP	314
ΨXXRPLPXLP	315
РРХӨХРРРЧР	316
+PPYPXKPXWL	317
RPXYPYR+SXP	318
PPVPPRPXXTL	319
ΨΡΨΙΡΨΚ	320
+ODXPLPXLP	321

Table 17—Somatostatin or cortistatin mimetic peptide sequences

Sequence/structure	SEQ
Dequences ou actual	ID NO:
X'-X²-Asn-Phe-Phe-Trp-Lys-Thr-Phe-X³-Ser-X⁴	473
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	474
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	475
Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	476
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	477
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	478
Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	479
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	480
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	481
Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	482
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	483
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	484
Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	485
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	486
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	487
Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	488
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	489
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	490
Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	491
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	492
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	493
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	494
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	495
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	496
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	497

Table 18—UKR antagonist peptide sequences

Sequence/structure	SEQ
	ID NO:
AEPMPHSLNFSQYLWYT	196
AEHTYSSLWDTYSPLAF	197
AELDLWMRHYPLSFSNR	198
AESSLWTRYAWPSMPSY	199
AEWHPGLSFGSYLWSKT	200
AEPALLNWSFFFNPGLH	201
AEWSFYNLHLPEPQTIF	202
AEPLDLWSLYSLPPLAM	203
AEPTLWQLYQFPLRLSG	204
AEISFSELMWLRSTPAF	205
AELSEADLWTTWFGMGS	206
AESSLWRIFSPSALMMS	207
AESLPTLTSILWGKESV	208
AETLFMDLWHDKHILLT	209
AEILNFPLWHEPLWSTE	210
AESQTGTLNTLFWNTLR	211
AEPVYQYELDSYLRSYY	430
AELDLSTFYDIQYLLRT	431
AEFFKLGPNGYVYLHSA	432
FKLXXXGYVYL	433
AESTYHHLSLGYMYTLN	434
YHXLXXGYMYT	435

Table 19—Macrophage and/or T-cell inhibiting peptide sequences

Sequence/structure	SEQ
	ID NO:
Xaa-Yaa-Arg	NR NR
Arg-Yaa-Xaa	NR
Xaa-Arg-Yaa	NR
Yaa-Arg-Xaa	NR
Ala-Arg	NR
Arg-Arg	NR
Asn-Arg	NR
Asp-Arg	NR
Cys-Arg	NR
Gln-Arg	NR
Glu-Arg	NR
Gly-Arg	NR
His-arg	NR
lle-Arg	NR
Leu-Arg	NR
Lys-Arg	NR
Met-Arg	NR
Phe-Arg	NR
Ser-Arg	NR
Thr-Arg	NR
Trp-Arg	NR
Tyr-Arg	NR
Val-Arg	NR
Ala-Glu-Arg	NR
Arg-Glu-Arg	NR
Asn-Glu-Arg	NR
Asp-Glu-Arg	NR
Cys-Glu-Arg	NR
Gln-Glu-Arg	NR
Glu-Glu-Arg	NR
Gly-Glu-Arg	NR
His-Glu-Arg	NR NR
lle-Glu-Arg	NR
Leu-Glu-Arg	NR
Lys-Glu-Arg	NR
Met-Glu-Arg	NR
Phe-Glu-Arg	NR
Pro-Glu-Arg	NR
Ser-Glu-Arg	- NR
Thr-Glu-Arg	NR
Trp-Glu-Arg	NR
Tyr-Glu-Arg	NR
Val-Glu-Arg	NR

Arg-Acys		>70
Arg-Cys NR Arg-Gin NR Arg-Gil NR Arg-Gily NR Arg-His NR Arg-His NR Arg-Leu NR Arg-Lys NR Arg-He NR Arg-He NR Arg-Pro NR Arg-Pro NR Arg-Tr NR Arg-Tr NR Arg-Try NR Arg-Yal NR Arg-Giu-Asa NR Arg-Giu-Asa NR Arg-Giu-Asp NR Arg-Giu-Asp NR Arg-Giu-Giu NR Arg-Giu-Giu NR Arg-Giu-Giu NR Arg-Giu-Giu NR Arg-Giu-His NR Arg-Giu-His NR Arg-Giu-Hie NR Arg-Giu-Hie NR Arg-Giu-Hie NR Arg-Giu-Hie NR Arg-Giu-Hie NR	Arg-Ala	NR NR
Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-His NR Arg-His NR Arg-Hie NR Arg-Leu NR Arg-Leu NR Arg-Leu NR Arg-Phe NR Arg-Phe NR Arg-Phe NR Arg-Pro NR Arg-Pro NR Arg-Thr NR Arg-Trr NR Arg-Trr NR Arg-Tyr NR Arg-Tyr NR Arg-Glu-Ash NR Arg-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Glu-Glu		
Arg-Gilu		
Arg-Gily Arg-His Arg-His Arg-His Arg-His Arg-His Arg-His NR Arg-Leu NR Arg-Leu NR Arg-Lys NR Arg-Hor Arg-Pro NR Arg-Pro NR Arg-Pro NR Arg-Trr NR Arg-Trr NR Arg-Trr NR Arg-Trr NR Arg-Trr NR Arg-Try NR Arg-Giu-Ala NR Arg-Giu-Asa Arg-Giu-Asa Arg-Giu-Gys NR Arg-Giu-Gil NR Arg-Giu-His Arg-Giu-His Arg-Giu-His Arg-Giu-Leu NR Arg-Giu-His Arg-Giu-Hor NR Arg-Giu-Trr NR A		
Arg-His Arg-Hie Arg-He Arg-Leu Arg-Lys NR Arg-Met Arg-Met Arg-Met Arg-Phe Arg-Phe Arg-Pro NR Arg-Thr Arg-Tir NR Arg-Tir NR Arg-Tir NR Arg-Tir NR Arg-Tir NR Arg-Glu-Asi Arg-Glu-Asi Arg-Glu-Cys NR Arg-Glu-Gli Arg-Glu-His Arg-Glu-His Arg-Glu-Lys NR Arg-Glu-His Arg-Glu-His Arg-Glu-His NR Arg-Arg-Glu NR Arg-Ar	Arg-Glu	
Arg-lie NR Arg-leu NR Arg-leu NR Arg-Leu NR Arg-Phe NR Arg-Phe NR Arg-Pro NR Arg-Pro NR Arg-Thr NR Arg-Thr NR Arg-Trp NR Arg-Trp NR Arg-Irp NR Arg-Glu-Asi NR Arg-Glu-Asi NR Arg-Glu-Asi NR Arg-Glu-Asi NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Nee NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Nee NR Arg-Glu-Trp NR Arg-Glu-Nee N	Arg-Gly	
Arg-Leu NR Arg-Lys NR Arg-Lys NR Arg-Met NR Arg-Phe NR Arg-Pro NR Arg-Pro NR Arg-Pro NR Arg-Thr NR Arg-Thr NR Arg-Tyr NR Arg-Tyr NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asn NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-He NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Tyr NR Arg-Glu-NR Arg-Glu NR Arg-Glu	Arg-His	
Arg-Lys	Arg-lle	
Arg-Met NR Arg-Phe NR Arg-Pro NR Arg-Tro NR Arg-Thr NR Arg-Typ NR Arg-Yal NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asp NR Arg-Glu-Asp NR Arg-Glu-Gly NR Arg-Glu-Gly NR Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-Lu NR Arg-Glu-Lu NR Arg-Glu-Lys NR Arg-Glu-Lys NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-For NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu NR Arg-Glu NR Arg-Glu	Arg-Leu	
Ag-Phe NR Arg-Pro NR Arg-Pro NR Arg-Pro NR Arg-Fir NR Arg-Tip NR Arg-Tip NR Arg-Tyr NR Arg-Glu-Ala NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asn NR Arg-Glu-Sp NR Arg-Glu-Gln NR Arg-Glu-Gln NR Arg-Glu-Gln NR Arg-Glu-Gln NR Arg-Glu-Gln NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-Trp NR Ar	Arg-Lys	
Arg-Pro Arg-Pro Arg-Pro Arg-Pro Arg-Pro Arg-Thr Arg-Trp NR Arg-Trp NR Arg-Tyr NR Arg-Glu-Ala Arg-Glu-Asn Arg-Glu-Asn Arg-Glu-Asn Arg-Glu-Asp NR Arg-Glu-Glu Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-He NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu NR NR Arg-Glu NR NR NR Arg-Glu NR	Arg-Met	
Arg-Total NR Arg-Thr NR Arg-Trp NR Arg-Tyr NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asp NR Arg-Glu-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-His NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-He NR Arg-Glu-Phe NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Qlu NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-Glu	Arg-Phe	
Arg-Trp NR Arg-Trp NR Arg-Tyr NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asp NR Arg-Glu-Glu-Sp NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-le NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-He NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Trp NR Arg-Glu-Ty NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu NR Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Glu-Arg-Glu NR Glu-	Arg-Pro	
Arg-Trp NR Arg-Tyr NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asp NR Arg-Glu-Cys NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-He NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-He NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Glu-Arg-Glu NR Leu-Arg-G	Arg-Ser	
Arg-Trp NR Arg-Tyr NR Arg-Val NR Arg-Giu-Ala NR Arg-Giu-Asn NR Arg-Giu-Asp NR Arg-Giu-Cys NR Arg-Giu-Gin NR Arg-Giu-Giu NR Arg-Giu-Giu NR Arg-Giu-His NR Arg-Giu-He NR Arg-Giu-Leu NR Arg-Giu-Lys NR Arg-Giu-He NR Arg-Giu-Pre NR Arg-Giu-Pre NR Arg-Giu-Pre NR Arg-Giu-Tr NR Arg-Giu-Tr NR Arg-Giu-Tr NR Arg-Giu-Tyr NR Arg-Giu-Tyr NR Arg-Giu NR<		
Arg-Tyr NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asn NR Arg-Glu-Asp NR Arg-Glu-Cys NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-His NR Arg-Glu-He NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-Phe NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu NR Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Glu-Arg-Glu NR Glu-Arg-Glu NR <		
Arg-Val NR Arg-Glu-Ala NR Arg-Glu-Asn NR Arg-Glu-Asp NR Arg-Glu-Cys NR Arg-Glu-Gy NR Arg-Glu-Glu NR Arg-Glu-Glu NR Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-Hie NR Arg-Glu-Leu NR Arg-Glu-Leu NR Arg-Glu-He NR Arg-Glu-Phe NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Tr NR Arg-Glu-Try NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Glu-Arg-Glu NR His-Arg-Glu NR		
Arg-Glu-Ala NIR Arg-Glu-Asn NIR Arg-Glu-Asp NIR Arg-Glu-Cys NIR Arg-Glu-Glu NIR Arg-Glu-Glu NIR Arg-Glu-Glu NIR Arg-Glu-His NIR Arg-Glu-He NIR Arg-Glu-Leu NIR Arg-Glu-Lys NIR Arg-Glu-Lys NIR Arg-Glu-Het NIR Arg-Glu-Phe NIR Arg-Glu-Pro NIR Arg-Glu-Pro NIR Arg-Glu-Tr NIR Arg-Glu-Tr NIR Arg-Glu-Tr NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu NIR Arg-Glu NIR Asn-Arg-Glu NIR Asn-Arg-Glu NIR Asn-Arg-Glu NIR Clu-Arg-Glu NIR </td <td></td> <td></td>		
Arg-Glu-Asn NIR Arg-Glu-Asp NIR Arg-Glu-Cys NIR Arg-Glu-Glu NIR Arg-Glu-Glu NIR Arg-Glu-Gly NIR Arg-Glu-His NIR Arg-Glu-Hie NIR Arg-Glu-Leu NIR Arg-Glu-Lys NIR Arg-Glu-He NIR Arg-Glu-He NIR Arg-Glu-Phe NIR Arg-Glu-Phe NIR Arg-Glu-Pro NIR Arg-Glu-Tro NIR Arg-Glu-Tro NIR Arg-Glu-Tro NIR Arg-Glu-Tyr NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu-Val NIR Arg-Glu NIR Asp-Arg-Glu NIR Asp-Arg-Glu NIR Asp-Arg-Glu NIR Glu-Arg-Glu NIR His-Arg-Glu <td< td=""><td></td><td></td></td<>		
Arg-Glu-Asp NR Arg-Glu-Cys NR Arg-Glu-Gln NR Arg-Glu-Glu NR Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-le NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Het NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Fro NR Arg-Glu-Fro NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Arg-Glu NR Arg-Arg-Glu NR Arg-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR <tr< td=""><td></td><td></td></tr<>		
Arg-Glu-Cys NR Arg-Glu-Gln NR Arg-Glu-Glu NR Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-le NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Lys NR Arg-Glu-He NR Arg-Glu-Pro NR Arg-Glu-Pro NR Arg-Glu-Ser NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gli-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu		
Arg-Glu-Gln NR Arg-Glu-Glu NR Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-Hie NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Lys NR Arg-Glu-He NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Fro NR Arg-Glu-Tr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR His-Arg-Glu NR His-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR <td></td> <td></td>		
Arg-Glu-Glu NR Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-Ile NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Het NR Arg-Glu-Met NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Fr NR Arg-Glu-Ser NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Tr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Arg-Glu NR Arg-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Glu-Arg-Glu NR Glu-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR		NR
Arg-Glu-Gly NR Arg-Glu-His NR Arg-Glu-Ile NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Met NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Fro NR Arg-Glu-Tr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Gln-Arg-Glu NR Glr-Arg-Glu NR His-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR		NR
Arg-Giu-His NR Arg-Giu-Ile NR Arg-Glu-Leu NR Arg-Giu-Lys NR Arg-Giu-Met NR Arg-Giu-Phe NR Arg-Giu-Pro NR Arg-Giu-Ser NR Arg-Giu-Thr NR Arg-Giu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Glu-Val NR Arg-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gin-Arg-Glu NR Giu-Arg-Glu NR His-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR		NR
Arg-Giu-Ile NR Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Met NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Ser NR Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Arg-Glu NR Asn-Arg-Glu NR Asn-Arg-Glu NR Cys-Arg-Glu NR Glu-Arg-Glu NR His-Arg-Glu NR Ille-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR <td></td> <td></td>		
Arg-Glu-Leu NR Arg-Glu-Lys NR Arg-Glu-Met NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Ser NR Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Arg-Glu-Lys NR Arg-Glu-Met NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Ser NR Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Asn-Arg-Glu NR Asn-Arg-Glu NR Cys-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Arg-Glu-Met NR Arg-Glu-Phe NR Arg-Glu-Pro NR Arg-Glu-Ser NR Arg-Glu-Thr NR Arg-Glu-Tyr NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Asn-Arg-Glu NR Asn-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Arg-Glu-Pro NR Arg-Glu-Ser NR Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Arg-Glu-Ser NR Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR	Arg-Glu-Phe	
Arg-Glu-Thr NR Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Arg-Glu-Trp NR Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR	Arg-Glu-Ser	
Arg-Glu-Tyr NR Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR Lys-Arg-Glu NR	Arg-Glu-Thr	
Arg-Glu-Val NR Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR Lys-Arg-Glu NR	Arg-Glu-Trp	
Ala-Arg-Glu NR Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR Lys-Arg-Glu NR	Arg-Glu-Tyr	
Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR Lys-Arg-Glu NR	Arg-Glu-Val	
Arg-Arg-Glu NR Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR	Ala-Arg-Glu	
Asn-Arg-Glu NR Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR His-Arg-Glu NR Leu-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR	Arg-Arg-Glu	
Asp-Arg-Glu NR Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR	Asn-Arg-Glu	
Cys-Arg-Glu NR Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Gln-Arg-Glu NR Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Glu-Arg-Glu NR Gly-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Giy-Arg-Glu NR His-Arg-Glu NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
His-Arg-Glu - NR Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Ile-Arg-Glu NR Leu-Arg-Glu NR Lys-Arg-Glu NR		
Leu-Arg-Glu NR Lys-Arg-Glu NR		
Lys-Arg-Glu NR		
I TOUR TRANSPORT	Met-Arg-Glu	NR

Phe-Arg-Glu	NR
Pro-Arg-Glu	NR
Ser-Arg-Glu	NR
Thr-Arg-Glu	NR
Trp-Arg-Glu	NR
Tyr-Arg-Glu	NR
Val-Arg-Glu	NR
Glu-Arg-Ala,	NR
Glu-Arg-Arg	NR
Glu-Arg-Asn	NR
Glu-Arg-Asp	NR
Glu-Arg-Cys	NR
Glu-Arg-Gln	NR
Glu-Arg-Gly	NR
Glu-Arg-His	NR
Glu-Arg-lie	NR
Glu-Arg-Leu	NR
Glu-Arg-Lys	NR
Glu-Arg-Met	NR
Glu-Arg-Phe	NR
Glu-Arg-Pro	NR
Glu-Arg-Ser	NR
Glu-Arg-Thr	NR
Glu-Arg-Trp	NR
Glu-Arg-Tyr	NR
Glu-Arg-Val	NR

Table 20—Additional Exemplary Pharmacologically Active Peptides

Sequence/structure	SEQ	Activity
oed werren an account	ID	•
	NO:	
VEPNCDIHVMWEWECFERL		VEGF-antagonist
	1027	
GERWCFDGPLTWVCGEES	1084	VEGF-antagonist
RGWVEICVADDNGMCVTEAQ	1085	VEGF-antagonist
GWDECDVARMWEWECFAGV	1086	VEGF- antagonist
GERWCFDGPRAWVCGWEI	501	VEGF- antagonist
EELWCFDGPRAWVCGYVK	502	VEGF- antagonist
RGWVEICAADDYGRCLTEAQ	1031	VEGF- antagonist
RGWVEICESDVWGRCL	1087	VEGF- antagonist
RGWVEICESDVWGRCL	1088	VEGF- antagonist
GGNECDIARMWEWECFERL	1089	VEGF- antagonist
RGWVEICAADDYGRCL	1090	VEGF-antagonist
CTTHWGFTLC	1028	MMP inhibitor
CLRSGXGC	1091	MMP inhibitor
CXXHWGFXXC	1092	MMP inhibitor
CXPXC	1093	MMP inhibitor
CRRHWGFEFC	1094	MMP inhibitor
STTHWGFTLS	1095	MMP inhibitor
CSLHWGFWWC	1096	CTLA4-mimetic
GFVCSGIFAVGVGRC	125	CTLA4-mimetic
APGVRLGCAVLGRYC	126	CTLA4-mimetic
LLGRMK	105	Antiviral (HBV)
ICVVQDWGHHRCTAGHMANLTSHASAI	127	C3b antagonist
ICVVQDWGHHRCT	128	C3b antagonist
CVVQDWGHHAC	129	C3b antagonist
STGGFDDVYDWARGVSSALTTTLVATR	185	Vinculin-binding
STGGFDDVYDWARRVSSALTTTLVATR	186	Vinculin-binding
SRGVNFSEWLYDMSAAMKEASNVFPSRRSR	187	Vinculin-binding
SSQNWDMEAGVEDLTAAMLGLLSTIHSSSR	188	Vinculin-binding
SSPSLYTQFLVNYESAATRIQDLLIASRPSR	189	Vinculin-binding
SSTGWVDLLGALQRAADATRTSIPPSLQNSR	190	Vinculin-binding
DVYTKKELIECARRVSEK	191	Vinculin-binding
EKGSYYPGSGIAQFHIDYNNVS	192	C4BP-binding
SGIAQFHIDYNNVSSAEGWHVN	193	C4BP-binding
LVTVEKGSYYPGSGIAQFHIDYNNVSSAEGWHVN	194	C4BP-binding
SGIAQFHIDYNNVS	195	C4BP-binding
LLGRMK	279	anti-HBV
ALLGRMKG	280	anti-HBV
LDPAFR	281	anti-HBV
CXXRGDC	322	Inhibition of platelet aggregation
RPLPPLP	323	Src antagonist
	324	Src antagonist
PPVPPR	325	Anti-cancer
XFXDXWXXLXX	720	(particularly for

		sarcomas)
KACRRLFGPVDSEQLSRDCD	326	p16-mimetic
RERWNFDFVTETPLEGDFAW	327	p16-mimetic
KRRQTSMTDFYHSKRRLIFS	328	p16-mimetic
TSMTDFYHSKRRLIFSKRKP	329	p16-mimetic
RRLIF	330	p16-mimetic
KRRQTSATDFYHSKRRLIFSRQIKIWFQNRRMKWKK	331	p16-mimetic
KRRLIFSKRQIKIWFQNRRMKWKK	332	p16-mimetic
Asn Gln Gly Arg His Phe Cys Gly Gly Ala Leu lle His Ala	498	CAP37 mimetic/LPS binding
Arg Phe Val Met Thr Ala Ala Ser Cys Phe Gln	499	CAP37 mimetic/LPS
Arg His Phe Cys Gly Gly Ala Leu lle His Ala Arg Phe Val	1 4//	binding
Met Thr Ala Ala Ser Cys Gly Thr Arg Cys Gln Val Ala Gly Trp Gly Ser Gln Arg Ser	500	CAP37 mimetic/LPS
Gly Gly Arg Leu Ser Arg Phe Pro Arg Phe Val Asn Val	500	binding
WHWRHRIPLQLAAGR	1097	carbohydrate (GD1
		alpha) mimetic
LKTPRV	1098	β2GPI Ab binding
NTLKTPRV	1099	β2GPI Ab binding
NTLKTPRVGGC	1100	β2GPI Ab binding
KDKATF	1101	β2GPI Ab binding
KDKATFGCHD	1102	β2GPI Ab binding
KDKATFGCHDGC	1103	β2GPI Ab binding
TLRVYK	1104	β2GPI Ab binding
ATLRVYKGG	1105	β2GPI Ab binding
CATLRVYKGG	1106	β2GPI Ab binding
INLKALAALAKKIL	1107	Membrane-
	<u> </u>	transporting
GWT	NR	Membrane-
	_	transporting
GWTLNSAGYLLG	1108	Membrane-
		transporting
GWTLNSAGYLLGKINLKALAALAKKIL	1109	Membrane-
		transporting

The present invention is also particularly useful with peptides having activity in treatment of:

 cancer, wherein the peptide is a VEGF-mimetic or a VEGF receptor antagonist, a HER2 agonist or antagonist, a CD20 antagonist and the like;

5

- asthma, wherein the protein of interest is a CKR3 antagonist, an IL-5 receptor antagonist, and the like;
- thrombosis, wherein the protein of interest is a GPIIb antagonist, a
 GPIIIa antagonist, and the like;

 autoimmune diseases and other conditions involving immune modulation, wherein the protein of interest is an IL-2 receptor antagonist, a CD40 agonist or antagonist, a CD40L agonist or antagonist, a thymopoietin mimetic and the like.

5

10

15

20

25

<u>Vehicles</u>. This invention requires the presence of at least one vehicle (F¹, F²) attached to a peptide through the N-terminus, C-terminus or a sidechain of one of the amino acid residues. Multiple vehicles may also be used; e.g., Fc's at each terminus or an Fc at a terminus and a PEG group at the other terminus or a sidechain.

An Fc domain is the preferred vehicle. The Fc domain may be fused to the N or C termini of the peptides or at both the N and C termini. For the TPO-mimetic peptides, molecules having the Fc domain fused to the N terminus of the peptide portion of the molecule are more bioactive than other such fusions, so fusion to the N terminus is preferred.

As noted above, Fc variants are suitable vehicles within the scope of this invention. A native Fc may be extensively modified to form an Fc variant in accordance with this invention, provided binding to the salvage receptor is maintained; see, for example WO 97/34631 and WO 96/32478. In such Fc variants, one may remove one or more sites of a native Fc that provide structural features or functional activity not required by the fusion molecules of this invention. One may remove these sites by, for example, substituting or deleting residues, inserting residues into the site, or truncating portions containing the site. The inserted or substituted residues may also be altered amino acids, such as peptidomimetics or D-amino acids. Fc variants may be desirable for a number of reasons, several of which are described below. Exemplary Fc variants include molecules and sequences in which:

 Sites involved in disulfide bond formation are removed. Such removal may avoid reaction with other cysteine-containing proteins present in the host cell used to produce the molecules of the invention. For this purpose, the cysteine-containing segment at the N-terminus may be truncated or cysteine residues may be deleted or substituted with other amino acids (e.g., alanyl, seryl). In particular, one may truncate the N-terminal 20-amino acid segment of SEQ ID NO: 2 or delete or substitute the cysteine residues at positions 7 and 10 of SEQ ID NO: 2. Even when cysteine residues are removed, the single chain Fc domains can still form a dimeric Fc domain that is held together non-covalently.

5

- 2. A native Fc is modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N-terminus of a typical native Fc, which may be recognized by a digestive enzyme in <u>E. coli</u> such as proline iminopeptidase. One may also add an N-terminal methionine residue, especially when the molecule is expressed recombinantly in a bacterial cell such as <u>E. coli</u>. The Fc domain of SEQ ID NO: 2 (Figure 4) is one such Fc variant.
 - 3. A portion of the N-terminus of a native Fc is removed to prevent N-terminal heterogeneity when expressed in a selected host cell. For this purpose, one may delete any of the first 20 amino acid residues at the N-terminus, particularly those at positions 1, 2, 3, 4 and 5.
- 4. One or more glycosylation sites are removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted with unglycosylated residues (e.g., alanine).
- 5. Sites involved in interaction with complement, such as the C1q binding site, are removed. For example, one may delete or substitute the EKK sequence of human IgG1. Complement recruitment may not be advantageous for the molecules of this invention and so may be avoided with such an Fc variant.

6. Sites are removed that affect binding to Fc receptors other than a salvage receptor. A native Fc may have sites for interaction with certain white blood cells that are not required for the fusion molecules of the present invention and so may be removed.

- 7. The ADCC site is removed. ADCC sites are known in the art; see, for example, Molec. Immunol. 29 (5): 633-9 (1992) with regard to ADCC sites in IgG1. These sites, as well, are not required for the fusion molecules of the present invention and so may be removed.
- 8. When the native Fc is derived from a non-human antibody, the native Fc may be humanized. Typically, to humanize a native Fc, one will substitute selected residues in the non-human native Fc with residues that are normally found in human native Fc. Techniques for antibody humanization are well known in the art.

Preferred Fc variants include the following. In SEQ ID NO: 2

(Figure 4) the leucine at position 15 may be substituted with glutamate; the glutamate at position 99, with alanine; and the lysines at positions 101 and 103, with alanines. In addition, one or more tyrosine residues can be replaced by phenyalanine residues.

20

25

An alternative vehicle would be a protein, polypeptide, peptide, antibody, antibody fragment, , or small molecule (e.g., a peptidomimetic compound) capable of binding to a salvage receptor. For example, one could use as a vehicle a polypeptide as described in U.S. Pat. No. 5,739,277, issued April 14, 1998 to Presta et al. Peptides could also be selected by phage display for binding to the FcRn salvage receptor. Such salvage receptor-binding compounds are also included within the meaning of "vehicle" and are within the scope of this invention. Such vehicles should be selected for increased half-life (e.g., by avoiding sequences recognized by proteases) and decreased immunogenicity (e.g., by favoring non-immunogenic sequences, as discovered in antibody humanization).

As noted above, polymer vehicles may also be used for F¹ and F². Various means for attaching chemical moieties useful as vehicles are currently available, see, e.g., Patent Cooperation Treaty ("PCT") International Publication No. WO 96/11953, entitled "N-Terminally Chemically Modified Protein Compositions and Methods," herein incorporated by reference in its entirety. This PCT publication discloses, among other things, the selective attachment of water soluble polymers to the N-terminus of proteins.

5

10

15

20

25

A preferred polymer vehicle is polyethylene glycol (PEG). The PEG group may be of any convenient molecular weight and may be linear or branched. The average molecular weight of the PEG will preferably range from about 2 kiloDalton ("kD") to about 100 kDa, more preferably from about 5 kDa to about 50 kDa, most preferably from about 5 kDa to about 10 kDa. The PEG groups will generally be attached to the compounds of the invention via acylation or reductive alkylation through a reactive group on the PEG moiety (e.g., an aldehyde, amino, thiol, or ester group) to a reactive group on the inventive compound (e.g., an aldehyde, amino, or ester group).

A useful strategy for the PEGylation of synthetic peptides consists of combining, through forming a conjugate linkage in solution, a peptide and a PEG moiety, each bearing a special functionality that is mutually reactive toward the other. The peptides can be easily prepared with conventional solid phase synthesis (see, for example, Figures 5 and 6 and the accompanying text herein). The peptides are "preactivated" with an appropriate functional group at a specific site. The precursors are purified and fully characterized prior to reacting with the PEG moiety. Ligation of the peptide with PEG usually takes place in aqueous phase and can be easily monitored by reverse phase analytical HPLC. The PEGylated peptides can be easily purified by preparative HPLC and characterized by

analytical HPLC, amino acid analysis and laser desorption mass spectrometry.

5

10

15

20

25

Polysaccharide polymers are another type of water soluble polymer which may be used for protein modification. Dextrans are polysaccharide polymers comprised of individual subunits of glucose predominantly linked by $\alpha 1$ -6 linkages. The dextran itself is available in many molecular weight ranges, and is readily available in molecular weights from about 1 kD to about 70 kD. Dextran is a suitable water soluble polymer for use in the present invention as a vehicle by itself or in combination with another vehicle (e.g., Fc). See, for example, WO 96/11953 and WO 96/05309. The use of dextran conjugated to therapeutic or diagnostic immunoglobulins has been reported; see, for example, European Patent Publication No. 0 315 456, which is hereby incorporated by reference. Dextran of about 1 kD to about 20 kD is preferred when dextran is used as a vehicle in accordance with the present invention.

Linkers. Any "linker" group is optional. When present, its chemical structure is not critical, since it serves primarily as a spacer. The linker is preferably made up of amino acids linked together by peptide bonds. Thus, in preferred embodiments, the linker is made up of from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. Some of these amino acids may be glycosylated, as is well understood by those in the art. In a more preferred embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine. Even more preferably, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, preferred linkers are polyglycines (particularly (Gly), (Gly), poly(Gly-Ala), and polyalanines. Other specific examples of linkers are:

(Gly)₃Lys(Gly)₄ (SEQ ID NO: 333);

(Gly)₃AsnGlySer(Gly)₂ (SEQ ID NO: 334); (Gly)₃Cys(Gly)₄ (SEQ ID NO: 335); and GlyProAsnGlyGly (SEQ ID NO: 336).

To explain the above nomenclature, for example, (Gly)₃Lys(Gly)₄ means Gly-Gly-Gly-Gly-Gly-Gly-Gly. Combinations of Gly and Ala are also preferred. The linkers shown here are exemplary; linkers within the scope of this invention may be much longer and may include other residues.

Non-peptide linkers are also possible. For example, alkyl linkers such as -NH-(CH₂), -C(O)-, wherein s=2-20 could be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C₁-C₆) lower acyl, halogen (e.g., Cl, Br), CN, NH₂, phenyl, etc. An exemplary non-peptide linker is a PEG linker, VI

15

5

10

wherein n is such that the linker has a molecular weight of 100 to 5000 kD, preferably 100 to 500 kD. The peptide linkers may be altered to form derivatives in the same manner as described above.

Derivatives. The inventors also contemplate derivatizing the
peptide and/or vehicle portion of the compounds. Such derivatives may
improve the solubility, absorption, biological half life, and the like of the
compounds. The moieties may alternatively eliminate or attenuate any
undesirable side-effect of the compounds and the like. Exemplary
derivatives include compounds in which:

The compound or some portion thereof is cyclic. For example, the
peptide portion may be modified to contain two or more Cys residues
(e.g., in the linker), which could cyclize by disulfide bond formation.

For citations to references on preparation of cyclized derivatives, see Table 2.

2. The compound is cross-linked or is rendered capable of cross-linking between molecules. For example, the peptide portion may be modified to contain one Cys residue and thereby be able to form an intermolecular disulfide bond with a like molecule. The compound may also be cross-linked through its C-terminus, as in the molecule shown below.

VII

$$F^{1}$$
- $(X^{1})_{b}$ - CO - N - NH_{2}

10 3.

15

5

- 4. One or more peptidyl [-C(O)NR-] linkages (bonds) is replaced by a non-peptidyl linkage. Exemplary non-peptidyl linkages are -CH₂-carbamate [-CH₂-OC(O)NR-], phosphonate, -CH₂-sulfonamide [-CH₂-S(O)₂NR-], urea [-NHC(O)NH-], -CH₂-secondary amine, and alkylated peptide [-C(O)NR⁶- wherein R⁶ is lower alkyl].
- 5. The N-terminus is derivatized. Typically, the N-terminus may be acylated or modified to a substituted amine. Exemplary N-terminal derivative groups include -NRR¹ (other than -NH₂), -NRC(O)R¹, -NRC(O)OR¹, -NRS(O)₂R¹, -NHC(O)NHR¹, succinimide, or
- benzyloxycarbonyl-NH- (CBZ-NH-), wherein R and R¹ are each independently hydrogen or lower alkyl and wherein the phenyl ring may be substituted with 1 to 3 substituents selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, chloro, and bromo.
- 6. The free C-terminus is derivatized. Typically, the C-terminus is esterified or amidated. For example, one may use methods described in the art to add (NH-CH₂-CH₂-NH₂), to compounds of this invention

having any of SEQ ID NOS: 504 to 508 at the C-terminus. Likewise, one may use methods described in the art to add -NH₂ to compounds of this invention having any of SEQ ID NOS: 924 to 955, 963 to 972, 1005 to 1013, or 1018 to 1023 at the C-terminus. Exemplary C-terminal derivative groups include, for example, -C(O)R² wherein R² is lower alkoxy or -NR³R⁴ wherein R³ and R⁴ are independently hydrogen or C₁-C₄ alkyl).

7. A disulfide bond is replaced with another, preferably more stable, cross-linking moiety (e.g., an alkylene). See, e.g., Bhatnagar <u>et al.</u> (1996), <u>J. Med. Chem.</u> 39: 3814-9; Alberts <u>et al.</u> (1993) <u>Thirteenth Am. Pep. Symp.</u>, 357-9.

5

10

15

20

25

 One or more individual amino acid residues is modified. Various derivatizing agents are known to react specifically with selected sidechains or terminal residues, as described in detail below.

Lysinyl residues and amino terminal residues may be reacted with succinic or other carboxylic acid anhydrides, which reverse the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

Arginyl residues may be modified by reaction with any one or combination of several conventional reagents, including phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginyl residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

Specific modification of tyrosyl residues has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.

5

10

15

20

25

Carboxyl sidechain groups (aspartyl or glutamyl) may be selectively modified by reaction with carbodiimides (R'-N=C=N-R') such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues may be converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Cysteinyl residues can be replaced by amino acid residues or other moieties either to eliminate disulfide bonding or, conversely, to stabilize cross-linking. See, e.g., Bhatnagar <u>et al.</u> (1996), <u>I. Med. Chem.</u> 39: 3814-9.

Derivatization with bifunctional agents is useful for cross-linking the peptides or their functional derivatives to a water-insoluble support matrix or to other macromolecular vehicles. Commonly used cross-linking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithiolpropioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates

and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

5

10

15

20

25

Carbohydrate (oligosaccharide) groups may conveniently be attached to sites that are known to be glycosylation sites in proteins. Generally, O-linked oligosaccharides are attached to serine (Ser) or threonine (Thr) residues while N-linked oligosaccharides are attached to asparagine (Asn) residues when they are part of the sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. X is preferably one of the 19 naturally occurring amino acids other than proline. The structures of N-linked and O-linked oligosaccharides and the sugar residues found in each type are different. One type of sugar that is commonly found on both is N-acetylneuraminic acid (referred to as sialic acid). Sialic acid is usually the terminal residue of both N-linked and Olinked oligosaccharides and, by virtue of its negative charge, may confer acidic properties to the glycosylated compound. Such site(s) may be incorporated in the linker of the compounds of this invention and are preferably glycosylated by a cell during recombinant production of the polypeptide compounds (e.g., in mammalian cells such as CHO, BHK, COS). However, such sites may further be glycosylated by synthetic or semi-synthetic procedures known in the art.

Other possible modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, oxidation of the sulfur atom in Cys, methylation of the alpha-amino groups of lysine, arginine, and histidine side chains. Creighton, <u>Proteins:</u>

Structure and Molecule Properties (W. H. Freeman & Co., San Francisco), pp. 79-86 (1983).

Compounds of the present invention may be changed at the DNA level, as well. The DNA sequence of any portion of the compound may be

changed to codons more compatible with the chosen host cell. For <u>E. coli</u>, which is the preferred host cell, optimized codons are known in the art. Codons may be substituted to eliminate restriction sites or to include silent restriction sites, which may aid in processing of the DNA in the selected host cell. The vehicle, linker and peptide DNA sequences may be modified to include any of the foregoing sequence changes.

Methods of Making

5

10

15

20

25

The compounds of this invention largely may be made in transformed host cells using recombinant DNA techniques. To do so, a recombinant DNA molecule coding for the peptide is prepared. Methods of preparing such DNA molecules are well known in the art. For instance, sequences coding for the peptides could be excised from DNA using suitable restriction enzymes. Alternatively, the DNA molecule could be synthesized using chemical synthesis techniques, such as the phosphoramidate method. Also, a combination of these techniques could be used.

The invention also includes a vector capable of expressing the peptides in an appropriate host. The vector comprises the DNA molecule that codes for the peptides operatively linked to appropriate expression control sequences. Methods of effecting this operative linking, either before or after the DNA molecule is inserted into the vector, are well known. Expression control sequences include promoters, activators, enhancers, operators, ribosomal binding sites, start signals, stop signals, cap signals, polyadenylation signals, and other signals involved with the control of transcription or translation.

The resulting vector having the DNA molecule thereon is used to transform an appropriate host. This transformation may be performed using methods well known in the art.

Any of a large number of available and well-known host cells may be used in the practice of this invention. The selection of a particular host is dependent upon a number of factors recognized by the art. These include, for example, compatibility with the chosen expression vector, toxicity of the peptides encoded by the DNA molecule, rate of transformation, ease of recovery of the peptides, expression characteristics, bio-safety and costs. A balance of these factors must be struck with the understanding that not all hosts may be equally effective for the expression of a particular DNA sequence. Within these general guidelines, useful microbial hosts include bacteria (such as <u>E. coli</u> sp.), yeast (such as <u>Saccharomyces</u> sp.) and other fungi, insects, plants, mammalian (including human) cells in culture, or other hosts known in the art.

5

10

15

20

25

Next, the transformed host is cultured and purified. Host cells may be cultured under conventional fermentation conditions so that the desired compounds are expressed. Such fermentation conditions are well known in the art. Finally, the peptides are purified from culture by methods well known in the art.

The compounds may also be made by synthetic methods. For example, solid phase synthesis techniques may be used. Suitable techniques are well known in the art, and include those described in Merrifield (1973), Chem. Polypeptides, pp. 335-61 (Katsoyannis and Panayotis eds.); Merrifield (1963), J. Am. Chem. Soc. 85: 2149; Davis et al. (1985), Biochem. Intl. 10: 394-414; Stewart and Young (1969), Solid Phase Peptide Synthesis; U.S. Pat. No. 3,941,763; Finn et al. (1976), The Proteins (3rd ed.) 2: 105-253; and Erickson et al. (1976), The Proteins (3rd ed.) 2: 257-527. Solid phase synthesis is the preferred technique of making individual peptides since it is the most cost-effective method of making small peptides.

Compounds that contain derivatized peptides or which contain non-peptide groups may be synthesized by well-known organic chemistry techniques.

Uses of the Compounds

5

10

15

20

25

<u>In general</u>. The compounds of this invention have pharmacologic activity resulting from their ability to bind to proteins of interest as agonists, mimetics or antagonists of the native ligands of such proteins of interest. The utility of specific compounds is shown in Table 2. The activity of these compounds can be measured by assays known in the art. For the TPO-mimetic and EPO-mimetic compounds, <u>in vivo</u> assays are further described in the Examples section herein.

In addition to therapeutic uses, the compounds of the present invention are useful in diagnosing diseases characterized by dysfunction of their associated protein of interest. In one embodiment, a method of detecting in a biological sample a protein of interest (e.g., a receptor) that is capable of being activated comprising the steps of: (a) contacting the sample with a compound of this invention; and (b) detecting activation of the protein of interest by the compound. The biological samples include tissue specimens, intact cells, or extracts thereof. The compounds of this invention may be used as part of a diagnostic kit to detect the presence of their associated proteins of interest in a biological sample. Such kits employ the compounds of the invention having an attached label to allow for detection. The compounds are useful for identifying normal or abnormal proteins of interest. For the EPO-mimetic compounds, for example, presence of abnormal protein of interest in a biological sample may be indicative of such disorders as Diamond Blackfan anemia, where it is believed that the EPO receptor is dysfunctional.

Therapeutic uses of EPO-mimetic compounds. The EPO-mimetic compounds of the invention are useful for treating disorders characterized by low red blood cell levels. Included in the invention are methods of modulating the endogenous activity of an EPO receptor in a mammal, preferably methods of increasing the activity of an EPO receptor. In

general, any condition treatable by erythropoietin, such as anemia, may also be treated by the EPO-mimetic compounds of the invention. These compounds are administered by an amount and route of delivery that is appropriate for the nature and severity of the condition being treated and may be ascertained by one skilled in the art. Preferably, administration is by injection, either subcutaneous, intramuscular, or intravenous.

5

10

15

20

25

Therapeutic uses of TPO-mimetic compounds. For the TPO-mimetic compounds, one can utilize such standard assays as those described in WO95/26746 entitled "Compositions and Methods for Stimulating Megakaryocyte Growth and Differentiation". In vivo assays also appear in the Examples hereinafter.

The conditions to be treated are generally those that involve an existing megakaryocyte/platelet deficiency or an expected megakaryocyte/platelet deficiency (e.g., because of planned surgery or platelet donation). Such conditions will usually be the result of a deficiency (temporary or permanent) of active Mpl ligand in vivo. The generic term for platelet deficiency is thrombocytopenia, and hence the methods and compositions of the present invention are generally available for treating thrombocytopenia in patients in need thereof.

Thrombocytopenia (platelet deficiencies) may be present for various reasons, including chemotherapy and other therapy with a variety of drugs, radiation therapy, surgery, accidental blood loss, and other specific disease conditions. Exemplary specific disease conditions that involve thrombocytopenia and may be treated in accordance with this invention are: aplastic anemia, idiopathic thrombocytopenia, metastatic tumors which result in thrombocytopenia, systemic lupus erythematosus, splenomegaly, Fanconi's syndrome, vitamin B12 deficiency, folic acid deficiency, May-Hegglin anomaly, Wiskott-Aldrich syndrome, and paroxysmal nocturnal hemoglobinuria. Also, certain treatments for AIDS

result in thrombocytopenia (e.g., AZT). Certain wound healing disorders might also benefit from an increase in platelet numbers.

With regard to anticipated platelet deficiencies, e.g., due to future surgery, a compound of the present invention could be administered several days to several hours prior to the need for platelets. With regard to acute situations, e.g., accidental and massive blood loss, a compound of this invention could be administered along with blood or purified platelets.

5

10

15

20

25

The TPO-mimetic compounds of this invention may also be useful in stimulating certain cell types other than megakaryocytes if such cells are found to express Mpl receptor. Conditions associated with such cells that express the Mpl receptor, which are responsive to stimulation by the Mpl ligand, are also within the scope of this invention.

The TPO-mimetic compounds of this invention may be used in any situation in which production of platelets or platelet precursor cells is desired, or in which stimulation of the c-Mpl receptor is desired. Thus, for example, the compounds of this invention may be used to treat any condition in a mammal wherein there is a need of platelets, megakaryocytes, and the like. Such conditions are described in detail in the following exemplary sources: WO95/26746; WO95/21919; WO95/18858; WO95/21920 and are incorporated herein.

The TPO-mimetic compounds of this invention may also be useful in maintaining the viability or storage life of platelets and/or megakaryocytes and related cells. Accordingly, it could be useful to include an effective amount of one or more such compounds in a composition containing such cells.

The therapeutic methods, compositions and compounds of the present invention may also be employed, alone or in combination with other cytokines, soluble Mpl receptor, hematopoietic factors, interleukins, growth factors or antibodies in the treatment of disease states

characterized by other symptoms as well as platelet deficiencies. It is anticipated that the inventive compound will prove useful in treating some forms of thrombocytopenia in combination with general stimulators of hematopoiesis, such as IL-3 or GM-CSF. Other megakaryocytic stimulatory factors, i.e., meg-CSF, stem cell factor (SCF), leukemia inhibitory factor (LIF), oncostatin M (OSM), or other molecules with megakaryocyte stimulating activity may also be employed with Mpl ligand. Additional exemplary cytokines or hematopoietic factors for such co-administration include IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), SCF, GM-CSF, granulocyte 10 colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, or IFN-gamma. It may further be useful to administer, either simultaneously or sequentially, an effective amount of a soluble mammalian Mpl receptor, which appears to have an effect of causing megakaryocytes to fragment into platelets once the 15 megakaryocytes have reached mature form. Thus, administration of an inventive compound (to enhance the number of mature megakaryocytes) followed by administration of the soluble Mpl receptor (to inactivate the ligand and allow the mature megakaryocytes to produce platelets) is expected to be a particularly effective means of stimulating platelet 20 production. The dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition. Progress of the treated patient can be monitored by conventional methods.

In cases where the inventive compounds are added to compositions of platelets and/or megakaryocytes and related cells, the amount to be included will generally be ascertained experimentally by techniques and assays known in the art. An exemplary range of amounts is 0.1 µg—1 mg inventive compound per 106 cells.

25

Pharmaceutical Compositions

5

10

15

20

25

In General. The present invention also provides methods of using pharmaceutical compositions of the inventive compounds. Such pharmaceutical compositions may be for administration for injection, or for oral, pulmonary, nasal, transdermal or other forms of administration. In general, the invention encompasses pharmaceutical compositions comprising effective amounts of a compound of the invention together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., · lactose, mannitol); incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated by reference. The compositions may be prepared in liquid form, or may be in dried powder, such as lyophilized form. Implantable sustained release formulations are also contemplated, as are transdermal formulations.

Oral dosage forms. Contemplated for use herein are oral solid dosage forms, which are described generally in Chapter 89 of Remington's Pharmaceutical Sciences (1990), 18th Ed., Mack Publishing Co. Easton PA 18042, which is herein incorporated by reference. Solid dosage forms include tablets, capsules, pills, troches or lozenges, cachets or pellets. Also,

liposomal or proteinoid encapsulation may be used to formulate the present compositions (as, for example, proteinoid microspheres reported in U.S. Patent No. 4,925,673). Liposomal encapsulation may be used and the liposomes may be derivatized with various polymers (e.g., U.S. Patent No. 5,013,556). A description of possible solid dosage forms for the therapeutic is given in Chapter 10 of Marshall, K., Modern Pharmaceutics (1979), edited by G. S. Banker and C. T. Rhodes, herein incorporated by reference. In general, the formulation will include the inventive compound, and inert ingredients which allow for protection against the stomach environment, and release of the biologically active material in the intestine.

5

10

15

20

25

Also specifically contemplated are oral dosage forms of the above inventive compounds. If necessary, the compounds may be chemically modified so that oral delivery is efficacious. Generally, the chemical modification contemplated is the attachment of at least one moiety to the compound molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the compound and increase in circulation time in the body. Moieties useful as covalently attached vehicles in this invention may also be used for this purpose. Examples of such moieties include: PEG, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline. See, for example, Abuchowski and Davis, Soluble Polymer-Enzyme Adducts, Enzymes as Drugs (1981), Hocenberg and Roberts, eds., Wiley-Interscience, New York, NY,, pp 367-83; Newmark, et al. (1982), J. Appl. Biochem. 4:185-9. Other polymers that could be used are poly-1,3-dioxolane and poly-1,3,6-tioxocane. Preferred for pharmaceutical usage, as indicated above, are PEG moieties.

For oral delivery dosage forms, it is also possible to use a salt of a modified aliphatic amino acid, such as sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC), as a carrier to enhance absorption of the therapeutic compounds of this invention. The clinical efficacy of a heparin formulation using SNAC has been demonstrated in a Phase II trial conducted by Emisphere Technologies. See US Patent No. 5,792,451, "Oral drug delivery composition and methods".

5

10

15

20

25

The compounds of this invention can be included in the formulation as fine multiparticulates in the form of granules or pellets of particle size about 1 mm. The formulation of the material for capsule administration could also be as a powder, lightly compressed plugs or even as tablets. The therapeutic could be prepared by compression.

Colorants and flavoring agents may all be included. For example, the protein (or derivative) may be formulated (such as by liposome or microsphere encapsulation) and then further contained within an edible product, such as a refrigerated beverage containing colorants and flavoring agents.

One may dilute or increase the volume of the compound of the invention with an inert material. These diluents could include carbohydrates, especially mannitol, α -lactose, anhydrous lactose, cellulose, sucrose, modified dextrans and starch. Certain inorganic salts may also be used as fillers including calcium triphosphate, magnesium carbonate and sodium chloride. Some commercially available diluents are Fast-Flo, Emdex, STA-Rx 1500, Emcompress and Avicell.

Disintegrants may be included in the formulation of the therapeutic into a solid dosage form. Materials used as disintegrants include but are not limited to starch including the commercial disintegrant based on starch, Explotab. Sodium starch glycolate, Amberlite, sodium carboxymethylcellulose, ultramylopectin, sodium alginate, gelatin, orange

peel, acid carboxymethyl cellulose, natural sponge and bentonite may all be used. Another form of the disintegrants are the insoluble cationic exchange resins. Powdered gums may be used as disintegrants and as binders and these can include powdered gums such as agar, Karaya or tragacanth. Alginic acid and its sodium salt are also useful as disintegrants.

5

10

15

20

25

Binders may be used to hold the therapeutic agent together to form a hard tablet and include materials from natural products such as acacia, tragacanth, starch and gelatin. Others include methyl cellulose (MC), ethyl cellulose (EC) and carboxymethyl cellulose (CMC). Polyvinyl pyrrolidone (PVP) and hydroxypropylmethyl cellulose (HPMC) could both be used in alcoholic solutions to granulate the therapeutic.

An antifrictional agent may be included in the formulation of the therapeutic to prevent sticking during the formulation process. Lubricants may be used as a layer between the therapeutic and the die wall, and these can include but are not limited to; stearic acid including its magnesium and calcium salts, polytetrafluoroethylene (PTFE), liquid paraffin, vegetable oils and waxes. Soluble lubricants may also be used such as sodium lauryl sulfate, magnesium lauryl sulfate, polyethylene glycol of various molecular weights, Carbowax 4000 and 6000.

Glidants that might improve the flow properties of the drug during formulation and to aid rearrangement during compression might be added. The glidants may include starch, talc, pyrogenic silica and hydrated silicoaluminate.

To aid dissolution of the compound of this invention into the aqueous environment a surfactant might be added as a wetting agent. Surfactants may include anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate. Cationic detergents might be used and could include benzalkonium chloride or

benzethonium chloride. The list of potential nonionic detergents that could be included in the formulation as surfactants are lauromacrogol 400, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 10, 50 and 60, glycerol monostearate, polysorbate 40, 60, 65 and 80, sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose. These surfactants could be present in the formulation of the protein or derivative either alone or as a mixture in different ratios.

Additives may also be included in the formulation to enhance uptake of the compound. Additives potentially having this property are for instance the fatty acids oleic acid, linoleic acid and linolenic acid.

10

15

20

25

Controlled release formulation may be desirable. The compound of this invention could be incorporated into an inert matrix which permits release by either diffusion or leaching mechanisms e.g., gums. Slowly degenerating matrices may also be incorporated into the formulation, e.g., alginates, polysaccharides. Another form of a controlled release of the compounds of this invention is by a method based on the Oros therapeutic system (Alza Corp.), i.e., the drug is enclosed in a semipermeable membrane which allows water to enter and push drug out through a single small opening due to osmotic effects. Some enteric coatings also have a delayed release effect.

Other coatings may be used for the formulation. These include a variety of sugars which could be applied in a coating pan. The therapeutic agent could also be given in a film coated tablet and the materials used in this instance are divided into 2 groups. The first are the nonenteric materials and include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methylhydroxy-ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl-methyl cellulose, sodium carboxy-methyl cellulose, providone and the polyethylene glycols. The second group consists of the enteric materials that are commonly esters of phthalic acid.

A mix of materials might be used to provide the optimum film coating. Film coating may be carried out in a pan coater or in a fluidized bed or by compression coating.

5

10

15

20

25

Pulmonary delivery forms. Also contemplated herein is pulmonary delivery of the present protein (or derivatives thereof). The protein (or derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream. (Other reports of this include Adjei et al., Pharma. Res. (1990) 7: 565-9; Adjei et al. (1990), Internatl. J. Pharmaceutics 63: 135-44 (leuprolide acetate); Braquet et al. (1989), J. Cardiovasc. Pharmacol. 13 (suppl.5): s.143-146 (endothelin-1); Hubbard et al. (1989), Annals Int. Med. 3: 206-12 (α1-antitrypsin); Smith et al. (1989), J. Clin. Invest. 84: 1145-6 (α1-proteinase); Oswein et al. (March 1990), "Aerosolization of Proteins", Proc. Symp. Resp. Drug Delivery II, Keystone, Colorado (recombinant human growth hormone); Debs et al. (1988), J. Immunol. 140: 3482-8 (interferon-γ and tumor necrosis factor α) and Platz et al., U.S. Patent No. 5,284,656 (granulocyte colony stimulating factor).

Contemplated for use in the practice of this invention are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art. Some specific examples of commercially available devices suitable for the practice of this invention are the Ultravent nebulizer, manufactured by Mallinckrodt, Inc., St. Louis, Missouri; the Acorn II nebulizer, manufactured by Marquest Medical Products, Englewood, Colorado; the Ventolin metered dose inhaler, manufactured by Glaxo Inc., Research Triangle Park, North Carolina; and the Spinhaler powder inhaler, manufactured by Fisons Corp., Bedford, Massachusetts.

All such devices require the use of formulations suitable for the dispensing of the inventive compound. Typically, each formulation is specific to the type of device employed and may involve the use of an appropriate propellant material, in addition to diluents, adjuvants and/or carriers useful in therapy.

5

10

15

20

25

The inventive compound should most advantageously be prepared in particulate form with an average particle size of less than 10 μm (or microns), most preferably 0.5 to 5 μm , for most effective delivery to the distal lung.

Pharmaceutically acceptable carriers include carbohydrates such as trehalose, mannitol, xylitol, sucrose, lactose, and sorbitol. Other ingredients for use in formulations may include DPPC, DOPE, DSPC and DOPC. Natural or synthetic surfactants may be used. PEG may be used (even apart from its use in derivatizing the protein or analog). Dextrans, such as cyclodextran, may be used. Bile salts and other related enhancers may be used. Cellulose and cellulose derivatives may be used. Amino acids may be used, such as use in a buffer formulation.

Also, the use of liposomes, microcapsules or microspheres, inclusion complexes, or other types of carriers is contemplated.

Formulations suitable for use with a nebulizer, either jet or ultrasonic, will typically comprise the inventive compound dissolved in water at a concentration of about 0.1 to 25 mg of biologically active protein per mL of solution. The formulation may also include a buffer and a simple sugar (e.g., for protein stabilization and regulation of osmotic pressure). The nebulizer formulation may also contain a surfactant, to reduce or prevent surface induced aggregation of the protein caused by atomization of the solution in forming the aerosol.

Formulations for use with a metered-dose inhaler device will generally comprise a finely divided powder containing the inventive

compound suspended in a propellant with the aid of a surfactant. The propellant may be any conventional material employed for this purpose, such as a chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrocluorocarbon, or a hydrocarbon, including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2-tetrafluoroethane, or combinations thereof. Suitable surfactants include sorbitan trioleate and soya lecithin. Oleic acid may also be useful as a surfactant.

5

10

15

20

25

Formulations for dispensing from a powder inhaler device will comprise a finely divided dry powder containing the inventive compound and may also include a bulking agent, such as lactose, sorbitol, sucrose, mannitol, trehalose, or xylitol in amounts which facilitate dispersal of the powder from the device, e.g., 50 to 90% by weight of the formulation.

Nasal delivery forms. Nasal delivery of the inventive compound is also contemplated. Nasal delivery allows the passage of the protein to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung. Formulations for nasal delivery include those with dextran or cyclodextran. Delivery via transport across other mucous membranes is also contemplated.

<u>Dosages</u>. The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, the daily regimen should be in the range of 0.1-1000 micrograms of the inventive compound per kilogram of body weight, preferably 0.1-150 micrograms per kilogram.

Specific preferred embodiments

5

The inventors have determined preferred peptide sequences for molecules having many different kinds of activity. The inventors have further determined preferred structures of these preferred peptides combined with preferred linkers and vehicles. Preferred structures for these preferred peptides listed in Table 21 below.

Table 21—Preferred embodiments

Sequence/structure	SEQ	Activity
•	ID	
·	NO:	
F'-(G),-IEGPTLRQWLAARA-(G),-IEGPTLRQWLAARA	337	TPO-mimetic
IEGPTLRQWLAARA-(G) ₈ -IEGPTLRQWLAARA-(G) ₅ - F'	338	TPO-mimetic
F'-(G) _s -IEGPTLRQWLAARA	1000	TPO-mimetic
	1032	TDO selection
IEGPTLRQWLAARA -(G),- F'	1033	TPO-mimetic
F'-(G) _s -GGTYSCHFGPLTWVCKPQGG-(G) _s - GGTYSCHFGPLTWVCKPQGG	339	EPO-mimetic
GGTYSCHFGPLTWVCKPQGG-(G),-		EPO-mimetic
GGTYSCHFGPLTWVCKPQGG-(G) ₅ -F1	340	
GGTYSCHFGPLTWVCKPQGG-(G) ₅ -F ¹	1034	EPO-mimetic
F'-(G) _s -DFLPHYKNTSLGHRP	1007	TNF-α inhibitor
F-(G) ₅ -DFLPHTKN13LGHHP	1045	1141 -a IIIIIDROI
DFLPHYKNTSLGHRP-(G) ₅ -F ¹		TNF-a inhibitor
	1046	
F¹-(G) ₅ - FEWTPGYWQPYALPL	1047	IL-1 R antagonist
FEWTPGYWQPYALPL-(G) _s -F ¹	1047	IL-1 R antagonist
FEW IPG TWO PTALFE (G)5"F	1048	iz i ii anagomoi
F'-(G) ₅ -VEPNCDIHVMWEWECFERL		VEGF-antagonist
	1049	
VEPNCDIHVMWEWECFERL-(G),-F'		VEGF-antagonist
	1050	
F'-(G) _s -CTTHWGFTLC	1051	MMP inhibitor
CTTHWGFTLC-(G) ₅ -F ¹		MMP inhibitor
101111111111111111111111111111111111111	1052	

[&]quot;F¹" is an Fc domain as defined previously herein.

"Working examples

The compounds described above may be prepared as described below. These examples comprise preferred embodiments of the invention and are illustrative rather than limiting.

Example 1

5

10

15

20

25

TPO-Mimetics

The following example uses peptides identified by the numbers appearing in Table A hereinafter.

Preparation of peptide 19. Peptide 17b (12 mg) and MeO-PEG-SH 5000 (30 mg, 2 equiv.) were dissolved in 1 ml aqueous buffer (pH 8). The mixture was incubated at RT for about 30 minutes and the reaction was checked by analytical HPLC, which showed a > 80% completion of the reaction. The pegylated material was isolated by preparative HPLC.

Preparation of peptide 20. Peptide 18 (14 mg) and MeO-PEG-maleimide (25 mg) were dissolved in about 1.5 ml aqueous buffer (pH 8). The mixture was incubated at RT for about 30 minutes, at which time about 70% transformation was complete as monitored with analytical HPLC by applying an aliquot of sample to the HPLC column. The pegylated material was purified by preparative HPLC.

Bioactivity assay. The TPO in vitro bioassay is a mitogenic assay utilizing an IL-3 dependent clone of murine 32D cells that have been transfected with human mpl receptor. This assay is described in greater detail in WO 95/26746. Cells are maintained in MEM medium containing 10% Fetal Clone II and 1 ng/ml mIL-3. Prior to sample addition, cells are prepared by rinsing twice with growth medium lacking mIL-3. An extended twelve point TPO standard curve is prepared, ranging from 33 to 39 pg/ml. Four dilutions, estimated to fall within the linear portion of the standard curve, (100 to 125 pg/ml), are prepared for each sample and run in triplicate. A volume of 100 µl of each dilution of sample or standard is added to appropriate wells of a 96 well microtiter plate

containing 10,000 cells/well. After forty-four hours at 37 °C and 10% CO₂, MTS (a tetrazolium compound which is bioreduced by cells to a formazan) is added to each well. Approximately six hours later, the optical density is read on a plate reader at 490 nm. A dose response curve (log TPO concentration vs. O.D.- Background) is generated and linear regression analysis of points which fall in the linear portion of the standard curve is performed. Concentrations of unknown test samples are determined using the resulting linear equation and a correction for the dilution factor.

5

10

15

20

25

TMP tandem repeats with polyglycine linkers. Our design of sequentially linked TMP repeats was based on the assumption that a dimeric form of TMP was required for its effective interaction with c-Mpl (the TPO receptor) and that depending on how they were wound up against each other in the receptor context, the two TMP molecules could be tethered together in the C- to N-terminus configuration in a way that would not perturb the global dimeric conformation. Clearly, the success of the design of tandem linked repeats depends on proper selection of the length and composition of the linker that joins the C- and N-termini of the two sequentially aligned TMP monomers. Since no structural information of the TMP bound to c-Mpl was available, a series of repeated peptides with linkers composed of 0 to 10 and 14 glycine residues (Table A) were synthesized. Glycine was chosen because of its simplicity and flexibility, based on the rationale that a flexible polyglycine peptide chain might allow for the free folding of the two tethered TMP repeats into the required conformation, while other amino acid sequences may adopt undesired secondary structures whose rigidity might disrupt the correct packing of the repeated peptide in the receptor context.

The resulting peptides are readily accessible by conventional solid phase peptide synthesis methods (Merrifield (1963), <u>J. Amer. Chem. Soc.</u> 85: 2149) with either Fmoc or t-Boc chemistry. Unlike the synthesis of the

5

10

15

20

25

C-terminally linked parallel dimer which required the use of an orthogonally protected lysine residue as the initial branch point to build the two peptide chains in a pseudosymmetrical way (Cwirla et al. (1997), Science 276: 1696-9), the synthesis of these tandem repeats was a straightforward, stepwise assembly of the continuous peptide chains from the C- to N-terminus. Since dimerization of TMP had a more dramatic effect on the proliferative activity than binding affinity as shown for the Cterminal dimer (Cwirla et al. (1997)), the synthetic peptides were tested directly for biological activity in a TPO-dependent cell-proliferation assay using an IL-3 dependent clone of murine 32D cells transfected with the full-length c-Mpl (Palacios et al.,. Cell 41:727 (1985)). As the test results showed, all the polyglycine linked tandem repeats demonstrated >1000 fold increases in potency as compared to the monomer, and were even more potent than the C-terminal dimer in this cell proliferation assay. The absolute activity of the C-terminal dimer in our assay was lower than that of the native TPO protein, which is different from the previously reported findings in which the C-terminal dimer was found to be as active as the natural ligand (Cwirla et al. (1997)). This might be due to differences in the conditions used in the two assays. Nevertheless, the difference in activity between tandem (C terminal of first monomer linked to N terminal of second monomer) and C-terminal (C terminal of first monomer linked to C terminal of second monomer; also referred to as parallel) dimers in the same assay clearly demonstrated the superiority of tandem repeat strategy over parallel peptide dimerization. It is interesting to note that a wide range of length is tolerated by the linker. The optimal linker between tandem peptides with the selected TMP monomers apparently is composed of 8 glycines.

Other tandem repeats. Subsequent to this first series of TMP tandem repeats, several other molecules were designed either with

different linkers or containing modifications within the monomer itself. The first of these molecules, peptide 13, has a linker composed of GPNG, a sequence known to have a high propensity to form a β -turn-type secondary structure. Although still about 100-fold more potent than the monomer, this peptide was found to be >10-fold less active than the equivalent GGGG-linked analog. Thus, introduction of a relatively rigid β -turn at the linker region seemed to have caused a slight distortion of the optimal agonist conformation in this short linker form.

5

10

15

20

25

The Trp9 in the TMP sequence is a highly conserved residue among the active peptides isolated from random peptide libraries. There is also a highly conserved Trp in the consensus sequences of EPO mimetic peptides and this Trp residue was found to be involved in the formation of a hydrophobic core between the two EMPs and contributed to hydrophobic interactions with the EPO receptor. Livnah et al. (1996), Science 273: 464-71). By analogy, the Trp9 residue in TMP might have a similar function in dimerization of the peptide ligand, and as an attempt to modulate and estimate the effects of noncovalent hydrophobic forces exerted by the two indole rings, several analogs were made resulting from mutations at the Trp. So in peptide 14, the Trp residue was replaced in each of the two TMP monomers with a Cys, and an intramolecular disulfide bond was formed between the two cysteines by oxidation which was envisioned to mimic the hydrophobic interactions between the two Trp residues in peptide dimerization. Peptide 15 is the reduced form of peptide 14. In peptide 16, the two Trp residues were replaced by Ala. As the assay data show, all three analogs were inactive. These data further demonstrated that Trp is critical for the activity of the TPO mimetic peptide, not just for dimer formation.

The next two peptides (peptide 17a, and 18) each contain in their 8-amino acid linker a Lys or Cys residue. These two compounds are

precursors to the two PEGylated peptides (peptide 19 and 20) in which the side chain of the Lys or Cys is modified by a PEG moiety. A PEG moiety was introduced at the middle of a relatively long linker, so that the large PEG component (5 kDa) is far enough away from the critical binding sites in the peptide molecule. PEG is a known biocompatible polymer which is increasingly used as a covalent modifier to improve the pharmacokinetic profiles of peptide- and protein-based therapeutics.

10

15

20

25

A modular, solution-based method was devised for convenient PEGylation of synthetic or recombinant peptides. The method is based on the now well established chemoselective ligation strategy which utilizes the specific reaction between a pair of mutually reactive functionalities. So, for pegylated peptide 19, the lysine side chain was preactivated with a bromoacetyl group to give peptide 17b to accommodate reaction with a thiol-derivatized PEG. To do that, an orthogonal protecting group, Dde, was employed for the protection of the lysine ϵ -amine. Once the whole peptide chain was assembled, the N-terminal amine was reprotected with t-Boc. Dde was then removed to allow for the bromoacetylation. This strategy gave a high quality crude peptide which was easily purified using conventional reverse phase HPLC. Ligation of the peptide with the thiolmodified PEG took place in aqueous buffer at pH 8 and the reaction completed within 30 minutes. MALDI-MS analysis of the purified, pegylated material revealed a characteristic, bell-shaped spectrum with an increment of 44 Da between the adjacent peaks. For PEG-peptide 20, a cysteine residue was placed in the linker region and its side chain thiol group would serve as an attachment site for a maleimide-containing PEG. Similar conditions were used for the pegylation of this peptide. As the assay data revealed, these two pegylated peptides had even higher in vitro bioactivity as compared to their unpegylated counterparts.

Peptide 21 has in its 8-amino acid linker a potential glycosylation motif, NGS. Since our exemplary tandem repeats are made up of natural amino acids linked by peptide bonds, expression of such a molecule in an appropriate eukaryotic cell system should produce a glycopeptide with the carbohydrate moiety added on the side chain carboxyamide of Asn. Glycosylation is a common post-translational modification process which can have many positive impacts on the biological activity of a given protein by increasing its aqueous solubility and in vivo stability. As the assay data show, incorporation of this glycosylation motif into the linker maintained high bioactivity. The synthetic precursor of the potential glycopeptide had in effect an activity comparable to that of the -(G)₈-linked analog. Once glycosylated, this peptide is expected to have the same order of activity as the pegylated peptides, because of the similar chemophysical properties exhibited by a PEG and a carbohydrate moiety.

5

10

15

20

25

The last peptide is a dimer of a tandem repeat. It was prepared by oxidizing peptide 18, which formed an intermolecular disulfide bond between the two cysteine residues located at the linker. This peptide was designed to address the possibility that TMP was active as a tetramer. The assay data showed that this peptide was not more active than an average tandem repeat on an adjusted molar basis, which indirectly supports the idea that the active form of TMP is indeed a dimer, otherwise dimerization of a tandem repeat would have a further impact on the bioactivity.

In order to confirm the in vitro data in animals, one pegylated TMP tandem repeat (compound 20 in Table A) was delivered subcutaneously to normal mice via osmotic pumps. Time and dose-dependent increases were seen in platelet numbers for the duration of treatment. Peak platelet levels over 4-fold baseline were seen on day 8. A dose of $10 \, \mu g/kg/day$ of the pegylated TMP repeat produced a similar response to rHuMGDF (non-pegylated) at $100 \, \mu g/kg/day$ delivered by the same route.

Table A—TPO-mimetic Peptides

Peptide	Compound	SEQ ID	Relative Potency	
No.		NO:		
	TPO		++++	
	TMP monomer	13	+	
	TMP C-C dimer		+++-	
TMP-(G),-	TMP:			
1	n = 0	341	++++-	
2	n = 1	342	++++	
3	n = 2	343	++++	
4	n = 3	344	++++	
5	n = 4	345	++++	
6	n = 5	346	++++	
7	n = 6	347	++++	
8	n = 7	348	++++	
9	n = 8	349	++++-	
10	n = 9	350	++++	
11	n = 10	351	`++++	
12	n = 14	352	++++	
13	TMP-GPNG-TMP	353	+++	
14	IEGPTLRQCLAARA-GGGGGGGG-IEGPTLRQCLAARA	354		
15	(cyclic) IEGPTLRQCLAARA-GGGGGGG-	355	-	
	IEGPTLRQCLAARA (linear)			
16	IEGPTLRQALAARA-GGGGGGGG-	356	-	
	IEGPTLRQALAARA			
17a	TMP-GGGKGGGG-TMP	357	++++	
17b	TMP-GGGK(BrAc)GGGG-TMP	358	ND	
18	TMP-GGGCGGGG-TMP	359	++++	
19	TMP-GGGK(PEG)GGGG-TMP	360	++++	
20	TMP-GGGC(PEG)GGGG-TMP	361	+++++	
21	TMP-GGGN*GSGG-TMP	362	++++	
22	TMP-GGGCGGG-TMP	363-	***	
	TMP-GGGCGGGG-TMP	363	++++	

<u>Discussion</u>. It is well accepted that MGDF acts in a way similar to hGH, i.e., one molecule of the protein ligand binds two molecules of the receptor for its activation. Wells <u>et al.</u>(1996), <u>Ann. Rev. Biochem.</u> 65: 609-34. Now, this interaction is mimicked by the action of a much smaller peptide, TMP. However, the present studies suggest that this mimicry requires the concerted action of two TMP molecules, as covalent dimerization of TMP in either a C-C parallel or C-N sequential fashion increased the <u>in vitro</u> biological potency of the original monomer by a factor of greater than 10³. The relatively low biopotency of the monomer is probably due to inefficient formation of the noncovalent dimer. A preformed covalent repeat has the ability to eliminate the entropy barrier for the formation of a noncovalent dimer which is exclusively driven by weak, noncovalent interactions between two molecules of the small, 14-residue peptide.

It is intriguing that this tandem repeat approach had a similar effect on enhancing bioactivity as the reported C-C dimerization is intriguing. These two strategies brought about two very different molecular configurations. The C-C dimer is a quasi-symmetrical molecule, while the tandem repeats have no such symmetry in their linear structures. Despite this difference in their primary structures, these two types of molecules appeared able to fold effectively into a similar biologically active conformation and cause the dimerization and activation of c-Mpl. These experimental observations provide a number of insights into how the two TMP molecules may interact with one another in binding to c-Mpl. First, the two C-termini of the two bound TMP molecules must be in relatively close proximity with each other, as suggested by data on the C-terminal dimer. Second, the respective N- and C-termini of the two TMP molecules in the receptor complex must also be very closely aligned with each other, such that they can be directly tethered together with a single peptide bond

to realize the near maximum activity-enhancing effect brought about by the tandem repeat strategy. Insertion of one or more (up to 14) glycine residues at the junction did not increase (or decrease) significantly the activity any further. This may be due to the fact that a flexible polyglycine peptide chain is able to loop out easily from the junction without causing any significant changes in the overall conformation. This flexibility seems to provide the freedom of orientation for the TMP peptide chains to fold into the required conformation in interacting with the receptor and validate it as a site of modification. Indirect evidence supporting this came from the study on peptide 13, in which a much more rigid b-turnforming sequence as the linker apparently forced a deviation of the backbone alignment around the linker which might have resulted in a slight distortion of the optimal conformation, thus resulting in a moderate (10-fold) decrease in activity as compared with the analogous compound with a 4-Gly linker. Third, Trp9 in TMP plays a similar role as Trp13 in EMP, which is involved not only in peptide:peptide interaction for the formation of dimers but also is important for contributing hydrophobic forces in peptide:receptor interaction. Results obtained with the W to C mutant analog, peptide 14, suggest that a covalent disulfide linkage is not sufficient to approximate the hydrophobic interactions provided by the Trp pair and that, being a short linkage, it might bring the two TMP monomers too close, therefore perturbing the overall conformation of the optimal dimeric structure.

5

10

15

20

25

An analysis of the possible secondary structure of the TMP peptide can provide further understanding on the interaction between TMP and c-Mpl. This can be facilitated by making reference to the reported structure of the EPO mimetic peptide. Livnah <u>et al.</u> (1996), <u>Science</u> 273:464-75 The receptor-bound EMP has a b-hairpin structure with a b-turn formed by the highly consensus Gly-Pro-Leu-Thr at the center of its sequence. Instead of

GPLT, TMP has a highly selected GPTL sequence which is likely to form a similar turn. However, this turn-like motif is located near the N-terminal part in TMP. Secondary structure prediction using Chau-Fasman method suggests that the C-terminal half of the peptide has a tendency to adopt a helical conformation. Together with the highly conserved Trp at position 9, this C-terminal helix may contribute to the stabilization of the dimeric structure. It is interesting to note that most of our tandem repeats are more potent than the C-terminal parallel dimer. Tandem repeats seem to give the molecule a better fit conformation than does the C-C parallel dimerization. The seemingly asymmetric feature of a tandem repeat might have brought it closer to the natural ligand which, as an asymmetric molecule, uses two different sites to bind two identical receptor molecules.

Introduction of a PEG moiety was envisaged to enhance the <u>in vivo</u> activity of the modified peptide by providing it a protection against proteolytic degradation and by slowing down its clearance through renal filtration. It was unexpected that pegylation could further increase the <u>in vitro</u> bioactivity of a tandem repeated TMP peptide in the cell-based proliferation assay.

Example 2

20

25

15

5

10

Fc-TMP fusions

TMPs (and EMPs as described in Example 3) were expressed in either monomeric or dimeric form as either N-terminal or C-terminal fusions to the Fc region of human IgG1. In all cases, the expression construct utilized the luxPR promoter promoter in the plasmid expression vector pAMG21.

Fc-TMP. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the TPO-mimetic peptide was constructed using standard PCR technology. Templates for PCR reactions were the pFc-A3 vector and a synthetic TMP gene. The synthetic gene was

constructed from the 3 overlapping oligonucleotides (SEQ ID NOS: 364, 365, and 366, respectively) shown below:

```
1842-97

AAA AAA GGA TCC TCG AGA TTA AGC ACG AGC AGC CAG CCA

5

1842-98

AAA GGT GGA GGT GGT GGT ATC GAA GGT CCG ACT CTG CGT

1842-99

CAG TGG CTG GCT GCT GCT TAA TCT CGA GGA TCC TTT

TTT
```

10

40

These oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 367 and 368, respectively) shown below:

This duplex was amplified in a PCR reaction using 1842-98 and 1842-97 as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers shown below (SEQ ID NOS: 369 and 370):

1216-52 AAC ATA AGT ACC TGT AGG ATC G

1830-51 TTCGATACCA CCACCTCCAC CTTTACCCGG AGACAGGGAG AGGCTCTTCTGC

The oligonucleotides 1830-51 and 1842-98 contain an overlap of 24

nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1216-52 and 1842-97.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases XbaI and BamHI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the

5

25

45

gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3728.

The nucleotide and amino acid sequences (SEQ ID NOS: 5 and 6) of the fusion protein are shown in Figure 7.

Fc-TMP-TMP. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a dimer of the TPO-mimetic peptide was constructed using standard PCR technology. Templates for PCR reactions were the pFc-A3 vector and a synthetic TMP-TMP gene. The synthetic gene was constructed from the 4 overlapping oligonucleotides (SEQ ID

NOS: 371 to 374, respectively) shown below:

```
1830-52

AAA GGT GGA GGT GGT GGT ATC GAA GGT CCG
ACT CTG CGT CAG TGG CTG GCT GCT CGT GCT

1830-53

ACC TCC ACC ACC AGC AGC AGC AGC CAG
CCA CTG ACG CAG AGT CGG ACC

1830-54

GGT GGT GGA GGT GGC GGC GGA GGT ATT GAG GGC CCA ACC
CTT CGC CAA TGG CTT GCA GCA CGC GCA

20

1830-55

AAA AAA AGG ATC CTC GAG ATT ATG CGC GTG CTG CAA GCC
ATT GGC GAA GGG TTG GGC CCT CAA TAC CTC CGC CGC C
```

The 4 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 375 and 376, respectively) shown below:

```
AAAGGTGGAGGTGGTATCGAAGGTCCGACTCTGCGTCAGTGGCTGCTCGTGCT

CCAGGCTGAGACGCAGTCACCGACCGACGACGACGA

K G G G G I E G P T L R Q W L A A R A

CCACCACCTCCACCGCCGCCTCCATAACTCCCGGGTTGGGAAGCGGTTACCGAACGTCGT

CCACCACCTCCACCGCCGCCTCCATAACTCCCGGGTTGGGAAGCGGTTACCGAACGTCGT

CGCGCA

CGCGCCA

CGCGCCA

CCGCGCCA

CCGCGCCA

CCGCGCCA

CCGCGCCTATTAGAGCTCCTAGGAAAAAAAA
```

This duplex was amplified in a PCR reaction using 1830-52 and 1830-55 as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers 1216-52 and 1830-51 as described above for

5

10

15

40

Fc-TMP. The full length fusion gene was obtained from a third PCR reaction using the outside primers 1216-52 and 1830-55.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases XbaI and BamHI, and then ligated into the vector pAMG21 and transformed into competent E. coli strain 2596 cells as described in example 1. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3727.

The nucleotide and amino acid sequences (SEQ ID NOS: 7 and 8) of the fusion protein are shown in Figure 8.

TMP-TMP-Fc. A DNA sequence coding for a tandem repeat of the TPO-mimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. Templates for PCR reactions were the EMP-Fc plasmid from strain #3688 (see Example 3) and a synthetic gene encoding the TMP dimer. The synthetic gene for the tandem repeat was constructed from the 7 overlapping oligonucleotides shown below (SEQ ID NOS: 377 to 383, respectively):

20	1885-52	TTT	TTT	CAT	ATG	ATC	GAA	GGT	CCG	ACT	CTG	CGT	CAG	TGG
•	1885-53		ACG CAT		AGC	CAG	CCA	CTG	ACG	CAG	AGT	CGG	ACC	TTC
25	1885-54		GCT ACA	GCT	CGT	GCT	GGT	GGA	GGC	GGT	GGG	GAC	AAA	ACT
	1885-55			GCT GGC		GCT	GGC	GGT	GGT	GGC	GGA	GGG	GGT	GGC
30	1885-56			TTG ACC			GGT	TGG	GCC	CTC	AAT	GCC	ACC	CCC
35	1885-57			CGC GAC			CTT	GCA	GCA	CGC	GCA	GGG	GGA	GGC
	1885-58	ccc	ACC	GCC	TCC	CCC	TGC	GCG	TGC	TGC				

These oligonucleotides were annealed to form the duplex shown encoding an amino acid sequence shown below (SEQ ID NOS 384 and 385):

20

25

30

40

This duplex was amplified in a PCR reaction using 1885-52 and 1885-58 as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with DNA from the EMP-Fc fusion strain #3688 (see Example 3) using the primers 1885-54 and 1200-54. The full length fusion gene was obtained from a third PCR reaction using the outside primers 1885-52 and 1200-54.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases XbaI and BamHI, and then ligated into the vector pAMG21 and transformed into competent E. coli strain 2596 cells as described for Fc-EMP herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3798.

The nucelotide and amino acid sequences (SEQ ID NOS: 9 and 10)

of the fusion protein are shown in Figure 9.

TMP-Fc. A DNA sequence coding for a monomer of the TPO-mimetic peptide fused in-frame to the Fc region of human IgG1 was obtained fortuitously in the ligation in TMP-TMP-Fc, presumably due to the ability of primer 1885-54 to anneal to 1885-53 as well as to 1885-58. A single clone having the correct nucleotide sequence for the TMP-Fc construct was selected and designated Amgen strain #3788.

The nucleotide and amino acid sequences (SEQ ID NOS: 11 and 12) of the fusion protein are shown in Figure 10.

5

10

15

20

25

Expression in E. coli. Cultures of each of the pAMG21-Fc-fusion constructs in E. coli GM221 were grown at 37 °C in Luria Broth medium containing 50 mg/ml kanamycin. Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer N-(3-oxohexanoyl)-DL-homoserine lactone to the culture media to a final concentration of 20 ng/ml. Cultures were incubated at 37 °C for a further 3 hours. After 3 hours, the bacterial cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-fusions were most likely produced in the insoluble fraction in E. coli. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% b-mercaptoethanol and were analyzed by SDS-PAGE. In each case, an intense coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel.

pAMG21. The expression plasmid pAMG21 can be derived from the Amgen expression vector pCFM1656 (ATCC #69576) which in turn be derived from the Amgen expression vector system described in US Patent No. 4,710,473. The pCFM1656 plasmid can be derived from the described pCFM836 plasmid (Patent No. 4,710,473) by:

- (a) destroying the two endogenous <u>NdeI</u> restriction sites by end filling with T4 polymerase enzyme followed by blunt end ligation;
- (b) replacing the DNA sequence between the unique <u>AatII</u> and <u>ClaI</u> restriction sites containing the synthetic P_L promoter with a similar fragment obtained from pCFM636 (patent No. 4,710,473) containing the PL promoter (see SEQ ID NO: 386 below); and

PCT/US99/25044

(c) substituting the small DNA sequence between the unique <u>ClaI</u> and <u>KpnI</u> restriction sites with the oligonucleotide having the sequence of SEQ ID NO: 388.

SEQ ID NO: 386:

- - 5' CGATTTGATTCTAGAAGGAGGAATAACATATGGTTAACGCGTTGGAATTCGGTAC 3' TAAACTAAGATCTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGC 5' Clai Kpni
- The expression plasmid pAMG21 can then be derived from pCFM1656 by making a series of site-directed base changes by PCR overlapping oligo mutagenesis and DNA sequence substitutions. Starting with the BglII site (plasmid bp # 180) immediately 5' to the plasmid replication promoter

 PcopB and proceeding toward the plasmid replication genes, the base pair changes are as shown in Table B below.

Table B—Base pair changes resulting in pAMG21

	pAMG21 bp #	bp in pCFM1656	bp changed to in pAMG21
5	# 204	T/A	C/G
	# 428	A/T	G/C
	# 509	G/C	A/T
	# 617	• - .	insert two G/C bp
	# 679	G/C	T/A
10	# 980	T/A	· C/G
	# 994	G/C	A/T
	# 1004	A/T	C/G
•	# 1007	C/G	T/A
	# 1028	A/T	T/A
15	# 1047	C/G	T/A
	# 1178	G/C	T/A
	# 1466	G/C	T/A
	# 2028	G/C	bp deletion
	# 2187	C/G	T/A
20	# 2480	A/T	T/A
	# 2499-2502	AGTG TCAC	<u>GTCA</u> CAGT
25	# 2642	TCCGAGC AGGCTCG	7 bp deletion
	# 3435	G/C	A/T
	# 3446	G/C	A/T
30	# 3643	A/T	T/A

The DNA sequence between the unique <u>Aat</u>II (position #4364 in pCFM1656) and <u>Sac</u>II (position #4585 in pCFM1656) restriction sites is substituted with the DNA sequence (SEQ ID NO: 23) shown in Figures 17A and 17B. During the ligation of the sticky ends of this substitution DNA sequence, the outside <u>Aat</u>II and <u>Sac</u>II sites are destroyed. There are unique <u>Aat</u>II and <u>Sac</u>II sites in the substituted DNA.

- 5

10

15

20

25

30

35

GM221 (Amgen #2596). The Amgen host strain #2596 is an E.coli K-12 strain derived from Amgen strain #393. It has been modified to contain both the temperature sensitive lambda repressor cI857s7 in the early ebg region and the lacl^Q repressor in the late ebg region (68 minutes). The presence of these two repressor genes allows the use of this host with a variety of expression systems, however both of these repressors are irrelevant to the expression from luxP_R. The untransformed host has no antibiotic resistances.

The ribosome binding site of the cI857s7 gene has been modified to include an enhanced RBS. It has been inserted into the <u>ebg</u> operon between nucleotide position 1170 and 1411 as numbered in Genbank accession number M64441Gb_Ba with deletion of the intervening <u>ebg</u> sequence. The sequence of the insert is shown below with lower case letters representing the <u>ebg</u> sequences flanking the insert shown below (SEQ ID NO: 388):

The construct was delivered to the chromosome using a recombinant phage called MMebg-cI857s7enhanced RBS #4 into F'tet/393. After recombination and resolution only the chromosomal insert described

above remains in the cell. It was renamed F'tet/GM101. F'tet/GM101 was then modified by the delivery of a lacI^Q construct into the <u>ebg</u> operon between nucleotide position 2493 and 2937 as numbered in the Genbank accession number M64441Gb_Ba with the deletion of the intervening <u>ebg</u> sequence. The sequence of the insert is shown below with the lower case letters representing the <u>ebg</u> sequences flanking the insert (SEQ ID NO: 389) shown below:

ggcggaaaccGACGTCCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCA ATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACC GTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTCGAAGCGGCGATGGCGG 10 AGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGCTCCTGATTGGCGTTGCCAC AGCGTGGTGGTGGTGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGC TAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGAC 15 GGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAA GTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGC GGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTT CCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCCATTACCGAGTCCGGGCTGC GCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAAC 20 CACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAG GCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCCAATACGCAAA CCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGACA GTAAGGTACCATAGGATCCaggcacagga 25

The construct was delivered to the chromosome using a recombinant phage called AGebg-LacIQ#5 into F'tet/GM101. After recombination and resolution only the chromosomal insert described above remains in the cell. It was renamed F'tet/GM221. The F'tet episome was cured from the strain using acridine orange at a concentration of 25 $\mu g/ml$ in LB. The cured strain was identified as tetracyline sensitive and was stored as GM221.

30

Expression. Cultures of pAMG21-Fc-TMP-TMP in *E. coli* GM221 in Luria Broth medium containing 50 μg/ml kanamycin were incubated at 37°C prior to induction. Induction of Fc-TMP-TMP gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer N-(3-oxohexanoyl)-DL-homoserine lactone to the culture media to a final concentration of 20 ng/ml and cultures were incubated at 37°C for a further 3 hours. After 3 hours, the bacterial

cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-TMP-TMP was most likely produced in the insoluble fraction in *E. coli*. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% •-mercaptoethanol and were analyzed by SDS-PAGE. An intense Coomassie stained band of approximately 30kDa was observed on an SDS-PAGE gel. The expected gene product would be 269 amino acids in length and have an expected molecular weight of about 29.5 kDa.

5

Fermentation was also carried out under standard batch conditions at the 10 L scale, resulting in similar expression levels of the Fc-TMP-TMP to those obtained at bench scale.

Purification of Fc-TMP-TMP. Cells are broken in water (1/10) by high pressure homogenization (2 passes at 14,000 PSI) and inclusion bodies are harvested by centrifugation (4200 RPM in J-6B for 1 hour). 15 Inclusion bodies are solubilized in 6M guanidine, 50mM Tris, 8mM DTT, pH 8.7 for 1 hour at a 1/10 ratio. The solubilized mixture is diluted 20 times into 2M urea, 50 mM tris, 160mM arginine, 3mM cysteine, pH 8.5. The mixture is stirred overnight in the cold and then concentrated about 10 fold by ultafiltration. It is then diluted 3 fold with 10mM Tris, 1.5M 20 urea, pH 9. The pH of this mixture is then adjusted to pH 5 with acetic acid. The precipitate is removed by centrifugation and the supernatant is loaded onto a SP-Sepharose Fast Flow column equilibrated in 20mM NaAc, 100 mM NaCl, pH 5(10mg/ml protein load, room temperature). The protein is eluted off using a 20 column volume gradient in the same 25 buffer ranging from 100mM NaCl to 500mM NaCl. The pool from the column is diluted 3 fold and loaded onto a SP-Sepharose HP column in 20 mM NaAc, 150 mM NaCl, pH 5(10 mg/ml protein load, room temperature). The protein is eluted off using a 20 column volume gradient

in the same buffer ranging from 150 mM NaCl to 400 mM NaCl. The peak is pooled and filtered.

<u>Characterization of Fc-TMP activity</u>. The following is a summary of <u>in vivo</u> data in mice with various compounds of this invention.

Mice: Normal female BDF1 approximately 10-12 weeks of age.

5

10

15

20

25

Bleed schedule: Ten mice per group treated on day 0, two groups started 4 days apart for a total of 20 mice per group. Five mice bled at each time point, mice were bled a minimum of three times a week. Mice were anesthetized with isoflurane and a total volume of 140-160 µl of blood was obtained by puncture of the orbital sinus. Blood was counted on a Technicon H1E blood analyzer running software for murine blood. Parameters measured were white blood cells, red blood cells, hematocrit, hemoglobin, platelets, neutrophils.

Treatments: Mice were either injected subcutaneously for a bolus treatment or implanted with 7-day micro-osmotic pumps for continuous delivery. Subcutaneous injections were delivered in a volume of 0.2 ml. Osmotic pumps were inserted into a subcutaneous incision made in the skin between the scapulae of anesthetized mice. Compounds were diluted in PBS with 0.1% BSA. All experiments included one control group, labeled "carrier" that were treated with this diluent only. The concentration of the test articles in the pumps was adjusted so that the calibrated flow rate from the pumps gave the treatment levels indicated in the graphs.

Compounds: A dose titration of the compound was delivered to mice in 7 day micro-osmotic pumps. Mice were treated with various compounds at a single dose of 100 µg/kg in 7 day osmotic pumps. Some of the same compounds were then given to mice as a single bolus injection.

Activity test results: The results of the activity experiments are shown in Figures 11 and 12. In dose response assays using 7-day micro-

osmotic pumps, the maximum effect was seen with the compound of SEQ ID NO: 18 was at 100 μ g/kg/day; the 10 μ g/kg/day dose was about 50% maximally active and 1 μ g/kg/day was the lowest dose at which activity could be seen in this assay system. The compound at 10 μ g/kg/day dose was about equally active as 100 μ g/kg/day unpegylated rHu-MGDF in the same experiment.

Example 3

Fc-EMP fusions

Fc-EMP. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the EPO-mimetic peptide was constructed using standard PCR technology. Templates for PCR reactions were a vector containing the Fc sequence (pFc-A3, described in International application WO 97/23614, published July 3, 1997) and a synthetic gene encoding EPO monomer. The synthetic gene for the monomer was constructed from the 4 overlapping oligonucleotides (SEQ ID NOS: 390 to

10 393, respectively) shown below:

```
1798-2 TAT GAA AGG TGG AGG TGG TGG TGG AGG TAC TTA CTC TTG
CCA CTT CGG CCC GCT GAC TTG G
```

15 1798-3 CGG TTT GCA AAC CCA AGT CAG CGG GCC GAA GTG GCA AGA GTA AGT ACC TCC ACC TCC ACC TCT CAT

1798-4 GTT TGC AAA CCG CAG GGT GGC GGC GGC GGC GGT GGT ACC TAT TCC TGT CAT TTT

1798-5 CCA GGT CAG CGG GCC AAA ATG ACA GGA ATA GGT ACC ACC GCC GCC GCC GCC ACC CTG

The 4 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 394 and 395, respectively) shown below:

```
30 TACTTTCCACCTCCACCACCACCTCCATGAATCAGAACGGTGAAGCCGGGCGACTGAAC

b M K G G G G G G T Y S C H F G P L T W
```

This duplex was amplified in a PCR reaction using

and

20

45
1798-19
CTA ATT GGA TCC ACG AGA TTA ACC ACC
CTG CGG TTT GCA A

as the sense and antisense primers (SEQ ID NOS: 396 and 397, respectively).

The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers

5 1216-52 AAC ATA AGT ACC TGT AGG ATC G

10

15

20

25

30

1798-17 AGA GTA AGT ACC TCC ACC ACC TCC ACC TTT ACC CGG AGA CAG GGA GAG GCT CTT CTG C

which are SEQ ID NOS: 398 and 399, respectively. The oligonucleotides 1798-17 and 1798-18 contain an overlap of 61 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1216-52 and 1798-19.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Xbal</u> and <u>Bam</u>HI, and then ligated into the vector pAMG21 (described below), also digested with <u>Xbal</u> and <u>Bam</u>HI. Ligated DNA was transformed into competent host cells of <u>E. colistrain 2596</u> (GM221, described herein). Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3718.

The nucleotide and amino acid sequence of the resulting fusion protein (SEQ ID NOS: 15 and 16) are shown in Figure 13.

EMP-Fc. A DNA sequence coding for a monomer of the EPOmimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. Templates for PCR reactions were the pFC-A3a vector and a synthetic gene encoding EPO monomer.

The synthetic gene for the monomer was constructed from the 4 overlapping oligonucleotides 1798-4 and 1798-5 (above) and 1798-6 and 1798-7 (SEQ ID NOS: 400 and 401, respectively) shown below:

1798-6 GGC CCG CTG ACC TGG GTA TGT AAG CCA CAA GGG GGT GGG GGA GGC GGG GGG TAA TCT CGA G 1798-7 GAT CCT CGA GAT TAC CCC CCG CCT CCC CCA CCC CCT TGT GGC TTA CAT AC 5 The 4 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 402 and 403, respectively) shown 10 below: GTTTGCAAACCGCAGGGTGGCGGCGGCGGCGGCGGTGGTACCTATTCCTGTCATTTTGGC GTCCCACCGCCGCCGCCGCCACCATGGATAAGGACAGTAAAACCG 15 V C K P Q G G G G G G T Y S H GGCGACTGGACCCATACATTCGGTGTTCCCCCACCCCCTCCGCCCCCATTAGAGCTCCTAG 20 LTWVCKPQGGGGGG This duplex was amplified in a PCR reaction using TTA TTT CAT ATG AAA GGT GGT AAC TAT TCC TGT CAT TTT 1798 - 21 25 and TGG ACA TGT GTG AGT TTT GTC CCC CCC GCC TCC CCC ACC 1798-22 30 as the sense and antisense primers (SEQ ID NOS: 404 and 405, respectively). The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers 35 AGG GGG TGG GGG AGG CGG GGG GGA CAA AAC TCA CAC ATG 1798-23 TCC A and 40 1200-54 GTT ATT GCT CAG CGG TGG CA which are SEQ ID NOS: 406 and 407, respectively. The oligonucleotides 1798-22 and 1798-23 contain an overlap of 43 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1787-21 45

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases Xbal and BamHI, and then ligated

and 1200-54.

into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described above. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3688.

5

10

The nucleotide and amino acid sequences (SEQ ID NOS: 17 and 18) of the resulting fusion protein are shown in Figure 14.

EMP-EMP-Fc. A DNA sequence coding for a dimer of the EPO-mimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. Templates for PCR reactions were the EMP-Fc plasmid from strain #3688 above and a synthetic gene encoding the EPO dimer. The synthetic gene for the dimer was constructed from the 8 overlapping oligonucleotides (SEQ ID NOS:408 to 415, respectively) shown below:

15	1869-23		TTT AAG						GAT	TTG	AGT	TTT	AAC	ттт
20	1869-48	TAA AA	AAG	TTA	AAA	CTC	AAA	TCT	AGA	ATC	AAA	TCG	ATA	AAA
	1871-72		GGT TGC			TCT	TGC	CAC	TTC	GGC	CCG	CTG	ACT	TGG
25	1871-73		CAG TTA					GCA	AGA	GTA	AGT	ACC	TCC	CAT ·
2.0	1871-74		GGT TTT						GGT	GGT	ACC	TAT	TCC	TGT
30	1871-75		ATG CTG							GCC	GCC	GCC	GCC	GCC
35	1871-78		TGT ACT					GGT	GGG	GGA	GGC	GGG	GGG	GAC
	1871-79		TTT TAC						CCC	ACC	ccc	TTG	TGG	CTT

The 8 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 416 and 417, respectively) shown below:

5	a.	61			+-		AAC	GGT	GAA		GGG	+ CGA	CTG	AAC	-+- CCA	AAC	 GTT	+	CGT		TGGC + ACCG G	120 -
			GGCG	GCG	GCGG	CGG	TGG	TAC	CTA	TTC	CTG	TCA	TTT	TGG	ccc	GCT	GAC	CTG	GGT	ATG	TAAG	
		121																			+ 2000	180
10	a		G G	CGC	G G	GCC G	G					H		G				W	V	C	ATTC K	-
		181	CCAC	AAG	GGGG	TGG	GGC	AGG	CGG	GGG	GGA	CAA +	AAC	TCA	CAC	ATG	TCC.	A - 2	28			
15	a	101	GGTG P Q	TTC	CCCC	CACC G	CCC G	TCC G	GCC G	CCC G	CCT	GTT K	TTG T	A H	T	С	P	-				

This duplex was amplified in a PCR reaction using 1869-23 and 1871-79 (shown above) as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with strain 3688 DNA using the primers 1798-23 and 1200-54 (shown above).

20

25

30

35

The oligonucleotides 1871-79 and 1798-23 contain an overlap of 31 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1869-23 and 1200-54.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases XbaI and BamHI, and then ligated into the vector pAMG21 and transformed into competent E. coli strain 2596 cells as described for Fc-EMP. Clones were screened for ability to produce the recombinant protein product and possession of the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3813.

The nucleotide and amino acid sequences (SEQ ID NOS: 19 and 20, respectively) of the resulting fusion protein are shown in Figure 15. There is a silent mutation at position 145 (A to G, shown in boldface) such that the final construct has a different nucleotide sequence than the oligonucleotide 1871-72 from which it was derived.

<u>Fc-EMP-EMP</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a dimer of the EPO-mimetic peptide was

constructed using standard PCR technology. Templates for PCR reactions were the plasmids from strains 3688 and 3813 above.

The Fc portion of the molecule was generated in a PCR reaction with strain 3688 DNA using the primers 1216-52 and 1798-17 (shown above). The EMP dimer portion of the molecule was the product of a second PCR reaction with strain 3813 DNA using the primers 1798-18 (also shown above) and SEQ ID NO: 418, shown below:

1798-20 CTA ATT GGA TCC TCG AGA TTA ACC CCC TTG TGG CTT ACAT

5

10

15

20

30

The oligonucleotides 1798-17 and 1798-18 contain an overlap of 61 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1216-52 and 1798-20.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>XbaI</u> and <u>BamHI</u>, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for Fc-EMP. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3822.

The nucleotide and amino acid sequences (SEQ ID NOS: __ and __, respectively) of the fusion protein are shown in Figure 16.

<u>Characterization of Fc-EMP activity</u>. Characterization was carried out <u>in vivo</u> as follows.

Mice: Normal female BDF1 approximately 10-12 weeks of age.

Bleed schedule: Ten mice per group treated on day 0, two groups started 4 days apart for a total of 20 mice per group. Five mice bled at each time point, mice were bled a maximum of three times a week. Mice were anesthetized with isoflurane and a total volume of 140-160 ml of blood was obtained by puncture of the orbital sinus. Blood was counted

on a Technicon H1E blood analyzer running software for murine blood. Parameters measured were WBC, RBC, HCT, HGB, PLT, NEUT, LYMPH.

Treatments: Mice were either injected subcutaneously for a bolus treatment or implanted with 7 day micro-osmotic pumps for continuous delivery. Subcutaneous injections were delivered in a volume of 0.2 ml. Osmotic pumps were inserted into a subcutaneous incision made in the skin between the scapulae of anesthetized mice. Compounds were diluted in PBS with 0.1% BSA. All experiments included one control group, labeled "carrier" that were treated with this diluent only. The concentration of the test articles in the pumps was adjusted so that the calibrated flow rate from the pumps gave the treatment levels indicated in the graphs.

5

10

15

Experiments: Various Fc-conjugated EPO mimetic peptides (EMPs) were delivered to mice as a single bolus injection at a dose of $100 \,\mu\text{g/kg}$. Fc-EMPs were delivered to mice in 7-day micro-osmotic pumps. The pumps were not replaced at the end of 7 days. Mice were bled until day 51 when HGB and HCT returned to baseline levels.

Example 4

TNF-α inhibitors

Fc-TNF-α inhibitors. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the TNF-α inhibitory peptide was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-EMP fusion strain #3718 (see Example 3) using the sense primer 1216-52 and the antisense primer 2295-89 (SEQ ID NOS: 1112 and 1113, respectively). The nucleotides encoding the TNF-α inhibitory peptide were provided by the PCR primer 2295-89 shown below:

TGC GGC AGG AAG TCA CCA CCA CCT CCA CCT TTA CCC

The oligonucleotide 2295-89 overlaps the glycine linker and Fc portion of the template by 22 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

5

10

15

20

30

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4544.

The nucleotide and amino acid sequences (SEQ ID NOS: 1055 and 1056) of the fusion protein are shown in Figures 19A and 19B.

<u>TNF- α inhibitor-Fc</u>. A DNA sequence coding for a TNF- α inhibitory peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The template for the PCR reaction was a plasmid containing an unrelated peptide fused via a five glycine linker to Fc. The nucleotides encoding the TNF- α inhibitory peptide were provided by the sense PCR primer 2295-88, with primer 1200-54 serving as the antisense primer (SEQ ID NOS: 1117 and 407, respectively). The primer sequences are shown below:

2295-88 GAA TAA CAT ATG GAC TTC CTG CCG CAC TAC AAA AAC ACC TCT CTG GGT CAC CGT CCG GGT GGA GGC GGT GGG GAC AAA ACT

1200-54 GTT ATT GCT CAG CGG TGG CA

The oligonucleotide 2295-88 overlaps the glycine linker and Fc portion of the template by 24 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4543.

5

10

15

20

25

The nucleotide and amino acid sequences (SEQ ID NOS: 1057 and 1058) of the fusion protein are shown in Figures 20A and 20B.

Expression in E. coli. Cultures of each of the pAMG21-Fc-fusion constructs in E. coli GM221 were grown at 37 °C in Luria Broth medium containing 50 mg/ml kanamycin. Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer N-(3-oxohexanoyl)-DL-homoserine lactone to the culture media to a final concentration of 20 ng/ml. Cultures were incubated at 37 °C for a further 3 hours. After 3 hours, the bacterial cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-fusions were most likely produced in the insoluble fraction in E. coli. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% β -mercaptoethanol and were analyzed by SDS-PAGE. In each case, an intense coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel.

Purification of Fc-peptide fusion proteins. Cells are broken in water (1/10) by high pressure homogenization (2 passes at 14,000 PSI) and inclusion bodies are harvested by centrifugation (4200 RPM in J-6B for 1 hour). Inclusion bodies are solubilized in 6M guanidine, 50mM Tris, 8mM DTT, pH 8.7 for 1 hour at a 1/10 ratio. The solubilized mixture is diluted

20 times into 2M urea, 50 mM tris, 160mM arginine, 3mM cysteine, pH 8.5. The mixture is stirred overnight in the cold and then concentrated about 10 fold by ultafiltration. It is then diluted 3 fold with 10mM Tris, 1.5M urea, pH 9. The pH of this mixture is then adjusted to pH 5 with acetic acid. The precipitate is removed by centrifugation and the supernatant is loaded onto a SP-Sepharose Fast Flow column equilibrated in 20mM NaAc, 100 mM NaCl, pH 5 (10mg/ml protein load, room temperature). The protein is eluted from the column using a 20 column volume gradient in the same buffer ranging from 100mM NaCl to 500mM NaCl. The pool from the column is diluted 3 fold and loaded onto a SP-Sepharose HP column in 20mM NaAc, 150mM NaCl, pH 5(10mg/ml protein load, room temperature). The protein is eluted using a 20 column volume gradient in the same buffer ranging from 150mM NaCl to 400mM NaCl. The peak is pooled and filtered.

<u>Characterization of activity of Fc-TNF- α inhibitor and TNF- α inhibitor -Fc. Binding of these peptide fusion proteins to TNF- α can be characterized by BIAcore by methods available to one of ordinary skill in the art who is armed with the teachings of the present specification.</u>

Example 5

20

25

5

10

15

IL-1 Antagonists

Fc-IL-1 antagonist. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of an IL-1 antagonist peptide was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-EMP fusion strain #3718 (see Example 3) using the sense primer 1216-52 and the antisense primer 2269-70 (SEQ ID NOS: 1112 and 1118, respectively). The nucleotides encoding the IL-1 antagonist peptide were provided by the PCR primer 2269-70 shown below:

1216-52	AAC ATA AGT ACC TGT AGG ATC G
2269-70	CCG CGG ATC CAT TAC AGC GGC AGA GCG TAC GGC TGC CAG TAA CCC GGG GTC CAT TCG AAA CCA CCA CCT CCA CCT TTA CCC

5

10

15

20

25

The oligonucleotide 2269-70 overlaps the glycine linker and Fc portion of the template by 22 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4506.

The nucleotide and amino acid sequences (SEQ ID NOS: 1059 and 1060) of the fusion protein are shown in Figures 21A and 21B.

<u>IL-1 antagonist-Fc</u>. A DNA sequence coding for an IL-1 antagonist peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The template for the PCR reaction was a plasmid containing an unrelated peptide fused via a five glycine linker to Fc. The nucleotides encoding the IL-1 antagonist peptide were provided by the sense PCR primer 2269-69, with primer 1200-54 serving as the antisense primer (SEQ ID NOS: 1119 and 407, respectively). The primer sequences are shown below:

30	2269-69	GAA CTG	TAA CCG	CAT CTG	ATG GGT	TTC GGA	GAA GGC	TGG GGT	ACC GGG	CCG GAC	GGT AAA	TAC ACT	TGG	CAG	CCG	TAC	GCT
	1200-54	GTT	ATT	GCT	CAG	CGG	TGG	CA									_

The oligonucleotide 2269-69 overlaps the glycine linker and Fc portion of the template by 24 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

5

10

15

20

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4505.

The nucleotide and amino acid sequences (SEQ ID NOS: 1061 and 1062) of the fusion protein are shown in Figures 22A and 22B. Expression and purification were carried out as in previous examples.

Characterization of Fc-IL-1 antagonist peptide and IL-1 antagonist peptide-Fc activity. IL-1 Receptor Binding competition between IL-1β, IL-1RA and Fc-conjugated IL-1 peptide sequences was carried out using the IGEN system. Reactions contained 0.4 nM biotin-IL-1R + 15 nM IL-1-TAG + 3 uM competitor + 20 ug/ml streptavidin-conjugate beads, where competitors were IL-1RA, Fc-IL-1 antagonist, IL-1 antagonist-Fc). Competition was assayed over a range of competitor concentrations from 3 uM to 1.5 pM. The results are shown in Table C below:

Table C—Results from IL-1 Recept r Binding Competition Assay

		IL-1pep-Fc	Fc-IL-1pep	IL-1ra
5	KI EC50	281.5 530.0	59.58 112.2	1.405 2.645
	95% Confidence	Intervals		
10	EC50	280.2 to 1002	54.75 to 229.8	1.149 to 6.086
1 F	KI .	148.9 to 532.5	29.08 to 122.1	0.6106 to 3.233
15	Goodness of Fit			
	R²	0.9790	0.9687	0.9602

Example 6

VEGF-Antagonists

Fc-VEGF Antagonist. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the VEGF mimetic peptide was constructed using standard PCR technology. The templates for the PCR reaction were the pFc-A3 plasmid and a synthetic VEGF mimetic peptide gene. The synthetic gene was assembled by annealing the following two oligonucleotides primer (SEQ ID NOS: 1120 and 1121,

10 respectively):

15

30

2293-11 GTT GAA CCG AAC TGT GAC ATC CAT GTT ATG TGG GAA TGG TTT GAA CGT CTG

2293-12 CAG ACG TTC AAA ACA TTC CCA TTC CCA CAT AAC ATG GAT GTC ACA GTT CGG TTC AAC

The two oligonucleotides anneal to form the following duplex encoding an amino acid sequence shown below (SEQ ID NOS 1122):

This duplex was amplified in a PCR reaction using 2293-05 and 2293-06 as the sense and antisense primers (SEQ ID NOS. 1125 and 1126).

The Fc portion of the molecule was generated in a PCR reaction with the pFc-A3 plasmid using the primers 2293-03 and 2293-04 as the sense and antisense primers (SEQ ID NOS. 1123 and 1124, respectively). The full length fusion gene was obtained from a third PCR reaction using the outside primers 2293-03 and 2293-06. These primers are shown below:

	2293-03	ATT	TGA	TTC	TAG	AAG	GAG	GAA	TAA	CAT	ATG	GAC	AAA	ACT	CAC
		ACA	TGT												
5	2293-04	GTC	ACA	GTT	CGG	TTC	AAC	ACC	ACC	ACC	ACC	ACC	TTT	ACC	CGG
		AGA	CAG	GGA											
•	2293-05	TCC	CTG	тст	CCG	GGT	AAA	GGT	GGT	GGT	GGT	GGT	GTT	GAA	CCG
		AAC	TGT	GAC	ATC										
10	2293-06	CCG	CGG	ATC	СТС	GAG	TTA	CAG	ACG	TTC	AAA	ACA	TTC	CCA	

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases NdeI and BamHI, and then ligated into the vector pAMG21 and transformed into competent E.coli strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4523.

15

20

25

30

The nucleotide and amino acid sequences (SEQ ID NOS: 1063 and 1064) of the fusion protein are shown in Figures 23A and 23B.

<u>VEGF antagonist -Fc</u>. A DNA sequence coding for a VEGF mimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The templates for the PCR reaction were the pFc-A3 plasmid and the synthetic VEGF mimetic peptide gene described above. The synthetic duplex was amplified in a PCR reaction using 2293-07 and 2293-08 as the sense and antisense primers (SEQ ID NOS. 1127 and 1128, respectively).

The Fc portion of the molecule was generated in a PCR reaction with the pFc-A3 plasmid using the primers 2293-09 and 2293-10 as the sense and antisense primers (SEQ ID NOS. 1129 and 1130, respectively).

The full length fusion gene was obtained from a third PCR reaction using the outside primers 2293-07 and 2293-10. These primers are shown below:

	2293-07	ATT	TGA	TTC	TAG	ÄAG	GAG	GAA	TAA	CAT	ATG	GTT	GAA	CCG	AAC
5		TGT	GAC						•						
	2293-08	ACA	TGT	GTG	AGT	TTT	GTC	ACC	ACC	ACC	ACC	ACC	CAG	ACG	TTC
		AAA	ACA	TTC			•								
10	2293-09	GAA	TGT	TTT	GAA	CGT	CTG	GGT	GGT	GGT	GGT	GGT	GAC	AAA	ACT

2293-10 CCG CGG ATC CTC GAG TTA TTT ACC CGG AGA CAG GGA GAG

CAC ACA TGT

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4524.

The nucleotide and amino acid sequences (SEQ ID NOS: 1065 and 1066) of the fusion protein are shown in Figures 24A and 24B. Expression and purification were carried out as in previous examples.

25

30

20

15

Example 7

MMP Inhibitors

Fc-MMP inhibitor. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of an MMP inhibitory peptide was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-TNF- α inhibitor fusion strain #4544 (see Example 4) using the sense primer 1216-52 and the antisense primer 2308-67 (SEQ ID NOS: 1112

and 1131, respectively). The nucleotides encoding the MMP inhibitor peptide were provided by the PCR primer 2308-67 shown below:

5 2308-67 AAC ATA AGT ACC TGT AGG ATC G

CCG CGG ATC CAT TAG CAC AGG GTG AAA CCC CAG TGG GTG CAA CCA CCA CCT TTA CCC

The oligonucleotide 2308-67 overlaps the glycine linker and Fc portion of the template by 22 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>NdeI</u> and <u>BamHI</u>, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4597.

The nucleotide and amino acid sequences (SEQ ID NOS: 1067 and 1068) of the fusion protein are shown in Figures 25A and 25B. Expression and purification were carried out as in previous examples.

MMP Inhibitor-Fc. A DNA sequence coding for an MMP inhibitory peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-TNF-α inhibitor fusion strain #4543 (see Example 4). The nucleotides encoding the MMP inhibitory peptide were provided by the sense PCR primer 2308-66, with primer 1200-54 serving as the antisense primer (SEQ ID NOS: 1132 and 407, respectively). The primer sequences are shown below:

30

10

15

20

25

2308-66 GAA TAA CAT ATG TGC ACC ACC CAC TGG GGT TTC ACC CTG TGC GGT GGA GGC GGT GGG GAC AAA

35 1200-54 GTT ATT GCT CAG CGG TGG CA

The oligonucleotide 2269-69 overlaps the glycine linker and Fc portion of the template by 24 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases Ndel and BamHI, and then ligated into the vector pAMG21 and transformed into competent E. coli strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4598.

The nucleotide and amino acid sequences (SEQ ID NOS: 1069 and 1070) of the fusion protein are shown in Figures 26A and 26B.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto, without departing from the spirit and scope of the invention as set forth herein.

20

5

10

15

Abbreviations

Abbreviations used throughout this specification are as defined below, unless otherwise defined in specific circumstances.

	Ac	acetyl (used to refer to acetylated residues)
	AcBpa	acetylated p-benzoyl-L-phenylalanine
25	ADCC	antibody-dependent cellular cytotoxicity
	Aib	aminoisobutyric acid
	··· bA	beta-alanine
	Вра	p-benzoyl-L-phenylalanine
	BrAc	bromoacetyl (BrCH ₂ C(O)

BSA Bovine serum albumin Bzl Benzyl Cap Caproic acid CTL Cytotoxic T lymphocytes Cytotoxic T lymphocyte antigen 4 5 CTLA4 **DARC** Duffy blood group antigen receptor **DCC** Dicylcohexylcarbodiimide 1-(4,4-dimethyl-2,6-dioxo-cyclohexylidene)ethyl Dde Erythropoietin-mimetic peptide **EMP ESI-MS** Electron spray ionization mass spectrometry 10 **EPO** Erythropoietin fluorenylmethoxycarbonyl Fmoc Granulocyte colony stimulating factor G-CSF Growth hormone GH **HCT** hematocrit 15 **HGB** hemoglobin hGH Human growth hormone **HOBt** 1-Hydroxybenzotriazole **HPLC** high performance liquid chromatography 20 ILinterleukin IL-R interleukin receptor IL-1R interleukin-1 receptor interleukin-1 receptor antagonist IL-1ra Lau Lauric acid lipopolysaccharide 25 LPS LYMPH lymphocytes MALDI-MS Matrix-assisted laser desorption ionization mass spectrometry Me methyl

	MeO	methoxy
	MHC	major histocompatibility complex
	MMP	matrix metalloproteinase
	MMPI	matrix metalloproteinase inhibitor
5	1-Nap	1-napthylalanine
	NEUT	neutrophils
	NGF	nerve growth factor
	Nle	norleucine
	NMP	N-methyl-2-pyrrolidinone
10	PAGE	polyacrylamide gel electrophoresis
	PBS	Phosphate-buffered saline
	Pbf	2,2,4,6,7-pendamethyldihydrobenzofuran-5-sulfonyl
	PCR	polymerase chain reaction
	Pec	pipecolic acid
15	PEG	Poly(ethylene glycol)
	pGlu	pyroglutamic acid
	Pic	picolinic acid
	PLT	platelets
	pΥ	phosphotyrosine
20	RBC	red blood cells
	RBS	ribosome binding site
	RT	room temperature (25 °C)
	Sar	sarcosine
	SDS	sodium dodecyl sulfate
25	STK	serine-threonine kinases
	t-Boc	tert-Butoxycarbonyl
	tBu	tert-Butyl
	TGF	tissue growth factor
	THF	thymic humoral factor

tyrosine kinase TK Thrombopoietin-mimetic peptide TMP TNF Tissue necrosis factor Thrombopoietin TPO TRAIL TNF-related apoptosis-inducing ligand 5 trityl Trt UK urokinase urokinase receptor UKR vascular endothelial cell growth factor **VEGF** vasoactive intestinal peptide VIP 10

white blood cells

WBC

What is claimed is:

1. A composition of matter of the formula

$$(X^1)_a - F^1 - (X^2)_b$$

and multimers thereof, wherein:

5 F¹ is an Fc domain;

 $X^{1} \text{ and } X^{2} \text{ are each independently selected from -(L^{1})}_{c} - P^{1}, - \\ (L^{1})_{c} - P^{1} - (L^{2})_{d} - P^{2}, - (L^{1})_{c} - P^{1} - (L^{2})_{d} - P^{2} - (L^{3})_{e} - P^{3}, \text{ and -(L^{1})}_{c} - P^{1} - (L^{2})_{d} - P^{2} - (L^{3})_{e} - P^{3} - (L^{4})_{c} - P^{4}$

P¹, P², P³, and P⁴ are each independently sequences of pharmacologically active peptides;

L¹, L², L³, and L⁴ are each independently linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1.

2. The composition of matter of Claim 1 of the formulae

X'-F'

or

10

15

25

F1-X2.

- 3. The composition of matter of Claim 1 of the formula F^1 - $(L^1)_c$ - P^1 .
- 20 4. The composition of matter of Claim 1 of the formula $F^{1}-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}.$
 - 5. The composition of matter of Claim 1 wherein F¹ is an IgG Fc domain.
 - 6. The composition of matter of Claim 1 wherein F¹ is an IgG1 Fc domain.
 - 7. The composition of matter of Claim 1 wherein F¹ comprises the sequence of SEQ ID NO: 2.
 - 8. The composition of matter of Claim 1 wherein X¹ and X² comprise an IL-1 antagonist peptide sequence.

9. The composition of matter of Claim 8 wherein the IL-1 antagonist peptide sequence is selected from SEQ ID NOS: 212, 907, 908, 909, 910, 917, and 979.

10. The composition of matter of Claim 8 wherein the IL-1 antagonist peptide sequence is selected from SEQ ID NOS: 213 to 271, 671 to 906, 911 to 916, and 918 to 1023.

5

- 11. The composition of matter of Claim 8 wherein F¹ comprises the sequence of SEQ ID NO: 2.
- The composition of matter of Claim 1 wherein X¹ and X² comprise
 an EPO-mimetic peptide sequence.
 - 13. The composition of matter of Claim 12 wherein the EPO-mimetic peptide sequence is selected from Table 5.
 - 14. The composition of matter of Claim 12 wherein F¹ comprises the sequence of SEQ ID NO: 2.
- 15. The composition of matter of Claim 12 comprising a sequence selected from SEQ ID NOS: 83, 84, 85, 124, 419, 420, 421, and 461.
 - 16. The composition of matter of claim 12 comprising a sequence selected from SEQ ID NOS: 339 and 340.
- 17. The composition of matter of Claim 12 comprising a sequence20 selected from SEQ ID NOS: 20 and 22.
 - 18. The composition of matter of Claim 3 wherein P¹ is a TPO-mimetic peptide sequence.
 - 19. The composition of matter of Claim 18 wherein P¹ is a TPO-mimetic peptide sequence selected from Table 6.
- 25 20. The composition of matter of Claim 18 wherein F¹ comprises the sequence of SEQ ID NO: 2.
 - 21. The composition of matter of Claim 18 having a sequence selected from SEQ ID NOS: 6 and 12.
 - 22. A DNA encoding a composition of matter of any of Claims 1 to 21.

23	An expression	vector	comprising	the	DNA	of	Claim	22.
----	---------------	--------	------------	-----	-----	----	-------	-----

- 24. A host cell comprising the expression vector of Claim 23.
- 25. The cell of Claim 24, wherein the cell is an <u>E. coli</u> cell.

5

10

15

25

- 26. A process for preparing a pharmacologically active compound, which comprises
 - selecting at least one randomized peptide that modulates the
 activity of a protein of interest; and
 - b) preparing a pharmacologic agent comprising at least one Fc domain covalently linked to at least one amino acid sequence of the selected peptide or peptides.
- 27. The process of Claim 26, wherein the peptide is selected in a process comprising screening of a phage display library, an <u>E. coli</u> display library, a ribosomal library, or a chemical peptide library.
- 28. The process of Claim 26, wherein the preparation of the pharmacologic agent is carried out by:
 - a) preparing a gene construct comprising a nucleic acid
 sequence encoding the selected peptide and a nucleic acid
 sequence encoding an Fc domain; and
 - b) expressing the gene construct.
- 20 29. The process of Claim 26, wherein the gene construct is expressed in an <u>E. coli</u> cell.
 - 30. The process of Claim 26, wherein the protein of interest is a cell surface receptor.
 - 31. The process of Claim 26, wherein the protein of interest has a linear epitope.
 - 32. The process of Claim 26, wherein the protein of interest is a cytokine receptor.
 - 33. The process of Claim 26, wherein the peptide is an EPO-mimetic peptide.

34. The process of Claim 26, wherein the peptide is a TPO-mimetic peptide.

- 35. The process of Claim 26, wherein the peptide is an IL-1 antagonist peptide.
- 5 36. The process of Claim 26, wherein the peptide is an MMP inhibitor peptide or a VEGF antagonist peptide.
 - 37. The process of Claim 26, wherein the peptide is a TNF-antagonist peptide.
- 38. The process of Claim 26, wherein the peptide is a CTLA4-mimetic peptide.
 - 39. The process of Claim 26, wherein the peptide is selected from Tables 4 to 20.
 - 40. The process of Claim 26, wherein the selection of the peptide is carried out by a process comprising:

15

20

25

- a) preparing a gene construct comprising a nucleic acid sequence encoding a first selected peptide and a nucleic acid sequence encoding an Fc domain;
 - conducting a polymerase chain reaction using the gene construct and mutagenic primers, wherein
 - a first mutagenic primer comprises a nucleic acid sequence complementary to a sequence at or near the
 of a coding strand of the gene construct, and
 - ii) a second mutagenic primer comprises a nucleic acid sequence complementary to the 3' end of the noncoding strand of the gene construct.
- 41. The process of Claim 26, wherein the compound is derivatized.
- 42. The process of Claim 26, wherein the derivatized compound comprises a cyclic portion, a cross-linking site, a non-peptidyl

linkage, an N-terminal replacement, a C-terminal replacement, or a modified amino acid moiety.

- 43. The process of Claim 26 wherein the Fc domain is an IgG Fc domain.
- 5 44. The process of Claim 26, wherein the vehicle is an IgG1 Fc domain.
 - 45. The process of Claim 26, wherein the vehicle comprises the sequence of SEQ ID NO: 2.
 - 46. The process of Claim 26, wherein the compound prepared is of the formula

 $(X^1)_a - F^1 - (X^2)_b$

and multimers thereof, wherein:

F' is an Fc domain;

 X^{1} and X^{2} are each independently selected from -(L^{1})_c- P^{1} , - (L^{1})_c- P^{1} -(L^{2})_d - P^{2} , -(L^{1})_c- P^{1} -(L^{2})_d - P^{2} -(L^{3})_e- P^{3} , and -(L^{1})_c- P^{1} -(L^{2})_d - P^{2} -(L^{3})_e - P^{3} -(L^{4})₁- P^{4}

P¹, P², P³, and P⁴ are each independently sequences of pharmacologically active peptides;

L¹, L², L³, and L⁴ are each independently linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1.

47. The process of Claim 46, wherein the compound prepared is of the formulae

X'-F'

or

15

20

25

 F^1-X^2 .

48. The process of Claim 46, wherein the compound prepared is of the formulae

$$F^{1}-(L^{1})_{c}-P^{1}$$

or

$$F^{1}-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}.$$

- 49. The process of Claim 46, wherein F¹ is an IgG Fc domain.
- 50. The process of Claim 46, wherein F¹ is an IgG1 Fc domain.
- 5 51. The process of Claim 46, wherein F¹ comprises the sequence of SEQ ID NO: 2.

peptide selection

peptide optimization

1

formation of Fc-peptide DNA construct

↓

insertion of construct into expression vector

↓

transfection of host cell with vector

1

expression of vector in host cell

1

Fc multimer formation in host cell

1

isolation of Fc multimer from host cell

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D FIG. 2E

FIG. 3A

FIG. 3B

FIG. 3C

1	TA	CCT								AAC		rcg	AGGG	- + - CT1	rga	GGA(CCC	CCI	rggo	AGT	60
	M	D	ĸ	T	H	T	С	P	P	С	P	A	P	E	L	L	G	G	P	S	-
																				GTC	12
-	CA	GAA	GGA	GAA(GGG	GGG'	rrr	rgg(GTT(CT	GTG(GAC	TAC	CTAC	GAG	GCC	TG(GG/	CTC	CAG	
	•	-	_	_		_				D								P	E	V	•
121				-+-			+				+			+			+		·		180
										E E										CAC	
	T GM	_																		CACG	
81				-+-			+				+ ·			+			+	,	. -	TGC	24
	D	G	v	E	v	н	N	A	ĸ	T	K	P	R	E	E	Q	Y	N	S	T	-
41										CCT									GGA	TAC	30
																			CTC	CATG	30
										L											-
101			-	-+-	·		+				+			-+-			+			AGCC + ICGG	36
	K	С	ĸ	V	s	N	ĸ	A	L	P	A	P	I	E	ĸ	Ť	I	S	ĸ	A	-
61				-+-			+				 +			-+-			+			CTGG	42
										Y											-
21	AA	GAA	CCA	GGTY	CAG	CCT	GAC	CTG	CCT	GGT	CAA!	AGG	TTC	CTA:	rcc	CAG	CGA	CAT	CGC	GTG	48
						•				CCA(CAC V	
	GA	GTG	GGA	GAG	CAA'	TGG	GCA	GCC	GGA	GAAG	CAAC	CTAC	CAA	GAC	CAC	GCC'	rcc	CGT	GCT(GAC	
181				-+-			+		-		+			-+-			+			CTG	54
•	E	W	E	s	N	G	Q	P	E	N	N	Y	K	T	T	P	P	v	L	D	•
541				-+-			+		-		+			-+-			+			CAG CGTC	60
										ĸ											
601				-+-			+				+			-+-			+			GAAG CTTC	66
																				ĸ	-
661	AG	CCT	CTC	CCT	GTC	TCC	GGG	TAA	A T												

SUBSTITUTE SHEET (RULE 26)

FIG. 5 NH-Dde ^{°CO}-GGGG-IEGPTLRQWLAARA Pbf Boc Wang resin 2% H₂NNH₂/NMP tBu Pbf Boc (BrCH₂CO)₂O Wang resin Boc-IEGPTLRQWLAARA-GGG-HN CO-GGGG-IEGPTLRQV Pbf Boc Wang resin H-IEGPTLRQWLA CO-GGGG-IEGPTLRQWLAARA-OH peptide 17b CO-GGGG-IEGPTLRQWLAARA-OH H-IEGPTLROWLAARA-GGG-HN peptide 19

SUBSTITUTE SHEET (RULE 26)

		TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGACAAAACTCACACATGTC	
	1	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCTGTTTTGAGTGTGTACAG	60
3		M D K T H T C P	-
		CACCTTGTCCAGCTCCGGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCAAAAC	
	61		120
		GTGGAACAGGTCGAGGCCTTGAGGACCCCCCTGGCAGTCAGAAGGAGAAGGGGGGTTTTG	
3		PCPAPELLGGPSVFLFPPKP	•
		CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA	
	121	GGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACT	180
2		K D T L M I S R T P E V T C V V D V S	
	181	GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATG	240
	101	CGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTAC	
;		HEDPEVKFNWYVDGVEVHNA-	•
		CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA	
	241	·	300
•		GGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCACACCAGTCGCAGGAGT K T K P R E E O Y N S T Y R V V S V L T	
•			
	201	CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG	
	301	GGCAGGACGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTC	000
:		V L H Q D W L N G K E Y K C K V S N K A -	•
		CCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC	
	361		120
		GGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTG	
;		L P A P I E K T I S K A K G Q P R E P Q -	•
		AGGTGTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT	
	421	TCCACATGTGGGACGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGA	180
:		V Y T L P P S R D E L T K N Q V S L T C -	
		GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC	
	481		40
_		CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCG	
•		LVKGFYPSDIAVEWESNGQP-	
		CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT	
	541	GCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAAG	000
:		ENNYKTTPPVLDSDGSFFLY-	•
		ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGGAACGTCTTCTCATGCTCCG	
	601	·····+····+····+ (560
		TGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGC	
:		S K L T V D K S R W Q Q G N V F S C S V -	•
		TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA	
	661		720
<u>.</u>		ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCAT M H E A L H N H Y T Q K S L S L S P G K -	
	721	AAGGTGGAGGTGGTATCGAAGGTCCGACTCTGCGTCAGTGGCTGCTGCTT	780
	/41	TTCCACCTCCACCACCATAGCTTCCAGGCTGAGACGCAGTCACCGACCG	
:		G G G G G E G P T L R Q W L A A R A * -	•
		BamHI	
		1	
	781	AATCTCGAGGATCC	
		TTAGAGCTCCTAGG	

	X	baI	
		TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGACAAAACTCACACATGTC	
c	1	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCTGTTTTGAGTGTGTACAG M D K T H T C P	
	61	CACCTTGTCCAGCTCCGGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAAC 120	0
c		PCPAPELLGGPSVPLFPPKP-	
	121	CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA GGTTCCTGTGGGAGTACTAGAGGGGCCTGGGGACTCCAGTGTACGCACCACCACCACCACCT)
C		K D T L M I S R T P E V T C V V D V S - GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGGGTGGAGGTGCATAATG	
c	181	CGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTAC H E D P E V K F N W Y V D G V E V H N A -)
	241	CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA 300	D
c		GGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTCGCATGGCACACCAGTCGCAGGAGT K T K P R E E Q Y N S T Y R V V S V L T	
c	301	CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG GGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTC V L H Q D W L N G K E Y K C K V S N K A	0
c	361	CCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC GGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTG L P A P I E K T I S K A K G Q P R E P Q)
	421	AGGTGTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT	0
с	•	TCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGA V Y T L P P S R D E L T K N Q V S L T C -	
	481	GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCGGTCG	D
С		L V K G F Y P S D I A V E W E S N G Q P - CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT	^
c	541	GCCTCTTGTTGATGTTCTGGTGCGGAGGCCACGACCTGAGGCTGCCGAGGAAGAAGAAGAAGA ENNYKTTPPVLDSDGSPFLY	,
c	601	ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG TGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGC S K L T V D K S R W Q Q G N V F S C S V	D
	661	TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA	D
c .		ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGGACAGAGGCCCAT M H E A L H N H Y T Q K S L S L S P G K -	
C	721	AAGGTGGAGGTGGTATCGAAGGTCCGACTCTGCGTCAGTGGCTGGTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	0
c	781	CACCACCTCCACGCCGCCTCCATAACTCCCGCGTTGGGAAGCGGTTACCGAACGTCGTG G G G G G G G I E G P T L R Q W L A A R	0
		BamHI	
	841	GCGCATAATCTCGAGGATCCG	
		<u> </u>	

	2	(baI	G.	9 .	
	1	TCTAGATTTGTTTTAACTAATTAAAGGAGGAI			60
c	-	AGATCTAAACAAAATTGATTAATTTCCTCCT			
	61	GTCAGTGGCTGCTGCTGGCGGTGG	• • • • • •	+	120
c		CAGTCACCGACCGACGACGACGGCCACCA Q W L A A R A G G G	ACCGCC' G G	TCCCCCACCGTAACTCCCGGGTT G G G I E G P T	-
c	121	CCCTTCGCCAATGGCTTGCAGCACGCGCAGGC GGGAAGCGGTTACCGAACGTCGTGCGCGTCCC L R Q W L A A R A G	CCCTCC	GCCACCCTGTTTTGAGTGTGTA	
		GTCCACCTTGCCCAGCACCTGAACTCCTGGGC	GGACC	GTCAGTTTTCCTCTTCCCCCCAA	240
c	181	CAGGTGGAACGGGTCGTGGACTTGAGGACCCC PPCPAPELLG	CCTGG G P	CAGTCAAAAGGAGAAGGGGGGTT S V F L F P P K	
c	241	AACCCAAGGACACCCTCATGATCTCCCGGACC	GGACT	CCAGTGTACGCACCACCACCTGC	
		TGAGCCACGAAGACCCTGAGGTCAAGTTCAAG	CTGGTA	CGTGGACGGCGTGGAGGTGCATA	
c	301	ACTCGGTGCTTCTGGGACTCCAGTTCAAGTTC S H E D P E V K F N	GACCAT	GCACCTGCCGCACCTCCACGTAT	
	361	ATGCCAAGACAAAGCCGCGGGAGGAGCAGTAG		+	420
C		A K T K P R E E Q Y	N S	T Y R V V S V L	-
c	421	TCACCGTCCTGCACCAGGACTGGCTGAATGGC AGTGGCAGGACGTGGTCCTGACCGACTTACCC T V L H Q D W L N G	GTTCCT	CATGTTCACGTTCCAGAGGTTGT	
	4R1	AAGCCCTCCCAGCCCCCATCGAGAAAACCATC	CTCCAA	AGCCAAAGGGCAGCCCCGAGAAC	540
с	•••	TTCCCGACGCTCGGGGGTAGCTCTTTTGGTAC	GAGGTT S K	TCGGTTTCCCGTCGGGGCTCTTG A K G Q P R E P	
	541	CACAGGTGTACACCCTGCCCCCATCCCGGGAC		+	600
С		Q V Y T L P P S R D CCTGCCTGGTCAAAGGCTTCTATCCCAGCGA	E L	TKNQVSLT	•
с	601	GGACGGACCAGTTTCCGAAGATAGGGTCGCTC	GTAGCG	GCACCTCACCCTCTCGTTACCCG	660 -
	661	AGCCGGAGAACAACTACAAGACCACGCCTCC		+	720
с		PENNYKTTPP	GCACGA V L	CCTGAGGCTGCCGAGGAAGAAGG D S D G S F F L	
	721	TCTACAGCAAGCTCACCGTGGACAAGAGCAGCAGCAGCAGCAGCTGTCCGTCGACCTGTCTCTCGTCGACCTGTTCTCGTCGTCGTCTCTCGTCGTCGTCTCTCGTCGT		+	780
С		YSKLTVDKSR	M Q	QGNVFSCS	•
	781	CCGTGATGCATGAGGCTCTGCACAACCACTA	- 	+	840
С		V M H E A L H N H Y BamHI	T Q	K S L S L S P G	-
		GTAAATAATGGATCC		•	
	841	CATTTATTACCTAGG			
С		K *	T /RI ()	F 26)	

		TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGATCGAAGGTCCGACTCTGC	
	1	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACTAGCTTCCAGGCTGAGACG	0
C		MIEGPTLR·	
	61	GTCAGTGGCTGGCTGCTGGTGGAGGCGGTGGGGACAAAACTCACACATGTCCAC	20
С	01	CAGTCACCGACGACGACGACCACCTCCGCCACCCCTGTTTTGAGTGTGTACAGGTG OWLAARAGGGGGGGGACACCACCCCTGTTTTTGAGTGTGTACAGGTG	
•		CTTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTTTTCCTCTTCCCCCCAAAACCCA	
	121	GAACGGGTCGTGGACTTGAGGACCCCCCTGGCAGTCAAAAGGAGAGGGGGGTTTTGGGT	B0
С		C P A P E L L G G P S V F L F P P K P K -	
	181	AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAGCCCCTGAGCCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCCCTGAGGTCACATGCGTGGTGGTGGTGGACGTGAGCCCCTGAGGTCACATGCGTGGTGGTGGTGGAGCCCCTGAGGTCACATGCGTGGTGGTGGTGGAGCCCCTGAGGTCACATGCGTGGTGGACGTGAGCCCCTGAGGTCACATGCGTGGTGGTGGTGGAGCCCCTGAGGTCACATGCGTGGTGGAGCCCCTGAGGTCACATGCGTGGTGGTGGTGGAGCCCCTGAGGTCACATGCGTGGTGGTGGAGCCCCTGAGGTCACATGCGTGGTGGTGGAGCCCCTGAGGTCACATGCAGTCACATGCGTGGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGAGCCCCTGAGGTCACATGCAGAGCCCCTGAGGTCACATGCAGAGAGCCCCTGAGGTCACATGCAGAGAGCCACATGCAGAGAGAG	40
c		TCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCACCTGCACTGG D T L M I S R T P E V T C V V D V S H -	
	241	ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA	00
C	241	TGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGT E D P E V K F N W Y V D G V E V H N A K	
		AGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCG	
	301	TCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCACCACCAGTCGCAGGAGTGGC	60
С		T R P R E E Q Y N S T Y R V V S V L T V -	
	361	TCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC	20
c		AGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCGGG L H Q D W L N G K E Y K C K V S N K A L -	
	421	TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG	80
С	421	AGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTGTCC PAPIEKTISKAKGQPREPQV	
•		TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCC	
	481	ACATGTGGGACGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGG	40
С		YTLPPSRDELTKNQVSLTCL	
	541	TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG	00
С		ACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCC V K G F Y P S D I A V E W E S N G Q P E	
		AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA	۲۸
	601	TCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGT	00
C		N N Y K T T P P V L D S D G S F F L Y S - GCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA	
	661	GCAAGCTCACCGTGGACAAGACCACGTGGCAGGAGGAACGTCTCCACGAGAGGCACCTGTCCACCGTCGTCCCCCTTGCAGAAGAGTACGAGGCACT	20
c	•••	K L T V D K S R W Q Q G N V F S C S V M -	
	721	TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAT	80
С	1	ACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGGACAGAGGCCCATTTA H E A L H N H Y T Q K S L S L S P G K *	
		BamHI	
		AATGGATCC	
	781	TTACCTAGG	

FIG.11

FIG.12

- Carrier
- O PEG MGDF
- ▼ TMPTMPFc dimer
- ▼ _FcTMPTMP dimer

	2	KbaI									ı		<i>,</i> .	ı								
	1	TCTA	GAT									ATA									C + 60	
c	•	AGAT					GAT	TAA	TTI	CCI	CCT	TATT	CT	ATA M	CCT D	GTT K	TTG/	AGT(STG: T	raca C	.G P -	
	61	CACC'																			C + 120	
c		GTGG/										TGG(P									G P	
	121	CCAA																			A + 180	
c	121	GGTT	CTC	TG (GA (TA	CTA	GAG	GGC	CTG	GGG		CAC	GTG'	PAC	GCA	CCA	CCA	CTC	CAC	T	
		GCCA																				
С	181	CGGT	GCT1	CTC	GGG	ACT	CCA	GTT	CAA	GTT	'GAC		CAC	CCT	GCC	GCA	CCT	CAC		ATTA	+ 240 C A -	
		CCAA	_																· CTY	ጉርጥር	A	
	241			-+-				+			-+-			+				+			+ 300	
c			T									S										
	201	CCGT																			G + 360	
	201	GGCA	GAC	CGT	GT	CT	GAC	CGA	CTT	ACC	GTT	CCTC	:ATC	GTT(CAC	GTT	CCA	GAG	TT(STTT	C	
С					-							E									A -	
		CTCCC																			+ 420	
c	•	GGGA(GTT1 K									Q -	
		AGGT																				
	421	TCCA	CATO	TG	GA (CGG	GGG	TAG	GGC	CCT	'ACT	CGAC	TG(GTT(CTT	GGT(CCA	GTC(GGA	CTGG	+ 480 A	
C				_								L				_					c -	
	481			+ -				+	-		-+-	• • • •		+				+			+ 540	
c		CGGA	V	K	G	F	Y	Р	S	D	I	A	V	E	W	E	3	N	G	Q	P -	
	541	CGGA																			T + 600	
С		GCCT	TTC	TT	TAE	TT	CTG	GTG	CGG	AGG	GCA		CTC	GAG	GC T	GCC	GAG	GAAG	GAA(GAG	A	
``		ACAGO	CAAC	CT	CAC	CT	GGA	CAA	GAG	CAG	GTG	GCAC	CA	GGG	GAA	CGTY	CTT	CTC	ATG	CTCC	G	
	601	TGTC	TTC	-+- :GA(GTG	 CA	CCT	+ - <i>-</i> GTT	CTC	GTC	CAC	CGTO	GT	+ CCC(CTT	GCA	GAA	+ · GAG'	rac(GAGG	+ 660 C	
С		S	K	L	T	V	D	K	S	R	W	Q	Q	G	N	V	F	S	С	3	v -	
	661	TGAT	GCA'	rga(GC'	rct	GCA	CAA +	CCA	CTA	CAC	GCAC	AA	GAG(CCT	CTC	CCT	GTC: +	rcc	GGT	A + 720	
С	001	ACTA	CGT	ACTO	CCG	AGA	CGT	GTT	GGT	GAT	GTG	CGTC	TT	CTC	GGA(GAG	GGA(CAG	AGG	CCCA	T	
		AAGG'	rgg/	AGG	rgg'	rgg	TGG	AGG	TAC	TTA	CTC	TTGC	CA	CTT	CGG	ccc	GCT	GAC	PTG	GTI	T + 780	•
c	721	TTCC	ACC	rcc	ACC	ACC.	ACC	TCC	ATG	AAT	GAG	AACC	GT	GAA	GCC	GGG	CGA	CTG	AAC	CCAA	A	
										Вап	нI											
		GCAA	ACC	GC A	GGG	rgg	TTA	ATC	TCC	 TGC	ATC	c										
	781	CGTT		+				+			- + -	- 83	12									
C			P																			

	2	Kbai	
		TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGGAGGTACTTACT	^
;	. 1	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCCTCCATGAATGA	U
:	61	ACTTCGGCCCGCTGACTTGGGTATGTAAGCCACAAGGGGGTGGGGGGGG	20
	121	AAACTCACACATGTCCACCTTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTTTTCC TTTGAGTGTGTACAGGTGGAACGGGTCGTGGACTTGAGGACCCCCCTGGCAGTCAAAAGG T H T C P P C P A P E L L G G P S V F L	
•	181	TCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCG AGAAGGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCCTGGGGACTCCAGTGTACGC F P P K P K D T L M I S R T P E V T C V	
:	241	TGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG ACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGC V V D V S H E D P E V K F N W Y V D G V	
:	301	TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTG ACCTCCACGTATTACGGTTCTGTTTCGGCGCCCCTCCTCGTCATGTTGTCGTGCATGGCAC E V H N A K T K P R E E Q Y N S T Y R V	
:	361	TGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA ACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGT V S V L T V L H Q D W L N G K E Y K C K	
2	421	AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC TCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCG V S N K A L P A P I E K T I S K A K G Q	
c	481	AGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACC TCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGG PREPQVYTLPPPSRDELTKNQ	
c	541	AGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG TCCAGTCGGACTGGACGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCC V S L T C L V K G F Y P S D I A V B W E	
c	601	AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG TCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGC S N G Q P E N N Y K T T P P V L D S D G	
c	661	GCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG CGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGC S F F L Y S K L T V D K S R W Q Q G - N V	
c	721	TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT AGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGA F S C S V M H E A L H N H Y T Q K S L S	
		BamHI	
	781	CCCTGTCTCCGGGTAAATAATGGATCC 807 GGGACAGAGGCCCATTTATTACCTAGG	

	·Xì	aI IIG. IJ	
	1	TCTAGATTTGAGTTTTAACTTTTAGAAGGAGGAATAAAATATGGGAGGTACTTACT	
b		AGATCTAAACTCAAAATTGAAAATCTTCCTCCTTATTTTATACCCTCCATGAATGA	
ь	61	CCACTTCGCCCACTGACTTGGGTTTGCAAACCGCAGGGTGGCGGCGGCGGCGGCGGCGGCGCCACAACGTTTGGGGTCCCACCGCCGCCGCCGCCGCCACAACGTTTGGCGTCCCACCGCCGCCGCCGCCGCCACAACGTTTGGCGTCCCACCGCCGCCGCCGCCGCCACAACGTTTGGCGTCCCACCGCCGCCGCCGCCACAACGTTTGGCGTCCCACCGCCGCCGCCGCCACAACGTTTGGCGTCCCACCGCCGCCGCCGCCACACACA	+ 120 C
b		TACCTATTCCTGTCATTTTGGCCCGCTGACCTGGGTATGTAAGCCACAAGGGGGTGGGC ATGGATAAGGACAGTAAAACCGGGCGACTGGACCCATACATTCGGTGTTCCCCCACCCC T Y S C H F G P L T W V C K P Q G G G	+ 180 C
b	181	AGGCGGGGGGACAAAACTCACACATGTCCACCTTGCCCAGCACCTGAACTCCTGGGGG TCCGCCCCCCTGTTTTGAGTGTGTACAGGTGGAACGGGTCGTGGACTTGAGGACCCCC G G G D K T H T C P P C P A P E L L G C	+ 240 CC
b	241	ACCGTCAGTTTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC TGGCAGTCAAAAGGAGAAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGC P S V P L F P P K P K D T L M I S R T I	+ 300 G
b	301	TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT ACTCCAGTGTACGCACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGA E V T C V V V D V S H E D P E V K F N V	+ 360 AC
ъ	361	GTACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA CATGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTCGTCATGT Y V D G V E V H N A K T K P R E E Q Y M	+ 420 TT
b	421	CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA GTCGTGCATGGCACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGT S T Y R V V S V L T V L H Q D W L N G F	+ 480 T
b	481	GGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCT CCTCATGTTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGA EYKCKVSNKALPAPIEKTIS	+ 540 NG
b	541	CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATC GTTTCGGTTTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTAC K A K G Q P R E P Q V Y T L P P 9 R D E	+ 600 T
b	601	GCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACACACTGGTCGTTCTTGGTCCAGTCGGACTGGACGGAC	+ 660 FA
b	661	CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCCCCCC	-+ 720 CA
b	721	GCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTCGCACCTGTTCTCGTCCACCGACCTGAGGCAGGAAGAAGGAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCACCTGTTCTCGTCCACCACCTGTTCTCGTCCACCACCTGTTCTCGTCCACCACCTGTTCTCGTCCACCACCACCACCACCACCACCACCACCACCACCACCA	·+ 780 AC
ь	781	GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA CGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGT QQGNVFSCSVMHEALHNHY	-+ 840 rg
b	841	BamHI	

FIG. 16 XbaI TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGACAAAACTCACACATGTC AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCTGTTTTGAGTGTGTACAG M D K T H T C P -C CACCTTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTTTTCCTCTTCCCCCCAAAAC 61 -----+ 120 GTGGAACGGTCGTGGACTTGAGGACCCCCCTGGCAGTCAAAAGGAGAAGGGGGGTTTTG c PCPAPELLGGPSVFLPPPKP-CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA GGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACT K D T L M I S R T P E V T C V V V D V S c GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATG CGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTAC HEDPEVKFNWYVDGVEVHNAc CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA 241 ----+--GGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCACACCAGTCGCAGGAGT c K T K P R B B Q Y N S T Y R V V S V L T -CCGTCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG GGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTC V L H Q D W L N G K E Y K C K V S N K A -CCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC GGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTG C L P A P I E K T I S K A K G Q P R E P Q -AGGTGTACACCCTGCCTCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT TCCACATGTGGGACGGAGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGA VYTLPPSRDELTKNQVSL-TCc GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC . . + + 540 481 ----CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCG c L V K G P Y P S D I A V E W E S N G Q P -CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT GCCTCTTGTTGATGTTCTGGTGCGGAGGCCACGACCTGAGGCTGCCGAGGAAGAAGGAGA ENNYKTTPPVLDSDGSFFLYc ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG TGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGC SKLTVDKSRWQQGNVFSCSVc TGATGCATGAGGCTCTGCAÇAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA 661+ 720 ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCAT c MHEALHNHYTQKSLSPGK-AAGGTGGAGGTGGCGGAGGTACTTACTCTTGCCACTTCGGCCCACTGACTTGGGTTT 721 -----+ 780 TTCCACCTCCACCACCGCCTCCATGAATGAGAACGGTGAAGCCGGGTGACTGAACCCAAA G G G G G G T Y S C H F G P L T c GCAAACCGCAGGGTGGCGGCGGCGGCGGCGGTGGTACCTATTCCTGTCATTTTGGCCCGC CGTTTGGCGTCCCACCGCCGCCGCCGCCACCATGGATAAGGACAGTAAAACCGGGCG KPQGGGGGGGTYSCHFGPLc BamHI TGACCTGGGTATGTAAGCCACAAGGGGGTTAATCTCGAGGATCC ACTGGACCCATACATTCGGTGTTCCCCCAATTAGAGCTCCTAGG T W V C K P Q G G * C

FIG. 17A

[<u>Aat</u>II sticky end] (position #4358 in pAMG21)

- 5' GCGTAACGTATGCATGGTCTCC-
- 3' TGCACGCATTGCATACGTACCAGAGG-
- -CCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT--GGTACGCTCTCATCCCTTGACGGTCCGTAGTTTATTTTGCTTTCCGAGTCAGCTTTCTGA-
- GGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGC CCCGGAAAGCAAAATAGACAACAAACAGCCACTTGCGAGAGGACTCATCCTGTTTAGGCG -
- CGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGC GCCCTCGCCTAAACTTGCAACGCTTCGTTGCCGGGCCTCCCACCGCCCGTCCTGCGGGCG-
- -CATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTTGCGT-GTATTTGACGGTCCGTAGTTTAATTCGTCTTCCGGTAGGACTGCCTACCGGAAAAACGCA-

<u>Aat</u>II

- TTCTACAAACTCTTTTGTTTATTTTTCTAAATACATTCAAATATGGACGTCGTACTTAAC AAGATGTTTGAGAAAAAAAAAAAAAAAAAAAATTTTTTTATGTAAGTTTATACCTGCAGCATGAATTG -
- TTTTAAAGTATGGGCAATCAATTGCTCCTGTTAAAATTGCTTTAGAAATACTTTGGCAGC AAAATTTCATACCGGTTAGTTAACGAGGACAATTTTAACGAAATCTTTATGAAACCGTCG -
- -GGTTTGTTGTATTGAGTTTCATTTGCGCATTGGTTAAATGGAAAGTGACCGTGCGCTTAC--CCAAACAACATAACTCAAAGTAAACGCGTAACCAATTTACCTTTCACTGGCACGCGAATG-
- -TACAGCCTAATATTTTTGAAATATCCCAAGAGCTTTTTCCTTCGCATGCCCACGCTAAAC-ATGTCGGATTATAAAAACTTTATAGGGTTCTCGAAAAAGGAAGCGTACGGGTGCGATTTG-
- GATAATTATCAACTAGAGAAGGAACAATTAATGGTATGTTCATACACGCATGTAAAAATA CTATTAATAGTTGATCTCTTCCTTGTTAATTACCATACAAGTATGTGCGTACATTTTTAT -
- AACTATCTATATAGTTGTCTTTCTCTGAATGTGCAAAACTAAGCATTCCGAAGCCATTAT TTGATAGATATATCAACAGAAAGAGACTTACACGTTTTGATTCGTAAGGCTTCGGTAATA -
- TAGCAGTATGAATAGGGAAACTAAACCCAGTGATAAGACCTGATGATTTCGCTTCTTTAA ATCGTCATACTTATCCCTTTGATTTGGGTCACTATTCTGGACTACTAAAGCGAAGAAATT -
- TTACATTTGGAGATTTTTTATTTACAGCATTGTTTTCAAATATATTCCAATTAATCGGTG AATGTAAACCTCTAAAAAAATAAATGTCGTAACAAAAGTTTATATAAGGTTAATTAGCCAC -
- AATGATTGGAGTTAGAATAATCTACTATAGGATCATATTTTATTAAATTAGCGTCATCAT TTACTAACCTCAATCTTATTAGATGATGATATCCTAGTATAAAATAATTTAATCGCAGTAGTA -
- AATATTGCCTCCATTTTTTAGGGTAATTATCCAGAATTGAAATATCAGATTTAACCATAG TTATAACGGAGGTAAAAAATCCCATTAATAGGTCTTAACTTTATAGTCTAAAATTGGTATC -
- AATGAGGATAAATGATCGCGAGTAAATAATATTCACAATGTACCATTTTAGTCATATCAG TTACTCCTATTTACTAGCGCTCATTTATTATAAGTGTTACATGGTAAAATCAGTATAGTC -

- GCAAGTTTTGCGTGTTATATATCATTAAAACGGTAATAGATTGACATTTGATTCTAATAA - CGTTCAAAACGCACAATATATAGTAATTTTGCCATTATCTAACTGTAAACTAAGATTATT -

FIG. 17B

- ATTGGATTTTTGTCACACTATTATATCGCTTGAAATACAATTGTTTAACATAAGTACCTG-
- TAACCTAAAAACAGTGTGATAATATAGCGAACTTTATGTTAACAAATTGTATTCATGGAC -
- TAGGATCGTACAGGTTTACGCAAGAAAATGGTTTGTTATAGTCGATTAATCGATTTGATT -
- ATCCTAGCATGTCCAAATGCGTTCTTTTACCAAACAATATCAGCTAAATTAGCTAAACTAA -
- CTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGTTAACGCGTTGGAATTCGA GATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGCT -

SacII

- -GCTCACTAGTGTCGACCTGCAGGGTACCATGGAAGCTTACTCGAGGATCCGCGGAAAGAA-
- CGAGTGATCACAGCTGGACGTCCCATGGTACCTTCGAATGAGCTCCTAGGCGCCTTTCTT -
- GAAGAAGAAGAAGAAGCCCGAAAGGAAGCTGAGTTGGCTGCCCACCGCTGAGCAATA -
- CTTCTTCTTCTTCGGGCTTTCCTTCGACTCAACCGACGGTGGCGACTCGTTAT -
- ACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTTGCTGAAAGGAGG-
- TGATCGTATTGGGGAACCCCGGAGATTTGCCCAGAACTCCCCAAAAAACGACTTTCCTCC -
- -AACCGCTCTTCACGCTCTTCACGC 3'

[SacII sticky end]

-TTGGCGAGAAGTGCGAGAAGTG 5'

(position #5904 in pAMG21)

FIG.18A - 1

FIG.18A - 2

SUBSTITUTE SHEET (RULE 26)

FIG.18A - 3

FIG.18B - 1

SUBSTITUTE SHEET (RULE 26)

FIG.18B - 2

FIG.18B - 3

SUBSTITUTE SHEET (RULE 26)

	NdeI								Γ	- '	J	•	13	<i>)</i>	`							
	1							+ -			+				. +			-+-				60
	•		TA	CCT	GTT?	rtg/	AGT	GTG1	FACA	GGT	GGA	ACA	GGT	CGA	AGGC	CTI	'GAC			_	rGGC	_
									С			С					_	F .	_		P	
				_				+-			· • • •				•+- •						rgag + ACTC	120
		AGʻI												L		I				P		-
		S		-	L			P		-		D	T	_		_	_		_	_	_	
	121										1		. .								STAC + CATG	180
																				W		-
ì		V	T	_	V	•	•	_	v											•		
	181										4										CAGC	240
	101	CA	CCT	'GCC	GCA	CCT	CCA	CGT.	ATT	ACG	GTT(CTG	rtt(CGG	CGC	CCT	CCT	CGT	CAT	GTT	GTCG	
ı		v	D	G	V	E	V	Н	N	A	K	T	K	P	R	E	E	Q	Y	N	3	-
		AC	GTA	CCG	TGT	GGT	CAG	CGT	CCT	CAC	CGT	CCT	GCA	CCA	GGA	CTG	GCT	GAA	TGG	CAA	GGAG	300
	241											+			-+-						CCTC	300
a									L									N			E	-
•			a.,	· cmc	~~	CCT	ירייר	יראא	CAA	AGC	CCT	CCC.	AGC	ccc	CAT	CGA	GAA	AAC	CAT	CTC	CAAA	240
	301											+			-+-						GTTT	300
									K						I	E	к	т	I	s	ĸ	-
а							S								_	_		ccc	cor	מביתו	·ርረሮሞር	
	361																	•				
	301	CG	GT.	rtco	CCG1	rcg	GGG	CTCI	rtgg	TGT	CCA	CAT									CGAC	ı
a		A	K		_		R	E	P	Q	V									Е		•
		AC	CA	AGA	ACC!	AGG'	TCAC	GCC1	rgac	CTG	CCT	GGT	CAA	AGG	CT1	CTA	TCC	CAC	CG	ACAT	CGCC	: - 480
	421							1	L												AGCGG	
																					A	
a																						
	481								4								_		•		rgct(
		CZ	\CC	TCA	CCC'	TCT	CGT"	TAC	CCG	rcgo	3CC7	rcti	'GT'	rga:	rgr.	rcre	Tiele	افاتاق	JAG	المال	ACGA	•
a																					L	
		G	ACT	CCG	ACG	GCT	CCT	TCT	TCC	rcti	ACA(GCAI	AGC'	rca	CCG'	rgg.	ACA	AGA	GCA +	GGT	GGCA	3 + 600
	541																				CCGT	
_		ח	c		. c	. 5	F	F	L	Y	s	ĸ	L	т	v	D	K	3	R	w	Q	-

FIG. 19B

23/37

601				_ 4 -	CTT GAA		+				+			-+-			+			CGTC	660
	Q	G	N	v	F	ន	С	s	v	M	H	E	A	L	н	N	н	Y	Т	Q	-
661				-+-			+				+			-+-			+			CTAC + GATG	120
	ĸ	S	L	s	L	S	P	G	K	G	G	G	G	G	D	F	L	P	Н	Y	-
721				-+-	CTC1 GAGA		· +	·	· ·	GT	+	GAT		757	,						
	15		_		۲.	c	u	9	p	*											

FIG. 20A

		ger					7030	7 m 7 /	נממי		ጉ ልሮ(-ጥር!	тст	GGG	TCA	CCG'	TCC	GGG'	TGG	AGGC		
1																					60	
	GT.	ATA	CCT													R	P	G	G	TCCG G		
			D		L												-	•	_	_		
61																				ACCG + TGGC		
01	CC	ACC	CCT	GTT	TTG	AGT	GTG'	TAC.	AGG'	TGG.	MMC	GGG	1100	,,,,,,	me I	10						
			D						P		_			P	_	_	L	G	•	P		
121																				TGAG		ı
121	AC	TCA	AAA	GGA	GAA	GGG	GGG	TTT	TGG	GTT	CCT	GTC	3GG2	AGT	ACT	\GAG				ACTO		
	s	•	F	L	F	P	$\mathbf{P}_{_{\mathrm{I}}}$								I			_		E		
	G7	rca(CATO	CGT	GGT	GGT	GGA	CGT	'GAC	CCA	CGA	AG	ACC	CTG.	AGG	rca/	\GT'	rca/	ACT(GTAC	: - 24()
181	C	AGT(GTAC	GCA	CCA	CCA	CCI	GC/	CTC	:GG1	GCI	TC:	rgg	GAC	TCC	AGT'	rca.	AGT"	rga(CCATO	3	
	v	Т	С	V	v	v	D	v	S	Н	E	D	P	E	V	K	F	N	W	Y	-	
	G'	TGG.	ACG(GCG1	rgg <i>i</i>	\GG1	rgc <i>i</i>	\TAI	\TG(CAZ	\GA(CAA	AGC	CGC	GGG.	AGG	AGC	AGT.	ACA	ACAG	2 + 30	0
241	GTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC 241 CACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCCTCCTCGTCATGTTGTCG V D G V E V H N A K T K P R E E Q Y N S															•						
	V D G V E V H N A K T K P R E E Q Y N S																					
	ACGTACCGTGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG 360															٥						
303	ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG 301 TGCATGGCACACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTC														v							
	TGCATGGCACACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTC T Y R V V S V L T V L H Q D W L N G K E																					
										~~~	mcc	CAC	ccc	:CCI	ATC	AGA	AA?	CCA	TCT	CCAA	A + 42	'n
36	1 :		AGT	+	 ጥርር	AGA	GGT	+ TGT	TTC	GGG	-+- AGG	GTO	GG	GGG	rag(	TCI	TT	rggi	AGA	GGTT	T	
			( C							L	_		<b>4</b> 1							<b>K</b> ,		
					. v		יכאכ			'AGG	TGI	'AC	ACC	CTG	ccc	CA1	rcco	CGG	GAT(	GAGCT	rg	20
42	1	3CC/	AAAC	+			 	+	:cጥር	TCC	-+-	TG'	 TGG	GAC	+ GGG(	GGT	AGG	GCC	TA(	CTCGA	AC	30
٠	(	ZGG'	rrrc		TCG		, ,		) (		7 \	, ,	Т	L	P	P :	<b>s</b> :	R I	D 1	E L	-	
														~~~	mmc	m x m	ccc	ACC	CAC	ATCG	CC	
4.8	 31	ACC.	AAG/	AAC	CAGG	TC	IGC	- + - ·			+				+	 ልጥል	 GGG	±+- TCG	 CTG	TAGC	++. 5: GG	40
		TGG	TTC'	rtg(GTCC	CAG	rcgo	JAC.	لفاقا	ACG	SMC	CAG										
																100	BCC	CCT	CCC	I A	TG	
5.4	4 1	GTG	GAG	TGG	GAG	AGC	AAT(GGG -+-	CAG	CCG	GAG.	AAC	AAU	TAC	. +		 	-+•	ccc	GTGC CACG	-+ 6	00
٠.		CAC	CTC	ACC	CTC'	TCG	T'I'A		GIC	GGC	CIC	110										
		V	E	W												T	ľ		F	V L	•	
						SUI	BST	TTU	TE	SHE	ET	(RI	JLE	26))							

FIG. 20B

601				-+-		-	+				+			-+-			+			GCAG + CGTC	660
	D	s	D	G	s	F	F	L	Y	s	K	L	Т	v	D	ĸ	s	R	W	Q	•
661				-+-			+				+			-+-			+			GCAG + CGTC	720
	Q	G	N	V	F	s	С	s	V	M	Н	E	A	L	Н	N	H	Y	T	Q	-
721				'CTC -+- GAG			+			ATA	+	GAT	· ·	- + -	76	3 1					·

FIG. 21A

		eI																			
	4		ATGG				-+-			+				+			-+-			+	60
	1	GTA'	racc	TGTT	TTG	AGTO	TGT	'ACA	GGT	GGA	ACA	GGT	CGA	GGC	CTT	GAG	GAC	CCC	CCT	GGC	
a		_	M D		T	н	Ť	•	-	-	_				_	_	_	•	_	P	-
	61		GTCT			- -				+				+			-+-				120
	61	AGT	CAGA	AGGA	GAA	GGG	GGT	TTT	GGG	TTC	CTG	TGG	GAG	TAC	TAG	AGG	GCC	TGG	GGA	CTC	
a		_	V F		F	P	P		P		_	T						T	_		-
			ACAT							+	. -			+					-	•	180
	121	CAG	TGTA	CGCA	CCA	CCA	CTC	GCAC	TCG	GTC	CTI	CTG	GGA	CTC	CAG	TTC	AAC	TTC	ACC	ATG	
a		v	T C	v	v	v	D	V	S	Н	E	D	P	E	V	K	F	N	W	Y	•
		GTG	GACG	GCG1	rgga	GGT	GCA'	raat	GCC	CAAC	BACA	AAG	CCG	CGG	GAG	GAC	CAC	STAC	CAAC	AGC	240
	181	CAC	CTGC	CGC?	ACCT	CCA	CGT	ATT?	CGC	TTC	TGT	TTC	GGC	GCC	CTC	CTC	GT	CATO	STT	TCG	
a		v	D G	v	E	v	Н	N ·	A	K	T	ĸ	P	R	E	E	Q	Y	N	·S	-
_		ACG	TACC	GTG	rggt	CAG	CGT	CCT	CAC	CGT	ĊT	CAC	CAG	GAC	TGG	CT(GAA'	rgg(CAAC	GAG	300
	241		ATG				+							T			•				300
a			Y 1			s	v		T	v	_	н	Q	D	W	L	N	G	ĸ	E	-
a		-		מכים	እሮርባ	CTC	CAA	CAA	AGC	CCT	ccci	AGC	ccc	ATC	GAC	SAA	AAC	CAT	CTC	CAAA	260
	301		TTC								+							-		•	360
_		Y			v	_	N	К	A			A					T	_		K	-
a		_			•	_	AGA	ACC.	ACA	GGT	GTA	CAC	CTC	3CC	ccci	ATC	CCG	GGA	TGA	GCTG	
	361																			CGAC	420
					_	R	Е	P				T					R	D	E	L	-
a		A			אריכיו אריכיו	ኮሮ እር	ירריז	ፕሬልሮ	- ሮሞG	ССТ	GGT	CAA	AGG	CTT	CTA'	TCC	CAG	CGA	CAT	CGCC	
	421						4				+					-				GCGG	480
																				A	
a											C 3 3	CNA	ረጥ እ	~ A A	GAC	CAC	:GCC	TCC	CGT	'GCTG	;
	481																				
		CA	CCTC	ACCO	TCT	CGT	raco	CCGI	CGG	CC1	CTI	GTT	GAT	GI I	<u></u>	m	n	ם	v	CGAC	-
a		V	E	W E	E S	N	G	Q	P	E	N	N	Υ	K	T		r Cr/	r rch(ነርነጥር	L	<u>.</u>
	541																			GCAC	
	J3.	CT	'GAGC	CTG	CCGA	GGA	AGA.	AGG!	\GAT	rgro	CGT"	CGA	GTG	GCA	ICC I	GI.	LC1	-G1\			
a		D	s	D 0											ט	ĸ	3	ĸ	**	Q	
					;	SUB	STI	TUT	E S	HEE	T (I	RUL	E 26	5)							

FIG. 21B

	GI										н						н		ጥ	CGTC	-
	Q	G	N	V	F	S	С	S	V	M	н	Ŀ	A	נו	п	14	**	•	•	*	
	AA	GAG	CCT	CTC	сст	GTC	TCC	GGG	TAA	AGG	TGG	AGG	TGG	TGG	TTI	CGA	ATG	GAC	ccc	GGGT	7:
561																				CCCA	
	ĸ	s	L	s	L	s	P	G	K	G	G	G	G	G	F	E	W	T	P	G	•
										Ва	ımH I										
											- 1										
			GC!											7000	' ' ' ' '						

FIG. 22A

		1	leI																			
	1		ATC	TTC	GA/	ATG	SAC	CCC	GGGT	rta(CTG	GCA(GCC	STAC	CGC1	CTC	CCC	GCT(GG1	rgg	AGGC	60
		GTA	TAC	AAC																	rccg	
			M	F	E	W	T	P	G	Y	W	Q	P	Y	A	L	P	L	G	G	G	-
	<i>c</i> 1	GGT	'GGG	GAC	AAZ	AAC	rcac	CAC	ATG:	rcc	ACC'	rtg(CCC	AGC	ACC'	rgaz	ACTO	CTC	GGG	GG/	ACCG	120
	91	CCA	CCC	CTC	TT	rtg/	AGT	GTG'	rac	AGG'	TGG	AAC	GGG:	rcg:	rggi	ACTI	rgac	GGA	ccc	CCT	rggc	
		G	G	D	K	T	н	T	С	P	P	С	P	A	P	E	L	L	G	G	P	-
	121	TCA	GTT	TTC	CTC	CTT(ccc	CCC	AAA	ACC	CAA	GGA(CAC	CCT	CAT	GATO	CTC	CCG	GAC	ccc	rgag	180
	121	AGI	CA	AAA	GA(GAA(GGG	GGG'	PPT	rgg	GTT	CCT	GTG	GGA (GTA(CTAC	GAG(GGC(CTG	GGJ	ACTC	
		s	V	F	L	F	P	P	Ķ	P	K	D	T	L	M	I	S	R	T	P	E	-
	181	GTO	CACA	ATG	CGT	GGT(GGT	GĠA	CGT	GAG	CCA	CGA.	AGA	CCC'	TGA(GGT(CAA	GTT(+	CAA	CTG(GTAC	240
	181	CAC	GTG1	rac	GCA	CCA	CCA	CCT	GCA	CTC	GGT	GCT	TCT	GGG.	ACT	CCA	GTT(CAA	GTT(GAC	CATG	
		v	T	С	V	v	V	D	v	s	H	E	D	P	E	V	K	F	N	W	Y	•
	241	GT	GGA(CGG	CGT	GGA	GGT	GCA	TAA	TGC	CAA	GAC	AAA	GCC	GCG	GGA(GGA	GCA	GTA	CAA	CAGC	300
	241	CAC	СТС	GCC	GCA	CCT	CCA	CGT	ATT	ACG	GTT	CTG	TTT	CGG	CGC	CCT	CCT	CGT	CAT	GTT(GTCG	300
ı		V	D	G	v	E	v	н	N	A	ĸ	T	K	P	R	E	E	Q	Y	N	S	•
	201		GTA	CCG'	rgt	GGT	CAG	CGT	CCT	CAC	CGT	CCT	GCA	CCA	GGA	CTG	GCT	GAA	TGG	CAA	GGAG	360
	301	TG	CAT	GGC	ACA	CCA	GTC	GCA	GGA	GTG	GCA	GGA	CGT	GGT	CCT	GAC	CGA	CTT	ACC	GTT	CCTC	
ı		T .	Y	R	v	V	s	V	L	T	V	L	H	Q	D	W	L	N	Ğ	K	E	-
	261	TA	CAA	GTG	CAA	GGT	CTC	CAA	CAA	AGC	CCT	ccc	AGC	ccc	CAT	CGA	GAA	AAC	CAT	CTC	CAAA	420
	301	AT	GTT(CAC	GTT	CCA	GAG	GTT	GTT	TCG	GGA	.GGG	TCG	GGG	GTA	GĊT	CTT	TTG	GTA	GAG	GTTT	
ı																E				_	K	•
	421	GC	CAA	AGG	GCA	GCC	CCG	AGA	ACC	ACA	GGT	GTA +	CAC	CCT	GCC -+-	CCC	ATC	CCG	GGA	TGA	GCTG	480
	421	CG	GTT	TCC	CGT	CGG	GGC	TCT	TGG	TGT	CCA	CAT	GTG	GGA	.CGG	GGG	TAG	GGC	CCT	ACT	CGAC	
1		A	K	G	Q	P	R	E	P	Q	V	Y	T	L	P	P	S	R	D	E	L	-
		AC	CAA	GAA	CCA	GGT	CAG	CCI	GAC	CTG	CCI	GGT	CAA	AGG	CTT	CTA	TCC	CAG	CGA	CAT	CGCC	540
	481	ТĞ	GTT	CTT	GGT	CCA	GTC	:GGA	CTC	GAC	GGA	CCA	GTT	TCC	GAA	GAT	AGG	GTC	GCT	GTA	.GCGG	•.
a		T	K	N	Q	v	S	L	T	С	L	V	K	G	F	¥	P	S	D	I	A	•
		GT	GGA	.GTG	GGA	GAG	CAP	TGC	GCA	GCC	:GG	GA/	CA	CTA	CAA	GAC	CAC	GCC	TCC	CGI	GCTG	600
	541	CA	CCT	CAC	CCT	CTC	GTT	TACC	CGI	CGC	CC1	CTI	GTI	'GA'I	GTI	CTC	GTG	CGC	AGG	GCA	CGAC	
					_	_		_	_	_			N.T	v	v	т	Т	P	P	v	T.	-

FIG. 22B

601																				CGTC	
	D	s	D	G	s	F	F	L	Y	s	K	L	T	v	D	K	S	R	W	Q	-
661				-4-			+				+			-+-			+	·		GCAG + CGTC	7
	Q	G	N	v	F	s	С	s	V	M	H	E	A	L	Н	N	Н	Y	T	Q	
											mHI 										
721			GGA	-+-			+				+			757	,						
	v		Ť.	c		c	D	G	ĸ	*											

FIG. 23A

	541	CT	GAG	GCT(GCC	GAG	GAA	GAA	GGA	GAT	GTC	GTT	CGA	GTG(GCA	CCT	GTT	CTC	GTC	CAC	CGTC	
	541	and a			-+- 		CAR	2 A A (CCA	ርልጥር	<u> </u>	ידידים	CGA	GTG	GCA	CCT	GTT	CTC	GTC	CAC	CGTC	
		V E W E S N G Q P E N N Y K T T P P V L GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG CTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTC														600						
		CN	ጉሙር ነ	CCN	ccc	יייירי	ሮጥጥና	ابلىك	_ር ርጥ	ሮሞልና	CAG	CAA	GCT	CAC	CGT	GGA(CAA	GAG	CAG	GTG(CAG	
																					CGAC L	-
	481				- +			+-				+			+			+	<u></u>		CTG	540
																					A	•
	421	TGC	TT(GTC	CAC	STC	GGAC	CTG	GAC	GA(CCA	GTT:	rcco	SAA(SAT	AGGC	TC(GCT(STAC	CGG	
		ACC	CAÁ	GAAC	CAG	GT	CAGO	СТС	SACO	CTGC	CTC	GT(CAA	AGGG	TTC	CTAT	rcco	CAG	CGAC	CATO	GCC	480
																						-
	361	Y K C K V S N K A L P A P I E K T I S K GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTC CGGTTTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACTCGAC A K G Q P R E P Q V Y T L P P S R D E L															+	420				
		-		-		-	_									•				_		•
		ATG	TTC	CACC	TTC	CAC	SAGO	TTC	TT	CGC	GAC	GG.	rcgo	GGG	TAC	CTC	TTT	TG(STAC	AGG	TTT	
	301	ATGTTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTT Y K C K V S N K A L P A P I E K T I S K GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTC															+	360				
		-	_		•	•	-	•	_					-	_		_				_	•
•	241	TGC	ATC	GC1	CAC	CAC	STC	CAC	GAG	TGC	CAC	GA	CGTC	GTC	CTC	ACC	GAC	TT	CCC	TTC	CTC	300
	•	ACG	TAC	CCG1	GTG	GTC	CAGO	GTC	стс	CACC	GTO	CTC	GCAC	CAG	GAC	TGG	CTC	AAT	rGGC	:AAG	GAG	200
	•			G				н	N		K		K	P.		E	E		Y	N	s	-
	181		. .		+			-+-	. -		1				+			-+-			TCG	240
				C								-	_	_	_			-			AGC	
												E E	D D	eGG <i>e</i> P		V		F			ATG Y	_
	121				+		. 	-+-	. -	· • • •	1				+			-+-			TAC	180
				F																		•
	61	AGT	CA	AAAC	GAG																CTC	120
																					GAG	
			M	D	К		Н						. P				L					-
			ጥልር	CTO	14441 4 4	 מבוידיי							GGT									60
	1		AIC	GAC	·AAA	MC I																~~

FIG. 23B

	Q	G	N	v	F	s	С	s	v	M	Н	E	A	L	Н	N	Н	Y	T	Q
661				-+-			+			· · -	+			-+-			+			TGAC + ACTG
	ĸ	s	L	s	L	s	P	G	K	G	G	G	G	G		E amH		N	С	D
721		CCA GGT	-	-+-			+				+			-+-			+		77	3

FIG. 24A

		D	т	A	v	E	w	E	g	N	G	0	P	Ε	N	N	Y	ĸ	T	T	
541				-+-			+				+			-+-			+			GTGC	600
	AG	CGA	CAT	CGC	CGT	GGA	.GTG	GGA	GAG	CAA	TGG	GCA	GCC	GGA	GAA	CAA	CTA	CAA	GAC	CACG	
																				P	-
481				-+-			+				+			-+-			+		-	AGGG	54 0
																				s rccc	-
421							TCC	CGT	CGG	GGC	TCT'	TGGʻ	TGT							TAGG	
422	AC	CAT	CTC	CAA	AGC	CAA		GCA						GGT	GTA	CAC	CCT	GCC	CCC	ATCC	480
	n N	G G	K		CAT Y								A				P	I	E	K	
361				-+-			+				+			-+-			+			CTTT	420
	-	Y				Y Car													•	L GAAA	•
												,								CGAC	
301				-+-			+				+		-	-+-			+			GCTG +	360
	F	N	W	Y	V	D	G	V .	E	٧	Н	N	A	K	T	K	P	R	E	Е	-
		STT(GAC				GCC	GCA	CCT	CCA	CGT	ATT.	ACG	GTT(CTG	TTT(CGG	CGC		CCTC	
241		CAA	CTG			GGA													GGA(GGAG	300
	R	T	P	E	v	T	С	v	v	v	D	v	s	н	E	D	P	E	v	ĸ	-
181																				GTTC	240
																				CAAG	
						v													r	s	
121				-+-			+				+			-+-			+			GAGG	180
						G ∆ĊT														CTCC	•
																				rgag	
61			- 	-+-	•		+				+			-+-			+			ACTC	120
		M	V	E	P	N	С	D	I	••	V				W	E	С	F	E	R	•
	GT	ATA	CCA	ACT	TGG	CTT	GAC	ACT	GTA	GGT.	ACA	ATA	CAC	CCT	TAC	CCT	TAC.	AAA	ACT	rgca	

FIG. 24B

	601	••			-+-			+				+		·	-+-			4			GTTC	660
a		P	P	v	L	D	S	D	G	s	F	F	L	Y	s	K	·L	T	v	D	K	•
	661				-+-			+	·			+			-+-	· ·		+			CAAC GTTG	720
a		s	R	W	Q	Q	G	N	v	F	S	С	s	V	M	Н	E	A	L	Н	N	• .
	721	CA	СТА	CAC	GCA	GAA	GAG	CCT	CTC	CCT	GTC	TCC +	:GGG	TAA	ATA	AC1	Bami CG2	 \GG#	ATCC	:	3	
	721								GAG												•	
а		н	Y	т	0	K	s	L	s	L	S	P	G	K	*							

FIG. 25A

																				ACCG	
1																				rggc	60
		M	D	K	T	Н	T	Ċ	P	P	C	P	A	P	E	L	L	G	G	P	•
61				-+-			+				+			-+-			+			rgag + actc	120
	s	v	F	L	F	P	P	ĸ	P	ĸ	D	T	L	M	I	s	R	T	P	E	
121				-+-			+				+			-+-			+			GTAC + CATG	180
	v	T	С	v	V	v	D	V	s	H	E	D	P	E	V	K	F	N	W	Y	-
.81				-+-			+		 -		+			-+-			+			CAGC	240
									ACG A		CTG T		CGG(CCT(CGT O	CAT(Y	GTT(N	STCG S	_
41				-+-	GGT		+	CCT	CAC	CGT		GCA	CCA	GGA(CTG	GCT	- GAA' +	TGG	CAA	GGAG	300
					CCA V			.GGA L												ectc E	-
301				-+-			+				+			-+-			+			CAAA + GTTT	360
	Y	ĸ	С	K	v	s	N	ĸ	A	L	P	A	P	ı	E	K	T	I	s	ĸ	-
361				-+-			+				+			-+-			+			GCTG + CGAC	420
	A	K	G	Q	P	R	E	P	Q	V	Y	T	L	P	P	S	R	D	E	L	-
421				-+-			+	· • • •			+			-+-			+	·		CGCC + GCGG	480
	T	ĸ	N	Q	v	s	L	T	С	L	v	K	G	F	Y	P	s	D	I	A	-
481				-+-			+	. .		·	+			-+-		e	, +			GCTG + CGAC	5.4
																				L	
541				-+-			+				+			-+-			+			GCAG + CGTC	60
												L									•

FIG. 25B

601				-+-			+				+			-+-			+			CGTC	•
	Q	G	N	v	F	s	С	s	v	М	Н	E	A	L	H	N	н	Y	T	Q	
661				-+-			+	. .			+			-+-			+			GGGT + CCCA	
	ĸ	s	L	s	L	s	P	G	K	G	G	G	G	G	С	т	T	н	W	G	
721			CC1	-+-	СТА		GAT				748	.									

FIG. 26A

						St	JBS	TIT	JTE	SH	EE	r (R	ULE	26	i)							
a		I	A	V	E	W	E	S	N	G	Q	Þ	E	N	N	Y	K	Т	T	P	P	-
		TA	GCG	GCA	CCT	CAC	CCT	CTC	GTT	ACC	CGT	CGG	CCT	CTI	'GT'I	'GA'1	'GT'1	CTG	GTC	CGG	AGGG	
	541				_ 4 _			+				+			-+-						TCCC	600
l																					D Trace	-
	-01	CT	CGA	CTG	GTT	CTT	GGT	CCA	GTC	GGA	CTG	GAC	GGA	CCA	GTT	TCC	.GAA	GAT	AGG	GTC	GCTG	
	483							+				+			-+-			+			CGAC	540
ı																					D	•
	421	AG	GTT	TCG	GTT'	TCC	CGT	CGG	GGC'	TCT	TGG	TGT	CCA	CAT	GTG	GGA	CGG	GGG	TAG	GGC	CCTA	
	403							4.				+			-+-			+			GGAT	480
ı		ĸ	Е	Y	к	С	ĸ	v	s	N	K.	A	L	P	A	P	I	E	K	T	I	-
	361				-+-			+				+			-+-			+			GTAG	420
•		•	GGA(- ርጥል(CAA	GTG	ZAA(GGT	CTC	CAA	CAA	AGC	CCT	CCC.	AGC	ccc	CAT	CGA	GAA	AAC	CATC	400
		n.	S		_ATC					v				L			D			N		-
	301				-+-	- .	 .	+				+			-+-			+			ACCG	360
				v										T CCT	K CCA	P CCA	R GGA:	E CTG	E GCT0	Q GAA'	Y rggc	-
	a. 7 L	ACC	CAT	GCA(CTC	GCC	CAC	CT	CA	CGT	ATT!	ACG	GTT(CTG'	TTT(CGG	CGC	CCT	CCT	CGT	CATG	
	241				-+-			+-				+			-+-			+			GTAC	300
		P	E	V	T	С	v	V	v	D	v	S	н	E	D	P	E	V	K	F	N	-
	181	GGI	ACTO	CAC	GTGT	raco	CAC	CAC	CA	CT	3CA(CTC	GT(GCT'	CT	GGG	ACT	CCA	GTŤ	CAA	TTG	240
		CCI	rgac	GTC	CAC	ATGO	GTG	GT	GT	GAC	CGT	GAG	CCAC	CGAZ	AGA	ccc'	TGA	GGT	CAA	GTT(CAAC	240
				S																		-
	121				+			-+-	. -		4	 -	- - -		-+			+			TGG	180
		G	•	G erca	_	_		T TTC	H :CCC	-	_						P CATO		L	_	G BACC	•
		CCI																			ccc	_
	61				+	. 		-+-	·	. -					+	· ·		+ -	• • • •			120
		-	M	С	T	T	Н	W	G	F _.	T	L	С	G	G	G	G	G	D	K	G	-
	. 1	GTA	TAC	CACC	TGC	TGG	GTG	ACC	CCA	AAC	TGC	GAC	CACC	CCA	CCI	rcc	GCC1	ACC	CTC	TTT	CCA	60
		l Cat	PATG	TGC	CACC	ACC	CAC	TGC	GGI	TTC	ACC	СТС	TGC	GGT	rgga	AGGG	CGG1	rggo	GAC	CAAA	GGT	60
	Nd	еI																				

FIG. 26B

601				-+-			4				+			-+-			+			GTC	66
	v	L	D	S	D	G	S	F	F	L	Y	s	K	L	T	v	D	К	s	R	•
661				-+-			+				+			-+-			+			CTA(- 72
	W	Q	Q	G	N	V	·F	S	C	S	V	M	Н	E	A	L	Н	N	Н	Y	· •
												Ва	ımHI								
721				-+-			4	CAG			+			-+-		763	I				
	m	^	T.F		r	c	T	c	n	c	v										

SEQUENCE LISTING

<110> LIU, CHUAN-FA
FEIGE, ULRICH
CHEETHAM, JANET
BOONE, THOMAS CHARLES

<120> MODIFIED PEPTIDES AS THERAPEUTIC AGENTS

<130> A-527

<140> NOT YET RECEIVED

<141> 1999-10-22

<150> 60/105,371

<151> 1998-10-23

<160> 1133

<170> PatentIn Ver. 2.1

<210> 1

<211> 684

<212> DNA

<213> HUMAN

<220>

<221> CDS

<222> (1)..(684)

<400> 1

atg gac aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc ctg 48

Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu

1 5 10 15

ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc 96
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
20 25 30

atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg agc

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser

40

45

Cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag 192
His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
50 ... 55 60

gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc acg 240

Val 65	His	Asn	Ala	Lys	Thr 70	Lys	Pro	Arg	Glu	Glu 75	Gln	Tyr	Asn	Ser	Thr 80	
	-		-		gtc Val											288
					tgc Cys											336
					tcc Ser											384
					cca Pro											432
					gtc Val 150											480
					ggg Gly											528
					gac Asp											576
gtg Val	gac Asp	aag Lys 195	agc Ser	agg Arg	tgg Trp	cag Gln	cag Gln 200	ggg Gly	aac Asn	gtc Val	ttc Phe	tca Ser 205	tgc Cys	tcc Ser	gtg Val	624
					cac His											672
	ccg Pro															684
<21	0> 2 1> 2 2> P	28 .						-							· -	
	3> H															

<4	00	/د	-

Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 1 5 10 15

- Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30
- Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 35 40 45
- His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60
- Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 65 70 75 80
- Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95
- Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110
- Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
 115 120 125
- Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 . 135 140
- Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160
- Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175
- Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190
- Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205
- Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys
225

ż

```
<210> 3
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEGYLATED
      PEPTIDE
<400> 3
Gly Gly Gly Gle Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala
                                    10
Arg Ala
<210> 4
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEGYLATED
      PEPTIDE
Gly Gly Gly Gle Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala
                  5
                                     10
  1
Arg Ala
<210> 5
<211> 794
<212> DNA
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence:Fc-TMP
 <220>
 <221> CDS
 <222> (39)..(779)
```

<400	> 5															
tcta	gatt	tg t	ttta	acta	a tt	aaag	gago	aat	aaca	at at	g ga	ac aa	aa ac	ct ca	c aca	56
										Me	et As	p Ly	s Th	ır Hi	s Thr	
											1				5	
tgt	cca	cct	tgt	cca	gct	ccg	gaa	ctc	ctg	ggg	gga	ccg	tca	gtc.	ttc	104
-														Val		
-4-			10					15		-	_		20		-	
						220		300	ctc	ato	ato	tcc	cad	acc	cct	152
																230
Leu	Pue		PIO	гув	Pro	гÃа	•	THE	neu	Met	116		nry	Thr	FIO	
		25					30					35				
																000
														gag		200
Glu	Val	Thr	Сла	Val	Val	Val	Asp	Val	Ser	His		Asp	Pro	Glu	Val	
	40					45					50					
aag	ttc	aac	tgg	tac	gtg	gac	ggc	gtg	gag	gtg	cat	aat	gcc	aag	aca	248
Lvs	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	
55			-	-	60	_				65					70	
aan	cca	caa	σаσ	пап	сас	tac	aac	agc	aco	tac	cat	ata	qtc	agc	gtc	296
														Ser		
пÃа	PIO	nry	GIU	75	GIII	TYL	non	JC1	80	-1-	7			85		
				13					00							
	•											~~~	+ a.c.	227	tac	344
														aag		744
Leu	Thr	Val		His	Gln	Asp	Trp		Asn	GIĀ	гÃа	GIU		Lys	Cys	
			90					95					100			
																200
														atc		392
Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	ГЛа	Thr	Ile	Ser	
		105					110					115				
aaa	gcc	aaa	ggg	cag	ccc	cga	gaa	cca	cag	gtg	tac	acc	ctg	CCC	cca	440
														Pro		
-	120	-	_			125					130					
								-								
+cc	caa.	aat	man.	cta	acc	aarr	aac	cad	atc	agc	cta	acc	tgc	ctg	gtc	488
000	2	300	guy Cl.	Lou	mb-	Lug	Aan	Gla	Val	Ser	Len	Thr	Cvs	Leu	Val	
	ALG	ASD	GIU	. neu		шуз	АЭП	UIII	***	145			-2-		150	
135					140					747						
											L		300	22+	aaa .	536
aaa	ggc	ttc	tat	ccc	agc	gac	atc	gcc	gtg	gag	rgg	gag	age	aat	999	230
Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala		Glu	Trp	Glu	ser	Asn	GTÅ	
				155					160					165		
															_	
cag	ccg	gag	aac	aac	tac	aag	acc	acg	cct	CCC	gtg	ctg	gac	tcc	gac	584
Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	

170

175

180

ggc tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc agg tgg Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 190 185 cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 210 205 200 aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt aaa ggt gga 728 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Gly Gly 220 ggt ggt ggt atc gaa ggt ccg act ctg cgt cag tgg ctg gct gct cgt 776 Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg 240 235 794 gct taatctcgag gatcc Ala <210> 6 <211> 247 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence:Fc-TMP Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 5 10 1 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 25 20 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 40 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 55 . Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr

70

65

75 .

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro

100 105 110

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg 225 230 235 240

Gln Trp Leu Ala Ala Arg Ala 245

<210> 7

<211> 861

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Fc-TMP-TMP

<220>

<221> CDS

<222> (39)..(842)

<400> 7

tctagatttg ttttaactaa ttaaaggagg aataacat atg gac aaa act cac aca 56 Met Asp Lys Thr His Thr

7

-	cca Pro				_	_	-						Ser			104
			10					15					20			450
	ttc															152
	Phe	25					30					35				
	gtc															200
Glu	Val	Thr	Суз	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	
	40					45					50					
	ttc															248
Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys		
55	•				60					65					70	
aag	ccg	cgg	gag	gag	cag	tac	aac	agc	acg.	tac	cgt	gtg	gtc	agc	gtc	296
Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	
				75					80					85		
ctc	acc	gtc	ctg	cac	cag	gac	tgg	ctg	aat	ggc	aag	gag	tac	aag	tgc	344
Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Суз	
			90					95					100			
	gtc															392
Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	rās	Thr	Ile	Ser	
		105					110					115				
	gcc															440
Lys	Ala	Lys	Gly	Gln	Pro.	Arg	Glu	Pro	Gln	Va1		Thr	Leu	Pro	Pro	
	120					125	٠	*			130					
	cgg															488
Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Суѕ	Leu		
135					140					145					150	
aaa	ggc	ttc	tat	ccc	agc	gac	atc	gcc	gtg	gag	tgg	gag	agc	aat	ggg	536
Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	
				155					160					165		
cag	ccg	gag	aac	aac	tac	aag	acc	acg	cct	ccc	gtg	ctg	gac	tcc	gac	584
Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	yab	
			170		-			175				•	180			
gac	tcc	ttc	ttc	ctc	tac	agc	aag	ctc	acc	gtg	gac	aag	agc	agg	tgg	632
Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	
•	·	185			•		190	•				195			~	

PCT/US99/25044 WO 00/24782

861

cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 200 205 aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt aaa ggt gga 728 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Gly Gly 220 ggt ggt ggt atc gaa ggt ccg act ctg cgt cag tgg ctg gct gct cgt Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg 235 240 get ggt ggt gga ggt ggc gga ggt att gag ggc cca acc ett cgc Ala Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg 255 250 caa tgg ctt gca gca cgc gcataatctc gaggatccg Gln Trp Leu Ala Ala Arg 265 <210> 8 <211> 268 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence:Fc-TMP-TMP <400> 8 Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu · 5 10 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 25 20 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 40 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 55 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 70 65 Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro-105 100

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 150 155

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg 225 230 235 240

Gln Trp Leu Ala Ala Arg Ala Gly Gly Gly Gly Gly Gly Gly Ile 245 250 255

Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg 260 265

<210> 9

<211> 855

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TMP-TMP-Fc

<220>

<221> CDS

<222> (39)..(845)

<400> 9

tctagatttg ttttaactaa ttaaaggagg aataacat atg atc gaa ggt ccg act 56 Met Ile Glu Gly Pro Thr

											1				5	
_	cgt Arg	_														104
	att Ile		ggc					caa					cgc			152
	ggc															200
	Gly 40 ctc					45					50					248
	Leu															
	acc Thr															296
	gtg Val															344
	gtg Val	Glu														392
	agc Ser						agc					ctg				440
tgg	120 ctg	aat	ggc	aag	gag	125 tac	aag	tgc	aag	gtc	tcc	aac	aaa	gcc	ctc	488
135	Leu				140					145			٠		150	536
Pro	Ala	Pro	Ile	Glu 155	Lys	Thr	Ile	Ser	Lys 160	Ala	Lys	Gly	Gln	Pro 165	Arg	
gaa Glu	cca Pro	cag Gln	gtg Val 170	tac Tyr	acc	ctg Leu	ccc Pro	cca Pro 175	tcc Ser	cgg Arg	gat Asp	gag Glu	ctg Leu 180	acc Thr	aag Lys	584
aac	cag Gln	gtc Val	agc	ctg Leu	acc Thr	tgc Cys	ctg Leu	gtc	aaa Lys	ggc Gly	ttc Phe	tat Tyr	ccc Pro	agc Ser	gac Asp	632

190 195 185 atc gcc gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag 680 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 200 205 acc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 215 220 aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 240 235 tgc tcc gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc 824 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 255 250 855 ctc tcc ctg tct ccg ggt aaa taatggatcc Leu Ser Leu Ser Pro Gly Lys 265 <210> 10 <211> 269 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence:TMP-TMP-Fc <400> 10 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 10 5 Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly Gly Gly Asp Lys Thr His Thr Cys 45 40 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 55 50

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys

90

70

85

65

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
100 105 110

- Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 115 120 125
- Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 130 135 140
- Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 145 150 155 160
- Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 165 170 175
- Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 180 185 190
- Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
 195 200 205
- Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 210 215 220
- Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 225 230 235 240
- Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 245 250 255
- His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 260 265

<210> 11

<211> 789

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TMP-Fc

<220>

<221> CDS

<222> (39)~.(779)

<400> 11

CCL	iyati	LLY (acc	ia Ci	-aaa	,yay	, 44	Lade						o Thr	30
cta	cat	cag	taa	cta	act	act	cat	act	ggt	gga	ggc	ggt	ggg	gac	aaa	104
		Gln														
	3		10					15	-	-	-	-	20	-	•	
act	cac	aca	tgt	cca	cct	tgc	cca	gca	cct	gaa	ctc	ctg	ggg	gga	ccg	152
Thr	His	Thr	Сув	Pro	Pro	Суз	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	
		25					30					35				
																200
	_	ttc														200
ser		Phe	Leu	Pne	Pro	45	гÀя	PIO	րչթ	ASD	50	nea	Met	TIE	Set	
	40					43					50					
cgg	acc	cct	gag	gtc	aca	tgc	gtg	gtg	gtg	gac	gtg	agc	cac	gaa	gac	248
Arg	Thr	Pro	Glu	۷al	Thr	Сув	Val	Val	Val	qeA	Val	Ser	His	Glu	Asp	
55					60					65	•				70	
cct	asa.	gtc	аал	ttc	aac	taa	tac	ata	gac	aac	ata	σασ	ata	cat	aat	296
		Val														
		,,,	_,_	75			-1-		80	2				85		
gcc	aag	aca	aag	ccg	cgg	gag	gag	cag	tac	aac	agc	acg	tac	cgt	gtg	344
Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	
			90					95					100			
atc	age	gtc	ctc	acc	atc	cta	cac	cag	σac	taa	cta	aat	aac	aag	gag	392
		Val														•
		105					110		-	_		115				
		tgc														440
Tyr	ГЛЗ	Суз	ГÀЗ	Val	Ser		Lys	Ala	Leu	Pro		Pro	Ile	Glu	Lys	
	120					125					130					
acc	atc	tcc	aaa	gcc	aaa	ggg	cag	ccc	cga	gaa	cca	cag	gtg	tac	acc	488
Thr	Ile	Ser	Lvs	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	
135			_		140					145					150	
ctg	ccc	cca	tcc	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	agc	ctg	acc	536
Leu	Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser		Thr	
				155					160					165		
tac	cta	gtc	222	aac	tte	tat	ccc	agc	gac	atc	gcc	gta	gag	tgg	gag	584
Cha	Len	Val	Lva	Glv	Phe	Tvr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	
-73	u	- u	170	1		-1-		175	- 2				180	-		

age aat ggg cag ccg gag aac aac tac aag.acc acg cct ccc gtg ctg Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 185 190 195	632
gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 200 205 210	680
agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 215 220 225 230	728
gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 235 240 245	776
aaa taatggatcc Lys	789
<210> 12 <211> 247 <212> PRT <213> Artificial Sequence	
<223> Description of Artificial Sequence: TMP-Fc	
<223> Description of Artificial Sequence: TMP-Fc <400> 12 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 1 5 10 15	
<400> 12 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly	
<pre><400> 12 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 1</pre>	
<pre><400> 12 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 1</pre>	
<pre><400> 12 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 1</pre>	
<pre> <400> 12 Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 1</pre>	

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 115 120 125

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 130 135 140

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys
145 150 155 160

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 165 170 175

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 180 185 190

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 195 200 205

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 210 215 220

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 225 230 235 240

Leu Ser Leu Ser Pro Gly Lys 245

<210> 13

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TMP

<400> 13

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10

<210> 14

<211> 36

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TMP-TMP <400> 14 Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly 5 Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 25 Ala Ala Arg Ala 35 <210> 15 <211> 812 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Fc-EMP <220> <221> CDS <222> (39)..(797) <400> 15 tctagatttg ttttaactaa ttaaaggagg aataacat atg gac aaa act cac aca 56 Met Asp Lys Thr His Thr 1 tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc 104 Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 15 10 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 30 25 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 45 aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 65 60 55

ааσ	CCQ	cgg	gag	gag	cag	tac	aac	agc	acg	tac	cgt	gtg	gtc	agc	gtc	296
Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Jer	Val	
_				75					80					85		
							L	ata	22t	aac	aag	σaσ	tac	aaq	tgc	344
ctc	acc	gtc	ctg	cac	cag	gac	Trn	ctg Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	
Leu	Thr	Val	Leu 90	HIS	GIH	ASP	11p	95		•	•		100			
аап	atc	tcc	aac	aaa	gcc	ctc	cca	gcc	ccc	atc	gag	aaa	acc	atc	tcc	392
Lvs	Val	Ser	Asn	Ĺуз	Ala	Leu	Pro	Ala	Pro	Ile	Glu	гÃЭ	Thr	Ile	ser	
		105					110					115				
											+=0	200	cta	CCC	cca	440
aaa	gcc	aaa	ggg	cag	CCC	cga	gaa	cca	Cag	g c g Va 1	TVY	Thr	Leu	Pro	Pro	
Lys		ГЛа	Gly	Gln	Pro	Arg 125		Pro	GIII	741	130					
	120					125										
E a a	000	~at	gan	cta	acc	aaq	aac	cag	gtc	agc	ctg	acc	tgo	ctg	gtc	488
Ser	Ara	Ast	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Суа	Leu		
135					140					145	ï				150	
																536
aaa	ggc	tto	: tat	ccc	: ago	gac	ato	gcc	gtg	gag	tgg	gag	Ser	- Ast	ggg Glv	334
Lys	Gly	Phe	туз			Asp	Ile	Ala	vai 160	GIU	TIP	, 610		169	n Gly	
				155	5				100	,						
						. 220	r acc	acd:	cct	ccc	gtg	ctq	gad	t to	gac Asp	584
caç	CCC	gaq	a a a a	aat Aat	. TVI	LVS	Thi	Thr	Pro	Pro	val	Lev	a Asj	o Se	r Asp	
GII	1 PIC	, 61	170		,-			175	;				18	0		
	•	٠														632
gge	c tc	: tt	c tt	c ct	c ta	c age	c aaq	g cto	acc	gt	g gad	c aaq	g ag	c ag	g tgg g Trp	0.32
Gl	y Se	r Ph	e Ph	e Le	u Ty	r Se	r Ly:	з цег	1 Thi	c Va.	l As	р Бу: 19		LAL	g Trp	
		18					19	D				10.	-			
						- +-	a ta	c tco	r ate	r at	g ca	t ga	g gc	t ct	g cac	680
ca	g ca	g gg	gaa a	c gt	C CC 1 Dh	e se	r Cv	s Se	r Va	1 Me	t Hi	s Gl	u Al	a Le	u His	
GI	n G1 20		y As	11 40		20	5				21	0				
																728
aa	сса	c ta	c ac	g ca	g aa	g ag	c ct	c tc	c ct	g to	t cc	g gg	t aa	ia gg	rt gga Lv Gly	
Às	n Hi	s Ty	r Th	r Gl	n Ly	s Se	r Le	u Se	r Le	u se	I PL	O G1	У Г	g G	ly Gly 230)
21					22	0				22	5					
		,					•	. L L -		.c. ++	. С. ОО	ic co	er ci	tg a	et tgg	776
gç	jt gg	it go	jt go	ga go	it ac	t ta	w G	e co	g Hi	s Ph	ie Gl	Ly Pi	o L	eu Tl	et tgg nr Try 45	•
G)	Ly GI	y G	Ly G			1E .13	'E SE	EL CY	24	0	_ ~-	-		2	45	
				2.	35											
			aa C	כם כי	ac o	at a	gt ta	aatct	cgt	ga	tcc					812
g1	1 C	yc. di ve T	vs P	ro G	ln G	ly G	ly	•						سود ب	~	
•		, , ,		50		-										

PCT/US99/25044 WO 00/24782

<210> 16

<211> 253

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence:Fc-EMP

<400> 16

Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 10 5

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 25 20

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 40

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 55

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 70

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 90 85

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 120

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 135 130

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 155 150 145

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 170 165

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 185

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 205 -200 195

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu

PCT/US99/25044 WO 00/24782

220 215 210

Ser Pro Gly Lys Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His 235 230 225

Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly 250 245

<210> 17

<211> 807

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: EMP-Fc

<220>

<221> CDS

<222> (39)..(797)

<400> 17

tctagatttg ttttaactaa ttaaaggagg aataacat atg gga ggt act tac tct 56 Met Gly Gly Thr Tyr Ser 1

tgc cac ttc ggc ccg ctg act tgg gta tgt aag cca caa ggg ggt ggg Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly 15 10

gga ggc ggg ggg gac aaa act cac aca tgt cca cct tgc cca gca cct 152 Gly Gly Gly Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro 35 30 25

gaa ctc ctg ggg gga ccg tca gtt ttc ctc ttc ccc cca aaa ccc aag 200 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 50 45 40

gac acc ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 60 55

gac gtg agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp **-- 85** 80 75

ggc gtg gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac

Gly	Val	Glu	Val 90	His	Asn	Ala	Lys	Thr 95	Lys	Pro	Arg	Glu	Glu 100	Gln	Tyr	
aac Asn	agc Ser	acg Thr 105	tac Tyr	cgt Arg	gtg Val	gtc Val	agc Ser 110	gtc Val	ctc Leu	acc Thr	gtc Val	ctg Leu 115	cac His	cag Gln	gac Asp	392
tgg Trp	ctg Leu 120	aat Asn	ggc Gly	aag Lys	gag Glu	tac Tyr 125	aag Lys	tgc Cys	aag Lys	gtc Val	tcc Ser 130	aac Asn	aaa Lys	gcc Ala	ctc Leu	440
cca Pro 135	gcc Ala	ccc Pro	atc Ile	gag Glu	aaa Lys 140	acc Thr	atc Ile	tcc Ser	aaa Lys	gcc Ala 145	aaa Lys	ggg Gly	cag Gln	ccc Pro	cga Arg 150	488
gaa Glu	cca Pro	cag Gln	gtg Val	tac Tyr 155	acc Thr	ctg Leu	ccc Pro	cca Pro	tcc Ser 160	cgg Arg	gat Asp	gag Glu	ctg Leu	acc Thr 165	aag Lys	536
aac Asn	cag Gln	gtc Val	agc Ser 170	ctg Leu	acc Thr	Cys	ctg Leu	gtc Val 175	aaa Lys	ggc Gly	ttc Phe	tat Tyr	ccc Pro 180	agc Ser	gac Asp	584
atc Ile	gcc Ala	gtg Val 185	Glu	tgg Trp	gag Glu	agc Ser	aat Asn 190	ggg Gly	cag Gln	ccg	gag Glu	aac Asn 195	ASD	tac Tyr	aag Lys	632
acc Thr	acg Thr 200	Pro	ccc	gtg Val	ctg Leu	gac Asp 205	Ser	gac Asp	ggc Gly	tcc Ser	ttc Phe 210	Pne	cto Lev	tac Tyr	agc Ser	680
aag Lys 215	Leu	acc Thr	gtg Val	gac Asp	aag Lys 220	Ser	agg Arg	tgg Trp	cag Gln	cag Glm 225	GIY	aac Asr	gto Val	tto L Phe	tca Ser 230	728
tgo Cys	tco Ser	gtg Val	atç Met	cat His	Glu	gct Ala	ctg Lev	cac His	240	HIS	tac Tyr	acq Thi	g cad	g aag n Lys 245	g agc s Ser	776
		c cto						atgga	atcc							807
			250													* .

<210> 18 <211> 253 <212> PRT <213> Artificial Sequence

21

PCT/US99/25044 WO 00/24782

<223> Description of Artificial Sequence: EMP-Fc

<4	n	n	>	1	g
~4	u	u	_	_	v

- Met Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys 10 5
- Lys Pro Gln Gly Gly Gly Gly Gly Gly Asp Lys Thr His Thr Cys
- Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 40
- Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 55
- Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 75 70
- Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 85
- Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 105 100
- Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 120
- Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 135
- Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 155 150 145
- Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 170 165
- Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 185
- Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 200
- Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 215 210
- Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 235 230 225

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys \$245\$

210>	19															
211>	881															
<212>															-,	
<213>	Art	ific	ial	Sequ	ence											
<220> <223>	• _	•			x-+i	fici	al 9	seaue	ence:	EMP-	EMP-	Fc				
<223>	· Des	crip	00130	1 01	MI CI	1101	-	, o								
<220>																
<221>		3														
<222			(871))												
<400	> 19								a - a a :	aat :	ata a	raa o	at.	act	tac	.55
tcta	gatt	tg a	gttt	taact	ttt	agaa	igga	gga	acaa	1	Met (Glv (Gly	Thr	Tyr	
										•	1	•	_		5	
tct	-	C2C	ttc	aac 4	cca (cta a	act	tgg	gtt	tgc	aaa (ccg	cag	ggt	ggc	103
Cor	Cve	Hig	Phe	Glv	Pro 1	Leu '	Thr	Trp	Val	Суз	Lys :	Pro	Gln		Gly	
Ser	Cys	1120		10					15					20		
															200	151
ggc	ggc	ggc	ggc	ggt	ggt (acc	tat	tcc	tgt	cat	ttt	ggc	ccg	Len	Thr	131
Gly	Gly	Gly	Gly	Gly	Gly	Thr	Tyr	ser	CAa	HIS	Pne	GIY	35	nea		
			25	•				30					,,,			
					caa		aat	aaa	gga	aac	ggg	ggg	gac	aaa	act	199
tgg	gta	tgt	aag	cca	Gln	999 G1v	Glv	Glv	Gly	Gly	Gly	Gly	Asp	Lys	Thr	
Trp	Vai	40	гуя	PIO	GIII	U 11	45		-			50				
•																247
cac	aca	tat	cca	cct	tgc	cca	gca	cct	gaa	ctc	ctg	ggg	gga	ccg	tca	247
His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Dea	Gly	Gly	PLO	Ser	
	55	_				60					65					
										200	ctc	atα	ato	tcc	caa	295
gtt	ttc	ctc	ttc	CCC	cca	aaa	CCC	aag	gac	Thr	Leu	Met	Ile	Ser	cgg	
Val	Phe	Leu	Phe	Pro	Pro	Lys	PTO	гуs	Asp	80					Arg 85	
70		,			75											
				202	tac	ata	ata	gtg	gac	gtg	agc	cac	gaa	gad	cct Pro	343
acc	CCT	gag	y to	Thr	Cvs	Val	Val	Val	Asp	Val	Ser	His	Gli			
Int	PIC			90	- 2 -				95	;			-	100)	
														- 22	+ acc	391
gac	gto	aaç	tto	aac	tgg:	tac	gtç	ggac	ggo	gto	gag	gtg	r ca	L AA	t gcc n Ala	
Gli	. Val	Lvs	a Phe	a Asr	Trp	Туг	· Val	l Asi) G13	/ Val	GIU	val	, nr	S AO	n Ala	

105 110 115

аап	aca	ааσ	cca	caa	gag	gag	cag	tac	aac	agc	acg	tac	cgt	gtg	gtc	439
l.vs	Thr	Lvs	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	
., .		120					125					130				
200	a+ c	ctc	acc	atc	cta	cac	cag	gac	tgg	ctg	aat	ggc	aag	gag	tac	487
agc	y.c	LOU	Thr	Val	Len	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	
ser		rea	1111	Val	БСС	140					145					
	135					140										
				+ 00	330	222	acc	ctc	cca	acc	ccc	atc	gag	aaa	acc	535
aag	tgc	aag	gtc	200	aac aac	Tue	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	
	Суз	гÃа	vaı	ser		nys	MIG	Dea		160				-	165	
150					155											
								003	722	cca	cad	ata	tac	acc	cta	583
atc	tcc	aaa	gcc	aaa	ggg	cag	CCC	cg <u>a</u>	Clu	Dro	Cln	Val	TVT	Thr	Leu	_
Ile	Ser	Lys	Ala		Gly	GIn	PIO	Arg	175	PIO	GIII	Vai	-1-	180		
•				170					175					100		
												200	ata	200	tac	631
CCC	cca	tcc	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	age	Tou	mb=	Cyc	031
Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	GIn	vaı	Ser	10E	1111	Cys	
			185					190					195			
																679
ctg	gtc	aaa	ggc	ttc	tat	CCC	agc	gac	atc	gcc	gtg	gag	tgg	gag	agc	0/3
Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Ąsp	Ile	Ala	Val	Glu	Trp	GIU	Ser	•
		200					205					210				
																227
aat	ggg	cag	ccg	gag	aac	aac	tac	aag	acc	acg	cct	ccc	gtg	ctg	gac	727
Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	. Leu	Asp	•
	215					220					225	•				
				•												
tcc	σac	aac	tco	ttc	ttc	cto	tac	: agc	aag	cto	acc	: gtg	gad	aaq	agc	775
Ser	Asc	Glv	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Lev	t Thi	· Val	. Ası	Lys	2 Ser	
230					235					240)				245	
200	tac	cac	cac		aac	gto	: ttc	tca:	tgo	tco	gtç	ate	cat	t gag	g gct	823
720	. UAL	Glr	Glr	G1v	, Asi	. Va]	Phe	e Ser	Cys	Sei	. Val	L Met	: Hi	g Gl	ı Ala	
ALG		, 011		250					255	,				26)	
				7 +21	- ačr	r cac	r aac	ago	: ctc	tc	cte	g tci	t cc	g gg	t aaa	871
CEÇ	cac	. aa(, cal	, mem	, act	, 54; - 61;	,; 1	s Ser	Lev	Se	r Le	a Sei	r Pr	o Gl	y Lys	
Let	1 H15	s ASI			. 1111	. 511	- - 1'	270)				27	5		
			269	•				27	•							
																881

taatggatcc

<210> 20 <211> 277 <212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: EMP-EMP-Fc

<400> 20

Met Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys

1 5 10 15

Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His 20 25 30

Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly 35 40 45

Gly Gly Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu
50 55 60

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr
65 70 75 80

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val
85 90 95

Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 100 105 110

Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 115 120 125

Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu
130 135 140

Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 145 150 155 160

Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 165 170 175

Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 180 185 190

Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 195 200 205

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 210 215 220

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 225 230 235 240

Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 250 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 265 Leu Ser Pro Gly Lys 275 <210> 21 <211> 884 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Fc-EMP-EMP <220> <221> CDS <222> (39)..(869) <400> 21 tctagatttg ttttaactaa ttaaaggagg aataacat atg gac aaa act cac aca 56 Met Asp Lys Thr His Thr 1 tgt cca cct tgc cca gca cct gaa ctc ctg ggg gga ccg tca gtt ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 15 10 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 30 25 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc 200 Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 45 40 aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 65 60

aag ccg cgg gag gag cag tac aac agc acg tac cgt gtg gtc agc gtc 296

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val

75 80 85

ctc	acc	gtc	ctg	cac	cag	gac	tgg	ctg	aat	ggc	aag	gag	tac	aag	tgc	344
Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu		Lys	Суз	
			90					95					100			
220	atc	tcc	aac	aaa	acc	ctc	cca	qcc	ccc	atc	gag	aaa	acc	atc	tcc	392
Lvs	Val	Ser	Asn	Lvs	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	
цуз	•	105					110					115				
															-	
aaa	gcc	aaa	ggg	cag	ccc	cga	gaa	cca	cag	gtg	tac	acc	ctg	cct	cca	440
Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro .	
	120					125					130					
												200	taa	cta	ata	488
tcc	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	agc	Leu	Thr	Cva	ctg	Val	400
_	Arg	Asp	Glu	Leu		гЛа	ASII	GIII	Vai	145	Leu		Cy D	Leu	150	
135					140					117						
	aac	ttc	tat	CCC	agc	gac	atc	qcc	gtg	gag	tgg	gag	agc	aat	ggg	536
Lug	Glv	Phe	Tvr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	
2,0	0-3		-,-	155		_			160			٠		165		
cag	ccg	gag	aac	aac	tac	aag	acc	acg	cct	CCC	gtg	ctg	gac	tcc	gac	584
Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	
			170					175					180			
									200	ata	asc.	aan	age	agg	taa	632
ggc	tcc	ttc	ttc	ctc	tac	agc	aag	Lou	Thr	Val	Agn	Lvs	Ser	agg Arg	Tro	
Gly	Ser		Pne	rea	TYL	Ser	190	beu	1111	•	nup.	195		3		
		185					150				•					
сад	cag	aaa	aac	qtc	ttc	tca	tgc	tcc	gtg	atg	cat	gag	gct	ctg	cac	680
Gln	Gln	Gly	Asn	Val	Phe	Ser	Сув	Ser	Val	Met	His	Glu	Ala	Leu	His	
	200					205					210					
																720
aac	cac	tac	acg	cag	aag	agc	ctc	tcc	ctg	tct	ccg	ggt	aaa	ggt	gga	728
Asn	His	Tyr	Thr	Gln			Leu	Ser	Leu	Ser	Pro	GIA	гуя	Gly	230	
215					220					225					255	
						t a G	+~+	tac	cac	tto	aac	сса	ctg	act	tgg	776
ggt	ggt	ggc	gga	ggt	act The	Tur	Ser	Cvs	His	Phe	Glv	Pro	Leu	Thr	Trp	
GIY	GIY	GIY	GIY	235			501	-1-	240		-			245		
									•							
att	tac	: aaa	CCG	cag	ggt	ggc	ggc	ggc	ggc	ggc	ggt:	ggt	acc	tat	tcc	824
Val	Cvs	Lys	Pro	Gln	Gly	Gly	Gly	Gly	Gly	, Gly	, Gly	Gly	Thi	TAT	Ser	
		-	250					255	,				260)		
		,												خندسن .	,	869
tgt	cat	ttt	gg(: ccg	ctg	acc	: tgg	gta	tgt	aaq	J CC	caa	. ggq	ggt , Glv		307
Суя	His			Pro	Lev	Thi	Trp	va]	Cys	з г.Ха	s PIC	279	. GT)	, Gl?		
		269					270	,				<i>~</i> , ,	-			

taatctcgag gatcc

884

- <210> 22
- <211> 277
- <212> PRT
- <213> Artificial Sequence
- <223> Description of Artificial Sequence:Fc-EMP-EMP
- <400> 22
- Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 1 5 10 15
- Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30
- Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
- His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
 50 55 60
- Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
 65 70 75 80
- Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95
- Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110
- Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
 115 120 125
- Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140
- Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
- Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175
- Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190 —
- Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val

195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His 225 230 235 240

Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly Gly 255

Gly Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys 260 265 270

Lys Pro Gln Gly Gly 275

<210> 23

<211> 1545

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:pAMG216

<400> 23

cgtaacgtat gcatggtctc cccatgcgag agtagggaac tgccaggcat caaataaaac 60 gaaaggotca gtogaaagao tgggoottto gttttatotg ttgtttgtog gtgaacgoto 120 tcctgagtag gacaaatccg ccgggagcgg atttgaacgt tgcgaagcaa cggcccggag 180 ggtggcgggc aggacgcccg ccataaactg ccaggcatca aattaagcag aaggccatcc 240 tgacggatgg cctttttgcg tttctacaaa ctcttttgtt tatttttcta aatacattca 300 aatatggacg tcgtacttaa cttttaaagt atgggcaatc aattgctcct gttaaaattg 360 ctttagaaat actttggcag cggtttgttg tattgagttt catttgcgca ttggttaaat 420 ggaaagtgac cgtgcgctta ctacagccta atatttttga aatatcccaa gagctttttc 480 cttcgcatgc ccacgctaaa cattctttt ctcttttggt taaatcgttg tttgatttat 540 tatttgctat atttattttt cgataattat caactagaga aggaacaatt aatggtatgt 600 tcatacacgc atgtaaaaat aaactatcta tatagttgtc tttctctgaa tgtgcaaaac 660 taagcattcc gaagccatta ttagcagtat gaatagggaa actaaaccca gtgataagac 720 ctgatgattt cgcttcttta attacatttg gagatttttt atttacagca ttgttttcaa 780 atatattcca attaatcggt gaatgattgg agttagaata atctactata ggatcatatt 840 ttattaaatt agcgtcatca taatattgcc tccatttttt agggtaatta tccagaattg 900 aaatatcaga tttaaccata gaatgaggat aaatgatcgc gagtaaataa tattcacaat 960 gtaccatttt agtcatatca gataagcatt gattaatatc attattgctt ctacaggctt 1020 taattttatt aattattetg taagtgtegt eggeatttat gtettteata eccatetett 1080 tateettace tattgtttgt egeaagtttt gegtgttata tateattaaa aeggtaatag 1140 attgacattt gattctaata aattggattt ttgtcacact attatatcgc ttgaaataca 1200

PCT/US99/25044 WO 00/24782

1545

```
attgtttaac ataagtacct gtaggatcgt acaggtttac gcaagaaaat ggtttgttat 1260
agtcgattaa tcgatttgat tctagatttg ttttaactaa ttaaaggagg aataacatat 1320
ggttaacgcg ttggaattcg agctcactag tgtcgacctg cagggtacca tggaagctta 1380
ctcgaggatc cgcggaaaga agaagaagaa gaagaaagcc cgaaaggaag ctgagttggc 1440
tgctgccacc gctgagcaat aactagcata accccttggg gcctctaaac gggtcttgag 1500
gggttttttg ctgaaaggag gaaccgctct tcacgctctt cacgc
<210> 24
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
      PEPTIDE
<400> 24
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Lys Ala
                                     10
<210> 25
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
      PEPTIDE
<400> 25
Ile Glu Gly Pro Thr Leu Arg Glu Trp Leu Ala Ala Arg Ala
<210> 26
<211> 29
<212> PRT
<213> Artificial Sequence
```

<220>

PEPTIDE

<223> Description of Artificial Sequence: TPO-MIMETIC

<223> At position 15, Xaa=a linker sequence of 1 to 20 amino acids

<400> 26

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Xaa Ile 1. 5 10 15

Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
20 25

<210> 27

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC PEPTIDE

<220>

<223> At position 15, Xaa=a linker sequence of 1 to 20 amino acids

<400> 27

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Lys Ala Xaa Ile
1 5 10 15

Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Lys Ala 20 25

<210> 28

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<220>

<223> At position 9 disulfide linkage with residue 24

<220>

<223> At position 24 disulfide linkage with residue 9

<400> 28

Ile Glu Gly Pro Thr Leu Arg Gln Cys Leu Ala Ala Arg Ala Xaa Ile 10 5 Glu Gly Pro Thr Leu Arg Gln Cys Leu Ala Ala Arg Ala 20 <210> 29 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: TPO-MIMETIC PEPTIDE <220> <223> At position 16 bromoacetyl group linked to sidechain Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Xaa Lys 10 5 Xaa Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala 25 20 <210> 30 <211> 31 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: TPO-MIMETIC PEPTIDE <220> <223> At position 16 polyethylene glycol linked to sidechain <400> 30 ... Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Xaa Lys 15 10 5

Xaa Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala 20 25 30

<210> 31

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<220>

<223> At position 9 disulfide bond to residue 9 of a separate identical sequence

<400> 31

Ile Glu Gly Pro Thr Leu Arg Gln Cys Leu Ala Ala Arg Ala Xaa Ile
1 5 10 15

Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala 20 25

<210> 32

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<220>

<223> At position 24 disulfide bond to residue 9 of a separate identical sequence

<400> 32

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Xaa Ile
1 5 10 15

Glu Gly Pro Thr Leu Arg Gln Cys Leu Ala Ala Arg Ala 20 25

```
<210> 33
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TPO-MIMETIC
      PEPTIDE
<400> 33
Val Arg Asp Gln Ile Xaa Xaa Xaa Leu
        5
<210> 34
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TPO-MIMETIC
      PEPTIDE
<400> 34
Thr Leu Arg Glu Trp Leu
<210> 35
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
     PEPTIDE
<400> 35
Gly Arg Val Arg Asp Gin Val Ala Gly Trp
                  5 ·
```

<210> 36

```
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: TPO-MIMETIC
<400> 36
Gly Arg Val Lys Asp Gln Ile Ala Gln Leu
                   5
<210> 37
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Description of
       Artificial SequenceTPO-MIMETIC PEPTIDE
 <400> 37
 Gly Val Arg Asp Gln Val Ser Trp Ala Leu
<210> 38
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: TPO-MIMETIC
       PEPTIDE
 <400> 38
 Glu Ser Val Arg Glu Gln Val Met Lys Tyr
                   5
   1
```

<210> 39 <211> 10 <212> PRT <213> Artificial Sequence

```
<220>
 <223> Description of Artificial Sequence: TPO-MIMETIC
       PEPTIDE
 <400> 39
 Ser Val Arg Ser Gln Ile Ser Ala Ser Leu
                  5
 <210> 40
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: TPO-MIMETIC
       PEPTIDE
 <400> 40
 Gly Val Arg Glu Thr Val Tyr Arg His Met
 <210> 41
 <211> 11
 <212> PRT
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: INTEGRIN
       BINDING PEPTIDE
 <400> 41
 Gly Val Arg Glu Val Ile Val Met His Met Leu
 <210> 42
 <211> 11
 <212> PRT
 <213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: TPO-MIMETIC
```

PEPTIDE

<400> 42
Gly Arg Val Arg Asp Gln Ile Trp Ala Ala Leu
1 5 10

<210> 43

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<400> 43

Ala Gly Val Arg Asp Gln Ile Leu Ile Trp Leu 1 5 10

<210> 44

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 44

Gly Arg Val Arg Asp Gln Ile Met Leu Ser Leu
1 5 10

<210> 45

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: TPO-MIMETIC PEPTIDE

<400> 45

```
Gly Arg Val Arg Asp Gln Ile Xaa Xaa Xaa Leu
                  5
<210> 46
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
<400> 46
Cys Thr Leu Arg Gln Trp Leu Gln Gly Cys
                  5
<210> 47
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:TPO-MIMETIC
      PEPTIDE
<400> 47
Cys Thr Leu Gln Glu Phe Leu Glu Gly Cys
                  5
<210> 48
<211> 10
```

<220>
<223> Description of Artificial Sequence: TPO-MIMETIC PEPTIDE

<400> 48

Cys Thr Arg Thr Glu Trp Leu His Gly Cys

1 5 10

<212> PRT

<213> Artificial Sequence

```
<210> 49
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TPO-MIMETIC
      PEPTIDE
<400> 49
Cys Thr Leu Arg Glu Trp Leu His Gly Gly Phe Cys
 1
                  5
<210> 50
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Fc-TMP
<400> 50
Cys Thr Leu Arg Glu Trp Val Phe Ala Gly Leu Cys
                 5
<210> 51
<211> 13
<21:2> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Fc-TMP
<400> 51
Cys Thr Leu Arg Gln Trp Leu Ile Leu Leu Gly Met Cys
                                     10
```

<213> Artificial Sequence

<220>

<400> 52

Cys Thr Leu Ala Glu Phe Leu Ala Ser Gly Val Glu Gln Cys
1 5 10

<210> 53

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Fc-TMP

<400> 53

Cys Ser Leu Gln Glu Phe Leu Ser His Gly Gly Tyr Val Cys
1 5 10

<210> 54

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Fc-TMP

<400> 54

Cys Thr Leu Arg Glu Phe Leu Asp Pro Thr Thr Ala Val Cys
1 5 10

<210> 55

<211> 14

<212> PRT

<213> Artificial Sequence

(220>

```
<400> 55
Cys Thr Leu Lys Glu Trp Leu Val Ser His Glu Val Trp Cys
1 5 10
```

<210> 56

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<400> 56

Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Cys 1 5 10

<210> 57

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<400> 57

Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Cys 1 5 10

<210> 58

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 58

Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Cys

1 5 10

<210> 59

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 59

Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Xaa Xaa Cys
1 5 10

<210> 60

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 60

Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Xaa Xaa Xaa Cys
1 5 10

<210> 61

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<400> 61

Arg Glu Gly Pro Thr Leu Arg Gln Trp Met

1 5 10

```
<210> 62
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
     PEPTIDE
<400> 62
Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5
<210> 63
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
     PEPTIDE
<400> 63
Glu Arg Gly Pro Phe Trp Ala Lys Ala Cys
1
         5
<210> 64
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TPO-MIMETIC
     PEPTIDE
<400> 64
Arg Glu Gly Pro Arg Cys Val Met Trp Met
. 1 5
```

<210> 65 <211> 14

```
<212> PRT
```

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: TPO-MIMETIC PEPTIDE

<400> 65

Cys Gly Thr Glu Gly Pro Thr Leu Ser Thr Trp Leu Asp Cys
1 5 10

<210> 66

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC PEPTIDE

<400> 66

Cys Glu Gln Asp Gly Pro Thr Leu Leu Glu Trp Leu Lys Cys
1 5 10

<210> 67

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: TPO-MIMETIC PEPTIDE

<400> 67

Cys Glu Leu Val Gly Pro Ser Leu Met Ser Trp Leu Thr Cys
1 5 10

<210> 68

<211> 14

<212> PRT ___

<213> Artificial Sequence

<220>

<400> 68

Cys Leu Thr Gly Pro Phe Val Thr Gln Trp Leu Tyr Glu Cys
1 5 10

<210> 69

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<400> 69

Cys Arg Ala Gly Pro Thr Leu Leu Glu Trp Leu Thr Leu Cys
1 5 10

<210> 70

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<400> 70

Cys Ala Asp Gly Pro Thr Leu Arg Glu Trp Ile Ser Phe Cys
1 5 10

<210> 71

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

```
<400> 71

Cys Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Cys

1 5 10
```

<210> 72

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC PEPTIDE

<400> 72

Cys Xaa Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Cys
1 5 10

<210> 73

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<400> 73

Cys Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Xaa Cys
1 5 10

<210> 74

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<400> 74

Cys Xaa Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Xaa Cys

1 5 10 15

<210> 75

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 75

Gly Gly Cys Thr Leu Arg Glu Trp Leu His Gly Gly Phe Cys Gly Gly

1 5 10 15

<210> 76

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 76

Gly Gly Cys Ala Asp Gly Pro Thr Leu Arg Glu Trp Ile Ser Phe Cys

1 5 10 15

Gly Gly

<210> 77

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<400> 77

Gly Asn Ala Asp Gly Pro Thr Leu Arg Gln Trp Leu Glu Gly Arg Arg

1 5 10 15

Pro Lys Asn

<210> 78

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<400> 78

Leu Ala Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu His Gly Asn Gly
1 5 10 15

Arg Asp Thr

<210> 79

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<400> 79

His Gly Arg Val Gly Pro Thr Leu Arg Glu Trp Lys Thr Gln Val Ala 1 5 10 15

Thr Lys Lys

<210> 80

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 80

Thr Ile Lys Gly Pro Thr Leu Arg Gln Trp Leu Lys Ser Arg Glu His

1 5 10 15

Thr Ser

<210> 81

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<400> 81

Ile Ser Asp Gly Pro Thr Leu Lys Glu Trp Leu Ser Val Thr Arg Gly
1 5 10 15

Ala Ser

<210> 82

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<400> 82

Ser Ile Glu Gly Pro Thr Leu Arg Glu Trp Leu Thr Ser Arg Thr Pro 1 5 10 15

His Ser

```
<210> 83
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro
                  5
<210> 84
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
<400> 84
Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro Tyr Xaa
                                     10
                                                         15
 1
Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro
             20
<210> 85
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
<220>
<223> At position 15, Xaa=a linker sequence of 1 to 20
      amino acids
```

<400> 85

Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro Xaa Tyr 1 5 10 15

Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro 20 25

<210> 86

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:EPO-MIMETIC
 PEPTIDE

<220>

<223> At position 15 linked through epsilon amine to lysyl, which is linked to a separate identical sequence through that sequence's alpha amine

<400> 86

Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro 1 5 10

<210> 87 '

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<400> 87

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys

1 5 10 15

Pro Gln Gly Gly

20

<210> 88

<211> 20

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
<400> 88
Gly Gly Asp Tyr His Cys Arg Met Gly Pro Leu Thr Trp Val Cys Lys
                                    10
Pro Leu Gly Gly
<210> 89
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
Gly Gly Val Tyr Ala Cys Arg Met Gly Pro Ile Thr Trp Val Cys Ser
                                    10
  1
                  5
Pro Leu Gly Gly
<210> 90
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
<400> 90
Val Gly Asn Tyr Met Cys His Phe Gly Pro Ile Thr Trp Val Cys Arg
                                   10
                 5
```

Pro Gly Gly Gly

20

<210> 91

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:EPO-MIMETIC
 PEPTIDE

<400> 91

Gly Gly Leu Tyr Leu Cys Arg Phe Gly Pro Val Thr Trp Asp Cys Gly
1 5 10 15

Tyr Lys Gly Gly 20

<210> 92

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: EPO-MIMETIC

<400> 92

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 5 10 15

Pro Gln Gly Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr

Trp Val Cys Lys Pro Gln Gly Gly 35

<210> 93

<211> 41

<212> PRT ...

<213> Artificial Sequence

<220>

<220>

<223> At position 21, Xaa=a linker sequence of 1 to 20 amino acids

<400> 93

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 5 10 15

Pro Gln Gly Gly Xaa Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu 20 25 30

Thr Trp Val Cys Lys Pro Gln Gly Gly 35

<210> 94

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<400> 94

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 5 10 15

Pro Gln Gly Gly Ser Ser Lys
20

<210> 95

<211> 46

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TPO-MIMETIC
 PEPTIDE

<400> 95

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 5 10 15

Pro Gln Gly Gly Ser Ser Lys Gly Gly Thr Tyr Ser Cys His Phe Gly
20 25 30

Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Ser Ser Lys
35 40 45

<210> 96

<211> 47

<212> PRT

<213> Artificial Sequence

<220>

<220>

<223> At position 24, Xaa=a linker sequence of 1 to 20 amino acids

<400> 96

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 5 10 15

Pro Gln Gly Gly Ser Ser Lys Xaa Gly Gly Thr Tyr Ser Cys His Phe 20 25 30

Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Ser Ser Lys 35 40 45

<210> 97

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:EPO-MIMETIC
 PEPTIDE

<220>

<223> At position 22 linked through epsilon amine to lysyl, which is linked to a separate identical

sequence through that sequence's alpha amine

<400> 97

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 5 10 15

Pro Gln Gly Gly Ser Ser 20

<210> 98

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: EPO-MIMETIC PEPTIDE

<220>

<223> At position 23 biotin linked to the sidechain through a linker

<400> 98

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys

1 5 10 15

Pro Gln Gly Gly Ser Ser Lys
20

<210> 99

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<220>

<223> At position 4 disulfide bond to residue 4 of a separate identical sequence

<400> 99

Glu Glu Asp Cys Lys

1 5

<210> 100

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:G-CSF MIMETIC
 PEPTIDE

<220>

<223> At position 4, Xaa is an isoteric ethylene spacer linked to a separate identical sequence

<400> 100

Glu Glu Asp Xaa Lys

1

<210> 101

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:G-CSF MIMETIC
 PEPTIDE

<220>

<223> At position 1, Xaa is a pyroglutamic acid residue

<220>

<223> At position 4, Xaa is an isoteric ethylene spacer linked to a separate identical sequence

<400> 101

Xaa Glu Asp Xaa Lys

1

5

<210> 102 ---

<211> 5

<212> PRT

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
<220>
<223> At position 1, Xaa is a picolinic acid residue
<220>
<223> At position 4, Xaa is an isoteric ethylene spacer
      linked to a separate identical sequence
<400> 102
Xaa Ser Asp Xaa Lys
 1
<210> 103
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
      PEPTIDE
<220>
<223> At position 6, Xaa=a linker sequence of 1 to 20
      amino acids
Glu Glu Asp Cys Lys Xaa Glu Glu Asp Cys Lys
                  5
  1
<210> 104
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EPO-MIMETIC
```

<220>

PEPTIDE

```
<223> At position 6, Xaa=a linker sequence of 1 to 20
     amino acids
<400> 104
Glu Glu Asp Xaa Lys Xaa Glu Glu Asp Xaa Lys
 1 5
<210> 105
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: ANTIVIRAL (HBV)
     PEPTIDE
<400> 105
Leu Leu Gly Arg Met Lys
1
<210> 106
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 106
Tyr Cys Phe Thr Ala Ser Glu Asn His Cys Tyr
                5
<210> 107
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
```

PEPTIDE

```
<400> 107
Tyr Cys Phe Thr Asn Ser Glu Asn His Cys Tyr
                5
<210> 108
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 108
Tyr Cys Phe Thr Arg Ser Glu Asn His Cys Tyr
 1
                 5
<210> 109
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 109
Phe Cys Ala Ser Glu Asn His Cys Tyr
 1
<210> 110
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONSIT
      PEPTIDE
 <400> 110 ...
```

Tyr Cys Ala Ser Glu Asn His Cys Tyr

5

1

```
<210> 111
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 111
Phe Cys Asn Ser Glu Asn His Cys Tyr
<210> 112
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 112
Phe Cys Asn Ser Glu Asn Arg Cys Tyr
<210> 113
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 113
Phe Cys Asn Ser Val Glu Asn Arg Cys Tyr
```

```
<210> 114
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 114
Tyr Cys Ser Gln Ser Val Ser Asn Asp Cys Phe
                  5
<210> 115
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 115
Phe Cys Val Ser Asn Asp Arg Cys Tyr
<210> 116
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
      PEPTIDE
<400> 116
Tyr Cys Arg Lys Glu Leu Gly Gln Val Cys Tyr
                                      10
                  5
```

<210> 117 ...

<211> 9

<212> PRT

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
<400> 117
Tyr Cys Lys Glu Pro Gly Gln Cys Tyr
<210> 118
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
<400> 118
Tyr Cys Arg Lys Glu Met Gly Cys Tyr
<210> 119
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-ANTAGONIST
<400> 119
Phe Cys Arg Lys Glu Met Gly Cys Tyr
<210> 120
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
<400> 120
```

```
5
 1
<210> 121
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
<400> 121
Tyr Cys Glu Leu Ser Gln Tyr Leu Cys Tyr
 1
<210> 122
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-ANTAGONIST
<400> 122
Tyr Cys Trp Ser Gln Asn Tyr Cys Tyr
        5
<210> 123
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-ANTAGONIST
 <400> 123
 Tyr Cys Trp Ser Gln Tyr Leu Cys Tyr
```

Tyr Cys Trp Ser Gln Asn Leu Cys Tyr

<210> 124

PCT/US99/25044 WO 00/24782

<211> 37

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: EPO-MIMETIC PEPTIDE

<400> 124

5

Xaa Xaa Xaa Xaa Thr Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 25 20

Xaa Xaa Xaa Xaa Xaa 35

<210> 125

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CTLA4-MIMETIC

<400> 125

Gly Phe Val Cys Ser Gly Ile Phe Ala Val Gly Val Gly Arg Cys 10 5

<210> 126

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:CTLA4-MIMETIC PEPTIDE

<400> 126

Ala Pro Gly Val Arg Leu Gly Cys Ala Val Leu Gly Arg Tyr Cys 10 · 5

```
<210> 127
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:C3B ANTAGONIST
<400> 127
Ile Cys Val Val Gln Asp Trp Gly His His Arg Cys Thr Ala Gly His
                                     10
Met Ala Asn Leu Thr Ser His Ala Ser Ala Ile
             20
<210> 128
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: C3B ANTAGONIST
      PEPTIDE
 <400> 128
 Ile Cys Val Val Gln Asp Trp Gly His His Arg Cys Thr
                                     10
                   5
 <210> 129
 <211> 11
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: C3B ANTAGONIST
       PEPTIDE
 Cys Val Val Gln Asp Trp Gly His His Ala Cys
                  5
```

```
<210> 130
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
      ANTAGONIST PEPTIDE
<400> 130
Thr Phe Ser Asp Leu Trp
<210> 131
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
      ANTAGONIST PEPTIDE
<400> 131
Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
                 5
 <210> 132
 <211> 12
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:MDM/HDM
       ANTAGONIST PEPTIDE
 <400> 132
 Gln Pro Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
                                     10
                  5
```

<210> 133 <211> 12

```
<212> PRT
```

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

<400> 133

Gln Glu Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro 1 5 10

<210> 134

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

<400> 134

Gln Pro Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
1 5 10

<210> 135

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

<400> 135

Met Pro Arg Phe Met Asp Tyr Trp Glu Gly Leu Asn
1 5 10

<210> 136

<211> 12

<212> PRT...

<213> Artificial Sequence

PCT/US99/25044

```
WO 00/24782
<220>
<223> Description of Artificial Sequence: C3B ANTAGONIST
<400> 136
Val Gln Asn Phe Ile Asp Tyr Trp Thr Gln Gln Phe
                  5
<210> 137
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
      ANTAGONIST PEPTIDE
<400> 137
Thr Gly Pro Ala Phe Thr His Tyr Trp Ala Thr Phe
                                      10
<210> 138
<211> 15
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MDM/HDM
       ANTAGONIST PEPTIDE
 <400> 138
 Ile Asp Arg Ala Pro Thr Phe Arg Asp His Trp Phe Ala Leu Val
                                      10
                   5
 <210> 139
```

<211> 15 <212> PRT <213> Artificial Sequence

<220> <223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

```
<400> 139
Pro Arg Pro Ala Leu Val Phe Ala Asp Tyr Trp Glu Thr Leu Tyr
 1 5 10
<210> 140
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:MDM/HDM
     ANTAGONIST PEPTIDE
<400> 140
Pro Ala Phe Ser Arg Phe Trp Ser Asp Leu Ser Ala Gly Ala His
                                 10
-1 5
<210> 141
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
     ANTAGONIST PEPTIDE
Pro Ala Phe Ser Arg Phe Trp Ser Lys Leu Ser Ala Gly Ala His
                                 10
                5
<210> 142
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
```

<400> 142 ...
Pro Xaa Phe Xaa Asp Tyr Trp Xaa Xaa Leu
1 5 10

ANTAGONIST PEPTIDE

<223> Description of Artificial Sequence:MDM/HDM

```
<210> 143
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
     ANTAGONIST PEPTIDE
<400> 143
Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
1 5
<210> 144
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
      ANTAGONIST PEPTIDE
<400> 144
Gln Pro Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
      5
<210> 145
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
      ANTAGONIST PEPTIDE
<400> 145
Gln Glu Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
                 5
```

```
<210> 146
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MDM/HDM
     ANTAGONIST PEPTIDE
<400> 146
Gln Pro Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
                5
<210> 147
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: SELECTIN
      ANTAGONIST PEPTIDE
<400> 147
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
                  5
 1
<210> 148
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: SELECTIN
      ANTAGONIST PEPTIDE
<400> 148
Asp Ile Thr Trp Asp Glu Leu Trp Lys Ile Met Asn
                 5
```

<210> 149 ··· <211> 12 <212> PRT

```
<213> Artificial Sequence
```

<220> ·

<223> Description of Artificial Sequence: SELECTIN ANTAGONIST PEPTIDE

<400> 149

Asp Tyr Thr Trp Phe Glu Leu Trp Asp Met Met Gln 1 5 10

<210> 150

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:SELECTIN
 ANTAGONIST PEPTIDE

<400> 150

Gln Ile Thr Trp Ala Gln Leu Trp Asn Met Met Lys

1 5 10

<210> 151

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

<400> 151

Asp Met Thr Trp His Asp Leu Trp Thr Leu Met Ser 1 5 10

<210> 152

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

<400> 152

Asp Tyr Ser Trp His Asp Leu Trp Glu Met Met Ser

1 5 10

<210> 153

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM
ANTAGONIST PEPTIDE

<400> 153

Glu Ile Thr Trp Asp Gln Leu Trp Glu Val Met Asn 1 5 10

<210> 154

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MDM/HDM ANTAGONIST PEPTIDE

<400> 154

His Val Ser Trp Glu Gln Leu Trp Asp Ile Met Asn
1 5 10

<210> 155

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SELECTIN ANTAGONIST PEPTIDE

<400> 155
His Ile Thr Trp Asp Gln Leu Trp Arg Ile Met Thr
1 5 10

<210> 156

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:SELECTIN
 ANTAGONIST PEPTIDE

<400> 156

Arg Asn Met Ser Trp Leu Glu Leu Trp Glu His Met Lys

1 5 10

<210> 157

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SELECTIN

<400> 157

Ala Glu Trp Thr Trp Asp Gln Leu Trp His Val Met Asn Pro Ala Glu

1 5 10 15

Ser Gln

<210> 158

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SELECTIN

<400> 158

His Arg Ala Glu Trp Leu Ala Leu Trp Glu Gln Met Ser Pro

1 5 10

<210> 159

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SELECTIN ANTAGONIST PEPTIDE

<400> 159

Lys Lys Glu Asp Trp Leu Ala Leu Trp Arg Ile Met Ser Val

<210> 160

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SELECTIN

<400> 160

Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
1 5 10

<210> 161

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SELECTIN

<400> 161

Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys

1 5 10

<210> 162

```
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: SELECTIN
<400> 162
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
                 5
<210> 163
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: SELECTIN
     ANTAGONIST PEPTIDE
<400> 163
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
                  5
<210> 164
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
      ANTAGONIST PEPTIDE
<400> 164
Ser Cys Val Lys Trp Gly Lys Lys Glu Phe Cys Gly Ser
           5
<210> 165
<211> 12
<212> PRT ...
```

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequ nce:CALMODULIN
<400> 165
Ser Cys Trp Lys Tyr Trp Gly Lys Glu Cys Gly Ser
                5
<210> 166
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
     ANTAGONIST PEPTIDE
<400> 166
Ser Cys Tyr Glu Trp Gly Lys Leu Arg Trp Cys Gly Ser
                  5
<210> 167
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: CALMODULIN
      ANTAGONIST PEPTIDE
<400> 167
Ser Cys Leu Arg Trp Gly Lys Trp Ser Asn Cys Gly Ser
                                    10
                 5
<210> 168
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:CALMODULIN
```

ANTAGONIST PEPTIDE

```
<400> 168
Ser Cys Trp Arg Trp Gly Lys Tyr Gln Ile Cys Gly Ser
<210> 169
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:CALMODULIN
      ANTAGONIST PEPTIDE
<400> 169
Ser Cys Val Ser Trp Gly Ala Leu Lys Leu Cys Gly Ser
 1
<210> 170
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
     ANTAGONIST PEPTIDE
Ser Cys Ile Arg Trp Gly Gln Asn Thr Phe Cys Gly Ser
                                     10
<210> 171
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
      ANTAGONIST PEPTIDE
<400> 171
Ser Cys Trp Gln Trp Gly Asn Leu Lys Ile Cys Gly Ser
```

5

1

10

```
<210> 172
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
      ANTAGONIST PEPTIDE
<400> 172
Ser Cys Val Arg Trp Gly Gln Leu Ser Ile Cys Gly Ser
                  5
<210> 173
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
      ANTAGONIST PEPTIDE
<400> 173
Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu Lys Gly Ala Ile Leu Thr
                                     10
Thr Met Leu Ala Lys
             20
<210> 174
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:CALMODULIN
 <400> 174
Arg Arg Trp Lys Lys Asn Phe Ile Ala Val Ser Ala Ala Asn Arg Phe
                                      10
```

PCT/US99/25044 WO 00/24782

Lys Lys

<210> 175 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:CALMODULIN <400> 175 Arg Lys Trp Gln Lys Thr Gly His Ala Val Arg Ala Ile Gly Arg Leu 10

Ser Ser

<210> 176 <211> 14 <212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:CALMODULIN ANTAGONIST PEPTIDE

<400> 176 Ile Asn Leu Lys Ala Leu Ala Ala Leu Ala Lys Lys Ile Leu 10 5

<210> 177 <211> 18 <212> PRT <213> Artificial Sequence

<220> <223> Description of Artificial Sequence: CALMODULIN ANTAGONIST PEPTIDE

Lys Ile Trp Ser Ile Leu Ala Pro Leu Gly Thr Thr Leu Val Lys Leu

1 5 10 15

Val Ala

<210> 178

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:CALMODULIN
 ANTAGONIST PEPTIDE

<400> 178

Leu Lys Lys Leu Leu Lys Leu Leu Lys Leu Leu Lys Leu Leu Lys Leu 1 5 10

<210> 179

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:CALMODULIN ANTAGONIST PEPTIDE

<400> 179

Leu Lys Trp Lys Lys Leu Leu Lys Leu Leu Lys Lys Leu Leu Lys Lys

1 5 10 15

Leu Leu

<210> 180

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:CALMODULIN ANTAGONIST PEPTIDE

```
<400> 180
Ala Glu Trp Pro Ser Leu Thr Glu Ile Lys Thr Leu S r His Phe Ser
Val
<210> 181
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:CALMODULIN
     ANTAGONIST PEPTIDE
<400> 181
Ala Glu Trp Pro Ser Pro Thr Arg Val Ile Ser Thr Thr Tyr Phe Gly
                                  10
                5
Ser
<210> 182
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CALMODULIN
      ANTAGONIST PEPTIDE
<400> 182
Ala Glu Leu Ala His Trp Pro Pro Val Lys Thr Val Leu Arg Ser Phe
                        10
                 5
Thr
```

<210> 183 <211> 17

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:CALMODULIN
  ANTAGONIST PEPTIDE
Ala Glu Gly Ser Trp Leu Gln Leu Leu Asn Leu Met Lys Gln Met Asn
                                   10
Asn
<210> 184
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:CALMODULIN
      ANTAGONIST PEPTIDE
<400> 184
Ala Glu Trp Pro Ser Leu Thr Glu Ile Lys
                  5
<210> 185
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial
      Sequence: VINCULIN-BINDING PEPTIDE
<400> 185
Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Gly Val Ser
                                     10
                  5
Ser Ala Leu Thr Thr Thr Leu Val Ala Thr Arg
                             · 25
             20
```

PCT/US99/25044 WO 00/24782

<210> 186 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: VINCULIN-BINDING PEPTIDE <400> 186 Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Arg Val Ser Ser Ala Leu Thr Thr Thr Leu Val Ala Thr Arg 20 <210> 187 <211> 30 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: VINCULIN BINDING PEPTIDE <400> 187 Ser Arg Gly Val Asn Phe Ser Glu Trp Leu Tyr Asp Met Ser Ala Ala 5 Met Lys Glu Ala Ser Asn Val Phe Pro Ser Arg Arg Ser Arg · 25 20 <210> 188 <211> 30 <212> PRT

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence:VINCULIN BINDING PEPTIDE

<400> 188 Ser Ser Gln Asn Trp Asp Met Glu Ala Gly Val Glu Asp Leu Thr Ala

1 5 10 15

Ala Met Leu Gly Leu Leu Ser Thr Ile His Ser Ser Ser Arg
20 ·25 30

<210> 189

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:VINCULIN
BINDING PEPTIDE

<400> 189

Ser Ser Pro Ser Leu Tyr Thr Gln Phe Leu Val Asn Tyr Glu Ser Ala 1 5 10 15

Ala Thr Arg Ile Gln Asp Leu Leu Ile Ala Ser Arg Pro Ser Arg 20 25 30

<210> 190

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:VINCULIN
BINDING PEPTIDE

<400> 190

Ser Ser Thr Gly Trp Val Asp Leu Leu Gly Ala Leu Gln Arg Ala Ala 1 5 10 15

Asp Ala Thr Arg Thr Ser Ile Pro Pro Ser Leu Gln Asn Ser Arg
20 25 30

<210> 191

<211> 18

<212> PRT ...

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: VINCULIN
      BINDING PEPTIDE
<400> 191
Asp Val Tyr Thr Lys Lys Glu Leu Ile Glu Cys Ala Arg Arg Val Ser
                                    10
Glu Lys
<210> 192
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:C4BP-BINDING
      PEPTIDE
<400> 192
Glu Lys Gly Ser Tyr Tyr Pro Gly Ser Gly Ile Ala Gln Phe His Ile
                                    10
Asp Tyr Asn Asn Val Ser
             20
<210> 193
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:C4BP-BINDING
      PEPTIDE
<400> 193
Ser Gly Ile Ala Gln Phe His Ile Asp Tyr Asn Asn Val Ser Ser Ala
                                    10
Glu Gly Trp His Val Asn
```

20

```
<210> 194
 <211> 34
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:C4BP-BINDING
       PEPTIDE
 <400> 194
 Leu Val Thr Val Glu Lys Gly Ser Tyr Tyr Pro Gly Ser Gly Ile Ala
                                     10
 Gln Phe His Ile Asp Tyr Asn Asn Val Ser Ser Ala Glu Gly Trp His
                                25
Val Asn
 <210> 195
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:C4BP-BINDING
       PEPTIDE
 <400> 195
 Ser Gly Ile Ala Gln Phe His Ile Asp Tyr Asn Asn Val Ser
                                    10
                  5
 <210> 196
 <211> 17
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: UKR ANTAGONIST
        PEPTIDE
```

Ala Glu Pro Met Pro His Ser Leu Asn Phe Ser Gln Tyr Leu Trp Tyr

<400> 196

1 5 10 15

Thr

<210> 197

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<400> 197

Ala Glu His Thr Tyr Ser Ser Leu Trp Asp Thr Tyr Ser Pro Leu Ala 1 5 10 15

Phe

<210> 198

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial
 Sequence:VINCULIN-BINDING PEPTIDE

<400> 198

Ala Glu Leu Asp Leu Trp Met Arg His Tyr Pro Leu Ser Phe Ser Asn 1 5 10 15

Arg

<210> 199

<211> 17

<212> PRT ...

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence:UKR ANTAGONIST
     PEPTIDE
<400> 199
Ala Glu Ser Ser Leu Trp Thr Arg Tyr Ala Trp Pro Ser Met Pro Ser
                  5
Tyr
<210> 200
<211> 17
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: UKR ANTAGONIST
      PEPTIDE
<400> 200
Ala Glu Trp His Pro Gly Leu Ser Phe Gly Ser Tyr Leu Trp Ser Lys
                                     10
Thr
<210> 201
<211> 17
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:UKR ANTAGONIST
      PEPTIDE
<400> 201
Ala Glu Pro Ala Leu Leu Asn Trp Ser Phe Phe Phe Asn Pro Gly Leu
                                                        15
                  5
                                     10
```

90

His

```
<210> 202
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:UKR ANTAGONIST
      PEPTIDE
<400> 202
Ala Glu Trp Ser Phe Tyr Asn Leu His Leu Pro Glu Pro Gln Thr Ile
                5
                                   10
Phe
<210> 203
<211> 17
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: UKR ANTAGONIST
      PEPTIDE
Ala Glu Pro Leu Asp Leu Trp Ser Leu Tyr Ser Leu Pro Pro Leu Ala
                                   10
                  5
  1
Met
<210> 204
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: UKR ANTAGONIST
      PEPTIDE
 <400> 204
 Ala Glu Pro Thr Leu Trp Gln Leu Tyr Gln Phe Pro Leu Arg Leu Ser
```

1 5 10 15

Gly

<210> 205

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<400> 205

Ala Glu Ile Ser Phe Ser Glu Leu Met Trp Leu Arg Ser Thr Pro Ala 1 5 10 15

Phe

<210> 206

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<400> 206

Ala Glu Leu Ser Glu Ala Asp Leu Trp Thr Thr Trp Phe Gly Met Gly

1 5 10 15

Ser

<210> 207

<211> 17

<212> PRT-

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: UKR ANTAGONIST
      PEPTIDE
<400> 207
Ala Glu Ser Ser Leu Trp Arg Ile Phe Ser Pro Ser Ala Leu Met Met
                                    10
Ser
<210> 208
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:UKR ANTAGONIST
      PEPTIDE
<400> 208
Ala Glu Ser Leu Pro Thr Leu Thr Ser Ile Leu Trp Gly Lys Glu Ser
                                    10
Val
<210> 209
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:UKR ANTAGONIST
      PEPTIDE
Ala Glu Thr Leu Phe Met Asp Leu Trp His Asp Lys His Ile Leu Leu
                                    10
                  5
```

Thr

```
<210> 210
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:UKR ANTAGONIST
      PEPTIDE
<400> 210
Ala Glu Ile Leu Asn Phe Pro Leu Trp His Glu Pro Leu Trp Ser Thr
                  5
                                    10
Glu
<210> 211
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:UKR ANTAGONIST
      PEPTIDE
Ala Glu Ser Gln Thr Gly Thr Leu Asn Thr Leu Phe Trp Asn Thr Leu
                                    10
Arg
<210> 212
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 1, Xaa is V, L, I, E, P, G, Y, M, T,
```

or D

<220>

<223> At position 2, Xaa is Y, W or F

<220>

<223> At position 3, Xaa is E, F, V, W or Y

<220>

<223> At position 5, Xaa is P or azetidine

<220>

<223> At position 7, Xaa is S, A, V or ${\tt L}$

<223> At position 8, Xaa is M, F, V, R, Q, K, T, S, D, L, I or E

<220>

<223> At position 9, Kaa is E, L, W, V, H, I, G, A, D, L, Y, N, Q or P

<400> 212

1

Xaa Xaa Xaa Gln Xaa Tyr Xaa Xaa Xaa 5

<210> 213

<211> 21

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence:IL-1 ANTAGONIST PEPTIDE

Thr Ala Asn Val Ser Ser Phe Glu Trp Thr Pro Tyr Tyr Trp Gln Pro 10 15 5

Tyr Ala Leu Pro Leu

20

<210> 214

<211> 18

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
<400> 214
Ser Trp Thr Asp Tyr Gly Tyr Trp Gln Pro Tyr Ala Leu Pro Ile Ser
                                  10
                5
Gly Leu
<210> 215
<211> 21
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<400> 215
Glu Thr Pro Phe Thr Trp Glu Glu Ser Asn Ala Tyr Tyr Trp Gln Pro
                                                      15
           5
Tyr Ala Leu Pro Leu
            20
<210> 216
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
     PEPTIDE
 <400> 216
Glu Asn Thr Tyr Ser Pro Asn Trp Ala Asp Ser Met Tyr Trp Gln Pro
                                                      .15
  1 5 . 10
```

Tyr Ala Leu Pro Leu

20

<210> 217

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<400> 217

Ser Val Gly Glu Asp His Asn Phe Trp Thr Ser Glu Tyr Trp Gln Pro

Tyr Ala Leu Pro Leu

. 20

<210> 218

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<400> 218

Asp Gly Tyr Asp Arg Trp Arg Gln Ser Gly Glu Arg Tyr Trp Gln Pro 1 5 10 15

Tyr Ala Leu Pro Leu

20

<210> 219

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

```
<400> 219
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Pro Tyr
 1 5
<210> 220
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
     PEPTIDE
<400> 220
Phe Glu Trp Thr Pro Gly Tyr Trp Gln His Tyr
                5
<210> 221
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
     PEPTIDE
<223> At position 10, Xaa=azetidine
<400> 221
Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr
                5
<210> 222
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
```

```
<220>
<223> At position 1, optionally acetylated at N-terminus
<220>
<223> At position 10, Xaa=azetidine
Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr
                  5
<210> 223
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 11, Xaa=azetidine
<400> 223
Phe Glu Trp Thr Pro Gly Trp Pro Tyr Gln Xaa Tyr
<210> 224
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
       PEPTIDE
 <220>
 <223> At position 10, Xaa=azetidine
 <400> 224
 Phe Ala Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
                   5
```

```
<210> 225
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa=azetidine
<400> 225
Phe Glu Trp Ala Pro Gly Tyr Trp Gln Xaa Tyr
<210> 226
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa=azetidine
<400> 226
Phe Glu Trp Val Pro Gly Tyr Trp Gln Xaa Tyr
               5
<210> 227
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa=azetidine
```

```
<400> 227
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
                 5
<210> 228
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
     PEPTIDE
<223> At position 1, optionally acetylated at N-terminus
<223> At position 10, Xaa=azetidine
<400> 228
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
                5
<210> 229
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 6, products="MeGly"
<223> At position 10, Xaa=azetidine
<400> 229
Phe Glu Trp Thr Pro Xaa Trp Tyr Gln Xaa Tyr
       ... 5
```

```
<210> 230
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 6, Xaa=MeGly
<220>
<223> At position 10, Xaa=azetidine
<400> 230
Phe Glu Trp Thr Pro Xaa Trp Tyr Gln Xaa Tyr
                  5
<210> 231
<211> 11
<212> PRT
<213> Artificial Sequence
<220> ·
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<400> 231
Phe Glu Trp Thr Pro Gly Tyr Tyr Gln Pro Tyr
                                     10.
                  5
  1
<210> 232
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<400> 232
```

Phe Glu Trp Thr Pro Gly Trp Trp Gln Pro Tyr

10

1 5 . 10

<210> 233

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<400> 233

Phe Glu Trp Thr Pro Asn Tyr Trp Gln Pro Tyr

5

<210> 234

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:IL-1 ANTAGONIST
 PEPTIDE

<220>

<223> At position 5, Xaa=pipecolic acid

<220>

<223> At position 10, Xaa=azetidine

<400> 234

Phe Glu Trp Thr Xaa Val Tyr Trp Gln Xaa Tyr

1

5

10

<210> 235

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:IL-1 ANTAGONIST
 PEPTIDE

```
<220>
<223> At position 5, Xaa=pipecolic acid
<220>
<223> At position 10, Xaa=azetidine
<400> 235
Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
                 5
<210> 236
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 6, Xaa=Aib
<220>
<223> At position 10, Xaa=azetidine
<400> 236
Phe Glu Trp Thr Pro Xaa Tyr Trp Gln Xaa Tyr
                                     10
                  5
<210> 237
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<223> At position 5, Xaa=MeGly
 <220>
 <223> At position 10, Xaa=azetidine
```

```
<400> 237
Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
<210> 238
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
     PEPTIDE
<220>
<223> At position 11, amino group added at C-terminus
<400> 238.
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Pro Tyr
                 5
<210> 239
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 11, amino group added at C-terminus
<400> 239
Phe Glu Trp Thr Pro Gly Tyr Trp Gln His Tyr
```

<210> 240 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:IL-1 ANTAGONIST PEPTIDE <220> <223> At position 10, Xaa is an azetidine residue <223> At position 11 amino group added at C-terminus Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr 5 <210> 241 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: IL-1 ANTAGONIST PEPTIDE <220> <223> At position 1, optionally acetylated at N-terminus <220> <223> At position 10, Xaa is an azetidine residue <223> At position 11 amino group added at C-terminus <400> 241 Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr 1

<210> 242 <211> 11 <212> PRT <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST

PEPTIDE

```
<220>
<223> At position 8, Xaa is a phyosphotyrosyl residue
<220>
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11, amino group added at C-terminus
<400> 242
Phe Glu Trp Thr Pro Gly Trp Xaa Gln Xaa Tyr
                 5
                                    10
<210> 243
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11 amino group added at C-terminus
<400> 243
Phe Ala Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
        5
```

<210> 244

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<220>

```
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11 amino group added at C-terminus
<400> 244
Phe Glu Trp Ala Pro Gly Tyr Trp Gln Xaa Tyr
                  5
<210> 245
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11 amino group added at C-terminus
<400> 245
Phe Glu Trp Val Pro Gly Tyr Trp Gln Xaa Tyr
           . 5
<210> 246
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa is an azetidine residue
```

108

<223> At position 11 amino group added at C-terminus

<220>

<400> 246

PCT/US99/25044 WO 00/24782

10

```
5
<210> 247
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 1 acetylated at N-terminus
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11 amino group added at C-terminus
<400> 247
Xaa Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
                                     10
                  5
  1
<210> 248
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 6, D amino acid residue
```

Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr

<223> At position 11 amino group added at C-terminus

<223> At position 10, Kaa is an azetidine residue

<220>

<400> 248

Phe Glu Trp Thr Pro Ala Trp Tyr Gln Xaa Tyr
1 5 10

<210> 249

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<220>

<223> At position 6, Xaa is a sarcosine residue

<220>

<223> At position 10, Xaa is an azetidine residue

<220>

<223> At position 11 amino group added at C-terminus

<400> 249

Phe Glu Trp Thr Pro Xaa Trp Tyr Gln Xaa Tyr
1 5 10

<210> 250

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:IL-1 ANTAGONIST PEPTIDE

<220>

<223> At position 11 amino group added at C-terminus

<400> 250

Phe Glu Trp Thr Pro Gly Tyr Tyr Gln Pro Tyr

1 5 10

<210> 251

```
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 11 amino group added at C-terminus
<400> 251
Phe Glu Trp Thr Pro Gly Trp Trp Gln Pro Tyr
                5
<210> 252
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 11 amino group added at C-terminus
<400> 252
Phe Glu Trp Thr Pro Asn Tyr Trp Gln Pro Tyr
                  5
<210> 253
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
 <220>
 <223> At position 6, D amino acid residue
```

<220>

```
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11, amino group added at C-terminus
<400> 253
Phe Glu Trp Thr Pro Val Tyr Trp Gln Xaa Tyr
                  5
<210> 254
<211> 11
<212> PRT
<213> Artificial Seguence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 5, Xaa is a pipecolic acid residue
<220>
<223> At position 10, Xaa is an azetidine residue
<223> At position 11, amino group added at C-terminus
<400> 254
Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
                                      10
                  5
<210> 255
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
       PEPTIDE
```

<223> At position 6, Xaa=pipecolic acid

<220>

<220>

<223> At position 10, Xaa=azetidine <400> 255 Phe Glu Trp Thr Pro Xaa Tyr Trp Gln Xaa Tyr 5 <210> 256 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: IL-1 ANTAGONIST PEPTIDE <220> <223> At position 5, Xaa=MeGly <220> <223> At position 10, Xaa=azetidine <400> 256 Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr 5 <210> 257 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: INTEGRIN BINDING PEPTIDE Phe Glu Trp Thr Pro Gly Tyr Trp Gln Pro Tyr Ala Leu Pro Leu 15 10 5

<210> 258 <211> 11 ---<212> PRT <213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 1, Xaa is a 1-naphthylalanine residue
<220>
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11, amino group added at C-terminus
<400> 258
Xaa Glu Trp Thr Pro Gly Tyr Tyr Gln Xaa Tyr
                  5
<210> 259
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<220>
<223> At position 10, Xaa is a azetidine residue
<220>
<223> At position 11, amino group added at C-terminus
<400> 259
Tyr Glu Trp Thr Pro Gly Tyr Tyr Gln Xaa Tyr
                                      10
                  5
  1
<210> 260
<211> 11
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: IL-1 ANTAGONIST
```

PEPTIDE

```
<220>
<223> At position 10, Xaa is an azetidine residue

<220>
<223> At position 11, amino group added at C-terminus

<400> 260

Phe Glu Trp Val Pro Gly Tyr Tyr Gln Xaa Tyr

1 5 10
```

<210> 261 <211> 11 <212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:IL-1 ANTAGONIST PEPTIDE

<220>

<223> At position 6, D amino acid residue

<220>

<223> At position 10, Xaa is an azetidine residue

<220>

<223> At position 11, amino group added at C-terminus

<400> 261

Phe Glu Trp Thr Pro Ser Tyr Tyr Gln Xaa Tyr
1 5 10

<210> 262

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<220>

```
<223> At position 6, D amino acid residue
<223> At position 10, Xaa is an azetidine residue
<220>
<223> At position 11, amino group added at C-terminus
<400> 262
Phe Glu Trp Thr Pro Asn Tyr Tyr Gln Xaa Tyr
<210> 263
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<400> 263
Thr Lys Pro Arg
1
<210> 264
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<400> 264
Arg Lys Ser Ser Lys
 1
<210> 265
<211> 5
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<400> 265
Arg Lys Gln Asp Lys
  1
<210> 266
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
      PEPTIDE
<400> 266
Asn Arg Lys Gln Asp Lys
<210> 267
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:IL-1 ANTAGONIST
      PEPTIDE
<400> 267
Arg Lys Gln Asp Lys Arg
  1
<210> 268
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
```

PEPTIDE

```
<400> 268
Glu Asn Arg Lys Gln Asp Lys Arg Phe
                  5
<210> 269
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
       PEPTIDE
<400> 269
 Val Thr Lys Phe Tyr Phe
                   5
  1
 <210> 270
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: IL-1 ANTAGONIST
       PEPTIDE
 <400> 270
 Val Thr Lys Phe Tyr
 <210> 271
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:IL-1 ANTAGONIST
```

<400> 271

PEPTIDE

```
Val Thr Asp Phe Tyr
<210> 272
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: IL-1 ANTAGONIST
     PEPTIDE
<400> 272
Ser Gly Ser Gly Val Leu Lys Arg Pro Leu Pro Ile Leu Pro Val Thr
                  5
Arg
<210> 273
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MCA/MCP
      PROTEASE INHIBITOR PEPTIDE
<400> 273
Arg Trp Leu Ser Ser Arg Pro Leu Pro Pro Leu Pro Leu Pro Pro Arg
                                    10
                  5
 1
Thr
<210> 274
<211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:MCA/MCPPROTEASE
```

INHIBITOR PEPTIDE

<400> 274

Gly Ser Gly Ser Tyr Asp Thr Leu Ala Leu Pro Ser Leu Pro Leu His 1 5 10 15

Pro Met Ser Ser

20

<210> 275

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MCA/MCP
 PROTEASE INHIBITOR PEPTIDE

<400> 275

Gly Ser Gly Ser Tyr Asp Thr Arg Ala Leu Pro Ser Leu Pro Leu His

1 5 10 15

Pro Met Ser Ser

<210> 276

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:MCA/MCP
PROTEASE INHIBITOR PEPTIDE

<400> 276

Gly Ser Gly Ser Ser Gly Val Thr Met Tyr Pro Lys Leu Pro Pro His

1 5 10 15

Trp Ser Met Ala

20

<210> 277

```
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MCA/MCP
     PROTEASE INHIBITOR PEPTIDE
<400> 277
Gly Ser Gly Ser Ser Gly Val Arg Met Tyr Pro Lys Leu Pro Pro His
                                10
Trp Ser Met Ala
    . 20
<210> 278
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MCA/MCP
      PROTEASE INHIBITOR PEPTIDE
Gly Ser Gly Ser Ser Ser Met Arg Met Val Pro Thr Ile Pro Gly Ser
                5
                                   10
Ala Lys His Gly
             20
·<210> 279
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: ANTI-HBV
      PEPTIDE
<400> 279
Leu Leu Gly Arg Met Lys
```

```
<210> 280
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: ANTI-HBV
     PEPTIDE
<400> 280
Ala Leu Leu Gly Arg Met Lys Gly
                  5
<210> 281
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: ANTI-HBV
      PEPTIDE
<400> 281
Leu Asp Pro Ala Phe Arg
<210> 282
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: SH3 ANTAGONIST
<400> 282
Arg Pro Leu Pro Pro Leu Pro
                  5
  1
```

<210> 283 <211> 7