ORFE 523: Convex and Conic Optimization Homework 4

Zachary Hervieux-Moore

Tuesday 11th April, 2017

Exercise 1: A popular matrix norm in machine learning these days is the so-called *nuclear norm*. The nuclear norm of a matrix $A \in \mathbb{R}^{m \times n}$ is given by

$$||A||_* := \sum_{i=1}^{\min\{m,n\}} \sigma_i(A)$$

where σ_i is the *i*-th singular value of A. There is considerable interest in this norm partly because it serves as the convex envelope of the function rank(A) over the set $\{A \in \mathbb{R}^{m \times n} : ||A||_2 \leq 1\}$.

- 1) Show that the dual norm of the spectral norm is the nuclear norm.
- 2) Plot the unit ball of the nuclear norm for symmetric 2×2 matrices.
- 3) Show that the problem of minimizing the nuclear norm of a matrix subject to arbitrary affine constraints can be cast as a semidefinite program.

Answer:

1) We have that the spectral norm is

$$||A||_2 = \max\{||Ax||_2 : ||x||_2 \le 1\}$$

Then its dual is

$$||A||_{2*} = \max\{\langle A, X \rangle : ||X||_2 \le 1\}$$

We show that $||A||_{2*} = ||A||_*$ by showing they are less than or equal to each other. Let $U\Sigma V^T$ be the SVD of A. Then, let $X = UV^T$. Their inner product is

$$\langle A, X \rangle = \operatorname{trace}(V \Sigma U^T U V^T)$$

= $\operatorname{trace}(V \Sigma I V^T) = \operatorname{trace}(\Sigma V^T V)$
= $\operatorname{trace}(\Sigma) = ||A||_*$

We also have that $||X||_2 = 1$ since UV^T is orthogonal. Thus, we have showed $||A||_* \leq \max_{X:||X||_2 \leq 1} \langle A, X \rangle$

Now suppose that $||X||_2 \le 1$. Then

$$\langle A, X \rangle = \operatorname{trace}(V \Sigma U^T X) = \operatorname{trace}(U^T X V \Sigma)$$

We note that spectral norm for the matrices U^T and V are less than 1 since they are orthonormal and X by assumption.

$$||U^T X V||_2 \le ||U^T||_2 ||X||_2 ||V||_2 \le 1$$

Now let $X' = U^T X V$, which makes the trace of $\langle A, X' \rangle$ equal to

$$= \operatorname{trace}(X'\Sigma) = \sum_{i=1}^{n} \sigma_{i} x'_{ii} \leq \sum_{i=1}^{n} \sigma_{i} |x'_{ii}|$$

But we just showed that $||X'||_2 \le 1$. Hence, we have

$$= \operatorname{trace}(X'\Sigma) \le \sum_{i=1}^{n} \sigma_i = ||A||_*$$

So, $\max_{X:\|X\|_2\leq 1}\langle A,X\rangle\leq \|A\|_*$ and we conclude that

$$||A||_{2*} = \max_{X:||X||_2 \le 1} \langle A, X \rangle = ||A||_*$$

2) Now let $S_2 = \{M : M \in \mathbb{S}^{2 \times 2}, \|M\|_* \leq 1\}$. Since M is symmetric, we have that the singular values are precisely the absolute values of the eigenvalues. Thus, $\|M\|_* \leq 1 \implies |\lambda_1| + |\lambda_2| \leq 1$. This gives us four inequalities, $\pm \lambda_1 + \pm \lambda_2 \leq 1$. We also have that

$$\det\left(\begin{bmatrix}x&y/\sqrt{2}\\y/\sqrt{2}&z\end{bmatrix}-\lambda I\right)=\lambda^2-(x+z)\lambda+xz-y^2/2$$

Which means that the roots are

$$\lambda = \frac{x + z \pm \sqrt{(x - z)^2 + 2y^2}}{2}$$

Combining these roots with the four inequalities before, we get the following inequalities

$$-1 \le x + z \le 1$$
$$(x - z)^2 + 2y^2 \le 1$$

Consider the new variables $x' = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}z$, $y' = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}z$, z' = y. Then we can write the above as

$$-1 \le \sqrt{2}x' \le 1$$
$$y'^2 + z'^2 \le 1/2$$

Thus, this is a cylinder with axis (1,0,1) passing through the origin whose top and bottom line on the plane $x+z=\pm 1$ and radius $1/\sqrt{2}$. The plot is below.

Figure 1: Plot of S_2

3) We wish first turn the nuclear norm into a definition similar to the SDP setting. To do this, we need the constraint $||X||_2 \le 1$ to be some type of psd constraint. We define the matrix

$$Y = \begin{bmatrix} I_n & X \\ X^T & I_m \end{bmatrix}$$

Since $I_n > 0$, then, by Schur complement

$$Y \succeq 0 \iff I_m - X^T X \succeq 0 \iff I_m \succeq X^T X$$

But, since $||X||_2 \le 1$, then we have $x^T X^T X x \le x^T x$ which is equivalent to $X^T X \le I_m$. Thus, $||X||_2 \le 1 \iff X^T X \le I_m \iff 0 \le Y$. So now we rewrite the nuclear norm as

$$||A||_* = \max_{Y \succeq 0} \langle A, X \rangle$$

We can get Y into the objective by the following

$$\begin{split} \|A\|_* &= \frac{1}{2} \max_{Y \succeq 0} \left\langle \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}, Y \right\rangle \\ \Longrightarrow \|A\|_* &= \frac{1}{2} \max_{Y \succeq 0} \operatorname{Trace} \left(\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} Y \right) \end{split}$$

Thus, we have turned the definition of the nuclear norm into an objective involving trace and psd constraints which is precisely what we want. But we make this a minimization problem by doing the typical double negation

$$||A||_* = -\frac{1}{2} \min_{Y \succeq 0} -\text{Trace} \left(\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} Y \right)$$

Now, we return to minimizing the nuclear norm and add in the arbitrary affine constraints

$$\min_{\text{Trace}(C_i A) = b_i} ||A||_* = \min_{\text{Trace}(C_i A) = b_i} -\frac{1}{2} \min_{Y \succeq 0} \text{Trace} \left(\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} Y \right)$$

$$= -\frac{1}{2} \min_{\substack{Y \succeq 0 \\ \text{Trace}(\overline{C_i} A) = b_i}} -\text{Trace} \left(\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} Y \right)$$

Which is an SDP.

Exercise 2: You are given a list of distances d_{ij} for $\{i, j\} \in \{1, ..., m\} \times \{1, ..., m\}$. You would like to know whether there are points $x_i \in \mathbb{R}^n$, for some value of n, such that

$$||x_i - x_j||_2 = d_{ij}, \quad \forall i, j$$

- 1) Show that this problem can be formulated as a semidefinite program (SDP). If this SDP answers "yes", how would you recover n and points x_i ?
- 2) Give an example of a set of distances that respect the triangle inequality but for which there does not exist an embedding in any dimension.

Answer:

1) We can write the distances as $d_{ij} = X_{ii} + X_{jj} - 2X_{ij}$ where X_{ij} is defined to be

$$X_{ij} = \langle x_i, x_j \rangle$$

By symmetry of the inner product, X is symmetric. This comes from the fact that

$$d_{ij} = ||x_i - x_j||_2^2 = \langle x_i, x_i \rangle + \langle x_j, x_j \rangle - 2\langle x_i, x_j \rangle$$

Also, we have that X is psd since for all $y \in \mathbb{R}^m$ we have

$$y^{T}Xy = \sum_{i,j=1}^{m} \langle x_{i}, x_{j} \rangle y_{i}y_{j} = \|\sum_{i=1}^{m} y_{i}x_{i}\|_{2}^{2} \ge 0$$

Conversely, to extract the distance matrix if such an X existed (X psd and $X_{ii} + X_{jj} - 2X_{ij} = d_{ij}$), we consider a Cholesky decomposition of $X = LL^T$ where $L \in \mathbb{R}^{m \times m}$. Then, $X_{ij} = l_i^T l_j$ and $d_{ij} = ||l_i - l_j||_2^2$. Thus, we have shown that a distance matrix d_{ij} exists if and only if there exists $X \in \mathbb{R}^{m \times m}$, X psd, and $X_{ii} + X_{jj} - 2X_{ij} = d_{ij}$. This equates to testing feasibility of the SDP

$$X \succeq 0$$

$$\operatorname{Trace}((E_{ii} + E_{jj} - E_{ij})X) = d_{ij}$$

Where E_{ij} is the matrix with all zeroes except at entries (i, j) and (j, i) it is 1. Thus, we have n = m and we recover the points x_i by computing the Cholesky decomposition of X and taking $x_i = l_i$.

2) Consider the distance matrix

$$d = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$

This satisfies the triangle inequality because $d_{ij}+djk\geq 2$ for any $i\neq j\neq k$ and 2 is the largest distance in the matrix. From the previous part, we know that if an embedding exists, it exists in 4 dimensions. Now, wlog, we can place x_1 at the origin. Then x_2,x_3,x_4 all lie on the unit sphere as they are a unit away from the origin. Furthermore, we have that $||x_3-x_4||_2=2$ which implies they are diametrically opposed to each other. But then, the only way that $||x_3-x_2||_2=1$ and $||x_4-x_2||_2=1$ is if x_2 is also at the origin. But then $||x_1-x_2||_2=0\neq 1$.

Exercise 3: Recall that the spectral radius of a matrix $A \in \mathbb{R}^{n \times n}$, denoted by $\rho(A)$, is the maximum of the absolute values of its eigenvalues. We call a matrix "stable" if $\rho(A) < 1$. Let us call a pair of real $n \times n$ matrices $\{A_1, A_2\}$ stable if $\rho(\Sigma) < 1$, for finite product Σ out of A_1 and A_2 . (For examples, Σ could be $A_2A_1, A_1A_2, A_1A_1, A_2A_1$, and so on).

- 1) Does the stability of A_1 and A_2 imply stability of the pair $\{A_1, A_2\}$?
- 2) Prove (possibly using optimization) that the pair $\{A_1, A_2\}$ with

$$A_1 = \frac{1}{4} \begin{bmatrix} -1 & -1 \\ -4 & 0 \end{bmatrix}, A_2 = \frac{1}{4} \begin{bmatrix} 3 & 3 \\ -2 & 1 \end{bmatrix}$$

is stable.

Answer: 1) No, this is not true. Consider

$$A_1 = \begin{bmatrix} 0.9 & 0.9 \\ 0 & 0.9 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0.9 & 0 \\ 0.9 & 0.9 \end{bmatrix}$

Then both the eigenvalues are 0.9 for both matrices. However, their product

$$A_1 A_2 = \begin{bmatrix} 1.62 & 0.81 \\ 0.81 & 0.81 \end{bmatrix}$$

Has an eigenvalue of ≈ 2.12 and so it is not stable.

2) First, let us consider a finite product Σ . Suppose, for induction, that Σ is stable and now we wish to multiply by another matrix A_i . Assume there exists $P \succ 0$ and $A_i^T P A_i \prec P$. One might recall the similarity to the Lyapunov theorem. Also, note that if $P \succeq 0$ then $\Sigma P \Sigma \succeq 0$. Since $x^T \Sigma^T P \Sigma x = (\Sigma x)^T P(\Sigma x) > 0$. Then we have

$$A_i^T \Sigma^T P \Sigma A_i \leq A_i^T P A_i \prec P$$

Where we used the last fact in step 1 and our assumption in step 2. Thus, by the Lyapunov theorem for quadratic functions, Σ is stable. Now, let us create an SDP that finds a P that satisfies our assumptions. This is shown below. The SDP, if it is feasible, will find $A_i^T P A_i \prec P$, $0 \prec P$. Since Matlab finds a solution, this pair is stable.

Code Appendix:

```
clear;
clc;
A_1 = [-1,-1;-4,0]/4
A_2 = [3,3;-2,1]/4
epsilon = 0.1;
cvx_begin sdp
   variable P(2,2)
   minimize(P(1,1));
   subject to
   A_1'*P*A_1 <= P + epsilon*eye(2,2)
   A_2'*P*A_2 <= P + epsilon*eye(2,2)
   P >= epsilon*eye(2,2)
cvx_end
```

Exercise 4: Consider a dynamical system $x_{k+1} = Ax_k$, where $A \in \mathbb{R}^{n \times n}$. Suppose that the spectral radius of A is strictly less than 1 and consider the set

$$\mathcal{S} := \{ x \in \mathbb{R}^n : x^T x \le 1 \}$$

Give an SDP-based algorithm that constructs a set \mathcal{S} ' such that (i) $\partial S \cap \partial S'$ is nonempty, and (ii) if $x_0 \in \mathcal{S}'$, then $x_k \in \mathcal{S}$ for all k.

Answer: First note that S is a sphere centered at the origin \mathbb{R}^n . Furthermore, since the dynamical system is linear and $\rho(A) < 1$. In essence, we need to find an ellipsoid that is contained in S yet touches the boundary. Furthermore, we need to make sure it stays in S, thus, we need to find the P of the quadratic Lyapunov function to make sure it remains in S because we will have $x^TA^TPAx < x^TPx$ which the right hand side is monotonically decreasing as it is our Lyapunov function. Since $\rho(A) < 1$ this system is GAS and so such a P exists. Let us find it using an SDP.

$$\begin{aligned} \max_{\gamma, P \in \mathbb{S}^{n \times n}} \quad \gamma \\ \text{s.t.} \quad & A^T P A \preceq P \\ & 0 \preceq P \\ & \gamma I \preceq P \end{aligned}$$

Where the last constraint is used to ensure that the boundaries touch by maximizing the minimum eigenvalue. That is $\lambda_{\min}(P) = \gamma$. Now, let us define \mathcal{S}' as

$$\mathcal{S}' = \{ y \in \mathbb{R}^n : y^T P y \le \gamma \}$$

From our constraints we have $\gamma y^T I y \leq y^T P y$ which implies that $\gamma y^T y \leq y^T P y \leq \gamma$. This implies that $y^T y \leq 1$. Therefore $\mathcal{S}' \subseteq \mathcal{S}$. Furthermore, $\partial \mathcal{S}' \cap \partial \mathcal{S} \neq \emptyset$ since we can pick the eigenvector $\frac{v_{\min}}{\|v_{\min}\|}$ which has unit length and $\frac{v_{\min}^T}{\|v_{\min}\|} P \frac{v_{\min}}{\|v_{\min}\|} = \gamma \frac{v_{\min}^T}{\|v_{\min}\|} \frac{v_{\min}}{\|v_{\min}\|} = \gamma$. Thus, $\frac{v_{\min}}{\|v_{\min}\|} \in \mathcal{S}' \cap \partial \mathcal{S}$.