ЛЕКЦИЯ 5. БУЛЕВЫ ФУНКЦИИ (ПРОДОЛЖЕНИЕ)

МИНИМИЗАЦИЯ НОРМАЛЬНЫХ ФОРМ (ПРОДОЛЖЕНИЕ)

АЛГОРИТМ КВАЙНА-МАККЛАСКИ

Единичный куб и карты Карно трудно превратить в алгоритм для компьютера. Квайн и Маккласки предложили алгоритм, основанный на следующей идее:

- на первом этапе находятся элементарные конъюнкции кандидаты на включение в минимальную ДНФ;
- на втором определяются те из них, которые действительно будут включены.

Продемонстрируем работу этого алгоритма на примере.

Пример. Используя метод Квайна-Маккласки, найти минимальную ДНФ для функции

$$f = x_1 x_2 x_3 x_4 + x_1 x_$$

Первый этап (склеивание и поглощение). Запишем каждую из элементарных конъюнкций в виде битовой строки и отсортируем битовые строки по числу единиц:

Шаг 0	Шаг 1	Шаг 2	
1 0001	1,2 00*1	1,2,3,5	0**1
	1,3 0*01		
2 0011	2,5 0*11		
3 0101	2,6 *011		
4 1010	3,5 01*1		
	4,6 101*		
5 0111	4,7 1*10		
6 1011			
<u>7</u> 1110			

Элементарные конъюнкции можно объединить, если они различаются ровно по одной переменной. Следовательно, объединение битовых строк возможно, если число символов 1 отличается в них ровно на единицу, то есть объединение возможно только для строк из двух соседних групп. При объединении отсутствующую переменную будем обозначать * (получаем что-то вроде маски).

Затем объединяются попарно произведения, состоящие из двух переменных: в объединённых строках появляются уже две *. И т.д., пока это возможно.

Второй этап (построение минимального множества произведений). Мы используем не вычеркнутые строки, которые не использовались при дальнейших объединениях, и начинаем со строк, имеющих наименьшее количество переменных (т.е. наибольшее количество «*») в своей записи. Строим таблицу, в которой по строкам записываются произведения-кандидаты, а по столбцам - исходные элементарные конъюнкции. Нужно найти оптимальное покрытие нашей функции битовыми строками-масками (это означает, что в каждом из столбцов должен иметься хотя бы один X).

	0001	0011	0101	1010	0111	1011	1110
0**1	Χ	Χ	Х		Х		
*011		Χ				Х	
101*				Х		Х	
1*10				Х			Х

В качестве окончательного ответа можно выбрать или $\overline{x_1}x_4 + x_1x_3\overline{x_4} + x_2\overline{x_3}x_4$, или $\overline{x_1}x_4 + x_1x_3\overline{x_4} + x_1\overline{x_2}x_3$

ОБЩИЙ АЛГОРИТМ. Как показано в примере, алгоритм Квайна-Маккласки имеет следующую последовательность шагов для минимизации ДНФ:

- 1. Выразим каждую из элементарных конъюнкций через битовую строку длины n.
- 2. Группируем битовые строки по числу единиц.
- 3. Найдём пары битовых строк, отличающихся в одной позиции; объединим их, заменив эту позицию *.
- 4. Найдём пары строк, полученных на предыдущем этапе, отличающихся в одной позиции; объединим их, заменив эту позицию *.
- 5. Продолжаем объединять строки до тех пор, пока это возможно.
- 6. Отметим все битовые строки, которые не использовались для дальнейшего объединения.
- 7. Найдём минимальное множество отмеченных булевых строк, покрывающих исходную булеву функцию. Этот шаг является наиболее трудоёмким для его реализации возможно использовать поиск с возвращением, т.н. backtracking.

ФУНКЦИОНАЛЬНАЯ ПОЛНОТА

дизъюнкция, конъюнкция, отрицание

В любом компьютере используется двоичная система счисления \Rightarrow любая команда процессора – это булева функция. Из теоремы о существовании СДНФ следует, что любая булева функция от любого числа переменных выражается через К, Д и О. Т.е. этих функциональных элементов достаточно для построения любого процессора.

А можно ли обойтись меньшим количеством элементов?

ПОЛНЫЕ СИСТЕМЫ ФУНКЦИЙ

Определение 1. Пусть $F = \{f_1, ..., f_n\}$ - система булевых функций. Замыканием [F] называется множество всех функций, которые можно получить суперпозицией функций из F.

О пределение 2. Система функций называется замкнутой, если [F] = F.

Определение 3. Система функций называется полной, если $[F] = P_n$, где P_n - множество всех булевых функций от n переменных.

 Π р и м е р 1. Система $\{\land\lor\neg\}$ - полная. Это следует из теоремы о существовании СДНФ.

 Π р и м е р 2. Система $\{ \land \neg \}$ - тоже полная (закон де Моргана).

 Π р и м е р 3. Система $\{\lor \neg\}$ - тоже полная (закон де Моргана).

Пример 4. Система $\{ \downarrow \}$ - полная.

$$x \downarrow y = \overline{x \lor y}$$

$$x \downarrow x = \overline{x \lor x} = \overline{x}$$

$$x \land y = \overline{x \lor y} = (x \downarrow x) \downarrow (y \downarrow y)$$

Пример 5. Система {|} - полная.

$$x \mid y = \overline{x \wedge y}$$

$$x \downarrow x = \overline{x \wedge x} = \overline{x}$$

$$x \lor y = \overline{x \wedge y} = (x \mid x) \mid (y \mid y)$$

КРИТЕРИЙ ПОСТА

О пределение 4. Система функций F называется *предполной*, если она не полная, но после добавления к ней любой функции, которая не входит в [F], она становится полной.

Оказывается (можно это доказать), что множество всех предполных замкнутых классов исчерпывается следующим списком:

- 1) T_0 функции, сохраняющие 0;
- 2) T_1 функции, сохраняющие 1;
- 3) S самодвойственные функции (т.е. при замене всех аргументов на противоположные, значение функции тоже меняется на противоположное);
- 4) M монотонные функции (если все аргументы меньше или равны, то и значение функции меньше или равно);
- 5) L линейные функции (это *полиномы Жегалкина* первой степени: $a_0 \oplus a_1 x_1 \oplus ... \oplus a_n x_n$).

Теорема (*критерий Поста*). Система функций F является полной тогда и только тогда, когда она не принадлежит целиком ни одному из классов T_0, T_1, S, M, L .

Доказательство: без доказательства.

СХЕМЫ ИЗ ФУНКЦИОНАЛЬНЫХ ЭЛЕМЕНТОВ*

Пример.

Пример 9.8. Что получится на выходе функциональной схемы, представленной на рис. 9.9?

Рисунок 9.9. Функциональная схема

Таблица 9.10

Вентиль	Вход	Выход
1	p, q	pq
2	$p,\;ar{q}$	$par{q}$
3	$pq,\; r$	pqr
4	$par{q}, r$	$par{q}r$
5	$pq, ar{r}$	$pqar{r}$
6	$pqr,\;par{q}r$	$m{pqr}ee m{p}ar{m{q}}m{r}$
7	$m{pqr}ee m{par{q}r}, m{pqar{r}}$	$pqree par{q}ree pqar{r}$

Таким образом, на выходе схемы получится функция $pqr \lor p\bar{q}r \lor pq\bar{r}$.

Упростим эту схему: $pqr \lor pqr \lor pqr = pq \lor pr = p(q \lor r)$, то есть упрощённая схема будет содержать всего два элемента:

Рисунок 9.11.

КОНТАКТНЫЕ СХЕМЫ*

КОНТАКТ

- устройство, которое в процессе работы может быть в двух состояниях: замкнутом или разомкнутом.

Все контакты делятся на два класса: нормально разомкнутые и нормально замкнутые. Нормально разомкнутые – разомкнуты при X=0, нормально замкнутые – замкнуты при X=0.

Контакты X и Y можно соединять между собой параллельно или последовательно:

С помощью таких соединений из контактов можно составлять контактные схемы.

Любую контактную схему можно описать логическим выражением, содержащим три операции: отрицание, дизъюнкцию, конъюнкцию.

Пример 1. Упрощение схемы.

$$f(X,Y,Z) = X(Z \vee \overline{Y}) \vee \overline{X}Z \vee (X \vee \overline{Y})\overline{Z}$$

Упростим эту схему:

$$f(X,Y,Z) = XZ \lor X\overline{Y} \lor \overline{X}Z \lor \overline{Y}\overline{Z}$$

X	Y	Z	f
0 0 0 0	0	0	1
0	0	1	1
0	1	1 0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1
$f = \overline{V} $			

 $f = Y \vee Z$

Пример 2. Требуется, чтобы включение света в комнате осуществлялось с помощью двух различных выключателей таким образом, чтобы нажатие на любой из них приводило к включению света, если он был выключен, и выключению, если он был включен. Построить по возможности более простую цепь, удовлетворяющую этому требованию.

$$f(x, y) = x\overline{y} \vee \overline{x}y$$

X	Y	f	f
0	0	a	0
0	1	-a	1
1	0	-a	1
1	1	a	0

Физическая реализация:

Пример 3. Требуется, чтобы включение света в комнате осуществлялось с помощью трех различных выключателей таким образом, чтобы нажатие на любой из них приводило к включению света, если он был выключен, и выключению, если он был включен. Построить по возможности более простую цепь, удовлетворяющую этому требованию.

X 0	Y	Z	f	f
0	0	0	a	0
0	0	1	-a	1
0	1	0	a -a -a	1
0	1	1	a -a	0
1	0	0	-a	1
1	0	1	a	0
1	1	0	a	0
1	1	1	а -а	1

 $f(x, y, z) = x\overline{yz} \vee \overline{x}y\overline{z} \vee \overline{x}\overline{y}z \vee xyz$