

第20章 Catalyst 5000交换机

本章主题

- 局域网交换技术概述
- Catalyst产品线
- Catalyst 交换机上的 VLAN配置
- Catalyst 交换机的端口安全配置
- VLAN之间的路由
- Catalyst 交换机故障排除

20.1 引言

本章将讨论Cisco交换机产品,着重Catalyst 5000系列交换机产品。Catalyst 交换机不仅仅是一个快速交换设备,它还支持多个虚拟局域网(VLAN)、先进的路由功能及ATM局域网仿真。

20.1.1 Catalyst 5000系列概述

Catalyst 5000系列交换机包括四种不同型号,各型号的概要特性如下表所示:

交换机型号	模块化插槽	概要特性
Catalyst 5002	2	支持一个监控模块
		可安装一个交换模块
Catalyst 5000	5	支持一个监控模块
		可最多安装四个交换模块
		支持路由交换模块
Catalyst 5505	5	支持一个监控模块
		可安装一个冗余监控模块
		可最多安装四个交换模块
		支持路由交换模块
Catalyst 5500	13	支持一个监控模块
		可安装一个冗余监控模块
		可最多安装12个交换模块
		支持Lightstream ATM模块
		支持路由交换模块

20.1.2 Catalyst 5500产品概述

Catalyst 5500是一个13插槽的高性能交换机,其关键特性包括:

- 3.6Gbps底板。
- 最多达528个交换式10M以太网端口。
- 最多达264个交换式100M以太网端口。

- 最多达132个交换式100M以太网光纤端口。
- 最多达8个ATM OC-12端口。
- 最多达32个DS3 ATM接口。
- 最多达96个25Mbps ATM端口。
- 最多达7个路由交换模块。
- 最多达7个ATM LANE模块。
- 最多达11个FDDI模块。
- 支持双冗余监控引擎能力。
- 热交换模块。
- 热交换电源供应。
- 热交换风扇设备。

20.1.3 Catalyst交换机部件

图20-1列出了Catalyst 5000系列交换机所支持的模块类型。

图20-1 Catalyst交换机部件

- 监控引擎(Supervisor Engine): 监控引擎是Catalyst交换机的主处理器。 Catalyst 5500 可以安装两块监控引擎,如果其中的一个出现问题,另一个就会代替它工作。 II型监控 引擎只支持1.2Gbps的背板带宽,III型监控引擎支持3.6Gbps的背板带宽,以及400Mbps 的快速以太链接。
- 路由交换模块(RSM): 该模块为Catalyst交换机提供路由功能。 RSM运行普通的Cisco路由器操作系统IOS,在性能上与Cisco7500路由器相当。RSM没有物理接口,它利用逻辑接口实现不同VLANs之间的路由。
- 以太网/令牌环网/FDDI交换模块:Catalyst交换机支持多种类型的局域网交换,而且还可以由多个100Mbps以太网链路合并为一个逻辑的速率高达 800Mbps的全双工快速以太

通道。

20.1.4 虚拟局域网

为了理解虚拟局域网(VLAN)的概念,首先必须了解主机节点连接至局域网的各种方式。

图20-2是一个传统的连接有6台工作站的非交换式以太网,每台工作站与以太网集线器的一个接口相连。一个以太网集线器就是一个独立的冲突域(在任一时刻只能有一台工作站传输数据)和一个独立的广播域(所有的工作站将会接收到另一工作站发送的所有数据流),因此6台工作站处于同一个冲突域和广播域之中。

图20-3所示网络中使用了网桥设备。每 3台工作站位于一个局域网中,两个局域网之间通过一个网桥进行连接,与网桥相连的每个局域网是一个单独的冲突域,但所有六台工作站仍属于同一个广播域。

图20-4中采用了路由器设备。每3台工作站位于一个局域网中,两个局域网之间通过一个路由器连接,与路由器相连的每个局域网分别属于单独的冲突域和广播域。

图20-5所示网络中使用的是支持 VLAN的局域网交换机。所有 6台工作站连接至同一个 LAN交换机。

虚拟局域网是在管理上定义的一个广播域,位于同一个 VLAN中的所有工作站能够接收到该VLAN中某一工作站发送的广播包。听起来 VLAN与局域网交换差不多,但最关键的区别在于一个VLAN中的所有工作站不受实际物理位置的限制。

该方式中每个 VLAN内的3台工作站属于一个单独的广播域 ,6台工作站分别属于不同的冲突域。

图20-2 以太网集线器

图20-3 网桥示例

图20-4 路由器连接

图20-5 局域网交换机连接

20.1.5 VLAN之间的路由

位于两个不同VLAN内的路由器与位于两个不同局域网内的路由器一样,需要考虑如何进行路由的问题。Catalyst交换机可以通过以下两种方式中的一种来实现VLAN之间的路由:

• Catalyst交换机可以采用交换机互连链路(ISL)封装形式通过100Mbps以太网口连接至路由器上。路由器利用子接口(subinterface)来进行VLAN之间的路由,在路由器上为每个VLAN分配不同的子接口号,如图20-6所示。

图20-6 VLAN之间的路由

• 使用路由交换模块(RSM)。Catalyst RSM相当于一块卡式的Cisco 7500级别路由器,它 没有实际的物理接口,而是使用虚拟接口来实现 VLAN之间的路由。

20.1.6 Catalyst交换机的访问

Catalyst 5000系列交换机拥有一个被称为 SC0的内部逻辑接口, SC0接口提供一个有效的 IP地址用于远程登录(telnet)到交换机上进行配置和监测,通常该接口位于 VLAN1,但也可被移动到其他 VLAN中。如果没有 SC0接口,对交换机的访问必须通过监控模块上的控制口或者Aux端口。Catalyst交换机还支持 SLIP连接,配置 SLIP IP地址时只需在交换机的 SL0接口上定义即可。

20.1.7 Catalyst交换机中继

Catalyst交换机的用户端口也可以定义为中继口,用于 Catalyst交换机之间的连接和交换机与路由器的连接。

20.1.8 Catalyst交换机配置

Catalyst交换机的配置与Cisco路由器的配置有些不同,表现在以下几个方面:

- 路由器有一个专门的配置模式,而在 Catalyst交换机中,则直接在特权模式的命令行提示符状态下输入命令。但两者都是在配置作出修改后立即生效。
- 路由器有几种运行模式,如执行模式、调试模式和配置模式等等,而 Catalyst交换机只有用户模式和特权模式两种。
- 路由器的配置有两种存储方式:当前运行配置和开机启动配置。当前运行配置是目前路由器中处于工作状态的配置,而开机启动配置则是保存在 NVRAM中的配置。当对路由器的配置进行修改时,当前运行配置随着发生变化,但开机启动配置并不改变。在 Catalyst交换机中,配置只有一种存储方式,对交换机配置作出的任何修改都将保存下来。
- 在路由器中show run命令将显示当前运行配置,路由器的配置通常比较短,只列出输入的配置命令和非缺省的命令项。 Catalyst交换机的配置比较长,它列出该交换机的每一个参数,而不管这些参数是不是用户所配置的。以下为从交换机配置中摘录的部分内容。

```
#module 5 : 12-port 10/100BaseTX Ethernet
set module name
set module enable
set VLAN 1
              5/1-10
              5/11-12
set VLAN 2
set port channel 5/1-12 off
set port channel 5/1-12 auto
                    5/1-12
set port enable
set port level
                     5/1-12
                            normal
                    5/1-12
set port speed
                             auto
                    5/1-12
                             disable
set port trap
                    5/11 RouterB
set port name
set port name
                    5/12 RouterA
                    5/1-10
set port name
set port security
                    5/1-12 disable
set port broadcast 5/1-12 0
set port membership 5/1-12 static
```



```
5/1-12
set cdp enable
set cdp interval 5/1-12 60
set trunk 5/1 auto 1-1005
set trunk 5/2 auto 1-1005
set trunk 5/3 auto 1-1005
set trunk 5/4 auto 1-1005
set trunk 5/5 auto 1-1005
set trunk 5/6
               auto 1-1005
set trunk 5/7
               auto 1-1005
set trunk 5/8 auto 1-1005
set trunk 5/9 auto 1-1005
set trunk 5/10 auto 1-1005
set trunk 5/11 auto 1-1005
set trunk 5/12 off 1-1005
                          5/1-12 disable
set spantree portfast
                          5/1
                               100
set spantree portcost
set spantree portcost
                          5/2
                               100
set spantree portcost
                          5/3
                               100
                          5/4
                               100
set spantree portcost
set spantree portcost
                          5/5
                               100
set spantree portcost
                          5/6
                               100
                         5/7
set spantree portcost
                               100
set spantree portcost
                         5/8
                               100
set spantree portcost
                         5/9
                               100
                         5/10 100
set spantree portcost
set spantree portcost
                          5/11 100
                          5/12 100
set spantree portcost
                          5/1-12 32
set spantree portpri
set spantree portvlanpri 5/1
set spantree portvlanpri 5/2
set spantree portvlanpri 5/3
set spantree portvlanpri
set spantree portvlanpri
set spantree portvlanpri 5/6
set spantree portvlanpri 5/7
set spantree portvlanpri 5/8
set spantree portvlanpri 5/9
set spantree portvlanpri 5/10 0
set spantree portvlanpri
                         5/11 0
set spantree portvlanpri 5/12 0
set spantree portvlancost 5/1 cost 99
set spantree portvlancost 5/2 cost 99
set spantree portvlancost 5/3 cost 99
set spantree portvlancost 5/4 cost 99 set spantree portvlancost 5/5 cost 99
set spantree portvlancost 5/6 cost 99
set spantree portvlancost 5/7
                               cost 99
set spantree portvlancost 5/8 cost 99
set spantree portvlancost 5/9
                               cost 99
set spantree portvlancost 5/10 cost 99
set spantree portvlancost 5/11 cost
set spantree portvlancost 5/12 cost 99
```

20.2 本章所讨论的命令

- clear config all
- ping host [packet_size] [packet_count]
- **set interface sc0** [ip_addr [netmask [broadcast]]]
- set ip permit {enable | disable} / set ip permit ip_addr | mask |
- set port name mod_num/port_num [name_string]
- set port security mod_num/port_num {enable | disable}
 [mac_addr]

- set trunk mod_num/port_num [on | off | desirable | auto]
 [vlan_range]
- **set vlan** vlan_num mod_num/port_num
- set vtp domain name
- show cam dynamic
- show interface
- show ip permit
- **show mac** [mod_num/[port_num]]
- **show module** mod_num
- **show port** [mod_num/port_num]
- show system
- show trunk [mod_num[/port_num]]
- show version
- show vlan [vlan]
- show vtp domain

命令的定义

- clear config all: 该特权命令清除Catalyst交换机的所有配置,重新设置交换机。
- ping: 这是一个用户模式命令,它向选定节点发送 ICMP回波请求。
- set interface: 该特权命令可设置用于带内 telnet和进行SNMP访问的SC0 接口,也可设置用于SLIP远程登录和进行SNMP访问的SL0接口。
- set ip permit: 该特权命令激活或者取消IP访问列表,在IP访问列表中创建一项列表。
- set port name: 该特权命令用于设置 Catalyst交换机的端口名。
- set port security: 该特权命令用于激活或取消交换机 MAC级的端口安全设置。
- set trunk: 该特权命令将Catalyst交换机的端口设置为中继端口。
- set vlan: 该特权命令用于配置交换机中的 VLAN。
- set vtp domain: 该特权命令设置 VTP域名。
- show cam dynamic: 该命令是一个用户模式命令,它显示 CAM表的内容。
- show interface: 该命令用于显示Catalyst交换机的接口信息。
- show ip permit: 该命令可显示Catalyst交换机上配置的IP访问列表信息。
- show mac: 该命令显示关于交换机的 MAC级的统计信息。
- show module: 该命令给出Catalyst交换机的模块信息。
- show port: 该命令给出关于交换机的端口级的统计信息。
- show system: 该命令用于显示Catalyst交换机的系统信息。
- show trunk: 该命令提供交换机的中继信息。
- show version: 该命令用于显示交换机的硬件和软件版本信息。
- show vlan: 该命令显示交换机的 VLAN信息。
- show vtp domain: 该命令用于显示交换机的 VTP域信息。

20.3 IOS需求

本章实验中使用的是IOS 11.2版。IOS 11.2版及更高版本支持ISL中继。Catalyst交换机中

运行的是3.1版操作系统。

20.4 实验77:基本Catalyst交换机配置、VLAN和端口安全设置

20.4.1 所需设备

为完成本实验需要下列设备:

- 1) 带以太网口的两台路由器;
- 2) 带10Mbps或100Mbps以太网端口的Catalyst交换机;
- 3) 两根以太网电缆;
- 4) Cisco路由器控制口电缆:
- 5) 连接路由器控制口和Catalyst交换机的直连电缆。

20.4.2 配置概述

本实验将演示如何配置用于简单局域网交换的 Catalyst 5500交换机。两台路由器(路由器 A和路由器 B)与Catalyst交换机的连接方式如图 20-7所示,这两台路由器将属于同一个 VLAN,Catalyst交换机上将设置两种安全特性: IP许可和MAC过滤。

- IP许可:该特性允许最多达 10个IP地址进入Catalyst交换机,而且该交换机只接受来自 预定义的这10个IP地址的远程登录和 SNMP数据包。如果其他未经授权的地址试图向交 换机发送远程登录和 SNMP数据包,交换机将予以拒绝,并且记录该被拒绝的 IP地址。
- MAC过滤:可以配置Catalyst交换机的某端口使它拒绝来自在交换机中未预定义的 MAC 地址的数据流。

图20-7 具有端口安全特性的交换机配置

注意 Cisco生产许多型号的局域网交换机,本实验中使用的是Catalyst 5500交换机,也可以用其它一些Cisco交换机设备来完成,如装有企业级版软件的 Catalyst 1924交换机就是一款较便宜的交换机设备,它同样支持VLAN和100Mbps ISL中继。

Catalyst交换机与 Cisco路由器使用的 IOS操作系统不同,命令设置方式也不一样。许多在路由器中具有的特性,如使用 Tab键来结束一条命令的输入,不能想当然地用于 Catalyst交换机。另外, Catalyst交换机中的端口是通过插槽号和端口好来确定的,如本实验中两台路由器分别与第 5槽的第11和第12端口连接,在 Catalyst交换机中分别被表示为 5/11和5/12。

20.4.3 路由器配置

本实验中两台路由器的配置情况如下所示:

1. 路由器A

```
Current configuration:
version 11.2
no service password-encryption
no service udp-small-servers
no service tcp-small-servers
1
hostname RouterA
interface Ethernet0/0
 ip address 192.1.1.1 255.255.255.0←Define the IP address for the interface
                                     connected to the Catalyst switch
no ip classless
line con 0
line aux 0
line vty 0 4
 exec-timeout 30 0
login
end
2. 路由器B
Current configuration:
version 11.2
no service password-encryption
no service udp-small-servers
no service tcp-small-servers
hostname RouterB
interface Ethernet0/0
 ip address 192.1.1.2 255.255.255.0\leftarrowDefine the IP address for the interface
                                      connected to the Catalyst switch
no ip classless
line con 0
line aux 0
line vty 0 4
 exec-timeout 30 0
 login
Ţ
end
```

20.4.4 监测配置

连接Catalyst 5500交换机。首先我们从清除它所有的配置开始,运行 clear config all命令使交换机回到厂家默认配置状态。

```
Console> (enable) clear config all

This command will clear all configuration in NVRAM.

This command will cause ifIndex to be reassigned on the next system startup.

Do you want to continue (y/n) [n]? y
......
```

System configuration cleared.

在Catalyst交换机重新启动后,所有端口都被定义为同一个 VLAN: VLAN1。这时的 Catalyst是一个多端口的局域网交换机,它将自动检测与其端口相连的局域网并正确地设置相 应端口的参数。可以用 show port命令看到端口5/11和5/12已被自动配置,它们的状态为"已连 接",都属于VLAN 1,运行的是10Mbps速率的半双工以太网。注意我们在使交换机回到厂家 默认配置状态重启之后无需手工配置 5/11和5/12端口。

Console> (enab	le) sh port					
Port Name	Port Name Status			Duplex	Speed	Type
5/11	connected	1	normal	a-half	a-10	10/100BaseTX
5/12	connected	1	normal	a-half	a-10	10/100BaseTX

关于端口的更详细的信息可以通过在 show port命令后加端口号得到。输入 show port 5/11 命令,可以看到关于端口5/11的附加信息,包括MAC级安全信息,以太网冲突和错误信息等。

Console> (enable) Port Name St		tus Vla	an Level								
5/11 Port	con:	nected 1	norma	l a-half	a-10	10/100BaseTX Trap					
5/11	disabled				No	disab	led				
	Broadcast-Li		adcast-Drop								
5/11	_	0									
		mode s	el Channel Neighbor status device								
5/11	connected	auto i			,						
Port	Align-Err	FCS-Err		Rcv-Err	UnderSize						
5/11	0	0	0	0	0						
Port	Single-Col			Excess-Col			Giants				
5/11	0						0				
	ime-Cleared										
	Sun May 16 1999, 02:25:04										

可以设置交换机端口的名称以便更容易地区分,用 set port name命令来为端口5/11和5/12 命名。

Console> (enable) set port name 5/11 RouterB Port 5/11 name set. Console> (enable) set port name 5/12 RouterA Port 5/12 name set.

现在执行 show port 5/12命令,可以看到端口 5/12已被设置为"RouterA"。

Consol Port 5/12	Name	le) sh port 5 Status connected	5/12 Vlan 1	Level normal	Duplex a-half	Speed a-10	Type 10/100BaseTX
Port 5/12	Securi disable		-Src-Addr	Last-S	rc-Addr	Shutdown No	Trap disabled
Port	Broadcas	t-Limit 1	Broadcast	-Drop			

5/12	_	0					
Port	Status Channel mode		Channel status		Neighbor port		
5/12	connected	auto	not channel				
Port	Align-Err	FCS-Err	Xmit-Err	Rcv-Err	UnderSiz	e	
5/12	0	0	0	0	0		
					•		
Port	Single-Col	Multi-Col	ll Late-Coll	Excess-Col	Carri-Se	n Runts	Giants
-							
5/12	0	0	0	0	0	0	0

Last-Time-Cleared

Sun May 16 1999, 02:25:04

连接至路由器B,证实从路由器B可以ping通路由器A的IP地址为192.1.1.1的接口。注意路由器A和B在交换机重启时被自动置于VLAN1。

RouterB#ping 192.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Catalyst交换机可分配一个用于Telnet和SNMP访问的内部IP地址,可以用show interface命令来查看该内部IP地址。下面的显示中,交换机没有设置IP地址。

Console> (enable) sh interface

s10: flags=51<UP, POINTOPOINT, RUNNING>

slip 0.0.0.0 dest 128.73.35.160

sc0: flags=63<UP, BROADCAST, RUNNING>

VLAN 1 inet 0.0.0.0 netmask 0.0.0.0 broadcast 0.0.0.0

用于带内访问用途的IP地址可以通过 set interface sc0命令在交换机上设置。下例中为 sc0配置IP地址192.1.1.3,注意该地址与路由器 A的以太网口地址(192.1.1.1)和路由器 B的以太网口地址(192.1.1.2)位于同一个网络。

Console> (enable) set interface sc0 192.1.1.3

Interface sc0 IP address set.

这时执行show interface命令将显示sc0的IP地址已被设为192.1.1.3。

Console> (enable) sh interface

s10: flags=51<UP, POINTOPOINT, RUNNING>

slip 0.0.0.0 dest 128.73.35.160

sc0: flags=63<UP,BROADCAST,RUNNING>

VLAN 1 inet 192.1.1.3 netmask 255.255.255.0 broadcast 192.1.1.255

设定sc0的IP地址后,就可以直接ping该地址确认其为激活状态。

Console> (enable) ping 192.1.1.3 192.1.1.3 is alive

我们还可以ping路由器A和路由器B。

Console> (enable) ping 192.1.1.1 192.1.1.1 is alive

Console> (enable) ping 192.1.1.2 192.1.1.2 is alive

路由器A和路由器B都应当可以ping通Catalyst交换机的sc0接口。下面证实从路由器A可以ping通Catalyst交换机。


```
RouterA#ping 192.1.1.3
```

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.1.1.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms
```

20.4.5 IP许可列表

Catalyst交换机提供了强大的安全特性,其中一个就是交换机的 IP列表访问能力。 Catalyst 交换机的 IP访问特性允许用户定义最多达 10个IP地址对交换机进行 SNMP访问和远程登录。访问列表可以用命令 show ip permit进行查询,下面的显示说明交换机的访问列表中尚未定义 IP地址。

```
Console> (enable) show ip permit
IP permit list feature disabled.
Permit List Mask
```

```
Denied IP Address Last Accessed Time Type
```

可以用命令set ip permit 192.1.1.1在交换机的访问列表中增加一个 IP地址,该命令将允许路由器A对Catalyst交换机进行远程登录或SNMP访问。

```
Console> (enable) set ip permit 192.1.1.1 192.1.1.1 added to IP permit list.
```

这时用show ip permit命令可以看到192.1.1.1已经在访问列表中了,注意 IP访问列表特性当前处于关闭状态,这是访问列表的缺省状态。

```
Console> (enable) show ip permit IP permit list feature disabled. Permit List Mask
```

192.1.1.1

```
Denied IP Address Last Accessed Time Type
```

在定义了IP访问列表之后,必须用set ip permit enable命令将其激活。

```
Console> (enable) set ip permit enable IP permit list enabled.
```

现在再连接至路由器 B,它与Catalyst交换机相连的以太网口的 IP地址为192.1.1.2,该地址不在交换机的 IP访问列表中。在路由器 B上ping交换机的 SC0接口,结果能够 ping通。需要引起注意的是,IP访问列表只是拒绝其他 IP地址对交换机的 SNMP和远程登录访问。

```
RouterB#ping 192.1.1.3
```

```
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.1.1.3, timeout is 2 seconds: !!!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms
```

在路由器B上尝试远程登录到 Catalyst交换机的IP地址192.1.1.3,将看到交换机拒绝了远程登录会话,因为路由器B的以太网口地址192.1.1.2并不在交换机的IP访问列表中。

```
RouterB#telnet 192.1.1.3
Trying 192.1.1.3 ... Open
Access not permitted. Closing connection...
```

[Connection to 192.1.1.3 closed by foreign host]

我们再连接至Catalyst交换机,用 show ip permit命令查看IP访问列表,可以发现交换机记录了刚才所做的远程登录尝试,记录中包括被拒绝的 IP地址及其活动。

Console> (enable) show ip permit IP permit list feature enabled. Permit List Mask

192.1.1.1

可以用set ip permit disable命令取消IP访问列表。

Console> (enable) set ip permit disable IP permit list disabled.

重新连接至路由器B并尝试远程登录到交换机上,将发现远程登录成功,这是因为IP访问列表已经被取消。

RouterB#telnet 192.1.1.3 Trying 192.1.1.3 ... Open

Cisco Systems Console

Enter password:
Console> ena
Enter password:
Console> (enable)
Console> (enable) exit

[Connection to 192.1.1.3 closed by foreign host]

20.4.6 安全端口过滤

可以对Catalyst交换机进行配置,使得它的某端口只接收来自预定义的 MAC地址的数据流,这一特性被称为安全端口过滤。从下面 show port 5/12命令的输出可以看到该端口的 MAC源地址项为空。

Console> (enable) sh port 5/12 Port Name Status Vlan Level Duplex Speed Type												
5/12	RouterA con	nected 1	norma]	l a-half	a-10	10/100BaseTX						
Port	Security	Secure-Src	-Addr Las	st-Src-Addr	Shutdown	Trap						
5/12	disabled				No	disab	leđ					
Port	Broadcast-Li	mit Broa	dcast-Drop									
5/12 Port				Neighbor device	Neighbor port							
5/12	connected	auto i	not channel			· ==						
Port	Align-Err	FCS-Err	Xmit-Err	Rcv-Err	UnderSize							
5/12	0	0	0	0	0							
Port	Single-Col	Multi-Coll	Late-Coll	Excess-Col	Carri-Sen	Runts	Giants					
5/12	0	0	0	0	0	0	0					

下面设置端口5/12,使它只接收来自特定 MAC地址的数据流。为了配置 Catalyst交换机的安全端口过滤,首先必须知道与端口5/12相连的主机的MAC地址。本实验中,与 Catalyst交换机的端口5/12相连的是路由器 A的以太网接口e0/0。连接至路由器 A,执行show interface e0/0命令查看以太网口e0/0的MAC地址,得知其MAC地址为00e0.1e5b.2761。

```
RouterA#sh int e 0/0
Ethernet0/0 is up, line protocol is up
  Hardware is AmdP2, address is 00e0.1e5b.2761 (bia 00e0.1e5b.2761)
  Internet address is 192.1.1.1/24
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255
  Encapsulation ARPA, loopback not set, keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:22, output 00:00:07, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     18672 packets input, 17647218 bytes, 0 no buffer
     Received 3662 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 input packets with dribble condition detected
     24112 packets output, 18236637 bytes, 0 underruns
     118 output errors, 0 collisions, 1 interface resets
     0 babbles, 0 late collision, 1 deferred
     118 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
```

现在与Catalyst交换机相连,用如下所示的 set port security命令定义交换机端口 5/12所接受的MAC地址。

Console> (enable) set port security 5/12 enable 00-e0-1e-5b-27-62 Port 5/12 port security enabled with 00-e0-1e-5b-27-62 as the secure mac address Trunking disabled for Port 5/12 due to Security Mode

这时在路由器A上试图ping 交换机的sc0接口IP地址192.1.1.3,结果不成功。

```
RouterA#ping 192.1.1.3
```

Broadcast-Limit

Port

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.1.3, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)
```

Broadcast-Drop

连接至Catalyst交换机可以发现端口 5/12处于关闭状态,该端口被关闭的原因可从 Secure-Src-Addr和Last-Src-Addr两栏得到解释。这两栏列出了来自哪些 MAC地址的数据被允许进入交换机端口以及最后一个向端口发送数据的 MAC地址。在下面的输出中可以看到 Secure-Src-Addr和Last-Src-Addr两栏中的内容不相匹配。

Con	.so⊥∈	e> (enabl	le) sr	low port	5/12							
Por	t	Name	Stati	ıs	Vlan	Le	vel	Duplex	Speed	Тут	pe	
	_											
5/	12	RouterA	shut	lown	1	no	rmal	a-half	a-10	10	/100BaseTX	
Por	t	Securit	ΞУ	Secure-	Src-Addr		Last-S	rc-Addr	Shutdow	n	Trap	
5/	12	enable	i	00-e0-1	e-5b-27-	- 62	00-e0-	le-5b-27-61	Yes		Disabled	

5/12	-	0						
Port	Status	Channel (Channel	Neighbor	Neighbor			
		mode s	status	device	por	port		
5/12	shutdown	auto r	not channel					
Port	Align-Err	FCS-Err	Xmit-Err	Rcv-Err	UnderSize			
5/12	0	0	0	0	0			
Port	Single-Col	Multi-Coll	Late-Coll	Excess-Col	Carri-Sen	Runts	Giants	
5/12	0	0	0	0	0	0	0	
3, 11	ŭ	•	-	-				

Last-Time-Cleared

Sun May 16 1999, 02:25:04

用set port security 5/12 disable命令可以取消在端口 5/12所作的安全设置。

Console> (enable) set port security 5/12 disable Port 5/12 port security disabled.

执行命令show port 5/12查看端口状态,可以发现该端口的状态变为连接状态。

		sh port 5/12 atus Vl		Duplex			_				
5/12	RouterA cor	nected 1		a-half							
Port	Security	Secure-Sro	-Addr Las	st-Src-Addr	Shutdov	wn Trap					
5/12	disabled				No	disabled					
Port	Broadcast-L	imit Broa	adcast-Drop								
5/12 Port				Neighbor device		-					
5/12	connected	auto	not channel								
Port	Align-Err	FCS-Err	Xmit-Err	Rcv-Err	UnderSize						
5/12	0	0	0	0 .	0						
Port	Single-Col		Late-Coll		Carri-Sen	Runts Giants	3				
5/12	0	0	0	0	0	0 0					
Last-T	Last-Time-Cleared										

Sun May 16 1999, 02:25:04

这时在路由器A上又可以ping通路由器B的接口IP地址192.1.1.2。

RouterA#ping 192.1.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.1.2, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/7/8 ms

下面将把路由器 A和路由器 B移到 VLAN 2。前面讲过,当 Catalyst 交换机清除配置重新启 动时,它把所有端口设置在 VLAN 1中。在设置其他 VLAN号以前,Catalyst交换机必须拥有 一个域名。下面 show vtp domain 命令的输出说明交换机还没有设置域名。

Console> (en	able) sh vtp domair Do	n main Index	VTP Version	Local Mode	Password
	1		2	server	-
Vlan-count 5	Max-vlan-storage 1023	Config Rev		ifications abled	
Last Updated	V2 Mode	Pruning	PruneEligib]	le on Vlans	
0.0.0.0	disabled	disabled	2-1000		
田合会 4 4	domain CCIE STUD	v cuine##	協切识罢一人	·····································	

用命令set vtp domain CCIE_STUDY_GUIDE为交换机设置一个域名。

Console> (enable) set vtp domain CCIE_STUDY_GUIDE VTP domain CCIE_STUDY_GUIDE modified

Console> (en	able) show vtp dom D	nain Oomain Index	VTP Version	Local Mode	Password	
CCIE_STUDY_G	UIDE 1		2	server	-	
Vlan-count	Max-vlan-storage	Config Rev		ifications		
5	1023	0		abled		
Last Updated 0.0.0.0	V2 Mode disabled	Pruning disabled	PruneEligib 2-1000	le on Vlans		

使用set VLAN 2 5/11命令将端口 5/11移到VLAN 2,注意交换机会自动修改 VLAN 1,将端口 5/11从VLAN 1中移去。

同样,使用set VLAN 2 5/12命令将端口 5/12移到VLAN 2。

用命令set VLAN 2激活该虚拟局域网。

Console> (enable) set VLAN 2 VLAN 2 configuration successful

这时show VLAN 2命令将显示 VLAN 2处于激活状态,包含两个端口: 5/11和5/12。

Console> (enable) sh VLAN 2 VLAN Name						Statu	s	Mod/Ports, Vlans			
	2 VLAN0002					activ	e	5/11-12			
	VLAN	Type	SAID	MTU	Parent	RingNo	BrdgNo	Stp	BrdgMode	Trans1	Trans2
	2	enet	100002	1500	-	_	_	-	_	0	0

VLAN AREHops STEHops Backup CRF

VLAN的状态也可以通过命令 show vlan来得知,从下面的显示可以看出交换机的其他以太网端口仍然位于缺省的 VLAN 1中。

VLAN	Name	enable)					us	Mod/Ports	-	
	default					active		2/1-2 3/1-24 5/1-10 7/1-24 10/1-24		
1002							re	5/11-12		
1003 1004	fddine	erault ring-dei t-defaul default				activ activ activ activ	re re	12/1-16		
VLAN	Type	SAID	MTU	Paren	nt RingNo	-		BrdgMode	Trans1	Trans2
1	enet	100001	1500						0	0
2		100002			_	_	_	_	0	Ŏ
1002	fddi	101002	1500	_	0x0	_	_	_	Ō	Ō
1003	trcrf	101003	1500	0	0×0	-	-	-	0	0
		101004			-	0x0	ieee	_	0	0
1005	trbrf	101005	1500	-	-	0 x 0	ibm	_	0	0
VLAN	ARE	Hops	STEHO	ps 1	Backup CRF					•
1003	7		7		off					
1000	,		,	,	711					

可以通过从路由器 A上ping路由器 B的IP地址192.1.1.2来证实 VLAN 2处于正常工作状态。 下面显示能够ping通,所以路由器 A和B都属于 VLAN 2。

```
RouterA#ping 192.1.1.2
```

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.1.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/7/8 ms

20.5 实验78:用ISL中继实现VLAN之间的路由

20.5.1 所需设备

为完成本实验需要下列设备:

- 1) 带以太网口的两台Cisco路由器;
- 2) 带100Mbps以太网口的Cisco路由器一台;
- 3) Catalyst交换机一台;
- 4) 三根以太网网线;
- 5) Cisco路由器控制口电缆;
- 6) 连接路由器控制口和Catalyst交换机的直连电缆。

20.5.2 配置概述

本实验将演示如何实现 VLAN之间的路由。如图 20-8所示,路由器 A位于VLAN 1,路由器 B位于VLAN 2,VLAN 1和VLAN 2分别属于不同的IP网络。由于Catalyst是第二层的交换设备,它不能在两个 VLAN之间进行路由,路由功能需要一个第三层的路由器来完成。解决办法是在Catalyst交换机和路由器之间定义一条高速中继链接,这种中继被称为交换机互连链路(ISL),通过100Mbps速率以太网接口连接。

注意 Cisco生产许多型号的局域网交换机,本实验中使用的是Catalyst 5500交换机,也可以用其他一些Cisco交换机设备来完成,如装有企业级版软件的 Catalyst 1924交换机就是一款较便宜的交换机设备,它同样支持VLAN和100Mbps ISL中继。

Catalyst交换机与Cisco路由器使用的IOS操作系统不同,命令设置方式也不一样。许多在路由器中具有的特性,如使用 TAB键来结束一条命令的输入,不能想当然地用于Catalyst交换机。另外,Catalyst交换机中的端口是通过插槽号和端口号来确定的,如本实验中两台路由器分别与第5槽的第11和第12端口连接,在Catalyst交换机中分别被表示为端口5/11和5/12。

图20-8 两个VLAN之间的路由

20.5.3 路由器配置

本实验中三台路由器的配置情况如下所示:

1. 路由器A

```
Current configuration:

!

version 11.2

no service password-encryption

no service udp-small-servers

no service tcp-small-servers

!

hostname RouterA
!

interface Ethernet0/0

ip address 192.1.1.1 255.255.255.0←Define the IP address for the interface

connected to the Catalyst switch
```



```
router rip
network 192.1.1.0
no ip classless
line con 0
line aux 0
line vty 0 4
 exec-timeout 30 0
 login
end
2. 路由器B
Current configuration:
version 11.2
no service password-encryption
no service udp-small-servers
no service tcp-small-servers
hostname RouterB
1
Ţ
interface Ethernet0/0
 ip address 193.1.1.1 255.255.255.0←Define the IP address for the interface
                                     connected to the Catalyst switch
router rip
 network 193.1.1.0
1
no ip classless
line con 0
line aux 0
line vty 0 4
 exec-timeout 30 0
 login
!
end
3. 路由器C
Current configuration:
version 11.2
no service password-encryption
no service udp-small-servers
no service tcp-small-servers
hostname RouterC
interface FastEthernet1/0 - This 100Mb/s interface connects to the Catalyst
                           trunk port
 no ip address
 no logging event subif-link-status
interface FastEthernet1/0.1←This subinterface accepts traffic from VLAN 1
 encapsulation isl 1←Define ISL encapsulation and accept traffic from VLAN 1
 ip address 192.1.1.10 255.255.255.0←IP address for this subinterface
 no ip redirects
interface FastEthernet1/0.2←This subinterface accepts traffic from VLAN 2
 encapsulation isl 2 
- Define ISL encapsulation and accept traffic from VLAN 2
 ip address 193.1.1.10 255.255.255.0←IP address for this subinterface
 no ip redirects
```


20.5.4 监测配置

首先用clear config all命令使Catalyst 5500交换机清除它所有的配置,回到厂家默认配置状态,从前面的实验中得知,在交换机重新启动之后,它所有的以太网端口属于 VLAN 1。

```
Console> (enable) clear config all
This command will clear all configuration in NVRAM.
This command will cause ifIndex to be reassigned on the next system startup.
Do you want to continue (y/n) [n]? y
.....
```

System configuration cleared.

因为要将交换机的端口划分到多个 VLAN中,必须先用 set vtp domain命令设置 Catalyst交换机的 VTP域名。

```
Console> (enable) set vtp domain CCIE_LAB VTP domain CCIE_LAB modified
```

端口5/12位于VLAN 1, 无需通过命令来设置该端口, 因为 VLAN 1是交换机端口的默认值。必须用 set VLAN 2 5/11命令将端口5/11划分到VLAN 2中。

```
Console> (enable) set VLAN 2 5/11
VLAN 2 configuration successful
VLAN 2 modified.
VLAN 1 modified.
VLAN Mod/Ports
--- 2 5/10-11
```

然后用命令 set VLAN 2激活该VLAN2。

```
Console> (enable) set VLAN 2
VLAN 2 configuration successful
```

实验中以端口 5/10作为中继端口,它与 Cisco路由器相连,将所有 VLAN的数据流传输到路由器,路由器就可以在不同 VLAN之间进行路由。使用命令 set trunk 5/10 on将端口 5/10 设为中继模式。

```
Console> (enable) set trunk 5/10 on Port(s) 5/10 trunk mode set to on.
```

端口5/10的状态可以由命令 show port 5/10来查看,可以看到该端口处于激活状态并被设

置为中继端口,工作方式为100Mbps全双工方式。

Port		sh port 5/10 atus v1		Duplex	Speed		
5/10	co	nnected tr	unk norma	a-full	a-100		BaseTX
Port	Security	Secure-Sro		st-Src-Addr		Trap	
5/10	disabled				No	disab	led
Port	Broadcast-I	Limit Broa	adcast-Drop				
	Status	- Channel (Neighbor device		.ghbor rt	
5/10	connected	auto	not channel				
Port	Align-Err	FCS-Err		Rcv-Err			
5/10	0	0	0	0	0		
Port	Single-Col	Multi-Coll		Excess-Col		Runts	
5/10	0			0	0	0	-
Last-T	ime-Cleared						
Sun Ma	v 16 1999.	02:25:04					

Sun May 16 1999, 02:25:04

可以证实路由器 A和路由器 B是连通的,注意端口 5/11(路由器 B)位于 VLAN 2,而端口 5/12(路由器A)位于VLAN 1。

Consol Port	e> (enab Name	le) sh port Status	5/11 Vlan	Level	Duplex	Speed	Туре	
 5/11		connected	2	normal	a-half	a-10	10/100BaseTX	
Congol	es (enah	le) sh port	5/12					
Port	Name	Status	Vlan	Level	Duplex	Speed	Туре	,
5/12		connected	1	normal	a-half	a-10	10/100BaseTX	

show trunk命令给出有关中继的具体信息,包括该中继上哪些 VLAN是可以进入的,哪些 VLAN当前处于激活状态。本实验中,中继端口5/10允许来自所有VLAN的数据流进入。

	e> (enable) sh trunk Mode Status
5/10	on trunking
Port	Vlans allowed on trunk
5/10	1-1005
Port	Vlans allowed and active in management domain
5/10	1-2,1003,1005
Port	Vlans in spanning tree forwarding state and not pruned
5/10	1-2,1003,1005

的。

现在在路由器 A上用show ip route命令来显示其路由表,可以看到存在一条到网络 193.1.1.0的路由。路由器 B与Catalyst交换机连接的网络 193.1.1.0属于VLAN 2。从路由器 A的 路由表可以说明路由器C工作正常,并在两个VLAN之间提供路由。

```
RouterA#sh ip route
    Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
            D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
            {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
            {\tt E1} - OSPF external type 1, {\tt E2} - OSPF external type 2, {\tt E} - {\tt EGP}
            i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
            U - per-user static route, o - ODR
    Gateway of last resort is not set
         192.1.1.0/24 is directly connected, Ethernet0/0
    C
         193.1.1.0/24 [120/1] via 192.1.1.10, 00:00:26, Ethernet0/0
    端到端的连通性可以通过在路由器 A上ping IP地址193.1.1.1来验证,可以看到结果是成功
    RouterA#ping 193.1.1.1
    Type escape sequence to abort.
    Sending 5, 100-byte ICMP Echos to 193.1.1.1, timeout is 2 seconds:
    Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms
    在路由器B上用show ip router命令显示其路由表,可以看到它通过 RIP路由协议发现了通
往路由器A的路由。
    RouterB#sh ip route
    Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
           D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
            E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
            i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
            U - per-user static route, o - ODR
    Gateway of last resort is not set
         192.1.1.0/24 [120/1] via 193.1.1.10, 00:00:10, Ethernet0/0
    R
         193.1.1.0/24 is directly connected, Ethernet0/0
    在路由器B上可以ping通路由器A的IP地址为192.1.1.1的接口。
    RouterB#ping 192.1.1.1
    Type escape sequence to abort.
    Sending 5, 100-byte ICMP Echos to 192.1.1.1, timeout is 2 seconds:
    Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/8 ms
```

现在连接至路由器 C , 用 show ip route 命令查看其路由表 , 可以看到路由器 C有两个直接 相连的网络,这两个网络都由同一个 100Mbps以太网物理接口进入该路由器。路由器 C的 100Mbps以太网口上定义了两个子接口, VLAN 1与子接口FastEthernet1/0.1相连,而VLAN 2 与子接口FastEthernet1/0.2相连。

```
RouterC#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
         D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
         E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
         i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
         U - per-user static route, o - ODR
```


Gateway of last resort is not set

192.1.1.0/24 is directly connected, FastEthernet1/0.1 193.1.1.0/24 is directly connected, FastEthernet1/0.2

从路由器C可以ping通路由器A和B,这说明中继链路工作正常。

RouterC#ping 192.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.1.1, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

RouterC#ping 193.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 193.1.1.1, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms

20.6 故障查找

show version 该命令用于显示关于交换机的重要的系统级信息,包括硬件版本、交换机 中各模块的序列号、系统内存和系统已运行时间。

Console> (enable) show ver

WS-C5500 Software, Version McpSW: 3.1(1) NmpSW: 3.1(1)

Copyright (c) 1995-1997 by Cisco Systems NMP S/W compiled on Dec 31 1997, 18:36:38 MCP S/W compiled on Dec 31 1997, 18:33:15

System Bootstrap Version: 3.1(2)

Hardware	Version:	1.3 Mode	1: WS-C5500	Serial	L #: 06902	8115	
Module	Ports	Model	Serial #	Hw	Fw	Fw1	Sw
2	2	WS-X5530	008167898	1.8	3.1(2)	4.1(1)	3.1(1)
3	24	WS-X5224	008161402	1.3	3.1(1)	•	3.1(1)
5	12	WS-X5203	008451509	1.1	3.1(1)		3.1(1)
7	24	WS-X5224	008161009	1.3	3.1(1)		3.1(1)
10	24	WS-X5224	008161288	1.3	3.1(1)		3.1(1)
12	16	WS-X5030	007380744	1.0	1.0(117	2.2(4)	3.1(1)
	DRAM		FLA	SH		NVRA	M
Module	Total	Used F	Free Tot	al Us	ed Free	Tota	l Used Free

	DRAM			FLASH			NVRAM		
Module	Total	Used	Free	Total	Used	Free	Total	Used	Free
2	32640K	11854K	20786K	8192K	3224K	4968K	512K	106K	406K

Uptime is 5 days, 20 hours, 14 minutes

show module 该命令给出Catalyst交换机各个插槽中的模块信息。

Console> (enable) Mod Module-Name	show modu	ıle Module-Type	Model	Serial-Num	Status
2	2	10/100BaseTX Supervis	WS-X5530	008167898	ok
3	24	10/100BaseTX Ethernet	WS-X5224	008161402	ok
5	12	10/100BaseTX Ethernet	WS-X5203	008451509	ok
7	24	10/100BaseTX Ethernet	WS-X5224	008161009	ok
10	24	10/100BaseTX Ethernet	WS-X5224	008161288	ok
12	16	Token Ring	WS-X5030	007380744	ok
Mod MAC-Address(e	es)	Hw	. Fw	Sw	


```
00-90-f2-a7-c1-00 thru 00-90-f2-a7-c4-ff
                                               1.8
                                                      3.1(2)
                                                               3.1(1)
    00-10-7b-2e-ca-e8 thru 00-10-7b-2e-ca-ff
                                                               3.1(1)
                                               1.3
                                                      3.1(1)
    00-10-7b-09-9a-50 thru 00-10-7b-09-9a-5b
                                               1.1
                                                      3.1(1)
                                                               3.1(1)
5
    00-10-7b-3d-be-f0 thru 00-10-7b-3d-bf-07
                                               1.3
                                                      3.1(1)
                                                               3.1(1)
    00-10-7b-3d-be-c0 thru 00-10-7b-3d-be-d7
                                               1.3
                                                      3.1(1)
                                                               3.1(1)
10
                                                     1.0(117 3.1(1)
12
   00:05:77:05:86:42 thru 00:05:77:05:86:52
                                               1.0
                                  Sub-Serial
                                               Sub-Hw
Mod
       Sub-Type
                    Sub-Model
        _____
       EARL 1+
                     WS-F5520
                                  0008157389
                                               1.1
2
       uplink
                     WS-U5531
                                  0008577601
                                               1.1
```

show mac 该命令显示通过交换机的流量的详细统计信息。以下为摘录的其中三个端口的流量统计信息,包括每个端口接收和发送的数据帧、组播、单播和广播数据包的统计,错误信息统计,以及收/发字节总数统计等。

	e> (enable) Rcv-Frms		Rcv-Multi	Xmit-Multi	Rcv-Broad	Xmit-Broad
= 14.0		054050	1 1 5 1 0	251758 145105 145408	100	•
MAC		MTU-Exced		rd Lrn-Discrd		Out-Lost
5/10 5/11	0		38	0	0 0 0	0 0 0
	Rcv-Unicast	Rcv-Multic				
5/11	16192 39441	14649 4953 4438	108 96			
Port	Xmit-Unicas	t Xmit-Mul	ticast	Xmit-Broadcast		
5/10 5/11 5/12	100 15182 15178	251764 145107 145410		0 5774		
	Rcv-Octet					
5/11	3183207 20334264 20290059	27851660				
Last-T	ime-Cleared					

Last-Time-Cleared

Sun May 16 1999, 02:25:04

clear config all 该命令清除 Catalyst交换机的所有配置,重新设置到厂家默认配置状态,在该状态中,所有端口都位于 VLAN 1, Catalyst交换机的作用就是一个大的交换式集线器。

```
Console> (enable) clear config all This command will clear all configuration in NVRAM. This command will cause ifIndex to be reassigned on the next system startup. Do you want to continue (y/n) [n]? y ......
```


.....

System configuration cleared.

show port 该命令给出关于交换机的端口级配置的统计信息。 Catalyst交换机能够自动检测各端口的速率和单双工工作方式,在下面的显示中,可以看出交换机自动对端口 5/11和5/12进行了配置,它们的状态相同,都已经连接了设备,都位于 VLAN 1,端口速率均为10Mbps,为半双工工作方式。

Conso	Console> (enable) sh port									
Port	Name	Status	Vlan	Level	Duplex	Speed	Type			
5/1		notconnect	1	normal	auto	auto	10/100BaseTX			
5/2		notconnect	1	normal	auto	auto	10/100BaseTX			
5/3		notconnect	1	normal	auto	auto	10/100BaseTX			
5/4		notconnect	1	normal	auto	auto	10/100BaseTX			
5/5		notconnect	1	normal	auto	auto	10/100BaseTX			
5/6		notconnect	1	normal	auto	auto	10/100BaseTX			
5/7		notconnect	1	normal	auto	auto	10/100BaseTX			
5/8		notconnect	1	normal	auto	auto	10/100BaseTX			
5/9		notconnect	1	normal	auto	auto	10/100BaseTX			
5/10		notconnect	1	normal	auto	auto	10/100BaseTX			
5/11		connected	1	normal	a-half	a-10	10/100BaseTX			
5/12		connected	1	normal	a-half	a-10	10/100BaseTX			

show port slot/port 该命令就是在show port命令中加上了具体的端口号,它可以提供关于该端口的更丰富的信息。在下例中将看到了更多的信息,譬如该端口的 MAC级安全信息、以太网冲突信息和错误统计信息等。

Port	Name Sta	sh port 5/11 atus Vl	an Level	Duplex		Туре	
		nnected 1		l a-half	a-10	10/100)BaseTX
Port	Security	Secure-Sro	-Addr La		Shutdown	Trap	
5/11	disabled				No	disab	led
Port	Broadcast-L	imit Broa	dcast-Drop				
5/11 Port				device	por		
5/11		auto i	not channel				
Port	Align-Err	FCS-Err	Xmit-Err				
5/11	0	0	0	0	0		
Port	Single-Col	Multi-Coll	Late-Coll	Excess-Col	Carri-Sen	Runts	Giants
5/11	0	0	0	0	0	0	0
Last-T	ime-Cleared						

Last-Time-Cleared

Sun May 16 1999, 02:25:04

show cam dynamic 该命令是一个用户模式命令,它显示交换机所学到的与它相连的主机的MAC地址。

Consol VLAN	e> (enable) show cam Dest MAC/Route Des	dynamic Destination Ports or VCs
2	00-e0-1e-9c-8e-b0	5/10
1	00-e0-1e-9c-8e-b0	5/10
2	00-10-7b-06-c2-c1	5/11
1	00-e0-1e-5b-27-61	5/12
1	00-00-ff-ff-ff-fb	1/4
Total	Matching CAM Entries	Displayed = 5

show system 该命令用于显示Catalyst交换机的系统信息,包括联系人、当前流量和峰值流量、系统运行时间和散热信息。

Console> (e PS1-Status	enable) sho PS2-Status	w system Fan-Sta	tus 1	emp-Alarm	Sys-St	atus	Uptime d,h:m:s	Logout
ok	none	ok	c	off	ok		5,20:14:10	20 min
PS1-Type	PS2-Type	Modem	Baud	Traffic	Peak	Pea	k-Time	
WS-C5508	none	disable	9600	0%	0%	Sun	May 16 1999,	02:25:04
System Name	e 	System	Locat	ion	Sy	stem	Contact	

set interface 该命令可设置用于带内访问的接口(SCO)的IP地址。

Console> (enable) set interface sc0 192.1.1.3 Interface sc0 IP address set.

show interface 该命令可显示Catalyst交换机内部用于带内访问和SLIP访问的接口的IP地址。

Console> (enable) sh interface

s10: flags=51<UP,POINTOPOINT,RUNNING>

slip 0.0.0.0 dest 128.73.35.160

sc0: flags=63<UP, BROADCAST, RUNNING>

VLAN 1 inet 192.1.1.3 netmask 255.255.255.0 broadcast 192.1.1.255

set ip permit 该命令用于建立IP访问列表,Catalyst交换机根据它来访问对交换机的带内远程登录和SNMP访问,在IP访问列表中最多可定义10个IP地址。

```
Console> (enable) set ip permit 192.1.1.1 192.1.1.1 added to IP permit list.
```

show ip permit 该命令用于查看Catalyst交换机上配置的IP访问列表信息,以及是否有非法IP地址试图对交换机进行过远程登录或SNMP访问。IP访问列表必须通过 set ip permit enable命令来激活,可以使用命令 set ip permit disable来取消IP访问列表。

```
Denied IP Address Last Accessed Time Type
-----
192.1.1.2 05/25/99,14:25:50 Telnet
```

set port security 该命令用于配置 Catalyst交换机的某端口,使它拒绝来自未预定义的 MAC地址的数据流。下面的配置命令使端口 5/12只接收来自MAC地址为00-e0-1e-5b-27-62的 主机的数据流。端口安全属性可以用命令 set port security 5/12 disable 取消。

Console> (enable) set port security 5/12 enable 00-e0-1e-5b-27-62 Port 5/12 port security enabled with 00-e0-1e-5b-27-62 as the secure mac address Trunking disabled for Port 5/12 due to Security Mode

show vtp domain 该命令用于显示交换机的 VTP域信息,为使 Catalyst交换机使用除 VLAN 1外的其他 VLAN号,必须先给交换机设定一个域名。设定域名使用命令 set vtp domain。

Console> (ena Domain Name	able) sh vtp dom Domain I		Version	Local Mode	Password
	1	2		server	-
Vlan-count	Max-vlan-storag	e Config	Revision	Notificatio	ns
5	1023	0		disabled	
Last Updated	V2 Mode	Pruning	PruneEligi	ble on Vlans	
0.0.0.0	disabled	disabled	2-1000		

set vlan vlan_number slot_port , set vlan命令用于将某一端口划分到特定的 VLAN。下例为将端口5/12分配到VLAN 2, VLAN必须通过 set vlan命令激活。

show vlan 该命令显示交换机上设置的所有 VLAN的信息。

Console> (enable) sh vlan VLAN Name					Status	Мо	d/Ports, V	/lans				
1	default				active							
2	VLAN0002					active	5/	5/11-12				
	fddi-d		C1+			active	10	/1-16				
		ring-de				active active	12	11-10				
	fddinet-default trnet-default					active						
VLAN	Туре	SAID					Stp	BrdgMode	Trans1	Trans2		
1	enet	100001	1500	-	-	-	-	-	0	0		
2	00	100002			-	-	-	-	0	0		
		101002			0x0	-	-	-	0	0		
		101003 101004			0x0	- 0×0	- ieee		0	0 0		
		101004			_		ibm	_	0	0		
VLAN	AREHO			Ва	ackup CRF		IDM		Ü	Ü		
1003	7	7			Ef							

show vlan vlan_number ,在show vlan命令后加上具体的 VLAN号之后,将显示有关该 VLAN的信息,包括 VLAN的名称、状态、成员端口及一些统计信息。

Consol	le> (enable) sh VLAN 2		
VLAN	Name	Status	Mod/Ports, Vlans
2	VLAN0002	active	5/11-12

VLAN 2	Type enet	SAID 100002		Parent	RingNo 	BrdgNo 	Stp 	BrdgMode 	Trans1 0	Trans2 0
VLAN	AREH	lops	STEH	ops	Backup	CRF				
set trunk 该命令将Catalyst交换机的端口设置为中继端口。										
Console> (enable) set trunk 5/10 on Port(s) 5/10 trunk mode set to on.										

show trunk 该命令提供与交换机的中继有关的信息,包括该中继上哪些 VLAN是可以进入的,哪些VLAN当前处于激活状态。下面的显示说明,中继端口 5/10允许来自所有 VLAN的数据流进入。

20.7 结论

本章着重讨论了Cisco局域网交换机家族中的一种——Catalyst 5500交换机的配置和运行,可以看到Catalyst交换机是一种支持虚拟局域网的交换式集线器,它还可以通过安装路由交换模块(RSM)从而集第二层的交换和第三层的路由于一体。

本章的实验中演示了 Catalyst交换机的一些特性,包括 MAC端口安全特性、 IP访问列表、 VLAN之间的路由和ISL中继等。