مدارهای منطقی - دکتر مهدیانی

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۳

سوال a - ۱)

عبارت داده شده قابل ساده کردن نیست.

$$Y' = (A + B)(C + D)(E + F + GH)$$

$$D(Y') = AB + CD + EF(G + H)$$

در نتیجه مدار مورد نظر به شکل روبهرو است.

سوال b - ۱)

$$Y' = (A + B)(A + C) = A + (BC)$$

 $D(Y') = A(B + C)$

در نتیجه مدار مورد نظر به شکل روبهرو است.

سوال a-۲) جدول کارنو ۳ بعدی رسم میکنیم. جدول به صورت زیر شماره گذاری میشود:

\bc de	00	01	11	10
00	16	20	28	24
01	17	21	29	25
11	19	23	31	27
10	18	22	30	26

\bc de	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

A=1

A=0

حال جدول را پر میکنیم:

\bc de	00	01	11	10
00	1			1
01			1	1
11	1			1
10	1		1	1

\bc de	00	01	11	10
00	1			1
01		1	1	
11	1			1
10	1		1	1

A=1

A=0

حال قسمتهای رنگی را باهم فاکتور میگیریم. حاصل نهایی برابر است با: f(A,B,C,D,E) = C'D + C'D'E' + A'C'D'E + ABD'E + BCDE'

سوال b-۲) جدول کارنو ۴*۴ رسم میکنیم و به شکل زیر شماره گذاری میکنیم:

\ab cd	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

جدول را پر میکنیم:

\ab cd	00	01	11	10
00		1	1	
01	1	1	1	1
11	1	1	1	1
10		1	1	

کافیست دو ستون وسط و دو ردیف وسط را به عنوان Essential PI انتخاب کنیم. بنابراین تابع کمینه شده برابر است با: f(A,B,C,D)=B'+D'

سوال ۳ - ۱) ابتدا kmap دو تابع را رسم میکنیم. برای تابع a:

Χ

Х

\bc de	00	01	11	10
00	х	1	1	0
01	1	х	0	1
11	0	1	1	1
10	0	х	1	1

A=1

A=0
A=0

و برای تابع b:

\bc de	00	01	11	10
00	0	1	1	0
01	0	х	1	1
11	0	1	1	х
10	0	1	1	0

A=1			A=0

برای به دست آوردن SOP تابع a، مقادیر don't care را به صورت زیر در نظر میگیریم:

\bc de	00	01	11	10	
00	1	1	1		
01	1	1		1	
11		1	1	1	
10		1	1	1	
A=1					

\bc de	00	01	11	10
00		1	1	1
01	1			1
11	9	1	1	
10		1		1

A=0

بنابراین تابع برابر است با:

 $f_a(A,B,C,D,E) = AB'D' + CD'E' + C'D'E + B'CD + ABD + A'CDE + A'BC'E'$

همچنین برای به دست آوردن SOP تابع b، مقادیر don't care را به صورت زیر در نظر میگیریم:

\bc de	00	01	11	10
00		1	1	
01	- [1	1	1
11		1	1	<u>1</u>
10	1	1	1	

\bc de	00	01	11	10
00		٦	1	1
01			1	1
11		1	1	<u>0</u>
10		1	1	

A=0

بنابراین تابع برابر است با:

$$f_b(A, B, C, D, E) = AC + ABC'E + A'CD + A'BD' + A'CD'E'$$

سوال ۳ - ۲) برای به دست آوردن POS تابع a، مقادیر don't care را به صورت زیر در نظر میگیریم:

A=0

بنابراین تابع برابر است با:

$$f_a(A, B, C, D, E) = (B + C + D')(C + D + E)(C' + D + E')(A + C + D' + E')$$

$$(A + B' + C' + D' + E)$$

همچنین برای به دست آوردن POS تابع b، مقادیر don't care را به صورت زیر در نظر میگیریم:

\bc de	00	01	11	10
00	0			0
01	0	1		
11	0			<u>0</u>
10	0			0

\bc de	00	01	11	10
00	0			
01	0	0		1
11	0	<u>0</u>		<u>0</u>
10	0			0

A=1

A=0

:نابراین تابع b بنابراین تابع p بنابراین تابع $f_b(A,B,C,D,E) = (B+C)(A+B+E')(B'+C+D')(A'+C+D+E)$