第七次习题课 知识点

1.极大线性无关组: 在不全为的向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 中取出一组线性无关的向量 $\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_k}$,若任意添加 $\beta \in \{\alpha_1,\cdots,\alpha_s\}$ 得到的向量组 $\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_k},\beta$ 是线性相关的,那么我们称 $\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_k}$ 是 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的一个极大线性无关组。向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的极大无关组所含向量的个数称为向量组的秩。

 $2.\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_k}$ 是 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 一个极大线性无关组的充分必要条件是 $k=r(\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_k})=r(\alpha_1,\alpha_2,\cdots,\alpha_s)$. 把 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 化为阶梯型矩阵后,不全为 0 的行的首个非零元对应的向量放一起就得到的是极大线性无关组。

3.向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中一部分向量(部分向量组)线性相关,则整个向量组线性相关。

推论: 部分相关则整体相关, 反之不成立。整体无关则部分无关, 反之不成立。

- 4.向量组的秩:向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的极大线性无关组所含向量的个数称为向量组的秩。记为 $r(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 。
- 5.向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s (s \ge 2)$ 线性相关当且仅当其中至少有一个向量是其余 s-1 个向量的线性组合。
- 6.如何求 Ax = 0 的通解?
- (1)(A,0) 化为最简阶梯型矩阵;
- (2) 找出自由变量,假设自由变量是 x_{r+1}, x_{r+2}, x_n ;
- (3) 写出基础解系(基础解系是解的极大线性无关组)
- ξ_i : 取 $\xi_i = 1$,其余自由变量取 0 得到的解

则通解为 $c_1\xi_1 + c_2x_2 + \cdots + c_{n-r}\xi_{n-r}$, 其中 $c_1, c_2, \cdots, c_{n-r}$ 是任意常数。

- 7.称齐次方程 Ax = 0 是 $Ax = \beta$ 的导出组。
- $(1)\eta$ 是 $Ax = \beta$ 的一个解, ξ 是 Ax = 0 的解, 则 $\eta + \xi$ 也是 $Ax = \beta$ 的一个解。
- $(2)\eta_1, \eta_2$ 是 $Ax = \beta$ 的解,则 $\eta_1 \eta_2$ 是 Ax = 0 的解。
- $(3)\eta$ 是 $Ax = \beta$ 的一个(特)解,则 $Ax = \beta$ 的(通解)任意解都可以表示为 $\eta + \xi$ 的形式,其中 ξ 是 Ax = 0 的任意一个解。