Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica - agrupamento IV

11/02/2022	$2^{\underline{\mathbf{o}}}$ teste	duração: 1h45min
nome:		nº mecanográfico:
declaro que desisto:		nº folhas adicionais:

Justifique detalhadamente as respostas.

- (6.0) 1. Considere o subespaço $S=\{(x,y,z)\in\mathbb{R}^3:x+y+z=0\}$ e os vetores X=(-1,0,0) e Y=(0,1,-1).
 - a) Determine uma base para S e a dimensão de S.
 - b) Verifique se X e Y são elementos de S. Em caso afirmativo, indique o vetor de coordenadas na base determinada.
 - c) Determine a projeção ortogonal do vetor Z = (2, 2, 1) no subespaço K gerado por X e Y.
- (4.0) 2. Considere a matriz $N=\begin{bmatrix}1&1&8\\0&2&8\\0&1&-k\end{bmatrix}$, onde k é um parâmetro real.
 - a) Mostre que 1 é valor próprio de N, para qualquer $k \in \mathbb{R}$.
 - b) Determine os valores de k para os quais u = (2, 2, -1) é um vetor próprio de N. Indique o valor próprio de N que tem u como vetor próprio.
- (4.0) 3. Considere a cónica com equação geral $x^2 + 4y^2 + 4xy + 2x y + 5 = 0$.
 - a) Sendo $X = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$, determine as matrizes A e B tais que a equação matricial da cónica apresentada seja dada por $X^TAX + BX + 5 = 0$.
 - b) Encontre uma matriz ortogonal P diagonalizante de A.
 - c) Obtenha uma equação reduzida da cónica. Classifique a cónica.
- (6.0) 4. Seja $\phi \colon \mathbb{R}^4 \to \mathbb{R}^2$ uma aplicação linear tal que $\phi(X) = AX$ com $A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & -1 & 3 \end{bmatrix}$. Seja \mathcal{C}_4 a base canónica de \mathbb{R}^4 e $\mathcal{B} = ((1, -1), (1, 2))$ uma base de \mathbb{R}^2 .
 - a) Determine o núcleo de ϕ .
 - b) Indique a dimensão de $im(\phi)$, justificando.
 - c) ϕ é injetiva? ϕ é sobrejetiva? Justifique.
 - d) Determine a matriz de ϕ relativa às bases \mathcal{C}_4 e \mathcal{B} .
 - e) Seja $C = M(\phi, \mathcal{C}_4, \mathcal{B})$. Sabendo que $CX = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, determine $\phi(X)$.