Please check the examination details below before entering your candidate information				
Candidate surname		Other names		
Centre Number Candidate Nu				
Pearson Edexcel International Advanced Level				
Friday 12 January 20	024			
Morning (Time: 1 hour 30 minutes)	Paper reference	WFM01/01		
Morning (Time: 1 hour 30 minutes) Mathematics		WFM01/01		
	reference	♦ ♦		
Mathematics	reference	♦ ♦		
Mathematics International Advanced Su	reference	♦ ♦		
Mathematics International Advanced Su	reference	♦ ♦		
Mathematics International Advanced Surther Pure Mathematics	reference	♦ ♦		
Mathematics International Advanced Su	reference ubsidiary F1	// Advanced Level		

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1.

$$\mathbf{M} = \begin{pmatrix} 2k+1 & k \\ k+7 & k+4 \end{pmatrix}$$
 where k is a constant

(a) Show that M is non-singular for all real values of k.

(3)

(b) Determine \mathbf{M}^{-1} in terms of k.

(2)

Question 1 continued	
	(Total for Question 1 is 5 marks)
	(10th 101 Vacation 1 is 2 marks)

 $f(z) = 2z^3 + pz^2 + qz - 41$

where p and q are integers.

The complex number 5-4i is a root of the equation f(z) = 0

(a) Write down another complex root of this equation.

(1)

(b) Solve the equation f(z) = 0 completely.

(4)

(c) Determine the value of p and the value of q.

(2)

When plotted on an Argand diagram, the points representing the roots of the equation f(z) = 0 form the vertices of a triangle.

(d) Determine the area of this triangle.

(2)

Question 2 continued

Question 2 continued

Question 2 continued	
(Ta	otal for Question 2 is 9 marks)
	tai ivi Questivii 2 is 7 iiiai ks)

3. The hyperbola H has equation $xy = c^2$ where c is a positive constant.

The point $P\left(ct, \frac{c}{t}\right)$, where t > 0, lies on H.

The tangent to H at P meets the x-axis at the point A and meets the y-axis at the point B.

- (a) Determine, in terms of c and t,
 - (i) the coordinates of A,
 - (ii) the coordinates of B.

(4)

Given that the area of triangle AOB, where O is the origin, is 90 square units,

(b) determine the value of c, giving your answer as a simplified surd.

(2)

Question 3 continued
(Total for Question 3 is 6 marks)

4.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

(a) Describe the single geometrical transformation represented by the matrix ${\bf A}$.

(2)

The matrix **B** represents a rotation of 210° anticlockwise about centre (0, 0).

(b) Write down the matrix **B**, giving each element in exact form.

(1)

The transformation represented by matrix A followed by the transformation represented by matrix B is represented by the matrix C.

(c) Find C.

(2)

The hexagon H is transformed onto the hexagon H' by the matrix \mathbb{C} .

(d) Given that the area of hexagon H is 5 square units, determine the area of hexagon H'

(2)

Question 4 continued	
/TT / 1.6 . C	
(Total for Questi	ion 4 is / marks)

5. The quadratic equation

$$2x^2 - 3x + 7 = 0$$

has roots α and β

Without solving the equation,

(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$

(1)

(b) determine the value of $\alpha^2 + \beta^2$

(c) find a quadratic equation which has roots

$$\left(\alpha - \frac{1}{\beta^2}\right)$$
 and $\left(\beta - \frac{1}{\alpha^2}\right)$

giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.

Question 5 continued

Question 5 continued	
(Tot	al for Question 5 is 9 marks)

6. (i)

$$f(x) = x - 4 - \cos(5\sqrt{x}) \qquad x > 0$$

(a) Show that the equation f(x) = 0 has a root α in the interval [2.5, 3.5]

(2)

(b) Use linear interpolation once on the interval [2.5, 3.5] to find an approximation to α , giving your answer to 2 decimal places.

(2)

(ii)

$$g(x) = \frac{1}{10}x^2 - \frac{1}{2x^2} + x - 11$$
 $x > 0$

(a) Determine g'(x).

(2)

The equation g(x) = 0 has a root β in the interval [6, 7]

(b) Using $x_0 = 6$ as a first approximation to β , apply the Newton-Raphson procedure once to g(x) to find a second approximation to β , giving your answer to 3 decimal places.

(2)

Question 6 continued

Question 6 continued

Question 6 continued	
	Cotal for Question 6 is 8 marks)

7. The parabola C has equation $y^2 = \frac{4}{3}x$

The point $P\left(\frac{1}{3}t^2, \frac{2}{3}t\right)$, where $t \neq 0$, lies on C.

(a) Use calculus to show that the normal to C at P has equation

$$3tx + 3y = t^3 + 2t$$

(3)

The normal to C at the point where t = 9 meets C again at the point Q.

(b) Determine the exact coordinates of Q.

(4)

-		
-		
-		
-	١.	
-		
-		
-	١.	
-		
-		
-		

Question 7 continued
(Total for Question 7 is 7 marks)

8. (a) Use the standard results for summations to show that, for all positive integers n,

$$\sum_{r=1}^{n} r \left(2r^2 - 3r - 1 \right) = \frac{1}{2} n \left(n + 1 \right)^2 \left(n - 2 \right)$$
 (4)

(b) Hence show that, for all positive integers n,

$$\sum_{r=n}^{2n} r (2r^2 - 3r - 1) = \frac{1}{2} n (n-1) (an+b) (cn+d)$$

where a, b, c and d are integers to be determined.

(4)

Question 8 continued

Question 8 continued

Question 8 continued	
(Takal face	Question 8 is 8 maybe)
(10tal for C	Question 8 is 8 marks)

9. Given that

$$\frac{3z-1}{2} = \frac{\lambda + 5i}{\lambda - 4i}$$

where λ is a real constant,

(a) determine z, giving your answer in the form x + yi, where x and y are real and in terms of λ .

(4)

Given also that $\arg z = \frac{\pi}{4}$

(b) find the possible values of λ .

(2)

Question 9 continued	
(То	tal for Question 9 is 6 marks)
(10	(

10. (i) Prove by induction that for $n \in \mathbb{Z}^+$

$$\begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^n = 3^{n-1} \begin{pmatrix} 2n+3 & -n \\ 4n & 3-2n \end{pmatrix}$$

(5)

(ii) Prove by induction that for $n \in \mathbb{Z}^+$

$$f(n) = 8^{2n+1} + 6^{2n-1}$$

is divisible by 7

(5)

Question 10 continued

Question 10 continued		

Question 10 continued

Question 10 continued		
(Te	otal for Question 10 is 10 marks)	
TOTA	AL FOR PAPER IS 75 MARKS	

