

Section 1.4

Looking at how well it works

What is an Algorithm?

- An *algorithm*:
 - a sequence of unambiguous instructions for solving a problem
 - · can be represented various forms
- Each unique set of data fed into an algorithm specifies an *instance* of that algorithm

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

Analysis of Algorithms

- Algorithms must to analyzed to determine whether it should be used
- This field is called algorithmics
- How it is analyzed:
 - correctness
 - unambiguity
 - effectiveness
 - finiteness/termination does it in a *finite* amount of time

5/31/20

Sacramento State - Summer 2019 - CSc 130 - Cook

Correctness

- Correctness means the algorithm obtains the required output with valid input
- In other words, does it do what it is supposed to do
- Proof of Correctness can be easy for some algorithms – and quite difficult for others
- Proof of incorrectness is quiet easy find one instance where it fails on valid input

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Cool

Effectiveness

- How good is the algorithm?
 - · What is the time efficiency?
 - · What is the space efficiency?
- Does there exist a better algorithm?
 - Lower bounds
 - Optimality
- Computational efficiency is a large part of creating professional programs

5/31/201

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer

2019 Sacramento State - Summer 2019 - CSc 13

Important problem types

- Sorting
- Searching
- String processing
- Graph problems
- Combinatorial problem
- Geometric problems
- Numerical problems

Sacramento State - Summer

Searching

- Find a given value, called a search key, in a given set
- Extremely common in programs
- Examples of searching algorithms
 - Sequential search
 - Binary search
 - · Tree search

1/2019 Sacramento State - Summer 2

Sorting

- It is useful (and efficient) to sort a list of data in ascending order
- Examples:
 - · sorting scores by highest to lowest
 - · sorting filenames in alphabetical order
 - · sorting students by their student-id
- Two properties
 - Stable: preserves the order of any two equal elements
 - In place: requires lots of extra memory

5/31/2019

Sorting

- There are multiple sorting algorithms which get complex as they become more efficient
- Some examples:
 - · Selection sort
 - · Bubble sort
 - · Insertion sort
 - · Merge sort
 - · Heap sort

E212010

String Processing

- A string is a sequence of characters from an alphabet.
- Text strings: letters, numbers, and special characters.
- String matching: searching for a given word/pattern in a text.

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Cool

Graph Problems

- A graph is a collection of points called vertices, some of which are connected by line segments called edges.
- A common example of a graph is the network – Internet, phone, etc...
- Examples of graph algorithms
 - · Graph traversal algorithms
 - · Shortest-path algorithms

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Coo

Basically, time is complex

Time Complexity

- One of the most important aspects of analyzing an algorithm is to determine how reacts to the size of data
- Analyzed by the number of repetitions of the basic operation as a function of input size

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

Time Complexity

 The basic operation is what contributes the most towards the running time of the algorithm

5/31/2019

Size and Basic Operation Examples

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. n	Key comparison
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers
Checking primality of a given integer <i>n</i>	n'size = number of digits (in binary representation)	Division
Typical graph problem	# of vertices and edges	Visiting a vertex or traversing an edge

Empirical analysis of time efficiency

- Analysis can be performed by observation
- Select a specific (typical) sample of inputs
- Use
 - physical unit of time (e.g., milliseconds)
 and/or
 - count actual number of basic operation's executions
- Analyze the empirical data to determine T, C_{op}, and C(n)

/31/2019 Sacramento State - Summer 2019 - CSc 130 - Cook

Time Complexity Cases

- For some algorithms, efficiency depends on form of input
 - sometimes, the order of data, or the type of data can drastically increase cost
 - some algorithms are sensitive to certain criteria
- This will appear again and again when we deal with lists, trees, and, especially, sorting

2019 Sacramento State - Summer 2019 - CSc 130 - Cook

Time Complexity Cases

- Worst case: C_{worst}(n)
 - · maximum executions over a set of size n
 - · can be linear, exponential or even geometric!
- Best case: C_{hest}(n)
 - minimum executions over a set of size n
- Average case: C_{avg}(n)
 - "average" over a set of size n
 - times the basic operation will execute on *typical* data
 - NOT the average of worst and best case
 - the worst case can be exceedingly rare

i/31/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

Order of Growth

- How does the required time grow as $n\rightarrow\infty$
- Example:
 - How much longer does it take to solve problem of double input size?
 - · Will it take twice as long? Is it linear?
- In computer science several types of growth occur.
- Algorithms will fall into one of these categories for worst-case, best-case, and average-case

Sacramento State - S

4

Operational Growth for n

Function	10	100	1000
log₂n	3.32	6.64	9.97
n	10	100	1000
n log₂n	33.21	664.38	9965.78
n²	100	10000	1,000,000

Order of Growth

- One property of functions that we are interested in its rate of growth
- Rate of growth doesn't simply mean the "slope" of the line associated with a function
- Instead, it is more like the curvature of the line

Order of Growth

- What is important is how an algorithm's time grows as
- In computer science several types of growth occur

Order of Growth

- Algorithms will fall into one of these categories for worst-case, best-case, and average-case
- Examples:
 - how will it run on a computer that is twice as fast?
 - how long does it take with twice the input?

Several Growth Functions

- There are several functions
- In increasing order of growth, they are:
 - Constant ≈ 1
 - Logarithmic ≈ log n
 - Linear \approx n
 - Log Linear ≈ n log n
 - Quadratic ≈ n²
 - Exponential $\approx 2^n$

Growth Rates Compared

n =	1	2	4	8	16
1	1	1	1	1	1
log n	0	1	2	3	4
n	1	2	4	8	16
n log n	0	2	8	24	64
n²	1	4	16	64	256
n³	1	8	64	512	4096
2 ⁿ	2	4	16	256	65536

Classifications

- Using the known growth rates...
 - · algorithms are classified using three notations
 - these allows you to see, quickly, the advantages/disadvantages of an algorithm
- Major notations:
 - Big-O
 - Big-Theta
 - · Big-Omega

E010010

Sacramento State - Summer 2019 - CSc 130 - Cook

Order of Growth

Notation	Name	Meaning
O (<i>n</i>)	Big-O	class of functions f(n) that grow no faster than n
Θ (n)	Big-Theta	class of functions f(n) that grow at same rate as n
Ω (<i>n</i>)	Big-Omega	class of functions f(n) that grow at least as fast as n

Big-O

- So, Big-O notation gives an upper bound on growth of an algorithm
- We will use Big-O almost exclusively rather than the other two

5/31/201

Sacramento State - Summer 2019 - CSc 130 - Cook

Big-O

- The following means that the growth rate of f(n) is no more than the growth rate of n
- This is one of the classifications mentioned earlier

Why it is O-some!

- These classes make it is easy to...
 - compare algorithms for efficiency
 - · making decisions on which algorithm to use
 - determining the scalability of an algorithm
- So, if two algorithms are the same class...
 - they have the same rate of growth
 - · both are equally valid solutions

5/31/201

O(1)

- Represents a constant algorithm
- It does not increase / decrease depending on the size of n
- Examples
 - appending to a linked list (with an end pointer)
 - · array element access
 - practically all simple statements

E010010

Sacramento State - Summer 2019 - CSc 130 - Co

O(log n)

- Represents logarithmic growth
- These increase with n, but the rate of growth diminishes
- For example: for base 2 logs, the growth only increases by one each time n doubles

O(log n) Examples

- Searching for an item on a sorted array (e.g. a binary search)
- Traversing a sorted tree

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Coo

O(n)

- Represents an algorithm that grows linearly with n
- Very common in programming – for iteration
- Examples:
 - finding an item in a linked list
 - · merging two sorted arrays

5/31/201

Sacramento State - Summer 2019 - CSc 130 - Cook

O(n log n)

- Represents an algorithm that has "log linear" growth
- These algorithms grow based on both n and n's log value

31/2019 Sacramento State - Summer 2019 - CSc 130 - C

O(n log n) Examples

- Quick Sort
- Heap Sort
- Merge Sort
- Fourier transformation

5/31/201

		<u> </u>	second	- -
n	O(log n)	O(n)	O(n log n)	O(n²)
10	0.000003	0.000010	0.000033	0.000100
100	0.000007	0.000100	0.000664	0.010000
1,000	0.000010	0.001000	0.009966	1.000000
10,000	0.000013	0.010000	0.132877	100.000000
100,000	0.000017	0.100000	1.660964	6.94 days
1,000,000	0.000020	1.000000	19.931569	1.9 years
10,000,000	0.000023	10.000000	232.534966	190.2 years

Asymptotic Analysis

 Any algorithm can be analyzed and its complexity/growth can be written an a simple mathematical expression

 Asymptotic analysis of an algorithm determines the running time in big-O notation

5/21/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

Asymptotic Analysis

- Find the worst-case number of primitive operations executed as a function of the input size
- 2. Eliminate meaningless values the base rate in found

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Coo

Asymptotic Analysis

- Example:
 - If we analyze an algorithm and find it executes 12 * n 1
 - constant factors and lower-order terms dropped
 - they become meaningless for large values of n
 - remember, this is a growth rate
 - it will be "O(n)"

5/31/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

Examples

```
3000n + 7 \text{ is } O(n)
2n^5 + 3n^3 + 5 \text{ is } O(n^5)
7n^3 - 2n + 3 \text{ is } O(n^3)
```

```
Test Your Might...

for (i = 0; i < 100; i++)
{
    total += values[i];
}

O(1)

Satramero State - Summer 2019 - Citc 150 - Cook

54
```

```
Test Your Might...

for (x = 0; x < n; x++)
{
    sum += score[x];
}

for (x = 0; x < n; x++)
{
    sum -= score[x];
}

O(n)
```


The Legend

- Well, the legend was created along with the puzzle and expanded over time
- Basically, somewhere in a hidden place, priests are moving a stack of 64 discs
- The ancient prophecy states that when the entire stack is moved...the World ENDS!

The Puzzle

- Consists of a collection of discs with unique diameters
- Each disc has a hole in the center used to place it on one of 3 different pegs
- A disc cannot be placed onto a smaller disc
- Only one disc can be moved at a time
- Puzzle starts with all the discs stacked on one neg
- The goal is to move all the discs to another peg

5/31/2019

Hanoi: Solution

- An elegant solution is to use recursion
- Since disks are move from each tower using LIFO, each tower can be represented as a stack
- The "classic" recursive solution just shows what actions to take, it doesn't move any values... but you could modify it easily to.

```
Hanoi: in Java

// Disc 1 is the *smallest* disc.

// We start recursion with the BIGGEST disc.

void hanoi(int disc, Stack from, Stack temp, Stack dest) {

if (disc == 1) {

move(from, dest); //base case
} else {

hanoi(disc - 1, from, dest, temp);

move(from, dest);

hanoi(disc - 1, temp, from, dest);
}

}

Succument State - Summer 2019 - CSc 130 - Cock 69
```

```
void hanoi(int disc, char F, char T, char D) {
   if (disc == 1) {
       System.out.println(disc + ": " + F + " to " + D);
   } else {
       hanoi(disc - 1, F, D, T);
       System.out.println(disc + ": " + F + " to " + D);
       hanoi(disc - 1, T, F, D);
   }
}

void main() {
   hanoi(3, 'A', 'B', 'C');
}

solutions
Sacramento State - Summer 2019 - CSc 130 - Cook 70
```

```
Hanoi: Demo Output

1: A to C
2: A to B
1: C to B
3: A to C
1: B to A
2: B to C
1: A to C
```


Hanoi: Is the World Ending?

- The "legend" states that the monks have to move 64 discs... order of 2⁶⁴
- So...
 - if they take one second to move each disc, it will take them 584,542,046,090 years!
 - if a super-computer moves a disc once per microsecond, it still takes 584,542 years!

5.31/2019

72