# CS 228 : Logic in Computer Science

Krishna, S

# **CNF Explosion**

Consider the formula  $\varphi = (p_1 \wedge p_2 \cdots \wedge p_n) \vee (q_1 \wedge q_2 \ldots q_m)$ 

- What is the equivalent CNF formula?
- ightharpoonup 
  igh
- ► Distributivity explodes the formula

# **Tseitin Encoding: The Idea**

- Introducing fresh variables, Tseitin encoding can give an equisatisfiable formula without exponential explosion.
- $\varphi = p \lor (q \land r)$
- Replace q ∧ r with a fresh variable x and add a clause which asserts that x simulates q ∧ r
- $(p \lor x) \land (x \leftrightarrow (q \land r))$
- ▶ It is enough to consider (Why?)  $(p \lor x) \land (x \to (q \land r))$  which is  $(p \lor x) \land (\neg x \lor q) \land (\neg x \lor r)$

# **Tseitin Encoding**

- Assume the input formula is in NNF (all negations attached only to literals) and has only ∧, ∨
- ▶ Replace each  $G_1 \wedge \cdots \wedge G_n$  just below a  $\vee$  with a fresh variable p and conjunct  $(\neg p \vee G_1) \wedge \cdots \wedge (\neg p \vee G_n)$  (same as  $p \to G_1 \wedge \cdots \wedge G_n$ ).

# **Tseitin Encoding**

- Choose fresh variables x, y
- ▶  $\psi = (x \lor y) \land \bigwedge_{i \in \{1,...,n\}} (\neg x \lor p_i) \land \bigwedge_{j \in \{1,...,m\}} (\neg y \lor q_j)$  has m + n + 1 clauses
- $\varphi$  and  $\psi$  are equisatisfiable. Prove.



## **DPLL**

- DPLL combines search and deduction to decide CNF satisfiability
- Underlies most modern SAT solvers

## **Partial Assignments**

An assignment is a function  $\alpha: V \to \{0,1\}$  which maps each variable to true(1) or false (0). A partial assignment  $\alpha$  is one under which some variables are unassigned.

# **Partial Assignments**

An assignment is a function  $\alpha: V \to \{0,1\}$  which maps each variable to true(1) or false (0). A partial assignment  $\alpha$  is one under which some variables are unassigned.

- ▶ Under a partial assignment  $\alpha$ , the state of a variable  $\nu$  is true if  $\alpha(\nu) = 1$ , false if  $\alpha(\nu) = 0$ , and unassigned otherwise.
- Let  $V = \{x, y, z\}$  and let  $\alpha(x) = 1, \alpha(y) = 0$ . Then the state of x under  $\alpha$  is true, state of y is false, and the state of z is unassigned.

Assume we have a formula in CNF. Under a partial assignment  $\alpha$ ,

- a clause C is true if there exists some literal \( \ell \) in C whose state is true
- ▶ a clause C is false if the state of all literals in C is false
- ▶ Otherwise, the state of *C* is unassigned

Assume we have a formula in CNF. Under a partial assignment  $\alpha$ ,

- a clause C is true if there exists some literal ℓ in C whose state is true
- ▶ a clause C is false if the state of all literals in C is false
- ▶ Otherwise, the state of *C* is unassigned

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

Assume we have a formula in CNF. Under a partial assignment  $\alpha$ ,

- a clause C is true if there exists some literal ℓ in C whose state is true
- ▶ a clause C is false if the state of all literals in C is false
- ▶ Otherwise, the state of *C* is unassigned

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

▶ The state of  $C = x \lor y \lor z$  is true

Assume we have a formula in CNF. Under a partial assignment  $\alpha$ ,

- a clause C is true if there exists some literal ℓ in C whose state is true
- ▶ a clause C is false if the state of all literals in C is false
- ▶ Otherwise, the state of *C* is unassigned

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

- ▶ The state of  $C = x \lor y \lor z$  is true
- ▶ The state of  $C = x \lor \neg y \lor z$  is unassigned

Assume we have a formula in CNF. Under a partial assignment  $\alpha$ ,

- a clause C is true if there exists some literal ℓ in C whose state is true
- ▶ a clause C is false if the state of all literals in C is false
- ▶ Otherwise, the state of *C* is unassigned

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

- ▶ The state of  $C = x \lor y \lor z$  is true
- ▶ The state of  $C = x \lor \neg y \lor z$  is unassigned
- ▶ The state of  $C = x \lor \neg y$  is false

Under a partial assignment  $\alpha$ ,

- ▶ A CNF formula F is true if for each  $C \in F$ , C is true
- ▶ A CNF formula F is false if there  $C \in F$  such that C is false
- ▶ Otherwise, *F* is unassigned.

Under a partial assignment  $\alpha$ ,

- ▶ A CNF formula F is true if for each  $C \in F$ , C is true
- ▶ A CNF formula F is false if there  $C \in F$  such that C is false
- ► Otherwise, *F* is unassigned.

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

Under a partial assignment  $\alpha$ ,

- ▶ A CNF formula F is true if for each  $C \in F$ , C is true
- ▶ A CNF formula F is false if there  $C \in F$  such that C is false
- Otherwise, F is unassigned.

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

▶ The state of  $F = (x \lor y \lor z) \land (x \lor \neg y \lor z)$  is unassigned

Under a partial assignment  $\alpha$ ,

- ▶ A CNF formula F is true if for each  $C \in F$ , C is true
- ▶ A CNF formula F is false if there  $C \in F$  such that C is false
- Otherwise, F is unassigned.

Consider the partial assignment  $\alpha(x) = 0$ ,  $\alpha(y) = 1$ .

- ▶ The state of  $F = (x \lor y \lor z) \land (x \lor \neg y \lor z)$  is unassigned
- ▶ The state of  $F = (x \lor y \lor z) \land (x \lor \neg y)$  is false

#### Let C be a clause and $\alpha$ a partial assignment. Then

- ▶ C is a unit clause under  $\alpha$  if there is a literal  $\ell \in C$  which is unassigned, and the rest are false.
- ▶ Then  $\ell$  is a unit literal under  $\alpha$ .

#### Let C be a clause and $\alpha$ a partial assignment. Then

- ▶ C is a unit clause under  $\alpha$  if there is a literal  $\ell \in C$  which is unassigned, and the rest are false.
- ▶ Then  $\ell$  is a unit literal under  $\alpha$ .

Let 
$$\alpha(x) = 0$$
,  $\alpha(y) = 1$  be a partial assignment.

•  $C = x \vee \neg y \vee \neg z$  is a unit clause and  $\neg z$  is a unit literal

#### Let C be a clause and $\alpha$ a partial assignment. Then

- ▶ C is a unit clause under  $\alpha$  if there is a literal  $\ell \in C$  which is unassigned, and the rest are false.
- ▶ Then  $\ell$  is a unit literal under  $\alpha$ .

Let  $\alpha(x) = 0$ ,  $\alpha(y) = 1$  be a partial assignment.

- $C = x \vee \neg y \vee \neg z$  is a unit clause and  $\neg z$  is a unit literal
- ▶  $C = x \lor \neg y \lor \neg z \lor w$  is not a unit clause

#### Let C be a clause and $\alpha$ a partial assignment. Then

- ▶ C is a unit clause under  $\alpha$  if there is a literal  $\ell \in C$  which is unassigned, and the rest are false.
- ▶ Then  $\ell$  is a unit literal under  $\alpha$ .

Let  $\alpha(x) = 0$ ,  $\alpha(y) = 1$  be a partial assignment.

- $C = x \vee \neg y \vee \neg z$  is a unit clause and  $\neg z$  is a unit literal
- ▶  $C = x \lor \neg y \lor \neg z \lor w$  is not a unit clause
- ▶  $C = x \lor \neg y$  is not a unit clause

## **DPLL**

DPLL maintains a partial assignment, to begin with the empty assignment.

- Assigns unassigned variables 0 or 1 randomly
- ▶ Sometimes, forced to assign 0 or 1 to unit literals

## **DPLL Actions**

- ▶ DPLL has 3 actions : decisions, unit propagation and backtracking
- Decisions : Decide an assignment for a variable (random choice)
- Implied assignments or unit propagation : to deal with unit literals
- Backtrack when in a conflict

## **DPLL Algorithm**

- At any time, the state of the algorithm is a pair  $(F, \alpha)$  where F is the CNF and  $\alpha$  is a partial assignment
- A state (F, α) is successful if α sets some literal in each clause of F to be true
- ▶ A conflict state is one where  $\alpha$  sets all literals in some clause of F to be false

## **DPLL Algorithm**

- Let  $F|\alpha$  denote the set of clauses obtained by deleting from F, any clause containing a true literal from  $\alpha$ , and deleting from each remaining clause, all literals false under  $\alpha$ . Let  $\alpha(x) = 0, \alpha(y) = 1$ .
- ▶ For  $F = (x \lor y \lor z) \land (x \lor \neg y \lor \neg z), F | \alpha = \{\neg z\}$
- ▶ For  $F = (x \lor y) \land (\neg x \lor \neg y), F | \alpha = \{\}.$
- ▶ For  $F = (x \lor \neg y), \bot \in F | \alpha$
- ▶ If  $(F, \alpha)$  is successful, then  $F|\alpha = \{\}$
- ▶ If  $(F, \alpha)$  is in conflict, then the empty clause  $\bot$  is in  $F|\alpha$ .

# The DPLL Algorithm

#### Input : CNF formula F.

- 1. Initialise  $\alpha$  as the empty assignment
- 2. While there is a unit clause L in  $F|\alpha$ , add L=1 to  $\alpha$  (unit propagation)
- 3. If  $F|\alpha$  contains no clauses, then stop and output  $\alpha$
- 4. If  $F|\alpha$  contains the empty clause, then apply the learning procedure to add a new clause C to F. If it is the empty clause, output UNSAT. Otherwise, backtrack to the highest level at which C is a unit clause, go to line 2.
- 5. Decide on a new assignment p = b to be added to  $\alpha$ , goto line 2.

# **DPLL Example**



Clause Learning

## Run of DPLL

The partial assignment in construction is called a **a run of DPLL**. In the previous slide, the run ended in a conflict.

## **Decision Level**

During a run, the decision level of a true literal is the number of decisions after which the literal was made true.



# **Implication Graphs**

During a DPLL run, we maintain a data structure called an implication graph.

Under a partial assignment  $\alpha$ , the implication graph G = (V, E),

- ▶ V is the set of true literals under  $\alpha$ , and the conflict node
- ▶  $E = \{(\ell_1, \ell_2) \mid \neg \ell_1 \text{ belongs to the clause due to which unit propagation made } \ell_2 \text{ true} \}$

Each node is annotated with the decision level.



## **Conflict Clause**

Traverse the implication graph backwards to find the set of decisions that created a conflict. The negations of the causing decisions is the conflict clause.



Conflict clause :  $p_6 \vee \neg p_1$  is added : resolve  $c_4$  with  $c_3$ ,  $c_1$ ,  $c_2$ ,  $c_8$ 

# **Clause Learning**

- We add the conflict clause to the input set of clauses
- backtrack to the second last conflicting decision, and proceed like DPLL

#### Adding the conflict clause

- does not affect satisfiability of the original formula (think of resolution)
- ensures that the conflicting partial assignment will not be tried again



The second last decision is  $p_6 = 0$ . Unit propagation will force  $p_1 = 0$ .

The combination  $p_6 = 0, p_1 = 1$  will not be tried again.



Conflict clause :  $p_7 \lor p_6$  is added and backtrack

Set  $p_7 = 1$  by unit propagation.

