

TOPIC IN ALGORITHMS Final Report

Art Gallery Problem Implementation

(Vertex guard)

Prepared by :
TGDK SUMANATHILAKA
B150413CS
sumanathilaka_b150413cs@gmail.com

Instructor: DR.SUBHASREE

COURSE: CS4027 DATE: 05/ 04 /2018

TABLE OF CONTENTS

TABLE OF CONTENTS	2
Problem Specification	3
Problem :	3
INPUT OUTPUT Specification	3
Input	4
Output	4
Discussion On Vertex guard algorithm:	4
Method 1:	4
Time Complexity of the Algorithm	5
Method 2:	5
Time Complexity of the Algorithm	6
Results of the graphs with the implementation.	6
Test Cases	6
Reference	8

Problem Specification

The **art gallery problem** or **museum problem** is a well-studied visibility problem in computational geometry .lt originates from a real-world problem of guarding an art Gallery with the minimum number of guards who together can observe the whole gallery.

Problem:

Given a 2D Graph ,What is the minimum number of guards to safeguard the painting of the art gallery .(Guards can only placed in vertices , guards have 360 degree visibility)

INPUT OUTPUT Specification

Input

- 1) The no of vertices of the art Gallery.
- 2) (XY) plot of each vertex.

Eg: (1)	(2)	(3)
4	5	6
1 1	0 0	0 0
1 0	0 2	2 4
0 1	1 0	3 2
0 0	1 3	5 5
	2 1	3 4
		1 4

Output

- 1) Minimum No of guards .
- 2) (X Y) location of guards.

Discussions On Vertex guard algorithm:

Method 1:

Step 1: Draw lines through every pair of vertices of **P** and compute all convex components C1,C2,C3,....Cm of **P**. Let C=(C1,C2,C3,.....Cm), N=(1,2,....,n) and $Q=\emptyset$.

Step 2: For $i \le j \le n$, construct the set F_j by adding those convex components of P that are totally visible from the vertex V_j .

Step 3: Find $i \in \mathbb{N}$ such that $|Fi| \ge |Fj|$ for all and $j \in \mathbb{N}$ and $i \ne j$.

Step 4 : Add i to Q to and delete i from N.

Step 5 :For all j∈ Ni.Fj = Fj-Fi, and C = C-Fi.

Step 6: If $|C| \neq \emptyset$ then goto Step 3.

Step 7: Output the set Q and Stop.

Time Complexity of the Algorithm

Step 1:

Since $O(n^2)$ lines are drawn in P to compute components , m can be at most $O(n^4)$.

Step 2: 0(mn)

Step 3: O(n^2)

Step 4: O(1)

Step 5 : O(n^5)

Hence the overall time complexity of the approximation algorithm is **O(n^5)**

Method 2:

Step 1:

Triangulate the given polygon **P** by adding non overlapping diagonals.

- a) Using Two ear theorem ***
- b) Recursive
- c) Monotone polygon principles

Step 2:

3 colour the triangulated polygon using 3 colour principles.

Step 3:

A Single Color will cover the whole polygon (Take the min no of vertices with same color)

Step 4:

Pigeonhole principle

Time Complexity of the Algorithm

Step 1:

- a) Using Two ear theorem O(n^3)
- b) Recursive O(n^2)
- c) Monotone polygon principles O(nlogn)

Step2:

3 colouring of graph: O(1.3286^n)

K colouring: O(2ⁿ.n)

Results of the graphs with the implementation.

Implementation was done in C

The Algorithm is;

- 1. Insert the Point in counter clockwise
- 2. Triangulate the Polygon (using two ear theorem)
- 3. 3- colouring theorem
- 4. Min no of guards (least coloured vertexes)

Test Cases

NO	NO of vertices	Test cases	Min no of guard	points
1	4	(00),(10),(11), (01)	1	3 (0 1)
2	5	(0 0),(2 0),(3 1),(2 2),(0 1)	1	4 (0,1)
3	6	(0 0),(10 0),(8 4),(6 2),(4 2),(2 4)	2	2 (8 4) , 4 (4 2)
4	9	(0 0) ,(14,0),(14,10),(12,5),(10,10), (8,5),(4,10),(2,5),(0,10)	2	3 (12,5) , 7 (2,5)
5	9	(0,0),(16,0),(14,10),(12,5),(10,5),(8,10),(6, 5),(4,5),(2,10)	3	2 (14,10), 4(10,5) , 7(4,5)
6	12	(0 0) ,(6 2) ,(12 0),(8 4),(10 6),(12 6),(8 8),(6 6),(2 8),(0 6),(2 6),(4 4)	3	6(8 ,8) , 9 (0,6) 11(4 ,4)
7	12	(0,8),(4,8),(2,2),(8,9),(6,0),(12,4),(10,4), (10,12),(6,9),(6,14),(2,11),(4,11)	4	2(2,2) , 4(6,0) , 8(6,9) ,11(4,11)

Reference

- 1. Computational Geometry in c by Joseph o'Rourke
- 2. https://en.wikipedia.org/wiki/Art_gallery_problem
- 3. https://www.cs.purdue.edu/homes/aliaga/cs635-10/lec-artgallery.pdf
- 4. http://www.math.iit.edu/~kaul/talks/LongArtGalleryTalk.pdf
- 5. http://www.geeksforgeeks.org/backttracking-set-5-m-coloring-problem/