Artificial Intelligence II Homework 4

Comments & Model Performance results on Question 1

Pavlos Spanoudakis (sdi1800184)

Basic Execution flow

- 1. We read the train & validation sets data from the input files, into DataFrame's. The file paths can be modified on the notebook code cell #3. We also check whether all the samples have the expected format without missing values.
- 2. We create the Train and Validation sets, using TweetDataset objects. We tokenize each sample using BertTokenizer, for the pretrained bert-base-uncased model.
- 3. We will access the two sets in batches, using DataLoader objects.
- 4. We initialize the Model. Hyperparameters such as number of epochs, batch size, learning rate & Dropout probability can be modified on code cell #5. We use CrossEntropyLoss and the Adam optimizer.
- 5. We train the model: We use lists to store several performance stats during training, such as Loss and Accuracy on Train and Validation sets after each epoch.

 During each epoch:
 - For each batch given by the train set DataLoader:
 - We make predictions on this batch
 - Extract the predicted labels & calculate the accuracy
 - Calculate & store the batch Loss
 - Perform backpropagation
 - After going through all the batches, we calculate the total accuracy & total Loss for the Train set in the epoch.
 - We perform the same actions on the validation set, this time without performing backpropagation of course.
 - During the final epoch, we store the predicted labels, as well as the model output (on both sets), to use in the final evaluation phase right after.
- 6. Displaying performance results. After the end of training we display:
 - The Confusion Matrices of the final model predictions on the Train and Validation sets.
 - The F1, Precision and Recall scores on each class, for the final model (on both sets).
 We use precision_recall_fscore_support routine from scikit-learn to calculate the scores.
 - The ROC Curves for the Validation set predictions.
 We mirror the usage of roc_curve from scikit-learn for multiple classes, as demonstrated here.
 To create the curves, we apply the softmax function to the NN output vector, to convert it to possibility values that add-up to 1, and use the softmax output to create the curves.
 roc_curve applies generated possibility thresholds to create the curves, therefore if we provided

it with just the predicted labels, it would only apply 3 thresholds to each result, which is insufficient to create useful ROC curves.

Model Architecture

The model has a simple architecture. It is implemented in the BertTweetClassifier class:

- We start with the bert-base-uncased pretrained model, getting the CLS size 768 output.
- We apply a dropout layer on the BERT output.
- We then apply a Linear layer to produce a size 3 output.
- Finally, we apply a ReLU layer and return the result.

Different models performance comparison

Notes on all models:

- The performance results displayed below have been produced using SEED = 256 for random generators.
- Unfortunately, GPU-accelerated model results could not be fully reproduced with certainty.
- We use MAX_LENGTH = 100 in all models.
- 1. This is the preselected model in the interactive notebook. For this model, we use:

Learning rate: 3e-5Batch Size: 64

o # Epochs: 2

Dropout probability: 0.2

o Execution Time: ~20 minutes

	Train Set			Validation Set		
	Precision	Recall	F1	Precision	Recall	F1
Neutral	0.8422	0.5605	0.8388	0.7653	0.6081	0.8306
Anti-Vaccine	0.8582	0.7034	0.7717	0.8801	0.6383	0.7123
Pro-Vaccine	0.8501	0.6239	0.8039	0.8187	0.6228	0.7669

2. In this model, we use:

Learning rate: 5e-6Batch Size: 32

o # Epochs: 3

O Dropout probability: 0.25

	Train Set			Validation Set		
	Precision	Recall	F1	Precision	Recall	F1
Neutral	0.8205	0.4607	0.8019	0.7531	0.5845	0.8067
Anti-Vaccine	0.8435	0.6067	0.7230	0.8755	0.5691	0.6996
Pro-Vaccine	0.8318	0.5237	0.7604	0.8097	0.5767	0.7494

3. In this model, we use:

Learning rate: 1e-5

Batch Size: 16# Epochs: 2

o Dropout probability: 0.1

○ Execution Time: ~20 minutes

	Train Set			Validation Set		
	Precision	Recall	F1	Precision	Recall	F1
Neutral	0.8399	0.5224	0.8239	0.7690	0.7196	0.7622
Anti-Vaccine	0.8545	0.6408	0.7635	0.8778	0.5312	0.7405
Pro-Vaccine	0.8471	0.5756	0.7925	0.8198	0.6112	0.7512

Comments/Observations on the models and their development

- Model hyperparameters are mostly based on/influenced by the BERT authors recommendations:
 - Batch Sizes: 8, 16, 32, 64, 128
 Training with Batch Size = 8 caused overfitting in most cases. Training with Batch Size = 128
 caused CUDA: out of memory errors in Google Colab.
 - Learning Rates: 3e-4, 1e-4, 5e-5, 3e-5
 The Learning Rates of the presented models are a result of fine-tuning, tweaking and experimenting with the recommended ones.
 - Number of Epochs: 4
 In our case, the experiments showed that 2-3 epochs are more suitable.
- MAX_LENGTH = 100 appeared to be enough for decent results, without increasing the execution time dramatically.
- In comparison with the previous projects models, we notice that BERT model can achieve decent performance even with huge class imbalance regarding "Anti-Vaccine" tweets.
- The performance across all classes is improved, as we can notice in the ROC Curves, where the ROC area for each class in increased from the previous models.

Development

- The notebook has been developed in Google Colab and was based on the Projects 2 & 3 notebooks.
- It has been tested successfully in Google Colab & Kaggle environments, using GPU-accelerated runtimes.
 - **Note**: In Kaggle, Confusion Matrices code crashes because ConfusionMatrixDisplay.from_predictions appears to be unavailable.