

Análise e desenvolvimento de Sistemas

Aula 1: Lógica Matemática

A lógica não passa de um simples conhecimento de palavras

Charles Lamb

Unidade 1

Lógica para Computação

- Proposições
- Conectivos
- Tautologia e Contradições
- Equivalências Lógicas

Sistemas Dicotômicos

O mundo apresenta situações com dois estados apenas, que mutuamente se excluem.

E situações como:

Morno, azul royal, parta entre aberta?

São situações estritamente dicotômicas, com dois estados excludentes bem definidos.

1	0
SIM	NÃO
DIA	NOITE
PRETO	BRANCO
LIGADO	DESLIGADO

Interruptores

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto

Fechado

https://www.mundodaeletrica.com.br/como-instalar-interruptor-paralelo-faca-voce-mesmo/

https://www.mundodaeletrica.com/ligacao-em-serie-descubra-como-fazer/

Interruptores

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto

Fechado

a b

Ligados em série

Interruptores Simples

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

$$0+0=0$$
 $0\cdot 0=0$ $0+1=1$ $1+0=1$ $1\cdot 0=0$ $1+1=1$ $a+b=b+a$ $a\cdot b=b\cdot a$ $a+a'=1$ $a\cdot 0=0$ $a+1=1$ $a\cdot 1=a$

Interruptores Compostos

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

Lógica e álgebra de Boole – Jacob Daghlian – Editora Atlas

Interruptores Compostos

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

Lógica e álgebra de Boole – Jacob Daghlian – Editora Atlas

Exercício

Determine a ligação do seguinte circuito

Exercício

Determine a ligação do seguinte circuito

Solução

Relação Algébrica e Diagrama de Venn

Expressão	Símbolo	Diagrama de Venn	Expressão Algébrica		Tabela Verda	
				Α	В	Output
				0	0	0
AND	-		$A \cdot B$	0	1	0
			10000	1	0	0
				1	1	1
	1			A	В	Output
OR	\neg		VIPOC NAME	0	0	0
	\rightarrow		A + B	0	1	1
				1	0	1
-				1	1	1
		440		A	В	Output
	1			0	0	0
XOR			$A \oplus B$	0	1	1
				1	0	1
				1	1	0
	_			A	1	Output
NOT			\overline{A}	()	1
NOT			n n	1		0

				A	В	Output
				0	0	1
NAND)o		$\overline{A \cdot B}$	0	1	1
				1	0	1 0
			1	1	1	0
				Α	В	Output
				0	0	1
NOR	□ >>−		$\overline{A+B}$	0	1	0
				1 1	0	0 0
				1	1	0
				A	В	Output
	7			0	0	1
XNOR	—((<u> </u>	Ā	$A \oplus B$	0	1	0 0
				1	0	0
		1		1	1	1
				11	V	Output
BUF			A	0)	0
				1	ē.	1

Conectivos

Conectivos		· : · · · · s	ímbolo		Tradução
Não	: : :	: : :	~		Negação
E : :		:	^		Conjunção
.Ou	· 	· 	V	· · · · · · · · · · · · · · · · · · ·	Disjunção
SeEntão		:	→ :		Condicional
Se, e Somente se	· · · · · · · · · · · · · · · · · · ·		↔ .		Bicondicional
OuOu			. <u>v</u>	:	Disjunção Exclusiva

Conectivos: Conjunção (∧)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: Vou andar de bicicleta <u>E</u> vou andar de patins

р	q	$p \wedge q$	Tradução
V	V	Falou a verdade	V
V	F	Mentiu	F
F	V	Mentiu	F
F	F	Mentiu	F

Conectivos: Disjunção (∨)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: Vou andar de bicicleta <u>OU</u> vou andar de patins

р	q	$p \lor q$	Tradução
V	V	Falou a verdade	V
V	F	Falou a verdade	V
F	V	Falou a verdade	V
F	F	Mentiu	F

Conectivos: Disjunção Exclusiva (∨)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: Vou andar de bicicleta <u>OU</u> vou andar de patins

р	q	$p \ \underline{\lor} \ q$	Tradução
V	V	V Mentiu	
V	F	Falou a verdade	V
F	V	Falou a verdade	V
F	F	Mentiu	F

Conectivos: Condicional (\rightarrow)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: <u>Se</u> Vou andar de bicicleta <u>então</u> vou andar de patins

р	q	$p \rightarrow q$	Tradução
V	V	Falou a verdade	V
V	F	Mentiu	F
F	V	Falou a verdade	V
F	F	Falou a verdade	V

Conectivos: Bicondicional (\leftrightarrow)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: Vou andar de bicicleta se e somente se vou andar de patins

р	q	$m{p} \leftrightarrow q$	Tradução
V	V	Falou a verdade	V
V	F	Mentiu	F
F	V	Mentiu	F
F	F	Falou a verdade	V

Conectivos: Negação

p: Vou andar de bicicleta

 2^n , onde n é o número de proposições Portanto:

$$2^2 = 4 Linhas$$

р	~p
V	F
V	F
F	V
F	V

Em que ordem resolvemos?

- 1. Conectivos dentro de parênteses, dos mais internos para os mais externos
- 2. ' ou ~
- 3. ^ ou U
- 4. →
- $5. \leftrightarrow$

Exemplo 1: Determinar a tabela verdade para $(\sim p \land \sim q) \to F$

р	q	~q	~p	$(\sim p \land \sim q)$	F	$(\sim p \land \sim q) \to F$
V	V	F	F	F	F	V
V	F	V	F	F	F	V
F	V	F	V	F	F	V
F	F	V	V	V	F	F

Exemplo 2: Determinar a tabela verdade para $p \lor (q \lor r)$

р	q	r	$(q \lor r)$	$p \lor (q \lor r)$
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	F	V
F	V	V	V	V
F	V	F	V	V
F	F	V	V	V
F	F	F	F	F

Exemplo 2: Determinar a tabela verdade para $(p \lor q) \lor r$

р	q	r	$p \lor q$	$(p \lor q) \lor r$
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	V	V
F	V	V	V	V
F	V	F	V	V
F	F	V	F	V
F	F	F	F	F

Perceba que: $p \lor (q \lor r) e (p \lor q) \lor r$ São Iguais!!!

Equivalências Lógicas

Podemos observar que:

Associativa: $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Leis da Equivalência: $(p \leftrightarrow q) \equiv (p \rightarrow q) \land (q \rightarrow p)$

Leis da Equivalência: $\sim (p \leftrightarrow q) \equiv (p \leftrightarrow \sim q) \equiv (\sim p \leftrightarrow q)$

Distributiva: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Equivalências Lógicas

Comutatividade	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Associatividade	$(p \wedge q) \wedge r \equiv$	$(p \lor q) \lor r \equiv$
	$p \wedge (q \wedge r)$	$p \lor (q \lor r)$
Distributividade	$p \wedge (q \vee r) \equiv$	$p \lor (q \land r) \equiv$
	$(p \wedge q) \vee (p \wedge r)$	$(p \lor q) \land (p \lor r)$
Identidade	$p \wedge t \equiv p$	$p \lor c \equiv p$
Negação	$p \lor \neg p \equiv t$	$p \land \neg p \equiv c$
Dupla negação	$\neg(\neg p) \equiv p$	
Idempotência	$p \wedge p \equiv p$	$p \lor p \equiv p$
De Morgan	$\neg(p \land q) \equiv$	$\neg(p \lor q) \equiv$
	$\neg p \lor \neg q$	$\neg p \land \neg q$
Limite universal	$p \lor t \equiv t$	$p \wedge c \equiv c$
Absorção	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
Negações	$\neg t \equiv c$	$\neg c \equiv t$

Exemplo 3: Prove através de equivalências lógicas, através de tabela verdade a equivalência da seguinte expressão $A \wedge \sim (A \wedge B) \equiv (A \wedge \sim B)$

$$A \wedge \sim (A \wedge B) \equiv A \wedge (\sim A \vee \sim B)$$

$$De Morgan$$

$$\neg (p \wedge q) \equiv \neg (p \vee q) \equiv \neg p \wedge \neg q$$

$$A \wedge \sim (A \wedge B) \equiv (A \wedge \sim A) \vee (A \wedge \sim B) \left| \begin{array}{c} \mathsf{Distributividade} \\ (p \wedge q) \vee (p \wedge r) \end{array} \right| \left| \begin{array}{c} p \vee (q \wedge r) \equiv \\ (p \vee q) \wedge (p \vee r) \end{array} \right|$$

$$A \wedge \sim (A \wedge B) \equiv F \vee (A \wedge \sim B)$$
 Contradição

$$A \land \sim (A \land B) \equiv (A \land \sim B) \lor F$$
 Comutatividade $p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$

$$A \wedge \sim (A \wedge B) \equiv (A \wedge \sim B)$$
 Identidade $p \wedge t \equiv p$ $p \vee c \equiv p$

Exemplo 3: Prove através de equivalências lógicas, através de tabela verdade a equivalência da seguinte expressão $A \wedge \sim (A \wedge B) \equiv (A \wedge \sim B)$

А	В	A^B	~(A^B)	A^~(A^B)	~B	(A^~B)

Exercício: Determinar a tabela verdade da expressão $(p \leftrightarrow q) \equiv (p \rightarrow q) \land (q \rightarrow p)$

р	q	$(p \leftrightarrow q)$		

р	q	$(p \rightarrow q)$	$(q \rightarrow p)$	$(p \to q) \land (q \to p)$

Relação Algébrica e Diagrama de Venn

Expressão	Símbolo	Diagrama de Venn	Expressão Algébrica	Tabela Verdade		
				Α	В	Output
				0	0	0
AND	-		$A \cdot B$	0	1	0
			I I I I I I I I I I I I I I I I I I I	1	0	0
				1	1	1
	⊅			Α	В	Output
			A + B	0	0	0
OR				0	1	1
				1	0	1
				1	1	1
		No.		A	В	Output
	⇒		$A \oplus B$	0	0	0
XOR				0	1	1
				1	0	1
				1	1	0
	->-	0	Ā	A		Output
NOT				()	1
ALTERIA				1	L	0

Conjunção

Disjunção

Disjunção Exclusiva

Negação

Relação Algébrica e Diagrama de Venn

			No.	A	В	Output
			$\overline{A \cdot B}$	0	0	1
NAND)o_			0	1	1
				1	0	1 1 0
		la constant of		1	1	0
				Α	В	Output
	7		$\overline{A+B}$	0	0	1
NOR				0	1	0
	7			1	0	0 0
				1	1	0
			$\overline{A \oplus B}$	A	В	Output
				0	0	1
XNOR) >>-			0	1	0
				1	0	0 0 1
				1	1	1
BUF				11	1	Output
			A	C	1	0
				1	3	1

Não E

Não OU

Não (A e B, mas não ambos)

Quantificadores e Predicados

Sejam as proposições:

p:
$$3 + 5 \le 11 \text{ V(p)} = 1$$

q: $x + 5 \le 11 \text{ V(q)} = ?$ Sentença aberta ou função proposicional

$$x \in U$$
; $U = \{1,3,5,7 \dots\}$

Quantificadores e Predicados

Predicado: Em uma sentença aberta, a propriedade ou relacionamento entre objetos (ou variáveis) é chamada <u>predicado.</u>

Denotaremos um predicado qualquer associado a uma variável x por P(x).

Conjunto Universo: U

Conjunto Verdade: V

Exemplo

Determinar o conjunto verdade das seguintes sentenças abertas:

a)
$$x+11 = 21$$
; $U = N$

b)
$$2x - 5 \le 13$$
, U = Z

Quantificadores

Transformam sentenças abertas ou condições, que não possuem valor lógico, em proposições.

- Universal
- Existencial

Quantificadores

• Quantificador universal: ∀

Lê-se: "para todo", "para qualquer". $(\forall x) P(x)$

• Quantificador Existencial: 3

Lê-se: "existe um"; "existe algum"; "há pelo menos um"; "para algum". $(\exists x) P(x)$

Exemplo

Determine a proposição relacionada a "Todo inteiro é racional"

Para todo x, se $x \in \mathbb{Z}$, então $x \in \mathbb{Q}$

Escrever de maneira simbólica a proposição: $x^2+1=2x$

Negação de Quantificadores

"Todos os carros possuem rodas."

"Alguns alunos são estudiosos"

"Existem alunos estudiosos"

Exemplo

Sendo $A = \{1,2,3,4,5,6,7,8,9,10,11\}$, classifique cada proposição como verdadeira ou falsa:

- a) $(\forall x \in A)(x > 10)$.
- b) $(\exists x \in A)(x 2 > 5)$.
- c) $[\forall x \in A ; x \in \text{primo}].$

Negar a sentença:

Para todo x, $x - 1 \ge 5$

Negar a sentença:

Para todo x, $x - 1 \ge 5$

Resposta:

$$\forall x, x - 1 \ge 5 \iff \exists x, x - 1 < 5$$

Negar a sentença: $\exists x, x^2 = 1 \rightarrow x \neq 0$

Determinar o conjunto verdade das seguintes sentenças abertas:

a)
$$x+11 = 21$$
, $U=N$

b)
$$2x - 5 \le 13$$
, U=Z

c)
$$x^2-7x+12 = 0$$
, U=N

d)
$$x^2-1=0$$
, $U=N$

Determinar o conjunto verdade das seguintes sentenças abertas:

a)
$$x+11 = 21$$
, $U=N$

$$V = \{10\}$$

b)
$$2x - 5 \le 13$$
, U=Z

Determinar o conjunto verdade das seguintes sentenças abertas:

c)
$$x^2-7x+12 = 0$$
, $U=N$

$$V = {3,4}$$

d)
$$x^2-1=0$$
, $U=N$

Uma das aplicações da Lógica é em circuitos elétricos e eletrônicos simulados por meio de chaves. Os circuitos de chaveamento são representados por meio de chaves que ligam e desligam conforme o estado binário "Verdadeiro (1) ou Falso (0)" da sentença Lógica. Considerando a expressão de um circuito dada por $A \longrightarrow (B \land C)$ determine quando a saída do circuito será 1 (ou V).

 $A \longrightarrow (B \land C)$

Α	В	С	$(\boldsymbol{B} \wedge \boldsymbol{C})$	$\mathbf{A} \to (\mathbf{B} \wedge \mathbf{C})$
V	٧	٧	V	V
V	٧	F	F	F
V	F	٧	F	F
V	F	F	F	F
F	٧	٧	V	V
F	٧	F	F	V
F	F	٧	F	V
F	F	F	F	V

Em uma competição de natação, os atletas em questão estão concorrendo por medalhas ao primeiro, segundo e terceiro colocado:

a) Primeiro lugar: Ouro

b) Segundo lugar: Prata

c) Terceiro lugar: Bronze

Cada atleta passará por chaves que determinarão a competição final. Cada atleta só passará para a próxima fase se na fase anterior tiver vencido. Pensando nessa situação elabore uma equação lógica e uma tabela que simule as possibilidades dessa competição.

Α	В	С	$A \wedge B$	$A \wedge C$	B∧C	$A \land B \land C$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	V	F	F
V	F	F	F	F	F	F
F	V	V	F	F	V	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

