Imię i nazwisko:	
Logika d	dla informatyków
Egzamin połó	wkowy (część licencjacka)
4	grudnia 2010
Zadanie 1 (1 punkt). W prostokąt poniż noważną formule $(p \lor q) \land (\neg p \lor \neg q)$.	ej wpisz formułę w dysjunkcyjnej postaci normalnej rów-
	iżej wpisz formułę z trzema zmiennymi wolnymi $x, y, z,$
ktora (interpretowana w zbiorze liczb natur kiem liczb y i z .	ralnych) mówi, że x jest największym wspólnym dzielni-
7. l (1 1 / 1 /	
	e zbiory A, B i $C,$ że $A \setminus B = C$ oraz $A \neq (B \cup C),$ ch trzech zbiorów. W przeciwnym wypadku wpisz słowo
Zadanie 4 (1 punkt). Jeśli inkluzja $\bigcup_{t \in T} (A)$	$(t \cap B_t) \subseteq \bigcup_{t \in T} A_t \cap \bigcup_{t \in T} B_t$ zachodzi dla dowolnych indekso-
wanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to przypadku wpisz odpowiedni kontrprzykład	o w prostokąt poniżej wpisz słowo "TAK". W przeciwnym

Zadanie 5 (1 punkt). Niech $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Rozważmy relację $R \subseteq A \times A$, której graf jest przedstawiony na rysunku niżej (strzałka od wierzchołka x do wierzchołka y oznacza, że $\langle x, y \rangle \in R$).

W prostokąt poniżej wpisz taką formułę φ , że $\{\langle x,y\rangle\mid\varphi\}$ jest przechodnim domknięciem relacji R.

Zadanie 6 (1 punkt). Jeśli istnieje bijekcja $f:[0,1]^{\mathbb{N}}\to [2,4]^{\mathbb{P}}$, to w prostokąt poniżej wpisz dowolną taką bijekcję. W przeciwnym wypadku wpisz słowo "NIE". Tutaj [a,b] oznacza domknięty przedział od a do b w zbiorze liczb rzeczywistych a \mathbb{P} oznacza zbiór liczb naturalnych parzystych.

Zadanie 7 (1 punkt). Jeśli istnieje taka relacja równoważności w zbiorze liczb naturalnych, której wszystkie klasy abstrakcji są dokładnie dwuelementowe, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym wypadku wpisz słowo "NIE".

Zadanie 8 (1 punkt). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\mathbb{Q}^{\{a,b\}}$	$\{1,2\} \times \{3,4,5\}$	$\mathbb{Z}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{Q} \times \{0,1\})$	$\{2010\}^{\mathbb{Q}}$	$(\mathbb{Q}\setminus\mathbb{Z})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{N})^{\mathbb{N}}$	$\{0,1,2\}^{\{a,b\}}$

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin połówkowy (część zasadnicza)

4 grudnia 2010

Każde z poniższych zadań będzie oceniane w skali od -2 do podanej przy zadaniu liczby punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 9 (10 punktów). Rozważmy formuły zbudowane ze zmiennych p_1, p_2, p_3, p_4 , spójników $\top, \bot, \Leftrightarrow$ oraz nawiasów. Udowodnij, że każda taka formuła jest spełniona przez 0, 8 lub 16 wartościowań zmiennych p_1, \ldots, p_4 .

Wskazówka: Spójnik ⇔ jest łączny i przemienny.

Zadanie 10 (10 punktów). Niech R i S będą dowolnymi relacjami równoważności na zbiorze A. Udowodnij, że RS jest relacją równoważności wtedy i tylko wtedy, gdy RS = SR.

Zadanie 11 (12 punktów). Rozważmy relację równoważności \sim na zbiorze $\mathbb{N}^{\mathbb{N}}$ zdefiniowaną wzorem

$$f \sim g \iff f(\mathbb{N}) = g(\mathbb{N})$$

gdzie $\mathbb{N}^{\mathbb{N}}$ oznacza zbiór wszystkich funkcji z \mathbb{N} w \mathbb{N} a $f(\mathbb{N})$ oznacza obraz zbioru \mathbb{N} przez funkcję f.

- (a) Podaj moc zbioru klas abstrakcji relacji ~.
- (b) Czy istnieje taka funkcja f, że klasa abstrakcji $[f]_{\sim}$ jest zbiorem skończonym?
- (c) Czy istnieje taka funkcja f, że klasa abstrakcji $[f]_{\sim}$ jest nieskończonym zbiorem przeliczalnym?
- (d) Czy istnieje taka funkcja f, że klasa abstrakcji $[f]_{\sim}$ jest zbiorem nieprzeliczalnym?

Wszystkie odpowiedzi należy uzasadnić.

Student name:	
Logic for	Computer Science
	exam (bachelor part)
De	cember 4, 2010
Question 1 (1 point). In the box below $(p \lor q) \land (\neg p \lor \neg q)$.	write a formula in disjunctive normal form equivalent to
	\Rightarrow $(q \Rightarrow r)) \land q \land \neg r$ is a contradiction then in the box ". Otherwise write a corresponding counter-example.
· · · · · · · · · · · · · · · · · · ·	write a formula with three free variables x, y, z , that (in- presses that x is the greatest common divisor of y and z .
	$(\varphi \Rightarrow \psi)) \Leftrightarrow ((\forall x \varphi) \Rightarrow (\forall x \psi))$ is a tautology for all forebox below write the word "TAUTOLOGY". Otherwise

Question 5 (1 point). If there exist sets A , B and C , such that $A \setminus B = C$ and $A \neq (B \cup C)$, then in the box below write an example of such three sets. Otherwise write the word "NO".
•
Question 6 (1 point). If the inclusion $\bigcup_{t \in T} (A_t \cap B_t) \subseteq \bigcup_{t \in T} A_t \cap \bigcup_{t \in T} B_t$ is true for all indexed
families of sets $\{A_t\}_{t\in T}$ and $\{B_t\}_{t\in T}$, then in the box below write the word "YES". Otherwise write a corresponding counter-example.
Question 7 (1 point). For $s, t \in \mathbb{R}$ let $A_{s,t} = \{x \in \mathbb{R} \mid s \leq x \land x \leq t\}$. In the box below write the value of the set $\bigcap_{s < 0} \bigcup_{t > 0} A_{s,t}$, that is, write an expression that denotes the same set and contains no symbols $\cap, \cup, \exists, \forall, s, t$.
Question 8 (1 point). Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Consider the relation $R \subseteq A \times A$ whose graph is shown on the picture below (an arrow from a vertex x to a vertex y denotes that $\langle x, y \rangle \in R$).
$(1) \longrightarrow (2) \longrightarrow (3) \longrightarrow (4) \longrightarrow (5) \longrightarrow (6) \longrightarrow (7) \longrightarrow (8)$
In the box below write a formula φ such that $\{\langle x,y\rangle \mid \varphi\}$ is the transitive closure of the relation R .

Student name:	
Solutions returned:	

Logic for Computer Science

Midterm exam (main part)

December 4, 2010

Question 9 (11 points). Consider formulas built from propositional variables p_1, p_2, p_3, p_4 , connectives \top and \Leftrightarrow , and brackets. Prove that each such formula is satisfiable.

Question 10 (11 points). The operation of symmetric difference $\dot{-}$ of two sets A and B is defined as follows.

$$x \in A - B \iff (x \in A \Leftrightarrow x \notin B).$$

Prove that symmetric difference is an associative and commutative operation, that is for all sets A, B and C the equalities

$$(A - B) - C = A - (B - C)$$
 and $A - B = B - A$

are true.

Question 11 (11 points). Prove that for all sets A and B we have $A \times B = B \times A$ if and only if

$$A = \emptyset$$
 or $B = \emptyset$ or $A = B$.