• Common-Gate (CG):

 $\begin{array}{c|c}
 & & & \\
 & \downarrow & \\
 & \downarrow & \\
 & g_{mb}v_{bs}
\end{array}$

ac Schematic

ac Low-Frequency Model for M

Simplified ac Low-Frequency Model for M

Rerouting the current source between S and D to S to G and then from G to D

Final ac Low-Frequency Equivalent for CG Stage

> *G* and *B* both ground:

$$\Rightarrow v_{gs} = v_{bs} = -v_{i}$$

- \Rightarrow g_mv_{gs} and g_{mb}v_{bs} can be *combined to a* single current source (g_m + g_{mb})v_i, flowing from S to D
- ➤ Reroute this current source from S to G and then from G to D (the circuit remains invariant)
 - ⇒ Leads to the *final ac low-frequency* equivalent of the CG stage
- ➤ Note again that r₀ appears between input and output (similar to CB stage)

- \triangleright Neglect r_0 for now
- \triangleright Noting that $v_1 = v_i$:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{(g_{m} + g_{mb})v_{1}R_{D}}{v_{i}} = +(g_{m} + g_{mb})R_{D}$$

- ➤ Identical result to a CB stage, if body effect is neglected
- $> R_i = (g_m + g_{mb})^{-1}$
- $> R_0 = R_{01} || R_D$

$$R_{01} \rightarrow \infty (Why?)$$

$$\Rightarrow R_0 = R_D$$

- \triangleright Ex.: Find A_v and R_i with r_0 included
- > With r_0 included, the circuit shows three different values of R_{01} :
 - When excited by a voltage source, $R_{01} = r_0$
 - When excited by an ideal current source, $R_{01} \rightarrow \infty$ (Show)
 - If the current source is non-ideal with shunt resistance R_S :

$$R_{01} = r_0[1 + (g_m + g_{mb})R_S]$$
 (Show)

Quick Reckoner for BJT Stages

Topology	A _v	A _i	PG	R_{i}	R_0
CE	Moderate to Large	Large	Large	Moderate	Moderate
CC	≤1	Large	Moderate	Large	Small
СВ	Moderate to Large	≤1	Moderate	Small	Moderate
CE(D)	Moderate	Large	Moderate	Large	Moderate

• The RC-Coupled Amplifier:

- > Immensely popular, particularly for audio circuits
- Can be designed to produce *significant power*gain
- > Several such stages can be *cascaded* to produce *very large gain*
- Can be used either with *single-supply* or *dual-supply*
- ➤ Used primarily in *discrete designs* (*PCB*)

 C_B : Base Blocking Capacitor , C_C : Collector Coupling Capacitor C_E : Emitter Bypass Capacitor , R_S : Source Resistance , R_L : Load Resistance