```
Rio de Janeiro, 11 de Dezembro de 2007.
PROVA FINAL DE ANÁLISE DE ALGORITMOS
PROFESSOR: EDUARDO SANY LABER
DURAÇÃO: 2 HORAS

Questão 1 (2.0pt)
Analise a complexidade do pseudo código abaixo
```

```
Analise a complexidade do pseudo código abaixo  \begin{aligned} \mathbf{Para} & i = 1 \text{ até } n \text{ faça} \\ \mathbf{Para} & j = 1 \text{ até } n^2 \text{ faça} \\ & k \leftarrow 1 \\ & \mathbf{Enquanto} \ k < n \\ & k \leftarrow 2*k \end{aligned}
```

Questão 2 (2.0pt) Modifique o pseudo-código abaixo para que este passe a armazenar na posição v do vetor D a distância de s até v.

BFS	
Procedure BFS(G,s)	
1.	Marque s como visitado
2.	For each $v \in V$
3.	$D(v) \leftarrow 0$
5.	ENQUEUE(Q,s)
9.	$\mathbf{while}\;Q\neq\emptyset$
10.	$u \leftarrow DEQUEUE(Q)$
11.	For each $v \in Adj[u]$
12.	if v não visitado then
14.	Marque v como visitado
16.	$\mathrm{ENQUEUE}(\mathrm{Q,v})$
20.	End For
30.	End While

Figura 1: Pseudo-Código de uma BFS

Questão 3 (2.0pt) Seja um conjunto de n postos de gasolina dispostos sobre a reta dos reais nos pontos $0 < p_1 < \ldots < p_n$. Para percorrer esta linha utilizamos um carro com autonomia de 100Km, ou seja, com o tanque cheio ele pode percorrer 100km sem reabastecer.

- a) Projete um algoritmo para determinar em que postos o carro deve abastecer para que ele possa ir do ponto 0 da linha até o ponto p_n realizando o número mínimo de paradas.
 - b) Analise a complexidade do algoritmo proposto.

Questão 4 (2.0pt) Considere um vetor ordenado A[1..n] com n números inteiros distintos. Explique com palavras como seria um algoritmo com complexidade $O(\log n)$ para determinar se existe um índice i tal que A[i] = i. Justifique porque o algoritmo funciona.

Questão 5 (2.0pt) A cadeia de restaurantes XYZ esta considerando abrir uma série de restaurantes ao longo de uma estrada, modelada neste problema com uma linha reta. Existem n potenciais localidades para abrir os restaurantes que distam, respectivamente, $d_1 < \ldots < d_n$ kilometros da origem da reta. Além disso, sabe-se que o lucro esperado de abrir o restaurante na i-ésima localidade é ℓ_i .

Finalmente, para abrir os restaurantes as seguintes restrições devem ser respeitadas: (i) em cada uma das localidades apenas um restaurante pode ser aberto; (ii) Não é permitido abrir dois restaurantes em localidades consecutivas.

- a) (1.0pt) Escreva o PSEUDO-CÓDIGO de um algoritmo polinomial para determinar o lucro esperado máximo que pode ser obtido com a abertura dos restaurantes.
 - b)(1.0pt) Análise a complexidade do algoritmo proposto.