

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS STANDINGS CUSTOM INVOCATION

## E. RADiant queries

time limit per test: 4 seconds memory limit per test: 256 megabytes

Let rad(n) denote the product of all distinct prime divisors of the number n. For example,  $rad(504) = rad(2^3 \cdot 3^2 \cdot 7) = 2 \cdot 3 \cdot 7 = 42$ . We define rad(1) = 1.

The statement of this problem is simple: you have an array a of size n. You are given q queries  $[\ell; r]$ , and you need to compute rad of the product of the numbers  $a_{\ell}, a_{\ell+1}, \ldots, a_r$ , that is:

$$\mathtt{rad}\left(\prod_{i=\ell}^r a_i
ight) = \mathtt{rad}\left(a_\ell imes a_{\ell+1} imes \cdots imes a_r
ight)$$

Since this number can be quite large, output it modulo  $10^9 + 7$ .

### Input

The first line of input contains two numbers n, q ( $1 \le n, q \le 5 \cdot 10^5$ ), the number of elements in the array and the number of queries.

The second line of input contains n numbers  $a_i$  ( $1 \leq a_i \leq 2 \cdot 10^5$ ), the array a.

In the following q lines, two numbers  $\ell, r$  ( $1 \le \ell \le r \le n$ ) are given, which are the boundaries of the next query.

## **Output**

In q lines of output, print one number per line, the answer to the problem modulo  $10^9+7$ .

### Scoring

| Nº | Additional Constraints |                       |                 | Points | Pog Groups  | Comment                          |
|----|------------------------|-----------------------|-----------------|--------|-------------|----------------------------------|
|    | n                      | q                     | $a_i$           | Points | Req. Groups | Comment                          |
| 0  | _                      | _                     | _               | _      | _           | Tests from the statement         |
| 1  | $n \leq 100$           | $q \leq 100$          | $a_i \leq 100$  | 8      | 0           | _                                |
| 2  |                        | _                     |                 | 9      | 1           | _                                |
| 3  | $n \leq 1000$          | $q \leq 1000$         | $a_i \leq 1000$ | 10     | 1           | _                                |
| 4  |                        | _                     |                 | 11     | 1-3         | _                                |
| 5  | _                      | _                     | _               | 11     | _           | All $a_i$ are prime and distinct |
| 6  | _                      | _                     | $a_i \leq 300$  | 12     | 0-2         | _                                |
| 7  | $n \leq 5 \cdot 10^4$  | $q \leq 5 \cdot 10^4$ | _               | 7      | 0, 1, 3     | _                                |
| 8  | $n \leq 10^5$          | $q \leq 10^5$         | _               | 4      | 7           | _                                |
| 9  | $n \leq 2 \cdot 10^5$  | $q \leq 2 \cdot 10^5$ | _               | 4      | 8           | _                                |
| 10 | $n \leq 3 \cdot 10^5$  | $q \leq 3 \cdot 10^5$ | _               | 3      | 9           | _                                |
| 11 | $n \leq 4 \cdot 10^5$  | $q \leq 4 \cdot 10^5$ | _               | 2      | 10          | _                                |
| 12 | _                      | _                     | _               | 7      | 5           | All $a_i$ are prime              |
| 13 | _                      | _                     | _               | 12     | 0-12        | _                                |

# Examples

| input          | Сору |
|----------------|------|
| 5 6            |      |
| 42 35 11 26 13 |      |
| 1 3            |      |
| 2 4            |      |
| 3 5            |      |
| 1 5            |      |
| 2 2            |      |
| 4 5            |      |
| output         | Сору |
| 2310           |      |
| 10010          |      |
| 286            |      |
| 30030          |      |
| 35             |      |
| 26             |      |

| input  | Сору |
|--------|------|
| 2 1    |      |
| 2 2    |      |
| 1 2    |      |
| output | Сору |
| 2      |      |

# Spring Lyceum Second school olympiad in informatics 2025

#### **Finished**

# Practice



### → Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

### → Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest



| → Last submissions |                      |                               |  |  |  |  |
|--------------------|----------------------|-------------------------------|--|--|--|--|
| Submission         | Time                 | Verdict                       |  |  |  |  |
| 318943646          | May/09/2025<br>16:18 | Perfect result:<br>100 points |  |  |  |  |
| 318943291          | May/09/2025<br>16:15 | Partial result: 38 points     |  |  |  |  |
| 318942728          | May/09/2025<br>16:10 | Partial result: 88 points     |  |  |  |  |
| 318938083          | May/09/2025<br>15:29 | Partial result: 88 points     |  |  |  |  |
| 318937341          | May/09/2025<br>15:22 | Partial result: 49 points     |  |  |  |  |
| 318937211          | May/09/2025<br>15:21 | Partial result: 49 points     |  |  |  |  |
| <u>318936055</u>   | May/09/2025<br>15:11 | Partial result: 56 points     |  |  |  |  |
| 318925340          | May/09/2025<br>13:22 | Partial result: 49 points     |  |  |  |  |
| 318924913          | May/09/2025<br>13:17 | Partial result: 63 points     |  |  |  |  |
| <u>318924169</u>   | May/09/2025<br>13:09 | Partial result: 49 points     |  |  |  |  |