Section 4. How Stan Works

Bob Carpenter

Columbia University

Part I

What Stan Does

Full Bayes: No-U-Turn Sampler

- Adaptive Hamiltonian Monte Carlo (HMC)
 - Potential Energy: negative log posterior
 - Kinetic Energy: random standard normal per iteration
- · Adaptation during warmup
 - step size adapted to target total acceptance rate
 - mass matrix estimated with regularization
- Adaptation during sampling
 - simulate forward and backward in time until U-turn
- · Slice sample along path

(Hoffman and Gelman 2011, 2014)

Posterior Inference

- Generated quantities block for inference (predictions, decisions, and event probabilities)
- · Extractors for draws in sample in RStan and PyStan
- Coda-like posterior summary
 - posterior mean w. MCMC std. error, std. dev., quantiles
 - split- \hat{R} multi-chain convergence diagnostic (Gelman/Rubin)
 - multi-chain effective sample size estimation (FFT algorithm)
- · Model comparison with WAIC
 - in-sample approximation to cross-validation

Penalized MLE

- Posterior mode finding via L-BFGS optimization (uses model gradient, efficiently approximates Hessian)
- Disables Jacobians for parameter inverse transforms
- Standard errors on unconstrained scale (estimated using curvature of penalized log likelihood function
- Models, data, initialization as in MCMC
- Very Near Future
 - Standard errors on constrained scale (sample unconstrained approximation and inverse transform)

"Black Box" Variational Inference

- · Black box so can fit any Stan model
- Multivariate normal approx to unconstrained posterior
 - covariance: diagonal mean-field or full rank
 - not Laplace approx around posterior mean, not mode
 - transformed back to constrained space (built-in Jacobians)
- · Stochastic gradient-descent optimization
 - ELBO gradient estimated via Monte Carlo + autdiff
- · Returns approximate posterior mean / covariance
- · Returns sample transformed to constrained space

Posterior Analysis: Estimates

- · For each parameter (and 1p__)
 - Posterior mean
 - Posterior standard deviation
 - Posterior MCMC error esimate: sd/N_{eff}
 - Posterior quantiles
 - Number of effective samples
 - \hat{R} convergence statistic

· ... and much much more in ShinyStan

Stan as a Research Tool

- Stan can be used to explore algorithms
- · Models transformed to unconstrained support on \mathbb{R}^n
- Once a model is compiled, have
 - log probability, gradient (soon: Hessian)
 - data I/O and parameter initialization
 - model provides variable names and dimensionalities
 - transforms to and from constrained representation (with or without Jacobian)

Part III

How Stan Works

Model: Read and Transform Data

- · Only done once for optimization or sampling (per chain)
- · Read data
 - read data variables from memory or file stream
 - validate data
- Generate transformed data
 - execute transformed data statements
 - validate variable constraints when done

Model: Log Density

- · Given parameter values on unconstrained scale
- Builds expression graph for log density (start at 0)
- Inverse transform parameters to constrained scale
 - constraints involve non-linear transforms
 - e.g., positive constrained x to unconstrained $y = \log x$
- · account for curvature in change of variables
 - e.g., unconstrained y to positive $x = \log^{-1}(y) = \exp(y)$
 - e.g., add log Jacobian determinant, $\log \left| \frac{d}{dy} \exp(y) \right| = y$
- · Execute model block statements to increment log density

Model: Log Density Gradient

- Log density evaluation builds up expression graph
 - templated overloads of functions and operators
 - efficient arena-based memory management
- · Compute gradient in backward pass on expression graph
 - propagate partial derivatives via chain rule
 - work backwards from final log density to parameters
 - dynamic programming for shared subexpressions
- Linear multiple of time to evalue log density

Model: Generated Quantities

- · Given parameter values
- · Once per iteration (not once per leapfrog step)
- · May involve (pseudo) random-number generation
 - Executed generated quantity statements
 - Validate values satisfy constraints
- Typically used for
 - Event probability estimation
 - Predictive posterior estimation
- Efficient because evaluated with double types (no autodiff)

Optimize: L-BFGS

- · Initialize unconstrained parameters and Hessian
 - Random values on unconstrained scale uniform in (-2,2)
 - * or user specified on constrained scale, transformed
 - Hessian approximation initialized to unit matrix
- While not converged
 - Move unconstrained parameters toward optimum based on Hessian approximation and step size (Newton step)
 - If diverged (arithmetic, support), reduce step size, continue
 - else if converged (parameter change, log density change, gradient value), return value
 - else update Hessian approx. based on calculated gradient

Sample: Hamiltonian Flow

- Generate random kinetic energy
 - random Normal(0,1) in each parameter
- Use negative log posterior as potential energy
- · Hamiltonian is kinetic plus potential energy
- Leapfrog Integration: for fixed stepsize (time discretization), number of steps (total time), and mass matrix,
 - update momentum half-step based on potential (gradient)
 - update position full step based on momentum
 - update momentum half-step based on potential
- Numerical solution of Hamilton's first-order version of Newton's secondorder diff-eqs of motion (force = mass × acceleration)

Sample: Leapfrog Example

• Trajectory of 25 leapfrog steps for correlated 2D normal (ellipses at 1 sd from mean), stepsize of 0.25, initial state of (-1,1), and initial momentum of (-1.5,-1.55).

Radford Neal (2013) MCMC using Hamiltonian Dynamics. In *Handbook of MCMC*. (free online at http://www.mcmchandbook.net/index.html)

Sample: No-U-Turn Sampler (NUTS)

- · Adapts Hamiltonian simulation time
 - goal to maximize mixing, maintaining detailed balance
 - too short devolves to random walk
 - too long does extra work (i.e., orbits)
 - · For exponentially increasing number of steps up to max
 - Randomly choose to extend forward or backward in time
 - Move forward or backward in time number of steps
 - * stop if any subtree (size 2, 4, 8, ...) makes U-turn
 - * remove all current steps if subtree U-turns (not ends)
- · Randomly select param with density above slice (or reject)

Sample: NUTS Binary Tree

 Example of repeated doubling building binary tree forward and backward in time until U-turn.

Hoffman and Gelman. 2014. The No-U-Turn Sampler. *JMLR*. (free online at http://jmlr.org/papers/v15/hoffman14a.html)

Sample: NUTS U-Turn

- Example of trajectory from one iteration of NUTS.
- Blue ellipse is contour of 2D normal.
- Black circles are leapfrog steps.
- Solid red circles excluded below slice
- U-turn made with blue and magenta arrows
 - Red crossed circles excluded for detailed balance

Sample: HMC/NUTS Warmup

- · Estimate stepsize
 - too small requires too many leapfrog steps
 - too large induces numerical inaccuracy
 - need to balance
- · Estimate mass matrix
 - Diagonal accounts for parameter scales
 - Dense optionally accounts for rotation

Sample: Warmup (cont.)

- · Initialize unconstrained parameters as for optimization
- · For exponentially increasing block sizes
 - for each iteration in block
 - * generate random kinetic energy
 - * simulate Hamiltonian flow (HMC fixed time, NUTS adapts)
 - * choose next state (Metroplis for HMC, slice for NUTS)
 - update regularized point estimate of mass matrix
 - * use parameter draws from current block
 - * shrink diagonal toward unit; dense toward diagonal
 - tune stepsize (line search) for target acceptance rate

Sample: HMC/NUTS Sampling

- · Fix stepsize and and mass matrix
- · For sampling iterations
 - generate random kinetic energy
 - simulate Hamiltonian flow
 - apply Metropolis accept/reject (HMC) or slice (NUTS)

NUTS vs. Gibbs and Metropolis

- · Two dimensions of highly correlated 250-dim normal
- · 1,000,000 draws from Metropolis and Gibbs (thin to 1000)
- 1000 draws from NUTS; 1000 independent draws

NUTS vs. Basic HMC

- · 250-D normal and logistic regression models
- Vertical axis is effective sample size per sample (bigger better)
- · Left) NUTS; Right) HMC with increasing $t = \epsilon L$

NUTS vs. Basic HMC II

- · Hierarchical logistic regression and stochastic volatility
- · Simulation time t is ϵ L, step size (ϵ) times number of steps (L)
- · NUTS can beat optimally tuned HMC (latter very expensive)

The End (Section 4)