LATEX Snippet Compilation

April 29, 2014

1 TikZ Graphs

Clique

Graph G with clique k_5 highlighted in red and v_1, v_2 connected to every vertex in G. A near clique of size k+2 forms between the red and green colored nodes.

Flow chart style graph

Bipartite Graphs

Vertical bipartite, Vertical flow

Doubly labeled nodes, Flow Graph

Side by side graphs, bent labeled edges

Self Loops

Markets

 ${\bf Network}$

Annotated Graph

Subgraph

Graph G with clique k_3 highlighted.

Runtime of σ

Add nodes v_1, v_2 :	O(1)
Connect v_1, v_2 to $v \forall v \in V$:	O(V)
Total Reduction Runtime:	O(V)

2 Matrices

$$M_k = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \quad M_G = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

Runtime of σ

Compute M_k :	$O(k^2)$
Compute M_G :	$O(V^2)$
Total Reduction Runtime:	$O(V^2)$

 τ Reduction: Construct a function τ that takes the output of σ and converts it to a valid solution of the clique problem:

This is a decision problem with only a boolean output. True and False map to the same values and the reduction is trivial.

Runtime of τ

Output boolean is equivalent to solution of vertex cover: O(1)

Total Reduction Runtime: O(1)

2.1 Efficient Verifier:

Given a solution set S to the submatrix domination problem, test all values of A into $r(\cdot), c(\cdot)$. If every value of $r(\cdot), c(\cdot)$ matches, then the algorithm should have returned **True**, and if not, then False.

Runtime of Verifier

Iterate through m_1 rows and n_1 columns of A: $O(n_1m_1)$ **Total Runtime:** $O(n_1m_1)$

3 Runtime table

Runtime of σ

Calculate number of edges: O(E)Create List L': O(E)Find M: O(1)Total Reduction Runtime: O(E)

4 Algorithms

1: Initialize t := 02: Create g(p, v, time)▶ Returns the current location of Sub 3: **for** $s_i = (p_i, v_i) \in S$ **do** ▶ Exhaustively try all possible solutions time:=time+1 $location := g(p_i, v_i, time)$ 5: hit := f(location)6: if hit = 1 then $first_hit := \{hit, time\}$ 7: end if 9: **end for** 10: **for** $s_i = (p_i, v_i) \in S$ **do** ▶ Find Sub location a second time for linear interpolation time := time + 111: 12: $location := g(p_i, v_i, time)$ hit := f(location)13:

```
14: if hit = 1 then second\_hit := \{hit, time\}
15: end if
16: end for
17: (p, v) := Interpolate(first\_hit, second\_hit) \triangleright Linearly interpolate between known points return <math>(p, v)
```

5 Language Semantics

$$\frac{\Psi \,|\, \Theta \,|\, \Delta \,|\, \Gamma \,|\, \vdash s : \hat{\Gamma} \quad \Psi \,|\, \Theta \,|\, \Delta \,|\, \Gamma, \hat{\Gamma} \vdash e : \texttt{Boolean}\langle\rangle}{\Psi \,|\, \Theta \,|\, \Delta \,|\, \Gamma \,|\, \hat{\Gamma} \vdash \mathbf{do}(s : \hat{\Gamma}) \,\mathbf{until}(e)}$$

6 Code and Syntax Highlighting

```
// Hello.java
import javax.swing.JApplet;
import java.awt.Graphics;

public class Hello extends JApplet {
    public void paintComponent(Graphics g) {
        g.drawString("Hello, world!", 65, 95);
    }
}
```

7 Tables

	<	>	/	=	word
TAG	OPENTAG C CLOSETAG				
С	TAG C, ϵ				word C
EQ					word = word
S		ϵ			EQ S
OPENTAG	<word s=""></word>				
CLOSETAG	word				

Diagonal Box

CDAB	00	01	11	10
00	1/8	0	1/8	0
01	0	1/8	0	1/8
11	0	1/8	0	1/8
10	1/8	0	1/8	0

Utility Matrices

A	s_1	s_2	s_3
s_1	0^{ϵ}	0^{ϵ}	0^{ϵ}
s_2	0 0	0 0	0
s_3	0 0	00	0

A	s_1	s_2
s_1	0^{ϵ}	0^{ϵ}
s_2	0 0	$0 \ 0$

E	2	$2^3 * 4 + 5$
$\rightarrow T_1 E'$	2	$2^3 * 4 + 5$
$\rightarrow T_2 T_1' E'$	2	$2^3 * 4 + 5$
$\rightarrow N T_2^{\prime} T_1^{\prime} E^{\prime}$	2	$2^3 * 4 + 5$
$\rightarrow 2T_2'T_1'E'$	^	$2^3 * 4 + 5$
$\rightarrow 2^{}T_2T_1'E'$	3	$2^3 * 4 + 5$
$ ightarrow 2^{}NT_2^{}T_1^{}E^{}$	3	$2^3 * 4 + 5$
$\rightarrow 2^3 T_2' T_1' E'$	*	$2^3*4 + 5$
$\rightarrow 2^{}3T_1'E'$	*	$2^3*4 + 5$
$\rightarrow 2^3 * T_1 E'$	4	$2^3 * 4 + 5$
$\rightarrow 2^3 * T_2 T_1' E'$	4	$2^3 * 4 + 5$
$\rightarrow 2^3 * NT_2'T_1'E'$	4	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4T_2'T_1'E'$	+	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4T_1'E'$	+	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4E'$	+	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + E$	5	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + T_1 E'$	5	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + T_2 T_1' E'$	5	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + NT_2'T_1'E'$	5	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + 5T_2'T_1'E'$	\$	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + 5T_1'E'$	\$	$2^3 * 4 + 5$
$\rightarrow 2^3 * 4 + 5E'$	\$	$2^3 * 4 + 5$
\rightarrow 2^3 * 4 + 5	\$	$2^3 * 4 + 5$

8 Trees

9 Piecewise Functions

$$f(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ 3n+1, & \text{if } n \text{ is odd} \end{cases}$$

10 Chinese and Foreign Characters

方启明

11 Other Decorations