Reinforcement Learning with Demonstration

Acknowledgement: Most slides were contributed by 施囿維、蔡承倫、郭奎廷、林九州、吳岱霖 etc., and organized by 廖唯辰.

Outline

- DQfD
- R2D3
- Decision Transformer

Reference

- "Deep Q-learning from Demonstrations"
 - Published at AAAI 2018
 - Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, Audrunas Gruslys
 - Provided by Google DeepMind
- Slides by Yu-Wei Shih

Reference

- "Making Efficient Use of Demonstrations to Solve Hard Exploration Problems."
 - Published at ICLR 2020
 - Gulcehre, Caglar, Tom Le Paine, Bobak Shahriari, Misha Denil,
 Matt Hoffman, Hubert Soyer, Richard Tanburn, Steven
 Kapturowski, Neil Rabinowitz, and Duncan Williams
 - Provided by Google DeepMind
- Slides by 郭奎廷

Reference

- "Decision Transformer: Reinforcement Learning via Sequence Modeling."
 - Published at NeurIPS 2021
 - Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, etc.
 - UC Berkeley, Facebook AI Research, UCLA, OpenAI, Google Brain
- Slides by Tai-Lin Wu

DQfD: Deep Q-learning from Demonstrations

Introduction

- DRL agents ususally have poor performance during the early stage of training
 - This could be problematic for many real world tasks that require fine performance at the beginning
- DQfD leverages small demonstration datasets to greatly speed up early phase training process

Baseline: PDD DQN

- Prioritized Experience Replay + Dueling Network + DDQN
- Based on this structure, DQfD makes several improvements to leverage demonstration data

Note:

Dueling Network is used in experiment but the authors didn't mention this as a requirement in DQfD.

DQfD: Four Losses

- DQfD uses 4 losses to update:
 - 1-step double Q-learning loss
 - n-step double Q-learning loss
 - Supervised large margin classification loss
 - L2 regularization loss

1-step Double Q-learning Loss

Q (behavior network)

Q'(target network)

$$y_t = R(s_t, a_t) + \gamma Q'(s_{t+1}, argmax_a Q(s_{t+1}, a))$$

$$J_{DQ}(Q) = (y_t - Q(s_t, a_t))^2$$

- Same as the loss in DDQN method.

n-step Double Q-learning Loss

Q (behavior network)

Q'(target network)

$$y_{t} = R_{t} + \gamma R_{t+1} + \ldots + \gamma^{n-1} R_{t+n-1} + \gamma^{n} \mathcal{Q}' \left(s_{t+n}, \ argmax_{a} \mathcal{Q} \left(s_{t+n}, \ a \right) \right)$$

where
$$R_t = R(s_t, a_t)$$

$$J_n(Q) = (y_t - Q(s_t, a_t))^2$$

- Adding n-step returns helps propagate the values of the expert's trajectory to all the earlier states, leading to better pre-training.
- This paper uses 10-step loss (n=10)

- Purpose: make the Q value of a_E at least a margin larger than Q value of any other actions.
 - $-a_E$ is demonstration data
- Encourage the agent to follow demonstration data instead of choosing other values.

$$J_{E}(Q) = \max_{a \in A} [Q(s, a) + l(a_{E}, a)] - Q(s, a_{E})$$

$$l(a_E, a) = \begin{cases} 0 & \text{if } a = a_E \\ positive \ value & \text{if } a \neq a_E \end{cases}$$

$$Q(s, a_{E})$$

$$Q(s, a)$$

$$Q(s, a')$$

$$1.8$$

$$J_{E}(Q) = \max_{a \in A} [Q(s, a) + l(a_{E}, a)] - Q(s, a_{E}) > 0$$

$$l(a_{E}, a) = \begin{cases} 0 & \text{if } a = a_{E} \\ 0.8 & \text{if } a \neq a_{E} \end{cases}$$

L2 Regularization Loss

• Use L2 Norm of all weights and bias in model as a regularization loss to avoid over-fitting.

DQfD: Four Losses

Combining all four losses:

$$J(Q) = J_{DQ}(Q) + \lambda_1 J_n(Q) + \lambda_2 J_E(Q) + \lambda_3 J_{L2}(Q)$$

When updating by demonstration data.

In this paper:
$$\lambda_1 = 1$$
, $\lambda_2 = 1$, $\lambda_3 = 10^{-5}$

DQfD: Four Losses

Combining all four losses:

$$J(Q) = J_{DQ}(Q) + \lambda_1 J_n(Q) + \lambda_2 J_E(Q) + \lambda_3 J_{L2}(Q)$$

When updating by self-generated data.

In this paper:
$$\lambda = 1 \quad \lambda =$$

$$\lambda_1 = 1, \ \lambda_2 = 0, \ \lambda_3 = 10^{-5}$$

Prioritized Experience Replay (PER)

- Sample important trajectories more frequently.
- Usually importance = |TD error|.

$$P(i) = \frac{p_i^{\alpha}}{\sum_{k} p_k^{\alpha}}, p_i = |\delta_i| + \varepsilon$$

$$w_i = \left(\frac{1}{N} \times \frac{1}{P(i)}\right)^{\beta}$$

P(i) = probability to be sampled for trajectory i

 δ = TD error

N = size of replay buffer

 α = priority exponent

 β = importance sampling exponent

Prioritized Experience Replay (PER)

- Sample important trajectories more frequently.
- Usually importance = |TD error|.

use different constant $\varepsilon_a \varepsilon_d$ for self-play data and demonstration data $(\varepsilon_a = 0.001, \, \varepsilon_d = 1)$

$$P(i) = \frac{p_i^{\alpha}}{\sum_{k} p_k^{\alpha}}, p_i = \left|\delta_i\right| + \varepsilon$$

$$w_i = \left(\frac{1}{N} \times \frac{1}{P(i)}\right)^{\beta}$$

P(i) = probability to be sampled for trajectory i

 δ = TD error

N = size of replay buffer

 α = priority exponent

 β = importance sampling exponent

Pseudocode

k=750, 000 in this paper

- Demonstration data are placed in replay buffer at the beginning of training.
- When replay buffer is full, replace old self-play data but never remove demonstration data.

Pretraining Phase

Note: in this paper: k = 750000

Interacting with environment

Algorithm 1 Deep Q-learning from Demonstrations.

- 1: Inputs: \mathcal{D}^{replay} : initialized with demonstration data set, θ : weights for initial behavior network (random), θ' : weights for target network (random), τ : frequency at which to update target net, k: number of pre-training gradient updates
- 2: **for** steps $t \in \{1, 2, ..., k\}$ **do**
- Sample a mini-batch of n transitions from \mathcal{D}^{replay} with prioritization
- 4: Calculate loss J(Q) using target network
- 5: Perform a gradient descent step to update θ
 - if $t \bmod \tau = 0$ then $\theta' \leftarrow \theta$ end if
- 7: end for
- 8: **for** steps $t \in \{1, 2, ...\}$ **do**
- Sample action from behavior policy $a \sim \pi^{\epsilon Q_{\theta}}$
- 10: Play action a and observe (s', r).
- 11: Store (s, a, r, s') into \mathcal{D}^{replay} , overwriting oldest self-generated transition if over capacity
- 12: Sample a mini-batch of n transitions from \mathcal{D}^{replay} with prioritization
- 13: Calculate loss J(Q) using target network
- 14: Perform a gradient descent step to update θ
- 15: if $t \mod \tau = 0$ then $\theta' \leftarrow \theta$ end if
- 16: $s \leftarrow s'$
- 17: **end for**

Compare with Baseline PDD DQN

- Full DQfD with human demonstration data
- PDD DQN without any demonstration data
- Supervised imitation learning from demonstration data without any interaction with environments.

Result

Demonstration Data Ratio in a Mini-batch

• In environments with sparse rewards, the constants ε in PER become specifically important.

 Big constant for demonstration data help DQfD agents overcome environments with such rewards by following

demonstration data.

$$p_{i} = \left| \delta_{i} \right| + \varepsilon$$

$$(\varepsilon_{a} = 0.001, \varepsilon_{d} = 1)$$

Ablation Study

Conclusion

- DQfD has good performance from the beginning of the training due to pretraining by demonstration data
- Adjusting the ratio between demonstration data and selfplay data in each mini-bach by Prioritized Experience Reply
- Combining supervised loss and TD loss to follow demonstrators' actions

R2D3

Recurrent Replay Distributed DQN from Demonstration

(R2D2: Recurrent Replay Distributed DQN)

Introduction

- Sparse reward problem is a challenge for RL methods
 - Common approaches
 - ▶ Intrinsic motivation, reward shaping, or curriculum tasks
 - Drawbacks:
 - ▶ Do not scale well
 - Lead to unexpected behavior
 - Difficult to specify
- Learning from demonstrations has proven to be an effective strategy

Introduction

- Three aspects to make learning from demonstrations challenging
 - Sparse rewards
 - Partial observability
 - Highly variable initial conditions
- The demonstrations cannot account for all possible configurations

Background – DQfD

- Leverage expert demonstration datasets to speed up training
- Encourage the agent to follow demonstration data
 - Use supervised imitation loss in training
- Four losses (weighted sum):
 - 1-step double Q-learning loss
 - n-step double Q-learning loss
 - Supervised large margin classification loss
 - L2 regularization loss

Background – Ape-X

• Leverage prioritized experience replay (PER) on distributed architecture

Background – Ape-X

Problem

Different games require a significantly different degree of exploration

Solution

- Give the different actors different exploration policies
 - E.g., different ϵ values for ϵ -greedy
- Sample with priority to get the most useful data

Background – R2D2

- R2D2: Recurrent Replay Distributed DQN
- Build on Ape-X
- Train an RNN from experience replay
 - Partial observability
 - Better representation learning

RL with Demonstration

Training Recurrent RL Agent with Experience Replay

- Stored state
 - Storing the recurrent state in replay
 - ▶ Use it to initialize the network at training time
 - New problems
 - Representational drift
 - Out of date representation

Training Recurrent RL Agent with Experience Replay

Burn in

- Allow the network a 'burn in period' by using a portion of the replay sequence
- Allow the network to partially recover from a poor start state

Background – Ape-X DQfD

R2D3

R2D3

- Three main changes
 - 1. Use R2D2 to replace Ape-X
 - Deal with partial observable environment
 - 2. Tune the demo ratio ρ
 - Surprisingly, find that the optimal demo ratio is very small (1/256)
 - 3. Remove imitation loss
 - Use expert demos to bias the agent's own autonomous exploration

R2D3 – Hard-Eight Task Suite

- A procedurally-generated 3D world
- Common properties
 - Sparse reward
 - Partially observable
 - Highly variable initial conditions

R2D3 – Hard-Eight Task Suite

- Example: Push Blocks
- Step
 - 1. Check the color of sensor
 - 2. Push a block whose color matches the sensor into the recess
 - 3. Collect the apple

Experiment – R2D3 Performance in Hard-Eight suite

Experiment – R2D3 Guided Exploration Behavior

The red indicators mark analysis points

Experiment – R2D3 Demo Ratio Tuning

Conclusion

- Design to make efficient use of demonstrations to learn
 - Partially observable environments
 - Sparse rewards
 - Highly variable initial conditions
- Use the expert demonstrations in a way that guides the agent's own autonomous exploration

Decision Transformer

Decision Transformer: Reinforcement Learning via Sequence Modeling

• Recent work has shown transformers can model distributions of semantic concepts, and associated advances in language modeling such as GPT-x and BERT have achieved impressive results. (GPT3/3.5)

• Recent work has shown transformers can model distributions of semantic concepts, and associated advances in language modeling such as GPT-x and BERT have achieved impressive results. (GPT4)

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

- This paper present Decision Transformer as:
 - An architecture that casts the problem of RL as conditional sequence modeling (Generative Transformer).

 Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari (2021), OpenAI Gym.

Motivation

- Sparse rewards: which refers to infrequent or insufficient reward signals that make it difficult to guide learning
- Common methods used to address the issue:
 - Reward shaping, curriculum learning, etc.

2D Reacher (OpenAI Gym)

Motivation (sparse reward)

- Transformers can perform credit assignment directly via self-attention, in contrast to Bellman backups which slowly propagate rewards and are prone to "distractor" signals.
 - This can enable transformers to still work effectively in the presence of sparse or distracting rewards.

Motivation: (short-sighted behaviors)

- Compared to when we solve RL problems under the Model-free condition in the past.
 - Decision Transformer allow us to bypass the need for bootstrapping to propagate returns
 - Avoids the need for discounting future rewards, as typically done in TD-learning, which can induce undesirable short-sighted behaviors.

```
Simplest temporal-difference learning algorithm: \overline{\text{TD}}(0)

- Update value V(S_t) toward estimated return R_{t+1} + \gamma V(S_{t+1})

V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1})) - V(S_t)
```

Update each value with the terminal result

Offline Reinforcement Learning

- Learning in a Markov decision process (MDP) described by the tuple (S, A, P, R).
 - S state, A actions, P state transition probability, R reward
- Instead of obtaining data via environment interactions
- The goal in reinforcement learning is to learn a policy which maximizes the **expected return** $\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\right]$ in an MDP

Trajectory Representation

- The key desiderata in trajectory representation are :
 - should enable transformers to learn meaningful patterns
 - should be able to conditionaly generate action at test time
 - generate actions based on future desired returns, rather than past rewards

$$\tau = (\widehat{R}_1, s_1, a_1, \widehat{R}_2, s_2, a_2, \dots, \widehat{R}_T, s_T, a_T)$$

 $\widehat{R}_t = \sum_{t'=t}^T r_{t'}$

states $s \in \mathcal{S}$, actions $a \in \mathcal{A}$

How to define return-to-go?

- 1. We **specify** a target return based on our desired performance.
- 2. After executing the generated action, we decrement the target return by the achieved reward and obtain the next state.

Return-to-go conditioning 90 Breakout 6000 HalfCheetah 2500 Qbert 3600 Hopper 20 Pong 5000 Walker 1450 Seaquest 50 Reacher

get rewards: 5

• Feed the last K timesteps into Decision Transformer, for a total of 3K tokens (for each modality include: return-to-go, state, action)

I-Chen Wu

Experiments (Atari)

• Training Data: 1% of all samples in the DQN-replay dataset. (500 thousand)

Context lengths of K=30 for Decision Transformer (expect K=50 for Pong)

Game	DT (Ours)	CQL	QR-DQN	REM	BC
Breakout	267.5 ± 97.5	211.1	21.1	32.1	138.9 ± 61.7
Qbert	15.1 ± 11.4	104.2	1.7	1.4	17.3 ± 14.7
Pong	106.1 ± 8.1	111.9	20.0	39.1	85.2 ± 20.0
Seaquest	2.4 ± 0.7	1.7	1.4	1.0	2.1 ± 0.3

BC : Behavior Cloning

CQL : Conservative Q-Learning REM : Random Ensemble Mixture

Experiments (OpenAI Gym)

Training Data: D4RL benchmark

Dataset	Environment	DT (Ours)	CQL	BEAR	BRAC-v	AWR	BC
Medium-Expert Medium-Expert Medium-Expert Medium-Expert	HalfCheetah Hopper Walker Reacher	86.8 ± 1.3 107.6 ± 1.8 108.1 ± 0.2 89.1 ± 1.3	62.4 111.0 98.7 30.6	53.4 96.3 40.1	41.9 0.8 81.6	52.7 27.1 53.8	59.9 79.6 36.6 73.3
Medium Medium Medium Medium	HalfCheetah Hopper Walker Reacher	42.6 ± 0.1 67.6 ± 1.0 74.0 ± 1.4 51.2 ± 3.4	44.4 58.0 79.2 26.0	41.7 52.1 59.1	46.3 31.1 81.1	37.4 35.9 17.4	43.1 63.9 77.3 48.9

Medium-Expert:

1M: medium policy1M: expert policy

Medium:

1M: medium policy

Experiments (Return-to-go)

 On every task, the desired target returns and the true observed returns are highly correlated.

Experiments (Behavior Cloning)

- Depends on environment, Decision Transformer can outperform
 %BC by using all trajectories in the dataset to improve generalization.
- Percentile Behavior Cloning (%BC): Run BC on only the top X% of timesteps in the dataset.

Environment	DT (Ours)	10%BC	25%BC	40%BC	100%BC
HalfCheetah	42.6 ± 0.1	42.9	43.0	43.1	43.1
Hopper	67.6 ± 1.0	65.9	65.2	65.3	63.9
Walker	74.0 ± 1.4	78.8	80.9	78.8	77.3
Reacher	51.2 ± 3.4	51.0	48.9	58.2	58.4

Game	DT (Ours)	10%BC	25%BC	40%BC	100%BC
Breakout	267.5 ± 97.5	28.5 ± 8.2	73.5 ± 6.4	108.2 ± 67.5	138.9 ± 61.7
Qbert	15.1 ± 11.4	6.6 ± 1.7	16.0 ± 13.8	11.8 ± 5.8	$\textbf{17.3} \pm \textbf{14.7}$
Pong	$\boldsymbol{106.1 \pm 8.1}$	2.5 ± 0.2	13.3 ± 2.7	72.7 ± 13.3	85.2 ± 20.0
Seaquest	2.4 ± 0.7	1.1 ± 0.2	1.1 ± 0.2	1.6 ± 0.4	2.1 ± 0.3

Conclusion

- Decision Transformer can match or outperform strong algorithms (CQL) designed explicitly for offline RL
- Minimal modifications from standard language modeling architectures

