Analyse et simulation numérique de modèles non-locaux en morphodynamique littorale

Afaf Bouharguane

Institut de Mathématiques de Bordeaux

Essaouira, 23/11/2012

Plan

 Méthodes de splitting pour l'équation de Fowler Collaboration : Rémi Carles (CNRS & Univ. Montp2)

Les principes de minimisation appliqués à la dynamique littorale Collaboration : Bijan Mohammadi (CERFACS & Univ. Montp2)

2 / 30

Plan

1 Méthodes de splitting pour l'équation de Fowler

Les principes de minimisation appliqués à la dynamique littorale

Model for dune morphodynamics

A conservative nonlinear model

For all $t \in (0,T)$ et $x \in \mathbb{R}$,

$$\begin{cases} u_t(t,x) + \left(\frac{u^2}{2}\right)_x(t,x) - u_{xx}(t,x) + \mathcal{I}[u(t,\cdot)](x) = 0, \\ u(0,x) = u_0(x). \end{cases}$$

Model for dune morphodynamics

A nonlinear and nonlocal conservative model (A.C Fowler, Oxford)

For all $t \in (0,T)$ and $x \in \mathbb{R}$,

$$\begin{cases} u_t(t,x) + \left(\frac{u^2}{2}\right)_x(t,x) - u_{xx}(t,x) + \int_0^{+\infty} |\xi|^{-1/3} u_{xx}(t,x-\xi) d\xi = 0, \\ u(0,x) = u_0(x). \end{cases}$$

Remark: This nonlocal term also appears in the work of P.-Y. Lagrée (Paris VI).

References

P-Y Lagrée, Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances, lecture notes 523, CISM International Centre for Mechanical Sciences Udine, H. STEINRÜCK Ed., Springer, (2010).

A.C. Fowler, Mathematics and environment, lecture note, 2006.

Exner equation

Exner equation

$$\frac{\partial s}{\partial t} + \frac{1}{1 - \lambda_p} \frac{\partial q}{\partial x} = 0$$

where λ_p is the porosity of the bed and q the sediment transport flux.

Exner equation

Exner equation

$$\frac{\partial s}{\partial t} + \frac{1}{1 - \lambda_p} \frac{\partial q}{\partial x} = 0$$

where λ_p is the porosity of the bed and q the sediment transport flux.

Meyer-Peter & Müller :

$$q \propto [\tau - \tau_c]_+^{3/2}$$

• Grass :

$$q = Au|u|^{m-1},$$

où
$$1 \leq m \leq 4$$
.

...

Processus d'interaction

Kernel of $\mathcal{I} - \partial_{xx}^2$

Kernel of $\mathcal{I} - \partial_{xx}^2$

$$K(t,\cdot)=\mathcal{F}^{-1}\left(e^{-t\psi_{\mathcal{I}}}\right) \text{ with } \psi_{\mathcal{I}}(\xi)=4\pi^2\xi^2-a_{\mathcal{I}}|\xi|^{4/3}+b_{\mathcal{I}}i\xi|\xi|^{1/3}$$

Properties of K

- "Nice" properties
 - C^0 -semi-group :

$$K(t) * K(s) = K(t+s)$$

$$\forall u_0 \in L^2(\mathbb{R}), \lim_{s \to \infty} K(t) * u_0 = u_0$$

Regularity

$$K \in C^{\infty}((0,+\infty) \times \mathbb{R})$$

Estimates for the gradient :

$$||\partial_x K(t)||_{L^2} \le Ct^{-3/4}$$

 $||\partial_x K(t)||_{L^1} < Ct^{-1/2}$

"Bad" property

• $\forall t > 0$, $K(t, \cdot)$ is not positive

Splitting method

$$\begin{cases} u_t(t,x) + \left(\frac{u^2}{2}\right)_x(t,x) - u_{xx}(t,x) + \mathcal{I}[u(t,\cdot)](x) = 0, \\ u(0,x) = u_0(x). \end{cases}$$
Notation: $u(t,\cdot) = S^t u_0$

$$\begin{cases} v_t + \left(\frac{v^2}{2}\right)_x - \epsilon v_{xx} = 0\\ v(0, \cdot) = v_0, \end{cases}$$

$$\begin{cases} w_t + \mathcal{I}[w] - \eta w_{xx} = 0 \\ w(0, \cdot) = w_0, \end{cases}$$

Notation : $v(t,\cdot) = Y^t v_0$

$$\mathsf{Notation}: w(t,\cdot) = X^t w_0$$

Lie method : $Z_L^t = X^t Y^t$

8 / 30

Splitting method

$$\begin{cases} u_t(t,x) + \left(\frac{u^2}{2}\right)_x(t,x) - u_{xx}(t,x) + \mathcal{I}[u(t,\cdot)](x) = 0, \\ u(0,x) = u_0(x). \end{cases}$$
Notation: $u(t,\cdot) = S^t u_0$

$$\begin{cases} v_t + \left(\frac{v^2}{2}\right)_x - \epsilon v_{xx} = 0 \\ v(0, \cdot) = v_0, \end{cases} \begin{cases} w_t + \mathcal{I}[w] - \eta w_{xx} = 0 \\ w(0, \cdot) = w_0, \end{cases}$$
Notation: $w(t, \cdot) = w(t, \cdot) = w(t,$

Notation : $v(t,\cdot) = Y^t v_0$

Notation :
$$w(t,\cdot)=X^tw_0$$

Lie method : $Z_L^t = X^t Y^t$

Note: H. Holden, C. Lubich, N.-H. Risebro; Operator splitting for partial differential equations with Burgers nonlinearity, to appear, Math. Comp (2012).

Splitting method

$$\begin{cases} u_t(t,x) + \left(\frac{u^2}{2}\right)_x(t,x) - u_{xx}(t,x) + \mathcal{I}[u(t,\cdot)](x) = 0, \\ u(0,x) = u_0(x). \end{cases}$$
Notation: $u(t,\cdot) = S^t u_0$

$$\begin{cases} v_t + \left(\frac{v^2}{2}\right)_x - \epsilon v_{xx} = 0\\ v(0, \cdot) = v_0, \end{cases}$$

$$\begin{cases} w_t + \mathcal{I}[w] - \eta w_{xx} = 0 \\ w(0, \cdot) = w_0, \end{cases}$$

Notation : $v(t, \cdot) = Y^t v_0$

Notation :
$$w(t,\cdot) = X^t w_0$$

 $Lie method: Z_L^t = X^t Y^t$

Finite difference method

FFT

4 D > 4 D >

Numerical stability

Stable under the CFL-Peclet condition

$$\Delta t = \min\left(\frac{\Delta x}{|u|}, \frac{\Delta x^2}{2\epsilon}\right)$$

Expressions for the flows

Linear flow

$$X^t v_0 = D(t, \cdot) * v_0,$$

where
$$D(t,\cdot) = \mathcal{F}^{-1}\left(e^{-t\phi_{\mathcal{I}}}\right)$$
 with $\phi_{\mathcal{I}}(\xi) = 4\pi^2\eta\xi^2 - a_{\mathcal{I}}|\xi|^{4/3} + b_{\mathcal{I}}\xi|\xi|^{1/3}$

Nonlinear flow (viscous Burgers' equation)

$$Y^{t}w_{0} = G(t, \cdot) * w_{0} - \frac{1}{2} \int_{0}^{t} \partial_{x} G(t - s, \cdot) * (Y^{s}w_{0})^{2} ds,$$

where G is the heat kernel.

Exact flow

$$S^{t}u_{0} = K(t, \cdot) * u_{0} - \frac{1}{2} \int_{0}^{t} \partial_{x} K(t - s, \cdot) * (S^{s}u_{0})^{2} ds$$

Splitting operator

$$Z_L^t u_0 = K(t) * u_0 - \frac{1}{2} \int_0^t D(t) * G(t - s) * \partial_x (Y^s u_0)^2 ds$$

L^2 local error estimate

Proposition

Let $u_0 \in H^3(\mathbb{R})$. There exists $C\left(\|u_0\|_{L^2(\mathbb{R})}\right)$ such that for all $t \in [0,1]$,

$$||Z_L^t u_0 - S^t u_0||_{L^2(\mathbb{R})} \le C (||u_0||_{L^2(\mathbb{R})}) t^2 ||u_0||_{H^3(\mathbb{R})}^2.$$

L^2 local error estimate

Proposition

Let $u_0 \in H^3(\mathbb{R})$. There exists $C(\|u_0\|_{L^2(\mathbb{R})})$ such that for all $t \in [0,1]$,

$$||Z_L^t u_0 - S^t u_0||_{L^2(\mathbb{R})} \le C (||u_0||_{L^2(\mathbb{R})}) t^2 ||u_0||_{H^3(\mathbb{R})}^2.$$

Ingredients of the proof

- $Z_L^t u_0 S^t u_0 = \frac{1}{2} \int_0^t \partial_x K(t-s) * \left((S^s u_0)^2 (Z_L^s u_0)^2 \right) ds + R(t)$,
- The remainder R(t) is written as $R(t)=\frac{1}{2}\int_0^t R_1(s)ds,$ with

$$R_1(s) = \partial_x K(t-s) * (Z_L^s u_0)^2 - D(t) * \partial_x G(t-s, \cdot) * (Y^s u_0)^2,$$

and satisfies:

$$||R(t)||_{L^2(\mathbb{R})} \le C(||u_0||_{L^2(\mathbb{R})}) t^2 ||u_0||_{H^3(\mathbb{R})}^2.$$

Modified fractional Gronwall Lemma

Lemma

Let $\phi:[0,T]\to\mathbb{R}_+$ be a bounded measurable function and P be a polynomial with positive coefficients and no constant term. We assume there exists two positive constants C and $\theta\in]0,1[$ such that for all $t\in[0,T]$,

$$0 \leqslant \phi(t) \leqslant \phi(0) + P(t) + C \frac{d^{-\theta}}{dt^{-\theta}} \phi(t).$$

Then there exists $C_T(\theta)$ such that for all $t \in [0, T]$,

$$\phi(t) \leqslant C_T(\theta) \phi(0) + C_T(\theta) P(t).$$

Riemann-Liouville operator:

$$\frac{d^{-\theta}}{dt^{-\theta}}\phi(t) = \frac{1}{\Gamma(\theta)} \int_0^t (t-s)^{\theta-1} \phi(s) \, ds.$$

We will also need the fact that the flow map S^t is uniformly Lipschitzean on balls of $H^2(\mathbb{R})$.

Proposition

Let T, R > 0. There exists $K = K(R, T) < \infty$ such that if

$$||u_0||_{H^2(\mathbb{R})} \leqslant R, ||v_0||_{H^2(\mathbb{R})} \leqslant R,$$

then

$$||S^t u_0 - S^t v_0||_{L^2(\mathbb{R})} \le K||u_0 - v_0||_{L^2(\mathbb{R})}, \quad \forall t \in [0, T].$$

Convergence

Theorem

For all $u_0 \in H^3(\mathbb{R})$ and for all T > 0, there exist positive constants c_1, c_2 and Δt_0 such that for all $\Delta t \in]0, \Delta t_0]$ and for all $n \in \mathbb{N}$ such that $0 \leqslant n\Delta t \leqslant T$,

$$\|(Z_L^{\Delta t})^n u_0 - S^{n\Delta t} u_0\|_{L^2(\mathbb{R})} \leqslant c_1 \, \Delta t \quad \text{and} \quad \|(Z_L^{\Delta t})^n u_0\|_{H^3(\mathbb{R})} \leqslant c_2.$$

Here, c_1, c_2 and Δt_0 depend only on T, $\rho = \max_{t \in [0,T]} \|S^t u_0\|_{H^2(\mathbb{R})}$, and $\|u_0\|_{H^3(\mathbb{R})}$.

B.A., Carles R., Splitting methods for the nonlocal Fowler equation, Math. Comp., to appear.

Proof

- The proof follows the same idea as in [1,2] for instance.
- We prove by induction that there exists $\gamma, \Delta t_0$ such that if $0 < \Delta t \leqslant \Delta t_0$, for all $n \in \mathbb{N}$ with $n\Delta t \leqslant T$,

$$\|(Z_L^{\Delta t})^n u_0\|_{L^2(\mathbb{R})} \le 2\rho, \quad \|(Z_L^{\Delta t})^n u_0 - S^{n\Delta t} u_0\|_{L^2(\mathbb{R})} \le \gamma \Delta t.$$

The triangle inequality yields

$$\|(Z_L^{\Delta t})^n u_0 - S^{n\Delta t} u_0\|_{L^2} \leqslant \sum_{k=0}^{n-1} \|S^{(n-k-1)\Delta t} \left(Z_L^{\Delta t} u_k\right) - S^{(n-k-1)\Delta t} \left(S^{\Delta t} u_k\right)\|_{L^2},$$

with
$$u_k = (Z_L^{\Delta t})^k$$

References

[1] C. Besse, B. Bidegaray, S. Descombes; Order estimates in time of splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40 (2002)

[2] H. Holden, C. Lubich, N.-H. Risebro; Operator splitting for partial differential equations with Burgers nonlinearity, to appear, Math. Comp (2012).

Proof

• Lipschitz property of S^t yields

$$\left\|S^{(n-k-1)\Delta t}\left(Z_L^{\Delta t}u_k\right) - S^{(n-k-1)\Delta t}\left(S^{\Delta t}u_k\right)\right\|_{L^2} \le K \left\|Z_L^{\Delta t}u_k - S^{\Delta t}u_k\right\|_{L^2}$$

ullet From L^2 local error estimate, we infer

$$\left\| S^{(n-k-1)\Delta t} \left(Z_L^{\Delta t} u_k \right) - S^{(n-k-1)\Delta t} \left(S^{\Delta t} u_k \right) \right\|_{L^2} \leqslant CK(\Delta t)^2 \|u_0\|_{H^3}^2,$$

for some constant C.

Therefore,

$$\|(Z_L^{\Delta t})^n u_0 - S^{n\Delta t} u_0\|_{L^2} \le nCK(\Delta t)^2 \|u_0\|_{H^3}^2 \le CTK\Delta t,$$

which yields the two estimates of the induction, provided one takes $\gamma = CTK$, which is uniform in n and Δt .

16 / 30

Numerical experiments: initial data

FIGURE: Initial data used for numerical experiments.

Numerical convergence for Lie operator

FIGURE: Lie method

Strang method

Strang operator

$$Z_S^t = X^{t/2} Y^t X^{t/2}$$

FIGURE: Strang method

Plan

Méthodes de splitting pour l'équation de Fowler

2 Les principes de minimisation appliqués à la dynamique littorale

Dans le passé

Référence

 ${\tt Is\`eBE},~D.,~\textit{Mod\'elisation, simulation et optimisation en g\'enie c\^otier, th\`ese (2007).}$

Dans le passé

 $\min_{x \in \Omega_{ad}} J(x)$, où $\Omega_{ad} \subset \mathbb{R}^N$.

Dans le passé

« le mouvement du fond décroît avec l'énergie de la houle ».

 $\min_{x \in \Omega_{ad}} J(x)$, où $\Omega_{ad} \subset \mathbb{R}^N$.

22 / 30

22 / 30

Shallow water equations

Equations de Saint-Venant

$$\begin{pmatrix} u \\ hu \\ hv \end{pmatrix}_t + \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{pmatrix}_x + \begin{pmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{pmatrix}_y = \begin{pmatrix} 0 \\ -ghs_x \\ -ghs_y \end{pmatrix}$$

Fonction coût

La fonction coût J

$$J(s) = \int_{\Omega} \frac{1}{2} \rho_w g A^2 d\Omega + \int_{t-T}^t \int_{\Omega} \rho_s g(s(\tau) - s(t-T))^2 d\tau d\Omega$$

Données:

- $\Omega \subset \mathbb{R}^2$
- $s: \mathbb{R}^+ \times \mathbb{R}^2 \longrightarrow \mathbb{R}^+$
- ullet ho_w (resp. ho_s) densité de l'eau (resp. du sable)

24 / 30

Les algorithmes de minimisation

Les algorithmes de minimisation :

$$x_{t+1} = x_t - \rho \nabla_x J(x_t)$$

• Gradient :

$$\frac{dJ}{dx} = \frac{\partial J}{\partial x} + \frac{\partial J}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial J}{\partial U} \frac{\partial U}{\partial s} \frac{\partial s}{\partial x}$$

La méthode adjointe

Tapenade, Equipe Tropics, INRIA Sophia-Antipolis

Simulation numérique

Simulation numérique

Simulation numérique

MOHAMMADI B.; B. A., Optimal dynamics of soft shapes in shallow waters, Computers and Fluids, 40/1, pp. 291-298 (2011).

 $B.\ A.\ ;\ Mohammadi\ B.,\ \textit{Minimization principles for the evolution of a soft sea bed interacting with a shallow sea, IJCFD\ (2012).}$

Le rôle de ρ_s

Exner... le retour

• Minimiser $J \Leftrightarrow \mathsf{R\'e}\mathsf{soudre}$ le modèle suivant pour le fond s

$$s_t = -\rho \nabla_s J(\mathbf{U}),$$

 $s(t=0,\cdot) = s_0,$

où $s: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^+$.

 $\bullet \ \operatorname{Pour} \ \rho = 1/(1-\lambda_p)^n \ \operatorname{et} \ 1 \leq n,$

Flux de matière transportée

$$q(t,x) = \int_{-\infty}^{x} (1 - \lambda_p(\zeta))^{1-n} J_s(\zeta) d\zeta$$

Merci de votre attention