ENGR 305

MOS Field-Effect Transistors September 23, 2025

Introduction

- We studied the junction diode, the basic two-terminal semiconductor device.
- Three-terminal (transistor) devices are more useful than two-terminal devices.
- They operate by using the voltage between two terminals to control the current flowing in a third terminal.
- The three-terminal device can be used as a controlled source, which is the basis for amplifier design.
- There are two types of three-terminal semiconductor devices
 - The metal-oxide-semiconductor field-effect transistor (MOSFET)
 - The bipolar junction transistor (BJT)
- We cover the first one in this chapter.

Device structure and physical operation

Here we study the enhancement-type MOSFET.

Shown is the physical structure of the n-channel enhancement-type MOSFET.

- p-type substrate
- n-type source and drain regions, denoted n+ because they are heavily doped
- A thin layer of silicon dioxide of thickness t_{ox} is grown on the surface of the substrate
- Metal is deposited on top of that to form the gate electrode

Device structure and physical operation

- Here we see the cross section of the transistor.
 - The channel length L = 20 nm to 1 µm
 - The channel width W = 30 nm to 100 µm
 - The oxide thickness t_{ox} is in the range of 1 to 10 nm

Creating channel for current flow

Here we have grounded the source and the drain and applied a positive voltage to the gate. The voltage between gate and source is v_{GS} .

The positive voltage on the gate causes the free holes to be repelled from the area of the substrate just under the gate, leaving behind a carrierdepletion region.

Channel for current flow

- The depletion region is populated by the bound negative charge associated with the acceptor atoms.
 - These charges are "uncovered" because the neutralizing holes have been pushed downward into the substrate.
- The positive gate voltage also attracts electrons from the n+ source and drain regions into the channel region.
- When a sufficient number of electrons accumulate near the surface of the substrate under the gate, an n region is effectively created, connecting the source and drain regions to one another.
- The induced n region forms a channel for current flow from drain to source.
- This MOSFET is called an n-channel MOSFET or an NMOS transistor.

Creating channel for current flow

- An n-channel MOSFET is formed in a p-type substrate
 - The channel is formed by inverting the substrate surface from p type to n type.
- The value of v_{GS} at which a sufficient number of mobile electrons accumulate under the gate to form a conducting channel is called the **threshold voltage**, V_t .
 - For an n-channel FET the threshold voltage is positive.
- The gate and channel region of the MOSFET form a parallel-plate capacitor with the oxide layer acting as the capacitor dielectric.
 - The positive voltage on the gate causes positive charge to accumulate on the top plate (gate electrode).
 - The corresponding negative charge on the bottom plate is formed by the electrons in the induced channel.
 - An electric field develops in the vertical direction, from positive to negative.

Creating a channel for current flow

- \blacksquare The voltage across the oxide must exceed V_t in order for a channel to form.
 - When v_{DS} = 0, the voltage at every point along the channel is zero and the voltage across the oxide is uniform and equal to v_{GS} .
 - The excess of v_{GS} over V_t is called the **overdrive voltage** and is the quantity that determines the charge in the channel.
 - $v_{GS} V_t \equiv v_{OV}$
- We can express the magnitude of the electron charge in the channel by
 - $|Q| = C_{ox}(WL)v_{OV}$
 - $ightharpoonup C_{ox}$ is called the **oxide capacitance** and is the capacitance of the parallel-plate capacitor per unit gate area (in units of F/m²)
 - W is the width of the channel
 - L is the length of the channel

Creating a channel for current flow

- The oxide capacitance C_{ox} is given by
 - $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$
 - $ightharpoonup \epsilon_{ox}$ is the permittivity of silicon dioxide
 - $\epsilon_{ox} = 3.9\epsilon_0 = 3.9 \times 8.854 \times 10^{-12} = 3.45 \times 10^{-11} F/m$
- The oxide thickness t_{ox} is determined by the process used to fabricate the MOSFET. As an example

$$C_{ox} = \frac{3.45 \times 10^{-11} F/m}{4 \times 10^{-9} m} = 8.6 \times 10^{-3} F/m^2 = 8.6 fF/\mu m^2$$

- For a MOSFET fabricated in this technology with a channel length of $L=0.18\mu m$ and $W=0.72~\mu m$, the total capacitance between gate and channel is
 - $C = C_{ox}WL = 8.6 \times 0.18 \times 0.72 = 1.1 fF$ (fF denotes femtofarad, 10^{-15} F)

- Having induced a channel, we now apply a positive voltage v_{DS} between drain and source.
- When v_{DS} is small (50 mV or so), the voltage causes a current i_D to flow through the induced channel.
 - Current is carried by free electrons traveling from source to drain (current in opposite direction)

- We wish to calculate the drain current i_D .
- Because v_{DS} is small, we can assume that the voltage between the gate and various points along the channel remains approximately constant and equal to the value at the source end, v_{GS} .
- So, the effective voltage (or overdrive voltage) between the gate and various points along the channel remains equal to v_{OV} , and the channel charge Q is the same as what we had calculated, namely $|Q| = C_{ox}(WL)v_{OV}$.
- To calculate the drain current we first find the charge per unit channel length

lacktriangleright The voltage v_{DS} establishes an electric field E across the length of the channel

$$|E| = \frac{v_{DS}}{L}$$

- This electric field then causes the channel electrons to drift toward the drain with a velocity
 - Electron drift velocity = $\mu_n |E| = \mu_n \frac{v_{DS}}{L}$
 - Where μ_n is the mobility of the electrons at the surface of the channel, a physical parameter whose value depends on the fabrication process.
- lacktriangle We find the value of i_D by multiplying the charge per unit channel length by the electron drift velocity

For small v_{DS} , the channel behaves as a linear resistance whose value is controlled by the overdrive voltage

The channel conductance can be found as

$$g_{DS} = (\mu_n C_{ox}) \left(\frac{W}{L}\right) v_{OV} = (\mu_n C_{ox}) \left(\frac{W}{L}\right) (v_{GS} - V_t)$$

- There are three factors that make up the conductance
- The first factor, $(\mu_n C_{ox})$, is determined by the process technology used to fabricate the MOSFET.
 - The factor $(\mu_n C_{ox})$ is called the **process transconductance** parameter and given the symbol k_n' , where $k_n' = \mu_n C_{ox}$.

- The second factor in the expression for conductance is the transistor aspect ratio (W/L).
 - That the channel conductance is proportional to the channel width W and inversely proportional to the channel length L makes perfect physical sense.
 - The (W/L) ratio is a quantity that can be determined by the device designer to get the desired i-v characteristics.
- The product of the process transconductance parameter k'_n and the transistor aspect ratio (W/L) is called the **MOSFET** transconductance parameter, k_n

 - Both k'_n and k_n have the dimensions of $A/_{V^2}$.

- The third term in the expression of the channel conductance is the overdrive voltage v_{ov} . The overdrive voltage directly determines the magnitude of electron charge in the channel.
- We now note that with v_{DS} kept small, the MOSFET behaves as a linear resistance r_{DS} whose value is controlled by the gate voltage

$$r_{DS} = \frac{1}{g_{DS}}$$

$$r_{DS} = \frac{1}{(\mu_n C_{ox})(W/L)v_{OV}}$$

$$r_{DS} = \frac{1}{(\mu_n C_{ox})(W/L)(v_{GS} - V_t)}$$

- The operation of the MOSFET as a voltage-controlled resistance is shown.
- This is a graph of $i_D vs. v_{DS}$ for various values of v_{GS} .
- The resistance is infinite for $v_{GS} \leq V_t$ and decreases as v_{GS} increases above V_t .

- Let v_{GS} be constant at a value greater than V_t (this means a constant v_{OV})
- As we travel from source to drain along the channel, the voltage (measured relative to the source) increases from zero to v_{DS} .
- The voltage between the gate and points along the channel decreases from $v_{GS} = V_t + v_{OV}$ at the source end to $v_{GD} = v_{GS} v_{DS} = V_t + v_{OV} v_{DS}$ at the drain end.

- The channel depth depends on the voltage v_{GD} and specifically by the amount that this voltage exceeds V_t , and the channel no longer has uniform depth.
- The channel is deepest at the source end (where the depth is proportional to v_{OV}) and shallowest at the drain end (where depth is proportional to $v_{OV} v_{DS}$).
- The induced channel acquires a tapered shape and its resistance increases as v_{DS} is increased.

- (a) For a MOSFET with $v_{GS} = V_t + v_{OV}$, applying v_{DS} causes the voltage drop along the channel to vary linearly, with an average value of $\frac{1}{2}v_{DS}$ at the midpoint. Since $v_{GD} > V_t$, the channel still exists at the drain end.
- (b) The channel shape corresponding to the situation in (a). While the depth of the channel at the source end is still proportional to v_{OV} , that at the drain end is proportional to $v_{OV} v_{DS}$.

Since the resistance of the channel increases with v_{DS} , the i_D-v_{DS} curve bends.

- The charge in the tapered channel is proportional to the channel crosssectional area.
- This area in turn is proportional to $\frac{1}{2}[v_{OV}+(v_{OV}-v_{DS})]=\left(v_{OV}-\frac{1}{2}v_{DS}\right)$
- The relationship between i_D and v_{DS} can be found by replacing v_{OV} by $\left(v_{OV}-\frac{1}{2}v_{DS}\right)$ in the equation we had for i_D .
- This relationship describes the semiparabolic portion of the $i_D v_{DS}$ curve.
- The equation for drain current in this region may be written

Channel pinch-off and current saturation

- The channel has a finite depth at the drain as long as v_{DS} is sufficiently small that the voltage between gate and drain, v_{GD} , exceeds V_t .
- When $v_{DS} = v_{OV}$, $v_{GD} = V_t$, and the channel depth at the drain end reduces to zero.

Channel pinch-off and current saturation

- The zero depth of the channel at the drain end is called channel pinch-off.
- Increasing v_{DS} such that $v_{DS}>v_{OV}$ has no effect on the channel shape and charge.
- The current through the channel remains constant at the value for $v_{DS} = v_{OV}$.
- The drain current **saturates** at the value found by substituting $v_{DS} = v_{OV}$ into the expression for i_D .
- The MOSFET has then entered the saturation region.
- The voltage at which saturation occurs is denoted v_{DSsat}
 - $v_{DSsat} = v_{OV} = v_{GS} V_t$
- Both the current through the channel and the voltage drop across it remain constant in saturation.

The p-channel MOSFET

The structure of the p-channel enhancement type MOSFET is similar to that of the NMOS device except that here the substrate is *n* type and the source and drain regions are *p*+.

The p-channel MOSFET

- To induce a channel for current flow, a negative voltage is applied to the gate.
 - By increasing the magnitude of the negative v_{GS} beyond the magnitude of the threshold voltage V_{tp} , which by convention is negative, a p channel is established.
 - This condition is described by $v_{GS} \leq V_{tp}$ or $|v_{SG}| \geq |V_{tp}|$
- To make a current i_D flow in the channel, we apply a negative voltage v_{DS} to the drain.
- We define the process transconductance parameter for the PMOS device as
 - $k_p' = \mu_p C_{ox}$ where μ_p is the mobility of holes in the induced p channel.
- The transistor transconductance parameter k_p is defined as
 - $k_p = k_p'(W/L)$

Complementary MOS or CMOS

- Complementary MOS technology uses MOS transistors of both polarities.
- CMOS is now the most widely used of all the IC technologies in both analog and digital circuits.

