# Tiebreaking Strategies for A\* Search How to Explore the Final Frontier

Masataro Asai and Alex Fukunaga, Graduate School of Arts and Sciences, The University of Tokyo

# 1. Search Space wrto f value: Tiebreaking Quite Important



Grid Pathfinding etc. Small f=f\* plateau → Tiebreaking unimportant



Planning Problems: Almsot ALL nodes in f=f\* plateau → Tiebreaking quite important



# 2. h tiebreaking (std. method) can fail with 0-cost edges

Domains with Positive Action Costs only Domains with 0-cost Actions



h-based tiebreaking gives heuristic guidance



Almost ALL nodes in h=0 h-tiebreaking does not work



#### Total number of nodes

## 3. h-tiebreaking is underspecified: LIFO/FIFO makes difference with Zero-cost actions

- · Many nodes with same f value and h value
- · A\* must select exactly one node
- Many solvers use either LIFO/FIFO
- · Many papers do not mention this detail
- · Huge performance difference by LIFO/FIFO in domains with zero-cost actions



### 4. Unit-cost IPC (num. step)

- → Zerocost (resource usage)
- More realistic resource optimization domains
  - Resource-consuming actions: positive cost
  - 0-cost otherwise
  - e.g. Driverlog: minimize fuel (drive-truck: cost>0, other actions: cost=0)

-620 new instances (28 domains)

Larger h=0 plateaus overall



## 5. Improve upon LIFO: RandomDepth

- Divide Final Plateau (f=f\*,h=0) into layers
- •LIFO = Depth-first = select largest depth
- •FIFO = Breadth-first = select smallest depth
- Bias → pathological behavior ∴ Diversify it
- · Selecting the depth at random: RandomDepth

|       |                         | [ h, FIFO]   | [ h, LIFO] | [ h, RD, RO]    |
|-------|-------------------------|--------------|------------|-----------------|
|       | Domain Set              | (FD Default) |            | (Proposed)      |
|       |                         |              |            |                 |
| LMcut | IPC Instances (1104)    | 558          | 565        | 572.8 ( ↑ 14.8) |
|       | Zerocost Instances(680) | 256          | 279        | 294.2 ( ↑ 38.2) |
|       | Sum(1724)               | 814          | 844        | 867.0 ( ↑ 53.0) |
|       |                         |              |            |                 |
| M&S   | IPC Instances (1104)    | 479          | 488        | 484.0 ( ↑ 5.0)  |
|       | Zerocost Instances(680) | 276          | 290        | 310.2 ( ↑ 34.2) |
|       | Sum(1724)               | 755          | 778        | 794.2 ( ↑ 39.2) |







