

2026

Kinemahics - - -

Motion in a straight line

PHYSICS

Lecture - 08

By - Saleem Ahmed Sir

Physics Will

Todays Goal

- Advance Level up ques Practice
- Equation of motion

- * (x-t) slope -- Velocity
- * (V-t)slope -- a
- * (V-t) onea Distance

> A 547 - A Ata = Displacement = change in position

a, u sign —

- change in velocity

$$y = \frac{dx}{dt}$$

$$\int_{0}^{x_{f}} dx = \int_{0}^{t_{2}} vdt$$

$$= \int_{0}^{t_{1}} vdt = Area(v-t)graph$$

$$\Rightarrow change in position = Displacement$$

$$\alpha = \frac{dv}{dt}$$

$$V_{5}$$

$$dv = \int_{t_{1}}^{t_{2}} a dt$$

$$V_{i}$$

$$\Delta V = \frac{1}{2}(2+4) \times 40 - \frac{1}{2} \times 1 \times 20$$

Velouity +10.m/s and a-t graph is given

find velocity at
$$t=5$$

$$40$$

$$\frac{1}{2}$$

$$45$$

$$-20$$

$$t=0 \longrightarrow t=4$$

the Ka Area

Lelouity +10.m/s and a-t graph is given

find velocity
$$at t = 4$$

skc (silly mistakes)

* (a-t) out area ===> Change in velocity Dega Area = 1/4-1/4

र उतना ही Area लेना है जिनना पूड़ा है (time interwal)
Utne hi ava Lena hai jitna poocha hari.

A particle start motion with initial velocity +20m/s. find KE of particle at t=10sec (m=2kg)

$$V_f = 20 = \frac{1}{2}(8+2) \times 20 - \frac{1}{2} \times 2 \times 20$$

$$k\varepsilon = \frac{1}{2}mv^2 = \frac{1}{2}xax(100)^2 = 10000$$

*

A particle start motion from origin x=0, from rost at t=0. Initially particle has acc + 10m/s2 for six second after that it travel with const velocity for four sec. Now particle start slow down and comes to Rest in 3 sec with court acc. Find 1) Distance <u>S01</u> 2 Displacement $(3) < speed > = \frac{510}{13}$ 460 7 a = - 20 $\Phi < \text{velocity} > = \frac{510}{13}$ 5 Dram (V-t) grafh 6 Draw (a-t) graph

Dran (x-t) graph

Brace = \frac{1}{2}(13+4) \times 60 = 510 = Distance

= Displacent

Brace in last part of journey.

S

S

(AC)

180 420 510

Distance = A1+A2+ A3+ A4

$$\langle \vec{a} \rangle = \frac{\sqrt{4} - \sqrt{i}}{3} = -\frac{10 - 10}{13} = -\frac{20}{13}$$

Distance = A1+A2+ A3+ A4

Displant = A1+A2+A3-A4

$$\langle \vec{a} \rangle = \frac{V_5 - V_i}{5mc} = -\frac{10 - 10}{13} = -\frac{20}{13}$$

$$A_1 = \frac{1}{2} \times (10+50) \times 4 = 120$$

Distance = A1+A2+ A3+ A4

Displant = A1+A2+A3-A4

$$\langle \vec{a} \rangle = \frac{V_5 - V_i}{5m} = \frac{-10 - 10}{13} = \frac{-20}{13}$$

$$A_1 = \frac{1}{2} \times (10 + 50) \times 4 = 120$$

$$A_3 = \frac{1}{2} \times 2.5 \times 50 = 62.5$$

Eq of motion

If acc is const

$$v = u + at$$

$$S = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Oisplacement
in Nth sec
$$\langle \nabla \rangle = \frac{1}{2} \frac{1}{2} \frac{1}{2}$$

a-const

B A particle start motion from rest having acc a = +10 m/s2

$$S = Ut + \frac{1}{2}at^{2}$$

 $S = 0 + \frac{1}{2}x10x6^{2}$
 $S = 180$

a Particle start motion with initial velocity +10 m/s

$$u = +10$$
 $a = 20$
 $b = 40$
 $b = 10 + 20x4$
 $v = 90$

QUESTION

A particle starts from rest at t = 0 and x = 0 to move with a constant acceleration $= +2 \text{ m/s}^2$, for 20 seconds. After that, it moves with -4 m/s^2 for the next 20 seconds. Finally, it moves with positive acceleration for 10 seconds until its velocity becomes zero.

- (a) What is the value of the acceleration in the last phase of motion?
- (b) What is the final x-coordinate of the particle?
- (c) Find the total distance covered by the particle during the whole motion.

The motion of a particle along a straight line is described by equation $x = 8 + 12t - t^3$ where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is:

[2012]

(1) 24 m s^{-2} (3) 6 m s^{-2}

zero

18. Motion of a particle is given by equation $s = (3t^3 + 7t^2 + 14t + 8)$ m. The value of acceleration of the particle at t = 1 sec is:

[2000]

- (1) 10 m/s^2 (2) 32 m/s^2
- (3) 23 m/s^2 (4) 16 m/s^2

10. The speed verses time graph for a particle is shown in the figure. The distance travelled (in m) by the particle during the time interval t = 0 to t = 5 s will be . (JEE Main 2020)

12. The velocity (v) and time (t) graph of a body in a straight line motion is shown in the figure. The point S is at 4.333 seconds. The total distance covered by the body in 6s is:

(JEE Main 2020)

(1) 12 m

(2) 49/4 m

(3) 11 m

(4) 37/3 m

14. If the velocity-time graph has the shape AMB, what would be the shape of the corresponding acceleration-time graph? (JEE Main 2021)

25. The position, velocity and acceleration of a particle moving with a constant acceleration can be represented by:

(JEE Main 2021)

MOTION IN ONE DIMENSION:

83. The velocity time graph of a body moving in a straight line is shown in figure. The ratio of displacement to distance travelled by the body in time 0 to 10 s is

(24 January 2023 - Shift 2)

(1) 1:1

(2) 1:4

(3) 1:2

(4) 1:3

85. The distance travelled by a particle is related to time t as $x = 4t^2$. The velocity of the particle at t = 5 s is. (25 January 2023 - Shift 2)

- (1) 40 ms^{-1} (2) 25 ms^{-1}
- (3) 20 ms^{-1} (4) 8 ms^{-1}

100. Form the v - t graph shown, the ratio of distance to displacement in 25 s of motion is:

(11 April 2023 - Shift 1)

1) 1

(2) 1/2

(3) 5/3

(4) 3/5

- 103. The distance travelled by an object in time t is given by $s = (2.5)t^2$. The instantaneous speed of the object at t = 5 s will be:

 (1) 25 ms^{-1} (2) 5 ms^{-1}
 - (3) 62.5 ms^{-1} (4) 12.5 ms^{-1}

105. The position of a particle related to time is given by $x = (5t^2 - 4t + 5)$ m. The magnitude of velocity of the particle at t = 2 s will be: (15 April 2023 - Shift 1)

- (1) 0.6 ms^{-1} (2) 14 ms^{-1}
- (3) 10 ms^{-1} (4) 16 ms^{-1}

The velocity-time graph of an object moving along a straight line is shown in figure. What is the distance

(28 Jan. 2025 - Shift 2)

covered by the object between t = 0 to t = 4 s?

18. Motion of a particle is given by equation $s = (3t^3 + 7t^2 + 14t + 8)$ m. The value of acceleration of the particle at t = 1 sec is:

[2000]

- (1) 10 m/s^2 (2) 32 m/s^2
- (3) 23 m/s^2 (4) 16 m/s^2

The motion of a particle along a straight line is described by equation $x = 8 + 12t - t^3$ where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is:

[2012]

- (1) 24 m s⁻²
- (4) 12 m s^{-2}

Answer Key

- 1. (3)
- 2. (1)
- 3. (1)
- 4. (3)
- 5. (4)
- 6. (4)
- 7. (1)
- 8. (1, 2, 3, 4)
- 9. (1)
- 10. (3, 4)
- 11. (1, 3, 4)
- 12. (1, 2, 4)
- 13. (1)
- 14. (1, 4)

- 15. (1, 4)
- 16. (1, 3, 4)
- 17. (2, 3, 4)
- 18. (a) 3.33 ms^{-1} , (b) 6.67 ms^{-1} ,

Acceleration:

- 19. $i \rightarrow b,d$; $ii \rightarrow a,d$; $iii \rightarrow c$; $iv \rightarrow a$
- 20. $i \rightarrow c,d$; $ii \rightarrow c,d$; $iii \rightarrow a,b,c,e$; $iv \rightarrow a,b,c,e$

Home work

- KPP 14 solve again Discursion Vedio

Discursion Vedio Will be uploaded today evening

- Complete jourbacklog

- DPP

