Математическая статистика

Основные понятия математической статистики

Попов Юрий, СКБ-172

ОГЛАВЛЕНИЕ

Задание 2.1 Моделирование выбранных случайных величин	3
Задание 2.2 Построение эмпирической функции распределения	4
Задание 2.3 Построение вариационного ряда выборки	5
Задание 2.4 Построение гистограммы и полигон частот	6

Предисловие

Задание 2.1 Моделирование выбранных случайных величин

Реализация выборки

Определение 1. Peanusauus выборки - это набор из п наблюдений $\hat{x} = (x_1, x_2, \dots, x_n)$

Задание 2.2 Построение эмпирической функции распределения

Эмпирическая функция распределения

Определение 2. Для произвольного числа $x \in R$ рассмотрим случайную величину

$$\mu_n(x) = \sum_{i=1}^n Ind(X_i \le x)$$

равную числу элементов выборки меньших или равных x. Тогда функция $\hat{F}(x) = \frac{\mu_n(x)}{n}$ называется эмпирической функцией распределения(э.ф.р)

Эмпирическая функция распределения принимает значения $\{0,\frac{1}{n},\frac{2}{n},\dots,\frac{n}{n}\}$

$$P(\hat{F}(x) = \frac{k}{n}) = C_k^m F^k(x) (1 - F(x))^{n-k}$$

Задание 2.3 Построение вариационного ряда выборки

Вариационный ряд выборки

Определение 3. Пусть есть

$$\vec{X} = (X_1, \dots, X_n),$$

где $X_i, i = \overline{1,n}$ —независимые одинаково распределенные случайные величины из распределения ξ . И $\vec{x} = (x_1, \cdots, x_n)$ является реализацией имеющейся выборки \vec{X} . Отсортируем вектор \vec{x} по возрастанию:

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}$$

Тогда $x_{(1)}=\min(x_1,x_2,\dots x_n)$, а $x_{(n)}=\max(x_1,x_2,\dots,x_n)$. Через $X_{(i)}$ обозначают случайную величину, которая для каждой реализации выборки принимает значение $X_{(i)}$. Вектор $(X_{(1)},X_{(2)},\dots,X_{(n)})$ называют вариационным рядом выборки.

Квантиль

Определение 4. Квантилью уровня $\alpha \in (0,1)$ функции распределения F(x) называется величина $\zeta_{\alpha} = \sup\{x : F(x) \leq p\} = F^{-1}(p)$.

Выборочный квантиль

Определение 5. *Выборочными квантилями* называют квантили выборочного распределения.

Задание 2.4 Построение гистограммы и полигон частот

Гистограмма

Определение 4.Для непрерывной случайной величины ξ , обладающей непрерывной плотностью f(x), также можно построить по соответствующей выборке $X=(X_1,\ldots,X_n)$ статистический аналог $\hat{f}_n(x)$ для плотности f(x), который называется гистограммой

Полигон частот

Определение 5. Наряду с гистограммой, в качестве приближения для неизвестной теоретической плотности f(x) можно использовать кусочно-линейный график, называемый *полигоном частом*, и который строится так: если построена гистограмма $\hat{f}_n(x)$, то ординаты, соответствующие серединам интервалов группировки, последовательно соединяют отрезками прямых.

Литература

- [1]
- [2] ссылка1
- [3] ссылка2
- [4] // ссылка3
- [5] // ссылка4