a(ck) = bc it follows that $a \mid bc$. 5. If $a \mid b$ and $b \mid a$, there are integers c and d such that b = ac and a = bd. Hence, a = acd. Because $a \neq 0$ it follows that cd = 1. Thus, either c = d = 1 or c = d = -1. Hence, either a = b or a = -b. 7. Because $ac \mid bc$ there is an integer k such

or a = -b. 7. Because $ac \mid bc$ there is an integer k such that ack = bc. Hence, ak = b, so $a \mid b$. 9. It is given that

17. a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 **19.** If $d \mid a$, then a = md

(-a) **div** $d \neq -(a$ **div** d). **21.** If a **mod** m = b **mod** m, then a and b have the same remainder when divided by m. Hence, $a = q_1m + r$ and $b = q_2m + r$, where $0 \leq r < m$. It follows that $a - b = (q_1 - q_2)m$, so $m \mid (a - b)$. It follows that $a \equiv b \pmod{m}$. **23.** There is some b with $(b - 1)k < n \leq bk$.

[m/2] 27. a) 1 b) 2 c) 3 d) 9 29. a) 1, 109 b) 40,

89 **c**) -31, 222 **d**) -21, 38259 **31. a**) -15 **b**) -7 **c**) 140

41. Let m = tn. Because $a \equiv b \pmod{m}$ there exists an integer s such that a = b + sm. Hence, a = b + (st)n, so $a \equiv b \pmod{n}$.

not of the form 4k + 3. 47. Because $a \equiv b \pmod{m}$, there exists an integer s such that a = b + sm, so a - b = sm. Then $a^k - b^k = (a - b)(a^{k-1} + a^{k-2}b + \cdots + ab^{k-2} + b^{k-1})$, $k \ge 2$, is also a multiple of m. It follows that $a^k \equiv b^k \pmod{m}$.