

Un émetteur E est à la distance d d'un récepteur R à l'instant  $t_0$  et se déplace à la vitesse v vers lui.

E émet une onde progressive périodique de fréquence  $f_E$  se déplaçant à la célérité c.

- 1. À quelle instant  $t'_0$ , la perturbation émise à l'instant  $t_0$  par E atteint R?
- 2. À quel instant ultérieur  $t_1$ , E émettra-t-il une perturbation exactement en phase avec celle émise à  $t_0$ ?
- 3. Quelle est la nouvelle distance  $d_1$  entre E et R à l'instant  $t_1$ ?
- 4. À quelle instant  $t'_1$ , la perturbation émise à l'instant  $t_1$  par E atteint R?
- 5. Que vaut la durée  $t_1' t_0'$  ? Que représente-t-elle pour R ?
- 6. En déduire la variation de fréquence  $\Delta f = f_R f_E$  entre la fréquence émise par E et celle reçue par R.

Maintenant E s'éloigne de R à la vitesse v.

7. Adapter les calculs pour trouver le nouveau  $\Delta f$ .

TSPÉ FORMULES DOPPLER – DÉMONSTRATION Activité



Un émetteur E est à la distance d d'un récepteur R à l'instant  $t_0$  et se déplace à la vitesse v vers lui.

E émet une onde progressive périodique de fréquence  $f_E$  se déplaçant à la célérité c.

- 1. À quelle instant  $t'_0$ , la perturbation émise à l'instant  $t_0$  par E atteint R?
- 2. À quel instant ultérieur  $t_1$ , E émettra-t-il une perturbation exactement en phase avec celle émise à  $t_0$ ?
- 3. Quelle est la nouvelle distance  $d_1$  entre E et R à l'instant  $t_1$ ?
- 4. À quelle instant  $t'_1$ , la perturbation émise à l'instant  $t_1$  par E atteint R?
- 5. Que vaut la durée  $t'_1 t'_0$ ? Que représente-t-elle pour R?
- 6. En déduire la variation de fréquence  $\Delta f = f_R f_E$  entre la fréquence émise par E et celle reçue par R.

Maintenant E s'éloigne de R à la vitesse v.

7. Adapter les calculs pour trouver le nouveau  $\Delta f$ .