Class Diagrams

SIMANTA MITRA

UML References

- http://www.ibm.com/developerworks/rational/ library/769.html (UML Tutorials at IBM)
- http://www.omg.org/spec/UML/2.4.1/
 Infrastructure/PDF/ (UML2 OFFICIAL SPECS)
- http://www.eclipse.org/modeling/mdt/papyrus/

After this lesson, you will know about

- what is a class diagram
- the class element
- class relationships
 - assocation
 - aggregation and composition
 - generalization
 - dependency
 - realization

WHAT IS A CLASS DIAGRAM?

A class diagram shows classes and their relationships

An example (class diagram)

Observer Pattern

Visitor pattern

A class diagram has two types of elements:

- 1. Class elements
- 2. Relationship Elements

THE CLASS ELEMENT

Class element - three compartments

LONG FORM

Car

- registration_no: String

speed: Integer = 0

+ direction: Direction

+ drive(speed: integer = 30, direction:Direction): void

SHORT FORM

Car

Class Attributes

Person

+ name : String# address : Address# birthdate : Date

- ssn : Id

An *attribute* is a named property of a class that describes the object being modeled.

Attributes can be:

+ public

protected

- private

Class Operations

Person

name : String address : Address

birthdate: Date

ssn : Id

eat sleep work play *Operations* describe the class behavior and appear in the third compartment.

Class Operations (Cont'd)

PhoneBook

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)

getPhone (n : Name, a : Address) : PhoneNumber

Operations describe the class behavior.

Specify an operation by stating its signature: listing the name, type, and default value of all parameters, and a return type.

Class element example

LONG FORM

Car

- registration_no: String

speed: Integer = 0

+ direction: Direction

+ drive(speed: integer = 30, direction:Direction): void

SHORT FORM

Car

CLASS RELATIONSHIPS

Types of Relationships

- Associations is a broad term that encompasses just about any logical connection or relationship between classes.
- Aggregation has-a relationship
- Composition parts whole relationship
- Generalization is-a relationship
- Realization implements or realizes relationship

- 1. Name (in each direction)
- 2. direction (optional)
- 3. roles context (optional)
- 4. multiplicity (optional)

Exactly one	1
Zero or more (unlimited)	* (0*)
One or more	1*
Zero or one (optional association)	01
Specified range	24

Aggregation

Models "has-a" relationship

Composition

- A stronger form of aggregation
 - The whole is the sole owner of its part.
 - The part object may belong to only one whole
 - Multiplicity on the whole side must be zero or one.
 - The life time of the part is dependent upon the whole.
 - The composite must manage the creation and destruction of its parts.

Generalization

• is-a

Realization

- A realization relationship indicates that one class implements a behavior specified by another class (an interface or protocol).
- An interface can be realized by many classes.
- A class may realize many interfaces.

An example (class diagram)

To summarize, we learnt about

- what is a class diagram
- the class element
- class relationships
 - association
 - aggregation and composition
 - generalization
 - realization

Self Check

Q1 Draw a class diagram that captures ALL the information in the below description.

- 1) A BANK has upto 1000 customers.
- 2) It also has four loan managers.
- 3) A customer can have one or more of three different types of accounts: loan accounts, savings accounts, and checking accounts.
- 4) There are three different types of loan accounts namely personal loans, car loans, and home-equity loans.
- 5) Loan managers manage loan accounts.
- 6) Accounts have attributes amount, interest, and timeperiod.
- 7) One Account belong to one customer.

Q2 describe relationships shown

