BÀI TẬP VỀ PHẨN ỨNG CỘNG CỦA ANKIN

A. Phương pháp giải

- Công thức tổng quát của ankin là C_nH_{2n-2} $(n \ge 2)$.
- Cộng H₂
- + Khi có mặt Ni hoặc Pt làm xúc tác, ankin + H_2 tạo ra anken, sau đó tạo ankan. Ví dụ:

$$CH \equiv CH + H_2 \xrightarrow{Ni,t^{\circ}} CH_2 = CH_2$$

$$CH_2 = CH_2 + H_2 \xrightarrow{Ni,t^o} CH_3 - CH_3$$

+ Với xúc tác Pd/PbCO₃ hoặc Pd/ BaSO₄ phản ứng dừng lại tạo anken.

$$C_n H_{2n-2} + H_2 \xrightarrow{Pd/PbCO_3} C_n H_{2n}$$

- Cộng Halogen

Phương trình tổng quát:

$$C_n H_{2n-2} + X_2 \rightarrow C_n H_{2n-2} X_2$$

 $C_n H_{2n-2} X_2 + X_2 \rightarrow C_n H_{2n-2} X_4$

- Cộng HX: tuân theo qui tắc Mac-cốp-nhi-cốp.
- + Qui tắc Mac-cốp-nhi-cốp: Trong phản ứng cộng HX vào liên kết đổi, nguyên tử H (hay phần mang điện dương) chủ yếu cộng vào nguyên tử cacbon bậc thấp hơn (có nhiều H hơn), còn nguyên tử hay nhóm nguyên tử X (phần mang điện âm) cộng vào nguyên tử cacbon bậc cao hơn (có ít H hơn).

+ Ví dụ:
$$CH_3 - C \equiv CH \xrightarrow{HCl} CH_3 - C(Cl) = CH_2 \xrightarrow{HCl} CH_3 - C(Cl)_2 - CH_3$$

- Phương pháp giải:
- + Tính theo phương trình hoặc áp dụng định luật bảo toàn nguyên tố và bảo toàn khối lượng.
- + Khi cộng H_2 thì khối lượng hỗn hợp khí trước và sau phản ứng không đổi:

 $m_{tru\acute{o}c} = m_{sau}$

+ Khi cộng H_2 thì độ giảm số mol khí là số mol H_2 phản ứng:

 $n_{
m khí~giảm} = n_{
m trước} - n_{
m sau} = n_{
m hidro~phản~ứng}$

+ Với bài toán ankin cộng H_2 , sau đó lại cộng brom, sử dụng bảo toàn số mol liên kết pi: $n_{\pi} = n_{H_2} + n_{Br_2}$

B. Ví dụ minh họa

Ví dụ 1: Cho 3,12 gam ankin X phản ứng với 0,1 mol H₂ (xúc tác Pd/PbCO₃, t°), thu được hỗn hợp Y chỉ có hai hiđrocacbon. Công thức phân tử của X là

A. C_2H_2

B. C_5H_8

 $C. C_4H_6$

D. C_3H_4

Hướng dẫn giải

Gọi công thức phân tử ankin X: $C_nH_{2n-2}(n \ge 2)$

$$C_{n}H_{2n-2} + H_{2} \xrightarrow{Pb/PbCO_{3}, t^{0}} C_{n}H_{2n}$$

$$0,1 \leftarrow 0,1$$
 (mol)

Sau phản ứng thu được 2 hidrocacbon \rightarrow ankin X dư

$$\rightarrow n_x > 0.1 \rightarrow M_x < \frac{3.12}{0.1} = 31.2 \rightarrow \text{ankin X là C}_2H_2$$

Đáp án A

Ví dụ 2: Một hỗn hợp khí M gồm ankin X và H₂ có tỉ khối hơi so với CH₄ là 0,6. Nung nóng hỗn hợp M với bột Ni để phản ứng xảy ra hoàn toàn thu được hỗn hợp khí N có tỉ khối hơi so với CH₄ là 1,0. Ankin X là

A. axetilen.

B. metylaxetilen.

C. etylaxetilen.

D. propylaxetilen.

Hướng dẫn giải

Ta có
$$d_{N/CH_4} = 1 \rightarrow M_N = 16 \rightarrow H_2 du$$
.

$$\label{eq:Goiden} G \hspace{-0.5em} \text{oi} \hspace{0.5em} \begin{cases} n_{C_n H_{2n-2}} : x \hspace{0.5em} \text{mol} \\ n_{_{H_2}} : y \hspace{0.5em} \text{mol} \end{cases}$$

$$d_{M/CH_4} = 0,6 \rightarrow M_M = 9,6$$

$$\to \frac{(14n+2)x+2y}{x+y} = 9,6(1)$$

Vì phản ứng xảy ra hoàn toàn \rightarrow hỗn hợp N gồm C_nH_{2n+2} : x mol và H_2 dư (y - 2x) mol.

$$\rightarrow \frac{(14n+2)x+2(y-2x)}{x+(y-2x)} = 16(2)$$

Từ (1) và (2) \rightarrow y = 4x \rightarrow n = 3

 \rightarrow CH \equiv C-CH₃ \rightarrow metylaxetilen

Đáp án B

Ví dụ 3: Cho hỗn hợp X gồm 0,1 mol C_2H_4 , 0,2 mol C_2H_2 và 0,7 mol H_2 . Nung X trong bình kín có xúc tác là Ni, sau một thời gian thu được 0,8 mol hỗn hợp Y. Biết Y phản ứng vừa đủ với 100ml dung dịch Br_2 có nồng độ a mol/lít. Giá trị của a là

A. 3

B. 2,5

C. 2

D. 5

Hướng dẫn giải

 $n_{hhX} = 0.1 + 0.2 + 0.7 = 1 \text{ (mol)}$

1 mol hỗn hợp X (C_2H_4 ; C_2H_2 ; H_2) \rightarrow 0,8 mol hỗn hợp Y (C_2H_6 ; H_2 dư, C_2H_4 dư, C_2H_4 dư)

$$n_{gi \dot{a} m} = \, n_{_{\rm H_2 \; pu}} \! = \! n_{_{\rm X}} \, - \! n_{_{\rm Y}} \! = \! 1 \! - \! 0.8 \! = \! 0.2 \, \left(mol \right)$$

Khi cho Y phản ứng với dung dịch Br₂ chỉ có C₂H₂ dư, C₂H₄ dư phản ứng

$$\rightarrow n_{Br,pu} = n_{C,H_4} + 2n_{C,H_2} - n_{H_2,pu} = 0,1 + 2.0,2 - 0,2 = 0,3 \text{ mol}$$

$$\rightarrow a = \frac{0.3}{0.1} = 3 \text{ (M)}$$

Đáp án A

C. Bài tập tự luyện

Câu 1: Hỗn hợp khí X gồm 0,3 mol H₂ và 0,1 mol vinylaxetilen. Nung X một thời gian với xúc tác Ni thu được hỗn hợp khí Y có tỉ khối so với không khí là 1. Tính số mol H₂ phản ứng?

A. 2,24 lít

B. 4,48 lít

C. 10,08 lít

D. 5,04 lít

Hướng dẫn giải:

Theo bài:

Bảo toàn khối lượng: $m_Y = m_X = 0.3.2 + 0.1.52 = 5.8g$

$$n_{Y} = \frac{m_{Y}}{M_{Y}} = \frac{5.8}{29} = 0.2 \text{mol}$$

$$n_{H_2 pu} = (0,3+0,1)-0,2=0,2 \text{ (mol)}$$

 $\rightarrow V_{H_3} = 0,2.22,4=4,481$

Đáp án B

Câu 2: Cho 2,24 lít (đktc) hỗn hợp X gồm C_2H_4 và C_2H_2 lội chậm qua bình đựng dung dịch Br_2 dư thấy khối lượng bình tăng thêm 2,7 gam. Thành phần phần trăm thể tích của C_2H_2 có trong hỗn hợp X là

A. 40%

B. 50%

C. 60%

D. 75%

Hướng dẫn giải

$$n_x = \frac{2,24}{22,4} = 0,1 \text{mol}$$

Gọi số mol của C₂H₄ và C₂H₂ lần lượt là x và y mol

$$\rightarrow$$
 x + y = 0,1 (1)

$$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$$

$$x \rightarrow x \qquad x \qquad (mol)$$

$$C_2H_2 + 2Br_2 \rightarrow C_2H_2Br_4$$

$$y \rightarrow 2y$$
 y (mol)

Ta có khối lượng bình tăng bằng khối lượng hỗn hợp khí $X \rightarrow 28x + 26y = 2,7$ (2)

$$T\dot{u}(1) \ v\dot{a}(2) \rightarrow x = y = 0.05$$

Phần trăm thể tích bằng phần trăm số mol khí.

$$\rightarrow$$
 % $V_{C_2H_4} = \frac{0.05}{0.1}.100\% = 50\%$

$$%V_{C_2H_2} = 100\% - 50\% = 50\%$$

Đáp án B

Câu 3: Cho m gam propin tác dụng với H_2 dư (Ni, t°) thu được (m + 8) gam sản phẩm hữu cơ Y. Giá trị của m là:

A. 80 gam

B. 40 gam

C. 160 gam

D. 120 gam

Hướng dẫn giải

$$\begin{split} m_{H_2} &= 8(g) \Longrightarrow n_{H_2} = 4 \text{mol} \\ C_3 H_4 &+ 2 H_2 \xrightarrow{\text{Ni}, t^{\circ}} C_3 H_8 \\ 2 &\leftarrow 4 & \text{(mol)} \\ \rightarrow m &= 2.40 = 80 \text{ g} \end{split}$$

Đáp án A

Câu 4: Đun nóng hỗn hợp khí gồm $0,06 \text{ mol } C_2H_2$ và $0,04 \text{ mol } H_2$ với xúc tác Ni, sau một thời gian thu được hỗn hợp khí Y. Dẫn toàn bộ hỗn hợp Y lội từ từ qua bình đựng dung dịch brom (dư) thì còn lại 0,448 lít hỗn hợp khí Z (ở đktc) có tỉ khối so với O_2 là 0,5. Khối lượng bình dung dịch brom tăng là

A. 1,20 gam

B. 1,04 gam

C. 1,64 gam

D. 1,32 gam

Hướng dẫn giải

Gọi m gam là khối lượng bình dung dịch brom tăng.

Bảo toàn khối lượng ta có: $m_{C,H_2} + m_{H_2} = m_Y = m_Z + m$

$$\rightarrow$$
 0,06.26 + 0,04.2 = $\frac{0,02.0,5.32 + m}{0,000,000}$

$$\rightarrow$$
 m = 1,32 gam

Đáp án D

Câu 5: Khi cho brom phản ứng hoàn toàn 0,3 mol hỗn hợp gồm một ankin và một anken cần vừa đủ 0,4 mol Br₂. Thành phần phần trăm về số mol của ankin trong hỗn hợp là:

A. 75%

B. 25%

C. 33,33%

D. 66,67%

Hướng dẫn giải

Gọi
$$\begin{cases} n_{anken} = a \text{ mol} \\ n_{ankin} = b \text{ mol} \end{cases} \rightarrow a + b = 0,3 (1)$$

Ta có: $n_{Br_2} = n_{anken} + 2. n_{ankin}$

$$\rightarrow a + 2b = 0.4$$
 (2)

 $T\dot{u}(1) \ v\dot{a}(2) \rightarrow a = 0.2 \ mol; \ b = 0.1 \ mol$

$$\rightarrow$$
% n_{ankin} = 0,1.100/0.3 = 33,33%

Đáp án C

Câu 6: Hỗn hợp X gồm một hiđrocacbon (khí) và H_2 , với $d_{\chi_{H_2}} = 6.7$. Cho hỗn hợp đi qua Ni nung nóng, sau khi phản ứng xảy ra hoàn toàn thu được hỗn hợp Y có $d_{\chi_{H_2}} = 16.75$. Công thức phân tử của hiđrocacbon trong X là

- A. C_3H_4 .
- B. C_3H_6 .
- $C. C_4H_8.$
- D. C₄H₆.

Hướng dẫn giải

Bảo toàn khối lượng: $m_X = m_Y$

$$\rightarrow \frac{n_x}{n_y} = \frac{M_y}{M_x} = \frac{16,75.2}{6,7.2} = \frac{5}{2}$$

Giả sử $n_{hhX} = 5 \text{ mol}$; $n_{hhY} = 2 \text{ mol}$.

Ta có
$$n_{_{H_2pu}} = n_{_{hhX}} - n_{_{hhY}} = 5 - 2 = 3 \ mol > n_{_{hhY}}$$

$$ightarrow$$
 hiđrocacbon là C_nH_{2n-2} có số mol bằng $\frac{1}{2}n_{H_2pu}$

 \rightarrow ban đầu có C_nH_{2n-2} 1,5 mol và H_2 3,5 mol.

$$\rightarrow$$
 n = 3 \rightarrow C₃H₄

Đáp án A

Câu 7: Một hỗn hợp X gồm một anken và một ankin. Cho 0,1 mol hỗn hợp X vào nước brom dư thấy có 0,16 mol Br_2 đã tham gia phản ứng. Mặt khác, đốt cháy hoàn toàn 0,1 mol hỗn hợp X thu được 0,28 mol CO_2 . Vậy 2 chất trong hỗn hợp X là

A. C₂H₄ và C₃H₄

B. C_4H_8 và C_2H_2

C. C₃H₆ và C₂H₂

D. C_3H_6 và C_3H_4

Hướng dẫn giải

$$X \begin{cases} C_n H_{2n} : a \text{ mol} \\ C_m H_{2m-2} : b \text{ mol} \end{cases}$$

$$\rightarrow \begin{cases} a + b = 0.1 \\ a + 2b = 0.16 \end{cases} \Leftrightarrow \begin{cases} a = 0.04 \\ b = 0.06 \end{cases}$$

 $0.1 \text{ mol } X + O_2 \rightarrow 0.28 \text{ mol } CO_2$

Bảo toàn C ta có: $0.04n + 0.06m = 0.28 \rightarrow 2n + 3m = 14$.

Ta thấy n = 4; m = 2 là giá trị thỏa mãn $\rightarrow X$ là C_4H_8 và C_2H_2

Đáp án B

Câu 8: Dẫn 2,24 lít hỗn hợp gồm etilen, propilen, propen, các buten và axetilen (ở đktc) qua dung dịch brom dư thì thấy khối lượng brom trong bình giảm 19,2 gam. Lượng CaC₂ cần dùng để điều chế được lượng axetilen có trong hỗn hợp trên là

A. 6,4 gam

B. 3,2 gam

C. 2,56 gam

D. 1,28 gam

Hướng dẫn giải

$$n_{Br_2} = 0.12 \text{mol}; n_{hh} = 0.1 \text{mol}$$

Anken +
$$Br_2 \rightarrow Sp$$

$$Ankin + 2Br_2 \rightarrow Sp$$

$$\rightarrow n_{\text{axetilen}} = n_{\text{Br}_2} - n_{\text{hh}} = 0.12 - 0.1 = 0.02 \text{ mol}$$

$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

$$0.02 \leftarrow 0.02 \quad (mol)$$

$$m = 0,02.64 = 1,28$$
 gam

Đáp án D

Câu 9: Hỗn hợp X gồm C₂H₂ và H₂ (có tỉ lệ mol tương ứng là 1 : 2). Đun nóng 10,08 lít (đktc) hỗn hợp X với xúc tác Ni, sau một thời gian thu được hỗn hợp khí Y. Dẫn hỗn hợp Y qua dung dịch nước brom dư, thấy bình brom tăng 3 gam và còn lại V lít (đktc) hỗn hợp khí Z không bị hấp thụ. Tỉ khối của Z so với heli bằng 5/3. Giá trị của V là

A. 13,44 lít

B. 4,48 lít

C. 10,08 lít

D. 5,04 lít

Hướng dẫn giải

$$n_{\uparrow} = \frac{10,08}{22,4} = 0,45 \text{(mol)}$$

$$\rightarrow \begin{cases} n_{C_2H_2} = 0,15 \text{ mol} \\ n_{H_2} = 0,3 \text{ mol} \end{cases}$$

Ta có $m_X = m_Y = m_{binh \ tăng} + m_Z$

$$\rightarrow$$
 0,15. 26 + 0,3. 2 = 3 + m_Z \rightarrow m_Z = 1,5 gam

$$\rightarrow n_z = \frac{1.5}{\frac{5}{3}.4} = 0.225 \text{ mol}$$

$$\rightarrow$$
 V= 5,04 lít.

Đáp án D

Câu 10: Cho 28,2 gam hỗn hợp X gồm 3 ankin đồng đẳng kế tiếp qua một lượng dư H₂ (t°, Ni) để phản ứng xảy ra hoàn toàn. Sau phản ứng thể tích thể tích khí H₂ giảm 26,88 lít (đktc). Công thức phân tử của 3 ankin là

A. C_2H_2 , C_3H_4 , C_4H_6 .

B. C₄H₆, C₅H₈, C₆H₁₀.

 $C.\ C_3H_4,\ C_4H_6,\ C_5H_8.$

D. Cả A và C đều đúng

Hướng dẫn giải

Ta có: số mol khí giảm = số mol H_2 tham gia phản ứng = 1,2 mol

$$\rightarrow$$
 tổng số mol hỗn hợp = $\frac{1,2}{2}$ = 0,6

$$\rightarrow \overline{M} = \frac{28,2}{0,6} = 47$$

$$\rightarrow 14n - 2 = 47 \rightarrow n = 3,5$$

ightarrow Hỗn hợp có thể là C_2H_2 , C_3H_4 , C_4H_6 hoặc C_3H_4 , C_4H_6 , C_5H_8 Đáp án D