THE BUILDING BLOCKS: BOOLEAN LOGIC AND GATES

MAYBE IF YOU START WITH ...
NO, WAIT. HMM...YOU COULD-

LEARNING OBJECTIVES

- Simple binary functions
 - one and two inputs with a single output
- Boolean values = binary values
 - Boolean logic
- Truth tables
- Transistors as switches
- Building boolean/binary functions with transistors
- Logic gates

HOW DO WE MANIPULATE NUMBERS IN CIRCUITS?

- We have seen how it is possible to encode properties about the world (including text, sound and images) into numbers
- · We have seen how to encode numbers into binary, either integers or floating point
 - remember the "Why Binary" slide in Lecture 2
- · How do we manipulate those numbers? i.e. perform operations on them?
- We are going to build circuits to provide the operations we want to perform on those numbers
 - the presence or absence of a voltage on a wire will indicate 1 or 0
 - we will have many wires e.g. 8 to carry an 8-bit number and pass the values through a circuit which produces an 8-bit answer coming out on 8 wires

STILL CHAPTER 4

SIMPLEST EXAMPLE - ONE INPUT FUNCTIONS

- All possible functions which take a value of either 0 or 1 and transform those values
- 1 input (A in this case) can take on 2¹ or 2 different values, so we have two rows in our table and 2² or 4 different functions
- These functions are known as the "zero", "identity", "not" and "one" functions
- The "zero", "identity" and "one" functions are trivial to implement in a circuit

A	Output
0	0
1	0

A	Output
	0
1	1

A Output0 11 0

TWO INPUT FUNCTIONS

- What do we get if we allow two inputs A and B?
- We have 2² rows and 2⁴ or 16 different functions
- The coloured functions are special

										ı	
A	В	Output	A	В	Output	A	В	Output	Α	В	Output
0	0	0	0	0	1	0	0	0	0	0	1
0	1	0	0	1	0	0	1	1	0	1	1
1	0	0	1	0	0	1	0	0	1	0	0
1	1	0	1	1	0	1	1	0	1	1	0
ı					ı					ı	
A	В	Output	Α	В	Output	A	В	Output	Α	В	Output
0	0	0	0	0	1	0	0	0	0	0	1
0	1	0	0	1	0	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1	1	0	1
1	1	0	1	1	0	1	1	0	1	1	0
										ı	1
A	В	Output	A	В	Output	A	В	Output	A	В	Output
A	B	Output 0	•	B			B			B	Output 1
			0			0				0	
0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	1
0 0 1 1 1	0 1 0 1	0 0 0	0 0 1 1	0 1 0 1	1 0 0	0 0 1 1	0 1 0 1	0 1 0	0 0 1 1	0 1 0 1	1 1 0
0 0 1 1	0 1 0 1	0	0 0 1 1	0 1 0 1	1 0 0	0 0 1 1	0 1 0 1	0 1 0 1	0 0 1 1	0 1 0 1	1 1 0
0 0 1 1	0 1 0 1	0 0 0 1 Output	0 0 1 1	0 1 0 1	1 0 0 1 Output	0 0 1 1	0 1 0 1	0 1 0 1 Output	0 0 1 1	0 1 0 1	1 1 0 1 Output
0 0 1 1 A 0	0 1 0 1	0 0 0 1 Output	0 0 1 1 A 0	0 1 0 1 B	1 0 0 1 Output	0 0 1 1 A	0 1 0 1 B	0 1 0 1 Output	0 0 1 1 A 0	0 1 0 1 B	1 1 0 1 Output
0 0 1 1 A 0	0 1 0 1 B	0 0 0 1 Output 0	0 0 1 1 A 0	0 1 0 1 B	1 0 0 1 Output 1 0	0 0 1 1 A 0	0 1 0 1 B	0 1 0 1 Output 0	0 0 1 1 A 0	0 1 0 1 B 0	1 1 0 1 Output

ARE THEY REALLY NUMBERS?

- The two values 1 and 0 are completely arbitrary how we interpret them depends on what we are doing
- Boolean logic is used for manipulating true/false expressions
- Binary 1/0 maps to true/false of Boolean logic
- Boolean expressions are true or false: $x \le 35$, a = 12
- Boolean operators: $(0 \le x)$ AND $(x \le 35)$, (a = 12) OR (a = 13), NOT (a = 12)

$$(0 \le x) \bullet (x \le 35), (a = 12) + (a = 13), \sim (a = 12)$$

So AND can be represented as • (we will see that sometimes the • is not shown), OR can be represented as +, NOT can be represented as ~. NOT is also represented as a bar e.g. ā

TRUTH TABLE - AND

 Truth tables lay out true/false values for Boolean expressions, for each possible true/false input

FIGURE 4.14

Inputs: a	Inputs: b	Output a AND b (also written a . b)	or just ab
False	False	False	
False	True	False	
True	False	False	
True	True	True	

Truth table for the AND operation

TRUTH TABLE - OR

FIGURE 4.15

Inputs: a	Inputs: b	Output a OR b (also written a + b)
False	False	False
False	True	True
True	False	True
True	True	True

Truth table for the OR operation

TRUTH TABLE - NOT

FIGURE 4.16

Inputs: a	Output NOT a (also written ā, or ~a)			
False	True			
True	False			

Truth table for the NOT operation

THE HARDWARE

- · We need to be able to represent our two values and turn values on and off
- · The ways of representing the two values have changed over time
- Computers use binary because "bistable" systems are reliable
 - Current on/off
 - Magnetic field left/right

SIMPLE SWITCH

Switch open:

- No current through circuit
- Light is off

Switch closed:

- Short circuit across switch
- Current flows
- Light is on

Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage.

TRANSISTORS

Transistors

- Solid-state switches
- Change on/off when given power on control line
- Extremely small (billions per chip)
- Enable computers that work with gigabytes of data

TRANSISTORS

- How do they work as switches? https://www.youtube.com/watch?
 v=stM8dgcY1CA start at 4:50 (not examinable but useful to have an overview of how transistors work)
- Great old video https://www.youtube.com/watch?
 v=V9xUQWo4vN0 (not necessary for this course)

WHAT A COMPUTER LOOKS LIKE

PROCESSORS AND TRANSISTORS

- Microprocessors contain millions of transistors
 - Intel® Xeon Phi™ coprocessor 5110P(2012): 5 billion
 - Spark M7 (2015): 10 billion
- · Logically, each transistor acts as a switch
- Combined to implement logic functions
 - AND, OR, NOT these are functionally complete, we can use them to create any logic function (see slide "Two Input Functions")
- Combined to build higher-level structures
 - Adder, multiplexer, decoder, register, ...

GATES

 Gate: an electronic device that operates on inputs to produce outputs

Each gate corresponds to a Boolean operator

NOT

- Gates are built from transistors
- NOT gate: 1 transistor
- AND gate: 3 transistors
- OR gate: 3 transistors
- NAND and NOR: 2 transistors
- Transistors can be in series or parallel

NAND AND AND

BUILD SOME OF THE TWO INPUT FUNCTIONS

NAND

AND

NOR AND OR

BUILD SOME OF THE TWO INPUT FUNCTIONS

out of the 16

NOR

COMBINATIONAL CIRCUIT

- Circuit: has input wires, contains gates connected by wires, and has output wires
- · Outputs depend only on current inputs: no state

ABSTRACTION

- From now on we don't draw the transistors in our circuits
- The basic elements will be the logic gates, NOT, AND and OR