ST511 HW #2

Reading: Browse Chapters 3-5 of Ott & Longnecker.

See Canvas Calendar for due date.

- 40 points total, 2 points per problem part unless otherwise noted.
 - 1. Assume that Z has a standard normal distribution. Compute the following.
 - A. $P(Z \le 0.57)$
 - B. $P(Z \le -0.32)$
 - C. P(Z > 2.10)
 - D. $P(-0.32 \le Z \le 1.55)$
 - E. Find the value z such that $P(Z \le z) = 0.3300$
 - F. Find the value z such that P(Z > z) = 0.3987
 - 2. Assume that Y has a normal distribution with mean 6 and standard deviation 0.8. Compute the following.
 - A. $P(Y \le 7)$
 - B. P(Y > 5.4)
 - C. $P(6 \le Y \le 7.2)$
 - D. Find the value y such that $P(Y \le y) = 0.85$.
 - 3. Assume that *T* has Student's *t*-distribution with the given degrees of freedom.
 - A. If *T* has 25 degrees of freedom, find the P(T > 1.708).
 - B. If T has 9 degrees of freedom, find the value t such that P(|T| < t) = 0.95.
 - C. If T has 50 degrees of freedom, find the value t such that P(T > t) = 0.90.
 - 4. Let Y have a <u>skewed</u> distribution with μ =90 and σ =10. Suppose a random sample of size n=100 is drawn from the population.
 - A. Give an interval with the property that at least 75% of the data will be in that interval. What rule did you use to determine the interval?
 - B. Describe the distribution of \overline{Y} . Give the mean, standard deviation and shape of the distribution. (3 pts)
 - 5. A random sample of n=25 seeds from a particular bean population is obtained. The weight of each seed is recorded. The data is available from Canvas as "Seeds.csv".
 - Reminders: (1) Use read.csv() to read import the data. (2) Use View() and/or str() to check the data after importing. (3) Use \$, with() or attach() to access the Weight column!
 - A. Construct a histogram of the data. Also give the sample mean and sample standard deviation. (3 pts)
 - B. Give a 95% confidence interval for μ (population mean seed weight).
 - C. Interpret your confidence interval from part B.
 - D. If you were to do a formal test of H0: μ =500 vs HA: μ ≠500 what would your conclusion be? Explain.