## Install kaggle library to download kaggle dataset to collab

Double-click (or enter) to edit

```
1 !mkdir -p ~/.kaggle
2 !cp kaggle.json ~/.kaggle/
3 !chmod 600 ~/.kaggle/kaggle.json
4

prop: cp: cannot stat 'kaggle.json': No such file or directory
```

```
cp: cannot stat 'kaggle.json': No such file or directory chmod: cannot access '/root/.kaggle/kaggle.json': No such file or directory
```

## Downloading Kaggle dataSet

```
!kaggle datasets download demasoudnickparvar/brain-tumor-mri-dataset

Dataset URL: <a href="https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset">https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset</a>
License(s): CCO-1.0

Develoading brain tumon mai dataset zin to /content
```

Downloading brain-tumor-mri-dataset.zip to /content 96% 142M/149M [00:01<00:00, 71.7MB/s] 100% 149M/149M [00:02<00:00, 74.4MB/s]

## Unzip the data set

```
1 !unzip /content/brain-tumor-mri-dataset.zip
2
```

```
THITACTING. ILLUTHING / bicnical. A / ILL-bi Tati 'lba
inflating: Training/pituitary/Tr-pi_1412.jpg
inflating: Training/pituitary/Tr-pi_1413.jpg
inflating: Training/pituitary/Tr-pi_1414.jpg
inflating: Training/pituitary/Tr-pi_1415.jpg
inflating: Training/pituitary/Tr-pi_1416.jpg
inflating: Training/pituitary/Tr-pi_1417.jpg
inflating: Training/pituitary/Tr-pi_1418.jpg
inflating: Training/pituitary/Tr-pi_1419.jpg
inflating: Training/pituitary/Tr-pi_1420.jpg
inflating: Training/pituitary/Tr-pi_1421.jpg
inflating: Training/pituitary/Tr-pi_1422.jpg
inflating: Training/pituitary/Tr-pi 1423.jpg
inflating: Training/pituitary/Tr-pi 1424.jpg
inflating: Training/pituitary/Tr-pi_1425.jpg
inflating: Training/pituitary/Tr-pi_1426.jpg
inflating: Training/pituitary/Tr-pi_1427.jpg
inflating: Training/pituitary/Tr-pi_1428.jpg
inflating: Training/pituitary/Tr-pi_1429.jpg
inflating: Training/pituitary/Tr-pi_1430.jpg
inflating: Training/pituitary/Tr-pi_1431.jpg
inflating: Training/pituitary/Tr-pi_1432.jpg
inflating: Training/pituitary/Tr-pi_1433.jpg
inflating: Training/pituitary/Tr-pi_1434.jpg
inflating: Training/pituitary/Tr-pi_1435.jpg
inflating: Training/pituitary/Tr-pi_1436.jpg
inflating: Training/pituitary/Tr-pi_1437.jpg
inflating: Training/pituitary/Tr-pi_1438.jpg
inflating: Training/pituitary/Tr-pi_1439.jpg
inflating: Training/pituitary/Tr-pi_1440.jpg
inflating: Training/pituitary/Tr-pi_1441.jpg
inflating: Training/pituitary/Tr-pi 1442.jpg
inflating: Training/pituitary/Tr-pi 1443.jpg
inflating: Training/pituitary/Tr-pi_1444.jpg
inflating: Training/pituitary/Tr-pi_1445.jpg
inflating: Training/pituitary/Tr-pi_1446.jpg
inflating: Training/pituitary/Tr-pi_1447.jpg
inflating: Training/pituitary/Tr-pi_1448.jpg
inflating: Training/pituitary/Tr-pi_1449.jpg
inflating: Training/pituitary/Tr-pi_1450.jpg
inflating: Training/pituitary/Tr-pi_1451.jpg
inflating: Training/pituitary/Tr-pi_1452.jpg
inflating: Training/pituitary/Tr-pi_1453.jpg
inflating: Training/pituitary/Tr-pi_1454.jpg
inflating: Training/pituitary/Tr-pi_1455.jpg
inflating: Training/pituitary/Tr-pi_1456.jpg
```

## Getting statistical analysis from the data set

```
import os
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    # Define directories for training and testing datasets
    train_directory = '/content/Training'
7
    test_directory = '/content/Testing'
8
9
    # Function to calculate the number of images in each class directory
10
    def get_image_counts(directory):
11
         class_folders = os.listdir(directory)
12
         image_counts = {}
13
         total_images = 0
14
         for folder in class_folders:
15
             folder path = os.path.join(directory, folder)
16
             if os.path.isdir(folder_path):
17
                 num_images = len(os.listdir(folder_path))
18
                 image_counts[folder] = num_images
19
                 total_images += num_images
```

```
20
        return image_counts, total_images
21
22
    # Get counts for training images
23
    training_counts, training_total = get_image_counts(train_directory)
24
25
    # Get counts for testing images
26
    testing counts, testing total = get image counts(test directory)
27
28 # Aggregate counts from both training and testing sets
29
    combined counts = {}
30
    for class_name in training_counts:
31
         combined_counts[class_name] = training_counts[class_name] + testing_counts.get(class_name, 0)
32
33
    # Generate a color map
    color_map = cm.get_cmap('Set2', len(combined_counts)) # Changed color map to 'Set2'
34
35
36
    # Plotting the results
    plt.figure(figsize=(12, 7))
37
    bars = plt.bar(combined counts.keys(), combined counts.values(), color=[color map(i) for i in range(len(c
38
39
40 # Customize the plot appearance
    plt.xlabel('Class Categories', fontsize=14)
    plt.ylabel('Total Image Count', fontsize=14)
42
    plt.title('Image Distribution Across Classes ', fontsize=16)
43
44
    plt.xticks(rotation=45, fontsize=12)
45
    plt.yticks(fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
46
47
48 # Add value labels inside the bars
    for bar in bars:
49
50
         height = bar.get_height()
         plt.text(bar.get_x() + bar.get_width() / 2, height / 2, int(height), ha='center', va='center', fontsi
51
52
53
    # Create a custom legend with updated title
    legend_labels = combined_counts.keys()
55
    legend_colors = [color_map(i) for i in range(len(combined_counts))]
56
    legend_elements = [plt.Line2D([0], [0], color=legend_colors[i], lw=4) for i in range(len(legend_labels))]
57
    plt.legend(legend_elements, legend_labels, title='Classes', bbox_to_anchor=(1.05, 1), loc='upper left', f
58
59
    plt.tight_layout()
    plt.show()
60
61
62
    # Output total image counts for each class
    print("Combined Image Count per Class (Training + Testing):")
64
    for class_name, count in combined_counts.items():
65
         print(f"{class_name}: {count}")
66
67
    # Output total image counts for training and testing sets
    print(f"Total Images in Training Set: {training_total}")
68
69
    print(f"Total Images in Testing Set: {testing_total}")
70
```



**Class Categories** 

Classes

Combined Image Count per Class (Training + Testing): glioma: 1621

pituitary: 1757 meningioma: 1645

0

## plotting single image from the Training data set

```
import os
    import numpy as np
    import cv2
    from tensorflow.keras.utils import to_categorical
    # Define the path to the dataset folder
    dataset_path = "/content/Training"
8
9
    # Define the list of label folders in the dataset folder
10
    label_folders = ['glioma', 'meningioma', 'notumor', 'pituitary']
11
12
13
    # Define the size of the input images
14
    img_height = 128
15
    img_width = 128
16
17
    # Define an empty list to store the images and their labels
18
    data = []
19
    labels = []
20
21
    # Create a dictionary to map label folders to numerical labels
22
    label_mapping = {label: idx for idx, label in enumerate(label_folders)}
23
24
    # Loop over the label folders in the dataset folder
25
    for label folder in label folders:
26
         # Define the path to the label folder
         label_path = os.path.join(dataset_path, label_folder)
27
28
```

```
29
         # Loop over the images in the label folder
30
         for img_name in os.listdir(label_path):
             # Define the path to the image
31
32
             img_path = os.path.join(label_path, img_name)
             # Load the image and resize it to the desired size
33
34
             img = cv2.imread(img_path)
35
             img = cv2.resize(img, (img_height, img_width))
36
             # Append the image and its numerical label to the data and labels lists
37
             data.append(img)
             labels.append(label_mapping[label_folder])
38
39
40
    # Convert the data and labels lists to numpy arrays
41
     data = np.array(data)
42
     labels = np.array(labels)
43
44
    # Convert the labels to one-hot encoded vectors
45
     # labels = to_categorical(labels, num_classes=len(label_folders))
46
47
    # Print the shape of the data and labels arrays
48
     print("Data shape:", data.shape)
     print("Labels shape:", labels.shape)
49
50
    label_mapping
    Data shape: (5712, 128, 128, 3)
     Labels shape: (5712,)
     {'glioma': 0, 'meningioma': 1, 'notumor': 2, 'pituitary': 3}
 1 labels
\rightarrow array([0, 0, 0, ..., 3, 3, 3])
 1 data[0]
    ndarray (128, 128, 3) show data
```

# Simple CNN model

Load the dataset from the folder and split it into training and testing

```
1 import os
 2 import numpy as np
 3 import cv2
4 from tensorflow.keras.utils import to_categorical
 5 import tensorflow as tf
6 from tensorflow.keras import layers, models
8 # Define the path to the dataset folders
9 train_dataset_path = "/content/Training"
10 test_dataset_path = "/content/Testing"
11
12 # Define the list of label folders in the dataset folder
13 label_folders = ['glioma', 'meningioma', 'notumor', 'pituitary']
15 # Define the size of the input images
16 img_height = 128
17 img_width = 128
19 # Function to load and preprocess images from a given path
20 def load_data(dataset_path, label_folders):
      data = []
22
      labels = []
23
      label_mapping = {label: idx for idx, label in enumerate(label_folders)}
24
25
      for label_folder in label_folders:
26
           label_path = os.path.join(dataset_path, label_folder)
27
          for img_name in os.listdir(label_path):
28
              img_path = os.path.join(label_path, img_name)
29
              img = cv2.imread(img_path)
30
               img = cv2.resize(img, (img_height, img_width))
31
               data.append(img)
32
               labels.append(label_mapping[label_folder])
33
34
      data = np.array(data)
35
      labels = np.array(labels)
36
      labels = to_categorical(labels, num_classes=len(label_folders))
37
38
      return data, labels
39
40 # Load and preprocess training data
41 train_data, train_labels = load_data(train_dataset_path, label_folders)
42 # Load and preprocess testing data
43 test_data, test_labels = load_data(test_dataset_path, label_folders)
44
```

## Model Creation

```
2 # Define the model creation function
3 def create_simple_neural_network(input_shape, num_classes):
      model = models.Sequential()
      model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
6
      model.add(layers.BatchNormalization())
7
      model.add(layers.MaxPooling2D((2, 2)))
8
      model.add(layers.Conv2D(64, (3, 3), activation='relu'))
9
      model.add(layers.BatchNormalization())
10
      model.add(layers.MaxPooling2D((2, 2)))
11
      model.add(layers.Conv2D(128, (3, 3), activation='relu'))
12
      model.add(layers.BatchNormalization())
13
      model.add(layers.MaxPooling2D((2, 2)))
14
      model.add(layers.Conv2D(128, (3, 3), activation='relu'))
15
      model.add(layers.BatchNormalization())
16
      model.add(layers.MaxPooling2D((2, 2)))
17
      model.add(layers.Flatten())
      model.add(layers.Dropout(0.5))
      model.add(layers.Dense(512, activation='relu'))
19
20
      model.add(layers.Dense(num_classes, activation='softmax'))
21
      return model
22
23 # Example input shape (adjust based on your image dimensions and channels)
24 input_shape = (128, 128, 3)
26 # Example number of classes (adjust based on your dataset)
27 \text{ num\_classes} = 4
```

## comppile fit and evalution of CNN model

```
1
2 # Create the simplified neural network model
3 simple_neural_network = create_simple_neural_network(input_shape, num_classes)
4
5 # Display the model summary
6 simple_neural_network.summary()
7
8 # Compile the model
9 simple_neural_network.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
10
11 # Train the model
12 history = simple_neural_network.fit(train_data, train_labels, epochs=30, validation_split=0.1)
13
14 # Evaluate the model performance on the testing dataset
15 test_loss, test_accuracy = simple_neural_network.evaluate(test_data, test_labels)
16 print(f"Test accuracy: {test_accuracy * 100:.2f}%")
17
```

 $\overline{\Rightarrow}$ 

```
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
Epoch 30/30
Test accuracy: 96.87%
```

## plot classification report confusion matrix and history graph

- 1 from sklearn.metrics import classification\_report, confusion\_matrix
- 2 import matplotlib.pyplot as plt
- 3 import seaborn as sns

```
1 # Predict the labels for the test data
 2 test_predictions = simple_neural_network.predict(test_data)
 3 test_predictions_classes = np.argmax(test_predictions, axis=1)
4 test_true_classes = np.argmax(test_labels, axis=1)
6 # Generate the classification report
7 report = classification_report(test_true_classes, test_predictions_classes, target_names=label_folders)
8 print(report)
9
10 # Compute the confusion matrix
11 conf_matrix = confusion_matrix(test_true_classes, test_predictions_classes)
13 # Plot the confusion matrix
14 plt.figure(figsize=(10, 8))
15 sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=label_folders, yticklabels=label_folders)
16 plt.xlabel('Predicted Labels')
17 plt.ylabel('True Labels')
18 plt.title('Confusion Matrix')
19 plt.show()
```

| <b>→</b> 41, | /41 [===== | precision |      | -    | 9ms/step<br>support |
|--------------|------------|-----------|------|------|---------------------|
|              | glioma     | 0.99      | 0.94 | 0.96 | 300                 |
| r            | neningioma | 0.93      | 0.94 | 0.94 | 306                 |
|              | notumor    | 0.97      | 1.00 | 0.98 | 405                 |
|              | pituitary  | 0.99      | 0.98 | 0.98 | 300                 |
|              | accuracy   |           |      | 0.97 | 1311                |
|              | macro avg  | 0.97      | 0.97 | 0.97 | 1311                |
| wei          | ighted avg | 0.97      | 0.97 | 0.97 | 1311                |



```
1 import matplotlib.pyplot as plt
 3 # Extract accuracy and loss values from the training history
 4 accuracy = history.history['accuracy']
 5 val_accuracy = history.history['val_accuracy']
 6 loss = history.history['loss']
 7 val_loss = history.history['val_loss']
 8 epochs = range(1, len(accuracy) + 1)
 9
10 # Plot training and validation accuracy
11 plt.figure(figsize=(14, 6))
12 plt.subplot(1, 2, 1)
13 plt.plot(epochs, accuracy, '-', label='Training accuracy')
14 plt.plot(epochs, val_accuracy, '-', label='Validation accuracy')
15 plt.title('Training and Validation Accuracy')
16 plt.xlabel('Epochs')
17 plt.ylabel('Accuracy')
18 plt.legend()
19
20 # Plot training and validation loss
21 plt.subplot(1, 2, 2)
22 plt.plot(epochs, loss, '-', label='Training loss')
23 plt.plot(epochs, val_loss, '-', label='Validation loss')
24 plt.title('Training and Validation Loss')
25 plt.xlabel('Epochs')
26 plt.ylabel('Loss')
27 plt.legend()
28
29 plt.tight_layout()
30 plt.show()
31
\overline{\mathbf{T}}
                             Training and Validation Accuracy
                                                                                                   Training and Validation Loss
        1.00
                 Training accuracy
                                                                                                                                  Training loss
                 Validation accuracy
                                                                                                                                  Validation loss
        0.95
                                                                             0.8
        0.90
                                                                             0.6
      Accuracy
28.0
                                                                           Loss
                                                                             0.4
        0.80
                                                                             0.2
        0.75
                                                                             0.0
```

1 pip install tensorflow-addons

## **CNN Model with attention layer**

### Model Creation

```
1
 2 # Define the model creation function
 3 def create_model_with_attention(input_shape, num_classes):
       inputs = layers.Input(shape=input_shape)
       x = layers.Conv2D(32, (3, 3), activation='relu')(inputs)
      x = layers.BatchNormalization()(x)
      x = layers.MaxPooling2D((2, 2))(x)
      x = layers.Conv2D(64, (3, 3), activation='relu')(x)
9
      x = layers.BatchNormalization()(x)
10
      x = layers.MaxPooling2D((2, 2))(x)
11
      x = layers.Conv2D(128, (3, 3), activation='relu')(x)
      x = layers.BatchNormalization()(x)
12
13
      x = layers.MaxPooling2D((2, 2))(x)
      x = layers.Conv2D(128, (3, 3), activation='relu')(x)
      x = layers.BatchNormalization()(x)
15
16
       x = layers.MaxPooling2D((2, 2))(x)
18
       # Flatten the feature maps and add attention layer
19
       x = layers.Flatten()(x)
20
       x = layers.Reshape((-1, x.shape[-1]))(x) # Reshape for attention layer
       attention_output = layers.Attention()([x, x])
21
       x = layers.GlobalAveragePooling1D()(attention_output)
22
23
24
      # Fully connected layers
25
      x = layers.Dropout(0.5)(x)
      x = layers.Dense(512, activation='relu')(x)
27
       outputs = layers.Dense(num_classes, activation='softmax')(x)
28
29
       model = models.Model(inputs, outputs)
30
       return model
31
32 # Example input shape (adjust based on your image dimensions and channels)
33 input_shape = (128, 128, 3)
35 # Example number of classes (adjust based on your dataset)
36 \text{ num\_classes} = 4
38 # Create the model with attention layer
39 model_with_attention = create_model_with_attention(input_shape, num_classes)
```

# compile fit and evalution of CNN model

```
# Display the model summary
model_with_attention.summary()

# Compile the model
model_with_attention.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Train the model
history = model_with_attention.fit(train_data, train_labels, epochs=30, validation_split=0.1)

# Evaluate the model performance on the testing dataset
test_loss, test_accuracy = model_with_attention.evaluate(test_data, test_labels)
```

```
print(†"Test accuracy: {test_accuracy * 100:.2†}%")
13
14
# Plot the training history
16 import matplotlib.pyplot as plt
17
    plt.figure(figsize=(12, 4))
18
19
    plt.subplot(1, 2, 1)
    plt.plot(history.history['loss'], label='Training Loss')
20
21 plt.plot(history.history['val_loss'], label='Validation Loss')
22 plt.xlabel('Epochs')
23 plt.ylabel('Loss')
    plt.legend()
25
    plt.title('Training and Validation Loss')
26
    plt.subplot(1, 2, 2)
27
28 plt.plot(history.history['accuracy'], label='Training Accuracy')
    plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
29
    plt.xlabel('Epochs')
30
31
    plt.ylabel('Accuracy')
    plt.legend()
32
    plt.title('Training and Validation Accuracy')
33
34
35
    plt.show()
36
```

Epoch 6/30

Epoch 7/30

Epoch 5/30 



# plot classification report confusion matrix

```
1 # Predict the labels for the test data
 2 test_predictions = model_with_attention.predict(test_data)
 3 test_predictions_classes = np.argmax(test_predictions, axis=1)
 4 test_true_classes = np.argmax(test_labels, axis=1)
 6 # Generate the classification report
    report = classification_report(test_true_classes, test_predictions_classes, target_names=label_folders)
8 print(report)
9
10 # Compute the confusion matrix
11 conf_matrix = confusion_matrix(test_true_classes, test_predictions_classes)
# Plot the confusion matrix
14
    plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=label_folders, yticklabels=label
16 plt.xlabel('Predicted Labels')
17 plt.ylabel('True Labels')
18 plt.title('Confusion Matrix')
19 plt.show()
```

| <b>→</b> | 41/41 [===== | ========  |        | -        |         |
|----------|--------------|-----------|--------|----------|---------|
|          |              | precision | recall | f1-score | support |
|          | glioma       | 0.97      | 0.98   | 0.98     | 300     |
|          | meningioma   | 0.98      | 0.94   | 0.96     | 306     |
|          | notumor      | 0.99      | 1.00   | 0.99     | 405     |
|          | pituitary    | 0.98      | 0.99   | 0.98     | 300     |
|          | accuracy     |           |        | 0.98     | 1311    |
|          | macro avg    | 0.98      | 0.98   | 0.98     | 1311    |
|          | weighted avg | 0.98      | 0.98   | 0.98     | 1311    |



# ∨ ResNet50

```
1 from tensorflow.keras.applications import ResNet50
 2 from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Dropout
3 from tensorflow.keras.models import Model
5 def create_resnet50_model(input_shape, num_classes):
      base_model = ResNet50(weights='imagenet', include_top=False, input_shape=input_shape)
7
      x = base_model.output
8
      x = GlobalAveragePooling2D()(x)
      x = Dense(512, activation='relu')(x)
9
10
      x = Dropout(0.5)(x)
11
      outputs = Dense(num_classes, activation='softmax')(x)
12
13
      model = Model(inputs=base_model.input, outputs=outputs)
14
15
      for layer in base_model.layers:
16
          layer.trainable = False
17
18
      return model
19
20 resnet50_model = create_resnet50_model(input_shape, num_classes)
21 resnet50_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
22 resnet50_model.summary()
23
```

#### → Model: "model\_3"

| Layer (type)                                       | Output Shape          | Param # | Connected to                  |
|----------------------------------------------------|-----------------------|---------|-------------------------------|
| input_6 (InputLayer)                               | [(None, 128, 128, 3)] | 0       | []                            |
| conv1_pad (ZeroPadding2D)                          | (None, 134, 134, 3)   | 0       | ['input_6[0][0]']             |
| conv1_conv (Conv2D)                                | (None, 64, 64, 64)    | 9472    | ['conv1_pad[0][0]']           |
| <pre>conv1_bn (BatchNormalizati on)</pre>          | (None, 64, 64, 64)    | 256     | ['conv1_conv[0][0]']          |
| conv1_relu (Activation)                            | (None, 64, 64, 64)    | 0       | ['conv1_bn[0][0]']            |
| <pre>pool1_pad (ZeroPadding2D)</pre>               | (None, 66, 66, 64)    | 0       | ['conv1_relu[0][0]']          |
| <pre>pool1_pool (MaxPooling2D)</pre>               | (None, 32, 32, 64)    | 0       | ['pool1_pad[0][0]']           |
| <pre>conv2_block1_1_conv (Conv2 D)</pre>           | (None, 32, 32, 64)    | 4160    | ['pool1_pool[0][0]']          |
| <pre>conv2_block1_1_bn (BatchNo rmalization)</pre> | (None, 32, 32, 64)    | 256     | ['conv2_block1_1_conv[0][0]'] |
| <pre>conv2_block1_1_relu (Activ ation)</pre>       | (None, 32, 32, 64)    | 0       | ['conv2_block1_1_bn[0][0]']   |
| <pre>conv2_block1_2_conv (Conv2 D)</pre>           | (None, 32, 32, 64)    | 36928   | ['conv2_block1_1_relu[0][0]'] |
| <pre>conv2_block1_2_bn (BatchNo rmalization)</pre> | (None, 32, 32, 64)    | 256     | ['conv2_block1_2_conv[0][0]'] |
| <pre>conv2_block1_2_relu (Activ ation)</pre>       | (None, 32, 32, 64)    | 0       | ['conv2_block1_2_bn[0][0]']   |
| <pre>conv2_block1_0_conv (Conv2 D)</pre>           | (None, 32, 32, 256)   | 16640   | ['pool1_pool[0][0]']          |
| conv2_block1_3_conv (Conv2<br>D)                   | (None, 32, 32, 256)   | 16640   | ['conv2_block1_2_relu[0][0]'] |
| <pre>conv2_block1_0_bn (BatchNo rmalization)</pre> | (None, 32, 32, 256)   | 1024    | ['conv2_block1_0_conv[0][0]'] |
| conv2_block1_3_bn (BatchNo                         | (None, 32, 32, 256)   | 1024    | ['conv2_block1_3_conv[0][0]'] |

### Fit and Evalute the model

```
1
# Train the model (replace `model_with_attention` with your selected model)
2
history = resnet50 model.fit(train data, train labels, epochs=30, validation split=0.1, batch size=32)
4
5
# Evaluate the model performance on the testing dataset
test loss, test accuracy = resnet50 model.evaluate(test data, test labels)
7
print(f"Test accuracy: {test_accuracy * 100:.2f}%")
Epoch 4/30
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
Fnoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
```

## PLot the classification report and confusion matrix

```
# Predict the labels for the test data
 2 test_predictions = resnet50_model.predict(test_data)
 3 test_predictions_classes = np.argmax(test_predictions, axis=1)
 4 test_true_classes = np.argmax(test_labels, axis=1)
   # Generate the classification report
 6
    report = classification_report(test_true_classes, test_predictions_classes, target_names=label_folders)
8
    print(report)
9
10 # Compute the confusion matrix
11 conf_matrix = confusion_matrix(test_true_classes, test_predictions_classes)
12
13
    # Plot the confusion matrix
14
    plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=label_folders, yticklabels=label
16 plt.xlabel('Predicted Labels')
    plt.ylabel('True Labels')
17
18 plt.title('Confusion Matrix')
    plt.show()
```

| <b>→</b> | 41/41 [===== | precision |      | ===] - 4s<br>f1-score | 35ms/step<br>support |
|----------|--------------|-----------|------|-----------------------|----------------------|
|          | glioma       | 0.96      | 0.87 | 0.91                  | 300                  |
|          | meningioma   | 0.86      | 0.95 | 0.91                  | 306                  |
|          | notumor      | 1.00      | 1.00 | 1.00                  | 405                  |
|          | pituitary    | 0.96      | 0.95 | 0.95                  | 300                  |
|          |              |           |      |                       |                      |
|          | accuracy     |           |      | 0.95                  | 1311                 |
|          | macro avg    | 0.95      | 0.94 | 0.94                  | 1311                 |
|          | weighted avg | 0.95      | 0.95 | 0.95                  | 1311                 |



### Plot the Histoy graph

```
# Plot the training history
    import matplotlib.pyplot as plt
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(history.history['loss'], label='Training Loss')
    plt.plot(history.history['val_loss'], label='Validation Loss')
    plt.xlabel('Epochs')
9
    plt.ylabel('Loss')
10
    plt.legend()
11
    plt.title('Training and Validation Loss')
12
    plt.subplot(1, 2, 2)
13
    plt.plot(history.history['accuracy'], label='Training Accuracy')
```

```
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.title('Training and Validation Accuracy')

plt.show()
```



### MobileNetV2

```
1 from tensorflow.keras.applications import MobileNetV2
 2
 3 def create_mobilenetv2_model(input_shape, num_classes):
       base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=input_shape)
 5
      x = base_model.output
      x = GlobalAveragePooling2D()(x)
 6
      x = Dense(512, activation='relu')(x)
 8
      x = Dropout(0.5)(x)
9
      outputs = Dense(num_classes, activation='softmax')(x)
10
      model = Model(inputs=base_model.input, outputs=outputs)
11
12
13
       for layer in base_model.layers:
14
           layer.trainable = False
15
       return model
16
17
18 mobilenetv2_model = create_mobilenetv2_model(input_shape, num_classes)
19 mobilenetv2_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
20 mobilenetv2 model.summary()
21
```

**→** 

```
block_1_project_BN (BatchN (None, 32, 32, 24)
                                                          96
                                                                     ['block_1_project[0][0]']
ormalization)
block_2_expand (Conv2D)
                            (None, 32, 32, 144)
                                                          3456
                                                                    ['block_1_project_BN[0][0]']
block_2_expand_BN (BatchNo
                                                          576
                            (None, 32, 32, 144)
                                                                     ['block_2_expand[0][0]']
rmalization)
block_2_expand_relu (ReLU)
                            (None, 32, 32, 144)
                                                                     ['block_2_expand_BN[0][0]']
block_2_depthwise (Depthwi
                            (None, 32, 32, 144)
                                                          1296
                                                                     ['block_2_expand_relu[0][0]']
seConv2D)
block 2 depthwise BN (Batc
                            (None, 32, 32, 144)
                                                          576
                                                                     ['block_2_depthwise[0][0]']
hNormalization)
block_2_depthwise_relu (Re (None, 32, 32, 144)
                                                          0
                                                                     ['block_2_depthwise_BN[0][0]']
LU)
block_2_project (Conv2D)
                             (None, 32, 32, 24)
                                                          3456
                                                                     ['block_2_depthwise_relu[0][0]
block_2_project_BN (BatchN (None, 32, 32, 24)
                                                          96
                                                                     ['block_2_project[0][0]']
ormalization)
block_2_add (Add)
                             (None, 32, 32, 24)
                                                          0
                                                                     ['block_1_project_BN[0][0]',
                                                                      'block_2_project_BN[0][0]']
                             (None, 32, 32, 144)
block_3_expand (Conv2D)
                                                          3456
                                                                     ['block_2_add[0][0]']
                            (None, 32, 32, 144)
block 3 expand BN (BatchNo
                                                          576
                                                                    ['block_3_expand[0][0]']
rmalization)
block_3_expand_relu (ReLU)
                            (None, 32, 32, 144)
                                                          0
                                                                     ['block_3_expand_BN[0][0]']
block_3_pad (ZeroPadding2D
                            (None, 33, 33, 144)
                                                          0
                                                                     ['block_3_expand_relu[0][0]']
)
block_3_depthwise (Depthwi (None, 16, 16, 144)
                                                          1296
                                                                     ['block_3_pad[0][0]']
seConv2D)
```

### Fit and Evalute the model

```
2 # Train the model (replace `model_with_attention` with your selected model)
3 history = mobilenetv2_model.fit(train_data, train_labels, epochs=30, validation_split=0.1, batch_size=32)
4
5 # Evaluate the model performance on the testing dataset
6 test_loss, test_accuracy = mobilenetv2_model.evaluate(test_data, test_labels)
7 print(f"Test accuracy: {test_accuracy * 100:.2f}%")
 Epoch 1/30
 Epoch 2/30
 Epoch 3/30
 Epoch 4/30
 Epoch 5/30
 Epoch 6/30
 Epoch 7/30
```

```
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
```

## plot classification report and Confusion Matrix

```
1 # Predict the labels for the test data
 2 test_predictions = mobilenetv2_model.predict(test_data)
 3 test_predictions_classes = np.argmax(test_predictions, axis=1)
4 test_true_classes = np.argmax(test_labels, axis=1)
5
6 # Generate the classification report
7 report = classification report(test true classes, test predictions classes, target names=label folders)
8 print(report)
9
10 # Compute the confusion matrix
11 conf_matrix = confusion_matrix(test_true_classes, test_predictions_classes)
12
13 # Plot the confusion matrix
14 plt.figure(figsize=(10, 8))
15 sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=label_folders, yticklabels=label_folders)
16 plt.xlabel('Predicted Labels')
17 plt.ylabel('True Labels')
18 plt.title('Confusion Matrix')
19 plt.show()
```

| <b>→</b> 41/41 [===== | precision |      | ===] - 2s<br>f1-score | 16ms/step<br>support |
|-----------------------|-----------|------|-----------------------|----------------------|
| glioma                | 0.93      | 0.83 | 0.87                  | 300                  |
| meningioma            | 0.82      | 0.89 | 0.86                  | 306                  |
| notumor               | 0.99      | 0.99 | 0.99                  | 405                  |
| pituitary             | 0.94      | 0.97 | 0.96                  | 300                  |
|                       |           |      | 0.00                  | 1211                 |
| accuracy              |           |      | 0.92                  | 1311                 |
| macro avg             | 0.92      | 0.92 | 0.92                  | 1311                 |
| weighted avg          | 0.93      | 0.92 | 0.92                  | 1311                 |



```
1 # Plot the training history
 2 import matplotlib.pyplot as plt
4 plt.figure(figsize=(12, 4))
 5 plt.subplot(1, 2, 1)
 6 plt.plot(history.history['loss'], label='Training Loss')
 7 plt.plot(history.history['val_loss'], label='Validation Loss')
8 plt.xlabel('Epochs')
9 plt.ylabel('Loss')
10 plt.legend()
11 plt.title('Training and Validation Loss')
13 plt.subplot(1, 2, 2)
14 plt.plot(history.history['accuracy'], label='Training Accuracy')
15 plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
16 plt.xlabel('Epochs')
17 plt.ylabel('Accuracy')
18 plt.legend()
19 plt.title('Training and Validation Accuracy')
20
21 plt.show()
22
→
                        Training and Validation Loss
                                                                                     Training and Validation Accuracy
```

0.05

N 11 ~1

1 Start coding or generate with AI.

### DenseNet121

1 1

```
U.<del>4</del> 7
                           1 1
 1 from tensorflow.keras.applications import DenseNet121
 2
 3 def create_densenet121_model(input_shape, num_classes):
       base_model = DenseNet121(weights='imagenet', include_top=False, input_shape=input_shape)
       x = base_model.output
 5
       x = GlobalAveragePooling2D()(x)
 6
       x = Dense(512, activation='relu')(x)
       x = Dropout(0.5)(x)
 8
 9
       outputs = Dense(num_classes, activation='softmax')(x)
10
11
       model = Model(inputs=base_model.input, outputs=outputs)
12
13
       for layer in base model.layers:
14
           layer.trainable = False
15
16
       return model
17
18 densenet121_model = create_densenet121_model(input_shape, num_classes)
19 densenet121_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
20 densenet121 model summary()
```