

ŧ.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

FUJISAWA, et al.

Serial No: 10/602,119

Filed: June 23, 2003

For: Image Forming Apparatus, Image

Forming Method, and Computer Readable Storage Medium That

Stores Control Program

Art Unit: Not Assigned

Examiner: Not Assigned

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450, on

August 1, 2003

TRANSMITTAL OF PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Enclosed herewith is a certified copy of Japanese patent application No. 2002-183548, which was filed June 24, 2002, and application No. 2003-170861, which was June 16, 2003, from which priority is claimed under 35 U.S.C. § 119 and Rule 55.

Acknowledgment of the priority document(s) is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

HOGA HAR**NSO**N L.L.P.

Anthony J. Orler

Registration No. 41,232 Attorney for Applicant(s)

500 South Grand Avenue, Suite 1900

Los Angeles, California 90071

Telephone: 213-337-6700 Facsimile: 213-337-6701

Date: August 1, 2003

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 6月24日

出 願 番 Application Number:

特願2002-183548

[ST. 10/C]:

[JP2002-183548]

出 願 人 Applicant(s):

キヤノン株式会社

2003年 7月10日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

7

【整理番号】

4743014

【提出日】

平成14年 6月24日

【あて先】

特許庁長官殿

【国際特許分類】

G06F 17/30

G06F 12/00

【発明の名称】

画像形成装置及び方法、並びにプログラム及び記憶媒体

【請求項の数】

36

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

藤沢 淳

【特許出願人】

【識別番号】

000001007

【氏名又は名称】

キヤノン株式会社

【代表者】

御手洗 富士夫

【代理人】

【識別番号】

100081880

【弁理士】

【氏名又は名称】

渡部 敏彦

【電話番号】

03 (3580) 8464

【手数料の表示】

【予納台帳番号】

007065

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書]

【包括委任状番号】 9703713

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像形成装置及び方法、並びにプログラム及び記憶媒体 【特許請求の範囲】

【請求項1】 所定の記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込み手段と、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈手段と、前記読み込まれた画像のサイズを解釈する画像サイズ解釈手段と、前記解釈された画像の格納場所に基づいて画像データを取得する画像データ取得手段と、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定手段と、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理手段と、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画手段とを備えた画像形成装置において、

前記取得された画像の形成情報を解釈する画像形成情報解釈手段を備え、

前記画像変形処理手段は、前記解釈された画像の形成情報に基づいて前記画像 データに画像形成処理を行う画像形成処理手段をさらに備えることを特徴とする 画像形成装置。

【請求項2】 所定の記述言語によって記述されたデータを処理可能な画像 形成装置において、

前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場 所解釈手段と、

前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得手段と、

前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込み手段と、

前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解 釈手段と、

前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、前記画像 データとして画像形成処理を行う画像形成処理手段とを備えることを特徴とする 画像形成装置。

【請求項3】 前記画像形成情報は画像のトリミング情報を含み、前記画像 形成情報解釈手段は、前記取得された画像のトリミング情報を解釈する画像トリ ミング情報解釈手段を含み、前記画像形成処理手段は、前記解釈された画像のト リミング情報に基づいて前記画像データにトリミング処理を行う画像トリミング 処理手段を含むことを特徴とする請求項1又は2記載の画像形成装置。

【請求項4】 前記画像のトリミング情報は、前記画像データの左辺の座標を表す数値、上辺の座標を表す数値、幅を表す数値、及び高さを表す数値から成ることを特徴とする請求項3に記載の画像形成装置。

【請求項5】 前記画像形成情報は画像の反転情報を含み、前記画像形成情報解釈手段は、前記取得された画像の反転情報を解釈する画像反転情報解釈手段を含み、前記画像形成処理手段は、前記解釈された画像の反転情報に基づいて前記画像データに反転処理を行う画像反転処理手段を含むことを特徴とする請求項1乃至4のいずれか1項に記載の画像形成装置。

【請求項6】 前記画像の反転情報は、水平軸回りの反転又は垂直軸回りの 反転を表す文字列を含むことを特徴とする請求項5に記載の画像形成装置。

【請求項7】 前記画像の形成情報は画像の回転角度を含み、前記画像形成情報解釈手段は、前記取得された画像の回転角度を解釈する画像回転角度解釈手段を含み、前記画像形成処理手段は、前記解釈された画像の回転角度に基づいて前記画像データに回転処理を行う画像回転処理手段を含むことを特徴とする請求項1万至6のいずれか1項に記載の画像形成装置。

【請求項8】 前記画像の回転角度は度の単位で表されることを特徴とする 請求項7記載の画像形成装置。

【請求項9】 前記画像形成情報は画像の縦横比保持情報を含み、前記画像 形成情報解釈手段は、前記取得された画像の縦横比保持情報を解釈する画像縦横 比保持情報解釈手段を含み、前記画像形成処理手段は、前記解釈された画像の縦 横比保持情報に基づいて前記画像データに画像の画像縦横比保持処理を行う画像 縦横比保持処理手段を含むことを特徴とする請求項1乃至8のいずれか1項に記 載の画像形成装置。 【請求項10】 前記画像の縦横比保持情報は、前記画像データを揃えて配置する前記矩形画像形成領域における位置情報と、前記矩形画像形成領域に余白を生じさせるか否かを示す選択情報とを含む文字列から成ることを特徴とする請求項9に記載の画像形成装置。

【請求項11】 前記画像形成手段は、トリミング処理、反転処理、回転処理、画像縦横比保持処理の順にこれらの処理を行うことを特徴とする請求項1乃至10のいずれか1項に記載の画像形成装置。

【請求項12】 前記記述言語は、XML (Extensible Markup Language) 標準規格であることを特徴とする請求項1乃至11のいずれか1項に記載の画像形成装置。

【請求項13】 前記記述言語は、SVG (Scalable Vector Graphics) 標準規格であることを特徴とする請求項12記載の画像形成装置。

【請求項14】 前記記述言語は、XHTML (Extensible Hyper Text Markup Language) 標準規格であることを特徴とする請求項12記載の画像形成装置。

【請求項15】 画像処理装置から成ることを特徴とする請求項1乃至14 のいずれか1項に記載の画像形成装置。

【請求項16】 印刷装置から成ることを特徴とする請求項1乃至14のいずれか1項に記載の画像形成装置。

【請求項17】 記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込みステップと、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈ステップと、前記読み込まれた画像のサイズを解釈する画像サイズ解釈ステップと、前記解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定ステップと、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理ステップと、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画ステップとを備えた画像形成方法において、

前記取得された画像の形成情報を解釈する画像形成情報解釈ステップを備え、 前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記 画像データに画像形成処理を行う画像形成処理ステップをさらに備えることを特 徴とする画像形成方法。

【請求項18】 所定の記述言語によって記述されたデータを処理可能な画像形成方法において、

前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場 所解釈ステップと、

前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、

前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込みステップと、

前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解 釈ステップと、

前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、前記画像 データとして画像形成処理を行う画像形成処理ステップとを備えることを特徴と する画像形成方法。

【請求項19】 前記画像形成情報は画像のトリミング情報を含み、前記画像形成情報解釈ステップは、前記取得された画像のトリミング情報を解釈する画像トリミング情報解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像のトリミング情報に基づいて前記画像データにトリミング処理を行う画像トリミング処理ステップを含むことを特徴とする請求項17又は18記載の画像形成方法。

【請求項20】 前記画像のトリミング情報は、前記画像データの左辺の座標を表す数値、上辺の座標を表す数値、幅を表す数値、及び高さを表す数値から成ることを特徴とする請求項19に記載の画像形成方法。

【請求項21】 前記画像形成情報は画像の反転情報を含み、前記画像形成情報解釈ステップは、前記取得された画像の反転情報を解釈する画像反転情報解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像の反転情

報に基づいて前記画像データに反転処理を行う画像反転処理ステップを含むこと を特徴とする請求項17乃至20のいずれか1項に記載の画像形成方法。

【請求項22】 前記画像の反転情報は、水平軸回りの反転又は垂直軸回りの反転を表す文字列を含むことを特徴とする請求項21に記載の画像形成方法。

【請求項23】 前記画像の形成情報は画像の回転角度を含み、前記画像形成情報解釈ステップは、前記取得された画像の回転角度を解釈する画像回転角度解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像の回転角度に基づいて前記画像データに回転処理を行う画像回転処理ステップを含むことを特徴とする請求項17乃至22のいずれか1項に記載の画像形成方法。

【請求項24】 前記画像の回転角度は度の単位で表されることを特徴とする請求項23記載の画像形成方法。

【請求項25】 前記画像形成情報は画像の縦横比保持情報を含み、前記画像形成情報解釈ステップは、前記取得された画像の縦横比保持情報を解釈する画像縦横比保持情報解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像の縦横比保持情報に基づいて前記画像データに画像の画像縦横比保持処理を行う画像縦横比保持処理ステップを含むことを特徴とする請求項17乃至24のいずれか1項に記載の画像形成方法。

【請求項26】 前記画像の縦横比保持情報は、前記画像データを揃えて配置する前記矩形画像形成領域における位置情報と、前記矩形画像形成領域に余白を生じさせるか否かを示す選択情報とを含む文字列から成ることを特徴とする請求項25に記載の画像形成方法。

【請求項27】 前記画像形成ステップは、トリミング処理、反転処理、回転処理、画像縦横比保持処理の順にこれらの処理を行うことを特徴とする請求項17乃至26のいずれか1項に記載の画像形成方法。

【請求項28】 前記記述言語は、XML (Extensible Markup Language) 標準規格であることを特徴とする請求項17乃至27のいずれか1項に記載の画像形成方法。

【請求項29】 前記記述言語は、SVG (Scalable Vector Graphics) 標準規格であることを特徴とする請求項28記載の画像形成方法。

【請求項30】 前記記述言語は、XHTML (Extensible Hyper Text Markup Language) 標準規格であることを特徴とする請求項28記載の画像形成方法。

【請求項31】 画像処理方法から成ることを特徴とする請求項17乃至3 0のいずれか1項に記載の画像形成方法。

【請求項32】 印刷方法から成ることを特徴とする請求項17乃至30の いずれか1項に記載の画像形成方法。

【請求項33】 記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込みステップと、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈ステップと、前記読み込まれた画像のサイズを解釈する画像サイズ解釈ステップと、前記解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定ステップと、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理ステップと、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画ステップとをコンピュータに実行させる画像形成プログラムにおいて、

前記取得された画像の形成情報を解釈する画像形成情報解釈ステップを備え、 前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記 画像データに画像形成処理を行う画像形成処理ステップをさらに備えることを特 徴とする画像形成プログラム。

【請求項34】 所定の記述言語によって記述されたデータを処理可能な画像形成方法をコンピュータに実行させる画像形成プログラムにおいて、前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場所解釈ステップと、前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込みステップと、前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解釈手段に解釈された画像の形成情報に基づい

7/

て、前記画像データとして画像形成処理を行う画像形成処理ステップとを備える ことを特徴とする画像形成プログラム。

【請求項35】 画像形成プログラムが格納されたコンピュータ読取り可能な記憶媒体であって、前記画像形成プログラムは、記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込みステップと、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈ステップと、前記読み込まれた画像のサイズを解釈する画像サイズ解釈ステップと、前記解釈された画像のサイズを解釈する画像データを取得する画像データ取得ステップと、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定ステップと、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理ステップと、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画ステップと、前記取得された画像の形成情報を解釈する画像形成情報解釈ステップを備え、前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記画像で一タに画像形成処理を行う画像形成処理ステップをさらに備えることを特徴とする記憶媒体。

【請求項36】 所定の記述言語によって記述されたデータを処理可能な画像形成方法をコンピュータに実行させる画像形成プログラムが格納されたコンピュータ読取り可能な記憶媒体であって、前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場所解釈ステップと、前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込みステップと、前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解釈ステップと、前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、前記画像データとして画像形成処理を行う画像形成処理ステップとを備えることを特徴とする記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

8/

本発明は、画像形成装置及び方法、並びにプログラム及び記憶媒体に関し、特に、画像の配置情報を指定することができる画像形成装置及び方法、並びにプログラム及び記憶媒体に関する。

[0002]

【従来の技術】

近年、テキストや画像を含む文書をHTML(Hyper Text Markup Language)に代表されるような記述言語で記述する技術が実用化され、インターネットにおけるWWW(World Wide Web)ページの標準の記述方法として広く利用されるようになった。こうした記述言語においては、通常、画像ファイルを外部参照によってドキュメントに配置する機能が提供されている。例えばHTMLでは、IMG(image)要素によって画像ファイルの格納場所と画像のサイズを指定することによって、画像を表示できるようになっている。

[0003]

このことを利用して、複数の画像を閲覧するための電子アルバムを実現する際の記述形式として記述言語を採用したアプリケーションやシステムも登場している。例えば特開2000-357169号公報には「画像閲覧機能の自動生成装置及びその自動生成方法」が開示されている。この自動生成装置では、デジタルカメラで撮影された画像を閲覧するための表示機能を提供するHTMLファイルを自動的に生成することにより、専用のアプリケーションを使用しなくても汎用的なインターネット閲覧ソフトウェアを用いて簡便に画像を閲覧することが可能となっている。

[0004]

【発明が解決しようとする課題】

しかしながら、上記従来の記述言語による記述形式を利用した画像形成装置では、画像の配置に関する指定として画像表示矩形表示領域の位置とサイズしか指定できないため、画像の回転やトリミングなどの指定を行うことができる電子アルバムの専用アプリケーションと比較すると、その表現力においては大幅に劣るという問題があった。

[0005]

本発明は、上記の実情に鑑みてなされたものであり、その目的とするところは、画像を表現力豊かに描画することができる画像形成装置及び方法、並びにプログラム及び記憶媒体を提供することにある。

[0006]

【課題を解決するための手段】

上記目的を達成するために、請求項1記載の画像形成装置は、所定の記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込み手段と、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈手段と、前記読み込まれた画像のサイズを解釈する画像サイズ解釈手段と、前記解釈された画像の格納場所に基づいて画像データを取得する画像データ取得手段と、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定手段と、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理手段と、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画手段とを備えた画像形成装置において、前記取得された画像の形成情報を解釈する画像形成情報解釈手段を備え、前記画像変形処理手段は、前記解釈された画像の形成情報に基づいて前記画像データに画像形成処理を行う画像形成処理手段をさらに備えることを特徴とする。

[0007]

上記目的を達成するために、請求項2記載の画像形成装置は、所定の記述言語によって記述されたデータを処理可能な画像形成装置において、前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場所解釈手段と、前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得手段と、前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込み手段と、前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解釈手段と、前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、前記画像データとして画像形成処理を行う画像形成処理手段とを備えることを特徴とする。

[0008]

請求項3記載の画像形成装置は、請求項1又は2記載の画像形成装置において、前記画像形成情報は画像のトリミング情報を含み、前記画像形成情報解釈手段は、前記取得された画像のトリミング情報を解釈する画像トリミング情報解釈手段を含み、前記画像形成処理手段は、前記解釈された画像のトリミング情報に基づいて前記画像データにトリミング処理を行う画像トリミング処理手段を含むことを特徴とする。

[0009]

請求項4記載の画像形成装置は、請求項3記載の画像形成装置において、前記画像のトリミング情報は、前記画像データの左辺の座標を表す数値、上辺の座標を表す数値、幅を表す数値、及び高さを表す数値から成ることを特徴とする。

[0010]

請求項5記載の画像形成装置は、請求項1乃至4のいずれか1項に記載の画像 形成装置において、前記画像形成情報は画像の反転情報を含み、前記画像形成情 報解釈手段は、前記取得された画像の反転情報を解釈する画像反転情報解釈手段 を含み、前記画像形成処理手段は、前記解釈された画像の反転情報に基づいて前 記画像データに反転処理を行う画像反転処理手段を含むことを特徴とする。

$[0\ 0\ 1\ 1]$

請求項6記載の画像形成装置は、請求項5記載の画像形成装置において、前記画像の反転情報は、水平軸回りの反転又は垂直軸回りの反転を表す文字列を含むことを特徴とする。

$[0\ 0\ 1\ 2]$

請求項7記載の画像形成装置は、請求項1乃至6のいずれか1項に記載の画像 形成装置において、前記画像の形成情報は画像の回転角度を含み、前記画像形成 情報解釈手段は、前記取得された画像の回転角度を解釈する画像回転角度解釈手 段を含み、前記画像形成処理手段は、前記解釈された画像の回転角度に基づいて 前記画像データに回転処理を行う画像回転処理手段を含むことを特徴とする。

$[0\ 0\ 1\ 3\]$

請求項8記載の画像形成装置は、請求項7記載の画像形成装置において、前記画像の回転角度は度の単位で表されることを特徴とする。

[0014]

請求項9記載の画像形成装置は、請求項1乃至8のいずれか1項に記載の画像 形成装置において、前記画像形成情報は画像の縦横比保持情報を含み、前記画像 形成情報解釈手段は、前記取得された画像の縦横比保持情報を解釈する画像縦横 比保持情報解釈手段を含み、前記画像形成処理手段は、前記解釈された画像の縦 横比保持情報に基づいて前記画像データに画像の画像縦横比保持処理を行う画像 縦横比保持処理手段を含むことを特徴とする。

[0015]

請求項10記載の画像形成装置は、請求項9記載の画像形成装置において、前 記画像の縦横比保持情報は、前記画像データを揃えて配置する前記矩形画像形成 領域における位置情報と、前記矩形画像形成領域に余白を生じさせるか否かを示 す選択情報とを含む文字列から成ることを特徴とする。

[0016]

請求項11記載の画像形成装置は、請求項1乃至10のいずれか1項に記載の 画像形成装置において、前記画像形成手段は、トリミング処理、反転処理、回転 処理、画像縦横比保持処理の順にこれらの処理を行うことを特徴とする。

$[0\ 0\ 1\ 7]$

請求項12記載の画像形成装置は、請求項1乃至11のいずれか1項に記載の画像形成装置において、前記記述言語は、XML (Extensible Markup Language) 標準規格であることを特徴とする。

$[0\ 0\ 1\ 8]$

請求項13記載の画像形成装置は、請求項12記載の画像形成装置において、前記記述言語は、SVG(Scalable Vector Graphics)標準規格であることを特徴とする。

[0019]

請求項14記載の画像形成装置は、請求項12記載の画像形成装置において、 前記記述言語は、XHTML (Extensible Hyper Text Markup Language) 標準 規格であることを特徴とする。

[0020]

請求項15記載の画像形成装置は、請求項1乃至14のいずれか1項に記載の 画像形成装置において、画像処理装置から成ることを特徴とする。

[0021]

請求項16記載の画像形成装置は、請求項1乃至14のいずれか1項に記載の 画像形成装置において、印刷装置から成ることを特徴とする。

[0022]

上記目的を達成するために、請求項17記載の画像形成方法は、記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込みステップと、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈ステップと、前記読み込まれた画像のサイズを解釈する画像サイズ解釈ステップと、前記解釈された画像の格納場所に基づいて画像データ取得ステップと、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定ステップと、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理ステップと、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画ステップとを備えた画像形成方法において、前記取得された画像の形成情報を解釈する画像形成情報解釈ステップを備え、前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記画像データに画像形成処理を行う画像形成処理ステップをさらに備えることを特徴とする。

[0023]

上記目的を達成するために、請求項18記載の画像形成方法は、所定の記述言語によって記述されたデータを処理可能な画像形成方法において、前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場所解釈ステップと、前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込みステップと、前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解釈ステップと、前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、

前記画像データとして画像形成処理を行う画像形成処理ステップとを備えること を特徴とする。

[0024]

請求項19記載の画像形成方法は、請求項17又は18記載の画像形成方法において、前記画像形成情報は画像のトリミング情報を含み、前記画像形成情報解釈ステップは、前記取得された画像のトリミング情報を解釈する画像トリミング情報解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像のトリミング情報に基づいて前記画像データにトリミング処理を行う画像トリミング処理ステップを含むことを特徴とする。

[0025]

請求項20記載の画像形成方法は、請求項19記載の画像形成方法において、 前記画像のトリミング情報は、前記画像データの左辺の座標を表す数値、上辺の 座標を表す数値、幅を表す数値、及び高さを表す数値から成ることを特徴とする

[0026]

請求項21記載の画像形成方法は、請求項17乃至20のいずれか1項に記載の画像形成方法において、前記画像形成情報は画像の反転情報を含み、前記画像形成情報解釈ステップは、前記取得された画像の反転情報を解釈する画像反転情報解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像の反転情報に基づいて前記画像データに反転処理を行う画像反転処理ステップを含むことを特徴とする。

[0027]

請求項22記載の画像形成方法は、請求項21記載の画像形成方法において、 前記画像の反転情報は、水平軸回りの反転又は垂直軸回りの反転を表す文字列を 含むことを特徴とする。

[0028]

請求項23記載の画像形成方法は、請求項17乃至22のいずれか1項に記載の画像形成方法において、前記画像の形成情報は画像の回転角度を含み、前記画像形成情報解釈ステップは、前記取得された画像の回転角度を解釈する画像回転

角度解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像の 回転角度に基づいて前記画像データに回転処理を行う画像回転処理ステップを含むことを特徴とする。

[0029]

請求項24記載の画像形成方法は、請求項23記載の画像形成方法において、 前記画像の回転角度は度の単位で表されることを特徴とする。

[0030]

請求項25記載の画像形成方法は、請求項17乃至24のいずれか1項に記載の画像形成方法において、前記画像形成情報は画像の縦横比保持情報を含み、前記画像形成情報解釈ステップは、前記取得された画像の縦横比保持情報を解釈する画像縦横比保持情報解釈ステップを含み、前記画像形成処理ステップは、前記解釈された画像の縦横比保持情報に基づいて前記画像データに画像の画像縦横比保持処理を行う画像縦横比保持処理ステップを含むことを特徴とする。

[0031]

請求項26記載の画像形成方法は、請求項25記載の画像形成方法において、 前記画像の縦横比保持情報は、前記画像データを揃えて配置する前記矩形画像形 成領域における位置情報と、前記矩形画像形成領域に余白を生じさせるか否かを 示す選択情報とを含む文字列から成ることを特徴とする。

[0032]

請求項27記載の画像形成方法は、請求項17乃至26のいずれか1項に記載の画像形成方法において、前記画像形成ステップは、トリミング処理、反転処理、回転処理、画像縦横比保持処理の順にこれらの処理を行うことを特徴とする。

[0033]

請求項28記載の画像形成方法は、請求項17乃至27のいずれか1項に記載の画像形成方法において、前記記述言語は、XML (Extensible Markup Langua ge) 標準規格であることを特徴とする。

[0034]

請求項29記載の画像形成方法は、請求項28記載の画像形成方法において、 前記記述言語は、SVG (Scalable Vector Graphics) 標準規格であることを特 徴とする。

[0035]

請求項30記載の画像形成方法は、請求項28記載の画像形成方法において、 前記記述言語は、XHTML (Extensible Hyper Text Markup Language) 標準 規格であることを特徴とする。

[0036]

請求項31記載の画像形成方法は、請求項17乃至30のいずれか1項に記載の画像形成方法において、画像処理方法から成ることを特徴とする。

[0037]

請求項32記載の画像形成方法は、請求項17乃至30のいずれか1項に記載の画像形成方法において、印刷方法から成ることを特徴とする。

[0038]

上記目的を達成するために、請求項33記載の画像形成プログラムは、記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込みステップと、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈ステップと、前記読み込まれた画像のサイズを解釈する画像サイズ解釈ステップと、前記解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記解釈された画像サイズに基づいて画像形成矩形領域を決定する画像領域決定ステップと、前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理ステップと、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画ステップとをコンピュータに実行させる画像形成が見域に描画する画像描画ステップとをコンピュータに実行させる画像形成が見ばに描画する画像描画ステップとをコンピュータに実行させる画像形成が見ばに描画する画像描画ステップとをコンピュータに実行させる画像形成が見ばに描画する画像で表れた画像の形成情報を解釈する画像形成情報解釈ステップを備え、前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記画像データに画像形成処理を行う画像形成処理ステップをさらに備えることを特徴とする。

[0039]

上記目的を達成するために、請求項34記載の画像形成プログラムは、所定の 記述言語によって記述されたデータを処理可能な画像形成方法をコンピュータに 実行させる画像形成プログラムにおいて、前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場所解釈ステップと、前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込みステップと、前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解釈ステップと、前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、前記画像データとして画像形成処理を行う画像形成処理ステップとを備えることを特徴とする。

[0040]

上記目的を達成するために、請求項35記載の記憶媒体は、画像形成プログラムが格納されたコンピュータ読取り可能な記憶媒体であって、前記画像形成プログラムは、記述言語によって記述された、画像の格納場所、画像のサイズ、及び画像の形成情報を含む画像の配置情報を読み込む読み込みステップと、前記読み込まれた画像の格納場所を解釈する画像格納場所解釈ステップと、前記就み込まれた画像のサイズを解釈する画像サイズ解釈ステップと、前記解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記解釈された画像がいて画像データを取得する画像データ取得ステップと、前記解釈された画像サイズに基づいて画像形成矩形領域に収まるように前記取得された画像データが前記画像形成矩形領域に収まるように前記取得された画像データに拡大縮小処理を行う画像変形処理ステップと、前記拡大縮小処理がなされた画像データを前記画像形成矩形領域に描画する画像描画ステップと、前記取得された画像の形成情報を解釈する画像形成情報解釈ステップを備え、前記取得された画像の形成情報を解釈する画像形成情報解釈ステップを備え、前記画像変形処理ステップは、前記解釈された画像の形成情報に基づいて前記画像データに画像形成処理を行う画像形成処理ステップをさらに備えることを特徴とする。

[0041]

上記目的を達成するために、請求項36記載の記憶媒体は、所定の記述言語によって記述されたデータを処理可能な画像形成方法をコンピュータに実行させる画像形成プログラムが格納されたコンピュータ読取り可能な記憶媒体であって、前記所定の記述言語に従って記述された画像の格納場所を解釈する画像格納場所

解釈ステップと、前記画像格納場所解釈手段により解釈された画像の格納場所に基づいて画像データを取得する画像データ取得ステップと、前記所定の記述言語によって記述されたデータから画像の形成情報を読み込んで取得する読み込みステップと、前記読み込み手段により取得された画像の形成情報を解釈する画像形成情報解釈ステップと、前記画像形成情報解釈手段に解釈された画像の形成情報に基づいて、前記画像データとして画像形成処理を行う画像形成処理ステップとを備えることを特徴とする。

[0042]

【発明の実施の形態】

以下、本発明の実施の形態に係る画像形成装置を図面を参照しながら詳述する

[0043]

本発明の実施の形態に係る画像形成装置は、画像処理装置を含み、画像処理装置の好適な一例としては、デジタルカメラ、スキャナ、プリンタコントローラなどの画像処理可能な周辺装置を含む。また、画像形成装置は、プリンタや複写機、スキャナシステム、ファクシミリ、並びにこれらの複合機等の印刷装置を含む。

[0044]

図1は、本発明の実施の形態による画像形成装置の概略構成を示すブロック図である。

[0045]

図1において、本発明の実施の形態による画像形成装置は、CPU101、ROM102及びRAM103に加えて、キーボード109、ディスプレイ110及びハードディスクドライブ111を主として備える。キーボード109、ディスプレイ110及びハードディスクドライブ111は、夫々、入力装置コントローラ105、出力装置コントローラ106及び記憶装置コントローラ107に接続されている。CPU101、ROM102及びRAM103、並びに入力装置コントローラ105、出力装置コントローラ106及び記憶装置コントローラ107は、システムバス104を介して互いに接続されている、システムバス10

4は、ネットワークコントローラ108を介してネットワークインタフェース1 12に接続されている。

[0046]

CPU101は、この装置全体の制御及び演算処理を行い、ROM102は、システムの起動に必要なプログラムを記憶する。RAM103は、後述する画像配置方法を使用した画像表示プログラム及び関連データを一時的に記憶する。

[0047]

入力装置コントローラ105はキーボード109の動作を制御し、キーボード109より入力された入力データをCPU101又はRAM103へと伝達する。出力装置コントローラ106はディスプレイ110の動作を制御し、RAM103に格納された画面描画データをディスプレイ110へ表示する。

[0048]

ハードディスクドライブ111は、後述する画像配置方法を使用した画像表示プログラムや画像データを格納しており、記憶装置コントローラ107はハードディスクドライブ111の動作を制御し、ハードディスクドライブ111に格納されたデータをCPU101又はRAM103へ転送する。

[0049]

ネットワークコントローラ108はネットワークインタフェース112の動作を制御し、TCP/IPプロトコルを利用してネットワークとの間でのデータ通信を行うよう構成されている。

[0050]

次に、図1の画像形成装置によって実行される画像表示処理を図面を参照しながら詳述する。

$[0\ 0\ 5\ 1]$

以下の説明は、画像表示処理を対象とするが、画像印刷処理にも適用できることは言うまでもない。

[0052]

図2は、図1の画像形成装置によって実行される画像表示処理を示すフローチャートである。

[0053]

図2において、まず、後述する図3の画像配置情報処理を実行して(ステップ S201)、マークアップ言語、例えばSVG(Scalable Vector Graphics)によって記述された画像配置情報を解釈し、これによってimage要素の先頭に指定された、xlink:href属性、width属性、height属性、ximage:rotate属性、ximage:crop属性、ximage:flip属性、及びximage:fit属性の各属性に対応する画像配置情報をRAM103に記憶する。

[0054]

次いで、xlink:href属性によって指定された画像の格納場所から画像データを取得してRAM103に記憶する(ステップS202)。画像の格納場所はインターネット資源識別子の標準規格であるURLによって表現されており、ローカルファイルシステム又はネットワーク上に格納されたファイルの位置を特定することができる。ローカルファイルシステムに格納されている画像を取得する場合は、記憶装置コントローラ107に指示してハードディスクドライブ111から画像データを取得する。またネットワーク上に格納されている画像を取得する場合は、ネットワークコントローラ108に指示してネットワークインタフェース112を経由してTCP/IPプロトコルによって画像データを取得することになる。

[0055]

続くステップ203では、width属性とheight属性によって指定された幅と高さに従って、画像の表示矩形領域をディスプレイ110の垂直方向及び水平方向に対して平行になるように決定し、さらに、ステップ204では、後述する図4の画像変形処理を実行して、ステップ201で解釈された回転角度指定、トリミング指定、反転指定、及び縦横比保持指定の内容に従って、ステップ202の画像データ取得手段によって取得した画像データの変形処理を行う。画像データは最終的に、ステップ203の画像領域決定手段により決められた表示矩形領域に収まるように拡大縮小される。

[0056]

最後に、ステップ205において、ステップ204で変形処理された画像デー

タを出力装置コントローラ106への指示を通じてディスプレイ110へ描画して(ステップS205)、本処理を終了する。

[0057]

上記SVGによって記述された画像配置情報は、図2の処理により画像処理された結果、後述する図6~図11に示すように画像形成される。

[0058]

図2の処理によれば、マークアップ言語、例えばSVGによって記述された、回転角度、トリミング情報、反転情報、及び縦横比保持情報の画像配置情報を解釈し(ステップS201、図3)、これらの解釈された回転角度、トリミング情報、反転情報、及び縦横比保持情報の内容に従って画像データの変形処理を行う(ステップS204、図4)ので、マークアップ言語による画像の配置情報の記述において画像の回転やトリミング等の指定を行うことができ、もって画像を表現力豊かに描画することができる。

[0059]

図3は、図2のステップS201で実行される画像配置情報処理を示すフローチャートである。

[0060]

図3において、まず、image要素の先頭の属性を読み込む(ステップS301)(読み込み手段)。読み込んだ属性がxlink:href属性、width属性、height属性、ximage:rotate属性、ximage:crop属性、ximage:flip属性、及びximage:fit属性のいずれであるかの判別は、後述するステップS302~S307の各判別によってなされる。

[0061]

ステップ302の判別の結果、xlink:href属性が認識された場合は、ステップ309の画像格納場所解釈により、属性値をインターネット資源識別子の標準規格であるURL文字列として解釈し、その内容を格納場所指定情報としてRAM103に記憶する。

[0062]

ステップ303の判別の結果、width属性又はheight属性が認識された場合は

、ステップ310の画像サイズ解釈により、属性値を画像の幅を表す数値又は高さを表す数値として解釈し、その内容をサイズ指定情報としてRAM103に記憶する。

[0063]

ステップ304の判別の結果、ximage:rotate属性が認識された場合は、ステップ311の画像回転解釈により、属性値を画像の回転角度を表す度数を単位とする数値として解釈し、その内容を回転角度指定情報としてRAM103に記憶する。

[0064]

ステップ305の判別の結果、ximage:crop属性が認識された場合は、ステップ312の画像範囲解釈により、属性値を画像のトリミング矩形の左辺の座標を表す数値、上辺の座標を表す数値、幅を表す数値、及び高さを表す数値からなる文字列として解釈し、その内容をトリミング指定情報としてRAM103に記憶する。

[0065]

ステップ306の判別の結果、ximage:flip属性が認識された場合は、ステップ313の画像反転解釈により、属性値を水平方向の反転及び垂直方向の反転の選択肢を含む反転方向を表す文字列として解釈し、その内容を反転指定情報としてRAM103に記憶する。

[0066]

ステップ307の判別の結果、ximage:fit属性が認識された場合は、ステップ314の画像縦横比保持解釈により、属性値を、画像を表示領域のどの位置に揃えて配置するかの選択肢と、表示領域に余白を生じさせるかどうかの選択肢を含む縦横比保持を表す文字列として解釈し、その内容を縦横比保持指定情報としてRAM103に記憶する。

[0067]

ステップ308では、image要素の属性がすべて処理されたか否かを判別し、 まだ未処理の属性がある場合には、ステップ301以降の処理を繰り返し、すべ ての属性の処理が完了している場合は、本画像配置情報処理を終了する。

[0068]

図4は、図2のステップS204で実行される画像変形処理を示すフローチャートである。

[0069]

図4において、まず、ステップS401で、図3のステップS312で取得したトリミング指定情報が記憶されているか否かを判別し、トリミング指定情報がある場合は、ステップS405の画像範囲処理を実行して、指定内容に従って画像データに対してトリミング処理を行い、その結果の画像データをRAM103に記憶する。

[0070]

ステップS402では、図3のステップ313で取得した反転指定情報が記憶されているか否かを判別し、反転指定情報がある場合は、ステップ406の画像 反転処理を実行して、指定内容に従って画像データに対して反転処理を行い、その結果の画像データをRAM103に記憶する。

[0071]

ステップS403では、図3のステップ311で取得した回転角度指定情報が記憶されているか否かを判別し、回転角度指定情報がある場合は、ステップ407の画像回転処理を実行して、指定内容に従って画像データに対して回転処理を行い、その結果の画像データをRAM103に記憶する。

[0072]

ステップS404では、図3のステップ314で取得した縦横比保持指定情報が記憶されているか否かを判別し、縦横比保持指定情報がある場合は、ステップ408の画像縦横比保持処理を実行して、指定内容に従って画像拡大縮小処理を行う際の縦横比保持制限を設定する。

[0073]

ステップS409では、ステップS405~S407で取得された画像データを図10のステップ203で決定された表示矩形領域に収まるように拡大縮小する。このときにステップS408で縦横比保持制限が設定されている場合にはその制限にしたがった拡大縮小を行う。

[0074]

ステップ $S405\sim S409$ までの処理は、常にこの順番で実行されるので、image要素に指定されている複数の属性の記述順序が変化しても同一の画像変形効果が得られる。

[0075]

次に、図1の画像形成装置によって記述される画像配置情報について説明する。以下の図1の画像形成装置によって記述される画像配置情報の記述例では、SVG (Scalable Vector Graphics)標準規格のimage要素を利用して記述した例について説明する。図1の画像形成装置が記述する画像配置情報の対象となる画像をその本来のサイズと縦横比で示したものを図5に示す。

[0076]

図6は、図1の画像形成装置によって記述される画像配置情報の第1の記述例の説明図であり、(a)は、画像の格納場所とサイズの指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

[0077]

図6(a)において、画像の格納場所はインターネット資源識別子の標準規格であるURL文字列を値とするxlink:href属性によって、画像のサイズは幅を表す数値で示されるwidth属性及び高さを表す数値で示されるheight属性によって夫々指定されている。図6(a)の配置情報に対応して画像配置処理を行った結果得られる表示例を図6(b)に示す。画像は、指定された幅と高さによって決定される矩形領域にちょうど収まるように拡大縮小された状態で配置されるので、画像の本来の縦横比は保持されず、図6(b)の表示例のように水平又は垂直方法に歪んで表示される場合がある。

[0078]

図6の記述例のように画像の格納場所とサイズを指定した画像の配置方法は、HTMLなどのマークアップ言語において実現されている。

[0079]

以下の画像配置情報の記述例では、本発明において新たに導入された画像配置 の指定オプションを活用した場合の効果について説明する。

[0080]

図7は、図1の画像形成装置によって記述される画像配置情報の第2の記述例の説明図であり、(a)は、画像の回転角度の指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

[0081]

図7(a)において、画像の回転角度は度の単位で示されるximage:rotate属性によって指定されている。図7(a)の配置情報に対応して画像配置処理を行った結果得られる表示例を図7(b)に示す。画像は、指定された角度だけ時計方向に回転した状態で、幅と高さによって決定される矩形領域に収まるように拡大縮小されて表示される。

[0082]

図8は、図1の画像形成装置によって記述される画像配置情報の第3の記述例の説明図であり、(a)は、画像のトリミング範囲の指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

[0083]

図8 (a)において、画像のトリミング範囲は矩形の左辺の座標を表す数値、上辺の座標を表す数値、幅を表す数値、及び高さを表す数値からなる文字列で示されるximage:crop属性によって指定されている。図8 (a)の配置情報に対応して画像配置処理を行った結果得られる表示例を図8 (b)に示す。画像は、画像全体のうちの指定された矩形に対応する領域をトリミング範囲とした状態で、幅と高さによって決定される矩形領域に収まるように拡大縮小されて表示される。この例では、画像のトリミングの矩形も表示領域の矩形もともに正方形であるため、画像の歪みは発生しない。

[0084]

図9は、図1の画像形成装置によって記述される画像配置情報の第4の記述例の説明図であり、(a)及び(b)は、画像の反転の指定方法を示し、(c)は、(a)及び(b)の方法によって表示された画像を示す。

[0085]

図9 (a) において、画像の反転は水平方向の反転及び垂直方向の反転の選択

肢を含む反転方向を表す文字列で示されるximage:flip属性によって指定されている。ximage:flip属性の値として利用できる文字列は図9 (b) に示され、この例では、画像を水平方向に反転させることを示すhorizontalが使用されている。図9 (a) の配置情報に対応して画像配置処理を行った結果得られる表示例を図9 (c) に示す。画像は、指定された方向に反転された状態で、幅と高さによって決定される矩形領域に収まるように拡大縮小されて表示される。

[0086]

図10は、図1の画像形成装置によって記述される画像配置情報の第5の記述例の説明図であり、(a)及び(b)は、画像の縦横比保持の指定方法を示し、(c)は、(a)及び(b)の方法によって表示された画像を示す。

[0087]

図10(a)において、画像の縦横比保持は画像を表示領域のどの位置に揃えて配置するかの選択肢と、表示領域に余白を生じさせるかどうかの選択肢を含む縦横比保持を表す文字列で示されるximage:fit属性によって指定されている。はximage:fit属性の値として利用できる文字列は図10(b)で示され、この例では、画像と表示領域の中央を揃えることを示すxMidYMid及び余白を表示させて画像全体が表示されるようにすることを示すmeetが使用されている。図10(a)の配置情報に対応して画像配置処理を行った結果得られる表示例を図10(c)に示す。画像は、幅と高さによって決定される矩形領域に収まるように拡大縮小される際に縦横比を保持して拡大縮小され、指定に従って余白の処理を行った状態で表示される。

[0088]

図11は、図1の画像形成装置によって記述される画像配置情報の第6の記述例の説明図であり、(a)は、上述の画像配置のオプションのすべての指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

[0089]

図11 (a) においては、xlink:href属性、width属性、height属性、ximage:rotate属性、ximage:crop属性、ximage:flip属性、及びximage:fit属性の7つの属性が指定されている。図11 (a) の配置情報に対応して画像配置処理を行っ

た結果得られる表示例を図11(b)に示す。画像は、回転角度の指定、トリミング範囲の指定、反転の指定、及び縦横比保持の指定に対してこの順番で画像変形処理を行った状態で、最終的に幅と高さによって決定される矩形領域に収まるように拡大縮小されて表示される。

[0090]

【発明の効果】

以上詳細に説明したように、本発明によれば、記述言語によって記述された画像の回転やトリミング等の配置情報を解釈し、この解釈された配置情報の内容に従って画像データの変形処理を行うので、記述言語による画像の回転やトリミング等の配置情報の記述において画像の指定を行うことができ、もって画像を表現力豊かに描画することができる。

[0091]

また、画像配置情報の表現にXMLの標準規格を使用した場合には、XMLに対応した汎用的なツールやテキストエディタを用いて画像配置情報を編集できるため、画像配置情報作成の負担が軽減するという効果がある。

さらに、画像配置情報の表現にXHTMLの標準規格を使用した場合には、一般的なインターネット閲覧ソフトウェアを用いて画像を表示できるため、画像鑑賞の利便性が向上するという効果が得られる。

【図面の簡単な説明】

【図1】

本発明の実施の形態による画像形成装置の概略構成を示すブロック図である。

【図2】

図1の画像形成装置によって実行される画像表示処理を示すフローチャートで ある。

【図3】

図2のステップS201で実行される画像配置情報処理を示すフローチャートである。

【図4】

図2のステップS204で実行される画像変形処理を示すフローチャートであ

る。

【図5】

図1の画像形成装置が画像配置情報を記述する対象となる画像の説明図である。 。

【図6】

図1の画像形成装置によって記述される画像配置情報の第1の記述例の説明図であり、(a)は、画像の格納場所とサイズの指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

【図7】

図1の画像形成装置によって記述される画像配置情報の第2の記述例の説明図であり、(a)は、画像の回転角度の指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

【図8】

図1の画像形成装置によって記述される画像配置情報の第3の記述例の説明図であり、(a)は、画像のトリミング範囲の指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

【図9】

図1の画像形成装置によって記述される画像配置情報の第4の記述例の説明図であり、(a)及び(b)は、画像の反転の指定方法を示し、(c)は、(a)及び(b)の方法によって表示された画像を示す。

【図10】

図1の画像形成装置によって記述される画像配置情報の第5の記述例の説明図であり、(a)及び(b)は、画像の縦横比保持の指定方法を示し、(c)は、(a)及び(b)の方法によって表示された画像を示す。

【図11】

図1の画像形成装置によって記述される画像配置情報の第6の記述例の説明図であり、(a)は、上述の画像配置のオプションのすべての指定方法を示し、(b)は、(a)の方法によって表示された画像を示す。

【符号の説明】

- 101 CPU
- 102 ROM
- 103 RAM
- 104 システムバス
- 105 入力装置コントローラ
- 106 出力装置コントローラ
- 107 記憶装置コントローラ
- 108 ネットワークコントローラ
- 109 キーボード
- 110 ディスプレイ
- 111 ハードディスク
- 112 ネットワークインタフェース

【書類名】 図面

【図1】

【図2】

3/

【図3】

【図4】

【図5】

【図6】

```
<
```


【図7】

【図8】

【図9】

(b) | _[反転方向の指定]

none: 反転をおこなわない

horizontal: 水平方向の反転(左右反転)をおこなう vertical: 垂直方向の反転(上下反転)をおこなう

100 100 【図10】

(b) | _[揃えの指定]

none: 縦横比を保持しないで画像と表示矩形を一致させる xMinYMin: 縦横比を保持して画像と表示矩形の左上端を揃える xMidYMin: 縦横比を保持して画像と表示矩形の左右中央上端を揃える xMaxYMin: 縦横比を保持して画像と表示矩形の右上端を揃える xMinYMid: 縦横比を保持して画像と表示矩形の上下中央左端を揃える xMidYMid: 縦横比を保持して画像と表示矩形の中央を揃える xMaxYMid: 縦横比を保持して画像と表示矩形の上下中央右端を揃える xMinYMax: 縦横比を保持して画像と表示矩形の左下端を揃える xMidYMax: 縦横比を保持して画像と表示矩形の左右中央下端を揃える xMaxYMax: 縦横比を保持して画像と表示矩形の右下端を揃える

[余白の指定]

meet: 画像全体が表示されるようにする(余白が生じる) slice: 余白がなくなるようにする(画像が一部表示されない)

100 100 【図11】

【書類名】 要約書

【要約】

【課題】 画像を表現力豊かに描画することができる画像形成装置及び方法、並びにプログラム及び記憶媒体を提供する。

【解決手段】 画像表示装置において、例えばSVGによって記述された、 回転角度、トリミング情報、反転情報、及び縦横比保持除法等の画像配置情報を 解釈し、これらの解釈された回転角度、トリミング情報、反転情報、及び縦横比 保持除法の内容に従って画像データに変形処理を行って、記述言語による画像の 配置情報の記述において画像の回転やトリミング等の指定を行う。

【選択図】 図2

特願2002-183548

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

19.90年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社