Question:

Rice's theorem. Let P be any nontrivial property of the language of a Turing machine. Prove that the problem of determining whether a given Turingmachine's language has property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descriptions where P fulfills two conditions. First, P is nontrivial—it contains some, but not all, TM descriptions. Second, P is a property of the

 $\in P \text{ iff } \langle M_2 \rangle \in$ TM's language whenever $L(M_1) = L(M_2)$, we have and M₂ are any TMs. Prove that P is an undecidable language.

Answer:

----SETP1----

Rice's theorem

Given P non trivial property of language of Turing machine, it is required to prove that P is un-decidable. Consider on the contrary that P is decidable language that satisfies the properties. Consider R_p be a Turing machine that decides P. Now it is required to show that how to decide A_{TM} using R_P by constructing Turing machine S.

First, let T_{θ} be a Turing machine that always reject, so $L(T_{\theta}) = \phi$. It can be consider that $\langle T_{\theta} \rangle \notin P$ without loss of generality, because it is possible to proceed with \bar{P} instead of P if $\langle T_{\theta} \rangle \in P$. Because P is non-trivial, there exist a Turing machine T with $\langle T \rangle \in P$. Now construct S based on T and R_P as follows:

 $S = " \text{ On input } \langle M, w \rangle$:

1. Use M and w to construct the following Turing machine M_{w} .

 $M_{xx} =$ " On input x:

- Simulate M on w. If it halts and rejects, reject.
 Simulate T on x. If T accepts x, accept."
- 2. Use TM R_n to determine if $\langle M_w \rangle \in P$. If YES, accept, else reject."

Note that TM M_w has property that (1) if M accept w, $L(M_w) = L(T)$, and (2) if M does not accept w. $L(M) = \phi = L(T_{\phi})$

In other words, $\langle M_w \rangle \in P$ if and only if M accept w.

Since the construction of M_w from T, M and w takes finite steps, the TM S is decider for A_{TM} . This creates a contradiction since A_{TM} is an un-decidable language. In conclusion, P is un-decidable.