Calculus 1 - Exercise 2

All exercises should be submitted by November 15th by 23:00. Delays won't be accepted aside for special cases which will be approved beforehand. These are the submission regulations (also available on the Moodle):

- 1. Exercises are personal and cannot be submitted in groups.
- 2. Write your name, ID and tutorial group in the header of the exercise.
- 3. They should be written clearly on A4 pages. Hard-to-read exercises will not be graded.
- 4. Serious effort has to be shown by the student. Unreadable or extremely partial answers will be disregarded.
- 5. Exercises submitted late without the TA's approval will not be accepted.

Questions:

1. Let p > 1 be a prime number. Prove that $\sqrt[3]{p}$ is irrational.

Remark: You don't need to prove that $\sqrt[3]{p} \in \mathbb{R}$.

- 2. Let $\phi \neq A \subseteq \mathbb{R}$.
 - (a) Prove the greatest lower bound theorem: Suppose that A is bounded from below. Then there exists a unique greatest lower bound of A, $s \in \mathbb{R}$.
 - (b) Prove the ϵ property of the greatest lower bound: Suppose that A is bounded from below and let $\underline{s} \in \mathbb{R}$ be a lower bound of A. Then $\underline{s} = \inf(A)$ if and only if for every $\epsilon > 0$ there exists an $a \in A$ such that $a < \underline{s} + \epsilon$.
 - (c) Suppose that A is bounded from below. Prove that $\inf A \in A$ if and only if there exists a minimum in A.

3. For each of the following sets compute $\sup (A)$, $\inf (A)$, $\min (A)$, $\max (A)$ or prove that they don't exist.

(a)
$$A = \left\{ \frac{2x-3}{3x+5} \mid x \ge 0 \right\}$$

(b)
$$A = \left\{ \frac{1}{n} + (-1)^n \mid n \in \mathbb{N} \right\}$$

(c)
$$A = \left\{ a + \frac{1}{a} \mid 0 < a \in \mathbb{R} \right\}$$

Hint: for every $0 < a \in \mathbb{R}$, $\left(\sqrt{a} - \frac{1}{\sqrt{a}} \right)^2 \ge 0$.

- 4. Let $\phi \neq A, B \subseteq \mathbb{R}$.
 - (a) Prove that if $A \leq B$, then $\sup (A) \leq \inf (B)$.
 - (b) Prove that if $\sup (A) = \inf (B)$, then $A \cap B$ contains at most one element.
- 5. Let $\phi \neq A, B \subseteq \mathbb{R}$.

Prove or disprove each of the following statements:

- (a) If A is bounded from above and $B \subseteq A$, then B is bounded from above and $\sup (B) \leq \sup (A)$.
- (b) Let $0 < \alpha \in \mathbb{R}$. We define $\alpha \cdot A = \{\alpha \cdot a \mid a \in A\}$. If A is bounded from above, then $\sup (\alpha \cdot A) = \alpha \cdot \sup (A)$.
- (c) We define $-A = \{-a \mid a \in A\}$. If A is bounded from above, then -A is bounded from below and $\inf(-A) = -\sup(A)$.
- (d) If A is bounded from above and $\sup{(A)} \notin A$. Then there exists an $\epsilon > 0$ such that the set $C = \{x \in A \mid x \leq \sup{(A)} \epsilon\}$ has a maximum.