

Guided Image Filtering

Shang Gao

Outline

Introduction

- Guided Image Filtering
 - Analysis
 - Improvements & Conclusions

Introduction

Recall: Dark Channel Prior

Darkest

15 x 15 patch

For an image **J**, define:

$$J^{dark}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right)$$

Input Image

min (r, g, b)

Dark Channel

Recall: Haze Imaging Model

$$I = J \cdot t + A \cdot (1 - t)$$
Atmospheric light

Hazy Image

Scene radiance (Haze Free Image)

Transmission

● Transmission: 描述无法散射并到达照相机的光的介质传输率

Recall: Soft Matting

Contains some block effects since the transmission is not always constant in a patch.

Input I

Recall: Soft Matting

Haze imaging model

Matting model [Levin et al., CVPR '06]

$$I = J \cdot t + A \cdot (1 - t)$$
$$I = F \cdot \alpha + B \cdot (1 - \alpha)$$

Edge-Preserving Filtering

Box filter/Gaussian filter:

 Erase some of the detail and reduce the performance of the edge in the picture, while smoothing the effects of noise

Bilateral filter:

Smooth the image while preserving edges

Bilateral Filtering

Advantages:

- Preserve edges in the smoothing process
- Simple and intuitive
- Non-iterative

Flaws:

- Complexity (Brute-force): $O(r^2)$
- Gradient distortion

Guided Image Filtering

General Linear Translation-Variant Filtering Process

Assumption: Local Linear Model

Local Linear Model between the guidance I and the filter output q: q is a linear transform of I in a window ω_k centered at the pixel k

Optimization

Goal:

$$\min ||n|| \Leftrightarrow \min \sum_{i \in w_k} ||q_i - p_i|| \Leftrightarrow argmin \sum_{i \in w_k} (a_k I_i + b_k - p_i)^2$$

Optimization

Cost Function:

$$E(a_k, b_k) = \sum_{i \in w_k} [(a_k I_i + b_k - p_i)^2 + \epsilon a_k^2]$$

Regularization Parameter

$$q_i = p_i - n_i$$

Input Image p

Optimization

Solution:

$$a_k = \frac{\rho_{Ip}}{\sigma_k^2 + \epsilon} = \frac{\frac{1}{|\omega|} \sum_{i \in \omega_k} I_i p_i - \mu_k \overline{p_k}}{\sigma_k^2 + \epsilon}$$
$$b_k = \overline{p_k} - a_k \mu_k$$

where:

- ρ_{Ip} is the covariance of I and p,
- μ_k and σ_k are the mean and variance of I in ω_k ,
- $|\omega|$ is the number of pixels in ω_k ,
- $\overline{p_k} = \frac{1}{|\omega|} \sum_{i \in \omega_k} p_i$ is the mean of p in ω_k .

Filter the Entire Image

Compute the average of $a_k I_i + b_i$ in all ω_k that covers pixel q_i :

$$q_{i} = \frac{1}{|\omega|} \sum_{k:i \in \omega_{k}} (a_{k}I_{i} + b_{k})$$
$$= \overline{a}_{i}I_{i} + \overline{b}_{i}$$

where:

•
$$\bar{a}_i = \frac{1}{|\omega|} \sum_{k \in \omega_i} a_k$$
,

•
$$\overline{b_i} = \frac{1}{|\omega|} \sum_{k \in \omega_i} b_k$$
.

Analysis

Analysis

Advantages:

- Edge-preserving filtering
- Non-iterative
- Time complexity: *O(N)*
- **Gradient Preserving**

Detail

Enhanced

Guided Filter

/large fluctuation

Gradient Preserving

Gradient reversal

Input (I = p)

Bilateral Filter

Guided Filter

Feathering

Guide *I* (size 3000x2000)

Feathering

Filter input p (binary segmentation)

Feathering

filter output q (alpha matte)

Haze Removing

Input p

Output q

Improvements & Conclusions

Improvement: Fast Guided Filter

- Subsamples (nearest-neighbor or bilinear) the input p and the guidance I by a ratio s.
- All the box filters are performed on the low-resolution maps,
 which are the major computation of the guided filter.
- The two coefficient maps \bar{a} and \bar{b} are bilinearly up-sampled to the original size.
- Reduces the time complexity from O(N) to $O(\frac{N}{s^2})$

Improvement: Fast Guided Filter

Algorithm 1 Guided Filter.

```
1: \operatorname{mean}_{I} = f_{\operatorname{mean}}(I, r)

\operatorname{mean}_{p} = f_{\operatorname{mean}}(p, r)

\operatorname{corr}_{I} = f_{\operatorname{mean}}(I * I, r)

\operatorname{corr}_{Ip} = f_{\operatorname{mean}}(I * p, r)
```

- 2: $\operatorname{var}_{I} = \operatorname{corr}_{I} \operatorname{mean}_{I} \cdot * \operatorname{mean}_{I}$ $\operatorname{cov}_{Ip} = \operatorname{corr}_{Ip} - \operatorname{mean}_{I} \cdot * \operatorname{mean}_{p}$
- 3: $a = \operatorname{cov}_{Ip} . / (\operatorname{var}_I + \epsilon)$ $b = \operatorname{mean}_p - a. * \operatorname{mean}_I$
- 4: $\operatorname{mean}_a = f_{\operatorname{mean}}(a, r)$ $\operatorname{mean}_b = f_{\operatorname{mean}}(b, r)$
- 5: $q = \text{mean}_a \cdot *I + \text{mean}_b$

Algorithm 2 Fast Guided Filter.

```
1: I' = f_{\text{subsample}}(I, s)
     p' = f_{\text{subsample}}(p, s)
     r'=r/s
2: \operatorname{mean}_{I} = f_{\operatorname{mean}}(I', r')
     mean_p = f_{mean}(p', r')
    \operatorname{corr}_{I} = f_{\operatorname{mean}}(I'. * I', r')
     \operatorname{corr}_{Ip} = f_{\operatorname{mean}}(I'. * p', r')
3: var_I = corr_I - mean_I. * mean_I
     cov_{Ip} = corr_{Ip} - mean_I \cdot * mean_p
4: a = \operatorname{cov}_{Ip} . / (\operatorname{var}_I + \epsilon)
     b = \text{mean}_p - a \cdot * \text{mean}_I
5: \operatorname{mean}_a = f_{\operatorname{mean}}(a, r')
```


Limitations

Input

Halo

Conclusions

- Guided Filter
 - Edge-preserving filtering
 - Non-iterative
 - Time complexity: *O(N)*
 - Gradient Preserving
- Improvements
 - Fast Guided Filter [He et al., '15]: time complexity of $O(\frac{N}{s^2})$

Thank You