Hypothesis Testing

Hypothesis testing is a statistical method used to determine whether there is enough evidence in a sample to infer something about a population.

1. Key Idea

We start with two competing hypotheses:

- Null Hypothesis (H_0): Assumes no effect or no difference (status quo).
- Alternative Hypothesis (H_1 or H_a): The claim we want to test (suggests an effect or difference).
- **◆ Example:** Suppose we want to test if a new drug is more effective than the current one.
 - H_0 : The new drug is **not better** than the current one.
 - H_1 : The new drug **is better** than the current one.

2. Steps in Hypothesis Testing

Step 1: State the Hypotheses

Define H_0 and H_1 clearly.

Step 2: Choose a Significance Level (α)

- The significance level (α) is the probability of rejecting H_0 when it is actually true (Type I error).
- Common values:
 - 0.05 (5%) → 95% confidence
 - \circ 0.01(1%) \rightarrow 99% confidence

Step 3: Select and Compute the Test Statistic

The test statistic depends on the test type:

• **Z-test**: When the population standard deviation is known.

Hypothesis Testing 1

- **T-test**: When the population standard deviation is unknown.
- Chi-square test: For categorical data.
- ANOVA/F-test: For comparing multiple groups.
- ★ Test statistic formula (for a Z-test on the mean):

D

where:

- \bar{X} = Sample mean
- μ_0 = Population mean under H_0
- σ = Standard deviation
- n = Sample size

Step 4: Compare with Critical Value or p-Value

- Find the **critical value** from the Z-table or T-table.
- Alternatively, calculate the **p-value** (probability of getting the observed result under H_0).

Step 5: Decision Rule

- If $p \leq \alpha \rightarrow$ Reject H_0 (evidence supports H_1).
- If $p > \alpha$ \rightarrow Fail to reject H_0 (not enough evidence for H_1).

3. Example: Hypothesis Test for a Mean

A factory claims that the **average weight of a product is 500g**. A random sample of 30 products has a mean weight of **495g** and a standard deviation of **10g**. Test if the factory's claim is correct at **5% significance level**.

Step 1: Define Hypotheses

- $H_0: \mu = 500$ (The claim is true)
- $H_1: \mu
 eq 500$ (The claim is false)

Step 2: Choose α =0.05

Hypothesis Testing 2

Step 3: Compute Test Statistic (Z-test)

$$Z = rac{ar{X} - \mu_0}{rac{s}{\sqrt{n}}} = rac{495 - 500}{rac{10}{\sqrt{30}}}$$

$$Z = \frac{-5}{1.83} = -2.73$$

Step 4: Find Critical Value or p-Value

- From the Z-table, the critical value for a two-tailed 5% test is ±1.96.
- Since **Z = -2.73** is beyond **-1.96**, we reject H_0 .

Step 5: Conclusion

There is **enough evidence** to say the factory's claim is **likely false**.

4. Common Errors in Hypothesis Testing

Error Type	Definition	Example
Type I Error (False Positive)	Rejecting H_0 when it's actually true.	Saying a drug works when it actually doesn't.
Type II Error (False Negative)	Accepting H_0 when it's false.	Saying a drug doesn't work when it actually does.

Hypothesis Testing 3