Wstęp do multimediów (WMM)

Laboratorium #1: Analiza częstotliwościowa sygnałów czasu dyskretnego

Grupa 101, 10 marca 2025 r., godz. 16.15

- 1. Liczba próbek (w jednym okresie) sygnału rzeczywistego $s(t) = sin(2\pi t)$ wynosi N, gdzie N jest potęgą 2.
 - a) Przyjmując N = 8 wykreślić przebieg sygnału spróbkowanego, widmo amplitudowe i fazowe oraz zweryfikować eksperymentalnie słuszność twierdzenia Parsevala.
 - b) Wykreślić wykres przedstawiający czas wyznaczania widma sygnału dyskretnego za pomocą algorytmu FFT w funkcji liczby próbek $N=2^l$, $l\in\mathbb{N}$. Dobrać samodzielnie wartości N. Skomentować kształt otrzymanego wykresu odnosząc się do teoretycznej złożoności obliczeniowej algorytmu FFT.
- 2. Zbadać wpływ przesunięcia w czasie na postać widma amplitudowego i widma fazowego dyskretnego sygnału harmonicznego $s[n] = A \sin\left(2\pi\frac{n}{N}\right)$ o amplitudzie A=2 i okresie podstawowym N=88. W tym celu dla każdej wartości $n_0 \in \left\{0, \frac{N}{4}, \frac{N}{2}, \frac{3N}{4}\right\}$ wykreślić widmo amplitudowe i fazowe przesuniętego sygnału $s[n-n_0]_N$. Skomentować otrzymane wyniki.
- 3. Zbadać wpływ dopełnienia zerami na postać widma amplitudowego i widma fazowego dyskretnego sygnału $s[n] = A\left(1 \frac{n \, mod \, N}{N}\right)$ o amplitudzie A = 4 i okresie podstawowym N = 12. W tym celu dla każdej wartości $N_0 \in \{0,1N,4N,9N\}$ wykreślić widmo amplitudowe i fazowe sygnału s[n] dopełnionego N_0 zerami. Skomentować otrzymane wyniki.
- **4.** Dany jest sygnał rzeczywisty $s(t) = A_1 \sin(2\pi f_1 t) + A_2 \sin(2\pi f_2 t) + A_3 \sin(2\pi f_3 t)$, gdzie $A_1 = 0.1$, $f_1 = 3000$ Hz, $A_2 = 0.7$, $f_2 = 8000$ Hz, $A_3 = 0.9$, $f_3 = 11000$ Hz. Przy założeniu, że częstotliwość próbkowania wynosi $f_s = 48000$ Hz, a liczba próbek sygnału wynosi $N_1 = 2048$, przedstawić wykres widmowej gęstości mocy sygnału spróbkowanego. Czy dla podanej liczby próbek mamy do czynienia ze zjawiskiem przecieku widma? Czy sytuacja uległaby zmianie dla liczby próbek $N_2 = \frac{3}{2}N_1$? Odpowiedź uzasadnić.