Cognome		
Nome		

Informatica teledidattica 2020/2021 Scritto di ALGEBRA del 21/01/2021

L'esame ha la durata di due ore. Rispondere negli spazi predisposti e giustificare le risposte in modo chiaro ed esauriente. Risposte non giustificate non saranno accreditate.

Esercizio 1.

(a) Calcolare a^{13723} per ogni $a \in U(\mathbb{Z}_{15})$ dove, per un intero positivo $n, U(\mathbb{Z}_n)$ è il gruppo degli elementi invertibili di \mathbb{Z}_n .

(b) Risolvere se possibile il seguente sistema di congruenze lineari:

$$\begin{cases} X \equiv 0 \pmod{5} \\ 3X \equiv 0 \pmod{6} \\ 13^{754}X \equiv 3 \pmod{7} \end{cases}$$

(c) Sia data la seguente matrice ad elementi in \mathbb{Z}_5 . Determinare i valori di $k \in \mathbb{Z}_5$ per i quali essa risulti invertibile.

$$\begin{pmatrix} 1 & 3 & 2 \\ 4 & k & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Esercizio 2. Sia $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ la base standard di \mathbb{R}^4 e si consideri l'unico endomorfismo f di \mathbb{R}^4 tale che $f(\mathbf{e}_1) = f(\mathbf{e}_3) = \mathbf{e}_1 + \mathbf{e}_3$ e $f(\mathbf{e}_2) = f(\mathbf{e}_4) = \mathbf{e}_2 + \mathbf{e}_4$.

(a) Scrivere la matrice che rappresenta f rispetto alla base standard.

 (\mathbf{b}) Determinare una base del nucleo e una base dell'immagine di f

(c) Dimostrare che le matrici $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ generano l'immagine di $F \circ f$ dove $F : \mathbb{R}^4 \to M_2(\mathbb{R})$ è definita da

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \mapsto \begin{pmatrix} x & y \\ z & w \end{pmatrix}.$$

Esercizio 3.

(a) Sino σ , $\tau \in S_n$ due permutazioni con supporti¹ disgiunti e sia $H = \langle \sigma, \tau \rangle$ il sottogruppo generato da σ e τ . Si dimostri che l'ordine di H è il prodotto dei periodi di σ e τ .

(b) Si stabilisca se $U(\mathbb{Z}_{22})$ è un gruppo ciclico.

(c) Si esibisca un sottogruppo di $U(\mathbb{Z}_{22})$ di ordine 5.

 $^{^{1}}$ Il supporto di una permutazione $\sigma \in S_{n}$ è l'insieme $\{i \mid \sigma(i) \neq i\}$