MODEL

EVALUATION

How Do We Evaluate?

- what is overall "accuracy"
- are we better predictiong (green or red) labels?
- how much better are we compared with random ("coin" flipping)

Many Metrics

figure reprinted from www.kdnuggets.com with explicit permission of the editor

A Numerical Dataset

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\left \begin{array}{c} \left(L \right) \end{array} \right $
x_1	5.00	100	6	green
$ x_2 $	5.50	150	8	green
x_3	5.33	130	7	green
$ x_4 $	5.75	150	9	green
x_5	6.00	180	13	red
$ x_6 $	5.92	190	11	red
x_7	5.58	170	12	red
x_8	5.92	165	10	red

Code for the Dataset

```
import pandas as pd
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label": ["green", "green", "green", "green",
                   "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                         "Foot", "Label"])
>> data
 id Height Weight Foot Label
0 1 5.00
            100
                 6 green
1 2 5.50
           150
                 8 green
           130 7 green
2 3 5.33
           150 9 green
3 4 5.75
4 5 6.00
           180 13
                     red
           190 11 red
5 6 5.92
           170 12 red
6 7 5.58
7 8 5.92
```

165 10 red

A Dataset Illustration

Three Models

• objects:

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$$

- •"green" is 1, 'red" is 0
- true labels: [1,1,1,1,0,0,0,0]
- want to compare 3 models:
 - 1. Model 1: [0,0,0,1,0,0,1,1]
 - 2. Model 2: [0,0,1,1,0,1,1,1]
 - 3. Model 3: [1,1,1,1,1,1,1,0]

Python Code

```
import pandas as pd
data = pd.DataFrame(
{"id":[1,2,3,4,5,6,7,8],}
  "Label":["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                           "Foot"."Label"])
data["Class"] = data["Label"].apply(lambda x: \
                   1 if x=="green" else 0)
y_true = data["Class"].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
>> y_true
[1, 1, 1, 1, 0, 0, 0, 0]
>> y_pred_1
[0, 0, 0, 1, 0, 0, 1, 1]
```

Comparison of Models

- "same" accuracy for 1 and 2
- sometimes 3 is the "best"
- how do we compare?

True Positives (TP)

• predicted positive and true labels are positive

True Positives (TP)

Model	True Positive	Actual Positive
1	x_4	x_1, x_2, x_3, x_4
2	$ x_3, x_4 $	x_1, x_2, x_3, x_4
3	$ x_1, x_2, x_3, x_4 $	x_1, x_2, x_3, x_4

False Positives (FP)

- predicted positive but true labels are negative
- "Type I" error ("false alarm")

False Positives (FP)

Model	False Positive	Actual Negative
1	x_7, x_8	x_5, x_6, x_7, x_8
2	x_6, x_7, x_8	x_5, x_6, x_7, x_8
3	x_5, x_6, x_7	x_5, x_6, x_7, x_8

True Negative (TN)

• predicted negative and true labels are negative

True Negatives (TN)

Model	True Negative	Actual Negative
1	x_5, x_6	x_5, x_6, x_7, x_8
2	x_5	x_5, x_6, x_7, x_8
3	x_8	x_5, x_6, x_7, x_8

False Negative (FN)

- predicted negative, but true labels are positive
- "Type II" error ("miss")

False Negative (FN)

Model	False Negative	Actual Positive
1	x_1, x_2, x_3	x_1, x_2, x_3, x_4
2	x_1, x_2	x_1, x_2, x_3, x_4
3	none	x_1, x_2, x_3, x_4

Pos. & Neg. Summary

Model	TP	FP	TN	FN
1	$ x_4 $	x_7, x_8	x_5, x_6	x_1, x_2, x_3
2	$ x_3, x_4 $	x_6, x_7, x_8	$ x_5 $	$ x_1, x_2 $
3	x_1, x_2, x_3, x_4	x_5, x_6, x_7	$ x_8 $	none

Pos. & Neg. Summary

Model	TP	FP	TN	FN
1	$ x_4 $	x_7, x_8	x_5, x_6	x_1, x_2, x_3
2	$ x_3, x_4 $	x_6, x_7, x_8	$ x_5 $	$ x_1, x_2 $
3	x_1, x_2, x_3, x_4	x_5, x_6, x_7	$ x_8 $	none

Confusion Matrix

- each row represents predictions
- each column represents actual class
- $\bullet C = \left[C_{ij} \right]$
- C_{ij} observations in group j predicted for group i

Visual Representation

- rows represent predictions
- columns represent actual class

$$C = \begin{bmatrix} \text{TN} & \text{FP} \\ \text{FN} & \text{TP} \end{bmatrix}$$

TN/()

- total positive P = TP + FN
- total negative N = TN + FP

Confusion Matrices

Model	\mathbf{TP}	\mathbf{FP}	${f TN}$	\mathbf{FN}
1	x_4	x_7, x_8	x_5, x_6	x_1, x_2, x_3
2	x_3, x_4	x_6, x_7, x_8	x_5	x_1, x_2
3	x_1, x_2, x_3, x_4	x_5, x_6, x_7	x_8	none

$$C = \begin{bmatrix} \text{TN} & \text{FP} \\ \text{FN} & \text{TP} \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}, C_2 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}, C_3 = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$$

Python Code

```
import pandas as pd
from sklearn.metrics import confusion_matrix
data = pd.DataFrame(
        {'id': [1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                   'red','red','red','red'],
        'Height': [5, 5.5, 5.33, 5.75,
                   6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                   180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                      'Foot', 'Label'] )
data['Class'] = data['Label'].apply(lambda x: 1
                             if x == 'green' else 0)
y_true = data['Class'].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
cf_1 = confusion_matrix(y_true,y_pred_3)
cf_2 = confusion_matrix(y_true,y_pred_3)
cf_3 = confusion_matrix(y_true,y_pred_3)
>> cf_3
[[1 3]
  [0 4]]
```

True Positive Rate (TPR)

• sensitivity, recall, or hit rate

$$TPR = \frac{TP}{TP + FN}$$

Model	\mathbf{TP}	\mathbf{FN}	TPR
1	x_4	x_1, x_2, x_3	0.25
2	x_3, x_4	x_1, x_2	0.5
3	x_1, x_2, x_3, x_4	none	1

• fraction of positive labels predicted correctly

TPR = TP/(TP + FN)

Model	\mathbf{TP}	\mathbf{FN}	TPR
1	x_4	x_1, x_2, x_3	0.25
2	x_3, x_4	$ x_1, x_2 $	0.5
3	x_1, x_2, x_3, x_4	none	1

Python Code

```
import pandas as pd
from sklearn.metrics import recall_score
                         Ture Positive rate call recall
data = pd.DataFrame(
        {'id': [1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                  'red','red','red','red'],
        'Height': [5, 5.5, 5.33, 5.75,
                   6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                   180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                      'Foot', 'Label'] )
data['Class'] = data['Label'].apply(lambda x: 1
                             if x == 'green' else 0)
y_true = data['Class'].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
tpr_1 = recall_score(y_true, y_pred_1)
tpr_2 = recall_score(y_true, y_pred_2)
tpr_3 = recall_score(y_true, y_pred_3)
>> print(tpr_1, tpr_2, tpr_3)
0.25 0.5 1.0
```

True Negative Rate (TNR)

• "specificity" or "selectivity"

$$TNR = \frac{TN}{TN + FP}$$

Model	FP	TN	TNR
1	x_7, x_8	x_5, x_6	0.50
2	x_6, x_7, x_8	$ x_5 $	0.25
3	x_5, x_6, x_7	$ x_8 $	0.25

• fraction of negative labels predicted correctly

Positive Predicted Value (PPV)

• "precision"

$$PPV = \frac{TP}{TP + FP}$$

Model	TP	FP	PPV
1	x_4	x_7, x_8	0.33
2	x_3, x_4	x_6, x_7, x_8	0.40
3	x_1, x_2, x_3, x_4	x_5, x_6, x_7	0.57

PPV = TP/(TP+FP)

Model	\mathbf{TP}	\mathbf{FP}	PPV
1	x_4	x_7, x_8	0.33
2	x_3, x_4	x_6, x_7, x_8	0.40
3	x_1, x_2, x_3, x_4	$ x_5, x_6, x_7 $	0.57

Python Code

```
import pandas as pd
from sklearn.metrics import precision_score
data = pd.DataFrame(
        {'id': [1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                   'red','red','red','red'],
        'Height': [5, 5.5, 5.33, 5.75,
                   6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                   180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                      'Foot', 'Label'] )
data['Class'] = data['Label'].apply(lambda x: 1
                              if x == 'green' else 0)
y_true = data['Class'].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
ppv_1 = precision_score(y_true, y_pred_1)
ppv_2 = precision_score(y_true, y_pred_2)
ppv_3 = precision_score(y_true, y_pred_3)
```

Negative Predicted Value (NPV)

$$NPV = \frac{TN}{TN + FN}$$

Model	TN	FN	NPV
1	x_5, x_6	x_1, x_2, x_3	0.40
2	x_5	$ x_1, x_2 $	0.33
3	x_8	none	1.0

Accuracy

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Model	TP	FP	TN	FN	ACC
1	x_4	x_7, x_8	x_5, x_6	x_1, x_2, x_3	0.375
2	x_3, x_4	x_6, x_7, x_8	x_5	x_1, x_2	0.375
3	x_1, x_2, x_3, x_4	$ x_5, x_6, x_7 $	x_8	none	0.625

- fraction of all labels predicted correctly
- models 1 and 2 same accuracy, different precision

ACC = (TP+TN)/ALL

Model	\mathbf{TP}	\mathbf{FP}	TN	$\mathbf{F}\mathbf{N}$	\mathbf{ACC}
1	x_4	x_7, x_8	x_5, x_6	x_1, x_2, x_3	0.375
2	x_3, x_4	x_6, x_7, x_8	x_5	x_1, x_2	0.375
3	x_1, x_2, x_3, x_4	$ x_5, x_6, x_7 $	x_8	none	0.625

Python Code

```
import pandas as pd
from sklearn.metrics import accuracy_score
data = pd.DataFrame(
        {'id': [1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                  'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75,
                  6.00, 5.92, 5.58, 5.92,
        'Weight': [100, 150, 130, 150,
                  180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
        columns = ['id', 'Height', 'Weight',
                      'Foot', 'Label'] )
data['Class'] = data['Label'].apply(lambda x: 1
                             if x == 'green' else 0)
y_true = data['Class'].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
acc_1 = accuracy_score(y_true, y_pred_1)
acc_2 = accuracy_score(y_true, y_pred_2)
acc_3 = accuracy_score(y_true, y_pred_3)
>> print(acc_1, acc_2, acc_3)
0.375 0.375 0.625
```

F_1 Score

 harmonic mean of precision and sensitivity

$$F_1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR}$$

$$= \frac{2 \cdot \text{TP}}{2 \cdot \text{TP} + \text{FP} + \text{FN}}$$

Model	TP	\mathbf{FP}	FN	F_1
1	x_4	x_7, x_8	x_1, x_2, x_3	0.29
2	x_3, x_4	x_6, x_7, x_8	x_1, x_2	$\mid 0.44 \mid$
3	x_1, x_2, x_3, x_4	$ x_5, x_6, x_7 $	none	0.73

Python Code

```
import pandas as pd
from sklearn.metrics import f1_score
data = pd.DataFrame(
        {'id': [1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                   'red','red','red','red'],
        'Height': [5, 5.5, 5.33, 5.75,
                   6.00, 5.92, 5.58, 5.92,
        'Weight': [100, 150, 130, 150,
                   180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                      'Foot', 'Label'] )
data['Class'] = data['Label'].apply(lambda x: 1
                              if x == 'green' else 0)
y_true = data['Class'].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
f1_1 = f1_score(y_true,y_pred_3)
f1_2 = f1_score(y_true,y_pred_3)
f1_3 = f1_score(y_true, y_pred_3)
```

>> print(f1_1, f1_2, f1_3)

0.2857142857 0.444444444 0.7272727272

Comparing Models

Metric	Model 1	Model 2	Model 3
recall (TPR)	0.25	0.5	1
specificity (TPR)	0.5	0.25	0.25
precision (PPV)	0.33	0.4	0.57
accuracy	0.375	0.375	0.625
$ F_1 $	0.29	0.44	0.73

• choice of model depends on the metric

Additional Measures

• False Negative Rate:

$$FNR = 1 - TPR$$

• False Positive Rate:

$$FPR = 1 - TNR$$

• False Discovery Rate:

$$FDR = 1 - PPV$$

• False Omission Rate:

$$FOR = 1 - NPV$$

False Negative Rate (FNR)

•"miss" rate

$$FNR = \frac{FN}{FN + TP}$$

Model	TP	FN	FNR
1	x_4	x_1, x_2, x_3	0.75
2	x_3, x_4	$ x_1, x_2 $	0.5
3	$ x_1, x_2, x_3, x_4 $	none	0

False Positive Rate (FPR)

• "fall-out"

$$FPR = \frac{FP}{FP + TN}$$

Model	FP	TN	FPR
1	x_7, x_8	x_5, x_6	0.5
2	x_6, x_7, x_8	x_5	0.75
3	x_5, x_6, x_7	x_8	0.75

False Discovery Rate (FDR)

$$FDR = \frac{FP}{FP + TP}$$

Model	TP	FP	FDR
1	x_4	x_7, x_8	0.67
2	x_3, x_4	x_6, x_7, x_8	0.60
3	x_1, x_2, x_3, x_4	x_5, x_6, x_7	0.43

False Omission Rate (FOR)

$$FOR = \frac{FN}{FN + TN}$$

Model	TN	FN	FOR
1	x_5, x_6	x_1, x_2, x_3	0.60
2	$ x_5 $	x_1, x_2	0.66
3	$ x_8 $	none	0

ROC/AUC Curve

- receiver operating characteristic (ROC) describe binary classifiers
- area under curve (AUC) compare classifiers vs. random

AUC For Model 1

$$area(ABCD) = area(ABDH) + area(DHC)$$
$$= \frac{(1+0.5)}{2} \cdot 0.25 + 0.5 \cdot 0.5 \cdot 0.75$$
$$= 0.1875 + 0.1875 = 0.375$$

AUC For Model 2

$$area(ABCE) = area(ABGE) + area(GCE)$$
$$= \frac{(1+0.25)}{2} \cdot 0.5 + 0.25 \cdot 0.5 \cdot 0.5$$
$$= 0.3125 + 0.0625 = 0.375$$

AUC For Model 3

$$\operatorname{area}(ABCF) = \frac{(1+0.25)}{2} = 0.625$$

Python Code

```
import pandas as pd
from sklearn.metrics import roc_auc_score
data = pd.DataFrame(
        {'id': [1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                  'red','red','red','red'],
        'Height': [5, 5.5, 5.33, 5.75,
                  6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                  180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
        columns = ['id', 'Height', 'Weight',
                     'Foot', 'Label'] )
data['Class'] = data['Label'].apply(lambda x: 1
                            if x == 'green' else 0)
y_true = data['Class'].values
# assume that we got predictions from 3 models:
y_pred_1 = [0,0,0,1,0,0,1,1]
y_pred_2 = [0,0,1,1,0,1,1,1]
y_pred_3 = [1,1,1,1,1,1,1,0]
auc_1 = roc_auc_score(y_true, y_pred_1)
auc_2 = roc_auc_score(y_true, y_pred_2)
auc_3 = roc_auc_score(y_true, y_pred_3)
>> print(auc_1, auc_2, auc_3)
0.375 0.375 0.625
```

Concepts Check:

- (a) true and false positive
- (b) true and false negatives
- (c) sensitivity (or recall)
- (d) specificity, precision
- (e) type I and II error
- (f) confusion matrix
- $(g) F_1$ score
- (h) receiver operating characteristic (ROC)
 - (i) area uner curve (AUC)