

▲ System maintenance is scheduled for Wednesday, August 29, 2018 from 14:30-15:30 UTC. Courses might not be available during this time.

Course > Week... > 4.6 W... > 4.6.1 ...

4.6.1 Homework

4.6.1 Homework

Discussion **Hide Discussion Topic:** Week 4 / 4.6.1 Add a Post Show all posts by recent activity ▼ There are no posts in this topic yet. ×

Homework 4.6.1.1

1/1 point (graded)

Let $A \in \mathbb{R}^{m imes n}$ and $x \in \mathbb{R}^n$. Then $(Ax)^T = x^T A^T$.

Submit

✓ Correct (1/1 point)

Homework 4.6.1.2

1 point possible (graded) Our laff library has a routine

that has the following property

- y = laff gemv('No transpose', alpha, A, x, beta, y) COMPUTES $y := \alpha Ax + \beta y$.
- y laff gemv('Tramsponse', alpha, A, x, beta, y) COMPUTES $y := \alpha A^T x + \beta y.$

The routine works regardless of whether \boldsymbol{x} and/or \boldsymbol{y} are column and/or row vectors. Our library does NOT include a routine to compute $y^T = x^T A$. What call could you use to compute $y^T := x^T A$ if y^T is stored in yt and x^T in xt?

- □ laff gemv('No transpose', 1.0 , A, xt, 0.0, yt)
- □ laff_gemv('No transpose', 1.0 , A, xt, 1.0, yt)
- laff_gemv('Transpose', 1.0 , A, xt, 1.0, yt)
- □ laff_gemv('Transpose', 1.0 , A, xt, 0.0, yt) 🗸

Answer: laff_gemv('Transpose', 1.0, A, xt, 0.0, yt) computes $y := A^T x$, where y is stored in yt and x is stored in xt.

To understand this, transpose both sides: $y^T = (A^T x)^T = x^T A^{T^T} = x^T A$.

For this reason, our laff library does not include a routine to compute $y^T := \alpha x^T A + \beta y^T$.

You will need this next week!!!

Submit

1 Answers are displayed within the problem

Homework 4.6.1.3

12/12 points (graded)

Let
$$A=egin{pmatrix} 1 & -1 \ 1 & -1 \end{pmatrix}$$
 . Compute

Submit

✓ Correct (12/12 points)

Homework 4.6.1.4

16/16 points (graded)

Let
$$A=egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$
 . Compute

$$A^2 = egin{bmatrix} 1 & & & & 0 & & \checkmark \ & & & & & & 1 & & \checkmark \ \end{pmatrix}$$

$$A^3 = \begin{bmatrix} 0 & & & 1 & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

Submit

✓ Correct (16/16 points)

Homework 4.6.1.5

16/16 points (graded)

Let
$$A = \begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
. Compute

For
$$k \geq 0, A^{4k} = \begin{bmatrix} 1 & & & 0 & & \\ & & & & \\ & & & & \end{bmatrix}$$

For
$$k \geq 0, A^{4k+1} = \begin{bmatrix} 0 & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Submit

✓ Correct (16/16 points)

Homework 4.6.1.6

0/1 point (graded)

Let A be a square matrix. If AA=0 (the zero matrix) then A is a zero matrix. (AA is often written as A^2 .)

X Answer: FALSE **TRUE**

Answer: False!

$$\left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

This may be counter intuitive since if α is a scalar, then $\alpha^2 = 0$ only if $\alpha = 0$. So, one of the points of this exercise is to make you skeptical about "facts" about scalar multiplications that you may try to transfer to matrix-matrix multiplication.

Submit

Answers are displayed within the problem

Homework 4.6.1.7

0/1 point (graded)

There exists a real value matrix $m{A}$ such that $m{A^2} = -m{I}$. (Recall: $m{I}$ is the identity)

FALSE

X Answer: TRUE

Homework 4.6.1.4 There exists a real valued matrix A such that $A^2 = -I$. (Recall: I is the identity)

True/False

Answer: True! Example: $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

This may be counter intuitive since if α is a real scalar, then $\alpha^2 \neq -1$.

Submit

1 Answers are displayed within the problem

Homework 4.6.1.8

1/1 point (graded)

There exists a matrix A that is not diagonal such that $A^2=I$.

TRUE

Answer: TRUE

Answer: True! An examples of a matrices A that is not diagonal yet $A^2 = I$: $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

This may be counter intuitive since if α is a real scalar, then $\alpha^2 = 1$ only if $\alpha = 1$ or $\alpha = -1$. Also, if a matrix is 1×1 , then it is automatically diagonal, so you cannot look at 1×1 matrices for inspiration for this problem.

Submit