Лабораторная работа №6

Дисциплина: Архитектура компьютера

Комягин Андрей Николаевич

Содержание

1	Целі	ь работы	5		
2	Выполнение лабораторной работы				
	2.1	Программа 6.1	6		
	2.2	Программа 6.2	8		
	2.3	Программа 6.3	9		
		Программа 6.4			
	2.5	Самостоятельная работа	11		
3	Выв	ОДЫ	13		

Список иллюстраций

2.1	Создание каталога и файла ассемблера	6
2.2	Ввод команлы	7
2.3	Запуск файла	7
2.4	Запуск измененной программы	8
2.5	Создание программы 6.2	8
	Запуск команды со строками	9
2.7	Запуск команды с числами	9
2.8	Сравнение команд вывода	9
2.9	Создание и запуск файла	10
2.10	Изменение и запуск файла	10
2.11	Запуск программы	10
2.12	Запуск программы	12

Список таблиц

1 Цель работы

Изучить арифметические инструкции языка ассемблера NASM и применить полученные знания на практике.

2 Выполнение лабораторной работы

2.1 Программа 6.1

Создадим каталог для программ лабораторных работ, в нем создадим файл **lab6-1.asm**. (рис. 2.1).

Рис. 2.1: Создание каталога и файла ассемблера

Введем в созданный файл текст из листинга 6.1 (рис. 2.2).

Рис. 2.2: Ввод команлы

Создадим исполняемый файл и запустим его (рис. 2.3). Результат его работы - вывод символа **j**.

```
[ankomyagin@fedora lab06]$ cd ~/work/arch-pc/lab06/
[ankomyagin@fedora lab06]$ nasm -f elf lab6-1.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[ankomyagin@fedora lab06]$ ./lab6-1
```

Рис. 2.3: Запуск файла

Изменим текст программы (вместо символов запишем в регистры числа) и запустим её (рис. 2.4). Программа выводит пустой символ (переноса строки).

```
[ankomyagin@fedora lab06]$ nasm -f elf lab6-1_2.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-1_2 lab6-1_2.o

[ankomyagin@fedora lab06]$ ./lab6-1_2

[ankomyagin@fedora lab06]$ ./lab6-1_2

[ankomyagin@fedora lab06]$ ./lab6-1_2

[ankomyagin@fedora lab06]$ ./lab6-1_2
```

Рис. 2.4: Запуск измененной программы

2.2 Программа 6.2

Создадим файл **lab6-2.asm** и введем в него текст программы из листинга **6.2** (рис. 2.5).

Рис. 2.5: Создание программы 6.2

Создадим исполняемый файл и запустим его (рис. 2.6). Результат работы - число 106

```
[ankomyagin@fedora lab06]$ touch ~/work/arch-pc/lab06/lab6-2.asm
[ankomyagin@fedora lab06]$ nasm -f elf lab6-2.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[ankomyagin@fedora lab06]$ ./lab6-2
106
[ankomyagin@fedora lab06]$
```

Рис. 2.6: Запуск команды со строками

Заменим строки на числа, создадим исполняемый файл и запустим его (рис. 2.7). Результат работы программы - 10.

```
106
[ankomyagin@fedora lab06]$ nasm -f elf lab6-2_2.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-2_2 lab6-2_2.o
[ankomyagin@fedora lab06]$ ./lab6-2_2

10
[ankomyagin@fedora lab06]$ [ mov eax,6
mov ebx,4
```

Рис. 2.7: Запуск команды с числами

Заменим функцию **iprintLF** на **iprint**. Запустим файл. Разница работы программ и наличии и отсутствии переноса строки (рис. 2.8).

```
[ankomyagin@fedora lab06]$ nasm -f elf lab6-2_2.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-2_2 lab6-2_2.o
[ankomyagin@fedora lab06]$ ./lab6-2_2
10
[ankomyagin@fedora lab06]$ nasm -f elf lab6-2_2.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-2_2 lab6-2_2.o
[ankomyagin@fedora lab06]$ ./lab6-2_2
10[ankomyagin@fedora lab06]$
```

Рис. 2.8: Сравнение команд вывода

2.3 Программа 6.3

Создадим файл **lab6-3.asm** и заполним его в соответствии с листингом **6.3**. Запустим файл, результат работы изображен на (рис. 2.9).

```
ankomyagin@fedora:~/work/arch-pc/lab00
[ankomyagin@fedora lab06]$ touch ~/work/arch-pc/lab06/lab6-3.asm
[ankomyagin@fedora lab06]$ nasm -f elf lab6-3.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[ankomyagin@fedora lab06]$ ./lab6-3
Результат: 4
Остаток от деления: 1
```

Рис. 2.9: Создание и запуск файла

Изменим текст программы для вычисления выражения $\boxtimes(\boxtimes) = (4 \boxtimes 6 + 2)/5$ и проверим работоспособность (рис. 2.10).

```
[ankomyagin@fedora lab06]$ nasm -f elf lab6-3.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[ankomyagin@fedora lab06]$ ./lab6-3
                                                                                  %include 'in out.asm'
                                                                                  SECTION .data
                                                                                  div: DB 'Результат: ',0
dinkomyaging edora tabal
езультат: 5
остаток от деления: 1
ankomyagin@fedora lab06]$
                                                                                  rem: DB 'Остаток от деления: '.0
                                                                                  SECTION .text
                                                                                 GLOBAL _start
                                                                                  _start:
                                                                                  mov eax,4 ; EAX=4
                                                                                  mov ebx,6 ; EBX=6
                                                                                  mul ebx ; EAX=EAX*EBX
                                                                                  add eax,2 ; EAX=EAX+2
                                                                                  xor edx,edx ; обнуляем EDX для корректной работы div
                                                                                  mov ebx,5 ; EBX=5
                                                                                  div ebx ; EAX=EAX/5, EDX=остаток от деления
                                                                                  mov edi,eax ; запись результата вычисления в 'edi'
```

Рис. 2.10: Изменение и запуск файла

2.4 Программа 6.4

Создадим файл **variant.asm**, заполним его в соответствии с листингом **6.4** (рис. 2.11).

```
[ankomyagin@fedora lab06]$ touch ~/work/arch-pc/lab06/variant.asm
[ankomyagin@fedora lab06]$ nasm -f elf variant.asm
[ankomyagin@fedora lab06]$ ld -m elf_i386 -o variant variant.o
[ankomyagin@fedora lab06]$ ./variant
Введите № студенческого билета: ',
введите № студенческого билета: ',
1132236126
Ваш вариант: 7
[ankomyagin@fedora lab06]$ []

SECTION .text
```

Рис. 2.11: Запуск программы

Результат программы - 7. Проверим его аналитически. Для определения остатка

деления на 20 достаточно смотреть на 2 последние цифры номера студенческого билета. В моем случае это 26. Остаток деления 26 на 20 = 6, добавляем единицу, которая нужна, чтобы не получился вариант 0, 6+1 = 7.

- 1. Какие строки листинга 6.4 отвечают за вывод на экран сообщения 'Ваш вариант:'? **Строки mov eax,rem call sprint**
- 2. Для чего используется следующие инструкции? mov ecx, x mov edx, 80 call sread. **Для создания переменной x**
- 3. Для чего используется инструкция "call atoi"?. **Для преобразования кода символа в число**
- 4. Какие строки листинга 6.4 отвечают за вычисления варианта? **xor edx,edx mov ebx,20 div ebx inc edx**
- 5. В какой регистр записывается остаток от деления при выполнении инструкции "div ebx"? **в регистр ах**
- 6. Для чего используется инструкция "inc edx"? **Для добавления единицы**
- 7. Какие строки листинга 6.4 отвечают за вывод на экран результата вычислений? **mov eax,edx call iprintLF**

2.5 Самостоятельная работа

Написать программу для вычисления значения функции.

Вариант 7.
$$f(x) = 5(x - 1)^2$$
. $x1 = 3$, $x2 = 5$

Программа (рис. 2.12).

Рис. 2.12: Запуск программы

3 Выводы

Я ходе работы я освоил арифметические конструкции языка ассемблера NASM. Изучил несколько программ и написал собственную.