NaiveBayesPractice

August 6, 2023

1 Bài toán

Phân loại văn bản sử dụng Naive Bayes

Mục tiêu:

- Xây dựng được mô hình Naive Bayes sử dụng thư viên sklearn.
- Úng dụng và hiểu cách áp dụng mô hình Naive Bayes vào giải quyết bài toán thực tế (ví dụ: phân loai văn bản).
- Sử dụng độ đo Accuracy để đánh giá chất lượng mô hình.

Vấn đề:

• Có một tập các văn bản dạng text không có nhãn, làm sao để biết văn bản này thuộc về thể loại nào, pháp luật, đời sống, văn học, thể thao,...

Dữ liêu:

- Tập các văn bản và nhãn tương ứng của từng văn bản trong một khoảng thời gian.
- Tập các nhãn 10 nhãn văn bản: > Giải trí, Khoa học Công nghệ, Kinh tế, Pháp luật, Sức khỏe, Thể thao, Thời sư, Tin khác, Đôc giả, Đời sống Xã hôi.

Ví dụ văn bản nhãn thể thao:

"Dân_trí Real Madrid đã dẫn trước trong cả trận đấu, nhưng họ vẫn phải chấp_nhận bị Dortmund cầm hòa 2-2 ở Bernabeu. Real Madrid chấp_nhận đứng thứ_hai ở bảng F Champions League..."

Bài toán: Phân loại

- Input: n vector mã hóa của các văn bản ma trận $X = [x_1, x_2, ...x_n]$.
- Output: nhãn y là 1 trong 10 nhãn trên.

2 Import các thư viện cần thiết, cài thêm một số thư viện chưa sẵn có

```
[]: # Cài đặt thư viện xử lý ngôn ngữ cho tiếng Việt!
!pip install pyvi
```

```
[]: import os import numpy as np import matplotlib.pyplot as plt
```

```
# from sklearn.datasets import load_files
from pyvi import ViTokenizer # Tách từ tiếng Việt

import sklearn.naive_bayes as naive_bayes
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_files
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import learning_curve

%matplotlib inline
```

3 Load dữ liệu từ thư mục đã crawl từ trước

Cấu trúc thư mục như sau: - data/news_1135/ - Kinh tế/ - bài báo 1.txt - bài báo 2.txt - Pháp luât/ - bài báo 3.txt - bài báo 4.txt

```
[]: from google.colab import drive drive.mount('/content/drive')
```

[]: %cd /content/drive/MyDrive/Code-VinBigData/NaiveBayes-Practice

4 Tiền xử lý dữ liệu đưa dữ liệu từ dạng text về dạng ma trận

• Thử nghiệm để kiểm tra hoạt động chuyển hoá dữ liệu về dạng ma trận

```
[]: # Load dữ liêu các stopwords
     with open("data/vietnamese-stopwords.txt", encoding="utf8") as f:
         stopwords = f.readlines()
     stopwords = [x.strip().replace(" ", "_") for x in stopwords]
     print("Danh sách 10 từ dừng đầu tiên (từ không mang ý nghĩa phân loai): ", u
      ⇒stopwords[:10])
     print()
     # Transforming data
     # Chuyển hoá dữ liệu text về dạng vector TF-IDF
       - loai bỏ từ dừng
         - sinh từ điển
     module_count_vector = CountVectorizer(stop_words=stopwords)
     model_rf_preprocess = Pipeline(
         Γ
             ("vect", module_count_vector),
             ("tfidf", TfidfTransformer()),
         ]
     )
     # Hàm thực hiện chuyển đổi dữ liệu text thành dữ liệu số dang ma trận
     # Input: Dữ liệu 2 chiều dang numpy.array, mảng nhãn id dang numpy.array
     # Tiền xử lý với Bag of words
     data_bow = module_count_vector.fit_transform(data_train.data, data_train.target)
     # Tiền xử lý với TF-IDF
     data_tfidf = model_rf_preprocess.fit_transform(data_train.data, data_train.
      →target)
     print("10 từ đầu tiên trong từ điển:\n")
     for i, (k, v) in enumerate(module_count_vector.vocabulary_.items()):
         print(i + 1, ": ", (k, v))
         if i + 1 >= 10:
             break
```

5 Chia dữ liệu làm 2 phần training và testing

- Training chiếm 80 % dữ liêu
- Testing chiếm 20 % dữ liệu

```
[]: from sklearn.model_selection import train_test_split

# Chia dữ liệu thành 2 phần sử dụng hàm train_test_split
test_size = 0.2
# Bow
```

[]: X_train_bow[1].data

6 Training Naive Bayes model

Sử dụng thư viện sklearn để xây dựng 2 mô hình - naive_bayes.MultinomialNB(alpha= 0.1): giá trị làm mịn alpha= 0.1 - naive_bayes.GaussianNB()

6.1 Multinomial Naive Bayes

• Sử dụng Bag of words

```
[]: print("- Training ...")

# X_train.shape
print("- Train size = {}".format(X_train_bow.shape))
model_MNB = naive_bayes.MultinomialNB(alpha=0.1)
```

```
model_MNB.fit(X_train_bow, y_train_bow)
print("- model_MNB - train complete")
```

6.2 Gaussian Naive Bayes

• Sử dung TF-IDF

7 Testing Naive Bayes model

Thực hiện dư đoán nhãn cho từng văn bản trong tập test

Đô đo đánh giá: > accuracy = tổng số văn bản dư đoán đúng / tổng số văn bản có trong tập test

```
[]: # Sử dụng thư viện tính accuracy_score trong sklearn
from sklearn.metrics import accuracy_score

[]: print("- Testing ...")
    y_pred_bow = model_MNB.predict(X_test_bow)
    print("- Acc = {}".format(accuracy_score(y_test_bow, y_pred_bow)))

[]: # Test tương tự cho GNB
```

8 Thực hiện sử dụng model đã được train để infer 1 văn bản mới

- Dữ liệu mới đến ở dạng dữ liệu thô => cần tiền xử lý dữ liệu về dạng dữ_liệu_ma_trận
- infer sử dụng hàm model.predict(d \tilde{u} _liệu_ma_trận)

```
[]: a = ViTokenizer.tokenize("Trường đại học bách khoa hà nội")
print(a)
```

```
[]: # tiền xử lý dữ liêu sử dung module module_count_vector.
     van ban moi = ViTokenizer.tokenize("Công Phương ghi bàn cho đôi tuyển Việt Nam")
     # van_ban_moi = ["Cônq_phươnq qhi_bàn cho đôi_tuyển Việt_nam"]
     print(van_ban_moi)
     input_data preprocessed = module_count_vector.transform([van_ban_moi])
     print(input_data_preprocessed)
     print()
     print("Danh sách nhấn và id tương ứng: ", [(idx, name) for idx, name inu
      →enumerate(data_train.target_names)])
[]: ### bài tâp ###
     # yêu cầu: dư đoán nhãn của 1 văn bản mới. Sử dung mô hình Multinomial NB
     # qơi ý: thưc hiên code suy diễn mô hình từ tiền xử lý (bước 1) => infer (bước_{f L}
     # chú ý: không training lai - ko goi lai hàm fit
     ##############
     # code
     ###############
```

9 Quan sát độ chính xác trên tập test của GNB khi thay đổi tham số var_smoothing