Skip to Main Content

- thadiboyina v m kishore
 - 1. Convolutional Neural Networks

4

- 2. Week 2
- 3. Deep Convolutional Models

PreviousNext

- Case Studies
- Practical Advice for Using ConvNets
- Quiz

0

Quiz: Deep Convolutional Models

10 questions

Programming Assignments
 QUIZQuiz • 30 MIN30 minutes

Deep Convolutional Models

Submit your assignment

DUE DATEMay 31, 10:59 AM +04May 31, 10:59 AM +04 **ATTEMPTS**3 every 8 hours Resume **Receive grade**

8

TO PASS80% or higher **Grade**

_

Deep Convolutional Models Graded Quiz • 30 min

Due May 31, 10:59 AM +04 Deep Convolutional Models TOTAL POINTS 10

 Question 1 Which of the following do you typically see in a ConvNet? (Check all that apply.)
william of the following do you typically see in a convinct: (Check all that apply.)
1 point
Multiple POOL layers followed by a CONV layer
FC layers in the first few layers
⊠
Multiple CONV layers followed by a POOL layer
▼
FC layers in the last few layers
2. Question 2 In order to be able to build very deep networks, we usually only use pooling layers to downsize the height/width of the activation volumes while convolutions are used with "valid" padding. Otherwise, we would downsize the input of the model too quickly.
1 point C
True
\odot
False
3. Question 3 Training a deeper network (for example, adding additional layers to the network) allows the network to fit more complex functions and thus almost always results in lower training error. For this question, assume we're referring to "plain" networks.
1 point •
False
C
True

4. Question	4
The follo	owing equation captures the computation in a ResNet block. What goes into the two above?
$a_{[l+2]=g}$	$g(W_{[l+2]}g(W_{[l+1]}a_{[l]}+b_{[l+1]})+b_{l+2}+)+$
1 point	
-	$z^{\{[l+1]\}}z_{[l+1]}$, respectively
•	
a^{[1]}	α[/] and 0, respectively
C	
z^{[1]}2	$z_{[l]}$ and $a^{\{[l]\}}a_{[l]}$, respectively
O	
0 and a	$\{[l]\}a_{[l]},$ respectively
5. Question	5
-	nes of the following statements on Residual Networks are true? (Check all that apply.)
1 point ✓	
-	o-connection makes it easy for the network to learn an identity mapping between the input output within the ResNet block.
E	
	o-connections compute a complex non-linear function of the input to pass to a deeper the network.
E	
A ResNo	et with L layers would have on the order of $L^{\wedge}2L_2$ skip connections in total.
V	
Using a	skip-connection helps the gradient to backpropagate and thus helps you to train deeper
6. Question	6
Suppose	be you have an input volume of dimension $n_H n_H \times n_W n_W \times n_C n_C$. Which of the g statements you agree with? (Assume that "1x1 convolutional layer" below always uses of 1 and no padding.)

1 point ✓
You can use a 1x1 convolutional layer to reduce n_Cnc but not n_HnH , n_Wnw .
You can use a 1x1 convolutional layer to reduce n_HnH, n_Wnw, and n_Cnc.
You can use a 2D pooling layer to reduce n_HnH, n_Wnw, and n_Cnc.
You can use a 2D pooling layer to reduce n_Hn_H , n_Wn_W , but not n_Cn_C .
7. Question 7 Which ones of the following statements on Inception Networks are true? (Check all that apply.)
1 point ✓
A single inception block allows the network to use a combination of 1x1, 3x3, 5x5 convolutions and pooling.
Inception networks incorporate a variety of network architectures (similar to dropout, which randomly chooses a network architecture on each step) and thus has a similar regularizing effect as dropout.
Making an inception network deeper (by stacking more inception blocks together) <i>might</i> not hurt training set performance.
⊠
Inception blocks usually use 1x1 convolutions to reduce the input data volume's size before applying 3x3 and 5x5 convolutions.
8. Question 8 Which of the following are common reasons for using open-source implementations of ConvNets (both the model and/or weights)? Check all that apply.
1 point

A model trained for one computer vision task can usually be used to perform data augmentation even for a different computer vision task.

The same techniques for winning computer vision competitions, such as using multiple crops at test time, are widely used in practical deployments (or production system deployments) of ConvNets.
It is a convenient way to get working with an implementation of a complex ConvNet architecture.
▼
Parameters trained for one computer vision task are often useful as pretraining for other computer vision tasks.
9.
Question 9 (Worng Answer) In Depthwise Separable Convolution you:
1 point
The final output is of the dimension $n_{out} \times n_{out} \times n_{out} \times n_{out} \times n_{c} = n_{c} =$
For the "Depthwise" computations each filter convolves with only one corresponding color channel of the input image.
You convolve the input image with a filter of $n_f n_f x n_c n_c x n_c n_c$ where $n_c n_c$ acts as the depth of the filter ($n_c n_c$ is the number of color channels of the input image).
You convolve the input image with n_cn_c number of $n_fn_f \times n_fn_f$ filters (n_cn_c is the number of color channels of the input image).
The final output is of the dimension $n_{out} n_{out} x n_{out} n_{out} x n^{'}_{c} n_{c'}$ (where $n^{'}_{c} n_{c'}$ is the number of filters used in the previous convolution step).
Perform one step of convolution.
For the "Depthwise" computations each filter convolves with all of the color channels of the input image.

Perform two steps of convolution.

10.

Question 10 (Wrong Answer)

Fill in the missing dimensions shown in the image below (marked W, Y, Z).

MobileNet v2 Bottleneck

1 point

O

$$W = 5$$
, $Y = 20$, $Z = 5$

◉

$$W = 30, Y = 30, Z = 5$$

 \bigcirc

$$W = 5$$
, $Y = 30$, $Z = 20$

О

$$W = 30, Y = 20, Z = 20$$

I, **VENKAT MURALI KISHORE THADIBOYINA**, understand that submitting another's work as my own can result in zero credit for this assignment. Repeated violations of the Coursera Honor Code may result in removal from this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code SaveSubmit