Example of RR with Time Quantum = 4

Process	Burst Time			
P_1	24			
P_2	3			
P_{2}	3			

• The Gantt chart is:

	P ₁	P ₂	P ₃	P ₁				
0		4	7. 1	0 1	4	18	22 2	6 30

- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- \bullet q usually 10ms to 100ms, context switch < 10 usec

R 49 others

Dhanraj Pardhi left

- CPU scheduling more complex when multiple CPUs are available
- · Homogeneous processors within a multiprocessor
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing
- Symmetric multiprocessing (SMP) each processor is selfscheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - · Currently, most common
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity
 - · hard affinity
 - Variations including processor sets

anjali mahajan

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing
- Symmetric multiprocessing (SMP) each processor is selfscheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - · Currently, most common
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity
 - · hard affinity
 - · Variations including processor sets

anj<mark>ali mahajan</mark>

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

18

anjali mahajan

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive)
 - · background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - · background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

