Máquinas de Vetores de Suporte (SVM)

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br github.com/andrehochuli/teaching

Plano de Aula

- Discussões Iniciais
- Classificação Binária vs Multi-classe
- SVM
- Exercícios

Discussões Iniciais

Naive Bayes Decision Tree KNN Credit **Buys** Student Rating Income computer high YES Outlook medium NO **Atributos** medium NO high YES Independ. Sunny `Rain high Overcast NO medium yes YES Humidity Wind K=3 (▲ ▲ ■) Healthy Cancer Weak Normal Strong $s_1 = 0.61$ $\bar{x}_2 = 2.8$ $s_2 = 0.82$ Ńο

Classificação Multi-Classes é implícita

- Os modelos vistos até agora, trabalham implicitamente com problemas multi-classes exclusivamente pela natureza de seus algoritmos
 - Vizinhança
 - Probabilísticos

- Mas e quando o modelo é naturalmente binário?
 - SVM
 - RNA

- One-vs-All (OVA) ou One-vs-Rest (OVR)
 - Modelo 1:- [Green] vs [Red, Blue]
 - Modelo 2:- [Blue] vs [Green, Red]
 - Modelo 3:- [Red] vs [Blue, Green]
- Predict: Max(Modelo 1, Modelo 2, Modelo 3)

- One-vs-One
 - Número de Modelos: N* (N-1)/2

- Vladimir Vapnik (1979)
- Binário Não Probabilístico
- Define um hiperplano de separação das classes
 - +1 e -1
- Parâmetros: C (Regularização) e Kernel.

• Qual o melhor Hiperplano?

• Definição da Margem

- Definição da Margem
 - f(x) = w.x + b
 - w = pesos
 - x = Amostras
 - b = bias
 - Logo y(x) =

$$y(x) = \begin{cases} +1, se \ wx + b > 0 \\ -1, se \ wx + b < 0 \end{cases}$$

Treinamento: Otimizar 'W' e 'b'

$$wx_a + b = +1$$

$$wx_b + b = -1$$

$$w(x_a - x_b) = 2$$

$$w(x_a - x_b) = \frac{2}{\|w\|}$$

• Tem-se então a otimização de uma função quadrática, dada a restrição:

$$y_i(w, x_i + b) \ge 1, i = 1, \dots n$$

$$x_i, i = 1, \dots n, \text{ conjunto de padrões}$$

$$y_i = \{-1, +1\}, i = 1, \dots n, \text{ respectivas classes}$$
L(w, b, α) = $\frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i (y_i(wx_i + b) - 1)$

SVM Linear (Margens Suaves)

- Presença de ruídos ou outliers
- Solução: Suavização (Folga)
 - C: Define a folga (Definido experimentalmente)

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

$$y_i(wx_i+b)\geq 1-\widehat{\xi_i}$$

SVM Não Linear

• E quando os dados não são linearmente separáveis?

SVM Não Linear

- Encontrar uma transformação não linear (Φ) tal que $R^N \to R^M$ (M > N)
 - Teorema de Cover

$$\frac{1}{2}\|w\|^2+C\sum \xi_i$$

$$y_i(w \cdot \overrightarrow{\mathbf{\Phi}}(x_i) + b) \ge 1 - \xi_i, \forall x_i$$
$$\xi_i \ge 0$$

SVM Não Linear

Kernel Linear

- Non-Linear Kernels
 - Polinomiais

$$\left(\delta(x_i,x_j)+k\right)^d$$

Gaussianos ou RBF

$$\exp(-\sigma.\|x_i-x_j\|^2)$$

linear kernel

polynomial kernel

RBF kernel

Considerações Finais

- Vantagens
 - Se adaptam bem a problemas complexos
 - Pouca parametrização ('C')
- Desvantagens
 - Otimização pode ser demasiadamente complexa
 - 'w', 'b' e Kernel podem demorar a convergir
 - Bases Volumosas ou Muitas Classes
 - Modelo Caixa-preta (Interpretabilidade reduzida)