Math 104 HW11

Neo Lee

11/24/2023

Exercise 29.2

Proposition 1. $|\cos x - \cos y| \le |x - y|$ for all $x, y \in \mathbb{R}$.

Proof. Notice that the inequality looks similar to the slope of the function $\cos x$ evaluated on the interval [x, y].

Since $\cos x$ is continuous and differentiable on \mathbb{R} , by mean value value theorem, there exists $c \in (x, y)$ such that

$$\frac{\cos x - \cos y}{x - y} = \cos'(c)$$
$$\frac{\cos x - \cos y}{x - y} = -\sin(c).$$

Then notice that $|\sin(c)| \le 1$ for all $c \in \mathbb{R}$, so we have for all $x, y \in \mathbb{R}$,

$$\left| \frac{\cos x - \cos y}{x - y} \right| = |\sin(c)|$$

$$\left| \frac{\cos x - \cos y}{x - y} \right| \le 1$$

$$\left| \cos x - \cos y \right| \le |x - y|.$$

Exercise 29.5

Proposition 2. Let f be defined on \mathbb{R} , and suppose $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$, then f is a constant function.

Proof. Fix arbitrary $y \in \mathbb{R}$, then we have for all $x \in \mathbb{R}$,

$$|f(x) - f(y)| \le (x - y)^2$$
$$\left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y|.$$

Since $\lim_{x\to y} |x-y| = 0$, for all $\epsilon > 0$, there exists $\delta > 0$ such that $|x-y| < \delta$ implies $|x-y| < \epsilon$. Then we have for all $x \in \mathbb{R}$ such that $|x-y| < \delta$,

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y| < \epsilon,$$

and

$$\lim_{x \to y} \left| \frac{f(x) - f(y)}{x - y} \right| = 0.$$

Then by definition of derivative, we have f'(y) = 0. Since y is arbitrary, we have f'(x) = 0 for all $x \in \mathbb{R}$. Then by Corollary 29.4, we have f is a constant function.

Exercise 29.11

Proposition 3. $\sin x \le x$ for all $x \ge 0$.

Proof. Notice $x - \sin x$ is differentiable on $[0, \infty)$ because both x and $\sin x$ are differentiable on $[0, \infty)$. Then we have for all $x \ge 0$,

$$(x - \sin x)' = 1 - \cos x$$
$$(x - \sin x)' = 1 - \cos x \ge 0.$$

Then by Corollary 29.7, we have $x - \sin x$ is increasing on $[0, \infty)$, so for $x \ge 0$, we have $x - \sin x \ge 0$ because $x - \sin x = 0$ for x = 0. Then we have for all $x \ge 0$, $\sin x \le x$.

Exercise 29.18

Proposition 4. Let f be differentiable on \mathbb{R} with $a = \sup\{|f'(x): x \in \mathbb{R}|\} < 1$.

- (a) Select $s_0 \in \mathbb{R}$ and define $s_n = f(s_{n-1})$ for $n \ge 1$. Thus $s_1 = f(s_0)$, $s_2 = f(s_1)$, etc. Then (s_n) is a convergent sequence.
- **(b)** f has a fixed point, i.e., f(s) = s for some $s \in \mathbb{R}$.

Proof. (a) Since f is differentiable and hence continuous on \mathbb{R} , there exists c between s_n and s_{n-1} such that

$$\frac{f(s_n) - f(s_{n-1})}{s_n - s_{n-1}} = f'(c).$$

Then, since $|f'(c)| \le a < 1$, we have for all $n \in \mathbb{N}$.

$$|s_{n+1} - s_n| = |f(s_n) - f(s_{n-1})| = |f'(c)||s_n - s_{n-1}| \le a|s_n - s_{n-1}|.$$

In particular, $|s_{n+1} - s_n| \le a^n |(s_1 - s_0)|$. Therefore, without loss of generality, for some $n > m \in \mathbb{N}$,

$$|s_n - s_m| = |(s_n - s_{n-1}) + (s_{n-1} - s_{n-1}) \cdots + (s_{m+1} - s_m)|$$

$$|s_n - s_m| \le |s_n - s_{n-1}| + |s_{n-1} - s_{n-1}| \cdots + |s_{m+1} - s_m|$$

$$|s_n - s_m| \le a^{n-1}|(s_1 - s_0)| + a^{n-2}|(s_1 - s_0)| \cdots + a^m|(s_1 - s_0)|$$

$$|s_n - s_m| \le |(s_1 - s_0)| \sum_{k=m}^{n-1} a^k$$

$$|s_n - s_m| \le \lim_{n \to \infty} |(s_1 - s_0)| \sum_{k=m}^{n-1} a^k = a^m \frac{|(s_1 - s_0)|}{1 - a}.$$

Now notice

$$\lim_{m \to \infty} a^m \frac{|(s_1 - s_0)|}{1 - a} = 0,$$

so there exists $N \in \mathbb{N}$ such that for all m > N,

$$a^m \frac{|(s_1 - s_0)|}{1 - a} < \epsilon,$$

therefore, for all $n \geq m > N$,

$$|s_n - s_m| < \epsilon$$
.

Then (s_n) is a Cauchy sequence hence a convergent sequence.

(b) Since (s_n) is a convergent sequence, there exists $s \in \mathbb{R}$ such that

$$\lim_{n \to \infty} s_n = s.$$

Then since f is continuous, we have

$$\lim_{n \to \infty} f(s_n) = f(s).$$

Now recall that $s_{n+1} = f(s_n)$ for all $n \ge 1$, so we have

$$s = \lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} f(s_n) = f(s).$$

Exercise 30.2

Find the following limits if they exist,

(a)
$$\lim_{x\to 0} \frac{x^3}{\sin x - x}$$

(b)
$$\lim_{x\to 0} \frac{\tan x - x}{x^3}$$

(c)
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$$

(d)
$$\lim_{x\to 0} (\cos x)^{1/x^2}$$

Solution.

(a)

$$\lim_{x \to 0} \frac{x^3}{\sin x - x} = \lim_{x \to 0} \frac{3x^2}{\cos x - 1}$$

$$= \lim_{x \to 0} \frac{6x}{-\sin x}$$

$$= \lim_{x \to 0} \frac{6}{-\cos x}$$

$$= -6.$$

(b)

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2}$$

$$= \lim_{x \to 0} \frac{2 \sec^2 x \tan x}{6x}$$

$$= \lim_{x \to 0} \frac{-4 \sec^2 x + 6 \sec^4 x}{6}$$

$$= \frac{1}{3}.$$

(c)

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x}$$

$$= \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x}$$

$$= 0.$$

(d)

$$\lim_{x \to 0} \lim_{x \to 0} (\cos x)^{1/x^2} = \lim_{x \to 0} e^{\ln(\cos x)/x^2}.$$

Now,

$$\lim_{x_t \to 0} \frac{\ln(\cos x)}{x^2} = \lim_{x \to 0} \frac{-\tan x}{2x}$$
$$= \lim_{x \to 0} \frac{-\sec^2 x}{2}$$
$$= -\frac{1}{2}.$$

Since e^x is continuous, we have

$$\lim_{x \to 0} \lim_{x \to 0} (\cos x)^{1/x^2} = \lim_{x \to 0} e^{\ln(\cos x)/x^2} = e^{-1/2}.$$

Exercise 30.5

Find the limits

(a)
$$\lim_{x\to 0} (1+2x)^{1/x}$$

(b)
$$\lim_{y\to\infty} (1+\frac{2}{y})^y$$

(c)
$$\lim_{x\to\infty} (e^x + x)^{1/x}$$

Solution.

(a)

$$\lim_{x \to 0} (1 + 2x)^{1/x} = \lim_{x \to 0} e^{\ln(1 + 2x)/x}.$$

Now

$$\lim_{x \to 0} \frac{\ln(1+2x)}{x} = \lim_{x \to 0} \frac{2}{1+2x}$$
$$= 2.$$

Since e^x is continuous, we have

$$\lim_{x \to 0} (1 + 2x)^{1/x} = \lim_{x \to 0} e^{\ln(1 + 2x)/x} = e^2.$$

(b)

$$\lim_{y \to \infty} (1 + \frac{2}{y})^y = \lim_{y \to \infty} e^{y \ln(1 + \frac{2}{y})}.$$

Now,

$$\lim_{y \to \infty} y \ln(1 + \frac{2}{y}) = \lim_{y \to \infty} \frac{\ln(1 + \frac{2}{y})}{\frac{1}{y}}$$

$$= \lim_{y \to \infty} \frac{-2}{\frac{y^2(1 + 2/y)}{\frac{-1}{y^2}}}$$

$$= \lim_{y \to \infty} \frac{2}{1 + 2/y}$$

$$= 2.$$

Since e^x is continuous, we have

$$\lim_{y\to\infty}(1+\frac{2}{y})^y=\lim_{y\to\infty}e^{y\ln(1+\frac{2}{y})}=e^2.$$

(c)
$$\lim_{x \to \infty} (e^x + x)^{1/x} = \lim_{x \to \infty} e^{\ln(e^x + x)/x}.$$

Now,

$$\lim_{x \to \infty} \frac{\ln(e^x + x)}{x} = \lim_{x \to \infty} \frac{e^x + 1}{e^x + x}$$

$$= \lim_{x \to \infty} \frac{e^x}{e^x + x} + \lim_{x \to \infty} \frac{1}{e^x + x}$$

$$= \lim_{x \to \infty} \frac{e^x}{e^x + 1} + 0$$

$$= \lim_{x \to \infty} \frac{e^x}{e^x}$$

$$= 1.$$

Since e^x is continuous, we have

$$\lim_{x \to \infty} (e^x + x)^{1/x} = \lim_{x \to \infty} e^{\ln(e^x + x)/x} = e^1 = e.$$