

compactness and accumulation points of nets

Canonical name CompactnessAndAccumulationPointsOfNets

Date of creation 2013-03-22 18:37:50 Last modified on 2013-03-22 18:37:50 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 7

Author azdbacks4234 (14155)

Entry type Theorem Classification msc 54A20

Related topic Net

Related topic Compact

Related topic AccumulationPointsAndConvergentSubnets

Theorem. A topological space X is compact if and only if every net in X has an accumulation point.

Proof. Suppose X is compact and let $(x_{\alpha})_{\alpha \in A}$ be a net in X. For each $\alpha \in A$, put $E_{\alpha} = \{x_{\beta} : \beta \geq \alpha\}$; the collection $\{\overline{E_{\alpha}} : \alpha \in A\}$ of closed subsets of X has the finite intersection property, for given $\alpha_1, \ldots, \alpha_n \in A$, because A is directed, there exists $\beta \in A$ satisfying $\beta \geq \alpha_i$ for each $i \in \{1, \ldots, n\}$, so that $x_{\beta} \in \bigcap_{i=1}^n \overline{E_{\alpha_i}}$. Therefore, by compactness, $\bigcap_{\alpha \in A} \overline{E_{\alpha}} \neq \emptyset$; let x be a point of this intersection. If U is any open subset of X and $\alpha \in A$, then because $x \in \overline{E_{\alpha}}$, $E_{\alpha} \cap U \neq \emptyset$, and thus there exists $\beta \geq \alpha \in A$ for which $x_{\beta} \in U$. It follows that x is an accumulation point of (x_{α}) . For the converse, assume that X fails to be compact, and let $\{U_i : i \in I\}$ be an open cover of X with no finite subcover. If B is the set of finite subsets of I, then B is directed by inclusion. For each set $S \in B$, let x_S be a point in the complement of $\bigcup_{i \in S} U_i$. We contend that the net $(x_S)_{S \in B}$ has no accumulation points; indeed, given $x \in X$, we may select $i_0 \in I$ such that $x \in U_{i_0}$; if $x \in B$ is such that $x \in I$ is an accumulation points.

Corollary. The following conditions on a topological space X are equivalent:

- 1. X is compact;
- 2. every net in X has an accumulation point;
- 3. every net in X has a convergent subnet;

Proof. The preceding theorem establishes the equivalence of (1) and (2), while that of (2) and (3) is established in the entry on accumulation points and convergent subnets.