#### **ACM 100b**

#### Convergence of series solutions for ODEs

Dan Meiron

Caltech

January 19, 2014

#### From last section

- We discussed series for solving linear ODE's
- We can then expand term by term,
- Then match like powers of  $(x x_0)^n$
- And finally derive a recursion relation.
- We can write this in general as follows for the ODE

$$y'' + p(x)y' + q(x)y = 0$$

$$(n+1)(n+2)a_{n+2} + \sum_{k=0}^{n} (n-k+1)p_k a_{n-k+1} + \sum_{k=0}^{n} q_k a_{n-k} = 0. \qquad n = 0, 1, 2, ...$$

- Recall  $a_0$  and  $a_1$  come from the IVP
- We can determine the remaining  $a_n$  and develop a series solution.
  - But are these series useful? We discuss this next.

January 19, 2014

### Convergence of series solutions

- In order for a series solution to be useful it must converge in some neighborhood about  $x = x_0$ .
- Consider the recursion relation we derived:

$$(n+1)(n+2)a_{n+2} + \sum_{k=0}^{n} (n-k+1)p_k a_{n-k+1} + \sum_{k=0}^{n} q_k a_{n-k} = 0. \qquad n = 0, 1, 2, \dots$$

- This cannot be solved in closed form the way we did on the previous example for the Airy equation.
- So how can we tell if the series converges?



# Ordinary points

- Suppose  $p_0(x)$  and  $q_0(x)$  are analytic in some region of the complex x-plane containing the point  $x_0$ .
- Then the series will converge in that region.
- If p(z) and q(z) are analytic about the point  $z = x_0$  then we call  $x_0$  an *ordinary point*
- Note the result is about the complex behavior of p(z) and q(z) even though  $x_0$  is on the real axis.

## Convergence of series at ordinary points

#### **Theorem**

Suppose  $z = x_0$  is an ordinary point of

$$y'' + p(x)y' + q(x)y = 0,$$

Then the general solution can be represented in the form of a series of the form

$$y(x) = a_0 y_1(x) + a_1 y_2(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

The functions  $y_1(x)$  and  $y_2(x)$  are linearly independent series solutions of the ODE. These solutions are themselves analytic about the point  $x = x_0$ . Most importantly, the radius of convergence of the series for  $y_1(x)$  and  $y_2(x)$  is at least as large as the minimum of the radii of convergence of the series that represent the coefficient functions p(x) and q(x).

## An example of series about an ordinary point

For example, consider the ODE

$$y'' + \frac{y}{1+x^2} = 0$$
  $y(0) = y_0$   $y'(0) = y_1$ .

- From the theorem above, the ODE has series solutions about the point x = 0 with a radius of convergence of at least 1.
- Now look at the the coefficient function

$$q(x) = \frac{1}{1 + x^2}$$

- It actually has finite derivatives at any point of the real x-axis.
- But it has pole singularities in the complex plane at  $x = \pm i$
- This tells us that the radius of convergence for a series solution about the point x = 0 is at least 1 in size.



## Series solutions about ordinary points

- Note you actually don't need to do any work to infer this.
- But if you go ahead and compute the series you will indeed see the radius of convergence is 1.
- In contrast recall the Airy equation we analyzed above

$$y'' = xy$$
,

- This ODE will have series solutions with infinite radii of convergence
- This is because the function q(x) = x is entire in the complex plane.
- Indeed we confirmed this by computing the series.
- But with the theorem there is no need to do that.

