RV University

School of Computer Science and Engineering

B. Tech (Hons.) Degree Examination-December 2024

Semester

: 111

Course Code : CS2801

Course Title: Probability, Statistics and Numerical Methods

Duration

: 2 Hours

Max. Marks: 30

Instructions to students:

Part-A (10 Marks): Consists of 2 Questions. Both questions are of 5 marks each. All questions are compulsory.

Part-B (20 Marks): Consists of 2 Questions. Both questions are of 10 marks each. All questions are compulsory.

The question paper includes a table of integral values for a standardized normal distribution and a table of integral values for the Chi-square distribution at the end. Please write your answers in a clean and organized manner. Answers that are not legible will not be graded.

SL No.	PART A – Max Marks (10)	Marks	L1-L6	co
1.	 a. We roll two two-sided dice, each with faces numbered 3 and 4, simultaneously and independently. We win if both dice show the same number; otherwise, we lose. Let the events be defined as follows: A: The first die shows a four. B: The second die shows a four. C: We win. 	5	L3	COI
	If both dice are equally biased towards showing a four, determine whether the event of winning is dependent on the other events. (3 Marks)	,		
	b. Suppose a six-sided fair die is rolled 5 times. The die has 6 possible outcomes, each with a probability of ½. Compute the probability of getting 1 two times, 2 one time, 3 one time, 4 zero times, five zero times, and six one time? (2 Marks)			CO2

a. The joint density of X and Y is given by $f(x,y) = \begin{cases} cxe^{-(x+2y)} & \text{for } x > 0 \text{ and } y > 0, \\ 0 & \text{otherwise.} \end{cases}$			CO2
 (i) Calculate the value of c. (1 Marks) (ii) Determine the marginal density function of X and Y. (2 Marks) 	5	L3	
b. In a random sample of 100 packages shipped by air flight, 13 had some damage. Construct the 95% confidence interval for the true proportion of the damage package. (2 Marks)			CO4
	$f(x,y) = \begin{cases} cxe^{-(x+2y)} & \text{for } x > 0 \text{ and } y > 0, \\ 0 & \text{otherwise.} \end{cases}$ (i) Calculate the value of c. (1 Marks) (ii) Determine the marginal density function of X and Y. (2 Marks) b. In a random sample of 100 packages shipped by air flight, 13 had some damage. Construct the 95% confidence interval for the	$f(x,y) = \begin{cases} cxe^{-(x+2y)} & \text{for } x > 0 \text{ and } y > 0, \\ 0 & \text{otherwise.} \end{cases}$ (i) Calculate the value of c . (1 Marks) (ii) Determine the marginal density function of X and Y . (2 Marks) b. In a random sample of 100 packages shipped by air flight, 13 had some damage. Construct the 95% confidence interval for the	$f(x,y) = \begin{cases} cxe^{-(x+2y)} & \text{for } x > 0 \text{ and } y > 0, \\ 0 & \text{otherwise.} \end{cases}$ (i) Calculate the value of c. (1 Marks) (ii) Determine the marginal density function of X and Y. (2 Marks) b. In a random sample of 100 packages shipped by air flight, 13 had some damage. Construct the 95% confidence interval for the

Sl. No.		PART B	– Max Ma	rks (20)			Marks	L1-L6	co
1.	a. Two researce a group of 300 various intellig			CO4					
	Researchers	Researchers Below Average Above Average Genius							
	X	86	60	44	10				
	Y	40	33	25	2				
	Analyse and of the two reseas square.) (4 M b. Compute the	10	L4						
	decimals, using of $x_0 = 1$. (3)			CO					
	c. Evaluate \int_4^5 6. (3 Marks)		¥	CO					
2.	a. A company claims that its bulbs are superior to those of its main competitor. If a study showed that a sample of 40 of its bulbs has a mean lifetime of 647 hrs of continuous use with a standard deviation of 27 hours. While another sample of 40 bulbs made by its main competitor had a mean life time of 638 hrs of continuous use with a standard deviation of 31 hrs. Test the significance between the difference of two means at 5% level. (3 Marks)								CO

Y \(\) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Spent on reddit	veen time		ing adults. ation coeff	the correla	'twitter'' Calculate
20-30 3 2 2 - 1 (4 Marks) c. The following table shows the data on the number of people (in thousands) who went to watch the movies "Avatar" and "Black Panther: Wakanda Forever" on a given day for Delhi and Chennai. Calculate the Spearman correlation coefficient between the two					201		1	1	X→
30-40 - 2 2 1 (4 Marks) c. The following table shows the data on the number of people (in thousands) who went to watch the movies "Avatar" and "Black Panther: Wakanda Forever" on a given day for Delhi and Chennai. Calculate the Spearman correlation coefficient between the two					3	2	1	4	10-20
c. The following table shows the data on the number of people (in thousands) who went to watch the movies "Avatar" and "Black Panther: Wakanda Forever" on a given day for Delhi and Chennai. Calculate the Spearman correlation coefficient between the two		L4	10		-	2	2	3	20-30
c. The following table shows the data on the number of people (in thousands) who went to watch the movies "Avatar" and "Black Panther: Wakanda Forever" on a given day for Delhi and Chennai. Calculate the Spearman correlation coefficient between the two				0.0326	1	2	2	-	30-40
					,	the data or		_	
cities for the "Avatar-Panther" movie enthusiasts.	CO			r'' and ''Black elhi and Chennai.	es "Avata day fo r De	on a given o	Forever'' o	Wakanda	Panther:
X 64 75 50 64 80 75 40 55 64 Y 58 68 45 81 60 68 48 50 70	CO			r'' and ''Black elhi and Chennai.	es "Avata day for De ficient bet	on a given o lation coeff	Forever'' o man corre	Wakanda le the Spear	Panther: Calculate

Course Outcomes

- Understand and demonstrate the essential concepts of probability theory and the principles of conditional probability.
- 2. Apply probability distribution functions to solve real world problems.
- Apply the method of least squares to fit a data set, and interpret the results in the context of the problem at
- 4. Perform hypothesis testing using methods like critical value, p-value and chi-square tests for goodness of fit and independence of attributes.
- Implement various numerical methods to solve problems in engineering applications.

				Mar	ks Distrib	ution				
LI	L2	L3	L4	L5	L6	COI	CO2	CO3	CO4	CO5
-	-	10	20			3	5	7	9	6