Feedback — XV. Anomaly Detection

Help

You submitted this quiz on **Mon 18 Aug 2014 12:36 PM PDT**. You got a score of **5.00** out of **5.00**.

Question 1

For which of the following problems would anomaly detection be a suitable algorithm?

Your Answer		Score	Explanation
Given data from credit card transactions, classify each transaction according to type of purchase (for example: food, transportation, clothing).	~	0.25	Anomaly detection is not appropriate for a traditional classification problem.
✓ Given a dataset of credit card transactions, identify unusual transactions to flag them as possibly fraudulent.	~	0.25	By modeling "normal" credit card transactions, you can then use anomaly detection to flag the unusuals ones which might be fraudulent.
From a large set of primary care patient records, identify individuals who might have unusual health conditions.	~	0.25	Since you are just looking for unusual conditions instead of a particular disease, this is a good appliation of anomaly detection.
Given an image of a face, determine whether or not it is the face of a particular famous individual.	~	0.25	This problem is more suited to traditional supervised learning, as you want both famous and non-famous images in the training set.
Total		1.00 / 1.00	

Question 2

You have a 1-D dataset $\{x^{(1)},\dots,x^{(m)}\}$ and you want to detect outliers in the dataset. You first plot the dataset and it looks like this:

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

Your Answer		Score	Explanation
$\stackrel{ullet}{\mu_1}=-3, \sigma_1^2=4$	~	1.00	This is correct, as the data are centered around -3 and tail most of the points lie in [-5, -1].
$\mu_1=-6,\sigma_1^2=4$			
$\mu_1=-6,\sigma_1^2=2$			
$\stackrel{\bigcirc}{\mu_1}=-3, \sigma_1^2=2$			
Total		1.00 / 1.00	

Question 3

Suppose you have trained an anomaly detection system that flags anomalies when p(x) is less than ε , and you find on the cross-validation set that it has too many false positives (flagging too many things as anomalies). What should you do?

Your Answer	Score	Explanation
lacktriangle Decrease $arepsilon$	1.00	By decreasing $arepsilon$, you will flag fewer anomalies, as desired.

lacksquare Increase arepsilon

Total

1.00 / 1.00

Question 4

Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses $p(x)=\prod_{j=1}^n p(x_j;\mu_j,\sigma_j^2)$. You have two features $x_1=0$ vibration intensity, and $x_2=0$ heat generated. Both x_1 and $x_2=0$ take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1\approx x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_3 should you create to capture these types of anomalies:

Your Answer	Score	Explanation
\bullet $x_3=rac{x_1}{x_2}$	1.00	This is correct, as it will take on large values for anomalous examples and smaller values for normal examples.
$x_3=x_1 imes x_2^2$		
$\frac{x_3-x_1\wedge x_2}{}$		
$x_3=x_1^2 imes x_2^2$		
0		
$x_3=x_1 imes x_2$		
Total	1.00 /	
	1.00	

Question 5

Which of the following are true? Check all that apply.

Your Answer	Score	Explanation
When developing an anomaly detection system, it is often useful to select an appropriate numerical performance metric to evaluate the effectiveness of the learning algorithm.	✓ 0.25	You should have a good evaluation metric, so you can evaluate changes to the model such as new features.
If you are developing an anomaly detection system, there is no way to make use of labeled data to improve your system.	✔ 0.25	Labeled data are usefull in cross-validation and testing for evaluating the system and setting the parameter ϵ .
When evaluating an anomaly detection algorithm on the cross validation set (containing some positive and some negative examples), classification accuracy is usually a good evaluation metric to use.	✔ 0.25	Classification accuracy is a poor metric because of the skewed classes in the cross-validation set (almost all examples are negative).
When choosing features for an anomaly detection system, it is a good idea to look for features that take on unusually large or small values for (mainly the) anomalous examples.	✔ 0.25	These are good features, as they will lie outside the learned model, so you will have small values for $p(\boldsymbol{x})$ with these examples.
Total	1.00 / 1.00	