Econ 2148, spring 2019 Instrumental variables I, origins and binary treatment case

Maximilian Kasy

Department of Economics, Harvard University

Agenda instrumental variables part I

- Origins of instrumental variables: Systems of linear structural equations
- Strong restriction: Constant causal effects.
- Modern perspective: Potential outcomes, allow for heterogeneity of causal effects
- Binary case:
 - Keep IV estimand, reinterpret it in more general setting: Local Average Treatment Effect (LATE)
 - Keep object of interest average treatment effect (ATE): Partial identification (Bounds)

Agenda instrumental variables part II

- Continuous treatment case:
 - Restricting heterogeneity in the structural equation: Nonparametric IV (conditional moment equalities)
 - Restricting heterogeneity in the first stage: Control functions
 - Linear IV: Continuous version of LATE

Takeaways for this part of class

- Instrumental variables methods were invented jointly with the idea of economic equilibrium.
- Classic assumptions impose strong restrictions on heterogeneity: same causal effect for every unit.
- Modern formulations based on potential outcomes relax this assumption.
- With effect heterogeneity, average treatment effects are not point-identified any more.
- Two solutions:
 - 1. Re-interpret the classic IV-coefficient in more general setting.
 - Derive bounds on the average treatment effect.

Origins of IV: systems of structural equations

- econometrics pioneered by "Cowles commission" starting in the 1930s
- they were interested in demand (elasticities) for agricultural goods
- introduced systems of simultaneous equations
 - outcomes as equilibria of some structural relationships
 - goal: recover the slopes of structural relationships
 - from observations of equilibrium outcomes and exogenous shifters

System of structural equations

$$Y = A \cdot Y + B \cdot Z + \varepsilon$$
,

- Y: k-dimensional vector of equilibrium outcomes
- Z: I-dimensional vector of exogenous variables
- \blacktriangleright A: unknown $k \times k$ matrix of coefficients of interest
- ▶ B: unknown k × I matrix
- \triangleright ε : further unobserved factors affecting outcomes

Example: supply and demand

$$Y = (P, Q)$$

 $P = A_{12} \cdot Q + B_1 \cdot Z + \varepsilon_1$ demand
 $Q = A_{21} \cdot P + B_2 \cdot Z + \varepsilon_2$ supply

- ▶ demand function: relates prices to quantity supplied and shifters Z and ε_1 of demand
- ▶ supply function relates quantities supplied to prices and shifters Z and ε_2 of supply.
- does not really matter which of the equations puts prices on the "left hand side."
- price and quantity in market equilibrium: solution of this system of equations.

Reduced form

- ▶ solve equation $Y = A \cdot Y + B \cdot Z + \varepsilon$ for Y as a function of Z and ε
- ▶ bring $A \cdot Y$ to the left hand side, pre-multiply by $(I A)^{-1}$ ⇒

$$Y = C \cdot Z + \eta$$
 "reduced form"
 $C := (I - A)^{-1} \cdot B$ reduced form coefficients
 $\eta := (I - A)^{-1} \cdot \varepsilon$

- ▶ suppose $E[\varepsilon|Z] = 0$ (ie., Z is randomly assigned)
- ▶ then we can **identify** C from

$$E[Y|Z] = C \cdot Z$$
.

Exclusion restrictions

- suppose we know C
- what we want is A, possibly B
- ▶ problem: $k \times l$ coefficients in $C = (l A)^{-1} \cdot B$ $k \times (k + l)$ coefficients in A and B
- ▶ ⇒ further assumptions needed
- exclusion restrictions: assume that some of the coefficients in B or A are = 0.
- Example: rainfall affects grain supply but not grain demand

Supply and demand continued

- suppose Z is (i) random, $E[\varepsilon|Z] = 0$
- ▶ and (ii) "excluded" from the demand equation $\Rightarrow B_{11} = 0$
- by construction, diag(A) = 0
- therefore

$$Cov(Z, P) = Cov(Z, A_{12} \cdot Q + B_1 \cdot Z + \varepsilon_1) = A_{12} \cdot Cov(Z, Q),$$

▶ ⇒ the slope of demand is identified by

$$A_{12} = \frac{\operatorname{Cov}(Z, P)}{\operatorname{Cov}(Z, Q)}.$$

Z is an instrumental variable

Remarks

- historically, applied researchers have not been very careful about choosing Z for which
 - (i) randomization and (ii) exclusion restriction are well justified.
- since the 1980s, more emphasis on credibility of identifying assumptions
- some additional problematic restrictions we imposed:
 - 1. linearity
 - 2. constant (non-random) slopes
 - 3. heterogeneity ε is k dimensional and enters additively
- ⇒ causal effects assumed to be the same for everyone
- next section: framework which does not impose this

Modern perspective: Treatment effects and potential outcomes

- coming from biostatistics / medical trials
- potential outcome framework: answer to "what if" questions
- two "treatments:" D = 0 or D = 1
- eg. placebo vs. actual treatment in a medical trial
- Y_i person i's outcome eg. survival after 2 years
- potential outcome Y_i⁰: what if person i would have gotten treatment 0
- potential outcome Y_i¹: what if person i would have gotten treatment 1
- question to you: is this even meaningful?

- ► causal effect / treatment effect for person i: $Y_i^1 Y_i^0$.
- average causal effect / average treatment effect:

$$ATE = E[Y^1 - Y^0],$$

expectation averages over the population of interest

The fundamental problem of causal inference

- we never observe both Y^0 and Y^1 at the same time
- one of the potential outcomes is always missing from the data
- treatment D determines which of the two we observe
- formally:

$$Y = D \cdot Y^1 + (1 - D) \cdot Y^0.$$

Selection problem

- ▶ distribution of Y^1 among those with D = 1 need not be the same as the distribution of Y^1 among everyone.
- in particular

$$E[Y|D=1] = E[Y^{1}|D=1] \neq E[Y^{1}]$$

$$E[Y|D=0] = E[Y^{0}|D=0] \neq E[Y^{0}]$$

$$E[Y|D=1] - E[Y|D=0] \neq E[Y^{1} - Y^{0}] = ATE.$$

Randomization

ightharpoonup no selection $\Leftrightarrow D$ is random

$$(Y^0,Y^1)\perp D.$$

in this case,

$$E[Y|D=1] = E[Y^{1}|D=1] = E[Y^{1}]$$

$$E[Y|D=0] = E[Y^{0}|D=0] = E[Y^{0}]$$

$$E[Y|D=1] - E[Y|D=0] = E[Y^{1} - Y^{0}] = ATE.$$

- can ensure this by actually randomly assigning D
- ▶ independence ⇒ comparing treatment and control actually compares "apples with apples"
- this gives empirical content to the "metaphysical" notion of potential outcomes!

Instrumental variables

- recall: simultaneous equations models with exclusion restrictions
- → instrumental variables

$$\beta = \frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}.$$

- we will now give a new interpretation to β
- using the potential outcomes framework, allowing for heterogeneity of treatment effects
- "Local Average Treatment Effect" (LATE)

6 assumptions

1.
$$Z \in \{0,1\}, D \in \{0,1\}$$

2.
$$Y = D \cdot Y^1 + (1 - D) \cdot Y^0$$

3.
$$D = Z \cdot D^1 + (1 - Z) \cdot D^0$$

4.
$$D^1 \geq D^0$$

5.
$$Z \perp (Y^0, Y^1, D^0, D^1)$$

6.
$$Cov(Z, D) \neq 0$$

Discussion of assumptions

Generalization of randomized experiment

- D is "partially randomized"
- instrument Z is randomized
- D depends on Z, but is not fully determined by it
- 1. Binary treatment and instrument:

both D and Z can only take two values results generalize, but things get messier without this

- 2. Potential outcome equation for Y: $Y = D \cdot Y^1 + (1 D) \cdot Y^0$
 - exclusion restriction: Z does not show up in the equation determining the outcome.
 - "stable unit treatment values assumption" (SUTVA): outcomes are not affected by the treatment received by other units.
 excludes general equilibrium effects or externalities.

- 3. Potential outcome equation for D: $D = Z \cdot D^1 + (1 Z) \cdot D^0$ SUTVA; treatment is not affected by the instrument values of other units
- 4. No defiers: $D^1 \geq D^0$
 - four possible combinations for the potential treatments (D^0, D^1) in the binary setting
 - $D^1 = 0, D^0 = 1$, is excluded
 - ▶ ⇔ monotonicity

Table: No defiers

D^0	D^1
0	0
0	1
1	1
1	0
	-

- 5. Randomization: $Z \perp (Y^0, Y^1, D^0, D^1)$
 - Z is (as if) randomized.
 - in applications, have to justify both exclusion and randomization
 - no reverse causality, common cause!
- 6. Instrument relevance: $Cov(Z, D) \neq 0$
 - guarantees that the IV estimand is well defined
 - there are at least some compliers
 - testable
 - near-violation: weak instruments

Graphical illustration

Illustration explained

- 3 groups, never takers, compliers, and always takers
- by randomization of Z: each group represented equally given Z = 0 / Z = 1
- depending on group: observe different treatment values and potential outcomes.
- will now take the IV estimand

$$\frac{\mathsf{Cov}(Z,Y)}{\mathsf{Cov}(Z,D)}$$

- interpret it in terms of potential outcomes: average causal effects for the subgroup of compliers
- idea of proof: take the "top part" of figure 28, and subtract the "bottom part."

Preliminary result:

If Z is binary, then

$$\frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, D)} = \frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]}.$$

Practice problem

Prove this.

Proof

Consider the covariance in the numerator:

$$Cov(Z, Y) = E[YZ] - E[Y] \cdot E[Z]$$

$$= E[Y|Z=1] \cdot E[Z] - (E[Y|Z=1] \cdot E[Z] + E[Y|Z=0] \cdot E[1-Z]) \cdot E[Z]$$

$$= (E[Y|Z=1] - E[Y|Z=0]) \cdot E[Z] \cdot E[1-Z].$$

Similarly for the denominator:

$$Cov(Z, D) = (E[D|Z = 1] - E[D|Z = 0]) \cdot E[Z] \cdot E[1 - Z].$$

▶ The $E[Z] \cdot E[1 - Z]$ terms cancel when taking a ratio

The "LATE" result

$$\frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]} = E[Y^1 - Y^0|D^1 > D^0]$$

Practice problem

Prove this.

Hint: decompose E[Y|Z=1] - E[Y|Z=0] in 3 parts corresponding to our illustration

Proof

"top part" of figure:

$$E[Y|Z=1] = E[Y|Z=1, NT] \cdot P(NT|Z=1) + E[Y|Z=1, C] \cdot P(C|Z=1) + E[Y|Z=1, AT] \cdot P(AT|Z=1) = E[Y^{0}|NT] \cdot P(NT) + E[Y^{1}|C] \cdot P(C) + E[Y^{1}|AT] \cdot P(AT).$$

- first equation relies on the no defiers assumption
- second equation uses the exclusion restriction and randomization assumptions.
- Similarly

$$E[Y|Z=0] = E[Y^{0}|NT] \cdot P(NT) +$$

 $E[Y^{0}|C] \cdot P(C) + E[Y^{1}|AT] \cdot P(AT).$

proof continued:

Taking the difference, only the complier terms remain, the others drop out:

$$E[Y|Z=1] - E[Y|Z=0] = (E[Y^1|C] - E[Y^0|C]) \cdot P(C).$$

denominator:

$$E[D|Z = 1] - E[D|Z = 0] = E[D^{1}] - E[D^{0}]$$
$$= (P(C) + P(AT)) - P(AT) = P(C).$$

▶ taking the ratio, the claim follows.

Recap

LATE result:

- take the same statistical object economists estimate a lot
- which used to be interpreted as average treatment effect
- new interpretation in a more general framework
- allowing for heterogeneity of treatment effects
- ⇒ treatment effect for a subgroup

Practice problem

Is the LATE, $E[Y^1 - Y^0|D^1 > D^0]$, a structural object?

An alternative approach: Bounds

- keep the old structural object of interest: average treatment effect
- but analyze its identification in the more general framework with heterogeneous treatment effects
- ▶ in general: we can learn something, not everything
- ▶ ⇒ bounds / "partial identification"

Same assumptions as before

- 1. $Z \in \{0,1\}, D \in \{0,1\}$
- 2. $Y = D \cdot Y^1 + (1 D) \cdot Y^0$
- 3. $D = Z \cdot D^1 + (1 Z) \cdot D^0$
- 4. $D^1 \geq D^0$
- 5. $Z \perp (Y^0, Y^1, D^0, D^1)$
- 6. $Cov(Z, D) \neq 0$

additionally:

7. Y is bounded, $Y \in [0,1]$

Decomposing ATE in known and unknown components

decompose E[Y¹]:

$$E[Y^{1}] = E[Y^{1}|NT] \cdot P(NT) + E[Y^{1}|C \vee AT] \cdot P(C \vee AT).$$

terms that are identified:

$$E[Y^{1}|C \lor AT] = E[Y|Z = 1, D = 1]$$

 $P(C \lor AT) = E[D|Z = 1]$
 $P(NT) = E[1 - D|Z = 1]$

and thus

$$E[Y^{1}|C\vee AT]\cdot P(C\vee AT)=E[YD|Z=1].$$

- Data tell us nothing about E[Y¹|NT].
 Y¹ is never observed for never takers.
- but we know, since Y is bounded, that

$$E[Y^1|NT] \in [0,1]$$

► Combining these pieces, get upper and lower bounds on $E[Y^1]$:

$$E[Y^1] \in [E[YD|Z=1],$$

 $E[YD|Z=1] + E[1-D|Z=1]].$

For Y⁰, similarly

$$E[Y^0] \in [E[Y(1-D)|Z=0],$$

 $E[Y(1-D)|Z=0] + E[D|Z=0]].$

▶ Data are uninformative about $E[Y^0|AT]$.

Practice problem

Show this.

Combining to get bounds on ATE

▶ lower bound for $E[Y^1]$, upper bound for $E[Y^0]$ ⇒ lower bound on $E[Y^1 - Y^0]$

$$E[Y^1 - Y^0] \ge E[YD|Z = 1] - E[Y(1-D)|Z = 0] - E[D|Z = 0]$$

▶ upper bound for $E[Y^1]$, lower bound for $E[Y^0]$ ⇒ upper bound on $E[Y^1 - Y^0]$

$$E[Y^1 - Y^0] \le E[YD|Z = 1] - E[Y(1-D)|Z = 0] + E[1-D|Z = 1]$$

Between randomized experiments and nothing

bounds on ATE:

$$E[Y^{1} - Y^{0}] \in [E[YD|Z = 1] - E[Y(1-D)|Z = 0] - E[D|Z = 0],$$

$$E[YD|Z = 1] - E[Y(1-D)|Z = 0] + E[1-D|Z = 1]].$$

length of this interval:

$$E[1-D|Z=1]+E[D|Z=0]=P(NT)+P(AT)=1-P(C)$$

- Share of compliers → 1
 - interval ("identified set") shrinks to a point
 - ▶ In the limit, D = Z
 - ▶ thus $(Y^1, Y^0) \perp D$ randomized experiment
- Share of compliers → 0
 - length of the interval goes to 1
 - In the limit the identified set is the same as without instrument

References

Local average treatment effect:

Angrist, J., Imbens, G., and Rubin, D. (1996).

Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91(434):444–455.

Bounds on the average treatment effect:

Manski, C. (2003). Partial identification of probability distributions. Springer Verlag, chapter 2 and 7.