1. Find the
$$\lim_{x \to +\infty} \left(\frac{x+2}{x-2} \right)^{\sin x} = \underline{1}$$

2. Find the inflection point of the curve $y = |\ln x|$ (1, 0)

3. Let
$$f(x)$$
 is derivative at x_0 , then $\lim_{h\to 0} \frac{f(x_0+2h)-f(x_0-3h)}{h} = \frac{5f'(x_0)}{h}$

4. If
$$\int_{0}^{x^{3}-1} f(t)dt = x$$
, then $f(7) = \frac{1}{12}$.

5. If
$$y = \ln(\sqrt{(\sin x + 1)^3})$$
, then $dy = \frac{3}{2} \frac{\cos x}{\sin x + 1} dx$

6. If
$$y = \frac{1}{1+2x}$$
, then $y^{(6)}(x) = (-2)^6 \frac{6!}{(1+2x)^7}$

7. If
$$f(x) = x(x-1)(x-2)(x-3)\cdots(x-2008)$$
, $f'(0) = 2008!$

8. f(x) has one-order continuous derivative, and f(0) = f'(0) = 1, find $\lim_{x \to 0} \frac{f(\sin x) - 1}{\ln f(x)} = \underline{1}$.

Solu:Limit=
$$\lim_{x\to 0} \frac{f(\sin x) - f(0)}{\sin x - 0} \frac{\sin x}{x} \frac{1}{\frac{\ln f(x) - \ln f(0)}{x - 0}} = f'(0) \cdot 1 \cdot \frac{1}{\left[\ln f(x)\right]'|_{x=0}} = 1$$

9. Find
$$\lim_{x\to 0} \left(1 + \frac{a_1^x + a_2^x + \dots + a_n^x - n}{n}\right)^{\frac{1}{x}}$$
.

Solution 1:

$$Limit = e^{\lim_{x \to 0} \frac{\ln \frac{a_1^x + a_2^x + \dots + a_n^x}{n}}{x}} = e^{\lim_{x \to 0} \frac{\frac{a_1^x \ln a_1 + a_2^x \ln a_2 + \dots + a_n^x \ln a_n}{a_1^x + a_2^x + \dots + a_n^x}}{1}$$

$$= e^{\frac{\ln a_1 + \ln a_2 + \dots + \ln a_n}{1}} = \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

Solution 2:

$$\therefore \lim_{x \to 0} \frac{a_1^x + a_2^x + \dots + a_n^x - n}{n} \cdot \frac{1}{x}$$

$$= \lim_{x \to 0} \frac{a_1^x \ln a_1 + \dots + a_n^x \ln a_n}{n} = \frac{\ln a_1 \cdot a_2 \cdot \dots \cdot a_n}{n}$$

$$= \ln \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

$$Limit = \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

10. Find
$$\lim_{n\to\infty} \left(\frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \dots + \frac{n}{(n+n)^2} \right)$$

$$\lim_{n\to\infty} \left(\frac{n}{\left(n+1\right)^2} + \frac{n}{\left(n+2\right)^2} + \dots + \frac{n}{\left(n+n\right)^2} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{\left(1 + \frac{1}{n}\right)^2} + \frac{1}{\left(1 + \frac{2}{n}\right)^2} + \dots + \frac{1}{\left(1 + \frac{n}{n}\right)^2} \right) \cdot \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{1}{\left(1 + \frac{i}{n}\right)^{2}} \right) \cdot \frac{1}{n}$$

$$= \int_{0}^{1} \frac{1}{(1+x)^2} dx$$

$$= \int_{0}^{1} \frac{1}{(1+x)^{2}} d(x+1)$$

$$= -\frac{1}{1+x}\Big|_0^1$$

$$=\frac{1}{2}$$
.

11. Find
$$\lim_{x \to +\infty} \frac{\int_0^x (\arctan t)^2 dt}{\sqrt{x^2 + 1}}$$
.

An=
$$\frac{\pi^2}{4}$$

12. Find
$$\lim_{x\to 0} \frac{e^{\sin x} - e^{x\cos x}}{x^3}.$$

$$\lim_{x\to 0}\frac{e^{\sin x}-e^{x\cos x}}{x^3}$$

$$= \lim_{x \to 0} \frac{e^{x \cos x} (e^{\sin x - x \cos x} - 1)}{x^3}$$

$$= \lim_{x \to 0} e^{x \cos x} \cdot \lim_{x \to 0} \frac{(e^{\sin x - x \cos x} - 1)}{x^3}$$

$$= \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3}$$

$$= \lim_{x \to 0} \frac{\cos x - \cos x + x \sin x}{3x^2}$$

$$=\frac{1}{3}$$

13. Find the maximum value of the sequence of $\{\sqrt[n]{n}\}$, and say the reason.

Solu:Let
$$f(x) = x^{\frac{1}{x}}$$
, $f'(x) = x^{\frac{1}{x}}(1 - \ln x)/x_2$,

so
$$f'(e) = 0$$

when 0 < x < e, f'(x) > 0, f(x) Monotonically increasing;

when x > e, f'(x) < 0, f(x) Monotonically decreasing

and
$$2 < e < 3$$
, $\sqrt{2} < \sqrt[3]{3}$,

so the maximum value of the sequence of $\sqrt[n]{n}$ is $\sqrt[3]{3}$

14. Find the point M of the curve $y = x^2 + 1$, such that the distance of M and P(5,0) is the shortest.

Solu: Let
$$|MM_0| = \rho, u = \rho^2 = y^2 + (x-5)^2 = (x^2+1)^2 + (x-5)^2$$

$$\frac{du}{dx} = 2(x^2 + 1) \cdot 2x + 2(x - 5) = 4x^3 + 6x - 10 = 0$$

We can get the unique solution $x_1 = 1$

since
$$\frac{d^2u}{dx^2} = 12x^2 + 6 > 0$$

then u Get the minimum at $x_1 = 1$ and $y_1 = 1^2 + 1 = 2$

the point M(1,2)

15. If
$$0 < x < y < \frac{\pi}{2}$$
, prove $(y-x)\cos^2 y < (\tan y - \tan x)\cos^2 y \cos^2 x < (y-x)\cos^2 x$

Proof: On interval [x, y], function $f(t) = \tan t$ satisfies the condition of Lagrange's theorem, so there exists

$$\xi \in (x, y)$$
, s.t. $\tan y - \tan x = (y - x)\sec^2 \xi = \frac{y - x}{\cos^2 \xi} \in \left(\frac{y - x}{\cos^2 x}, \frac{y - x}{\cos^2 y}\right)$

So
$$(y-x)\cos^2 y < (\tan y - \tan x)\cos^2 y \cos^2 x < (y-x)\cos^2 x$$

when $0 < x < y < \frac{\pi}{2}$, by the integral mean value theorem and monotonicity

$$(y-x)\frac{1}{\cos^2 x} < \int_{y}^{y} \frac{1}{\cos^2 t} dt = \frac{y-x}{\cos^2 \xi} = \tan y - \tan x < \frac{1}{\cos^2 y} (y-x), \xi \in [x, y]$$

16. $\varphi(x)$ has two-order continuous derivative and $\varphi(0) = 0$, and $f(x) = \begin{cases} \frac{\varphi(x)}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$

(1) Find a, such that f(x) is continuous in $(-\infty, +\infty)$; (2) Find f'(x)

Solu: (1) since f(x) is continuous in $(-\infty, +\infty)$

$$a = f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\varphi(x) - \varphi(0)}{x - 0} = \varphi'(0)$$

(2)when
$$x \neq 0$$
, $f'(x) = \frac{x\varphi'(x) - \varphi(x)}{x^2}$

and
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\varphi(x)}{x} - \varphi'(0) = \lim_{x \to 0} \frac{\varphi(x) - x\varphi'(0)}{x^2}$$

$$= \lim_{x \to 0} \frac{\varphi'(x) - \varphi'(0)}{2x} = \frac{1}{2} \varphi''(0)$$

So
$$f'(x)$$

$$\begin{cases} \frac{x\varphi'(x) - \varphi(x)}{x^2}, x \neq 0 \\ \frac{1}{2}\varphi''(0), x = 0 \end{cases}$$

17. If $f(x) = \begin{cases} \frac{e^{2x} - 1}{x}, & x \neq 0 \\ 2, & x = 0 \end{cases}$, determine f(x) and f'(x) is continuous at x = 0 or not.

Solu: since $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{e^{2x} - 1}{x} = 2 = f(0), f(x)$ continuous at x = 0

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{e^{2x} - 1}{x} - 2}{x} = \lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x^2} = \lim_{x \to 0} \frac{2e^{2x} - 2}{2x} = 2$$
when $x \neq 0$,

$$f'(x) = \frac{2xe^{2x} - (e^{2x} - 1)}{x^2}, \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2xe^{2x} - (e^{2x} - 1)}{x^2} = \lim_{x \to 0} \frac{4xe^{2x}}{2x} = 2 = f'(0)$$

so
$$f'(x)$$
 continuous at $x = 0$