Capitolul 2 Şiruri de numere reale

2.1 Şiruri cu limită, şiruri convergente

Definiție 2.1. Sir de numere reale

O funcție $f: \mathbb{N} \longrightarrow \mathbb{R}$ se numește șir de numere reale.

Convenim să notăm $f(n) = x_n, n \in \mathbb{N}$; x_n se va numi termenul de rang n al şirului.

Notația uzuală pentru un șir de numere reale este $\{x_n\}_n$ sau $(x_n)_n$.

Definiție 2.2. Şir cu limită

Spunem că șirul $(x_n)_n$ are limita

1. $x \in \mathbb{R}$ și notăm $\lim_{n \to \infty} x_n = x$ dacă

$$(\forall)\varepsilon > 0, (\exists)n_{\varepsilon} \in \mathbb{N}, (\forall)n \in \mathbb{N} : n \ge n_{\varepsilon} \Rightarrow |x_n - x| < \varepsilon;$$

3. $-\infty$ şi notăm $\lim_{n\to\infty} x_n = -\infty$ dacă

$$(\forall)M > 0, (\exists)n_M \in \mathbb{N}, (\forall)n \in \mathbb{N} : n \ge n_M \Rightarrow x_n < -M;$$

Exemplul 2.1

$$1. \lim_{n \to \infty} \frac{3n}{n+1} = 3;$$

Soluție Fie $\varepsilon > 0$. Vom determina n_{ε} astfel încât $\left| \frac{3n}{n+1} - 3 \right| < \varepsilon$, $(\forall) n \in \mathbb{N}, n \geq n_{\varepsilon}$.

Avem

$$\left|\frac{3n}{n+1} - 3\right| = \frac{3}{n+1} < \varepsilon \Longleftrightarrow n > \frac{3}{\varepsilon} - 1.$$

Alegem $n_{\varepsilon}=\left[\frac{3}{\varepsilon}-1\right]+1$. Pentru $n\in\mathbb{N},\,n\geq n_{\varepsilon}$ avem

$$\left| \frac{3n}{n+1} - 3 \right| = \frac{3}{n+1} \le \frac{3}{n_{\varepsilon} + 1} < \varepsilon.$$

◁

◁

$$2. \lim_{n \to \infty} \frac{n^2}{n+1} = \infty.$$

Soluție Fie M>0. Alegem $n_M=[M]+2$. Pentru $n\in\mathbb{N},\,n\geq n_M$ avem

$$\frac{n^2}{n+1} = n - 1 + \frac{1}{n+1} > n - 1 \ge n_M - 1 = [M] + 1 > M.$$

Propoziție 2.1

Limita unui şir, dacă există, este unică.

Dem. Fie $(x_n)_n$ un şir de numere reale care are limitele l_1 şi l_2 . Presupunem că $l_1 \neq l_2$.

Cazul $l_1,\, l_2\in\mathbb{R}$: Deoarece $l_1\neq l_2$, avem $|l_1-l_2|>0$. Cum $\lim_{n\to\infty}x_n=l_1$, rezultă că

$$(\exists) n_1 \in \mathbb{N}, \ (\forall) n \in \mathbb{N}, \ n \ge n_1 : |x_n - l_1| < \frac{|l_1 - l_2|}{2}.$$

Totodată $\lim_{n \to \infty} x_n = l_2$, de unde rezultă că

$$(\exists) n_2 \in \mathbb{N}, \ (\forall) n \in \mathbb{N}, \ n \ge n_2 : \ |x_n - l_2| < \frac{|l_1 - l_2|}{2}.$$

Dacă $n \in \mathbb{N}, n \ge \max\{n_1, n_2\}$, avem

$$x_n<\frac{l_1+l_2}{2}$$
 și $x_n>\frac{l_1+l_2}{2}$

ceea ce este absurd.

Cazul $l_1 \in \mathbb{R}, \ l_2 = \infty$: Deoarece $\lim_{n \to \infty} x_n = l_1$, rezultă că

$$(\exists)n_1 \in \mathbb{N}, (\forall)n \in \mathbb{N}, n \ge n_1 : |x_n - l_1| < 1.$$

Cum $\lim_{n \to \infty} x_n = \infty$, rezultă că

$$(\exists) n_2 \in \mathbb{N}, (\forall) n \in \mathbb{N}, n \ge n_2 : x_n > |l_1| + 1.$$

Dacă $n \in \mathbb{N}$, $n \ge \max\{n_1, n_2\}$, avem

$$x_n < l_1 + 1$$
 și $x_n > |l_1| + 1 \ge l_1 + 1$

ceea ce este absurd.

Cazul $l_1 \in \mathbb{R},\ l_2 = -\infty$: Deoarece $\lim_{n \to \infty} x_n = l_1$, rezultă că

$$(\exists)n_1 \in \mathbb{N}, (\forall)n \in \mathbb{N}, n \ge n_1 : |x_n - l_1| < 1.$$

Cum $\lim_{n\to\infty} x_n = -\infty$, rezultă că

$$(\exists) n_2 \in \mathbb{N}, (\forall) n \in \mathbb{N}, n \ge n_2 : x_n < -|l_1| - 1.$$

Dacă $n \in \mathbb{N}, n \ge \max\{n_1, n_2\}$, avem

$$x_n > l_1 - 1$$
 și $x_n < -|l_1| - 1 \le l_1 - 1$

ceea ce este absurd.

Cazul $l_1=-\infty,\ l_2=\infty$: Fie M>0. Deoarece $\lim_{n\to\infty}x_n=-\infty,$ rezultă că

$$(\exists)n_1 \in \mathbb{N}, (\forall)n \in \mathbb{N}, n \geq n_1 : x_n < -M.$$

Cum $\lim_{n \to \infty} x_n = \infty$, rezultă că

$$(\exists) n_2 \in \mathbb{N}, (\forall) n \in \mathbb{N}, n \ge n_2 : x_n > M.$$

Dacă $n \in \mathbb{N}$, $n \ge \max\{n_1, n_2\}$, avem

$$x_n < -M$$
 și $x_n > M$

ceea ce este absurd.

Rămâne deci că $l_1 = l_2$.

Definiție 2.3. Şir convergent

Un șir care are limită un număr real se va numi șir convergent; altfel șirul se numește divergent.

Propoziție 2.2

Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri care au limită și $x_n \leq y_n, (\forall) n \in \mathbb{N}$, atunci $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n.$

Remarcă Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri care au limită și $x_n < y_n$, $(\forall) n \in \mathbb{N}$, atunci $\lim_{n\to\infty}x_n\leq\lim_{n\to\infty}y_n$ (inegalitatea limitelor nu este neapărat strictă).

De exemplu, pentru şirurile $x_n = \frac{1}{n+1}$, $n \in \mathbb{N}^*$ şi $y_n = \frac{1}{n}$, $n \in \mathbb{N}^*$ avem $x_n < y_n$, $(\forall) n \in \mathbb{N}^*$ $\operatorname{dar} \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$

Propoziție 2.3

 $Dacă(x_n)_n$ și $(y_n)_n$ sunt două șiruri care au limită și operațiile cu limite au sens, atunci

1.
$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$
;
2. $\lim_{n \to \infty} (\alpha x_n) = \alpha \lim_{n \to \infty} x_n$, $\alpha \in \mathbb{R}$;

2.
$$\lim_{n \to \infty} (\alpha x_n) = \alpha \lim_{n \to \infty} x_n, \ \alpha \in \mathbb{R}$$
,

3.
$$\lim_{n \to \infty} (x_n \cdot y_n) = \left(\lim_{n \to \infty} x_n\right) \cdot \left(\lim_{n \to \infty} y_n\right);$$
4.
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n};$$

$$4. \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n};$$

5.
$$\lim_{n \to \infty} x_n^{y_n} = \left(\lim_{n \to \infty} x_n\right)^{\lim_{n \to \infty} y_n}.$$

Remarcă Expresii nedeterminate

- 1. Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n\to\infty}x_n=\infty, \lim_{n\to\infty}y_n=-\infty,$ atunci spunem că expresia $x_n - y_n$ prezintă o nedeterminare de forma $\infty - \infty$.
- 2. Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n\to\infty}x_n=0, \lim_{n\to\infty}y_n=\infty$, atunci spunem că expresia $x_n \cdot y_n$ prezintă o nedeterminare de forma $0 \cdot \infty$.
- 3. Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n\to\infty} x_n = \pm \infty$, $\lim_{n\to\infty} y_n = \pm \infty$, atunci spunem că expresia $\frac{x_n}{y_n}$ prezintă o nedeterminare de forma $\frac{\infty}{\infty}$
- 4. Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n\to\infty}x_n=0$, $\lim_{n\to\infty}y_n=0$, atunci spunem că expresia $\frac{x_n}{y_n}$ prezintă o nedeterminare de forma $\frac{0}{0}$.
- 5. Dacă $(x_n)_n^n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n\to\infty}x_n=\infty, \lim_{n\to\infty}y_n=0$, atunci spunem că expresia $x_n^{y_n}$ prezintă o nedeterminare de forma ∞^0 .
- 6. Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n \to \infty} x_n = 1$, $\lim_{n \to \infty} y_n = \infty$, atunci spunem că expresia $x_n^{y_n}$ prezintă o nedeterminare de forma 1^{∞} .
- 7. Dacă $(x_n)_n$ și $(y_n)_n$ sunt două șiruri cu $\lim_{n\to\infty}x_n=0,\ \lim_{n\to\infty}y_n=0,$ atunci spunem că expresia $x_n^{y_n}$ prezintă o nedeterminare de forma 0^0 .

Exercițiu 2.1 Să se calculeze următoarele limite:

1.
$$\lim_{n \to \infty} \frac{2n+3}{\sqrt{n^3+1}}$$

10.
$$\lim_{n \to \infty} \sqrt[3]{n} \left(\sqrt[3]{n^2 + 5n - 2} - \sqrt[3]{n^2 - n} \right)$$

R: 2

$$2. \lim_{n \to \infty} \frac{n + \sin n}{n + \cos n}$$

11.
$$\lim_{n \to \infty} n \left(\sqrt[3]{n^3 + n} - \sqrt{n^2 + 1} \right)$$

R: 1

$$3. \lim_{n \to \infty} \left(\frac{2+4+\dots+2n}{n+2} - n \right)$$

R:
$$-\frac{1}{6}$$

R: -1 12.
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{2k-1} + \sqrt{2k+1}}$$

4.
$$\lim_{n \to \infty} \frac{(n-3)!n^2}{(n-1)! + (n-2)!}$$

$$\mathbf{R} : \frac{\sqrt{2}}{2}$$

5.
$$\lim_{n \to \infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}}$$

13.
$$\lim_{n \to \infty} \frac{3^n + 7^{-n}}{3^{-n} + 7^n}$$

R: 0 **R**: 0

6.
$$\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right)$$

14.
$$\lim_{n \to \infty} \frac{(-3)^n + 7^n}{5^n + 7^n}$$

R:
$$\frac{1}{2}$$

7.
$$\lim_{n \to \infty} n\sqrt{n} \left(\sqrt{n+1} + \sqrt{n-1} - 2\sqrt{n} \right)$$

7.
$$\lim_{n \to \infty} n\sqrt{n} \left(\sqrt{n+1} + \sqrt{n-1} - 2\sqrt{n} \right)$$
 15. $\lim_{n \to \infty} \frac{1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n!}{(n+1)!}$

R:
$$-\frac{1}{4}$$

8.
$$\lim_{n \to \infty} \left(n - \sqrt{n^2 - 7n + 1} \right)$$

16.
$$\lim_{n \to \infty} \left(\frac{7}{10} + \frac{29}{100} + \dots + \frac{2^n + 5^n}{10^n} \right)$$

R:
$$\frac{7}{2}$$

R:
$$\frac{5}{3}$$

9.
$$\lim_{n \to \infty} \sin\left(\pi\sqrt{4n^2 + 3n + 2}\right)$$

17.
$$\lim_{n\to\infty} \left(\sqrt[3]{3} \cdot \sqrt[3^2]{3} \cdots \sqrt[3^n]{3} \right)$$

$$\mathbf{R} : \frac{\sqrt{2}}{2}$$

 $\mathbf{R}:\sqrt{3}$

2.2 Şiruri mărginite, şiruri monotone

Definiție 2.4. Şir mărginit

Un şir de numere reale $(x_n)_n$ se numeşte

- 1. mărginit inferior dacă $(\exists)\alpha \in \mathbb{R}, (\forall)n \in \mathbb{N} : \alpha \leq x_n$;
- 2. mărginit superior dacă $(\exists)\beta \in \mathbb{R}, (\forall)n \in \mathbb{N} : x_n \leq \beta;$
- 3. mărginit dacă este mărginit inferior și superior

$$\iff$$
 $(\exists)\alpha, \beta \in \mathbb{R}, (\forall)n \in \mathbb{N} : \alpha \leq x_n \leq \beta;$

$$\iff$$
 $(\exists)M > 0, (\forall)n \in \mathbb{N} : |x_n| \leq M;$

Un şir care nu este mărginit se va numi nemărginit.

Propoziție 2.4

Orice şir convergent este mărginit.

Dem. Fie $(x_n)_n$ un şir convergent, cu limita x. Atunci

$$(\exists)n_1 \in \mathbb{N}, (\forall)n \in \mathbb{N}, n \geq n_1 : |x_n - x| < 1.$$

Notăm cu

$$\alpha = \min \{x_0, x_1, \dots, x_{n_1-1}, x-1\} \text{ dacă } n_1 \ge 1, \text{ altfel } \alpha = x-1$$

şi

$$\beta = \max\{x_0, x_1, \dots, x_{n_1-1}, x+1\}$$
 dacă $n_1 \ge 1$, altfel $\beta = x+1$.

Avem $\alpha \leq x_n \leq \beta$, $(\forall) n \in \mathbb{N}$, deci şirul $(x_n)_n$ este mărginit.

- Remarcă Reciproca nu este, în general, adevărată.
- Exemplul 2.2 Şirul $(\sin n)_n$ este mărginit dar nu este convergent.

Într-adevăr, şirul este mărginit deoarece $|\sin n| \le 1$, $(\forall) n \in \mathbb{N}$.

Presupunem că șirul este convergent; notăm cu $x=\lim_{n\to\infty}\sin n.$ Avem

$$\sin(n+1) = \sin n \cos 1 + \cos n \sin 1,$$

$$\cos(n+1) = \cos n \cos 1 - \sin n \sin 1.$$

Din prima relație rezultă că șirul $(\cos n)_n$ converge; notăm cu $y=\lim_{n\to\infty}\cos n$. Trecând la limită cele două relații obținem

$$\begin{cases} x = x \cos 1 + y \sin 1 \\ y = y \cos 1 - x \sin 1 \end{cases}$$

de unde $(x^2+y^2)(1-\cos 1)=0$, deci $x^2+y^2=0$. Pe de altă parte din $\sin^2 n+\cos^2 n=1$, prin trecere la limită, obținem $x^2+y^2=1$. Am ajuns astfel la o contradicție.

Rămâne deci că şirul $(\sin n)_n$ este divergent.

Definiție 2.5. Şir monoton

Un şir de numere reale $(x_n)_n$ se numeşte

- 1. crescător (strict crescător) \iff $(\forall) n \in \mathbb{N} : x_n \leq x_{n+1}$ (respectiv $x_n < x_{n+1}$);
- 2. descrescător (strict descrescător) \iff $(\forall)n \in \mathbb{N}: x_{n+1} \leq x_n$ (respectiv $x_{n+1} < x_n$);
- 3. (strict) monoton dacă este (strict) crescător sau (strict) descrescător.

Teoremă 2.1

Orice şir monoton are limită. Orice şir monoton şi mărginit este convergent.

Dem. Fie $(x_n)_n$ un şir crescător.

Cazul 1: şirul $(x_n)_n$ nu este mărginit superior. Vom arăta că $\lim_{n\to\infty} x_n = \infty$.

Fie M>0. Cum $(x_n)_n$ nu este mărginit superior, rezultă că $(\exists)n_M\in\mathbb{N}$ astfel încât $x_{n_M}>M$. Şirul fiind crescător, obţinem $x_n\geq x_{n_M}>M$, $(\forall)n\in\mathbb{N},\,n\geq n_M$, prin urmare $\lim_{n\to\infty}x_n=\infty$.

Cazul 2: şirul $(x_n)_n$ este mărginit superior. Mulţimea $X = \{x_n | n \in \mathbb{N}\}$ este majorată. Vom arăta că $\lim_{n \to \infty} x_n = s, s = \sup X$.

Fie $\varepsilon>0$. Decarece $s=\sup X$, rezultă că $(\exists)n_{\varepsilon}\in\mathbb{N}$ astfel încât $s-\varepsilon< x_{n_{\varepsilon}}$. Şirul fiind crescător, obținem $s-\varepsilon< x_{n_{\varepsilon}}\leq x_n\leq s,\ (\forall)n\in\mathbb{N},\ n\geq n_{\varepsilon},$ prin urmare $|x_n-s|=s-x_n<\varepsilon,\ (\forall)n\in\mathbb{N},\ n\geq n_{\varepsilon},$ deci $\lim_{n\to\infty}x_n=s.$

Dacă $(x_n)_n$ este un şir descrescător, se arată că, în cazul în care şirul nu este mărginit inferior avem $\lim_{n\to\infty}x_n=-\infty$ iar în cazul mărginirii inferioare avem $\lim_{n\to\infty}x_n=\inf X$.

Remarcă Un șir cu limită nu este neapărat monoton.

De exemplu, şirul cu termenul general $x_n = (-1)^n \frac{1}{n}$ este un şir convergent la 0, fără a fi un şir monoton.

Exemplul 2.3 Şirul definit prin

$$x_0 = 1, x_{n+1} = \frac{1}{2} \left(x_n + \frac{3}{x_n} \right), n \in \mathbb{N}$$

este convergent.

Soluție Diferența a doi termeni consecutivi este

$$x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{3}{x_n} \right) - x_n = \frac{3 - x_n^2}{2x_n}, n \in \mathbb{N}.$$

Avem $x_1=2>\sqrt{3},\,x_2=\frac{7}{4}>\sqrt{3}.$ Presupunem că $x_n>\sqrt{3},\,n\in\mathbb{N}^*.$ Atunci

$$x_{n+1} - \sqrt{3} = \frac{1}{2} \left(x_n - 2\sqrt{3} + \frac{3}{x_n} \right) = \frac{1}{2} \cdot \frac{\left(x_n - \sqrt{3} \right)^2}{x_n} > 0.$$

Astfel că $x_n > \sqrt{3}$, $(\forall) n \in \mathbb{N}^*$. Rezultă atunci că $x_{n+1} < x_n$, $(\forall) n \in \mathbb{N}^*$. Şirul $(x_n)_n$ fiind descrescător (începând cu al doilea termen) și mărginit inferior, este convergent. Fie l limita șirului. Trecem la limită în relația de recurență și obținem

$$l = \frac{1}{2} \left(l + \frac{3}{l} \right) \Longrightarrow l = \sqrt{3}.$$

◁

 \Rightarrow **Exemplul 2.4** Fie şirurile $(a_n)_n$, $(e_n)_n$ definite prin:

$$a_n = \left(1 + \frac{1}{n}\right)^n, \ e_n = \sum_{k=0}^n \frac{1}{k!}, \ n \ge 1.$$

Vom arăta că cele două șiruri sunt convergente și au aceeași limită.

• $(a_n)_{n\leq 1}$ este strict crescător:

Avem

$$a_n = \left(1 + \frac{1}{n}\right)^n = 1 + C_n^1 \frac{1}{n} + C_n^2 \frac{1}{n^2} + \dots + C_n^n \frac{1}{n^n}$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} \cdot \frac{n-1}{n} + \frac{1}{3!} \cdot \frac{(n-1)(n-2)}{n^2} + \dots + \frac{1}{n!} \cdot \frac{(n-1)(n-2) \cdot \dots \cdot 1}{n^{n-1}}$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots$$

$$\dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right)$$

şi

$$a_{n+1} = 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \cdots$$

$$\cdots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{n-1}{n+1} \right)$$

$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{n}{n+1} \right).$$

Este clar că $a_n < a_{n+1}, \ (\forall) n \in \mathbb{N}^*,$ deci șirul $(a_n)_{n < 1}$ este strict crescător.

- $(e_n)_{n < 1}$ este strict crescător evident.
- $2 \le a_n \le e_n < 3, \ (\forall) n \ge 1$

Şirul $(a_n)_n$ fiind crescător, rezultă că $a_n \geq a_1 = 2, \ (\forall) n \in \mathbb{N}^*$. Avem apoi

$$a_{n} = 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \cdots$$

$$\cdots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{n-1}{n} \right)$$

$$\leq 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} = e_{n}, \ (\forall) n \in \mathbb{N}^{*}$$

şi

$$e_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

 $\leq 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3, \ (\forall) n \in \mathbb{N}^*.$

Astfel, şirurile $(a_n)_n$ şi $(e_n)_n$ sunt strict crescătoare şi mărginite, deci convergente. Notăm cu $e=\lim_{n\to\infty}a_n$. Pentru $p\in\mathbb{N}^*$ avem

$$a_{n+p} = 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+p} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+p} \right) \left(1 - \frac{2}{n+p} \right) + \cdots$$

$$\cdots + \frac{1}{n!} \left(1 - \frac{1}{n+p} \right) \left(1 - \frac{2}{n+p} \right) \cdots \left(1 - \frac{n-1}{n+p} \right) + \cdots$$

$$\cdots + \frac{1}{(n+p)!} \left(1 - \frac{1}{n+p} \right) \left(1 - \frac{2}{n+p} \right) \cdots \left(1 - \frac{n+p-1}{n+p} \right)$$

$$> 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+p} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+p} \right) \left(1 - \frac{2}{n+p} \right) + \cdots$$

$$\cdots + \frac{1}{n!} \left(1 - \frac{1}{n+p} \right) \left(1 - \frac{2}{n+p} \right) \cdots \left(1 - \frac{n-1}{n+p} \right)$$

de unde

$$e = \lim_{p \to \infty} a_{n+p} \ge 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} = e_n, \ (\forall) n \in \mathbb{N}^*.$$

Deoarece $a_n \leq e_n \leq e$, $(\forall) n \in \mathbb{N}^*$ şi $\lim_{n \to \infty} a_n = e$, obţinem $\lim_{n \to \infty} e_n = e$.

Exemplul 2.5

Dacă $(x_n)_n$ este un şir de numere reale cu $\lim_{n\to\infty} x_n = \infty$, atunci $\lim_{n\to\infty} \left(1+\frac{1}{x_n}\right)^{x_n} = e$. Putem presupune că $x_n \geq 1, \ (\forall) n \in \mathbb{N}$. Notăm cu $y_n = [x_n], \ n \in \mathbb{N}$. Avem

$$y_n \le x_n < y_n + 1, (\forall) n \in \mathbb{N}.$$

Deoarece şirul $\left(\left(1+\frac{1}{m}\right)^m\right)_{--}$ este crescător cu limita e, putem alege $m_\varepsilon\in\mathbb{N}$ astfel încât

$$0 < e - \left(1 + \frac{1}{m}\right)^m < \varepsilon, \, (\forall) m \in \mathbb{N}, \, m \ge m_{\varepsilon}.$$

Şirul $(y_n)_n$ este un şir de numere naturale cu limita ∞ , prin urmare există un rang n_{ε} astfel încât $y_n \ge m_{\varepsilon}, \ (\forall) n \in \mathbb{N}, \ n \ge n_{\varepsilon}.$ Atunci

$$0 < e - \left(1 + \frac{1}{y_n}\right)^{y_n} < \varepsilon, \ (\forall) n \in \mathbb{N}, \ n \ge n_{\varepsilon},$$

ceea ce înseamnă că $\lim_{n \to \infty} \left(1 + \frac{1}{n_-}\right)^{y_n} = e.$ Dar cum

$$\left(1 + \frac{1}{y_n + 1}\right)^{y_n} < \left(1 + \frac{1}{x_n}\right)^{x_n} < \left(1 + \frac{1}{y_n}\right)^{y_n + 1}$$

1.
$$\lim_{n \to \infty} \left(\frac{n^2 - 8n + 5}{n^2 + n + 1} \right) \frac{(n+1)^2}{n}$$
5.
$$\lim_{n \to \infty} \left(\cos \frac{\pi}{n} \right)^{2n^2}$$

R:
$$e^{-9}$$

2.
$$\lim_{n \to \infty} \left(1 + \frac{3}{\sqrt{n} - 1} \right)^{\sqrt{n}}$$
6.
$$\lim_{n \to \infty} \left(2 - e^{\frac{1}{n}} \right)^n$$

3.
$$\lim_{n \to \infty} n \left[\ln(n^2 + 1) - \ln(n^2 + 2) \right]$$

$$\mathbf{R:}\ 0 \qquad 7.\ \lim_{n\to\infty}\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n,\ a,b>0$$

$$4.\ \lim_{n\to\infty}\left(1+\sin\frac{\pi}{n}\right)^n; \lim_{n\to\infty}\left(1+\sin\frac{1}{n}\right)^n \qquad \qquad \mathbf{R:}\ \sqrt{ab}$$

Exemplul 2.6 Şirul cu termenul general

$$c_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln n, \ n \in \mathbb{N}^*$$

este monoton și mărginit, deci convergent. Limita șirului este $c=0,5772\dots$ constanta lui Euler. Generalizare

$$x_n = \sum_{k=1}^n \frac{(\ln k)^p}{k} - \frac{(\ln n)^{p+1}}{p+1}, \ p \in \mathbb{N}.$$

2.3 Subșiruri, puncte limită

Definiție 2.6. Subșir

Fie $(x_n)_n$ un şir de numere reale şi $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ o funcție strict crescătoare. Şirul $(x_{\varphi(n)})_n$ se numeşte subşir al şirului $(x_n)_n$.

Exemplul 2.7

- 1. Pentru $\varphi(n)=2n, n\in\mathbb{N}$, obținem subșirul termenilor de rang par x_0, x_2, x_4, \ldots ;
- 2. Pentru $\varphi(n) = 2n+1, n \in \mathbb{N}$, obţinem subşirul termenilor de rang impar x_1, x_3, x_5, \ldots ;

Definiție 2.7. Punct limită

Fie $(x_n)_n$ un şir de numere reale. Elementul $p \in \overline{\mathbb{R}}$ se numeşte punct limită al şirului $(x_n)_n$ dacă există un subșir al șirului $(x_n)_n$ care are limita p.

Exemplul 2.8

- 1. şirul $([(-1)^n + 1] \cdot \sqrt{n})_n$ are punctele limită 0 şi ∞ ;
- 2. şirul $\left(\left(1+\frac{1}{\sqrt{n+1}}\right)\cdot\cos\frac{n\pi}{2}\right)_n$ are punctele limită -1, 0 şi 1.
- **Remarcă** Un şir nemărginit superior (inferior) are punct limită elementul ∞ (respectiv $-\infty$).

Propoziție 2.5. Cesàro

Orice şir mărginit are cel puțin un punct limită din \mathbb{R} .

Cel mai mare (mic) punct limită al şirului $(x_n)_n$ se numește limita superioară (inferioară) a şirului $(x_n)_n$ şi se notează prin

$$\limsup_{n\to\infty} x_n \ (\textit{respectiv} \ \liminf_{n\to\infty} x_n).$$

Remarcă Limita superioară și limita inferioară există pentru orice șir $(x_n)_n$

$$\limsup_{n\to\infty} x_n = \inf \left\{ \sup \left\{ x_k | k \ge n \right\} : n \in \mathbb{N} \right\} \text{ (convenţie inf } \{\infty\} = \infty \text{)}$$

$$\liminf_{n\to\infty} x_n = \sup \left\{ \inf \left\{ x_k | k \ge n \right\} : n \in \mathbb{N} \right\} \text{ (convenţie sup } \{-\infty\} = -\infty \text{)}$$

Exercițiu 2.3 Determinați punctele limită, limita superioară și limita inferioară pentru următoarele şiruri:

1.
$$x_n = \cos \frac{2n\pi}{3}, n \in \mathbb{N}^*$$

R: punctele limită:
$$-\frac{1}{2}$$
, $\frac{1}{2}$, 1

2.
$$x_n = \frac{2^n + (-2)^n}{2^n}, n \in \mathbb{N}^*$$

3.
$$x_n = \left(1 + \frac{\cos n\pi}{n}\right)^n, n \in \mathbb{N}^*$$

R: punctele limită:
$$-\frac{1}{2}, \frac{1}{2}, 1$$

$$+ (-2)^n$$

$$x_n \in \mathbb{N}^*$$
4. $x_n = n^{(-1)^n - 1} + \sin \frac{n\pi}{2}, n \in \mathbb{N}^*$

R: punctele limită: -1, 1

R: punctele limită:
$$0, 2$$
 5. $x_n = n^{(-1)^n - 1} + \sin^2 \frac{n\pi}{4}, n \in \mathbb{N}^*$

R: punctele limită:
$$\frac{1}{2}$$
, 2

6.
$$x_n = \frac{1 + (-1)^n}{2} + (-1)^n \frac{n}{2n+1}, n \in$$

R: punctele limită:
$$-\frac{1}{2}$$
, $\frac{3}{2}$

7.
$$x_n = n^{2(-1)^n - 1}, n \in \mathbb{N}^*$$

R: punctele limită:
$$0, +\infty$$

R: punctele limită:
$$\frac{1}{2}$$
, 2 8. $x_n = \left(1 + \frac{1}{n}\right)^n \left[\frac{1}{2} + (-1)^n\right] + \cos\frac{n\pi}{2}$, $n \in \mathbb{N}^*$

R: punctele limită:
$$-\frac{e}{2}$$
, $\frac{3}{2}e - 1$, $\frac{3}{2}e + 1$

R: punctele limită:
$$-\frac{1}{2}$$
, $\frac{3}{2}$ 9. $x_n = \left(1 + \frac{\cos n\pi}{n}\right)^n \cdot \left[\frac{1}{2} + (-1)^n\right] + \cos \frac{n\pi}{2}$

R:
$$-\frac{1}{2e}$$
, $\frac{3}{2}e - 1$, $\frac{3}{2}e + 1$

Propoziție 2.6

Un şir de numere reale $(x_n)_n$ are limită dacă şi numai dacă $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$.

2.4 Şiruri fundamentale

Definiție 2.9

Un şir de numere reale $(x_n)_n$ se numeşte şir fundamental sau şir Cauchy dacă

$$(\forall)\varepsilon > 0, (\exists)n_{\varepsilon} \in \mathbb{N}, (\forall)n, m \in \mathbb{N} : n, m \ge n_{\varepsilon} \Rightarrow |x_n - x_m| < \varepsilon$$

sau echivalent

$$(\forall)\varepsilon > 0, (\exists)n_{\varepsilon} \in \mathbb{N}, (\forall)n \in \mathbb{N} : n \ge n_{\varepsilon}, (\forall)p \in \mathbb{N} \Rightarrow |x_{n+p} - x_n| < \varepsilon$$

Teoremă 2.2

Un şir de numere reale este convergent dacă și numai dacă este fundamental.

Exemplul 2.9 Şirul definit prin $x_n = \frac{\sin 1!}{1^2} + \frac{\sin 2!}{2^2} + \dots + \frac{\sin n!}{n^2}, n \in \mathbb{N}, n \geq 1$ este un şir convergent, fiind şir fundamental.

Într-adevăr, pentru $\varepsilon>0$, alegem $n_{\varepsilon}=\left\lceil \frac{1}{\varepsilon}\right\rceil+1$ și atunci pentru $n\in\mathbb{N},\ n\geq n_{\varepsilon}$ și $p\in\mathbb{N}^*$ avem

$$|x_{n+p} - x_n| = \left| \frac{\sin(n+1)!}{(n+1)^2} + \frac{\sin(n+2)!}{(n+2)^2} + \dots + \frac{\sin(n+p)!}{(n+p)^2} \right|$$

$$\leq \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2}$$

$$< \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$= \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p}$$

$$= \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n} < \varepsilon.$$

Exercițiu 2.4 Să se studieze, utilizând criteriul general al lui Cauchy, convergența șirurilor:

1.
$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}, \ n \ge 1;$$

2.
$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \ n \ge 1;$$

3.
$$x_n = \sum_{k=1}^n \frac{\sin(kx)}{2^k}, \ n \ge 1.$$

2.5 Criterii pentru determinarea limitei

Lemă 2.1. Criteriul majorării

Fie $(x_n)_n$ un şir de numere reale şi $x \in \mathbb{R}$. Dacă există un şir $(\alpha_n)_n$ astfel încât

1.
$$|x_n - x| \le \alpha_n$$
, $(\forall) n \in \mathbb{N}$

$$2. \lim_{n \to \infty} \alpha_n = 0$$

atunci $\lim_{n\to\infty} x_n = x$.

⇔ Exemplul 2.10

$$\lim_{n \to \infty} \left(\frac{\cos 1!}{n^2 + 1} + \frac{\cos 2!}{n^2 + 2} + \dots + \frac{\cos n!}{n^2 + n} \right) = 0.$$

Soluție Notăm cu $x_n = \frac{\cos 1!}{n^2 + 1} + \frac{\cos 2!}{n^2 + 2} + \dots + \frac{\cos n!}{n^2 + n}, n \in \mathbb{N}^*.$ Avem

$$|x_n - 0| = \left| \frac{\cos 1!}{n^2 + 1} + \frac{\cos 2!}{n^2 + 2} + \dots + \frac{\cos n!}{n^2 + n} \right|$$

$$\leq \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n} \leq \frac{n}{n^2 + 1}$$

și cum $\lim_{n\to\infty}\frac{n}{n^2+1}=0$, obținem $\lim_{n\to\infty}x_n=0$.

Exercițiu 2.5 Să se calculeze următoarele limite:

1.
$$\lim_{n \to \infty} \frac{\sin(nx)}{2^n}$$

3.
$$\lim_{n\to\infty} (-1)^n \sin\frac{1}{n}$$

R: 0

◁

$$2. \lim_{n \to \infty} \frac{\cos^3 n}{n}$$

4.
$$\lim_{n \to \infty} \frac{\sin 1! \sin 2! + \dots + \sin n!}{n^2}$$

R: 0

Lemă 2.2. Criteriul cleştelui

Fie $(x_n)_n$ un şir de numere reale. Dacă există două şiruri $(\alpha_n)_n$ şi $(\beta_n)_n$ astfel încât

1.
$$\alpha_n \leq x_n \leq \beta_n$$
, $(\forall) n \in \mathbb{N}$

$$2. \lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = l$$

atunci $\lim_{n\to\infty} x_n = l$.

⇔ Exemplul 2.11

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

Soluție Notăm cu
$$x_n=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}},\ n\in\mathbb{N}^*.$$
 Avem
$$\frac{n}{\sqrt{n^2+n}}\leq x_n\leq \frac{n}{\sqrt{n^2+1}},\ (\forall)n\in\mathbb{N}^*$$

şi cum
$$\lim_{n\to\infty}\frac{n}{\sqrt{n^2+n}}=1=\lim_{n\to\infty}\frac{n}{\sqrt{n^2+1}}$$
, obţinem $\lim_{n\to\infty}x_n=1$.
Exerciţiu 2.6 Să se calculeze următoarele limite:

1.
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n} \right)$$
 3. $\lim_{n \to \infty} \frac{(2n - 1)!!}{(2n)!!}$

2.
$$\lim_{n \to \infty} n \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n} \right) 4$$
. $\lim_{n \to \infty} \frac{1! + 2! + \dots + n!}{(2n)!}$

Lemă 2.3. Criteriul raportului

Fie $(x_n)_n$: $x_n > 0$, $(\forall) n \in \mathbb{N}$. Presupunem că există $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = l$. Atunci

1.
$$l < 1 \Longrightarrow \lim_{n \to \infty} x_n = 0$$

1.
$$l < 1 \Longrightarrow \lim_{n \to \infty} x_n = 0$$

2. $l > 1 \Longrightarrow \lim_{n \to \infty} x_n = +\infty$

Exemplul 2.12

$$\lim_{n \to \infty} \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 5 \cdots (3n-1)} = 0.$$

Soluție Notăm cu $x_n = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 5 \cdots (3n-1)}$. Avem

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{2n+1}{3n+2} = \frac{2}{3} < 1 \Longrightarrow \lim_{n \to \infty} x_n = 0.$$

Exercițiu 2.7 Să se calculeze următoarele limite:

1.
$$\lim_{n\to\infty} \frac{n!}{n^n}$$

3.
$$\lim_{n\to\infty} \frac{a^n}{n!}, a>0$$

R: 0

R: 0

◁

$$2. \lim_{n \to \infty} \frac{(n!)^2}{(2n)!}$$

4.
$$\lim_{n \to \infty} \frac{a^n n^n}{n!}, \ a > 0$$

R: 0

R: 0 pentru
$$a < \frac{1}{e}$$
; $+\infty \ a > \frac{1}{e}$

Lemă 2.4. Criteriul Cesàro-Stolz

Dacă două șiruri de numere reale $(a_n)_n$ și $(b_n)_n$ verifică

1.
$$b_n < b_{n+1}, (\forall) n \ge n_0, \lim_{n \to \infty} b_n = \infty,$$

2. există
$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = l \in \overline{\mathbb{R}}$$

1. $b_n < b_{n+1}, \ (\forall) n \geq n_0, \lim_{n \to \infty} b_n = \infty,$ 2. există $\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = l \in \overline{\mathbb{R}},$ atunci există $\lim_{n \to \infty} \frac{a_n}{b_n}$ și este egală cu l.

Exemplul 2.13

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n}} \right) = 2(\sqrt{2} - 1).$$

Soluție Notăm cu $a_n=\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}+\cdots+\frac{1}{\sqrt{2n}}$ și $b_n=\sqrt{n}$. Este clar că șirul $(b_n)_n$ este un șir strict crescător și nemărginit. Deoarece

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{2n+1}} + \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{n}}}{\sqrt{n+1} - \sqrt{n}}$$

$$= \lim_{n \to \infty} (\sqrt{n+1} + \sqrt{n}) \cdot \left(\frac{1}{\sqrt{2n+1}} + \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{n}}\right)$$

$$= 2(\sqrt{2} - 1)$$

rezultă că $\lim_{n\to\infty}\frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}+\cdots+\frac{1}{\sqrt{2n}}\right)=\lim_{n\to\infty}\frac{a_n}{b_n}=2(\sqrt{2}-1).$ ◁

 $\lim_{n\to\infty}\frac{\alpha_1+\alpha_2+\ldots+\alpha_n}{n}=\lim_{n\to\infty}\alpha_n, \text{ în ipoteza că ultima limită există.}$

Exemplul 2.14

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{a+b}{c+d} + \frac{a\sqrt{2}+b}{c\sqrt{2}+d} + \dots + \frac{a\sqrt{n}+b}{c\sqrt{n}+d} \right) = \frac{a}{c}, \ c \neq 0.$$

$$\lim_{n\to\infty} \frac{n\cdot x_1 + (n-1)\cdot x_2 + \dots + 1\cdot x_n}{n^2} = \frac{x}{2}.$$

- Exercițiu 2.9 Fie $(x_n)_n$ un șir astfel încât $(\exists) \lim_{n \to \infty} (x_{n+1} x_n) = l$. Atunci $\lim_{n \to \infty} \frac{x_n}{n} = l$.

 Exercițiu 2.10 Fie $(x_n)_n, x_n > 0, n \in \mathbb{N}$ astfel încât $\lim_{n \to \infty} \frac{x_n}{n} = \infty$. Atunci $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{\sqrt{x_k}} = 0$ 0.
- Exercițiu 2.11 Fie $(x_n)_n$, $x_1 = 1$, $x_{n+1} = \sqrt{x_1 + \cdots + x_n}$, $n \in \mathbb{N}$. Arătați că $\lim_{n \to \infty} \frac{x_n}{n} = \frac{1}{2}$.
- Exercițiu 2.12 Să se calculeze următoarele limite:

1.
$$\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}, p \in \mathbb{N}^*$$

$$n \to \infty$$
 n^{p+1} $\mathbf{R}: \frac{1}{n+1}$

R: $\frac{1}{p+1}$ 4. $\lim_{n\to\infty} \frac{1}{\sqrt{n}} \left(a_1 + \frac{a_2}{\sqrt{2}} + \dots + \frac{a_n}{\sqrt{n}} \right)$, unde $(a_n)_n$ este un şir convergent cu limita a

2.
$$\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}, p \in (0, \infty)$$

R:
$$\frac{1}{p+1}$$

$$1 \quad 5. \quad \lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n}} \right)$$

$$3. \lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \right)$$

$$\mathbf{R}: 2(\sqrt{2}-1)$$

R: 2

6.
$$\lim_{n \to \infty} \frac{1}{n} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$

R: 1

R: 0 17. $\lim_{n \to \infty} \frac{\ln(n!) - n \ln n}{n}$

7.
$$\lim_{n \to \infty} \frac{1}{n^{1-\alpha}} \left(1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} \right),$$

$$\alpha \in (0,1)$$

R:
$$\frac{1}{1-\alpha}$$
 18. $\lim_{n\to\infty} \frac{\ln(n!)}{\ln n^n}$

$$\mathbf{R:} \ \frac{1}{1-\alpha}$$

R: 1

8.
$$\lim_{n \to \infty} \frac{1}{\ln n} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$

19. $\lim_{n\to\infty} \frac{\ln(n!)}{n^m}, m\in\mathbb{N}$

9.
$$\lim_{n\to\infty} \frac{1}{\ln n} \left(a_1 + \frac{a_2}{2} + \dots + \frac{a_n}{n} \right),$$

R: $\infty(n = 1); 0(n \ge 2)$

limita a

20. $\lim_{n \to \infty} \frac{1! + 2! + \dots + n!}{(2n)!}$

10.
$$\lim_{n \to \infty} \frac{1}{\ln n} \left(1 + \frac{1}{3} + \dots + \frac{1}{2n-1} \right)$$
 21. $\lim_{n \to \infty} \frac{1 + 2^2 \sqrt{2} + \dots + n^2 \sqrt[n]{n}}{n^2 (n+1)}$

R: 0

R: $\frac{1}{3}$

11.
$$\lim_{n \to \infty} \frac{1}{\ln \ln n} \left(\frac{1}{2 \ln 2} + \dots + \frac{1}{n \ln n} \right)$$
 22. $\lim_{n \to \infty} \left[\frac{1}{n^{p+1}} \sum_{k=0}^{n} \frac{(p+k)!}{k!} \right], p \in \mathbb{N}$

R:
$$\frac{1}{p+1}$$

12.
$$\lim_{n\to\infty}\frac{1}{n}\left(\ln\sqrt{2}+\ln\sqrt[3]{3}+\cdots+\ln\sqrt[n]{n}\right)$$

R: 0 23. $\lim_{n \to \infty} \left[\frac{1}{\ln(a + (n-1)r)} \sum_{k=1}^{n} \frac{1}{a + (k-1)r} \right],$

13.
$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \left(1 + \frac{1}{k}\right)}{n^2}$$

 $\mathbf{R}: \frac{1}{m}$

14.
$$\lim_{n \to \infty} \frac{n}{a^n}, \ a > 1$$

24. $\lim_{n \to \infty} \sum_{k=0}^{m} \left(\frac{1}{n^{k+1}} \sum_{i=1}^{n} i^{k} \right), m \in \mathbb{N}$

R: 0

R:
$$1 + \frac{1}{2} + \dots + \frac{1}{m+1}$$

15.
$$\lim_{n \to \infty} \left[\frac{1^p + 2^p + \dots + n^p}{n^p} - \frac{n}{p+1} \right],$$

R:
$$\frac{1}{2}$$
 25. $\lim_{n\to\infty} \frac{\sum_{k=1}^{n} \left[ke^{\frac{1}{k}}\right]}{n^2}$, [a] fiind partea întregă

16.
$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k \cdot k!}{(n+1)! - 1}$$

R:
$$\frac{1}{2}$$

◁

Lemă 2.5. Criteriul Rizzoli

Dacă două șiruri de numere reale $(a_n)_n$ și $(b_n)_n$ verifică

- 1. $\lim_{n \to \infty} a_n = 0, \lim_{n \to \infty} b_n = 0,$
- 2. $\operatorname{sirul}(b_n)_n$ este strict monoton,

3. $exist\breve{a}\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=l\in\overline{\mathbb{R}},$ atunci $exist\breve{a}\lim_{n\to\infty} \frac{a_n}{b_n}$ și este egal \breve{a} cu l.

Exemplul 2.15

$$\lim_{n \to \infty} n(c_n - c) = \frac{1}{2},$$

unde $c_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln n$, $n \in \mathbb{N}^*$ iar $c = \lim_{n \to \infty} c_n$ constanta lui Euler.

Lemă 2.6. Criteriul Cauchy-d'Alembert

Dacă pentru șirul $(a_n)_n$, cu $a_n>0$, există $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$, atunci există și $\lim_{n\to\infty}\sqrt[n]{a_n}$ și avem $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}.$

Exemplul 2.16

$$\lim_{n \to \infty} \sqrt[n]{\ln n!} = 1.$$

Soluție Notăm cu $a_n = \ln n!$. Avem

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\ln{(n+1)!}}{\ln{n!}}\underset{C-S}{=}\lim_{n\to\infty}\frac{\ln{(n+2)}}{\ln{(n+1)}}=1,$$

de unde rezultă că $\lim_{n\to\infty} \sqrt[n]{\ln n!} = \lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1.$

 $\lim_{n\to\infty} \sqrt[n]{\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_n} = \lim_{n\to\infty} \alpha_n, \text{ în ipoteza că ultima limită există.}$

Exemplul 2.17

$$\lim_{n \to \infty} \sqrt[n]{\sin \frac{\pi}{2} \cdot \sin \frac{\pi}{3} \cdots \sin \frac{\pi}{n+1}} = 0.$$

Soluție $\lim_{n\to\infty} \sqrt[n]{\sin\frac{\pi}{2}\cdot\sin\frac{\pi}{3}\cdots\sin\frac{\pi}{n+1}} = \lim_{n\to\infty}\sin\frac{\pi}{n+1} = 0.$ ◁

Exercițiu 2.13 Să se calculeze următoarele limite:

1.
$$\lim_{n \to \infty} \sqrt[n]{1 + \sqrt{2} + \dots + \sqrt{n}}$$
.
3. $\lim_{n \to \infty} \sqrt[n]{\frac{(n!)^3 3^n}{(3n)!}}$

$$2. \lim_{n \to \infty} \sqrt[n]{C_{nk}^n}, k \in \mathbb{N}.$$

R:
$$\frac{k^k}{(k-1)^{k-1}}$$
 R: $\frac{1}{9}$

4.
$$\lim_{n \to \infty} \sqrt[n]{\frac{n!}{\frac{n(n+1)}{2}}}$$

12. $\lim_{n\to\infty} \sqrt[n]{P(n)}, \text{ unde } P(X) = a_k X^k + a_{k-1} X^{k-1} + \dots + a_1 X + 1$

R: 0

R: $\frac{1}{2^5}$

Prin particularizare obţinem $\lim_{n\to\infty} \sqrt[n]{n}$.

5.
$$\lim_{n \to \infty} \sqrt[n]{\frac{(n!)^2}{(2n)!8^n}}$$

13.
$$\lim_{n\to\infty} \sqrt[n]{\ln n!}$$

R: 1

R: 1

 \mathbf{R} : πe

6.
$$\lim_{n \to \infty} \frac{4n}{\sqrt[n]{(2n)!}}$$

14.
$$\lim_{n \to \infty} n \sqrt[n]{\sin \frac{\pi}{2} \cdot \sin \frac{\pi}{3} \cdot \dots \cdot \sin \frac{\pi}{n}}$$

$$7. \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}$$

15.
$$\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{\ln n}$$

R: $\frac{1}{-}$

R: 0

R: 0

8.
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{\sqrt[n+1]{n+1}}$$

9.
$$\lim_{n\to\infty} \frac{\sqrt[n]{u_1 \cdot u_2 \cdot \dots \cdot u_n}}{n}, \text{ unde } u_{n+1} =$$

16. Să se calculeze
$$\lim_{n\to\infty} \sqrt[n]{\frac{u_n}{n(n-1)}}$$
 dacă $(u_n)_n$ este definit prin
$$\begin{cases} u_0=u_1=0\\ u_{n+1}-2a_n+u_{n-1}=n \end{cases}$$

R: 1

10.
$$\lim_{n \to \infty} \frac{\sqrt[n]{u_1 \cdot u_2 \cdot \dots \cdot u_n}}{\underbrace{u_1 + u_2 + \dots + u_n}_{n}}, \quad \text{und}$$

R:
$$\frac{r}{e}$$
 17. $\lim_{n \to \infty} n \sqrt[n]{\frac{b(n+a)}{n!}}, b \in (0,\infty), a \in \mathbb{R}$

unde

18.
$$\lim_{n \to \infty} \sqrt[n]{\frac{(n!)^2}{(2n)!}}$$

11. $\lim_{n \to \infty} \frac{\sqrt[n+1]{u_1 \cdot u_2 \cdot \dots \cdot u_{n+1}}}{\sqrt[n]{u_1 \cdot u_2 \cdot \dots \cdot u_n}},$ $u_{n+1} = u_n + r, u_1 > 0, r > 0.$ unde

19.
$$\lim_{n\to\infty} \sqrt[n]{\left(1+\frac{k}{n}\right)\left(1+\frac{k+1}{n}\right)\cdots\left(1+\frac{k+(n-k)}{n}\right)}$$

R: 1

 $\mathbf{R}: \frac{4}{e}$

 \mathbf{R} : e