

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:

JIN SOO KIM, ET AL.

Application No.:

Filed:

For: **Method of Forming High-Quality
Quantum Dots By Using A Strained
Layer**

Art Group:

Examiner:

Commissioner for Patents
P.O, Box 1450
Alexandria, VA 22313-1450

REQUEST FOR PRIORITY

Sir:

Applicant respectfully requests a convention priority for the above-captioned application, namely:

COUNTRY	APPLICATION NUMBER	DATE OF FILING
Korea	10-2003-0027986	1 May 2003

A certified copy of the document is being submitted herewith.

Respectfully submitted,

Blakely, Sokoloff, Taylor & Zafman LLP

Eric S. Hyman Reg. No. 30,139

Dated: 12/12/03

12400 Wilshire Boulevard, 7th Floor
Los Angeles, CA 90025
Telephone: (310) 207-3800

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2003-0027986
Application Number

출 원 년 월 일 : 2003년 05월 01일
Date of Application

출 원 인 : 한국전자통신연구원
Applicant(s) Electronics and Telecommunications Research Institute

2003 년 05 월 28 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0008
【제출일자】	2003.05.01
【국제특허분류】	H01L
【발명의 명칭】	응력층을 이용한 양질의 양자점 형성 방법
【발명의 영문명칭】	Formation of high quality quantum dots by using a strained layer
【출원인】	
【명칭】	한국전자통신연구원
【출원인코드】	3-1998-007763-8
【대리인】	
【성명】	이영필
【대리인코드】	9-1998-000334-6
【포괄위임등록번호】	2001-038378-6
【대리인】	
【성명】	이해영
【대리인코드】	9-1999-000227-4
【포괄위임등록번호】	2001-038396-8
【발명자】	
【성명의 국문표기】	한원석
【성명의 영문표기】	HAN,Won Seok
【주민등록번호】	701217-1408511
【우편번호】	305-804
【주소】	대전광역시 유성구 신성동 한울아파트 106동 604호
【국적】	KR
【발명자】	
【성명의 국문표기】	김진수
【성명의 영문표기】	KIM,Jin Soo
【주민등록번호】	720825-1520920

【우편번호】	302-728
【주소】	대전광역시 서구 내동 서우아파트 202동 1005호
【국적】	KR
【발명자】	
【성명의 국문표기】	이진홍
【성명의 영문표기】	LEE, Jin Hong
【주민등록번호】	640206-1006541
【우편번호】	305-350
【주소】	대전광역시 유성구 가정동 161번지
【국적】	KR
【발명자】	
【성명의 국문표기】	홍성의
【성명의 영문표기】	HONG, Sung Ui
【주민등록번호】	710228-1405614
【우편번호】	305-350
【주소】	대전광역시 유성구 가정동 161번지
【국적】	KR
【발명자】	
【성명의 국문표기】	곽호상
【성명의 영문표기】	KWACK, Ho Sang
【주민등록번호】	751203-1058511
【우편번호】	305-350
【주소】	대전광역시 유성구 가정동 161번지
【국적】	KR
【발명자】	
【성명의 국문표기】	오대곤
【성명의 영문표기】	OH, Dae Kon
【주민등록번호】	590707-1002328
【우편번호】	305-390
【주소】	대전광역시 유성구 전민동 엑스포아파트 509-702
【국적】	KR
【심사청구】	청구

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사 를 청구합니다. 대리인
이영필 (인) 대리인
이해영 (인)

【수수료】

【기본출원료】 14 면 29,000 원

【가산출원료】 0 면 0 원

【우선권주장료】 0 건 0 원

【심사청구료】 7 항 333,000 원

【합계】 362,000 원

【감면사유】 정부출연연구기관

【감면후 수수료】 181,000 원

【기술이전】

【기술양도】 희망

【실시권 허여】 희망

【기술지도】 희망

【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】**【요약】**

양자점 형성 방법을 제공한다. 본 발명은 InP 기판 상에 완충층 및 얇은 In_xGa_{1-x} As 응력층을 순차적으로 형성한 후, 상기 얇은 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점을 형성한다. 이와 같이 마련된 시료는 In(Ga)As 양자점의 균일도가 현저하게 증가하여 포토루미네스نس의 반치폭이 감소하며 발광 세기가 현저히 증가한다. 따라서, 본 발명에 따른 In(Ga)As 양자점을 레이저 다이오드와 같은 발광소자나 광검출기 등의 광소자의 활성층으로 응용하였을 때 그 소자 특성이 개선될 수 있다.

【대표도】

도 1c

【명세서】**【발명의 명칭】**

응력층을 이용한 양질의 양자점 형성 방법{Formation of high quality quantum dots by using a strained layer}

【도면의 간단한 설명】

도 1a 내지 도 1d는 본 발명에 따른 응력층을 이용한 양자점의 형성방법을 설명하기 위한 개략도들이다.

도 2a 내지 도 2c는 종래 기술 및 본 발명에 의해 양자점을 형성한 시료의 AFM(Atomic Force Microscopy) 이미지를 도시한 도면들이다.

도 3a는 종래 기술 및 본 발명에 의해 양자점을 형성한 시료를 상온에서 발광 파장에 따라 포토루미네스نس의 강도를 측정한 그래프이다.

도 3b는 본 발명에 의해 양자점을 형성한 시료를 상온에서 포톤 에너지에 따라 포토루미네스نس의 강도를 측정한 그래프이다.

【발명의 상세한 설명】**【발명의 목적】****【발명이 속하는 기술분야 및 그 분야의 종래기술】**

<5> 본 발명은 양자점의 형성 방법에 관련된 것으로, 보다 상세하게는 레이저 다이오드나 광검출기와 같은 광소자의 활성층으로 이용할 수 있는 양질의 양자점의 형성 방법에 관한 것이다.

- <6> 최근에, 별도의 리소그래피 공정을 진행하지 않고 격자 불일치층의 응력이완 과정을 이용하여 양자점을 형성하는 스트란스키-크라스타노브 성장 방법 (Stranski-Krastanow growth method)에 대한 연구가 다양하게 진행되고 있다.
- <7> 특히, 양자점을 $1.3\mu m$ 과 $1.55\mu m$ 의 파장영역을 이용한 광통신 분야에 응용하기 위한 연구가 활발하게 진행되고 있다. $1.3\mu m$ 파장 영역에서는 GaAs 기판 상에 성장한 In(Ga)As 양자점 레이저 다이오드에 대한 연구 결과가 발표되고 있다. 더하여, $1.55\mu m$ 파장 영역에서는 InP 기판 위에 InAl(Ga)As층(이하에서, ()로 표시된 물질은 포함될 수도 있고, 포함되지 않을 수도 있는 것을 의미한다. 즉, InAl(Ga)As층이라고 표현되어 있을 경우, InAlAs층일 수도 있고, InAlGaAs층일 수도 있다.)이나 InGaAsP층을 이용하여 성장한 In(Ga)As 양자점에 연구가 진행되고 있다.
- <8> 그런데, In(Ga)As 양자점을 InAl(Ga)As층 위에 형성하는 경우, 양자점의 균일도가 좋지 않아 포토루미네스نس의 반치폭(FWHM, full-width at half-maximum)이 매우 넓을 뿐만 아니라 발광 세기가 매우 약하고, 이에 따라 상기 양자점을 광소자의 활성층으로 응용하고자 할 때 많은 문제점이 있다.

【발명이 이루고자 하는 기술적 과제】

- <9> 따라서, 본 발명이 이루고자 하는 기술적 과제는 균일도가 좋아 포토루미네스نس의 반치폭이 좁고 발광 세기가 큰 광특성을 얻을 수 있는 양자점 형성 방법을 제공하는 데 있다.

【발명의 구성 및 작용】

- <10> 상기 기술적 과제를 달성하기 위하여, 본 발명은 InP 기판 상에 완충층을 형성한다. 상기 완충층은 InAlAs, InAlGaAs, InP, InGaAsP 또는 이들로 구성된 이종접합층으로 형성할 수 있다. 상기 완충층 상에 $In_xGa_{1-x}As$ 응력층을 형성한다. 상기 $In_xGa_{1-x}As$ 응력층의 In의 조성비를 0.05~0.45로 형성하는 것이 바람직하다. 상기 $In_xGa_{1-x}As$ 응력층의 두께를 0.5 nm~10 nm로 형성하는 것이 바람직하다. 상기 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점을 형성한다. 상기 In(Ga)As 양자점의 두께는 3 모노레이어(Monolayer)에서 10 모노레이어로 형성하는 것이 바람직하다.
- <11> 이상과 같이 본 발명의 양자점 형성 방법에 의해 마련된 시료는 In(Ga)As 양자점의 균일도가 현저하게 좋아져 포토루미네스نس의 반치폭이 감소하며 발광 세기를 현저히 증가시킬 수 있다.
- <12> 이하, 첨부도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다. 도면에서 막 또는 영역들의 크기 또는 두께는 명세서의 명확성을 위하여 과장되어진 것이다. 또한, 어떤 막이 다른 막 또는 기판의 "위(상)"에 있다라고 기재된 경우, 상기 어떤 막이 상기 다른 막의 위에 직접 존재할 수도 있고, 그 사이에 제3의 다른 막이 개재될 수도 있다.
- <13> 도 1a 내지 도 1d는 본 발명에 따른 응력층을 이용한 양자점의 형성방법을 설명하기 위한 개략도들이다.

<14> 구체적으로, InP 기판(1) 상에 격자 정합한(lattice-matched) 완충층(3)을 형성한다. 상기 완충층(3)은 InAlAs, InAlGaAs, InP, InGaAsP 또는 이들로 구성된 이종접합층으로 형성한다(도 1a).

<15> 다음에, 상기 완충층(3) 상에 두께가 얇은 $In_xGa_{1-x}As$ 응력층(5, strained layer)을 형성한다. 상기 $In_xGa_{1-x}As$ 응력층(5)의 In의 조성비를 0.05~0.45로 형성한다. 상기 $In_xGa_{1-x}As$ 응력층(5)은 균일도가 높은 양질의 양자점을 형성하기 위하여 상기 완충층(3)의 표면 구조를 변화시키고 양자점 성장에 필요한 응력 에너지를 변조시키기 위하여 형성한다(도 1b).

<16> 다음에, 상기 $In_xGa_{1-x}As$ 응력층(5) 위에 In(Ga)As 양자점(7)을 형성한다. 상기 In(Ga)As 양자점(7)은 유기금속화학증착법(MOCVD), 분자선증착법(MBE) 또는 화학선 증착법(CBE)을 이용하여 형성한다. 상기 In(Ga)As 양자점의 두께는 3 모노레이어(Monolayer)에서 10 모노레이어로 형성한다. 더하여, 본 실시예에서는 상기 $In_xGa_{1-x}As$ 응력층(5) 및 In(Ga)As 양자점(7)을 형성할 때 적층 주기를 1주기만 표현하였으나, 1주기에서 30주기로 형성할 수 도 있다(도 1c).

<17> 다음에, 상기 In(Ga)As 양자점(7) 상에 상기 In(Ga)As 양자점(7)을 충분히 덮도록 캡핑층(9)을 형성한다 상기 캡핑층(9)은 InAlAs, InAlGaAs, InP, InGaAsP 또는 이들로 구성된 이종접합층으로 형성한다(도 1d).

<18> 도 2a 내지 도 2c는 종래 기술 및 본 발명에 의해 양자점을 형성한 시료의 AFM(Atomic Force Microscopy) 이미지를 도시한 도면들이다.

- <19> 구체적으로, 도 2a는 종래 기술에 따라 InP 기판 상에 InAlAs 완충층을 형성한 후 상기 InAlAs 완충층 상에 In(Ga)As 양자점을 성장시킨 시료의 표면 이미지이다. 도 2a에 보듯이 In(Ga)As 양자점의 모양이 [1-10] 방향으로 길게 늘어진 형태를 보여 주고 있다. 이는 In(Ga)As 양자점의 형성에 영향을 주는 InAlAs 합금(Alloy)의 표면 구조 때문으로 사료된다.
- <20> 도 2b는 종래 기술에 따라 InP 기판 상에 InAlGaAs 완충층을 형성한 후, 상기 InAlGaAs 완충층 상에 In(Ga)As 양자점을 성장시킨 시료의 표면 이미지이다. 도 2b에 보듯이 In(Ga)As 양자점의 크기가 도 2a의 시료보다 약간 증가하였고 모양이 좀더 구형의 형태임을 알 수 있다. 이는 InAlGaAs 표면이 Ga, Al의 확산(Diffusion) 및 스틱킹(Sticking) 상수차에 의해서 InAlAs 완충층과는 다른 형태의 표면을 구성하기 때문으로 사료된다.
- <21> 도 2c는 본 발명에 따라 InP 기판 상에 InAlGaAs 완충층 및 얇은 $In_xGa_{1-x}As$ 응력층을 순차적으로 형성한 후, 상기 얇은 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점을 성장시킨 시료의 표면 이미지이다. 도 2c에 보듯이 도 2a 및 도 2b와 비교하여 In(Ga)As 양자점의 형태가 구형에 가깝고 크기가 증가하였으며, 균일도가 현저하게 증가하였음을 알 수가 있다. 이는 3차원 양자 구속효과를 갖는 초미세 구조인 양자점의 이상적이 특성에 좀더 가까워지고 있음을 나타내준다. 결과적으로, 본 발명과 같이 $In_xGa_{1-x}As$ 응력층을 이용하여 양자점을 형성한 시료는 종래 기술과 비교하여 In(Ga)As 양자점의 모양이 현저하게 달라지고 균일도가 증가하였음을 알 수가 있다.
- <22> 도 3a는 종래 기술 및 본 발명에 의해 양자점을 형성한 시료를 상온에서 발광 파장에 따라 포토루미네스스의 강도를 측정한 그래프이고, 도 3b는 본 발명에 의해 양자점을

형성한 시료를 상온에서 포톤 에너지에 따라 포토루미네슨스의 강도를 측정한 그래프이다.

<23> 구체적으로, 도 3a 및 도 3b에서 본 발명은 InP 기판 상에 InAlGaAs 완충층 및 얇은 $In_xGa_{1-x}As$ 응력층을 순차적으로 형성한 후, 상기 얇은 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점을 성장시킨 시료(참조부호 "a"로 표시)이고, 종래 기술은 InP 기판 상에 InAlAs 완충층을 형성한 후 상기 InAlAs 완충층 상에 In(Ga)As 양자점을 성장시킨 시료(참조부호 "b"로 표시)이거나, InP 기판 상에 InAlGaAs 완충층을 형성한 후 상기 InAlGaAs 완충층 상에 In(Ga)As 양자점을 성장시킨 시료(참조부호 "c"로 표시)이다.

<24> 도 3a 및 도 3b에 보시하는 바와 같이, 본 발명과 같이 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점을 형성한 시료의 상온(300K) 포토루미네슨스의 반치폭과 발광세기가 종래 기술에 비하여 크게 향상되었음을 알 수 있다.

<25> 더하여, 종래 기술에 따라 InAlAs층 위에 In(Ga)As 양자점 양자점을 형성한 시료는 상온 포토루미네슨스의 반치폭은 104 meV이고, InAlGaAs층 위에 In(Ga)As 양자점을 형성한 시료는 상온 포토루미네슨스의 반치폭은 76 meV로 나타났다.

<26> 그러나, 본 발명에 따라 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점을 형성한 시료는 도 3b에 도시된 바와 같이 상온 포토루미네슨스의 반치폭이 64 meV로 현저하게 좁아진 것을 알 수가 있다. 이와 같은 결과는 도 2에 나타나 있는 AFM 결과에 보시는 바와 같이 양자점의 균일도가 증가되었기 때문으로 사료된다. 더하여, 본 발명에 따라 형성한 시료는 발광 세기는 종래 기술에 따른 시료에 비해서 약 2.5 배 정도 증가하였음을 알 수 있다.

【발명의 효과】

<27> 상술한 바와 같이 본 발명의 양자점 형성 방법은 InP 기판 상에 완충층 및 얇은 $In_xGa_{1-x}As$ 응력층을 순차적으로 형성한 후, 상기 얇은 $In_xGa_{1-x}As$ 응력층 상에 $In(Ga)As$ 양자점을 형성한다. 이와 같이 마련된 시료는 $In(Ga)As$ 양자점의 균일도가 현저하게 좋아져 포토루미네스نس의 반치폭이 감소하며 발광 세기가 현저히 증가한다. 따라서, 본 발명에 따른 $In(Ga)As$ 양자점을 레이저 다이오드와 같은 발광소자나 광검출기 등의 광소자의 활성층으로 응용하였을 때 그 소자 특성이 개선될 수 있다.

【특허청구범위】**【청구항 1】**

InP 기판 상에 완충층을 형성하는 단계;

상기 완충층 상에 $In_xGa_{1-x}As$ 응력층을 형성하는 단계; 및

상기 $In_xGa_{1-x}As$ 응력층 상에 In(Ga)As 양자점은 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 양자점 형성 방법.

【청구항 2】

제1항에 있어서, 상기 완충층은 InAlAs, InAlGaAs, InP, InGaAsP 또는 이들로 구성된 이종접합층으로 형성하는 것을 특징으로 하는 양자점 형성 방법.

【청구항 3】

제1항에 있어서, 상기 $In_xGa_{1-x}As$ 응력층의 In의 조성비를 0.05~0.45로 형성하는 것을 특징으로 하는 양자점 형성 방법.

【청구항 4】

제1항에 있어서, 상기 $In_xGa_{1-x}As$ 응력층의 두께를 0.5 nm~10 nm로 형성하는 것을 특징으로 하는 양자점 형성 방법.

【청구항 5】

제1항에 있어서, 상기 In(Ga)As 양자점은 유기금속화학증착법(MOCVD), 분자선증착법(MBE) 또는 화학선 증착법(CBE)을 이용하여 형성하는 것을 특징으로 하는 양자점 형성 방법.

【청구항 6】

제1항에 있어서, 상기 $In(Ga)As$ 양자점의 두께는 3 모노레이어(Monolayer)에서 10 모노레이어로 형성하는 것을 특징으로 하는 양자점 형성 방법.

【청구항 7】

제1항에 있어서, 상기 $In_xGa_{1-x}As$ 응력층 및 $In(Ga)As$ 양자점을 형성할 때 적층 주기를 1주기에서 30주기로 하는 것을 특징으로 하는 양자점 형성 방법.

【도면】

【도 1a】

【도 1b】

【도 1c】

【도 1d】

1020030027986

출력 일자: 2003/5/29

【도 2a】

【도 2b】

1020030027986

출력 일자: 2003/5/29

【도 2c】

【도 3a】

1020030027986

출력 일자: 2003/5/29

【도 3b】

