Examen¹ la Geometrie I, seria 10, 22.02.2024

Grupa:			

I. Pentru fiecare din obiectele cerute mai jos, dați un exemplu justificat sau explicați de ce nu există.

- 1. O dreaptă perpendiculară pe dreapta (d): y = 5 în planul \mathbb{R}^2 . (0,5p)
- **2.** Un punct $C \in \mathbb{R}^2$ astfel încât $\triangle ABC$ e isoscel, unde A = (1, 2) și B = (2, 1). (0,5p)
- 3. O dreaptă în spațiul \mathbb{R}^3 care nu intersectează planul $\pi = \{(1 + 2t s, t + s, 5 s) \mid t, s \in \mathbb{R}\}.$ (0,5p)
- **4.** O omotetie $f: \mathbb{R}^2 \to \mathbb{R}^2$ astfel încât $f(d_1) = d_2$, unde $(d_1): x 3y = 6$ și $d_2 = \{(1 4t, 3 t) \mid t \in \mathbb{R}\}.$ (0,5p)
- 5. Izometrie afină a planului euclidian cu exact două puncte fixe. (0,5p)
- **6.** O conică în \mathbb{R}^2 a cărei singură axă de simetrie este (d): x-y=0. (0,5p)

II. Redactaţi rezolvările complete:

- 1. În \mathbb{R}^2 , fie punctele $A=(0,0), B=(-2,2), C_{\alpha}=(2,\alpha), D=(6,2)$ (unde $\alpha\in\mathbb{R}, \alpha>2$ este un parametru).
- a) Determinați punctul de intersecție al diagonalelor patrulaterului $ABC_{\alpha}D$, fie el $\{O_{\alpha}\}:=AC_{\alpha}\cap BD$. (1p)
- b) Pentru ce valori ale α există un cerc \mathcal{C} astfel încât $\{A, B, C_{\alpha}, D\} \subset \mathcal{C}$? (1p)
- c) Pentru $\alpha = 4$, există un punct P pe dreapta C_4D astfel încât triunghiul ABP să fie echilateral? Justificați răspunsul dat. (0,5p)
- 2. În \mathbb{R}^2 fie conica \mathcal{E} de ecuație:

Nume și prenume:

$$(\mathcal{E}): x^2 + 2y^2 - 2x - 4y + 2 = 0.$$

- a) Determinați tipul conicei \mathcal{E} . (1p)
- b) Fie A = (0,1), B = (2,1). Determinați ecuația unui cerc \mathcal{C} astfel încât $\{A,B\} \subset \mathcal{C} \cap \mathcal{E}$ și $T_A(\mathcal{C}) = T_A(\mathcal{E}), T_B(\mathcal{C}) = T_B(\mathcal{E})$. (1p)
- c) Există un punct $C \in \mathcal{E}$ astfel încât triunghiul ABC să fie dreptunghic? Justificați răspunsul dat. (0,5p)
- 3. În \mathbb{R}^2 considerăm un triunghi oarecare ABC nedegenerat, și fie M, N, P respectiv mijloacele laturilor [AB], [AC], [BC]. Arătați că există o elipsă \mathcal{E} astfel încât $\{M, N, P\} \subset \mathcal{E}$ și $T_M \mathcal{E} = AB, T_N \mathcal{E} = AC, T_P \mathcal{E} = BC$. (1p)

¹Se acordă 1 punct din oficiu. Redactați subiectele pe foi separate. Timp de lucru: 2 ore. Succes!