Praca domowa 1

Jan Kwiecień 320565

1 Wstęp

Celem pracy domowej numer 1 było sprawdzenie jak poszczególne parametry wpływają na jakość predykcyjną drzewa. Porównałem: minimalną liczbę obserwacji w liściu, głębokość drzewa, kryterium podziału oraz liczbę losowo wybieranych cech potrzebnych do decyzji co do podziału (parametr max_features).

2 Eksperyment

2.1 Dobór parametrów

W pierwszej kolejności podzieliłem zbiór trenignowy i testowy w proporcji 7:3. Opisane powyżej parametry dobrałem w następujących skalach:

- kryterium podziału (criterion): gini, entropy;
- minimalna liczba obserawacji w liściu (min_samples_leaf): 50, 100, 150;
- głębokość drzewa (max_depth): 1-10;
- liczba losowo wybieranych cech potrzebnych do podziału (max-features): 1 19.

2.2 Sposób testowania

W pierwszej części użyłem dwóch pętli (w jednej kryterium podziału gini, w drugiej entropy) do znalezienia najbardziej optymalnych parametrów min_samples_leaf oraz max_depth. Następnie po odpowiednim doborze napisałem kolejne dwie pętle (z takim samym podziałem co do kryteriów), aby przetestować parametr max_features. W każdym z czterech przypadków używałem pięciokrotnej kroswalidacji. Miarą dokładności w opisanym teście było roc_auc (pole pod krzywą roc).

2.3 Wyniki

Po pierwszym teście zarówno w kryterium podziału *gini* jak i *entropy* najlepsze okazały się być parametry: max_depth = 10, $min_samples_leaf$ = 50. Roc_auc dla każdego z nich prezentowało się następująco:

- gini: 0.8740553816488278
- entropy: 0.8810291529926146

Następnie w drugim teście najbardziej optymalny parametr max_features dla kryterium podziału gini wyniósł 19, a dla entropy 16. Ostateczne roc_auc dla każdego z nich:

- gini: 0.8755300333312832
- entropy: 0.8824244567096807

2.4 Wybór drzewa

Biorąc pod uwagę największą wartość roc_auc , ostatecznie do kolejnego zadania wybrałem drzewo decyzyjne z następującymi parametrami:

• criterion: entropy

• min_samples_leaf: 50

• max_depth: 10

• max_features: 16

3 Analiza jakości predykcyjnej modelu

W celu dokonania analizy jakości predykcyjnej modelu wyznaczyłem: macierz pomyłek, dokładność, czułość i precyzję. Ponadto narysowałem krzywą ROC i policzyłem wartość AUC.

3.1 Macierz pomyłek

Macierz pomyłek prezentuje się następująco: $CF = \begin{bmatrix} 2450 & 554 \\ 695 & 2301 \end{bmatrix}$

3.2 Miary dla otrzymanych predykcji

 \bullet dokładność: 0.7918333333333333

• czułość: 0.7680240320427236

 \bullet precyzja: 0.805954465849387

3.3 Krzywa ROC i AUC

Krzywa ROC:

Wartość AUC: 0.79

4 Wnioski

Wybrane przeze mnie drzewo okazło się być skuteczne na zbiorze testowym. Otrzymałem wysoką dokładność, czułość, precyzję i wartość AUC. Macierz pomyłek również wskazuje na wysoką efektywność modelu.