Hello!

Project 5 - Client

Khadija Conteh Matt DeVay Aidan Dominguez ATX-DSI-11

Problem Statement/Overview

Create a feature than could enhance current image-based predictions of informal settlements based on the ratio of real estate adverts to population density.

Guided Walk-Through: Workflow

- 1. Research!
- 2. Collect real estate data via webscraping
- 3. Geocode real estate data
- 4. Regionalize population density data
- 5. Correlate real estate data to population data for each region

Guided Walk-Through: Technology Used

- Python with SKLearn, MatPlotLib, Pandas
- Selenium
- QGIS
- Google Earth Pro
- Google Maps
- Google Maps API
- Tableau

Data Collection

City Choice: Nairobi

Nairobi: Reference Map

City Background: Nairobi, Kenya

- 1. Modern, rapidly growing
- 2. English is common
- 3. Large and dynamic informal settlements
- 4. Accurate and recent population data available

Nairobi Demographics

- Population: 4.4 million residents
- Area: 269 sq mi
- Growth rate > 4%
- Poverty rate >20%
- High birth and immigration rates

Population Density Data

Population Density Data (https://data.humdata.org/)

High resolution (1 arcsecond grid) population counts from the Humanitarian Data Exchange, created by Columbia University and FaceBook.

- High resolution (30m grid counts of population)
- Complete
- Updated frequently
- Convenient format
- REALLY REALLY BIG! More than 11 million data points for Kenya

Nairobi: Population Density Overlay

Webscraping

- Website: https://www.buyrentkenya.com/
- Date Scraped: May 08, 2020
- Total Advertisements scraped: 4,000
 - Rental Advertisements: 2,080
 - For Sale Advertisements: 1,920

County Locations

Housing price by County

For Sale			
Kamukunji	288,246 USD		
Westlands	231,958 USD		
Starehe	162,791 USD		
Kasarani	115,341 USD		
Lang'ata	115,176 USD		
Embakasi	102,595 USD		
Dagoretti	94,269 USD		
Kibra	71,005 USD		

Rentals			
Westlands	1,427 USD		
Lang'ata	730 USD		
Kasarani	509 USD		
Embakasi	502 USD		
Starehe	496 USD		
Kibra	433 USD		
Kamukunji	424 USD		
Dagoretti	325 USD		

County Sale and Rental Advertisements

Sub-County location

Sub-County Sale and Rental Advertisements

Challenges

- Selecting real estate site to scrape
- Lack of date reference for advertisements
- Generalized or missing advertisements locations
- Misclassification of advert locations
- Price currency conversion

Informal Settlements... what are they anyway?

Informal Settlements

Informal settlements are unplanned areas where housing is constructed on land that the occupants have no legal claim to, or occupy illegally.*

As these locations fall outside of government regulation these areas usually lack, or are cut off from basic public services (i.e. schools, water, sanitation etc.)

^{*}source: Glossary of Environment Statistics, Studies in Methods, Series F, No. 67, United Nations, New York, 1997.

Can real estate and public services data serve to indicate probable areas for informal settlements?

Real Estate Data & Primary School locations

Real Estate Data & Nairobi City Water and Sewerage locations

Geocoding

Geocoding - What is it?

- Geocoding is assigning Latitude and Longitude coordinates to locations
- Several ways of doing it:
 - Geocoding regions and correlating real estate data directly to the region
 - Geocoding the address itself and mapping it
- Keep in mind: Population Density Data is already geocoded and is extremely granular (~30m squares), and also needs to be regionalized

Geocoding - Challenges

- Full addresses or GPS coordinates were not available for real estate data
- Local place names and sub-county districts are not accurately mapped
- Neighborhoods often overlap
- Complex map boundary data is not easy to work with in python
- No familiarity with local place name conventions or usage
- Hard to automate based on generally available data

Geocoding - Enter Google

- Google Maps API can geocode just about anything
- Simple to utilize and automate
- Cheap

Geocoding - Google Caveats

- GIGO
- It may be cheap, but it's not free
- Even automated, it can take a while (1-2 seconds per record)
- Even good addresses likely return geocodes with significant error
- Errors are impossible to reasonably quantify
- Regionalizing Issues

Geocoding: Mapped Results

Modeling

Models

KMeans & DBSCAN

- Filtered by different population thresholds
 - 0 2, 4, 6, 7, 8
- Scaled
- K-Means

- DBSCAN
 - Inefficient

Metrics

Silhouette Score

- Random sample of 20,000 points
- Score: 0.5404

Clusters

Populations

Population

clusters		
12	521.097123	8
20	375.180868	10
2	270.542778	27
13	186.906127	3
23	123.269341	26
6	89.214281	25
11	81.746511	17
18	61.653474	24
14	42.249595	15
21	31.883960	9
1	23.766944	4
16	22.951393	22
0	13.384745	7
5	13.249545	19

Ratios

	advert ratio	5	7.013444
clusters		22	6.514870
25	38.010932	15	4.454998
17	28.080450	26	4.089884
18	20.143562	8	3.891865
10	19.072199	23	2.897026
12	17.667609	21	2.691377
3	15.484693	19	2.662652
7	13.905433	11	1.893319
16	11.486705	14	0.552008
24	10.304435	1	0.413862
6	8.677806	2	0.388768
13	7.531674	20	0.330199
9	7.285023	4	0.186971
		500	

Conclusion

Conclusion

- Real estate data extracted spanned affluent neighborhoods in Nairobi, with majority of advertisements located in Westlands county.
- Using mapping and modeling techniques, we created a feature that would help infer probable locations for informal settlements.

Next Steps

- Expand webscraping to other languages and sites
- Develop historical/time series real estate data
- Leverage other data to refine feature
- Test feature with existing machine vision models
- Create a model to predict informal settlements based on generated feature(s) for comparison

Thank You!

Khadija Conteh Matt DeVay Aidan Dominguez