

Programmcodeverifikation mit Coq

Lukas Kiederle Fakultät für Informatik WS 2019/20

Kurzfassung

Aus Zeit- und Kostengründen beim Entwickeln und Testen von komplexen Systemen werden Tools zur Programmcodeverifikation immer relevanter. Diese Tools ermöglichen das Schreiben von Programmen, welche mathematisch und maschinell geprüft sind. Dadurch ist sichergestellt, dass das beschriebene Programm sich auch wie gewünscht, verhält.

Ziel dieser Arbeit ist es, einen sowohl theoretischen als auch technischen Einblick in die Programmcodeverifikation mit dem Proof Assistent Tool Coq darzustellen. Als Einstieg werden die grundlegende Begriffe geklärt und ein kurzer Überblick über Tools in diesem Fachbereich dargestellt. Dabei wird insbesondere auf Coq eingegangen.

Um ein Verständnis zu bekommen, wie ein Proof Assistent Tool die Qualität von Programmcode sicherstellt, müssen zunächst die Grundlagen dieser Sprache anhand von Beispielen erklärt werden. Anschließend wird näher auf das Zusammenspielen zwischen Programmcode und Proof Assistent eingegangen.

Es gibt bereits einige sehr erfolgreiche Forschungsprojekte, die Coq im Einsatz haben. Diese werden abschließend vorgestellt. Schlussendlich wird ein Fazit inklusive Ausblick in Hinsicht auf die Verwendbarkeit von Proof Assistent Tools gezogen.

Schlagworte:

- Proof Assistent
- Coq
- Programcodeverifikation

Leseanleitung

Hinweise auf referenzierte Literatur und die daraus entnommenen Zitate, welche in eckigen Klammern angegebenen sind, werden im Literaturverzeichnis am Ende der Arbeit aufgeführt. Soll ein Begriff oder eine Formulierung besonders hervorgehoben werden, ist diese *kursiv* geschrieben. Abkürzungen werden bei erstmaligem Auftreten einmal in runden Klammern, anschließend an das Wort ausgeschrieben. Um den Lesefluss nicht zu stören, werden alle darauf folgenden Wiederholungen der Abkürzungen nicht immer explizit ausgeschrieben.

Möglicherweise unbekannte Begriffe und Fachbegriffe werden bei ihrer ersten Nennung fett gedruckt. Diese sind im Glossar in alphabetischer Reihenfolge aufgelistet und werden näher erklärt. Einzige Ausnahme hierbei sind Überschriften von Tabellen. Um ein zusammenhängendes Lesen der Arbeit zu erleichtern, werden bei Bedarf Erklärungen bereits im Text gegeben. Dabei wird davon ausgegangen, dass der Leser bereits mit grundlegenden Begriffen der Informatik vertraut ist. Ausgehend vom Wissensstand eines entsprechend vorgebildeten Lesers, werden demzufolge nur fachlich speziellere Begriffe erklärt.

Um Unklarheiten zu vermeiden, werden Fachbegriffe in und zur Beschreibung von Bildern und Prozessen in ihrer originalen Sprache Englisch verwendet und nicht immer übersetzt.

An den Stellen, an denen es der Ausführung des Textes dient, sind kurze Codebeispiele im Text eingebunden.

Inhaltsverzeichnis

1	Motivation						
2	Warum ist Formale Verifikation interessant?						
3	Grundlagen 3.1 Theorem Provers	6 6 7					
4	Coq	7					
5	Programmatische Coq-Grundlagen 5.1 Basisbegriffe	7 7 8 9 10					
6	Coq und Programmcode 6.1 Proof -> Programm 6.1.1 theoretisch 6.1.2 praktisch 6.2 Programm -> Proof	12 12 12 13 17					
7	Aktuelle Anwendung 7.1 Proofed Stack 7.2 JSCert for ECMA 5 7.3 4-Farben Rätsel ist löstbar! 7.4 CertiCoq	17 17 17 18 18					
8	Aufwand in der Praxis	18					
9	Fazit	18					
10	Glossar	18					
Α	A Weiterführende Inhalte für Formale Verifikation						

1 Motivation

Wenn heutzutage die Spezifikation eines Projektes in Englisch formuliert wird, ist diese Spezifikation von Anfang an mehrdeutig, behauptet Jeannette Wing, Coperate Vice President von Microsoft Research. Des Weiteren sagt sie, dass jede natürliche Sprache mehrdeutig ist. Hingegen in formalen Spezifikationen, wird basierend auf Mathematik präzise erklärt, was genau ein Programm machen soll.[Har]

Diese Seminararbeit soll einen tieferen Einblick in den Themenbereich der Programmcodeverifikation schaffen. Dabei wird sowohl auf die Grundlagen als auch technisch-detaillierte Beispiele eingegangen. Als technisches Mittel wird hierfür der Proof-Assistent Coq verwendet.

2 Warum ist Formale Verifikation interessant?

Es existieren unzählige Beispiele für die Relevanz von Formaler Verifikation. Zum Beispiel jeder Computer besteht aus vielen elektronischen Hardwareteilen wie Prozessoren, Grafikkarte et cetera. Um diesen nutzen zu können, wird eine Hardware Description Language (HDL) eingesetzt. Diese beschreibt sowohl die Struktur als auch das Verhalte des elektronischen Bauteils

Eine Firma X verkauft nun einen Computer mit einer fehlerhaften HDL-Software. Je nach Ausmaß des Bugs, kann dies gravierende Folgen nach sich ziehen.

Heutzutage gehen viele Computer-Nutzer davon aus, dass ein Prozessor, ein Compiler oder ein Programm 100% korrekt funktionieren. Doch wie ist sichergestellt, dass das Speichern in einem Editor oder das Compilieren von C Code auch das gewünschte Ergebnis liefert? Es ist eine Annahme, dass dies so funktioniert. Sehr wahrscheinlich wurden etliche Tests vor der Veröffentlichung der jeweiligen Software geschrieben. Trotzdem ist dies nur eine Annahme und kein Beweis, dass die Software auch wirklich so funktioniert, wie diese funktionieren soll.

Wenn beispielsweise diese HDL-Software jedoch formal verifiziert wäre, wäre bewiesen, dass, solange die Spezifikation korrekt ist, kein Fehler auftreten kann.

Somit lässt sich schlussfolgern, dass formale Verifikation vor allem in Software, die 100% korrekt sein muss benötigt wird. Hauptsächlich betrifft dies sicherheitskritische und intensiv genutzte Systeme.

3 Grundlagen

3.1 Theorem Provers

Ein Theorem Prover ist ein Programm. In diesem definiert ein Mensch Aussagen, welche das Tool versucht zu beweisen, wenn es möglich ist.

3.2 Proof Assistent

Ein Proof Assistent, welcher auch interaktiver Theorem Proofer genannt wird, ist ein Softwaretool, dass hilft formale Beweise durchzuführen. Dabei wird meistens ein interaktiver Editor verwendet, mit dem ein Mensch am Computer Schritt für Schritt Beweise schreiben kann. Der Unterschied zu einem Theorem Prover ist, dass die Software mit dem Bediener interagiert.

3.3 Übersicht

Zum Zeitpunkt dieser Arbeit existieren circa 17 verschiedene Tools für formale Verifikation. Dabei sind ACL2, Isabelle und Coq die bekanntesten. [Wie] In dieser Arbeit, wird wie bereits erwähnt ausschließlich auf Coq eingegangen, da das Vergleichen den Rahmen dieser Arbeit sprengen würde. Hintergrundwissen diesbezüglich ist ersichtlich im Paper von Freek Wiedijk und Dana Scott zu empfehlen unter http://www.cs.ru.nl/~freek/comparison/comparison.pdf.

4 Coq

Der Proof Assistent Coq wurde erstmals im Mai 1989 veröffentlicht. Das National Institute for Research in Computer Science and Automation (INRIA) hat dessen Entwicklung bereits seit 1984 unterstützt.

Bestandteile in Coq sind die funktionale Programmiersprache Coq selbst und eine Entwicklungsumgebung namens Coqide. Zum heutigen Zeitpunkt ist beide plattform-unabhängig und open-source erhältlich. Die aktuelle Version ist 8.10.2.[COQ]

5 Programmatische Coq-Grundlagen

- Dependent type Sprache: So we established that we can prove things are true before we have a concrete value. To do this in an actual programming language, we need a way to encode these statements into the type system itself, which means our type system needs an upgrade. https://medium.com/background-thread/the-future-of-programming-is-dependent-types-programming-word-of-the-day-f We're turning the above run-time assertion into compile-time type.
- https://softwarefoundations.cis.upenn.edu/lf-current/Basics.html# lab18 [dACCMGMGCHVSBY19]
- Coq und Coqide Zusammenspiel mit Screenshot => wird in Kapitel mit Beispielbeweis genauer drauf eingegangen

5.1 Basisbegriffe

5.1.1 Typdefinition

```
Inductive bool : Type :=
1
2
            | true
            | false.
3
4
  Inductive day : Type :=
5
            | monday
6
7
            | tuesday
              wednesday
8
            | thursday
9
10
            | friday
            | saturday
11
12
            | sunday.
```

Codebeispiel 1: Coq Typedefinition

Die Beispiele aus dem Codeblock 1 stellen drei Typedefinitionen in Coq dar. Ersteres ist ein klassischer Bool. Sowie dieser true oder false annehmen kann, repräsentiert der zweite Type day alle Wochentage.

Des Weiteren ist es auch möglich Komposition durch das Schlüsselwort Inductive abzubilden.

5.1.2 Funktionen

In Coq gibt es mehrere Arten von Funktionstypen. Mit dem Keyword **Definition** können einfach Funktionen dargestellt werden. Oftmals wird allerdings Rekursion benötigt. Diese ist nur möglich, wenn die Deklaration mit **Fixpoint** oder ähnlichen Wörtern beschrieben ist. Anstelle von **Theorem** könnten Beispielsweise auch **Example**, **Lemma**, **Fact oder Remark** stehen. Diese Schlüsselwörter ermöglichen es in Coq mittels des Allquantors die Korrektheit einer Funktion für alle Elemente einer Menge zu beweisen. In Codeblock 2 ist für die unterschiedlichen Funktionstypen jeweils ein Beispiel dargestellt.

```
Definition minustwo (n : nat) : nat :=
  match n with
2
3
             | 0 => 0
             | S O => O
4
               S (S n') \Rightarrow n'
5
   end.
6
8
   Theorem plus_O_n' : forall n : nat,
    + n = n.
9
10
  Fixpoint plus (n : nat) (m : nat) : nat :=
11
   match n with
12
13
               oldsymbol{>} => m
               S n' \Rightarrow S (plus n' m)
14
15
   end.
```

Codebeispiel 2: Coq Funktionen

Die erste Funktion **minustwo** zieht von einer eingegebenen natürlichen Zahl zwei ab. Allerdings ergibt 0 - 2, 1 - 2 => 0. Dies ist durch die ersten zwei Fälle des **match**-Begriffs dargestellt.

Das **Theorem plus_O_n** liest sich wie folgt: "Für alle natürlichen Zahlen n gilt 0 + n = 0". Im folgenden Kapitel wird gezeigt, wie eine solche Funktion mathematisch bewiesen werden kann.

```
(* Run function plus with 3 and 2. Result \Rightarrow 5 *)
1
  Compute (plus 3 2).
2
3
      plus (S (S (S O))) (S (S O))
4
           ==> S (plus (S (S 0)) (S (S 0)))
5
  by the second clause of the match
6
           ==> S (S (plus (S 0) (S (S 0))))
7
  by the second clause of the match
8
           ==> S (S (S (plus 0 (S (S 0)))))
9
  by the second clause of the match
10
11
           ==> S (S (S (S (S O))))
  by the first clause of the match
12
  *)
13
```

Codebeispiel 3: Coq rekursive Funktion

Um ein tieferes Verständnis für die Rekursion in Coq zu bekommen, sind im Codeblock 3 die einzelnen Schritte in einem Kommentar-block (gekennzeichnet durch (* *)) abgebildet. Im 1. Schritt stellt Coq, wie bereits bei den Typdefinitionen der natürlichen Zahlen gezeigt, die Dezimalzahlen zwei und drei mittels der Successor-funktion dar. Anschließend beginnt die Rekursion. Solange $\mathbf{n} > \mathbf{0}$, wird 1 mehr zum Endergebnis gezählt. Wenn $\mathbf{n} = \mathbf{0}$, dann wird, wie in den letzten zwei Zeilen im Codeblock dargestellt, das plus durch \mathbf{m} ersetzt. Somit ergibt plus 3 $\mathbf{2} => \mathbf{5}$.

5.2 Beweise und Taktiken

Úm zu prüfen, dass die definierten Funktionen mathematisch korrekt sind, stellt der Proof Assistent verschiedene Taktiken zur Verfügung. Diese werden zwischen den **Proof.** und **Qed.** Schlüsselworten angegeben.

Eine grundlegende Beweismethode ist die Induktion, welche nur für die natürlichen Zahlen verwendet werden kann. Dabei wird zuerst geprüft, ob beim Einsetzen in die zu beweisende Funktion der kleinste Wert gültig ist. Anschließend soll die Aussage für $\mathbf{n+1}$ bewiesen werden. Wenn beides zu einem gültigen Ergebnis führt, ist die Funktion mathematisch valide.

```
Theorem plus_1_1 : forall n:nat, 1 + n = S n.
1
2
  Proof.
3
           intros n.
            reflexivity.
4
  Qed.
5
6
  Theorem plus_n_0 : forall n:nat, n = n + 0.
7
  Proof.
8
9
            intros n.
10
           induction n as [| n' IHn'].
                     - (* n = 0 *) reflexivity.
11
                     - (* n = S n' *) simpl.
12
                       rewrite <- IHn'.
13
14
           reflexivity.
  Qed.
15
```

Codebeispiel 4: Coq Beispielbeweis

Im Codeblock 4 sind zwei Theoreme bewiesen. Ersteres kann durch zwei Taktiken geprüft werden. **Intros** in Verbindung mit allen verwendeten Variablen des Theorems, setzt diese in den Kontext. Dies ist vergleichbar mit: "Gegeben sei n, eine natürliche Zahl".

Ein anschließendes Anwenden von **reflexivity** sorgt dafür, dass das Programm überprüft, ob die linke und rechte Seite identisch sind. Dabei führt **reflexivity** auch noch ein **simpl** zur Vereinfachung (z.B.: 0 + n => 0) aus. **Reflexivity** muss somit immer am Ende eines Beweises stehen, sodass er abgeschlossen ist.

Die zweite Funktion wird mit Hilfe der Taktik **induction** gelöst. Diese teilt die Aussage in zwei Subgoals (z.d. Teilziele) auf. Anschließend gilt es, jedes einzelne Ziel zu prüfen. Diese werden in verschiedenen Ebenen mithilfe von -, +, * gekennzeichnet. Ein - wird bei der ersten Subgoal-Ebene verwendet. Für das Adressieren weiterer Subgoals von Subgoals werden + und * genutzt. Das Schlüsselwort **rewrite** wird in folgendem Unterkapitel erläutert.

5.3 Wie verwende ich Coq?

Diese Kapitel beinhaltet einen Beispielbeweis und geht somit auf den praktischen Einsatz von Coq ein. Die zur Programmiersprache Coq parallel entwickelte Coqide wird hierfür verwendet. Wie bereits erwähnt, ist diese Entwicklungsumgebung interaktiv. Das bedeutet, dass der Nutzer Informationen vom Programm erhält. Diese können sowohl Hinweise, als auch Fehlermeldungen sein. Um sich die Coqide genauer vorstellen zu können, wird folgende Illustration 1 verwendet.

Abbildung 1: Coqide

Die Coqide bietet viele spezielle Features für formale Verifikation. Beispielsweise ist es möglich mit den Pfeilen in der Navigationsleiste die einzelnen Kommandos aus der linken Textbox auszuführen. Je nach Pfeil springt man einen Schritt vorwärts, bis zum Zeiger vorwärts oder auch rückwärts.

Die Entwicklungsumgebung stellt grundsätzlich drei Fenster dar. Dabei wird eines für den Programmcode genutzt. Die anderen beiden Fenster auf der rechten Seite dienen ausschließlich der Informationsausgabe.

Im Screenshot ist ein Beweis zu sehen. Dabei wird überprüft, wenn die natürlichen Zahlen \mathbf{n} , \mathbf{m} , \mathbf{o} und die Beziehungen $\mathbf{n} = \mathbf{m}$ und $\mathbf{m} = \mathbf{o}$ gegeben sind, dass $\mathbf{n} + \mathbf{m} = \mathbf{m} + \mathbf{o}$ gilt. Zunächst fällt auf, dass der Coq-Code teilweise grün markiert ist. Dies symbolisiert den bereits erfolgreich ausgeführten Teil. Das Ausgabefenster rechts oben zeigt, hierfür die passende Ausgabe. Dabei werden über dem Trennstrich die gegebenen Zahlen und Hypothesen angezeigt. Zusätzlich ist noch die Anzahl an Zielen abgebildet. Den darunter stehende Ausdruck gilt es zu beweisen.

Das dritte Fenster rechts unten dient zur Meldung von Hinweisen, Fehlern und Konsolenausgaben, wie beispielsweise von einer Suche.

Im Anschluss folgt das bereits gezeigte Codebeispiel 5 mit der ausführlichen Ausgabe der Coqide nach jedem Schritt. Diese ist durch die Kommentarblöcke, welche durch (* eingeleitet und durch *) beendet werden, gekennzeichnet. Wie bereits zuvor erklärt, gilt es, unter den gegebenen Umständen, $\mathbf{n} + \mathbf{m} = \mathbf{m} + \mathbf{o}$ zu beweisen. Hierfür wird die **rewrite** Taktik eingesetzt. Nicht fachlich ausgedrückt bedeutet es, dass je nach Richtung des Pfeils die eine oder die andere Seite eingesetzt wird. Somit verändert sich die zu beweisende Aussage dynamisch im Coqide-Ausgabefeld. Nach dem ersten **Rewrite**, wird \mathbf{n} mit \mathbf{m} ersetzt. Das Einsetzen der zweiten Hypothese **H2** führt schlussendlich zu dem Ergebnis: $\mathbf{m} + \mathbf{m} = \mathbf{m} + \mathbf{m}$. Folglich kann das Ziel mit **reflexivity** bewiesen werden.

```
(* Initiating the theorem to proof. *)
1
   Theorem plus_id_exercise : forall n m o : nat,
            n = m \rightarrow
3
            m = o \rightarrow
4
            n + m = m + o.
5
6
   (* result:
7
   1 subgoal
8
9
                                                 (1/1)
10
   forall n m o : nat,
  n = m -> m = o -> n + m = m + o *)
11
12
13
   (* move quantifiers into the context: *)
14
15
            intros n m o.
16
   (* result:
17
   1 subgoal
18
19
   n, m, o : nat
20
                                                 (1/1)
   n = m \rightarrow m = o \rightarrow n + m = m + o*)
21
22
   (* move hypothesises into the context: *)
23
24
            intros H.
25
            intros H2.
```

```
26
   (* result:
27
28
   1 subgoal
29
   n, m, o : nat
  H : n = m
30
   H2 : m = 0
31
                                                 (1/1)
32
   n + m = m + o*)
33
34
   (* rewrite the goal using the hypothesises: *)
35
            rewrite -> H.
36
37
   (* result:
38
39
                                                (1/1)
40
  m + m = m + o
41
   *)
42
43
            rewrite <- H2.
44
45
   (* result:
46
47
                                                 (1/1)
   m + m = m + m
48
   *)
49
50
            reflexivity.
   Qed.
```

Codebeispiel 5: Coq Beispielbeweis

6 Coq und Programmcode

Beim Zusammenspiel von Beweisen in Coq und Programmcode gibt es zwei verschiedene Richtungen. Einerseits können Theoreme bewiesen und dann in Programmiersprachen extrahiert werden. Andererseits ist es auch möglich, erst ein Programm zu entwickeln und anschließend dieses in Coq zu verifizieren.

Das dabei verwendete Prinzip lautet vereinfacht gesagt: Es gibt eine Liste von Dingen, die eine Software tun soll. Hierfür wird Logik verwendet, um zu beweisen, dass diese Software auch genau diese Dinge tut.

In den folgenden Unterkapiteln sind beide Wege beschrieben. Dabei wird die Richtung Proof zu Programm anhand eines genauen Codebeispiels erläutert.

6.1 Proof -> Programm

6.1.1 theoretisch

Wie bereits zuvor erwähnt, ist der erste Schritt die Erstellung einer Spezifikation, welche die Software beschreibt. Anschließend muss diese in mathematischer Form in ein Proof Tool geschrieben und bewiesen werden. Auf fehlerhafte Beweise weißt dieses Tool hin. Sobald jetzt

ein Fehler in der realen Welt auftritt, sollte dieser mit diesem beschrieben Model abgefangen werden.

Schlussendlich müssen die bewiesenen Anforderungen der Spezifikation in Programmcode konvertiert werden. Dieser Prozess wird in folgendem Kapitel genauer erklärt.[Hel]

6.1.2 praktisch

- Programmcode in Coq bewiesen und dann in Ocaml extrahiert
- Ocaml ("Categorical Abstract Machine + ML") ist eine sowohl funktionale, als auch objektorientierte Programmiersprache.
- ML bedeutet Meta-Language. Dies ist für diese Arbeit weniger relevant, da Ocaml lediglich als Beispiel für Code-Extraction genutzt wird und der Fokus hauptsächlich auf dem Prinzip liegt.
- Code to Ocaml extractor ist nicht formal verifiziert. Korrektheit wird angenommen, da Coq in Ocaml geschrieben ist.

Funktionalitäten schreiben und mathematisch beweisen

- natprod beschreibt ein paar von 2 natürlichen Zahlen
- Check und Compute wird als Konsolen-Ausgabe genutzt
- fst gibt x zurück
- snd gibt y zurück
- Notation ist ein Alias um bestimmte Ausdrücke anders als normal zu schreiben
- swap pair vertauscht x und y
- surjective_pairing und surjective_pairing_stuck beweist, dass das Erstellen von einem neuem Paar demselben entspricht, wenn man fst und snd von diesem Paar nimmt und ein neues Paar bildet.
- snd fst is swap und fst swap is snd prüft die swap pair Funktion auf Korrektheit.
- destruct bedeutet: The tactic that tells Coq to consider, separately, the cases where n = O and where n = S n' is called destruct. The destruct generates two subgoals, which we must then prove, separately, in order to get Coq to accept the theorem. The same as we used in induction. The difference of destruct and induction is, that induction is capable of checking n = 0, n+1 and than say, if this is correct -> the whole proof is correct. In this example we use destruct just to split the pair p into n and m again. Otherwise Coq can't simplify the statement.

```
6 Check (pair 3 5).
8 Definition fst (p : natprod) : nat :=
9 match p with
           \mid pair x y => x
10
11 end.
12
13 Definition snd (p : natprod) : nat :=
14 match p with
           \mid pair x y => y
15
16 end.
17
18 Compute (fst (pair 3 5)).
19 Compute (snd (pair 5 7)).
20
21 Notation "(x, y)" := (pair x y).
22
23 Compute (fst (3,5)).
24 Definition fst' (p : natprod) : nat :=
25 match p with
          |(x,y)| \Rightarrow x
26
27 end.
28 Definition snd' (p : natprod) : nat :=
29 match p with
30
           | (x, y) => y
31 end.
32 Definition swap_pair (p : natprod) : natprod :=
33 match p with
          | (x,y) => (y,x)
34
35 end.
36
37 Theorem surjective_pairing' : forall (n m : nat),
(n,m) = (fst (n,m), snd (n,m)).
39 Proof.
40
           simpl.
           reflexivity.
41
42 Qed.
44 Theorem surjective_pairing_stuck : forall (p : natprod),
45 p = (fst p, snd p).
46 Proof.
           intros p.
47
48
           destruct p as [n m].
           simpl.
           reflexivity.
50
51 Qed.
52
53 Theorem snd_fst_is_swap : forall(p : natprod),
```

```
(snd p, fst p) = swap_pair p.
54
   Proof.
55
56
            intros p.
            destruct p as [n m].
57
            simpl.
58
            reflexivity.
59
60
   Oed.
61
  Theorem fst_swap_is_snd : forall(p : natprod),
   fst (swap_pair p) = snd p.
63
   Proof.
64
65
            intros p.
            destruct p as [n m].
66
            simpl.
67
            reflexivity.
68
69
   Qed.
```

Codebeispiel 6: Coq Beispielbeweis

Um anschließend die formal bewiesenen Funktionen in Programmen nutzen zu können, muss die Datei, in der die Beweise geschrieben wurden, in Coq compiliert werden. Dafür muss folgender Befehl in die Kommandozeile eingeben werden: coqc -Q . LF PaperPair.v.

Coqc ist hierbei der Aufruf des Coq-Compilers. -Q . LF sorgt dafür, dass alle .v-Dateien aus dem Paket LF in andere Coq-Dateien importiert werden können. Ein Paket in Coq ist ähnlich zu anderen Programmiersprachen wie beispielsweise Java.

Für den nächsten Schritt in der Extraktion wird eine Coq-Datei benötigt, welche definiert, wie und was in welcher Sprache extrahiert werden soll. Diese muss ebenfalls über die Kommandozeile, wie zuvor beschrieben, compiliert werden.

```
Require Extraction.

Extraction Language OCaml.

Require Import ExtrOcamlBasic.

Require Import ExtrOcamlString.

Require Import Arith Even Div2 EqNat Euclid.

Extract Inductive nat => int [ "0" "Pervasives.succ" ]

"(fun fO fS n -> if n=0 then fO () else fS (n-1))".

Extraction "paperimpl.ml" fst snd swap_pair.
```

Codebeispiel 7: Coq Code extrahieren

Im Codeblock 7 ist zu sehen, dass verschiedene Dateien mit **Require** und **Require Import** importiert werden. **Extraction** und **ExtraCcamlBasic** sind beispielweise Standard-Features von Coq um Funktionen von Coq-Code in Ocaml-Code umzuwandeln.

Weiterhin wird in der Zeile **Extract Inductive nat** => ... ein Ausdruck verwendet, sodass OCaml den Typ der natürlichen Zahlen aus Coq verwenden kann. Damit schlussendlich eine ausführbare Datei entsteht, muss definiert werden, welche Funktionen in welche Datei extrahiert werden sollen.

Der folgende Code 8 ist das Resultat, des zuvor gezeigten Coq-Codes.

```
type natprod =
  | Pair of int * int
  (** val fst : natprod -> int **)
  let fst = function
6
  \mid Pair (x, _) \rightarrow x
7
  (** val snd : natprod -> int **)
9
10
11
  let snd = function
  | Pair (_, y) -> y
12
13
  (** val swap_pair : natprod -> natprod **)
14
15
  let swap_pair = function
16
  \mid Pair (x, y) -> Pair (y, x)
```

Codebeispiel 8: Ocaml Code anpassen

Dadurch das der Coq-To-Ocaml-Extraktor nicht komplett formal verifiziert ist, kann es sein, dass der Code nicht 100% korrekt ist. Um sicherzustellen, dass dies der Fall ist, wurden im Nachhinein ein paar Tests geschrieben, welche im Codebeispiel 9 dargestellt werden. Diese Tests beschreiben einfache Funktionsaufrufe wie zum Beispiel das Erhalten des ersten und zweiten Wertes eines Paares. Anschließend werden die selben Funktionen noch einmal aufgerufen - allerdings auf ein neues Paar, dass du die swap_ pair Funktion entstanden ist. Zur Nachvollziehbarkeit werden dabei die jeweiligen Ergebnisse auf der Kommandozeile ausgegeben.

```
1 let pair = Pair(3, 4);;
2 let resultfst = fst pair;;
3 let resultsnd = snd pair;;
4
5 Printf.printf "Result fst: %d \n%!" resultfst;;
6 Printf.printf "Result snd: %d \n%!" resultsnd;;
7
8 let pair2 = swap_pair pair;;
9 let resultfst2 = fst pair2;;
10 let resultsnd2 = snd pair2;;
11
12 Printf.printf "Result fst: %d \n%!" resultfst2;;
13 Printf.printf "Result snd: %d \n%!" resultsnd2;;
```

Codebeispiel 9: Ocaml Code anpassen

Ocaml-Code muss genauso wie C-Code compiliert werden. Folgender Befehl ermöglicht es aus der **paperimpl.ml** und der **paperimpl.mli** Datei funktionierenden compilierten Code zu erhalten. Dieser wird unter dem Namen **paperimp** im selben Verzeichnis abgelegt.

```
ocamlc -w -20 -w -26 -o paperimp paperimpl.mli paperimpl.ml
```

Codebeispiel 10: Ocaml Code compilieren

```
lukas@luk-ubuntu@~/Documents/coq-test/lf: ./paperimp
Result fst: 3
Result snd: 4
Result fst: 4
Result snd: 3
```

Codebeispiel 11: Ocaml code ausführen

In Codeblock 11 werden die Ausgaben der Tests dargestellt. Die ersten zwei Ergebnisse sind die Werte, welches mit den Werten fst: 3 und snd: 4 initiiert wurde. Die zweiten zwei Ausgaben stellen fst und snd des invertierten Paars dar.

6.2 Programm -> Proof

- nutze Verified Software Toolchain (VST) der Princeton University um C
 Code mathematisch zu beweisen
- Schreibe ein C Program F.c
- Führe clightgen -normalize F.c aus. Dadurch entsteht eine Datei Coq-File F.v
- Schreibe eine formale Verifikation in einer Datei (z.B.: verif_F.v). In dieser File müssen sowohl F.v als auch das VST Floya Programm-Verifikationssystem VST.floyd.proofauto importieren.[AWAwLB19]

7 Aktuelle Anwendung

7.1 Proofed Stack

- CompCert (C compiler) http://compcert.inria.fr
- Princeton VST
- Certikos (verified Operating System with hypervisor and multi instances)
- http://plv.csail.mit.edu/kami/
- https://www.zdnet.com/article/certikos-a-hacker-proof-os/
- https://github.com/PrincetonUniversity/VST
- https://vst.cs.princeton.edu
- https://news.yale.edu/2016/11/14/certikos-breakthrough-toward-hacker-resistance

7.2 JSCert for ECMA 5

https://github.com/jscert/jscert

7.3 4-Farben Rätsel ist löstbar!

http://www.ams.org/notices/200811/tx081101382p.pdf

7.4 CertiCog

https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf

8 Aufwand in der Praxis

- Für jede Zeile Code wurden >= 5 extra Zeilen Proofs geschrieben.
- Code der geschrieben wurde, hat meistens sofort funktioniert. (Es ist eine neue Art zu programmieren)
- Projekt Ironclad von Microsoft Research. Talk von Bryan Parno 2014 https://www.usenix.org/node/186162
- Objektorientierung eher schwer, da direkte Umwandlung von funktionaler Sprache in eine funktionale Sprache einfacher ist. (Außerdem programmieren die Menschen, die das entwickeln eigentlich nicht wirklich objektorientiert)

9 Fazit

- Programmcodeverifikation nimmt vor allem in sicherheitskritischen Bereichen zu
- Programmcodeverifikation ist deutlich zeitintensiver (5mal)
- Mit dieser Verifikation kann 100%tige Garantie für funktionierende Software gewährleistet werden
- Es hat großes Potential
- Wird sehr stark durch die Community weiterentwickelt
- Große Firmen nutzen es immer aktiver
- nur Software kann sicher gemacht werden. Hardware ist immer noch fehlbar!

10 Glossar

A Weiterführende Inhalte für Formale Verifikation

- Generating Correct Code with Coq by Rob Dickerson https://www.youtube.com/watch?v=95VlaZTaWgc
- Ironclad Apps: End-to-End Security via Automated Full-System Verification https://www.usenix.org/node/186162
- The Seventeen Provers of the World http://www.cs.ru.nl/~freek/comparison/comparison.pdf

Literatur

[AWAwLB19] J. D. Andrew W. Appel with Lennart Beringer, Qinxiang Cao.

Verifiable C, Applying the Verified Software Toolchain to C pro-

grams. S. 8, 2019.

[COQ] How to get it? https://coq.inria.fr/. Last visit: 15 Dez 2019.

[dACCMGMGCHVSBY19] B. C. P. A. A. de Amorim Chris Casinghino Marco Gaboardi Mi-

chael Greenberg Caetaelin Hritcu Vilhelm Sjoeberg Brent Yorgey.

Logical Foundations. 1, 2019.

[Har] K. Hartnett. Hacker-Proof Code Confirmed

https://www.quantamagazine.org/formal-verification-creates-

hacker-proof-code-20160920/. Last visit: 15 Dez 2019.

[Hel] A. Helwer. Formal Verification, Casually Explained.

https://medium.com/@ahelwer/formal-verification-casually-

explained-3fb4fef2e69a. Last visit: 16 Dez 2019.

[Wie] F. Wiedijk. The Seventeen Provers of the World .

http://www.cs.ru.nl/ freek/comparison/comparison.pdf. Last

visit: 15 Dez 2019.