Fitting a model to data

(Based on Hogg, Bovy & Lang (2010))

Fran Bartolić

Outline

- 1. Standard practice
- 2. The likelihood function
- 3. Bayes' formula
- 4. Metropolis-Hastings MCMC
- 5. Where to go from here

Assumptions

- N independent data points $\mathbf{y} = \{y_1, y_2, \dots, y_N\}$
- uncertainties $\boldsymbol{\sigma} = \{\sigma_1, \sigma_2, \dots, \sigma_N\}$
- perfectly measured $\boldsymbol{x} = \{x_1, x_2, \dots, x_N\}$ values
- we have reason to believe that the data was generated from a straight line y = mx + b

Standard practice

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \, \mathbf{\Phi} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}, \, \mathbf{C} = \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_N^2 \end{bmatrix}, \, \mathbf{X} = \begin{bmatrix} b \\ m \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{\Phi} \mathbf{X}$$

Standard practice

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \, \mathbf{\Phi} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}, \, \mathbf{C} = \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_N^2 \end{bmatrix}, \, \mathbf{X} = \begin{bmatrix} b \\ m \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{\Phi} \mathbf{X} o \mathbf{X} = \left[\mathbf{\Phi}^{ au} \mathbf{C}^{-1} \mathbf{\Phi} \right]^{-1} \left[\mathbf{\Phi}^{ au} \mathbf{C}^{-1} \mathbf{Y} \right]$$

Standard practice

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \, \mathbf{\Phi} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}, \, \mathbf{C} = \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_N^2 \end{bmatrix}, \, \mathbf{X} = \begin{bmatrix} b \\ m \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{\Phi} \mathbf{X} \to \mathbf{X} = \left[\mathbf{\Phi}^{\tau} \mathbf{C}^{-1} \mathbf{\Phi} \right]^{-1} \left[\mathbf{\Phi}^{\tau} \mathbf{C}^{-1} \mathbf{Y} \right]$$

$$\chi^2 = \sum_{i=1}^{N} \frac{[y_i - f(x_i)]^2}{\sigma_i^2} = [\mathbf{Y} - \mathbf{\Phi} \mathbf{X}]^{\tau} \mathbf{C}^{-1} [\mathbf{Y} - \mathbf{\Phi} \mathbf{X}]$$

Chi-squared

$$\chi^{2} = \sum_{i=1}^{N} \frac{[y_{i} - f(x_{i})]^{2}}{\sigma_{i}^{2}}$$

- Dimensionless measure of distance between the model and the data
- Convex, there is a unique global minimum if assumptions hold

Bayes' theorem

$$\frac{Posterior}{P(\boldsymbol{\Theta}|\mathbf{D}, M)} = \frac{\frac{\text{Likelihood}}{P(\mathbf{D}|\boldsymbol{\Theta}, M) P(\boldsymbol{\Theta}|M)}}{\frac{P(\mathbf{D}|\mathbf{M}) P(\boldsymbol{\Theta}|M)}{P(\mathbf{D}|M)}}$$
Evidence

$$\Theta = \{m, b\} \quad \mathbf{D} = \{\mathbf{x}, \mathbf{y}, \boldsymbol{\sigma}\}$$

The Likelihood Function

$$p(y_i|x_i, \sigma_i, m, b) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma_i^2}\right)$$

The Likelihood Function

$$p(y_i|x_i,\sigma_i,m,b) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma_i^2}\right)$$

$$\mathcal{L} = \prod_{i=1}^{N} p(y_i|x_i, \sigma_i, m, b)$$

The Likelihood Function

$$p(y_i|x_i,\sigma_i,m,b) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma_i^2}\right)$$

$$\mathcal{L} = \prod_{i=1}^{N} p(y_i|x_i, \sigma_i, m, b)$$

$$\ln \mathcal{L} = \text{const.} - \sum_{i=1}^{N} \frac{\left[y_i - mx_i - b\right]^2}{2\sigma_i^2} = \text{const.} - \frac{1}{2}\chi^2$$

Minimizing chi-squared = maximizing likelihood

Priors

- Depend only on the model parameters
- Represent prior knowledge about parameters, before we've seen any data
- No such thing as "uninformative prior", at best there is a "weakly informative prior"

Posterior

How to get samples from posteriors?

- In all but the most trivial cases the posterior cannot be calculated analytically
- 2. We would like to have a way of obtaining samples from the posterior pdf

Monte Carlo Integration

$$p(\theta) \ge 0$$
 for all θ , $\int p(\theta) d\theta = 1$

$$E_{p(\theta)}[\theta] \equiv \int \theta \, p(\theta) d\theta$$

Monte Carlo Integration

$$p(\theta) \ge 0$$
 for all θ , $\int p(\theta) d\theta = 1$

$$E_{p(\theta)} [\theta] \equiv \int \theta \, p(\theta) d\theta$$

$$E_{p(\theta)} [g(\theta)] \equiv \int g(\theta) \, p(\theta) d\theta$$

$$\approx \frac{1}{K} \sum_{k=1}^{K} g(\theta_k)$$

Why sample?

- Because it enables calculation of integrals
- Integrals are involved in calculating means, medians and quantiles but not the mode!
- Sampling also enables trivial marginalization of nuisance parameters

Metropolis-Hastings Markov Chain Monte Carlo

Given a function $f(\theta)$ and a sample θ_k of parameter θ :

- 1. Draw proposal θ' from the proposal pdf $q(\theta'|\theta_k)$ which we know how to sample from
- 2. Draw a uniform random number $r \sim \mathcal{U}(0,1)$
- 3. If $f(\theta')/f(\theta_k) > r$ accept the proposal and set $\theta_{k+1} \leftarrow \theta_k$, otherwise reject the proposal and set $\theta_{k+1} \leftarrow \theta_k$
- 4. Repeat until you have enough samples.

Why does this work?

- The MH algorithm defines a sequence of states called a Markov Chain
- In a Markov Chain each state θ_{k+1} depends only on the previous state θ_k
- Markov chains have a stationary probability distribution over all states and in this case the stationary distribution happens to be the posterior we're interested in

Posterior samples

How to tell if the chains converged to the posterior?

- You can't really :(
- Samples $\{\theta^{(1)}, \theta^{(2)}, \theta^{(3)}, \dots\}$ generated from a Markov process are (by construction) not independent
- One can measure this with an integrated correlation time

$$\mathrm{E}_{p(\theta)}\left[g(\theta)\right] \approx \frac{1}{K} \sum_{k=1}^{K} g(\theta_k)$$
 $\sigma^2 = \frac{\tau_f}{K} \mathrm{Var}\left[g(\theta)\right]$

 τ_f = number of steps before the chain "forgets" where it started N/τ_f = effective sample size

Other samplers

- Gibbs samplers
- Affine invariant ensamble samplers
- Hamiltonian Monte Carlo
- Nested Sampling

Freely available packages

- emcee (http://dfm.io/emcee/current/)
- Stan (<u>http://mc-stan.org/</u>)
- Dnest4 (https://github.com/eggplantbren/DNest4)

$$p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2, q_i) = \left[\frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma_i^2}\right)\right]^{q_i} \left[\frac{1}{\sqrt{2\pi(\sigma_i^2 + \sigma_b^2)}} \exp\left(-\frac{[y_i - \mu_b]^2}{2(\sigma_i^2 + \sigma_b^2)}\right)\right]^{1 - q_i}$$

$$p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2, q_i) = \left[\frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma_i^2}\right)\right]^{q_i} \left[\frac{1}{\sqrt{2\pi(\sigma_i^2 + \sigma_b^2)}} \exp\left(-\frac{[y_i - \mu_b]^2}{2(\sigma_i^2 + \sigma_b^2)}\right)\right]^{1 - q_i}$$

$$P(q_i) = \begin{cases} P_b & \text{if } q_i = 0\\ 1 - P_b & \text{if } q_i = 1 \end{cases}$$

$$p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2) = \sum_{\{q_i\}} \prod_{i=1}^N p(q_i) p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2, q_i)$$

$$p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2, q_i) = \left[\frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma_i^2}\right)\right]^{q_i} \left[\frac{1}{\sqrt{2\pi(\sigma_i^2 + \sigma_b^2)}} \exp\left(-\frac{[y_i - \mu_b]^2}{2(\sigma_i^2 + \sigma_b^2)}\right)\right]^{1 - q_i}$$

$$P(q_i) = \begin{cases} P_b & \text{if } q_i = 0\\ 1 - P_b & \text{if } q_i = 1 \end{cases}$$

$$p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2) = \sum_{\{q_i\}} \prod_{i=1}^N p(q_i) p(y_i|x_i, \sigma_i, m, b, \mu_b, \sigma_b^2, q_i)$$

$$\mathcal{L} = \prod_{i=1}^{N} \left[P_b \mathcal{N}(mx_i + b, \sigma_i) + (1 - P_b) \mathcal{N}(\mu_b, \sigma_b) \right]$$

Where to go from here

- Check out the code on the Code&Cake GitHub repo
- If your models are simple you might not need anything fancy, Metropolis-Hastings MCMC is fine
- If you're dealing with very high dimensional spaces, check out Hamiltonian Monte Carlo
- If your working on simulations and can't evaluate your model quickly, look into Aproximate Bayesian
 Computation (ABC) methods

Thank you for attention!