# Module 12 – Maintenance d'un système en production

# Objectifs

• Analyser le système • Gérer les journaux • Planifier des tâches • Gérer les fichiers de logs

# Analyser le système

- Il est important d'analyser son système d'exploitation pour vérifier que tout fonctionne correctement. Il y a des deux types d'outils permettant cette analyse : les outils proactifs et réactifs.
- Afin d'analyser facilement son système, il est utile de lire les journaux du système (les logs).
- Afin de préserver un bon fonctionnement, il est utile d'automatiser des tâches administratives.
- Enfin, il est important de connaître des commandes de prise d'informations du système, la RAM, le CPU, les processus, etc.

Nécessité d'analyser son système

# Journald au travers de Systemd

La gestion des journaux applicatifs est gérée sous Debian 9 par deux services :

- Journald au travers de systemd
- L'ancien système rsyslog au travers de journald
- Tous les services, programmes, tâches gérées par systemd ont leurs comportements remontés dans journald.
- Le fait d'exécuter la commande systemctl status [daemon] affiche le statut du service mais aussi les logs de l'application.
- Ces logs sont enregistrés dans une base de données gérée par journald.

```
root@deb:~$ systemctl status sshd.service
• ssh.service - OpenBSD Secure Shell server
   Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset:
enabled)
  Active: active (running) since Thu 2021-06-03 14:22:07 CEST; 6 days ago
    Docs: man:sshd(8)
          man:sshd config(5)
 Process: 614 ExecStartPre=/usr/sbin/sshd -t (code=exited, status=0/SUCCESS)
Main PID: 621 (sshd)
   Tasks: 1 (limit: 2315)
  Memory: 3.8M
  CGroup: /system.slice/ssh.service
           └621 /usr/sbin/sshd -D
juin 09 15:35:20 client-linux sshd[5154]: Accepted password for jdoe from
172.19.11.13 port 61644 ssh2
juin 09 15:35:20 client-linux sshd[5154]: pam unix(sshd:session): session opened
for user jdoe by (uid=0)
```

### La commande Journalctl

### Regarder les logs complets de chaque service

- Puisque journald stocke les informations dans une base de données, il est possible de regarder les logs complets de chaque service via la commande journalctl.
- Le fichier de configuration de journald est /etc/systemd/journald.

```
root@deb:~$ journalctl
- Logs begin at Thu 2021-06-03 14:22:04 CEST, end at Wed 2021-06-09 15:41:22 CEST. -
juin 03 14:22:04 client-linux kernel: Linux version 4.19.0-16-amd64 (debian-
kernel@lists.debian.org) (gcc version 8.3.0 (Debian 8.3.0-6)) #1 SMP D
juin 03 14:22:04 client-linux kernel: Command line: BOOT_IMAGE=/vmlinuz-4.19.0-16-
amd64 root=/dev/mapper/client--linux--vg-root ro quiet
juin 03 14:22:04 client-linux kernel: Disabled fast string operations
[...]
juin 09 15:41:22 client-linux anacron[4086]: Job 'cron.weekly' terminated
juin 09 15:41:22 client-linux anacron[4086]: Normal exit (2 jobs run)
juin 09 15:41:22 client-linux systemd[1]: anacron.service: Succeeded.

lines 4792-4839/4839 (END)
```

# Visualiser les logs en temps réel

Il est possible de visualiser les logs en temps réel avec l'option -f

```
root@deb:~$ journalctl -f
-- Logs begin at Thu 2021-06-03 14:22:04 CEST. --
juin 09 15:36:22 client-linux cracklib[5204]: no dictionary update necessary.
juin 09 15:36:23 client-linux anacron[4086]: Job 'cron.daily' terminated
juin 09 15:36:45 client-linux PackageKit[4305]: daemon quit
juin 09 15:36:45 client-linux systemd[1]: packagekit.service: Main process exited,
code=killed, status=15/TERM
juin 09 15:36:45 client-linux systemd[1]: packagekit.service: Succeeded.
juin 09 15:41:22 client-linux anacron[4086]: Job 'cron.weekly' started
juin 09 15:41:22 client-linux anacron[5274]: Updated timestamp for job 'cron.weekly'
to 2021-06-09
juin 09 15:41:22 client-linux anacron[4086]: Job 'cron.weekly' terminated
juin 09 15:41:22 client-linux anacron[4086]: Normal exit (2 jobs run)
juin 09 15:41:22 client-linux systemd[1]: anacron.service: Succeeded.
```

#### Voir les logs d'un service donné

```
journalctl -u [service]
```

```
root@deb:~$ journalctl -u cron

-- Logs begin at Thu 2021-06-03 14:22:04 CEST, end at Wed 2021-06-09 15:41:22 CEST. --
juin 03 14:22:06 client-linux systemd[1]: Started Regular background program
processing daemon.
juin 03 14:22:06 client-linux cron[529]: (CRON) INFO (pidfile fd = 3)
juin 03 14:22:07 client-linux cron[529]: (CRON) INFO (Running @reboot jobs)
juin 03 14:30:01 client-linux CRON[1337]: pam_unix(cron:session): session opened for
user root by (uid=0)
juin 03 14:30:01 client-linux CRON[1338]: (root) CMD ([ -x /etc/init.d/anacron ] && if
[! -d /run/systemd/system]; then /usr/sbin/invoke-rc.d an
juin 03 14:30:01 client-linux CRON[1337]: pam_unix(cron:session): session closed for
user root
[...]
```

```
journalctl _PID=[n° pid]
```

```
root@deb:~$ journalctl _PID=1
-- Logs begin at Sun 2019-04-21 07:14:36 CEST, end at Thu 2019-05-09 13:24:52 CEST. --
avril 21 08:01:38 debian systemd[1]: Started Run anacron jobs.
avril 21 08:01:38 debian systemd[1]: anacron.timer: Adding 2min 48.679199s random
time.
avril 21 08:53:38 debian systemd[1]: Starting Daily apt download activities...
avril 21 08:53:45 debian systemd[1]: Started Daily apt download activities.
avril 21 08:53:45 debian systemd[1]: apt-daily.timer: Adding 10h 23.576305s random
time.
```

### Voir les logs d'un programme

```
journalctl /usr/bin/sshd
```

```
root@deb:~$ journalctl /usr/bin/sshd
-- Logs begin at Thu 2021-06-03 14:22:04 CEST, end at Wed 2021-06-09 16:32:19 CEST. --
juin 03 14:22:07 client-linux sshd[621]: Server listening on 0.0.0.0 port 22.
juin 03 14:22:07 client-linux sshd[621]: Server listening on :: port 22.
juin 09 15:35:20 client-linux sshd[5154]: Accepted password for jdoe from 172.19.11.13
port 61644 ssh2
juin 09 15:35:20 client-linux sshd[5154]: pam_unix(sshd:session): session opened for user jdoe by (uid=0)
```

#### Voir les logs par niveau de priorité

```
journalctl -p <level>
```

```
root@deb:~$ journalctl -p err
-- Logs begin at Thu 2021-06-03 14:22:04 CEST, end at Wed 2021-06-09 16:32:19 CEST. --
juin 03 14:22:07 client-linux kernel: sd 3:0:0:0: [sdc] No Caching mode page found
juin 03 14:22:07 client-linux kernel: sd 3:0:0:0: [sdc] Assuming drive cache: write
through
juin 09 15:35:20 client-linux gdm-password][18939]: pam_unix(gdm-password:auth):
conversation failed
juin 09 15:35:20 client-linux gdm-password][18939]: pam_unix(gdm-password:auth): auth
could not identify password for [jdoe]
```

Les différents niveaux de priorités sont du plus critique au plus informatif : emerg, alert, crit, err, warning, notice, info, debug.

# Cumuler les options

Il est possible de cumuler les options, par exemple :

```
root@deb:~$ journalctl -f /usr/sbin/sshd -p info
-- Logs begin at Thu 2021-06-03 14:22:04 CEST, end at Wed 2021-06-09 16:32:19 CEST. --
mai 06 09:56:48 debian sshd[18901]: Accepted password for jdoe from 10.9.121.13
port 60042 ssh2
mai 06 09:56:48 debian sshd[18901]: pam_unix(sshd:session): session opened for user
jdoe by (uid=0)
mai 06 15:48:06 debian sshd[18901]: pam_unix(sshd:session): session closed for user
jdoe
```

Maintenance d'un système en production

# rsyslog à travers Journald

#### Généralité

- Journald a certes l'avantage de stocker les logs dans une base de données mais ces logs sont uniquement conservés pour le démarrage en cours.
- Pour conserver les logs, Debian utilise rsyslog.
- Tous les logs de journalctl sont transférés à rsyslog.

### Principe de fonctionnement

- rsyslog travaille sur des « facilities » et des niveaux de priorités qui déclenchent une action.
- Les facilities les plus courantes sont :
- auth : utilisée pour des évènements concernant la sécurité ou l'authentification à travers des applications d'accès (type SSH)
- authpriv : utilisée pour les messages relatifs au contrôle d'accès
- daemon : utilisée par les différents processus systèmes et d'application
- kern : utilisée pour les messages concernant le noyau
- mail : utilisée pour les évènements des services mail
- user : facility par défaut quand aucune n'est spécifiée
- local0 à local7 : utilisées pour les messages de différents programmes
- \* : désigne toutes les facilities
- none : désigne aucune facility

#### Les différents niveaux de priorité sont :

- emerg : urgence, système inutilisable
- alert : alerte, intervention immédiate nécessaire
- crit : erreur système critique
- err : erreur de fonctionnement

- warning: avertissement
- notice : évènements normaux devant être signalés
- info: pour information
- debug : message de débogage
- Les actions correspondent généralement à l'écriture du journal dans un fichier, mais il est possible de configurer rsyslog pour qu'il envoie les messages à enregistrer vers un autre serveur rsyslog.
- Exemple de configuration des règles dans le fichier /etc/rsyslog.conf :

```
auth,authpriv.* /var/log/auth.log

*.*;auth,authpriv.none -/var/log/syslog

#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
```

• Le « - » devant certains chemins indique que l'enregistrement des logs est asynchrone (infos mises en mémoire avant d'être synchronisées avec le système).

#### Commande d'interaction

• Il est possible de faire des tests ou créer des scripts qui interagissent avec journald et rsyslog via la commande logger.

```
logger <option> [message]
```

• Par exemple, pour envoyer un message cron de niveau info :



# Planification des tâches

#### Planification utilisateur

```
crontab -e
```

Au premier lancement de la commande, Debian vous proposera de choisir l'éditeur de texte a utiliser :

```
no crontab for root - using an empty one

Select an editor. To change later, run 'select-editor'.

1. /bin/nano <---- easiest

2. /usr/bin/vim.basic <---- the best

3. /usr/bin/vim.tiny

Choose 1-3 [1]: 2
```

Le fichier crontab est composé de six colonnes :

• Minute : de 0 à 59

• Heure : de 0 à 23

• Jour du mois : de 1 à 31

• Mois: de 1 à 12

• Jour de la semaine : de 0 à 7 (sachant que 0 et 7 représentent dimanche)

• **Commande** : la commande à exécuter suivant la planification (il est conseillé d'utiliser un script pour des raisons de simplification de suivi des actions).

Il est possible de formater les cinq premières colonnes :

- Avec des listes, en utilisant le caractère « , » :
- Ex.: 1,3,5 dans la colonne des jours de la semaine génèrent une tâche tous les lundis,

mercredis et vendredis

- Avec des intervalles, en utilisant « »:
- Ex. : 10-20 dans la colonne jours du mois génère une tâche exécutée du 10 au 20
- Avec un joker, en utilisant « \* » :
- Ex. : \* dans la colonne des heures indique toutes les heures
- Mettre un répétiteur, en utilisant « / » :
- Ex : \*/2 dans la colonne des mois génère une tâche exécutée en janvier, mars, mai juillet, septembre, novembre

#### **Exemple de configuration:**



# Planification système

#### Crontab système

- Cron utilise aussi une table spéciale pour les tâches de planification du système.
- Ces tâches sont déclarées dans le fichier /etc/crontab.

```
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/usr/sbin:/usr/bin
# m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron || ( cd / && run-parts --report /etc/cron.daily )
47 6 * * 7 root test -x /usr/sbin/anacron || ( cd / && run-parts --report /etc/cron.weekly)
52 6 1 * * root test -x /usr/sbin/anacron || ( cd / && run-parts --report /etc/cron.monthly)
```

#### Lancement des tâches non exécutées avec anacron

- Pour comprendre le fonctionnement d'anacron, l'explication suivante va s'appuyer sur le travail : cron.daily.
- Tous les jours, si le système reste allumé 24/24, cron va exécuter cette tâche à 6h25 : 25 6 \* \* \* root cd / && run-parts --report /etc/cron.hourly
- Cette tâche a pour effet de lancer tous les scripts présents dans le répertoire /etc/cron.daily.
- En regardant dans ce répertoire, on voit qu'il y a un fichier @anacron. Ce script exécute une simple commande qui est :

```
anacron -u cron.daily
```

# Gestion de la taille des fichiers de log

- Nativement journald stocke ses logs dans une base de données volatile dans /run/log/journal. Mais il est possible de demander à journald de garder les logs de façon durable. Dans le fichier de configuration de journald /etc/systemd/journald.conf, le paramètre #Storage=auto est commenté donc journald utilise sa valeur par défaut qui est auto.
- Le fait de créer un répertoire /var/log/journal rendra la conservation des logs durable. La taille de la base de données peut par contre vite devenir conséquente sur un système fortement utilisé.

### Taille des logs avec Journald

- Par défaut, journald utilisera un maximum de 10% du système de fichier hébergeant /var/log/journald.
- Il est possible de définir la taille maximum utilisée sur le système de fichier de la base de données avec le paramètre SystemMaxUse=. De plus, il est possible de dire que la base de données sera subdivisée en

plusieurs fichiers de taille fixe avec le paramètre SystemMaxFileSize=.

• Bien évidement si la décision est prise de garder les logs de journald de façon définitive, il sera peut-être intéressant de stopper rsyslog afin d'éviter les doublons d'information.

```
root@deb:~$ systemctl disable rsyslog
```

### Taille des logs avec Logrotate

- Logrotate est un programme exécuté par une tâche cron système tous les jours (et bien sûr géré aussi par anacron) présente dans /etc/cron.daily/logrotate.
- Le fichier de configuration principal /etc/logrotate.conf définit des valeurs de comportement par défaut.

```
/var/log/squid/access.log {
daily
compress
delaycompress
rotate 366
create 640
}

Exemple de configuration
```

### Outils d'analyse du système

• Connaître la version du système

```
root@deb:~$ cat /etc/debian_version
10.9
```

• Connaître la version du noyau Linux actif et son architecture

```
root@deb:~$ uname -a
Linux deb 5.2.0-8-amd64 #1 SMP Debian 5.2.0-8.1
(2021-05-19) x86_64 GNU/Linux
```

• Connaître le type de CPU

```
root@deb:~$ lscpu
Architecture : x86_64
Mode(s) opératoire(s) des processeurs : 32-bit, 64-bit
Boutisme : Little Endian
Processeur(s) : 1
Liste de processeur(s) en ligne : 0
Thread(s) par cœur : 1
Cœur(s) par socket : 1
[...]
Famille de processeur : 6
Modèle : 42
Nom de modèle : Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
[...]
```

• Lister les informations des matériels PCI

```
root@deb:~$ lspci
00:00.0 Host bridge: Intel Corporation 440BX/ZX - 82443 Host bridge (rev 01)
00:01.0 PCI bridge: Intel Corporation 440BX/ZX - 82443 AGP bridge (rev 01)
00:07.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 08)
00:07.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:07.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:07.7 System peripheral: VMware Virtual Machine Communication Int. (rev 10)
00:0f.0 VGA compatible controller: VMware SVGA II Adapter
00:10.0 SCSI storage controller: LSI Logic / Symbios Logic 53c1030 PCI-X
Fusion-MPT Dual Ultra320 SCSI (rev 01)
00:11.0 PCI bridge: VMware PCI bridge (rev 02)
00:15.0 PCI bridge: VMware PCI Express Root Port (rev 01)
00:15.1 PCI bridge: VMware PCI Express Root Port (rev 01)
```

Lister les périphériques USB

```
root@deb:~$ lsusb

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 001 Device 002: ID 0e0f:0003 VMware, Inc. Virtual Mouse
Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
```

• Lister les informations sur stockage et systèmes de fichiers (commande déjà vue dans les modules précédents)

```
fdisk; pvs, vgs, lvs; lsblk, blkid, findmnt, df
```

- Lister les informations sur répertoires et fichiers
- La commande du permet de prendre des informations sur la taille utile d'un répertoire.

```
root@deb:~$ du -sh /root
76K /root
```

• La commande 1s permet de prendre des informations sur les fichiers.

```
root@deb:~$ ls -lh fichier
-rw-r---- 1 jdoe informatique 79,4k 10:24 fichier
```

• La commande file permet de connaître la nature d'un fichier.

```
root@deb:~$ file /bin/bash
/bin/bash: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV),
dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux
3.2.0, BuildID[sha1]=ffel65dc8164aea2b05beda07aeda8ad71fle7c, stripped
```

• La commande 1sof permet de connaître l'activité des fichiers ouverts dans un répertoire donné.

```
root@deb:~$ lsof /root
lsof: WARNING: can't stat() fuse.qvfsd-fuse file system /run/user/1000/qvfs
     Output information may be incomplete.
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE
                                                   NAME
bash
        2074 root cwd DIR 254,0 4096 781836
                                                   /root
        2179 root cwd DIR 254,0 4096
bash
                                         781836
                                                  /root
        3826 root cwd DIR 254,0 4096
                                         781836
lsof
                                                  /root
        3827 root cwd DIR 254,0 4096
                                         781836
                                                   /root
```

# Performances et processus

Informations en temps réel avec top

```
top - 10:52:12 up 11:27, 3 users, load average: 0,00, 0,00, 0,00
Tasks: 193 total, 2 running, 191 sleeping, 0 stopped, 0 zombie %Cpu(s): 1,0 us, 0,3 sy, 0,0 ni, 98,7 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
                            406,0 free,
                                         848,2 used, 716,7 buff/cache
MiB Mem : 1970,9 total,
            976,0 total,
                            976,0 free,
                                             0,0 used.
                                                           938,3 avail Mem
                           VIRT
                                          SHR S %CPU %MEM
   PID USER
                    NI
                                   RES
                                                                TIME+ COMMAND
                                           0 I
                                                              0:41.44 kworker/0:0-
    5 root
                 20
                     - 0
                              0
                                   - 0
                                                  0,3
                                                       0,0
mm percpu wq
                 20 0 122940 12316 10708 S
                                                  0,3
                                                       0,6
   550 root
                                                             0:45.42 vmtoolsd
                     0 2582664 295840 106080 S
  2257 jdoe
                2.0
                                                  0,3 14,7
                                                             11:46.09 gnome-shell
                20 0 16972
  6155 jdoe
                                5968
                                       4844 S
                                                  0,3
                                                       0,3
                                                             0:00.04 sshd
                20 0
  6296 jdoe
                        11272
                                  3728
                                         3008 R
                                                  0,3
                                                        0,2
                                                             0:00.04 top
                20 0 104324 10568
                                         7852 S
    1 root
                                                 0,0
                                                       0,5
                                                             0:03.68 systemd
                                         0 S
     2 root
                20 0
                         0
                                 0
                                                 0,0
                                                       0,0
                                                             0:00.00 kthreadd
                                                      0,0
                 0 -20
     3 root
                              0
                                     0
                                            0 I
                                                  0,0
                                                             0:00.00 rcu_gp
```

Informations en temps réel avec htop (à installer)



• Informations en temps réel avec glances (à installer)



Lister des processus avec ps

```
root@deb:~$ ps -ef
[...]
                 6149 0 08:55 ?
                                        00:00:00 sshd: jdoe@pts/2
jdoe
          6155
                       0 08:55 pts/2
          6156
                 6155
                                        00:00:00 -bash
jdoe
          6301
                    2
                       0 10:56 ?
                                        00:00:00 [kworker/0:1-ata_sff]
root
          6302
                    2
                       0 11:02 ?
                                        00:00:00 [kworker/0:2-ata sff]
root
          6309
                 6156 0 11:05 pts/2
                                        00:00:00 ps -ef
jdoe
```

• Informations sur la ram avec free

| root@deb:~\$ |       | free -h |        |        |            |           |
|--------------|-------|---------|--------|--------|------------|-----------|
|              | total | used    | free   | shared | buff/cache | available |
| Mem:         | 1,9Gi | 802Mi   | 451Mi  | 23Mi   | 716Mi      | 983Mi     |
| wap:         | 975Mi | 0B      | 975Mi2 |        |            |           |