Lista 1 - Organização Industrial I

Gustavo Henrique

2025-05-22

Parte I: Demanda logit

Considerando s_{jt} como a participação de mercado da firma j no mercado t e s_{0t} como a participação da opção externa, o componente fixo de utilidade é modelado por:

$$log(s_{jt}) - log(s_{0t}) = \delta_{jt} = \beta_{0j} + \beta_1 x_{it}^{conv} + \beta_2 x_{it}^{spec} - \alpha p_{jt} + \xi_{jt}$$

onde x_{jt}^{conv} e x_{jt}^{spec} são características do produto (canais convencionais e especiais), p_{jt} é o preço e ξ_{jt} representa choques não observados.

Estratégia de Identificação

Para lidar com a endogeneidade dos preços, foram utilizados:

- Variáveis exógenas do modelo;
- Instrumento de Hausman: Média dos preços praticados pela firma em outras cidades da mesma região.

As hipóteses para validade do instrumento são:

- Relevância: custos regionais são correlacionados entre cidades da mesma região;
- Exclusão: choques específicos de custo e demanda não são correlacionados entre cidades, após controlar pelos preços.

Programação

Abaixo segue código para geração dos resultados:

```
## Limpando a base
data = data %>%
  # Gerando dummies para cada firma
mutate(j1 = case_when(
    j == 1 ~ 1,
    T ~ 0
),
j2 = case_when(
```

```
j == 2 ~ 1,
   T ~ 0
  )) %>%
  group_by(t) %>%
  # Gerando variável da % de consumidores que escolhem a "outside option"
  mutate(ms0 = 1 - sum(ms)) \%
  group_by(r, j) %>%
 # Gerando o instrumento (média dos preços da firma em outras cidades da mesma região)
 mutate(price_iv = (sum(price) - price) / (n() - 1)) %>%
 # Gerando o componente fixo da utilidade
 mutate(delta = log(ms)-log(ms0))
## Estimação
# OLS
ols_reg = ivreg(delta ~ j1 + j2 + channels + channels_spec + price - 1, data=data)
iv_reg = ivreg(delta ~ j1 + j2 + channels + channels_spec + price - 1 | j1 + j2 + channels + channels_s
## Visualização dos resultados
suppressWarnings(stargazer(ols_reg, iv_reg, type = 'text'))
```

##			
##	D		
## ##	Dependent variable:		
##		delta	
##		(1)	(2)
##			
##	j1	-0.068	0.210*
##		(0.124)	(0.126)
##			
	j2	-0.447***	-0.189
##		(0.119)	(0.121)
##			
	channels	0.016***	0.016***
##		(0.001)	(0.001)
##	, ,	0.405	0.400
	channels_spec	0.125***	0.130***
##		(0.018)	(0.018)
##		0.0464545	0.0524555
	price	-0.046***	-0.053***
##		(0.002)	(0.002)
## ##			
##	Observations	586	586
##		0.854	0.852
	Adjusted R2	0.853	0.851
	Residual Std. Error (df = 581)		0.614
	======================================		U.UI4 =========
	Note:		.05; ***p<0.01

Interpretação dos resultados

Como podemos ver na tabela acima, temos $\hat{\alpha}_{OLS} = 0.046 < 0.053 = \hat{\alpha}_{IV}$, ou seja, a estimação via OLS subestima o efeito do preço. Podemos interpretar este resultado como evidência de que parte da variação em δ é explicada por fatores regionais não observáveis, de modo que o instrumento de Hausman corrige esse viés.