

ZXDiagram

NEW IN 13.2

```
ZXDiagram [\{expr_1, expr_2, ...\}]
```

constructs a ZX diagram from ZX expressions $expr_1$, $expr_2$, ... and stores it as ZXObject.

 $ZXDiagram [obj_1, obj_2, ..., \{expr_1, expr_2, ...\}]$

constructs a ZX diagram on top of the existing ZXObjects $obj_1, obj_2, ...$

→ Details and Options

- $\begin{tabular}{ll} & \textbf{Valid ZX expressions include Z[k_1, k_2, ...][$phase$] for the Z spiders, X[k_1, k_2, ...][$phase$] for the X spiders, H[k_1, k_2, ...] for the Hadamard gates, B[k_1, k_2, ...] for the Hadamard gates, B[$ diamond gates.
- The links between spiders take form $Z[i_1, i_2, ...][phase] \rightarrow Z[k_1, k_2, ...][phase], Z[i_1, i_2, ...][phase] \rightarrow X[k_1, k_2, ...][phase], X[i_1, i_2, ...][phase], X[i$ $X[i_1, i_2, ...][phase] \rightarrow X[k_1, k_2, ...][phase]$. The phase part [phase] in spider specifications may be dropped if the same spider appears with a phase value somewhere in the ZX expression.
- The Hadamard gates may also be involved in ZX links. However, it can one and only one incoming and outgoing link.
- To generate ZX links, Q3 function Chain may be useful.
- Within ZXDiagram, Rule [→], is regarded as Chain. This simplifies the DirectedEdge specifications in a ZX expression. For example, a→b→c→... is equivalent to Chain [a, b, c, ...], which generates a series of DirectedEdges $\{a \rightarrow b, b \rightarrow c, c \rightarrow ...\}$.

▼ Examples (22)

In[1]:= Needs["MaZX`"]

→ Basic Examples (7)

Here is a simple example of ZX diagram. Note that how specifying DirectedEdges have been simplified by using Chain.

In[1]:= ZXDiagram[{Chain[i, Z[1][Pi/2], X[1][Pi], o]}]

Specifying the ZX links may be simplified even further by using $a \rightarrow b \rightarrow c \rightarrow ...$ Note that this works only within ZXDiagram.

$$In[2]:= ZXDiagram[\{i \rightarrow Z[1][Pi/2] \rightarrow X[1][Pi] \rightarrow o\}]$$

$$Out[2]= \frac{\pi}{2}$$

Using $\dots \to \{a, b\} \to \dots = \{\dots \to a \to \dots, \dots \to b \to \dots\}$ is another method for simplifying your specifications.

 $In[3]:= ZXDiagram[{i \rightarrow Z[1][Pi/2] \rightarrow {Z[2][Pi], X[2][Pi/3]} \rightarrow X[1][Pi] \rightarrow o},$ GraphLayout -> "SpringElectricalEmbedding"]

Here is another shortcut: Within ZXDiagram, $X[\{k_1, k_2, ..., k_n\}][\phi]$ is expanded to $\{X[k_1][\phi], X[k_2][\phi], ..., X[k_n][\phi]\}.$ Similarly, $X[\{k_1, k_2, ..., k_n\}][\{\phi_1, \phi_2, ..., \phi_n\}] = \{X[k_1][\phi_1], ..., X[k_n][\phi_n]\}.$ Note that this is only the case within ZXDiagram.

In[4]:= ZXDiagram[$\{i \rightarrow Z[1][\alpha] \rightarrow X[\{1, 2\}][\phi] \rightarrow Z[2][\beta] \rightarrow 0\}$, GraphLayout \rightarrow "SpringElectricalEmbedding"] $ZXDiagram \Big[\Big\{ i \rightarrow Z[1][\alpha] \rightarrow X[\{1,\ 2\}][\{\phi_1,\ \phi_2\}] \rightarrow Z[2][\beta] \rightarrow o \Big\}, \ GraphLayout \rightarrow "SpringElectricalEmbedding" \Big] \Big\}$

Here, note that the second Z spider does not have a phase specification. This is because the phase value π must be clear from the previous specification $z_{[1][Pi]}$ of the same spider.

Consider a ZX diagram.

Calculate the corresponding operator expression.

$$In[2] := \begin{array}{l} \textbf{Opt} = \textbf{ExpressionFor} \big[\textbf{obj} \big] \\ Out[2] := \begin{array}{l} \left(\frac{1}{8} + \frac{i}{8}\right) \left(1 + \sqrt{2}\right) \left|\theta_{01}\theta_{02}\right\rangle \left\langle\theta_{i1}\theta_{i2}\right| + \frac{1}{8} \left(-1\right)^{1/6} \left(\left(1 + i\right) - 2 \left(-1\right)^{1/4}\right) \left|\theta_{01}\theta_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \frac{i}{8} \left(-1\right)^{1/3} \left(\left(1 + i\right) - 2 \left(-1\right)^{1/4}\right) \left|\theta_{01}\theta_{02}\right\rangle \left\langle1_{i1}\theta_{i2}\right| - \left(\frac{1}{8} - \frac{i}{8}\right) \left(1 + \sqrt{2}\right) \left|\theta_{01}\theta_{02}\right\rangle \left\langle1_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left|\theta_{01}1_{02}\right\rangle \left\langle\theta_{i1}\theta_{i2}\right| + \frac{i}{8} \\ \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/6} \left|\theta_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left|\theta_{01}1_{02}\right\rangle \left\langle1_{i1}\theta_{i2}\right| + \left(\frac{1}{8} + \frac{i}{8}\right) \left|\theta_{01}1_{02}\right\rangle \left\langle1_{i1}1_{i2}\right| + \frac{i}{8} \\ \left(\frac{1}{8} - \frac{i}{8}\right) \left|1_{01}\theta_{02}\right\rangle \left\langle\theta_{i1}\theta_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/6} \left|1_{01}\theta_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left|1_{01}\theta_{02}\right\rangle \left\langle1_{i1}\theta_{i2}\right| + \frac{i}{8} \\ \left(\frac{1}{8} + \frac{i}{8}\right) \left|1_{01}\theta_{02}\right\rangle \left\langle1_{i1}1_{i2}\right| - \left(\frac{1}{8} + \frac{i}{8}\right) \left(-1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}\theta_{i2}\right| + \left(\frac{1}{8} + \frac{i}{8}\right) \left(-1\right)^{1/6} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} + \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle1_{i1}\theta_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{1/3} \left(1 + \sqrt{2}\right) \left|1_{01}1_{02}\right\rangle \left\langle\theta_{i1}1_{i2}\right| + \left(\frac{1}{8} - \frac{i}{8}\right) \left(-1\right)^{$$

Calculate the matrix representation of the ZX diagram.

Out[3]//MatrixForm=

```
 \begin{pmatrix} 0.301777 + 0.301777 \, \mathrm{i} & -0.0189516 - 0.0707283 \, \mathrm{i} & 0.0189516 - 0.0707283 \, \mathrm{i} & -0.301777 + 0.301777 \, \mathrm{i} \\ 0.125 - 0.125 \, \mathrm{i} & 0.170753 - 0.0457532 \, \mathrm{i} & 0.170753 + 0.0457532 \, \mathrm{i} & 0.125 + 0.125 \, \mathrm{i} \\ 0.125 - 0.125 \, \mathrm{i} & 0.170753 - 0.0457532 \, \mathrm{i} & 0.170753 + 0.0457532 \, \mathrm{i} & 0.125 + 0.125 \, \mathrm{i} \\ -0.0517767 - 0.0517767 \, \mathrm{i} & 0.110458 + 0.412235 \, \mathrm{i} & -0.110458 + 0.412235 \, \mathrm{i} & 0.0517767 - 0.0517767 \, \mathrm{i} \end{pmatrix}
```

Of course, the above matrix must be the same as the one from the operator expression.

In[4]:= mat - Matrix[op] // N // Chop // MatrixForm

Out[4]//MatrixForm=

Out[1]//MatrixForm=

In[2]:= Matrix[op] - Matrix[obj] // N // Chop // MatrixForm

Out[2]//MatrixForm=

$$\left(\begin{smallmatrix}0&0&0&0\\0&0&0&0\end{smallmatrix}\right)$$

$$\begin{array}{lll} \textit{Out[1]$=$} & \frac{1}{4} \left(\left(1+i \right) \, + \, \sqrt{2} \, \right) \, \left| \theta_o \right\rangle \left\langle \, \theta_{i1} \theta_{i2} \, \right| \, + \, \frac{ \left(-1 \right)^{\, 5/6} \, \left(1+ \, \left(-1 \right)^{\, 1/4} \right) \, \left| \theta_o \right\rangle \left\langle \, 1_{i1} 1_{i2} \, \right| }{2 \, \sqrt{2}} \, \\ & & \\ & \frac{ \left(-1 \right)^{\, 1/3} \, \left(-1+ \, \left(-1 \right)^{\, 1/4} \right) \, \, \left| 1_o \right\rangle \left\langle \, \theta_{i1} \theta_{i2} \, \right| }{2 \, \sqrt{2}} \, + \, \frac{ \left(-1 \right)^{\, 1/6} \, \left(-1+ \, \left(-1 \right)^{\, 1/4} \right) \, \, \left| 1_o \right\rangle \left\langle \, 1_{i1} 1_{i2} \, \right| }{2 \, \sqrt{2}} \end{array}$$

Out[1]//MatrixForm=

Out[2]//MatrixForm=

$$\left(\begin{smallmatrix}0&0&0&0\\0&0&0&0\end{smallmatrix}\right)$$

In this example, the output vertex has two incident edges.

```
In[1]:= obj = ZXDiagram@{
        Z[1][Pi/3], X[1][Pi/4], Z[2][Pi],
        Z[1] -> {X[1], Z[2]} -> o
      }
    op = ExpressionFor[obj]
    mat = Matrix[obj];
    mat // N // MatrixForm
```


$$\textit{Out[1]} = \begin{array}{c} \frac{1}{2} \left(1 + \left(-1 \right)^{1/4} \right) \; \left| \theta_o \right\rangle - \frac{1}{2} \; \left(-1 \right)^{1/3} \; \left(1 + \left(-1 \right)^{1/4} \right) \; \left| 1_o \right\rangle \\ \end{array}$$

Out[1]//MatrixForm=

$$\begin{pmatrix} 0.853553 + 0.353553 i \\ -0.12059 - 0.915976 i \end{pmatrix}$$

In[2]:= Matrix[op] - Matrix[obj] // N // Chop // MatrixForm

Out[2]//MatrixForm=

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\textit{Out[1]} = \begin{array}{c} \frac{1}{2} \, \left(1 + \, \left(-1 \right)^{\, 1/4} \right) \, \, \left| \theta_o \, \right\rangle \, - \, \frac{1}{2} \, \, \left(-1 \right)^{\, 1/3} \, \left(1 + \, \left(-1 \right)^{\, 1/4} \right) \, \, \left| 1_o \, \right\rangle \, \, \\ \end{array}$$

Out[1]//MatrixForm=

Out[2]=
$$\left\{ \left\{ Z_1 \left(\frac{\pi}{3} \right) \right\}, \left\{ X_1 \left(\frac{\pi}{4} \right), Z_2 (\pi) \right\}, \left\{ Z_3 (0) \right\}, \left\{ 0 \right\} \right\}$$

This example shows a common mistake you can make in ZX expression. Note that just changing the phase of the spider $x[1][P^{\frac{1}{2}}]$ does not fix it because there is a loop of the directed edges.

 $In[1]:= obj = ZXDiagram@\{i \rightarrow \{Z[1][Pi], X[1][Pi/3]\} \rightarrow Z[2][Pi/2] \rightarrow X[1][Pi/3] \rightarrow o\}$ op = ExpressionFor[obj]

Maybe, this was the intended diagram.

 $In[2] := obj = ZXDiagram@ \{i \rightarrow \{Z[1][Pi], X[1][Pi/3]\} \rightarrow Z[2][Pi/2] \rightarrow X[2][Pi/3] \rightarrow o\}$ op = ExpressionFor[obj] // ToZBasis

$$\textit{Out[2]} = \frac{1}{4} \left(1 + (-1)^{1/3} \right)^2 \left| \theta_o \right\rangle \left\langle \theta_i \right| + \frac{1}{4} \, i \, \left(-1 + (-1)^{2/3} \right) \, \left| \theta_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{1}{4} \, \left(1 - (-1)^{2/3} \right) \, \left| 1_o \right\rangle \left\langle \theta_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right| + \frac{3}{8} \, \left(-i + \sqrt{3} \, \right) \, \left| 1_o \right\rangle \left\langle 1_i \right\rangle \left| 1_o \right\rangle \left|$$

Scope (9)

➤ Either input or output (but not both) (1)

In[2]:= op = ExpressionFor[obj]

$$\textit{Out[2]} = \left| \theta_o \right\rangle + \left(-1 \right)^{1/3} \, \left| 1_o \right\rangle$$

In[3]:= obj = ZXDiagram@{X[1][Pi/3] -> o}
 op = ExpressionFor[obj] // ToXBasis

Out[3]=
$$\left|+_{o}\right\rangle + \frac{1}{2}\left(1 + i \sqrt{3}\right) \left|-_{o}\right\rangle$$

$$\textit{Out[4]} = \left. \left\langle \theta_i \right. \right| + \left. \left(-1 \right)^{1/3} \left\langle 1_i \right. \right|$$

In[5]:= obj = ZXDiagram@{i -> X[1][Pi/3]}
 op = ExpressionFor[obj] // ToXBasis

$$\textit{Out[5]} = \left. \left\langle +_i \right| + \frac{1}{2} \left(1 + i \sqrt{3} \right) \right. \left\langle -_i \right|$$

→ Hadamard gate (2)

$$Out[2] = \frac{1}{2} \left(1 + (-1)^{1/3} \right) \left| \Theta_o \right\rangle \left\langle \Theta_i \right| + \frac{1}{2} \left(1 - (-1)^{1/3} \right) \left| \Theta_o \right\rangle \left\langle 1_i \right| + \frac{1}{2} \left(1 - (-1)^{1/3} \right) \left| 1_o \right\rangle \left\langle \Theta_i \right| + \frac{1}{2} \left(1 + (-1)^{1/3} \right) \left| 1_o \right\rangle \left\langle 1_i \right|$$

$$\textit{Out[3]} = \left| +_{o} \right\rangle \left\langle +_{i} \right| + \frac{1}{2} \left(1 + i \sqrt{3} \right) \left| -_{o} \right\rangle \left\langle -_{i} \right|$$

$$\textit{Out[3]} = \begin{array}{c|c} \frac{\left|+_o\right>\left<0_{\,\dot{1}}\right|}{\sqrt{2}} + \frac{\left|+_o\right>\left<1_{\,\dot{1}}\right|}{\sqrt{2}} + \frac{\left(-1\right)^{\,1/3}\,\left|-_o\right>\left<0_{\,\dot{1}}\right|}{\sqrt{2}} - \frac{\left(-1\right)^{\,1/3}\,\left|-_o\right>\left<1_{\,\dot{1}}\right|}{\sqrt{2}} \end{array}$$

Out[4]//MatrixForm=

$$\left(\begin{array}{cccc} \frac{1}{2} \, \left(1 + \, \left(-1 \right)^{1/3} \right) & \frac{1}{2} \, \left(1 - \, \left(-1 \right)^{1/3} \right) \\ \frac{1}{2} \, \left(1 - \, \left(-1 \right)^{1/3} \right) & \frac{1}{2} \, \left(1 + \, \left(-1 \right)^{1/3} \right) \end{array} \right)$$

Let us compare the above result with the usual algebraic calculation.

$$In[5] := \ \, \mbox{Let} \big[\mbox{Qubit, S} \big] \\ \mbox{op = Phase} \big[\mbox{Pi} \big/ 3 \, , \, \mbox{S[3]} \big] \\ Out[5] = \ \, S^z \left(\frac{\pi}{3} \right) \\ In[6] := \ \, \mbox{new} = \mbox{S[6]} \ \, ** \mbox{op ** S[6]} \ \, // \mbox{Matrix} // \mbox{Simplify;} \\ \mbox{new} \ \, // \mbox{MatrixForm} \\ Out[6] // \mbox{MatrixForm} = \\ \left(\frac{1}{4} \left(3 + i \ \sqrt{3} \right) \ \, \frac{1}{4} \left(1 - i \ \sqrt{3} \right) \right) \\ \frac{1}{4} \left(1 - i \ \sqrt{3} \right) \ \, \frac{1}{4} \left(3 + i \ \sqrt{3} \right) \ \, \right)$$

Out[7]//MatrixForm=

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

In a ZX expression, the Hadamard gate can have one and only one input and output links.

$$In[1]:= obj = ZXDiagram@{i -> H[1] -> Z[1][Pi/3] -> H[1] -> o}$$

ZXDiagram: Wrong arities for some Hadamard gates: $\{H_1 \rightarrow \{2, 2\}\}$. Every Hadamard gate should have one and only one input and output link.

◆ Combining two ZXObjects (3)

Here is one ZX diagram.

$$\begin{array}{lll} \textit{Out[1]=} & (-1)^{1/3} \; \left| 0_o \right\rangle \left\langle 1_{11} 1_{12} \right| \; + \; \left| 1_o \right\rangle \left\langle 0_{11} 0_{12} \right| \\ \\ \textit{Out[1]//MatrixForm=} \\ & \left(\begin{array}{ccc} 0 & 0 & e^{\frac{i \, \pi}{3}} \\ 1 & 0 & 0 & 0 \end{array} \right) \end{array}$$

Here is another one.

If you want to combine the above two ZX diagrams, usually, you have to put all those ZX expression in the above two diagrams again in the new one.

$$In[3] := \begin{array}{c} \text{new = ZXDiagrame} \left\{ \begin{array}{c} \{i1,\ i2\} \rightarrow \text{Z[1]} [\text{Pi}/3] \rightarrow \text{X[1]} [\text{Pi}] \rightarrow \text{o}, \\ i3 \rightarrow \text{H[1]} \rightarrow \text{o2} \end{array} \right\} \\ \text{op = ExpressionFor [new]} \\ \\ Out[3] = \begin{array}{c} \frac{(-1)^{1/3} \left| \Theta_0 \Theta_{02} \right\rangle \left\langle 1_{11} 1_{12} \Theta_{13} \right|}{\sqrt{2}} + \frac{(-1)^{1/3} \left| \Theta_0 \Theta_{02} \right\rangle \left\langle 1_{11} 1_{12} 1_{13} \right|}{\sqrt{2}} + \frac{(-1)^{1/3} \left| \Theta_0 \Theta_{02} \right\rangle \left\langle 1_{11} 1_{12} \Theta_{13} \right|}{\sqrt{2}} - \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} \Theta_{13} \right|}{\sqrt{2}} + \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} \Theta_{13} \right|}{\sqrt{2}} + \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} 1_{13} \right|}{\sqrt{2}} + \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} 1_{13} \right|}{\sqrt{2}} + \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} 1_{13} \right|}{\sqrt{2}} + \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} 1_{13} \right|}{\sqrt{2}} - \frac{\left| 1_0 \Theta_{02} \right\rangle \left\langle \Theta_{11} \Theta_{12} 1_{13} \right|}{\sqrt{2}} \end{array}$$

To avoid, you can just combine them using Join.

If you just add to an already existing ZX diagram, then just include the previous one in the ZX expression.

Out[1]//MatrixForm=

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \frac{i \cdot \pi}{\sqrt{2}} & \frac{i \cdot \pi}{\sqrt{2}} \\ 0 & 0 & 0 & 0 & 0 & \frac{i \cdot \pi}{\sqrt{2}} & \frac{i \cdot \pi}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix}$$

▼ Controlled-NOT (CNOT) gate (2)

```
In[1]:= Let[Qubit, S]
                                                                                              qc = QuantumCircuit[CNOT[S[1], S[2]]]
                      In[2]:= cnot = ZXDiagram[{B[1],
                                                                                                                             i1 -> Z[1][0] -> o1,
                                                                                                                               i2 -> X[2][0] -> o2,
                                                                                                                           Z[1] \rightarrow X[2],
                                                                                                                   VertexCoordinates -> {
                                                                                                                                         i1 \rightarrow \{-1, 1\}, i2 \rightarrow \{-1, 0\},
                                                                                                                                         o1 -> \{1, 1\}, o2 -> \{1, 0\},
                                                                                                                                         B[1] \rightarrow \{1, 1/2\}
                                                                                            op = ExpressionFor[cnot] // ToZBasis
                                                                                            mat = Matrix[cnot];
                                                                                            mat // MatrixForm
               \textit{Out[2]} = \quad \left| \theta_{o1} \theta_{o2} \right\rangle \left\langle \theta_{i1} \theta_{i2} \right| + \\ \left| \theta_{o1} 1_{o2} \right\rangle \left\langle \theta_{i1} 1_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} 1_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{o1} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \theta_{i2} \right| + \\ \left| 1_{o1} 1_{o2} \theta_
Out[2]//MatrixForm=
                                                                                                 (1 0 0 0
                                                                                                        0 1 0 0
                                                                                                        0 0 0 1
```

0 0 1 0

```
In[3]:= cnot = ZXDiagram[
              {Z[1][0], Z[2][0], H[1], B[1],
               i1 -> Z[1] -> o1,
               i2 \rightarrow H[2] \rightarrow Z[2] \rightarrow H[3] \rightarrow o2,
               Z[1] \rightarrow H[1] \rightarrow Z[2],
              VertexCoordinates -> {
                 i1 \rightarrow \{-2, 1\}, i2 \rightarrow \{-2, -1\},
                 01 \rightarrow \{2, 1\}, 02 \rightarrow \{2, -1\},
                 Z[1] \rightarrow \{0, 1\}, Z[2] \rightarrow \{0, -1\},
                 H[1] \rightarrow \{0, 0\}, H[2] \rightarrow \{-1, -1\}, H[3] \rightarrow \{1, -1\},
                 B[1] \rightarrow \{1, 0\}
           op = ExpressionFor[cnot] // ToZBasis
           mat = Matrix[cnot];
           mat // MatrixForm
 Out[3]//MatrixForm=
            (1 0 0 0
             0 1 0 0
             0 0 0 1
            0 0 1 0
```

An interesting variation is the following ZX diagram.

```
In[1]:= cnot = ZXDiagram[
                                                                                                                                                     {Z[1][0], X[1][Pi], B[1],
                                                                                                                                                                  i1 -> Z[1] -> o1,
                                                                                                                                                                  i2 -> X[1] -> o2,
                                                                                                                                                                Z[1] \rightarrow X[1],
                                                                                                                                                  {\tt VertexCoordinates} \to \big\{
                                                                                                                                                                                i1 \rightarrow \{-1, 1\}, i2 \rightarrow \{-1, 0\},
                                                                                                                                                                                o1 -> \{1, 1\}, o2 -> \{1, 0\},
                                                                                                                                                                                B[1] \rightarrow \{1, 1/2\}
                                                                                                                       op = ExpressionFor[cnot] // ToZBasis
                                                                                                                     mat = Matrix[cnot];
                                                                                                                     mat // MatrixForm
                  Out[1]=
                  \textit{Out[1]} = \quad \left| \theta_{o1} \theta_{o2} \right\rangle \left\langle \theta_{i1} \mathbf{1}_{i2} \right| + \\ \left| \theta_{o1} \mathbf{1}_{o2} \right\rangle \left\langle \theta_{i1} \theta_{i2} \right| + \\ \left| \mathbf{1}_{o1} \theta_{o2} \right\rangle \left\langle \mathbf{1}_{i1} \theta_{i2} \right| + \\ \left| \mathbf{1}_{o1} \mathbf{1}_{o2} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \right| + \\ \left| \mathbf{1}_{o2} \mathbf{1}_{o2} \right\rangle \left\langle \mathbf{1}_{i2} \mathbf{1}_{i2} \right| + \\ \left| \mathbf{1}_{o2} \mathbf{1}_{o2} \right\rangle \left\langle \mathbf{1}_{i2} \mathbf{1}_{i2} \right\rangle \left\langle \mathbf{1
Out[1]//MatrixForm=
                                                                                                                                0 1 0 0
                                                                                                                                     1 0 0 0
                                                                                                                                     0 0 1 0
                                                                                                                                0001
```

It corresponds to the following quantum circuit.

```
In[2]:= Let[Qubit, S]
       qc = QuantumCircuit[CNOT[{S[1]} -> {0}, S[2]]]
```

```
In[1]:= cz = ZXDiagram[
                                                                              {Z[1][0], Z[2][0], B[1],}
                                                                                     i1 -> Z[1] -> o1,
                                                                                     i2 -> Z[2] -> o2,
                                                                                    Z[1] \rightarrow H[1] \rightarrow Z[2],
                                                                              VertexCoordinates -> {
                                                                                            i1 \rightarrow \{-1, 1\}, i2 \rightarrow \{-1, 0\},
                                                                                            o1 -> \{1, 1\}, o2 -> \{1, 0\},
                                                                                            Z[1] \rightarrow \{0, 1\}, Z[2] \rightarrow \{0, 0\},
                                                                                            H[1] \rightarrow \{0, 1/2\}, B[1] \rightarrow \{1, 1/2\}
                                                              op = ExpressionFor[cz]
                                                             mat = Matrix[cz];
                                                             mat // MatrixForm
         \textit{Out[1]} = \quad \left| \theta_{o1} \theta_{o2} \right\rangle \left\langle \theta_{i1} \theta_{i2} \right| + \\ \left| \theta_{o1} 1_{o2} \right\rangle \left\langle \theta_{i1} 1_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| - \\ \left| 1_{o1} 1_{o2} \right\rangle \left\langle 1_{i1} 1_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| - \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{i2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{o1} \theta_{o2} \right\rangle \left\langle 1_{i1} \theta_{o2} \right| + \\ \left| 1_{
Out[1]//MatrixForm=
                                                                   1000
                                                                     0 1 0 0
                                                                     0 0 1 0
                                                                   000-1
                                           → Properties & Relations (6)

→ Simple diagrams (1)

               In[1]:= Row@{
                                                                              obj = ZXDiagram[{Z[1][0] -> X[1][0]}, ImageSize -> Small],
                                                                              Style[" = ", Large], ExpressionFor[obj]
              In[2]:= Row@{
                                                                            obj = ZXDiagram[{B[1]}, ImageSize -> Small], Style[" = ", Large],
                                                                              ExpressionFor[obj]
                                                                                                  =\sqrt{2}
         Out[2]=
```

```
In[3]:= Row@{
         obj = ZXDiagram[{Z[1][0]}, ImageSize -> Small], Style[" = ", Large],
         ExpressionFor[obj]
```



```
In[4]:= Row@{
         obj = ZXDiagram[{Z[1][φ]}, ImageSize -> Small], Style[" = ", Large],
         ExpressionFor[obj]
       Row@{
         obj = ZXDiagram[{X[1][φ]}, ImageSize -> Small], Style[" = ", Large],
         ExpressionFor[obj]
```


✓ Interaction between Z and X spiders (5)

```
In[1]:= Grid@{{
               obj1 = ZXDiagram[\{B[\{1, 2\}],
                   i \rightarrow Z[1][0] \rightarrow X[1][0] \rightarrow o,
                   Z[1] -> X[1],
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
               obj2 = ZXDiagram[{B[Range@4],
                   i \rightarrow Z[1][0] \rightarrow X[1][0] \rightarrow o,
                   Z[1] \rightarrow X[1], Z[1] \rightarrow X[1], Z[1] \rightarrow X[1]
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
               new = ZXDiagram[{i \rightarrow Z[1][0], X[1][0] \rightarrow o},
                  GraphLayout -> "LayeredDigraphEmbedding"]
             }}
In[2]:= op1 = ToXBasis[ExpressionFor[obj1], {i}]
          op2 = ToXBasis[ExpressionFor[obj2], {i}]
          op = ToXBasis[ExpressionFor[new], {i}]
Out[2] = 2 |\theta_0\rangle\langle +_i|
Out[2] = 2 |\theta_o\rangle\langle +_i|
Out[2] = 2 |\theta_o\rangle\langle +_i|
```

```
In[3]:= Grid@{{
               obj1 = ZXDiagram[\{B[\{1, 2\}],
                    i \to Z[1][\alpha] \to X[1][\beta] \to o,
                    Z[1] -> X[1],
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
               obj2 = ZXDiagram[{B[Range@4],
                    i \rightarrow Z[1][\alpha] \rightarrow X[1][\beta] \rightarrow 0,
                    Z[1] \rightarrow X[1], Z[1] \rightarrow X[1], Z[1] \rightarrow X[1]
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
               \mathsf{new} = \mathsf{ZXDiagram} \big[ \big\{ \mathsf{i} \to \mathsf{Z[1][\alpha]} \,, \, \mathsf{X[1][\beta]} \to \mathsf{o} \big\} \,,
                  GraphLayout -> "LayeredDigraphEmbedding"]
             }}
In[4]:= ExpressionFor[obj1] - ExpressionFor[new]
          ExpressionFor[obj2] - ExpressionFor[new]
Out[4]= 0
Out[4]= 0
```

```
In[1]:= Grid@{{
              obj1 = ZXDiagram[{i \rightarrow Z[1][0] \rightarrow X[1][0] \rightarrow o},
                GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
              obj2 = ZXDiagram[{B[Range@2],
                  i -> Z[1][0] -> X[1][0] -> o,
                  Z[1] \rightarrow X[1], Z[1] \rightarrow X[1]
                GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
              obj3 = ZXDiagram[\{B[Range@4],
                  i \rightarrow Z[1][0] \rightarrow X[1][0] \rightarrow o,
                  Z[1] \rightarrow X[1], Z[1] \rightarrow X[1], Z[1] \rightarrow X[1], Z[1] \rightarrow X[1]
                GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
              new = ZXDiagram[{i \rightarrow o},
                 GraphLayout -> "LayeredDigraphEmbedding"]
            }}
Out[1]=
In[2]:= op1 = ExpressionFor[obj1]
         op2 = ExpressionFor[obj2]
         op3 = ExpressionFor[obj3]
```

```
op = ExpressionFor[new]
Out[2] = \left| 0_{o} \right\rangle \left\langle 0_{i} \right| + \left| 1_{o} \right\rangle \left\langle 1_{i} \right|
Out[2] = \left| \Theta_{o} \right\rangle \left\langle \Theta_{i} \right| + \left| \mathbf{1}_{o} \right\rangle \left\langle \mathbf{1}_{i} \right|
Out[2] = \left| 0_{o} \right\rangle \left\langle 0_{i} \right| + \left| 1_{o} \right\rangle \left\langle 1_{i} \right|
Out[2] = \left| 0_{o} \right\rangle \left\langle 0_{i} \right| + \left| 1_{o} \right\rangle \left\langle 1_{i} \right|
```

```
In[3]:= Grid@{{
               obj1 = \mathsf{ZXDiagram} \big[ \big\{ \mathsf{i} \to \mathsf{Z[1]} \, [\alpha] \to \mathsf{X[1]} \, [\beta] \to \mathsf{o} \big\} \,,
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
               obj2 = ZXDiagram[{B[Range@2],
                    i \rightarrow Z[1][\alpha] \rightarrow X[1][\beta] \rightarrow 0,
                    Z[1] \rightarrow X[1], Z[1] \rightarrow X[1]
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large],
               obj3 = ZXDiagram[{B[Range@4],
                    i \to Z[1][\alpha] \to X[1][\beta] \to o,
                    Z[1] \rightarrow X[1], Z[1] \rightarrow X[1], Z[1] \rightarrow X[1], Z[1] \rightarrow X[1]
                  GraphLayout -> "LayeredDigraphEmbedding"], Style[" = ", Large]
             }}
In[4]:= ExpressionFor[obj1] - ExpressionFor[obj2]
          ExpressionFor[obj1] - ExpressionFor[obj2]
Out[4]= 0
Out[4]= 0
```

$$In[2] := \begin{array}{l} \text{op1} = \text{ExpressionFor} \big[\text{obj} \big] \\ \text{op2} = \text{ExpressionFor} \big[\text{new} \big] \\ \\ Out[2] = \begin{array}{l} \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 0_{i1} 0_{i2} 0_{03} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 0_{i1} 1_{i2} 1_{03} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 1_{i1} 0_{i2} 1_{03} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 0_{03} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 0_{03} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 0_{i1} 0_{i2} 1_{03} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 0_{i1} 1_{i2} 0_{03} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 0_{i2} 0_{03} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{03} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 0_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 1_{i1} 0_{i2} 1_{i3} \right| + \frac{1}{2} \left| 0_{01} 0_{02} \right\rangle \left\langle 0_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 0_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 0_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 0_{i2} 0_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3} \right| + \frac{1}{2} \left| 1_{01} 1_{02} \right\rangle \left\langle 1_{i1} 1_{i2} 1_{i3}$$

This is trivial.

```
In[1]:= Grid@{{
             obj = ZXDiagram[
                 \{\{i1, i2, o3\} \rightarrow X[1][0] \rightarrow Z[1][0] \rightarrow o1\},\
                 ImageSize -> Small], Style[" = ", Large],
             new = ZXDiagram[
                 {Z[{1, 2, 3}][0],
                  i1 -> Z[1], i2 -> Z[2], i3 -> Z[3],
                  Z[{1, 2, 3}] \rightarrow X[1][0] \rightarrow o1,
                ImageSize -> Small]
            }}
```

$$In[2] := \begin{array}{l} & \text{op1 = ExpressionFor [obj]} \\ & \text{op2 = ExpressionFor [new]} \\ \\ Out[2] = & \frac{1}{2} \left| \theta_{01} \right\rangle \left\langle \theta_{i1} \theta_{i2} \theta_{03} \right| + \frac{1}{2} \left| \theta_{01} \right\rangle \left\langle \theta_{i1} \mathbf{1}_{i2} \mathbf{1}_{03} \right| + \frac{1}{2} \left| \theta_{01} \right\rangle \left\langle \mathbf{1}_{i1} \theta_{i2} \mathbf{1}_{03} \right| + \frac{1}{2} \left| \theta_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \theta_{03} \right| + \frac{1}{2} \left| \theta_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{03} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \theta_{i1} \mathbf{1}_{i2} \mathbf{1}_{03} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{03} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{03} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{1}{2} \left| \mathbf{1}_{01} \right\rangle \left\langle \mathbf{1}_{i1} \mathbf{1}_{i2} \mathbf{1}_{i3} \right| + \frac{$$

This is a fascinating illustration of how the ZX calculus handles complementarity naturally.

```
In[1]:= Grid@{{
             obj = ZXDiagram[
                 \{\{i1, i2, o3\} \rightarrow X[1][0] \rightarrow Z[1][0], B[\{1, 2\}]\},
                ImageSize -> Small], Style[" = ", Large],
             new = ZXDiagram[
                 {Z[{1, 2, 3}][0],}
                  i1 \rightarrow Z[1], i2 \rightarrow Z[2], i3 \rightarrow Z[3]
                ImageSize -> Small]
            }}
```

```
In[2]:= op1 = ExpressionFor[obj] // Garner
                                                                                                                                                                                                   op2 = ExpressionFor[new]
    \textit{Out[2]} = \left. \left\langle 0_{i1} 0_{i2} 0_{o3} \right| + \left\langle 0_{i1} 0_{i2} 1_{o3} \right| + \left\langle 0_{i1} 1_{i2} 0_{o3} \right| + \left\langle 0_{i1} 1_{i2} 1_{o3} \right| + \left\langle 1_{i1} 0_{i2} 1_{o3} \right| + \left\langle 1_{i1} 0_{i2} 1_{o3} \right| + \left\langle 1_{i1} 1_{i2} 1_{o3} \right| +
\textit{Out[2]} = \left. \left\langle 0_{i1} 0_{i2} 0_{i3} \right| + \left\langle 0_{i1} 0_{i2} 1_{i3} \right| + \left\langle 0_{i1} 1_{i2} 0_{i3} \right| + \left\langle 0_{i1} 1_{i2} 0_{i3} \right| + \left\langle 1_{i1} 0_{i2} 0_{i3} \right| + \left\langle 1_{i1} 0_{i2} 1_{i3} \right| + \left\langle 1_{i1} 1_{i2} 0_{i3} \right| +
```


See Also

ZXObject • Chain • ZXLayers • ZXForm • ZXStandardForm

Related Guides

MaZX

Related Links

• R. Duncan, A. Kissinger, S. Perdrix, and J. van de Wetering, Quantum 4, 279 (2020), "Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus."