AKADEMIA NAUK STOSOWANYCH W NOWYM SĄCZU

Wydział Nauk Inżynieryjnych Katedra Informatyki

DOKUMENTACJA PROJEKTOWA

ZAAWANSOWANE PROGRAMOWANIE

Drzewo BTS

Autor: Mateusz Smaga Kamil Trzópek

Prowadzący: mgr inż. Dawid Kotlarski

Nowy Sącz 2024

Spis treści

1. Ogólne określenie wymagań	3
2. Analiza problemu	4
3. Projektowanie	5
4. Implementacja	6
5. Wnioski	7
Literatura	8
Spis rysunków	8
Spis listingów	9

1. Ogólne określenie wymagań

Zadanie w proejkcie jest napisanie programu przedstawiające strukturę "drzewa BST" działającego na stercie w języku C++. Drzewo winno być zaimplementowana w klasie. Funkcjonalność (metod) drzewa:

- - Dodaj element,
- - Usuń element,
- - Usuń całe drzewo,
- - Szukaj drogi do podanego elementu,
- Wyświetl drzewo graficznie na ekranie, użytkownik wybiera metodę podczas wyświetlania (metody preorder, inorder, postorder) [oprogramuj wszystkie trzy],
- - Zapis do pliku tekstowego wygenerowanego drzewa,

W drugiej klasie należy zaimplementować (metody) zapis do pliku i odczyt z pliku utworzonego drzewa BTS (plik musi być zapisany binarnie). Funkcja main powinna wyświetlać menu z opcjami drzewa oraz odczytu i zapisu pliku. Program czeka na wybranie opcji. Wszystkie utworzone klasy mają być zaimplementowane w oddzielnych plikach. Funkcja main także powinna być w osobnym pliku.

Przy oddawaniu projektu należy zaprezentować:

- - Co najmniej 5 commit'ów (każdej osoby),
- Najpierw jedna osoba tworzy gałąź i po kilku comitach ją scala. Po scaleniu druga osoba
- tworzy gałąź i po kilku comitach ją scala do głównej gałęzi ,
- Obie osoby w grupie mają utworzyć nowe gałęzie (w jednym punkcie obie osoby zaczynają pracę równoległą), a po kilku comitach wykonują scalenie do głównej gałęzi,
- Co najmniej 6 konfliktów, które należy rozwiązać (3 jedna osoba, 3 druga osoba) przy scalaniu gałęzi (w wcześniejszych punktach),

2 .	Analiza	prob	lemu
		_	

Ω	T) • 1 4	•
3	Projektowa	nie
o.	1 TOJCKIOWA	.1110

4	T 1	1	•
/	Imn	lementa	Cla
┰.	тттЬ		.c.ja

5.	\mathbf{W}	nic	ski

C ·		
Snic	rvsiin	kow
Spis	rysun	11011

\sim		,
Spis	listin	gow