

Windows on Earth

Hemant Kumar Singh Jaisal Singh Vedika Srivastava

About the Project

✓ Client: TERC is an organization primarily focused on research and development in K-12 STEM education. They are executing a project under the Windows on Earth program, which primarily deals with astronaut photographs received from the International Space Station (ISS).

₱ Problem: The Windows on Earth program receives images from the ISS with known ISS locations but without specific details about what each photo depicts. Generally, the subject of each image is within a 300-mile radius of the ISS location. The challenge lies in accurately predicting or geolocating the specific subject area or landmark presented in each image.

Desired Outcomes and Expected Deliverables: The aim is to develop a prototype utilizing image recognition and ML in combination with a virtual world simulator, like Cesium, to automatically geo-locate the images. The expected deliverables also include a set of recommendations for further improvement and development of the project.

TERC Because math and science build futures

David Libby Chief Tech Officer, TERC

Dataset Overview and Initial Analysis

✓ Dataset: The dataset comprises of 143 images captured by ISS satellites. Each image is enriched with EXIF and GPS metadata, revealing vital details like the ISS location, camera parameters and data & time each photo was captured.

4	A	В	C	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	T	U	V	W
1 1	mageFiler GPS	SVersio (GPSLatitud	GPSLatituc GP	SLongiti (PSLongi	tı GPSAltitud	GPSSpeed	Resolution B	xifOffse	lmageDe:	s Make	Model	Software	DateTime	Copyright	XResolut	ic YResoluti	c ExifVersio	ShutterSpe.	ApertureV	DateTim	e(DateTime
2 i	ss036e049 [S	(2.0, 34.36 E	(36.0, 25.	5412491.11	27598.746	2	340	35S Part 2	NIKON O	O NIKON D	3. Adobe Ph	c 2020:03:3	ÄfÂÃfŠÃf	24	0 240	0231	9.643856	6.33985	2013:06	:1:2013:06:1
3 i	ss038e064 [1	N	(42.0, 10.5 E	(14.0, 55.	1417359.41	27597.964	2	438	Mysteryli	MIKON O	O NIKON D	3: Adobe Ph	c 2020:05:0	6 11:49:33	24	0 240	0231	9.965784	5.310704	2014:03	:0(2014:03:0
4 i	ss040e06!		S	(22.0, 22.0 E			4420041.27			620	Caption b	NIKON O	O NIKON D	3: Adobe Ph	c 2021:02:2	945 7039.	24	0 240	0231	12,64386	4.643856	2014:07	:1:2014:07:1
700	ss040e075		N	(32.0, 8.85 W			7 421514.9			266		1			nc 2022:07:2				0231				:2:2014:07:2
	ss040e091		N	(38.0, 42.6 E			8 414689.11			256					c 2017:10:1	- A			0230				:1:2014:08:1
	ss040e097		N	1 1			3 419584.22			232					nc 2017:10:1	_	24	-	0230				:0-2014:09:0
7 1	ssu4ue12:		N	(51.0, 36.7 E	(3.0, 38.9	3 419584.22	27602.119	2	234	4	NIKON C	U NIKUN D	2. Adobe Pr	10 2017:10:1	0 12:48:31	24	0 240	0 0230	11.04386	4.970854	2014:09	:0:2014:09:0
-211	χ	V	7	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT
1	25.5	1 A	L Materia el		100000						0.000		1.5	2000		15,000	1.00		0.00			3.00	
1			weteringr	V LightSourc Fla			gl ColorSpac	Willebala	DigitalZOO								-					Exposur	
2.	0	6	5	0	0	120		0	1	120		0 -04:00	7		0 0	0		2 [0.0012		3		1 (
3 1	0	5	5	0	0	80	-	0	1	80		0 -04:00			0 0	0		2 [0.00				1 (
4!	-1	3	5	0	0	20	0 1	0	1	20)	0 -05:00	9	15	0 0	0		2 [0.00015	5 5	0		1 (
5	0	3	5	0	0	20	0 1	0	1	20)	0 -04:00	08		0 0	0		2 [0.0002	5 2.8	0		1 (
6	0	3	3	0	0	8	0 1	0	1	8)	0	6	i5	0 0	0		2 [0.000313	3 2.8]		1 (
7	-2	5	5	0	0	80	0 1	0	1	120)	0	1	.6	0 0	0		2 [0.000313	3 5.6	0		3 (
A	AU		AV	AW	AX		AY	AZ	B/		BB	BC		BD	BE	BF		BG		ВН	В		BJ
1	ISOSpeed			BodySerial 5033554				GainCor	tr Contr	ast C	FAPatte	rı UserC	omn Ori	ientatio	ExifImag	e\ ExifIm	agel Fo	calPlane	FocalPla	aneYReso	lu Focal	Plane S	ensitivity
2	20		1						0	0	00												
4	20		1						0	0	00	ASCIII	VASA#20	007945									
5	20	0	1						0	0	00	ASCIII	VASA#20	007945									
6	20	0	1	2007945	(80.0,	200. 8	0.0-200.0		0	0	00	ASCIII	VASA#20	007945									
7	20	0	0	6027268	(800.0	80(8	00.0 mm		0	1	00	ASCIII	VASA S/I	N 1142	77.0F								
8	20	0	0	2008337	(80.0,	200. 8	0.0-200.0		0	0		ASCIII	VASA	1	425	6 2	832						
9	20	0	1	2071131	(70.0,	200. 7	0.0-200.0		0	0	00	ASCIII	NASA 20	71131		75.2F				8885498		3	2
10	20	0	0	2071129	(50.0,	500. 5	0.0-500.0		0	0	00	ASCIII	VASA 20	71129		78.8F	13	68.8888	1368.88	8885498	04	3	2

Dataset Overview and Initial Analysis

Research Survey

- Template matching SFIT or SEC2-LoFTR
- Key point detection and extraction
- Cloud cover segmentation

Relevant Papers/Models:

- Find My Astronaut Photo
- Fine-Grained Cross-View Geo-Localization
- Image-to-GPS Verification Through A Bottom-Up Pattern Matching Network
- Automatic Georeferencing of High-Resolution Nighttime Light Imagery

Useful Repos:

- Area of Interest: <u>Cesiumpy</u>, <u>Mapwidget</u>. <u>Satellite-imagery-downloader</u>
- Image matcher: <u>SE2-LoFTR</u>

Approach and Deliverables

Sample Image from the dataset

ISS location w.r.t. the sample image

Google Earth simulation of the image

Mode of Delivery: Prototype model for for future integration and enhancement on client website.

