Hegers s

1-7 сен.	1	Электростатическое поле в вакууме. Поле диполя. Теорема Гаусса.	⁰ 1.1 ⁰ 1.2 ⁰ 1.3	1.14 1.21 T1 1.22/23	1.7 1.10 1.16 1.17
-------------	---	---	--	-------------------------------	-----------------------------

Nº1.1.

⁰1.1. Вычислить отношение сил электростатического отталкивания и гравитационного притяжения двух протонов.

Ombern. 7'4.10,

1007 J

 0 **1.2.** Оцените среднюю концентрацию электрических зарядов в атмосфере, если известно, что напряжённость электрического поля на поверхности Земли равна 100 В/м, а на высоте h = 1,5 км она падает до 25 В/м. Вектор E направлен к

центру Земли. Ответ выразить в элементарных зарядах на см³.

5°13

 0 **1.3.** Используя формулу для напряжённости поля точечного диполя с дипольным моментом \vec{p} , найдите напряжённость поля на оси диполя ($\alpha=0$) и в перпендикулярном направлении ($\alpha=\pi/2$).

 $E = E_{1} - E_{1} = \frac{\kappa q}{r_{1}^{2}} - \frac{\kappa q}{(v_{1} + v_{2})^{2}} = \kappa q \left(\frac{1}{v_{1}} - \frac{1}{(v_{1} + v_{2})^{2}} \right) = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{v_{1}^{2} \cdot (v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{v_{1}^{2} \cdot (v_{1} + v_{2})^{2}} \approx \kappa q \cdot \frac{1}{v_{2}^{2} \cdot v_{3}^{2}} = \kappa \cdot \frac{1}{v_{3}^{2}} = \kappa \cdot \frac{1}$

1 Ha peu, nephengunjnephoù k ganouro u movogryeñ « mepez gent). $E = E_1 \cos x + E_2 \cos x = 2 \cdot \frac{kq}{r} \cos x = \frac{kq}{r} \cdot \frac{e_2}{r}$

Onlami (1) d=0: \(\vec{E} = \vec{k} \cdot \frac{1}{2} \\ \vec{E} = -\vec{k} \\ \vec{E} = -\vec{k} \cdot \frac{1}{2} \\ \vec{E} = -\vec{k} \cdot \frac{1}{2} \\ \vec{E} = -\vec{k} \cdot \frac{1}{2} \\ \vec{E