The Basic Algebra of Game Equivalences by Goranko

An overview

Definition

Game Language and game terms

- The game language \mathcal{GL} consists of the set:
 - 1. Atomic game: $\mathcal{G}_{at} = \{g_a \mid a \in A\}$. the 'idle' atomic game ι is also in \mathcal{G}_{at} .
 - 2. Game operations: \vee , d, •.
- Game terms:
 - 1. Every atomic game is a game term
 - 2. If G, H are game terms then G^d , $G \vee H$ and $G \circ H$ are game terms.

We say $G \wedge H := (G^d \vee H^d)^d$. Atomic games and their duals will be called literals.

Definition

Game boards

- Game Boards are models for \mathcal{GL} . It's defined as follows:
 - 1. $\langle S, \{ \rho_a^i \mid a \in A, i \in \{1,2\} \} \rangle$
 - 2. Where S is a set of states and $\rho_a^i \subseteq S \times \mathcal{P}(S)$ are atomic forcing relations satisfying the following forcing conditions:
 - A. upwards monotonicity (MON): For any $s \in S$ and $X \subseteq Y \subseteq S$, if $s\rho_a^i X$ then $s\rho_a^i Y$.
 - B. consistency of the powers (CON): for any $s \in S$, $X \subseteq S$, if $s\rho_a^1 X$ then not $s\rho_a^2(S \setminus X)$ and (hence) likewise with 1 and 2 swapped.

Definition

Game Boards(Contd.)

- The forcing relations ρ_i^i of the idle game ι have a fixed interpretation: $s\rho_i^i X$ iff $s\in X$. Compositions of idle literals (ι or ι^d) will be called idle game terms.
- Given a game board, the atomic forcing relations are extended to forcing relations $\{\rho_G^i\mid G\in \mathcal{G} \text{ and } i\in\{1,2\}\}$ for all game terms, following the recursive definition:
 - 1. $s \rho_{G^d}^1 X$ iff $s \rho_G^2 X$. And likewise with 1 and 2 swapped.
 - 2. $s\rho_{G_1\vee G_2x}^1$ iff $s\rho_{G_1}^1X$ or $s\rho_{G_2}^1X$.
 - 3. $s \rho_{G_1 \vee G_2}^2 X$ iff $s \rho_{G_1}^2 X$ and $s \rho_{G_2}^2 X$.
 - 4. $s\rho_{G_1 \circ G_2}^i X$ iff there exists Z such that $s\rho_{G_1}^i Z$ and $z\rho_{G_2}^2 X$ for each $z \in Z$, $\forall i \in \{1,2\}$.

Definitions

Inclusions and identities of game terms

- Let G_1 and G_2 be game terms and B a game board:
 - 1. G_1 is i-included in G_2 in B, if $\rho_{G_1}^i \subseteq \rho_{G_2}^i$ where $i \in \{1,2\}$. It's denoted by $G_1 \subseteq_i G_2$.
 - 2. G_1 is **included** in G_2 on B, if $G_1 \subseteq_1 G_2$ and $G_2 \subseteq_2 G_1$ on B. We denote it by $B \models G_1 \leqslant G_2$.
 - 3. $B \models G_1 = G_2$ (equivalent on board B) if $B \models G_1 \leq G_2$ and $B \models G_2 \leq G_1$.
 - 4. G_1 is included in G_2 if $\models G_1 \leqslant G_2$.
 - 5. $G_1 \sim G_2$ if $\models G_1 = G_2$. Note, $\models G_1 \sim G_2$ iff $\models G_1 \leqslant G_2$ and $\models G_2 \leqslant G_1$.

Axioms for \mathcal{GA}^l

Proposed van Benthem.

- 1. $G \sim G^{dd}$
- 2. The usual identities for \mathbf{V} in distributive lattices: idempotency, commutativity, associativity.
- 3. $G_1 \lor (G_1 \land G_2) \sim G_2$
- 4. Associativity of •
- 5. $G_1^d \circ G_2^d \sim (G_1 \circ G_2)^d$
- 6. Left distribution for \vee and \circ : $(G_1 \vee G_2) \circ G_3 \sim (G_1 \circ G_3) \vee (G_2 \circ G_3)$.
- 7. Right-distributive inclusion: $G_1 \circ G_2 \leq G_1 \circ (G_2 \vee G_3)$
- 8. The extras for ι : multiplicative unit: $G \circ \iota \sim \iota \circ G \sim G$ and self-duality: $\iota \sim \iota^d$.

 $(P5)GA^{l}$ is a sound system.

Canonical Game terms

Definition

- *t* is a canonical term
- Let $\{G_{ik} \mid i \in I, k \in K_i\}$ be a finite non-emty family of canonical terms and $\{g_{ik} \mid i \in I, k \in K_i\}$ be a family of literals such that, g_{ik} is an idle literal $\Longrightarrow G_{ik}$ is an idle term. Then $\bigvee \bigwedge g_{ik} \circ G_{ik}$ is a canonical term. $i \in I \ k \in K_i$

Canonical Game terms

Examples

- $g_1 \circ \iota$
- $g_2 \circ (g_1 \circ \iota)$
- $l \circ (l \circ l^d)$
- $(g_2 \circ (g_1 \circ \iota) \land g_1^d \circ (\iota^d \circ (\iota^d \circ \iota))) \lor (g_2^d \circ \iota^d \land g_2 \circ (g_1^d \circ (\iota \circ \iota^d)))$

Canonical Terms

Equivalence Theorem

(P8)Every game term G is equivalent to a canonical game term. This can be proved inside $G\!A^{\, \iota}$

Canonical Game Terms

Embedding

- We define recursively **embedding** of canonical terms, denoted by \rightarrow as follows:
 - 1. $l \rightarrow l$
 - 2. Auxiliary notions: if g, h are literals and G, H are canonical terms, $g \circ G$ embeds into $h \circ H$ iff g = h and $G \rightarrow H$; a conjunction $\bigwedge_{k \in K} g_k \circ G_k$ embeds into a conjunction $\bigwedge_{m \in M} h_m \circ H_m$ if for every $m \in M$ there is some $k \in K$ such that $g_k \circ G_k \rightarrow h_m \circ H_m$.
 - 3. Let $G = \bigvee \bigwedge g_{ik} \circ G_{ik}$ and $H = \bigvee \bigwedge h_{jm} \circ H_{jm}$. Then $G \mapsto H$ iff every disjunct of G embeds into some disjunct of H.

(P12)If G, H are canonical terms and $G \rightarrow H$ then $G \leq H$ is provable in GA^i . Hence $GA^i \vdash G \lor H \sim H$ and $GA^i \vdash G \land H \sim G$

Minimal Canonical Terms

Minimal canonical term is defined recursively

• ι is a minimal canonical term

Let
$$G = \bigvee_{i \in I} \bigwedge_{k \in K_i} g_{ik} \circ G_{ik}$$
 be a canonical term where all G_{ik} are minimal. Then G is minimal if:

- 1. ι^d does not occur in G.
- 2. g_{ik} is $\iota \Longrightarrow G_{ik}$ is ι .
- 3. No conjunct occurring in a conjunction $\bigwedge_{k \in K_i} g_{ik} \circ G_{ik}$ embeds into another conjunct from the same conjunction.
- 4. No disjunct in G embeds into another disjunct of G.

Minimal Canonical Term

Equivalence Theorem

(P14)Every term G can be reduced to an equivalent minimal canonical term c(G) and this can be done provably in GA^{i} .

Isomorphism

Between canonical terms

Two canonical terms G, H are isomorphic, denoted by $G \simeq H$, if one can be obtained from the other by means of successive permutations of conjuncts (resp. disjuncts) within the same \bigwedge 's (resp. \bigvee 's) in subterms.

(P10)Isomorphic terms are equivalent, provably in $G\!A^{\,\prime}$

The Big picture...

Cogs and bolts...

- (L24)if G, H are minimal canonical terms then $\models G \leq H$ iff $G \rightarrow H$.
- (P25) if G, H are minimal canonical terms such that $G \mapsto H$ and $H \mapsto G$ then $G \simeq H$.
- (C26)The minimal canonical terms G and H are equivalent(in semantics sense) Iff they are isomorphic.

The big picture...

(T6)Every valid term identity of the game algebra can be derived from in the standard equational logic.

Given, $\models G \sim H$. Also we know from (P14),

 $\vdash G \sim c(G)$ and $\vdash H \sim c(H)$

Since GA^{l} is sound, $\models G \sim c(G)$ and $\models H \sim c(H)$. So,

$$\models c(G) \sim c(H)$$

$$c(G) \simeq c(H)$$
, By (C26),

$$\vdash c(G) \sim c(H)$$
, By (P10),

$$\vdash G \sim H$$

Translation of \mathcal{G} M into $M\mathcal{L}$

We consider the modal language $\mathscr{M}\mathscr{L}$ comprising:

- A set of atomic variable $V=\{p_a\mid a\in A\}\cup\{q\}$. Here q is auxilary variable.
- the usual connectives: \vee , \wedge , \neg , \Diamond and \square .

Some terminology and notation:

- Substitution $\varphi(\psi | q)$: ψ is substituted for all occurrences of the variable q in φ .
- A dual of a modal formula φ with respect to variable q is $\varphi_q^d = \neg \varphi(\neg q)$.
- The notion of set substitution: Say $\mathcal{M}=\langle S,R,V \rangle$ is a Kripke Model. Let's define :

$$\varphi(q): \mathscr{P}(S) \to \mathscr{P}(S)$$

$$X \mapsto \{s \in S \mid \mathcal{M}', s \models \varphi, \text{ where } \mathcal{M}' := \langle S, R, V' := V \setminus \{(q, V(q))\} \cup \{(q, X \cup V(q))\} \rangle \}$$

So,
$$M, s \vDash \varphi(X)$$
, where $X \subseteq S$. It means $s \in \varphi(X)$.

Translation of \mathcal{GA} into \mathcal{ML}

The Translation: With every game term G we associate a modal formula m(G)as follows

- m(i) = q
- $m(g_a) = \Diamond \Box (p_a \to q)$ for any nono-idle atomic game $g_{a'}$ $a \in A$.
- $m(G_1 \vee G_2) = m(G_1) \vee m(G_2)$
- $m(G^d) = (m(G))^d$, also denoted by $m^d(G)$.
- $m(G_1 \circ G_2) = m(G_1)(m(G_2)).$

A little detour:

Determined Game

 $s\rho_a^2(S\backslash X)$ iff $\neg s\rho_a^1X$. The class of determined game boards will be denoted by **DET**.

Translation of \mathcal{G} M into $M\mathcal{L}$

(T15) For any game terms G, H, if $DET \models G \leq H$, then $\models_{\mathscr{ML}} m(G) \rightarrow m(H)$.

Proof: By contraposition, suppose $M, u \not\models m(G) \to m(H)$ for some model $M := \langle S, R, V \rangle$ and $u \in S$. We define a game board, $B_M = \langle S, \{\rho_a^i \mid a \in A \text{ and } i \in \{1,2\} \rangle$ as follows. For $X \subseteq S$ and $S \in S$:

$$a\rho_a^1 X \iff M, s \vDash m(g_a)(X)$$

$$a\rho_a^2X \Longleftrightarrow M, s \models m^d(g_a)(X)$$

It can be shown that B_M is a determined game and it follows CON and MON. Next, we can prove by induction on structure of game terms, that $orall s \in S$, $X \subseteq S$ and term D:

$$a\rho_D^1X \iff M, s \vDash m(D)(X)$$

$$a\rho_D^2X \Longleftrightarrow M, s \vDash m^d(D)(X)$$

Now, we said earlier, $M, u \models m(G)$ and $M, u \not\models m(H)$. Let X = V(q) So $u\rho_G^1 X$ but, $\neg u\rho_H^1 X$. Hence $B_M \not\models G \leqslant H$.

Translation of $\mathcal{G}\mathcal{A}$ into $\mathcal{M}\mathcal{L}$

(L19)Let G and H be minimal canonical terms. The followings are equivalent:

- 1. *G*≰*H*
- 2. There is an disjunct $\bigwedge_{k \in K_i} g_{ik} \circ G_{ik}$ such that every disjunct in H contains a conjunct
 - $h_{jm_i} \circ H_{jm_i}$ not including any of the conjuncts $g_{ik} \circ G_{ik}$ for $k \in K_i$. [Notice this carefully!!]
- 3. There is a finite (tree-like) Kripke model M and a state $s \in M$ such that: $M, s \models m(G)$; $M, s \not\models m(H)$; and s has no predecessors in M.

Translation of \mathcal{G} M into $M\mathcal{L}$

Proof of (L19): (1 \Longrightarrow 2)Double Induction on structure of G and H. Routine.

 $(2 \Longrightarrow 3)$

We will build a Kripke model \mathcal{M} which will satisfy all $\{m(g_{ik} \circ G_{ik}) \mid k \in K_i\}$, and hence m(G), while none of $\{m(h_{jm_i} \circ H_{jm_i}) \mid j \in J\}$, hence it will falsify m(H).

Translation of $\mathcal{G}\mathcal{A}$ into $\mathcal{M}\mathcal{L}$ Gadgets:

 \mathcal{M}_+ satisfies all m(G) at it's root *, \mathcal{M}_- falsifies all m(G) at it's root *

Translation of \mathcal{GA} into $M\mathcal{L}$

Proof of (L19):

Translation of \mathcal{GA} into \mathcal{ML} Corollaries

• (C20)For any game terms G,H:

$$\models_{\mathscr{ML}} m(G) \to m(H) \text{ iff } \models G \leqslant H$$

$$\models_{\mathscr{MS}} m(G) \leftrightarrow m(H) \text{ iff } \models G \sim H$$

- (L22)Let G, H be any terms and g, h be non-idle literals. Then $g \circ G \leq h \circ H$ iff g = h and $G \leq H$.
- (L23)Next we will take care of the case when either \$g\$ or \$h\$ is an idle term :
 - ▶ $g \circ G \leq \iota \circ \iota$ iff g is an idle literal and $G \leq \iota$.
 - $\iota \circ \iota \leq g \circ G \text{ Iff } g \text{ is an idle literal and } \iota \leq G.$

(L24)if G, H are minimal canonical terms then $\models G \leq H$ iff $G \rightarrow H$.

Proof: Double induction on structure of G and H. Primarily using (L22) and (L23) from the last slide.

(P25) if G, H are minimal canonical terms such that $G \mapsto H$ and $H \mapsto G$ then $G \simeq H$

Proof: We will be trying to prove two terms are "isomorphic". But isomorphism is defined as a 'purely syntactic" notion. So how to prove it? Well we need to establish some sort of a positional bijection, from which it can be inferred which disjunct(conjunct) is equivalent to which disjunct(conjunct).

We proceed by double induction. Suppose
$$G = \bigvee \bigwedge g_{ik} \circ G_{ik}$$
 and $H = \bigvee \bigwedge \bigwedge h_{jm} \circ H_{jm}$ $i \in I \ k \in K_i$ and $j \in J \ m \in M_i$

be minimal canonical terms such that $G \mapsto H$ and $H \mapsto G$ and the claim holds for all G_{ik} 's and H_{im} 's.

(P25) if G, H are minimal canonical terms such that $G \mapsto H$ and $H \mapsto G$ then $G \simeq H$

(P25) if G, H are minimal canonical terms such that $G \mapsto H$ and $H \mapsto G$ then $G \simeq H$