```
import numpy as np
import pandas as pd
# For visualization
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
pd.options.display.max_rows = None
pd.options.display.max_columns = None
df = pd.read_csv('Churn_Modelling.csv')
df.shape
     (10000, 14)
\ensuremath{\text{\#}} Check columns list and missing values
df.isnull().sum()
     RowNumber
     CustomerId
     Surname
                        0
     CreditScore
                       0
     Geography
     Gender
     Age
     Tenure
     Balance
                        0
     NumOfProducts
                       0
     HasCrCard
                        0
     IsActiveMember
                        0
     EstimatedSalary
     Exited
     dtype: int64
df.nunique()
```

RowNumber	10000
CustomerId	10000
Surname	2932
CreditScore	460
Geography	3
Gender	2
Age	70
Tenure	11
Balance	6382
NumOfProducts	4
HasCrCard	2
IsActiveMember	2
EstimatedSalary	9999
Exited	2
dtype: int64	

df = df.drop(["RowNumber", "CustomerId", "Surname"], axis = 1) $\ensuremath{\text{\#}}$ Review the top rows of what is left of the data frame df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

Check variable data types df.dtypes

CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64

```
Exited int64 dtype: object
```


Proportion of customer churned and active


```
fig, axarr = plt.subplots(2, 2, figsize=(20, 12))
sns.countplot(x='Geography', hue = 'Exited',data = df, ax=axarr[0][0])
sns.countplot(x='Gender', hue = 'Exited',data = df, ax=axarr[0][1])
sns.countplot(x='HasCrCard', hue = 'Exited',data = df, ax=axarr[1][0])
sns.countplot(x='IsActiveMember', hue = 'Exited',data = df, ax=axarr[1][1])
```

```
<a href="fig:-gray-left-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-square-s
```

```
fig, axarr = plt.subplots(3, 2, figsize=(10, 5))
sns.boxplot(y='CreditScore',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][0])
sns.boxplot(y='Age',x = 'Exited', hue = 'Exited',data = df , ax=axarr[0][1])
sns.boxplot(y='Tenure',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][0])
sns.boxplot(y='Balance',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][1])
sns.boxplot(y='NumOfProducts',x = 'Exited', hue = 'Exited',data = df, ax=axarr[2][0])
sns.boxplot(y='EstimatedSalary',x = 'Exited', hue = 'Exited',data = df, ax=axarr[2][1])
```

<Axes: xlabel='Exited', ylabel='EstimatedSalary'>

Exited

```
# Split Train, test data
df_train = df.sample(frac=0.8,random_state=200)
df_test = df.drop(df_train.index)
print(len(df_train))
print(len(df_test))

8000
```

2000

df_train['BalanceSalaryRatio'] = df_train.Balance/df_train.EstimatedSalary
sns.boxplot(y='BalanceSalaryRatio',x = 'Exited', hue = 'Exited',data = df_train)
plt.ylim(-1, 5)

Exited

sns.boxplot(y='TenureByAge',x = 'Exited', hue = 'Exited',data = df_train)
plt.ylim(-1, 1)
plt.show()

df_train['CreditScoreGivenAge'] = df_train.CreditScore/(df_train.Age)

Resulting Data Frame
df_train.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exi
8159	461	Spain	Female	25	6	0.00	2	1	1	15306.29	
6332	619	France	Female	35	4	90413.12	1	1	1	20555.21	
8895	699	France	Female	40	8	122038.34	1	1	0	102085.35	
5351	558	Germany	Male	41	2	124227.14	1	1	1	111184.67	
4314	638	France	Male	34	5	133501.36	1	0	1	155643.04	

```
cat_vars = ['HasCrCard', 'IsActiveMember', 'Geography', 'Gender']
```

df_train = df_train[['Exited'] + continuous_vars]

df_train.head()

	Exited	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary	TenureByAge	CreditScoreGivenAge
8159	0	461	25	6	0.00	2	15306.29	0.240000	18.440000
6332	0	619	35	4	90413.12	1	20555.21	0.114286	17.685714
8895	0	699	40	8	122038.34	1	102085.35	0.200000	17.475000
5351	0	558	41	2	124227.14	1	111184.67	0.048780	13.609756
4314	0	638	34	5	133501.36	1	155643.04	0.147059	18.764706

	Exited	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary	TenureByAge	CreditScoreGivenAge
8159	0	0.222	0.094595	0.6	0.000000	0.333333	0.076118	0.432000	0.323157
6332	0	0.538	0.229730	0.4	0.360358	0.000000	0.102376	0.205714	0.305211
8895	0	0.698	0.297297	0.8	0.486406	0.000000	0.510225	0.360000	0.300198
5351	0	0.416	0.310811	0.2	0.495130	0.000000	0.555744	0.087805	0.208238
4314	0	0.576	0.216216	0.5	0.532094	0.000000	0.778145	0.264706	0.330882

```
# data prep pipeline for test data
def DfPrepPipeline(df_predict,df_train_Cols,minVec,maxVec):
    # Add new features
    df predict['BalanceSalaryRatio'] = df_predict.Balance/df_predict.EstimatedSalary
    df_predict['TenureByAge'] = df_predict.Tenure/(df_predict.Age - 18)
    df_predict['CreditScoreGivenAge'] = df_predict.CreditScore/(df_predict.Age - 18)
    # Reorder the columns
    continuous_vars = ['CreditScore','Age','Tenure','Balance','NumOfProducts','EstimatedSalary','BalanceSalaryRatio',
                   'TenureByAge','CreditScoreGivenAge']
    cat_vars = ['HasCrCard','IsActiveMember',"Geography", "Gender"]
    df_predict = df_predict[['Exited'] + continuous_vars + cat_vars]
    \mbox{\#} Change the 0 in categorical variables to -1
    df_predict.loc[df_predict.HasCrCard == 0, 'HasCrCard'] = -1
    df_predict.loc[df_predict.IsActiveMember == 0, 'IsActiveMember'] = -1
    # One hot encode the categorical variables
    lst = ["Geography", "Gender"]
    remove = list()
    for i in 1st:
        for j in df_predict[i].unique():
            \label{eq:df_predict[i+'_'+j] = np.where(df_predict[i] == j,1,-1)} df_predict[i+'_'+j] = np.where(df_predict[i] == j,1,-1)
        remove.append(i)
    df_predict = df_predict.drop(remove, axis=1)
    # Ensure that all one hot encoded variables that appear in the train data appear in the subsequent data
    L = list(set(df_train_Cols) - set(df_predict.columns))
    for 1 in L:
        df_predict[str(1)] = -1
    # MinMax scaling coontinuous variables based on min and max from the train data
    df_predict[continuous_vars] = (df_predict[continuous_vars]-minVec)/(maxVec-minVec)
    # Ensure that The variables are ordered in the same way as was ordered in the train set
    df_predict = df_predict[df_train_Cols]
    return df_predict
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model selection import cross val score
from sklearn.model_selection import GridSearchCV
from scipy.stats import uniform
# Fit models
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
# Scoring functions
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.impute import SimpleImputer
# Function to give best model score and parameters
def best_model(model):
    print(model.best_score_)
    print(model.best_params_)
    print(model.best_estimator_)
def get_auc_scores(y_actual, method,method2):
    auc_score = roc_auc_score(y_actual, method);
    fpr_df, tpr_df, _ = roc_curve(y_actual, method2);
    return (auc_score, fpr_df, tpr_df)
# Function to give best model score and parameters
def best_model(model):
    print(model.best_score_)
    print(model.best_params_)
    print(model.best_estimator_)
```

```
def get_auc_scores(y_actual, method, method2):
      auc_score = roc_auc_score(y_actual, method);
      fpr_df, tpr_df, _ = roc_curve(y_actual, method2);
      return (auc score, fpr df, tpr df)
# Fit primal logistic regression
log_primal = LogisticRegression(C=100, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=250, multi_class='
                                                penalty='12', random_state=None, solver='lbfgs',tol=1e-05, verbose=0, warm_start=False)
log_primal.fit(df_train.loc[:, df_train.columns != 'Exited'],df_train.Exited)
                                                      LogisticRegression
        LogisticRegression(C=100, max_iter=250, multi_class='multinomial', tol=1e-05)
# Fit logistic regression with pol 2 kernel
poly2 = PolynomialFeatures(degree=2)
df_train_pol2 = poly2.fit_transform(df_train.loc[:, df_train.columns != 'Exited'])
log_pol2 = LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=300, multi_class='mul
                                             penalty='12', random_state=None, solver='lbfgs',tol=0.0001, verbose=0, warm_start=False)
log_pol2.fit(df_train_pol2,df_train.Exited)
        /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge
       STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max_iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html
        Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
                                             LogisticRegression
        LogisticRegression(C=10, max_iter=300, multi_class='multinomial')
# Fit SVM with RBF Kernel
SVM_RBF = SVC(C=100, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf', max_
                     random_state=None, shrinking=True,tol=0.001, verbose=False)
SVM_RBF.fit(df_train.loc[:, df_train.columns != 'Exited'],df_train.Exited)
                                     SVC
        SVC(C=100, gamma=0.1, probability=True)
# Fit SVM with Pol Kernel
SVM\_POL = SVC(C=100, cache\_size=200, class\_weight=None, coef0=0.0, decision\_function\_shape='ovr', degree=2, gamma=0.1, kernel='poly', n=1000 and n=1000 
                     probability=True, random_state=None, shrinking=True, tol=0.001, verbose=False)
SVM_POL.fit(df_train.loc[:, df_train.columns != 'Exited'],df_train.Exited)
                                                        SVC
        SVC(C=100, degree=2, gamma=0.1, kernel='poly', probability=True)
# Fit Extreme Gradient Boost Classifier
XGB = XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bytree=1, gamma=0.01, learning_rate=0.1, max_delta_st
                              min_child_weight=5, missing=None, n_estimators=20,n_jobs=1, nthread=None, objective='binary:logistic', random_state=0
                              reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=1)
XGB.fit(df_train.loc[:, df_train.columns != 'Exited'],df_train.Exited)
        [15:46:45] WARNING: ../src/learner.cc:767:
        Parameters: { "silent" } are not used.
                                                            XGBClassifier
        XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
                              colsample_bylevel=1, colsample_bynode=None, colsample_bytree=1,
                              early_stopping_rounds=None, enable_categorical=False,
                              eval_metric=None, feature_types=None, gamma=0.01, gpu_id=None,
                              grow_policy=None, importance_type=None,
                              interaction_constraints=None, learning_rate=0.1, max_bin=None,
                              max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=0,
                             max_depth=7, max_leaves=None, min_child_weight=5, missing=None,
                              monotone constraints=None, n estimators=20, n jobs=1,
                              nthread=None, num_parallel_tree=None, predictor=None, ...)
print(classification_report(df_train.Exited, log_primal.predict(df_train.loc[:, df_train.columns != 'Exited'])))
                             nrecision
                                                recall f1-score support
                        0
                                     0.80
                                                    0 98
                                                                   0.88
                                                                                   6353
```

0.04

0.40

0.08

1647

```
accuracy
                                             0.79
                                                       8000
                        0.60
                                   0.51
                                             0.48
                                                       8000
        macro avg
     weighted avg
                        0.72
                                   0.79
                                             0.72
                                                       8000
print(classification_report(df_train.Exited, log_pol2.predict(df_train_pol2)))
                   precision
                                recall f1-score
                                                    support
                0
                        0.85
                                  0.96
                                             0.90
                                                       6353
                1
                        0.72
                                   0.34
                                             0.46
                                                       1647
                                             0.84
                                                       8000
         accuracy
                        0.78
                                   0.65
                                             0.68
                                                       8000
        macro avg
                                                       8000
     weighted avg
                        0.82
                                   0.84
                                             0.81
print(classification_report(df_train.Exited, SVM_RBF.predict(df_train.loc[:, df_train.columns != 'Exited'])))
                   precision
                                recall f1-score
                                                    support
                0
                        0.81
                                  0.99
                                             0.90
                                                       6353
                1
                        0.85
                                   0.13
                                             0.22
                                                       1647
                                             0.82
                                                       8000
         accuracy
                                                       8000
        macro avg
                        0.83
                                  0.56
                                             0.56
                                                       8000
     weighted avg
                        0.82
                                  0.82
                                             9.76
print(classification_report(df_train.Exited, SVM_POL.predict(df_train.loc[:, df_train.columns != 'Exited'])))
                   precision
                                recall f1-score
                                                    support
                0
                        0.81
                                   0.99
                                             0.90
                                                       6353
                                   0.13
                                             0.22
                                                       1647
                1
                        0.86
                                                       8000
                                             0.82
         accuracy
        macro avg
                        0.83
                                  0.56
                                             0.56
                                                       8000
     weighted avg
                        0.82
                                  0.82
                                             0.76
                                                       8000
y = df_train.Exited
X = df_train.loc[:, df_train.columns != 'Exited']
# Check for missing values in X
print(X.isnull().sum()) # Check if there are any missing values in X
# Handle missing values using imputation (replace missing values with the mean)
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)
# Convert the imputed array back to a DataFrame
X_imputed = pd.DataFrame(X_imputed, columns=X.columns)
# Now make predictions using the XGBoost model
xgb_model = XGBClassifier()
xgb_model.fit(X_imputed, y)
# Make predictions and calculate AUC scores
predictions = xgb_model.predict(X_imputed)
proba_predictions = xgb_model.predict_proba(X_imputed)[:, 1]
# Calculate AUC scores and classification report
auc_score, fpr, tpr = get_auc_scores(y, predictions, proba_predictions)
print("AUC Score:", auc_score)
print("Classification Report:")
print(classification_report(y, predictions))
     CreditScore
                            a
                            0
     Age
     Tenure
     Balance
                            0
     NumOfProducts
                            0
     EstimatedSalary
                            0
     {\tt TenureByAge}
                            0
     CreditScoreGivenAge
     dtvpe: int64
     AUC Score: 0.876442206928901
     Classification Report:
                   precision
                                 recall f1-score
                                   0.99
                                             0.97
                                                       6353
                1
                        0.96
                                  0.76
                                             0.85
                                                       1647
```

```
# Make the data transformation for test data
df_test = DfPrepPipeline(df_test,df_train.columns,minVec,maxVec)
df_test = df_test.mask(np.isinf(df_test))
df_test = df_test.dropna()
df_test.shape
      <ipython-input-20-941607351b30>:20: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
         df_predict[i+'_'+j] = np.where(df_predict[i] == j,1,-1)
      <ipython-input-20-941607351b30>:20: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
        df_predict[i+'_+j] = np.where(df_predict[i] == j,1,-1)
      <ipython-input-20-941607351b30>:20: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
         df_predict[i+'_'+j] = np.where(df_predict[i] == j,1,-1)
      <ipython-input-20-941607351b30>:20: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
         df_predict[i+'_'+j] = np.where(df_predict[i] == j,1,-1)
      <ipython-input-20-941607351b30>:20: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
         df_predict[i+'_'+j] = np.where(df_predict[i] == j,1,-1)
      (0, 9)
plt.plot([0,1], [0,1], 'k--', label = 'Random: 0.5')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC Curve')
```

0.94

0.91

0.94

accuracy

macro avg weighted avg

plt.legend(loc='best')

#plt.savefig('roc_results_ratios.png')

0.95

0.94

0.88

0.94

8000

8000

