Problem Set 2

Due Sep. 19, 2024

Problem 1 (Cascaded measurement). Suppose $\{L_\ell\}$ and $\{M_m\}$ are two sets of measurement operators. Show that a measurement defined by the measurement operators $\{L_\ell\}$ followed by a measurement defined by the measurement operators $\{M_m\}$ is physically equivalent to a single measurement defined by measurement operators $\{N_{\ell m}\}$ with $N_{\ell m} \equiv M_m L_\ell$. (10%)

Problem 2 (Measurements). Calculate the outcome <u>probabilities</u> and <u>corresponding post measurement states</u> of the following measurement settings. Please write clearly for which measurement you do and its corresponding outcome. (60%, for each 15%)

- (a) Measure $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ against the measurement $I \otimes \sigma_z$.
- (b) Measure $|\psi_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ against the orthonormal basis $\left\{ |v_0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}, |v_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \right\}$.
- (c) For the state $|\psi_2\rangle = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\i\\i \end{pmatrix}$, measure the observable $A = \begin{pmatrix} 2 & 0 & -i\\0 & 3 & 0\\i & 0 & 2 \end{pmatrix}$.
- (d) Measure $|\psi_3\rangle=\begin{pmatrix}1\\0\end{pmatrix}$ with measurement $\left\{M_0=\frac{1}{10}\begin{pmatrix}1&-3\\-3&9\end{pmatrix},M_1=\frac{1}{10}\begin{pmatrix}9&3\\3&1\end{pmatrix}\right\}.$

Problem 3 (Pauli measurements). For any \vec{v} that is a 3-dimensional unit vector, we can define an observable $\vec{v} \cdot \vec{\sigma} := v_1 \sigma_x + v_2 \sigma_y + v_3 \sigma_z$

- (a) Show that $\vec{v} \cdot \vec{\sigma}$ has eigenvalues ± 1 , and that the projectors onto the corresponding eigenspaces are given by $P_{\pm} = (\mathcal{I} \pm \vec{v} \cdot \vec{\sigma})/2$. (10%)
- (b) The eigenvector of $\vec{v} \cdot \vec{\sigma}$ with respect to the eigenvalue +1 can be represented as $\cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} e^{i\phi} |1\rangle$ in the form of the polar coordinate system. Find the eigenvector with respect to -1 in the form of the polar coordinate system. Show the corresponding Cartesian coordinates, i.e., the value of v_1 , v_2 and v_3 , in terms of θ and ϕ . (10%)
- (c) Calculate the probability of obtaining the result +1 for a measurement of $\vec{v} \cdot \vec{\sigma}$, given that the state prior to measurement is $|0\rangle$. What is the state of the system after the measurement if +1 is obtained? (10%)