Assignment-5

Let us consider a sample dataset, have one input (x;a) and one output (y;a) and number of samples 4. Develop a simple linear regression model using MBGD.

Sample (i)	X:a	Y: ~
1	0.2	3.4
2	0.4	3.8
3	0.6	4.2
4.	6.8	4.6

· Do manual calculations for two iterations with batch size - 2

S Batch 1

X	1 7
0.2	3.4
0.4	3-8

Batch 2

1. ×	4	
0.6	4.2	
018	4.6	

Step 1: [x, y], m=1, c=-1, n=0.1, epoches=2, bs=2 Step 2: nb= ns = 4 = 2

step 3: itr=1

step 4: Batch = 1

Step 5:
$$\frac{\partial F}{\partial m} = \frac{1}{h5} \sum_{i=1}^{h5} (y_i - m\chi_i - c) \chi_i$$

= $\frac{1}{2} \left[(3.4 - (1)(0.2) + 1) \cdot 0.2 \right] \left[3.8 - 0.4 \right] \right]$

= $\frac{1}{2} \left[(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1) \right]$

= $\frac{1}{2} \left[(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1) \right]$

= $\frac{1}{2} \left[(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1) \right]$

= $\frac{1}{2} \left[(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1) \right]$

= $\frac{1}{2} \left[(4.3) = 0.134 \right]$

Step 6: $Am = -(0.1)(-4.3) = 0.43$

= $\frac{1}{2} \left[(4.2 - (1.34)(0.6) + 0.5 + (0.6 + (4.6 - (1.34)(0.8) + 0.5 + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) + (4.6 - (1.34)(0.8) +$

step 9: if (batch = 06)

Joto step 10

3>2

else

Joto step 5

step 10: it + 1 = itr

1+1 = 2

Step 11: if (itr > epoches)

Joto step 12

2>2

else

*Joto step 4

Step 4: 8atch = 1

step 5:
$$\frac{3E}{3m} = \frac{1}{2} \left[(3 \cdot u^2 - (1 \cdot 4) + 2)(0 \cdot 2) + 0 \cdot 15 \times 3) \cdot 0 \cdot 2 + (3 \cdot 8 - (1 \cdot 4) + 2)(0 \cdot 4) + 0 \cdot 15 \times 3) \cdot 0 \cdot 4 \right]$$

= -1 \(\left(3 \cdot 4 \right) - \left(1 \cdot 4) + 0 \cdot 15 \cdot 2 \right) - \left(1 \cdot 4) + 0 \cdot 15 \cdot 2 \right) - \left(3 \cdot 3) - \left(1 \cdot 4) + 0 \cdot 15 \cdot 2 \right) - \left(3 \cdot 3) + \left(1 \cdot 4) + 0 \cdot 15 \cdot 2 \right) - \left(3 \cdot 3) + \left(1 \cdot 4) + 0 \cdot 15 \cdot 2 \right) \right]

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \right) \)

= \(\cdot 3 \cdot 3 \cdot 4 \right) \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad 7 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad 7 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad 7 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 3 \cdot 2 \cdot 0 \right) \quad \(\cdot 4 \cdot 5 \cdot 2 \cdot 0 \right) \quad \(\cdot 2 \cdot 2 \cdot 0 \right) \quad \(\cdot 2 \cdot 2 \cdot 2 \cdot 0 \right) \quad \(\cdot 2 \cdot 2 \cdot 0 \right) \quad \(\cdot 2 \cdot 2 \cdot 2 \cdot 0 \right) \quad \(\cdot 2 \cdot 2