Enhancing Materials Property Prediction: A Multimodal Learning via Image Mapping of Material Compositions

Yu Yeyong a, Wu Xing a,c, Zhang Huirana,c, Qian Quan a,b,c,*

- a. School of Computer Engineering and Science, Shanghai University
- b. Materials Genome Institute, Shanghai University, Shanghai
- c. Zhejiang Laboratory, Hangzhou Email: qqian@shu.edu.cn

International Workshop on Data-driven Computational and Theoretical Materials Design (DCTMD)

"Unlocking the AI Future of Materials Science"

Introduction

- □ Complex material datasets challenge machine learning due to sparse features.
- Composition crucial: composition proportions one overlooked.
- **Compositional features present**: Atomic info missing.
- Image mapping: Using XenonPy expand 58 elemental points, 406 extended dimensions.
- □ Grayscale images for CNN extraction.

Methods

Densification and Prediction: Atomic features for 2D grayscale images; MCVN predicts steel properties, classifies amorphous alloys. [See Figure A]

- **Expert-based visualization**: Enhances compositional features in material ML tasks.
- Multimodal deep-network model: Integrates visualization images & raw features, improves accuracy. [See Figure B]

Figure A. Better utilization of composition for material property prediction using the MCVN.

Figure B. Material composition visualization network architecture.

Self-attention
Mechanism: Reduces
external info reliance,
captures internal
relevance effectively.

Modal Translation

Process Flow: Feature Enhancement with Xenonpy.

Arrangement: Template of compositional features.

Grayscale Image: Element-level description of features

Results

Classification Task

Algorithm	Catego	ry	Precision	Recall	F1-score	Suppor
RF (Breiman, 2015)	BMG	0	0.83	0.94	0.87	208
		\boldsymbol{E}	0.72	0.93	0.82	
		E&P	0.77	0.92	0.84	
		0	0.82	0.94	0.87	
	RMG	\boldsymbol{E}	0.83	0.92	0.87	1241
		E&P	0.81	0.92	0.86	
		0	0.86	0.52	0.65	
	CRA	\boldsymbol{E}	0.88	0.54	0.67	510
		E&P	0.83	0.50	0.62	
XGBoost (Chen and Guestrin, 2016)		0	0.92	0.85	0.89	
	BMG	\boldsymbol{E}	0.92	0.87	0.90	208
		E&P	0.92	0.80	0.86	
	RMG	0	0.83	0.95	0.89	1241
		\boldsymbol{E}	0.86	0.94	0.90	
		E&P	0.81	0.95	0.87	
		0	0.83	0.57	0.68	
	CRA	\boldsymbol{E}	0.84	0.67	0.75	510
		E&P	0.83	0.54	0.66	
Attention Network (Vaswani et al., 2017)		0	0.842	0.875	0.858	
	BMG	\boldsymbol{E}	0.895	0.860	0.877	208
		E&P	0.899	0.861	0.879	
		0	0.871	0.905	0.888	
	RMG	\boldsymbol{E}	0.890	0.905	0.898	1241
		E&P	0.885	0.913	0.899	
		0	0.786	0.583	0.684	
	CRA	\boldsymbol{E}	0.794	0.562	0.678	510
		E&P	0.806	0.596	0.70	
edRVFL_N (Shi et al., 2022)		0	0.936	0.567	0.706	
	BMG	\boldsymbol{E}	0.967	0.860	0.910	208
		E&P	0.937	0.581	0.718	
		0	0.770	0.923	0.840	
	RMG	\boldsymbol{E}	0.847	0.930	0.887	1241
		E&P	0.785	0.930	0.851	
		0	0.742	0.503	0.600	
	CRA	E	0.798	0.643	0.712	510
		E&P	0.777	0.547	0.642	
MCVN	BMG		0.931	0.904	0.917	208
	RMG		0.901	0.941	0.921	1241
	CRA		0.861	0.778	0.818	510

Unbalanced amorphous alloy dataset: Increased avg. Recall (CRA small-class) from 0.58 to 0.78.

Regression Task

NIMS's steel dataset: $4\% R^2$ improvement (0.92 avg. R^2)

SRIM's steel dataset: $R^2 = 0.835$ on EL (vs 0.64 avg. R^2).

Conclusion

This approach enhances model performances on small sparse matrix samples by expanding material composition data, offering a universal paradigm for predicting material properties.

- Feature Enhancement: Densifies sparse composition, boosts generalization.
- **Modal Translation:** XenonPy, element-level features, multimodal grayscale dataset.
- Multimodal Learning: MCVN enhances material property predictions.

Reference

- 1. Better utilization of materials' compositions for predicting their properties: Material composition visualization network[J]. Engineering Applications of Artificial Intelligence
- 2. FTAP: Feature transferring autonomous machine learning pipeline[J]. Information Sciences

Organizer

- Materials Genome Institute, Shanghai University
- Shanghai, China October 9-13, 2024

Partners and Sponsors

