A Data-driven Forecasting Model for an Aggregator of Electric Vehicles via Inverse Optimization

Ricardo Fernández-Blanco, Juan Miguel Morales, Salvador Pineda, Álvaro Porras

Postdoctoral researcher OASYS group, University of Malaga

Ricardo.FCarramolino@gmail.com

October 20th, 2019

Motivation

- Growing electrification of the road transport: Greener cities and transport system
- Estimated global electricity demand from EVs was around 54 TWh in 2017

Source: International Energy Agency.

Motivation

- Electromobility will impact on the power system operation and planning
- Aggregators play a key role to manage a fleet of EVs and suitable tools are still to be developed

Context and Challenges

Within a market-based context, the aggregator agents face several challenges:

Forecast How can they forecast the EV-fleet power in the short-term?

Bidding How to come up with a bidding curve to participate

in the electricity market?

Data

How can they make use of past data about electricity prices and driving patterns?

- We want to forecast the EV-fleet (aggregate) power p_t . Past observations: driving patterns, prices λ'_{t-l} or p'_{t-l} , $\forall l=1,2,...$.
- We maximize the aggregate welfare of the EV fleet

Forecasting model

$$\begin{aligned} & \max_{p_b} \quad \sum_{b \in \mathcal{B}} p_b \left(m_b - \lambda \right) \\ & \text{subject to:} \\ & \underline{P} \leq \sum_{b \in \mathcal{B}} p_b \leq \overline{P} & \Longrightarrow & (\underline{\beta}, \overline{\beta}) \\ & 0 \leq p_b \leq \overline{E}_b, \forall b \in \mathcal{B}^c & \Longrightarrow & (\underline{\phi}_b^c, \overline{\phi}_b^c) \\ & \underline{E}_b \leq p_b \leq 0, \forall b \in \mathcal{B}^d & \Longrightarrow & (\phi_b^d, \overline{\phi}_b^d) \end{aligned}$$

- We want to forecast the EV-fleet (aggregate) power p_t . Past observations: driving patterns, prices λ'_{t-l} or p'_{t-l} , $\forall l=1,2,...$.
- We maximize the aggregate welfare of the EV fleet

Forecasting model

Parameters to be estimated in pink ⇒ Inverse optimization

$$\max_{p_b} \quad \sum_{b \in \mathcal{B}} p_b \left(\mathbf{m}_b - \lambda \right)$$

subject to:

$$\underline{\underline{P}} \leq \sum_{b \in \mathcal{B}} p_b \leq \overline{\underline{P}} \qquad \Longrightarrow \quad (\underline{\beta}, \overline{\beta})$$

$$0 \leq p_b \leq \overline{\underline{E}}_b, \forall b \in \mathcal{B}^c \quad \Longrightarrow \quad (\underline{\phi}^c_b, \overline{\phi}^c_b)$$

$$\underline{\underline{E}}_b \le p_b \le 0, \forall b \in \mathcal{B}^d \implies (\underline{\phi}_b^d, \overline{\phi}_b^d)$$

Let us assume a three-block stepwise offer (bid) price function of the EVs aggregator:

Let us assume a three-block stepwise offer (bid) price function of the EVs aggregator:

• If $\lambda = \lambda^A$, then the aggregator will consume power and the accepted blocks will be $\{1,2\}$

Let us assume a three-block stepwise offer (bid) price function of the EVs aggregator:

• If $\lambda = \lambda^B$, then the aggregator will produce power and the accepted blocks will be $\{-1, -2\}$

Accounting for Past Information

We use kernel regression to estimate power bounds \underline{P}_t and \overline{P}_t , and marginal utility $m_{b,t}$:

$$\begin{split} & \underline{P}_t = \underline{\mu} + \sum_{\tau \in \Omega^{tr}} \underline{\alpha}_{\tau} \mathbf{K}_{t,\tau}, \quad \forall t \in \mathcal{T} \\ & \overline{P}_t = \overline{\mu} + \sum_{\tau \in \Omega^{tr}} \overline{\alpha}_{\tau} \mathbf{K}_{t,\tau}, \quad \forall t \in \mathcal{T} \\ & m_{b,t} = \nu_b + \sum_{\tau \in \Omega^{tr}} \rho_{\tau} \mathbf{K}_{t,\tau}, \quad \forall t \in \mathcal{T} \end{split} \right\} \quad \text{Kernel regression functions}$$

 $K_{t, au}$ is a kernel function on two feature vectors at time periods t and au

similarity measure!

Example of a Kernel

Gaussian kernel: $K_{t,\tau} = K\left(\mathbf{z}_t, \mathbf{z}_{\tau}\right) = e^{-\gamma \|\mathbf{z}_t - \mathbf{z}_{\tau}\|_2^2}, \quad \forall t \in \mathcal{T}, \tau \in \Omega^{tr}$

Let us assume that $oldsymbol{z}_t = \lambda_{t-1}$ and that $oldsymbol{z}_{ au=2} = \lambda_1$

Example of a Kernel

Gaussian kernel:
$$K_{t,\tau} = K\left(\mathbf{z}_t, \mathbf{z}_{\tau}\right) = e^{-\gamma \|\mathbf{z}_t - \mathbf{z}_{\tau}\|_2^2}, \quad \forall t \in \mathcal{T}, \tau \in \Omega^{tr}$$

Let us assume that $oldsymbol{z}_t = \lambda_{t-1}$ and that $oldsymbol{z}_{ au=2} = \lambda_1$

High values of γ (low variance) lead to kernel values equal to 1 just when the regressors are very close to each other

Example of a Kernel

Gaussian kernel:
$$K_{t,\tau} = K\left(\mathbf{z}_t, \mathbf{z}_{\tau}\right) = e^{-\gamma \|\mathbf{z}_t - \mathbf{z}_{\tau}\|_2^2}, \quad \forall t \in \mathcal{T}, \tau \in \Omega^{tr}$$

Let us assume that $oldsymbol{z}_t = \lambda_{t-1}$ and that $oldsymbol{z}_{ au=2} = \lambda_1$

Low values of γ (high variance) lead to kernel values equal to 1 even when the regressors are very different from each other

Two-step Estimation Procedure

- Then, how do we estimate $\Phi = \{\underline{\underline{E}}_{b,t}, \overline{\underline{E}}_{b,t}, m_{b,t}, \underline{\underline{P}}_t, \overline{P}_t\}$ and the corresponding coefficient estimates $\underline{\mu}, \underline{\alpha}_t, \overline{\mu}, \overline{\alpha_t}, \nu_b, \rho_t$?
- Inverse optimization methodology: two convex programs!

Feasibility problem

What?

Power bounds $\underline{P}_t,\overline{P_t}$ and $\mu,\underline{\alpha}_t,\overline{\mu},\overline{\alpha_t}$

Why?

Feasibility

How?

Shaping the power bounds based on observed EV-fleet power values

Optimality problem

What?

Marginal utility $m_{b,t}$ and ν_b, ρ_t

Why?

Optimality

How?

Minimizing the duality gap of the forecasting problem

Feasibility Problem

The feasibility problem is formulated as:

$$\begin{split} & \min_{\Xi^{fp}} \sum_{t \in \Omega^{tr}} H\left(\overline{\xi}_t^- + \underline{\xi}_t^-\right) + \sum_{t \in \Omega^{tr}} (1-H) \left(\overline{\xi}_t^+ + \underline{\xi}_t^+\right) \\ & \text{subject to:} \\ & \overline{P}_t - p_t' = \overline{\xi}_t^+ - \overline{\xi}_t^-, \quad \forall t \in \Omega^{tr} \\ & p_t' - \underline{P}_t = \underline{\xi}_t^+ - \underline{\xi}_t^-, \quad \forall t \in \Omega^{tr} \\ & \overline{P}_t \geq \underline{P}_t, \quad \forall t \in \Omega^{tr} \\ & \overline{F}_t \geq \underline{P}_t, \quad \forall t \in \Omega^{tr} \\ & \text{Kernel regression functions (Gaussian - } \gamma) \\ & \overline{\xi}_t^+, \underline{\xi}_t^+, \overline{\xi}_t^-, \underline{\xi}_t^- \geq 0, \quad \forall t \in \Omega^{tr}, \end{split}$$

Feasibility Problem

Graphical explanation of the feasibility problem:

Parameter $H \in [0,1)$ controls the width of the power bounds and thus the price-responsiveness of the EV fleet

Optimality Problem

Let us recall the forecasting problem and its dual counterpart:

Primal problem

$$\max_{\Xi^{P}} \quad \sum_{b \in \mathcal{B}} p_{b} (m_{b} - \lambda)$$

subject to:

$$\underline{P} \leq \sum_{b \in \mathcal{B}} p_b \leq \overline{P}$$

$$0 \leq p_b \leq \overline{E}_b, \forall b \in \mathcal{B}^c$$

$$\underline{\textit{E}}_{\textit{b}} \leq \textit{p}_{\textit{b}} \leq 0, \forall \textit{b} \in \mathcal{B}^{\textit{d}}$$

where
$$\Xi^P = \{p_b\}$$

Dual problem

$$\min_{\Xi^D} \quad \widehat{\overline{P}} \overline{\beta} - \underline{\widehat{P}} \underline{\beta} + \sum_{b \in \mathcal{B}^c} \widehat{\overline{E}}_b \overline{\phi}_b^c - \sum_{b \in \mathcal{B}^d} \underline{\widehat{E}}_b \underline{\phi}_b^d$$

subject to:
$$-\underline{\phi}_{b}^{c} + \overline{\phi}_{b}^{c} - \underline{\beta} + \overline{\beta} = m_{b} - \lambda, \forall b \in \mathcal{B}^{c}$$

$$-\underline{\phi}_{b}^{d} + \overline{\phi}_{b}^{d} - \underline{\beta} + \overline{\beta} = m_{b} - \lambda, \forall b \in \mathcal{B}^{d}$$

$$\underline{\beta}, \overline{\beta}, \underline{\phi}_{b}^{c}, \overline{\phi}_{b}^{c}, \underline{\phi}_{b}^{d}, \overline{\phi}_{b}^{d} \geq 0$$

where
$$\Xi^D = \{\underline{\beta}, \overline{\beta}, \underline{\phi}^c_b, \overline{\phi}^c_b, \underline{\phi}^d_b, \overline{\phi}^d_b\}$$

Optimality Problem

Then, the optimality problem can be formulated as:

$$\min_{\Xi^{op}} \quad \sum_{t \in \Omega^{tr}} \epsilon_t$$

subject to:

Dual objective function $-\epsilon_t = \text{Primal objective function}, \quad \forall t \in \Omega^{tr}$

Dual feasibility constraints

$$m_{b,t} = \nu_b + \sum_{ au \in \Omega^{tr}}
ho_ au K_{t, au}, \quad orall t \in \Omega^{tr}$$

$$\nu_b \ge \nu_{b+1}, \quad \forall b \in \mathcal{B} \setminus \{b = N_B\}$$

Computation of Hyper-parameters

- \bullet We have presented all the tools needed to forecast the EV-fleet power
- \bullet Feasibility and optimality problems rely on the knowledge of hyper-parameters: H, γ
- Grid search technique by using training and validation sets

Comparison Methodologies

Acronym	Methodology
kio	Kernel-based inverse optimization approach
svr	Support vector regression
krr	Kernel-ridge regression
lio	Inverse optimization approach with linear kernels
h-naive, d-naive, w-naive	Persistence models

Data

- No real-life data ⇒ Simulation of the EV-fleet behavior
- Residential aggregator with 100 EVs
- Synthetic database for a pool of EVs
 - Availability profiles $(\varsigma_{v,t})$ and energy required for transportation: National Household Travel Survey 2017
 - Electricity prices λ_t : ENTSO-e Transparency platform

Cases: Without V2G Capabilities

- naive-ch: EVs satisfy their energy needs with a naive charging $\neq f(\lambda)$
- *sync*: Charging is highly synchronized = $f(\lambda)$
- non-sync: Charging synchronization is avoided = $f(\lambda)$

Cases

• Power versus price relationship

- Explanatory variables per case:
 - naive-ch: p_{t-l} and $\sum_{v} \varsigma_{v,t-l}$, $\forall l=1...6$, and 5 categorical variables
 - *sync* and *non-sync*: λ_{t-l} and p_{t-l} , $\forall l = 1...6$
- We assume 6 energy blocks
- Training Ω^{tr} , validation Ω^{v} , test Ω^{test} sets: 672, 168, 168 h

Results for the naive-ch Case

kio	lio
$H^* = 0.64$	$H^* = 0.91$
$\gamma^*=0.1$	

Model	RMSE	MAE
kio	8.6	3.7
krr	9.0	3.5
svr	10.4	5.7
lio	16.8	6.4
h-naive	90.3	29.3
d-naive	13.2	4.8
w-naive	10.8	4.6

- Low value of H:
 - Bounds are almost coincident
 - No dependence on the price
 - Power directly explained by estimating the bounds
- kio reduces the RMSE by 4.4% and 17.3% compared to krr and svr

 Image: specific properties of the properties of

Results for the naive-ch Case

kio	lio
$H^* = 0.64$	$H^* = 0.91$
$\gamma^*=0.1$	

Model	RMSE	MAE
kio	8.6	3.7
krr	9.0	3.5
svr	10.4	5.7
lio	16.8	6.4
h-naive	90.3	29.3
d-naive	13.2	4.8
w-naive	10.8	4.6

- Low value of H:
 - Bounds are almost coincident
 - No dependence on the price
 - Power directly explained by estimating the bounds
- kio reduces the RMSE by 4.4% and 17.3% compared to krr and svr

Results for the naive-ch Case

kio	lio
$H^* = 0.64$	$H^* = 0.91$
$\gamma^*=$ 0.1	

Model	RMSE	MAE
kio	8.6	3.7
krr	9.0	3.5
svr	10.4	5.7
lio	16.8	6.4
h-naive	90.3	29.3
d-naive	13.2	4.8
w-naive	10.8	4.6

- Low value of H:
 - Bounds are almost coincident
 - No dependence on the price
 - Power directly explained by estimating the bound
- kio reduces the RMSE by 4.4% and 17.3% compared to krr and svr

kio	lio
$H^* = 0.82$	$H^* = 0.89$
$\gamma^* = 0.1$	

Model	RMSE	MAE
kio	35.2	13.3
krr	35.5	15.7
svr	41.7	14.7
lio	59.3	23.0
h-naive	72.7	25.3
d-naive	64.8	22.3
w-naive	49.1	15.7

- High value of H:
 - Bounds are wider and shape the forecast
 - Power is sensitive to the price

- H values for kio and lio are quite similar
- kio outperforms lio: 40.6% ↓ and 42.2% ↓
- *kio* outperforms *w-naive*: $28.3\% \downarrow \text{ and } 15.3\% \downarrow$
- kio performance is comparable to other machine-learning techniques

kio	lio
$H^* = 0.82$	$H^* = 0.89$
$\gamma^*=$ 0.1	

Model	RMSE	MAE
kio	35.2	13.3
krr	35.5	15.7
svr	41.7	14.7
lio	59.3	23.0
h-naive	72.7	25.3
d-naive	64.8	22.3
w-naive	49.1	15.7

- High value of H:
 - Bounds are wider and shape the forecast
 - Power is sensitive to the price

- H values for kio and lio are quite similar
- *kio* outperforms *lio*: $40.6\% \downarrow$ and $42.2\% \downarrow$
- *kio* outperforms *w-naive*: $28.3\% \downarrow \text{ and } 15.3\% \downarrow$
- kio performance is comparable to other machine-learning techniques

Insertframenavigationsymbol

Inser

kio	lio
$H^* = 0.82$	$H^* = 0.89$
$\gamma^*=$ 0.1	

Model	RMSE	MAE
kio	35.2	13.3
krr	35.5	15.7
svr	41.7	14.7
lio	59.3	23.0
h-naive	72.7	25.3
d-naive	64.8	22.3
w-naive	49.1	15.7

- High value of H:
 - Bounds are wider and shape the forecast
 - Power is sensitive to the price

• H values for kio and lio are quite similar

- kio outperforms lio: 40.6% ↓ and 42.2% ↓
- kio outperforms w-naive: 28.3% ↓ and 15.3% ↓
- kio performance is comparable to other machine-learning techniques

kio	lio
$H^* = 0.82$	$H^* = 0.89$
$\gamma^*=$ 0.1	

Model	RMSE	MAE
kio	35.2	13.3
krr	35.5	15.7
svr	41.7	14.7
lio	59.3	23.0
h-naive	72.7	25.3
d-naive	64.8	22.3
w-naive	49.1	15.7

- High value of H:
 - Bounds are wider and shape the forecast
 - Power is sensitive to the price

- H values for kio and lio are quite similar
- *kio* outperforms *lio*: $40.6\% \downarrow$ and $42.2\% \downarrow$
- kio outperforms w-naive: 28.3% ↓ and 15.3% ↓
- kio performance is comparable to other machine-learning techniques

kio	lio
$H^* = 0.82$	$H^* = 0.89$
$\gamma^*=$ 0.1	

Model	RMSE	MAE
kio	35.2	13.3
krr	35.5	15.7
svr	41.7	14.7
lio	59.3	23.0
h-naive	72.7	25.3
d-naive	64.8	22.3
w-naive	49.1	15.7

- *kio* outperforms w-naive: $28.3\% \downarrow$ and $15.3\% \downarrow$

kio	lio
$H^* = 0.82$	$H^* = 0.89$
$\gamma^* = 0.1$	

Model	RMSE	MAE
kio	35.2	13.3
krr	35.5	15.7
svr	41.7	14.7
lio	59.3	23.0
h-naive	72.7	25.3
d-naive	64.8	22.3
w-naive	49.1	15.7

- High value of H:
 - Bounds are wider and shape the forecast
 - Power is sensitive to the price

- H values for kio and lio are quite similar
- kio outperforms lio: 40.6% ↓ and 42.2% ↓
- *kio* outperforms *w-naive*: $28.3\% \downarrow \text{ and } 15.3\% \downarrow$
- kio performance is comparable to other machine-learning techniques

kio	lio
$H^* = 0.94$	$H^* = 0.94$
$\gamma^*=$ 0.01	

Model	RMSE	MAE
kio	5.5	3.8
krr	7.4	5.2
svr	7.6	5.0
lio	5.9	3.9
h-naive	11.3	7.1
d-naive	17.3	13.3
w-naive	13.0	9.1

- H values for kio and lio are quite similar

kio	lio
$H^* = 0.94$	$H^* = 0.94$
$\gamma^*=$ 0.01	

Model	RMSE	MAE
kio	5.5	3.8
krr	7.4	5.2
svr	7.6	5.0
lio	5.9	3.9
h-naive	11.3	7.1
d-naive	17.3	13.3
w-naive	13.0	9.1

- Higher value of *H*:
 - Wider bounds than for the sync case
 - Power is sensitive to the price
 - Wider range of marginal utilities

- H values for kio and lio are quite similar

kio	lio
$H^* = 0.94$	$H^* = 0.94$
$\gamma^*=$ 0.01	

Model	RMSE	MAE
kio	5.5	3.8
krr	7.4	5.2
svr	7.6	5.0
lio	5.9	3.9
h-naive	11.3	7.1
d-naive	17.3	13.3
w-naive	13.0	9.1

H values for kio and lio are quite similar

kio	lio
$H^* = 0.94$	$H^* = 0.94$
$\gamma^*=$ 0.01	

Model	RMSE	MAE
kio	5.5	3.8
krr	7.4	5.2
svr	7.6	5.0
lio	5.9	3.9
h-naive	11.3	7.1
d-naive	17.3	13.3
w-naive	13.0	9.1

- H values for kio and lio are quite similar
- kio and lio give rise to the least errors

kio	lio
$H^* = 0.94$	$H^* = 0.94$
$\gamma^*=$ 0.01	

Model	RMSE	MAE
kio	5.5	3.8
krr	7.4	5.2
svr	7.6	5.0
lio	5.9	3.9
h-naive	11.3	7.1
d-naive	17.3	13.3
w-naive	13.0	9.1

- H values for kio and lio are quite similar
- kio outperforms h-naive, krr, svr: 51.3% ↓, 25.7% ↓, 27.6% ↓

To wrap up...

- Data-driven two-step forecasting approach
 - Inverse optimization
 - kernel regression
- Unlike other techniques
 - Forecasting
 - Bidding
- It achieves a similar or better performance than other techniques
- Adjectives that best describe our model
 - Versatile
 - Interpretable

Contacts

Any questions?

Ricardo Fernández-Blanco

ricardo.fcarramolino@uma.es OASYS Webpage: oasys.uma.es

- sync case:
 - kio outperforms better than lio
 - Similar performance of *kid* and other machine-learning techniques
- non-sync case
 - *kio* predicts better that the rest of methods

Model	syı	sync		non-sync	
Model	RMSE	MAE	RMSE	MAE	
kio	148.6	94.3	33.5	20.9	
krr	146.9	108.4	35.2	23.6	
svr	147.1	92.4	35.6	22.4	
lio	172.1	120.0	36.2	23.7	
h-naive	235.4	142.2	49.5	30.0	
d-naive	261.8	162.5	71.1	50.2	
w-naive	199.5	112.3	60.4	37.7	

- sync case:
 - *kio* outperforms better than *lio*
 - Similar performance of *kid* and other machine-learning techniques
- non-sync case:
 - kio predicts better that

Model	syı	sync		non-sync	
Model	RMSE	MAE	RMSE	MAE	
kio	148.6	94.3	33.5	20.9	
krr	146.9	108.4	35.2	23.6	
svr	147.1	92.4	35.6	22.4	
lio	172.1	120.0	36.2	23.7	
h-naive	235.4	142.2	49.5	30.0	
d-naive	261.8	162.5	71.1	50.2	
w-naive	199.5	112.3	60.4	37.7	

sync case:

- *kio* outperforms better than *lio*
- Similar performance of *kio* and other machine-learning techniques
- non-sync case
 - *kio* predicts better that the rest of methods

Model	syı	sync		non-sync	
Model	RMSE	MAE	RMSE	MAE	
kio	148.6	94.3	33.5	20.9	
krr	146.9	108.4	35.2	23.6	
svr	147.1	92.4	35.6	22.4	
lio	172.1	120.0	36.2	23.7	
h-naive	235.4	142.2	49.5	30.0	
d-naive	261.8	162.5	71.1	50.2	
w-naive	199.5	112.3	60.4	37.7	

- sync case:
 - *kio* outperforms better than *lio*
 - Similar performance of *kid* and other machine-learning techniques
- non-sync case:
 - kio predicts better than the rest of methods

Model	sync		non-sync	
Model	RMSE	MAE	RMSE	MAE
kio	148.6	94.3	33.5	20.9
krr	146.9	108.4	35.2	23.6
svr	147.1	92.4	35.6	22.4
lio	172.1	120.0	36.2	23.7
h-naive	235.4	142.2	49.5	30.0
d-naive	261.8	162.5	71.1	50.2
w-naive	199.5	112.3	60.4	37.7