1 Opis projektu

Celem projektu jest stworzenie metody simplexu Neldera i Meada . Metoda ta polega na utworzeniu w przestrzeni E^{n+1} n-wymiarowego simplexu o n+1 wierzchołkach tak, aby można było go wpisać w powierzchnię reprezentującą badaną funkcję celu. Jednowymiarowym simplexem jest odcinek o dwóch wierzchołkach, simplexem dwuwymiarowym jest trójkąt i ogólnie simplexem n-wymiarowym o n+1 wierzchołkach jest zbiór wszystkich punktów określonych przez wektory:

$$x = \sum_{j=1}^{n+1} x_j S_j \quad \text{przy czym } \sum_{j=1}^{n+1} x_j = 1 \text{ oraz } x_j \ge 0$$

czyli jest to wielościan o n+1 wierzchołkach rozpiętych na n+1 wektorach bazowych (S_j) . Współrzędne punktów simplexu oznaczono jako x_j . Na początku procedury wylicza się współrzędne punktów wierzchołkowych simplexu P_j (dla j=1 .. n+1) przy założeniu pewnej odległości między tymi wierzchołkami (czyli kroku). W następnych iteracjach dokonuje się przekształceń simplexu aż odległość pomiędzy jego wierzchołkami w pobliżu poszukiwanego ekstremum będzie mniejsza od założonej dokładności obliczeń e. To właśnie zostało przyjęte jako kryterium zbieżności dla tej metody.

2. Algorytm

- 1) Obliczenie wartości funkcji celu w punktach wierzchołkowych simplexu $F_i = f(P_i)$ dla j = 1 ... n+1
- 2) Wyznaczenie h i L takich, że $f(P_h) = \max \text{ oraz } f(P_L) = \min \text{ spośród zbioru } F_i$.
- 3) Obliczenie środka symetrii simplexu P'.
- 4) Odbicie P* punktu Ph względem P'.
- 5) Obliczenie wartości funkcji $F_s = f(P')$ oraz $F_o = f(P^*)$.

Jeśli F_o < min, to:

- 6) Obliczenie P^{**} (ekspansja) i wartości funkcji $F_e = f(P^{**})$.
- 7) Jeśli $F_e < max$, to podstawiamy $P_h = P^{**}$, w przeciwnym przypadku podstawiamy $P_h = P^{*}$.
- 8) Powtórzenie procedury od kroku 1), o ile nie jest spełnione kryterium na minimum.

Jeśli $F_0 > \min$, to:

- 6) Jeśli $F_o >= f(P_j)$ dla j = 1 ... n+1 (z pominięciem j = h) i $F_o >= \max$, przejście do następnego kroku. Jeśli zaś $F_o < \max$, to podstawiamy $P_h = P^*$.
- 7) Wykonanie kontrakcji P*** punktu P_h względem P'.
- 8) Obliczenie $F_k = f(P^{***})$.
- 9) Jeżeli $F_k >= \max$ to wykonujemy redukcję simplexu wg wzoru: $P_j = 0.5*(P_j + P_L)$ dla j = 1 ... n+1. Jeżeli natomiast $F_k < \max$, to podstawiamy $P_h = P^{***}$ i przechodzimy do kroku 11).
- 10) Jeśli $F_0 < f(P_i)$ dla j = 1 ... n+1 (z pominięciem j = h), podstawiamy $P_h = P^*$.
- 11) Powtórzenie procedury od kroku 1), jeśli nie zostało spełnione kryterium na minimum.

Oznaczenia:

x₀ - punkt startowy

e - wymagana dokładność obliczeń

 P_h - wybrany punkt wierzchołkowy simplexu spośród n+1 wierzchołków P_i , w którym wartość badanej funkcji osiąga maksimum.

 P_L - wybrany punkt wierzchołkowy simplexu spośród n+1 wierzchołków P_i , w którym wartość badanej funkcji osiąga minimum.

P' - środek symetrii simplexu z wyłączeniem punktu P_h zdefiniowany jako:

P*- odbicie punktu

P**-ekspansja punktu

P***kontrakcja punktu

3. Schemat algorytmu

4. Przykład

 $F(x, y) = x^2+y^2$, punkt początkowy (2, 3)

po 11 iteracjach znaleziono przybliżony pkt. minimalny: (-0,08, -0,07)

legenda: żółty -początkowy symplex, niebieski -odbicie, zielony - ekspansja, czerwony -kontrakcja

5. Harmonogram

- 1)przygotowanie funkcji odbicia, ekspansji i kontrakcji.
- 2) przygotowanie jednowymiarowego simpleksu
- 3)przygotowanie dwuwymiarowego simpleksu (połowa projektu)
- 4) przygotowanie n-wymiarowego simpleksu
- 5)testowanie funkcji

6.literatura i inne źródła

- http://www.scholarpedia.org/article/Nelder-Mead_algorithm
- ${\color{blue} \bullet https://www.researchgate.net/publication/324084428_Less_is_more_Simplified_Nelder-Mead_method_for_large_unconstrained_optimization}\\$
- https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method