KNOWLEDGE BASE DAN INFERENCE ENGINE

KNOWLEDGE BASE

Basis pengetahuan

 Berisi pengetahuan-pengetahuan terkait dengan lingkup domain pengetahuan pakar.

 Pengetahuan dalam menyelesaikan atau mendapatkan kesimpulan dari suatu domain masalah.

KNOWLEDGE BASE

- Rule based knowledge dan reasoning
- Case based knowledge dan reasoning

RULE-BASED KNOWLEDGE & REASONING

- Rule-based → aturan produksi logika.
- IF-THEN

 Pakar mengetahui dan dapat menyelesaikan sebuah masalah dalam domain pengetahuan berdasarkan fakta dan pengambilan keputusan.

RULE-BASED KNOWLEDGE & REASONING

 Memiliki keunggulan apabila masalah dapat diselesaikan secara sekuensial (berurutan)

 Mampu menjelaskan step-by-step penyelesaian masalah (pengambilan keputusan)

CASE-BASED KNOWLEDGE & REASONING

 Knowledge berisi daftar kasus-kasus beserta solusi yang sudah pernah digunakan sebelumnya.

 Misal: pengetahuan diagnosis dan solusi/tindakan medis pada pasien penyakit tertentu.

CASE-BASED KNOWLEDGE & REASONING

 Pencocokan antara fakta yang ada dan case dilakukan dengan penghitungan kemiripan (similarity atau disimilarity).

Similarity dan disimilarity → distance based.

• Distance based → Simple matching, Jaccard coeff., Hamming dist., Euclidean dist.

INFERENCE ENGINE

Mesin Inferensi.

 Inferensi → pengambilan keputusan, penalaran seperti manusia.

 Bagian dari ES yang berisi metodologi yang digunakan untuk melakukan penalaran terhadap informasi-informasi dalam knowledge-base untuk kemudian memformulasikan konklusi.

INFERENCE ENGINE

- 2 metode inferensi pada rule-based reasoning
 - Forward chaining
 - Backward chaining

- Forward → maju

- Setiap rule yang executed/fired menambahkan fakta baru.
- Setiap rule hanya bisa dieksekusi 1 kali.

- Contoh: Dimiliki fakta: A, B, C, D, E
- Dimiliki Rule:
 - $Y \& D \rightarrow Z$
 - X & B & E → Y
 - $\bullet A \rightarrow X$
 - $C \rightarrow L$
 - L & M \rightarrow N
- Hipotesis : Z

- Contoh : diketahui fakta : dolar turun
- Dimiliki rule :
 - R1: IF suku bunga turun THEN harga obligasi naik
 - R2: IF suku bunga naik THEN harga obligasi turun
 - R3: IF suku bunga tetap THEN harga obligasi tetap
 - R4: IF dolar naik THEN suku bunga turun
 - R5: IF dolar turun THEN suku bunga naik
 - R6: IF harga obligasi turun THEN beli obligasi
- Apakah beli obligasi atau tidak?

BACKWARD CHAINING

- Backward → mundur
- Kebalikan dari forward
- Goal driven reasoning → BFS (Breadth First Search)

 Setiap konklusi/hipotesis yang terbukti menghasilkan fakta baru.

 Setiap rule yang tidak executed/fired bisa memunculkan subgoal.

BACKWARD CHAINING

- Contoh: Dimiliki fakta: A, B, C, D, E
- Dimiliki Rule :
 - Y & D \rightarrow Z
 - X & B & E → Y
 - $A \rightarrow X$
 - $C \rightarrow L$
 - L & M \rightarrow N
- Hipotesis : Z

BACKWARD CHAINING

- Contoh : diketahui fakta : dolar turun
- Dimiliki rule :
 - R1: IF suku bunga turun THEN harga obligasi naik
 - R2: IF suku bunga naik THEN harga obligasi turun
 - R3: IF suku bunga tetap THEN harga obligasi tetap
 - R4: IF dolar naik THEN suku bunga turun
 - R5: IF dolar turun THEN suku bunga naik
 - R6: IF harga obligasi turun THEN beli obligasi
- Apakah beli obligasi atau tidak?

Rule No.	Rule
R1	IF A & B THEN C
R2	IF C THEN D
R3	IF A & E THEN F
R4	IF A THEN G
R5	IF F & G THEN D
R6	IF G & E THEN H
R7	IF C & H THEN I
R8	IF I & A THEN J
R9	IF G THEN J
R10	IF J THEN K

KERJAKAN

- Jika diketahui fakta : A, F
- Hipotesis: K?
- Kerjakan dengan : forward chaining dan backward chaining.

- P(A|B) → kemungkinan A terjadi ketika diketahui B terjadi (TRUE)
- P(B|A) → kemungkinan B terjadi jika diketahui A terjadi (TRUE)

• $P(x|y) \rightarrow conditional probability$

- P(A) → kemungkinan A terjadi
- P(B) → kemungkinan B terjadi

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

Likelihood table]	
Weather	No	Yes	Ī	
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14]	
	0.36	0.64		

Hipotesis

 Pemain akan bermain jika cuaca cerah (Sunny). Apakah benar?

Hipotesis

 Pemain akan bermain jika cuaca cerah (Sunny). Apakah benar?

•
$$P(Yes|Sunny) = \frac{P(Sunny|Yes)*P(Yes)}{P(Sunny)}$$

•
$$P(No|Sunny) = \frac{P(Sunny|No)*P(No)}{P(Sunny)}$$

•
$$P(Yes|Sunny) = \frac{P(Sunny|Yes)*P(Yes)}{P(Sunny)}$$

- P(Sunny | Yes) = 3/9 = 0.33
- P(Sunny) = 5/14 = 0.36
- P(Yes) = 9/14 = 0.64
- P(Yes|Sunny) = 0.6

•
$$P(No|Sunny) = \frac{P(Sunny|No)*P(No)}{P(Sunny)}$$

- P(Sunny|No) = 2/5 = 0.4
- P(Sunny) = 5/14 = 0.36
- P(No) = 5/14 = 0.36
- P(No|Sunny) = 0.4

 P(Yes|Sunny) > P(No|Sunny), maka hipotesis bahwa pemain akan bermain jika cuaca cerah adalah TRUE. Yang baru saja kita lakukan, di dalam dunia machine learning disebut sebagai algoritme NAÏVE BAYES.

	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY GOLF
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

Hipotesis

 Pemain akan bermain jika cuaca cerah (SUNNY), temperature panas (HOT), kelembaban udara normal (NORMAL),dan tidak ada angin (FALSE)

Benar atau tidak?

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$

$$P(y|x_1,...,x_n) \propto P(y) \prod_{i=1}^{n} P(x_i|y)$$

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

Outlook

	Yes	No	P(yes)	P(no)
Sunny	2	3	2/9	3/5
Overcast	4	0	4/9	0/5
Rainy	3	2	3/9	2/5
Total	9	5	100%	100%

LINK

• Link Referensi:

https://www.geeksforgeeks.org/naive-bayes-classifiers/