Linux para administradores (intermedio)

Manuel Domínguez

Bienvenidos!

Esta sección corresponde con la **Gestión de discos**.

Y en esta clase, vamos a explicar cómo se gestionan los RAID's.

1.- Introducción

Imagínate que tu sistema operativo está construido sobre un solo disco duro,

¿Qué pasará si falla?

Aunque tengamos copias de seguridad, el sistema estará inactivo un tiempo.

Eso no nos lo podemos permitir.

La solución pasa por montar un RAID.

1.- Introducción

RAID (Redundant Array of Independent Disks)

Es un sistema de almacenamiento que usa **múltiples discos duros** y **los datos** se encuentran **replicados**.

Podemos hablar de:

RAID POR SOFTWARE → El SO controla el RAID.

RAID POR HARDWARE → Tarjeta controladora controla el RAID.

RAID HIBRIDO → La BIOS controla el RAID.

2.- RAID por software.

Procedemos a instalar la herramienta mdadm (Multiple Devices admin), que

nos va a permitir crear RAID por software.

#apt install mdadm

El fichero de configuración asociado es: /etc/mdadm/mdadm.conf

Para ver el estado de los RAID: #cat /proc/mdstat

3.- Tipos de RAID

Los RAID más habituales son:

RAID 0

RAID 1

RAID 5

RAID 10

Para ilustrar el tema vamos a construir un RAID1(De dos discos) y 1

hot-spare. Un disco hot spare es un disco de reserva.

1.- Preparamos nuestro entorno:

1 disco duro de 100MB, tamaño fijo: /dev/sdb 1 disco duro de 100MB, tamaño fijo: /dev/sdc 1 disco duro de 100MB, tamaño fijo: /dev/sdd

- 2.- Comprobamos que el sistema detecta los discos: #fdisk -l
- 3.- Creamos un RAID1, con los dos discos /dev/sdb y /dev/sdc

mdadm -C /dev/md1 -l1 -n2 /dev/sdb /dev/sdc

/dev/dm1: Es el nombre que le asignamos al RAID1.

- -**I1**: Especifica el tipo de RAID.
- **n2**: Indica el número de dispositivos que forman el RAID.

/dev/sdb /dev/sdc: El nombre de los dispositivos que forman el RAID.

4.- Comprobamos que se ha instalado:

#cat /proc/mdstat

U: Todo correcto _U: Algo falla

mdadm --detail /dev/md1 → Para más detalle

5.- Añadimos el disco /dev/sdd como **hot spare.**

mdadm /dev/md1 -a /dev/sdd

6.- Volvemos a comprobarlo:

#cat /proc/mdstat \rightarrow (S): Hot spare

mdadm --detail /dev/md1 → Aparece /dev/sdd como hot spare.

- 7.- Vamos a formatearlo:# mkfs.ext4 /dev/md1
- 8.- Lo montamos: # mkdir /mnt/raid1 # mount /dev/md1 /mnt/raid1/
- 9.- Comprobamos que se puede escribir en él:

touch/mnt/raid1/gatos

5.- Provocamos fallos

Vamos a suponer que el disco /dev/sdb ha fallado.

- 1.- Provocamos el error: #mdadm /dev/md1 -f /dev/sdb
- 2.- Veamos qué ha pasado:
- # cat /proc/mdstat \rightarrow Aparece U, sigue funcionando.
- # mdadm --detail /dev/md1 → Vemos como /dev/sdc se ha activado.

5.- Provocamos fallos

3.- Vamos a provocar un nuevo fallo. Ahora en /dev/sdc

#mdadm/dev/md1-f/dev/sdc

2.- Veamos qué ha pasado:

cat /proc/mdstat # mdadm --detail /dev/md1 → Vemos como /dev/sdd se ha activado, y es el único operativo.

3.- Los datos: # ls /mnt/raid1/ \rightarrow Los datos no se han perdido.

6.- Montar un RAID1 con hot spare en la instalación.

Vamos a preparar una nueva máquina virtual:

1.- 3 discos duros de 50GB

RETO

Práctica:

¿Te atreverías a montar permanentemente el RAID1 con host spare que acabamos de montar?

Haz una copia /etc/fstab, antes de hacer cambios.

Pista:

1.- Tenéis conseguir el UUID del volumen /dev/md1 → #blkid /dev/md1

Podéis hacer: #blkid /dev/md1 >>/etc/fstab

2.- Modificamos /etc/fstab:

UUID /mnt/raid1 ext4 defaults 0 0

3.- Reinicia la máquina o bien #umount /dev/md1 y #mount -a

Linux para administradores (intermedio)

Manuel Domínguez

Despedida

Hemos llegado al final de este vídeo.

Nos vemos en el siguiente.