

flip flop A Each f/f must change state instantly at the same time, otherwise we might end up at the wrong state

We can use a <u>master-slave</u> approach to make sure that changes propagate instantly.

The clock behaves as such:

When D and C are 1 the state of the master becomes 1. the only way to change the value of the circuit (master) is for C to change from 1 to 0 (negative edge)

When clock is 1, y is a copy of the input when clock is 0, y doesn't change

Q is a copy of y when clock is 0, no change when clock is 1

Problem statement: Design the clocked sequential circuit for the

KMaps

below specification using JK flip flops.

$$0 \rightarrow 1 \quad \text{by a } 1$$

$$1 \rightarrow 2 \quad \text{by a } 0$$

$$2 \rightarrow 3 \quad \text{by a } 1$$

$$3 \rightarrow 0 \quad \text{by a } 1$$

JK Excitation Table

Q(t)	Q(t+1)	J	K					
0	0	0	X					
0	1	1	X					
1	0	X	1					
1	1	X	0					
(b) <i>JK</i>								

				ı						1
Present State Q(t)		In put	Next State Q(tti)		f/f in puts					
	A	B	X	A	В	JA	1 ^L A	\mathcal{I}^{ϱ}	KB	
	0	0	0	0	0	0	×	0	×	_/
	0	0	l	0	1	0	×	١	X	1
	0	1	0	١	0	١	X	X	1	
	0	(١	0		0	×	X	0	
	1	0	0	1	0	X	0	0	X	
	t	0	1	l	١	X	0	l	×	
	١	١	0	1	1	X	٥	×	0	
	1	١	1	0	0	×	1	X	1	
										7

 $2^{4} = Bx$, $K^{4} = BX$