A SPHERE OF SPHERICALS

Asilata Bapat [with Anand Deopurkar, Anthony M. Licata]

Triangulations

Pointed pseudo-Triangulations

Pointed pseudo-Triangulations

Pointed pseudoPolytope of ppts

Triangulations

Boundary
sphere

Pointed pseudo-Polytope of ppts Triangulations Sphenical objects of a certain category

Triangulation

= subdivision into triangles by a maximal number of non-crossing edges.

Facts

1) Any triangulation of an n-gon has (2n-3) edges

Facts

- 1) Any triangulation of an n-gon has (2n-3) edges
- 2) Every internal edge has a unique flip.

Facts

- i) Any triangulation of an n-gon has (2n-3) edges
- 2) Every internal edge has a unique flip.
- 3) The flip graph is connected.

- Triangulations don't have 2n-3 edges

- Triangulations don't have 2n-3 edges
- Internal edges not always flippable

- Triangularions don't have 2n-3 edges
- Internal edges not always flippable

But this can be salvaged!

A pseudo-mangle:

[= Non-crossing polygon whose convex hull is a triangle, which has exactly 3 convex angles.]

A pseudo-mangle:

A pseudo-mangulation:

PSEUDO-TRIANGULATIONS

A pseudo-mangle:

A pseudo-mangulation:

lany m'angulation is also a pseudo-triangulation!]

Pointed pseudotriangulations:

Pointed pseudotriangulations:

[Every vertex has a unique reflex angle]

PSEUDO-TRIANGULATIONS POINTED

Facts [Streinu, 2000]

- Any ppt of n points has (2n-3) edges
- Any internal edge is uniquely flippable.
- The flip graph is connected

Q: How to define mangulations/ppts for points not in general position, so that they enjoy the same properties?

Answer [B-Deopurlear-Licata]

- Instead of straight segments, consider "strings" that are "pulled tight" around points.

Answer [B-Deopurlear-Licata]

- Instead of straight segments, consider "strings" that are "pulled tight" around points.

- Now angles may take the values 0, Tr, and 2TT!

- Every ppt has 2n-3 edges
- Every internal edge is uniquely flippable.

- The flip graph is connected.

A SIMPLICIAL COMPLEX

Maximal simplices:

A SIMPLICIAL COMPLEX

Maximal simplices:

Fact: This forms a convex polytope of dim 2n-4

Category En = 2CY category for An quiver

Dickmany

Bridgeland stability ____, Labelled .

condition on En configuration.

Sphenical object of \leftrightarrow Non-crossing En

Fact: Non-crosning curves pull tight to (subsets of) ppts \external edge.

Theorem [B-Deopurtear-Licata]

For any (labelled) configuration of n points, the spherical objects of En are naturally in bijection with a dense subset of the boundary of the polytope of ppts.

THANK YOU!

EXPANSIVE RIGID MOTIONS

Expansive motion of a point? rod configuration

[preserves rod lengths, weakly increases distance between any two vertices.]

EXPANSIVE RIGID MOTIONS

Theorem [Streinu]

Configurations with a unique non-mirial expansive motion

= ppts with an external edge removed.

Theorem [BDL]

Same for non-genenic configurations