Pairing-Based SNARKs. Pinocchio And Groth16

October 10, 2024

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Plan

Recap

1 Recap

2 Encrypted Verification

3 Make It Sound

Recap

Recap0●0000000

Each **constraint** in the Rank-1 Constraint System must be in the form:

$$\langle \boldsymbol{a}, \boldsymbol{w} \rangle \times \langle \boldsymbol{b}, \boldsymbol{w} \rangle = \langle \boldsymbol{c}, \boldsymbol{w} \rangle$$

Each **constraint** in the Rank-1 Constraint System must be in the form:

$$\langle \boldsymbol{a}, \boldsymbol{w} \rangle \times \langle \boldsymbol{b}, \boldsymbol{w} \rangle = \langle \boldsymbol{c}, \boldsymbol{w} \rangle$$

Where $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ is a dot product.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := \boldsymbol{u}^{\top} \boldsymbol{v} = \sum_{i=1}^{n} u_{i} v_{i}$$

Each **constraint** in the Rank-1 Constraint System must be in the form:

$$\langle \mathbf{a}, \mathbf{w} \rangle \times \langle \mathbf{b}, \mathbf{w} \rangle = \langle \mathbf{c}, \mathbf{w} \rangle$$

Where $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ is a dot product.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := \boldsymbol{u}^{\top} \boldsymbol{v} = \sum_{i=1}^{m} u_i v_i$$

Thus

$$\left(\sum_{i=1}^n a_i w_i\right) \times \left(\sum_{j=1}^n b_j w_j\right) = \sum_{k=1}^n c_k w_k$$

That is, actually, a quadratic equation with multiple variables.

Consider the simplest program:

```
def example(a: F, b: F, c: F) -> F:
    if a:
        return b * c
    else:
        return b + c
```

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

Recap

000000000

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

Thus, the next constraints can be build:

$$x_1 \times x_1 = x_1$$
 (binary check) (1)

$$x_2 \times x_3 = \mathsf{mult} \tag{2}$$

$$x_1 \times \text{mult} = \text{selectMult}$$
 (3)

$$(1 - x_1) \times (x_2 + x_3) = r - \mathsf{selectMult} \tag{4}$$

Recap 000000000

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

Thus, the next constraints can be build:

$$x_1 \times x_1 = x_1$$
 (binary check) (1)

$$x_2 \times x_3 = \mathsf{mult} \tag{2}$$

$$x_1 \times \text{mult} = \text{selectMult}$$
 (3)

$$(1 - x_1) \times (x_2 + x_3) = r - \text{selectMult}$$
 (4)

The witness vector: $\mathbf{w} = (1, r, x_1, x_2, x_3, \text{mult}, \text{selectMult}).$

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

Thus, the next constraints can be build:

$$x_1 \times x_1 = x_1$$
 (binary check) (1)

$$x_2 \times x_3 = \mathsf{mult} \tag{2}$$

$$x_1 \times \text{mult} = \text{selectMult}$$
 (3)

$$(1-x_1)\times(x_2+x_3)=r-\mathsf{selectMult} \tag{4}$$

The witness vector: $\mathbf{w} = (1, r, x_1, x_2, x_3, \text{mult}, \text{selectMult}).$

The coefficients vectors:

$$\mathbf{a}_1 = (0, 0, 1, 0, 0, 0, 0), \quad \mathbf{b}_1 = (0, 0, 1, 0, 0, 0, 0), \quad \mathbf{c}_1 = (0, 0, 1, 0, 0, 0, 0)$$

$$\mathbf{a}_2 = (0,0,0,1,0,0,0), \quad \mathbf{b}_2 = (0,0,0,0,1,0,0), \quad \mathbf{c}_2 = (0,0,0,0,0,1,0)$$

$$\mathbf{a}_3 = (0,0,1,0,0,0,0), \quad \mathbf{b}_3 = (0,0,0,0,0,1,0), \quad \mathbf{c}_3 = (0,0,0,0,0,0,1)$$

$$\mathbf{a}_4 = (1, 0, -1, 0, 0, 0, 0), \quad \mathbf{b}_4 = (0, 0, 0, 1, 1, 0, 0), \quad \mathbf{c}_4 = (0, 1, 0, 0, 0, 0, -1)$$

R1CS provides us with the following constraint vectors:

$$a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_m, c_1, c_2, \ldots, c_m,$$

R1CS provides us with the following constraint vectors:

$$a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_m, c_1, c_2, \ldots, c_m,$$

Of course, they form corresponding matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \text{ same goes for } B \text{ and } C$$

R1CS provides us with the following constraint vectors:

$$a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_m, c_1, c_2, \ldots, c_m,$$

Of course, they form corresponding matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \text{ same goes for } B \text{ and } C$$

An example of a single "if" statement:

$$a_1 = (0,0,1,0,0,0,0)$$

 $a_2 = (0,0,0,1,0,0,0)$
 $a_3 = (0,0,1,0,0,0,0)$
 $a_4 = (1,0,-1,0,0,0,0)$

Illustration: The Lagrange inteprolation polynomial for points $\{(1,1),(2,0),(3,1),(4,-1)\}$ visualized over \mathbb{R} .

Figure: Addition of two polynomials

Now, using coefficients encoded with polynomials, we can build a constraint number $X \in \{1, \dots, m\}$ in the next way:

$$(w_1A_1(X) + w_2A_2(X) + \dots + w_nA_n(X)) \times \times (w_1B_1(X) + w_2B_2(X) + \dots + w_nB_n(X)) = = (w_1C_1(X) + w_2C_2(X) + \dots + w_nC_n(X))$$

Now, using coefficients encoded with polynomials, we can build a constraint number $X \in \{1, \dots m\}$ in the next way:

$$(w_1A_1(X) + w_2A_2(X) + \dots + w_nA_n(X)) \times \times (w_1B_1(X) + w_2B_2(X) + \dots + w_nB_n(X)) = = (w_1C_1(X) + w_2C_2(X) + \dots + w_nC_n(X))$$

Or written more concisely:

$$\left(\sum_{i=1}^{n} w_{i} A_{i}(X)\right) \times \left(\sum_{i=1}^{n} w_{i} B_{i}(X)\right) = \left(\sum_{i=1}^{n} w_{i} C_{i}(X)\right)$$
$$A(X) \times B(X) = C(X)$$

Now, we can define a polynomial M(X), that has zeros at all elements from the set $\Omega = \{1, \dots, m\}$

$$M(X) = A(X) \times B(X) - C(X)$$

Now, we can define a polynomial M(X), that has zeros at all elements from the set $\Omega = \{1, \dots, m\}$

$$M(X) = A(X) \times B(X) - C(X)$$

It means, that M(X) can be divided by vanishing polynomial $Z_{\Omega}(X)$ without a remainder!

$$Z_{\Omega}(X) = \prod_{i=1}^{m} (X - i), \qquad H(X) = \frac{M(X)}{Z_{\Omega}(X)}$$
 is a polynomial

Encrypted Verification

Current Point

We've managed to encode into a single polynomial an entire computation (a program), of any size, independent of how much data it consumes.

Current Point

We've managed to encode into a single polynomial an entire computation (a program), of any size, independent of how much data it consumes.

Now, we need to figure our the protocol, how a prover can succinctly proof the knowledge of a correct witness for some circuit to a verifier, additionally, make it zero-knowledge and non-interactive.

Current Point

We've managed to encode into a single polynomial an entire computation (a program), of any size, independent of how much data it consumes.

Now, we need to figure our the protocol, how a prover can succinctly proof the knowledge of a correct witness for some circuit to a verifier, additionally, make it zero-knowledge and non-interactive.

Where the knowledge of the correct witness is a knowledge of the quotient polynomial H(X).

$$M(X) = H(X) \times Z_{\Omega}(X)$$

Notation Preliminaries

In this section we'll use a group of points on elliptic curve denoted as \mathbb{G} of prime order q with a generator g.

Notation Preliminaries

In this section we'll use a group of points on elliptic curve denoted as \mathbb{G} of prime order q with a generator g.

The symmetric pairing function $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, where (\mathbb{G}_T, \times) is a target group.

Suppose, we are given a circuit $\mathcal C$ with a maximum degree d of polynomials used underneath.

Thus, all parties additionally know the target polynomial Z(x) and QAP polynomials $\{L_i(x)\}_{i\in[n]}, \{R_i(x)\}_{i\in[n]}, \{O_i(x)\}_{i\in[n]}, \text{ where } n \text{ is number of witness elements.}$

Suppose, we are given a circuit $\mathcal C$ with a maximum degree d of polynomials used underneath.

Thus, all parties additionally know the target polynomial Z(x) and QAP polynomials $\{L_i(x)\}_{i\in[n]}, \{R_i(x)\}_{i\in[n]}, \{O_i(x)\}_{i\in[n]}, \text{ where } n \text{ is number of witness elements.}$

Prover

✓ Provides witness w to a Verifier.

Suppose, we are given a circuit $\mathcal C$ with a maximum degree d of polynomials used underneath.

Thus, all parties additionally know the target polynomial Z(x) and QAP polynomials $\{L_i(x)\}_{i\in[n]}, \{R_i(x)\}_{i\in[n]}, \{O_i(x)\}_{i\in[n]}, \text{ where } n \text{ is number of witness elements.}$

Prover

✓ Provides witness w to a Verifier.

Verifier

✓ Checks
$$(\sum_{i=1}^n w_i A_i(X)) \times (\sum_{i=1}^n w_i B_i(X)) = (\sum_{i=1}^n w_i C_i(X))$$

- **X** Succint
- ✓ Non-Interactive
- X Zero-Knowledge

- **X** Succint
- ✓ Non-Interactive
- X Zero-Knowledge

The verifier could actually just run a program that represents a circuit C on witness data w.

- **X** Succint
- ✓ Non-Interactive
- X Zero-Knowledge

The verifier could actually just run a program that represents a circuit C on witness data w.

We, definitely, need to encrypt the witness data w somehow...

Let's define the *encryption* operation as follows:

$$\operatorname{Enc}: \mathbb{F} \to \mathbb{G}, \quad \operatorname{Enc}(x) := g^x$$

Let's define the *encryption* operation as follows:

$$\operatorname{Enc}: \mathbb{F} \to \mathbb{G}, \quad \operatorname{Enc}(x) := g^x$$

Essentially, $Enc(p(\tau))$ is the **KZG Commitment**.

Example

Consider the polynomial: $p(x) = x^2 - 5x + 2$, the encryption of $p(\tau)$:

$$\mathsf{Enc}(p(\tau)) = g^{p(\tau)} = g^{(\tau^2 - 5\tau + 2)} = \left(g^{\tau^2}\right)^1 \cdot \left(g^{\tau^1}\right)^{-5} \cdot \left(g^{\tau^0}\right)^2$$

Let's define the *encryption* operation as follows:

$$\operatorname{Enc}: \mathbb{F} \to \mathbb{G}, \quad \operatorname{Enc}(x) := g^x$$

Essentially, $Enc(p(\tau))$ is the **KZG Commitment**.

Example

Consider the polynomial: $p(x) = x^2 - 5x + 2$, the encryption of $p(\tau)$:

$$\mathsf{Enc}(p(\tau)) = g^{p(\tau)} = g^{\left(\tau^2 - 5\tau + 2\right)} = \left(g^{\tau^2}\right)^1 \cdot \left(g^{\tau^1}\right)^{-5} \cdot \left(g^{\tau^0}\right)^2$$

Question

KZG Commitment requires encrypted powers of τ : $\{g^{\tau'}\}_{i \in [d]}$. But where the prover can take them?

Trusted Setup

Trusted Party Setup

✓ Picks a random value $\tau \stackrel{R}{\leftarrow} \mathbb{F}$.

- ✓ Picks a random value $\tau \stackrel{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$.

- ✓ Picks a random value $\tau \stackrel{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$.
- ✓ **Deletes** τ (toxic waste).

- ✓ Picks a random value $\tau \stackrel{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$.
- ✓ **Deletes** τ (toxic waste).
- ✓ Outputs prover parameters pp $\leftarrow \{g^{\tau^i}\}_{i \in [d]}$ and verifier parameters vp \leftarrow com(Z).

- ✓ Picks a random value $\tau \stackrel{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$.
- ✓ **Deletes** τ (toxic waste).
- ✓ Outputs prover parameters pp $\leftarrow \{g^{\tau^i}\}_{i \in [d]}$ and verifier parameters vp \leftarrow com(Z).

Trusted Party Setup

- ✓ Picks a random value $\tau \stackrel{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau'}\}_{i \in [d]}$.
- ✓ **Deletes** τ (toxic waste).
- ✓ Outputs prover parameters pp $\leftarrow \{g^{\tau^i}\}_{i \in [d]}$ and verifier parameters vp \leftarrow com(Z).

This way, we can find the KZG commitment for each polynomial. For example:

$$\operatorname{com}(L) \triangleq g^{L(\tau)} = g^{\sum_{i=0}^{d} L_i \tau^i} = \prod_{i=0}^{d} (g^{\tau^i})^{L_i},$$

Now, we can calculate:

$$g^{L(\tau)}, g^{R(\tau)}, g^{O(\tau)}, g^{H(\tau)}, g^{Z(\tau)}$$

But how can we verify H(x)Z(x) = L(x)R(x) - O(x) in the ecnrypted space?

Well, first notice that the check is equivalent to:

$$L(\tau)R(\tau) = Z(\tau)H(\tau) + O(\tau).$$

So, we can check this equality as follows:

$$e(com(L), com(R)) = e(com(Z), com(H)) \cdot e(com(O), g),$$

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

Prover \mathcal{P}

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

✓
$$H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$$
.

Prover \mathcal{P}

Trusted Setup: $\tau \xleftarrow{R} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

✓
$$H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$$
.

✓ KZG commitments:

$$\pi_L \leftarrow \text{com}(L), \quad \pi_R \leftarrow \text{com}(R),$$

 $\pi_O \leftarrow \text{com}(O), \quad \pi_H \leftarrow \text{com}(H),$

Prover \mathcal{P}

Verifier \mathcal{V}

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

$$\checkmark$$
 $H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$.

✓ KZG commitments:

$$\pi_L \leftarrow \text{com}(L), \quad \pi_R \leftarrow \text{com}(R),$$

 $\pi_O \leftarrow \text{com}(O), \quad \pi_H \leftarrow \text{com}(H),$

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

$$\checkmark$$
 $H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$.

✓ KZG commitments:

$$\pi_L \leftarrow \text{com}(L), \quad \pi_R \leftarrow \text{com}(R),$$

 $\pi_O \leftarrow \text{com}(O), \quad \pi_H \leftarrow \text{com}(H),$

$$\checkmark e(\pi_L, \pi_R) == e(\operatorname{com}(Z), \pi_H) \cdot e(\pi_O, g).$$

Prover \mathcal{P}

- ✓ Succint
- ✓ Non-Interactive
- ✓ Zero-Knowledge

- ✓ Succint
- ✓ Non-Interactive
- \checkmark Zero-Knowledge
- X Does it work?

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

Prover \mathcal{P}

Verifier \mathcal{V}

Problem

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

$$\checkmark H'(x) \stackrel{R}{\leftarrow} \mathbb{F}[x], M'(x) = Z(x) \times H'(x).$$

Prover \mathcal{P}

Verifier \mathcal{V}

Problem

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

- $\checkmark H'(x) \stackrel{R}{\leftarrow} \mathbb{F}[x], \quad M'(x) = Z(x) \times H'(x).$
- ✓ Finds L'(x), R'(x), O'(x) such that: $L'(x) \times R'(x) O'(x) = M'(x)(x)$

Prover \mathcal{P}

Verifier \mathcal{V}

Problem

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

- $\checkmark H'(x) \stackrel{R}{\leftarrow} \mathbb{F}[x], M'(x) = Z(x) \times H'(x).$
- ✓ Finds L'(x), R'(x), O'(x) such that: $L'(x) \times R'(x) - O'(x) = M'(x)(x)$
- ✓ KZG commitments:

$$\pi_{L'(x)} \leftarrow \text{com}(L'(x)), \quad \pi_{R'(x)} \leftarrow \text{com}(R'(x)),$$

 $\pi_{O'(x)} \leftarrow \text{com}(O'(x)), \quad \pi_{H'(x)} \leftarrow \text{com}(H'(x)),$

Prover \mathcal{P}

Verifier \mathcal{V}

Problem

 $\boldsymbol{\pi} = (\pi_{L'(x)}, \pi_{R'(x)}, \pi_{O'(x)}, \pi_{H'(x)})$

Why it doesn't work??

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

- $\checkmark H'(x) \stackrel{R}{\leftarrow} \mathbb{F}[x], M'(x) = Z(x) \times H'(x).$
- ✓ Finds L'(x), R'(x), O'(x) such that: $L'(x) \times R'(x) - O'(x) = M'(x)(x)$
- ✓ KZG commitments:

$$\pi_{L'(x)} \leftarrow \text{com}(L'(x)), \quad \pi_{R'(x)} \leftarrow \text{com}(R'(x)),$$

 $\pi_{O'(x)} \leftarrow \text{com}(O'(x)), \quad \pi_{H'(x)} \leftarrow \text{com}(H'(x)),$

Prover \mathcal{P}

Verifier \mathcal{V}

Problem

Trusted Setup: $\tau \stackrel{R}{\leftarrow} \mathbb{F}$, $\{g^{\tau^i}\}_{i \in [d]}$, delete (τ) .

- $\checkmark H'(x) \stackrel{R}{\leftarrow} \mathbb{F}[x], M'(x) = Z(x) \times H'(x).$
- ✓ Finds L'(x), R'(x), O'(x) such that: $L'(x) \times R'(x) - O'(x) = M'(x)(x)$
- ✓ KZG commitments:

$$\pi_{L'(x)} \leftarrow \text{com}(L'(x)), \quad \pi_{R'(x)} \leftarrow \text{com}(R'(x)), \qquad \checkmark \quad e(\pi_{L'(x)}, \pi_{R'(x)}) == \\ \pi_{O'(x)} \leftarrow \text{com}(O'(x)), \quad \pi_{H'(x)} \leftarrow \text{com}(H'(x)), \qquad e(\text{com}(Z), \pi_H) \cdot e(\pi_{O'(x)}, g).$$

Problem

Trusted Setup:
$$\tau, \alpha \stackrel{R}{\leftarrow} \mathbb{F}$$
, $\{\{g^{\tau^i}\}_{i \in [d]}, \{g^{\alpha \tau^i}\}_{i \in [d]}\}$, delete (τ, α) .

Trusted Setup: $\tau, \alpha \stackrel{R}{\leftarrow} \mathbb{F}$, $\{\{g^{\tau^i}\}_{i \in [d]}, \{g^{\alpha \tau^i}\}_{i \in [d]}\}$, delete (τ, α) .

$$\checkmark$$
 $H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$.

Prover \mathcal{P}

Verifier \mathcal{V}

Trusted Setup: $\tau, \alpha \xleftarrow{R} \mathbb{F}$, $\{\{g^{\tau^i}\}_{i \in [d]}, \{g^{\alpha \tau^i}\}_{i \in [d]}\}$, delete (τ, α) .

$$\checkmark$$
 $H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$.

✓ KZG commitments:

$$\begin{split} \pi_L \leftarrow g^{L(\tau)}, & \pi_L' \leftarrow g^{\alpha L(\tau)}, \\ \pi_R \leftarrow g^{R(\tau)}, & \pi_R' \leftarrow g^{\alpha R(\tau)}, \\ \pi_O \leftarrow g^{O(\tau)}, & \pi_O' \leftarrow g^{\alpha O(\tau)}, \\ \pi_H \leftarrow g^{H(\tau)}, & \pi_H' \leftarrow g^{\alpha H(\tau)}. \end{split}$$

Prover \mathcal{P}

Make It Sound

Proof Of Exponent

Trusted Setup: $\tau, \alpha \xleftarrow{R} \mathbb{F}$, $\{\{g^{\tau^i}\}_{i \in [d]}, \{g^{\alpha \tau^i}\}_{i \in [d]}\}$, delete (τ, α) .

$$\checkmark$$
 $H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$.

✓ KZG commitments:

$$\begin{split} \pi_L \leftarrow g^{L(\tau)}, & \pi_L' \leftarrow g^{\alpha L(\tau)}, \\ \pi_R \leftarrow g^{R(\tau)}, & \pi_R' \leftarrow g^{\alpha R(\tau)}, \\ \pi_O \leftarrow g^{O(\tau)}, & \pi_O' \leftarrow g^{\alpha O(\tau)}, \\ \pi_H \leftarrow g^{H(\tau)}, & \pi_H' \leftarrow g^{\alpha H(\tau)}. \end{split}$$

Trusted Setup: $\tau, \alpha \xleftarrow{R} \mathbb{F}$, $\{\{g^{\tau^i}\}_{i \in [d]}, \{g^{\alpha \tau^i}\}_{i \in [d]}\}$, delete (τ, α) .

$$\checkmark$$
 $H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}$.

√ KZG commitments:

$$\begin{split} \pi_L &\leftarrow g^{L(\tau)}, & \pi_L' \leftarrow g^{\alpha L(\tau)}, \\ \pi_R &\leftarrow g^{R(\tau)}, & \pi_R' \leftarrow g^{\alpha R(\tau)}, \\ \pi_0 &\leftarrow g^{O(\tau)}, & \pi_0' \leftarrow g^{\alpha O(\tau)}, \\ \pi_H &\leftarrow g^{H(\tau)}, & \pi_{LL'} \leftarrow g^{\alpha H(\tau)}. \end{split}$$

 $e(\pi_L, \pi_R) == \\ e(\mathsf{com}(Z), \pi_H) \cdot e(\pi_O, g).$

Trusted Setup: $\tau, \alpha \xleftarrow{R} \mathbb{F}$, $\{\{g^{\tau^i}\}_{i \in [d]}, \{g^{\alpha \tau^i}\}_{i \in [d]}\}$, delete (τ, α) .

$$\checkmark \quad H(x) = \frac{L(x) \times R(x) - O(x)}{Z(x)}.$$

Prover \mathcal{P}

√ KZG commitments:

$$\begin{split} \pi_L &\leftarrow g^{L(\tau)}, & \pi_L' \leftarrow g^{\alpha L(\tau)}, \\ \pi_R &\leftarrow g^{R(\tau)}, & \pi_R' \leftarrow g^{\alpha R(\tau)}, \\ \pi_0 &\leftarrow g^{O(\tau)}, & \pi_0' \leftarrow g^{\alpha O(\tau)}, \\ \pi_H &\leftarrow g^{H(\tau)}, & \pi_U' \leftarrow g^{\alpha H(\tau)}. \end{split}$$

$$\checkmark$$
 $e(\pi_L, \pi_R) ==$ $e(com(Z), \pi_H) \cdot e(\pi_O, g).$

✓ Proof of Exponent:

$$e(\pi_L, g^{\alpha}) = e(\pi'_L, g),$$

 $e(\pi_R, g^{\alpha}) = e(\pi'_R, g),$

$$e(\pi_O, g^{\alpha}) = e(\pi'_O, g),$$

 $e(\pi_H, g^{\alpha}) = e(\pi'_H, g).$

$$\boldsymbol{\pi} = (\pi_L, \pi_R, \pi_O, \pi_H)$$

Including PoE

- ✓ Succint
- ✓ Non-Interactive
- ✓ Zero-Knowledge

Including PoE

- ✓ Succint
- ✓ Non-Interactive
- ✓ Zero-Knowledge
- X Sound

Including PoE

- ✓ Succint.
- ✓ Non-Interactive
- ✓ Zero-Knowledge
- X Sound

Problem

There is no guarantee that the same witness w was used to calculate all the commitments π_L , π_R , π_O , π_H .

Make It Sound

Recal that:

$$L(x) = \sum_{i=0}^{n} w_i L_i(x), \quad R(x) = \sum_{i=0}^{n} w_i R_i(x), \quad O(x) = \sum_{i=0}^{n} w_i O_i(x).$$

Recal that:

$$L(x) = \sum_{i=0}^{n} w_i L_i(x), \quad R(x) = \sum_{i=0}^{n} w_i R_i(x), \quad O(x) = \sum_{i=0}^{n} w_i O_i(x).$$

Here public data is:

$$\{L_i(x)\}_{i\in[n]}, \{R_i(x)\}_{i\in[n]}, \{O_i(x)\}_{i\in[n]}$$

Recal that:

$$L(x) = \sum_{i=0}^{n} w_i L_i(x), \quad R(x) = \sum_{i=0}^{n} w_i R_i(x), \quad O(x) = \sum_{i=0}^{n} w_i O_i(x).$$

Here public data is:

$$\{L_i(x)\}_{i\in[n]}, \{R_i(x)\}_{i\in[n]}, \{O_i(x)\}_{i\in[n]}$$

Moreover, it's defined only by the circuit and trusted setup, thus, it can calculated before proof generation as a part of the trusted setup.

Updated Trusted Setup:

$$\begin{split} & \{g^{\tau^i}\}_{i \in [d]}, \quad \{g^{\alpha \tau^i}\}_{i \in [d]}, \\ & \{g^{L_i(\tau)}\}_{i \in [n]}, \quad \{g^{\alpha L_i(\tau)}\}_{i \in [n]}, \\ & \{g^{R_i(\tau)}\}_{i \in [n]}, \quad \{g^{\alpha R_i(\tau)}\}_{i \in [n]}, \\ & \{g^{O_i(\tau)}\}_{i \in [n]}, \quad \{g^{\alpha O_i(\tau)}\}_{i \in [n]}, \end{split}$$

Updated Trusted Setup:

$$\begin{split} \{\boldsymbol{g}^{\tau^{i}}\}_{i \in [d]}, & \{\boldsymbol{g}^{\alpha \tau^{i}}\}_{i \in [d]}, \\ \{\boldsymbol{g}^{L_{i}(\tau)}\}_{i \in [n]}, & \{\boldsymbol{g}^{\alpha L_{i}(\tau)}\}_{i \in [n]}, \\ \{\boldsymbol{g}^{R_{i}(\tau)}\}_{i \in [n]}, & \{\boldsymbol{g}^{\alpha R_{i}(\tau)}\}_{i \in [n]}, \\ \{\boldsymbol{g}^{O_{i}(\tau)}\}_{i \in [n]}, & \{\boldsymbol{g}^{\alpha O_{i}(\tau)}\}_{i \in [n]}, \end{split}$$

Consider the polynomial $L(x) = \sum_{i=0}^{n} w_i L_i(x)$.

Updated Trusted Setup:

$$\begin{split} & \{g^{\tau^i}\}_{i \in [d]}, \quad \{g^{\alpha \tau^i}\}_{i \in [d]}, \\ & \{g^{L_i(\tau)}\}_{i \in [n]}, \quad \{g^{\alpha L_i(\tau)}\}_{i \in [n]}, \\ & \{g^{R_i(\tau)}\}_{i \in [n]}, \quad \{g^{\alpha R_i(\tau)}\}_{i \in [n]}, \\ & \{g^{O_i(\tau)}\}_{i \in [n]}, \quad \{g^{\alpha O_i(\tau)}\}_{i \in [n]} \end{split}$$

Consider the polynomial $L(x) = \sum_{i=0}^{n} w_i L_i(x)$.

 ${\mathcal P}$ can compute the KZG commitment π_L and its PoE π_L' as follows:

$$\pi_L \triangleq g^{L(\tau)} = g^{\sum_{i=0}^n w_i L_i(\tau)} = \prod_{i=0}^n (g^{L_i(\tau)})^{w_i},$$

$$\pi'_L \triangleq g^{\alpha L(\tau)} = g^{\alpha \sum_{i=0}^n w_i L_i(\tau)} = \prod_{i=0}^n (g^{\alpha L_i(\tau)})^{w_i}.$$

Witness Consistency Check

Problem

Prover isn't forced to use the same witness while calculating commitments.

To prove that the same w is used in all commitments, we need some "checksum" term that will somehow combine all polynomials L(x), R(x), and O(x) with the witness w.

Witness Consistency Check

Problem

Prover isn't forced to use the same witness while calculating commitments.

To prove that the same w is used in all commitments, we need some "checksum" term that will somehow combine all polynomials L(x), R(x), and O(x) with the witness w.

Hmm... Let's introduce one more coefficient:

$$\beta \stackrel{R}{\leftarrow} \mathbb{F}.$$

Thank you for your attention

zkdl-camp.github.io
 github.com/ZKDL-Camp

