GRUMMAN AEROSPACE CORP BETHPAGE N Y
AN AUTOMATED PROCEDURE FOR COMPUTING THE THREE-DIMENSIONAL TRAN--ETC(U) AD-A054 998 FEB 78 W H MASON, D MACKENZIE, M STERN F33615-75-C-3073 AFFDL-TR-77-122-VOL-2 NL UNCLASSIFIED 10F5 AD A054 998

FOR FURTHER TRAN TALL AND COLUMN TO THE COLU

AFFDL-TR-77-122 VOLUME II

AN AUTOMATED PROCEDURE FOR COMPUTING THE THREE DIMENSIONAL TRANSONIC FLOW OVER WING-BODY COMBINATIONS, INCLUDING VISCOUS EFFECTS

VOLUME II PROGRAM USER'S MANUAL AND CODE DESCRIPTION

GRUMMAN AEROSPACE CORPORATION BETHPAGE, NEW YORK 11714

FEBRUARY 1977

TECHNICAL REPORT AFFDL-TR-77-122, VOLUME II FINAL REPORT FOR PERIOD 1 MAY 1975 - 1 OCTOBER 1977

Approved for public release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY FLAMISHED TO DEC CONTAINED A
SIGNIFICANT MUMBER OF FAGILS WHICH DO NOT
REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Approved for public release; distribution unlimited.

This technical report has been reviewed and is approved for publication.

J. Kenneth Johnson Project Engineer Dr. Thomas M. Weeks

Supervisor

FOR THE COMMANDER

Alfred C. Draper

Assistant for Research and Technology

promechanics Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

-DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER TR-77-122 - VOL AFFDI TYPE OF REPORT A PERIOD COVERED AN AUTOMATED PROCEDURE FOR COMPUTING THE THREE-DIMENSIONAL TRANSONIC FLOW OVER WING-BODY COMBINATIONS, INCLUDING VISCOUS EFFECTS, VOLUME TO PRO-FINAL REPORT.
MAY 1975 - OCTOBER 1977, PERFORMING ORG. REPORT NUMBER GRAM USER'S MANUAL AND CODE DESCRIPTION. CONTRACT OR GRANT NUMBER(8) WILLIAM F. BALLHAUS WILLIAM H. MASON, F33615-75-C-3073/ DONALD/MACKENZIE, MARK/STERN 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS GRUMMAN AEROSPACE CORPORATION -PROGRAM ELEMENT 62201F PROJECT 1476, TA BETHPAGE, NEW YORK 11714 TASK 147601 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE AIR FORCE FLIGHT DYNAMICS LABORATORY FEBRUARY 1978 WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 & ADDRESSIL different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Re Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES *AMES RESEARCH CENTER, NASA and **INFORMATICS-PMI, INC. AEROMECHANICS LAB, U.S. ARMY AVIATION R&D COMMAND PALO ALTO, CALIFORNIA MOFFETT FIELD, CALIFORNIA 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) AIRCRAFT AERODYNAMICS JETS, WAKES AND VISCID-INVISCID FLOW INTERACTIONS SUBSONIC AND TRANSONIC FLOW BSTRACT (Continue on reverse side if necessary and identify by block number) This volume provides the detailed information required to use the program described in Volume I of this report. This includes a description of the input data set, the output results, pand typical JCL for IBM and CDC operation. A description of the differences in the code between IBM and CDC is presented in the second part of this volume. We also include a complete sample case, in order to illustrate the use of the program. The full details of the method are described in Volume I, however, a brief description of the method is provided.

388847

ed)

EDITION OF 1 NOV 65 IS OBSOLETE

DD 1 JAN 73 1473

20. ABSTRACT (Continued)

The program is a numerical method that predicts the detailed pressure distribution on wing-body combinations at transonic Mach numbers less than one and integrates the pressures to obtain aircraft force and moment data. The code has been developed with the intent of providing the user with an easy to use and reliable tool. The basic inviscid prediction method is the modified transonic small disturbance theory program developed by Ballhaus, Bailey and Frick. In order to provide accurate surface pressure predictions on the wing, several additional features of the typical transonic flowfield have been incorporated. These consist of the viscous displacement effect, local strong viscous interaction at the shock wave foot and at the trailing edge (including an approximate treatment of local shallow separations), and finally, the interaction effect of the fuselage.

FOREWORD

This final report was prepared by the Aerodynamics Section of the Grumman Aerospace Corporation, Bethpage, New York for the Flight Mechanics Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. The work was performed under Contract No. F33615-75-C-3073, which was initiated under Project No. 1476, "Advanced Wing-Body Aerodynamic Analysis and Design."

Mr. J. Kenneth Johnson (FXM) was the Project Monitor of this contract.

The report consists of three volumes. Volume I, entitled "Description of Analysis Methods and Applications," describes the methods used to predict surface pressure distributions and aerodynamic forces on three-dimensional wingbody combinations at transonic speeds, including viscous effects. Volume I also contains an extensive set of comparisons between numerical predictions and experimental results. Detailed instructions required to use the program are provided in Volume II, "User's Manual and Code Description." Volume III was written at Sybucon, Inc., Atlanta, Georgia and contains a complete description of the theory and program that computes the full three-dimensional boundary layer over the wing. This work was performed by Sybucon under subcontract to Grumman Aerospace. Although this program operates independently of the program described in Volume II, the input data set required for the full three-dimensional boundary layer computation is generated by the code documented in Volume II.

Mr. F. Berger was the Program Manager; Dr. W. Mason and Mr. D. MacKenzie served as Project Engineers. The work was performed in close cooperation with the co-authors from the NASA Ames Research Center, Dr. W. F. Ballhaus and Ms. J. Frick. Additional contributors to the project included G. Simpers, A. Vachris, D. Raila, P. Aidala, M. Sturm and A. Bunnell of Grumman, and Drs. F. R. Bailey and T. Holst of NASA Ames. Moreover, contributions have been made by A. Chen of Boeing, Drs. R. Melnik, B. Grossman and G. Volpe of the Grumman Research Department and Grumman Consultants Prof. A. Jameson, Prof. J. Werner and Dr. E. Murman. As noted above, the three-dimensional boundary layer program was written by Dr. J. Nash and Dr. R. Scruggs of Sybucon, Inc.

TABLE OF CONTENTS

SECTI	ON		PAGE
I	USE	R'S MANUAL	1
	1.	Introduction	1
	2.	Program Limits and Computational Cost	4
	3.	Input Procedure	11
	O.A.	a. General	11
		b. Description of Input Data	12
		c. Mesh and Mapping Generation	33
		d. Example Inputs	46
	4.	Output Results	55
		a. General	55.
		b. Description of Internally Generated Messages & User Response	103
	5.	Job Control Language	108
		a. General	108
		b. Sample JCL	108
	6.	Sample Case	114
II	COD	DE DESCRIPTION	265
	1.	Introduction	265
	2.	An Overview of the Program	265
	3.	Common Blocks	269
		a. Summary Map of Common Blocks	273
		b. Common Block Listing	274
		c. Detail Description of Each Common Block	279
	4.	Tape/Disk Units	308
	5.	Subroutines	309
	6.	CDC/IBM Conversion	427
	7.	Graphics Package	429
	REF	TERENCES	468

PRECEDING PAGE BLANK

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1.	Asymptotic Approach of Cp to Its Converged Value	8
2.	Maximum Error After 220 Iterations For Different Mach Numbers, Angles-of-Attack and Configurations	9
3.	The Variation of the Number of Iterations Required to Obtain Different Convergence Levels with the Relaxation Factor $_{\mbox{\scriptsize 0}}$	10
4.	AX Variation for the Internally Generated Mesh	40
5.	Mesh and Mapping Relationship	41
6.	Solution Dependence on X Mesh	42
7.	Z Mesh for Solution Effects Study	43
8.	Example of Mapping Construction	44-45
9.	Example of Program Input Data Sets	47-54
10.	Sample Program Output	65-102
11.	Main Program Flowchart	267-268
12.	Graphics Program Flowchart	431
13.	Example of Graphics Output	445-467
	LIST OF TABLES	
TABLE		PAGE
I	Summary of Program Limits	7
II	Z Grid Effects on Solution	39
III	Internally Generated Diagnostic Messages	104-107

LIST OF SYMBOLS

a Constant used in mesh generation

b Constant used in mesh generation

Cp Pressure coefficient

L Grid index

M_ Freestream Mach number

X/C Fraction of local chord

Y/S Fraction of wing span

Z Mesh point in vertical grid

Greek

Angle-of-attack

Δ Increment to quantity

δ* Displacement thickness

c Correction to potential

η General grid point location

Σ Summation

5 Transformation variable

Subscripts

Index
 Lower surface
 max Maximum value of quantity
 root Value of variable at wing root
 u Upper surface

SECTION I USER'S MANUAL

1. INTRODUCTION

This volume provides the detailed information required to use the program described in Volume I of this report. This includes a description of the input data set, the output results, and typical JCL for IBM and CDC operation. A description of the differences in the code between IBM and CDC is presented in the second part of this volume. We also include a complete sample case in order to illustrate the use of the program. Although the details of the method are described in Volume I, a summary of the method is included below.

The program is a numerical method that predicts the detailed pressure distribution on wing-body combinations at transonic Mach numbers less than one and integrates the surface pressures to obtain aircraft force and moment data. The code has been developed with the intent of providing the user with an easy to use and reliable tool. The basic inviscid prediction method is the modified transonic small disturbance theory program developed by Ballhaus, Bailey and Frick (Reference 1). In order to provide accurate surface pressure predictions on the wing, several additional features of the typical transonic flowfield have been incorporated. These consist of the viscous displacement effect, local strong viscous interaction at the shock wave foot and at the trailing edge (including an approximate treatment of local shallow separations), and finally, the interaction effect of the fuselage.

The program has been applied to a large number of cases for which experimental data is available and to several examples of extreme geometric configurations for which the method will operate successfully, although no data is available. The experience gained during the effort has been used to reduce the complexity of the program input to its simplest practical form, allowing the user to concentrate on the aerodynamic aspects of the analysis. The program should not be expected to produce results if there are significant regions of separated flow, and this fact can be used to determine the limits of the program applicability for any particular case. Body effects are incorporated into the program by providing an infinite rectangular cross-section upon which the fuse-lage slopes are applied, after suitable modification via slender body theory to take into account the transfer of the boundary condition from the fuselage surface to the rectangular cross-section boundary condition support surface. In addition, the program is assembled in a modular form that allows for an easy upgrading as various improved analysis methods become available.

Three-dimensional transonic flow calculation methods were initially developed by F. R. Bailey and W. F. Ballhaus at the NASA Ames Research Center, using the classical transonic small disturbance equations. Experience with the classical transonic small disturbance theory for wings with moderate to large sweep indicated that some refinement had to be incorporated into the small disturbance theory in order to properly simulate swept shock waves. The first modifications were proposed by Lomax (Reference 2), et al. and it is this particular equation which has been implemented in the baseline inviscid code described in this volume. This inviscid code is also the only available method which can, at present, simulate relatively general fuselage configurations routinely. The code makes use of the embedded grid scheme developed by Loppe (Reference 3) in order to reduce the execution time and storage requirements, while retaining maximum accuracy on the surface.

Viscous effects are investigated and accounted for in the present method through two different approaches. The full viscous-inviscid iteration is carried out assuming a boundary layer of the infinite swept wing type at each span station, augmented by local treatments of the strong interaction regions at the shock foot and trailing edge, and shallow separations. In addition to this calculation, an entirely new program has been written by Nash and Scruggs (Volume III of this report) to compute the fully three-dimensional laminar and/or turbulent boundary layer on finite wings. This program is not fully coupled with the inviscid calculation, however, the inviscid/strip viscous program will automatically produce the input data set for the 3-D B.L. program. The resulting 3-D boundary layer prediction is then tabulated in a form that allows for the generation of a data deck that could be used to make a fully 3-D correction to the actual airfoil ordinates.

The present method is described in a three volume report. Volume I describes the theoretical foundation of the various elements of the method and how they are combined into a single computer program. No attempt is made to repeat the excellent and detailed theoretical descriptions contained in the references. Instead, the volume concentrates on providing the user with a practical overview of the methods and a working knowledge of the aspects of the methods which the user can control and which are sometimes difficult to discover from the theoretical papers. Volume I also contains a large number of examples of the application of the program to a complete range of aircraft configurations. These include correlations on the F-8 and TACT aircraft. The

volume concludes with some observations on the general integration of computational aerodynamic tools into a uniform system with common input and output sets, and an examination of the potential applications to the design problem using the present analysis program as a baseline method. The present volume contains the detailed instructions required for program operation, including a review of the output results and the associated notation/definition. This section also contains a sample case which should provide a complete illustration of the use of the program. The second part of this volume contains a description of the actual computer program in sufficient detail so that a user can learn the code well enough to make modifications. The three-dimensional boundary layer method is treated as an independent program and is entirely described in Volume III. That volume contains both the theoretical description and the user's manual and code description.

2. PROGRAM LIMITS AND COMPUTATIONAL COST

The requirement for handling most cases of interest without demanding excessive storage and running time leads to some compromises in the size of the dimension statements. As delivered, the program is dimensioned to handle the typical body and airfoil definition required for transonic flow calculations. The computational meshes are dimensioned to the size found sufficient for most cases, with the exception of the inner X-mesh which is dimensioned to 90 streamwise points, although most of the calculations employ from 60 to 70 streamwise points. All other grid dimensions are fully utilized during each execution. The additional X-mesh dimensions allow for the occasional calculation of special cases with increased streamwise resolution. The resulting code requires approximately 1400K of core storage on IBM systems or 160K octal small core, 744K octal Level 2 large core memory on CDC systems. This size is probably close to an upper limit for making routine calculations at most computer centers. Reducing the size of the program substantially would lead to a reduction in the accuracy of the calculation. The present code represents a good compromise between code size and accuracy.

Table I presents the various limits that are built into the program.

Most of these limits could be changed by simply adjusting the dimension statements, however, almost three years of experience indicates that the present limits are adequate. Typical mesh sizes produced by the automated grids generation routines are:

Mesh	<u>x</u>	<u>Y</u>	<u>z</u>	Total No. of Points	
Initial	40	20	50	16,000	
Exterior Crude	30	18	50	10,800	
Interior Fine	59	30	20	35,400	

Our experience with this code on a CDC 7600 computer indicates that the various portions of the solution can be expected to take the following CPU times (on the 7600) with the meshes internally generated by the program.

Calculation	CPU Time
1 initial grid iteration	0.71 sec
1 coarse/fine grid iteration	1.72 sec
1 viscous iteration at a	
single span station	3.80 sec

Thus, the total computational time can be approximated by multiplying the CPU time for each step by the total number of iterations performed. Summing these values for each step will yield the approximate CPU time required on a CDC 7600 computer.

In running this code on the Ames CDC 7600, Grumman IBM 370/168 and ASD IBM 370/155, we have found that the following relationship holds for the amount of CPU time required (taking the Ames 7600 as the baseline):

Ames CDC 7600 Grumman IBM 370/168 ASD IBM 370/155

Thus, computations performed on an IBM 370/155 can be expected to take approximately 30 times as much CPU time as the identical calculation performed on a CDC 7600 computer. The CPU times listed above, together with the factors shown above, can be used to provide an estimate of the CPU time required to run this code on a machine similar to any of the three machines listed. Approximate time required for different size grid calculations can be computed by determining the time required per mesh point per iteration, which then serves as a basis for computing the time required for arbitrary grid sizes. A typical inviscid solution would require about 100 initial mesh and 400 fine/crude iteration pairs in order to obtain a converged solution, with a typical computing time of 750 seconds on a CDC 7600.

The viscous solution can be expected to take about one and a half to two times the number of inviscid iterations, with four or five boundary layer calculations required.

In contrast to the standard linear aerodynamics programs for which the running times can be predicted quite accurately, the present method employs non-linear techniques for which the running time is difficult to predict. The numerical procedure requires an iterative solution which converges quite slowly to the final value. Figure 1 provides an example of the way in which the surface pressure distributions approach the final value, which is taken here to be the value at 400 iterations. Although the figure is representative, the actual convergence rate will vary between configurations and, for the same configuration, the convergence will change with Mach number, angle-of-attack and mesh. Typically, a solution can be considered converged when the lift and number of supersonic points are remaining relatively constant at each iteration. The maximum error and residual should also be small. The maximum error is the maximum change of the potential between iterations, while the residual is the

value of the summation of all the terms in the governing equation (which should be identically zero). Traditionally, the program terminates when the maximum error is smaller than the prescribed convergence criterion (normally 10^{-5}). The maximum residual should also be inspected in order to verify that it has been reduced by about 3 orders of magnitude from its original value during the iteration. Some experimentation on the part of the user should verify that a "typical" converged solution can be obtained by running about 100 iterations on an initial mesh and another 300 or 400 iterations on the fine/crude embedded mesh system.

Figure 2 shows the maximum error, ϵ , obtained after 220 iterations for two different configurations at various Mach numbers and angles-of-attack. The main result that can be seen in these figures is that each case is slightly different and no consistent trend can be observed.

Figure 3 shows how the number of iterations required to obtain a specified convergence level varies with the relaxation factor ω . To repeat, the specific results shown on this figure will vary with configuration, Mach number, angle-of-attack and the particular mesh. Nevertheless, we show this result to indicate that the default values of the relaxation parameters are not necessarily optimum for a particular case. If an extreme amount of running at a design point is planned, some experimentation with ω may be worthwhile, along with the use of a baseline saved solution.

The convergence history presented in Figure 1 is very similar to the convergence history of a slowly converging series. It is very tempting to attempt to accelerate the convergence of the solution by applying the large body of mathematical analysis devoted to that problem. Indeed, Hafez and Cheng (Reference 4) have done this with some success, however, attempts to employ this type of strategy during the solution process in the present program has led to uneven results, where the technique has only occasionally improved the convergence properties. Due to the additional size and complexity of the code required to include this option, along with the generally disappointing results obtained during the experimentation, this option is not included in the final code. However, should a reliable acceleration technique become available, the code can be modified to incorporate this type of capability without any particular difficulty.

TABLE I SUMMARY OF PROGRAM LIMITS

GEOMETRY

TITITITE PRESERVATOR DE CONTRA	Maximum
Airfoil Sections	וו
Airfoil Ordinates/Section	90 upper/90 lower
Wing Twist Locations	11
L.E. Planform Pairs	10
T.E. Planform Pairs	10
BODY DEFINITION	
Slope Input (IBODIN = F)	
Streamwise Slopes	90
Top and Bottom Span Locations	10 each
Side Wall Locations	. 20
Body Line Input (IBODIN = T)	
Upper Center Line	90
Lower Center Line	90
Y - Max-Half Breadth Line	90
Z - Max-Half Breadth Line	90
SOLUTION	
Number of span stations at which solution is computed	1 29
Number of inviscid points on chord (IVISC = F)	60
(IVISC = T)	50
Viscous/Inviscid Iterations	20
Number of Inviscid fine/crude iteration pairs	1000
MAPPING	
Number of segments	12
Number of points allowed to define each segment	10
<u>MESHES</u> X	<u>Y</u> <u>Z</u>
Exterior Crude Mesh 30	20 20
Initial and Interior Mesh 90	30 20

Figure 1 Asymptotic Approach of Cp to Its Converged Value

Figure 2 Maximum Error After 220 Iterations for Different Mach Numbers, Angles-of-Attack and Configurations

Figure 3 Variation of the Number of Iterations Required To Obtain Different Convergence Levels With The Relaxation Factor $\boldsymbol{\omega}$

INPUT PROCEDURE

a. General

The information is input to the program by cards and tapes or disk. cards contain the basic program control, geometric and flight data. The tape or disk input is optional and contains the results of a previous solution. The old solution is used for a starting value for a new run in a manner similar (but not exactly analogous) to the practice of using a saved AIC matrix in panel method programs. The card input is very basic, with a NAMELIST option being used for the basic information, and a distinct block of data for each geometric feature, such as the planform, airfoils, and the body. The airfoil and body information can be input in a variety of methods, so that data decks based on the original Bailey-Ballhaus Code input format are not totally obsolete, while the new input format allows for increased flexibility. This flexibility was added in response to requirements on actual aircraft cases. Note that the NAMELIST symbols are different on IBM and CDC machines, so that two cards have to be changed when going from one machine to the other. The first five blocks of input data are for general use. A sixth block of input data allows the more experienced user to input other computational grids and mappings. A seventh block of input describes additional parameters in the NAMELIST which allow for further adjustments in the generated grids and the viscous-inviscid iteration procedure, as well as controls that are passed through the program and included in the input set for the Nash-Scruggs 3-D Boundary Layer Program.

The viscous-inviscid iteration requires a dual control approach, wherein the maximum number of iterations specified is performed between each boundary layer calculation. Thus, while an inviscid calculation might require 500 iterations maximum, FMAXIT, the appropriate viscous calculation would typically be carried out by specifying 70 inviscid iterations maximum, FMAXIT, and 7 viscous-inviscid iterations maximum, FIVSMX, so that the maximum number of inviscid iterations will be (FMAXIT) X (FIVSMX+1) = 560. The calculation always starts with the inviscid iteration, even when starting from a previously saved solution. A viscous solution terminates when either the viscous convergence criterion has been satisfied, or the maximum number of viscous-inviscid iterations has been exceeded. When performing a viscous calculation, the inviscid convergence criterion will terminate the inviscid iteration when it is satisfied, but it will not terminate the rest of the calculation. The program terminates with a

summary of the viscous iteration history whether the solution has fully converged or not.

The Murman model of Shock Boundary Layer interaction is exercised directly from the inviscid iteration and can be included independently at the rest of the viscous effects. It is best operated from a previous solution, or at least after a number of iterations have been made in order to establish the character of the solution.

It is highly recommended that the graphics package be employed and that an initial run with a new data set be limited to 5 cycles, after which both the print and plot output should be scrutinized in order to verify that the desired geometric case is, in fact, being simulated by the program. Once the data set is verified, the full runs can be submitted with confidence.

For some wing-body combinations, a small wiggle can develop in the solution near the leading edge of the wing at the root station. This is due to the irregular manner in which the bending mesh intersects the leading edge. The problem can be resolved without inputting the entire mesh externally by adjusting the fine mesh generating parameters described in the next section. The proper adjustment has been found to be to add more mesh points upstream of the leading edge, while also increasing the extent of the mesh upstream.

Finally, we note that the default mesh will produce an accurate inviscid solution. Although computing time can be reduced by overriding the default values and reducing the mesh density, the decrease in computing time will be accompanied by a decrease in the accuracy of the solution and extreme caution should be used if this approach is adopted.

b. Description of Input Data

GRUMMAN-AMES TRANSONIC VISCOUS WING-BODY CODE

The input data is contained in 7 basic blocks plus a title card. All numerical input is entered in F10 Format. Provision is made for additional input that overrides the internally generated meshes and mapping. The input stream occurs as follows:

GRUMMAN-AMES TRANSONIC VISCOUS WING-BODY CODE

Block	
	TITLE CARD
1	CONTROL BLOCK Combined in single NAMELIST
2	FLIGHT CONDITIONS
3	PLANFORM
4	AIRFOIL
5	BODY
6	Optional Mesh & Mapping Inputs

- Additional control parameters

Block 1 - Control Block

The parameters controlling the various options in the code have been preset to default values to streamline the input. The default values reflect a "baseline" computation which has been found through experience to be generally satisfactory. However, some values of the control parameters must be overridden to accomplish specific tasks.

The control parameters in this block are input using NAMELIST*. Only those parameters that are to be changed from the default values need be read in. The NAMELIST variables, with default values shown in parenthesis, are listed below:

NAMELIST Variable	Default	Remarks
IDISK	(F)	T - start from old solution stored on unit 10.F - initialize potential field to zero.
. MSHINT	(F)	 T - initial conditions interpolated from old coarse mesh solution. F - no interpolation.

Input data using NAMELIST must satisfy the following rules:

1. The first column on each card must be blank.

2. The first item must be the NAMELIST name preceded by a &; i.e., &LIST followed by a blank.

3. Data is input in the form variable = constant, each item being separated by commas; i.e., IDISK = T,RSUB=1.8,...

4. The last item must be &END.

5. The & above is for IBM; on CDC, the character is \$.

NAMELIST Variable	Default	Remarks
ISAVE	(F)	T - save solution on unit 11. F - do not save solution.
IPLOT	(T)	T - save data for plotting on unit 12. F - do not save plot data.
SOLV	(T)	T - complete calculation. F - stop after geometry modeling.
WBCPRT	(T)	T - print wing surface slopes. F - omit print.
BBCPRT	(T)	T - print body boundary conditions. F - omit print.
BODY	(F)	T - wing-body combination. F - wing alone.
FCR	(T)	T - fully conservative differencing. F - non-conservative differencing.
ISPAN	(T)	 T - include extra sweep terms in small disturbance equation. F - solve classical small disturbance equation.
YAW	(F)	T - two-dimensional yawed wing. F - three-dimensional configuration.
EXTMSH	(T)	T - use both fine interior and crude exterior grids.F - use fine interior grid only.
REMESH	(T)	 T - initial calculation on crude interior grid before calculation defined by EXTMSH. F - no initial calculation.
IFINR	(F)	T - read in fine XIN, ETA and ZT grids. F - use internally generated fine grids.
ICRUDR	(F)	T - read in crude XIN, ETA and ZT grids. F - use internally generated crude grids.
JMESHR	(F)	 T - read in initial XIN, ETA and ZT grids (if REMESH = T). F - use internally generated initial grids.
IMAPR	(F)	 T - read in mapping of fine grid ξ=0 and ξ=1 lines. F - use internally generated mapping.

NAMELIST Variable	Default	Remarks
JMAPR	(F)	T - read in mapping of initial grid
		$\xi=0$ and $\xi=1$ lines. F - use internally generated mapping.
IBUMP	(F)	T - invoke Murman model for SBLI. F - no Murman Bump.
IVISC	(F)	T - do a viscous interaction calculation.F - inviscid calculation.
ITWIST	(F)	T - read in separate twist table. F - twist defined at airfoil input stations.
IFOILT	(T)	 T - airfoil input consists of one (X,Y) pair per card. F - airfoil input consists of blocks of X's and Y's (old Ames input format).
IBODIN	(T)	T - simplified body input - automatic slopes.F - input detailed body slopes.
AXISYM	(F)	T - axisymmetric body (only if IBODIN=T). F - non-axisymmetric body.
AREA	(F)	 T - Z body coordinates are areas rather than Z's. F - Z body coordinates are Z's.
IBLOUT	(F)	T - generate punched output for Nash B.L. code.F - no punched output.
FMAXIT	(500.)	Maximum number of iterations on interior grid.
FMXITN	(1.)	Number of fine interior grid iterations before crude exterior grid.
FMXITX	(1.)	Number of crude exterior grid iterations before fine interior grid.
FMXITI	(100.)	Maximum number of iterations on the initial grid.
FINCR	(1.)	Print increment for fine grid iterations.
FINCRX	(1.)	Print increment for crude grid iterations.
FINCRI	(1.)	Print increment for initial grid iterations.

NAMELIST Variable	Default	Remarks
RSUB	(1.7)	Subsonic relaxation factor for fine interior grid.
RSUBX	(1.6)	Subsonic relaxation factor for crude exterior grid.
RSUBI	(1.6)	Subsonic relaxation factor for initial grid.
RTEST	(.00001)	Convergence criterion for maximum potential error on fine interior grid.
RTESTI	(.0001)	Convergence criterion for maximum potential error on initial grid.
EPS	(1.)	Coefficient for ϕ_{xt} damping for fine grid.
EPSEX	(1.)	Coefficient for ϕ_{xt} damping for crude grid.
EPSI	(1.)	Coefficient for ϕ_{xt} damping for initial grid.
EMEXP(1)	(1.75)	Mach number exponent in nonlinear term (1.75 corresponds to modified Krupp scaling).
EMEXP(2)	(25)	Mach number exponent in wing boundary conditions (25 corresponds to modified Krupp scaling).
RFACT	(0.)	Riegel's Rule factor for modified wing slopes.
FIVSMX	(-1.)	Maximum number of viscous/inviscid iterations, values less than zero do not modify the wing slope boundary conditions.
FIVCON	(2.)	Viscous inviscid interaction convergence criteria, FIVCON = 1 tests for convergence on Cp change, FIVCON = 2 tests for convergence on lift.
EPSVIS	(.01)	Convergence criterion for viscous inviscid iteration.
FLWRIT	(0.)	Viscous iteration output =0. Normal Output =1. Abbreviated Output

NAMELIST Variable	Default	Remarks
FICUTP	(0.)	Type of strip boundary layer output, FIOUTP = 0 is the minimum amount, = 1 provides detailed chordwise distributions, = 2 provides boundary layer profiles also.
FISTEP	(10.)	B.L. steps between b.l. profile outputs if FIOUTP = 2.

Block 2 - Flight Conditions

This input set continues in the same NAMELIST as Block 1. Variables contained in this block are (default values in parenthesis):

NAMELIST Variable	Default	Remarks
MACHNO	(.9)	Freestream Mach number.
ALPHAW	(o.°)	Wing angle-of-attack relative to the freestream velocity in degrees.
ALPHAB	(o.°)	Body angle-of-attack relative to the freestream velocity in degrees.
RE	(10.)	Reynolds number/10 ⁶ based on mean aero- dynamic chord.
GAMMA	(1.4)	Ratio of specific heats.
XTRNT	(.05)	Boundary layer transition location on upper surface fraction of local chord.
XTRNB	(.05)	Boundary layer transition location on lower surface fraction of local chord.

Block 3 - Planform Specification

(If the yawed wing option is requested, use the yawed wing input.)

FINITE WING INPUT

Card #	Format	Field	Name	Remarks
Pl	Literal		PTITLE	80 characters describing wing definition.
P2	8F10.0	ncio 1º a quamb	YROOT=0	Y-coord. of root for reference trapezoidal wing (RTW).
		2	XLER	X-coord. of leading edge at root for RTW.
		3	XTER	X-coord. of trailing edge at root for RTW.
		4	YTIP	Y-coord. of tip for RTW.
		5	XLET	X-coord. of leading edge at tip for RTW.
		6	XTET	X-coord. of trailing edge at tip for RTW.
		7	MOMX	Moment reference.
		8	SREF	Wing half-reference area if O., code calculates SREF for RTW.
Р3	Literal		PTITLE	80 characters describing LEADING EDGE.
P4	8F10.0	1	XNLE	Number of X, Y pairs used to define L.E.
P5	8F10.0	1	ATEI(I)	Y-coord. of L.E.
		2	XLEI(I)	X-coord. of L.E. at this Y.
NOTE:	Card P5 is read	i XNLE times.		
Р6	Literal		PTITLE .	80 characters describing T.E.
P7	8F10.0	1	XNTE	Number of X, Y pairs used to define T.E.

Card #	Format	Field	Name	Remarks
Р8	8F10.0	ti alian beneat be	YTEI(I)	Y-coord. of T.E.
		2	XTEI(I)	X-coord. of T.E. at this Y.
NOTE: C	ard P8 is rea	d XNTE times.		
INFINITE	YAWED WING O	PTION		
Pl	Literal		PTITLE	80 character title.
P2	8F10.0	1	SWEEP	Sweep angle of Infinite Yawed Wing in degrees.

Block 4 - Airfoil Specification

INPUT FORMAT

1. Default Option, IFOILT = T (if IFOILT = F, skip to INPUT FORMAT 2.).

Card #	Format	Field	Name	Remarks
Al	Literal		ATITLE	80 characters describing wing definition.
A2	8F10.0	uktara nesa	XNPAN	Number of spanwise stations required to define wing geometry (2≤XNPAN≤11).
NOTE: C	ards A3-A9 ar	e repeated X	NPAN times.	
A3	Literal		ATITLE	80 characters describing this section.
A4	8F10.0	1	YP	Spanwise location of this section - non-dimensionalized with respect to semispan.
		2	THETP	Wing twist at this span station (in degrees).
		3	THICK	Thickness scaling for this span station; i.e., 1.0 implies no change to coordinates.
		. 4	XNWSEC	 =1.0 - new airfoil coordinates for this span station will follow. =0.0 - the coordinates for this span station are the same as the previous station.
NOTE: I	f XNWSEC = 0,	go back to	card A3 for next	span station, if any.
A5	8mo.0	Togot Togot Togot Togot	ZSYM	=0.0 - asymmetric section, upper and lower surface coor- dinates will follow. =1.0 - symmetric section, only upper surface coordinates will follow.
		2	FNU	Number of upper surface coordinates.
		3	FNL	Number of lower surface coordinates.

XKSMTH

Number of coordinate smoothings to be performed.

Card #	Format	Field	Name	Remarks
A 6	Literal		ATITLE	80 characters - typically upper surface.
A7	8F10.0	1	XU	Upper surface X coordinate in any convenient coordinate system.
		2	ZU	Upper surface Z coordinate in same coordinate system as X.
NOTE:	Repeat card A7 If ZSYM = 1.0,		card A3 for next s	span station, if any.
A8	Literal		ATITLE	80 characters - typically lower surface.
A9	8F10.0	1	XL	Lower surface X coordinates in same coordinate system as cards A7.
		2	ZL	Lower surface Z - coordinate in same coordinate system as cards A7.

NOTE: Repeat Card A9 FNL times.
Go back to card A3 for next span station, if any.
Airfoil coordinates run from leading edge to trailing edge.
The leading edge point is input twice for asymmetric airfoils.

If IFOILT= T, skip Input Format 2.

INPUT FORMAT

2. Original Bailey-Ballhaus airfoil input format, IFOILT = F.

Al	Literal		ATITLE	80 characters describing airfoil section.
	8F10.0		XNPAN	Number of span stations at which airfoil ordinates are input (2.≤XNPAN≤11.).
		2	FNU	Number of upper surface ordinates ≤ 90 .
		3	FNL	Number of lower surface ordinates < 90.
6083		4	XKSMTH	Number of times surface slopes are smoothed.

Card #	Format	Field	Name	Remarks
A3	8F10.0	1,3,5,7	YP(N)	Fraction of semispan at which airfoils are defined.
		2,4,6,8	THETP(N)	Twist angle at YP, in degrees (positive is LE up).
NOTE:	Card A3 is	repeated XNPAN/4. tim	mes.	
A4	8F10.0	1,2,8	XINU(I)	x'c at which airfoil upper surface ordinates are input.
NOTE:	Card A4 is	repeated FNU/8. time	s.	
A5	8F10.0	1,2,8	XINL(I)	x'c at which airfoil lower surface ordinates are input.
NOTE:	Card A5 is	repeated FNL/8. time	s.	
A 6	L5	1 (6).19	ISAME	F - input airfoil ordinates.T - use previously defined airfoil.
NOTE:	If ISAME =	T, omit cards A7 and	A8.	
A7	8F10.0	1,2,8	ZUP(I,N)	z/c for airfoil upper surface.
NOTE:	Card A7 is	repeated FNU/8. times	s.	
A8	8F10.0	1,2,8	ZLP(I,N)	z/c for airfoil lower surface.
NOTE:	ISAME must	repeated FNL/8. times be false at first spe are repeated XNPAN	an station.	

SEPARATE TWIST TABLE INPUT OPTION

If a separate table of twists is requested, the twists input on the airfoil specification cards are ignored and the following input is required:

Tl	Literal		TTITLE	80 character title.
T2	8F10.0	1	XNTWST	The number of span stations at which the twist is input (3≤XNTWST≤11).
Т3	8F10.0	1	YTWST	The y'C span station at which the twist is given (must be monotonically increasing).
		2	THETP	The twist angle at YTWST in degrees. Nose-up is positive twist.

NOTE: Card T3 is repeated XNTWST times.

Block 5 - Body Specification

INPUT FORMAT

 Default Option, Body Lines Input, IBODIN = T (if IBODIN = F, skip to Input Format 2.).

Card #	Format	Field	Name	Remarks
Bl	Literal		BTITLE	80 characters describing fuselage shape.
B2	8F10.0	1	ZWNGWL	Z location of wing plane.
В3	Literal		BTITLE	80 characters, typically upper center line.
B4	8F10.0	1	FNUCL	Number of fuselage stations to define upper center line ≤ 90.
B5	8F10.0	1	XUCL(I)	Fuselage station.
		2	ZUCL(I)	Z coordinate of body upper center line.
NOTE:	input block	kip cards B6	times. -Bl4; i.e., the rest ove is body area.	t of the cards in this
В6	Literal		BTITLE	80 characters, typically lower center line.
В7	8F10.0	1.	FNLCL	Number of fuselage stations to define lower center line ≤ 90.
в8	8F10.0	1	XLCL(I)	Fuselage station.
		2	ZLCL(I)	Z coordinate of body lower center line.
NOTE:	Card B8 is rep	eated FNLCL	times.	, 0.0008 ci
В9	Literal		BTITLE	80 characters, typically max half-bredth line in X-Z plane.
B10	8F10.0	ono 1	FNMHB	Number of fuselage stations to define max half-bredth line in X-Z plane < 90.

Card #	Format	Field	Name	Remarks
Bll	8F10.0	1	XZMHB(I)	Fuselage station.
		2	ZMHB(I)	Z coordinate of max half- bredth line.
NOTE:	Card Bll is re	epeated FNMHB	times.	
B12	Literal		BTITLE	80 characters, typically max half-bredth line in X-Z plane.
B13	8F10.0	1-	FMHBY	Number of fuselage stations to define max half-bredth line in X-Y plane ≤ 90 .
B14	8F10.0	1	XYMHB(I)	Fuselage station.
		2	YMHB(I)	Y coordinate of max half- bredth line.

NOTE: Card Bl4 is repeated FMHBY times.

NOTE: Card B4 repeated FNRBU/8. times.

If IBODIN = T, skip Input Format 2.

INPUT FORMAT

2. Body Slope Input, IBODIN = F.

BL.	Literal		BTITLE	80 characters describing fuselage shape.
B2	8F10.0		ZRBU	Z location of top of BCSS (Boundary Condition Support Surface).
		2	ZRBL	Z location of bottom of BCSS.
		3	YRB	Y location of side of BCSS.
		4	ZWNGWL	Z location of wing plane.
В3	8F10.0	sint 1 No.de .of	FNRBU	Number of X stations for slope input on BCSS upper surface < 90.
B4	8F10.0	1,2,8	XRBU(J)	X stations.

Card #	Format	Field	Name	Remarks
В5	8F10.0	1	FIBUD	Number of Y stations for slope input on BCSS upper surface ≤ 10.
в6	8F10.0	1,2,8	ETABU(K)	Y stations.
NOTE:	Card B6 repea	ted FIBUD/8. ti	imes.	
B7	8F10.0	1,2,8	RBCU(J,K)	Slopes on BCSS upper surface.
NOTE:	Card B7 is re	peated FNRBU/8	B. times for each E	CABU.
в8	8F10.0	1	FNRBL	Number of X stations for slope input on BCSS lower surface ≤ 90 .
В9	8F10.0	1,2,8	XRBL(J)	X stations.
NOTE:	Card B9 is re	peated FNRBL/8	3. times.	
P10	8F10.0	1	FIBLD	Number of Y stations for slope input on BCSS lower surface ≤ 90.
Bll	8F10.0	1,2,8	ETABL(K)	Y stations.
NOTE:	Card Bll is re	epeated FIBLD/	8. times.	
B12	8F10.0	1,2,8	RBCL(J,K)	Slopes on BCSS lower surface.
NOTE:	Card Bl2 is re	epeated FNRBL/	8. times for each E	ETABL.
в13	8F10.0	ı	FNRBS	Number of X stations for slope input on BCSS side ≤ 90.
B14	8F10.0	1,2,8	XRBS(J)	X stations.
NOTE:	Card Bl4 repe	ated FNRBS/8.	times.	
B15	8F10.0	70000 1 1000181 201191	FIBS	Number of Z stations for slope input on BCSS side < 10.
B1 6	8F10.0	1,2,8	ZBOD(L)	Z stations.
NOTE:	Card B16 repea	ated FIBS/8. t	imes.	
B17	8F10.0	1,2,8	FY(J,L)	Slopes on BCSS side.
NOTE:	Card B17 repe	ated FNRBS/8.	times for each ZBOD	2.

Block 6 - Optional Mesh and Mapping Inputs

The mesh and mapping inputs are input last in the following order:

Initial Mesh (Cards F1-F5) if, and only if, REMESH = T, JMESHR = T

Initial Mapping (Cards M1-M8) if, and only if, REMESH = T, JMAPR = T

Interior Mesh (Cards F1-F5) if, and only if, IFINR = T

Interior Mapping (Cards M1-M8) if, and only if, IMAPR = T

interior mapping (cards Mi-Mo) if, and only if, IMAPR = T

NOTE: See Section c) for a discussion of the construction of appropriate meshes and a description of the internally generated meshes.

Mesh Parameters For Initial and Interior Meshes

Exterior Mesh (Cards C1-C5) if, and only if, EXTMSH = T, ICRUDR = T

Card #	Format	Field	Name	Remarks
Fl	Literal	1	TITLEM	80 characters describing initial or interior mesh.
F2	8F10.0	1	FJMAX	Number of streamwise mesh points (≤ 90 .).
		2	FKMAX	Number of spanwise mesh points (\leq 30.).
		3	FLMAX	Number of vertical mesh points (\leq 20.).
		14	FKTIP	First mesh point beyond wing tip.
		5	FLWNGU	ZT mesh index of first point above wing plane.
F3	6F10.0	1,2,8	XIN(J)	X mesh along center line.
NOTE:	Card F3 is	repeated FJMAX/8.	times.	
Fl ₄	8F10.0	1,2,8	ETA(K)	ETA coordinate at mesh points.
NOTE:	Card F4 is	repeated FKMAX/8.	times.	
F5	8F10.0	1,2,8	ZT(L)	ZT coordinate at mesh points.
NOTE:	Card F5 is	repeated FLMAX/8.	times.	

Mapping Parameters For Initial and Interior Meshes

Card #	Format	Field	Name	Remarks
MI	8F10.0	e mess n	FNSO	Number of segments defining $XI = 0$ line; $FNSO \le 6$.
M2	8F10.0	T 1 WILL	FKXO	K index of outboard edge of segment.
		2	FNXO	Number of Y, X pairs defining segment; $FNXO \le 10$.
МЗ	8F10.0	1,3,5,7	YXO XKO	Y, X pairs defining segment.
NOTE: C	ard M3 is re	peated FNXO/4.	times.	
M4	8F10.0	1	DXRO	DX/DY at inboard edge.
Same		2	DXTO	DX/DY at outboard edge.
NOTE: C	ards M2, M3,	and M4 are re	peated FNSO time	es.
M5	8F10.0	1	FNS1	Number of segments defining $XI = 1$ line; $FNS1 \le 6$.
M6	8F10.0	1	FKX1	K index of outboard edge of segment.
		2	FNX1	Number of Y, X pairs defining segment; $FNX1 \le 10$.
M7	8F10.0	1,3,5,7	YX1 XX1	Y, X pairs defining segment.
NOTE: C	ard M7 is re	peated FNX1/4.	times.	
м8	8F10.0	1	DXR1	DX/DY at inboard edge.
		2	DXTl	DX/DY at outboard edge.

Mesh Parameters for Exterior Mesh

Card #	Format	Field	Name	Remarks
Cl	Literal	1	TITLEM	80 characters describing crude mesh.
C2	8F10.0	1	FJMAXX	Number of streamwise mesh points (\leq 30.).
		2	FKMAXX	Number of spanwise mesh points (\leq 20.).
		3	FLMAXX	Number of vertical mesh points (\leq 20.).
		4	FKTIPX	First ETAX mesh point beyond wing tip.
		5	FLWGUX	ZTX mesh index of first point above wing plane.
с3	8F10.0	1,2,8	XINX(J)	X mesh along center line.
NOTE:	Card C3 is rep	peated FJMAXX/	8. times.	
C4	8F10.0	1,2,8	ETAX(K)	ETA coordinate at mesh points.
NOTE:	Card C4 is rep	peated FKMAXX/	8. times.	Annual Company of the North Company
C5	8F10.0	1,2,8	ZT(L)	ZT coordinate at mesh points.
NOTE:	Card C5 is re	peated FLMAXX/	8. times.	

Block 7 - Additional Control Parameters

These parameters supply additional control for several options. For most applications of the code, the default values are recommended. The default values may be overridden by using the NAMELIST described for Block 1.

Default	Remarks
·s	
(1.)	Relaxation factor for Murman Bump and controls the fraction of the shock movement allowed for the bump origin between iterations.
(0.)	Percent chord shift of shock location. Positive upstream allows the bump origin to be located slightly upstream of shock.
(0.)	Number of interior mesh iterations before start of Murman Bump.
(0.)	Number of interior mesh iterations between additional Murman Bump print- out, if FBPRNT = 0., no printout.
- these parameter esh (IFINR = F).	rs control the automatic generation of
(.008)	<pre>5-mesh spacing at leading edge; i.e.,</pre>
	leading edge is placed at DXL/2.
(.020)	
(.020) (.030)	leading edge is placed at DXL/2. §-mesh spacing at trailing edge; i.e., trailing edge is nominally placed at
•	leading edge is placed at DXL/2. §-mesh spacing at trailing edge; i.e., trailing edge is nominally placed at § = 1.
(.030)	leading edge is placed at DXL/2. §-mesh spacing at trailing edge; i.e., trailing edge is nominally placed at § = 1. Maximum §-mesh spacing on the wing. Number of grid lines upstream of
(.030) (8.)	leading edge is placed at DXL/2. §-mesh spacing at trailing edge; i.e., trailing edge is nominally placed at § = 1. Maximum §-mesh spacing on the wing. Number of grid lines upstream of § = 0. line. Number of grid lines downstream of
	(0.) (0.) (0.) - these parameter esh (IFINR = F).

NAMELIST Variable	Default	Remarks
FIOUT1	(0.)	= 0., no general mesh generation output. = 1., general mesh generation output.
FIOUT2	(0.)	<pre>= 0., no detailed mesh generation output. = 1., detailed mesh generation output.</pre>
Initial Mesh Parameters - the initial mesh (REMES		es control the automatic generation of F).
DXLI	(.020)	ξ-mesh spacing at leading edge; i.e., leading edge is placed at DXLI/2.
DXTI	(.040)	<pre> ξ-mesh spacing at trailing edge; i.e., trailing edge is nominally placed at ξ = 1. </pre>
DXMXI	(.075)	Maximum 5-mesh spacing on the wing.
FNFI	(12.)	Number of grid lines upstream of $\xi = 0$. line.
FNBI	(10.)	Number of grid lines downstream of $\xi = 1$. line.
XUSTI	(11.)	Overall length of the §-mesh.
XLGI	(5.)	Upstream extent of the 5-mesh.
FIOUT1	(0.)	(Must be the same as interior mesh.)
FIOUT2	(0.)	(Must be the same as interior mesh.)
Viscous Iteration Paramet	ers (IVISC = T)	
RELBL	(.6)	Relaxation factor for the modification of the slope boundary conditions between inviscid calculations.
EXTNDU	(0.97)	The fraction of the chord after which the boundary layer slope on the upper surface is linearly extrapolated from its value and rate of change at EXTNDU.
EXTNDL	(1.0)	The same as EXTNDU, except applied to the lower surface. For supercritical airfoils, no extrapolation is necessary.

NAMELIST Variable	Default	Remarks
FKI	(0.)	The inboard interaction history is printed at span station FKI. If FKI = O., the history is printed at the first span station outboard of the root station.
FKO	(0.)	Same as FKI, but for outboard stations. If FKO = O., the history is printed at the first span station inboard of the tip span station.

Nash Boundary Layer Parameters (IBLOUT = T)

NOTE: See Volume III for a complete description of the input data set for the 3-D Boundary Layer Program; these inputs are provided in order to exercise control over the program indirectly, so that the 3-D B.L. code can be exercised sequentially in a multi-step job.

FIT	(10.)	Maximum number of iterations allowed in numerical procedure at each streamwise row.
FIOIT	(1.)	Output of numerical iteration history = 0. no output = 1. full output.
FIOPRF	(1.)	Output of velocity profiles at each station = 0. no output = 1. full output.
FIPNCH	(0.)	0. do not punch output for plotting.1. punch output for plotting on unit 7.
FKSMTH	(0.)	Number of smoothings of input pressure distributions (if desired).
CONV	(.0005)	Convergence criterion for numerical iteration.
SCALE	(.0833)	Reference Length Scale, in feet.
PRES	(6.)	Static Pressure, in psi.
TEMP	(390.)	Static Temperature, in degrees Rankine.

c. Mesh and Mapping Generation

It is now widely appreciated that the generation of an adequate computational mesh for the numerical simulation of the flowfield about general aircraft configurations is one of the most difficult problems facing the aerodynamicist. This problem must be solved if the research methods presently being developed for idealized configurations are to be extended to the complex geometric configurations that aerodynamicists require. The present code bypasses much of the difficulty by the use of the small disturbance boundary conditions consistent with the governing equation being solved. This allows the wing surface to be approximated by a planar sheet of zero thickness upon which the surface slopes are specified. Correspondingly, the body boundary conditions are applied on an infinitely long constant cross-sectional rectangle termed the boundary condition support surface, BCSS. The resulting grid system requires only the most basic aspects of the planform and body geometry in order to construct an acceptable computational mesh.

Three X-Y-Z grid systems are generated internally by the program, or optionally input by the user. In addition, the planform mapping required for the inner fine mesh is either internally generated or input. In order to reduce the complexity of the input, each grid system must be input together; i.e., X and Y cannot be generated internally and Z read in. If this type of input is desired, the program should be submitted once with SOLV = F and the generated X and Y grids should be added to the input data set. The initial and fine meshes are both placed on a mapped planform, such that the input X's refer to the intersection of the mapping at the center line. The crude mesh is Cartesian and presents several different problems. The purpose of this section is to describe how these meshes are generated internally and to provide guidance to the user who wishes to construct his own mesh.

The fine X-Y-Z grid is described first. The X and Z grids can be introduced directly from the typical 2-D programs. The X-mesh that is generated internally is due to Dr. T. Holst of NASA Ames and represents an improvement over the X mesh originally used by Krupp (Reference 5) for his small disturbance calculations. The spacing of the mesh should be reduced about the nose and trailing edge with the mesh opening up both upstream and downstream of the airfoil. In the inner mesh, the upstream and downstream boundaries extend about one-half of the chord length from the foil, with the foil leading edge being placed half way between the grid lines at the leading edge, such that the first

mesh line falls about one-half percent of the chord behind the leading edge and on the trailing edge, with a typical spacing of 1-1/2 to 2 percent of the foil. The mesh variation should be constructed so that the second difference of the mesh distribution varies smoothly. The program provides a tabulation of this difference in the output from the initial setup. Failure to enforce this condition can lead to both convergence and accuracy problems. Figure 4 provides an example of the typical ΔX variation. When considering a threedimensional case, the X mesh is input in physical dimensions, based on the intersection of the mapping with the center line. Figure 5 illustrates the procedure. If the mesh distribution is generated based on a unit chord, then some preliminary manipulation of the mesh is necessary. Typically, 50-60 grid points are adequate for the X mesh in the fine grid. Figure 6 shows an example of the change in the solution with various X meshes, so that we can observe that the general character of the solution is fairly constant between the grid densities, with the increased grid density serving mainly to sharpen the details of flowfield. Another X-grid which has been tested is the grid due to Albone et al (Reference 6). This grid can be easily programmed but requires about 8 empirical constants and leads to a large number of mesh points. However, the reader should be aware of this X-grid if other candidates are being investigated.

The solution has been found to be relatively insensitive to the Z grid used. Figure 7 shows 3 different meshes that were used with the resulting changes in the wing forces and pressures varying within plotting accuracy, as shown in Table II. The wing is assumed to be located at Z=0 and halfway between the first grid point above and below the wing. The baseline mesh shown in the figure is a "canned" mesh employed in the program. The usual tangent mesh would be adequate also. The grid extends approximately 1.8 chords above and below the wing.

The Y-grid in the inner mesh is simply an evenly divided set of lines that provide 28 span stations on the wing. This grid has been acceptable in all calculations performed to date. The user might consider spacing the grid more closely in regions near the wing root, planform kinks and the wing tip in order to increase the local resolution. Some experimentation has indicated that adjustment of the Y-grid can lead to a large improvement in the convergence rate, however, this property seems to depend on the particular configuration and the automatic generation seems to work well with the present scheme. This is, however, an area for experimentation on particular configurations.

The inner X mesh produces a variable number of streamwise points depending on the particular configuration. This is a result of the requirement that the inner mesh fully "cover" the planform. For wing-body configurations, the mapping does not coincide with the planform and since the X mesh is actually centered around the $\xi = 0$ and $\xi = 1$ lines, the planform can "stick out" of the mesh as will be illustrated below. The automatic mesh generator ensures that the inner mesh covers the planform; if the user inputs the X-grid and it fails to cover the planform, the program stops with a message indicating that this condition is not met.

The initial mesh is actually an expanded version of the fine mesh. Once again, the X-mesh is generated using the XMESH subroutine, with a different set of input values which results in a mesh of about 40 streamwise points stretching about 5 chord lengths upstream and downstream of the airfoil. The Y mesh extends to about 1-2/3 semispans with 14 evenly spaced lines on the wing, and then gradually enlarged spacing until the twentieth span station is located at 1-2/3 semispans. We should note that the mesh spacing should be generated with difference relations. Care should be taken when analytic functions are used because it is easy to construct analytic functions which produce uneven differences when points are selected from them. Typical formulas usually look like:

$$\Delta \eta_{i} = A_{i} \Delta \eta_{i-1}$$

where A, is either constant or a "slow" variable. The Z-grid is the same as the fine grid, except that the spacings have been multiplied by a factor of 5 so that the extent of the grid increases from 1.8 chords above and below the wing to about 9 chords above and below.

The crude grid is Cartesian, which adds some special requirements to the grid construction. The Z-grid remains simple, with the exception that two Zgrid lines must be located between the top and bottom of the body. Special provisions have been included in the automatic grid generation in order to ensure that this requirement is met, while the failsafe feature of the code terminates the calculation if the user generated grid violates this condition (the same 2 point rule also holds for the Y-grid).

The basic crude Z-grid is given by the cubic:

$$Z = a(L-1/2) + b(L-1/2)^3$$

where L is the grid index and a and b are the appropriate constants such that

at L = 1; Z = Z_1 , and at L = LM, Z = Z_{MAX} , where the L's run above the wing from 1 to LM (typically 10) with Z_{MAX} = 10 chord lengths above the wing and Z1 = .12 chord lengths above the wing. The Y-grid is constructed to provide 14 span stations on the wing and open up rapidly outboard of the eighteenth and last span station, which is at 5 semispans. Due to the Cartesian mesh in the crude grid, the X-grid requires some special considerations. The grid must be constructed so that at least 4 crude X mesh grid points cover the wing chord at each span station. This requires a special mesh generator, which provides a mesh that meets this criterion. If there are less than 4 points at any span station, the accuracy may be severely reduced. Normally, the full streamwise points in a crude X-grid are required in order to achieve this criterion and also provide a grid that extends 10 root chords in front of and behind the wing.

The mapping aligns the inner fine grid with the major portion of the wing. This is the natural coordinate system for the wing calculations. The mapping is given by:

$$\xi(X,Y) = \frac{X-X(Y)_{\xi=0}}{X(Y)_{\xi=1}-X(Y)_{\xi=0}}$$
 (1)

where $X_{\xi=0}$ and $X_{\xi=1}$ are the mapping lines that must be defined, either through internal generation or as additional input. Generally, the $X_{\xi=0}$ line should coincide with the planform leading edge and $X_{\xi=1}$ coincides with the planform trailing edge. This is not necessarily required, however, and several instances demand a departure of the mapping lines from the planform. On the fine grid, the mapping must bend such that the body is intersected perpendicularly at the body side (ξ_Y = 0 has been assumed in the program at the body side). The initial grid also requires that the mapping be bent outboard of the tip so that the ξ = 1 and ξ = 0 lines do not cross in the physical plane. Figure 8a provides an illustration of the mesh bending. The initial mesh bends such that the ξ = 1 and ξ = 0 lines are bent to the average angle of the lines at the trailing edge. The bending takes place over a distance which is one-half the lateral distance between the tip and the point at which the meshes would intersect.

The mapping is input by the user as X-Y pairs along a number of segments, with the slopes at the end points of each segment also prescribed. The most critical area of the mapping is the wing root bending and we will now describe a procedure which works well for this bending. Consider the fine mesh mapping

input for a wing-body case with a straight leading edge. Determine the Y-grid points and input a 3 segment § = 0 line as follows. Segment 1 is a 0 (zero) slope line that runs from Y = O to the first Y-grid line outboard of the root. The second segment covers 4 grid lines and has a O (zero) slope at the inboard station (Y + 1) and the slope of the leading edge at the outboard end of the segment (Yroot + 4). The third segment corresponds to the leading edge. The mapping would be constructed in reverse order, with the third segment input first. Figure 8b provides a sketch of this example. Segment 3 requires two X,Y pairs for definition and the slopes are the same as the planform. Segment 2 is, of course, the key ingredient of the mapping and an enlarged sketch of this segment is shown in Figure 8c. Four X,Y pairs are used to define this segment. The fourth point is identical with the first point of Segment 3, with the same slope. Point number 3 of Segment 2 continues to coincide with the leading edge and the third Y line past the wing root. Point number 2 is the key point in the construction. This point has a Y location on the second grid line past the wing root and an X location such that the slope between points number 2 and 3 is one-half the slope between number 3 and 4. Once point number 2 is located, point number 1 is easily located at the first Y mesh line past the root and with the same X value as point number 2. Segment l is finally constructed with two X,Y pairs describing its location, one pair at the center line, the other located at the same point as point number 1 of Segment 2. The slope is zero at both end points and the X value of both points is the same as point number 1 of Segment 2. This description should be sufficient for the user to begin generating his own mappings, which would be constructed in a similar manner for the trailing edge and planform breaks. We expect, however, that the vast majority of the user's will opt to allow the program to generate the mapping internally.

In regions where the mapping and planform do not coincide, the solution can develop inaccuracies due to the extreme non-uniformity of the grid, which actually crosses the leading edge. Riegel's Rule is automatically employed in such situations because this rule tends to compensate for the uneven spacing near the leading edge.

The above description of the mesh and mapping generation describes the methods which have been used successfully for a number of years. An experienced user can construct his own meshes and mapping in approximately one day and the results will be customized to the particular requirements of the calculation.

The automatic generators provide good results for all the configurations studied to date, but the automatic generation does not provide the specialized grid and mapping construction that might be desired in some applications.

are access out to a company of a distribution of the contract of the contract of

TABLE II Z GRID EFFECTS ON SOLUTION

OVERALL FORCE COMPARISON	ISON					
Z Mesh	Zmax		ᆌ	္မ	O.	ఠ
Heightened	1.01		1.0678	660.	82	-1.2961
Basic	1.83		1.0528	₹0860.	オ	-1.2687
Reduced	2.68		1.0522	.098973	773	-1.2752
SURFACE PRESSURE COMPARISON	PARISON					
		7 = .24			٦ = .80	
x/x	c = .21212	.51522	.96346	.23221	.53083	.96210
Z Mesh						
"short"	488	994	885	4851	53342	92105
basic	4935	468	9178	5041	53236	93626
"tall"	48139	4587	8775	-,48057	52875	91364
Cp Lower						
"short"	17065	37696	.5591	26909	09758	.56447
basic	1736	39074	.5044	2795	09093	.51879
"tall"	1639	3688	.5459	26655	10204	.55188

TACT WING $M = .95 \alpha = 5.2^{\circ}$

XI GRID DISTRIBUTION (INTERIOR MESH)
NACA TN D-712 BRICK BODY

Figure 4 AX Variation For the Internally Generated Mesh

Figure 5 Mesh and Mapping Relationship

Figure 6 Solution Dependence On X Mesh Size

Figure 7 Z Mesh For Solution Effects Study

a) Bending at Tip

Figure 8 Example of Mapping Construction

Figure 8 Example of Mapping Construction (Concluded)

d. Example Inputs

Several examples of input data sets are included in order to illustrate the various methods that can be chosen to input the required information.

Figure 9 illustrates these different inputs as follows:

Figure 9a: A55B21 Case, to illustrate IFOILT = T

IBODIN = T

Figure 9b: RAE wing "A" Case, to illustrate IFOILT = F

IBODIN = F

Figure 9c: L54H18 Case, to illustrate ITWIST = T

Figure 9d: RAE wing "A" Case, to illustrate JMESHR = T

JMAPR = T

IFINR = T

IMAPR = T

ICRUDR = T

These four cases illustrate all of the basic methods available for inputting the geometrical and mesh/mapping information.

NACA PH ASSB21 BASTC RODY HODEL							0.673150			
CL 1ST							0.721261			
FMAX17=400.							0.816036	6 0-024438		
FLW917=1.							0.86:715			
XL G=0.50.							0.908931			
XDST=1.94.							0.954690			
FNF=10							1.000			
FIVSWKE4							CUTBOAR	DUTBOARD STATION		
FODY=T.							1.0	0.0	1.0	•
FPS#20.							BASIC	BASIC SEARS HANCK BODY	K BODY	
AXISVET.							SULL BADTUS	Strike		
IBLOUTST.							0.64			
!SAVEET.							0.0	0.0		
0433							000	0.16007		
WING PLANFORM NACA RM ASSB21							0.80	0.26461		
0.0 4.0 7.53 8.0		10.4864	12.2464	7-60	9	0-0	1.20	0.35237		
LEADING EDGE							3.1	0.42940		
2 2							2.0	0.49831		
							2.40	95005		
ILING E							2.20	47477		
							3.60	0.71554		
							·	0.75619		
-							4.20	0.77.60		
64-24015 ATREDIL PERPENDICULAR TO C/2	23	(COURTESY OF DAVE CAUCHEY)	OF DAV	E CLUK	FY)		***	0.70665		
IMPORABLE STATIONS							9.4	0.81476		
0.0							08.	0.83176		
26.0							2.20	205300		
P SURFACE							8.40	0.87742		
0.0 0.0							5.50	0.99093		
							5.8	0.9036		
							6.0	0.91545		
0.027640 0.015615							6.20	0.92649		
							6.40	0.93673		
							6.60	0.90618		
							2.00	0.96.273		
							7.20	0.96005		
							7.40	0.97620		
0.250389 0.056084							7.60	0.0016		
							7.80	0.0800		
								0.0000		
								0.99652		
							0.6	1.0		
							0.40	0.99852		
0.624547 0.048161							0.80	0.90407		
							10.20	0.00		
							11.0	0.04.273		
							11.40	0.04618		
							11.60	0.92650		
							12.20	0.90367		
							12.60	0.8774.3		
							13.0	0.00		
				:				20000		
							15.0	0.64351		
							16.0	6.49832		
							17.0	0.31012		
							18.0	0.0		

Figure 9a. A55B21 Case, To Illustrate IFOILT=T, IBODIN=T

ISAVE=T. MACHOOO IBODIN=F	,						
#AC#40=0 19001N=F							
19001N=F							
IFOILT=	.16.						
POLLTER							
-							
800ver.							
AL PHURS = 1	.0.						
AL PI'ABE!	:						
FRAXITES							
713	SHXE						
IVISCAT							
-	:						
ALPHAB=1	0.						
CEND							
RAE WING	PLANFORM						
0.0	279	***	2.3	1.3%	1.77	•	
WING LEA	DING EDGE						
2.							
200							
062.2	25.						
AING TRA	INCINC EDG						
2.							
0.375	1.0						
2.250	1.770						
IIRFOIL S	ECTION						
2.	76.	76.					
	100.	2000	£00°	*00*	5000	900.	100
5400	800°	6000	.010	-012	.0125	*014	-016
ore	020.	200	.030	.035	.040	50.	90.
10.	.075	80.	60.		-12	*1.	.16
.16	.2.	•22	.24	•26	.28	•3	.32
34	.36	.38	*	240	*	54.	94.
		.52	.54	.56		4.	.62
	***	**		.73	***	.74	
2	79.		000			74.	
8	526.	50875	8				
	100.	-005	.003	+00.	500-	900.	1000
5700	800.	6000	.010	-012	.0125	*014	.016
018	.020	.028	•030	.035	.040	8	.04
20	.075	800	00.		-12	*1.	917
**		225	.24	.26	.28		22
	**						
		76.		000	8	•	700
*9	99.	990		.72	.7.	•76	.76
•	.82	• • •	.84		••	26.	•6•
8	. 276. 89.	.9875	1.0				
	2000	200000	-	******	******	-	-

Figure 9b. RAE Wing "A" Case, To Illustrate IFOILT=T, IBODIN=F

.021577 .023934 .034736 .034795 .034736 .044072 .031379 .044072 .020826 .013117 .020826 .013117 .020836 .013117 .020836 .0131179 .020836 .0131179 .0313299 .031379 .0313299 .031379 .0313299 .031379 .0313299 .031379 .008049 .031379	.00057A	.009RRB	.010480	.011039	.012074	.012316	.013022	100210.	
7786.73	-014721	.015494	.017257	.018832	.020262	.021577	.023934	.02600R	
14752	.027863	.0 2e 722	.020540	.031067	.032466	.034938	.037046	.038847	
1452	.040380	-041674	.042746	.043610	.044271	.044730	.044972	.044960	
99539	.044752	.044376	.043855	.043205	*042438	.041565	.041091	.0 40 595	
10007 -014467 -012679 -022633 -022636 -0103317 -0214467 -011267 -011268 -0000459 -0006439 -0000517 -0114467 -011267 -011268 -0000517 -0000517 -011268 -0000517 -011268 -0000517 -011268 -0000517 -011268 -0000517 -011268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -001201211268 -00120121268 -001201211268 -001201211268 -001201268 -001201268 -00120121268 -001201268 -001201268 -001201268 -0	.039539	·038403	.037196	.035924	.034592	.033209	.031779	.030308	
10 10 10 10 10 10 10 10	.028803	.027267	.025.707	.024126	.022531	.020926	.019317	.01770	
23219002012001006 0. 200578003512004966001039012014012316013022 2174300351200496601039012014012316013022 217430026720029540011269012014012318013022 21743021872021874012246021831021831021831 2174502187202187401224603183203183203183203183203183203183203183203183203183203183303183203183303183203	.016097	.014487	.012878	.011268	9596000	640800	•006439	.004829	
009578000951200049600007000701300703500857600965780154860154860152480152580152480152580152480152580	•003219	-002012	-001006	•					
	•	003512	00 4966	006078	0 07013	007835	008576	009257	
	0009578	009688	010480	011039	012074	012318	013022	013901	
	014721	015494	017257	018832	020262	021577	023934	025008	
	027863	028722	029540	031067	032466	034936	037046	038847	
	040380	04 1674	042746	043610	044271	044730	044972	044960	
	044752	044376	043855	043205	042438	041565	041091	040595	
027267025107025126019317019317019418019318012692601931701941870193180194187019	039539	038403	037196	035924	034592	033209	031779	030308	
######################################	~28803	027267	025707	024126	022531	020926	019317	017707	
ACCTAMENTA FUSELAGE -0.70 0.375 0.0 0.0 0.375 0.0	016097	014487	012878	011268	0 09658	008049	000439	004829	
ACCTAMOMARA FUSELAGE -0.70 0.20 0.00	003219	002012	001000						
ACCTAMGULAR FUSELAGE 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.0	-								
60 0.0 0.375 60 0.0 0.375 60 0.0 0.375 60 0.0 0.375 60 0.0 0.375 60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	INF INITE	RECTANGULA	A FUSELAGE						
00000000000000000000000000000000000000	02.0	-0-20	0.375	0.0					
	3.								
No.00 0 No.00 0 0000	-10.60	0.0	10.60						
	3.								
	0.0	0.20	0.375						
00 0 Nooo 0 0000	0.0	0.0	0.0						
	0.0	0.0	0.0						
	0.0	0.0	0.0						
	3.		.,						
N	3000	2	0000						
9 8	0.0	0-20	0.375						
9 8	0.0	0.0	0.0						
0 0 0000	0.0	0.0	0.0						
0 0000	0.0	0.0	0.0						
9 8	3.								
0000	-10-60	0.0	10-60						
•••	-0.20	0-0	0.20						
•••	0.0	0.0	0.0						
0.0	0.0	0.0	0.0						
	0.0	0.0	0.0						

Figure 9b. RAE Wing "A" Case, To Illustrate IFOILT=F, IBODIN-F (Continued)

```
NACA RM LSAHIR
 SLIST
IFOILT .F.
 AXISYM-T.
BODY-T.
ITWIST-T.
 ISAVEST.
 MSHINT =T .
REMESH=F .
 FMAX17-20..
 EPS=2..
 XDST=1.96.
 XL 6=0.52.
 SEND
PLANFORM GEOMETRY ... SWEEP-45 DEG. ASPECT RATIO-4. TAPER RATIO-0.6
0.0 19.29 26.79 12.0 32.04 36.54 0.0
                                                                                                   0.0
LEADING EDGE
          19.29
TRAILING EDGE
12.0 36.54
NACA 65A006 ATREDIL
          2.
 0.0
                            1.0
                                           0.0
                            0.0075
                                                        0.025
0.350
0.750
                                                                                    0-075
0-450
0-850
                                                                                                   0.100
0.0
              0.005
                                          0.0125
                                                                      0.400
0.550
              1.000
                            0.650
                                          0.700
                                                                       0.800
                            0.0075
                                          0.0125
                                                        0.025
0.350
0.750
                                                                      0.050
                                                                                    0.450
                                                                                                   0.100
0.0
              0.005
                            0.250
0.550
              1.000
              0.00464
                                                        0.00981
0.02945
0.01775
                            0.00563
                                          0.00718
                                                                      0.02996
                                                                                    0.01591
                                                                                                   0.01824
             0.02474
0.02194
0.02793
                            0.02364
                                          0.02087
                                                                       0.01437
                                                                                     0.01083
                                                                                                   0.00727
                            --00563
--02687
                                                                                     --01501
0.
-- 02194
              -.00464
                                          -.02842
                                                        -.00981
-.02945
                                                                      -.01313
                                                                                                   -. 01874
--02793
              -.02602
                            --02364
                                          -.02087
                                                        -.01775
                                                                      -.01437
                                                                                     --01083
                                                                                                   -. 00727
  TWIST TABLE
0.1389
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.95
1.00
                 0.40
                 -0.480
-1.40
-2.08
                 -2.60
                -3.40
-7.70
-4.00
-4.12
CIRCULAR BODY ON NECTANGULAR BCSS
0.0
UPPER CENTER LINE
 10.0
             0.0
.002
.119
.171
.289
0.0
.5
2.0
              .645
.786
1.037
4.0
              1.236
1.386
1.496
1.573
10.0
12.0
14.0
16.0
16.0
20.0
20.0
39.27
             1.657
```

Figure 9c. L54H18 Case, To Illustrate ITWIST=T (Continued)

RAEIOI	WING A	IAPPING AND	MAPPING AND MESH INPUT				
RODVET							
IF INGE							
CRUDA	.1.						
SHESHRE	.1.						
IMASSQ =							
SMA CO							
1FOTLT=							
IBOOIN							
FMXITI	.5						
FMAXIT	.5						
MACHO	.06-00						
AL PHANE	11.00						
AL PHAR.	11.0.						
CEND							
PAFIOI	WING A PL	ANETON					
0.6	0.279	0.846	2.250	1.395	1.77	0.0	
LEADING	EDGE						
2.0							
0.0	-0.279						
2.25	1.395						
TRAILIN	SEDGE						
2.0							
0.0	0-846	•					
2.25	1-770						
AIRFOIL	SECTION						
	2.	.92	76.	•			
.0	•0	-1	•				
.0	100.	2000	.003	*00*	-005	9000	•
-0075	900.	6000	010.	-012	.0125	.014	•
.018	.020	.025	.030	•035	0000	50.	•
100	•075	80.	60.		.12	*!:	-
.18	.2	•25	.24	.26	.28	.3	.3
.34	•36	.38	•	.42	*	5	•
84.		.52	•54	•56	•56	9.	•
•9•	99.	.68		.72	.74	.76	
•	.82	*8*	.86	86.	6.	.92	•
96.	\$76.	.9875	1.0				
	190.	-005	.003	+000	\$000	9000	•
\$1000	B00.	6000	.010	-012	.0125	.014	.01
.018	.020	.028	•030	•035	040-	.3	•
10.	540.	80.	60.		.12	.14	
.10	.2	.72	.24	•26	2.		.3
•3•	•36	.3e	*	-42	*	.45	*
.40	•	.52	45.	949.	. 26	4.	9.
9	990	49.		.72	.7.	.76	.78
•	.82	*8*	98.	99.	••	.92	•
8.	.975	-9875	0.1				

RAE Wing "A" Case, To Illustrate JMESHR=T, JMAPR=T, IFINR=T, IMAPR=T, ICRUDR=T (Continued) Figure 9d.

	-003512	906400					
.009578	.007688	.010480	.011039	.012074	.012318	.013022	1000
.014721	.015494	.017257	.016632	.020262	.021577	.023934	.026008
.027863	.028722	.029540	.031067	.032466	.034938	.037046	.036847
040380	.041674	.042746	.043610	.044671	.044730	.044972	.044960
.044752	.044376	.043855	.04.3205	.04243A	.041565	.041091	.040595
.039539	.035403	.037196	.035924	.034502	.033209	.031779	.030308
.028803	.027267	.025707	.024126	.022531	.020926	.019317	.01770
160910.	.014487	.012878	.011268	859600	.008049	.006439	.004829
•003219	•002012	*00:00*	••				
	003512	004966	006078	007013	007835	008576	009257
009578	009888	010480	011039	012074	01231B	013022	613901
014721	015494	017257	018832	020262	021577	023934	026008
027863	028722	029540	031067	0 32466	03493R	037046	038847
040380	041674	042746	043610	044271	044730	044972	044960
044752	044376	04 3855	043205	04243B	041565	041091	040595
039539	038403	037196	035924	034592	033209	031779	07030R
028803	027267	0255707	024126	022531	020926	019317	017707
016097	014487	01287P	011268	0 09658	0000049	006439	004829
003219	002012	001000					
-							
INF INITE	RECTAMBULAR FUSELAGE	R FUSELAGE					
0.20	02.0	0.375	0.0				
3.							
-10.60	0.0	10.60					
3.							
0.0	0.20	0.375					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
3.							
-10.60	0.0	10.60					
3.							
0.0	0.20	0.375					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
3.							
-10.60	0.0	10.60					
3.							
-0.20	0.0	0.20					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
INITIAL	MESH.						
	15.	16.	13.	.6			
-3.14097	2	-1.58349	-0.90601	57636	-0.3017	-0-1357A	-0-07486
0.03486		.16394	.22393	.30685	.40040		60462
0.71563	.84233	1.000	1.22206	1.57155	2.12044	2.07514	1.01601
-	-		-	-	-		֡

RAE Wing "A" Case, To Illustrate JMESHR=T, JMAPR=T, IFINR=T, IMAPR=T, ICRUDR=T (Continued) Figure 9d.

0.9902	1-33471	1.69373	1 2-05735		2.44265 2.88967	3.42726	
22.56	45.1-		•	•	10126		20.018
	1					-	
0.015	0-04875	0-10125	0.2025	0 -403	0.810	1.540	2.560
0.4							
0.9	2.0						
00000	.19499	0.46502	0.19499				
00000	•00000						
0.6	4.0						
0.46502	0.19499	. 55235	.19499	0.72433	0.25991	0.00000	0.457720
0.0	0.74402						
13.0	2.0						
0.0	279	2.29	1.39				
0.744020	0-744020						
15.0	5.0						
2.40	1.50	2.64	1.64	2.90	1.78	3-12	1.89
2.4.2	2.01						
24402	0.41068						
3.0							
0.9	2-0						
00.0	1-10815	0.46502	102 1.10815	•			
00.0	0000						
0.0	4.0						
0.465020	1.108150	0.55235	1.108150	0.72433	1.14346	0-990200	1.25265
0000	.41068						
15.0	2.0						
0.000	0.846	2.250	1.77000				
0.41068	0.41068						
FINE MESH							
54.	. 30.		20. 28.	. 11.			
63542	44398	350	240	26775	24553	2122	16406
11221	05295	01591	0.010	0.02982	0.04947	0-07075	0.09431
0.12370	0.15357	0-18350	0.21343	0.243360	0.27330	0-30323	0.33316
602920	0.39302	0.422950	0.45288	0.482810	0.51274	0.54267	.57260
0.60253	0.63246	0-66239	0.69233	0.722260	0.75219	0.78212	.81205
0.84198	0.87185	0.90130	1 002000	.955370	0.97950	1-00396	1.03061
1.06159	1.09999	1.15068	1.21955	1.31378	1.44555		
0000000	0000000	0.07500	0.14000	0.21000	-29000	0-34000	0.37500
0.40176	0.42828	0.46109	0.56983	0.65884	0.75907	0-86518	0.97392
1.08392	1.19435	1.30439	1.41356	1.52201	1.63012	1-73805	1.84558
1.95254	2.06074	2.178080	2.32192	2.51677	2.78535		
-1.83669	-1.28642	86533	56095	35036	20890	11666	05903
02556	00684	•00684	.02556	.05903	.11666	-20899	.35036
56098	.86533	1.28642	1.83669				
3.0							
0.6	2.0						
0.0	0.0592	0.40176	0.0592				
00.0	. 0000						
12.0	0.4						
0.040176		0.42828	2650.0	0.48109	0.07893	0.56983	0-144960
00000000	0.74402						

RAE Wing "A" Case, To Illustrate JMESHR=T, JMAPR=T, IFINR=T, IMAPR=T, ICRUDR=T (Continued) Figure 9d.

0.775 0.000 3.0 2.0 9.0 1.02462 0.00 0.000 12.0 4.0 0.0000 4.102462 0.0000 4.1068 0.375 1.0 0.375 1.0 0.375 1.0 0.375 1.0 0.375 1.0 0.375 1.0	2-250	1.395				
.74402 0.74402 .0 2.0 .0 2.0 .0 1.02462 .00 4.0 4.00000 .375 1.0 24068 .375 1.0 4.1068 .375 1.0 4.1068 .375 1.0 2.0 3.0 4.1068						
2.0 2.0 1.0246.2 0.0 0.0000 2.0 4.0 4.0 4.0000 4.1068 0.0 2.0 2.0 2.0 2.155 10.0 4.1068 4.1068 0.4 1068 4.1068 0.4 1068 4.1068						
2.0 2.462 2.0 0.0000 2.0 4.0 4.0 2.0 4.0 4.0 2.0 4.06 2.0000 4.1068 3.75 1.0 8.1068 3.875 1.0 8.1068 3.875 1.0 8.1068						
1.02462 2.00 0.00000 2.00 4.0 2.00174 1.02462 2.00000 4.1068 3.15 1.0 3.15 1.0 3.1688 3.0 4.1068 3.0 7.3554						
2.0 0.0000 2.0 4.0 4.026.2 0.0000 4.1068 0.0 2.0 2.175 1.0 4.1068 4.1068 0.455.4 MSH	0.40176	1.02462				
12.0 0.40174, 1.02462 0.00000, 4.1068 30.0 0.4175, 1.0 0.41068, 4.1068 10.41068, 4.1068 30.7,3554						
0.40175 1.02462 0.00000 4.1068 33.0 2 0.375 1.0 0.41068 4.1068 CDARSE MESH 30. 7.3854						
0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0-42828	1.02462 0.48109	0.48 109	1.04357	0.56983	1.08001
.41068 .41068 0ARSE MESH 307.3554						
0ARSE WESH 307.3554	2.25	1.7				
307.3554						
è,						
	15. 20.	. 10.				
	5.0718	-3.32516	-2.08375	-1.22047	61813	20078
	.50250	.69063	.86219	1.00750	1-12969	1.23938
1.34438 1.44563	1.54109	1.63594	1.75172	1.92563	2-20453	2.64406
3.30375 4.23250	5-45641	6.96875	8.71719	10.6		
0.000 .1.0034	12430021	02409.	.040704	1.304844	1-647324	1.942836
2.221464 2.573172	3-14670	4.154592	5.8311	8.273052 11.25	11.25	
-107.55017	-5.36806	-3.62958	-2.37550	-1.53647	99568	63744
	-12160 .12160	.36685	.63744	99566	1-53647	2.37550
3.62958 5.3680	6 7.55017	10.0				

RAE Wing "A" Case, To Illustrate JMESHR=T, JMAPR=T, IFINR=T, IMAPR=T, ICRUDR=T (Concluded) Figure 9d.

4. OUTPUT RESULTS

a. General

The output of this program contains a complete description of all of the basic elements of the inviscid numerical solution procedure. The viscous iteration output, as described below, can vary from a relatively simple overview of the viscous interaction to a completely detailed description of the boundary layer. Figure 10a shows the input echo. This section will echo all of the input parameters entered into the program via the NAMELIST. For the parameters which are not directly input, the values appearing in this section are the default values supplied by the program. The amount of output appearing in this section will vary somewhat depending on the exact run being attempted. For instance, if only an inviscid solution is being attempted, the section labeled VISCOUS ITERATION PARAMETERS will not appear. If the REMESH = T option is in effect, two sections labeled INITIAL MESH RELAXATION PARAMETERS and INITIAL MESH GENERATION PARAMETERS will appear following the flight conditions.

Following this NAMELIST echo, a section appears which echoes the wing planform input (Figure 10b). This is followed by the echo of the airfoil section input (Figure 10c). The size of this section will vary depending on the extent of the change in the airfoil ordinates over the span. The body lines, slopes, or areas appear next, depending on the input option in effect (Figure 10d). The case shown is for a body input in the form of body lines.

The following section describes the data used for the internal mesh generation. If the user were to input the mesh, this input mesh would be echoed at this point. Figure 10e shows the iteration for the mesh generation routine written by Dr. T. Holst of NASA Ames. Figures 10f and 10g complete the iteration and show the inner streamwise mesh distribution. The output shown in Figures 10e through 10g will appear only if FIOUT2 is set equal to 1 in the NAMELIST.

This section is followed by the output of the entire computational grid for the inner fine mesh (Figure 10h) including the first and second differences. These differences should always vary smoothly. If any difficulty occurs in obtaining a solution, the output should be checked to see if the problem is occurring near a mesh point where the second difference is not varying smoothly. The output illustrated in Figure 10h can provide important information for use in investigating the source of any difficulties in obtaining a solution. If the REMESH = T option is in effect, the grid shown in Figure 10h is the grid used for the REMESH solution.

If BBCPRT = T, the following section will begin the output of the body boundary condition information. Figure 10i shows the input body lines interpolated to the fine grid. Again, if REMESH = T, this grid will be the REMESH grid. This section is followed by a section showing the area distribution of the body on the fine grid or, if REMESH = T, the REMESH grid (Figure 10j). Next appears a section giving the upper and lower surface slopes (RBCU and RBCL are given at each span station on the body, see Figures 10k and 101). Next appears the actual side wall slopes used in the calculation (see Figure 10m). Again, these body outputs will be those for the REMESH grid if REMESH = T. These numbers should, in general, also vary smoothly.

The next section will include a description of the input reference trapezoidal wing and a description of the actual input wing planform characteristics (see Figure 10n). The grid appearing depends on whether or not REMESH = T. Figure 10o shows the next section, giving the details of the XI mapping. This section also is REMESH dependent.

If WBCPRT = T, the next section will consist of the wing surface geometry at each span station (see Figure 10p). This section allows the airfoil geometry to be checked for irregularities which can cause strange pressure distributions to appear. If REMESH = T, the wing surface geometry printed will be that on the REMESH grid.

In the middle of the wing geometry output or, if WBCPRT = F following the details of the XI mapping, will appear a line giving the value of KSWICH.

KSWICH is an internally calculated clue as to the type of airfoil input to the program. If KSWICH = 0, the program has determined that the foil input is a conventional foil. If KSWICH = 1, the program has determined that the foil is either supercritical or a flapped conventional foil with a relatively high flap angle. The clue is determined based on the difference between the angle of the mean camber line at the trailing edge and the average angle of the entire mean camber line. If this difference is greater than 5°, the foil is assumed to be supercritical in nature. The value of this clue governs the method of treatment of the viscous solution on the lower surface of the foil.

If REMESH = T, the next section will give the output of the inviscid iterations on the REMESH grid (see Figure 10q). This section gives the history of the inviscid solution on the REMESH grid. The REMESH option is used to provide a guess for the regular inviscid solution. This is followed by a list of the potential jump residuals across the span. Next is the error plot for

the REMESH grid, which is followed by a list of the potential jumps at the trailing edge across the span. The next section of the REMESH output gives the inviscid pressure distribution appearing at each span station, followed by the body side wall CP distribution. The last section of the REMESH output gives a summary of the forces, both local and total, calculated by the program. Also, the local X_{CP} and the total X_{CP} and Y_{CP} are calculated.

Following the REMESH output, the sections appearing in Figures 10h through 10p are repeated for the regular inviscid fine grid. Following the details of the XI mapping, the details of the body geometry on the coarse grid will appear if BBCPRT = T. This output is similar to the body geometry output previously discussed. This is followed by the crude exterior grid details (see Figure 10r). One of the most important pieces of information in this section is the summary of JLEX and JTEX. At least 4 streamwise mesh planes should cover the wing at each span station in order to obtain accurate results. Therefore, JTEX-JLEX should always be at least 3. This is followed by the airfoil surface geometry on the fine grid. The actual airfoil slopes at the grid points are given by DZU/DX and DZL/DX. The slopes, output in degrees, are given by DDZU and DDZL. As mentioned before, irregularities in the input ordinates can usually be spotted in this section.

After the airfoil surface geometry appears a section listing the parameters saved from a prior solution, if IDISK = T. The first portion of this section lists the inviscid saved solution parameters (see Figure 10s). KWRITE is an internally generated clue denoting the type of saved solution. This clue is generated in SAVSOL and inserted at the beginning of the saved solution. If KWRITE = 0, the old solution being read is an inviscid solution. If KWRITE = 1, the old solution being read is a viscous solution and, in addition to the inviscid data, the saved data includes the old deltastars, deltastar slopes and pressure distributions for both the upper and lower surface at each span station (see Figure 10t).

The next section gets into the actual solution. It consists of a summary of the residual parameters from the inviscid solution (see Figure 10u). The table presents the following information:

MESH Alternating FINE and COARSE mesh.

ITER Iteration number; fine and coarse iterations appear in

sequential order.

ERROR Maximum correction to potential in iteration ITER.

ERRAV Average correction to potential in iteration ITER.

JE, KE, LE Mesh indices of maximum correction to potential.

BIGRL Largest residual in iteration ITER.

RSDAV Average residual in iteration ITER.

JRD, KRD, LRD Mesh indices of maximum residual.

NSUP Number of supersonic points in mesh.

LIFT Inviscid lift coefficient.

PJRSD Maximum change in potential jump.

KPJ Location of maximum change in potential jump.

This is followed by a table of potential jump residuals at each span station (see Figure 10v). Next, error plots for the fine and coarse mesh appear (see Figures 10w and 10x). On each plot is printed the maximum error and the maximum residual. This completes the inviscid output. The output shown in Figures 10u through 10x is repeated after each viscous iteration; or, if IVISC = F, is followed by the pressure distributions at each span station and the final force summary.

Viscous Output

If IVISC = T, a section of viscous output will appear after the coarse mesh error plot. There are 3 options available for the viscous solution in addition to the normal output. These options will be discussed following the discussion of the normal viscous output. The first section of viscous output consists of a summary of the pressure convergence history (see Figure 10y). It gives the inviscid lift calculated from the integration of $\Delta \varphi$ at the trailing edge. The pressure convergence history gives the maximum change in C_p and the average change in C_p at each span station on both the upper and lower surface. In addition, the new C_p and the old C_p at the location of the maximum change, with the location itself, are listed. For the first viscous iteration, the old C_p 's will have a value of -2 at each span station as initialized by the program. If IDISK = T, the old C_p 's will have the value of the C_p 's from the old (saved) solution, interpolated to the new grid (if the saved solution is viscous and MSHINT = T).

This summary is followed by the viscous-inviscid interaction solution at each span station. If BODY = F, the first span station to appear in the output will be span station number 1. This is the first span station at the center line of the isolated wing. If BODY = T (i.e., the configuration includes a body), the first span station to appear will be the first span station outside the body. With most configurations, this is typically span station number 5. The first portion of this output lists the upper and lower surface Cp's and the associated local Mach numbers at each of the chordwise X/C's designated by the fine mesh (see Figure 10z).

The next portion of the viscous output (Figure 10aa) begins the boundary layer solution at the current span station. The effective sweep angle at this span station is printed. If separation is detected in the laminar solution, a statement to that effect is written and the solution proceeds as turbulent. The X/C at which laminar separation occurs is written out with the above statement. If the specified transition point is reached without laminar separation occurring, the solution switches to turbulent and no laminar boundary layer message is written. If separation is detected in the turbulent boundary layer, this is written out with the X/C at which separation occurred. At this point, the upper surface boundary layer solution halts. If separation is not detected, no message is printed. In either event, the program proceeds to a lower surface and repeats the boundary layer calculation.

Following this, a new section entitled NEW DISPLACEMENT THICKNESS AT STATION. . . appears (see Figure 10bb). This section consists of a table listing the following parameters:

J Chordwise station index.

X/C X/C at point J.

D-TOP Upper surface displacement thickness (δ^*).

CHANGE Upper surface fractional change in 8* from previous iteration.

INP-SLP Upper surface 8* slope input to program

= relaxation parameter X actual δ* slope.

ACT-SLP Actual slope of 8* on upper surface.

D-BOT Lower surface displacement thickness (δ^*) .

CHANGL Fractional change in lower surface δ* from previous iteration.

INP-SLP Lower surface 8* input slope.

ACT-SLP Actual lower surface 8* slope.

WBCU Upper surface slope of equivalent inviscid airfoil.
WBCL Lower surface slope of equivalent inviscid airfoil.

As the solution converges, INP-SLP and ACT-SLP will approach each other until, at convergence, they should be equal. The entire output of Figures 10z through 10bb is repeated for each span station.

Following the final span station, the drag estimate is presented (see Figure 10cc). This includes the total viscous drag estimate and the upper and lower surface skin frictions. Immediately below this appears a table with the following parameters:

K	Span	station	index
**	C CCC	D OCT OT CAT	Personal Property and Property

CFFKL Upper surface local drag estimate at span station K.

CFFKL Lower surface local drag estimate at span station K.

MACHUP Number of sonic points on upper surface.

SONPU Last acceleration past sonic on upper surface.

SHKPU Last shock on upper surface.

MACHDN Number of sonic points on lower surface.

SONPL Last acceleration past sonic on lower surface.

SHKPL Last shock on lower surface.

Next, another table will appear listing the X/C's at which separation occurs on the upper and lower surface. Also listed are modified and smoothed upper surface separation points (see Figure 10dd). If the foil being analyzed is a conventional foil, this table will be followed by one listing the modified and smoothed lower surface separation points. Following this, a listing of the modified upper surface wing boundary conditions at separation appears (see Figure 10ee). If the foil is conventional, this will be followed by a table of the modified lower surface wing boundary conditions. This completes the viscous output for a single iteration.

Following the viscous output, another group of inviscid iterations appears. Then the entire group of viscous output, from Figures 10y through 10ee, is repeated. The inviscid and viscous outputs continue to alternate until the solution either converges or the maximum allowed number of viscous iterations is reached.

Final Output

Following the last viscous iteration, the program will cycle through one final group of inviscid iterations. The program will then print the pressure change summary for the nth + 1 viscous iteration. After the final pressure change summary, the program will print a statement to the effect that the solution either has or has not converged in the allowed number of viscous iterations (see Figure 10ff). This is followed by a table giving the convergence history of the viscous-inviscid interaction. The items printed in this table are:

J	Viscous iteration number.
CLGG	Calculated lift coefficient for iteration J.
ITEX	Number of inviscid iterations performed between viscous
	iteration (J-1) and viscous iteration J.
EPS1X	Sum of $C_{\mathbf{p}}$ changes from previous viscous iteration on upper surface.
EPS2X	Sum of Cp changes from previous viscous iteration on lower
	surface.
СРИКІ	Upper surface Cp at selected inboard span station.
CPLK1	Lower surface Cp at selected inboard span station.
CPUK2	Upper surface Cp at selected outboard span station.
CPLK2	Lower surface Cp at selected outboard span station.
DELUK1	Upper surface δ* at selected inboard span station.
DELLK1	Lower surface δ * at selected inboard span station.
DELUK2	Upper surface 8* at selected outboard span station.
DELLK2	Lower surface 8* at selected outboard span station.

Next is a table giving the potential jump history at each span station. The convergence history is concluded by tables giving the history of the upper and lower surface separation zones and a table giving the final trailing edge potential jump (see Figure 10gg).

The next section of output (see Figure 10th) consists of print/plots of the pressure distributions at each span station. The tables with each plot list the following parameters:

J	Index of chordwise station.
X/C	X/C at chordwise point J.
CPU	Upper surface Cp at point J.
CPL	Lower surface Cp at point J.

MU Upper surface local Mach number.

ML Lower surface local Mach number.

DELTA CP CPL-CPU.

ZSONICU Height of sonic line on upper surface.

ZSONICL Height of sonic line on lower surface.

The following section consists of a table (see Figure 10ii) of body side wall C_p 's. The final normal output section consists of the final force and moment summary (see Figure 10jj). This summary includes the spanwise force distributions and the wing total force coefficients. In addition, the local and overall center of pressures are listed. The parameters listed in the spanwise force distribution table are:

K Index of span station.

Y Distance from center line to span station, under considera-

tion, on fine grid.

ETA Fractional spanwise location of span station K.

C/CAVE Local wing chord divided by average wing chord.

C*CN/CAVE Local normal force span loading.

C*CA/CAVE Local axial force span loading.

C*CL/CAVE Local lift force span loading.

C*CD/CAVE Local drag force span loading.

CM*(C/CAVE)² Local pitching moment span loading.

CN Local normal force coefficient found from integrating the

surface pressure distribution at span station K.

CA Local axial force coefficient found from integrating the

product of the surface pressure distribution and the local

wing boundary condition at span station K.

CL Local lift force coefficient found from CN and CA.

CD Local drag force coefficient found from CN and CA.

Local pitching moment coefficient found from integration of

ACp.X where X is distance from X moment reference to chord-

wise point J.

CM

XCP/C Local spanwise center of pressure as fraction of local chord

calculated from:

XCP/C = XMOM - CM/CL*C

This completes the spanwise force coefficients table. The next portion of the final output section gives the total force coefficients for the wing-body configuration. The parameters given in the total force coefficients are:

SREF Area of reference trapezoidal wing.

AR REF Aspect ratio of reference trapezoidal wing.

STRUE Area of actual wing.

ARTRUE Aspect ratio of actual wing.

SEXPOSED Area of exposed wing.

CN Total normal force coefficient based on SREF.

CA Total axial force coefficient based on SREF.

CM Total pitching moment coefficient about XMOM.

CL Total lift coefficient calculated both by surface pressure

integration and by circulation.

CD Total inviscid drag coefficient.

XCP X location, in fine grid, of center of pressure calculated

from:

XCP = XMOM - CM(total)/CL(total)*CAV

YCP Y location on wing of center of pressure calculated from:

 $YCP = \frac{\Sigma(\Delta CP \cdot Y)}{\Sigma \Delta CP}$

CDF (Upper) Upper surface viscous skin friction.

CDF (Lower) Lower surface viscous skin friction.

CDF (Total) Total viscous skin friction.

CD(P+I) Total drag coefficient.

CB Unswept root bending-moment.

This concludes the normal output of the program. However, if ISAVE = T, a group of tables (see Figure lokk) will appear giving the values of the viscous parameters that are saved for a future restart. These parameters, displacement thickness, displacement thickness slope, and pressure coefficient appear for each span station and both the upper and lower surface.

Output Options

There are 3 output options available to the user. The first of these is generally the most used. By setting FLWRIT = 1, the amount of output generated is decreased by a factor of about 3. This option, and also the other two, is useful only on viscous solutions. The change in output occurs only in the viscous portion of the solution. The sections of output illustrated in

Figures 10z, 10bb, 10cc and 10ee are eliminated and the section illustrated by Figure 10aa becomes that shown in Figure 1011. After the final viscous iteration a summary of the boundary layer information from the final viscous iteration is printed for each span station (Figure 10mm).

The other 2 options should be used very judiciously as they increase the amount of output tremendously. The first option is selected by setting FIOUTP = 1. With this option, a detailed description of the boundary layer is printed for each span station. This option increases the viscous output by a factor of 5 over the normal viscous output. The primary use of this option is in troubleshooting the solution in case of problems.

The second of the 2 options is invoked by setting FIOUTP = 2. This option causes all of the output of the previous option to be printed with the addition of a complete set of boundary layer profiles at each point on the wing. This increases the amount of output by a factor of 5 over that with FIOUTP = 1 and leads to a truly prodigious amount of output. It is highly recommended that this output option not be utilized unless absolutely necessary.

GRUMMAN AMES TRANSONIC VISCOUS WING BODY ANALYSIS PROGRAM

714E	TES PE	SEARCH C	WILLIAM F. BALLMAUS (USAAMADL) JUANITA FRICK (INFORMATICS INC.) NASA AMES RESEARCH CENTER MOFFETT FIFLD, CALIFORNIA	•	MILLIAM H. HADONALD A. MACH	WILLIAM H. MABON DONALD A. MACKENZIE MARK A. BTERN AERODYNAMICS SECTIO	ZIE TION, GR	UHHAN AER	OSPACE CO	RP., BETH	WILLIAM M. MASUN Donald A. Mackenzie Mark A. Stern Aerodynamics Section, grumman aerospace corp., bethpage, mew york	YORK
-	OPED	FOR THE	PROGRAM DEVELOPED FOR THE AIR FORCE FLIGHT DYNAMICS LAB, WPAFB, DAYTON OHIO	FLIGHT 0	THAMICS L	AB. WPAFB	, DAYTON	0110				
	HSH1VT	19AVE	10101	300	#BCPRT	BECPRT	800Y	Ş-	189 L	EXTHSH	REHESH	
	IFINB	ICRUDA	74498	18049	1 1 1 8 0	17H184	IFOILT F	18091	AX184H	AREA	IBLOUT	
	SHAPE											
	FLIGHT CONDITIONS											
	ALPHAN 5.2000	ALPHAB 5.2000	1,4000	RFACT 0,0000	EMEXP(1)	EMEXP(2)	•					
	FINE MESH RELAXATION		PARAMETERS									
	FINCR 1.	1.700	. 100E-04	2.00°								
	FINE MESH GENERATION		PARAMETERS									
	. 0200	. 0300	ž •		x081	XLG.	110011	F10012		,		
	RELAX	COARSE MESH RELAXATION PARAMETERS	RAMETERS									
	PHKITK 1.	FINCRX 1.	1.600	EP 00 1								
	PATION	VISCOUS ITERATION PARAMETERS	649									
	FIVCON 2.	. 0100	10.000	*1001*	F181FP	F178×8	TARN .	XTRVB.	SET SEE			
	FK2847	FKENDS	PL#R11	PELSL.	EXTNOU	EXTNOL 1,000	ř.	ě.	1			

FIGURE 10a ECHO OF INPUT OPTION AND FLIGHT CONDITION PARAMETERS

....

TACT PLANFORM						
YRUDT XLEF	405,37020 571,07000 331,99300 567,29400 656,29000	911P 331,99300	XLET 567,29400	XTET 656.29000	00000°0	9REF 0.0000
LEADING EDGE						
XNLE 3.						
N YLEI(N) 1 0,0000 2 98,3970 3 331,9950	XLE1(N) 267.050 453.3620 567.2940					
TRAILING EDGE						
XNTE 2.						
7 YTET(N) 1 0.0000 2 331.0930	XTE1(N) 571.0700 658.2900					

ATREDIL SECTION INPUT

	XK 8H 7H
8EC110	35. 38.
AIBFOIL	
.ING	3.5
TACT 1	5.

	10	50	96			99	74	20	79				25	19	50	97			99	30	00	86
01120	307874	.6584	. 8546			.0129	3078	.6584	.854684				.0350	.0739	.075905	.0624			0066	0297	.003280	. 0363
007782	287044	633663	. 830309			.007782	257044	.633683	830309				.031072	.071655	076494	. 065386			004970	030976	001821	033000
006180	20002	606900	. 905689	1,000000		.005189	206022	.608900	. 805889	1,000000			.020356	.068655	.076942	.067842	.034989		002176	031375	006429	010010
ARE INPUT	154808	559195	.761424	108540	ARE INPUT	.004151	154808	\$50105	781424	.975891			.026983	.064603	.077528	.069852	.040050		000737	030523	013514	.027290
DRDINATES	103400	506005	.756914	,951739	DRDINATES	.003113	. 103400	. 509305	756914	. 051739	4 8E		.025334	.058668	.077696	. 071471	.045818		.000093	02A167	-,018599	021169
BURFACE	077624	450229	.732359	. 927542	BURFACE	902076	077624	459229	732359	927542	TBANE IS FALSE	ARE INP	.023266	.054837	077477	.072895	.050735	ARE INPL	.003134	. 025513	. 022611	018602
WHICH UPPER	051798	40896	.707756	. 903300	HICH LOWER	.001056	.051798	408966	.707750	. 003300	Y(N) #0.000000 1	DAING ZU/C	.020405	.049382	.076855	.074129	0.050060 .055075 .050735 .0	THE FOLLOWING ZL/C ARE INPUT	.006038	. 021350	. 025699	011105
X/C AT										. 679015	T(N) .0	THE FOLL	.013223	041610	.075719	.075131	990050	THE FOL	.013223	014498	. 028019	008537

FIGURE 10c SAMPLE AIRFOIL SECTION INPUT

Y(N) . . S00000 TBANE IS FALSE

UPPER CENTER LINE

25.0 COORD PAIRS DEFINE LINE

43, 64000 -22, 00000 175, 64000 1

LINER CENTER LINE

25.0 COORD PATRS DEFINE LINE

FIGURE 10d SAMPLE BODY INPUT

X-DIRECTION GRID DISTRIBUTION

**** STRETCHING FUNCTION COEFFICIENTS ****

	FUNXX 7457 55421E+00	FUNXX B 819843008E+00
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	######################################	
**************************************	.711091180E=01 FUNX 2944097E+00 01 28587677E+00 01 285864028E+00 01 2856628E+00 01 2856628E+00 01 2856628E+00 01 2856638E+00	.7206492675=01 FUNX B .01 .25566202E+00 .39 .01 .25566275E+00 .39 .720654135E=01 FUNX B .01 .25566279E+00 .39 .720654048E=01 FUNX B
	2	X 0000 0000 0000 0000 0000 0000 0000 0
13 19 19 19 19 19 19 19 19 19 19 19 19 19	10712340E 10712340E 10470400E 10470400E 10470400E 1047475 1047476	. 1045476966.00 .1045475966.00 .1045475966.00 . 7206492876.01 . 104547586.00
4 000000000000000000000000000000000000		001ER ITER NO 8 2 XN 2 20000000E+01 3 .20000000E+01 001ER ITER NO 8 3 XN 001ER ITER NO 8 4 XN
MH SHO SMO MM MM MM MM MM MM MM MM MM MM MM MM M	0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 10e SAMPLE MESH GENERATION OUTPUT

	DMAX	00001E-	270266-	357246-0	309036-0	952776-0	14494E-0	04322E-0	00872E-0	103696-0	021986-0	01008E-0	00415E-0	001196-0	99971E-0	04443E-0	01494E-0	00350E-0	00028E-0	:	
THE WOLLD'S THE STORY OF THE ST	575	250000E-0	\$0000E-0	125000E-0	625000E-0	625000E-0	37500E-0	81250E.	031256-0	421886-0	42188E-0	22656E-0	12891E-0	0-390090	05566E-	0-787E-0	067876-0	067878-0	04787E-	.706177E-04	-326-0
	1	-300000	\$0000E	-30000S	50000E-0	25000E-0	87500E-0	87500E-	875006-0	187506-0	03125E-0	03125E-0	03125E-0	031256-0	03125E-0	100306-0	07031E-0	050786-0	04102E-0	.204102E-03	-306500
	1764	-	~	-	•	•	•		•	•	10	=		13	1.4	15	•	13		•	02

		222
AFT OF TE ITERATION	K(NI)	. 190301E+01
15		
APT OF		E-02
:	23	. 250000E-02 . 250000E-02
	1768	

•		
***** FORMARD OF LE LTERATION ****	x(1)	-,140240E+01 -,522679E+00 -,724741E+00
***** FORMARD	2	. 250000E - 02 . 250000E - 02
	1764	

FIGURE 10F SAMPLE AIRPOIL MESH GENERATION OUTPUT

ă

FIGURE 10g SAMPLE GRID DISTRIBUTION

LX.	273		×0	40	20	02x	0	720
., 7236	000000	304	0000	00000	00000	00000	000000	000
5.4895	12.07247	213.	.2200	12,0725	80.4779	0287	۰.	-21.40
2838	1 24.14495	143	1920	12,0725	60.1051	• 0500	٠.	-19,33
1047	2 36.21742	-05	.1149	12.0725	42,6652	. 1283	٠.	-18.54
. 0539	48.28989	. 20	10157	12.0725	50.1509	1020.	•	-11,60
-,0332	7 60.36236	-34	.0164	12,0725	19,3620	9800	•	-8.12
-, 0212	3 72,43464	:	0100	12,0725	12,4242	. 0030	۹.	-5.74
0121	5 84.50731	•	9800.	12.0725	7.5476		•	00.4
. 0000	0 96.57978		.0081	12,0725	4,5239	2000	۰.	-2.44
. 0040	0 108,65225	:	0900	12,0725	2,6843	0000	۹.	83
.0120	0 120,72473	-	00000	12,0725	2,6843	.0001	٩.	. 63
.0020	9 132,79720	3	. 0082	12.0725	4,3239	2000	۰.	2.44
.0283	4 144.86967	•	7000.	12.0725	7.5476	.0003	۰.	00.4
. 0369	4 156,94215		6800.	12.0725	12,4242	90000	۰.	5.749
0990	9 169.01462	34.	9600.	12,0725	19.3620	\$000°	۰.	8.1259
.0560	7 191.08709		.0100	12.0725	29,1599	.0012	٩.	11.46
. 0672	0 193,15956		.0119	12.0725	42,6652	.0016	٠.	15.54
.0799	1 205,23204	-	.0137	12.0725	60,1051	.0021	٩.	19,33
9860	9 217.30451	•••	.0161	12.0725	80.4779	.0026	9	21.40
.1121	0 229.37698		.0189	12.0725	000000	.0031	٥.	00.0
1325	50000 100 0		1050	12.0728	000000	1003		00.00
1861	20162 136 4		1500	12.0726	0.000	0000		•
	245 50440		0278	12.072	0000	1000		0000
2120	277. 66687		7000	2010	0.000	0100		
2410	2 280.73938	000000	0000	12.0725	0000	0	0000	
2718	4 101 A 1182		050	12.0726	0000	5000		0.0000
1014	111 AA420		0000	12.0725	0000	9000	000	
41010	125.05676	000000	4860	10.072	00000		0000	000
1546	0 118.02024	0	0282	12.0725	000000	.0003	000	
1867	150.10171		0.00	0000	0000	0000		
0100	000000	•	0220	00000	00000	0000		
4425	0.00000	0	0279	00000	00000	1000		0000
47052	2 0.00000	0	.0281	00000	000000	2000	00000	
7800.	3 0.0000	0	.0263	0.0000	000000	.0003	٥.	
.5271	0000000		.0286	000000	000000	.0003	۰.	
. 5559	000000 0	0	.0289	000000	000000	2000	0	
.58499	0000000	•	.0202	000000	000000	1000.	۰.	•
19193		0	\$620.	000000	000000	.0003	۰.	000000
. 6439		0	.0201	000000	00000	2000	9	
.6737	000	0000000	6620	000000	000000	.0001	٠,	•
. 1036	00.0	•	0010.	000000	000000	0000	000	•
.7336	00.0	•	6670	000000	00000	2000	000	•
.7634	00.0	0,0000	\$620.	000000	000000	50000	000	0.0
. 1926	00.0	٠.	.0288	000000	000000	.0000	000	•
. A210	00.0	٠.	.0277	000000	000000	0013	000	
. 8481	00.0	٠.	. 0262	000000	000000	0016	000	00000
.8735	00.0	•	. 0245	000000	000000	0019	000	•
. 8972	00.0	٠.	. 0229	000000	000000	0016	000	
2010.	00.0	0	. 0215	000000	000000	0012	000	•
,04014		0000000	.0205	000000	00000	10000	000000	00000
	00.0	٥.	.0500	000000	00000	.0003	000	

TOHMA BODY LINES INTERPOLATED TO FINE GRID ZCCL I ZUCL IP

FIGURE 101 SAMPLE BODY LINES INTERPOLATED TO FINE GRID

THE REAL PROPERTY.

.....

** 100

BORY SECRETOR

.0000		1					0000	0176	0163	0191	010	0100	0199	0100	0168	0188	0188	0150	0159	0150	0 5 5 0		200		9510	9510	0158	.0074	.0074	0074	.0074	.0074	03098	0311	0313		0000	1		1	0110	0148	0140	0149	0000	.0039	0000	0000	000
45000	•						1000	0143	919	0511	0170	050	050	050	920	0500	9500	0177	0177	0176					0 1 7	0175	0175	.000.	.0002	.0002	.0002	2000	03432	. 0345	. 0347									. 0165	****	.0044	4000.	.000	.000
										. 0880.	. 05450		. 04440	. 08237	.04435	. 04234	. 02230		.010.	.010.					.010.	.010.	.010.			*****			0													000.			
****	S. DRARG.				13	ı	ш		劃	œ.	t	t	*****	ä	****	14891	*****	×									.02850.	******	** 1000	******	** 100	** 55965	******				*****							*****	******	** 100.01	** 115 mag	** 10000	
Taran.	-	-	-	200.00			H				*	-	-	****	*****	THE .	SHARE!	- Haller	-	WINDS.	-	-	-	-	1666	Allen.	-	2.4	-	****		-				19888	-	14881	12444	A					-			*****	*****
																												i d		t i			= 1			ä			2			11		11		e			

00000	0607	0941	* 08844	.05481	0211	.0186	0173	.0202	.0201	0500	0500	.0200	.0100	0100	. 0100	01693	.0169	.0169	01686	.0168	01684	0168	0168	01677	01673	00100	19200	00.00	200	1000	00750	220	03344	0350	0358	0330	.03321	.01565	01510	.01574	.01578	.01583	.00423	.00423	.00425	72500	07800
0 0		•	.09415	.05835	0	٩.	۰.	3	02142	٠.	0	•	0	•	•	•	•	0	•	0	0	0	0	01785	0	76800°	0	9	9	> (14400	•	0550	0	0	0	.03535	.01666	.01671	.01676	.01080	.01685	05700.	05700	.00451	15500.	0
0 0	07180	•	10450	0	02501	٥,	٠.	٠.	0	٠.	0	•	•	02358	•	•	•	•	•	•	0	0	. 01985	. 01981	01977	*2400	0000	15600	25000	4000	2000	4000	03951	03855	.03878	.03901	.03924	.01849	.01855	.01860	.01865	.01870	66500.	00200	.00500	00500	01000
0 0		•	.12310	0	9	٠,	ೆ	٠.	•	٠.	٠.	-	٠.	.02778	9	02357	•	-	•	•	0	~	•	- 02334	0	***	00100	2010	•	10110	COC. 000	50.00	25970	.04541	.04568	56570	.04622	.02179	.02185	.02191	.02197	.05203	.00588	.00589	.00589	06500	01178
92090	•	15051	70071	.09292	03589	03166	02041		03411	•	•	•	•	03384	•	•	•	02865	02862	02859	. 02836	-,02852	. 02848	. 02843	02837	.01535	.01535	10100		11110	00000	45.00	05069	05531	.05564	.05597	.05030	.02654	.02661	.02669	.02676	. 02684	.00716	.00717	.00717	.00718	01435
-	1075	10000	.15055	.04701	03747	03300	03070	03570	03561	03552	03545	03541	03537	03533	03559	02001	0200	. 0500	02088	02085	02081	02978	05073	- 05000	02962	2010.	56510.	5510.	000		20000		01050	.09775	.05809	.05843	587	277	277	518	510	580	90100.	074	070	0	1 40
2.00000			.10221	.0.33.	·	02150	08005	*. 02330	02325	百	ਰ	7	a)	04.00	æ.	5	5	8	=	8	ē.		Œ.	ä	5	.0.00	***	е н		2.0		1		-	-	•	-	***	**	**	.0142.	**		瘛.		0.00	** 00 **
1	. iteate		dist.	Mile.	* N. 1 24	-		. 187.12	. 87218	Mann.		*1446	-					*1404	***			. 8475.2					*****					19714	Year 2	*****	. 78883			A013s	*	Sanga.	· Albana		-	8	æ,		*****

FIGURE 10m SAMPLE SIDE WALL BODY SLOPES

			×	-	v			•	•	~	0		10	-	14	13	7	15	91	11	18	-		5	7	53	*		99	27	88				
			XTE.P	0.000	.0451	,1524	. 3580	169.	7025	. 7025	. 7029	.7029	.7029	.7029	.7029	.7029	. 7029	.7029	. 7029	.7029	.7029	. 7029	.7029	. 7029	. 1064	. 1029	.7029	.7029	. 7029	.7029	. 1029				
AVERAGE	. 202		XLENP	3,1106	\$ 0403	5.1017	3,1053	3,1029	4.8094	4.8094	1.2144	1.2144	1.2144	1.2144	1.2144	1.2144	1.2144	\$115	. 9775	. 4775	.9773	.9775	2116.	2776	2116	. 4176	2116	. 4772	2116.	2776.	. 4/72				
CHORD CH	.281		(X -XIE.)/C	0866.	1666	5766	0666.	.9930	. 9973	. 9921	1.6000	3.000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	1.0000	1.0000	1.0000	1.000	70001	1.0000				
TAPER	.360		(X -XLE#)/C	50544	7570	. 0518	.0389	.0011	0670	.0550	0700.	00000	00000	00000	0700	0700.	00000	0700	0700	07000	3430.	0700.	0400.	00000		00000	00000	0400.	00000	0400.	0700.				
RATIO	992.0		NX CX	5.1	56	24	53	20	67	84	11	77	11	11	**	1 1	11	77	1	77	11	77	11	3 :	,	1	1	1	7 7	1 1	1 1				
	.235		JTE (K)	5.8	58	57	21	55	26	57	89	65	56	26	65	20	29	20	65	26	20	26	56	00		05	65	20	20	20	65				
AREA			JLE (K)	~	•	7	S.	•		10	91	91	16	16	16	16	91	16	16	16	91	91	91	0:	•	•	91	•	9.7	10	•				
CHORD	.141		CORD	1.0000	. 8985	. 7939	0069.	.5764	4893	.4193	. 3669	, 1524	.3559	.3194	. 3029	.2864	.2698	. 2602	. 2513	.2424	.2336	.2247	. 2159	. 2070	2041	. 1893	. 1604	1716	. 1627	. 1939	.1420				
BAFEP CHORD	35,121 ,384	11108	XTE " CI	1,0000	. 9988	. 9943	9006.	5772	0820	1.0077	1.0302	1.0529	1.0756	1.0963	1,1210	1,1437	1.1664	1.1891	1,2117	1.2344	1,2571	1.2798	1.3025	1.3636		1.3700	1,3953	100	1.4367	1.4616	1.4841				
9.66		•	*1.6.	0.000	.1003	* 2004	. 3006	6000	. 4957	.5863	. 6613	. 7005	.7397	. 7789	. 8181	. 6573	5969.	. 9289	5096.	.9920	1.0236	1.0551	1.0807	1.1162	24.7	1.1413	1.2129	1.2444	1.2760	1.3075	1.3391				
		Trent sing PL		0.000	. 0323	*****		. 1841	.101.	1501.	.4500	. 6505	40.7.	. 3550	. 3931	. 3074		520		.5100	. >406	. 5411			0010.	. 103	97.			. 0300		1000	5.1737	.2023	
1	111	MCT-M.	*1.*	2500	- M	.2.1.	1041	1488	*141*	4119	****	****	. 1673	* 58.88	. 4665	****		. 30.81			7614	****				08080							. 3784.00	16 second 20	
					*								100	=	-		-			-		5.1						51							

FIGURE 10n SAMPLE WING PLANFORM DESCRIPTION

	•1*	x X	0.0	xImi.0			UPSTREAM AND		BOUDARIES		
XIE XTE			XTE		XLEP	XTEP	AUX	N=Odx	XITCUP	XIT(DN)	×
	.5976		1.0062		000000	000000	1106	1,2272	-0.0000	0000-0-	-
.0323 .5976	. 5976		1,0062		000000	000000	1106	1.2272	0000.0	00000-0-	~
.0646 .5976	.5976		1.0062		000000	000000	-1106	1.2272	00000	0000.0-	~
. 0000	. 5976		1.0062		000000	000000	1106	1,2272	000000	0000 00	*
*ING #001											
.1291 .5976	.5976		1.0062		0000	00000	.1106	1.2272	00000	0000	~
.1614 .6010	.6010		1.0060		. 3212	.1724	**1044	1.2262	-1,4228	., 2257	•
.1937 .6235	.6235		1.0201		1.0338	9755	0638	1.2346	2007.	7457	•
.2260 .6613	.6613		1.0302		1.2144	. 7029	.0210	1.2297	15.6949	-1.1554	•
.2503 .7005	.7005		1,0529		1.2144	. 7029	.0897	1.2435	-5,9618	-1,2095	•
.2006 ,7397	7397		1,0756		1,2144	. 7029	.1575	1,2573	·6.2549	-1.2690	2
.3229 .7789	.7789		1,0983		1,2144	.7029	, 2253	1.2710	-6.5763	-1.3546	:
	.8161		1,1210		1,2144	. 7029	.2932	1.2846	-6.9370	-1.4074	12
.3674 .6573	. 6573		1,1437		1,2144	.7029	.3610	1,2986	-7.3371	-1.4885	13
. 4197	.8965		1,1664		1,2144	. 1029	. 4288	1.3123	-7.7601	-1.5796	*
. 4540 , 9289	.9289		1.1891		. 9773	.7029	0847	1.3298	-5.5847	-4,1315	15
5096. 5787.	5096		1,2117		.9773	.7029	. 5249	1.3477	-5.7815	-5.2066	-
.5166 ,9920	.9920		1.2344		. 9773	.7029	.5718	1.3656	-5.9928	-2.6874	17
.5488 1.0236	1.0236		1,2571		. 9773	. 7029	.6187	1,3835	-6,2201	-2.5740	18
. 5911 1,0551	1.0551		1.2798		. 9773	. 7029	.6656	1.4014	-6,4653	-2.4675	-
1,0867	1.0867		1,3025		. 9772	. 7029	.7125	1,4193	-6.7295	-2.5690	50
.0457 1,1182	1.1182		1,3252		.9772	. 7029	1994	1,4372	-7.0173	-2,6769	2
1.1498	1.1498		1.3479		.9772	.7029	.8063	1.4551	-7.3310	-2.7986	22
.7103 1,1813	1,1813	T. K.	1,3706		. 9772	.7020	,6532	1.4730	-7.6739	\$626.20	23
.7426 1,2129	1,2129		1,3933		.9772	.7029	1000.	1.4009	5080.9	-5.0735	54
.7748 1.2444	1.2444		1.4160		. 9772	.7029	0440	1.5088	0997.9-	-3.2319	25
.6071 1.2760	1.2760		1.4387		. 9772	.7029	. 9939	1.5267	-8.9207	-3.407B	56
.6394 1.5075	1.3075		1.4614		.9772	. 7029	1.0408	1.5446	5044.6-	-5.6039	27
.6717 1.3391	1,3391		1.4841		. 9772	.7029	1.0877	1.5625	-10.0170	-3.8240	88
-ING TIP											
	1.3706	-	1.5068		.9772	. 1029	1,1346	1.5804	-10,6685	-4.0727	50
1, 9363 1,4022	1.4022	_	1,5295		. 9772	.7029	1,1815	1.5983	-11.4100	-4.3560	30

FIGURE 100 SAMPLE XI MAPPING

CHECK CRUDE MESH GENERATION

á	SED TELE	
	:	
i	ľ	
9	?	
Ü	5	
ĭ	1	
•	•	
9	ì	
=	2	
	?	
i	٠	

		0	3.	D 0		. 2	~	•	~	7		v •		~	•	•	1			3	1	v 14	1 2,6393		7	•	•			•	1	- ^			•			•	
- 37000 10701	7200															-3,3276	-3.9226	5.0870	-7.5292	-9,2886	-11,5857	19,87183	THIST ANGLE	7200	-3,8037	-2.2465	-2.0720										-2.38326		
	0020	7,31196				02.77345	-2.97867	-3,18695	-3.45499							-0.54554	-10,11176	11.00672	-11.65652	-12,22543	-12.80850			0020	8,21565	1.4891											-7.72132		
	DZL/0X	-,065775	. 040161	200000	20220	035251	035426	-,036042	035821	036477	. 036789	29824	042504	045546	050806	. 058144	068570		132171	-,163552	-,205011	. 361439	. 2,2650	X0/720	-,066486	-,039265	036180	033021	032730	-,032792	032785	038604	032784	034470	-,035721	038309	041620	0647353	20000
	×9/029	,120315	.017345	******	340100	54940	052034	055680	060374	066759	075889	200100	12841	142101	.,155530	. 168160	. 178339	100131	205935	-,216636	-, 227351	.337557	CHORD	x0/020	144381	.025996	.003275	012447	017432	-,022613	-,026459	200000000000000000000000000000000000000	050650	077471	097707	117155	. 135984	196100	1707
	21.72	004850			•	- 002646	002480	002314	002127	001875	001535	. 001083				•	916000	- 006146	006997	-,010299	•	024910	1970 4	3/72	004742	004945	004467	000000	003834	003637	003414	003100	000000		-,0000851	•	000137	000000	•
2000	2015	.029122	.042951	00000	-	200790	047827	.047765	.047630	.047350	.046720	045558	010875	036259	.032016	.027065	.021443	201010	002665	002755	•	.017885	,2269 ET	ZUZ	.028061	.041539	.044551	046141	046565	996900	.047315	204780	047567	.046399	.044305	.041294	.037313	036346	0.40
:	xx	.063286	515001.			148561	300784	393416		. 427359	55521			626615	. 669174	.712880	.757970		868988		. 950237	1.000000	;	3/x	.097505	.174642	.226062	245714	279927	.204617	.311500		613188	. 466488	.517263	. 566031	.615290	000	
			~		٠.					-		~ .					• •				=	22	-			~								~	-	*	•		

FIGURE 10p SAMPLE WING SURFACE GEOMETRY

100 100		RESIDUAL ITER	AL PARAMETERS ERROR	ERRAV	3	¥	=	BIGRL	RBDAV	280	A O	180	Nace	1361	PJRSU	KP.
100 100					:											
100 100		_	3286	4088E-	•	~	=		.1058E+00	=	•	01	•	•••	0	3
Market M	~		. 3275E-01	10266-	35	4	=		. 5898E+00	13	•	•	•	.4341E-01	0	~
100 100	-		.2532F-01	9394E	35	~	-		. 3246E+00	13	3	11	-	.7377£-01	3374E-0	•
100 100	•		.1658E-01	8627E-	35	~	=		.2508E+00	13	•	11	~	. 9703E-01	26516-0	~
Table Tabl	•		18985-01	80216-	07	-	12		.2113E+00	13	10	11	56	11656+00	2164E-0	~
10045001 72795001 10045001	•		1729E-01	7603E-	07	-	12		. 2081E+00	13	7	11	47	. 1329E+00	1658E-0	~
Table Tabl	-		14156-01	7273E.	07	-	13		.2128E+00	1.3	7 7	11	67	.1472E+00	1646E-0	,
### 177 19 19 19 19 19 19 19	•		10925-01	7004	0	~	14	377E+0	-2325E+00	13	10	· on	91	.1599E+00	14636-0	~
10.00 1.00			10536-01	6774F	07	-	14	\$02E+0	25296+00	13	0	•	108	.1712E+00	1305	~
	-		A887F=02	65805	40	-	7	2106.0	.2607E+00	7		5	129	18176+00	11916	-
10.00000000000000000000000000000000000	::		74076-02	44116	9		7	006640	25486+00	=				14185 +00	1006	17-
	::		20171	13816		• -	.:	20,45	2042040	::		. ,		20185-00	1	~
Section Sect			20-36-01	21620	0	•	3	- 2017	200000	::	::			00136108		
10 10 10 10 10 10 10 10	=		.6763E-02	90000	0	-	15	•	. 4338E+00	?	-	^	717	. 41105+00	4000	•
10	2		. 6099E=02	5916E-	38	-	12	_	. 2278E+00	-	9	~	330	. 2400E+00	876	-
### 1985 1985	15		.5605E-02	742E.	30	_	15	963E+0	. 2245E+00	?	•	•	243	. 2285E+00	3636	-
10 10 10 10 10 10 10 10	:		5151Fe02		1	-	2	0 47E+0	.2237E+00	1 3	•		257	2364E+00	830E	•
10 10 10 10 10 10 10 10	::		40.00		:	• -	::	4540	23575+00	2 :			24.7	24386-00	1	•
### 1999 1999	- :		30.3550.	٠.	3:	•		1	0013610	2:	::			00+3054		
1957 100	=		20-30567		23	-	15	. 4047E+01	* 4278E+00	?	2	^	607	. KSOTE+00	1007	•
99966-02 - 99666-03 - 900666-01 - 22366-00 13 15 12 34 - 22936-00 - 66456-02 - 96666-03 3 1 10 - 90066-01 13 15 12 34 - 22936-00 - 66456-03 3 1 10 - 90066-01 - 22326-00 13 15 12 34 - 22936-00 - 66456-03 3 1 10 - 90066-01 - 22326-00 13 15 12 34 - 22936-00 - 90016-02 - 90016-03 3 1 10 - 90066-01 13 15 12 34 - 23926-00 - 90016-02 - 90016-03 3 1 10 - 90016-01 - 22326-00 13 15 12 34 - 23926-02 - 90016-03 3 1 10 - 90016-01 - 22326-00 13 15 12 34 - 23926-00 - 90016-02 - 90016-03 - 90016	=		. 4457E-02		30	~	9.7	.6338E+01	. 2288E+00	~	•	s	300	.2573E+00	.6742E-02	•
Marchine	2		44215-02	9063E-	30	-	10	. 8043E+01	. 2288E+00	13	15	12	314	.2435E+00	30979	•
100 100	~		19595-02	49616	07	-	•	. 90A6E+01	. 2293E+00	1	13	12	322	2693E+00	62536	•
3977=02 4000000 3 32 99 11 9978000 13 12 12 350 12	: :		14548-02	48646	22			94806401	26126+00	=			111	27426+00	40176	•
35576002 46076003 32 911 9926001 1 22756001 1 12 12 12 14 42 12 14 42 15 15 15 15 15 15 15 15 15 15 15 15 15	:		200000			• (::		200000000000000000000000000000000000000	::		• •	200	000000000000000000000000000000000000000	2000	
3557E-02 46007E-03 32 9 11 9970E-01 13 15 12 350 201E-02 4501E-02 4501E-03 31 9970E-02 11 9970E-01 13 15 12 350 201E-02 4501E-03 31 9 11 1050E-02 13 15 12 351 201E-02 13 15 15 15 15 15 15 15 15 15 15 15 15 15	3		2000000	47736	7	•	=	-	. C 3 3 4 E + C C	?	2	¥ !	200	. 200 /E+00	36086	•
SECTION STATE ST	2		3377E-02	4687E-	32	•	=	•	. 2375E+00	1.3	13	7	320	. 2861E+00	\$601E	•
3351E-02 4420E-03 31 9 11 9954E-01 2245E-00 13 15 12 371 2964E-00 5508E-02 2341E-03 2420E-03 31 9 11 1002E-02 2275E-00 13 16 12 392 3001E-00 5008E-02 2341E-03 31 9 11 1002E-02 2275E-00 13 16 12 392 3001E-00 4942E-02 2341E-03 31 9 11 1002E-02 2471E-00 13 16 12 392 3001E-00 4942E-02 2341E-03 31 9 11 1002E-02 2471E-00 13 16 12 392 3001E-00 4942E-02 2471E-03 31 9 11 1002E-02 2471E-03 31 9 11 1002E-03 31 9 11 1002E-03 31 9 9 11 10002E-03 31 9 9 11 1002E-03 31 9 9 11 1002E-03 31	2		.3267E-02	600E-	32	•	=		. 2409E+00	-	13	15	366	.2413E+00	8405E	•
351 5	26		.3159F=02	5116	31	•	11		. 2435E+00	-	15	12	371	. 2965E+00	52186	•
235FE02 4431E03 31 9 11 105E02 2295E00 13 16 12 399 3097E+00 4494E-02 2354E02 4444E02 31 9 11 105E02 2295E00 13 16 12 399 3104E+00 4494E-02 2295E02 4446E02 31 9 11 1105E02 2295E00 13 16 13 405 3184E+00 4494E-02 2295E02 4464E02 31 9 11 11076E02 2295E00 13 16 13 405 3184E+00 4495E02 2295E02 4464E02 31 9 11 11076E02 2295E00 13 16 13 405 3184E+00 4495E02 2295E02 310 12 1175E02 2295E02 310 13 16 13 405 3186E00 4477E02 2295E02 31 12 1175E02 2295E00 13 16 13 405 3186E00 4477E02 2295E02 3196E02 31 12 1175E02 2295E00 13 16 13 427 350E00 3196E02 2196E02 2196E02 3196E02 310 15 13 1996E02 2295E00 13 16 13 427 350E00 3196E02 2196E02 2196E02 3196E02 3196E02 3196E02 3196E02 3196E02 3196E02 3196E02 3196E02 3196E02 310 15 11 12 1175E02 2296E00 13 16 14 405 3196E00 3196E02 3196E03 31 12 1175E02 2296E00 13 16 14 405 3196E00 3196E02 3196E02 3196E03 31 12 1175E02 2296E00 13 17 14 405 3196E00 3196E02 2296E00 3106E02 3196E03 31 11 1196E02 2296E00 13 17 14 409 3196E00 3196E02 2296E02 3196E03 31 11 1196E02 2296E00 13 17 14 409 3196E00 3196E02 2296E03 31 11 1196E02 2296E00 13 17 14 409 3196E00 3196E00 2296E00 3196E00 3	-		10515-02	44206	12	•	=		245 16+00	1	9	2	180	30105+00	5038	•
2315E-02 4144E-03 51 9 11 1002E-02 2576E-00 13 16 15 399 31445E-02 4494E-02 2575E-02 4144E-03 51 9 11 1002E-02 2575E-00 13 16 15 14 405 3254E-00 4497E-02 2575E-02 4164E-03 51 9 11 1002E-02 2575E-00 13 16 15 14 405 3254E-00 4497E-02 2575E-02 2575E			20415-02	423.6	: :		::		24716400		. :	13	20%	204 14 10		•
2335E-02	0		20-31-43	7			-	•	00+31/490	2 !			310	0012/606	20-25-00-	
2555E=0.2 4106E=0.3 51 9 11 11991E=0.2 2530E=0.0 13 15 15 15 15 405 3144E=0.0 4437E=0.2 2545E=0.2 4056E=0.3 31 9 11 11951E=0.2 4056E=0.3 406 3526E=0.3 406 4437E=0.2 4056E=0.3 31 9 11 11951E=0.2 4056E=0.3 410 410 3252E=0.0 4250E=0.2 4056E=0.2 4056E=0.3 410 410 3252E=0.0 4250E=0.2 4056E=0.2 4056E=0.3 410 410 410 410 410 410 410 410 410 410	2		2034E-02	-30070	-	•	=	•	* K440E+00	2	0	12	246	00041016	**************	•
2555Fen2 4090Een3 31 9 11 1201E+02 2572E400 13 16 13 405 3184E+00 4427Een2 2545Fen2 4050Een3 31 9 11 1205Een2 2575Een0 13 16 13 406 3251E+00 4422Een2 2575Een2 2575Ee	20		.2731E-02	4164E.	2	•	=	=	. 25 50E+00	=	15	1.5	300	.3145E+00	4535E	•
2345E=02 3970E=03 31 6 11 1658E+02 2654E+00 13 16 13 406 3225E+00 4420E=02 2342E=02 3970E=03 31 6 11 1175E=02 2342E=02 3970E=03 31 11 12 1175E+02 2710E+00 13 16 13 401 3252E+00 3725E=02 2342E=02 3877E=03 13 15 13 1575E+02 2710E+00 13 16 13 427 418 3352E+00 3725E=02 2347E=03 12 15 13 1575E+02 2712E=00 13 16 13 427 3562E+00 3725E=02 2347E=02 3776E=03 11 15 13 1575E+02 2775E=00 13 16 13 428 3352E=00 3756E=02 23447E=02 3756E=02 3756E=0	7		.2635E=02	4090E-	31	•	11	••	.2572E+00	1.5	16	1.5	405	.3184E+00	.4377£-02	•
2462E-02 3991E-03 31 6 11 1617E+02 2664E+00 13 16 13 406 3261E+00 4092E-02 2395E-02 3991E-03 31 15 15 13 1975E-00 13 16 13 401 3207E+00 3748E-02 2495E-02 3891E-03 31 15 13 1975E-02 275EE+00 13 16 13 427 3566E+00 3748E-02 2495E-02 3748E-02 3748E-02 3748E-02 3748E-03 31 15 13 1975E-02 3778E-00 13 16 13 427 3566E+00 3748E-02 2758E-02 3758E-02 3758E-02 3758E-02 3758E-02 3758E-02 3758E-03 375E-02 3758E-02 3758	2		25456-02	40266	-	•	-	-	26165+00	-	16	13	907	32255+000	42500-02	•
2376F02 397F03 33 1 12 1756F02 2732F00 13 10 13 418 33.25F00 3042F02 2737F03 13 15 13 1975F02 2775F00 13 10 13 418 33.25F00 3042F02 2737F02 27377F02 2737F02 27377F02 2737F02 27377F02 273777F02 273777F02 27377F02 273777F02 2737777777777777777777777777777777777	::		24436-03	10705	; :	• •	::		24546400	: :			404	1341E	4000	•
2451E=02			20020000	1000			::		2000	::				2001		
2377E=02 3847E=03 13 15 13 18512±02 2732E=00 15 16 13 418 355E=00 3594E=02 2457E=02 3734E=03 11 15 13 1851E=02 2732E=00 15 16 13 428 3396E=00 3515E=02 2557E=02 3734E=03 11 15 13 1851E=02 2759E=00 13 16 13 428 3396E=00 3515E=02 2557E=02 3596E=03 11 15 13 1852E=02 2759E=00 13 16 13 428 3496E=00 3515E=02 2557E=02 3596E=03 33 1 12 15 13 15 15 15 15 14 465 3496E=00 3515E=02 2557E=02 3549E=03 33 1 12 15 13 15 15 14 465 352E=00 3515E=02 2557E=02 3549E=03 33 1 12 15 15 15 15 16 14 465 3552E=00 3515E=02 2557E=02 3549E=03 33 1 12 15 15 15 15 14 465 3552E=00 3515E=02 2557E=02 3549E=03 33 1 12 15 15 15 14 465 3552E=00 3505E=02 2557E=02 3569E=03 33 1 12 15 15 15 14 467 3505E=00 3505E=02 2556E=02 3569E=03 33 1 12 15 15 15 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 15 15 15 15 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 15 15 15 15 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 12 15 1505E=02 3505E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 12 1505E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 15 1505E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 12 1505E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 1 1005E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 1 1005E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 1 1 1005E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3245E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3505E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3505E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3505E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3505E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3505E=00 13 17 14 467 3505E=00 3505E=02 2556E=02 3505E=03 31 0 11 11005E=02 3505E=00 13 17 14 467 3505E=00 3505E=00 3505E=00 1	2		20-36-67	39416	2	-	16	-	- 2004F-	?	-	2	-	. 3647E+00	. 3903E-02	•
24516-02 35356-03 12 15 13 19516-02 27326-00 15 16 13 427 35666-00 37266-02 27566-03 11 15 13 19546-02 27516-00 15 16 15 428 35966-00 35156-02 27556-03 10 15 13 15 15 15 15 15 15 16 15 428 35966-00 35156-02 27556-03 10 15 13 15 15 15 15 15 15 15 15 16 15 441 34056-00 34176-02 27556-02 35066-03 10 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15	35		.2374E-02	38776-	13	- 2	13	=	. 2710E+00	-	9.	?	41.0	. \$\$ \$2E+00	3845	•
2447E=02 3736E=03 11 15 13 1954E+02 2751E+00 13 16 14 426 3399E+00 3619E=02 2515E=02 3736E=03 11 15 13 1964E+02 2751E+00 13 16 14 445 3442E+00 3515E=02 2515E=03 3 11 15 13 1956E+02 2759E+00 13 17 13 445 3492E+00 3515E=02 2515E=03 3 11 12 1362E+02 2766E+00 13 16 14 462 3522E+00 3523E=02 2516E=03 3 11 12 1362E+02 2766E+00 13 16 14 462 3522E+00 3524E=02 1901E=02 3474E=03 3 11 12 1372E+02 2602E+00 13 16 14 462 3522E+00 3106E=02 1901E=02 3474E=03 3 11 12 1372E+02 2604E+00 13 16 14 462 3532E+00 300E=02 1707E=02 3506E=03 3 11 12 1372E+02 2554E+00 13 16 14 462 3532E+00 300E=02 1707E=02 3506E=03 3 11 12 1372E+02 2554E+00 13 17 14 462 3532E+00 2604E=02 1707E=02 3506E=03 3 11 12 1272E=02 13 17 14 467 3506E+00 2604E=02 10772E=02 3506E=03 3 11 12 1272E=02 2572E+00 13 17 14 467 3772E+00 2605E=02 10772E=02 3506E=03 3 1 11 1206E+02 2604E+00 13 17 14 467 3772E+00 2605E=02 10772E=02 3506E=03 3 1 11 1106E+02 2605E+00 13 17 14 467 3772E+00 2605E=02 1572E=02 3772E=02 3772E	36		.24516-02	3834E-	15	15		ä	.2732E+00	1.5	91	13	427	. 3366E+00	3726	•
2355E-02 3736E-03 11 15 13 1941E+02 2759E+00 13 16 14 44 3442E+00 3515E-02 2150E-02 3506E-03 10 15 13 1562E+02 2759E+00 13 16 14 441 3442E+00 3417E-02 2056E-03 33 1 12 1362E+02 2759E+00 13 16 14 462 3546E-02 3546E-03 33 1 12 1362E+02 2759E+00 13 16 14 462 352E+00 3534E-02 2006E-03 33 1 12 132E+02 2564E+00 13 16 14 462 352E+00 374E-02 1961E-02 3404E-03 33 1 12 137E+02 2564E+00 13 16 14 462 350E+00 300E-02 1961E-02 350E-03 33 1 12 1362E+02 2551E+00 13 16 14 462 350E+00 300E-02 1747E-02 350E-03 33 1 12 1256E+02 2554E+00 13 17 14 463 350E+00 2604E-02 1747E-02 3509E-03 31 9 11 1256E+02 2696E+00 13 17 14 467 3505E+00 2604E-02 1657E-02 3509E-03 31 9 11 126E+02 2496E+00 13 17 14 467 370E+00 2604E-02 1657E-02 3509E-03 31 9 11 1196E+02 2495E+00 13 17 14 465 370E+00 2674E-02 1657E-02 3509E-03 31 9 11 1106E+02 2805E+00 13 17 14 465 370E+00 2671E-02 1657E-02 3509E-03 31 9 11 1106E+02 2805E+00 13 17 14 465 370E+00 2571E-02 1557E-02 2506E-03 31 9 11 1106E+02 2805E+00 13 17 14 465 370E+00 2571E-02 1557E-02 2506E-03 31 9 11 1106E+02 2805E+00 13 17 14 465 370E+00 2571E-02 1557E-02 2506E-03 31 9 11 1106E+02 2805E+00 13 17 14 465 370E+00 2571E-02 1557E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 17 14 465 370E+00 2571E-02 1557E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 11075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 1075E+02 2805E+00 13 16 14 465 3707E+00 2571E-02 2606E-03 31 9 11 1077E+02 2805E+00 13 16 14 465 3707E+00 2606E-02 2606E-03 31 9 11 1077E+02 2806E+00 13 16 14 465 3707E+00 2606E-02 2606E-03 31 9 11 1077E+02 2805E+00 13 16 14 465 3707E+00 2606E-02 2606E-03 31 9 11 1077E+02 2805E-00 13 16 14 465 3707E+00 2606E-02 2606E-03 2606E-03 2606E-03 2606E-03 2606E-03 2606E-03 2606E-03 2606E-03 2606E-03 2606	37		.2447E-02	3788E-	-	15	13	-	.2751E+00	13	91	1.5	428	.3399E+00	36196	•
2130E-02 360E-03 10 15 13 150EE+02 2740E+00 13 16 13 441 3462E+00 3343FE-02 2059E-02 350EE-03 33 1 12 1312E-02 2740E+00 13 17 13 4452 3493E+00 3343FE-02 1963E-03 33 1 12 1312E+02 2740E+00 13 16 14 462 352E+00 3151E-02 1963E-03 33 1 12 132E+02 2740E+00 13 16 14 465 352E+00 370E-02 1963E-02 3404E-03 33 1 12 137E+02 260EE+00 13 16 14 472 3579E+00 300E-02 1740E-02 355E-03 33 1 12 152E-02 255EE+00 13 16 14 477 350EE+00 300E-02 1740E-02 350EE-03 33 1 12 275E+02 255EE+00 13 16 14 467 350EE+00 2604E-02 1760E-02 3509E-03 31 9 11 225EE+02 2496E+00 13 17 14 467 3507E+00 2604E-02 1657E-02 3509E-03 31 9 11 110EE+02 2495E+00 13 17 14 469 375E+00 2605E-02 1551E-02 2506E-03 31 9 11 110EE+02 2506E+00 13 17 14 469 375E+00 2557E-02 1551E-02 2506E-03 31 9 11 110EE+02 2506E+00 13 17 14 469 375E+00 2557E-02 1551E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 17 14 469 375E-00 2557E-02 1551E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 17 14 469 375E-00 2557E-02 1551E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 17 14 469 375E-00 2557E-02 1551E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-00 2557E-02 1551E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-00 2557E-02 15506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-00 2557E-02 15506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-02 2506E-03 31 9 11 110FE+02 2506E+00 13 16 14 469 375E-02 2506E-02 2506E-02 2506E-02 3106E-02 3106E-02 2506E-02 3106E-02 3106E-	ZA		.2335E-02	3738E	11	15	1.3	=	. 2761E+00	113	16	1.5	436	3431E+00	3515E	•
2059E-02 3519E-03 33 11 12 1362E+02 2708E+00 13 17 13 452 3493E+00 3334E-02 2006E-03 33 11 12 1372E+02 2708E+00 13 16 14 462 3522E+00 3534E-02 1951E-02 3476E-03 33 11 12 1375E+02 2667E+00 13 16 14 465 352E+00 3574E-02 1951E-02 3476E-03 33 11 12 1375E+02 2564E+00 13 16 14 477 3506E+00 3506E-02 1566E-02 3565E-03 33 11 12 1375E+02 2564E+00 13 14 465 3656E+00 3606E-02 1709E-02 3507E-03 33 11 12 1275E+02 2551E+00 13 17 14 465 365E+00 2741E-02 1709E-02 3507E-03 31 9 11 1250E+02 2574E+00 13 17 14 467 370E+00 2741E-02 1675E-02 3090E-03 31 9 11 1101E+02 2674E+00 13 17 14 495 3705E+00 2677E-02 1676E-02 3706E-03 31 9 11 1101E+02 2805E+00 13 17 14 495 3705E+00 2571E-02 1570E-02 3706E-03 31 9 11 1101E+02 2805E+00 13 17 14 495 3770E+00 2571E-02 1570E-02 26060E-03 31 9 11 1101E+02 2805E+00 13 17 14 495 3770E+00 2571E-02 1570E-02 2606E-03 31 9 11 1101E+02 2805E+00 13 17 14 495 3770E+00 2571E-02 1570E-02 26060E-03 31 9 11 1101E+02 2805E+00 13 10 14 495 3770E+00 2571E-02 1570E-02 26060E-03 31 9 11 1101E+02 2805E+00 13 10 14 495 3770E+00 2571E-02 1570E-02 26060E-03 31 9 11 1101E+02 2805E+00 13 10 14 495 3770E+00 2571E-02 1570E-02 26060E-03 31 9 11 1101E+02 2805E+00 13 10 14 495 3770E+00 2571E-02 2606E-02 2606E-03 31 9 11 1101E+02 2805E-00 13 10 14 495 3770E-00 2605E-02 2606E-03 31 9 11 1101E+02 2805E-00 13 10 14 495 3770E-00 2605E-02 2606E-03 31 9 11 1101E-02 2805E-00 13 10 14 495 3770E-00 2605E-02 2606E-03 31 9 11 1101E-02 2805E-00 13 10 14 405 3770E-00 2605E-02 2606E-03 31 9 11 10075E-02 2805E-00 13 10 14 405 3770E-00 2605E-02 2605E-03 31 9 11 10075E-02 2805E-00 13 10 10 10 10 10 10 10 10 10 10 10 10 10	20		.2130F-02	36806-	10	15	13	-	27596+00	1	16	1.3	177	3462F+00	34176	•
2006E02 3596E03 33 112 132E+02 2054E+00 13 16 14 462 352E+00 3534E-02 1955E-02 3474E03 33 112 135E+02 2054E+00 13 16 14 465 355E+00 3574E02 1901E02 3474E03 33 112 1356E+02 2554E+00 13 16 14 477 3506E+00 3074E02 1705E02 3505E03 33 112 136E+02 2554E+00 13 16 14 477 3506E+00 3074E02 1705E02 3505E03 33 112 136E+02 2554E+00 13 17 14 462 3505E+00 2646E02 1705E02 3507E03 31 9 11 1250E+02 2554E+00 13 17 14 467 3507E+00 2641E02 1656E02 3509E=03 31 9 11 126E+02 2649E+00 13 17 14 467 3707E+00 2641E02 1656E02 2566E03 31 9 11 1106E+02 2549E+00 13 17 14 495 375E+00 2655E02 1551E02 2566E03 31 9 11 1106E+02 2566E+00 13 17 14 495 3756E+00 2571E02 1551E02 2566E03 31 9 11 1106E+02 2566E+00 13 17 14 495 3776E+00 2571E02 2566E03 31 9 11 1106E+02 2566E+00 13 17 14 495 3776E+00 2571E02 2566E03 31 9 11 1106E+02 2586E+00 13 16 14 495 3776E+00 2571E02 2566E+02 2566E+00 13 16 14 495 3776E+00 2571E02 2566E+02 2566E+02 13 16 14 495 3776E+00 2571E02 2566E+02 2566E+00 13 16 16 495 3776E+00 2571E02 2566E+02 2566E+00 13 16 16 495 3776E+00 2571E02 2566E+02 3776E+02	40		20505-02	34186	2	-		-	27406+00	-		2	452	24935	11216	•
1951E-02 3404E-03 33 11 12 1137E+02 2624E+00 13 16 14 472 3551E+00 3704E-02 1961E-02 3404E-03 33 11 12 1137E+02 2624E+00 13 16 14 472 3579E+00 3704E-02 1706E-02 3256E-03 33 11 12 1132E+02 2551E+00 13 16 14 472 3579E+00 3704E-02 1706E-02 3207E-03 33 11 12 1132E+02 2551E+00 13 16 14 482 3508E+00 2604E-02 1705E-02 3107E-03 31 9 11 1250E+02 2604E+00 13 17 14 487 3508E+00 2804E-02 1657E-02 3109E-02 3206E-03 31 9 11 1106E-02 2805E-00 13 17 14 499 373E+00 2807E-02 1551E-02 2805E-03 31 9 11 11075E-02 3206E-03 31 9 11 11075E-02 3206E-02 351E-02			20046-02	15046		• •		::	27086400	: :	::		1000	16.35		
19515-02 3476-03 33 11 12 1376-02 13 16 14 472 35916-00 31016-02 19606-03 33916-03 3				1000	::	•			000000	::				0011111	30-36-36-	
1901E-02			14536-06	34/46	2	-	7	-	00+B/007.	2	•	•	403	. 3551E+00	. 3131E-06	•
1850F=02			. 1901E-02	3404E-	33	-	~	=	624E+0	13	9.	*	472	. 1579E+00	.3074E-02	•
17976-02	77		. 1850E-02	3335E-	33	-	12	=	584E+0	13	16	14	477	. 3606E+00	.3000E-02	•
17476-02 32076-03 33 1 12 12756-02 25246-00 13 17 14 485 35566-00 28046-02 15056-02 31476-03 31 9 11 12506-02 24996-00 13 17 14 487 35956-00 27416-02 16576-02 30906-03 31 9 11 11966-02 24466-00 13 17 14 487 37076-00 27416-02 16576-02 29506-03 31 9 11 11966-02 28956-00 13 17 14 495 37516-00 26276-02 15906-03 31 9 11 11196-02 28956-00 13 17 14 495 37766-00 25716-02 15906-03 31 9 11 11196-02 28956-00 13 18 14 495 3776-00 25716-02 15906-02 39506-03 31 9 11 110756-02 28956-00 13 18 14 495 3776-00 25716-02 15906-02 39506-03 31 9 11 10076-02 28956-00 13 18 14 495 3776-00 25736-02 15906-02 38956-02 38956-00 13 18 14 495 3776-00 25756-02 15906-02 38956-02 38956-00 13 18 14 495 3776-00 28956-02 15906-02 38956-02 38956-00 13 18 14 495 3776-00 38956-02 15906-02 38956-02 38956-00 13 18 14 495 3776-00 38956-02 15906-02 38956	57		11096-02	3269E.	33	-	12	-	551E+0	13	16	14	482	3632E+00	2930E-02	•
1705E-02 3147E-03 31 9 11 1250E+02 2474E+00 13 17 14 467 3508E+00 2741E 1657E-02 3090E-03 31 9 11 1224E+02 2474E+00 13 17 14 467 3707E+00 2741E 1657E-02 3034E-03 31 9 11 1101E+02 2445E+00 13 17 14 495 3791E+00 2673E 1650E-02 2926E-03 31 9 11 1101E+02 2895E+00 13 17 14 495 3797E+00 2871E 1551E-02 2680E-03 31 9 11 1075E+02 2505E+00 13 18 14 495 3797E+00 2871E 1509E-02 2686E-03 31 9 11 1075E+02 25895E+00 13 18 14 495 3797E+00 2871E	44		1747E-02	32076	1	-	-		6246+0	2	1.	14	485	1658E+00	SABUE - 02	•
1679E 02 3090E 03 31 9 11 1224E + 02 2474E + 00 13 17 14 487 3707E + 00 2741E 1653E 02 3034E 03 31 9 11 1124E + 02 244E + 00 13 17 14 480 3731E + 00 2751E			17055-02	11476		• 0	::		04300		:	71	487	14816+00	20015-02	•
1674E-02			20110	-	::		::			::	:				200000	
1653E-02	0		10195-06	3000E	=	•	=	-	46.0	=	-	*	101		. 4741E-04	•
1624E-02 ,2986E-03 31 9 11 ,1161E+02 ,2415E+00 13 17 14 494 ,375E+00 ,2627E 1590E-02 ,2926E-03 31 9 11 ,1119E+02 ,2585E+00 13 17 14 495 ,3776E+00 ,2571E 1551E-02 ,2886E-03 31 9 11 ,1075E+02 ,2560E+00 13 18 14 495 ,5797E+00 ,2513E 1599E-03 31 9 11 ,1047E+02 ,2560E+00 13 18 14 495 ,5797E+00 ,2455E 1599E-03 31 9 11 ,1047E+02 ,2559E+00 13 18 14 494 ,5818E+00 ,2455E	07		.16535-02		31	•	11	=	15E+0	=	-1	7.	001	.3731E+00	. 2663E-02	•
1590E-02 ,2926E-03 31 9 11 ,1119E+02 ,2365E+00 13 17 14 495 ,3776E+00 ,2571E 1551E-02 ,2860E-03 31 9 11 ,1075E+02 ,2560E+00 13 18 14 495 ,3797E+00 ,2513E 1509E-02 ,2835E-03 31 9 11 ,1047E+02 ,2359E+00 13 18 14 494 ,3618E+00 ,2455E	0		16245-02		31	•	-		156+0	13	11	14		. 3753E+00	.2627E=02	•
1551E-02 .2880E-03 31 9 11 .1047E+02 .2560E+00 13 18 14 495 .3797E+00 .2513E			15005-02	92AF.	=	•	=		156.0	-	-	7		37765.00	26716-02	,
2635E-03 31 9 11 1047E+02 2539E+00 13 18 14 494 3818E+00 32435E	::					0	:						207	47075	35175	•
10 10 10 10 10 10 10 10 10 10 10 10 10 1			20000		; :		::	•		::	•					
	2		. ISUME . D	9325	21	>	-	-	•	13	0	* .	3 > 3	. 3010E+00	4326	

FIGURE 109 SAMPLE REMESH ITERATION OUTPUT

GRID
=
3
E
=
EXTERIOR
M
×
W
~
5
CRUDE
•
C
=
GRID
7
-
Ö
=
-
COMPUTATIONAL
2
=
ō

	managa ka g akaman
	P.
	LCCA TIONS

	MANUARY NO CO
	OF 444444WWWW
	00000000000000000000000000000000000000
	N
	WEENED 40000 N C 00000 N C 0000000000000000000
SOCOCOON SERMS II - MMERONA	ฉือออ ๔ ผ [ู] ญญัตติตตัวสำลั
	N
	ooo ox
0	N
	00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0004MM	
10 5 5 5 5 6 7 5 6 7 5 6 7 6 7 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8	WWW X HWANAL SORY

FIGURE 10T SAMPLE CRUDE EXTERIOR GRID OUTPUT

5			
_			
	в		
ú	ı		
5	1		
	۲		
r			
s			
r			

KAOLDS 2A

470L0. 5

1	ARAMETERS FROM	OLD SOLUTION	NO				
17ERO 299	200	30 LHO	111	£.			
1507E+01 4655E+02 4278E+02 3103E+02	PJUMPO(K),KW1,KW0 7E+01 1630E+01 8 5E+02 4717E+02 8 6E+02 4210E+02 8	1794E+01 4702E+02 4133E+02	. 2038F+01 . 4654F+02 . 4053E+02 . 1665E+02	. 39 0 6 + 02 . 39 0 6 + 02 . 19 8 9 6 + 0 0	. 4497E+02 . 3735E+02 . 1989E+02	. 40656+02 444116+02 544116+02	. 4343E+02 . 4343E+02 . 3460E+02
1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.01219 0.01219 0.01219 0.01219 0.01201 0.01201 0.01201 0.01201	## ## ## ## ## ## ## ## ## ## ## ## ##	2008 2008 2019 2019 2019 2019 1019 1019 1019 1019	6 000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	6 000000000000000000000000000000000000	COPPOSITION OF THE COPPOSITION O
ETAD(K) 0.00000 96.57978 1 193.15956 2 289.73935 3	12.07247 106.65225 205.23204 301.81182	24,14495 120,72473 217,30451 313,88429	36.21742 132.79720 229.37696 325.95676	18.28989 144.86967 241.44945 358.02924	60.36236 156.94215 253.52193 350.16171	72.43484 169.01462 265.59440	84.50731 181.08709 277.66687
24082 4.23529 92.94930	ZTO(L), Lm1, LM0 340A2-213, 19954- 23529 - 113339 94930 143, 38501	143,38501 1,1339 213,15954	92.94930 4.23529 304.34082	-58.05458 9.78126	19.53054	19.53034 34.62960	50° 70° 180° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5
299	30	2 2 2	9:-	410 12			
X10(J) 0.53733 85587 58219 1.79524	1,181,180 11,18816 10,18816 10,18818 10,18818	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 54251 . 23623 1.02300 3.33761	10000000000000000000000000000000000000	1.94601 1.0546 1.30924 10.46162	1. 48130 1. 48130 1. 48453	1,1989 48741 1,61890
200	ETAC(K), KEL, KHO 0.0000 31.61838 292.94705 284.56543 361.287302124,47620	63.23676	94,65514	126,47352	156.09190	169.71029	221,32867

200100000000000000000000000000000000000	2876:387E-0	242653246-02	SALO2F-0	101216-0
17020026-02	284411025-0	20120202020	142811175-0	A 5 2 5 6 - 0
6697297F-02	277417406-0	50134 1013 103 103 103 103 103 103 103 103 10	3494747F	90 4 2 E = 0
8884425F-02	40104104	17447095-02	28280917F=0	31754579F=0
2587147F-02	205180776-0	50079475-03	28070731F-0	\$1938F-0
4144446-02	SASAA7016-0	295480725-02	24190870F=0	287276276-0
8:946A2F=02	TABATTONE	405854516	197071876-0	13047F=0
5240455	701251216-0	47645446-0	0-386500106	12097115F-0
6831384E-03		95340163E-03	41646R16E-02	22387730E-02
.18463163E-01	. 80603404E-0	15079486E+0		
Tille . Il. fet	* 2			
37121106-03	174098046	206752615-0	070304F-0	•
4197420E-02	.44025266E-0	\$200572E-0	606315F-0	36819930E-0
2199314E-02		35110001E-02	31087304E-02	29524253E-02
7208631E-02	.21445592E-0	154453366-0	20682RE-0	
5960919E-03	12071A14E-3	0-3240401	22043799E-0	-
0566775E-02	.21341126E-0	2266523AE-0	379388E-0	:
1804502E-02	.2056255AE-0	82701746E-0	478324E-0	?
31824556-03	30739732E-U	6828562E-0	0-367259	:
9488374E-03	34335714E-0	357856306-0	12175003E-0	:
.15787552E+00	.2191669AE+0			
1	-			
1011251128	114363105-0	20.26136406	119318735-0	-
6991463E=02	26149392E-U	38799220E-02	364825515-02	30630131E-02
8696607E-02	24024A35E-U	.23241313E-02	185404056-0	:
0044711E-02	94972982E-U	. 74722610E-03	94969771E-0	:
\$870740E-02	.18824342E-U	.20283459E-02	2257093RE-0	?
3500073E-02	.2106671AE-0	.14712519E-02	52702777E-0	?
397202RE-03	50170592E-0	35169479E-03	535E-0	?
561702326-03	•	.96486660E-03	164E-0	?
TUCK.J. Ja1.	×z			
61976516-03	116865295-0	15342A1AF-0	5833087F-0	402657075-02
495794RE-02	729A1A74E-02	36-0	012771SE-0	32205941E-02
40139246-02	24775302E-0	216523176-0	87487416-0	15285689E-02
490 55736-02	143424455-02	14098267E-0	4393530F-0	15801972E-02
79904996-02	212164445-0	216846226-0	749957456	241919516-02
23427529E-02	.22147A71E-02	134A2A90E-02	. 606471246-03	28943279E=03
21744016-04	. 65725150E-04	65578705E-0	16626700E-0	61382875E-03
FALSA 1200				
500000000000000000000000000000000000000	200110110011	-	1252622F=0	60824962F=02

FIGURE 10¢ SAMPLE VISCOUS RESTART PARAMETERS

ERRAV		7	=	A A	"	BIGRL	N 4 CD A V	8	KKD	083	300	1111		3
.1366F=03 .1658E=04 20 14 4 .42 .9687F=04 .1366F=04 25 1 17 .41	20 14 4	*. *.	 	••	3.3	.4257£+02	. 1215E+01	5.9	200	• •	17221	. 41016+00	.58625.04	2
.1358E=05 .1867E=04 19 14 4 55: .0400E=04 .1343E=04 25 1 17 .410	1 19 14 4	14 17 .	3,7	••	. 53	.5357£+02	.1231E+01	5 9	5 4	• •	17204	.41056+00	. 56756-04	2
.1543f-03 .1877f-04 19 14 4 .569	19 14 4	14 1 1 1	3.Ľ	••	56.	.5657E+02	.1249E+01	22	° •	• •	17167	. 4104E+00	.54846-04	2
.1318F-03 .1887F-04 18 14 4 79	u 18 14 4 u 24 1 17	16 17	3.5		£ 0	. 1995E+02	.1267E+01	22	8 9	20	17171	.4106E+00	.53106-04	:
.1536E-03 .1899E-04 14 28 19 .10	26 19	28 19	112		39	1094E+03	.1268E+01	••	8 •	• •	17147	.4108E+00	.5167E-04	*
.1603E-03 .1909E-04 15 28 19 .129	4 15 28 19	28 19		•••	35.	1291E+03 3936E=01	.1309E+01	22	2 5	• •	17126	.41106+00	. 50 69E-04	\$
.1564f=03 .1915f=04 12 28 19 .124 .8737f=04 .1239f=04 24 1 17 .369	u 12 28 19 .	28 19	22	••	389	1249E+03 3698E-01	,1329E+01	22	8 5	000	17115	.41126+00	.50126.04	
.1261E-03 .1920E-04 20 17 4 .922.	4 20 17 4 .	17 14 .	27.	• •	385	9226£+02 3859£=01	.1346E+01	51	8 5	20	17105	.41146+00	. 4970E-04	
.1261E-03 .1925E-04 19 17 4 .829	24 17 4	17 17 17	3 7.		381	38198-01	.1366E+01	150	25	20	17086	.41156+00	. 49476-04	2
.8303E-04 .1183E-04 19 17 4 .946.	4 19 17 4	17 4	37.		377	9460E+02	.1391E+01	95	0 is	901	17075	.41176+00	. 4932E=04	2
#1502E=03 #1931E=04 13 28 18 #971	4 13 28 18	28 18	611		971	9717E+02	.1419E+01	15	82 5	9 2	17060	.41196+00	. 49165-04	2
.1212E=03 ,1922F=04 18 17 4 .850f	4 18 17 4	17 4	2 t.		368	.8508E+02	.1458E+01	2.3	6 N	200	17055	.41216+00	.48935-04	2
.11815-03 .19105-04 17 17 4 .6367 .78745-04 .11295-04 24 1 17 .5636	4 17 17 4	17 4	17.		. 8563	.8367E+02	.1449E+01	910	5 5	00	17051	.41236+00	. 48611-04	*
.1307F-03 .1897E-04 14 27 19 ,9215 .773ZE-04 .1112E-04 24 1 17 ,3976	4 14 27 19	27 19	• •		3576	9215£+02	.1459E+01	15	22	00	17019	.41256+00	.48176-04	2
.1309F=03 .1863F=04 13 27 19 .9145	u 13 27 19	27 19	110	•	3511	9145E+02 3511E-01	.1474E+01	55	5 5	10	16991	.4127E+00	. 4762E.04	2
.1111E-03 .1865E-04 12 27 19 .7651 .7449E-04 .1076E-04 24 1 17 .5438	u 12 27 19 .	27 19 .	17	•	. 3438	7651E+02 3438E-01	.1486E+01	55	2 2	00	16970	.41286+00	. 46965-04	2
.9602E=04 .1842E=04 15 17 4 .5356 .7306E=04 .1058E=04 24 1 17 .3357	4 15 17 4 4 4 54 1 17 4	17 1 17	37.		5356	5356E+02	.1489E+01	15	2 5	00	16947	.4130E+00	. 46225-04	2
.9146E=04 ,16419E=04 30 18 10 ,5291	4 30 16 10 4 24 1 17	16 10	110		326	3268E=01	,1487E+01	17	. n	900	16936	.41326+00	. 45406-04	2

FIGURE 10u SAMPLE INVISCID ITERATION OUTPUT

FIGURE 10v SAMPLE PJUMP RESIDUALS OUTPUT

ERPLOT FOR COARSE HESH

FIGURE 10x SAMPLE ERROR PLOT FOR COARSE MESH

VISCOUS FLOW CALCULATION

ITERATION NO. 1 ON GRID NO. 1

.52160E+00
2
2
-
H
DELTA
6
INTEGRATION
PROM
-

	BOTTOM IS . 21916+06 IN TERMS OF THE CONVERGENCE CRITERION	
	THE 30	
	TERMS OF	
	.2191E+06 IN	
SURE SOLUTION	BOTTOM 18	
TOTAL CHANGE OF PRESSURE SOLUTION	TOP 18 .1563E+06	JPPER SURFACE
TOTAL	TOP 18	UPPER

AVERAGE	1.71	1.67	1.62	1,56	1.47	1,37	1,37	1,37	1,38	1,39	1,39	1.40	1.40	1.40	1.40	1,41	1,42	1.44	1.45	1.47	1.49	1,52	1.57	1.65		AVERAGE	4 0 0 0	
LOCATION OF MAX CHEE	•	_	-		-	_	-	-	-	1	TOWN DRIVE	-	-	-	-	-	-	-	I man in the		-	-	-	-		LOCATION OF MAX CHGE	\$	
OLD CP AT MAX CHANGE O	-,20000E+01	20000E+01	20000E+01	20000E+01	20000E+01	20000E+01	20000E+01	20000E+01	- 20000E+01	20000E+01	20000E+01	20000E+01	20000E+01	-, 20000E+01	20000E+01	20000E+01	20000E+01	- Z0000E+01	20000E+01	20000E+01	20000E+01	20000E+01	-, 20000E+01	20000E+01		OLD CP AT MAX CHANGE Q	- 20000E+01	
NET CP AT	.299586-01	. 55794E-01	.48760E-01	.130476+00	.23817E+00	.72696E+00	.72791E+00	. 58894E+00	.63297E+00	.56717E+00	.51153E+00	49635E+00	481336+00	465546+00	. 44903E+00	43189E+00	.41413E+00	395786+00	376846+00	357216+00	. 33646E+00	. 31491E+00	.29378E+00	. 20688E+00		NEE CP AT	. 60882E+00 . 81527E+00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HAX CP CHANGE	2,03	2.06	2.05	2,13	2.24	2,73	2.73	5.69	2,63	2.57	2,51	2.50	2.48	2.47	2,45	2,43	2.41	2.40	2.38	2,36	2,34	2,31	2,29	2,21	LUWER SURFACE	MAX CP CHANGE	2.5.5	****
STATION	•	•		•	•	10	=======================================	12	11	14	15	16	1.1	18	•	50	21	22	23	50	52	56	27	3.6	70	STATION	**	

FIGURE 10y SAMPLE PRESSURE CONVERGENCE HISTORY

79678E+00 80790E+00 80976E+00 81116E+00 81242E+00 81364E+00 82454E+00 83898E+00 85610E+00 87370E+00 89012E+00 90323E+00 00436400 90621E+00 893756+00 87970E+00 86910E+00 86014E+00 87954E+00 91305E+00 .95716E+00 96035E+00 . 99043E+00 .11767E+01 .84710E+00 74050E+00 .69668E+00 .65295E+00 56210E+00 \$1970E+00 .46414E+00 . 10959E+01 .11593E+01 . 11548E+01 .11037E+01 . 10214E+01 .11735E+01 .11270E+01 .11100E+01 .10798E+0 .11030E+01 92586E+00 95231E+00 95952E+00 96595E+00 97071E+00 97156E+00 94347E+00 92405E+00 1E+00 92770E+00 962966+00 98391E+00 95978E+00 99308E+00 97221E+00 9666E+00 •\$177£+00 98149E+00 10455E+01 10887E+01 100736+01 10875E+01 1000SE+01 10870E+01 108658+01 10775E+01 11578E+01 10893E+01 107148+01 10905E+01 11152E+01 11359E+01 11759E+01 119496+01 12105E+01 .10772E+0 .11013E+0 92851 - 42293E+00 - 42293E+00 - 23378E+00 15460 15235 15029E+00 14629E+00 13040E+00 17550E+00 16279E+00 15762E+00 . 26220E+00 38444E+00 36211E-01 E+00 -, 58347E-02 -. 10637E+00 -, 11250E+00 -, 35677E+00 -, 53518E+00 -, 57585E+00 -,56780E+00 -. 46117E+00 -. 39174E+00 E-01 54783E-01 -,17130E+00 49506E+00 \$4102E+00 . 10632E+00 . 46742E-01 -. 11240E-01 . 56482E-01 .57679E+00 .17715E-01 70308E-01 -. 40749 5 Y/8# 48,2899 -,13420E+00 -, 11141E+00 -, 96056E-01 - 37335E+00 - 37736E+00 - 37127E+00 - 43964E-01 - 31463E-01 -, 80301E-01 -,13255E+00 .. 13206E+00 -,11753E+00 -. 15364E+00 -, 15841E+00 -,17656E+00 -, 28363E+00 -. \$8000E+00 -. 37612E+00 -, 37302E+00 .. 37989£+00 -, 40376E+00 -, 43448E+00 -,61916E+00 ., 12552E+00 -, 13548E+00 -, 1246RE+00 -. 35176E+00 ., 33851E+00 -. 35117E+00 -. 48137E+00 -. 65679E+00 -, 52246E-01 -. 57390E+00 INVISCID SOLUTION AT SPAN STATION 22284E+00 23815E+00 25618E+00 27710E+00 52866E+00 55350E+00 57832E+00 19864E+00 19864E+00 35237E+00 430146.00 47387E-01 92060E-01 12084E-00 14304E+00 .15008E+00 157196+00 . 1800AE+00 32606E+00 40470E+00 47970E+00 50433E+00 60337E+00 6286E+00 6542E+00 68003E+00 70607E+00 73229E+00 75865E+00 81121E+00 13601E+00 .16445E+00 17202E+00 78501E+00 83696E+00 A6192E+00 98573E+00 XX

SAMPLE VISCOUS-INVISCID INTERACTION SOLUTION

FIGURE 10z

BOUNDARY LAYER CALCULATION AT STRIP 6 INITIATED FFECTIVE SWEEP ANGLE IS TAKEN TO BE 47,15 SEPARATION DETECTED IN TURBULENT B, L, CALC AT X/C=5,L, CALC, TERMINATES AT THIS POINT

. 965

BOUNDARY LAYER CALCULATION AT STRIP -6 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 47.15
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/CF B.L. CALC, TERMINATES AT THIS POINT

.650

FIGURE 10aa SAMPLE OUTPUT OF BOUNDARY LAYER SOLUTION

•										
X/C	0-10	CHANGE	INPABLE	ACT-SLP	D-80T	CHANGL	INP.SLP	ACT-8LP	196n	138.
	=	+30	398-0	20-32692	.1506E-05	•	1436-0	0.	0069	196+0
~	21738	-3000	90E-0	.24936-02	2970E-03	100001	I E . O	0	3007E-01	14976
	2617	000	10045-02	30.02	11242003	10000	11146-0	18545-02	14746-01	55016-01
	30516-03	100001	108AE-02	16135-02	3538E-03	10006+01	14505-02	.2383E-02		5132E-
	31936	10001	1403E-0	23396-02	3716	. 100		23		. 355B
-	33868	. 10		\$130E-02	3867E-03	-	0		400E-0	+ 30E+
0	36115	1000E+	-	29366-0	. 4004E-03	0		-		. 46 3E -
1	4	10008	-	0-300	30	00E+	1356-0	905	5005	3356.
9	3968	10006+	. 2202E-02	0 - 30	27	\$ 300	116E.0	50E	3805-0	-3062r
~	42715	10001	. 2347E-02	11 SE	414E-0	. 1000E + 01	0765-0	-	2821E-0	177E.
0	4550	10000	1774E-02		4555E-03	100001	10155-0	· •	101/05-03	
	2000	0 0		20-32600	100000	2 5	0 - 22 - 0			10000
	J in	1 1000	27126-0	2	5021508	10000	81598-01	0	000	340bE-01
	62326	10001	26355.02	43915-02	51895-03	10005+01	.7680E-03		5959E=0	3122E-01
	6930E	100001	25646-0	42735-02	. 5385E-03	1000E+01	, 6350E = 03	.1058E-0	8054E-0	830E-
256	7574E	4000	13716-0	. 2286E-02	. 5565E-03	1000E+01	.7053E-03	.11765-0	-	37E.
1	7704E	100001	.1677E-02	.2795E-02	.5717E-03	006+01	.4467E-03	.7446	. 1247E-01	2300£-01
	30171	10001	8E-0	6197F-03	.5A14E-03	00E+01	.1616E-03	. 2693E.	.15346-01	0-3060
•	TROGE	1000E+	18516-0	-, 3080E-02	. 5841E-03	005.01	2611E-04	:	18075-01	50E-0
~	7621E	10001	5833E-03	· . 9722E-03	58156-03	00E+01	6128€-04	- 1021E-0	. 201 GE - 01	0
•	7623E	100	,5284E-03	. 8806E-03	.5790E-03	005+01	., 6352E-05		•	4005-0
•	70715	+ 40001	2407E-02	201100	. 38 5 5 E = 0 3	10000	27,75			111160
> u	76101	000	3758600	. 5440500	. 34325 03	100000	47.0E=01		20745-01	
10		- 1000	81615-0	13608-02			50165-03		. ~	35746-03
4	17326	1000	20036-02	33396-02	.6957E-03	10006+01	13466-02			. 3084E-02
•	36596	100001	1504E-0	.2507E-02	.75605-03	1000E+01	19416-02		•	34E-0
3	39006	1000E	16306-0	.2716E-02	.8414E-03	000E+01	,2175E-02	. 3624E=02	•	0-3/P
	5	10000	. 1363E-02	.22716-02	.9610E-03	0000 +01	.2825E-02	-	•	96E-0
-	1051E	1000	.1286E-02	.21435-02	1255-0	00E+01	. 4373E-02	.72682	. 3806E-01	• .
•	11215	10000	. 2230E-02	3717E-02	2:	10000	11505-02		. STOIL OF	10-3/65
, 0		10005-01	A055F-01	13425-02	26525-02	10000	26735-01	44555	46495	0 3000
	12396	1000E+	3552E-03	5921E-03	.3512E-02	10	2673E-0	44555-01	. 5125E-01	4100E-01
~	122AE	+3000	3435E-03	\$726E-03	. 4981E-02	2	2673	35500	. 5529E-01	. 3049E-01
•	3	100001	527AE-03	8796E-03	.6155E-02	0	26735-0	44558-01	. 5850E-01	. 2947E-01
5	1180E	100	5330E-03	668 SF-03	7329	0	26736-0	3	. 6467E-01	0 - 3
-	3	1000E+	7307E-03	-, 1218E-02		.1000E+01	573E.	44555-01	.7265E-01	.11175-01
1	11205	100001	5371E-03	., 8952E-03	.9543E-02	0	. 26736-01		. 81625-01	292E-0
~	1117E	1000E+	.2325E-03	,3874E-03		0	.26736-01	.4455E-01	Book.	1361E-01
	1113€	+3000	3448E-03	5746E-03	.1182E-01	C	673E-0	•	97E-0	360
0	11116	100001	.6337E-03	.1056E-02	12816-01	0	0	. 4455E-01	0	4390E-01
•	11716	+4000	51E	0	.1370E-01	900	. 2673E-01	#55E	.1125E+00	9324E-0
00	3	10001	3766	399	-309	• 300	35	55E.	736+	312E-
-	16006	00	0	16966-01	1542E-01	100001	26735-01		- A A A A A O O	10146
*	1								1	

FIGURE 1056 SAMPLE BOONDARY LAYER OUTPUT

SAMPLE SEPARATION SUMMARY FIGURE 10dd

. 10201005+00					1000	.1070206E+00							.1181560E+00							12000485+00							. 160/000-00						12082512+00					.10052722+00						10481148+00						10140825+00						9843200E=01
	1050108E+0	4777E+0	.11720316+0	1186538E+	.12566316+0	E 43	(C'A)OSOSOS	-30020/01	1133611600	. 1194116E+0	.1210A51E+0	.1270318E+	3AB 40 HB	L' XJOSS	11815605+0	12114038+0	0.300,000	16300031	11793602+0	41	48CU(K,3)	.1200048E+0	1221083E+0	1241 1916+0	4700426	100000000000000000000000000000000000000	1	BCUCK, J.	12076656+0	.1220445E+0	.12402346+00	.1597672E+0	JAN 92 HEC	WECU(K, 3)	, 1208251E+	.1226060E+0	.12245496+0	41 IB	*BCUCK,J	.1085272E+	1080102E+0	10891916+0	94016805-0	-	WACUTK . 13	10481166+0	10456045+0	10558205	100051640	TAR AT	"BCHKK. 13	10140826+0	10157296+0	026774E	10865276+0	41 48
	:	5	**	**	*		7;	• =	::	•	•								•		-	4-	29	17				7;	_	~	63			,	~		7		,					Ke 14	•		42	1	44	Ke it		, .		43	**	Ke 17

SOLUTION DID NOT CONVERGE IN MAX ALLONED ITERS

DELLKZ	.02107
DELUKZ	000
DELLKI	.01532
DELUKI	.00113
CPLK2	.25570
CPUKS	.15570
CPLKI	.22006
CPUKI	-,45110
E*82X	90,67290
J CLGG ITER EPSIX	.522 451563,481752190,87
TER	4515
1 9973	.522
7	-~

	~	10E+0	50E+0	54E+0	SE+0	466+0	9216+0	931E+0	888E+0	820E+0	753E+0	674E+0	S92E+0	\$07£+0	426E+0	340E+0	233E+0	101E+0	924E+0	705E+0	447E+0	136E+0	719E+0	2222E+02	531E+0
PJUMP HISTOR		3912E+0	4156E+0	.4200E+0	. 4586E+0	0+36	45+0	75+0	416+0	.4556E+0	44596+0	43656+0	.42916+0	42216+0	41506+0	.4074E+0	3979€+0	38486+0	.36825+0	.3494E+0	32865+0	.3054E+0	.27775.0		.1680E+0
	IVITER					•	10	11	12		14	15	10	17	18	19	20	21	22	23	24	25	30	1	28

FIGURE 10ff SAMPLE VISCOUS CONVERGENCE HISTORY

219			-34.430	-10.331		-4.235	-1,133	1,133	4.235	101.
/x	-		-	•	•		1		•	9
167.			20050.	.02447	.01701	.010.	.000.	10000	.04127	. 010
			.00111	.1100	15370	.18704	.6130	10024	72560	. 0763
. 047		•	11011	.14711	10118	.17275	1714	.03135	41600.	05.50
200			20001			******				. 00000
			48500	11680	18024	12000	10147	11567	44.40	91410
	-	•						13334	14100	
			20000	21001.		05.000		. 16673		
100		•	2440	10000					1000	0
0			9400	00500	25500	20240	00.00	0000	20880	0076
			08103	04074	865 60	0.00	.06921	03460	07763	
100			08880	110111	95500	00100	07010	08750	0000	0.55
172			10023	10797	88660	.08436	07270	08080	06260	0500
1.00				11460	10405	. 08725	.07465	07 503		020
1881				11884	10553	08714	07340	06759	05280	0235
1981				11977	10356	00100	198861	50690	05533	02720
.209				.11771	\$2660	.07846	.06341	07557	06201	0346
. 222				.11391	09760	.07474	*6090	06126	06865	0426
.238				.11034	.09130	.07351	. 06174	00 380	07214	0479
.256				.11034	.00127	.07534	.06545	07623	06627	
175.				.11817	.09773	.08271	. 07427	06023	05272	
. 300			•		.05672	\$5 000.	.03775	07618	06650	05460
.326			0294		04836	29250	06325	13326	12420	1028
. 152			0767		10031	11027	11662		15173	1383
. 378	•		.000	•	10050	12066	.,12812	15861		
***	•		•	5.051.	5.01.0	5060		1040	17030	
	•		200%		51677	42287	20025	11907		
470	•				. 55231	56657	57655	19420	10101	101
504	•		. 40		. \$4255	\$6351	\$7506	39575	. 39249	36905
. 528	•		28		96967	54401	57446	. 30461	39044	3656
.593	•			30347	40977	46909	49520	38820	36520	3740
. 578	•			16872	32760	25510	., 26256	38078	37448	3604
. 503	•	•	. 02514	. 01435	01027	01131	01512	36482	35612	3400
. 626	•		11050	26640	96760.	.00638	15960	- 30702	53932	3201
.034			\$1250.	.00736	20101.	11525	12086	. 34746	. 33009	
100			41000		. 25.84	*****		10100	2010	1000
732			10561	12786	. 15223	17352	.18876	0.41970	. 60833	1900
.759			.12211	15160	19060	.20349	. 21871	04045	43525	4100
.745			.13728	.17456	.20802	183881	.24738	15260	47374	
.611		Ī	15464	10001.	.23657	.26214	.27749	\$4065	51739	4776
. 836		Ī	17161	. 22237	.26415	.29183	. 30816	58135	. 55740	51375
. 961			5	.24224	.28856	.31916	. 33703	62516	59790	5496
. 645			-	. 25649	30708	. 34205	.36222	0.593.	63536	. 5943
000			2	50563.	131637	19964	76765			
		Ī	21003.	20502.	06136	24506.	1,000	66766.		7070.
			20120	20162	2856	70665	1100	2000	10360	
			20174	21550	21464	1	10101	14067	1000	
1.001			20305	21414	. 883	. 2707	06176	19460	18131	

				128.548																														HOUT BENDING-MUMENT)
																																		ING
		90		8 A 2			*																			23			0	87,5089				SE NO
22		5					3/ 43x			. 710	1	:	:	. 654			79				. 603	. 39	.58		. 55	936	•			=				50
		3		9 =			•	~				, -		•	•			•	•	•	~		0.	• •		•		1						
••		94		33			Š	5.842	0	97.			2.76	2.07	2.075	3.176	-3.279	-3.586	13.504	03.727	-3.012	3.05	9.03		. 37				ATUSEUS 20014, 000	40	ER)	ER.	3	CUNSMEPT
		138		A S				~	•					•					• •				•	4 0		~	•				3	10	(10	5
.76754		CORP., BETHPAGE, NEM YURK		PEFERENCE CHORD 18 CBARB			0	. 0595	. 0010		010	050	0500	. 0520	9250	1000	.0465	. 0445	900	0375	.0338	.020	. 0250		00	0000		•	•	70,7656	959	7912	58.447e(101AL	950
		80		43																									. 0	\$70.	225,6564(UPPER)	132,79126LDWER)	. 88	•••
76733		2					5	. 35	0	:		67		•	10		-	.72	7.0	7	. 7	7.0	9		500	455				•	•	_	_	•
		AFROSPACE																											P TRUE 4,460	*CP.	. 403	CDF	.400	CO CP .
			_				5	.02	. 025	20.		00	3	100.	100		010	. 02	2000	2	031	. 034	. 037	000	200	0.0	3	-	1 2	×	ü	ü	ŭ	55
13222		GRUNAL	DHI						٠.	•																			α 0 4					
*:		3	20				3		0			67			0 0		7	-	7.	72	-	70	94.			452	•							
		. 3	DAYTON DHIU				3																					-	5.173					
12529		17 13 15 15 15 15 15 15 15 15 15 15 15 15 15	.6414				•	5	-	0 4			53		0 0	2	90	-		7	04	29	2:		1	602	9	-						
•••		402	;				3/43+3	-2.595	5.0	20000	0	-3.186	3,223	3.2	. 3. 199			3.0	20	2.0	-2.870	2.7	-2.623						AR REFE 5.17					
200	90	HILLIAM M. MABUN DOMALD A. MACKENZIE MARK A. STERN AFROOTNAMICS SECTION,	181																									40	7 7 7					
1129		1916			5.20		C+CO/CAVE	.1045	100	100	700	643	634	105	.050	189	453	775	2 4	334	167	672	500	200	057	2000	600							
	481	NO TO	DYNAMICS				2000	•	•	•	•	•	•	•	•	•		•	•		•	•	•				•						5	
10363	BUDY ANALYSIS PROGRAM																																SUPPACE PRESSURE INTEGRATION)	
20	101		FL 16HT		ALPHAS		C+CL/CAVE	629	779	270	127	740	740	740	13	710		685	200	9 4	129	201	200	478	415	337	S						603	
		.3			•		3	•	•	•	•			•	•	•	•	•	•		•	•	•	•	•	•	•						N	
00054	1146	120	FORCE		0		AVE						_					•				_	_										JAN	
	*19C0US	CINFORMATICS INC.			5.20		COCACCAVE	0	040		200	•	0	00.	210.	0	010	050	100	0.25	. 0	050	030		0	.031	•						RES	,
7.	130	3448	E 418			8 40						•	•	•	• •	• •	•	•	• •	•	•	•	•	• •	•	•	•						SURFACE PRES	
14083	BONTE	30.17	THE		ALPHAN	FORCE DISTRIBUTION	WICAVE	0				. 0		•	0 0		•	~	- «	~	~	7			. ~			8113					4 4 4	
		3240	F08		\$	1218	/NJ+3	9.						-				3			9			47	9	333		101					5	
22	AME 8 TRAN		DEVELOPED			018																						44303	•	95	92	11	110	
14285	200	1212	VEL			HCE	ZVEAVE	7.5	000			0	070	.05	0		. 97	. 95					2		76	7 4.1			396	,\$2356	.00826	.33171	. 52431	356,48685
		JUNITER PROPERTY NO BELLEN ASSA AMER PERCE			•		U	-	-		-	•	-	-		•												FORCE	Š		•			356
53	******	* 7 7 7	PROGRAM			SPINNISE	113	-		12.	200	32	1	69			.54	. 50			.72					506		JAZO.	84865					
1.29723	2			1467	1041	30.																				986		101	(8)	Š	3	3	ಕ	5
								3.8	50.3				10.7	15.7	9 0		11.0	3.1	7.5		11.4	33.5	55.5		11.8	313.0								
22																										27 31								

FIGURE 10jj SAMPLE FINAL FORCE AND MOMENT SUMMARY

75707226E-01		. 284103346+00	00437766064	100000000000000000000000000000000000000	000000000000000000000000000000000000000	00100000000000000000000000000000000000	00430694000	148272175400	21538019E+00	61294623E-01				. 59461290E+00		63393970E-01	. 10363896E+00	- 44513401E+00	91137923E-01			. 40283991E+00	. 44676544E+00	. 10091938E+00	6446846E-01	- 10993998E+00	- 4340K4K+00	. 10588478E+00			.61005073E+00	451727616+00	110687288+00	- 1146534E-00	-, 19978290E+00	25389410E+00	12384976E+00	
,50846357E=02	יוספרפשפרם.	. 54745203E+00	0043000000000000	1005747601	1093173019	10/338005-00		74704845400	20058934E+00	.41337407E-03			1273720SE+00	. 55210104E+00	1098484166901	-, 72100653E-01	-11198167E+00	-, 20657764E+00	-,63176523E-02		114031066400	. 56125148E+00	.43391082E+00	.177013442-01	7378735SE-01	-, 11977596E+00		20981868E-01		. 10331936E+00	. 56767828E+U0	43996016+00	248619125-01	-, 13130500E+00	. 19950447E+00	24609018E+00	35308604E-01	
.12878224E+00	000000000000000000000000000000000000000	. 50066945E+00	393898626+00	- C//00311E-01	- 7700116-01	00+3+6+5011		182804986400	-17908175E+00	.126560\$7E+00			40713535.00	. S02243216+00	101178086400	6078685E-01	- 124808916+00	187908035+00	. 120614416+00		. 444112/36+00	. 50785213E+00	. 39413876E+00	. 28862502E-01	83206485E-01	-13403778E+00	* 20320133E+00	.11161453E+00		49873792E+00	. 51483569E+00	40013093E+00	- 24746549F=01	. 14655570E+00	20286684E+00	2269266E+00	.10188138E+00	
.339223336+00	004305500046.	. 46667697E+00	. 51557616E+00	- 4301106/E-01	-,00324324E-01	. 13343389E+00	00+304000000000000000000000000000000000	0043600500	15830055E+00	.34243442E+00			593304616+00	46522346+00	4.47445909E=01	88651669E-01	14309262E+00	0 16747680E+00	.34238259E+00		. 546346776+00	.46519550E+00	.31728042E+00	47426036E-01	92096855E-01	15366447E+00	- 18667268E+00	.34000985E+00		. 59874283E+00	. 46894786E+00	32431632E+00	10001100110	- 1000 5000 F+00	22647649E+00	- 20504190E+00	.33734992E+00	
CPL(K,J),J#1,NX .80570505E+00	00.000000000000000000000000000000000000	45465859E+00	201045256+00	. 546 50000 - 01	- 43340005-01	193041016400	004010000000000000000000000000000000000	220584116400	13359012E+00	.8240096RE+00	CPL(K, J), J#1, NX	% 10	.61326153E+00	452495576+00		96101865E-01	-162608216+00	228479586400	. 83958528E+00	Ke 18 CPLCK.JJ.Jel.NX	. 617301862+00	. 44983744E+00	.20968826E+00	-, 56336583E-01	10092301E+00	-174284956+00	- 15862568E+00	. 85334071E+00	CPL (K.1) Jay. NX	. 62477129E+00	.45191787E+00	219446395+00	00000000000000000000000000000000000000	004900000000000000000000000000000000000	25102507E+00	17941330E+00	. 86672225E+00	91 01
	00+34531006.	00002527E400 .50000045E400 .54745203E400	CONTRACTOR	פילים בילים	4.003245248601			SOUTH STATE OF THE	- 15830055E+00 - 17908175E+00 - 20058934E+00	.34243442E+00 .12656057E+00 .41337407E-03	NA 185 CL		.59330461E+00 .49713533E+00 .12737205E+00	. 46522234E+00 . 50234521E+00 . 55210104E+00	* 47445404E=01 * 24735604E=01 . 14946416E=01	#8651669E-01 6078685E-01 72100653E-01	4.143042626400 4.124808916400 4.11198167640	0 10747680E+00	. 61956528E+00 . 34286259E+00 . 12061441E+00 . 63176928E=02		.592598772+00 .499112/32+00	.46519550E+00 .50785213E+00 .56125148E+00	.31728042E+00 .39413876E+00 ,43391082E+00	47426036E-0128862502E-01 .17701344E-01	92096855E-01 83206485E-01 7378735E-01	- 15356447E+00 - 13403778E+00 - 11477546E+00	- 18467248F+00 - 2018195F+00 - 24485874F+00	. 85334071E+00 .34000985E+00 .11161453E+00 20981868E+01		.59874283E+00 ,49873792E+00 ,10331936E+00	. 46894786E+00 .51483569E+00 .56767828E+00	00+3109090917 00+310071707 00+310916408	10130713071 10130777570 1013030777071	- 10005400E+00 - 1403370E+00 - 13130500E+00	22647649E+00 2028684E+00 19950447E+00	- 20504190E+00 - 2269266E+00 - 24609018E+00	.10188138E+0035308604E-01	

FIGURE 10kk SAMPLE SAVED SOLUTION CUTPUT

	.000			266			.704			679.				.710			. 970.				121.	
ADUNDARY LAYEN CALCULATION AT STRIP -11 TN311A7ED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 20,57	SEPARATION DETECTED IN TUMBULENT 8, L. CALC AT X/CO	P.L. CALF. TPRHIMATES AT THIS BOINT	SOUNDARY LAYER CALCULATION AT STRIP 12 INSTINTED FFECTIVE SHEEP ANGLE IS TAKEN TO RE 20.57	SEPARATION DETECTED IN TURRULENT 6, L. CALC AT X/Co	A.L. CALC. TPRWINATES AT TWIS POINT	ROUNDARY LAYER CALCULATION AT STRIP -12 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 20,57	SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/Ca	B.L. CALC, TERMINATES AT THIS POINT	BOUNDARY LAYER CALCULATION AT STRIP 13 INITIATED EFFECTIVE SHEEP ANGLE 13 TAKEN TO BE 20,57	SEPARATION DETECTED IN TURBULENT 8, L. CALC AT X/CO	9.1. CALC. TERMINATES AT THIS SOINT		SOUNDESY LAYER CALCULATION AT STRIP 413 INITIATED FFECTIVE SHEEP ANDER IS TAKEN TO BE 20,57	SEPARATION DETECTED IN TURBULENT 8. L. CALC AT X/Cm	P.L. CALC. TEPVINATES AT THIS POINT	BOUNDARY LAYER CALCULATION AT STRIP 14 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO SE 20,57	SEPARATION DETECTED IN TURBULENT 8, L. CALC AT M/CH	P.L. CALC. ISPINATES AT THIS POINT	SOUNDERS OF THE MATTER AT STATE BY A TOTAL	EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 20.57	SEPARATION DETECTED IN TURBULENT 9. L. CALC AT X/CB	B,L. CALC, TERMINATES AT THIS DOINT
												101										

FIGURE 1011 SAMPLE BONDARY LAYER CALCULATION OUTBUT WITH FLARIT-1.

-. 2240E+00 -,1556E+00 4560E-01 3634E-01 2622E-01 1652E-01 -, 3734E-01 1076E-01 -,2471E-01 63136-02 -. 1407E-01 . 1210E+00 74.000 74.000 74.000 74.000 74.000 74.000 74.000 .3699E-01 4689E-01 5246E-01 5699E-01 . 8792E-01 .1022E+00 .6670E-01 7662E-01 16426-02 3121E-02 3563E-02 4212E-02 63236-01 73076-01 75406-01 73136-01 5572E-01 .. 1961E-01 4162E-01 . 5795E-04 0-807 NEW DISPLACEMENT THICKNESS AT STATION 10 .. 1168E.03 . 1209E-02 37926-01 4CT-8LP 1757E-02 2272E-02 4054E-02 1802E-02 1912E-02 D-10P

FIGURE 10mm SAMPLE BOUNDARY LAYER SUMMARY WITH FLARIT=1

b. Description of Internally Generated Messages & User Response

There are a number of "failsafes" built into the program to check for obvious problems that would cause the program to fail. A list of the problems, the associated program response, program action, and required user correction follows in Table III. These failsafes are intended to check for obvious input errors and, if necessary, warn of insufficient progress toward a solution. As shown on Table III, some of the input errors, primarily geometry errors, will cause the program to stop execution and require the user to correct the errors before resubmitting the job. Other errors will generally cause a warning to be printed along with a statement of whatever action the program took to counteract the error. Execution in these cases continues. It should be noted that the program has a certain priority scheme for handling problems; for instance, the IDISK clue will override the REMESH clue if there is a conflict. If the REMESH option was the one actually desired, the code will fail. Although the internal checking will ensure that the most obvious errors will be corrected before a long computer run, the user should continue to exercise care in the construction of data sets.

TABLE III
INTERNALLY GENERATED DIAGNOSTIC MESSAGES

USER CORRECTION	Reduce number of sections to less than 12 and resubmit job.	Reduce number of ordinates to less than 91/surface and resubmit job.	Reduce number of twists to 11 or less and resubmit job.	Reduce number of pairs to 10 or less and resubmit job.	Reduce number of pairs to 10 or less and resubmit job.	Correct wing planform and resubmit job.	Reduce number and resubmit job.	Reduce number and resubmit job.	Reduce number and resubmit job.	Alter fine mesh input parameter to reduce size of grid and resubmit job.	Reduce size of mesh and resubait.	Reduce size of mesh and resubmit.	None	None
marrow demonstr	Program Stope	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	Program Stops	FIVSMM reset to 20, Frogram Continues	RSUB reset to 1.7, Program Continues
THE TOTAL PROPERTY.	Too many airfoil sections input. Number of sections must be less than 11.	Too many airfoll ordinates at section Input Number must be less than 91/surface.	Too many wing twists input. Mumber of twists must be ll or less.	Too many L.E. planform pairs. Reduce number to 10 or less.	Too many T.E. planform pairs. Reduce number to 10 or less.	Gaps in wing L.E. or T.E. planform. Check wing planform coordinates.	Too many streamwise body slopes or coordinate input. Reduce number to 90 or less.	Too many body spen locations input. Reduce number to 10 or less/surface.	Too many body side wall locations input. Reduce number to 20 or less.	Interior fine mesh or initial mesh too large. Alter input mesh parameters.	Input crude mesh too large. Reduce size.	Input fine mesh too large. Reduce size.	Number of viscous-inviscid iterations too large, FIVSMC reset to 20.	RSUB outside range of 0 to 2. Reset to default value.
FROBLEM	Number of input airfoil sections > 11	Number of input airfoil ordinates per section greater than 90/surface.	Number of input wing twists greater than 11.	Number of leading edge plan- form pairs greater than 10.	Number of trailing edge plan- form pairs greater than 10.	Caps in planform.	Mumber of streamwise body slopes greater than 90.	Number of top and/or bottom body span locations greater than 10.	Number of body side wall locations greater than 20.	10. Internally generated fine mesh too large.	11. User input crude mesh too large.	12. User input fine mesh too large.	13. Number of viscous-inviscid iterations > 20	14. RSUB not in correct range.

TABLE III (Continued)

USER CORRECTION	Испе	Коле	Може	None	None	Мотле	Correct Mach number and resubmit.	None	Input correct value and resubmit.	None	Check input geometry and relaxation parameters. If necessary input special meshes and/or mappings.
PROGRAM ACTION	RSUBM reset to 1.6, Program Continues	ESUBI reset to 1.6, Program Continues	EPS reset to 1., Program Continues	EPSEM reset to 1., Program Continues	Коре	RFACT reset to 0., Program Continues	Frogram stops after processing geometry.	Notice	Program Stops	1. If IVISC=P, solution halts and program pro- ceeds to final output regults. 2. If IVISS=T, inviscid solution halts and pro- gram proceeds to next viscous iteration.	1. If IVISC=F, program stops. 2. If IVISC=T, inviscid solution halts and pro- gram proceeds to next viscous iteration.
PROGRAM REGPONSE	RSUEM outside range of 0 to 2. Reset to default value.	RSUBI outside range of 0 to 2. Reset to default value.	EFS less than zero. Reset to default value.	EFEEX less than zero. Reset to default value.	DMEXP(1) and/or EMEXP(2) changed from default values. Check input values for correctness.	FFACT outside range of 0 to 1. RFACT reset to default value.	Mach number outside range of 0 to 1., SOLV reset to false.	CANAM changed from default value. Check value for correctness.	Wing water line not on body. Input correct value.	OI effectively constant. Inviscid solution halts.	Inviscid solution diverging, inviscid solution balts.
PROBLEM	15. RSUEX not in correct range.	16. RSJBI not in correct range.	17. EPS less than zero.	18. EFSEX less than zero.	<pre>19. BMEXP(1) and/or BMEXP(2) input at other than default values.</pre>	20. RFACT outside required range.	21. Mach number outside required range.	22. Y input at other than default value.	23. Wing off body.	24. Of not changing in inviscid solution $(\Delta c_{L}<10^{-4}~\rm{cover~10~iters.})$	25. Solution diverging (max error > 10 ⁶)

TABLE III (Continued)

			lse.			lt.		re there sch spen				
USER CORRECTION	None	None	Reset either YAW or BODY to false.	None	None	Correct sweep angle and resubmit.	Моле	Input new coarse grid making sure there are at least 3 grid points at each span station.	Input new crude grid.	Input new crude grid.	Input additional body slopes.	None
PROGRAM ACTION	None	ISPAN set true, Program Continues	Program Stops	AXISYM set true, Program Continues	MSHINT set true, Program Continues	Program Stops	REMESH set to false, Program Continues	Frogram Stops	Program Stops	Program Stops	Program Stops	EPSI reset to 1., Program continues
PROGRAM RESPONSE	Warning: Input Reynold's Number may be too low, check value.	Warning: Input ISPAN and BODY clues are incompatible. ISPAN reset to true.	Warning: Input YAW and BODY clues are incompatible. YAWED wing option can only be run for an isolated wing.	Warning: AREA and AXISYM clues are incompatible. AXISYM reset to true.	Warning: WSHINT = F is incompatible with viscous saved solution. WSHINT reset to true.	Sweep angle too large for yawed wing option.	Warning: Input REMESH and IDISK clues are incompatible. REMESH reset to false.	There are less than 3 crude mesh points on wing at span station.	There are less than 2 vertical crude grid mesh points on the body.	There are less than 2 Y crude grid mesh points on the body.	Input body slopes do not cover body.	EPSI less than zero, reset to default value.
PROBLEM	26. Input Re low (<100,000)	27. ISPAN = F and BODY = T	28, YAM = T and BODY = T	29. AREA * I and AXISYM = F	30. IDISK = T. MCHINT = F. IVISC = T from a viscous solution.	31. YAW = T, SWEEP too large (> 90°).	32. NEMESH = T and IDISK = T	33. Number of crude mesh points on wing < 3.	34. Number of vertical crude grid points on body less than 2.	35. Number of Y crude grid points on body less than 2.	36. Input body slopes do not "cover" body.	37. EPSI less than zero.

TABLE III (Concluded)

	and resubmit job.	Reduce number and resubmit job.
Input IDISK =	Reduce number	Reduce number
Progress Stops	Program Stops	Progress Stops
Wull calculation, WAXII = 0 and IDISK = F.	Number of input 12/72 mapping segments is greater than 12. Reduce number of segments.	Too many input points on mapping segment N. Number of points must be 10 or less.
Flot run has no seved solution svailable.	Number of input mapping segments too large.	40. Bumber of input points defining mapping segment too large.
		Null calculation, MAXII = 0 and IDISK = F. Frogram Stope Whimber of input LE/TE mapping segments is greater than 12. Reduce number of segments.

5. JOB CONTROL LANGUAGE

a. General

The exact Job Control Language (JCL) required to execute the program will vary from installation to installation. We have included examples of IBM JCL for the WPAFB ASD IBM 370/155 computer and CDC JCL for the NASA Ames CDC 7600. The JCL will also depend on the different modes of operation. These include operating from either a source deck or Load Module and starting the solution from scratch or from a previously generated solution. The source code will typically be stored on tape or disk due to its relatively large size (6 boxes of cards). IBM JCL is emphasized due to its relatively elaborate requirements. For IBM execution, the program requires compilation on the H-extended compiler using the OPT = 2 option. About 1400K of core storage is required for execution. Information for estimating the running time of a particular submission on a specific machine was included in Section II.

b. Sample JCL

In this section, we include examples of JCL for:

- (1) Compile-Load-Go
- (2) Execution From a Load Module
- (3) Generation of An H-Extended Load Module
- (4) I/O JCL
- (5) CDC Update Execution

These are intended to provide guidelines for the typical user, while he develops his own style of operation.

(1) Fortran Compile-Load-Go

This JCL deck is set up for an IBM FORTH, OPT = 0 compilation using the ASD FORTHCLG catalogued procedure. It is assumed that the source deck is stored on disk. Testing at ASD (September 1977) has shown that OPT = 2 generates improper code on the H-compiler. There is a factor of 2.5 in execution CPU time between OPT = 2 and OPT = 0, so that OPT = 0 is not recommended for production runs.

```
//GRUM1501 JUN (7274.136.0500.0030.0000..2..62), MACKENZIE-675-5722*, X
// MSGLEVEL=1.CLASS=7, REGION=1500K, TIME=410
/OMESSAGE CPU TIME 410 MIN. WALL CLOCK 500 MIN. REGION 1500K
//AMES EXEC FURTHCLG.PARM.FORT=10+.REGION.FORT=400K.TIME.FORT=10. X
    PARM.LKED= SIZE=(110K.ZEK) .MAP.LET.LIST.
      REGION.GO=1500K.TIME.GO=400
//FORT.SYSLIN DO DSN=66LOADSET.DISP=(.PASS)
   UNIT=(SYSDA,SFP=SYSPRINT).SPACE=(CYL,(4.1)).
DCR=(RECFM=FB.LRECL=80.8LKS12E=3200)
//FORT.SYSIN DO DISPESIE ,DSN=D770278.MASON.GACAMES.CY51.CARDS.
      UNIT-3330 . VOL-SER-OSPF02
//LKED.SYSIN NO .
//GO.FT06F001 DO SYSTUT= A. SPACE=(3520.(500.50)... ROUND).
       UNIT=(SYSDA.SEP=FT05F001) .
      DCB=(RECFM=FBSA.LRECL=133.MLKS1ZE=3456)
//GO.FT10F001 DD DUMMY
//FT11F001 DD DISP=(.KEEP).DSN=DT70278.MASON.F8.CY81.1100.
      UNIT=3330. VOL=SER=OSPF02.
      SPACE=(TRK. (80,5)).
      DCB=(RECFM=FR.LRECL=80.8LKSTZE=3120)
//GO.FT12F001 DD UNIT=SYSDA.
       DCB=(RECFM=VRS,LRECL=2404,RLKS1ZE=2408,BUFNO=2,OPTCD=CZ)
*/GO.FT13F001 DD DUMMY */GO.SYSUDUMP DD SYSUUT=A
//GO.SYSIN DD .
    (CARD INPUT GOES HERE)
```

In this JCL, the source deck is stored on 3330 disk OSPFO2 and has the name D770278. MASON.GACAMES.CY5.CARDS. The solution starts from scratch and provision is made to store the solution on the same 3330 disk, with the name F8.CY51.I100. The data sets are saved in a formatted form in the program in order to allow for the same saved solution to be used on both IBM and CDC equipment.

The CPU time allocated for this job is for 100 cycles on the initial grid (REMESH = T) and 100 cycles on the fine grid with EXTMSH = T on the ASD 370/155 computer. More cycles will normally be required for convergence so that the ISAVE = T option is recommended. The wall time is arbitrarily set to 100 minutes more than the CPU time. The wall time/CPU time ratio is strongly dependent by the environment in which the job is executing and can vary from 1/1 for a stand-alone job to 10/1 with other jobs executing simultaneously.

The following I/O units are used in the GO step: FTO5FOO1 (SYSIN) - unit 5 is used for card input.

FTO6FOOl - unit 6 is used for printed output. Space has been allocated for 30,000 lines.

- FT10F001 unit 10 is used when starting from a saved solution (IDISK = T)
 FT11F001 unit 11 is for saving the solution from the current run
 (ISAVE = T). In this JCL deck, the solution is saved on disk.
- FT12FOO1 unit 12 is a scratch disk data set used for interpolating between meshes and is required (if MSHINT = T or REMESH = T normal operation).
- FT13FOO1 unit 13 is used for generating an input data set for the Nash 3-D boundary layer program (IBLOUT = T).
 - (2) Execution From a Load Module

This JCL deck is set up to execute from an OPT = 2 Fortran H-extended load module. Again, the CPU time allocated for this job is for 100 cycles on the initial grid and 100 cycles on the fine grid. The comments above on the ratio of wall time/CPU time still apply.

```
//GRUM1484 JOH (7278,136,0250,0030,0000..2,.62)."MACKENZIE-576-5722".

// MSGLEVEL=1.CLASS=7.REGION=1400K.TIME=150

/*MESSAGE CERT TIME 150 MYN. WALL CLOCK ZNO MIN. REGION 1400K

//GACAMES EXEC PGN=GRYZMOD.REGION=1400K.TIME=150

//STEPLIB DD DISM=SIR-DSN=D770278_MASON.GACAMES.CYS1.FORTXMOD.

// UNIT=3330.VCL=SER=DSPF02

//FT06F001 DD DDNAME=SYSIN

// DCN=(RECFM=FDSA.LRECL=133.BLKSIZE=3488)

//FT10F001 DD DISM=(KEEP).DSN=D770278.MASON.F8.CYS1.1100.

// UNIT=3330.VCL=SER=DSPF02.

// SPACE=179K.(80.5)).

// DCH=(RECFM=PD.RECL=80.BLKSIZE=3120)

//FT12F001 DD UNIT=SYSDA.

// DCH=(RECFM=VBS.LRECL=80.BLKSIZE=3120)

//FT12F001 DD UNIT=SYSDA.

// DCH=(RECFM=VBS.LRECL=2404.BLKSIZE=2408.BUFNO=2.OPTCD=CZ)

//FT13F001 DD DUMMY

// SPACE=167C.(51).

// DCH=(RECFM=VBS.LRECL=2404.BLKSIZE=2408.BUFNO=2.OPTCD=CZ)

//FT13F001 DD DUMMY
//SYSUNDD DD SYSOUT=A
//SYSIN DD =
(CARD INPUT GOES HERE)
```

(3) Generation of a Fortran H-Extended Load Module

This JCL deck is set up to generate a Fortran H-extended Load Module when the compiler and supporting Fortran library are available. It is assumed that a FORTXCL catalogued procedure similar to the FORTHCL catalogued procedure is available. The partitioned data set containing the load module is stored on disk.

```
//GRUMO001 JCP (7278.136.0050.0030.0000..2,.62).*MACKENZIE-575-5722*, X
// MSGLEVEL=1.CLASS=C.PEGION=320K.7IME=10
//MESSAGE CPU TIME 10 MIN. WALL CLOCK 50 MIN. REGION 320K
//AMES EXEC FURTX Q.,PARM.FORT=*OPY(2)*,RFGION.FORT=320K.*TIME*FORT=10, X
// PARM.LKED=*SIZE=(110K.28K).MAP.LET.LIST*
// PARM.LKED=*SIZE=(110K.28K).MAP.LET.LIST*
// UNIT=(SYSDA.SEP=SYSPRINT).SPACE*(CYL.44.1)). X
// DCH=(REC*M=FH.LRECL=80.8LKSIZE=3200)
//FORT.SYSIN OD 01SP=(0.D.KEEP).DSN=GACAMES.CYSI.CAROS
//LKED.SYSLMOD DD DISP=(.KEEP).DSN=GACAMES.CYSI.FORTXMOD(OPT2MOD). X
// UNIT=3330.V/L*SER=DSPP02,
// SPACE=(TYR.400.5.5))
//LKED.SYSIN DD 0
ENTRY MAIN
```

(4) I/O JCL*

To save a solution on tape, the FT11F001 DD statement above is replaced by the following:

```
//FT11F001 DD DISP=RLD.DSN=F8.CY51.1100.
// UNIT=(TAPE..DEFER).VOL=SER=N01101.
// LABEL=(7.SL).
// DCR=(RECFM=F8.LRECL=80.8LKSIZE=3120.DEN=3)
```

Note that an additional message card should be inserted in the deck after the first message card:

PHESSAGE THIS JOR WILL REQUIRE TAPE NOTION WITH WRITE RING

To retrieve a previously saved solution from disk, the FT10F001 DD statement is replaced by the following:

```
//FT10F001 DD DISP=(DLD-KEEP).DSN=D770278.MASQN-F8.CY51-1100. X
```

^{*} The DDNAMES for these DD statements should be //GO.FTXXFOOl for a Compile-Load-Go execution and //FTXXFOOl for execution from a load module.

To retrieve a previously saved solution from tape, the FT10F001 DD statement is replaced by the following:

//FT10F001 DD DTSP=CLD.DSN=F8.CY51.1100.
// UNIT=(TAPE, -DEFER), VOL=SER=ND1101.
// LABEL=(1.SL)

Again, an additional message card should be inserted in the JCL deck:

POMESSAGE THIS JOB WILL REQUIRE TAPE NOTICE NO RING

If an input data set for the Nash 3-D boundary layer program is desired (IBLOUT = T), the following JCL cards replace the FT13F001 DD statement.

To generate a punched deck:

//FT13F001 DD SYSOUTHE

To save the data on disk:

//FT13F001 DD D15Pm(.KEEP).DSN=D770778.MASON.NASHDATA, X
// UNIT=3330.VCE=SER=OSPF02. X
// SPACE=(THK.(1)). X
DCB=(RECFM=FB.LRECL=80.FLKS1ZE=3120)

To save the data on tape:

with an appropriate message card inserted in the deck.

If the Nash program is going to be run as a subsequent step in the same job:

//FT13F001 DD DISP=(.PASS).DSN=66NASHDATA.
// UNIT=SYSDA.
// SPACE=(TRK.(1-1)).
// DCB=(RECFH=FB.LRECL=60.BLKS12E=3120)

The GO.SYSIN DD statement in the NASH JCL deck would be replaced by the following:

//GO.SYSIN DO DISPECOLD-DELETE) -DSN-6 GNASHDATA

(5) CDC Update Execution

This JCL deck provides an example of the CDC JCL corresponding to the job described previously in Section (1) and (2). The appropriate CDC operation assumes that the source code is stored on the systems disk in update format. The JCL is set up to save the solution on a mountable disk pack. The update cards indicated in the JCL are only required if the code is being modified.

SAMPLE CASE

A complete output of the run resulting from the input data set shown in Figure 9b, the RAE Wing "A", configuration is included in this report. The execution was made on the Grumman IBM 370/168, with a running time of 22 CPU minutes. This sample demonstrates the REMESH option, as well as the viscous interaction option. The result converged quickly because the lift change test was set at 5 times its basic value in order to provide a shortened output. The underflows appearing in SOLV at the initiation of the REMESH iteration are typical of the solution on IBM machines, where the initial iteration may lead to products of small numbers which are under the allowable size. These errors have no effect on the final results and the user should not be unduly concerned if they appear at the initial stages of the inviscid iteration.

In the viscous part of the solution, notice that the interaction moves the separation point aft and that, as we might expect for this case, there is only minor separation predicted. The occurrence of local separation does, however, demonstrate that in any fully coupled program some treatment of flow separation is required.

For this particular case, the final ${\rm C}_{\rm L}$ and ${\rm C}_{\rm D}$ did not print on the special output paper and the user should consult the force page after the REMESH option for a typical result.

GRUMMAN AMES TRANSONIC VISCOUS WING BODY ANALYSIS PROGRAM

1310	FILLIAM F. BALLMAUS (USAM) JUANITA FRICK (INFORMATICS MASA AMES RESEARCM CENTER MOFFETT FIELD, CALIFORNIA	CK (INFOR	WILLIAM F. BALLMAUS (USAMMBL) JANNITA FRICK (INFORMATICS INC.) MASA AMES RESEARCH CENTER MOFFETT FIELD, CALIFORNIA	_3	VILLIAM M. MA. DONALD A. MAG MARK A. STERN AERDDYNAMICS	WILLIAM M. MASON DONALD A. MACKENZIE MARK A. STERN AERODYNAMICS SECTIO	NZ1E LT10N. GR.	JHHAN AERO	SPACE CO	P 9ETH	BILLIAM M. MASON Domald A. Mackenzie Mark A. Stern Aerddynamics Section, grumman Aerdspace Corp., bethpage, mew yo	ō
PROCEAM	DEVELOPE	D FOR THE	AIR FORCE	E FLIGHT C	PROGRAM DEVELOPED FOR THE AIR FORCE FLIGHT DYNAMICS LAB. WPAFB. DAYTON CHIC	AB. WPAF	B. DATTON	олно				
INPUT DATA	*14											
RAE #1	RAE WING BODY CONFIGURATION	DIE I WRAT	NOI									
101SK	MSn Int	ISAVE	10.91	SOLV	WECPRT	1	1000A	2-	1SP AN	Ex THISH	REMESH T	
ž.	IF ING	ICALDA	IN APR	19 m	IVISC T	171 151	JFO1LT F	1800 JN	AX I SYM	ARE.	IBLOUT	
JAESIA	MAPR											
FL164	FLIGHT CONDITIONS	v										
MACHNO 0.9100	1.0000	1.0000	1. 40 00	RFACT 0.0	EMEXP(1)	EMEXP(2)	20					
INITIAL	MESN REL	AMTION P	INITIAL MEST RELAXATION PARAMETERS									
F#X171	FINCE	1.800	ATEST1 0-100E-03	EPS1								
INITIAL	MESH GEN	ERATION P	INITIAL MESH GENERATION PARAMETERS									
DXL1	DAT1	DAME!	FNF1	FNB1	11.00	xL61 5.00	F10011	F100.12				
FINE ME	FINE MESH RELAXATION PARAMETERS	TION PARA	ME TERS									
FWAXIT 50.	FINCR 1.	85UB	RTEST 0.100E-04	EPS 1.00								
FINE ME	FINE MESH GENERATION PARAMETERS	TION PARA	METERS									
DAL 0.0080	0xL 0x1 0xmx 0.0080 0.0200 0.0300	0.0300	F. 6.	, o	XDS1	xte 0.4.	F10011	F100.12				
COARSE	COARSE HESH RELAXATION PARAMETERS	XATION PA	RAME TERS									
FEX.ITA	FMX!TX	FINCRX	RSUBX 1.600	EPSEX 1.00								
VISCOUS	VISCOUS ITERATION PARAMETERS	N PARAMET	ERS									
FIVSAK	FIVCON 2.	EPSV15	P.E. 10.000	F100.1P	F1STEP 10.	FITRNS	X TRNT 0.00	X TRNB	0.500			
FKSMTK 0.	FK 25MT	FKB0S		RELBL 0.600	EXTNOU 0.970	EXTNO.	FK1	P. 6				

YR001	ROOT ALER	XTER 0.84600	YT IP 2.25000	XLET 1.39500	XTE7	O.O
WING L	WING LEADING EDGE					
XNLE 2.						
" TE		LEIGNI				
- ~	2.2500	1.3950				
WING T	WING TRAINLING EDGE	3				
XNTE 2.						
N YTE		XTEIGN				
- (0.3750	1.0000				

XNPAN	FNC	F	XKSMTH				
5.	.92	.02	•				
z	YPIN	THETP(N)					
- ~	1.000000	0.0					
X/C AT	WHICH UPER	ER SURFACE	ORDIN JES	ARE INPUT			
0.0	000100.0	0.002000	0.003000		0.005000	0.000000	0.007000
0.007500	00080000	0.0000000	0.010000	0.012000	0.012500	0.014000	0.016000
0.018000	00002000	0.022000	0.030000	0.032000	0.00000	0.0000000	0.0000000
0.00000	0.075000	0.00000	00000000	0.100000	0.120000	0.14 0000	0-160000
000001-0	000000	0.520000	00000	0.50000	0.280000	0.300000	0.320000
0.340000	000000	0.380000	000000	0.420000	00000	0.450000	0000000
0.480000	000000000	0.520000	00000	0000900	0.580000	0.00000	0.620000
00000000	00000000	0.00000	00 00 00 00	0.720000	00000	0.160000	0.780000
0.0000	0.975000	0.987500	1.000000	0.0000	99999	0.52 0000	0.940000
X/C AT	WHICH LOVER	ER SURFACE	ORDINA TES	ARE INPUT			
0-0			00 00 00 00	-	0-005000	0.004000	0002000
002500	000000	000000		00000	20000	200	200
000000000000000000000000000000000000000	00000000	0000000	0000000	000310-0	2000	0000	00000000
00000000	00052000	0000000	0000000	000000	00000000	00000	000000
0.180000	0.200000	0-220000	0-240000	0-260000	0000000	0.30000	00000220
0.340000	0.360000	0.380000	0-400000	0.420000	00000	0.450000	000000000
0.460000	0.500000	0.520000	0.540000	0.560000	0.580000	0.600000	0.623000
0.640000	00000990	0.660000	0-700000	0.720000	0.740000	0.760000	0.780000
0.800000	0.820000	0.840000	0.860000	0.680000	000006.0	0.920000	0.940000
0.960000	0.975000	0.987500	1.000000				
V(N) =0.0	0.0	ISAME IS FALSE	FALSE				
THE FO	FOLLOWING 2U/C	IC ARE INPUT	10				
0.0	0.003512	0.004966	0.006078	0.007013	0.007835	0.008576	0.009257
0.009578	989500.0	0.010480	0.011039	0.012074	0.012318	0.013022	0.013501
0.014721	0.015494	0.017257	0.018832	0.020262	0.021577	0.023934	0.026008
0.027863	0.028722	0.029540	0.031067	0.032466	0.034938	0.03 7046	0.036847
0.040380	0.041674	0.042746	0.04 36 10	0.044271	0.044730	0.044972	0.044960
0.044752	0.044376	0.043855	0.04 32 05	0.042438	0.041565	0.041091	0.040595
0.039539	0.038403	0.037196	0.035924	0.034592	0.033209	0.031779	0.030308
0.028803	0.027267	0.025707	0.024126	0.022531	0.020926	0.019317	0.017707
0.010097	0.014487	0.012676	0.011266	0.009658	0.008049	0.006439	0.004829
0.003219	0.002012	0.001000	0.0				
THE FL	THE FOLLOWING 2L/C	AC ARE INPUT	11				
0.0	-0.003512	996400	-0.006078	-0.007013	-0.007835	-0.008576	-0.009257
-0.009578			-0.01 10 39	-0.012074	-0.012318	-0.013022	-0.013901
-0.014721	-0.015494	-0.017257	-0.018832	-0.020262	-0.021577	-0.023934	-0.026008
-0.027863	-0.028722	-0.029540	-0.031067	-0.032466	-0.034938	-0.037046	-0.036847
-0.040380	-0.041674		-0.043610	-0.044271	-0.044730	-0.044972	-0.044960
-0.044752			-0.04 32 05	-0.042438	-0.041565	-0.041091	-0-040595
9699599			-0.035924	-0.034592	-0.033209	-0.031779	-0-0-0-0-0-0-
-0.028603			-0.024126	-0-022531	-0.0000	-0.010317	2000
-0.016007			-0-01124B	0.000659	00000	18610-0-	2011000

ISAME IS TRUE - USE PREVIOUSLY DEFINED A IRFOIL DROINATES

Y(N) =1.000000

x1 -5.35976 -3.77403 -2.61504 -1.7844 -1.18703 -0.49796 -0.49796 -0.13501 -0.06427 -0.00977 0.00977	ETA 0.0 0.16667 0.33333	12 -10-33144	ă	40	20	02 x	DZY
-5.35976 -3.77403 -2.61504 -1.77844 -1.18703 -0.77874 -0.29610 -0.13501 -0.06427 -0.00977 0.00977	0.0	-10-33144				1	
-3.77403 -2.61504 -1.77844 -1.18703 -0.77874 -0.29610 -0.13501 -0.06427 -0.00977 0.00977	0.33333		2.5	0.0	0.0	0.0	0.0
-2.61504 -1.77844 -1.18703 -0.29610 -0.29610 -0.13501 -0.06427 -0.00977 0.00977	0.33333	11052-1-	1.3724	0.1667	2.7320	-0.4268	0.0
-1.77844 -1.18703 -0.77874 -0.49796 -0.29610 -0.13501 -0.06427 -0.00977 0.00977		-4.86748	0.9978	0.1667	2.0404	-0.3224	0.0
-1.18703 -0.77874 -0.49796 -0.29610 -0.13501 -0.03147 -0.00977 0.00977	0.50000	-3,15534	0.7140	0.1667	1.4484	-0.2452	0.0
-0.49796 -0.49796 -0.29610 -0.13501 -0.03147 -0.00977 0.00977	0.66667	-1.97077	8664.0	0.1667	0.9899	-0.1831	0.0
-0.29610 -0.29610 -0.13501 -0.06427 -0.00977 0.00977	0.83333	-1.17557	0.3445	0.1667	0.6573	-0-1275	0.000
0.29610 0.13501 0.06427 0.03147 0.00977 0.02997	1.00000	-0.65621	0.2413	0.1667	0.4218	-0.0789	0 00000
-0.13501 -0.06427 -0.03147 -0.00977 0.00977	1-16667	-0.33204	0.1815	0.1667	0.2562	-0.0408	0.000
0.00977 0.02997 0.02997	1.33333	-0.14377	0.1159	0.1667	0.1468	-0.0903	-0.0000
-0.03147 -0.00977 0.02997	1.50000	-0.03848	0.0518	0.1667	0.0911	-0.0379	00000
0.00977	1.66667	0.03848	0.0273	0.1667	0.0911	-0.0111	-0.0000
0.00977	1.83333	0.14377	0.0206	0.1667	0.1468	-0.0022	0.000
0.02997	2.00000	0.33204	0.0199	0.1667	0.2562	0.0007	0.0
	2.16667	0.65621	0.0218	0.1667	0.4218	0.0032	-0.0000
0.05333	2.33333	1.17557	0.0271	0.1708	0.6573	0.0076	0.0083
0.08425	2.50833	1.97077	0.0380	0.1837	0.9899	0.0141	0.0175
0.12929	2.70083	3.15534	0.0544	0.2069	1.4484	0.0187	0.0289
0.19303	2.92220	4.86748	0.0685	0.2435	2.0404	960000	0.0443
0.26633	3.18785	7.23611	0.0716	0.2989	2.7320	-0.0035	0.066
0.33615	3.51991	10.33144	0.0684	0.0	0.0	-0.0028	0.0
0.40322	0.0	0.0	0.0674	0.0	0.0	0.0007	0.0
96024-0	0.0	0.0	0.0688	0.0	0.0	0.0022	0.0
0.54085	0.0	0.0	0.0710	0.0	0.0	0.0022	0.0
0.61295	0.0	0.0	0.0727	0.0	0.0	0.0012	0.0
0.68625	0.0	0.0	0.0725	0.0	0.0	-0.0015	0.0
0.75803	0.0	0.0	0.0684	0.0	0.0	-0.0067	0.0
0.82313	0.0	0.0	0.0593	0.0	0.0	-0.0115	0.0
0.87670	0.0	0.0	0.0486	0.0	0.0	-0.0098	0.0
0.92042	0.0	0.0	0.0417	0.0	0.0	-0.0040	0.0
0.96016	0.0	0.0	0.0398	0.0	0.0	0.0001	0.0
1.00000	0.0	0.0	0.0525	0.0	0.0	0.0253	0.0
1.06513	0.0	0.0	0.1163	0.0	0.0	0.1023	0.0
1.23254	0.0	0.0	0.1843	0.0	0.0	0.0337	0.0
1.43368	0.0	0.0	0.2366	0.0	0.0	0.0710	0.0
1.70581	0.0	0.0	0.3311	0.0	0.0	0.1179	0.0
2.09580	0.0	0.0	0.4760	0.0	0.0	0.1720	0.0
2.65773	0.0	0.0	0.6781	0.0	0.0	0.2324	0.0
3.45209	0.0	0.0	0.9477	0.0	0.0	0.3067	0.0
4.55317	0.0	0.0	1.3042	0.0	0.0	0.4063	0.0
95090*9	0.0	0.0	0.0	0.0	0.0	0.0	0.0

						*		-	N	•	•	•	•		•	•	01	-	12	13	•						
						XTENP		0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107	0.4107						
	FRAGE	CHORD		0.750		XLEUP		0.7440	0.7440	0.7440	0-1440	0.7440	0.7440	0.7440	0.7440	0.7440	0.7440	0.7440	0.7440	0.7440	0.7440						
		CHORD C		0.813		(X -XTEN)/C		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000						
	TAPER	RAT 10		0.333		(X -XLEW)/C		960000	960000	960000	960000	950000	0.0098	9600.0	9600.0	960000	9600.0	9600.0	960000	9600.0	8600.0						
	ASPECT	ATIO		00009				10	61	61	61	*	•	61	61	61	10	10	10	19	61						
		AREA R		1.688		STE(K) NX		31	31	31	33	31	31	31	31	33	31	33	31	31	3						
	3	AR				JLE(K)		13	13	13	13	13	13	13	13	13	13	13	13	13	13						
	411	CHORD		0.375		CORDW		1.1250	1.0694	1.0139	0.9583	0.9028	0.8472	0.7917	0.7361	0.6806	0.6250	0.5694	0.5139	0.4583	0.4028						
NOI	ROOT	CHORD		1.125	ISTICS			090	0.9144	829	513	196	882	295	251	936	620	304	686	673	358						
DESCRIPTION	T.E.	SWEEP	(DEG.)	22.338	CHARATER	XTEW		8.0	6.0	6.0										1.6	1.7						
DAL WING	r.E.	WEEP	X/OV	0.411	PLANFORM	XLEW		-0.2790	-0-1550	-0.0310	0.0930	0.2170	0.3410	0.4650	0.5890	0.7130	0.8370	0.9610	1.0850	1.2090	1.3330						
REFERENCE TRAPEZOTUAL		SWEEP			ACTUAL INPUT WING PLANFORM CHARATERISTICS		1008	0.0	0.1647	0.3333	0.2000	199990	0.6333	1.0000	1.1667	1,3333	1.5000	1.6667	1.6333	2.0000	2-1667	1.6875	00000-9	1.6875	0.6132	0.4170	
RENCE	ن	5	3	ň	4 1		# ING		•	•	•	_	•										"	8	"	=	
REFE	L.E.	SWEEP	DX/OV	0.744	ACTU	ETA	MONTHAL W	0.0	0.0741	0.1481	0.2222	0.2963	0.3704	0.4444	0.5185	0.5926	1999-0	0.7407	0.8146	0.8889	0.9630	STRUE	ARTRUE	SEXPOSED	CIMAC) =	XLE (MAC)=	The state of the s
						×	-	-	~	•		6	•	1	00	•	9	=	12	13	:						

DETAILS OF XI MAPPING

ATE ALEP ATE ATE <th></th> <th>,</th> <th>X 1=0.0</th> <th>X1=1.0</th> <th></th> <th></th> <th>UPSTREAM AND</th> <th>ID DOWNSTREAM</th> <th>-</th> <th></th> <th></th>		,	X 1=0.0	X1=1.0			UPSTREAM AND	ID DOWNSTREAM	-		
-0.2790 0.8460 0.7440 0.4107 -5.8880 6.5391 -2.2494 1.1344 -0.01550 0.9914 0.7440 0.4107 -5.8870 6.3264 -2.3663 1.1933 -0.0310 0.9829 0.7440 0.4107 -5.4652 6.1137 -2.4959 1.2567 0.0930 1.0513 0.7440 0.4107 -5.4622 6.1137 -2.4959 1.2317 0.4650 1.2567 0.7440 0.4107 -3.7799 5.6863 -2.8031 1.1933 0.4650 1.3251 0.7440 0.4107 -3.7799 5.2629 -3.1965 1.5023 0.6890 1.3251 0.7440 0.4107 -2.9364 5.0502 -3.4376 1.7337 0.9810 1.3936 0.7440 0.4107 -2.9346 4.6248 -4.0490 2.0419 0.9910 1.5304 0.7440 0.4107 -2.9346 4.6248 -4.0490 2.0419 0.9910 1.5304 0.7440 0.4107 -2.9346 4.6248 -4.0490 2.0419 0.9910 1.5304 0.7440 0.4107 -2.0911 4.4122 -4.4440 2.2411 0.9950 1.6673 0.7440 0.4107 -2.0911 4.4122 -4.0490 2.0419 0.9910 1.5263 0.7440 0.4107 -2.0911 3.9968 -5.5213 2.7844 0.4107 -2.0011 3.5671 -6.8511 3.2701 0.4565 1.8047 0.7317 0.4230 -0.4101 3.5671 -6.8518 2.0932 0.7742 2.0276 2.2203 0.6044 0.5103 0.66939 3.1821 -6.2582 0.7742 2.2216 2.2203 0.6051 0.5773 1.2100 3.3563 -3.0791 -3.0791			1	X TE	XLEP	XIEP	a de la companya de l	NEOGX	XI Y(UP)	XIVON	*
-0.2790 0.8460 0.7440 0.4107 -6.3088 6.5391 -2.2494 1.1344 -0.01550 0.9144 0.7440 0.4107 -5.6870 6.3264 -2.3663 1.1933 -0.0930 1.0513 0.7440 0.4107 -5.0652 5.01137 -2.4959 1.2587 0.02170 1.1198 0.7440 0.4107 -5.0652 5.0100 -2.6406 1.3317 0.3410 1.1882 0.7440 0.4107 -4.6217 5.68 63 -2.9669 1.5063 0.4650 1.3251 0.7440 0.4107 -3.3564 5.0502 -3.4376 1.6120 0.5830 1.3251 0.7440 0.4107 -2.9346 4.8375 -3.7184 1.8752 0.5830 1.3551 0.7440 0.4107 -2.0348 4.8375 -3.7184 1.8752 0.6830 1.5689 0.7440 0.4107 -2.0393 4.1995 -4.0490 2.0419 0.9610 1.5989 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 0.5601 1.6589 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 0.4102 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 0.4102 0.7440 0.4107 -0.6256 3.7741 -6.2628 2.0932 0.6833 0.7440 0.4107 -0.6256 3.7741 -6.2628 2.0932 0.6850 1.6673 0.7440 0.4107 -0.6256 3.7741 -6.2628 2.0932 0.7450 0.772 0.4755 0.4899 -0.0191 3.3593 -6.9687 2.9688 0.7460 0.5772 0.4775 0.4899 3.1921 -6.2582 -1.3960 0.6850 2.20795 0.60772 0.6773 0.6939 3.1921 -6.2582 -1.3960 0.5773 0.5773 0.5773 1.210 3.3563 -3.0791 -3.0791	ING ROOT										
-0.1550 0.9144 0.7440 0.4107 -5.8870 6.3264 -2.3663 1.1933 1.1933 0.9829 0.7440 0.4107 -5.4652 6.1137 -2.4959 1.2587 1.2587 0.09310 0.9829 0.7440 0.4107 -5.4652 6.1137 -2.4059 1.2587 1.3317 0.2400 1.1198 0.7440 0.4107 -4.6217 5.6863 -2.4031 1.41317 1.41317 0.4250 0.4107 -2.9469 5.4756 -2.9669 1.5063 1.5063 0.4655 1.2567 0.7440 0.4107 -2.9469 5.4756 -2.9669 1.5063 0.7440 0.4107 -2.946 4.6375 -3.1965 1.5120 0.7440 0.4107 -2.9364 4.6375 -3.1965 1.5120 0.7440 0.4107 -2.9364 4.6375 -3.7184 1.8152 0.7440 0.4107 -2.936 4.6248 -4.0490 2.0419 1.8752 0.9650 1.5934 0.7440 0.4107 -2.936 4.6248 -4.0490 2.0419 1.8752 0.4990 0.7440 0.4107 -1.2463 4.6248 -4.0490 2.0419 1.2090 1.2090 1.2090 0.7440 0.4107 -1.2463 3.9666 -5.5213 2.7844 2.4834 1.8523 1.8810 0.7440 0.4107 -1.2463 3.7741 -6.2828 3.1685 2.0932 1.8523 1.8810 0.7057 0.4107 -0.04191 3.3503 -6.9667 2.8858 2.0932 2.2214 2.4834 0.5773 1.2176 3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3563 -3.3591 -3.3591 0.3091 3.3591 0.3091 0.50948 0.5773 1.2176 3.3563 -3.3563 -3.3591 -3.3091 0.50949 0.5773 1.2176 3.3563 -3.3563 -3.3591 -3.3091 0.50991 0.5	0.0		-0.2790	0.8460	0.7440	0.4107	-6.3088	6.5391	-2.2494	1.1344	-
-0.0310 0.9829 0.7440 0.4107 -5.4652 6.1137 -2.4959 1.2587 1.05130 0.02170 1.0513 0.7440 0.4107 -5.0435 5.9010 -2.4059 1.2587 1.4136 0.7440 0.4107 -4.1999 5.4756 -2.9069 1.5003 1.5003 0.4400 0.4107 -3.7762 5.2629 -3.1964 1.5003 1.5003 0.4107 -3.7762 5.2629 -3.1964 1.5003 1.5003 0.4107 -2.9346 5.0502 -3.4376 1.7337 0.7440 0.4107 -2.9346 5.0502 -3.4376 1.7337 0.7440 0.4107 -2.9346 4.6248 -4.0490 2.4411 0.4500 0.4107 -2.0911 4.4122 -4.4040 2.4111 0.4000 0.4107 -2.0912 4.6248 -4.0490 2.4111 0.9000 0.9010 0.7440 0.4107 -1.6693 4.1995 -4.9244 2.4834 1.6573 0.7440 0.4107 -1.6693 4.1995 -5.5213 2.7044 1.6573 0.7440 0.4107 -1.2476 3.9068 -5.5213 2.7044 1.6573 0.7440 0.4107 -1.2476 3.9068 -5.5213 2.7044 1.6573 0.7440 0.4107 -0.0256 3.7741 -6.2628 2.0013 1.7356 0.7440 0.4107 -0.0256 3.7741 -6.2628 2.0013 2.7044 1.6523 0.4409 0.4107 -0.0256 3.7741 -6.2628 2.0013 2.0013 1.7356 0.6449 0.04107 -0.0191 3.5011 3.5011 3.2703 1.0012 2.0025 2.2203 0.60011 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4200 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4209 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4208 0.4107 0.4208 0.4107 0.41	0.16	10	-0.1550	0.9144	0.7440	0.4107	-5.8870	6.3264	-2.3663	1.1933	8
0.0930 1.0513 0.7440 0.4107 -5.0435 5.9010 -2.6406 1.3317 1.4136 0.7440 0.4107 -4.6217 5.6863 -2.86031 1.4136 1.5198 0.7440 0.4107 -4.6217 5.6863 -2.86031 1.4136 1.5063 0.4460 0.4107 -3.7762 5.2629 -3.1965 1.6120 0.5890 1.3251 0.7440 0.4107 -3.7762 5.2629 -3.4376 1.6120 0.5890 1.3251 0.7440 0.4107 -2.9346 4.8375 -3.4376 1.6120 0.58370 1.3250 0.7440 0.4107 -2.9346 4.8375 -3.4376 1.6733 0.7440 0.4107 -2.6129 4.6248 -4.0400 2.2411 1.6060 1.5669 0.7440 0.4107 -1.6693 4.1995 -4.9244 2.48434 1.6590 1.5663 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.4565 1.8047 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.6563 1.7356 0.7440 0.4107 -0.8256 3.7741 -6.8511 3.2703 1.5623 1.80610 0.7057 0.4489 -0.0191 3.3930 -6.9687 2.8468 1.5623 0.6772 0.4775 0.3495 3.1685 -6.8588 2.0932 2.0223 0.6444 0.65773 0.5448 0.6948 -6.8582 -1.3960 2.2219 2.2203 0.65773 0.5449 0.5948 3.3563 -3.0791 -3.0791 3.30791	0.33	33	-0.0310	0.9829	0.7440	0.4107	-5.4652	6.1137	-2.4959	1.2587	3
0.2170 1.1198 0.7440 0.4107 -4.6217 5.6683 -2.8031 1.4136 0.3410 1.1882 0.7440 0.4107 -4.1999 5.4756 -2.9669 1.5063 0.5890 1.3251 0.7440 0.4107 -3.3782 5.6502 -3.4376 1.6120 0.5890 1.3251 0.7440 0.4107 -2.9346 4.6375 -3.4784 1.6120 0.7130 1.3936 0.7440 0.4107 -2.9346 4.6375 -3.7184 1.6120 0.7130 1.5969 0.7440 0.4107 -2.9346 4.696 2.0419 1.0850 1.6673 0.7440 0.4107 -1.6693 4.1995 -4.0440 2.0419 1.2090 1.6673 0.7440 0.4107 -1.2676 3.7741 -6.2824 3.1685 1.8047 0.7440 0.4107 -1.2476 3.7741 -6.2824 3.1685 1.8052 1.8047 0.7440 0.4107 -0.6256 3.7741 -6.2824 <td>0.50</td> <td>00</td> <td>0.0930</td> <td>1.0513</td> <td>0.7440</td> <td>0.4107</td> <td>-5.0435</td> <td>5.9010</td> <td>-2.6406</td> <td>1.3317</td> <td></td>	0.50	00	0.0930	1.0513	0.7440	0.4107	-5.0435	5.9010	-2.6406	1.3317	
0.3410 1.1882 0.7440 0.4107 -4.1999 5.4756 -2.9669 1.5063 0.4650 1.2567 0.7440 0.4107 -3.7782 5.2629 -3.1965 1.6120 0.5890 1.3251 0.7440 0.4107 -2.3564 5.0502 -3.4376 1.6120 0.7130 1.4620 0.7440 0.4107 -2.5124 4.6246 -4.0490 2.0419 0.8370 1.4620 0.7440 0.4107 -2.5124 4.6246 -4.0490 2.0419 0.9610 1.5989 0.7440 0.4107 -2.6129 4.1995 -4.0490 2.0419 1.2090 1.5989 0.7440 0.4107 -1.2476 3.9666 -5.5213 2.7844 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9666 -5.5213 2.7844 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9666 -5.5213 2.7844 1.4565 1.6673 0.7440 0.4107 -0.04101 </td <td>0.66</td> <td>190</td> <td>0.2170</td> <td>1.1198</td> <td>0.7440</td> <td>0.4107</td> <td>-4.6217</td> <td>5.68 83</td> <td>-2.8031</td> <td>1.4136</td> <td>9</td>	0.66	190	0.2170	1.1198	0.7440	0.4107	-4.6217	5.68 83	-2.8031	1.4136	9
0.4650 1.2567 0.7440 0.4107 -3.7782 5.2629 -3.1965 1.6120 0.5890 1.3251 0.7440 0.4107 -3.354 5.0502 -3.4376 1.7337 0.8370 1.3251 0.7440 0.4107 -2.5126 4.6246 -4.0490 2.0419 0.8370 1.4620 0.7440 0.4107 -2.5129 4.6246 -4.0490 2.0419 1.0650 1.5969 0.7440 0.4107 -1.6693 4.1996 -4.9244 2.4834 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.4565 1.8610 0.7440 0.4107 -0.0426 -6.2828 3.1685 1.4562 1.8610 0.7440 0.4107 -0.0426 -6.2828 <td>0.8</td> <td>333</td> <td>0.3410</td> <td>1.1882</td> <td>0.7440</td> <td>0.4107</td> <td>-4.1999</td> <td>5.4756</td> <td>-2.9869</td> <td>1.5063</td> <td>٥</td>	0.8	333	0.3410	1.1882	0.7440	0.4107	-4.1999	5.4756	-2.9869	1.5063	٥
0.5890 1.3251 0.7440 0.4107 -3.3564 5.0502 -3.4378 1.7337 0.7130 1.3936 0.7440 0.4107 -2.9346 4.6375 -3.7184 1.8752 0.8370 1.4620 0.7440 0.4107 -2.9346 4.6375 -3.7184 1.8752 0.9610 1.5989 0.7440 0.4107 -2.69129 4.1995 -4.9244 2.4811 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 1.8067 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 1.8360 1.6673 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 1.8361 0.7440 0.4107 -1.2476 3.9668 -5.5213 2.7844 1.8562 1.8047 0.7440 0.4107 -0.6256 3.7741 -6.2828 3.1685 1.8610 0.772 0.4489 -0.0191 3.3930 -6.2828 2.9948 </td <td>1.0</td> <td>000</td> <td>0.4650</td> <td>1.2567</td> <td>0.7440</td> <td>0.4107</td> <td>-3.7782</td> <td>5.2629</td> <td>-3.1965</td> <td>1.6120</td> <td>1</td>	1.0	000	0.4650	1.2567	0.7440	0.4107	-3.7782	5.2629	-3.1965	1.6120	1
0.7130 1.3936 0.7440 0.4107 -2.9346 4.8375 -3.7184 1.8752 -3.0419	1.1	299	0.5890	1 •3251	0.7440	0.4107	-3.3564	5.0502	-3.4378	1.7337	80
0.8370 1.4620 0.7440 0.4107 -2.5129 4.6248 -4.0490 2.0419 0.9610 1.5304 0.7440 0.4107 -2.0911 4.4122 -4.4440 2.2411 1.0850 1.5689 0.7440 0.4107 -1.6693 4.1995 -4.9213 2.7844 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.3330 1.7356 0.7440 0.4107 -0.6256 3.7741 -6.2828 3.1685 1.4565 1.8047 0.7317 0.4230 -0.4101 3.5671 -6.8511 3.2703 1.7154 1.9702 0.6772 0.4489 -0.0191 3.3930 -6.9687 2.8468 1.7154 1.9702 0.6444 0.5173 0.6939 3.1954 -4.6825 -1.3960 2.2219 2.2203 0.6573 0.5773 1.2170 3.3563 -3.0791 -3.0791	1.3	333	0.7130	1.3936	0.7440	0.4107	-2.9346	4.8375	-3.7184	1.8752	•
0.9610 1.5304 0.7440 0.4107 -2.0911 4.4122 -4.4440 2.2411 1.0850 1.5989 0.7440 0.4107 -1.6693 4.1995 -4.9244 2.4834 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9866 -5.5213 2.7844 2.4834 1.3330 1.7356 0.7740 0.4107 -0.8256 3.7741 -6.2828 3.1685 1.4565 1.8810 0.7057 0.4489 -0.0191 3.5671 -6.8611 3.2703 1.7154 1.9702 0.64775 0.3495 3.2598 -6.8588 2.0932 1.8616 2.0795 0.6444 0.5173 0.5939 3.1821 -6.2828 0.7742 2.2219 2.2203 0.65773 0.5773 1.2170 3.3563 -3.0791 -3.0791	1.5	000	0.8370	1.4620	0.7440	0.4107	-2.5129	4.6248	-4.0490	2.0419	0
1.0850 1.5989 0.7440 0.4107 -1.6693 4.1995 -4.9244 2.4834 2.4834 1.2090 1.6673 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 2.7844 2.4834 1.3330 1.7358 0.7440 0.4107 -0.8258 3.7741 -6.2828 3.1685 3.1685 1.4565 1.8047 0.4230 -0.4101 3.5671 -6.2828 2.0932 1.5823 1.8810 0.7057 0.4489 -0.0191 3.3930 -6.9687 2.8468 2.0932 2.2203 0.6051 0.5496 3.1954 -4.6825 -1.3960 2.2219 2.4094 0.5773 1.2170 3.3563 -3.0791 -3.0791 3.30791 -3.0791	1.6	199	0.9610	1.5304	0.7440	0.4107	-2.0911	4.4122	-4.4440	2.2411	=
1.2090 1.6673 0.7440 0.4107 -1.2476 3.9868 -5.5213 2.7844 1.3330 1.7356 0.7440 0.4107 -0.8256 3.7741 -6.2828 3.1685 1.4565 1.8047 0.7317 0.4230 -0.4101 3.5671 -6.8511 3.2703 1.5623 1.8810 0.7057 0.4489 -0.0191 3.5671 -6.8581 2.0932 1.7154 1.9702 0.6772 0.4775 0.3495 3.2598 -6.8588 2.0932 2.0705 0.6051 0.5103 0.5938 3.1954 -4.6825 -1.3960 2.2203 0.6051 0.5496 3.3563 -3.0791 -3.0791	1.8	333	1.0850	1 .5989	0.7440	0.4107	-1.6693	4.1995	-4.9244	2.4834	12
1.3330 1.7356 0.7440 0.4107 -0.6256 3.7741 -6.2628 3.1685 1.4565 1.8047 0.7317 0.4230 -0.4101 3.5671 -6.9617 2.8468 1.5623 1.8810 0.7057 0.4489 -0.0191 3.3930 -6.9687 2.8468 1.7154 1.9702 0.6772 0.4775 0.3495 3.2598 -6.8588 2.0932 2.0276 2.2203 0.6051 0.5103 0.6934 -4.6825 -1.3960 2.2219 2.4094 0.5773 1.2170 3.3563 -3.652 -3.0791	2.0	000	1.2090	1.6673	0.7440	0.4107	-1.2476	3.9868	-5.5213	2.7844	13
1.4565 1.8047 0.4230 -0.4101 3.5671 -6.8511 3.2703 1.5623 1.8810 0.7057 0.4489 -0.0191 3.3930 -6.8688 2.8968 1.7154 1.9702 0.6772 0.4775 0.3495 3.2598 -6.8588 2.0932 1.8616 2.0795 0.644 0.513 0.6939 3.1821 -6.2582 0.7742 2.2219 2.4094 0.5773 1.2170 3.3563 -3.0791 -3.0791	2.1	199	1.3330	1.7358	0.7440	0.4107	-0.8258	3.7741	-6.2828	3.1685	=
1.4565 1.8047 0.7317 0.4230 -0.4101 3.5671 -6.8511 3.2703 1.5623 1.6810 0.7057 0.4489 -0.0191 3.3930 -6.9687 2.8468 1.7154 1.9702 0.6772 0.4775 0.3495 3.2598 -6.8588 2.6932 2.8015 2.2203 0.6444 0.5103 0.6939 3.1954 -4.6828 0.7742 2.2219 2.4094 0.5773 1.2170 3.3563 -3.0791 -3.0791	ING TIP										
1.5623 1.8810 0.7057 0.4489 -0.0191 3.3930 -6.9687 2.8468 1.7154 1.9702 0.6772 0.4775 0.3495 3.2598 -6.8588 2.0932 1.8616 2.0795 0.6444 0.5103 0.6939 3.1821 -6.2582 0.7742 2.0276 2.2203 0.6051 0.5496 3.1954 -4.6825 -1.3960 2.2219 2.4094 0.5773 1.2170 3.3563 -3.6791 -3.0791	2.3	1333	1.4565	1.8047	0.7317	0.4230	-0.4101	3.5671	-6.8511	3.2703	15
1.7154 1.9702 0.6772 0.4775 0.3495 3.2598 -6.8588 2.0932 1.8616 2.0795 0.644 0.5103 0.6939 3.1821 -6.2582 0.7742 2.0276 2.2203 0.6051 0.5496 0.9948 3.1954 -4.6825 -1.3960 2.2219 2.4094 0.5773 0.5773 1.2170 3.3563 -3.6791 -3.0791	2.5	063	1.5823	1.8810	0.7057	0.4489	-0.0191	3,3930	-6.9687	2.8468	16
1-8616 2-0795 0-6444 0-5103 0-6939 3-1821 -6-2582 0-7742 2-0276 2-2203 0-6051 0-5496 0-9948 3-1954 -4-6825 -1-3960 2-2219 2-4094 0-5773 1-2170 3-3563 -3-0791 -3-0791	2.7	900	1.7154	1.9702	0.6772	0.4775	0.3495	3.2598	-6.8588	2.0932	17
2.0276 2.2203 0.6051 0.5496 0.9948 3.1954 -4.6825 -1.3960 2.2219 2.4094 0.5773 0.5773 1.2170 3.3563 -3.0791 -3.0791	5.9	222	1.8616	2.0795	0.6444	0.5103	0.6939	3.1821	-6.2582	0.7742	16
2.2219 2.4094 0.5773 0.5773 1.2170 3.3563 -3.0791 -3.0791	3.16	379	2.0276	2.2203	0.6051	0.5496	0.9948	3.1954	-4.6825	-1.3960	19
	3.5	551	2.2219	5.4094	0.5773	0.5773	1.2170	3,3563	-3.0791	-3.0791	20

	DOZU DOZU	16.67328 -16.67310			6.04388 -6.04385		1	2		-3.03456 3.03456	-3.73576 3.73577				98689	. 60132 4.60132	. 60271 4	* +1109	7100	TWIST ANGLE = 0.0	00ZU 00ZL	.83693 -28.83615		•			69109	42145	08607 2.08607	03450	13576	22285	60119		.55980 4.59980	60271 4.60271	4 51100	3 .	TWIST ANGLE = 0.0	מחזה מסגר	28.63691 -28.63617				11	11	11	11	11
	1.1250 021.70x	-0.2905.03								0.053013 -3.						.080481 -4.	-4-	1 1	•	1.0694	02L/0x	.550577 28	-0.299503 16.						0.036460 -2.		-3.	4	4	1	0.080455	1 9	.060476 -4.	-080460	1.0139	X0/770	-0.55,05.77 2R.								
	DZUZOX	0-266506-0			-		•			0.053013 0						0.060481 0		0.080478		CHORD =	DZUZDX	0-550594 -0	0-299507 -0			0		1	0 036460						0.080455				CHORD =	va/nzo	0-550594 -0								
= 1	2770	 -0-016824							Ċ	-0.040027 -	- 0.035869 -	-0.030830 -			-	-0.009924 -		0.003206		1 = 0.0741	arc	-0.010915	-0.018824						-0.043089		-				-0.014235				1 = 0.1481	27.72	-0.010915								
. ACE	20.0		024652	1						0.040027	0.035869	0.030630	•	0.019475				0.003206		0.1667 ETA	מאנר	0.010914	0.018624						0-043080						0.014235				0.3333 ETA	2016	410010-0		-		4 15 15				
*	, X	 0.020974	0.053328	0.084254	0.129289	0.193029	0.266327	0.336151	0.403216	0.470956	0.540848	0.012955	0.686250	0.758032	0.823130	0.670096	0.920421	0.960164	0. 22.22.2	*	x/c	0.009773	0.029974	0.053328	0.084254	0.129269	0.193029	0.266327	0.403216	0.470956	0.540848	0.612955	0.686250	0.758032	0.623130	0.620622	0.960154	566666.0	4 × 8	XXC	0.009773	2	0.029974	0.029974	0.02 9974	0.029974 0.053327 0.084254 0.129289	0.02 9974 0.05 3327 0.08 4254 0.12 9289	0.02 9974 0.05 3327 0.08 4254 0.12 9289 0.19 3029	0.029974 0.029974 0.084254 0.129289 0.193029 0.266327
		• •	•		o	•	-		•	0	=	12	13	•:	15	10	11	0 0	2	K = 2		-	2	•		9	0 1		0 0	0	:	12	13	: :	5 4	11	18	19	K.	*		-	- 0	- 0 5	- N M 4	- 0 5 4 5	- W M 4 D D I	- 0 5 4 5 5 6	- 0 4 4 0 0 7 5

•		
3.73576 4.51110 4.50148 4.50148 4.60114 4.60114	28.8362 16.6731 11.9336 11.9336 11.9336 11.9336 11.9336 11.9336 11.9336 11.9336 13.034	-28.83621 -16.67310 -11.93352
-3.73576 -4.22285 -4.51109 -4.560148 -4.56013 -4.60123 -4.60123	N +	28.83691 16.67328
0.052294 0.073836 0.080484 0.080485 0.080485 0.080485 0.080486 0.080476 0.080476	N WWW	-0.550578 -0.299503 -0.211344
CHORD	\ \(\qqq \qqq \qqq \qqq \qqq \qqq \qqq \q	0.550594 0.299506 0.211343
-0,035669 -0,030830 -0,019475 -0,019475 -0,009924 -0,006405 -0,006405 -0,006405 -0,006405 -0,006405 -0,006405 -0,006405	2.//C	-0.010915 -0.016824 -0.024652
0.038699 0.039830 0.0194735 0.0194235 0.009924 0.00000 0.000000 0.00000 0.00000 0.00000	20000000000000000000000000000000000000	20/C 0.010914 0.016824 0.024652
0.540e4 6 0.012955 0.686250 0.456032 0.420421 0.920421 0.999999	\ \tau_4 \qqq \qua	0.009773 0.029974 0.053327
121122222		z -00

	•	
	T ANGLE = DOZL DOZL DOZL	002L -28.83621 -11.93363 -8.73481 -9.73481 -1.42144 0.75044 2.0464365 3.73577 3.73577 4.22265 4.51109 4.60133 4.60133
6.04388 1.45125 2.0602 2.0603 1.3757 1.3757 1.4568	26.6.53.24 11.933.46 11.93	DUZU 116.67329 116.67329 6.04386 6.04386 7.04386 1.4.1145 4.5286
-0.1058 K	0.7917 0.1507	D11 / O
0.000000000000000000000000000000000000	C.4640 0.259094 0.279499999999999999999999999999999999999	020/0x 0.550.94 0.294507 0.153644 0.056849 0.024814 0.024814 0.024814 0.024814 0.024814 0.024814 0.024814 0.024814 0.024814 0.026844 0.0268444
-0.00990	A = 0.4444 -0.019824 -0.019824 -0.035928 -0.041249 -0.044806 -0.044806 -0.044806 -0.0432865 -0.0032865 -0.0032865 -0.0032865 -0.0032865 -0.0032865 -0.0032865	21.7C
0.006.0 % 64.0 %	200000 E1A 20000 E1A 20000 E1A 20000 E1A 20000 E1A 20000 E1A 20000 E1A 2000	2U/C 0.010914 0.010924 0.024622 0.034628 0.041249 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438 0.044438
0.129284 0.206327 0.206327 0.403215 0.403215 0.403210 0.61295 0.61296 0.61296 0.61296 0.623129 0.623129 0.623129 0.623129	X/C 0.00 9773 0.02 99773 0.02 99773 0.02 99773 0.12 9929 0.19 3029 0.19 3029 0.19 3029 0.40 3210 0.40 3210 0.40 986 0.61 295 0.75 4095 0.75 4095	X/C 0.009773 0.029773 0.029773 0.029327 0.129329 0.129327 0.330313 0.47095 0.54095 0.686249 0.61295 0.61295 0.61295 0.65083
267657575564409	• 1 = -www.assaldud.noisas 4	*
	5	

## K/C ZU/C ZU/C Z 0.0109173 0.0109174 0.018824 2 0.029977 0.02861249 0.018824 2 0.02861249 0.018824 2 0.02861249 0.018824 2 0.02861249 0.018824 2 0.02861249 0.018824 2 0.02861249 0.02861	FI F F F F F F F F F F F F F F F F F F	ZL/C -0.010915 -0.010915 -0.010915 -0.024624 -0.036207 -0.044936 -0.044936 -0.044936 -0.044936 -0.0493669 -0.0493669 -0.0493699 -0.03669 A = 0.6667 A = 0.6667	0.20.00x 0.299507 0.299507 0.15394 0.105874 0.105874 0.0058460 0.00588460 0.00588460 0.00588460 0.00588460 0.00588460 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.0058847 0.00588847 0.0058847	0.0500579 -0.2500579 -0.2500579 -0.150043 -0.05001345 -0.05001345 -0.05001340 -0.0500420 -0.060420 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476 -0.060476	28.83656 11.93347 - 11.93347 - 11.93347 - 12.036808 13.03655 13.03656 13.03656 13.03656 13.03656 13.03656 13.03656 13.036608 13.036608 13.036608 14.60133 14.6013 16.6013 16.60133 16.6013 16.6013 16.6013 16.6013 16.6013 16.6013 1	111	•
0.009773 0.029774 0.029774 0.012928 0.112928 0.119928 0.19928	E E E E E E E E E E E E E E E E E E E		0.299507 0.15344 0.15344 0.006264 0.006264 0.006264 0.006264 0.006264 0.006264 0.006264 0.0060	•	28.83696 11.6.67331 11.6.67331 11.6.67331 11.6.67331 11.6.67331 11.6.67331 11.63347 11.63347 11.63347	777	•
0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3 0.00 977 3	ET E		0.5505995 0.15394 0.155874 0.055874 0.055874 0.055884 0.0558	•	10. 43347 11. 43347 11. 43347 13. 60136 13. 60136 13. 60136 13. 60136 14. 6013 14. 60124 14. 60124 14. 60124 14. 60124 14. 60124 14. 60124 14. 60124 14. 60124 14. 60133	777 1111	•
0.02 947 9 0.03 942 9 0.12 942 9 0.12 942 9 0.12 942 9 0.13 941 9 0.14 942 9 0.15 942 9	F F F F F F F F F F F F F F F F F F F		0.153944 0.153944 0.052949 0.022949 0.023983 0.0	•	8. 73463 9. 73463 9. 60186 1. 42145 1. 421331 1. 43345	77111	•
0.053227 0.129289 0.1292	FI E E E E E E E E E E E E E E E E E E E		0.15394 0.105879 0.0058819 0.0058819 0.0058819 0.0058919 0.0058919 0.0058919 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819 0.0069819	•	73467 6.04367 6.04367 6.04367 6.04367 6.04367 6.04367 6.0133 6.0134 6	7 () () 477 (° è
0.084284 0.129289 0.129289 0.1262837 0.256327 0.54084 0.65249 0.652649 0.686249 0.686249 0.686249 0.686249 0.686249 0.686249 0.686249 0.686249 0.686249 0.686280 0.129289 0.12	ET CO.000		0.1534+ 0.062679 0.022679 0.0226114 0.022679 0.0232660 0.0232660 0.0260610 0.025089 0.0250895 0.0250896 0.0250896 0.0250896 0.0266960	•	8,73463 9,04388 1,42145 -2,048043 -3,7357 4,22285 4,550169 4,550169 4,501183 4,601124 1,6012	1111	•
0.129289 0.193029 0.193029 0.193029 0.193029 0.193029 0.193029 0.193029 0.292042 0.092043 0.193029	ET E		0.00 20 40 40 40 40 40 40 40 40 40 40 40 40 40	•	1. 42140 1.	- 777	•
19329 9,26327 9,403216 0,403216 0,666249 0,758031 0,758031 0,758031 0,758031 0,758031 0,758031 0,758031 0,758032	EI E		0.062943 0.024814 0.0130814 0.03466 0.034812 0.055841 0.064811 0.064814 0.064814 0.0664	•	3.60166 -0.780145 -1.62014	- 777	•
0.266327 0.336151 0.470954 0.540966 0.68624 0.68624 0.68624 0.68624 0.68624 0.68624 0.68624 0.68624 0.68624 0.99994 0.99994 0.19392 0.09973 0.099973 0.099973 0.099994 0.193929	E E E E E E E E E E E E E E E E E E E		00.024814 00.013998 00.013998 00.053912 00.055924 00.055924 00.055924 00.0559295 00.0294507 00.0294507 00.0294507	•	-2.05045 -3.03455 -3.03455 -4.5109 -4.51109 -4.60133 -4.60133 -4.60125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.00125 -6.0	- 777	•
0.403210 0.403210 0.403210 0.612954 0.612954 0.754031 0.6823130 0.9292042 0.9292042 0.029373	20 20 20 20 20 20 20 20 20 20 20 20 20 2		0.013098 0.03312 0.05594 0.0559315 0.065945 0.060465 0.06045 0	•	-0.75043 -2.08808 -3.735455 -4.22265 -4.51104 -4.501134	- 777	•
0.40924 0.410954 0.6129310 0.754031 0.6129333 0.612964 0.612964 0.6299773 0.6299773 0.6409773 0.6999773	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0550895 0.0550897 0.078897 0.0808897 0.0808897 0.0808897 0.0808897 0.0808897 0.08089897 0.0808989 0.0850898 0.0850898 0.0850898 0.0850898 0.0850898 0.0850898 0.0850898 0.0850898 0.0850898	•	-2.08606 -3.03455 -4.03456 -4.60109 -4.60103 -4.	+ 777'	•
0.4403410 0.4403410 0.612944 0.61823130 0.754031 0.820420 0.920420 0.900973 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02977 0.02977 0.02977 0.02977 0.02977 0.02977 0.02977 0.02977	2000 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.055940 0.055940 0.055940 0.055940 0.066964 0.066964 0.066964 0.066964 0.066964 0.066964 0.066966 0.06696 0.066966 0.066966 0.066966 0.066966 0.066966 0.06696	•	-7.08808 -3.73577 -3.73577 -4.22285 -4.60133 -4.60133 -4.60135 -6.00135 -6.00135 -6.00135 -6.00135 -6.00135 -6.00135 -6.00135 -6.	+ 777	•
0.54 0975 0.54 0975 0.55 0973	200 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0.0529450 0.073839 0.073839 0.073839 0.086959 0.086959 0.086959 0.294507 0.2344507 0.2344507	•	13.03555 14.51105 14.51105 14.50105 14.50133 14.50135 14.50135 14.50135 16.50331 11.50335 11.5035 11.5	+ 777'	•
0.012954 0.012954 0.012954 0.012954 0.012954 0.012954 0.009773 0.009773 0.012959 0.0129	200 C E C C C C C C C C C C C C C C C C C		0.0136394 0.0736394 0.0736945 0.060465 0.060465 0.060476 0.0	•	-3,73577 -4,51265 -4,50140 -4,50140 -4,60173 -4,60124 -4,	+ 777'	:
0.012654 0.0686249 0.0873130 0.0873130 0.087733 0.009773 0.009773 0.009773 0.009773 0.009773 0.009773 0.009773	E E E E E E E E E E E E E E E E E E E		0.073336 0.073897 0.08685 0.08685 0.08686 0.08687 0.08687 0.08680 0.0850595 0.294607 0.294607 0.153343 0.153346	•	1,22265 1,501104 1,501104 1,501104 1,50112 1,5	+ 777'	•
0.086249 0.758331 0.876895 0.6876895 0.989999 0.009773 0.009773 0.0129289	E E E E E E E E E E E E E E E E E E E		0.078897 -0.080481 -0.080481 -0.080481 -0.080480 -0.080480 -0.080480 -0.080480 -0.080480 -0.080480 -0.080895 -0.294507 -0.211343 -0.105879	•	4.50109 4.5590109 4.5590109 4.501124 6.50124 7.61124 7	- 4771	•
0.0.758031 0.823130 0.92042 0.92042 0.99099 0.29973 0.00973 0.02974 0.12928	E 25 25 25 25 25 25 25 25 25 25 25 25 25		-0.080484 -0.080455 -0.080406 -0.080476 -0.080478 -0.080478 -0.080478 -0.0850595 0.294507 0.294507	•	4.60149 4.60173 4.60173 4.60173 4.60173 1.116.6733 11.66.6733 8.73490	- 7771	•
0.6823130 0.6929999 0.9929999999999999999999999999999	200 L C C C C C C C C C C C C C C C C C C		0.080455 0.080481 0.080406 0.080406 0.080480 0.294907 0.21143 0.105879	•	4.59960 4.60133 4.601275 4.60128 6.0128 6.0128 7 miles 7 miles 8.3349 8.73490	- 777'	•
XXX XXX XXX XXX XXX XXX XXX XXX XXX XX	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		CHORD CHORD	•	4.60135 -4.60115 -4.60115 -4.60115 -4.60115 -4.60116 -4.60135 -4.6	- 777'	•
V = 1.4 V = 1.4	2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		-0.080900 -0.080900 -0.080900 CHORD DZU/DX 0.550595 0.294507 0.23345 0.105879	•	7.00135 4.601124 7.601124 7.60124 7.60124 7.60124 7.60134 7.601334 8.73440	- 777'	•
0.96 042 0 0.99 999 9 Y = 1.47 X X X X X X X X X X X X X X X X X X X	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		CHORD DZ U/DX 0.5505950 0.299507 0.154343	0.080476 0.080476 0.080476 0.080480 0.080480 0.02050 0	-4.60115 -4.60115 -4.60115 -4.60115 -4.60115 -4.60133 -4.60133 -4.601331 -4.601331 -4.601331 -4.601331 -4.601331 -4.601331	5 777'	•
0.999999999999999999999999999999999999	200 E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.060476 CHGRD CACRD 0.294507 0.153679 0.105879	0.080.480 0.080.480 0.080.480 0.000.480 0.1.70x 0.250.580.580 0.250.580 0.25	-4.60115 -4.60124 DDZU 28.63698 16.67331 11.93347	v	•
XXX XXX 0.009773 0.029774 0.029774 0.029774 0.029774 0.029773 0.099724 0.099773	000 000 000 000 000 000 000 000 000 00		-0.080480 CHORD DZU/DX 0.550595 0.231343 0.153645 0.105879	0.080480 0.6250 D2L/DX -0.550580 -0.299504 -0.211345 -0.193644	-4.60124 DDZU 28.83698 16.67331 11.93347 8.73490	v)	•
XXX 0.009773 0.02974 0.02974 0.012929 0.012929 0.013929 0.013929 0.019329 0.019329 0.019329 0.019329 0.019329 0.019329 0.019329 0.019299 0.019299 0.019299	2000 C E		CHORD DZU/DX 0.550595 0.211343 0.153645 0.105879	0.6250 D2L/DX D2L/DX -0.550580 -0.299504 -0.13345 -0.133644	28.83698 16.67331 11.93347 8.73490	v)	•
XXC 0.009773 0.029374 0.025327 0.084254 0.193029 0.193029 0.260226 0.403151 0.403151 0.40328 0.61649 0.61649 0.626026 0.		2L/C -0.010915 -0.018624 -0.024652	0.550595 0.299507 0.211343 0.153645	02L/0x -0.550560 -0.299504 -0.211345 -0.153644	28.83698 16.67331 11.93347 8.73490		
XXX 0.009773 0.029774 0.029774 0.029774 0.02929 0.12929		2L/C -0.010915 -0.024652 -0.034652	0.550595 0.299507 0.211343 0.153645	0.550560 -0.299504 -0.211345 -0.153644	28.83698 16.67331 11.93347 8.73490		
0.009773 0.029874 0.029874 0.026428 0.128289 0.128289 0.26289 0.336151 0.470847 0.686580 0.758032 0.758032 0.920421 0.992989 0.9720164 0.992989		-0.010915 -0.018824 -0.024652 -0.030207	0.550595 0.294507 0.211343 0.153645	-0.550560 -0.299504 -0.211345 -0.153644 -0.15676	28.83698 16.67331 11.93347 8.73490		
0.05 997 4 0.05 332 7 0.05 332 7 0.05 332 7 0.19 302 9 0.2 6 20 20 6 0.3 3 6 15 15 15 15 15 15 15 15 15 15 15 15 15		-0.024652	0.299507 0.211343 0.153645 0.105879	-0.299504 -0.211345 -0.153644 -0.105676	16.67331 11.93347 8.73490		
0.084254 0.084254 0.084254 0.193029 0.260226 0.336151 0.403415 0.40447 0.6186250 0.6186250 0.6186250 0.626421 0.926421 0.926421 0.996969 0.996964		-0.024652	0.211343	-0.211345 -0.153644 -0.105876	8.73490	-11.93355	
0.009773		0.030207	0.153645	-0.153644	8.73490	-8.73482	
0.1084289 0.193029 0.266226 0.326515 0.403215 0.470954 0.612286 0.612286 0.612286 0.612286 0.612286 0.61269 0.960164 0.999999 0.999999		0.03020	0.105679	-0-105878	9. 13.40	-8.13482	
0.12 y 20 29 0.2 6 0 3 2 6 1 2 2 9 0.4 0 3 3 6 1 5 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	9569		0.105879	-0-105878			
0.193029 0.26226 0.336151 0.4703215 0.470324 0.540324 0.56024 0.682312 0.756032 0.872645 0.992695 11 Y= 1		-0.035 828	TO THE PROPERTY OF THE PARTY OF		6.04388	-6.04386	
0.266226 0.4032151 0.4032151 0.4170954 0.6170954 0.6186250 0.623129 0.623129 0.623129 0.623129 0.623129 0.620421 0.999999 11 Y= L.M.C.	41549	-0.041249	0.062943	-0.062942	3.60160	-3.60158	
0.936151 0.40315 0.470954 0.540847 0.686250 0.6758032 0.6758032 0.976942 0.9920421 0.9920421 0.9920421 0.9920421 0.9920421	14438	-0.044438	0.024815	-0.024814	1.42146	-1.42145	
0.009773	9000	-0.044800	-0.01309E	0.013098	-0- /3043	0.75044	
0.0470854 0.0470854 0.0120847 0.0120842 0.020421 0.999999 0.9999999 0.9999999	13000	-0.043089	-0.036459	0.030459	-2.08804	2.08805	
0.010047	17004	0.040027	0.053012	0.053013	-3. 03455	3.03455	
0.002793 0.686332 0.758032 0.875893 0.920421 0.999999 11 Y= 1	2000	-0.035669	0.00524	67500.0	-3.13576	3.7.3570	
0.068629 0.758032 0.623129 0.876695 0.999999 111 Y= 1.0	30830	-0.030830	0.013836	0.073837	4.22285	7	
0.0756032 0.0756032 0.0920421 0.09999998 111 Y= 1	52515	-0.025215	0.078897	0.078897	-4.51110		
0.823129 0.872645 0.926046 0.999998 11 Y= 1.4	194 75	-0.019475	-0.080484	0.080484	4.0014	•	
0.99 599 8	14235	-0.014235	0.080455	0.080455	-4.59980		
0.920421 0.960164 0.999998	09924	-0.009924	0.080481	0.080481	F. 60133	4	
0.9969164 0.999998 11 Y= 1	06405	-0.006405	-0.080506	0.080506	-4.60272	4.60272	
0.999988 11 T= 1.0 X/C	0.003206	-0.003206	0.080476	0.080478	4.60115	4.60115	
XXC 0.009773	000000	-0.000000	-0.080480	0.080460	4.60124	4.60124	
0.009773	7 ETA	A = 0.7407	СНОВО	- 0.5694	TRIST	ST ANGLE =	0.0
	3/12	27.72	DZU/DX	DZL/DX	DDZO	7200	
	41001	210010	. 560505	0.560580	20.474.04	-28 414.20	
	45.010.0	458824	0.299507	-0-200504	16.67331	-16.67314	
	0.024650	-0.024662	0.211343	-0-211344	45.033	-11.03353	
0.084253	902020	0.030206	0-153646	-0-153646	A. 73497	73403	
0.126288	2000	0.035.05	0.105879	-0-105870	A. 04393	26.04 349	
0.103026	0.041240	0.041240	0.062043	-0.062047	3.401.5	-3.60150	
	92 4 4 4 0 0	-0-044438	0.024815	-0-026814	4104	41.4214	
0.336149		-0-044806	90013000	0.013098	-0.75040	0.75041	
		-0-043089	954950-0-	0.036459	-2.0AROA	2.08805	
0.470955	0.040027	-0.040027	-0.053012	0.053013	-3.03455	3.03455	
0.540847	0.035869	-0.035869	-0.065294	0.065294	-3.73575	3.73576	
0.612955	0. 030 × 30	-0.030830	-0.073836	0-073836	4.22245		
13 0-646350 0-026	0.025215	0.025.215	0.078807	0.078807	000		

	•			•
4.50013 4.6027 4.6027	DDZL DDZL -28.83635 -16.67334 -11.93369 -6.73490		110.653829 111.653829	.T ANGLE = 002L
4.50148 4.55980 4.60133 4.60271	28.83696 - 16.67357 - 11.93370 - 8.73490	5.04393 3.00162 3.00162 -0.75040 -2.06804 -3.73576 -4.22284 -4.601169 -4.60271	28 83907 - 10 6 67355 - 110 6 67355 - 110 67355 - 110 67355 - 110 67355 - 110 6755 - 110	18 151 DD2 U 26 63804 - 16 673354 - 11 93354 - 11 93354 - 13 92 92 3 60165 14 92 14 6
000000	0.5139 02L/0x -0.550581 -0.299507 -0.211347	0.000000000000000000000000000000000000	22//02 22	0.4028 02L/DX -0.550609 -0.299505 -0.153644 -0.105879 -0.052943
999999	0.550595 0.299512 0.211347 0.153645	11111111111	0.2 U/D X 0.2 99512 0.1 05506 0.1 05	CHORD DZU/DX 0.550620 0.299511 0.153645 0.105879 0.0629415
000000	ZL/C ZL/C -0.010915 -0.018824 -0.024652 -0.030206	0000000000000000	ZL/C -0.010914 -0.010914 -0.018624 -0.024652 -0.035683 -0.04124 -0.04124 -0.04124 -0.04124 -0.04124 -0.04124 -0.04124 -0.04124 -0.04123 -0.01423 -0.01423 -0.01423 -0.004320 -0.004320 -0.004320	ZL/C -0.010914 -0.010824 -0.018824 -0.018824 -0.0188296 -0.0188296 -0.0188296
284880	20/C 0.010914 -0 0.018824 -0 0.03020651 -0	3 4 4 5 0 0 5 5 0 4 0 5 4 0 0	2U/C 0.010914 0.018624 0.0364626 0.0364636 0.041349 0.044406 0.044406 0.044406 0.044406 0.044406 0.044406 0.044406 0.044406 0.044406 0.036406 0.036406 0.036406 0.009406 0.009406 0.009406	ZU/C 0.010914 - 0.010914 - 0.030206 - 0.030206 - 0.04438 -
0.758031 0.823128 0.876695 0.920421 0.960163	X/C 0.009773 0.029973 0.053326 0.064253	0.129288 0.193024 0.193024 0.386120 0.470955 0.686250 0.758032 0.758032 0.758032 0.758032 0.758032 0.758032	x / C C C C C C C C C C	X/C 0.009772 0.029973 0.029973 0.029973 0.129268 0.129268
12222	# # - W M 4		E - WW 4 8 9 6 2 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. I - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

```
4.22284
                                                               4.60270
 2.08803
               3.03455
                      3.73576
                                                 4.59979
                                                        4.60132
                                           4.60147
                                                                             4.60123
 -0.75040
                                   4.51108
                      -3.73576
                                                               -4.60270
                            4.22283
                                                 -4.59979
               -3.03455
                                           -4.60147
                                                        4.60132
                                                                     41109-4
                                                                             -4.60123
 J.013098
0.036459
                                                               0.080506
                                 0.078896
               0.053012
                                                       0.080481
                     0.065294
                            0.073836
                                          0.080484
                                                 0.080455
                                                                            0.080480
                                   -0.078896
 -0.0 T309B
      -0.036459
                                                               -0.080506
                                                                    -0.003206 -0.080478
               -0.053013
                            -0.073836
                                                 -0.080455
                                                       -0.080481
                     -0.065294
 -0.043089
                                   -0.025215
             -0.040027
                            -0.030830
                     -0.035869
                                                -0.014235
                                                       -0.009924
                                                               -0.006405
                    0.035869
0.030630
0.025215
0.019475
                                                      0.009924
0.006405
0.003206
0.044806
0.043089
0.040027
      0.403214
                                                                    0.999998
                            0.612953
                                   0.686249
                                                       0.876695
                                                               0.920420
                     0.540848
                                        0.758031
                                                0.823130
D Q O = N W 4 W 0 7 D Q
```

MESH ITER ERROR ERRAY JE KE LE BIGAL RSDAY JRD	JRD KRD LRD NSUP LIFT	LIFT PARSO KP.	
FINE 1 0.1174E-01 0.2125E-03 31 2 11 0.7929E+01 0.1021E+00 14	14 10 0 0.0	0,66585-02 2	
IND2081 IBCOM - PROGRAM INTERRUPT (P) - UNDERFLOW OLD PSW IS 07100000626EAEC2 . REGISTER CONTAINED FOBFEEBI	REGISTER CONTAINED	FOUFEEBI	
TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. 0 REG. 1			
SOLVE 0047 526C7188 006E7CA8 0000000 006C6F10			
MAIN 00019412 016C6D38 00CFDA58 0083EFC8			
ENTRY POINT= 016C6038			
STANDARD FIXUP TAKEN . EXECUTION CONTINUING			
IND2081 IBCOM - PROGRAM INTERRUPT (P) - UNDERFLUW OLD PSW IS 07100000626EAEC2 . REGISTER CONTAINED		F DA9 188E	
TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. 0 REG. 1			
SOLVE 0047 \$26C7188 006E7CA8 0000000 006C6F10			
MAIN 00019412 016C6038 00CFDA56 0083EFC8			
ENTRY POINT= 016C6036			
STANDARD FIXUP TAKEN . EXECUTION CONTINUING			
IND2081 INCOM - PROGRAM INTERRUPT (P) - UNDERFLOW OLD PSW IS 07100000526EAF56 . REGISTER CONTAINED	REGISTER CONTAINED	F0179507	
TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. 0 REG. 1			
SOLVE 0047 \$26C7188 006E7CA8 0000000 006C6F10			
MAIN 00019412 016C6038 00CFDA58 0063EFC8			
ENTRY POINT= 016C6036			
STANDARD FIXUP TAKEN . EXECUTION CONTINUING			
IND2061 IBCOM - PRUGRAM INTERMUPT (P) - UNDERFLOW DLD PSW IS 07100000526EAF56 . REGISTER CONTAINED	REGISTER CONTAINED	FD14CEFC	
TRACEBACK ROUTINE CALLED FROM 15/1 REG. 14 REG. 15 PEG. 0 REG. 1			
SOLVE 0047 526.71B8 006E7CA8 0000000 006C6F10			
MAIN 00019412 016C6038 00CFDA58 0083EFC8			
ENTRY POINT = 016C6036			
STANDARU FIXUP TAKEN , EXECUTION CONTINUING			
IND2061 IBCOM - PROGRAM INTERMUPT (P) - UNDERFLOW OLD PSW 15 07100000526EAF56 . REGISTER CONTAINED		F 764 3338	
TRACEMACK MOUTINE CALLED FROM ISN REG. 14 REG. 15 REG. 0 REG. 1			
SOLVE 0047 526C7188 006E7CAB 0000000 006C6F10			
MAIN 00019412 016C6038 00C7DA58 0083EFC8			
ENTRY POINT= 016C6038			
STANDARD FIXUP TAKEN . EXECUTION CONTINUING			

0.35566-02 0.135626-02 0.15626-02 0.12676-02 0.12676-02 0.10766-02 0.10766-02 0.10766-02 0.10766-03 0.267616-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77696-03 0.77666-03 0.4012E-03 0.3935E-03 0.3863E-03 0.3793E-03 0.3731E-03 0.3623E-03 0.3571E-03 0.3524E-03 0.3479E-03 0.3332E-03 0.3310E-03 0.3273E-03 0.32376-03 0.3203E-03 0.3170E-03 0.3134E-03 0.3094E-03 0.2327E - 01
0.3328E - 01
0.3328E - 01
0.3328E - 01
0.3388E - 01
0.34853E - 01
0.54853E - 01
0.5588E - 01
0.5680E - 01
0.5680E - 01 0.7411E-01 0.7523E-01 0.7740E-01 0.7740E-01 0.7944E-01 0.8043E-01 0.8043E-01 .8414E-01 .8414E-01 .8502E-01 -01 -01 -01 -01 -01 900 -01 -01 0 9 0 10-0 90 70E-91 4 5E-92 19E-. 86 72E 0.9501E .8755E 0.8836E 9.8915E .8993E 0.9291E 0.9362E 0.94 32E 9568E 0.1427E.00
0.1427E.00
0.1427E.00
0.1427E.00
0.1427E.00
0.2046E.00
0.2046E.00
0.1995E.00
0.1996E.00
0.1996E.00 0.7534E-01 0.7318E-01 0.7112E-01 0.6917E-01 0.6230E-01 0.6082E-01 0.594E-01 0. 1003E+00 0.9796E-01 ē 0.9278E-01 9 ē 9 -01 9 -01 -01 9 0 0.8490E-0.7995E-0.9011E 0.874BE 0.6 731E 0.9543E 0.6555E 0.6 388E 0.5815E 0.98496 00 0.13566 00 0.20236 00 0.2036 00 0.27106 00 0.27106 00 0.1946 00 0.19536 00 0.10536 00 0.10536 00 0.10536 00 0.5945E+01 0.5731E+01 0.5396E+01 0.5219E+01 0.5355E+01 0.5308E+01 0.5171E+01 0.5435E+01 0.5497E+01 0.5632E+01 0.5945E+01 0.5956E+01 0.2876E+01 0.2774E+01 0.2686E+01 0.2405£ +01 0.2367£ +01 0.2333£ +01 .7035E+01 .5583E+01 0.5571E+01 .5384E+01 0.5297E+01 0.5102E+01 0.4816E+01 0.4464E+01 0.4078E+01 0.3208E+01 0.8004E+01 0.6084E+01 . 5902E + 01 .5958E+01 0.6017E+01 0.37316+01 0.3456€+01 0.3093E+01 0.3042E+01 .2968E+01 0.2615E+01 2544E+01 0.2491E+01 0.2446E+01 0 0.1386E-03 0.1337E-03 0.1288E-03 0.1244E-03 0.2149E-03 0.2144E-03 0.2046E-03 0.1975E-03 0.1976E-03 0.1776E-03 0.1776E-03 0.90190E-04 0.9015E-04 0.8644E-04 0.8459E-04 0.8253E-04 0.8253E-04 0.7852E-04 0.7456E-04 0.1005E-03 0.9527E-04 0.9527E-04 0.9360E-04 0.9190E-04 0.5875E-04 0.5875E-04 0.5578E-04 0.5578E-04 0.5578E-04 0.5578E-04 0.5778E-04 0.5778E-04 .1163E-03 0.1128E-03 .1097E-03 .1069E-03 .1045E-03 0.1502E-03 .1443E-03 .1024E-03 0.8283E-03 0.7928E-03 0.7592E-03 0.7292E-03 0.5854E-03 0.5605E-03 0.5449E-03 0.5296E-03 0.5169E-03 0.4656E-03 0.4659E-03 0.4556E-03 0.4550E-03 0.458E-03 0.4485E-03 0.33 98 E 02 0.33 98 E 02 0.25 9 E 02 0.25 9 E 02 0.23 5 E 02 0.23 0.1341E-02 0.1254E-02 0.1156E-02 0.1066E-02 0.9893E-03 0.6627E-03 0.6362E-03 0.6107E-03 0.86335-03 0.5022E-03 .4949E-03 0.46135-03 .4417E-03 0.5096E-03 0.4880E-03 0.4761E-03 0.4709E-03 0.16235-02 0.14 60E-02 0.1414E-02

-	-		•												
ITE	T W	ITER ERROR	EKKAV	35	JE KE LE	37	816PL	RSDAV	JAD KRD	KRD	2	MSOP	LIFT	PJRSD	3
٠	0	50 0.4023E-03	4757E-04	. 58	-	=	0.22246 +01	0.5486E-01	13	13 17 15	51	181	0.9827E-01	0.3028E-03	

	RES 10	RESIDUAL PARAMETERS	RS												
3	ITER	E RROR	ERRAV	3	KE	E .	816RL	RSDAV	280	KRD	8	NSUP	LIFT	PJKSD	KP.
FINE	19	0.3949E-03	0.4663E-04	28	-	=	0.2198E+01	0.5393E-01	13	11	15	480	0.9889E-01	0.2995E-03	N
FINE	62	0.3879E-03	0.4574E-04	58	-	11	0.2174E+01	0.5306E-01	13	11	15	482	0.9951E-01	0.2963E-03	8
FINE	63	0.3811E-03	0.4490E-04	58	-	11	0.2149E+01	0.5226E-01	13	17	15	481	0.1001E+00	0.2935E-03	~
F I NE	*	0.3745E-03	0.44 10E -04	58	-	11	0.2125E+01	0.5151E-01	13	17	15	482	0.1007E +00	0.2905E-03	8
FINE	9	0.3681E-03	0.4334E-04	36	-	11	0.2101E+01	0.5061E-01	13	11	15	463	0.1013E+00	0.2874E-03	8
FINE	90	0.36196-03	0.426 IE-04	88	-	11	0.2077E+01	0.5015E-01	13	11	15	484	0.1019E+00	0.2844E-03	8
F I NE	67	0.3557E-03	0.4192E-04	28	-	:	0.2052E +01	0.4953E-01	13	17	15	481	0.1024E+00	0.2814E-03	8
FINE	99	0.35126-03	0.4125E-04	58	-	:	0.2028E+01	0.4694E-01	13	17	15	484	0.1030E+00	0.2790E-03	8
FINE	69	0.34 64E-03	0.4061E-04	58	-	11	0.2007E+01	0.4837E-01	13	18	15	485	0.1035E+00	0.2771E-03	8
FINE	20	0.3427E-03	0.4000E-04	58	-	:	0.1989E+01	0.4781E-01	13	18	15	486	0.1041E+00	0.2752E-03	8
FINE	1.1	0.3387E-03	0.3940E-04	58	-	:	0.1971E+01	0.4 726E -01	13	18	15	480	0.1046E+00	0.2726E-03	(V
FINE	72	0.3345E-03	0.38836-04	58	-	:	0.1952E+01	0.4673E-01	13	18	15	487	0.1052E+00	0.2701E-03	N
FINE	73	0.3312E-03	0.3827E-04	52	-	11	0.1933E+01	0.4 622E-01	13	18	15	487	0.1057E+00	0.2676E-03	
FINE	1.	0.3272E-03	0.3773E-04	58	-	11	0.1913E+01	0.4571E-01	13	16	15	488	0.1062E+00	0.2660E-03	-
F I NE	15	0.3232E-03	0.3721E-04	58	-	11	0.1894E+01	0.4 522E -01	13	18	15	487	0.1067E+00	0.2641E-03	-
FINE	16	0.31685-03	0.3671E-04	58	-	1.1	0.1874E+01	0.4473E-01	13	18	15	487	0.1072E+00	0.2621E-03	-
FINE	11	0.3142E-03	0.3622E-04	56	-	:	0.1854E+01	0.4425E-01	13	18	15	488	0.10 77E +00	0.26036-03	-
FINE	78	0.3093E-03	0.35756-04	52	-	11	0.1834E+01	0.4 378E-01	13	18	15	488	0.1082E +00	0.2582E-03	-
FINE	62	0.3042E-03	0.35296-04	58	•	11	0.1815E+01	0.4 331E-01	13	18	15	488	0.1087E+00	0.2561E-03	-
FINE	80	0.2987E-03	0.3485E-04	52	-	:	0-1795E+01	0.4286E-01	13	18	15	489	0.1091E+00	0.2538E-03	-
FINE	81	0.2930E-03	0.3443E-04	58		11	0.1776E+01	0.4241E-01	13	18	15	489	0.1096E+00	0.2513E-03	-
FINE	85	0.2869E-03	0.3402E-04	52	-	11	0.1756E+01	0.4 198E-01	13	18	15	489	0.1101E+00	0.2487E-03	-
FINE	83	0.2806E-03	0.3363E-04	58	-	11	0.1737E+01	0.4154E-01	13	18	15	064	0.1105E+00	0.2462E-03	-
FINE	84	0.274 DE-03	0.3325E-04	58	-	:	0.1718E+01	0.4112E-01	13	84	15	486	0.1110E+00	0.2434E-03	-
FINE	69	0.2673E-03	0.3288E-04	52	-	::	0.1699E+01	0.4071E-01	13	18	15	487	0.1114E+00	0.2405E-03	-
FINE	90	0.2602E-03	0.3253E-04	52	-	11	0.1660E+01	0.4 030E -01	13	18	15	487	0.1118E+00	0.2376E-03	-
FINE	87	0.2530E-03	0.32196-04	53	-	11	0.1662E+01	0.3990E-01	13	18	15	486	0.1123E+00	0.23435-03	-
FINE	99	0.24 58E-03	0.3186E-04	58	-	11	0.1643E+01	0.3950E-01	13	18	15	487	0.1127E+00	0.2312F -03	-
FINE	88	0.2385E-03	0.3153E-04	58	-	11	0.1625E+01	0.3910E-01	13	18	15	487	0.1131E+00	0.2279E-03	-
FINE	06	0.2311E-03	0.3121E-04	52	-	11	0.1607E+01	0.3870E-01	13	18	15	487	0.1135E+00	0.2245E-03	-
FINE	91	0.22 50E-03	0.3088E-04	58	-	11	0.1589E+01	0.3831E-01	13	18	15	487	0.1139E+00	0.2211E-03	-
FINE	85	0.2195E-03	0.3057E-04	56	-	:	0.1571E+01	0.3791E-01	13	18	15	487	0-11436+00	0.2175E-03	-
FINE	63	0.2141E-03	0.3025E-04	28	-	11	0.1553E+01	0.3 752E-01	13	18	15	480	0.1147E+00	0.2140E-03	-
FINE	*	0.2086E-03	0.2993E-04	28	-	11	0.1536E +01	0.37126-01	13	18	15	486	0.1151E+00	0.2105E-03	-
FINE	55	0.2032E-03	0.2961E-04	56	-	:	0.1519E+01	0.3673E-01	13	18	15	486	0.1155E+00	0.2070E-03	-
FINE	96	0.1979E-03	0 -2930E-04	28	-	-	0.1501E+01	0.3634E-01	13	16	15	486	0.1159E+00	0.20336-03	-
FINE	26	0.1926E-03	0.2898E-04	56	-	1 1	0.1484E+01	0.3595E-01	13	16	15	485	0.1162E +00	0.1998E-03	-
FINE	96	0.18736-03	0.2866E-04	28	-	:	0.1467E+01	0.3556E-01	13	18	15	484	0.1166E +00	0.1962E-03	-
FINE	66	0.1822E-03		58	-	11	0.1450E+01	0.3517E-01	13	18	15	484	0.1170E+00	0.1929E-03	-
F I NE	100	0.17716-03	0.2802E-04	58	-	11	0.1434E+01	0.34786-01	13	18	15	484	0.1173E+00	0.1890E-03	-

	**********	•••••
**************		and management same
		••••

		E
		T TRAILING EDGE
		1 1 X
~~~~~~~~~~~~~~~~		POTENTIAL JUNP A
		3
		04

0.5285E-01 0.5310E-01 0.5312E-01 0.5282E-01 0.5216E-01 0.5113E-01 0.4969E-01 0.4786E-01 0.4558E-01 0.4279E-01 0.3930E-01 0.3478E-01 0.2855E-01 0.1892E-01





























	BETHPAGE. NEW YORK
	FILLIAM M. MASON Jonald A. Mackenzie Ark A. Stern Nerduynamics Section, Grumman Aerdspace Corp., Bethpage, New York
ANALYSIS PROGRAM	WILLIAM M. MASON DONALD A. MACKENZIE MARK A. STERN AEROUYNAMICS SECTION.
GRUMMAN AMES TRANSONIC VISCOUS WING BODY ANALYSIS PROGRAM	WILLIAM F. BALLMAUS (USAMMOL) JUANITA FRICK (INFORMATICS INC.) NASA AMES RESEARCH CENTER HOFFETT FIELD, CALIFORNIA

0.750																										C-HOMEN
4 "			*	-	8	3	•	0	٥	1	•	•	01	:	12	13	•		1		1.1215					2
IS CBA S XWING			XCP/C	0.573	0.525	0.483	0.444	604.0	0.376	0.344	0.314	0.288	0.266	0.246	0.221	0.180	0.000		1.687		:					100F
E CHORD			5	-0.029	-0.035	-0.04	-0.055	690.0-	980-0-	-0.107	-0.132	-0-161	-0.195	-0.231	-0.265	-0.280	-0.224		SE XPOSED=		YCP	(UPPER)	(LOWER)	(TOTAL)		MENERT
REFERENCE CMORD IS CBAR* MOMENT ORIGIN IS XWING *			8						-0.0012	-0.0037 -0.107	+500.0-	-0.0062	-0.0065	-0.0067	-0.0073	-0.0097 -0.280	-0.0154		SEX		0.7426	0.0	٠٠٥ در	0.0	0000	0.011 CURS WEPT ROOT BENDING-HOMEN
a <b>1</b>			ಕ							0.115 -	- 8111.0	0.121 -	0.121 -	0.120 -	- 411.0	- 001.0	- 990.0		1.687	000 - 9			•			
			5	0.032	0.019	0.011	50000	0.001	-0.003	900-0-	100.0-	-0.098	600-0-	-0.00	-0.009	110.0-	-0.017		STRUE =	AR TRUES	*CP	- 400	200	- 203	200	
			3	160.0	0.093	860.0	0.102	201-0		- 5111.0	- 8111.0	0-120 -	- 121-0	- 6111-0	- 411.0	- 660.0	- 990-0									
			COCH /CAVE	-0.066	-0.072			-0.100	-0.110	-0-119	-0.127	-0.133	-0.135	-0.133	-0.124	-0.105	-0.065		1.688							
	90.		C+CD/CAVE.	- +050.0						-0.0000-	-0.0053 -	- 9500.0-	- 0.0054 -	-0.0051	-0.0050	- 6500.0-	-0.0083 -		SREF	AR REF=						
RAE WING BOOY CONFIGURATION	ALPHAB =		COCNICAVE COCAICAVE COCLICAVE COCOICAVE, COCMICAVE	0.135	0.133		0.130		0.125 -	0.121	0.116	- 601.0	0.101	1 150.0	0.078	190.0	0.035							(SURFACE PRESSURE INTEGRATION)		
	2.00		C+CA/CAVE	9.000	0.026	0.015	100.0	0.001	+00.0-	900-0-	-0.007	-0.008	-0.007	-0.007	900-0-	-0.007	600.0-							PRESSURE 1	1001	
ONE 1 GURATION	ALPHAR =	STR I BUT I ONS	COCNCAVE	0.136	0.133	0.132	0.130			0.121	0.116	0.109	101.0	0.091	0.078	0.061	0.035	FICIENTS						I SURFACE	(CIRCULATION)	
RAE WING BOOY CO	016-0	SPANFISE FORCE DIS	CZCANE	1.500			1.278					106.0	0.833	0.759	0.685	0.611	0.537	TUTAL FORCE COEFF		(BASED ON SREF)	0.10475	0.00107	-0.10369	0.10473	9.11766	0.00290
AE TIN	MACH = 0.910	NE ISE	ETA	0.0	*10.0	0.148	0.222	9.530	0.370		615.0	0.593	0.067	0.741	0.815	698.0	0.963	TAL FO		ASED OF		. 5				. 03
•	*	SPA		0.0	0.167 0.074		0.500			1.000	1.107 0.519	1,333 0.593	1.500	1.667 0.741	1.833 0.815	5.000	2.167 0.963	10		9	3	3	5	3		8

	7	414	17	XO.	40	20	05 x	DZV	027
	-0.44803	0.0	-2.00029	0.0	0.0	0.0	0.0	0.0	0.0
	-0.20135	0.08182	-1.44 722	0.1803	0.0818	0.5464	-0.1340	0.0	-0-1453
	0.08810	0.16364	-0.97350	0.0756	0.0618	0.4081	-0.0753	0.0	-0-1313
	0100000	242.0	-0.63107	6120.0	0.0818	0.2897	-0.0201	0.0	-0-1055
	200000	0 00000	01966		0.00	001.00	00000	•	644000
	201300		1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000	0.00	1	20000		0.0300
	0.0000	0.57273	-0.00	0.0081	0.0818	0.0512	-0.0001	0.000	-0.0272
	000000	0.65455	-0.02875	0.0000	0.0818	0.0294	000000	0.0	-0.0166
	0.01200	0.73636	-0.00770	0.0080	0.0818	0.0182	0.0001	0.000	-0.0057
	0.0200	0.81818	0.00110	0.0062	0.0818	0.0182	0.0002	000000	0.0057
	0.02834	00006*0	0.02875	0.0084	0.0818	0.0294	0.0003	000000	0.0106
	0.03694	0.98182	0.06641	0.0089	0.0818	0.0512	900000	0.000	0.0272
	60940.0	1.06364	0.13124	9600 0	0.0818	0.0844	900000	-0.0000	0.0390
	0.05607	1.14545	0.23511	9010.0	0.0616	0.1315	0.0012	000000	0.0552
	0.06720	1.22727	0.39415	0.0119	0.0818	0.1980	0.0016	0.0	0.0779
	0.07991	1 -30 909	0.63107	0.0137	0.0818	0.2897	0.0021	-0.0000	0.1055
	69460.0	1.39091	0.97350	0.0161	9190.0	0.4081	0.0026	0 0000 0	0.1313
	0.11210	1.47273	1.44722	0.0189	0.0818	0.5464	0.0031	-0.0000	0.1453
	0.13259	1.55454	5.06629	0.0221	0.0818	0.0	0.0033	000000	0.0
	0.15636	1.63636	0.0	0.0253	0.0818	0.0	0.0030	-0.0000	0.0
	0.18312	1.71618	0.0	0.0278	0.0818	0.0	0.0024	000000	0.0
	0.21201	1 -80000	0.0	0.0294	0.0818	0.0	100.0	-0.0000	0.0
	0.24192	1 .66 182	0.0	0.0299	0.0818	0.0	0.0001	000000	0.0
	0.27189	1.96364	0.0	0.0297	0.0618	0.0	-0.0005	0.0	0.0
	0.30140	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0	2620.0	8180.0	0.0	-0.0006	00000-0-	0.0
	0.35030	2 20000	0.0	0.0286	0.0010	0.0	-0.000	000000	0.0
	Ve3580V	2 2000.	0.0	0.0282	91900	0.0	-0.0003	00000-	0.0
	1986-0	2.37973	0.0	0.0220	0000	000	20000	0.0	
	0.44251	0.0	0.0	0-0279	0.0	0.0	10000		0.0
	0.4 7052	0.0	0.0	0.0261	0.0	0.0	0.0002	0.0	0.0
	0.49873	0.0	0.0	0.0283	0.0	0.0	0.0003	0.0	0.0
	0.52719	0.0	0.0	0.0286	0.0	0.0	0.0003	0.0	0.0
	0.55594	0.0	0.0	0.0289	0.0	0.0	0.0003	0.0	0.0
	0.58495	0.0	0.0	0.0292	0.0	0.0	0.0003	0.0	0.0
	0.61432	0.0	0.0	0.0295	0.0	0.0	0.0003	0.0	0.0
	0.64392	0.0	0.0	0.0297	0.0	0.0	0.0002	0.0	0.0
	0.67373	0.0	0.0	0.0299	0.0	0.0	0.0001	0.0	0.0
	0.70368	0.0	0.0	0.0300	0.0	0.0	0.0000	0.0	0.0
	0.7.365	0.0	0.0	0.0299	0.0	0.0	-0.0002	0.0	0.0
	0.7035	0.0	0.0	0.0295	0.0	0.0	-0.0005	0.0	0.0
	0.63.00	000	0.0	0.0288			60000	0.0	0.0
	0.84812	0.0		0.0262	000	200	-0-0013	0.0	0.0
	0.87354	0.0	0.0	0.0245	0.0	0.0	-0.0018	0-0	0-0
	0.89720	0.0	0.0	0.0229	0.0	0.0	-0.0016	0.0	0.0
	0.91928	0.0	0.0	0.0215	0.0	0.0	-0.0012	0.0	0.0
	0.94014	0.0	0.0	0.0205	0.0	0.0	-0.0001	0.0	0.0
	0.96028	0.0	0.0	0.0200	0.0	0.0	-0.0003	0.0	0.0
	0.98015	0.0	0.0	0.0199	0.0	0.0	-0.0000	0.0	0.0
	1.00000	0.0	0.0	0.0201	0.0	0.0	900000	0.0	0.0
	1.02041	0.0	•	0.0225	0.0	0.0	0.0041	0.0	0.0
	2000	200		0.00			0.0131	0.0	0.0
9 9	1.15290	000	0.0	0.00.0			0.092		
	1.27034	0.0	0.0	0.1225	0.0	0.0	0.0101	0.0	0.0
	1.39791	0.0	0.0	0.1353	0.0	0.0	0 000		

ACTIONAL WING PLANE OF THE TOTAL CORRECT CORRE	HEFEREN	HEFENCE IRAMEZOIDAL		WING DESCRIPTION	NON				-		-	-	-			
		L.E.	100		1000	di			SPECI			MEAN	AVEN	300		
Head   Week	DAZON	(UEG.)	DX/OY	(066.)	200	CHORD			0114	**	2	CACA	5			
Heal wind, Plane Color   Lie	0.7**	30.06	0.411	22.338	1:126	0.37		9999	00009	0	333	0.813	0.1	20		
March   Marc	ACTUAL	INPUT WING	G. PLANFORM	CHARATER	151165											
Colored   Colo	ETA		XLEV	XTE			JLE (K)	JTE(K)		1x -x	3/(A	(X -XTEW)		XLENP	XTEWP	×
0.00	NON INAL WING															
	0.0		-0.2790	9.0	091	1.1250	•	52	*	0.0	040	1.0000		0-7440	0.4107	-
Colored Colo	0.0364	0.061.0	-0.2181	9.0	962	1.0977	•	52	:	0.0	040	1.0000		0.7440	0.4107	8
0.2223   0.0000   0.7406   0.0406   0.0406   0.0406   0.0000   0.0000   0.0000   0.0000   0.0400   0.0400   0.0400   0.0400   0.0000   0.0000   0.0400   0.0400   0.0400   0.0400   0.0400   0.0000   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0000   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0.0400   0	0.0727	0.1636	-0.1573	6.0	132	1.0705	٥	52	:	0.0	040	1.0000		0.7440	0.4107	m
0.43273	0.1091	0.2455	-0.0904	5.0	991	1.0432	•	52	:	0.0	040	1.0000		0.7440	0.4107	
0.4999   0.00254   1.0140   0.9486   9 52 44   0.0000   1.0000   0.7440   0.4107     0.4999   0.00254   1.0112   0.9911   9 52 44   0.0000   1.0000   0.7440   0.4107     0.4999   0.00254   1.0112   0.9311   9 52 44   0.0000   1.0000   0.7440   0.4107     0.4904   0.2009   1.1148   0.4968   9 52 44   0.0000   1.0000   0.7440   0.4107     0.4915   0.4297   1.1280   0.4823   9 52 44   0.0000   0.7440   0.4107     0.4916   0.4515   1.2252   0.4252   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4515   1.2252   0.7977   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4515   1.2252   0.7977   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4515   1.2252   0.7977   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4515   1.2252   0.4952   0.4952   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4961   0.4961   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4061   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4962   0.4572   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4962   0.4572   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4962   0.4572   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4472   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4949   0.4472   9 52 44   0.0000   0.7440   0.4107     0.4918   0.4917   0.4417   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   9 52 44   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   0.4417   0.4417   0.0000   0.7440   0.4107     0.4917   0.4917   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417   0.4417	0.1455	0.3273	-0.0355	5.0	804	1.0159	٥	52	:	0.0	040	1.0000		0-7440	0.4107	0
0.44909 0.00802 1.00176 0.99614 9 52 44 0.0000 1.0000 0.77400 0.04107 0.04502 0.02622 1.00176 0.99614 9 52 44 0.0000 1.00000 0.77400 0.04107 0.04502 0.02689 1.1148 0.90688 9 52 44 0.0000 1.00000 0.77400 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.04107 0.0	0.1618	0.4091	0.0254	1.0	0+1	0.9886	•	52	:	0.0	040	1.0000		0.7440	0.4107	۰
0.2527 0.1471 1.0812 0.99341 9 52 44 0.0000 1.7000 0.7440 0.4107 0.7364 0.2080 1.1146 0.99341 9 52 44 0.0000 1.0000 0.7440 0.4107 0.9908 0.2089 1.1146 0.9988 9 52 44 0.0000 1.0000 0.7440 0.4107 0.9908 0.2089 1.11480 0.8923 9 52 44 0.0000 1.0000 0.7440 0.4107 0.9908 0.3908 1.2273 0.8250 9 52 44 0.0000 1.0000 0.7440 0.4107 0.9908 0.2582 0.7582 0.7797 9 52 44 0.0000 1.0000 0.7440 0.4107 0.9908 0.2592 0.7797 9 52 44 0.0000 0.7440 0.4107 0.7108 0.24107 0.2582 0.2592 0.7797 9 52 44 0.0000 0.7440 0.4107 0.7108 0.24107 0.24107 0.2582 0.2592 0.7797 9 52 44 0.0000 0.7440 0.4107 0.7492 0.24107 0.24107 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582	0.2162	6064.0	0.0862	1 -0.	176	4196.0	•	52	*	0.0	040	1.0000		0.7440	0.4107	1
0.6545 0.2080 1.1148 0.9088 9 52 44 0.0040 1.0000 0.7740 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0.4107 0	0.2545	0.5727	0-1471	0.1	912	0.9341	•	52	;	0.0	040	1.0000		0-7440	0.4107	•
0.2344 0.2669 1.1484 0.6795 9 52 44 0.0040 1.0000 0.7440 0.4107 0.49182 0.3354 0.2569 1.2182 0.6252 9 52 44 0.0040 1.0000 0.7440 0.4107 0.49182 0.3906 1.2182 0.2597 1.2182 0.2597 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.7492 0.749	0.2909	0.6545	0.2080	-	148	8906.0	•	52	;	0.0	040	1.0000		0.7440	0.4107	۰
0.00   0.3   2.97   1.1   2.0   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.0	0.3273	0.7364	0.2689	-	184	0.8795	•	52	*	0.0	040	1.0000		0.7440	0.4107	01
0.99000   0.3906   1.2156   0.6250   9   52   44   0.0040   1.0000   0.7440   0.4107   0.6251   0.6252   0.7707   9   52   44   0.0040   1.0000   0.7440   0.4107   0.6251   0.6252   0.7705   0.7705   0.6252   0.7705   0.7705   0.6040   1.0000   0.7440   0.4107   0.6051   0.6040   1.0000   0.7440   0.4107   0.6051   0.6040   1.0000   0.7440   0.4107   0.6051   0.6040   1.0000   0.7440   0.4107   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051   0.6051	0.3636	0.8182	0.3297	-	920	0.8523	•	52	:	0.0	040	1.0000		0.7440	0.4107	11
1-6536   0-4515   1-2492   0-7977   9   52   44   0-0040   1-0000   0-7440   0-4107	0.4000	0006*0	0.3906	-	156	0.8250	٥	52	*	0.0	0000	1.0000		0.7440	0.4107	12
1-0636   0-5123   1-2828   0-7705   9   52   44   0-0040   1-0000   0-7440   0-4107     1-1455   0-5732   1-3164   0-7732   9   52   44   0-0040   1-0000   0-7440   0-4107     1-273   0-6950   1-3836   0-6886   9   52   44   0-0040   1-0000   0-7440   0-4107     1-3909   0-7556   1-4172   0-6814   9   52   44   0-0040   1-0000   0-7440   0-4107     1-5545   0-8167   1-4508   0-6514   9   52   44   0-0040   1-0000   0-7440   0-4107     1-5545   0-8167   1-580   0-5756   9   52   44   0-0040   1-0000   0-7440   0-4107     1-5545   0-8936   1-580   0-5755   9   52   44   0-0040   1-0000   0-7440   0-4107     1-6364   0-9385   1-580   0-5755   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-0612   1-5816   0-4577   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-1211   1-6188   0-4977   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-3346   1-5860   0-4432   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-3346   1-585   0-4159   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-3346   1-7532   0-4159   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-3346   1-7532   0-4159   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-8017   1-7532   0-3886   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-8017   1-5860   0-4159   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-8017   1-5860   0-4159   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8016   1-8017   1-5860   0-4159   9   52   44   0-0040   1-0000   0-7440   0-4107     1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017   1-8017	0.4364	0.9818	0.4515	-	261	1161.0	•	25	:	0.0	040	1.0000		0.7440	0.4107	13
1.1455   0.5732   1.3164   0.7432   9 52 44   0.0040   1.0000   0.7440   0.4107     1.273	0.4727	1.0636	0.5123	-	928	0.7705	•	52	:	0	0400	1.0000		0.7440	0.4107	:
1.2273   0.634    1.3500   0.7159   9   52   44   0.0040   1.0000   0.7440   0.4107     1.3909    0.60950   1.3836   0.6686   9   52   44   0.0040   1.0000   0.7440   0.4107     1.3909    0.7556   1.4172   0.6614   9   52   44   0.0040   1.0000   0.7440   0.4107     1.5545   0.8776   1.4844   0.6068   9   52   44   0.0040   1.0000   0.7440   0.4107     1.5545   0.8776   1.4844   0.6068   9   52   44   0.0040   1.0000   0.7440   0.4107     1.5646   0.9385   1.5180   0.5253   9   52   44   0.0040   1.0000   0.7440   0.4107     1.8000   1.0062   1.5852   0.5250   9   52   44   0.0040   1.0000   0.7440   0.4107     1.6816   1.1819   1.6524   0.4777   9   52   44   0.0040   1.0000   0.7440   0.4107     2.0455   1.2811   1.5824   0.4432   9   52   44   0.0040   1.0000   0.7440   0.4107     2.1273   1.3037   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.3646   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   1.0675   1.0675   1.0000   0.7440   0.4107     3   0.6167   1.0675   1.0675   1.0675   1.0000   0.7440   0.4107     4   0.6167   1.0675   1.0675   1.0675   1.0000   0.7440   0.4107     4   0.6167   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0675   1.0	0.5091	1.1455	0.5732		164	0.7432	•	25	:	0.0	040	1.0000		0.7440	0.4107	15
1.3091   0.6950   1.3836   0.6886   9   52   44   0.0040   1.0000   0.7440   0.4107     1.4727   0.6875   1.4548   0.6544   9   52   44   0.0040   1.0000   0.7440   0.4107     1.534   0.6876   1.4844   0.6068   9   52   44   0.0040   1.0000   0.7440   0.4107     1.534   0.6993   1.5180   0.5795   9   52   44   0.0040   1.0000   0.7440   0.4107     1.600   1.600   1.500   0.4993   1.5180   0.4977   9   52   44   0.0040   1.0000   0.7440   0.4107     1.600   1.600   1.600   0.4977   9   52   44   0.0040   1.0000   0.7440   0.4107     1.600   1.1819   1.6524   0.4977   9   52   44   0.0040   1.0000   0.7440   0.4107     2.1673   1.3037   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.3646   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.000   0.7440   0.4107   0.0040   1.0000   0.7440   0.4107     2.2091   1.000   0.7440   0.4107   0.0040   1.0000   0.7440   0.4107     2.2091   1.000   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.000   0.7440   0.4107   0.4107   0.0040   0.0040   0.4107     2.2091   1.000   0.7440   0.4107   0.4107   0.0040   0.0040   0.4107     2.2091   1.000   0.7440   0.4107   0.4107   0.0040   0.4107   0.4107     2.2091   1.000   0.7440   0.4107   0.4107   0.0040   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107	0.5455	1.2273	0.6341	-	200	0.7159	٥	52	:	0.0	040	1.0000		0.7440	0.4107	16
13909   0.7556   14172   0.6614   9   52   44   0.0000   0.7740   0.4107     1.6754   0.68167   1.4508   0.65141   9   52   44   0.0040   1.0000   0.7740   0.4107     1.6354   0.69167   1.4508   0.65795   9   52   44   0.0040   1.0000   0.7740   0.4107     1.6354   0.69735   1.5180   0.5795   9   52   44   0.0040   1.0000   0.7740   0.4107     1.6354   0.6973   1.5516   0.5523   9   52   44   0.0040   1.0000   0.7740   0.4107     1.6354   1.6352   1.5452   0.4977   9   52   44   0.0040   1.0000   0.7740   0.4107     1.6354   1.6354   1.6524   0.4977   9   52   44   0.0040   1.0000   0.7740   0.4107     2.6254   1.2428   1.7196   0.4152   9   52   44   0.0040   1.0000   0.7740   0.4107     2.2091   1.3646   1.7532   0.3866   9   52   44   0.0040   1.0000   0.7740   0.4107     5	9195.0	1,3091	0.6950	-	936	0.6886	•	52	;	0.0	040	1.0000		0.7440	0.4107	11
145727   0.48167   1.4508   0.6341   9   52   44   0.0040   1.0000   0.7440   0.4107     1.6344   0.69176   1.4844   0.6068   9   52   44   0.0040   1.0000   0.7440   0.4107     1.634   0.6993   1.516   0.5523   9   52   44   0.0040   1.0000   0.7440   0.4107     1.8010   1.0002   1.5182   0.5523   9   52   44   0.0040   1.0000   0.7440   0.4107     1.6416   1.1217   1.5182   0.4977   9   52   44   0.0040   1.0000   0.7440   0.4107     2.1273   1.3646   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.3646   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.6675   1.6675   1.0000   0.7440   0.4107   0.4107     2.2000   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.	0.6182	1.3909	0.7558	-	172	0.6614	0	52	:	0.0	0400	1.0000		0.7440	0.4107	9
1.6545   0.68776   1.4844   0.6066   9   52   44   0.0040   1.0000   0.7740   0.4107     1.7182   0.9385   1.5180   0.5523   9   52   44   0.0040   1.0000   0.7740   0.4107     1.8000   1.0002   1.5852   0.5253   9   52   44   0.0040   1.0000   0.7740   0.4107     1.8016   1.0002   1.5852   0.4577   9   52   44   0.0040   1.0000   0.7740   0.4107     1.8016   1.1819   1.6524   0.4775   9   52   44   0.0040   1.0000   0.7740   0.4107     2.0002   1.3037   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7740   0.4107     2.2091   1.3646   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7740   0.4107     2.2091   1.0003   0.7740   0.4159   9   52   44   0.0040   1.0000   0.7740   0.4107     2.2091   1.0003   0.4107   0.4107     3	0.6545	1.4727	0.8167	-	508	0.6341	•	52	;	0.0	040	1.0000		0.7440	0.4107	•
1-6875   1-5180   0-5795   9 52 44   0-0040   1-0000   0-7440   0-4107     1-0182   0-9993   1-5516   0-5523   9 52 44   0-0040   1-0000   0-7440   0-4107     1-01816   1-1211   1-5188   0-4977   9 52 44   0-0040   1-0000   0-7440   0-4107     1-0236   1-1211   1-5188   0-4977   9 52 44   0-0040   1-0000   0-7440   0-4107     2-0455   1-222   1-5824   0-4159   9 52 44   0-0040   1-0000   0-7440   0-4107     2-1273   1-3037   1-7196   0-4159   9 52 44   0-0040   1-0000   0-7440   0-4107     2-2091   1-5646   1-7532   0-3886   9 52 44   0-0040   1-0000   0-7440   0-4107     5	6069.0	1.5545	0.8776	-	***	0.6068	•	25	:	0.0	040	1.0000		0.7440	0.4107	20
1,716.2   0,9993   1,5516   0,5523   9   52   44   0,0040   1,0000   0,7440   0,4107     1,8800   1,10002   1,5852   0,5550   9   52   44   0,0040   1,0000   0,7440   0,4107     1,8616   1,1218   1,0652   0,4775   9   52   44   0,0040   1,0000   0,7440   0,4107     2,025   1,2428   1,6650   0,4452   9   52   44   0,0040   1,0000   0,7440   0,4107     2,1035   1,3646   1,7532   0,3886   9   52   44   0,0040   1,0000   0,7440   0,4107     2,2091   1,3646   1,7532   0,3886   9   52   44   0,0040   1,0000   0,7440   0,4107     2,2091   1,3646   1,7532   0,3886   9   52   44   0,0040   1,0000   0,7440   0,4107     2,2091   1,06675   1,06675   1,06676   1,0000   0,7440   0,4107     4,400   1,0000   0,7440   0,4107     5,400   1,0000   0,7440   0,4107     6,4107   1,06675   1,06675   1,06676   1,0000   0,7440   0,4107     6,4107   1,06675   1,06675   1,06676   1,0000   0,7440   0,4107     6,4107   1,06675   1,06676   1,06676   1,0000   0,7440   0,4107     7,4000   1,0000   0,7440   0,4107   0,4107     8,4107   1,06675   1,06676   1,06676   1,0000   0,7440   0,4107     9,4107   1,06675   1,06676   1,06676   1,0000   0,7440   0,4107     9,4107   1,06675   1,06676   1,06676   1,0000   0,7440   0,4107     9,4107   1,06675   1,06676   1,06676   1,0000   0,7440   0,4107     9,4107   1,06676   1,06676   1,06676   1,06676   1,0000   0,7440   0,4107     9,4107   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,06676   1,066	0.7273	1.6364	0.9385	-	180	9625-0	•	52	:	0.0	040	1.0000		0.7440	0.4107	21
1.6000   1.0002   1.5852   0.5250   9   52   44   0.0040   1.0000   0.7440   0.4107     1.6186   1.6188   0.4977   9   52   44   0.0040   1.0000   0.7440   0.4107     2.0455   1.2428   1.6654   0.4432   9   52   44   0.0040   1.0000   0.7440   0.4107     2.0455   1.2428   1.6660   0.4432   9   52   44   0.0040   1.0000   0.7440   0.4107     2.1273   1.3037   1.7196   0.4159   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.3646   1.7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2.2091   1.0675   0.4107   0.4107     3	0.7636	1.7162	0.9993	-	516	0.5523	•	52	;	0	0+0	1.0000		0.7440	0.4107	22
1-64516   1-1211   1-6-188   0.4-977   9   52   44   0.0040   1.0000   0.7440   0.4107     2-16-55   1-28-18   1-6-52   0.4-15   9   52   44   0.0040   1.0000   0.7440   0.4107     2-16-73   1-3037   1-7196   0.4-159   9   52   44   0.0040   1.0000   0.7440   0.4107     2-2091   1-3646   1-7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2-2091   1-6-675   2-2091   1-7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     2-2091   1-6-675   1-7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     3-2091   1-6-675   1-7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     4-2000   4-2000   4-2000   1.0000   0.7440   0.4107     5-2091   1-6-675   1-7532   0.3886   9   52   44   0.0040   1.0000   0.7440   0.4107     5-2000   1-0000   0.7440   0.4107   0.4107     5-2000   1-0000   0.7440   0.4107   0.4107   0.4107     6-2000   1-0000   0.7440   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107   0.4107	0.8000	1.8000	1.0602	-	352	0.5250	•	52	:	0.0	040	1.0000		0.7440	0.4107	23
1-963c   1-1819   1-6524   0-4705   9   52   44   0-0040   1-0000   0-7440   0-4107     2-1625   1-2426   1-6650   0-4432   9   52   44   0-0040   1-0000   0-7440   0-4107     2-1627   1-3046   1-7532   0-3866   9   52   44   0-0040   1-0000   0-7440   0-4107     =   1-0675   1-0675   1-0675   1-0675   1-0675   1-0000   1-0000   1-0000   1-0000     =   0-6127   1-6675   1-6675   1-6675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675   1-0675	0.8364	1.8816	1.1211	-	188	0.4977	•	52	:	0.0	040	1.0000		0.7440	0.4107	24
2.0455 1.2426 1.6860 0.4432 9 52 44 0.0040 1.0000 0.7440 0.4107 2.1273 1.3046 1.7532 0.3886 9 52 44 0.0040 1.0000 0.7440 0.4107  E = 1.6875 E = 6.0000 A = 0.6127 A = 0.6127	0.8727	1.9630	1.1819	1.6	524	0.4705	•	52	:	0.0	040	1.0000		0.7440	0.4107	25
2-1273 1-3037 1-7196 0-4159 9 52 44 0.0040 1.0000 0.7440 0.4107 2-2091 1-3646 1-7532 0-3886 9 52 44 0.0040 1.0000 0.7440 0.4107 E = 1.0675 E = 6.0000 S = 0.00127 A = 0.0127	0.9091	2.0455	1.2428	1.64	960	0.4432	•	52	:	0	040	1.0000		0.7440	0.4107	56
2-2091 1-3646 1-7532 0-3886 9 52 44 0-0040 1-0000 0-7440 0-4107  = 1-6875  E = 6-0000  SEC 1-6875  AC 1= 0-6127  AC 1= 0-6187	0.9455	2.1273	1.3037	1.7	961	0.4159	•	52	:	0	040	1.0000		0.7440	0.4107	27
	0.9816	2.2091	1.3646	1.7	532	0.3886	•	25	:	0.0	000	1.0000		0.7440	0.4107	82
		1.0875														
		00000-9														
	SEXPUSED	1.6875														
		0.6127														
	XLE (MAC )=	0.4161														

		20000	DETAILS	DETAILS OF XI MAPPING	ING							
*	ETA	11771		XI=0.0	XI=1.0 XTE	XLEP	XTEP	UPSTREAM AN	UPSTREAM AND DOWNSTREAM BOUDARIES XUP XDOWN XIY(UP)	BOUDARIES XIY(UP)	XIVEON	*
	NOWINAL	WING ROD	10									
-	0.0	0.0		-0.2790	0.8460	0.7440	0.4107	-0.7837	1.4545	-0.7943	-0.2048	-
N	0.0364	0	0.0616	-0.2181	0.8796	0.7440	0.4107	-0-7106	1.4733	-0-8140	-0.2099	2
m	0.0727	.0	0.1636	-0.1573	0.9132	0.7440	0.4107	-0.6375	1.4922	-0.8347	-0.2152	3
•	0.1091	0	0.2455	-0.0964	0.9468	0.7440	0.4107	-0.5644	1.5110	-0.8566	-0.2208	•
0	0.1455	.0	0.3273	-0.0355	0.9804	0.7440	0.4107	-0.4913	1.5299	-0.6796	-0.2268	n
•	0.1818	0	0.4091	0.0254	1.0140	0.7440	0.4107	-0-4182	1.5487	-0.9038	-0.2330	٥
^	0.2182	0	6064-0	0.0862	1.0476	0.7440	0.4107	-0-3451	1.5676	-0.9295	-0.2396	1
	0.2545	•	0.5727	0-1471	1.0612	0.7440	0.4107	-0.2720	1.5864	-0.9566	-0.2466	
	0.2909	0	0.6545	0.2080	1.1148	0.7440	0.4107	-0-1988	1.6053	-0.9854	-0.2541	۰
2	0.3273	.0	0.7364	0.2689	1.1484	0.7440	0.4107	-0-1257	1.6241	-1.0159	-0.2619	9
=	0.3636	0	0.8182	0.3297	1.1820	0.7440	0.4107	-0.0526	1.6430	-1.0484	-0.2703	==
12	0.4000	0	0006-0	0.3906	1.2156	0.7440	0.4107	0.0205	1.6618	-1.0831	-0.2793	12
5	0.4364	•	9186.0	0.4515	1.2492	0.7440	0.4107	0.0936	1.6807	-1.1201	-0.2888	13
=	0.4727	1.1	1.0636	0.5123	1 .2828	0.7440	0.4107	0.1667	1.69%	-1.1598	-0.2990	•
15	1605.0	.1	1.1455	0.5732	1.3164	0.7440	0.4107	0.2398	1.7184	-1.2023	-0.3100	15
2	0.5455	1.	1.2273	0.6341	1 •3500	0.7440	0.4107	0.3129	1.7372	-1.2481	-0.3218	91
1	0.5818		1606.1	0.6950	1 .3836	0.7440	0.4107	0.3860	1.7561	-1.2976	-0.3345	11
18	0.6182	1.	1.3909	0.7558	1.4172	0.7440	0.4107	0.4591	1.7749	-1.3511	-0.3463	18
5	0.6545	-	1.4727	0.8167	1.4508	0.7440	0.4107	0.5322	1.7938	-1.4092	-0.3633	51
8	6069*0	1.	1.5545	0.8776	1.4844	0.7440	0.4107	0.6053	1.8126	-1-4725	-0.3797	50
2	0.7273	-	.6364	0.9385	1.5180	0.7440	0.4107	0.6765	1.8314	-1.5418	-0.3975	21
2	0.7636	1.	.7162	0.9993	1,5516	0.7440	0.4107	0.7516	1.8503	-1.6179	-0.4172	22
2	0008-0	1.1	0008-1	1.0602	1,5852	0.7440	0.4107	0.8247	1.8691	-1.7020	-0.4388	23
2	0.8364	-	1.8818	1.1211	1.6188	0.7440	0.4107	0.8978	1.8880	-1.7952	-0.4629	54
2	0.8727		1.9636	1.1819	1.6524	0.7440	0.4107	0.9709	1.9068	-1.8993	-0.4897	\$2
8	1606.0	2.	2.0455	1.2428	1.6860	0.7440	0.4107	1.0440	1.9257	-2.0162	-0.5198	56
2	0.9455	2.	2,1273	1.3037	1.7196	0.7440	0.4107	1.1171	1.9445	-2.1484	-0.5539	27
8	0.9818	2.	2.2091	1.3646	1.7532	0.7440	0.4107	1.1902	1.9634	-2.2992	-0.5928	58
	NOMINAL	WING TIP	•									
8		2.	5.2909	1.4254	1.7868	0.7440	0.4107	1.2633	1.9822	-2.4727	-0.6375	58
8	1.0545	2.	2.3727	1.4863	1.8204	0.7440	0.4107	1.3364	2.0011	-2.6746	-0.0896	30

COMPUTATIONAL GRID CHUDE EXTERIOR GRID

2T.X	-11.25000	8.5116	8	-4.52810	-3.16105	-2.12921			•	-0.13500	0.13500	0.43547	0.82737	1.37 163	2.12921	3.16105	4.52810	6.29131	8.51163	8	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ETAX	0.0	0.21429	4265			1.07143	1.28571	1.50000	1.71428	1.92867	2.14286	2.35714	2.72143	3.34071	4.39349	6.18323	9.22577	14.39810	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
X 1EX	-11.26913		-6.09627	4.48864	-3.29227	-2.38967	-1-69689	-1-15400	-0.71816	-0.35880	-0.05405	0.21168	0.44954	0.66246	0.85304	1.02364	1.17635	1.31304	1.43539	1.54492	1.65444	1.76397	0	0	4	ŝ	0	3.96084		.0813	
2	-	~	3	•	s	•	-	0	۰	10	:	12	13	:	15	16	17	18	19	50		22			0		-	82	58	30	

JINDEX OF LEADING AND TRAILING EDGE POINTS AND X LOCATIONS											
EDGE POINTS	0.846000	0.934000	1.021999	1.110000	1.198000	1.285999	1.374000	1.461999	1.549999	1.638000	726000
AND TRAILING XLEWX	-0.279000	-0-119571	0.039857	0.199286	0.358714	0.518143	0.677571	0.836999	0.996428	1.155856	1. 21 5.285
LEADING	15	16 -	16	17	17	18	19	20	50	23	22
JUEX OF	12	12	13	13	*:	15	15	91	17	18	•
ETAX	0.0	0.214286	0.428571	0.642857	0.857143	1.071428	1.285714	1 . 4 9 9 9 9 9	1.714285	1.928571	724547
~		8	9		•	•	1	0	•	10	11

0.003995 0.0015029 0.011502 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.037506 0.	•	***	20.00	" "	- Contract	*07 120	- Const	1200	
0.0119999 0.007099 0.007073 0.494776 0.037504 20.52603 26.256357 0.020643 0.007074 0.010522 0.011952 0.037504 20.59504 70.52603 26.25635 0.020640 0.020744 0.010578 0.026175 0.026175 11.6521 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17.16921 17		*	-	-	40.030	255704	0700	7700	
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.003995	0.001000	-0.007009	0.871694	-0.871669	41.07848	-41.07764	
0.0020010 0.002018 0.002018 0.022013 0.022013 11.5111 11.0002013 0.002002 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0.002018 0		956110-0	0.012073	-0.012073	0.493276	-0.493283	26.25603	-26.25632	
0.000		0.020076	0.018326	26610	0.375000	-0.375054	20.5500	-20.55875	
0.000.00000000000000000000000000000000		0.036940	0.02078	02076	0.265198	-0.265197	14.85283	-14.85279	
0.000 500 60 00 00 00 00 00 00 00 00 00 00 00 0		0.040093	0.023052	-0.023052	0.231759	-0.231756	13.04643	-13.04841	
0.007997 0.027342 0.027342 0.159141 0.027542 0.0004747 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.007990 0.		0.056066	0.025221	-0.025221	0.204564	-0.204563	11.56116	-11.56110	
0.0040000 0.0031730 0.0031732 0.0012302 7.00100 0.7.004000 0.004000 0.0031730 0.0031730 0.103000 0.7.004000 0.0031730 0.0031730 0.103000 0.004000 0.0031730 0.0031730 0.103000 0.0031730 0.103000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.003000 0.00300		0.067197	0.027302	-0.027362	0.181141	-0-181141	10.26728	-10.26728	
0.112049 0.039409 0.003409 0.12134 0.112120 0.991754 0.991754 0.112049 0.003409 0.003409 0.103164 0.103164 0.991754 0.991754 0.112049 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.003409 0.00		0.079906	0.02052	-0.029325	0.159893	-0.159892	9.06430	-9.08422	
0.113249 0.034593 0.003693 0.1103168 0.1103167 5.89026 -5.88902 0.0113249 0.0113249 0.003440 0.003440 0.010524 0.003544 0.00524 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0.004549 0	, -	20000	000	00031000	0.121354	-0-12122	6.01754	-1.98103	
0.15533 0.038540 -0.02549 0.008524 -0.08552 4.88620 -4.88820 -0.88630 0.0183120 0.000397 -0.00299 0.008524 0.086300 3.0872343 -0.022492 0.008524 0.086300 3.0872343 -0.022492 0.008524 0.086300 3.0872343 -0.022492 0.008524 0.086301 1.202213 1.20221 1.120221 0.008497 0.008497 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008627 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628 0.008628		0.132569	0.036303	-0.036303	0.103166	-0.103167	5.89020	-5.89021	
0.212011 0.0042343 -0.042343 0.025492 -0.052494 -0.0502494 -0.004630 0.042343 -0.042343 0.0042343 -0.037135 2.12673 2.12673 -2.12673 0.2712011 0.0042343 -0.042343 0.021394 -0.037135 2.12673 -2.12673 -2.12673 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.2712010 0.271201		0.156363	0.038540	-0.038540	0.085524	-0.085524	. 8662	-4.88826	
0.22192 0.004362 -0.04465 0.021998 1.20021 -1.20021 -1.20021 0.0249191 0.024393 0.004492 -0.034949 -0.031999 1.20021 -1.20021 -1.20021 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.034949491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.034949491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.03494949 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349491 0.0349	•	0.183120	0.040597	-0.040597	0.066657	-0.068656	3.92758	-3.92756	
0.271888		0.212011	0.042343	-0.042343	0.052492	-0.052442	9400	-3.00463	
0.2271986 0.0044979 -0.0044676 0.0021998 1.26021 1.26021 1.26021 0.039034 0.393034 0.0044979 -0.0044675 0.0010551 0.010551 0.022430 0.022733 0.022430 0.024979 0.0044979 0.0044979 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.00105		0.241917	0.043682	-0.043662	0.037136	-0.037135	2.12673	-2.12673	
0.3001397   0.000487 - 0.000487 - 0.010551   0.010551   0.000450   0.052649   0.050450   0.03001397   0.000487 - 0.000487 - 0.010551   0.010551   0.052649   0.050450   0.030503   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460   0.000460		0.271066	0.044568	-0.044568	0.021998	-0.021998	1.20021	-1.26621	
0.386739 0.004205 0.004305 0.0031514 0.033513 -1.20403 0.227010 0.386739 0.004205 0.004205 0.0031514 0.033514 -1.20403 0.227010 0.24402 0.004205 0.004205 0.0031514 0.033514 0.033514 0.227010 0.244020 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0.004205 0		0.301367	0.04497	-0.044979	0.004667	-0.004667	0.26740	-0.26739	
0.386739		0. 15 6643	0.044405	-0-04405	0.010551	0.0201050	-1-26402	1.25400	
0.449626 0.044865 -0.044865 -0.039441 -2.27010 2.27010 0.449626 0.449626 0.044862 -2.27010 2.27010 0.449629 0.0449629 0.0449626 0.0449626 0.049626 -3.049626 -3.04993  2.08949 0.0449629 0.044962 0.0449626 0.0449626 -3.049626 -3.04993 0.044962 0.0449629 0.044962 0.0449626 0.0449626 -3.04993 0.0348477 -0.034847 -0.054418 0.056418 -3.34330 3.54499 3.64499 0.0556449 0.0556449 -3.045949 0.0556449 0.0556449 -3.04593 3.64499 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.056449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066449 0.066	51	0.386739	0.043650	-0.043650	-0.031514	0.031514	-1.60502	1.80503	
0.444213 0.044449 -0.04448 -0.054241 0.055424 -3.4430 3.44320 0.444827 0.033477 -0.054419 0.055421 -3.4430 3.44330 0.444827 0.033474 -0.054419 0.055421 -3.4430 3.44330 0.5527192 0.033474 -0.03447 -0.054419 0.056421 -3.4430 3.44330 0.556443 0.033424 0.033646 -0.033645 -0.064421 0.065421 -3.465709 3.461409 0.656449 0.033642 0.033646 -0.033645 -0.064421 0.067444 0.070944 -4.05749 0.0556449 0.033645 -0.033645 -0.070944 0.070944 -4.05749 0.0556449 0.033645 -0.033645 -0.070944 0.070944 -4.05749 0.055649 0.056449 0.033645 -0.033649 -0.070944 0.070944 -4.05749 0.055749 0.056449 0.033649 0.0023649 0.002369 0.078209 0.078209 -4.47192 0.073649 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.080449 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.078209 0.080449 0.078209 0.078209 0.078209 0.080449 0.078209 0.080449 0.078209 0.080449 0.078209 0.080449 0.080449 0.080449 0.080449 0.080449 0.078209 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0.080449 0		0.414026	0.042656	-0.042655	-0.039641	0.039641	-2.27010	2.27010	
0.449672 0.040040 -0.040040 -0.055221 -3.02935 3.02935 0.0449672 0.033477 -0.033477 -0.055421 0.055421 -3.02935 3.043330 0.0449672 0.033477 -0.033477 -0.055421 0.055421 -3.04579 3.541409 0.0552192 0.033740 -0.033740 -0.055421 0.055421 -3.04579 3.541409 0.0554341 0.032850 -0.032850 -0.070744 0.070744 4.22977 4.22977 0.032850 -0.032850 -0.070749 4.05779 4.32777 4.22977 4.22977 0.022833 -0.022833 -0.077462 0.07749 4.34779 4.34779 4.34779 0.022833 -0.022833 -0.077462 0.077492 4.54799 0.077249 0.022833 -0.022849 0.077402 0.077402 4.54799 0.077249 0.022833 -0.022849 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.077402 0.0		0.44 2513	0.041448	-0.04144	-0.046826	0.046826	-2.66097	2.68099	
0.6297922 0.0336477 -0.034847 -0.0558418 0.0558418 -3.34330 3.34330 0.0527192 0.033746 -0.0053102 -3.561409 3.651409 0.0555443 0.032746 -0.0033746 -0.0057421 0.057421 -3.65709 3.65709 0.0555443 0.033746 -0.033746 -0.007744 0.007744 -4.05774 4.25773 0.054743 0.033747 -0.033746 -0.007744 0.007744 0.007747 4.25774 4.25773 0.051432 0.052814 0.002374 -0.002774 0.007747 0.00274 0.00274 0.00274 0.00274 0.00774 0.007747 0.00274 0.00274 0.00274 0.00774 0.00774 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00774 0.00774 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.0027		615024.0	0.040050	-0.04000-	-0.052921	0.052921	-3.02935	3.02935	
0.655749 0.032867 -0.032876 -0.067312 -3.61409 3.61409 0.0555749 0.0555749 0.032867 -0.032857 -0.07744 0.07744 0.07744 4.05779 4.05779 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.055749 0.057879 0.057879 0.057879 0.057879 0.057879 0.057879 0.057879 0.057879 0.057879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.077879 0.0		0.498727	0.038477	-0.038477	-0.058418	0.058418	-3.34330	3.34330	
0.5564%) 0.022656 -0.023657 -0.07344   0.070544   4.05794   3.65799   0.6564%) 0.022656 -0.023656 -0.073659   0.070544   4.05799   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   4.22978   0.057829   0.077829   0.077829   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.47192   4.		0.527192	0.036746	-0.036746	-0.063162	0.063162	-3.61409	3.61409	
0.61424 0.022634 0.002645 0.007639 4.36773 4.36773 0.026424 0.022634 0.007639 0.007639 4.36773 4.36773 0.022634 0.0022634 0.007629 0.007629 4.36773 4.36773 0.022634 0.0022634 0.007629 0.007629 0.007629 4.36773 4.36773 0.022633 0.0022633 0.0022437 0.0022633 0.0022437 0.0022633 0.0022437 0.0022633 0.0022437 0.0022633 0.0022437 0.0022633 0.0022437 0.0022633 0.002274 0.0022634 0.002224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022224 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022224 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.00222222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.002222222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.0022222 0.002222		0.5555 3	0.034867	-0.034867	0.067421	0.067421	-3.45709	3.65709	
0.643918 0.0226504 -0.0228504 -0.076379 0.076379 -4.36773 4.36773 0.026504 0.0228533 -0.0228539 0.079502 -4.55491 4.47192 0.0703529 0.0703529 -4.55491 4.47192 0.0703526 0.022833 -0.022833 -0.022833 0.0022849 0.0022824 0.060324 -4.55491 4.47192 0.0703526 0.022833 -0.022833 0.0022849 0.060499 -4.60231 4.60231 0.087324 0.0110224 0.0110224 0.060499 0.060499 -4.6023 0.087324 0.0110224 0.0110224 0.060499 0.060499 -4.6023 0.087324 0.0110224 0.0110224 0.002049 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.060499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000499 0.000		0.614324	0.030729	-0-030729	-0.073957	0.073957	-4.22974	4.20073	
0.47372		0.043916	0.026504	-0.028504	-0.076379	0.076379	-4.36773	4.36773	
0.703661 0.022833 -0.023833 -0.079562 0.079562 4.54901 4.54901 0.73346 0.019042 -0.0218437 -0.080324 0.080324 4.569239 4.569239 0.779268 7 0.016046 -0.0119042 -0.080459 0.080449 4.60232 4.60231 0.779268 7 0.016462 -0.011402 -0.0164649 0.080449 4.60232 4.60231 0.779268 7 0.016462 -0.011402 -0.080449 0.080449 4.60232 4.60231 0.849121 0.012224 -0.080449 0.080449 4.60232 4.60231 0.849121 0.012224 -0.080449 0.080449 4.60232 4.60231 0.849121 0.0112224 -0.080449 0.080449 4.60230 4.60230 0.849121 0.002274 -0.080449 0.080449 4.60220 4.60230 0.849121 0.000274 -0.080449 0.080649 4.60220 4.60230 0.949142 0.000274 -0.080449 0.080649 4.60220 4.60230 0.949142 0.000274 -0.080449 0.080649 4.60220 4.60220 0.949142 0.000274 0.000418 -0.080649 0.080649 4.60220 4.60220 0.949142 0.0002798 -0.080649 0.080649 4.60220 4.60220 0.949142 0.000298 0.000398 -0.080649 0.080649 4.60220 4.60220 0.949144 0.000298 0.000398 0.000398 0.000000 0.080440 0.080649 4.60122 4.60122 0.949144 0.000298 0.000398 0.000398 0.000000 0.080481 4.60122 4.60122 0.949144 0.000398 0.000309 0.87169 0.080440 4.00029 0.080440 0.000398 0.000309 0.87169 0.080440 4.00029 0.080440 4.000209 0.080649 0.000309 0.87169 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 0.000309 0.87169 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.00020 0.080440 4.0002		0.673729	0.026199	-0.026199	-0.078209	0.078209	4.47191	4.47192	
0.173446 0.0021437 -0.021437 -0.080324 4.59239 4.59239 0.173446 0.173446 0.080492 0.080492 4.59239 4.59239 0.173446 0.019042 -0.080492 0.080499 4.50231 4.60231 0.1824102 0.0116040 -0.080499 0.080499 4.60232 4.60231 0.184111 0.101224 -0.011224 -0.080494 0.080499 4.60230 4.60230 0.184111 0.101224 -0.011224 -0.080499 0.080499 4.60230 4.60230 0.184111 0.101224 -0.011224 0.080499 4.60230 4.60230 0.184111 0.101224 0.0011224 0.080499 4.60230 4.60230 0.184111 0.101224 0.080499 4.60230 4.60230 0.184111 0.101224 0.080499 4.60230 4.60230 0.184111 0.101224 0.080499 4.60230 4.60230 0.184111 0.101224 0.080499 4.60230 4.60230 0.184111 0.101224 0.080499 4.60230 4.60230 0.184111 0.101224 0.080499 4.60230 4.60230 0.184111 0.184111 0.184111 0.184111 11.184111 11.18411 11.18411 11.184111 11.18411 11.18411 11.18411 11.18411 11.18411 11.184111 11.18411 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.184111 11.1841111 11.184111 11.184111 11.1841111 11.1841111 11.1841111 11.1841111111 11.1841111 11.18411 11.184111 11.1841111 11.1841111 11.1841111 11.184111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.1841111 11.18411111 11.18411111 11.18411111 11.1841111111111		0.703661	0.023833	-0.023833	-0.079562	0.079562	-4.54901	4.54901	
0.79281 0.0116082 -0.019042 -0.080495 0.080495 4.60231 4.60232 0.84232 0.0816082 0.0116082 -0.011824 -0.080494 4.60232 4.60232 0.84232 0.011824 -0.011824 -0.080494 4.60232 4.60232 0.84232 0.011824 -0.011824 -0.080494 4.60232 4.60233 0.842332 0.011824 -0.011824 -0.080495 0.006049 4.60230 4.60233 0.842332 0.011824 -0.011824 -0.080495 0.006049 4.60230 4.60233 0.8437203 0.006477 -0.006477 -0.080450 0.060494 4.60220 4.60220 0.941042 0.006477 0.006477 -0.006477 -0.080478 0.060204 4.60220 4.60220 0.940142 0.0003190 -0.0080478 0.0060204 4.60220 4.60220 0.940142 0.0003190 -0.000478 0.0060204 4.60112 4.60112 0.940142 0.0003190 -0.000478 0.0060204 4.60122 4.60220 0.940142 0.0003190 -0.000478 0.0060204 4.60122 4.60122 0.940142 0.0003190 -0.000478 0.0060204 4.60122 4.60122 0.940142 0.0003190 -0.000000 0.000440 0.0060204 4.60123 4.60122 0.940142 0.0003190 -0.000000 0.000440 0.000040 4.60123 4.60123 4.60123 0.940142 0.0003190 -0.000000 0.000440 0.000040 4.60123 4.60123 4.60123 0.940142 0.0003190 0.000000 0.000440 0.000040 4.60123 4.60123 4.60123 0.0003190 0.000000 0.000440 0.000040 4.60123 4.60123 0.00000 0.000000 0.000440 0.000040 4.60123 4.60123 0.00000 0.000000 0.000040 0.000440 4.60123 4.60123 0.00000 0.000000 0.000440 0.000040 4.60123 4.60123 0.00000 0.000000 0.0000440 0.0000440 4.60123 4.60123 0.00000 0.000000 0.0000440 0.0000440 4.60123 0.00000 0.000000 0.0000440 0.0000440 4.1000440 4.1000440 0.000000 0.000000 0.0000440 0.000000 0.000000 0.000000 0.0000000 0.000000		0.133646	0.021437	-0.021437	-0.080324	0.080324	4.59239	4.59239	
0.042102		0.763616	0.019042	-0.019042	0.060495	0.080495	4.60211	4.60211	
0.84 8121 0.012224 -0.010224 -0.080499 0.080499 -4.60230 4.60230 0.84 8121 0.012224 -0.080499 0.080499 -4.60230 4.60230 0.84 8121 0.006274 -0.080490 0.080494 -4.602201 4.60201 0.84 8727 0.0064274 -0.080496 0.080496 -4.69948 4.59948 0.94 8727 0.0064274 -0.080496 0.080496 -4.69928 4.69280 0.94 8142 0.0003196 -0.003196 -0.080480 0.080480 -4.60127 4.60121 0.94 80142 0.0003196 -0.003196 -0.080480 0.080480 -4.60127 4.60122 0.94 80142 0.0003196 -0.0003196 0.080480 0.080480 -4.60127 4.60122 0.94 80142 0.0003196 0.000000 -0.080480 0.080480 -4.60127 4.60122 0.94 80142 0.000000 -0.000000 0.080480 0.080480 -4.60127 4.60122 0.94 80142 0.000000 0.0000480 0.080480 -4.60127 4.60122 0.94 80142 0.000000 0.0000480 0.080480 0.080480 -4.60127 4.60122 0.000000 0.0000480 0.080480 0.080480 0.000000 0.0000480 0.080480 0.080480 0.000000 0.0000480 0.080480 0.000000 0.0000480 0.080480 0.000000 0.0000480 0.080480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.0000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.000000 0.0000480 0.0000000 0.0000480 0.0000000 0.0000480 0.0000000 0.0000000 0.0000000 0.000000		0.421002	0.016666	-0-010000	0.08040	0.000000	4.60032	4.600232	
0.667353E 0.010178 -0.010178 -0.080493 0.090494 -4.60201 4.60201 0.8947703 0.006274 -0.080495 0.0060504 -4.59988 4.59988 0.8947703 0.006418 -0.080405 0.080504 -4.59988 4.59988 0.994782 0.000418 -0.000418 -0.080504 0.080504 -4.50220 0.996024 0.000418 -0.000418 -0.080504 0.080504 -4.60212 0.996024 0.000199 -0.000418 -0.080400 0.080504 -4.6012 0.996024 0.000199 -0.000419 -0.080400 0.080401 -4.6012 0.996024 0.000199 -0.000400 0.080400 0.080400 -4.6012 0.9012 0.996024 0.000199 0.000199 0.080400 0.080400 0.080400 0.00199 0.001999 0.000709 0.001999 0.080709 0.080709 0.0871895 -0.897189 0.08040 0.080709 0.0871895 0.080400 0.080400 0.087189 0.001990 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.087189 0.		0.848121	0.012224	-0-012224	-0.080469	0.080400	-4.60230	4.60230	
0.497203 0.006274 -0.0080450 0.080450 -4.59988 4.59968 0.9140142 0.940142 0.000497 -0.0080450 0.0080450 -4.59988 4.59968 0.949142 0.0004842 -0.008048 -0.008049 -4.60220 4.60228 0.940142 0.0004842 -0.008048 0.0080478 -4.60112 4.60112 0.949044 0.0003196 -0.0080478 0.0080478 -4.60112 4.60112 0.9496949 0.0001598 -0.0080480 0.080480 -4.60123 4.60112 0.9496949 0.0001598 -0.0080480 0.080480 -4.60123 4.60112 0.9496949 0.0001598 -0.0080480 0.080480 -4.60123 4.60112 0.9496949 0.0001598 -0.0080480 0.080480 -4.60123 4.60112 0.9496949 0.0001998 0.0001998 0.0001999 0.871695 0.080480 0.080480 -0.080480 0.080480 -0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480 0		0.673538	0.010178	-0.010178	-0.080493	0.080494	-4.60201	4.60201	
0.9419277 0.0004947 -0.0004095 0.000509		0.897203	0.006274	-0.008274	-0.080456	0.080456	-4.59968	4.59968	
0.9960264 0.003196 -0.0034018 0.0860204 4.60220 4.60225 0.9960264 0.003196 -0.003196 -0.0080418 4.60112 4.60112 0.9960346 0.0001398 -0.0080480 0.0080481 4.60112 4.60112 0.9960348 0.000000 -0.0003196 -0.0080480 0.0080480 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.60123 4.		0.919277	0.006497	-0.006497	-0.080508	0.080508	4.60282	4.60281	
0.960264 0.003199 -0.0033190 -0.080476 0.080401 4.60112 4.60112 0.949099 0.0001598 -0.001598 -0.080480 0.080480 -4.60127 4.60112 2 Y= 0.0818 ETA = 0.7364 CMGMC = 1.0977 TWIST AMCLE =  X/C ZU/C ZL/C DZU/DX DZL/DX DUZU DDZU  0.003995 0.0012073 -0.012073 0.493277 -0.493283 Z6.25004 -26.25632  0.028337 0.013522 -0.015522 0.337504 0.2655198 14.85283 -14.65280  0.036006 0.022024 -0.020785 0.2265198 -0.2265198 14.85283 -14.65280  0.045006 0.022024 -0.020785 0.2265198 -0.2245179 13.04642  0.056006 0.022122 -0.022782 0.22456 0.220453 11.56117 -11.56119  0.067197 0.027362 -0.027362 0.181141 -0.181141 10.26728 -110.26729		0.940142	0.004818	-0.004818	-0.060504	0.080504	-4.60260	4.60259	
2 Y± 0.0018 ETA = 0.030400 0.000400 0.000400 4.60127 4.60123 0.999999 0.000000 -0.000000 -0.000400 0.000400 -4.60123 4.60123 2 Y± 0.0018 ETA = 0.03040 0.000400 0.000400 -4.60123 4.60123 2 X, 00123 0.00199 0.001990 0.001990 0.001090 0.001990 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001090 0.001		0.960284	0.0031%	-0.003196	.08047	0.080478	. 6011	4.60112	
2 Y± 0.0616 EIA = 0./364 CMGFD = 1.0977 TBIST ANGLE = AXC ZU/C ZU/C ZU/C ZU/C ZU/C ZU/C ZU/C ZU/		0.980146	0.00000	-0.001598	08048	0.080481	.6012	4.60128	
AXX			200000		9000		3	7100.	
0.003995 0.007009 -0.007009 0.871695 -0.871669 41.07848 0.0119946 0.012073 -0.012073 0.493277 -0.493283 20.25604 0.0119946 0.012073 -0.012073 0.493277 -0.493283 20.25604 0.028337 0.018326 0.018326 0.378566 0.378569 20.285608 0.028337 0.020784 -0.020785 0.309345 -0.309345 17.18921 0.035640 0.020784 0.020785 0.309345 -0.265198 14.882283 0.035666 0.025221 -0.023222 0.263221 0.263223 0.225221 0.263223 0.225222 0.263222 0.263222 0.263223 0.225222 0.263222 0.263222 0.263222 0.263222 0.263222 0.263222 0.263222 0.263222 0.263222 0.263222 0.263223 0.225222 0.2631141 0.1811141 10.25722		:	0100		2000			- STORE	•
0.003995 0.007099 -0.007099 0.871695 -0.871669 41.07848 0.020076 0.01552 -0.01552 0.37560 -0.37560 2.5509 0.022977 0.01552 -0.01552 0.37560 -0.37560 2.5509 0.022978 0.015326 -0.01532 0.309345 17.19821 0.03640 0.020744 -0.020785 0.265198 -0.265199 14.85283 0.046693 0.025221 -0.022522 0.26454 -0.204563 11.56117 0.05666 0.0227362 -0.022522 0.181141 -0.181141 10.26728		XXC	DIC	are	DZUZDX	02F/0x	OOSO	7200	
0.011996 0.012073 -0.012073 0.493277 -0.493283 20.25004 0.0220076 0.011552 -0.01552 0.375506 -0.375504 20.55908 0.022973 0.018326 -0.018326 0.309345 -0.309342 17.18921 0.035940 0.020744 -0.020785 0.265198 -0.265198 14.85283 0.045093 0.0220744 -0.020785 0.265198 -0.265198 14.85283 0.055066 0.022221 -0.022521 0.204544 -0.204563 11.56117 0.067197 0.027362 -0.027362 0.181141 -0.181141 10.26728		0.003995	0.007009	0	0.871695	-0.871669	41.07848	-41.07765	
0.020076 0.015522 -0.015522 0.375060 -0.375054 20.55506 0.028337 0.018326 -0.018326 0.309345 -0.309342 17.18921 0.038480 0.020784 -0.020785 0.285198 -0.265198 14.85283 0.046093 0.023052 -0.0230759 -0.231759 -0.231759 0.05		0.011996	0.012073	-0.012073	0.493277	-0.493283	26.25604	-26.25632	
0.026337 0.018326 -0.018326 0.309345 -0.309342 17.18921 0.036440 0.020734 -0.020785 0.2265198 -0.255199 14.85283 0.0464093 0.023022 -0.023052 0.2231759 -0.231759 13.04844 0.05660 0.025222 -0.025221 0.20454 -0.204563 11.56117 0.067197 0.027362 -0.027362 0.181141 -0.181141 10.26728		0.020076	0.015522	-0.015522	0.375060	-0.375054	20.55508	-20.55675	
0.03640 0.020744 -0.020785 0.265198 -0.265199 14.85283 0.046093 0.023052 -0.0231759 -0.231759 13.04644 0.05660 0.052521 -0.025221 0.20454 -0.204563 11.56117 0.067197 0.027362 -0.027362 0.181141 -0.181141 10.26728		0.028337	0.018326	-0.018326	0.308345	-0.309342	17.18921	-17.18904	
0.023052 -0.023052 0.231759 -0.231759 13.04644 0.025221 -0.025521 0.204564 -0.204563 11.56117 0.027362 -0.027362 0.181141 -0.181141 10.26728		0.030000	0.02078	-0.020785	0.265198	-0.265198	14.85283	-14.85280	
0.056066 0.025221 -0.025221 0.204564 -0.204563 11.56117 0.067197 0.027362 -0.027362 0.181141 -0.181141 10.26728		0.04 6093	0.023052	-0.023052	0.231759	-0.231759	13.04644	-13.04842	
0.067197 0.027362 -0.027362 0.181141 -0.181141 10.26728		0.056066	0.025221	-0.025221	0.204564	-0.204563	11.56117	-11.56110	
		0.067197	0.02736.0	0 00000					

	c c	
-7.98103 -6.91751 -6.91751 -6.8882 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.92756 -3.9		26.2563 20.2563 20.2563 20.2563 20.2563 13.0484 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.0263 11.026
7.98108 6.91754 7.6826 7.6826 3.92756 3.0484 7.26673 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1.26674 1	-2.68098 -3.3939 -3.3939 -3.3939 -3.61409 -4.05708 -4.05773 -4.0621 -4.0621 -4.0621 -4.0621 -4.0621 -4.0621 -4.0621 -4.0621 -4.0621 -4.0620 -4.0620 -4.0620 -4.0620 -4.0620	41.07849 26.25604 26.25604 26.25608 113.04644 113.04644 10.26729 9.06430 9.06430 9.06430 9.06430 9.06430 1.26733 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.26673 1.266
0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323 0.0101323	0.052921 0.052921 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.053162 0.0	02L/DX 02L/DX 0-0-891670 0-0-8936854 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683 0-0-894683
*******	0.000000000000000000000000000000000000	
000000000000000000000000000000000000000	-0.041448 -0.040440 -0.040440 -0.040440 -0.040440 -0.0404414 -0.0404414 -0.0044418 -0.0044418 -0.0044418 -0.0044418 -0.0044418	2. / C -0. 007 00 9 -0. 012 073 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 822 -0. 015 82
0.031738 0.034009 0.036393 0.038540 0.040343 0.044678 0.044678 0.044678 0.044678	0,041444 0,036746 0,036746 0,036746 0,036746 0,036149 0,026149 0,02649 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,01224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,01224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,01224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,012224 0,01224	ZU/C 0.007009 0.012073 0.012073 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.023052 0.02305
0.094694 0.112099 0.15269 0.163120 0.163120 0.212011 0.271888 0.301397 0.30599 0.30679	0.442513 0.442519 0.440219 0.555443 0.555443 0.564549 0.614324 0.614324 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647 0.7732647	X/C 0.003995 0.011996 0.028076 0.028040 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640 0.0369640
0 - 2 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		

	•
	•
3.65709 4.25749 4.55749 4.65773 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231 4.66231	
6 6 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	18.15.1 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0.000000000000000000000000000000000000	0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.
0.034867 0.032854 0.03072 0.028504 0.023833 0.023833 0.023833 0.023833 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383 0.02383	2.7.C 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0.034867 0.0378650 0.028504 0.028504 0.0281437 0.0214337 0.011040 0.011224 0.011224 0.006497 0.006497 0.006497 0.006498	20.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.55594 3 0.564349 0.643918 0.643918 0.673372 0.73364 0.73364 0.73364 0.821062 0.821062 0.84612 0.84612 0.84612 0.84612 0.84612 0.84612 0.84612 0.84612 0.94629	X/C 0.003999 0.011998 0.01293337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.0203337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.020337 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.02037 0.020
*************	# = - w m 4 v 5 - x 2 0 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2

		**	
20 10 20 20 20 20 20 20 20 20 20 20 20 20 20			- 3700 I
4.4			ממגר
-0.007009 0.	9 9	26.25606	-41.07767
-0.015522 0.37506	ò	20.55506	-20.55876
-0.018326		17.18922	-17.18904
-0.020 785		14.85284	-14.85281
-0.023052 0.0		13.04644	-13.04843
-0.027362		10.26729	-10.26729
-0.029525	٩	9.08431	-9.08423
-0.031739		7.98109	-7.98104
-0.034000		6.91754	-6.91752
-0.038540		4.88826	-4.88826
-0.040597 0.06865		3.92758	
-0.042343 0.05249		3.00487	
-0.043682		2.12673	
-0.044568		1.20022	•
-0.044979 0.00466		0.26740	,
-0.044875 -0.01055	0 0	-0.60450	0.60450
-0.044405	0 0	-1.26801	
-0.042655		-2.2700H	2.27010
-0.041448 -0.04682	0	-2.66098	
-0.040050 -0.05292	0	-3.02935	3.02935
-0.038478 -0.05641	0	-3.34331	3.34331
-0.036746 -0.06316		-3.61409	3.61409
-0.034867 -0.06742		-3.85709	3.85709
-0.032856 -0.07094		4.05799	4.05799
-0.030729 -0.07395		4.22974	4.22974
000000000000000000000000000000000000000		1000	4.30//3
-0.023833		54901	4.54901
-0.021437 -0.08032			.5923
-0.019042			4.60211
-0.016686	0	4.60232	4.60232
-0.014402 -0	0	-4.60032	4.60032
-0.012224 -0	0	-4.60231	4.60231
-0.010178 -0	0		4.60202
-0.008274 -0.08045	0		9665
-0.006497 -0.08050	0	•	4.60281
-0.004818 -0.08050	0	. 6026	
-0.003196 -0.0	0	. 6011	109
-0-001598 -0-0	0.08048	•	
-0.000000 -0.08048	0.08048	•	4.60124
= 0.1818	9886.0 = 0	TRIST	ST ANGLE =
ZL.K. DZU/DX	DZL/OX	DOZO	7200
-0.007000	9	4. 6704.0	4. 67744
-0.01000	9	34 354 95	-26 266 42
-0.014522		20023.00	
0001000 0000000000000000000000000000000		20000	
-0.020785		14.8.243	-14.85279
-0.023052		13.04643	
-0.025221		11.56116	
-0.027362	1-0,181141	10.26728	
-0.029525 0.1	-	9.08430	-9.08423
0.0693630.0-			
-0.031739 0.1		7.96108	-7.98103
20000000000000000000000000000000000000	2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.1.7. 2.	2009 -0.007009 0.471695 -0.8 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2020 0.4 2	2073 -0.007009 0.6771695 -0.6771670 41.077 2073 -0.012073 0.493277 -0.493283 26.25 20.012073 0.493277 -0.493283 26.25 20.012073 0.493277 -0.493283 26.25 20.012073 0.493277 -0.493283 26.25 20.012073 0.493277 -0.493283 26.25 20.012073 0.493277 -0.493283 26.25 20.027362 0.27362 0.1011141 -0.1111141 10.26 20.027362 0.27362 0.1011141 -0.1111141 10.26 20.027362 0.27362 0.1011141 -0.1111141 10.26 20.027362 0.27362 0.1011141 -0.1111141 10.26 20.027362 0.1013141 -0.1111141 -0.1111141 10.26 20.027362 0.1013141 -0.1111141 -0.1111141 10.26 20.027362 0.1013141 -0.111141 -0.1111141 10.26 20.027362 0.1013141 -0.111141 -0.1111141 10.26 20.027362 0.103162 0.006657 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.06657 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -0.066557 -

		8
-5.69021 -4.86626 -3.02464 -2.12673 -1.266021 -1.26602 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450 0.60450	3.61799 4.26779 4.26773 4.36773 4.36773 4.56239 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623 4.6623	DD2L DD2L DD2L DD2L -26.26632 -26.26632 -17.16966 -11.56110 -10.26739 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91751 -6.91
5.89026 4.88226 3.92726 3.0487 2.12673 1.26021 0.26740 -1.26600 -1.26000 -2.27006 -2.27006 -2.27006 -3.34330		18151 DD2U 26.26.06.98 20.55907 - 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.92 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93 11.18.93
-6.103167 -6.08528 -6.08528 -6.0828 95 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.037135 -6.0371	0.067421 0.074421 0.0744421 0.0744421 0.0744421 0.080494 0.080494 0.080494 0.080494 0.080494 0.080494 0.080494	D2L/Dx D2
0.10316e 0.065524 0.065524 0.052493 0.0037130 0.0037130 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551 0.0010551	0.000000000000000000000000000000000000	0.4971695 0.493276 0.493276 0.493276 0.40331759 0.40331759 0.40331759 0.40331759 0.40331759 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164 0.403164
-0.036 50 00 00 00 00 00 00 00 00 00 00 00 00	-0.036746 -0.036746 -0.036746 -0.036746 -0.0261437 -0.021437 -0.021437 -0.021628 -0.01628 -0.01628 -0.01628 -0.01628 -0.01638 -0.01638 -0.01638 -0.006497 -0.006497 -0.006497	1.
0.036303 0.036340 0.036340 0.04233 0.042342 0.044360 0.044675 0.044675 0.044675 0.044675 0.044675 0.044675 0.044675 0.041646	4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07 20/07
1 2 2 2 4 2 0 0 0 0 0 1 4 7 6	0.527492 0.527492 0.52943 0.52932 0.67372 0.73324 0.72334 0.72284 0.72284 0.72284 0.72284 0.72284 0.72284 0.72284 0.72284 0.72284 0.72284 0.72284 0.82284 0.82286 0.82286 0.82286 0.82286 0.82286 0.82286 0.82286 0.82286 0.82286 0.82286 0.82286	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
2242222222222	******************	# = -wm+nov no roll nm+nov no roll n

	•			
4.22973 4.36773 4.54901 4.54901 4.542901 4.50213 4.5023 4.5023 4.5023 4.5025 4.5025 4.5025 4.5025 4.5025 4.5025 4.5025 4.5025	ANGLE = DD2L DD2L 41.07765 26.25633 20.55876 17.18906 13.048343 11.56110	-10.26728 -9.08423 -9.08423 -6.91751 -5.89021 -4.88826 -3.92756 -3.92756 -3.00483 -2.126021	-0.26739 0.60450 1.26802 1.80803 2.68099 3.02935 3.4831 3.61409 4.25799 4.2579	4.542991 4.59239 4.60231 4.60232 4.60233 4.60203 4.60203 4.60203 4.60259 4.60123
4. 22474 4. 4.191 4. 54901 4. 54901 4. 56901 4. 60232 4. 60232 4. 60232 4. 60232 4. 60288 4. 60288 4. 60288 4. 60288 4. 60288	DUZU 41.0784 26.2560 20.5590 17.1592 14.8591 11.5011	•	0.26740 -1.26044 -1.260602 -2.27010 -2.26098 -3.02935 -3.34330 -3.465709 -4.05794 -4.36773	
0.073457 0.073427 0.079204 0.0803224 0.080494 0.080494 0.080494 0.080494 0.080494 0.080504 0.080504 0.080504 0.080504	D2L/DX -0.4716c9 -0.493283 -0.375055 -0.304343 -0.25198 -0.265198 -0.204563	-0.181141 -0.159842 -0.161323 -0.103167 -0.085524 -0.056656 -0.057733	0.004667 0.01051 0.02134 0.031514 0.046641 0.052921 0.052921 0.05444 0.076379	0.000000000000000000000000000000000000
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- M 4 4 D 4 P N O D	0.004667 -0.01051 -0.031514 -0.034641 -0.052921 -0.052921 -0.067421 -0.0733954	0.0198200000000000000000000000000000000000
-0.030729 -0.026194 -0.021833 -0.021833 -0.019082 -0.014082 -0.0114082 -0.010224 -0.006497 -0.006497 -0.006497 -0.006497 -0.006497 -0.006497	A = 0.2545 ZL/C -0.012073 -0.012073 -0.018326 -0.023052 -0.025221	02736 02952 03173 03630 03654 04059 04234	-0.044979 -0.044815 -0.044405 -0.044405 -0.04265 -0.041448 -0.04095 -0.0348477 -0.0348677 -0.0348677 -0.0348677 -0.0348677	-0.026199 -0.021833 -0.021904 -0.019042 -0.014002 -0.012224 -0.00647 -0.00647 -0.0064818 -0.006494 -0.006494 -0.006494 -0.006494 -0.00649618
0.030729 0.026199 0.0261933 0.021933 0.019042 0.019042 0.010224 0.010224 0.006274 0.0064818 0.0064818 0.0064818	2U/C 2U/C 0.007009 0.012073 0.01522 0.018326 0.0203728 0.0203728 0.0203728	0.027362 0.029525 0.031739 0.036303 0.036540 0.046540 0.044568	0.044979 0.044405 0.044405 0.042650 0.042650 0.034878 0.038478 0.034867 0.034867	0.026199 0.023833 0.0219042 0.019042 0.019402 0.012224 0.00824 0.00824 0.00824 0.00824 0.00824 0.00824 0.00824 0.00824 0.00824
0.014324 0.043318 0.073729 0.073364 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418 0.0763418		0.067197 0.074906 0.094694 0.1122099 0.132569 0.156363 0.18120 0.212011 0.241917	0.301397 0.330304 0.336693 0.386739 0.41626 0.476519 0.42513 0.555943 0.555943 0.555943 0.555943	0.673729 0.703681 0.733640 0.763416 0.763416 0.872687 0.848121 0.848121 0.87263 0.940142 0.940142 0.940142
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 x -04400	D 2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

2016	27/22
000200	00000
230010	
03000	
17767	17767
0.027362 -0.0	27362
0.029525 -0.029	- 525
0.031739 -0.031739	1
9	30303 -0
8540	8540 -
20507	20507
1	
700	-0- 700
•	800
0.044979 -0.044	
0.044875 -0.044875	
9	'
-	-
0.038478 -0.038478	-
0.036746 -0.036746	
0.034867 -0.034867	
200	200
	2010
0.026199 -0.026199	
0.023833 -0.023833	٩
0.021437 -0.021437	٩
9	9
-	
7	
	٩
0-010178 -0	
0.008274 -0.008274	9
1	1
0	0
0.0031% -0.003196	0
0.001598 -0.001598	0
000000-0-00000000	0
.7364 EIA =	ETA
20/02	20/02
0.007009 -0.00700	-0-
012073 -0	0
9	9
-	-
?	?
	0
0-053052 -0-	
0.025221 -0.025221	0
	1
'	'
	1
7 '	7 '
	î
0-038540 -0	ĭ

		0
-3,92756 -3,00484 -2,12673 -1,26021 0,60450 1,26450 1,26450 1,26450 1,26450 1,26409 3,27010 2,64099 3,02935 3,34331 3,61409	4 6 6 5 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-41.07767 -26.25633 -26.25633 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18907 -17.18
3,92758 3,00484 2,12473 1,2602 0,2674 0,2674 1,2602 1,2603 1,2603 1,3603 1,3603 1,36140 1,36140	4, 05799 4, 22974 4, 22974 4, 47191 4, 6423 4, 6023 4, 6023 4, 6023 4, 6023 4, 6023 4, 6012 4, 6012 4, 6012	TWIST DDZU  41.07849 - 26.25606 - 270.25908 - 114.85284 - 114.85284 - 115.561109 - 20.26431 - 20.26729 - 20.26729 - 20.26729 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26740 - 20.26
-0.052492 -0.052492 -0.0315135 -0.004667 0.010551 0.024661 0.052922 0.052922 0.052922 0.052922		0.05293535353535353535353535353535353535353
	999999999999999	CHORD DZU/DX 0.493277 0.493277 0.493277 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.10181141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.101814141 0.10181414141 0.10181414141 0.1018141414141414141414141414141414141414
10,000 50 70 10 10 10 10 10 10 10 10 10 10 10 10 10		A = 0.3556  A = 0.4556  A = 0.40700  A = 0.4
0.0405.97 0.042.343 0.0445.62 0.0445.62 0.044.979 0.044.975 0.044.975 0.044.975 0.044.975 0.044.975 0.044.975 0.044.975 0.044.975 0.041.446 0.036.746 0.036.746 0.036.746	2 2 2 2 2 4 5 5 6 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 / C   C   C   C   C   C   C   C   C   C
0.183120 0.212011 0.241917 0.301397 0.30304 0.3130304 0.316739 0.4162139 0.416219 0.476119 0.476119 0.476119	0.584990 0.614324 0.673329 0.703681 0.703680 0.703680 0.821000 0.821000 0.841000 0.8413538 0.8413538 0.8413538 0.8413538 0.8413538 0.8413538 0.8413538	A A A A A A A A A A A A A A A A A A A
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 - 0 m 4 n 0 r 0 m 2 m 2 m 2 r 0 m 2 n 0 r 0 m 3 n 0 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m

										0.0																																		
4.59239	4.60232	4.60032	4.60230	4.50088	4.60282	4.60260	4.60112	4.60128	*****	T ANGLE =	DOZE	-41.07764	-20.55878	-17.18907	-14.85281	-13.04843	-10.26729	-9.08423	-6-91750	-5.89021	-4.88826	-3.00484	-2.12673	-1.26021	0.60450	1.26802	2.27010	2.68099	3.02935	3.61409	3.85709	4.05799	4.36773	4.47192	4.54901		4.60232	4.60031	4.60230	4.59988	4.60281	4.60259	4.60111	4.60128
4.59240	4.60232	-4.60032	-4.60230	10200		4.60260	4.60112	4.60127	-4.00123	TW IST	DOZO	41.07848	20.55507		14.85283	13.04844	10.26726	9.06430	6.91754	5.89026	4.86826	3.00466	2.12673	1.26021	-0.60449	-1.26802	-2.27010	-2.68097	-3. 34330	-3.61409	-3.85709	4.05778	-4.36773	1614.4-	-4.54901	-4-60211	-4.60232	-4.60032	-4-60230	4.59988	4.60282	4.60259	4.60111	2100-4
0.080324	0.060499	0.080464	0.080499	0.080494	0.080508	0.080504	0.080478	0.080481	0.080480	= 0.8250	DZL/UX	-0.871669	-0-375054	-0.309343	-0.265198	-0.231759	-0.181141	-0.159892	-0-121323	-0.103167	-0.085524	-0.052492	-0.037135	-0.021998	0.010551	0.022135	0.039641	0.046826	0.052921	0.063162	0.067421	0.073957	0.076379	0.078209	0.079562	0.080495	0.080499	0.080464	0.080493	0.080456	0.080507	0.080504	0.080478	184080-0
-0.079562	-0.080499	-0.080464	-0.080499	0.080404	-0.080508	-0.080504	-0.080478	0.080480	0000	CHURD	DZUZDX	0.871694	375060	0.309345	0.265198	0.204564	0.181141	0.159893	0-121324	0.103168	0.085524	0.052493	0.037136	0.021998	15010-0-	-0.022135	-0.039641	-0.046826	-0.052921	-0.063162	-0.067421	-0.073957	-0.076379	-0.078209	-0.079562	-0.080495	-0.080499	-0.080464	-0.080493	-0.080456	-0.080508	-0.080504	-0.080478	084080-0-
-0.023833	-0.016686	-0.014402	-0.012224	-0-010178	-0.000497	-0.004818	-0.003196	-0.001598	000000	A = 0.4000	27.72	-0.007009	-0-015522	-0.018326	.02078	-0.025221	-0.027362	-0.029525	-0.034009	-0.036303	-0.038540	-0.042343	-0.043662	-0.044568	-0.044875	-0.044405	-0.042655	-0.041448	-0.038477	-0.036746	-0.034867	-0.032856	-0.028504	-0.026199	-0.023833	-0.019042	-0.016686	-0.014402	-0.010178	-0.008274	-0.006497	-0.004818	-0.003196	865100-0-
0.021437	0.010680	0.014402	0.012225	0.000178	0.006497	0.004818	0.003196	0.001596	0000000	0.9000 ETA	2016	0.007009	0.015522	0.018326	0.020784	0.025052	0.027362	0.029525	0.034009	0.036303	0.038540	0.042343	0.043682	0.044508	0. **** 75	0.044405	0.042656	0.041448	0.036477	0.036746	0.034867	0.032856	0.028504	0.026199	0.023833	0.019042	0.016686	0.014402	0.010178	0.006274	0.006497	0.004818	0.003196	9651000
0.733640	0.792667	0.621061	\$	0.6673337	0.919277	0.940142	0.960264	0.980146	0.555555	*	××	0.003995	0-020075	0.028337	03693	0.056066	0.067197	0.07500	0-112099	0.132589	0-156363	0.212011	0.24 1917	0.301367	0.330304	0.358693	0.414626	0.44 2513	0.498727	0.527192	0.555943	0.584990	0.043918	0.673729	0.733661	0.763410	0.792686	0.821061	0.673537	0.897203	0.919276	0.940142	0.960284	0.980145
33	9 6	36	3	9 2	0	;	45	E 4	:	K=12		- (	v m		0	0 ~	0	•	2 :	15	13	15	9 !	1 8	16	50	22	53	25	26	23	200	30	31	35	34	35	36	36	36	0	-	42	5 4

		XVC	2016	2 AC	DZU/DX	DZC/DX	0700	DOZE	
	-	0.003995	0.001000	-0.00100	0.871695	-0.871669	41.07848	-41.07765	
	v	0.01	0.012073	-0.012073	0.493291	-0.493284	20.25673	-20.25030	
	•	0.020075	0.015522	-0.015522	0.375060	-0.375055	20.55907	-20.55878	
	•	0.028337	0.018326	-0.018326	0.309345	-0.309342		-17.18903	
	0 4	0.030939	0.020.00	-0.020 784	, ,	-0.205198	14.85283	18268.41-	
	0 1	0.00000	20053000	-0.025221	0.20466	-0.204563	11.56117	210-56110	
		0-067197	0.027362	-0.027362	0-181141	-0-181141	10.26728	-10-26728	
	,	0.079906	0.029525	-0.029525	0.159893	-0-159892	9.06430	-9.08423	
	10	0.094694	0.031738	.03173	:	-0.140203	7.98108	-7.98103	
	=	0.112099	0.034009	-0.034009	0.121324	-0.121323	6.91754	-6.91751	
	15	3256	0	-0.036303	0.103168	-0.103167	5.89026	-5.89021	
	13	0.156363	0.038540	-0.038540	0.085524	-0.085524	4.86826	-4.88826	
	4 4	0.183120	0.040597	-0.040597	0.068657	-0.068657	3.92758	-3.92756	
	2 5	0.212011	0.042343	-0.042343	0.052492	-0.052492	3.00484	-3.00463	
	2 2	0.271868	0.044568	-0.044568	0.021996	-0.021998	1.20021	-1.26021	
	18	0.301397	0.044979	-0.044979	0.004667	-0.004667	0.26740	-0.26739	
	19	0.330304	0.044875	-0.044875	-0.010551	0.010551	-0.60449	0.60450	
	50	0.358693	0.044405	-0.044405	-0.022135	0.022135	-1.26802	1.26802	
	51	0.386739	0.043650	-0.043650	-0.031514	0.031514	-1.60502	1.80503	
	55	0.414626	0.042656	-0.042655	-0.039641	0.039641	-2.27010	2.27010	
	2 4	0.470519	0.00000	00000	0.040820	0.040826	-2.00036	3.02035	
	52	0.498727	0.038478	-0.038477	-0.058418	0.058418	-3.34330	3.34331	
	56	0.527192	0.036746	-0.036746	-0.063162	0.063162	-3.61409	3.61409	
	27	0.555943	0.034867	-0.034867	-0.067421	0.067421	-3.85709	3.65709	
	58	0.584990	0.032856	-0.032856	-0.070944	0.070944	46.05799	4.05799	
	50	0.614324	0.030729	-0.030729	-0.073957	0.073957	4.22974	4.22973	
	3 6	0.673729	0.026190	-0.026199	-0-078200	0.074200	4.47102	4.30173	
	32	0.703660	0.023833	-0.023833	-0.079562	0.079562	-4.54900	4.54900	
	33	0.733645	0.021437	-0.021437	-0.060324	0.080324	-4.59239	4.59239	
	34	0.763416	0.019042	-0.019042	-0.080495	0.080495	4.60211	4.60211	
	35	0.792667	0.016686	-0.016686	0.080499	0.080499	•	4.60232	
	30	0.621062	0.014402	-0.014402	0.080464	0.080464	4.60032	4.60031	
	38	0.873538	0.010178	-0-010178	-0-040493	0-080404	4.60201	4.60201	
	36	0.897202	0.006274	-0.008274	-0.080456	0.080456	-4-59988	4.59968	
	•	12610	0.006497	-0.006497	-0.080508	0.080508		4.60281	
	7	0.940142	0.004616	-0.004818	-0.080504	0.080504	4.60260	4.60259	
	45	0.960285	0.003196	-0.003196	-0.080478	0.080478	1109.	4.60112	
	. 4	0.999999	0.0000000	-0.0000000	-0.080480	0.080481	-4.60123	4.60128	
1104	•								
	;	,					,		
	-		B-0630 E	EIA = 0.4/2/	CHORD	901100	ISIN	ANGLE =	••
	1	xxc	20.75	27.2	DZUZDX	D2L/0x	0200	DOZE	
	-	9.003995	0.007000	-0.007009	0.871695	-0.871669	41.07848	-41.07765	
	~	0.011996	0.012073	-0.012073	0.493291	-0.493284	26.25673	-26.25636	
	m «	0.020075	0.015522	-0.015522	0.375060	-0.375054	20.55907	-20.55878	
	* "	0.028333	0.018320	-0.018326	0.309345	-0.309343	17.16921	-17.18906	
	, 0	0.046093	0.023052	-0.023052	0.231759	-0.231759	13.04844	-13.04843	
	1	99095000	0.025221	-0.025221	0.204564	-0.204563		-11.56111	
	•	0.067197	0.027362	-0.027362	0.161141	-0.181141	10.26728	-10.26729	
	. 0	40040000	0.029525	-0.031730	0.159893	-0-159892	7.08430	-7.08423	
	::	0.112099	0.034009	-0.034009	: :	-0.121323	6.91754	-6.91751	
	12	0.132569	0.036303	-0.036303	0.103168	-0.103167	5.89026	-5.89021	

-3.00483 -1.26739 0.26739 0.26739 0.26802 1.80503 2.68099 3.02935 3.02935 4.05799 4.05799 4.05799 4.60231 4.60231 4.60231 4.60231 4.60231 4.60231	ANGLE = 0.  ANGLE
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0.26740 1.066600 1.0666000000000000000000000000000000000	THIS DOLU 41.07646 26.25673 20.55673 20.55673 31.04643 31.04643 4.88627 4.88627 3.94246 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.8867 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627 4.88627
0.0101010101010101010101010101010101010	D2L/DX D2L/DX -0.871669 -0.493284 -0.309348 -0.204563 -0.103169 -0.103169 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665 -0.004665
0.021996 0.021996 0.031918133 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.031996 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.03196 0.0319	CTARD DZU/DX DANAGE STREES 0.1379346 0.204564 0.1317598 0.1317598 0.1058143 0.1058143 0.1058143 0.003168 0.003168 0.003168 0.003168 0.003168 0.003168 0.003168 0.003168 0.003168 0.003168
0.003196	2
6.044 673 6.044 673 6.042 645 6.042 645 6.042 645 6.042 645 6.043 647 6.043 647 6.043 647 6.043 647 6.044 647 6.044 647 6.044 647 6.044 648 6.044 648 648 648 648 648 648 648 648 648 648	20/C 20/C 20/C 20/C 20/C 20/C 20/C 20/C
0.35 8893 0.46 2313 0.47 0319 0.47 0319 0.47 0319 0.55 594 0.55 594 0.55 594 0.55 594 0.57 372 0.77 37	x x x x x x x x x x x x x x x x x x x
***************************************	# # w # 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

														0.0																																						
4.47192	4.54901	4.59239	4.60211	4.60232	4.60031	4.60230	4.60202	4.59988	4.60281	4.60259	4.60112	4.60128	4.60123	T ANGLE =	DDZL	-41.07767	-26.25638	-20.55878	-17.18907	-14.85281	-11.56111	-10.26729	-9.08424	-7.98104	-6.91751	-4.88826	-3.92756	-3.00484	-2.126/3	-0.26739	0.60450	1.26802	2.27010	2.68099	3.02935	3,34331	3.61408	4.05799	4.22973	4.36773	4.47192	4.50230	4.60211	4.60232	4.60032	4.60231	4.60202	4.59988	4.60260	4.60112	4.60128	4-60124
		•					-4. 60201	-4.59988	4.60282	-4.60260	-4.60112	4.60127	-4.60123	TWIST	DOZO	41.07849		20.55908	17.18922	14.85284	11.56117	10.26729	9.06431	7.96108	6.91754	4.88827	3.92758	3.00484	1.26022	0.26740	-0.60450	-1.26803	-2-27010	-2.68098	-3.02935	-3.34330	-3.61408	4.05799	4.22973	4.36773		100000	4.60211		•	4.60231		4.59989	4.60260		-4.60127	-4.60123
0.078209	0.079562	0.080324	0.080495	0.080499	0.080464	0.080499	0.080494	0.080456	0.080508	0.080504	0.080478	0.080481	0.080480	- 0.7159	DZL/DX	-0.871670	-0.4932HA	-0.375055	-0.309343	-0.265198	-0-204563	-0-181141	-0.159892	-0-140203	-0.121323	-0.085524	-0.068657	-0.052492	-0.037135	-0.004667	0.010551	0.022135	14960-0	0.046826	0.052921	0.058418	0.067421	0.070944	0.073957	0.076379	0.078209	0-080324	0.080495	0.080499	0.080464	0.080499	0.080494	0.080456	0.080504	0.080478		-0804A
60792000	0.079562	-0.080324	0.080495	-0.080499	-0.080464	-0.080499	-0.080494	-0.080456	-0.080508	-0.080504	-0.080478	0.080480	-0.080480	СНОВО	X0/070	971665		-			0.204564	0.181141		40504	0.121324			0.052492	0.031130	0.004667	-0.010551	-0.022135	0.039641	-0.046826	-0.052921	-0.058418	-0-067421	-0.070944	-0.073957	-0.076379	0.078209	0.080325	-0.080495	-0.080499	-0.080464	-0.080499	-0.080494	0.080456	0.080504	-0.080478	0.080480	-0.080480
	-0.023833	-0.021437	-0.01000-	-0.010686	-0.014402	-0.012224	-0.010178	-0.008274	-0.006497	-0.004818	-0.003196	-0.001598	-0.000000-	4 = 0.5455	are	-0-007000	-0-012073	-0.015522	-0.018326	-0.020785	-0.025221	-0.027362	-0.029525	-0.031739	-0.034 000	-0.038540	-0.040597	-0.042343	-0-043062	-0.044979	-0.044875	-0.044405	-0-042655	-0.041448	-0.040050	-0.038478	-0-034867	-0.032856	-0.030729	-0.028504	-0.026199	-0.021437	-0.019042	-0.016666	-0.014402	-0.012224	-0.010178	-0.008274	-0.004818	-0.003196	-0.001596	-0.000000
	0.023833	0.021437	0.019042	0.010086	0.014402	0.012224	0.010178	0.008274	0.006457	0.004818	0.0031%	0.001598	0.000000	.2273 ET.	27/12	0-002000	0.012073	0.015522	0.018326	0.02078	0.025221	0.027362	0.029525	0.031739	0.034009	0.038540	0.040597	0.042343	0-0443682	0.044979	0.044875	0.044405	0.042656	0.041448	0.040050	0.038478	0-034867	0.032856	0.030729	0.028504	0.026199	0-021437	0.019042	0.016686	0.014402	0.012225	0.010178	0.006274	0.004818	0.003196	0.001598	0.0000000
03151000	. 70 308	0.133045	0.763416	0.192686	. 82	0.848121	0.873538	0.697203	. 91 927	4	0.960264	0.980146	5 555 65 0	· ** 0	XX	0.003965	0.011968	0.020076	0.028337	0.036940	0.056066	0.067197	0.079906	0.094694	0.112099	15636	0.183120	0.212011	0.271888	0.301397	0.330304	0.358693	0.414626	0.442513	0.470519	0.498727	0.555943	0.584990	.61432	0.643917	0.673729	0.733645	0.763416	0.792687	0.821061	0.84 6120	0.873537	0.497203	0.940143	0.900284	0.980145	
	35	3 :	34	32	9	37	38	35	0	-	2	2	*	K=16				m	4	0	0 ~	10	,	10	-:	13	*	5	110	18	5	50	: 0	23	54	52	27	58	58	30	33	33	34	35	36	37	36	30	-	45	43	44

0.007009 -0.00700
0.020764 -0.020785
9
0.027362 -0.027
0.031739 -0.031739
-0-
0.040597 -0.040597
0
0.043682 -0.043682
9
0
20240-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
0
0.036746 -0.036746
030729
_
0.021437 -0.023833
999910
014402
0.010124 -0.012224
0000
004818 -
0.003196
1
1.3909 ETA = 0.6182
מאנ
0.007009 -0.007009
012073
0.015522 -0.015522
0.033043 -0.033063
0.025221 -0.025
-
260.0- 6560.0
0.031739 -0.031
036303 -0.
.038540
.0- 785040.

	•	
-1.2.0048 0.02573 0.02673 0.02673 0.02673 1.226802 1.226802 1.226802 3.0293 3.3293 3.3293 4.36749 4.36774 4.36774 4.36774 4.36774 4.36774 4.36774 4.36774	4444444 4 - 200	-11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
3,000484 2,12673 1,22602 0,52745 1,22601 1,22601 1,22601 1,22601 1,30293 1,30293 1,30293 1,30293 1,30293 1,30293 1,30293 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029 1,4029	4,50033 4,59989 4,59989 4,50260 4,60128 4,60124 11.151 12.151	11. 962 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.052492 0.037135 0.020462 0.0104613 0.022135 0.022135 0.0522135 0.0522135 0.0522135 0.0522135 0.0522135 0.0522135 0.0522135 0.052305 0.07305 0.07305 0.07305 0.07305 0.075203 0.075203 0.075203 0.076203	0.080464 0.080489 0.080489 0.080480 0.080480 0.080481 0.080480 0.080480 0.080480 0.080480 0.080480 0.080480	-0.26699999999999999999999999999999999999
0.052492 0.037136 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00		0004-mm44040000m44-0-000-4-00
0.042343 0.043682 0.044979 0.044975 0.044875 0.044805 0.04265 0.04265 0.043848 0.043848 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.03285 0.0328	0.0012224 -0.0012224 -0.006274 -0.006274 -0.001268 -0.001268 -0.001268 -0.001268 -0.001268 -0.001268 -0.001268	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.046.343 0.044.979 0.044.979 0.044.979 0.044.879 0.044.879 0.044.879 0.044.879 0.044.879 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8867 0.044.8467 0.044.8467 0.044.8467 0.044.8467 0.044.8467 0.044.847 0.044.847 0.044.847 0.044.847		220 764 222 27 3 c2 222 27 3 c2 223 27 3 c2 227
0.24 191 7 0.24 191 7 0.27 1848 0.30 30 30 30 30 6 0.47 25 12 6 0.47 37 2 6 0.67 37 2 6	0.003995	0.02694 0.03694 0.03694 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.036966 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.03696 0.036
3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

												0.0																																							0.0	
4.54901	4.59239	4.60211	4.60232	100000	4.60202	4.59988	4.60281	4.60259	4.60112	4.60128	4.60123	T ANGLE .	DOZL	-41.07765	-26.25632	-20.55678	-17.18909	-14.85281	-11.56110	-10.26729	-9.08424	-7.98104	-5-89021	-4.88826	-3.92756	-3.00486	-2.12675	-0.26742	0.60448	1.26601	1.60500	2.68097	3.02934	3.34329	3.61408	3.85708	4.22973	4.36773	4.47192	4.54901	4.59239	4.60232	4.60031	4.60230	4.60202	4.59988	18209.	4.60112	4.60128	4.60123	T ANGLE =	DOZE
4.54900	-4.59239		4.60232	250003	4.60201	-4.59888	-4.60282	-4.60260	4.60112	4.60127	-4.60123	TRIST	DOZOO	41.07848		20.55908	17.16921	14.85283	11.56116	10.26728	9.06430	7.96109	5-8-026	4.86827	3.92758	3.00487	2.12676		-0.60447	-1.26800	-1.80498	-2-68096	-3.02934	-3.34329	-3.61409	-3.85708	-4.22973		4.47191		4.59239		-4-60032	-4.60230	-4.60201	4.59988	4.60282	4.60112		-4.60123	TRIST	0200
0.079562	0.080324	0.080495	0.080499	404080-0	0.0000	0.080456	0.060508	0.080504	0.080478	0.080481	0.080480	- 0.6068	DZL/DX	-0.871669	-0.493283	-0.375054	-0.309343	-0.265198	-0.204563	-0-181141	-0.159892	-0-140203	-0-103167	-0.085524	-0.068657	-0.052493	-0.037136	-0.004667	0.010551	0.022135	0.031514	0.046826	0.052921	0.058418	0.063161	0.0070421	0.073957	0.076379	0.078209	0.079562	0.080324	000000	0.080464	0.080499	0.080494	0.080456	905080-0	0-080504	.08048	0.080480	= 0.5795	DZL/DX
-0.079562	-0.080324	-0.080495	0.080499	000000	404040	-0.080456	-0.060506	-0.080504	-0.080478	-0.080480	-0.080480	CHORD	DZUZDX	0.871694	0.493276	0.375060	0.309346	0.265198	0.204564	0.181141	0.159893	0.140204	10316	.08552	0.068657	0.052493	0.037136	0.00000	-0.010550	-0.022134	-0.031513	-0-046826	-0.052921	-0.058418	-0.063162	0.007000	-0.073957	-0.076379	-0.078209	-0.079562	0.080324	0.00000	-0.080464	-0.080499	-0.080494	0.080456	905080-0-	-0.080504	.08048	-0.060480	СНОКО	DZOZDX
-0.023833	.02143	-0.019042	-0-016686	20001000	-0-010178	-0.008274	-0.006497	-0.004818	-0.003196	-0.001598	-0.000000	4 = 0.6909	AK	-0.007009	-0.012073	-0.015522	-0.018326	-0.020784	-0.025221	-0.027362	0.00	-0.031339	-0-0-0-0-0-0-	-0.038540	-0.040597	-0.042343	-0.043682	-0.044979	-0.044875	-0.044405	04365	-0-041448	-0.040050	-0.038478	-0.036746	-0-034867	-0.030729	-0.028504	-0.026 199	-0.023833	-0.021437		-0.014402	-0.012224	-0.010178	-0.008274	9	-0-003196	65100	-0.000000	A = 0.7273	AK
0.023833	0.021437	0.019042	0.010080	0.010.00	0.010178	0.008274	0.006497	0.004818	0.003196	0.001598	00000000	.5645 ETA	מאכ	0.007009	0.012073	0.015522	0.018326	0.020764	0.025221	0.027362	0.029525	0.031738	0.036303	0.038540	0.040597	0.042343	0.043682	0.0	0.044875	0.044405	0.043650	0.041448	0.040050	0.038478	0.035746	0.03286	0.030729	0.026504	0.026199	0.023833	0.021437	0.016686	0.014402	0.012224	0.010178	0.008274	0.000497	0.00319		0.000000	.6364 ET	2/2
0.703660	73364	0.763416	0. 792665	0.021001	0-67 3537	0.897203	0.919276	0.940142	0.960284	0.980146	9 666 56 0		xx	0.003995	5	0.020075	0.028337	0.03690	0.056066	0.067197	0.079906	*69*60*0	0.132569	0.156363	0.183120	0.212011	0.24 1916	0.301397	0.330303	0.358692	0.386736	0.442512	0.470516	0.498726	0.527191	0.555560	0.614324	0.64 3917	0.673729	0. 70 3080	0.76364	79268	0.621061	0.848121	0.873537	0.897202	0.919276	0.560254	0.980146	0.555008	1 Y= 1	×
35	33	34	9 6	9 6	3 6	36	40	;	45	+3	:	K=2	*	-	~	3		n c		0	•	2 :	15	13	•	9	9 2	19	3.	50	22	23	54	52	56	2 2	58	30	3	35	30	3.	36	37	36	36			43	*	K=2	x

-41.07767 -26.25642 -17.156879 -17.156879 -13.04844 -13.048424 -19.06729 -7.06105 -6.91759		002L 002L 17.1894 11.1894 11.1894 11.1894 11.1894 11.1894 11.1894 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1898 11.1
41.07849 20.55674 20.55908 20.55908 11.56117 11.56117 11.56117 10.5643 11.56117 10.5643 11.56117 10.5643 11.56117 10.5643 11.56116 10.5643 11.56117 10.5643 11.56417	mm ~	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.871670 -0.493285 -0.309343 -0.265198 -0.201759 -0.201759 -0.101141 -0.101325 -0.101325 -0.101325 -0.101325		7 2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
0.871695 0.493292 0.37594 0.231759 0.231759 0.231759 0.18118 0.159893 0.140204 0.103169 0.08552		7 34 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
00700 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550 11550	0.000000000000000000000000000000000000	9999999999999
01/00/01/00/01/01/01/01/01/01/01/01/01/0	0,040547 0,044566 0,044405 0,044405 0,044405 0,042640 0,04264405 0,04264405 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,04264440 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,044640 0,04460 0,04460 0,04460 0,04460 0,04460	2000 2000 2000 2000 2000 2000 2000 200
0.003945 0.011996 0.020075 0.020337 0.04693 0.04696 0.054696 0.074906 0.074906 0.033286 0.115097	0.183120 0.231201 0.2211887 0.301397 0.301397 0.301397 0.38652 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.442512 0.4	000000000000000000000000000000000000000
- ~ ~ 4 6 0 ~ 6 5 0 1 2 2	4 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	z - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

	•
-0.26740 0.66446 1.26602 2.27009 2.68009 2.68009 3.94333 3.61408 4.05768 4.26974 4.56929 4.60237 4.60282 4.60282	17 ANGLE = 0.02L
1,26024 0,26744 1,26603 1,16060 1,26034 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,39433 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,4963 1,49	181 56 12 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-0.021949 -0.004667 0.022135 0.031514 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.052921 0.0529292 0.0529292 0.0529292	0.52
0.0021999 0.004668 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.001050 0.	CHGRU  DZU/DA  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/3291  0.45/32
-0.004979 -0.044979 -0.044979 -0.044979 -0.044979 -0.044979 -0.044979 -0.044979 -0.044979 -0.041498 -0.011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498 -0.0011498	A = 0.6000  L C C C C C C C C C C C C C C C C C C
0,044 974 0,044 974 0,044 405 0,044 405 0,044 405 0,042 605 0,032 847 0,032 847 0,033 847 0,006 847	0.0000 ET 0.0000 ET 0.00000 ET 0.000000 ET 0.00000 ET 0.000000 ET 0.00000 ET
0.271887 0.301397 0.338693 0.38693 0.416213 0.446213 0.446213 0.446213 0.527191 0.527191 0.527191 0.527191 0.52737 0.67372 0.67372 0.67372 0.67372 0.67372 0.67372 0.67372 0.67372 0.67372 0.67372 0.67372 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.73365 0.7	3 Y= X/C 0.003995 0.011999 0.020074 0.020074 0.020074 0.030099 0.040099 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268 0.132268
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# =

Decks -41,06208

																																					0.0																
-26.25772	-20.55920	-17.18953	-14.05306	-13.04878	-10-2674	4.08431	-7.98108	-6.91754	-5.69024	-3.92759	-3.00468	-2.12676	-1.26023	-0.26742	0.60449	1.80503	2.27010	2.68097	3.02935	3.34329	3.85709	4.05799	4.22974	4.36773	4.47192	4.56240	4.60212	4.60232	4.60032	4.60231	4.60202	68666	4.60260	4.60112	4.60128	******	T ANGLE =	DOZE	-41.08057	-26.25760	20406-02-	-14.85289	-13.04873	-11.56118	-10.26749	7.00100	-6.91757	-5.89027	-4.88829	-3.92761	-3.00489	-1.26022	-0.26742
26.25745	29.55650	17. 10962	14.85306	23.000	10.267.38	0.000.0	7.98110	0.01750	2.050.0	3.6276	3.0000		1.26024	0.267.4	-0.000.0	-1.80502	-2.27008	-2.66097	-3.02934	-3. 34329	-3.85709	4.05798	4.22974	4.36773	4.47192	10000		4.60233	-4.60032	-4.60231	4.60202	40000	-4.60260	-4.60112	4.60128	***	T# 15T	0050	41.08139	26.25742	20.000	. 85303	13.04876	11.56129	10.26746	7 000.00	6.61754	5.89031	4.68631	3.92764	3.00489	1.26021	0.26744
-0.483313	-0.375563	-0-30×21×	-0.5895.0		-0-141143	-0-150841	-0-1+020+	-0-121 MP	-6.103166	-0.0680.07	-0.052493	-0.037136	-0.02180-0-	-6.00+667	0.610501	0.03151	0.0390.0	0.040420	0.052921	0.0000.0	9-367421	0.070	0.073957	9.070.379	0.07870.0	0.0000000	0.080.0	0.000.0	40.080.0	0.080.0	0.080.0	000000000000000000000000000000000000000	0.00000	0.080.0	0.080.0	0	. 0.4432	025.70	-0.671759	-0.493311	-0.375061	-0-265199	-0.231764	-0.204565	40.181145	10.139693	-6-121324	-0.103168	-0.085524	-0.068657	-0.052493	-0.021999	-0.004667
1-125.530 1	51,875,471	- 10 mg/s	THE PERSON NAMED IN	1.00000000	Series 3	S.Ibbant	5.4*040*	0.12130+	D. COMPANY	2.08885.7	Sulfadene	0.239134	0.021999	0.00.00	4.155114	-0-03051*	-0.0 39a.1	-0.046424	4.052921	0.0000000	-6.24 Pag 1	4.07944	-0.073957	-0.0 Fa.37 *	8:4	40.000.000	i a	-0.080-0-	-0-080-0-	-0.080.0-	-0.0000.0	0.0404040	-0.08050-	-0.080478	4.080081		CHOROL	9507036	0.671784	0.492304		0.000000	9.231762	0.204567	9.19114		0.121.0	9.103169	0.088525		0.0352493	0.021998	0.00.00.0
200000	170000000000000000000000000000000000000	1		TO SERVED I	1.000		1-15 M Phys.	-		1.00000	-1-141 F.	1-14160		-1-188 MIL.		1.54280	1-040101				-1 (Nam.)		-1.5 M 72 v	1-07850.		-1-121417	-0.0 tadas	- Labour	-0-0 Media	-1-016 BR 5	-11-0 MG 17-8	1.100.00	-0.0004011	-Saidhiste.	10.010.000			4 4	-0.08730+0-	-0.032072		-0-100 Fee	-0.023051	-0.0455221	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.00 200				W. C. St. 186.0	-0.00**30.0	-0.00000-
	-				-	C. Lenning			10000	10.186200	21,055,088	Total Same	-	Distance of the last		Scotleres.	STATE OF	10.09(1884)	N. Charles		S.C. Manch	NAME OF	- Mark			A 100 A 10	0.7118184	Sec. 12.500	0.7 19 8 68	Market or	THE REAL PROPERTY.	In Commerce	D. C. C. State 1 to	1,110113	A 1991 14		111	E S	SAMPLE	To desperie	Total Services	St. College	Pur Sagarina	21.125.523	C. COMMAND		ALC: NO.	1-118-301	7-1-12 Date	Same Same	L. Sallano	St. Care Stage	11.1544.975
						-											-	-	THE REAL PROPERTY.		180000	Constant or	SECTION AND ADDRESS OF THE PERSON NAMED IN COLUMN ASSESSMENT AND ADDRESS OF THE PERSON NAMED IN COLUMN ASSESSMENT ASSESSMENT AND ADDRESS OF THE PERSON NAMED IN COLUMN ASSESSMENT ASSESSMEN				1.0000.0	180001	110000	-			11/08/01/81	18081	100000				110000	1			STREET,	100000	1000	Total Spinster	11 13 15 May	711111Max		N. STATE OF STREET		10,000	100000

		0.0	
0.60446 1.26801 1.80501 2.27010 2.68098	3.02933 3.02933 3.04029 3.04029 4.02979 4.047192 4.69239 4.600231	4.50988 4.60259 4.60128 4.60128 4.60128	002L -41.07909 -20.55894 -10.65894 -11.018907 -13.04810 -10.66138 -9.08428 -9.08428 -9.08428 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10.67909 -10
-0.60447 -1.26800 -1.86500 -2.27008	-3.02633 -3.02633 -3.0103 -3.05708 -3.05708 -4.05773 -4.05773 -4.05773 -4.00032 -4.00032 -4.00032		0020 20.55907 20.55907 11.65919 11.65919 11.65919 11.65915 11.66918 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.91759 0.
0.022135 0.031514 0.031514 0.046826	0.052421 0.05418 0.063101 0.07044 0.070347 0.070347 0.070304 0.080449 0.080449	4444444 444444444444444444444444444444	0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177 0.26.7177
0.022134	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		0.0 17350 0.0 17350 0.1 26250 0.2 6250 0.2 6250 0.2 6250 0.1 61142 0.1 61142
-0.044405 -0.045405 -0.045405 -0.045405	0.000000000000000000000000000000000000	0.000.000.000.000.000.000.000.000.000.	A.A. C.
*****	######################################	6,000,000 6,000,000 6,000,000 6,000,000 6,000,000	6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0 (6.17.0
			17. (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1
	***********	****** }	*

	1837	9.010178	-22210-0-	A	***	00000	100000
	-		-0-01017A	F04080-0-	PO4040-0	-4.60201	4.60201
	330.3	0.000.274	-0-00827	00000	0.080456	500BB	A.59988
			130000	000000	000000	00000	20000
		200000	200000	9000000	0.08050	19209	102000
0-100	120.3	0.003	-0.003196	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	0.080478	4.60112	4.60111
0.00.0	0145	0-001500	-0.001508	-0.080480	0.080481		4.60128
	:	0.00000	-0.000000	-0.080480	0.080480	60123	4.60123
:	*	.2091 E	ETA = 0.9818	CHORD	= 0.3886	TVIST	T ANGLE =
*	3	2016	a.c	NG/NZG	DZL/DX	DDZO	DDZL
0.00.0	3863	0.007009	-0.007009	0.871695	-0.871714	41.07848	-41.07912
0.01197	-	0.012072	.01207	0.493306	-0.493304	26.25742	-26.25729
0.02007	610	0.015522	-0.015522	0.375061	-0.375056	20.55908	-20.55884
0.02 633 5	333	0.018325	-0.018325	0.309357	-0.309353	17.18980	-17.18958
0.030034	*3*	0.0207	-0.020784	0.265202	-0.265202	14.85305	-14.85304
0.00	2000	0.023051	-0.023051	0.231765	-0.231763	13.04877	-13.04867
		0.02222	-0.025221	0.204569	-0-204567	19 36747	-11.50129
0.03		0.020525	-0.020505	0.159893	-0.159892	9.08431	-0.08425
0.094		0.031736	-0.031739	0.140204	-0-140204	7.98109	-7.98108
0.112	12006	0.03 000	-0.034 009	0.121326	-0-121326	6.91766	-6.91765
0.13256		0.036303	-0.036303	0.103168	-0.103168	5.89026	-5.89023
0.15636	382	0-038240	-0.038540	0.085524	-0.085524	4.88828	-4.88828
0. 10.3	3150	0.040597	-0.040597	0.068657	-0.068657	3.92758	-3.92758
0.282	5002	0.042343	-0.042343	0.052494	-0.052493	3.00492	-3.00490
0.50		0.043662	-0.043682	0.037136	-0.037137	2.12679	-2.12679
0. 30		0.0000	-0-044 979	0.004669	-0-004668	0.26751	-0-26748
0.330	330302	0.044875	-0.044875	-0.010550	0.010550	-0-60445	0.60446
0.358	1 400	0.044405	-0.044405	-0.022134	0.022134	-1.26799	1.26798
0.386	6737	0.043650	-0.043650	-0.031513	0.031513	-1.80498	1.80498
9.414	4055	0.042056	-0.042655	-0.039641	0.039641	-2.27007	2.27008
0.00	2511	0.041448	-0.041448	-0.046826	0.046826	-2.68096	2.68096
		0.00000	0000000	126260-0-	126250.0	-3.02933	3 24226
0.00	2160	20.0	-0.036470	01490000	0.053161	-3.54320	3.61408
0.355	555943	0.036807	-0.034667	-0.067421	0.067421	-3.85709	3.85709
3.54.989		0.032657	-0.032856	-0.070944	0.070944	-4.05798	4.05799
0.01.	4353	0.030729	-0.030729	-0.073957	0.073957	4.22973	4.22973
0.04 391	2 16	0.028504	-0.028504	-0.076379	0.076379	-4.36773	4.36773
0.07372	121	0.0261%	-0.026199	-0.078208	0.078209		4.47192
0. 70	79 3000	0.023833	-0.023833	-0.079562	0.079562	-4.54901	4.54901
0. 74.30	:	0.021437	-0.021437	0.080325	0.080324	4.59240	4.59239
9-7020		0.00	-0-016686	000000	0000000	4.60232	4.60232
0.82	1000	0.014402	-0.014402	-0.080464	0.080464		4.60032
0.048	8118	0.012225	-0.012225	-0.080499	0.080499	4.60231	4.60231
0.873	67.3536	0.010178	-0.010178	-0.080494	0.080494	-4.60201	4.60202
0.097	1501	0.006274	-0.008274	-0.080456	0.080456	4.59988	4.59988
0.919	2222	0.006497	-0.006497	-0.080508	0.080508	-4.60282	4.60282
0.00	2+10	0.004818	-0.004818	-0.080504	0.080504	4.60260	4.60260
0.96.0	0284	0.003196	-0.003196	-0.080478	0.080478	-4.60112	4.60112
0.440	910						
		200000	-0-001 SOR	080400	O-OBOAR	-4-60127	A-60128

1		ENKO	ERRAV	36	KE	4	BICRL	HSDAV	JRD	KRD	CRO	NSOP	LIFT	PJRSU	3
	:	9.17841-01	0.1827E-02	90	58	9	0.3414E+03	0.1152E+02	æ	62	11	2089	0.1173E+00	0.5186E-02	52
1 m	200	0.4437E-01	0.5454E-03	9 9	- 62	==	0.4991E+01 0.1860E+03	0.3775E-01 0.7 187E+01	0 0	50	==	26 5039	0.1164E+00	0.62566-03	13
N.		0.1523E-01	0.43686-03	22	200	= 5	0.1437E+01 0.1436E+03	0.1690E-01 0.3370E+01	3 2	4 0	==	30	0.11 72E +00	0.1929E-03	-
11.		0.10166-01	0.3001E-03	91	1 28	= 2	0.7811E+00 0.9690E+02	0.1069E-01 0.2343E+01	5 o	1 22	= 2	30	0.1172E+00	0.1469E-03	٥
11.00	::	0.52821-02	0.2327E-03 0.2617E-03	0 0	1 22	12	0.5042E+00 0.6094E+02	0.7900E-02	5 8	28	:0	35	0.11 73E +00	0.1144E-03	٥
2 m	::	0.42325022	0.1909E-03	18	1 22	13	0.2796E+00 0.1057E+03	0.6283E-02 0.1283E+01	178	28	= 01	37 5028	0.11736+00	0.9639E-04	55
Commercial Actions	==	0.35 60E-02	0.1613E-03 0.1481E-03	57	7 9	13	0.2014E+00 0.8887E+02	0.5167E-02 0.1042E+01	12	1 28	10	5055	0.11746+00	0.8486E-04	55
N. I. W.	::	0.15596-02	0.1394E-03 0.1222E-03	17	-:	13	0.1604E+00 0.3990E+02	0.4366E-02	9 8	1 28	13	5042	0.1175€+00	0. 6840E-04	8
N N	==	0.21794-02	0.1225E-03 0.1073E-03	16	- 0	18	0.1230E+00 0.3295E+02	0.3764E-02 0.7135E+00	5 8	- 62	E 9	5048	0.11756+00	0.5172E-04	50
¥1.	::	0.102W-02	0.10946-03	23	- 0	4 2	0.1061E+00 0.2061E+02	0.3304E-02 0.6 192E+00	8 8	. 12	<b>4</b> m	42 5036	0.1176E+00	0.5582E-04	-
Charge	120	0.16086-02	0.9887E-04	19	-	14	0.9394E-01	0.2939E-02	20	-	41	45			

3	•	•
PJRS0 KPJ	0.6893E-04	0.48035-04
LIFT	0-1177E+00	0-11 77E +00
NSUP	5059	43
8	•	± *
KRD	53	- 62
9	•	20
RSDAV JRD KRD LRD NSUP	0.5583E+00	0.2645E-02
BICAL	0.2242E+02	0.7939E-01
3	6	2 2
Ä	•	~ 0
3	99	9 8 8
ERS ERRAV JE KE LE BIGRL	121 0.1143E-02 0.8544E-04 58 9 19 0.2242E+02 0.5583E+00 8 29 9 5029 0.1177E+00 0.6893E-04 1	0.8009E-04 18 1 14 0.7939E-01 0.2645E-02 20 1 14 43 1177E+00 0.4803E-04 1 0.7696E-04 58 8 19 0.1936E+02 0.4405E+00 10 29 8 5013 0.1177E+00 0.4803E-04 1
TEN ENHON	0.11436-02	122 0.1413E-02
1168	121	221
7	*:	2000000

PROBLEM NO. 24-CL EFFECTIVELY CONSTANT. INVISCID SOLUTION HALTS.

•	PJUMP RESIDUALS . K=1.KTIP-1	S . K=1.KTIF	7		
0.4803E-04	0.4803E-04 0.3189E-04 0.3237E-04 0.3272E-04 0.7059E-05 0.1672E-04	0.3237E-04	0 -3272E-04	0-7059F-05	0-1672F-0
0.1184E-04	0-1184E-04 0.2471E-04 0.2879E-04 0.1556E-04 0.2804E-04 0.2403E-04	0.28 79E-04	0-1566E-04	0-2804F-04	0.24925-04
0.3875E-04	0.3875E-04 0.3597E-04 0.4368E-04 0.3869E-04 0.4049E-04 0.3028E-04	0.4368E-04	0 -3869E-04	0-4040F-04	0 3938F-0
0.4270E-04	0.4270E-04 0.3998E-04 0.3000E-04 0.4397E-05 -0 4422E-05	0-3000E-04	0.8 30 TE-05	-0-6422E-05	-0 335E-04
A. 34246 -06	CO 3000 00 00 00 00 00 00 00 00 00 00 00 0		-	201566-03	-36+11+0F

ERPLOT FOR FINE MESH



PLOT FOR COARSE MESH

INITIAL RESIDUAL(+) IS . 0.4991E+01 INITIAL ERRORIAL IS

VISCOUS FLOW CALCULATION
TTERATION NO. 1 ON GRID NO. 1

LIFT FROM INTEGRATION OF DELTA PHI AT TE IS 0.11778E+00

TOTAL CHANGE OF PRESSURE SOLUTION

TOP IS 0.2207E+06 BOTTOM IS 0.2365E+06 IN TERMS OF THE CONVERGENCE CRITERION

UPPER SURFACE

SPAN	MAX CP CHANGE	HANGE	NEW CP AT		LOCATION	AVERAGE
STATION			MAX CHANGES	MAX CHANGE OF	DF MAX CHGE	CHANGE
-	8	2.98	0.97562E+00	-0.20000E+01		1.86
2	~	2.67	0.67250E+00	-0.20000E+01	-	1.83
3	2	2.61	0.60883€+00	-0.20000E+01	-	1.81
•	8	2.57	0.568136+00	-0.20000E+01		1.80
0	8	2.54	0.53737E+00	-0.20000E+01	-	1.79
9	2	2.51	0.51168E+00	-0.20000E+01	-	1.79
1	2	2.49	0.48908E+00	-0.20000E+01	-	1.78
	2	2.47	0.46896E+00	-0.20000E+01	-	1.78
•	N	2.45	0.45160E+00	-0.20000E+01	-	1.17
01	8	2.44	0.435936+00	-0.20000E+01	-	1.17
11	2	2.42	0.42211E+00	-0.20000E+01		1.17
12	~	2.41	0.40930E+00	-0.20000E+01	-	1.77
13	8	2.40	0.397946+00	-0.20000E+01	•	1.77
*1	N	2.39	0.38706E +00	-0.20000E+01	-	1.77
	8	2.36	0.377436+00	-0.20000E+01	-	1.17
97	8	2.37	0.36798E+00	-0.20000E+01		1.77
11	8	2.36	0.35786E+00	-0.20000E+01	-	1.77
18	N	2.35	0.34626£ +00	-0.20000E+01	-	1.78
19	~	2.33	0.33402E+00	-0.20000E+01	-	1.78
20	8	2.32	0 - 32 14 8E +00	-0.20000E+01	-	1.78
21	~	2.31	0.30924E+00	-0.20000E+01		1.78
22	8	2.30	0.30262E+00	-0.20000E+01	:	1.78
23	8	2.30	0.29687E+00	-0.20000E+01	:	1.79
54	N	5.29	0.29363E+00	-0.20000E+01	:	1.79
52	2	5.29	0.29373E+00	-0.20000E+01	\$	1.80
56	8	5.29	0.28954E+00	-0.20000E+01	:	18.1
27	~	2.27	0.27332E+00	-0.20000E+01	:	1.83
28	N	2.22	0.22207E+00	-0.20000E+01	:	1.84
	LOWER SURFACE	ACE				
SPAN	MAX CP CHANGE	HANGE	NEW CP AT	OLD CP AT	LOCATION	AVERAGE
STATION			MAX CHANGES	MAX CHANGE OF	OF MAX CHGE	CHANGE
-	e.	3.07	0-10694E+01	-0.20000E+01	-	1.95
2	8	2.81	0 - 8066 7E +00	-0.20000E+01		1.92
3	6	2.76	0.76347E+00	-0.20000E+01	•	16.1
	2	2.74	0.73668E+00	-0.20000E+01	-	1.90
•	8	2.72	0.71657E+00	-0.20000E+01		1.90
•	8	2.70	0.69967E+00	-0.20000E+01	-	1.90

9 2.66 0.65709E+00 -0.2000E+01 1 1.89 11 2.64 0.6536E+00 -0.2000E+01 1 1.89 12 2.63 0.6263E+00 -0.2000E+01 1 1.89 13 2.65 0.6263E+00 -0.2000E+01 1 1.89 14 2.61 0.6036E+00 -0.2000E+01 1 1.89 15 2.61 0.6036E+00 -0.2000E+01 1 1.90 16 2.61 0.6036E+00 -0.2000E+01 1 1.99 17 2.61 0.6036E+00 -0.2000E+01 1 1.99 18 2.60 0.6036E+00 -0.2000E+01 1 1.99 20 2.60 0.6036E+00 -0.2000E+01 1 1.99 21 2.60 0.6036E+00 -0.2000E+01 1 1.99 22 2.60 0.6036E+00 -0.2000E+01 1 1.99 23 2.60 0.6036E+00 -0.2000E+01 1 1.99 24 2.50 0.6036E+00 -0.2000E+01 1 1.99 25 2.60 0.6039E+00 -0.2000E+01 1 1.99 26 2.50 0.56370E+00 -0.2000E+01 1 1.99 27 2.50 0.5938E+00 -0.2000E+01 1 1.99 28 2.50 0.5938E+00 -0.2000E+01 1 1.99 29 2.50 0.5938E+00 -0.2000E+01 1 1.99 20		2.67	0.66978E+00	-0.20000E+01	-	1.89
2.65 0.64556E+00 -0.20000E+01 1 2.63 0.64536E+00 -0.20000E+01 1 2.63 0.62432E+00 -0.20000E+01 1 2.64 0.63432E+00 -0.20000E+01 1 2.61 0.61325E+00 -0.20000E+01 1 2.61 0.60407E+00 -0.20000E+01 1 2.61 0.60407E+00 -0.20000E+01 1 2.60 0.60428E+00 -0.20000E+01 1 2.60 0.6043E+00 -0.2000E+01 1 2.60 0.6043E+00 -0.2000E	•	2.66	0.65709E+00	-0.20000E+01	-	1.89
2.64 0.6354 2E+00 -0.20000E+01 1 1 2.65 0.653 2E+00 -0.20000E+01 1 1 2.65 0.653 2E+00 -0.20000E+01 1 1 1 2.65 0.65 0.6132 5E+00 -0.20000E+01 1 1 2.65 1 0.6063 TE+00 -0.20000E+01 1 1 2.65 1 0.6063 TE+00 -0.20000E+01 1 1 2.65 1 0.6063 TE+00 -0.20000E+01 1 1 2.65 0 0.6063 TE+00 -0.20000E+01 1 2.65 0 0.6063 TE+		2.05	0.64556E+00	-0.20000E+01		1.89
2.63 0.62632E+00 -0.20000E+01 1 2.61 0.6132E5E+00 -0.20000E+01 1 2.61 0.6096TE+00 -0.20000E+01 1 2.61 0.6096TE+00 -0.20000E+01 1 2.61 0.6096TE+00 -0.20000E+01 1 2.60 0.6046BE+00 -0.20000E+01 1 2.60 0.6049BE+00 -0.20000E+01 1 2.50 0.6049BE+00 -0.20000E+01		2.64	0.6354 2E +00	-0.20000E+01		1.89
2.62 0.6190 \$£400 -0.2000 0 E +01 1 1 2.61 0.6190 \$£400 -0.2000 0 E +01 1 1 2.61 0.609 \$£400 -0.2000 0 E +01 1 1 2.61 0.609 \$£400 -0.2000 0 E +01 1 1 2.61 0.609 \$£400 -0.2000 0 E +01 1 1 2.61 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 2.60 0.609 \$£400 -0.2000 0 E +01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2.63	0.62632E+00	-0.20000E +01		1,90
2.61 0.61325£400 -0.20000E401 1 2.61 0.60007E400 -0.20000E401 1 2.61 0.600763E400 -0.20000E401 1 2.61 0.600763E400 -0.20000E401 1 2.60 0.60023E400 -0.20000E401 1 2.60 0.60039EE400 -0.20000E401 1 2.60 0.60039EE400 -0.20000E401 1 2.60 0.60039E400 -0.20000E	3	2.62	0.61905E+00	-0.20000E+01		1.90
2.61 0.60967E+00 -0.20000E+01 1 2.61 0.60623E+00 -0.20000E+01 1 2.60 0.60623E+00 -0.20000E+01 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60395E+00 -0.20000E+01 1 2.60 0.60395E+00 -0.20000E+01 1 2.60 0.60395E+00 -0.20000E+01 1 2.60 0.60395E+00 -0.20000E+01 1 2.50 0.60395E+00 -0.20000E+01 1 2.50 0.60396E+00 -0.20000E+01		2.61	0.61325E+00	-0.20000E+01	-	1.90
2.61 0.66763£400 -0.20000E+01 1 1 2.60 0.60763£400 -0.20000E+01 1 1 2.60 0.60623£400 -0.20000E+01 1 1 2.60 0.606468£400 -0.20000E+01 1 1 2.60 0.60396E+00 -0.20000E+01 1 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60396E+00 0.20000E+01 1 2.60 0.60396E+00 0.20000E+01 1 2.60 0.60396E+00 0.20000E+01 1 2.60 0.60396E+00 0.20000E+01 1 2.60 0.60396E+00 0.2000	9	2.61	0.60987E+00	-0.20000E+01	,	1.91
2.61 0.60623E+00 -0.20000E+01 1 2.60 0.60649E+00 -0.20000E+01 1 2.60 0.6039E+00 -0.20000E+01 1 2.50 0.6039E+00 -0.20000E+01	•	2.61	0.60763€+00	-0.20000E+01		1.91
2.60 0.60468E+00 -0.20000E+01 1 2.60 0.60398E+00 -0.20000E+01 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60439E+00 -0.20000E+01 1 2.60 0.60439E+00 -0.20000E+01 1 2.60 0.60439E+00 -0.20000E+01 1 2.50 0.60439E+00 -0.20000E+01 1 2.50 0.50324E+00 -0.20000E+01 1 2.50 0.50324E+00 -0.20000E+01 1 2.54 0.50326E+00 -0.20000E+01 1 2.54 0.50326E+00 -0.20000E+01 1 2.54 0.50326E+00 -0.20000E+01 1 2.54 0.50326E+00 -0.20000E+01 1 2.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55		2.61	0.60623€+00	-0.20000E+01	100	1.92
2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60436E+00 -0.20000E+01 1 2.60 0.60436E+00 -0.20000E+01 1 2.60 0.6043E+00 -0.20000E+01 1 2.50 0.60295E+00 -0.20000E+01 1 2.50 0.59134E+00 -0.20000E+01 1 2.55 0.59334E+00 -0.20000E+01 1 2.54 0.56270E+00 -0.20000E+01 1 2.54 0.49005E+00 -0.20000E+01 1 2.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44		2.60	0.60468E+00	-0.20000E+01		1.92
2.60 0.60396E+00 -0.20000E+01 1 2.60 0.60438E+00 -0.20000E+01 1 2.60 0.60438E+00 -0.20000E+01 1 2.60 0.60438E+00 -0.20000E+01 1 2.60 0.60295E+00 -0.20000E+01 1 2.50 0.5029E+00 -0.20000E+01 1 2.50 0.5029E+00 -0.20000E+01 1 2.50 0.50276E+00 -0.20000E+01 1 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.2000E+01 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.20000E+01 1 2.50 0.50276E+00 0.20000E+01	•	2.60	0.60398E+00	-0.20000E+01	-	1.93
2.60 0.60478E+00 -0.20000E+01 1 2.60 0.6048E+00 -0.20000E+01 1 2.60 0.6029E+00 -0.20000E+01 1 2.50 0.59924E+00 -0.20000E+01 1 2.54 0.59924E+00 -0.20000E+01 1 2.55 0.56086E+00 -0.20000E+01 1 2.54 0.59024E+00 -0.20000E+01 1 2.55 0.56080E+00 -0.20000E+01 1 2.54 0.59026E+00 -0.20000E+01 1 2.55 0.56020E+01 1 2.55 0.56270E+00 -0.20000E+01 1 2.55 0.56280E+00 -0.20000E+01 1 2.55 0.55 0.5		2.60	0.60396E+00	-0.20000E+01	•	1.93
2.60 0.6048 9E +00 -0.20000E +01 1 1 2.60 0.6028 9E +00 -0.20000E +01 1 1 2.60 0.6029 9E +00 -0.20000E +01 1 1 2.65 0.6029 2E +00 -0.20000E +01 1 1 2.55 0.592 4E +00 -0.20000E +01 1 1 2.55 0.5927 0E +00 -0.20000E +01 1 1 2.55 0.5927 0E +00 -0.20000E +01 1 1 2.55 0.5905 E +00 -0.20000E +01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.60	0.60478E+00	-0.20000E+01	•	1.94
2.60 0.60295E+00 -0.20000E+01 1 2.50 0.59924E+00 -0.20000E+01 1 2.50 0.59134E+00 -0.20000E+01 1 2.55 0.58086E+00 -0.20000E+01 1 2.54 0.49005E+00 -0.20000E+01 1 2.44 0.49005E+00 -0.20000E+01 1 2.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0	2	2.60	0.60489E+00	-0.20000E+01	•	1.04
2.60 0.59924E+00 -0.20000E+01 1 2.65 0.55034E+00 -0.20000E+01 1 1 2.55 0.55036E+00 -0.20000E+01 1 1 2.55 0.55036E+00 -0.20000E+01 1 1 2.55 0.56276E+00 -0.20000E+01 1 1 2.55 0.56276E+00 -0.20000E+01 1 1 2.55 0.56276E+00 -0.20000E+01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	2.60	0 • 6029 SE +00	-0.20000E+01	-	1.95
2.59 0.59134E+00 -0.20000E+01 1 2.58 0.58086E+00 -0.20000E+01 1 2.54 0.586276E+00 -0.20000E+01 1 2.45 0.48005E+00 -0.20000E+01 1 DUNDARY LAYER CALCALATION AT STRIP 1 INITIATED FECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00  EPARATION UFTECTED IN TURBULENT B. L. CALC AT X/C= 0.952	•	2.60	0.59924E+00	-0.20000E+01		1.95
2.56 0.58086E+00 -0.20000E+01 1 2.56 0.58270E+00 -0.20000E+01 1 1 2.54 0.58270E+00 -0.20000E+01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	2.59	0.59134E+00	-0.20000E+01	-	1.95
2.56 0.56270E+00 -0.20000E+01 1 2.49 0.49005E+00 -0.20000E+01 1 PRECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 EPARATION UETECTED IN TURBULENT 8. L. CALC AT X/C= 0.952	•	2.56	0.58086E+00	-0.20000E+01		1.95
20000E+01 1 1 0	1	2.56	0.56270E+00	-0.20000E+01	•	1.96
		2.45	0.49005E+00	-0.20000E+01	-	1.95
	BOUNDARY LAYER	CALCULATIO		ATEO		
	EFFECTIVE SWEE	P ANGLE 15				
	SEPAKA I JUN DE	ECTED IN TO	HEULENI B. L. CALL A			

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	N 10 BE	30.00	BOUNDARY LAYER CALCALATION AT STRIP -1 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	9		
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	ENT B. L	. CALC	14	x/C=	0.971	
B.L. CALC. TERMINATES AT THIS POINT	POINT					

B.L. CALC. TERNINATES AT THIS POINT

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	FFECTIVE SHEEP ANGLE IS TAKEN	10 BE	30.00	117	0	
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	EPARATION DETECTED IN TURBULE	NT 8. L	. CALC	1	x/C=	0.945
BAL. CALC. TERMINATES AT THIS DOINT	ALCONO. TEGNINATES AT THIS	TMIDE				

	0.958	
EO	SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	
3	¥	
BOWNDARY LAYER CALCALATION AT STRIP -2 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	CALC	
	;	
20		TAIL
EN	LENI	à
T X	JRBU	2
ATI IS	-	
NEE	1 03	Bate CALC. TE MINATES AT THIS POINT
E C	TECT	7
SWE	96	1
VE	NOT	,
ECTI	ARAI	3
E E	SEP	

	0.936	
9	SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	
11	-	
BOUNDARY LAYER CALCULATION AT STRIP 3 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	CALC	
. w	۲	
10 9	.8	INIC
EN	LEN	S
N A	URBU	B.L. CALC. TERMINATES AT THIS POINT
IIS IS	-	AT
3 3	E0 1	A TES
EP A	TECT	N I W
AVE	30	TE
I'VE	100	
ECT!	ARA	3
EFF	SEP	8.1

BOUNDARY LAYER CALCULATION AT STRIP -3 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION WETECTED IN TURBULENT B. L. CALC AT X/C= 0.987 B.L. CALC. TERMINATES AT THIS PUINT

BOUNDARY LAYER CALCULATION AT STRIP 4 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C= 0.929
B.L. CALC. TERMINATES AT THIS POINT

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C= 0.990
B.L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAVER CALCLATION AT STRIP 5 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT 8. L. CALC AT X/C= 0.928
B.L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAYER CALCULATION AT STRIP -5 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT 8. L. CALC AT X/C= 0.997
B.L. CALC. TERMINATES AT THIS PUINT

BOUNDARY LAYER CALCULATION AT STRIP 6 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION DETECTED IN TUMBULENT B. L. CALC AT X/C= 0.944 B.L. CALC, TERMINATES AT THIS POINT

BOUNDARY LAYER CALCALATION AT STRIP -6 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCALATION AT STRIP 7 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C= 0.949

BOUNDARY LAVER CALCALATION AT STRIP -7 INITIATED
EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAVER CALCALATION AT STRIP 8 INITIATED
EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C= 0.957
B.L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAYER CALCULATION AT STRIP -8 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP 9 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TUMBULENT B. L. CALC AT X/C= 0.964
B.L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAYER CALCLATION AT STRIP -9 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCLATION AT STRIP 10 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C= 0.970
B-L. CALC. TERMINATES AT THIS POINT

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCLATION AT STRIP 11 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TUMBULENT B. L. CALC AT X/C= 0.981
B-L. CALC, TEHMINATES AT THIS POINT

BOUNDARY LAYER CALCLATION AT STRIP -11 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCLATION AT STRIP 12 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C= 0.985
B.L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAYER CALCULATION AT STRIP -12 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP 13 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

966.0

SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=



## B.L. CALC. TEHNINATES AT THIS POINT

BOUNDARY LAYER CALCULATION AT STRIP 18 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	
CALCULATION AT STRIP 18 INITIA ANGLE IS TAKEN TO BE 30.00 CTED IN TURBULENT B. L. CALC AT	
CALCULATION AT STRIP 16 IN 11 ANGLE IS TAKEN TO BE 30.00 CTED IN TURBULENT B. L. CALC	
CALULATION AT STRIP I ANGLE IS TAKEN TO BE CTED IN TURBULENT B. L.	
CALCLATION AT STRIP ANGLE IS TAKEN TO B CTED IN TURBULENT B.	
CALCLATION AT ST ANGLE IS TAKEN T CTED IN TURBULENT	H
CALCALATION AT ANGLE IS TAKE CTED IN TURBULI	8
CALCULATION ANGLE IS	THIS
ANGE ANGE	¥
	B.L. CALC. TERNINATES AT THIS POINT
SWEEP	TERM
TIVE :	CALC.
EFFEC SEPAR	B.L.

		966.0	
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	BOUNDARY LAVER CALCULATION AT STRIP 19 INITIATED EFFECTIVE SWELP ANGLE IS TAKEN TO BE 30.00	SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	B.L. CALC. TERMINATES AT THIS POINT
EFFECTIVE SVE	BOUNDARY LAYE	SEPARATION DE	

		0.987	
TED	TED	SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	
=	1	4	
BOUNDARY LAYER CALCLATION AT STRIP -20 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	BOUNDARY LAVER CALCULATION AT STRIP 21 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	CALC	
7	N	٤	
4 8	0 B		-
TOT	ST D	5	B.L. CALC. TERMINATES AT THIS POINT
- 4	- 2	9	
2 4	2 3	8	E
110	150	5	=
34	34	Z	9
24	2 4	ED	-
5	5	12	2
EE	EE	ET	ER
3 %	3 %	2	-
× ×	× ×	0	2
4 5	85	A .	2
34	FFE	EPA	;

		0.997	
2	ED	SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C=	
1	1	7	
BOUNDARY LAVER CALCULATION AT STRIP -21 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	BOUNDARY LAYER CALCULATION AT STRIP 22 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	ALC	
2 %	3 8	;	
20	4 8	•	IN
STR	ST. N	ENT	0
TAKE	TAKE	BELL	B.L. CALC. TERMINATES AT THIS POINT
11 S	110	2	7
2 3	38		TES
A S	3 4	CTE	M
YE E	YER	DE TE	TERM
7 3	2 %	NO	3
CTIV	PARY	1148	3
FFE	FFE	EPA	

BOUNDARY LAVER CALCULATION AT STRIP -22 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00	DOWNDARY LAYER CALCULATION AT STRIP 23 INITIATED FFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
Z 8	Zo
30	23
a 8	0 R
10	# D
E Z	E S
Z X	Y X
101	01.0
5.	3.
33	33
3 3	3 3
SWEEP	BOUNDARY LAYER CALCULATION AT STRIP 23 INTI
YE Y	× ×
CTI	CTI
3 4	FFE

BOUNDARY LAYER CALCULATION AT STRIP -23 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCLATION AT STRIP 24 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAVER CALCLASTION AT STRIP -24 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCLEATION AT STRIP -25 INITIATED

BOUNDARY LAYER CALCULATION AT STRIP 25 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAVER CALCLATION AT STRIP 26 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP -26 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP 27 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCLATION AT STRIP -27 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP 28 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP -26 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

1014	TOTAL VISCOUS DRAG COEFFICIENT IS	FFICIENT 1S	0.790E-02	TOP VISCOUS DRAG IS	S 0.396E-02	B0110H V15C
*	419	COPER SEP.	LOWER SEP.	SEPU(K)-HGB	HTMS-UG 32	
-	0.0	0.9518	0.9706	0.9018	0.9016	
8	0.0816	0.9420	0.9583	0.8920	0.6936	
•	0.1636	0.9363	0.9670	0.8863	0.8871	
• •	0.2455	0.5590	1066.0	0.87%	0.8836	
0	0.4091	0.9437	1.0000	0.8017	0.000	
. ~	00000	0.9495	0000	55000	2000	
00	0.5727	0.9570	1.0000	0.0000	0.9076	
•	0.0545	0.9643	0.9988	0.9143	0.9196	
10	0.7364	0.9699	0.9984	0.0150	0.9387	
=	0.8162	0.9613	0.9983	0.9813	0.9611	
15	0.0000	0.9855	1.0000	0.9855	0.9776	
2	0.9616	0.9673	1.0000	0.9873	0.9847	
•	1.0636	0.9850	9666	0.9850	0.9865	
0 4	2000	0.9863	1.0000	0.9863	0.9878	
2 2	1.3001	0.0000	2000	1055-0	0.999	
18	1.3600	0.0047	2000	0.0003	0.0030	
	1.4727	0.00	0000	10000	266.0	
50	1.5545	0.6790	1.0000	0.6750	0.0000	
12	1.6364	0.9871	1.0000	0.9871	0.96.0	
22	1.7162	0.9972	1.0000	0.9972	0.9941	
23	1.8000	1.0000	1.0000	1.0000	0.9978	
54	1.8818	1.0000	1.0000	1.0000	96660	
52	1.9636	1.0000	1.0000	1.0000	1.0000	
56	2.0436	1.0000	1.0000	1.0000	1.0000	
27	2.1273	1.0000	1.0000	1.0000	1.0000	
28	2.2091	1.0000	1.0000	1.0000	1.0000	
		030	200 171 1000			
		. 0704	SEPT. (K)-RUD	SEPT-SHIR		
	0.0818	0.04.0	0.000	0.9200		
	0.1636	0.9870	0.9330	0.6330		
	0-2456	0.0001	0.0401	0.040		
0	0.3273	0.9967	0.9867	0.9467		
•	0.4091	1.0000	0.9500	0.9500		
1	0.4909	1.0000	0.9500	0.9500		
•	0.5727	1.0000	0.9500	0.9500		
•	0.6545	0.9988	0.9488	0.9488		
2:	0.734	0.9964	0.9484	0.0464		
: 2	0.9000	1.0000	6 66 6	0.9483		
13	0.9810	1.0000	0.9500	00-6200		
:	1.0636	9666.0	0.9498	0.9498		
15	1.1456	1.0000	0.9500	0.9500		
9	1.2273	0.9870	0.9370	0.9370		
11	1.3091	0.9942	0.9442	0.9442		
9 :	1.3900	1.0000	0.9500	0.9500		
	12151	00000	0.9500	0.9500		
32	1.6364	0000-1	0000	0.6500		
32	1.716	0000-1	0000	00000		
23	1.8000	1.0000	0.00	00000		
54	1.8818	1.0000	0.9500	0.9500		
52	1.9636	1.0000	0.9500	0.9500		
20	2.0455	1.0000	0.9500	0.9500		

		3	12		12		13		13		13		2		2		•		:		•		•		•		2		2		2		2		2		2	
		3	0. 1752E-02		0.45286-03		0. 5556E-03		0.4469E-03		0.3955E-03		0.3520E-03		0.3157E-03		0.28736-03		0.2687E-03		0.2520E-03		0.2365t-03		0.2227E-03		0.2105E-03		0.2012E-03		0. 1916E-03		0. 1616E-03		0.17196-05		0.1649E-03	
		1111	0.1170E +00		0.1164E+00		0.1161E +00		0.1157E+00		0.1153E+00		0.11506+00		0.11476+00		0.1146.00		0.1142E+00		0.11406+00		00-11 386 +00		0.1136E +00		0.11346+00		0.113ZE +00		0-11306+00		00-111296 +000		0.1127E +00		0.1120£+00	
		MSCE	*	43	.8	•3	***	43	4633	+3	1616	43	4910	+3	* 90*	+3	* 905	43	106+	•	4690	43	4887		*68*	43	4685	43	*880	43	4877	43	4675	43	4672	+3	4867	• 3
		9	61	1	•	1	o	15	•	2	1	15		2	~	9	2	15	15	2	12	22	2	9	2	91	10	16	2	92	2	10	2	9	2	16	2	9
		KRD	58	-	8	-	58	-	53	-	58	-	52	-	88	-	28	-	53	-	62	-	8	-	58	-	3	-	50	-	3	-	52	-	52	-	2	-
		380	•	11	•	91	•	22		22	=	12	10	21	01	12	•	50	0.	50	•	50	•	23	0	22	۰	22	•	22	٠	22	•	12	۰	23	•	12
005600		KSDAV	0.35996+00	0.2578E-02	0.5197E+00	0.2243E-02	0.4 SOOE + 00	0.2048E-02	0.4 146E+00	0-1673E-02	0.3614E+00	0.1728E-02	0. 3631E+00	0-1609E-02	0.3521E+00	0-1503E-02	0-3408E+00	0-1412E-02	0.3287E+00	0.1332£-02	0.3183E+00	0.1258E-02	0.3043E+00	0-1191E-02	0. 3009E+00	0-1130E-02	0.2 \$27E+00	0.1074E-02	0.2836E+00	0.1021E-02	0.2 736E +00	0.9731E-03	0.2639€+00	0.92758-03	0.2534E+00	0.6848E-03	0.2425E+00	0.64496-03
		918	0.1794E +02	0.6706E-01	0.2610E+02	0.5806 -01	0.1717E+02	0.56196-01	0.1666E +02	0.5321E-01	0.1477E+02	0.49566-01	0.1556£+02	0.4582E-01	0.1637E+02	0.4166E-01	0.1749€+02	0.37526-01	0.17046+02	0.3361E-01	0.1698E +02	0.2986E-01	0.1992E+02	0.28706-01	0.2116€+02	0.2810E-01	0.2210€+02	0.2729E-01	0.22436+02	0.2618E-01	0.22elE+02	0.2461E-01	0.2273E+02	0.2337E-01	0.2224€+02	0.2208E-01	0.21376 +02	0.2071E-01
		7	=	1	=	:	=	15	16	15	15	15	57	15	10	15	6	15	10	15	5	16	5	16	6	16	0	16	16	16	6	16	31	91	•	10	10	9
00		¥.	15	-	12	-	13	-	•	-	•	-	•	-	0	-	8	,	-		-	-	-	-	28	-	27	•	2.7	-	2.1	-	23	-	27	-	27	-
		4	25	11	15	1.1	21	54	28	23	58	23	26	22	28	22	58	21	26	20	<b>2</b> e	24	28	24	4	24	21	23	20	23	20	23	64	22		22	*1	22
1.0000	s	ERRAV	0.7422E-04	0-8509E-04	0-8065E-04	0.76456-04	0.75156-04	0.70506-04	0.7003E-04	0.65215-04	0-6462E-04	0.60736-04	0-60216-04	0.5092E-04	0.5658E-04	0.5357E-04	0.53456-04	0.5062E-04	0.50666-04	0.4793E-04	0.4824E-04	0-45486-04	0.46135-04	0.4323E-04	0 -4427E-04	0-41176-04	0.4257E-04	0.3926E-04	0-4099E-04	0.37486-04	0.39526-04	0.35796-04	0.3617E-04	0.34196-04	0.36946-04	0.32716-04	0.35776-04	0.31356-04
2.1273	RESTOUAL PARAMETER	w kkg	0.21346-02	0.1233E-02	0-11726-02	0-1077E-02	0.82646-03	0.1009E-02	0.70846-03	0.9292E-03	0.6729E-03	0.8580E-03	0.04586-03	0.76435-03	0.62186-03	0.7124E-03	0.6035E-03	0.64496-03	0.59226-03	0.56206-03	0.568eE-03	0.54236-03	0.53916-03	0.52275-03	0.50436-03	0-49558-03	0.4720E-03	0-47436-03	0.46666-03	0-45108-03	0.45838-03	0-4237E-03	0.4 565-03	0.3985E-03	0.42605-03	0.37472-03	0.40316-03	0.34956-03
	RES ID	1154	124	125	126	127	126	129	130	131	135	133	134	135	136	137	136	139	140	=	145	143	:	145	146	147	140	149	150	151	152	153	101	155	156	151	25	159
27		5	F.1 ME	COARSE	FIRE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	F1 %	COARSE	FINE	COARSE	F. 1.	COARSE	FINE	COARSE	F 1 NE	COARSE	FINE	COARSE	FINE	COARSE	F.1.K	COARSE	FINE	COARSE

74		•		11		11		11		11		11		11		11		10		:		91		•		•		•		•		•		=
95070		0.15756-03		0. 1512E-03		0.1457E-03		0. 1396E-03		0.1335E-03		0.1275E-03		0. 1216E-03		0.1161E-03		0. 1111E-03		0.1060E-03		0.1013E-03		0.9677E-04		0.9230E-04		0.8763E-04		0.8368E-04		0.79416-04		0.75436-04
131		0.1124E+00		0.1123E+00		0.1121E+00		0.1120E+00		0.11196+00		0.1118E+00		0.1117E+00		0.1116E+00		0.1115E+00		0.11114E+00		0-1113E+00		0-11 12E +00		0.1112E +00		0.1111E+00		0-11106+00		0.1109E +00		0.1109E +00
MSIN		+98+	+3	4852	+3	4635	•3	4854	+3	4817	*3	4807	+3	4801	*	4199	*	164	:	*184	:	4175	:	4757	:	4751	:	4738	:	4729	:	4715	:	4106
9	1	61	10	10	91	61	91	6	10	61	91	61	11	2	11	2	11	2	11	2	11	•	11	•	11	2	11	•	11	61	11	2	11	61
9		58	-	56	-	56	-	58	-	56	-	58	-	53	-	58	-	58	-	58	-	58	-	58	-	58	-	58	-	58	-	58	-	58
980		•	21	•	12	0	20		20	•	50	0	22	30	22	01	22	30	22	•	22	•	21	•	21	•	51	•	21	•	21	•	12	•
NAO.		0.2 308E+00	0.8074E-03	0.2 193E+00	0.7726E-03	0.2073E+00	0.7 397E-03	0.1956E+00	0.7086E-03	0.1851E+00	n. 6790E -03	0.1758E+00	0.6510E-03	0.1677E+00	0.62426-03	0.16056+00	0.59896-03	0.1543E+00	0.57496-03	0.1487E+00	0.5520E-03	0.1434E+00	0.5303E-03	0.1386E+00	0.5097E-03	0.1340E+00	0.4905E-03	0.1292E+00	0.4724E-03	0. 124 3E +00	0.4552E-03	0.1 183E+00	0.4388E-03	0.1145E+00
9518	-	0.2020E+02	0.1930E -01	0.1878E+02	0.1786E-01	0.1723E+02	0.1659E-01	0.1558€+02	0-15446-01	0.1390E+02	0.1432E-01	0.1225E+02	0.13696-01	0.1067E +02	0.13726-01	0.9812E+01	0.13466-01	0.9787E+01	0.1311E-01	0.9681E+01	0.12706-01	0.9527E+01	0.1229E-01	0.9282E+01	0.1197E-01	0.8953E+01	0.11596-01	0.8547E+01	0.1116E-01	0.8076€+01	0.1074E-01	0.7554E+01	0.1026E-01	0.7004E+01
	1	10	2	6	9	1.0	16	10	91	•	17	19	11	61	11	3	12	6	11	10	11	19	11	10	17	6	1.1	61	11	10	17	10	11	61
	1	27	-	50	-	56	-	56	-	56	-	50	-	56	-	52	-	52	-	52	-	52	-	52	-	52	-	52	-	54	-	54	-	54
4	;	11	21	20	21	•	21	*	21	4.7	24	4.1	23	•	23	•	23	4	23	4.1	23	*1	22	•	22	4.5	22	45	22	4.7	21	41	21	•
25		0.34656-04	0.3009E-04	0.3356E-04	0.2890E-04	0.324 TE-04	0.2777E-04	0.3141E-04	0 -2669E-04	0.3036E-04	0.2566E-04	0.2935E-04	0.2467E-04	0.2837E-04	0.2374E-04	0.2740E-04	0-2285E-04	0-2647E-04	0.21996-04	0.2556E-04	0.2118E-04	0-2468E-04	0.2041E-04	0.2383E-04	0-19696-04	0.2303E-04	0-1900E-04	0.2225E-04	0.1836E-04	0.2152E-04	0-17766-04	0.20816-04	0.1720E-04	0.20146-04
RESIDUAL PARAMETERS		0.37661-03	0.32496-03	0.3706E-03	0.3037E-03	0.3622E-03	0.2625E-03	0.34 85E-03	0.2617t-03	0.3307E-03	0.24 66E-03	0.31436-03	0.2400E-03	0.2962E-03	0.2354E-03	0.2855E-03	.22 93£-03	-27 63E-03	0.2220E-03	0.2642E-03	0.2136E-03	0.2523E-03	0.2071E-03	0 -24 02E-03	0.2006E-03	0 -22 66E-03	0.1934E-03	0.21416-03	0.1857E-03	0.2037E-03	0.17786-03	0.1949E-03	0.17176-03	0.16754-03
RESID	-	160	101	162	163	104	165	100	167	168	169	170	171	172	173	174	175	170	177	176	179	180	181	182	183	184	185	180	181	188	189	160	161	192
MF CH	-	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	F INE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COARSE	FINE	COAMSE	FINE

PHOBLEM NO. 24-CL EFFECTIVELY CONSTANT. INVISCID SOLUTION HALTS.

```
0.2821E-04
-0.2372E-04
-0.7543E-04
                     0.3226E-04
-0.1251E-04
-0.7262E-04
-0.5056E-04
0.3890E-04 0.3785E-04 0.3654E-04 0.3477E-04 0.2259E-04 0.1542E-04 0.7044E-05 0.2153E-05 0.3557E-04 0.7506E-05 0.2153E-05 0.3557E-04 0.7506E-04 0.6652E-04 0.7506E-04 0.62236E-04 0.6871E-04 0.6095E-04 0.3128E-04 -0.2236E-04 -0.1491E-04 0.8322E-05
```

ENPLOT FOR FINE NESH

0-1794E+02

INITIAL RESIDUAL(+) 15

INITIAL ERROR(*) 15 0.2134E-02



0-67086-01 INITIAL RESIDUALI+) IS INITIAL ERRORIED IS 0.1233E-02 ERPLOT FOR COARSE MESH

VISCOUS FLOW CALCULATION ITERATION NO. 2 ON GRID NO.

LIFT FROM INTEGRATION OF DELTA PHI AT TE 15 0.11062E+00

TOTAL CHANGE OF PRESSURE SOLUTION

TOP IS 0.30216+04 BUTTON IS 0.21172+04 IN TERMS OF THE CONVERGENCE CRITERION

UPPER SUNFACE

N AVERAGE		10.0	10.0	10.0	0.02	20.02	0.02	20.02	0.02	0.02	0.02	0.02	0.03	0.03	60.03	60.03	60.03	60.03	0.03	60.03	60.03	0.03	60-0	6.03	0.02	0.02	60.03	0.03	*0.0		N AVERAGE	3	0.02	10.0	0.02	0.05	0.02	20-02
LOCATION	-	36	*	37	36	35	*	33	32	31	30							35 0	26					50				12	• 10		LOCATION	OF MAX CHGE	39	*	33		31	30
OLD CP AT	The Course	-0.10240€+00	-0.80001E-01	-0.67225E-01	-0.66605E-01	-0.77463E-01	-0.95573£ -01	-0.124416+00	-0.163516+00	-0.21377E+00	-0.27126€+00	-0.15798£+00	-0.22686£ +00	-0.30501E+00	-0.202716+00	-0.29354E+00	-0.204246+00	-0.30425E+00	-0.23080E+00	-0.33739£+00	-0.28032E+00	-0.23713€+00	-0.34420E+00	-0-30683E+30	-0.27195£+00	-0.22609E+00	-0.24523E+00	-0.34511E+00	-0.30860E+00		90.0 00 41	MAK CHANGE	-0.315666-03	-0.12439 +00	-0.125095+00	-0.12861E+00	-0.13786£ +00	-0-14 COME 400
ACT CO AT	THE CHANGE	0.93530E-02	0.113465-01	0.2034 96-01	0.21072E-01	0.15072E-01	0.231154-02	-0.22765E-01	-0.569085-01	-0.10400E+00	-0.16074£ +00	-0.42792E-01	-0.10398E+60	-0.18578£+00	-0.74045E-01	-0.16277E+00	-0.67904E-01	-0.1650SE+00	-0.8385% -01	-0.1931 8E +00	-0.12086£+00	-0.81291E-01	-0.176 3£ +00	-0.1444 ZE +00	-0.13669E+00	-0.794116-01	-0.52290E-01	-0.12065E+00	-0. 1582 X +00		ME CO AT	MAX CHANGES	0.522356-01	-0.76921E-01	-0.78627E-01	-0.82217E-01	-0.87668E-01	-6.954795-01
HAX G GIANG		0.11	40.0	40.0	40.0	40.0	0.10	0.10	0.10	0.11	0.11	0.12	0.12	0.12	0.13	6.13	0-1-	0,14	0.15	0.1.0	0.16	0.16	0.17	0.16	0.10	0.15	6.15	0.22	0.15	LOWER SUMPACE	HAX G CIANG		0.05	0.00	0.00	0.05	90.0	40.00
Span	-		~	3		•	•	1		19	10	:	12	13	••	1.5	16	13	16	10	50	21	22	23	2.	52	56	27	28		SPAN	STATION	•	2			•	9

							** 0.02													
-0.1853W +00	-0.20702E +00	-0.23047E+00	0.319722 +00	0.32081E+00	0.32087£ +00	0.320¢ H +00	0.319516+00	0.316326+00	0.31624€+00	0-31375€+00	0.31017E +00	0.30567E+00	0.301416+06	0.297546+90	0.22057E+00	0.221516+00	0.203156+00	-0.274425+00	-0.32426E+00	0.199365.00
-0-119362+00	-0.13444£ +00	-0.15163K+00	0.2323% +00	0.199616+00	0.1936 M +00	0.20 Met +00	0.20mm +00	0.218246+00	0.219756+00	0.22 38 2E +06	0.22390£+00	9.2306W +90	0.23564£ +00	0.24 14 % +00	0.1707% +00	0.17757E+00	0.1607 16 +00	-0.2203₩€ +00	-0.2591 9K +00	0.13777E+00
0.01	20.0	0.00	0.00	0.12	0.13	0.12	0-11	0.10	0.10	0.00	90.0	0.00	0.01	90.0	0.00	•0.0	*0.0	••••	0.01	0.00
		90	**	112	13	:	••	**	11	••	- 61	20	21	22	23	24	52	5.0	27	50

BOLMOARY LAYER CALCULATION AT STRIP 1 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION DETECTED IN TUMBULENT B. L. CALC AT X/C+ 0.960

BAL. CALC. TERMINATES AT THIS POINT

BOLMOMET LATER CALCLASTION AT STRIP -1 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION DETECTED IN TURBULENT B. L. CALC. AT X/Cx 0.981 B.L. CALC. TEMINATES AT THIS POINT

BOUNDARY LAVER CALCULATION AT STRIP 2 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION DETECTED IN TURBULENT 8. L. CALC AT X/C* 0.995 B-L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAYER CALCULATION AT STRIP -2 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 SEPARATION DETECTED IN TUMBULENT B. L. CALC AT X/C. 0.962 B.L. CALC, TEMBINATES AT THIS POINT

BOUNDARY LAYER CALCIAATION AT STRIP 3 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT B. L. CALC AT X/C* 0.943
B.L. CALC. TERMINATES AT THIS POINT

BOUNDARY LAYER CALCLAATION AT STRIP -3 INITIATED
EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP 4 INITIATED
EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION DETECTED IN TURBULENT 5. L. CALC AT X/C= 0.938
B.L. CALC. TERRINATES AT THIS POINT

BOUNDARY LAYER CALCULATION AT STRIP -4 INITIATED EFFECTIVE SHEEF ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP 5 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00
SEPARATION (# FECTED IN TURBULENT B. L. CALC AT X/C* 0.985
B.L. CALC. TERMINATES AT THIS POINT

EFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCALATION AT STRIP -5 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCALATION AT STRIP -6 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCALATION AT STRIP 7 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCALATION AT STRIP -7 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCALATION AT STRIP 8 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCALATION AT STRIP 8 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

EPPECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP 10 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP -10 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP -11 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

-8 INITIATED 30.00

EFFECTIVE SHEEP ANGLE IS TAKEN TO BE

9 INITIATED 30.00

BOUNDARY LAYER CALCULATION AT STRIP EFFECTIVE SWEED ANGLE IS TAKEN TO BE BOUNDARY LAYER CALCALATION AT STRIP -11 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCALATION AT STRIP 12 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCLAATION AT STRIP -12 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP 13 INITIATED EFFECTIVE SWELP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -13 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP 14 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -14 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP IS INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -15 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -16 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCLATION AT STRIP -17 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 18 INITIATED 30.00 BOUNDARY LAYER CALCLAATION AT STRIP 19 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCLATION AT STRIP -19 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP 20 INITIATED EFFELTIVE SHEEP ANGLE IS TAKEN TO BE 30,00 BOUNDARY LAYER CALCULATION AT STRIP -20 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCATION AT STRIP 21 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO SE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -21 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP 22 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAVER CALCULATION AT STRIP -22 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP 23 INITIATED EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 SOUNDARY LAYER CALCULATION AT STRIP 16 INITIATED SOUNDARY LAYER CALCULATION AT STRIP -18 INITIATED 30.00 30.00 EFFECTIVE SHEEP ANGLE IS TAKEN TO BE 30.00 EFFECTIVE SWEEP ANGLE IS TAKEN TO BE BOUNDARY LAYER CALCLATION AT STRIP EFFECTIVE SWEEP ANGLE IS TAKEN TO BE

BOUNDARY LAYER CALCULATION AT STRIP -23 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP 24 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP -24 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP 25 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -25 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCULATION AT STRIP 26 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP -26 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP 27 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00 BOUNDARY LAYER CALCULATION AT STRIP -27 INITIATED

EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00
BOUNDARY LAYER CALCALATION AT STRIP 28 INITIATED
EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

BOUNDARY LAYER CALCULATION AT STRIP -28 INITIATED EFFECTIVE SWEEP ANGLE IS TAKEN TO BE 30.00

SEPU-SMTH 0.9099 0.9021	0.9047	0.9252	0.9843	9956.0	9666.0	0000	1.0000	1.0000	1.0000	1.0000	00000	0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	00000	1.0000																				
SEPU(K)-MOD 0.9099 0.8950	0.8929	0.8884	1.0000	1.0000	0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	0000	1.0000	0000	1.0000	0000	0000-1	1.0000	000001	00000	1.0000	SEPL-SMTH	0.9308	0.9119	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0056-0	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0.06.00	00000
LOWER SEP. 0.9808 0.9619	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	3.0000	1.0000	1.0000	1.0000	0000.	0000	00000	1.0000	1.0000	1.0000	SEPLIK)-MOD	0.9308	0.9119	0.9500	0.9500	0.9500	0.0500	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0.800	00.6200	0.9500	0.9500	00000	00000
0.4569 0.9450	0.9429	0.4364	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	1.0000	1.0000	1.0000	0000	000001	1.0000	1.0000	1.0000	1.0000	LOVER SEP.	9086.0	0.9619	1.0000	1.0000	1.6000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	. 2000	1.0000
614 0.0 0.0616	0.1636	0.2455	0.4091	5064-0	0.5727	0.7364	0.6162	0.9000	0.9616	1.0636	1. 1930	1.3091	1.3909	1.4727	1.5545	1.0304	1.8000	1.8615	1.9636	2.1273	2.2091	ETA	0.0	0.0618	0.2455	0.3273	0.4091	0.5727	0.6545	0.7364	0.8182	00000	1.0036	1.1456	1.2273	1.3091	1.4727	1.5545	1.6364		2011

			3	•		•		•		-	
			PJKSD	0.1454E-02		0.3979E-03		0.4328E-03		0.3408E-03	
			LIFT	4700 0.1106E+00 0.1454E-02 6		4692 0.1107E+00 0.3979E-03 6		4680 0.1106E+00 0.4328E-03 6		4666 0.1105E+00 0.3408E-03	
			NSC	4700	;	4692	;	4680	•	4668	•
			8	9	=	19	=	61	=	19	:
			JRD KRD LAD	28	•	8 28 19	m	27	•	27	•
			JRD	٠	50	•	11	01	11	10	•
200	900		RSDAV	0.2842E-04 52 6 11 0.5934E+01 0.1131E+00 9 28 19	0.57946-03	6 11 0.6166E+01 0.1353E+00	0.5024E-03	6 11 0.5656E+01 0.1178E+00 10 27 19	0.47996-03	0.1111E+00	0 4626
0.4500	0.9500		BIGRL	0.5934E+01	0.2386E-01	0.6166E+01	0.14896-01	0.5656E +01	0.1374E-01	0.5526E+01	12275
0.9500	0056.0		LE	=	2	=	:	=	=	=	:
ò	ò		JE KE LE	۰			m	۰	•	•	
			J.	25		99	18	21	18	20	
1.0000	1.0000	88	ERRAV	0.2842E-04	0.1944E-04	0.2926E-04	0.1802E-04 18	0.2564E-04	0-1732E-04	0.2438E-04 50 6 11 0.5526E+01 0.1111E+00 10 27 19	0.1669E-04 14 7 11 0.1927E-01 0 0.6646.03
2.1273	2.2091	RESIDUAL PARAMETERS	ERROR	193 0-12576-02	0.34 92E-03	0.80 635-03	196 0-1755E-03	0.47 04E-03	198 0.1653E-03	0.3817E-03	COARSE 200 0.1476F-03
		RES ID	1 1ER	193	194	195	196	161	198	199	200
27	58		MESH	F. M.	COARSE	FINE	COARSE	FIRE	COARSE	FINE	COARSE

3					•		•
OSAFA	0.3010E-03	0.2684E-0	0.2398E-0	0.2151E-0	0.1991E-0	0.1830E-0	0.1680E-0
1417	0.1104E+00	0.1104E+00 0.2684E-03	0.1103E+00 0.2398E-03	40 4647 0.1102E+00 0.2151E-03	40 4641 0.1102E+00 0.1991E-03	40 4633 0.1101E+00 0.1630E-03	40 4630 0.1101E+00 0.1680E-03
NSCD	4660	4654	4652	4047	4641	4633	4630
8	61	= 2	= 6	= 2	= 5	= 2	= 2
JRD KRD LRD	6 27	4 12	* 12	4 12	4 72	4 12	4 72
ON.	٥	20	50	50	8 6	. s	9 6
KSDAV	0.1047E+00	0.4288E-03	0.4093E-03	0.3925E-03 0.9177E-01	0.3770E-03 0.8808E-01	0.3628E-03 0.8489E-01	0.3495E-03
BIGRL	7 11 0.53916+01 0.10476+00	0.1145E-01 0.5346E+01	0.1086E-01	0.1043E-01 0.5055E+01	0.1007E-01	0.9721E-02 0.4588E+01	0.9328E-02 0.4357E+01
"	=	==	==	==	-:	2:	911
JE KE LE							- 10
4	20	20	50	0 6	204	23	22
25 ERRAV	201 0.32556-03 0.23156-04	0.1600E-04	0.1547E-04 0.2129E-04	0.1498E-04	0.1454E-04 0.1983E-04	0.1412E-04 0.1918E-04	0.1372E-04 0.1856E-04
RESIDUAL PANAMETERS	.32 556-03	0.1396E-03	0.1343E-03	0.1286E-03	0.1229E-03	210 0.1196E-03 211 0.1851E-03	212 0.1161E-03 213 0.1697E-03
RES IDUA	201	202 0	204 0	206 0	208 0	210	212
ME SA	FINE	COARSE	COAKSE	COARSE FINE	COARSE	COARSE FINE	COARSE

PROBLEM NO. 24-CL EFFECTIVELY CONSTANT. INVISCID SOLUTION HALTS.

0.1211E-03 0.1036E-05 0.5759E-04 0.6966E-05 0.4843E-07 -0.1388E-04 -0.4030E-04 -0.8083E-04 -0.1516E-05 0.4843E-07 -0.1502E-03 -0.1316E-03 -0.7323E-04 0.6647E-04 0.1029E-03 0.1070E-03 0.9447E-04 0.7556E-04 0.4210E-04 0.2871E-04 0.1694E-04 0.5644E-05 -0.5126E-05 -0.1870E-04 -0.2093E-04 -0.2206E-04 -0.1885E-04

ERPLOT FOR FINE MESH

INITIAL ERROR(*) 15 0-1257E-02

INITIAL RESIDUAL(+) 15 0.5934E+01



ERPLOT FOR COARSE MESH

-01	7,7	•				
.) IS 0.2386E	-5/-5				<b>:.</b> .	• •
INITIAL ERROR(*) 15 0.3492E-03 INITIAL RESIDUAL(+) IS 0.2386E-01					1	
0.3492E-03	*/*-		• •	••	•	• •
NITIAL ERROR(*) 15	9-/s-					

VISCUIS FLOW CALCULATION
TERATION NO. 3 ON GRID NO.

LIFT FROM INTEGRATION OF DELTA PHI AT TE IS 0.11005E+00

TOTAL CHANGE OF PRESSURE SOLUTION

TOP IS 0.11116E+04 BUTTOM IS 0.6977E+03 IN TEHMS OF THE CONVERGENCE CRITERION

UPPER SURFACE

SPAN	MAX CP CHANGE	NEW CP AT	OLD CP AT	COCALION	AVENAGE
STA TION		MAX CHAMGES	MAX CHANGE	DF MAX CHGE	CHANGE
-	0.03	-0 - 13 39 BE +00	-0.16747E+00	36	00.0
8	0.03	-0.10796E+00	-0.13826€ +00	37	00.0
9	0.03	10-36436-0-	-0.11933£ +00	36	00.0
	0.03	-0.89821E-01	-0.11822E+00		10.0
•	0.05	0.17768E+00	0.12719E+00		10.0
•	0.00	0.18600E+00	0.12977E+00		10.0
1	90.0	0 • 16954E +00	0.13399E+00		0.0
00	0.05	0.20303E+00	0.15466E+00		0.01
•	0.0	0.20314E+00	0.16428E+00		0.01
01	0.04	-0.12321E+00	-0.16074E+00	30	10.0
:	0.05	-0.19184E+00	-0.23752E +00	62 0	10.0
12	0.00	0.21637E+00	0.27335E+00	42	0.01
13	0.00	0.21366E+00	0.27763E+00	1 42	10.0
•	00.00	-0.23292E+00	-0.29515E+00	12 27	10.0
15	00.0	-0.35167E+00	-0.41171E+00	92 0	0.01
10	90.0	-0.21016E+00	-0.28629E+00	56	10.0
11	0.03	-0.34252E +00	-0.41634E+00	25 0	10.0
18	60.0	-0.21113E+00	-0.2994 6E +00	25	0.01
61	90.0	-0.35082E+00	-0.43283E+00	24	10.0
50	0.10	-0.23630£ +00	-0.3344 BE +00	24	10.0
12	60.0	-0.15155E+00	-0.24422E+00		10.0
22	0.10	-0.28664E+00	-0.38535E+00		0.01
23	90.0	-0.23662E+00	-0.31850E+00	23	0.01
54	0.07	-0.2:30 BE +00	-0.28337E+00		10.0
52	50.0	-0 - 33 70 3E +00	-0.42710E+00		0.01
56	0.10	-0.37213£ +00	-0.47438E+00		10.0
27	90.0	-0.24759E+00	-0.322886+00	20	10.0
28	0.03	-0.33 79 BE +00	-0.36837E+00	11	0.01
	LOWER SURFACE				
SPAN	MAX CP CHANGE	NEW CP AT	OLD CP AT	LOCATION	AVERAGE
STATION		MAX CHANGES	MAX CHANGE	DE MAX CHGE	CHANGE
	0.02	-0.15237E +00	-0.17179E+00	*	00.0
2	0.05	-0.14860E+00	-0.16662E+00	33	00.0
3	0.02	-0-14460E+00	-0.16326€+00		00.0
	0.02	0.24252E +00	0.26256E+00		00.0
s	0.02	0.23335£ +00	0.25775€+00	Section 1	00.0
9	0.03	0.2244 SE +00	0.25820F +00		00-0

0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	10.0	0.01	0.01	0.01	0000	00.0	0.01	0.01	0.01	
:	56	52	24	:	:	:	:	50	10	:	27	56	52	24	23	24	23	22	50	**
0.25844E+00	-0.22591E+00	-0.24589E+00	-0.26798E+00	0.19961E+00	0.19563£+00	0.20396E+00	0.20978E+00	-0.31584E+00	-0.33795E+00	0.22332E+00	-0.11591E+00	-0.13788E+00	-0.16062E+00	-0.18620E+00	-0.21515E+00	-0.19179E+00	-0.20706E+00	-0.22038E+00	-0.25915E+00	0 240426 400
0.2324 7E +00	-0.20073E+00	-0.21973E+00	-0.24 12 0E +00	0.22% SE+00	0.22994E+00	0.233236+00	0.23420E+00	-0.29408E+00	-0.31965E+00	0.23864E+00	-0.13199E+00	-0.15581E+00	-0.17929E+00	-0.20236E+00	-0.22492E+00	-0.20 390E +00	-0.22905E+00	-0.24 738E +00	-0.28190E+00	0-235605400
0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.03	0.02	0-01

DELLK2 0.00567 0.00559 0.00559

0.0064

0.00775

0.01136

DELUK2

DELLKI

DELUKI

35	30.25356	21.10974	0.29594	0.29497	0.27332	0.26962
=	11.15063	6.97083	0.25743	0.25732	0.26607	0.25737
300	PJUMP HISTORY					
	-	~				
.534	96-010-36	0.5349E-010.5458E-010.5439E-01	10-36			
.535	3E-010-54	0.5353E-010.5444E-010.5414E-01	46-01			
.536	DE-010-54	0.5360E-010.5449E-010.5435E-01	15E-01			
.535	5E-010-54	0.5356E-010.5437E-010.5326E-0	6E-01			
.535	DE-010-54	0.5350E-010.5459E-010.5188E-01	8E-01			
.533	7E-010-54	0.5337E-010.5447E-010.5054E-01	100			
528	36-010-53	0.5288E-010.5340E-010.4984E-01	46-01			
.523	BE-010.521	0.5236E-010.5211E-010.4931E-0	16-01			
.518	76-010-50	0.5187E-010.5063E-010.4836E-01	16E-01			
-512	7E-010-47	0.5127E-010.479E-010.4731E-01	16-01			
.505	9E-010.44	0.5059E-010.4422E-010.4618E-0	8E-01			
864.	4E-010-42	0.4984E-010.4246E-010.4504E-01	46-01			
	85-010-41	0.4900E-010.4173E-010.4408E-0	100			
.470	6E-010.401	0.4706E-010.4016E-010.4201E-01	16-01			
.459	SE-010-39	0.4595E-010.3962E-010.4099E-0	10-36			
1447	2E-010-38	0.4472E-010.3669E-010.3994E-0	4E-01			
.433	8E-010-37	0.4336E-010.3782E-010.3872E-01	2E-01			
410	9E-010-36	0.4169E-010.3695E-010.3756E-0	10-39			
.401	9E-010-35	0.4019E-010.3584E-010.3624E-01	46-01			
.382	1E-010-34	0.3821E-010.3456E-010.3475E-01	5E-01			
.358	6E-010-32	0.3586E-010.3299E-010.3296E-0	6E-01			
.331	1E-010.30	0.3311E-010.3099E-010.3080E-01	10-30			
.298	9E-010-28	0.2989E-010.2825E-010.2803E-01	35-01			
.260	2E-010-24	0.2602E-010.2490E-010.2461E-01	16-01			
.211	5E-010-20	0.2116E-010.2058E-010.2023E-01	36-01			
-143	PF-010-142	0-1432E-010-1428E-010-1392F-0	25-01			



```
1.0000
                                                      1.0000
                                                    1.0000
                                                          1.0000
                          0.9619
                                          1.0000
                                            1.0000
                                             0000-1
                                              1.0000
                     XSEP LOWER
0.09973
                         0.9706
                              0.9967
0.9988
0.9988
0.9988
0.9988
0.9988
                                           0.9870
                             1066.0
                       IVITER
```

THICKNESS	
DISPLACEMENT	-
SPLA	STATION
9	IN
NE	
-	7

		7	STATION	1	HICKNESS			
1	XX		9-TOP	ACT-SLP	109-0	ACT-SLP	#BCU	MBCL
-	0.00	•	3598E-04-	-0-1711E-03	0.3712E-04-	0-1798E-03-0	4798E+02-	-0.4994E+02
N		0	.3812E-04			.5881E-03-0.	2676E+02-	0.2873E+02
	0.020	0	.4451E-04	0.4440E-03	0.4580E-04	0.4486E-03-0.2011E+02-0.2208E+02	2011E+02-	0.2208E+02
•	0.028	•	50 69E-04	0.7358E-03	0.5209E-04	0.7493E-03-0.1644E+02-0.1640E+02	1644E+02-	0.1640E+02
0	0.037	·	5867E-04		0.6021E-04	0.7982E-03-0.1396E+02-0.1592E+02	1396E+02-	0. 1592E+02
•	0.046	0	. 66 35E-04			0.5804E-03-0.1207E+02-0.1403E+02	1207E+02-	0. 1403E+02
1	0.056	0	.7303E-04	0.1093E-02	0.74106-04	0.1038E-02-0.1057E+02-0.1253E+02	1057E+02-	0.1253E+02
0	0.067	0	.1011E-03	0.2097E-02	0.1037E-03	0.2205E-02-0.9314E+01-0.1128E+02	93146+01-	0.1128E+02
•	0.080	0	.1251E-03	0.1415E-02	9	0.1425E-02-0.8082E+01-0.1004E+02	8082E+01-	0.1004E+02
2	0.095	0	. 1509E-03	0. 1538E-02	0.1506E-03	0.1185E-02-0.6982E+01-0.8924E+01	6982E +01-	0.8924E+01
::	0.112	0 0	-1748E-03	0. 1457E-02	0.17756-03	0.1481E-02-0.5917E+01-0.7880E+0	5917E+01-	-0. 7EBOE+01
13	0.156	0	-2520E-03	0-1263E-02	9	0.1141E-02-0.3895E+01	3895E+01-	-0.5849F+01
:	0.163	0	.3007E-03	0.1438E-02		0.1337E-02-0.2957E+01-0.4913E+0	2957E+01-	0.4913E+01
15	0.212	0	.35 TE-03	0.1639E-02	9	0.1569E-02-0.2061E+01-0.4018E+01	2061E+01-	0.4018E+01
16	0.242	•	0.4173E-03	0.1669E-02	0.41136-03	0.1671E-02-0.1201E+01-0.3161E+01	1201E+01-	0.3161E+01
11	0.272	•	4767E-03	0.1705E-02	0-4694E-03	0.1653E-02-0.3512E+00-0.2309E+01	3512E+00-	0.2309E+01
18	0.301	_	0.5348E-03	0.1621E-02		0	6273E+00-	0.62736+00-0.13346+01
2	0.330	_	0.5901E-03	0.1569E-02	0.5821E-03	.1589E-02 0	14 E S E +0 1-	.14E6E+01-0.4770E+00
50	0.359	0	. 64 40E-03	0 - 1589E-02	0.6357E-03	. 1539E-02	0.2135E+01	
21	0.387	0	.6982E-03	0.1656E-02		.1595E-02	0.2658E+01	0.7003E+00
25	0.415	•	.7535E-03	0. 1711E-02	-7447E		0.3111E+01	0.1151E+01
53	0.443	•	80 93E-03	0.1715E-02	0.8007E-03	. 1706E-02	0.3515E+01	0.1554E+01
54	0.471	0	.8657E-03	0.1729E-02	0.8575E-03	0	.3856E+01	
52	0.499	0	.9213E-03	0. 1707E-02	0.9142E-03	0	.4166E+01	
50	0.527	0	.9786E-03	0.1665E-02	0.9723E-03	0	.4435E+01	•
27	0.556	0	.1037E-02	0.1677E-02	0.1033 -02	0	.4674E+01	
58	0.585	0	.1098E-02	0.1733E-02	0.1098E-02	0	.4869E+01	
50		_	1160E-02		0.1171E-02	0	.5035E+01	0.3045E+01
3 50	0.044	0 0	0.1224E-02	0. 1874E-02	0.12566-02	0.2892E-02 0.	-5166E +01	0.3148E+01
35	0.704	0	1368F-02	0.2080F-02	0-14855-02		0.53346+01	0.32826+01
33	0.734	0	.1452E-02	0.2619E-02	0.1642E-02		0.5346E+01	0.3267E+01
34	0.763	0	.1559E-02	0.3455E-02	0.1635E-02		0.5309E+01	0.3219E+01
35	0.793	0	.1699E-02	0.4695E-02	0.2064E-02		0.5239E+01	0.3157E+01
36	0.821	0	.1887E-02	0.6531E-02	0.2325E-02	0.7959E-02 0.	.5134E+01	0.3093E+01
37	0.848	0	.2141E-02	0.9432E-02	0.2612E-02	0	.497 3E +0 1	
38	0.874	0	.2479E-02	0.1331E-01	0.2926E-02	0	.4755E+01	
36	0.897	0	.2927E-02			0	.4412E+01	0.2754E+01
0	0.919	0	.3548E-02	0.2961E-01		0	.4412E+01	0.2476E+01
-	0 . 940	0	4461E-02	0.5043E-01	•	0	.4412E+01	0.2476E+01
45	0.960	0	.6239E-02	1096	0.4785E-02	0	.4412E+01	0.2476E+01
43	0.480	•	9003E-02	•	9	0	.4412E+01	0.2476E+01
4	.000	•	11776-01	0.1096E+00	0.6798E-02	0.5371E-01 0.	.4412E+01	0.2476E+01

THICKNESS	
	2
DISPLACEMENT	STATION
NE	1 5

		NEW DISPLA	NEW DISPLACEMENT THICKNESS	CKNESS			
		AT STATION	~				
`	X	0-10P	ACT-SLP	109-0	ACT-SLP	WBCD	MBCL
-	0.004	0.336E-04-	E0-3E341.0.	0.35496-04-	-0.1664E-03-	0.1664E-03-0.4798E+02-0	-0.4994E+02
N	0.012	C.3585E-04	0.5535E-03	0.3766E-04	0.5723E-03-	-0.2676E+02	0.5723E-03-0.2676E+02-0.2872E+02
•	0.020	0	0.4380E-03	0.4402E-04	0.4484E-03-	-0.2011E+02	0.4464E-03-0.2011E+02-0.2208E+02
•	0.028	0.4793E-04	6.7067E-03	0.5023E-04	0.7391E-03-	-0. 1644E+02	0.7391E-03-0.1644E+02-0.1840E+02
0	0.037	0.55 CAE-04	0.7672E-03	0.5822E-04	0.7822E-03-	-0.1396E+02	0.7822E-03-0.1396E+02-0.1592E+02
0	0.046	0.6342E-04	0.6194E-03	0.6583E-04	0.5652E-03-	-0-1207E+02	5652E-03-0.1207E+02-0.1403E+02
-	957.0	0.0945E-04	0.8573E-03	0.7306E-04	0.1178E-02-	-0-1056E+02	0.1178E-02-0.1056E+02-0.1254E+02
0	100.0	0.9704E-04	0.2464E-02	0.10126-03	0.2329E-02-	-0.9334E+01	0.2329E-02-0.9334E+01-0.1129E+02
•	0.080	0.1236E-03	0. 1168E-02	0.1267E-03	0.1198E-02-	-0.8068E+01	0.1198E-02-0.8068E+01-0.1003E+02
9	96000	0.1529E-03	0.2007E-02	0.1551E-03	0.1898E-02-	0.1898E-02-0.7009E+01-0.8964E+01	-0.8964E+01
=	0.112	0.1794E-03	0.1451E-02	0.17896-03	0. 1393E-02-	0.1393E-02-0.5917E+01-0.7875E+01	-0.7875E+01
15	0.133	0.2191E-03	0.1132E-02	0.2172E -U3	0.1057E-02-	0.1057E-02-0.4879E+01-0.6836E+0	-0.6836E+01
2	0.156	0.2643E-03	0.1216E-02	0.2611E-03	0.1234E-02-	0.1234E-02-0.3892E+01-0.5854E+0	-0.5854E+01
=		0		9	0.1434E-02	0.1434E-02-0.2960E+01-0.4918E+01	-0.4918E+01
2	0.212	0.3751E-03		0.3691E-03	0.1631E-02-	0.1631E-02-0.2059E+01-0.4021E+01	-0.4021E+01
9	0.242	0.4351E-03	0.1747E-02	0.4285E-03	0.1692E-02-	0.1692E-02-0.1204E+01-0.3162E+01	-0.3162E+01
11	0.272	0	0.1716E-02		0.1712E-02-	0.1712E-02-0.3517E+00-0.2313E+01	-0.2313E+01
18	0.301		0.1568E-02	0.5468E-03	0.1651E-02	0.6302E+00	0.6302E+00-0.1335E+01
5	0.330	0.6087E-03	0.1598E-02	0.60242-03	0.1557E-02	0.1483E+01	0.1483E+01-0.4752E+00
50	0.359		0.1613E-02	0.6574E-03	0.1595E-02	0.21336+01	
51	0.587		0.1681E-02	0.7135E-03	0.1671E-02	0.2656E+01	0.6961E+00
22	0.415	0.1755E-03	0.1635E-02	0.7701E-03	0.1723E-02	0.3116E+01	0.1150E+01
23	0.443	0	0. 1646E-02	0.8265E-03	0.1778E-02	0.35196+01	0.1550E+01
54	0.471	C. 88 80E-03	0.1748E-02	0.8854E-03	0-1747E-02	0.3855E+01	0.1594E+01
52	0.499		0.1726E-02	0.9441E-03	0.1779E-02	0.4165E+01	0.2201E+01
56	0.527	_	0.1722E-02	0.1005E-02	0.1820E-02	0.4432E+01	0.2466E+01
27	0.556		0.1707E-02		0.1915E-02	0.4672E+01	0.2700E+01
28	0.585		0.1736E-02	0.1144E-02	0.2169E-02	0.4868E+01	0.2683E+C1
58	0.614		0.1830E-02	0-1229E-02	0.2777E-02	0.5033E+01	0.3018E+01
30	0.0		0.1950E-02	0.1330E-02	0.3375E-02	0.5162E+01	0.3121E+01
31	0.674			0-1458E-02	0.3986E-02	0.5257E+01	0.3189E+01
35	0 - 104			0.1616E-02	0.4721E-02	0.5308E+01	0.3224E+01
33	0.734			0.1806E-02	0.5522E-02	0.5302E+01	0.3222E+01
34	0.763	0.1658E-02	0.4561E-02	0.2030E-02	0.6516E-02	0.5246E+01	0.3176E+01
35	0.793	0			0.7402E-02	0.5139E+01	0.3126E+01
36	0.851		0.9290E-02	0.255% -02	7.8264E-02	0.4979E+01	6.3075E+01
37	0.848		0.1229E-01		0.9439E-02	0.4813€+01	0.3012E+01
38	0.874			0.3161E-02	0-1127E-01	0.4537E+01	
38	0.697		0.2435E-01	0.3504E-02	0.1424E-01		0.2788E+01
0	616.0		0.3590E-01	0.3900E-02	0.1885E-01		0.2788E+01
7	0.940	0	0.6667E-01	0.4383E-02	0.2517E-01	•	0.2788E+01
4 2	0.960		0.7459E-01		0.3550E-01	0.43716+01	0.2788E+01
4 3	0.560	0	0.7459E-01	0.57396-02	0.3610E-01	0.43716+01	0.2788E+01
*	1 .000	0.1043E-01	0.7459E-01	0.64776-02	0.3610E-01	0.43716+01	0.2788E+01

NEW DISPLACEMENT THICKNESS AT STATION 3

	<b>NBCL</b>	4E+02	01 0	20430	. 1592E+02	.1403E+02	.1254E+02	.1130E+02	.1002E+02	10+30	. 7876E+01	· 6638E+01	7E+01	.4920E+01	4025E+01	3166E+01	.2315E+01	.1338E+01	.4801E+00	0.1708E+00	.6915E+00	5E+01	1540E+01	1886E+01	2191E+01	4 E+01	2687E+01	2865E+01	2992E+01	30676+01	3142E+01	7E+01	35+01	31496401	10+38	16+01	14 E+0 I	11E+01	~	Ω	•	4E+01	184E+01	14E+01
	3	9	99	0.22.00	-0-159	-0-140	-0.125	-0-113	-0.100	-0.8960	-0.787	-0.663	-0.5857E+0	-0.492	-0.402		-0.231	-0.133	-0.480	0.170	0.691	0.1145	0.154	0.168	0.219	0.2454	0.268	0.286	0.299	0.306	0.314	0.3177			•		0.3034	0.2951	0.282	0.257	0.216	0.218	0.216	0.2184
	WBCU	-0.4 798E +02	-0.2676E+02	0.4539E-03-0.2012E+02-0.2208E+0	0.7827E-03-0.1397E+02-0	554 3E-03-0.1208E+02-0	0-1113E-02-0-1055E+02	0.2480E-02-0.9333E+01-0	0.1082E-02-0.8075E+01-0	-	-0.5918E+01	0.1092E-02-0.4892E+01	0.1287E-02-0.3906E+01	0.1473E-02-0.2965E+01	0.1695E-02-0.2065E+01	-0.1205E+01	-0.3524E+00-0	0-6254E+00-0	0.1483E+01	0.2130E+01	0.2656E+01	0.3107E+01	0.3503E+01	•	0.4163E+01	0.4430E+01	•	0.48636+01	•	•		0.5265E+01	0.5246E+01			•	4	.4355E+	0.4345E+01	0.4345E+01	0.4345E+01	4	0.4345E+01	0.4345E+01
	ACT-SLP	-0.1627E-03	0.5715E-03	0-744E-03-0-2012E+0	0.7827E-03	0.5543E-03	0-1113E-02-	0.24 BOE-02	0.1082E-02-	0.1831E-02-0.7008E+0	0-1411E-02-0-5918E+0	0-1092E-02-	0-1287E-02	0.1473E-02	0.1695E-02	0.1775E-02	0. 1747E-02	0.1703E-02	0.1643E-02	0.1641E-02	0.1752E-02	0.1805E-02	0.1957E-02	0.1891E-02	0.1958E-02	0.2033E-02	0.2130E-02	0.2501E-02	0.3241E-02	.3972E	0.4821E-02	. 5553E	0.0383E-02	0.0980E-02	0. 730 FE-02	68339E	0.9035E-02	.1051E	0.1296E-01	0.1668E-01	.2197E	0.3024E-01		0.6641E-01
	109-0	.3519E	0.37396-04		580 3E	€6559E	0.7197E-04	0.1027E-03	0.1274E-03	0.1551E-03	0.1805E-03	.2193E	0.2643E-03	.3159E	.3748E-0	0.4357E-03	0-4974E-03	0.5576E-03	0-6150E-03	0.6722E-03	0.7304E-03	.7891E	9	- 908 9E	.9717E	.1039E	1113	.1199	.1302E	.1430E-0	•1586E	.1776E-0	-1997E	0-2543E-0	2000 FE	27178	- 3055E-0	- 3343E -0	.3653E-0	.4003E-0	0.4416E-02	.4928E	0.5591E-02	0.6508E-02
,	ACT-SLP			0-5360E-03			0.5981E-03	0.2450E-02	0.1295E-02	0.1994E-02	0.1468E-02		0.1458E-02	0.1576E-02			0.1727E-02	0.1655E-02	0.1598E-02	0.1675E-02										•										0.3897E-01	0.6268E-01	0.6505E-01	0.6505E-01	0.6505E-01
2011416	0-10P	.3142E	0.3390E-04	AZRAF.	-5756E-	-6744E-	0.7246E-04	0.9947E-04	0.1260E-03	0.1556E-03	0.1845E-03	-2246E-	0.2708E-03	0.3244E-03			0.50766-03	0.5677E-03	0.6242E-03	0.6805E-03	0.7379E-03	0.7955E-03			0.9709E-03	0.1030E-02	0-1092E-02	0.1156E-02	.1222E		.1364E	-		0.30805-02	0.20 BUE - UZ	•		.34 10E	. 40	.4896E	. 60 15E	•	. 88	0.1026E-01
	7 x/c	1 0.004	2 0.012			6 0 .046	7 0.056	8 0.067	080.0 6	10 0.095	11 0.112	12 0.133	13 0.156	14 0 183		0	17 0.272	18 0.301	19 0 330	20 0.359	21 0.387		23 0 . 443	24 0.471	0	26 0.527	27 0.556	0	29 0.614		31 0.674		35 0 154	36 0 763	0		37 0 848	0	39 0 8897	40 0.919	41 0.940	45 0.960	43 0.980	44 1.000

NEW DISPLACEMENT THICKNESS AT STATION 4

THICKNESS	
-	•
DISPLACEMEN	AT STATION
NE	AT SI

		NEW DISPLA	NEW DISPLACEMENT THICKNESS	KNESS			
		AT STATION	•				
•	XX	0-10P	ACT-SLP	0-801	ACT-SLP	#BC0	MBCL
	200		70000	26116	0 50 35 0	47005	
		0 32025	0 4063E 03	0.3311E-04	0-13405-03-0	0.204.000.00	0 00335100
V 1	210.0	0.3283E-04	0.0003E-03	0.37436-04	0.57 99E-03-0.267 7E+02-0.287 3E+02	2017E+02	0.2873E+02
9 0	000	0.4012E-04	000000000000000000000000000000000000000	********	0.4024E-03-0.2013E+02-0.2208E+02	20135405	0.25005405
•		0.4887E-04	0.1068E-02	0.5012E-04	0. /44 3E-03-0. 104 6E +0 Z-0. 184 0E+0Z	10406402	0. 1840E+02
0	.037	0. 60 96E-04	0.1241E-02	0.5823E-04	0.8050E-03-0.1399E+02-0.1592E+02	1399E+02	0.1592E+02
0	•046	0.7354E-04	0.944 1E-03	0.6637E-04	0.6429E-03-0.1209E+02-0.1404E+02	1209E+02-	-0. 1404E+02
10	.056	0.7658E-04	0.1455E-03	0.71996-04	0.7741E-03-0.1052E+02-0.1252E+02	1052E+02-	-0.1252E+02
0	190.	0-1030E-03	0.2660E-02	0.9964E-04	0.2483E-02-0.9345E+01-0.1130E+02	9345E+01-	-0-1130E+02
0	.080	0.1320E-03	0.1332E-02	0.1263€-03	0.1203E-02-0.8077E+01-0.1003E+02	-10+37708.	-0.1003E+02
10 0	\$60.	0.1622E-03	0.1984E-02	0.1556E-03	0.1950E-02-0.7007E+01-0.8967E+01	7007E+01-	-0.8967E+01
11 0	.112	0.1931E-03	0.1533E-02	0.18336-03	0.1501E-02-0.5921E+01-0.7881E+0	5921E+01-	-0.7881E+01
12 0	.133	0.2349E-03	0. 1359E-02	0.2240E-03	0.1218E-02-0.4892E+01-0.6845E+0	4892E+01-	-0.6845E+01
13 0	.156	0.2841E-03	0.1487E-02	0.2707E-03	0.1362E-02-0.3908E+01-0.5862E+0	3908E+01-	-0.5862E+01
14 0	.183	0.339eE-03	0-1674E-02	0.32436-03	0.1548E-02-0.2971E+01-0.4924E+0	-10+31795.	-0.4924E+01
15 0	.212	0.4017E-03	0.1832E-02	0.3852E-03	0.1741E-02-0.2071E+01-0.4027E+0	2071E+01-	-0.4027E+01
16 0	.242	0.4662E-03	0.1607E-02	0.4490E-03	0.1842E-02-0.1207E+01-0.3170E+0	1207E+01-	-0.3170E+01
17 0	.272	0.5313E-03	0.1887E-02	0.5143E-03	0.1883E-02-0.3613E+00-0.2322E+0	3613E+00-	-0.2322E+01
10 0	.301	0.5952E-03	0.1756E-02	0.57736-03	0.1860E-02 0.	-6197E+00-	0.6197E+00-0-1347E+01
0 61	.330	0.6572E-03	0.1684E-02	0.6385E-03	0.1713E-02 0.	1479E+01-	0.1479E+01-0.4840E+00
20 0	.359	0.7172E-03	0.1771E-02	0.69996-03	0.1821E-02 0.	0.2124E+01	0-1007E+00
21 0	.387	0.77 6E-03	0.1874E-02	0.7638E-03	0.1938E-02 0.	0.2646E+01	0.6810E+00
22 0	.415	0.8408E-03	0.1683E-02	0.8296E-03	0.2028E-02 0.	0.3102E+01	0-1133E+01
23 0	.443	0.9040E-03	0. 1831E-02	. 9015E		0.3508E+01	0.1523E+01
24 0	.471	0.9690E-03	0.1968E-02	0.9775E-03	0.2592E-02 0.	0.3843E+01	0.1847E+01
52 0	664.	0.1034E-02	0.1957E-02	0.1065E-02		0.4152E+01	0.2139E+01
56 0	.527	0-1102E-02	0.19746-02	0-1168E-02		0.4418E+01	0.2395E+01
27 0	• 556	0.1176E-02	0.2105E-02	0.1287E-02		0.46506+01	0.2597E+01
28 0	0.585	0-1260E-02	0.2524E-02	0-1434E-02	0.4260E-02 0	0.4824E+01	0.2766E+01
0	•614	0-1364E-02	0.3422E-02	0.1607E-02		0.4943E+01	0.2890E+01
30 0	***	0.14 99E-02		0-1805E-02		0.5024E+01	0.2997E+01
31 0	0.674	0.1675E-02	0.5868E-02	0.2018E-02		0.5045E+01	0.3077E+01
32 0	0.704	0.1913E-02	0.7258E-02	0.2240E-02		0.5042E+01	0.3146E+01
33 0	0.734	0.2229E-02	0.9554E-02	0.2454E-02		0.4956E+01	0.3207E+01
34 0	0.763	0.2638E-02	0.1211E-01	0.2658E-02		0.4823E+01	0.3215E+01
35 0	. 793	0.3122E-02	0.135CE-01	0.2860E-02		0.4744E+01	0.3219E+01
36 0	0.821	0.3646E-02	0.1568E-01	0.3058E-02	0	.4609E+01	0.3195E+01
37 0	0.848	0.4163E-02	0.1630E-01	0.3262E-02	0	.4587E+01	0.3145E+01
38 0	.874	0.4638E-02	0.1722E-01	.3480E	0	.4535E+01	0.3060E+01
39 0	160.	0.5090E-02	•		0	.4431E+01	0.2919E+01
0				0.3987E-02	0	.3896E+01	0.2718E+01
41	. 940	0.6077E-02		. 4291E	0	.3240E+01	0.2443E+01
45 0	096	0.6725E-02			2180E-01 0	.2726E+01	0.2443E+01
43 0	. 580	0.7587E-02	0.5413E-01	0.50706-02	0	.2279E+01	0.2443E+01
44	• 000	0.8850E-02	0.6116E-01	0.5591E-02	0.5044E-01 0.	.2066E+01	0.2443E+01

S	
THICKNESS	
ž	
×	
2	
I	
-	
_	
Z	
W	
111	,-
5	
4	_
DISPLACEMENT	á
S	-
=	-
0	2
	STATION
Ä	
_	-

MBCL	. 2673E+02	.1540E+02 .1593E+02	. 1251E+02	.1003E+02	. 7882E+01	.4929E+01	.4029E+01	.2323E+01	.4891E+00	. 6732E+00	•	1506E+01	-2121E+01	. 2564E+01		.2877E+01	. 3099E+01	.3187E+01	32495+01	. 3249E+01	. 3218E+01	.3169E+01	3084E+01	2759E+01	.2511E+01	.2511E+01		.2511E+01
WBCU	0.1484E-03-0.4799E+02-0.4994E+02 0.5904E-03-0.2677E+02-0.2873E+02 0.4828E-03-0.2013E+02-0.2208E+02	0.7761E-03-0.1646E+02-0.1840E+02 0.8444E-03-0.1399E+02-0.1593E+02 0.6757E-03-0.1210E+02-0.1404E+02	0.6343E-03-0.1051E+02-0.1251E+02 0.2503E-02-0.9345E+01-0.1130E+02	0,1262E-02-0,8081E+01-0,1003E+02 0,1979E-02-0,7012E+01-0,8968E+01	0.1527E-02-0.5922E+01-0.7882E+01 0.1297E-02-0.4890E+01-0.6649E+01	0.1449E-02-0.3910E+01-0.5867E+01 0.1622E-02-0.2972E+01-0.4929E+01	0。1776E-02-0。2071E+0 1-0。4029E+01 0。1888E-02-0。1209E+0 1-0。3173E+01	0.1897E-02-0.3604E+00-0.2323E+01 0.1850E-02 0.6150E+00-0.1347E+01	0-1475E+01-0		0.3099E+01 0	0.3824E+01 0	0.4145E+01 0	0.4636E+01 0	0.4799E+01 0	0.4899E+01 0	0.4978E+01 0	0.4933E+01 0	0.4836E+01 0	0.4702E+01 0	0.4703E+01 0		0.4718E+01 0		0.3491E+01 0	0.3001E+01 0	0.2538E+01 0	0.2432E+01 0
ACT-SLP	-0.1484E-03-0 0.5904E-03-0 0.4828E-03-0	0.7761E-03- 0.8444E-03-	0.6343E-03-	0.1262E-02- 0.1979E-02-	0.1527E-02- 0.1297E-02-	0.1449E-02-	0.1776E-02-	0. 1850E-02	0.1804E-02	0.2077E-02	0.2186E-02	0.2986E-02	0.3207E-02	0.3628E-02	0.4866E-02	0.5297E-02	0.5593E-02	0.5384E-02	0.5042E-02		0.5735E-02	0	0.8149E-02	0-1292E-01	0.1631E-01	0.2101E-01	0.2864E-01	0.4686E-01
109-0	0.3496E-04- 0.3737E-04 0.4393E-04	0.5953E -04 0.5907E -04	0.7258E-04	0.12726-03	0.22616-03	0.3274E-03	0.4535E-03	0.5191E-03	0.6458E-03	0.77536-03		0.1011E-02	0-1111E-02	0.1229E-02	0.1534E-02	0.1724E-02	0.2132E-02	0.2330E-02	0.2516E-02	.2872E	0.3052E-02	3242E	0.34506-02	3934E	9	0.4567E-02	9	0.54696-02
ACT-SLP	-0.6420E-04 0.6392E-03 0.6769E-03	0.1115E-02 0.1305E-02 0.9900E-03		0.1402E-02 0.2067E-02			0.1626E-02 0.1840E-02	0.1869E-02 0.1840E-02	0-17546-02			0.2028E-02		0.2138E-02 0.2357E-02		•	0.5286E-02	0.9205E-02	0.1170E-01		0.1420E-01		0.1397E-01				0.4875E-01	0.5465E-01
D-10P	0.2982E-04- 0.3282E-04- 0.4028E-04	0.4939E-04 0.6205E-04 0.7530E-04	0.1743E-04 0.1044E-03	0.1331E-03 0.1647E-03	0.1957E-03 0.2379E-03	0.3438E-03	0.4070E-03 0.4725E-03	0.5379E-03 0.6028E-03	0.6662E-03	0.7891E-03	0.8526E-03	0.9840E-03	0.10536-02	0.1127E-02 0.1211E-02	0.1310E-02		0.1830E-02	0.21316-02	0.2521E-02	0.3489E-02	0.3982E-02	0.4406E-02	0.47735-02	0.54 90E-02	0.5920E-02	0.04 55E-02	0.7145E-02	0.80 86E-02
7 x/C	1 0.004 2 0.012 3 0.020	4 0.028 5 0.037 6 0.046	7 0.056 8 0.067	9 0.080	12 0 113	14 0.163	15 0.212	17 0.272	19 0.330	21 0.367	22 0.415	24 0.471	25 0 .499	27 0.556	28 0.585	29 0.614	31 0.674	32 0.704	33 0 - 734	35 0 - 793	36 0.821	37 0 -848	38 0 874	40 0.919	41 0.940	45 0.960	43 0.980	44 1.000

THICKNESS	
MENT	8
DISPLACE	
4	ð
S	-
-	-
9	STATION
	S
E	
-	100

WECL	.4994 E+02	873E+02	208E+02	84 1E+02	593E+02	404E+02	250E+02	130E+02	U03E+02	1970E+01	1880E+01	850E+01	10+3659	.4923E+01	-0.4030E+01	1172E+01	325E+01	0.6133E+00-0-1351E+01	0.1470E+01-0.4907E+00	0.1578E+00	.6674E+00	.1108E+01	.1471E+01	. 1806E+01	.2097E+01	.2334E+01	. 2540E+01	.2719E+01	.2879E+01	.3026E+01	3133E+01	3225E+01	3283E+01	3282E+01	3266E+01	3234E+01	3174E+01	3096E+01	2973E+01	.2796E+01	.2570E+01	.2570E+01
	+02-0-4	+02-0-2	+02-0-2	+02-0-1	+05-0-1	+02-0-1	+02-0+1	+01-0-1	+01-0-1	+01-0+	+01-0-1	+01-0+	+01-0+	9	+01-0+	+01-0+3	+00-00+	+00-00+	40100		1 0	1 0	1 0	1 0	0	0	1 0	1 0	10	.0.	1 0.	1 0.	1 0.	1 0.	1 0.	.0 1	.0 1	1 0.	10.	1 0.	1 0	0
WBCU	-0.4799E+02-0	0.2677E	0.2013E	0.1646E	0.1399E	0.1210E	0.1051E	0.934 BE	0.8082E	0.7016E	0.5924E	0.4891E	0.3912E	-0.2971E	-0.2070E	-0.1210E	0.3611E	0.6133E	0.1470E	0.2121E+01	0.2644E+0	0.3098E+0	0.3495E+0	0.38235+0	0.4134E+0	0.4390E+0	0.4612E+0	0.4766E+0	0.4849E+0	0.4897E+0	0.4889E+0	0.4826E+0	0.4755E+0	0.4754E+0	0.4801E+0	0.4868E+0	0.4906E+0	0.4856E+0	0.4580E+0	0.4185E+0	0.3706E+0	0.3225E+0
ACT-SLP	0.1393E-03-	0.6055E-03-0.2677E+02-0.2873E+02	0.5154E-03-0.2013E+02-0.2208E+02	0.8300E-03-0.1646E+02-0.1641E+02	0.9078E-03-0.1399E+02-0.1593E+02	0.7149E-03-0.1210E+02-0.1404E+02	0.4992E-03-0.1051E+02-0.1250E+02	0.2558E-02-0.9348E+01-0.1130E+02	0.1259E-02-0.8082E+01-0.1003E+0	0.2011E-02-0.7016E+01-0.8970E+01	0.1495E-02-0,5924E+01-0.7880E+01	0.1304E-02-0.4891E+01-0.6850E+01	0.1309E-02-0.3912E+01-0.5659E+0	0.1523E-02-0.2971E+01	0.1786E-02-0.2070E+01	0.1867E-02-0.1210E+01-0.3172E+0	0.1942E-02-0.3611E+00-0.2325E+01	0.1921E-02	0.1832E-02	0.1872E-02	0.21 80E-02	0.2457E-02	0.3180E-02	0.3313E-02	0.3645E-02	0.4168E-02	0.4747E-02	0.5088E-02	0.5265E-02	0.5064E-02	0.4990E-02	0.4711E-02	0.4433E-02	0.4626E-02	0.4901E-02	0.5441E-02	0.6542E-02	0.7931E-02	0.9842E-02	0.1283E-01	0. 1604E-01	0.2045E-01
0-601	0.3476E-04-	9	400E-04	0.5107E-04	0.6023E-04	0.6944E-04	0.7366E-04	0.1012E-03	0.1287E-03	0.1589E-03	0.18756-03	0.2280E-03	0.27596-03	9	0.3933E-03	0.4583E-03	0.524 BE -03	0.58936-03	0.6540E-03	0.7194E-03	0.7891E-03	0.8655E-03	0.9515E-03	0.1051E-02	0.1166E-02	0-130 IE-02	0.1459E-02	0-1635E-02	0.1827E-02	.2018E	0.2202E-02		0.2536E-02	0.2691E-02	0.2856E-02	0.3026E-02	0.3210E-02	0.3409E-02	0.36336-02	0.3885E-02	0.4168E-02	0.4504E-02
ACT-SLP	0.5765E-04	-	0.7027E-03	0.1158E-02	0.1365E-02	0.1033E-02	0.8908E-04	0.2712E-02	0.1431E-02	0.2141E-02	0.1571E-02	0.1345E-02	0.1559E-02			0.1861E-02	0. 1883E-02		0.1837E-02	0.1837E-02	0.1897E-02	0.1951E-02	0.2068E-02	0.2326E-02	0.2287E-02		0.2783E-02			.6671E-02		.1111E-01		0.1332E-01	0.1249E-01	0.1126E-01	0-1062E-01	0-1150E-01	0.1420E-01	0.1918E-01	0.2702E-01	0.4176E-01
U-10P	0.2980E-04-		0.4053E-04	0.4997E-04	0.6317E-04	0.7705E-04	0.7904E-04-	0.1054E-03	0.1348E-03	0.1669E-03	0.1983E-03	0.2411E-03	0.2917E-03	0.34 83E-03	0.4128E-03	0.4787E-03	0.5445E-03	0.6101E-03	0.6744E-03	0.7364E-03	0.7991E-03	0.8639E-03	0.9303E-03	0.9987E-03	0.1075E-02	0.1157E-02	0.1253E-02	0.1373E-02	0.1531E-02	0.1740E-02	0.2020E-02	0-238EE-02	0.2834E-02	0.3328E-02	0.3789E-02	0.4195E-02	0.4521E-02	0.4806E-02	0.5090E-02	0.54 10E-02	0.5792E-02	0.6271E-02
, x/c	1 0.004		3 0.020	4 0.028	5 0.037	9 0 0 9	7 0.056	8 0.067	080.0 6	10 0.095	11 0.112	12 0 .133	13 0.156	14 0.183	15 0.212	16 0.242	17 0.272	18 0.301	19 0.330	20 0.359	21 0.387	22 0.415	23 0 . 443	24 0.471	55 0.499	26 0.527	27 0.556	28 0 92	29 0.614	30 0.644	31 0.674	32 0.704	33 0.734	34 0 . 763	35 0.793	36 0.821	37 0.848	38 0.874	39 0 .897	40 0.919	41 0.940	42 0.960

THICKNESS	
EMENT	•
DISPLACEMENT	STATION
0	1
NE	1 5

6	0-10-	ACT-SLP	D-80T	ACT-SLP	WBCU	MBCI
						750
0.29	2985E-04-	0.5203E-04	0.3468E-04-	0.1319E-03-0.4799E+0	N	-0.4994E+02
• 33	0.3306E-04	0.6650E-03	0.3729E-04	0.6199E-03	-0.2677E+02	0.6199E-03-0.2677E+02-0.2873E+02
.40	0.4085E-04	0.7272E-03	0.4428E-04	0.5447E-03-	-0.2013E+02	0.5447E-03-0.2013E+02-0.2208E+02
.50	0.5061E-04	0.1198E-02	0.5168E-04	0.8792E-03-	-0.1647E+02	0.8792E-03-0.1647E+02-0.1841E+02
40.	0.6431E-04	0.1422E-02	0.6140E-04	0.9669E-03-	0.9669E-03-0.1400E+02-0.	-0.1593E+02
.78	0.7878E-04	0.1072E-02	0.7117E-04	0.7530E-03-	-0-1210E+02	0.7530E-03-0.1210E+02-0.1404E+02
. 79	. 7991E-04-	0.2222E-03	0.7469E-04	0.3813E-03-	-0-1050E+02	.3813E-03-0.1050E+02-0.1249E+02
.10	0.1068E-03	0.2764E-02	0-1024E-03	0.2612E-02-	0.2612E-02-0.9351E+01-0.	-0.1130E+02
0.13	368E-03	0.1441E-02	0-1303E-03	0.1270E-02-	-0.8083E+01	. 1270E-02-0.8083E+01-0.1003E+02
.16	0.1688E-03	0.2163E-02	0.1606E-03	0.2104E-02-	-0.7018E+01	.2104E-02-0.7018E+01-0.8975E+01
.20	0.2010E-03	0.1608E-02	0-1897E-03	0.1484E-02-	.1484E-02-0.5926E+01-0.	-0. 7880E+01
.24	0.2441E-03	0.1465E-02	0.23096-03	0.1224E-02-	. 1224E-02-0.4898E+01	-0.6645E+01
.29	.2951E-03	0.1621E-02	0.2795E-03	0.1276E-02-	.1276E-02-0.3915E+01	-0.5857
35	.3528E-03	0.1645E-02	0.3342E-03	0.1586E-02-		-0.4927E+01
.41	.4180E-03	0.1828E-02	0.39735-03	0.1808E-02-	-0.2071E+01-0.4031E+0	-0.4031E+01
.48	.4846E-03	0.1882E-02	0.4632E-03	0.1956E-02-	. 1956E-02-0.1211E+01-0.3177E+0	-0.3177E+01
.55	0.5511E-03	0-21928E-02	0.5302E-03	0.1915E-02-	-0.3637E+00	.1915E-02-0.3637E+00-0.2324E+01
.61	.6173E-03	0.1889E-02	0.5965E-03	0.1890E-02	0.6122E+00	0.6122E+00-0.1349E+01
.68	.6828E-03	0.1867E-02	0.6639E-03	0.1776E-02	0-1468E+01-0	-0.4875E+00
.74	0.7453E-03	0.1863E-02	0.7316E-03	0.2064E-02	0.2119E+01	0
0.80	.8090E-03	0.1936E-02	0.8068E-03	0.2325E-02	0.2642E+01	0.6593E+00
.87	0.8750E-03	0.2032E-02	0.8899E-03	0.2682E-02	0.3093E+01	-
40.	0.9436E-03	0.2147E-02	0.9855E-03	0.3533E-02	0.3491E+01	0.1452E+01
0	0 - 10 10E - 02	0.2318E-02	0.1098E-02	0.3777E-02	0.38235+01	0.1780E+01
	0.1194F-02	0.2791E-02	0.13765-02	0.45346-02	0.4373640	0.2369540
	0-1306F-02	0-3428F-02	0-1542F-02	0.4962E-02	0.45816401	0.25275401
0.14	-14 52E-02	0.4391E-02	0-17195-02	0.5005F-02		0-2724F+01
0.16	-1647E-02	0.6164E-02	0.1900E-02	0.4897E-02	0.4789E+01	0.2899E+01
.19	0.1903E-02	0.7952E-02	0.2072E-02	0.4609E-02	0.4825E+01	0.3051E+01
0.22	-2244E-02	0.1033E-01	0.2230E-02	0.4278E-02	0.4794E+01	0.3173E+01
0.26	.2669E-02			0.4084E-02	0.4744E+01	0.3260E+01
0.31	.3151E-02	0-1345E-01	0.2522E-02	0-4036E-05	0.4737E+01	0.3305E+01
• 36	0-3611E-02	0.1244E-01	0.2665E-02	0.4322E-02	0.4804E+01	0.3299E+01
0.40	024E-02	0-1071E-01	0.2821E-02	0.4688E-02	0.4901E+01	0.3278E+01
0.43	.4344E-02	0.9096E-02	0.2985E-02	0.5331E-02	0.4990E+01	0.3240E+01
0.46	.4600E-02	0.8703E-02	0.3162E-02	0.6342E-02	0.5014E+01	0.3185E+01
0.48	.4835E-02	0.9803E-02	0.3354E-02	0.7681E-02	0.4952E+01	0.3110E+01
0.50	.5080E-02	0.1257E-01	0.3566E-02	0.9712E-02		0.2996E+01
0.53	5358E-02	0.1688E-01	0.3804E-02	0.1208E-01	0.4316E+01	0.2830E+01
	.5682E-02	•	0	0.1554E-01	0.3890E+01	0.2620E+01
09.0	60 72E-02		0.4385E-02	0.1976E-01		0.2620E+01
• 65	0.6546E-02	0.4309E-01	O AZEAF O	1000000		
2000			חייו של חיב	10-2611200	0.2911E+01	0.2620E+01

THICKNESS	
=	
MENT	0
CE	-
DISPLACE	STATION
S	-
-	-
٥	2
	S
NE	
Z	7
	•

HBCL	4994E+02	E+05	+05	Ö	0	05	05	2	2	_	-		٠,		-	-	-	0	0	-	-	-	-	-	-	-	-	- 1			-	-	-	-	=	=	=	=	=	=	=	-
3	.499	1.2873	1.220BE	1.1841E+02	. 1594E+	1. 1404E+02	1. 124 9E+	.1130E+	1.1004E+C	0.8975E+0	. 7881E+0	0.6847E+0	4630540	-0.4033E+0	).3178E+0	0.2326E+0	0.1352E+0	0.4930E+00	0.1455E+00	0.6446E+00	0.1063E+01		0.1771E+01		0.2302E+0	1.2528E+0	0.2736E+0	- 2929E+0	3199E+0	0.3276E+01	. 3313E+01	.3310E+01	0.3284E+01	0.3241E+01	0.3194E+01	.3111E+01	0.3016E+0	0.2859E+0	1.2663E+0	. 2663E+01	0.2663E+0	0.2663E+0
WBCU	-0-4799E+02-0	0.6342E-03-0.2677E+02-0.2873E+02	0.5719E-03-0.2013E+02-0.2208E+02	0.9251E-03-0.1647E+02-0	0.1023E-02-0.1400E+02-0.1594E+02	0.7908E-03-0.1210E+02-0	0.2919E-03-0.1049E+02-0.1249E+02	0.2630E-02-0.9353E+01-0.1130E+02	0.1305E-02-0.8087E+01-0.1004E+02	0.2093E-02-0.7018E+01-0.8975E+01	0.1503E-02-0.5927E+01-0.7881E+01	0.1255E-02-0.4899E+01-0.6847E+01	0.1330E-02-0.3916E+01-0.3861E+01	0.2074E+01-0	0.1978E-02-0.1213E+01-0.3178E+01	0.1953E-02-0.3668E+00-0.2326E+01	0.6147E+00-0.1352E+01	0-1468E+01-0	0.2120E+01 C	0.2643E+01 0		.3484E+01	.3812E+01	.4108E+01	-	0.4540E+01 0		0.4719E+01	0.4724E+01 0	.4712E+01	0.4769E+01 0	0.4915E+01 0	0.5027E+01 0	_	0.5077E+01 0	0.4984E+01 0	0.4715E+01 0	0.4429E+01 0	0.4047E+0.1	0.3574E+01 0	0.3056E+01 0	0.2379E+01 C
ACT-SLP	.0.1257E-03-	0.6342E-03-	0.57 19E-03-	0.9251E-03-	0.1023E-02-	0.7908E-03-	0.2919E-03-	0.2630E-02-	0.1305E-02-	0.2093E-02-	0.1503E-02-	0.1255E-02-	0.1330E-02-0.3918E+01	0-1851E-02-0-2074E+01	0.1978E-02-	0.1953E-02-	0.1948E-02	0.1874E-02	0.2092E-02	0.2588E-02	0.2910E-02	0.3716E-02	0.3945E-02	0.4327E-02	0.4739E-02	0.4972E-02	0.4783E-02	0.436ZE-0Z	0.3820F-02	0.3786E-02	0.3891E-02	0.4128E-02	0.4588E-02	0.5323E-02		0.7657E-02	0.9397E-02	0-1211E-01	0.1527E-01	0-1973E-01	0.2664E-01	0.4154E-01
109-0	.3470E	0.3741E-04	0.4459E-04	.5234E	0.6259E-04	0.7292E-04	0.7627E-04	0.1037E-03	0.1318E-03	0.1623E-03	0.1922E-03	.2336E	0.2627E-03	4012	.4684E	0.53636-03	0.6044E-03	0.6747E-03	0.7469E-03	0.8280E-03	0.9200E-03	0.1026E-02	•1150E	.1290E	.1446E	.1612E	-1777E	19385	0.2224E-02	. 2358E	0.2493E-02	0.2630E-02	0.2782E-02	0.2943E-02	0.3114E-02	0-3303E-02	0.3514E-02	0.3747E-02	0.4014E-02	0.4322E-02	0.4688E-02	0.5131E-02
ACT-SLP	0.4705E-04	0.6783E-03	0.7511E-03	0.1238E-02	0 - 1477E-02	0.1112E-02	0.2980E-03	0.2799E-02	0.1508E-02	0.2172E-02	0.1629E-02	0.1485E-02	0. 1631 E-02	0-1873E-02	0.1915E-02	0. 1983E-02	0.1844E-02	0.1877E-02	0.1848E-02	0.1924E-02	0.2078E-02	0.2259E-02	0.2525E-02	0.2749E-02	0.3241E-02	0.4054E-02	0.5408E-02	0. 7418E-02	0-9377E-02	0.13136-01	0.1289E-01	0.1045E-01	0.8478E-02	0.7285E-02	0.7579E-02	0.9230E-02	0.1203E-01	0.1604E-01	0.2154 E-01	0.3027E-01	0.4293E-01	0.5559E-01
901-0	0.2996E-04-	0.3327E-04	0.4124E-04	0.5130E-04	0.6548E-04	0.8053E-04	0.8158E-04-	0.1079E-03	0.1383E-03	0.1708E-03	0.2038E-03	0.2473E-03	0.3573E-03	0.4230E-03	•	0.5578E-03	0.62496-03	0.6905E-03	0.7540E-03	0.8187E-03	0.8864E-03	0.9583E-03	0.1037E-02	0.1129E-02	0.1238E-02	0.1373E-02	0.1550E-02	0.1788E-02	0.24 96E-02	0.2955E-02	0.3422E-02	0.3817E-02	0.41396-02	0.4384E-02	0.4595E-02	0.4810E-02	0.5046E-02	0.5319E-02	0.5637E-02	0.6013E-02	0.64 63E-02	0.7010E-02
, x/c	1 0.004	2 0.012			5 0.037	6 0.046	7 0.056	8 0.067	080.0 6	960.0 0	1 0.112		001100	5 0 - 212	6 0 .242	7 0.272	8 0.301	0	50 0.359	21 0.387	0	0	0	0	0	0	0	9 0	31 0.674	0	33 0.734	34 0.763	35 0 . 793	36 0.821	37 0.848	38 0.874	39 0 8897	0 0.919	1 0.940	2 0.960	3 0 .980	4 1.000

THICKNESS	
MENT	-
W	-
ISPLACEMENT	3
5	=
0	STATIC
-	S
Ä	-

•	XXC	0-10P	ACT-SLP	D-80T	ACT-SLP	4800	WBCL
.0.	*00*	0.3013E-04-	0.4252E-04	0.3481E-04-	-0.1205E-03-0.4799E+02-0	4799E+02-0	.4994E+02
2 0.	-012	0.335AE-04	0.6920E-03	0.3760E-04	0.64 85E-03-0.2677E+02-0.2873E+02	2677E+02-0	. 2873E+02
3 0	.020	0.4168E-04	0.7747E-03	0.4498E-04	0.5978E-03-0.2013E+02-0.2208E+02	2013E+02-0	.2208E+02
.0.	.028	0.5205E-04	0.1277E-02	0.5307E-04	0.9690E-03-0.1647E+02-0.1841E+02	1647E+02-0	. 184 1E+02
200	.037	0.6671E-04	0.1531E-02	0.6384E-04	0-1077E-02-0-1400E+02-0	1400E+02-0	.1594E+02
.00	.040	0.8232E-04	0.1148E-02	0.7470E-04	0.8272E-03-0.1210E+02-0.1405E+02	1210E+02-0	. 1405E+02
1 0.	.050	0.8241E-04-	0.4196E-03	0.7735E-04	0.1774E-03-0.1049E+02-0.1248E+02	1049E+02-0	. 124 BE+02
0 0	1900	-	0.2781E-02	0-1050E-03	0.2612E-02-0.9352E+01-0.1130E+02	9352E+01-0	• 1130E+02
00	.080	0-1400E-03	0.1545E-02	0.1329E-03	0.1396E-02-0.8089E+01-0.1004E+02	8089E+01-0	.1004E+02
10 0	.095	0.1731E-03	0.2218E-02	0-1643E-03	0.2097E-02-0.7021E+01-0.8975E+0	7021E+01-0	.8975E+01
	.112	0.2063E-03	0.1608E-02	0-1947E-03	0.1523E-02-0.5926E+01-0.7882E+01	. 5926E+01-0	. 7882E+01
12 0.	•133	0.24986-03	0.1440E-02	.2362E	0.1285E-02-0.4896E+01-0.6849E+0	4896E+01-0	. 6849E+01
13 0.	1156	0.3027E-03	0-1501E-02	0.2855E-03	0.1456E-02-0.3908E+01-0.	3908E+01-0	. 5867E+01
	.183	0.3617E-03	0.1761E-02	0.34136-03	0.1668E-02-0.2975E+01-0.4931E+0	2975E+01-0	. 4931E+01
15 0.	-212	0.4279E-03	0.1631E-02	0-4056E-03	0.1886E-02-0.2071E+01-0.4035E+0	.2071E+01-0	.4035E+01
16 0.	.242	0.4964E-03	0. 1935E-02	0.4731E-03	0.1953E-02-0.1214E+01-0.3176E+01	1214E+01-0	.3176E+01
17 0.	.272	0.5640E-03	0.1940E-02	0.5435E-03	1	3643E+00-0	.2336E+01
16 0.	.301	0.6316E-03	0. 191 1E-02	0-61396-03		0.6109E+00-0.1349E+01	.1349E+01
19 0.	•330	0.6977E-03	0-1922E-02	0-6877E-03	0.2161E-02 0.	9	. 5092E+00
20 0.	.359	0.7626E-03	0-1934E-02	0.7662E-03	0.2363E-02 0.	0.2115E+01 0	.1303E+00
21 0.	.387	0.828E-03	0.2075E-02	0.8542E-03	0.2669E-02 0.	0.2634E+01 0	.6400E+00
22 0.	.415	0.8991E-03	0.2320E-02	0.954 TE-03	0.3267E-02 0.	0.3077E+01 0	0.1063E+01
23 0.	443	0.9761E-03	0.2612E-02	0-1071E-02	0.3842E-02 0.	0.3464E+01 0	.1434E+01
24 0.	.471	0-1062E-02	0.2655E-02	0.120 X -02	0.4084E-02 0.	0	.1763E+01
25 0.	664.	0-1165E-02	0.3277E-02	0-1347E-02	0.4346E-02 0.	0.4078E+01 0	.2057E+01
26 0.	.527	0.12936-02	0.3713E-02	0-1500E-02			0.2305E+01
27 0.	.556	0-1454E-02	0.4756E-02	0-1656E-02	0	.4501E+01 0	.2541E+01
28 0.	585	0.16 GE-02	0.6571E-02	0.1803E-02	0.4342E-02 0.	.4597E+01 0	.2761E+01
29 0	+19.	0.1953E-02	0.8532E-02	0-19456-02	0.3892E-02 0.	.4656E+01 0	. 2956E+01
30 0	449	0.2315E-02	0.1085E-01	0.2075E-02	0	_	0.3110E+01
31 0.	0.674	0.2750E-02	0-1199E-01	0.2199E-02	0.3472E-02 0.	.4701E+01 0	0.32185+01
32 0.	.704	0.3214E-02	0-1548E-01	•2325E	0	-	0.3288E+01
33 0.	.734	0.3634E-02	0-1015E-01	0.2454E-02	0.3785E-02 0.	0	.33196+01
34 0.	.763	0.3968E-02	0.8532E-02	0.2589E-02	0.3913E-02 0.	0.5023E+01 0	. 3322E+01
35 0.	.793	0.4237E-02	0.7094E-02	0.2735E-02		0.5104E+01 0	0.3281E+01
36 0.	.821	0.4465E-02	0.6626E-02	0.2888E-02	0.5064E-02 0.	-	0.3255E+01
37 0.	.848	0.4688E-02	0.7767E-02	0.3050E-02	0.5925E-02 0.	0.5066E+01 0	. 320 9E+01
38 0.	.874	0.4918E-02	0.9370E-02	0.3227E-02	0.7251E-02 0.	.4976E+01 0	.3134E+01
39 0.	169.	0.5157E-02	0.1158E-01	0.34125-02	0.8763E-02 0.	0.4764E+01 0	.3033E+01
40 0	616.	0.5403E-02	0.1430E-01	0.3617E-02	0.1107E-01 0.	.4520E+01 0	.2663E+01
41 0	.940	0.565E-02	0.1806E-01	0.3844E-02	0.1382E-01 0	4178E+01 0	.2698E+01
42 0.	096.	0.5916E-02	0.2528E-01	0.4098E-02	0.1772E-01 0.	.3714E+01 0	.2698E+01
43 0.	.980	0.6194E-02	0.4012E-01	0.4390E-02		0.3189E+01 0	. 2098E+01
44 1.	0000	0.6492E-02	0.5496E-01	0.4733E-02	0.3775E-01 0.	0.24146+01 0	0.2698E+01

THICKNESS	
EMENT	12
DISPLACEMENT	101
Market .	STATION
MAN	1 5

		NEW DISPLA	NEW DISPLACEMENT THICKNESS	CKNESS			
		AT STATION	12				
7	X/C	O-10P	ACT-SLP	D-80T	ACT-SLP	BCU BECL	
-	0.00	0.3036E-04-	.0.3831E-04	0.3500E-04-	-0-1162E-03-0-47	4799E+02-0.4994E+02	+02
N	0.012	0.3386		0.3788E-04	0.6630E-03-0.26	0.6630E-03-0.2677E+02-0.2873E+02	+05
m	0.020	0.4218E-04	0. 7985E-03	0.4545E-04	0.6225E-03-0.2013E+02-0.	013E+02-0.2209E+02	+05
4	9.056	0.5286E-04	0.1316E-02	0.5387E-04	0.1011E-02-0.16	0.1011E-02-0.1647E+02-0.1842E+02	+05
0	0.037		0.1586E-02	0.6512E-04	0.1130E-02-0.14	0.1130E-02-0.1401E+02-0.1594E+02	+05
0	0.046			0.7650E-04	0.8636E-03-0.12	0.8636E-03-0.1211E+02-0.1405E+02	+05
-	950.0	_	.0.4929E-03	0.7846E-04	0.7595E-04-0.10	0.7595E-04-0.1048E+02-0.1248E+02	+05
0	190.0	0.1110E-03	0.2877E-02	0.1065E-03	0.2663E-02-0.93	0.2663E-02-0.9357E+01-0.1131E+02	+05
0	080.0	0.1421E-03	0.1529E-02	0.1348E-03	0.1382E-02-0.80	0.1382E-02-0.8088E+01-0.1004E+02	+05
10	960.0		0.2201E-02	0.1663E-03	0.2065E-02-0.70	9	+01
:	0.112		0.1618E-02	0.1972E-03	0.1536E-02-0.5926E+01	326E+01-0.7883E+0	+01
15	0.133	0.2532E-03	0.1381E-02	0.23896-03	0.1301E-02-0.4893E+01	393E+01-0.6849E+0	+01
13	991.0		0.1514E-02	0.2886E-03	0.1486E-02-0.3909E+01	909E+01-0.5869E+0	+01
14	0.183		0.1718E-02	0.3449E-03	0.1669E-02-0.2973E+01	973E+01-0.4931E+0	+01
15	0.212		0.1925E-02	0.4099E-03	0.1909E-02-0.20	0.1909E-02-0.2077E+01-0.4037E+0	10+
91	0.242		0. 1930E-02	0.4792E-03	0.1935E-02-0.12	0.1935E-02-0.1214E+01-0.3175E+0	+01
11	0.272		0.194E-02	0.5505E-03	0.2186E-02-0.36	0.2186E-02-0.3646E+00-0.2339E+0	+01
18	0.301		0-1926E-02	0.6261E-03		0.6101E+00-0.1356E+01	10+
19	0.330		0.1962E-02	0.7035E-03	0.2116E-02 0.14	1	+00
50	0 .359		0.1963E-02	0.7870E-03			00+
51	0.387		0.2145E-02	0.9821E-03			+00
22	0.415	7	0.2456E-02	0.9902E-03		0.3070E+01 0.1059E+01	+01
53	0.443		0.2780E-02	0.1111E-02		-	+01
	0.471		0.3275E-02	0-1247E-02		1 0.	+01
	0 .499		0.3760E-02	0.1389E-02		1 0.	+01
	0.527		0.4416E-02	0-1532E-02		1 0	10+
	99990		0.5846E-02	.1671E	0	.0	+01
	0.585		0.7824E-02	0.1800E-02	0	1 0.	+01
	0.614		0.9725E-02	0-1926E-02	0	1 0.	+01
30	0.644		0.1133E-01	-204 SE	0	1 0.	+01
31	0.674		0.1202E-01	0.2163E-02	0	. 0	+01
35	0 . 704	1	0.1116E-01	0.22856-02	-02 0		+01
33	0.734		0.8754E-02		0	. 0	10+
2		0	0.6942E-02	-2544E	.3847E-02 0		10+
32	0 . 793	0	0.6388E-02	. 2682E	0 '	0 1	10+
30	0 . 821		0.7117E-02	.2828E	-05		+01
37	•	F U	0.8612E-02	•2975E	.5580E-02 0		+01
36	0.874	0	0.1038E-01	•	.64 30E-02 0		101
36	168.0	0	. 1239E-	. 3282E	7948E-02 0		10+
0	•	•	. 1485E-		.9667E-02 0	.0	+01
-	0 6 6 0		0.1783E-01	0.3613E-02	4.0	•	101
46	0000			0.3795E-02	. 1522E-01 0	•	104
2	086.0	0.04090	0.3774E-01	0.3995E-02	2087E-01 0	•	10+
*		0.00000-02	0.5218E-01	0.42136-02	0.3480E-01 0.25	570E+01 0.2726E+0	10+

DISPLACE		
DISPLACEMENT	THICKNESS	
	DISPLA	MILL
A "	NEW	1 41

7 x/c	0-10P	ACT-SLP	108-0	ACT-SLP	WBCU	WBCL
1 0.004	0.3061E-04-	-0.3450E-04	0.3528E-04-	0.1129E-03-	0.1129E-03-0.4799E+02-0.	0.4994E+02
2 0.012	0	0.7210E-03		0.6776E-03-	0.6776E-03-0.2677E+02-0.2873E+02	0.2873E+02
3 0.020	0.4273E-04	0.8224E-03	0.4601E-04	0.64 58E-03-	3.6458E-03-0.2014E+02-0.2209E+02	0.2209E+02
4 0.028	0.5372E-04	0.1356E-02	0.54746-04	0.1051E-02-	0.1051E-02-0.1647E+02-0	0.1842E+02
5 0.037	0.6935E-04	0.1641E-02	0.6646E-04	0.1180E-02-	0.1180E-02-0.1401E+02-0.1595E+02	0.1595E+02
6 0.046	0.8612E-04	0.1226E-02	0.7835E-04	0.8999E-03-	0.8999E-03-0.1211E+02-0.1405E+02	0. 1405E+02
7 0.056	0.8520E-04-	-0.6042E-03	0.6030E-04-	-0-2960E-05-	.2960E-05-0.1048E+02-0.1247E+02	0.1247E+02
8 0.067	0.11286-03	0.2911E-02	0.1078E-03	0.2704E-02-	0.2704E-02-0.9359E+01-0.1131E+02	0.1131E+02
9 0.080	0-1440E-03	0.1550E-02	0.1365E-03	0.1411E-02-	0.1411E-02-0.8089E+01-0.1004E+02	0.1004E+02
10 0.095	0.1778E-03	0.2297E-02	0.1665E-03	0.2108E-02-	0.2108E-02-0.7025E+01-0.8975E+01	0.8975E+01
11 0.112	0.21156-03	0.1718E-02	.1998E	0.1539E-02-	0.1539E-02-0.5932E+01-0.7883E+0	0.7883E+01
12 0.133	0	0. 1393E-02	0.2417E-03	0.1281E-02-	.1281E-02-0.4894E+01-0.6848E+01	0.6848E+01
13 0.156	0	0.1509E-02	0.2914E-03	0.1584E-02-	. 1584E-02-0.3909E+01-0.5874E+01	3.5874E+01
14 0 183	0.3705E-03		.348BE	0.1683E-02-	0.1683E-02-0.2970E+01-0.4932E+0	0.4932E+01
15 0.212	0.4380E-03		.4148E	0.1913E-02-	0.1913E-02-0.2080E+01-0.4037E+01	0.4037E+01
16 0 .242	•		.4862E	0.2075E-02-	0.2075E-02-0.1216E+01-0.3183E+01	0. 3183E+01
17 0.272	0	0.1959E-02	0.5595E-03		-0.3654E+00-0.2336E+01	0.2336E+01
18 0.301	0.6453E-03	0.1930E-02	0.6372E-03	0.2277E-02	0.6099E+00-0.1371E+01	0.1371E+01
19 0.330	0.7134E-03	0.1951E-02	0.7196E-03	0.2521E-02	1	0.5294E+00
20 0 359	0.7811E-03	0.2031E-02	0.8095E-03	0.2694E-02	0.2110E+01 0	0.1117E+00
21 0.387	0.8510E-03	0.2264E-02	0.9097E-03	0.3014E-02	0.2624E+01	0.6206E+00
22 0.415	0.9283E-03	0.2620E-02	0.1022E-02	0.3408E-02	0.3060E+01	0.1055E+01
23 0.443	0.1016E-02	0.3107E-02	.1145E	0.3581E-02	0.3437E+01	0.1449E+01
24 0.471	0.1124E-02	0.3723E-02	0-1276E-02	0.3816E-02	0.3744E+01	0.1778E+01
55 0 .499	0.1260E-02		0-1408E-02	0.3814E-02	0.4018E+01	0.2087E+01
26 0.527	0.1432E-02	0.5359E-02	0.1538E-02	0.3810E-02	0.4228E+01	0.2354E+01
27 0.556	0	0.7031E-02	0.1662E-02	0.3675E-02	0.4373E+01	0.2601E+01
28 0 .585	0.1954E-02	0.9055E-02	0.1778E-02	0.3326E-02	0.4457E+01	0.2818E+01
29 0.614	0.2323E-02	0.10336-01	0.1894E-02	0.3307E-02	0.4555E+01 (	0.2989E+01
30 0.644	0.2754E-02	0.1147E-01	. 200 BE	0.3273E-02	0.4627E+01	0.3127E+01
31 0.674	0.3181E-02	0.1076E-01	0.2125E-02	0.3334E-02	0.4770E+01	0.3226E+01
32 0 . 704	0.3544E-02	0.8811E-02	0.2246E-02	0.34 74E-02	0.4955E+01 (	0.3294E+01
33 0.734	0.3812E-02	0.6433E-02	0.2372E-02	0.3663E-02	0.5132E+01	0.3326E+01
34 0 .763	•	0.5592E-02	0.2503E-02	0.3974E-02	0.5188E+01	0.3318E+01
35 0 . 793	0.4248E-02	0.5873E-02	0.2637E-02	0.4196E-02	0.51735401	0.3306E+01
36 0 . 821	0.44 76E-02	0.7040E-02	0.2777E-02	0.4924E-02	0.5105E+01	0.3263E+01
37 0.848	0.4732E-02	0.8451E-02	0.2924E-02	0.54 74E-02	0.5028E+01	0.3234E+01
38 0.874	0.5007E-02	0.1025E-01	0.3073E-02	0.64 B BE-02	0.4927E+01	0.3177E+01
39 0 .897	0.5283E-02	0.1214E-01	0.3225E-02	0.7687E-02	0.4824E+01	0.3053E+01
40 0.919	0.5544E-02	0.1400E-01	0.3384E-02	0.9673E-02	0.4640E+01	0.2915E+01
41 0.540	0.5785E-02	0.1626E-01	0.35536-02	0.1203E-01	0.4370E+01	0.2746E+01
45 0.960	0	0.2134E-01	0.37356-02	0.1512E-01	0-3939E+01	0.2746E+01
43 0.980	•	0.35116-01	0.3933E-02	0.2062E-01	0.3430E+01	0.2746E+01
44 1.000	0.6400E-02	0.488E-01	0.4155E-02	0.3404E-01	0.2756E+01 C	0.2746E+01

S	
ICKNESS	
Ž	
Ž	
Ī	
-	
Z	
¥	:
DISPLACEMENT	-
3	,
ā	STATION
=	=
0	4
	S
NEW	
Z	7
	-

0
0.3870E-04 0.6925E-03-0.2677E+02-0.2873E+02 0.4655E-04 0.6680E-03-0.2014E+02-0.2209E+02
00
0.8020E-04 0.933E-03-0.1211E+02-0.1405E+02
1
-03
.1365 -03 0.14326-02-0.80916+01-0.10046+02
-03 0.1546E-02-0.5935E+01-0
60
0
0.3533E-03 0.1585E-02-0.2974E+01-0.4927E+01
69
0.2224E-02-
-03 0.2334E-02
0.2604E-02 0.1464E+01-
.8311E-03 0.2757E-02 0.2114E+01 0.1081E+00
-02 0.3403E-02 0.3065E+01 0
0.3441E-02
0.3477E-02 0.3729E+01 0.
.1527F-02 0.3457F-02 0.4178F-01 0.2374F+01
0.3409E-02 0.4317E+01 0
-02 0.3259E-02 0.4405E+01 0
-02 0.3354E-02 0.4515E+01 0.
0.3275E-02 0
-02 0.3496F-02 0.5058F+01 0.
-02 0.3730E-02 0.5216E+01 0.
0.2470E-02 0.3953E-02 0.5240E+01 0.3320E+01
-02 0.4284E-02 0
2745E-02 0.4843E-02 0.5128E+01 0.3268E+01
1 0
.3052E-02 0.6703E-02 0.4967E+01 0.3165E+01
0.3214E-02 0.7939E-02 0.4840E+01 0.3056E+01
0.3386E-02 0.1011E-01 0.4674E+01 0.2921E+01
0.3573E-02 0.1256E-01 0.4431E+01 0.2759E+01
0 1
.4006E-02 0.2140E-01 0.3539E+01 0.2759E+01
.4267E-02 0.3435E-01 0.3260E+01 0.2759E+01

THICKNESS	
-	
DISPLACEMENT	
x	0
S	-
4	
2	ā
3	-
-	-
3	STATION
	S
W	
z	=
	•

	NEW DISPLA	NEW DISPLACEMENT THICKNESS T STATION 15	KNESS			
, x/c	- D-10P	ACT-SLP	0-601	ACT-SLP	WBCO	MBCL
1 0.004	_	-0.2757E-04	0.3612E-04-	.0.1092E-03-0.	0-4799E+02-0	-0.4994E+02
	0.3		0.3925E-04	0.7077E-03-0.2677E+02-0.2873E+02	0.2677E+02-	-0.2873E+02
			0.47396-04	0.6889E-03-0.2014E+02-0.2209E+02	0.2014E+02-	-0.2209E+02
4 0.028	0.5563E		0.5669E-04	0.1125E-02-0.1648E+02-0.1842E+02	0.1648E+02-	-0.1842E+02
5 0.037	0	0.1755E-02	0.6928E-04	0.1273E-02-0.1402E+02-0	0.1402E+02-	0.1595E+02
0.00	0.9024E-04	0.1310E-02	0.8210E-04	0.9674E-03-0.1211E+02-0	10476402-	0. 1405E+02
290-08	0		FO-34011-0	0.2843F-02-0.9367F+01-0.1132F+0	1.9367F +01-	0.11325402
			0-1407E-03	0.1397E-02-0.8092E+01	.8092E+01-	-0.1004E+02
10 0.095		0.2270E-02	.1724E	0.2125E-02-0.7024E+01-0.8976E+01	1.7024E+01-	-0.8976E+01
11 0.112			0.2052E-03	0.1540E-02-0.5934E+01	1.5934E+01-	-0.7883E+01
12 0 -133	_		0.2476E-03	0.1444E-02-0.4900E+01	1.4900E+01-	-0.6857E+01
13 0 156	-		0.2980E-03	0. 1612E-02-0. 3922E+01	. 3922E +0 1-	-0.5876E+01
15 0 -212	0.44725-03	0 - 1803E-02	0.425.05	0-2015F-02-0-2978E+01-0-4930E+0	20755401-	0.49302401
			50116	0.2219E-02-0.1223E+01-0.3191E+0	1223E+01-	-0-3191E+01
			0.57996-03	0.2389E-02-0.3703E+00-0	3703E+00-	-0.2351E+01
18 0.301	-		0.66396-03	0.2434E-02	-6053E+00-	0.6053E+00-0.1379E+01
19 0.330	0.7295E-03	0.2010E-02	0.75316-03	0.2667E-02 C	0-1460E+01-0	-0.5376E+00
20 0.359			.8483E	0.2780E-02 C	0.2104E+01	0.1068E+00
			.9505E	0.3069E-02 0	0.2610E+01	0.6175E+00
•		0.3228E-02	0.1060E-02	0.3296E-02 0	.3026E+01	0.1061E+01
24 0.471	0-1209F-02	0.4788F-02	0.12475-02	0.3260E-02 0	0.3390E+01	0.1467E+01
25 0.499	-		.1398E	_	.3923E+01	0.2114E+01
26 0.527	7 0-1611E-02	0.7214E-02	0.1507E-02	0.3306E-02	0.4124E+01	0.2382E+01
27 0.556	0		0.16156-02	0.3263E-02 (	0.4258E+01	0.2624E+01
28 0.585	0	0.1070E-01	0.1724E-02	0.3224E-02 C	0.4365E+01	0.2824E+01
29 0.614	0		0.1832E-02	0.3229E-02 0	0.4541E+01	0.2993E+01
30 0.644	0		0.1948E-02	0.3263E-02 (	0.4758E+01	
31 0.674	0.3351E-02	0.6601E-02	0.2066E-02	0.3392E-02	0.5003E+01	0.3223E+01
33 0 - 734	0		-2314E	0.3723E-02	0.5254E+01	
34 0.763	0		0.2446E-02	0.4008E-02	0.5263E+01	
35 0.793		0.5189E-02	0.2584E-02	0.4434E-02 (	0.52116+01	0.3293E+01
36 0.821		0.6544E-02	0.2729E-02	0.4923E-02 (	0.5133E+01	0.3263E+01
37 0.848	•		.2882E	0.5769E-02 (	0.5058E+01	0.3218E+01
	0		.3045E	0.6883E-02	0.4974E+01	0.3155E+01
39 0 68	0			0.8458E-02	0.4851E+01	0.3056E+01
0000	0.54125-02	0-15745-01	0-3400E-02	0-1029E-01	1.4696E+01	0.27656401
42 0.960	0.5		0.3826E-02	0.1624E-01	.4094E+01	0.2765E+01
43 0.980	0	0.2900E-01	0.4078E-02	0.2181E-01 C	0.3636E+01	0.2765E+01
44 1.000	0.6009E-02	0.3801E-01	0.4368E-02	0.3450E-01	0.3366E+01	0.2765E+01

THICKNESS	
CEMENT	16
DISPLACEMENT	STATION
NEW	AT S

WBCL	.1084E-03-0.4799E+02-0.4994E+02 .7235E-03-0.2678E+02-0.2873E+02 .7098E-03-0.2014E+02-0.2209E+02 .1161E-02-0.1648E+02-0.1842E+02 .1318E-02-0.1402E+02-0.1595E+02	-0.1246E+02 -0.1246E+02 -0.1132E+02	-0.1004E+02 -0.8980E+01 -0.7889E+01 -0.6848E+01	-0.5865E+01 -0.4936E+01 -0.4044E+01	-0.3196E+01 -0.2350E+01 -0.1381E+01	-0.5390E+00 0.1043E+00	0.1070E+01	0.2387E+01	0.2625E+01 0.2625E+01 0.2998E+01	0.3219E+01	0.3320E+01 0.3311E+01 0.3292E+01	0.3252E+01 0.3214E+01 0.3140E+01	0.3052E+01 0.2920E+01 0.2766E+01 0.2766E+01 0.2766E+01
WBCU	.1084E-03-0.4799E+02-0.4994E+0 .7235E-03-0.2678E+02-0.2873E+0 .7098E-03-0.2014E+02-0.2209E+0 .1161E-02-0.1648E+02-0.1442E+0 .1318E-02-0.1402E+02-0.1595E+0	0.9993E-03-0.1212E+02-0.1406E+0 0.2808E-03-0.1046E+02-0.1246E+0 0.2926E-02-0.9369E+01-0.1132E+0	.1359E-02-0.8093E+01-0 .2182E-02-0.7025E+01-0 .1655E-02-0.5937E+01-0 .1279E-02-0.4901E+01-0	-	-0.1223E+01 -0.3705E+00 0.6051E+00	0.1465E+01 0.2091E+01 0.2593F+01	0.3032E+01	0.3892E+01 0.4079E+01	0.4224E+01 0.4386E+01 0.4608E+01	0.5094E+01	0.5273E+01 0.5273E+01 0.5205E+01	0.5056E+01 0.4976E+01	0.4856E+01 0.4707E+01 0.4500E+01 0.4146E+01 0.3720E+01
ACT-SLP	0.7235E-03 0.7235E-03 0.7098E-03 0.1161E-02	0.9993E-03 -0.2808E-03 0.2926E-02	0.1359E-02 0.2182E-02 0.1655E-02 0.1279E-02	0.1416E-02-0 0.1759E-02-0 0.2040E-02-0	0.2378E-02 0.2469E-02	0.2692E-02 0.2825E-02 0.3024F-02	0.3142E-02 0.3207E-02	0.3143E-02 0.3212E-02	0.3219E-02 0.3205E-02 0.3144E-02	0.3455E-02 0.3562E-02		0.5833E-02 0.7149E-02	0.8803E-02 0.1087E-01 0.1355E-01 0.1671E-01 0.2298E-01
108-0	0.3665E-04- 0.3986E-04 0.4819E-04 0.5778E-04	0.8464E -04 0.8464E -04	0.14296-03 0.17496-03 0.20626-03 0.25066-03	0.3024E-03 0.3627E-03 0.4319E-03	0.5093E-03 0.5901E-03 0.6759E-03	0.7649E-03 0.8599E-03 0.9592E-03	.1063E	0.1382E-02 0.1487E-02	0.1703E-02 0.1813E-02	2048E	2429E 2568E	0.2872E-02 0.3039E-02	0.3218E-02 0.3416E-02 0.3636E-02 0.3885E-02 0.4173E-02
ACT-SLP		0.9004E-03 0.3077E-02	0.1625E-02 0.2302E-02 0.1811E-02 0.1529E-02	0.1750E-02 0.1802E-02 0.2024E-02	0.20876-02 0.2050E-02 0.2016E-02	0.2369E-02 0.2369E-02	0.3133E-02 0.3872E-02		0.9692E-02 0.1033E-01 0.9382E-02		0.4091E-02 0.5306E-02	0.9374E-02	0.1126E-01 0.1337E-01 0.1609E-01 0.2042E-01 0.2830E-01
0-106	0.3561E-04- 0.4470E-04 0.5667E-04	0.9243E-04 0.9047E-04- 0.1177E-03	0.1505E-03 0.1850E-03 0.2205E-03 0.2670E-03	0.3218E-03 0.3844E-03 0.4523E-03	0.5965E-03 0.5965E-03 0.6679E-03	0.7401E-03 0.8171E-03	0.99296-03	0.1461E-02 0.1714E-02	0.2405E-02 0.2405E-02 0.2775E-02	0.3335E-02 0.3493E-02	0.3757E-02 0.3757E-02 0.3926E-02	0.4352E-02 0.4596E-02	0.5085E-02 0.5085E-02 0.5325E-02 0.5538E-02 0.5785E-02
J X/C	1 0.004 2 0.012 3 0.020 4 0.028 5 0.037	0.046	9 0.080 10 0.095 11 0.112	13 0.156 14 0.183 15 0.212	16 0.242 17 0.272 18 0.301	20 0.359	22 0.415	25 0.499	27 0.556 28 0.585 29 0.614	31 0.674	34 0.763	37 0.848 38 0.874	39 0.697 41 0.940 42 0.960 43 0.960 44 1.000

THICKNESS	
DISPLACEMENT	1
SE	-
3	3
5	=
٥	STATION
	S
NE	-

3 x/c	0-10P	ACT-SLP	D-801	ACT-SLP	WBCU	MBCL
1 0.004	0.3206E-04-	-0.2046E-04	0.3722E-04-	-0-1078E-03-0	.4799E+02	-0.4994E+02
2 0.612	0.3613E-04	0.7875E-03	0.4051E-04	0.7403E-03-	0.7403E-03-0.2678E+02-0.2873E+02	-0.2873E+02
3 0.020	0.4544E-04	0.9251E-03	0.4906E-04	0.7317E-03-	0.7317E-03-0.2014E+02-0.2209E+02	-0.2209E+02
4 0.028	0.5778E-04	0.1526E-02	0.5895E-04	0.1200E-02-	0.1200E-02-0.1648E+02-0.1843E+02	-0.1843E+02
5 0.037	0.7550E-04	0.1880E-02	0.7242E-04	0.1367E-02-	0.1367E-02-0.1402E+02-0.1596E+02	-0.1596E+02
0 0 0 0 0	0	0.1401E-02	0.8619E-04	0-1036E-02-	-0.1212E+02-0.1406E+02	-0.1406E+02
2 0.056	0	-0.9727E-03	0.8683E-04-	-0-3238E-03-	0.3238E-03-0.1046E+02-0.1245E+02	-0.1245E+02
8 0.067	•	0.3157E-02	0-1148E-03	0.29 60E-02-	.2960E-02-0.9373E+01-0.1132E+02	-0-1132E+02
090.0 6	0.1529E-03	0. 1065E-02	0-1450E-03	0.1347E-02-	0.1347E-02-0.8096E+01-0.1004E+02	-0.1004E+02
10 0.095	0	0.2281E-02	0.1777E-03	0.2223E-02-		-0.8982E+01
11 0.112	0	0. 1814E-02		0.1661E-02-	-0.5937E+01-	-0. 7890E+01
12 0 - 133	0	0.1566E-02	0.2544E-03	0.1344E-02-	0.1344E-02-0.4903E+01-	-0.6852E+01
13 0.156	0	0.1792E-02	.3070E	0.1474E-02-	0.1474E-02-0.3925E+01-	-0.5868E+01
14 0 183	0.3895E-03	0.1609E-02	0.3682E-03	0-1669E-02-	0.1669E-02-0.2978E+01-0.4931E+0	-0.4931E+01
15 0.212	0.4581E-03	0.2041E-02	0.4385E-03	0.2098E-02-	-0.2083E+01-0.4047E+0	-0.4047E+01
16 0 .242	0	0.2167E-02	0.51716-03	0-2310E-02-0	-0.1227E+01-	.1227E+01-0.3197E+01
17 0.272	0	0.2119E-02	0.5988E-03	0.2388E-02-	-0.3744E+00-	.3744E+00-0.2351E+01
18 0.301	0	0.2121E-02		0.2458E-02	0.5992E+00-	5992E+00-0-1381E+01
19 0 330	0.7519E-03	0.21136-02	0.7728E-03	0.2542E-02	0.1455E+01-	.1455E+01-0.5306E+00
20 0.359	0.8313E-03	0.2218E-02	0.8660E-03	0.2745E-02	0.2099E+01	0.1088E+00
21 0.387	0.9208E-03	0.2650E-02	0.96135-03	0.2892E-02	0.2602E+01	0.6275E+00
22 0.415	0	0.3487E-02	0-1060E-02	0-3009E-02	0.3012E+01	0.1077E+01
23 0.443	0	0.4587E-02	0.1162E -02	0.3075E-02	0.3353E+01	0.1477E+01
24 0 . 471	0	0.5767E-02		0-3279E-02	0.3630E+01	0.1808E+01
25 0.499	0.1543E-02	0.7127E-02	0.1369E-02	0.3150E-02	0.3862E+01	0.2124E+01
26 0.527	0	0.8579E-02	0.14736-02	0.3138E-02	0.4047E+01	0.2392E+01
27 0.556	-	0.9895E-02	0.1580E-02	0.3193E-02	0.4212E+01	0.2628E+01
28 0.585	0.2514E-02	0.9570E-02	0.1690E-02	0.3218E-02	0.4428E+01	0.2824E+01
29 0.614	0.2837E-02	0.7888E-02	0-1802E-02	0.3251E-02	0.4692E+01	0.2992E+01
30 0.644	0.3097E	0.5796E-02	9	0-3495E-02	0.4946E+01	0.3114E+01
31 0.674		0.4141E-02	.2036E	0-34 786-02	0.5142E+01	0.3218E+01
32 0 .704		0.3266E-02	.2160E	0.3637E-02	0.5267E+01	0.3285E+01
33 0 . 734	0	0.3130E-02	.2289E	0.3893E-02	0.5317E+01	0.3313E+01
34 0.763	0	0.4331E-02	.2425E-0	0.41 98E-02	0.5259E+01	0.3306E+01
35 0.793	0	0.5284E-02	•	0.4550E-02	0.5206E+01	0.3286E+01
	0	0.655 SE-02	.2722E-0	0.5150E-02	0.5133E+01	0.3251E+01
37 0 .848	0.4239E-02	0.7900E-02	0.2886E-02	0.6055E-02	0.5059E+01	0.3202E+01
38 0.874	0.44 78E-02	0.5497E-02	0.3059E-02	0.7330E-02	0.4969E+01	0.3130E+01
39 0 897	0	0.1102E-01	0.3244E-02	0.8904E-02	0.4858E+01	0.3046E+01
40 0.919	0	0.1331E-01	0.3447E-02	0.1088E-01	0.4712E+01	0.2914E+01
41 0.940	0	0.1611E-01	0 . 366 9E -02	0.1357E-01	0.45146+01	0.2763E+01
45 0.960	0	0.2025E-01		0.1687E-01	0.4185E+01	0.2763E+01
43 0.980	•	0.2755E-01		0.2226E-01	0.3790E+01	0.2763E+01
44 1.000	0.5937E-02	0.3485E-01	0.4535E-02	0.2936E-01	0.3544E+01	0.2763E+01

THICKNESS	
CEMENT	16
DISPLACEMEN	STATION
NEW	1 51

			TOTAL STATE	•					
7		X/C	0-T0P	ACT-S.P	D-80T	ACT-SLP	MACO	MBCL	
-		*00*	0.3247E-04-	0.1617E-04	0.3783E-04-	-03	-0.4799E+02-	-0.4994E+02	
8		.012	0.3667E-04	0.8070E-03	0.4122E-04	0.7584E-03-	-0.2678E+02-0.	-0.2874E+02	
•		.020	C.4623E-04	0.9556E-03	0.4999E-04	0.7553E-03-	-0.2014E+02-	-0.2209E+02	
4		.028	0.5897E-04	0.1576E-02	0.6021E-04	0.1241E-02-	-0.1649E+02-0	-0.1843E+02	
0		.037	0.7732E-04	0.1952E-02	0.7417E-04	0.1420E-02-	-0.1403E+02-0.1596	-0.1596E+02	
0		.040	0.9739E-04		. 8850E	-05	-0.1212E+02-0.1406E+02	-0.1406E+02	
1		.056	0.94 196-04-	0.1145E-02	0.8630E-04-	-0.4465E-03-	-0.1045E+02-0.1245E+02	-0.1245E+02	
00	0	190.	0.1216E-03	0.3189E-02	0.11696-03	0.2988E-02-	-02-0.9375E+01-0.1132E+02	-0.1132E+02	
0	0	.080	0.1556E-03	11711	0.1477E-03	0-1393E-02-0	-0.8099E+01-0.1004	-0.1004E+02	
0		960.	0-19096-03	0.2295E-02	0.1808E-03	0-2295E-02-0	-0.7025E+01-0.8986	-0.8986E+01	
	0	.112	0.2278E-03	0.1854E-02	0.2132E-03	0.1674E-02-	-0.5939E+01-	-0.7890E+01	
12		.133	0.2750E-03	0.16396-02	0.2578E-03	0-1373E-02-	-0.4907E+01-	-0.6853E+01	
13		.156	0.3308E-03	0.1768E-02	0.31116-03	0.1467E-02-	0.1467E-02-0.3923E+01-0.5868	-0.5868E+01	
4	0	.183	0.3947E-03	0.1045E-02	0.37296-03	0.1662E-02-	-0.2969E+01-0.4931	-0.4931E+01	
15		.212	0.4647E-03	0.2049E-02	•	0.2116E-02-	0.2116E-02-0.2084E+01-0.4048E+01	-0.4048E+01	
16	0	.242	0.5396E-03	0.2223E-02	0.5238E-03	0.2390E-32-0	-0.1231E+01-	.1231E+01-0.3201E+01	
11		.272	0.6141E-03	0.2085E-02	0.6058E-03	0.2480E-02-	-0.3725E+00-	.3725E+00-0.2356E+01	
18	0	.301	0.6890E-03	0.20795-02	0.6909E-03	0.24 16E-02	0.6015E+00-	.6015E+00-0-1378E+01	
61		330	0.766E-03	0.2113E-02	0.7776-03	0.2389E-02	0.1455E+01-	-0.5220E+00	
50		.359	0.84 78E-03	0.2615E-02	0.86786-03	0.2625E-02	0.2077E+01	0.1155E+00	
21		.387	0.9442E-03	0.2981E-02	0.9600E-03	0.2807E-02	0.2583E+01	0.6322E+00	
22	0	.415	0-1060E-02	0.3525E-02	0.1050E-02	0.2964E-02	0.3009E+01	0.1060E+01	
53		.443	0.1205E-02	0.4613E-02	0-1155E-02	0.3063E-02	0.3352E+01	0.1478E+01	
24	0	.471	0.1389E-02		0-1256E-02	0.3157E-02	0.3617E+01	0.1815E+01	
52		664.	0.1625E-02	•	0-1361E-02	0-3079E-02	0.38376+01		
56	•	527	0.1917E-02	0.8880E-02	0.1466E-02	0.3172E-02	0.4030E+01	0.2390E+01	
27		989	0.2248E-02	0.9744E-02	0.1573E-02	0.3192E-02	0.4221E+01	0.2628E+01	
28	0	585	0.2578E-02	0.8665E-02	0.1682 -02	0.3257E-02	0.4468E+01	0.2622E+01	
58		.614	0.2848E-02	0.6589E-02	0.1794E-02	0.3310E-02	0.4765E+01	0.2988E+01	
30	0	.644	0.3050E-02	0.4641E-02	0-1908E-02	0.3320E-02	0.5011E+01	0.3124E+01	
31		.674	0.3187E-02	0.3447E-02	0.2031E-02	0.34 67E-02	0.5181E+01	0.3218E+01	
35	0	.704	0.3297E-02	0.3105E-02	0.2156E-02	0.3690E-02	0.5276E+01	0.3282E+01	
33	0	.734	0.34 11E-02	0.3268E-02	0.2287E-02	0.3911E-02	0.5309E+01	0.3312E+01	
34	0	.763	0.3545E-02	0.4460E-02	0.2427E-02	0.4278E-02	0.5252E+01	0.3301E+01	
35	0	.793	0.37206-02	0.5409E-02	0.2575E-02	0.4717E-02	0.5199E+01	0.3277E+01	
36	0	.821	0.3923E-02	0.6658E-02	0.2732E-02	0.5269E-02	0.5127E+01	0.3244E+01	
37	0	.848	0.4147E-02	0.7985E-02	0.2901E-02	0.6155E-02	0.5054E+01	0.3196E+01	
38	0	.874	0.4388E-02	0.9558E-02	0.3077E-02	0.7431E-02	0.4966E+01	0.3124E+01	
39	0	168.	0.4637E-02	0.1117E-01	0.3269E-02	0.8950E-02	0.4858E+01	0.3039E+01	
40	0	616.	0.4886E-02	0.1347E-01	0.3478E-02	0.1111E-01	0.47136+01	0.2908E+01	
41	0	046	0.5138E-02	0.1626E-01	0.3705E-02	0.13736-01	0.45216+01	0.2758E+01	
45	0	096.	0.5392E-02	0.2049E-01	•	0.1629E-01	0.4213E+0.1	0.2758E+01	
43	0	096.	0.5658E-02	0.2715E-01	0.42596-02	0.2191E-01	0.3848E+01	0.2758E+01	
4	-	000	0.5940E-02	0.3380E-01	0.4604E-02	0.3171E-01	0.3603E+01	0.2756E+01	

NEW DISPLACEMENT THICKNESS AT STATION 19

7	XX	0-10P	ACT-SLP	0-60T	ACT-SLP	WBCD	WBCL
-	*0000	0.32 92E-04-	-0-1160E-04	0.3853E-04-	.0.1069E-03-0.4799E+0	-0.4799E+02-	-0.4994E+02
~	0.012	0.3726E-04	0.6280E-03	0.4201E-04	0.7775E-03-	0.7775E-03-0.2678E+02-0.2874E+02	-0.2874E+02
3	0.050	0.4708E-04	0.5884E-03	0.5102E-04	0.7796E-03-	0.7796E-03-0.2015E+02-	-0.2209E+02
•	9.058	0.6025E-04	0.1631E-02	0.6158E-04	0.1284E-02-	-0.1649E+02-	-0.1843E+02
S	0.037	0.7926E-04	0.2031E-02	0.7607E-04	0.1475E-02-	0.1475E-02-0.1403E+02-	-0.1596E+02
9	9.000	0.1002E-03	0.1514E-02	0.9098E-04	0.1117E-02-	0.1117E-02-0.1212E+02-	-0.1406E+02
1	99000	0.9698E-04-	-0.1224E-02	0.9098E-04-	-0-4956E-03-	4956E-03-0.1044E+02-	-0.1244E+02
۵	1.067	0.1236E-03	0.3210E-02	0.1190E-03	0.3057E-02-	0.3057E-02-0.9376E+01-0	-0.1133E+02
•	080.0	0.1584E-03	0.1752E-02	0-1504E-03	0.1411E-02-	-0.8101E+01-	-0.1004E+02
10	960.0	0.1946E-03	0.2455E-02	0-1838E-03	0.2314E-02-	0.2314E-02-0.7034E+01-0.8987E+01	-0.8987E+01
11	0.112	0.23136-03	0.1866E-02	0.2167E-03	0.1686E-02-	0.1686E-02-0.5940E+01-0.7891E+01	-0.7891E+01
12 (	0.133	0	•	.2620E	0.1356E-02-	-0.4901E+01-0.6852E+01	-0.6852E+01
13	1.156	•		0.3156E-03	0.1572E-02-	0.1572E-02-0.3927E+01-0.5873E+01	-0.5873E+01
13	1.183	0.4005E-03	0.1715E-02	0.3781E-03	0.1723E-02-	-0.2973E+01-0	-0.4934E+01
15	0.212	0.4715E-03	0.2074E-02	0.4491E-03	0.2083E-02-	-0.2085E+01-	-0.4046E+01
91	3.245	0.5477E-03		0.5284E-03	0.2375E-02-	0.2375E-02-0.1232E+01-0.3200E+0	-0.3200E+01
17	3.272	0.6241E-03	0.2139E-02	0.6097E-03	0.2372E-02-	-0.3755E+00-	.3755E+00-0.2350E+01
18	0.301	0.70135-03	0.2125E-02	0.6936E-03	0.2387E-02	0.5989E+00-	-0.1377E+01
19	0.330	0.7820E-03	0.2240E-02	0.7796E-03	0.2437E-02	0.1447E+01-	-0.5247E+00
20 0	998	0.8683E-03	0.2689E-02	0.8681E-03	0.2723E-02	0.2073E+01	0.1100E+00
21	1981	0.9722E-03	0.3253E-02	0.9589E-03	0.2825E-02	0.2568E+01	0.6312E+00
22 0	3.415	0.1098E-02	0.3685E-02	0-1054E-02	0.2959E-02	0.2989E+01	0.1060E+01
23	3.443	0.1256E-02	0.5068E-02	0.1152E-02	0.3025E-02	0.3326E+01	0.1480E+01
24	174.0	0-1456E-02	0.6440E-02	0.1253E-02	0.2999E-02	0.3592E+01	0.1624E+01
25	664.0	0-1705E-02	0.7765E-02	0.1358E-02	0.3041E-02	0.3826E+01	0.2131E+01
56	0.527	0.2001E-02	0.8772E-02	0.146X-02	0.3158E-02	0.4036E+01	0.2390E+01
27	9999	0.23135-02	0.9083E-02	0.1569E-02	0.3194E-02	0.4258E+01	0.2628E+01
28	0.585	0.2600E-02	0.7684E-02	0.1678E-02	0.3267E-02	0.4534E+01	0.2621E+01
56	0.614	0.2816E-02	0.5545E-02	0-1790E-02	0.3289E-02	0.4824E+01	0.2990E+01
30	0.044	0.2977E-02	0.3623E-02	0.1905E-02	0.3366E-02	0.50516+01	0.3121E+01
31	0.674	0.3091E-02	0.3143E-02	0.2027E-02	0.3731E-02	0.5198E+01	0.3204E+01
35	0.104	0.3196E-02	0.3224E-02	0.2155E-02	0.3784E-02	0.5269E+01	0.3277E+01
33	0.734	0.3317E-02	0.3775E-02	0.2290E-02	0.4021E-02	0.5281E+01	0.3306E+01
3	0.763	0.34 SE-02	0.4564E-02	0.24336-02	0.4391E-02	0.5246E+01	0.3295E+01
35	0.793	0.3636E-02	0.5678E-02	0.2584E-02	0.4774E-02	0.5184E+01	0.3274E+01
36	0.821	0.3844E-02	0.064BE-02	0.2746E-02	0.5362E-02	0.5116E+01	0.3239E+01
37 (	0.848	0.4076E-02	0.8228E-02	0.2915E-02	0.6265E-02	0.5041E+01	0.3190E+01
36	0.874	0.4325E-02	0.9771E-02	0.3095E-02	0.7344E-02	0.4954E+01	0.3129E+01
36	0.897	0.4585E-02	0.1165E-01	0.3291E-02	0.9047E-02	0.4857E+01	0.3031E+01
40	616.0	0.4853E-02	0.1385E-01	0.3498E-02	0.1118E-01	0.47116+01	0.2901E+01
41	0.840	0.5126E-02	0.1680E-01	0.3728E-02	0.1335E-01	0.4525E+01	0.2753E+01
45	096.0	0.54 12E-02	0.2090E-01	0.3986E-02	0.1605E-01	0.4236E+01	0.2753E+01
43	086.0	0.5714E-02	0.2919E-01	0.4285E-02	0.2127E-01	0.3896E+01	0.2753E+01
*	1.000	0.604E-02	0.3749E-01	0.4632E-02	0.2980E-01	0.3396E+01	0.2753E+01

NEW DISPLACEMENT THICKNESS

			AT STATION	20				
	7	X/C	0-10P	ACT-SLP	D-80T	ACT-SLP	WBCO	WBCL
	0	.004	0.3341E-04-	-0.6913E-05	0.3933E-04-	-0.1074E-03-0.4799E+0	-0.4799E+02	2-0.4994E+02
	0 2	.012	0.3791E-04	0.8505E-03	0.4291E-04	0.7976E-03	0.7976E-03-0.2678E+02-0.	-0.2874E+02
	3 0	.020	0.4800E-04	0.1023E-02	0.5217E-04	9-8040E-03	0.8040E-03-0.2015E+02-0	-0.2210E+02
	0	.028	0.6162E-04	0.1688E-02	0.6306E-04	0.1327E-02	0.1327E-02-0.1649E+02-0.1843E+02	-0.1843E+02
•	0 9	.037	0.8137E		0.7807E-04	0.1531E-02-0.1404E+0	-0.1404E+02	2-0-1596E+02
	9	.046	0	0.1579E-02	0.9356E-04	0.1156E-02	0.1156E-02-0.1213E+02-0.1407	-0.1407E+02
	0 1	950.	0.9921E	-0.1382E-02	0.9269E-04-	-0.6202E-03	.6202E-03-0.1043E+02-0.1244E+02	-0.1244E+02
	9	1900	0	0.3264E-02	0.1215E-03	0.3090E-02	0.3090E-02-0.9379E+01-0.1133E+02	-0.1133E+02
	0	.080		0.1802E-02	0.1531E-03	0.1444E-02	0.1444E-02-0.8103E+01-0.1004E+02	-0.1004E+02
-		.095		0.2440E-02	0.1869E-03	0.2328E-02	0.2328E-02-0.7033E+01-0.8988E+01	-0.8988E+01
-	0	.112	0		.2196E	0.1581E-02	0.1581E-02-0.5949E+01-0.7885E+01	-0.7885E+01
-	0		0		.2657E	0.1309E-02	0.1309E-02-0.4909E+01.	-0.6850E+01
-		.156	0		.3197E	0.1580E-02	0.1580E-02-0.3924E+01-0.5874E+0	-0.5874E+01
-		.183	0		• 3825E	0.1744E-02	0. 1744E-02-0.2979E+01	-0.4936E+01
-		1.212	•		•4533E	0.2090E-02	0.2090E-02-0.2086E+01	-0.4047E+01
-		.242	-			0.2442E-02	.2442E-02-0.1232E+01	-0.3204E+01
-			0	0.2234E-02		0.2381E-02	.2381E-02-0.3809E+00-0.2350E+0	-0.2350E+01
-	0	•301	0		.6962E	0.2440E-02	0.5906E+00	1380
-	0	.330	_	0.2265E-02	. 7816E	0.2469E-02		-0.5265E+00
20		.359	_	•	0.8692E-03	0.2629E-02	0.2081E+01	0.1153E+00
51				0.3487E-02	0.9603E-03	0.2708E-02	0.2555E+01	0.6378E+00
22			-	0.4558E-02	0.1054E-02	0.2883E-02	0.2951E+01	0.1085E+01
N		.443		0.5504E-02	0.1152E-02	0.2965E-02	0.3302E+01	0.1482E+01
24				0.0049E-02	0-1253E-02	0.3047E-02	0.3580E+01	0.1821E+01
N	0	664.	_	0.7817E-02	0.1356E-02	0.3318E-02	0.3823E+01	0.2115E+01
56	0	.527	0	0.8408E-02	0-1460E-02	0.3184E-02	0.4056E+01	
27		1.556			0.1566E-02	0.3180E-02	0.4320E+01	
ñ		.585	0		•1674E	0.3227E-02	0.4609E+01	
53		1.614	0.2754E-02		•1786E	0.3369E-02	0.4881E+01	0.2985E+01
m		. 644			.1904E	0.3509E-02	•	0.3113E+01
31		.674			.2027E	0.3600E-02	0.5201E+01	0.3211E+01
7	0 0	104		•	.2161E	0.3821E-02	0.5262E+01	0.3275E+01
7	9 6	1.134	0.3238		0.2300E-02	0.4132E-02	0.5272E+01	
י ה		703	0.35915-02	0 58705-02	0.26046-02	0.44 /9E-02	0.5238E+01	0.32590E+01
0 14	0 0	821		0-70135-02	27706	0-4669E-02	0.51735+01	0.32205401
, 17			-		2944E	0-6341E-02	0-5038F+01	0-3186F+01
38				0.9797E-02	0.3132E-02	0.7527E-02	0.4952E+01	0-31196+01
39	0	1.897			0.3333E-02	0.9236E-02	0.4856E+01	0.3025E+01
4	0	.919	0.4792E-02	0.1417E-01	0.3551E-02	0.1111E-01	0.4710E+01	
4	1 0		0	0.1701E-01	0.3797E-02	0.1366E-01	0.4526E+01	0.274 BE+01
4	2 0				0.4074E-02	0.1683E-01	0.4257E+01	0.2748E+01
4	3	.980			0.4396E-02	0.2128E-01	0.3941E+01	0.2748E+01
4	*	• 000	0.6040E-02	0.3354E-01	0.4777E-02	0.2899E-01	0.3617E+01	0.2748E+01

THICKNESS	
EMENT	21
DISPLACEMENT	8
	STATION
NE	8 1 A

04-0.2224E-05 0 04-0.2224E-05 0 04-0.2224E-05 0 04-0.1040E-02 0 04-0.1040E-02 0 03-0.1047E-02 0 03-0.1047E-02 0 03-0.1056E-02 0 03-0.1056E-01 0							
0.4900E-04 0.1060E-02 0.5342E-04 0.8362E-04 0.2204E-02 0.6466E-04 0.1064E-03 0.1647E-02 0.9622E-04 0.1064E-03 0.1647E-02 0.9622E-04 0.12696E-03 0.3566E-02 0.1241E-03 0.1643E-03 0.1656E-02 0.1241E-03 0.2386E-03 0.2308E-02 0.2696E-03 0.2893E-03 0.1956E-02 0.2346E-03 0.2893E-03 0.1956E-02 0.2346E-03 0.4139E-03 0.1956E-02 0.2346E-03 0.4139E-03 0.2323E-02 0.6996E-03 0.4139E-03 0.2223E-02 0.6996E-03 0.6552E-03 0.22436E-02 0.6996E-03 0.6552E-03 0.2265E-02 0.6996E-03 0.6552E-03 0.2265E-02 0.6996E-03 0.7281E-03 0.2265E-02 0.6996E-03 0.1356E-02 0.5597E-02 0.1152E-02 0.1356E-02 0.6597E-02 0.1152E-02 0.1356E-02 0.6597E-02 0.1152E-02 0.1356E-02 0.6597E-02 0.1152E-02 0.1356E-02 0.6597E-02 0.1152E-02 0.1356E-02 0.6597E-02 0.1152E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1356E-02 0.6597E-02 0.176E-02 0.1366E-02 0.6597E-02 0.1673E-02 0.2093E-02 0.6987E-02 0.2099E-02 0.316E-02 0.316E-02 0.2175E-02 0.316E-02 0.6987E-02 0.2175E-02 0.3176E-02 0.6987E-02 0.2096E-02 0.3176E-02 0.6987E-02 0.2096E-02 0.3742E-02 0.6987E-02 0.2096E-02 0.3742E-02 0.6987E-02 0.2096E-02 0.3742E-02 0.7110E-02 0.2096E-02 0.5724E-02 0.667E-01 0.4997E-02 0.5724E-02 0.667E-01 0.4997E-02 0.5724E-02 0.4096E-01 0.4997E-02 0.5724E-02 0.6997E-01 0.4997E-02		0.3396E-04-	0.2224E-05	-4024E	0.1087E-03-	-0.4799E+02-	-0.4994E+02
0.6311E-04 0.1749E-02 0.6466E-04 0.8362E-04 0.2204E-02 0.9622E-04 0.1064E-03 0.1647E-02 0.9920E-04 0.1289E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.2366E-02 0.1289E-03 0.2366E-03 0.1286E-02 0.1289E-03 0.2366E-03 0.2366E-02 0.1289E-03 0.2386E-03 0.2366E-02 0.1286E-03 0.2386E-02 0.2386E-03 0.2386E-02 0.2386E-03 0.2386E-02 0.2896E-03 0.2386E-02 0.2896E-03 0.2386E-03 0.2366E-02 0.2896E-03 0.2383E-02 0.2896E-03 0.2383E-02 0.4866E-03 0.2384E-02 0.4876E-02 0.1876E-02	_	0.4900E-04	0.1060E-02	0.5342E-04	0.8285E-03-	-0.2015E+02-	-0.2210E+02
0.8362E-04 0.2204E-02 0.8018E-04 0.1064E-03 0.1647E-02 0.9922E-04 0.1289E-03 0.3356E-02 0.1562E-03 0.1289E-03 0.3356E-02 0.1562E-03 0.2386E-03 0.3356E-02 0.1562E-03 0.2386E-03 0.1956E-02 0.234E-03 0.2386E-03 0.1956E-02 0.234E-03 0.2386E-03 0.1956E-02 0.234E-03 0.2476E-03 0.1956E-02 0.234E-03 0.2476E-03 0.2323E-02 0.2597E-03 0.4664E-03 0.2323E-02 0.6175E-03 0.5652E-03 0.2343E-02 0.6175E-03 0.6652E-03 0.2343E-02 0.6175E-03 0.6652E-03 0.2343E-02 0.6175E-03 0.6652E-03 0.2343E-02 0.6175E-02 0.1336E-02 0.5597E-02 0.1552E-02 0.1336E-02 0.5597E-02 0.1552E-02 0.1336E-02 0.5597E-02 0.1556E-02 0.1336E-02 0.5597E-02 0.1563E-02 0.1336E-02 0.5597E-02 0.1563E-02 0.2546E-02 0.5502E-02 0.1563E-02 0.2546E-02 0.3455E-02 0.1563E-02 0.2546E-02 0.3455E-02 0.1563E-02 0.2546E-02 0.3455E-02 0.2321E-02 0.3346E-02 0.3455E-02 0.2321E-02 0.33742E-02 0.3455E-02 0.2321E-02 0.33742E-02 0.3455E-02 0.2321E-02 0.33742E-02 0.4314E-02 0.2474E-02 0.3535E-02 0.4314E-02 0.2474E-02 0.3535E-02 0.5139E-02 0.2175E-02 0.3576E-02 0.4181E-02 0.2474E-02 0.3576E-02 0.4181E-02 0.2474E-02 0.5574E-02 0.1626E-01 0.4492E-02 0.5774E-02 0.1626E-01 0.4492E-02 0.5774E-02 0.2687E-01 0.4492E-02	_	0.6311E-04	0.1749E-02	0.6466E-04	0.1371E-02-	-0.1650E+02-	-0.1844E+02
0.12 096 E - 03		0.8362E-04	0.2204E-02	0.8018E-04	0.1586E-02-	-0.1404E+02	-0.1597E+02
0.12896-03 0.3366-02 0.1241E-03 0.3303E-02-02-1643E-03 0.1956E-02 0.1562E-03 0.1460E-02-02-2348E-03 0.1956E-02 0.2234E-03 0.1566E-02 0.2695E-03 0.1566E-02 0.2436E-03 0.1715E-02-0.4436E-03 0.2122E-02 0.2695E-03 0.1715E-02-0.4436E-03 0.2232E-02 0.2695E-03 0.2093E-02 0.4565E-03 0.2235E-02 0.4565E-03 0.2235E-02 0.4565E-03 0.2235E-02 0.4565E-03 0.2235E-02 0.4565E-03 0.2236E-02 0.4565E-03 0.2236E-02 0.4565E-02 0.2635E-02 0.4176E-02 0.2894E-02 0.4565E-03 0.2745E-02 0.4176E-02 0.4476E-03 0.2236E-02 0.4456E-03 0.2236E-02 0.4456E-03 0.2236E-02 0.4456E-03 0.2236E-02 0.4456E-02 0.3337E-02 0.4576E-02 0.4656E-02 0.4666E-02		0.1008E-03-	0.1617E-02	0.9320E-04-	0.97 80E-03-	0.1042E+02	-0.1242E+02
0.1643E-03 0.1654E-02 0.1502E-03 0.1460E-02-0.234EE-03 0.2266E-02-0.2348EE-03 0.1956E-02 0.2696E-03 0.1506E-02-0.2348EE-03 0.1956E-02 0.2696E-03 0.1506E-02-0.2348EE-03 0.1956E-02 0.2696E-03 0.1400E-02-0.3476E-03 0.1502E-02 0.3631E-03 0.1400E-02-0.3476E-03 0.1502E-02 0.3631E-03 0.1416E-02-0.34139E-03 0.1715E-02 0.363EE-03 0.1716E-02-0.34139E-03 0.2265E-02 0.3652E-03 0.2334E-02-0.04646E-03 0.2265E-02 0.6998E-03 0.2334E-02-0.04646E-03 0.2265E-02 0.6998E-03 0.2334E-02-0.04136E-03 0.2265E-02 0.6998E-03 0.2334E-02-0.04176E-03 0.2265E-02 0.6998E-03 0.2345E-02-0.04176E-03 0.2265E-02 0.6998E-03 0.2345E-02-0.04176E-03 0.2265E-02 0.6998E-02 0.3698E-02-0.04176E-03 0.2265E-02 0.1056E-02 0.3081E-02-0.0426E-02 0.1036E-02 0.3337E-02 0.1356E-02 0.1036E-02 0.3337E-02 0.1356E-02 0.1036E-02 0.3465E-02 0.1563E-02 0.3337E-02 0.3346E-02 0.4266E-02 0.1563E-02 0.3337E-02 0.3346E-02 0.4266E-02 0.1563E-02 0.3337E-02 0.3346E-02 0.4457E-02 0.1457E-02 0.3465E-02 0.3465E-02 0.1563E-02 0.3465E-02 0.1563E-02 0.3465E-02 0.3465E-02 0.1563E-02 0.3465E-02 0.3465E-02 0.1563E-02 0.3465E-02 0.1563E-02 0.3465E-02 0.3465E-02 0.1563E-02 0.3465E-02		0.1289E-03		0-1241E-03	0.3303E-02-	-0.9384E+01	-0.1134E+02
0.2013E-03 0.2308E-02 0.1896E-03 0.2266E-02-0.2388E-03 0.1956E-02 0.2234E-03 0.1596E-02 0.2234E-03 0.1596E-02 0.2334E-03 0.1715E-02 0.2388E-03 0.1715E-02 0.34139E-03 0.1715E-02 0.34139E-03 0.1715E-02 0.34139E-03 0.1715E-02 0.34139E-03 0.1715E-02 0.34139E-03 0.1715E-02 0.34139E-03 0.1715E-02 0.3465E-03 0.2234E-02 0.3465E-02 0.3465E-03 0.2334E-02 0.3465E-02 0.3666E-02 0.366	0	0.1643E-03	0.1854E-02	0.1562E-03	0.1460E-02-	-0.8106E+01-	-0.1005E+02
0.2348E-03 0.1956E-02 0.2234E-03 0.1596E-02-0.2348E-03 0.1795E-02 0.2696E-03 0.1400E-02-0.3456E-03 0.1745E-02 0.3231E-03 0.1715E-02 0.4139E-03 0.1745E-02 0.3231E-03 0.1614E-02-0.4139E-03 0.1745E-02 0.3663E-03 0.1614E-02-0.5652E-03 0.2233E-02 0.4664E-03 0.2125E-02 0.4664E-03 0.2134E-02-0.6465E-03 0.2233E-02 0.6175E-03 0.2346E-02-0.6465E-03 0.2235E-02 0.6175E-03 0.2346E-02-0.6465E-03 0.2265E-02 0.6175E-03 0.2346E-02-0.6465E-03 0.2265E-02 0.6175E-03 0.2345E-02-0.6465E-03 0.2265E-02 0.6175E-03 0.2346E-02-0.6465E-03 0.2265E-02 0.6175E-03 0.2745E-02-0.6177E-02 0.3166E-02 0.1056E-02 0.2965E-02-0.10356E-02 0.1056E-02 0.2965E-02-0.10356E-02 0.1552E-02 0.3337E-02-0.1573E-02 0.3356E-02 0.1552E-02 0.3337E-02 0.1552E-02 0.3337E-02 0.1552E-02 0.3337E-02 0.1562E-02 0.3456E-02 0.2645E-02 0.1563E-02 0.3456E-02 0.2645E-02 0.1563E-02 0.3456E-02 0.2645E-02 0.1563E-02 0.3456E-02 0.2645E-02 0.1563E-02 0.3456E-02 0.3556E-02 0.3556E-0	0	0.20136-03	0.2308E-02	0.1896E-03	0.2266E-02-	-0.7026E+01-	-0.8964E+01
0.3476E-03 0.1872E-02 0.3231E-03 0.1715E-02-0.464E-03 0.1872E-02 0.3231E-03 0.1715E-02-0.464E-03 0.1872E-02 0.3231E-03 0.1715E-02-0.464E-03 0.20325E-02 0.4569E-03 0.20325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.4646E-03 0.2325E-02-0.49172E-03 0.2325E-02-0.49172E-03 0.2325E-02-0.49172E-03 0.2369E-02-0.49172E-03 0.2369E-02-0.49172E-03 0.2369E-02-0.49172E-02-0.49172E-02-0.4965E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49172E-02-0.49182E-02-0.49172E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49182E-02-0.49184E-01-0.49182E-02-0.49182E-02-0.49184E-01-0.49182E-02-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-01-0.49182E-02-0.49184E-02-0.49184E-02-0.49184E-01-0.49182E-02-0.49184E-02-0.49184E-01-0.49184E-01-0.49184E-01-0.49182E-02-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0.49184E-01-0		0.2368E-03		0.2234E-03	0.1596E-02-	0.5945E+01	-0.7886E+01
0.4139E-03 0.2122E-02 0.3863E-03 0.1814E-02-0.4864E-03 0.2232E-02 0.4569E-03 0.2335E-02-0.6465E-03 0.2335E-02 0.6465E-03 0.2335E-02 0.6465E-03 0.2335E-02 0.6465E-03 0.2335E-02 0.6456E-03 0.2369E-02 0.6456E-03 0.2369E-02 0.6456E-03 0.2369E-02 0.6456E-03 0.2269EE-03 0.2369E-02 0.6456E-03 0.2699E-03 0.2699E-02 0.6456E-02 0.6716E-03 0.2699E-02 0.1766E-03 0.2699E-02 0.1766E-02 0.1766E-02 0.2699E-02 0.1766E-02	9			0.3231E-03	0-1400E-02-	0.3922E+01	-0.5882F+01
0.4864E-03 0.2122E-02 0.4569E-03 0.2093E-02-0.5652E-03 0.2303E-02 0.6465E-03 0.2325E-02-0.6465E-03 0.2325E-02-0.7281E-03 0.2325E-02-0.7281E-03 0.2325E-02-0.7281E-03 0.2325E-02-0.7281E-03 0.2325E-02-0.7281E-03 0.2265E-02 0.6998E-03 0.2369E-02 0.8172E-03 0.2265E-02 0.8172E-03 0.2265E-02 0.8172E-03 0.2265E-02 0.8172E-03 0.2745E-02 0.8172E-03 0.2745E-02 0.8177E-02 0.8790E-02 0.87745E-02 0.8796E-02 0.8777E-02 0.8750E-02 0.8796E-02 0.8777E-02 0.8750E-02 0.8777E-02 0.8750E-02 0.8777E-02 0.8750E-02 0.87776E-02 0.87776E-01 0.87776E-02 0.87776E-01 0.87776E-02 0.87776E-01 0.87776E-02 0.877776E-01 0.877776E-0				0.3663E-03	0.1814E-02-	-0.2983E+01-	-0.4939E+01
0.5652E-03 0.2303E-02 0.6175E-03 0.2325E-02-0.6465E-03 0.2323E-02 0.6499E-03 0.2325E-02-0.7281E-03 0.2235E-02 0.6499E-03 0.2359E-02 0.4172E-03 0.2265E-02 0.6499E-03 0.2369E-02 0.4172E-03 0.2265E-02 0.4846E-03 0.2369E-02 0.4172E-03 0.2436E-02 0.4172E-03 0.2436E-02 0.4172E-03 0.2436E-02 0.4172E-03 0.2436E-02 0.4172E-03 0.2436E-02 0.4172E-02 0.4177E-02 0.4177E-02 0.4152E-02 0.2865E-02 0.4157E-02 0.4157E-02 0.4157E-02 0.4186E-02 0.4208E-02 0.41872E-02 0.4187E-02 0.4187E-01 0.4187E-02 0.4184E-01 0.4187E-02 0.4184E-01 0.4187E-02 0.4187E-01 0.4187E-02 0.4184E-01 0.4187E-02 0.4187E-01 0.4187E-02 0.4184E-01 0.4184E-01 0.41849E-01 0.4184	N	0.4864E-03		0.4569E-03	0.2093E-02-	-0.2088E+01	-0.4047E+01
0.6465E-03 0.2323E-02 0.6175E-03 0.2334E-02-0.7281E-03 0.2265E-02 0.6998E-03 0.2369E-02 0.8172E-03 0.2265E-02 0.6998E-03 0.2430E-02 0.8172E-03 0.2894E-02 0.8711E-03 0.2633E-02 0.1033E-02 0.4906E-02 0.1056E-02 0.2985E-02 0.1356E-02 0.4520E-02 0.1056E-02 0.2989E-02 0.1356E-02 0.4520E-02 0.1152E-02 0.2989E-02 0.1356E-02 0.4570E-02 0.1152E-02 0.3063E-02 0.1826E-02 0.4777E-02 0.1152E-02 0.3063E-02 0.293E-02 0.7777E-02 0.1552E-02 0.3081E-02 0.2934E-02 0.7777E-02 0.1757E-02 0.3381E-02 0.2946E-02 0.4302E-02 0.1738E-02 0.3733E-02 0.2946E-02 0.3365E-02 0.1778E-02 0.3733E-02 0.2946E-02 0.3365E-02 0.1778E-02 0.4161E-02 0.3946E-02 0.3456E-02 0.2039E-02 0.4561E-02 0.3946E-02 0.3456E-02 0.2039E-02 0.4561E-02 0.3978E-02 0.4314E-02 0.2804E-02 0.4551E-02 0.3742E-02 0.4314E-02 0.2804E-02 0.4531E-02 0.3742E-02 0.4116E-02 0.2804E-02 0.4531E-02 0.3774E-02 0.4116E-01 0.3381E-02 0.4638E-01 0.4494E-02 0.1169E-01 0.3861E-02 0.1118E-01 0.5064E-02 0.1169E-01 0.3861E-02 0.1118E-01 0.5724E-02 0.2105E-01 0.4492E-02 0.1643E-01 0.5724E-02 0.2105E-01 0.4494E-02 0.2701E-01	N	0.5652E-03		0.5357E-03	0.2325E-02-	-0.1235E+01	-0.3197E+01
0.7281E-03 0.2265E-02 0.6999E-03 0.2369E-02 0.8172E-03 0.2436E-02 0.7846E-03 0.2436E-02 0.9161E-03 0.2436E-02 0.9161E-03 0.2436E-02 0.9161E-03 0.2633E-02 0.1033E-02 0.9161E-03 0.2696E-02 0.1036E-02 0.1177E-02 0.4420E-02 0.1056E-02 0.2989E-02 0.1177E-02 0.4494E-02 0.4260E-02 0.152E-02 0.2989E-02 0.1187E-02 0.4187E-02 0.4260E-02 0.1252E-02 0.3063E-02 0.1826E-02 0.1826E-02 0.3063E-02 0.1826E-02 0.1826E-02 0.3063E-02 0.1826E-02 0.3063E-02 0.1826E-02 0.3063E-02 0.1826E-02 0.3063E-02 0.1826E-02 0.3063E-02 0.1826E-02 0.3337E-02 0.2846E-02 0.3466E-02 0.41616E-02 0.4494E-02 0.41616E-01 0.34616E-02 0.4494E-02 0.14666E-01 0.34616E-02 0.4494E-02 0.14666E-01 0.34646E-02 0.16436E-01 0.57246E-02 0.26676E-01 0.44946E-02 0.16436E-01 0.41616E-02 0.57246E-02 0.26676E-01 0.44946E-02 0.16436E-01 0.41616E-02 0.57246E-02 0.26676E-01 0.44946E-02 0	~	0.6465E-03		0.6175E-03	0.2334E-02-	-0 -3859E+00-	-0.2347E+01
0.8172E-03 0.2436E-02 0.7846E-03 0.2430E-02 0.9161E-03 0.2436E-02 0.9171E-03 0.2633E-02 0.1035E-02 0.9161E-03 0.2694E-02 0.9672E-03 0.2745E-02 0.1176E-02 0.3906E-02 0.155E-02 0.1157E-02 0.1576E-02 0.15597E-02 0.1152E-02 0.2989E-02 0.11572E-02 0.11572E-02 0.11572E-02 0.3063E-02 0.11572E-02 0.3063E-02 0.11572E-02 0.3063E-02 0.11572E-02 0.3063E-02 0.11572E-02 0.3063E-02 0.11572E-02 0.3063E-02 0.11672E-02 0.3063E-02 0.2846E-02 0.7777E-02 0.17572E-02 0.1765E-02 0.3189E-02 0.2546E-02 0.3454E-02 0.3454E-02 0.3454E-02 0.3456E-02 0.34576E-02 0.2635E-02 0.4656E-02 0.3456E-02	-	0.7281E-03		0.6998E-03	0.2369E-02	0.5911E+00-	-0.1376E+01
0.9161E-03 0.2894E-02 0.8711E-03 0.2633E-02 0.2061E+01 0.0.1033E-02 0.3900E-02 0.9625E-03 0.2745E-02 0.2959E+01 0.0.1135E-02 0.2969E-02 0.2959E+01 0.0.1356E-02 0.5597E-02 0.1152E-02 0.2969E-02 0.36376E+01 0.0.1356E-02 0.5597E-02 0.1152E-02 0.2969E-02 0.36376E+01 0.0.1356E-02 0.5597E-02 0.1152E-02 0.3063E-02 0.36376E+01 0.0.1626E-02 0.7777E-02 0.1152E-02 0.3063E-02 0.36376E+01 0.0.2093E-02 0.7777E-02 0.1457E-02 0.3069E-02 0.4379E+01 0.0.2093E-02 0.7777E-02 0.1457E-02 0.3307E-02 0.4379E+01 0.0.2546E-02 0.5302E-02 0.1553E-02 0.3337E-02 0.4379E+01 0.0.2546E-02 0.5302E-02 0.1563E-02 0.3337E-02 0.4379E+01 0.0.2689E-02 0.3453E-02 0.1563E-02 0.3454E-02 0.4379E+01 0.0.2689E-02 0.3453E-02 0.1563E-02 0.3454E-02 0.54668E+01 0.0.2922E-02 0.3453E-02 0.1506E+01 0.0.2922E-02 0.3453E-02 0.1506E+01 0.0.33042E-02 0.3453E-02 0.2136E-02 0.4161E-02 0.5105E+01 0.0.3304E-02 0.3453E-02 0.2136E+01 0.0.3304E-02 0.3453E-02 0.2136E-02 0.4161E-02 0.5105E+01 0.0.3304E-02 0.5139E-02 0.2136E-02 0.5105E+01 0.0.3304E-02 0.5139E-02 0.5406E+01 0.0.3304E-02 0.5106E+01 0.3979E-02 0.5106E+01 0.3979E-02 0.5106E-02 0.5106E+01 0.0.4494E-02 0.1425E-01 0.3464E-02 0.1425E-01 0.3464E-02 0.1425E-01 0.3464E-02 0.1425E-01 0.3464E-02 0.1116E-01 0.4471E-02 0.1645E-01 0.3464E-02 0.1116E-01 0.4471E-02 0.1425E-01 0.4494E-02 0.1116E-01 0.4534E+01 0.0.5724E-02 0.1645E-01 0.4694E-02 0.112E-02 0.2099E-01 0.4694E-02 0.1064E-01 0.4695E+01 0.0.5724E-02 0.1645E-01 0.4694E-02 0.112E-02 0.2099E-01 0.4694E-02 0.1066E-01 0.4694E-02 0.1064E-01 0.4695E+01 0.0.5724E-02 0.2066E-01 0.4694E-02 0.1064E-01 0.4695E+01 0.0.5724E-02 0.2066E-01 0.4694E-02 0.10645E-01 0.3665E+01 0.0.5724E-01 0.0.4695E-01 0.4694E-02 0.10645E-01 0.4695E-01 0.3665E+01 0.0.5724E-02 0.3665E+01 0.0.4695E-01 0.4695E-01 0.4695E-01 0.3665E+01 0.0.5724E-02 0.3665E+01 0.0.4695E-01 0.4695E-01 0.4695E-0	0	0.8172E-03	•	0.7846E-03	0.2430E-02	0.1436E+01	-0.5243E+00
0.1033E-02 0.3900E-02 0.9625E-03 0.2745E-02 0.2532E+01 0 0.1177E-02 0.4420E-02 0.1056E-02 0.2989E-02 0.2959E+01 0 0.1357E-02 0.4420E-02 0.1152E-02 0.2989E-02 0.32576E+01 0 0.1573E-02 0.6750E-02 0.1152E-02 0.3063E-02 0.3576E+01 0 0.1573E-02 0.6750E-02 0.1352E-02 0.3061E-02 0.3576E+01 0 0.2093E-02 0.7777E-02 0.1457E-02 0.3081E-02 0.4379E+01 0 0.2093E-02 0.7777E-02 0.1457E-02 0.3387E-02 0.4379E+01 0 0.2946E-02 0.5302E-02 0.153E-02 0.3189E-02 0.4379E+01 0 0.2546E-02 0.5302E-02 0.1788E-02 0.3189E-02 0.4568E+01 0 0.2689E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.4519E+01 0 0.2922E-02 0.3453E-02 0.1788E-02 0.4161E-02 0.5071E+01 0 0.3042E-02 0.3455E-02 0.2039E-02 0.4161E-02 0.5211E+01 0 0.3182E-02 0.4314E-02 0.2474E-02 0.4281E-01 0 0.3182E-02 0.4314E-02 0.2474E-02 0.4581E-02 0.5172E+01 0 0.3742E-02 0.4116E-02 0.2474E-02 0.4581E-02 0.5172E+01 0 0.3774E-02 0.7110E-02 0.2635E-02 0.4581E-02 0.5172E+01 0 0.4771E-02 0.1898E-01 0.3381E-02 0.4034E-01 0.4712E+01 0 0.5724E-02 0.1698E-01 0.4153E-02 0.1384E-01 0.4772E+01 0 0.5064E-02 0.1698E-01 0.4153E-02 0.10438E-01 0.4279E+01 0 0.5724E-02 0.2687E-01 0.4153E-02 0.10438E-01 0.4279E+01 0	0	0.9161E-03	•	0.8711E-03	0.2633E-02	0.2061E+01	0.1151E+00
0.1177E-02 0.4420E-02 0.1056E-02 0.2865E-02 0.2959E+01 0.0.1356E-02 0.5959F+01 0.0.1356E-02 0.5959F+01 0.0.1536E-02 0.5959F+01 0.0.1536E-02 0.5959F+01 0.0.1536E-02 0.4597E+01 0.0.1536E-02 0.4576E+01 0.0.1826E-02 0.4576E+01 0.0.1826E-02 0.4576E+01 0.0.2033E-02 0.7777E-02 0.1457E-02 0.33081E-02 0.4379E+01 0.0.2033E-02 0.7777E-02 0.1457E-02 0.3308PE-02 0.4379E+01 0.0.2546E-02 0.5302E-02 0.1563E-02 0.33189E-02 0.4379E+01 0.0.2546E-02 0.5302E-02 0.1563E-02 0.3318E-02 0.4419E+01 0.0.2546E-02 0.3453E-02 0.1578E-02 0.3454E-02 0.4919E+01 0.0.2546E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.5185E+01 0.0.292E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.5185E+01 0.0.33042E-02 0.3453E-02 0.2135E-02 0.4161E-02 0.5185E+01 0.0.33042E-02 0.3454E-02 0.2416E+01 0.0.33042E-02 0.3454E-02 0.2416E-02 0.5185E+01 0.0.33042E-02 0.4314E-02 0.2474E-02 0.4451E-02 0.5172E+01 0.0.33742E-02 0.5186E-02 0.2474E-02 0.5458E-02 0.5172E+01 0.0.33742E-02 0.4455E-02 0.2474E-02 0.5458E+01 0.0.33742E-02 0.4455E-02 0.2474E-02 0.4452E-02 0.4453E-01 0.44712E+01 0.0.5724E-02 0.1848E-01 0.44712E+01 0.0.5724E-02 0.1848E-01 0.4452E-02 0.1848E-01 0.44712E+01 0.0.5724E-02 0.1848E-01 0.44712E+01 0.0.5724E-02 0.1848E-01 0.44712E+01 0.0.5724E-02 0.1848E-01 0.4452E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.4452E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.4452E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.4452E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.4452E-01 0.3966E+01 0.0.5724E-02 0.1848E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.4452E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.4452E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.1864E-01 0.3966E+01 0.0.5724E-02 0.2969E-01 0.4854E-01 0.3966E+01 0.0.5724E-02 0.2969E-01 0.4854E-01 0.3966E+01 0.0.5724E-02 0.2969E-01 0.4854E-01 0.3966E+01 0.0.5724E-02 0.2969E-01 0.4854E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.2969E-01 0.4854E-02 0.2969E-01 0.4854E-01 0.2969E-01 0.4854E-01 0.3965E+01 0.0.5724E-02 0.2969E-01 0.4854E-01 0.2969E-01 0.4854E-01 0.2969E-01 0.4854E-01 0		0.1033E-02		0.9625E-03	0.2745E-02	0.2532E+01	0.6357E+00
0.1536E-02 0.5397E-02 0.1152E-02 0.5989E-02 0.3597E+01 0.0.1536E-02 0.6720E-02 0.1552E-02 0.3081E-02 0.3597E+01 0.0.1526E-02 0.3081E-02 0.30837E+01 0.0.1826E-02 0.7777E-02 0.1457E-02 0.3081E-02 0.4092E+01 0.0.2093E-02 0.7777E-02 0.1457E-02 0.3081E-02 0.4379E+01 0.0.2344E-02 0.5302E-02 0.1563E-02 0.3337E-02 0.4379E+01 0.0.2546E-02 0.5302E-02 0.1563E-02 0.3337E-02 0.4499E+01 0.0.2689E-02 0.5302E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.2689E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.292E-02 0.3355E-02 0.1788E-02 0.3454E-02 0.54919E+01 0.0.3946E-02 0.3355E-02 0.2321E-02 0.4161E-02 0.5195E+01 0.0.3346E-02 0.3725E-02 0.23715E-02 0.4161E-02 0.55185E+01 0.0.3346E-02 0.4314E-02 0.2474E-02 0.4451E+01 0.0.33746E-02 0.5119E+01 0.0.33746E-02 0.5119E+01 0.0.33746E-02 0.51116E-02 0.5491E+01 0.0.33746E-02 0.51116E-01 0.3461E-02 0.5491E+01 0.0.33774E-02 0.7110E-02 0.2474E-02 0.5481E-02 0.5491E+01 0.0.33774E-02 0.7110E-02 0.2474E-02 0.4451E-02 0.4451E-01 0.4471E-02 0.1425E-01 0.3381E-02 0.1118E-01 0.4471E-02 0.1425E-01 0.4492E-02 0.1118E-01 0.4471E-02 0.2687E-01 0.4492E-02 0.1118E-01 0.4471E-02 0.2687E-01 0.4492E-02 0.1118E-01 0.3366E+01 0.0.5172E-01 0.4497E-02 0.21643E-01 0.33665E+01 0.0.5172E-01 0.4497E-02 0.21645E-01 0.3366E+01 0.0.5172E-02 0.3369E-01 0.4497E-02 0.21645E-01 0.3366E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.4497E-02 0.21645E-01 0.3366E+01 0.0.5172E-01 0.4497E-02 0.21645E-01 0.3366E+01 0.0.5172E-01 0.4497E-02 0.21645E-01 0.3366E+01 0.0.5172E-01 0.4497E-02 0.21645E-01 0.33665E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.4657E-02 0.21645E-01 0.3366E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.3665E+01 0.0.5172E-01 0.3645E-01 0.3645E-01 0.3645E-01 0.3645E-01 0.3	0	0.1177E-02	•	0.1056E-02	•	0.2959E+01	0.1066E+01
0.1825-0.2 0.570E-0.2 0.1525E-0.2 0.53081E-0.2 0.5370E-0.1 0.0. 0.2093E-0.2 0.7770E-0.2 0.1457E-0.2 0.3081E-0.2 0.4879E-0.1 0.2093E-0.2 0.77770E-0.2 0.1457E-0.2 0.33097E-0.2 0.4379E-0.1 0.2093E-0.2 0.5302E-0.2 0.1457E-0.2 0.33097E-0.2 0.4379E-0.1 0.2034E-0.2 0.5302E-0.2 0.4579E-0.1 0.2049E-0.2 0.5302E-0.2 0.4579E-0.1 0.2049E-0.2 0.3453E-0.2 0.3309E-0.2 0.4919E-0.1 0.2049E-0.2 0.3453E-0.2 0.3756E-0.2 0.1788E-0.2 0.3736E-0.2 0.4919E-0.1 0.3045E-0.2 0.3456E-0.2 0.4919E-0.1 0.3045E-0.2 0.3456E-0.2 0.4919E-0.1 0.3045E-0.2 0.3725E-0.2 0.23715E-0.2 0.4280E-0.2 0.5518E-0.1 0.3046E-0.2 0.4314E-0.2 0.2474E-0.2 0.4456E-0.2 0.5518E-0.1 0.3535E-0.2 0.5172E-0.1 0.33746E-0.2 0.5139E-0.2 0.2474E-0.2 0.4451E-0.2 0.5172E-0.1 0.3979E-0.2 0.5897E-0.2 0.2474E-0.2 0.4658E-0.1 0.3979E-0.2 0.4455E-0.2 0.4455E-0.2 0.4455E-0.2 0.4455E-0.2 0.4455E-0.1 0.4452E-0.2 0.1181E-0.1 0.4452E-0.2 0.1181E-0.1 0.4452E-0.1 0.4452E-0.2 0.1181E-0.1 0.4452E-0.2 0.1184E-0.1 0.4554E-0.1 0.4554E-0.2 0.1848E-0.1 0.4452E-0.2 0.1848E-0.1 0.4554E-0.1 0.4554E-0.2 0.1848E-0.1 0.4554E-0.1 0.4554E-0.2 0.1848E-0.1 0.4554E-0.1 0.4554E-0.2 0.1848E-0.1 0.4554E-0.1 0.4554E-0.1 0.4554E-0.1 0.4452E-0.2 0.1848E-0.1 0.4554E-0.1 0.4655E-0.1 0.4655E-0		0.1350E-02	•	0.115ZE-02	0.2989E-02	0.3297E+01	
0.2093E-02 0.7777E-02 0.1457E-02 0.3189E-02 0.4092E+01 0.0.2344E-02 0.6920E-02 0.1553E-02 0.3189E-02 0.4379E+01 0.0.2546E-02 0.5302E-02 0.1573E-02 0.3337E-02 0.4568E+01 0.0.2689E-02 0.3953E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.2689E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.292E-02 0.3353E-02 0.1909E-02 0.3589E-02 0.5077E+01 0.0.3042E-02 0.3355E-02 0.2176E-02 0.4161E-02 0.52185E+01 0.0.3182E-02 0.3725E-02 0.2221E-02 0.4161E-02 0.55185E+01 0.0.3182E-02 0.5172E+02 0.2221E-02 0.4551E-02 0.5518E+01 0.0.3346E-02 0.5134E-02 0.24321E-02 0.4551E-02 0.5518E+01 0.0.3355E-02 0.5887E-02 0.24551E-02 0.55172E+01 0.0.3355E-02 0.5887E-02 0.24551E-02 0.5172E+01 0.0.33742E-02 0.7110E-02 0.24374E-02 0.4453E-02 0.5486E+01 0.0.429E-02 0.1181E-01 0.3381E-02 0.4434E-02 0.4434E-02 0.4435E+01 0.44712E+01 0.0.564E-02 0.1181E-01 0.3384E-01 0.44712E+01 0.0.55724E-02 0.2687E-01 0.4492E-02 0.1184E-01 0.4579E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.1184E-01 0.3366E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3366E+01 0.0.5724E-02 0.3369E-01 0.4494E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3269E-01 0.4494E-02 0.2751E-01 0.33665E+01 0.0.5724E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4495E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4495E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3369E-01 0.4495E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3366E-01 0.4495E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3366E-01 0.4495E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3366E-01 0.4894E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3366E-01 0.33665E+01 0.0.5724E-02 0.3366E-01 0.4894E-02 0.2751E-01 0.33665E+01 0.0.5724E-02 0.3366E-01 0.3465E-01 0.33665E-01 0.33665	. 0	1826		0-13525-02	0.3081E-02	0.3837F +01	
0.2344E-02 0.6920E-02 0.1553E-02 0.3189E-02 0.4568E+01 0.0.2546E-02 0.5302E-02 0.1673E-02 0.337E-02 0.4668E+01 0.0.2689E-02 0.3453E-02 0.3454E-02 0.4919E+01 0.0.2689E-02 0.3453E-02 0.3454E-02 0.4919E+01 0.0.2681E-02 0.3453E-02 0.3453E-02 0.3454E-02 0.4919E+01 0.0.292E-02 0.3353E-02 0.3363E-02 0.3733E-02 0.5185E+01 0.0.3042E-02 0.3755E-02 0.2321E-02 0.4161E-02 0.52185E+01 0.0.3182E-02 0.4374E-02 0.2321E-02 0.4161E-02 0.5518E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5518E+01 0.0.335E-02 0.5887E-02 0.24551E-02 0.5172E+01 0.0.335E-02 0.5887E-02 0.24551E-02 0.5172E+01 0.0.33742E-02 0.5186E-02 0.24551E-02 0.5172E+01 0.0.33742E-02 0.4457E-02 0.2464E-02 0.4455E-02 0.4455E-02 0.4455E-01 0.4455E-01 0.3465E-02 0.4455E-01 0.4455E-01 0.4452E-02 0.1118E-01 0.4452E-02 0.1118E-01 0.4452E-02 0.1118E-01 0.4534E+01 0.0.5724E-02 0.2687E-01 0.4452E-02 0.1118E-01 0.4534E+01 0.0.5724E-02 0.2687E-01 0.4452E-02 0.1118E-01 0.3966E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.21042E-01 0.3966E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.39665E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.39655E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.3665E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2751E-01 0.39665E+01 0.0.5724E-02 0.3665E+01 0.0.5724E	1	0.2093E-02		0-1457E-02	0.3097E-02	0.4092E+01	0.2394E+01
0.2546E-02 0.5302E-02 0.1673E-02 0.337E-02 0.4668E+01 0.0.2689E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.2689E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.292E-02 0.3453E-02 0.1909E-02 0.3589E-02 0.5077E+01 0.0.3042E-02 0.3365E-02 0.2305E-02 0.4161E-02 0.5185E+01 0.0.3182E-02 0.3725E-02 0.2321E-02 0.4161E-02 0.5218E+01 0.0.3346E-02 0.4314E-02 0.4280E-02 0.5518E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5518E+01 0.0.3346E-02 0.5189E+02 0.2474E-02 0.4551E-02 0.5172E+01 0.0.335E-02 0.5887E-02 0.2635E-02 0.4982E-02 0.5172E+01 0.0.33742E-02 0.7110E-02 0.2635E-02 0.6423E-02 0.5172E+01 0.0.33779E-02 0.4495E-02 0.3177E-02 0.4494E-02 0.4494E-02 0.1181E-01 0.3381E-02 0.1118E-01 0.4771E-01 0.4771E-02 0.1643E-01 0.4472E-01 0.3966E+01 0.4572E-02 0.2087E-01 0.4494E-02 0.1848E-01 0.4579E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.1848E-01 0.3966E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2104E-01 0.3966E+01 0.0.5724E-02 0.3269E-01 0.4492E-02 0.2104E-01 0.3966E+01 0.0.5724E-02 0.3369E-01 0.4492E-02 0.2104E-01 0.3966E+01 0.0.5724E-02 0.3269E-01 0.4894E-02 0.2704E-01 0.3966E+01 0.0.5724E-02 0.3164E-02 0.3766E-01 0.4894E-02 0.2704E-01 0.3966E+01 0.0.5724E-02 0.3269E-01 0.4894E-02 0.2704E-01 0.3966E+01 0.0.5724E-02 0.3665E-01 0.4894E-02 0.2704E-01 0.3966E-01 0.4894E-02 0.2704E-01 0.3966E-01 0.4894E-02 0.2704E-01 0.3966E-01 0.3696E-01 0.36	0	0.2344E-02		0.1563E-02	0.31 89E-02	0.4379E+01	0.2628E+01
0.2689E-02 0.3453E-02 0.1788E-02 0.3454E-02 0.4919E+01 0.0.2811E-02 0.3453E-02 0.1909E-02 0.3589E-02 0.5077E+01 0.0.2922E-02 0.3365E-02 0.2039E-02 0.3733E-02 0.5185E+01 0.0.2922E-02 0.3365E-02 0.2305E-02 0.4314E-02 0.5241E+01 0.0.3182E-02 0.4374E-02 0.2421E-02 0.4280E-02 0.551E+01 0.0.3346E-02 0.5134E-02 0.474E-02 0.44551E-02 0.55172E+01 0.0.3346E-02 0.5136E-02 0.2474E-02 0.4982E-02 0.5172E+01 0.0.33746E-02 0.5136E-02 0.2637E-02 0.4982E-02 0.5172E+01 0.0.33742E-02 0.7110E-02 0.2635E-02 0.5630E-02 0.5172E+01 0.0.33779E-02 0.44551E-02 0.44551E-02 0.4455E-01 0.4452E-02 0.4455E-01 0.3381E-02 0.4434E-02 0.4858E+01 0.4475E-01 0.3381E-02 0.1118E-01 0.4475E-01 0.4472E-01 0.4472E-02 0.1643E-01 0.4472E-02 0.1643E-01 0.4534E+01 0.4574E-02 0.2687E-01 0.4492E-02 0.1844E-02 0.3366E+01 0.4552E-01 0.4492E-02 0.21643E-01 0.3366E+01 0.0.5724E-02 0.3269E-01 0.4492E-02 0.2751E-01 0.3366E+01 0.0.5724E-02 0.3269E-01 0.4854E-01 0.3366E+01 0.0.5724E-02 0.3269E-01 0.4854E-02 0.3765E+01 0.0.5724E-02 0.3269E-01 0.4854E-02 0.3765E+01 0.0.5724E-02 0.3269E-01 0.4854E-02 0.3766E-01 0.4854E-01 0.33665E+01 0.0.5724E-02 0.3766E-01 0.4854E-02 0.3766E-01 0.3665E+01 0.0.5724E-02 0.3766E-01 0.4854E-02 0.3766E-01 0.4854E-01 0.3665E+01 0.0.5724E-02 0.3766E-01 0.4854E-01 0.3665E+01 0.0.5724E-02 0.3766E-01 0.4854E-01 0.3665E+01 0.0.5724E-02 0.3766E-01 0.4854E-01 0.3665E+01 0.0.5724E-02 0.3766E-01 0.4854E-02 0.2761E-01 0.3665E+01 0.0.5724E-02 0.3766E-01 0.3665E-01 0.0.5724E-02 0.3766E-01 0.3665E-01 0.0.5724E-02 0.3766E-01 0.3665E-01 0.0.5724E-02 0.2766E-02 0.3766E-01 0.0.5724E-02 0.3766E-02 0.3766E-01 0.0.5724E	2	0.2546E-02		0.1673E-02	0.3337E-02	0.4668E+01	0.2818E+01
0.2611E-02 0.3453E-02 0.1909E-02 0.3589E-02 0.5077E+01 0.0.2922E-02 0.3455E-02 0.2039E-02 0.3733E-02 0.5185E+01 0.0.30362E-02 0.3725E-02 0.2175E-02 0.4161E-02 0.5541E+01 0.0.3182E-02 0.4314E-02 0.2175E-02 0.4280E-02 0.5551E+01 0.0.3346E-02 0.4314E-02 0.2474E-02 0.4280E-02 0.5517E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4982E-02 0.5172E+01 0.0.3742E-02 0.5804E-02 0.2635E-02 0.55172E+01 0.0.3742E-02 0.7110E-02 0.2635E-02 0.5630E-02 0.5172E+01 0.0.3742E-02 0.7110E-02 0.2834E-02 0.5630E-02 0.5172E+01 0.0.3772E-02 0.7110E-02 0.2834E-02 0.5630E-02 0.5172E+01 0.0.4729E-02 0.181E-01 0.3381E-02 0.4984E-02 0.4947E+01 0.0.477E+01 0.0.477E+01 0.3846E-02 0.1181E-01 0.3864E-02 0.1184E-01 0.4572E+01 0.0.5064E-02 0.1698E-01 0.4492E-02 0.1643E-01 0.4579E+01 0.0.5724E-02 0.2867E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.3269E-01 0.4492E-02 0.2751E-01 0.3966E+01 0.0.5774E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3966E+01 0.0.5774E-02 0.3766E-01 0.3966E-01 0.39		0.2689E-02		0.1788E-02	0.34 54E-02	0.4919E+01	0.2980E+01
0.2922E-02 0.3365E-02 0.2039E-02 0.3733E-02 0.5185E+01 0.0.3042E-02 0.3725E-02 0.2175E-02 0.4161E-02 0.5241E+01 0.0.3182E-02 0.4314E-02 0.2175E-02 0.4280E-02 0.5251E+01 0.0.3346E-02 0.5134E-02 0.2437E-02 0.4280E-02 0.5251E+01 0.0.3346E-02 0.5137E-02 0.2635E-02 0.4982E-02 0.5172E+01 0.0.3742E-02 0.5101E+02 0.2635E-02 0.4982E-02 0.5172E+01 0.0.3742E-02 0.7110E-02 0.2804E-02 0.5630E-02 0.5172E+01 0.0.3979E-02 0.8457E-02 0.2838E-02 0.6423E-02 0.5172E+01 0.0.4229E-02 0.8457E-02 0.3177E-02 0.7680E-02 0.4947E+01 0.0.4771E-02 0.1425E-01 0.3381E-02 0.1118E-01 0.47712E+01 0.0.5064E-02 0.1698E+01 0.44492E-02 0.1643E-01 0.4534E+01 0.0.5124E-02 0.2867E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.2867E-01 0.4492E-02 0.2761E-01 0.3986E+01 0.0.512E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3164E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3164E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.31648E-01 0.3665E+01 0.0.5112E-02 0.3164E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3164E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.31648E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3164E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3645E-02 0.2761E-01 0.3645E-01 0.0.5112E-02 0.3645E-02 0.2761E-01 0.3665E+01 0.0.5112E-02 0.3645E-02 0.2761E-01 0.0.5605E+01 0.0.5112E-02 0.2761E-01 0.37645E-02 0.2761E-01 0.0.5112E-02 0.2761E-01 0.37645E-02 0.2761E-01 0.0.5112E-02 0.2761E-01 0.2761E-01 0.0.5112E-02 0.2761E-01 0.0.5724E-02 0.		0.2811E-02		0.1909E-02	0.3589E-02	0.5077E+01	0.3109E+01
0.3042E-02 0.3725E-02 0.2175E-02 0.4161E-02 0.5241E+01 0.0.3182E-02 0.4314E-02 0.2321E-02 0.4280E-02 0.5251E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5251E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5172E+01 0.0.355E-02 0.5172E+01 0.0.355E-02 0.7110E-02 0.2635E-02 0.543E-02 0.5101E+01 0.0.3742E-02 0.7110E-02 0.2983E-02 0.6423E-02 0.5101E+01 0.0.3479E-02 0.9895E-02 0.3177E-02 0.4429E-02 0.4457E-01 0.3381E-02 0.4434E-02 0.4458E+01 0.0.4771E-02 0.1698E-01 0.3381E-02 0.1118E-01 0.4771E-01 0.3664E-02 0.1138E-01 0.4534E+01 0.0.5724E-02 0.2105E-01 0.4492E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3366E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2751E-01 0.3565E+01 0.0.5772E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3366E+01 0.0.5772E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3366E-01 0.4894E-02 0.2751E-01 0.3366E-01 0.3665E+01 0.0.5772E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3366E-01 0.3665E+01 0.0.5772E-02 0.3269E-01 0.3665E+01 0.0.5772E-02 0.3269E-01 0.3665E-01 0.3	4	0.2922E-02		0.2039E-02	0.3733E-02	0.5185E+01	0.3203E+01
0.3182E-02 0.4314E-02 0.2321E-02 0.4280E-02 0.5251E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5214E+01 0.0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5214E+01 0.0.3535E-02 0.5139E-02 0.2635E-02 0.4551E-02 0.5101E+01 0.0.3742E-02 0.7110E-02 0.2804E-02 0.6530E-02 0.5101E+01 0.0.379E-02 0.8457E-02 0.2983E-02 0.6423E-02 0.5028E+01 0.0.4294E-02 0.9895E-02 0.3176E-02 0.4680E-02 0.4947E+01 0.0.4494E-02 0.185E-01 0.3381E-02 0.9184E-02 0.4947E+01 0.0.4771E-02 0.1698E-01 0.3381E-02 0.118E-01 0.4534E+01 0.0.5064E-02 0.1698E-01 0.3864E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2095E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2751E-01 0.3565E+01 0.0.5112E-02 0.3369E-01 0.4894E-02 0.2751E-01 0.3565E+01 0.0.5112E-02 0.3369E-01 0.3665E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3565E+01 0.0.5112E-02 0.3665E+01 0.0.5065E+01 0.0.5112E-02 0.3665E+01 0.0.5065E+01 0.0.5066	4	0.3042E-02		0-2175E-02	0.4161E-02		0.3255E+01
0.3346E-02 0.5139E-02 0.2474E-02 0.4551E-02 0.5214E+01 0.0.3535E-02 0.5967E-02 0.2635E-02 0.4982E-02 0.5172E+01 0.0.3742E-02 0.5967E-02 0.2635E-02 0.4982E-02 0.5172E+01 0.0.3742E-02 0.7110E-02 0.2804E-02 0.6530E-02 0.5172E+01 0.0.3742E-02 0.8457E-02 0.2983E-02 0.6423E-02 0.5028E+01 0.0.429E-02 0.9495E-02 0.3381E-02 0.9184E-02 0.4947E+01 0.0.4771E-02 0.1898E-01 0.3610E-02 0.1118E-01 0.47712E+01 0.0.5064E-02 0.1698E-01 0.3610E-02 0.118E-01 0.47712E+01 0.0.5064E-02 0.1698E-01 0.4492E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.5112E-02 0.3366E+01 0.0.5112E-02 0.3269E-01 0.3665E+01 0.0.5112E-02 0.3665E+01 0.0.5065E+01 0.0.5066E+01 0.0.5066E+01 0.0.5066E+01 0.		0.3182E-02		0.2321E-02	0.4280E-02	0.5251E+01	0.3292E+01
0.3535E-02 0.5867E-02 0.2635E-02 0.4982E-02 0.5172E+01 0.0.3732E-02 0.5172E+01 0.0.3742E-02 0.7110E-02 0.2804E-02 0.5630E-02 0.5101E+01 0.0.3379E-02 0.8457E-02 0.2803E-02 0.663E-02 0.5101E+01 0.0.4229E-02 0.9495E-02 0.3177E-02 0.7680E-02 0.4947E+01 0.0.4494E-02 0.1816E-01 0.3381E-02 0.91184E-02 0.4858E+01 0.0.4771E-02 0.1898E-01 0.3604E-02 0.1118E-01 0.4772E+01 0.0.5064E-02 0.1898E-01 0.4772E+01 0.0.5564E-02 0.2099E-01 0.4534E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.2687E-01 0.4894E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.5112E-02 0.0005E-02 0.000	2	0.3346E-02		0.2474E-02	0.4551E-02	0.5214E+01	0.3286E+01
0.3742E-02 0.7110E-02 0.2804E-02 0.5630E-02 0.5101E+01 0.0.3979E-02 0.8457E-02 0.2983E-02 0.6423E-02 0.5028E+01 0.0.429E-02 0.8457E-02 0.2983E-02 0.6423E-02 0.5028E+01 0.0.429E-02 0.9995E-02 0.3177E-02 0.7680E-02 0.4947E+01 0.0.4494E-02 0.1818E-01 0.3381E-02 0.9184E-02 0.4858E+01 0.0.4771E-02 0.18456E-01 0.3664E-01 0.4772E+01 0.0.504A-02 0.1098E-01 0.3864E-02 0.1118E-01 0.4772E+01 0.0.5724E-02 0.2105E-01 0.4153E-02 0.1643E-01 0.3986E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.0112E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.0112E-02 0.3065E+01 0.0.0112E-02 0.3069E-01 0.3065E+01 0.0.0112E-02 0.3069E-01 0.3069E-0	3	0.3535E-02	•	0.2635E-02	0.4982E-02	0.5172E+01	0.3262E+01
0.3979E-02 0.8457E-02 0.2983E-02 0.6423E-02 0.5028E+01 0.0.4229E-02 0.9995E-02 0.3177E-02 0.7680E-02 0.4947E+01 0.0.429E-02 0.1895E-02 0.3177E-02 0.7680E-02 0.4947E+01 0.0.4494E-02 0.1895E-01 0.3381E-02 0.91118E-01 0.4712E+01 0.0.5064E-02 0.1895E-01 0.3864E-02 0.1118E-01 0.4712E+01 0.0.5379E-02 0.2105E-01 0.4153E-02 0.1643E-01 0.4534E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5112E-02 0.3269E-01 0.4894E-02 0.2751E-01 0.3665E+01 0.0.0.112E-02 0.3269E-01 0.3665E+01 0.0.0.112E-02 0.3269E-01 0.3665E+01 0.0.0.112E-02 0.3665E+01 0.0.0.0.112E-02 0.3665E+01 0.0.0.112E-02 0.3665E+01 0.0.0.0.112E-02 0.3665E+01 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	-	0.3742E-02		0.2804E-02	0.5630E-02	0.5101E+01	0.3224 E+01
0.4229E-02 0.9095E-02 0.3177E-02 0.7680E-02 0.4947E+01 0.0.4949E-02 0.181E-01 0.3381E-02 0.9184E-02 0.4658E+01 0.0.4771E-02 0.1425E-01 0.3864E-02 0.1584E-01 0.4572E+01 0.45064E-02 0.1698E-01 0.3864E-02 0.1643E-01 0.4534E+01 0.4534E-02 0.2105E-01 0.4153E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.51724E-02 0.3269E-01 0.4648E-02 0.2761E-01 0.3665E+01 0.0.5172E-02 0.3665E+01 0.0.5172E-02 0.3665E+01 0.0.5724E-02 0.2724E-02 0.2724E-02 0.2724E-02 0.2724E-02 0.2724E-02 0.2724E-02 0.0.5724E-02 0.	æ	0.3979E-02	•	2983E	0.6423E-02	0.5028E+01	0.3181E+01
0.4494E-02 0.1181E-01 0.3381E-02 0.9184E-02 0.4858E+01 0.0.4771E-02 0.1425E-01 0.3610E-02 0.1118E-01 0.4772E+01 0.0.5064E-02 0.1698E-01 0.3864E-02 0.11384E-01 0.4534E+01 0.0.5379E-02 0.2105E-01 0.4157E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5724E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.6112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.6112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.6112E-02 0.3665E+01 0.0.6112E-02 0.4894E-02 0.2761E-01 0.3665E+01 0.0.6112E-02 0.4894E-02 0.2761E-01 0.3665E+01 0.0.6112E-02 0.4894E-02 0.4894E-02 0.4894E-01 0.4894E-02 0.4894E-01 0.4894E-02 0.4894E-01 0.4894E-02 0.4894E-01 0.4894E-01 0.4894E-01 0.4894E-02 0.4894E-01		0.4229E-02		0.3177E-02	0.7680E-02	0.4947E+01	0.3110E+01
0.4771E-02 0.1425E-01 0.3610E-02 0.1118E-01 0.4712E+01 0.0.5064E-02 0.1698E-01 0.3864E-02 0.1384E-01 0.4534E+01 0.0.5379E-02 0.2105E-01 0.4153E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.0112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.0112E-02 0.0012E-02 0.2761E-01 0.3665E+01 0.0.0112E-02 0.0012E-02 0.3665E+01 0.0.0112E-02 0.0012E-02 0.00	1			0.3381E-02	0.9184E-02	0.4858E+01	0.3021E+01
0.5064E-02 0.1698E-01 0.3864E-02 0.1384E-01 0.4534E+01 0.6.5379E-02 0.2105E-01 0.4153E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.5124E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.0112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.0112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.0.0112E-02 0.2761E-01 0.3665E+01 0.0012E-01 0.0012	0		•	0.3610E-02	0.1118E-01	0.4712E+01	0.2891E+01
0.5379E-02 0.2105E-01 0.4153E-02 0.1643E-01 0.4279E+01 0.0.5724E-02 0.2687E-01 0.4492E-02 0.2099E-01 0.3986E+01 0.0.112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.	0			0.3864E-02	0.1384E-01		0.2746E+01
0.5724E-02 0.2687E-01 0.44492E-02 0.2099E-01 0.3986E+01 0.0.112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.	0		0.2105E-01	0.4153E-02	0.1643E-01		0.2746E+01
0.6112E-02 0.3269E-01 0.4894E-02 0.2761E-01 0.3665E+01 0.	0	.57	0.2687E-01	0.4492E-02	0.2099E-01	0.3986E+01	0.2746E+01
	0	0.6112E-02	0.3269E-01		0.2761E-01	0.3665E+01	0.2746E+01

THICKNESS	
DISPLACEMENT	22
ISPLA	STATION
0	5
NEW	S
Ž	-

WBCL	4995E+02 2874E+02 2210E+02	844E+02	407E+02	134E+02	1006E+02	1890E+01	5864E+01	940E+01	1045E+01	1199E+01	346E+01	372E+01	5223E+00	0.6352F+00	.1085E+01	0.1482E+01	1621E+01	2128E+01	2388E+01	2621E+01	2815E+01	3102E+01	3195E+01	3258E+01	3290E+01	3281E+01	.3257E+01	.3219E+01	31786+01	30195+01	.2891E+01	2748E+01	2748E+01	The case of the second second second
3		0.1418E-02-0.1650E+02-0.1844E+02	0。1238E-02-0。1214E+02-0。1407E+02 0。1154E-02-0。1040E+02-0。1241E+02	0.3255E-02-0.9398E+01-0.1134E+02	0.1696E-02-0.8107E+01-0.1006E+02	.1668E-02-0.5946E+01-0.7890E+01	1558E-02-0.4904E+01-0.6864E+01	. 181 6E-02-0.2990E+01-0.4940E+0	0.2054E-02-0.2090E+01-0.4045E+0	0.2358E-02-0.1240E+01-0.3199E+01	.2309E-02-0.3937E+00-0.2346E+01	0.5869E+00-0.1372E+01	o o		-	1 0	.0 1	1 0.	0	•		10	•	.5221E+01 0.3	1 0	•	0	0	•	0	1 0.	.0	.4307E+01 0.	
P WBCU	0.1103E-03-0.4799E+02-0 0.8412E-03-0.2678E+02-0 0.8551E-03-0.2015E+02-0	02-0-165	02-0-121	05-0-938	02-0-810	02-0-594	.1558E-02-0.4904E+01-0.	02-0-395	02-0-20	02-0-124	ī	100		02 0.25066E+01			0	0			02 0.4690E+0			0					02 0 50 51E+0	0		0	0	
ACT-SLP	0.8412E-	0.1418E-	0.1238E-	0.3255E-	0.1696E-	0.1668E-	0.1558E-	0.1816E-	0.2054E-	0.2358E-	0.2309E-	0.2295E-02	0.2395E-02	0-2611E-02	0.2866E-02	0.2989E-02	0.3057E-02	0-3088E-02	0.3205E-02	0.3312E-02	0.3386E-02	0-3715E-02	0.3890E-02	0.4120E-02	0.4315E-02	0.4630E-02	0.50 70E-02	0.5714E-02	0.04 / FE-02	0.9473E-02	0.1145E-01	0.1402E-01	0.1657E-01	
108-0	0.4119E-04- 0.4496E-04 0.5475E-04	.6636E-04	.9548E -04-	0.12326-03	0.1585E -03	.2275E-03	0.2732E-03	3908E-0	-4614E-0	.5400E-03	0.6216E-03	0.7034E-03	. 7878E	-8/30E-03	0.1056E-02	.1152E-02	.1251E	•1354E	-1460E	-1568E-02	0.1682E-02	0-1929E-02	0.2064E-02	0.2204E-02	•2355E	.2512E-02	-2674E-02	0.2845E-02	0.3026E-02	3435E		.3938E-02	.4244E-02	
ACT-SLP	.2217E-05 .6999E-03		0.1721E-02 0	-3603E-02	- 1861E-02		. 1570E-02	. 2021E-02	.2158E-02	.2386E-02	.2461E-02	.2339E-02	-2606E-02	-2814E-02 0	-4618E-02	.5654E-02	.6516E-02			-6013E-02	3532E-02	- 3510E-02	.3700E-02	-4082E-02		. 5294E-02	.6177E-02	7171E-02	- 8400E-02	-1171E-01	.1416E-01 0	.1693E-01 0	. 2010E-01 0	The same of the country of the count
901-0	0.3456E-04 0 0.3939E-04 0	.6470E-04 0	0.1098E-03 0	.1315E-03 0	0.16796-03 0	0	0.2951E-03 0	.4205E-03 0	0	0	0			0.9412E-03 0	0	0	0-1619E-02 0	0-1862E-02 0	0.2107E-02 0	-2328E-02	0.2503E-02 0	0.2755E-02 0	0	0.3010E-02 0	0-3160E-02 0	.3332E-02	0.3523E-02 0		0.43115-02 O		0.4757E-02 0	0.5058E-02 0	0.5389E-02 0	
, x/c	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.028	7 0.056	1900	9 0.080		12 0 133 0	.183						21 0 387	22 0.415 0		.471	0		90000	29 0 585	644	0.674	32 0.704 0	33 0 . 734 0	0.763	0.193	.821	0.040	0	40 0.919	41 0.940 0	45 0.960 0	, ,,,,

THICKNESS	
CEMENT	23
DISPLACEMENT	STATION
NE	1 5

		NEW DISPLA	NEW DISPLACEMENT THICKNESS T STATION 23	KNESS			
'	x/c	901-0	ACT-SLP	0-801	ACT-SLP	#BCU	TOGM
-	0.004	0.3522E-04	0.7316E-05	0.4217E-04-	.0.1106E-03-0.	-4799E+02-0	.4995E+02
N	0.012		0.9274E-03	0.4605E-04	0.8660E-03-0.2678E+02-0.	-2678E+02-0	. 2874E+02
2	0.020		0-1140E-02	0.5615E-04	0.8856E-03-0.2015E+02-0.2210E+02	.2015E+02-0	. 2210E+02
•	0.028		0.1883E-02	0.6817E-04	0.1472E-02-0.1650E+02-0.1644E+02	.1650E+02-0	. 1844E+02
0 4	0.037	0.8663E-04	0.2401E-02	0.8490E-04	0.1718E-02-0.1405E+02-0.1598E+02	.1405E +02-0	1596E+02
0 1	950		0-2069E-02	0.99025-03-	0.1210F=02=0.1214E+02=0.140FE+02	1040F+02=0	12405402
. 0	0.067		0.3670E-02	0.1257E-03	0.3327E-02-0402E+01-0.1134E+02	-9402E+01-0	.1134E+02
•	0.080	_	0-1904E-02	0.1612E-03	0.1647E-02-0.8109E+01-0.1006E+02	-8109E+01-0	.1006E+02
9	960.0	0.2071E-03	0.2332E-02	0.1975£ -03	0.2280E-02-0.7027E+01-0.8985E+0	.7027E+01-0	. 8985E+01
:	0.112		0-1987E-02	0.2315E-03	0.1801E-02-0.5947E+01-0.7898E+01	.5947E+01-0	. 7898E+01
15	0.133		0. 1718E-02	0.27696-03	0.1532E-02-0.4912E+01-0.6862E+0	.4912E+01-0	. 6862E+01
2 :	0.150	0.3587E-03	0. 1912E-02	0.3320E-03	0.1636E-02-0.3932E+01-0.5877E+01	3932E +01-0	-5877E+01
2	0.212		0-2193F-02	0.4657F-03	0.20596-02-0.20926+01-0.40456+01	-2092F +01-0	40455401
16	0.242	-	0.2417E-02	0.54396-03	0.2309E-02-0.1242E+01-0.3196E+01	. 1242E+01-0	.3196E+01
11	0.272		0.2605E-02	0.6258E-03	0.2430E-02-0.4017E+00-0.2353E+01	-4017E+00-0	.2353E+01
18	0.301	-	0.2509E-02	0.7061E-03	0.2374E-02 0	0.5773E+00-0.1376E+01	1.1376E+01
15	0.330	-	0.2649E-02	0.7897E-03		1	. 5207E+00
50	0.359		0.3241E-02	0.8760E-03			0.1204E+00
53	0.387		0.4215E-02	0.9653E-03			0.6354E+00
25	0.415		0.4879E-02	0-1058E-02		-	0.1088E+01
53	0.443		0.5743E-02	0.11556-02	30 196-02		0.1480E+01
200	•	20-10-01-0	0 44646-02	20-30-20-0		10436466	•
5 2	0.527	-	0.6576E-02	0.1472£ -02	0.3544E-02 0	0.4159E+01 0	.2369E+01
27	0.556		0.5751E-02	0.1587E-02		.4445E+01 0	
58	0.585	0.2487E-02	0.4729E-02	0.1707E-02		0.4700E+01 0	
58	0.014			0.1832E-02		0.4913E+01 0	. 2969E+01
30	0.044		0.3677E-02	0.1963E-02		-	
31	0.674		•	0.2101E-02		0.5150E+01 0	•
35	777	0.3016E-02	9.4293E-02	0.22456-02	0.4069E-02 0	0.5209E+01	322616401
3	0.763	0		0-25535-02		0.5201E+01	32746+01
35	0.793	0		0.2717E-02		.5163E+01 0	
36	0.821	0.37316-02	0.6988E-02	0.2891E-02	0.5801E-02 0	.5108E+01 0	.32146+01
37	0.848	0	0.8224E-02	0.3074E-02		0.5041E+01 0	
38	0.874	0	0.9766E-02	0.3279E-02		.4954E+01	•
1	0.00	0.440E-02	0-13016-01	0.3498E-02	0.9649E-02 0	4875E+01 0	3022E+01
-	0.940	0	0.1670E-01	0.4031E-02		4567E+01	
45	0.960	1770	0.2000E-01	0.4361E-02		0.4345E+01 0	.2758E+01
43	0.980		0.2443E-01	0.4754E-02		.4095E+01	•
;	1.000	0.6292E-02	0.2866E-01	0.5234E-02	0.2811E-01 0	.3881E+01 0	.2758E+01

55	
THICKNESS	
THI	
DISPLACEMENT	54
CE	N
2	STATION
S	-
=	-
0	2
	S
NE	
Z	-

	NEW DISPLA	NEW DISPLACEMENT THICKNESS T STATION 24	CKNESS			
J X/C	0-10P	ACT-SLP	109-0	ACT-SLP	#BCU	MBCL
0.004	0.35%E-04	0.12586-04	0.4318E-04-	-0.1102E-03-	-0.4799E+02	-0.4994E+02
0.012	0.4116E-04	0.9565E-03	0.47196-04	0.8922E-03-0.2679E+02-0.	0.2679E+02-	-0.2874E+02
0.020		0.1184E-02	0.5763E-04	0.9198E-03-0.2016E+02-0.2210E+02	0.2016E+02-	-0.2210E+02
0.028	0.6830E-04	0.1957E-02	0.7012E-04	0.1533E-02-0.1651E+02-0.1845E+02	0.1651E+02-	-0.1845E+02
0.037		0.2509E-02	0.8757E-04	0.1799E-02-0.1406E+02-0.1598E+02	0.1406E+02-	-0.1598E+02
0.046	_	0.1890E-02	0-1058E-03	0.1349E-02-0.1215E+02-0.1408E+02	0.1215E+02-	-0.1408E+02
0.056		-0.2335E-02	0.1015E-03-	-0.1367E-02-0.1038E+02-0.1240E+02	0.1038E+02-	-0.1240E+02
0.067	0-1378E-03	0.3625E-02	0.1288E-03	0.3354E-02-0.9400E+01-0.1135E+02	0.9400E+01-	-0.1135E+02
0.080	-	0.1951E-02	0.1647E-03	0.1682E-02-0.8112E+01-0.1006E+02	0.8112E+01-	-0.1006E+02
960.0 0	0.2121E-03	0.2610E-02	0.2013E-03	0.2348E-02-0.7043E+01-0.8989E+01	0.7043E+01.	-0.8989E+01
0.112	-	0.2064E-02	0.2347E-03	0.1577E-02-0.5951E+01-0.7865E+0	0.5951E+01-	-0.7865E+01
0.133	-	0.1635E-02	0.28186-03	0.1335E-02-0.4907E+01-0.6851E+0	0.4907E+01-	-0.6851E+01
0.156	•	0.1839E-02	0.3358E-03	0.1760E-02-0.3927E+01-0.5884E+0	0.3927E+01-	-0.5884E+01
2010	0.430ZE-03	0.2242E-02	0.3980E-03	0.304 85-02-0-2993E +0 1-0-494 0E+0	304 85 -02 -0 -29936 +0 1 -0 -494 0E +0	0.4940E+01
0 - 242		0-2537E-02		0.2374E-02-0.1248E+01-0.3200E+01	0.1248E+01-	-0-3200E+01
0.272		0.2593E-02	0.6285E-03	0.2479E-02-0.4011E+00-0.2356E+01	0.4011E+00-	-0.2356E+01
0.301		0.2589E-02	0.7090E-03	0.2319E-02	0.5728E+00-	0.5728E+00-0.1373E+01
0.330	0.8752E-03	0.2743E-02	0.7928E-03	0.2400E-02	0.1419E+01-	0.1419E+01-0.5226E+00
0.359	0.9901E-03	0.3397E-02	0.8800E-03	0.2634E-02	0.2033E+01	0.1150E+00
•			0.9713E-03	0.2854E-02	0.2507E+01	0.6296E+00
			0-1069E-02	0.2968E-02	0.2927E+01	0.1080E+01
0.443	0.1477E-02	0.5867E-02	0.1169E-02	0.3111E-02	0.3282E+01	0.1475E+01
004		0.6795F-02	0.13875-02	0-3476F-02	0.38815+01	0.21125+01
	_	0.6451E-02	1501E	0.34 13E-02	0.4166E+01	0.2376E+01
0.556		0.5707E-02	0.1623E-02	0.34 62E-02	0.4447E+01	0.2613E+01
0.585	0.2524E-02	0.4780E-02	0-1746E-02	0.3625E-02	0.46976401	0.2801E+01
			0.1874E-02	0.3766E-02	0.4913E+01	
	0.2778E-02		0.2007E-02	0.3902E-02	0.5070E+01	
0.674			0.2146E-02	0.4044E-02	0.5149E+01	
0.704		•	0.2291E-02	.4188E	0.5211E+01	
			0.2442E-02	0.4667E-02	0.52346+01	•
703	0.3535E-02		0.2770E-02	0.47985-02	0.52136+01	0. 32475401
36 0 821			0.2945E-02	0.5909E-02	0.5114E+01	
0			9	6867E	0.5054E+01	
	-	0.960BE-02	9	0.8156E-02	0.4963E+01	0.3083E+01
9 0.897	0	0.1163E-01	0.3581E-02	0.9921E-02	0.4895E+01	0.3032E+01
0.919	0	0.1393E-01	9	0.1210E-01		0.2914E+01
0.940	0.5	-1685E-	0.4143E-02	0.1469E-01	0.4601E+01	0.2780E+01
0000	0.54 75E-02		4498E	1803E-	0.4396E+01	0.2780E+01
000			0.4920E-02	0.2252E-01	70306401	0.2780E+01
	0.04475-02	0.2781E-01	0.544 IE-02	0.2/20E-01	0.3939E +01	0.2780E+01

THICKNESS	
DISPLACEMENT	25
CE	N
P.	STATION
2	=
0	4
NEW	S
ž	Y

	AT STATION	NEW DISPLACEMENT THICKNESS T STATION 25	KNESS			
7 x/c	C 0-10P	ACT-SLP	D-80T	ACT-SLP	WBCU	<b>HBCL</b>
1 0.004	4 0.3677E-04	0.1762E-04	0.4421E-04-	-0-1096E-03-	-0-4800E+02-0	0.4995E+02
2 0 .012			.4837E	0.9213E-03-	0.9213E-03-0.2679E+02-0.2875E+02	0.2875E+02
3 0.020		0. 1233E-02	.5916E	0.9585E-03-	0.9585E-03-0.2016E+02-0.2210E+02	0.2210E+02
4 0.028		0.2037E-02	0.7216E-04	0.1602E-02-	0.1602E-02-0.1651E+02-0.1845E+02	0.1845E+02
5 0 0 0 37		0.2628E-02		0.1891E-02-	0.1891E-02-0.1407E+02-0.1599E+02	0.1599E+02
9000	6 0 11216E-03	0 - 1990E-02	0-10956-03	0.1417E-02-	0. 14 1 /E-02-0. 12 13E+02-0. 140 BE+02	0. 1408E+02
8 0.067		0.3902E-02	0-1314F-03	0-3409E-02-	0.3409E-02-0.1037E+02-0.1239E+02	0-1135E+02
9 0.080		0.1736E-02	0-1687E-03	0.1731E-02-	0.1731E-02-0.8100E+01-0.1006E+02	0.1006E+02
30 0 00		0.2602E-02	0.2011E-03	0.2229E-02-	0.2229E-02-0.7042E+01-0.8982	0.8962E+01
11 0.112			-2379E	0.1804E-02-	0.1804E-02-0.5950E+01-0.7898E+0	0.7898E+01
13 0 156	6 0-3726E-03	0-1965E-02	0.3404E-03	0-1509F-02-	0.1509E-02-0.3935E+01-0.5870E+0	0.5870F+01
14 0.183		0.2154E-02	0.4033E-03	0.1723E-02-	0.1723E-02-0.2998E+01-0.4934E+0	0.4934E+01
15 0 -212	-	0.2251E-02	0.4742E-03	0.2048E-02-	0.2048E-02-0.2095E+01-0.4045E+0	0.4045E+01
16 0.242		0.2498E-02	0.5519E-03	0 02347E-02-	0 2347E-02-0.1246E+01-0.3199E+0	0.3199E+01
17 0.272		0.2778E-02	0.6341E-03	0.2435E-02-	0.2435E-02-0.4114E+00-0.2353E+0	0.2353E+01
18 0 .301		0.2560E-02	0.7172E-03	0.2426E-02	0.5745E+00-0.1379E+0	0.1379E+01
19 0.330			0-8034E-03	0.2440E-02		0.5249E+00
20 0 359		•	0.8949E-03	0.2684E-02		0.1122E+00
21 0.387	0	•	0.9908E-03	0.2812E-02		0.6319E+00
22 0.415	0		0-1095E-02	0.30 82E-02	-	0.1073E+01
24 0 471	13 0-1552E-02	0-72155-02	0-1201E-02	0.3286E-02	0.3244E+01	0.1465E+01
	0		1427	0-34 69E-02		0-2106F+01
			.1546E	0.3536E-02		0.2369E+01
27 0.556	0	0.5191E-02	0.1669E-02	0.3695E-02	-	0.2600E+01
28 0 .585		0.4265E-02	0-1794E-02	0.3807E-02	0.4726E+01	0.2791E+01
0		•	.1924E	0.3861E-02	_	0.2957E+01
30 0.644	4 0.2813E-02	0.3252E-02	0.2059E-02	0.3947E-02	5089E+01	0.3089E+01
9 0		0 3002E-02	0.224 TE-02	0.4129E-02	0.5169E+01	0.31816+01
	0	0-444 BF-02	25035	0-44 82F=02		0-3243E401
34 0 • 763			-266 7E	0.4859E-02		0.3269E+01
35 0.793	0	0.5706E-02	.2836E	0.5309E-02	-	0.3244E+01
36 0 .821	0	0.6765E-02	0.3014E-02	0.5970E-02	0.5121E+01	0.3204E+01
0		0.7858E-02	€ 3509E	0.6844E-02	0.5061E+01	0.3157E+01
0		0.9647E-02	0.3418E-02	0.8241E-02	0.4961E+01	0.3079E+01
40 0 0 0 14	9 0-4793F-02	0-1636F-01	0 - 362 3E -02	0.1222F-01	0-4923E+01	0.2940F+01
0	_		.4231E	0-1473E-01		0.2815E+01
42 0.960		0.2066E-01	0.4597E-02	0.1763E-01	0.4463E+01	•
43 0.980	-		0.5037E-02	0.2247E-01	0.4260E+01	•
44 1 .000	00 0.6628E-02	0.3041E-01	0.5569E-02	0.2721E-01	0.3793E+01	0.2815E+01

0.1979E+01 0.1060E+00 0.4511E-04-0.1057E-03-0.4800E+02-0.4995E+02 0.9528E-03-0.2679E+02-0.2875E+02 0.1003E-02-0.2016E+02-0.2211E+02 0.1679E-02-0.1652E+02-0.1845E+02 0.1996E-02-0.1407E+02-0.1599E+02 0.1491E-02-0.1216E+02-0.1408E+02 0.1084E -03-0.1666E -02-0.1036E+02-0.1238E+02 0.3482E-02-0.9402E+01-0.1135E+02 0.1754E-02-0.8123E+01-0.1006E+02 0.2443E-02-0.7042E+01-0.8994E+01 0.1836E-02-0.5956E+01-0.7900E+01 0.1546E-02-0.4923E+01-0.6863E+01 0.1784E-02-0.2995E+01-0.4938E+01 0.2592E-02-0.4171E+00-0.2362E+01 0.2426E-02 0.5410E+00-0.1379E+01 0.1395E+01-0.5361E+00 0.1621E-02-0.3938E+01-0.5876E+01 0.2072E-02-0.2095E+01-0.4046E+01 0.2425E-02-0.1264E+01-0.3203E+01 0.3852E+01 0.2464E+01 0.3202E+01 0.3547E+01 0.4545E+01 0.4791E+01 0.4977E+01 0.4710E+01 0.4547E+01 0.2847E+01 0.3916E+01 0.4251E+01 0.5229E+01 0.5065E+01 0.4370E+01 0.4973E+01 0.5248E+01 0.5107E+0 0.5227E+0 0.5185E+0 0.5139E+0 0.4960E+0 0.5178E+0 0.4845E+0 0.2794E-02 0.3420E-02 0-2640E-02 0.2986E-02 0.3333E-02 0.3528E-02 0.3624E-02 0.3933E-02 0.3906E-02 0.3958E-02 0.3958E-02 0.4322E-02 0.4430E-02 0.5812E-02 0.6745E-02 0.8162E-02 0.2736E-01 0.3689E-02 0.4176E-02 0.4875E-02 0.5236E-02 0.9652E-02 0.1458E-01 0.1744E-01 0.2102E-01 0.1218E-01 0.1342E-03 0.5117E-02 0.2936E-01 0.5664E-02 0.4945E-04 0.1135E-03 0.1722E -03 0.2050E-03 0.4099E-03 0.4826E-03 0.5627E-03 0.8293E-03 0.4367E-02 0.9271E-03 0.1029E-02 0.1363E-02 0.1480E-02 0.1728E-02 0.4667E-02 0.2422E-03 0.2908E-03 0.6493E-03 0.7376E-03 0-1138E-02 0-1248E-02 0.1602E-02 0.1856E-02 0-1990E-02 0.2128E-02 0.2270E-02 0.2420E-02 0.2738E-02 0.3080E-02 0.3268E-02 0.3482E-02 0.4295E-02 0.6062E-04 0.9335E-04 0.3460E-03 0.2576E-02 0.2904E-02 0.3713E-02 0.3987E-02 0.7420E-04 NEW DISPLACEMENT THICKNESS 0.2245E-02 0.5100E-02 0.7240E-02 0.2013E-01 0.2395E-04 0.1024E-02 0.1285E-02 0-2124E-02 0.2751E-02 0.2083E-02 0.1149E-03-0.2776E-02 0.3670E-02 0.2152E-02 0.2601E-02 0.2143E-02 0.1915E-02 0.2028E-02 0.2116E-02 0.2819E-02 0.2879E-02 0.3155E-02 0.3181E-02 0.6426E-02 0.7281E-02 0.6168E-02 0.4945E-02 0.3970E-02 0.3112E-02 0.2882E-02 0.2927E-02 0.3483E-02 0.3932E-02 0-4364E-02 0.4899E-02 0.5658E-02 0.6443E-02 0. TTBTE-02 0.9356E-02 0.1121E-01 0-1401E-01 0.1666E-01 0.2475E-01 ACT-SLP 0.1263E-03 AT STATION 0.9776E-04 0.1446E-03 0.1810E-03 0.2212E-03 0.2644E-03 0.31 66E-03 0.3789E-03 0.4508E-03 0.5305E-03 0.6185E-03 0.7149E-03 0.8225E-03 0.9433E-03 0.1087E-02 0-1264E-02 0-14 80E-02 0.1727E-02 0.2517E-02 0.2784E-02 0.31 68E-02 0.3329E-02 0.3911E-02 0.4155E-02 0.5088E-02 0.5509E-02 0.60135-02 0.6635E-02 0.4327E-04 0.5548E-04 0.7255E-04 0-1979E-02 0.2207E-02 0.2389E-02 0.2610E-02 0.2695E-02 0.2895E-02 0.3024E-02 0.3505E-02 0.3698E-02 0.4423E-02 0.4735E-02 0.3764E-04 901-0 0.359 0.556 096.0 0.012 0.028 0.037 0.046 0.056 190.0 0.080 960.0 0.112 0.133 0.156 0.183 0.212 0.242 0.272 0.330 0.387 0.415 0.443 0.471 664.0 0.527 0.585 0.014 0.644 0.674 0.704 0.734 0.763 0.793 0.821 0.848 0.874 0.897 0.919 0.940 0.980 0.301

50

21 22

18

15

0

12 4 16

0 0

5 9 0.6222E+00

0.1059E+01 0.1458E+01 0.1794E+01 0.2098E+01 0.2952E+01

0.3179E+0

0.2361E+01 0.2586E+01 0.2786E+01 0.3088E+01 0.3246E+01 0.3283E+01 0.3268E+01 0.324 BE+01 0.3213E+01 0.3163E+01 0.3083E+01

38

39 00

0.3074E+01 0.2978E+01 0.2865E+01

24

28

31

34 36 37

27 58 30 32 33 35

THICKNESS	
DISPLACEMENT	27
3	"
3	STATION
S	-
-	-
9	1
	S
NE	
Z	5
	-

,	0.9374E-04-0.4799E+02-0.4995E+02 0.9893E-03-0.2679E+02-0.1846E+02 0.1066E-02-0.1652E+02-0.1846E+02 0.1786E-02-0.1652E+02-0.1846E+02 0.1786E-02-0.1856E+02-0.1846E+02 0.1897E-02-0.1816E+02-0.1846E+02 0.1897E-02-0.1816E+02-0.1836E+02 0.1893E-02-0.9416E+01-0.1135E+02 0.1893E-02-0.9416E+01-0.1135E+02 0.1893E-02-0.9416E+01-0.1135E+02 0.1893E-02-0.9429E+01-0.899E+01 0.1898E-02-0.4929E+01-0.899E+01 0.1898E-02-0.4929E+01-0.899E+01 0.1898E-02-0.4929E+01-0.893E+01 0.1898E-02-0.4929E+01-0.893E+01 0.1898E-02-0.4929E+01-0.893E+01 0.1898E-02-0.4929E+01-0.893E+01 0.1898E-02-0.4929E+01-0.893E+01 0.1898E-02-0.4929E+01-0.893E+01 0.2795E-02-0.4929E+01-0.893E+01 0.2795E-02-0.4929E+01-0.893E+01 0.2795E-02-0.493E+01-0.893E+01 0.2795E-02-0.493E+01-0.893E+01 0.3789E-02-0.4918E+01-0.292E+01 0.3789E-02-0.4918E+01-0.292E+01 0.3915E-02-0.4918E+01-0.3226E+01 0.3915E-02-0.4918E+01-0.3226E+01 0.3915E-02-0.598E+01-0.3226E+01 0.4659E-02-0.5167E+01-0.3226E+01 0.4659E-02-0.5167E+01-0.3226E+01 0.4659E-02-0.5167E+01-0.3226E+01 0.4659E-02-0.5166E+01-0.3226E+01 0.4659E-02-0.5206E+01-0.3226E+01 0.4659E-02-0.5206E
WBCL	4995E+0 28.75E+0 1846E+0 11236E+0 11236E+0 11336E+0 113366E+0 11336E+0 113366E+0 11336E+0
3	2679E+0 2679E+0 1652E+0 1140BE+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E+0 1035E
WBCD	0.2679E+02-0. 0.2679E+02-0. 0.1652E+02-0. 0.1408E+02-0. 0.1408E+02-0. 0.1035E+02-0. 0.9416E+01-0. 0.8126E+01-0. 0.8942E+01-0. 0.8942E+01-0. 0.8942E+01-0. 0.2994E+01-0. 0.499E+01-0. 0.5098E+01-0. 0.5098E+01-0. 0.5098E+01-0. 0.5098E+01-0. 0.5098E+01-0. 0.5098E+01-0. 0.5098E+01-0.
ACT-SLP	93746-04 98936-03 11866-02 11866-02 19926-02 19926-02 19926-02 19926-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-02 25916-
ACT	0.9374E-04-0.4799E+02-0.4995E+0 0.9893E-03-0.2679E+02-0.2875E+0 0.1066E-02-0.1652E+02-0.1606E+0 0.1786E-02-0.1406E+02-0.1600E+0 0.1992E-02-0.1406E+02-0.1600E+0 0.1992E-02-0.1035E+02-0.1236E+0 0.1992E-02-0.9416E+01-0.1335E+0 0.1992E-02-0.9416E+01-0.1007E+0 0.1992E-02-0.9416E+01-0.8998E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.6874E+0 0.1912E-02-0.3942E+01-0.2994E+0 0.2795E-02-0.3942E+01-0.2994E+0 0.2795E-02-0.3942E+01-0.2994E+0 0.2795E-02-0.3942E+01-0.2994E+0 0.2795E-02-0.3942E+01-0.2998E+0 0.2795E-02-0.3942E+01-0.299E+0 0.3992E-02-0.4566E+01-0.3212E+0 0.3992E-02-0.4980E+01-0.3212E+0 0.3992E-02-0.4998E+01-0.3212E+0 0.3992E-02-0.4998E+01-0.3297E+0 0.3992E-02-0.4914E+01-0.3289E+0 0.3992E-02-0.4914E+01-0.3281E+0 0.488E-02-0.5093E+01-0.3281E+0 0.488E-02-0.5093E+01-0.3280E+0 0.488E-02-0.5104E+01-0.3286E+0 0.488E-02-0.5104E+01-0.3286E+0 0.488E-02-0.5104E+01-0.3286E+0 0.4988E-02-0.5093E+01-0.3194E+0 0.5926E+01-0.4498E+01-0.2926E+0 0.1999E-01-0.4498E+01-0.2926E+0 0.1999E-01-0.4498E+01-0.2926E+0 0.1999E-01-0.4498E+01-0.2926E+0
5	0.55 & E - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
0-601	0.45446 0.50066 0.76156 0.13746 0.13766 0.13766 0.13766 0.13966 0.14316 0.16746 0.18016 0.20647 0.18016 0.20647 0.18016 0.20647 0.30566 0.30566 0.30566 0.30566 0.30566 0.30566 0.30566
ACT-SLP	0.336 0E-04 0.106 4E-02 0.213 4E-02 0.266 2E-02 0.295 6E-02 0.295 6E-02 0.221 7E-02 0.221 7E-02 0.207 8E-02 0.207 8E-02 0.207 8E-02 0.207 8E-02 0.207 8E-02 0.207 8E-02 0.207 8E-02 0.358 1E-02 0.358 1E-02 0.475 1E-02
Á	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0-10P	3843E-04 54746E-04 1012E-03 1197E-03 1197E-03 1197E-03 1254E-03 2264E-03 3254E-03 3254E-03 3254E-03 3254E-03 3254E-02 2264E-03 3254E-03 3254E-02 3254E-02 3254E-02 3256E-02 3256E-02 3256E-02 3256E-02 3256E-02 3356E-02 3356E-02 3376E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3356E-02 3376E-02
-	0.3843E-04 0.57486E-04 0.130E-03 0.1197E-03 0.1197E-03 0.1197E-03 0.1256E-03 0.3254E-03 0.3254E-03 0.3254E-03 0.3254E-03 0.3254E-03 0.2554E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.1256E-02 0.2366E-02 0.2366E-02 0.2366E-02 0.2366E-02 0.2366E-02 0.2366E-02 0.2366E-02
X/C	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
,	
	**************************************

NEW DISPLACEMENT THICKNESS AT STATION 26

0.004	1 0.3861E-04	0.6187E-04	0.44366-04-	-0.5362E-04-0.4799E+02-0.4995E+02	-0.4799E+02	-0.4995E+0
0.012	2 0.4511E-04	0-1128E-02	0.4953E-04	0.1046E-02-	0.1046E-02-0.2680E+02-0.2875E+02	-0.2875E+0
0.020		0.1470E-02	0.6197E-04	0.1197E-02-	0.1197E-02-0.2017E+02-0.2212E+02	-0.2212E+0
0.028	3 0.7804E-04	0.2418E-02	0.7821E-04	0.2009E-02-	0.2009E-02-0.1653E+02-0.1647E+02	-0-1847E+0
0.037	7 0.1071E-03	0.3196E-02	0-1019E-03	0.2516E-02-	0.2516E-02-0.1410E+02-0.1602E+02	-0.1602E+0
0.046	0	0.2462E-02	0.1281E-03	0. 1884E-02-	0.1884E-02-0.1218E+02-0.1411E+02	-0.1411E+0
950.0	5 0.1253E-03-	-0.3696E-02	0.1174E-03-	0.2663E-02-	0.2663E-02-0.1030E+02-0.1232E+02	-0.1232E+0
190.0	7 0.1549E-03	0.4054E-02	0-14736-03	0.37 39E-02-	0.37 39E-02-0.9424E+01-0.1137E+02	-0-1137E+0
0.060	0.19536-03	0.2344E-02	0.183₹ -03	0.2027E-02-	0.2027E-02-0.8134E+01-0.1008E+02	-0.100 BE +0
660.0	0.2396E-03	0.3089E-02	0.2248E-03	0.2726E-02-	0.2726E-02-0.7070E+01-0.9010E+01	-0.9010E.0
0.112	2 0.2885E-03	0.2429E-02	0.2656E-03	0.2017E-02-	0.2017E-02-0.5972E+01-0.7910E+01	-0.7910E+0
0.133		0.2255E-02	0.31796-03	0.1780E-02-	0.1780E-02-0.4942E+01-0.6876E+01	-0.6876E+0
0.156		0.2218E-02	0.3604E-03	0.1984E-02-	0.1984E-02-0.3949E+01-0.5897E+01	-0.5897E+0
0.183	3 0.5135E-03	0.2513E-02	0.4544E-03	0.21 19E-02-	0.2119E-02-0.3018E+01-0.4957E+01	-0.4957E+0
0.212	2 0.6214E-03	0.3098E-02	0.5406E-03	0.2385E-02-	0.2385E-02-0.2143E+01-0.4063E+01	-0.4063E+0
0.242		0.3720E-02	0.6354E-03	0.2839E-02-	0.2839E-02-0.1315E+01-0.3226E+01	-0.3226E+0
0.272		0.4115E-02	0.7369E-03	0.29 70E-02-	0.2970E-02-0.4866E+00-0.2383E+01	-0.2363E+0
0.301	0	0.4387E-02	0.8422E-03	0.3021E-02	0.4718E+00-0-1412E+01	-0.1412E+0
0.330		0.4689E-02	0.94756-03	0.3124E-02		-0.5633E+00
0.359	0	0.4561E-02	0-1055E-02	0.3290E-02	0.1968E+01	0.7813E-01
0.387	0	0.4361E-02	0.1165E-02	0.32 70E-02	0.2506E+01	0.6062E+00
0.415		0.3652E-02	0-1270E-02	0.3413E-02	0.3002E+01	0-1055E+01
0.443		0.3122E-02	0.138 F-02	0.3408E-02	0.3436E+01	0.1459E+01
0.471			0.149%-02	0.3402E-02	0.3797E+01	0.1801E+01
564.0		0.2727E-02	0.16136-02	0.3389E-02	0.4109E+01	0.2111E+0
0.527			0.1728E -02	0.3440E-02	0.4367E+01	0.2375E+0
0.550		0.2833E-02	0.1844E-02	0.3557E-02	0.4509E+0	0.2607E+0
0.585		0.2921E-02	0.1961E-02	0-3370E-02	0.4802E+01	0.2816E+0
19.0		0.3109E-02	0.20796-02	0.3324E-02	0.4961E+01	0.2988E+01
0.674	0.2535E-02	0.3387E-02	0.23156-02	0.3413F-02	0-5184F+01	0.32215+01
0.704		0.3609E-02	0.2436E-02	0.3499E-02	0.5247E+01	0.32936+0
0.734	1 0.2781E-02	0.3734E-02	0.2559E-02	0.3650E-02	0.5283E+01	0.3327E+0
0.763	100	0.4188E-02	0.2682E-02	0.3859E-02	0.5267E+01	0.3325E+0
0.793	3 0.3047E-02	0.4478E-02	0.28136-02	0.4340E-02	0.5251E+01	0.3298E+01
0.821	1 0.3191E-02	0.4998E-02	0.2953E-02	0.4645E-02	0.5220E+01	0.3279E+01
0.848	8 0.3349E-02	0.5775E-02	0.310 X -02	0.5238E-02	0.5178E+01	0.3248E+01
918.0	4 0.3531E-02	0.6835E-02	0.3269E-02	0.6007E-02	0.5119E+01	0. 3204E+01
158.0	7 0.37436-02	0.8016E-02	0.3459E-02	0.7105E-02	0.5050E+01	0.3140E+0
616.0	9 0.3985E-02	0.9205E-02	0.3678E-02	0.8183E-02	0.4967E+01	0.3077E+0
0.940	0 0.4263E-02	0. 1094E-01	0.3921E-02	0.9329E-02	0.4863E+01	0.2595E+0
096.0	0 0.4602E-02	0.1314E-01	0.42096-02	0.1115E-01	0.4750E+01	0.2995E+0
0.980	0 0.5010E-02	0.1538E-01	0.4552E-02	0.1277E-01	0.4631E+01	0.2995E+0
000		The state of the s				

## POTENTIAL JUMP AT TRAILING EDGE

0.5054E-01	0.4618E-01	0.3994E-01	0 -3080E-01	
0.5188E-01 0.5054E-01	0.4731E-01 0.4618E-01	0.4099E-01 0.3994E-01	0.3298E-01 0.3080E-01	
0.5326E-01	0.4836E-01	0.420 1E-01	0.34756-01	0.1392E-01
0.5435E-01	0.4931E-01	0.4304E-01	0.3624E-01	0.2023E-01 0.1392E-01
0.54146-01	0.4984E-01	0.4408E-01	0.37566-01	0.2461E-01
0.54396-01	0.50 16E-01	0.4504E-01	0.3872E-01	0.2803E-01

























































GRUMMAN AMES TRANSUNIC VISCUUS WING BUDY ANALYSIS PROGRAM

¥	0.750			*	-	N M		9		. 0	,	01		13	•	91	10	17	0 3	50	21	22	23	54	0,00	22	26			1.1837		
NEW YOR	REFERENCE CMORD IS CBAR= MOMENT CRIGIN IS XWING =			XG/C	0.570	955.0	0.460	0.440	2100	0.369	0.348		0.229						0.176						2 1100				1.667	:		
ETHPAGE,	CE CHORD			5		-0.033			-0.043				-0.074						201.0-						0000				SE XPOSED=	*CP.	UPPER )	
CORP 6	REFEREN MOMENT			3	0.0355	0.0246	0.0143	0.0106	27 00 0	0.0018	-0.000-0-	-0.0026	4400.00						8500-0-				1500-0-		20.00					0.0	0.0039LUPPER	
OSPACE				3		30.0			660.0				0.107						0.110						200				1.687	*CP=	CDF =	
MAN AER				5		0.023			00000		•		-0.000			1 -0.011			20.012						10.01				STRUE =	×	9	
IE ION - GEU				AVE CN	0.095	950.0	660.0	660.0	0000	0.103	0.105	0.106	00.10	00100	0.110	0.111	0.112	0.113	9110	0.117	0.118	0.118	0.117	0.114		0.00	0.059		0.000			
MACKENZ FERN ICS SECT				COCNIC.	690-0-	-0.070	-0.074	-0.075	0.00	-0.084	-0.069	250.0-	0.000	-0.101	-0.104	-0.108	-0-111	-0-115	00.1.0	-0.123	-0.125	-0.125	-0.124	-0.120	100	-0-045	-0.056		SREF 1			
WILLIAM M. MASON DOMALD A. MACKENZIE MARK A. STEKN AEKGDYNAMICS SECTION. GRUMMAN AEROSPACE CORP., BETMPAGE, NEW YORK AMICS LAM. WHAFB. DAYTON DHIO		1.00		C+CD/CAVE	0.0532	0.0360	0.0199	0.0143	20000	0.0022	-0.0006	-0.0030	-0.0050	-0.0075	-0.0082	-0.0085	-0.0087	-0.0087	90000	-0.0080	-0.0075	-0.0071	-0.0068	-0.0066	0.0000	-0.0092	-0.0117		¥ 4			
NA CHANGE		ALPHAB =		CACMYCAVE CACA/CAVE CACL/CAVE CACD/CAVE CACM/CAVE	0.142	0-141	0.138	0.134	0.130	0.129			0.119						1000						950.0		į					
LIMEDHATICS INC.) AKCH CENTER CALIFORNIA CREATER	z	1.00		CACA/CAVE	0.051	0-034	0.016	0.012	2000	0.000	-0.003	500-0-	600-0-	-0.010	0.00.0-	-0.010	-0-011	-0-011	010-01	0.00	600.0-	600.0-	9000-0-	-0.008	0000	-0.010	-0.012					
GILLIAM F. BALLMAUS (USAMMOL) JUANITA FRICK (INFOMMATICS INC NASA AMES HESCAKCH CENTER MUFFETT FIELD, CALIFOKNIA	RAE WING BODY CONFIGURATION	ALMAN =	SHANGISE FORCE DISTRIBUTIONS	CACHICAVE	0.143	0-141	0.136	0.134	0.131	0.129			- 6116					0.104							990.0	0.0	.031	ICIENTS				
GILLIAM F. BAL JUANITA FRICK NASA AMES MESE MUFFETT FIELD.	e BODY CO	0.910	FORCE DIS	C/CHWE		1.427			1.316			_	1-100						200.0						135.0		n	TOTAL FONCE COEFFICIENTS	V SREFJ	0.10461	-0.00180	
A ILL JUAN NASA MOFI	RAE . IN	MACH =	ANE ISE	ETA		0.036			0.214				00000						0.00						200			OTAL FO	(BASED ON SREF)	" "	- 5	
·		•	3		0.0	0.082	0.245	0.327	204	0.573	0.655	0.736	0.900	0.982	1.064	1.145	1.227	1.309	1.473	1.555	1.630	1.716	1.400	1.582	200	2.127	2.20%	-	,	0	3	

#### SECTION II

#### CODE DESCRIPTION

## 1. INTRODUCTION

Experience has shown that large computer programs are continuously being revised. This occurs because users continually demand different types of information from the program and various sections of the code require revision as new theories are developed. In this part of the volume, the details of the program are presented in order to minimize the difficulty of revising the program. After an overall description, the detailed description of the COMMON BLOCKS, Tape/Disc I/O, and the subroutines are presented. The graphics package is described separately since it has been maintained as a separate package and the details of this portion of the program will necessarily be site dependent.

## 2. AN OVERVIEW OF THE PROGRAM

The program was developed on the CDC 7600 computer located at the NASA Ames Research Center. This computer has a "small core" of 160K octal which is intended to be used for numerical calculations. A "large core" is available for block storage of data. Large core size is essentially unlimited. These features control the arrangement of the program. The IBM version of the program documented in this volume makes some concessions in storage space required in order to remain as similar to the CDC version as possible. This allows for easy conversion of any further updates generated on the baseline program being used at NASA Ames. The program resides in the "UPDATE" format on CDC systems. Conversion from CDC to IBM is then performed automatically by inserting a special "IBM" ident set of updates, so that the necessary modifications are made and the UPDATE source file created can be used to generate a tape or card deck for an IBM program. Level 2 (or large core) storage in CDC becomes part of the normal core storage in the IBM version, leading to a large core requirement. However, this is precisely the type of job for which the IBM operating systems with the VS feature are designed to handle. We expect that this background information will be helpful to those users interested in actually manipulating and revising the program.

A single main program controls the computation. Figure 1 shows the flow of the program. Most of the computation setup is sequential with the only loops in the main program used to iterate between the fine and crude grid solutions

for the potential, and a loop to iteratively determine the viscous effects. After this iteration procedure is completed, the pressure distribution and the resulting force distribution is computed, the solution is stored for future use if requested and the program stops.

The final program is a combination of the basic inviscid program with an infinite yawed wing boundary layer program called STRIPK, which is the standard boundary layer subprogram employed in a number of codes at Grumman. STRIPK itself is composed of separate programs to compute laminar and turbulent boundary layers. The laminar program is simply a compressible version of the method of Thwaites. The turbulent boundary layer is computed by the modified chord method, which is based on the widely used program by Bradshaw and co-workers. The program that provides the interface between the inviscid solution and the boundary layer calculation is called VISCFL. This routine also provides the local strong interaction treatments at the trailing edge, and for shallow separations also. VISCFL and STRIPK both use a number of interpolation routines that are basically a part of the inviscid program.

Subroutine Murman is called directly from SOLVE and is operated essentially independently of the weak interaction and trailing edge separation effects, which are computed in VISCFL.

The program also contains some routines associated with a previous version which could treat mid-mounted axisymmetric fuselages more precisely than the BCSS. Although this option is not available in the current code, the remnants of this capability have been left in tact in order to allow code modification along these lines if the user desires to do so. The routine TOPBOD could be used to replace the body slopes with wing/slopes on the top of the body. This subroutine is not used in the present version because the fuselage fairing is not properly accounted for using TOPBOD.





# 3. COMMON BLOCKS

COMMON	USED I	Noney B					
INTER	INPUT	SETUP	GEOMB	GEOMBR	TCOEF	MESHIN	WINGCO
	IC	INTERP	SOLVE	STORE	PARBDY	WNGBDY	
	GCALC	DBNDY	PHIBOD	OUTBOD		PORCE	TOPBOD
	BEND	FINGRD			CPCALC		BAVITZ
	GRAPH3		BLOUT	MURMAN	the same of the sa	QUIKX	SAVSOL
	onar no	801"	22001			gozna	SAVSOD
EXTER	INPUT	SETUPX	GEOBRX	TCOEFE	MESHIN	IC	INTERP
	FARBDY	SOLVEX	WNGBDY	BODBDY	DBNDYX	CRDGRD	
	SAVSOL						51174
INDEX	INPUT	SETUP	GEON B	GEOMBR	TCOEF	MESHIN	WINGCO
91-10 Sept. 18 h	IC	INTERP		STORE	PARBDY		BODBDY
	GCALC	DBNDY	PHIBOD		OUTP	PORCE	TOPBOD
	BEND		VISCPL		CPCALC		
	MAIN	BAVITZ	QUIK	BLOUT	MURMAN	XLDX	QUIKX
	SAVSOL	DAVIII	Antu	DLOUI	HOMITAN	ALDA	QU INE
	JAVJOL						
INDEXX	INPUT	SETUPX	GEOBRX	TCOEFX	MESHIN	IC	INTERP
	FARBDY	SOLVEX	WNGBDY	BODBDY	DBNDYX	CRDGRD	OUIKX
	SAVSOL						- 100
PLAGS	INPUT	SETUP	SETUPX	GEOMB	GEOMBR	G EO BRX	TCOEF
	MESHIN	WINGCO	IC	INTERP	SOLVE	FARBDY	SOLVEX
	GCALC	PIBOD	OUTP	VTRANS	GRAPH3	MAIN	BLKDAT.
	WNGBDY	FORCE	VISCPL	CPCALC	CLCAT.C	FINGRD	CR DGR D
	OUIK	MURMAN	XLDX	QUIKX	SAVSOL		
PARM	INPUT	SETUP	TCOEF	TCOEFX	WINGCO	SOLVE	SOLVEX
	DBNDY	DBNDYX	OUTP	FORCE	VISCFL	VTRANS	CPCALC
	CLCALC	BVITZ	GRAP H3	BLKDAT.	and the state of the	SETUPK	IC
	MURMAN	BLOUT					
RELAXP	INPUT	SETUP	WINGCO	TC	SOLVE	SOLVEX	DRNDY
P.D. BALL	DBNDYX		BLKDAT.		PINGRD	JODIEK	DUNDI
	DDEDIA		DENDAL	1100	LINGHD		
WING	INPUT	SETUP	SETUPX	G EOH BR	GEOBRX	TCOEF	TCOEFX
	WIN GCO	SOL VE	SOLVEX	WNGBDY	OUTP	PORCE	SCALE
	BEND	FINGRD		VISCPL		CPCALC	
	BAVITZ		SLETE	-	BLKDAT.		BLOUT
	SAVSOL						
BORT 1	IMPUT	SETUP	GEOSB	GEORBE	GEOREE	MESHIN	
	INTERF	SOLTE	STORE	PARROY	SOLVEX	BODBDT	GCALC
	D8#91	DOWDIE	PRIROD	COTEOD	OUTF	TOPBOD	8280
	CRAPHI	BLE DAT.		SETEPE	PORCE	CREGRE	FLIPSE
	20181	SETTIME	2778				
10.081	-	-	-	-	CRORES	*****	100
	197907	505 RT	12081		501,888		
	10801		F-9-5-95-11			108900	
							-

	BLKDAT. SAVSOL		SETUPX	FORCE	CR DGR D	ELIPSE	Onik
BOD¥3	INPUT INTERP DBNDY BLKDAT SAVSOL	DBNDYX	GEONB STORE PHIBOD SETUPX	FARBDY OUTBOD	SOLVEX	MESHIN BODBDY TOPBOD ELIPSE	GC ALC BEND
BODYBC	INPUT INTERP DBNDY BLKDAT. SAVSOL	DBN DYX	GEONE STORE PHIBOD SETUPX	FARBDY OUTBOD	SOLVEX	MESHIN BODBDY TOPBOD ELIPSE	GCALC BEND
JUNP	INPUT GCALC CLCALC	IC DBNDY XLDX	SOLVE DBNDYX SAVSOL	STORE PHIBOD		WNGBDY VISCFL	BODBDY
LABEL	INPUT	GR A P H 3	FORCE	BLOUT	SAVSOL		
XYCOE	SETUP BODBDY VISCFL	SETUPX DBN DY VTR ANS	DBNDYX	WINGCO OUTP BAVITZ	FORCE	SOLVEX GRAPH3	WNGBDY TCOEF
LARGN	TCOEF DBNDY CPCALC		INTERPOUTBOD MURHAN		FARBDY FORCE	WNG BDY PCINT	BODBDY VTRANS
rco	TCORF CPPLOT	SOLVE	DBNDY	OUTP	FORCE	DSTPLT	SPNPLT
TC OX	TCOEF	TCOEFX	SOLVEX	DBNDY	DBNDYX		
LARGX	TCO EFX PFINT	IC WNGBDY		FARBDY	SOLVEX	BODBDY	DB ND YX
MESHCO	MESHIN	PAR BDY	SOLVEX	WNGBDY	BODBDY		
WINGBC	WINGCO VTRANS		PHIBOD BAVITZ	FORCE BLOUT	TO PBOD HURM AN	TCOEF	VISCPL
oro	rc	INTERP	STORE				
SCPACH	INTERP	SOLVE	SOLVEX	OUTP	PORCE	MUR MAN	
PARRY	INTERP	SOLVE	SOLVEX	DBBDT	DENDYE	CLCALC	
Int	50L*E	501. FEE	** ! *				

LOCAL OUTP

VSCINP INPUT VISCEL CPCALC MAIN BLKDAT. IC

SAVSOL BLOUT

CPCAL VISCPL CPCALC BAVITZ IC SAVSOL

VITERP VISCPL VTRANS CPCALC BAVITZ IC SAVSOL

SZT VISCPL BAVITZ SAVSOL

YAWOPT VISCPL VTRANS CPCAIC CLCALC BAVITZ INPUT SETUP

SETUPX WINGCO IC SOLVE PARBDY SOLVEX WNGBDY

OUTP FORCE MURNAN XLDX SAVSOL

VISCON VISCPL

LOCAL2 VISCFL

VSFCOM VISCFL BLKDAT. INPUT BAVITZ

WINGX VISCPL VTRANS BAVITZ WINGCO MURMAN

THRED YBRAD GORD RLORD

EXTEND ORDIN VBRAD BLLAM

REDUC VBRAD REDUCX

VTRAN2 VTRANS

SZC BAVITZ

FORCES SPNPLT GRAPH3

ISOGH TRIISO GRAPH3

BAVCOM BAVITZ

MSBL INPUT WINGCO OUTP FORCE BLOUT

BODY4 INPUT SETUP ELIPSE QUIK QUIKX

MESHX SETUPX FINGRO BLKDAT. INPUT

993

VELOC SOLVE HURMAN

COMMON USED IN

HUREXT MURMAN

BLCOM BLKDAT. INPUT BLOUT

MURCOM BLKDAT. INPUT SOLVE MURMAN

YAW1 SETUP SOLVE

YAW2 SETUPI SOLVEX

LEVIX GEONER GEOBRY WINGCO SLOPY SPIN1 SMTH SCALE

LHSAND ORREST

SLOPY 2 VISCPL

SAVES IC VTRANS SAVSOL

SKINFR FORCE VISCFL

CPOD CPCALC

8.	Summary	Map	of	Common	Blocks
----	---------	-----	----	--------	--------

			x	,		X														x		x														
AT T P	X	x	X	x	()	X X	X	X	X	X	X	( X	X							^		X		X X		X					X	X	X X X	1	x x x x	
PX BR RX F	x	X	X	x			X	X	X	XXX	X		X	x	x )			x						х												X X X
FX IN CO OD		X	1	X	, ×		X	x		X			X			X	x	x						x			х				X					х
Y 1			^					^	^	X	^							X																		X X X
RP E E				X :	(		X	X	X	XXX	X X	(	x	XXX	x	X		x	XXX	( x		хх	X	x	X								x		x x	
DY T EX	X	X					X			X		,	X	X	,	X			Y 1	x				x												х
DY T ODY		x x	X	X :			X	x	x	x	x :	(		X	•	Х	X							X												^
C Y E	XXXX		X X X X		( )		X	X	X	X X X	X	(	X	X X X	X			x	x x		х			x							X					
OT E Y2							X																													X X
FM F H																																				
FL D	x		x	1	( )		X				,	(	x					x				хх	x x	x	x x	СХ		хх			Х		х			
M PK																												х								
N D																											X	x								
SN E EB NT																																				
AL UB																																				
CX NS LC LC	X X X		X X X	1	( )	1	XXX				1		X	X				x	,	(		хх		X	x		х	Х	х							
TZ ER Q	X		X		>		X						X	X				X				X	X	X		X	X		Х		Х					
RD RD	X		X	x	× ×	X	X			x x																							x			
RN SE T AN	XXX		XXX		( )		x	X		X		x		x				X	x					x			x				X	X		x 2	X	
X	X	x	x	,	(		x	v	Y	x	,	(		٨				٨	٨					X			^					x			Α	
OL YX		X	X	X		x		X	X	X	X I		X		)	X			,			хх	X X	X	X							4				
LT LT OT															X X X															Х						
80 83 8	×		X		( )		X	x				x	×																	XX						

COMMENT SELFCE MADE

275

## b. Common Block Listing

```
COMMON
                     VARIABLE NAME
                                              . THIST(30)
 CUMMON / WINGBE / ZLWL
                                . ZRWU
                     WBCL (30,90)
                                              . WBCU(30,901
 LEVEL 2.
                     ZL WL
 COMMON / LARGN /
                     PF (20,30,90)
                                              . DJK1(30,90)
                     DJK2(30,90)
                                              . DJK5(30,90)
                     DJK4(30,90)
                                              , DJK5(30,90)
                     DJK6(30,901
                                              , DJK7(30,90)
                     DJK8(30,90)
                                              . DJK9(30,90)
                     DJK10(30,90)
                                              . DJK11(30,90)
LEVEL 2,
                                              . DJK10X(20,30)
 CUMMON / LARGE /
                     PC(20,20,50)
                                              . DJK1X(20,30)
                     DJK11x(20,30)
 LEVEL 2,
                     X1(90)
                                . ETA(30)
                                              . 21(20)
                                                            . XIN(90)
 COMMON / INTER /
                                , XIC(90)
                                              . XIR(90)
                                                            . ETAL (30)
                     XIL (90)
                                . ETAR(SO)
                                                            . COEL
                     FTAC(30)
                                              . CUFU
                                . ZLVL
. EDUM(50)
3
                     ZCVU
                                              . ZRVL
                                                            . ZCVL
                                                            . XMAX
                     POUM (30)
                                                XMIN
                                . ZMAX
                                                            . ZMIN
5
                     XAMY
                     ZLVU
6
                                                            . XINX(30)
 COMMON / EXTER /
                     XIFX(50)
                                . ETAX(20)
                                              . ZTX(201
                                . xICX(30)
                                              . XIRX(30)
                                                           . ETALX(30)
                     X1LX(30)
                                                            . XMAXX
                     FTACX(20)
                                , FTARY(20)
                                             . XMINX
                                . ZMAXX
                                              . YMTNX
                                                            . ZMINX
                     YMAXX
3
                                . ZRVLX
                                              , ZCVLX
                                                            . ZLVUX
                     ZLVLX
                                . ZCVUX
5
                                . ERROF
                                              , ERPF(1000), CRF
 COMMON / EPLT /
                     CEF
                     RSDUF , RSDF(1000), CEX
ERRX(1000), CHX , RSDU
                                                        , ERROX
                                              . RSDUX
                                                            . RSDx(1000)
                     CEF
 LEVEL 2,
 COMMON / LABEL / TITLE (8)
 COMMON / BODV4 / XUCL(90) , ZUCL(90) , XLCL(90) , ZLCL(90) 
XZMHB(90) , ZMHB(90) , XMHB(90) , YMHB(90)
                     NUCL , NLCL , MHRZ , MHRY ZUCLI(90) , ZUCLIP(90) , ZUCLIP(90) , ZUCLIP(90) , ZUCLIP(90) ,
                     ZMHBT(90) , ZMHBTP(90), YMHBT(90) , YMHBTP(90)
LEVEL 2,
                     XUCL
                                              . ZOCU(30,901
 CUMMON / NSBL /
                     XOUTA (30,90)
                                              . CPU(30,90), CPL(30,90),
                     ZUCL (30,90)
                     7LF (30)
 LEVEL 2.
                     ATUCK
CUMMON / MUREXT / W(30,90,2), XOL0(30,2)
LEVEL 2,
 COMMON / VELOC /
                     UMK (30,50,2)
                                              , v(30,50,2),
                     FMU(30,50,2)
 LEVEL 2.
                     UMK
                                . SHIFT
                                                           . MBPRNT
 COMMON / MURCOM / F
                                              . MBSTRT
 COMMON /YAW1/
                     (00,00) , 72(20,00)
 LEVEL 2.
15-44/ MUMMOS
                     T(20,30) , T2(20,30)
 LEVEL >,
```

```
VARIABLE NAME
 COMMON
                                   . DXT
                                                 , DXMX
                                                                , NF
 COMMON / MESHX
                    / DXL
                       NB
                                   . XDST
                                                 . XLG
                                   . DXTI
                       DXLI
                                                 . DXMXI
                                                                  NF 1
                       NHI
                                     XDSTI
                                                  , XLGI
                       TOUT1
                                   . IOUT2
 COMMON / BLCOM
                                   . TOITER
                                                  . IOPRF
                                                                . IPUNCH
                       KSHTH
                                   . CONV
                                                  . LTRN
                                                                . SCALE
                       PRES
                                   , TEMP
                                                  , IBOUT
 COMMON / CPCAL /
                       AVCHGU(30), AVCHGL(30), DCPMXU(30), DCPMXL(50),
                       CPNL (30)
                                  , CPOL (30)
                                                 . JMXL(30) . CPNU(30) .
                                                 , EPS2
                                                                . CHAXDT
                       CPOU(30)
                                  , EPSI
                       CMAXOB
                                   , CPTBAR
                                                  . SONPU(30) . SONPL(30) .
                       MACHUP(30), MACHON(30), SHKPU(30) , SHKPB(30)
                       JMXU(30)
                                  . CPBBAR
                                                 . CPU(30,50), CPL(30,50),
                       FMSQ
                                   , NGRIDS
 LEVEL 2.
                       AVCHGU
 COMMON / VITERP / XUUTOD(80), ETAOLD(80), DXLSTU(30,50)
                       DXI STL (30,50)
                                                 , KTMOLF , NXOLD
                                  , KBOLD
                       KTOLD
LEVEL 2.
 COMMON /LOCALI/ DZL(100),DZU(100),QL(100),QU(100),XUUT(100),
1 ZD(100), ZU(100), NX
                                                                . NNX
 COMMON / LOCALE / XCHLX(41) , DELPTE(20,30)
                                   , XSEPU(20.30)
                       XSFPL (20.30)
                                                                  MBCU1(30,50)
LEVEL Z, XCBLX
 CUMMON / YAHOPT / KIX
                                   . K5X
                                                    X7X
                                                                  KBX
                                     KMIX
                                   , ISTUP
                                                                . IVCON
 COMMON / VSCINP / IVSMAX
                                                 , IVITER
                       FPSVIS
                                   , RE
                                                 . TOUTP
                                                                . ISTEPO
                       TTRANS
                                   . XTRNT
                                                  . XTRNA
                                                                . IUNIT
                       KSMTHX
                                   , KZSMTH
                                                  , KENDS
                                                                , CHISWP
                       KARITE
                                   . LWRITE
LOGICAL
                       TSTOP
                                   . EXTNOU
 COMMON / VSFCUM /
                      RELBL
                                                 . EXTNOL
                                                                . AFCBL1
                                   . KI
                                                 . KO
                       AFCBL 2
CUMMON / VISCUM / DZL (50)
                                   . DZU(50)
                                                 , QL (50)
                                                                , QU(50)
                                                    DOSTL (150), DOSTU(150),
                       ZD(80)
                                   . ZU(80)
                                                 , CFFKL(30) , CFFKU(30) , DODSTL(30,50)
                       SCFT(30)
                                     SCF8(30)
                       000870(30,50)
                       FPSNW1(20), EPSNW2(30), CPUK1(20), CPLK1(20), CPUK2(20), CPLK2(20), DELUK1(20), DELLK1(20),
                       CBAKS(50) , CBFK5(50) '
                       DEFORS(SO)' DEFFRS(SO)'
                                                    CLGG(20) , EPS1X(20) ,
                                                                . ITEX(30)
                      EPS2X(20) , VUINE:

CPTU(50) , FTAK(30) , CPVU(150) , CPTL(30) ,

CPVLP(150) , SBRAL(150) , DELSL(150) , DELSTL(50) ,

CFVU(150) , DELSTU(50) , CFZL(150) , DELSTL(50) ,

CWL(2) , PU(25) , PL(25) ,

SHEAU(150) ,
                       EPS2X(20) , VUTHET(150)
                       CMU(2) , CML(2) , PU(25) , PL(25) , PELSU(150), CFZU(150) , CPVL(150) , SBRAU(150),
                       CPVUP(150)
 LEVEL 2,
                       DZL
                       #BCURR($0,90)
 CUMMON / WINGX /
                                                 , WBCLOR(50,90)
 LEVEL 2.
                       WBCUOR
```

```
VARIABLE NAME
 COMMON
                               . KMAX
                                            . LMAX
 COMMON / INDEX /
                    JMAX
                                                         , KTM1
                                                        , JLE (30)
                    KTIP
                               , KTIP1
                                            . JWLE
                               . JTE (30)
                                            , LWINGL
                                                         . LWINGU
                    JWTE
                                            . LMAX1
                                                         . KROUT
3
                    JMAX1
                                KMAX1
                    JP1
                               . KMAXX
 COMMON / INDEXX / JMAXX
                                            . LMAXX
                                                         . KTM1X
                                                        , JTEX(20)
                               , KTIPIX
                                            , JLEX(20)
                    KTTPX
                               . LWNGLX
                    I WNGUX
                                            . JMAXX1
                                                         , KMAXXI
                    LMAXX1
                               , KROOTX
                                            , JP1X
3
 COMMON / MESHCO / JEX(30,90), KEX(30)
                                            . LEX(20)
                                                         , DXEX(30,90),
                                           . KIN(30)
                    DYEX(30) , DZEX(20)
                                                         , JINK(20,30),
                    TIN(SO) , DAIN(30)
                                           , DZIN(20)
                                                        , KINB(20)
                                            . DZINB(20)
                                                        , JINB(20)
4
                    JINKM1(20,30)
                                            . KEXB(30)
                                                        , LEXB(20)
                    DYEXB(30) , DZEXR(20) , JCDN
                                                         , JCUP
 LEVEL 2,
                    JEX
                               . ISAVE
                                            . IPLOT
                                                         , MSHINT
                    TOTSK
 COMMON / FLAGS /
                               , WBCPRT
                                                         . BODY
                    SOLV
                                            . BBCPRT
                               . ISPAN
                                            , IFINR
                                                         , ICRUDR
2
                    FCR
                    EXTMSH
                                            . IMAPR
                                                         . YAW
3
                               . REMESH
                               . IVISC
                                                         , IFOILT
                    THUMP
                                            . ITWIST
                    IBODIN
                                                         . IBLOUT
                               . AXISYM
                                            , AREA
                                            , IPLOT
 LOGICAL
                    TOISK
                               , ISAVE
                                                         , MSHINT
                                            . BBCPRT
                                                          BODY
                    SULV
                                WHCPRT
                                            . IFINR
                               . ISPAN
                                                         . ICRUDR
                    FCR
                               , REMESH
                                            . IMAPR
3
                    EXTMSH
                                                         . YAW
                    THUMP
                               , IVISC
                                            , ITWIST
                                                        . IFOILT
                    IBODIN
                               . AXISYM
                                            . AREA
                                                         . IBLOUT
 COMMON / PARM /
                    A1
                               . 45
                                            , A3
                                            . MACHNO
                               . GAMMA
                                                        . COE
                    45
                                           . CK1(30)
2
                    CS
                               , EMEXP(2)
                                                        , CK2(30)
                                           . CK51(30)
                    CK3(30)
                               , CK4(30)
                    CK52(30,90)
4
                                            , CK1X(30)
                                                        , CK2X(30)
                    BLOL
                               . WCOE
5
REAL
                    MACHNO
 COMMON / RELAXP / MAXIT
                               . MAXITN
                                            . MAXITX
                                                        . INCR
                    INCRY
                               . RTEST
                                            . RTESTX
                                                        . RSUB
                                                         , EPSEX
                    RSUBX
                               , RESIDJ(30), EPS
2
                                           , JRD
                                                        . KRD
                    WI
                               . WIX
                               . BIGRL
                                           . JE
                    LRD
                                                        . KE
5
                               . FRROR
                                                         . NSUP
                    LE
                                             KOUNT
                    TPASS
 COMMON / JUMP /
                    AZU
                               . AZL
                                            . BZU
                                                        . BZL
                                           . COFF
                    CZU
                               , CZL
                    PJUMP (30,90)
                                            , PCOEF (30,90)
                    KPINDX(30,90)
                                             PJUMPX(20,30)
LEVEL 2,
                    AZU
                   x(30,90) , x1Y(30,90), x1x(30)
COMMON / XYCDE /
                    XIYK(30,90)
LEVEL 2,
```

```
VARIABLE NAME
COMMON
                    DE1(90)
                               . DES(00)
                                            . DES(90)
                                                         , DH1(90)
 COMMON / LCO /
                    CO6)2HU
                               , DH3(90)
                                            . DL1(90)
                                                         . DL2(90)
                    DL3(90)
                                                         , DH1x(30)
                               . DE2x(50)
                                            . DE3x(30)
 COMMON / LCOX /
                    DE1X(30)
                               , DH3x(30)
                                                         , DL2x(30)
                    DH2x(30)
                                            . DL1x(30)
                               , DK1(90)
                                              DK2(90)
                                                         , DK3(90)
                    DL 3x(30)
 COMMON / WING /
                    YROOT
                                                           YTIP
                    XLET
                                 XTET
                                              SREF
                                                           SHEEP
                    NLEI
                                 YLEI(10)
                                              XLEI(10)
                                                           STRUE
                                 YTEI(10)
                                              XTEI(10)
                    NTEI
                                                           SXPUS
                    CROOT
                                 SSPAN
                                              THICK(11)
                                                           ZHNGKL
                                 YP(11)
                                              THE TP(11)
                    NPAN
                                                           NTWST
                    YTHST(11)
                                 INUX(11)
                                              INLX(11)
                                                           XF (180.11)
                                 KSMTHS(11).
                    ZF(180,11).
                                              MOMX
                                                           XLE (30)
                    XLE#(30)
                                 CURU(50)
                                              CORDW(30)
                                                           CURDIN(11)
                    XTE (30)
                                 REACT
                                              CHEAN
                                                           XTEM(30)
                               . NS1
                                              KX0(12)
                    NSO
                                                           XX1(12)
                    NX0(12)
                               . NX1(12)
                                              YX0(12,10).
                                                           YX1(12,10).
                    XX0(12,10), XX1(12,10), DXR0(12)
                                                           DXR1(12)
                               . 0x11(12)
                    0x10(12)
                                            . ALPHAN
                                                           NTIPLE
                    NTTPXI
                               . XLE . X (30)
                                            . XTE .X (30)
E
                                                           CORDX
                               . YOR
                    CAV
                                            , XLEMP(30) ,
                                                           XTEMP(30) .
                    KSWICH
LEVEL 2,
                    VROOT
 CUMMON / BODV1 /
                    KNOSE
                                            . NBIN(2)
                                                         , XBIN(2,35),
                               . XTAIL
                               . JBUP(2)
                                            , JBDN(2)
                                                           JNOSF
                    NHODS
                                              NBPTS(90)
                                                           R(90)
                                 ALPHAB
                    JIAIL
                               . LMN
                                                           AFK(15)
                    KAMX(90)
                                            . IMX
                               . CFK(15)
                    8FK(151
                                            , AFL (15)
                                                           BFL (15)
                    CFL (15)
                                                           C8L (15)
                               . ABL (15)
                                            . BBL (15)
                    4CL(2)
                                             CCL (S)
                                                           BTYPE
                                 BCL(S)
                    XRRU(90)
                                 XHBL (90)
                                              DZRBU(90)
                                                           DZRBL (90)
                    NRRU
                                              YRA
                                 NRBL
                                                           ZRBU
                    THAL
                                 K8MXX(30)
                                              JNOSEX
                                                         . JTAILX
                                                           YOR
                    RETNIZ, 55), XNOSEX
                                              XTAILX
COMMON / BODVE /
                                              F2(30,90)
                    Ex(30,90)
                                 FY(30,901
                    KB00 (30, 90)
                                              LBU(20,90), LBD(20,90),
                    VBPTSX(30), LBNU(30,90)
                    LBUX(20,30)
                                              LB0X(20,30)
                    FYX(20,30), CPS(20,90)
COMMON / BODV3 /
                    FX
                                              RBCU(30,90)
                    KHMAX
                               . KHMAXX
                    LLBLX
                               . LLBUX
                    KBS
                               RBCL (30,90)
                                             R8CLX(20,30)
                    RBCUX(20,30)
                              . PRBCI
                                                        . DRBCLX
                    DRACU
                                              DRACUX
                    SALPH(90) . SALPHX(30)
COMMUN / BUDARC /
                    THUO
                               . THLO
                                            . IBSIDE
                                                         . ETABU(10)
                    FTABL(101 , ZB00(20)
                                            . NRRS
                                                         , XRBS(100)
LEVEL 2.
                    KHMAX
COMMON / SCRACH / MU(20,30,2)
                                            , POLD(20,30,3)
                    VC2(20,30,2)
                                            , vc(20,30,2)
LEVEL 2,
CUMMON / PARRY /
                    P(20,30,4)
                    x10(40)
                               , ETAU(30)
                                            , ZID(20)
CUMMON / OLD /
                                                         . PJUMPU(30),
                    TBU0(50'00)
                                            . LBDD(20,90)
                                                        . KMO
                    PJUMP1(30), KHMX0(90)
                                            , JMO
                               . JTAILU
                    LMO
                                            , JNOSEU
                                                         . LWUO
                    FINE
LOGICAL
                    FINE
LEVEL 2,
                    MIU
```

```
VARIABLE NAME
COMMON
COMMON / VTRANZ / DELUP(80) , DELDN(80) , DU(80) . DL(80)
                                 . DOL (AU)
                                                             , DSLU(80)
                      000(80)
                                              . XOUT(50)
                      OSLL (80)
                                 . DU1(80)
                                               , OL1(80)
                                                             , DDDSUL(80),
                     DUDSL1(80), DDD8UU(80), DDD8LU(80), XDUTD1(80), CPUI(80) , CPLU(80) , CPLU(80) ,
3
                      CPUIX(80) , CPLIX(80) , CPUDX(80) , CPLOX(80)
                     , NX
                                 . NXOLD1
                     DELUP
LEVEL 2.
COMMON / SZC /
                      SZT
                                 . FILKLU
                                               . ICARD
LOGICAL
                      FILKLU
                     XUUT(50) , NX , SEPL(40
ZSLPOG(30), ZSLPTE(30), XFILOG
                                               . SEPL (40)
COMMON / SZT /
                                                             . KBBL
                                                             . SEPHIN
                      DUDSL (30,60)
                      TUOX
LEVEL 2.
COMMON / BAVCOM / XSEP(4)
                                 , DELSTL(50), CPL2(50) , DST(50)
                      ST(50)
LEVEL 2.
                      XSEP
COMMON /SAVES/
                      NX0(30)
                                 , xoutn(30,50)
LEVEL 2,
                      NXO
 COMMON /SKINFR/
                      CFVISC
                                 . CFTU
                                               . CFTL
COMMON /CPOD/
                      CPODU(30,50),CPOOL(30,50)
                      CPODU
LEVEL 2.
                     0xU(90) , 0xL(90) , x0UM(90) , x0UM3(90) , x0UM4(90) , x0UM5(90) ,
COMMON /LEVIX/
                                             , XDUM(90) , XDUM2(90) ,
                      (0005) 8 MUCX
```

## c. Detail Description of Each Common Block

# COMMON MNEMONICS

## see common in program for list of mnemonics and dimension

VARIABLE	SOURCE	DESCRIPTION
xr	SETUP	(XIN (J)-XO)/DX transformed XIN
		coordinates at mesh points
ETA	INPUT	ETA coordinate at mesh pts.
7.T		ZT coordinate at mesh pts.
		ar coordinate at mean pear
XIN		X mesh along centerline
		a noon along conversion
XIL		1/(XI(J)-XI(J-1)) coeffs. for
WELLER DOWN		first diffs. with respect to
		point XI
XIC	TCOEF	2/(XI(J+1)-XI(J-1)) coefs. for
bould at two y		first diffs. with respect to
		point XI
XIR	TCOEF	1/(XI(J+1)-XI(J)) coefs. for
		first diffs. with respect to
		point KI
ETAL	TCOEF	1/(ETA(K)-ETA(K-1)) coefs. for
em in baselt	13000	first diffs. with respect to
		point ETA
ETAC	TCOEF	2/(ETA(K+1)-ETA(K-1)) coefs. for
		first diffs. with respect to
		point ETA
ETAR	TCOEF	1/(ETA(K+1)-ETA(K)) coefs. for
		first diffs. with respect to
		point ETA
COEU	TCOEF	-2/(H2+2*H1) ZT diff. coeffs.
		for using surface boundary
	PORCE	
COEL	TCO EF	2/(H1+2*H2) ZT diff. coeffs.
		for using surface boundary
	FORCE	
ZCVU	TCOEF	ZLVU+ZRVU ZT diff. coef. used
		to solve for vortex sheet at
		downstream boundary
ZLVL	TCOEF	DZ1/(ZT(LWINGL) -ZT(LWINGL-1))
		ZT diff. used to solve for
		vortex sheet at downstream
	XI ETA ZT XIN XIL XIC XIR ETAL ETAC ETAR COEU COEL ZCVU	ETA INPUT PINGRD INPUT PINGRD INPUT PINGRD XIN INPUT SETUP XIL TCOEF  XIC TCOEF  ETAL TCOEF  ETAL TCOEF  ETAC TCOEF  COEU TCOEF  COEU TCOEF  COEL TCOEF  ZCVU TCOEF

			boundary and the same and the s
	ZRVL	TCOEF	DZ1/(Z0-ZT(LWINGL)) ZT diff.
			coeff. used to solve for vortex
			sheet at downstream boundary
	ZCVL	TCOEF	ZLVL+ZRVL ZT diff. coeff. used
	20.2	10011	to solve for vortex sheet at
			down stream boundary
	PDUM	IC	PJUMPT(K) values of potential
	20011	10	jump
		SOLVE	Jask
		OUTP	
	EDUM	SOLVE	
	EDO II	OUTP	ETA(K)
	XMIN	COLE	not used
	XMAX		not used
	YMAX		not used
	ZHAX		not used
	YMIN		not used
	ZMIN		not used
	ZLVU	TCOEP	DZ 1/(ZT(LWINGU)-ZO) ZT diff.
	4140	14051	coeff. used to solve for vortex
			sheet at downstream boundary
	ZRVU	TCOEF	DZ1/(ZT (LWINGU+1)-ZT(LWINGU))
	ZRVU	14051	ZT diff. coeff. used to solve for
			vortex sheet at downstream
			boundary
EXTER	XIEX	SETUPE	(XINX(J)-X0)/CORDX transformed
		DESCRIPTION OF	XINX coords, at mesh points
	ETAX	INPUT	ETA coordinate at mesh pts.
		CRDGRD	
	ZTX	INPUT	2T coordinate at mesh pts.
		CRDGRD	
	XINX	INPUT	X mesh along centerline
	XILX	TCOEFX	1/(XIEX(J)-XIEX(J-1)) coeff.
			for 1st diff. with respect to
		4 1 1 1 1 1 0 1	point XIEX
	XICX	TCOEFX	2/(XIEX(J+1)-XIEX(J-1)) coeff.
			for 1st diff. with respect to
	7222-11		point XIEX
	XI RX	TCOEFE	1/(XIEX(J+1)-XIEX(J)) coeff.
			for 1st diff. with respect to
	e little we	1982-200	point XIEX
	ETACX	TCOEFX	2/(ETAX(K+1)-ETAX(K-1)) coeff.
			for 1st diff. with respect to
	ROLLEG CROSES	1122512	point ETAX
	ETALX	TCO EPX	1/(ETAX(K)-ETAX(K-1)) coeff.
			for 1st diff. with respect to
			point ETAX

GRUMMAN AEROSPACE CORP BETHPAGE N Y
AN AUTOMATED PROCEDURE FOR COMPUTING THE THREE-DIMENSIONAL TRAN--ETC(U)
FEB 78 W H MASON, D MACKENZIE, M STERN F33615-75-C-3073 AD-A054 998 UNCLASSIFIED AFFDL-TR-77-122-VOL-2 NL 4 of 5 AD A054 998 Ø - Shipping

COMMON	VARIABLE	SOURCE	DESCRIPTION
	BT ARX	TCOEFX	1/(ETAX(K+1)-ETAX(K-1)) coeff.
			for 1st diff. with respect to
	V# T# V		point ETAX not used
	XM IN X XM AXX		
			not used
	YMAXX		not used
	ZMAXX		not used
	YMINX		not used
	ZMINX	MCORRY	not used
	STATX	TCOEFX	DZ1/(ZTX(LWINGLX)-
			ZTX (LWNGLX-1))
			ZTX diff. coeff. used to solve
			for vortex sheet at downstream
			boundary
	ZCVLX	TCOEFX	ZLVLX+ZRVLX , ZTX diff. coeff.
			used to solve for vortex sheet
	ZRVLX	MCOBBY	at downstream boundary
	ZKVLX	TCOEFX	DZ1/(Z0-ZTX(LWINGLX)) ZTX diff. coeff. used to solve for wortex
	71 VIIV	MCORRY	sheet at downstream boundary
	STAOX	TCOEFX	DZ1/(ZTX(LWINGUX)-ZO) ZTX diff. coeff. used to solve for vortex
	ZRVUX	MCO BBY	sheet at downstream boundary DZ1/(ZTX(LWINGUX+1)-
	AUVA	TCOEFX	ZTX (LWINGUX))
			ZTX diff. coeff. used to solve
			for vortex sheet at downstream
			boundary
	ZC VUX	TC OFFX	ZLVUX+ZRVUX
	AC VUA	ICOBEA	ZTX diff. coeff. used to solve
			for vortex sheet at downstream
			boundary
			boundary
INDEX	JMAX	INPUT	number of streamwise (XI) mesh
- 110 DA	•		points
	KMAX	INPUT	number of spanwise (ETA) mesh
	THE COLD	MALE STATE	points
		FINGRD	Formula
	LHAX	INPUT	number of vertical (ZT) mesh
			points
		PINGRD	
	KTM 1	SETUP	KTIP-1
	KTIP	INPUT	first ETA mesh pt. beyond wing
			tip
		FINGRD	
	KTIP1	SETUP	KTIP+1
	JWLE	SETUP	index of XI point at wing root
	PARTITION OF T		leading edge
		FORCE	

COMMON	VARIABLE	SOURCE	DESCRIPTION
	JWTE	SETUP	index of XI mesh point at wing root trailing edge
	JLE	WINGCO	index of XI mesh point at wing leading edge
		FORCE	YVZXY
	JTE	SETUP	index of XI mesh point at wing trailing edge
	LWINGL	SETUP	LWINGU-1
	LWINGU	INPUT	ZT mesh index of first pt. above
	***************************************		wing plane
		FINGRD	
	JMAX1	SETUP	JMAX-1
	KMAX1	SETUP	KMAX-1
	LMAX1	SETUP	LNAX-1
	KROOT	INPUT	index of ETA mesh point at
	M. COL		wing/body juncture
		GEONB	,,
	JP1	SOLVE	
		OUTBOD	
INDEXX	JMAXX	INPUT	number of streamwise (XINX) mesh points
	KMAXX	INPUT	number of spanwise (ETAX) mesh points
		CRDGRD	
	LM AXX	INPUT	number of vertical (ZTX) mesh points
		CRDGRD	X480-7 XUV-X
	KTM 1X	SETUPX	KTIPX-1
		CRDGRD	
	KTIPX	INPUT	first ETAX mesh pt. beyond wing tip
		CRDGRD	THIRD XEEL XEEL XEGET
	KTIP1X	SETUPX	KTIPX+1
	JLEX	SETUPX	index of XIEX mesh point at
			wing leading edge
	JTEX	SETUPX	index of XIEX mesh point at
			wing trailing edge
	LWNGUX	INPUT	ZTX mesh index of first pt.
			above wing plane
		CRDGRD	SHIPS
	LWNGLX	SETUPX	LWNGUX-1
	JMAXX1	SETUPX	JMAXX-1
	KMAXX1	SETUPX	KMAXX-1
	LMAXX1	SETUPE	LMAXX-1
	KROOTX	INPUT	index of ETA mesh point at
			wing/body juncture
		GEOBRX	and the second s
	JP1X	SOLVEX	JP1

CONMON	VARI ABL B	SOURCE	DESCRIPTION
PLAGS	IDISK	INPUT	T; start from old solution stored on unit 10
	ISAVE	INPUT	ISAVE=T saves data on unit 11 for future restart
		SOLVEX	
	IPLOT	INPUT	T; to save data on unit 12 for plotting purposes
	MSHINT	INPUT	T; initial conditions inter- polated from old coarser mesh
			solution; IDISK must be true if MSHINT is true
	SOLV	INPUT	T; for complete execution; F: stop before solve loop is entered
	WBCPRT	INPUT	T; to output wing surface slopes
	BBCPRT	INPUT	T; to output body boundary information
	BODY	INPUT	T; for wing-body combination;
			F; skip input for body geometry
			and body mesh pts. (i.e. wing alone case)
	FCR	INPUT	T; for fully conservative method
	ISPAN	INPUT	T; for inclusion of extra spanwise terms in equation
	IFINR	INPUT	T: read in fine meshes
	ICRUDR	INPUT	F: read in coarse meshes
	EXTASH	INPUT	T; to compute using embedded grid system; F; to compute with
			transformed interior mesh alone
	REMESH	INPUT	T; compute an initial solution with an initial coarse
		****	transformed mesh
	IMAPR	INPUT	T; read in XI=0 and XI=1 line
	YAW	INPUT	mappings T; yawed wing option
	IBUMP	INPUT	T; Murman bump option used
	IVISC	INPUT	T; full viscous-inviscid
			calculation performed
			F; only inviscid calculation done
	ITWIST	INPUT	T; separate twist table input
	IFOILT	INPUT	see input description
	IBODIN	INPUT	see input description
	AXISYN	INPUT	see input description
	AREA	INPUT	see input description
	IBLOUT	INPUT	see input description
			nos zuhan annorzhozon

COMMON	VARIABLE	SOURCE	DESCRIPTION	
PARM	100 A1 0 ACCT	TCOEF	1- (MACHNO) **2	
	A2	TCOEF	(GAMMA+1) *. 5 *MACHNO**EMEXP(1)	
	A3	TCOEF	AT DEEL START	
	A4	TCOEF	1- (GAMMA-1) *.5*M ACHNO**2	
	A5	TCOEF	(GAMMA-1) *MACHNO**2	
	GAMMA	INPUT	specific heat ratio	
	MACHNO	INPUT	free stream Mach number	
	COE	TCOEF	-2, coefficient of potential in Cp calculation	n
	C2	TCOEF	1	
	EN EXP	INPUT	EMEXP(1): Mach number exponent nonlinear term; EMEXP(2): Mach number exponent in wing bounda	
			condition	-
	CK 1	TCOEF	A1/(fine mesh chord) **2	
	CK 2	TCOEF	A2/(fine mesh chord) **3	
	CK3	TCOEF	A3	
	CK4	TCOEF	-A4	
	CK51	TCOEF	A5*CI = A5/(fine mesh chord)	
	CK52	TCOEF	A5*. 5*XIC (J) / (CORD (K+1)	
			+CORD(K)); CORD = fine mesh chord	
	CK 1 X	TCOEFX	A1/(coarse mesh chord) **2	
	CK2X	TCOEFX	A2/(coarse mesh chord) **3	
	BLDL	VISCPL	lower surface wing boundary condition	
	MCO E	WINGCO	HACH NO ** EMEX P (2)	
R EL AXP	MAXIT	INPUT	maximum number of iterations for current run	
	MAXITN	INPUT	number of iterations on fine mesh	
	MAXITX	INPUT	number of iterations on coarse mesh	
	INCR	INPUT	print increment for fine mesh iterations	
	INCRX	INPUT	print increment for coarse mesh iterations	
	RTEST	INPUT	convergence criterion of max potential error	
	RSUB	INPUT	subsonic relaxation parameter (1.8) for fine mesh	
	RSUBX	INPUT	subsonic relaxation parameter for coarse mesh (1.8)	
	RESIDJ	SOLVE	PJNEW(K)-PJUMP(K,J); potential jump error	
	EPS	INPUT	coefficient of PXT in fine	

COMMON	VARIABLE	SOURCE	DESCRIPTION
			mesh calculation
	EPSEX	INPUT	coefficient of PXT in coarse
	DESEX	INPUL	
	MIX	MAIN	mesh calculation
		22.00	1/RSUBX
	MI	MAIN	1/RSUB
	JR D	SOLVE	location in XI and XIEX meshes
			of largest residual
		SOLVEX	
		DBNDY	
		DBNDYX	
	KRD	SOLVE	location in ETA and ETAX meshes
			of largest residual
		SOLVEX	
		DBNDY	
		DBNDYX	
	LRD	SOLVE	location in ZT and ZTX meshes
			of largest residual
		SOLVEX	
		DBNDY	
		DBNDYX	
	BIGRL	SOLVE	ABSD: largest residual
		SOLVEX	
		DBNDY	
		DBNDYX	
	JE	SOLVE	J; location of largest error
			in XI
			and XIEX meshes
		SOLVEX	ATTENDED TO THE PROPERTY OF TH
		DBNDY	
		DBNDYX	
	KE	SOLVE	K; location of largest error
		DOLLE	in ETA
			and ETAX meshes
		SOLVEX	and bink mesues
		DBNDY	
		DBNDYX	
	LE	SOLVE	L: location of largest error
	••	SOLVE	in ZT
			and ZTX meshes
		SOLVEX	and 21% mesnes
		DBNDY	
	ED 000	DBNDYX	ADDCID. languagh
	ERROR	SOLVE	ARESID: largest error
		SOLVEX	
		DBNDY	
	WO 1117	DBNDYX	
	KOUNT	SOLVE	count of consecutive iterations
			on fine mesh
		SOLVEX	

CONHON	VARIABLE	SOURCE	DESCRIPTION
	NSUP	SOLVE	number of supersonic points in
			flow field
		SOLVEX	
	IPASS	MAIN	flag used in computing with
			REMESH = T option
WING	YROOT	INPUT	Y coordinate of root
	XLER	INPUT	X coordinate of leading edge at
		*****	root
	XTER	INPUT	X coordinate of trailing edge at root
	YTIP	INPUT	Y coordinate of tip
	XL ET	INPUT	X coordinate of leading edge
	ALLI	INFOI	at tip
	XTET	INPUT	X coordinate of trailing edge
	all led a tes	e di Lita	at tip
	NLES		number of segments input to
			describe the leading edge
	NLEI	INPUT	number of Y, X pairs defining
			leading edge segment
	YLEI, XLEI	INPUT	Y, X pairs defining the leading
			edge segment
	NTEI	INPUT	number of Y, X pairs defining
			the trailing edge segment
	YTEI, XTEI	INPUT	Y, X pairs defining the trailing
			edge segment
	CROOT	SETUP	XTER-XLER
	SSPAN	SETUP	YTIP-YROOT
	NPAN	INPUT	number of span stations at
			which airfoil ordinates are
			input
	YP	INPUT	fraction of semispan at which
			airfoils are defined
	THETP	INPUT	twist angle in degrees; leading
			edge up=YP positive
	NTWST	INPUT	
	YTWST	INPUT	
	INUX	INPUT	number of upper surface
		SCALE	airfoil ordinates L.E. 90
	INLX	INPUT	number of lower surface
		SCALE	airfoil ordinates L.E. 90
	XF	INPUT	
	7.5	SCALE	TRIT NI ICUPA
	ZF	INPUT	ZF(I,N)/CHRD
	KSMTHS	SCALE	number of times computed
	CHINES	INPUT	surface slopes are smoothed
	XMOM	INPUT	moment reference
	XLE	SETUP	x location of mesh wing leading
	VD 0	JETUP	A Location of mean wing leading

COHNON	VARIABLE	SOURCE	DESCRIPTION
			edge in fine mesh
	XLEW	SETUP	x location of actual wing
			leading edge
	CORD	SETUP	XTE(K)-XLE(K); mesh chord in
			fine mesh
	CORDW	SETUP	XTEW(K)-XLEW(K); actual wing
	Coaba	00101	chord
	CORDIN	SETUP	chord at input coordinate
	COMPEN	52101	stations
	XTE	SETUP	x location of mesh wing
		02101	trailing edge in fine mesh
	RFACT	INPUT	Regiels rule factor for
	aracı	INFOI	modified slopes
	CHEAN	SETUP	mean chord of reference wing
	XTEW	SETUP	x location of actual wing
	ALDM	30136	trailing edge
	NSO	INPUT	number of segments defining
	1130	BEND	XI=0 line
	NS 1	INPUT	number of segments defining
	131	BEND	XI=1 line
	~~^		K index of outboard edge of
	KKO	INPUT	XI=0 segment
	KX1	BEND	K index of outboard edge of
	UX I	INPUT	
	WV A	BEND	XI=1 segment
	NX O	INPUT	number of Y, X pairs defining
		BEND	XI=0 segment
	NX 1	INPUT	number of Y, X pairs defining
		BEND	XI=1 segment
	YKO, XXO	INPUT	Y,X pairs defining XI = 0
		2242	segment
		BEND	W W J WT - 1
	YX1, XX1	INPUT	Y,X pairs defining XI = 1 segment
		BEND	
	DXRO	INPUT	DX/DY at inboard edge of $XI = 0$
			segment
		BEND	
	DXR1	INPUT	DX/DY at inboard edge of $XI = 1$
			segment
		BENL	
	DXTO	INPUT	DX/DY at outboard edge of $XI = 0$
			segment
		BEND	
	DXT1	INPUT	DX/DY at outboard edge of XI = 1
			segment
		BEND	
	ALPHAW	INPUT	wing reference plane angle of
			attack in degrees
	NTIPLE		always input as 0

COMMON	VARI ABLE	SOURCE	DESCRIPTION
	NTIPXI		always input as 0
	XLEWX	SETUPX	x location of wing leading edge
		Julula	in coarse mesh
	XTEWX	SETUPE	x location of wing trailing edge
		01.101.	in coarse mesh
	CORDX	SETUP	mesh root chord
	XOR	SETUP	Medii 1000 Cilota
	CAV	SETUP	.5* (CROOT+CTIP); average wing
	Cav	SETUP	chord
	SREF	SETUP	reference wing area
	SWEEP	SETUP	leading edge sweep in degrees
	STRUE	SETUP	true wing planform area
	SXPOS	SETUP	exposed wing planform area
	THICK	INPUT	thickness scaling factor
	ZWNGWL	WINGCO	wing waterline
	KSWICH	WINGCO	airfoil clue; 0 = conventional
	K2 # 1C II	WINGCO	1 = supercritical
	XLEWP	SETUP	tangent of leading edge sweep
	XTEWP	SETUP	tangent of trailing edge sweep
	Albar	SETUP	tangent of trailing edge sweep
BODY 1	XNOSE	INPUT	X coordinate of body nose
		GEOMBR	
	XTAIL	INPUT	X coordinate of body tail
		GEOMBR	
	NBIN	INPUT	number of X,R pairs defining
			circular body
	XBIN, RBIN	INPUT	X,R pairs defining circular
			body
	N BO DS	INPUT	number of segments input to
			define circular body
	JBUP	INPUT	first XI mesh pt. index of
			segment
	JBDN	INPUT	last XI mesh pt. index of
			segment
	JNOSE	MAIN	XI mesh pt. index of body nose
		INPUT	
		GEOMBR	
	JTAIL	MAIN	XI mesh point index of body
			tail
		INPUT	
		GEOMBR	
	AL PH AB	INPUT	body reference line angle of
			attack in degrees
	NBPTS	GEOMB	number of mesh pts. defining
			body cross section
	R	GEO MB	RS (NX)
	KBMX	INPUT	array of indices of maximum ETA
		GEOMB	mesh pt. on body
	LIN	GEOMB	index of minimum 2T pt. on body

COMMON	VARIABLE	SOURCE	DESCRIPTION
	LMX	GEOMB	index of maximum 2T mesh pt. on
	APK	GEOMB	body -BPK(K)-CFK(K); extrapolation
	arn	GEORD	coeff. for body surface
	BFK	GEOMB	DK/(DKP1*DKP2); extrapolation
			coeff. for body surface
	CPK	GEOMB	-DKP1/(DKP2*DK); extrapolation
			coeff. for body surface
	AFL	G EOM B	-BFL(I)-CFL(I); extrapolation
	DPT	GEOMB	coeff. for body surface DI/(DLP1*DLP2); extrapolation
	BPL	GEUNB	coeff. for body surface
	CFL	GEOMB	-DLP 1/ (DLP2*DL); extrapolation
	Too document	o Lo L	coeff. for body surface
	ABL	GEOMB	-BBL(I)-CBL(I); extrapolation
			coeff. for body surface
	BBL	GEOM B	-DL/(DLM1*DLM2); extrapolation
			coeff. for body surface
	CBL	GEOMB	DLM1/(DLM2*DL); extrapolation
		250 H D	coeff. for body surface
	ACL	GEONB	extrapolation coeff. for body surface
	BCL	GEOMB	extrapolation coeff. for body
	BCL	GEOND	surface
		FORCE	542 1466
	CCL	GEONB	extrapolation coeff. for body
			surface
	BTYPE	INPUT	type of body cross-section
			input, circular or rectangular
	XRBU	INPUT	X location of body slopes
	XFBL	INPUT	X location of body slopes
	DZRBU		upper body slopes
	DZ R BL NR BU	INPUT	lower body slopes number of upper body slopes
	NEBL	INPUT	number of lower body slopes
	YRB	INPUT	Y location of side of body
	ZRBU	INPUT	2 location of top of body
	ZRBL	INPUT	2 location of bottom of body
	KBMXX	INPUT	array of indices of maximum
		GEOBRX	ETAX mesh pt. on body
	JNOSEX	INPUT	index of XIEX mesh pt. at body
		GEOBRX	nose
	JTAILX	INPUT	JMAXX; index of XIEX mesh pt.
	GINTUN	2117 01	at body tail
		GEOBRX	MAN DAY
	XNOSEX	GEOBRX	XINX (1)
	XTAILX	GEOBRX	XINX (JMAXX)
	AOB		

COMMON	VARIABLE	SOURCE	DESCRIPTION
BOD¥2	PX	GEOMB	FXS(NX)+AOFAB+FZ(N,j); slope
	PY	INPUT	-ETA(K)/RP; slope
		GEONB	
		GEOMBR	
	PZ	GEOMB	-ZT(L)/RP; slope
	KBOD	GEONB	K index of body pts. (input)
	LBU	GEON B	LLBU; array of ZT indices on
			upper body surface
		GEOMBR	
	LBD	GEONE	LLBL; array of ZT indices on
			lower body surface
		GEOMBR	
	NBPTSX	GEOBRX	NPTS; no. of coarse mesh pts.
			lying on body
	LBOD	GEONB	L index of body pts. (input)
	LBUX	GROBRX	LLBUX; array of ZTX indices on
			upper body surface
	LBDX	GEOBRX	LLBLX; array of ZTX indices on
			lower body surface
	PYX	GEOBRE	
	CPS		
BODV3	KBMAX	GEOMER	KBS; index of maximum ETA mesh
			point on body
	KBMAXX	GEO BRX	KBS; index of maximum FTAX mesh
			point on body
	LLBL	GEOM BR	index of 27 mesh pt. on lover
			surface of rectangular body
	LL BO	GEOMBR	index of ZT mesh pt. on upper
			surface of rectangular body
	LLBLX	GEOBRX	index of ZTX mesh pt. on lower
			surface of rectangular body
	LLBUX	GEOBRX	index of ZTX mesh pt. on upper
			surface of rectangular body
	RBCU	INPUT	DXU(J); upper body slope in
			fine mesh
		GEOMBR	
		TOPBOD	
	RBCL	INPUT	DXL(J); lower body slope in
			fine mesh
		GEOMBR	
	RBCUX	GEO BR X	upper body slope in coarse mesh
	RBCLX	GEOBRX	lower body slope in coarse mesh
	DRBCU	GEOMBR	fine mesh diff. coeff. for body
			g. c.
	DRBCL	GEOM BR	fine mesh diff. coeff. for body
			g. c.
	DRBCL	GEON BR	fine mesh diff. coeff. for bod

COMMON	VARIABLE	SOURCE	DESCRIPTION
	DRBCUX	GEOBRE	coarse mesh diff. coeff. for
	DR BCLX	GEOBRX	body g. c. coarse mesh diff. coeff. for body g. c.
	KBS		2007 30 00
	SALPH		
	SALPHX		
BODY BC	IBUD	INPUT	no. of pts. describing body body surface
	IBLD	INPUT	nc. of pts. describing body lower surface
	IBSIDE	INPUT	no. of pts. describing body side surface
	ET A BU	INPUT	y locations along upper surface of body cross-section
	ETABL	INPUT	y locations along lower surface of body cross-section
	ZBOD	INPUT	z locations along side of body cross-section
	NRBS	INPUT	no. of x locations of cross- sections
	XRBS	INPUT	x location of cross-section
JUMP	AZ U	IC	extrap. coeff. for pot. jump at trailing edge
	AZL	IC	extrap. coeff. for pot. jump at trailing edge
	BZ U	IC	extrap. coeff. for pot. jump at trailing edge
	BZL	IC	extrap. coeff. for pot. jump at trailing edge
	CZU	IC	extrap. coeff. for pot. jump at trailing edge
	CZL	IC	extrap. coeff. for pot. jump at trailing edge
	COFF	SOLVE	.5*SQRT (C2) *XLOAD/PI; circulation
	PJUMP	INPUT IC GCALC	potential jump in fine mesh
	PCOEF	GCALC	ETA coeffs. used in calculating PJUMP (for circular body only)
	KPINDX	GCALC	indices used in calculating PJUMF (circular body only)
	PJUMPX	INPUT	potential jump in coarse mesh
		WNGBDY	NAME OF THE OWNER OWNER OF THE OWNER OWNE
		BODBDY	

COMMON	VARIABLE	SOURCE	DESCRIPTION
LABEL	TITLE	INPUT	the input case title
XYCOE	x	SETUP	physical X mesh as function of XI and ETA
	XII	SETUP	derivative of XI with respect to Y
	XIX		derivative of XI with respect to X
	XIYJ	TCOEF	(XIY (K, J) + XIY (K, J+1))*.5  value of XIY between 2 mesh  points in XI direction
	XX	SETUPX	physical X mesh as function of XIEX
	XI AK	TCOEF	(XIY(K,J)+XIY(K+1,J))*.5 value of XIY between 2 mesh points in ETA direction

LARGN is for storage of fine grid potential array and fine grid difference coefficients.

LARGN	PF	IC	fine grid potential array
		FARBDY	
		PHIBOD	
	DJK1	TCOEF	. 25*CI *XIC (J) *ETAC (K)
	DJK2	TCOEF	XIYJ(K, 1) *CI *XIC(J) *XIL(J)
	DJK3	TCOEF	XIYJ (K,J) *CI*XIC (J) *XIR (J)
	DJK4	TCOEF	XIYJ (K, 1) * . 25 * XI C(J) * ETAC (K)
	DJK5	TCOEF	XIYJ(K,J)*.25*XIC(J)*ETAC(K)
	DJK6	TCOEF	XIYJ (K, 1) * XIYJ (K, 1) *
			XIC(J) *XIL(J)
	DJK7	TCOEF	XIYJ(K,J)*XIYJ(K,J)*XIC(J)
			*XIR (J)
	DJK8	TCOEF	CM*XIYK(1,J) *XIC(J) *ETAC(K) *CI
			*. 25
	DJK9	TCOEF	CP*XIYK(K, J) *XIC (J) *BTAC(K) *CI
			*.25
	DJK10	TCOEF	CP*XIYK(K, J) *XIC(J) *ETAC(K) *CI
			<b>*.</b> 25
	DJK11	TCOEF	CP*CI*ETAC (K) *ETAR (K)

LCO is for storage of fine grid difference coefficients for the elliptic and hyperbolic PHI terms

rco	DE 1	TCOEF	XIC(J) *XIL(J); elliptic coeff. of (PHI) xx term
	DE2	TCOEF	DE1(J) +DE3(J); elliptic coeff.
	DE3	TCOEF	of (PHI) xx term XIC(J) * XIR(J); elliptic coeff.

COMMON	VARIABLE	SOURCE	DESCRIPTION
			of (PHI) xx term
	DH 1	TCOEF	XIC(J) *XI32; hyperbolic coeff. of (PHI) xx term
	DH 2	TCOEF	DH1(J)+DH3(J); hyperbolic coeff. of (PHI)xx term
	DH 3	TCOEF	<pre>XIC(J) *XIL(J); hyperbolic coeff. of (PHI) xx term</pre>
	DL 1	TCOEF	2C*ZL: coeff. of (PHI) zz term
	DL2	TCO EF	<pre>ZC*(ZL+ZR); coeff. of (PHI)zz term</pre>
	DL 3	TCOEF	ZC*ZR; coeff. of (PHI) zz term

LCOX is for storage of the coarse grid difference coefficients for the elliptic and hyperbolic PHI terms, and special difference coefficients for the downstream boundary.

rcox	DE 1X	TCOEFX	
			of (PHI) xx term
	DE2X	TCOEFX	DE1X(J)+DE3X(J); elliptic coeff.
			of (PHI) xx term
	DE 3X	TCOEFX	XICX(J) *XIRX(J); elliptic coeff.
			of (PHI) xx term
	DH 1 X	TCOEFX	XICX (J) *XILX (J-1); hyper. coeff.
			of (PHI) xx term
	DH 2X	TCOEPX	DH 1X(J) + DH 3X(J); hyper. coeff.
	DILLA	TOODIA	of (PHI) xx term
	20.24	#C0 PPY	
	DH 3 X	TCOEFX	XICX (J) *XILX (J); hyper. coeff.
			of (PHI) xx term
	DL1X	TCOEFX	ZC*ZL; coeff. of (PHI) zz term
	DL2X	TCOEFX	ZC*(ZL+ZR); coeff. of (PHI) ZZ
			term
	DL3X	TCOEFX	ZC*ZR; coeff. of (PHI) zz term
	DK 1	TCOEF	C2*(CORD(K)+CORD(1)) *.5*CC*
		TCOEFX	ETAR (K) *ET AC (K)
		10001.	special ETA coeff. for
			downstream boundary
	DK 2	TCOEF	DK1 (K)+DK3 (K)
		TCOEPX	special ETA coeff. for
			downstream boundary
	DK3	TCOEF	C2* (CORD (K+1) +CORD (K) ) *. 5*CC*
		TCOEFX	ETAR (K) *ETAC (K)
			special ETA coeff. for
			downstream boundary
			dominacream noundary

LARGE is for storage of the coarse grid potential array and coarse grid difference coefficients.

LARGX PC IC PCINT(J1, J2, J3, J4, K1, K2, L1, L2, WNGBDY DX1, DX2, DY, DZ)

	WART ARE R	COURCE	Nucon paray
COMMON	VARIABLE	SOURCE	DESCRIPTION
		BODBDY	
	DJK 10 X	TCOEFX	ETACX (K) * ETALX (K)
	DJK11X	TCOEFX	ETACX (K) *ETARX (K)
	DJK1X	TCOEFX	. 25*CI*ETACX (K) *XICX (J)
	DO II TA		aza et aines (s) azes (o)
MESHCO	JEX	MESHIN	
	KEX	MESHIN	
	LEX	MESHIN	
	DXEX	MESHIN	
	DYEX	MESHIN	•
	DZ RX	MESHIN	
			* stored results of searches for
			interpolation of PHI from
			coarse to fine mesh
	KIN	MESHIN	
	JINK	MESHIN	•
	LIN	MESHIN	
	DYIN	MESHIN	* 1- 11 1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	DZIN	MESHIN	
			· stored results of searches for
			interpolation of PHI from
			fine to coarse mesh
	KINB	MESHIN	\$
	DYINB	MESHIN	\$
	LINB	MESHIN	\$
	DZINB	MESHIN	read
	JINB		\$
			\$ stored results of searches for
			interpolation of PHI from
	JI NKM 1	MESHIN	fine to coarse mesh stored result of search for
	JINNII	urgutu	interpolation of PHI from
			fine to coarse mesh
	KEXB	MESHIN	KROOTX+1 &
	LEXB	MESHIN	8
	DYEXB	MESHIN	(ETA (KROOT) - ETAX (KROOTX))/
	DIGE		(ETAX (KROOTX + 1) - ETAX (KROOTX)) S
	DZEXB	MESHIN	8
	00000		& stored results of searches for
			interpolation of PHI from
			coarse to fine mesh at
			body surface
	JCDN	MESHIN	JEX (1, JMAX); index of XX at
			coarse/fine downstream interface
	JCUP	MESHIN	JEX(1,1)-1; index of XX at
			coarse/fine upstream interface
WINGBC	ZLWL	TCOFF	2/ (H 1* (H 1+2*H2))
			2T diff. coeff. to lower wing

VARIABLE	SOURCE	DESCRIPTION
		surface boundary
ZRWU	TCOEF	2/(H2*(H2+2*H1))
		2T diff. coeff. to upper wing surface boundary
TWIST	WI NGCO	slope increment due to wing
WBCL	WIN GCO	WCOE*COEL* (TEMPL-AOFA)
(6) 163 (13		lower surface boundary conditions
WBCU	WINGCO	WCOE *COEU* (TEMPU-AOFA)
		upper surface boundary conditions
	ZRWU TWIST WBCL	ZRWU TCOEF TWIST WINGCO WBCL WINGCO

OLD is for temporary storage of old mesh data for mesh interpolation (IDISK=T,MSHINT=T option or REMESH =T option.

OLD	XIO	IC	old XI array
		STORE	
	ETAO	IC	old ETA array
		STORE	
	ZTO	IC	old ZT array
		STORE	
	PJUNPO	IC	old trailing edge potential
		STORE	lump
	LBUO	IC	old LBU array
	1000	STORE	ord red arral
			-13 700
	LBDO	IC	old LBD array
		STORE	X ( 1 ) 1 ) 1   1   1   1   1   1   1   1
	PJUMPT	IC	trailing edge potential jump
			interpolated onto new mesh
		INTERP	
	KBMXO	STORE	old RBMX array
	JMO	IC	old values of JMAX
	•	STORE	
	KNO	IC	old values of KMAX
	KHU		OLG VALUES OF KINK
		STORE	
	LHO	IC	old values of LMAX .
		STORE	
	JT AI LO	IC	old values of JTAIL
		STORE	
	JNOSEO	IC	old values of JNOSE
	er maure out the	STORE	AND THE RESERVE OF THE PARTY OF
	LWUO	IC	old values of LWINGU
	DW OC	STORE	OZ W TAZ WOOD OZ DITZ III O
	DTWO		logical clue for INTERP
	FINE	IC	TOGICAL CIUE LOL INTERP

SCRACH is for temporary storage of data arrays used in SOLVE and SOLVEX.

COMMON	VARIABLE	SOURCE	DESCRIPTION
SCRACH	MU	SOLVEX	shock pt operator; MU=0 at subsonic pts, MU=1 at supersonic pts.
	BOLD	SOLVEX	old values of potential at current and two upstream calculation planes
	♥C2	SOLVEX	contribution of spanwise term to coeff. for (PHI) xx
	₹C	SOLVEX	coefficient of CSD PHI term; VC>0 at subsonic pts; VC<0 at supersonic pts.

EPLT is for the storage of the errors and residuals for subroutine ERPLOT.

EPLT	CEF SC	DIVE	offset for fine grid error plot
	ERROF SO	DLVE	initial fine grid error
	ERRF SC	DLVE	CEF+ ALOG 10 (error)
	CRF SC	DLVE	offset for fine grid residual
			plot
	RSDOF SO	DLAE	initial fine grid residual
	RS DF SC	OFAE	CRF+ALOG10 (residual)
	CEX SC	OFAEX	offset for coarse grid error plot
	ERROX SO	DLVEX	initial coarse grid error
	ERRX SC	OLVEX	CEX+ ALOG 10 (error)
	CRX SC	OLVEX	offset for coarse residual plot
	RS DO X SC	LVEX	initial coarse grid residual
	RSDX SC	OLVEX	CRX+ALOG10 (residual)
LOCAL	LSONL OU	UTP	index of vertical location of sonic line on lower surface
	LSONU OU	UTP	index of vertical location of sonic line on upper surface
	XOC OU	UTP	local PSI
VSCINP	IVSMAX IN	NPUT	maximum allowed number of viscous iterations
	ISTOP VI	ISCFL	
	IVITER VI	ISCFL	number of current viscons iteration
	IACON IN	PUT	convergence criterion clue; 1 = convergence on pressure change
	EPSVIS IN	NPUT	viscous convergence limit
	EPSVIS IN	NPUT	change 2 = convergence on lift cha

COMMON	VARIABLE	SOURCE	DESCRIPTION
	RE	INPUT	Reynold's no.
	IOUTP	INPUT	output clue; 0 = normal output
			1 = boundary layer output
		T.110110	2 = full profile output
	ISTEPO	INPUT	no. of b. 1. steps between profile output
			(used only when IOUTP = 2)
	ITRANS	INPUT	-4: transition clue for strip
			boundary layer
	XTRNT	INPUT	upper surface transition
			location; x/c
	XTRNB	INPUT	lower surface transition
			location; x/c
	IUNIT	INPUT	output device no.
	KSMTHX	INPUT	smoothing parameter
	K2SMTH	INPUT	smoothing parameter
	KENDS	INPUT	smoothing parameter
	CHISWP	INPUT	chord position at which
			effective sweep angle is calculated
	KWRITE	IC	saved solution clue:
	KWHIID	10	0 = inviscid,
			1 = viscous
	LWRITE	INPUT	viscous
			output
			1 = abbreviated
			output
CPCAL	AVCHGU	CPCALC	average change of CP
			along each span station for
			upper surface
	AVCHGL	CPCALC	average change of CP
			along each span station for
	We 655 30	The UT	lower surface
	DC PMX U	CPCALC	max CP change for upper surface
	DCPMXL	CPCALC	max CP change for lower surface
	CPNL	CPCALC	new CP for max change at lower
	CPOL	CPCALC	surface old CP at max change at upper
	CPOL	CPCALC	surface
	JNKL	CPCALC	location of max change on lower
	O X.2	CICALC	surface
	CPNU	CPCALC	
			surface
	CPOU	CPCALC	
			surface
	EPS1	CPCALC	
			for convergence check if
			IVCON = 1

COMMON	VARIABLE	SOURCE	DRSCRIPTION
	EPS2	CPCALC	total CP change on lower surface for convergence check if
	CHIVDE	CDCLIC	IVCON = 1
	CM AXDT	CPCALC	
	CMAXDB	CPCALC	
	CPTBAR	CPCALC	average of the absolute value of CP on top surface
	SONPU	CPCALC	last acceleration past sonic on upper surface
	SONPL	CPCALC	last acceleration past sonic on lower surface
	MACHUP	CPCALC	no. of accelerations past sonic on upper surface
	MACHDN	CPC ALC	no. of accelerations past sonic on lower surface
	SHKPU	CPCALC	no. of shock points on upper surface
	SHKPB	CPCALC	no. cf shock points on lower surface
	JMXU	CPCALC	location of max change on upper surface
	CPU	CPC ALC	pressure distribution on upper surface
	CPL	CPCALC	pressure distribution on lower surface
	EMSO	CPCALC	MACHNO**2
	NGRIDS	CPCALC	1
	CPEBAR	CPCALC	average of the absolute value
	Te apurdo	Potas ra	of CP on the lower surface
VITERP	XOUTOD	SAVSOL	values of XOUT from old solution
	ET AOLD	SAVSOL	values of ETA from old solution
	DXL STU	VISCFL	upper surface deltastar values
	DXLSTL	VI SCFL IC	lower surface deltastar values
	KTMOLF	Section 1	
	NXOLD	SAVSOL	old values of NX
	K7OLD	SAVSOL	value of K7X from old solution
	K80LD	SA VSOL	value of K8X from old solution
SZT	XO UT		X/C values for which output to be calculated

COMMON	VARI ABLE	SOURCE	DESCRIPTION
	NX	VISCPL	JWTE-JWLE+1; no. of chordwise points at current span
			station
	SEPXL		lower surface separation location
	K8BL	VISCFL	1000000
	ZSLPOG		
	ZSLPTE		
	XFILOG		
	SEPMIN	VISCFL	minimum lower surface
	Surata	125012	separation location
	DDDSL	VISCPL	modified lower surface
	DODSE	VISCIL	deltastar slope from Bavitz
			treatment
		BAVITZ	creatment
		BAVITZ	
YAWOPT	K1X	SETUP	1; if YAW = T, K1X = 2
	K2X	SETUP	KNAX; if YAW = T, K2X = 5
	кзх	SETUP	1; if $YAW = T$ , $K3X = 3$
	K4X	SETUP	KMAX-1; if $YAW = T$ , $K4X = 4$
	K5 X	SETUP	1; if $YAW = T$ , $K5X = 2$
	K6X	SETUP	KTIP; if YAW = T, K6X = 5
	K7X	SETUP	KROOT; index of span station at
	W/ A	56101	centerline or, if BODY = T,
			first span station outside
			body; if YAW = T, K7X = 3
	K8X	SETUP	KTM1: if YAW = T, $K8X = 4$
	KPIX	SETUP	2: if YAW = T, KPIX = 4
	KMIX	SETUP	2
	KUIX	20105	2
VISCON	DDSTL	SLOPY	lower surface deltastar slopes
			interpolated to viscous x/c's
	DDSTU	SLOPY	upper surface deltastar slopes
			interpolated to viscous x/c's
	SCFT	VISCPL	local upper surface skin
			friction
	SCFB	VISCPL	local lower surface skin
			friction
	CFFKL	VISCPL	integrated lower surface
			viscous drag
	CFFKU	VISCFL	integrated upper surface
			viscous drag
	DDDSTU	VISCFL	upper surface deltastar slopes
	DDDSTL	VISCPL	lower surface deltastar slopes
	CPUK1	VISCFL	upper surface CP at point KI,J1
			(for convergence history)
	CPLK1	VISCPL	lower surface CP at point KI,J1
			(for convergence history)
	CPUK2	VISCFL	upper surface CP at point KO, J1

COMMON	VARI ABL E	SOURCE	DESCRIPTION
			(for convergence history)
	CP LK2	VISCFL	lower surface CP at point KO, J1
	DELUK 1	VISCEL	(for convergence history) upper surface deltastar at point
	DE BOK (	113011	KI, J1 (for convergence history)
	DELLK1	VISCFL	lower surface deltastar at point
			KI, J1 (for convergence history)
	DELUK2	VISCFL	upper surface deltastar at point KO, J1 (for convergence history)
	DELLK2	VISCPL	lower surface deltastar at point
	and the Selbonou		KO, J1 (for convergence history)
	CLGG	VISCFL	lift coefficient (for conver-
	nnc 1v	WT CCRI	gence history)
	EPS 1X	VISCFL	convergence parameter (for convergence history)
	EPS2X	VISCFL	convergence parameter (for
			convergence history)
	VOTHET	VISCPL	2-D momentum thickness
	ITEX	VISCFL	no. of inviscid iterations
			completed between last viscous
			iteration and present viscous iteration (for convergence
AR SOLERING IN			history)
	CPIU	VISCEL	upper surface CP at span
	ablitate ass	11770	station K for conversion to
			viscous x/c's
	CB An	SLOPY	CP's at viscous x/c's
	ETAK	VISCFL	ETA (K)
	CPIL	VISCPL	lower surface CP at span station K for conversion to
			viscous x/c's
	CPVL	SLOPY	CP's at viscous x/c's
	CPVLP	SLOPY	(not used)
	SBRAL VISC	FL	lower surface x/c's used in
		******	houndary layer calculation
	DELSL	VISCPL	lower surface deltastar (from STRIPK)
	CFVL	VISCEL	lower surface skin friction in
	ht war by	1191.11	chordwise direction
	CFVU	VISCFL	upper surface skin friction in
			chordwise direction
	DELSTU	SLOPY	upper surface deltastar inter- polated to viscous x/c's
	CFZL	VISCEL	lower surface skin friction in
			spanwise direction
	CPZU	VISCFL	upper surface skin friction in
			span wise direction
	DELSTL	SLOPY	lower surface deltastars inter-
			polated to viscous x/c's

COMMON	VARIABLE	SOURCE	DESCRIPTION
	CWU	CPCALC	upper surface diff. coeff. for extrapolation of CP's to wing surface
	CWL	CPCALC	lower surface diff. coeff. for extrapolation of CP's to wing surface
	PU	CPCALC	pressure at mesh points above wing; for extrapolation to wing surface
	PL	CPCALC	pressure at mesh points below wing; for extrapolation to wing surface
	DELSU	VISCPL	upper surface deltastars (from STRIPK)
	SBRAU	VISCPL	upper surface x/c's used in boundary layer calculation
	CPAND	SLOPY	(not used)
LOCAL2	XCBLX NN X	VISCPL VISCPL	<pre>x/c's for viscous calculation local value of NX for input to SLOPY</pre>
	NNXX	VISCFL	41; no. of x/c's for viscous
	DELPTE	VISCPL	CP's for input to SLOPY potential jump at trailing edge
	XS EP U	VISCPL	upper surface separation location (for iteration summary)
	XSEPL	VISCPL	lower surface separation location (for iteration summary)
	WBC01	VISCFL	local wing boundary condition for smoothing
VSFCOM	RELBL	INPUT	fine mesh relaxation factor for modification of slope boundary conditions
	EXT NDU	INPUT	<pre>x/c beyond which boundary layer slope is extrapolated on upper surface</pre>
	EXTNDL	INPUT	<pre>x/c beyond which boundary layer slope is extrapolated on lower surface; if foil is super- critical, no extrapolation</pre>
	AFCBL1	INPUT	is necessary inviscid-viscous boundary layer
	AFCBL2	INPUT	interaction parameter inviscid-viscous boundary layer interaction parameter
	KI	INPUT	inboard span station used for

COMMON	VARIABLE	SOURCE	DESCRIPTION
	KO	VISCPL	convergence history outboard span station used for convergence history
WINGX	WBCUOR	WINGCO	original upper surface boundary conditions
	WBCLOR	WINGCO	original lower surface boundary conditions
THRED	XL AM	VBRAD	cos(arctan(We/Ue))
EXTEND	XC MAX	VBRAD	maximum value of x/c used for boundary layer calculation
		BLLAM	
	LASTI	VBRAC	number of x/c's used for boundary layer calculation
		BLLAM	40.00
REDUC	UFUT	VBRAD	future velocity profile
		REDUCX	AREEN
	TFUT	VBRAD	future shear stress profile
		REDUCK	TWORLS
	WFUT	VBRAD	local r (Gamma-1) Mach no** 2/UFUT
		REDUCX	
	TANAFU	REDUCX	tangent of alpha, angle of
			growth of characteristics
	TANBFU	REDUCX	tangent of beta, angle of
			growth of characteristics
	4	VBRAD	vertical velocity profile
		REDUCK	
	161	VBRAD	no. of output x/c's + 1
		REDUCX	
	RK	VBRAD	SQRT (RK2)
	RK 2	VBRAD	TETON*XMNSQ
	RK 3	VBRAD	AY *X MNSQ/RK
VTRAN2	DELUP	VYTRANS	(not used)
**************************************	DELDN	VTRANS	(not used)
	DU	SLOPY	inboard upper surface
			deltastars interpolated to
			new NX
	DL	SLOPY	inboard lower surface
	61 718 OF 15	1047119	deltastars interpolated to
			nev NX
	DDU	SLOPY	dummy variable
	DDL	SLOPY	dummy variable
	XOUT	VTRANS	values of x/c for output
	DSLU	VTRANS	upper surface deltastars
			interpolated to new grid

COMMON	VARIABLE	SOURCE	DESCRIPTION
	DSLL	VTRANS	lower surface deltastars
	lean relation		interpolated to new grid
	DU 1	SLOPY	outboard upper surface
			deltastars interpolated to new NX
	DL 1	SLOPY	outboard lover surface
			deltastars interpolated to new NX
	DDDSUI	VTRANS	upper surface deltastar slopes
	000301	***************************************	at inboard span station used
			for interpolation to new grid
	DDDSLI	VTRANS	lower surface deltastar slopes
			at inboard span station used
			for interpolation to new grid
	DDDSUO	VTRANS	upper surface deltastar slopes
			at outboard span station used
			for interpolation to new grid
	DDDSLO	VTRANS	lower surface deltastar slopes
			at outboard span station used
	WO !! MO 4	man y Mc	for interpolation to new grid old values of XOUT at outboard
	t otu cx	VT RANS	span station
	CPUI	VTRANS	in board upper surface CP's from
	CPUI	VIRANS	old solution
	CPLI	VTRANS	inboard lower surface CP's from
	CLDI	***************************************	old solution
	CPUO	VTRANS	outboard upper surface CP's
			from old solution
	CPLO	VTRANS	outboard lower surface CP's
			from old solution
	CPUIX	SLOPY	inboard upper surface CP's
			interpolated to new NX
	CPLIX	SLOPY	inboard lower surface CP's
			interpolated to new NX
	CBOOX	SLOPY	outboard upper surface CP's
			interpolated to new NX
	CLFOX	SLOPY	outboard lower surface CP's
	Land of the same	- Labor	interpolated to new NX
	NX	VTRANS	number of x/c's at span station
			for new grid
	N XOL D 1	VTRANS	number of x/c's at span
			outboard station for old grid
SZC	SZT		(not used)
	PILKLU		(not used)
	ICARD		(not used)
	0012		land lane engine col-
BAVCON	CPL2	BAVITZ	local lower surface CP's
	DELSTL	BAVITZ	local lower surface deltastars

COMMON	VARIABLE	SOURCE	DESCRIPTION
	VCPD	DAUTMO	
	XSEP	BAVITZ	middle wood for Damike transferent
	XSEP	BAVITZ	x/c's used for Bavitz treatment
	YS EP	SLOPY	lower surface deltastars inter-
			polated to XSEP
	DST	BAVITZ	(not used)
	ST	BAVITZ	(not used)
ISOGN	XRANGE	GRAPH3	XMAX-XORG
	YBASE	GRAPH3	ETA (KPOOT)
	YTREL	GRAPH3	YTIP-YBASE
	XINCH	GRAPH3	(6/YTREL) *XRANGE
	XORG	GRAP H3	XLEI (1, 1)
FORCES	CL	SPNPLT	0
FUNCES	CD	SPNPLT	0
	CNC2		Ö
	OBV.BB.Vill. Cov.	SPNPLT	
	CCBAR	SPNPLT	TCB/DETA* (1-ETA (KTM1-1)) *CCBAR (KTM1)
NSBL	KOUTA	WINGCO	streamwise fraction of local
		BLOUT	chord
	ZOCU	WINGCO	airfeil upper surface
	2000	BLOUT	ordinate, fraction of local
		DLOGI	chord
	ZOCL	WIN GCO	airfoil lower surface
	2001	The second secon	
		BLOUT	ordinate, fraction of local chord
	CPU	OUTP	upper surface pressure
		BLOUT	coefficient
	CPL	OUTP	lower surface pressure
		BLOUT	coefficient
	ZLE	WINGCO	FLIN (ZLER, ZLET, Y, YR, YT)
BODV4	XUCL	INPUT	v logation for body upper
BODY4	MUCL	INPUT	x location for body upper
		*****	centerline (input)
	ZUCL	INPUT	body upper centerline
	XLCL	INPUT	x location for body lower
			centerline (input)
	ZLCL	INPUT	body lower centerline
	XZMHB	INPUT	x location of z max half-
			breadth
	ZMHB	INPUT	z max half-breadth
	XYMHB	INPUT	x location of y max half-
			br eadt h
	YMHB	INPUT	y max half-breadth
	NUCL	INPUT	no. of upper centerline
			locations input
	NLCL	INPUT	no. of lower centerline
			locations input
	MHBZ	INPUT	no. of z max half-breadths

COMMON	VARIABLE	SOURCE	DESCRIPTION
			input
	MH BY	INPUT	no. of y max half-breadths
			input
	ZUCLI	DATTEN	ZUCL interpolated to x's
	20021	Dallan	(fine grid in QUIK, coarse
			grid in QUIKX)
	ZUCLIP	DATTEN	slope of ZUCLI
	ZLCLI	DATTEN	ZLCL interpolated to x's
	ZLCLIP		slope of ZLCLI
		CATTRN	ZMHB interpolated to x's
	ZMHBI	DATTRN	ZMHBI slope of ZMHBI
	ZMHBIP	DATTRN	
	YNHBI	DATTRN	YMHB interpolated to x's
	YMHBIP	DATTRN	YMHBI interpolated to x's
MESHX	DX L	INPUT	XI mesh spacing at leading edge
			(fine mesh)
	DXT	INPUT	XI mesh spacing at trailing edge
			(fine mesh)
	DXMX	INPUT	max XI mesh spacing on wing
			(fine mesh)
	NF	INPUT	no. of grid lines upstream of
			XI=0.
	NB	INPUT	no. of grid lines downstream of
			XI=1.
	XDIST	INPUT	overall length of XI mesh
	XLG	INPUT	upstream extent of XI mesh
	DXLI	INPUT	XI mesh spacing at leading edge
	3.22		(initial mesh)
	DXTI	INPUT	XI mesh spacing at trailing
	0411	**** 01	edge (initial mesh)
	DXMXI	INPUT	max XI mesh spacing on wing
	DAUAL	111.01	(initial mesh)
	NFI	INPUT	no. of grid lines upstream of
	***	14101	XI = 0. (initial mesh)
	IOUT1	INPUT	=0., no general mesh generation
	10011	THEOT	output
			=1., general mesh generation
			output
	IOUT 2	INPUT	=0., no detailed mesh
	10012	TWEOT	generation output
			=1., detailed mesh generation
			output
VELOC	UMK	SOLVE	negative of (PHI) xx coeff.
			(A2 * (PHI) x-A1)
	7	SOLVE	span wise velocity component in
			y direction
	FMU	SOLVE	value of MU in the wing plane

COMMON	VARI ABL E	SOURCE	DESCRIPTION
MURCON	P	INPUT	relaxation factor for Murman
	SHIFT	INPUT	percent chord shift in shock location
	MBSTRT	INPUT	no. of interior mesh iterations before start of Murman bump
	MBPRNT	INPUT	no. of interior mesh iterations between additional Murman bump printout; =0., no printout
BLCOM	IT	INPUT	max no. of iters. allowed at each row
	IOITER	INPUT	<pre>output of iteration history; = 0., no output = 1., full output</pre>
	IOPRF	INPUT	output of velocity profiles at each station = 0., no output
	IPUNCH	INPUT	<pre>= 1., full output = 0., do not punch output</pre>
	KSMTH	INPUT	no. of smoothings of input pressure distribution
	CONA	INPUT	convergence criterion
	LTRN	BLOUT	grid index for transition
	SCALE	INPUT	reference length scale, ft.
	PRES	INPUT	static pressure, PSI
	TEMP	INPUT	static temperature, deg. R
	IBOUT	INPUT	output unit = 13
MUREXT	W	MURMAN	jump in vertical velocity at shock foot
	XOLD	MURMAN	old shock location in the wing plane
YAW1	T	SETUP	lift spreading factor fine grid
	T2	SETUP	farfield expression for potential - fine grid
YAW2	T	SETUP	lift spreading factor crude grid
	<b>T</b> 2	SETUP	farfield expression for potential - crude grid
LEV1X	DXU		1000

COMMON	VARIABLE	SOURCE	DESCRIPTION
	4		
	XDUM		
	XDUM2		The state of the second state of the second
	XDUM3		
	XDUM4		there is relatively although the each
	XDUN5		
	X DUN 6		AND A LINE CONTRACTOR NAME AND ADD TO SELECT AND ADDRESS.
			<ul> <li>dummy variables used for equivalencing</li> </ul>
SAVES	NXO	IC	values of NX from old solution
1000 100 10	XOUTO	IC	values of XOUT from old
		1003 00300	solution
PARRY	P	SOLAE	j - plane potential array this array only appears in the
			AMES CDC version of the program
SKINPR	CFVISC	VISCPL	total viscous drag
	CFTU	VISCPL	upper surface skin friction
	CFTL	VISCFL	lower surface skin friction
C POD	CPODU	CPCALC	upper surface CP from previous
	CPODL	CPCALC	boundary layer iteration lower surface CP from previous boundary layer iteration

# 4. TAPE/DISK UNITS

Because the program keeps most of the information in core at all times, there is relatively little use of tape and disk units. However, there are several units that are employed in addition to the standard READ from unit 5 and WRITE on unit 6. These devices are:

UNIT	USE
10	When using a previously saved solution as the initial guess for a new solution, the starting
	solution is read into the program from Unit 10.
2111 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Solutions are saved (when requested) on Unit 11.
12	This unit is for purely internal use, in order to carry out the mesh interpolation of the poten-
	tial when changing from one mesh to another.  Unit 12 is also used to save data for plotting the results in the CDC version.
13	This is the unit that is used to output the data set for the operation of the Nash/Scruggs boundary layer program in a subsequent step.
14	This unit can be used to save the detailed boundary layer output in case these details are of interest.

NOTE: Some of the output on these units is formatted rather than unformatted so that data saved on CDC equipment can be used readily on IBM systems.

#### 5. SUBROUTINES

# PROGRAM MAIN

PURPOSE: control program for the calculation of viscous transonic flow about wing-body combinations at Mach numbers less than one.

#### SUBROUTINES CALLED:

#### SUBROUTINE DESCRIPTION:

ERPLOT	for print plot of error and residual
IC	for initializing
INPUT	to obtain input data
MESHIN	for coarse-fine mesh interpolation setup
OUTBOD	for data output of circular body surface CP's
OUTP	for data output of wing surface CP's
SAVSOL	for saving the solution if ISAVE=T
SETUP	for geometry setup with respect to fine mesh
SETUPX	for geometry setup with respect to coarse mesh
SOLVE	for relaxation on fine mesh
SOLVEX	for relaxation on coarse mesh
STORE	for data output and cataloging when using
	REMESH = T option
TCOEF	for difference coefficient setup on fine mesh
TCOEFX	for difference coefficient setup on coarse
	mesh
WINGCO	for wing boundary condition calculation
TOPBOD	for body boundary condition when wing is top
	of body
VISCEL	for computing the viscous effects

#### DATA TO COMMON:

COMMON VARIABLE

RELAXP IPASS WI

WIX

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

ISKIP controls heading of the iteration history
ITERC crude grid iteration counter
ITERF fine grid iteration counter
READ STATEMENTS: none

WRITE STATEMENTS:

RESIDJ(K)

#### SUBROUTINE INPUT

PURPOSE: reads and writes input data

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

DATA TO COMMON:

*NOTE: the variables of the control parameters for code options, the flight conditions, the planform specifications, the airfoil specifications, the body specifications and the mesh and mapping are described in INPUT PROCEDURE

COMMON	VARIABLE	
INTER	ETA	
	XIN	
	YMAX	
	YMIN	
	XMAX	
	XHIN	
	ZMAX	
	ZMIN	
	ZT	
EXTER	ETAX	
	XINX	
	XMAXX	
	XMINX	
	YHAXX	
	YMINX	
	ZMAXX	
	ZMINX	
	ZTX	
INDEX	JMAX	
	KMAX	
	KROOT	
	KTIP	
	LMAX	
	LWINGU	
INDEXX	JMAXX	
	KMAXX	

```
KROOTX
             KTIPX
             LHAXX
             LUNGUX
             XMRD
PLAGS
             XMRDX
             YMRD
             YMRDX
             ZMRD
             ZMRDX
             EPSEX
RELAXP
             INCR
             INCRX
             TIXAM
             MAXITH
             MAXITX
WING
             DXLER
             DXTER
             DXLET
             DXTET
             DXR 1
             DXTO
             DXT 1
             INL
             INU
             KSHTHS
             KXO
             KX1
             NLEI
             NLES
              NPAN
             NSO
             NS1
             NTEI
              NTES
             NTIPLE
             NTIPXI
              NXO
              NX 1
              XTEI
             XXO
             XX1
             XLEI
              YTEI
              YXO
              TXT
BODV 1
              DZRBL
              DZRBU
              BTYPE
```

### DATA TO COMMON (cont.)

```
JBD N
          JBUP
          JNOSE
          JNOSEX
          JTAIL
       JTAILX
KBM Y
          KBMX
          KBMXX
          NBIN
          NBODS
          NBPTS
          NRBU
          XBIN
          XNOSE
          XTAIL
          YRB
BODV2
          KBOD
          LBOD
BODV4
          KUCL
          ZUCL
          XLCL
          ZLCL
          XZMHB
          ZMHB
          XYMHB
          YMHB
          NUCL
          NLCL
          MHBZ
          MHBY
JUMP
          PJUMP
          PJUMPX
LABEL
          TITLE
VSFCOM
          AFCBL 1
          AFCBL2
          EXTNDL
          EXTNDU
          KI
          RELBL
VSCINP
          IOUTP
          ISTEPO
          ITRANS
          IVCON
          IVSMAX
```

READ STATEMENTS:

TITLE, BTITLE, BTYPE, ZRBU, ZRBL, YRB, NRBU, XRBU(I), IBUD, ETABU(I), RBCU(20+K,J), NRBL, XRBL(I), IBLD, ETABL(I), RBCL(20+K,J), NRBS, XRBS(I), IBSIDE, ZBOD (I), FY (20+L, J), XNOSE, XTAIL, NBODS, NBIN(N), JBUP(N), JBDN(N), XBIN(N,I), RBIN(N,I), PTITLE, YROOT, XLER, XTER, YTIP, XLET, XTET, XHOM, XHLE, YLEI(N), XLEI(N), XNTE, YTEI(N), XTEI(N), ATITLE, JIN, NTWST, NPAN, INU, INL, KSMTHS, XP(N), THETP(N). XINU(I), XINL(I), ISAME, ZUP(I), ZLP(I), XMPAN, XKSMTH, YP(N), XNWSEC, ZSYM, FNU, FNL, XF(I,N), 2F(I,N), XF(J,N), 2F(J,N), YTWST(I), THETP(I), TITLEN, JMAX, KMAX, LMAX, KTIP, LWINGU, XIN (J), ETA (K), ZT (L), NSO, KXO (N), NXO (N), YXO (N,I), XXO(N,I), DXRO(N), DXTO(N), NS1, KX1(N), MX1(N), YX1(N,I), XX1(N,I), DXR1(N), DXT1(N), JMAXX, KMAXX, LHAXX, KTIPX, LWNGUX, XINX(J), ETAX(K), ZTX(L)

# WRITE STATEMENTS:

TITLE, MAXIT, INCR, IDISK, MSHINT, ISAVE, IPLOT, SOLV, WBCPRT, BBCPRT, BODY, PCR, ISPAN, EXTMSH, REMESH, YAW, MACHNO, ALPHAW, ALPHABI, GAMMA, RSUB, RTEST, EPS, RFACT, EMEXP(I), BTITLE, ZRBU, ZRBL, YRB, NRBU, XRBU(I), IBUD, ETABU(I), RBCU(20+K,J), NRBL, XRBL (I), IBLD, ETABL (I), RBCL (20+K, J), NRBS, XRBS(I), IBSIDE, ZBOD(I), FY(20+L,J), XNOSE, XTAIL, MBODS, NBIN(N), JBUP(N), JBDN(N), XBIN(N,I), RBIN(N,I), PTITLE, YROOT, XLER, XTER, YTIP, XLET, XTET, XMON, NLEI, N, YLEI(N), XLEI(N), NTEI, YTEI(N), XTEI(N), ATITLE, JIN, NTWST, NPAN, INU, INL, KSMTHS, YP(I), THETP(I), XINU(I), XINL(I), I, YP(N), ZUP(I), ZLP(I), XF(I,N), ZF(I,N), XF(J,N), ZF(J,N), YTWST(I), TITLEM, JHAX, KMAX, LMAX, KTIP, LWINGU, XIN(J), ETA(K), ZT(L), NSO(N), KXO(N), NXO(N), YXO(N,I), XXO(N,I), DXRO(N), DXTO (N), NS1, KX1(N), NX1(N), YX1(N,I), XX1(N,I), DXR1(N), DXT1(N), JMAXX, LMAXX, KMAXX, KTIPX, LWNGUX, XINX(J), ETAX(K), ZTX(L)

#### SUBROUTINE SETUP

PURPOSE: computes planform parameters and fine grid, and transforms geometry and fine grid.

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

VARIABLE

BEND to define reference length for computational plane

GEOMBR to compute body slopes (rectangular body)

GEOMB to compute body slopes (circular body)

FINGRD to calculate fine grid if not read in SPLN1 setup of spline fit

SPLN1X spline fit routine to compute mesh and wing leading and trailing edges

FLIN statement function for linear interpolation

#### DATA TO COMMON:

COMMON

INTER XI XIN INDEX JMAX1 KMAX1 LMAX1 LWINGL KTM 1 JWLE JWTE JTE KTIP 1 WING CROOT SSPAN CAV CHEAN XOR CORDX

> XLEW XLE XTEW

XTE
CORDW
CORDIN
CORD
XIY
X

Y AWOPT K 1X K2X K3X K4X K5 X K6X K7X K8 X Y AW 1 T T2

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION APACT 1 exponential damping in lift spreading, if desired AFACT2 degree of lift spreading desired CHAC mean aerodynamic chord of true planform CTIP XTET-XLET , tip chord AR aspect ratio based on reference wing ARTRUE aspect ratio of actual planform DX 1st difference of computational XI grid DY 1st difference of computational Y grid DZ 1st difference of computational Z grid D2X 2nd difference of computational XI grid D2Y 2nd difference of computational Y grid D 2Z 2nd difference of computational Z grid KNOM x mesh monotinicity check klue MONY y mesh monotinicity check klue MONZ z mesh monotinicity check klue NMAX MAXO (JMAX, KNAX, LNAX) OUT X1 X grid for output OUTETA ETA grid for output OUTZT Z grid for output J 1 JLE (K) J2 JTE (K) SWPLE (XL ET-XLER)/SSPAN SWPTE (XTET-XTER) /SSPAN SWPLED leading edge sweep in degrees SEPTED trailing edge sweep in degrees

SREF	CAV*SSPAN, wing reference area
STRUE	true area of actual input planform
SXPOS	wing area of the exposed planform
TR	CTIP/CROOT, reference wing taper ratio
SLOPE	local variable to define slope of leading edge and mapping
YB	local definition of l.e. and t.e.
XB	local definition of l.e. and t.e.
YTEMP	local slopes for planform and mapping
XTEMP	local slopes for planform and mapping
XL EC	(X (K, J1) - X LEW (K)) / CORDW (K)
XTEC	(X(K,J2)-XLEW(K))/CORDW(K)
XFEB	located in equivalence statement in PARM, leading edge slope
XTEP	located in equivalence statement in PARM,
	trailing edge slope
CORDP	located in equivalence statement in PARM,
	rate of change of chord with span
XLENAC	distance to the leading edge of the mac

## READ STATEMENTS: none

## WRITE STATEMENTS:

N, OUTX1, OUTETA, OUTZT, DX, DY, DZ, D2X, D2Y, D2Z, SWPLE, SWPTE, CROOT, CTIP, S, AR, TR, CMEAN, CAV, K, ETA(K), XLE(K), XTE(K), XLEP(K), XTEP(K), JLE(K), JTE(K), XLEW(K), CORDW(K), XLEC, XTEC

#### SUBROUTINE SETUPX

PURPOSE: computes rectangular coarse exterior grid and geometry.

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

CRDGRD to calculate crude ETA and ZT grids

if not read in.

GEOBAX to compute body slopes for crude grid

XC2 to calculate crude XIN grid if not read in

FLIN statement function

DATA TO COMMON:

COMMON VARIABLE

EXTER XIEX
INDEXX JHAXX1
KMAXX1
LHAXX1

LWNGLX KTN 1X KTI P1X JTEX (K)

WING JLEX(K)
WING XLEWX(K)

XTEWX(K)

XYCOE XX (J) YAW2 T

T2

READ STATEMENTS: none

WRITE STATEMENTS:

K, XIEX (K), ETAX (K), ZTX (K)

K, ETAX(K), JLEX(K), JTEX(K), XLEWX(K), XTEWX(K)

# SUBROUTINE GEONB

PURPOSE: circular body given by F(X,Y,Z)=0: computes R, FY, FY, FZ.

CALL: from SETUP (note that this routine is not used in the present version of the program)

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SLOPY set up to compute wing and body surface slopes

## DATA TO COMMON:

COMMON	VARIABLE
INDEX	KROOT
BODV1	KBMX (J)
	R (J)
	NBPTS(J)
	LHX
	LMN
	CFK (K)
	BPK (K)
	APK (K)
	CFL(I)
	BFL (I)
	APL (I)
	CBL (I)
	BBL(I)
	ABL (I)
	ACL (I)
	BCL (I)
	CCL (I)
BODV2	KBOD
	LBOD
	PY (N, J)
	FZ (N, J)
	PX (N,J)
	LBU
	LBD

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
AOPAB	.017453293*ALPHAB
M2	NBIN(M)
XBT (M1)	XBIN(M,M1)
RBT (M 1)	RBIN(M, M1)
NT	NBIN(M)
XPP(NX)	XIN (J) - XNOSE
NEND	NBPTS(J)
RP	SQRT (ETA (K) **2+ZT (L) **2)
KEND	KBMX(J)
DKP1	ETA (K+1) - ETA (K)
DKP2	ETA (K+2)-ETA (K+1)
DK	ETA (K+2)-ETA (K)
DLP1	ZT (L+1) -ZT (L)
DLP 2	ZT (L+2) -ZT (L+1)
DL	
DLM1	ZT (L) - ZT (L-1)
DLM2	ZT (L-1) -ZT (L-2)

# READ STATEMENTS: none

## WRITE STATEMENTS:

J, XIN(J), XI(J), R(J), N, K, L, ETA(K), ZT(L), FY(N,J), FZ(N,J), FX(N,J), KBMX(J), IBU(K,J), LBD(K,J)

## SUBROUTINE GEOMBR

PURPOSE: rectangular body; computes body mesh pts. in fine interior mesh; body slopes

CALL: from SETUP

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

QUIK to convert body line input to body slopes
SLOPY to do the streamwise interpolation
SLOPQ to interpolate for upper and lower body slopes

DATA TO COMMON:

COMMON VARIABLE BODV1 XNOSE XTAIL JNOSE JTAIL. BODV2 LBU (K, J) LBD (K, J) FY BODV3 LLBU LLBL KBMAX RBCU (K, J) RBC L (K, J) DRBCU DR BCL

### MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

COR1 local difference coefficient, several different definitions

COE2 local difference coefficient, several different definitions

AOFA ALPHAW/57.29577951

KBS K

NPTS 2*KBS+LLBU-LLBL-1

KB KBS-1

DXU(J) local variable for interpolation
DXL(J) local variable for interpolation
L1 LLBL+1
L2 LLBU-1
SALPH correction factor for angle of attack
S(body)/S(BCSS)

READ STATEMENTS: none

#### WRITE STATEMENTS:

K, KK, ETA (K), J, XIN(J), RECU(K,J), RBCL(K,J), L, LL, ZT(L), PY(L-LLBI,J)

## SUBROUTINE GEOBRY

PURPOSE: rectangular body; computes body mesh pts.
in coarse exterior mesh

CALL: from SETUPX

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

QUIKX generate slopes from body line input
SLOPY to do the streamwise interpolation
SLOPQ to interpolate for upper and lower body slopes

DATA TO COMMON

VARIABLE COMMON KROOTX INDEXX BODV 1 XNOSEX XTAILX JNOSEX JTAILX KBMXX (J) BODV2 NBPTSX (J) LBUX(K,J) LBDX (K, J) FYX LLBLX BODV3 LLBUX KBMAXX RBCUX (K, J) RBCLX (K, J) DRBCUX DRBCLX

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

COE1 local difference coefficient
COE2 local difference coefficient
AOFA ALPHAW/57.29577951

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

KBS	K
NPTS	2*KBS+LLBUX-LLBLX-1
KB	KBS-1
DXU (J)	local variable for interpolation
DXL (J)	local variable for interpolation
LI	LLBLX+1
L2	LL BUX-1
SALPHX	correction factor for angle of attack
	S (body) /S (BCSS)

READ STATEMENTS: none

#### WRITE STATEMENTS:

K, KR, ETAX(K), J, XINX(J), RBCUX(K,J), RBCLX(K,J), L, LL, ZTX(L), FYX(L-LLBLX,J)

# SUBROUTINE TCOEF

PURPOSE: computes difference coefficients with respect to fine mesh

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

GCALC to prepare coefficients for potential jump and

gamma interpolation (used for circular

body only)

# DATA TO COMMON:

COMMON VARIABLE INTER XIL (J) XIR (J) XIC (J) ETAL (K) ETAR (K) ETAC (K) COEL COEU ZLVU ZRVU ZCVU ZLVL ZRVL ZCVL PARM A1 12 A3 A4 15 C2 COE CK1 (K) CK2 (K) CK3 (K) CK4 (K)

# DATA TO COMMON (cont.)

```
CK51(K)
               CK52(K)
XYCOE
               XIYK (K, J)
               XIYJ(K, J)
L AR GN
               DJK1 (K, J)
               DJK2(K,J)
               DJK3(K,J)
               DJK4 (K, J)
               DJK5 (K, J)
               DJK6 (K, J)
               DJK7(K, J)
               DJK8 (K, J)
               DJK9 (K, J)
               DJK 10 (K,J)
               DJK11 (K,J)
LCO
               DE 1
               DE2
               DE3
               DL 1
               DL2
               DL3
               DH1
               DH 2
               DH3
LCOX
               DK 1
               DK 2
               DK3
WINGBC
               ZLWL
               ZRWU
```

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
CI	1/CORD (K)
ZL	1/(ZT(L)-ZT(L-1))
ZR	1/(ZT(L+1)-ZT(L))
ZC	1/ (ZT (L+1) -ZT (L-1))
H1	local ZT difference
H2	local ZT difference
20	trefftz plane ZT difference
ZA	trefftz plane ZT difference
2 B	trefftz plane ZT difference
DZ1	1/(ZA-ZB)
CP	(CORD (K+1) + CORD (K)) *.5
CM	(CORD (K)+CORD (K-1)) +.5
CC	1/CORD(K)
C32	(CORD (2) +CORD(2)) +.5
ETA32	1/ (ETA (2) - ETA (1))

DATA TO COMMON (cont.)

XI32

1/(XI(J-1)-XI(J-2))

READ STATEMENTS: none

WRITE STATEMENTS: none

327

# SUBROUTINE TCOEFX

PURPOSE: computes difference coefficients
for coarse exterior mesh

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

# DATA TO COMMON:

COMMON	V ARI ABL E
EXTER	XILX (J)
	XIRX(J)
	XICX (J)
	ETALX (K)
	ETARX (K)
	ETACX (K)
	ZLVLX
	ZRVLX
	ZCVLX
	ZCVUX
	ZLVUX
	ZRVUX
PARM	CK1X(K)
	CK2X(K)
TCOX	DL1X(L)
	DL2X(L)
	DL3X(L)
	DE1X(J)
	DE2X(J)
	DE 3X (J)
	DH1X(J)
	DH2X(J)
	DH3X(J)
	DK1 (K)
	DK2 (K)
	DK3 (K)
LARGX	DJK1X(K,J)
	DJK 10X (K, J)
*	DJK11X (R, J)

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

CI	1/CORDX
ZL	1/(ZTX(L)-ZTX(L-1))
ZR	1/(ZTX(L+1)-ZTX(L))
ZC	2/(ZTX(L+1)-ZTX(L-1))
ZA	trefftz plane ZT difference
28	trefftz plane ZT difference
20	trefftz plane ZT difference
DZ1	1/(ZA-ZB)

READ STATEMENTS: none

## SUBROUTINE MESHIN

PURPOSE: interpolation searches, and storage of mesh index location and mesh interpolation ratios

This routine determines the indices of coarse mesh points surrounding a given fine mesh point. This information is used in interpolating PHI on the fine mesh boundaries.

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

DATA TO COMMON:

COMMON VARIABLE

MESHCO JEX (K, J)

DXEX(K,J) KEX(K)

DYEX (K)

LEX(L)

DZEX(L)

KEKB

LEXB

DYEXB

DZEXB

JCU P

JCDN

KIN (KX)

DYIN (KX)

JINK(KX,JX)

JINKM1 (RX, JX)

KINB

DYINB

LIN(LX)

DZIN (LX)

LINB (LX)

DZINB(LX)

READ STATEMENTS: none

#### SUBROUTINE WINGCO

generates wing boundary conditions

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SCALE scales airfoil ordinates to a

> 0-1 reference frame, and optionally smooths the airfoil ordinates in arc

length (both x&y vs s)

SLOPY interpolates optional twist table to

ETA grid locations

SLOPY 2 compute airfoil slopes

PLIN statement function for linear interpolation

DATA TO COMMON:

COMMON VARIABLE

INDEX JLE(K), redefined if 1st mesh point is too

close to leading edge

WINGBC TWIST (I)

WBCU(K, J)

WBCL(K, J)

WINGX WBCUOR (K, J)

WBCLOR (K, J)

NSBL ATUOX

ZOCU

ZOCL

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

.017453293*ALPHAW AOFA

MCOE MACHNO * * EM EXP (2)

RAD 180/PI

ETAKD(I) BTA (I) /SSPAN

NPANH1 NPAN-1

NP1 N+1

```
CORDIN (N)
CR
CT
             CORDIN (NP1)
             used to automatically include Riegels' factor
RF ACT 1
             when the leading edge and XI=0 line do not
             coincide
TWSTR
             THETP (N) /RAD
             THETP (N+1) /RAD
TWSTT
ZLER
             CR*SIN (TWSTR)
ZLET
             CT*SIN (TWSTT)
             ETA (K) /SSPAN
Y
C
             CORDW(K)
NX
             J2-J1+1
             J-J1+1
J3
TUOX
             (X(K,J)-XLEW(K)))/C
LS
             K
YR
             YP(N)
             YP (NP 1)
TY
             PLIN (ZLER, ZLET, Y, YR, YT)
ZLE
             TWIST (K) *RAD
THETA
INL
             INLX (N)
INT
             INUX(N)
JU
             NX+J
JL
             NX+1-J
             local upper surface 2's
QU
             local lower surface 2's
QL
             local upper surface dZ/dX's
DZU
             local lower surface dZ/dX's
DZL
             DZL (J) / SQRT (1.0+RFACT1*DZL (J) ** 2)
TEMPL
             DZU(J) / SQRT (1. 0+RFACT1*DZU(J) **2)
TEMPU
```

READ STATEMENTS: none

#### WRITE STATEMENTS:

M, KOUT (M), QU (M), QL (M), DZU (M), DZL (M), DDZU (M), DDZL (M)

#### SUBROUTINE TOPBOD

substitutes wing slopes for body slopes on body (not used in present PURPOSE:

version of code)

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

DATA TO COMMON:

COMMON VARIABLE RBCU (K, J) BODV3

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

J1 JLE (K) J2 JTE(K) JWBC J+1-J1

READ STATEMENTS: none

#### SUBROUTINE SLOPY

PURPOSE: transforms (x,y) pairs to another set of x's and provides y and dy/dx at the new x's using cubic splines

CALL: from GEOMB, GEOMBR, GEOBRX, WINGCO

#### CALL STATEMENT:

ARGUN EN T	DESCRIPTION
xx	x location of input values
YY	function values at the XX locations
NN	number of XX's
TUOX	X location where Y and dY/dX is desired
NXX	number of XOUTS's
Z	function values at the XOUT locations
DZ	function slope at the XOUT locations

#### SUBROUTINES CALLED:

# SUBROUTINE DESCRIPTION

SPLN1	spline	fit	routine
SPLNIX	spline	fit	routine
DFUBB	stateme	ent	function

DATA TO COMMON: none

## MAIN INTERNAL SUBROUTINE VARIABLES:

DESCRIPTION
X(N-1)-X(N)
1.0+((X(N-2)-X(N-1))/(X(N-1)-X(N))
DFUBB (Y (N) , Y (N-1) , Y (N-2) , DX3, DX4)
X(2)-X(1)
1.0+((X(3)-X(2))/(X(2)-X(1))
DFUBB (Y (1), Y (2), Y (3), DX1, DX2)
XOUT (I)
YP
DYP

READ STATEMENTS: none

# SUBROUTINE SPLN1

PURPOSE: Standard NASA Ames Spline Fit Routine

CALL: from SETUP, SETUPX, SLOPY, BLLAM

ARGUMENTS DESCRIPTION

# CALL STATEMENT:

x	independent variable input
Y	dependent variable input
N	number of X's
DY1	1st or 2nd derivative at lower end of table
DY2	1st or 2nd derivative at upper end of table
K1	=1, DY1=1st derivative, =2, DY1=2nd derivative
K2	=1, DY2=1st derivative, =2, DY2=2nd derivative
XP	independent variable locations where
	information is desired
YP	function at XP
DAB	function slope at XP
DYPP	second derivative at YP

SUBROUTINES CALLED: none

ENTRY point SPLN1% used for actual interplolation

DATA TO COMMON: none

READ STATEMENTS: none

## SUBROUTINE SMTH

PURPOSE: Standard NASA Ames smoothing routine

CALL: from SCALE, VISCPL

CALL STATEMENT.

ARGUMENT DESCRIPTION

Y function value, routine returns with

smoothed values

N number of input values of Y
K = 1, end points smoothed also, end

points remain fixed otherwise X location of function values, Y(X)

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

#### SUBROUTINE IC

PURPOSE: generates coefficients for interpolation and extrapolation formulas and initializes

potential arrays, also reads old solution from tape or

disk in order to restart calculation

CALL: from MAIN

CALL STATEMENT:

ARGUMENT DESCRIPTION

ITER set to zero or read from saved

solution

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

setup of potential jump and gamma calculation (circular body only) GCALC

INTERP interpolate to another mesh if MSHINT

is true

VTRANS interpolation of old boundary layer slopes to

new grid

DATA TO COMMON:

COMMON VARIABLE

INTER PDUM(K)

JUMP AZU

AZL

BZ U

BZL

CZU

CZL

PJUMP (K,J)

LARGN PF (L, K, J)

PC (L, K, J) LARGX

OLD PJUMPO

JHO

KMO

LHO

LWUO

XIO(J)

ETAO(K) ZTO(L) PJUMPT(K) PINE

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

ITER

0 or last value of previous solution

N KBMXO (J)

ZTWING

(ZT (LWINGU) +ZT (LWINGL))/2

#### PEAD STATEMENTS:

ITERO, JNO, KNO, LMO, LWUC, KTO, XIO(J), ETAO(K), ZTO(L), JNOSEO, JTAILO, KBMXO(J), LBUO(K,J), LBDO(K,J), PJUMPO(K), PF(L,K,J)

## WRITE STATEMENTS:

ITERO, JNO, KMO, LMO, LWOO, KTO, PJUMPO(K), XIO(J), ETAO(K), ZTO(L)

## SUBROUTINE INTERP

PURPOSE: linearly interpolates previously stored solution for use as initial conditions

CALL: from IC

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

READEC (block data transfer) CDC version only

DATA TO COMMON:

COMMON VARIABLE

OLD PJUMPT (K)

LARGN PF

READ STATEMENTS:

PF(L,K,J), PC(L,K,J)

WRITE STATEMENTS:

PD(L,K)

#### SUBROUTINE SOLVE

PURPOSE: the control subroutine for the SLOR

algorithm; setup and solution of tridiagonal

matrix system in fine interior grid

CALL: from MAIN

CALL STATEMENT:

ARGUMENT DESCRIPTION

ITER total number of iterations

ITERP number of fine grid iterations for this submission (compared to MAXIT to

determine when iteration limit is

reached)

CONVG logical variable to indicate

convergence criteria satisfied

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

DBNDY set downstream p values

FARBDY calculate PHI on fine-coarse mesh interface GCALC interpolate gamma (for circular body only)

PHIBOD calculate PHI on body surface (circular body

only)

MURMAN used to modify boundary conditions downstream

of shock to simulate shock-b.l. interaction

XLDX integration of PJUMP to get lift

READEC (block data transfer) CDC version only

WRITEC (block data transfer) CDC version only

TEST statement function

DATA TO COMMON:

COMMON VARIABLE

INTER PDUM

EDUM

INDEX JP1

FLAGS ISAVE

RELAXP KOUNT

NSUP

# DATA TO COMMON (cont.)

BIGRL ERROR JRD KRD LRD JE KE LE RESIDJ (K) JUMP COFF SCRACH MU POLD VC VC2 EPLT ERROF CEF RSDOF CRF ERRF RSDF

## MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
KLAST	KTIP-KROOT+1
KB	KBMX(1)
COE2	(ETA (KB+1) -0.5* (ETA (KB) +ETA (KB-1)))/(ETA (KB+1) -ETA (KB))
COE1	1-COE2
MESH	JNAX * KMAX * LNAX
CONVG	logical variable to signal convergence
ITERF	ITERF+1
ITER	ITER+1
RSDAV	average residual in fine mesh
ERRAV	average error in fine mesh
J	streamwise computational plane counter
CLG	-COE*XLOAD/(CAV*SSPAN)
DENM	ETA (MM) **2+C2*ZT(M) **2
RDST	SQRT (X (MM, 1) **2+A1*DENM/C2)
P	the potential function PHI
DE2W	DE2 (J) *WI
EPSX	time dependent solution like damping factor
DENUP	upper grid boundary distance
RUP	far field b.c. factor
DENDN	ETA(M) **2+C2*ZT(1) **2
RDOWN	far field b.c. factor
DENSID	ETA (KNAXX) **2+C 2*ZT (M) **2
DE 1J	DE1 (J)

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

```
DE2J
              DE 2 (J)
              DE3 (J)
DE3J
DH1J
              DH 1 (J)
L1
L2
              LMAX1
              J plane in moving J plane "window"
JP
JMI
              JP-1
JM2
              JP-2
PJMAX
              maximum change in PJUMP at each iteration
JPS
             JP
JP15
              JP1
DE2W
              DE2 (J) *WI
RDOWN
              far field b.c. factor
RSID
              far field b.c. factor
KP1
              K+1
KM 1
              K-1
              DE 1 (J)
DEIJ
DE2J
              DE2 (J
DE3J
              DE3 (J)
DH1J
              DH1 (J)
DH2J
              DH2 (J)
              DH3 (J)
DH3J
D 1
              DJK 1 (K, J)
D2
              DJK2(K, J)
D3
              DJK3 (K, J)
D4
              DJK4 (K, J)
D5
              DJK5 (K, J)
D6
              DJK6 (K, J)
D7
              DJK7 (K, J)
D8
              DJK8 (K, J)
D9
              D. K9 (K. J)
D10
              DJK 10 (K, J)
D11
              DJK 11 (K,J)
CC1
              CK 1 (K)
CC2
              CK2 (K)
CC3
              CK3(K)
CC4
              CK4 (K)
CC5 1
              CK51(K)
CC52
              CK52(K)
              (P(L,K,JP)-POLD(L,K,II2)) *XIL(J)
PXM(L)
PXP(L)
              (P(L,K,JP1)-P(L,K,JP))*XIR(J)
B
              tridiagonal matrix array
D
              tridiagonal matrix array
A
              tridiagonal matrix array
C
              tridiagonal matrix array
PXI
              .5*(PXP(L)+PXM(L))
PY
              dissipation term
COED
              2*CORD (K) *VC (L, K, I 1) *PY
JWBC
              J+ 1-JL E (K)
```

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

```
LA
            LBD (K,J)
LB
            LBU(K,J)
L
            sidewall counter
CORD1 .5* (CORD (K) +CORD (K+1))
CORD2 .5* (CORD (K) +CORD (K+1))
            .5* (CORD (K) +CORD (K+ 1))
ABSD
            ABS (D(L))
PXT
            EPSX
DNOM
            1/(B(1)-A(1)*B(I-1))
            LMAX-3
ITSM1
            LMAX1-II
I
RESID
            D (L)
ARESID
            ABS (RES ID)
             lower extrapolation to get PJUMP
PTEL
PJNEW
            updated PJUMP value
APJ
             ABS (RESIDJ(K))
K PJ
            K
ERRI
            ERROR
RSDI
            BIGRL
            ALOG10 (ERROF)
ERRL
RSDL
             ALOG10 (RSDOF)
```

#### READ STATEMENTS: none

#### WRITE STATEMENTS:

ITER, ERROR, ERRAV, JE, KE, LE, BIGRL, RSDAV, JRD, KRD, LRD, NSUP, CLG, PJMAX, KPJ, RESIDJ(K)

## SUBROUTINE STORE

PURPOSE: stores the solution for later interpolation

to finer mesh

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

DATA TO COMMON:

COMMON VARIABLE

OLD XIO(J)

KBMXO (J) ETAO (K) ZTO (L)

LBUO (K, J)

LBDO (K, J)

PJUMPO (K)

JMO

KMO

LHO

JTA ILO

JNOSEO

LWUO

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

JNDX JTE (K)

READ STATEMENTS: none

## SUBROUTINE PARBOY

PURPOSE: calculates PHI on exterior-interior mesh interface

CALL: from SOLVE

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

PFINT interpolates PHI from coarse to fine mesh

points

DATA TO COMMON:

COMMON VARIABLE

LARGN PF

READ STATEMENTS: none

#### SUBROUTINE SOLVEX

PURPOSE: setup and solution of tridiagonal matrix

system in coarse exterior cartesian grid

CALL: from MAIN

CALL STATEMENT:

PROGRAM ARGUMENT DESCRIPTION

MAIN ITER total number of iterations

ITEC total number of crude gid iterations

in this submission

CONVG convergence of crude grid

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

BODBDY body surface boundary interpolation from fine

mesh solution

READEC (block data transfer) CDC version only

WNGBDY wing surface boundary interpolation from fine

mesh solution

WRITEC (block data transfer) CDC version only

TEST statement function

DATA TO COMMON:

COMMON VARIABLE

INDEXX JP1X

FLAGS ISAVE

RELAXP KOUNT

NSUP

BIGRL

ERROR

JR D

KRD

KKD

LRD JE

KE

LE

SCRACH MU

POLD

**V**C

EPLT ERROX
CEX
RSDOX
CRX
ERRX
RSDX

# MAIN INTERNAL SUBROUTINE VARIABLES:

V ARI ABLE	DESCRIPTION
КВ	KBMXX (1)
COEI	1-COE2
MESH	JMAXX*KMAXX*LMAXX
ITER	ITER+1
ITERC	ITERC+1
RSDAV	average residual in crude grid
ERRAV	average error in crude grid
DENM	ETAX (MM) **2+C2*ZTX (M) **2
RDST	SQRT (XX (1) **2+A1* DENM/C2)
JP	J plane in moving "window"
JP1	JP+1
JM2	JP-2
DE2W	DE2X(J) *WIX
EPSX	dissipation factor (time-like damping)
DENUP	far field b.c. factor
RUP	SQRT (XX (J) **2+A 1*DENUP/C2)
DENDN	far field b.c. factor
RDOWN	far field b.c. factor
DENSID	far field b.c. factor
RSID	far field b.c. factor
KP1	K+1
KM1	K-1
PXM(L)	(PP(L,K,JP)-POLP(L,K,II2)) *XILX(J)
PXP (L)	(PP(L, K, JP1) - PP(L, K, JP)) * XIRX(J)
В	tridiagonal matrix solution array
D	tridiagonal matrix solution array
λ	tridiagonal matrix solution array
С	tridiagonal matrix solution array
CI	1/CORDX
LA	LLBLX+1
LB	LL BUX-1
ABSD	ABS (D(L))
PXT	EPSX
DNOM	1/(B(I)-A(I)*B(I-1))
ITSM1	LMAXX-3
RESID	D(L)
ARESID	ABS (RESID)
ERRI	ERROR

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

RSDI BIGRL
ERRL ALOG10 (EPROX)
RSDL ALOG10 (RSDOX)

CONVG logical variable to indicate crude grid

convergence

READ STATEMENTS: none

#### WRITE STATEMENTS:

ITER, ERROR, ERRAV, JE, KE, LE, BIGRL, RSDAV, JRD, KRD, LRD, NSUP

# SUBROUTINE WNGBDY

PURPOSE: calculates PHI at wing surface by

interpolating from the fine mesh

solution

CALL: from SOLVEX

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

PCINT interpolation of PHI from fine to coarse

mesh points

DATA TO COMMON

COMMON VARIABLE

JUMP PJUMPX

LARGX PC (LX, KX, JX)

READ STATEMENTS: none

#### SUBROUTINE BODBDY

PURPOSE: interpolates PHI at body surface from the mesh solution

CALL: from SOLVEX

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

PCINT interpolation of PHI from fine to coarse

mesh points

DATA TO COMMON

COMMON VARIABLE

JUMP PJUMPX

LARGX PC (LX, KX, JX)

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
LA	LLBLX+1
LB	LLBUX-1
JX 1	JCUP+1
JX2	JCDN-1
J2	JINK (1, JX)
J1	J2-1
DX	(XX(JX)-X(1,J1))/(X(1,J2)-X(1,J1))
K 2	KINB (KX)
K 1	K2-1
DY	DYINB (KY)
DZ	DZINB(LLBUX)
L 2	LINB (LLBUX)
L1	L2-1
P1	PJUMP (K 1, J 1) + (PJUMP (K 1, J2) -PJUMP (K 1, J 1) ) * DX
F3	PJUMP(K2, J1) + (PJUMP(K2, J2) - PJUMP(K2, J1)) * DX

READ STATEMENTS: none

# SUBROUTINE GCALC

PURPOSE: to interpolate gamma; put into

two-dimensional array PJUMP

CALL: from TCOEF, IC, SOLVE

CALL STATEMENT:

ARGUMENT DESCRIPTION

KODE = 1 sets up coefficients

=2 evaluate PJUMP using PJNEW

PJNEW potential jump at trailing edge

SUBROUTINES CALLED: (none)

DATA TO COMMON:

COMMON VARIABLE

JUMP KPINDX

PCOEF (K,J)
PJUMP (K,J)

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

KRM1 KROOT-1 KRP1 KROOT+1

JTEMIN minimum J at trailing edge ETIP .5*(ETA(KTIP)+ETA(KTM1)) RSAME logical to test on R(J)

RJS R (J) **2

PJNEW (KTIP) O

JJ J-1

RFACT located in equivalence statement in INTER ENEW(K) located in equivalence statement in INTER

READ STATEMENTS: none

WRITE STATEMENTS:

K, KK, L

# SUBROUTINE DBNDY

PURPOSE: to solve downstream trefftz plane in fine mesh (used when calculating fine mesh alone, EXTMSH = F)

CALL: from SOLVE

CALL STATEMENT: no arguments

SUBROUTINES CALLED: (none)

# DATA TO COMMON:

COMMON	V ARI ABL E
RELAXP	BIGRL
	JRD
	KRD
	LRD
	ERROR
	JE
	KE
	LE
PARRY	P

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
C2I	1/02
ESQ	C2I * ETA (K) **2
XSQ	X (K, JMAX) **2
RD	SQRT (XSQ+A1* (ESQ+ZT (L) **2)
ZT1	ZT (1)
ZT2	ZT (LMAX)
Z T1 SQ	C2*ZT1**2
ZT2SQ	C2* ZT 2**2
TCOF1	2*COFF*ZT1
TCOF2	2*COFF*ZT2
ETASQ	ETA (K) **2
TCOF	2*COFF
A	tridiagonal matrix coefficient
В	tridiagonal matrix coefficient
С	tridiagonal matrix coefficient

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

D tridiag cnal matrix coefficient
L1 LBD(K,JMAX)
L2 LBU(K,JMAX)
DDY ETAR(K) *ETAC(K)
ABSD ABS(D(L))
DNOM 1/(B(L)-A(L)*B(L-1))
ARESID ABS(D(L))

READ STATEMENTS: none

## SUBROUTINE DBNDYX

PURPOSE: to solve downstream trefftz plane in coarse mesh

(not used)

CALL: from SOLVEX when used

CALL STATEMENT:

SUBROUTINES CALLED: none

DATA TO COMMON:

COMMON VARIABLE

RELAXP BIGRL

JRD KRD

LRD ERROR

JE KE

LE

PARRY

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
JP1	JP 1X
C 2I	1/02
ESQ	C2I*ETAX(K) **2
XSQ	XX(JMAXX) **2
RD	SQRT (XSQ+A 1* (ESQ+ZTX (L) **2))
ZT 1	ZTX (1)
Z T2	ZTX (LMAXX)
ZT1SQ	C2*ZT1**2
ZT 2SQ	C2*7T2**2
TCOF1	2*COFF*ZT1
TCOF2	2*COFF*ZT2
ETASQ	ETAX(K) ** 2
TCOF	2*COFF
A	tridiagonal matrix coefficient
В	tridiagonal matrix coefficient
C	tridiagonal matrix coefficient
D	tridiagonal matrix coefficient

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

READ STATEMENTS: none

#### SUBROUTINE PHIBOD

PURPOSE: computes potential at circular body pts.

CALL: from SOLVE (not used in present code)

CALL STATEMENT:

SUBROUTINE ARGUMENT DESCRIPTION

SOLVE J computation plane

SUBROUTINES CALLED: none

DATA TO COMMON:

COMMON VARIABLE

LARGN PF

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION CYD AFK (K) *FY (N, J) ACL (2) * FZ (N,J) A 11 A12 CYD+BCL (2) *FZ (N,J) DZ 1 .5/(ZT(L+1)-ZT(L)) JWBC J+1-JLE(K) A21 CYD+BCL (1) +FZ (N,J) CCL (1) *FZ (N, J) A22 DNOM 1/(A11*A22-A12*A21)

READ STATEMENTS: none

# SUBROUTINE OUTBOD

PURPOSE: for data output and catalog of circular body CP's

CALL: from MAIN (not used in present version of program)

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

DATA TO COMMON:

COMMON VARIABLE

INDEX JP1

## MAIN INTERNAL SUBROUTINE VARIABLES

VARIABLE	DESCRIPTION
AOPAB	.0 17453293*ALPHAB
JEND	JMAX-1
DJM1	XI (J) -XI (J-1)
DJP 1	XI (J+1) -XI (J)
LUM 1	LBOD (1, J-1)
rao	LBOD(1,J)
LUP1	LBOD(1,J+1)
N	NBPTS(J)
NM 1	NBPTS (J-1)
NP1	NBPTS (J+1)
LLM1	LBOD (NH 1, J-1)
LLO	LBOD (N, J)
LLP1	LBOD (NP 1, J+ 1)
DRM1	R(J)-R(J-1)
DRP1	R(J+1)-R(J)
DSM 1	SQRT (DJM1**2+DRM1**2)
DS P1	SQRT (DJP1**2+DRP 1**2)
FX1	FX (1, J)
ARCT	ATAN (PX 1)
COST	COS (ARCT)
SINT	SIN (ARCT)
PZU	-FX 1/FZ (1, J) - AO FAB
PZL	-FX 1/PZ (N, J) -AOFAB
CPU	-2*PXU-PZU**2
CPL	-2*PXL-PZL**2

MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

PXU (PSU-PZU*SINT)/COST PXL (PSL+PZL*SINT)/COST

READ STATEMENTS: none

WRITE STATEMENTS: none

(L) | L - (E ) | L | (L) | (L) | L | (L) | L | (L) | (L) | L | (L) | (L) | L | (L) | (L) | L | (L) | (

#### SUBROUTINE OUTP

PURPOSE: computes and outputs wing surface CP and sonic

line values

CALL: from MAIN

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

FORCE computes forces and moments

SORT (in library)

integrates potential jump at trailing edge to XLDX

obtain lift coefficient

GRAPH3

assembles plot routines generates the input data set required for BLOUT

a NASH/SCRUGGS boundary layer calculation

DATA TO COMMON:

COMMON VARIABLE

INTER PDUM

EDUM

LOCAL XOC (K, J)

LSONU (K, J)

LSONL (K, J)

MAIN INTERNAL SUBROUTINE VARIABLES:

DESCRIPTION VARIABLE

KLAST KTIP-KROOT +1

J plane counter to locate downstream position J

CLG -COE *XLOAD/(CAV *SSPAN)

EMSQ MACHNO**2

CPSTAR (EMSQ-1)/(1.2*EMSQ)

LWUP1 LWINGU+1 LWINGL- 1 L. WLM 1

ZT (LWINGU) - ZT (LWUP1) DENWU

ZTWING (ZT(LWINGU) +ZT(LWINGL)) *. 5

CWU

CWU Z difference coefficient for CP calculation

## MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

```
DENWL
             ZT(LWINGL)-ZT(LWLM1)
             Z difference coefficient for CP calculation
CWL
SONP
             sonic point
KBEG
             KROOT
CI
             .5/CORD(K)
CUL
             XIL(J) *CI
CUR
             XIR (J) *CI
LLBU
             LBU (K,J)
LBUP1
             LLBU+1
             LBD (K, J)
LLBD
LBDM1
             LLBD-1
L1
             LWINGL-LLBD+1
L2
             L1+1
L1U
             LLBU-LWINGU+1
L2U
             L 1U+1
CBU
             upper body surface CP Z difference coeff.
CBBL
             lower body surface CP Z difference coeff.
LSIDE
             LLBU-LLBD+1
LSIDEU
             LWINGU-LLBD+1
             21.5/ZT (LMAX)
COLPZT
EMU
             upper surface Mach number
EML
             lower surface Mach number
LU
             LSONU (K,J)
ZSONU
             sonic region height
LL
             LSONL (K, J)
ZSONL
             sonic region height
NSONU
             ZSONU*COLPZT+NAX+.5
NSONL
             ZSONL*COLPZT+NAX+.5
NCPU
             NAX-CPU (K, J) * COLPCP+.5
NCPL
             NAX-CPL(K, J) *COLPCP+.5
             CPL (K, J) -CPU (K, J)
DCP
LLBDX
             LLBD+L-1
JL
             JLE (K)
JT
             JTE (K)
CPL(K, J)
             located in equivalence statement in PARM
CPU (K, J)
             located in equivalence statement in SCRACH
LINE
             located in equivalence statement in LCO
PU (IS)
             located in equivalence statement in LCO
PL(IS)
             located in equivalence statement in LCO
```

#### READ STATEMENTS: none

#### WRITE STATEMENTS:

PJUMP(K, JTE(K)), K, ETASPN, ETA(K), J, XOC(K,J), CPU(K,J), CPL(K,J), EMU, EML, DCP, ZSONU, ZSONL, LINE, XOC(KROOT,J), L, ZT(LLBDX), CPS(L,J), TITLE, KT H1, JLE(K), JTE(K)

#### SUBROUTINE FORCE

PURPOSE: calculates forces and moments

CALL: from OUTP

CALL STATEMENT:

ARGUMENT DESCRIPTION

CLG the lift coefficient computed in OUTP from the integration of the potential

jump at the trailing edge

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SIMP Simpson's rule integration

DATA TO COMMON:

COMMON VARIABLE

INTER COEU
COEL

INDEX JWLE

JWTE BODV 1 BCL

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

H 1

H 2

AOFA .017453293*ALPHAW

NINT JWTE-JWLE+1
JD JJ-JWLE+1

WCOE MACHNO**EMEXP (2)

BCU

CM CM-CN+X MOM+COFD (KK) /CMEAN

C

KNDX KTIP-KROOT CNW CNW/SSPAN

CAW	CAW/SSPA	N				
CLW	CLW/SSPA	N				
CDW	CDW/SSP A	N				
DCP (JJ)	located	in	equivalence	statement	in	LCO
DCPX(JJ)			equivalence			
DCPS(JJ)			equivalence			
CL(KK)	located	in	equivalence	statement	in	LCO
CD(KK)			equivalence			
CNCB(KK)			equivalence			
CMC2 (KK)			equivalence			
CACB (KK)	located i	in	equi valence	statement	in	INTER

READ STATEMENTS: none

#### WRITE STATEMENTS:

TITLE, MACHNO, ALPHAW, ALPHAB, CAV, XMOM, N, ETA(N), C, CNCB(N), CACB(N), CMC2(N), CL(N), CD(N), CNW, CAW, CLW, CLG, CDW

# SUBROUTINE SIMP

PURPOSE: the Standard NASA Ames Simpson's rule integration

CALL: from FORCE, XLDX, VISCEL

CALL STATEMENT:

# ARGUMENT DESCRIPTION

R	integral of Y from X(1) to X(N)
X	independent variable
Y	dependent variable
N	number of X's input
IER	=1 - normal execution
	=2 - N < or =1
	=4 - input independent variable not
	monotonic

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

# SUBROUTINE ERPLOT

PURPOSE: to make a plot of the convergence history of the largest residual and the largest correction.

CALL: from MAIN

CALL STATEMENT:

ARGUMENT DESCRIPTION

=1 for fine grid, =2 for coarse grid IGRID number of iterations KOUNT offset to ensure correction plot CE starts at right of page ERRO initial value of correction array of log10 (correction) ERR offset to ensure residual plot CR starts at right of page RSDO initial value of residual array of log10 (residual) RSD

SUBROUTINES CALLED: none

DATA TO COMMON: none

THE STREET STATE OF

DAME, MINE, T. LANS

SHARE SHOULD BE SHOULD

MAIN INTERNAL SUBROUTINE VARIALBES:

FARIABLE DESCRIPTION

E iteration counter

item array used to store and print
plotting symbols
position of plotting symbol in
erray time

#### SUBROUTINE SCALE

PURPOSE: to scale airfoil coordinates to the local chord and to optionally smooth the coordinates in arc length (both x and y versus s)

CALL: from WINGCO

CALL STATEMENT:

ARGUMENT DESCRIPTION

N the input span station

number

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SMTH standard NASA-Ames smoothing

routine

DATA TO COMMON:

COMMON VARIABLE

WING INUX(N) the number of upper surface

points at span station N

INLX(N) the number of lower surface

points at span station N

XF(I<N) the X-coordinates of the airfoil; I runs from the

lover surface t.e. to the

upper surface t.e.

ZF (I(N) the Z-coordinates of the

airfoil

MAIN I STERNAL SUPPOSTINE VARIABLES

PARTABLE DESCRIPTION

(87 local value of 1872 (8)

187 total number of sirfoil coordinates 023 counter on number of namebiage 1917 S-recontinues of Landing office

CHRD	local chord length
ZREF	2-coordinate of leading edge
S	array of arc length
X	local array of X-coordinates
Z	local array of Z-coordinates
. a st kind	chord and to optionally sacoth the social

READ STATEMENTS: none and the state of the s

# SUBROUTINE SLOPY2

PURPOSE: to compute wing surface slopes using spline fits of x and z versus arc length

CALL: from WINGCO

# CALL STATEMENT:

en de la suita de disservation de la company		
	ARGUM ENT	DESCR IPTION
	XX	X-array of airfoil coordinates
	22	2-array of airfoil coordinates
	L	location of leading edge point
	N	number of airfoil coordinates
	XO	array of X-points at which slopes are required
	NO	number of points in XO array
	<b>Z</b> O	array of 2-coordinates at XO- points; contains both upper and
	DZO	lower surface points array of wing surface slopes; calculated as (dz/ds)/(dx/ds)

#### SUBROUTINES CALLED:

SHRR	OUTINE	DESCRIPTION	

SPLIFM	spline fitting routine to fit XX(SA)
	and to determine the doubly defined
	values of SI(XO); also calculates
	ds/dx
SPLIF	spline fitting routine to fit ZZ(SA)
	and interpolate to find ZO(SI); also
	calculates dz/ds
DFTBB	function statement to determine
	end point slopes required for
	spline fitting routines

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

soy number of 50 points to be calculated;

	= 2*NO
X	local array for the XX array
Z	local array for the ZZ array
SA	arc length array; = 0. at lower surface
	trailing edge
DZDX1	slope at lower surface trailing edge
DXDS 1	dx/ds at lower surface trailing edge
DZ DS 1	dz/ds at lower surface trailing edge
DZDX2	slope at upper surface trailing edge
DXDS2	dx/ds at upper surface trailing edge
DZDS2	dz/ds at upper surface trailing edge
SI	array of arc lengths corresponding to
	XO points calculated in SPLIFM
DSDX	array of ds/dx calculated in SPLIFM
DZDS	array of dz/ds calculated in SPLIP
DZO	airfoil slopes = DZDS*DSDX

(AR) FT FF2 of emissor points maile SF1192 and a contact the nowal send and send and send a contact the send as a contact the send a

de/18

opi.se filting rougher to fit ta(SA)

as interpolation to find id:SA; aiso
calculates as as

READ STATEMENTS: none

#### SUBROUTINE SPLIFM

PURPOSE: computes a cubic spline through given F(S) and uses Newton's method to interpolate the doubly defined array SI(FI); also calculate dS/dF

CALL: from SLOPY2

CALL STATEMENT:

#### ARGUMENT DESCRIPTION

L	location of leading edge point
N	number of points in S and F arrays
S	array of independent variables
P	array of dependent variables
PP	array for storing dP/dS
PPP	array for storing d2f/dS2
FPPP	array for storing d3F/dS3
NX	number of points in FI array
SI	values of S at each FI
PI	array of points for interpolation
FIP .	values of dS/dF at each FI
KM	order of derivative at left end point of S
VM	value of derivative there
KN	order of derivative at right
TAT	end point of S
AN	value of derivative there

SUBROUTINES CALLED: none

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES: none

READ STATEMENTS: none

#### SUBROUTINE SPLIF

PURPOSE: computes a cubic spline through given F(S) and interpolates to determine FI(SI); also calculates dFI/dSI

CALL: from SLOPY2

CALL STATEMENT:

#### ARGUMENT DESCRIPTION

N	number of points in S and F arrays
S	array of independent variables
P	array of dependent variables
FP	array for storing dF/dS
FPP	array for storing d2F/dS2
FPPP	array for storing d3F/dS3
NX	number of points in SI array
SI	array of points for interpolation
FI	values of F at each SI
FIP	values of dF/dS at each SI
KM	order of derivative at left
	end point of S
VM	value of derivative there
KN	order of derivative at right
	end point of S
VN	value of derivative there

SUBROUTINES CALLED: none

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES: none

READ STATEMENTS: none

#### SUBROUTINE XMESH

PURPOSE: computes the X-direction grid distribution for an airfoil from an analytical stretching function

program contributed by Terry Holst, NASA Ames

ARCHMENT DESCRIPTION

CALL: from FINGRD

#### CALL STATEMENT:

ARGUMENT	DESCRIPTION
x	output array containing XI grid
DXLE	grid spacing at l.e. (chords)
DXTE	grid spacing at t.e. (chords)
DXMAX	max grid spacing on the airfoil
NI	number of XI grid points generated
NP	number of grid points upstream of airfoil leading edge
NB	number of grid points downstream of airfoil trailing edge
XDIST	total extent of XI grid
XLE	x distance from front of grid to l.e.
IOUT 1	=1 to print out grid distribution
IOUT2	=1 to print out iteration parameters

#### SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

FAUX statement function FUN statement function

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

RFACT .3
A 2
DXMAX DXMAX/1.1
Z2
A1 .0625-.25*Z2

# MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

```
A 2
              .125*A+1
A3
              XN**4-Z2*XN**2
A4
              A*XN**3+1
A5
              A4/A2
D 1
              DXLE/(DXMAX*A5)
D2
              DXTE/(DXMAX*A5)
46
              XN*D 1+. 5
A7
              D1-1
              A1-A3*D1
84
19
              XN *D 2-. 5
A10
              D2-1
A 11
              A1-A3+D2
B
              (A6*A11-A8*A9) * DENOM
C
              (A 10+A8-A7+A11) *DENOM
D
              A2* DXLE/(A1-.5*C+B)
CA
              A *X N
CB
              XN **2
C1
              3*CA*XN
C2
              CB* (CB-Z2) +C* XN +B
C3
              CA *CB+1
C4
              (4*CB-2*Z2) *X N+C
C5
              6*CA
C6
              12*CB-2*Z2
FUN X
              -C1*C2+C3*C6
FUNXX
              -C5*C2+C3*C6
XNP
              XN-FUN X/FUN XX
X 1
              XN+.5
NF2
              NF+2
ETE
              .5* (ETEH+ETEL)
              .5* (ELEH+RLEL)
ELE
IN
              I-1
TOL
              1. 1*DXHAX
              XDIST-XLE
XTE
E2
              (E2L+E2H) *.5
N FM
              N F- 1
E 1
              (E1L+E1H) *. 5
              NF-I
IX
IXP
              IX+1
XNORM
              1/X (NTE)
```

READ STATEMENTS: none

#### WRITE STATEMENTS:

I, X(I), DX

# SUBROUTINE XC2

PURPOSE: crude X mesh generation

CALL: from SETUPX

CALL STATEMENT:

# ARGUMENT DESCRIPTION

XLE	leading edge location
XTE	trailing edge location
KTM 1	number of span staions
XIN	output crude X grid
JMAX	number of X's generated
KOR	origin of XI grid
CORDX	root chord of XI=1-x=0 line
IOUT1	grid iteration output
KROOT	1st span station to consider

SUBROUTINES CALLED: none

DATA TO COMMON: none

# MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
CHIN	minimum chord on wing
CMAX	maximum chord on wing
XMAX	maximum X of trailing edge
XMIN	minimum X of leading edge
JMAX	30
DEL	.3*CHIN
Na	.6*JMAX
ND	JMAX-NU
NA	NU + 1
DX	DXM 1+DDX
XUD	(XA(NA)-XOR)/CORDX
X D OW N	(X (N D) - XOR) /CORDX

READ STATEMENTS: none

WRITE STATEMENTS:

XIN(I), N

# SUBROUTINE BEND

PURPOSE: generates the mesh bending at wing-body junction for both the initial and fine meshes

CALL: from SETUP and FINGRD

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

statement function for linear interpolation FLIN

DATA TO COMMON:

COMMON VARIABLE WING NSO NXO KXO OXY XXO DXRO DXTO NS 1 NX1 KX1 YX1 XX1 DXR 1 DXT 1

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

DY half the range in ETA for mesh

bending = .05*SSPAN

value of K for ETA.GE.YRB KB

value of K at last KF ETA.LE. ETA (KB) +2*DY

READ STATEMENTS: none

#### SUBROUTINE FINGRD

PURPOSE: to generate the initial and fine grids

CALL: from SETUP

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

XMESH to compute the X-direction grid distribution
BEND to check that XI grid will cover planform
FLIN statement function for linear interpolation

DATA TO COMMON:

COMMON VARIABLE

INTER XI

ZT

ETA (K)

INDEX LWINGU

LMAX KMAX KTIP

JMAX

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

YFACT stretching factor for initial ETA mesh

DPACT initial ETA grid YFACT control

DETA ETA (K) - ETA (K-1)

ZT1 internal table for Z grid ZFACT =1, fine grid,=5 initial grid

DMPLE distance between mapping and planform l.e.
DMPTE distance between mapping and planform t.e.

XNW KTIP-1

DETA 1/(XNW-.5)

READ STATEMENTS: none



#### SUBROUTINE CROGRD

PURPOSE: to generate the crude grid

CALL: from SETUPX

CALL STATEMENT: no arguments

SUBROUTINES CALLED: none

DATA TO COMMON:

EXTER ZTX
ETAX(K)
INDEXX LWNGUX
LMAXX
KTIPX
KTH1X

MAIN INTERNAL SUBROUTINE VARIABLES:

KMAXX

VARIABLE DESCRIPTION LM 10 10 ZMAX - 12 21 XLM LM ZTRM XLM-.5 BZ constant in polynomial of Z grid AZ 2*Z1-.25*BZ XLL XLL2 XLL-.5 KNW KTIPX-1 DETA ETAX (K) -ETAX (K-1)

READ STATEMENTS: none

#### SUBROUTINE VISCEL

PURPOSE: computes the boundary layer displacement effect

CALL: from MAIN

CALL STATEMENT:

PROGRAM VARIABLE DESCRIPTION

MAIN number of last inviscid iteration

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

BAVITZ cove separation treatment CLCALC computes the lift coefficient

CPCALC determines the pressure distribution

SLOPY interpolates between grids,

calculates slopes of quantities

SMTH smoothes trailing edge boundary conditions (if desired)

STRIPK links laminar and turbulent boundary

layer programs

SIMP Simpson's rule integration

DATA TO COMMON:

COMMON VARIABLE

PARM BLDL

WCO E

WING XTEWX

WINGBC WBCL

WBCU

VISCON CFFKL

CFFKU

CFVL

CPVU

CFZL

CFZU

CLGG

CPIL

CPIU

CPLK 1

#### DATA TO COMMON (cont.)

CPLK2 CPUK 1 CPUK2 DDDSTU DDDSTL DELLK 1 DELLK2 DELSL DELSU DELUK 1 DELUK2 EPS 1X EPS 2X ETAK ITEX SBRAL SBRAU SCFB SCFT VOTHET LOCAL2 XCBLX NNX NNXX K8BT NX SEPMIN DDDSL VITERP DXLSTL DXLSTU ETAOLD K7OLD K8OLD NXOLD VSCINP ISTOP IVITER CPCAL NGRIDS VSFCOM KO

SZT

## MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
BLDLO	lower surface deltastar slope
	from previous iteration
BLDL	new lower surface deltastar slope
BLDU	new upper surface deltastar slope
BLDUO	upper surface deltastar slope
	from previous iteration
CFTU	upper surface local skin friction

CFTL	lower surface local skin friction
CPVISC	total viscous drag
CHANGL	fractional change in lower
	surface deltastar
CHANGU	fractional change in upper
	surface deltastar
CHISWP	x/c at which effective sweep
	angle is taken
DELPTE	trailing edge potential jump
DELTCL	change in CL from previous iteration
EML	local lower surface Mach no.
EMU	local upper surface Mach no.
ISTATN	span station at which boundary
	layer is being calculated
1SURF	=1, upper surface
	=2, lower surface
ITER	iteration number
IUNIT	output unit
IVCONT	convergence criterion clue
KSMTHX	no. of smoothings performed
KVOMXL	lower surface separation point index
KVOMXU	upper surface separation point index
K 2S MTH	no. of smoothings of trailing edge
	boundary conditions
PJTE	trailing edge potential jump
REL	Reynold's number
SWPANG	local sweep angle
XSEPU	upper surface separation point
KSEPL	lower surface separation point

#### READ STATEMENTS: none

## WRITE STATEMENTS:

IVITER, NGRIDS, CLG, EPS1, EPS2, K, DCPMXL(K), CPNL(K), CPOL(K), JMXL(K), AVCHGL(K), ETA(K), J, XOUT(J), DELSTU(J), CHANGU, BLDU, DDSTU(J), DELSTL(J), CHANGL, BLDL, DDSTL(J), WBCU(K,J), WBCL(K,J)

# SUBROUTINE VBRAD

PURPOSE: Bradshaw's boundary layer program

with changes incorporated in order to

compute the boundary layer over infinite swept wings using Nash's modified chord technique

CALL: from STRIPK

#### CALL STATEMENT:

ARGUMENT	DESCRIPTION
SBRA	output location vector for solution
AODEL	vector of displacement thickness
VOTHET	vector of momentum thickness
CPV	vector of skin friction component
	in direction perpendicular to
	equivalent infinite swept wing
	leading edge
CFZ	vector of skin friction component
	in direction parallel to equivalent
	infinite swept wing leading edge
CP	input pressure coefficient
I	Bradshaw's I vector **
A	Bradshaw's A vector ++
RE	Reynold's number based on chord
H O	initial shape factor
XLAMDA	cosine of angle between the yawed
	wing coordinate system and the
	surface streamline direction
KSEP	separation clue; =+1, no separation;
	=-1, separation
KAOWX	total number of stations at which
	boundary layer solution is computed
KAOT	value of subscript at which last
	laminar solution results are stored

#### SUBROUTINES CALLED:

## SUBROUTINE DESCRIPTION

FINT simultaneous triple interpolation GORD computes Bradshaw's G function

ORDIN interpolates for constant spaced data REDUCK interpolates to new grid Bradshaw's L function RLORD SIMPSN Simpson's rule integration SLOPE calculates the slope of a tabulated function SOLVEB solution of two simultaneous linear algebraic equations SPRINT outputs profile results TANCAL computes characteristic angles VNUSUB computes Nash effective viscosity FN (statement function subprogram) SLOG (statement function subprogram)

#### DATA TO COMMON:

COMMON VARIABLE

REDUC 161
TFUT
UFUT
V
WFUT
EXTEND LASTI
XCMAX
THRED XLAM

## MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION AAT ALPHA*A (1) /TAUO AMACH A(18) ++ AMACN COS (A (20) ) * AM ACH AY A(13) * (A(12)-1)AZ ORDIN (P,A (2), XXSTEP) A 162 2* A (16) ASORIG A (8) C B/(A(13)*(B-1)+1)CFR 2*TAUO/RK2/(1+RKS) CFRIN CFR*CFFCTR CFV KNASH CFZ CFZZZ CFZZZ DA F3+DF3DU*DU DELTA 1 displacement thickness DEL TA2 momentum thickness DFIDA -A(1)/A(9)/ROOT*F6 ++ DF 2DU F5+ (TOR/(-.5+G) +F4+F7 DIV divergence of flow factor

#### MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

```
DLPDX
             pressure gradient term
DTW
             -F2-DF2DU+DU-A(1)+DA ++
             WW * TOR/A (8)
P
             TAUO+ALPHA*A (1) +P4*P5 ++
F2
F5
             1/(1-UFUT(1)**2/E)
F7
             2*UPUT (1) / (E-UP UT (1) **2)
H 1
             DELTA 1/DELTA2
1
             Bradshaw's I vector **
IENT
             INT (.25+A(6)/A(1))
INNER
             inner loop check counter- Newton iteration
IOUTER
             outer loop check counter-Newton iteration
IQ
             separation klue
ITDFL
             =0,2-D flow, =1, 3-D flow
IWRIT
             I (15)
15
             I (5)
16
             I (6)
I 625
             I (6) /4
17
             I (7)
             I (8)
18
             1(9)
19
I11
             I (11)
KVO
             output station number
KVOMX
             KVO, at end of turbulent calculation
KVOL
             initial solution station where results have
             been obtained, from laminar flow
KVXK
             KVO+1
             J
LEDGE
             L
             I (4)
LIMIT
LXXX
             I (6)
P
             static pressure
PK
POPINE
             TOTINF**(A(12)/(A(12)-1))
RETHT
             A (4)
RICH
             Richardson streamline curvature term
RI5
             PLOAT (15)
RI6
             PLOAT (16)
RKJ
             AY *XMNSQ/2
RL
             FLOAT (L)
RMA2
             RK2/(1-.5*(A(12)-1)*RK2)
RO
             RO
ROOT
             SORT (TAUO)
ROOTT
             SQRT (TAUO)
SBRA
SWPANG
             Sweep angle of wing
             TANAFU (J)
TANA
T AN B
             TANBFU (J)
             DU/UFUT (1)
TEST 1
TEST2
             DTW/TAUO
```

## MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

TEST 3 DA/ALPHA TEST4 1-TFUTP/TORO TOTINE 1+ (A (12)-1)/2+AHACN++2 UEDGET UFUT (L) UEDGE 2 UPUT (L+1) VODEL DELTA 1 VOTHET DELTA 2 XFUT X+XSTEP XME SQRT (2*RK5/AY) CFRIN/COS (A (20)) **2 XNASH XPDX2 X+.5*XSTEP XSTEP x direction step size XXSTEP X+XSTEP 2.J FLOAT (J) ZK FLOAT (K)

#### **Bradshaw's I Vector

- I(1) -identifying case number
- I(2)-number of steps between output profiles
- I(3) -maximum number of solution steps
- I(4) maximum number of calculation points on profile
- I (5)-number of evenly spaced input CP's and lamdas
- I (6) number of points on profile (input value is the initial number)
- I(7)-curved surface clue,=1, curved surface, =0, flat surface
- I(8)-limit for iteration between law of wall and outer solution
- I(9) =0, unless 3-D relief effects are input
- I(10)-type of pressure input: =2 for CP input
- I(11)-clue for initial profile: =1,
   internally generated
- I(12) -transition clue used in laminar calculation
- I (13)-3-D flow simulation clue; =1, 3-D flow; =0, 2-D flow
- I (14) -profile output clue
- I(15)-output unit clue, print output is on UNIT I(15)

## **Bradshaw's A Vector

- A(1)-initial momentum thickness (generated in BLLAM)
- A(2)-spacing of input pressures and lamdas

- A(3) initial station for turbulent boundary layer calculation (generated in BLLAM)
- A(4) -initial local momentum thickness Reynolds number (generated in BLLAM)
- A(5)-initial H (generated in BLLAM)
- A(6)-initial deltastar/c; not required if initial profiles are generated internally
- A (7) -printed profile results if CP(A (7)
- A (8)-the value of A1 in the Bradshaw theory
- A(9)-K in the log law
- A(10) -A in the log law
- A(11)-CFL stability criterion factor
- A(12)-ratio of specific heats
- A(13) -recovery factor A(14) -exponent in the power law viscositytemperature relation
- A(15)-t factor in the D term required in the compressible flow case
- A (16) -the error criterion in the wall iteration calculation
- A(17)-CF below which the I(4) limit does not operate
- A (18) -Mach number of the freestream
- A(19)-specified transition point; (XTR/C)
- A(20) -equivalent sweep angle in radians

waste as Statement to the second ter-

READ STATEMENTS: none

#### WRITE STATEMENTS:

K, X, XNASH, DELTA 1, DELTA 2, H1, CFZZZ, XME

## SUBBOUTINE BLLAN

PURPOSE: laminar boundary layer calculation by the method of Rott and Crabtree, which is basically the method of Thwaites extended to compressible flow

CALL: from STRIPK

## CALL STATEMENT:

SUBROUTINE	ARGUMENT	DESCRIPTION
STRIPK	SBRA	vector of X positions at
		which the solution is stored
	VODEL	vector of displacement thickness at SBRA
	VOTHET	vector of momentum thickness at SERA
	CFV	vector of skin friction component
		in X-direction at SBRA
	CFZ	vector of skin friction component
		in Z-direction at SBRA
	CP	input pressure coefficient
	XL AM DA	cosine of streamline angle
	IVI	Bradshaw's I vector
	VA	Bradshaw's A vector
	RE	Reynold's number based on chord
	но	displacement thickness /momentum
		thickness at the last laminar
		flow station
	KSEP	separation clue; =+1, no separation;
		=-1,separation
	KAOL	total number of stations at which
		boundary layer solution is computed
	NMAX	number of chordwise stations at
		which laminar solution is computed

## SUBROUTINES CALLED:

## SUBROUTINE DESCRIPTION

ORDIN	linear interpolation
SPLNI	interpolate the Thwaites functions
SPLN 1X	interpolate the Thwaites functions
TINT	(statement function subprogram)

## DATA TO COMMON:

COMMON VARIABLE

EXTEND LASTI XCMAX

## MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
AA	1/120-HINC/945
AAA	.45*TRATO/RE
ACPX	(CPXMAX-CP (1))/XMAX
AMACH	freestream Mach number
AMACN	AMACH*COS (VA (20))
A 12	VA (12)
CPV	skin friction
CFZ	estimated spanwise skin friction
CFZFTR	148/325*TAN (VA (20) ) *TRATX/RE
CHI	transition factor for crossflows
CHORD	VA (2) * (IVI (5) -1)
CP	pressure coefficient
CPX	ACP X* XCPX +CP (1)
CPXMAX	Cp at maximum gradient
DELTAI	H*DELTA2
DELTA2	momentum thickness
DINC	incompressible boundary layer thickness
DS	step size
DSMAX	NMAX
DSTST	VA (19)-S
DSUUE	DS
DT H	boundary layer thickness
DIINC	HINC*D2INC
DZINC	DELTA 2*TRAT **POWX
H	TRAT* (HINC+1)-1
FMACH	AM A CH * UBAR I/QQQ
HINC	incompressible shape factor
но	H
IWRIT	IVI (15)
I12	TABS (IVI (12))
15	IVI (5)
KAOT	N
PEPINF	(1+.5*A12*CP(J) *AMACH**2)
PEPO	PEPINF/POPIN
POLPAC	Polhausen polynomial factor
POW	(A12-2)/(A12-1)
POWX	-5*(A12+1)/(1-A12)

#### MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

```
POPIN
             TER M** (A 12/ (A 12-1)
RD2
             Reynolds number based on momentum thickness
RE
             RE * COS (VA (20))
S
             chord position
TERM
             1+ (A 12- 1) / 2*A MACN**2
TETIN
             temperature, edge to freestream
THETA
             (CP(1)-CP(J))/((J-1)*VA(2))
TL
             Thwaites tabulated function
TM
             Thwaites tabulated function
T MG RD
             ORDIN (UBARP, DSUUE, S+DS)
TNO
TRAT
             stagnation temperature ratio
TRATO
             (1+VAL*AMACH**2)**POW
TRATX
             1+VAL*AMACH**2
TWH
             Thwaites tabulated function
UBARI
             incompressible velocity ratio
UESQ
             XMNSQ/AMACN ** 2 * TETIN
VAL
             . 5* (A 12-1)
VODEL
             DELTA 1
VOTHET
             DEL TA2
WWE
             ACOS (XLLE)
             location of pressure input
XCP
XCPX
             (J-1) * VA (2)
XLLE
             ORDIN (XLAM DA, VA (2), S+DS)
XLLL
             XLAMDA
             Mach number squared
XMNSO
XOMEGA
             ATAN (TAN (VA (20)) / URR (J))
```

READ STATEMENTS: none

#### WRITE STATEMENTS:

S,TM,DELTA 1,DELTA 2,DTH, RD2,CPV,H,CFZ,CHI,UBARI,FNACH VA(1),VA(4),VA(5),H

## SUBROUTINE STRIPK

PURPOSE: combines the laminar and turbulent modified chordwise boundary layer

programs

CALL: from VISCPL

## CALL STATEMENT:

SUBROUTINE	ARGUM EN T	DESCRIPTION
VISCPL	CP	input pressure coefficient
	RX	Reynolds number - streamwise velocity, but yawed wing chord
	CDDA	output vector containing the
	SBRA	location of the solution
	VODEL	displacement thickness
	VOTHET	momentum thickness
	CFV	vector of skin friction component
		in X-direction at SBRA
	CFZ	vector of skin friction component
		in Z-direction at SBRA
	KVOMX	number of arguments in solution
		vector
	KSEP	separation clue; =+1, no separation,
		=-1,separation
	KVOL	total number of stations at which
		boundary layer solution is computed
*	NMAX	number of chordwise stations at
		which laminar solution is computed
	ISTATN	calculation station (minus indicates
		lower surface)
	ITRANS	transition klue, -4 for specified
		transition
	IOUTP	=0, no b.l. output, =1, distributions,
		=2, profiles also
	ISTEPO	steps between profile output
	MACHNO	freestream Mach number
	XTRNS	location of specified transition
		location
	SWPANG	sweep angle
	IUNIT	unit on which results are written

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

BLLAM for laminar calculation

VBRAD for turbulent calculation

DATA TO COMMON: none

READ STATEMENTS: none

WRITE STATEMENTS:

I1, J, I(J), J1, I(J1), J2, I(J2), A(J), A(J1), RE, SWPANX

## SUBROUTINE PINT

PURPOSE: simultaneous triple interpolation

CALL: from VBRAD

SUBROUTINES CALLED: none

DATA TO COMMON: none

# MAIN INTERNAL SUBROUTINE VARIABLES:

DESCRIPTION
C1+U(J) +C2+U(J+1)+C3+U(J-1)
C1*T(J) +C2*T(J+1) +C3*T(J-1)
C1*W(J)+C2*W(J+1)+C3*W(J-1)
1-R**2
.5* (R**2+R)
.5* (R**2-R)

READ STATEMENTS: none

## SUBROUTINE GORD

PURPOSE: compute Bradshaw's G function

CALL: from VBRAD, TANCAL

CALL STATEMENT:

SUBROUTINE ARGUMENT

VBRAD RR TANCAL AAJ

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

## PUNCTION PFINT

PURPOSE: function subprogram to interpolate PHI from the coarse grid to the fine grid

CALL: from FARBDY

CALL STATEMENT:

## ARGUMENT DESCRIPTION

J. Dispose	coarse grid J index upstream of fine
	grid point
J2	coarse grid J index downstream of
	fine grid point
K1	coarse grid K index inboard of fine grid point
K2	coarse grid K index outboard of fine grid point
L1	coarse grid L index below the fine grid point
L2	coarse grid L index above the fine grid point
DX	X-fraction from coarse grid point to fine grid point
DY	Y-fraction
DZ	Z-fraction

SUBROUTINES CALLED: none

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

PFINT interpolated value of PC

READ STATEMENTS: none

## FUNCTION GRAD

PURPOSE: slope of a function at its tabulated pts.

CALL: from SLOPE

CALL STATEMENT:

#### ARGUMENT DESCRIPTION

FR tabulated function

H distance between points of FN

IA lower limit of table

IB upper limit of table

N location at which slope is desired

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

## FUNCTION ORDIN

PURPOSE: linear interpolation for constant spaced data

CALL: from VBRAD, BLLAM

CALL STATEMENT:

## ARGUMENT DESCRIPTION

tabulated fundtion
step size of tabulated data
location of desired function value

## SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

AINT (inline function)
INT (inline function)

DATA TO COMMON: none

READ STATEMENTS: none

## FUNCTION RLORD

(indicated faithful)

PURPOSE: Bradshaw's L function

CALL: from VBRAD

CALL STATEMENT:

SUBROUTINE ARGUMENT

VBRAD

RR

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

(in library)

SQRT

(in library)
(in library)

DATA TO COMMON: none

READ STATEMENTS: none

## PUNCTION SIMPSN

PURPOSE: Simpson's rule integration

CALL: from VBRAD

CALL STATEMENT:

#### ARGUMENT DESCRIPTION

FR function to be integrated
IA lower limit of integration
N upper limit of integration
H spacing between FR s

pupon entrementing called

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

#### FUNCTION SLOPE

PURPOSE: to calculate the slope of a tabulated function at an arbitrary pt.

CALL: from VBRAD

CALL STATEMENT:

## ARGUMENT DESCRIPTION

A the tabulated function
G the spacing of A
N the number of A's

the location at which the slope is desired

## SUBROUTINES CALLED:

## SUBROUTINE DESCRIPTION

GRAD slope of a function at its tabulated pts.
AINT (inline function)
INT (inline function)

DATA TO COMMON: none

READ STATEMENTS: none

## SUBROUTINE SOLVEB

PURPOSE: solution of two simultaneous linear algebraic equations

CALL: from VBRAD

CALL STATEMENT:

ARGUMENT	DESCRIPTION
D	1st solution value
E	2nd solution value
DET	determinate
A	matrix contining all coefficients

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

## SUBROUTINE SPRINT

PURPOSE: output of profile results

CALL: from VBRAD Despite and the same and th

READ STATEMENTS: none

WRITE STATEMENTS:

X, A(1), CRF, RK, DELTA2, THETA, H1, DELTA1, DLPDX, VDLPX, J, UK(J), RM2(J), TAUK2(J), VK(J), TANA(J), TANB(J)

#### SUBROUTINE TANCAL

PURPOSE: computes the characteristic angles for use in the solution

see Eqn. 21 of Bradsahaw and Perris for details

CALL: from VBRAD

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

GORD computes Bradshav's G function

DATA TO COMMON: none

DATA TO COMMON: none
READ STATEMENTS: none

## SUBROUTINE VNUSUB

PURPOSE: computes the Nash effective viscosity

CALL: from VBRAD

CALL STATEMENT:

ARGUMENT DESCRIPTION

RETHET Reynolds number based on momentum

thickness

XLAMDA angle between streamline and yawed

wing X

VNUEPR effective viscosity ratio XMESQ square of the Mach number

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

ALOG10 (in library) SQRT (in library)

DATA TO COMMON: none

READ STATEMENTS: none

## SUBROUTINE REDUCX

PURPOSE: to interpolate to new grid

CALL: from VBRAD

CALL STATEMENT:

ARGUMENT DESCRIPTION

IN =1, grid spread out, =2, grid

contracts

A Bradshaw A vector
I Bradshaw I vector

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

ALOG (in library)

FLOAT (inline function)

INT (inline function)

DATA TO COMMON:

COMMON VARIABLE

REDUC 161

TANAFU TANBFU TFUT

UPUT

V

WFUT

READ STATEMENTS: none

#### SUBROUTINE VTRANS

PURPOSE: interpolates the boundary layer displacement thickness and CP's from the old solution grid to the new grid

CALL: from IC

CALL STATEMENT:

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SLOPY interpolates deltastars and CP's from old chordwise grid (NXO(K)) to new chordwise

grid (NX(K))

SMTH smooths interpolated delta-

stars (if desired)

FLIN (R, T, ETA, YR, YT) =

(ETA-YR)/(YT-YR) *

(T-R) +R

interpolates from old spanwise grid to new spanwise

grid

DATA TO COMMON:

COMMON VARIABLE

WINGBC WBCL

WBCU

VTRAN2 DEL DN

DELUP

KOUT

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

NXOLD no. of chordwise points from previous solution at inboard

span station of pair used for

spanwise interpolation

NXOLD1 no. of chordwise points from

previous solution at outboard

	span station of pair used for
	spanwise interpolation
NX	no. of chordwise points in new grid
X OU TOD	values of XOUT from old solution
DDDSUI	upper surface deltastar slope
	from previous solution at
	inboard span station
DDDSLI	lower surface deltastar slope
	from previous solution at
	inboard span station
DU	upper surface deltastar slope
	interpolated to new chord-
	wise grid
DL	lower surface deltastar slope
	interpolated to new chord-
	wise grid
DDDSUO	upper surface deltastar slope
	from previous solution at
	outboard span station
DDDSLO	lower surface deltastar slope
	from previous solution at
	outboard span station
DU1	upper surface deltastar slope
	interpolated to new chordwise
	grid
DL 1	lower surface deltastar slope
	interpolated to new chordwise
	grid
DSLU	upper surface deltastar slope
	interpolated to new spanwise
	grid
DSLL	lower surface deltastar slope
0011	interpolated to new spanwise
	grid
CPUI	upper surface CP from previous
Cita	solution at inboard span sta.
CPLI	lower surface CP from previous
	solution at inboard span sta.
CPUO	upper surface CP from previous
Cruo	solution at outboard span sta.
CPLO	lower surface CP from previous
CPLO	solution at outboard span sta.
CPUIX	upper surface CP's interpolated
CPUIX	to new chordwise grid
CPLIX	lower surface CP's interpolated
CPLIX	to new chordwise grid
CPUO X	
CPUUX	upper surface CP's interpolated to new grid
CPLOX	lower surface CP's interpolated
CPLUX	tower surrace Cr.s interpolated

to new grid

CPU upper surface CP's interpolated

to new spanwise grid

CPL lower surface CP's interpolated

to new spanwise grid

READ STATEMENTS: none

## SUBROUTINE CPCALC

PURPOSE: computes the pressure distribution

CALL: from VISCPL

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

none

DATA TO COMMON:

COMMON VARIABLE

CPCALC

C AVCHGL
AVCHGU
CMAXDB
CMAXDT
CPBBAR
CPL
CPNL
CPNU
CPOL

CPOU CPTBAR CPU DCPMXL

DC PMXU EMS Q

EPS1

JMXL JMXU MACHDN

MACHUP

SHKPB SHKPU SONPL

SONPU

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

CPLKJ new lower surface CP

## MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

CPODL lower surface CP from previous iteration CPO DU upper surface CP from previous iteration CPUKJ new upper surface CP EML new local lower surface Mach number EMU new local upper surface Mach number local lower surface Mach EMLP number from previous iteration EMUP local upper surface Mach number from previous iteration PERDXL difference in lower surface CP from previous iteration to current iteration PERDXU difference in upper surface CP from previous iteration to current iteration XMPTS no. of points on each surface

READ STATEMENTS: none

## SUBROUTINE CLCALC

PURPOSE: to compute the wing lift coefficient

CALL: from VISCFL

CALL STATEMENT:

SUBROUTINE ARGUMENT DESCRIPTION

VISCFL CLG lift coefficient

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SIMP Simpson's rule integration of

trailing edge potential jump to yield total wing load

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

CLG lift from integration of

trailing edge potential

jump

XLOAD total wing load from

integration of trailing

edge potential jump

PJTE trailing edge potential jump

READ STATEMENTS: none

#### SUBROUTINE BAVITZ

PURPOSE: treatment of lower surface separation zone using methods of Paul C. Bavitz,

NASA TN D-7718

This routine is used only if the foil being analyzed is supercritical.

CALL: from VISCPL

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

VINTER general Lagrangian interpolation

DATA TO COMMON:

COMMON VARIABLE

WINGBC WBCL
BAVCOM CPL2
DXLSTL
DST2
XSEP
YSEP

SZT DDDSL

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

XSEP x/c's chosen for Bavitz

treatment

YSEP deltastars at XSEP ST2 modified displacement

thickness

DST2 modified deltastar slope modified lower surface

boundary condition

READ STATEMENTS: none

## WRITE STATEMENTS:

J, XOUT (J), DST2 (J (, ST2 (J), DDSL (K,J), WBCL (K,J), WBCLOR (K,J)

## SUBROUTINE VINTER

PURPOSE: general Lagrangian interpolation

CALL: from BAVITZ, DATTRN, BLOUT

## CALL STATEMENT:

ARGUM EN T	DESCRIPTION
PN	output vector of function or slope
X	location of PN
KO	1st index value used in PN array
KMAX	last index value used in PN array
VF	input function value
S	location of input function value
10	1st index value of VF used for interpolation
IMAX	last index value of VF used for interpolation
LF	order of interpolation = 2-linear = 4-cubic etc.
IDER	=0 function value returned >0 slope of function returned

SUBROUTINES CALLED: none

DATA TO COMMON: none

READ STATEMENTS: none

## SUBROUTINE SLOPQ

committee or Prac-

PURPOSE: interpolation

NOTE- This routine exists in CDC version only and is used to overcome LEVEL difficulties its operation is identical to SLOPY

CALL: from GEOMBR, GEOBRX, BLLAM

CALL STATEMENT: see SLOPY description for details

413

#### SUBROUTINE BLOUT

PURPOSE: creates data set for input to the Nash-Scruggs 3-D boundary layer

program

CALL: from OUTP

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION /

VINTER interpolation to constant x/c spacing

DATA TO COMMON:

COMMON VARIABLE

NSBL ZOCL ZOCU

CPL CPU XOUTA

WING SWEEP

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

AMACN MACHNO*COS (SWEEP)

TERM 1+ (GAMMA-1)/2*A MACN**2
POPIN TERM** (GAMMA-1))

CPSP (POPIN-1)/(GAMMA/2*MACHNO**2)

THETA (CPSP-CPU(K,J))/X

ZLE local leading edge Z-coordinate from subroutine WINGCO through common NSBL

XLE streamwise location of local leading edge from subroutine SETUP to common WING

XLEWP local leading edge sweep from

subroutine SETUP through common WING

KSMALL span location index for smallest

number of chordwise pts.

NPTSMN minimum number of chordwise pts.

## MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

AMACN	Mach number normal to local
	leading edge
CPSP	stagnation pressure based on local
	sweep
THETA	pressure coefficient gradient or
	local wing twist in degrees
THTMXU	maximum upper surface pressure
	coefficient gradient
CPMAX	maximum pressure coefficient
	based on gradient limit
THTMXL	maximum lower surface pressure
	coefficient gradient
XMAXU	maximum streamwise chord fraction
	for upper surface pressure coefficient
	gradient limit
ETA	spanwise location from subroutine
	SETUP through common INTER
XMAXL	maximum streamwise chord fraction
	for lower surface pressure coefficient
	gradient limit
CORDW	local chord length
KSTA	number of spanwise stations
NPTS	number of streamwise pts. along chord
IBOUT	device number for boundary layer data
	output
NZ.	number of mesh pts normal to chord
NCASE	number of cases in input data
NBCO	boundary condition option index
MACHNO	Mach number
SCALE	length scale
PRES	free stream reference pressure
TEMP	free stream reference temperature
LTRN	transition location
NWRITE	write-to-file index
NREAD	read-from-file index
CONV	convergence tolerence
4511	our rangement to net to net

FEAD STATEMENTS: none

#### and other and to.

## WRITE STATEMENTS:

UNIT IBOUT - TITLE, NPTS, NZ, KSTA, IT, NBCO, IOITER, IOPRF, XLEW(K), ZLE(K), ETA(K), CORDW(K), THETA, XOCLE, XOUTA, ZOCLE, ZOCU, MACHNO, ANGLEW, SCALE, PRES, TEMP, IA19, NWRITE, NREAD, IPUNCH, KSMTH, CONV, CRTLAM, CRTTBL, CPSP(K), CPU, CPL

#### SUBROUTINE DATTRN

PURPOSE: to transfer from a set of points to another and get the slope at the new point

> if input variable is outside range of input independent variable, routine returns zero slope and the value of the function at the appropriate end point

## CALL:

#### CALL STATEMENT:

ARGUMENT	DESCRITION
NIN	number of input points
XIN	input point locations
YIN	function value at the input points
NOUT	number of output points
TUOX	location of output points
YOUT	function values at the output points
YPOUT	slope of the function at the output points

#### SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

VINTER general Langrangian interpolation

DATA TO COMMON: none

READ STATEMENTS: none

## SUBROUTINE ELIPSE

PURPOSE: to fit an upper and lower ellipse
through the input cross-section definition
and determine the intersection point on
the ellipse and the direction cosines for a
given point on the boundary condidition support
surface

CALL: from QUIK

#### CALL STATEMENT:

ARGUMEN T	DESCRIPTION
J	downstream computation plane
YBRICK	input point on BCSS
ZBRICK	z input point on the BCSS
YELIPS	y ordinate of the point on the ellipse
ZELIPS	z ordinate of the point on the ellipse
FNX	streamwise slope of the ellipse at this point (YELIPS, ZELIPS)
FN Y	y direction cosine at ellipse point
FNZ	z direction cosine at ellipse point

SUBPOUTINES CALLED: none

DATA TO COMMON: none

## MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
ZC	center of body
FNX	X-direction cosine
	later redefined to be the steamwise slope
FNY	Y-direction cosine
P NZ	Z-direction cosine
YELIPS	Y-coordinate of intersection
ZELIPS	Z-coordinate of intersection
ZSWT	LINE*YRB+ZC
	used to test whether on upper or lower
	ellipse at this point
ZTEST	ALINE*YRB+ZC

AQUAD 1+442*441 "a" in the quadratic equation for the intersection BQUAD -2* (ZNHBI (J) -AA 1*AA2*ZC) "b" in the quadratic equation "c" in the quadratic equation COUAD DETERM SQRT (BQUAD * *2-4 * AQUAD * CQUAD) ZEL 1 (-BQUAD +DETERM)/2/AQUAD ZUCLIP (J) ZOP SQRT (FX** 2+FY ** 2+FZ ** 2) FNORM

READ STATEMENTS: none

#### SUBROUTINE QUIK

PURPOSE: generates slopes from simple body

input

CALL: from GEOMBR

CALL STATEMENT: no arguments

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

DATTRN for transfer from one set of points

to another

ELIPS to obtain point and slope from the

elliptical crossection at the j plane

DATA TO COMMON:

COMMON VARIABLE

BODV1 NRBU NRBL

X RBU

XRBL

Y

BODV 3 RBCU

RBCL

FY

BODV4 ZLCLI

ZMHBI

YMHBI

ZLCLIP

ZMHBIP

AWHBIL

BODY BC IBLD

IBUD

NRBS

IBSIDE

XRBS

ETABU

ETABL

ZBOD

MAIN INTERNAL SUBROUTINE VARIABLES:

#### MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

JET ABLE	DESCRIPTION
SBRICK	YRB* (ZRBU-ZRBL)
BB	ZMHBI (J)-ZLCLI (J)
SAREL	. 25*PI*A* (B+BB)
SALPH	SAREL/SBRICK
DCBU	arc length ratio on top
DCBL	arc length ratio on bottom
KBSM1	KBS-1
DCBS	arc length ratio on side
ZMID	(ZUCLI (J) +ZLCLI (J))/2

READ STATEMENTS: none

## WRITE STATEMENTS:

J, XIN (J), SAREL, SALPH (J)

SINTINGS FOR WHI PRODUCE OF SUPERIOR RICH

#### SUBROUTINE QUIKX

PURPOSE: this routine is identical to QUIK,
except that the information is provided
on the coarse grid

CALL: from GEOBRX

CALL STATEMENT: no arguments

#### DATA TO COMMON:

O COMMON:		
COMMON	VARIABLE	
BODV 1	NRBU	
	NRBL	
	XRBU	
	XRBL	
	Y	
BODV3	RBCU	
	RBCL	
	FY	
BODV4	ZLCLI	
	ZUCLI	
	ZLCLIP	
	ZUCLIP	
	ZMHBI	
	ZMHBIP	
	YNHBI	
	YMHBIP	
BODYBC	IBLD	
505150	IBUD	
	NRBS	
	IBSIDE	
	XRBS	
	421120	
	ZBOD	

MAIN INTERNAL VARIABLES: same as QUIK

READ STATEMENTS: none

WRITE STATEMENTS:

J, XINX, SAREL, SALPHX

#### SUBROUTINE MURMAN

PURPOSE: calculates the shock induced jump in vertical velocity and modifies the wing boundary conditions accordingly

CALL: from SOLVE

CALL STATEMENT:

ARGUMENT DESCRIPTION

IT current value of ITERF
XSHKP 2-d array of upper and lower
shock locations

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

POUT prints the UMK, V, PMU and W arrays
BUNP function statement for (1.-x) **2

DATA TO COMMON:

COMMON VARIABLE

MUREXT W

WINGBC WBCU

WBCL

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

DX x/c range downstream of shock for modified boundary conditions; set to .1

COEF alternately lower and upper surface wing boundary condition coefficient

W2 square of shock induced jump in vertical

velocity

TS square root of W2 if W2 > 0; otherwise set to 0.

¥2

XS relaxed and shifted shock location

XX (XI (J) -XS) /DX

WBC

lower and upper surface wing boundary conditions; equivalenced to WBCL and WBCU

PEAD STATEMENTS:

none

WRITE STATEMENTS:

IT. WORD(L)

# SUBROUTINE POUT

PURPOSE: to print a 2-d array VAK(K, J) in blocks of 10 across the page

ARGUMENT DESCRIPTION

CALL: from MURMAN

CALL STATEMENT:

VAR	dummy 2-d array
NK 1	starting value of K
NK2	final value of K
NJ1	starting value of J
NJ2	final value of J
ITYPE	= 0.  format = 10E12.4

SUBROUTINES CALLED: none

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES: none

READ STATEMENTS: none

WRITE STATEMENTS:

VAR (K, J)

#### FUNCTION XLDX

PURPOSE: integration of PJUMP at the t.e. to obtain the lift coefficient

CALL: from SOLVE, OUTP

CALL STATEMENT:

ARGUMENT DESCRIPTION

KLAST limit of integration

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

SIMP Simpson's rule integration

DATA TO COMMON: none

READ STATEMENTS: none

WRITE STATEMENTS: none

#### SUBROUTINE SAVSOL

PURPOSE: to write the viscous and/or inviscid solution data on Tape 11

CALL: from MAIN

CALL STATEMENT:

SUBROUTINES CALLED: none

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

N

NX JTE (K) - JLE (K) +1

READ STATEMENTS: none

WRITE STATEMENTS:

UNIT 11 - TITLE, KWRITE, ITER, JMAX, KMAX, LMAX, LWINGU, KTIP, XI(J), ETA(K), ZT(L), JNOSE, JTAIL, LBU(K,J), LBD(K,J), PJIMP, PF(L,K,J), JHAXX, KMAXX, LMAXX, LWNGUX, KTIPX, XIEX(J), ETAX(K), ZTX(L), JNOSEX, JTAILX, LBUX(K,J), LBDX(K,J), PC(L,R,J), DDDSTU(K,J), DDDSTU(K,J), DXLSTU(K,J), DXLSTL(K,J), CPU(K,J), CPL(K,J)

#### 6. CDC/IBM CONVERSION

The source code has been maintained on the NASA Ames CDC 7600 computer in UPDATE format. The generation of an IBM version of the program is accomplished by using the UPDATE program to change those portions of the CDC code that are not compatible with the IBM compiler. The specific changes required are:

- i) The CDC program card is commented out.
- ii) The LEVEL 2 statements are deleted since extended core is not available in IBM.
- iii) Associated with the absence of extended core in IBM, the PF (fine grid potential field) and PC (coarse grid potential field) arrays are stored in code which requires changes to the code in subroutine INTERP, SOLVE, SOLVEX, DBNDYX and DBNDYX. The LEVEL 1 common block PARRY, which stores the data transferred to and from extended core, is eliminated from the program. In subroutine INTERP, local arrays P(20,30,90) and PP(20,20,30) are introduced and equivalenced to PF and PC, respectively. In subroutine SOLVE and DBNDY, local arrays P(20,30,90) are equivalenced to PF. In subroutine SOLVES and DBNDYX, local arrays PP(20,20,30) are equivalenced to PC. In subroutines INTERP, SOLVE and SOLVEX, all calls to READEC and WRITEC are eliminated. In subroutine INTERP, the streamwise interpolation is between planes JO and JO-1 rather than planes 2 and 1. In subroutines SOLVE and SOLVEX, the statement IS = JM2 is deleted and the statement JPl = IS is replaced by JPl = JP+1. These statements appear after the completion of the spanwise loop. In subroutine SOLVEX, the potential values at the downstream boundary are explicitly stored; i.e., the statement JP1 = JM1 is replaced by PP(L,K,JP1) = PP(L,K,JM1) in a double do-loop.
- iv) In subroutine IC, the test on an end of file on unit 10 is changed to IBM format.
- v) In subroutine SPLN1, the ENTRY SPLN1X statement is modified by the addition of the appropriate argument list.
- vi) In order to ensure that the viscous program fits into the available SCM on the CDC 7600, common block WING was moved from LEVEL 1 to LEVEL 2. This change required that the arguments of subroutine SLOPY be in LEVEL 2; thus, in turn, required the generation of a LEVEL 1 version of SLOPY, subroutine SLOPQ,

that would perform the same function with LEVEL 1 arguments. In the IBM version, common block WING is in core so that references to SLOPQ are changed to SLOPY. These changes are in subroutines GEOMBR, GEOBRX, WINGCO and BLLAM.

vii) While not required for IBM compatibility, the writing of plot data on unit 12 in subroutine OUTP has been eliminated in the IBM version and replaced by a call to subroutine GRAPH, which has been inserted after the call to subroutine FORCE. A dummy version of subroutine GRAPH has been appended to the IBM version of the program.

#### 7. GRAPHICS PACKAGE

In general, three-dimensional programs produce an immense amount of information. Graphical output is required in order to make an initial inspection of the solution to determine if it appears that a reasonable result has been obtained, as well as to simplify the detailed analysis of the solution. Without a graphical output, local anomalies in the result can easily go undetected due to the volume of output generated. Although there is no question concerning the value of graphics output, the inclusion of graphics in a code intended for general use causes some difficulties because the graphics routines are usually installation dependent. In this program, we have chosen to provide a graphics package that uses standard CALCOMP routines. Users that do not have these routines at their installation can use the routines presented here as examples for creating their own versions of the graphics package. For initial use of the code without graphics, GRAPH3 can be included as a dummy routine.

The information that has been selected for plotting consists of:

- i) Geometry verification
- ii) Streamwise Cp plots at each span station on the wing
- iii) Isobar plots
- iv) 3-D Cp plots
- v) Spanwise distribution of forces and moments
- vi) Displacement thickness distribution at each span station on the wing

In this section, we describe the routines used in the graphics package and include an example of the package operation. These routines were developed on a GOULD plotter, which uses an electrostatic print technique. For pen plotters such as CALCOMP, the isogram routine TRIISO may require excessive pen commands, in which case, it will be necessary to replace the routine with the equivalent routine in use at the particular site.

The results package consists of one controlling program (GRAPH3) and four basic subroutines, one for each element of the plot package. GEOMVR is the geometry verification program and produces a plot of the planform, airfoils and input airfoil slopes. This routine is called before the solution is started and allows the user to spot poor airfoil input and any errors in the planform. CPPLOT produces Cp plots in the standard format for ease of comparison with experimental data. Tick marks are produced in order to allow for cutting pages to  $8\frac{1}{2}$ X11. The exact isentropic value of Cp* is marked by a horizontal bar on

the vertical axis. Isobars are generated by subroutine TRIISO, which is a general contour plot routine. TRIISO is a refined and extended version of References 7 and 8. The isogram program operates by a linear interpolation method in each "cell" so that occasional wiggles appear due to the logic associated with the interpolation. As presently set up, the contours are arbitrarily assigned in order to provide good coverage for visual inspection. If specific contour lines are desired, GRAPH3 can be altered very simply to choose selected contour line values. Subroutine SPNPLT is used to plot the spanwise variation of the spanload, moment distribution, pressure drag, and local lift coefficient. If the viscous interaction effects are computed, GRAPH3 calls DSTPLT in order to plot  $\delta*/C$  at each span station. This amount of information is required in order to assess the full transonic solution. A description of the graphic subroutines and sample output follows. Figure 12 contains a flow-chart for GRAPH3 and Figure 13 provides samples after various plots that are generated.



Figure 12. Graphics Program Flowchart

#### SUBROUTINE GRAPH

PURPOSE: controls the generation of plotted output

CALL: from OUTP

CALL STATEMENT:

ARGUMENT DESCRIPTION

CPU 2-d array of upper surface CP's CPL 2-d array of lower surface CP's

### SUBROUTINES CALLED:

SUBROUTINE	DESCRIPTION
------------	-------------

PLOT	Grumman master plotting routine; operation
	depends on plotting library attached
CPPLOT	generates CP plots at each span station
SYMBL4	Grumman Calcomp routine for writing
	literal strings and plotting symbols
VINTER	general Langrangian interpolation routine
TRIISO	contour plot routine
SPNPLT	plots of spanwise force distributions
DSTPLT	generates delta * plots at each span
	station
LINE	Grumman Calcomp routine for plotting
	a line
EPLOT	entry point of PLOT; terminates plotting

#### DATA TO COMMON:

COMMON	V AR IABLE
INTER	XMAX
	ZMAX
	ZMIN
WING	YLEI
	XLEI
	YTEI
	XTEI
ISOGM	XRANGE
	YBASE
	YTREL
	XINCH

#### XORG

#### MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
KLUED	<pre>determines CP plot mode; = 0, CP plotted as lines; = 1, CP plotted as symbols</pre>
ISTR	= 1, indicates planform and mesh coincide; = 0, planform and mesh do not coincide
K8B L	= KTM1 if YAW = F; = KROOT if YAW = T
XPNT	local 2-d array of x/c's covering planform
CPT	local array of upper surface CP's
CPB	local array of lower surface CP's
CC	local chord/average chord
CLL	section lift coefficient
CML	section moment coefficient
CDL	section drag coefficient
FRAC	ETA(K)/YTIP
NNX	<pre>number of points in XSTAT array; = 31, if ISTR = 0, = JTE-JLE+1 if ISTR = 1</pre>
XSTAT	array of x/c points for TRIISO
YPF	local array of ETA(K)-YBASE
CPSAV	2-d array for storing CP's for planform plot
XNEW	local array of x/c
CPMESH	2-d array of interpolated CP's for TRIISO
NZ	number of level lines for TRIISO
ZCUT	array of equally spaced level line
XP	local array of scaled horizontal variables
YYP	local array of scaled vertical variables
SCALE	rate of x and y per inch

#### READ and WRITE STATEMENTS:

write on and reads from unit 99 to emulate CDC ENCODE statement

#### SUBROUTINE CPPLOT

PURPOSE: to plot the surface pressure distributions at each span station

CALL: from GRAPH

#### CALL STATEMENT:

ARGUMENT	DESCRIPTION
XX	array of x/c points
CPU	array of upper surface CP's
CPL	array of lower surface CP's
NMAX	number of points
TITLE	literal array used for plot title
FMACH	freestream Mach number
ANGLE	angle of attack
ERROR	final level of convergence
K	span station index
FRAC	fraction of wing semi-span
	section lift coefficient
	section moment coefficient
	section drag coefficient
KLUE	=0, draws line; =1, plots symbols KLUE set to 0 in graph
	XX CPU CPL NMAX TITLE FMACH ANGLE ERROR K FRAC CLL CML CDL

#### SUBROUTINES CALLED:

SUBROUTINE	DESCRIPTION		
SYMBL4	Grumman Calcomp routine for writing literal strings and plotting symbols		
AXIS	Grumman Calcomp routine for drawing annotated axes		
LINE	Grumman Calcomp routine for plotting a line		

DATA TO COMMON: none

#### MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
R SCALE DCP	local array for storing literal strings rate of x/c per plot inch rate of CP per plot inch

YSC
1./DCP
CPMIN most negative value of CP allowed
CPC isentropic value of CP sonic
X local array of scaled x/c's
Y local array of scaled CP's

### READ and WRITE STATEMENTS:

write on and reads from unit 99 to emulate CDC ENCODE statement

appled of X to indicate a state of the policy of the polic

## SUBROUTINE DSTPLT

PURPOSE: to plot Deltastar/C at each span station

ARGUMENT DESCRIPTION

CALL: from GRAPH3

#### CALL STATEMENT:

XX	array of x/c's
DSTART	array of upper surface delta *'s
DSTARB	array of lower surface delta *'s
NMAX	number of XX points
TITLE	literal array used for plot title
PMACH	freestream Mach number
ANGLE	angle of attack
ERROR	final level of convergence
FRAC	fraction of wing semi-span
K	span station index
NX	number of mesh points along chord
RE	Reynold's number

#### SUBROUTINES CALLED:

SUBROUT	INE	DESCRI	PTION
JUDIN OUT.	T 1477	DESCHI	LILON

SYMBL4 Grumman Calcomp routine for writing literal strings and plotting symbols AXIS Grumman Calcomp routine for drawing annotated axes

DATA TO COMMON: none

#### MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE DESCRIPTION

R	local array for storing literal strings
XMAX	maximum value of XX
XMIN	minimum value of XX
SCALE	rate of x/c per inch
X	local array of scaled x/c's

READ and WRITE STATEMENTS:

## write on and reads from unit 99 to emulate CDC ENCODE statement

## SUBROUTINE TRIISO

PURPOSE: to plot upper and lower CP distributions on the planform and to generate planform isobar plots

CALL: from GRAPH 3

#### CALL STATEMENT:

AR	GUM	ENT	DESCRIPTION

CPMESH	2-d array of cp's interpolated
	to constant x/c's
NX	number of X-stations
NY	number of Y-stations
NZ	number of isobar level lines
ZCUTS	array of level lines for isobars
XM	array of X-points
YM	array of Y-points
SCALE	rate of x and y per inch

#### SUBROUTINES CALLED:

	the financial constitution of the first of t
SUBROUTINE	DESCRIPTION

LINE	Grumman Calcomp routine for drawing lines
PLOT	Grumman master plotting routine:
	operation depends on plot library attached
SLETE	finds X-coordinate of LE and TE

DATA TO COMMON: none

#### MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
SCALE	rate of X and Y per inch
ΧP	local X-array for drawing planform and plotting CP's on planform
YYP	local Y-array for drawing planform and plotting CP's on planform
ИХБ	number of chordwise CP points at each span station
XMESH	local array of X-values which define cells
YMESH	local array of Y-values which define cells
X	X-coordinates of current isobar cell

Y	Y-coordinates of current isobar cell
2	values of CP on the cell
XEND	X-array of isobar intersections with cell boundary
Y EN D	Y-array of isobar intersections with cell boundary
XENDS	XEND array mapped onto planform and scaled for plotting
Y EN DS	YEND array mapped onto planform and scaled for plotting

READ STATEMENTS: none

WRITE STATEMENTS: none

## SUBROUTINE SPNPLT

PURPOSE: produces plots of the spanwise force distribution

CALL: from GRAPH

CALL STATEMENT:

ARGUMENT	DESCRIPTION
PMACH	freestream Mach number
ANGLE	angle of attack
RE	Reynold's number
ERROR	final level of convergence
ET A	array of spanwise mesh points
KROOT	K index of wing-body junction
KTM 1	K index of last span point on wing
TITLE	literal array for plot title
YTIP	Y-coordinate of wing tip

#### SUBROUTINES CALLED:

LINE	Grumman Calcomp routine for plotting lines
SYMBL4	Grumman Calcomp routine for writing
	literal strings and plotting symbols
AXIS	Grumman Calcomp routine for drawing
D7.00	annotated axes
PLOT	master plotting routine; operation depends on plotting library attached

#### DATA TO COMMON: none

#### MAIN INTERNAL SUBROUTINE VARIABLES:

SUBROUTINE DESCRIPTION

VARIABLE	DESCRIPTION
KTIP	local counter set to KTM1+1
KTOT	number of points between root and tip
SCALE	scaling parameter: .2*YTIP horizontal and .2 vertical
X	local array for storing scaled spanwise coordinates
Y	local array for storing scaled force

MAIN INTERNAL SUBROUTINE VARIABLES (cont.)

coefficients

READ and WRITE STATEMENTS:

write on and reads from unit 99 to emulate CDC ENCODE statement

#### SUBROUTINE SLETE

PURPOSE: finds the X-coordinates of the leading edge and

trailing edge for any span point YVAL

CALL: from TRIISO

CALL STATEMENT:

ARGUMENT DESCRIPTION

YVAL input spanwise coordinate
XLEE X-coordinate of LE at YVAL
XTEE X-coordinate of TE at YVAL

SUBROUTINES CALLED:

SUBROUTINE DESCRIPTION

PLIN statement function for linear interpolation

DATA TO COMMON: none

MAIN INTERNAL SUBROUTINE VARIABLES: none

READ STATEMENTS: none

WRITE STATEMENTS: none

#### SUBROUTINE GEONVR

PURPOSE: geometry verification routine

CALL: from NAIN
CALL STATEMENT:

ARGUM ENT	DESCR IPTION
I1	=1, plot planform;
12	=0, omit =1, plot input airfoil sections;
	=0, omit
13	=1, plot upper and lower wing slopes;
14	=0, omit =1, plot IBODIN geometry;
	=0, omit
15	=1, plot meshes;
16	=0, omit =1, plot XI=0 and XI=1 on planform;
	=0, omit
17	=1, plot B.C. support surface; =0, omit
18	=1, plot wing twists;
	=0, omit
19	=1, plot body slopes; =0, omit
TEST	=STOP, terminate run
	=GO , continue execution

#### SUBROUTINES CALLED:

#### SUBROUTINE DESCRIPTION

PLOT	Grumman master plotting routine; operation
	depends on plotting library attached
PLOTS	entry point of plot; initiates plotting
SYMBL4	Grumman Calcomp routine for writing
	literal strings and plotting symbols
LINE	Grumman Calcomp routine for plotting
	a line
AXIS	Grunman Calcomp routine for drawing
	annotated ares

DATA TO COMMON: none

#### MAIN INTERNAL SUBROUTINE VARIABLES:

VARIABLE	DESCRIPTION
ICALL	=0, first call to GEOMVR; =1, subsequent call to GEOMVR
XP	local array of scaled horizontal variables
YYP	local array of scaled vertical variables
TEMP	local array for mesh dependent data
MESH	=1, initial mesh; =2, interior fine mesh;
	=3, exterior coarse mesh
XPNT	horizontal coordinate scaled for plotting
YPNT	vertical coordinate scaled for plotting
SCALE	rate of x and/or y per inch
SCALX	rate of x per inch
SCALEY	rate of y per inch

#### READ and WRITE STATEMENTS:

write on and reads from unit 99 to emulate CDC ENCODE statement



EMECHANIAL MISH

MING PLANFORM TRCT MITH REMOBLASTIC TWIST

FIGURE 13A. SAMPLE GEOMETRY VERIFICATION - MINS PLANFORM

AIRFOIL SECTION NO. 3 TACT WITH AEROELASTIC TWIST Y = 331.993 ETA =1.000 (75 POINTS)

Figure 13b. Sample Geometry Verification - Airfoil Sections



SECTION SLOPES AT K = 15 TACT WITH AEROELASTIC TWIST Y = 169.015 ETA =0.509 (44 POINTS)

Figure 13c. Sample Geometry Verification - Wing Surface Slopes



BODY COORDINATES....UPPER CENTERLINE TACT WITH AEROELASTIC TWIST

FIGURE 13D. SAMPLE GEOMETRY VERIFICATION - UPPER CENTERLINE



BODY COORDINATES....LOWER CENTERLINE TACT WITH REPOELASTIC TWIST

FIGURE 13E. SAMPLE GEOMETRY VERIFICATION - LOWER CENTERLINE



BODY COORDINATES....MAX HALF-BREDTH IN X-Y PLANE TACT WITH AEROELASTIC TWIST

FIGURE 13F. SAMPLE GEOMETRY VERIFICATION - MAX HALF BREDTH IN X-Y PLANE



XI GRID DISTRIBUTION (INTERIOR MESH) F-8 CASE

Figure 13g. Sample Geometry Verification - XI-Grid On Interior Mesh



ETA GRID DISTRIBUTION (INTERIOR MESH) F-8 CASE

Figure 13h. Sample Geometry Verification - ETA-Grid On Interior Mesh



ZT GRID DISTRIBUTION (INTERIOR MESH) F-8 CASE

Figure 13i. Sample Geometry Verification - ZT-Grid on Interior Mesh



XI = 0. AND XI = 1. (INTERIOR MESH) F-8 CASE

FIGURE 13J. SAMPLE GEOMETRY VERIFICATION - XI=0 AND XI=1, LINES ON INTERIOR MESH



B.C. SUPPORT SURFACE (INTERIOR MESH)
NACA TN D-712 BRICK BODY

Figure 13k. Sample Geometry Verification - B.C. Support Surface on Interior Mesh



B.C. SUPPORT SURFACE (EXTERIOR MESH)
NACA TN D-712 BRICK BODY

Figure 131. Sample Geometry Verification - B.C. Support Surface on Exterior Mesh



WING TWISTS (INTERIOR MESH)
TACT WITH AEROELASTIC TWIST
Figure 13m. Sample Geometry Verification - Wing Twists



## UPPER/LOWER BODY SLOPES AT K = 1 (INTERIOR MESH) F-8 CASE

Figure 13n. Sample Geometry Verification - Upper and Lower Body Slopes on Interior Mesh





class class class class class

* - 5 Mill R.F - 5 Mill 1884 - 55% Mill 1888 - 5 - 5 Mill 1888 - 18 - 7 Mill 1888 - 1889

STREET STREET, STREET,

1 88

DESCRIPTION AND ADDRESS.



THE SHARKS - CONSTRUCT PRESSURE CONTRARS

W - C. 900 Ruf - 5.500 1580 - 5815-5%

SMETT FEMALES ACK





25 MESH FTS CIL CHS

SPAN STRT (0% 10 1/5=0.590



Figure 13t, Sample Final Solution Plots - Lift Span Load

Life



Figure 13u. Sample Final Solution Plots - Drag Span Load



Figure 13v. Sample Final Solution Plots - Moment Span Load



Figure 13w. Sample Final Solution Plots - Section Lift Coefficient

## REFERENCES

- 1. Ballhaus, W. F., Bailey, F. R. and Frick, J., "Improved Computational Treatment of Transonic Flow About Swept Wings," <u>Advances in Engineering Sciences</u>, NASA CP-2001, 1976.
- 2. Lomax, H., Bailey, F. R. and Ballhaus, W. F., "On the Numerical Simulation of Three-Dimensional Transonic Flow, with Application to the C-141," NASA TN-D-6933, 1973.
- 3. Boppe, C. W., "Calculation of Transonic Wing Flows by Grid Embedding," AIAA Paper No. 77-207, January 1977.
- 4. Hafez, M. M. and Cheng, H. K., "Convergence Acceleration and Shock Fitting for Transonic Aerodynamics Computations," AIAA Paper No. 75-51, January 1975.
- 5. Krupp, J. A., "The Numerical Calculation of Plane Steady Transonic Flow Past Thin Lifting Airfoils," Boeing Scientific Research Laboratories Report D180-12958-1, June 1971.
- 6. Albone, C. M., Catherall, D., Hall, M. G. and Joyce, G., "An Improved Numerical Method for Solving the Transonic Small-Perturbation Equation For the Flow Past a Lifting Aerofoil," RAE TR 74056, August 1974.
- 7. Glatt, C. R. and Hirsch, G. N., "PLOTTR: An Independent Computer Program for the Generation of Graphical Display," NASA CR-141593, November 1974.
- 8. McCue, G. A., "Optimization and Visualization of Functions," AIAA Journal, Vol. 2, No. 1, p. 99, January 1964.