Math 450B Homework 2 Solutions

Dr. Fuller

- 1. Note that $U C = U \cap (\mathbf{R}^n C)$. This expresses U C as the intersection of two open sets, so the result follows from Proposition 3.
- 2. Give the interior, exterior, and boundary for the following subsets of \mathbf{R}^n . No proofs, just give answers.
 - (a) Int = \emptyset . Ext = $\{(x,y) : xy \neq 0\}$. Boundary = $\{(x,y) : xy = 0\}$.
 - (b) Int = $\{(x,y) : xy \neq 0\}$. Ext = \emptyset . Boundary = $\{(x,y) : xy = 0\}$.
 - (c) Int = \emptyset . Ext = $\mathbb{R}^3 \{(x, y, z) : x^2 + y^2 \le 1 \text{ and } z = 0\}$. Boundary = $\{(x, y, z) : x^2 + y^2 \le 1 \text{ and } z = 0\}$.
 - (d) Int = $\{(x, y, z) : x^2 + y^2 < 1\}$. Ext = $\{(x, y, z) : x^2 + y^2 > 1\}$. Boundary = $\{(x, y, z) : x^2 + y^2 = 1\}$.
 - (e) Int = Ext = \emptyset . Boundary = \mathbb{R}^n .

		closed?	bounded?	compact?
	(a)	yes	yes	yes
	(b)	yes	yes	yes
3.	(c)	yes	yes	yes
	(d)	yes	yes	yes
	(e)	no	yes	no
	(f)	yes	no	no

- 4. (a) Since $\mathbb{R}^n A$ is open, there is $\delta > 0$ such that $B(\mathbf{x}, \delta) \subset \mathbb{R}^n A$. This implies that $\|\mathbf{x} \mathbf{y}\| > \delta$ for all $y \in A$.
 - (b) For each $\mathbf{w} \in C$, we can find $\delta(\mathbf{w}) > 0$ as in part (a). Consider the smaller ball $B(\mathbf{w}, \delta(\mathbf{w})/2)$: if $\mathbf{x} \in B(\mathbf{w}, \delta(\mathbf{w})/2)$ and $\mathbf{y} \in A$, then

$$\delta < \|\mathbf{w} - \mathbf{y}\| \le \|\mathbf{w} - \mathbf{x}\| + \|\mathbf{x} - \mathbf{y}\| < \frac{\delta(\mathbf{w})}{2} + \|\mathbf{x} - \mathbf{y}\|.$$

This implies $\|\mathbf{x} - \mathbf{y}\| > \frac{\delta(\mathbf{w})}{2}$ for all $\mathbf{x} \in B(\mathbf{w}, \delta(\mathbf{w})/2)$ and $\mathbf{y} \in A$.

 $\{B(\mathbf{w}, \delta(\mathbf{w})/2)\}_{\mathbf{w} \in C}$ is an open cover of C. Since C is compact, then there is a finite subcover $B(\mathbf{w}_1, \delta(\mathbf{w}_1)/2), \ldots, B(\mathbf{w}_N, \delta(\mathbf{w}_N)/2)$ of C. Let $\delta = \min(\delta(\mathbf{w}_1)/2, \ldots, \delta(\mathbf{w}_N)/2)$. Then for any $\mathbf{x} \in C$ and $\mathbf{y} \in A$, we have $\mathbf{x} \in B(\mathbf{w}_k, \delta(\mathbf{w}_k)/2)$ for some k, and so $\|\mathbf{x} - \mathbf{y}\| > \delta(\mathbf{w}_k)/2 \ge \delta$.

(c) $\{(x,0): x \in \mathbf{R}\}$ and $\{(x,\frac{1}{x}): x \neq 0\}$