

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7 0 1 1 7 0 6 6 3

MATHEMATICS (SYLLABUS D)

4024/12

Paper 1 October/November 2014

2 hours

Candidates answer on the Question Paper.

Additional Materials: Geometrical instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER

1	Mavis went to a café to meet some friends.								
	(a)	She bought 3 drinks at \$1.42 each and 1 cake for 85 cents.							
		How much did she spend altogether?							
		<i>Answer</i> \$ [1]							
	(b)	She left home at 10.45 a.m. and returned at 1.20 p.m.							
		How long, in hours and minutes, was she away from home?							
		Answer hours and minutes [1]							
2	A c	ookery book states that the time it takes to cook some meat is							
		13 minutes for every 500 grams of meat + 20 minutes.							
	(a)	Calculate the number of minutes it takes to cook 1.5 kg of meat.							
		<i>Answer</i>							
	(b)	It takes T minutes to cook M grams of meat.							
	()	Find a formula for <i>T</i> .							
		<i>Answer</i> [1]							

	11110	results are g	iven b		_2	Л	Λ	2	_1	-3	2	-2	
	_			-4	-3	4	U	2	-1	-3	3	-2	
	For	these results,	, find										
	(a)	the median,											
	(b)	the mean.								Answer			[1]
										Answer	••••		[1]
4						f	f(x) =	2(x-	3)				
	(a)	Evaluate f($\left(\frac{1}{2}\right)$.										
										Answer			[1]
	(b)	Find $f^{-1}(x)$).										
										Answer	f^{-1}	$^{1}(x) = \dots$	[1]

5	(a)	Write the value	of 1234.567.	correct to 2	significant	figures.
9	(4)	vviite the value	01 123 1.307,	CO11CC1 to 2	Significant	inguics.

Answer	 [1
THISWEI	 LΙ

(b) Write down an estimate for the value of $\sqrt{\frac{28}{\pi}}$.

Answer	 Γ1

6 (a) On the Venn diagram, shade the set $C' \cap (A \cup B)$.

[1]

(b)
$$\mathscr{E} = \{ -1, 0, 1, 2, 3, 4, 5, 6 \}$$

$$P = \{ -1, 0, 1, 2 \}$$

$$Q = \{ x^2 : x \in P \}$$
Find n(Q).

Answer	 [1]

7	A car travels at 90 km/h.									
	How many metres does it travel in 1 second?									
		Answer	[2]							
8	Two bottles are geometrically similar. The ratio of the areas of their bases is 1 : 4.									
	Write down the ratios of their									
	(a) heights,									
		Answer	[1]							
	(b) volumes.									
		Answer	[1]							

9	The time taken to run a race is given as 54.3 seconds, correct to the nearest 0.1 of a second.								
	Find the lower bound for the time taken.								
		<i>Answer</i> s [1]							
	(b)	The distance run is given as d metres, correct to the nearest metre.							
		Write down an expression, in terms of d , for the maximum possible average speed, in metres per second.							
		Answer m/s [1]							
10	y is	inversely proportional to x .							
	Giv	en that $y = 9$ when $x = 8$, find y when $x = 6$.							
		Answer $y =$							
		,							

The sequence of diagrams below shows small black and small white squares in an arrangement to 11 form large squares.

Diagram 1

Diagram 2

Diagram 3

The table below shows the numbers of black and white squares in each diagram.

Diagram (n)	1	2	3	4
Black squares	5	13	25	
White squares	4	12	24	
Total number of black and white squares	9	25	49	

(a) For each diagram, how many more black squares are there than white squares?

Answer	Г1	1	
Allswei	 		

(b) On the table, complete the column for Diagram 4.

[1]

(c) Write down an expression, in terms of n, for the total number of black and white squares in Diagram n.

4	F	1	-
Answer		- 1	

(a) Write the number 0.000567 in standard form.

(b) Giving your answer in standard form, evaluate $\frac{3 \times 10^{-5}}{5 \times 10^{6}}$.

$$\frac{3\times10}{5\times10^6}.$$

In the diagram, BE = 5 cm, CD = 7 cm and AE = 3 cm.

BE is parallel to CD.

(a) Express CD as a percentage of BE.

Answer	 %	Г11	
TITISTYCI	 / 0	I * I	

(b) Find *ED*.

A hollow cone has a base radius 6 cm and slant height 10 cm.

The curved surface of the cone is cut, and opened out into the shape of a sector of a circle, with angle x° and radius rcm.

Answer
$$r = \dots [1]$$

(b) Calculate *x*.

Answer
$$x =$$
 [2]

15	[In	ie volume of a sphere is $\frac{1}{3}\pi r^2$
	20 s	spheres, each of radius 3 cm, have a total volume of $k\pi$ cm ³ .
	(a)	Find the value of k .
		Answer $k = \dots [1]$
	(b)	The spheres are inside an open cylinder, with radius 6 cm. The cylinder stands on a horizontal surface and contains enough water to cover the spheres.
		Calculate the change in depth of the water when the spheres are taken out of the cylinder.
		Answer cm [2]

A is the point (5, 5)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

(a) AB is mapped onto CD by a reflection in the y-axis. Find \overrightarrow{CD} .

Answer	 [1]

(b) AB is mapped onto AE by a rotation, centre A, through an angle of 90° clockwise. Find \overrightarrow{AE} .

(c) Find $|\overrightarrow{AB}|$.

17	(a)	Simplify $p^{2}(p^{3}-3p^{-2})$.		
	(b)	Simplify $(27x^6)^{\frac{1}{3}}$.	Answer	[2]
			Answer	[2]
18	(a)	Factorise completely $4a - 16a^2$.		
	(b)	Factorise $9b^2 - c^2$.	Answer	[1]
	(c)	Factorise $x^2 - 5y - xy + 5x$.	Answer	[1]

Answer

The diagram shows a figure made from four identical hexagons.

It has both line and rotational symmetry.

(a) What is the order of the rotational symmetry?

Answer	Г11	ĺ
11113 W C1	 1 1	

(b) Each marked angle is 60°.

Find the other angles in one of the hexagons.

Answer,,,, [3]

In the diagram, A, B, C and D lie on the circle, centre O. CO is parallel to DA.

The tangents to the circle at A and C meet at T.

$$A\hat{O}C = 136^{\circ}$$
.

(a) Find x.

Answer	x =	 [1]	1

(b) Find *y*.

Answer
$$y = \dots$$
 [1]

(c) Find z.

Answer
$$z = \dots [1]$$

(d) Find *t*.

Answer
$$t = \dots [1]$$

A bag contains 5 balls, 2 of which are blue and 3 are red. One ball is taken, at random, from the bag. If it is red it is put back into the bag. If it is blue it is **not** put back into the bag.

A second ball is taken, at random, from the bag. Part of the tree diagram that represents these outcomes is drawn below.

- (a) Complete the tree diagram. [1]
- **(b)** Expressing each answer as a fraction in its simplest form, find the probability that
 - (i) both balls taken are blue,

Answer[1]

(ii) the second ball taken is blue.

The diagram shows the speed-time graph of a cyclist's journey.

(a) Find the retardation.

Answer	 m/	s^2	[1]
Answer	 m/	s^2	[1

(b) Find the speed when t = 9.

 $\textit{Answer} \qquad \dots \qquad m/s \ [1]$

(c) Find the distance travelled by the cyclist from t = 0 to t = 60.

The diagram shows the three lines x = 8, x + y = 21 and 2y = 12 + x which intersect at the points A, B and C.

(a) Find the coordinates of B.

Answer	(,) [1]

(b) The region **inside** triangle *ABC* is defined by three inequalities.

One of these is x + y < 21.

Write down the other two inequalities.

Answer	
	гэ

(c) Find the coordinates of the point, with integer coordinates, that is inside triangle ABC.

Answer (....., ,) [1]

- 24 The diagram shows the positions, on a map, of three boats A, B and C. The map has a scale of 1 cm to 1 km.
 - (a) Find the bearing of B from A.

Answer	 [1]	ı

- **(b)** A fourth boat, D, is
 - closer to B than to A,
 - less than 4km from *C*.

By drawing appropriate loci find, and shade, the region in which D is situated. [3]

© UCLES 2014 4024/12/O/N/14

C .

25	P is	(-4, 4) and Q is $(3, -2)$.		
	M is	s the midpoint of <i>PQ</i> .		
	(a)	Find the coordinates of M .		
			Answar	() [1]
	(b)	Find the gradient of the line <i>PQ</i> .	miswer	() [1]
	()	2		
			Answer	[1]
	(c)	Q is the midpoint of the line PQR .		
		(i) Find the coordinates of R .		
			Answer	() [2]
		(ii) Write down the value of $\frac{PM}{MR}$.		
		17111		
			Answer	[1]

$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \qquad \mathbf{A}^{-1} = k \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

(a) Find the value of k.

Answer $k = \dots$ [1]

(b) Find the matrix **X**, where $2\mathbf{A} + \mathbf{X} = \begin{pmatrix} 5 & -2 \\ 0 & 4 \end{pmatrix}$.

Answer [2]

(c) Find the matrix Y, where $YA = (6 \ 2)$.

Answer [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.