Announcements

- O Project 2 due Friday 5pm
- O Contest 2 (race, now adversarial!!) due Sunday midnight
- Homework 4 exceptionally due Tuesday midnight
 Monday is a holiday!

Office Hours:

- O I am worried that you are guessing on homework.
- O Please attend office hours to get any things you are unsure about squared away.

CS 188: Artificial Intelligence

Markov Decision Processes II

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Recap: Defining MDPs

• Markov decision processes:

- O Set of states S
- O Start state s₀
- O Set of actions A
- O Transitions P(s' | s,a) (or T(s,a,s'))
- O Rewards R(s,a,s') (and discount γ)

• MDP quantities so far:

- Policy = Choice of action for each state
- O Utility = sum of (discounted) rewards

Solving MDPs

Racing Search Tree

Racing Search Tree

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - O Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - O Idea: Do a depth-limited computation, but with increasing depths until change is small
 - O Note: deep parts of the tree eventually don't matter if v < 1

Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

Snapshot of Demo – Gridworld V Values

Snapshot of Demo – Gridworld Q Values

Values of States

• Recursive definition of value:

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$
s,a,s'

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Time-Limited Values

- Key idea: time-limited values
- O Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

k = 10

k = 100

Computing Time-Limited Values

Value Iteration

Value Iteration

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

O Given vector of $V_k(s)$ values, do one ply of expectimax from each state $\bigvee_{k+1}(s)$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Repeat until convergence

• Complexity of each iteration: O(S²A)

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Assume no discount!

Fast

Overheated

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 $V_0 \left[\begin{array}{ccc} 0 & 0 & 0 \end{array} \right]$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence*

- How do we know the V_k vectors are going to converge?
- O Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - O Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - O The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - **O** That last layer is at best all R_{MAX}
 - o It is at worst R_{MIN}
 - O But everything is discounted by γ^k that far out
 - 0 So V, and V, are at most $v^k \max |R|$ different

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
- O It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

O This is called policy extraction, since it gets the policy implied by the

Let's think.

- O Take a minute, think about value iteration.
- O Write down the biggest question you have about it.

Policy Methods

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- OProblem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

k=12

Noise = 0.2 Discount = 0.9 Living reward = 0

k = 100

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration

- O Alternative approach for optimal values:
 - O Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - O Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - O Repeat steps until policy converges
- O This is policy iteration
 - O It's still optimal!
 - O Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- O If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- O Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = \text{expected total discounted rewards starting in s and following } \pi$
- Recursive relation (one-step look-ahead / Bellman equation):

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Policy Iteration

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - O Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- O Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - O Every iteration updates both the values and (implicitly) the policy
 - O We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - O We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - O After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - O The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to....

- O Compute optimal values: use value iteration or policy iteration
- O Compute values for a particular policy: use policy evaluation
- O Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- O They basically are they are all variations of Bellman updates
- O They all use one-step lookahead expectimax fragments
- O They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

Next Time: Reinforcement Learning!