Announcements

- Homework 2 Solutions online
- No homework this week
- Exam 1 on Friday

Homework Note

- TA piazza post:
 - Proofread answers
 - Select all solution pages on gradescope (and try to avoid splitting pages)
 - Make sure that your solutions are legible
 - High level description of algorithm
 - Remember: ALL homeworks require justification unless stated otherwise

DFS/explore

Remember:

- Explore
 - Finds all vertices reachable from a single source
 - DOES NOT visit any other vertices
 - Does not compute pre/post orders for other vertices
- DFS
 - Visits ALL vertices of the graph
 - Cannot tell what is reachable from what without extra work
 - Can compute pre/post orders

Last Time

- Divide and Conquer
- Schoolboy Multiplication

Divide & Conquer (Ch 2)

- General Technique
- Master Theorem
- Karatsuba Multiplication
- Strassen's Algorithm
- Merge Sort
- Order Statistics
- Binary Search
- Closest Pair of Points

Divide and Conquer

This is the first of our three major algorithmic techniques.

- 1. Break problem into pieces
- 2. Solve pieces recursively
- 3. Recombine pieces to get answer

Example: Integer Multiplication

<u>Problem:</u> Given two n-bit numbers find their product.

Naïve Algorithm: Schoolboy multiplication. The binary version of the technique that you probably learned in elementary school.

Runtime: O(n²)

Schoolboy Multiplication

ANSWER

Today

- Karatsuba multiplication
- Master Theorem
- Strassen's algorithm

Two Digit Multiplication

a b x c d

Two Digit Multiplication

			а	b
		X	С	d
			ad	bd
+	ac		bc	0

Two Digit Multiplication

			a	b
		X	С	d
			ad	bd
+	ac		bc	0
	ac	ad+	-bc	bd

Two-Digit Multiplication

(ab) \cdot (cd) = [ac][bc+ad][bd]

Requires 4 one-digit multiplications and one addition.

Two-Digit Multiplication

 $(ab) \cdot (cd) = [ac][bc+ad][bd]$

Requires 4 one-digit multiplications and one addition.

Trick: Compute ac, bd, (a+b)(c+d). Note that bc+ad = (a+b)(c+d) - ac - bd.

Requires 3 one-digit multiplications and 4 addition/subtractions.

Two-Digit Multiplication

 $(ab) \cdot (cd) = [ac][bc+ad][bd]$

Requires 4 one-digit multiplications and one addition.

Trick: Compute ac, bd, (a+b)(c+d). Note that bc+ad = (a+b)(c+d) - ac - bd.

Requires 3 one-digit multiplications and 4 addition/subtractions.

How can we apply this to larger problems?

Larger Base

$$a_1 \ a_2 \ a_3...a_{n/2} \ a_{n/2+1}...a_n$$

Larger Base

Larger Base

Want to multiply N and M:

Want to multiply N and M:

1. Let $X \approx V(N+M)$ be a power of 2.

Want to multiply N and M:

- 1. Let $X \approx V(N+M)$ be a power of 2.
- 2. Write N = AX+B, M = CX+D
 - This can be done by just taking the high and low bits.

Want to multiply N and M:

- 1. Let $X \approx V(N+M)$ be a power of 2.
- 2. Write N = AX+B, M = CX+D
 - This can be done by just taking the high and low bits.
- 3. $N \cdot M = AC \cdot X^2 + (AD + BC)X + BD$ = $AC \cdot X^2 + [(A+B)(C+D) - AC - BD]X + BD$
 - The multiplications by X are just bit shifts.

```
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2 \rfloor}}
  Write N = AX + B_{r} M = CX + D_{r}
  P_1 \leftarrow Product(A, C)
                                      O(n^2)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2 \rfloor}}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
                                     O(n^2)
  P_2 \leftarrow Product(B, D)
                                              O(n)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2 \rfloor}}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
                                     O(n^2)
  P_2 \leftarrow Product(B, D)
                                              O(n
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

Runtime: O(n²).

```
O(n)
ImprovedMult(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2 \rfloor}}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
                                     O(n^2)
  P_2 \leftarrow Product(B, D)
                                              O(n
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

Runtime: O(n²). No asymptotic improvement!

More Detailed Analysis

This algorithm shows no *asymptotic* improvement, but it is better.

More Detailed Analysis

This algorithm shows no *asymptotic* improvement, but it is better.

To analyze this, lets suppose that computing the product of two n-bit numbers using the schoolboy algorithm takes n² time.

```
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log(N+M)/2 \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2\rfloor}}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
                                     3(n/2)^2
  P_2 \leftarrow Product(B, D)
                                              O(n)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2\rfloor}}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
                                     3(n/2)^2
  P_2 \leftarrow Product(B, D)
                                              O(n)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

Runtime: $(3/4)n^2+O(n)$.

```
O(n)
ImprovedMult(N, M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2 \rfloor}}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
                                     3(n/2)^2
  P_2 \leftarrow Product(B, D)
                                              O(n)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

Runtime: $(3/4)n^2+O(n)$. Better than n^2 !

So this trick does help. Saving a multiplication at the cost of a few extra additions is a big deal, when multiplications are O(n²) and additions are O(n).

Can we do better?

So this trick does help. Saving a multiplication at the cost of a few extra additions is a big deal, when multiplications are O(n²) and additions are O(n).

Can we do better?

Yes. Our algorithm is still using schoolboy multiplication to do the smaller multiplications. We can instead use our faster algorithm.

```
Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
Write N = AX + B, M = CX + D
P_1 \leftarrow Product(A, C)
P_2 \leftarrow Product(B, D)
P_3 \leftarrow Product(A+B,C+D)
Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

KaratsubaMult(N, M)

```
KaratsubaMult(N, M)
  If N+M<99, Return Product(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow Product(A, C)
  P_2 \leftarrow Product(B, D)
  P_3 \leftarrow Product(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
KaratsubaMult(N, M)
  If N+M<99, Return Product(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow KaratsubaMult(A,C)
  P_2 \leftarrow KaratsubaMult(B,D)
  P_3 \leftarrow KaratsubaMult(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
KaratsubaMult(N, M)
  If N+M<99, Return Product(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow KaratsubaMult(A,C)
  P_2 \leftarrow KaratsubaMult(B, D)
  P_3 \leftarrow KaratsubaMult(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
KaratsubaMult(N, M)
  If N+M<99, Return Product(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow KaratsubaMult(A,C)
  P_2 \leftarrow KaratsubaMult(B,D)
  P_3 \leftarrow KaratsubaMult(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
KaratsubaMult(N, M)
  If N+M<99, Return Product(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow KaratsubaMult(A,C)
  P_2 \leftarrow KaratsubaMult(B, D)
  P_3 \leftarrow KaratsubaMult(A+B,C+D)
                                         O(n)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

```
KaratsubaMult(N, M)
  If N+M<99, Return Product(N,M)
  Let X be a power of 2^{\lfloor \log{(N+M)/2} \rfloor}
  Write N = AX + B, M = CX + D
  P_1 \leftarrow KaratsubaMult(A,C)
                                          ???
  P_2 \leftarrow KaratsubaMult(B,D)
  P_3 \leftarrow KaratsubaMult(A+B,C+D)
  Return P_1X^2 + [P_3 - P_1 - P_2]X + P_2
```

Runtime Recurrence

Karatsuba multiplication on inputs of size n spends O(n) time, and then makes three recursive calls to problems of (approximately) half the size.

Runtime Recurrence

Karatsuba multiplication on inputs of size n spends O(n) time, and then makes three recursive calls to problems of (approximately) half the size.

If T(n) is the runtime for n-bit inputs, we have the recursion:

$$T(n) = \begin{cases} O(1) & \text{if } n = O(1) \\ 3T(n/2 + O(1)) + O(n) & \text{otherwise} \end{cases}$$

Runtime Recurrence

Karatsuba multiplication on inputs of size n spends O(n) time, and then makes three recursive calls to problems of (approximately) half the size.

If T(n) is the runtime for n-bit inputs, we have the recursion:

$$T(n) = \begin{cases} O(1) & \text{if } n = O(1) \\ 3T(n/2 + O(1)) + O(n) & \text{otherwise} \end{cases}$$

How do we solve this recursion?

Total Runtime

Total Runtime =
$$\sum_{k=0}^{\log_2(n)} 3^k O(n/2^k)$$

$$= O(n) \sum_{k=0}^{\log_2(n)} (3/2)^k$$

$$= O(n)((3/2)^{\log_2(n)+1} - 1)/(3/2 - 1)$$

$$= O(n)(3/2)^{\log_2(n)}$$

$$= O(3^{\log_2(n)})$$

$$= O(2^{\log_2(3)\log_2(n)})$$

$$= O(n^{\log_2(3)})$$

$$= O(n^{1.585...}).$$

Divide and Conquer

This is our first example of this general technique:

- 1. Break problem into pieces.
 - Compute AC, BD, (A+B)(C+D)
- 2. Recursively solve pieces.
- 3. Recombine to get answer.
 - NM=ACX²+[(A+B)(C+D)-AC-BD]X+BD

Generalization

We will often get runtime recurrences with D&C looking something like this:

$$T(n) = O(1)$$
 for $n = O(1)$
 $T(n) = a T(n/b + O(1)) + O(n^d)$ otherwise.

Generalization

We will often get runtime recurrences with D&C looking something like this:

$$T(n) = O(1)$$
 for $n = O(1)$
 $T(n) = a T(n/b + O(1)) + O(n^d)$ otherwise.

We will need to know how to solve these.

We have:

1 recursive call of size n

We have:

- 1 recursive call of size n
- a recursive calls of size n/b+O(1)

We have:

- 1 recursive call of size n
- a recursive calls of size n/b+O(1)
- a² recursive calls of size n/b²+O(1)

We have:

- 1 recursive call of size n
- a recursive calls of size n/b+O(1)
- a² recursive calls of size n/b²+O(1)
- •
- a^k recursive calls of size n/b^k+O(1)

We have:

- 1 recursive call of size n
- a recursive calls of size n/b+O(1)
- a² recursive calls of size n/b²+O(1)
- ...
- a^k recursive calls of size n/b^k+O(1)

Bottoms out when $k = log_b(n)$.

Runtime

Combining the runtimes from each level of the recursion we get:

Total Runtime =
$$\sum_{k=0}^{\log_b(n)} a^k O((n/b^k)^d)$$
$$= O(n^d) \sum_{k=0}^{\log_b(n)} (a/b^d)^k.$$

Runtime

Combining the runtimes from each level of the recursion we get:

Total Runtime =
$$\sum_{k=0}^{\log_b(n)} a^k O((n/b^k)^d)$$
$$= O(n^d) \sum_{k=0}^{\log_b(n)} (a/b^d)^k.$$

The asymptotics will depend on whether a/b^d is bigger than 1.

Case 1: a > b^d

Increasing geometric series dominated by *last* term. Runtime is dominated by recursive calls at the bottom level.

Case 1: $a > b^d$

Increasing geometric series dominated by *last* term. Runtime is dominated by recursive calls at the bottom level.

Runtime =
$$O(a^{\log_b(n)})$$

= $O(b^{\log_b(a)\log_b(n)})$
= $O(n^{\log_b(a)})$.

Case 2: a < b^d

Decreasing geometric series is dominated by the first term. Runtime is mostly based on the cleanup steps at the top level.

Case 2: a < b^d

Decreasing geometric series is dominated by the first term. Runtime is mostly based on the cleanup steps at the top level.

Runtime = $O(n^d)$

Case 3: $a = b^d$

Every level of the recursion does the same amount of work.

Case 3: $a = b^d$

Every level of the recursion does the same amount of work.

Runtime =
$$O(n^d) \sum_{k=0}^{\log_b(n)} (1^k) = O(n^d \log(n)).$$

Master Theorem

Theorem: Let T(n) be given by the recurrence:

$$T(n) = \begin{cases} O(1) & \text{if } n = O(1) \\ aT(n/b + O(1)) + O(n^d) & \text{otherwise} \end{cases}$$

Then we have that

$$T(n) = \begin{cases} O(n^{\log_b(a)}) & \text{if } a > b^d \\ O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \end{cases}$$