| 5/10/2023 | Graphs - 5                                                                                                           |
|-----------|----------------------------------------------------------------------------------------------------------------------|
|           | 2 weeks                                                                                                              |
|           | Schedule mack viterview Complete assignments & get to PSP >, 85 Contest ju-attempt.                                  |
|           | Given a mateix of viteger with $120$ m' each cell. $1 \rightarrow land$ $0 \rightarrow water$                        |
|           | A set of connected 1's $\rightarrow$ island:  Find the # island(s) in the matrix.  (8 directions & net 4 directions) |
|           | A = [1] 0 0 0 0 Ans = 4  1 0 0 1 1 Ans = 4  0 0 0 0 0 Ans = # connected components.                                  |
|           | $(n-1,c-1) \qquad (n-1,c+1)$ $(n,c-1) \qquad (n,c) \qquad (n,c+1)$                                                   |
|           |                                                                                                                      |

```
ans = 0, f c,j', vst[c][j'] = false
-fo~ c > 0 to (N-1) E
       for joo to (M-1) {

- if (! vst[i][j] &4 A[i][j] == 1) {

ann + t;

dfs (i, j)
  void offs (A,C) &
       vst[xs[c] = time;
- for is 0 to 7/de lingtus
                 n = n+dx[i]
                 y = c + desi]
                 (n>=0 && n < N && y>=0 && y < m &&
| vst[n](y) && A[n](y) ==1)
                                  dfs (xxy);
  TC:O( N*M)
  SC:0( N+M)
                    >yst[][]
                     stack
```

| <u>ڳ</u> | Given an away of positive elements, flip sign of some                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------|
|          | Given an away of positive elements, flip sign of some of its elements of the final away is nun non-nigative integer (>=0) |
|          | Find minimum # elements to flip to advice this task.                                                                      |
|          | A: 10 18 6 3 3 ] -> 10-15+6-3+3                                                                                           |
|          | -15 -3 5) 1 Am = 2                                                                                                        |
|          | A(i) -> frip or not-flip<br>take have<br>sum of clements flipped <= sum of elements not flipped.                          |
|          |                                                                                                                           |
|          | Total Sum = S<br>Sum of climents flipped <= S/2                                                                           |
|          |                                                                                                                           |
|          | Ans = min # climents propped !                                                                                            |
|          | find min # elements to flip s.t. sum of iclisted elements <= \$/2                                                         |
|          |                                                                                                                           |
|          | Bag capacity -> 4/2 (Total Sum/2)                                                                                         |
|          | Loss -> 1 per element.                                                                                                    |
|          | ulight of its eliments -> A(i)                                                                                            |
|          | •                                                                                                                         |
| 1)       | tatrix exponentiation digit de                                                                                            |
| 3)       | Bin'ary lifturig                                                                                                          |
| 45       | 151 1                                                                                                                     |
| \$       | segment tree                                                                                                              |
|          |                                                                                                                           |





| Q 4 | la it always possible to haid surgle source showtest                                                                                                                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| =   | la it always possible to find single source shortest path with -ve weights.                                                                                                                                               |
|     |                                                                                                                                                                                                                           |
|     | 2 >(3)3                                                                                                                                                                                                                   |
|     | 1 2 3 -3 6 Somee 3 5 2 - 4                                                                                                                                                                                                |
|     | Somee 3 (5) 2-4                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     | shortest path from 1 → 6?                                                                                                                                                                                                 |
|     | $1 \rightarrow 2 \rightarrow 8 \rightarrow 8 \rightarrow 6 (3)$                                                                                                                                                           |
|     | $\begin{array}{c} 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6 & (3) \\ 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6 & (1) \end{array}$ |
|     |                                                                                                                                                                                                                           |
|     | Negative wt. cycle > cycle of nodes s.t. sum of                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     | edge meights 20                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |

| <b>6</b> , 5 | Find single source snortest path (-ve wt possible)                                                                               |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|
|              | And single source shortest path (-ve wt possible)  No -ve might cycle in the graph.                                              |
|              |                                                                                                                                  |
|              | Bellman ford algo                                                                                                                |
|              | Minimum déclance can le found lux modating/relaxing                                                                              |
|              | Minimu dédance can be found by apolaturig/relaxing all edges (N-1) times, irrespective of the order in which edges are selected. |
|              | in which edges are selected.                                                                                                     |
|              |                                                                                                                                  |
|              | max # edges b/w 2 nodes y(dlu)+wt(u,v)                                                                                           |
|              | [0]                                                                                                                              |
|              | $d[y] = d[u] + wt(u_N)$                                                                                                          |
|              | Some 1 2 -6 3 -8 4 - 5 -3 6                                                                                                      |
|              |                                                                                                                                  |
|              | d=[0                                                                                                                             |
|              | 1 2 3 4 5 6                                                                                                                      |
|              | <u>Itol</u> 2 3 4 5                                                                                                              |
|              | 5 -3 6 x x x x                                                                                                                   |
|              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                            |
|              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                             |
|              | 1 - 10 4 V X X X X                                                                                                               |
|              | 1 -11 2 V X X X X                                                                                                                |
|              |                                                                                                                                  |
| 1-4          | P=[-1 1 2 +8 4 5]                                                                                                                |
| d[1]+w       | t(1,4) < d(4) 1 2 3 4 5 6                                                                                                        |
| 0+           |                                                                                                                                  |
|              | d[i]+wt(1)4)                                                                                                                     |
| <u>-</u>     | 0 TI 0                                                                                                                           |
|              |                                                                                                                                  |
|              |                                                                                                                                  |
|              |                                                                                                                                  |
|              |                                                                                                                                  |
|              |                                                                                                                                  |

| for J = 1 to (N-1) {   stop = twe;                                                           | # ( d(v) = INT_MAX<br>d(1) =0 |
|----------------------------------------------------------------------------------------------|-------------------------------|
| $-iy \left(d(u) + wt(u v) < d(v1)^{\xi} d(v1) = d(u) + wt(u,v)$ $stop = falu;$ $pve[v] = u;$ | I V                           |
| d[v] = d[u] + wt(u,v) $stop = falu;$ $pre[v] = u;$                                           |                               |
| pre[v]'=u;                                                                                   | d[v] = d[u] + wt(u,v)         |
|                                                                                              | pre[v]'=u;                    |
| if (stop==true) break;                                                                       | if (stop==true) break;        |
| sutun d;                                                                                     | sutun d;                      |
| Te: 0( N*E)                                                                                  | Te: o( N*E)                   |
| Se: 0(1) /0(N)                                                                               | Se: 0(1) /0(N)                |
|                                                                                              |                               |
|                                                                                              |                               |
|                                                                                              |                               |