Analysis and Control of Collective Dynamics in Brain Networks of Oscillators

Synchronization in the Brain

Synchronization phenomena are ubiquitous in neural systems

in health...

- ▶ information processing
- memory storage/retrieval
- motor coordination
- circadian rhythms

...and disease

- dementias (Parkinson's)
- epilepsy and seizures
- ▷ neurological damage

Characterization and control of synchronization are of paramount importance... how to do it?

1

Brain Networks of Oscillators

connectivity parcellation

brain network

 $\, \triangleright \, \, \mathsf{nodes} \, \leftarrow \, \mathsf{brain} \, \, \mathsf{regions} \, \,$

 \triangleright edges \leftarrow axonal bundles

Kuramoto Oscillator

$$\dot{ heta}_i(t) = \omega_i + \sum_{j
eq i} a_{ij} \sin(heta_j(t) - heta_i(t))$$

 $\triangleright \theta_i$: phase $\triangleright \omega_i$: natural frequency $\triangleright a_{ii}$: coupling strength

[Cabral $et\ al.$, NeuroImage 2011]

each Kuramoto
oscillator in the brain
network represents
a neural population
(brain region)

phase trajectories represent neural activity

synchronization analysis of coupled oscillators!

Cluster Synchronization

for a network partition $\mathcal{P} = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$: phases of the oscillators belonging to the same cluster \mathcal{C}_i evolve synchronized

Cluster Synchronization Manifold

$$\mathcal{S}_{\mathcal{P}} = \{\theta \mid \theta_i = \theta_j \text{ for all } i, j \in \mathcal{C}_k, k = 1, \dots, m\}$$

$$\dot{\theta}_i = \omega_i + \sum_{j \neq i} a_{ij} \sin(\theta_j - \theta_i)$$

invariance of \mathcal{S}_P iff:

- (a) $\omega_i = \omega_i$ in the same cluster
- (b) balanced inter-cluster couplings:

$$\sum_{k \in \mathcal{C}_{\ell}} a_{ik} - a_{jk} = 0 \text{ for every } i, j \in \mathcal{C}_{z}$$
 and $z, \ell \in \{1, \dots, m\}$, with $z \neq \ell$

stability of S_P if:

intra-cluster couplings \gg inter-cluster couplings

stability of S_P if:

heterogeneous natural frequencies across clusters

Control of Cluster Synchronization

 $A + \Delta$, $\omega + \mu$ minimally invasive

structural and

frequency corrections

damage or neurological disorders cause abnormal cluster synchronization

design of sparse optimal corrections to structure (a_{ii}) and frequencies (ω_i)

desirable

cluster synchronization

[Menara et al., IEEE CDC 2019]

desired cluster synch. (correlation of oscillatory neural activity time series)

Conclusion and References

In this work:

- > Synchronization phenomena are ubiquitous in the brain
- ▶ Characterization of cluster synchronization in brain networks of oscillators
- ▶ **Control** of cluster synchronization with localized minimally invasive interventions

References:

[J. Cabral et al., NeuroImage 2011], [T. Menara et al., ACC 2019], [T. Menara et al., IEEE CDC 2019], [T. Menara et al., IEEE TCNS 2020]

www.tommasomenara.com

tomenara@engr.ucr.edu