Motivation to use Asynchronous Circuits

- Asynchronous advantages vs. synchronous
 - no global clock
 - lower power
 - less noise
 - less EMI
- ITRS predicts likely shift from synchronous to asynchronous design styles
 - increase circuit robustness
 - decrease power
 - alleviate many clock-related issues
- ITRS shows that asynchronous circuits accounted for 17% of chip area in 2010, compared to 11% in 2008, and estimates they will account for 23% of the world's total chip area by 2014, 35% by 2019, and 49% by 2024

Comparison of Asynchronous Paradigms

Bounded-Delay

- Substantial Timing Analysis Required
 - bundled data convention
 - datapath delay must be matched in control path
- Substantial Glitch Power
- Worse-Case Performance
- Micropipelines is best known example

Delay-Insensitive

- Correct-by-Construction
 - multi-rail signals
 - completion detection
- Glitch Free
- Average-Case Performance
- Additional Advantages
 - very robust
 - tolerate process variations
 - tolerate power supply variations
 - tolerate vast temperature variations
 - design reuse is straightforward
 - easy to interface multi-rate circuits
 - reduced crosstalk

Comparison of Delay-Insensitive Paradigms

- Precharge Half-Buffer (PCHB) logic family
 - dynamic logic
 - synthesis performed at transistor-level
 - uses non-standard EDA tools
- Phased-Logic
 - transforms synchronous circuit to delay-insensitive
 - developed to ease timing constraints, not obtain speed and power benefits
- NULL Convention Logic (NCL)
 - synthesis performed at gate level
 - 27 fundamental state-holding gates plus inverting and resettable variations
 - can use standard EDA tools with slight modification
- Seitz's method, Anantharaman's approach, DIMS, Singh's method and David's method
 - synthesis performed at gate level
 - only one type of state-holding gate: the C-element

Commercial Asynchronous Endeavors

- Achronix (PCHB)
 - high-speed FPGAs
 - based on a synchronous interface with asynchronous core
 - packaged with software tools to convert synchronous designs to asynchronous logic
- Fulcrum Microsystems (PCHB)
 - targeting networking processing applications with asynchronous technology and EDA tools
 - PivotPoint SPI-4 switch chip
 - 10 Gbit speed and 200 ns total latency through the chip
 - conservative, low-leakage 130 nm process
 - FocalPoint 24-port switch chip
 - 10 Gbit speed and 200 ns total latency through the chip
- Handshake Solutions (synchronous/asynchronous combination)
 - focused on low-power advantages of clockless logic, where it's successful in the smart-card market
 - sold millions of 8-bit asynchronous microcontrollers
 - working with Royal Philips Electronics and ARM Ltd. on a low-power, 32-bit processor designed for the auto market
- Camgian/Theseus Logic (NCL)
 - low-power optimized asynchronous logic methodology based on commercial EDA tools
 - developing low-cost, highly integrated mixed-signal systems-on-chip for wireless sensor nodes
 - developed NCL implementation of Motorola HCS08 microprocessor
 - developed asynchronous FPGA based on Atmel AT40K family
- NanoWatt Design
 - utilizing patented Sleep Convention Logic (SCL) technology to design ultra-low power ICs for mobile electronic devices
- Ozark Integrated Circuits
 - utilizing asynchronous logic for extreme environment (e.g., temperature, radiation) electronics