On the Quality of the Initial Basin in Overspecified Neural Networks

By Itay Safran et al., 2016

Apul Jain, Yunyang Xiong

Introduction

- Deep learning has achieved remarkable success
- Real world applications

Introduction

- Deep learning has achieved remarkable success
- Real world applications

Little Theoretical explanation

Motivation

- Highly complex non-convex function with neural networks training
- In practice, it converges to a small minimal objective value in most cases

This Paper: Main Idea

- Focus on Random Initialization
- Identify conditions s.t. with high probability:
 - Initializing at a random point from which there is a monotonically decreasing path to a global minimum
 - o Initializing randomly at a **basin** with a small minimal loss value

This Paper: Two parts

Part 1: Focus on Initialization point

- Consider NN of arbitrary depth, weights are initialized at random → random starting point in the parameter space
- Under mild conditions on loss function and data set, as size † we are more likely to begin at a point from which there is a continuous strictly monotonically decreasing path to a global minimum

This Paper: Two parts

Part 2: Focus on 2-layer ReLU with good basin

- 2-layer ReLU Network -- non-convex optimization problem
- Define a partition of the parameter space into convex regions (basins)
- Objective function has a relatively simple, *basin-like structure*:
 - Every local minima of the objective function is global
 - All sublevel sets are connected, and in particular there is only a single connected set of minima, all global on that basin
- High prob. that a random initialization will land us at a basin with small minimum value*
- *Conditions: Low intrinsic data dimension, or a cluster structure

Notations

- **ReLU Network:** Computes $\mathbb{R}^d o \mathbb{R}^k$
- Each neuron computes: $\mathbf{x} \mapsto \begin{bmatrix} \mathbf{w}^{\top} \mathbf{x} + b \end{bmatrix}_{+}$ w is the weight vector and b is the bias while the ReLU activation function $[z]_{+} = \max\{0,z\}$
- For a layer of n neurons, let $\mathbf{b}=(b_1,\ldots,b_n)$ and $W=\begin{pmatrix} \cdots & \mathbf{w}_1 & \cdots \\ & \vdots & \\ \cdots & \mathbf{w}_n & \cdots \end{pmatrix}$
- ullet We can define a layer of n neurons as: ${f x}\mapsto [W{f x}+{f b}]_+$

Notations

• Define the output of the network $N: \mathbb{R}^d \to \mathbb{R}^k$ over the set of weights \mathcal{W} and an instance $\mathbf{x} \in \mathbb{R}^d$ by:

$$N(W)(\mathbf{x})$$

Loss function:

$$L_{S}\left(N\left(\mathcal{W}\right)\right) = \frac{1}{m} \sum_{t=1}^{m} \ell\left(N\left(\mathcal{W}\right)\left(\mathbf{x}_{t}\right), \mathbf{y}_{t}\right).$$

Part 1

Focus on Initialization point and Path to Minima

Initialization scheme

Assumption

- The weights of every neuron are initialized independently
- The vector of each neuron's weights (including bias) is drawn from a spherically symmetric distribution supported on non-zero vectors

Path to Global Minima

Recall Loss Function:

$$L(P(\mathcal{W})) = rac{1}{m} \sum_{t=1}^{m} \ell\left(N\left(\mathcal{W}
ight)\left(\mathbf{x}_{t}
ight), \mathbf{y}_{t}
ight).$$

Example: L-2 Loss

$$L(P(\mathcal{W})) = \frac{1}{m} \sum_{t=1}^{m} (N(\mathcal{W})(\mathbf{x}_t) - y_t)^2.$$

Path to Global Minima

To Prove:

- If loss is convex in predictions, \exists a **continuous path** in the parameter space \mathcal{W} of multilayer networks (of any depth) which is:
 - Strictly monotonically decreasing in the objective value
 - Can reach an arbitrarily small objective value, including the global minimum

$$L(P(\mathcal{W})) = \frac{1}{m} \sum_{t=1}^{m} (N(\mathcal{W})(\mathbf{x}_t) - y_t)^2.$$

If...

- Suppose $L: \mathbb{R}^{m \times k} \to \mathbb{R}$ is convex, initialization point: $\mathcal{W}^{(0)}$, and \exists a continuous path $\mathcal{W}^{(\lambda)}, \lambda \in [0,1]$ in the space of parameter vectors, starting from $\mathcal{W}^{(0)}$, and ending in $\mathcal{W}^{(1)}$ s.t. $(L(P(\mathcal{W}^{(1)})) < L(P(\mathcal{W}^{(0)}))$), and satisfies:
 - \circ For some $\epsilon > 0$, and any $\lambda \in [0,1]$, $\exists c_{\lambda} \geq 0$ s.t. $L(c_{\lambda} \cdot P(\mathcal{W}^{(\lambda)})) \geq L(P(\mathcal{W}^{(0)})) + \epsilon$.
 - o Initial point satisfies $L(P(\mathcal{W}^{(0)})) > L(\mathbf{0})$

Then...

• \exists a continuous path $\tilde{\mathcal{W}}^{(\lambda)}, \lambda \in [0,1]$ from the initial point $\tilde{\mathcal{W}}^{(0)} = \mathcal{W}^{(0)}$ to some point $\tilde{\mathcal{W}}^{(1)}$ satisfying $L(P(\tilde{\mathcal{W}}^{(1)})) = L(P(\mathcal{W}^{(1)}))$, along which $L(P(\tilde{\mathcal{W}}^{(\lambda)}))$ is strictly monotonically decreasing

Intuition:

- Linear dependence of output on last layer.
- Given the initial non-monotonic path $\mathcal{W}^{(\lambda)}$, we rescale the last layer's parameters at each $\overline{\mathcal{W}}^{(\lambda)}$ by some positive factor c (λ) depending on λ (moving it closer or further from the origin), which changes its output and hence its objective value

Review: Two conditions:

• For some $\epsilon > 0$, and any $\lambda \in [0,1]$, $\exists c_{\lambda} \geq 0$ s.t.

$$L(c_{\lambda} \cdot P(\mathcal{W}^{(\lambda)})) \geq L(P(\mathcal{W}^{(0)})) + \epsilon.$$

Satisfied by losses which get very large far away from origin

• Initial point satisfies $L(P(\mathcal{W}^{(0)})) > L(\mathbf{0})$

Can be shown to hold with close to prob 1/2 for losses discussed earlier

$$\mathbb{P}_{\mathcal{W}^{(0)}}\left[L(P(\mathcal{W}^{(0)})) > L(\mathbf{0})\right] \geq \frac{1}{2}\left(1 - 2^{-n_{h-1}}\right)$$

Part 2

Focus on 2-layer ReLU: Initialize at "good" basin

2-layer ReLU Networks

- First layer parameter **W** with **n** neurons
- Output neuron parameter v
- Network is defined as: $N_n\left(W,\mathbf{v}\right):\mathbb{R}^d\to\mathbb{R}$.
- Then Loss function is:

$$L_{S}\left(W,\mathbf{v}\right) \ \coloneqq \ \frac{1}{m}\sum_{t=1}^{m}\ell\left(N_{n}\left(W,\mathbf{v}\right)\left(\mathbf{x}_{t}\right),y_{t}\right) \ = \ \frac{1}{m}\sum_{t=1}^{m}\ell\left(\sum_{i=1}^{n}v_{i}\cdot\left[\left\langle\mathbf{w}_{i},\mathbf{x}_{t}
ight
angle
ight]_{+},y_{t}\right)$$

Basin

Definition 1. (Basin) A closed and convex subset B of our parameter space is called a basin if the following conditions hold:

- B is connected, and for all $\alpha \in \mathbb{R}$, the set $B < \alpha = \{ \mathcal{W} \in B : L_S(\mathcal{W}) \leq \alpha \}$ is connected.
- If $W \in B$ is a local minimum of L_S on B, then it is a global minimum of L_S on B.

We define the basin value Bas (B) of a basin B as the minimal value² attained:

$$\operatorname{Bas}\left(B\right)\coloneqq\min_{\mathcal{W}\in B}L_{S}\left(\mathcal{W}\right).$$

2-layer ReLU Basin Partition

Observation:

- 1. Partition parameter space s.t. $\operatorname{sign}\left(\langle \mathbf{w}_i, \mathbf{x}_t
 angle
 ight)$ and $\operatorname{sign}\left(v_i
 ight)$ are fixed
- 2. The objective function becomes: $\frac{1}{m} \sum_{t=1}^m \ell\left(\sum_{i \in I_t} v_i \langle \mathbf{w}_i, \mathbf{x}_t \rangle, y_t\right)$ for some index set $I_1, \ldots, I_m \subseteq [n]$.

Defines a Basin!

2-layer ReLU Basin Partition

Formally...

Definition 2. (Basin Partition) For any $A \in \{-1, +1\}^{n \times d}$ and $\mathbf{b} \in \{-1, +1\}^n$, define $B_S^{A, \mathbf{b}}$ as the topological closure of a set of the form

$$\{(W, v) : \forall t \in [m], j \in [n], \operatorname{sign}(\langle \mathbf{w}_j, \mathbf{x}_t \rangle) = a_{j,t}, \operatorname{sign}(v_j) = b_j \}.$$

2-layer ReLU - Bounding the basin value

Theorem 2. For any n, let α denote the minimal objective value achievable with a width n two-layer network, with respect to a convex loss ℓ on a training set S where each \mathbf{x}_t is a singleton. Then when initializing $(W, \mathbf{v}) \in \mathbb{R}^{n \times d} \times \mathbb{R}^n$ from a distribution satisfying Assumption 1, we have

$$\mathbb{P}\left[\textit{Bas}\left(W,\mathbf{v}\right)\leq lpha
ight]\geq 1-2d\left(rac{3}{4}
ight)^{n}.$$

2-layer ReLU - Power of Overspecification

Overspecified networks are better in terms of basin value

Lemma 2. Let $N_n(W, \mathbf{v})$ denote a two-layer network of size n, and let

$$(W, \mathbf{v}) = (\mathbf{w}_1, \dots, \mathbf{w}_n, v_1, \dots, v_n) \in \mathbb{R}^{nd+n}$$

be in the interior of some arbitrary basin. Then for any subset $I = (i_1, \ldots, i_k) \subseteq [n]$ we have

$$Bas(W, \mathbf{v}) \leq Bas(\mathbf{w}_{i_1}, \dots, \mathbf{w}_{i_k}, v_{i_1}, \dots, v_{i_k}).$$

Where the right hand side is with respect to an architecture of size k.

Can we guarantee more?

Consider special cases:

- Data with Low Intrinsic Dimension
- Clustered or Full-rank Data

Data With Low Intrinsic Dimension

- Large enough amount of overspecification, with high probability, the output will attain global minimum.
 - Intuitively, it is overfitting with overspecification.
 - Exponential number of neurons required.

Data With Low Intrinsic Dimension

Theorem 3. Assume each training instance \mathbf{x}_t satisfies $\|\mathbf{x}_t\| \leq 1$. Suppose that the training objective L_S refers to the average squared loss, and that $L_S(W^*, \mathbf{v}^*) = 0$ for some $(W^*, \mathbf{v}^*) \in \mathbb{R}^{n \times d} \times \mathbb{R}^n$ satisfying

$$|v_i^*| \cdot \|\mathbf{w}_i^*\| \le B \ \forall i \in [n],$$

where B is some constant. For all $\epsilon > 0$, if

$$p_{\epsilon} = \frac{1}{2\pi \left(rank\left(X \right) - 1 \right)} \left(\frac{\sqrt{\epsilon}}{nB} \sqrt{1 - \frac{\epsilon}{4n^2B^2}} \right)^{rank(X) - 1}$$

$$= \Omega \left(\left(\frac{\sqrt{\epsilon}}{nB} \right)^{rank(X)} \right), \qquad \text{rank(X) should be modest}$$

and we initialize a two-layer, width $c\lceil \frac{n}{p_{\epsilon}} \rceil$ network (for some $c \geq 2$), using a distribution satisfying Assumption 1, then

$$\mathbb{P}\left[Bas\left(W,\mathbf{v}\right) \le \epsilon\right] \ge 1 - e^{-\frac{1}{4}cn}.$$

Full-rank Data

- Training data comprise of k relatively small clusters.
 - Number of training examples m is less than dimension d, overfitting
 - o m > d, small clusters have a similar structure with low dimension data

Theorem 4. Assume rank (X) = m, and let the target outputs y_1, \ldots, y_m be arbitrary. For any n, let α be the minimal objective value achievable with a width n two-layer network. Then if $(W, \mathbf{v}) \in \mathbb{R}^{n \times d} \times \mathbb{R}^n$ is initialized according to Assumption I,

$$\mathbb{P}\left[\textit{Bas}\left(W,\mathbf{v}\right) \leq \alpha \right] \geq 1 - m \left(\frac{3}{4}\right)^n$$
. overfitting

Full-rank Data

Theorem 5. Consider the squared loss, and suppose our data is clustered into $k \leq d$ clusters. Specifically, we assume there are cluster centers $\mathbf{c}_1, \ldots, \mathbf{c}_k \in \mathbb{R}^d$ for which the training data $S = \{\mathbf{x}_t, y_t\}_{t=1}^m$ satisfies the following:

- $\exists \delta_1, \ldots, \delta_k > 0$ s.t. for all \mathbf{x}_t , there is a unique $j \in [k]$ such that $\|\mathbf{c}_j \mathbf{x}_t\| \leq \delta_j$.
- $\forall j \in [k] \ \frac{\delta_j}{\|\mathbf{c}_j\|} \le 2 \sin\left(\frac{\sqrt{2\pi}}{16d\sqrt{d}}\right)$ and $\forall j \in [k] \ \|\mathbf{c}_j\| \ge c$ for some c > 0.

clustering

- $\forall t \in [m] \|\mathbf{x}_t\| \leq B \text{ for some } B \in \mathbb{R}.$
- For some fixed γ , it holds that $|y_t y_{t'}| \leq \gamma \|\mathbf{x}_t \mathbf{x}_{t'}\|_2$ for any $t, t' \in [m]$ such that $\mathbf{x}_t, \mathbf{x}_{t'}$ are in the same cluster.

Let $\delta = \max_j \delta_j$. Denote as C the matrix which rows are $\mathbf{c}_1, \dots, \mathbf{c}_k$, and let $\sigma_{\max}\left(C^{\top}\right), \sigma_{\min}\left(C^{\top}\right)$ denote the largest and smallest singular values of C^{\top} respectively. Let $\mathbf{c}\left(\mathbf{x}_t\right) : \mathbb{R}^d \to \mathbb{R}^d$ denote the mapping of \mathbf{x}_t to its nearest cluster center \mathbf{c}_j (assumed to be unique), and finally, let $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_k) \in \mathbb{R}^k$ denote the target values of arbitrary instances from each of the k clusters. Then if $(W, \mathbf{v}) \in \mathbb{R}^{n \times d} \times \mathbb{R}^n$ is initialized from a distribution satisfying Assumption I,

$$\mathbb{P}\left[Bas\left(W,\mathbf{v}\right) \leq \mathcal{O}\left(\delta^{2}\right)\right] \geq 1 - d\left(\frac{7}{8}\right)^{n}$$

Summary

- Focus on Initial weight vector initialization point
- Analysis for 2-layer networks with ReLU

Limitations:

- Doesn't consider more general network such as multi-layer networks
- Doesn't guarantee that Stochastic Gradient Descent will necessarily find the global minimum along the monotonically decreasing path

Q&A

Thanks!

Appendix

Path to Minima: Theorem Proof

For any $\lambda \in [-1,2]$ define

$$v^{(\lambda)} = \begin{cases} L(P(\mathcal{W}^{(0)})) - \frac{\lambda}{2}\epsilon & \lambda \in [-1, 0] \\ \left(1 - \frac{\lambda}{3}\right) \cdot L(P(\mathcal{W}^{(0)})) + \frac{\lambda}{3} \cdot \max\{L(\mathbf{0}), L(P(\mathcal{W}^{(1)}))\} & \lambda \in [0, 2]. \end{cases}$$

Note: It's monotonic in λ

$$L(P(\mathcal{W}^{(0)})) + \epsilon > v^{(-1)} > v^{(0)} = L(P(\mathcal{W}^{(0)})) > v^{(2)} > \max\{L(\mathbf{0}), L(P(\mathcal{W}^{(1)}))\}$$

Path to Minima: Theorem Proof

By assumption for any $\lambda \in [0,1]$ $\exists c^{(\lambda)}$ s.t. $L(c^{(\lambda)} \cdot P(\mathcal{W}^{(\lambda)})) \geq L(P(\mathcal{W}^{(0)})) + \epsilon$.

We have:
$$L(c^{\operatorname{clip}(\lambda)} \cdot P(\mathcal{W}^{\operatorname{clip}(\lambda)})) > v^{(\lambda)}, \quad \operatorname{clip}(\lambda) = \min\{1, \max\{0, \lambda\}\}$$
 (1)

$$L(0 \cdot P(\mathcal{W}^{\text{clip}(\lambda)})) = L(\mathbf{0}) < v^{(\lambda)} \qquad \lambda \in [-1, 2], \tag{2}$$

Since L is convex and continuous, using (1) and (2) and IVT (Intermediate Val Th)

$$\forall \lambda \in [-1,2], \;\; \exists \; \tilde{c}^{(\lambda)} \in (0,c^{\operatorname{clip}(\lambda)}) \;\; \text{such that} \;\; L(\tilde{c}^{(\lambda)} \cdot P(\mathcal{W}^{\operatorname{clip}(\lambda)}) = v^{(\lambda)}.$$

 $ilde{c}^{(\lambda)}$ is unique

Path to Minima: **Theorem Proof**

At
$$\lambda = 0$$
, $L(\tilde{c}^{(0)} \cdot P(\mathcal{W}^{(0)})) = v^{(0)} = L(P(\mathcal{W}^{(0)}))$.

Based on the above observations, we have that $\tilde{c}^{(\lambda)}$, as a function of $\lambda \in [0,1]$, is continuous, begins at $\tilde{c}_0 = 1$, and satisfies $L(\tilde{c}^{(\lambda)} \cdot P(\mathcal{W}^{(\lambda)})) = v^{(\lambda)}$. Moreover, $v^{(\lambda)}$ is strictly decreasing in λ . Therefore, letting

$$\{ \tilde{\mathcal{W}}^{(\lambda)}, \lambda \in [0,1] \}$$
 (5) defines the monotonically decreasing path.