Introduction to Text-to-Image Models

HARVEY MANNERING

Overview

- 1. Technical Details
- 2. Applications
- 3. Ethics Considerations

How Do Text-to-Image Models Work?

Text-to-Image Model

Text-to-image models typically work in two stages:

Text-to-Image Model

Text-to-image models typically work in two stages:

1. Encoding Text using CLIP

Text-to-Image Model

Text-to-image models typically work in two stages:

- 1. Encoding Text using CLIP
- 2. Generate an image using that CLIP encoding

a blackand-white silhouette of a horse

a page of text about segmentation a cup of coffee on a saucer

a blackand-white silhouette of a horse

a page of text about segmentation a cup of coffee on a saucer

Diffusion generates realistic images from random noise

It works by training a denoising neural network

When generating the image, we start from pure noise then repeatedly denoise and renoise our image

Diffusion is very slow and very expensive

We can model diffusion as a Markov chain, when every step of the diffusion process is dependent only on the previous step

We can model diffusion as a Markov chain, when every step of the diffusion process is dependent only on the previous step

Forward Process: $v_1 x_0 + v_2 noise$

We can model diffusion as a Markov chain, when every step of the diffusion process is dependent only on the previous step

Stable Diffusion Model

Step 1: Train an autoencoder to shrink the image to a smaller latent space representation

Step 2: Train the diffusion model in the latent space for lower computational cost

Latent Space 64×64

 256×256

Stable Diffusion Model

How Can We Use Textto-Image Models?

Real World Applications

Al generated art (this picture caused controversy after winner the Colorado state fair's emerging digital artists award in 2022)

Drafting art works

Story boarding

Image editing

ControlNet

Allows stable diffusion to be finetuned so it can take in extra conditions

Input (User Scribble)

User Prompt

"a robot ox on moon, UE5 rendering, ray tracing"

ODISE

Segmentation can be done using internal features from stable diffusion

Open-vocabulary, meaning there is no predefined list of categories

Input Image

ODISE Segmentation

[5] Xu, Jiarui, et al. "Open-vocabulary panoptic segmentation with text-to-image diffusion models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

Enables a text-to-image model to represent a specific subject

Start with a pretrained stable diffusion model, then finetune on 3-5 images of a specific animal, landmark, person, landscape etc.

To prevent stable diffusion from forgetting old concept we also use prior preserving loss

Finetuning dataset

Finetuning dataset

Finetuning prompt

photo of zwx dog

Finetuning dataset

Finetuning prompt

photo of
zwx dog

Inference

photo of zwx dog
graduating with honours

Input images

w/o prior-preservation loss

with prior-preservation loss

Prior preserving loss prevent stable diffusion from forgetting old concepts and prevent over fitting

It is simply implemented by finetuning on outputs from the pretrained stable diffusion

This prevents the model from drifting too far from its initial state

What Are The Ethical Considerations?

Algorithmic Bias

Software engineers are ≈90% male, however one study found stable diffusion depicted software engineers as male 100% of the time.

This suggests that stereotypes are being amplified by text-to-image models

Better curation of training data is needed

Transforming a user's input prompt may also be helpful

OCCUPATIONS

"a software engineer"

"a housekeeper"

Digital Art or Digital Forgery?

For small datasets, diffusion models can just copy the training data

Overfitting and repeated data in the training set can also cause content replication

Even if image are not directly copied, copyrighted data exist within training data

References

- [1] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *International conference on machine learning*. PMLR, 2021.
- [2] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." *Advances in neural information processing systems* 33 (2020): 6840-6851.
- [3] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2022.
- [4] Zhang, Lvmin, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." *arXiv preprint arXiv:2302.05543* (2023).
- [5] Xu, Jiarui, et al. "Open-vocabulary panoptic segmentation with text-to-image diffusion models." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2023.
- [6] Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2023.
- [7] Bianchi, Federico, et al. "Easily accessible text-to-image generation amplifies demographic stereotypes at large scale." *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*. 2023.
- [8] Somepalli, Gowthami, et al. "Diffusion art or digital forgery? investigating data replication in diffusion models." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2023.
- [9] Wu, Chenfei, et al. "Visual chatgpt: Talking, drawing and editing with visual foundation models." arXiv preprint arXiv:2303.04671 (2023).