Asymptotic Theory for Common Principla Component Analysis

Ganchao Wei

October 13, 2021

Overview

- Introduction
- Asymptotic distribution of MLE
- 3 test for q hypothetical eigenvectors
- 4 inference for eigenvalues
- Applications

2/16

Introduction

Common principle component analysis (CPCA): the $p \times p$ covariance matrices of k populations can be diagonalized by the same orthogonal transformation.

The hypothesis of common principal components (CPC's).

$$\mathbf{H}_C: \boldsymbol{\beta}' \boldsymbol{\Sigma}_i \boldsymbol{\beta} = \boldsymbol{\Lambda}_i$$
, for $i = 1, \dots, k$

We can further arrange β according to the first group, i.e.

$$eta_1'\Sigma_1eta_1>eta_2'\Sigma_1eta_2>\ldots>eta_p'\Sigma_1eta_p$$

Notations & Assumptions:

- Σ_i are p.d.s.
- $\Lambda_i = diag(\lambda_{i1}, \dots, \lambda_{ip})$
- $n_i \mathbf{S}_i \sim W_p(n_i, \Sigma_i)$
- ullet The ML estimates are $\hat{eta}=(\hat{eta}_1,\ldots,\hat{eta}_p)$ and $\hat{m{\Lambda}}_i= extit{diag}(\hat{\lambda}_{i1},\ldots,\hat{\lambda}_{ip})$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Asymptotic distribution of MLE

The log-likelihood function of the k samples, up to an additive constant:

$$g(\Lambda_1,\ldots,\Lambda_k,\boldsymbol{\beta}|\mathbf{S}_1,\ldots,\mathbf{S}_k) = -\frac{1}{2}\sum_{i=1}^k n_i \left[\sum_{j=1}^p \left(\log \lambda_{ij} + \beta_j' \mathbf{S}_i \beta_j / \lambda_{ij}\right)\right]$$

Let $\lambda'_{(i)} = (\lambda_{i1}, \dots, \lambda_{ip})$, $n = n_1 + \dots + n_k$ and $r_i = n_i/n$. Then the information matrix is:

	$\lambda'_{(1)}$	$\lambda'_{(2)}$		$\lambda'_{(k)}$	β*′
λ ₍₁₎	$\frac{1}{2}nr_1\Lambda_1^{-2}$	0		0	
λ(2)	0	$\frac{1}{2}$ n r_2 Λ_2^{-2}	• • •	0	
:	:	:		: :	\mathbf{G}'
$\lambda_{(k)}$	0	0		$\frac{1}{2}nr_k\Lambda_k^{-2}$	
β*		\mathbf{G}			A

, where **G** and **A** are not yet determined.

4 / 16

Ganchao Wei CPCA inference October 13, 2021

Asymptotic distribution of MLE (eigenvalues)

Use the asymptotic normality of $n_i \mathbf{S}_i$ to get the asymptotic univariate distribution of $\hat{\lambda}_{ij}$ as

$$\sqrt{n_i}(\hat{\lambda}_{ij} - \lambda_{ij}) \sim N(0, 2\lambda_{ij}^2)$$

From the Fisher information, the joint asymptotic distribution of $(\hat{\lambda}'_{(1)},\ldots,\hat{\lambda}'_{(k)})'$ has covariance matrix

$$\frac{1}{n}\mathbf{V}_{\lambda} = \begin{bmatrix} \begin{pmatrix} \frac{1}{2}nr_{1}\boldsymbol{\Lambda}_{1}^{-2} - \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 - \cdots & -\frac{1}{2}nr_{k}\boldsymbol{\Lambda}_{k}^{-2} \end{pmatrix} - \mathbf{G}'\mathbf{A}^{-1}\mathbf{G} \end{bmatrix}^{-1}$$

By comparison, we can see that G = 0. Therefore,

Theorem 1. The statistics $\sqrt{n_i}(\hat{\lambda}_{ij}-\lambda_{ij})$ are asymptotically $(\min_{1\leq i\leq k}n_i\to\infty)$ distributed as $N(0,2\lambda_{ij}^2)$, independent of each other and independent of the $\hat{\beta}_j$.

Ganchao Wei CPCA inference October 13, 2021 5/16

Asymptotic distribution of MLE (eigenvectors)

Let V_i be the asymptotic covariance matrix of $\sqrt{n_i} vec(\hat{\beta}) = \sqrt{n}(\hat{\beta}'_1, \dots, \hat{\beta}'_k)'$. Further, define:

$$g_{jh}^{(i)} = \frac{1}{r_i} \frac{\lambda_{ij} \lambda_{ih}}{\left(\lambda_{ij} - \lambda_{ih}\right)^2} \qquad (h \neq j)$$

Then, we get

Asymptotic distribution of MLE (eigenvectors)

Since V_i are simultaneously diagonalizable, there exists an orthogonal matrix $\mathbf{H} = (\mathbf{H}_1, \mathbf{H}_2)$, where $\mathbf{H}_1 = (\mathbf{h}_1, \dots, \mathbf{h}_s)$, s = p(p-1)/2 s.t.

$$\mathbf{H}'\mathbf{V}_{i}\mathbf{H} = \begin{pmatrix} \mathbf{E}_{i} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \qquad (i = 1, \dots, k),$$

Then we can get the information matrix for the transformed variable $\mathbf{u} = \mathbf{H}_1' vec \hat{\boldsymbol{\beta}}$ as

$$\mathbf{A}^* = \sum_{i=1}^k \mathbf{A}_i^* = n \operatorname{diag} \left(\sum_{i=1}^k e_{i1}^{-1}, \dots, \sum_{i=1}^k e_{is}^{-1} \right)$$
$$= n \operatorname{diag} (e_1^{-1}, \dots, e_s^{-1}),$$

Ganchao Wei

Asymptotic distribution of MLE (eigenvectors)

Then transform back and write out H_1 explicitly, we can get

THEOREM 2. The asymptotic distribution of $\sqrt{n} \operatorname{vec}(\hat{\beta} - \beta)$ is normal with mean 0 and covariance matrix V given by

where the g_{jl} are defined in (2.5), and the β_j are the (common) eigenvectors of the k matrices Σ_i .

- 4日 > 4日 > 4目 > 4目 > 1目 - 990

Ganchao Wei CPCA inference October 13, 2021 8 / 16

An asymptotic test for q hypothetical eigenvectors

The null hypothesis is $H_q: (\beta_1, \ldots, \beta_q) = (\beta_1^0, \ldots, \beta_q^0)$, which is based on the submatrix of asymptotic covariance \boldsymbol{V} . Denote the submatrix as $\boldsymbol{V}(q)$. $\boldsymbol{V}(q)$ has following eigenstructure:

Theorem 3. The upper left $pq \times pq$ submatrix of V has the following eigenvectors and eigenvalues:

- 1. $\binom{q}{2}$ eigenvectors (one for each pair j, l with $1 \le j < l \le q$) have $\beta_l / \sqrt{2}$ in position j and $-\beta_j / \sqrt{2}$ in position l. All other positions are zero, and the associated roots are $2g_{il}$.
- 2. (p-q)q eigenvectors (one for each combination of indices j, l such that $1 \le j \le q < l \le p$) have β_l in position j and 0 in all other positions; the associated roots are g_{il} .
- 3. $\binom{q}{2}$ eigenvectors (one for each pair of indices j, l such that $1 \le j \le l \le q$) can be chosen to have $\beta_l/\sqrt{2}$ in position j, $\beta_j/\sqrt{2}$ in position l, and zeros in all other positions. The associated roots are zero.
- 4. q eigenvectors (one for each j with $1 \le j \le q$) can be chosen to have β_j in position j and zeros elsewhere. The associated roots are zero.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

An asymptotic test for q hypothetical eigenvectors

Let Φ be a diagonal matrix with diagonal elements equal to the nonzero roots of V(q), i.e. $\Phi = diag(2g_{12}, \dots, 2g_{q-1,1}, g_{1,q+1}, \dots, g_{qp})$. Also let the columns of matrix Γ be given by the characteristic vectors associated with the nonzero roots. Then.

$$\mathbf{z}'\mathbf{z} = \begin{pmatrix} \hat{\boldsymbol{\beta}}_{1} - \boldsymbol{\beta}_{1} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{q} - \boldsymbol{\beta}_{q} \end{pmatrix}' \boldsymbol{\Gamma} \boldsymbol{\Phi}^{-1} \boldsymbol{\Gamma}' \begin{pmatrix} \hat{\boldsymbol{\beta}}_{1} - \boldsymbol{\beta}_{1} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{q} - \boldsymbol{\beta}_{q} \end{pmatrix}$$
$$= \frac{1}{4} \sum_{j=1}^{q-1} \sum_{l=j+1}^{q} g_{jl}^{-1} (\boldsymbol{\beta}_{l}' \hat{\boldsymbol{\beta}}_{j} - \boldsymbol{\beta}_{j}' \hat{\boldsymbol{\beta}}_{l})^{2}$$
$$+ \sum_{j=1}^{q} \sum_{l=q+1}^{p} g_{jl}^{-1} (\boldsymbol{\beta}_{l}' \hat{\boldsymbol{\beta}}_{j})^{2}.$$

follows $\chi^2(t)$ distribution.

CPCA inference

10 / 16

An asymptotic test for q hypothetical eigenvectors

This leads to the distribution of the test statistics for $H_q:(\beta_1,\ldots,\beta_q)=(\beta_1^0,\ldots,\beta_q^0)$:

Theorem 4. Under H_q as defined in (3.1), the statistic

(3.3)
$$X^{2}(H_{q}) = n \left[\frac{1}{4} \sum_{j=1}^{q-1} \sum_{l=j+1}^{q} \hat{g}_{jl}^{-1} (\hat{g}_{l}^{j} \beta_{j}^{0} - \hat{g}_{j}^{j} \beta_{l}^{0})^{2} + \sum_{j=1}^{q} \sum_{l=q+1}^{p} \hat{g}_{jl}^{-1} (\hat{g}_{l}^{j} \beta_{j}^{0})^{2} \right]$$

is asymptotically distributed as chi square with q(p-(q+1)/2) degrees of freedom.

The paper also illustrated 2 special cases: (1) q = 1 and (2) q = p.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Ganchao Wei CPCA inference October 13, 2021 11/16

Asymptotic inference for eigenvalues

Similar to regular PCA, we may need to discard CPC's with relatively small variances.

Let $c_i = \sum_{j=1}^q \lambda_{ij}$, $d_i = tr\Sigma_i - c_i$, $f_i = d_i/tr\Sigma_i$ (relative contribution to trace for the last p-q CPC's) and f_0 be the pre-specified fraction. Then,

$$z_{i} = \frac{\sqrt{n_{i}} \left[(1 - f_{0}) \hat{d}_{i} - f_{0} \hat{c}_{i} \right]}{\left(2 \left[f_{0}^{2} \sum_{j=1}^{q} \hat{\lambda}_{ij}^{2} + (1 - f_{0})^{2} \sum_{j=q+1}^{p} \hat{\lambda}_{ij}^{2} \right] \right)^{1/2}} \sim N(0, 1)$$

when $f_i = f_0$ (null hypothesis).

So for testing the H_1 : all f_i are less than or equal to f_0 , we can just reject the hypothesis if

$$\max_{1 \le i \le k} z_i > z_\beta$$
 with $\beta = 1 - (1 - \alpha)^{1/k}$,

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

12 / 16

LRT for sphericity of p-q CPC's

In PCA, the motivation for testing equality of p-q characteristic roots stems from the model $\Sigma = \Psi + \sigma^2 \textbf{\textit{I}}_p$, where Ψ is p.s.d. of rank q. In CPCA, we can consider similar model for each group, i.e. $\Sigma_i = \Psi_i + \sigma_i^2 \textbf{\textit{I}}_p$, with Ψ_i be simultaneously diagonalizable and of rank q. This is equivalent as the following test (**hypothesis of partial sphericity**):

$$H_{\mathcal{S}}: \lambda_{i,q+1} = \ldots = \lambda_{ip}$$

Putting
$$H_S: \lambda_{i,q+1} = \ldots = \lambda_{ip} = \lambda_i^*$$
, we get

$$\begin{aligned} &-2g(\boldsymbol{\Lambda}_{1},\ldots,\boldsymbol{\Lambda}_{k},\boldsymbol{\beta}|\mathbf{S}_{1},\ldots,\mathbf{S}_{k}) \\ &= \sum_{i=1}^{k} n_{i} \left[\sum_{j=1}^{q} \left(\log \lambda_{ij} + \boldsymbol{\beta}_{j}' \mathbf{S}_{i} \boldsymbol{\beta}_{j} / \lambda_{ij} \right) \right. \\ &\left. + (p-q) \log \lambda_{i}^{*} + \left(\sum_{j=q+1}^{p} \boldsymbol{\beta}_{j}' \mathbf{S}_{i} \boldsymbol{\beta}_{j} \right) \middle/ \lambda_{i}^{*} \right) \right] \end{aligned}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Ganchao Wei CPCA inference October 13, 2021 13 / 16

LRT for sphericity of p-q CPC's

After some algebra, we can get the LRT test statistic:

$$X_{S}^{2} = \sum_{i=1}^{k} n_{i} \log \frac{(\tilde{\lambda}_{i}^{*})^{p-q} \prod_{j=1}^{q} \tilde{\lambda}_{ij}}{\prod_{j=1}^{p} \hat{\lambda}_{ij}}$$

The null distribution of X_s^2 is asymptotically $\chi^2((p-q-1)(p-q+2k)/2)$. The paper also provided the approximated statistic:

$$X_S^2(\text{approx}) = \sum_{i=1}^k n_i \log \frac{\left(\hat{\lambda}_i^*\right)^{p-q}}{\prod_{j=q+1}^p \hat{\lambda}_{ij}}$$

But we need to be careful: since $X_S^2(approx) \ge X_S^2$, the approximate statistic can be used to accept H_S , but not necessarily to reject it.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Ganchao Wei CPCA inference October 13, 2021 14/16

Applications

Data: 2 groups (24 males and 24 females), with 3 features. We do log-transformation of data because of their relationship to allometry. The data and MLE's are shown in the table:

Table 1

Common principal component analysis of turtle carapace dimensions,
transformed logarithmically.

(a) Sample covariance matrices^a

(b) Variances of CPC's and eigenvalues of S,

males	$\hat{\lambda}_{1,i}$	2.3148	0.0729	0.0385
	eigenvalues	2.3303	0.0599	0.0360
females	$\hat{\lambda}_{2i}$	6.7135	0.0807	0.0538
	eigenvalues	6.7200	0.0751	0.0530

(c) Coefficients of CPC'sb

$$\hat{\boldsymbol{\beta}}_1 = \begin{pmatrix} 0.6406 \\ 0.4905 \\ 0.5907 \end{pmatrix} \begin{pmatrix} (0.013) \\ (0.015) \\ (0.016) \end{pmatrix} \qquad \hat{\boldsymbol{\beta}}_2 = \begin{pmatrix} -0.3839 \\ -0.4617 \\ -0.7997 \end{pmatrix} \begin{pmatrix} (0.182) \\ (0.201) \\ (0.032) \end{pmatrix} \qquad \hat{\boldsymbol{\beta}}_3 = \begin{pmatrix} -0.6650 \\ 0.7391 \\ 0.1075 \end{pmatrix} \begin{pmatrix} (0.105) \\ (0.126) \\ (0.218) \end{pmatrix}$$

Applications

Test 1: if allometric growth is true, then the first PC of log-data should be $\beta_1' = (1, \dots, 1)/\sqrt{p}$. Therefore, the test is

 $H_0: \beta_1=\beta_1^0=(1,\ldots,1)'/\sqrt{3}$ The test statistic $X^2(H_1)=46.17$, which follows $\chi^2(2)$ under null. \Rightarrow reject the null.

Test 2: test H_S : $\lambda_{i2} = \lambda_{i3}$ for i = 1, 2 (simultaneous sphericity of the second and third CPC's). The resulting statistic is $X_S^2(approx) = 3.24$, which (approximately) follows $\chi^2(3)$ under the null. \Rightarrow fail to reject. Taking into consideration the relative smallness of these 2 roots in both groups \Rightarrow

- the 3 shell dimensions are distributed about a single principal axis ("size") and 2 minor axes.
- the main axis having the same orientation in space for both groups.