

TIES483 Nonlinear Optimization

Decision-making under Uncertainty (part1)

spring 2022

Contents

- Uncertainty
- Different types of uncertainty
- Why it should be treated
- How to handle uncertainty
- Dealing with uncertainty in (MO)O
- Traditional and novel approaches

Learning outcomes

- To understand the importance of handling uncertainty in real-world problems
- To understand different types of uncertainty in (MO)OPs
- To understand how to deal with uncertainty in (MO)OPs
- Example approaches

Decision-making under uncertainty

- So far, we assumed that all the required information are certainty known.
- i.e. all the parameters, objectives, constraints are certain without any variation.
- However, most of the decisions in real-life problems need to be made in the absence of complete knowledge about the consequences of the decision.
- The presence of uncertainty brings more complexity to the problem.

- If a complete detailed map were reached; i.e. we know everything, with absolute certainty
- Consequences of all alternatives could be seen and compared → Choose the most preferred one.
- However, sometimes, the decisions need to be made when the complete, detailed map is unavailable.
- Lack of any details in the map could be viewed as uncertainty.

Different definitions of uncertainty

- "Any deviation from the unachievable ideal of completely deterministic knowledge
- of the relevant system" [Walker et al., 2003].
- "At a most fundamental level, uncertainty relates to a state of the human mind,
- i.e. lack of complete knowledge about something" [Stewart, 2005].
- "Incomplete information about a particular subject" [Ascough II et al., 2008].
- "Lack of confidence in knowledge related to a specific question" [Sigel et al., 2010].
- "In general, uncertainty can be defined as limited knowledge about the future, the
- past, or current events" [Walker et al., 2013a].

Important note!

- Uncertainties are not merely caused by the lack of knowledge and information
- Uncertainty can exist in a situation where lots of information are available
- However, new knowledge can either increase or decrease uncertainty
- New information and knowledge on a complex process can unfold previously unknown uncertainties
- In this case, more knowledge clarifies that the processes are more complex or that our cognition is more limited than previously thought

- Three sources/dimensions of uncertainty related to modelbased decision support exercises:
 - Nature:
 - Variability (Aleatory) Alea (Latin) → Dice
 - Epistemic (Limited knowledge)

Different sources of the nature of uncertainty

Three sources/dimensions of uncertainty related to model-based decision support exercises:

- Nature:

- Variability (Aleatory) Alea (Latin) → Dice
- Epistemic (Limited knowledge)

Location:

The where the uncertainty manifests itself within the model complex (Models, Outcomes, Weights, etc.)

- Internal (DM judgement and preferences)
- External (lack of knowledge about outcomes)

Author(s)	Different categories				
	Uncertainties expressed during	What might happen or what can be done			
	modeling	Meaning/ambiguity			
		Related decisions			
		Physical randomness or lack of knowledge			
Eveneb [1005]	Uncertainties expressed during	The evolution of future beliefs and performances			
French [1995]	exploration of the models	Judgments			
	 	The accuracy of calculations			
	Uncertainty expressed during	Appropriateness of a descriptive model			
	interpretation	Appropriateness of a normative model			
	·	the depth of analysis			
	Context				
	37 11	Structure			
	Model	Technology			
Walker et al. [2003]		Controllable			
	Input	Uncontrollable			
	parameter				
	Model outcome				
C4 [000E]	Internal				
Stewart [2005]	External				
	Internal variability of the systen	n			
Hawkins and Sutton [2009]	Model Uncertainty				
	Scenario Uncertainty				
	The value system(s) to be used	to rank alternative policies			
Marchau et al. [2010]	The system models				
	How the future will develop				
	External Forces				
	Relations within a system				
Kwakkel and Walker [2010]	Outcomes of interest				
	Weights				
	Context				
	System model				
Walker et al. [2013b]	System Outcome				
	Weights				
	Weights on outcome				
	weights on outcome	<u></u>			

Different classifications of the location of uncertainty.

UNIVERSITY OF IYVÄSKYI

- Three sources/dimensions of uncertainty related to modelbased decision support exercises:
 - Nature:
 - Variability (Aleatory)
 - Epistemic (Limited knowledge)
 - Location:

The where the uncertainty manifests itself within the model complex (Models, Outcomes, Weights, etc.)

- Internal (DM judgement and preferences)
- External (lack of knowledge about outcomes)
- Depth or Level:

The where the uncertainty manifests itself along the spectrum between absolute certainty and total ignorance.

Shavazipour [2018]	ıty)	Mild uncertain	ty (First-degree)	Moderate uncertainty (Second-degree)		Deep uncertainty (Third-degree)	
Walker et al. [2013a]	ecrtair	Level 1 (A clear enough future)	Level 2 (Alternate futures with probabilities)	Level 3 (Alternate futures with ranking)	Level 4 (Multiplicity of futures)	Level 5 (Unknown future)	al ignora
Walker et al. [2003]	plete	statistical uncertainty		scenario uncertainty	Recog Reducible	gnized ignorance Irreducible	(tota
Kwakkel et al. [2010]	(con	Shallow Uncertainty (Level 1)		Medium Uncertainty (Level 2)	Deep Uncertainty (Level 3)	Recognized Ignorance (Level 4)	ainty
Courtney [2001]	f degree 0	Level 1 (so low that the traditional methods that employ point forecasts can be used with great success)	Level 2 (manager can identify a set of distinct possible outcomes, one of which will occur)	Level 3 (manager can bound the range of possible outcomes)		Level 4 (analysis cannot even bound the range of possibilities)	of uncerta
Morgan et al. [1992]	nty o	Uncertainties can be treated through probabilities Uncertainties cannot be			tainties cannot be treated pro-	probabilistically	
Quade [1989]	ertai	Stochastic uncertainty			Real uncertainty	ity de	
Knight [1921]	$\mathbf{U}_{\mathbf{nc}}$	Risk				Uncertainty	Infinity

Different classifications of the depth of uncertainty.

- > We use the term degree of uncertainty as depth or level of uncertainty.
- ➤ Uncertainty of degree '0' as absolute certainty or deterministic knowledge.
- ➤ Uncertainty of infinity degree as total ignorance.

Degrees of Uncertainty

- Absolute Certainty (clear enough future deterministic)
- Mild uncertainty (1st): Outcomes can be enumerated, and probabilities (or probability distribution) are specified (probable futures).

 Moderate uncertainty (2nd): Outcomes can be enumerated but probabilities are difficult to specify generally (few possible/plausible futures).

• Deep uncertainty (3rd): Outcomes cannot be completely enumerated, so that, probabilities are not definable (many plausible futures).

No nothing

Absolute Certainty	Mild	Moderate	Deep	$Total \ Ignorance$
0	1	2	3	∞

A more general definition of Deep Uncertainty

- A situation in which the relevant actors do not know or cannot agree upon:
 - how likely or plausible various future states are
 - how the system works (or would work)
 - how to value the various outcomes of interest

Dealing with uncertainty

Why must uncertainty be treated?

Dealing with uncertainty

Why must uncertainty be treated?

- Many people have ignored uncertainty for many years
- Still, some try to avoid the higher degrees of uncertainty
- However, they must face this challenge eventually

Why must uncertainty be treated?

COVID-19 Pandemic (2019-?)

- In 2018: The probability of an extreme epidemics was < 0.5 percent in a year
- 31.12.2019: The first COVID-19 case is reported
- 31.08.2021: the probability of a pandemic with similar impact to COVID-19 is about 2% in any year*
- 15.09.2021: most countries removed the restrictions and said the pandemic was over
- 10.11.2021: 250 million cases, > 5 million death, ...
- 21.11.2021: a new variant has found in South Africa (Omicron)
- 14.12.2021: many restrictions came back
- 01.02.2022: many goverments say we are entering the endemic Covid. (Do we??)
- 21.02.2022: > 424 million cases, > 5.89 million death, + 4996 death since yesterday

Why must uncertainty be treated?

A major challenge is the requirement to accept, understand, and manage uncertainty, since:

- 1. Not all uncertainties can be eliminated;
- 2. Ignoring uncertainty limits our ability to make corrective action in the future and result in positions that could have been avoided;
- 3. Ignoring uncertainty can throw away the opportunity of studying real-world problems, and/or lead to get some unsustainable approaches.

Dealing with uncertainty

- Traditional applied scientific works usually suppose that the existing uncertainties
 are caused by either
 - Lack of knowledge Uncertainty reduction by increasing the information
 - Random variation → Stochastic processes and statistical analysis

Optimization under uncertainty

- Mild uncertainty, which is commonly encountered by decision makers in short-term planning, is mostly treated by statistical approaches and probability theory while long-term programming, which largely involves deeper uncertainties, cannot deal with regular probability models and regular statistic approaches.
- We need to use some dynamic approaches which could be more robust, adaptive.

Moltiobjective optimzation under uncertainty

$$\max F(x,\omega)=(f_1(x,\omega),\dots,f_k(x,\omega))$$
 s.t.
$$x\in X(\omega)=\{g_r(x,\omega)\leq b_r(\omega),\, r=1,\dots,R\}$$

$$x\in D,\,\omega\in\Omega$$

- $F(x,\omega) = (f_1(x,\omega), ..., f_k(x,\omega))$ is a vector of k uncertain objectives,
- $g_r(x,\omega)$ and $b_r(\omega)$ describe uncertain constraints (defined on an uncertainty set Ω , could be discrete or continuous),
- (Ω, Ξ, p) is a probability space.
- $x = (x_1, ..., x_n)$ is an n-dimensional decision vector.
- Stochastic process (Random parameters)
- Scenario-based (different solutions for different plausible scenarios)
- Robust (A robust solution which works well for the worst-case scenario)
- Fuzzy numbers/logic (Different membership functions)
- Dynamic process (Multi-period decision process)

Stochastic Multi-Objective problems (Mild uncertainty)

- Stochastic programming problems:
- "If in a problem some parameters take unknown values at the time of making a decision, and these parameters are random variables, then the resulting problem is called a stochastic programming problem" [Caballero et al., 2001].
- Therefore, the Stochastic Multi-Objective Optimization Problem (SMOOP) approach developed MOOP models in the presence of random parameters with a known or unknown probability distribution.
- Usually, assume that the probability distribution is known or can be approximated via sampling, tests, experiences and expertises, etc → Mild uncertainty
 - Note. They may fail in determining accurate values for the probability distribution

$$\max F(x,\omega)=(f_1(x,\omega),\dots,f_k(x,\omega))$$
 s.t.
$$x\in X(\omega)=\{g_r(x,\omega)\leq b_r(\omega),$$
 r= 1, ... , R
$$x\in D,\omega\in\Omega$$

- $F(x, \omega) = (f_1(x, \omega), ..., f_k(x, \omega))$ is a vector of k random objectives (assume the joint distribution of the random variables is known),
- $X(\omega) = \{g_r(x, \omega) \text{ and } b_r(\omega)\}$ describes random constraints (defined on probability space (Ω, Ξ, p)),
- D is a deterministic convex set.

Stochastic Multi-Objective problems (Mild uncertainty) Solution approches

- Maximizing k stochastic objectives under R stochastic constraints
- Usually transform to an equivalent deterministic problem
 - Scalarization (the stochastic transformation): First, transforms to a stochastic single-objective problem (e.g Stochastic Goal Prpgramming);
 - Non-scalarization (the multiobjective transformation): First, transforms to a deterministic MOP (e.g. STRANGE, PROMISE)
 - Expected value efficient solutions

$$\max (\mathbb{E}[f_1(x, \omega)], ..., \mathbb{E}[f_k(x, \omega)])$$

s.t. $x \in X(\omega), x \in D, \omega \in \Omega$

- For both transformations, random constraints have to be addressed first
- In many other situations, the probability distribution is unknown and information about possible outcomes is limited (moderate and deep uncertainty)
- > We need different approaches such as DMDU, Robust or Scenario-based methods

- Abdelaziz, Fouad Ben. "Solution approaches for the multiobjective stochastic programming." European Journal of Operational Research 216.1 (2012): 1-16.
- Gutjahr, Walter J., and Alois Pichler. "Stochastic multi-objective optimization: a survey on non-scalarizing methods." Annals of Operations Research 236.2 (2016): 475-499.

How can we deal with uncertainty?

General approaches

- 1. The predict and act approaches:
 - a. Assume the future is knowable
 - → Predict the future
 - → Find the optimal decision the single predicted future.

Bad News: Most of the predictions are failed.

Benjamin Disraeli (Former British Prime Minister - 1804 - 1881)

What we anticipate seldom occurs; what we least expected generally happens

Some evidences: Economists failures

A Confounding Decade

Since 2009 economists' projections of interest rates and unemployment (shown with year made) have consistently proved too high.

Three-month Treasury bill

Sources: Blue Chip Economic Indicators (forecasts); Federal Reserve Bank of St. Louis (actual T-bill, unemployment rates)

Kathryn Tam/THE WALL STREET JOURNAL

Some evidences: Economists failures

The spotty track record of the Federal Reserve's economic projections.

Source: The Board of Governors of the Federal Reserve System.

Some evidences: Economists failures

How can we deal with uncertainty?

General approaches

- 1. The predict and act approach:
 - b. Assume the future will (probabilistically) look like the past
 - → Stochastic/Probabilistic models
 - → Find trend-based decision for the average/most probable scenario

(Like driving while looking only through rear-view mirror)

Some more evidences:

- Scandic Hotels
- Delta Air Lines
- Amazon
- Tesla

Traditional Approaches for Dealing with Uncertainty

Traditional applied scientific works usually suppose that the existing uncertainties are caused by either

Lack of knowledge → **Uncertainty reduction** by increasing the information

Random variation → Stochastic processes and statistical analysis

Nevertheless, some real problems involve deep uncertainty (e.g., uncertainties about the future)

Dealing with uncertainty in practice

- ➤ In practice, for complex problems (e.g., strategic planning) uncertainties are incompletely understood and potential outcomes not enumerable
- > Probabilities and derived concepts (Expectation, Variance) are not properly defined

The point.

In some real problems, *probability and statistics are not sufficient to represent our entire knowledge* and, therefore, some *supplementary tools* should be used in addition to probabilistic methods.

- Under such circumstances, a decision
 - Needs to relatively seize our objective(s), and
 - To be robust (i.e., perform satisfactorily under a broad variety of futures)

