Билеты по теоретической механике

В. Шаршуков

10 января 2022 г.

Содержание

1	Аф	финные евклидовы пространства	5		
	1.1	Аффинные пространства	5		
	1.2	Аффинные евклидовы пространства	6		
	1.3	Список литературы	6		
2	Аффинные координаты и преобразования				
	2.1	Аффинные и декартовы системы координат	7		
	2.2	Аффинные преобразования	8		
	2.3	Список литературы	9		
3	Kp	иволинейные системы координат	10		
	3.1	Определение	10		
	3.2	Замена координат	10		
	3.3	Список литературы	11		
4	Ло	кальные базисы криволинейных координат	12		
	4.1	Определение	12		
	4.2	Условие ортогональности	13		
	4.3	Список литературы	13		
5	Коэффициенты Ламе. Проекции скорости точки на оси кри-				
	вол	инейной системы координат	14		
	5.1	Общие сведения	14		
	5.2	Коэффициенты Ламе	14		
	5.3	Проекции скорости точки на оси криволинейной системы ко-			
		ординат	15		
	5.4	Список литературы	15		
6	Проекции ускорения точки на оси ортогональной криволи-				
	ней	ной системы координат	16		
	6.1	Список литературы	17		
7	Натуральный триэдр. Проекции ускорения точки на оси на-				
	тур	ального триэдра	18		
	7.1	Натуральный триэдр траектории	18		
	7.2	Разложение ускорения по осям натурального триэдра траек-			
		тории	20		
	7.3	Список литературы	22		
8	Определение кривизны траектории точки по движению				
	8.1	Кинематический метод	23		
	8 2	Список питературы	23		

9	Движение точки по прямой и по окружности	24			
	9.1 Прямолинейное движение	24			
	9.2 Движение по окружности	24			
	9.3 Список литературы	26			
10	Движение механической системы. Твёрдое тело. Число сте-				
	пеней свободы положения	27			
	10.1 Движение механической системы	27			
	10.2 Твёрдое тело	27			
	10.3 Число степеней свободы	28			
	10.4 Список литературы	29			
11	Группа движений аффинного евклидова пространства	30			
	11.1 Предварительные сведения	30			
	11.2 Группа движений твёрдого тела	31			
	11.3 Подгруппы движений	33			
	11.4 Список литературы	33			
12	Поступательное движение твёрдого тела	34			
	12.1 Список литературы	35			
13	Вращение твёрдого тела вокруг неподвижной оси	36			
	13.1 Определение. Основные понятия	36			
	13.2 Векторные формулы скорости и ускорения точек твёрдого те-				
	ла, вращающегося вокруг неподвижной оси	37			
	13.3 Список литературы	38			
14	Плоское движение твёрдого тела. Преобразование коорди-				
	нат	39			
	14.1 Список литературы	40			
15	Две геометрические теоремы о плоском движении	41			
	15.1 Список литературы	42			
16	Формула Эйлера. Следствие	43			
	16.1 Список литературы	45			
17	Центр скоростей. Центроиды. Теорема Пуансо	46			
	17.1 Мгновенный центр скоростей	46			
	17.2 Центроиды	47			
	17.3 Список литературы	47			
18	Ускорение точек твёрдого тела в плоском движении	48			
	18.1 Список литературы	52			
19	Задание движения твёрдого тела через углы Эйлера	53			
	19.1. Список литературы	55			

20	Две геометрические теоремы о движении твёрдого тела во-	
	круг неподвижной точки	56
	20.1 Список литературы	58
21	Проекции угловой скорости тела с неподвижной точкой	59
	21.1 Список литературы	59
22	Ускорение точек тела с неподвижной точкой	60
	22.1 Список литературы	61
23	Скорость точек твёрдого тела в общем случае	62
	23.1 Список литературы	63
24	Ускорение точек твёрдого тела в общем случае	64
	24.1 Список литературы	64
25	Сложное движение точки, основные понятия	65
	25.1 Список литературы	67
26	Теорема сложения скоростей в сложном движении точки	68
	26.1 Список литературы	68
27	Теорема сложения ускорений в сложном движении точки	69
	27.1 Список литературы	70
28	Теорема о сложении угловых скоростей твёрдого тела	71
	28.1 Список литературы	71
Сп	исок литературы	72

1 Аффинные евклидовы пространства

1.1 Аффинные пространства

Определение 1.1. Аффинным пространством называют множество E, связанное с векторным пространством \vec{E} отображением $f: E \times E \to \vec{E}$ со свойствами:

- 1. $(\forall a,b,c\in E)$ $\left(\overrightarrow{ab}+\overrightarrow{bc}+\overrightarrow{ca}=\overrightarrow{0}\in \overrightarrow{E}\right)$ (Соотношение Шаля);
- 2. $(\forall a \in E) \ \left(x \mapsto \overrightarrow{ax} \text{ биекция на } \overrightarrow{E}\right)$

Элементы множества \vec{E} называют *точками* аффинного пространства, а элементы множества $\vec{E}- c 60 \delta 0 d h \omega M u$ векторами.

Из свойств 1,2 можно получить следствия:

- 3. $(\forall a \in E) \ \left(\overrightarrow{aa} = \overrightarrow{0} \right);$
- 4. $(\forall a,b \in E) \ \left(\overrightarrow{ab} + \overrightarrow{ba} = \overrightarrow{0}\right)$ (иначе: $\overrightarrow{ab} = -\overrightarrow{ba}$);
- 5. $(\forall a \in E) \ (\forall \vec{h} \in \vec{E}) \ (\exists! b \in E) \ \left(\vec{ab} = \vec{h}\right)$ (вместо $\vec{ab} = \vec{h}$ пишут символически: $b = a + \vec{h}$);
- 6. $(\forall a \in E) \ (\forall \vec{h}, \vec{k} \in \vec{E}) \quad \left(a + (\vec{h} + \vec{k}) = (a + \vec{h}) + \vec{k}\right).$

Наряду со свободными векторами векторного пространства \vec{E} в аффинном пространстве вводят

Определение 1.2. Если a — точка аффинного пространства E, а \vec{h} — вектор связанного с ним векторного пространства \vec{E} , то пару (a,\vec{h}) называют вектором \vec{h} , закреплённым в точке a.

Каждому закреплённому вектору (a, \vec{h}) соответствует упорядоченная пара точек $(a, a + \vec{h})$, и каждой упорядоченной паре точек (a, b) соответствует закреплённый вектор (a, \vec{ab}) , поэтому закреплённым вектором называют также упорядоченную пару точек аффинного пространства.

Определение 1.3. Прямой, проходящей через точки A и B ($A \neq B$) аффинного пространства E, называют множество точек

$$l(A,B) = \left\{ M \in E \,|\, M = A + t \cdot \overrightarrow{AB}, \ t \in \mathbb{R} \right\}.$$

Множество l(A,B) можно считать упорядоченным, полагая, что точка $B_1 = A + t_1 \cdot \overrightarrow{AB}$ предшествует точке $B_2 = A + t_2 \cdot \overrightarrow{AB}$ тогда и только тогда, когда $t_1 < t_2$. В этом случае прямую l(A,B) будем считать направленной, или сонаправленной с вектором \overrightarrow{AB} .

Определение 1.4. *Размерностью* аффинного пространства E называют размерность связанного с ним векторного пространства \vec{E} .

1.2 Аффинные евклидовы пространства

Определение 1.5. Аффинное пространство E называется eвклидовым аффинным пространством, если связанное с ним векторное пространство \vec{E} евклидово, то есть на \vec{E} задано

- 1. скалярное произведение векторов $\vec{p}, \vec{h} \in \vec{E}$; обозначается как $\vec{p} \cdot \vec{h}, \ (\vec{p}, \vec{h})$ или $\left\langle \vec{p}, \vec{h} \right\rangle$;
- 2. евклидова норма вектора $\vec{p} \in \vec{E}$; вводится по формуле $\|\vec{p}\| = \sqrt{\vec{p}\vec{p}}$;

Определение 1.6. Аффинное евклидово пространство E называется метрическим, если введено отображение $\rho: E \times E \to \mathbb{R}$ такое, что

$$\forall x, y \in E \quad \rho(x, y) = \|\overrightarrow{yx}\|.$$

В этом случае отображение ρ называют евклидовым расстоянием.

Если \vec{E} — векторное или евклидово пространство \mathbb{R}^n , то вместо E используют обозначение \mathbb{E}^n .

1.3 Список литературы

2 Аффинные координаты и преобразования

2.1 Аффинные и декартовы системы координат

Пусть $E=\mathbb{E}^n$, тогда вектор $\overrightarrow{OM}\in \vec{E}=\mathbb{R}^n$ можно разложить по базису $(\vec{e}_1,\ldots,\vec{e}_n)$ векторного пространства \mathbb{R}^n :

$$\overrightarrow{OM} = \sum_{j=1}^{n} x_j \vec{e}_j, \tag{2.1}$$

или, в другой записи:

$$M = O + \sum_{j=1}^{n} x_j \vec{e}_j. \tag{2.2}$$

Пусть $O \in \mathbb{E}^n$, а $(\vec{e}_1, \dots, \vec{e}_n)$ — базис пространства \mathbb{R}^n .

Определение 2.1. Упорядоченную последовательность $(O, \vec{e}_1, \dots, \vec{e}_n)$ называют репером пространства \mathbb{E}^n ; точку O называют началом этого репера, а базис $(\vec{e}_1, \dots, \vec{e}_n)$ — его базисом.

Определение 2.2. Вещественные числа x_1, \ldots, x_n в 2.2 называют $a\phi\phi$ инными координатами точки $M \in \mathbb{E}^n$ относительно выбранного репера с началом $O \in \mathbb{E}^n$ и базисом $(\vec{e_1}, \ldots, \vec{e_n})$.

Определение 2.3. *Ориентацией репера* называют ориентацию базиса соответствующего векторного пространства.

TODO: связь между репером, базисом и системой координат.

Определение 2.4. Аффинную систему координат, оси которой взаимно ортогональны, называют *декартовой*.

Пусть $(O, \vec{e}_1, \dots, \vec{e}_n)$ — репер в пространстве \mathbb{E}^n , и пусть даны представления точек $M, N \in \mathbb{E}^n$:

$$M = O + \sum_{j=1}^{n} x_{j} \vec{e}_{j},$$

$$N = O + \sum_{j=1}^{n} y_{j} \vec{e}_{j}.$$
(2.3)

Тогда

$$\overline{MN} = \overline{MO} + \overline{ON}
= \overline{ON} - \overline{OM}
= \sum_{j=1}^{n} (y_j - x_j) \vec{e_j}.$$
(2.4)

2.2 Аффинные преобразования

Пусть

$$M = O + \sum_{j=1}^{n} x_j \vec{e}_j = O_1 + \sum_{j=1}^{n} \tilde{x}_j \vec{e}_j,$$
 (2.5)

где

$$O_1 = O + \sum_{j=1}^{n} a_j \vec{e}_j. \tag{2.6}$$

Тогда

$$O + \sum_{j=1}^{n} x_j \vec{e}_j = O + \sum_{j=1}^{n} a_j \vec{e}_j + \sum_{j=1}^{n} \tilde{x}_j \vec{e}_j,$$

откуда следует, что

$$x_i = \tilde{x}_i + a_i, \quad j \in [1:n].$$
 (2.7)

Рассмотрим два ортонормальных базиса $(\vec{e}'_1, \dots, \vec{e}'_n)$ и $(\vec{e}''_1, \dots, \vec{e}''_n)$ пространства \mathbb{R}^n . Как известно, они связаны равенствами:

$$\vec{e}_i'' = \sum_{j=1}^n p_{ij}\vec{e}_j', \quad j \in [1:n].$$
 (2.8)

Теорема 2.1. *Матрица* $P = (p_{ij})$ в выр. 2.8 ортогональна.

Доказательство. Любое преобразование базисов вида 2.8 должно сохранять длины векторов, то есть

$$\vec{x} \cdot \vec{x} = P\vec{x} \cdot P\vec{x} \quad \forall \vec{x} \in \mathbb{R}^n.$$

Так как

$$P\vec{x} \cdot P\vec{x} = \vec{x} \cdot P^T P\vec{x}.$$

а P^TP — симметричная матрица, то $P^TP=I$, что и является условием ортогональности.

Из ортогональности матрицы P следует, что

$$1 = \det I = \det(P^T P) = \det P^T \det P = (\det P)^2,$$

откуда $\det P = \pm 1$. Если элементы матрицы P непрерывно зависят от каких-то параметров, то и $\det P$ также непрерывно зависит от них. Отсюда следует, что при изменении этих параметров величина $\det P$ не меняется.

Выразим теперь связь между координатами точки в различных реперах. Пусть $\vec{x}'=(x_1',\ldots,x_n')$ и $\vec{x}''=(x_1'',\ldots,x_n'')$ — разложения вектора \vec{x} по базисам $(\vec{e}_1',\ldots,\vec{e}_n')$ и $(\vec{e}_1'',\ldots,\vec{e}_n'')$ соответственно, тогда

$$\vec{x}'' = P\vec{x}', \quad \vec{x}' = P^T\vec{x}''.$$

Пусть теперь

$$M = O + \sum_{i=1}^{n} x_{j}' \vec{e}_{j}' = O_{1} + \sum_{i=1}^{n} x_{j}'' \vec{e}_{j}'',$$

где

$$O_1 = O + \sum_{j=1}^{n} a_j \vec{e}'_j.$$

Тогда из равенств

$$O + \sum_{j=1}^{n} x_{j}' \vec{e}_{j}' = O + \sum_{j=1}^{n} a_{j} \vec{e}_{j}' + \sum_{i=1}^{n} x_{i}'' \vec{e}_{i}''$$

$$= O + \sum_{j=1}^{n} a_{j} \vec{e}_{j}' + \sum_{j=1}^{n} \vec{e}_{j}' \sum_{i=1}^{n} p_{ij} x_{i}''$$

следует, что

$$x'_{j} = a_{j} + \sum_{i=1}^{n} p_{ij} x''_{i}, \quad j \in [1:n].$$
 (2.9)

Аналогично

$$x_j'' = \sum_{i=1}^n p_{ji}(x_i' - a_i), \quad j \in [1:n].$$
(2.10)

2.3 Список литературы

3 Криволинейные системы координат

3.1 Определение

Определение 3.1. Открытое связное множество называется областью.

Определение 3.2. Отображение $f:D\subset\mathbb{R}^n\to G\subset\mathbb{R}^n$ называют гладким отображением класса $C^r(D)$ при $1\leqslant r<\infty,\ r=\infty$ или $r=\omega,$ если оно дифференцируемо до порядка r включительно, бесконечно дифференцируемо или аналитично соответственно.

Определение 3.3. Криволинейной системой координат в области $D \subset \mathbb{R}^n$ называют систему гладких функций $(x_1(y_1,\ldots,y_n),\ldots,x_n(y_1,\ldots,y_n))$, задающих взаимно однозначное отображение области D на некоторую область $G \subset \mathbb{R}^n$, причём якобиан

$$J(y) = \det \begin{pmatrix} \frac{\partial x_1}{\partial y_1}(y) & \dots & \frac{\partial x_n}{\partial y_1}(y) \\ \vdots & \ddots & \vdots \\ \frac{\partial x_1}{\partial y_n}(y) & \dots & \frac{\partial x_n}{\partial y_n}(y) \end{pmatrix}$$
(3.1)

отличен от нуля во всех точках области D.

Замечание 3.1. Отличие от нуля якобиана J(y) при всех $y \in D$ гарантирует, что обратное к f(y) отображение $f^{-1}(x)$ также является гладким.

Определение 3.4. Взаимо однозначное и взаимно непрерывное отображение называется *гомеоморфизмом*.

Таким образом, криволинейная система координат задаётся двумя гладкими взаимно однозначными отображениями f(y) и $f^{-1}(x)$, устанавливающими гомеоморфизм между множествами D и G.

Определение 3.5. Гладкий гомеоморфизм $f: D \to G$ класса $C^r(D)$ называют диффеоморфизмом класса $C^r(D)$, а множества D и G называют диффеоморфными.

Итак, криволинейная система координат в области $D \subset \mathbb{R}^n$ является некоторым диффеоморфизмом $f: D \to G \subset \mathbb{R}^n$ с ненулевым якобианом.

3.2 Замена координат

Пусть $y \in \mathbb{R}^n$, и в области $D \subset \mathbb{R}^n$ две системы координат $x(y) = (x_1(y), \dots, x_n(y))$ и $z(y) = (z_1(y), \dots, z_n(y))$ заданы отображениями $f: D \to G_1 \subset \mathbb{R}^n$ и $g: D \to G_2 \subset \mathbb{R}^n$.

Определение 3.6. Заменой координат x на z называется отображение $\psi:G_1\to G_2$, задаваемое формулой $\psi=g\circ f^{-1}$.

Замечание 3.2. Замена $\psi:G_1\to G_2$ — диффеоморфизм с ненулевым якобианом, то есть это криволинейная система координат в $G_1\subset \mathbb{R}^n$.

Рис. 3.1

3.3 Список литературы

4 Локальные базисы криволинейных координат

Криволинейные координаты обозначим $\vec{q}=(q_1,q_2,q_3)\in Q=\{\vec{q}\,|\,\vec{q}=\vec{q}(\vec{r}),\vec{r}\in D\}.$

4.1 Определение

ТООО: инфа из учебника

Определение 4.1. Пусть $\vec{q}_0 = (q_{10}, q_{20}, q_{30}) \in Q$, $\vec{r}_0 = \vec{r}(\vec{q}_0) = (x_0, y_0, z_0)$, тогда множества

$$(q_{i0}) = \{(x, y, z) \in D \mid q_i(x, y, z) = q_{i0}\}, \quad i = 1, 2, 3$$
 (4.1)

называют коор ∂ инатными поверхностями криволинейной системы координат $\vec{q}=(q_1,q_2,q_3)$ в точке $(q_{10},q_{20},q_{30}),$ а множества

$$\tilde{q}_1 = (q_{20}) \cap (q_{30})$$
 $\tilde{q}_2 = (q_{10}) \cap (q_{30})$
 $\tilde{q}_3 = (q_{10}) \cap (q_{20})$

$$(4.2)$$

— её *координатными линиями* в этой точке.

Замечание 4.1. $(q_{10}) \cap (q_{20}) \cap (q_{30}) = \{(x_0, y_0, z_0)\}.$

По определению, якобиан криволинейной системы координат отличен от нуля в каждой точке области определения Q. Векторы $\frac{\partial \vec{r}}{\partial q_1}$, $\frac{\partial \vec{r}}{\partial q_2}$, $\frac{\partial \vec{r}}{\partial q_3}$ составляют строки матрицы этого якобиана и поэтому не могут быть нулевыми.

Теорема 4.1. Векторы $\frac{\partial \vec{r}}{\partial q_1}$, $\frac{\partial \vec{r}}{\partial q_2}$, $\frac{\partial \vec{r}}{\partial q_3}$ являются касательными соответственно к линиям \tilde{q}_1 , \tilde{q}_2 , \tilde{q}_3 в точке \vec{q}_0 .

Доказательство. Для наглядности рассмотрим координатную кривую \tilde{q}_1 . Эта кривая параметризуется переменной q_i в точке \vec{q}_0 . Положим $\vec{r}=\vec{r}(q_1,q_{20},q_{30})$, тогда производая $\frac{\partial \vec{r}}{\partial q_1}$ даст направление касательной к этой кривой в точке \vec{q}_0 .

Определение 4.2. Совокупность векторов $(\vec{\tau}_1, \vec{\tau}_2, \vec{\tau}_3)$, определяемых формулой

$$\vec{ au}_i = rac{rac{\partial \vec{r}}{\partial q_i}}{\left|rac{\partial \vec{r}}{\partial q_i}\right|}, \quad i = 1, 2, 3$$

называют локальным базисом криволинейной системы координат в точке $\vec{q}_0.$

Определение 4.3. Если векторы $\vec{\tau}_1,\ \vec{\tau}_2,\ \vec{\tau}_3$ взаимно ортогональны в точке $\vec{q}_0,$ то криволинейная система координат называется *ортогональной* в этой точке.

4.2 Условие ортогональности

Так как векторы $\frac{\partial \vec{r}}{\partial q_1}$, $\frac{\partial \vec{r}}{\partial q_2}$, $\frac{\partial \vec{r}}{\partial q_3}$ ненулевые, то условия ортогональности локального базиса

$$\vec{\tau}_i \cdot \vec{\tau}_j = 0, \quad i, j = 1, 2, 3, \ i \neq j$$

эквивалентны равенствам

$$\frac{\partial \vec{r}}{\partial q_i} \cdot \frac{\partial \vec{r}}{\partial q_j} = 0, \quad i, j = 1, 2, 3, \ i \neq j$$

или, в координатной форме,

$$\frac{\partial x}{\partial q_i} \frac{\partial x}{\partial q_j} + \frac{\partial y}{\partial q_i} \frac{\partial y}{\partial q_j} + \frac{\partial z}{\partial q_i} \frac{\partial z}{\partial q_j} = 0, \quad i, j = 1, 2, 3, \ i \neq j.$$
 (4.3)

4.3 Список литературы

5 Коэффициенты Ламе. Проекции скорости точки на оси криволинейной системы координат

5.1 Общие сведения

В качестве пространства будем использовать аффинное евклидово пространство \mathbb{E}^n .

Определение 5.1. Положением механической системы в момент t_0 будем называть точку $M^0 \in \mathbb{E}^n$.

Определение 5.2. Пусть J — промежуток на \mathbb{R} . Движением механической системы будем называть дважды непрерывно дифференцируемую функцию $D: J \to \mathbb{E}^n$ времени t такую, что $D(t_0) = M^0$.

Определение 5.3. Предположим, что точка этого пространства может быть задана радиус-вектором \vec{r} в какой-либо декартовой системе координат, то есть движение этой точки представлено вектор-функцией $\vec{r}: J \to \mathbb{R}^n$. В этом случае *скоростью* и *ускорением* точки в этом движении называют соответственно вектор-функции $\vec{v} = \dot{\vec{r}}$ и $\vec{v} = \ddot{\vec{r}}$, а *траекторией* точки называют кривую $\{\vec{r}(t) \in \mathbb{R}^n \mid t \in J\}$.

5.2 Коэффициенты Ламе

Так как

$$\frac{\partial \vec{r}}{\partial q_m} = \frac{\partial x}{\partial q_m} \vec{i} + \frac{\partial y}{\partial q_m} \vec{j} + \frac{\partial z}{\partial q_m} \vec{k}, \qquad (5.1)$$

то, введя обозначение

$$H_m = \left| \frac{\partial \vec{r}}{\partial q_m} \right| = \sqrt{\left(\frac{\partial x}{\partial q_m} \right)^2 + \left(\frac{\partial y}{\partial q_m} \right)^2 + \left(\frac{\partial z}{\partial q_m} \right)^2}, \tag{5.2}$$

векторы локального базиса можно представить в виде

$$\vec{\tau}_m = \frac{1}{H_m} \frac{\partial \vec{r}}{\partial q_m},\tag{5.3}$$

или, иначе:

$$\frac{\partial \vec{r}}{\partial q_m} = H_m \vec{\tau}_m. \tag{5.4}$$

Определение 5.4. Величины H_m (иногда удобнее обозначение H_{q_m}) называют коэффициентами Ламе.

Выразим направляющие косинусы осей локального базиса криволинейной системы координат \vec{q} относительно осей декартовой системы координат:

$$\cos \angle(\vec{\tau}_m, \vec{i}) = \vec{\tau}_m \cdot \vec{i} = \frac{1}{H_m} \frac{\partial x}{\partial q_m}, \quad \dots, \quad m = 1, 2, 3.$$
 (5.5)

Определение 5.5. Движением точки в криволинейных координатах \vec{q} называют дважды непрерывно дифференцируемую на промежутке $J \subset \mathbb{R}$ вектор-функцию $\vec{q}(t)$.

Определение 5.6. Функции $\dot{\vec{q}}$ и $\ddot{\vec{q}}$ называют соответственно обобщённой скоростью и обобщённым ускорением точки в движении $\vec{q}(t)$.

Определение 5.7. Кривую

$$\Gamma = \{ \vec{q}(t) \in \mathbb{R}^3 \,|\, t \in J \}$$

называют траекторией точки в криволинейных координатах.

5.3 Проекции скорости точки на оси криволинейной системы координат

Напишем вектор скорости в виде

$$\vec{v} = \dot{\vec{r}} = \frac{\partial \vec{r}}{\partial q_1} \dot{q}_1 + \frac{\partial \vec{r}}{\partial q_2} \dot{q}_2 + \frac{\partial \vec{r}}{\partial q_3} \dot{q}_3, \tag{5.6}$$

тогда по формулам 5.4 получим

$$\vec{v} = H_1 \dot{q}_1 \vec{\tau}_1 + H_2 \dot{q}_2 \vec{\tau}_2 + H_3 \dot{q}_3 \vec{\tau}_3.$$

Это равенство можно рассматривать как разложение вектора скорости по единичным векторам осей криволинейных координат; для проекций скорости на координатные оси будем иметь

$$v_{q_m} = H_{q_m} \dot{q}_m \quad (m = 1, 2, 3).$$
 (5.7)

Если криволинейная система ортогональна, то

$$v = \sqrt{(H_1 \dot{q_1})^2 + (H_2 \dot{q_2})^2 + (H_3 \dot{q_3})^2},$$

$$\cos \angle (\vec{v}, \vec{\tau}_m) = H_m \dot{q}_m v^{-1}, \quad m = 1, 2, 3.$$
(5.8)

5.4 Список литературы

- 1. Л.К. Бабаджанянц, Классическая механика
- 2. Л.Г. Лойцянский, Курс теоретической механики

6 Проекции ускорения точки на оси ортогональной криволинейной системы координат

Для определения проекций ускорения представим их в виде

$$w_{q_m} = \vec{w} \cdot \vec{\tau}_m = \dot{\vec{v}} \cdot \frac{1}{H_m} \frac{\partial \vec{r}}{\partial q_m},$$

откуда

$$H_m w_{q_m} = \dot{\vec{v}} \cdot \frac{\partial \vec{r}}{\partial q_m} = \frac{d}{dt} \left(\vec{v} \cdot \frac{\partial \vec{r}}{\partial q_m} \right) - \vec{v} \cdot \frac{d}{dt} \frac{\partial \vec{r}}{\partial q_m}. \tag{6.1}$$

Из выр. 5.6 непосредственно следует

$$\frac{\partial \vec{v}}{\partial \dot{q}_m} = \frac{\partial \vec{r}}{\partial q_m}. (6.2)$$

Кроме того, по определению полной производной

$$\frac{d}{dt}\frac{\partial \vec{r}}{\partial q_m} = \frac{\partial^2 \vec{r}}{\partial q_1 \partial q_m} \dot{q}_1 + \frac{\partial^2 \vec{r}}{\partial q_2 \partial q_m} \dot{q}_2 + \frac{\partial^2 \vec{r}}{\partial q_3 \partial q_m} \dot{q}_3;$$

но это же выражение получим, если возьмём от обеих частей выр. 5.6 частную производную по q_m . Действительно, так как $\dot{q}_1,~\dot{q}_2,~\dot{q}_3$ зависят только от времени, а не от $q_1,~q_2,~q_3,$ то

$$\frac{\partial \vec{v}}{\partial q_m} = \frac{\partial^2 \vec{r}}{\partial q_m \, \partial q_1} \dot{q}_1 + \frac{\partial^2 \vec{r}}{\partial q_m \, \partial q_2} \dot{q}_2 + \frac{\partial^2 \vec{r}}{\partial q_m \, \partial q_3} \dot{q}_3;$$

таким образом, имеем

$$\frac{d}{dt}\frac{\partial \vec{r}}{\partial q_m} = \frac{\partial \vec{v}}{\partial q_m}.$$
 (6.3)

Подставляя значения $\frac{\partial \vec{r}}{\partial q_m}$ по выр. 6.2 и $\frac{d}{dt}\frac{\partial \vec{r}}{\partial q_m}$ по выр. 6.3 в равенство 6.1, получим

$$H_m w_{q_m} = \frac{d}{dt} \left(\vec{v} \cdot \frac{\partial \vec{v}}{\partial \dot{q}_m} \right) - \vec{v} \cdot \frac{\partial \vec{v}}{\partial q_m}. \tag{6.4}$$

Замечая, что

$$\begin{split} \vec{v} \cdot \frac{\partial \vec{v}}{\partial \dot{q}_m} &= \frac{\partial}{\partial \dot{q}_m} \frac{\vec{v} \cdot \vec{v}}{2} = \frac{\partial}{\partial \dot{q}_m} \frac{v^2}{2}, \\ \vec{v} \cdot \frac{\partial \vec{v}}{\partial q_m} &= \frac{\partial}{\partial q_m} \frac{\vec{v} \cdot \vec{v}}{2} = \frac{\partial}{\partial q_m} \frac{v^2}{2}, \end{split}$$

на основании выр. 6.4 получим выражение проекций ускорения на оси криволинейной системы координат:

$$w_{q_m} = \frac{1}{H_m} \left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_m} - \frac{\partial T}{\partial q_m} \right), \tag{6.5}$$

где для краткости введено обозначение

$$T = \frac{1}{2}v^2. (6.6)$$

Используя линейный дифференциальный оператор Эйлера-Лагранжа, определяемый формулой

$$E_{q_m}(T) = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_m} - \frac{\partial T}{\partial q_m}, \qquad (6.7)$$

окончательно получаем

$$w_{q_m} = \frac{1}{H_{q_m}} E_{q_m}(T). (6.8)$$

6.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

7 Натуральный триэдр. Проекции ускорения точки на оси натурального триэдра

7.1 Натуральный триэдр траектории

TODO: картинки из книги (страница 184)

Рассмотрим некоторую кривую, не лежащую в одной плоскости (кривую двоякой кривизны). Установим на этой кривой начало M_0 и положительное направление отсчёта дуг σ . Возьмём какую-нибудь текущую точку M, положение которой определим либо дугой σ , либо вектор-радиусом \vec{r} относительно некоторой неподвижной точки O. Через точку M проведём касательную к кривой; направление касательной в сторону возрастающих значений σ зададим единичным вектором касательной $\vec{\tau}$.

Возьмём на кривой весьма близкую к M точку M_1 ; пусть положение её определяется значением дуги $\sigma + \Delta \sigma$, причём $\Delta \sigma > 0$, то есть M_1 лежит за M в сторону положительного отсчёта дуги. Единичный вектор касательной в точке M_1 обозначим через $\vec{\tau}_1$. Проведём через $\vec{\tau}$ плоскость Π , параллельную $\vec{\tau}_1$; чтобы построить её, достаточно перенести $\vec{\tau}_1$ в точку M; два вектора $\vec{\tau}$ и $\vec{\tau}_1$, имеющие начало в точке M, определяют положение Π . При изменении положения M_1 плоскость Π также изменяет своё положение, вращаясь вокруг $\vec{\tau}$; если будем приближать M_1 к M, уменьшая $\Delta \sigma$ до нуля, то эта плоскость будет приближаться к некоторому предельному положению Π_0 , называемому conpukacanometics nлоскостью.

В точке M проведём плоскость N_0 , перпендикулярную к касательной. Эта плоскость называется нормальной плоскостью кривой. Любая прямая, проведённая в этой плоскости через точку M, будет перпендикулярна к $\vec{\tau}$, то есть будет нормальна кривой; линия пересечения нормальной и соприкасающейся плоскостей определяет главную нормаль кривой. Иными словами, главной нормалью называется нормаль, лежащая в соприкасающейся плоскости. Нормаль, перпендикулярная к главной нормали, называется бинормалью кривой.

Определение 7.1. Совокупность трёх взаимно перпендикулярных осей:

- 1. касательной, направленной в сторону возрастания дуги,
- 2. главной нормали, направленной в сторону вогнутости кривой, и
- 3. бинормали, направленной по отношению к касательной и главной нормали так же, как ось Oz расположена по отношению к осям Ox и Oy,

образует так называемый *натуральный триэдр* (естественный трёхгранник) кривой. Единичные векторы этих осей обозначим соответственно через $\vec{\tau}, \vec{n}$ и \vec{b} .

Найдём выражения этих трёх единичных векторов натурального триэдра через вектор-радиус точки на кривой, заданный как вектор-функция дуги:

$$\vec{r} = \vec{r}(\sigma). \tag{7.1}$$

Найдём прежде всего $\vec{\tau}$. По определению векторной производной вектор $\frac{d\vec{r}}{d\sigma}$ направлен по касательной к годографу вектора \vec{r} в сторону возрастающих σ . С другой стороны, численная величина производной равна

$$\left| \frac{d\vec{r}}{d\sigma} \right| = \frac{|d\vec{r}|}{d\sigma} = 1.$$

Таким образом, векторная производная представляет собой искомый единичный вектор касательной:

$$\vec{\tau} = \frac{d\vec{r}}{d\sigma}.\tag{7.2}$$

Для определения единичного вектора главной нормали \vec{n} обратимся к рисунку. Рассмотрим равнобедренный треугольник, образованный векторами $\vec{\tau}$ и $\vec{\tau}_1$ в плоскости П. Если точка M_1 взята на весьма малом расстоянии $\Delta \sigma$ от точки M, то угол ε между касательными $\vec{\tau}$ и $\vec{\tau}_1$ в смежных точках кривой — его называют углом смежности — будет также мал и вектор $\Delta \vec{r}$ с тем меньшей ошибкой, чем меньше $\Delta \sigma$, можно считать перпендикулярным к $\vec{\tau}$ и, следовательно, параллельным вектору нормали \vec{n}' , лежащему с $\Delta \vec{\tau}$ в одной и той же плоскости П. По величине $|\Delta \vec{\tau}|$, как основание равнобедренного треугольника с малым углом ε при вершине и боковыми сторонами, равными единице, будет равен

$$|\Delta \vec{\tau}| = 2 |\vec{\tau}| \sin \frac{\varepsilon}{2} \approx 2 \cdot 1 \cdot \frac{\varepsilon}{2} = \varepsilon.$$

Отсюда найдём (с точностью до малых высших порядков)

$$\Delta \vec{\tau} = \varepsilon \vec{n}',$$

или

$$\vec{n}' = \frac{1}{\varepsilon} \Delta \vec{\tau} = \frac{\Delta \vec{\tau}}{\Delta \sigma} \cdot \frac{\Delta \sigma}{\varepsilon}.$$

Будем приближать $\Delta \sigma$ к нулю, тогда точка M_1 будет стремиться к M, плоскость Π — к соприкасающейся плоскости Π_0 , единичный вектор нормали \vec{n}' — к искомому единичному вектору \vec{n} , и мы будем иметь

$$\vec{n} = \lim_{\Delta \sigma \to 0} \frac{\Delta \vec{\tau}}{\Delta \sigma} \cdot \lim_{\Delta \sigma \to 0} \frac{\Delta \sigma}{\varepsilon}.$$

Первый предел равен векторной производной

$$\frac{d\vec{\tau}}{d\sigma} = \frac{d}{d\sigma} \left(\frac{d\vec{r}}{d\sigma} \right) = \frac{d^2 \vec{r}}{d\sigma^2};$$

что же касается второго предела, то заметим, что отношение $\frac{\varepsilon}{\Delta \sigma}$, определяющее среднюю скорость поворота касательной к кривой при переходе от данной точки к смежной, характеризует *среднюю кривизну* кривой на участке $(\sigma, \sigma + \Delta \sigma)$, а величина

$$\lim_{\Delta \sigma \to 0} \frac{\varepsilon}{\Delta \sigma} = K \tag{7.3}$$

определяет кривизну кривой в данной точке.

Таким образом, имеем следующее выражение единичного вектора *глав*ной нормали:

$$\vec{n} = \frac{1}{K} \frac{d\vec{\tau}}{d\sigma} = \frac{1}{K} \frac{d^2 \vec{r}}{d\sigma^2}.$$
 (7.4)

Величину $1/K = \rho$, имеющую размерность длины, называют *радиусом кри- визны* кривой в данной точке.

В случае произвольной кривой через данную её точку и две смежные с нею точки можно провести круг, который при стремлении смежных точек к данной рассматриваемой будет стремиться к некоторому предельному кругу, называемому соприкасающимся кругом или кругом кривизны. Радиус этого круга будет радиусом кривизны кривой, центр круга C (TODO: ссылка на картинку) — центром кривизны кривой. Очевидно, круг кривизны лежит в соприкасающейся плоскости, центр кривизны C — на главной нормали со стороны вогнутости кривой.

Введя радиус кривизны ρ , получим

$$\vec{n} = \rho \frac{d\vec{\tau}}{d\sigma} = \rho \frac{d^2 \vec{r}}{d\sigma^2}.$$
 (7.5)

Теперь уже не составляет труда найти и единичный вектор бинормали. Из условия выбора положительного направления на бинормали следует:

$$\vec{b} = \vec{\tau} \times \vec{n} = \frac{1}{K} \left(\frac{d\vec{r}}{d\sigma} \times \frac{d^2 \vec{r}}{d\sigma^2} \right) = \rho \left(\frac{d\vec{r}}{d\sigma} \times \frac{d^2 \vec{r}}{d\sigma^2} \right). \tag{7.6}$$

7.2 Разложение ускорения по осям натурального триэдра траектории

Обозначим через v_{τ} проекцию вектора скорости на направление касательной к траектории. Очевидно, что v_{τ} по абсолютной величине равно численной величине скорости v; что же касается знака v_{τ} , то v_{τ} положительно, если направление движения в данный момент совпадает с направлением положительного отсчёта дуг σ по траектории, и отрицательно в противоположном случае. Будем иметь

$$\vec{v} = v_{\tau} \vec{\tau}. \tag{7.7}$$

Если s — пройденный путь, то $d\sigma=ds$, когда $d\sigma>0$, и $d\sigma=-ds$, если $d\sigma<0$, поэтому

$$v_{\tau} = \frac{d\sigma}{dt} = \pm \frac{ds}{dt} = \pm v. \tag{7.8}$$

Вектор ускорения есть производная по времени от вектора скорости, поэтому

$$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v_{\tau}\vec{\tau}) = \frac{dv_{\tau}}{dt}\vec{\tau} + v_{\tau}\frac{d\vec{\tau}}{dt}.$$
 (7.9)

Далее, имеем

$$\frac{d\vec{\tau}}{dt} = \frac{d\vec{\tau}}{d\sigma}\frac{d\sigma}{dt};$$

согласно формулам 7.4 и 7.8 найдём

$$\frac{d\vec{\tau}}{dt} = \frac{1}{\rho} \vec{n} v_{\tau}.$$

Подставив полученное выражение в равенство 7.9, будем иметь

$$\vec{w} = \vec{\tau} \frac{dv_{\tau}}{dt} + \vec{n} \frac{v^2}{\rho},\tag{7.10}$$

где v_{τ}^2 заменено на равное ему v^2 .

Равенство 7.10 представляет собой разложение вектора ускорения по осям натурального триэдра.

Обозначим коэффициенты при единичных векторах $\vec{\tau}$, \vec{n} и \vec{b} в разложении 7.10, то есть проекции ускорения на оси натурального триэдра, соответственно через w_{τ} , w_n и w_b ; тогда будем иметь

$$\vec{w} = w_{\tau}\vec{\tau} + w_n\vec{n} + w_b\vec{b},\tag{7.11}$$

причём из выр. 7.10 следует, что

$$w_{\tau} = \frac{dv_{\tau}}{dt} = \frac{d^2\sigma}{dt^2}, \quad w_n = \frac{v^2}{\rho}, \quad w_b = 0.$$

Последнее равенство говорит о том, что вектор ускорения перпендикулярен к бинормали, то есть ускорение лежит в соприкасающейся плоскости.

Первое слагаемое в разложении 7.11, $w_{\tau}\vec{\tau}$, даёт *касательную* (тангенциальную) составляющую ускорения, второе, $w_{n}\vec{n}$, — *нормальную* составляющую ускорения. Иногда для краткости их называют просто касательным и нормальным ускорениями.

Нормальное ускорение всегда совпадает по направлению с главной нормалью, так как $w_n = \frac{v^2}{\rho}$ — существенно положительная величина. Вспоминая ранее сказанное о направлении \vec{n} , видим, что нормальное ускорение направлено к центру кривизны траектории (нормальное ускорение иногда ещё называют поэтому центростремительным), то есть по главной нормали к траектории в сторону её вогнутости. Отсюда вытекает свойство ускорения: вектор ускорения направлен в сторону вогнутости траектории.

Итак, вектор ускорения в криволинейном движении может быть представлен как геометрическая сумма двух ускорений: касательного и нормального.

Величина ускорения может быть представлена так:

$$w = \sqrt{w_{\tau}^2 + w_n^2} = \sqrt{\left(\frac{dv_{\tau}}{dt}\right)^2 + \frac{v^4}{\rho^2}},$$
 (7.12)

а направление задано косинусами углов, составляемых им с касательной и главной нормалью к траектории:

$$\cos(\widehat{\vec{w}}, \widehat{\vec{\tau}}) = \frac{w_{\tau}}{w}, \quad \cos(\widehat{\vec{w}}, \widehat{\vec{n}}) = \frac{w_n}{w}. \tag{7.13}$$

7.3 Список литературы

1. Л.Г. Лойцянский, Kypc теоретической механики

8 Определение кривизны траектории точки по движению

8.1 Кинематический метод

Если известны модули скорости v=v(t) и ускорения w=w(t) движения точки, то кривизну траектории можно найти по формулам:

$$w_{\tau} = \dot{v}, \quad w_{n} = \sqrt{w^{2} - w_{\tau}^{2}},$$

$$K = \frac{w_{n}}{v^{2}}, \quad \rho = \frac{1}{K}.$$
(8.1)

Если движение точки задано тройкой скалярных функций $x(t),\ y(t),\ z(t),$ то

$$v = \sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2 + (\dot{z}(t))^2},$$

$$w = \sqrt{(\ddot{x}(t))^2 + (\ddot{y}(t))^2 + (\ddot{z}(t))^2}.$$
(8.2)

Если же движение точки задано тройкой ортогональных криволинейных координат — скалярных функций $q_1(t),\ q_2(t),\ q_3(t),$ то проекции скорости и ускорения точки выразятся по формулам 5.7 и 6.8 как

$$v_{q_m} = H_{q_m} \dot{q}_m, \quad w_{q_m} = \frac{1}{H_{q_m}} E_{q_m}(T), \quad m = 1, 2, 3.$$

Тогда

$$v = \sqrt{(v_{q_1}(t))^2 + (v_{q_2}(t))^2 + (v_{q_3}(t))^2},$$

$$w = \sqrt{(w_{q_1}(t))^2 + (w_{q_2}(t))^2 + (w_{q_3}(t))^2}.$$
(8.3)

8.2 Список литературы

9 Движение точки по прямой и по окружности

9.1 Прямолинейное движение

Определение 9.1. *Прямолинейное движение* — движение точки, траектория которой лежит на прямой.

Начало системы Oxyz поместим на этой прямой, а ось x направим вдоль неё. Тогда получим уравнение траектории:

$$y = 0, \quad z = 0,$$

тогда

$$v^2 = (\dot{x}(t))^2,$$

 $w^2 = (\ddot{x}(t))^2$

и, как следствие,

$$w_{\tau}^2 = (\dot{v})^2 = (\ddot{x})^2, \quad w_n = \sqrt{w^2 - w_{\tau}^2} = 0,$$

 $K = 0, \quad \rho = +\infty.$

Определение 9.2. Прямолинейное движение называют *равномерным*, если $v(t) = v_0$, где v_0 — постоянная.

Уравнение движения:

$$x(t) = x_0 + v_0(t - t_0), \quad x(t_0) = x_0.$$

Естественная координата:

$$s = |v_0(t - t_0)|$$
.

Определение 9.3. Прямолинейное движение называют *равнопеременным*, если $w(t) = w_0$, где w_0 — постоянная.

Уравнение движения:

$$x(t) = x_0 + v_0(t - t_0) + \frac{w_0}{2}(t - t_0)^2,$$

$$x(t_0) = x_0, \quad \dot{x}(t_0) = v(t_0) = v_0.$$

Естественная координата:

$$s = \left| v_0(t - t_0) + \frac{w_0}{2}(t - t_0)^2 \right|.$$

9.2 Движение по окружности

Определение 9.4. Углом поворота между векторами называется вектор

$$\angle(\vec{a}, \vec{b}) = \begin{cases} (\arccos(\vec{a}, \vec{b})) \cdot \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}, & \vec{a} \not\parallel \vec{b}; \\ \vec{0}, & \vec{a} \parallel \vec{b}. \end{cases}$$

Определение 9.5. Углом между векторами \vec{a} и \vec{b} называется величина

$$\left| \angle (\vec{a}, \vec{b}) \right| = \arccos(\vec{a}, \vec{b}).$$

Когда говорят об угле между векторами \vec{a} и \vec{b} , отсчитываемом от \vec{a} к \vec{b} , то имеют в виду угол поворота $\angle(\vec{a},\vec{b})$.

Определение 9.6. Движением по окружности называют любое движение точки, траектория которого лежит на окружности.

В случае движения по окружности угол смежности ε равен центральному углу между радиусами, проведёнными в точки касания, а соответствующая дуга равна произведению этого угла на радиус R, то есть

$$\Delta \sigma = \varepsilon R, \implies \frac{\varepsilon}{\Delta \sigma} = \frac{1}{R},$$

поэтому

$$K = \lim_{\Delta\sigma \to 0} \frac{\varepsilon}{\Delta\sigma} = \frac{1}{R}, \quad \rho = R.$$

(TODO: решить, куда поместить определения угловой скорости и ускорения, а также скалярные и векторные формулы скорости и ускорнения точек)

Определение 9.7. Движение по окружности называют *равномерным вра- щением*, если $\omega(t) = \omega_0$, где ω_0 — постоянная.

В этом случае

$$\varphi(t) = \varphi_0 + \omega_0(t - t_0), \quad \varphi(t_0) = \varphi_0.$$

Определение 9.8. Движение по окружности называют *равнопеременным вращением*, если $\varepsilon = \varepsilon_0$, где ε_0 — постоянная.

В этом случае

$$\varphi(t) = \varphi_0 + \omega_0(t - t_0) + \frac{\varepsilon_0}{2}(t - t_0)^2,$$

$$\varphi(t_0) = \varphi_0, \quad \varphi(t_0) = \omega(t_0) = \omega_0.$$

Рассмотрим частные случаи движения по окружности:

1. Если тело вращается равномерно, то $\varepsilon(t) = 0$, поэтому

$$w_{\tau} = 0, \quad w_n = R\omega_0^2.$$

2. Если в некоторый момент времени угловая скорость ω тела достигает максимального или минимального значения, то $\dot{\omega}=\varepsilon=0$, поэтому

$$w_{\tau} = 0, \quad w_n = R\omega_0^2$$

3. Если в некоторый момент угол поворота достигает максимального или минимального значения, то $\dot{\varphi} = \omega = 0$, поэтому

$$w_{\tau} = 0, \quad w_n = 0.$$

9.3 Список литературы

- 1. Л.К. Бабаджанянц, Классическая механика
- 2. Л.Г. Лойцянский, Курс теоретической механики

10 Движение механической системы. Твёрдое тело. Число степеней свободы положения

10.1 Движение механической системы

Пусть T — некоторое множество индексов τ , которыми помечены все точки механической системы, а $J \subset \mathbb{R}$ — промежуток времени t, на котором определено движение механической системы.

Пространством будем считать аффинное евклидово пространство \mathbb{E}^n ; точку этого пространства $M=(x,y,z)\in\mathbb{E}^n$ будем представлять векторрадиусом \vec{r} в декартовой системе координат.

Определение 10.1. Положением механической системы в момент времени t_0 будем называть семейство $\mathcal{M} = \{M_{\tau}\}_{\tau \in T}$ точек в \mathbb{E}^n .

Определение 10.2. Движсением механической системы будем называть семейство $\mathcal{DM} = \{D_{\tau}: J \to \mathbb{E}^n\}_{\tau \in T}$ дважды непрерывно дифференцируемых функций времени t такое, что

$$\forall \tau \in T \quad D_{\tau}(t_0) = M_{\tau}.$$

Ясно, что положением механической системы в любой другой момент времени $t \in J$ будет семейство $\{D_{\tau}(t)\}_{\tau \in T}$.

Определение 10.3. Перемещением механической системы за время от t_1 до t_2 называют семейство векторов $\{\overline{AB} \mid A = D_{\tau}(t_1), \ B = D_{\tau}(t_2)\}_{\tau \in T}$.

10.2 Твёрдое тело

Определение 10.4. *Классом движеений* назовём некоторое множество движений \mathcal{DM} .

Определение 10.5. *Неизменяемой на классе движений* назовём такую механическую систему, что

$$\forall t \in J \quad \forall \tau_1, \tau_2 \in T \quad \rho(D_{\tau_1}(t), D_{\tau_2}(t)) = \rho(M_{\tau_1}, M_{\tau_2})$$

для любого движения этого класса.

Определение 10.6. Механическую систему назовём сплошной связной средой на классе движений, если каждое её положение есть область или замкнутая область в \mathbb{E}^n .

Определение 10.7. *Твёрдым телом* или *абсолютно твёрдым телом на классе движений* назовём сплошную связную неизменяемую механическую систему на этом классе движений.

10.3 Число степеней свободы

Будем говорить, что движение $\mathcal{DM} = \{D_{\tau}\}_{\tau \in T}$ может быть выражено через систему скалярных функций

$$q_i: J \to \mathbb{R}, \quad i = 1, \dots, m,$$

если

$$\forall \tau \in T \quad \exists (q_1, \dots, q_m) \mapsto f_\tau(q_1, \dots, q_m)
\forall t \in J \quad D_\tau(t) = f_\tau(q_1(t), \dots, q_m(t)).$$
(10.1)

Определение 10.8. Говорят, что механическая система имеет *s степеней свободы положения на классе движений*, если всякое движение этого класса может быть выражено через некоторую систему скалярных функций

$$q_i: J \to \mathbb{R}, \quad i = 1, \dots, s$$

и если хотя бы одно движение этого класса не может быть выражено ни через какую систему из меньшего числа скалярных функций.

Если класс движений очевиден из контекста, то говорят просто о uucne s $cmeneue\ddot{u}$ $csofod_{bb}$ механической системы.

Рассмотрим механическую систему, состоящую из конечного числа N точек. Такая система на классе всех движений в \mathbb{E}^n имеет $s=n\cdot N$ степеней свободы.

Рассмотрим такой подкласс всех движений этой системы, для которых координаты $(x_{\nu}, y_{\nu}, z_{\nu}), \ \nu = 1, \dots, N$ её точек удовлетворяют уравнениям

$$f_{\nu}(x_1, y_1, z_1, \dots, x_N, y_N, z_N) = 0, \quad \nu = 1, \dots, m,$$

причём фунции f_{ν} аргументов $(x_1, y_1, z_1, \dots, x_N, y_N, z_N)$ независимы при $t \in J$; будем считать, что ранг матрицы Якоби этих функций равен m. В этом случае говорят, что рассматривается механическая система из N точек, стеснённая m голономными связями.

Теорема 10.1. Механическая система в \mathbb{E}^n из N точек, стеснённая т голономными связями, имеет

$$s = n \cdot N - m$$

степеней свободы.

Доказательство. (TODO: доказать утверждение) □

Теорема 10.2. Для твёрдого тела на классе всех его движений в \mathbb{E}^n число степеней свободы положения равно

$$s = \frac{n \cdot (n+1)}{2}.$$

Доказательство. (TODO: доказать утверждение (указания можно найти на 37 странице конспекта)) \Box

Определение 10.9. Движение твёрдого тела называют *поступательным*, если у подвижного репера, связанного с этим телом, с течением времени может изменяться только начало.

Определение 10.10. Движение твёрдого тела называют *вращением вокруг точки O*, если с течением времени не меняются координаты (в неподвижной системе) некоторой точки O этого тела.

(TODO: найти число степеней свободы положения твёрдого тела на этих двух классах движений)

10.4 Список литературы

11 Группа движений аффинного евклидова пространства

11.1 Предварительные сведения

Определение 11.1. Законом композиции на множестве X называют отображение

$$*: X \times X \to X.$$

Вместо *(a,b) пишут a*b.

Определение 11.2. Пусть * — закон композиции на X. Тогда пару (X,*) называют *алгебраической структурой*.

Определение 11.3. Пусть * — закон композиции на X. Если

$$\forall a, b, c \in X \quad a * (b * c) = (a * b) * c,$$

то закон композиции * называется ассоциативным.

Определение 11.4. Алгебраическая структура (X,*) называется *полугруппой*, если закон композиции * ассоциативен.

Определение 11.5. Элемент $e \in X$ называется edunuunum или neŭmpanumum относительно закона композиции *, если

$$\forall x \in X \quad e * x = x * e = x.$$

Замечание 11.1. В алгебраической структуре (X,*) не может быть более одного единичного элемента.

Определение 11.6. Полугруппу с единицей называют моноидом.

Определение 11.7. Элемент a моноида (X, *, e) называют *обратимым*, если

$$\exists b \in X: \quad a * b = b * a = e.$$

Для элемента b используют обозначение a^{-1} .

Определение 11.8. Моноид, все элементы которого обратимы, называют *группой*.

Определение 11.9. Закон композиции * называют коммутативным, если

$$\forall a, b \in X \quad a * b = b * a.$$

Определение 11.10. Группу с коммутативным законом композиции называют *абелевой* (*коммутативной*) группой.

Определение 11.11. Подмножество H группы G называется noderpynnoй epynnu G, если:

1. H содержит единичный элемент из G:

$$e \in H$$
;

2. H содержит композицию любых двух элементов из H:

$$\forall a, b \in H \quad a * b \in H;$$

3. H содержит вместе со всяких своим элементом h обратный к нему элемент h^{-1} :

$$\forall h \in H \quad h^{-1} \in H.$$

Пусть $s(\Omega)$ — множество всех биективных отображений $f:\Omega\to\Omega$. Введём закон композиции $*:s(\Omega)\times s(\Omega)\to s(\Omega)$ такой, что

$$\forall \varphi, \psi \in s(\Omega) \quad \varphi * \psi = \varphi \circ \psi;$$

тогда $(s(\Omega),*)$ — группа, причём её единицей является тождественное отображение $\mathrm{id}_\Omega:\Omega\to\Omega$ такое, что

$$\forall x \in \Omega \quad id_{\Omega}(x) = x.$$

11.2 Группа движений твёрдого тела

(TODO: Дальше может быть путаница в терминах. Короче, надо понять, что в его понимании такое "перемещение но вот как я это понимаю. Рассмотрим некоторое движение твёрдого тела $\mathcal{DM} = \{D_{\tau}: J \to \mathbb{E}^3\}_{\tau \in T}$. Функция D_{τ} задаёт перемещение точки M_{τ} твёрдого тела. У нас есть формула, по которому мы можем найти коэффициенты $x_{j}^{\tau}(t)$, то есть перемещению точки соответствует биекция $D: \mathbb{E}^3 \to \mathbb{E}^3$, задающаяся этой формулой. В этом случае получается, что каждому движению твёрдого тела соответствует множество таких биекций. Если это всё верно, то надо аккуратно переписать всё в верных терминах.)

Рассмотрим движение $\mathcal{DM}=\{D_{\tau}:J\to\mathbb{E}^3\}_{\tau\in T}$ механической системы в \mathbb{E}^3 .

Пусть $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$ — некоторый фиксированный репер в \mathbb{E}^3 и пусть

$$M_{\tau} = D_{\tau}(t) = O + \sum_{i=1}^{3} x_{j}^{\tau}(t)\vec{e}_{j}, \quad \tau \in T.$$
 (11.1)

Так как свободное твёрдое тело (твёрдое тело на классе всех движений в \mathbb{E}^3) имеет 6 степеней свободы, то функции $x_j^{\tau}(t)$ могут быть выражены через какие-то 6 скалярных функций q_1,\ldots,q_6 .

етыре точки M_0, M_1, M_2, M_3 твёрдого тела выберем так, чтобы векторы $\overline{M_0M_1}, \overline{M_0M_2}, \overline{M_0M_3}$ образовывали ортонормированный базис $(\vec{i}_1, \vec{i}_2, \vec{i}_3)$

пространства \mathbb{R}^3 . Тогда каждая точка M_{τ} твёрдого тела определяется своими аффинными координатами в репере $(M_0, \vec{i}_1, \vec{i}_2, \vec{i}_3)$:

$$M_{\tau} = M_0 + \sum_{j=1}^{3} y_j^{\tau} \vec{i}_j, \tag{11.2}$$

причём координаты y_i^{τ} не зависят от времени.

Векторы $\vec{i}_1, \vec{i}_2, \vec{i}_3$, построенные по движущимся точкам M_0, M_1, M_2, M_3 , являются функциями времени:

$$\vec{i}_j = \vec{i}_j(t), \quad j = 1, 2, 3.$$

Ортонормированные базисы $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ и $(\vec{i}_1(t),\vec{i}_2(t),\vec{i}_3(t))$ пространства \mathbb{R}^3 связаны равенствами

$$\vec{i}_k = \sum_{j=1}^3 p_{kj}(t)\vec{e}_j, \quad k = 1, 2, 3,$$
 (11.3)

где матрица $P(t) = (p_{kj}(t))$ ортогональна.

Если D_{M_0} — движение точки M_0 и

$$D_{M_0}(t) = O + \sum_{j=1}^{3} a_j(t)\vec{e_j},$$

то

$$x_j^{\tau}(t) = a_j(t) + \sum_{k=1}^{3} p_{kj}(t)y_k^{\tau}, \quad j = 1, 2, 3.$$
 (11.4)

Элементы p_{kj} ортогональной матрицы P могут быть выражены через углы Эйлера φ, ψ, θ , поэтому формулы 11.4 дают искомое представление для функций x_j^{τ} через шесть функций $a_1(t), a_2(t), a_3(t), \varphi(t), \psi(t), \theta(t)$. Это значит, что всякому перемещению соответствует биективное отображение $D: \mathbb{E}^3 \to \mathbb{E}^3$, определяемое формулами 11.4.

Задавая всевозможные движения (то есть функции $a_1, a_2, a_3, \varphi, \psi, \theta$) и фиксируя всевозможные моменты времени $t \in J$, мы будем получать те или иные перемещения твёрдого тела за время от t_0 до t и соответствующие ему биекции $D: \mathbb{E}^3 \to \mathbb{E}^3$.

Теорема 11.1. Семейство D_3 всех таких биекций является подгруппой группы $s(\mathbb{E}^3)$.

Доказательство. (TODO: указания на странице 44 конспекта) □

Определение 11.12. Семейство D_3 называют *группой движений* в \mathbb{E}^3 .

11.3 Подгруппы движений

Определение 11.13. Если матрица P(t) не зависит от времени, то движение твёрдого тела называют *поступательным*.

Каждому перемещению твёрдого тела за время от t_0 до t в некотором поступательном движении соответствует некоторое множество биекций D: $\mathbb{E}^3 \to \mathbb{E}^3$, определяемых формулами:

$$x_j^{\tau}(t) = a_j(t) + \sum_{k=1}^{3} p_{kj}^0 y_k^{\tau}, \quad j = 1, 2, 3,$$

где
$$P(t_0) = P^0 = (p_{kj}^0).$$

Теорема 11.2. Множесство $D_3^{(n)}$ всех таких биекций

11.4 Список литературы

12 Поступательное движение твёрдого тела

Под *поступательным* движением абсолютно твёрдого тела понимают такое его движение, при котором прямая, проведённая через любые две точки тела и жёстко с ним связанная, остаётся во всё время движения *параллельной самой себе*.

Точки *поступательно* движущегося тела могут описывать *любые криво*линейные траектории, но движение тела сохраняет свой *поступательный* характер.

Теорема 12.1. При поступательном движении твёрдого тела все его точки описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения.

Доказательство. Определим положение любой точки M твёрдого тела векторрадиусом \vec{r}' , проведённым из некоторой точки O', также принадлежащей телу (TODO: ссылка на рисунок). Если движение поступательное, то по определению вектор \vec{r}' остаётся параллельным самому себе. Величина вектора \vec{r}' (r' = O'M) не изменяется, так как тело твёрдое. Итак, \vec{r}' является постоянным вектором.

Обозначим через $\vec{r_0}$ вектор-радиус точки O' относительно некоторой неподвижной точки O. Равенство

$$\vec{r} = \vec{r}_0 + \vec{r}' \tag{12.1}$$

показывает, что траектория точки M получается из траектории точки O' путём параллельного перенесения её на постоянный по величине и направлению вектор. Следовательно, траектории точек твёрдого тела, движущегося поступательно, представляют собой конгруэнтные кривые, получающиеся друг из друга путём параллельного переноса.

Дифференцируя обе части формулы 12.1 по времени и замечая, что производная постоянного вектора \vec{r}' равна нулю, получим

$$\frac{d\vec{r}}{dt} = \frac{d\vec{r}_0}{dt},$$

или, вспоминая определение вектора скорости,

$$\vec{v} = \vec{v}_0, \tag{12.2}$$

то есть скорости всех точек твёрдого тела, движущегося поступательно, в любой момент времени друг другу равны как по величине, так и по направлению.

Дифференцируя обе части 12.2 ещё раз по времени, получаем

$$\vec{w} = \vec{w}_0, \tag{12.3}$$

то есть ускорения всех точек поступательно движущегося твёрдого тела в любой момент времени одинаковы. \Box

12.1 Список литературы

1. Л.Г. Лойцянский, Kypc теоретической механики

13 Вращение твёрдого тела вокруг неподвижной оси

13.1 Определение. Основные понятия

Рассмотрим движение твёрдого тела, при котором две точки его остаются неподвижными; такое движение представляет собой вращение тела вокруг проходящей через неподвижные точки прямой, называемой *осью вращения*.

Пусть ось вращения тела совпадает с осью Oz. Чтобы определить положение тела, проведём через ось Oz две полуплоскости: подвижную Q, твёрдо связанную с вращающимся телом, и неподвижную P (TODO: картинка). Заданием двугранного угла φ между этими полуплоскостями положение твёрдого тела вполне определяется.

Движение твёрдого тела, имеющего неподвижную ось вращения, определяется заданием угла φ в функции времени:

$$\varphi = f(t). \tag{13.1}$$

Это уравнение называется уравнением вращения тела.

Величина, учитывающая быстроту изменения угла поворота со временем, называется угловой скоростью тела.

Условимся обозначать абсолютное значение некоторой величины как a, а её алгебраическое значение как \tilde{a} . Конечно, $|\tilde{a}|=a$. В случае угловой скорости будем использовать соответственно обозначения ω и $\tilde{\omega}$.

За меру быстроты изменения угла поворота с течением времени примем отношение приращения угла $\Delta \varphi$ к промежутку времени Δt , в течение которого это приращение произошло. Такое отношение назовём *средней угловой скоростью* за промежуток времени Δt и обозначим

$$\tilde{\omega}_{\rm cp} = \frac{\Delta \varphi}{\Delta t}.$$

Желая перейти от средней угловой скорости за некоторый промежуток времени к истинной угловой скорости в данный момент, будем стремить интервал времени Δt к нулю. По определению производной угловая скорость $\tilde{\omega}$ в данный момент будет равна

$$\tilde{\omega} = \lim_{\Delta t \to 0} \tilde{\omega}_{\rm cp} = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt} = \dot{\varphi}. \tag{13.2}$$

Аналогично вводится понятие cpedнего углового ускорения за промежуток времени Δt :

$$\tilde{\varepsilon}_{\rm cp} = \frac{\Delta \tilde{\omega}}{\Delta t}$$

и углового ускорения в данный момент:

$$\tilde{\varepsilon} = \lim_{\Delta t \to 0} \tilde{\varepsilon}_{cp} = \lim_{\Delta t \to 0} \frac{\Delta \tilde{\omega}}{\Delta t} = \frac{d\tilde{\omega}}{dt} = \dot{\tilde{\omega}}.$$
 (13.3)

Из формулы 13.2 будет также следовать

$$\tilde{\varepsilon} = \frac{d^2 \varphi}{dt^2} = \ddot{\varphi}.$$

13.2 Векторные формулы скорости и ускорения точек твёрдого тела, вращающегося вокруг неподвижной оси

Введём в рассмотрение вектор угловой скорости, который будем обозначать через $\vec{\omega}$.

Величиной вектора угловой скорости $\vec{\omega}$ является

$$\omega = \left| \frac{d\varphi}{dt} \right| = \dot{\varphi}.$$

Условимся направлять вектор угловой скорости $\vec{\omega}$ по оси вращения так, чтобы наблюдатель, смотрящий с конца вектора $\vec{\omega}$, видел вращение тела в положительном направлении, то есть против часовой стрелки при правой системе координат.

Откладывая вектор $\vec{\omega}$ по оси вращения, можно определить вектор линейной скорости \vec{v} любой точки M как векторное произведение вектора угловой скорости на вектор-радиус этой точки относительно любой точки оси вращения (формула Эйлера) (TODO: картинка):

$$\vec{v} = \vec{\omega} \times \vec{r}.\tag{13.4}$$

В самом деле, величина векторного произведения 13.4 равна

$$v = \omega r \sin \alpha = \omega h$$
,

то есть величине скорости; пусть, далее, принята правая система осей, тогда при показанном стрелкой направлении вращения вектор угловой скорости должен быть отложен по оси вращения вверх (TODO: картинка 140). Векторное произведение $\vec{\omega} \times \vec{r}$ перпендикулярно к $\vec{\omega}$ и \vec{r} и направлено так, чтобы, смотря с его конца, видеть поворот от $\vec{\omega}$ к \vec{r} на наименьший угол против часовой стрелки; но это и будет направление скорости \vec{v} .

Выведем теперь векторную формулу ускорения. Для этого возьмём векторную производную по времени от обеих частей равенства 13.4; будем иметь

$$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(\vec{\omega} \times \vec{r}) = \frac{d\vec{\omega}}{dt} \times \vec{r} + \vec{\omega} \times \frac{d\vec{r}}{dt}.$$
 (13.5)

Производную по времени от вектора угловой скорости $\vec{\omega}$ назовём $6e\kappa mo-$ ром углового ускорения. Называя вектор углового ускорения $\vec{\varepsilon}$ и замечая, что по определению скорости $\dot{\vec{r}} = \vec{v}$, приведём 13.5 к виду

$$\vec{w} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times \vec{v}. \tag{13.6}$$

Первое слагаемое, $\vec{\varepsilon} \times \vec{r}$, представляет собой *вращательную* составляющую ускорения. Действительно, оно равно по величине

$$w^{(B)} = \varepsilon r \sin(\widehat{\varepsilon, r}) = \varepsilon h,$$

а по направлению совпадает со скоростью $\vec{v} = \vec{\omega} \times \vec{r}$, если векторы $\vec{\omega}$ и $\vec{\varepsilon}$ сонаправлены, и противоположно скорости, если $\vec{\omega}$ и $\vec{\varepsilon}$ разнонаправлены.

Второе слагаемое в формуле 13.6 представляет собой *осестремительное* ускорение. Его величина равна

$$w^{(\text{oc})} = \omega v \sin(\widehat{\vec{\omega}}, \vec{v}) = \omega^2 h,$$

так как векторы ω и v взаимно перпендикулярны, а $v=\omega h$.

Направление векторного произведения $\vec{\omega} \times \vec{v}$ перпендикулярно к оси вращения (вектору $\vec{\omega}$) и скорости \vec{v} , то есть идёт по радиусу круга, описываемого точкой, к его центру. Итак, действительно,

$$\vec{w}^{(\mathrm{B})} = \vec{\varepsilon} \times \vec{r}, \quad \vec{w}^{(\mathrm{oc})} = \vec{\omega} \times \vec{v}.$$
 (13.7)

13.3 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

14 Плоское движение твёрдого тела. Преобразование координат

Определение 14.1. Движение, при котором все точки твёрдого тела, расположенные в плоскостях, параллельных некоторой неподвижной плоскости, во всё время движения остаются в тех же плоскостях, называется *плоским движением*.

Если разбить мысленно тело на плоские сечения, параллельные заданной плоскости, то эти сечения будут оставаться каждое в своей плоскости. (TODO: картинка (книга, страница 142))

Пусть тело A совершает действие, параллельное плоскости П. Проведём мысленно в теле ряд плоскостей Π',Π'',\dots , параллельных П. Тело разобьётся на ряд плоских фигур S',S'',\dots Все точки, принадлежащие какойнибудь фигуре, движутся в плоскости фигуры, и, следовательно, фигура в целом движется в своей плоскости. Движение одной такой плоской фигуры вполне определяет движение всего твёрдого тела, так как плоскости, которыми мы разбили твёрдое тело, друг с другом неизменно связаны и не могут двигаться друг по отношению к другу.

Если мы возьмём в какой-нибудь фигуре S' точку M' и восставим в ней перпендикуляр к плоскости фигуры S', то точки M' и M'' фигур S' и S'', лежащие на этом перпендикуляре, будут иметь одинаковое движение, то есть будут описывать одинаковые траектории, иметь одинаковые скорости, одинаковые ускорения.

Таким образом, можно значительно упростить изучение плоского движения твёрдого тела — достаточно изучить движение одной плоской фигуры в её плоскости.

Возьмём две системы осей в плоскости движения фигуры: одну систему Oxy — неподвижную, другую — O'x'y', неизменно связанную с движущейся фигурой (TODO: картинка (книга, страница 228)). Положение точки M фигуры в неподвижной плоскости будем определять вектор-радиусом \vec{r} , проведённым из начала O неподвижной системы осей; выбор рассматриваемой точки фигуры определяется указанием вектора \vec{r}' , проведённого из начала O' подвижной системы. Вектор-радиус начала O' относительно O обозначим через \vec{r}_0 . Проекциями вектора \vec{r}' на оси x и y будут декартовы координаты x и y в неподвижной системе осей; при движении фигуры координаты x и y изменяются со временем; в противоположность этому проекции вектора \vec{r}' на подвижные оси, то есть декартовы координаты x' и y' точки M в системе подвижных осей, остаются постоянными, как расстояния точек твёрдой фигуры до проведённых на ней прямых.

Всякой точке фигуры соответствует определённая пара чисел x' и y'. В частности, точке O', началу подвижной системы, соответствуют значения x' и y', равные нулю; значения координат x и y для этой точки обозначим через x_0 и y_0 (проекции вектора $\vec{r_0}$).

Чтобы определить положение повдижной системы осей относительно неподвижной, достаточно задать:

- 1. положение начала O', то есть вектор-радиус \vec{r}_0 ;
- 2. угол одной из подвижных осей с одной из неподвижных, например угол φ оси x с осью x'.

(TODO: последнее требует некоторого уточнения)

Определение 14.2. Начало O' подвижной системы называется *полюсом*; угол φ будет в таком случае *углом поворота* вокруг полюса.

Плоское движение твёрдого тела определяется:

1. уравнениями движения полюса

$$x_0 = f_1(t), \quad y_0 = f_2(t);$$
 (14.1)

2. уравнением вращения фигуры вокруг полюса

$$\varphi = \varphi(t). \tag{14.2}$$

Чтобы получить уравнения движения любой точки плоской фигуры, спроектируем на неподвижные оси x и y очевидное геометрическое равенство

$$\vec{r} = \vec{r}_0 + \vec{r}'.$$

Получим

$$x = x_0 + x'\cos\varphi - y'\sin\varphi,$$

$$y = y_0 + y'\sin\varphi + y'\cos\varphi.$$
(14.3)

Уравнения 14.3 представляют собой уравнения движения точки M или, что то же самое, параметрические уравнения её траектории.

14.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

15 Две геометрические теоремы о плоском движении

Теорема 15.1 (Шаля). Всякое перемещение плоской фигуры в своей плоскости, а следовательно, и всякое плоское перемещение твёрдого тела можно себе представить как совокупность двух перемещений:

- 1. поступательного перемещения, зависящего от выбора полюса, и
- 2. вращательного перемещения вокруг полюса;

угол и направление поворота от выбора полюса не зависят.

Доказательство. Положение плоской фигуры может быть задано положением двух её точек O' и M или положением отрезка O'M (TODO: рисунок 149, стр. 234)

Пусть фигура O'M переместилась из положения I в положение II. Разобьём переход на две части. Сначала переместим фигуру поступательно в положение I', причём все точки её получат перемещения, геометрические равные перемещению $\overrightarrow{O'O_1}$ полюса O', а затем повернём фигуру на $\angle M'O_1M_1$ вокруг оси, проходящей через точку O_1 перпендикулярно к плоскости фигуры.

Заметим, что вектор поступательного перемещения зависит от выбора полюса, а угол поворота не зависит от этого выбора. В самом деле, тот же переход из положения I в положение II можно осуществить, приняв за полюс точку M и переместив сначала фигуру в положение II' (TODO: картинка), причём все точки фигуры получат перемещения, геометрически равные $\overline{MM_1}$ и отличные от $\overline{O'O_1}$, а затем повернув фигуру на $\angle O''M_1O_1$ вокругоси, проходящей через M_1 . Но по свойству поступательного перемещения $\overline{O''M_1}$ параллелен $\overline{O'M}$ и точно так же $\overline{O_1M'}$ параллелен $\overline{O'M}$. Следовательно, $\overline{O''M_1}$ и $\overline{O_1M'}$ параллельны между собой и $\angle O''M_1O = \angle M'O_1M_1$. Вместе с тем поворот вокруг точек O_1 и M_1 в том и другом случае происходит в одну и ту же сторону. Окончательное положение фигуры не зависит от того, будет ли сначала совершаться поступательное перемещение или поворот.

Естественно возникает вопрос, нельзя ли, используя произвольность в выборе полюса, осуществить заданное перемещение тела $\it odnum$ поворотом, без поступательного перемещения.

На этот вопрос даёт ответ

Теорема 15.2 (Эйлера). Всякое непоступательное перемещение плоской фигуры в её плоскости может быть осуществлено одним поворотом вокруг некоторого центра.

Доказательство. (ТООО: рисунок 151, страница 236)

Пусть фигура переместилась из положения I в положение II.

Восставим из середин перемещений точек A и B, то есть из середин отрезков AA' и BB', перпендикуляры и найдём пересечение их в точке C.

Докажем, что фигура I может быть переведена в положение II поворотом вокруг центра C на $\angle ACA' = \angle BCB'$. В самом деле, треугольники ABC и A'CB' равны между собой, так как AB = A'B' в силу неизменяемости фигуры и AC = A"C, BC = B'C по построению. Следовательно,

$$\angle ACB = \angle A'CB';$$

прибавляя к обеим частям этого равенства по одинаковому углу BCA', найдём, что

$$\angle ACA' = \angle BCB'.$$

Повернём теперь фигуру I на угол ACA', тогда AC совместится с A'C, BC-c B'C, так как углы равны, и AB совместится с A'B', что и доказывает теорему.

Определение 15.1. Точка C называется $\mathit{центром}\ noворота.$

Замечание 15.1. Только что указанное построение не даёт результата в двух случаях:

- 1. если перпендикуляры, восстановленные из середин перемещений, сливаются в одну линию (TODO: рис 152 стр 236), но в этом случае центр поворота лежит на пересечении продолжений отрезков AB и A'B';
- 2. если перпендикуляры параллельны между собой, что имеет место при *поступательном* перемещении; этот случай соответствует положению центра поворота в бесконечном удалении.

15.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

16 Формула Эйлера. Следствие

(ТОО: рис. 149 стр 234)

Теорема 15.1 доказана для любого конечного перемещения. Для частного случая бесконечно малого перемещения дадим векторную формулу. Для этого обозначим перемещение полюса O' через \vec{p}_0 , а перемещение точки M через \vec{p}_i ; тогда

$$\vec{p} = \vec{p_0} + \overrightarrow{M'M_1}. \tag{16.1}$$

Здесь $\overline{M'M_1}$ представляет собой перемещение точки M при повороте фигуры вокруг полюса. Обозначая угол поворота через θ , будем иметь из треугольника O_1M_1M'

$$M'M_1 = O_1M' \cdot 2\sin\frac{\theta}{2}.$$

Принимая поворот бесконечно малым, можно заменить синус его аргументом; тогда величина вектора $\overrightarrow{M'M_1}$ будет равна

$$M'M_1 = O_1M' \cdot \theta = r'\theta.$$

(FIXME: Это определение было где-то ещё...) Чтобы указать направление вектора $\overrightarrow{M'M_1}$, введём в рассмотрение вектор-радиус \overrightarrow{r}' точки M относительно полюса и вектор бесконечно малого поворота $\overrightarrow{\Theta}$, определив последний следующим образом:

- 1. величина вектора поворота равна величине угла поворота,
- 2. вектор $\vec{\Theta}$ перпендикулярен к плоскости перемещения, причём направлен в ту сторону, откуда поворот фигуры виден происходящим в положительном направлении.

Введя вектор $\vec{\Theta}$, можем представить $\overrightarrow{M'M_1}$ в виде

$$\overrightarrow{M'M_1} = \vec{\Theta} \times \vec{r}'.$$

Действительно, это векторное произведение имеет величину

$$\theta r' \sin(\widehat{\vec{\Theta}}, \widehat{\vec{r}'}) = \theta r'$$

и в предельном случае бесконечно малого перемещения направлено так же, как и $\overrightarrow{M'M_1}$ (то есть перпендикулярно к \overrightarrow{r}' в сторону поворота фигуры).

Формула 16.1 даёт

$$\vec{p} = \vec{p_0} + \vec{\Theta} \times \vec{r}'. \tag{16.2}$$

Основываясь на формуле плоского перемещения и определении скорости как предела при $\Delta t \to 0$ отношения бесконечно малого перемещения \vec{p} к промежутку времени Δt , в течение которого это перемещение произошло:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\vec{p}}{\Delta t},$$

получим по 16.2

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\vec{p}_0}{\Delta t} + \lim_{\Delta t \to 0} \left(\frac{\vec{\Theta}}{\Delta t} \times \vec{r}' \right). \tag{16.3}$$

Первое слагаемое, $\lim_{\Delta t \to 0} \frac{\vec{p}_0}{\Delta t},$ представляет собой скорость полюса:

$$\vec{v}_0 = \lim_{\Delta t \to 0} \frac{\vec{p}_0}{\Delta t}.\tag{16.4}$$

Вектор $\lim_{\Delta t \to 0} \frac{\vec{\Theta}}{\Delta t}$ назовём вектором *угловой скорости вращения фигуры*:

$$\vec{\omega} = \lim_{\Delta t \to 0} \frac{\vec{\Theta}}{\Delta t}.$$
 (16.5)

Направление $\vec{\omega}$ совпадает с направлением $\vec{\Theta}$; поэтому вектор $\vec{\omega}$ перпендикулярен к плоскости движения, и если смотреть вдоль него, то вращение фигуры должно представиться происходящим в положительном направлении. Величина $\vec{\omega}$ равна абсолютному значению производной угла поворота φ по времени. Действительно, если назвать значения угла φ в моменты t и $t+\Delta t$ соответственно через φ и $\varphi+\Delta \varphi$, то $\theta=|\Delta \varphi|$ и, следовательно,

$$\lim_{\Delta t \to 0} \frac{\theta}{\Delta t} = \lim_{\Delta t \to 0} \frac{|\Delta \varphi|}{\Delta t} = |\dot{\varphi}| \, .$$

Как и раньше, в тех случаях, когда возможны недоразумения, будем отличать $\omega = |\dot{\varphi}|$ от $\tilde{\omega} = \dot{\varphi}.$

Отметим ещё, что вектор угловой скорости $\vec{\omega}$ не изменяется при перемене полюса, так как $\vec{\Theta}$ от выбора полюса не зависит. Это дало право называть $\vec{\omega}$ вектором угловой скорости ϕ игуры.

Вернёмся к формуле 16.3. Подставляя вместо

$$\lim_{\Delta t \to 0} \frac{\vec{p_0}}{\Delta t}, \quad \lim_{\Delta t \to 0} \frac{\vec{\Theta}}{\Delta t}$$

их значения 16.4 и 16.5, получим поле скоростей точек в плоском движении фигуры

$$\vec{v} = \vec{v}_0 + \vec{\omega} \times \vec{r}'. \tag{16.6}$$

(TODO: в конспекте понятие none не встречается, поэтому, по всей видимости, нужно заменить его на что-то другое.)

(ТОО: рис. 153 стр 238)

Рассмотрим два частных случая.

1. Поступательное движение: $\omega = 0$; формула 16.6 даёт

$$\vec{v} = \vec{v}_0$$

то есть скорости всех точек одинаковы и равны скорости полюса.

2. Вращение вокруг неподвижной оси: $v_0 = 0$; получаем

$$\vec{v} = \vec{\omega} \times \vec{r}'$$
,

то есть уже известный нам закон распределения скоростей при вращении тела вокруг неподвижной оси.

(TODO: в книге на этом месте идут рассуждения об абсолютном, относительном и переносном движениях. Как мне кажется, оставлять их тут не надо.)

Дифференцируя по времени уравнение плоского движения $\vec{r} = \vec{r}_0 + \vec{r}',$ получим

$$\vec{v} = \frac{d\vec{r}_0}{dt} + \frac{d\vec{r}'}{dt};$$

но первое слагаемое представляет собой скорость полюса и, следовательно,

$$\frac{d\vec{r}'}{dt} = \vec{v} - \vec{v}_0 = \vec{\omega} \times \vec{r}',\tag{16.7}$$

то есть вращательная скорость вокруг полюса равна производной векторрадиуса \vec{r}' по времени.

Формула скорости точки B, когда за полюс принята точка A, будем обозначать следующим образом:

$$\vec{v}_B = \vec{v}_A + \vec{v}_{AB}, \quad \vec{v}_{AB} = \vec{\omega} \times \vec{r}'_{AB}.$$
 (16.8)

Теорема 16.1. Проекции скоростей концов отрезка на направление отрезка равны между собой.

Доказательство. (ТООО: рис. 155, стр. 239)

По формуле 16.8 будем иметь, проектируя обе её части на направление отрезка AB:

$$\operatorname{proj}_{AB} \vec{v}_B = \operatorname{proj}_{AB} \vec{v}_A + \operatorname{proj}_{AB} \vec{v}_{AB};$$

но вектор \vec{v}_{AB} перпендикулярен к направлению отрезка AB, следовательно, ргој $_{AB}$ $\vec{v}_{AB}=0$, и окончательно получим

$$\operatorname{proj}_{AB} \vec{v}_B = \operatorname{proj}_{AB} \vec{v}_A.$$

16.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

17 Центр скоростей. Центроиды. Теорема Пуансо

17.1 Мгновенный центр скоростей

Теорема 17.1. При всяком непоступательном движении плоской фигуры существует точка фигуры, скорость которой в данный момент равна нулю.

Доказательство. (ТООО: рис. 156, стр. 240)

Для доказательства восставим из точки A плоской фигуры перпендикуляр AN к направлению скорости \vec{v}_A так, чтобы угол $\frac{\pi}{2}$ между \vec{v}_A и линией AN был отсчитан в сторону вращения фигуры. Тогда по предыдущему вектор скорости любой точки M на этом перпендикуляре будет равен

$$\vec{v}_M = \vec{v}_A + \vec{\omega} \times \overrightarrow{AM} = \vec{v}_A + \vec{v}_{AM},$$

а величина скорости

$$v_M = v_A - \omega \cdot AM.$$

Изменяя расстояние точки M от точки A, можно при $\omega \neq 0$ найти такую точку P, чтобы $v_{AP}=-v_A$; тогда

$$AP = \frac{v_A}{\omega};$$

при этом будем иметь

$$v_P = v_A - \omega \cdot AP = v_A - \omega \cdot \frac{v_A}{\omega} = 0.$$

Определение 17.1. Точка P плоской фигуры, скорость которой в данный момент времени равна нулю, называется меновенным центром скоростей фигуры.

Скорости точек плоской фигуры можно рассматривать как вращательные скорости их вокруг мгновенного центра скоростей, а сам мгновенный центр скоростей — как мгновенный центр вращения плоской фигуры.

Имея это в виду, при известных направлениях скоростей точек A и B, проведём через них прямые l_A и l_B , ортогональные векторам скоростей в этих точках. Эти прямые либо пересекаются, либо нет; рассмотрим возможные варианты.

- 1. Прямые l_A и l_B пересекаются в единственной точке это и будет центр скоростей P.
- 2. Закреплённые векторы (A, \vec{v}_A) и (B, \vec{v}_B) параллельны, направлены в разные стороны или направлены в одну сторону, но не равны по величине в этом случае прямые l_A и l_B совпадают; через концы рассматриваемых закреплённых векторов проведём прямую l, точка пересечения этой прямой с прямой l_A и будет центром скоростей P.

3. Закреплённые векторы параллельны, направлены в одну сторону и равны по величине— в этом случае движение твёрдого тела поступательное, и для него понятие центра скоростей не определено.

17.2 Центроиды

Определение 17.2. Траектория мгновенного центра скоростей в плоскости, связанной с движущейся фигурой, образует кривую, называемую *по- движеной центроидой*.

Определение 17.3. Траектория мгновенного центра скоростей в неподвижной плоскости называется *неподвижной центроидой*.

Для вывода уравнений центроид обратимся к формуле 16.6. Проектируя её на неподвижные оси Ox и Oy, получим

$$v_x = v_{0x} - \tilde{\omega}(y - y_0), \quad v_y = v_{0y} + \tilde{\omega}(x - x_0);$$
 (17.1)

проекция же на оси подвижной системы O'x'y' даст

$$v_{x'} = v_{0x'} - \tilde{\omega}y' = v_{0x}\cos\varphi + v_{0y}\sin\varphi - \tilde{\omega}y',$$

$$v_{y'} = v_{0y'} + \tilde{\omega}x' = -v_{0x}\sin\varphi + v_{0y}\cos\varphi + \tilde{\omega}x'.$$
(17.2)

Подставив в правые части 17.1 вместо x и y координаты мгновенного центра скоростей x_P и y_P , приравняем левые части нулю, так как скорость той точки фигуры, которая в данный момент времени играет роль мгновенного центра, равна нулю. Будем иметь уравнения

$$v_{0x} - \tilde{\omega}(y_P - y_0) = 0, \quad v_{0y} + \tilde{\omega}(x_P - x_0) = 0,$$

откуда найдём уравнения неподвижной центроиды

$$x_P = x_0 - \frac{v_{0y}}{\tilde{\omega}}, \quad y_P = y_0 + \frac{v_{0x}}{\tilde{\omega}}.$$
 (17.3)

Аналогично по 17.2 найдём уравнения подвижной центроиды:

$$x'_{P} = \frac{1}{\tilde{\omega}} \left(v_{0x} \sin \varphi - v_{0y} \cos \varphi \right),$$

$$y'_{P} = \frac{1}{\tilde{\omega}} \left(v_{0x} \cos \varphi + v_{0y} \sin \varphi \right).$$
(17.4)

Теорема 17.2 (Пуансо). При плоском непоступательном движении твёрдого тела подвижная центроида катится без скольжения по неподвижной.

(TODO: доказательство (книга, стр 249))

17.3 Список литературы

- 1. Л.К. Бабаджанянц, Классическая механика
- 2. Л.Г. Лойцянский, Курс теоретической механики

18 Ускорение точек твёрдого тела в плоском движении

Имеем согласно 16.6

$$\vec{v} = \vec{v}_0 + \vec{\omega} \times \vec{r}'$$

и, следовательно,

$$\vec{w} = \frac{d\vec{v}}{dt}$$

$$= \frac{d\vec{v}_0}{dt} + \frac{d}{dt}(\vec{\omega} \times \vec{r}')$$

$$= \frac{d\vec{v}_0}{dt} + \frac{d\vec{\omega}}{dt} \times \vec{r}' + \vec{\omega} \times \frac{d\vec{r}'}{dt}.$$

Первое слагаемое

$$\vec{w_0} = \frac{d\vec{v_0}}{dt},\tag{18.1}$$

одинаковое для всех точек фигуры и равное ускорению полюса O', называется $nocmyname \ notation yekopehuem.$

Второе слагаемое — обозначим его через $\vec{w}^{(B)}$, — равное

$$\vec{w}^{(B)} = \frac{d\vec{\omega}}{dt} \times \vec{r}' = \vec{\varepsilon} \times \vec{r}', \tag{18.2}$$

называется вращательным ускорением. Здесь вектор

$$\vec{\varepsilon} = \frac{d\vec{\omega}}{dt}$$

представляет собой вектор углового ускорения. Вектор $\vec{w}^{(\mathrm{B})}$ перпендикулярен к \vec{r}' и направлен в ту же сторону, что и вращательная скорость $\vec{\omega} \times \vec{r}'$ точки плоской фигуры вокруг полюса, или в противоположную, сообразно тому, будет ли вращение фигуры ускоренным или замедленным; величина $\vec{w}^{(\mathrm{B})}$ равна

$$w^{(\mathrm{B})} = \varepsilon r' \sin(\widehat{\vec{\varepsilon}, \vec{r}'}) = \varepsilon r'.$$

Третье слагаемое, которое обозначим $\vec{w}^{(oc)}$, равно

$$\vec{w}^{(\text{oc})} = \vec{\omega} \times \frac{d\vec{r}'}{dt}.$$
 (18.3)

Подставив сюда вместо $\frac{d\vec{r'}}{dt}$ его значение 16.7, получим

$$\vec{w}^{(\text{oc})} = \vec{\omega} \times \vec{\omega} \times \vec{r}',$$

или, по известной формуле разложения двойного векторного произведения:

$$\vec{w}^{(\text{oc})} = \vec{\omega}(\vec{\omega} \cdot \vec{r}') - \vec{r}'(\vec{\omega} \cdot \vec{\omega}).$$

Но в плоском движении векторы $\vec{\omega}$ и \vec{r}' взаимно перпендикулярны, так что

$$\vec{\omega} \cdot \vec{r}' = 0,$$

кроме того,

$$\vec{\omega} \cdot \vec{\omega} = \omega^2,$$

следовательно,

$$\vec{w}^{(\text{oc})} = -\omega^2 \vec{r}'.$$

Эта составляющая ускорения, направленная от рассматриваемой точки к полюсу и равная по величине $\omega^2 r'$, называется осестремительным ускорением.

Итак, имеем

$$\vec{w} = \vec{w}_0 + \vec{w}^{(B)} + \vec{w}^{(oc)}$$
$$= \vec{w}_0 + \vec{\varepsilon} \times \vec{r}' - \omega^2 \vec{r}',$$

то есть ускорение любой точки в плоском движении может быть представлено как геометрическая сумма поступательного ускорения, равного ускорению полюса, вращательного ускорения вокруг полюса и осестремительного ускорения к полюсу.

Составим формулы для проекций ускорения на неподвижные оси $x,\ y.$ Замечая, что

$$\vec{r}' = \vec{r} - \vec{r}_0$$

найдём, проектируя обе части равенства 18 на неподвижные оси х и у:

$$w_x = \ddot{x}_0 - \ddot{\varphi}(y - y_0) - \dot{\varphi}^2(x - x_0),$$

$$w_y = \ddot{y}_0 + \ddot{\varphi}(x - x_0) - \dot{\varphi}^2(y - y_0).$$
(18.4)

Аналогично найдём проекции ускорения на подвижные оси:

$$w_{x'} = w_{0x'} - \ddot{\varphi}y' - \dot{\varphi}^2 x',$$

$$w_{y'} = w_{0y'} + \ddot{\varphi}x' - \dot{\varphi}^2 y'.$$
(18.5)

Условимся в дальнейшем снабжать обозначение ускорения индексом, указывающим точку, ускорение которой рассматривается. Положим

$$\vec{w}_{AB} = \vec{\varepsilon} \times \vec{r}'_{AB} - \omega^2 \vec{r}'_{AB}.$$

Здесь вектор \vec{w}_{AB} есть ускорение точки B по отношению к точке A, то есть ускорение по отношению к системе координат, имеющей начало в точке A и движущейся вместе с этой точкой поступательно. Вращательное ускорение вокруг полюса и осестремительное ускорение к полюсу будем обозначать так:

$$\vec{w}_{AB}^{(\mathrm{B})} = \vec{\varepsilon} \times \vec{r}_{AB}', \quad \vec{w}_{AB}^{(\mathrm{oc})} = -\omega^2 \vec{r}_{AB}'.$$

Формула 18 примет вид

$$\vec{w}_B = \vec{w}_A + \vec{w}_{AB} = \vec{w}_A + \vec{w}_{AB}^{(B)} + \vec{w}_{AB}^{(oc)}.$$
 (18.6)

Замечая, что $\vec{w}_{AB}^{(\mathrm{B})}$ и $\vec{w}_{AB}^{(\mathrm{oc})}$ взаимно перпендикулярны, получим

$$w_{AB} = \vec{r}'_{AB} \sqrt{\varepsilon^2 + \omega^4}.$$
 (18.7)

Обозначим через $\pi-\alpha$ тупой угол, образуемый векторами \vec{r}'_{AB} и \vec{w}_{AB} . Тогда

$$\operatorname{tg} \alpha = \frac{\vec{w}_{AB}^{(\mathrm{s})}}{\vec{w}_{AB}^{(\mathrm{oc})}} = \frac{\tilde{\varepsilon}}{\omega^2}.$$
 (18.8)

Теорема 18.1. В любой момент времени существует точка Q плоской фигуры, ускорение которой в этот момент равно нулю.

Доказательство. (ТООО: рис. 172, а,б, стр. 255)

Проведём через какую-нибудь точку A полупрямую AL под углом α , определяемым по формуле 18.8, к вектору \vec{w}_A , отсчитывая α от \vec{w}_A в сторону вращения фигуры или противоположно ему, сообразно тому, будет ли вращение ускоренным или замедленным. Отложим на AL отрезок

$$r'_{AQ} = AQ = \frac{w_A}{\sqrt{\varepsilon^2 + \omega^4}}. (18.9)$$

Конец Q этого отрезка и будет м
гновенным центром ускорений. В самом деле, согласно формул
е 18.7 имеем

$$w_{AQ} = r'_{AQ} \sqrt{\varepsilon^2 + \omega^4} = w_A.$$

С другой стороны, по построению вектор \vec{w}_{AQ} противоположен \vec{w}_A по направлению, то есть

$$\vec{w}_{AQ} = -\vec{w}_A.$$

Отсюда на основании 18.6 заключаем, что

$$\vec{w}_Q = 0,$$

то есть Q — мгновенный центр ускорений.

Определение 18.1. Точка Q называется мгновенным центром ускорений.

Построение мгновенного центра ускорений требует знания ускорения \vec{w}_A какой-либо точки фигуры и угла α . Покажем, как построить мгновенный центр ускорений, имея ускорения двух точек фигуры. Заметим для этого, что, зная \vec{w}_A и \vec{w}_B , тем самым можем определить

$$\vec{w}_{AB} = \vec{w}_B - \vec{w}_A,$$

и, следовательно, угол α будет вполне определён. Теперь можем построить луч AL, на котором лежит мгновенный центр ускорений Q. Нет надобности вычислять положение точки Q по формуле 18.9, так как можно построить

её графически, проведя ещё луч BM под углом α к \vec{w}_B . Пересечение лучей AL и BM определит точку Q.

Имея мгновенный центр ускорений, получаем весьма наглядную картину распределения ускорений в плоской фигуре. Действительно, применяя формулу 18.6 в предположении, что за полюс A принят мгновенный центр ускорений Q, и замечая, что по определению $\vec{w}_Q = 0$, получим

$$\vec{w}_B = \vec{w}_{QB} = \vec{w}_{QB}^{(B)} + \vec{w}_{QB}^{(oc)} = \vec{\varepsilon} \times \vec{r}'_{QB} - \omega^2 \vec{r}'_{QB}.$$

Вращательное ускорение $\vec{w}_{QB}^{(\mathrm{B})}$ направлено по перпендикуляру к векторрадиусу, соединяющему центр ускорений с рассматриваемой точкой, в ту сторону, куда происходит вращение, или в противоположную, смотря по тому, является ли вращение ускоренным или замедленным.

Осестремительное ускорение $\vec{w}_{QB}^{({
m oc})}$ направлено всегда от точки к мгновенному центру ускорений.

(TODO: puc. 174, ctp. 257)

По величине они равны

$$\begin{split} w_{QB}^{(\mathrm{B})} &= w_{B}^{(\mathrm{B})} = \varepsilon r_{QB}', \\ w_{QB}^{(\mathrm{oc})} &= w_{B}^{(\mathrm{oc})} = \omega^2 r_{QB}'. \end{split}$$

Их геометрическая сумма \vec{w}_B по величине равна

$$w_B = r'_{OB} \sqrt{\varepsilon^2 + \omega^4}.$$

Таким образом, полное ускорение любой точки фигуры по величине пропорционально её расстоянию от мгновенного центра ускорений и направлено под одинаковым для всех точек фигуры углом к вектор-радиусу, соединяющему рассматриваемую точку с мгновенным центром ускорений.

Не следует смешивать вращательное ускорение $\vec{w}_B^{(\mathrm{B})}$ с касательной составляющей ускорения, а осестремительное ускорение $\vec{w}_B^{({
m oc})}$ — с нормальной составляющей. В самом деле, касательное \vec{w}_{τ} и нормальное \vec{w}_{n} ускорения направлены по касательной и главной нормали к траектории, то есть по перпендикуляру к вектор-радиусу \vec{r}'_{PB} , соединяющему рассматриваемую точку с мгновенным центром скоростей P, и вдоль этого вектор-радиуса, в то время как $\vec{w}_B^{(\mathrm{B})}$ и $\vec{w}_B^{(\mathrm{oc})}$ направлены перпендикулярно и вдоль векторрадиуса \vec{r}'_{OB} . (TODO: puc. 175 стр 257)

Легко получить вектор-радиусы \vec{r}_Q и \vec{r}_Q' центра ускорения в неподвижной и подвижной системах координат; для этого решим векторное уравнение

$$\vec{w}_Q = \vec{w}_0 + \vec{\varepsilon} \times \vec{r}_Q' - \omega^2 \vec{r}_Q' = 0. \tag{18.10}$$

С этой целью умножим его векторно на $\vec{\varepsilon}$:

$$\vec{\varepsilon} \times \vec{w_0} + \vec{\varepsilon} \times \vec{\varepsilon} \times \vec{r}_O' - \omega^2 \left(\vec{\varepsilon} \times \vec{r}_O' \right) = 0$$

и раскроем двойное векторное произведение; тогда получим

$$\vec{\varepsilon} \times \vec{w}_0 + \vec{\varepsilon} \left(\vec{\varepsilon} \cdot \vec{r}_Q' \right) - \vec{r}_Q' \left(\vec{\varepsilon} \cdot \vec{\varepsilon} \right) - \omega^2 \left(\vec{\varepsilon} \times \vec{r}_Q' \right) = 0.$$

Заметим, что в плоском движении $\vec{\varepsilon} \cdot \vec{r}_Q' = 0$; далее, из 18.10 следует, что

$$\vec{\varepsilon} \times \vec{r}_O' = \omega^2 \vec{r}_O' - \vec{w}_0.$$

Окончательно получаем

$$\vec{\varepsilon} \times \vec{w}_0 - (\varepsilon^2 + \omega^4) \vec{r}_Q' + \omega^2 \vec{w}_0 = 0,$$

или, разрешая уравнение относительно \vec{r}_O' ,

$$\begin{split} \vec{r}_Q' &= \frac{\vec{\varepsilon} \times \vec{w}_0 + \omega^2 \vec{w}_0}{\varepsilon^2 + \omega^4} \\ \vec{r}_Q &= \vec{r}_0 + \vec{r}_Q' = \vec{r}_0 + \frac{\vec{\varepsilon} \times \vec{w}_0 + \omega^2 \vec{w}_0}{\varepsilon^2 + \omega^4}. \end{split}$$

Проектируя первое равенство на подвижные оси координат x', y', а второе — на неподвижные оси x, y, получим формулы координат мгновенного центра ускорений Q:

1. в подвиженой системе осей

$$x'_{Q} = \frac{\omega^{2} w_{0x'} - \ddot{\varphi} w_{0y'}}{\ddot{\varphi}^{2} + \omega^{4}},$$

$$y'_{Q} = \frac{\omega^{2} w_{0y'} + \ddot{\varphi} w_{0x'}}{\ddot{\varphi}^{2} + \omega^{4}};$$
(18.11)

2. в неподвиженой системе осей

$$x_{Q} = x_{0} + \frac{\omega^{2} w_{0x} - \ddot{\varphi} w_{0y}}{\ddot{\varphi}^{2} + \omega^{4}},$$

$$y_{Q} = y_{0} + \frac{\omega^{2} w_{0y} + \ddot{\varphi} w_{0x}}{\ddot{\varphi}^{2} + \omega^{4}}.$$
(18.12)

18.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

19 Задание движения твёрдого тела через углы Эйлера

(ТОО: рис. 180 стр. 263)

Соединим жёстко с вращающимся телом подвижную систему координат Ox'y'z' и будем рассматривать вращение этой системы по отношению к неподвижной системе Oxyz. Введём таблицу косинусов углов между осями координат:

	\boldsymbol{x}	y	z
x'	α_{11}	α_{12}	α_{13}
y'	α_{21}	α_{22}	α_{23}
z'	α_{31}	α_{32}	α_{33}

Связь между координатами точки M в подвижной и неподвижной системах:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix},$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \alpha_{31} \\ \alpha_{12} & \alpha_{22} & \alpha_{32} \\ \alpha_{13} & \alpha_{23} & \alpha_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$(19.1)$$

Отметим линию ON пересечения плоскостей xOy и x'Oy' и назовём её линией узлов. Выберём на этой линии положительное направление ON так, чтобы, смотря с него, видеть вращение оси Oz к оси Oz' на наименьший угол в положительном направлении (то есть в правой системе осей — против часовой стрелки); легко видеть, плоскость zOz' перпендикулярна к оси ON.

Первый эйлеров угол — угол $npeueccuu \psi$ — образован в плоскости xOy линией узлов с неподвижной осью Ox; отсчитывается угол ψ в положительном направлении (по часовой стрелке) от оси Ox к оси ON, если смотреть с оси Oz.

Второй угол — угол *нутации* θ — расположен в плоскости zOz' и отсчитывается от оси Oz к оси Oz' в положительном направлении (против часовой стрелки), если смотреть с положительного направления оси ON.

Третий угол — угол *pomauuu*, или угол *чистого вращения* φ — расположен в плоскости x'Oy', причём отсчитывается от линии узлов ON до оси Ox' в положительном направлении.

(ТОО: рис. 181 стр 264)

Для установления зависимостей между косинусами углов осей координат и эйлеровыми углами применим следующий приём. Введём, кроме единичных векторов осей координат $\vec{i}, \vec{j}, \vec{k}, \vec{i}', \vec{j}', \vec{k}'$, ещё единичные векторы следующих осей:

- \vec{n} линии узлов ON;
- \vec{n}_1 оси ON_1 , перпендикулярной к оси ON и лежащей в плоскости xOy;

• \vec{n}_1' — оси ON_1' , перпендикулярной к оси ON и лежащей в плоскости x'Ov'.

Направление оси ON_1 выберем так, чтобы оси ONN_1z образовали триэдр, сонаправленный (то есть правый) с системой осей Oxyz; направление оси ON_1' выберем так, чтобы оси $ONN_1'z'$ образовали сонаправленный триэдр с системой Ox'y'z', а следовательно, и с системой Oxyz. Легко видеть, что угол между осями ON_1' и ON_1 представляет собой линейный угол двугранного угла между плоскостями x'Oy' и xOy, то есть угол θ (TODO: не помню, есть ли в билетах определение линейного угла двугранного угла...). Тогда, замечая ещё, что единичные векторы \vec{i} , \vec{j} и \vec{i}' , \vec{j}' легко могут быть выражены через единичные векторы \vec{n} , \vec{n}_1 и \vec{n}_1' в форме зависимостей, получаемых из разложения одних единичных векторов по другим:

$$\vec{i} = \vec{n}\cos\psi - \vec{n}_1\sin\psi,$$

$$\vec{j} = \vec{n}\cos\varphi + \vec{n}_1'\sin\varphi,$$

$$\vec{i} = \vec{n}\sin\psi + \vec{n}_1\cos\psi,$$

$$\vec{i} = -\vec{n}\sin\varphi + \vec{n}_1'\cos\varphi,$$
(19.2)

найдём

$$\begin{aligned} \alpha_{11} &= \vec{i} \cdot \vec{i}' \\ &= (\vec{n} \cos \psi - \vec{n}_1 \sin \psi) \cdot (\vec{n} \cos \varphi + \vec{n}_1' \sin \varphi) \\ &= (\vec{n} \cdot \vec{n}) \cos \psi \cos \varphi + (\vec{n} \cdot \vec{n}_1') \cos \psi \sin \varphi - \\ &- (\vec{n}_1 \cdot \vec{n}) \sin \psi \cos \varphi - (\vec{n}_1 \cdot \vec{n}_1') \sin \psi \sin \varphi. \end{aligned}$$

Имеем

$$\vec{n} \cdot \vec{n} = 1$$
, $\vec{n} \cdot \vec{n}'_1 = 0$, $\vec{n}_1 \cdot \vec{n} = 0$, $\vec{n}_1 \cdot \vec{n}'_1 = \cos \theta$,

откуда

$$\alpha_{11} = \cos \psi \cos \varphi - \sin \psi \sin \varphi \cos \theta.$$

Аналогично получим остальные косинусы.

Выделим полученную группу формул:

$$\alpha_{11} = \cos(\widehat{x,x'}) = \cos \psi \cos \varphi - \sin \psi \sin \varphi \cos \theta,$$

$$\alpha_{21} = \cos(\widehat{x,y'}) = -\cos \psi \sin \varphi - \sin \psi \cos \varphi \cos \theta,$$

$$\alpha_{31} = \cos(\widehat{x,z'}) = \sin \psi \sin \theta,$$

$$\alpha_{12} = \cos(\widehat{y,x'}) = \sin \psi \cos \varphi + \cos \psi \sin \varphi \cos \theta,$$

$$\alpha_{22} = \cos(\widehat{y,y'}) = -\sin \psi \sin \varphi + \cos \psi \cos \varphi \cos \theta,$$

$$\alpha_{31} = \cos(\widehat{y,x'}) = -\sin \psi \sin \varphi + \cos \psi \cos \varphi \cos \theta,$$

$$\alpha_{22} = \cos(\widehat{y,x'}) = -\cos \psi \sin \theta,$$

$$\alpha_{31} = \cos(\widehat{x,x'}) = \sin \varphi \sin \theta,$$

$$\alpha_{22} = \cos(\widehat{x,x'}) = \cos \varphi \sin \theta,$$

$$\alpha_{23} = \cos(\widehat{x,y'}) = \cos \varphi \sin \theta,$$

$$\alpha_{33} = \cos(\widehat{x,z'}) = \cos \theta.$$
(19.3)

Теорема 19.1. Пусть

$$P = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \alpha_{31} \\ \alpha_{12} & \alpha_{22} & \alpha_{32} \\ \alpha_{13} & \alpha_{23} & \alpha_{33} \end{pmatrix},$$

$$P_1(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{pmatrix},$$

$$P_2(t) = \begin{pmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Tог ∂a

$$P = P_2(\psi)P_1(\theta)P_2(\varphi). \tag{19.4}$$

Доказательство. Равенство проверяется перемножением матриц.

Можно также доказать, используя геометрический смысл преобразований (поворот).

19.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

20 Две геометрические теоремы о движении твёрдого тела вокруг неподвижной точки

Определение 20.1. Перемещение твёрдого тела такое, что начальное и конечное положения кажддой его точки совпадают, называют *нулевым*.

Теорема 20.1 (Эйлера-Даламбера). Для любого ненулевого перемещения Π твёрдого тела вокруг неподвижной точки существует единственная прямая l такая, что перемещение Π можно представить как перемещение в результате поворота этого тела вокруг этой оси на некоторый угол α .

Доказательство. Пусть O — неподвижная точка тела. Будем считать, что в начальном положении подвижный и неподвижный реперы $(O, \vec{i}, \vec{j}, \vec{k})$ и $(O, \vec{e}_{x'}, \vec{e}_{y'}, \vec{e}_{z'})$ совпадают. Пусть (x'_1, y'_1, z'_1) и (x'_2, y'_2, z'_2) — координаты в неподвижном репере произвольной точки M твёрдого тела (пространства, связанного с этим телом) в его начальном и конечном положениях соответственно, а (x, y, z) — координаты этой точки в подвижном репере. Используя формулы 19.1, получаем

$$\begin{pmatrix} x_1' \\ y_1' \\ z_1' \end{pmatrix} = I \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

$$\begin{pmatrix} x_2' \\ y_2' \\ z_2' \end{pmatrix} = P \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

где I — единичная матрица, P — ортогональная, $\det P = 1$ и $P \neq I$.

Необходимо показать, что множество точек $M \sim (x, y, z)$, удовлетворяющих равенству $(x_1', y_1', z_1') = (x_2', y_2', z_2')$, то есть равенству

$$(P-I)\cdot \left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} 0\\0\\0\end{array}\right),$$

суть множество всех точек некоторой прямой, проходящей через (0,0,0).

Эту задачу можно переформулировать так: мы должны доказать, что среди собственных значений λ матрицы P есть значение $\lambda_1=1$, и ему соответствует одномерное подпространство собственных векторов. Чтобы сделать это, мы покажем, что $\lambda_1=1$ является корнем характеристического полинома $d(\lambda)=\det{(P-\lambda I)}$ и что кратность этого корня равна единице.

Действительно, из цепочки равенств

$$d(1) = \det(P - I)$$

$$= \det(P^{T} - I^{T})$$

$$= \det(P^{-1} - I)$$

$$= \det(P \cdot (P^{-1} - I))$$

$$= \det(I - P)$$

$$= \det(-(P - I))$$

$$= (-1)^{3} \det(P - I)$$

$$= -d(1)$$

следует, что величина $\lambda_1=1$ является корнем полинома $d(\lambda)$. (TODO: доказать, что кратность $\lambda_1=1$ равна единице)

Определение 20.2. Прямую l называют осью вращения.

Пусть M — произвольная точка твёрдого тела, движущегося вокруг неподвижной точки O, а $\vec{r}(t)$ и $\vec{r}(t+\Delta t)$ — вектор-радиусы этой точки в моменты времени t и $t+\Delta t$. Вектор

$$\Delta \vec{r} = \vec{r}(t + \Delta t) - \vec{r}(t)$$

соответствует перемещению точки M за время от t до $t+\Delta t$. В соответствии с теоремой 20.1, его можно вычислить как перемещение при вращении вокруг некоторой оси на угол $\overline{\Delta \varphi}$ (этот вектор направлен вдоль упомянутой оси согласно определению угла поворота). Определяя скорость \vec{v} как предел при $\Delta t \to 0$ отношения малого перемещения $\Delta \vec{r}$ к промежутку времени Δt , найдём

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\overrightarrow{\Delta \varphi}}{\Delta t} \times \vec{r} \right) = \left(\lim_{\Delta t \to 0} \frac{\overrightarrow{\Delta \varphi}}{\Delta t} \right) \times \vec{r}.$$

Вводя вектор мгновенной угловой скорости

$$\vec{\omega} = \lim_{\Delta t \to 0} \frac{\overrightarrow{\Delta \varphi}}{\Delta t},$$

получим

$$\vec{v} = \vec{\omega} \times \vec{r}$$
.

Определение 20.3. Прямую, проходящую через точку O и параллельную вектору мгновенной угловой скорости $\vec{\omega}$, называют мгновенной осью вращения твёрдого тела в момент времени t.

Теорема 20.2. Угловую скорость твёрдого тела с неподвижной точкой можно вычислить по формуле

$$\vec{\omega} = \dot{\psi}\vec{k} + \dot{\theta}\vec{n} + \dot{\varphi}\vec{k}'. \tag{20.1}$$

Доказательство. (TODO: доказать (в книге есть)) □

Определение 20.4. Геометрическое место точек мгновенных осей вращения в неподвижном и подвижном реперах называют соответственно *непо- движным* и *подвижным* аксоидом.

Теорема 20.3 (Пуансо). При движении твёрдого тела, имеющего неподвижную точку, подвижный аксоид катится без скольжения по неподвижному.

Доказательство. ($\overline{\text{TODO}}$: доказать (в книге есть))

20.1 Список литературы

- 1. Л.К. Бабаджанянц, Классическая механика
- 2. Л.Г. Лойцянский, Курс теоретической механики

21 Проекции угловой скорости тела с неподвижной точкой

Проектируя равенство 20.1 на неподвижные оси Oxyz, найдём

$$\omega_x = \dot{\varphi} \sin \psi \sin \theta + \dot{\theta} \cos \psi,
\omega_y = -\dot{\varphi} \cos \psi \sin \theta + \dot{\theta} \sin \psi,
\omega_z = \dot{\varphi} \cos \theta + \dot{\psi}.$$
(21.1)

Аналогично получим и проекции угловой скорости на *подвижные* оси, проектируя равенство 20.1 на оси координат Ox'y'z', связанные с движущимся телом:

$$\omega_{x'} = \dot{\psi} \sin \theta \sin \varphi + \dot{\theta} \cos \varphi,
\omega_{y'} = \dot{\psi} \sin \theta \cos \varphi - \dot{\theta} \sin \varphi,
\omega_{z'} = \dot{\psi} \cos \theta + \dot{\varphi}.$$
(21.2)

21.1 Список литературы

1. Л.Г. Лойцянский, Курс теоретической механики

22 Ускорение точек тела с неподвижной точ-кой

Дифференцируя формулу Эйлера $\vec{v} = \vec{\omega} \times \vec{r}$, получаем

$$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d\vec{\omega}}{dt} \times \vec{r} + \vec{\omega} \times \frac{d\vec{r}}{dt}.$$
 (22.1)

Производная по времени от вектора угловой скорости определяет вектор yелового yскорения

$$\vec{\varepsilon} = \frac{d\vec{\omega}}{dt}.\tag{22.2}$$

По величине и направлению этот вектор совпадает со скоростью движения конца вектора $\vec{\omega}$ угловой скорости по его годографу.

Замечая, что

$$\frac{d\vec{r}}{dt} = \vec{v} = \vec{\omega} \times \vec{r},$$

получим

$$\vec{w} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times \vec{v} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}).$$
 (22.3)

(ТОО: рис. 190 стр 277)

Первое слагаемое

$$\vec{w}^{(B)} = \vec{\varepsilon} \times \vec{r} \tag{22.4}$$

представляет собой *вращательное ускорение*; это — вектор, перпендикулярный к плоскости, проходящей через вектор углового ускорения и векторрадиус взятой точки тела. В отличие от случая вращения вокруг неподвижной оси, вектор углового ускорения не лежит на той же прямой, что и вектор угловой скорости, а направлен по некоторой прямой, проходящей через неподвижную точку; эту прямую будем называть *осью углового ускорения*.

Эта ось параллельна скорости конца вектора $\vec{\omega}$. Поэтому здесь вектор вращательного ускорения перпендикулярен не радиусу вращения h, а отрезку h', представляющему собой кратчайшее расстояние от точки M до оси углового ускорения. По величине вращательное ускорение равно

$$w^{(B)} = \varepsilon h'. \tag{22.5}$$

Второе слагаемое

$$\vec{w}^{(\text{oc})} = \vec{\omega} \times \vec{v} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

определяет осестремительное ускорение. Оно направлено перпендикулярно к плоскости, содержащей $\vec{\omega}$ и \vec{v} , то есть по кратчайшему расстоянию между точкой M и мгновенной осью, причём всегда в ту сторону, откуда вращение $\vec{\omega}$ к \vec{v} на наименьший угол видно положительным. По величине осестремительное ускорение равно

$$w^{(\text{oc})} = \omega v \sin \frac{\pi}{2} = \omega \cdot \omega h = \omega^2 h. \tag{22.6}$$

Таким образом, ускорение точек твёрдого тела, вращающегося вокруг неподвижного центра, складывается геометрически из вращательной и осестремительной составляющих.

22.1 Список литературы

1. Л.Г. Лойцянский, Kypc теоретической механики

23 Скорость точек твёрдого тела в общем случае

Пусть $(O',\vec{i}',\vec{j}',\vec{k}')$ — репер, жёстко связанный с твёрдым телом (подвижный репер), а $(O,\vec{i},\vec{j},\vec{k})$ — неподвижный репер. Тогда если (x_0,y_0,z_0) — координаты точки O' в неподвижном репере, то связь между координатами произвольной точки M тела в неподвижном и подвижном реперах следующая:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \begin{pmatrix} \alpha_{11} & \alpha_{21} & \alpha_{31} \\ \alpha_{12} & \alpha_{22} & \alpha_{32} \\ \alpha_{13} & \alpha_{23} & \alpha_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}. \tag{23.1}$$

Как видим, перемещение $\Delta \vec{r}$ точки M складывается из перемещения $\Delta \vec{r}_{O'}$ точки O' и вращательного перемещения $\Delta (\vec{r} - \vec{r}_{O'})$ точки M при повороте тела вокруг O', то есть

$$\Delta \vec{r} = \Delta \vec{r}_{O'} + \Delta (\vec{r} - \vec{r}_{O'}), \tag{23.2}$$

где

$$\Delta \vec{r}_{O'} = \vec{v}_{O'} \Delta t + \vec{o}(\Delta t)$$
 при $\Delta t o 0$

И

$$\Delta(\vec{r} - \vec{r}_{O'}) = \overrightarrow{\Delta\varphi_{O'}} \times (\vec{r} - \vec{r}_{O'})$$
 при $\Delta t \to 0$.

Разделив равенство 23.2 на Δt и перейдя при $\Delta t \to 0$ к пределу, получим:

$$\vec{v} = \vec{v}_{O'} + \vec{\omega}_{O'} \times (\vec{r} - \vec{r}_{O'}).$$
 (23.3)

Здесь

$$\vec{\omega}_{O'} = \lim_{\Delta t \to 0} \left(\frac{\overrightarrow{\Delta \varphi_{O'}}}{\Delta t} \right)$$

означает м
гновенную угловую скорость вращения тела вокруг точки O', а
 \vec{v} и $\vec{v}_{O'}$ — скорости точек M и O'.

Теорема 23.1. Вектор $\vec{\omega}_{O'}$ не зависит от выбора полюса O'.

Доказательство. Пусть B — другой полюс, тогда

$$\vec{v} = \vec{v}_B + \vec{\omega}_B \times (\vec{r} - \vec{r}_B),$$

 $\vec{v}_B = \vec{v}_{O'} + \vec{\omega}_{O'} \times (\vec{r}_B - \vec{r}_{O'}),$

откуда получаем

$$\vec{v} = \vec{v}_{O'} + \vec{\omega}_{O'} \times (\vec{r}_B - \vec{r}_{O'}) + \vec{\omega}_B \times (\vec{r} - \vec{r}_B).$$
 (23.4)

Вычитая из равенства 23.3 равенство 23.4, получаем

$$\vec{\omega}_{O'} \times (\vec{r} - \vec{r}_{O'}) - \vec{\omega}_{O'} \times (\vec{r}_B - \vec{r}_{O'}) - \vec{\omega}_B \times (\vec{r} - \vec{r}_B) = \vec{0},$$

то есть

$$(\vec{\omega}_{O'} - \vec{\omega}_B) \times (\vec{r} - \vec{r}_B) = \vec{0}.$$

Так как это равенство истинно для любого \vec{r} , то $\vec{\omega}_{O'} = \vec{\omega}_B$.

Согласно теореме 23.1 вектор $\vec{\omega}_{O'}$ можно обозначить просто $\vec{\omega}$ — это угловая скорость твёрдого тела в общем случае. Формула 23.3 запишется в следующем виде:

$$\vec{v} = \vec{v}_{O'} + \vec{\omega} \times (\vec{r} - \vec{r}_{O'}).$$
 (23.5)

Эту формулу называют формулой Эйлера в общем случае.

Следствие 23.1.1. Проекции скоростей любых двух различных точек абсолютно твёрдого тела на направление соединяющего их отрезка равны между собой.

23.1 Список литературы

1. Л.К. Бабаджанянц, Классическая механика

24 Ускорение точек твёрдого тела в общем случае

(ТОО: процесс дифференцирования)

Дифференцируя формулу Эйлера 23.5, получим

$$\vec{w} = \vec{w}_{O'} + \vec{\varepsilon} \times (\vec{r} - \vec{r}_{O'}) + \vec{\omega} \times (\vec{\omega} \times (\vec{r} - \vec{r}_{O'})). \tag{24.1}$$

Первое слагаемое, $\vec{w}_{O'}$, определяет *поступательное ускорение*, равное ускорению полюса, а второе

$$\vec{w}^{(\mathrm{B})} = \vec{\varepsilon} \times (\vec{r} - \vec{r}_{O'})$$

и третье

$$\vec{w}^{(\text{oc})} = \vec{\omega} \times (\vec{\omega} \times (\vec{r} - \vec{r}_{O'}))$$

определяют *вращательную* и *осестремительную* составляющие ускорения вращения тела вокруг полюса. Численные величины уже были исследованы и выражаются формулами 22.5 и 22.6.

24.1 Список литературы

- 1. Л.К. Бабаджанянц, Классическая механика
- 2. Л.Г. Лойцянский, Курс теоретической механики

25 Сложное движение точки, основные понятия

Пусть $(O, \vec{i}, \vec{j}, \vec{k})$ и $(O', \vec{i}', \vec{j}', \vec{k}')$ — неподвижный и подвижный реперы. Эти реперы и связанные с ними подвижное и неподвижное пространства называют также абсолютным и относительным соответственно.

Определение 25.1. Движение, скорость и ускорение точки M относительно неподвижного (абсолютного) репера называют *абсолютным*.

Определение 25.2. Движение, скорость и ускорение точки M относительно подвижного (относительного) репера называют *относительным*.

Определение 25.3. В момент t точка M совпадает с точкой M' подвижного пространства. Движение, скорость и ускорение точки M' в момент времени t относительно абсолютного репера называют nepehochыми для точки M в этот момент.

Будем использовать следующие обозначения:

- $\vec{r} = \overrightarrow{OM}$ абсолютный вектор-радиус;
- \vec{v} абсолютная скорость;
- \vec{w} абсолютное ускорение;
- $\vec{\rho} = \overrightarrow{O'M}$ относительный вектор-радиус;
- \vec{v}_r относительная скорость;
- \vec{w}_r относительное ускорение;
- \vec{v}_e переносная скорость;
- \vec{w}_e переносное ускорение;
- ullet $ec{\omega}$ угловая скорость подвижного репера относительно неподвижного

Пусть \overrightarrow{C} — вектор-функция аргумента t, причём

$$\vec{C} = C_x \vec{i} + C_y \vec{j} + C_z \vec{k}. \tag{25.1}$$

Тогда

$$\dot{\vec{C}} = \dot{C}_x \vec{i} + \dot{C}_y \vec{j} + \dot{C}_z \vec{k} + C_x \dot{\vec{i}} + C_y \dot{\vec{j}} + C_z \dot{\vec{k}}.$$
 (25.2)

Производные \dot{i} , \dot{j} , \dot{k} зависят от пространства, в котором они рассматриваются. В частности, в подвижном пространстве они равны нулю.

Теорема 25.1 (Формулы Пуассона). Пусть подвижный репер $(O', \vec{i}', \vec{j}', \vec{k}')$, жёстко связанный с твёрдым телом, движется относительно неподвижного репера $(O, \vec{i}, \vec{j}, \vec{k})$ с угловой скоростью $\vec{\omega}$. Тогда производные подвижных ортов в неподвижном репере вычисляются по формулам:

$$\dot{\vec{i}}' = \vec{\omega} \times \vec{i}',
\dot{\vec{j}}' = \vec{\omega} \times \vec{j}',
\dot{\vec{k}}' = \vec{\omega} \times \vec{k}'.$$
(25.3)

Доказательство. Докажем первую формулу; остальные доказываются аналогично. Введём обозначения

$$\vec{r}_{O'} = \overrightarrow{OO'}, \quad \vec{v}_{O'} = \dot{\vec{r}}_{O'}, \quad \vec{r}_{O_{i'}} = \vec{r}_{O'} + \dot{\vec{i}}, \quad \vec{v}_{O_{i'}} = \dot{\vec{r}}_{O_{i'}}.$$

Дифференцированием равенства $\vec{r}_{O:\prime} = \vec{r}_{O'} + \vec{i}'$ получаем

$$\vec{v}_{O_{i'}} = \vec{v}_{O'} + \dot{\vec{i}}'.$$

По формуле Эйлера имеем

$$\vec{v}_{O_{i'}} = \vec{v}_{O'} + \vec{\omega} \times (\vec{r}_{O_{i'}} - \vec{r}_{O'}) = \vec{v}_{O'} + \vec{\omega} \times \vec{i}',$$

следовательно,

$$\dot{\vec{i}}' = \vec{\omega} \times \vec{i}'$$
.

что и требовалось доказать.

Определение 25.4. Производную вектор-функции \vec{C} в подвижном репере $(O', \vec{i}', \vec{j}', \vec{k}')$ называют *относительной производной вектор-функции* \vec{C} и обозначают $\frac{d'\vec{C}}{dt}$.

Определение 25.5. Производную вектор-функции \overrightarrow{C} в неподвижном репере $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ называют *абсолютной производной вектор-функции* \overrightarrow{C} и обозначают $\frac{d\overrightarrow{C}}{dt}$.

Теорема 25.2 (Формула относительной производной). *Относительная и абсолютная производные вектор-функции связаны равенством:*

$$\frac{d\vec{C}}{dt} = \frac{d'\vec{C}}{dt} + \vec{\omega} \times \vec{C}.$$
 (25.4)

Доказательство. Формулу 25.2 перепишем в новых обозначениях:

$$\frac{d\vec{C}}{dt} = \frac{d'\vec{C}}{dt} + C_x \frac{d\vec{i}}{dt} + C_y \frac{d\vec{j}}{dt} + C_z \frac{d\vec{k}}{dt}.$$

Используя формулы Пуассона 25.3, получим

$$\frac{d\vec{C}}{dt} = \frac{d'\vec{C}}{dt} + \vec{\omega} \times \left(C_x \vec{i} + C_y \vec{j} + C_z \vec{k} \right)$$
$$= \frac{d'\vec{C}}{dt} + \vec{\omega} \times \vec{C}.$$

25.1 Список литературы

1. Л.К. Бабаджанянц, Классическая механика

26 Теорема сложения скоростей в сложном движении точки

Теорема 26.1 (Формула сложения скоростей). Абсолютная, переносная и относительная скорости движения точки связаны равенством

$$\vec{v} = \vec{v}_e + \vec{v}_r \tag{26.1}$$

Доказательство. Так как $\vec{r} = \vec{r}_0 + \vec{r}'$, то, применяя формулу относительной производной 25.4, получаем

$$\vec{v} = \frac{d\vec{r}}{dt} = \vec{v}_0 + \vec{\omega} \times \vec{r}' + \frac{d'\vec{r}}{dt}.$$

По формуле Эйлера скорость той точки M' подвижного пространства, с которой в данный момент t совпадает движущаяся точка M, равна

$$\vec{v}_e = \vec{v}_0 + \vec{\omega} \times \vec{r}'.$$

Учитывая, что $\frac{d'\vec{r}}{dt} = \vec{v}_r$, получаем требуемое равенство.

26.1 Список литературы

1. Л.К. Бабаджанянц, Классическая механика

27 Теорема сложения ускорений в сложном движении точки

Определение 27.1. Вектор

$$\vec{w}_c = 2\vec{\omega} \times \vec{v}_r$$

называют ускорением Кориолиса (вращательным ускорением) точки в её сложном движении.

Теорема 27.1 (Формула Кориолиса сложения ускорений). *Абсолютное,* переносное, относительное и вращательное ускорения в сложном движении точки связаны равенством

$$\vec{w} = \vec{w}_e + \vec{w}_r + \vec{w}_c. \tag{27.1}$$

Доказательство. Дифференцируя формулу сложения скоростей 26.1, получаем

$$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d\vec{v}_e}{dt} + \frac{d\vec{v}_r}{dt}.$$
 (27.2)

Из формулы относительной производной 25.4 следует, что

$$\frac{d\vec{v}_r}{dt} = \frac{d'\vec{v}_r}{dt} + \vec{\omega} \times \vec{v}_r$$
$$= \vec{w}_r + \vec{\omega} \times \vec{v}_r.$$

Пусть $\vec{\varepsilon} = \frac{d\overrightarrow{w}}{dt}$ — угловое ускорение подвижного репера. По формуле Эйлера

$$\vec{v}_e = \vec{v}_0 + \vec{\omega} \times (\vec{r} - \vec{r}_0),$$

поэтому, используя формулу $\vec{v} = \vec{v}_e + \vec{v}_r$, приходим к равенствам

$$\begin{split} \frac{d\vec{v}_e}{dt} &= \vec{w}_0 + \vec{\varepsilon} \times (\vec{r} - \vec{r}_0) + \vec{\omega} \times (\vec{v} - \vec{v}_0) \\ &= \vec{w}_0 + \vec{\varepsilon} \times (\vec{r} - \vec{r}_0) + \vec{\omega} \times (\vec{v}_e - \vec{v}_0) + \vec{\omega} \times \vec{v}_r. \end{split}$$

Из формулы 24.1 следует, что

$$\frac{d\vec{v}_e}{dt} = \vec{w}_e + \vec{\omega} \times \vec{v}_r.$$

Подставляя полученные равенства в формулу 27.2, окончательно получаем

$$\begin{split} \overrightarrow{w} &= \frac{d\overrightarrow{v}_e}{dt} + \frac{d\overrightarrow{v}_r}{dt} \\ &= \overrightarrow{w}_e + \overrightarrow{\omega} \times \overrightarrow{v}_r + \overrightarrow{w}_r + \overrightarrow{\omega} \times \overrightarrow{v}_r \\ &= \overrightarrow{w}_e + \overrightarrow{w}_r + 2\overrightarrow{\omega} \times \overrightarrow{v}_r \\ &= \overrightarrow{w}_e + \overrightarrow{w}_r + \overrightarrow{w}_c. \end{split}$$

27.1 Список литературы

1. Л.К. Бабаджанянц, Классическая механика

28 Теорема о сложении угловых скоростей твёрдого тела

Рассмотрим n+1 репер $(O,\vec{i}_p,\vec{j}_p,\vec{k}_p),\ p\in[1:n+1]$ с центром в неподвижной точке O твёрдого тела, и предположим, что первый и последний реперы совпадают соответственно с неподвижным и подвижным реперами $(O,\vec{i},\vec{j},\vec{k})$ и $(O',\vec{i}',\vec{j}',\vec{k}')$; подвижный репер жёстко связан с движущимся твёрдым телом.

Пусть для всех $p \in [1:n]$ репер $(O, \vec{i}_{p+1}, \vec{j}_{p+1}, \vec{k}_{p+1})$ движется относительно репера $(O, \vec{i}_p, \vec{j}_p, \vec{k}_p)$ с угловой скоростью $\vec{\omega}_p$. В этом случае говорят, что твёрдое тело совершает одновременное вращение с угловыми скоростями $\vec{\omega}_1, \ldots, \vec{\omega}_n$ вокруг осей $\vec{\omega}_1/\omega_1, \ldots, \vec{\omega}_n/\omega_n$.

Угловую скорость твёрдого тела (то есть угловую скорость подвижного репера относительно неподвижного) обозначим $\vec{\omega}$.

Теорема 28.1 (Формула сложения угловых скоростей). Если төёрдөө тело совершает одновременное вращение вокруг неподвижной точки с угловыми скоростями $\vec{\omega}_1, \ldots, \vec{\omega}_n$, то его угловая скорость вычисляется по формуле

$$\vec{\omega} = \vec{\omega}_1 + \dots + \vec{\omega}_n. \tag{28.1}$$

Доказательство. (ТООО: доказать)

28.1 Список литературы

1. Л.К. Бабаджанянц, Классическая механика

Список литературы

- [1] А.И. Лурье Л.Г. Лойцянский. Курс теоретической механики. Т. 1. М.: Наука, 1982.
- [2] Ю.Ю. Пупышева Л.К. Бабаджанянц Ю.А. Пупышев. Классическая ме-ханика. 2013. URL: http://pm-pu.ru/stuff/adus/books/babadzhanyants_mehanika.pdf.