#### CS109 – Data Science

Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

#### **AWS Clusters**

 New and updated instructions for Spark 1.5 are on Piazza:

https://piazza.com/class/icf0cypdc3243c?cid=1369

## **Avoid Unnecessary Charges!**

- Look at AWS console > Services > EMR
- There should be some terminated clusters there
- Check the region on the top right corner
- Make sure to change it to US East

https://piazza.com/class/icf0cypdc3243c?cid=1256

## Region Setting in AWS



#### **Announcements**

- Final project
  - Team assignments have been posted to piazza
  - Make sure you are in a 3-4 person team
  - Try and date on the piazza thread
  - If you have problems write to staff@cs109.org

– Project proposals are due on Thursday https://piazza.com/class/icf0cypdc3243c?cid=1317

## Final Project Proposal

- Submit just one form per team.
- Do it as early as possible!
- No project approval until you meet your TF

https://piazza.com/class/icf0cypdc3243c?cid=1317

## Supervised vs. Unsupervised

- We mainly talked about supervised learning so far
- Joe already moved to unsupervised with LDA
- In these settings we have no labels in our training data.

Only have a matrix of data: X, and no list of labels/classes (ie, no y in  $y \sim X$ )

No labels: only have points. Can't use y to guide and find separating hyper-plane We CAN see patterns: ie 2 clusters, can classify under 2 labels.

## **Unsupervised Setting**



Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

## Unsupervised Learning

- Find patterns in unlabeled data
- Sometimes used for a supervised setting in which labels are hard to get
- Can identify new patterns that you were not aware of.

Can use if patterns previously known, or to find NEW patterns.

## Clustering Applications

- Google image search categories
- Author Clustering: <u>http://academic.research.microsoft.com/Visu</u> alExplorer#1048044
- Opening a new location for a hospital, police station, etc. ie, triangulation, where to put new cluster (area served by police stations)
- Outlier detection
   Focus on finding pattern, consider data that don't fit pattern as outliers.

## Unsupervised Learning

- K-means
- Mean-shift
- Hierarchical Clustering

Rand index, stability

How do you evaluate cluster without prior labels?

## K-means – Algorithm

• Initialization:

choose k random positions

— assign cluster centers  $\mu^{(j)}$  to these positions

initialize with two random cluster centers.

## K-means



Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

#### K-means

- Until Convergence:
  - Compute distances  $||x^{(i)} \mu^{(j)}||$  to two centers.
  - Assign points to nearest cluster center

– Update Cluster centers:

$$\mu^{(j)} = \frac{1}{N_j} \sum_{x_i \in C_j} x_i$$

new center in center of prior classification scheme.

## K-means



Bishop, "Pattern Recognition and Machine Learning", Springer, 2006



Color compression of images.

Each pixel is one observation with three features (RGB values) —> 3D

## K-means Example













B

first step, color points with color of cluster center. Can increase number of clusters for more accuracy (but diminishing returns, won't need ALL unique colors

## K-means Example





Both images have 10 clusters but different results. Why?

Randomized starts: guarantee convergence, but not convergence to same result

# K-means Example







## K-means Summary

- Guaranteed to converge
- Result depends on initialization

- Number of clusters is important May not be known beforehand.
- Sensitive to outliers
- Use median instead of mean for updates how to check convergence: set a small epsilon as threshold for distance converge once sum of squares below that epsilon.

#### Initialization Methods

- Random Positions
- Random data points as Centers
- Random Cluster assignment to data points

Start several times

k = 10, 100 runs, one solution 90 times vs 10 times, 90 times seems better ie, there is stability to solution outcome, a form of cross validation?

#### How to find K

- Extreme cases:
  - K=1 one cluster center: at points assigned to one pt: poor explanation
  - K=N each pt is a center, overfitting.
- Choose K such that increasing it does not model the data much better.

A cross-validations scheme: training data to solve k-means, validation data to determine how much variance explained (lower sum of sq)

## "Knee" or "Elbow" method



#### **Cross Validation**

 Use this if you want to apply your clustering solution to new unseen data

- Partition data into n folds
- Cluster on n-1 folds
- Compute sum of squared distances to centroids for validation set

# Getting Rid of K

- Having to specify K is annoying
- Can we do without?

conceptually simple, computational challenge (intensive)

#### Mean Shift

- 1. Put a window around each point
- 2. Compute mean of points in the frame.
- 3. Shift the window to the mean
- 4. Repeat until convergence

have to do for every SINGLE data pt: window always shifts towards denser part (gradient in density) —> convergence and you get a cluster center. do NOT specify number of clusters (k), just size of window.

## Mean Shift



http://w ww.youtu be.com/w atch?v=k maQAsot T9s size of window ~ number of clusters.

## Mean Shift



lose spiral: window too Ig

Fischer et al., "Clustering with the Connectivity Kernel", NIPS (2003)

## Mean Shift Summary

- Does not need to know number of clusters
- Can handle arbitrary shaped clusters
- Robust to initialization
- Needs bandwidth parameter (window size)
- Computationally expensive embarrassingly parallel
- Very good article:

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

# Multi-feature object trajectory clustering for video analysis

Nadeem Anjum Andrea Cavallaro

## Parameters parameters

- For K means we need K and result depends on initialization
- For mean shift we need the window size and a lot of computation

 Hierarchical Clustering keeps a history of all possible cluster assignments
 no window-size or k.

## Tree of Life



http://www.zo.utexas.edu/faculty/antisense/DownloadfilesToL.html

start: every pt is it's own cluster (k = N)

## **Hierarchical Clustering**

computer shortest distance.



# Hierarchical Clustering





# Hierarchical Clustering



## **Hierarchical Clustering**















now we have k = 1so we did extremes (k = N to k = 1)AND everything BETWEEN.



threshold.







- Produces complete structure
- No predefined number of clusters Do them all.

- Similarity between clusters:
  - single-linkage:  $\min\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}$
  - complete-linkage:  $\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$
  - average linkage:  $\frac{1}{|\mathcal{A}|\cdot|\mathcal{B}|}\sum_{x\in\mathcal{A}}\sum_{y\in\mathcal{B}}d(x,y)$

## Single Linkage



 $\min\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}\$ 

two closest pts determine the WHOLE distance between clusters

ie, distance between clusters is ONE number.

# Complete Linkage



 $\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$ 

#### Linkage Matters

- Single linkage: tendency to form long chains
- Complete linkage: Sensitive to outliers
- Average-link: Trying to compromise between the two

Not balanced with single-linkage. If prefer balanced cluster use complete linkage

**Chaining Phenomenon** 



hierarchal clustering is FAST.

d1 should be alone as outlier.

# Outlier Sensitivity Single linkage is robust to outlier, but unbalanced

Single linkage is robust to outlier, but unbalanced Complete linkage sensitive to outlier, but clustering is balanced



+ 2\*epsilon

- 1\*epsilon

http://nlp.stanford.edu/IR-book/html/htmledition/img1569.png

# Efficient Hierarchical Graph-Based Video Segmentation

Matthias Grundmann<sup>1,2</sup>, Vivek Kwatra<sup>2</sup>, Mei Han<sup>2</sup> and Irfan Essa<sup>1</sup>

<sup>1</sup>Georgia Tech <sup>2</sup>Google Research

IEEE CVPR, San Francisco, USA, June 2010

k-means looks for blobs, other techniques do spirals b/c hard for k-means scikit learn you can specify connectivity like in a spiral.

Swiss Role Problem



only adjacent clusters can be merged together

#### **Evaluation Criteria**

- Based on expert knowledge
- Debatable for real data
- Hidden Unknown structures could be present
- Do we even want to just reproduce known structure?

True positive: same clusters and should have been True negative: diff clusters and should have been

Rand Index

False positive: same cluster, should've been diff

False negative: diff cluster, should've been the same

- Percentage of correct classifications
- Compare pairs of elements:

$$R = \frac{tp + tn}{tp + tn + fp + fn}$$

• Fp and fn are equally weighted rand index: need labels to determine should have

split data: does clustering system (ie, k = 2 or 3) explain both train and validate sets well?

# Stability





### Stability

- What is the right number of clusters?
- What makes a good clustering solution?

Clustering should generalize!

Turn into supervised problem: make up a y (make up labels)
Apply labels to the validate/test set, compute an error, if low stability is high:)

Stability



#### Summary

- We have covered a lot today
- Clustering
  - K-means
  - Mean-shift
  - Hierarchical clustering
- Evaluation criteria
  - Rand index
  - Stability