测验测验2

120分钟

1、(4分) 设
$$\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 4, y \ge 0, z \le 0\}$$
,

$$\Omega_1 = \{(x, y, z) | x^2 + y^2 + z^2 \le 4, x \ge 0, y \ge 0, z \le 0 \}, \mathbb{Q}$$

(A)
$$\iiint (x^2 + y^2 + z^2) dV = 4 \text{倍} \Omega$$
的体积;

(A)
$$\iiint_{\Omega} (x^2 + y^2 + z^2) dV = 4 \Theta \Omega$$
的体积; (B)
$$\iiint_{\Omega} xy dV = 2 \iiint_{\Omega_1} xy dV$$
;

(C)
$$\iiint_{\Omega} xzdV = 2 \iiint_{\Omega_1} xzdV;$$

(D)
$$\iiint_{\Omega} yzdV = 2\iiint_{\Omega_1} yzdV \circ$$

2.
$$(4 \%)$$
 $\int_0^1 dy \int_0^y dz \int_0^z \frac{\sin x}{(1-x)^2} dx = \underline{\qquad}_\circ$

3、(4分) 设
$$\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 4, y \ge 0, z \le 0 \}$$

则三重积分
$$\iiint_{\Omega} (x^2 + y^2 + z^2 + z) dV = _____.$$

4、(4分) 设Ω为椭球体:
$$4x^2 + y^2 + z^2 - 2z \le 3$$
,则 $\iiint_{\Omega} x dv = ______,$ $\iiint_{\Omega} z dv = ______.$

5、(7分) 计算 $\iint_{\Omega} (x^2+y^2)dV$,其中 Ω 是由 yoz 平面内直线 z=0,z=2 以及曲线 $y^2-(z-1)^2=1$ 所围成的平面区域绕 z 轴旋转而成的空间区域。

6、(7分) 设
$$\Omega = \{(x, y, z) | x^2 + z^2 \le y \le 4\}$$
,求 $\iiint_{\Omega} (x + y + z) y dv$.

7、(7分) 设
$$\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}, f(x)$$
连续。

证明:
$$\iiint_{\Omega} f(x)dv = \pi \int_{-1}^{1} (1-x^2)f(x)dx .$$

数学学院程全新

8、(7分) 设
$$\Omega_n = \{(x, y, z) | x^2 + y^2 + z^2 \le n^2 \}$$
, [] 表示取整。

$$\iiint_{n\to\infty} [x^2 + y^2 + z^2] dv$$
 求极限 $\lim_{n\to\infty} \frac{\Omega_n}{n^4}$

9、(10 分) 计算
$$\iint_D \frac{1}{xy} dxdy$$
, 其中 $D: 2 \le \frac{x}{x^2 + y^2} \le 4$ 且 $2 \le \frac{y}{x^2 + y^2} \le 4$.

10、 $(7 \, f)$ 设 f(x) 为连续的偶函数,试证明

$$\iint_{D} f(x-y) dx dy = 2 \int_{0}^{2a} (2a-u) f(u) du,$$

其中D为正方形区域: $|x| \le a, |y| \le a$.

11、(7分) 计算
$$\oint_L (x^{\frac{4}{3}} + y^{\frac{4}{3}}) ds$$
,其中 L 为曲线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ ($a > 0$)。

12、(7分) 计算
$$\oint_L x\sqrt{x^2-y^2}ds$$
, 其中 L 为双纽线 $(x^2+y^2)^2=a^2(x^2-y^2)$ $(a>0)$ 的右半支。

13、(7分) 求 (1) 球面
$$x^2 + y^2 + z^2 = 4$$
 被柱面 $x^2 + y^2 = 2x$ 切下的面积;

(2) 柱面
$$x^2 + y^2 = 2x$$
 被球面 $x^2 + y^2 + z^2 = 4$ 切下的面积。

14、(7分) 计算 $\iint_{\Sigma} (x+y) dS$, 其中 Σ 为曲面 $x = y^2 + z^2$ 介于平面 x = 1 到 x = 4 之间的部分。

15、(7分) 计算
$$\bigoplus_{\Sigma} (x+2y+3z)^2 dS$$
,其中 Σ 为球面 $(x-a)^2 + (y-a)^2 + (z-a)^2 = a^2$.

16、(7分) 设 Ω 是由曲面 $z + x^2 = 1$, $z + y^2 = 1$ 与平面 z = 0共同围成的空间区域,求该区域的形心坐标。

17、(7分) 设
$$f(x,y,z) = \begin{cases} x^2 + y^2, & \exists z \ge \sqrt{x^2 + y^2} \\ 0, & \exists z < \sqrt{x^2 + y^2} \end{cases}$$
, 求 $F(t) = \bigoplus_{x^2 + y^2 + z^2 = t^2} f(x,y,z) dS$ $(t > 0)$