

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Решение задачи линейного программирования двойственным симплекс-методом. Задание 6»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Напоминание из задания 5

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases} 3x_1 - 2x_2 \ge -8 \\ 3x_1 + x_2 \ge 3 \\ x_2 \le 8 \\ x_1 \le 4 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Задание

Каноническая форма прямой задачи

1. Вводим слабые переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0$:

$$3x_1 - 2x_2 - y_1 = -8$$

$$3x_1 + x_2 - y_2 = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

2. Делаем правые части равенств положительными:

$$-3x_1 + 2x_2 + y_1 = 8$$

$$3x_1 + x_2 - y_2 = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

Таким образом, прямая задача сведена к канонической форме.

Метод штрафов

Введём искусственную переменную — $r \ge 0$.

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$-3x_1 + 2x_2 + y_1 = 8 \qquad \rightarrow \lambda_1$$

$$3x_1 + x_2 - y_2 + r = 3 \qquad \rightarrow \lambda_2$$

$$x_2 + y_3 = 8 \qquad \rightarrow \lambda_3$$

$$x_1 + y_4 = 4 \qquad \rightarrow \lambda_4$$

$$x_i \ge 0 \ \forall i = \overline{1,2}; \quad y_j \ge 0 \ \forall j = \overline{1,4}$$

Перепишем функцию цели:

$$f = 4x_1 + x_2 - Mr = 4x_1 + x_2 - M(3 - 3x_1 - x_2 + y_2)$$

$$f = -3M + (3M + 4)x_1 + (M+1)x_2 - My_2$$

Пусть M=100, тогда функция цели примет следующий вид: $f=-300+304x_1+101x_2-100y_2$

Формулируем двойственную задачу

Функция цели:

$$\phi = 8\lambda_1 + 3\lambda_2 + 8\lambda_3 + 4\lambda_4 - 300 \longrightarrow min$$

Ограничения:

$$-3\lambda_1 + 3\lambda_2 + \lambda_4 \ge 304$$

$$2\lambda_1 + \lambda_2 + \lambda_3 \ge 101$$

$$-\lambda_2 \ge -100$$

$$\lambda_1 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0$$

Дано

Функция цели:

$$\phi = 8\lambda_1 + 3\lambda_2 + 8\lambda_3 + 4\lambda_4 - 300 \longrightarrow min$$

Ограничения:

$$-3\lambda_1 + 3\lambda_2 + \lambda_4 \ge 304$$
$$2\lambda_1 + \lambda_2 + \lambda_3 \ge 101$$

$$-\lambda_2 \ge -100$$

$$\lambda_1 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0$$

Задание

Каноническая форма

1. Вводим слабые переменные $\xi_1 \ge 0, \, \xi_2 \ge 0, \, \xi_3 \ge 0$:

$$-3\lambda_1 + 3\lambda_2 + \lambda_4 - \xi_1 = 304$$

$$2\lambda_1 + \lambda_2 + \lambda_3 - \xi_2 = 101$$

$$-\lambda_2 - \xi_3 = -100$$

2. Делаем правые части равенств положительными:

$$-3\lambda_1 + 3\lambda_2 + \lambda_4 - \xi_1 = 304$$

$$2\lambda_1 + \lambda_2 + \lambda_3 - \xi_2 = 101$$

$$\lambda_2 + \xi_3 = 100$$

Таким образом, задача сведена к канонической форме.

Отсюда получается:

$$\xi_1 = -304 - 3\lambda_1 + 3\lambda_2 + \lambda_4$$

$$\xi_2 = -101 + 2\lambda_1 + \lambda_2 + \lambda_3$$

$$\xi_3 = 100 - \lambda_2$$

Базисное решение:

$$\xi_1 = -304, \xi_2 = -101, \xi_3 = 100, \lambda_i = 0 \quad \forall i = \overline{1, 4}$$

которое не удовлетворяет естественным ограничениям:

$$\xi_i \ge 0 \ \forall i = \overline{1,3}$$

и поэтому оно не является допустимым.

Двойственный симлекс-метод

1 итерация

Базисные переменные: ξ_1, ξ_2, ξ_3 .

Свободные переменный: $\lambda_1, \lambda_2, \lambda_3, \lambda_4$.

БП	λ_1	λ_2	λ_3	λ_4	ξ_1	ξ_2	ξ_3	СЧ
ϕ	-8 3	<u>-3</u> -3	-8 0	-4 -1	0 1	0 0	0 о	-300 -304
ξ_1	3 <u>-1</u>	-3 1	0 0	$-1 \frac{1}{3}$	$1_{-\frac{1}{3}}$	0 0	0 <u>o</u>	$-304 \frac{304}{3}$
ξ_2	-2 1	<u>-1</u> -1	-1 o	$0 - \frac{1}{3}$	$0_{\frac{1}{3}}$	1 0	0 о	$-101 - \frac{304}{3}$
ξ_3	0 -1	<u>1</u> 1	0 о	$0_{\frac{1}{3}}$	$0 - \frac{1}{3}$	0 0	1 0	$100 \frac{304}{3}$
$\int c_k/a_{2k}$	$-\frac{8}{3}$	1		4^{-}	0+	[-	-	

Меняем свободную переменную λ_2 и базисную переменную ξ_1 местами.

$$\lambda_2 \leftrightarrow \xi_1$$

2 итерация

Базисные переменные: ξ_2, ξ_3, λ_2 .

Свободные переменный: $\lambda_1, \lambda_3, \lambda_4, \xi_1$.

БП	λ_1	λ_2	λ_3	λ_4	ξ_1	ξ_2	ξ_3	СЧ
ϕ	-11 9	0 0	-8 0	<u>-3</u> -3	-1 3	0 о	0 9	4 -12
λ_2	-1 -1	1 0	0 о	$\frac{1}{3}$ $\frac{1}{3}$	$-\frac{1}{3}$ $-\frac{1}{3}$	0 о	0 -1	$\frac{304}{3}$ $\frac{4}{3}$
ξ_2	-3 -1	0 о	-1 0	$\frac{1}{3}$ $\frac{1}{3}$	$-\frac{1}{3}$ $-\frac{1}{3}$	1 o	0 -1	$\frac{1}{3} \frac{4}{3}$
$\boldsymbol{\xi}_3$	1 <u>-3</u>	0 <u>o</u>	0 0	$-\frac{1}{3}$ 1	$\frac{1}{3} - 1$	0 <u>o</u>	1 <u>-3</u>	$-\frac{4}{3} \ \underline{4}$
c_k/a_{2k}	-11	_	_	9	-3		0+	

Меняем свободную переменную λ_4 и базисную переменную ξ_3 местами.

$$\lambda_4 \leftrightarrow \xi_3$$

3 итерация

Базисные переменные: $\xi_2, \lambda_2, \lambda_4$. Свободные переменный: $\lambda_1, \lambda_3, \xi_1, \xi_3$.

БП	λ_1	λ_2	λ_3	λ_4	ξ_1	ξ_2	ξ_3	СЧ
ϕ	-20 -16	0 0	<u>-8</u> -8	0 о	-4 0	0 8	-9 8	16 -8
λ_2	0 о	1 0	<u>0</u> o	0 о	0 о	0 о	-1 o	100 о
$oldsymbol{\xi_2}$	-2 <u>2</u>	0 <u>o</u>	-1 1	0 <u>o</u>	0 0	1 <u>-1</u>	1 <u>-1</u>	-1 <u>1</u>
λ_4	-3 0	0 о	<u>0</u> o	1 o	-1 0	0 о	-3 0	4 0
c_k/a_{2k}	10	-	$\bar{8}^{}$	-	_	0+	-9	

Меняем свободную переменную λ_3 и базисную переменную ξ_2 местами.

$$\lambda_3 \leftrightarrow \xi_2$$

Результаты вычислений

Базисные переменные: $\lambda_2, \lambda_3, \lambda_4$. Свободные переменный: $\lambda_1, \xi_1, \xi_2, \xi_3$.

БП	λ_1	λ_2	λ_3	λ_4	ξ_1	ξ_2	ξ_3	СЧ
ϕ	-4	0	0	0	-4	-8	-17	24
λ_2	0	1	0	0	0	0	-1	100
λ_3	2	0	1	0	0	-1	-1	1
λ_4	-3	0	0	1	-1	0	-3	4

Таким образом, получается:

$$\phi = 24$$

$$\lambda_2 = 100, \lambda_3 = 1, \lambda_4 = 4$$

$$\lambda_1 = 0, \xi_1 = 0, \xi_2 = 0, \xi_3 = 0$$

Напоминание из задания 5

...

Тогда решение двойственной задачи выглядит следующим образом: $\lambda_1=0, \lambda_2=100, \lambda_3=1, \lambda_4=4$

Функция цели:

$$\phi = 8\lambda_1 + 3\lambda_2 + 8\lambda_3 + 4\lambda_4 - 300 = 8*0 + 3*100 + 8*1 + 4*4 - 300 = 24$$

 \downarrow

$$\phi = 24$$

Ответ: $\lambda_1 = 0, \lambda_2 = 100, \lambda_3 = 1, \lambda_4 = 4, \phi = 24$