[Total No. of Printed Pages—3

Seat	
No.	0 5

[5668]-132

S.E. (E & TC/Electronics) (I Sem.) EXAMINATION, 2019 ELECTRONIC DEVICES AND CIRCUITS (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6, Q. No. 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Use of logarithmic tables, slide rule, electronic pocket calculator is allowed.
 - (iv) Assume suitable data, if necessary.
- 1. (A) Explain the following non-ideal characteristics of E-MOSFET.
 - (i) Finite output resistance
 - (ii) Subthreshold conduction.
 - (B) For the single stage JFET amplifier if $R_G=1~M\Omega$, $R_D=2.2~k\Omega$, $R_S=1~k\Omega$, $I_{DSS}=8$ mA, $V_P=4V$. Draw the necessary circuit diagram and calculate I_{DQ} and V_{DSQ} for $V_{GS}=-2V$.

2. (A) For the circuit diagram shown in Fig. 1. Calcualte Ri, Ro and AV. Assume the device parameters : $g_m = 3.5$ mA/V and $y_{os} = 20$ uS

 $V_{DD} = 10 V$ $10 \mu F$ $V_{P} = 10 \mu F$ $V_{O} = 10 \mu F$

Fig. 1

P.T.O.

- (B) Explain the short working of N-Channel E-MOSFET with drain and transfer characteristics. [7]
- 3. (A) Explain Bi-CMOS inverter withcircuit diagram and give the advantages of Bi-CMOS technique. [6]
 - (B) For the circuit diagram shown in Fig. 2. Calculate Av, Ri, Ro: [6]

Fig. 2

- 4. (A) Explain the concept of MOSFET scaling and small geometry effect in VLSI design technology. [6]
 - (B) Explain MOSFET as constant current source with neat circuit diagram. [6]
- **5.** (A) Draw block diagram of different feedback topologies and compare Ri and Ro. [8]
 - (B) Draw and design Hartley oscillator for fo = 1000 kHz. Assume L1 = L2 = L and C = 0.1 uF. [5]
- 6. (A) Explain advantages and disadvantages of feedback amplifier.
 [6]

[5668]-132

- For voltage amplifier open loop voltage gain is 75, input resistance (B) is 100 k Ω , output resistance is 6.8 k Ω . If this amplifier is connected with negative feedback then gain decreases by 20%. Calculate β , A_{vf} , R_{if} and R_{of} . [7]
- **7.** Explain the concept of current boosting with neat circuit diagram (A) in three terminal voltage regulator. [6]
 - Explain any three specifications of LM317 adjustable voltage (B) regulator. [3]
 - Write a short note on low drop out voltage regulator. [4] (C) Or
- Draw the circuit diagram of step up SMPS and explain its 8. (A) operation. [6]
 - Calculate range of the R2 esistance for the output voltage 0-20 V. Assume R1 = 270 Ω and I adjust is 100 uA. Draw 7.16.23 9811 typical connection diagram using adjustable voltage regulator.

[7]

[5668]-132