Osterholz Antriebs Technik GmbH

Pitch Control System

Programming and parameters

Index of issues:

Issue.	Date	Remarks
1.00	15.09.06	Created
1.01	27.09.06	Added some objects, corrected mistakes
1.02	29.09.06	Some additions, corrected max motor speed
1.03	11.10.06	Added encoder code objects, error mask/flags in object 6510h, moved object numbers of the EFC-objects in area 56xx.
1.04	17.10.06	PDO-Mapping complemented, objects with 16bit-access (5xxxh) added
1.05	10.07.07	PMM complemented, PMC reworked, title changed into "programming"
1.06	19.12.07	Newly arranged chapter PMC, texts complemented
1.07	25.03.08	Translated,
1.08	20.01.09	Add ons in control flags, PMM controlword, new test status (3005h), Objects
		68F4h, 6865h, 6866h, 3068h, 60BAh, 60BBh
1.09	27.05.09	bit 5 in test status and bit 2 in PMM_controlword new, object 30E3 new.

2st edition: January 2009 / English

This documentation applies to devices of series PMM, PMC, PBS.

Target group:

Technicians, control systems planning engineers and all specialists familiar with the fundamental principle of operation of automation systems in an industrial environment.

© 2006, 2007, 2008, 2009 by OAT GmbH

Subject to change without notice. Errors and omissions excepted. No part of this documentation may be duplicated or made available to third parties, especially competitors, without our consent.

Suggestions and reference to errors are always welcome.

This manual has been compiled with utmost care and exhaustively checked.

Nevertheless, the possibility of errors remaining cannot be excluded entirely. OAT cannot accept any legal responsibility or other liability for any remaining errors and their consequences.

Further details are available from OAT on request if the information provided proves insufficient or if you encounter special problems which are not covered in sufficient depth in this documentation.

Status: 27.05.2009

OAT Osterholz AntriebsTechnik GmbH

Stiftstrasse 38 / Office: Stohlmanns Heide 15

D-32278 Kirchlengern

Phone: +49 0 5223 / 18309-0 Fax: +49 0 5223 / 18309-15 E-mail: <u>info@oat-gmbh.com</u> Internet: <u>www.oat-gmbh.com</u>

Osterholz
Antriebs
Technik GmbH

2

Table of Contents

2	The	e Obj	ect Dict	ionary	8
		Basic	Structure	-	8
		2.1.1	Use of In	ndex and Subindex	ç
	2.2			ry Structure	
	2.3	Objec	ts Descrip	otion	10
3				d Shared Objects	
•	3 1	Comr	nunication	Dobjects	11
				S	
	5.2				
		3.2.1		Object 603F _h : error code	
				Meaning of the Error Codes	
	2 2	Manu		ins	
	3.3				
		J.J. I		Object 5040 _h : manual control	
				Object 5041 _h : manual status	
				Object 5042 _h : manual control out	
1	The	Dita			
4				gement Module (PMM)	
	4.1			es and Control Word	
		4.1.1		Ohi- + 0000 - DIMI -t-t	
				Object 3000h: PMM status	
			4.1.1.2	J	
			4.1.1.3		
			4.1.1.4	Object 3003 _h : <i>chopper status</i>	
			4.1.1.5 4.1.1.6	Object 3004 _h : 24V supply status	
			4.1.1.6	Object 3005 _h : test status	
	12	Volta		ring	
	4.2			Ditage	
		4.2.1	4.2.1.1		
			4.2.1.1		Te
			4.2.1.3	Object 30B3 _h : remaining time to backup	
			4.2.1.4	Object 30E0 _h : remaining time to power down	
			4.2.1.5	Object 30E1 _h : max time to shutdown	
		122	_	urrent Link Voltage	
		7.2.2	4.2.2.1		
			4.2.2.2		
		423		sorgung	
		4.2.0	4.2.3.1	Object 3065 _h : actual supply voltage	
			4.2.3.2		
			4.2.3.3		2:
			4.2.3.4	Object 30C0 _h : supervisor current level	
	4.3	The F		nagement	
				ery Parameters	
			4.3.1.1	Object 3020 _h : battery parameter	
		4.3.2	Battery C	Condition	
			4.3.2.1	Object 3010 _h : actual battery temperature	25
			4.3.2.2	Object 301F _h : battery temperature bloc	26
			4.3.2.3	Object 3050 _n : cumulative total Ah charge	
			4.3.2.4	Object 3051 _h : Ah expended since last charge	
			4.3.2.5	Object 3052 _h : Ah returned during last charge	
			4.3.2.6	Object 3053 _n : actual battery capacity	
			4.3.2.7	Object 3060 _n : actual battery voltage	
			4.3.2.8	Object 3061 _h : battery voltage.bloc	
			4.3.2.9	Object 3067 _h : battery off-load voltage	27
			4.3.2.10	Objekt 3068 _h : battery test voltage	

				Object 3070 _h : actual battery current	
				Object 3080 _h : battery state of charge	
				Object 3081 _h : battery state of health	
			4.3.2.14	Object 30B4 _h : battery internal resistance	28
			4.3.2.15	Object 30E3 _h : selftest time	28
		4.3.3	Battery c	harger Parametersharger Parameters	
			4.3.3.1	Object 30F0 _h : supply controller parameter set	29
			4.3.3.2	Object 30F1 _h : charge controller parameter set	30
			4.3.3.3	Object 3064 _h : actual charger voltage	31
			4.3.3.4		31
	4.4	The E	Boost Con	verter	
		4.4.1	Paramet	er	32
			4.4.1.1	Object 30FB _h : booster parameter set	32
		4.4.2	Actual Va	alues	
			4.4.2.1	Object 3073 _n : actual booster current	33
			4.4.2.2	Object 30B0 _h : actual load booster	
	4.5	The E		pper	
				ers	
			4.5.1.1	Object 30FC _h : brake chopper	
		4.5.2	Actual Va	alues	
			4.5.2.1		
	4.6	Temp	erature M	lonitoring and Regulation	
		4.6.1	Paramet	ers	35
			4.6.1.1	Object 3110 _h : temperature supervisor battery	36
			4.6.1.2	Object 3111 _h : temperature supervisor heat sink	36
			4.6.1.3	Objects 3112 _h an 3113 _h : temperature supervisor sensor 1 and 2	
			4.6.1.4	Object 3201 _h : temperature controller battery	
			4.6.1.5	Object 3202 _h : temperature controller sensor 1	37
			4.6.1.6	Object 3203 _n : temperature controller sensor 2	37
			4.6.1.7	Object 3204 _h : motor fan controller	38
		4.6.2	Status M	essage and Actual Values	39
			4.6.2.1	Objects 3006 _h - 3009 _h : temperature status	39
			4.6.2.2	Object 3010 _h : actual battery temperature	
			4.6.2.3	Object 3011 _h : actual heat sink temperature	
			4.6.2.4	Objects 3012 _h and 3013: temperature 1 and 2	
	4.7			outs	
		4.7.1			
			4.7.1.1		
			4.7.1.2		
			4.7.1.3	Object 30E2 _h : pulse width input check signal	
			4.7.1.4	Object 30FE _h : digital outputs	
		4.7.2	Program	mable Alert Outputs	
			4.7.2.1	Object 30FF _h : signaling outputs	
		4.7.3	Program	mable Signaling Inputs	
			4.7.3.1	Object 3300 _h : alarm inputs	
	4.8			ring	
		4.8.1	Objects	-	47
			4.8.1.1	Object 3220 _h : position range enable	
	4.9			Motor Parameters	
		4.9.1	-		47
			4.9.1.1	Object 30DC _h : dc motor parameter set	
5				n Controller (PMC)	
	5.1			the Drivethe Drive	
		5.1.1	Objects		
			5.1.1.1	Object 6510 _h : drive data	
	5.2			Control Loop and Motor	
		5.2.1			
			5.2.1.1	Object 6402 _h : motor type	
			5.2.1.2)	
			5.2.1.3	Object 6073 _h : max current	52

	5.2.1.4		rated current5	
	5.2.1.5		torque control parameter set5	
	5.2.1.6	Object 6077 _h :	torque actual value5	53
	5.2.1.7	Object 6078 _h :	current actual value5	54
	5.2.1.8		DC link circuit voltage5	
5.3	Parameters of	the Velocity Co	ntroller5	54
	•		5	
	5.3.1.1	Object 6044 _h :	actual motor speed5	54
	5.3.1.2		actual velocity5	
	5.3.1.3		max motor speed5	
	5.3.1.4		velocity control parameter set5	
5.4			55	
	5.4.1.1		position actual value	
	5.4.1.2	Object 6065 _h :	following error window5)/
	5.4.1.3		following error timeout5	
	5.4.1.4	Object 6067 _h :	position window time) - c
	5.4.1.5 5.4.1.6		position window time	
	• • • • • • • • • • • • • • • • • • • •		sensor selection code	
	5.4.1.7		actual following error	
E E	5.4.1.8		position control parameter set	
5.5				
	5.5.1 Motor Er		home offset	
	5.5.1.1 5.5.1.2		position encoder resolution	
	5.5.1.3		gear ratio6	
	5.5.1.3 5.5.1.4		feed constant6	
	5.5.1.5		polarity6	
	5.5.1.6		encoder code6	
5.6			oder (Blade Encoder)6	
0.0			tional Encoder6	
	5.6.1.1		ae position actual value6	
	5.6.1.2		ae home offset6	
	5.6.1.3		ae resolution6	
	5.6.1.4		ae gear ratio6	
	5.6.1.5		ae feed constant6	
	5.6.1.6		ae polarity6	
	5.6.1.7		ae encoder code6	
	5.6.1.8		ae actual position difference6	
	5.6.1.9		difference error window6	
	5.6.1.10	Object 6866 _h :	difference error time out6	36
5.7	Error Reaction	Settings	6	36
	5.7.1 Objects.		7	70
	5.7.1.1		abort connection option code7	
	5.7.1.2	Object 605E _h :	fault reaction option code7	70
	5.7.1.3		action	
5.8				
			Controller	
	5.8.2.1		Controlword7	
_	5.8.2.2		Statusword7	
5.9				
	5.9.1.1		modes of operation7	
	5.9.1.2		modes of operation display7	
_	5.9.1.3		supported drive modes7	
5.10			(Profile Position Mode)8	
			Statusword8	
			8	
	5.10.2.1	Object 607A	target position	₹.?

5.10.2.2 Object 607D _h : software position limit	84
5.10.2.3 Object 607F _h : max profile velocity	84
5.10.2.4 Object 6081 _h : profile velocity	84
5.10.2.5 Object 60C5 _h : max acceleration	
5.10.2.6 Object 60C6 _h : max deceleration	
5.10.2.7 Object 6083 _h : profile acceleration	
5.10.2.8 Object 6084 _h : profile deceleration	
5.11 Profile Velocity Mode	
5.11.1 Use of Controlword and Statusword	
5.11.2Objects	
5.11.2.1 Object 60FF _h : target velocity	
5.12 Cyclic Synchronous Position Mode	
5.12.1 Use of Controlword and Statusword	88
5.12.20bjects	89
5.12.2.1 Object 60B0 _h : Position offset	89
5.12.2.2 Object 60B1 _h : Velocity offset	90
5.12.2.3 Object 60C2 _h : Interpolation time period	90
5.13 Cyclic Synchronous Velocity Mode	90
5.13.1 Use of Controlword and Statusword	91
5.13.2 Objects	92
5.14 Set Zero Position (Homing Mode)	92
5.14.1 Use of Controlword and Statusword	92
5.14.2Objects	93
5.14.2.1 Object 6098 _h : homing method	93
5.15 Emergency Feather Command (EFC)	93
5.15.1 Objects	94
5.15.1.1 Object 567A _h : EFC target position	
5.15.1.2 Object 5681 _h : EFC profile velocity	94
5.15.1.3 Object 5683 _h : EFC profile acceleration	
5.15.1.4 Object 5684 _h : EFC profile deceleration	
5.16 Inputs and Outputs	
5.16.1 Objects	
5.16.1.1 Object 60FD _h : digital inputs	
5.16.1.2 Object 60FE _h : digital outputs	
5.16.1.3 Objects 60BA _h and 60BB _h : touch probe pos 1	
5.17 Use of PDOs	
5.17.1 Default Settings of Mapping Parameters, Receiving PDO	
5.17.2 Default Settings of Mapping Parameters, Sending PDO:	
Appendix	98
6.1 Contents of Figures	98
6.2. Glossony	

6

1 Introduction

The Pitch-Control-System is composed of two units, Pitch Management Module (PMM) and Pitch Motion Controller (PMC).

The PMM is responsible for battery management and provides the link as well as some special functions.

The PMC is an axial controller that can access DC-motors as well as AC-Synchronic and AC-Asynchronic motors.

This documentation at hand will explain the interface of these units in respect to the field bus activation. This interface consists of a so called object dictionary, which defines all parameters accessible by the user.

Independent from the used field bus activation, the object dictionary builds upon the following specifications of CAN in automation (CiA):

CANopen Application Layer and Communication Profile, CiA DS 301. CANopen Device Profile Drives and Motion Control, CiA DS402.

This provides a uniform interface for every field bus interface.

The CANopen interface and those system functions both units have in common can be found in the following documentations:

Pitch-Control-System, CANopen-Interface.

Pitch-Control-System, System functions.

Basic Structure

2 The Object Dictionary

2.1 Basic Structure

The object dictionary controls all functions of the Pitch Control System. The object dictionary is a grouping of objects that can be accessed via the field bus network in a defined process. These objects represent the parameters accessible by the user and contain information on access rights, file types, entities and default values. Each object is addressed through a 16 bit index.

The following table shows the underlying layout of the standard object dictionary:

Index(hex)	Object
0000	Not utilized
0001-001F	Static file types
0020-003F	Complex file types
0040-005F	Manufacturer specific file types
0060-007F	Device profile specific static file types
0080-009F	Device profile specific complex file types
00A0-0FFF	Reserved for future use
1000-1FFF	Communication profile area
2000-5FFF	Manufacturer specific area
6000-9FFF	Standardized device profile area
A000-FFFF	Reserved for future use

Table 1: Object dictionary structure

The standard object dictionary can contain a maximum of 65535 entries which are addressed through the 16 bit index.

The file types (Indexes 0001_h to 009F_h) contain the type definitions. These entries are only listed for reference purposes and can be neither read nor written. (for more information, please refer to CiA DS301, chapter "Dictionary Structure and Entries.)

The static file types $(01_h$ to $1F_h$, 60_h to $7F_h$) are simple types (e.g. integer, floating point, string, boolean). These can be saved in a simple variable.

The complex file types $(20_h \text{ to } 5F_h, 80_h \text{ to } 9F_h)$ are structures that are composed of simple file types (records or arrays).

The communications profile area $(1000_h \text{ to } 1\text{FFF}_h)$ contains communications-specific objects according to DS301, like e.g. the definition of cyclical transferred objects, error memory, node address and so on.

The manufacturer specific area $(2000_h \text{ to } 5FFF_h)$ is not standardized and can be optionally defined by each manufacturer.

The standardized device profile area (6000_h to 9FFF_h) is defined in the respective device profile. The profile "Drives and Motion Control", DS402, is used for the PMC.

Status: 27.05.2009

Osterholz
Rechnik GmbH

2.1.1 Use of Index and Subindex

In order to address an entry in the object dictionary, a 16 bit wide index is utilized. In case of a simple variable, a value can be accessed directly. In case of a complex object dictionary entry like record or array, the index addresses the whole file structure. In order to permit access to single elements of the structure, a subindex was defined. In case of simple file types, this subindex is always Zero. In case of a structure, the subindex addresses the single variables inside this structure. The first variable always stands at subindex 1. The subindex 0 always contains the number of elements of a structure.

Example: The object $608F_h$, position encoder resolution, is a fraction that can be described with an array of two integer values:

$$position_encoder_resolution = \frac{encoder_increments}{motor_revolutions}$$

The corresponding object can be accessed thus:

Index	Subindex	Variable	File type
648F _h	0	Number of elements	unsigned8
	1	encoder increments	unsigned32
	2	motor revolutions	unsigned32

Table 2: Use of Index and Subindex

2.2 Object Dictionary Structure

The object dictionary of PMC and PMM is structured according to the following system:

Index area	Utilization
1000 _h - 1FFF _h	System area, according to DS301 (PMM and PMC)
2000 _h - 2FFF _h	System area, manufacturer specific, file transfer objects (PMM and PMC)
3000 _h - 3FFF _h	Parameters, status message and actual value PMM
5000 _h - 57FF _h	Axis, 16 bit access to some 32 bit objects, manufacturer specific objects (PMC, with PMM manual function only)
5800 _h - 5FFF _h	Blade encoder, 16 bit access to some 32 bit objects (PMC)
6000 _h - 67FF _h	Axis, according to DS402 (PMC, with PMM error code only)
6800 _h - 6FFF _h	Blade encoder, as 2 nd axis according to DS402 (PMC)

Table 3: Object dictionary Structure of PMC and PMM

In the area of 1000_h to $1FFF_h$ objects from the communication profile DS301 can be found, if they are utilized by the PMC.

The area 3000_h to 3FFF_h contains objects for the alignment and control of the PMM's functions.

In the area 5000_h to 5FFF_h the 16 bit access to some 32 bit objects in the area 6000_h to 6FFF_h is rendered possible. With this, the control unit can link space saving objects to the IO area, if the value area can be displayed with 16 bit. Further manufacturer specific objects are stored here, as well.

The area 6000_h to 67FF_h contains objects for alignment and control of the axis according to DS402.

Ex index 6800_h objects needed for the blade encoder are addressed. The blade encoder is considered 2^{nd} axis pursuant to DS402.

2 The Object Dictionary

Objects Description

2.3 Objects Description

Meaning of tab	le columns:			
Index	The 16 bit index in the object dictionary that represents a variable or structure respectively			
Subindex	The 8 bit subindex, that represents a single variable within a complex object			
Name	Name of the object			
Object	Object type that represents the data, e.g. VAR, ARRAY, RECORD, etc.			
Data Type	Data type that represents the information, e.g. unsigned32, unsigned8, String, etc. unsigned: no algebraic sign, positive values only nteger: with algebraic sign, negative and positive values The number behind indicates the number of bits.			
Attr	Access authorization ro read only wo write only rw read and write			
Мар	Identifies the nature of the PDO mapping for the object N mapping not allowed Y mapping allowed			
Default Value	Preset object value after initializations.			
Mem.	N Object will not be saved (set points and actual values, status messages) Y Object can be saved (parameters or remanent data)			

Table 4: Meaning of the table columns in the object descriptions

Objects of the object type VAR will always be addressed with subindex 0, therefore, object type and subindex are not specifically mentioned in the object tables for those objects.

The objects which are being saved as parameter in the machine are highlighted in grey. These objects should not be modified by the control unit under normal circumstances.

Status: 27.05.2009

Osterholz
Rhtriebs
Technik GmbH

3 System Area and Shared Objects

3.1 Communication Objects

The objects for the communication are described in the documentation of the respective field bus interface

3.2 Error Messages

3.2.1 Objects

Index	Object	Name	Туре	Access	Mem.
1001 _h	VAR	error register	unsigned8	ro	N
1003 _h	ARRAY	pre defined error field	unsigned32	ro	N
2030 _h	ARRAY	error field time stamp	unsigned32	ro	N
603F _h	VAR	error code	unsigned16	ro	N

Table 5: Error message objects

The objects 1001h, *error register*, 1003h, *predefined error field* and 2030h, *error field time stamp* are described in the documentation Pitch Control System, CANopen interface.

3.2.1.1 Object 603Fh: error code

In *error code*, error and warning codes are registered. Those entries can also be found in the lower word of object 1003_h, *pre defined error field*, in case of an error code.

At the PCM, the Bit 3 (fault) or Bit 7 (warning) is set in Statusword (6041_h).

At the PMM, the Bit 2 (fault) or Bit 1 (warning) is set in PMM_Status (3000_h).

In case of the PMM, reset of an error occurs by the setting of Bit 7 in the *PMM controlword* (Object 2040_h) or by the NMT command *Reset* on the CAN bus.

At the PMC an error will be reset by setting of Bit 7 in the controlword (Object 6040_h).

Index	Name	Туре	Attr	Мар	Default- Value	Description
603F _h	error code	unsigned16	ro	Υ	0	Error code, 0FFF _h

3.2.1.2 Meaning of the Error Codes

error code (hex)	Meaning	PMM	PMC
0000 _h	No error	Χ	Χ
2210 _h	Over current 24V feed-in	Χ	
2250 _h	Short circuit charger (fault output of the power stage)	Х	
2260 _h	Short circuit booster (fault output of the power stage)	Х	

3 System Area and Shared Objects Error Messages

12

error code (hex)	Meaning	РММ	PMC
2310 _h	Over current at controller output		Х
2320 _h	Short circuit, or ground fault, motor side		Х
3110 _h	Grid over voltage	X	
3120 _h	Grid under voltage	X	
3130 _h	Phase error	X	
3210 _h	Over voltage in the DC link, PMC		>
3211 _h	Over voltage in the DC link, PMM, booster	X	
3220 _h	Under voltage in the DC link		>
3221 _h	DC link PMM-PMC interrupted	X	
3280 _h	Battery voltage too low	X	
328n _h	Voltage at battery bloc n too low	X	
4110 _h	Temperature Sensor 1 too high	X	
4111 _h	Temperature Sensor 2 too high	X	
4120 _h	Temperature Sensor 1 too low	X	
4121 _h	Temperature Sensor 2 too low	X	
4210 _h	Unit temperature (heat sink) too high	X	>
4220 _h	Unit temperature (heat sink) too low	X	
4310 _h	Motor temperature too high		>
4410 _h	Battery temperature too high	X	
4420 _h	Battery temperature too low	X	
5100 _h	Over voltage 24V feed-in	X	
5112 _h	Under voltage 24V feed-in	X	
5120 _h	Error in power stage of supply controller	X	
5420 _h	Chopper error (fault output power stage)	Х	
5510 _h	Hardware error RAM	X	>
5530 _h	Error programming the EEPROM	X	>
6010 _h	Watchdog-Reset	X	>
6080 _h	Software trap, Firmware error		>
6181 _h	Analogue-Digital-Converter error	X	
6320 _h	Wrong parameter		>
6380 _h	No power stage identifier		>
7300 _h	Encoder error (general)		>
7305 _h	Encoder error (motor), sine/cosine		>
7320 _h	Encoder error (motor), data channel		>
7321 _h	2 nd Encoder error (blade encoder)		>
7510 _h	Communication error RS485 interface	Х	
7520 _h	Communication error battery interface	X	
8100 _h	CAN communication, general	X	>
8110 _h	CAN overflow, telegrams lost	X	>
8120 _h	CAN in "error passive"	X	>
8130 _h	Heartbeat or Node guarding failed	X	>
8140 _h	CAN was "bus off"	X	>

error code (hex)	Meaning	PMM	PMC
8230 _h	MPDO target object not found	Х	Х
8400 _h	Velocity controller, maximum speed frequency exceeded		Х
8611 _h	following error too large		Х
8620 _h	Difference motor encoder – blade encoder too large		Х
FFFn _h	Fault input n activated (e.g. FFF1 _h lightning protection)	Х	

Table 6: Error Codes of the Pitch Control System

3.3 Manual Functions

The PMM can be operated by a selector switch and key button in order to run service functions. Those functions can also be controlled through objects, e.g. in order to plug in an external operation terminal.

3.3.1 Objects

Index	Object	Name	Туре	Ac- cess	Mem.
5040 _h	VAR	manual control	unsigned8	rw	N
5041 _h	VAR	manual status	unsigned8	ro	N
5042 _h	VAR	manual control out	unsigned8	ro	N

Table 7: Objects for External Manual Functions

3.3.1.1 Object 5040_h: manual control

Index	Name	Туре	Attr	Мар	Default- Value	Description
5040 _h	manual control	unsigned8	rw	Υ	0	Command for manual control, takes over operation of mode switch and key buttons.

Bit	Meaning
03	Select manual function like mode switch
4	Manual function key button, 1 = button pressed
5	1 = manual function is controlled by this object
6	reserved
7	0->1 fault reset

Table 8: Bits in the manual control and manual control out, respectively.

3 System Area and Shared Objects

Manual Functions

3.3.1.2 Object 5041_h: manual status

Inde	Name	Туре	Attr	Мар	Default- Value	Description
5041	manual status	unsigned8	rw	Υ	0	Manual operation feedback

Bit	Meaning
03	Feedback mode (=selector switch)
4	1 = function active (Busy)
57	Reserved (0)

Table 9: Bits in manual status.

3.3.1.3 Object 5042h: manual control out

This object only exists in the PMM.

Index	Name	Туре	Attr	Мар	Default- Value	Description
5042 _h	manual control out	unsigned8	ro	Υ	0	Here, the operating value that the PMM sends to the related PMC can be monitored.

Configuration like *manual control*. The content comes from either the mode switch or the *manual control*.

Status: 27.05.2009

Onterholz
Red Red Red Graph Gr

This unit supplies the PCM with the direct current link voltage and provides the brake chopper. Furthermore, it contains the battery management system and a boost converter that raises the battery voltage to intermediate circuit level in case of power failure. The unit operates mostly self sufficient, the behavior is adjusted through parameters in the object dictionary.

Furthermore, programmable temperature controller and other special functions are available.

The unit is composed of the following components:

- Battery management
- Boost converter (Booster)
- Chopper
- Special functions, e.g. temperature controller

4.1 Status Messages and Control Word

Each functional group has its own status object that gives information on the status. A control word monitors the unit in order to e.g. start the loading cycle manually or reset an error message.

4.1.1 Objects

Index	Object	Name	Туре	Access	Mem.
3000 _h	VAR	PMM status	unsigned8	ro	N
3001 _h	VAR	charger status	unsigned8	ro	N
3002 _h	VAR	booster status	unsigned8	ro	N
3003 _h	VAR	chopper status	unsigned8	ro	N
3004 _h	VAR	24V supply status	unsigned8	ro	N
3040 _h	VAR	PMM controlword	unsigned16	rw	N

Table 10: PMM Status Messages

PMM status serves as overriding status message that displays errors and warning. The respective error code is displayed in the object *error code* ($603F_h$). Furthermore, if an error occurs, an alarm message is sent to the CAN bus (Emergency, identifier 80_h + node address).

The other status messages display the status of the respective function and can be displayed for control purposes. They are not essential for error response.

With these status objects, bit 0 always displays whether the specific function is ok.

4.1.1.1 Object 3000_h: *PMM status*

The object *PMM status* provides information on the status of the PMM; it is here that errors and warnings are reported. These objects should be queried cyclically.

Status: 27.05.2009

The PMM fault reset is done by setting bit 7 in the *PMM controlword* (Object 2040_h) or by the NMT command *Reset* on the CAN bus.

Status Messages and Control Word

Index	Name	Туре	Attr	Мар	Default- Value	Description
3000 _h	PMM status	unsigned8	ro	Υ		Collective status message of the PMM

Bit	Meaning
0	1 = OK (no fault, no warning, functions normally)
1	1 = Warning (→ error code in object 603F _h)
2	1 = Fault (→ error code in object 603F _h)
3	1 = Battery fault
4	1 = Switch off counter runs down
5	1 = Mains under voltage, runs on battery
6	1 = Mains over voltage
7	1 = Mains – phase failure

Table 11: Bits in the PMM status.

4.1.1.2 Object 3001h: charger status

Here, it can be inquired which loading phase is active and if a charger error occurred. Bit 1 (charger active) becomes 1 in cases of mains-, intermediate- and battery voltage. In cases of power failure and switch over to booster operation, the charger is turned off, bit 1 is set to 0.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3001 _h	charger status	unsigned8	ro	Υ		Condition of the charge controller

Bit	Meaning	Error code
0	1 = OK	
1	1 = charger active	
2	1 = Battery charge with current limiting (1 st stage)	
3	1 = Battery charge at threshold voltage (2 nd stage)	
4	1 = Short circuit charger, fault output at the power stage	2250 _h
5	free	
6	free	
7	1 = Battery communication error	7520 _h

Table 12: Bits in the charger status.

4.1.1.3 Object 3002h: booster status

This is the status of the boost converter. It becomes active (bit 1 = 1) in case of power failure and dropping of the direct current link voltage below initiation voltage (see Chapter 4.4, Page 32).

Status: 27.05.2009 Osterholz
Rentriebs
Technik GmbH

Status Messages and Control Word

Index	Name	Туре	Attr	Мар	Default- Value	Description
3002 _h	booster status	unsigned8	ro	Υ		Boost converter status

Bit	Meaning	Error code
0	1 = OK	
1	1 = Booster active	
2	1 = Booster at current limiting	
3	1 = Booster at threshold voltage	
4	1 = Short circuit booster, fault output at power stage	2260 _h
5	1 = Over voltage at booster	3211 _h
6	free	
7	free	

Table 13: Bits in the booster status.

4.1.1.4 Object 3003_h: chopper status

In case of an increase in direct current link voltage, the chopper switches the braking resistance to the link via an adjustable level, in order to use up the feed-back brake energy until the voltage is below the shut down threshold (see Chapter 4.5, Page 33).

Index	Name	Туре	Attr	Мар	Default- Value	Description
3003 _h	chopper status	unsigned8	ro	Υ		Brake chopper status

Bit	Meaning	Error code
0	1 = OK	
1	1 = Chopper active	
2	free	
3	free	
4	1 = Short circuit chopper, fault output at power stage active	5420 _h
5	free	
6	free	
7	free	

Table 14: Bits in the chopper status.

4.1.1.5 Object 3004h: 24V supply status

Here, the status of the 24V feed-in can be inquired after. It will be displayed whether an external 24V feed-in is connected and if a programmable voltage level was exceeded. The latter can monitor e.g. The function of the motor stop brake. The voltage threshold is displayed in the object *supervisor current level* (30C0_h).

Status Messages and Control Word

Index	Name	Туре	Attr	Мар	Default- Value	Description
3003_{h}	24V supply status	unsigned8	ro	Υ		24V feed-in status

Bit	Meaning	Error code
0	1 = OK	
1	1 = External 24V feed-in fitted	
2	1 = Voltage level of object 30C0 _h exceeded	
3	free	
4	1 = Overload (I > 8A)	2210 _h
5	1 = Under voltage (U < 18V)	5112 _h
6	1 = Over voltage (U > 28V)	5100 _h
7	free	

Table 15: Bits in the 24V supply status.

4.1.1.6 Object 3005h: test status

This object shows the state and the results of the automatic battery test. The test is started automatically after switch on and then once every week. It can also be started with bit 1 in the *PMM control-word*. The test will not be carried out until the batteries are charged and the motors don't move.

After setting bit 1 in the *PMM controlword*, bit 2 in *test status* is set. Reset bit 1 in *PMM controlword* then to start the test.

Index	Name	Тур	Attr	Мар	Default- Wert	Beschreibung
3005 _h	Test status	unsigned8	ro	J		Status of the battery test

Bit	Meaning	Error code
0	1 = OK	
1	1 = Test finished	
2	1 = Test started	
3	1 = Test active	
4	1 = Error during test (Battery voltage below minimum)	
5	1 = Test not possible, because batteries not charged or axes moving	
6		
7		

Table 16: Bits in the test status.

4.1.1.7 Object 3040h: PMM controlword

In normal operation, the PMM does not need control commands, it automatically operates after switchon and read in of the set parameters from the EEPROM.

Status: 27.05.2009 Osterholz
Rentriebs
Technik GmbH

The PMM controlword provides various control options, e.g. fault reset or manual start-up of the battery charger. It can be expanded by additional control options in the future, therefore, not all used bits should be specified 0.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3040 _h	PMM controlword	unsigned16	rw	Υ		PMM control word

Bit	Meaning	Command
0	0->1 = Manual start-up of the battery charger	0001 _h
1	0->1 = Manual start of the battery test. Test starts after resetting to 0	0002 _h
2	0->1 = Manual start of booster for 10s, 1->0 stops it early	0004 _h
36	Not used, always write 0	
7	0->1 = fault reset	0080 _h
815	Not used, always write 0	

Table 17: Bits in the PMM controlword.

In order to start a function, the bit must switch from 0 to 1. If it is already set at 1, 0 must be written previously.

4.2 Voltage Monitoring

The unit continuously monitors the current mains voltage, the direct current link voltage, the battery voltage and the 24V feed-in. The current measured values are provided in objects. Furthermore, a monitoring threshold and respective status messages exist.

The time for bridging a power failure and shut down after power failure and emergency mode can be set.

4.2.1 Mains Voltage

Index	Object	Name	Туре	Access	Mem.
3062 _h	VAR	actual mains voltage	unsigned16	ro	N
30B2 _h	VAR	remaining time to backup	unsigned16	ro	N
30B3 _h	VAR	remaining time to power down	unsigned16	ro	N
30E0 _h	VAR	max time of power failure	unsigned16	rw	Υ
30E1 _h	VAR	max time to power down	unsigned16	rw	Υ

Table 18: Objects to monitor mains voltage

4.2.1.1 Object 3062h: actual mains voltage

The mains voltage is measured directly at the mains connection clamp.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3062 _h	actual mains voltage	unsigned16	ro	Υ		actual mains voltage in V

Voltage Monitoring

4.2.1.2 Object 30B2h: remaining time to backup

Continuously displays the remaining time until emergency mode.

The dead time is set in max time of power failure, object 30E0_h.

Index	Name	Туре	Attr	Мар	Default- Value	Description
30B2 _h	remaining time to backup	unsigned16	ro	Υ		Time remaining (in ms) until emergency stop after power failure

4.2.1.3 Object 30B3_h: remaining time to power down

This object continuously monitors the time remaining until shut-down.

The dead time is set in max time of power down, object 30E1_h.

Index	Name	Туре	Attr	Мар	Default- Value	Description
30B3 _h	remaining time to pow- er down	unsigned16	ro	Υ		Time remaining (in seconds) until shut-down

4.2.1.4 Object 30E0h: max time of power failure

Here, the dead time until start of the emergency mode is set. It also specifies the maximum duration of a power failure. This duration should be at least 3 seconds. This covers the mains connection rule of electricity providers in case of power failure (e.g. 3 seconds at E.ON).

Index	Name	Туре	Attr	Мар	Default- Value	Description
30E0 _h	max time of power fail- ure	unsigned16	rw	N	3000	Dead time (in ms) until emergency stop after power failure.

4.2.1.5 Object 30E1_h: max time to shutdown

Here, the dead time until shut down after power failure can be set.

The minimum time for the power failure hold-up plus the maximum time which the blades need to drive into the off position (feather position).

Index	Name	Туре	Attr	Мар	Default- Value	Description
30E1 _h	max time of power down	unsigned16	rw	Z	30	Dead time (in seconds) until shut down after power failure.

4.2.2 Direct Current Link Voltage

The following table shows an overview of the parameters of the direct current link voltage in order of voltage values. This order of magnitude must be kept at set up.

The minimum voltage in the PMC must be below the battery voltage for the axis to run on battery voltage (manual and emergency operation).

Intermediate circuit pa- rameter	Default Value	Name	Object	Page
Minimum voltage (PMC)	100V	drive data.min dc-link voltage	6510 _h .5	49
Minimum voltage (PMM)	400V	dc-link voltage.minimal value	30FA _h .3	21
Initial voltage booster	420V	booster parameter set.switch-on voltage	30FB _h .1	32
Nominal voltage	560V	dc-link voltage.nominal value	30FA _h .1	21
Control voltage booster	600V	booster parameter set.target voltage	30FB _h .2	32
Shut down voltage chopper	650V	brake chopper.switch-off voltage	30FC _h .2	34
Switch-on voltage chopper	670V	brake chopper.switch-on voltage	30FC _h .1	34
Maximum voltage (PMM)	750V	dc-link voltage.maximal value	30FA _h .2	21
Maximum voltage (PMC)	750V	drive data.max dc-link voltage	6510 _h .4	49

Table 19: Parameter overview of direct current link voltage

Index	Object	Name	Туре	Access	Mem.
3063 _h	VAR	actual dc-link voltage	unsigned16	ro	N
30FA _h	ARRAY	dc-link voltage	unsigned16	rw	Υ

Table 20: Direct current link voltage objects.

4.2.2.1 Object 3063h: actual dc-link voltage

Index	Name	Туре	Attr	Мар	Default- Value	Description
3063 _h	actual dc.link voltage	unsigned16	ro	Υ		actual direct current link voltage in Volt

Status: 27.05.2009

4.2.2.2 Object 30FAh: dc-link voltage

Here, the thresholds for the intermediate current monitoring are set.

Voltage Monitoring

Index	Name	Object				
30FA _h	dc-link voltage	ARRAY	Direc	Direct current link voltage threshold		
Sub- Index	Name	Туре	Attr	Attr Map Default- Value Description		Description
0	number of elements	unsigned8	ro	N	3	Number of elements
1	nominal value	unsigned16	rw	N	560	Nominal voltage in Volt
2	maximal value	unsigned16	rw	N	750	Maximum voltage in Volt
3	minimal value	unsigned16	rw	N	400	Minimum voltage in Volt

The nominal voltage for the intermediate current results from $U_{mains} * \sqrt{2}$ at tri-phase mains voltage.

Falling below minimum voltage will result in the error message 3220h.

Exceeding maximum voltage will result in the error message 3211_h.

Normally, the booster and the brake chopper make sure that the direct current link voltage remains within the required limits.

The booster voltage is set in object 30FB_h.7, the initial voltage in object 30FBh.8. Please refer to chapter 4.4.1.1, page 32.

The switch-on and the shut down voltage of the chopper are set in object 60FC_h. Please refer to chapter 4.5.1.1, page 34.

4.2.3 24V-Versorgung

Index	Object	Name	Туре	Access	Mem.
3065 _h	VAR	actual supply voltage	unsigned16	ro	N
3066 _h	VAR	actual supply voltage external	unsigned16	ro	N
3075 _h	VAR	actual supply current	unsigned16	ro	N
30C0 _h	VAR	supervisor current limit	unsigned16	rw	Υ

Table 21: 24V feed-in objects

4.2.3.1 Object 3065_h: actual supply voltage

This object displays the 24V supply voltage as measured by the PMM. The voltage is measured at clamp X20.4. This is either the value of internally produced voltage or, in case of external supply, the value of the supplied 24V feed-in minus the flow voltage of a diode (about 0.7V).

Index	Name	Туре	Attr	Мар	Default- Value	Description
3065 _h	actual supply voltage	unsigned16	ro	Υ		Current 24V feed-in voltage in mV

4.2.3.2 Object 3066h: actual supply voltage external

Displays the 24V supply voltage measured by the PMM at clamp X20.6. This voltage is decoupled from the internal voltage by a diode.

Status: 27.05.2009

Status: 27.05.2009

Osterholz
Rhtriebs
Technik GmbH

Inc	dex	Name	Туре	Attr	Мар	Default- Value	Description
306	66 _h	actual supply voltage external	unsigned16	ro	Y		Current external 24V supply voltage in mV

4.2.3.3 Object 3075_h: actual supply current

The electricity measured in the 24V feed-in. The total current of own consumption and output current is measured.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3075	actual supply current	unsigned16	ro	Υ		Current electricity of the 24V feed-in in mA

4.2.3.4 Object 30C0_h: supervisor current level

This object can be used to set an electricity threshold from which the status bit 2 in object 3004_h will be set so that it can e.g. be monitored if the brake operated. For this purpose, the usual consumption of the system is calculated. A safety margin is added and entered here as level. In case of unfixed brake, bit 2 should be set.

Index	Name	Туре	Attr	Мар	Default- Value	Description
30C0 _h	supervisor current level	unsigned16	rw	N	1000	Electricity level at which the bit 2 in 24V supply status (object 3004 _h) is set.

4.3 The Battery Management

The PMM's battery management monitors the status of the battery, gives information on charge state, on the respective bloc voltages and bloc temperatures, the current battery voltage and the electricity.

The batter is charged according to set battery type, including the withdrawn and supplied charge.

Determining the internal resistance will give information on the state of the battery.

4.3.1 The Battery Parameters

Index	Object	Name	Туре	Access	Mem.
3020 _h	RECORD	battery parameter	-	rw	Υ

Table 22: Objects with the battery parameters.

The Battery Management

4.3.1.1 Object 3020_h: battery parameter

This object summarizes the battery parameters. The battery is composed of eight blocs that are connected in series. Each bloc contains an interface for temperature and bloc voltage read out.

Index	Name	Object					
3020 _h	battery parameter	RECORD	Battery parameter				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description	
0	number of elements	unsigned8	ro	N	8	Number of entries	
1	type	unsigned8	rw	N	A1 _h	Battery type, see table below	
2	nominal capacity	unsigned16	rw	N	3000	Nominal capacity of the battery in mAh	
3	charging current	unsigned16	rw	N	1000	Charge current in mA	
4	number of blocs	unsigned16	rw	N	6	Number of battery blocs	
5	nominal bloc voltage	unsigned16	rw	N	36000	Nominal bloc voltage in mV	
6	maximum bloc voltage	unsigned16	rw	N	41000	Maximum bloc voltage in mV	
7	lead resistance	unsigned16	rw	N	100	Lead resistance to the batteries in mOhm	
8	internal resistance	unsigned16	rw	N	150	Nominal internal resistance of the battery in mOhm	

Battery type

The battery type is composed of a chemical code and a sub type description. The encoding occurs pursuant to CiA DS418, appendix A.

For the PMM applicable types are:

Value	Battery type
A1 _h	Lithium ionic, Type 1
18 _h	Lead AGM
19 _h	Sealed Lead
1A _h	Lead, hybrid

Table 23: encoding of battery types.

At this time (status July 2007) only Lithium ionic batteries (type A1) are supported.

maximum bloc voltage

If one of the battery blocs reaches this voltage upon charging, it will be charge up to the voltage threshold until the minimum bloc voltage is reached. The extent of this voltage influences the battery's durability and the capacity. A higher charge voltage results in a higher capacity but a shorter durability.

lead resistance

The lead resistance of the battery lead including the transfer resistance has to be calculated in order to identify the factual internal resistance of the battery.

Status: 27.05.2009 Osterholz
Rednik GmbH

internal resistance

The internal resistance of the battery has to be entered here. Through comparison of the measured value, the durability of the battery is identified.

4.3.2 Battery Condition

Index	Object	Name	Туре	Access	Mem.
3010 _h	VAR	actual battery temperature	integer16	ro	N
301F _h	ARRAY	battery temperature.bloc	integer16	ro	N
3050 _h	VAR	cumulative total Ah charge	unsigned32	rw	Υ
3051 _h	VAR	Ah expended since last charge	integer16	ro	Υ
3052 _h	VAR	Ah returned during last charge	integer16	ro	Υ
3053 _h	VAR	actual battery capacity	unsigned16	ro	N
3060 _h	VAR	actual battery voltage	unsigned16	ro	N
3061 _h	ARRAY	battery voltage.bloc	unsigned16	ro	N
3067 _h	VAR	battery off-load voltage	unsigned16	ro	N
3070 _h	VAR	actual battery current	integer32	ro	N
3080 _h	VAR	battery state of charge	unsigned8	ro	N
3081 _h	VAR	battery state of health	unsigned8	ro	N
30B4 _h	VAR	battery internal resistance	unsigned16	ro	N
30E3 _h	VAR	selftest time	unsigned16	rw	Υ

Table 24: Battery condition objects.

4.3.2.1 Object 3010_h: actual battery temperature

This displays the factual battery temperature. It is calculated on the basis of the temperatures measured in the blocs. If the lowest temperature is below 10°C, the minimum bloc temperature is displayed here, otherwise the maximum temperature is displayed. This value is utilized by the temperature controller of the battery box.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3010 _h	actual battery tem- perature	integer16	ro	Υ		Measured battery temperature in 0,1 ℃

25

The Battery Management

4.3.2.2 Object 301F_h: battery temperature.bloc

Index	Name	Object					
301F _h	battery temperature	ARRAY	Temperatures in the different battery blocs				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description	
0	number of elements	unsigned8	ro	N	8	Number of elements	
1	bloc 1	integer16	ro	Υ		Temperature in 1 st bloc in 0,1 ℃	
		•••					
8	bloc 8	integer16	ro	Υ		Temperature in 8 th bloc in 0,1 ℃	

4.3.2.3 Object 3050h: cumulative total Ah charge

In this object, the voltage fed to the battery is added during each charging of the battery. On switch-off of the machine, the value is preserved.

After a battery change, the value has to be reset to Zero, which is why write access is allowed.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3050 _h	cumulative total Ah charge	unsigned32	rw	Υ		Cumulative battery charge in mAh

4.3.2.4 Object 3051_h: Ah expended since last charge

Index	Name	Туре	Attr	Мар	Default- Value	Description
3051 _h	Ah expended since last charge	integer16	ro	Υ		Charge expended (in mAh) since last charge

On machine switch-off, the value is preserved. It will be reset to Zero at the next charging cycle.

4.3.2.5 Object 3052h: Ah returned during last charge

Index	Name	Туре	Attr	Мар	Default- Value	Description
3052 _h	Ah returned during last charge	integer16	ro	Υ		Charge returned (in mAh) during a charging cycle

On machine switch-off, the value is preserved. It will be reset to Zero at the next charging cycle.

4.3.2.6 Object 3053_h: actual battery capacity

The actual battery capacity is calculated during off-load time. During the charging and discharging phase, the expended and returned charge is counted in.

Status: 27.05.2009 Osterholz
Rentriebs
Technik GmbH

Index	Name	Туре	Attr	Мар	Default- Value	Description
3053 _h	actual battery capacity	unsigned16	ro	Υ		Actual battery capacity in mAh

4.3.2.7 Object 3060_h: actual battery voltage

This object covers the battery voltage at clamps X19.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3060 _h	actual battery voltage	unsigned16	ro	Υ		Measured battery voltage in Volt

4.3.2.8 Object 3061_h: battery voltage.bloc

The single voltages are measured by interfaces to the batteries. It contains only as many measured values as battery blocs are connected.

Index	Name	Object						
3061 _h	battery voltage	ARRAY	Volta	Voltage in the respective battery blocs				
Sub- Index	Name	Туре	Attr	Attr Map Default- Value Description				
0	number of elements	unsigned8	ro	N	8	Number of elements		
1	bloc 1	unsigned16	ro	Υ		Voltage in 1 st bloc in mV		
8	bloc 8	unsigned16	ro	Υ		Voltage in 8 th bloc in mV		

4.3.2.9 Object 3067_h: battery off-load voltage

The off-load voltage updates as long as no battery current is detected.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3067 _h	actual off-load voltage	unsigned16	ro	>		Off-load voltage of the battery in Volt

4.3.2.10 Objekt 3068_h: battery test voltage

The minimal battery voltage during the automatic battery test.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3068 _h	battery test voltage	unsigned16	ro	J		minimal test voltage of the battery in Volt

The Battery Management

4.3.2.11 Object 3070_h: actual battery current

Positive battery current means: electricity is used, discharged, negative values: the electricity flows into the battery (charging)

Since the differences between the charge current and the discharge current is very high, two different measuring points are used. During charge the current has a resolving power of 2,5mA; during discharge the resolving power is 400mA.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3070 _h	actual battery current	integer32	ro	Υ		Battery current in mA

4.3.2.12 Object 3080_h: battery state of charge

The battery state of charge is identified during idle-time. During the charging and discharging phase, the expended and returned charge is counted in.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3080 _h	battery state of charge	unsigned8	ro	Υ		Battery's state of charge in %

4.3.2.13 Object 3081_h: battery state of health

The state of health of a Lithium ionic battery can be identified from the measured internal resistance of a new cell. The actual internal resistance is identified during discharge. A significant value is available afterwards only.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3081 _h	battery state of health	unsigned8	ro	Υ		Battery's state of health in %

4.3.2.14 Object 30B4h: battery internal resistance

The state of health of a Lithium ionic battery can be identified by comparing the measured internal resistance to the internal resistance of a new cell. The actual internal resistance is identified during discharge. The nominal internal resistance is entered in the battery parameters (object 3020_h, page 24).

Index	Name	Туре	Attr	Мар	Default- Value	Description
30B4 _h	battery internal resis- tance	unsigned16	ro	Υ		Measured battery internal resistance in mOhm

4.3.2.15 Object 30E3_h: selftest time

The batteries of the Pitch System can be testet automatically with the booster and the internal brake chopper. The result is seen in *test status* and *battery test voltage*. The test can be started via the PMM_controlword or automatically after the time given in this object. With zero the test will not start automatically.

Status: 27.05.2009 Osterholz Shrtriebs Technik GmbH

Index	Name	Туре	Attr	Мар	Default- Value	Description
30E3	selftest time	unsigned16	rw	N	0	Cycle time for automatic battery test in minutes. 0 switches atomatic test of. minimum time 60min.

4.3.3 Battery charger Parameters

The battery charger consists of two stages: a "regulated mains adapter" composed of current and voltage controller which regulates the supply voltage that feeds the internal 24V mains adapter and the battery charger. The batter charger controls this "mains adapter" in order to run the characteristic charge curve.

Figure 1: Battery charger structure

Index	Object	Name	Туре	Access	Mem.
30F0 _h	ARRAY	supply controller parameter set	unsigned16	rw	Υ
30F1 _h	ARRAY	charge controller parameter set	unsigned16	rw	Υ
3064 _h	VAR	actual charger voltage	unsigned16	ro	N
3074 _h	VAR	actual charger current	integer16	ro	N

Table 25: Battery charger objects.

4.3.3.1 Object 30F0_h: supply controller parameter set

The supply controller is a cascaded PI controller with the respective parameters. The controller parameters are factory preset and must not be changed. They can vary depending on the machine type. Write access for these parameters is not allowed in normal operation.

The Battery Management

The parameters described herein must only be changed by qualified specialized staff. Incorrectly set parameters can cause machine damage.

Index	Name	Object										
30F0 _h	supply controller pa- rameter set	ARRAY	Supp	Supply controller parameters								
Sub- Index	Name	Туре	Attr Map Default-Value Description									
0	number of elements	unsigned8	ro	N	6	Number of elements						
1	voltage gain	unsigned16	r(w)	N	2000	Voltage controller P-ratio						
2	voltage integration time	unsigned16	r(w)	N	4000	Voltage controller I-ratio						
3	current limit	unsigned16	r(w)	N	1500	Current limiting in mA						
4	current gain	unsigned16	r(w)	N	64	Voltage controller P-ratio						
5	current integration time	unsigned16	r(w)	N	1500	Voltage controller I-ratio						
6	PWM limit	unsigned16	r(w)	N	70	PWM adjustment value limiting in %						

4.3.3.2 Object 30F1h: charge controller parameter set

The battery charger contains a PI controller and a low pass filter with the respective parameters. The controller parameters (sub index 1 to 3) are factory preset and must not be changed. They can vary depending on the machine type. Write access for these parameters is not allowed in normal operation.

30

The parameters described herein must only be changed by qualified specialized staff. Incorrectly set parameters can cause machine damage.

Charging voltage and starting voltage as well as cut-off current must be adapted to the battery type and bloc number.

Status: 27.05.2009

Osterholz
Rattriebs
Technik GmbH

Index	Name	Object							
30F1 _h	charge controller pa- rameter set	ARRAY	Batte	Battery charger parameter					
Sub- Index	Name	Туре	Attr Map Default-Value Description						
0	number of elements	unsigned8	ro	Ν	6	Number of elements			
1	current gain	unsigned16	r(w)	Ν	512	Voltage controller P-ratio			
2	current integration time	unsigned16	r(w)	N	500	Voltage controller I-ratio			
3	filter time	unsigned16	r(w)	N	500ms	Filter time of the PT-element in ms			
4	charging voltage	unsigned16	rw	N	246V	Charging voltage in Volt			
5	threshold voltage	unsigned16	rw	N	241V	Starting voltage of the charger in Volt			
6	switch-off current	unsigned16	rw	N	300mA	Closing voltage current in mA			

charging voltage

Should be set to maximum bloc voltage * number of blocs. In case of 6 blocs Lithium ionic type A1 this means: 41V * 6 = 246V.

threshold voltage

Here the voltage at which the battery has to be recharged is set.

switch-off current

Falling below this charge current will stop the charge. It should be at 1/10 of the nominal capacity.

4.3.3.3 Object 3064h: actual charger voltage

This object contains the output voltage of the charger. As long as the battery is being charged, it is about 1 Volt above the battery voltage. If the battery is not charged, the voltage regulates to about 10 Volt below off-load voltage of the battery.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3064 _h	actual charger voltage	unsigned16	ro	Υ		Charger voltage in Volt

4.3.3.4 Object 3074h: actual charger current

This is the output current of the charge controller. It consists of the battery's charge current and the input current of the 24V mains adapter.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3074 _h	actual charger current	integer16	ro	Υ		Charger current in mA

The Boost Converter

4.4 The Boost Converter

In case of a power failure, the boost converter raises the battery voltage to intermediate circuit level. It automatically activates if the intermediate circuit falls below the starting voltage. It is a cascading PI-controller that controls the output voltage and passes into current control when a current limiting value is reached.

In order to protect the cells, the current is limited in such a way that the battery voltage does not drop below a minimum voltage.

4.4.1 Parameter

Index	Object	Name	Туре	Access	Mem.
30FB _h	ARRAY	booster parameter set	unsigned16	rw	Υ

Table 26: Boost converter parameters

4.4.1.1 Object 30FB_h: booster parameter set

The controller parameters are factory preset and must not be changed. They can vary depending on the machine type. Write access for these parameters is not allowed in normal operation.

The parameters described herein must only be changed by qualified specialized staff. Incorrectly set parameters can cause machine damage.

Index	Name	Object				
30FB _h	booster parameter set	ARRAY	Boos	st conv	erter para	meters
Sub- Index	Name	Туре	Attr Map Default- Value Description		Description	
0	number of elements	unsigned8	ro	Ν	9	Number of elements
1	voltage gain	unsigned16	r(w)	N	128	Voltage controller P-ratio
2	voltage integration time	unsigned16	r(w)	N	2000	Voltage controller I-ratio
3	current limit	unsigned16	r(w)	N	90A	Current limiting in A
4	current gain	unsigned16	r(w)	N	64	Current controller P-ratio
5	current integration time	unsigned16	r(w)	Ν	5000	Current controller I-ratio
6	PWM limit	unsigned16	r(w)	N	80%	PWM adjustment value limiting in %
7	target voltage	unsigned16	rw	N	600V	Control voltage in Volt
8	switch-on voltage	unsigned16	rw	N	420V	Starting voltage in Volt
9	inductance	unsigned16	rw	N	180μΗ	Booster reactor inductance in μH

target voltage

The control voltage of the boost converter has to be higher than the nominal dc link voltage in order for no inrush current to flow on re-starting of the mains voltage.

Status: 27.05.2009 Osterholz
Rednik GmbH

switch-on voltage

If the direct current link voltage falls below this value during a power failure, the boost converter activates and regulates the current link voltage at the value in *target voltage*.

inductance

The inductance of the booster reactor is needed in order to correctly calculate the booster current. The value can be gathered from the reactor's type label.

4.4.2 Actual Values

Index	dex Object Name		Туре	Access	Mem.
3073 _h	VAR	actual booster current	integer16	ro	N
30B0 _h	VAR	actual load booster	unsigned8	ro	N

Table 27: Boost converter actual values.

4.4.2.1 Object 3073_h: actual booster current

This displays the output current of the boost converter.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3073 _h	actual booster current	integer16	ro	Υ		Booster current in Ampere

4.4.2.2 Object 30B0h: actual load booster

This object displays the capacity utilization of the booster output stage, in other words the relation between switch-on and switch-off time.

Index	Name	Туре	Attr	Мар	Default- Value	Description
30B0 _h	actual load booster	unsigned8	ro	Υ		Capacity utilization of the boost converter in %

4.5 The Brake Chopper

The brake chopper ensures that the direct current link voltage does not increase above a specific value due to feed back of a brake application of the axis. When an upper threshold voltage is reached, the brake resistance is cyclically switched to the intermediate circuit. If the voltage drops below the lower threshold, the brake chopper deactivates.

4.5.1 Parameters

Index	Object	Name	Туре	Access	Mem.
30FC _h	ARRAY	brake chopper	unsigned16	rw	Υ

Table 28: Brake chopper parameters.

33

Temperature Monitoring and Regulation

4.5.1.1 Object 30FC_h: brake chopper

This sets the switch-on and switch-off threshold of the brake chopper. The voltage values must not lie below the control voltage (booster parameter.target voltage) of the booster.

Index	Name	Object					
30FC _h	chopper parameter set	ARRAY	Brake chopper parameters				
Sub- Index	Name	Туре	Attr Map Default- Value Description			Description	
0	number of elements	unsigned8	ro	N	2	Number of elements	
1	switch-on voltage	unsigned16	rw N 670 Switch-on thres		Switch-on threshold in Volt		
2	switch-off voltage	unsigned16	rw	N	650	Switch-off threshold in Volt	

4.5.2 Actual Values

Index	Object	Name	Туре	Access	Mem.
30B1 _h	VAR	actual load chopper	unsigned8	ro	N

Table 29: Brake chopper actual values.

4.5.2.1 Object 30B1_h: actual load chopper

This object displays the actual capacity utilization of the brake chopper. 100% stand for full capacity utilization with 300W.

Index	Name	Туре	Attr	Мар	Default- Value	Description
30B1	actual load chopper	unsigned8	ro	Υ		Capacity utilization of the brake chopper in %

4.6 Temperature Monitoring and Regulation

The PMM features three temperature controllers in order to actuate external heaters, coolers and fans. Furthermore, four temperatures can be monitored for exceeding or falling below of threshold values and a specific alarm can be activated.

The following temperature measuring points exist:

- Battery temperature
- Heat sink temperature inside the machine
- Two externally lockable KTY110 feeler gauges.

Two relay outputs and the digital 24V outputs are available for actuation of external air conditioning units.

The control- and monitoring modules, are fixedly assigned the temperature ports. The control outputs can be assigned freely.

The temperature control units do not regulate a specific temperature but rather prevent the exceeding or falling below the appointed temperature range:

Status: 27.05.2009

Osterholz
Rhtriebs
Technik GmbH

Temperature Monitoring and Regulation

Figure 2: Temperature control unit function

In case of falling below the temperature threshold heating, the heater and fan are activated. If the temperature increases by the hysteresis, the heater deactivates.

In case of exceeding the temperature threshold cooling, cooler and fan are activated. If the temperature drops by the hysteresis, the cooling deactivates.

In both cases the fan will only be deactivated after expiration of the follow-up time.

4.6.1 Parameters

Index	Object	Name	Туре	Access	Mem.
3110 _h	ARRAY	temperature supervisor battery	integer16	rw	Υ
3111 _h	ARRAY	temperature supervisor heat sink	integer16	rw	Υ
3112 _h	ARRAY	temperature supervisor sensor1	integer16	rw	Υ
3113 _h	ARRAY	temperature supervisor sensor2	integer16	rw	Υ
3201 _h	RECORD	temperature controller battery	-	rw	Υ
3202 _h	RECORD	temperature controller sensor1	-	rw	Υ
3203 _h	RECORD	temperature controller sensor2	-	rw	Υ
3204 _h	RECORD	motor fan controller	-	rw	Υ

Table 30: Brake chopper parameters.

Temperature Monitoring and Regulation

4.6.1.1 Object 3110_h: temperature supervisor battery

Index	Name	Object				
3110 _h	temperature supervi- sor battery	ARRAY	Battery temperature monitoring			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	unsigned8	ro	N	3	Number of elements
1	warning limit	integer16	rw	N	50,0℃	Warning limit in 0,1 ℃
2	error limit	integer16	rw	Ν	55,0℃	Error limit 0,1 ℃
3	lower limit	integer16	rw	Ν	0,0℃	Lower limit in 0,1 °C (warning)

4.6.1.2 Object 3111_h: temperature supervisor heat sink

Index	Name	Object				
3111 _h	temperature supervi- sor heat sink	ARRAY	Heat sink temperature monitoring			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	unsigned8	ro	N	3	Number of elements
1	warning limit	integer16	rw	N	75,0℃	Warning limit in 0,1 ℃
2	error limit	integer16	rw	Ν	80,0℃	Error limit in 0,1 ℃
3	lower limit	integer16	rw	Ν	-20,0℃	Lower limit in 0,1 °C (warning)

4.6.1.3 Objects 3112_h an 3113_h: temperature supervisor sensor 1 and 2

Index	Name	Object					
3112 _h	temperature supervi- sor sensor1	ARRAY	Sensor 1 temperature monitoring, clamp X15.1/X15.2				
3113 _h	temperature supervi- sor sensor2	ARRAY	Sens	Sensor 2 temperature monitoring, clamp X15.3/X15.4			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description	
0	number of elements	unsigned8	ro	Ν	3	Number of elements	
1	warning limit	integer16	rw	N	45,0℃	Warning limit in 0,1 ℃	
2	error limit	integer16	rw	N	50,0℃	Error limit in 0,1 ℃	
3	lower limit	integer16	rw	N	-20,0℃	Lower limit in 0,1 ℃ (warning)	

Status: 27.05.2009

4.6.1.4 Object 3201_h: temperature controller battery

In the base setting, this controller has the following outputs:

Heating: Clamp X16.1/X16.2 (relay output)

Cooling: not used

Fan: Clamp X14.5 (24V output, 0,5A)

Osterholz
Rechnik GmbH

Temperature Monitoring and Regulation

Index	Name	Object						
3201 _h	temperature controller battery	RECORD	Batte	Battery temperature controller				
Sub- Index	Name	Туре	Attr Map Default- Description Value		Description			
0	number of elements	unsigned8	ro	Ν	7	Number of elements		
1	heater	integer16	rw	N	0,0℃	Temperature threshold heating in 0,1 ℃		
2	cooler	integer16	rw	N	45,0℃	Temperature threshold cooling in 0,1 °C		
3	hysteresis	integer16	rw	N	5,0K	Hysteresis in 0.1K		
4	output heater	unsigned16	rw	N	0040 _h	Mask for heater output		
5	output cooler	unsigned16	rw	N	0000 _h	Mask for cooler output		
6	output fan	unsigned16	rw	N	0010 _h	Mask for fan output		
7	delay fan off	unsigned16	rw	N	120s	Falling delay fan in seconds		

The bit mask for selecting the control output can be found in the table on page 44.

4.6.1.5 Object 3202h: temperature controller sensor 1

This controller is deactivated in the base setting by setting all output masks to 0.

Index	Name	Object						
3202 _h	temperature controller sensor1	RECORD	Tem	Temperature controller sensor 1, clamp X15.1/X15.2				
Sub- Index	Name	Туре	Attr Map Default- Description Value			Description		
0	number of elements	unsigned8	ro	Ν	7	Number of elements		
1	heater	integer16	rw	Ν	0	Temperature threshold heating in 0,1 ℃		
2	cooler	integer16	rw	N	45,0℃	Temperature threshold cooling in 0,1 ℃		
3	hysteresis	integer16	rw	N	5,0℃	Hysteresis in 0.1K		
4	output heater	unsigned16	rw	N	0000 _h	Mask for heater output		
5	output cooler	unsigned16	rw	N	0000 _h	Mask for cooler output		
6	output fan	unsigned16	rw	N	0000 _h	Mask for fan output		
7	delay fan off	unsigned16	rw	N	120s	Falling delay fan in seconds		

Status: 27.05.2009

The bit mask for selecting the control output can be found in the table on page 44.

4.6.1.6 Object 3203_h: temperature controller sensor 2

This controller's base setting has the following outputs:

Heating: Clamp X16.3/X16.4 (relay output)

Cooling: not used

Fan: Clamp X14.6 (24V output, 0,5A)

4 The Pitch Management Module (PMM)

Temperature Monitoring and Regulation

Index	Name	Object						
3203 _h	temperature controller sensor2	RECORD	Tem	Temperature controller sensor 2, clamp X15.3/X15.4				
Sub- Index	Name	Туре	Attr Map Default- Value Description					
0	number of elements	unsigned8	ro	N	7	Number of elements		
1	heater	integer16	rw	N	0,0℃	Temperature threshold heating in 0,1 ℃		
2	cooler	integer16	rw	N	45,0℃	Temperature threshold cooling in 0,1 ℃		
3	hysteresis	integer16	rw	N	5,0K	Hysteresis in 0.1K		
4	output heater	unsigned16	rw	N	0080 _h	Mask for heater output		
5	output cooler	unsigned16	rw	N	0000 _h	Mask for cooler output		
6	output fan	unsigned16	rw	N	0020 _h	Mask for fan output		
7	delay fan off	unsigned16	rw	N	120s	Falling delay fan in seconds		

The bit mask for selecting the control output can be found in the table on page 44.

4.6.1.7 Object 3204_h: motor fan controller

The PMM can also take over control of the motor fan cooler. Motor temperature is queried by the PMC through the CAN bus. Above the temperature threshold the cooler is activated. If the temperature drops by the hysteresis, the cooler is turned-off.

This function is only activated if *output fan* has an output mask.

Index	Name	Object				
3204 _h	motor fan controller	RECORD	Moto	r fan d	controller	
Sub- Index	Name	Туре	Attr	Attr Map Default- Value		Description
0	number of elements	unsigned8	ro	N	3	Number of elements
1	temperature	integer16	rw	Z	0,08	Temperature threshold cooling in 0,1 °C
2	hysteresis	integer16	rw	Ν	5,0K	Hysteresis in 0.1K
3	output fan	unsigned16	rw	N	0000 _h	Mask for fan output

Status: 27.05.2009

The bit mask for selecting the control output can be found in the table on page 44.

ORT Osterholz
Rhtriebs
Technik GmbH

4.6.2 Status Message and Actual Values

Index	Object	Name	Туре	Access	Mem.
3006 _h	VAR	battery temperature status	unsigned8	ro	N
3007 _h	VAR	heat sink temperature status	unsigned8	ro	N
3008 _h	VAR	sensor1 temperature status	unsigned8	ro	N
3009 _h	VAR	sensor2 temperature status	unsigned8	ro	N
3010 _h	VAR	actual battery temperature	integer16	ro	N
3011 _h	VAR	actual heat sink temperature	integer16	ro	N
3012 _h	VAR	temperature sensor1	integer16	ro	N
3013 _h	VAR	AR temperature sensor2		ro	N

Table 31: Brake chopper actual value.

4.6.2.1 Objects 3006_h- 3009_h: temperature status

Index	Name	Туре	Attr	Мар	Default- Value	Description
3006 _h	battery temperature status	unsigned8	ro	Υ		Status messages temperature monitoring and controlling of: Battery
3007 _h	heat sink temperature status	unsigned8	ro	Y		Heat sink
3008 _h	sensor1 temperature status	unsigned8 ro Y			Sensor 1, clamp X15.1/X15.2	
3009 _h	sensor2 temperature status	unsigned8	ro	Υ		Sensor 2, clamp X15.3/X15.4

The individual bit in the temperature status values have the following meaning:

Bit	Meaning	Error code				
		Battery	Unit	Sensor1	Sensor2	
0	1 = Lower temperature threshold undercut	4420 _h	4220 _h	4120 _h	4121 _h	
1	1 = Fan on					
2	1 = Heater on					
3	1 = Cooler on					
4	1 = Warning limit reached*	4410 _h	4210 _h	4110 _h	4111 _h	
5	1 = Error limit reached, emergency message occurs simultaneously	4410 _h	4210 _h	4110 _h	4111 _h	
6	1 = Sensor short circuit					
7	1 = Sensor interrupt					

Table 32: Bits in the *temperature status*.

Bits 1 to 3 are always 0 in object 3007_h.

^{*} In case of a warning, the error code is entered into the object, but no emergency message occurs.

Inputs and Outputs

4.6.2.2 Object 3010h: actual battery temperature

This displays the actual battery temperature. It is calculated by the temperature measured inside the blocs. If the lowest temperature is below 10 °C, the minimum bloc temperature is displayed here, otherwise the maximum bloc temperature.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3010 _h	actual battery tem- perature	integer16	ro	Υ		Battery temperature measured in 0,1 ℃

4.6.2.3 Object 3011_h: actual heat sink temperature

The sensor for this temperature is located directly at the heat sink of the machine.

Index	Name	Туре	Attr	Мар	Default- Value	Description
3011 _h	actual heat sink tem- perature	integer16	ro	>		Temperature of the heat sink in 0,1 $^{\circ}$ C

4.6.2.4 Objects 3012_h and 3013: temperature 1 and 2

The temperature for the externally connected KTY110 sensors is displayed here. Short circuit or wire break, or sensors not connected respectively, are identified and displayed by non-plausible values as well as by bits in the temperature status. An error message does not occur, though.

Inde	Name	Туре	Attr	Мар	Default- Value	Description
3012	temperature 1	integer16	ro	Υ		Temperature at the temperature sensors in 0,1 ℃.
3013	temperature 2	integer16	ro	Υ		-32768 means short circuit 32767 means wire break

4.7 Inputs and Outputs

The PMM possesses an analogue input for 0-10V, several digital inputs for 24V, ten digital outputs for 24V and two relay outputs for up to 230V. Those inputs and outputs can be used by the controller or linked with internal functions.

4.7.1 Objects

Index	Object	Name	Туре	Access	Mem.
30A0 _h	30A0 _h VAR read analog input 1		unsigned16	ro	N
30FD _h	FD _h VAR digital inputs		unsigned32	ro	N
30E2 _h	VAR	/AR pulse width input check signal		rw	Υ
30FE _h	ARRAY	digital outputs	unsigned32	rw	N

Status: 27.05.2009

Table 33: Input and output objects.

4.7.1.1 Object 30A0h: read analog input 1

The PMM possesses an analog input from 0..10V. The resolution is 10 Bit.

Index	Name	Туре	Attr	Мар	Default- Value	Description
$30A0_{h}$	read analog input 1	unsigned16	ro	Υ		Analog input voltage in mV

4.7.1.2 Object 30FDh: digital inputs

The PMM's digital inputs can be back-read in this object. Some can also be linked with internal functions, e.g. alert functions. The linkage occurs in the objects of those functions.

Figure 3: Digital input processing

Index	Name	Туре	Attr	Мар	Default- Value	Description
30FD _h	digital inputs	unsigned32	ro	Υ		Digital inputs of the PMM

The following table shows the configuration of the individual bits

In the column "bit mask" those values are displayed hexadecimally, that have to be entered in the respective internal functions for the selection of the input.

Status: 27.05.2009

4 The Pitch Management Module (PMM)

Inputs and Outputs

Bit	Clamp	Configuration	Bit mask
0	X13.10	Emergency Feather Command (EFC)	0001 _h
1		not used, always 0	0002 _h
2	X13.8	EFC direct	0004 _h
3	X13.7		0008 _h
4	X13.6 to X13.5 24V feed-in		0010 _h
5		not used, always 0	0020 _h
6		not used, always 0	0040 _h
7		not used, always 0	0080 _h
8	X14.12		0100 _h
9	X14.11	1 = Lightning protection OK (FFF1 _h)	0200 _h
10	X14.10		0400 _h
11	X14.9		0800 _h
12	X14.8 to X14.7 24V feed-in		1000 _h
13		not used, always 0	2000 _h
14		not used, always 0	4000 _h
15		not used, always 0	8000 _h
16	X13.10 (feedback signal)		-
17		not used, always 0	-
18	X13.8 (feedback signal)		-
19	X13.7 (feedback signal)		-
20	X13.6 to X13.5 24V feed-in		-
21		not used, always 0	-
22		not used, always 0	-
23		not used, always 0	-
24		not used, always 0	-
25		not used, always 0	-
26		not used, always 0	-
27	Push-button		-
28	Selector switch manual function		-
29	Selector switch manual function		-
30	Selector switch manual function		-
31	Selector switch manual function		-

Table 34: Configuration of inputs and bit mask.

4.7.1.3 Object 30E2h: pulse width input check signal

Inputs X13.7, X13.8 and X13.10 can be checked for wire break and short circuit, respectively, without activating an emergency stop (EFC), e.g. For this, the controller must set the input for one cycle (**max. 40ms**) to 0. A feedback signal extended by pulse width can then be checked in bits 16, 18 or 19 (see table).

The emergency mode will executed after about 50ms, therefore, the input should be at 0V for a maximum of 40ms for test purposes!

Status: 27.05.2009

Osterholz
Rhtriebs
Technik GmbH

In	ndex	Name	Туре	Attr	Мар	Default- Value	Description
30	0E2 _h	pulse width input check signal	unsigned16	rw	Z	2000ms	Pulse width time for input monitoring in ms

4.7.1.4 Object 30FEh: digital outputs

The PMM provides digital outputs that can be freely programmed in parts. Inputs set by the machine can be read-back. Furthermore, the state of the LED can be read, but not be operated from the controller.

The bit mask assists in selecting whether an output is addressed by the control unit or by the internal function of the PMM.

Figure 4: Digital output processing

Index	Name	Object					
30FE _h	digital outputs	ARRAY	Digit	Digital outputs of the PMM			
Sub- Index	Name	Туре	Attr Map Default- Value Description		Description		
0	number of elements	unsigned8	ro	N	3	Number of elements	
1	physical outputs	unsigned32	rw	Υ	0	Output level: 1 = 24V, 0 = 0V	
2	bitmask	unsigned32	rw	Υ	0	Bit mask, only bits with the value 1 can be taken from <i>physical outputs</i> .	
3	read back	unsigned32	ro	Υ		Read-back state of the outputs.	

The following table represents the output configuration. Bits 16 to 31 are read-back only.

In the column "bit mask" those values are displayed hexadecimally, that have to be entered in the respective internal functions for the selection of the control output. It is also possible to parallel outputs for cases of higher current load. For this, the respective values will be added for the mask and entered in the function.

4 The Pitch Management Module (PMM)

Inputs and Outputs

Example: Parallel clamps X14.3 and X14.4: Mask = $0002_h + 0004_h = 0006_h$

Bit	Clamp	Default configuration	Bit mask
0	X14.1 (24V, 1A)		0001 _h
1	X14.2 (24V, 1A)		0002 _h
2	X14.3 (24V, 0,5A)		0004 _h
3	X14.4 (24V, 0,5A)		0008 _h
4	X14.5 (24V, 0,5A)	Temperature controller battery fan	0010 _h
5	X14.6 (24V, 0,5A)	Temperature controller 2 fan	0020 _h
6	X16.1 + X16.2 230VAC Relay	Temperature controller battery heater	0040 _h
7	X16.3 + X16.4 230VAC Relay	Temperature controller 2 heater	0080 _h
8	X13.1 (24V, 0,5A)		0100 _h
9	X13.2 (24V, 0,5A)		0200 _h
10	X13.3 (24V, 0,5A)	Warning	0400 _h
11	X13.4 (24V, 0,5A)	Fault	0800 _h
12	not used		1000 _h
13	not used		2000 _h
14	not used		4000 _h
15	not used		8000 _h
16	X13.11 + X13.12 24VDC Relay	Safety Chain (WD)	-
17	not used		-
18	not used		-
19	not used		-
20	not used		-
21	not used		-
22	not used		-
23	not used		-
24	LED Status machine		-
25	LED disturbance		-
26	LED Watchdog		-
27	LED Field bus 1		-
28	LED Field bus 2		-
29	LED Field bus 3		-
30	not used		-
31	not used		-

Table 35: Configuration of output and bit mask.

Not used outputs can be set in the object and in the bit mask and also appear in the *read back*. They should be set to 0 in order to be compatible with future hardware expansions.

physical outputs

The controller includes these objects in its I/O image and addresses the outputs, as long as the same bit is set in the object *bitmask*.

Status: 27.05.2009 Osterholz
Rentriebs
Technik GmbH

Inputs and Outputs

bitmask

Only those outputs which have their bit set here can be addressed by the controller. For outputs that are utilized by another function (e.g. temperature controller), the bit must be set to 0.

read back

All outputs, even those operated by internal functions, can be read-back here. However, they will not be read-back physically, that means a level connected to a 24 output on the outside will not be detected.

4.7.2 Programmable Alert Outputs

One output each can be programmed for a warning and error message. The level is 24V in order to parallel the outputs ("wired or"). By this, a lamp or a signaling contact, e.g., can be addressed.

Index	Object	Name	Туре	Access	Mem.
30FF _h	ARRAY	signaling outputs	unsigned16	rw	Υ

4.7.2.1 Object 30FFh: signaling outputs

Index	Name	Object					
30FF _h	signaling outputs	ARRAY	Sign	Signaling outputs of the PMM			
Sub- Index	Name	Туре	Attr Map Default-Value Description				
0	number of elements	unsigned8	ro	Ν	2	Number of elements	
1	fault	unsigned16	rw Y 0800 _h Mask for signaling output "f		Mask for signaling output "fault"		
2	warning	unsigned16	rw	Υ	0400 _h	Mask for signaling output "warn-ing"	

The bit masks for control output selection can be found on page 44.

4.7.3 Programmable Signaling Inputs

Up to 8 error codes (FFF1_h to FFF8_h) can be assigned digital inputs, whereupon the type signal (error or warning) and the release level (24V/0V) can be programmed.

One application is, for example, the signaling contact of a lighting protection module. In case of an error, an alarm message can be automatically sent to the control without querying the input.

Status: 27.05.2009

4 The Pitch Management Module (PMM)

Inputs and Outputs

Index	Object	Name	Туре	Access	Mem.
3300 _h	ARRAY	alarm inputs	unsigned16	rw	Υ

4.7.3.1 Object 3300h: alarm inputs

Index	Name	Object				
3300 _h	alarm inputs	ARRAY	Alarr	Alarm inputs of the PMM		
Sub- Index	Name	Туре	Attr Map Default- Value Description			
0	number of elements	unsigned8	ro	N	8	Number of elements
1	number 1	unsigned16	rw	N	0000 _h	Mask for alarm signal FFF1 _h
8	number 8	unsigned16	rw	N	0000 _h	Mask for alarm signal FFF8 _h

The bit masks for the input selection can be found in the following table.

With bit 15 of the mask, the message level is set, bit 14 selects the alarm type error or warning.

Example: Input X14.11 shall report failure of the lighting protection with the error code FFF1_h. The message is low-active (wire break safe) and shall generate an error and thereby open the safety chain.

The mask to be programmed is 4200_h and is entered in object 3300_h, sub index 1.

Bit	Clamp	Configuration	Bit mask
0	X13.10	Emergency Feather Command (EFC)	0001 _h
1			0002 _h
2	X13.8	EFC direct	0004 _h
3	X13.7		0008 _h
4	X13.6 to X13.5 24V feed-in		0010 _h
5			0020 _h
6			0040 _h
7			0080 _h
8	X14.12		0100 _h
9	X14.11	1 = Lightning protection OK (Code FFF1 _h)	0200 _h
10	X14.10		0400 _h
11	X14.9		0800 _h
12	X14.8 to X14.7 24V feed-in		1000 _h
13			2000 _h
14	Selection of fault / warning*	1= Fault, 0 = Warning	4000 _h
15	Selection of level*	1= High-active, 0 = Low-active	8000 _h

Status: 27.05.2009

Table 36: Bitmask for signaling inputs

^{*}Only for alert functions

4.8 Position Monitoring

The PMM offers the option to set a signaling output dependent on the position of the axis. The PMC will report the position via the CAN-bus and compare it with two limits. If the actual position lies in between these limits, the output will be set. The output can be preset.

4.8.1 Objects

Index	Object	Name	Туре	Access	Mem.
3220 _h	RECORD	position range enable	-	rw	Υ

4.8.1.1 Object 3220_h: position range enable

Index	Name	Object					
3220 _h	position range enable	RECORD	Posit	Position range monitoring			
Sub- Index	Name	Туре	Attr Map Default-Value Description		Description		
0	number of elements	unsigned8	ro	N	3	Number of elements	
1	lower limit	integer16	rw	Ν	-8700	Lower limit in 0,01°	
2	upper limit	integer16	rw N 8700 Upper limit in 0,01°		Upper limit in 0,01°		
3	output	unsigned16	rw	N	0000 _h	Mask for signaling output	

The bit masks for the selection of the control outputs can be found in the table on page 44.

4.9 Direct Current Motor Parameters

A dc motor that is directly connected to the intermediate circuit can be run by a programmable acceleration and deceleration chute.

At this point (status July 2007) this function is not yet available.

4.9.1 Objects

Index	Object	Name	Туре	Access	Mem.
30DC _h	ARRAY	dc motor parameter set	unsigned16	rw	Υ

Status: 27.05.2009

4 The Pitch Management Module (PMM) Direct Current Motor Parameters

4.9.1.1 Object 30DCh: dc motor parameter set

Index	Name	Object				
30DC _h	dc motor parameter set	ARRAY	Parameter for direct injection of the dc motor			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	unsigned8	ro	N	4	Number of elements
1	switch-on delay	unsigned16	rw	N		Switch-on delay in ms
2	acceleration	unsigned16	rw	N		Acceleration chute in V/sec
3	deceleration	unsigned16	rw	N		Deceleration chute in V/sec
4	max voltage	unsigned16	rw	N		Maximum voltage in Volt

Osterholz Antriebs Technik GmbH ORT Status: 27.05.2009

This device is a drive controller that can drive AC synchronic, asynchronic and DC motors. In addition to the functions of a conventional drive controller, it possesses special functions for the operation for blade adjustment, like, e.g., a process setting for the emergency-stop drive (EFC) or an additional transmitter input for the redundant blade encoder.

There are inputs for limit switch, emergency-stop drive, flag position, referencing, measurement position etc.

There are rely outputs for the holding brake and the safety chain (watchdog relay).

The device has a cascaded closed loop controller which consists of current controller, velocity controller and a position controller. The parameters can be found in chapters 5.2, 5.3 and 5.4.

The controller can be operated in the following modes of operation:

- position controlled positioning (chapter 5.10): The end position will be accessed and controlled by the device via a trajectory generator with set speed and acceleration. The controlword gives the starting command.
- velocity-regulated positioning (chapter 5.11): A target speed will be set and controlled by a trajectory generator with the set acceleration. The controlword gives the starting command.
- Cyclic-synchronous position control (chapter 5.12): The target position is cyclically sent via the bus and accessed by the device with the set speed and acceleration.
- Cyclic-synchronous closed-loop velocity control (chapter 5.13): The device takes over the function of a velocity controller with cyclical speed set points via the field bus.

Activation occurs pursuant to the specification DS402, Drives and Motion Profile of CAN in Automation e.V. According to this, the objects for the parameters, which are discussed in the subsequent chapters, are sorted as well.

5.1 Information on the Drive

5.1.1 Objects

Index	Object	Name	Туре	Access	Mem.
6510 _h	RECORD	drive data	-	ro/rw	Υ

Status: 27.05.2009

Table 37: Objects with information on the drive

5.1.1.1 Object 6510_h: *drive data*

This structure centralizes all data and parameters that are not specified in DS402.

Information on the Drive

Index	Name	Object					
6510 _h	drive data	RECORD	Para	Parameter for the controller			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description	
0	number of elements	unsigned8	ro	Ν	10	Number of elements	
1	power stage code	unsigned16	ro	Ν		Output stage coding	
2	max heat sink tem- perature	integer16	rw	Ν	80,0℃	Maximum heat sink temperature in $0.1^{\circ}\mathrm{C}$	
3	heat sink temperature	integer16	ro	Υ		Current heat sink temperature in 0,1 ℃	
4	min DC link voltage	unsigned16	rw	N	100V	Minimum direct current link voltage in V	
5	max DC link voltage	unsigned16	rw	N	750V	Maximum direct current link voltage in V	
6	temperature warning level	unsigned16	rw	N	75,0℃	Heat sink temperature warning level in 0,1 °C	
7	error mask	unsigned16	rw	N	0xFFFF	Error mask; with the respective bit set to 0, an error can be masked out.	
8	error flags	unsigned16	ro	Υ		Error bits, see Table 38	
9	controller mode	unsigned16	rw	N	2	0 = voltage controlled 1 = velocity control 2 = position and velocity control 82 _h = votage controlled or inverter mode with position control 8F _h = motor heating	
10	max PWM frequency	unsigned16	rw	N	8	Maximum frequency of the PWM output in kHz. Range of values: 615	

error mask and error flags

The function of the individual bits can be gathered from the following table. The error code is contained in the object *error code* and is transferred with the emergency message.

Status: 27.05.2009

A bit set in *error flags* will lead to an error message and reaction of the respective bit is set in *error mask*. This does not apply to error of priority A, those can't be switched off.

Bit	Description	Prio.	Error code
0	Short circuit or accidental ground, respectively, motor side	Α	2320 _h
1	free	В	_
2	Over voltage in the intermediate circuit, PMC	Α	3210 _h
3	Under voltage in the intermediate circuit	В	3220 _h
4	Error in the shaft encoder (motor), sine/cosine	В	7305 _h
5	Unit temperature (heat sink) too high	В	4210 _h
6	Wrong parameter	В	6320 _h
7	Over current at controller output (motor)	Α	2310 _h
8	Motor temperature too high	В	4310 _h
9	No identification of output stage	В	6380 _h
10	Velocity controller, maximum velocity exceeded	В	8400 _h
11	Error at the shaft encoder (motor), data channel	В	7320 _h
12	Watchdog reset	Α	6010 _h
13	Error 2. shaft encoder (blade encoder)	В	7321 _h
14	Following error too large	В	8611 _h
15	Software trap, firmware error	Α	6080 _h

Table 38: Meaning of the error flags (6510_h/7).

5.2 Parameter for Control Loop and Motor

These parameters are taken from the motor database of the service tool. They are calculated for every motor on the test stand at OAT.

The parameters described herein must only be changed by qualified specialized staff. Incorrectly set parameters can cause machine damage.

5.2.1 Objects

Index	Object	Name	Туре	Access	Mem.
6402 _h	VAR	motor type	unsigned16	rw	Υ
6410 _h	RECORD	motor data	-	rw	Υ
6073 _h	VAR	max current	unsigned16	rw	Υ
6076 _h	VAR	rated current	unsigned16	rw	Υ
60F6 _h	RECORD	torque control parameter set	-	rw	Υ
6078 _h	VAR	current actual value	integer16	ro	N
6079 _h	VAR	DC link circuit voltage	unsigned32	ro	N
5079 _h	VAR	DC link circuit voltage 16bit	unsigned16	ro	N

Table 39: Objects for control loop and motor

5.2.1.1 Object 6402h: motor type

The type of motor is determined here. The PMC can drive asynchronous motors, synchronous servo motors and direct current motors.

Parameter for Control Loop and Motor

Index	Name	Туре	Attr	Мар	Default- Value	Description
6402 _h	motor type	unsigned16	rw	N	0	Motor type: 0007 _h : Asynchronous (cage rotor)
						0007h. Asynchronous (cage rotor) 000Ah: Synchronous servo 000Dh: DC Permanent magnet 000Eh: DC line circuit 000Fh: DC shunt circuit 0010h: DC dual circuit

5.2.1.2 Object 6410_h: motor data

All manufacturer specific parameters for the motor and the motor control can be found here. All parameters are taken from the motor database.

Index	Name	Object					
6410 _h	motor data	RECORD	Manufacturer specific motor parameters				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description	
0	number of elements	unsigned8	ro	N	12	Number of elements	
1	poles	unsigned16	rw	Ν	1	Number of pole pairs	
2	rho offset	unsigned16	rw	Z		Installation offset shaft encoder in increments	
3	nominal voltage	unsigned16	rw	N	400,0V	Nominal voltage in 0,1V	
4	nominal speed	unsigned16	rw	Ν	2920	Nominal rotation speed in RPM	
5	exciting voltage	unsigned16	rw	N	200,0V	Exciting voltage for dc motor in 0,1V	
6	nominal frequency	unsigned16	rw	N	50,0Hz	Rated frequency of the motor in 0,1Hz	
7	max motor tempera- ture	unsigned16	rw	N	150,0℃	Maximum motor temperature in 0,1 °C	
8	motor temperature warning	unsigned16	rw	N	130,0℃	Warning level motor temperature in 0,1 ℃	
9	motor temperature	integer16	ro	Υ		Current motor temperature	
10	cosinus phi	unsigned16	rw	N	89	Power factor motor	
11	start voltage	unsigned16	rw	N		Start voltage for F/U operation	
12	IxR factor	unsigned16	rw	N		IxR factor for F/U operation	
13	heating current	unsigned16	rw	N	10,0%	Heating current in 0,1% of the nominal current	
14	reserve1	unsigned16	rw	N			
15	reserve2	unsigned16	rw	N			

5.2.1.3 Object 6073h: max current

The maximum current of the controller is given in (0,1%) of the nominal current (rated current, object 6076_h). It usually is at double nominal current. It may not be set higher, but can be limited by setting a smaller value.

52 Status: 27.05.2009

Parameter for Control Loop and Motor

Index	Name	Туре	Attr	Мар	Default- Value	Description
6073 _h	max current	unsigned16	rw	N	200,0%	Maximum motor current in 0,1%

5.2.1.4 Object 6076h: rated current

The motor's nominal current is specified in mA, pursuant to DS402. The value can be taken from the motors type plate.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6076 _h	rated current	unsigned32	rw	N	17000	Nominal current motor in mA

5.2.1.5 Object 60F6_h: torque control parameter set

This object explains the manufacturer specific **parameters for the control loop**. The control loop is the internal control loop of the cascaded controller of the PMC, it is a so called PI controller. The P factor is set in the object *torque control parameter set.gain* (60F6_h/1) and the I factor is set in the object *torque control parameter set.integration time* (60F6_h/2). OAT calculates these parameters for every motor and the parameters are taken from the motor data base.

Index	Name	Object				
60F6 _h	torque control parame- ter set	RECORD	Control loop parameter			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	unsigned8	ro	N	3	Number of elements
1	gain	unsigned16	rw	N	16	Amplification factor of the control loop.
2	integration time constant	unsigned16	rw	N	512	Integral factor of the control loop
3	peak current time limit	unsigned16	rw	N	5000ms	Time limit for surge current in ms, after this time nominal current limit applies.

5.2.1.6 Object 6077_h: torque actual value

The actual motor torque is specified in 0,1% of the nominal torque. The value is determined from the internal nominal value for the current.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6077 _h	torque actual value	integer16	ro	Υ		Actual torque in 0,1%

Status: 27.05.2009

Parameters of the Velocity Controller

5.2.1.7 Object 6078_h: current actual value

The actual motor current is specified in 0,1% of the nominal current (*rated current*). It is the actually measured current.

	Index	Name	Туре	Attr	Мар	Default- Value	Description
Ī	6078 _h	current actual value	integer16	ro	Υ		Actual motor current in 0,1%

5.2.1.8 Object 6079h: DC link circuit voltage

The direct current link voltage is specified in mV, pursuant to DS402. It measures the current at the clamps X8.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6079 _h	DC link circuit voltage	unsigned32	ro	Υ		Actual direct current link voltage in mV
5079 _h	DC link circuit voltage 16bit	unsigned16	ro	Υ		Like above, 16 bit access, but unit in V

5.3 Parameters of the Velocity Controller

The parameters for the velocity controller are taken from the motor database of the service tool. They are calculated for every motor on the test stand at OAT.

The parameters described herein must only be changed by qualified specialized staff. Incorrectly set parameters can cause machine damage.

5.3.1 Objects

Index	Index Object Name		Туре	Access	Mem.
6044 _h	VAR actual motor speed		integer16	ro	N
606C _h	606C _h VAR actual velocity		integer32	ro	N
506C _h	06C _h VAR actual velocity 16bit		integer16	ro	Ν
6080 _h	6080 _h VAR max motor speed		unsigned16	rw	Υ
60F9 _h	60F9 _h RECORD velocity control parameter set		-	rw	Υ

Table 40: Velocity controller objects

5.3.1.1 Object 6044h: actual motor speed

Index	Name	Туре	Attr	Мар	Default- Value	Description
6044 _h	actual motor speed	integer16	ro	Υ		Current rotation speed of the motor in revolutions per minute (rpm)

Status: 27.05.2009

Osterholz
Rhtriebs
Technik GmbH

5.3.1.2 Object 606Ch: actual velocity

This controller calculates the velocity of the axis on the basis of conversion factors and writes them into this object.

Index	Name	Туре	Attr	Мар	Default- Value	Description
606C _h	actual velocity	integer32	ro	Y		Actual velocity of the axis in position units/s
506C _h	actual velocity 16bit	integer16	ro	Υ		Like above, 16 bit access

5.3.1.3 Object 6080_h: max motor speed

The initial nominal value of the velocity controller is limited to this value.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6080 _h	max motor speed	unsigned32	rw	N	3000	Maximum motor speed in revolutions per minute (rpm)

5.3.1.4 Object 60F9h: velocity control parameter set

The velocity controller of the PMC is a so called PID controller within a cascade structure. The P ratio is determined by the object *velocity parameter set.gain* ($60F9_h/1$), the I ratio by the object *velocity parameter set.integration time constant* ($60F9_h/2$) and the D ratio by the object *velocity parameter set.differential time constant* ($60F9_h/3$).

All parameters are taken from the motor database. Where necessary, the setting of the velocity controller must be aligned to the machine.

55

Parameters of the Velocity Controller

Index	Name	Object						
60F9 _h	velocity control pa- rameter set	RECORD	Velo	Velocity controller parameters				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description		
0	number of elements	unsigned8	ro	N	6	Number of elements		
1	gain	unsigned16	rw	N	100	Proportional amplification of the velocity controller		
2	integration time con- stant	unsigned16	rw	N	200	Integral ratio of the velocity controller. The initial value for optimization of the velocity controller should be set to 1/10 of the value in <i>gain</i> .		
3	differential time con- stant	unsigned16	rw	N	0	Differential ratio of the velocity controller. Normally, this value is set 0. In specific individual cases the differential ratio can steady a natural frequency of the machine.		
4	brake set time	unsigned16	rw	N	100	Brake dwell time in ms		
5	filter time constant	unsigned16	rw	N	1	Low pass filter rotation time: 2 filter time constant ms		
6	min frequency	unsigned16	rw		200	Minimum frequency for F/U operation in 0,01Hz		

The Object *brake set time* contains the brake dwell time. That means, the time between the opening of the brake contact and the moment of the motor current shut down. It must conform to the shut down delay time of the brake lift coil and ensures that suspended axes don't sag. Without holding brake, 0 should be set; with holding brake 50ms should be set, because the incursion time of holding brakes is about 50ms.

The drive system should be slowed down at first. If the axis shall be shut down, it is set rotation speed actual value = 0 and at the same time, the brake contact is opened and after the brake dwell time, which begins to run from that moment on, the drive system is shut down ("disabled").

A time for lifting the brakes at start up does not have to be set. For this reason, the axis must be brought into the adjustment setting ("enable") and only operate afterwards, so the brake has enough time to lift.

Status: 27.05.2009

5.4 Position Controller Parameters

The PMC's position controller is a proportional controller (P controller). It controls how fast and accurate the axis is positioned. The following objects determine the action of the position controller and give information on the positions.

5.4.1 Objects

Index	Object	Name	Туре	Access	Mem.
6064 _h	VAR	position actual value	integer32	ro	N
5064 _h	5064 _h VAR position actual value 16bit		integer16	ro	N
6065 _h	VAR	following error window	unsigned32	rw	Υ
6066 _h	VAR	following error timeout	unsigned16	rw	Υ
6067 _h	VAR	position window	unsigned32	rw	Υ
6068 _h	VAR	position window time	unsigned16	rw	Υ
606A _h	VAR	sensor selection code	integer16	rw	Υ
60F4 _h	VAR	actual following error	integer32	ro	N
50F4 _h	VAR	actual following error 16bit	integer16	ro	N
60FB _h	RECORD	position control parameter set	-	rw	Υ

Table 41: Position controller objects

5.4.1.1 Object 6064_h: position actual value

The controller calculates the actual position of the axis according to conversion factors and writes them into this object.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6064 _h	position actual value	integer32	ro	Υ		Actual position of the axis in position units
5064 _h	position actual value 16bit	integer16	ro	Υ		Like above, 16 bit access

The identification of the actual position depends on the object sensor selection code (606A_h, Page 59).

sensor selection code = 0: Actual position is identified via motor feedback (motor encoder). See chapter 5.5, page 60.

sensor selection code = -1: Actual position is identified by the additional sensor. See chapter 5.6, page 65.

5.4.1.2 Object 6065h: following error window

Index	Name	Туре	Attr	Мар	Default- Value	Description
6065	following error window	unsigned32	rw	N	100	Maximum allowable following error for closed-loop position controlled positioning in position units.

Status: 27.05.2009

An error message is activated (see chapter 3.2), if the difference between reference and nominal value of the axis exceeds this value for the time specified in *following error timeout* (6066_h) .

Position Controller Parameters

Figure. 5: Definition of following error window

The monitoring can be shut down by the value 4294967295 (=FFFFFFF $_h$). The reaction to this error can be set in *fault reaction option code* (605 E_h).

The theoretical maximum following error can be calculated thus: $s_{max} = \frac{V_{max} \cdot 1000}{p_gain}$

with V_{max} = maximum speed,

 s_{max} = maximum following error,

p gain = proportional amplification of the position control, object $60FB_h/1$,

Due to the control path, the actual maximum following error can be greater, which has to be considered in order to avoid false alarms when setting this parameter.

5.4.1.3 Object 6066h: following error timeout

Index	Name	Туре	Attr	Мар	Default- Value	Description
6066 _h	following error timeout	unsigned16	rw	Ζ	10ms	Time frame for maximum following error in ms.

If the maximum following error overruns the time specified in *following error timeout*, an error message is activated. Quod vide object 6065_h, *following error window*.

5.4.1.4 Object 6067_h: position window

Index	Name	Туре	Attr	Мар	Default- Value	Description
6067 _h	position window	unsigned32	rw	Z	10	Position window of the position control in position units.

The position window defines a symmetrical range of positions in relation to the target position, the control window.

5.4.1.5 Object 6068h: position window time

Ir	ndex	Name	Туре	Attr	Мар	Default- Value	Description
6	068 _h	position window time	unsigned16	rw	N	10ms	Time frame for target position area in ms.

As soon as the axis arrived at the control window, the axis signals that it has reached its target (bit 10 "target reached" is set in statusword). The control accuracy is not influenced. The control window is considered to be reached when the nominal value of the axis is in the control window of the position window time. In case of minimum time Zero, "target reached" will be reported even if the axis over-reached the target (overshoot].

Status: 27.05.2009

Figure. 6: Definition of position window

5.4.1.6 Object 606A_h: sensor selection code

Index	Name	Туре	Attr	Мар	Default- Value	Description
606A _h	sensor selection code	integer16	rw	N	0	Selection of position sensor:
						0 = motor encoder, jack X5 -1 = 2. sensor, jack X3

The identification of the nominal value of the axis can either occur through the shaft encoder attached to the motor or through an external shaft encoder. A switch between the two sensors can only take place of the axis is idle.

5.4.1.7 Object 60F4_h: actual following error

Index	Name	Туре	Attr	Мар	Default- Value	Description
60F4 _h	actual following error	integer32	ro	Y		Actual deviation between target value and actual position (following error) in position units.
50F4 _h	actual following error 16bit	integer16	ro	Υ		Like above, 16 bit access

Quod vide objects 6065_h and 6066_h.

5.4.1.8 Object 60FB_h: position control parameter set

This object contains all manufacturer specific parameters of the position control.

Index	Name	Object						
60FB _h	position control pa- rameter set	RECORD	Posi	Position control parameters				
Sub- Index	Name	Туре	Attr Map Default- Value Description					
0	number of elements	unsigned8	ro	N	4	Number of elements		
1	p gain	unsigned16	rw	Z	17	Proportional amplification ratio of the position control in 1/s		
2	precontrol	unsigned16	rw	N	100,0%	Speed pre-control in 0,1%		
3	control flags	unsigned16	rw	N	1	Settings for the position control		
4	reserve	unsigned16	rw	Ν	0			

Status: 27.05.2009

Motor Encoder Settings

p gain

The position control works with the following equations:

$$V = p_gain \cdot s \qquad \qquad s = \frac{V}{p_gain}$$

with V =speed in position unit/s,

s = following error in position unit.

precontrol

With this parameter, the effect of the pre-control can be reduced. It is specified in per mil of the automatically calculated pre-control.

The theoretical following error is calculated by:

$$s = \frac{V}{p_gain} \cdot (1 - \frac{precontrol}{1000})$$

with V = speed in position unit/s,

s = following error in position unit.

control flags

The behavior of the motor can be set via the control flags.

Bit		+hex
0	1 = Enable autostart, state machine can immediately switch to "Switched On" without command "shut down" after power on.	0001 _h
17	Not yet used	
8	1 = Emergency Feather Command (EFC): 90 °-Limit switch must be engaged in feather position, otherwise the axis starts again and moves to the limit switch	0100 _h
9	1 = EFC moves with velocity control to the 90 °-Limit switch (or Quickstop+)	0200 _h
1014	Not yet used	
14	1 = axes can move beyond the limit switches if the device is not in state Operational	4000 _h
15	1 = Simulation mode, axes are not moved	8000 _h

Table 42: Meaning of the control flags (60FB_h/3).

5.5 Motor Encoder Settings

A high resolution sine-cosine-encoder (single or multi turn) with Endat or Hyperface interfaces is employed for position and speed detection.

The conversion of the physical values (e.g. encoder increments) into internal values is defined by another group of parameters that are designed as fraction in order to get a conversion as exact as possible. The relation between encoder increments and position values can, of course, only be attributed a single factor, in which the user has to allow for all influencing values like gearing ration, increment per revolution etc. The system provides parameters for every conversion, so that the user can enter values like sensor increments per motor revolution or the gear ration separately and the system does the conversion.

Status: 27.05.2009

The following figure gives a schematic overview of the usage of the individual conversion factors.

Figure. 7: Position detection with motor feed back

Settings for position detection with motor feedback:

- Setting "position control motor encoder" (see chapter 5.4.1.6): sensor selection code (606A_h) = 0;
- 2. Increments of the motor encoder per number of revolutions: position encoder resolution.encoder increments (608F_h/1): = 512, 1024 or 2048 The value can be found on the type plate of the encoder position encoder resolution.motor revolutions (608F_h/2) = 1
- Gear ratio between motor side and load side: gear ratio.motor revolutions (6091_h/1) = Number of motor revolutions gear ratio.shaft revolutions (6091_h/2) = Number of load shaft revolutions In case of gears connected in series, the conversions are multiplied.
- Enter feed load side per number of revolutions of the load shaft (e.g. spindle pitch): feed constant.feed (6092_h/1) = Way feed constant.shaft revolutions (6092_h/2) = Load shaft number of revolutions

Status: 27.05.2009

The formula to convert internal units into position units is:

$$\frac{position_actual_value}{position_internal_value} = \frac{feed_constant}{position_encoder_resolution \times gear_ratio}$$

The individual factors specified as fraction.

Pitch system example:

Encoder increments = 1024/revolutions
Gear factor = 183
Number teeth tooth rim = 111
Number teeth bevel = 12
Position unit = 0,01°

position encoder resolution.encoder increments = 1024 position encoder resolution.motor revolutions = 1

gear ratio.motor revolutions = 183 x 111 = 20313 gear ratio.shaft revolutions = 12

feed constant.feed = 36000 [unit 0,01°] feed constant.shaft revolutions = 1

Motor Encoder Settings

5.5.1 Motor Encoder Parameters

Index	Object	Name	Туре	Access	Mem.
607C _h	VAR	home offset	unsigned32	rw	Υ
608F _h	ARRAY	position encoder resolution	unsigned32	rw	Υ
6091 _h	ARRAY	gear ratio	unsigned32	rw	Υ
6092 _h	ARRAY	feed constant	unsigned32	rw	Υ
607E _h	VAR	polarity	unsigned8	rw	Υ
5094 _h	VAR	encoder code	unsigned16	rw	Υ

Table 43: Objects for position detection with motor encoder

5.5.1.1 Object 607Ch: home offset

Index	Name	Туре	Attr	Мар	Default- Value	Description
607C _h	home offset	Integer32	rw	N	0	Zero point shift in position units

The object *home offset* is the difference between the zero position for the application (*position actual value*) and the referential position of the machine (encoder value = 0). The *home offset* is added to this position and thereby the actual position for the application is set. All absolute movements are in relation to the new zero position.

This object can only be changed in the *Homing Mode*. It is changed by the automatic zero position setting at the device.

This object only applies to the position detection via primary encoders (motor feed back). If the position detection occurs via an additional encoder, object 687C_h is applied. Quod vide *sensor selection code* in chapter 5.4.1.6.

Figure. 8: home offset definition

Status: 27.05.2009

Actual position = zero position + home offset.

5.5.1.2 Object 608Fh: position encoder resolution

The relation of encoder increments per motor revolution is set in *position encoder resolution*.

$$position_encoder_resolution = \frac{encoder_incremets}{motor_revolutions}$$

Ont Osterholz
Ratriebs
Technik GmbH

Index	Name	Object				
608F _h	position encoder reso- lution	ARRAY	Encoder resolution			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	Unsigned8	ro	N	2	Number of elements
1	encoder increments	Unsigned32	rw	N	512	Bar number shaft encoder
2	motor revolutions	Unsigned32	rw	N	1	Number motor revolutions

This object applies to the primary travel sensor.

It depends on the type of the connected encoder which bar number has to be entered, see encoder type plate (bar number)

Common bar numbers are: 512, 1024, 2048

5.5.1.3 Object 6091_h: gear ratio

The object *gear ratio* is the gear factor, thus the relation between motor revolutions to drive shaft revolutions.

$$gear_ratio = \frac{motor_revolutions}{shaft_revolutions}$$

Index	Name	Object						
6091 _h	gear ratio	ARRAY	Gea	Gear ratio				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description		
0	number of elements	Unsigned8	ro	N	2	Number of elements		
1	motor revolutions	Unsigned32	rw	N	1	Number motor revolutions, max. 32767		
2	shaft revolutions	Unsigned32	rw	N	1	Number resolutions at gear shaft, max. 32767		

If the position detection shall occur via an external encoder, the object *ae gear ratio*, 6891_h has to be used, as well.

Status: 27.05.2009

5.5.1.4 Object 6092h: feed constant

The object *feed constant* defines the relation of position units per drive shaft revolutions.

$$feed_constant = \frac{feed[position_units]}{shaft_revolutions}$$

Motor Encoder Settings

Index	Name	Object						
6092 _h	feed constant	ARRAY	Feed	Feed per shaft revolution				
Sub- Index	Name	Туре	Attr Map Default-Value Description					
0	number of elements	Unsigned8	ro	N	2	Number of elements		
1	feed	Unsigned32	rw	N	36000	Travel, degree etc. in position units		
2	shaft revolutions	Unsigned32	rw	N	1	Number of revolutions at the gear shaft, max. 32767		

You can enter the desired travel per shaft revolutions here.

This object is only applied if *sensor selection code* = 0. In case of position detection with additional encoders, see *ae feed constant*, chapter 0.

Example:

Travel / shaft revolution = 1,25°:

feed constant = 125° / 100 revolutions

feed = 125 shaft revolutions = 100

5.5.1.5 Object 607E_h: polarity

The reference and actual positions are multiplied with either factor 1 or -1, depending on the polarity bit in object *polarity*. This can determine the rotating direction of the axis.

Index	Name	Туре	Attr	Мар	Default- Value	Description
607E _h	polarity	unsigned8	rw	Ν	0	00 _h : rotating direction positive
						C0 _h : rotating direction negative

Bit 6 and 7 = 0: positive counting means that in case of increasing position values the axis turns clockwise (front view on motor shaft).

Bit 6 und 7 = 1: (C0_h) negative counting means that in case of increasing position values the axis turns counter clockwise (front view motor shaft).

Since the speed is also detected via the position encoder, bit 6 should always have the same value as bit 7 for compatibility reasons. The encoder does not evaluate bit 6, though.

Bit 0 to 5 are not used currently.

For position control via an external encoder, the counting direction must be considered in order to avoid a positive feedback of the position control. See objects *ae polarity*, 687E_h (chapter)

5.5.1.6 Object 5094h: encoder code

Index	Name	Туре	Attr	Мар	Default- Value	Description
5094 _h	encoder code	unsigned16	rw	Ν	0	Encoder settings,
						ENDAT: 0
						HyperFace: 2

In this objects, special settings for the angle encoder can be specified, if they cannot be defined automatically.

Status: 27.05.2009

Settings for the Additional Encoder (Blade Encoder)

5.6 Settings for the Additional Encoder (Blade Encoder)

The PMC offers the possibility to detect and control the position with an additional shaft encoder. If this is the case, the primary encoder (motor feedback) will only be used for speed detection. This operational mode can be selected though sensor selection code ($606A_h$) = -1 (see chapter 5.4.1.6).

The objects for the additional encoder comply with their motor encoder counterpart. They are prefixed with the code *ae* for *additional encoder*. The index is higher by the offset 800_h.

The position is available via the object ae position actual value (Object 6864_h) in any case.

With Asynchronic or DC motors the position control is also possible without primary encoder for the motor feedback. The control quality will then be less accurate due to higher gear tolerance per resolution.

Figure. 9: Position detection with external encoder

Settings for position detection with additional encoder:

- Encoder increments per number of revolutions: ae resolution.encoder increments (688F_h/1) = 512, 1024 or 2048; The value can be found at the encoder's type plate. ae resolution.encoder revolutions (688F_h/2) = 1;
- 2. Gear ratio between encoder and load side: ae gear ratio.encoder revolutions (6891_h/1) = Number of encoder revolutions; ae gear ratio.shaft revolutions (6891_h/2) = Number of revolutions of the load shaft;
- 3. Enter feed load side per number of revolutions of the load shaft (e.g. spindle pitch): ae feed constant.feed (6892 $_h$ /1) = Travel; ae feed constant.shaft revolutions (6892 $_h$ /2) = Number of revolutions of the load shaft.

Status: 27.05.2009

Settings for position control on the additional encoder:

- 1. Set factors for motor feedback correctly, see chapter 5.5.
- 2. Set polarity according to fitting position: ae polarity (Object 687E_h)
- 3. Set "position control to external encoder" (see chapter 5.4.1.6): sensor selection code (606A_h) = -1;

Examples for a pitch system:

Encoder increments = 1024/revolution Number teeth gear rim = 111 Number teeth bevel = 15 Position unit = 0.01°

ae position encoder resolution.encoder increments = 1024 ae position encoder resolution.motor revolutions = 1

Settings for the Additional Encoder (Blade Encoder)

ae gear ratio.encoder revolutions = 111 ae gear ratio.shaft revolutions = 12

ae feed constant.feed = 36000 [value 0,01°] ae feed constant.shaft revolutions = 1

5.6.1 Parameters for the Additional Encoder

Index	Object	Name	Туре	access	Mem.
6864 _h	VAR	ae position actual value	integer32	ro	N
5864 _h	VAR	ae position actual value 16bit	integer16	ro	N
68F4 _h	VAR	ae actual position difference	integer32	ro	N
58F4 _h	VAR	ae actual position difference 16bit	integer16	ro	N
687C _h	VAR	ae home offset	unsigned32	rw	Υ
688F _h	ARRAY	ae resolution	unsigned32	rw	Υ
6891 _h	ARRAY	ae gear ratio	unsigned32	rw	Υ
6892 _h	ARRAY	ae feed constant	unsigned32	rw	Υ
687E _h	VAR	ae polarity	unsigned8	rw	Υ
5894 _h	VAR	ae encoder code	unsigned16	rw	Υ
6865h	VAR	difference error window	unsigned32	rw	J
6866h	VAR	difference error time out	unsigned16	rw	J

Table 44: Additional encoder objects.

5.6.1.1 Object 6864h: ae position actual value

The controller calculates the actual position of the additional encoder on the basis of conversion factors and writes them into this object.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6864 _h	ae position actual value	integer32	ro	Υ		Actual position of additional encoder in position units
5864 _h	ae position actual value 16bit	integer16	ro	Υ		Like above, 16 bit access

This always shows the position of the additional encoder, independent of the settings in *sensor selection code*.

5.6.1.2 Object 687Ch: ae home offset

Index	Name	Туре	Attr	Мар	Default- Value	Description
687C _h	ae home offset	Integer32	rw	Z	0	Zero point offset 2. encoder in position units

The object *ae home offset* is the difference between the zero position for the application (*ae position actual value*) and the reference position of the machine (encoder value = 0). The *ae home offset* is added to this position and thus the actual position for the application is set..

This object can only be modified in the *Homing Mode*. It is modified by the device's automatic zero point setting.

Status: 27.05.2009

Osterholz
Refriebs
Technik GmbH

Settings for the Additional Encoder (Blade Encoder)

This object is only valid for the position detection via the external encoder.

Actual position = Zero point + *ae home offset*.

5.6.1.3 Object 688F_h: ae resolution

In ae resolution (additional encoder resolution) the relation between encoder increments per encoder revolutions is specified.

$$ae_resolution = \frac{encoder_incremets}{encoder_revolutions}$$

Index	Name	Object				
688F _h	ae position encoder resolution	ARRAY	Resolution 2. encoder			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	Unsigned8	ro	N	2	Number of elements
1	encoder increments	Unsigned32	rw	N	512	Shaft encoder bar number
2	encoder revolutions	Unsigned32	rw	Z	1	Shaft encoder number of revolutions

In *encoder revolutions* 1 is set for standard encoder, since those always provide an integer number increments per revolution. In case of linear position measuring systems it might be necessary to set a value greater than 1.

It depends on the type of the connected encoder, which bar number must be entered, see encoder type plate (bar number)

Common bar numbers are: 512, 1024, 2048

5.6.1.4 Object 6891h: ae gear ratio

The object *ae gear ratio* is the gear factor of a gear between encoder and load side, in other words the relation between encoder revolutions to drive shaft revolutions.

$$ae_gear_ratio = \frac{encoder_revolutions}{shaft_revolutions}$$

Index	Name	Object				
6891 _h	ae gear ratio	ARRAY				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	Unsigned8	ro	N	2	Number of elements
1	encoder revolutions	Unsigned32	rw	N	1	Number of revolutions shaft encoder
2	shaft revolutions	Unsigned32	rw	N	1	Number of revolutions at the gear output

Status: 27.05.2009

Settings for the Additional Encoder (Blade Encoder)

5.6.1.5 Object 6892h: ae feed constant

The object *ae feed constant* defines the relation of position units per drive shaft revolutions at position control at the external encoder.

$$ae_feed_constant = \frac{feed[position_units]}{shaft_revolutions}$$

Index	Name	Object				
6892 _h	ae feed constant	ARRAY				
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description
0	number of elements	Unsigned8	ro	N	2	Number of elements
1	feed	Unsigned32	rw	N	36000	Travel, degree etc. in position units
2	shaft revolutions	Unsigned32	rw	N	1	Number of revolutions at gear output

The desired travel per drive shaft is entered here. The more revolutions are specified, the higher the degree of accuracy of the conversion.

5.6.1.6 Object 687E_h: ae polarity

The actual position of the additional encoder is multiplied by the factor 1 or -1, depending on the polarity bit in the object *ae polarity*. The counting direction of the encoder can be adjusted to the fitting position.

Index	Name	Туре	Attr	Мар	Default- Value	Description
687E _h	ae polarity	unsigned8	rw	Ν	0	00 _h : Rotating direction positive
						C0 _h : Rotating direction negative

Bit 6 and 7 = 0: positive counting means that in case of increasing position values the encoder turns clockwise (front view on encoder shaft).

Bit 6 und 7 = 1: $(C0_h)$ negative counting means that in case of increasing position values the encoder turns counter clockwise (front view encoder shaft).

Since the speed is also detected via the position encoder, bit 6 should always have the same value as bit 7 for compatibility reasons. The encoder does not evaluate bit 6, though.

Status: 27.05.2009

Bit 0 to 5 are not used currently.

5.6.1.7 Object 5894h: ae encoder code

Index	Name	Туре	Attr	Мар	Default- Value	Description
5894 _h	ae encoder code	unsigned16	rw	N	0	Settings to the additional encoder,
						ENDAT: 0
						SSI: 3
						Simulation: FF _h

In this object, special settings for the angle encoder can be specified, if they cannot be defined automatically. With code FF_h the position of the main encoder is copied into the position of the additional encoder.

5.6.1.8 Object 68F4h: ae actual position difference

Index	Name	Туре	Attr	Мар	Default- Value	Description
68F4 _h	ae actual position dif- ference	integer32	ro	J	0	Difference between motor enco- der and blade encoder in position units
58F4 _h	ae actual position dif- ference 16bit	integer16	ro	J	0	Like above, 16 bit access

The value is calculated synchronous with the internal sampling cycle as follows:

ae actual position difference = position actual value - ae.position actual value

5.6.1.9 Object 6865h: difference error window

Index	Name	Туре	Attr	Мар	Default- Value	Description
6865 _h	difference error win- dow	unsigned32	rw	N	0	Maximal allowed difference between the positions of motor encoder and blade encoder.

Exceeds the difference between motor encoder and blade encoder this value for more than the time given in Object difference error time out (6866_h), the error 8620_h is set off.

5.6.1.10 Object 6866_h: difference error time out

Inde	Name	Туре	Attr	Мар	Default- Value	Description
6866	difference error time out	unsigned16	rw	N	0	Maximal allowed time, in which the maximum position difference between motor and blade enco- derc is exceeded.

Exceeds the difference in ae actual position difference the value in difference error window for more than this time, the error 8620_h is set off.

Status: 27.05.2009

5.7 Error Reaction Settings

The controller reactions can be set for the following errors:

Field bus communication termination

Error Reaction Settings

Occurrence of an axis error

5.7.1 Objects

Index	Object	Name	Туре	Access	Mem.
6007 _h	VAR	abort connection option code	integer16	rw	Υ
605E _h	VAR	fault reaction option code	integer16	rw	Υ

Table 45: Objects for error reaction settings

5.7.1.1 Object 6007_h: abort connection option code

This object defines the reaction of the system in case of an interrupted connection to the host.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6007 _h	abort connection option code	integer16	rw	N	1	Error reaction in case of communication error on the field bus

Value	DS402	Meaning
0	No Action	No action
1	Malfunction	Error message only
2	Disable Voltage	Turn off axis
3	Quickstop	Quick stop axis

Table 46: Error reaction in case of connection interrupt

In the cases 0 and 1, the axis follows through its last task. In case of RPM regulated drive, it drives up to the limit switch. Therefore, these settings may only be used if no damage can occur.

In case of setting 2, the output stage of the axis is turned off.

In case of setting 3, a QUICKSTOP will be executed, that means the axis decelerates at the current limit.

5.7.1.2 Object 605E_h: fault reaction option code

This object specifies the axis' reaction to an error. The settings only have an effect in case of target value-, following error- and encoder faults.

Index	Name	Туре	Attr	Мар	Default- Value	Description
605E _h	fault reaction option code	integer16	rw	Υ	2	Setting of error reaction to an axis malfunction

70 Status: 27.05.2009 Osterholz Rhtriebs Technik GmbH

Value	Meaning
0	Turn axis off, axis can rotate freely
1	Decelerate at the deceleration chute (profile deceleration, 6084 _h)
2	Decelerate at quick stop chute (= current limit)
3	Decelerate at current limit
4	Not used
-1	Error message only

Table 47: Error reaction settings

5.7.1.3 Axis Error Reaction

If an emergency stop shall be executed (input EFC or bit EFC in controlword), the flag position is approached if possible.

With each error, the watch dog contact is opened. With suitable wiring of the security chain, an emergency drive (EFC drive) is executed.

Axis error	Error code	Reaction
Over current at encoder output (motor)	2310 _h	Turn-off motor
Short circuit/accidental ground motor side	2320 _h	Turn-off motor
Over voltage in the intermediate circuit, PMC	3210 _h	Turn-off motor
Under voltage in the intermediate circuit	3220 _h	Turn-off motor
Machine temperature (heat sink) too high	4210 _h	After 30s alert: Turn-off motor
Motor temperature too high	4310 _h	After 30s alert: Turn-off motor
Watchdog reset	6010 _h	Turn-off motor (because of reset).
Software trap, firmware error	6080 _h	Turn-off motor
Wrong parameter	6320 _h	No axis command possible
No output stage detection	6380 _h	No axis command possible
Error at the shaft encoder (motor), sine / cosine	7305 _h	Reaction according to fault reaction option code
Error at the shaft encoder (motor), data channel	7320 _h	Reaction according to fault reaction option code
Error 2. shaft encoder (blade encoder)	7321 _h	Reaction according to reaction option code
Velocity controller, maximum RPM exceeded	8400 _h	Turn-off motor
following error too large	8611 _h	Reaction according to fault reaction option code

Table 48: Reactions to axis errors

5.8 Drive Control

The behavior of the drive control is defined though a finite automaton. 10 Shows the control of the finite automaton by the *Controlword* or local signals and event in the controller. The status is reported by the *Statusword*. Local signal are, e.g., the EFC signal, quick stop inputs etc. The finite automaton is also influenced by the error detection.

Status: 27.05.2009

Drive Control

The finite automaton reports the status of the controller and the possible control sequence. A status represents an according internal or external reaction of the drive. The status further defines which command will be accepted. It is only possible, for example, to perform a movement of the controller's status is *operation enable*.

Figure. 10: Finite state automaton control

5.8.1 Finite Automaton of the Controller

11 Represents the finite automaton of the controller. The transitions are set by commands in the *Controlword* and internal events.

Figure 11: Finite automaton of the controller

Status: 27.05.2009

The identification of states in the finite state machine are rendered possible by the Statusword:

5 The Pitch Motion Controller (PMC) Drive Control

Statusword	Condition	Meaning
xxxx xxxx x0xx 0000 _b	Not ready to switch-on	Device actuates, initializing
xxxx xxxx x1xx 0000 _b	Switch-on disabled	Device initialized, not enabled for switch-on (Enable input X4.5 off)
xxxx xxxx x01x 0001 _b	Ready to Switch-on	Enable input active, output stage not switched on, brake engaged
xxxx xxxx x01x 0011 _b	Switched-on	Command "switch on" received by Controlword, output stage switched on, brake lifted
xxxx xxxx x01x 0111 _b	Operation enabled	Output stage switched on, brake lifted, axis can be moved
xxxx xxxx x00x 0111 _b	Quick stop active	Quick stop pending, reaction processed
xxxx xxxx x0xx 1111 _b	Fault reaction active	Error reaction in process
xxxx xxxx x0xx 1000 _b	Fault	Error status, error reaction complete

Status: 27.05.2009

Table 49: Statusword and finite state machine

73

Drive Control

Transition	Event	Action			
0	Automatic transition after power-on or reset	Device executes self test and initializes			
1	Automatic transition	Activate communication			
		Close watchdog contact			
2	Enable input activated, Command "shut-down" received	None			
3	Command "switch on" received or EFC-Signal active	Switch-on output stage, lift brake, initialize internal target values			
4	Command "enable operation" received or	Enable axis operation			
	EFC-Signal active	If EFC signal active, execute EFC drive			
5	Command "disable operation" received, 90 °-limit switch activated	Axis operation disabled, axis stops			
6	Command "shutdown" received	Allow brake to engage, switch off control after brake dwell time. The axis coasts without the brake			
7	Enable input deactivated, Command "disable voltage" or "quickstop" received	None			
8	Command "shutdown" received	Allow brake to engage, switch off control after brake dwell time			
9	Command "disable voltage" received or enable input deactivated	Allow brake to engage, switch off control after brake dwell time			
10	Quick stop neg. (0°-limit switch) activated commands "quickstop" or "disable voltage" received or enable input deactivated	Allow brake to engage, switch off control after brake dwell time			
11	Quick stop neg. (0°- limit switch) activated or command "quickstop" received	Execute quick stop function: brake at current limit, switch off control after brake dwell time			
12	Automatic transition of quick stop finished	None			
13	Error signal: internal axis error, communication error, quick stop pos. (95°- limit switch)	Error reaction as preset in abort connection option code / fault reaction option code. Open watch dog contact			
14	Automatic transition	Allow brake to engage, switch off control after brake dwell time			
15	Command "Fault reset" received and no error queued, EFC signal active	Close watch dog contact			
16	EFC signal active and 95°- or 90°- limit switch not activated.	Switch-on output stage, lift brake, execute EFC drive if possible			

Table 50: Status transition events and activities

Transition 3 and 4 can be connected jointly, the control does not need an intermediate step. The same is true for 5 and 6.

Special case EFC signal (*Emergency Feather Command*): If this request is pending, the controller directly switches to "controller active", if possible, and executes an EFC drive, that means driving to the 90 °-Position. Exception: 90 °- or 95 °-limit switch are activated. An EFC drive is also executed, if another error is pending as well, insofar that it is possible in that case. In case of an encoder error, for example, it can be switched to the additional encoder or driven to the 90 ° limit switch with controlled speed (in case of ASM or DC motors).

If a status transfer is requested, the corresponding action is executed prior to giving out the new status.

5.8.2 Objects

Index	Object	Name	Туре	Access	Mem.
6040 _h	VAR	controlword	unsigned16	rw	N
6041 _h	VAR	statusword	unsigned16	rw	N

5.8.2.1 Object 6040h: Controlword

The drive functions are controlled by the *Controlword*.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6040 _h	Controlword	unsigned16	rw	Υ		Drive control word

_						l								l			
		ms	3		efc	r	oms	h	fr		oms		ео	qs	ev	so	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

MSB LSB

Bit	Code	DS 402	Meaning
0	so	Switch on	1 = Output stage can be switched on 1->0 = Engage brake, switch-off output stage
1	ev	Enable voltage	1 = Output stage can be switched on 1->0 = Engage brake, switch-off output stage
2	qs	Quickstop	1 = normal operation possible 1->0: Stop axis as quickly as possible (current limit) 0 = Quick stop, no motion possible
3	ео	Enable operation	1 = Switch on output stage, lift brake 0 = Engage brake, switch off output stage
4	oms	Operation mode specific	Only in mode 1: new set-point 0->1 = New target position
5	oms	Operation mode specific	0
6	oms	Operation mode specific	0
7	fr	Fault reset	0->1: Reset error
8	h	Halt	1 = Stop all motion 0 = Continue or start requested motion, if possible 0->1: Stop axis with normal chute
9	oms	Operation mode specific	0
10	r	Reserved	0
11	efc	emergency feather command	0 = Normal mode of operation 1 = Complete EFC drive
12	ms	Manufacturer specific	0
13	ms	Manufacturer specific	0
14	ms	Manufacturer specific	is reflected by bit 14 in statusword
15	ms	Manufacturer specific	0

Table 51: Meaning of bits in controlword (6040_h)

Drive Control

The *Controlword* can be interpreted as a command. The following table show the possible combinations:

		E	Bits in t	he Con	trolword	1		Code	Transition in finite	
Command	Bit 8 halt	Bit 7 fr	Bit 4 new	Bit 3 eo	Bit 2 qs	Bit 1 ev	Bit 0 so	(Hex)	automaton	
Shutdown	X(1)	0	0	X(0)	1	1	0	0106 _h	2, 6, 8	
Switch on	X(1)	0	0	0	1	1	1	0107 _h	3	
Switch on + Enable operation	1	0	0	1	1	1	1	010F _h	3+4	
Disable Voltage	X(1)	0	0	X(1)	X(1)	0	Χ	010C _h	7,9,10,12	
Quickstop	X(1)	0	0	1	0	1	1	010B _h	7,10,11	
Disable operation	1	0	0	0	1	1	1	0107 _h	5	
Enable operation	1	0	0	1	1	1	1	010F _h	4,16	
Fault reset	Х	0->1	0	Х	Х	Х	Х	0X8X	15	
Start	1->0	0	0	1	1	1	1	000F _h	-	
Start, new position	0	0	0->1	1	1	1	1	001F _h	(only Mode 1)	
Stop	1	0	0	1	1	1	1	010F _h	-	

Table 52: Command coding

The commands listen in light gray don't have to be executed by the device.

Bit 11 is manufacturer specific and activates an $\it Emergency Feather Command (EFC)$. The code for this in the $\it Controlword$ is $080F_h$.

5.8.2.2 Object 6041h: Statusword

This object gives information on the status of the controller

Index	Name	Туре	Attr	Мар	Default- Value	Description
6041 _h	Statusword	unsigned16	rw	Υ		Status information of the drive

Meaning of the single bits:

15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
ms	oms	ila	tr	rm	ms	W	sod	qs	ve	f	oe	so	rtso

Status: 27.05.2009

MSB

Osterholz
Rhtriebs
Technik GmbH

Bit	Code	DS 402	Meaning
0	rtso	Ready to switch on	1 = Ready to switch on
1	so	Switched on	1 = Switched on, initialization finished
2	oe	Operation enabled	1 = Enable operation
3	f	Fault	1 = Error, fault reaction executed, error code in object $603F_h$
4	ve	Voltage enabled	1 = Intermediate circuit enabled
5	qs	Quickstop	0 = Quick stop executed
6	sod	Switch on disabled	1 = Switch on disabled, switch on not possible
7	w	Warning	1 = Warning, e.g. temperature warning, code in 603F _h No error reaction
8	ms	Manufacturer specific	0
9	rm	Remote	1 = Control of Controlword active,
			0 = External signal control, e.g. EFC, <i>Controlword</i> is ignored
10	tr	Target reached	1 = Target value reached, see below
11	ila	Internal Limit Active	1 = Target position limit exceeded
12	oms	Operation Mode Specific	see Table 54
13	oms	Operation Mode Specific	see Table 54
14	ms	Manufacturer Specific	reflects state of bit 14 in controlword
15	ms	Manufacturer Specific	0

Table 53: Meaning of bits in *Statusword* (6041_h)

Bit 10, Target reached is set, if

- The position target value is reached in *profile position mode* (mode 1)
- The speed target value is reached in *profile velocity mode* (mode 3)
- Mode of operation is changed. The bit remains set in the cyclic synchronous modes (modes 8 and 9).

Status: 27.05.2009

• Bit 8 (Stop) was set in Controlword and the axis stopped

The bit is reset if

- a new target value is transferred (modes 1 and 3).
- Bit 8 (Stop) was set in *Controlword* and the axis has not yet stopped (all modes).

Modes of Operation

Operational mode	Mode	Bit 12	Bit 13			
profile position mode	1	Setpoint Acknowledge, 0 = Waiting for new target position 1 = Target value not yet transferred	Following Error, 1 = Following error too large			
profile velocity mode 3		0 = Nominal speed not equal Zero 1 = Nominal speed is Zero	0			
homing mode 6		0 = Zero point not set 1 = Zero point set	Homing Error, 1 = Error			
cyclic synchronous position mode	8	0 = Target position ignored 1 = Target position controlled	Following Error, 1 = Following error too large			
cyclic synchronous velocity mode	9	0 = Target speed ignored 1 = Target speed controlled	0			

Table 54: Meaning of bits 12 and 13 in Statusword

5.9 Modes of Operation

The behavior of the PMC depends on the set operational mode. The control writes modes of operation into the object in order to select an operational mode. The object modes of operation display represents the actually set mode of operation.

Some bits in *Controlword* and *Statusword* have different meaning in the modes of operation.

Changing modes of operation can be effected by local signal as well. The EFC signal, for example, automatically switches to "Profile position mode". In this case, it is not possible to change the controls mode of operation.

The following operational modes are supported by the PMC

Profile position mode: Positioning at target position with acceleration and decelera-

tion chutes.

Profile velocity mode: Setting of target speed with acceleration and deceleration

chutes.

Cyclic synchronous position mode: Position control according to cyclic position setting Cyclic synchronous velocity mode: Speed control according to cyclic velocity setting.

homing mode: Set zero point

motor heating motor will be heated by current without moving

The object supported drive modes lists which modes of operation are supported by the device.

5.9.1 Objects

Index	Object	Name	Туре	Access	Mem.
6060 _h	VAR	mode of operation	integer8	rw	N
6061 _h	VAR	mode of operation display	integer8	ro	N
6502 _h	VAR	supported drive modes	unsigned32	ro	N

5.9.1.1 Object 6060_h: modes of operation

This object requests the respective mode of operation for the controller. The actually set mode of operation is reported in object 6061_h .

The following table shows the supported modes of operation. Other modes of operation are not accepted and will not change the set mode of operation.

The operational mode can only be changed when the axis output stage is switched off (bit 3 in *control-word* = 0, bit 2 in *statusword* = 0)).

Mode	Operational mode	Description				
0	No mode	No change / no operational mode active				
1	Profile position mode	Positioning to target position with acceleration and deceleration chutes				
3	Profile velocity mode	Setting of a target velocity with acceleration and deceleration chutes				
6	Homing mode	Set zero point				
8	Cyclic synchronous position mode	Position control according to cyclic position setting				
9	Cyclic synchronous velocity mode	Speed control according to cyclic velocity setting				
8F _h	motor heating	motor will be heated by current without moving				

Table 55: Modes of operations supported by the PMC.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6060 _h	modes of operation	integer8	rw	Υ	0	Modes of operation standards of the controller

5.9.1.2 Object 6061_h: modes of operation display

This object reports the activated mode of operation. Possible values are shown in Table 55.

A change in the operational mode can also take place internally, e.g. by an EFC signal.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6061 _h	modes of operation display	integer8	ro	Υ		Set of controller mode of operation.

5.9.1.3 Object 6502_h: supported drive modes

This object shows which operation modes are supported by the device.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6502 _h	supported drive modes	unsigned32	ro	N	000001A5 _h	Modes supported by the drive

Meaning of the individual bits in *supported drive modes* and PMC setting:

Position Controlled Positioning (Profile Position Mode)

Bit	Def.	Description	Meaning		
0	1	Profile Position Mode	Position control with operational profile calculation		
1	0	Velocity Mode	Absolute rotation speed control		
2	1	Profile Velocity Mode	Rotation speed control with profile calculation		
3	0	Profile Torque Mode	Torque control		
4	0	reserved	Reserved for DS402		
5	1	Homing Mode	Referencing		
6	0	Interpolated Position Mode	Interpolation		
7	1	Cyclic Synchronous Position Mode	Cyclic setting of position target values		
8	1	Cyclic Synchronous Velocity Mode	Cyclic setting of speed target values		
9	0	Cyclic Synchronous Torque Mode	Cyclic setting of torque target values		
1015	0	reserved	Reserved for DS402		
1631	0	reserved, Manufacturer specific	Free, manufacturer specific operational modes		

Table 56: Bits in object 6502h, supported drive modes.

5.10 Position Controlled Positioning (Profile Position Mode)

A chute generator calculates the acceleration and deceleration chutes and the cyclic position target values for the position control. The following figure shows the structure.

The target values are limited by the respective parameters. This occurs at transfer of the target values from the field bus to the controller.

Figure 12: chute generator for profile position mode

The transmission of the target values is controlled through the timing of the bits *new set-point* in *controlword* and *set-point acknowledge* in *Statusword*.

After setting the new target values, the control signals the effective target value by setting of *new set-point*. The device verifies by setting *set-point acknowledge*. The control resets *new set-point* and the device deletes *set-point acknowledge*, as soon as it is ready to transfer a new target value.

Status: 27.05.2009

Osterholz
Rechnik GmbH

Position Controlled Positioning (Profile Position Mode)

Figure 13: Target value handshake new set-point

If a new target value is transferred while the old one is still executed, the bit *set-point acknowledge* remains set until a new one can be transferred. The following figure clarifies the procedure.

Figure 14: Handshake at target value transfer during drive

Bit 10 (target reached) is set after the final motion.

If bit 8 (halt) is still set, the procedure looks like this:

Position Controlled Positioning (Profile Position Mode)

Figure 15: Axis start with bit 8 (halt)

5.10.1 Use of Controlword and Statusword

As shown in the last paragraph, bit 4 of the *Controlword* is used for the transfer of a new target value in the *profile position mode*. The other bits (5, 6 and 9) that rely on the mode of operation must always set 0. At the moment, the PMC neither supports relative positioning nor positioning to a new target position during the drive without stopping.

If no positioning is activated, the rising edge starts the motion from bit 4 (*new set-point*), as long as bit 8 (*halt*) is not set. The following table shows the interrelation.

If bit 8 (halt) is set, the axis only starts at the falling edge of bit 8.

Bit 8 halt	Bit 4 nsp	Condition	Definition			
0	0->1	Axis stopped	Positioning starting			
0	0->1	Axis in motion	Position will finish before the next one starts (see 14)			
1	0->1	Axis stopped	New target value transferred, axis stops			
1->0	X	Axis stopped	Positioning starts if target value is available			
0->1	Х	Axis drives	Axis stops with normal brake chute. If target value is not reached, it remains active. A possibly new upcoming target value is only started up after the old one has been reached.			

Table 57: Bits in the Controlword in the profile position mode

Through bits 10 (target reached), 12 (setpoint acknowledge) and 13 (following error) in the Statusword the status of the axis can be determined.

Status: 27.05.2009

Osterholz
Rhtriebs
Technik GmbH

Position Controlled Positioning (Profile Position Mode)

Bit	Value	Definition					
10	0	Stop = 0: Target position not reached, axis in motion Stop = 1: Axis decelerates					
	1	Stop = 0: Target position reached, axis stopped Stop = 1: Axis decelerated, axis stopped					
12	0	The last target value was transferred, waiting for new target position					
	1	The last target value was not yet transferred					
13	0	Target-actual value difference (following error) in accepted range					
	1	Target-actual value difference greater than following error window (see object 6065h)					

Table 58: Bits in the Statusword in the profile position mode

5.10.2 Objects

Index	Object	Name	Туре	Access	Mem.
607A _h	VAR	target position	integer32	rw	N
507A _h	VAR	target position 16bit	integer16	rw	N
607D _h	ARRAY	software position limit	integer32	rw	Υ
607F _h	VAR	max profile velocity	unsigned32	rw	Υ
6081 _h	VAR	profile velocity	unsigned32	rw	N
5081 _h	VAR	profile velocity 16bit	unsigned16	rw	N
60C5 _h	VAR	max acceleration	unsigned32	rw	Υ
60C6 _h	VAR	max deceleration	unsigned32	rw	Υ
6083 _h	VAR	profile acceleration	unsigned32	rw	Υ
5083 _h	VAR	profile acceleration 16bit	unsigned16	rw	Υ
6084 _h	84 _h VAR profile deceleration		unsigned32	rw	Υ
5084 _h	VAR	profile deceleration 16bit	unsigned16	rw	Υ

Table 59: Objects for closed-loop position controlled positioning

5.10.2.1 Object 607A_h: target position

Index	Name	Туре	Attr	Мар	Default- Value	Description
607A _h	target position	integer32	rw	Υ	0	Target position for next positioning signal in position units.
507A _h	target position 16bit	integer16	rw	Υ	0	Like above, 16 bit access

Status: 27.05.2009

The object is employed in the profile position mode and in the cyclic synchronous position mode.

Position Controlled Positioning (Profile Position Mode)

5.10.2.2 Object 607D_h: software position limit

Index	Name	Object						
607D _h	software position limit	ARRAY	Limit	Limits for target position in position units.				
Sub- Index	Name	Туре	Attr	Attr Map Default- Value		Description		
0	number of elements	Unsigned8	ro	N	2	Number of elements		
1	min position limit	integer32	rw	N	0	Lower target value limit		
2	max position limit	integer32	rw	N	36000	Upper target value limit		

Software *position limit* contains the target position limits in the sub parameters *min position limit* and *max position limit*. These parameters define the absolute position limits.

If it is tried to drive to a target position that lies outside those limits, the target position will be adjusted according to the respective limits and approached.

5.10.2.3 Object 607F_h: max profile velocity

Index	Name	Туре	Attr	Мар	Default- Value	Description
607F _h	max profile velocity	unsigned32	rw	N	20000	Maximum speed in position units/s

The object displays the **maximum profile velocity** of an axis. This is the maximum allowed speed with which the axis positions. It must not be greater than:

$$max_profile_velocity \le \frac{max_motor_speed}{60} \cdot \frac{feed_constant}{gear_ratio}$$

Since the feed constant and gear ratio are fractions, the complete formula is:

$$max_profile_velocity \leq \frac{max_motor_speed}{60} \cdot \frac{feed_constant.feed}{feed_constant.shaft_revolutions} \cdot \frac{gear_ratio.shaft_revolutions}{gear_ratio.motor_revolutions}$$

Object numbers of the variables:

max motor speed: 6080h, Unit 1/min, therefore factor 60 in the formula.

gear ratio: 6091_h, no unit.

In case of position detection with motor encoder (sensor selection code = 0):

feed constant: 6092_h, positioning units.

In case of position detection with additional encoder (sensor selection code = -1):

(ae) feed constant: 6892_h, positioning units.

max profile velocity can be set smaller, in order to limit the accepted drive speed.

5.10.2.4 Object 6081_h: profile velocity

	Index	Name	Туре	Attr	Мар	Default- Value	Description
	6081 _h	profile velocity	unsigned32	rw	Υ	0	Target speed for the <i>profile position mode</i> in position units/s
Ī	5081 _h	profile velocity 16bit	unsigned16	rw	Υ	0	Like above, 16 bit access

This target velocity only applies for *profile position mode* (*Modes of operation* = 1). If a value greater than that in *max profile velocity* is set, the smaller value will be used for the actual positioning.

Status: 27.05.2009

ORT Osterholz
Redriebs
Technik GmbH

5.10.2.5 Object 60C5_h: max acceleration

Index	Name	Туре	Attr	Мар	Default- Value	Description
60C5	max acceleration	unsigned32	rw	Υ	2000	Maximum acceleration pitch in the profile position mode and profile velocity mode. Unit: Position units/s ²

This value limits the acceleration in profile acceleration.

5.10.2.6 Object 60C6_h: max deceleration

Index	Name	Туре	Attr	Мар	Default- Value	Description
60C6 _f	max deceleration	unsigned32	rw	Υ	0	Maximum deceleration pitch in the profile position mode and profile velocity mode. Unit: position units/s ²

This value limits the deceleration chute in *profile deceleration*.

5.10.2.7 Object 6083_h: profile acceleration

Index	Name	Туре	Attr	Мар	Default- Value	Description
6083 _h	profile acceleration	unsigned32	rw	Υ	0	Axis acceleration in the <i>profile position mode</i> and <i>profile velocity mode</i> . Unit: Position units/s ²
5083 _h	profile acceleration 16bit	unsigned16	rw	Υ	0	Like above, 16 bit access

The acceleration of the axis for closed-loop position controlled or RPM regulated positioning. The value is displayed in acceleration units. Those are differentiated from the units for travel and speed.

If a value greater than that in *max acceleration* is set here, a smaller value will be applied for actual positioning.

In order to identify the run up time (t_{acc})- and the deceleration time (t_{dec}), the following strings apply:

t_{acc} = profile velocity / profile acceleration

The regulations that can be set depend on the mechanical system and have to be determined for the respective application.

5.10.2.8 Object 6084_h: profile deceleration

Index	Name	Туре	Attr	Мар	Default- Value	Description
6084 _h	profile deceleration	unsigned32	rw	Y	0	Deceleration chute of the axis in the <i>profile position mode</i> and <i>profile velocity mode</i> . Unit: position units/s ²
5084 _h	profile deceleration 16bit	unsigned16	rw	Υ	0	Like above, 16 bit access

The deceleration of the axis for closed-loop position controlled or RPM regulated positioning. The value is displayed in acceleration units. Those are differentiated from the units for travel and speed.

Profile Velocity Mode

If a value greater than that in *max deceleration* is set here, a smaller value will be applied for actual positioning. If 0 is set, the value for *profile acceleration* is used.

In order to identify the deceleration time (t_{acc}), the following strings apply:

t_{dec} = profile velocity / profile deceleration

5.11 Profile Velocity Mode

The *profile velocity mode* of the PMC offers only one possibility to accelerate the axis via an acceleration chute and decelerate it again. A shift in speed is also carried out via this chute.

The target values are limited by the respective parameters. This occurs at transfer of target values from field bus to the controller.

Figure 16: Parameters for profile velocity mode

The transfer of target values occurs by specification of object $60FF_h$. If bit 8 in the *Controlword* is set 0, the axis immediately accelerates to the set speed.

5.11.1 Use of Controlword and Statusword

No mode of operation specific bits are used in the Controlword.

If bit 8(halt) is set, the axis only starts up with the falling edge of 8 bit.

Bit 8 halt	Definition
0	New speed is set through chute, axis moves if target value <> Zero
1	Axis stops
1->0	Target speed is set through chute
0->1	Axis stops with normal brake chute

Table 60: Bits in the Controlword in the profile velocity mode

Through the bits 10 ($target\ reached$), 12 (speed=0) in the Statusword the status of the axis can be determined. A monitoring of the set speed does not occur, there bit 13 always remains 0.

Status: 27.05.2009

Osterholz
Rednik GmbH
Technik GmbH

Cyclic Synchronous Position Mode

Bit	Value	Definition
10	0	Stop = 0: Target speed not achieved, axis accelerates or decelerates Stop = 1: Axis decelerates
	1	Stop = 0: Target speed achieved Stop = 1: Axis decelerated, axis stops
12	0	Speed is not 0, axis drives
	1	Speed is 0, axis stops
13	0	Target-actual value difference in the accepted range

Table 61: Bits in the Statusword in the profile velocity mode

The decision whether the axis reached target speed or stops, is made by the PMC on basis of the internal target values for the velocity controller in consideration of the possible setting accuracy.

5.11.2 Objects

Index	Object	Name	Туре	Access	Mem.
607F _h	VAR	max profile velocity	unsigned32	rw	Υ
60FF _h	VAR	target velocity	integer32	rw	N
50FF _h	VAR	target velocity 16bit	integer16	rw	N
6083 _h	VAR	profile acceleration	unsigned32	rw	Υ
5083 _h	VAR	profile acceleration 16bit	unsigned16	rw	Υ
6084 _h	VAR	profile deceleration	unsigned32	rw	Υ
5084 _h	VAR	profile deceleration 16bit	unsigned16	rw	Υ

Table 62: Objects for RPM regulated positioning

The objects $607F_h$, 6083_h and 6084_h , that were already described in chapter 5.10, " (Profile Position Mode)", are used for RPM regulated positioning as well.

5.11.2.1 Object 60FF_h: target velocity

Index	Name	Туре	Attr	Мар	Default- Value	Description
60FF _h	target velocity	integer32	rw	Y	0	Target velocity for the <i>profile velocity mode</i> and the <i>cyclic synchronous velocity mode</i> in position units/s
50FF _h	target velocity 16bit	integer16	rw	Υ	0	Like above, 16 bit access

This **target velocity** only applies to the *profile velocity mode* and *cyclic synchronous velocity mode* (*Modes of operation* = 3 or 9). If a value greater than that in *max profile velocity* is set, a smaller value is used for the actual positioning.

5.12 Cyclic Synchronous Position Mode

In this mode of operation, the PMC works as position controller with cyclic position setting. The track calculation occurs in the control. The position target value must be sent cyclically and synchronously via the field bus. For this, the synchronous mechanisms of the bus system should be used, like e.g.: synchronous PDOs at CANopen. The cycle time of the supplied target value are transferred to the PMC by the parameters *interpolation time period* (object 60C2h). It has to be a complete multiple of the

Cyclic Synchronous Position Mode

set synchronous cycle in the bus system. The same parameters for limiting as in *profile position mode* are applicable.

If the superior position controller allows a velocity pre-control, this value can be cyclically transferred into *velocity offset* (object 60B1_n).

Figure 17: Overview cyclic synchronous position mode

Figure 18: Parameters for the cyclic synchronous position mode

5.12.1 Use of Controlword and Statusword

No mode of operation specific bits are used in Controlword.

If bit 8(*halt*) is set, the axis does not follow the cyclic target values. With the falling edge from bit 8, it begins the position control to the cyclic target values. The control is responsible for forcing the correct positions. No acceleration or deceleration chute is driven.

Bit 8 halt	Definition
0	Axis follows the value in target position
1	Axis stops
1->0	Axis adjusts to the position in target position
0->1	Axis stops with minimal brake chute

Table 63: Bits in the Controlword in the cyclic synchronous position mode

Through bits 12 (target position active) and 13 (following error) in the Statusword, the status of the axis can be determined. Bit 10 (target reached) is not used.

Status: 27.05.2009

Osterholz
Antriebs
Technik GmbH

Cyclic Synchronous Position Mode

Bit	Value	Definition
10	0	Reserved
	1	Reserved
12	0	Axis stops, the value in target position is ignored
	1	Axis follows the value in target position
13	0	Target-actual value difference (following error) in accepted range
	1	Target-actual value difference greater than following error window (see object 6065 _h)

Table 64: Bits in the Statusword in the cyclic synchronous position mode

5.12.2 Objects

Index	Object	Name	Туре	Access	Mem.
607A _h	VAR	target position	integer32	rw	N
507A _h	VAR	target position 16bit	integer16	rw	Ν
607D _h	ARRAY	software position limit	integer32	rw	Υ
6081 _h	VAR	profile velocity	unsigned32	rw	N
5081 _h	VAR	profile velocity 16bit	unsigned16	rw	N
6083 _h	VAR	profile acceleration	unsigned32	rw	Υ
5083 _h	VAR	profile acceleration 16bit	unsigned16	rw	Υ
6084 _h	VAR	profile deceleration	unsigned32	rw	Υ
5084 _h	VAR	profile deceleration 16bit	unsigned16	rw	Υ
60B0 _h	VAR	position offset	integer32	rw	N
50B0 _h	VAR	position offset 16bit	integer16	rw	N
60B1 _h	VAR	velocity offset	integer32	rw	N
50B1 _h	VAR	velocity offset 16bit	integer16	rw	N
60C2 _h	ARRAY	interpolation time period	unsigned8	rw	Υ

Table 65: Objects for cyclic synchronous position control

The objects 607A_h, 607D_h, 6081_h and 6083_h are described in chapter 5.10.2, ex page 83.

5.12.2.1 Object 60B0_h: Position offset

Index	Name	Туре	Attr	Мар	Default- Value	Description
60B0 _h	position offset	integer32	rw	Υ	0	Offset for the position in position units
50B0 _h	position offset 16bit	integer16	rw	Υ	0	Like above, 16 bit access

In the *cyclic synchronous position mode* (mode 8) this object includes an offset to the *target position*. This value is cyclically added, the sum is checked for position limits. The object can be used in order to process a position offset from an overlay set control algorithm (e.g. Rotor position dependent positioning).

Cyclic Synchronous Velocity Mode

5.12.2.2 Object 60B1_h: Velocity offset

Index	Name	Туре	Attr	Мар	Default- Value	Description
60B1 _h	velocity offset	integer32	rw	>	0	Offset for the velocity in position units/s
50B1 _h	velocity offset 16bit	integer16	rw	Υ	0	Like above, 16 bit access

In the cyclic synchronous position mode (mode 8) this object contains the pre-control velocity. In the cyclic synchronous velocity mode (mode 9) an offset to the target velocity can be transmitted here.

5.12.2.3 Object 60C2_h: Interpolation time period

Index	Name	Object						
60C2 _h	interpolation time pe- riod	RECORD	Cycle	Cycle time of the interpolation target values				
Sub- Index	Name	Туре	Attr Map Default- Description Value					
0	number of elements	Unsigned8	ro	N	2	Number of elements		
1	time period value	Unsigned8	rw	N	1	Time between two transmissions of target values		
2	time index	integer8	rw	N	-3	Is interpreted as *10 ^{time index} and represents the unit for the cycle time. Default: -3 -> 10 ⁻³ -> ms		

The *interpolation time period* sets the period of time between two updates of the position and/or velocity target values. It is the basis for internal intermediate interpolation to the internal position control cycle (1ms).

The control system must be able to send the target values in at least this speed. The acceleration and the velocity are limited by the parameters *profile velocity* (6081_h), *profile acceleration* (6083_h) and *profile deceleration* (6084_h).

5.13 Cyclic Synchronous Velocity Mode

In this mode of operation, the PMC functions as a velocity controller with cyclic velocity setting. The position calculation takes place in the control. The velocity target value must be send cyclically and synchronously via the field bus. For this, the synchronous mechanisms of the bus system should be used, like e.g.: Synchronous-PDOs at CANopen. The cycle time of the delivered target values are transferred to the PMC through the parameter *interpolation time period* (object 60C2h). It has to be a complete multiple of the set synchronous cycle in the bus system. The same parameters for limiting like in the *profile velocity mode* are valid.

The velocity can be transferred in *target velocity* or *velocity offset*. The sum of these two is checked for limits and transferred to the velocity controller.

Figure 19: Overview cyclic synchronous velocity mode

Figure 20: Parameters in the cyclic synchronous velocity mode

5.13.1 Use of Controlword and Statusword

No mode of operation specific bit are used in the Controlword.

If bit 8 (*halt*) is set, the axis does not follow the cyclic target values. It begins velocity control to the cyclic target values with the falling edge of bit 8. No acceleration or deceleration chute are driven. The lastly transferred velocity is kept.

Bit 8 halt	Definition
0	Axis follows the value in target velocity
1	Axis stops
1->0	Axis adjusts to the velocity in target velocity
0->1	Axis stops with maximum brake chute

Table 66: Bits in the Controlword in the cyclic synchronous velocity mode

With bit 12 (*target velocity active*) in the *Statusword*, the status of the axis can be determined. Bits 10 (*target reached*) and 13 are not used.

Set Zero Position (Homing Mode)

Bit	Value	Definition
10	0	Reserved
	1	Reserved
12	0	Axis stops, value in target velocity ignored
	1	Axis follows the value in target velocity
13	0	Reserved
	1	Reserved

Table 67: Bits in the Statusword in the cyclic synchronous velocity mode

5.13.2 Objects

Index	Object	ct Name		Access	Mem.
607F _h	VAR	max profile velocity	unsigned32	rw	Υ
60FF _h	VAR	target velocity	unsigned32	rw	N
50FF _h	VAR	target velocity 16bit	unsigned16	rw	N
60B1 _h	VAR	velocity offset	integer32	rw	N
50B1 _h	VAR	velocity offset 16bit	integer16	rw	N
60C2 _h	ARRAY	interpolation time period	unsigned8	rw	Υ

Table 68: Objects for cyclic synchronous RPM regulation

These objects were explained in previous chapter.

5.14 Set Zero Position (Homing Mode)

This mode of operation is only used to set the zero position of the axis. At the current development status (July 2007) the PMC does only support the *Homing Method* 35, in other words set zero at the current position. The offset calculated in such a way that the position entered in *target position* (607A_h) is set.

Furthermore, the objects *home offset* (607C_h) and *ae.home offset* (687C_h) can only be written in the *Homing Mode*.

5.14.1 Use of Controlword and Statusword

The axis must stand in *homing method* 35 and be disabled. With the rising edge of Bit 4 (*new setpoint*) the home offset for the current position is calculated. This is confirmed with bit 12 in the *statusword*. In order to permanently save this value, the parameters have to be saved in the flash. This happens by writing of 65766173_h in object 1010_h sub index 3.

Bit	Value	Definition
4	0	Don't start referencing
nsp	1	Start referencing, calculate reference point
8	0	Start axis for referencing (only if motion is required)
halt	1	Axis stops

Status: 27.05.2009

Table 69: Bits in the Controlword in homing mode

Osterholz
Rhtriebs
Technik GmbH

Emergency Feather Command (EFC)

Bit	Value	Definition
10	0	Command execution in process
	1	Command executed
12	0	Zero point not set
	1	Zero point set
13	0	No error
	1	Referencing error

Table 70: Bits in the Statusword in the homing mode

5.14.2 Objects

Index	Object	Name	Туре	Access	Mem.
6098 _h	VAR	homing method	integer8	rw	Υ
607C _h	VAR	home offset	integer32	rw	Υ
687C _h	VAR	ae.home offset	integer32	rw	Υ

Object home offset (607C_h) see page 62.

Object ae. home offset (687Ch) see page 66.

5.14.2.1 Object 6098_h: homing method

With this object, the method to determine the zero point of the axis is selected.

Only mode 35 is currently (status July 2007) supported.

Index	Name	Туре	Attr	Мар	Default- Value	Description
6098 _h	homing method	integer8	rw	Ν	35	Method for determining zero point
						(Referencing)

5.15 Emergency Feather Command (EFC)

The "Feather position" is the 90° position of the rotor blade, at which no lifting is produced, in other words the stand-by position of the blade. With the help of the "Emergency Feather Command" the blade shall get there as quickly as possible and under all circumstances.

The EFC drive is an exception of the *profile position mode* at the PMC. It can be triggered by an external input signal (X2.3) or by bit11 in the *Controlword*.

If the drive is triggered by an external signal, bit 9 (*remote*) is reset in the *Statusword* and a control via the *Controlword* is no longer possible, until the EFC input signal becomes inactive. The *Statusword* further shows the status of the axis, as described in chapter 5.10. The mode of operation is automatically switched to *profile position mode*. This mode of operation remains even after the EFC drive.

Position, velocity and acceleration for the EFC drive are taken from the objects saved in the PMC.

Inputs and Outputs

5.15.1 Objects

Index	Object	Name	Туре	Access	Mem.
567A _h	VAR	EFC target position	integer32	rw	Υ
5681 _h	VAR	EFC profile velocity	unsigned32	rw	Υ
5683 _h	VAR	EFC profile acceleration	unsigned32	rw	Υ
5684 _h	VAR	EFC profile deceleration	unsigned32	rw	Υ

Table 71: Objects for closed-loop position controlled positioning

5.15.1.1 Object 567A_h: *EFC target position*

Index	Name	Туре	Attr	Мар	Default- Value	Description
567A _h	EFC target position	integer32	rw	N	90,00°	Target position for the EFC drive. Unit: Position units

In the EFC case, the object is transferred to the object 607A_h, target position.

5.15.1.2 Object 5681_h: *EFC profile velocity*

Index	Name	Туре	Attr	Мар	Default- Value	Description
5681 _h	EFC profile velocity	unsigned32	rw	N		Target value velocity for the EFC drive. Unit: Position units/s

In the EFC case, the object is transferred to the object 6081_h, profile velocity.

5.15.1.3 Object 5683_h: *EFC profile acceleration*

Index	Name	Туре	Attr	Мар	Default- Value	Description
5683 _h	EFC profile accelera- tion	unsigned32	rw	Z		Acceleration chute for the EFC drive. Unit: Position unit/s²

In the EFC case the object is transferred to the object 6083_h, *profile acceleration*.

5.15.1.4 Object 5684_h: *EFC profile deceleration*

Index	Name	Туре	Attr	Мар	Default- Value	Description
5684 _h	EFC profile decelera- tion	unsigned32	rw	Ν		Deceleration chute for the EFC drive. Unit: position units/s²

In the EFC case the object is transferred to the object 6084_h, profile deceleration.

5.16 Inputs and Outputs

The input and output states can be queried in the objects explained in the following. Furthermore, a measuring input (probe) is available, that will save the position in case of a level change.

94 Status: 27.05.2009 ORT Osterholz Antries Antries Combined Combi

5.16.1 Objects

Index	Object	Name	Туре	Access	Mem.
60FD _h	VAR	digital inputs	unsigned32	ro	Ν
60FE _h	VAR	digital outputs	ARRAY	rw	N
5664 _h	ARRAY	capture values	integer32	ro	N

5.16.1.1 Object 60FD_h: digital inputs

This index specifies the digital inputs of the controller. Signals like reference input and limit switch can be found here.

Index	Name	Туре	Attr	Мар	Default- Value	Description
60FD _h	digital inputs	unsigned32	ro	Υ	0	1 = 24V Input level

The setting of bits 0..15 is specified in DS402, Bit 16..31 are manufacturer dependent.

Bit	Digital input	Clamp
0	Negative quick stop input (0 = 0V, quick stop active!)	X4.9
1	Positive quick stop input (0 = 0V, quick stop active!)	X4.8
2	Referential switch (1 = High level)	X4.6
3	Release input (1 = Enable)	X4.5
415	Reserved, always 0	
16	"feather position", 90 °-switch(1 = High level)	X4.10
17	Measuring input (probe)	X4.7
18	EFC, Emergency Feather Command (0 = execute emergency drive)	X2.3
19	Reset input, (0 -> 1 = execute reset)	X2.4
20	Free input	X2.5
2131	Not used, always 0	

Table 72: Setting of the digital inputs (60FD_h). 1 means voltage at input.

5.16.1.2 Object 60FE_h: digital outputs

In the current (July 2007) expansion stage, the PMC has no outputs with external access. Sub index 1 and 2 have no function, in sub index 3 the internal accessed outputs can be back-read.

Index	Name	Object					
60FE _h	digital outputs	ARRAY	Phys	Physical outputs and bit mask			
Sub- Index	Name	Туре	Attr	Мар	Default- Value	Description	
0	number of elements	unsigned8	ro	Ν	3	Number of elements	
1	physical outputs	unsigned32	rw	N	0	At the PMC, currently unused	
2	bitmask	unsigned32	rw	N	0	At the PMC, currently unused	
3	read outputs	unsigned32	ro	N		Back-reading of the outputs	

Status: 27.05.2009

The setting of bits 0..15 is specified in the DS402, Bit 16..31 are manufacturer dependent.

Use of PDOs

Bit	Digital Output	Clamp
0	Holding brake, 1 = Brake off	X6.3/X6.4
115	Reserved, always 0	
16	Watchdog switch, 1 = OK, set internally	X2.1/X2.2
1723	Not used, always 0	
24	LED Status device	
25	LED Failure	
26	LED Watchdog	
27	LED Field bus 1	
28	LED Field bus 2	
29	LED Field bus 3	
30	Not used, always 0	
31	Not used, always 0	

Table 73: Digital output configuration (60FE_h). 1 means: output set.

5.16.1.3 Objects 60BA_h and 60BB_h: touch probe pos 1

The input X4.7 (probe) can be used as measuring input. With every change at this input, the actual nominal value is saved in the respective objects. This can be used for a mechanical position control through switches, among others.

Index	Name	Туре	Attr	Мар	Default- Value	Description
60BA _h	touch probe pos 1 pos value	integer32	ro	N		Position value at a rising edge (0V→24V) at the probe input
60BB _h	touch probe pos 1 neg value	integer32	ro	N		Position value at a falling edge (24V→0V) at the probe input

The scanning of the input is clocked to one millisecond. The accuracy of the measured position depends on the speed of the axis and can be calculated by dividing the velocity (e.g. in %s) by 1000.

5.17 Use of PDOs

A detailed description of the PDOs can be found in the documentation "Pitch Control System, CANopen Interface". In the document at hand, only the presetting of the PDO is explained. It is pursuant to the specifications of the CiA, DS402, Drives and Motion Profile.

Only the first PDO is active after switch-on, it only contains the statusword or controlword.

If further PDOs shall be used, they have to be activated by the control first.

The setting (the "mapping") can be changed and thus adjusted to the requirements.

Manufacturer specific version of the firmware can provide other default values for the mapping. Those can be found in a separate documentation.

96 Status: 27.05.2009 Osterholz
Rentriebs
Technik GmbH

5.17.1 Default Settings of Mapping Parameters, Receiving PDO

PDO	COB-ID	active	Index	Sub	Default value	Object
RPDO01	200 _h +NodeID	yes	1600 _h	0	1	
				1	6040 00 10 _h	controlword
RPDO02	80000300 _h +NodeID	no	1601 _h	0	2	
				1	6040 00 10 _h	controlword
				2	607A 00 20 _h	target position
RPDO03	80000400 _h +NodeID	no	1602 _h	0	2	
				1	6040 00 10 _h	controlword
				2	60FF 00 20 _h	target velocity
RPDO04	80000500 _h +NodeID	no	1603 _h	0	5	
				1	607A 00 20 _h	target position
				2	6081 00 20 _h	profile velocity

Table 74: PMC: Default mapping of the receiving PDOs

5.17.2 Default Settings of Mapping Parameters, Sending PDO:

PDO	COB-ID	active	Index	Sub	Default value	Object
TPDO01	40000180h+NodeID	yes	1A00 _h	0	1	
				1	6041 00 10 _h	statusword
TPDO02	C0000280h+NodeID	no	1A01 _h	0	2	
				1	6041 00 10 _h	statusword
				2	6064 00 20 _h	position actual value
TPDO03	C0000380h+NodeID	no	1A02 _h	0	2	
				1	6041 00 10 _h	statusword
				2	606C 00 20 _h	actual velocity
TPDO04	C0000480h+NodeID	no	1A03 _h	0	2	
				1	6064 00 20 _h	position actual value
				2	606C 00 20 _h	actual velocity

Table 75: PMC: Default mapping of the sending PDO

97

Contents of Figures

6 Appendix

6.1 Contents of Figures

Figure 1: Battery charger structure	. 29
Figure 2: Température control unit function	
Figure 3: Digital input processing	
Figure 4: Digital output processing	
Figure. 5: Definition of following error window	
Figure. 6: Definition of <i>position window</i>	
Figure. 7: Position detection with motor feed back	
Figure. 8: home offset definition	
Figure. 9: Position detection with external encoder	. 65
Figure. 10: Finite state automaton control	
Figure 11: Finite automaton of the controller	. 72
Figure 12: chute generator for <i>profile position mode</i>	. 80
Figure 13: Target value handshake <i>new set-point</i>	. 81
Figure 14: Handshake at target value transfer during drive	. 81
Figure 15: Axis start with bit 8 (<i>halt</i>)	
Figure 16: Parameters for <i>profile velocity mode</i>	. 86
Figure 17: Overview cyclic synchronous position mode	
Figure 18: Parameters for the cyclic synchronous position mode	
Figure 19: Overview cyclic synchronous velocity mode	
Figure 20: Parameters in the cyclic synchronous velocity mode	

6.2 Glossary

Explanation of abbreviations and terms

CiA	CAN in Automation (CAN-user organization)
EPROM	Erasable Programmable Read Only Memory

ID Identifier

LSB Least Significant Bit (Byte)
MSB Most Significant Bit (Byte)
PCS Pitch Control System

PDO Process Data Object, CAN-telegram for transmission of process data

PMC Digital axis regulation controller PMM Pitch Management System

PWM Pulse width modulation, is used for motor controlling

SDO Service Data Object, CAN-telegram for transmission of service data

Status: 27.05.2009

Osterholz
Antriebs
Technik GmbH

Specification Corrosion Cabinets and enclosures

1. PURPOSE

This purchase specification specifies the characteristics of organic coatings concerning their mechanical properties and their corrosion protection.

This specification refers to tests and properties achieved with sample panels regarding the quality of the coating. Real products may be coated differing. Surfaces inside the protected room and surfaces of protected openings may show lower layer thicknesses. Colour and appearance

are no object of this specification.

To verify the corrosion protection, corrosion tests with complete products or scaled models with all critical properties have to be accomplished additional.

2. SCOPE OF VALIDITY

This purchase specification is valid for all surfaces of organic coated parts made of carbon steel, which are lying outside the sealed area.

3. OTHER VALID DOCUMENTS

DIN EN ISO 9227	Corrosion tests in artificial atmospheres - salt spray tests
DIN EN ISO 1519	Mandrel bending test on coatings
DIN EN ISO 1520	Cupping in accordance with Erichsen on paints and similar coatings with visual assessment
DIN EN ISO 2178	Non-magnetic coatings on magnetic substrates - Measurement of coating thickness - Magnetic method
DIN EN ISO 2360	Non-conductive coatings on non-magnetic electrically conductive basis materials - Measurement of coating thickness - Amplitude-sensitive eddy current method
DIN EN ISO 2409	Cross-cut tests of paintwork and similar coatings
DIN EN ISO 4628-2	Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 2: Assessment of degree of blistering
DIN EN ISO 4628-3	Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 3: Assessment of degree of rusting
DIN EN ISO 4628-4	Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 4: Assessment of degree of cracking
DIN EN ISO 4628-5	Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 5: Assessment of degree of flaking
DIN EN ISO 4628-8	Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in ap-

pearance - Part 8: Assessment of degree of delamination and corrosion around a scribe

DIN EN ISO 6270-2 Coating materials - determination of the resistance to humidity - Part 2:

Procedure for exposing test specimens in condensation water atmosphere

DIN EN ISO 17872 Paints and varnishes - Guidelines for the introduction of scribe marks

through coatings on metallic panels for corrosion testing

DIN EN ISO 20567-1 Paints and varnishes - Determination of stone-chip resistance of coatings -

Part 1: Multi-impact testing

4. SAMPLES AND PREPARATION OF SAMPLES

4.1 Test panels

The test panels are to be made of easily formable sheet steel, of material from the serial production. The build-up of the coating (cleaning, pre-treatment, grounding, finish) has to be done identical to the serial production process.

4.2 Paint finish

The total coat thickness should be 60 μm - 100 μm on average. Textured surface shall have no single measurement value less than 35 μm or higher than 140 μm .

4.3 Number and dimension of sample panels

The dimensions of the required test panels are 200 x 200 x 1...1.5 mm. To perform the following tests, at least 10 sample panels are required.

5. SPECIFICATION AND REQUIREMENTS

5.1 Corrosion resistance

The coatings of the samples for the corrosion tests have to be scribed according to DIN EN ISO 17872. One single scribe has to be fit lengthwise to one edge in the middle of the sample. The scribe has to reach the substrate, "Van Laar-tool" has to be used.

5.1.1 Salt spray test DIN EN ISO 9227 NSS Test duration 480 h

The specimens have to be positioned in a holder on the ground of the test chamber with an angle of $20^{\circ} \pm 5^{\circ}$ with the scribed side facing up, the scribe has to be positioned vertical. The scribed side has to show into direction of the spray nozzle.

5.1.2 Condensation test DIN EN ISO 6270-2 CH Test duration 500 h

The specimens have to be positioned hanging in the test chamber with the scribe in vertical position.

5.1.3 Condensation alternating atmosphere DIN EN ISO 6270-2 AHT Test duration, 20 cycles

The specimens have to be positioned hanging in the test chamber with the scribe in vertical position.

5.1.4 Evaluation

At least two of the three tested samples have to fulfil the following requirements.

DIN EN ISO 4628-8 Degree of corrosion c < 5mm.
DIN EN ISO 4628-8 Degree of delamination d < 6mm.

Away from the scribe and the edges:

The surface of the specimen besides an area of 10 mm away from the scribe and the edges or other similar critical areas may not show any deterioration as blistering, rusting, cracking or flaking.

Near the edges:

DIN EN ISO 4628-2 Blistering may not exceed
DIN EN ISO 4628-3 Rusting may not exceed
Ri3
DIN EN ISO 4628-4 Cracks may not exceed
DIN EN ISO 4628-5 Flaking may not exceed
Rating 1
Rating 3

5.2 CORROSION TESTS ON COMPLETE PRODUCTS

After successful completion of the tests on sample panels, complete products or scaled models with all critical properties of the original products have to be tested in salt spray test according to DIN EN ISO 9227 NSS for 480 hours. The products have to be positioned as utilised in service, doors, covers etc. have to be closed during the test.

Fitting parts (screws, hinges, locking rods) have to be judged similar to the painted parts. Locations where corrosion protection is impractical (slide faces etc.) are not to be judged.

Evaluation as stated in 5.1.4 Evaluation.

6. Mechanical properties

6.1.1 Adhesion test in accordance with DIN EN ISO 2409

Evaluation: Set value Gt 0-1

6.1.2 Cupping in accordance with Erichsen to DIN EN ISO 1520 m, tool diameter 20 mm, panel thickness 1 mm

Evaluation: Minimum value 3.5 mm

6.1.3 Mandrel bending test in accordance with DIN EN ISO 1519, mandrel 10 mm

Evaluation: No flaking

6.1.4 Multi-impact test in accordance with DIN EN ISO 20567-1, method A

<u>Evaluation:</u> The specific value may not exceed 1.5.