LISTA 9 - Całka podwójna i potrójna cz. I

1. Obliczyć całkę podwójną w podanym prostokącie P

(a)
$$\iint_P (2x-3y^2) dxdy$$
, $P = [-1,1] \times [0,2]$, (c) $\iint_P xy(x+y) dxdy$, $P = [0,2] \times [0,2]$,

(b)
$$\iint_P 4xy \, dxdy$$
, $P = [0,1] \times [1,2]$, (d) $\iint_P \frac{dxdy}{(x+y+1)^2}$, $P = [0,1] \times [1,2]$.

2. Obliczyć całkę potrójna po podanym prostopadłościanie P

(a)
$$\iiint_P (x+y+z)^2 dx dy dz$$
, $P = [-2,-1] \times [0,2] \times [-1,1]$,

(b)
$$\iiint_P (x^2 + y^2 + z^2) dx dy dz$$
, $P = [0, 1] \times [1, 3] \times [0, 1]$,

(c)
$$\iiint_P xyze^{x+y+z}dxdydz$$
, $P = [0,1]^3$.

3. Obliczyć całkę podwójną w obszarze D ograniczonym podanymi krzywymi

(a)
$$\iint_D (x+y+1)^2 dxdy$$
, $x=0, x+y=1, x-y=1$,

(b)
$$\iint_D x \, dx \, dy$$
, $x = 2$, $x = 6$, $x - 2y + 2 = 0$, $x - 2y + 4 = 0$,

(c)
$$\iint_D 2xy \, dxdy$$
, $y = x^2$, $y = 2 + |x|$,

(d)
$$\iint_D dxdy$$
, $y = \frac{2}{x}$, $x > 0$, $y = 2x$, $y = \frac{1}{2}x$,

(e)
$$\iint_D dxdy$$
, $y = e^x$, $y = \ln x$, $x + y = 1$, $x = 2$.

4. Zmienić kolejność całkowania w całce iterowanej

(a)
$$\int_0^2 dx \int_0^x f(x,y) dy$$
, (c) $\int_{-1}^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$,

(b)
$$\int_0^1 dy \int_{y-1}^{y^2} f(x,y) dx$$
, (d) $\int_0^1 dx \int_0^x f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy$.

5. Obliczyć całkę $\iiint_V z dx dy dz$, jeśli

(a)
$$V = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, 0 \le y \le x, x - y \le z \le x + y\},\$$

(b)
$$V = \{(x, y, z) \in \mathbb{R}^3 : z \le x \le y, \ 0 \le y \le 1, \ 0 \le z \le y\},\$$

(c)
$$V = \{(x, y, z) \in \mathbb{R}^3 : z \le x \le y, z \le y \le 1, 0 \le z \le 1\},\$$

(d)
$$V = \{(x, y, z) \in \mathbb{R}^3 : -1 \le x \le 0, \ x \le y \le 0, \ 0 \le z \le 1\}.$$

6. Obliczyć całkę $\iiint_V 2z dx dy dz$, jeśli $V = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in D, \sqrt{2-x} \le z \le \sqrt{6+y}\}$

(a)
$$D$$
 jest kwadratem o wierzchołkach $(0,0), (0,1), (1,0), (1,1),$

(b)
$$D$$
 jest trójkątem o wierzchołkach $(0,0),(0,2),(2,0),$

(c)
$${\cal D}$$
jest kołem o środku (0,0) i promieniu 1,

(d)
$$D$$
 jest kołem o środku $(0,1)$ i promieniu 1.

7. Obliczyć całkę po obszarze V ograniczonym danymi powierzchniami

(a)
$$\iiint_V (x^2 + y^2) dx dy dz$$
, $x = 0, y = 0, z = 0, y = 2, x + z = 2$,

(b)
$$\iiint_V dx dy dz$$
, $x = 0$, $y = 0$, $z = 0$, $2x + y = 4$, $z = 4 - x^2$,

(c)
$$\iiint_V dx dy dz$$
, $x = 0$, $z = 0$, $2y = x^2$, $z = 4 - y^2$,

(d)
$$\iiint_V dx dy dz$$
, $x = 0$, $y = 0$, $z = 0$, $2x + 2y + z = 2$.