PRACTICE: EXPONENTS

Mr. Merrick · Math 10 · September 17, 2025

Mini Reference. For $a \neq 0$, $m, n \in \mathbb{Q}$:

$$a^m a^n = a^{m+n}, \quad \frac{a^m}{a^n} = a^{m-n}, \quad (a^m)^n = a^{mn}, \quad a^{-m} = \frac{1}{a^m}, \quad a^0 = 1, \quad a^{\frac{p}{q}} = \sqrt[q]{a^p}.$$

Combining the Exponent Laws

- 1. Write in a simpler form and evaluate.
 - a) $\frac{7^5 \cdot 7}{7^3}$
 - b) $((-2)^3)^2$
 - c) $\left(\frac{3^4}{3^2}\right)^3$
 - d) $\frac{(0.6)^7}{(0.6)^3(0.6)^2}$
 - e) $-4^5 \cdot 4^{-3}$
 - f) $(-6)^4 \cdot (-6)^{-2}$
 - g) $-12^3 + (-12)^2$
 - h) $\frac{-9^9}{-9^7}$
- 2. Write each expression in simplest form without brackets.
 - a) $(-x)^{10} + (-x)^4$
 - b) $(-a)^7 + (-a)^3$
 - c) $-p^6 + (-p)^2$
 - d) $c^4 + (-c)^6$
 - e) $-r^5 + (-r)^5$
 - f) $-t^4 + (-t)^3$

- 3. The simplified form of $\frac{1}{48}(3x^2)^3(-2xy^2)$ is

 - **A.** $-\frac{9}{8}x^7y^2$ **B.** $-\frac{3}{2}x^7y^2$ **C.** $-\frac{9}{8}x^6y^2$

 - **D.** $-\frac{0}{6}x^{7}y$
- 4. $\frac{(4x^{-3}y^5)^2}{(2xy)^4}$ equals
 - **A.** $\frac{y^6}{x^{10}}$

 - B. $\frac{4y^6}{x^{14}}$ C. $\frac{1}{4}x^{-14}y^{-6}$
 - **D.** $\frac{4}{x^{14}}y^6$
- 5. Simplify $(-2m^2n^{-3})^3 (4m^{-1}n^2)^2 \left(\frac{1}{8m^3n}\right)$ to the form $m^a n^b$. Enter a + b.
- 6. Simplify each expression.
 - a) $a^{x+3} a^{2x-1}$

 - b) $\frac{m^{x+7}}{m^3}$ c) $\frac{p^{3m+1}}{p^{m-4}}$ d) $\frac{x^{2y+5}x^{3y+1}}{x^{y+8}}$

Integral Exponents

- 1. Write the following with *positive* exponents.
 - a) x^{-4}
 - b) y^{-7}
 - c) 5^{-1}
 - d) $\frac{1}{a^{-3}}$
 - e) $\frac{1}{6^{-1}}$
- 2. Without a calculator, show $\frac{4}{8^{-2}} = 256$.
- 3. Simplify, express with positive exponents, and evaluate.
 - a) $2^5 \cdot 2^{-3}$
 - b) $10^0 \cdot 10^{-2}$
 - c) $\frac{1}{9^{-2}}$
 - d) $\frac{7^{-3}}{7^{-1}}$
 - e) $(3^2)^{-2}$
- 4. Express with positive exponents.
 - a) $n^2 m^{-5}$
 - b) $c^{-2}x^{-5}$
 - c) $16h^{-1}$
 - d) $\frac{2}{3}b^{-8}$
 - e) $(y^{-4})^{-2}$

 - f) $\frac{r^{-5}}{4}$ g) $\frac{1}{4x^{-9}}$ h) $\frac{4}{x^{-9}}$ i) $\frac{a^2}{b^{-7}}$ j) $\frac{a^{-2}}{b^7}$

- 5. Evaluate without a calculator.
 - a) -2^{-3}
 - b) $(-3)^{-2}$
 - c) $-7^2 \cdot 8^{-2}$
 - d) $(-5)^0$
 - e) $[-(4.2)^0]^{-2}$
- 6. Use a calculator (exact fraction/decimal).
 - a) -4^{-3}
 - b) $(-7)^{-1}$
 - c) $(0.5)^{-3}$
 - d) $(-0.02)^{-2}$
 - e) $\left(\frac{5}{8}\right)^{-3}$
- 7. True or false.
 - a) $6x^{-3} = \frac{6}{x^3}$
 - b) $5a^{-4} = \frac{1}{5a^4}$
 - c) $\frac{4}{b^{-6}} = 4b^6$
 - d) $\frac{x^{-3}}{2} = \frac{2}{x^3}$
 - e) $\frac{1}{5y^{-1}} = 5y$
 - f) $\frac{1}{4p} = \frac{1}{4}p^{-1}$
 - g) $(3x)^5 = \frac{1}{(3x)^{-5}}$
 - h) $\left(\frac{1}{7}a\right)^{-2} = 49a^2$
- 8. Simplify with positive exponents.
 - a) $x^8 \cdot x^{-5}$
 - b) $m^5 + m^8$
 - c) $b^{-1} \cdot b^{-3}$
 - d) $-w^0 + w^5$

- 9. Simplify with positive exponents.
 - a) $a^8 \times a^{-10}$
 - b) $10x^2 + 2x^{-1}$
 - c) $\frac{6y^{-6}}{2y^{-4}}$
 - d) $\frac{2a^{-5}}{4b^6}$
 - e) $-7x^{-2}$
 - f) $-(7x)^{-2}$

 - g) $(-7x)^{-2}$ h) $\frac{(-7x)^{-2}}{-7x^{-2}}$
- 10. Simplify, answers with positive exponents.
 - a) $a^{-3}a^{-3}$
 - b) $(5b^8b^{-12})(-10b^3b^{-12})$
 - c) $(-7x^3x^{-5})(x^2x^{-3})$
 - d) $(-2a^3)^{-3} \cdot 3a^{12}$
 - e) $\frac{16a^6b^{-3}}{-4a^6b^3}$
 - f) $(-3a^5b^{-3}c^0)^{-2}$
- 11. Simplify. Final answers with positive expo
 - a) $\frac{32a^2b^{-4}}{4a^{-3}b^{-2}} \times \frac{-8a^{-2}}{-3b^{-3}}$ b) $\frac{10(p^3q^2r^0)^{-3}}{(8p^{-3}q^5r^3)^{-2}}$ c) $(-2x^5y^3z^8)^2 (-2x^2y^{-8}z^{12})^3$

 - d) $(5a^3b^2)(-2a^{-2}b)^{-3} + (-5a^8b^{-9})^{-2}$

- 12. Evaluate without a calculator.

 - b) $\left(\frac{1}{5}\right)^{-2}$ c) $\left(\frac{8}{5}\right)^{-1}$

 - d) $\left(\frac{3}{2}\right)^{-4}$
- 13. Simplify. Final answers with positive exponents.
 - a) $\left(\frac{c}{d}\right)^{-3}$
 - b) $\left(\frac{x}{4}\right)^{-3}$
 - c) $\left(\frac{p^2}{r^4}\right)^{-3}$
 - $d) \left(\frac{a^{-2}}{b^{-5}}\right)^{-3}$
 - e) $\left(\frac{-12x^{-3}}{6y^{-8}}\right)^{-1}$
 - f) $\left(\frac{12x^3y^{-1}}{-8x^{-1}y^5}\right)^{-2}$
- 14. Simplify. Final answers with positive expo
 - a) $\left(\frac{-x^3}{y}\right)^{-2} + \left(\frac{y^3}{x^5}\right)^2$
 - b) $49\left(\frac{7w^3x^{-5}z^4}{w^{-3}z}\right)^{-2} \times \frac{14(x^4z^8)^0}{x^{-8}z}$
- 15. The value of $\frac{2^{-3} + 4^0}{2^{-1}}$ is
 - **A.** 2 **B.** $\frac{9}{4}$ **C.** 6 **D.** 8
- 16. Let $p = 5 \times 10^{-6}$ and $q = 4 \times 10^{7}$. If $r = 5 \times 10^{3}$ and $\frac{pq}{r} = c \times 10^{n}$, then n equals
 - **A.** $-\frac{r}{2}$ **B.** -1 **C.** 1 **D.** 2
- 17. Which statements are true?
 - i) $3a^{-3} = \frac{1}{3a^3}$, ii) $8x^4 \cdot 4x^7 = \frac{1}{2x^3}$, iii) $\frac{1}{2a} = 2a^{-1}$.
 - A. i only B. ii only C. iii only D. none

Scientific Notation

1. Complete the table.

Standard Notation	Expanded Form	Scientific Notation
246 000	2.46×10^5	2.46×10^5
18.7	1.87×10^{1}	1.87×10^{1}
56 000	5.6×10^4	5.6×10^4
	9.2×10^{6}	9.2×10^{6}
	7.5×10^{2}	7.5×10^2
		6.8×10^{3}
		3.9×10^{1}

- 2. Express each number in scientific notation.
 - a) 4750
 - b) 12 040 000
 - c) 0.0063
 - d) 98.2
 - e) 0.00000074
- 3. Express the number of kilometres in scientific notation.
 - a) 384 400 km
 - b) 2500000 km

- 4. Express each number in standard notation.
 - a) 1.2×10^{11}
 - b) 6.73×10^4
 - c) 9.99×10^6
 - d) 4.5×10^{-2}
- 5. Simplify and write in scientific notation.
 - a) $(3.2 \times 10^4) \times 1000$
 - b) $(8.91 \times 10^7) \times 10$
 - c) $\frac{7.2 \times 10^8}{1000}$
 - d) $\frac{25\,000}{5\times10^2}$

2. Complete the table.

Standard Notation	Expanded Form	Scientific Notation
0.000 0042	$4.2 \div 10^6$	4.2×10^{-6}
0.0001		1.0×10^{-4}
	1 10	3.5×10^{-4}
	10	9.9×10^{-1}
		6.9×10^{-2}
		8.5×10^{-4}

- 3. For each number, indicate how many places (and in which direction) the decimal must move to make the leading number between 1 and 10.
 - a) 35
 - b) 480 000
 - c) 0.0042
 - d) 0.63
 - e) 91 230 000

- 4. Express each number in scientific notation.
 - a) 0.000 018
 - b) 0.007
 - c) 0.00000094
 - d) 102600
 - e) 0.6
 - f) 890 000 000
 - g) 0.0000052
 - h) 0.034
 - i) 61 500 000

- 5. Express each number in *standard* notation.
 - a) 2.7×10^{-3}
 - b) 5.01×10^{-8}
 - c) 1.28×10^{-4}
 - d) 7.45×10^6
 - e) 9.3×10^{1}
- 6. Express in scientific notation.
 - a) 34.2×10^5
 - b) 0.72×10^3
 - c) 0.056×10^{-7}
 - d) 456×10^{-9}
 - e) 0.0045×10^{12}

- 7. Calculator—answer in scientific notation.
 - a) $(3.2 \times 10^8)(4.0 \times 10^{-5})$
 - b) $(1.5 \times 10^5) + (2.5 \times 10^2)$
 - c) $(0.06 \times 10^{-3})(0.2 \times 10^{-8})$
 - d) $(2.3 \times 10^1) + (0.45 \times 10^8)$
- 8. Calculator—answer in *standard* notation.
 - a) $(4.8 \times 10^2)(2.4 \times 10^{-7})$
 - b) $(9.1 \times 10^2) + (0.75 \times 10^{-2})$
 - c) $(0.04 \times 10^{-3})(3.0 \times 10^{-3})$
 - d) $(7.2) + (0.95 \times 10^7)$
- 9. A number is 6 950 000. In $a \times 10^n$ the value of n is **A.** 3 **B.** 4 **C.** 6 **D.** 7
- 10. A film earned about 2 450 million dollars. In scientific notation this amount is $\mathbf{A.}\ 2.45 \times 10^{10}$ $\mathbf{B.}\ 2.45 \times 10^9$ $\mathbf{C.}\ 2.45 \times 10^6$ $\mathbf{D.}\ 2.45 \times 10^3$
- 11. Speed of light = $3 \times 10^8 \,\mathrm{m/s}$; distance Earth–Sun = $1.5 \times 10^{11} \,\mathrm{m}$. If time is $a \times 10^n$ seconds, find a + n =_____.

Rational Exponents — Part One

- 1. Evaluate without a calculator.
 - a) $27^{\frac{1}{3}}$
 - b) $81^{\frac{1}{2}}$
 - c) $8^{\frac{2}{3}}$
 - d) $125^{\frac{1}{3}}$
 - e) $36^{\frac{1}{2}}$
 - f) $64^{\frac{1}{4}}$
 - g) $49^{\frac{3}{2}}$
 - h) $(9^2 + 16^2)^{\frac{1}{2}}$
 - i) $(0.25)^{0.5}$
- 2. Determine the exact value without a calculator.
 - a) $16^{-\frac{1}{2}}$
 - b) $27^{-\frac{2}{3}}$
 - c) $81^{-\frac{3}{4}}$
 - d) $1000^{-\frac{1}{3}}$
 - e) $64^{-\frac{5}{6}}$
- 3. Determine the exact value.
 - a) $\left(\frac{1}{36}\right)^{\frac{1}{2}}$
 - b) $(\frac{1}{9})^{-\frac{1}{2}}$
 - c) $\left(\frac{1}{8}\right)^{\frac{4}{3}}$
 - d) $\left(\frac{25}{9}\right)^{-\frac{3}{2}}$
 - e) $\left(\frac{49}{16}\right)^{-\frac{3}{4}}$
- 4. Determine the exact value.
 - a) $(-64)^{\frac{1}{3}}$
 - b) $(-8)^{\frac{2}{3}}$
 - c) $(-125)^{-\frac{1}{3}}$
 - d) $-(-27)^{\frac{2}{3}}$
 - e) $(-0.01)^{\frac{1}{2}}$

- 5. Use a calculator to two decimals.
 - a) $5^{\frac{4}{3}}$
 - b) $7^{\frac{3}{4}}$
 - c) $(-6)^{\frac{2}{3}}$
 - d) $8^{-0.25}$
 - e) $(-0.5)^{\frac{2}{3}}$
- 6. Write an equivalent expression using radicals.
 - a) $a^{\frac{1}{4}}$
 - b) $b^{\frac{1}{2}}$
 - c) $c^{\frac{2}{3}}$
 - d) $d^{\frac{1}{5}}$
 - e) $e^{\frac{1}{10}}$
 - f) $f^{\frac{3}{2}}$
 - g) $g^{\frac{4}{3}}$
 - h) $h^{\frac{5}{7}}$
- 7. A cube has volume 343 cm^3 .
 - a) Edge length (cm):
 - b) Surface area (cm²):
- 8. A cube has volume $V \text{ cm}^3$.
 - a) Edge length: $V^{\frac{1}{3}}$
 - b) Face area: $V^{\frac{2}{3}}$
- 9. Rewrite in radical form (evaluate when possible).
 - a) $5^{\frac{1}{2}}$
 - b) $8^{\frac{1}{3}}$
 - c) $(-3)^{\frac{1}{3}}$
 - d) $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$
 - e) $6^{-\frac{1}{2}}$
 - f) $100^{\frac{2}{3}}$
- 10. Order from greatest to least:
 - $(-64)^{-\frac{2}{3}}, \left(\frac{1}{16}\right)^{\frac{1}{3}}, (-64)^{\frac{2}{3}}, \left(\frac{1}{16}\right)^{-\frac{1}{3}}.$

Rational Exponents — Part Two

- 1. Write each power as an entire radical.
 - a) $a^{\frac{4}{3}}$
 - b) $b^{\frac{3}{2}}$
 - c) $c^{\frac{1}{4}}$
 - d) $x^{-\frac{2}{3}}$
 - e) $y^{-\frac{1}{3}}$
 - f) $(2m)^{\frac{2}{3}}$
 - g) $(3n)^{\frac{2}{3}}$
 - h) $(-a)^{-\frac{5}{4}}$
 - i) $(-b)^{\frac{5}{4}}$
 - j) $(4x)^{-\frac{1}{2}}$
- 2. Simplify and then write an entire radical when appropriate.
 - a) $2x^{\frac{3}{8}} \cdot 5x^{-\frac{3}{8}}$
 - b) $y^{\frac{6}{5}} + y^{\frac{4}{5}}$
 - c) $\left(a^{\frac{2}{3}}\right)^{\frac{3}{4}}$
 - d) $(c^2d)^{\frac{3}{2}}$
 - e) $x^{\frac{1}{2}} \cdot x^{-1}$
 - f) $y^{\frac{2}{7}} + y^{\frac{5}{7}}$
 - g) $\left(\frac{x}{y^4}\right)^{\frac{1}{2}}$
 - $h) \left(\frac{x^2}{y}\right)^{-\frac{3}{2}}$
- 3. Simplify.
 - a) $64 \left(a^{\frac{2}{3}}\right)^{\frac{1}{3}}$
 - b) $\left((16a)^{\frac{1}{3}} \right)^{\frac{1}{2}}$
 - c) $\left(81a^{\frac{1}{3}}\right)^{\frac{1}{2}}$ d) $y^{\frac{3}{2}} \cdot y^{\frac{1}{2}}$

 - e) $a^3b^{\frac{1}{2}}$
 - $f) \ \frac{10x^{-\frac{3}{5}}}{5x^{\frac{3}{5}}}$

g)
$$\frac{(a^4)^{\frac{1}{3}} + a}{9}$$

- 4. Write each radical as a power a^n .
 - a) $\sqrt[5]{a^3}$
 - b) $\sqrt[5]{a^4}$
 - c) $\sqrt{a^5}$
- 5. Write as a power and evaluate.
 - a) $\sqrt[3]{\sqrt{64}}$

 - c) $\sqrt{\sqrt{2401}}$
- 6. Put in the form ax^n , $a \in \mathbb{Z}$, $n \in \mathbb{Q}$.
 - a) $\sqrt[3]{27x^7}$
 - b) $\sqrt[4]{81x^3}$
 - c) $\sqrt[3]{-64x}$
 - d) $\sqrt[4]{x^3}\sqrt{x}$
 - e) $3\sqrt[3]{x} \cdot 3\sqrt[3]{x}$
- 7. Equivalent expressions using positive exponents.
 - a) $\sqrt{\sqrt{x^5}}$

 - h) $\sqrt[3]{(-x)^2}$

- 8. Matching. Match the numbers to letters. Assume p, q > 0.
 - $(1) \left(\frac{p}{q}\right)^{\frac{4}{3}}$
 - $(2) \left(\frac{p}{q}\right)^{\frac{3}{4}}$
 - $(3) \left(\frac{q}{p}\right)^{-\frac{4}{3}}$
 - $(4) \left(\frac{p}{q}\right)^{-\frac{3}{4}}$
 - $(5) \left(\frac{q}{p}\right)^{\frac{3}{4}}$
 - (A) $\sqrt[4]{\frac{q^3}{p^3}}$ (B) $\sqrt[4]{\frac{p^3}{q^3}}$ (C) $\sqrt[3]{\frac{p^4}{q^4}}$ (D) $\sqrt[3]{\frac{q^4}{p^4}}$

- 9. Multiple Choice. Which is equivalent to $(-x^3)^{-\frac{5}{3}}$?
 - **A.** x^5 **B.** $-x^{1/3}$ **C.** $\frac{1}{x^5}$ **D.** $-\frac{1}{x^5}$
- 10. Multiple Choice. Which is not equivalent

to the others?
A.
$$a^{-\frac{4}{3}}$$
 B. $(\frac{1}{a^4})^{\frac{1}{3}}$ **C.** $\frac{1}{\sqrt[3]{a^4}}$ **D.** $\frac{1}{a^{4/3}}$

Practice Test — Exponents

- 1. The base and exponent in $(-3)^4$ are respectively
 - **A.** -3 and 4 **B.** 3 and 4 **C.** -3 and -4 **D.** 4 and -3
- 2. The coefficient in $\frac{-5x^4}{2}$ is **A.** -5 **B.** $-\frac{5}{2}$ **C.** $\frac{-5x}{2}$ **D.** -2
- 3. $-a^0$ is equivalent to **A.** 0 **B.** 1 **C.** -1 **D.** -a
- 4. Consider: I) $4p^2q = 4ppq$; II) $(xy)^3 = x^3y^3$. **A.** I only **B.** II only **C.** I and II **D.** neither
- 5. Which can be simplified to a^6 ? **A.** $a^2 \cdot a^4$ **B.** $(a^3)^2$ **C.** $\frac{a^8}{a^2}$ **D.** all of these
- 6. $7a^3 \cdot 2a^4$ simplifies to **A.** $14a^{12}$ **B.** $9a^7$ **C.** $14a^7$ **D.** a^{12}
- 7. $\frac{6a^{15}}{3a^7}$ can be written as **A.** $2a^8$ **B.** $\frac{1}{2}a^8$ **C.** $2a^{22}$ **D.** $\frac{1}{2}a^{22}$
- 8. $(-2p^3q)(3pq^2)(-4p^2q^3) = a p^x q^y$. The value of a is .

- 9. x^{-3} is equivalent to **A.** $\frac{1}{x^3}$ **B.** $\frac{1}{x^{-3}}$ **C.** -3x **D.** $-\frac{1}{x^3}$
- 10. $\frac{12x^3}{2x^{-4}}$ simplifies to **A.** $6x^7$ **B.** $6x^{-7}$ **C.** $\frac{6}{x^7}$ **D.** $\frac{6}{x^7}$
- 11. $4x^{-2}$ is equivalent to **A.** $\frac{4}{x^2}$ **B.** $\frac{1}{4x^2}$ **C.** $4x^2$ **D.** $-\frac{4}{x^2}$
- 12. If $(2.5 \times 10^{-3})(4 \times 10^n) = 1.0 \times 10^2$, then n = **A.** 4 **B.** 5 **C.** 7 **D.** 9
- 13. Copier paper is 1.0×10^{-4} m thick. About how many sheets make 0.25 m? **A.** 2.5×10^3 **B.** 2.5×10^4 **C.** 2.5×10^5 **D.** 2.5×10^6
- 14. Express $x^{3/5}$ in radical form.

A.
$$\sqrt[5]{x^3}$$
 B. $\sqrt[3]{x^5}$ **C.** $\sqrt{x^{3/5}}$ **D.** $\frac{1}{\sqrt[5]{x^3}}$

- 15. If a > 0, which must be negative? **A.** $a^{-\frac{4}{3}}$ **B.** $(-a)^{-\frac{4}{3}}$ **C.** $(-a)^{-\frac{5}{4}}$ **D.** $-a^{\frac{5}{4}}$
- 16. Use $(2^a)^4 = 2^{24}$, $(3^2)^b = 3^{10}$, $\frac{5^c}{5^2} = 5^4$, $7^d \cdot 7^3 = 7^{11}$. Find a, b, c, d.
- 17. Write $\frac{(-3p^2q)^3(2pq^2)^{-2}}{6} = p^mq^n$ and find m+n.

Written Response (5 marks)

Use the following information for all parts: Average height = 1.65 m; hairs/person = 1.25×10^5 ; world population = 6.80×10^9 ; Earth circumference = 4.00×10^7 m; $m_{\rm Earth} = 5.98 \times 10^{24}$ kg; $m_{\rm Sun} = 1.99 \times 10^{30}$ kg; $m_{\rm Mercury} = 3.30 \times 10^{23}$ kg; $m_e = 9.11 \times 10^{-31}$ kg.

- 1. To the nearest million, how many people laid head-to-toe would encircle the Earth once? (Standard form.)
- 2. Estimate the total number of human hairs on Earth. (Scientific notation; mantissa to the nearest hundredth.)
- 3. Approximately how many electrons have the same mass as Mercury? (Scientific notation; nearest hundredth.)
- 4. How many times heavier is the Sun than the combined mass of Earth and Mercury? (Standard decimal, nearest thousand.)