roblem Set		Due Dec 2, 1:29 PM
	✓ Congratulations! You passed! TO PASS 80% or higher Keep Lea	GRADE 93.33%
	Week 5 - Problem Set LATEST SUBMISSION GRADE 93.33%	
	Consider the toy key exchange protocol using an online trusted 3rd party	0 / 1 point
	(TTP) discussed in <u>Lecture 9.1</u> . Suppose Alice, Bob, and Carol are three users of this system (among many others) and each have a secret key	
	with the TTP denoted k_a,k_b,k_c respectively. They wish to generate a group session key k_{ABC} that will be known to Alice,	
	Bob, and Carol but unknown to an eavesdropper. How would you modify the protocol in the lecture to accommodate a group key	
	exchange of this type? (note that all these protocols are insecure against active attacks)	
	\bigcirc Bob contacts the TTP. TTP generates a random k_{AB} and a random k_{BC} . It sends to Bob $E(k_a,k_{AB}), ext{ticket}_1 \leftarrow E(k_a,k_{AB}), ext{ticket}_2 \leftarrow E(k_c,k_{BC}).$	
	Bob sends ${ m ticket}_1$ to Alice and ${ m ticket}_2$ to Carol. Alice contacts the TTP. TTP generates a random k_{ABC} and sends to Alice	
	$E(k_a,k_{ABC}), ext{ticket}_1 \leftarrow k_{ABC}, ext{ticket}_2 \leftarrow k_{ABC}.$ Alice sends $ ext{ticket}_1$ to Bob and $ ext{ticket}_2$ to Carol.	
	Alice contacts the TTP. TTP generates random k_{ABC} and sends to Alice $E(k_a,k_{ABC}), \text{ticket}_1 \leftarrow E(k_b,k_{ABC}), \text{ticket}_2 \leftarrow E(k_c,k_{ABC}).$	
	Alice sends ${ m ticket}_1$ to Bob and ${ m ticket}_2$ to Carol. Alice contacts the TTP. TTP generates a random k_{AB} and a random k_{AC} . It sends to Alice	
	$E(k_a,k_{AB}), \text{ticket}_1 \leftarrow E(k_b,k_{AB}), \text{ticket}_2 \leftarrow E(k_c,k_{AC}).$ Alice sends ticket_1 to Bob and ticket_2 to Carol.	
	Incorrect	
	The protocol is insecure because k_{ABC} is sent in the clear and an eavesdropper can easily obtain it.	
	2. Let G be a finite cyclic group (e.g. $G=\mathbb{Z}_p^*$) with generator g .	1/1 point
	Suppose the Diffie-Hellman function $\mathrm{DH}_g(g^x,g^y)=g^{xy}$ is difficult to compute in G . Which of the following functions is also difficult to compute? As usual, identify the f below for which the contra-positive holds: if $f(\cdot,\cdot)$ is easy to compute then	
	so is $\mathrm{DH}_g(\cdot,\cdot)$. If you can show that, then it will follow that if DH_g is hard to compute in G then so must be f . $\qquad \qquad \qquad$	
	\checkmark Correct an algorithm for calculating $f(g^x,g^y)$ can	
	easily be converted into an algorithm for ${\tt calculating}\ DH(\cdot,\cdot).$	
	Therefore, if f were easy to compute then so would DH , contrading the assumption.	
	$igsim f(g^x,g^y)=\left(g^{3xy},g^{2xy} ight)$ (this function outputs a pair of elements in G)	
	\checkmark Correct an algorithm for calculating $f(\cdot,\cdot)$ can	
	easily be converted into an algorithm for $calculating\ DH(\cdot,\cdot).$	
	Therefore, if f were easy to compute then so would DH , contrading the assumption.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	3. Suppose we modify the Diffie-Hellman protocol so that Alice operates as usual, namely chooses a random a in $\{1,\dots,p-1\}$ and	1/1 point
	sends to Bob $A\leftarrow g^a$. Bob, however, chooses a random b in $\{1,\dots,p-1\}$ and sends to Alice $B\leftarrow g^{1/b}$. What	
	shared secret can they generate and how would they do it? $ \bigcirc \ \ {\rm secret} = g^{ab}. \ {\rm Alice} \ {\rm computes} \ {\rm the} \ {\rm secret} \ {\rm as} \ B^a $	
	and Bob computes A^b . $ = \sec t = g^{a/b}. ext{ Alice computes the secret as } B^{1/b} $	
	and Bob computes A^a . $\bigcirc \ \ \mathrm{secret} = g^{ab}. \ Alice \ computes \ the \ secret \ as \ B^{1/a}$	
	and Bob computes A^b . $ = g^{a/b}. $	
	and Bob computes $A^{1/b}$. \checkmark Correct	
	This is correct since it is not difficult to see that $ \label{eq:correct} \text{both will obtain } g^{a/b} $	
	4. Consider the toy key exchange protocol using public key encryption described in Lecture 9.4. Suppose that when sending his reply $c \leftarrow E(pk,x)$ to Alice, Bob appends a MAC $t:=S(x,c)$ to the	1/1 point
	ciphertext so that what is sent to Alice is the pair (c,t) . Alice verifies the tag t and rejects the message from Bob if the tag does not verify. Will this additional step prevent the man in the middle attack described in the lecture?	
	yes it depends on what public key encryption system is used.	
	it depends on what MAC system is used.	
	\checkmark Correct an active attacker can still decrypt $E(pk',x)$ to recover x	
	and then replace (c,t) by (c',t') where $c' \leftarrow E(pk,x)$ and $t \leftarrow S(x,c')$.	
	5. The numbers 7 and 23 are relatively prime and therefore there must exist integers a and b such that $7a+23b=1$.	1/1 point
	Find such a pair of integers $\left(a,b\right)$ with the smallest possible $a>0.$	
	Given this pair, can you determine the inverse of 7 in \mathbb{Z}_{23} ? Enter below comma separated values for $a,\ b$, and for 7^{-1} in \mathbb{Z}_{23} .	
	10,-3,10	
	✓ Correct	
	$7 imes 10+23 imes (-3)=1.$ Therefore $7 imes 10=1$ in \mathbb{Z}_{23} implying that $7^{-1}=10$ in $\mathbb{Z}_{23}.$	
	6. Solve the equation $3x+2=7$ in \mathbb{Z}_{19} .	1/1 point
	8	1/1 point
	\checkmark Correct $x = (7-2) imes 3^{-1} \in \mathbb{Z}_{19}$	
	7. How many elements are there in \mathbb{Z}_{35}^* ?	1/1 point
	24	
	\checkmark Correct $ \mathbb{Z}_{35}^* = arphi(7 imes5) = (7-1) imes(5-1).$	
	8. How much is $2^{10001} \mod 11$?	1/1 point
	8. How much is $2^{10001} \mod 11$? Please do not use a calculator for this. Hint: use Fermat's theorem.	
	2	
	\checkmark Correct By Fermat $2^{10}=1$ in \mathbb{Z}_{11} and therefore	
	$1=2^{10}=2^{20}=2^{30}=2^{40}$ in $\mathbb{Z}_{11}.$ Then $2^{10001}=2^{10001\mathrm{mod}10}=2^1=2$ in $\mathbb{Z}_{11}.$	
	9. While we are at it, how much is $2^{245} \bmod 35$?	1/1 point
	Hint: use Euler's theorem (you should not need a calculator)	
	32	
	Correct $ \text{By Euler } 2^{24} = 1 \text{ in } \mathbb{Z}_{35} \text{ and therefore} $ $ 1 = 2^{24} = 2^{48} = 2^{72} \text{ in } \mathbb{Z}_{35}. $	
	Then $2^{245}=2^{245\mathrm{mod}24}=2^5=32$ in \mathbb{Z}_{35} .	
	10. What is the order of 2 in \mathbb{Z}_{35}^* ?	1/1 point
	12	
	\checkmark Correct $2^{12}=4096=1$ in \mathbb{Z}_{35} and 12 is the	
	smallest such positive integer.	
	11. Which of the following numbers is a generator of \mathbb{Z}_{13}^* ?	1/1 point
	7, $\langle 7 \rangle = \{1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2\}$	
	Correct correct, 7 generates the entire group \mathbb{Z}_{13}^*	
	\checkmark Correct correct, 6 generates the entire group \mathbb{Z}_{13}^*	
	12. Solve the equation $x^2+4x+1=0$ in \mathbb{Z}_{23} .	1/1 point
	Use the method described in <u>Lecture 10.3</u> using the quadratic formula. 14,5	
	\checkmark Correct The quadratic formula gives the two roots in \mathbb{Z}_{23} .	
	13. What is the 11th root of 2 in \mathbb{Z}_{19} ? (i.e. what is $2^{1/11}$ in \mathbb{Z}_{19}) Hint; observe that $11^{-1}=5$ in \mathbb{Z}_{18} .	1/1 point
	Hint: observe that $11^{-1}=5$ in \mathbb{Z}_{18} .	
	Correct $2^{1/11}=2^5=32=13 \text{ in } \mathbb{Z}_{19}.$	
	14. What is the discete log of 5 base 2 in \mathbb{Z}_{13} ?	1/1 point
	(i.e. what is $Dlog_2(5)$)	

Recall that the powers of 2 in $\mathbb{Z}_{\mathbf{13}}$ are $\qquad \langle 2 \rangle = \{1,2,4,8,3,6,12,11,9,5,10,7\}$

The answer is arphi(p-1). Here is why. Let g be some generator of \mathbb{Z}_p^* and let $h=g^x$ for some x.

1/1 point

It is not difficult to see that h is a generator exactly when we can write g as $g=h^y$ for some integer y (h is a generator because if $g=h^y$ then any power of g can also be written as a power of h

Since $y=x^{-1} \mod p-1$ this y exists exactly when x is relatively prime to p-1. The number of such x is the size of \mathbb{Z}_{p-1}^* which is precisely $\varphi(p-1)$.

✓ Correct

 $\bigcirc \sqrt{p}$

 $\bigcirc p-1$

 \bigcirc $\varphi(p-1)$

 $\bigcirc (p+1)/2$

Correct

 $2^9=5 \text{ in } \mathbb{Z}_{13}.$

15. If p is a prime, how many generators are there in \mathbb{Z}_p^* ?