

Sound source distance estimation in diverse and dynamic acoustic conditions

Saksham Singh Kushwaha^{1,2}, Iran R. Roman², Magdalena Fuentes^{2,3}, Juan Pablo Bello²

¹Courant Institute of Mathematical Sciences, New York University, NY, USA

²Music and Audio Research Lab, New York University, NY, USA

³Integrated Design and Media, New York University, NY, USA

INTRODUCTION

► Sound Source Localization(SSL) consists of:

- ► Direction of arrival (DOA) estimation
- ► Distance estimation
- ► Sound distance estimation remains understudied[1]
- ► Difficult task: reverberation, reflections, noise
- ► Lack of annotated data

Input multichannel audio

Feature extraction

Log-mel spectrogram + GCC

CRNN model

Layers: 3 CNN; 2 GRU; 2 FC

Event

absolute error

squared error

absolute percent error

squared percent error

thresholded APE

Acronym Full name

SE

APE

Distance

Regressor

 $|y-\hat{y}|$

 $(y-\hat{y})^2$

 $\frac{1}{y}|y-\hat{y}|$

 $(\frac{1}{y}(y-\hat{y}))^2$

 $\max(\delta, \frac{1}{y}|y - \hat{y}|)$

Our contributions:

- ► Distance **annotations** for a collection of open-source DOA datasets
- ► CRNN-based model for non-simultaneous distance estimation
- ► Comprehensive testing on diverse environments and acoustic conditions
- ► Model performance analysis over different loss functions

Previous research in SSL:

- ► DOA research has been the primary focus
- ► Recent DL approaches in DOA use CRNN and open-source datasets[2,3]
- ► Previous attempts at distance estimation is not generalizable

OUR APPROACH

► Datasets:

- ► Multichannel Eigenmike recordings
- ► Channel swapping[8] for small datasets (LOCATA, MARCo, METU)

Dataset	Range(m)	Avg dist(m)	$\# { m train}$	#test	Avg. dur(s)	#Room	Moving Sources?
DCASE	1.35-7.15	3.34	900	300	60.0	9	Y
STARSS	0.42 - 7.02	1.83	87	74	162.2	16	Y
LOCATA	0.50 - 3.49	1.78	27	5	18.9	1	Y
MARCo	2.6-12	4.01	5	7	78.6	1	N
METU	0.3 - 2.2	1.41	146	98	2.0	1	N

► Model:

- ► Input: CRNN model
- ► Multi-task loss

$$L_{total} = \frac{1}{N} \frac{1}{T} \sum_{n} \sum_{t} \frac{\text{Masked distance estimator}}{d_{n,t} \cdot \epsilon(y_{n,t}, \hat{y}_{n,t})} + BCE(d_{n,t}, \hat{d}_{n,t})$$

► Training and Losses

- ► Two steps:
 - ► PSED: Pre-trained sound detector
 - ► Sound detection + distance estimation
- ► Model Naming:
 - ► TWx : PSED + Train with data x
 - ► FWx-y: PSED + Pretrain with y + Finetune with x

EXPERIMENTS

► Comparing our approach with baseline

Model	Exp	Best E	Mean ↓	Median ↓	Std ↓
	TWL	SPE	0.413	0.330	0.347
CRNN	TWA	SE	0.368	0.340	0.244
CITITY	FWL-S	APE	0.337	0.290	0.246
	FWL-D	APE	0.352	0.269	0.275
avg pred			0.452	0.410	0.283
GTVV[5]			0.448	0.326	0.416

► Does pretraining help?

Model	Exp	Best E	Mean ↓	Median \downarrow	Std \downarrow
CRNN	TWD	SE	1.032	0.903	0.838
CRNN	FWD-S	AE	0.952	0.731	0.834
avg pred			1.014	0.866	0.596
CRNN	TW <u>M</u>	SE	1.346	0.417	2.158
CRNN	FWM-S	SPE	0.811	0.405	0.508
avg pred			1.183	1.611	0.494
CRNN	$\overline{\text{TW}\underline{\text{T}}}$	APE	0.148	0.122	0.126
CRNN	FW <u>T</u> -S	$TAPE^*$	0.167	0.114	0.150
avg pred			0.378	0.289	0.234

► Effect of loss functions

3	Mean ↓	Median ↓	Std↓
AE	0.438	0.360	0.342
SE	0.374	0.319	0.256
APE	0.337	0.290	0.246
SPE	0.334	0.292	0.259
TAPE ($\delta = 0.01$)	0.322	0.248	0.261
TAPE ($\delta = 0.10$)	0.361	0.312	0.250
TAPE ($\delta = 0.20$)	0.346	0.282	0.260

CONCLUSION

- Our approach performs better than baselines
- Qualitative results show model is adaptable to moving sound source
- ► Pretraining with larger dataset i.e. STARSS[8] helps
- ► Percentage based error gives the optimal results

► Future Work:

- ► Extend to multiple simultaneous events
- ► Joint model for sound event DOA + distance + classification

REFERENCES

- [1] Grumiaux et. al, "A survey of sound source localization with deep learning methods"
- [2] Adavanne et. al, "A multi-room reverberant dataset for SELD"
- [3] Politis et. al, "STARSS23: SonyTAu Realistic Spatial Soundscapes 2023"
- [4] Daniel et. al, "Echo-enabled direction-of-arrival and range estimation of a mobile source in ambisonic domain"
- [5] Yiwere et. al, "Distance estimation and localization of sound sources in reverberant conditions using deep neural networks"
- [6] Takeda et. al, "Sound source localization based on deep neural networks with directional activate function exploiting phase information"
- [7] Wang et. al, "A four-stage data augmentation approach to resnet-conformer based acoustic modeling for sound event localization and detection"
- [8] Politis et al, "STARSS23: Sony-TAu Realistic Spatial Soundscapes 2023"