Memory Reduction for Strategies in Infinite Games

Michael Holtmann and Christof Löding

Chair of Computer Science 7, RWTH Aachen, Germany

CIAA '07 Prague - Czech Republic July 18, 2007

Introduction

- Infinite games are used for synthesis and verification of reactive systems
- Reactive systems
 - protocols, controllers,...
 - several agents with opposing objectives
 - nonterminating behavior
- Infinite games
 - the system is represented by a finite graph
 - two players (system and environment)
 - the requirements are modeled by a winning condition for either player

Introduction

- Infinite games are used for synthesis and verification of reactive systems
- Reactive systems
 - protocols, controllers,...
 - several agents with opposing objectives
 - nonterminating behavior
- Infinite games
 - the system is represented by a finite graph
 - two players (system and environment)
 - the requirements are modeled by a winning condition for either player
- Winning strategies in infinite games correspond to controller programs for reactive systems
- Two important questions:
 - What are the computational costs for solving a game?
 - What is the size of the solution (strategy automaton)?

OUTLINE

Infinite Games

- Memory Reduction
 - Minimization of Strategy Automata
 - Reduction of Game Graphs

Some Results

OUTLINE

Infinite Games

- 2 Memory Reduction
 - Minimization of Strategy Automata
 - Reduction of Game Graphs

Some Results

Infinite Games

- ullet Two Players: igcap and oxdot
- Game Graph: $G = (Q, Q_{\square}, Q_{\square}, E)$ finite and directed
- Play: Infinite path ρ through G
- Winning Condition for Player \bigcirc : $\varphi \subseteq Q^{\omega}$

Example: Staiger-Wagner game

Player \bigcirc wins $\rho : \iff Occ(\rho) \in \{F_1, \dots, F_k\}$

 $Occ(\rho)$: set of vertices visited in ρ at least once

$$\mathcal{F} = \{F_1, \dots, F_k\}$$
: "winning sets" for Player \bigcirc

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \rightarrow Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \rightarrow Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \to Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

$$0,3 \qquad 0,1,3$$

$$2|2 \qquad 2|3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,1,3$$

$$0,$$

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \to Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

$$0,3$$
 $0,1,3$ $2|2$ $2|3$ $0,1,3$ $0,$

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \to Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

$$0,3$$
 $0,1,3$ $2|2$ $2|3$ $0,1,3$ $0,$

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \to Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

$$0, 3$$
 $2|2$
 $2|3$
 $\rho = 0102$

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \rightarrow Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

$$0,3$$
 $2|2$
 $2|3$
 $0,1,3$
 $2|3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,3$
 $0,1,$

- A strategy for Player \bigcirc is a function $f: Q^*Q_{\bigcirc} \to Q$ respecting the edge relation
- Strategy automaton: Implementation of a strategy as a finite automaton with output: $\mathcal{A} = (S, Q, s_0, \sigma, \tau)$
 - $\sigma: S \times Q \rightarrow S$ yields the memory update rule
 - $\tau: S \times Q_{\bigcirc} \to Q$ computes the strategy f iteratively
- Positional strategy: can be implemented by a strategy automaton with only one state (and is specified by a set $E_{pos} \subseteq E$)

$$0,3$$
 $0,1,3$ $2|2$ $2|3$ $0,1,3$ $0,$

HOW MUCH MEMORY IS NEEDED?

Given: Infinite Game $\Gamma = (G, \varphi)$

Problem: Compute a winning strategy with "small" memory

Büchi, Landweber' 69:

For regular winning conditions we need only finite memory

We compare two approaches to memory reduction:

- Compute strategy and then reduce corresponding automaton Problem: The strategy might be very complicated
- Reduce memory before strategy is computed Problem: How to reduce the memory?

OUTLINE

Infinite Games

- 2 Memory Reduction
 - Minimization of Strategy Automata
 - Reduction of Game Graphs

Some Results

MINIMIZATION OF STRATEGY AUTOMATA

- Note: Strategy automata are Mealy machines
- Merge states from which the same output functions are computed
- Advantages:
 - Efficient
 - Independent of game graph and winning condition
- Disadvantage: The result depends on the strategy

MINIMIZATION OF STRATEGY AUTOMATA

- Note: Strategy automata are Mealy machines
- Merge states from which the same output functions are computed
- Advantages:
 - Efficient
 - Independent of game graph and winning condition
- Disadvantage: The result depends on the strategy

Complicated strategy: Delay the move to vertex 3 for *n* times

• A_n counts the number of revisits to vertex 2

- Idea: Simulate the given game Γ by a new game Γ' and use a solution to Γ' for solving Γ
- ullet Extend game graph G by a (finite) memory component S
 - ullet Often the new game graph G' is exponentially large in the size of G
 - ullet The game Γ' admits easier winning strategies, e.g. positional ones

$$\Gamma = (G, \varphi) \qquad \text{Game Reduction} \qquad \Gamma' = (G', \varphi') \\
G = (Q, E) \qquad \qquad G' = (S \times Q, E')$$

GAME REDUCTION

- Idea: Simulate the given game Γ by a new game Γ' and use a solution to Γ' for solving Γ
- Extend game graph G by a (finite) memory component S
 - Often the new game graph G' is exponentially large in the size of G
 - The game Γ' admits easier winning strategies, e.g. positional ones

$$\Gamma = (G, \varphi) \quad \text{Game Reduction} \quad \Gamma' = (G', \varphi') \\
G = (Q, E) \quad G' = (S \times Q, E')$$

Proposition: From a positional winning strategy $E'_{pos} \subseteq E'$ in Γ' we can construct a strategy automaton which implements a winning strategy in Γ

- The strategy automaton has state set S
- E' captures the memory update rule

•
$$((s_1, q_1), (s_2, q_2)) \in E' \Longrightarrow \sigma(s_1, q_1) := s_2$$

- The positional strategy E'_{pos} determines the output function
 - $((s_1, q_1), (s_2, q_2)) \in E'_{pos} \Longrightarrow \tau(s_1, q_1) := q_2$

EQUIVALENCE OF MEMORY CONTENTS

- ullet Note: S imes Q consists of finitely many copies of Q
- ullet Merge copies of G' s.th. properties of game reduction are preserved
- Reduce Γ' as deterministic ω -game automaton $\mathcal A$
 - Transition labels: $(s,q) \xrightarrow{q'} (s',q') \leadsto \mathcal{A}$ accepts the language φ
 - If $(s_1, q_1) \approx (s_2, q_2)$ for a language-preserving equivalence relation \approx then from these states Player \bigcirc wins exactly the same plays

EQUIVALENCE OF MEMORY CONTENTS

- Note: $S \times Q$ consists of finitely many copies of Q
- ullet Merge copies of G' s.th. properties of game reduction are preserved
- ullet Reduce Γ' as deterministic ω -game automaton ${\mathcal A}$
 - Transition labels: $(s,q) \xrightarrow{q'} (s',q') \leadsto \mathcal{A}$ accepts the language φ
 - If $(s_1, q_1) \approx (s_2, q_2)$ for a language-preserving equivalence relation \approx then from these states Player \bigcirc wins exactly the same plays

EQUIVALENCE OF MEMORY CONTENTS

- ullet Note: S imes Q consists of finitely many copies of Q
- ullet Merge copies of G' s.th. properties of game reduction are preserved
- Reduce Γ' as deterministic ω -game automaton ${\mathcal A}$
 - Transition labels: $(s,q) \xrightarrow{q'} (s',q') \leadsto \mathcal{A}$ accepts the language φ
 - If $(s_1, q_1) \approx (s_2, q_2)$ for a language-preserving equivalence relation \approx then from these states Player \bigcirc wins exactly the same plays

• If for all $q \in Q$ the pairs $(s_1, q), (s_2, q)$ are equivalent then s_1 and s_2 need not be distinguished

$$s_1 \approx_S s_2 : \iff \forall q \in Q : (s_1, q) \approx (s_2, q)$$

• The new memory is the set $S/_{\approx s}$

ALGORITHM

Input: $\Gamma = (G, \varphi)$ with φ regular, G = (Q, E) finite

- (1) Establish game reduction from $\Gamma = (G, \varphi)$ to $\Gamma' = (G', \varphi')$
- (2) View Γ' as deterministic ω -automaton $\mathcal A$ (accepting language φ)

Transition labels: $(s_1, q_1) \xrightarrow{q_2} (s_2, q_2)$

- (3) Reduce \mathcal{A} : Use equivalence relation \approx on $S \times Q$ to compute \approx_S on S and construct corresponding quotient automaton $\mathcal{A}/_{\approx_S}$
- (4) View $\mathcal{A}/_{\approx_S}$ as infinite game Γ'' and from positional winning strategy for Player \bigcirc in Γ'' compute corresponding strategy automaton for Γ

Output: Strategy Automaton for Player \bigcirc from W_{\bigcirc} in Γ

ALGORITHM

Input: $\Gamma = (G, \varphi)$ with φ regular, G = (Q, E) finite

- (1) Establish game reduction from $\Gamma = (G, \varphi)$ to $\Gamma' = (G', \varphi')$
- (2) View Γ' as deterministic ω -automaton $\mathcal A$ (accepting language φ)

Transition labels: $(s_1, q_1) \xrightarrow{q_2} (s_2, q_2)$

- (3) Reduce \mathcal{A} : Use equivalence relation \approx on $S \times Q$ to compute \approx_S on S and construct corresponding quotient automaton $\mathcal{A}/_{\approx_S}$
- (4) View $\mathcal{A}/_{\approx_S}$ as infinite game Γ'' and from positional winning strategy for Player \bigcirc in Γ'' compute corresponding strategy automaton for Γ

Output: Strategy Automaton for Player \bigcirc from W_{\bigcirc} in Γ

Theorem

Let $\Gamma = (G, \varphi)$, $\Gamma' = (G', \varphi')$ be infinite games and Γ be reducible to Γ' . If \approx satisfies certain structural properties then Γ is reducible to Γ'' .

OUTLINE

Infinite Games

- 2 Memory Reduction
 - Minimization of Strategy Automata
 - Reduction of Game Graphs

Some Results

IMPLEMENTATION

- Staiger-Wagner (= weak Muller)
 - Capture boolean combinations of safety and reachability conditions
 - Game reduction to weak Büchi games
 - A deterministic Büchi automaton is called weak if all states within the same SCC are accepting or all are rejecting
 - DWA can be minimized efficiently via minimization of DFA (Löding'01)
- Request-Response
 - $\bigwedge_{i=1}^{k}$ "If P_i is visited then now or later R_i must be visited"
 - Game reduction to Büchi games
 - Büchi automata can be reduced with delayed simulation (Etessami, Wilke, Schuller'05)
 - Also applicable to generalized Büchi and upwards-closed Muller games
- In both cases: running time exponential in the size of the given game

IMPLEMENTATION

- Staiger-Wagner (= weak Muller)
 - Capture boolean combinations of safety and reachability conditions
 - Game reduction to weak Büchi games
 - A deterministic Büchi automaton is called weak if all states within the same SCC are accepting or all are rejecting
 - DWA can be minimized efficiently via minimization of DFA (Löding'01)
- Request-Response
 - $\bigwedge_{i=1}^{k}$ "If P_i is visited then now or later R_i must be visited"
 - Game reduction to Büchi games
 - Büchi automata can be reduced with delayed simulation (Etessami, Wilke, Schuller'05)
 - Also applicable to generalized Büchi and upwards-closed Muller games
- In both cases: running time exponential in the size of the given game
- Muller, Streett
 - Game reduction to parity games
 - We use a sophisticated version of delayed simulation for which we need to solve a Büchi game (Fritz, Wilke'06)

Upper Bound

• Staiger-Wagner winning condition:

Visit only orange vertices or both green ones

Lemma

- If we solve Γ'_n by a conventional algorithm (Chatterjee'06) then we get an exponential size winning strategy for Player \bigcirc in Γ_n from ν .
- ② The reduced game graph computed by our Algorithm has constantly many memory contents.

CONCLUSIONS

- Problem: How to compute winning strategies that require only a small memory?
- Classical Approach: Compute strategy and then minimize corresponding automaton
 - Reduce strategy automaton as Mealy machine
 - Advantage: efficient and independent of underlying game
 - Drawback: depends on the strategy
- Our Approach: Reduce memory and then compute strategy
 - Introduce memory (by game reduction) and compute equivalent memory contents via transformation to ω -automaton
 - Advantage: independent of winning strategies
 - Drawback: efficient minimization of ω -automata is difficult
 - ullet Minimal ω -automaton does not guarantee optimal memory
- Experiments have shown strengths and weaknesses of both the two approaches