2012 University/College IC Design Contest

Cell-Based IC Design Category for Graduate Level

Multi-Bank Filter

1.問題描述

請完成一Multi-Bank Filter (後文以 MBF表示)的電路設計,如圖一所示。此電路可以將任意 8bits(含正負號)的數位訊號 x,(1)進行低通濾波器(Low Pass Filter 後文以 LPF表示)運算,並將其運算結果輸出至 8bits 之匯流排 y,(2)進行高通濾波器(High Pass Filter 後文以 HPF表示)運算,並將其運算結果輸出至 8bits 之匯流排 z。有關 MBF 詳細規格將描述於後。

本電路各輸入輸出信號的功能說明,請參考表一。每個參賽隊伍必須根據下一節所給的 設計規格及附錄 A 中的測試樣本完成設計驗證。

本次IC設計競賽比賽時間爲上午 08:30 到下午 20:30。當IC設計競賽結束後, CIC 會根據第三節中的評分標準進行評分。爲了評分作業的方便,各參賽隊伍應參考附錄 E中所列的要求,附上評分所需要的檔案。

本題目之測試樣本置於 /usr/cad/icc2012/gcb/icc2012cb.tar ,請執行以下指令取得測試樣本:

tar xvf /usr/cad/icc2012/gcb/icc2012cb.tar

軟體環境及設計資料庫説明請參考附錄F與附錄G。

圖一、Multi-Bank Filter 之方塊圖

2.設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

表 1-輸入/輸出訊號

Signal Name	I/O	Width	Simple Description
	I	1	
clk	1	1	本系統爲同步於時脈正緣之同步設計。
ragat	I	1	高位準"非"同步(active high asynchronous)之系統重
reset	1	1	置信號。
			LPF 輸出資料之有效控制訊號。當爲 High 時,表示
y_valid	О	1	目前輸出的資料爲有效的;反之,當爲 Low 時,表
			示目前輸出資料爲無效的,即不被採用。
			LPF 資料輸出的匯流排。當 LPF 計算完畢後,可透過
у	О	8	此匯流排將運算完畢的數值,輸出至 Host 端。注意
			每一個週期僅能輸出一筆值。
			HPF 輸出資料之有效控制訊號。當爲 High 時,表示
z_valid	О	1	目前輸出的資料爲有效的;反之,當爲 Low 時,表
			示目前輸出資料爲無效的,即不被採用。
			HPF 資料輸出的匯流排。當 HPF 計算完畢後,可透
Z	О	8	過此匯流排將運算完畢的數值,輸出至 Host 端。注
			意:每一個週期僅能輸出一筆值。

圖三、Multi-bank Filter 架構

2.3 系統描述

2.3.1 MBF 系統架構

MBF 電路包含了兩種濾波器的運算,LPF與HPF運算,如圖三所示。其中輸入訊號 x 爲 8bits 表示,LPF輸出訊號 y與 HPF輸出訊號 z也皆爲 8bits 表示,主辦單位所提供之輸入訊號 x 範圍限定爲 $-110\sim110$,因此濾波器運算後的結果 y與 z,其輸出必落在 $-127\sim127$ 之範圍。

2.3.2 MBF 運算之輸入方式

本題之輸入訊號 X 並非由輸入腳位(Input Port)作輸入,而是從晶片內部的 ROM(規格 1024x4bits)來讀取資料,該 Rom 的資料匯流排僅有 4bits,因此僅可以擺放 512 筆 8bits 的資料,即位址 0 擺放第一筆資料的 LSB 4bits,位址 1 擺放第一筆資料的 MSB 4bits,位址 2 擺放第二筆資料的 LSB 4bits,位址 3 擺放第二筆資料的 MSB 4bits,依此類推,如圖四所示。

圖四、輸入資料 x 內建在 ROM 的範例(a)512 筆輸入訊號 (b)被儲存在 ROM 的方式 2.3.3 低通濾波器: LPF 運算方式

LPF 其實就是作旋積(Convolution)運算,如式(1)所示,式中 \mathbf{x} 爲輸入訊號, \mathbf{n} 爲第 \mathbf{n} 筆 - 3 -

資料之意, h_0 爲 LPF 係數,其 16 組係數定義如表 2 所示。經過 Convolution 運算後的輸出結果爲 y。

$$y(n) = \sum_{k=0}^{15} x(n) * h_0(n-k)$$
 (1)

其中,

表2、LPF係數

	Low-pass Filter Coefficient (h ₀)					
$h_0(0)$	- 1.9531250e-003	$h_0(8)$	5.0000000e-001			
$h_0(1)$	- 3.9062500e-003	$h_0(9)$	1.5625000e-001			
$h_0(2)$	7.8125000e-003	$h_0(10)$	- 7.8125000e-002			
$h_0(3)$	2.3437500e-002	$h_0(11)$	- 4.6875000e-002			
$h_0(4)$	- 4.6875000e-002	$h_0(12)$	2.3437500e-002			
$h_0(5)$	- 7.8125000e-002	$h_0(13)$	7.8125000e-003			
$h_0(6)$	1.5625000e-001	$h_0(14)$	- 3.9062500e-003			
$h_0(7)$	5.0000000e-001	$h_0(15)$	- 1.9531250e-003			

2.3.4 高通濾波器: HPF 運算方式

HPF 其實也是作旋積(Convolution)運算,如式(2)所示,式中 x 爲輸入訊號,n 爲第 n 筆 資料之意, h_1 爲 HPF 係數,其 16 組係數定義如表 3 所示。經過 Convolution 運算後的輸出結果爲 z。

$$z(n) = \sum_{k=0}^{15} x(n) * h_1(n-k)$$
 (2)

其中,

表 3、HPF 係數

High-pass Filter Coefficient (h1)					
$h_1(0)$	- 1.9531250e-003	$h_1(8)$	5.0000000e-001		
$h_1(1)$	3.9062500e-003	$h_1(9)$	- 1.5625000e-001		
$h_1(2)$	7.8125000e-003	$h_1(10)$	- 7.8125000e-002		
$h_1(3)$	- 2.3437500e-002	$h_1(11)$	4.6875000e-002		
$h_1(4)$	- 4.6875000e-002	$h_1(12)$	2.3437500e-002		
$h_1(5)$	7.8125000e-002	$h_1(13)$	- 7.8125000e-003		
$h_1(6)$	1.5625000e-001	$h_1(14)$	- 3.9062500e-003		
h ₁ (7)	- 5.0000000e-001	$h_1(15)$	1.9531250e-003		

2.3.5 MBF 運算之 VLSI 參考架構

關於式(1)、式(2)之旋積運算,VLSI主要有兩種架構,如圖五(a)、(b),參賽者可自行決定要使用何種架構。

圖五(a)、 旋積運算之 VLSI 架構一

圖五(b)、旋積運算之 VLSI 架構二

2.3.6 MBF 運算之輸出方式

MBF 包含 LPF、HPF 運算,參賽者可自由選擇,先輸出 LPF或 HPF 的運算結果,也可

以LPF與HPF一起輸出或交叉輸出皆可。至於輸出的筆數,主辦單位在此規定任何一筆的 Convolution 運算都要作輸出,假設輸入訊號 x 有 N 筆,濾波器係數 h 有 M 筆,其輸出筆數 爲(N+M-1)筆,可參考圖六之範例。

圖六、 MBF 輸出筆數與其值之範例

另外,當Y與Z訊號輸出有小數位數的部分,處理法則規定如下:

- 1. 若爲正數,採用四捨五入法取到整數。
- 2. 若爲負數,採用五捨六入法取到整數。

範例如圖七所示。

圖七、 MBF 輸出之 y、z 訊號的小數位數處理方式之範例

2.4 電路時序規格

2.4.1 MBF 電路時序規格

圖八、MBF 電路時序圖

- 1. T1 時間點, reset 一個 Cycle 的時間, MBF 電路初始化結束, 參賽者便要開始自行從 ROM 讀取輸入訊號 x 的值,注意, ROM 每次讀取只有 4bits 資料, 一筆完整 8bits 資料 要分兩次(即兩個 Clock 週期)讀取。
- 2. T2 時間點,經過 LPF或 HPF 電路計算後,欲將其運算結果輸出,請將 y_valid 拉為 High 以通知 Host 端有一筆 LPF 計算後的值要輸出,或將 z_valid 拉為 High 已通知 Host 端有一筆 HPF 計算後的值要輸出。注意: LPF與 HPF 輸出可以不必同時輸出,兩者關係爲獨立的。
- 3. T3 時間點,動作與前述相同,進行第二筆的資料輸出。
- 4. T4時間點,動作與前述相同,進行最後一筆的資料輸出。當LPF與HPF都輸出至最後 一筆後,模擬立即結束。

2.4.2 ROM 記憶體規格與時序規格

製作 MBF 電路,由於所有輸入訊號 x 已被放置在 ROM 裡,參賽者必須將 ROM 擺置於 晶片内部,並於撰寫 RTL Code 時,呼叫此塊記憶體進來,將其一起做合成與 APR,以完成整個設計。

有關 ROM 1024x4bits 記憶體細節規格與記憶體之時序圖,詳如記憶體附件中。

3.評分標準

評分方式會依設計完成程度,分成A、B、C三種等級,排名順序爲A>B>C,評分項目有兩個,分別 爲模擬時間、面積,主辦單位會依此兩項目做爲同等級之評分。另外,請參賽者提供一組正確的週期時間

◆ 評分項目一:依"模擬時間"(Time)長短評分

各參賽隊伍將 APR 完成後,執行 Gate-level Post-layout Simulation 模擬完後,會出現模擬時間,評分人員會以此模擬時間如下面範例,紀錄成 Time = 10556NS 做評分。

Congratulations! All data have been generated successfully!
------PASS-----Simulation complete via \$finish(1) at time 10556 NS + 0

◆ 評分項目二:依"面積"(Area)大小評分

各參賽隊伍將 APR 完成後,面積分析方法如下範例,請任選其一 APR 軟體做分析。

1. IC Compiler Report Area 範例:

icc_shell> get_attribute [get_die_area] bbox

{0.000 0.000} {300.00 300.11}

 \Rightarrow Area = 300.00 x 300.11 = 90033 um²

2. SOC Encounter Report Area 範例:

```
encounter > analyzeFloorplan
```

******************* Analyze Floorplan **********************

Die Area(um^2) : 93417.33 Core Area(um^2) : 87289.16 Number of instance(s) : 4786 Number of Macro(s) : 1 Number of IO Pin(s) : 20 Number of Power Domain(s) : 0

 \Rightarrow Area = 93417.33 um²

設計完成程度三種等級,如下:

- ◆ 等級A: 達成"完成設計"之三項要求
 - a、 功能正確, RTL 模擬與 Golden Pattern 比對完全正確。
 - b、 完成 Synthesis, 且 Gate-Level Pre-layout Simulation 結果正確。
 - c、 完成 APR, 並達成 APR 必要項目, Gate-Level Post-layout Simulation 結果正確。

註:完成 APR 之必要項目

- i. 只需做 Marco layout (即不用包含 IO Pad、Bonding Pad)。
- ii. VDD 與 VSS Power Ring 寬度請各設定爲 2um,不必做 interleaving。
- iii. 不要加 Dummy Metal。
- iv. Power Stripe 務必至少加一組,其 VDD、VSS 寬度各設定爲 2um。 (Power Stripe 垂直方向至少一組,水平方向無任何限制)

- v. Power Rail 務必要加。
- vi. Core Filler 務必要加。
- vii. 内建的記憶體 ROM,其 VDD、VSS Pin 務必要連接至 Core Power Ring。
- viii. APR 後之 GDSII 檔案務必產生。
 - ix. 完成 APR, DRC/LVS 完全無誤。

等級 A 之評分方法:

Score = Time x Area

例如:

在前一頁範例中, Score = Time x Area = 10556 x 90033 = 950388348

註: Score 越小者,同級名次越好!

◆ 等級 B:達成等級 A 之要求,但"APR 必要項目"有部分不符合,DRC/LVS 錯誤總數量容許 5 個(含)以下

此等級之成績計算方式如下:

Score = Time x Area x (DRC+LVS 的錯誤總數量)

註: Score 越小者,同級名次越好!

◆ 等級 C:達成等級 A 之要求, DRC/LVS 錯誤總數量超過 5 個以上,或是未完成 APR 此等級之成績計算方式如下:

Score = Time x Area

註:

- 1. Score 越小者,同級名次越好!
- 2. 等級 C, 視 APR 爲 Fail, Area 以 Design Compiler 所 Report 的 Cell Area 爲主。
- 3. 等級 C, 視 APR 爲 Fail, Time 以 Gate-level Pre-layout Simulation 爲主。

附錄

附錄 A 爲主辦單位所提供各參賽者的設計檔案説明; 附錄 B 爲主辦單位提供的測試樣本説明; 附錄 C 爲設計驗證説明; 附錄 D 爲評分用檔案,亦即參賽者必須繳交的檔案資料附錄 E 則爲設計檔案壓縮整理步驟説明; 附錄 F 中說明本次競賽之軟體環境; 附錄 G 中説明

附錄A設計檔(For Verilog)

1. 下表爲主辦單位所提供各參賽者的設計檔

檔名	説明
MBF.v	參賽者所使用的設計檔,已包含系統輸/出入埠之宣 告
testfixture1.v testfixture2.v	兩個 Test Bench 檔案。每個 Test Bench 已自動加入 對應的 golden 比對檔案。
rom_1024x4_t13_verilog1.rcf rom_1024x4_t13_verilog2.rcf	兩組測試樣本 ROM Data,每組提供 512 筆輸入訊號 x 於 ROM 裡。註: 兩個 rcf 檔案,是存放 rom 的 Data,參賽者可以參考 LSB+MSB 沒有分開擺的版本 pattern1.dat、pattern2.dat 以方便模擬與除錯用。
LPF_golden1.dat	兩組測試樣本的 Golden Pattern。每一個樣本提供 LPF及 HPF 運算後的 golden pattern,各 527 筆資料
HPF_golden1.dat	需要作比對。註:兩組 Golden Pattern 皆以十六進制表示。
LPF_golden2.dat	14 火 小
HPF_golden2.dat	
.synopsys_dc.setup	使用 Design Compiler (DC)作合成或 IC Compiler Layout 之初始化設定檔。參賽者請依 Library 實際擺放位置,自行填上 Search Path 的設定。注意:無論合成或 APR, 只需使用 worst case library;
MBF_DC.sdc	Design Compiler(DC)作合成之 Constraint 檔案。參 賽者可依需求自行修改部分設定, (見附錄 A 説 明)。
MBF_APR.sdc	SOC Encounter(SOCE)或 IC Compiler(ICC)作 Layout 之 Constraint 檔案。參賽者可依需求自行修改部分設定(見附錄 A 説明)。
rom_1024x4_t13_sim1.v	ROM Verilog simulation
rom_1024x4_t13_sim2.v	model。rom_1024x4_t13_sim1.v 會自動 Include 第一 組 Pattern(rom_1024x4_t13_verilog1.rcf)。 rom_1024x4_t13_sim 2.v 會自動 Include 第二組 Pattern(rom 1024x4 t13 verilog2.rcf)
rom_1024x4_t13_slow_syn.db	ROM timing library (For DC and ICC) 注意:無論 DC 合成或用 ICC 做 APR,只需使用 worst case library,例如: slow.db、rom_1024x4_t13_slow_syn.db。
rom_1024x4_t13_slow_syn.lib	ROM timing library(For SOCE)。 注意:用 SOCE 做 APR,只需使用 worst case library 例 如 : slow.db、rom_1024x4_t13_slow_syn.db。
rom_1024x4_t13/	ROM frame view, ICC APR 使用
rom_1024x4_t13.vclef	ROM lef,SOCE APR 使用
rom_1024x4_t13.gds	ROM gds,作為 Stream Out GDSII 之用。

表4設檔説

```
請使用 MBF.v,進行 MBF 電路之設計。其模組名稱、輸出/入埠宣告如下所示:
```

```
module MBF(clk, reset, y_valid, z_valid, y, z); input clk; input reset; output y_valid; output z_valid; output z_valid; output [7:0] y; output [7:0] z; endmodule
```

2. 主辦單位提供兩個 Test Bench 檔案 testfixture1.v,testfixture2.v 分別對應到 LPF_golden1.dat、HPF_golden1.dat及 LPF_golden2.dat、HPF_golden2.dat, 這些都已加入了,參賽者只要注意這些檔案的路徑即可。

例如:

第一個 Test Bench 模擬,使用 testfixture1.v:

```
'define EXP1 "./LPF_golden1.dat"
'define EXP2 "./HPF_golden1.dat"
```

註:參賽者無須作修改,只需注意 LPF_golden1.dat 與 HPF_golden1.dat 的檔案位置即可, 預設路徑爲"目前目錄"。

3. 主辦單位提供兩個 ROM 的模擬檔案 rom_1024x4_t13_sim1.v、rom_1024x4_t13_sim2.v, 會自動呼叫 ROM 的 Data(即輸入訊號 x 的來源),參賽者只要注意這些檔案的路徑即可。 例如:

```
第一個 ROM 的模擬檔案,使用 rom_1024x4_t13_sim1.v,在該檔案的第 126 行可看到: initial
```

\$readmemb("rom 1024x4 t13 verilog1.rcf", mem);

註:參賽者無須作修改,只需注意 rom_1024x4_t13_verilog1.rcf 的檔案位置即可,預設路徑爲"目前目錄"。

4. 主辦單位所提供的兩個 Test Bench 檔案, 多加敘述如下:

```
'define End_CYCLE 10000000
'define SDFFILE "./MBF_syn.sdf"
'ifdef SDF
initial $sdf_annotate(`SDFFILE, MBF);
'endif
```

註:

1. End_CYCLE 預設 1000 萬個 Cycles,其目的可以防止參賽者因電路有錯,模擬陷入無窮

回圈之境,倘若參賽者確定模擬需超過1000萬個Cycles以上,可自行再加大此Cycle數。

- 2. SDF檔案,請自行修改SDF實際檔名後模擬。
- 3. 在 Test Bench 中,主辦單位提供`ifdef SDF的描述,其目的是讓本 Test Bench 可以作爲 RTL 模擬、合成後模擬與 Layout 後模擬使用。注意:當參賽者在合成或 Layout 後模擬,請務必多加一個參數"+define+SDF",方可順利模擬。

例如:當合成後,使用 NC-Verilog 模擬第一組樣本,在 UNIX 下執行下面指令 > ncverilog testfixture1.v MBF_syn.v rom_1024x4_t13_sim1.v -v tsmc13_neg.v +define+SDF +access+rw

5. 主辦單位已提供合成及 APR 的 SDC 檔(MBF_DC.sdc, MBF_APR.sdc),檔案內關於環境設定部分不可更改,其它部分可根據參賽者設計需求進行增減或修改,再行使用 SDC 檔案。

例如:MBF DC.sdc 檔案内容如下:

A. 需要自行修改 clock constraints 及依照自己電路設計需求,增加額外的 Constraints 設定:

B. 下述幾行的 Constrains 為主辦單位規定的基本的環境設定,參賽者不可以作任何更改:

```
#The following are design spec. for synthesis
#You can NOT modify this seciton
########
set_clock_uncertainty 0.1 [all clocks]
set_clock_latency 0.5 [all_clocks]
set_input_delay 1 -clock clk [remove_from_collection [all_inputs]
    [get ports clk]]
set output_delay 1 -clock clk [all_outputs]
       1 [all_outputs]
set load
set drive 1 [all inputs]
set operating conditions -max library slow -max slow
set wire load model -name tsmc13 wl10 -library slow
########
```

附錄B測試樣本

主辦單位提供兩組測試樣本,爲了讓參賽者看完題目後,更能明確題意,主辦單位在此 以 Pattern1 之測試樣本爲例,如圖四(a)所示,爲第一組 Pattern,其實際擺放在 ROM 的方式 爲 Address 0 擺放第一筆資料的 LSB 4bits, Address 1 擺放第一筆資料的 MSB 4bits, 其餘資 料依此類推,如圖四(b)所示。經過LPF與HPF運算後,前8組的輸出結果如表五所示,提 供參賽者模擬與除錯使用。參賽者也可以直接參考 LPF golden1.dat、HPF golden1.dat 及 LPF golden2.dat、HPF golden2.dat的值。

	表五、第一組 Pattern	LPF&HPF 前八筆計算結	果
LP	PF y(n)	HPF	z(n)
n	y(n)	n	z(n)
0	00	0	00
1	00	1	00
2	01	2	01
3	02	3	FD
4	FA	4	FB
5	F8	5	0C
6	18	6	11
7	35	7	BD

附錄 C 設計驗證説明

參賽者繳交資料前應完成 RTL, Gate-Level 與 Physical 三種階段驗證,以確保設計正確性。 注意:每組限定只能使用 1 license, 勿使用 Multi-CPU。

- RTL 與 Gate-Level 階段:參賽者必須進行 RTL simulation 及 Gate-Level simulation, 模擬結果必須於參賽者提供之 CYCLE 數值下,功能完全正確。
- ▶ Physical 階段,包含三項驗證重點:
- 1. 依主辦單位各項要求,實現完整且正確的 layout (詳細之各項要求,請見評分標準)。
- 2. 完成 post-layout simulation: 參賽者必須使用 P&R 軟體**寫出之 netlist 檔與 sdf 檔完** 成 post-layout gate-level simulation,以下分爲 IC Compiler、SOC Encounter 兩種軟體說明 netlist 與 sdf 寫出步驟。
 - i. 使用 Synopsys IC Compiler 者 , 執 行 步 驟 如 下 : 在 IC Compiler 主 視 窗 底 下 點 選

" File > Export > Write SDF..."

Specify Version	Version 2.1
Instance	空白即可
File name	MBF_pr.sdf
Significant digits	2

按OK。

對應指令: write_sdf -version 2.1 MBF_pr.sdf

" File > Export > Write Verilog..."

先按 Default

Output verilog file name	MBF_pr.v
Output physical only cells	disable
Wire declaration	enable
Backslash before Hierarchy Separator	Enable
All other options	Default value

按OK。

ii. 使 用 Cadence SOC Encounter 者 , 執 行 步 驟 如 下 : 在 SOC Encounter 視窗下點選:

"Design Bave Netlist..."

Netlist File

MBF pr.v

All other options

Default value
接OK。

"Timing = Extract RC...",接OK。

"Timing = Calculate Delay...

存成 MBF pr.sdf,接OK。

- 3. 完成 DRC 與 LVS 驗證: 參賽者必須以其所使用之 P&R 軟體內含之 DRC 與 LVS 驗證功能完成 DRC 與 LVS 驗證,以下分爲 IC Compiler、SOC Encounter 兩種軟體說明執行步驟。
 - i. 使用 Synopsys IC Compiler 者 , 驗 證 DRC 與 LVS 步 驟 如 下 : 在 IC Compiler Layout 視窗底下點選
 - "Route > Verification > DRC ..."

Read child cell from	Cell view	
All other options	Default value	

按OK。

將跳出 Error Browser 視窗,請參賽者自行查看是否有錯,若有請自行修改 Layout 到 0 個 Violation 爲止。

"Route > Verification > LVS ..."

Pins not connected to a wire segment(Floating port)	disable
All other options	Default value

按OK。

將跳出 Error Browser 視窗, 檢查看看是否有錯,若有請自行修正到 0 個 Violation 爲止。

ii. 使用 Cadence SOC Encounter 者,驗證 DRC 與 LVS 步驟如下:

在 SOC Encounter 視窗下點選

1. DRC 驗證: 請選 "Verify □ Verify Geometry..." Default 值,按 OK。

註: 若 DRC 有發生錯誤,請選 "Verify "Violation Browser... "查明原因。

2. LVS 驗證: 請選 "Verify " Verify Connectivity..." Default 值,按OK。

註: 若 LVS 有發生錯誤,請選 "Verify LViolation Browser..."查明原因。

附錄 D 評分用檔案

評分所須檔案可以下幾個部份:(1)RTL design,即各參賽隊伍對該次競賽設計的RTL code,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放進來,以免評審進行評分時,無法進行模擬;(2)Gate-Level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF 檔;(3)Physical design,使用 Synopsys IC Compiler 者,請記得將整

個 Milkyway Library 等相關的 design database, 壓縮成一個檔案。使用 Cadence SOC Encounter 者,請將 SOC Encounter 相關的 design database (包含.enc 檔案與 and .enc.dat 目錄),壓縮成一個檔案。壓縮的檔案格式如下:假設參賽者的 design database 目錄名稱為 "your_lib",請執行底下的 UNIX 指令,最後可以得到"your_name.tar"的檔案。

> tar cvf your_name.tar your_lib

在執行以上的指令之前,請確定將你使用的 P&R Tool 儲存後關閉,再執行上述的指令,否則在壓縮的過程會出現錯誤。

表 6

表 0					
RTL category					
Design Stage	File	Description			
N/A	N/A	Design Report Form			
RTL Simulation	*.v or *.vhd	Verilog (or VHDL) synthesizable RTL code			
	Gat	e-Level category			
Design Stage	File	Description			
Pre-layout	*	Verilog gate-level netlist generated by Synopsys			
Gate-level	*_syn.v	Design Compiler			
Simulation	*_syn.sdf	Pre-layout gate-level sdf			
	Ph	ysical category			
Design Stage	File	Description			
	*.tar	archive of the design database directory			
	*.gds	GDSII layout			
P&R	DD G / T T T G	不用儲存 DRC/LVS Report 檔案!只需在 Design			
	DRC/LVS	Report Form 上填寫 DRC/LVS 錯誤總數量即			
	report	可。(目標要做到0個錯誤!)			
Post-layout	.i.	Verilog gate-level netlist generated by Cadence			
Gate-level *_pr.v		SOC Encounter or Synopsys IC Compiler			
Simulation	* pr.sdf	Post-layout gate-level sdf			

附錄E檔案整理步驟

當所有的文件準備齊全如表 6 所列,請按照以下的步驟指令,提交相關設計檔案,將所有檔案複製至同一個資料夾下,步驟如下:

- 1. 在自己的 home directory 建立一個新目錄,名稱叫做 "result" 例如:
 - > mkdir ~/result
- 2. 將附錄 D 要求的檔案複製到 result 這個目錄。例如:
 - > cp MBF.v ~/result/
 - > cp MBF_syn.v ~/result/

.

3. 在 Design Report Form 中,填入所需的相關資訊。

附錄 F 軟體環境

1. 主辦單位已將所有軟體環境設定於:/usr/cad/cshrc/env.cshrc,參賽同學不需再做任何設定。

2. 在 env.cshrc 所設定好的軟體環境包括:

Vendor	Tool	Executable	
	Virtuoso	icfb	
C- 1	Composer	icfb	
Cadence	NC-Verilog	ncverilog	
	SOC Encounter	encounter	
	design vision	dv, dc_shell	
	VCS	vcs	
Crym om gryg	IC compiler	icc_shell -gui	
Synopsys	Hspice	hspice	
	Cosmos Scope	scope	
	Spice explorer	sx -w , wv	
Mentor	Calibre	calibre	
IVICITOI	ModelSim	vsim	
Spring Soft	Laker	laker	
Spring Soft	Verdi	verdi, nWave, nLint	
	vi	vi, vim, gvim	
	gedit	gedit	
Utility	nedit	nedit	
Ounty	pdf reader	acroread	
	calculate	gnome-calculator, bc -l	
	gcc	gcc	

※ gnome-calculator (工程計算機執行檔,可開啓 View -> Scientific mode)

EDA 軟體所須使用的 license 皆已設定完成,不須額外設定,且每隊限定每個 EDA 軟體 只能使用一套 license。

附錄G設計資料庫

設計資料庫位置: /usr/cad/icc2012/CBDK IC Contest v2.1

```
目錄架構
ICC/
    tsmc13gfsg_fram/
                                                                 ICC core library
    tsmc13 CIC.tf
                                                                 ICC technology
    macro.map
                                                                 layer mapping file
    tluplus/
         t013s8mg fsg typical.tluplus
                                                                 t13 tluplus file
                                                                 t13 tluplus mapping file
         t013s8mg fsg.map
SOCE/
                                                                 LEF for core cell
         tsmc13fsg 8lm cic.lef
                                                                 LEF for antenna
         antenna 8.lef
    lib/
                                                                  worst case for core cell
         slow.lib
        streamOut.map
                                                                  Layout map for GDSII out
SynopsysDC/
         db/
         slow.db
                                                                  Synthesis model (slow)
         lib/
         slow.lib
                                                                  timing and power model
Verilog/
    tsmc13_neg.v
                                                                  Verilog simulation model
VHDL/
    tsmc13.vhd
                                                                  VHDL simulation model
Memory/
    rom 1024x4 t13/
                   rom_1024x4_t13_slow_syn.db
                                                                 DC ICC APR 可使用(worst-case)
                   rom_1024x4_t13_slow_syn.lib
                                                                  SOCE APR 可使用(worst-case)
                   rom 1024x4 t13 sim1.v
                                                                  Verilog simulation model for sim1
                   rom_1024x4_t13_verilog1.rcf
                                                                  ROM data of sim1
                   rom 1024x4 t13 sim2.v
                                                                  Verilog simulation model for sim2
                                                                  ROM data of sim2
                   rom_1024x4_t13_verilog2.rcf
                   rom_1024x4_t13.vclef
                                                                  SOCE APR 可使用
                   rom 1024x4 t13 ant.lef
                                                                  SOCE 可使用(LEF for antenna)
                                                                  ICC 可使用(ROM Fram View)
                   rom 1024x4 t13/
                                                                  ROM Spec Document
                   rom 1024x4 t13.pdf
                   rom 1024x4 t13.gds
                                                                  ROM GDSII file
```

Design Report Form

圣入帳號(logi	n-id)	- VIIII		
	RTL categor	<i>v</i>		
Design Stage	Description		File Name	2
RTL	使用之HDL名稱			
Simulation	(請塡入 Verilog 或 VHD)			
RTL	RTL檔案名稱			
Simulation	(RTL Netlist file nam	ie)		
	Gate-Level cateş	gory		
Design Stage	Description		File Name	е
	Gate-Level 檔案名稱			
	(Gate-Level Netlist f:	ile		
Pre-layout	name)	***		
Gate-level	Pre-layout sdf 檔案名			
Simulation	Gate-Level simulation, 所			
	的 CYCLE Time (請確定模擬功	能正	() n
	確)			
	Physical category	ory	7.1 37	** 1
Design Stage	Descritpion (# The Page 1)		File Name or	Value
	使用之 P&R Tool			
	(請填入IC compiler 或 SOC Enco			
	設計資料庫檔案名稱(Library			
	(ICC: Milkyway Library Name, SOCE:			
	xxx.enc.dat			
P&R	DRC 錯誤總數量 (ex: 0 個			
	LVS 錯誤總數量 (ex: 0 fi			
	佈局檔檔案名稱 (GDSII file			
	佈局面積 (Layout	manie)		
	MAN WAR (Layout	() um X () u	ım
	Area)		, , ,	
	Gate-Level 檔案名稱			
	(Gate-Level Netlist f:	ile		
	name)			
	Post-layout sdf 檔案名			
Post-layout	Post-layout Simulation 所使用的			
Gate-level Simulation	CYCLE Time (請確定模擬功能正確)			
	Ex: 10ns			
	Post-layout Simulation Time			
	(Simulation Time, ex: 10556			
	ns)			
	Time = ?			
Over All	最後完成之等級?(ex: 等級	7. \		

其他説明事項 (Any other information you want to specify: (如設計特點 ...) 如寫不下可寫於背面