1 Let $f: [0,\infty) \to [0,\infty)$ be continuous with f(0) = 0. Show that if

$$f(t) \le 1 + \frac{1}{10} f(t)^2$$
 for all $t \in [0, \infty)$,

then f is uniformly bounded throughout $[0, \infty)$.

Solution Notice that

$$f(t) \le 1 + \frac{1}{10}f(t)^2 \iff \left(f(t) - (5 + \sqrt{15})\right)\left(f(t) - (5 - \sqrt{15})\right) \ge 0 \quad \forall t \in [0, \infty)$$

So, we must have either $f(t) \le 5 - \sqrt{15} > 0$ or $f(t) \ge 5 + \sqrt{15} > 0$.

Since f is continuous and $[0,\infty)$ is connected, $f([0,\infty))$ must also be connected. In particular, since it is a subset of \mathbb{R} , $f([0,\infty))$ must be an interval. The interval must also contain 0 since f(0)=0, so we must have $0 \le f(t) \le 5 - \sqrt{15}$ for all $t \in [0,\infty)$. Hence, f is uniformly bounded on $[0,\infty)$.

2 Show that the function

$$H(x,y) = x^2 + y^2 + |x - y|^{-1}$$

achieves its global minimum somewhere on the set $\{(x,y) \in \mathbb{R}^2 \mid x \neq y\}$.

Solution Consider the change in variables u = x - y and v = x + y. Then we can rewrite H as $H(u, v) = u^2 + v^2 + \frac{1}{|u|}$. Then the problem is equivalent to showing that H(u, v) achieves its global minimum on the set

$$\{(u,v) \in \mathbb{R}^2 \mid u \neq 0\}.$$

One value of H(u, v) is H(1, 1) = 3.

Fix v. Notice that $f(u) := u^2 + \frac{1}{|u|} \le H$, and that $\lim_{u \to 0} f(u) = \infty$. Then by definition, there exists $\delta_0 > 0$ such that f(u) > 3 whenever $|u| < \delta_0$. We can discard these values of u on the domain of H since they give values of H greater than H(1,1), so they cannot be global minima. So, we have reduced the set to $\{(u,v) \in \mathbb{R}^2 \mid |u| \ge \delta_0\}$.

Similarly, $\lim_{|u|\to\infty} f(u) = \infty$. So, there exists $\delta_1 > 0$ such that f(u) > 3 whenever $|u| > \delta_1$. We can discard these values also, so our set is reduced to $\{(u,v)\in\mathbb{R}^2\mid \delta_0\leq |u|\leq \delta_1\}$.

Next, fix a value of u so that $\delta_0 \leq |u| \leq \delta_1$. Then consider $g(v) := v^2 \leq H(u, v)$. Then as $\lim_{|v| \to \infty} g(v) = \infty$, there exists $\delta_2 > 0$ such that g(v) > 3 whenever $|u| > \delta_2$. We can discard these values of v as candidates for global minima since they are greater than H(1, 1) = 3. So, our set is reduced to

$$\Omega = \{(u, v) \in \mathbb{R}^2 \mid \delta_0 \le |u| \le \delta_1, \ |v| \le \delta_2 \}.$$

Finally, this remaining set is compact, since it is a closed and bounded subset of \mathbb{R}^2 . As H is the sum of functions continuous on their domains, H itself is continuous, so $H(\Omega)$ is compact. Hence, there exists some (u_0, v_0) such that

$$H(u_0, v_0) = \inf_{(u,v) \in \Omega} H(u,v) = \inf_{(u,v) \in \mathbb{R}^2 \mid u \neq 0} H(u,v)$$

so it indeed achieves it global minimum somewhere on the set $\{(u,v) \in \mathbb{R}^2 \mid u \neq 0\}$.

3 Let $a, b \in \mathbb{R}$ with a < b and let $f: [a, b] \to [a, b]$ be continuous. Show that there exists $x_0 \in [a, b]$ such that $f(x_0) = x_0$.

Solution Consider the function $g: [a,b] \to \mathbb{R}$ with g(x) = f(x) - x, which is continuous on [a,b] since both f(x) and x are

Suppose there is no such $x_0 \in [a, b]$ such that $f(x_0) = x_0$. Then there is no $x \in [a, b]$ such that g(x) = 0. Since [a, b] is connected, g has the Darboux property. Hence, g([a, b]) must contain all positive or all negative numbers. Otherwise, the Darboux property implies that there exists some value such that $g(x_0) = 0 \iff f(x_0) = x_0$, which is a contradiction.

Assume that g(x) > 0 for all $x \in [a, b]$. Then $g(b) = f(b) - b > 0 \implies f(b) > b$. But the image of f must be a subset of [a, b], which is a contradiction. So, g(x) < 0 for all $x \in [a, b]$.

But if g(x) < 0 for all $x \in [a,b]$, $g(a) = f(a) - a < 0 \implies f(a) < a \implies f(a) \notin [a,b]$, which is a contradiction.

Thus, there must exist some $x_0 \in [a, b]$ such that $g(x_0) = 0 \iff f(x_0) = x_0$.

4 Let $f, g: [-1, 1] \rightarrow [-1, 1]$ be defined as follows:

$$f(x) = \begin{cases} \frac{x-1}{2}, & x \in [-1, 0] \\ x - \frac{1}{2}\sin(\frac{\pi}{x}), & x \in \left[0, \frac{1}{2}\right] \\ x, & x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

and

$$g(x) = \begin{cases} \frac{1-x}{2}, & x \in [-1,0] \\ -x - \frac{1}{2}\sin(\frac{\pi}{x}), & x \in [0,\frac{1}{2}] \\ -x, & x \in [\frac{1}{2},1] \end{cases}$$

Let A and B denote the graphs of f and g, respectively, that, is,

$$A = \{(x, f(x)) \mid x \in [-1, 1]\}$$
 and $B = \{(x, g(x)) \mid x \in [-1, 1]\}.$

- a. Show that $A \cap B = \emptyset$ and $\{(-1, -1), (1, 1)\} \subseteq A$ and $\{(-1, 1), (1, -1)\} \subseteq B$.
- b. Prove that A and B are connected subsets of $[-1,1] \times [-1,1]$.
- **Solution** a. Consider the function $h: [-1,1] \to [-1,1]$ with h(x) = f(x) g(x). Then

$$h(x) = \begin{cases} x - 1 & x \in [-1, 0] \\ 2x & x \in [0, \frac{1}{2}] \\ 2x & x \in [\frac{1}{2}, 1] \end{cases} = \begin{cases} x - 1 & x \in [-1, 0] \\ 2x & x \in [0, 1] \end{cases}$$

Note that $A \cap B = \emptyset \iff \not\exists x \in [-1,1] \ f(x) = g(x) \iff \not\exists x \in [-1,1] \ h(x) = 0.$

$$x - 1 = 0 \implies x = 1 \notin [-1, 0]$$
$$2x = 0 \implies x = 0 \notin (0, 1]$$

Hence, there are no solutions to $h(x) = 0 \implies A \cap B = \emptyset$.

$$f(-1) = \frac{-1-1}{2} = -1 \implies (-1,1) \in A$$
$$f(1) = 1 \implies (1,1) \in A$$
$$g(-1) = \frac{1-(-1)}{2} = 1 \implies (-1,1) \in B$$
$$g(1) = -1 \implies (1,-1) \in B$$

b. Consider an arbitrary continuous function $f:[a,b]\to\mathbb{R}$ and the function $g:[a,b]\to\mathbb{R}^2$ with g(x)=(x,f(x)). We claim that g is also continuous.

Let $\varepsilon > 0$ and $c \in [a, b]$. Then there exists $\delta_c > 0$ such that for all $x \in [a, b]$ such that $|x - c| < \delta$, we have $|f(x) - f(c)| < \frac{\varepsilon}{2}$.

Choose $\delta = \min \{\delta_c, \frac{\varepsilon}{2}\}$. Then if $|x - c| < \delta$,

$$d(g(x), g(c)) = \sqrt{(x-c)^2 + (f(x) - f(c))^2} < \varepsilon.$$

Hence, g is continuous on [a, b].

A is connected:

Let $F: [-1,1] \to \mathbb{R}^2$ with F(x) = (x, f(x)). Then F([-1,1]) = A.

F is continuous on [-1,0] connected, so F([-1,0]) is also connected. The same argument applies to the intervals $(0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.

Note that $(0, -\frac{1}{2}) \in F([-1, 0])$. Also, if $x_n = \frac{2}{1+4n}$, we have that $(x_n, \sin(\frac{\pi}{x_n})) \xrightarrow{n \to \infty} (0, -\frac{1}{2}) \Longrightarrow F([-1, 0]) \cap \overline{F((0, \frac{1}{2}])} \neq \emptyset$, so they are not separated. Since F([-1, 0]) and $F((0, \frac{1}{2}))$ are both connected, we have that $F([-1, 0]) \cup F((0, \frac{1}{2}))$ is connected.

Lastly, note that $F(\frac{1}{2})$ is contained in both $F([-1,0]) \cup F((0,\frac{1}{2}])$ and $F([\frac{1}{2},1])$. Since both sets are connected and they intersect at a point, their union is connected. Hence, F([-1,1]) = A is connected. B is connected

A similar argument to the above holds for this case.

Lastly, it is clear that A and B are subsets of $[-1,1] \times [-1,1]$ because f and g are functions from [-1,1] to [-1,1]. Thus, A and B are both connected subsets of $[-1,1] \times [-1,1]$.

5 Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ with } (p, q) = 1 \end{cases}$$

Prove that f is continuous on $\mathbb{R} \setminus \mathbb{Q}$ and discontinuous on \mathbb{Q} .

Solution Let $\{x_n\}_{n\geq 1}\subseteq \mathbb{Q}$ that converges to $x_0\in \mathbb{R}\setminus \mathbb{Q}$. We don't need to handle the case where $\{x_n\}_{n\geq 1}\subseteq \mathbb{R}\setminus \mathbb{Q}$ since the sequence of their images obviously converge to $f(x_0)=0$.

As x_n is rational, we can find $\{a_n\}_{n\geq 1}\subseteq \{b_n\}_{n\geq 1}\subseteq \mathbb{Z}$ such that $x_n=\frac{a_n}{b_n}$ with $\gcd(a_n,b_n)=1$. Then $\lim_{n\to\infty}b_n=\infty$. If not, then b_n must be bounded, which means that the limit of x_n as $n\to\infty$ will not be irrational. Hence,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{b_n} = 0.$$

Thus, the sequence of the images of rational numbers converges to $f(x_0)$.

So, any sequence $\{x_n\}_{n>1}$ which converges to x_0 will have $f(x_n) \xrightarrow{n\to\infty} f(x_0)$.

Let $x_0 \in \mathbb{Q}$. Then $f(x_0) = \frac{1}{b_0} \neq 0$. Let $\{x_n\}_{n \geq 1} \subseteq \mathbb{R} \setminus \mathbb{Q}$ be such that $x_n \xrightarrow{n \to \infty}$. Such a sequence exists since \mathbb{Q} is dense in \mathbb{R} . But $f(x_n) \xrightarrow{n \to \infty} 0 \neq f(x_0)$. Hence, f cannot be continuous on \mathbb{Q} .

- **6** Let (X,d) be a metric space and let $f,g\colon X\to\mathbb{R}$ be two continuous functions.
 - a. Prove that the set $\{x \in X \mid f(x) < g(x)\}\$ is open.
 - b. Prove that if the set $\{x \in X \mid f(x) \leq g(x)\}$ is dense in X, then $f(x) \leq g(x)$ for all $x \in X$.
- **Solution** a. Consider the function $h: X \to \mathbb{R}$ with h(x) = f(x) g(x), so $h(x) < 0 \iff f(x) g(x) < 0 \iff f(x) < g(x)$. h is also continuous on X since it is the difference of two continuous functions.

Let $a \in \{x \in X \mid f(x) < g(x)\}$, so h(a) < 0. Then as h is continuous, there exists $\delta > 0$ such that if $|x - a| < \delta$, we have

$$|h(x) - h(a)| < -h(a) \implies h(x) < h(a) < 0$$

Thus, the ball $B_{h(a)}(x) \subseteq \{x \in X \mid f(x) < g(x)\}$, so by definition, the set is open.

b. Consider the complement of the set, which is $\{x \in X \mid f(x) > g(x)\}$. By (a), we have that this set is open, so $\{x \in X \mid f(x) \leq g(x)\}$ is closed, by definition. Since it is dense,

$${x \in X \mid f(x) \le g(x)} = \overline{{x \in X \mid f(x) \le g(x)}} = X$$

Thus, $f(x) \leq g(x)$ for all $x \in X$.

7 Let $a, b \in \mathbb{R}$ with a < b. Show that a function $f: (a, b) \to \mathbb{R}$ is uniformly continuous on (a, b) if and only if it can be extended to a continuous function \tilde{f} on [a, b].

Solution " \Longrightarrow "

Suppose f is uniformly continuous. As (a,b) is connected and f is continuous, f((a,b)) must also be connected, so it must be an interval.

Consider the sequence $\{a_n\}_{n>1} \subseteq (a,b)$ such that $a_n \xrightarrow{n\to\infty} a$ and $\{f(a_n)\}_{n>1}$.

Fix $\varepsilon > 0$. As f is uniformly continuous on (a, b), there exists $\delta_{\varepsilon} > 0$ such that for all $x, y \in (a, b)$ with $|x - y| < \delta_{\varepsilon}$, we have $|f(x) - f(y)| < \varepsilon$.

Since $a_n \xrightarrow{n \to \infty} a$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that for all $n, m \geq N$, we have $|a_n - a_m| < \delta_{\varepsilon}$. Thus, since $a_n, a_m \in (a, b)$,

$$|f(a_n) - f(a_m)| < \varepsilon$$

so since \mathbb{R} is complete, $\{f(a_n)\}_{n\geq 1}$ converges in \mathbb{R} . Let its unique limit be A. Moreover, $A\in \overline{f((a,b))}$ since a sequence in f((a,b)) converges to it.

We can use a similar argument with a sequence $\{b_n\}_{n\geq 1}$ that converges to b in order to define a value $B\in \overline{f((a,b))}$.

Define $\tilde{f}: [a,b] \to \mathbb{R}$ as follows:

$$\tilde{f}(x) = \begin{cases} A & x = a \\ f(x) & x \in (a, b) \\ B & x = b \end{cases}$$

Then \tilde{f} is continuous on [a,b] by construction. Indeed, f is continuous on (a,b), so \tilde{f} is continuous on that interval also. \tilde{f} is continuous at x=a since as show above, any sequence $\{a_n\}_{n\geq 1}$ with $a_n \xrightarrow{n\to\infty} a \implies f(a_n) \xrightarrow{n\to\infty} A = f(a)$. The same argument applies at x=b, so \tilde{f} is continuous on [a,b].

" <== "

Suppose there is an extension \tilde{f} for f which is continuous on [a,b]. Since [a,b] is compact, \tilde{f} is uniformly continuous, by a proposition proved in class. Hence, it is also uniformly continuous on (a,b), so f is uniformly continuous on (a,b).