Unit 2: Binary Numbering Systems

- Definitions
- Number bases
- Numerical representations. Integer fixed point.
 - Binary
 - 2's complement
 - BCD
 - Addition-subtraction
 - •Alphanumerical representations

Definitions

- Space of a representation: number of bits to store a data (numerical or character)
 - **Byte** (8 bits)
 - **Word** (*n* bits, generally 16, 32, 64)
- Range of representation: Maximum and minimum value that can be represented in a numbering system with fixed number of digits
- Resolution of the representation: Difference between a number and the next one in the representation
- **Code length**: number of elements that can be represented with a n-bit representation (example: for pure binary with n bits the code length is 2^n)

Numbering bases (I)

Bases 2, 8, 10 y 16

Binary (base 2)	Octal (base 8)	Decimal (base 10)	Hexadeci (base 16)	
0	0 (000)	0 (0000)	0 (0000)	A (1010)
1	1 (001)	1 (0001)	1 (0001)	B (1011)
	2 (010)	2 (0010)	2 (0010)	C (1100)
	3 (011)	3 (0011)	3 (0011)	D (1101)
	4 (100)	4 (0100)	4 (0100)	E (1110)
	5 (101)	5 (0101)	5 (0101)	F (1111)
	6 (110)	6 (0110)	6 (0110)	
	7 (111)	7 (0111)	7 (0111)	
		8 (1000)	8 (1000)	
		9 (1001)	9 (1001)	

Numbering bases (II)

The position of each bit represent its weight

To compute the decimal value:

$$value = \sum_{i=0}^{n-1} x_i \cdot base^i$$

- Examples:
- Binary number 10101.
 Decimal value:

$$1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 21$$

Hexadecimal number :78A Decimal value:

$$7x6^2 + 8x16^1 + 10x16^0 = 1930$$

Fixed point representations **Pure Binary**

n=8 bits
$$\begin{bmatrix} x_7 & x_6 & x_5 & x_4 & x_3 & x_2 & x_1 & x_0 \\ n-1 & & & 0 \end{bmatrix}$$

- Base 2 positional system for integers
- Weights are: $P_i = 2^i$
- **Decimal value** with *n* bits: $Value = \sum_{i=0}^{n-1} 2^i \cdot x_i$
- **Range:** [0, 2ⁿ 1]
- Resolution = 1

Fixed point representations 2's Complement (2C)

- Positive numbers: start with 0, represented in pure binary
- Negative numbers: start with 1, represented in 2C
- Then the **MSB** (*Most Significant Bit*) **indicates the sign**, but for operations all *n*-bits are treated alike
- To **represent a negative number**: -A = 2C of A. Operations to obtain C2:
 - Obtain **1C** (1's complement) of A : $\overline{A} = 2^n A$ (equivalent to replace 0 \leftrightarrow 1)
 - Add 1: A+1
- Add 1: A+1• To obtain the **decimal value** (n bits): $Value = \begin{cases} +\sum_{i=0}^{n-1} 2^i \cdot x_i & \text{if } x_{n-1} = 0 \\ -Value(2C(number)) & \text{if } x_{n-1} = 1 \end{cases}$
- **Range**: $[-2^{n-1}, -1, 0, (2^{n-1} 1)]$
- Resolution = 1

Addition-Subtraction in 2's complement

- Main reason to use 2C is that addition and subtraction operations are simplified:
 - Operate without taking into account the sign of the operands
 - Final carry is ignored.
 - To subtract just add the 2C of the number: A B = A + 2C(B)
- Overflow occurs if:
 - $^{\bullet}$ A ≥ 0 y B ≥ 0 and A + B < 0
 - $^{\bullet}$ A < 0 y B < 0 and A + B ≥ 0
- **Example:** A=0111 and B=0101 : -A=1001 and -B=1011
 - A + B = $0111 + 0101 = 1100 \text{ y C}_f = 0 : \text{overflow}$
 - A B = A + (-B) = $0111 + 1011 = 0010 \text{ y C}_f = 1$
 - $-A + B = 1001 + 0101 = 1110 \text{ y C}_f = 0$
 - A B = (-A) + (-B) = 1001 + 1011 = 0100 y C_f = 1 : overflow

Fixed point representations BCD: Binary Coded Decimal

- Used to represent decimal digits in binary;
- Four bits represent one decimal digit:

Decimal d	igit BCD	Decimal digit	BCD	
0	0000	5	0101	
1	0001	6	0110	
2	0010	7	0111	
3	0011	8	1000	
4	0100	9	1001	

To represent decimal numbers with more digits just group BCD packages

Example: $73 \rightarrow 0111\ 0011$

Addition in BCD

Valores vá	lidos BCD	Valores NO	válidos BCD		
0	0000	10	1010		
1	0001	11	1011 🔨		
2	0010	12	1100		
3	0011	13	1101		
4	0100	14	1110		Addition
5	0101	15	1111		Addition
6	0110			•	
7	0111		1		1
8	1000		1 0		0 0 0 1 0 1 1 0
9	1001		1 6		0 0 0 1 0 1 1 0
			_ 1 5	-	00010101 +
			3 1		0 0 1 0 1 0 1 1
					B
		Caráct	er no ∨álid	o BCD	1 1 1
		Corr	ección sun	nar 6	0 0 1 0 1 0 1 1
					0 1 1 0 +
					0 0 1 1 0 0 0 1
					3 1

Addition in hexadecimal

+	0	1	2	3	4	5	6	7	8	9	\mathbf{A}	В	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
0	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
1	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	0
2	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	0	1
3	3	4	5	6	7	8	9	Α	В	С	D	Е	F	0	1	2
4	4	5	6	7	8	9	Α	В	O	D	Е	F	0	1	2	3
5	5	6	7	8	9	Α	В	С		Ε	F	0	1	2	3	4
6	6	7	8	9	Α	В	С	D	Е	F	0	1	2	3	4	5
7	7	8	9	Α	В	С		Е	F	0	1	2	3	4	5	6
8	8	9	Α	В	U	D	Ш	F	0	1	2	3	4	5	6	7
9	9	Α	В	С		Е	F	0	1	2	3	4	5	6	7	8
\mathbf{A}	Α	В	С	D	Е	F	0	1	2	3	4	5	6	7	8	9
\mathbf{B}	В	0	D	E	F	0	1	2	3	4	5	6	7	8	9	Α
\mathbf{C}	O		Ш	F	0	1	2	3	4	5	6	7	8	9	Α	В
\mathbf{D}	Δ	Е	F	0	1	2	3	4	5	6	7	8	9	Α	В	С
\mathbf{E}	Е	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D
$ \mathbf{F} $	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E

Los valores implican que me llevo 1 de acarreo

Alphanumeric representations (I)

- Represent each character (7, A, j, =, *,) by a group of bits.
- Examples
 - 6 bits (2⁶=64 characters): Fieldata and BCDIC
 - 7 bits (2⁷=128 characters): ASCII
 - 8 bits (2⁶=256 characters): extended ASCII and EBCDIC
 - 16 bits (2¹⁶=65536 characters): UNICODE

Alphanumeric representations (II)

- Phrases are represented grouping characters. Options:
 - Fixed length string

P E P E	ANTONIO	R O S A
---------	---------	---------

- Variable length string
 - Delimiter character

Explicit length

4 P E P E 7 A N T O N I O 4 R O S A

Alphanumeric representations (III) ASCII code

