Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Matrizes e Sistemas Lineares. Semestre: 2021/1 Prof. Me. Luiz C. M. de Aquino

Avaliação II

Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Esta avaliação tem um total de 35,0 pontos.
- 1. [7,0 pontos] Resolva o sistema de equações lineares:

$$\begin{cases} 8x + z = 4 \\ 3x + 2y + z = 0 \\ 3x + 5y + 2z = -2 \end{cases}$$

2. [7,0 pontos] Uma empresa de transporte possui três tipos de caixa: A, B e C. Cada caixa pode transportar simultaneamente três tipos de produtos (X, Y e Z) na quantidade descrita pela tabela abaixo. Com base nessas informações, quantas caixas de cada tipo são necessárias para transportar 590 unidades de X, 255 de Y e 480 de Z?

	X	Y	Z
A	10	5	4
B	6	3	8
C	20	8	16

- 3. [7,0 pontos] Um fabricante de móveis produz cadeiras, mesinhas de centro e mesas de jantar. Cada cadeira leva 9 minutos para ser lixada, 8 minutos para ser tingida e 10 minutos para ser envernizada. Cada mesinha de centro leva 12 minutos para ser lixada, 12 minutos para ser tingida e 15 minutos para ser envernizada. Cada mesa de jantar leva 8 minutos para ser lixada, 7 minutos para ser tingida e 14 minutos para ser envernizada. A bancada para lixar fica disponível 2.550 minutos por semana, a bancada para tingir 2.365 minutos por semana e a bancada para envernizar 3.350 minutos por semana. Quantos móveis devem ser fabricados (por semana) de cada tipo para que as bancadas sejam plenamente utilizadas?
- 4. [7,0 pontos] Determine a função f polinomial do 2° grau tal que f(0) + f(1) = -1, f(2) = f(-2) e f(-1) = 0.
- 5. [7,0 pontos] Sejam as matrizes $A_{n\times n}$, $x_{n\times 1}$ e $\bar{0}_{n\times 1}$ (isto é, matriz nula de ordem $n\times 1$). Prove que se as matrizes x_1 e x_2 (ambas $n\times 1$) são soluções da equação $Ax=\bar{0}$, então a matriz $\alpha x_1 + \beta x_2$, com $\alpha, \beta \in \mathbb{R}$, também é uma solução dessa equação.