Alumno: Luis Alberto Martinez Monroy

N Cuenta:314212391

Materia: Estructuras Discretas

LEYES DE MORGAN

En lógica proposicional, las leyes De Morgan son un par de reglas de transformación que son ambas reglas de inferencia válidas..

Las reglas se pueden representar como:

1.
$$\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$$

$$2.\neg(P\lor Q)\leftrightarrow(\neg P\land \neg Q)$$

demostracion:

Regla1:

P	Q	$\neg (P \land Q)$	\leftrightarrow	$(\neg P \lor \neg Q)$
V	V	\mathbf{F}	V	F
V	F	V	V	V
F	V	V	V	V
F	F	V	V	V
Regla 2:				
$\mid P \mid$	Q	$\neg (P \lor Q)$	\rightarrow	$(\neg P \land \neg Q)$
V	V	F	V	F
V	F	F	V	F
F	V	F	V	F
F	F	V	V	V

Y asi podemos comprobar que son logicamente equivalentes las proposiciones dadas. En la teoría de conjuntos dos conjuntos son iguales si tienen los mismos elementos; es decir se puede demostrar que todos los elementos de uno están contenidos en el otro y viceversa.

1.
$$(A \cup B) \equiv A \cap B$$

2. $(A \cap B) \equiv A \cup B$
Demostracion:
Regla 1:

$$(A \cup B) = A \cap B$$

$$x \in (A \cup B) \rightarrow \mathbf{x} \not\in A \cup B (x \not\in A) \text{ y } (x \not\in B) \rightarrow (\mathbf{x} \in A) \text{ y } (x \in B) \rightarrow \mathbf{x} \in (A \cap B)$$

$$\text{Regla 2:}$$

$$(A \cap B) = A \cup B$$

$$x \in (A \cap B) \leftrightarrow \mathbf{x} \not\in A \cap B \leftrightarrow (\mathbf{x} \not\in A) \text{ y } (x \not\in B) \leftrightarrow (\mathbf{x} \in A) \text{ y } (x \in B) \leftrightarrow \mathbf{x} \in (A \cup B)$$

Y asi podemos demostrar que la union de un conjunto A Y B es igual a la Interseccion del conjunto A Y B y viceversa.