

液体表面张力系数的测定

理学院物理实验中心

廖飞

2021.03

廖老师课程群: 625105265(二维码如下)

背景简介

背景简介

表面研究从力学开始的,早在19世纪初就形成了表面的概念。

- 1805,T.Young最早提出表面张力概念。表面是一层弹性膜,并导出表面张力与接触角的杨氏方程。
- 1806年,<mark>拉普拉斯</mark>导出了弯曲液面两边附加压力与表面张力和曲面半径的关系。用该公式可解释毛细管现象。
- 1869年,达普里研究了润湿和黏附现象
- 1859, 开尔文将表面扩展时的热效应与表面张力随温度的变化联系起来,导出蒸汽压随表面曲率变化的开尔文方程
- 1878年,表面热力学奠基人吉布斯,提出吉布斯界面模型
- 1913-1942年间,美国科学家<mark>朗格缪</mark>,表面化学的开拓者,获1932年若贝尔 奖
- 1950年代后,光谱分析、微观测试、超高真空、低能电子衍射、光电子能谱 等先进技术不断出现,使表面进入微观研究水平,从而成为一门独立的学科
- 目前,科学家已经能够在低于微米级的表面上,获得小于1%原子单层的原子信息,可在优于10-7帕的超高真空下,从分子水平上研究表面现象。2007年, 德国科学家Gerhard Ertl因固-气假面基本分子的过程研究获若贝尔奖

测量液体表面张力系数的方法有拉脱法、毛细管法、最大气泡压力法等. 拉脱 法是常用的方法之一.

实验目的

- 1.学习力敏传感器的定标方法
- 2.观察拉脱法测液体表面张力的物理现象和规律
- 3.测量室温下纯水的表面张力系数

实验原理

表面(surface)概念

①液体表面:液体与气体、固体以及与别的不相混合的液体间的界面(interface)

②表面张力:是表面层内分子相互间作用力的宏观表现

$$f = \alpha L$$

③表面张力系数:是沿液面作用在分界线单位长度上的表面张力

其单位: N/m.大小与液体成分、浓度、纯度及温度有关。

④浸润与不浸润现象

$$\sigma = \left(\frac{\partial G}{\partial A}\right)_{T,p}$$

实验原理

2.拉脱法测液体表面张力系数

①拉脱法:

测量一个已知周长的金属圆环或金属片从 待测液体表面脱离是所需要的拉力,从而 求得该液体表面张力系数的方法称为拉脱 法。所需拉力是由液体表面张力、环的内、 外径及液体性质、纯度等因素决定。

②受力分析:

吊环拉起水柱,最大受力时 $F_1 = G + f$

水柱破裂 $F_2 = G$

$$f = F_1 - G = F_1 - F_2$$

$$f = \alpha \pi (D_1 + D_2)$$

1.底座及调节螺丝

2.升降调节螺母

3.培养皿

4.金属片状圆环

5.硅压阻式力敏传感器及金属外壳

6.数字电压表

液膜拉破前瞬间的受力分析图

实验原理

3. 力敏传感器

$$F = \frac{U}{B}$$
 — 力敏传感器线性测量模型

$$f = F_1 - F_2 = \frac{U_1 - U_2}{B}$$

$$\alpha = \frac{\left(U_1 \quad U_2\right)}{\pi\left(D_1 + D_2\right)B} \longrightarrow$$

拉脱法测量模型

实验仪器

1.仪器名称:表面张力系数测定仪、游标卡尺

图 2.2.2 FD-NST-I 型液体表面张力系数测定仪装置

- 1. 调节螺丝 2. 升降螺丝 3. 玻璃器皿 4. 吊环 5. 力敏传感器 6. 支架
- 7. 固定螺丝 8. 航空插头 9. 底座 10. 数字电压表 11. 调零旋钮

注意事项:

- (1) 保证测量液体清洁
- (2) 吊环水平要尽量调节好.
- (3) 力敏传感器使用时用力不宜大于
- 0.098N.过大的拉力传感器容易损坏.
 - (4) 测表面张力时,防止操作台受震动.

实验仪器

2.硅压阻式力敏传感器的结构和原理

①传感器:传感器是将感受的物理量、化学量等信息,按一定的规律转换成便于测量和传输的信号的装置。电信号易于处理,所以大多数的传感器是将物理量等信号转换成电信号输出的。

②结构简图:

 $\Delta U \triangleq UA = \Delta F$

1.力臂固定点 2.硅力敏传感芯片 3.弹性梁 4.挂钩

③灵敏度:传感器输出量增量与相应输入量增量之比,单位是mv/N。它表示每增加1N的力,力敏传感器的电压改变量为△Vmv.

 $\Delta U = B \cdot \Delta F$

式中, ΔF : 外力的增量

B: 传感器的灵敏度

△U: 相应的电压改变量

实验内容及步骤

- 1. 开机
- 2. 清洗玻璃器皿
- 3. 用游标卡尺测吊环的内、外径各三次,将数据填入下表

表 2.2.1 测吊环内、外径

(单位: cm)√→

101155 \ Date =	被测量₽				
测量次数↩	D_1 $^{\scriptscriptstyle ar{arphi}}$	\overline{D}_1 arphi	D_2 φ	\overline{D}_2 $^{\circ}$	-
1₽	٠		پ		φ.
2₽	٠	τ.	٠	ę.	٦
3₽	¢3		¢3		٥

实验内容及步骤

4. 测定力敏传感器的灵敏度

- (1) 调节底座水平,在力敏传感器上吊上吊环,调节吊环水平,并对电压表清零;
- (2) 将7个质量均为0.5克的片码依次放入吊盘中,分别记下电压表的读数 $\mathbf{1}_{U_0}$

再依次从吊盘中取走片码,记下读数 U_{i} 到 U_{0} , 将各数据记入下表中

(3) 用逐差法处理数据,求力敏 传感器的灵敏度

表 2.2.2	测定力敏传感器的灵敏度	÷
---------	-------------	---

						平均值↩	47
测量次数₽	砝码质量/g₽	增重时读数(J / mV /₽	承重时读数 $U^{'}/mV$ \wp		$\overline{U} = \frac{U + U'}{2} / mV +$	
1€	0.000₽	$U_{\mathfrak{0}^{\wp}}$	4º	U_0'	Þ	47	φ
2€	0. 500₽	U_1 $^{\wp}$	ė.	U_1' $arphi$	ē	47	_
3€	1. 000₽	U_2 $^{\wp}$	47	U_2'	÷	42	
4€	1. 500₽	U_3 $^{\wp}$	÷	U_3' \circ	÷	47	-
5€	2. 000₽	U_4 $^{\wp}$	ė	U_4'	ē.	47	φ
6€	2. 500₽	U_5 $^{\wp}$	ę.	U_5'	ę.	47	-₽
7€	3. 000₽	$U_{\mathfrak{6}}^{\wp}$	₽	U_6'	ę.	₽	φ
842	3. 500₽	U_7 \circ	ē	U_7'	ē	Ð	_

实验内容及步骤

5. 测定水的表面张力

电压表清零 重复使用拉脱法测量6次 计算液体表面张力并与标准值比较, 标准值: T=20°C α=7.2x10-2N/m

表 2. 2. 3 测定水的表面张力系数₽

测量↩	U_1/mV	U_2/mV	$\Delta U/mV$ ϵ	ΔU / mV ↔	$\overline{f}/10^{-3}N$	$\frac{1}{\alpha}/(10^{-3}N/m)\varphi$	
1€	to.	ą.	4			φ	
2€	t)	4	42	.₽		₽	
3₽	÷.	÷.	₽			ته	¢
44□	Ð	ت	÷.		*		
54□	٩	4	4			4	
64⊃	÷2	÷.	₽			₽	

讨论及拓展

- 1. 分析拉脱法测量的误差来源。
- 2. 查阅资料,深入学习力学传感器的结构及工作原理。
- 3.设计一个实验,研究测定表面张力系数与温度间的关系。
- 4.分析拉脱法模型的误差及问题,查阅CNKI数据库资料,在此基础上提出修正模型,或新测量模型,给出图或说明。(推荐该题)
- 4.杨氏接触角的如何测量或计算

说明:

1-4题中选择2-4个讨论——做在讨论页,写不下的可放在思考题页

思考题按照要求完成