Page 1 of 60

SEQUENCE LISTING

<110> CHOO, Qui-Lim

```
HOUGHTON, Michael
       SCOTT, Elizabeth
       WEINER, Amy
      METHODS AND REAGENTS FOR TREATING, PREVENTING AND DIAGNOSING
<120>
       BUNYAVIRUS INFECTION
<130>
      21454
      US 10/580,050
<140>
       2006-05-19
<141>
<150>
      PCT/US04/039333
<151>
      2004-11-19
<160>
      191
<170> PatentIn version 3.3
<210> 1
<211> 4527
<212> DNA
<213> La Crosse virus
<400> 1
agtagtgtac taccaagtat agataacgtt tgaatattaa agttttgaat caaagccaaa
                                                                      60
gatgatttgt atattggtgc taattacagt tgcagctgca agcccagtgt atcaaaggtg
                                                                      120
tttccaagat ggggctatag tgaagcaaaa cccatccaaa gaagcagtta cagaggtgtg
                                                                      180
cctgaaagat gatgttagca tgatcaaaac agaggccagg tatgtaagaa atgcaacagg
                                                                      240
agttttttca aataatgtcg caataaggaa atggctagtc tctgattggc atgattgcag
                                                                      300
gcctaagaag atcgttgggg gacacatcaa tgtaatagaa gttggtgatg acctgtcact
                                                                      360
ccatactgaa tcatatgttt gcagcgcaga ttgtaccata ggtgtagaca aagagactgc
                                                                      420
acaggtcagg cttcagacag ataccacaaa tcattttgaa attgcaggca ctactqtgaa
                                                                      480
qtcaqqatqq ttcaaqaqca cqacatatat aactcttqat caaacttqcq aacaccttaa
                                                                      540
agtttcctqc qqcccaaaat ctgtacagtt ccatqcctqc ttcaatcaqc atatqtcttq
                                                                      600
cgtcagattt ttacacagga caatattgcc tggctctata gccaattcca tatgtcagaa
                                                                      660
tatcgaaatc ataattttag ttacacttac tctattaatc tttatattgt taagcatttt
                                                                     720
aagtaagact tatatatgtt atttattaat gcctatattc atccccatag catatatata
                                                                     780
cggtataatt tacaataagt cgtgcaaaaa atgcaaatta tgtggcttag tgtatcatcc
                                                                      840
attcacagag tgtggcacac attgtgtctg tggtgcccgc tatgatactt cagatagaat
                                                                      900
gaaactgcat agagcttctg gattgtgccc tggttataaa agcctaagag ctgccagagt
                                                                      960
catgtgcaag tcgaaagggc ctgcatcaat attgtctata attactgcgg tactggtctt
                                                                     1020
aacctttgtg acaccaatca actccatggt tttaggagag agtaaagaaa cctttgaact
                                                                     1080
tgaagatctt ccagacgaca tgttggaaat ggcatcgaga ataaattctt attatctcac
                                                                     1140
ctgtatcttg aattatgctg taagctgggg tcttgttatc attggattgt tgatcgggct
                                                                     1200
gctttttaag aaataccagc acagattctt aaatgtttac gcaatgtact gtgaagaatg
                                                                     1260
tgacatgtat catgacaagt ctgggttgaa aagacatggt gatttcacca acaaatgcag
                                                                     1320
acagtgcaca tgtggtcaat atgaagatgc tgcaggtttg atggctcaca ggaaaaccta
                                                                    1380
taactgctta gtgcagtaca aagcaaagtg gatgatgaac ttcctgataa tttacatatt
                                                                     1440
cttaattttg atcaaagatt ctgctatagt tgtacaagct gctggaactg acttcaccac
                                                                     1500
ctgcctagag actgagagta taaattggaa ctgcactggg ccatttttga acctcgqqaa
                                                                     1560
ttgccaaaag caacaaaaga aagaacctta caccaacatt gcaactcagt taaaqqqact
```

```
aaaggcaatt tccgtactag atgtccctat aataacaggg ataccagatg atattgcggg
                                                                     1680
tgctttaaga tatatagaag agaaggaaga tttccatgtc cagctaacta tagaatatqc
                                                                     1740
qatqttaaqc aaatactqtq actattatac ccaattctca qataactcaq qatacaqtca
                                                                     1800
gacaacatgg agagtgtact taaggtctca tgattttgaa gcctgtatac tatatccaaa
                                                                     1860
tcagcacttt tgcagatgtg taaaaaatgg tgagaagtgc agcagctcca attgggactt
                                                                     1920
tgccaatgaa atgaaagatt attactctgg gaaacaaaca aagtttgaca aggacttaaa
                                                                     1980
tctagcccta acagctttgc atcatgcctt cagggggacc tcatctgcat atatagcaac
                                                                     2040
aatgctctca aaaaagtcca atgatgactt gattgcatac acaaataaga taaaaacaaa
                                                                     2100
attcccaggt aatgcattgt tgaaggctat aatagattat atagcatata tgaaaagttt
                                                                     2160
gccaggtatg gcaaatttca aatatgatga attctgggat gaattactgt acaaacccaa
                                                                     2220
cccagcaaag gcctcaaacc ttgctagagg aaaggagtca tcttacaact tcaaactagc
                                                                     2280
aatttcatca aagtctataa aaacctgcaa gaatgttaag gatgttgcct gcttatcgcc
                                                                     2340
aaggtcaggt gctatatatg cttcaataat tgcgtgtggt gaacccaatg ggccaagtgt
                                                                     2400
gtataggaaa ccatcaggtg gtgtattcca atctagcact gatcggtcta tatactgctt
                                                                     2460
gctggatagc cattgtctag aagaatttga ggccatcggc caggaggagc tggatgcggt
                                                                     2520
aaagaaatcc aaatgttggg aaattgaata tcctgacgta aagctcatcc aagaaggcga
                                                                     2580
tgggactaaa agctgtagaa tgaaagattc tgggaactgc aatgttgcaa ctaacagatg
                                                                     2640
gccagtgata caatgtgaga atgacaaatt ttactactca gagcttcaaa aagattatga
                                                                     2700
caaagctcaa gatattggtc actattgctt aagccctgga tgtactactg tccggtaccc
                                                                     2760
tattaatcca aagcacatct ctaactgtaa ttggcaagta agcagatcta gcatagcgaa
                                                                    2820
qataqatqtq cacaatattq aqqatattqa qcaatataaq aaaqctataa ctcaqaaact
                                                                     2880
tcaaacgagc ctatctctat tcaagtatgc aaaaacaaaa aacttgccgc acatcaaacc
                                                                     2940
aatttataaa tatataacta tagaaggaac agaaactgca gaaggtatag agagtgcata
                                                                     3000
cattgaatca gaagtacctg cattggctgg gacatctatc ggattcaaaa tcaattctaa
                                                                     3060
agagggcaag cacttgctag atgttatagc atatgtaaaa agtgcctcat actcttcagt
                                                                     3120
gtatacaaaa ttgtactcaa ctggcccaac atcagggata aatactaaac atgatgaatt
                                                                     3180
gtgtactggc ccatgcccag caaatatcaa tcatcaggtt gggtggctga catttgcaag
                                                                     3240
agagaggaca agctcatggg gatgcgaaga gtttggttgc ctggctgtaa gtgatgggtg
                                                                     3300
tgtatttgga tcatgccaag atataataaa agaagaacta tctgtctata ggaaggagac
                                                                     3360
cgaggaagtg actgatgtag aactgtgttt gacattttca gacaaaacat actgtacaaa
                                                                     3420
cttaaaccct gttaccccta ttataacaga tctatttgag gtacagttca aaactgtaga
                                                                     3480
gacctacagc ttgcctagaa ttgttgctgt gcaaaaccat gagattaaaa ttgggcaaat
                                                                     3540
aaatgattta ggagtttact ctaagggttg tgggaatgtt caaaaggtca atggaactat
                                                                     3600
ttatggcaat ggagttccca gatttgacta cttatgccat ttagctagca ggaaggaagt
                                                                     3660
cattgttaga aaatgcttcg acaatgatta ccaagcatgc aaatttcttc aaagccctgc
                                                                     3720
tagttacaga cttgaagaag acagtggcac tgtgaccata attgactaca aaaagatttt
                                                                     3780
aggaacaatc aagatgaagg caattttagg agatgtcaaa tataaaacat ttgctgatag
                                                                     3840
tgtcgatata accgcagaag ggtcatgcac cggctgtatt aactgcttcg aaaatatcca
                                                                     3900
ttgcgaatta acgttgcaca ccacaattga agccagctgc ccaattaaaa gctcgtgcac
                                                                     3960
agtatttcat gacaggattc ttgtgactcc aaatgaacac aaatatgcat tgaaaatggt
                                                                     4020
gtgcacagaa aagccaggga acacactcac aattaaagtc tgcaatacta aagttgaagc
                                                                     4080
atctatggcc cttgtagacg caaagcctat catagaacta gcaccagttg atcagacagc
                                                                     4140
atatataaga gaaaaagatg aaaggtgtaa aacttggatg tgtagggtaa gagatgaagg
                                                                     4200
actgcaggtc atcttggagc catttaaaaaa tttatttgga tcttatattg ggatatttta
                                                                     4260
cacatttatt atatctatag tagtattatt ggttattatc tatgtactac tacctatatg
                                                                     4320
ctttaagtta agggataccc ttagaaagca tgaagatgca tataagagag agatgaaaat
                                                                     4380
tagatagggg atctatgcag aacaaaattg agtcctgtat tatatacttc tatttqtaqt
                                                                     4440
atagctqttg ttaagtgggg ggtggggaac taacaacagc gtaaatttat tttqcaaaca
                                                                     4500
ttattttata cttggtagca cactact
                                                                     4527
```

<210> 2

<211> 299

<212> PRT

<213> La Crosse virus

<400		2					_		_	_		_			_
Met 1	Ile	Cys	Ile	Leu 5	Val	Leu	Ile	Thr	Val 10	Ala	Ala	Ala	Ser	Pro 15	Val
Tyr	Gln	Arg	Cys 20	Phe	Gln	Asp	Gly	Ala 25	Ile	Val	Lys	Gln	Asn 30	Pro	Ser
Lys	Glu	Ala 35	Val	Thr	Glu	Val	Cys 40	Leu	Lys	Asp	Asp	Val 45	Ser	Met	Ile
Ļуs	Thr 50	Glu	Ala	Arg	Tyr	Val 55	Arg	Asn	Ala	Thr	Gly 60	Val	Pḥe	Ser	Asn
Asn 65	Val	Ala	Ile	Arg	Lys 70	Trp	Leu	Val	Ser	Asp 75	Trp	His	Asp	Cys	Arg 80
Pro	Lys	Lys	Ile	Val 85	Gly	Gly	His	Ile	Asn 90	Val	Ile	Glu	Val	Gly 95	Asp
Asp	Leu	Ser	Leu 100	His	Thr	Glu	Ser	Tyr 105	Val	Cys	Ser	Ala	Asp 110	Cys	Thr
Ile	Gly	Val 115	Asp	Lys	Glu	Thr	Ala 120	Gln	Val	Arg	Leu	Gln 125	Thr	Asp	Thr
Thr	Asn 130	His	Phe	Glu	Ile	Ala 135	Gly	Thr	Thr	Val	Lys 140	Ser	Gly	Trp	Phe
Lys 145	Ser	Thr	Thr	Tyr	Ile 150	Thr	Leu	Asp	Gln	Thr 155	Cys	Glu	His	Leu	Lys 160
Val	Ser	Cys	Gly	Pro 165	Lys	Ser	Val	Gln	Phe 170	His	Ala	Cys	Phe	Asn 175	Gln
His	Met	Ser	Cys 180	Val	Arg	Phe	Leu	His 185	Arg	Thr	Ile	Leu	Pro 190	Gly	Ser
Ile	Ala	Asn 195	Ser	Ile	Cys	Gln	Asn 200	Ile	Glu	Ile	Ile	Ile 205	Leu	Val	Thr
Leu	Thr 210	Leu	Leu	Ile	Phe	Ile 215	Leu	Leu	Ser	Ile	Leu 220	Ser	Lys	Thr	Tyr
Ile 225	Cys	Tyr	Leu	Leu	Met 230	Pro	Ile	Phe	Ile	Pro 235	Ile	Ala	Tyr	Ile	Tyr 240
Gly	Ile	Ile	Tyr	Asn 245	Lys	Ser	Cys	Lys	Lys 250	Cys	Lys	Leu	Cys	Gly 255	Leu
Val	Tyr	His	Pro 260	Phe	Thr	Glu	Cys	Gly 265	Thr	His	Cys	Val	Cys 270	Gly	Ala
Arg	Tyr	Asp 275	Thr	Ser	Asp	Arg	Met 280	Lys	Leu	His	Arg	Ala 285	Ser	Gly	Leu

```
Cys Pro Gly Tyr Lys Ser Leu Arg Ala Ala Arg
<210>
<211> 984
<212> DNA
<213> La Crosse virus
<400> 3
agtagtgtac cccacttgaa tactttgaaa ataaattgtt gttgactgtt ttttacctaa
                                                                   60
ggggaaatta tcaagagtgt gatgtcggat ttggtgtttt atgatgtcgc atcaacaggt
                                                                   120
gcaaatggat ttgatcctga tgcagggtat atggacttct gtgttaaaaa tgcagaatta
                                                                   180
ctcaaccttg ctgcagttag gatcttcttc ctcaatgccg caaaggccaa ggctgctctc
                                                                   240
tcgcgtaagc cagagaggaa ggctaaccct aaatttggag agtggcaggt ggaggttatc
                                                                   300
aataatcatt ttcctggaaa caggaacaac ccaattggta acaacgatct taccatccac
                                                                   360
agattatctg ggtatttagc cagatgggtc cttgatcagt ataacgagaa tgatgatgag
                                                                   420
totcagcacg agttgatcag aacaactatt atcaacccaa ttgctgagtc taatggtgta
                                                                   480
ggatgggaca gtgggccaga gatctatcta tcattctttc caggaacaga aatgtttttg
                                                                   540
gaaactttca aattctaccc gctgaccatt ggaattcaca gagtcaagca aggcatgatg
                                                                   600
gacceteaat acetgaagaa ggeettaagg caacgetatg geacteteac ageagataag
                                                                   660
tggatgtcac agaaggttgc agcaattgct aagagcctga aggatgtaga gcagcttaaa
                                                                   720
tggggaaaag gaggcctgag cgatactgct aaaacattcc tgcagaaatt tggcatcagg
                                                                   780
cttccataaa tatggcatga ggcattcaaa ttaggttcta aattctaaat ttatatatgt
                                                                   840
caatttgatt aattggttat ccaaaagggt tttcttaagg gaacccacaa aaataqcagc
                                                                   900
960
atgtattcag tggggcacac tact
<210> 4
<211> 235
<212> PRT
<213> La Crosse virus
<400> 4
Met Ser Asp Leu Val Phe Tyr Asp Val Ala Ser Thr Gly Ala Asn Gly
                                  10
                                                      15
Phe Asp Pro Asp Ala Gly Tyr Met Asp Phe Cys Val Lys Asn Ala Glu
Leu Leu Asn Leu Ala Ala Val Arg Ile Phe Phe Leu Asn Ala Ala Lys
                           40
Ala Lys Ala Ala Leu Ser Arg Lys Pro Glu Arg Lys Ala Asn Pro Lys
Phe Gly Glu Trp Gln Val Glu Val Ile Asn Asn His Phe Pro Gly Asn
Arg Asn Asn Pro Ile Gly Asn Asn Asp Leu Thr Ile His Arg Leu Ser
```

Gly Tyr Leu Ala Arg Trp Val Leu Asp Gln Tyr Asn Glu Asn Asp Asp

100 105 110 Glu Ser Gln His Glu Leu Ile Arg Thr Thr Ile Ile Asn Pro Ile Ala 115 120 Glu Ser Asn Gly Val Gly Trp Asp Ser Gly Pro Glu Ile Tyr Leu Ser 135 Phe Phe Pro Gly Thr Glu Met Phe Leu Glu Thr Phe Lys Phe Tyr Pro 145 Leu Thr Ile Gly Ile His Arg Val Lys Gln Gly Met Met Asp Pro Gln 170 Tyr Leu Lys Lys Ala Leu Arg Gln Arg Tyr Gly Thr Leu Thr Ala Asp Lys Trp Met Ser Gln Lys Val Ala Ile Ala Lys Ser Leu Lys Asp 200 Val Glu Gln Leu Lys Trp Gly Lys Gly Gly Leu Ser Asp Thr Ala Lys 215 Thr Phe Leu Gln Lys Phe Gly Ile Arg Leu Pro 230 <210> 5 <211> 6980 <212> DNA <213> La Crosse virus <400> 5 agtagtgtac ccctatctac aaaacttaca gaaaattcag tcatatcaca atatatgcat 60 aatggactat caagagtatc aacaattctt ggctaggatt aatactgcaa gggatgcatg 120 tgtagccaag gatatcgatg ttgacctatt aatggccaga catgattatt ttggtagaga 180 gctgtgcaag tccttaaata tagaatatag gaatgatgta ccatttgtag atataatttt 240 ggatataagg cccgaagtag acccattaac catagatgca ccacatatta ccccagacaa 300 ttatctatat ataaataatg tgttatatat catagattat aaggtctctg tatcgaatga 360 aagcagtgtt ataacatatg acaaatatta tgagttaact agggacatat ccgatagatt 420 aagtattcca atagaaatag ttatcgtccg tatagaccct gtaagtaagg atttgcatat 480 taactctgat agatttaaag aactttaccc tacaatagtg gtggatataa acttcaatca 540 atttttcgac ttaaaacaat tactctatga aaaattcggt gatgatgaag aattcctatt 600 gaaagttgca catggtgact tcactcttac agcaccctgg tgcaagactg ggtgccctga 660 attttggaaa caccccattt ataaagaatt taaaatgagt atgccagtac ctgagcggag 720 gctctttgaa gaatctgtca agttcaatgc ttatgaatct gagagatgga atactaactt 780 ggttaaaatc agagaatata caaagaaaga ctattcagag catatttcaa aatctgcaaa 840 aaatattttc ctggctagtg gattttataa gcagccaaat aagaatgaga ttagtgaggg 900 gtggacatta atggttgaga gggttcaaga tcagagagaa atctcaaaat ctctccatga 960 ccagaaacct agcatacatt ttatatgggg agcccataac ccaggaaata gtaataatgc 1020 aaccttcaaa ctcatattgc tttcaaagtc cttacaaagc ataaaaggta tatcaactta 1080 cacagaagcg ttcaaatctt taggaaaaat gatggatatt ggagataagg ctattgagta 1140 tgaagaattc tgcatgtccc taaaaagcaa agcaagatca tcatggaagc aaataatgaa 1200 caaaaaatta gagcctaaac aaataaacaa tgcccttgtt ttatgggaac agcagtttat 1260

ggtaaataat gacctgatag acaaaagtga gaagttgaaa ttattcaaaa atttctgcgg

1320

```
tataggcaaa cacaagcaat tcaagaataa aatgctagag gatctagaag tgtcaaagcc
                                                                     1380
caaaatatta gactttgatg acgcaaatat gtatctagct agcctaacca tgatggaaca
                                                                     1440
gagtaagaag atattgtcca aaagcaatgg gttgaagcca gataatttta tactgaatga
                                                                     1500
atttggatcc aaaatcaaag atgctaataa agaaacatat gacaatatgc acaaaatatt
                                                                     1560
tgagacaaga tattggcaat gtatatccga cttctctact ctgatgaaaa atatcttatc
                                                                     1620
tgtgtcccaa tataacaggc acaacacatt taggatagct atgtgtgcta ataacaatgt
                                                                     1680
ctttqctata qtatttcctt cqqctqacat aaaaactaaq aaaqcaactq taqtttataq
                                                                     1740
cattatagtg ctgcataaag aggaagaaaa catattcaac ccaggatgtt tgcacggcac
                                                                     1800
atttaagtgt atgaatgggt atatttccat atctagagct ataaggctag ataaagagag
                                                                     1860
gtgccagaga attgtttcct cacctggact gtttttaaca acttgcctac tattcaaaca
                                                                     1920
tgataatcca actctagtga tgagcgatat tatgaatttt tctatataca ctagcctgtc
                                                                     1980
tatcacaaag agtgttctat ctttaacaga gccagcacgc tacatgatta tgaactcatt
                                                                     2040
agctatetee agcaatgtta aggaetatat agcagagaaa tttteeeett acacaaagae
                                                                     2100
actgttcagt gtctatatga ctagactaat taaaaatgct tgctttgatg cttatgacca
                                                                     2160
gagacagcgt gtccaactta gagatatata tttatctgat tatgacataa cccaaaaagg
                                                                     2220
tattaaagac aatagagagc taacaagtat atggttccct ggtagtgtaa cattaaagga
                                                                     2280
gtatttaaca caaatatact taccatttta ttttaatgct aaaggactac atgagaagca
                                                                     2340
ccatgtcatg gtggatctag caaagactat attagaaata gagtgcgaac agagggaaaa
                                                                     2400
cataaaggag atatggtcta caaattgtac caaacagaca gtgaacctta aaattttgat
                                                                     2460
ccattccttg tgcaagaatt tactagcaga cacttcaaga cacaaccact tgcggaacag
                                                                     2520
aatagaaaat aggaacaatt ttagaaggtc tataacaact atttcaacat ttacaagttc
                                                                     2580
aaagtettge etcaaaatag gggaetttag aaaagagaaa gagetgeagt cagttaaaca
                                                                     2640
gaagaaaatc ttagaggtgc agagtcgcaa aatgagatta gcaaacccaa tgttcgtgac
                                                                     2700
agatgaacaa gtatgccttg aagttgggca ctgcaattat gagatgctga ggaatgctat
                                                                     2760
gccgaattat acagattata tatcaactaa agtatttgat aggttatatg agttattaga
                                                                     2820
taaaggagtt ttgacagaca agcctgttat agagcaaata atggatatga tggtcgacca
                                                                     2880
caaaaaqttc tatttcacat ttttcaataa aqqccaqaaa acqtcaaaqq ataqaqaqat
                                                                     2940
attogttgga gaatatgaag ctaaaatgtg tatgtacgca gttgagagaa tagcaaaaga
                                                                     3000
aagatgtaaa ttaaatcctg atgaaatgat atctgagccg ggtgatggca agttgaaggt
                                                                     3060
gttggagcaa aaatcagaac aagaaattcg attcttggtc gagactacaa ggcaaaagaa
                                                                     3120
tcgtgaaatc gatgaggcaa ttgaagcatt agctgcagaa ggatatgaga gtaatctaga
                                                                     3180
aaaaattgaa aagctttcac ttggcaaagc aaagggccta aagatggaaa taaatgcaga
                                                                     3240
tatgtctaaa tggagtgctc aggatgtttt ttataaatat ttctggctca tagccttaga
                                                                     3300
ccctatcctc tacccacagg aaaaagagag aatattatac tttatgtgca actacatgga
                                                                     3360
taaagaattg atactgccag atgaattatt attcaatttg ctggaccaaa aagttgcata
                                                                     3420
ccagaatgat ataatagcta ctatgactaa tcaattaaat tcaaatacag ttctgataaa
                                                                     3480
gagaaattgg ctccaaggga atttcaacta cacctcaagt tacgtccata gctgcgcaat
                                                                     3540
gtctgtgtat aaagaaatat taaaagaggc cataacatta ctagacgggt ctatattagt
                                                                     3600
caactcatta gtccattcgg atgataacca aacatcgata acaatagttc aggataagat
                                                                     3660
ggaaaatgat aaaattatag attttgcaat gaaagaattt gagagagcct gtttgacatt
                                                                     3720
tggatgccaa gcaaatatga aaaagacata tgtaacaaat tgcataaaag agtttgtttc
                                                                     3780
attatttaac ttgtacggcg aaccettttc aatatatggc agatteetat taacatetgt
                                                                     3840
gggtgattgt gcctatatag ggccttatga agatttagct agtcgaatat catcagccca
                                                                     3900
gacagccata aagcatggtt gtccacccag tctagcatgg gtgtccatag caataagtca
                                                                     3960
ttggatgacc tctctgacat acaacatgct accagggcag tcaaatgacc caattgatta
                                                                     4020
tttccctgca gaaaatagga aggatatccc tatagaattg aatggtgtat tagatgctcc
                                                                     4080
attgtcaatg attagtacag ttggattgga atctgggaat ttatacttct tgataaagtt
                                                                     4140
gttgagcaaa tataccccgg tcatgcagaa aagagagtca gtagtcaacc aaatagctga
                                                                     4200
agttaagaac tggaaggtcg aggatctaac agacaatgaa atatttagac ttaaaatact
                                                                     4260
cagatattta gttctagatg cagagatgga ccctagtgat attatgggtg agacaagcga
                                                                     4320
catgagaggg aggtctattt tgacacctag aaaattcaca acagcaggca gtttaaggaa
                                                                     4380
attatattct ttcagtaagt accaggatag actgtcttcc cctggaggca tggttgaatt
                                                                     4440
gttcacttat ttgcttgaga aacctgagtt gttagtgact aaaggggaag atatgaaaga
                                                                     4500
ttatatggaa tctgtgatat tccgatataa ttccaaaagg ttcaaagaaa gtttgtcaat
                                                                     4560
acagaaccca gcacaattat ttatagaaca gatattgttc tcacataagc ccataataga
                                                                     4620
```

```
cttttctggt atcagggaca aatatataaa cctacatgat agtagagctc tagagaagga
                                                                     4680
acctgacata ttaggaaaag taacatttac agaggcttat agattattaa tgagggacct
                                                                     4740
gtctagccta gaactaacca atgatgacat tcaagtaatt tattcttaca taatacttaa
                                                                     4800
tgaccctatg atgataacta ttgcaaacac acatatattg tcaatatacg ggagtcctca
                                                                     4860
acggaggatg ggcatgtcct gttcaacgat gccagaattt agaaatttaa aattaataca
                                                                     4920
tcattcccca gccttagttt tgagagcata tagtaaaaat aatcctgaca tccagggtgc
                                                                     4980
tgatcccacg gaaatggcta gagatttagt tcatctgaaa gagtttgttg agaacacaaa
                                                                     5040
tttagaagaa aaaatgaaag ttaggattgc tataaatgaa gcagagaaag gacaacggga
                                                                     5100
tatagtettt gaactaaaag agatgaetag attttateag gtttgetatg agtatgteaa
                                                                     5160
atctacagaa cacaagataa aagtetteat teteeegaca aaateataca caacaacaga
                                                                     5220
                                                                     5280
tttctgttca ctcatgcagg ggaatttaat aaaagataaa gagtggtaca cagttcacta
cctaaaacag atattgtctg gtggccataa agccataatg cagcataatg ccactagtga
                                                                     5340
gcaaaatatt gcttttgagt gtttcaaatt aattacccat tttgcagact cattcataga
                                                                     5400
ttcattatct aggtcagctt ttttgcagtt gataatagat gaattcagtt ataaagatgt
                                                                     5460
qaaqqttaqc aaactttatg acataataaa gaatgggtat aatcgaactg acttcatacc
                                                                     5520
attgcttttt agaactggcg atttaagaca agctgactta gacaagtatg atgctatgaa
                                                                     5580
aagtcatgag agggttacat ggaatgattg gcaaacatct cgtcacttgg acatgggctc
                                                                     5640
aattaatcta acaataaccg gttacaatag atcaataaca ataatcggag aagataacaa
                                                                     5700
attgacatat gcagaattat gtctgactag gaaaactcct gagaatataa ctataagtgg
                                                                     5760
cagaaaattg ctaggtgcaa ggcatggact taaatttgaa aatatgtcca aaatccaaac
                                                                     5820
atacccaggc aattattata taacatatag aaagaaagat cgccaccagt ttgtatacca
                                                                     5880
gatacattct catgaatcaa taacaaggag gaatgaagag catatggcta tcaggaccag
                                                                     5940
aatatacaat gaaataactc cagtatgtgt agttaacgtt gcagaggtgg atggggacca
                                                                     6000
acgtatattg ataagatctt tagactatct aaataatgat atattttctc tttcaaggat
                                                                     6060
taaagtcggg cttgacgaat ttgcaacaat aaaaaaagca cactttagta aaatggtctc
                                                                     6120
atttgaagga cccccaatta agacagggct cctcgacctt actgaattga tgaaatctca
                                                                     6180
                                                                     6240
agatttgctt aaccttaatt atgataatat aaggaatagc aacttgatat ctttttcaaa
attgatttgc tgtgaggggt cagataatat aaatgatggg ttagagtttc tgtccgatga
                                                                     6300
ccctatgaac tttacagagg gtgaagcaat acattcaaca ccgatcttta atatatatta
                                                                     6360
ctcaaaaaga ggagaaagac atatgacata caggaatgca attaaattac tgatagaaag
                                                                     6420
                                                                     6480
agaaactaag atttttgaag aagctttcac attcagtgag aatggcttca tatcgccaga
                                                                     6540
gaatcttggt tgcttagaag cagtagtatc attaataaaa ttgttgaaaa ctaatgagtg
gtccacagtt atagataaat gtattcatat atgtttaata aagaatggta tggatcacat
                                                                     6600
gtaccattca tttgatgtcc ctaaatgttt tatggggaat cctatcacta gagacatgaa
                                                                     6660
ttggatgatg tttagagaat tcatcaatag tttaccaggg acagatatac caccatggaa
                                                                     6720
tqtcatqaca qagaacttca aaaagaaatg tattgctctg ataaactcta agttagaaac
                                                                     6780
acagagagat ttctcagaat tcactaaact gatgaaaaag gaaggtggga ggagtaatat
                                                                     6840
agaatttgat tagtagttat gagtttacag agaacctaca attaggctat aaatttggga
                                                                     6900
                                                                     6960
gggtttttgga aattggctaa aattcaaaaa gagggggatt aacagcaact gtataaattt
                                                                     6980
gtagataggg gcacactact
<210> 6
```

Arg His Asp Tyr Phe Gly Arg Glu Leu Cys Lys Ser Leu Asn Ile Glu

		35					40					45			
Tyr	Arg 50	Asn	Asp	Val	Pro	Phe 55	Val	Asp	Ile	Ile	Leu 60	Asp	Ile	Arg	Pro
Glu 65	Val	Asp	Pro	Leu	Thr 70	Ile	Asp	Ala	Pro	His 75	Ile	Thr	Pro	Asp	Asn 80
Tyr	Leu	Tyr	Ile	Asn 85	Asn	Val	Leu	Tyr	Ile 90	Ile	Asp	Tyr	Lys	Val 95	Ser
Val	Ser	Asn	Glu 100	Ser	Ser	Val	Ile	Thr 105	Tyr	Asp	Lys	Tyr	Tyr 110	Glu	Leu
Thr	Arg	Asp 115	Ile	Ser	Asp	Arg	Leu 120	Ser	Ile	Pro	Ile	Glu 125	Iļe	Val	Ile
Val	Arg 130	Ile	Asp	Pro	Val	Ser 135	Lys	Asp	Leu	His	Ile 140	Asn	Ser	Asp	Arg
Phe 145	Lys	Glu	Leu	Tyr	Pro 150	Thr	Ile	Val	Val	Asp 155	Ile	Asn	Phe	Asn	Gln 160
Phe	Phe	Asp	Leu	Lys 165	Gln	Leu	Leu	Tyr	Glu 170	Lys	Phe	Gly	Asp ·	Asp 175	Glu
Glu	Phe	Leu	Leu 180	Lys	Val	Ala	His	Gly 185	Asp	Phe	Thr	Leu	Thr 190	Ala	Pro
Trp	Cys	Lys 195	Thr	Gly	Cys	Pro	Glu 200	Phe	Trp	Lys	His	Pro 205	Ile	Tyr	Lys
Glu	Phe 210	Lys	Met	Ser	Met	Pro 215	Val	Pro	Glu	Arg	Arg 220		Phe	Glu	Glu
Ser 225	Val	Lys	Phe	Asn	Ala 230	Tyr	Glu	Ser	Glu	Arg 235	Trp	Asn	Thr	Asn	Leu 240
Val	Lys	Ile	Arg	Glu 245	Tyr	Thr	Lys	Lys	Asp 250	Tyr	Ser	Glu	His	Ile 255	Ser
Lys	Ser	Ala	Lys 260		Ile		Leu			Gly	Phe	Tyr	Lys 270	Gln	Pro
Asn	Lys	Asn 275	Glu	Ile	Ser	Glu	Gly 280	Trp	Thr	Leu	Met	Val 285	Glu	Arg	Val
Gln	Asp 290	Gln	Arg	Glu	Ile	Ser 295	Lys	Ser	Leu	His	Asp 300	Gln	Lys	Pro	Ser
Ile 305	His	Phe	Ile	Trp	Gly 310	Ala	His	Asn	Pro	Gly 315	Asn	Ser	Asn	Asn	Ala 320
Thr	Phe	Lys	Leu	Ile	Leu	Leu	Ser	Lys	Ser	Leu	Gln	Ser	Ile	Lys	Gly

Page 9 of 60

Ile	Ser	Thr	Tyr 340	Thr	Glu	Ala	Phe	Lys 345	Ser	Leu	Gly	Lys	Met 350	Met	Asp
Ile	Gly	Asp 355	Lys	Ala	Ile	Glu	Tyr 360	Glu	Glu	Phe	Cys	Met 365	Ser	Leu	Lys
Ser	Lys 370	Ala	Arg	Ser	Ser	Trp 375	Lys	Gln	Ile	Met	Asn 380	Lys	Lys ·	Leu	Glu
Pro 385	Lys	Gln	Ile	Asn	Asn 390	Ala	Leu	Val	Leu	Trp 395	Glu	Gln	Gln	Phe	Met 400
Val	Asn	Asn	Asp	Leu 405	Ile	Asp	Lys	Ser	Glu 410	Lys	Leu	Lys	Leu	Phe 415	Lys
Asn	Phe	Cys	Gly 420	Ile	Gly	Lys	His	Lys 425	Gln	Phe	Lys	Asn	Lys 430	Met	Leu
Glu	Asp	Leu 435	Glu	Val	Ser	Lys	Pro 440	Lys	Ile	Leu	Asp	Phe 445	Asp	Asp	Ala
Asn	Met 450	Tyr	Leu	Ala	Ser	Leu 455	Thr	Met	Met	Glu	Gln 460	Ser	Lys	Lys	Ile
Leu 465	Ser	Lys	Ser	Asn	Gly 470	Leu	Lys	Pro	Asp	Asn 475	Phe	Ile	Leu	Asn	Glu 480
Phe	Gly	Ser	Lys	Ile 485	Lys	Asp	Ala	Asn	Lys 490	Glu	Thr	Tyr	Asp	Asn 495	Met
His	Lys	Ile	Phe 500	Glu	Thr	Arg	Tyr	Trp 505	Gln	Cys	Ile	Ser	Asp 510	Phe	Ser
Thr	Leu	Met 515	Lys	Asn	Ile	Leu	Ser 520	Val	Ser	Gln	Tyr	Asn 525	Arg	His	Asn
Thr	Phe 530	Arg	Ile	Ala	Met	Cys 535	Ala	Asn	Asn	Asn	Val 540	Phe	Ala	Ile	Val
Phe 545	Pro	Ser	Ala	Asp	Ile 550	Lys	Thr	Lys	Lys	Ala 555	Thr	Val	Val	Tyr	Ser 560
Ile	Ile	Val	Leu	His 565	Lys	Glu	Glu	Glu	Asn 570	Ile	Phe	Asn	Pro	Gly 575	Cys
Leu	His	Gly	Thr 580	Phe	Lys	Cys	Met	Asn 585	Glý	Tyr	Ile	Ser	Ile 590	Ser	Arg
Ala	Ile	Arg 595	Leu	Asp	Lys	Glu	Arg 600	Cys	Gln	Arg	Ile	Val 605	Ser	Ser	Pro
Gly	Leu 610	Phe	Leu	Thr	Thr	Cys 615	Leu	Leu	Phe	Lys	His 620	Asp	Asn	Pro	Thr

Page 10 of 60

Leu 625	Val	Met	Ser	Asp	Ile 630	Met	Asn	Phe	Ser	Ile 635	Tyr	Thr	Ser	Leu	Ser 640
Ile	Thr	Lys	Ser	Val 645	Leu	Ser	Leu	Thr	Glu 650	Pro	Ala	Arg	Tyr	Met 655	Ile
Met	Asn	Ser	Leu 660	Ala	Ile	Ser	Ser	Asn 665	Val	Lys	Asp	Tyr	Ile 670	Ala	Glu
Lys	Phe	Ser 675	Pro	Tyr	Thr	Lys	Thr 680	Leu	Phe	Ser	Val	Tyr 685	Met	Thr	Arg
Leu	Ile 690	Lys	Asn	Ala	Cys	Phe 695	Asp	Ala	Tyr	Asp	Gln 700	Arg	Gln	Arg	Val
Gln 705	Leu	Arg	Asp	Ile	Tyr 710	Leu	Ser	Asp	Tyr	Asp 715	Ile	Thr	GÌn	Lys	Gly 720
Ile	Lys	Asp	Asn	Arg 725	Glu	Leu	Thr	Ser	Ile 730	Trp	Phe	Pro	Gly	Ser 735	Val
Thr	Leu	Lys	Glu 740	Tyr	Leu	Thr	Gln	Ile 745	Tyr	Leu	Pro	Phe	Tyr 750	Phe	Asn
Ala	Lys	Gly 755	Leu	His	Glu	Lys	His 760	His	Val	Met	Val	Asp 765	Leu	Ala	Lys
Thr	Ile 770	Leu	Glu	Ile	Glu	Cys 775	Glu	Gln	Arg	Glu	Asn 780	Ile	Lys	Glu	Ile
Trp 785	Ser	Thr	Asn	Cys	Thr 790	Lys	Gln	Thr	Val	Asn 795	Leu	Lys	Ile	Leu	Ile 800
His	Ser	Leu	Cys	Lys 805	Asn	Leu	Leu	Ala	Asp 810	Thr	Ser	Arg	His	Asn 815	His
Leu	Arg	Asn	Arg 820	Ile	Glu	Asn	Arg	Asn 825	Asn	Phe	Arg	Arg	Ser 830	Ile _.	Thr
Thr	Ile	Ser 835	Thr,	Phe	Thr	Ser	Ser 840	Lys	Ser	Cys	Leu	Lys 845	Ile	Gly	Asp
Phe	Arg 850	Lys	Glu	Lys	Glu	Leu 855	Gln	Ser	Val	Lys	Gln 860	Lys	Lys	Ile	Leu
Glu 865	Val	Gln	Ser	Arg	Lys 870	Met	Arg	Leu	Ala	Asn 875	Pro	Met	Phe	Val	Thr 880
Asp	Glu	Gln	Val	Cys 885	Leu	Glu	Val	Gly	His 890	Cys	Asn	Tyr	Glu	Met 895	Leu
Arg	Asn	Ala	Met 900	Pro	Asn	Tyr	Thr	Asp 905	Tyr	Ile	Ser	Thr	Lys 910	Val	Phe
Asp	Arg	Leu	Tyr	Glu	Leu	Leu	Asp	Lys	Gly	Val	Leu	Thr	Asp	Lys	Pro

915 . 920 925 . Val Ile Glu Gln Ile Met Asp Met Met Val Asp His Lys Lys Phe Tyr 935 Phe Thr Phe Phe Asn Lys Gly Gln Lys Thr Ser Lys Asp Arg Glu Ile 955 Phe Val Gly Glu Tyr Glu Ala Lys Met Cys Met Tyr Ala Val Glu Arg Ile Ala Lys Glu Arg Cys Lys Leu Asn Pro Asp Glu Met Ile Ser Glu 985 Pro Gly Asp Gly Lys Leu Lys Val Leu Glu Gln Lys Ser Glu Gln Glu 1000 Ile Arg Phe Leu Val Glu Thr Thr Arg Gln Lys Asn Arg Glu Ile 1015 Asp Glu Ala Ile Glu Ala Leu Ala Ala Glu Gly Tyr Glu Ser Asn 1025 1030 Leu Glu Lys Ile Glu Lys Leu Ser Leu Gly Lys Ala Lys Gly Leu 1045 Lys Met Glu Ile Asn Ala Asp Met Ser Lys Trp Ser Ala Gln Asp 1055 1060 Val Phe Tyr Lys Tyr Phe Trp Leu Ile Ala Leu Asp Pro Ile Leu 1075 Tyr Pro Gln Glu Lys Glu Arg Ile Leu Tyr Phe Met Cys Asn Tyr 1090 Met Asp Lys Glu Leu Ile Leu Pro Asp Glu Leu Leu Phe Asn Leu 1105 Leu Asp Gln Lys Val Ala Tyr Gln Asn Asp Ile Ile Ala Thr Met 1115 1120 1125 Thr Asn Gln Leu Asn Ser Asn Thr Val Leu Ile Lys Arg Asn Trp 1130 1135 Leu Gln Gly Asn Phe Asn Tyr Thr Ser Ser Tyr Val His Ser Cys 1145 1150 1155 Ala Met Ser Val Tyr Lys Glu Ile Leu Lys Glu Ala Ile Thr Leu 1160 1165 Leu Asp Gly Ser Ile Leu Val Asn Ser Leu Val His Ser Asp Asp 1175 1180 Asn Gln Thr Ser Ile Thr Ile Val Gln Asp Lys Met Glu Asn Asp

1195

1190

Lys	Ile 1205	Ile	Asp	Phe	Ala	Met 1210	Lys	Glu	Phe	Glu	Arg 1215	Ala	Cys	Leu
Thr	Phe 1220	Gly	Cys	Gln	Ala	Asn 1225	Met	Lys	Lys	Thr	Tyr 1230	Val	Thr	Asn
Cys	Ile 1235	Lys	Glu	Phe	Val	Ser 1240	Leu	Phe	Asn	Leu	Tyr 1245	Gly	Glu	Pro
Phe	Ser 1250	Ile	Tyr	Gly	Arg	Phe 1255	Leu	Leu	Thr	Ser	Val 1260	Gly	Asp	Cys
Ala	Tyr 1265	Ile	Gly	Pro	Tyr	Glu 1270	Asp	Leu	Ala	Ser	Arg 1275	Ile	Ser	Ser
Ala	Gln 1280	Thr	Ala	Ile	Lys	His 1285	Gly	Cys	Pro	Pro	Ser 1290	Leu	Ala	Trp
Val	Ser 1295	Ile	Ala	Ile	Ser	His 1300	Trp	Met	Thr	Ser	Leu 1305	Thr	Tyr	Asn
Met	Leu 1310	Pro	Gly	Gln	Ser	Asn 1315	Asp	Pro	Ile	Asp	Tyr 1320	Phe	Pro	Ala
Glu	Asn 1325	Arg	Lys	Asp	Ile	Pro 1330	Ile	Glu	Leu	Asn	Gly 1335	Val	Leu	Asp
Ala	Pro 1340	Leu	Ser	Met	Ile	Ser 1345	Thr	Val	Gly	Leu	Glu 1350	Ser	Gly	Asn
Leu	Tyr 1355	Phe	Leu	Ile	Lys	Leu 1360	Leu	Ser	Lys	Tyr	Thr 1365	Pro	Val	Met
Gln	Lys 1370	Arg	Glu	Ser	Val	Val 1375	Asn	Gln	Ile	Ala	Glu 1380	Val	Lys	Asn
Trp	Lys 1385	Val	Glu	Asp	Leu	Thr 1390	Asp	Asn	Glu	Ile	Phe 1395	Arg	Leu	Lys
Ile	Leu 1400	Arg	Tyr	Leu	Val	Leu 1405	Asp	Ala	Glu	Met	Asp 1410	Pro	Ser	Asp
Ile	Met 1415	Gly	Glu	Thr	Ser	Asp 1420	Met	Arg	Gly	Arg	Ser 1425	Ile	Leu	Thr
Pro	Arg 1430	Lys	Phe	Thr	Thr	Ala 1435	Gly	Ser	Leu	Arg	Lys 1440	Leu	Tyr	Ser
Phe	Ser 1445	Lys	Tyr	Gln	Asp	Arg 1450	Leu	Ser	Ser	Pro	Gly 1455	Gly	Met	Val
Glu	Leu 1460	Phe	Thr	Tyr	Leu	Leu 1465	Glu	Lys	Pro	Glu	Leu 1470	Leu	Val	Thr

Lys Gly 1475		Asp	Met	Lys	Asp 1480	Tyr	Met	Glu [.]	Ser	Val 1485	Ile	Phe	Arg
Tyr Asn 1490		Lys	Arg	Phe	Lys 1495		Ser	Leu	Ser	Ile 1500		Asn	Pro
Ala Gln 1505		Phe	Ile	Glu	Gln 1510	Ile	Leu	Phe	Ser	His 1515	Lys	Pro	Ile
Ile Asp 1520		Ser	Gly	Ile	Arg 1525	Asp	Lys	Tyr	Ile	Asn 1530	Leu	His	Asp
Ser Arg 1535		Leu	Glu	_	Glu 1540	Pro	Asp	Ile	Leu	Gly 1545	Lys	Val	Thr
Phe Thr 1550		Ala	Tyr	Arg	Leu 1555	Leu	Met	Arg	Asp	Leu 1560	Ser	Ser	Leu
Glu Leu 1565		Asn	Asp	Asp	Ile 1570	Gln	Val	Ile	Tyr	Ser 1575	Tyr	Ile	Ile
Leu Asn 1580	_	Pro	Met	Met	Ile 1585	Thr	Ile	Ala	Asn	Thr 1590	His	Ile	Leu
Ser Ile 1595		Gly	Ser	Pro	Gln 1600	Arg	Arg	Met	Gly	Met 1605	Ser	Cys	Ser
Thr Met 1610		Glu	Phe	Arg	Asn 1615	Leu	Lys	Leu	Ile	His 1620	His	Ser	Pro
Ala Leu 1625		Leu	Arg	Ala	Tyr 1630	Ser	Lys	Asn	Asn	Pro 1635	Asp	Ile	Gln
Gly Ala 1640		Pro	Thr	Glu	Met 1645	Ala	Arg	Asp	Leu	Val 1650		Leu	Lys
Glu Phe 1655		Glu	Asn	Thr	Asn 1660	Leu	Glu	Glu	Lys	Met 1665	Lys	Val	Arg
Ile Ala 1670		Asn	Glu	Ala	Glu 1675	Lys	Gly	Gln	Arg	Asp 1680	Ile	Val	Phe
Glu Leu 1685		Glu	Met	Thr	Arg 1690	Phe	Tyr	Gln	Val	Cys 1695	Tyr	Glu	Tyr
Val Lys 1700		Thr	Glu	His	Lys 1705	Ile	Lys	Val	Phe	Ile 1710	Leu	Pro	Thr
Lys Ser 1715	_	Thr	Thr	Thr	Asp 1720	Phe	Cys	Ser	Leu	Met 1725	Gln	Gly	Asn
Leu Ile 1730	Lys	Asp	Lys	Glu	Trp 1735	Tyr	Thr	Val	His	Tyr 1740	Leu	Lys	Gln
Ile Leu	Ser	Gly	Gly	His	Lys	Ala	Ile	Met	Gln	His	Asn	Ala	Thr

	1745					1750					1755			٠
Ser	Glu 1760	Gln	Asn	Ile	Ala	Phe 1765	Glu	Cys	Phe	Lys	Leu 1770	Ile	Thr	His
Phe	Ala 1775	Asp	Ser	Phe	Ile	Asp 1780	Ser	Leu	Ser	Arg	Ser 1785	Ala	Phe	Leu
Gln	Leu 1790	Ile	Ile	Asp	Glu	Phe 1795	Ser	Tyr	Lys	Asp	Val 1800	Lys	Val	Ser
Lys	Leu 1805	Tyr	Asp	Ile	Ile	Lys. 1810	Asn	Gly	Tyr	Asn	Arg 1815		Asp	Phe
Ile	Pro 1820	Leu	Leu	Phe	Arg	Thr 1825	Gly	Asp	Leu	Arg	Gln 1830	Ala	Asp	Leu
Asp	Lys 1835	Tyr	Asp	Ala	Met	Lys 1840		His	Glu	Arg	Val 1845	Thr	Trp	Asn
Asp	Trp 1850	Ġln	Thr	Ser	Arg	His 1855	Leu	Asp	Met	Gly	Ser 1860	Ile	Asn	Leu
Thr	Ile 1865	Thr	Gly	Tyr	Asn	Arg 1870	Ser	Ile	Thr	Ile	Ile 1875	Gly	Glu	Asp
Asn	Lys 1880	Leu	Thr	Tyr	Ala	Glu 1885	Leu	Cys	Leu	Thr	Arg 1890	Lys	Thr	Pro
Glu	Asn 1895	Ile	Thr	Ile	Ser	Gly 1900	Arg	Lys	Leu	Leu	Gly 1905	Ala	Arg	His
Gly	Leu 1910	Lys	Phe	Glu	Asn	Met 1915	Ser	Lys	Ile	Gln	Thr 1920	Tyr	Pro	Gly
Asn	Tyr 1925	Tyr	Ile	Thr	Tyr	Arg 1930	Lys	Lys	Asp	Arg	His 1935		Phe	Val
Tyr	Gln 1940	Ile	His	Ser	His	Glu 1945	Ser	Ile	Thr	Arg	Arg 1950	Asn	Glu	Glu
His	Met 1955	Ala	Ile	Arg	Thr	Arg 1960	Ile	Tyr	Asn	Glu	Ile 1965	Thr	Pro	Val
Cys	Val 1970	Val	Asn	Val	Ala	Glu 1975	Val	Asp	Gly	Asp	Gln 1980	Arg	Ile	Leu
Ile	Arg 1985	Ser	Leu	Asp	Tyr	Leu 1990	Asn	Asn	Asp	Ile	Phe 1995	Ser	Leu	Ser
Arg	Ile 2000	Lys	Val	Gly	Leu	Asp 2005	Glu	Phe	Ala	Thr	Ile 2010	Lys	Lys	Ala
His	Phe 2015	Ser	Lys	Met	Val	Ser 2020	Phe	Glu	Gly	Pro	Pro 2025	Ile	Lys	Thr

Page 15 of 60

Gly Leu 2030		sp Leu	Thr	Glu 2035	Leu	Met	Lys	Ser	Gln 2040		Leu	Leu
Asn Leu 2045		yr Asp	Asn	Ile 2050		Asn	Ser	Asn	Leu 2055	Ile	Ser	Phe
Ser Lys 2060		le Cys	Cys	Glu 2065	Gly	Ser	Asp	Asn	Ile 2070	Asn	Asp	Gly
Leu Glu 2075		eu Ser	Asp	Asp 2080	Pro	Met	Asn	Phe	Thr 2085		Gly	Glu
Ala Ile 2090		er Thr	Pro	Ile 2095	Phe	Asn	Ile	Tyr	Tyr 2100	Ser	Lys	Arg
Gly Glu 2105	_	is Met	Thr	Tyr 2110	Arg	Asn	Ala	Ile	Lys 2115	Leu	Leu	Ile
Glu Arg 2120		hr Lys	Ile	Phe 2125	Glu	Glu	Ala	Phe	Thr 2130		Ser	Glu
Asn Gly 2135		le Ser	Pro	Glu 2140	Asn	Leu	Gly	Cys	Leu 2145	Glu	Ala	Val
Val Ser 2150		le Lys	Leu	Leu 2155	Lys	Thr	Asn	Glu	Trp 2160	Ser	Thr	Val
Ile Asp 2165	_	ys Ile	His	Ile 2170	Cys	Leu	Ile	Lys	Asn 2175	Gly	Met	Asp
His Met 2180		is Ser	Phe	Asp 2185	Val	Pro	Lys	Cys	Phe 2190		Gly	Asn
Pro Ile 2195		rg Asp	Met	Asn 2200	Trp	Met	Met	Phe	Arg 2205	Glu	Phe	Ile
Asn Ser 2210		ro Gly	Thr	Asp 2215	Ile	Pro	Pro	Trp	Asn 2220	Val	Met	Thr
Glu Asn 2225		ys Lys	Lys	Cys 2230	Ile	Ala	Leu	Ile	Asn 2235	Ser	Lyś	Leu
Glu Thr 2240		rg Asp	Phe	Ser 2245	Glu	Phe	Thr	Lys	Leu 2250	Met	Lys	Lys
Glu Gly 2255	-	rg Ser	Asn	Ile 2260	Glu	Phe	Asp					

<210> 7 <211> 25

<212> DNA

<213> Artificial Sequence

Page 16 of 60

<220> <223>	Antisense primer derived from M segment of LACV genome	
<400>	7	
cgatcaa	acaa tccaatgata acaag	25
	·	
<210>	8	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Sense primer derived from M segment of LACV genome	
<400>	8	
tggaaat	tggc atcgagaata aa	22
<210>	9	
	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of LACV genome	
<400>	9	
attatct	ccac ctgtatcttg aattatgctg taagctggg	39
<210>	10	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Construction of the Constr	
<223>	Sense primer derived from S segment of LACV genome	
<400>	10	
gtctcag	gcac gagttgatca gaa	23
<210>	11	
<211>	22	
	DNA	
<213>	Artificial Sequence	
<220>		
	Antisense primer derived from S segment of LACV genome	
-400	11	
<400>	11 Sago gagtagaatt to	22

Page 17 of 60

```
<210> 12
<211>
      25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 12
                                                                     25
tggtgtagga tgggacagtg ggcca
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Sense primer derived from L segment of LACV genome
<400> 13
aaagtcgggc ttgacgaatt t
                                                                     21
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense primer derived from L segment of LACV genome
<400> 14
                                                                     23
cggacagaaa ctctaaccca tca
<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from L segment of LACV genome
ccccaatta agacagggct cctcg
                                                                     25
<210> 16
<211>
      25
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide specific for LACV sequence
```

25

<400> 16

catgaggcat tcaaattagg ttcta

<210> 17 <211> 174 <212> PRT <213> La Crosse virus <400> 17 Val Met Cys Lys Ser Lys Gly Pro Ala Ser Ile Leu Ser Ile Ile Thr Ala Val Leu Val Leu Thr Phe Val Thr Pro Ile Asn Ser Met Val Leu Gly Glu Ser Lys Glu Thr Phe Glu Leu Glu Asp Leu Pro Asp Asp Met Leu Glu Met Ala Ser Arg Ile Asn Ser Tyr Tyr Leu Thr Cys Ile Leu Asn Tyr Ala Val Ser Trp Gly Leu Val Ile Ile Gly Leu Leu Ile Gly Leu Leu Phe Lys Lys Tyr Gln His Arg Phe Leu Asn Val Tyr Ala Met 85 90 Tyr Cys Glu Glu Cys Asp Met Tyr His Asp Lys Ser Gly Leu Lys Arg 105 His Gly Asp Phe Thr Asn Lys Cys Arg Gln Cys Thr Cys Gly Gln Tyr 115 120 125 Glu Asp Ala Ala Gly Leu Met Ala His Arg Lys Thr Tyr Asn Cys Leu 135 Val Gln Tyr Lys Ala Lys Trp Met Met Asn Phe Leu Ile Ile Tyr Ile Phe Leu Ile Leu Ile Lys Asp Ser Ala Ile Val Val Gln Ala 165 <210> 18 <211> 968 <212> PRT <213> La Crosse virus <400> 18 Ala Gly Thr Asp Phe Thr Thr Cys Leu Glu Thr Glu Ser Ile Asn Trp Asn Cys Thr Gly Pro Phe Leu Asn Leu Gly Asn Cys Gln Lys Gln Gln

			20					23					30		
Lys	Lys	Glu 35	Pro	Tyr	Thr	Asn	Ile 40	Ala	Thr	Gln	Leu	Lys 45	Gly	Leu	Lys
Ala	Ile 50	Ser	Val	Leu	Asp	Val 55	Pro	Ile	Ile	Thr	Gly 60	Ile	Pro	Asp	Asp
Ile 65	Ala	Gly	Ala	Leu	Arg 70	Tyr	Ile	Glu	Glu	Lys 75	Glu	Asp	Phe	His	Val 80
Gln	Leu	Thr	Ile	Glu 85	Tyr	Ala	Met	Leu	Ser 90	Lys	Tyr	Cys	Asp	Tyr 95	Tyr
Thr	Gln	Phe	Ser 100	Asp	Asn	Ser	Gly	Tyr 105	Ser	Gln	Thr	Thr	Trp 110	Arg	Val
Tyr	Leu	Arg 115	Ser	His	Asp	Phe	Glu 120	Ala	Cys	Ile	Leu	Tyr 125	Pro	Asn	Gln
His	Phe 130	Cys	Arg	Cys	Val	Lys 135	Asn	Gly	Glu	Lys	Cys 140	Ser	Ser	Ser	Asn
Trp 145	Asp	Phe	Ala	Asn	Glu 150	Met	Lys	Asp	Tyr	Tyr 155	Ser	Gly	Lys	Gln	Thr 160
Lys	Phe	Asp	Lys	Asp 165	Leu	Asn	Leu	Ala	Leu 170	Thr	Ala	Leu	His	His 175	Ala
Phe	Arg	Gly	Thr 180	Ser	Ser	Ala	Tyr	Ile 185	Ala	Thr	Met	Leu	Ser 190	Lys	Lys
Ser	Asn	Asp 195	Asp	Leu	Ile	Ala	Tyr 200	Thr	Asn	Lys	Ile	Lys 205	Thr	Lys	Phe
Pro	Gly 210	Asn	Ala	Leu	Leu	Lys 215	Ala	Ile	Ile	Asp	Tyr 220	Ile	Ala	Tyr	Met
Lys 225	Ser	Leu	Pro	Gly	Met 230	Ala	Asn	Phe	Lys	Tyr 235	Asp	Glu	Phe	Trp	Asp 240
Glu	Leu	Leu	Tyr	Lys 245	Pro	Asn	Pro	Ala	_	Ala		Asn	Leu	Ala 255	Arg
Gly	Lys	·Glu	Ser 260	Ser	Tyr	Asn	Phe	Lys 265	Leu	Ala	Ile	Ser	Ser 270	Lys	Ser
Ile	Lys	Thr 275	Cys	Lys	Asn	Val	Lys 280	Asp	Val	Ala	Cys	Leu 285	Ser	Pro	Arg
Ser	Gly 290	Ala	Ile	Tyr	Ala	Ser 295	Ile	Ile	Ala	Cys	Gly 300	Glu	Pro	Asn	Gly
Pro	Ser	Val	Tyr	Arg	Lys	Pro	Ser	Gly	Gly	Val	Phe	Gln	Ser	Ser	Thr

Page 20 of 60

Asp	Arg	Ser	Ile	Tyr 325	Cys	Leu	Leu	Asp	Ser 330	His	Cys	Leu	Glu	Glu 335	Phe
Glu	Ala	Ile	Gly 340	Gln	Glu	Glu	Leu	Asp 345	Ala	Val	Lys	Lys	Ser 350	Lys	Cys
Trp	Glu	Ile 355	Glu	Tyr	Pro	Asp	Val 360	Lys	Leu	Ile	Gln	Glu 365	Gly	Asp	Gly
Thr	Lys 370	Ser	Cys	Arg	Met	Lys 375	Asp	Ser	Gly	Asn	Cys 380	Asn	Val	Ala	Thr
Asn 385	Arg	Trp	Pro	Val	Ile 390	Gln	Cys	Glu	Asn	Asp 395	Lys	Phe	Tyr	Tyr	Ser 400
Glu	Leu	Gln	Lys	Asp 405	Tyr	Asp	Lys	Ala	Gln 410	Asp	Ile	Gly	His	Tyr 415	Cys
Leu	Ser	Pro	Gly 420	Cys	Thr	Thr	Val	Arg 425	Tyr	Pro	Ile	Asn	Pro 430	Lys	His
Ile	Ser	Asn 435	Cys	Asn	Trp	Gln	Val 440	Ser	Arg	Ser	Ser	Ile 445	Ala	Lys	Ile
Asp	Val 450	His	Asn	Ile	Glu	Asp 455	Ile	Glu	Gln	Tyr	Lys 460	Lys	Ala	Ile	Thr
Gln 465	Lys	Leu	Gln	Thr	Ser 470	Leu	Ser	Leu	Phe	Lys 475	Tyr	Ala	Lys	Thr	Lys 480
Asn	Leu	Pro	His	Ile 485	Lys	Pro	Ile	Tyr	Lys 490	Tyr	Ile	Thr	Ile	Glu 495	Gly
Thr	Glu	Thr	Ala 500	Glu	Gly	Ile	Glu	Ser 505	Ala	Tyr	Ile	Glu	Ser 510	Glu	Val
Pro	Ala	Leu 515	Ala	Gly	Thr	Ser	Ile 520	Gly	Phe	Lys	Ile	Asn 525	Ser	Lys	Glu
Gly	Lys 530	His	Leu	Leu	Asp	Val 535	Ile	Ala	Tyr	Val	Lys 540	Ser	Ala	Ser	Tyr
Ser 545	Ser	Val	Tyr	Thr	Lys 550	Leu	Tyr	Ser	Thr	Gly 555	Pro	Thr	Ser	Gly	Ile 560
Asn	Thr	Lys	His	Asp 565	Glu	Leu	Cys	Thr	Gly 570	Pro	Cys	Pro	Ala	Asn 575	Ile
Asn	His	Gln	Val 580	Gly	Trp	Leu	Thr	Phe 585	Ala	Arg	Glu	Arg	Thr 590	Ser	Ser
Trp	Gly	Cys 595	Glu	Glu	Phe	Gly	Cys 600	Leu	Ala	Val	Ser	Asp 605	Gly	Cys	Val

Page 21 of 60

Phe	Gly 610	Ser	Cys	Gln	Asp	Ile 615	Ile	Lys	Glu	Glu	Leu 620	Ser	Val	Tyr	Arg
Lys 625	Glu	Thr	Glu	Glu	Val 630	Thr	Asp	Val	Glu	Leu 635	Cys	Leu	Thr	Phe	Ser 640
Asp	Lys	Thr	Tyr	Cys 645	Thr	Asn	Leu	Asn	Pro 650	Val	Thr	Pro	Ile	Ile 655	Thr
Asp	Leu	Phe	Glu 660	Val	Gln	Phe	Lys	Thr 665	Val	Glu	Thr	Tyr	Ser 670	Leu	Pro
Arg	Ile	Val 675	Ala	Val	Gln	Asn	His 680	Glu	Ile	Lys	Ile	Gly 685	Gln	Ile	Asn
Asp	Leu 690	Gly	Ϋal	Tyr	Ser	Lys 695	Gly	Cys	Gly	Asn	Val 700	Gln	Lys	Val	Asn
Gly 705	Thr	Ile	Tyr	Gly	Asn 710	Gly	Val	Pro	Arg	Phe 715	Asp	Tyŗ	Leu	Cys	His 720
Leu	Ala	Ser	Arg	Lys 725	Glu	Val	Ile	Val	Arg 730	Lys	Cys	Phe	Asp	Asn 735	Asp
Tyr	Gln	Ala	Cys 740	Lys	Phe	Leu	Gln	Ser 745	Pro	Ala	Ser	Tyr	Arg 750	Leu	Glu
Glu	Asp	Ser 755	Gly	Thr	Val	Thr	Ile 760	Ile	Asp	Tyr	Lys	Lys 765	Ile	Leu	Gly
Thr	Ile 770	Lys	Met	Lys	Ala	Ile 775	Leu	Gly	Asp	Val	Lys 780	Tyr	Lys ·	Thr	Phe
Ala 785	Asp	Ser	Val	Asp	Ile 790	Thr	Ala	Glu	Gly	Ser 795	Cys	Thr	Gly	Cys	Ile 800
Asn	Cys	Phe	Glu	Asn 805	Ile	His	Cys	Glu	Leu 810	Thr	Leu	His	Thr	Thr 815	Ile
Glu	Ala	Ser	Cys 820	Pro	Ile	Lys	Ser	Ser 825	Cys	Thr	Val	Phe	His 830	Asp	Arg
Ile	Leu	Val 835	Thr	Pro	Asn	Glu	His 840	Lys	Tyr	Ala	Leu	Lys 845	Met	Val	Cys
Thr	Glu 850	Lys	Pro	Gly	Asn	Thr 855	Leu	Thr	Ile	Lys	Val 860	Cys	Asn	Thr	Lys
Val 865	Glu	Ala	Ser	Met	Ala 870	Leu	Val	Asp	Ala	Lys 875	Pro	Ile	Ile	Glu	Leu 880
Ala	Pro	Val	Asp	Gln 885	Thr	Ala	Tyr	Ile	Arg 890	Glu	Lys	Asp	Glu	Arg 895	Cys
Lys	Thr	Trp	Met	Cys	Arg	Val	Arg	Asp	Glu	Gly	Leu	Gln	Val	Ile	Leu

Page 22 of 60

910

25

905 -

900

<210> 21 <211> 22 <212> DNA

GIu	Pro	915	ràs	Asn	Leu	Pne	920	ser	Tyr	11e	GIA	925	Pne	Tyr	Thr
Phe	Ile 930	Ile	Ser	Ile	Val	Val 935	Leu	Leu	Val	Ile	Ile 940	Tyr	Val	Leu	Leu
Pro 945	Ile	Cys	Phe	Lys	Leu 950	Arg	Asp	Thr	Leu	Arg 955	Lys	His	Glu	Asp	Ala 960
Tyr	Lys	Arg	Glu	Met 965	Lys	Ile	Arg								
<210 <211 <212 <213	L> 9 2> I	19 92 PRT La Ci	rosse	e vii	rus										
<400 Met 1		19 Ser	His	Gln 5	Gln	Val	Gln	Met	Asp 10	Leu	Ile	Leu	Met	Gln 15	Gly
Ile	Trp	Thr	Ser 20	Val	Leu	Lys	Met	Gln 25	Asn	Tyr	Ser	Thr	Leu 30	Leu	Gln
Leu	Gly	Ser 35	Ser	Ser	Ser	Met	Pro 40	Gln	Arg	Pro	Arg	Leu 45	Leu	Ser	Arg
Val	Ser 50	Gln	Arg	Gly	Arg	Leu 55	Thr	Leu	Asn	Leu	Glu 60	Ser	Gly	Arg	Ţrp
Arg 65	Leu	Ser	Ile	Ile	Ile 70	Phe	Leu	Glu	Thr	Gly 75	Thr	Thr	Gln	Leu	Val 80
Thr	Thr	Ile	Leu	Pro 85	Ser	Thr	Asp	Tyr	Leu 90	Gly	Ile				
<210 <210 <210 <210	L> 2 2> I	20 25 ONA Arti1	ficia	al Se	equer	nce									
<220 <223		Forwa	ard p	prime	er de	erive	ed fi	com N	1 seg	gment	of	the	LAC	/ ger	nome
	<400> 20 ttgtacaagc tgctggaact gactt														

Page 23 of 60

<213>	Artificial S	Sequence							
<220>					_				
<223>	Forward prim	mer derived	from M	segment	οĒ	the	LACV	genome	
<400>	21								
tgtggtg	gece getatgat	tac tt							22
<210>	22	•							
<211> <212>	20 DNA								
<213>	Artificial S	Sequence					•		
•		-							
<220>			<i>-</i>		_				
<223>	Forward prim	mer derived	irom M	segment	ΟÏ	the	LACV	genome	
<400>	22								
tgtggtg	ccc gctatgat	cac							20
<210>	23								
<211>	21								
<212>									
<213>	Artificial S	Sequence	-						
<220>					•				
<223>	Forward prim	mer derived	from M	segment	of	the	LACV	genome	
<400>	23				٠		•		
	gcc cgctatga	ata c							21
	•						·		
<210>	24								
<211>	20	•							
<212>	DNA								
<213>	Artificial S	Sequence						-	
<220>									,
<223>	Forward prim	mer derived	from M	segment	of	the	LACV	genome	•
<400>	24 :gcc cgctatga	. + >					•		20
ctgtggt	gee egetatga	ica							20
010	25								
<210> <211>	25 21								
<212>									
	Artificial S	Sequence							
<220>	Forward prim	nor doring	from M	aeaman+	٥f	+ h -	T 7/077	conomo	
<223>	Forward prim	mer detined	TTOM M	acyment	ΟŢ	cite	TACV	demonie	
<400>	25			•					
tatataa	tac ccactata	rat a							21

Page 24 of 60

<210><211><211><212><213>	26 20 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> tctgtgg	26 gtgc ccgctatgat	20
<210><211><211><212><213>	27 20 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> gtgtctg	27 gtgg tgcccgctat	20
<210><211><212><212><213>	28 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400>	28 tggc actgtgacca taa	23
<210><211><212><213>	29 24 DNA Artificial Sequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400> agacagt	29 tggc actgtgacca taat	24
<210><211><211><212>	30 23 DNA Artificial Seguence	

Page 25 of 60

<220> <223>	Forward pr	imer	derived	from	M	segment	of	the	LACV	genome		
<400>	30											
		~~~~	ata								2	2
aayacas	rtgg cactgt	gacc	aca								2	
<210>	31		•									
<211>	24											
<212>	DNA											
<213>	Artificial	Sequ	ience									
<220>	_			_			_					
<223>	Forward pr	imer	derived	irom	M	segment	of	the	LACV	genome		
<400>	31								•			
aagacag	stgg cactgt	gacc	ataa _.								2	4
•												
<210>	32					•			•			
<211>												
<212>	DNA											
<213>	Artificial	Sequ	ience									
<220>												
<223>	Forward pr	imer	derived	from	M	segment	of	the	LACV	genome		
<400>	32											
aagacag	stgg cactgt	gacc	ataat								2	5
<210>	33										•	
<211>	24											
<212>	DNA											
<213>	Artificial	Sequ	lence									
<220>												
<223>	Forward pr	imer	derived	from	M	segment	of	the	LACV	genome		
<400>	33											
gaagaca	gtg gcactg	tgac	cata								2	4
<210>	34											
<211>	25											
<212>												
<213>	Artificial	Sequ	ience									
<220>												
<223>	Forward pr	imer	derived	from	М	segment	of	the	LACV	genome		
	•											
<400>	34 agt ggcacto	~+ <i>~</i> ~	agata								2	_
രവരദധർ(	au uucaci.	41.44	L.C.O.L.O								,	

#### Page 26 of 60

<210> <211>	35 25	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400>	35	
ctgggc	catt tttgaacctc gggaa	25
<210>	36 24	
<212>	•	
<213>		
<220>	Drobe derived from M geometh of the IACV genera	
	Probe derived from M segment of the LACV genome	
<400>	36	2.
etggge	catt tttgaacctc ggga	24
	37	
	24	
<212>		
	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	37	_
cactgg	gcca tttttgaacc tcgg	24
<210>	38	
<211>	23	
<212> <213>	DNA Artificial Sequence	
	Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400>	38	
ctgggc	catt tttgaacctc ggg	23
<210>	39	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	

#### Page 27 of 60

<400>	39	
tgaacc	tcgg gaattgccaa aagca	25
.010-	40	
<210> <211>	40 25	
<212>	DNA	
	Artificial Sequence	
12177	metricial bequesses	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	40	
tgcact	gggc catttttgaa cctcg	25
<210>	41	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
- 4 0 0 -	41	•
<400>	41	25
accygy	ccat ttttgaacct cggga	23
<210>	42	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220> <223>	Probe derived from M segment of the LACV genome	
(2237	Flobe delived from M segment of the LACV genome	
<400>	42	
	ccat ttttgaacct cggg	24
<210>	43	
<211>	23	
<212>	DNA Antificial Company	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	43	
tgggcca	attt ttgaacctcg gga	23
.010	4.4	
<210>	44	

# Page 28 of 60

<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Probe derived from M segment of the LACV genome	
	, and a control of the control of th	
<400>	44	
	attt ttgaacctcg ggaat	25
033300		
<210>	45	
<211>	25	
<212>	DNA	
<212 <i>&gt;</i>		
<213>	Artificial Sequence	
<220>	D 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<223>	Probe derived from M segment of the LACV genome	
	•	
<400>	45	
cactgg	gcca tttttgaacc tcggg	25
<210>	46	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	46	
tgggcc	attt ttgaacctcg ggaa	24
<210>	47	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Probe derived from M segment of the LACV genome	
<400>	47	
	agtc gaaagggcct gca	23
egegeu.	agee gaaagggeee gea	
<210>	48	
	24	
<211>		
<212>	DNA Antificial Company	
<213>	Artificial Sequence	
.000		
<220>	m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<223>	Probe derived from M segment of the LACV genome	
<400>	48	

#### Page 29 of 60

catgtg	caag tcgaaagggc ctgc	24.
<210>	49	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	49	
tcatgt	gcaa gtcgaaaggg cctg	24
<210>,	50	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	50	
atgtgca	aagt cgaaagggcc tgca	24
<210>	51	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	51	
tcatgt	gcaa gtcgaaaggg cctgc	25
<210>	52	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	52	
taaccg	caga agggtcatgc accg	24
_		
<210>	53	
<211>	21	
<212>	DNA	
-212-	Artificial Sequence	

#### Page 30 of 60

<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	53	
ccacaaa	aagg gtcatgcacc g	21
J <b>J</b> -		-
<210>	54	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	54	
aaccgca	agaa gggtcatgca ccg	23
<210>	55	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	55	
ataacco	gcag aagggtcatg caccg	25
	•	
<210>	56	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	56	
accgcag	gaag ggtcatgcac cg	22
<210>	57	
<210>	23	
<211> <212>	DNA	
	Artificial Sequence	
~4137	WICITIOIAL Deducate	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	57	
cagaagg	ggtc atgcaccggc tgt	23

#### Page 31 of 60

<210><211><211><212><213>	58 21 DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400>	58	
cgcagaa	aggg tcatgcaccg g	21
<210>	59	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
<400>	59	
	tta actgagttgc aatgt	25
010		
<210> <211>	60 25	
<211>	DNA	
<213>	Artificial Sequence	
	·	
<220> <223>	Reverse primer derived from M segment of the LACV genome	
(2237	Reverse primer derived from M segment of the LACV genome	
<400>	60	
aaggtta	aga ccagtaccgc agtaa	25
<210>	61	
<211>	22	
<212>	DNA	
(213)	Artificial Sequence	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
<400>	61	
	lacg ttaattcgca at	22
_		
<210>	62	
<211>	22	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		

#### Page 32 of 60

<223>	Reverse prime	r derived	from	M	segment	of	the	LACV	genome	
<400> tgtggtg	62 . gtgc aacgttaat	t cg								. 22
<210> <211>	63 22		ř							
	DNA							•		
<213>	Artificial Se	quence			÷					
<220>										
<223>	Reverse prime:	r derived	from	M	segment	of	the	LACV	genome	
<400>	63	,								
tcaatto	tgg tgtgcaacg	t ta								22
<210>	64							٠		
<211>	23									
<212>	DNA									
<213>	Artificial Sec	quence								
<220>										
<223>	Reverse prime:	r derived	from	M	segment	of	the	LACV	genome	
<400>	64 .									
	tgg tgtgcaacg	t taa								23
_	, ,, , , , ,							•		
<210>	65									
<211>	21									
	DNA									
	Artificial Sec	quence								•
		-								
<220>	_		_		_	_				
<223>	Reverse prime:	r derived	from	M	segment	of	the	LACV	genome	
<400>	65							•		
tcaatto	tgg tgtgcaacg	t t								21
		•								
<210>	66									
<211>	24									
<212>	DNA									
	Artificial Sec	quence								
<220>	Danier		£	3.5			<b>-1</b>	T 70 07 7		
<223>	Reverse prime:	r derived	rrom	ΙΔΪ	segment	OI	tne	LACV	genome	
<400>	66									
tcaatto	tgg tgtgcaacg	t taat								24

<210> 67

#### Page 33 of 60

<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
222		
<220>	Forward primar darized from the C goment of the LAGU general	
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	67	
	cacg agttgatcag aac	23
	· · · · · · · · · · · · · · · · · · ·	~ `
<210>	68	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
-400-	68	
<400>	oo lega gttgateaga aca	23
cccagco	acya yeeyaccaya aca	۷.
<210>	69	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	69	
	gag ttgatcagaa caa	23
ccagcac	· · · · · · · · · · · · · · · · · · ·	2.
	•	
<210>	70	
<211>	22	
<212>	DNA ·	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
-100-	7.0	
<400>	70 gct gaccattgga at	22
cccaccc	get gaccactgga at	~ ~
<210>	71.	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	

#### Page 34 of 60

<400>	71	
gagtgt	gatg tcggatttgg tgtt	24
<210>	72	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
	·	•
<400>	72	
agtctca	agca cgagttgatc agaa	24
	·	
<210>	73	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
	_	
<220>	•	
<223>	Forward primer derived from the S segment of the LACV genome	
	·	
<400>	73	
gtctca	gcac gagttgatca gaac	24
<210>	74	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	74	
	cacg agttgatcag aaca	24
-		
<210>	75	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>	·	
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	75	
	acga gttgatcaga acaa	24
J		_
	·	
<210>	76	
<211>	22	
<212>	DNA	
	•	

## Page 35 of 60

<213>	Artifici	al S	Sequ	ence									
<220>										•			
<223>	Forward	prim	ner	derived	from	the	S	segment	of	the	LACV	genome	
<400>	76												
tcagca	gag ttga	tcag	gaa	ca				•					22
<210>	77												
<211>	21												
<212>	DNA												
	Artifici	al S	Sequ	lence									
<220>					_		_		_				
<223>	Forward	prin	ner	derived	irom	the	S	segment	οİ	the	LACV	genome	
<400>	77 ·												
	gct gacc	atto	ταa	а									21
	2500 5000		,,,	_									
-210-	70												
<210>	78									·			
<211>	22 .												
<212>		-1 0	٦										
<213>	Artifici	aı s	sequ	ience									
<220>													
<223>	Forward	prim	ner	derived	from	the	S	segment	of	the	LACV	genome	
<400>	78												
	tga ccat	taas	- t	t c									22
cacceg	cega ceae	.cggc	auc										22
<210>	79												
<211>	24												
<212>	DNA												
<213>	Artifici	al S	Seau	ence									
12137	ALCILIOI	.u. L	,cqu	.01100									
<220>													
<223>	Forward	prim	ner	derived	from	the	S	segment	of	the	LACV	genome	
<400>	79												
	gtg atgt	сааа	att	taat									24
	-3-33-	-33-		-33-									
<210>	80												
<211>	23												
<212>	DNA												
	Artifici	al s	Semi	ience									
.2257			40										
<220>													
<223>	Forward	prim	ner	derived	from	the	S	segment	of	the	LACV	genome	
<400>	80												•
	su stga tgtc	'daa t	-+-	aat									23
				~~~									۰ ہے

Page 36 of 60

```
<210> 81
<211>
      23
<212> DNA
<213> Artificial Sequence
<223> Forward primer derived from the S segment of the LACV genome
<400> 81
cctgatgcag ggtatatgga ctt
                                                                     23
<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 82
tgcagggtat atggacttct gtgt
                                                                     24
<210> 83
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 83
gatgagtctc agcacgagtt gatc
                                                                     24
<210> 84
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 84
gagtctcagc acgagttgat cagaa
                                                                     25
<210> 85
<211>
      25
<212> DNA
<213> Artificial Sequence
```

Page 37 of 60

<220> <223>	Forward	nrimer	derived	from	the	c	seament	٥f	the	T. A CV	genome	
(223)	rorward	primer	derred	110111	CIIC	٠	begillerre	01	CIIC	III-C V	genome	
<400>	85											
agtctca	agca cgag	gttgatc	agaac									25
<210>	86										•	
<211>	20											
<212>	DNA											
<213>	Artifici	ial Sequ	ience									
<220>									٠			
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
		-									J	
<400>	86											
tctacco	eget gace	cattgga							•			20
<210>	87											
<211>	21											
<212>	DNA											
<213>	Artifici	lal Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
		-										
<400>	87											
ctaccc	gctg acca	ittggaa	τ									21
<210>	88		•									
<211>	21											
<212>	DNA											
<213>	Artifici	lal Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
<400>	88		_									0.1
cgctgac	cat tgga	attcac	a						•			21
<210>	89											
<211>	24											
<212>	DNA											
<213>	Artifici	.al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
		-					-				-	
<400>	89											
cctgate	gcag ggta	itatgga	cttc									24

Page 38 of 60

<210> <211>	90 25	
<212>	DNA	
<213>	Artificial Sequence	
~~	Artificial boquence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	90	
atgcag	ggta tatggacttc tgtgt	25
<210>	91	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	91	
caagca	aggc atgatggacc ctcaa	25
<210>	92	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
000		
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	92	
caagc	aagg catgatggac cctca	25
	·	
<210>	93	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
12207		
<220>		
	Drobe devised from C comment of 1200 comme	
<223>	Probe derived from S segment of LACV genome	
<400>	93	
gtcgc	atca acaggtgcaa atgga	25
<210>	94	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
~~~	TIONS WOITARD ITOM D DEAMETTS OF TWOA ACTIONS	

#### Page 39 of 60

<400>	94	
caatqco	egca aaggecaagg c	21
_	,	
<210>	95	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
	, , , , , , , , , , , , , , , , , , ,	
<400>	95	
atgccgc	caaa ggccaaggct gct	23
3 3		
<210>	96	
	22	
<212>		
	Artificial Sequence	
10107		
<220>		
	Probe derived from S segment of LACV genome	
12237	11000 delived from 5 beginning of micr genome	
<400>	96	
	aggc caaggctgct ct	22
	-550 0445500500 00	
<210>	97	
<211>	24	
<212>	DNA	
•	Artificial Sequence	
	· · · · · · · · · · · · · · · · · · ·	
<220>		
<223>	Probe derived from S segment of LACV genome	
	,	
<400>	97	
	aggc caaggctgct ctct	24
<210>	98	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
-	<b>3</b> — <b>3</b>	
<400>	98	
	caaa ggccaaggct g	21
<210>	99	
<211>	21	

## Page 40 of 60

<212> <213>	DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400>	99	
tgccgca	aaag gccaaggctg c	21
<210>	100	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	100	
caatgc	egca aaggecaagg etg	23
<210>	101	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
10107	Arctitotal begaence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	101	
aggccaa	aggc tgctctctcg cgta	24
<210>	102	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>		
cgcaaa	ggcc aaggctgctc tct	23
,		
<210>	103	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	103	

## Page 41 of 60

ccaagg	ctgc tctctcgcgt aagc	24
<210>	104	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	104	
caaaggo	ccaa ggctgctctc tcgc	24
<210>	105	
<211>	22	
<212>	DNA .	
<213>	Artificial Sequence	
	•	
<220>		
	Probe derived from S segment of LACV genome	•
<400>	105	
	aggc tgctctctcg cg	22
	-550 050000005 05	
<210>	106	
<211>	25	
	DNA	
	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	106	
	caag gctgctctct cgcgt	25
<210>	107	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
	<u>.</u>	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	107	
	caat gccgcaaagg cca	23
<210>	108	
<211>		
<212>		
	Artificial Seguence	

<223> Probe derived from S segment of LACV genome

<220>

<400>	108 tcaa tgccgcaaag gcc	23
<210>	109	
<211>	24	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	109	
aaggcc	aagg ctgctctctc gcgt	24
<210>	110	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	110	
tcttcc	tcaa tgccgcaaag gcca	24
<210>	111	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	111	
tcttct	tcct caatgccgca aaggc	25
<210>	112	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	112	
tcaatg	ccgc aaaggccaag gc	22

#### Page 43 of 60

<210><211><211><212><213>	113 25 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400>	113	
ttette	ctca atgccgcaaa ggcca	25
<210>	114	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	114	
cctcaat	cgcc gcaaaggcca agg	23
<210>	115	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	115	
cttcct	caat geegeaaagg eeaag	25
010		
<210>	116	
<211>	24	
<212> <213>	DNA Artificial Company	
(413)	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	116	
ttcttc	ctca atgccgcaaa ggcc	24
<210>	117	
<210> <211>	23	
<211 <i>&gt;</i>	DNA	
<213>	Artificial Sequence	
<220>		

#### Page 44 of 60

<223>	Probe derived from S segment of LACV genome	
<400>	117 gccg caaaggccaa ggc	23
	,005 000055000 550	2,7
•.		
<210>	118	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	118	
ttcctca	aatg ccgcaaaggc caa	23
<210>	119	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Duelle device & fuel Comment of TROTT	
<223>	Probe derived from S segment of LACV genome	
<400>	119	
	tgc cgcaaaggcc aag	23
<210>	120	
<211>	21	
<212>		
	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
-400-	120	
<400>	120 ltgc cgcaaaggcc a	21
ccccao	tege egeadaggee a	21
<210>	121	
<211>	23	
	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	121	
tcaatgo	cgc aaaggccaag gct	23

<210> 122

## Page 45 of 60

<211>	22	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	122	
caatgc	cgca aaggccaagg ct	22
	123	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	123	
cttctt	cctc aatgccgcaa aggcc	25
<210>	124	
<211>	22 .	
<212>	DNA .	
<213>	Artificial Sequence	
	!	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	124	
ctcaat	gccg caaaggccaa gg	22
	125	
	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	125	
aatgcc	gcaa aggccaaggc tg	22
	·	
<210>	126	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	

## Page 46 of 60

<400> atgccg	126 caaa ggccaaggct gc	2	2
<210>	127		
<211>	20		
<212>			
<213>	Artificial Sequence		
<220>	Ducks deviced from a security of their		
<223>	Probe derived from S segment of LACV genome	÷	
<400>	127		
tgccgc	aaag gccaaggctg	2	0
-210-	120		
<210> <211>	128 24	·	
<211>	DNA	•	
	Artificial Sequence		
1220	midiliolal boddones		
<220>			
<223>	Probe derived from S segment of LACV genome	,	
<400>	128		
ctcaat	gccg caaaggccaa ggct	2	4
<210>	129		
<211>	22		
<212>	DNA		
<213>	Artificial Sequence		
<220>		•	
	Probe derived from S segment of LACV genome		
<400>	129		
	tgcc gcaaaggcca ag	2:	2
			_
<210>	130		
<211>	24		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Probe derived from S segment of LACV genome		
<400>	130		
	caat gccgcaaagg ccaa	24	4
<210>	131		
<211>	25	• .	
-2125	TNYA		

# Page 47 of 60

<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	131	
tcttcct	caa tgccgcaaag gccaa	25
<210>	132	
<211>	22	
	DNA  Publificial Company	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
1220-	11000 doll/od 110m b 205mens of 110v 50nom	
<400>	132	
tcctcaa	tgc cgcaaaggcc aa	22
<210>	133	
<211>	22	
	DNA	
<213>	Artificial Sequence	
-220-		
<220>	Probe derived from S segment of LACV genome	
~2237	Flobe delived from 5 segment of the genome	
<400>	133	
	aatg ccgcaaaggc ca	22
<210>	134	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
12237	11000 dollard lion b begindle of mior geneme	
<400>	134	
ttcctca	atg ccgcaaaggc caag	24
<210>	135	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
-223/	11000 dollyed from 5 beginning of many genome	
<400>	135	
	agge tgeteteteg egt	23

# Page 48 of 60

<210>	136	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
	The state of the s	
<400>	136	
caaggct	cgct ctctcgcgta agcca	25
<210>	137	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	137	
ccaaggo	ctgc tctctcgcgt aagcc	25
<210>	138	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	138	
aggccaa	aggo tgotototog ogtaa	25
	·	
<210>	139	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	139	
	aggc caaggctgct c	21
cegeaac		<b>~</b> 1
016		
<210>	140	
<211>	25 DNA	
<212>	DNA Artificial Sequence	

#### Page 49 of 60

<220>	•	
<223>	Probe derived from S segment of LACV genome	
<400>	140	
aaggete	gete tetegegtaa geeag	25
	good coccycycaa goodg	
<210>	141	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	141	
	gete tetegegtaa geea	24
aaggeeg	gete tetegegedd geta	27
<210>	142	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	142	
caaggct	gct ctctcgcgta agcc	24
<210>	143	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
.400	142	
<400>	143	22
cycaaag	ggcc aaggetgete te	22
<210>	144	
<211>	23	
<212>	DNA	
	Artificial Sequence	
	en e	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	144	
ccgcaaa	agge caaggetget etc	23

## Page 50 of 60

<210>	145 25	
<212>	DNA	
	Artificial Sequence	
~213/	Artificial bequence	
<220>	•	
	Ducke desired from C company of LACV company	
<223>	Probe derived from S segment of LACV genome	
<400>	145	
		٠.
aayycc	aagg ctgctctctc gcgta	25
<210>	146	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>		
aaggcc	aagg ctgctctctc gcg	23
010		
<210>	147	
<211>	24	
<212>		
<213>	Artificial Sequence	
222		
<220>	Purchas devices I Compagnet of Tager	
<223>	Probe derived from S segment of LACV genome	
-100-	1-47	
<400>	147	2.
cycaaa	ggcc aaggctgctc tctc	24
	•	
<210>	140	
	148	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
222		
<220>	Duche deviced from C company of TACIV names	
<423>	Probe derived from S segment of LACV genome	
<400>	148	
		2.4
aaayyc	caag gctgctctct cgcg	24
<210>	149	
<211>	22	
<211>	DNA	
<213>	Artificial Sequence	
-220-		
<220>	Devenue mainer demissed from C germant of ThOM	
< 2 2 3 >	Reverse primer derived from S segment of LACV genome	

# Page 51 of 60

<400>	149	
caatggt	cag cgggtagaat tt	22
<210>	150	
<211>	22	
<212>		
	Artificial Sequence	•
12137	metricial bequence	
<220>		
<223>	Reverse primer derived from S segment of LACV	genome
<400>	150	
ccaatgg	tca gcgggtagaa tt	22
	·	
010	151	
<210>	151	
<211><212>	22	
	Artificial Sequence	
(213)	Arcificial bequence	
<220>		
	Reverse primer derived from S segment of LACV	genome
	·	
<400>	151	
tccaatg	gtc agcgggtaga at	22
	152	
<211>	23	
	DNA	
<213>	Artificial Sequence	•
<220>		•
	Reverse primer derived from S segment of LACV	genome
12237	Reverse primer derived from 5 beginning of thev	genome
<400>	152	
	ggc tcttagcaat tgc	23
	153	
<211>	22 .	
	DNA	
<213>	Artificial Sequence	
.000		
<220>	Devenue primer denimed from C comment of TROW	~~~~
<223>	Reverse primer derived from S segment of LACV	2e1101116
<400>	153	
	gca ttgaggaaga ag	22
-5-5		•
<210>	154 .	
<211>	22	

## Page 52 of 60

<212>	DNA Antificial Company	•
<213>	Artificial Sequence	
<220>	December of the desired form of the second	
<223>	Reverse primer derived from S segment of LACV	genome
<400>	154	
atggtca	agcg ggtagaattt ga	22
	155	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV	genome
<400>	155 .	
ccaatg	rtca gcgggtagaa t	. 23
<210>	156	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV	genome
<400>	156	
tccaato	gtc agcgggtaga a	21
	•	
<210>	157	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		•
<223>	Reverse primer derived from S segment of LACV	genome
<400>	157	
tccaato	gtc agcgggtaga	20
<210>	158	·
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV	genome
<400>	158	

## Page 53 of 60

catcct	tcag gctcttagca attg	24
<210>	159	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	159	
		21
cgcggc	attg aggaagaaga t	21
<210>	160	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	160	
	catt gaggaagaag	20
3-55		
<210>	161	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		•
<223>	Reverse primer derived from S segment of LACV genome	
(2237	Reverse primer derived from 5 segment of back genome	
<400>	161	
ctttgc	ggca ttgaggaaga a	21
<210>	162	
<211>	24	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	162	24
godacc	ctcc aaatttaggg ttag	24
<210>	163	
<211>		
<212>		
-212-	Artificial Compans	

## Page 54 of 60

<220>	Dougnas	~~: ma	a a	£	_		. F	T 7 (7)	~~~~		
<223>	Reverse	brimer	derived	Trom	5	segment	OI	LACV	genome		
<400>	163										
cacctgo	ccac tcto	ccaaatt	tag								23
	•										
<210>	164										
<211>	23										
<212>											
<213>	Artific	ial Sequ	ience								
<220>											
<223>	Reverse	primer	derived	from	S	segment	of	LACV	genome	•	
<400>	164									•	
tcagcgg	gta gaat	ttgaaa	gtt								23
<210>	165										
<211>	22	•									
<212>											
<213>	Artifici	ial Sequ	lence								
<220>											
<223>	Reverse	primer	derived	from	S	segment	of	LACV	genome		
<400>	165								•		
tggtcag	gegg gtag	gaatttg	aa								22
<210>	166										
<211>	23										
<212>	DNA										
<213>	Artifici	ıaı Seqi	ience								
<220>											
<223>	Reverse	primer	derived	from	s	segment	of	LACV	genome		
<400>	166										
atggtca	igcg ggta	agaattt	gaa								23
<210>	167										
<211>	23										
<212>											
<213>	Artifici	ial Sequ	lence						•		
<220>											
<223>	Reverse	primer	derived	from	s	segment	of	LACV	genome		
<400>	167										
	aac aaat	agaatt	tga								23

# Page 55 of 60

<210><211><212><212><213>	168 23 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400>	168	
caatggt	ccag cgggtagaat ttg	2
<210>	169	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	December of the december of the second	
<223>	Reverse primer derived from S segment of LACV genome	
<400,>	169	
ccaatgg	ytca gcgggtagaa	2
<210>	170	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	170	
atccttc	cagg ctcttagcaa ttgc	24
-210-	171	
<210> <211>	171 24	
	DNA	
	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	17.1	•
tctacat	cct tcaggctctt agca	24
<210>	172	
<211>	23	
	DNA	
<213>	Artificial Sequence	
<220>		

#### Page 56 of 60

<223>	Reverse primer der	rived from	S segment	of LACV	genome	
<400>	172					
acctgc	cact ctccaaattt agg	Ŧ				23
<210>	173					
<211>	22					
	DNA					
<213>	Artificial Sequence	ce				
<220>						
<223>	Forward primer der	cived from	L segment	of LACV	genome	
<400>	173					
	eggg cttgacgaat tt					22
caaage	eggg coogacgaac co					22
	174					
<211>	22					
<212>	DNA				•	
<213>	Artificial Sequenc	ce				
<220>						
<223>	Forward primer der	rived from	L segment	of LACV	genome	
<400>	174					
	cgg gcttgacgaa tt					22
<210>	175					
<211>	23					
<212>	DNA					
	Artificial Sequence	ce				
	•					
<220>						
<223>	Forward primer der	rived from	L segment	of LACV	genome	
<400>	175					
ttaaagt	cgg gcttgacgaa ttt	;				23
<210>	176					
<211>	23					
<212>	DNA					
	Artificial Sequence	ce .				
.000						
<220>	Rowinson washing at the	died for-	I	of 130"	~~~~~	
<223>	Forward primer der	ived from	ь segment	OI LACV	genome	
<400>	176					
attaaag	ntcg ggcttgacga att	-				23

<210> 177

# Page 57 of 60

<211>	24						•			
<212>	DNA									•
<213>	Artificial	Sequ	lence						•	
220										
<220>	Ta		2	£	-			T N (7) 7		
<223>	Forward pri	mer	derived	rrom	L	segment	OI	LACV	genome	
<400>	177									
	tcg ggcttga	ıcqa	attt							24
	,					•				
<210>	178									
<211>	22								•	
	DNA									
<213>	Artificial	Sequ	ence							
<220>				_	_					
<223>	Forward pri	.mer	aerivea	from	Ь	segment	ΟĬ	LACV	genome	
-100-	178	,								
<400>		1200	2.2							22
gaccaac	gtc gggcttg	acg	aa							22
									•	
<210>	179									
<211>	23									
<212>	DNA									
<213>	Artificial	Sequ	.ence							
<220>	•									
<223>	Forward pri	.mer	derived	from	L	segment	of	LACV	genome	
400	1.00									
<400>	179		<del>-</del>							2.
gattaaa	gtc gggcttg	jacy	aat							23
<210>	180									
<211>	24									
<212>	DNA									
<213>	Artificial	Sequ	ence							
<220>										
<223>	Forward pri	mer	derived	from	L	segment	of	LACV	genome	
	180									
gattaaa	gtc gggcttg	acg	aatt							24
<210>	181									
<210 <i>&gt;</i>	25									
	DNA									
	Artificial	Seau	ence	•						
<220>										
<223>	Forward pri	mer	derived	from	L	segment	of	LACV	genome	

## Page 58 of 60

<400> gattaaa	181 agtc gggcttgacg aattt	25
<210>	182	
<211>	22	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
<400>	182	
	taa agtegggett ga	22
caayyat	teaa ayeegggeee ga	22
<210>	183	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
<400>	183	
	taa agtcgggctt gac	23
caaggac	teau ageogggeee gae	23
<210>	184	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
400	104	
<400>	184	22
ccaagga	itta aagtogggot tga	23
<210>	185	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
<400>	185	
ccaagga	tta aagtogggot tgac	24
<210>	186	
<211>	24	
-212	DNA	

#### Page 59 of 60

<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
<400>	186	
ttcaagg	gatt aaagtcgggc ttga	24
	187	
	24	
<212> <213>	DNA Artificial Sequence	
(213)	Artificial bequence	
<220>		
<223>	Reverse primer derived from L segment of LACV genome	
<400>	187	
cggacag	gaaa ctctaaccca tcat	24
<210>	188	
<211>	25	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from L segment of LACV genome	
<400>	188	
	gaaa ctctaaccca tcatt	25
<210>	189	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from L segment of LACV genome	
<400>	189	
	agaa actctaaccc atca	24
<210>	190	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Reverse primer derived from L segment of LACV genome	
<400>	190	25

#### Page 60 of 60

at aggar	naga aagtataaga gataa	2 5
<4.00>	191	
<223>	Reverse primer derived from L segment of LACV genome	
<220>		
<213>	Artificial Sequence	
<212>		
<211>	25	
<21U>	191	