

defined by M(x) = mean functions K(x,x') = covariance function we say that f(x) ~ GP(m(x), k(x, x')) Over ung subset $3 \times (---- \times n)$ we have a Gaussian distribution

In practice how diese samph functions? can't detine f(x), would need, infinite evaluations of $\alpha(x), k(x, x')$ s sample at finite X. y = f(X) y gives $m(\Sigma)$ k(X,X)

Physics-Informed Deep Neural Operator **Networks**

Somdatta Goswami¹, Aniruddha Bora¹, Yue Yu², and George Em Karniadakis*1,3

LEARNING THE SOLUTION OPERATOR OF PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS WITH PHYSICS-INFORMED **DEEPONETS**

Sifan Wang

Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia, PA 19104 sifanw@sas.upenn.edu

Hanwen Wang

Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia, PA 19104 wangh19@sas.upenn.edu

Paris Perdikaris

Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania Philadelphia, PA 19104 pgp@seas.upenn.edu

 $u_D(x) \sim \mathcal{GP}(0, \mathcal{K}((x, y), (x', y'))),$ $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \exp[-\frac{(\boldsymbol{x} - \boldsymbol{x}')^2}{2l^2}], \ l = 0.2, \ \mathrm{and} \ \boldsymbol{x}, \boldsymbol{x}' \in [0, 1].$

Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

Lu Lu 01, Pengzhan Jin 02,3, Guofei Pang2, Zhongqiang Zhang 04 and George Em Karniadakis 02 ⊠

5000 Hes

DeepONet: Learning nonlinear operators

Convergence w.r.t. the number of sensors

Consider $G: u(x) \mapsto s(x)$ ($x \in [0,1]$) by ODE system

Lu Lu

joint work with P. Jin, G. Pang, Z. Zhang, & G. Karniadakis

Division of Applied Mathematics, Brown University

SIAM Conference on Mathematics of Data Science June, 2020

$$\frac{d}{dx}s(x) = g(s(x), u(x), x), \quad s(0) = s_0$$

 $\forall u \in V \Rightarrow u_m \in V_m$

Let $\kappa(m, V) \coloneqq \sup_{u \in V} \max_{x \in [0,1]} |u(x) - u_m(x)|$

e.g., Gaussian process with kernel $e^{-\frac{\|x_1-x_2\|^2}{2l^2}}$: $\kappa(m,V)\sim \frac{1}{m^2l^2}$

Theorem (Lu et al., 2019; informal)

There exists a constant C, such that for any $y \in [0,1]$,

$$\sup_{u \in V} ||G(u)(y) - NN(u(x_1), \dots, u(x_m), y)||_2 < C\kappa(m, V).$$

Lu Lu ₀¹, Pengzhan Jin ₀², Guofei Pang², Zhongqiang Zhang ₀⁴ and George Em Karniadakis ₀² ⋈

c, The error (mean and standard deviation) tested on the space of Gaussian random fields (GRFs) with the correlation length I = 0.1 for DeepONets trained with GRF spaces of different correlation length I (red curve). The 2-Wasserstein metric between the GRF of I = 0.1 and a GRF of different correlation length I is shown as a blue curve. The test error grows exponentially with respect to the W2 metric (inset).