Senior School Certificate Examination 2018 Marking Scheme ----- Chemistry

General Instructions

- 1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are Suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the same meaning, such answers should be given full weight-age.
- 2. The Marking Scheme carries only suggested value point for the answers. These are only guidelines and do not constitute the complete answers. The students can have their own expression and if the expression is correct the marks will be awarded accordingly.
- 3. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been carried out as per the instruction given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed.
- 5. If a question has parts, please award marks in the right hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left hand margin and circled.
- 6. If a question does not have any parts, marks be awarded in the left-hand margin.
- 7. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 8. No Marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Separate marking schemes for all the three sets have been provided.
- 11. As per orders of the Hon'ble Supreme Court. The candidate would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All examiner/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.
- 12. The Examiners should acquaint themselves with the guidelines given in the Guidelines for sport Evaluation before starting the actual evaluation.
- 13. Every Examiner should stay upto sufficiently reasonable time normally 5-6 hours every day and evaluate 20-25 answer books and should minimum 15-20 minutes to evaluate each answer book.
- 14. Every Examiner should acquaint himself/herself with the marking schemes of all the sets.

<u>Marking Scheme – 2017-18</u>

CHEMISTRY (043)/ CLASS XII

<u>56/1</u>

Q.No	Value Points	Marks
1	Shows metal deficiency defect / It is a mixture of Fe ²⁺ and Fe ³⁺ /Some Fe ²⁺ ions are	1
	replaced by Fe ³⁺ / Some of the ferrous ions get oxidised to ferric ions.	
2	Selectivity of a catalyst	1
3	Coordination Number = 6 , Oxidation State = +2	1/2, 1/2
4	Benzyl chloride ;	1/2
	Due to resonance, stable benzyl carbocation is formed.	1/2
5	3,3 - Dimethylpentan-2-ol	1
6	$\Delta T_f = K_f m$	
	$= K_f w_2 x1000$	1/2
	$M_2x w_1$	
	$= 1.86 \times 60 \times 1000$	
	180x250	1/2
	= 2.48 K	1/2
	$\Delta T_f = T_f^{o} - T_f$	
	$2.48 = 273.15 - T_f$	
	$T_f = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 ^{\circ}\text{C}$	1/2
7	$Rate = \frac{1}{4} \frac{\Delta (NO2)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$	1/2
	(0)	
	Rate of disappearance of N ₂ O ₅ ($-\frac{\Delta (N_2O_5)}{\Delta(t)}$) = 1.4 × 10 ⁻³ M/s	1
	(Deduct half mark	
	if unit is wrong or not written)	
8	(a)PH ₃	1/2
	(b)NH ₃	1/2
	(c)NH ₃	1/2
	(d)BiH ₃	1/2
9	(a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ $\underline{\text{CrO}_3}$ CH ₃ COCH ₃	1
	(b)	
	COOH KMnO ₄ -KOH	
		1
	H³O,	
	(or any other correct method)	
	OR	
9	(a) because the carboxyl group is deactivating and the catalyst aluminium	1
	chloride (Lewis acid) gets bonded to the carboxyl group	
	(b) Nitro group is an electron withdrawing group (-I effect) so it stabilises the	1
	carboxylate anion and strengthens the acid / Due to the presence of an	
	electron withdrawing Nitro group (-I effect).	

	(a)	
10.	$5\text{Fe}^{2+} + \text{MnO}_4\Gamma + 8\text{H}^+ \longrightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} + 5\text{Fe}^{3+}$	
	'	1
	(b)	
	$2MnO_4^- + H_2O + \Gamma \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	
		1
	(Half mark to be deducted in each equation for not balancing)	
11	(a) As compared to other colligative properties, its magnitude is large even for	1
11	very dilute solutions / macromolecules are generally not stable at higher	1
	temperatures and polymers have poor solubility / pressure measurement is	
	around the room temperature and the molarity of the solution is used	
	instead of molality.	
	(b) Because oxygen is more soluble in cold water or at low temperature.	1
	(c) Due to dissociation of KCI / KCI (aq) → K ⁺ + Cl ⁻ , i is nearly equal to 2	1
12		
	$d = \frac{z M}{a^3 N_A}$	1/2
	a N _A	'-
	$1 \equiv 4 \times 40$	1/2
	$(4x10^{-8})^3$ x6.022x10 ²³	1/2 1/2
	$= 4.15 \text{ g/cm}^3$	1/2 1/2
	No of unit cells = total no of atoms /4	/2 1/ ₂
	$=\left[\frac{4}{3} \times 6.022 \times 10^{23}\right] / 4$	
	$= \left[\frac{4}{40} \times 6.022 \times 10^{23}\right] / 4$ $= 1.5 \times 10^{22}$	1/2
	(Or any other correct method)	
13	(or any other correct method)	
-5	$k_2 = 0.693 / 20,$	1/2
	k ₁ = 0.693/40	1/2
		/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1/2
	k_1 2.303 R l_1 l_2 $k_2/k_1 = 2$	/2
	$\frac{\kappa_2/\kappa_1 - 2}{F}$ $\frac{320 - 300}{5}$	1/2
	$\log 2 = \frac{E_a}{2.303 \times 8.314} \left[\frac{320 - 300}{320 \times 300} \right]$	/2
	2.303 × 8.314 - 320 × 300 - Ea = 27663.8 J/mol or 27.66 kJ/ mol	
1.4		1
14	(a)Peptisation occurs / Colloidal solution of Fe(OH)₃ is formed	1
	(b)Coagulation occurs	1
	(c)Demulsification or breaks into constituent liquids	1
15	44 () 0077() 074 0() 0 ()	1
15	$4\text{Au(s)} + 8\text{CN}^{-}(\text{aq}) + 2\text{H}_2\text{O}(\text{aq}) + \text{O}_2(\text{g}) \rightarrow$	1
	4[Au(CN) ₂] ⁻ (aq) + 4OH ⁻ (aq)	
	$2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$	
		1
	(No marks will be deducted for not balancing)	
	(110 marks will be accasted for not balancing)	
	NaCN leaches gold/NaCN acts as a leacing agent / complexing agent	
	Zn acts as reducing agent / Zn displaces gold.	1/2
		1/2
16	(a) The comparatively high value for Mn shows that $Mn^{2+}(d^5)$ is particularly	1
	stable / Much larger third ionisation energy of Mn (where the required change is from	

	d^5 to d^4)	
	•	1
	(b)Due to higher number of unpaired electrons.	1
	(c)Absence of unpaired d- electron in Sc ³⁺ whereas in Ti ³⁺ there is one unpaired	1
	electron or Ti ³⁺ shows d-d transition.	
17	\	1
	(a) (i) / OH	
	(a) (i) / OH (b)	
		1
	CH ₃	
	(c)	1
	CH ₃	
	CH ₂	
	or V	
18	(a)	
	A= CH ₃ CH ₂ CHO	1/2
	$B = CH_3COCH_2CH_3$	1/2
	$C = (CH_3)_2 CHCHO$	1/2
	$D = CH_3CH_2CH_2CH_3$	1/2
	(b) B	1
10		
19.	(i)	
	OH .	
	CH ₂ -C-OCH ₃	1
	(ii) C ₆ H ₅ CH(OH)CH ₃	1
	(iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)	1
20.	a) To impart antiseptic properties	1
	b) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved in	1/2 , 1/2
	alcohol, used as an antiseptic/ applied on wounds.	1
24	c) Sodium benzoate / Aspartame	1/
21	(a)Carbohydrates that give large number of monosaccharide units on hydrolysis / large number of monosaccharides units joined together by glycosidic linkage	1/2
	Starch/ glycogen/ cellulose (or any other)	
	(b)Proteins that lose their biological activity / proteins in which secondary and	1/2
	tertiary structures are destroyed	1/2
	Curdling of milk (or any other)	1/2
	(c)Amino acids which cannot be synthesised in the body.	1/2
	Valine / Leucine (or any other)	1/2
	OR	
21	(a)Saccharic acid / COOH-(CHOH)₄-COOH	1
	(b) Due to the presence of carboxyl and amino group in the same molecule / due to	1
	formation of zwitter ion or dipolar ion.	
	(c) α - helix has intramolecular hydrogen bonding while β pleated has intermolecular	1
	hydrogen bonding / α- helix results due to regular coiling of polypeptide chains	_
	while in β pleated all polypeptide chains are stretched and arranged side by side.	
22	(a) $Fe_4[Fe\ (CN)_6]_3$	1
	(b) Ionisation isomerism	1
	(c) sp^3d^2 , 4	1/2, 1/2
23	(a) Concerned about environment, caring, socially alert, law abiding citizen (or any	
	other 2 values)	1/2 , 1/2
1	1	

	(b) Low density polythene is highly branched while high density polythene is linear.	1
	(c) As it is non-biodegradable.	1
	(d) Which can be degraded by microorganisms, eg <i>PHBV</i> (or any other correct example)	1/2 , 1/2
24	a) (i) In +3 oxidation state of phosphorus tends to disproportionate to higher and lower oxidation states / Oxidation state of P in H_3PO_3 is +3 so it undergoes disproportionation but in H_3PO_4 it is +5 which is the highest oxidation state, so it	1
	cannot. (ii) F cannot show positive oxidation state as it has highest electronegativity/	1
	Because Fluorine cannot expand its covalency / As Fluorine is a small sized atom, it cannot pack three large sized Cl atoms around it.	1
	(iii) Oxygen has multiple bonding whereas sulphur shows catenation / Due to $p\pi$ - $p\pi$ bonding in oxygen whereas sulphur does not / Oxygen is diatomic therefore held by weak intermolecular force while sulphur is polyatomic held by	
	strong intermolecular forces. b) (i) (ii)	
	F H	1, 1
	FF	
	OR	
24	a) (i) $A = NO_2$, $B = N_2O_4$ (ii)	1/2, 1/2
	$N \longrightarrow N \longrightarrow N$	1/2 , 1/2
	(iii) Because NO_2 dimerises to N_2O_4 / NO_2 is an odd electron species.	1
	b) HI > HBr > HCl > HF	1
	c) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$	1
25	(a) Sn + 2 H ⁺ \rightarrow Sn ²⁺ + H ₂ (Equation must be balanced)	1
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1/2
	$= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$	1/2
	$= 0.14 - 0.0295 \log 10 = 0.11 \text{ V} / 0.1105 \text{ V}$	1
	(b) (i) Due to overpotential/ Overvoltage of O ₂	1
	(ii) The number of ions per unit volume decreases.	1
25	OR $a) \Delta G^{\circ} = - nFE^{\circ}$	1/
25	$-43600 = -2 \times 96500 \times E^{\circ}$ $E^{\circ} = 0.226 \text{ V}$	1/2
	E = 0.220 V $E = E^{\circ} - 0.059/2 \log \left([H^{+}]^{2} [C]^{-2} / [H_{o}] \right)$	1/2
	$E = E^{\circ} - 0.059/2 \log ([H^{+}]^{2} [CI]^{2} / [H_{2}])$ $= 0.226 - 0.059/2 \log[(0.1)^{2} \times (0.1)^{2}] / 1$ $= 0.226 - 0.059 / 2 \log 10^{-4}$	1/2
	$= 0.226 - 0.059 / 2 \log 10^{-4}$	1/2
	Ŭ	1

	= 0.226 + 0.118 = 0.344 V (Deduct half mark if unit is wrong or not written)	
		1
	b) Cells that convert the energy of combustion of fuels (like hydrogen, methane,	
	methanol, etc.) directly into electrical energy are called fuel cells.	1/2 ,1/2
	Advantages: High efficiency, non polluting (or any other suitable advantage)	,
26	(a)(i) Ar/ R-CONH ₂ + Br ₂ + 4 NaOH \rightarrow Ar/ R-NH ₂ + 2NaBr + Na ₂ CO ₃ + 2 H ₂ O (ii)	1
	$C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5 \xrightarrow{h} C_1 + NaCl + 2H_2O$	1
	(or any other correct equation)	
	(iii)	
	$ \begin{array}{c c} & O \\ & \\ & C \\ & \\$	
	$ \begin{array}{c c} O \\ C \\ N - R \end{array} $ $ \begin{array}{c c} N - R \\ \hline O \\ C \\ \hline O \\ Na^{+} \\ C \\ \hline O \\ O \\ Na^{+} \\ + R - NH_{2} \end{array} $	1
	(b)(i)Because of the combined factors of inductive effect and solvation or hydration effect	1
	/ii/Due to reconance etabilization or etructural representation / reconsting	
	(ii)Due to resonance stabilisation or structural representation / resonating structures.	
		1
	OR	
26	(a) (i) C ₆ H ₅ NHCOCH ₃	1
	(ii) $C_6H_5SO_2N(CH_3)_2$	1
	(iii) C ₆ H ₆	1
	(b) Add chloroform in the presence of KOH and heat, Aniline gives a offensive smell	1
	while N,N dimethylaniline does not. (or any other correct test)	_
	$(c)C_2H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$	
		1