Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Gradients and Gradient Descent

Tangent planes

$$f(x, y) = x^2 + y^2$$

$$f(x, y) = x^2 + y^2$$

Finding the Tangent Plane

Finding the Tangent Plane

Fix y=4
$$f(x,4) = x^2 + 4^2$$
 $\frac{d}{dx}(f(x,4)) = 2x$

Fix x=2
$$f(2,y) = 2^2 + y^2$$

 $\frac{d}{dy}(f(2,y)) = 2y$

The tangent plane contains both tangent lines.

Video 2: Introduction to Partial Derivatives

Example with the parabola, show tangent plane and slices

Gradients and Gradient Descent

Partial derivatives - Part 1

$$f(x, y) = x^2 + y^2$$

$$f(x, y) = x^2 + y^2$$

Treat y as a constant

$$f(x, y) = x^2 + y^2$$

Treat y as a constant

Function of one variable x

$$x^2 + y^2$$

f(x, y)

Partial derivative of f with respect to x

Partial derivative of f with respect to x

Partial derivative of f with respect to x

Intro To Partial Derivatives

$$f(x, y) = x^2 + y^2$$

$$f(x, y) = x^2 + y^2$$

TASK

$$f(x,y) = x^2 + y^2$$

TASK

$$f(x, y) = x^2 + y^2$$

TASK

$$\frac{\partial f}{\partial x} =$$

$$f(x, y) = x^2 + y^2$$

TASK

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

$$f(x, y) = x^2 + y^2$$

TASK

Partial derivative notation

$$f(x,y) = x^2 + y^2$$

TASK

Partial derivative notation

$$f(x, y) = x^2 + y^2$$

TASK

$$f(x,y) = x^2 + y^2$$

TASK

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$$

$$f(x,y) = x^2 + y^2$$

TASK

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$$

$$f(x,y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$$

$$f(x,y) = x^2 + y^2$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$$

$$f(x,y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

Step 2:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$$

$$f(x,y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case *y*.

$$f(x, y) = x^2 + y^2$$

TASK

- **Step 1:** Treat all other variables as a constant. In our case y.
- Step 2: Differentiate the function using the normal rules of differentiation.

$$f(x,y) = x^2 + y^2 -$$

TASK

- **Step 1:** Treat all other variables as a constant. In our case y.
- **Step 2:** Differentiate the function using the normal rules of differentiation.

$$f(x,y) = x^2 + y^2$$

TASK

- **Step 1:** Treat all other variables as a constant. In our case y.
- **Step 2:** Differentiate the function using the normal rules of differentiation.

$$f(x, y) = x^2 + 1$$

 $f(x, y) = x^2 + y^2$

TASK

- **Step 1:** Treat all other variables as a constant. In our case y.
- **Step 2:** Differentiate the function using the normal rules of differentiation.

$$f(x, y) = x^2 + 1$$

 $f(x, y) = x^2 + y^2$

$$\frac{\partial f}{\partial x} = 2x$$

TASK

- **Step 1:** Treat all other variables as a constant. In our case *y*.
- **Step 2:** Differentiate the function using the normal rules of differentiation.

$$f(x,y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case x.

Step 2: Differentiate the function using the normal rules of differentiation.

$\frac{\partial f}{\partial x} = 2x$

$$\frac{\partial f}{\partial y} =$$

$$f(x, y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case x.

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} =$$

$$f(x,y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case x.

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} =$$

$$f(x,y) = 1 + y^2$$
$$f(x,y) = x^2 + y^2$$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case x.

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} =$$

$$f(x, y) = 1 + y^2$$

 $f(x, y) = x^2 + y^2$

TASK

Find partial derivative of f with respect to x

Step 1: Treat all other variables as a constant. In our case x.

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y$$

Gradients and Gradient Descent

Partial derivatives -Part 2

$$f(x,y) = 3x^2y^3$$

$$f(x,y) = 3x^2y^3$$

TASK

What is the partial derivate of f with respect to x?

$$f(x,y) = 3x^2y^3$$

$$\frac{\partial f}{\partial x} =$$

TASK

What is the partial derivate of f with respect to x?

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial x} =$$

TASK

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial x} =$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} =$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} =$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} =$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$\frac{\partial f}{\partial x} =$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} = 3$$

 $f(x,y) = 3x^2$

TASK

Find partial derivate of f with respect to x

Treat all other variables as a constant. In Step 1: our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} = 3$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} = 3$$

Differentiate with respect to x

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} = 3(2x)$$

Differentiate with respect to x

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x,y) = 3x^2$$

$$\frac{\partial f}{\partial x} = 3(2x)$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$\frac{\partial f}{\partial x} = 3(2x)$$

$$f(x,y) = 3x^2$$

treat as constant coefficient

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case *y*.

$$\frac{\partial f}{\partial x} = 3(2x)$$

$$f(x,y) = 3x^2$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial x} = 3(2x)y^3$$

TASK

Find partial derivate of f with respect to x

Step 1: Treat all other variables as a constant. In our case y.

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial x} = 3(2x)y^3$$
$$= 6xy^3$$

TASK

Find partial derivate of f with respect to x

- **Step 1:** Treat all other variables as a constant. In our case y.
- **Step 2:** Differentiate the function using the normal rules of differentiation.

$$f(x,y) = 3x^2y^3$$

TASK

What is the partial derivate of f with respect to y?

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial y} =$$

TASK

What is the partial derivate of f with respect to y?

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial y} =$$

TASK

What is the partial derivate of f with respect to y?

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial y} =$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

$$f(x,y) = 3 \quad y^3$$

$$\frac{\partial f}{\partial y} =$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

$$f(x,y) = 3 \quad y^3$$

$$\frac{\partial f}{\partial y} = 3$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

$$\frac{\partial f}{\partial y} = 3$$

$$f(x,y) = 3$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

$$f(x,y) = 3 \quad y^3$$

$$\frac{\partial f}{\partial y} = 3 (3y^2)$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

$$\frac{\partial f}{\partial y} = 3(x^2)(3y^2)$$
$$= 9x^2y^2$$

$$f(x,y) = 3x^2y^3$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

$$f(x, y) = 3x^2y^3$$

$$\frac{\partial f}{\partial y} = 3(x^2)(3y^2)$$
$$= 9x^2y^2$$

TASK

What is the partial derivate of f with respect to y?

Step 1: Treat all other variables as a constant. In our case x.

Gradients and Gradient Descent

Gradients

$$f(x, y) = x^2 + y^2$$

$$f(x, y) = x^2 + y^2$$

$$f(x, y) = x^2 + y^2$$

Treat y as a constant

Treat x as a constant

$$f(x, y) = x^2 + y^2$$

Treat y as a constant

$$\frac{\partial f}{\partial x} = 2x$$

$$f(x, y) = x^2 + y^2$$

Treat y as a constant

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y$$

$$f(x, y) = x^2 + y^2$$

Gradient

Treat y as a constant

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y$$

$$f(x, y) = x^2 + y^2$$

Treat y as a constant

$$\frac{\partial f}{\partial x} = 2x$$

Treat x as a constant

$$\frac{\partial f}{\partial y} = 2y$$

Gradient

$$\begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

$$f(x, y) = x^2 + y^2$$

Gradient

Treat y as a constant

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y$$

$$\begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$f(x,y) = x^2 + y^2$$
 The gradient of $f(x,y)$ is: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

$$f(x,y) = x^2 + y^2$$
The gradient of $f(x,y)$ is: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

TASK

Find the gradient of f(x, y) at (2,3)

$$f(x,y) = x^2 + y^2$$
The gradient of $f(x,y)$ is: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

TASK

Find the gradient of f(x, y) at (2,3)

The gradient of f(x, y) is given as:

$$f(x, y) = x^2 + y^2$$

The gradient of $f(x, y)$ is: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

TASK

Find the gradient of f(x, y) at (2,3)

The gradient of f(x, y) is given as:

$$\nabla f = \begin{bmatrix} 2 \cdot 2 \\ 2 \cdot 3 \end{bmatrix}$$

$$f(x, y) = x^2 + y^2$$

The gradient of $f(x, y)$ is: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

TASK

Find the gradient of f(x, y) at (2,3)

The gradient of f(x, y) is given as:

$$\nabla f = \begin{bmatrix} 2 \cdot 2 \\ 2 \cdot 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

Gradients and Gradient Descent

Gradients and maxima/ minima

Functions of Two Variables

Functions of Two Variables

Functions of Two Variables

$$f(x, y) = x^2 + y^2$$

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = x^2 + y^2$$

$$\lim_{x \to \infty} \text{Minimum is when both slopes} = 0$$

f'(x) = 0

2x = 0

$$f(x,y) = x^2 + y^2$$

Minimum is when both slopes = 0

$$f'(x) = 0$$
$$2x = 0$$
$$x = 0$$

$$f(x,y) = x^2 + y^2$$

$$\frac{\partial f}{\partial x} = 0 \text{ and } \frac{\partial f}{\partial y} = 0$$

$$2x = 0 \text{ and } 2y = 0$$

$$(x,y) = (0,0)$$
Minimum is when both slopes = 0

Gradients and Gradient Descent

Optimization with gradients: An example

Starting point

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

Try and calculate $\frac{\partial f}{\partial x}$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

Try and calculate

 $\frac{\partial f}{\partial x}$

and

 $\frac{\partial f}{\partial y}$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6) \qquad \frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^{2}(y - 6)$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6) \qquad \frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^{2}(y - 6)$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6)$$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x-6)y(3y-12)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6) \qquad \frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^{2}(y - 6) = 0$$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x-6)y(3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^{2}(y - 6) = 0$$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x-6)y(3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^{2}(y - 6) = 0$$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x-6)y(3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^{2}(y - 6) = 0$$

$$x = 0$$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x-6)y(3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

T =
$$f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$
 $\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6) = 0$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x-6)y(3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

T =
$$f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$
 $\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6) = 0$

$$\frac{\partial f}{\partial y} = -\frac{1}{90} \sqrt{x^2(x-6)y(3y-12)} = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

T =
$$f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$
 $\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6) = 0$

$$\frac{\partial f}{\partial y} = -\frac{1}{90} \underbrace{x^2(x-6)}_{x=6} y(3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

T =
$$f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$
 $\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6) = 0$

$$\frac{\partial f}{\partial y} = -\frac{1}{90} \underbrace{x^{2}(x-6)y}_{x=6} (3y-12) = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

T =
$$f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$
 $\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6) = 0$

$$\frac{\partial f}{\partial y} = -\frac{1}{90} \underbrace{x^{2}(x-6)y(3y-12)}_{x=0} = 0$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$
 Candidate points for the minima

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

Candidate points for the minima

$$x = 0$$

$$y = 0$$

$$x = 0, y = 0$$

$$x = 0, y = 4$$

$$x = 0, y = 6$$

$$x = 4, y = 0$$

$$x = 4, y = 4$$

$$x = 6, y = 0$$

$$x = 6, y = 6$$

$$T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$$

Candidate points for the minima

$$x = 0$$

$$y = 0$$

$$x = 0, y = 0$$

$$x = 0, y = 4$$

$$x = 0, y = 6$$

Outside

$$x = 4, y = 0$$

$$x = 4, y = 4$$

$$x = 6, y = 0$$

 $x = 6, y = 6$

$$x = 6, y = 6$$

Candidate points for the minima x = 0 Maxima

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

$$x = 0, y = 0$$

$$x = 0, y = 4$$

$$x = 0, y = 6$$

Outside

$$x = 4, y = 0$$

$$x = 4, y = 4$$

$$x = 6, y = 0$$

 $x = 6, y = 6$

$$x = 6, y = 6$$

Candidate points for the minima

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

Maxima

$$x = 0, y = 0$$

 $x = 0, y = 4$

Maxima

$$x = 0, y = 6$$

Outside

$$x = 4, y = 0$$

Maxima

$$x = 4, y = 4$$

$$x = 6, y = 0$$

 $x = 6, y = 6$

$$x = 6, y = 6$$

Candidate points for the minima

$$\begin{aligned}
x &= 0 \\
y &= 0
\end{aligned}$$

Maxima

$$x = 0, y = 0$$

 $x = 0, y = 4$

Maxima

$$x = 0, y = 6$$

Outside

$$x = 4, y = 0$$

Maxima

$$x = 4, y = 4$$

$$x = 6, y = 0$$

$$x = 6, y = 0$$

 $x = 6, y = 6$

Candidate points for the minima

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

Maxima

$$x = 0, y = 0$$

 $x = 0, y = 4$

Maxima

$$x = 0, y = 6$$

Outside

$$x = 4, y = 0$$

Maxima

$$x = 4, y = 4$$
 Minimum

$$x = 6, y = 0$$

 $x = 6, y = 6$

$$x = 6, y = 6$$

Gradients and Gradient Descent

Optimization using gradients - Analytical method

The cost of connecting connection to the powerline

Goal: Find m, b such that you minimize sum of squares cost

$$(m+b-2)^2 + (2m+b-5)^2 + (3m+b-3)^2$$

$$(m+b-2)^2 + (2m+b-5)^2 + (3m+b-3)^2$$

 $m^2 + b^2 + 4 + 2mb - 4m - 4b$

$$(m+b-2)^{2} + (2m+b-5)^{2} + (3m+b-3)^{2}$$

$$m^{2} + b^{2} + 4 + 2mb - 4m - 4b$$

$$+4m^{2} + b^{2} + 25 + 4mb - 20m - 10b$$

$$(m+b-2)^{2} + (2m+b-5)^{2} + (3m+b-3)^{2}$$

$$m^{2} + b^{2} + 4 + 2mb - 4m - 4b$$

$$+4m^{2} + b^{2} + 25 + 4mb - 20m - 10b$$

$$+9m^{2} + b^{2} + 9 + 6mb - 18m - 6b$$

$$(m+b-2)^{2} + (2m+b-5)^{2} + (3m+b-3)^{2}$$

$$m^{2} + b^{2} + 4 + 2mb - 4m - 4b$$

$$+4m^{2} + b^{2} + 25 + 4mb - 20m - 10b$$

$$+9m^{2} + b^{2} + 9 + 6mb - 18m - 6b$$

$$(m+b-2)^{2} + (2m+b-5)^{2} + (3m+b-3)^{2}$$

$$m^{2} + b^{2} + 4 + 2mb - 4m - 4b$$

$$+4m^{2} + b^{2} + 25 + 4mb - 20m - 10b$$

$$+9m^{2} + b^{2} + 9 + 6mb - 18m - 6b$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 0$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 0$$

$$\frac{\partial E}{\partial h} = 0$$

Goal: Minimize sum of squares cost

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 0$$
 Quiz:

Find the partial derivative of E with respect to m

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42$$

$$\frac{\partial E}{\partial b} =$$

Goal: Minimize sum of squares cost

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42$$

$$\frac{\partial E}{\partial E} =$$
 Quiz:

Find the partial derivative of E with respect to b

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m = 0$$

Goal: Minimize sum of squares cost

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m = 0$$

b =

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m = 0$$

$$E(m,b) = 14m^{2} + 3b^{2} + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20$$

$$= 0$$

$$E(m,b) = 14m^{2} + 3b^{2} + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20$$

$$= 0$$

$$m = 2$$

$$12b + 24m - 40 = 0$$

$$4m - 2 = 0$$

$$m = \frac{2}{4} = 0.5$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m =$$
 $b =$

$$12b + 24m - 40 = 0$$

$$4m - 2 = 0$$

$$m = \frac{2}{4} = 0.5$$

$$6b + 12(0.5) - 20 = 0$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m =$$
 $b =$

$$12b + 24m - 40 = 0$$

$$4m - 2 = 0$$

$$m = \frac{2}{4} = 0.5$$

$$6b + 12(0.5) - 20 = 0$$

$$6b + 6 - 20 = 0$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m = b =$$

$$12b + 24m - 40 = 0$$

$$4m - 2 = 0$$

$$m = \frac{2}{4} = 0.5$$

$$6b + 12(0.5) - 20 = 0$$

$$6b + 6 - 20 = 0$$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m =$$
 $b =$

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m =$$
 $b =$

$$m = \frac{1}{2}$$

$$b = \frac{7}{3}$$

$$E(m = \frac{1}{2}, b = \frac{7}{3}) \approx 4.167$$

Linear Regression: Optimal Solution

$$m = \frac{1}{2}$$

$$b = \frac{7}{3}$$

$$E(m = \frac{1}{2}, b = \frac{7}{3}) \approx 4.167$$

Linear Regression: Optimal Solution

$$m = \frac{1}{2}$$

$$b = \frac{7}{3}$$

$$E(m = \frac{1}{2}, b = \frac{7}{3}) \approx 4.167$$

Linear Regression: Optimal Solution

$$m = \frac{1}{2}$$

$$b = \frac{7}{3}$$

$$E(m = \frac{1}{2}, b = \frac{7}{3}) \approx 4.167$$

Linear Regression: Gradient Descent

Goal: Minimize sum of squares cost

$$E(m,b) = 14m^2 + 3b^2 + 38 + 12mb - 42m - 20b$$

$$\frac{\partial E}{\partial m} = 28m + 12b - 42 = 0$$

$$\frac{\partial E}{\partial b} = 6b + 12m - 20 = 0$$

$$m =$$
 $b =$

Gradient Descent to the rescue

Gradients and Gradient Descent

Optimization using Gradient Descent in one variable - Part 1

$$f(x) = e^x - \log(x)$$

$$f(x) = e^x - \log(x)$$

$$f(x) = e^x - \log(x)$$

$$f(x) = e^x - \log(x)$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = 0$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x}$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

Solution: x = 0.5671...

$$f(x) = e^x - \log(x)$$

$$f'(x) = e^x - \frac{1}{x} = 0$$

Solution: x = 0.5671...

Also known as the Omega constant 20,000

Is there any other way?

Repeat!

Is there any other way?

Repeat!

Is there any other way?

Gradients and Gradient Descent

Optimization using Gradient Descent in one variable - Part 2

Try something smarter...

new point

Try something smarter...

new point = old point

Try something smarter...

Try something smarter...

new point = old point - slope \mathcal{X}_1

Try something smarter...

$$x_1 = x_0$$

Try something smarter...

$$x_1 = x_0 -f'(x_0)$$

Try something smarter...

$$x_1 = x_0 - f'(x_0)$$

Try something smarter...

$$x_1 = x_0 -f'(x_0)$$

$$x_1 = x_0 - 0.01 f'(x_0)$$

Try something smarter...

$$x_1 = x_0 -f'(x_0)$$

$$x_1 = x_0 - \alpha f'(x_0)$$

Try something smarter...

$$x_1 = x_0 -f'(x_0)$$

$$x_1 = x_0 - \alpha f'(x_0)$$
Learning rate

$$x_1 = x_0 - \alpha f'(x_0)$$

$$x_1 = x_0 - \alpha f'(x_0)$$

Try something smarter...

$$x_1 = x_0 - \alpha f'(x_0)$$

Try something smarter...

$$x_1 = x_0 - \alpha f'(x_0)$$

Gradient descent

Try something smarter...

$$x_2 = x_1 - \alpha f'(x_1)$$

Gradient descent

Try something smarter...

$$x_{20} = x_{19} - \alpha f'(x_{19})$$

Gradient descent

Function: f(x)

Goal: find minimum of f(x)

Step 1:

Define a learning rate α

Choose a starting point x_0

Step 2:

Update: $x_k = x_{k-1} - af'(x_{k-1})$

Step 3:

Repeat Step 2 until you are close enough to

the true minimum x^*

$$f(x) = e^x - \log(x) \qquad f'(x) = e^x - \frac{1}{x}$$

$$f(x) = e^x - \log(x) \qquad f'(x) = e^x - \frac{1}{x}$$

Start: x = 0.05 Rate: $\alpha = 0.005$

$$f(x) = e^x - \log(x) \qquad f'(x) = e^x - \frac{1}{x^2}$$

$$f'(x) = e^x - \frac{1}{x}$$

Start: x = 0.05 Rate: $\alpha = 0.005$

Find:

$$f'(0.05) = -18.9$$

Move by -0.005 f'(0.05) $x \mapsto 0.1447$

$$f(x) = e^x - \log(x) \qquad f'(x) = e^x - \frac{1}{x}$$

Start: x = 0.05 Rate: $\alpha = 0.005$

Find:

$$f'(0.05) = -18.9$$

Move by -0.005 f'(0.05) $x \mapsto 0.1447$

Find:

$$f'(0.1447) = -5.7552$$

Move by -0.005 f'(0.05) $x \mapsto 0.1735$

$$f(x) = e^x - \log(x) \qquad f'(x) = e^x - \frac{1}{x}$$

Start: x = 0.05 Rate: $\alpha = 0.005$

Find:

$$f'(0.05) = -18.9$$

Move by -0.005 f'(0.05) $x \mapsto 0.1447$

Find:

$$f'(0.1447) = -5.7552$$

Move by -0.005 f'(0.05) $x \mapsto 0.1735$

Repeat!

$$f(x) = e^x - \log(x) \qquad f'(x) = e^x - \frac{1}{x}$$

Start: x = 0.05 Rate: $\alpha = 0.005$

Find:

$$f'(0.05) = -18.9$$

Move by -0.005 f'(0.05) $x \mapsto 0.1447$

Find:

$$f'(0.1447) = -5.7552$$

Move by -0.005 f'(0.05) $x \mapsto 0.1735$

Repeat!

Gradients and Gradient Descent

Optimization using Gradient Descent in one variable - Part 3

Unfortunately, there is no rule to give the best learning rate α

Gradients and Gradient Descent

Optimization using Gradient Descent in two variables - Part 1

Repeat!

Repeat!

Gradients and Gradient Descent

Optimization using Gradient Descent in two variables - Part 2

Idea for Gradient Descent

Initial position: (x_0, y_0)

Initial position: (x_0, y_0)

Initial position: (x_0, y_0)

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Direction of greatest descent: $-\nabla f$

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Direction of greatest descent: $-\nabla f$

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Direction of greatest descent: $-\nabla f$

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Direction of greatest descent: $-\nabla f$

Updated position: $(x_0, y_0) - \alpha \nabla f$

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Direction of greatest descent: $-\nabla f$

Updated position: $(x_0, y_0) - \alpha \nabla f$ (x_1, y_1)

Initial position: (x_0, y_0)

Direction of greatest ascent: ∇f

Direction of greatest descent: $-\nabla f$

Updated position: $(x_0, y_0) - \alpha \nabla f$

$$(x_1, y_1)$$

Better point!

Method 2: Gradient Descent $T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$

Start: x = 0.5, y = 0.6

Method 2: Gradient Descent $T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

Start:
$$x = 0.5$$
, $y = 0.6$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Method 2: Gradient Descent $T = f(x, y) = 85 - \frac{1}{90}x^2(x - 6)y^2(y - 6)$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

Start: x = 0.5, y = 0.6

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x-12)y^2(y-6)$$

$$\frac{\partial f}{\partial x} = -\frac{1}{90}x(3x - 12)y^2(y - 6)$$

$$\frac{\partial f}{\partial y} = -\frac{1}{90}x^2(x - 6)y(3y - 12)$$

Method 2: Gradient Descent $T = f(x, y) = 85 - \frac{1}{90}x^2(x-6)y^2(y-6)$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

Start:
$$x = 0.5$$
, $y = 0.6$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} -\frac{1}{90}x(3x - 12)y^2(y - 6) \\ -\frac{1}{90}x^2(x - 6)y(3y - 12) \end{bmatrix}$$

Method 2: Gradient Descent $T = f(x, y) = 85 - \frac{1}{90}x^2(x-6)y^2(y-6)$

$$T = f(x, y) = 85 - \frac{1}{90}x^{2}(x - 6)y^{2}(y - 6)$$

Start:
$$x = 0.5$$
, $y = 0.6$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} -\frac{1}{90}x(3x - 12)y^2(y - 6) \\ -\frac{1}{90}x^2(x - 6)y(3y - 12) \end{bmatrix}$$

$$\nabla f(0.5, 0.6) = \begin{bmatrix} 0.1134 \\ -0.0935 \end{bmatrix}$$

Start: x = 0.5, y = 0.6

$$\nabla f(0.5, 0.6) = \begin{bmatrix} 0.1134 \\ -0.0935 \end{bmatrix}$$

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Rate:
$$lpha=0.05$$

Move by $-0.05 \nabla f(0.5,0.6)$

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Rate:
$$lpha=0.05$$

Move by $-0.05 \nabla f(0.5,0.6)$

$$\begin{array}{c} x \mapsto 0.5057 \\ y \mapsto 0.6047 \end{array}$$

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Rate:
$$lpha=0.05$$

$$\nabla f(0.5, 0.6) = \begin{bmatrix} 0.1134 \\ -0.0935 \end{bmatrix}$$

Move by $-0.05 \nabla f(0.5,0.6)$

 $x \mapsto 0.5057$ $y \mapsto 0.6047$

Method 2

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Method 2

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Find:

$$\nabla f(0.5057, 0.6047) = \begin{bmatrix} -0.1162 \\ -0.0961 \end{bmatrix}$$

Move by

 $-0.05 \nabla f(0.5057, 0.6047)$

Method 2

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Find:

$$\nabla f(0.5057, 0.6047) = \begin{bmatrix} -0.1162 \\ -0.0961 \end{bmatrix}$$

Move by

 $-0.05 \nabla f(0.5057, 0.6047)$

 $\begin{array}{c} x \mapsto 0.5115 \\ y \mapsto 0.6095 \end{array}$

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Find:

$$\nabla f(0.5057, 0.6047) = \begin{vmatrix} -0.1162 \\ -0.0961 \end{vmatrix}$$

Move by

 $-0.05 \nabla f(0.5057, 0.6047)$

 $x \mapsto 0.5115$ $y \mapsto 0.6095$

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Find:

$$\nabla f(0.5057, 0.6047) = \begin{vmatrix} -0.1162 \\ -0.0961 \end{vmatrix}$$

Move by

 $-0.05 \nabla f(0.5057, 0.6047)$

 $x \mapsto 0.5115$ $y \mapsto 0.6095$

Start: x = 0.5, y = 0.6 Rate: $\alpha = 0.05$

Find:

$$\nabla f(0.5057, 0.6047) = \begin{vmatrix} -0.1162 \\ -0.0961 \end{vmatrix}$$

Move by

 $-0.05 \nabla f(0.5057, 0.6047)$

 $x \mapsto 0.5115$ $y \mapsto 0.6095$

Function: f(x, y)

Function: f(x, y)

Goal: find minimum of f(x, y)

Function: f(x, y) Goal: find minimum of f(x, y)

Step 1:

Define a learning rate α

Choose a starting point (x_0, y_0)

Function: f(x, y) Goal: find minimum of f(x, y)

Step 1:

Define a learning rate α

Choose a starting point (x_0, y_0)

Step 2:

Update:
$$\begin{bmatrix} x_k \\ y_k \end{bmatrix} = \begin{bmatrix} x_{k-1} \\ y_{k-1} \end{bmatrix} - \alpha \nabla f(x_{k-1}, y_{k-1})$$

Function: f(x, y) G

Goal: find minimum of f(x, y)

Step 1:

Define a learning rate α

Choose a starting point (x_0, y_0)

Step 2:

Update:
$$\begin{bmatrix} x_k \\ y_k \end{bmatrix} = \begin{bmatrix} x_{k-1} \\ y_{k-1} \end{bmatrix} - \alpha \nabla f(x_{k-1}, y_{k-1})$$

Step 3:

Repeat Step 2 until you are close enough to the true minimum (x^*, y^*)

Gradients and Gradient Descent

Optimization using Gradient Descent - Least squares

Gradient Descent With Power Lines Example

Gradient Descent With Power Lines Example

Gradient Descent With Power Lines Example

$$E(m = \frac{1}{2}, b = \frac{7}{3}) \approx 4.167$$

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

m =

b =

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m =$$
 $b =$

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m =$$
 $b =$

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m =$$
 $b =$

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m =$$
 $b =$

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m =$$
 $b =$

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m = b =$$

The points m,b such that the cost is minimum

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m = b =$$

The points m,b such that the cost is minimum

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m = b =$$

The points m,b such that the cost is minimum

descend until you find the minimum

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

m = b = 2

The points m,b such that the cost is minimum

Steps:

descend until you find the minimum

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

$$m =$$
 $b =$

The points m,b such that the cost is minimum

Steps:

Start with (m_0, b_0)

descend until you find the minimum

Goal: Minimize sum of squares cost

$$\nabla E = [28m + 12b - 42, 6b + 12m - 20]$$

m = b =

The points m,b such that the cost is minimum

descend until you find the minimum

Steps:

Start with (m_0, b_0)

Iterate

$$(m_{k+1}, b_{k+1}) = (m_k, b_k) - \alpha \nabla E(m_k, b_k)$$

Gradients and Gradient Descent

Optimization using Gradient Descent - Least squares with multiple observations

TV advertisement budget

TV advertisement budget

TV advertisement budget

Number of sales

TV budget Sales

TV budget	Sales
230.1	22.1

TV budget	Sales
230.1	22.1
44.5	10.4

TV budget	Sales
230.1	22.1
44.5	10.4
17.2	9.3

TV budget	Sales
230.1	22.1
44.5	10.4
17.2	9.3

Goal: Predict sales in terms of TV budget

TV budget	Sales
230.1	22.1
44.5	10.4
17.2	9.3

Goal: Predict sales in terms of TV budget

TV budget	Sales
230.1	22.1
44.5	10.4
17.2	9.3

Goal: Predict sales in terms of TV budget

$$y = mx + b$$

TV budget	Sales
230.1	22.1
44.5	10.4
17.2	9.3

Goal: Predict sales in terms of TV budget

$$y = mx + b$$

TV budget	Sales
230.1	22.1
44.5	10.4
17.2	9.3

Multiple observations

Goal: Predict sales in terms of TV budget

$$y = mx + b$$

$$\mathcal{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\mathscr{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\begin{bmatrix} m_0 \\ b_0 \end{bmatrix}$$

$$\mathscr{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\begin{bmatrix} m_0 \\ b_0 \end{bmatrix}$$

$$\mathscr{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$y = mx_0 + b_0 \qquad \begin{bmatrix} m_0 \\ b_0 \end{bmatrix} \implies \begin{bmatrix} m_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} m_0 \\ b_0 \end{bmatrix} - \alpha \nabla \mathcal{L}_1(m_0, b_0)$$

$$\mathcal{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$y = mx_0 + b_0 \qquad \begin{bmatrix} m_0 \\ b_0 \end{bmatrix} \implies \begin{bmatrix} m_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} m_0 \\ b_0 \end{bmatrix} - \alpha \nabla \mathcal{L}_1(m_0, b_0)$$

$$\mathscr{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\begin{bmatrix} m_0 \\ b_0 \end{bmatrix} \longrightarrow \begin{bmatrix} m_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} m_0 \\ b_0 \end{bmatrix} - \alpha \nabla \mathcal{L}_1(m_0, b_0)$$

$$\mathcal{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\begin{bmatrix} m_1 \\ b_1 \end{bmatrix} \longrightarrow \begin{bmatrix} m_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} m_1 \\ b_1 \end{bmatrix} - \alpha \nabla \mathcal{L}_1(m_1, b_1)$$

$$\mathcal{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\begin{bmatrix} m_N \\ b_N \end{bmatrix} \longrightarrow \begin{bmatrix} m_N \\ b_N \end{bmatrix} = \begin{bmatrix} m_{N-1} \\ b_{N-1} \end{bmatrix} - \alpha \nabla \mathcal{L}_1(m_{N-1}, b_{N-1})$$

$$\mathcal{L}(m,b) = \frac{1}{2m} \left[(mx_1 + b - y_1)^2 + \dots + (mx_n - y_n)^2 \right]$$

$$\begin{bmatrix} m_N \\ b_N \end{bmatrix} \longrightarrow \begin{bmatrix} m_N \\ b_N \end{bmatrix} = \begin{bmatrix} m_{N-1} \\ b_{N-1} \end{bmatrix} - \alpha \nabla \mathcal{L}_1(m_{N-1}, b_{N-1})$$

Gradients and Gradient Descent

Conclusion