Lab 8: Breast Cancer Mini Project

Adam Bisharat

PREFACE:

It is important to consider scaling your data before analysis such as PCA

head(mtcars)

```
mpg cyl disp hp drat
                                          wt qsec vs am gear carb
Mazda RX4
                           160 110 3.90 2.620 16.46
                 21.0
Mazda RX4 Wag
                 21.0
                           160 110 3.90 2.875 17.02
Datsun 710
                 22.8
                        4 108 93 3.85 2.320 18.61
                                                                1
                 21.4
Hornet 4 Drive
                        6
                           258 110 3.08 3.215 19.44 1 0
                                                                1
                                                                2
                           360 175 3.15 3.440 17.02 0 0
                                                            3
Hornet Sportabout 18.7
Valiant
                 18.1
                           225 105 2.76 3.460 20.22 1 0
                                                            3
```

colMeans(mtcars)

```
cyl
                            disp
                                          hp
                                                   drat
                                                                 wt
                                                                           qsec
      mpg
20.090625
            6.187500 230.721875 146.687500
                                               3.596563
                                                           3.217250 17.848750
                                        carb
       ٧s
                            gear
                  am
0.437500
                        3.687500
            0.406250
                                    2.812500
```

apply(mtcars, 2, sd)

```
mpg
                   cyl
                              disp
                                             hp
                                                       drat
                                                                      wt
            1.7859216 123.9386938
6.0269481
                                    68.5628685
                                                  0.5346787
                                                               0.9784574
     qsec
                   ٧s
                                           gear
                                                       carb
1.7869432
            0.5040161
                         0.4989909
                                     0.7378041
                                                  1.6152000
```

x <- scale(mtcars) head(x)</pre>

```
mpg
                                 cyl
                                           disp
                                                               drat
Mazda RX4
                 0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Mazda RX4 Wag
                 0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Datsun 710
                 0.4495434 - 1.2248578 - 0.99018209 - 0.7830405 0.4739996
Hornet 4 Drive
                0.2172534 -0.1049878 0.22009369 -0.5350928 -0.9661175
Hornet Sportabout -0.2307345 1.0148821 1.04308123 0.4129422 -0.8351978
Valiant
                -0.3302874 -0.1049878 -0.04616698 -0.6080186 -1.5646078
                         wt
                                  qsec
                                             ٧s
Mazda RX4
                -0.610399567 -0.7771651 -0.8680278 1.1899014 0.4235542
Mazda RX4 Wag
                -0.349785269 -0.4637808 -0.8680278 1.1899014 0.4235542
Datsun 710
                -0.917004624 0.4260068 1.1160357 1.1899014 0.4235542
Hornet 4 Drive
                Hornet Sportabout 0.227654255 -0.4637808 -0.8680278 -0.8141431 -0.9318192
Valiant
                 0.248094592 1.3269868 1.1160357 -0.8141431 -0.9318192
                      carb
Mazda RX4
                0.7352031
Mazda RX4 Wag
                0.7352031
Datsun 710
                -1.1221521
Hornet 4 Drive
                -1.1221521
Hornet Sportabout -0.5030337
Valiant
                -1.1221521
```

round(colMeans(x),2)

head(wisc.df)

```
mpg cyl disp hp drat wt qsec vs am gear carb 0 0 0 0 0 0 0 0 0 0 0
```

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)</pre>
```

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean
842302	M	17.99	10.38	122.80	1001.0
842517	M	20.57	17.77	132.90	1326.0
84300903	M	19.69	21.25	130.00	1203.0
84348301	M	11.42	20.38	77.58	386.1
84358402	М	20.29	14.34	135.10	1297.0

843786	М	12.45	15.70	82.57	477.1	
	smoothness_mea	n compactnes	ss_mean con	cavity_mean o	concave.poi	nts_mean
842302	0.1184	0 (0.27760	0.3001		0.14710
842517	0.0847	4 (0.07864	0.0869		0.07017
84300903	0.1096	0 (0.15990	0.1974		0.12790
84348301	0.1425	0 (0.28390	0.2414		0.10520
84358402	0.1003	0 (0.13280	0.1980		0.10430
843786	0.1278	0 (0.17000	0.1578		0.08089
	symmetry_mean	fractal_dime	ension_mean	radius_se te	exture_se po	erimeter_se
842302	0.2419		0.07871	1.0950	0.9053	8.589
842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smooth	ness_se comp	pactness_se	concavity_se	concave.p	oints_se
842302	153.40	.006399	0.04904	0.05373	3	0.01587
842517	74.08	.005225	0.01308	0.01860)	0.01340
84300903	94.03	.006150	0.04006	0.03832	2	0.02058
84348301	27.23	.009110	0.07458	0.05661	L	0.01867
84358402	94.44	.011490	0.02461	0.05688	3	0.01885
843786	27.19	.007510	0.03345	0.03672	2	0.01137
	symmetry_se fr	actal_dimens	sion_se rad	ius_worst tex	ture_worst	
842302	0.03003	0	.006193	25.38	17.33	
842517	0.01389	0	.003532	24.99	23.41	
84300903	0.02250	0	.004571	23.57	25.53	
84348301	0.05963	0	.009208	14.91	26.50	
84358402	0.01756	0	.005115	22.54	16.67	
843786	0.02165	0	.005082	15.47	23.75	
	perimeter_wors	t area_worst	t smoothnes	s_worst compa	actness_work	st
842302	184.6	0 2019.0)	0.1622	0.66	56
842517	158.8	0 1956.0)	0.1238	0.18	66
84300903	152.5	0 1709.0)	0.1444	0.42	45
84348301	98.8	7 567.7	7	0.2098	0.86	63
84358402	152.2	0 1575.0)	0.1374	0.20	50
843786	103.4	0 741.6	3	0.1791	0.52	49
	concavity_wors	t concave.po	oints_worst	symmetry_wor	rst	
842302	0.711	9	0.2654	0.46	801	
842517	0.241	6	0.1860	0.27	' 50	
84300903	0.450	4	0.2430	0.36	313	
84348301	0.686	9	0.2575	0.66	38	
84358402	0.400	0	0.1625	0.23	364	
843786	0.535	5	0.1741	0.39	985	

diagnosis <- wisc.df[,1]
table (diagnosis)</pre>

diagnosis B M 357 212

wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>

	radius_mean textu	re_mean	perimet	er_mean	area_mean	smooth	ness_mean
842302	17.99	10.38		122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_mean	concavit	ty_mean	concave.	points_mea	an symme	etry_mean
842302	0.27760		0.3001		0.1471	LO	0.2419
842517	0.07864		0.0869		0.0701	L7	0.1812
84300903	0.15990		0.1974		0.1279	90	0.2069
84348301	0.28390		0.2414		0.1052	20	0.2597
84358402	0.13280		0.1980		0.1043	30	0.1809
843786	0.17000		0.1578		0.0808	39	0.2087
	fractal_dimension	_mean ra	adius_se	texture	_se perime	eter_se	area_se
842302	0.	07871	1.0950	0.9	0053	8.589	153.40
842517	0.	05667	0.5435	0.7	'339	3.398	74.08
84300903	0.	05999	0.7456	0.7	'869	4.585	94.03
84348301	0.	09744	0.4956	1.1	.560	3.445	27.23
84358402	0.	05883	0.7572	0.7	'813	5.438	94.44
843786	0.	07613	0.3345	0.8	902	2.217	27.19
	smoothness_se com	pactness	s_se con	cavity_s	se concave.	points	_se
842302	0.006399	0.04	1904	0.0537	'3	0.01	587

842517	0.005225	0.0130	0.0	01860	0.01340
84300903	0.006150	0.0400	0.	03832	0.02058
84348301	0.009110	0.0745	58 0.	05661	0.01867
84358402	0.011490	0.0246	0.	05688	0.01885
843786	0.007510	0.0334	15 0.	03672	0.01137
	symmetry_se frac	ctal_dimensi	ion_se rad	ius_worst	texture_worst
842302	0.03003	0.0	006193	25.38	17.33
842517	0.01389	0.0	003532	24.99	23.41
84300903	0.02250	0.0	04571	23.57	25.53
84348301	0.05963	0.0	009208	14.91	26.50
84358402	0.01756	0.0	05115	22.54	16.67
843786	0.02165	0.0	05082	15.47	23.75
	•	_	smoothnes	_	ompactness_worst
842302	184.60	2019.0		0.1622	0.6656
842517	158.80	1956.0		0.1238	0.1866
84300903	152.50			0.1444	0.4245
84348301	98.87			0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.poi		•	
842302	0.7119		0.2654		0.4601
842517	0.2416		0.1860		0.2750
84300903	0.4504		0.2430		0.3613
84348301	0.6869		0.2575		0.6638
84358402	0.4000		0.1625		0.2364
843786	0.5355		0.1741		0.3985
	fractal_dimension	-			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

Q1. How many observations are in this dataset?

dim(wisc.data)

[1] 569 30

There are 569 obesrvations in this data set.

Q2. How many of the observations have a malignant diagnosis?

table (diagnosis)

diagnosis
B M
357 212

212 observations have a malignant diagnosis

Q3. How many variables/features in the data are suffixed with mean?

```
length(grep("_mean", colnames(wisc.data)))
```

[1] 10

There are 10 variables with te suffic "_mean"

Principle Componentn Analysis

```
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                                        PC12
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                                PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                                 PC25
                                         PC24
                          PC22
                                  PC23
                                                          PC26
                                                                  PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

PC29 PC30

Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.3% (shown by PC1 above)

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

It takes at 3 PCs to describe at least 70% of the original variance in the data

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

It takes 7 PCs to describe at least 90% of the original variance in the data

attributes(wisc.pr)

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is extremly difficult to understand, it looks like one big blob of data.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

plot(wisc.pr\$x[,1], wisc.pr\$x[,3], col=as.factor(diagnosis),xlab = "PC1", ylab = "PC3")

I notice that these plots have a distinguishable seperation (within reasonable error) of patients with malignant and benign tumours.

```
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

library(ggplot2)

ggplot(df) +
   aes(PC1, PC2, col=as.factor(diagnosis))+geom_point()</pre>
```



```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

```
sum(pr.var)
```

[1] 30

```
pve <- pr.var / sum(pr.var)
pve</pre>
```

```
[1] 4.427203e-01 1.897118e-01 9.393163e-02 6.602135e-02 5.495768e-02 [6] 4.024522e-02 2.250734e-02 1.588724e-02 1.389649e-02 1.168978e-02 [11] 9.797190e-03 8.705379e-03 8.045250e-03 5.233657e-03 3.137832e-03 [16] 2.662093e-03 1.979968e-03 1.753959e-03 1.649253e-03 1.038647e-03 [21] 9.990965e-04 9.146468e-04 8.113613e-04 6.018336e-04 5.160424e-04 [26] 2.725880e-04 2.300155e-04 5.297793e-05 2.496010e-05 4.434827e-06
```

```
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
CLV <- (wisc.pr$rotation[,1])
CLV</pre>
```

radius_mean	texture_mean	perimeter_mean
-0.21890244	-0.10372458	-0.22753729
area_mean	${\tt smoothness_mean}$	compactness_mean
-0.22099499	-0.14258969	-0.23928535
concavity_mean	concave.points_mean	symmetry_mean
-0.25840048	-0.26085376	-0.13816696
fractal_dimension_mean	radius_se	texture_se
-0.06436335	-0.20597878	-0.01742803
perimeter_se	area_se	smoothness_se
-0.21132592	-0.20286964	-0.01453145
compactness_se	concavity_se	concave.points_se
-0.17039345	-0.15358979	-0.18341740
symmetry_se	fractal_dimension_se	radius_worst
-0.04249842	-0.10256832	-0.22799663
texture_worst	perimeter_worst	area_worst
-0.10446933	-0.23663968	-0.22487053
smoothness_worst	compactness_worst	concavity_worst
-0.12795256	-0.21009588	-0.22876753
concave.points_worst	symmetry_worst	<pre>fractal_dimension_worst</pre>
-0.25088597	-0.12290456	-0.13178394

The component of the loading vector for the feature concave.points_mean in the first principal component is -0.26085376.

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
summary(wisc.pr)
Importance of components:
                                                          PC5
                          PC1
                                 PC2
                                          PC3
                                                  PC4
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

```
#alternative method as explained by IA
explained_variance <- cumsum(wisc.pr$sdev^2) / sum(wisc.pr$sdev^2)
min_components <- which(explained_variance >= 0.80)[1]
min_components
```

[1] 5

The minimum number of PVs to explain 80% of the variance in the data is 5.

```
data.scaled <- scale(wisc.data)</pre>
```

```
data.dist <- dist(data.scaled)</pre>
```

```
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

19 (see below)

```
plot(wisc.hclust)
abline(h = 19, col = "red", lty = 2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
d<-dist(wisc.pr$x[,1:3])
hc <- hclust(d, method = "ward.D2")

plot(hc)
abline(h = 30, col = "red", lty = 2)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=2)
```

table(diagnosis, wisc.hclust.clusters)

wisc.hclust.clusters

diagnosis 1 2

B 357 0

M 210 2

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
grps <- cutree(hc, k=4)
plot(wisc.pr$x, col=grps)</pre>
```


Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
HCcomplete <- hclust(data.dist, method = "complete")
HCaverage <- hclust(data.dist, method = "average")
HCsingle <- hclust(data.dist, method = "single")
HCcentroid <- hclust(data.dist, method = "centroid")
plot(HCcomplete)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

plot (HCaverage)

Cluster Dendrogram

data.dist hclust (*, "average")

plot(HCsingle)

Cluster Dendrogram

data.dist hclust (*, "single")

Cluster Dendrogram

data.dist hclust (*, "centroid")

With this specific analysis the "complete" method gave my favorite results. It provided the cleanest plot and was much easier to use to find the a specific number of clusters (as was asked in question 11).