高雄中學 108 學年度第二學期第一次期中考高一數學科試題

※ 作答須使用黑色或藍色的原子筆書寫,除作圖外不得使用鉛筆。

一、多選題(占24分)

說明:第1題至第3題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項依照題號填入答案卷之 『指定答案欄』當中。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得5分;答 錯2個選項者,得2分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

- 1. 試選出正確的選項。
 - (1) 方程式 $4^x + 4^{-x} = 2^{-|x|} + 1$ 恰有 1 個實根
 - (2) 方程式 $4^x + 4^{-x} = 2^{|x|} + 2$ 恰有 2 個實根
 - (3) 方程式 $2 \cdot x^3 3 \cdot x^2 3 \cdot x + 2 = 0$ 恰有 3 個實根
 - (4) 方程式 $2 \cdot 2^{3x} 3 \cdot 2^{2x} 3 \cdot 2^{x} + 2 = 0$ 恰有 3 個實根
 - (5) 方程式 $2\cdot(2^x+2^{-x})^3-3\cdot(2^x+2^{-x})^2-3\cdot(2^x+2^{-x})+2=0$ 恰有 3 個實根
- 2. 坐標平面上,圓 C的方程式為 $x^2+y^2-8x+6y+16=0$,直線 L的方程式為 $x+y+(\sqrt{2}-1)=0$,試選出 正確的選項。
 - (1) 圓 C上恰有 10 個點與直線 L的距離為正整數
 - (2) 圓 C上恰有 4 個點與直線 L的距離為 2 的正整數次方
 - (3) 圓 C上恰有 8 個點與 L的距離為 2 的整數次方
 - (4) 若直線 L 與圓 C 交於 $A(x_1, y_1)$ 、 $B(x_2, y_2)$,則 $x_1 + x_2 + y_1 + y_{\frac{\pi}{2}} 2 + \sqrt{2}$
 - (5) 若直線 L、 L,均與直線 L平行且與圓 C相切,切點分別為 $P(x_3,y_3)$ 、 $Q(x_4,y_4)$,則 x_3x_4+y y =16
- 3. 試就 k 的值討論坐標平面上方程式 $C_1: x^2 + y^2 = (k+2)^2$ 與 $C_2: (x-6)^2 + (y-8)^2 = 9(2-k)^2$ 所代表的圖形。
 - (1) 若 $-1 < k < \frac{7}{2}$,圖形 C_1 與 C_2 不相交且互不包含
 - (2) 恰有 2 個實數 k 使得圓 C_1 與圓 C_2 外切
 - (3) 恰有 2 個實數 k 使得 C₁與 C₂各自所圍成的圖形內部面積相等
 - (4) 當 C, 與 C, 各自所圍成的圖形內部面積相等時,兩圖形不相交
 - (5) 各自計算兩方程式所圍成的圖形內部面積並相加,最小值為 16π

二、填充題(占64分)

說明:第4至11題,請將正確答案依照題號填入答案卷之『指定答案欄』當中。每題完全答對得8分。

4. 若 α , β 為 方 程 式 $x^2 - \sqrt[3]{32}x + \frac{1}{2\sqrt{2}} = 0$ 的 兩 根 、 γ , δ 為 方 程 式 $x^2 - 8x + 6 = 0$ 的 兩 根 ,

則
$$\alpha^{\gamma} \cdot \alpha^{\delta} \cdot \beta^{\gamma} \cdot \beta^{\delta} \cdot ((\alpha + \beta)^{\gamma})^{\delta} = \underline{\hspace{1cm}} \circ$$

5. 若
$$a^{2x}=2+\sqrt{2}$$
,則 $\frac{a^{3x}-a^{-3x}}{a^x+a^{-x}}=$ _____。(請化簡至 $\frac{q+r\sqrt{s}}{p}$ 的形式, p,q,r,s 為整數)

6. 設
$$f(x) = (\frac{1}{2})^x - 3$$
,且 $a < -2 < b$, 令 $k_1 = \frac{f(a) + f(-2)}{2}$ 、 $k_2 = \frac{f(b) + f(-2)}{2}$ 、 $k_3 = f(\frac{a + (-2)}{2})$ 、 $k_4 = f(\frac{b + (-2)}{2})$, 則 k_1 、 k_2 、 k_3 、 k_4 的大小順序為______。

7. 坐標平面上,
$$P(x,y)$$
 為直線 $3x+y=4$ 上任意一點,令 $k=(\frac{1}{27})^x+(\frac{1}{3})^y$,則 k 之最小值為_____。

- 8. 坐標平面上,P點在圓 $C:(x-2)^2+(y-1)^2=1$ 上,Q點坐標為(-4,-2), R點 在 PQ 直線上且滿足 $\overline{PR}:\overline{QR}=2:1$ 的 所有R點所構成的軌跡方程式為_____。
- 9. 設 P(x, y) 為坐標平面上滿足不等式 $x^2 + y^2 4x 2y 4 \le 0$ 之點坐標,其中 $x \ge 0$ 、 $y \ge 0$, 則前述所有 P 點投影在直線 $L: \frac{x}{12} - \frac{y}{6} = 1$ 上所得之線段長為_____。
- 10. 坐標平面上,圓 Γ 之方程式為(x-3)(x-3)+(y-1)(y+9)=0。若直線 $L_1:x-3y=7$ 與直線 $L_2:x+2y=2$ 交於P點, L_1 與 Γ 交於A、B兩點, L_2 與 Γ 交於C、D兩點,則 $\overline{PA}\times\overline{PB}\times\overline{PC}\times\overline{PD}=$ ______。
- 11. 坐標平面上, P點為方程式 $x^2 + y^2 12x 8y + 50 = 0$ 圖形上一點, Q點為方程式 2x y = 3圖形上一點, R點為方程式 y = 0圖形上一點,則 $\overline{PQ} + \overline{QR}$ 之最小值為______。

三、計算證明題(占12分)

說明:第12題,請將答案寫在答案卷之『指定答案欄』當中,同時必須寫出演算過程或理由,否則將予扣分甚至 零分。每一子題配分標於題末,各子題完全答對得12分。

- 12.(1) 已知圓 $C: (x-h) + (y-k) = {}^{2}$, $P(x_0, y_0)$ 為圓C上一點。 試證明過P點且與圓C相切之直線方程式為 $(x_0-h)(x-h) + (y_0-k)(y-k) = r^2$ 。(8分)
 - (2) 坐標平面上,圓C的方程式為 $x^2 + y^2 + 2x + 6y 10 = 0$,若過切點 $P(x_0, y_0)$ 的 切 線 與 x 2y + 1 = 0 垂 直,則 P 點 坐 標 為 ______。(4 分)

高雄中學 108 學年度第二學期第一次期中考高一數學科答案卷

一、多選題(占24分)

	, ,	
1.	2.	3.
(1)(2)(3)	(1)(2)(5)	(1)(2)(3)

二、填充題(占64分)

4.	5.	6.	7.	
1	$12 + 17\sqrt{2}$	$k_1 > k_3 > k_2 > k_4$	2	
$\frac{1}{4}$	14		- 9	
	14			
8. $\left((x+2)^2 + (y+1)^2 - \frac{1}{9} \right) \left((x+10)^2 + (y+5)^2 - 1 \right) = 0$		9. $3+\sqrt{5}$		
				10.
225		$6-\sqrt{2}$		

三、計算證明題(占12分)

12.(1)

令圓C之圓心為O(h,k)

當 $x_0 \neq h$ 、 $y_0 \neq k$ 時 , \overrightarrow{PO} 之斜率為 $\frac{y_0 - k}{x_0 - h}$, 過 P 之切線斜率為 $-\frac{x_0 - h}{y_0 - k}$

過 P 之切線方程式為 $(y-y_0) = -\frac{x_0-h}{y_0-k}(x-x_0)$, 化簡為 $(x_0-h)(x-x_0) + (y_0-k)(y-y_0) = 0$

又 $P(x_0, y_0)$ 在圓C上, $(x_0 - h)^2 + (y_0 - k)^2 = r^2$

兩式相加 $(x_0 - h)(x - x_0) + (y_0 - k)(y - y_0) + (x_0 - h)^2 + (y_0 - k)^2 = r^2$

$$\Rightarrow (x_0 - h)[x - x_0 + x_0 - h] + (y_0 - k)[y - y_0 + y_0 - k] = r^2$$

$$\Rightarrow$$
 $(x_0 - h)(x - h) + (y_0 - k)(y - k) = r^2$

當 $x_0 = h$ 時,過P之切線方程式為 $y = y_0$,恰與欲證明之公式符合,說明如下:

將 $x_0 = h$ 代入 $(x_0 - h)(x - h) + (y_0 - k)(y - k) = r^2$ 得 $(y_0 - k)(y - k) = r^2 = (y_0 - k)^2$

$$\Rightarrow$$
 $y-k = y_0 - k$

$$\Rightarrow$$
 $y = y_0$

當 $y_0 = k$ 時,過P之切線方程式為 $x = x_0$,恰與欲證明之公式符合,說明如下:

將 $y_0 = k$ 代入 $(x_0 - h)(x - h) + (y_0 - k)(y - k) = r^2$ 得 $(x_0 - h)(x - h) = r^2 = (x_0 - h)^2$

$$\Rightarrow x-h=x_0-h$$

$$\Rightarrow x = x_0$$

註:未說明無斜率狀況,扣 2 分。無斜率狀況可只討論 $y_0 = k$

12.(2)

P點坐標為(3,-1)或(-5,-5)