	lecture	time
1	기본적인 Machine Learning의 용어와 개념 설명	0:12:29
2	Linear Regression의 Hypothesis와 cost 설명	0:13:30
3	Linear Regression의 cost 최소화 알고리즘의 원리 설명	0:16:20
4	multi-variable linear regression	0:17:45
5	Logistic Classification의 가설 함수 정의	0:14:57
	Logistic Regression의 cost 함수 설명	0:14:24
6	Softmax Regrssion: 기본 개념 소개	0:10:17
	Softmax classifier의 cost 함수	0:15:36
7	학습 rate, Overfitting, 그리고 일반화	0:14:03
	Training/Testing 데이터 셋	0:09:22
0	딥러닝의 기본 개념: 시작과 XOR 문제	0:17:42
8	딥러닝의 기본 개념2	0:12:37
	XOR 문제 딥러닝으로 풀기	0:15:03
9	10분안에 미분 정리하기	0:09:29
	딥넷트웍 학습 시키기	0:18:28
10	Sigmoid 보다 ReLU가 더 좋아	0:17:30
	Weight 초기화 잘해보자	0:12:18
	Dropout 과 앙상블	0:09:55
	레고처럼 넷트웍 모듈을 마음껏 쌓아 보자	0:05:09
	ConvNet의 Conv 레이어 만들기	0:16:22
11	ConvNet Max pooling 과 Full Network	0:05:33
	ConvNet의 활용예	0:12:31
	NN의 꽃 RNN 이야기	0:19:43
12		

5:11:03

lab	time	week
TensorFlow의 설치 및 기본적인 operations	0:17:30	1주차
TensorFlow로 간단한 linear regression을 구현	0:15:11	(4/2 - 4/8)
Linear Regression의 cost 최소화의 TensorFlow 구현	0:15:33	1:30:33
multi-variable linear regression을 TensorFlow에서 구현하기	0:08:02	っるき
TensorFlow로 파일에서 데이터 읽어오기	0:13:03	2주차 (4/9 - 4/15)
TensorFlow로 Logistic Classification의 구현하기	0:15:42	(4/3 4/13)
Tenson low도 Logistic Classification의 무현이기		1:23:53
TensorFlow로 Softmax Classification의 구현하기	0:12:41	
TensorFlow로 Fancy Softmax Classification의 구현하기	0:16:31	3-4주차
training/test dataset, learning rate, normalization	0:11:02	(중간고사)
Meet MNIST Dataset	0:13:09	(4/16 - 4/29)
Tensor Manipulation	0:26:14	
Terisor Manipulation		2:39:14
Neural Net for XOR	0:12:29	
Tensorboard	0:12:08	
		5주차
	0:14:35	(4/30 - 5/6)
NN, ReLu, Xavier, Dropout, and Adam		
NN, NeLa, Navier, Dropout, and Adam		
		2:07:04
TensorFlow CNN Basics	0:16:30	
MNIST 99% with CNN	0:12:37	
CNN Class, Layers, Ensemble	0:10:07	
RNN - Basics	0:12:34	6주차
RNN - Hi Hello Training	0:14:52	(5/7 - 5/13)
Long Sequence RNN	0:11:19	
Stacked RNN + Softmax Layer	0:11:08	
Dynamic RNN	0:04:08	
RNN with Time Series Data	0:10:16	2:37:40

5:07:21

0:29:59 0:28:41 0:31:53 0:25:47 0:13:03 0:30:39 0:14:24 0:22:58 0:32:07 0:25:05 0:22:31 0:43:56 0:12:37 0:27:32 0:21:37 0:18:28 0:32:05 0:12:18 0:09:55 0:05:09 0:32:52 0:18:10 0:22:38 0:32:17 0:14:52 0:11:19 0:11:08 0:04:08 0:10:16 10:18:24