5GNN: Extrapolating 5G Measurements through GNNs

https://github.com/StrongWeiUMN/5GNN

Wei Ye, Xinyue Hu, Tian Liu, Ruoyu Sun, Yanhua Li, **Zhi-Li Zhang**

5G Spectrum Bands

5G High Band and mmWave 5G

With theoretical throughput up to 20 Gbps!

Key to support apps requiring ultra-high bandwidth

AR/VR Services

Source: Intel True View

Volumetric Content Delivery

Commercial 5G Measurement

5Gopher: Mapping throughput

5G Beam: Beam coverage

• The detailed "in-the-field" measurements are key to understand the commercial 5G network performance.

Commercial 5G Measurement - Limitations

However,

- (1) Measurement process is **laborious** and **costly**.
- (2) Data can only be collected in **limited areas** of (potentially large) space.
- (3) The limited coverage data will **introduce biases** to the model.

5G Measurement Extrapolation Problem and Our Solution -> 5GNN

5G Measurement Extrapolation Problem

Given a collection of 5G "signal" measurements collected in the limited number of locations in a target 5G coverage area:

Can we infer or extrapolate 5G "signals" at other locations within the area that we do not have samples?

5GNN is a tower information-free, physical-inspired, and graph-based learning approach.

December 09, 2022

We aim to learn a local ("smooth") embedding of data points lying within a local neighborhood.

Radio signal's local characteristics:

Local signal waveform variations, noise, and interference

We aim to approximate the (global) 5G signal manifold by patching together the local charts in an appropriate manner.

Radio signal's global characteristics:

Radio signal propagation, attenuation, fading, and path losses.

Stage 2: Global embedding

$$\hat{Z} = GNN^g(A^g, Z)$$

GNN^g is applied on the global graph and can be any off-the-shelf baseline GNN model. We build a global kNN graph A^g over all the local charts.

 $Z = [z_0, z_1, ..., z_N]^T$ is the feature matrix

Stage 3: Joint Training

$$\underset{\theta}{\operatorname{arg \, min}} \ Loss(\boldsymbol{y}_{pred}, \boldsymbol{y}_{true})$$
$$\boldsymbol{y}_{pred} = MLP([\hat{Z}||Z])$$

Stage 2: Global embedding

Try to approximate the (global) 5G signal manifold.

$$\hat{Z} = GNN^{l}(A^{g}, Z)$$

$$Z^{g} = kNN(\{p \text{ in } Batch\}) \quad Z = [z_{0}, z_{1}, ..., z_{N}]^{T}$$

Stage 1: Local embedding

Try to learn a local ("smooth") embedding.

$$Z_{i} = F(GNN^{l}(A^{l_{i}}, H^{l_{i}}))$$

$$A_{jk}^{l_{i}} = \exp(-\frac{d(c_{j}, c_{k})}{2\sigma^{2}}) \qquad H^{l_{i}} = \begin{bmatrix} c_{i} & 0 & 0\\ c_{j} & X_{j} & y_{j} \end{bmatrix}$$

Back propagation

Measurement Campaigns

We conducted the **comprehensive measurement campaigns** with the professional tools at the public park covered by diverse 4G/5G bands.

Datasets

Table 1: Key Statistics of Real-World Datasets

Scenario	Public Square		
Total area covered	$8,000 \ m^2$		
Technologies	4G-lowBand/midBand; 5G-highBand		
Data samples	Total 200k+ with 100ms sampling rate		
Toolse	Signal strength imputation		
Tasks	Channel quality regression		

Table 2: Fields of signal strength imputation task.

c	Longitude; Latitude Angle: the orientation angle of UE
y	BRSRP: filtered beam reference signal received power [dBm]

Table 3: Fields of channel quality regression task.

0	Longitude; Latitude
С	Angle: the orientation angle of UE
X	ss-RSRP: synchronize signal reference signal received power [dBm] ss-RSRQ: synchronize signal reference signal received quality [dB] csi-RSRP [SSBRI]: CSI reference signal received power [dBm] csi-RSRP [CRI]: CSI reference signal received power [dBm] SINR: signal to interference & noise ratio [dB] Pathloss: reduction in power density as signal propagates [dB] BLER: block error rate [%]
v	CQI: channel quality indicator
	ext. enamer quant, marcurer

We use the **collected commercial 5G data** and **DeepMIMO simulated data** for evaluation.

Evaluation Setup

- We compare 5GNN with other **two** state-of-the-art learning paradigms (*PE-GNN [NeurIPS-ws'22]* and *Kriging-GNN [AAAI'20]*) for "geography inference" problems.
- We consider **three** representative baseline GNNs (GCN [ICLR'17], GraphSAGE [NeurIPS'17], and GIN [ICLR'19]) to combine with above learning paradigms.
- We also consider one widely-used classical statistics-based method (Universal Kriging).

Error rate of *5GNN* vs. state-of-art learning paradigms

Results of Signal Imputation Task

Datasats	ets Metrics UK		GCN			GraphSAGE			GIN		
Datasets	Metrics	UK	P1	P2	5GNN	P1	P2	5GNN	P1	P2	5GNN
DeepMIMO Mid	RMSE	0.0465	0.0584	0.0451	0.0440	0.0559	0.0438	0.0437	0.0531	0.0458	0.0436
DeepwiiwiO_wiiu	MAE	0.0342	0.0444	0.0334	0.0320	0.0423	0.0315	0.0315	0.0410	0.0344	0.0316
DeepMIMO_High	RMSE	0.0767	0.0722	0.0720	0.0701	0.0723	0.0696	0.0690	0.0722	0.0719	0.0703
DeepMino_nigh	MAE	0.0584	0.0552	0.0550	0.0535	0.0552	0.0524	0.0519	0.0555	0.0545	0.0537
4G_Signal_Low	RMSE	0.1250	0.1216	0.1129	0.1076	0.1039	0.1018	0.1020	0.1223	0.1130	0.1071
4G_Signal_Low	MAE	0.0915	0.0955	0.0864	0.0784	0.0771	0.0758	0.0745	0.0964	0.0874	0.0787
4G Signal Mid	RMSE	0.0899	0.0943	0.0849	0.0806	0.0887	0.0796	0.0795	0.0939	0.0851	0.0816
40_Signal_Mid	MAE	0.0684	0.0740	0.0662	0.0616	0.0688	0.0603	0.0603	0.0735	0.0663	0.0622
5G Signal High	RMSE	0.1588	0.1598	0.1453	0.1366	0.1218	0.1194	0.1187	0.1574	0.1457	0.1361
JG_Signal_High	MAE	0.1201	0.1297	0.1156	0.1015	0.0889	0.0863	0.0855	0.1260	0.1157	0.1009
Note: P1 denotes PE-GNN paradigm; P2 is Kriging-GMN paradigm.							<u> </u>		^	<u> </u>	

- 5GNN is consistently superior other graph-based learning paradigms.
- It reduces errors up to 12.8% on the imputation task.

Results of Signal Imputation Task

Datasets	Metrics	UK	GCN			GraphSAGE			GIN		
Datasets			P1	P2	5GNN	P1	P2	5GNN	P1	P2	5GNN
DeepMIMO Mid	RMSE	0.0465	0.0584	0.0451	0.0440	0.0559	0.0438	0.0437	0.0531	0.0458	0.0436
DeepwiiwiO_wiiu	MAE	0.0342	0.0444	0.0334	0.0320	0.0423	0.0315	0.0315	0.0410	0.0344	0.0316
DeepMIMO_High	RMSE	0.0767	0.0722	0.0720	0.0701	0.0723	0.0696	0.0690	0.0722	0.0719	0.0703
Deepwii/iO_mgn	MAE	0.0584	0.0552	0.0550	0.0535	0.0552	0.0524	0.0519	0.0555	0.0545	0.0537
4G_Signal_Low	RMSE	0.1250	0.1216	0.1129	0.1076	0.1039	0.1018	0.1020	0.1223	0.1130	0.1071
46_Signal_Low	MAE	0.0915	0.0955	0.0864	0.0784	0.0771	0.0758	0.0745	0.0964	0.0874	0.0787
4G Signal Mid	RMSE	0.0899	0.0943	0.0849	0.0806	0.0887	0.0796	0.0795	0.0939	0.0851	0.0816
46_Signal_Mid	MAE	0.0684	0.0740	0.0662	0.0616	0.0688	0.0603	0.0603	0.0735	0.0663	0.0622
5G Signal High	RMSE	0.1588	0.1598	0.1453	0.1366	0.1218	0.1194	0.1187	0.1574	0.1457	0.1361
JO_Signal_riigii	MAE	0.1201	0.1297	0.1156	<u>0.1015</u>	0.0889	0.0863	0.0855	0.1260	0.1157	<u>0.1009</u>

Note: P1 denotes PE-GNN paradigm; P2 is riging-GM paradigm.

• 5GNN also outperforms the Kriging methods and reduces up to 25.3% error rates on the 5G high band.

Results of Channel Quality Regression Task

Datasets	Metrics	UK	GCN			GraphSAGE			GIN		
Datasets			P1	P2	5GNN	P1	P2	5GNN	P1	P2	5GNN
4G_CQI_Low	RMSE	0.1840	0.1813	0.1710	0.1611	0.1754	0.1594	0.1605	0.1809	0.1712	0.1602
46_CQI_L0W	MAE	0.1430	0.1460	0.1365	0.1259	0.1416	0.1234	0.1252	0.1472	0.1370	0.1247
4G_CQI_Mid	RMSE	0.1435	0.1336	0.1328	0.1328	0.1310	0.1278	0.1276	0.1345	0.1364	0.1329
46_CQI_MId	MAE	0.1092	0.1042	0.1053	0.1017	0.1029	0.0982	0.0972	0.1045	0.1076	0.1015
FC COL High	RMSE	0.1926	0.1730	0.1724	0.1643	0.1751	0.1645	0.1629	0.1748	0.1726	0.1638
5G_CQI_High	MAE	0.1516	0.1455	0.1417	0.1287	0.1469	0.1279	0.1279	0.1493	0.1422	0.1292

Note: P1 denotes PE-GNN paradigm; P2 is Kriging-GNN paradigm.

- 5GNN reduces errors up to 9.2% on the regression task.
- 5GNN is a better choice for signal imputation and channel quality regression tasks by efficiently capturing signals' local and global spatial correlations.

Visualization of Radio Maps

Reconstruction results of DeepMIMO mid-band, where we can observe signal's local and global patterns

5GNN can efficiently **generate the radio map** based on the **few** measured data points, thus assisting future measurements.

Reconstruct results of commercial 5G high-band

Discussions on Running Time

We use 64 vCPU cores for universal kriging, while 8 vCPU cores with 1 GPU for other GCN-based methods. Those machines **cost the same price** on AWS as a fair comparison.

	Training	Inference Time			
UK	182.4	0.135 ms/sample			
GCN-P1	0.39 s/epoch	45 epochs	0.006 ms/sample		
GCN-P2			0.178 ms/sample		
GCN-5GNN	0.29 s/epoch	46 epochs	0.183 ms/sample		

Note: P1 denotes PE-GNN paradigm; P2 is Kriging-GNN paradigm.

- Different learning paradigms have **different characteristics** of training/inference time.
- 5GNN is competitive with other methods and can **meet the** requirements for real-world measurement, considering each measurement run usually takes tens of minutes.

Ongoing and Future Works

Machine learning model generalization ability

Real-time environmental perception

Al-assisted measurement route recommendation

Summary

Address the **5G measurement extrapolation problem**.

Argue for the need to account for both **local** and **global** dependencies in 5G signal and feature maps.

Propose **5GNN** - a tower information-free, physical-inspired, and graph-based learning paradigm.

5GNN reduces the error rates (up to) **12.8%** and **9.2%** on the signal imputation task and channel quality regression task, compared to other state-of-art methods on both synthetic and real-world datasets.

Conduct field experiments to collect the **commercial 5G network data** for this study.

For dataset access and more info, visit us @

https://github.com/StrongWeiUMN/5GNN

5GNN: Extrapolating 5G Measurements through GNNs

https://github.com/StrongWeiUMN/5GNN

Wei Ye, Xinyue Hu, Tian Liu, Ruoyu Sun, Yanhua Li, **Zhi-Li Zhang**

