A simple proof of Kirchoff's theorem, and some other combinatorial graph determinants

Jules Jacobs

December 6, 2020

Abstract

Kirchoff's matrix tree theorem states that the number of spanning trees in a graph is $\det L'$, where L' is the Laplacian matrix L of the graph, with any row and column deleted. We give a direct proof of the fact that $\det(xI+L)$ is the generating function of spanning forests with k roots. Our proof does not rely on the Cauchy-Binet formula, yet is arguably simpler than the standard proof, and applies to directed graphs as well.

The proof is based on a lemma that if A is the adjacency matrix of a graph where each vertex has at most one outgoing edge, then $\det(I-A)=1$ if A is a forest and 0 otherwise. We also generalize this lemma to any graph, in which case $\det(I-xA)^{-1}$ is shown to be the generating function of *strictly upward routes*.

Lastly, we generalize Kirchoff's theorem to a theorem about $\det(A+L)$ where A is the adjacency matrix of a second graph, which reduces to counting spanning forests when A=xI and to the fact that $\det(A)$ counts signed cycle covers when L=0. The all-minors matrix tree theorem also follows as a corollary. For instance, the fact that $\det(L')$ counts spanning forests, where L' is L with any column i and row j deleted, follows by picking A to be the matrix where $A_{ij}=1$ and zero elsewhere.

1 Introduction

Given finite sets of numbers $S_1, \ldots, S_n \subset \mathbb{R}$, we have the identity:

$$\sum_{x_1 \in S_1, \dots, x_n \in S_n} x_1 x_2 \dots x_n = \left(\sum_{x_1 \in S_1} x_1\right) \dots \left(\sum_{x_n \in S_n} x_n\right)$$

On the left hand side, we get one term for every way of choosing $(x_1, ..., x_n) \in S_1 \times \cdots \times S_n$. This identity is useful in combinatorics, for instance to show that the coefficient of x^k of $(x + x^2 + \cdots + x^6)^n$ counts the number of ways of obtaining k as the sum of n dice.

Similarly, given finite sets of vectors $S_1, \ldots, S_n \subset \mathbb{R}^k$, we have the following identity, by multilinearity of the determinant:

$$\sum_{\nu_1 \in S_1, \dots, \nu_n \in S_n} \det(\nu_1, \dots, \nu_n) = \det\left(\sum_{\nu_1 \in S_1} \nu_1, \dots, \sum_{\nu_n \in S_n} \nu_n\right)$$

Where $det(v_1, ..., v_n)$ is the determinant of a matrix with those columns. We shall see that Kirchoff's theorem can be obtained from this identity, but we first need some definitions and a lemma.

Definition 1.1. A 01-graph is a directed graph where each vertex has 0 or 1 outgoing edges.

Definition 1.2. We define the concepts *root*, *forest*, and *tree*:

• The *roots* are vertices with 0 outgoing edges.

- A *forest* is a 01-graph with no cycles.
- A tree is a forest with one root.

If we start at a vertex v in a 01-graph and keep following the unique outgoing edge, then we either loop in a cycle, or we end up at a vertex with no outgoing edges. Therefore a general 01-graph consists of roots and cycles, plus trees converging onto the roots and cycles.

Definition 1.3. The adjacency matrix *A* of a graph *G* is defined as follows, where $e_j \in \mathbb{R}^n$ are the basis vectors:

$$A_i = \sum_{(i \to j) \in G} e_j$$

2 The matrix-tree theorem

We start with a lemma that gives us an indicator function for forests.

Lemma 2.1. Let A be the adjacency matrix of a 01-graph G, then

$$\det(I - A) = \begin{cases} 1 & \text{if } G \text{ is a forest} \\ 0 & \text{if } G \text{ has a cycle} \end{cases}$$

Proof. In a 01-graph, the vector $A^i e_k$ follows the path out of k for i = 0, 1, ... (note that this path is unique because each vertex has at most one outgoing edge).

- If *G* is forest then $A^n e_k = 0$ for all *k*, where *n* is the number of vertices of *G*. So $A^n = 0$, so all eigenvalues of *A* are zero, so all eigenvalues of I A are one, so $\det(I A) = 1$.
- If *G* has a cycle consisting of vertices *C*, take $v = \sum_{i \in C} e_i$. Then Av = v, so (I A)v = 0, so $\det(I A) = 0$.

Thus, for 01-graphs, det(I - A) indicates whether the graph is a forest or not.

If using eigenvalues to prove a finitary lemma feels wrong, here is an alternative proof:

Proof. In a 01-graph, the i-th column of A consists of only the diagonal 1 when i is a root, and has one other entry equal to -1 if i is not a root.

We may therefore do a Laplace expansion along the column of a root, which deletes column i and row i from the matrix. On the graph side, this corresponds to deleting root i and all its incoming edges.

Repeating this process, we end up deleting the entire graph iff the graph was a forest, in which case the determinant is one¹, or we end up with a graph consisting entirely of cycles, in which case each column of I - A has one 1 and one -1, so the sum of the rows is 0 so $\det(I - A) = 0$.

Definition 2.1. The Laplacian matrix *L* of a graph *G* is defined as:

$$L_i = \sum_{(i \to j) \in G} (e_i - e_j)$$

Theorem 2.2. (Kirchoff, Tutte) The determinant det(I + L) gives the number of ways to choose a forest as a subgraph of G.

¹The determinant of a 0×0 matrix is 1, but one can also stop deleting when the matrix is 1×1 , and use $\det([1]) = 1$.

Proof. The strategy is to first consider all possible ways of choosing a 01-graph as a subgraph of G, and then summing $\det(I-A)$ over those, which counts only the forests. To choose a 01-graph in G, we choose for each vertex i whether we make it a root, or whether we give it an outgoing edge from G. Therefore:

$$\det(I+L) = \det(e_1+L_1, \dots, e_n+L_n) = \sum_{\text{01-graph } A \subseteq G} \det(I-A) = \sum_{\text{forest } A \subseteq G} 1$$

In the second step, we have expanded the determinant by multilinearity in each column

$$e_i + L_i = e_i + \sum_{(i \to j) \in G} (e_i - e_j)$$

In each column we either pick e_i or we pick one of the terms $(e_i - e_j)$ in the sum over the outgoing edges². The former corresponds to picking e_i as a root, and the latter corresponds to picking $i \to j$ as the outgoing edge for vertex i.

The same proof obtains a weighted version of the theorem. Let A be a matrix of weights with A_{ij} corresponding to edge $i \to j$, and define the Laplacian $L_i = \sum_j A_{ij} (e_i - e_j)$. Let D be a diagonal matrix of weights with D_{ii} corresponding to vertex i as a root. Let the weight of forest be

$$w(F) = \prod_{i \in \mathsf{roots}(F)} D_{ii} \prod_{(i \to j) \in \mathsf{edges}(F)} A_{ij}$$

Then we have the following weighted version of the previous theorem.

Theorem 2.3. (Weighted version) The determinant det(D + L) sums the weights of forests with edge weights A and root weights D.

Proof. Essentially the same as the preceding proof. Column i of D + L is:

$$D_{ii}e_i + L_i = D_{ii}e_i + \sum_j A_{ij}(e_i - e_j)$$

Thus, after expanding by multilinearity, one gets a factor of D_{ii} if one picks i as a root, and one gets a factor A_{ij} if one picks the edge $i \rightarrow j$ as the outgoing edge of i.

3 Upwards routes

We now know that when A is the adjacency matrix of a 01-graph, then $\det(I - A) = 1$ if G is a forest and $\det(I - A) = 0$ if G has a cycle. One naturally wonders about the value of $\det(I - A)$ when A is an arbitrary adjacency matrix.

Definition 3.1. Given a graph *G* with an order on the vertices, we define (*strict*) *upwards loops* and (*strict*) *upwards routes*:

- An upwards loop at vertex i is a path from i to i that does not visit vertices lower than i.
- A *strictly upwards loop* at vertex *i* is a path from *i* to *i* that only visits vertices higher than *i* (except at the start/endpoint of the path, where it does visit *i* itself).
- A (strictly) upwards route is a choice of (strictly) upwards loop at each vertex.

Along the way, we shall obtain the following amusing result:

 $^{^{2}}$ We do not further expand $(e_{i}-e_{j})$ into two separate terms.

Theorem 3.1. The number of (strictly) upwards routes of k edges does not depend on the order of the vertices.

Recall Cramer's rule:

Theorem 3.2. (Cramer's rule) Let A be a matrix and let $A_{[i,j]}$ be the same with column i and row j deleted, then:

$$A_{ij}^{-1} = \frac{\det(A_{[i,j]})}{\det(A)}$$

From this, we get the following lemma that allows us to calculate $det(A)^{-1}$ in terms of entries of inverses of submatrices of A:

Lemma 3.3. *Given an invertible matrix A,*

$$\det(A)^{-1} = \prod_{i=0}^{n-1} (A_{[1\dots i, 1\dots i]})_{11}^{-1}$$

Where $A_{[1...i,1...i]}$ is the matrix A with the first i rows and columns deleted.

Proof. Cramer's rule implies:

$$\det(A)^{-1} = A_{1,1}^{-1} \cdot \det(A_{[1,1]})^{-1}$$

Continuing this by induction, we get:

$$\det(A)^{-1} = A_{1,1}^{-1} \cdot \det(A_{[1,1]})^{-1}$$

$$= A_{1,1}^{-1} \cdot (A_{[1,1]})_{11}^{-1} \cdot \det(A_{[1..2,1..2]})^{-1}$$

$$= \cdots$$

$$= A_{1,1}^{-1} \cdot (A_{[1,1]})_{11}^{-1} \cdot (A_{[1..2,1..2]})_{1,1}^{-1} \cdots (A_{[1..n-1,1..n-1]})_{1,1}^{-1} \cdot 1$$

We apply this lemma to the matrix I - xA, to obtain:

Lemma 3.4. The generating function of upwards routes with k edges is $\det(I - xA)^{-1}$.

Proof. Apply the preceding lemma:

$$\det(I - xA)^{-1} = \prod_{i=0}^{n-1} ((I - xA)_{[1...i,1...i]})_{11}^{-1}$$

Thus, for each i we first obtain a subgraph by deleting vertices with lower number than i, and then $((I-xA)_{[1...i,1...i]})_{11}^{-1}$ is the generating function of loops from vertex i to i in the resulting graph. Thus, in terms of the original graph, these are loops that do not visit vertices with lower number than i. Multiplying this over each vertex i in the original graph, we obtain the result.

Lemma 3.5. For an arbitrary adjacency matrix A,

$$\det(I - xA) = \prod_{i=1}^{n} (1 - f_i(x))$$

Where $f_i(x)$ is the generating function of strictly upwards loops at vertex i.

Proof. Use the previous lemma, and the fact that each upwards loop breaks apart into a sequence of strictly upwards loops. \Box

This is kind of interesting, because $\det(I - xA)$ is a polynomial, whereas $f_i(x)$ is a power series, so many terms cancel on the right hand side.

4 Kirchoff's theorem with cycles

Let G_A be a graph with adjacency matrix A and let G_L be a graph with Laplacian L. We shall generalize Kirchoff's theorem from $\det(I + L)$ to $\det(A + L)$. In order to do this we need to define 1-graphs.

Definition 4.1. A 1-graph is a directed graph where each vertex has exactly one outgoing edge.

Thus, at each vertex we can continue following a unique path indefinitely. In a finite graph that path must eventually cycle. So a general 1-graph looks like a bunch of disjoint cycles and a bunch of trees converging onto those cycles.

In our 1-graphs, some edges will be selected from G_A and some will be selected from G_L . We define the weight function:

$$w(F) = \begin{cases} \dots & \dots \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4.1. *Kirchoff's theorem with cycles.*

$$\det(A+L) = \sum_{1\text{-graph } F \subseteq (G_A+G_L)} w(F)$$

Proof. ... Main idea: generalize the lemma to account for cycles. Each time we Laplace expand a column with one entry (from G_A), which is now not necessarily in diagonal position, we obtain a sign.

Bunch of corollaries:

Corollary 4.1.1. det(*A*) is the number of signed cycle covers.

Corollary 4.1.2. det(I + L) is the number of spanning forests.

Corollary 4.1.3. $det(L_{[i,j]})$ spanning trees, for all i, j.

Corollary 4.1.4. All-minor matrix tree theorem.

Corollary 4.1.5. Undirected matrix tree theorem.