Deep learning of transformations

Roland Memisevic

University of Montreal, LISA lab

June 23, 2014

Beyond object recognition

Geometry, stereo, structure-from-motion, motion understanding, activity analysis, tracking, optic flow, odometry, modeling articulation, modeling object relations, detailed scene understanding, analogy making, ...

Beyond object recognition

Geometry, stereo, structure-from-motion, motion understanding, activity analysis, tracking, optic flow, odometry, modeling articulation, modeling object relations, detailed scene understanding, analogy making, ...

➤ To make progress with representation learning, it is necessary to represent **relations**.

SECONO EDITION

Schard Hartley and Andrew Zisserman

Some things are hard to infer from still images

(Ayvaci, Soatto 2012)

Random dot stereograms

Learning relations by concatenating two inputs?

▶ Problem: This would make unit x_i conditionally independent of unit y_i , given z.

Learning relations by concatenating two inputs?

- ▶ Solution: Put x_i and y_i in a single clique.
- ► This will require "transistor neurons" that can do more than the usual weighted summation $\mathbf{w}^{\mathrm{T}}\mathbf{x}$.

Mapping units

- ► (Hinton \approx 1980), (v.d. Malsburg \approx 1980)
- determine connection strength at run time
- blend in a sub-network dynamically
- route information (attention) (Olshausen 1994)
- closely related to motion energy models (Adelson, Bergen 1985)
- solve the binding problem (Smolensky 1990; Plate 1994)
- ightharpoonup compute logical ANDs (Zetzsche pprox 2000)
- add capacity within a single layer
- treat relations as first-class objects

$\mathbf{w}^{\mathrm{T}}\mathbf{x}$?

Some neuroscientists believe that we will need to look beyond weighted summation to understand the brain.

► Mel, 1994 Roland Memisevic

Relations as first-class objects

- If y is a transformed version of x, then y will be on a conditional manifold.
- ► This suggsets learning a model for y, while letting parameters be a function of x.

Bi-linear models

▶ Set
$$w_{jk}(\mathbf{x}) = \sum_i w_{ijk} x_i$$
:

$$z_k = h\left(\sum_j w_{jk}y_j\right) = h\left(\sum_j \left(\sum_i w_{ijk}x_i\right)y_j\right) = h\left(\sum_{ij} w_{ijk}x_iy_j\right)$$

Bi-linear models

► Similar for y:

$$y_j = \sum_k w_{jk} z_k = \sum_k \left(\sum_i w_{ijk} x_i \right) z_k = \sum_{ik} w_{ijk} x_i z_k$$

Learning

For learning optimize conditional cost such as

$$\sum_{i} (y_j - \sum_{ik} w_{ijk} x_i z_k(\boldsymbol{x}, \boldsymbol{y}))^2$$

► (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Gated boltzmann machine

$$E(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$

$$p(\mathbf{y}, \mathbf{z} | \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(E(\mathbf{x}, \mathbf{y}, \mathbf{z}))$$

$$Z(\mathbf{x}) = \sum_{\mathbf{y}, \mathbf{z}} \exp(E(\mathbf{x}, \mathbf{y}, \mathbf{z}))$$

$$p(z_k | \mathbf{x}, \mathbf{y}) = \operatorname{sigmoid}(\sum_{ij} W_{ijk} x_i y_j)$$

$$p(y_j | \mathbf{x}, \mathbf{z}) = \operatorname{sigmoid}(\sum_{ik} W_{ijk} x_i z_k)$$

► (Memisevic, Hinton; 2007)

Gated autoencoder

- ► Encoder and decoder weights become functions of *x*.
- ► Train with back-prop (Memisevic, 2008)

Parameter factorization

- Projecting onto filters first allows us to use fewer products. (Memisevic, Hinton 2010), (Taylor et al 2009)
- This is equivalent to factorizing the three-way parameter tensor.

Learning relational features

► There is no structure in these images so vanilla feature learning won't work.

Input filters from a factored gating model

Output filters from a factored gating model

Learned filters

Learned filters

Face filters (Susskind et al. 2011)

Analogy making (infer z, then compute y with new x clamped):

Applications of gating connections

- Activity recognition (Taylor et al., 2010), (Le, et al., 2011)
- ► Learning time series/MOCAP (Taylor et al., 2009)
- ► Learning depth cues, 3-D activity (SOTA) (Konda, 2013)
- ▶ Better generative models of images (Ranzato, et al., 2009)
- ► Invariance from video (Cadieu, Olshausen 2011), (Zou et al. 2012), (Memisevic, Exarchakis 2013)
- ► Simple analogy making (Memisevic, Hinton 2010), (Susskind, et al., 2011)

Some theoretical insights

(I) Orthogonal transformations decompose into 2-D rotations:

$$U^{\mathrm{T}}LU = egin{bmatrix} R_1 & & & & \ & \ddots & & \ & & R_k \end{bmatrix} \qquad R_i = egin{bmatrix} \cos(heta_i) & -\sin(heta_i) \ \sin(heta_i) & \cos(heta_i) \end{bmatrix}$$

• (Eigen-decomposition $L = UDU^{T}$ has complex eigenvalues of length 1)

(II) Commuting transformations share an eigen-basis:

► They differ only with respect to the rotation-angle they apply in their eigenspace.

(I)+(II)

Gating and square pooling

- ► (Adelson, Bergen 1985)
- ASSOM (Kohonen 1996)
- ► ISA (Hyvarinen 2000)
- PoT model (Welling et al. 2002)
- ► (Karklin Lewicki 2008)
- mcRBM (Ranzato et al. 2009)

▶ The activity for hidden unit *k*:

$$\sum_{f} W_{kf}^{z} (W_{.f}^{x^{\mathrm{T}}} \boldsymbol{x} + W_{.f}^{y^{\mathrm{T}}} \boldsymbol{y})^{2}$$

$$= \sum_{f} W_{kf}^{z} (2(W_{.f}^{x^{\mathrm{T}}} \boldsymbol{x})(W_{.f}^{y^{\mathrm{T}}} \boldsymbol{y}) + (W_{.f}^{x^{\mathrm{T}}} \boldsymbol{x})^{2} + (W_{.f}^{y^{\mathrm{T}}} \boldsymbol{y})^{2})$$

Square pooling via gating

Gating via square pooling via gating

Topographic filter maps

Directions

- Gating can solve different types of task with a single type of module.
- ➤ Use gating to get more mileage out of local learning rules?
- Gating tends to orthonormalize weights.
- ► → Gating units in deep networks?
- ► → Gating units in recurrent networks?