

MINICURS: INTRODUCCIÓ A LA INTEL·LIGÈNCIA ARTIFICIAL

APLICADA ALS SISTEMES COMPLEXOS

INTRODUCCIÓ AL DEEP LEARNING: CASOS PRÀCTICS EN VISIÓ PER COMPUTADOR

Professor: Dr. Eloi Puertas i Prats Facultat de Matemàtiques i Informàtica, UB

http://ubics.ub.edu http://ubics.ub.edu/AI_course

Institute of Complex Systems UNIVERSITAT DE BARCELONA

4 Març 2021

IA- Machine Learning - Deep Learning

- Sessió 1. Intel·ligència Artificial: Simula la "intel·ligència" o "patró de comportament" dels éssers humans o qualsevol altre ésser viu.
- Sessió 2. Machine Learning: Tècnica amb la qual una màquina pot "aprendre" gràcies a l'entrenament d'un model "matemàtic" basat en dades.
- Sessió 3. Deep Learning: Tècnica de ML "bioinspirada" en les xarxes neuronals del nostre cervell.

Les Neurones Artificial

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

• Bioinsipirades.

Primera Neurona: Perceptrons

(60-70, Minsky and Papert)

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

 El perceptró és un classificador lineal, és a dir, un algorisme que realitza prediccions basades en una funció d'activació lineal formada per una sèrie de coeficients o pesos. Pot classificar qualsevol conjunt d'entrada linealment separable

Model del Perceptró

$$out = f(z) = \left\{egin{array}{ll} 1 & ext{si} & \sum_{i=1}^n w_i x_i > heta \ 0 & ext{altrament} \end{array}
ight.$$

$$\theta$$
 -> bias

Primera Neurona: Perceptrons

(60-70, Minsky and Papert)

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Procediment d'aprenentatge de la xarxa a partir del conjunt d'entrenament:

- 1. S'inicialitzen els pesos w_i . Es prefixa θ .
- 2. Es calcula l'error de la sortida (valor esperat menys valor obtingut): E_i
- 3. Es fixen els nous pesos amb:

$$w_{i+1} = w_i + \alpha * x_i * E_i$$

 α -> Learning Rate

Model del Perceptró

$$out = f(z) = \left\{egin{array}{ll} 1 & ext{si} & \sum_{i=1}^n w_i x_i > heta \ 0 & ext{altrament} \end{array}
ight.$$

$$\theta$$
 -> bias

De l'hivern a la primavera de les xarxes neuronals

Historia del Deep Learning

- Problemes de les xarxes neuronals:
 - 1er Hivern (1969-1985). El llibre "perceptrons" de Minsky teoritzava que les xarxes neuronals només es podrien servir per classificadors lineals.

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Perceptró multicapa (MLP) (1985-1990)

- Capa d'entrada
- Capes ocultes
- Capa de sortida
- Completament connectada
- Funció d'activació no lineal com la sigmoïdal

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Perceptró multicapa (MLP) (1985-1990)

H1 Weights =
$$(1.0, -2.0, 2.0)$$

H2 Weights =
$$(2.0, 1.0, -4.0)$$

H3 Weights =
$$(1.0, -1.0, 0.0)$$

O1 Weights =
$$(-3.0, 1.0, -3.0)$$

O2 Weights =
$$(0.0, 1.0, 2.0)$$

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Perceptró multicapa (MLP) (1985-1990)

H1 Weights = (1.0, -2.0, 2.0) H2 Weights = (2.0, 1.0, -4.0) H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0) O2 Weights = (0.0, 1.0, 2.0)

0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 -

derivative of sigmoid

Inferencia: H1 = S(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = S(-1.9) = .13 H2 = S(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = S(3.1) = .96H3 = S(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = S(-0.4) = .40

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Perceptró multicapa (MLP) (1985-1990)

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

• Inferència: O1 = S(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = S(-.63) = .35 O1 = S(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = S(1.76) = .85

Perceptró multicapa (MLP) (1985-1990)

Institute of Complex Systems UNIVERSITAT DE BARCELONA

En forma matricial la inferència es pot calcular molt eficientment

Hidden Layer Weights

-2.0 2.0

Inputs

Hidden Layer Outputs

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Perceptró multicapa (MLP) (1985-1990)

Com ajustar els pesos de la xarxa per a que classifiqui segons les dades?

- Realitzar inferències sobre el conjunt d'entrenament
- Calcular l'error entre les prediccions i les etiquetes reals del conjunt d'entrenament
- Determinar la **contribució** de cada neurona a l'error
- Modificar els pesos de la xarxa neuronal per minimitzar l'error
- Repetir fins que l'error sigui prou petit o màxim d'iteracions.

Les contribucions d'errors es calculen mitjançant l'algoritme de **BACKPROPAGATION** i la minimització d'errors s'aconsegueix amb **Gradient Descent**

$$\begin{split} \frac{\partial E}{\partial w} &= I \cdot (O - T) \cdot O \cdot (1 - O) \\ \frac{\partial E}{\partial w} &= .13 \cdot (.35 - .9) \cdot .35 \cdot (1 - .35) \end{split}$$

 Es va poder provar que les MLP podien servir per a la resolució de problemes d'optimització

De l'hivern a la primavera del Deep Learning

Historia del Deep Learning

- Problemes de les xarxes neuronals:
 - 2on Hivern (1990-2006). Insuficient capacitat de computació. Dificultat per escalar en problemes com visió: overfitting i optimització amb molts mínims locals.
 - 2006 Hinton va "rebatejar" les xarxes neuronals en Deep Learning quan va aconseguir dur a la pràctica entrenar xarxes neuronals de vàries capes
 - Primavera del Deep Learning (2012—). L'avenç en tecnologia com les GPU's, datasets ben etiquetats a nivell mundial, noves funcions activacions, han permès crear xarxes neuronals de mides descomunals.

Institute of Complex Systems

UNIVERSITAT DE BARCELONA

Deep Learning Definició (wikipedia)

"L'aprenentatge profund és una classe d'algoritmes d'aprenentatge automàtic que utilitza diverses capes per extreure característiques de més alt nivell a partir de les dades".

Deep Learning vs Shallow Learning Institute of Complex Systems

UNIVERSITAT DE BARCELONA

Deep

- Una arquitectura profunda canvia l'espai pel temps (o l'amplada per la profunditat
- Les xarxes neuronals amb 1 capa oculta, classificadors com SVM o Arbres de decisió no són profunds
 - Perquè no existeix una jerarquia de característiques

Deep Learning a Visió per Computador

Problemes clàssics de Visió per computador

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Visió per computador: Adquirir, processar, analitzar i comprendre imatges del món real.

- Classificació en imatges: A partir d'una imatge d'entrada classificar-la en una o altra categoria
- Detecció d'objectes: A partir d'una imatge o vídeo detectar la presència d'un o varis objectes clau.
- Segmentació: A partir d'una imatge classificar cada pixel en una o altre categoria

Segmentació de paisatges

Detecció de cares

Deep Learning a Visió per Computador

Institute of Complex Systems UNIVERSITAT DE BARCELONA

Extracció de característiques

- Per a "comprendre" la imatge el nostre model ha de poder extreure les característiques clau dels objectes que volem identificar.
- En les imatges existeix molta coherència espacial. Els ulls estan sobre el nas, i el nas sobre la boca
- No existeix una forma bona i general d'extreure aquestes característiques "abstractes" a partir de píxels. Intervenen molts factors que fan variar el conjunt d'entrada: il·luminació, diferents colors, rotacions, ocultacions.
- Per fer-ho com més robust possible ens cal una aproximació "Profunda"

Deep Learning a Visió per Computador **Institute of Complex Systems**

Convolutional Neural Networks (CNN)

- La idea de les CNN és extreure característiques locals dels píxels d'entrada com poden ser contorns, vores, colors homogenis...
- Les primeres capes de CNN intenten reduir el nombre de paràmetres gràcies a aplicar filtres de correlació local i espacial sobre les dades d'entrada.

UNIVERSITAT DE BARCELONA

- Mínim 1 capa Convolucional
- 1 capa de mostreig (pooling)
- 1 capa densa tipus MLP (Fully-Connect).

Deep Learning a Visió per Computador Complex Systems

Capa Convolucional

- La primera capa sempre serà convolucional i n'hi haurà com a mínim una.
- Buscarà relacions espacials de la imatge i fer extracció de característiques.
- És on es farà la tasca computacional més gran, sent de gran utilitat les GPUS al ser càlcul matricial.
- Consisteix en filtres de mida nxn aplicats sobre la imatge d'entrada fent servir la operació de convolució
- Funció activació: RELU

Deep Learning a Visió per Computador

Institute of Complex Systems UNIVERSITAT DE BARCELONA

Capa de mostreig (pooling)

- La capa de mostreig te la finalitat
 - suavitzar l'entrada per tal de fer el sistema més robust a sorolls i variacions

 reduir el nombre de paràmetres i complexitat del sistema, evitant de retruc problemes d'overfitting.

La funció MaxPool en un entorn quadrat de salt n és el més comú

Deep Learning a Visió per Computador

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Capes denses

- Aquestes capes denses (fully-connected) són com les MLP vistes abans.
- S'apliquen després de les conv i max-polling, així el nombre de neurones d'entrada en la capa densa és menor que les entrades originals.
- La idea és que la capa densa aprengui a partir de les característiques extretes en les capes anteriors i no directament de les entrades.
- Funció activació: RELU

CNN de l'any 1998 de Yann Lecun per reconèixer 1 caràcter de 32x32 píxels:

Deep Learning a Visió per Computador Complex Systems UNIVERSITAT DE BARCELONA UNIVERSITAT DE BARCELONA

 A dia d'avui existeixen gran quantitat de bases de dades d'imatges etiquetades per dissenyar i entrenar CNN

- Yann Lecunn MNIST Handwritten Digits dataset
- ImageNet, 14M d'imatges 21K subcategories.
- Altres més petites STL-10, CIFAR-10, CIFAR-100
- Mèdiques: <u>ISIC</u>, <u>MURA</u>, <u>DermNet</u>...

Llibreries per fer DeepLearning

- DeepLearning Frameworks:
 - Keras: Llibreria alt nivell de NN en Python. Ideal per començar i aprendre DL.
 - Tensorflow (TF): Llibreria alt i baix nivell eficient utilitzada per a fer ML i NN. Ideal per portar projectes a Producció
 - Pytorch: Llibreria baix nivell de ML per python. Flexibilitat i debuging. Ideal per Recerca

Deep Learning a Visió per Computador Complex Systems Models i Xarxes pre-entrenades per classificació UNIVERSITAT DE BARCELONA

- També existeixen multitud de xarxes dissenyades i pre-entrenades que es poden usar com a capes d'una altra xarxa neuronal.
 - LeNet5 (LeCun et al.) Primera xarxa CNN.
 - VGG (Simonyan, Zisserman) Model Deep Learning petit.
 - GoogleNet (Google) Xarxa més eficient que VGG.
 - RestNet (Microsoft) Fa més tractables les xarxes més profundes.
 - MobileNet (Google) Pensada per se executat en mòbils

Execució de models en Deeplearning

- En màquina local amb GPU NVIDIA
 - Entorn basat en Anaconda, CUDA i DeepLearning Frameworks (bàsicament execució)
 - Contenidors Dockers per a NVIDIA (bàsicament execució)
- En màquina local amb acceleradors Neural Compute (execució)
- En clústers de GPU dedicats: (train i execució)
- En el núvol. Plataformes on poder executar models de DeepLearning utilitzant GPU's
 - AWS (train i execució)
 - Google Cloud. (train i execució)

Cursos DeepLearning Online

- https://course.fast.ai/
 - "Deep Learning for Coders with fastai and PyTorch: Al Applications Without a PhD"
- https://fullstackdeeplearning.com/spring2021
 - FullStack des del "Training" fins al "Deployment"

Llibres populars de DeepLearning

Institute of Complex Systems

UNIVERSITAT DE BARCELONA

- Deep Learning. Goodfellow, Bengio, and Courville's
 - Llibre acadèmic, amb detall de la teoria sobre DL.
- Deep Learning with Python. Francois Chollet
 - Desenvolupador de la llibreria Keras. Llibre amb aplicacions del DL fent servir Keras.
- Neural Networks and Deep Learning: A Textbook. Charu C. Aggarwal

Llibre de referència per a la xerrada_{Institute of Complex Systems}

UNIVERSITAT DE BARCELONA

El Poder de los datos: del big data al aprendizaje profundo.

Col·lecció: El mundo es matemático (National Geographic Society) RBA Coleccionables, 2017

Capítol 3: Deep Learning: aprendizaje profundo con grandes cantidades de datos.

- Eloi Puertas i Prats, Oriol Pujol Vila, Santi Seguí Mesquida, Jordi Vitrià i Marca
- ISBN (8447389405, 9788447389407)

Collab notebooks d'exemple

- Exemples de Deep Learning en google Collabs notebooks
 - Exemple Senzill de CNN usant Keras
 - Eemples d'ús de la llibreria Keras a keras.io
 - Altres exemples de visió per computador

Institute of Complex Systems
UNIVERSITAT DE BARCELONA

Moltes gràcies.

contacte: epuertas@ub.edu