

Data Sheet

EMW3162

Embedded Wi-Fi module

2.2 Date: 2013-08-11 Data Sheet

Overview

EMW3162 is a low-power embedded Wi-Fi module integrates a wireless LAN MAC/baseband /radio, and a Cortex-M3 microcontroller STM32F205 that runs a unique "self-hosted" Wi-Fi networking library and software application stack. EMW3162 has 1M bytes flash, 128k RAM and rich peripherals for your embedded Wi-Fi applications.

EMW3162 is also an mxchipWNet™ compatible platform, users can build their own embedded Wi-Fi applications based on mxchipWNet™ library which manage all of the Wi-Fi MAC and TCP/IP stack processing. We also provide several mxchipWNet™ firmware to meet typical applications: wireless UART, wireless audio, wireless sensor etc.

When using mxchipWNet™ -DTU firmware, you can establish Wi-Fi networking for any device with a micro-controller and a UART interface. Quick development cycles enables fast time to market.

EMW3162 and EMW3280 are pin compatible.

Applications

- Building Automation / Access Control
- Smart home appliances
- Medical/Health Care
- Industrial Automation Systems
- Point Of Sale system (POS)
- Auto electronics

Product list

Module	-		Antenna
EMW3162	-	Р	On-board PCB antenna
	-	E IPEX connector	

Firmware/Library	Function		
mxchipWNet TM -	Predefined firmware:		
DTU	UART/Wi-Fi conversion		
mxchip W Net™	Software library used to		
Library	develop custom firmware		
mxchipWNet TM	Software library based on		
Library Plus	RTOS		
WICED™ Firmware	WICED™ source codes		
	with TCP/IP, Wi-Fi MAC		
development kit	RTOS and GCC tool chain		

Hardware block

MXCHIP Co., Ltd

Contents

1	INTRODUCTION1	3.8.	Basic RF characteristics	11
_	1141 NODOC110141	3.8.2		
1.1	Features 1	3.8.3	· - · · · · · · · · · · · · · · · · ·	
		3.8.4	4 IEEE802.11n 20MHz bandwidth mode	13
		3.9	Mechanical Dimensions	15
2	INTERFACE3	3.9.	1 EMW3162 Mechanical Dimensions	15
2.1	Led3			
2.2	Pinouts3	4	ANTENNA INFORMATION	17
2.3	Pin Arrangement4	4.1	Minimizing radio interference	17
		4.2	U.F.L RF Connector	18
3	ELECTRICAL PARAMETERS6			
3.1	Absolute maximum ratings:6	5	OTHERS	19
3.1.1	Voltage & Current6	5.1	Recommended Reflow Profile	10
3.2	Operating conditions6			
3.2.1	Voltage & Current6	5.2	MSL/Storage Condition	19
3.3	Digital I/O port characteristics9			
3.3.1	, ,	6	SALES INFORMATION	20
3.3.2				0
3.3.3				
3.4	Other MCU electrical parameters10	_		
3.5	Temperature and Humidity10	7	TECHNICAL SUPPORT	20
3.6	ESD11			
3.7	Static latch-up11			
3.8	RF characteristics11			

1 Introduction

EMW3162 is a low-power embedded Wi-Fi module integrates a wireless LAN MAC/baseband /radio, and a Cortex-M3 microcontroller STM32F205 that runs a unique "self-hosted" Wi-Fi networking library and software application stack. EMW3162 has 1M bytes flash, 128k RAM and rich peripherals for your embedded Wi-Fi applications.

EMW3162 is also an **mxchipWNetTM** compatible platform, users can build their own embedded Wi-Fi applications based on **mxchipWNetTM** library which manage all of the Wi-Fi MAC and TCP/IP stack processing. We also provide several **mxchipWNetTM** firmware to meet typical applications: wireless UART, wireless audio, wireless sensor etc.

When using **mxchipWNetTM**-DTU firmware, you can establish Wi-Fi networking for any device with a micro-controller and a serial interface. Quick development cycles enables fast time to market.

EMW3162 and EMW3280 are pin compatible.

1.1 Features

- ★ Single operation voltage : 3.3V
- **★** Power consumption:
 - Only ~7mA while module is connected to access point and no data is transmitting, Only ~24mA while sending data under 20kbps,
 - Only 8µA under standby mode.
- ★ STM32F2 MCU frequency: 120MHz , flash size: 1M bytes , RAM size: 128k bytes.
- ★ On-chip functionality Single-chip: MAC/BB/RF
- ★ Peripherals :
 - 32 x GPIOs
 - 2 x UARTs , includes hardware flow control
 - 1 x SPI/I2S
 - 8 x ADC input channels , 2 DAC output channel
 - 1 x USB OTG, 2 x CAN
 - 1 x I2C
 - PWM/Timer input/output available on every GPIO pin
 - SWD debug interface

- ★ Wi-Fi connectivity
 - 802.11b, 802.11g, 802.11n (single stream) on channel 1-14@2.4GHz
 - WEP, WPA/WPA2 PSK/Enterprise
 - Transmit power: 18.5dBm@11b , 15.5dBm@11g , 14.5dBm@11n
 - MIN Receiver Sensitivity: -96 dBm
 - Max Data rate: 11Mbps@11b , 54Mbps@11g , 72Mbps@11n HT20
 - Wi-Fi modes : Station, Soft AP and Wi-Fi direct
 - Advanced 1x1 802.11n features

Full/Half Guard Interval

Frame Aggregation

Space Time Block Coding (STBC)

Low Density Parity Check (LDPC) Encoding

- Hardware Encryption: WEP, WPA/WPA2
- WPS 2.0, EasyLink
- Multiple power save modes
- On-board chip antenna, IPEX connector for external antenna
- CE , FCC compliant
- ★ Operating Temperature: -40°C to 85°C
- **★** MSL level 3

2 Interface

2.1 **Led**

Table 2.1 LED functions

Name	Color	GPIO
D1	Green	PB0
D2	Red	PB1

2.2 **Pinouts**

EMW3162 has two groups of pins (1X15 +1X15). The lead pitch is 2mm.

Pinout is shown in the Figure 2.1. Table 2.2 lists the pin functions.

Figure 2.1 EMW 3162: appearance and pinout

2.3 **Pin Arrangement**

Figure 2.2 EMW3162 pin arrangement

			J. 1	Main function	om arrangement	Other
Pins	Name	Type	IO level	(after reset)	Alternate functions	functions
				-	I2C1_SCL/ USART1_TX /	
1	PB6	I/O	FT	PB6	TIM4_CH1 / CAN2_TX	
					I2C1_SDA / USART1_RX/	_
2	PB7	I/O	FT	PB7	TIM4_CH2	
3	PA13	I/O	FT	SWDIO		
4					I2S3_MCK / TIM8_CH2/	
4	PC7	I/O	FT	PC7	TIM3_CH2 / USART6_RX	
5	PA3	I/O	FT	PA3	TIM5_CH4 / TIM9_CH2 /	ADC123_IN3
5	PAS	Ŋ	FI	PAS	TIM2_CH4 /	ADC125_IN5
6	PA4	1/0	TT	PA4	SPI1_NSS / SPI3_NSS /	ADC12_IN4 /
O	PA4	I/O	11	PA4	I2S3_WS	DAC1_OUT
				JTDO/	JTDO/ TRACESWO/	
7	PB3	I/O	FT	TRACESWO	1253 SCK / TIM2 CH2 /	
				TIVACESTVO	SPI1_SCK / SPI3_SCK/	
8	PB4	I/O	FT	NJTRST	NJTRST/ SPI3_MISO /	
	1 54	1,		North	TIM3_CH1 / SPI1_MISO/	
				011	I2C1_SMBA / TIM3_CH2 /	
9	PB5	I/O	FT	PB5	SPI1_MOSI/ SPI3_MOSI /	
					CAN2_RX	
10	PB8	I/O	FT	PB8	TIM4_CH3 / TIM10_CH1 /	
	_				I2C1_SCL / CAN1_RX	
11	PA1	I/O	FT	PA1	TIM5_CH2 / TIM2_CH2	ADC123_IN1
12	PC2	I/O	FT	PC2		ADC123_ IN12
13	PB14	I/O	FT	PB14	TIM1_CH2N / TIM12_CH1 /	
13	PD14	1)	ГІ	PD14	TIM8_CH2N/	
14	PC6	I/O	FT	PC6	TIM8_CH1 / TIM3_CH1 /	
14	100	1/0	ГІ	PCO	USART6_TX	
15	GND					
		- / -		DE 7	TIM3_CH4 / TIM8_CH3N/	15.010.77.10
16	PB1	I/O		PB1	TIM1_CH3N/	ADC12_IN9
17	nRESET					
18	PA15	I/O	FT	JTDI	JTDI/ SPI3_NSS/ I2S3_WS/	
10	1 (17)	1/0	1 1	7101	TIM2_CH1_ETR / SPI1_NSS	
19	PB11	I/O	FT	PB11	TIM2_CH4	
20	DA12	1/0	ГТ	DA12	USART1_RTS / CAN1_TX/	
20	PA12	I/O	FT	PA12	TIM1_ETR/ OTG_FS_DP	

Pins	Name	Туре	IO level	Main function (after reset)	Alternate functions	Other functions
					USART1_CTS / CAN1_RX /	
21	PA11	I/O	FT	PA11	TIM1_CH4 / OTG_FS_DM	
22	PA9	I/O	FT	PA9	USART1_TX/ TIM1_CH2	OTG_FS_VBUS
23	PA10	I/O	FT	PA10	USART1_RX/ TIM1_CH3/ OTG_FS_ID	
24	VCC					
25	GND					
26	NC					
27	воото	I		BOOT0		
28	PA14	I/O		JTCK- SWCLK	JTCK-SWCLK	
29	PA0- WKUP	I/O		PA0-WKUP	TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR	ADC123_IN0/ WKUP
30	PB9	I/O		PB9	TIM4_CH4/ TIM11_CH1 / I2C1_SDA / CAN1_TX	
31	PA5	I/O	TT	PA5	SPI1_SCK / TIM2_CH1_ETR/ TIM8_CHIN	ADC12_IN5 /DAC2_OUT
32	PA6	I/O	FT	PA6	SPI1_MISO / TIM8_BKIN/TIM13_CH1 / TIM3_CH1 / TIM1_BKIN	ADC12_IN6
33	PA8	I/O	FT	PA8	MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL	
34	PB15	I/O	FT	PB15	TIM1_CH3N / TIM8_CH3N / TIM12_CH2 /RTC_50Hz	
35	PC3	I/O	FT	PC3		ADC123_ IN13
36	PC4	I/O	FT	PC4		ADC12_IN14
37	NC					
38	NC					
39	GND	*				
40	GND					
41	GND					
42	GND					
43	GND					
44						

- 1. FT = 5 V tolerant; TT = 3.6 V tolerant.
- 2. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- 3. I = input, O = output, S = supply.
- 4. STM32 peripherals are not listed if they cannot be presented on current pins

3 Electrical Parameters

3.1 **Absolute maximum ratings:**

3.1.1 Voltage & Current

Stresses above the absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V_{DD} – V_{SS}	Voltage	-0.3	4.0	\
V _{IN}	Input voltage on five volt tolerant pin	V _{SS} -0.3	5.5	٧
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	V _{DD} +0.3	V

Symbol	Ratings	Max	Unit
I_{VDD}	Total current into VDD power lines (source)	320	mA
I_{VSS}	Total current out of VSS ground lines (sink)	320	
т.	Output current sunk by any I/O and control pin	25	
I_{IO}	Output current source by any I/O and control pin	-25	

3.2 **Operating conditions**

3.2.1 Voltage & Current

Symbol	Note	Conditions	Specification			
	Note	Conditions	Min.	Typical	Max.	Unit
V _{DD}	Voltage		2.4	3.3	3.5	V

WLAN Subsystem

Symbol	Note	Conditions	Typical	Unit
${ m I}_{\sf RF}$	OFF ¹		2	μΑ
${ m I}_{\sf RF}$	SLEEP ⁴		200	μΑ
${ m I}_{\sf RF}$	Rx(Listen) ²		52	mA
${ m I}_{\sf RF}$	Rx(Active) ³		59	mA
${ m I}_{\sf RF}$	Power Save ^{5 6}		1.9	mA
${ m I}_{\sf RF}$	Tx CCK ⁷ 10	11 Mbps at 18.5 dBm	320	mA
I_{RF}	Tx OFDM ⁸ 10	54 Mbps at 15.5 dBm	270	mA
I_{RF}	Tx OFDM ⁹ 10	65 Mbps at 14.5 dBm	260	mA

Note 1: Power is off.

Note 2: Carrier Sense (CCA) when no carrier present

Note 3: Carrier Sense (CS) detect/Packet Rx

Note 4: Intra-beacon Sleep

Note 5: Beacon Interval = 102.4ms, DTIM = 1, Beacon duration = 1 ms @1 Mbps.

Integrated Sleep + wakeup + Beacon Rx current over 1 DTIM interval.

Note 6: In WLAN power-saving mode, the following blocks are powered down: Crystal oscillator, Baseband PLL, AFE, RF PLL, Radio

Note 7: CCK power at chip port. Duty cycle is 100%. Includes PA contribution.

Note 8: OFDM power at chip port. Duty cycle is 100%. Includes PA contribution.

Note 9: OFDM power at chip port is 16 dBm, duty cycle is 100%, includes PA contribution.

Note 10: Absolute junction temperature limits maintained through active thermal monitoring and dynamic Tx duty cycle limiting.

Microcontroller Subsystem

Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM

C	Candidiana	£	Running Mode	Sleep Mode	11
Symbol	Conditions	f _{HCLK}	T _A =25°C	T _A =25°C	Unit
		120MHz	49	38	
		90MHz	38	30	
		60MHz	26	20	
	External clock all	30MHz	14	11	
	External clock, all peripherals enabled	25MHz	11	8	
	periprierais eriableu	16MHz	8	6	
		8MHz	5	3.6	
		4MHz	3	2.4	
T .		2MHz	2	1.9	m A
I _{MCU}		120MHz	21	8	mA
		90MHz	17	7	
		60MHz	12	5	
	External deals all	30MHz	7	3.5	
	External clock, all	25MHz	5	2.5	
	peripherals disabled	16MHz	4	2.1	
		8MHz	2.5	1.7	
		4MHz	2	1.5	
		2MHz	1.6	1.4	

Typical and maximum current consumptions in Stop mode

Cumb al	Downwater	Conditions	Тур	Max	Unit
Symbol	Parameter	Conditions	T _A =25°C	T _A =25°C	Onit
1	Supply current in Stop mode with	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.55	1.2	
	main regulator in Run mode	Flash in Deep power down mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.5	1.2	•
I _{MCU}	Supply current in Stop mode with	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.35	1.1	mA
	main regulator in Low Power mode	Flash in Deep power down mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.3	1.1	

Typical and maximum current consumptions in Standby mode

Comple of	Davameter	Candisiana	Тур	Unit
Symbol	Parameter	Conditions	T _A =25°C	Unit
	Complete and the second	Backup SRAM ON, low-speed oscillator and RTC ON	4.0	
-	Supply current	Backup SRAM OFF, low-speed oscillator and RTC ON	3.3	
I _{MCU}	in Standby	Backup SRAM ON, RTC OFF	3.0	μΑ
	mode	Backup SRAM OFF, RTC OFF	2.2	

Power consumption in typical operation modes³

Cumbal	Parameter	neter Conditions		Average	age Max	
Symbol	Parameter	Conditions	T _A =25°C	T _A =25°C	T _A =25°C	Unit
	_	No Wi-Fi data is transmitting ¹	2.8	7.2	73.5	mA
I	Total power consumption on EMW3162	Receive data in UDP mode, 20k bps¹	2.8	12	262	mA
I module		Send data in UDP mode, 20k bps ¹	3	24	280	mA
	module	RF off, MCU enter standby mode ²	4	6	8	μΑ
		Connecting to AP	52	74	320	mΑ

Note1: TA=25°C, MCU frequency=120MHz, with data processing running from Flash memory (ART accelerator enabled). Firmware process TCP/IP stack and IEEE 802.11 MAC every 250 milliseconds, enter stop mode when no task is pending.

RF subsystem is connected to an access point and run under power save mode in IEEE 802.11n@14.5 dBm Tx power. AP Beacon Interval = 102.4 ms, DTIM = 1.

Note2: Wi-Fi connection is disconnected.

Note3: These data may not be the same depend on different firmware functions.

3.3 **Digital I/O port characteristics**

3.3.1 Output voltage levels

Symbol	Note	Parameter	Conditions	Min.	Max.	Unit
V _{OL}		Output low level voltage	I _{IO} = +8 mA		0.4	V
V _{OH}	UART& IO	Output high level voltage	2.7 V < VDD < 3.6 V	V _{DD} -0.4		٧
V _{OL}	output voltage	Output low level voltage	I _{IO} = +20 mA		1.3	٧
V _{OH}		Output high level voltage	2.7 V < VDD < 3.6 V	V _{DD} -1.3		V

3.3.2 Output voltage levels

Symbol	Note	Parameter	Conditions	Min.	Max.	Unit
V_{IL}		Input low level voltage		-0.5	0.8	V
		Input high level voltage	TT: 1	2	VDD+0.5	V
V _{IH}	UART& IO input voltage	Input high level voltage (5V input tolerant)	TTL level	2	5.5	V
V_{IL}		Input low level voltage	CMOS level	-0.5	0.35VDD	V
V _{IH}		Input high level voltage			VDD+0.5	V

3.3.3 nRESET pin characteristics

The nRESET pin input driver uses CMOS technology. EMW3162 contains RC (resistance-capacitance) reset circuit which ensures the module reset accurately when it powers up. If you need to reset manually, just connect the external control signals to the reset pins directly, but the control signal should be Open Drain Mode.

Symbol	Item	Conditions	Min.	Typical	Max.	Unit
V _{IL(NRST)}	nRESET input low level		-0.5		0.8	V
$V_{\text{IH(NRST)}}$	nRESET input high level		2		VDD+0.5	
R_{PU}	Resistor for Pulling up	V _{IN} = VSS	7.5	8	8.3	kΩ
C_{PD}	Capacitor for charging and Resetting			100	1000	pF

3.4 Other MCU electrical parameters

Please refer to STM32F215RGT6 data sheet.

3.5 **Temperature and Humidity**

Symbol	Ratings	Max	Unit
T _{STG}	Storage temperature	-55 to +125	$^{\circ}$
T _A	Working temperature	-40 to +85	$^{\circ}$
Humidity	Non condensing, relative humidity	Max. 95%	

3.6 **ESD**

Absolute maximum ratings: The Electromagnetic Environment Electrostatic discharge

Symbol	Ratings	Conditions	Class	Max	Unit
V _{ESD} (HBM)	Electrostatic discharge voltage (human body model)	TA= +25 °C conforming to JESD22-A114	2	2000	<
V _{ESD} (CDM)	Electrostatic discharge voltage (charge device model)	TA = +25 °C conforming to JESD22-C101	II	500	

3.7 **Static latch-up**

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Class	Class
LU	Static latch-up class	TA= +105 °C conforming to JESD78A	II level A

3.8 **RF characteristics**

3.8.1 Basic RF characteristics

Item	Specification
Operating Frequency	2.412~2.484GHz
Wi-Fi Standard	802.11b/g/n(single stream n)
Modulation Type	11b: DBPSK, DQPSK,CCK for DSSS 11g: BPSK, QPSK, 16QAM, 64QAM for OFDM 11n: MCS0~7,OFDM *
Data Rates	11b:1, 2, 5.5 and 11Mbps 11g:6, 9, 12, 18, 24, 36, 48 and 54 Mbps 11n: MCS0~7, up to 72Mbps
Antenna type	One U.F.L connector for external antenna PCB printed ANT (Reserve)

3.8.2 **IEEE802.11b** mode

Item	Specification
Modulation Type	DSSS / CCK
Frequency range	2400MHz~2484MHz
Channel	CH1 to CH14
Data rate	1, 2, 5.5, 11Mbps

TX Characteristics	Min.	Typical	Max.	Unit		
Transmitter Output Power						
11bTarget Power		18.5		dBm		
Spectrum Mask @ target power						
fc +/-11MHz to +/-22MHz			-30	dBr		
fc > +/-22MHz		NO	-50	dBr		
Frequency Error	-20		+ 20	ppm		
Constellation Error(peak EVM)@ target power						
1~11Mbps		-17	-10			

RX Characteristics	Min.	Typical	Max.	Unit		
Minimum Input Level Sensitivity						
1Mbps (FER≦8%)		-97	-83	dBm		
2Mbps (FER≦8%)		-93	-80	dBm		
5.5Mbps (FER≦8%)		-91	-79	dBm		
11Mbps (FER≦8%)		-89	-76	dBm		
Maximum Input Level (FER≦8%)	-10			dBm		

3.8.3 **IEEE802.11g** mode

Item	Specification		
Modulation Type	OFDM		
Frequency range	2400MHz~2484MHz		
Channel	CH1 to CH14		
Data rate	6, 9, 12, 18, 24, 36, 48, 54Mbps		

TX Characteristics	Min.	Typical	Max.	Unit
Transmitter Output Power				

11gTarget Power		15.5		dBm	
Spectrum Mask @ target power					
fc +/-11MHz			-20	dBr	
fc +/-20MHz			-28	dBr	
fc > +/-30MHz			-40	dBr	
Frequency Error	-20		+ 20	ppm	
Constellation Error(peak EVM)@ targe	et power				
6Mbps			-5	dB	
9Mbps			-8	dB	
12Mbps			-10	dB	
18Mbps			-13	dB	
24Mbps		(-16	dB	
36Mbps			-19	dB	
48Mbps			-22	dB	
54Mbps		-30	-25	dB	
Transmit spectrum mask					
@ 11MHz			-20	dBr	
@ 20MHz			-28	dBr	
@ 30MHz	4)		-40	dBr	

RX Characteristics	Min.	Typical	Max.	Unit	
Minimum Input Level Sensitivity					
6Mbps (FER≦10%)		-90	-82	dBm	
9Mbps (FER≤10%)		-88	-87	dBm	
12Mbps (FER≦10%)		-86	-79	dBm	
18Mbps (FER≤10%)		-85	-77	dBm	
24Mbps (FER≤10%)		-82	-74	dBm	
36Mbps (FER≤10%)		-79	-70	dBm	
48Mbps (FER≦10%)		-75	-66	dBm	
54Mbps (FER≤10%)		-72	-65	dBm	
Maximum Input Level (FER≤10%)	-20			dBm	

3.8.4 IEEE802.11n 20MHz bandwidth mode

Item	Specification
Modulation Type	MIMO-OFDM

Channel	CH1 to CH14
Data rate	MCS0/1/2/3/4/5/6/7

TX Characteristics	Min.	Typical	Max.	Unit	
Transmitter Output Power					
11n HT20 Target Power		14.5		dBm	
Spectrum Mask @ target power	Spectrum Mask @ target power				
fc +/-11MHz			-20	dBr	
fc +/-20MHz			-28	dBr	
fc > +/-30MHz			-45	dBr	
Frequency Error	-25	-1.2	+ 25	ppm	
Constellation Error(peak EVM)@ targe	et power		0)		
MCS0			-5	dBm	
MCS1		OK	-10	dBm	
MCS2			-13	dBm	
MCS3	7.C		-16	dBm	
MCS4			-19	dBm	
MCS5			-22	dBm	
MCS6			-25	dBm	
MCS7		-32	-28	dBm	
Transmit spectrum mask					
@ 11MHz			-20	dBr	
@ 20MHz			-28	dBr	
@ 30MHz			-40	dBr	

RX Characteristics	Min.	Typical	Max.	Unit
Minimum Input Level Sensitivity				
MCS0 (FER≦10%)		-89	-82	dBm
MCS1 (FER≦10%)		-86	-79	dBm
MCS2 (FER≦10%)		-84	-77	dBm
MCS3 (FER≦10%)		-82	-74	dBm
MCS4 (FER≦10%)		-78	-70	dBm
MCS5 (FER≦10%)		-74	-66	dBm
MCS6 (FER≦10%)		-72	-65	dBm
MCS7 (FER≦10%)		-69	-64	dBm
Maximum Input Level (FER≤10%)	-20			dBm

3.9 **Mechanical Dimensions**

3.9.1 EMW3162 Mechanical Dimensions

Figure 3.1 EMW3162 top view(Metric units)

Figure 3.2 EMW3162 side view(Metric units)

Figure 3.3 EMW3162 bottom view(Metric units)

4 Antenna information

There is co-layout design (C35&C32) for antenna connection. Please order your module carefully. Users can also modify the capacitor position but MXCHIP would not take any responsibility for this behavior.

EMW3280-E load the capacitor C35 (10pF/0201), it means can use U.F.L RF connector for external antenna. If want to use on-board PCB printed antenna, just need load the capacitor from C35 to C32 (EMW3280-P).

In order to get the maximum performance, strongly suggest customer use external antenna connected with U.F.L RF connector.

4.1 Minimizing radio interference

When integrating the Wi-Fi module with on board PCB printed antenna, make sure the area around the antenna end the module protrudes at least 15mm from the mother board PCB and any metal enclosure. If this is not possible use the on board U.FL connector to route to an external antenna.

The area (6.5mmx17.3mm) under the antenna end of the module should be keep clear of metallic components, connectors, vias, traces and other materials that can interfere with the radio signal.

4.2 **U.F.L RF Connector**

This module use U.F.L type RF connector for external antenna connection.

5 Others

5.1 Recommended Reflow Profile

Reflow times <= 2times (Max.)

Temperature profile for evaluation of solder heat resistance of a component (at solder joint)

5.2 **MSL/Storage Condition**

6 Sales Information

If you need to buy this product, please call MXCHIP during the working hours. (Monday ~ Friday A.M.9:00~12:00; P.M. 1:00~6:00)

Telephone: +86-21-52655026 / 52655025

Address: Room 811, Tongpu Building, No.1220 Tongpu Road, Shanghai

Post Code: 200333

Email: sales@mxchip.com

7 Technical Support

If you need to get the latest information on this product or our other product information, you can visit: http://www.mxchip.com/

If you need to get technical support, please call us during the working hours:

ST ARM technical support

+86 (021)52655026-822 Email: support@mxchip.com

Wireless network technical support

+86 (021)58655026-812 Email: support@mxchip.com

Development tools technical support

+86 (021) 52655026-822 Email: support@mxchip.com