(Anti)centralizers

Let G be an associative algebra (for example, a geometric algebra). For any invertible element $a \in G$, define the (anti)commuting part of $b \in G$ as

$$\mathbf{Z}_a^{\pm}(b) \coloneqq \frac{1}{2} \big(b \pm aba^{-1} \big).$$

Lemma.

- 1. $ab = \pm ba \Longrightarrow b = \mathbf{Z}_a^{\pm}(b)$
- 2. $ab = \pm ba \iff b = \mathbf{Z}_a^{\pm}(b) \text{ if } a^2b = ba^2$

Proof. Assuming $ab = \pm ba$ then $Z_a^{\pm}(b) = \frac{1}{2}(b + baa^{-1}) = b$. Going the other way, $aZ_a^{\pm}(b) = \frac{1}{2}(ab \pm a^2ba^{-1}) = \pm \frac{1}{2}(\pm ab + ba) = \pm Z_a^{\pm}(b)a$, but only provided $a^2ba^{-1} = ba$.

From now on, assume the element a has a square a^2 which commutes with everything.

If a^2 is in the centre of G, define the (anti)centralizer of a given element $a \in G$ to be the vector space

$$\mathbf{Z}_a^{\pm}(G) \coloneqq \left\{ \mathbf{Z}_a^{\pm}(b) \mid b \in G \right\} = \left\{ b \in G \mid ab = \pm ba \right\}$$

of elements which (anti)commute with a.

Lemma. The maps $\mathbb{Z}_a^{\pm}: G \to \mathbb{Z}_a^{\pm}(G)$ are projections so that $G = \mathbb{Z}_a^{+}(G) \oplus \mathbb{Z}_a^{-}(G)$.

Proof. The maps $Z_a^{\pm}(b)$ are clearly linear in $b \in G$. They are idempotent since

$$\mathbf{Z}_{a}^{\pm}\left(\mathbf{Z}_{a}^{\pm}(b)\right) = \frac{1}{2}\left(\mathbf{Z}_{a}^{\pm}(b) \pm a\mathbf{Z}_{a}^{\pm}(b)a^{-1}\right) = \frac{1}{4}\left(b \pm 2aba^{-1} \pm a^{2}ba^{-2}\right) = \frac{1}{2}\left(b \pm aba^{-1}\right) = \mathbf{Z}_{a}^{\pm}(b)$$

and are hence projections. Finally, since $Z_a^+(b) + Z_a^-(b) = b$, any element is of the form $b = b^+ + b^-$ where $b^{\pm} \in Z_a^{\pm}(G)$.

Lemma. $G = \mathbb{Z}_a^+(G) \oplus \mathbb{Z}_a^-(G)$ forms a \mathbb{Z}_2 -grading: elements multiply under the geometric product according to the multiplication table:

$$\begin{array}{c|cccc} & Z_a^+(G) & Z_a^-(G) \\ \hline Z_a^+(G) & Z_a^+(G) & Z_a^-(G) \\ Z_a^-(G) & Z_a^-(G) & Z_a^+(G) \\ \end{array}$$

Proof. Let $b \in \mathbb{Z}_a^+(G)$ and $c \in \mathbb{Z}_a^\pm(G)$. Then $abc = bac = \pm bca$ so $bc \in \mathbb{Z}_a^\pm(G)$. This shows the first row/column of the table. Now if $b \in \mathbb{Z}_a^-(G)$ with c the same, we have $abc = -bac = \mp bca$ so $bc \in \mathbb{Z}_a^\mp(G)$. This completes the table.