سپهر مقیسه روح الله احمدزاده 9831103 9831001

پیش گزارش 11

كامپيوتر پايه

کامپیوتر پایه از دو بخش اصلی تشکیل شده: حافظه و پردازنده

نحوه کار کامپیوتر به این صورت است که دستور العمل های ذخیره شده در حافظه را میخواند و آنها را اجرا میکند.

پردازنده این دستور ها را طبق الگوریتم فون نیومن در 6 گام تکرار شونده انجام میدهد:

- 1: واكشى دستور العمل (instruction fetch)
- 2: رمز گشایی دستور العمل (instruction decode)
 - 3: خواندن عملگر ها (operands fetch)
 - 4: اجرا (execute)
 - 5: ذخیره نتیجه (result write back)
 - 6: رفتن به دستور بعد (تکرار از 1)

قبل از طراحی اجزای پردازنده نیاز داریم مجموعه دستورالعمل های مورد استفاده را داشته باشیم تا قالب دستور العمل ها را از روی آن بسازیم

یک نمونه از ISA (مجموعه دستورالعمل ها) میتواند جدول زیر باشد:

	Hex Code			
Symbol	/=0	/ = 1	Description	
AND	0xxx	8xxx	AND memory word to AC	
ADD	1xxx 9xxx		Add memory word to AC	
LDA	2xxx Axxx		Load AC from memory	
STA	3xxx	Bxxx	Store content of AC into memory	
BUN	4xxx		Branch unconditionally	
BSA	5xxx		Branch and save return address	
ISZ	6xxx	Exxx	Increment and skip if zero	
CLA	7800		Clear AC	
CLE	7400		Clear E	
CMA	7200		Complement AC	
CME	7100		Complement E	
CIR	7080		Circulate right AC and E	
CIL	7040		Circulate left AC and E	
INC	7020		Increment AC	
SPA	7010		Skip next instr. if AC is positive	
SNA	7008		Skip next instr. if AC is negative	
SZA	7004		Skip next instr. if AC is zero	
SZE	7002		Skip next instr. if E is zero	
HLT	7001		Halt computer	
INP	F800		Input character to AC	
OUT	F400		Output character from AC	
SKI	F200		Skip on input flag	
SKO	F100		Skip on output flag	
ION	F080		Interrupt on	
IOF	F040		Interrupt off	

دستورات بخش اول تک ادرسی هستند یعنی نیاز به یک OPERAND دارند دستورات بخش دوم ثباتی یا صفر ادرسی هتسند و در همان ثبات اتفاق می افتند دستورات بخش سوم برای دستگاه های ورودی و یا خروجی (۱/۵) هستند

برای اجرای الگوریتم فون نیومن در پردازنده نیاز به یک سری ثبات داریم تا چیزهایی مثل دستور العمل، آدرس حافظه، شماره ثبات، stack pointer 'program counter، نتیجه محاسبات و ... را

دو نوع ثبات در طراحی وجود دارد:

1- ثبات عام منظوره: ثبات هایی که برای راحتی انتقال داده ها وجود دارند و عمدتا در هنگام استفاده و ریختن داده ها از آن ها استفاده میکنیم تعداد آن در شروع طراحی مشخص میشود

2- ثبات خاص منظوره : که چند نوع مانند (AC ، PC ، AR ، IR و ...) داریم که بعدا به آنها میپردازیم و هر کدام یک وظیفه مشخص دارند و فقط برای آن منظور استفاده میشوند .

اندازه هر کدام از این ثبات ها با توجه به کاربرد آنها مشخص میشود

جدول زیر اندازه ثبات های خاص منظوره پردازنده ی کامپیوتری با حافظهی 16 * 4096 را نشان میدهد:

Register	Symbol	Number of bits	Function
Data register	DR	16	Holds memory operand
Address register	AR	12	Holds address for the memory
Accumulator	AC	16	Processor register
Instruction register	IR	16	Holds instruction code
Program counter	PC	12	Holds address of the instruction
Temporary register	TR	16	Holds temporary data
Input register	INPR	8	Carries input character
Output register	OUTR	8	Carries output character

دستور ها میتوانند عملیات یکسانی را در انواع مختلف آدرس دهی انجام دهند. انواع مختلف آدرس دهی:

1-حالت بلافصل: به اینصورت که دیتای مورد نظر را مستقیما از روی دستور میخوانیم 2-حالت ثباتی: در این حالت operand در ثبات ذخیره شده و با دادن شماره آن در دستور العمل به آن دسترسی پیدا میکنیم:

3-حالت ثباتي غير مستقيم:

در این حالت در ثبات ادرس خانه مورد نظر حافظه ثبت شده و با دادن ادرس خانه مورد نظر در دستور العمل میتوان به آن دسترسی پیدا کرد:

4-حالت ادرس دهی مستقیم:

در این حالت ادرس خانه حافظه در دستور العمل است:

5-حالت آدرس دهی غیر مستقیم:

در این حالت نیز ادرس یک خانه حافظه در دستورالعمل است ولی آن خانه خود پوینتر به یک خانه دیگر در حافظه است که مقدار مدنظر را دارد:

6-حالت جایگذار<u>ی:</u>

در این حالت دستور العمل دارای یک ادرس ثبات و یک ادرس ثابت است که و هربار با ادرس ثبت شده در یکی از خانه های ثبات جمع میشود و به یک خانه حافظه اشاره میکند:

*حالت های دیگر نیز از همین حالت ها الگو میگیرند

:Address bus

قسمتی است که تمام component های پردازنده را به هم وصل میکند و امکان انتقال داده را از خانهای در حافظه و یک ثبات به خانه ای دیگر و ثباتی دیگر فراهم میکند.

نکته ای که در استفاده از Bus باید به آن توجه داشت این است که هیچگاه نباید چندین داده همزمان روی آن ریخته شود. و باید با استفاده از پایه های load دقت کنیم که در هر زمانی داده ی روی Bus در کدام قسمت پردازنده ریخته شود.

شکل زیر شمایی کلی از مسیر داده و common bus را نشان میدهد:

COMMON BUS SYSTEM

