### MatPlotLib und Seaborn

MatPlotLib ausgezeichnetes Visualisierungsmodul in Python. Seaborn ist eine auf Statistik spezialisierte Erweiterung von MatPlotLib.

#### **Imports**

Zusammen mit MatPlotLib und Seaborn werden häufig NumPy und Pandas zur Datenbearbeitung vor der Visualisierung verwendet.

import matplotlib.pyplot as plt import seaborn as sns

import numpy as np import pandas as pd

#### **Datenvorbereitung**

x = np.linspace(0, 5, 50)

y = np.cos(x)z = np.sin(x)

a, b = np.mgrid[-1:1:50j, -1:1:50j]

 $data = pd.DataFrame({'x': np.arange(-10,40)},$ 'y': np.random.normal(-1,3,50)})

img = plt.imread("bild.jpg")

#### Figure erzeugen

fig ist eine darzustellende Graphik Figure, die mindestens eine Instanz von **Axes** (Achsen) enthält.

fig, axes = plt.subplots()

Mehrere **Axes** sind indizierbar mit [Zeile, Spalte]:

fig, four axes = plt.subplots(nrows=2,ncols=2)

#### Layout

axes.margins(x=0.9,y=0.9)Padding Gleiches axes.axis('equal') Seitenverhältnis Achsen axes.set( xlim=[-1,8.6],ylim=[begrenzen 2.5,1]) Plot und Achsen axes.set(title='Name', ylabel='Y', xlabel='X') beschriften axes.legend(loc='best') Legende erzeugen axes.xaxis.set( Manuelle ticks=range(2,10), Marker ticklabels=['test',6.1,-2,1]) Marker axes.tick\_params( axis='y', direction='inout' Layout length=15) Achsenabstände

fig.subplots\_adjust( wspace=0.3, hspace=0.2, left=0.4, right=0.4,

top=0.9, bottom=0.2)

Achsen zu **Figure** fig.tight\_layout() skalieren axes.spines['bottom'] \ Unsichtbare .set visible(False) Achsenbegrenzung axes.spines['top'].set \ Achsenbegrenzung verschieben \_position(('outward',5))

### Matplotlib Plotting

### Plottingvarianten



Linie axes.plot(x,y)



Scatterplot axes.scatter(x,y)



Vertikale Balken axes.bar(4,0,3], [1,6,5])



Horizontale Balken axes.barh(4,0,3], [1,6,5])



Horizontale Linie axes.axhline(0.35)



Vertikale Linie axes.avhline(0.69)



Fülle als Polygon axes.fill(x, y)



Fülle zu **y** axes.fill\_between(x,y,color='yellow')



Trendpfeil an der Position axes.arrow(0,0,0.5,0.7)



Pfeile entlang Daten axes.quiver(y,z)



Boxplot



axes.boxplot(y)



Histogramm axes.hist(y, color="b")



Violinplot axes.violinplot(z)

# Linientyp



plt.setp(lines,color='g',linewidth=25) axes.plot(x,y)



axes.plot(x,y,ls='-')



axes.plot(x,y,'-',x\*\*2,y\*\*2,'-.')

#### **Annotierung**

axes.text(1, 0.6, 'Beispiel', style='italic') axes.annotate("Wichtig", textcoords='data', xy=(2, -0.5), xycoords='data', xytext=(0, -0.5),arrowprops=dict(arrowstyle=->") plt.suptitle(r'\$min\_y=1\$', fontsize=20,)

### Seaborn

#### **Datensätze**

Seaborn beinhaltet Beispielsdatenstze, unter anderem titanic = sns.load\_dataset("titanic") iris = sns.load\_dataset("iris")

Dunkler

Hintergrund

Markergrösse

Layoutklasse,

Schriftgrösse

Linien- und

Farbpalette

mit Anzahl

Farben

Eigene

Palette

#### **Darstellung**

sns.set\_style("darkgrid") sns.set style("ticks", {"xtick.major.size": 10, "ytick.major.size": 4}) sns.set\_context("talk", font scale=1.3

rc={"lines.linewidth":2.8}) sns.set\_palette("pastel",2)

palette = ["#aaaaaa", "#bbbbbb"] sns.set\_palette(palette)

### Achsenraster



Achsenraster p = sns.FacetGrid(titanic, col="survived", row="sex")



Ein Subplot pro Kategorie p.map(plt.hist,"age")



Alle Kategorien in einem Plot sns.factorplot(x="pclass", data=titanic)



Scatterplot mit Regression sns.lmplot(x="sepal\_width", y="sepal\_length", hue="species", data=iris)



Paarweise Abhängigkeiten t = sns.PairGrid(iris) t = t.map(plt.scatter)



Paarweise bivariate Verteilungen sns.pairplot(iris)



Bivariater Plot mit univariatem Rand v = sns.JointGrid(x="x", y="y",data=data) v = v.plot(sns.regplot, sns.distplot)



Bivariate Verteilung sns.jointplot("sepal\_length", "sepal\_width", data=iris, kind='resid')

### Weiteres

### Kategorieplots



Barplot mit Konfidenzintervall sns.barplot(x="sex", y="survived", hue="class", data=titanic)

www.datamics.com



Anzahl Datenpunkte sns.countplot(data=titanic, x="pclass", palette="Reds d")



Punktplot mitKonfidenzintervall sns.pointplot(x="class", y="survived", hue="sex" data=titanic)



Boxplot mitKonfidenzintervall sns.boxplot(x="alive", y="age", hue="adult male", data=titanic)



sns.stripplot(x="species", y="petal\_length", data=iris)

Scatterplot



Scatterplot ohne Überlapp sns.swarmplot(x="species", y="petal\_length", data=iris)



Violinenplot sns.violinplot(x="age", y="sex", hue="survived", data=titanic)

#### **Weitere Plots**



Univariate Verteilung plot = sns.distplot(data.y, ) kde=False)



Regressionsplot sns.regplot(x="sepal\_width", y="sepal\_length", data=iris, ax=axes[0,0]

### Anzeigen

plt.show() Speichern

## plt.savefig('name.png')

# Schließen

Achsen schließen plt.cla() plt.clf() Figure schließen Plot schließen plt.close()

