Corso di Laurea in Fisica Laboratorio di Meccanica e Termodinamica – prova scritta

8 giugno 2022

Tempo per lo svolgimento: 90 minuti

Problema 1 (10 punti)

Si misura indirettamente la grandezza z in base alla formula:

$$z = \frac{1}{x} \left[\frac{y}{\sin{(ax)}e^{-bx}} \right]$$

dove a=0.21 rad/s e b=0.1 s⁻¹ sono parametri conosciuti con incertezza trascurabile. La misura di x fornisce $x=(5.0\pm0.1)$ s, dove Δx è una incertezza massima. Indicando con Δy l'incertezza massima su y, qual è il valore più grande di $\Delta y/y$ che rende l'errore relativo su z non superiore al 5% ?

Problema 2 (7 punti)

Una scatola contiene 10000 palline bianche e 2000 palline gialle. Le masse delle palline bianche sono distribuite normalmente con media $m_B=10.0\,$ g e deviazione standard $\sigma_B=0.8\,$ g. Le masse delle palline gialle sono distribuite normalmente con media $m_G=11.3\,$ g. Il numero atteso di palline (bianche più gialle) nell'intervallo $11.0\,$ g < m < $11.6\,$ g è n = 2193.4. Qual è il numero atteso di palline gialle che hanno massa maggiore di $12\,$ g ?

Problema 3 (7 punti)

Utilizzando un opportuno sistema ottico di misura si conta il numero di sferette micrometriche distribuite casualmente e indipendentemente su una grande superficie. In media, si misurano 576 sferette al centimetro quadro.

- 1) Qual è l'area massima di osservazione per la quale P(k=0) è maggiore dell'1% ? Il simbolo k indica il numero di sferette presenti all'interno dell'area.
- 2) Qual è la probabilità P(k>2) in corrispondenza dell'area massima determinata nella soluzione al punto 1)?