九州大学大学院数理学府 平成20年度修士課程入学試験 数学専門科目問題(数学コース)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から 2 題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.

[1]

- (I) 次の命題が正しければ証明し、間違っているならば反例をあたえなさい.
 - (1) 群 G の指数 2 の部分群は正規部分群である.
 - (2) N を群 G の正規部分群とする. もし剰余群 G/N が巡回群であれば, G は可換群である.
 - (3) 群 G の 2 つの元 a, b に対して $a^2 = b^2 = (ab)^2 = e$ が成り立つならば, a と b は可換である. ただし e は単位元とする.

$(II) G \varepsilon$

$$\sigma = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \xi \quad \tau = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

により行列の積で生成される群として、次の問に答えなさい.

- (1) G の位数を求めなさい.
- (2) G の位数 8 の元をすべて求めなさい.
- (3) G の位数 8 の部分群をすべて求めなさい.
- (4) 6 次対称群 S_6 の部分群で G と同型なものが存在するかどうか判定しなさい.

- [2] 可換環 R の 2 つのイデアル I, J が互いに素であるとは, I+J=R が成り立つことを意味する. I_1,I_2,\cdots,I_n は R のイデアルであり, どの 2 つも互いに素であるとする.
 - (1) 任意の i (\in {1,...,n}) に対し, I_i と $\bigcap_{\substack{i \neq i \ j \neq i}} I_j$ は互いに素であることを示せ.
 - (2) R の任意の n 個の元 a_1, \dots, a_n に対し,

$$a \equiv a_i \mod I_i \ (i = 1, ..., n)$$

をみたす R の元 a が存在することを示せ.

(3) 環同型

$$R/\left(\bigcap_{1\leq i\leq n}I_{i}\right)\cong (R/I_{1})\oplus (R/I_{2})\oplus \cdots \oplus (R/I_{n})$$

が成立することを示せ.

- (4) ガウスの整数環 $\mathbb{Z}[\sqrt{-1}]$ のイデアル (15) による剰余環 $\mathbb{Z}[\sqrt{-1}]/(15)$ において単元の個数を求めよ.
- [3] p を素数とする. また, F を標数 p の体とする.
 - (1) $\varphi: x \in F \mapsto x^p \in F$ は F の単射自己準同型であることを示せ. さらに F が有限体ならば, φ は F の自己同型であることを示せ.
 - (2) E を多項式 $f(X) = X^p X a \in F[X]$ の最小分解体とする. f(X) の任意の根 $\alpha \in E$ に対して, $F(\alpha)$ は E に一致することを示せ.
 - (3) (2) の f(X) が F[X] で可約ならば f(X) は F 上で一次式の積に分解することを示せ.
 - (4) $X^p X 1$ は $\mathbb{Q}[X]$ の元として既約であることを示せ.

- [4] 2 次実正方行列全体のなす集合 $M(2;\mathbb{R})$ を、その要素 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2;\mathbb{R})$ と $(a,b,c,d) \in \mathbb{R}^4$ を同一視することにより、ユークリッド空間とみなす.
 - (1) 一般線形群

$$GL(2;\mathbb{R}) = \{g \in M(2;\mathbb{R}); \det g \neq 0\}$$

は $M(2;\mathbb{R})$ の部分多様体であることを示しなさい.

(2) 2 次実対称行列全体のなす集合を $S(2;\mathbb{R})$ とおく:

$$S(2; \mathbb{R}) = \left\{ X \in M(2; \mathbb{R}); \, {}^{t}X = X \right\}$$

また, I を単位行列とし, 写像 $\phi: M(2;\mathbb{R}) \to S(2;\mathbb{R})$ を $\phi(g) = {}^t gg - I$ と定義する. このとき, $\phi(g)$ の微分写像 $D\phi_g(X)$ $(X \in M(2;\mathbb{R}))$ は

$$D\phi_q(X) = {}^t Xg + {}^t gX$$

と表せることを示しなさい.

(3) 直交群

$$O(2) = \{g \in M(2; \mathbb{R}); {}^{t}gg = I\}$$

が $M(2;\mathbb{R})$ の部分多様体であることを示しなさい.

- [5] Δ を 3-単体とし、その 4 つの頂点を v_0, v_1, v_2, v_3 とする. 2 つの頂点 v_i, v_j を端点とする Δ の辺を $[v_i \ v_j]$ と表し、 $\partial \Delta$ を Δ の境界とする.
 - (1) $\partial \Delta$ の 4 つの頂点を同一視することにより得られる位相空間を X とする. このとき, X の整係数ホモロジー群を計算しなさい.
 - (2) さらに X から 3 つの辺 $[v_1 \ v_2], [v_2 \ v_3], [v_3 \ v_1]$ を, この向きに貼り合わせることにより得られる位相空間を Y とする. このとき, Y の整係数ホモロジー群を計算しなさい.

[6] \mathbb{R}^{\times} を 0 でない実数全体のなす乗法群とする. $n \geq 2$ とし, n 次元実ベクトル空間 \mathbb{R}^n から零ベクトル 0 を除いて得られる空間 $\mathbb{R}^n \setminus \{\mathbf{0}\}$ への \mathbb{R}^{\times} の作用を

$$y \cdot (x_1, \dots, x_n) = (yx_1, \dots, yx_n), \quad (y \in \mathbb{R}^\times, (x_1, \dots, x_n) \in \mathbb{R}^n \setminus \{\mathbf{0}\})$$

と定義する. この作用の定める同値関係による商空間 $X_n = (\mathbb{R}^n \setminus \{\mathbf{0}\})/\mathbb{R}^\times$ を考えるとき、以下の各間に答えなさい.

- (1) X_n がコンパクト空間となることを示しなさい.
- (2) X_2 が円周 S^1 と同相となることを示しなさい.
- (3) $(x_1, \dots, x_n) \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ を $(x_1, \dots, x_n, 0) \in \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ と同一視することにより、 $X_n \subseteq X_{n+1}$ と見なす.このとき、 $X_{n+1} \setminus X_n$ は \mathbb{R}^n と同相であることを示しなさい.

[7] 複素平面から負の実数および 0 を除いて得られる開集合を $D = \mathbb{C} \setminus (-\infty, 0]$ とする. 積分路 $C(1 \to z)$ を以下の図のようにとり, D 上の関数 f(z) を

$$f(z) = \int_{C(1 \to z)} \frac{dw}{w}$$

と定義する.

すなわち, 積分路 $C(1\to z)$ は, $z=\rho\,e^{i\phi}\in D$ $(\rho>0$ かつ $-\pi<\phi<\pi)$ とするとき, まず 1 から実軸に沿って ρ まで行き, 次に半径 ρ の円周に沿って角 ϕ の回転で z まで行く道である.

- (1) f(z) の実部, 虚部を計算せよ.
- (2) f(z) は D 上の正則関数であることを証明し、その導関数を計算せよ.

- [8] I = [0,1] 上のルベーグ測度を考える.
 - (1) I 上の実数値関数 f(x) が可測関数であるということの定義を書け.
 - (2) q を 0 < q < 1 をみたす実数とする. I 上の関数 $f_q(x)$ を, $f_q(0) = 1$ および

$$q^{n+1} < x \le q^n$$
 $\mathcal{O} \succeq \stackrel{*}{=} f_q(x) = \frac{1}{1+q^n}$ $(n = 0, 1, 2, \ldots)$

により定義する. 各 q に対して $f_q(x)$ が可測関数であることを, (1) の定義に基づき示せ.

- (3) 任意の $x \in [0,1]$ に対して $\lim_{q \to 1-0} f_q(x) = \frac{1}{1+x}$ であることを示せ.
- (4) $\lim_{q \to 1-0} \sum_{n=0}^{\infty} \frac{q^n q^{n+1}}{1 + q^n}$ を求めよ.
- [9] 実数値関数 y(x) に対する常微分方程式

$$\frac{d^2y}{dx^2}(x) = x^2 y(x)$$

の解で、初期条件

$$y(0) = 1, \qquad \frac{dy}{dx}(0) = 0$$

をみたすものを考えよう.

(1) 解 y(x) を、形式的ベキ級数の形で求めよ、すなわち

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

と書けることを仮定して、係数 a_n を求めよ.

- (2) このべキ級数解の収束半径を求めよ.
- (3) $x\to\infty$ での y(x) の様子を調べよう. x が非常に大きければ y(x) が

$$y(x) = x^{\gamma} e^{\alpha x^{\beta}} \left(c_0 + \frac{c_1}{x} + \frac{c_2}{x^2} + \cdots \right) \quad (c_0 \neq 0)$$

と書けると仮定して, α と β の値を定めよ.