

MI MD User Manual

V1.4

© 2017 MStar Semiconductor, Inc. All rights reserved.

Mstar Semiconductor makes no representations or warranties including, for example but not limited to, warranties of merchantability, fitness for a particular purpose, infringement of any intellectual property right or the accuracy or completeness of this document, and reserves the right to make changes without further notice to any products herein to improve reliability, function or design. No responsibility is assumed by Mstar Semiconductor arising out of the application or user of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Mstar is a trademark of Mstar Semiconductor, Inc. Other trademarks or names herein are only for identification purposes only and owned by their respective owners.

REVISION HISTORY

Revision No.	Description	Date
1.0	Created.	03/22/2017
1.1	Return value integration.	04/27/2017
1.2	Add recommendation for width of region/window	06/07/2017
1.3	Modify the return value error of MI_MD_GetWindowParamsInIncrease the number of divisions of window	07/20/2017
1.4	Add MI_MD_ComputeImageSAD API	09/15/2017

TABLE OF CONTENTS

RE	VISIC	ON HISTORY	ji
TA	BLE O	F CONTENTS	iii
1.	INT	RODUCTION	1
	1.1.	Purpose	1
2.	API	REFERENCE	2
	2.1.	API Overview	2
	2.2.	API Lists	3
		MI_MD_Init	3
		MI_MD_Uninit	3
		MI_MD_Run	4
		MI_MD_SetRegionInfo	4
		MI MD SetDetectWindow	
		MI MD GetDetectWindowSize	
		MI MD SetWindowParamsIn	
		 MI_MD_GetWindowParamsIn	
		 MI_MD_GetWindowParamsOut	
		MI MD SetTime	8
		 MI_MD_GetYMean	
		 MI_MD_GetLibVersion	10
		MI MD ComputeImageSAD	
3.	DAT	A TYPE	
		Overview	
	3.2.	Struct Lists	
	0	MDParamsIn_t	
		MDParamsOut t	
		MDBlockInfo_t	
		MDSAD_MODE_e	
		MDSAD_OUT_CTRL_e	
		MDSAD ctrl t	
		MI_RET	
4.	мот	ION DETECTION FLOW	
 -	_	MDI E	

1. INTRODUCTION

1.1. Purpose

Motion detection is a function used for detecting moving objects in the scene captured by video camera. The applications for this function are, for example, security monitoring, or motion-trigger recording to save storage space.

2. API REFERENCE

2.1. API Overview

- MI MD Init: Initialize MD library.
- MI MD Uninit: Release memory of library.
- MI MD Run: Run MD library.
- MI MD SetRegionInfo: Set parameters for independent region motion detection.
- MI MD SetDetectWindow: Set motion detection window position.
- MI MD GetDetectWindowSize: Get motion detection window position.
- MI MD SetWindowParamsIn: Set parameters for certain motion detection sub-window.
- MI MD GetWindowParamsIn: Get parameters for certain motion detection sub-window.
- MI MD GetWindowParamsOut: Get result for certain motion detection sub-window.
- MI MD SetTime: Set the time difference between current function call of MI MD Run and previous function call of MI MD Run.
- MI MD GetYMean: Get the average value of the gray image.
- MI MD GetLibVersion: Gets the version number of the library.
- MI MD ComputeImageSAD: Gets the SAD statistics.

2.2. API Lists

MI_MD_Init

Purpose

Initialize MD library.

Function Prototype

MD_HANDLE MI_MD_Init(U16 width, U16 height, U8 color, U8 w_div, U8 h_div);

Arguments

Name	Description
width	Width of source image.
height	Height of source image.
color	channel of source image.
w_div	The number of divisions of window in horizontal direction.
h_div	The number of divisions of window in vertical direction.

Return value

Return value	Description
MD_HANDLE	Handle

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

- ➤ If use Y only for YUV image, please input 1 to "color" argument. (Currently only support Y only.)
- ➤ Enter low resolution to avoid high CPU usage, the recommended value is 320X180.

MI_MD_Uninit

<u>Purpose</u>

Release memory of library.

Function Prototype

void MI_MD_Uninit(MD_HANDLE handle);

Arguments

Name	Description
handle	Handle

Return value

None.

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_Run

Purpose

Run MD library.

Function Prototype

S32 MI_MD_Run(const U8* pImage);

Arguments

Name	Description
pImage	Preview buffer address.

Return value

Return value	Description
-1	Fail
other	total block numbers classified as
	motion.

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

> Run at low frame rate to avoid high CPU usage, the recommended value is 3~5.

MI_MD_SetRegionInfo

Purpose

Set parameters for independent region motion detection.

Function Prototype

MI_RET MI_MD_SetRegionInfo(U8 num, MDBlockInfo t* blk_info);

Arguments

Name	Description
num	Number of independent regions.
blk_info	The structure of MDBlockInfo t.

Return value

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INVALID_PARAMETER	Parameters error

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.sos

Note

- > num: Number of regions, must be 2~64.
- > It's allow regions overlap.
- ➤ Width of region being divisible by 8 is recommended for better performance.
- MI MD SetRegionInfo and MI MD SetDetectWindow can not use at the same time, can only choose one.

MI_MD_SetDetectWindow

Purpose

Set motion detection window position.

Function Prototype

MI_RET MI_MD_SetDetectWindow(U16 lt_x, U16 lt_y, U16 rb_x, U16 rb_y, U8 w_div, U8 h_div);

Arguments

Name	Description
lt_x	Horizontal position of window left-top point.
lt_y	Vertical position of window left-top point.
rb_x	Horizontal position of window right-bottom point.
rb_y	Vertical position of window right-bottom point.
w_div	The number of divisions of window in horizontal direction.
h_div	The number of divisions of window in vertical direction.

Return value

Return value	Description
--------------	-------------

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INIT_ERROR	Initialization failed
MI_MD_RET_MALLOC_ERROR	Memory configuration error
MI_MD_RET_REGION_INIT_ERROR	Multiple region initialization failed

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

- w_div must smaller than 44, h_div must smaller than 36.
- > Width of devided window being divisible by 8 is recommended for better performance.
- ➤ It is recommended that each detection window should not be less than 8 * 8 after segmentation, but it is not recommended to set too small.
- > MI MD SetRegionInfo and MI MD SetDetectWindow can not use at the same time, can only choose one.

MI_MD_GetDetectWindowSize

Purpose

Get motion detection window position.

Function Prototype

MI_RET MI_MD_GetDetectWindowSize(U16* st_x, U16* st_y, U16* div_w, U16* div_h);

Arguments

Name	Description
st_x	Horizontal position of window left-top point.
st_y	Vertical position of window left-top point.
div_w	Horizontal pixels of each sub-window.
div_h	Vertical pixels of each sub-window.

Return value

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INVALID_PARAMETER	Parameters error
MI_MD_RET_REGION_INIT_ERROR	Multiple region initialization failed

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_SetWindowParamsIn

Purpose

Set parameters for certain motion detection sub-window.

Function Prototype

MI_RET MI_MD_SetWindowParamsIn(U8 w_num, U8 h_num, const_MDParamsIn t* param);

Arguments

Name	Description
w_num	Horizontal index of sub-window.
h_num	Vertical index of sub-window.
param	The structure of MDParamsIn t.

Return value

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INVALID_PARAMETER	Parameters error
MI_MD_RET_REGION_INIT_ERROR	Multiple region initialization failed

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_GetWindowParamsIn

Purpose

Get parameters for certain motion detection sub-window.

Function Prototype

MI_RET MI_MD_GetWindowParamsIn(U8 w_num, U8 h_num, MDParamsIn t* param);

Arguments

Name	Description
w_num	Horizontal index of sub-window.
h_num	Vertical index of sub-window.
param	The structure of MDParamsIn t.

Return value

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INVALID_PARAMETER	Parameters error

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_GetWindowParamsOut

Purpose

Get result for certain motion detection sub-window.

Function Prototype

MI_RET MI_MD_GetWindowParamsOut(U8 w_num, U8 h_num, MDParamsOut t* param);

Arguments

Name	Description
w_num	Horizontal index of sub-window.
h_num	Vertical index of sub-window.
param	The structure of MDParamsOut t.

Return value

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INVALID_PARAMETER	Parameters error
MI_MD_RET_REGION_INIT_ERROR	Multiple region initialization failed

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_SetTime

<u>Purpose</u>

Set the time difference between current function call of MI MD Run and previous function call of

MI MD Run.

Function Prototype

void MI_MD_SetTime(U32 time_diff);

Arguments

Name	Description
	The time difference between current function call of MI MD Run and previous function call of
	MI MD Run.

Return value

None.

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_GetYMean

<u>Purpose</u>

Get the average value of the gray image.

Function Prototype

void MI_MD_GetYMean(U32 * mean);

Arguments

Name	Description
mean	The average value of the gray image.

Return value

None.

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_GetLibVersion

Purpose

Gets the version number of the library.

Function Prototype

U32 MI_MD_GetLibVersion();

Arguments

None.

Return value

Return value	Description
	Library version number.

Requirement

Header files: mi_md.h

Library files: libMTE_LINUX.so

Note

None.

MI_MD_ComputeImageSAD

Purpose

Gets the SAD(Sum of Absolute Difference) statistics.

Function Prototype

MI_RET MI_MD_ComputeImageSAD(const U8* pImage, void* psad_result, MDSAD_ctrl_t* psad_ctrl);

Arguments

Name	Description
pImage	Preview buffer address.
psad_result	The memory address of the SAD result.
psad_ctrl	The structure of MDSAD ctrl t.

Return value

Return value	Description
MI_RET_SUCCESS	Success
MI_MD_RET_INVALID_HANDLE	Handle null.
MI_MD_RET_INVALID_PARAMETER	Parameters error
MI_MD_RET_MALLOC_ERROR	Memory configuration error

Requirement

Header files: mi_md.h Library files: libMTE_LINUX.so

Note

- Can not support multiple region mode. Its means you can not call MI_MD_SetRegionInfo before this, just MI_MD_SetDetectWindow.
- Alignment limit. Figure 1 shows ROI region not divided equally, call MI_MD_SetDetectWindow(10, 10, 265, 113, 1, 1) before SAD.

Figure 1

Figure 2 shows ROI region be divided into 5 parts in vertical direction. Because we call MI_MD_SetDetectWindow(10, 10, 265, 113, 1, 5), the extra 4 pixels will not be compute SAD.

Figure 2

The buffer to save SAD result, take Figure 1 as an example,
4x4 SAD, 8-bit output need allocated 256/4*104/4=1664 bytes,
8x8 SAD, 8-bit output need allocated 256/8*104/8=416 bytes.

Take Figure 2 as an example, 4x4 SAD, 8-bit output need allocated 256/4*100/4=1600 bytes.

3. DATA TYPE

3.1. Overview

MDParamsIn_t□	Define the parameter of MD.
MDParamsOut t□	Define the result of MD.
MDBlockInfo_t□	Define the range of independent region MD.
MDSAD MODE e	Defines SAD block size.
MDSAD OUT CTRL e	Defines the SAD output control information.
MDSAD ctrl t	Defines SAD control parameters.
MI RET	MD function return state.

3.2. Struct Lists

MDParamsIn_t

Description

Define the parameter of MD.

Syntax

```
typedef struct
{
    U8 enable;
    U8 size_perct_thd_min;
    U8 size_perct_thd_max;
    U8 sensitivity;
    U16 learn_rate;
} MDParamsIn_t;
```

<u>Member</u>

Member	Description
enable	Is this window need to do MD.
size_perct_thd_min	The minimum percentage of pixels relative to sub-window total pixels are classified as foreground object.
size_perct_thd_max	The maximum percentage of pixels relative to sub-window total pixels are classified as foreground object.
sensitivity	It controls the threshold which determines if certain pixel would be

Member	Description
	classified as foreground object. If the value is small, pixels which have little difference with background are more easily to be classified as foreground object.
learn_rate	Units in millisecond. It controls how long the foreground object will be considered as background if it stops moving.

Note

- size_perct_thd_min:0~99
- > size_perct_thd_max:1~100, must be larger than size_perct_thd_min
- > sensitivity: (10, 20, 30, ..., 100), 100 is the most sensitive. If the sensitivity is not multiple of 10, the feedback after the operation may not be the value of the original input, there will be +-1 deviation.
- > learn_rate:1000~30000

MDParamsOut_t

Description

Define the result of MD.

Syntax

```
typedef struct
{
    U8 md_result;
    U32 obj_cnt;
} MDParamsOut_t;
```

Member

Member	Description
md_result	It stores the motion detection result for certain sub-window. If motion detection is true, then return 1, otherwise return 0.
obj_cnt	It stores total number of pixels classified as foreground object for certain sub-window.

Note

None.

MDBlockInfo_t

Description

Define the range of independent region MD.

Syntax

typedef struct

{


```
U16 st_x;

U16 st_y;

U16 end_x;

U16 end_y;

} MDBlockInfo_t;
```

Member

Member	Description
st_x	Horizontal position of region left-top point.
st_y	Vertical position of region left-top point.
end_x	Horizontal position of region right-bottom point.
end_y	Vertical position of region right-bottom point.

Note

None.

MDSAD_MODE_e

Description

Defines SAD block size.

Syntax

```
typedef enum
{
    MDSAD_MODE_MB_4x4 = 0x0,
    MDSAD_MODE_MB_8x8 = 0x1,
    MDSAD_MODE_MB_16x16 = 0x2,
    MDSAD_MODE_BUTT
} MDSAD_MODE_e;
```

Member

Member	Description
MDSAD_MODE_MB_4x4	SAD block size is 4x4
MDSAD_MODE_MB_8x8	SAD block size is 8x8
MDSAD_MODE_MB_16x16	SAD block size is 16x16

Note

None.

MDSAD_OUT_CTRL_e

Description

Defines the SAD output control information.


```
Syntax
typedef enum
{
    MDSAD_OUT_CTRL_16BIT_SAD = 0x0,
    MDSAD_OUT_CTRL_8BIT_SAD = 0x1,
    MDSAD_OUT_CTRL_BUTT
} MDSAD_OUT_CTRL_e;
```

Member

Member	Description
MDSAD_OUT_CTRL_16BIT_SAD	Output 16-bit SAD value only
MDSAD_OUT_CTRL_8BIT_SAD	Output 8-bit SAD value only

Note

None.

MDSAD_ctrl_t

Description

Defines SAD control parameters.

<u>Syntax</u>

```
typedef struct
{
   MDSAD_MODE_e enMode;
   MDSAD_OUT_CTRL_e enOutCtrl;
} MDSAD_ctrl_t;
```

<u>Member</u>

Member	Description
	SAD operating mode. For detail, see MDSAD MODE e
	SAD output format. For detail, see MDSAD OUT CTRL e

Note

None.

MI_RET

Description

MD function return state.

<u>Syntax</u>		
typedef enum _MI_RET_E		
{		
MI_MD_RET_SUCCESS	= 0x00000000,	/*MD API execution success*/
MI_MD_RET_INIT_ERROR	= 0x10000401,	/*MD initialization error*/
MI_MD_RET_IC_CHECK_ERROR	= 0x10000402,	/*Incorrect platform check for MD*/
MI_MD_RET_INVALID_HANDLE	= 0x10000403,	/*Invalid MD handle*/
MI_MD_RET_INVALID_PARAMETER	= 0x10000404,	/*Invalid MD parameter*/
MI_MD_RET_MALLOC_ERROR	= 0x10000405,	/*Allocate MD working buffer error*/
MI_MD_RET_REGION_INIT_ERROR	= 0x10000406,	/*Multi region initial error*/
} MI_MD_RET;		

Member

<u></u>	
Member	Description
MI_RET_SUCCESS	Function success
MI_MD_RET_INIT_ERROR	MD initialize fail
MI_MD_RET_IC_CHECK_ERROR	IC check fail
MI_MD_RET_INVALID_HANDLE	MD handle is null
MI_MD_RET_INVALID_PARAMETER	Parameter error
MI_MD_RET_MALLOC_ERROR	Memory allocate error
MI_MD_RET_REGION_INIT_ERROR	Multi-region initialize fail

Note

None.

4. MOTION DETECTION FLOW

5. EXAMPLE

Sample code: $\IE\$ MTE\I3\sample\MD\mi_sample_md.c