

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 May 2002 (30.05.2002)

PCT

(10) International Publication Number
WO 02/42441 A2

(51) International Patent Classification⁷: **C12N 9/64, 15/57, C07K 16/40, C12N 5/10, G01N 33/563, A61K 38/48**

(21) International Application Number: PCT/EP01/13391

(22) International Filing Date:
20 November 2001 (20.11.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/721,254 22 November 2000 (22.11.2000) US
09/833,328 12 April 2001 (12.04.2001) US

(71) Applicant (for all designated States except US): **BAXTER AKTIENGESELLSCHAFT [AT/AT]**; Industriestrasse 67, A-1221 Vienna (AT).

(72) Inventors; and

(73) Inventors/Applicants (for US only): **LAEMMLE, Bernhard** [CH/CH]; Schuetzenweg 3, CH-3065 Bolligen (CH); **GERRITSSEN, Helena Elisabeth** [CH/CH]; Sentenstrasse 14, CH-5623 Boswil (CH); **FURLAN, Miha** [CH/CH]; Liebegweg 7, CH-3006 Bem (CH); **TURECEK, Peter** [AT/AT]; Hauptstrasse 59g, A-3400 Klosterneuburg (AT); **SCHWARZ, Hans-Peter** [AT/AT]; Schindlergasse 32, A-1180 Vienna (AT); **SCHEIFLINGER, Friedrich** [AT/AT]; Michelbeuerngasse 4/17,

A-1090 Vienna (AT). **ANTOINE, Gerhard** [DE/AT]; Holunderweg 11, A-2301 Gross-Enzersdorf (AT). **KERSCHBAUMER, Randolph** [AT/AT]; Peter Jordan Strasse 32-34/17, A-1190 Vienna (AT). **TAGLIAVACCA, Luigina** [IT/IT]; Via Ugo la Malfa, 3C, Piltello, I-20093 Milano (IT). **ZIMMERMANN, Klaus** [DE/AT]; Harlacherweg 2/2/19, A-1220 Vienna (AT). **VOELKEL, Dirk** [DE/AT]; Podhagskygasse 2/17, A-1220 Vienna (AT).

(81) Designated States (national): AB, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EB, ES, FI, GB, GD, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SH, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SL, TR), OAPI patent (BH, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VON WILLEBRAND FACTOR (vWF) CLEAVING PROTEASE POLYPEPTIDE, NUCLEIC ACID ENCODING THE POLYPEPTIDE AND USE OF POLYPEPTIDE

(57) Abstract: The invention relates to a vWF cleaving protease (vWF-cp) polypeptide, a nucleic acid molecule encoding the amino acid sequence of a vWF-cp polypeptide and a composition comprising the polypeptide. The invention also relates to the use of the vWF-cleaving protease polypeptide for production of vWF cleaving protease polypeptide binding molecules and for production of a preparation for prophylaxis and therapy of thrombosis and thromboembolic disease.

WO 02/42441 A2

von Willebrand Factor (vWF) cleaving protease polypeptide, nucleic acid encoding the polypeptide and use of polypeptide

5 Field of the Invention

The invention relates to a vWF cleaving protease (vWF-cp) polypeptide or a partial sequence thereof, a nucleic acid molecule encoding the amino acid sequence of a vWF -cp polypeptide, and a composition comprising the polypeptide.

10 The invention also relates to the use of the vWF-cp polypeptide for production of anti-vWF-cp polypeptide antibodies and for production of a preparation for prophylaxis and therapy of thrombosis and thromboembolic disease.

15 Background of the Invention

vWF is a glycoprotein circulating in plasma as a series of multimers ranging in size from about 500 to 20,000 kD. Multimeric forms of vWF are composed of 250 kD polypeptide subunits linked together by disulfide bonds.

20 vWF mediates the initial platelet adhesion to the
subendothelium of a damaged vessel wall, though only the
largest multimers appear to exhibit haemostatic activity.
Such vWF multimers having large molecular masses are stored
in the Weibel Palade bodies of endothelial cells, and it is
believed that endothelial cells secrete these large
polymeric forms of vWF. Those forms of vWF which have a low
molecular weight (low molecular weight or LMW vWF) are
believed to arise from proteolytic cleavage of the larger
multimers.

30 A small portion of the vWF present in normal plasma circulates as 189, 176 and 140 kD fragments resulting from

proteolytic degradation of vWF *in vivo*, the 140 kD fragment being derived from the N-terminal region, and the 176 kD fragment from the C-terminal region of the subunit. When low molecular weight (LMW) forms of vWF are isolated from 5 normal human plasma and subjected to SDS-PAGE (polyacrylamide gel electrophoreses) after disulfide reduction, an unusually high portion of vWF fragments are found. This finding is compatible with the view that LMW forms of vWF have been partially or predominantly derived 10 from large multimers by proteolytic degradation.

The proteolytic degradation of vWF is a physiological process in healthy individuals, yet in patients suffering from von Willebrand disease (vWD) type 2A it may be accelerated, and as a consequence these patients lack the 15 vWF multimers with the largest molecular masses. A lack of large vWF multimers and an increased level of proteolytic fragments are also observed in acquired von Willebrand disease (vWD) associated with myeloproliferation syndrome, indicating increased *in vivo* proteolysis in this condition 20 as well.

In patients with thrombotic thrombocytopenic purpura (TTP), on the other hand, unusually large vWF multimers are detected, and increased vWF binding to platelets has been demonstrated in these patients (Moake et al. 1982, N. Engl. 25 J. Med. 307: 1432-1435). Familial TTP is associated with a severe congenital deficiency of vWF protease, while the presence of vWF-cleaving proteases inhibiting autoantibodies has been observed in patients with non-familial TTP.

30 The large multimers of vWF associated with TTP normally disappear after a patient is transfused with normal fresh frozen plasma. Presently, plasma exchange is

the most important treatment for TTP, although significant side effects have been reported with this therapy. The existence of a severe congenital deficiency of vWF protease has been established in patients with familial TTP and the 5 presence of a vWF-cleaving protease inhibiting autoantibodies has been observed in patients with non-familial TTP.

Several proteases have been shown to be able to cleave vWF, thereby impairing its binding affinity for platelets. 10 However, *in vitro* the cleavage of vWF with these proteases in each case results in cleavage products different from the fragments derived from *in vivo* cleavage.

Thus, for example, while plasmin is capable of cleaving several peptide bonds in vWF, plasmin-treated vWF 15 retains a high molecular weight core region retaining about 70% of its platelet agglutinating activity (determined as ristocetin cofactor). A 34 kD peptide is split from the N-termini of individual vWF subunits in the early stages of plasmin treatment, and epitope mapping of such plasmin- 20 induced fragments show that these fragments originated from regions of the vWF subunit that are different from the vWF fragments present in circulating plasma.

Porcine pancreatic elastase and various serine proteases released from human leukocytes have also been 25 shown to degrade vWF proteolytically with a resultant loss of large multimers. Epitope mapping of the degradation products again indicates that these fragments also differ from those present in normal plasma and in vWD type 2A. In addition, a calpain-like protease released from human 30 platelets has been shown to degrade large vWF multimers and to create vWF fragments similar to those observed *in vivo*.

Summary of the Invention

It is an object of the invention to provide for a vWF cleaving protease (vWF-cp) polypeptide or a partial sequence thereof.

5 It is another object of the invention to provide for a composition comprising a vWF-cp polypeptide.

It is an object of the present invention to provide for a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of a vWF-cp 10 polypeptide.

It is also an object of the invention to provide for recombinant vWF-cp polypeptide.

It is another object of the invention to provide a method of production of a recombinant vWF-cp polypeptide.

15 It is also an object of the invention to provide for a method of purification of vWF using a vWF-cp polypeptide or a partial sequence thereof.

It is also an object of the invention to provide for anti-vWF-cp polypeptide ligands.

20

Brief Description of the Drawing

Fig. 1 shows the schematic purification scheme of the vWF-cp from plasma.

Fig. 2 shows the SDS-PAGE of purified of vWF-cp 25 polypeptides under non-reducing (A) and reducing conditions in the presence of DTT (B).

Fig. 3 shows the partial nucleotide and amino acid sequence of the vWF-cp polypeptide.

Fig. 4 shows the schematic drawing of the genomic 30 localization of the vWF-cleaving protease gene.

Fig. 5 shows the complete amino acid and nucleotide sequence of the vWF-cleaving protease. Start and end of the

signal peptide, metalloprotease, the cystein rich region (ACR), thromspondin type 1 motif (TSP 1), and disintegrin like motif (RGD) domains are indicated by arrows. Furin cleavage site, catalytic site and Met-turn are underlined.

5 The putative N-glycosylation sites are indicated by asteriks.

Fig. 6 shows the schematic representation of the domain organization of the vWF-cleaving protease and those of the human members of the ADAM-TS family. The domain structures of the vWF-cleaving protease (ADAMTS 13) and of all known human ADAMTS proteins are shown. ADAMTS 10 cannnot be found in databases and ADAMTS 11 is identical to ADAMTS 5.

Fig. 7 shows Western blot analysis of cells transfected with a vector comprising vWF-cp polypeptide encoding sequences, with lane 1: standard molecular weight marker, lane 2: control vector cDNA3.1(+) and lane 3: vector pCMV-vWFcp. The specific vWF-cp polypeptide band is indicated by the arrow.

Fig. 8 shows SDS-Page of vWF-cp activity on vWF with lane 1: purified plasmatic vWF as control, lane 2: vWF incubated with normal human plasma, lane 3: vWF incubated with buffer as control, lane 4: vWF incubated with of cell lysate of SK-Hep cells transfected with control vector cDNA3.1(+) and lane 5: vWF incubated with of cell lysate of SK Hep cells transfected with vWF-cp expressing vector pCMV-vWFcp.

Detailed Description of the Invention

30 In accordance with one of the objects of the invention there is provided a vWF-cp polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID. NO.

1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO.
5, or (b) an amino acid sequence having at least 80%
identity to the amino acid sequence of (a). Polypeptide
molecules can also have at least 90%, or at least 95%
5 identity to the amino acid sequence of (a). The polypeptide
preferably has an amino acid sequence as shown in Fig. 5 or
a partial sequence thereof of at least 12, preferably at
least 15 amino acids. Preferably, the vWF-cp polypeptide
has vWF cleaving activity. The vWF-cp polypeptide of the
10 invention preferably retains vWF protease activity in the
presence of serine protease inhibitor and a calpain
protease inhibitor. The serine protease inhibitor can be
diisopropyl fluorophosphate or any analogue thereof which
has serine protease inhibitor activity. The calpain
15 inhibitor can be Z-Leu-Leu-Tyr-CHN2 or any analogue thereof
having calpain inhibitor activity.

The term "polypeptide" means a chain of amino acid
residues linked through peptide bonds between the α -
20 carboxyl carbon of one amino acid residue and the α -
nitrogen of the next amino acid, and comprising 10 or more
amino acid residues joint together. The polypeptide may
contain other than the 20 gene-encoded amino acids.
"Polypeptide" refers both to short chains, such as
25 peptides, oligopeptides, or oligomers, and to longer
chains, generally referred to as proteins. "Polypeptide"
include amino acid sequences modified either by natural
processes, such as posttranslational modifications, or
chemical modifications, which are known in the art.
30 Modifications can occur anywhere in the polypeptide. The
modification may lead to a variant of the polypeptide which

may differ in amino acid sequence from original polypeptide by one or more substitutions, additions, deletions, fusions or any combination, or a naturally occurring variant, such as an allelic variant or non-naturally occurring variant
5 made by mutagenesis or genetic engineering. The "Polypeptide" may be in form of an unprocessed or partial processed precursor, the "mature" polypeptide, or a fragment having an amino acid sequence that entirely is the same as a part, but not all, of the amino acid sequence of
10 the longer a polypeptide chain. Fragment may be a shorter single continuous region of the longer chain, or comprised within a larger polypeptide of which they form a part. A Fragment of polypeptide may include, for example a truncated polypeptide having a partial amino acid sequence
15 of the vWF-cp. A "Fragment" can be a biological active fragment that mediate vWF cleaving protease activity, including those with similar activity or improved activity, or with decreased activity.

"Identity" means the identity of the amino acid
20 sequence of a polypeptide to the amino acid sequence of a polypeptide comprising the sequence of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 or SEQ ID NO. 5. "At least 80% identity", means that the amino acid sequence is identical except that the polypeptide sequence differs in
25 not less than 20 amino acids per 100 amino acids. "At least 90%" or "at least 95% identity" means a difference of not less than 10, or not less than 5 amino acids per 100 amino acids.

The term "vWF cleaving protease" (vWF-cp) means a
30 protein or polypeptide having vWF cleaving activity and cleaves vWF high molecular vWF multimers in molecules of

lower molecular weight which still have vWF activity and properties.

The term "vWF cleaving protease polypeptide" means a polypeptide having at least 10 amino acid residues. The 5 complete amino acid sequence of the unprocessed polypeptide comprises 1427 amino acids. The "mature" polypeptide, which is a part of the larger unprocessed polypeptide should normally begin with or near amino acid 75, beginning with AAGGILH, and continuing to the carboxyl terminus. The 10 mature vWF cleaving protease has a calculated polypeptide mass of about 145 KD. Additional amino acids which contains secretory or leader sequences, pro-sequences, sequences which aid purification or identification such as multiple His residues, a FLAG tag or and additional sequence for 15 stability during recombinant production, can be included.

The term "vWF cleaving activity" means a physiological vWF cleaving activity which is defined by (1) the cleaving vWF at the peptide bond 842Tyr-843Met, (2) having a direct proteolytic activity which converts vWF having a singlet 20 structure to vWF having a satellite structure, and (3) retaining activity in the presence of a serine protease inhibitor such as diisopropyl fluorophosphate (DFP) and in the presence of a calpain protease inhibitor such as carbobenzoyloxy (Z) peptidyl diazomethylketone inhibitor (Z-Leu-Leu-Tyr-CHN₂). The proteolytic entities provided with 25 the present invention may also act indirectly via another effector protein, for example a protease. This polypeptide can form an active vWF cleaving complex together with a metal ion selected from the group consisting Ca⁺⁺, Sr⁺⁺, Mg⁺⁺ and Ba⁺⁺. The preferred metal ion is Ca⁺⁺. This active 30 complex is able to cleave vWF in a physiological manner as

described above. The vWF cleaving activity of the polypeptide according to the present invention may be determined by any method described in the art, such as the method according to Furlan et al. (1996, Blood 87: 4223-4234) or as described in WO 00/50904. Alternatively, a collagen binding assay, e.g. as described in EP 0 816 852, can also be used as a test system.

According to one aspect, the invention provides for an isolated polypeptide comprising an amino acid sequence having at least 80% identity to the amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5. According to one embodiment of this aspect of the invention the isolated polypeptide comprises an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5.

The term "isolated" means altered from the natural state and/or removed from its original environment.

The invention also provides for a substantially pure vWF-cp polypeptide comprising (a) an amino acid sequence of selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

The term "substantially pure" means purity as high as the relative proportions of polypeptide chains with the vWF-cp activity present in an amount of above 50%, especially above 80%, most preferred about 90%, of total protein compared to the vWF protease activity in plasma. The purity is determined by a purity as determined by SDS-

PAGE (silver stained or Commassie stained) and Western blot and a ratio of vWF protease polypeptide to total protein amount, said purity is preferably greater than about 98%.
If the purified vWF-cp polypeptide is purified from plasma
5 the preparation contains between 0.001% and 1%, preferably
0.002% of the initial amount of plasma protein, and at
least 1%, preferably at least 2.3% of the initial enzyme
activity, which may be partially inactivated during the
purification procedure. The preparation comprising a vWF -
10 cp polypeptide according to the present invention is
essentially free of vWF or vWF fragments, i.e. having a vWF
content of below 5%, preferably below the detection limit
of an assay used to detect vWF, such as a collagen-assay
described in EP 0 816 852.

15 The substantially pure vWF-cp polypeptide exhibits an
apparent molecular weight of about 180 kD, 170 kD, 160 kD
or 120 kD in SDS-PAGE analysis under reducing conditions.

The substantially pure vWF protease polypeptide
exhibits an apparent molecular weight of about 150 kD, 140
20 kD, 130 kD or 110 kD in SDS-PAGE analysis under non-
reducing conditions.

The SDS-PAGE is performed under reducing conditions or
non-reducing conditions. It is well known in the art, that
molecular weight determination using SDS PAGE results in
25 the detection of apparent molecular masses, which may be
different from the molecular masses of the native, non-
denatured protein.

Analysis of non-denatured material by mass
spectrometry showed very broad peaks of high molecular
30 weight. This finding is in agreement with appearance, in
gel filtration experiments, suggesting that the proteins in
this preparation tend to polymerize under physiologic

conditions (a property of clusterin).

The polypeptide of the invention can be isolated from any source which comprising a vWF-cp polypeptide.

5 The term "source" means human plasma, a supernatant of a cell culture expressing a vWF -cp polypeptide according to the present invention, milk or other body fluids of transgenic animals expressing the polypeptide of the invention.

10 Purification of vWF-cp polypeptide can be performed by a combination of chromatographic steps including immunoaffinity chromatography, gel filtration, and ion exchange chromatography. For example, the first 15 purification step can be immunoaffinity chromatography, the second step can be gel filtration, followed by one or more additional immunoaffinity chromatography steps. A further purification can be performed using ion exchange chromatography, preferably anion exchange chromatography and at least one affinity chromatography. Further 20 purification steps can be performed using ion exchange chromatography, gel filtration and further affinity chromatography steps.

According to one aspect of the invention there is 25 provided a composition comprising a vWF-cp polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of 30 (a).

The composition of the invention comprising the polypeptide may further comprise a divalent metal ion

selected from the group of Ca²⁺, Sr²⁺, Ba²⁺ and Mg²⁺.

A further aspect of the present invention relates to a complex of isolated vWF-cp polypeptide having vWF-cp activity, vWF and a metal ion selected from the group consisting of Ca²⁺, Sr²⁺, Ba²⁺ and Mg²⁺. The preparation may comprise divalent metal ions in a concentration of about 1 to 10⁶ ions per polypeptide molecule with vWF protease activity and can contain vWF -cp polypeptide in an essentially purified form.

The composition may comprise clusterin or an analog or derivative thereof having clusterin activity. With relation to the activity of the protein, the term "derivative" or "analog" of clusterin refers to a polypeptide that show the same characteristics as the native clusterin protein.

Clusterin is a heterodimeric glycoprotein consisting of two non-identical subunits, with a molecular mass of approximately 80 kDa (Rosenberg et al. 1995, Int. J. Biochem. Cell Biol. 27: 633-645; Tschopp et al. 1994, Clin. Exp. Immunol. 97(Suppl. 2): 11-14). It is produced in a wide array of tissues and found in most biologic fluids. The physiologic functions described in the prior art include complement regulation, lipid transport, sperm maturation, initiation of apoptosis, endocrine secretion, membrane protection and promotion of cell interactions. It has been found that the unusually high stability of the vWF -cp polypeptide of the present invention in circulating plasma is associated with the presence of clusterin and that the half-life of vWF cleaving protease activity *in vivo* is between 1 and 4 days, while other proteases in plasma have half-lives in the range of seconds to hours. The ratio of clusterin to vWF protease polypeptide in a

composition according to the present invention is preferably in a range of 10M:1M to 1M:10M, and more preferably the ratio of clusterin and vWF is in the equimolar range. In human plasma, the concentration of vWF-cleaving protease is 2 - 10 mg/liter whereas that of clusterin is 50 - 400 mg/liter plasma (the molar ratio of vWF-cleaving protease to clusterin in human plasma is about 1:20 - 1:100).

In accordance with one of the objects of the invention there is provided a nucleic acid molecule comprising a nucleic acid sequence encoding vWF-cp polypeptide having (a) an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

The term "nucleic acid molecule" means a polynucleotide and generally refers to any DNA or RNA, which also includes variants of the DNA or RNA, the DNA or RNA which may be modified or unmodified, single- and double stranded or a mixture thereof, or a short polynucleotide, generally referred to as oligonucleotides. A typical variant of a polynucleotide differs in nucleotide sequence from the original polynucleotide in sequence and may or may not alter the amino acid sequence of the polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions or truncations in the polypeptide sequence of the polypeptide. The polynucleotide sequence may be modified to improve recombinant expression. Such modification includes use of highly translated codons. Nucleic acid sequence which do hybridize with the DNA

sequence as shown in Fig. 5 or partial sequence encoding an amino acid of at least 12 amino acid are within the scope of the present invention. Hybridization Techniques are well known to the skilled artisan.

5

According to another aspect of the invention there is provided an expression vector comprising a nucleic acid molecule comprising a nucleic acid sequence encoding a vWF-cp polypeptide having (a) an amino acid sequence of selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

The nucleic acid molecule of the invention can be used for constructing expression systems providing appropriate elements for replication of vector within a host cells and expression of the DNA which can then be used for the expression of a polypeptide having vWF cleaving protease activity according to the present invention. The nucleic acid sequence may be modified to improve expression, such as addition of a Kozak sequence.

The expression vector may comprise, for example, in the direction of transcription, a transcriptional regulatory region and a translational initiation region functional in a host cell, a DNA sequence comprising a polynucleotide expressing a VWF -cp polypeptide according to the present invention and translational and transcriptional termination regions functional in said host cell, wherein expression of the nucleic sequence is regulated by the initiation and termination regions. The expression vector may also contain elements for the replication of the nucleotide. Examples of DNA expression

vectors are pBPV, pSVL, pRc/CMV, pRc/RSV, myogenic vector systems, pcDNA3 based vector (Invitrogen) or vectors derived from viral systems, for example from vaccinia virus, adenoviruses, adeno-associated virus, herpes viruses, retroviruses or baculo viruses. Suitable mammalian expression vectors usually contain one or more eukaryotic transcription units that are capable of expression in mammalian cells. The transcription unit is comprised of at least a promoter element to mediate transcription of foreign DNA sequences. Suitable promoters for mammalian cells are known in the art and include viral promoters such as that from simian virus 40 (SV40), cytomegalovirus (CMV), Rous sarcoma virus (RSV), adenovirus (ADV), bovine papilloma virus (BPV) or other promoters selected from the group of methallothionein promoter and β -Actin promoter. Other promoters known in the art are also applicable for expression.

The expression vector containing the nucleic acid sequence which encodes the vWF-cp polypeptide according to the present invention can be used to transform host cells which then produce the polypeptide. The transformed host cells can be grown in a cell culture system to produce the polypeptide *in vitro*. The host cells can excrete the polypeptide having vWF protease activity into the cell culture medium from which it can be prepared or the polypeptide can be isolated from the cell lysate.

The expression vector comprising the nucleic acid molecule encoding a polypeptide comprising (a) an amino acid sequence of selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity

to the amino acid sequence of (a) can be transformed or transfected into a host cells for expression of the recombinant polypeptide. Suitable host cells include any cell capable of producing vWF -cp polypeptide after being 5 transformed or transfected. Preferred cells include bacterial cells, yeast, insect cells or animal cells. The host cell may be a cell derived from the body of a mammal, for example fibroblasts, keratinocytes, hematopoietic 10 cells, hepatocytes or myoblasts, which are transformed *in vitro* with an expression vector system carrying a nucleic acid according to the present invention and re-implanted into the mammal. The polypeptide according to the present invention encoded by said nucleic acid will be synthesized 15 by these cells *in vivo* and they will exhibit a desired biological activity in the mammal.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC). Exemplary mammalian host cells include particularly 20 primate cell lines and rodent cell lines, including transformed cell lines. Preferably for stable integration of the vector DNA, and for subsequent amplification of the integrated vector DNA, both by conventional methods, Chinese hamster ovary (CHO) cells are employed as a 25 mammalian host cell of choice. Other suitable cell lines include, but are not limited to, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS-1), human hepatocellular carcinoma cells (e.g., Hep G2), human adenovirus transformed 293 cells, HEK 293cells, SKHep 30 cells, mouse L-929 cells, HaK hamster cell lines, murine 3T3 cells derived from Swiss, Balb-c or NIH mice and a number of other cell lines. Another suitable mammalian cell

line is the CV-1 cell line. Normal diploid cells, cell strains derived from in vitro culture of primary tissue, as well as primary explants, are also suitable. Candidate cells may be genotypically deficient in the selection gene, 5 or may contain a dominantly acting selection gene.

Host cells can be either transformed cells or untransformed cells. The host cells are preferably those expressing furin either naturally or after being genetically engineered to express recombinant furin.

10 The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art.

15 The host cell transformed with a vector carrying the vWF-cp polypeptide encoding nucleic acid may then be cultured under suitable conditions if desired, with amplification introduced genes. Effective conditions include, but are not limited to, appropriate media, 20 bioreactor, temperature, pH and oxygen conditions that permit protein production. The method of this present invention therefore comprises culturing a suitable cell or cell line, which has been transformed with a nucleic acid sequence encoding a amino acid sequence of the vWF-cp 25 polypeptide, the coding sequence under the control of a transcriptional regulatory sequence. The expressed polypeptide is then recovered, isolated and purified from the culture medium if secreted by the cells or from the cell, if expressed intracellularly by appropriate means 30 known to one of skill in the art.

The nucleic acid molecule of the invention or a fragment thereof can be expressed in a eukaryotic or

prokaryotic microorganism system, such as fungi, including yeast, or bacteria. Fragments can include truncated forms of the vWF cleaving protease. Examples of truncation include, but are not limited to, N-or C-terminal deletions.

5

The nucleic acid molecule of invention may also be used to generate transgenic animals, which express said polypeptide *in vivo*. In one embodiment of this specific application, the transgenic animals may express the vWF -cp polypeptide in endogenous glands, for example in mammary glands from which the said proteins are secreted. In the case of the mammary glands, said vWF protease polypeptide is secreted into the milk of the animals from which said proteins can be prepared. The animals may be mice, cattle, pigs, goats, sheep, rabbits or any other economically useful animal.

The vWF-cp polypeptide of the invention can be used in a method of purification of vWF by providing as a ligand for vWF a vWF-cp polypeptide of the invention, contacting a solution comprising vWF with the vWF-cp polypeptide ligand under conditions whereby vWF is bound to the ligand and recover from said ligand purified vWF. The vWF-cp polypeptide ligand may be bound to a solid carrier.

25

Furthermore, the vWF-cp polypeptide of the invention can also be used for the development of vWF-cp polypeptide binding molecules using techniques known in the art. The binding molecules can be anti-vWF-cp polypeptide antibodies which can be produced by immunization of an animal with a polypeptide of the invention and isolation of anti-vWF-cp polypeptide antibodies from the animal.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric antibodies, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library, peptides or peptidomimetics. Monoclonal antibodies can be produced according to methods well known in the art. Other binding molecules can be derivatives of a antibody, such as a single chain antibody, a Fab-, or Fab'2-fragment, a chimeric antibody, or a peptide or a 10 peptidomimetic, which can be obtained by known methods such as e.g. the phage display method.

Within the aspect of the invention, a vWF-cp polypeptide binding molecule selected from the group of single chain antibodies, Fab- or Fab'2-fragment or 15 polypeptides with vWF protease binding site can be produced by a method, wherein a phage display library is screened for anti-vWF-cp polypeptide binding molecule, the nucleic acid sequence of positive clones is determined and a nucleic acid molecule comprising the sequence is cloned 20 into an expression vector.

The development of the antibodies, antibody derivatives, peptidomimetics or any other molecule which binds vWF-cp polypeptide can be accomplished according methods known to the prior art (Greer et al. 1994, J. Med. Chem. 37: 1035-25 1054; Kemp 1990, Trends Biotechnol. 8: 249-255).

The vWF-cp polypeptide binding molecule of the invention may be used as a ligand to purify vWF-cp. Such a method can be performed by contacting a solution comprising 30 vWF-cp polypeptide with the vWF-cp polypeptide binding molecule under conditions whereby vWF-cp polypeptide is bound to the binding molecule and recovering purified vWF-

cp polypeptide by selectively eluting vWF-cp polypeptide from the vWF-cp binding molecule. The vWF-cp binding molecule may be bound to a solid carrier.

5 The vWF-cp polypeptide binding molecule can be also be used in a method for detection of vWF-cp polypeptide in a sample. Thereby a solution suspected to contain vWF-cp polypeptide is contacted with a vWF-cp polypeptide binding molecule as described above under conditions allowing the
10 formation of a complex of vWF-cp polypeptide/vWF-cp polypeptide binding molecule and detection of the complex.

The vWF-cp polypeptide of the invention can be used, for example, to process plasmatic or recombinantly produced vWF. Recombinant vWF (r-vWF) can be produced in CHO cells, e.g. according to Fischer et al. (1995. FEBS Lett 375: 259-262). The r-vWF recovered in this manner is available as a mature vWF and has a singlet structure, i.e. it differs from plasma-derived vWF, which always has a characteristic satellite structure when examined on 2% SDS agarose gels. US5,854,403 teaches that r-vWF is comprised of multimers with high structural integrity which is retained even after purification and treatment for the inactivation of viruses. The intact structure of the r-vWF is defined by a result of
20 electrophoretic analysis consisting of multimer bands with an absence of satellite bands. To prepare an r-vWF preparation having a structure more closely corresponding to that of plasma-derived vWF from r-vWF with singlet structure, r-vWF is treated with the vWF protease
25 polypeptide or a composition comprising the vWF-protease polypeptide of the present invention, and optionally metal ions and/or clusterin.
30

According to one aspect of the invention, the vWF-cp polypeptide can be used for the production of a preparation for the prophylaxis and therapy of diseases that show supranormal vWF content or an increased level of high-molecular weight vWF in patients, such a thromboembolic disease. This can result in thromboses and thromboembolic diseases. For example, thrombotic thrombocytic purpura (TTP), Henoch-Schönlein purpura, preeclampsia, neonatal thrombocytopenia or haemolytic-uremic syndrome. By administering an effective dose of a polypeptide of the invention and having a vWF protease activity, this can lead to reduction of the content of high molecular weight vWF multimers in the patients, resulting in effective therapy of these diseases. The disease can be selected from the thromboembolic disease is thrombotic thrombocytic purpura (TTP), Henoch-Schönlein purpura, preeclampsia, neonatal thrombocytopenia or hemolyticuremic syndrome.

The invention is described in the following examples, without being limited thereto.

25

30

Examples**Example 1:****Isolation of vWF-cp polypeptides**

5 1.1. Preparation of an IgG-eTTP-coupled affinity gel. The IgG-eTTP is isolated by aid of a 20 ml protein A-Sepharose® (diameter 1.6 cm) in TBS, pH 7.4. Plasma of a patient suffering from acquired TTP ("erworbenes" TTP; eTTP), which previously had been assayed
10 for its inhibitor content relative to the vWF-cleaving protease is applied to the column in a volume of 50 ml. After subsequent rinsing with TBS, pH 7.4, the bound IgGs are step-wise eluted with citrate, 0.1 M, pH 4.0, and glycine, 0.1 M, pH 2.7. The fractions immediately are
15 brought to a physiological pH by adding Tris, 1.5 M, pH 8.8, and dialysed against TBS, pH 7.4. The Affi-Gel® Hz is coupled according to the producer's instructions with the IgG-eTTP which had been ished out of the protein A-Sepharose® with a pH of 4.0. The column material prepared
20 in this manner first is ished as prescribed, subsequently it is washed 3 times alternatingly with 50 ml of buffer B and 200 ml of buffer A (chapter 1.7). Prior to use, intensive rinsing with buffer A is carried out in each instance.

25

1.2 First Step

As the starting material, 100 ml of pooled CPD plasma which had come from at least three donors and had been stored at -20°C, is used after centrifuging at 2,500 rpm
30 (1,100g) for 5 min. At a relatively low flow rate (FR: 30 ml/h), the plasma is loaded on a 200 ml chromatographic

column with IgG-eTTP Affi-Gel® Hz (hydrazide, diameter 2.6 cm) which had been equilibrated in buffer A. After washing with at least 400 ml of buffer A over night at the same flow rate, a 200 ml desalting gel filtration column (Bio-
5 Gel® P-6DG, diameter 2.6 cm) and a 10 ml protein G-Sepharose® (diameter 1.6 cm), which previously also had been rinsed with buffer A, is connected thereto. After the flow rate had been increased to 100 ml/h, the proteins bound to Affi-Gel Hz are eluted directly with 50 ml of
10 buffer B onto the Bio-Gel® P-6DG so as to remove from the proteins the NaSCN that had been in buffer B. The proteins which had been eluted from the desalting column prior to the NaSCN are led through the protein G Sepharose® without interruption, where they are freed from the IgGs. Here, the flow rate is lowered to 50 ml/h so as to extend the dwell time of the proteins in the 10 ml column. For regeneration,
15 the protein G-Sepharose® is shortly washed with buffer C, and the eluted IgG fraction is stored for analysis.

The first step is carried out 8 times before the
20 collected fractions which had been frozen at -20°C are pooled and further processed.

1.3 Second Step

The pooled fractions from 8 chromatographies of the
25 first step are diluted 1:1 with H₂O so as to obtain an ionic strength at which the desired proteins would bind to the anion exchange column (High Q Support®). The sample whose volume is from 1,500 to 1,800 ml, depending on the charge used, is checked for its pH and its ionic strength
30 and applied over night at a FR of 90 ml/h through a 50 ml

column with Therasorb® (diameter 1.6 cm) onto a 5 ml High Q Support® (diameter 1.6 cm). Both, Therasorb and High Q Support® had previously been equilibrated in buffer D.

After washing with approximately 150 ml of buffer D, the 5 Therasorb is disconnected, and the 25 ml Lentil Lectin Sepharose® (diameter 1.6 cm) which had been equilibrated in buffer E is connected to follow the High Q Support®. At a FR of 60 ml/h, the proteins bound to High Q Support are immediately eluted with buffer E directly to the Lentil

10 Lectin-Sepharose®. The proteins which bound to the Lentil Lectin-Sepharose® can be eluted in two steps with buffers G and H and canbe collected. The proteins which had remained bound to Therasorb and High Q Support® are washed out with buffer C or buffer F, respectively, and discarded 15 after an analysis.

For regeneration, before being used, the Lentil Lectin-Sepharose® in each case is rinsed according to the producer's instruction 3 times alternately with 20 ml each of buffers I and J, the High Q Support is rinsed 20 successively with 10 ml each of NaOH 1N and NaCl 1M.

1.4 Third Step

The pooled fractions which had been eluted from the Lentil Lectin-Sepharose® with buffer H are dialysed three 25 times for a total of 4 h, each against 1 l of buffer D, and again applied to the High Q Support at a flow rate of 60 ml/h. Connected thereinfront is a 5 ml heparin-Sepharose (diameter 1.4 cm), which likewise had been equilibrated in buffer D. After the application of the sample, it is rinsed 30 with approximately 50 ml of buffer D, the heparin-Sepharose

is disconnected, and a 500 ml Sephadryl® S-300 HR (diameter 2.6 cm), which had been equilibrated in buffer L, is connected thereto. The proteins bound to High Q Support are directly eluted to the gel filtration column with 10 ml 5 of buffer K. The exclusion chromatography is effected at a flow rate of 42 ml/h, and the fractions are collected at 7 ml each. The proteins which are more strongly bound to High Q Support® are again eluted with buffer F, those which remained adhered to the heparin-Sepharose, with 10 buffer K.

1.5 Fourth Step

The pool of the active fractions from the third step is applied without treatment at a FR of 10 ml/h to a 1 ml 15 anti- α_2 -macroglobulin column (flow rate 0.7 cm) which had been equilibrated in buffer L. The anti- α_2 -macroglobulin column is prepared by immobilization according to the instructions, of rabbit-anti- α_2 -macroglobulin antibodies at a concentration of 4.9 mg/ml on CNBr-activated 20 Sepharose. The proteins bound thereon are eluted with NaSCN 3M in buffer L and with buffer C and stored for analysis.

Table 1: List of buffers

buffer A	Tris NaCl Na ₃ -citrate Na acid	10 mM 0.15 M 1mM 0.02%	pH 7.4
buffer B	NaSCN in buffer A	3.0M	pH 7.4
buffer C	glycine Na acid	0.1M 0.02%	pH 2.7
buffer D	Tris NaCl	10mM 75mM	pH 7.4
buffer E	Tris NaCl MnCl ₂	20mM 0.5M 1 mM	pH 7.4
buffer F	Tris NaCl	10mM 1.0M	pH 7.4
buffer G	Tris NaCl Methyl- α -D-mannopyranoside	20mM 0.5M 30mM	pH 7.4
buffer H	Tris NaCl Methyl- α -D-mannopyranoside	20mM 0.5M 0.3M	pH 7.4
buffer I	Tris NaCl	20mM 0.5M	pH 8.5
buffer J	Na acetate NaCl	20mM 0.5M	pH 5.5
buffer K	Tris NaCl	10mM 0.5M	pH 7.4
buffer L (TBS)	Tris NaCl	10mM 0.15M	pH 7.4

Table 2: List of Chromatographic materials

Material	Provider /Company
affi-gel hydrazide gel®: for immobilizing specific IgG's	Bio-Rad, Hercules, CA, USA
anti- α_2 -macroglobulin column: isolation of α_2 -macroglobulin	applicant's own production (see 1.5): rabbit-anti-human- α_2 -macroglobulin antibody on CNBr activated Sepharose 4B; 4.9 mg/ml
Bio-Gel® P6-DG, medium: gel filtration with exclusion limit > 6kDa	Bio-Rad
CNBr activated Sepharose 4B®: for immobilizing proteins	Amersham Pharmacia Biotech, Uppsala, S
heparin Sepharose, HITrap® 5ml: affinity chromatography: binds various proteins	Amersham Pharmacia
High Q Support®, Macro-Prep: strong anion exchanger	Bio-Rad
IgG-eTTP Affi-gel Hz: for binding vWF-protease	applicant's own production (see 1.1.): IgG-eTTP on Affi-gel Hz hydrazide
Lentil Lectin-Sepharose 4B: affinity chromatography: binds to sugar residues of proteins	Amersham Pharmacia
protein A Sepharose® CL-4B. binds IgG of type 1, 2 and 4	Amersham Pharmacia
protein G Sepharose® 4FF: isolation of IgGs of all types	Amersham Pharmacia
Sephacryl® S-300 HR: gel filtration for MWs 10,000 to 1,500,000	Amersham Pharmacia
Therasorb: coupled with sheep-anti-human-Ig-antibodies: isolation of human immunoglobulins	Serag-Wiessner, Naila, D

1.6 *Fifth Step*

Alternatively, or in addition to step four, an anti-clusterin column chromatography as a further step can be applied. The samples are prepared identically to the anti-

5 α_2 - macroglobulin-column using anti-clusterin antibodies.

1.7. SDS-Page reduced/non-reduced

The final preparation from the third step of isolation is electrophoresed on a 1.5 mm-thick SDS-polyacrylamide gel according to Laemmli (1970, Nature, 227: 680-685). A gradient of 4 to 12% polyacrylamide is used for fractionation of proteins. After electrophoresis under non-reducing or reducing conditions (final concentration 65 mmol/l dithiotreitol DTT), the proteins are made visible by silver stain or Commassie blue stain (Fig. 2). Under non-reducing conditions bands having a molecular weight (MW) of about 150 kD, 140 KD, 130 KD and 110 KD are detectable and under reducing conditions of about 180 KD, 170 KD, 160 kD and 120 KD.

20 1.8 Determination of vWF protease activity

The different fractions isolated by the purification process as described above are tested for vWF cleaving activity by the method as described by Furlan et al.

25 (1996. Blood 87: 4223-4234).

Example 2:**Amino acid sequencing and amino acid analysis of the vWF-cp polypeptide**

5 The final protein preparation from the third step of isolation is electrophoresed on a 1.5 mm-thick SDS-polyacrylamide gel according to Laemmli (1970, Nature, 227: 680-685). A gradient of 4 to 12% polyacrylamide is used for fractionation of high molecular weight proteins, and a
10 gradient of 8 to 12% polyacrylamide for low molecular weight proteins. After electrophoresis under non-reducing or reducing conditions (final concentration 65 mmol/l dithiotreitol), the proteins are blotted onto PVDF-membranes and stained for 2 min with 0.25% Coomassie Blue
15 in 45% methanol, 9% acetic acid and 46% H₂O. After rinsing with a mixture of 50% methanol, 10% acetic acid and 40% H₂O, the visible protein bands are cut out and analyzed on a Procise-cLC Sequencer (Foster City, CA) at the Chemical Institute of the University of Bern.
20 The N-terminal amino acid sequence of polypeptide bands separated by SDS-PAGE of purified vWF-cleaving protease is shown in Table 3.

25

30

Table 3: Determination of N-terminal amino acid sequence of vWF-cp

Molecular weight	Amino Acid sequence
350 kDa unreduced	Ser-Val-Ser-Gly-Lys-Pro-Gln-Tyr-Met-Val*
150 kDa unred.	Ala-Ala-Gly-Gly-Ile
140 kDa unred.	Ala-Ala-Gly-Gly-Ile
130 kDa unred.	Ala-Ala-Gly-Gly-Ile
110 kDa unred.	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu
70 kDa unred.	Asp/Ser-Gln/Leu-Thr/Met-Val/Pro-Ser/Phe**
180 kDa reduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu
170 kDa reduced	Ala-Ala-Gly-Gly-Ile
160 kDa reduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val-Gly
120 kDa reduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val-Gly
40 kDa reduced	Asp-Gln-Thr-Val-Ser**

* identified as α_2 -macroglobulin

** identified as clusterin

Analysis of the composition of the amino acids is performed from the same sample as used for amino acid sequencing. The protein bands are hydrolyzed in the gas phase over 6 N HCl for 22 hours at 110°C and the amino acids are determined by high-performance liquid chromatography. Four unreduced polypeptide bands from SDS-PAGE of purified vWF-cp with M_r 150, 140, 130, and 110 kDa are analyzed. The results are shown in Tab. 4.

Table 4: Amino acid composition of isolated vWF-cp polypeptide

Amino acid	No. residues/100 residues			
	150 kDa	140 kDa	130 kDa	110 kDa
Asx	6.7	7.0	7.4	8.3
Glx	12.2	12.0	12.8	11.8
Ser	8.4	8.9	8.8	9.2
Gly	11.8	12.1	12.1	12.9
His	2.5	2.3	2.5	2.4
Arg	8.3	7.6	8.1	7.2
Thr	5.6	5.5	5.6	5.7
Ala	10.1	9.5	9.6	8.2
Pro	8.9	8.5	8.3	8.1
Tyr	2.1	2.7	2.3	2.4
Val	7.0	6.9	6.7	6.5
Ile	2.7	2.9	2.6	3.0
Leu	10.0	9.9	9.1	9.7
Phe	2.6	2.8	2.6	3.2
Lys	1.0	1.3	1.3	1.4

Example 3:**Identification of the vWF-cp gene**

The nucleic acid coding sequence of the amino acid sequence of peptide AAGGILHLELLVAVG (SEQ. ID. NO. 2) of the N-

5 terminal 15 residues of the purified plasmatic human vWF-cp is determined and corresponds to the nucleic acid sequence GCT GCA GGC GGC ATC CTA CAC CTG GAG CTG CTG CTG GTG GCC GTG GGC (SEQ. ID. No. 9). A database searching in the NCBI GenBank (<http://www.ncbi.nlm.nih.gov/>) showed the location of the
10 corresponding nucleic acid sequence GCT GCA GGC GGC ATC CTA CAC CTG GAG CTG CTG GTG GCC GTG GGC (SEQ.ID.No. 9) on chromosome 9 clone RP11-244N20 (AL158826, GI11544459). Thus the nucleotide sequence from base 150001 to 185911 is screened for potential exons. Consecutive overlapping
15 genome-segments with various lengths (1500 bases-5000 bases) are analysed using search engines that are queried via the internet-explorer. The genomic sequence segments, its translations and the results of the search are managed using the 'Vectors NTI Suitel v.5.2' computer-program
20 (Informax Inc., USA). The sequence of RP11-244N20 has a size of approximately 185 kb and the identified nucleic acid sequence starts at position 156.653. Use of an exon search program (Grail, <http://compbio.ornl.gov/Grail-1.3>) allowed identification of about 30 putative exons upstream
25 and downstream of position 156.653. The first four exons of the search are translated into the corresponding amino acid sequence and these sequences are searched for homologies. This search revealed that each sequence displays high homology with the amino acid sequence of the family of
30 human disintegrin and metalloproteinases with thrombospondin motifs (ADAM-TS).

In order to connect the putative exons poly-A -RNA from

liver is reverse transcribed and the cDNA is then PCR amplified with primers specific for some of the putative exons (Table 5). The PCR products of primers 6142 (SEQ.ID.No.16)-6277 (SEQ.ID.No.17), 6142 (SEQ.ID.No.16)-
5 6546 (SEQ.ID.No.18), 6351 (SEQ.ID.No. 19)-6546 (SEQ.ID.No. 18), 6278 (SEQ.ID.No. 21)-6407 (SEQ.ID.No. 20), 6346 (SEQ.ID.No. 23)-6395 (SEQ.ID.No. 24) and 6406 (SEQ.ID.No. 25)-6506 (SEQ.ID.No. 26) (derived from putative exons 1-6,
10 3-11, 6-11, 10-14, 13-16, 14-23, respectively) revealed bands of the expected size. After sequencing an open reading frame from exon 1 to exon 23 located near to the 3' end of clone RP11-244N20 can be identified. The 3' end of the cDNA sequence is examined by PCR amplification of the cDNA using forward primer 6548 (SEQ.ID.No. 27) of exon 22
15 and the specific MC18 sequence of the RT primer spdT. The resulting fragment of a size approximately to 1.8 kb is sequenced and after database search the 3' part of the new cDNA sequence can be located on region q34 (AC002325) on chromosome 9.
20 The unknown sequence of the gene at the 5' end is identified by 5' -RACE and sequencing of the resulting PCR product revealed two additional exons. None of the next five exons upstream of exon 1-2 can be connected by PCR to the already known cDNA sequence. All together 29 exons with
25 a cDNA size of 4.6 kb are found. The vWF -cleaving protease gene spans approximately 37 kb, a schematic drawing of the localization of the exons is shown in Figure 4. The complete cDNA sequence is depicted in Figure 5.

Table 5 Sequences of Primers Used for Reverse Transcription, PCR and Cloning

				Production of cDNA
		5' -GAGCRAAATCCCTGTACTTGAC (T) 30 NN-3' (SEQ.ID.No. 12)		specific part of spcI
MC18		5' -GAGCAAATCCCTGTACTTGAC-3' (SEQ.ID.No. 13)		anchor primer
5	6344	5' -GACCAAGCTATGACCTCGAC-3' (SEQ.ID.No. 14)		exon 5 reversed
	6275	5' -CTCAGGGTGTATGCTTGCTGCTG-3' (SEQ.ID.No. 15)		exon 3 forward
	6142	5' -CGGGCTGAGGGGACCTACACTGGTG-3' (SEQ.ID.No. 16)		exon 6 reversed
	6277	5' -AATGGTGAATCCAGGTGAG-3' (SEQ.ID.No. 17)		exon 11 reversed
	6546	5' -TGGAGTCAGCACAAACA-3' (SEQ.ID.No. 18)		exon 6 forward
34	6351	5' -GAGTGCNGATGGTAACG-3' (SEQ.ID.No. 19)		exon 14 reversed
	6407	5' -GAGCCTCTCGTGGGGTCA-3' (SEQ.ID.No. 20)		exon 10 forward
	6278	5' -OGCTCCCTGGTGAAGTGAC-3' (SEQ.ID.No. 21)		exon 23 reversed
	6561	5' -CTCACCATGTCCTCCCAA-3' (SEQ.ID.No. 22)		exon 13 forward
	6346	5' -ATCATGAACTGGAGAACAG-3' (SEQ.ID.No. 23)		exon 16 reversed
	6395	5' -CTGGAGGGTCCCCAGATG-3' (SEQ.ID.No. 24)		exon 14 forward
15	6406	5' -TGCAGCCACGAAAGGCTC-3' (SEQ.ID.No. 25)		exon 23 forward
	6506	5' -CAGGGCTCAGGGAGG-3' (SEQ.ID.No. 26)		exon 22 forward
	6548	5' -AGGAGAGATGCTGGCTG-3' (SEQ.ID.No. 27)		exon 3 forward -SfiI
	6725	5' -GACGGGGCCAAGCGCGCTGCAAGGGCATCCAC-3' (SEQ.ID.No. 28)		exon 29 reversed -XbaI
20	6276	5' -GGCCCTCAGGCGTTCTCCCTTCAGG-3' (SEQ.ID.No. 29)		

Determination of Similarities to Other Proteins

The SMART program (<http://smart.embl-heidelberg.de>) is searched for domain architectures of the protease and identified protein modules including a signal peptide with its transmembrane region, a furin cleavage site, a metalloprotease domain, i.e. a Zn -protease catalytic site consensus sequence (HEXXH), a Met turn, a disintegrin domain, a cysteine -rich region, and thrombospondin type 1 (TSP-1) motifs (Figure 6). These modules are also shared by members of the novel ADAMTS 10 (for a disintegrin and metalloprotease with thrombospondin type 1 motif) metalloproteinase family (Tang 1999. FEBS Lett. 445:223-225; Tang 2001. Int. J. Biochem. Cell Biol. 33:33-44). The amino acid sequence of the vWF cleaving protease is aligned with all the human ADAMTS protein sequences, which are 15 listed by the human genome organization (HUGO) gene nomenclature committee

<http://www.gene.ucl.ac.uk/nomenclature/genefamily/adamts.html>

A schematic representation of the domains is shown in Figure 6. In contrast to the ADAMTS proteins our putative new member 20 of this family lacks a prodomain. However, examination of the amino acid sequences of the next five putative exons upstream of exon 1-2 showed no sequence homologies to ADAMTS proteins. In addition, no signal peptide sequences can be found on these exons. We thus named the vWF -cleaving protease ADAMTS13.

25 The deduced amino acid sequence is also compared with the EMBL protein database (<http://www.ebi.ac.uk>). Exons 9 to 16 correspond partly to an already submitted hypothetical 39.9 kDa protein located on chromosome 9 and termed open reading frame 8 (C9ORF8, XM_005647, GI12735207). In addition exon 26 30 to 29 correspond to the hypothetical protein DKFZp434C2322 (NM032252, GI14149974) (Wiemann et al. 2001. Genome Res. 11: 422-435).

Example 4:**Affinity purification of von Willebrand Factor (vWF)**

The peptide with the sequence AAGGILHLELLV (SEQ.ID.No.

1) is synthesized on a solid-phase support following the

5 method of Barany et al. (1980. Solid-phase Peptide
Synthesis. In: *The Peptides*. vol. 2 ,Gross, E. and
Meienhofer, J. (eds.) Academic, New York, SEITEN). After
cleavage and de-protection of the peptide, the peptide is
purified by ion-exchange chromatography. The peptide is
10 characterized by reverse phase HPLC on a C8 silica column
with gradient elution in trifluoro acetic acid with
acetonitrile. The peptide showed no major byproducts.

The peptide is solubilized in a concentration of
5 mg/mL in 0.1 molar phosphate buffer pH 7.5 and incubated

15 with a pre-activated gel suitable for affinity
chromatography (Actigel, ALD-Superflow, Sterogene). Prior
to coupling of the peptide to the gel the pre-activated
matrix is excessively washed with the same phosphate
buffer. One volume of the pre-washed gel is then mixed with
20 one volume of the peptide solution to be immobilized and
subsequently 0.1 volume portions of a solution of 0.1 molar
cyanoborohydride (NaCNBH₃) in 0.1 molar phosphate buffer pH
7.5. The gel is suspended in this solution and shaked for
15 hours at room temperature. Subsequently the gel is
25 washed on a sinter funnel with a 10-fold volume of the
phosphate buffer containing 150 mmolar NaCl and with
5 volumes of the phosphate buffer containing 2 molar NaCl.
Then the gel is equilibrated with an access of 0.1 molar
phosphate buffer pH 7.0.

30 The gel is then transferred into a chromatographic
column having a dimension of diameter to gel bed height of

1:4. By determining the peptide concentration the solution of the incubation supernatant after separation from the gel and the washing solutions the amount of peptide coupled to the affinity matrix is calculated. The coupling rate is

5 85%.

The gel is subsequently used to purify vWF from a Factor VIII (FVIII)/vWF complex. A FVIII/vWF complex concentrate is produced according to US 4,814,435 containing vWF in a concentration of 260 U vWF:Ag/ml and a specific activity of 13.5 U vWF:Ag/mg Protein. The concentrate is diluted with 20 mM phosphate buffer pH 7.0 to a final vWF concentration of 6 U vWF:Ag/mL. A volume of 20 ml of this solution is subjected to the affinity column with immobilized peptide described above. After washing the column with 10 ml of the phosphate buffer the vWF specifically bound to the peptide ligand is eluted by a linear gradient from 0-2 mol/l NaCl in phosphate buffer at a flow rate of 1 ml / minute. Fractions of 1 ml are collected and their optical density is determined at 280 nm. All fractions are measured for their content of vWF antigen determined by a specific ELISA method (Asserachrom vWF, Boehringer, Mannheim). Measurement showed a specific peak of vWF eluting from the peptide at a NaCl concentration of 100 mmol/l, while most of the protein measured by UV-absorption eluted prior to the vWF fraction with the washing buffer. The vWF containing fractions are pooled and measured for vWF activity. The vWF in this pool had a specific activity of 95 U vWF/mg protein and is essentially free from other proteins.

20
25
30

Example 5:**Anti-vWF-cp polypeptide antibodies**

The peptide with the sequence AAGGILHLELLV (SEQ.ID.No. 1) is synthesized and purified as described in example 4.

5 The peptide is then used to immunize 3 months old BALB/c mice with the following protocol: A primary subcutaneous injection of 100 µg peptide antigen emulsified in Freund's complete adjuvant in 100 µl followed by intra-peritoneal boosts of 100 µg peptide antigen in phosphate buffered saline at monthly intervals.

The anti-peptide titer is tested by routine ELISA method using purified peptide as screening antigen. After the final boost the spleens are taken from the mice for cell fusion. Cell fusion is carried out according to a standard protocol originally described by Köhler et al. (1975, Nature 256:495-497). Anti-peptide antibodies producing hybridoma cell lines are screened by standard techniques with the purified peptide as screening antigen essentially based on a conventional ELISA methodology.

20 After cloning a cell line can be isolated with a high expression level of an antibody specific for the screening peptide with the sequence AAGGILHLELLV. This cell line is cultured on serum-free culture medium and grown to high density. The supernatant of the cell culture is harvested 25 by centrifugation to remove cells and the monoclonal antibody containing supernatant is concentrated by ultra-diafiltration and conditioned for further use.

The monoclonal antibody obtained had a high selectivity for the vWF cleaving protease as described by Furlan et al. (1996, Blood 87: 4223-4234). This monoclonal antibody is immobilized to a polystyrene ELISA plate in a carbonate/bi-carbonate buffer, 0.05 molar, pH 9.6, at a

concentration of 5 µg immunoglobuline/ml overnight
(16 hours) at 4°C, with each 100 µl of coating solution per well. The coating solution is removed from the wells and replaced by a solution of bovine serum albumin (BSA) at a concentration of 100 µg/ml at a volume of 100 µL per well, for 2 hours. The BSA solution is removed and the wells are washed with phosphate buffered saline. The pre-coated plates are then incubated with either samples of platelet poor plasma from healthy human plasma donors or platelet poor plasma from patients with an unclear diagnosis of either thrombotic thrombocytopenic purpura (TTP) or hemolytic uremic syndrome (HUS). After incubation of the plasma samples with the antibody coated ELISA plates as in a routine sandwich ELISA system, after 3 hours the plasma is removed from the wells. Wells are washed with phosphate buffered saline and incubated with the monoclonal antibody directed against the peptide with the sequence AAGGILHLELLV, conjugated with horse radish peroxidase following the method of Wilson et al. (1978. In:

20 *Immunofluorescence and Related Staining Techniques*; Knapp, W. Holubar, K. and Wick, G (eds.), Elsevier/North Holland, Amsterdam, 215) and detected by the OPT reagent as described by Cathy et al, (1989. ELISA and related enzyme immunoassays, In: *Antibodies II a practical approach*. Cathy D (ed.), IRL Press Eynsham Oxford England, 97).

Based on the level of the samples from the healthy human plasma donors a normal range is established. Plasmas from patients with HUS had a vWF protease activity equivalent to healthy humans while patients with TTP had a decreased protease activity as confirmed by an assay based on a different assay principle as described in WO 00/50904.

Example 6:**Cloning of the vWF cleaving protease gene**

Human salivary gland poly A+ RNA is purchased from Clontech. First strand cDNA is obtained using Expand

5 reverse transcriptase (Hoffmann La Roche) and oligo d(T) primer according to the manufacturer's instructions. PCR is performed using 5' CGGCAGGATCCTACACCTGG 3' (SEQ.ID.NO. 10) and 5'AATGGTGACTCCCAGGTCGA 3' (SEQ.ID.NO. 11) as primers with 10 ng of salivary gland cDNA as template and 10 U of
10 Hot Star Taq polymerase (Qiagen). The thermal cycling parameters are an initial incubation at 94° C for 15 minutes followed by 45 cycles of 94° C (50 sec), 50° C (50 sec), 72° C (2 min). PCR products are directly sequenced in both directions using the BigDye Terminator Cycle
15 Sequencing Ready Reaction Kit (PerkinElmer Life Science).

The obtained DNA sequence is used to scan the genomic data base using BLAST (basic local alignment search tool) programs and matched to the chromosome 9 clone RP11-224N20. DNA sequence is translated to amino acids sequence using
20 ExPASy proteomic tools. The DNA and translated amino acid sequence corresponding to 4 putative exons of chromosome 9q34 is shown in Fig. 5.

RT-PCR fragments encompassing either the pre-prosequence or the mature domains of the vWF cleaving
25 protease are cloned into vector pDrive (Qiagen) by PCR cloning. For amplification of mature vWF-cp the primer #6601 (5'-AGCGGTCTATGGCTGCAGCGGCCATCCTACACC-3') (SEQ.ID. NO. 30) and #6617 (5'-AGCTCGAGCTGGCCAGACACGGAAACAAAT-3') (SEQ.ID.NO. 31) are used. The resulting DNA-fragment is
30 ligated to the T-overlaps of vector pDrive. The construct comprising mature vWF-cp is called pFP H251/8. For amplification of pre-prosequence of vWF-cp the primer

#66128 (5'-GGCGAATTCCATGCACCAGCGTCACCCCCG- 3') (SEQ. ID. NO. 32) and #6787 (5'-ACAGCATTAAACTAAGCCGCC-3') (SEQ.ID.NO. 33) are used. The resulting DNA-fragment is inserted into vector pDrive. The resulting construct is called pFP H262-
5 35/14.

Example 7

Expression of vWF cleaving protease

The eukaryotic expression vector pcDNA3.1(+) (Invitrogen)
10 is used for the expression of the full-length vWF cleaving protease (vWF-cp) under control of the human CMV promoter.

A 4.12 kB EcoRI/XhoI fragment is excised from the plasmid pFP H251/8, the fragment encompassing the cDNA sequence
15 encoding the mature vWF-cp from nucleotide nt 223 to 4284 (without pre-pro-sequence from nt 1 to nt 222) and inserted into the EcoRI/XhoI sites of pcDNA3.1(+). To complete the 5' -end of the cDNA to add the leader and propeptide sequence, a PCR is performed using plasmid pFP H262-35/14
20 which contains the cDNA sequence of vWF-cp from nt -10 (10 nt upstream from start codon ATG) to nt +824 in vector pDrive (Qiagen) as template and direct primer 6839 (5'-
GATCGAATTCGCCGGCCACCATGCACCAGCGTCACCC CCG- 3') (SEQ.ID.NO.
34), harbouring the Kozak consensus sequence (underlined)
25 for the optimal context for the recognition of the start codon, and reverse primer 3113 (5'- CGGATAACAATTTCACACAGG- 3') (SEQ.ID.NO. 35), which binds in the lacZ region of pDrive vector. PCR is accomplished under standard reaction conditions using HotStar DNA polymerase (Qiagen) and Q-
30 solution (Qiagen). The amplified fragment comprising nt -10 to +824 is cut with EcoRI and AscI and used to replace the EcoRI/AscI fragment of the incomplete clone containing only

the mature sequence of vWF-cp. The latter construct encoding the complete sequence of vWF-cp called pCMV-vWFcp is further used for transfection and expression studies in mammalian cells.

5

For expression of vWF-cp, SKHep cells (ATCC) cells are transiently transfected with plasmid pCMV-vWFcp and, in parallel as a control with parental vector cDNA3.1(+), using Lipofectamine 2000 (Life Technologies, Inc).

10 Transfected cells are cultivated under standard conditions in DMEM/HAM's F12(1:1) medium (GIBCO) with 10% fetal calf serum, at a temperature of 37°C and 5% CO₂.

vWF-cp expression is analysed by Western blot, whereby
15 samples of conditioned medium and cell harvest are subjected to SDS-PAGE on a 4%stacking/6% separation gel and Western-blot analysis is performed using anti-vWF-cp TTP patient plasma containing polyclonal anti-vWF-cp antibodies and goat-anti-hu-IgG (Fab-specific AB, SIGMA). VWF-cp specific bands are visualized by BCIP/NBT detection.

VWF-cp could be detected in sample of the cell lysate and seems to be mainly cell-associated. The results of the
25 Westernblot analysis is shown in Figure 7, showing specific protein band of vWF-cp at about molecular weight of about 170kD reacting with patient sera.

The cell lysate of the vWF-cp expressing cells are further tested for vWF-cp activity according to the method as
30 described by Furlan et al. (1996. Blood 87: 4235-4244) and vWF multimer analysis is performed in 1% SDS-agarose gel as described by Ruggeri et al. (1981. Blood 57: 1140-1143)

(Fig. 8). The biological activity of the vWF-cp expressed in mammalian cells could be clearly shown as high molecular weight vWF is degraded to vWF molecules having lower molecular weight (Fig. 8, lane 5).

5

Claims:

1. A vWF-cp polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).
5
2. The polypeptide according to claim 1 encoding a polypeptide having an amino sequence as shown in Fig. 10 5 or a partial sequence of at least 12 amino acids thereof.
15
3. The polypeptide according to claim 1 or 2 having a vWF-cp activity.
15
4. The polypeptide according to any of the claims 1-3, wherein said polypeptide retains vWF cleaving protease activity in the presence of serine protease inhibitor and a calpain protease inhibitor.
20
5. An isolated polypeptide comprising an amino acid sequence having at least 80% identity to the amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5.
25
6. An isolated polypeptide comprising an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5.
30

7. A substantially pure vWF -cp polypeptide selected from the group of a polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

5
8. A substantially pure vWF -cp polypeptide according to claim 7, wherein said polypeptide exhibiting an apparent molecular weight of about 180 KD, 170 kD, 160 10 kD or 120 KD in SDS-PAGE analysis under reducing conditions.

15
9. A substantially pure vWF -cp polypeptide according to claim 7, wherein said polypeptide exhibiting an apparent molecular wight of about 150 KD, 140 kD, 130 kD or 110 KD in SDS-PAGE analysis under non-reducing conditions.

20
10. A composition comprising a polypeptide according to any of the claims 1 - 9.

25
11. A composition according to claim 10 further comprising a divalent metal ion selected from the group of Ca^{2+} , Sr^{2+} , Ba^{2+} and Mg^{2+} .

30
12. A composition according to claim 10 or 11 comprising clusterin or an analog or derivative thereof having clusterin activity.

13. A nucleic acid molecule comprising a nucleic acid sequence encoding a vWF-cp polypeptide according to

any of the claims 1 to 7.

14. The nucleic acid molecule according to claim 13
encoding a vWF-cp polypeptide as shown in Fig. 5 or a
5 partial sequence thereof.

15. An expression vector comprising a nucleic acid
molecule according to claim 13.

10 16. A host cell comprising an expression vector
according to claim 15.

17. A method for production of a vWF-cp protease
polypeptide comprising the steps of
15 - growing a host cell according to claim 16 in a
nutrient medium under conditions to express said
polypeptide
- harvesting said polypeptide expressed and
- isolating said polypeptide.

20 18. A method of purification of vWF comprising the
steps of
- providing as a ligand a vWF-cp polypeptide according
to any of the claims 1 to 7,
25 - contacting a solution comprising vWF with said
polypeptide ligand under conditions whereby vWF is
bound to said ligand and
- recovering from said ligand purified vWF.

30 19. A method for production of anti-vWF cp
polypeptide antibodies wherein an animal is
immunized with a vWF-cp polypeptide according to any

of the claims 1 to 7 and anti-vWF-cp polypeptide antibodies are isolated from said animal.

20. A vWF-cp polypeptide binding molecule selected from

5 the group of antibodies, single chain antibodies, Fab- or Fab'2-fragment, peptide or polypeptides with vWF protease binding site, obtainable by a method wherein a phage display library is screened for anti-vWF-cp polypeptide binding molecule, the nucleic acid sequence of positive clones are determined and a 10 nucleic acid molecule comprising the sequence is cloned into an expression vector.

21. A method for purification of vWF -cp polypeptide

15 comprising the step of contacting a solution comprising vWF -cp polypeptide with vWF protease polypeptide binding molecule according to claim 20, under conditions whereby vWF -cp polypeptide is bound to said vWF -cp polypeptide binding molecule, 20 selectively eluting vWF -cp polypeptide from said binding molecule and recovering purified vWF.

22. A method for detection of vWF -cp polypeptide in a

25 sample, wherein a solution suspected to contain vWF - cp is contacted with a vWF-cp polypeptide binding molecule according to claim 20, to allow the formation of an vWF -cp polypeptide/ binding molecule complex and detection said complex.

30 23. Use of a vWF-cp polypeptide according to any of the claims 1 to 7 for the production of a preparation for prophylaxis and therapy of thrombosis and

thromboembolic disease.

24. Use according to claim 23, wherein the
thromboembolic disease is thrombotic thrombocytic
5 purpura (TTP), Henoch-Schönlein purpura, preeclampsia,
neonatal thrombocytopenia or hemolyticuremic syndrome.

PURIFICATION SCHEME

1. Purification Step

Figure 1

2. Purification Step

Pooled Eluate from Step 1

Immuno Affinity Chromatography

Therasorb® 50 ml

Dilution

Anion Exchange Chromatography

High Q Support® 5 ml

Affinity Chromatography

Lentil Lectin-Sepharose® 25 ml

Elution of vWF Protease with Methyl- α -D-Mannopyranoside 0.3M

Figure 1

3. Purification Step

Figure 1

Optional: 4. Purification Step

Pooled Eluate from Step 3

Affinity Chromatography

Anti- α_2 -Macroglobulin-column 1ml

and/or optional

Affinity Chromatography

Anti-Clusterin column

Figure 1

Figure 2

gctgcaggcggcatcctacacctggagctgtggccgtggccccatgtc
A A G G I L H L E L L V A V G P D V
ttccaggctaccaggaggacacagagcgctatgtgctaccaacctaacaatcggggca
F Q A H Q E D T E R Y V L T N L N I G A
gaactgcttcgggacccgtccctggggctcagttcgggtgcacctggtaagatggtcat
E L L R D P S L G A Q F R V H L V K M V I
tctgacagagcgtgggtgccccaaatatacacagccaacactcacatcgccctgtgagc
L T E P E G A P N I T A N L T S S L L S
gtctgtgggtggagccagacatcaaccctgaggacacacggatccggcatgtgac
V C G W S Q T I N P E D D T D P G H A D
ctggtcctctataatcacttaggttgcactggatgtgcgtatggtaaccggcaggtcgg
L V L Y I T R F D L E L P D G N R Q V R
ggcgtcaccctggggcggtgcctgtcccaacctggagctgcctcattaccggaggac
G V T Q L G G A C S P T W S C L I T E D
actggcttcgacactggggagtccatt
T G F D L G V T I

Figure 3

Figure 4

Figure 5A

Figure 5B

Figure 5C

ADAMTS 13**Figure 6**

Figure 7

Figure 8

SEQUENCE LISTING

5 <110> Baxter AG

<120> von Willebrand factor(vWF)cleaving protease polypeptide, nucleic acid encoding the polypeptide and use of polypeptide

10 <130> FA247

<140>
<141>

15 <150> 09/721,254

<151> 2000-11-22

<150> 09/833,328

<151> 2001-04-12

20 <160> 35

<170> PatentIn Ver. 2.1

25 <210> 1

<211> 12
<212> PRT

<213> Homo sapiens

30 <400> 1

Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val
1 5 10

35 <210> 2

<211> 15
<212> PRT
<213> Homo sapiens

40 <400> 2

Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly
1 5 10 15

45 <210> 3

<211> 148
<212> PRT
<213> Homo sapiens

50 <400> 3

Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly Pro
1 5 10 15

Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr
20 25 30

55 Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala
35 40 45

Gln Phe Arg Val His Leu Val Lys Met Val Ile Leu Thr Glu Pro Glu
 50 55 60

5 Gly Ala Pro Asn Ile Thr Ala Asn Leu Thr Ser Ser Leu Leu Ser Val
 65 70 75 80

Cys Gly Trp Ser Gln Thr Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly
 10 15 85 90 95

His Ala Asp Leu Val Leu Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro
 100 105 110

15 Asp Gly Asn Arg Gln Val Arg Gly Val Thr Gln Leu Gly Gly Ala Cys
 115 120 125

Ser Pro Thr Trp Ser Cys Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu
 20 130 135 140

25 Gly Val Thr Ile
 145

<210> 4
 <211> 1353
 <212> PRT
 <213> Homo sapiens

<400> 4
 30 Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly Pro
 1 5 10 15

Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr
 35 20 25 30

Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala
 35 40 45

Gln Phe Arg Val His Leu Val Lys Met Val Ile Leu Thr Glu Pro Glu
 40 50 55 60

Gly Ala Pro Asn Ile Thr Ala Asn Leu Thr Ser Ser Leu Leu Ser Val
 45 65 70 75 80

Cys Gly Trp Ser Gln Thr Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly
 50 85 90 95

His Ala Asp Leu Val Leu Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro
 55 100 105 110

Asp Gly Asn Arg Gln Val Arg Gly Val Thr Gln Leu Gly Gly Ala Cys
 115 120 125

Ser Pro Thr Trp Ser Cys Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu
 55 130 135 140

	Gly Val Thr Ile Ala His Glu Ile Gly His Ser Phe Gly Leu Glu His			
145	150	155	160	
5	Asp Gly Ala Pro Gly Ser Gly Cys Gly Pro Ser Gly His Val Met Ala			
	165	170	175	
	Ser Asp Gly Ala Ala Pro Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser			
	180	185	190	
10	Arg Arg Gln Leu Leu Ser Leu Leu Ser Ala Gly Arg Ala Arg Cys Val			
	195	200	205	
	Trp Asp Pro Pro Arg Pro Gln Pro Gly Ser Ala Gly His Pro Pro Asp			
	210	215	220	
15	Ala Gln Pro Gly Leu Tyr Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala			
	225	230	235	240
20	Phe Gly Pro Lys Ala Val Ala Cys Thr Phe Ala Arg Glu His Leu Asp			
	245	250	255	
	Met Cys Gln Ala Leu Ser Cys His Thr Asp Pro Leu Asp Gln Ser Ser			
	260	265	270	
25	Cys Ser Arg Leu Leu Val Pro Leu Leu Asp Gly Thr Glu Cys Gly Val			
	275	280	285	
	Glu Lys Trp Cys Ser Lys Gly Arg Cys Arg Ser Leu Val Glu Leu Thr			
	290	295	300	
30	Pro Ile Ala Ala Val His Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser			
	305	310	315	320
35	Pro Cys Ser Arg Ser Cys Gly Gly Val Val Thr Arg Arg Arg Gln			
	325	330	335	
	Cys Asn Asn Pro Arg Pro Ala Phe Gly Gly Arg Ala Cys Val Gly Ala			
	340	345	350	
40	Asp Leu Gln Ala Glu Met Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln			
	355	360	365	
	Leu Glu Phe Met Ser Gln Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu			
	370	375	380	
45	Arg Ser Ser Pro Gly Gly Ala Ser Phe Tyr His Trp Gly Ala Ala Val			
	385	390	395	400
50	Pro His Ser Gln Gly Asp Ala Leu Cys Arg His Met Cys Arg Ala Ile			
	405	410	415	
	Gly Glu Ser Phe Ile Met Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr			
	420	425	430	
55	Arg Cys Met Pro Ser Gly Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys			
	435	440	445	

	Val Ser Gly Ser Cys Arg Thr Phe Gly Cys Asp Gly Arg Met Asp Ser
	450 455 460
5	Gln Gln Val Trp Asp Arg Cys Gln Val Cys Gly Gly Asp Asn Ser Thr
	465 470 475 480
	Cys Ser Pro Arg Lys Gly Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr
	485 490 495
10	Val Thr Phe Leu Thr Val Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala
	500 505 510
	Asn His Arg Pro Leu Phe Thr His Leu Ala Val Arg Ile Gly Gly Arg
	515 520 525
15	Tyr Val Val Ala Gly Lys Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro
	530 535 540
20	Ser Leu Leu Glu Asp Gly Arg Val Glu Tyr Arg Val Ala Leu Thr Glu
	545 550 555 560
	Asp Arg Leu Pro Arg Leu Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln
	565 570 575
25	Glu Asp Ala Asp Ile Gln Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly
	580 585 590
	Asn Leu Thr Arg Pro Asp Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro
	595 600 605
30	Arg Gln Ala Trp Val Trp Ala Ala Val Arg Gly Pro Cys Ser Val Ser
	610 615 620
35	Cys Gly Ala Gly Leu Arg Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala
	625 630 635 640
	Arg Lys Glu Leu Val Glu Thr Val Gln Cys Gln Gly Ser Gln Gln Pro
	645 650 655
40	Pro Ala Trp Pro Glu Ala Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp
	660 665 670
	Ala Val Gly Asp Phe Gly Pro Cys Ser Ala Ser Cys Gly Gly Leu
	675 680 685
45	Arg Glu Arg Pro Val Arg Cys Val Glu Ala Gln Gly Ser Leu Leu Lys
	690 695 700
	Thr Leu Pro Pro Ala Arg Cys Arg Ala Gly Ala Gln Gln Pro Ala Val
	705 710 715 720
	Ala Leu Glu Thr Cys Asn Pro Gln Pro Cys Pro Ala Arg Trp Glu Val
	725 730 735
55	Ser Glu Pro Ser Ser Cys Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu
	740 745 750

	Glu Asn Glu Thr Cys Val Pro Gly Ala Asp Gly Leu Glu Ala Pro Val		
	755	760	765
5	Thr Glu Gly Pro Gly Ser Val Asp Glu Lys Leu Pro Ala Pro Glu Pro		
	770	775	780
	Cys Val Gly Met Ser Cys Pro Pro Gly Trp Gly His Leu Asp Ala Thr		
	785	790	795
10	Ser Ala Gly Glu Lys Ala Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly		
	805	810	815
	Ala Gln Ala Ala His Val Trp Thr Pro Ala Ala Gly Ser Cys Ser Val		
	820	825	830
15	Ser Cys Gly Arg Gly Leu Met Glu Leu Arg Phe Leu Cys Met Asp Ser		
	835	840	845
20	Ala Leu Arg Val Pro Val Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys		
	850	855	860
	Pro Gly Ser Arg Arg Glu Val Cys Gln Ala Val Pro Cys Pro Ala Arg		
	865	870	875
25	Trp Gln Tyr Lys Leu Ala Ala Cys Ser Val Ser Cys Gly Arg Gly Val		
	885	890	895
	Val Arg Arg Ile Leu Tyr Cys Ala Arg Ala His Gly Glu Asp Asp Gly		
	900	905	910
30	Glu Glu Ile Leu Leu Asp Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu		
	915	920	925
35	Pro Gln Glu Ala Cys Ser Leu Glu Pro Cys Pro Pro Arg Trp Lys Val		
	930	935	940
	Met Ser Leu Gly Pro Cys Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg		
	945	950	955
40	Arg Ser Val Ala Cys Val Gln Leu Asp Gln Gly Gln Asp Val Glu Val		
	965	970	975
	Asp Glu Ala Ala Cys Ala Ala Leu Val Arg Pro Glu Ala Ser Val Pro		
	980	985	990
45	Cys Leu Ile Ala Asp Cys Thr Tyr Arg Trp His Val Gly Thr Trp Met		
	995	1000	1005
50	Glu Cys Ser Val Ser Cys Gly Asp Gly Ile Gln Arg Arg Arg Asp Thr		
	1010	1015	1020
	Cys Leu Gly Pro Gln Ala Gln Ala Pro Val Pro Ala Asp Phe Cys Gln		
	1025	1030	1035
55	His Leu Pro Lys Pro Val Thr Val Arg Gly Cys Trp Ala Gly Pro Cys		
	1045	1050	1055

Val Gly Gln Gly Thr Pro Ser Leu Val Pro His Glu Glu Ala Ala Ala
 1060 1065 1070
 5 Pro Gly Arg Thr Thr Ala Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser
 1075 1080 1085
 Gln Ala Arg Gly Leu Leu Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu
 1090 1095 1100
 10 Leu Pro Gly Pro Gln Glu Asn Ser Val Gln Ser Ser Ala Cys Gly Arg
 1105 1110 1115 1120
 15 Gln His Leu Glu Pro Thr Gly Thr Ile Asp Met Arg Gly Pro Gly Gln
 1125 1130 1135
 Ala Asp Cys Ala Val Ala Ile Gly Arg Pro Leu Gly Glu Val Val Thr
 1140 1145 1150
 20 Leu Arg Val Leu Glu Ser Ser Leu Asn Cys Ser Ala Gly Asp Met Leu
 1155 1160 1165
 Leu Leu Trp Gly Arg Leu Thr Trp Arg Lys Met Cys Arg Lys Leu Leu
 1170 1175 1180
 25 Asp Met Thr Phe Ser Ser Lys Thr Asn Thr Leu Val Val Arg Gln Arg
 1185 1190 1195 1200
 Cys Gly Arg Pro Gly Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu
 30 1205 1210 1215
 Ala Pro Glu Thr Phe Tyr Arg Glu Cys Asp Met Gln Leu Phe Gly Pro
 1220 1225 1230
 35 Trp Gly Glu Ile Val Ser Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala
 1235 1240 1245
 Gly Gly Cys Arg Leu Phe Ile Asn Val Ala Pro His Ala Arg Ile Ala
 40 1250 1255 1260
 Ile His Ala Leu Ala Thr Asn Met Gly Ala Gly Thr Glu Gly Ala Asn
 1265 1270 1275 1280
 Ala Ser Tyr Ile Leu Ile Arg Asp Thr His Ser Leu Arg Thr Thr Ala
 45 1285 1290 1295
 Phe His Gly Gln Gln Val Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala
 1300 1305 1310
 50 Glu Met Glu Phe Ser Glu Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg
 1315 1320 1325
 Gly Gln Tyr Trp Thr Leu Gln Ser Trp Val Pro Glu Met Gln Asp Pro
 55 1330 1335 1340
 Gln Ser Trp Lys Gly Lys Glu Gly Thr
 1345 1350

5 <210> 5
 <211> 1427
 <212> FRT
 <213> Homo sapiens
 10 <400> 5
 Met His Gln Arg His Pro Arg Ala Arg Cys Pro Pro Leu Cys Val Ala
 1 5 10 15
 15 Gly Ile Leu Ala Cys Gly Phe Leu Leu Gly Cys Trp Gly Pro Ser His
 20 25 30
 Phe Gln Gln Ser Cys Leu Gln Ala Leu Glu Pro Gln Ala Val Ser Ser
 35 40 45
 20 Tyr Leu Ser Pro Gly Ala Pro Leu Lys Gly Arg Pro Pro Ser Pro Gly
 50 55 60
 Phe Gln Arg Gln Arg Gln Arg Gln Arg Arg Ala Ala Gly Gly Ile Leu
 25 65 70 75 80
 His Leu Glu Leu Leu Val Ala Val Gly Pro Asp Val Phe Gln Ala His
 85 90 95
 30 Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr Asn Leu Asn Ile Gly Ala
 100 105 110
 Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala Gln Phe Arg Val His Leu
 35 115 120 125
 Val Lys Met Val Ile Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr
 130 135 140
 Ala Asn Leu Thr Ser Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr
 40 145 150 155 160
 Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu
 165 170 175
 45 Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val
 180 185 190
 Arg Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys
 50 195 200 205
 Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala His
 210 215 220
 Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro Gly Ser
 55 225 230 235 240

Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly Ala Ala Pro
 245 250 255
 5 Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser Arg Arg Gln Leu Leu Ser
 260 265 270
 Leu Leu Ser Ala Gly Arg Ala Arg Cys Val Trp Asp Pro Pro Arg Pro
 275 280 285
 10 Gln Pro Gly Ser Ala Gly His Pro Pro Asp Ala Gln Pro Gly Leu Tyr
 290 295 300
 Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala Phe Gly Pro Lys Ala Val
 305 310 315 320
 15 Ala Cys Thr Phe Ala Arg Glu His Leu Asp Met Cys Gln Ala Leu Ser
 325 330 335
 Cys His Thr Asp Pro Leu Asp Gln Ser Ser Cys Ser Arg Leu Leu Val
 20 340 345 350
 Pro Leu Leu Asp Gly Thr Glu Cys Gly Val Glu Lys Trp Cys Ser Lys
 355 360 365
 25 Gly Arg Cys Arg Ser Leu Val Glu Leu Thr Pro Ile Ala Ala Val His
 370 375 380
 Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser Pro Cys Ser Arg Ser Cys
 385 390 395 400
 30 Gly Gly Gly Val Val Thr Arg Arg Arg Gln Cys Asn Asn Pro Arg Pro
 405 410 415
 Ala Phe Gly Gly Arg Ala Cys Val Gly Ala Asp Leu Gln Ala Glu Met
 35 420 425 430
 Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln Leu Glu Phe Met Ser Gln
 435 440 445
 40 Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu Arg Ser Ser Pro Gly Gly
 450 455 460
 Ala Ser Phe Tyr His Trp Gly Ala Ala Val Pro His Ser Gln Gly Asp
 465 470 475 480
 45 Ala Leu Cys Arg His Met Cys Arg Ala Ile Gly Glu Ser Phe Ile Met
 485 490 495
 Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr Arg Cys Met Pro Ser Gly
 50 500 505 510
 Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys Val Ser Gly Ser Cys Arg
 515 520 525
 55 Thr Phe Gly Cys Asp Gly Arg Met Asp Ser Gln Gln Val Trp Asp Arg
 530 535 540

	Cys	Gln	Val	Cys	Gly	Gly	Asp	Asn	Ser	Thr	Cys	Ser	Pro	Arg	Lys	Gly	
545				550						555					560		
5	Ser	Phe	Thr	Ala	Gly	Arg	Ala	Arg	Glu	Tyr	Val	Thr	Phe	Leu	Thr	Val	
				565					570					575			
580	Thr	Pro	Asn	Leu	Thr	Ser	Val	Tyr	Ile	Ala	Asn	His	Arg	Pro	Leu	Phe	
					585					590							
10	10	Thr	His	Leu	Ala	Val	Arg	Ile	Gly	Gly	Arg	Tyr	Val	Val	Ala	Gly	Lys
				595					600					605			
15	Met	Ser	Ile	Ser	Pro	Asn	Thr	Thr	Tyr	Pro	Ser	Leu	Leu	Glu	Asp	Gly	
				610					615					620			
625	Arg	Val	Glu	Tyr	Arg	Val	Ala	Leu	Thr	Glu	Asp	Arg	Leu	Pro	Arg	Leu	
					630					635					640		
20	Glu	Glu	Ile	Arg	Ile	Trp	Gly	Pro	Leu	Gln	Glu	Asp	Ala	Asp	Ile	Gln	
				645					650					655			
660	Val	Tyr	Arg	Arg	Tyr	Gly	Glu	Glu	Tyr	Gly	Asn	Leu	Thr	Arg	Pro	Asp	
					665					670							
25	Ile	Thr	Phe	Thr	Tyr	Phe	Gln	Pro	Lys	Pro	Arg	Gln	Ala	Trp	Val	Trp	
				675					680					685			
690	Ala	Ala	Val	Arg	Gly	Pro	Cys	Ser	Val	Ser	Cys	Gly	Ala	Gly	Leu	Arg	
					695					700							
30	705	Trp	Val	Asn	Tyr	Ser	Cys	Leu	Asp	Gln	Ala	Arg	Lys	Glu	Leu	Val	Glu
					710					715					720		
35	725	Thr	Val	Gln	Cys	Gln	Gly	Ser	Gln	Gln	Pro	Pro	Ala	Trp	Pro	Glu	Ala
					725					730					735		
740	Cys	Val	Leu	Glu	Pro	Cys	Pro	Pro	Tyr	Trp	Ala	Val	Gly	Asp	Phe	Gly	
					740					745					750		
40	755	Pro	Cys	Ser	Ala	Ser	Cys	Gly	Gly	Gly	Leu	Arg	Glu	Arg	Pro	Val	Arg
					755					760					765		
770	Cys	Val	Glu	Ala	Gln	Gly	Ser	Leu	Leu	Lys	Thr	Leu	Pro	Pro	Ala	Arg	
					770					775					780		
45	785	Cys	Arg	Ala	Gly	Ala	Gln	Gln	Pro	Ala	Val	Ala	Leu	Glu	Thr	Cys	Asn
					785					790					795		
805	Pro	Gln	Pro	Cys	Pro	Ala	Arg	Trp	Glu	Val	Ser	Glu	Pro	Ser	Ser	Cys	
					805					810					815		
820	Thr	Ser	Ala	Gly	Gly	Ala	Gly	Leu	Ala	Leu	Glu	Asn	Glu	Thr	Cys	Val	
					820					825					830		
835	55	Pro	Gly	Ala	Asp	Gly	Leu	Ala	Pro	Val	Thr	Glu	Gly	Pro	Gly	Ser	
					835					840					845		

	Val Asp Glu Lys Leu Pro Ala Pro Glu Pro Cys Val Gly Met Ser Cys
	850 855 860
5	Pro Pro Gly Trp Gly His Leu Asp Ala Thr Ser Ala Gly Glu Lys Ala
	865 870 875 880
	Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly Ala Gln Ala Ala His Val
	885 890 895
10	Trp Thr Pro Ala Ala Gly Ser Cys Ser Val Ser Cys Gly Arg Gly Leu
	900 905 910
	Met Glu Leu Arg Phe Leu Cys Met Asp Ser Ala Leu Arg Val Pro Val
	915 920 925
15	Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys Pro Gly Ser Arg Arg Glu
	930 935 940
20	Val Cys Gln Ala Val Pro Cys Pro Ala Arg Trp Gln Tyr Lys Leu Ala
	945 950 955 960
	Ala Cys Ser Val Ser Cys Gly Arg Gly Val Val Arg Arg Ile Leu Tyr
	965 970 975
25	Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile Leu Leu Asp
	980 985 990
	Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gln Glu Ala Cys Ser
	995 1000 1005
30	Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met Ser Leu Gly Pro Cys
	1010 1015 1020
	Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg Arg Ser Val Ala Cys Val
	1025 1030 1035 1040
35	Gln Leu Asp Gln Gly Gln Asp Val Glu Val Asp Glu Ala Ala Cys Ala
	1045 1050 1055
40	Ala Leu Val Arg Pro Glu Ala Ser Val Pro Cys Leu Ile Ala Asp Cys
	1060 1065 1070
	Thr Tyr Arg Trp His Val Gly Thr Trp Met Glu Cys Ser Val Ser Cys
	1075 1080 1085
45	Gly Asp Gly Ile Gln Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala
	1090 1095 1100
	Gln Ala Pro Val Pro Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val
	1105 1110 1115 1120
	Thr Val Arg Gly Cys Trp Ala Gly Pro Cys Val Gly Gln Gly Thr Pro
	1125 1130 1135
55	Ser Leu Val Pro His Glu Glu Ala Ala Ala Pro Gly Arg Thr Thr Ala
	1140 1145 1150

Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser Gln Ala Arg Gly Leu Leu
 1155 1160 1165
 Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln Glu
 5 1170 1175 1180
 Asn Ser Val Gln Ser Ser Ala Cys Gly Arg Gln His Leu Glu Pro Thr
 1185 1190 1195 1200
 Gly Thr Ile Asp Met Arg Gly Pro Gly Gln Ala Asp Cys Ala Val Ala
 10 1205 1210 1215
 Ile Gly Arg Pro Leu Gly Glu Val Val Thr Leu Arg Val Leu Glu Ser
 1220 1225 1230
 15 Ser Leu Asn Cys Ser Ala Gly Asp Met Leu Leu Leu Trp Gly Arg Leu
 1235 1240 1245
 Thr Trp Arg Lys Met Cys Arg Lys Leu Leu Asp Met Thr Phe Ser Ser
 20 1250 1255 1260
 Lys Thr Asn Thr Leu Val Val Arg Gln Arg Cys Gly Arg Pro Gly Gly
 1265 1270 1275 1280
 Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu Ala Pro Glu Thr Phe Tyr
 25 1285 1290 1295
 Arg Glu Cys Asp Met Gln Leu Phe Gly Pro Trp Gly Glu Ile Val Ser
 30 1300 1305 1310
 Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala Gly Gly Cys Arg Leu Phe
 1315 1320 1325
 Ile Asn Val Ala Pro His Ala Arg Ile Ala Ile His Ala Leu Ala Thr
 35 1330 1335 1340
 Asn Met Gly Ala Gly Thr Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile
 1345 1350 1355 1360
 Arg Asp Thr His Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val
 40 1365 1370 1375
 Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu
 45 1380 1385 1390
 Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu
 1395 1400 1405
 Gln Ser Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys
 50 1410 1415 1420
 Glu Gly Thr
 55 1425

<210> 6
<211> 4585
<212> DNA
<213> Homo sapiens
5 <400> 6
ccatccat actgaccaga ttcccagtca ccaaggcccc ctctactcc gtcactcc 60
tcgggtcgc tccctgagg atgcaccagc gtacccccc ggcaagatgc cttcccttc 120
gtgtggccg aatcccttgc tttggcttc tccctggctg ctggggacc tcctattec 180
10 agcagagttt tttcaggct ttggaccac aggccgtgtc ttcttacttg agccctgggt 240
ctcccttaaa aggccgcctt cttcccttg gttccagag gcagaggcg aggccagggc 300
gggtgcagg cggcatctca cacctggagc tgctgggtgc ctggggcccc gatgtttcc 360
aggctcacca ggaggacaca gagcgcata tgctcaccaa cctcaacatc gggcagaac 420
tgcttggga cccgtccctg gggctcagt ttcgggtgc cctggtaag atggtcattc 480
15 tgacagagcc tgagggtgt ccaaatatca cagccaacctt caccctgtcc ctgctgacgc 540
tctgtgggtg gaggccagacc atcaaccctt aggacacac ggatcttgcg catgtgacc 600
ttgtctctca tatcaacttggg tttgacccggg agttgcctgt tggttaacccggg 660
gogtccacca gctgggggtt gctgtctcc caaccctggag ctgccttattt accggaggaca 720
ctggcttcg cttggggatc accatgtcccc atgagatgg gcacatgttc ggcctggac 780
20 acgacggcgc gcccggcgc ggtctggggcc ccageggacca cgtgtatggc tggacggcg 840
ccgcgcggcc cgccggccctc gctgtggccctt cttccatggcc ccggcagctg ctgagccctgc 900
tcagcgcagg acggggcgcgc tgctgtggcc accggccggg gctcaaccc gggccgggg 960
ggacccggcc ggatggcgac ctggccctt actacagcgc caacggacag tggccgtgg 1020
cttccggcccc caaggctgtc gctgtcaccc tggccaggaa gacactggat atgtgccagg 1080
25 ccctctctt ccacacaccc cccgtggacc aaaggctgtc cagccgcctc ctgttccctc 1140
tctgtggatgg gacagaatgtt ggcgtggaga agtgtgtgtc caagggctgc tggccgtccc 1200
ttggtgaggat gacccctata gcaacatgtc atggccgtgt gtcatagtgg ggtccccaa 1260
gtcttgcgtc cccgtccctgc ggaggagggt tggttccacca gaggccggcag tgcaacaacc 1320
ccagacccgtc ctttgggggg cttgtatgtt ttgggtgtca cttccaggcc gagatgtca 1380
30 acacttcggc ctggcggaaac accccagctgg agttcatgtc gcaacatgtc gcaacatgtc 1440
acggccggcc gtcgtccatcc tccctgggg gtcgtccatcc ctaccactgg ggtgtgtgt 1500
taccacaccc ccaaggggat gtcgtgtca gacacatgtt ccggggccatt ggccggaggat 1560
tcatcatgaa gctgtggagac agttccctgc atggggccgg gtttatgtca agtggcccc 1620
gggaggacgg gaccctgtac ctgtgtgtgtt cccgtggccctt cttccaggcc gagatgtca 1680
35 gtaggtatggatcccccacccatgtt gatgggacca ggtggccagggt tggtgggtggg gacaacacca 1740
ctgtccggcc accggaggcc tcccttccatcc ctggcggccatcc gggccatccatcc 1800
tgacaggatcc ccccaacttcc accgtgttc acatgtccaa ccacccgttccatcc 1860
acttggccgtt gaggatggatcc gggccgtatgg tggccgtgtcc gaaatgtccatcc 1920
acaccacca cccctccctc ctggggatcc gtcgtgtgtca gtcacatgtt gcccctccatcc 1980
40 aggaccggatcc gccccccatcc gaggatgtcc gcatctgggg accccctccatcc 2040

acatccagg ttagcggcg tatggcgagg agtatggcaa cctcacccgc ccagacatca 2100
 ccttcaccta ctccacgc aagccacggc aggccctgggt gtggccgct gtgcgtggc 2160
 cctgctcggt gagctgtgg gcaggcgctgc gctggtaaa ctacagctgc ctggaccagg 2220
 ccaggaagga gttggtgag actgtccagg gccaaggagg ccagcagccaa ccagcgtggc 2280
 5 cagaggccgt cggtcgaa ccctgcctc cctactgggc ggtgggagac ttccggccat 2340
 gcagccgcctc ctgtgggggt ggccctgcggg agccgcctggc ggcgtgcgt gaggcccagg 2400
 gcagccctctt gaagacattt cccccagccc ggtcagacgg agggcccccagg cagccagctg 2460
 tggcgtggaa aacctgcaac cccccaggccct gcctgcggc gtgggaggtg tcagagccaa 2520
 gtcatgcac atcagctgtt ggacgaggcc tggccttggaa gaacgagacc tttgtgtccag 2580
 10 gggcagatgg cctggaggtt ccagtgcgtt agggccctgg ctccgtatg gagaagctgc 2640
 ctgcgccttgc gcctgtgtc gggatgtcat gtcctccagg ctggggccat ctggatgc 2700
 cctctgcagg ggagaaggtt ccctcccat ggggcgcgtt caggacgggg gtcgtatgg 2760
 cacacgtgtt gacccctgcg gcagggtcgtt gtcctgcctc ctgcggggcgtt ggtctgtatgg 2820
 agtcgtgtt ctgtgtatg gactctgcctt tcagggtggcgtt tgccaggaa gagctgtgtt 2880
 15 gcttggcaag caagccctgg agccggccggg aggtctgcata ggtgttcctgg tgccctgc 2940
 ggtggcgttta caagctggcg gcctgcacgg tgatgtgtt gggatgggtc gtgcggaggaa 3000
 tccgttattt tgccggggcc catggggagg agcatgtgtt gggatgggtc ttggacaccc 3060
 agtgcggagg gtcgcctgc cccggaaaccc agggccctgg cagcctggag ccctgc 3120
 cttaggtggaa agtcatgtcc tcgtggccat gtcggccatg ctgtggccctt ggactgtcta 3180
 20 gacgctcggtt ggccctgtgtc cagtcgcacc aaggccaggaa cgtggagggtt gacgggggg 3240
 cctgtgcggc gtcgtgtggc cccggaggccca gtgtcccttgc ttcattgtcc gactgtccat 3300
 accgtgcgc tggatgggtt gtcgttttgc ctgtggggat ggcaccc 3360
 gccggcgttgc caccctgcctc ggacccaggcccaggccgc tggccacgtt gatttttgc 3420
 agcaactgtgc caagccgggtt actgtcggtt gtcgtggcc tggccctgtt gttggacagg 3480
 25 gtacgcccaag cctggtgccccca cacaaggaa cccgtgtccca aggacggacc acagccccc 3540
 ctgtgtggcgc ctccctggag tggtcccaagg cccggggccctt gtccttcctcc cccgtccccc 3600
 agcctcgccg gtcctgccttcc gggcccccagg aaaaactcgat gcaactcgat gtcgtggca 3660
 ggcacccactt tgacccaaaca ggaaccattt acatgcggggccaggccgc gcaactgtgtt 3720
 cagtgccat tggccggccc ctcggggagg tggtggccat cccgtgcctt gaggatgttcc 3780
 30 tcaactgcac tgggggggac atgtgtcgcc tttggggccctt gtcacccctgg aggaagatgt 3840
 gcaggaaactt gttggacatg actttcgatg ccaagaccaaa caccgtgggtt gtcgtggcc 3900
 gtcgtggggccg gccaggagggtt ggggtgtctgc tggccgtatgg gaggccatctt gtcctgtaaa 3960
 ccttcatacg agaatgttac atgcagcttctt tggccctgtt gggtaaaatc gtggccctt 4020
 cgctgtcc acggccacgatg aatgtggggg gtcgtggccctt cttccatataat gtggccccc 4080
 35 acggccaggat tggccatcat gcctggccca ccaacatggg cccgtggacc gaggggaggcc 4140
 atggccatca caccatgttgc cggggacaccac acacgtttggat gaccacagcg ttccatggc 4200
 agcagggtctt cttactgtggggatc tcaagagacca gccaggctgtt gatggaggatc acgggggtt 4260
 tcctgtggccatc tggccggccgc acggccacgatg aatgtggggg gtcgtggccctt cttccatataat gtggccccc 4320

agatgcgaga ccctcagtcc tggaggaa aggaaggaac ctgagggtca ttgaacattt 4380
 gtcccggtc tggccagccc tggagggtg acccctggtc tcagtgtttt ccaattcga 4440
 ctttttccaa tcttaggtat ctactttaaa gtccttcata atgtccaaaa ggctaggggg 4500
 ttggagggtgg ggactctgaa aaagcagcccc ccatttcotc ggttaccaat aaataaaaaca 4560
 5 tgcaggcaaa aaaaaaaaaaaa aaaaaa 4585

<210> 7
 <211> 4284
 10 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 15 <222> (1)..(4284)

<400> 7
 atg cac cag cgt cac ccc cgg gca aga tgc cct ccc ctc tgt gtg gcc 48
 Met His Gln Arg His Pro Arg Ala Arg Cys Pro Pro Leu Cys Val Ala
 20 1 5 10 15

gga atc ctt gcc tgt ggc ttt ctc ctg ggc tgc tgg gga ccc tcc cat 96
 Gly Ile Leu Ala Cys Gly Phe Leu Leu Gly Cys Trp Gly Pro Ser His
 20 25 30

25 ttc cag cag agt tgt ctt cag gct ttg gag cca cag gcc gtg tct tct 144
 Phe Gln Gln Ser Cys Leu Gln Ala Leu Glu Pro Gln Ala Val Ser Ser
 35 40 45

30 tac ttg agc cct ggt gct ccc tta aaa ggc cgc cct cct tcc cct ggc 192
 Tyr Leu Ser Pro Gly Ala Pro Leu Lys Gly Arg Pro Pro Ser Pro Gly
 50 55 60

35 ttc cag agg cag agg cag agg cgg gct gca ggc ggc atc cta 240
 Phe Gln Arg Gln Arg Gln Arg Ala Ala Gly Gly Ile Leu
 65 70 75 80

40 cac ctg gag ctg ctg gtg gcc ggc ccc gat gtc ttc cag gct cac 288
 His Leu Glu Leu Val Ala Val Gly Pro Asp Val Phe Gln Ala His
 85 90 95

45 cag gag gac aca gag cgc tat gtg ctc acc aac ctc aac atc ggg gca 336
 Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr Asn Leu Asn Ile Gly Ala
 100 105 110

gaa ctg ctt cgg gac ccg tcc ctg ggg gct cag ttt cgg gtg cac ctg 384
 Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala Gln Phe Arg Val His Leu
 115 120 125

50 gtg aag atg gtc att ctg aca gag cct gag ggt gct cca aat atc aca 432
 Val Lys Met Val Ile Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr
 130 135 140

145	gcc aac ctc acc tcc ctg ctg agc gtc tgt ggg tgg agc cag acc Ala Asn Leu Thr Ser Ser Leu Ieu Ser Val Cys Gly Trp Ser Gln Thr 150 155 160	480
5	atc aac cct gag gac acg gat cct ggc cat gct gac ctg gtc ctc Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu 165 170 175	528
10	tat atc act agg ttt gag ctg gag ttg cct gat ggt aac cgg cag gtg Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val 180 185 190	576
15	cgg ggc gtc acc cag ctg ggc ggt gcc tgc tcc cca acc tgg agc tgc Arg Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys 195 200 205	624
20	ctc att acc gag gac act ggc ttc gag ctg gga gtc acc att gcc cat Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala His 210 215 220	672
25	gag att ggg cac agc ttc ggc ctg gag cac gac ggc gcg ccc ggc agc Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro Gly Ser 225 230 235 240	720
30	ggc tgc ggc ccc agc gga cac gtg atg gct tgc gag ggc gcc ggc ccc Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly Ala Ala Pro 245 250 255	768
35	cgc gcc ggc ctc gcc tgg tcc ccc tgc agc cgc cgg cag ctg ctg agc Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser Arg Arg Gln Leu Leu Ser 260 265 270	816
40	ctg ctc agc gca gga cgg gcg cgc tgc gtg tgg gag ccg ccg cgg cct Leu Leu Ser Ala Gly Arg Ala Arg Cys Val Trp Asp Pro Pro Arg Pro 275 280 285	864
45	caa ccc ggg tcc gcg ggg cac ccg ccg gat ggc gag cag cct ggc ctc tac Gln Pro Gly Ser Ala Gly His Pro Pro Asp Ala Gln Pro Gly Leu Tyr 290 295 300	912
50	tac agc gcc aac gag gag tgc cgc gtg gcc ttc ggc ccc aag gct gtc Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala Phe Gly Pro Lys Ala Val 305 310 315 320	960
55	gcc tgc acc ttc gcc agg gag cac ctg gat atg tgc cag gcc ctc tcc Ala Cys Thr Phe Ala Arg Glu His Leu Asp Met Cys Gln Ala Leu Ser 325 330 335	1008
	tgc cac aca gac ccg ctg gac caa agc agc tgc agc cgc ctc ctc gtt Cys His Thr Asp Pro Leu Asp Gln Ser Ser Cys Ser Arg Leu Leu Val 340 345 350	1056
	cct ctc ctg gat ggg aca gaa tgt ggc gtg gag aag tgg tgc tcc aag Pro Leu Leu Asp Gly Thr Glu Cys Gly Val Glu Lys Trp Cys Ser Lys 355 360 365	1104

ggc cgc tgc cgc tcc ctg gtg gag ctg acc ccc ata gca gca gtg cat Gly Arg Cys Arg Ser Leu Val Glu Leu Thr Pro Ile Ala Ala Val His 370 375 380	1152
5	
ggg cgc tgg tct aac tgg ggt ccc cga agt cct tgc tcc cgc tcc tgc Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser Pro Cys Ser Arg Ser Cys 385 390 395 400	1200
10	
gga gga ggt gtg gtc acc agg agg cgg cag tgc aac aac ccc aga cct Gly Gly Gly Val Val Thr Arg Arg Gln Cys Asn Asn Pro Arg Pro 405 410 415	1248
15	
gcc ttt ggg ggg cgt gca tgt gtt ggt gct gac ctc cag gcc gag atg Ala Phe Gly Gly Arg Ala Cys Val Gly Ala Asp Leu Gln Ala Glu Met 420 425 430	1296
20	
tgc aac act cag gcc tgc gag aag acc cag ctg gag ttc atg tcg caa Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln Leu Glu Phe Met Ser Gln 435 440 445	1344
25	
cag tgc gcc agg acc gac cgc cag ccg ctg cgc tcc tcc oct ggc ggc Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu Arg Ser Ser Pro Gly Gly 450 455 460	1392
30	
gcc tcc ttc tac cac tgg ggt gct gct gta cca cac agc caa ggg gat Ala Ser Phe Tyr His Trp Gly Ala Ala Val Pro His Ser Gln Gly Asp 465 470 475 480	1440
35	
gct ctg tgc aga cac atg tgc cgg gcc att ggc gag agc ttc atc atg Ala Leu Cys Arg His Met Cys Arg Ala Ile Gly Glu Ser Phe Ile Met 485 490 495	1488
40	
aag cgt gga gac agc ttc ctc gat ggg acc cgg tgg atg cca agt ggc Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr Arg Cys Met Pro Ser Gly 500 505 510	1536
45	
ccc cgg gag gac ggg acc ctg agc ctg tgt gtc ggc agc tgc agg Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys Val Ser Gly Ser Cys Arg 515 520 525	1584
50	
aca ttt ggc tgt gat ggt agg atg gac tcc cag cag gta tgg gac agg Thr Phe Gly Cys Asp Gly Arg Met Asp Ser Gln Gln Val Trp Asp Arg 530 535 540	1632
55	
tgc cag gtg tgt ggt ggg gac aac agc acg tgc agc cca cgg aag ggc Cys Gln Val Cys Gly Gly Asp Asn Ser Thr Cys Ser Pro Arg Lys Gly 545 550 555 560	1680
60	
tct ttc aca gct ggc aga gcg aga gaa tat gtc aeg ttt ctg aca gtt Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr Val Thr Phe Leu Thr Val 565 570 575	1728
65	
acc ccc aac ctg acc agt gtc tac att gcc aac cac agg cct ctc ttc Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala Asn His Arg Pro Leu Phe 580 585 590	1776

aca cac ttg gcg gtg agg atc gga ggg cgc tat gtc gtg gct ggg aag Thr His Leu Ala Val Arg Ile Gly Gly Arg Tyr Val Val Ala Gly Lys 595 600 605	1824
5 atg agc atc tcc cct aac acc acc tac ccc tcc ctc ctg gag gat ggt Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro Ser Leu Leu Glu Asp Gly 610 615 620	1872
10 cgt gtc gag tac aga gtg gcc ctc acc gag gac cgg ctg ccc cgc ctg Arg Val Glu Tyr Arg Val Ala Leu Thr Glu Asp Arg Leu Pro Arg Leu 625 630 635 640	1920
15 gag gag atc cgc att tgg gga ccc ctc cag gaa gat gct gac atc cag Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln Glu Asp Ala Asp Ile Gln 645 650 655	1968
20 gtt tac agg cgg tat ggc gag gag tat ggc aac ctc acc cgc cca gag Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly Asn Leu Thr Arg Pro Asp 660 665 670	2016
25 atc acc ttc acc tac ttc cag cct aag cca cgg cag gcc tgg gtg tgg Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro Arg Gln Ala Trp Val Trp 675 680 685	2064
30 tgg gta aac tac agc tgc ctg gac cag gcc agg aag gag gag ttg gtg gag Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala Arg Lys Glu Leu Val Glu 705 710 720	2160
35 act gtc cag tgc caa ggg agc cag cag cca cca gcg tgg cca gag gcc Thr Val Gln Cys Gln Gly Ser Gln Gln Pro Pro Ala Trp Pro Glu Ala 725 730 735	2208
40 tgc gtg ctc gaa ccc tgc cct ccc tac tgg ggc gtg gga gac ttc ggc Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp Ala Val Gly Asp Phe Gly 740 745 750	2256
45 tgc gtg gag gcc cag ggc agc ctc ctg aag aca ttg ccc cca gcc cgg Cys Val Glu Ala Gln Gly Ser Leu Leu Lys Thr Leu Pro Pro Ala Arg 755 760 765	2304
50 tgc aga gca ggg gcc cag cag cca gct gtg ggc ctg gaa acc tgc aac Cys Arg Ala Gly Ala Gln Gln Pro Ala Val Ala Leu Glu Thr Cys Asn 770 775 780 795 800	2352
55 ccc cag ccc tgc cct gcc agg tgg gag gtg tca gag ccc agc tca tgc Pro Gln Pro Cys Pro Ala Arg Trp Glu Val Ser Glu Pro Ser Ser Cys 805 810 815	2400
	2448

	aca tca gct ggt gga gca ggc ctg gcc ttg gag aac gag acc tgt gtg Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu Glu Asn Glu Thr Cys Val 820 825 830	2496
5	cca ggg gca gat ggc ctg gag gct cca gtg act gag ggg cct ggc tcc Pro Gly Ala Asp Gly Leu Glu Ala Pro Val Thr Glu Gly Pro Gly Ser 835 840 845	2544
10	gta gat gag aag ctg cct gcc oct gag ccc tct gtc ggg atg tca tgt Val Asp Glu Lys Leu Pro Ala Pro Glu Pro Cys Val Gly Met Ser Cys 850 855 860	2592
15	cct cca ggc tgg ggc cat ctg gat gcc acc tct gca ggg gag aag gct Pro Pro Gly Trp Gly His Leu Asp Ala Thr Ser Ala Gly Glu Lys Ala 865 870 875 880	2640
20	ccc tcc cca tgg ggc agc atc agg acg ggg gct caa gct gca cac gtg Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly Ala Gln Ala Ala His Val 885 890 895	2688
25	tgg acc cct gcg gca ggg tcg tgc tcc gtc tcc tgc ggg cga ggt ctg Trp Thr Pro Ala Ala Gly Ser Cys Ser Val Ser Cys Gly Arg Gly Leu 900 905 910	2736
30	atg gag ctg cgt ttc ctg tgc atg gac tct gcc ctc agg gtg cct gtc Met Glu Leu Arg Phe Leu Cys Met Asp Ser Ala Leu Arg Val Pro Val 915 920 925	2784
35	cag gaa gag ctg tgt ggc ctg gca agc aag cct ggg agc cgg cgg gag Gln Glu Leu Cys Gly Leu Ala Ser Lys Pro Gly Ser Arg Arg Glu 930 935 940	2832
40	gtc tgc cag gct gtc cog tgc cct gct cog tgg cag tac aag ctg gcg Val Cys Gln Ala Val Pro Cys Pro Ala Arg Trp Gln Tyr Lys Leu Ala 945 950 955 960	2880
45	gcc tgc agc gtg agc tgt ggg aga ggg gtc gtg cgg agg atc ctg tat Ala Cys Ser Val Ser Cys Gly Arg Gly Val Val Arg Arg Ile Leu Tyr 965 970 975	2928
50	tgt gcc cgg gcc cat ggg gag gac gat ggt gag gag atc ctg ttg gac Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile Leu Asp 980 985 990	2976
55	acc cag tgc cag ggg ctg cct cgc cog gaa ccc cag gag gcc tgc agc Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gin Glu Ala Cys Ser 995 1000 1005	3024
50	ctg gag ccc tgc cca cct agg tgg aaa gtc atg tcc ott ggc cca tgt Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met Ser Leu Gly Pro Cys 1010 1015 1020	3072
55	tcg gcc agc tgt ggc act gct aga cgc tgg gtg gcc tgt gtg Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg Arg Ser Val Ala Cys Val 1025 1030 1035 1040	3120

cag ctc gac caa ggc cag gac gtg gag gtg gac gag gcg gcc tct gct Gln Leu Asp Gln Gly Gln Asp Val Glu Val Asp Glu Ala Ala Cys Ala 1045	1050	1055	3168
5 gcg ctg gtg cgg ccc gag gcc agt gtc ccc tgt ctc att gcc gac tgc Ala Leu Val Arg Pro Glu Ala Ser Val Pro Cys Leu Ile Ala Asp Cys 1060	1065	1070	3216
10 acc tac cgc tgg cat gtt ggc acc tgg atg gag tgc tct gtt tcc tgt Thr Tyr Arg Trp His Val Gly Thr Trp Met Glu Cys Ser Val Ser Cys 1075	1080	1085	3264
15 ggg gat ggc atc cag cgc cgg cgt gac acc tgc ctc gga ccc cag gcc Gly Asp Gly Ile Gln Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala 1090	1095	1100	3312
20 cag ggc cct gtg cca gct gat ttc tgc cag cac ttg ccc aag cgg gtg Gin Ala Pro Val Pro Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val 1105	1110	1115	3360
25 act gtg cgt ggc tgc tgg gct ggg ccc tgt gtg gga cag ggt acg ccc Thr Val Arg Gly Cys Trp Ala Gly Pro Cys Val Gly Gln Gly Thr Pro 1125	1130	1135	3408
30 agc ctg gtg ccc cac gaa gaa gcc gct gct cca gga cgg acc aca gcc Ser Leu Val Pro His Glu Glu Ala Ala Pro Gly Arg Thr Thr Ala 1140	1145	1150	3456
35 acc cct gct ggt gcc tcc ctg gag tgg tcc cag gcc cgg ggc ctg ctc Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser Gln Ala Arg Gly Leu Leu 1155	1160	1165	3504
40 ttc tcc ccg gct ccc cag cct cgg cgg ctc ctg ccc ggg ccc cag gaa Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln Glu 1170	1175	1180	3552
45 aac tca gtg cag tcc agt gcc tgt ggc agg cag cac ott gag cca aca Asn Ser Val Gln Ser Ser Ala Cys Gly Arg Gln His Leu Glu Pro Thr 1185	1190	1195	3600
50 gga acc att gac atg cga ggc cca ggg cag gca gac tgt gca gtg gcc Gly Thr Ile Asp Met Arg Gly Pro Gly Gln Ala Asp Cys Ala Val Ala 1205	1210	1215	3648
55 att ggg cgg ccc ctc ggg gag gtg gtg acc ctc cgc gtc ctt gag agt Ile Gly Arg Pro Leu Gly Glu Val Val Thr Leu Arg Val Leu Glu Ser 1220	1225	1230	3696
50 tct ctc aac tgc agt gcg ggg gac atg ttg ctg ctt tgg ggc cgg ctc Ser Leu Asn Cys Ser Ala Gly Asp Met Leu Leu Leu Trp Gly Arg Leu 1235	1240	1245	3744
55 acc tgg agg aag atg tgc agg aag ctg ttg gac atg act ttc agc tcc Thr Trp Arg Lys Met Cys Arg Lys Leu Leu Asp Met Thr Phe Ser Ser 1250	1255	1260	3792

aag acc aac acg ctg gtg gtg agg cag cgc tgc ggg cgg cca gga ggt Lys Thr Asn Thr Leu Val Val Arg Gln Arg Cys Gly Arg Pro Gly Gly 1265 1270 1275 1280	3840
5 ggg gtg ctg ctg cgg tat ggg agc cag ctt gct gct gaa acc ttc tac Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu Ala Pro Glu Thr Phe Tyr 1285 1290 1295	3888
10 aga gaa tgt gac atg cag ctc ttt ggg ccc tgg ggt gaa atc gtg agc Arg Glu Cys Asp Met Gln Leu Phe Gly Pro Trp Gly Glu Ile Val Ser 1300 1305 1310	3936
15 ccc tcg ctg agt cca gcc acg agt aat gca ggg ggc tgc cgg ctc ttc Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala Gly Gly Cys Arg Leu Phe 1315 1320 1325	3984
20 att aat gtg gct ccg cac gca cgg att gcc atc cat gcc ctg gcc acc Ile Asn Val Ala Pro His Ala Arg Ile Ala His Ala Leu Ala Thr 1330 1335 1340	4032
25 aac atg ggc gct ggg acc gag gga gcc aat gcc agc tac atc ttg atc Asn Met Gly Ala Gly Thr Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile 1345 1350 1355 1360	4080
30 ccg gac acc cac agc ttg agg acc aca gcg ttc cat ggg cag cag gtg Arg Asp Thr His Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val 1365 1370 1375	4128
35 ctc tac tgg gag tca gag agc agc cag gtc gat gag ttc acc gag Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu 1380 1385 1390	4176
40 ggc ttc ctg aag gct cag gcc agc ctg cgg ggc cag tac tgg acc ctc Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu 1395 1400 1405	4224
45 caa tca tgg gta ccg gag atg cag gac ctc cag tcc tgg aag gga aag Gln Ser Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys 1410 1415 1420	4272
50 gaa gga acc tga Glu Gly Thr 1425	4284
55 <210> 8 <211> 1427 <212> PRT <213> Homo sapiens	
55 Met His Gln Arg His Pro Arg Ala Arg Cys Pro Pro Leu Cys Val Ala 1 5 10 15	8
55 Gly Ile Leu Ala Cys Gly Phe Leu Leu Gly Cys Trp Gly Pro Ser His 20 25 30	His

Phe Gln Gln Ser Cys Leu Gln Ala Leu Glu Pro Gln Ala Val Ser Ser
 35 40 45
 5 Tyr Leu Ser Pro Gly Ala Pro Leu Lys Gly Arg Pro Pro Ser Pro Gly
 50 55 60
 Phe Gln Arg Gln Arg Gln Arg Arg Ala Ala Gly Gly Ile Leu
 65 70 75 80
 10 His Leu Glu Leu Leu Val Ala Val Gly Pro Asp Val Phe Gln Ala His
 85 90 95
 Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr Asn Leu Asn Ile Gly Ala
 100 105 110
 15 Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala Gln Phe Arg Val His Leu
 115 120 125
 Val Lys Met Val Ile Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr
 20 130 135 140
 Ala Asn Leu Thr Ser Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr
 145 150 155 160
 25 Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu
 165 170 175
 Tyr Ile Thr Arg Phe Asp Leu Glu Pro Asp Gly Asn Arg Gln Val
 30 180 185 190
 Arg Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys
 195 200 205
 35 Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala His
 210 215 220
 Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro Gly Ser
 225 230 235 240
 40 Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly Ala Ala Pro
 245 250 255
 Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser Arg Arg Gln Leu Leu Ser
 260 265 270
 45 Leu Leu Ser Ala Gly Arg Ala Arg Cys Val Trp Asp Pro Pro Arg Pro
 275 280 285
 Gln Pro Gly Ser Ala Gly His Pro Pro Asp Ala Gln Pro Gly Leu Tyr
 290 295 300
 50 Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala Phe Gly Pro Lys Ala Val
 305 310 315 320
 55 Ala Cys Thr Phe Ala Arg Glu His Leu Asp Met Cys Gln Ala Leu Ser
 325 330 335

Cys His Thr Asp Pro Leu Asp Gln Ser Ser Cys Ser Arg Leu Leu Val
 340 345 350
 5 Pro Leu Leu Asp Gly Thr Glu Cys Gly Val Glu Lys Trp Cys Ser Lys
 355 360 365
 Gly Arg Cys Arg Ser Leu Val Glu Leu Thr Pro Ile Ala Ala Val His
 370 375 380
 10 Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser Pro Cys Ser Arg Ser Cys
 385 390 395 400
 Gly Gly Gly Val Val Thr Arg Arg Arg Gln Cys Asn Asn Pro Arg Pro
 15 405 410 415
 Ala Phe Gly Gly Arg Ala Cys Val Gly Ala Asp Leu Gln Ala Glu Met
 420 425 430
 20 Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln Leu Glu Phe Met Ser Gln
 435 440 445
 Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu Arg Ser Ser Pro Gly Gly
 450 455 460
 25 Ala Ser Phe Tyr His Trp Gly Ala Ala Val Pro His Ser Gln Gly Asp
 465 470 475 480
 Ala Leu Cys Arg His Met Cys Arg Ala Ile Gly Glu Ser Phe Ile Met
 30 485 490 495
 Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr Arg Cys Met Pro Ser Gly
 500 505 510
 35 Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys Val Ser Gly Ser Cys Arg
 515 520 525
 Thr Phe Gly Cys Asp Gly Arg Met Asp Ser Gln Gln Val Trp Asp Arg
 530 535 540
 40 Cys Gln Val Cys Gly Gly Asp Asn Ser Thr Cys Ser Pro Arg Lys Gly
 545 550 555 560
 Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr Val Thr Phe Leu Thr Val
 45 565 570 575
 Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala Asn His Arg Pro Leu Phe
 580 585 590
 50 Thr His Leu Ala Val Arg Ile Gly Gly Arg Tyr Val Val Ala Gly Lys
 595 600 605
 Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro Ser Leu Leu Glu Asp Gly
 610 615 620
 55

	Arg Val Glu Tyr Arg Val Ala Leu Thr Glu Asp Arg Leu Pro Arg Leu			
625	630	635	640	
	Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln Glu Asp Ala Asp Ile Gln			
5	645	650	655	
	Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly Asn Leu Thr Arg Pro Asp			
	660	665	670	
10	Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro Arg Gln Ala Trp Val Trp			
	675	680	685	
	Ala Ala Val Arg Gly Pro Cys Ser Val Ser Cys Gly Ala Gly Leu Arg			
	690	695	700	
15	Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala Arg Lys Glu Leu Val Glu			
	705	710	715	720
20	Thr Val Gln Cys Gln Gly Ser Gln Gln Pro Pro Ala Trp Pro Glu Ala			
	725	730	735	
	Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp Ala Val Gly Asp Phe Gly			
	740	745	750	
25	Pro Cys Ser Ala Ser Cys Gly Gly Leu Arg Glu Arg Pro Val Arg			
	755	760	765	
	Cys Val Glu Ala Gln Gly Ser Leu Leu Lys Thr Leu Pro Pro Ala Arg			
	770	775	780	
30	Cys Arg Ala Gly Ala Gln Gln Pro Ala Val Ala Leu Glu Thr Cys Asn			
	785	790	795	800
35	Pro Gln Pro Cys Pro Ala Arg Trp Glu Val Ser Glu Pro Ser Ser Cys			
	805	810	815	
	Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu Glu Asn Glu Thr Cys Val			
	820	825	830	
40	Pro Gly Ala Asp Gly Leu Glu Ala Pro Val Thr Glu Gly Pro Gly Ser			
	835	840	845	
	Val Asp Glu Lys Leu Pro Ala Pro Glu Pro Cys Val Gly Met Ser Cys			
	850	855	860	
45	Pro Pro Gly Trp Gly His Leu Asp Ala Thr Ser Ala Gly Glu Lys Ala			
	865	870	875	880
50	Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly Ala Gln Ala Ala His Val			
	885	890	895	
	Trp Thr Pro Ala Ala Gly Ser Cys Ser Val Ser Cys Gly Arg Gly Leu			
	900	905	910	
55	Met Glu Leu Arg Phe Leu Cys Met Asp Ser Ala Leu Arg Val Pro Val			
	915	920	925	

Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys Pro Gly Ser Arg Arg Glu
 930 935 940
 Val Cys Gln Ala Val Pro Cys Pro Ala Arg Trp Gln Tyr Lys Leu Ala
 5 945 950 955 960
 Ala Cys Ser Val Ser Cys Gly Arg Gly Val Val Arg Arg Ile Leu Tyr
 965 970 975
 Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile Leu Leu Asp
 10 980 985 990
 Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gln Glu Ala Cys Ser
 995 1000 1005
 15 Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met Ser Leu Gly Pro Cys
 1010 1015 1020
 Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg Arg Ser Val Ala Cys Val
 20 1025 1030 1035 1040
 Gln Leu Asp Gln Gln Asp Val Glu Val Asp Glu Ala Ala Cys Ala
 1045 1050 1055
 Ala Leu Val Arg Pro Glu Ala Ser Val Pro Cys Leu Ile Ala Asp Cys
 25 1060 1065 1070
 Thr Tyr Arg Trp His Val Gly Thr Trp Met Glu Cys Ser Val Ser Cys
 1075 1080 1085
 30 Gly Asp Gly Ile Gln Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala
 1090 1095 1100
 Gln Ala Pro Val Pro Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val
 35 1105 1110 1115 1120
 Thr Val Arg Gly Cys Trp Ala Gly Pro Cys Val Gly Gln Gly Thr Pro
 1125 1130 1135
 Ser Leu Val Pro His Glu Ala Ala Ala Pro Gly Arg Thr Thr Ala
 40 1140 1145 1150
 Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser Gln Ala Arg Gly Leu Leu
 1155 1160 1165
 45 Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln Glu
 1170 1175 1180
 Asn Ser Val Gln Ser Ser Ala Cys Gly Arg Gln His Leu Glu Pro Thr
 50 1185 1190 1195 1200
 Gly Thr Ile Asp Met Arg Gly Pro Gly Gln Ala Asp Cys Ala Val Ala
 1205 1210 1215
 Ile Gly Arg Pro Leu Gly Glu Val Val Thr Leu Arg Val Leu Glu Ser
 55 1220 1225 1230

Ser Leu Asn Cys Ser Ala Gly Asp Met Leu Leu Leu Trp Gly Arg Leu
 1235 1240 1245
 Thr Trp Arg Lys Met Cys Arg Lys Leu Leu Asp Met Thr Phe Ser Ser
 5 1250 1255 1260
 Lys Thr Asn Thr Leu Val Val Arg Gln Arg Cys Gly Arg Pro Gly Gly
 1265 1270 1275 1280
 Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu Ala Pro Glu Thr Phe Tyr
 10 1285 1290 1295
 Arg Glu Cys Asp Met Gln Leu Phe Gly Pro Trp Gly Glu Ile Val Ser
 1300 1305 1310
 15 Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala Gly Gly Cys Arg Leu Phe
 1315 1320 1325
 Ile Asn Val Ala Pro His Ala Arg Ile Ala Ile His Ala Leu Ala Thr
 20 1330 1335 1340
 Asn Met Gly Ala Gly Thr Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile
 1345 1350 1355 1360
 Arg Asp Thr His Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val
 25 1365 1370 1375
 Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu
 1380 1385 1390
 30 Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu
 1395 1400 1405
 Gln Ser Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys
 35 1410 1415 1420
 Glu Gly Thr
 1425
 40
 <210> 9
 <211> 45
 <212> DNA
 45 <213> Artificial Sequence
 <220>
 <221> primer_bind
 <222> (1)..(45)
 50 <400> 9
 gctgcaggcg gcatcctaca cctggagctg ctgggtggccg tgggc 45
 55 <210> 10
 <211> 20
 <212> DNA

<213> Artificial Sequence
<220>
<221> primer_bind
5 <222> (1)..(20)

<400> 10
cggcgggatc ctacacacctgg 20

10 <210> 11
<211> 20
<212> DNA
<213> Artificial Sequence
15 <220>
<221> primer_bind
<222> (1)..(20)

20 <400> 11
aatgggtgact cccaggtcga 20

25 <210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

30 <220>
<221> primer_bind
<222> (1)..(20)

35 <400> 12
gagcaaattc ctgtactgac 20

40 <210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

45 <220>
<221> primer_bind
<222> (1)..(20)

50 <400> 13
gagcaaattc ctgtactgac 20

55 <210> 14
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind

```

<222> (1)..(22)

<400> 14
gaccacgcgt atcgacgtcg ac
5

<210> 15
<211> 21
<212> DNA
10 <213> Artificial Sequence

<220>
<221> primer_bind
<222> (1)..(21)
15 <400> 15
ctcagggttg atggtctggc t
20 <210> 16
<211> 30
<212> DNA
<213> Artificial Sequence

25 <220>
<221> primer_bind
<222> (1)..(30)
30 <400> 16
cgggcgtcag gcgggatctt acacctggag
35 <210> 17
<211> 21
<212> DNA
35 <213> Artificial Sequence

<220>
<221> primer_bind
40 <222> (1)..(21)

<400> 17
aatggtgact cccaggtcga g
45 <210> 18
<211> 20
<212> DNA
<213> Artificial Sequence
50 <220>
<221> primer_bind
<222> (1)..(20)
55 <400> 18
tqqaaqtcag caccaacaca

```

```

<210> 19
<211> 20
<212> DNA
5 <213> Artificial Sequence

<220>
<221> primer_bind
<222> (1)..(20)

10 <400> 19
gagttgcctg atggtaaccg 20

15 <210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

20 <220>
<221> primer_bind
<222> (1)..(20)

25 <400> 20
gagcccttcc gtgggctgca 20

30 <210> 21
<211> 21
<212> DNA
<213> Artificial Sequence

35 <220>
<221> primer_bind
<222> (1)..(21)

40 <400> 21
cgctccctgg tggagctgac c 21

45 <210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

50 <220>
<221> primer_bind
<222> (1)..(20)

55 <400> 22
ctcacccatcg tcctccccat 20

60 <210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

```

```

<220>
<221> primer_bind
<222> (1)..(21)
5
<400> 23
atcatgaagc gtggagacag c

10 <210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
15
<220>
<221> primer_bind
<222> (1)..(20)

<400> 24
20 cctggagggg tccccagatg

25 <210> 25
<211> 20
<212> DNA
<213> Artificial Sequence
30
<220>
<221> primer_bind
<222> (1)..(20)

<400> 25
tgccagccac ggaagggctc

35 <210> 26
<211> 20
<212> DNA
<213> Artificial Sequence
40
<220>
<221> primer_bind
<222> (1)..(20)

45 <400> 26
cagggttcca ggctgcaggc

50 <210> 27
<211> 20
<212> DNA
<213> Artificial Sequence
55
<220>
<221> primer_bind
<222> (1)..(20)

```

<400> 27
aggaagagct gtgtggacctg 20

5 <210> 28
<211> 39
<212> DNA
<213> Artificial Sequence

10 <220>
<221> primer_bind
<222> (1)..(39)

<400> 28
15 gacgcggccc agccggccgc tgcaggcggc atcctacac 39

20 <210> 29
<211> 34
<212> DNA
<213> Artificial Sequence

25 <220>
<221> primer_bind
<222> (1)..(34)

<400> 29
ggccctcgag cggttcccttc ctttcccttc cagg 34

30 <210> 30
<211> 35
<212> DNA
<213> Artificial Sequence

35 <220>
<221> primer_bind
<222> (1)..(35)

<400> 30
40 agcggctct atggctgag gggcatctt acacc 35

<210> 31
<211> 30
<212> DNA
<213> Artificial Sequence

45 <220>
<221> primer_bind
<222> (1)..(30)

<400> 31
50 agccctcgagc tggccagaca cggaaacaaat 30

55

<210> 32
<211> 29
<212> DNA
<213> Artificial Sequence
5 <220>
 <221> primer_bind
 <222> (1)..(29)

10 <400> 32
 ggcgaattca tgcaccagcg tcacccccc 29

15 <210> 33
 <211> 21
 <212> DNA
 <213> Artificial Sequence

20 <220>
 <221> primer_bind
 <222> (1)..(21)

25 <400> 33
 acagcattaa actaaggccgc c 21

30 <210> 34
 <211> 40
 <212> DNA
 <213> Artificial Sequence

35 <220>
 <221> primer_bind
 <222> (1)..(40)

40 <400> 34
 gatcgaattc gccggccacc atgcaccaggc gtcacccccc 40

45 <210> 35
 <211> 21
 <212> DNA
 <213> Artificial Sequence

50 <220>
 <221> primer_bind
 <222> (1)..(21)

 <400> 35
 cggataacaa tttcacacag g 21