Algoritmo Bootstrap

Dado una muestra $X_1 \dots X_n \overset{\text{i.i.d.}}{\sim} \mathcal{L}(F)$ con distribución empírica \hat{F}_n , $T_n = g(X_1 \dots X_n)$ un estadístico de interés y $\mathbb{E}[h(T_n)]$ una cantidad a estimar.

- 0) Fije B un entero positivo y tome i=1
- 1) Remuestre $X_1^{\star}, \ldots, X_n^{\star} \overset{\text{i.i.d.}}{\sim} \mathcal{L}(\hat{F}_n)$.
- 2) Tome $T_{n,i}^\star=g(X_1^\star,\ldots,X_n^\star)$. Si i=B proceda a 3) en caso contario actualice i a i+1 y regrese a 1).
- 3) Utilice Monte-Carlo con $\left\{T_{n,i}^{\star}\right\}_{i=1}$ para estimar $\mathbb{E}[h(T_n)]$.

 $\chi_{i} \sim Gamma(\lambda_{i}, \beta)$, i=1,...,nZ X; ~ Gamua (Z 6, p) /1 ~ Gamua (√,β) cY, ~ Gamma (d, £) $X = \frac{1}{n} \sum_{i} x_{i}$ ~ Gamma ($\sum_{i} t_{i}$, $n\beta$)

Fjemplo: