WikipediA

Test functions for optimization

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as:

- Convergence rate.
- Precision.
- Robustness.
- General performance.

Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given.

The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here.

The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [7] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [8] which implements the NSGA-II procedure with ES.

Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.

Contents

Test functions for single-objective optimization

Test functions for constrained optimization

Test functions for multi-objective optimization

See also

References

Test functions for single-objective optimization

Name	Plot	Formula	Global minimum
Rastrigin function	90 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$f(\mathbf{x}) = An + \sum_{i=1}^n \left[x_i^2 - A \cos(2\pi x_i) ight]$ where: $A = 10$	$f(0,\ldots,0)=0$
Ackley function	4 - 12	$f(x,y) = -20 \exp \left[-0.2 \sqrt{0.5 \left(x^2 + y^2 ight)} ight] onumber \ -\exp \left[0.5 \left(\cos 2\pi x + \cos 2\pi y ight) ight] + e + 20$	f(0,0)=0
Sphere function	20 1.5 1.0 0.5 7 9 0.0 -0.5 -1.0 -1.0 -1.5 -2.0 -2.1 3	$f(\boldsymbol{x}) = \sum_{i=1}^n x_i^2$	$f(x_1,\ldots,x_n)=f(0,\ldots,0)$:
Rosenbrock function	3.0 2.5 2.9 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$f(m{x}) = \sum_{i=1}^{n-1} \left[100 ig(x_{i+1} - x_i^2 ig)^2 + (1 - x_i)^2 ight]$	$ ext{Min} = \left\{egin{array}{ll} n=2 & ightarrow & f(1,1)=\ n=3 & ightarrow & f(1,1,1)\ n>3 & ightarrow & f(\underbrace{1,\dots,}_{n ext{ times}} \end{array} ight.$
Beale function	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	$f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 \ + \left(2.625 - x + xy^3 ight)^2$	f(3,0.5)=0
Goldstein– Price function	1.0 0.5 0.9 -0.5 -1.5 -2.0 -2.5 -3.0 -1 0 10 ² 10 ²	$f(x,y) = \left[1 + (x+y+1)^2 \left(19 - 14x + 3x^2 - 14y + 6xy + 3y^2\right) ight] \ \left[30 + (2x - 3y)^2 \left(18 - 32x + 12x^2 + 48y - 36xy + 27y^2 ight) ight]$	f(0,-1)=3
Booth function	100 7.5 - 101 2.5 - 101 -2.55.07.510.0 -5 0 5 10	$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$	f(1,3)=0
Bukin function N.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$f(x,y) = 100 \sqrt{\left y - 0.01x^2\right } + 0.01 \left x + 10\right .$	f(-10,1)=0
Matyas function		$f(x,y) = 0.26\left(x^2 + y^2\right) - 0.48xy$	f(0,0)=0

Test functions for constrained optimization

Name	Plot	Formula	Global minimum
Rosenbrock function constrained with a cubic and a line ^[10]	25 - 10 ³ 1	$f(x,y)=(1-x)^2+100(y-x^2)^2$, subjected to: $(x-1)^3-y+1\leq 0$ and $x+y-2\leq 0$	f(1.0, 1.0) = 0
Rosenbrock function constrained to a disk ^[11]	1.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$f(x,y)=(1-x)^2+100(y-x^2)^2,$ subjected to: $x^2+y^2\leq 2$	f(1.0, 1.0) = 0
Mishra's Bird function - constrained ^{[12][13]}	75 50 -25 -4 y -6 -8 -8 -10 -10 -8 -6 -4 -2 0	$f(x,y)=\sin(y)e^{\left[(1-\cos x)^2 ight]}+\cos(x)e^{\left[(1-\sin y)^2 ight]}+(x-y)^2,$ subjected to: $(x+5)^2+(y+5)^2<25$	f(-3.1302468, -1.5821422) = -
Townsend function (modified) ^[14]	1.5 1.0 0.5 0.0 y -0.5 -1.0 -1.5 -2.0 -2.5 -2 -1 0 1 2	$f(x,y)=-[\cos((x-0.1)y)]^2-x\sin(3x+y),$ subjected to: $x^2+y^2<\left[2\cos t-\frac{1}{2}\cos 2t-\frac{1}{4}\cos 3t-\frac{1}{8}\cos 4t\right]^2+[2\sin t]^2$ where: $t=\mathrm{Atan}2(\mathrm{x},\mathrm{y})$	f(2.0052938, 1.1944509) = -
Gomez and Levy function (modified) ^[15]	100 0.75 0.50 0.25 7 0.00 -0.25 -0.50 -0.75 -0.75 -1.00 -1.0 -0.5 0.0 0.5 1.0 -1.0	$f(x,y)=4x^2-2.1x^4+rac{1}{3}x^6+xy-4y^2+4y^4,$ subjected to: $-\sin(4\pi x)+2\sin^2(2\pi y)\leq 1.5$	f(0.08984201, -0.7126564) = -
Simionescu function ^[16]	1.0- 0.3- 7 0.0- -0.5- -1.0- -0.5 0.0 0.5 1.0	$f(x,y)=0.1xy,$ subjected to: $x^2+y^2 \leq \left[r_T+r_S\cos\left(n\arctanrac{x}{y} ight) ight]^2$ where: $r_T=1, r_S=0.2$ and $n=8$	$f(\pm 0.84852813, \mp 0.84852813$

Test functions for multi-objective optimization

Name	Plot	Functions	Constra
Binh and Korn function: ^[5]	The Person Story	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) = 4x^2 + 4y^2 \ f_2\left(x,y ight) = \left(x-5 ight)^2 + \left(y-5 ight)^2 \end{aligned} ight.$	$ ext{s.t.} = \left\{ egin{aligned} g_1\left(x,y ight) = \left(x - g_2\left(x,y ight) = \left(x - g_2\left(x,y ight) ight) ight. \end{aligned} ight.$
Chankong and Haimes function: ^[17]	(• Perm bor)	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) &= 2 + (x-2)^2 + (y-1)^2 \ f_2\left(x,y ight) &= 9x - (y-1)^2 \end{aligned} ight.$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) = \ g_2\left(x,y ight) = \end{cases}$
Fonseca– Fleming function: ^[18]	To Property Style Section 1	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) = 1 - \exp\left[-\sum_{i=1}^n\left(x_i - rac{1}{\sqrt{n}} ight)^2 ight] \ f_2\left(oldsymbol{x} ight) = 1 - \exp\left[-\sum_{i=1}^n\left(x_i + rac{1}{\sqrt{n}} ight)^2 ight] \end{cases}$	
Test function 4 <u>:^[6]</u>	Frank Sport	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) = x^2 - y \ f_2\left(x,y ight) = -0.5x - y - 1 \end{aligned} ight.$	$ ext{s.t.} = \left\{ egin{aligned} g_1\left(x,y ight) = 6 \ g_2\left(x,y ight) = 7 \ g_3\left(x,y ight) = 3 \end{aligned} ight.$
Kursawe function: ^[19]	The second secon	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(oldsymbol{x} ight) &= \sum_{i=1}^2 \left[-10\exp\left(-0.2\sqrt{x_i^2+x_{i+1}^2} ight) ight] \ f_2\left(oldsymbol{x} ight) &= \sum_{i=1}^3 \left[\left x_i ight ^{0.8} + 5\sin\left(x_i^3 ight) ight] \end{aligned} ight.$	
Schaffer function N. 1: ^[20]	(1) Famel local (2) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	$ ext{Minimize} = egin{cases} f_1\left(x ight) = x^2 \ f_2\left(x ight) = (x-2)^2 \end{cases}$	
Schaffer function N. 2:	The Property Spect	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x ight) = egin{aligned} -x, & ext{if } x \leq 1 \ x-2, & ext{if } 1 < x \leq 3 \ 4-x, & ext{if } 3 < x \leq 4 \ x-4, & ext{if } x > 4 \end{aligned} ight.$	
Poloni's two objective function:	(2) 13 (2) 13 (3) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	$ ext{Minimize} = egin{dcases} f_1\left(x,y ight) = \left[1 + \left(A_1 - B_1\left(x,y ight) ight)^2 + \left(A_2 - B_2\left(x,y ight)^2 ight] \ f_2\left(x,y ight) = \left(x+3 ight)^2 + \left(y+1 ight)^2 \ \end{cases} \ ext{where} = egin{dcases} A_1 = 0.5\sin(1) - 2\cos(1) + \sin(2) - 1.5\cos(2) \ A_2 = 1.5\sin(1) - \cos(1) + 2\sin(2) - 0.5\cos(2) \ B_1\left(x,y ight) = 0.5\sin(x) - 2\cos(x) + \sin(y) - 1.5\cos(y) \ B_2\left(x,y ight) = 1.5\sin(x) - \cos(x) + 2\sin(y) - 0.5\cos(y) \end{cases}$	
Zitzler–Deb– Thiele's function N. 1: ^[21]	$\sum_{i=1}^{2d} \frac{1}{f_i(x_i)} \sum_{i=1}^{2d} \frac{1}{f_i(x_i)} $	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) = x_1 \ f_2\left(oldsymbol{x} ight) = g\left(oldsymbol{x} ight) h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) \ g\left(oldsymbol{x} ight) = 1 + rac{9}{29} \sum_{i=2}^{30} x_i \ h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) = 1 - \sqrt{rac{f_1\left(oldsymbol{x} ight)}{g\left(oldsymbol{x} ight)}} \end{cases}$	
Zitzler–Deb– Thiele's			

See also

- Ackley function
- Himmelblau's function
- Rastrigin function
- Rosenbrock function
- Shekel function

References

- genetic algorithms. Oxford: Oxford University Press. p. 328. ISBN 978-0-19-509971-3.
- Haupt, Randy L. Haupt, Sue Ellen (2004). Practical genetic algorithms with CD-Rom (2nd ed.). New York: J. Wiley. ISBN 978-0-471-45565-3.
- Oldenhuis, Rody. "Many test functions for global optimizers" (ht tp://www.mathworks.com/matlabcentral/fileexchange/23147-m any-testfunctions-for-global-optimizers). Mathworks. Retrieved 1 November 2012
- Deb, Kalyanmoy (2002) Multiobjective optimization using evolutionary algorithms (Repr. ed.). Chichester [u.a.]: Wiley. ISBN 0-471-87339-X.
- 5. Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution
 Strategy for Constrained Optimization Problems (https://web.arc
 hive.org/web/20190801183649/https://pdfs.semanticscholar.or
 g/cf68/41a6848ca2023342519b0e0e536b88bdea1d.pdf). In:
 Proceedings of the Third International Conference on Genetic
 Algorithms. Czech Republic. pp. 176–182
- Binh T. (1999) A multiobjective evolutionary algorithm. The study cases. (https://www.researchgate.net/profile/Thanh_Binh_T o/publication/2446107 A Multiobjective Evolutionary Algorith m_The_Study_Cases/links/53eb422f0cf28f342f45251d.pdf) Technical report. Institute for Automation and Communication. Barleben, Germany
- 7. Deb K. (2011) Software for multi-objective NSGA-II code in C. Available at URL: https://www.iitk.ac.in/kangal/codes.shtml
- 8. Ortiz, Gilberto A. "Multi-objective optimization using ES as Evolutionary Algorithm" (http://www.mathworks.com/matlabcen tral/fileexchange/35824-multi-objective-optimization-using-evo lution-strategies-es-as-evolutionary-algorithm-ea). Mathworks. Retrieved 1 November 2012.
- Vanaret C. (2015) Hybridization of interval methods and evolutionary algorithms for solving difficult optimization problems. (https://www.researchgate.net/publication/33794714
 Hybridization of interval methods and evolutionary algorith ms_for_solving_difficult_optimization_problems) PhD thesis.
 Ecole Nationale de l'Aviation Civile. Institut National Polytechnique de Toulouse, France.
- Simionescu, P.A.; Beale, D. (September 29 October 2, 2002). *New Concepts in Graphic Visualization of Objective Functions* (http://faculty.tamucc.edu/psimionescu/PDFs/DETC02-DAC-34129.pdf) (PDF). ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal, Canada. pp. 891–897. Retrieved 7 January 2017.
- "Solve a Constrained Nonlinear Problem MATLAB & Simulink" (https://www.mathworks.com/help/optim/ug/example-nonlinear-constrained-minimization.html?requestedDomain=www.mathworks.com). www.mathworks.com. Retrieved 2017-08-29.
- 12. "Bird Problem (Constrained) | Phoenix Integration" (https://web.archive.org/web/20161229032528/http://www.phoenix-int.com/software/benchmark_report/bird_constrained.php). Archived from the original on 2016-12-29. Retrieved 2017-08-29.

- 13. Mishra, Sudhanshu (2006). "Some new test functions for global optimization and performance of repulsive particle swarm method" (https://mpra.ub.uni-muenchen.de/2718/). MPRA Paper.
- 14. Townsend, Alex (January 2014). "Constrained optimization in Chebfun" (http://www.chebfun.org/examples/opt/ConstrainedOptimization.html). *chebfun.org*. Retrieved 2017-08-29.
- Simionescu, P.A. (2020). "A collection of bivariate nonlinear optimisation test problems with graphical representations". International Journal of Mathematical Modelling and Numerical Optimisation. 10 (4): 365–398. doi:10.1504/IJMMNO.2020.110704 (https://doi.org/10.1504%2FIJMMNO.2020.110704).
- Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD Users (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-1-4822-5290-3.
- 17. Chankong, Vira; Haimes, Yacov Y. (1983). *Multiobjective decision making. Theory and methodology*. ISBN 0-444-00710-5.
- Fonseca, C. M.; Fleming, P. J. (1995). "An Overview of Evolutionary Algorithms in Multiobjective Optimization". <u>Evol Comput.</u> 3 (1): 1–16. CiteSeerX 10.1.1.50.7779 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.7779). doi:10.1162/evco.1995.3.1.1 (https://doi.org/10.1162%2Fevco.1995.3.1.1). S2CID <u>8530790</u> (https://api.semanticscholar.org/CorpusID:8530790).
- F. Kursawe, "A variant of evolution strategies for vector optimization (http://citeseerx.ist.psu.edu/viewdoc/download?do i=10.1.1.47.8050&rep=rep1&type=pdf)," in PPSN I, Vol 496 Lect Notes in Comput Sc. Springer-Verlag, 1991, pp. 193–197.
- Schaffer, J. David (1984). "Multiple Objective Optimization with Vector Evaluated Genetic Algorithms". In G.J.E Grefensette; J.J. Lawrence Erlbraum (eds.). Proceedings of the First International Conference on Genetic Algorithms. OCLC 20004572 (https://wwww.worldcat.org/oclc/20004572).
- 21. Deb, Kalyan; Thiele, L.; Laumanns, Marco; Zitzler, Eckart (2002). "Scalable multi-objective optimization test problems". Proceedings of the 2002 IEEE Congress on Evolutionary Computation. Vol. 1. pp. 825–830. doi:10.1109/CEC.2002.1007032 (https://doi.org/10.1109%2FCEC. 2002.1007032). ISBN 0-7803-7282-4. S2CID 61001583 (https://api.semanticscholar.org/CorpusID:61001583).
- 22. Osyczka, A.; Kundu, S. (1 October 1995). "A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm". *Structural Optimization*. **10** (2): 94–99. doi:10.1007/BF01743536 (https://doi.org/10.1007%2FBF01743536). ISSN 1615-1488 (https://www.worldcat.org/issn/1615-1488). S2CID 123433499 (https://api.semanticscholar.org/CorpusID: 123433499).
- Jimenez, F.; Gomez-Skarmeta, A. F.; Sanchez, G.; Deb, K. (May 2002). "An evolutionary algorithm for constrained multi-objective optimization". *Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).* 2: 1133–1138. doi:10.1109/CEC.2002.1004402 (https://doi.org/10.1109% 2FCEC.2002.1004402). ISBN 0-7803-7282-4. S2CID 56563996 (https://api.semanticscholar.org/CorpusID:56563996).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Test functions for optimization&oldid=1081181076"

This page was last edited on 5 April 2022, at 19:58 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.