What is claimed is:

1. An aluminum chelate complex for an organic El element represented by general formula (1) which contains less than 350 wt ppm of a compound represented by general formula (2) as an impurity:

[C1]

in general formulas (1) and (2), Ar₁ is a mono- or bicyclic arylene group, Ar₂ is a mono- or bicyclic aryl group, the total number of aromatic rings in Ar₁ and Ar₂ is 2 to 4 and these aromatic rings may be condensed; R₁-R₆ are independently hydrogen or hydrocarbon groups containing 1-8 carbon atoms.

(2)

- 2. An aluminum chelate complex as described in claim 1 wherein Ar₁ is naphtylene or phenylene, Ar₂ is naphthyl or phenyl and X is Br, Cl or I in general formulas (1) and (2).
- 3. An aluminum chelate complex as described in claim 1 or 2 wherein the total number of aromatic rings in Ar₁ and Ar₂ in general formula (1) is 2 to 3.
- 4. A method for preparing an aluminum chelate complex described in claim 1 by reacting aluminum isopropoxide successively with a quinolinol derivative and a phenolic compound represented by HO-Ar₁-Ar₂ which comprises purifying the quinolinol derivative and the phenolic compound in such a manner as to reduce a compound contained therein and represented by HO-Ar₁-X to 350 wt ppm or less and then submitting them to the reaction.
- 5. A method for preparing an aluminum chelate complex described in claim 1 by reacting aluminum isopropoxide successively with a quinolinol derivative and a phenolic compound represented by HO-Ar₁-Ar₂ which comprises purifying the crude aluminum chelate complex containing 350 wt ppm or more of a compound represented by general formula (2) by sublimation until the amount of said halogen-containing compound becomes 350 wt ppm or less.
- 6. A method for preparing an aluminum chelate complex as described in claim 4 or 5 which comprises reacting a compound represented by HO-Ar₁-X with a compound represented by (Ar₂)_a-Y (wherein Y is Cu, X, Li, B(OH)₂, MgX, ZnX or SnMe₃, X is a halogen and a is an integer of 1-10) to form the phenolic compound represented by HO-Ar₁-Ar₂.

- 7. A method for preparing an aluminum chelate complex as described in claim 6 which comprises purifying by recrystallization the phenolic compound obtained by the reaction and represented by HO-Ar₁-Ar₂ and purifying by sublimation the aluminum chelate complex obtained from said phenolic compound.
- 8. An organic EL element containing an emissive layer of an organic compound between the anode and the cathode wherein the emissive layer comprises an aluminum chelate complex described in claim 1 as a host material and a phosphorescent organic complex of a noble metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold as a guest material.
- 9. An aluminum chelate complex for an organic EL material as described in claim 1 wherein quality control is exercised to keep the amount of a compound represented by general formula (2) at 350 ppm or less and this amount is determined and controlled in the stage for production, shipping or use.