Differential Equations 1

 $\label{eq:m.t.nair} \mbox{M.T.Nair}$ Department of Mathematics, IIT Madras

CONTENTS

PART I: Ordinary Differential Equations	Page Number
1. First order ODE	2
1.1 Introduction	2
1.2 Direction Field and Isoclines	3
1.3 Initial Value Problem	3
1.4 Linear ODE	4
1.5 Equations with Variables Separated	6
1.6 Homogeneous equations	7
1.7 Exact Equations	7
1.8 Equations reducible to homogeneous or variable separable or linear or exact	form 9
2. Second and higher order linear ODE	
2.1 Second order linear homogeneous ODE	13
2.2 Second order linear homogeneous ODE with constant coefficients	17
2.3 Second order linear non-homogeneous ODE	18
3. System of first order linear homogeneous ODE	25
4. Power series method	28
4.1 The method and some examples	28
4.2 Legendre's equation and Legendre polynomials	30
4.3 Power series solution around singular points	36
4.4 Orthogonality of functions	45
5. Sturm-Liouville problem (SLP)	52
6. References	56

 $^{^{1}\}mathrm{Lectures}$ for the course MA2020, July-November 2012.

1 First order ODE

1.1 Introduction

An **Ordinary differential equation** (ODE) is an equation involving an unknown function and its derivatives with respect to an independent variable x:

$$F(x, y, y^{(1)}, \dots y^{(k)}) = 0.$$

Here, y is the unknown function, x is the independent variable and $y^{(j)}$ represents the j-th derivative of y. We shall also denote

$$y' = y^{(1)}, \quad y'' = y^{(2)}, \quad y''' = y^{(3)}.$$

Thus, a first order ODE is of the form

$$F(x, y, y') = 0. \tag{*}$$

Sometimes the above equation can be put in the form:

$$y' = f(x, y). (1)$$

 \Diamond

By a **solution** of (*) we mean a function $y = \varphi(x)$ defined on an interval I := (a, b) which is differentiable and satisfies (*), i.e.,

$$F(x, \varphi(x), \varphi'(x)) = 0, \quad x \in I.$$

Example 1.1.

$$y' = x$$
.

Note that, for every constant C, $y = x^2/2 + C$ satisfies the DE for every $x \in \mathbb{R}$.

The above simple example shows that a DE can have more than one solution. In fact, we obtain a family of parabolas as **solution curves**. But, if we require the *solution curve* to pass through certain specified point then we may get a unique solution. In the above example, if we demand that

$$y(x_0) = y_0$$

for some given x_0, y_0 , then we must have

$$y_0 = \frac{x_0^2}{2} + C$$

so that the constant C must be

$$C = y_0 - \frac{x_0^2}{2}.$$

Thus, the solution, in this case, must be

$$y = \frac{x^2}{2} + y_0 - \frac{x_0^2}{2}.$$

1.2 Direction Field and Isoclines

Suppose $y = \varphi(x)$ is a solution of DE (1). Then this curve is also called an **integral curve** of the DE. At each point on this curve, the tangent must have the slope f(x, y). Thus, the DE prescribes a direction at each point on the integral curve $y = \varphi(x)$. Such directions can be represented by small line segments with arrows pointing to the direction. The set of all such directed line segments is called the **direction field** of the DE.

The set of all points in the plane where f(x, y) is a constant is called an **isocline**. Thus, the family of isoclines would help us locating integral curves geometrically.

Isoclines for the DE: y' = x + y are the straight lines x + y = C.

1.3 Initial Value Problem

An equation of the form

$$y' = f(x, y) \tag{1}$$

together with a condition of the form the form

$$y(x_0) = y_0 \tag{2}$$

is called an initial value problem. The condition (2) is called an initial condition.

THEOREM 1.2. Suppose f is defined in an open rectangle $R = I \times J$, where I and J are open intervals, say I = (a, b), J = (c, d):

$$R := \{ (x, y) : a < x < b, \quad c < y < d \}.$$

If f is continuous and has continuous partial derivative $\frac{\partial f}{\partial y}$ in R, then for every $(x_0, y_0) \in R$, there exists a unique function $y = \varphi(x)$ defined in an interval $(x_0 - h, x_0 + h) \subseteq (a, b)$ which satisfies (1) - (2).

Remark 1.3. The conditions prescribed are sufficient conditions that guarantee the existence and uniqueness of a solution for the initial value problem. They are not necessary conditions. A unique solution for the initial value problem can exist without the prescribed conditions on f as in the above theorem.

- The condition (2) in Theorem 1.2 is called an **initial condition**, the equation (1) together with (2) is called an **initial value problem**.
- A solution of (1) the form

$$y = \varphi(x, C),$$

where C is an arbitrary constant varying in some subset of \mathbb{R} , is called a **general solution** of (1).

- A solution y for a particular value of C is called a **particular solution** of (1).
- If general solutions of (1) are given implicitly in the form

$$u(x, y, C) = 0$$

arbitrary constant C, then the above equation is called the **complete integral** of (1).

• A complete integral for a particular value of C is called a **particular integral** of (1).

Remark 1.4. Under the assumptions of Theorem 1.2, if $x_0 \in I$, then existence of a solution y for (1) is guaranteed in some neighbourhood $I_0 \subseteq I$ of x_0 , and it satisfies the integral equation

$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t))dt.$$

A natural question would be:

Is the family of all solutions of (1) defined on I_0 a one-parameter family, so that any two solutions in that family differ only by a constant?

It is known that for a general nonlinear equation (1), the answer is nt in affirmative. However, for linear equations the answer is in affirmative. \diamondsuit

1.4 Linear ODE

If f depends of y in a linear fashion, then the equation (1) is called a **linear DE**. A general form of the linear first order DE is:

$$y' + p(x)y = q(x). (3)$$

Here is a procedure to arrive at a solution of (3):

Assume first that there is a solution for (3) and that after multiplying both sides of (3) by a differentiable function $\mu(x)$, the LHS is of the $(\mu(x)y)'$. Then(3) will be converted into:

$$(\mu(x)y)' = \mu(x)q(x)$$

so that

$$\mu(x)y = \int q(x)dx + C.$$

Thus, μ must be chosen in such a manner that

$$\mu'y + \mu y' = \mu(y' + py).$$

Therefore, we must have

$$\mu'y = \mu py$$
, i.e., $\mu' = \mu p$, i.e., $\frac{d\mu}{\mu} = pdx$,

i.e.,

$$\mu(x) := e^{\int p(x)dx}.$$

Thus, y takes the form

$$y = \frac{1}{\mu(x)} \left[\int \mu(x) q(x) dx + C \right], \quad \mu(x) := e^{\int p(x) dx}. \tag{4}$$

It can be easily seen that the function y defined by (4) satisfies the DE (3). Thus **existence** of a solution for (3) is proved for continuous functions p and q.

Suppose there are two functions φ and ψ which satisfy (3). Then $\chi(x) := \varphi(x) - \psi(x)$ would satisfy

$$\chi'(x) + p(x)\chi(x) = 0.$$

Hence, using the arguments in the previous paragraph, we obtain

$$\chi(x) = C\mu(x)^{-1}$$

for some constant C.

Now, if $\varphi(x_0) = y_0 = \psi(x_0)$, then we must have $\chi(x_0) = 0$ so that $C\mu(x)^{-1} = 0$. Hence, we obtain C = 0 and hence, $\varphi = \psi$. Thus, we have proved the existence and uniqueness for the linear DE only by assuming that p and q are continuous.

Example 1.5.

$$y' = x + y.$$

Then, $\mu = e^{-\int dx} = e^{-x}$ and hence,

$$y = e^x \left[\int e^{-x} x dx + C \right] = e^x \left[-xe^{-x} + \int e^{-x} dx + C \right].$$

Thus,

$$y = e^x [-xe^{-x} - e^{-x} + C] = -x - 1 + Ce^x.$$

$$y(0) = 0 \implies 0 = -1 + C \implies C = 1.$$

Hence,

$$y = -x - 1 + e^x.$$

Note that

$$y' = -1 + e^x = -1 + (x + y + 1) = x + y.$$

 \Diamond

1.5 Equations with Variables Separated

If f(x, y) in (1) is of the form

$$f(x,y) = f_1(x)f_2(y)$$

for some functions f_1, f_2 , then we say that (3) is an **equation with separated variables**. In this case (3) takes the form:

$$y' = f_1(x)f_2(y);$$

equivalently,

$$\frac{y'}{f_2(y)} = f_1(x),$$

assuming that $f_2(y)$ is not zero at all points in the interval of interest. Hence, in this case, a **general** solution is given **implicitly** by

$$\int \frac{dy}{f_2(y)} = \int f_1(x)dx + C.$$

Example 1.6.

$$y' = xy$$
.

Equivalently,

$$\frac{dy}{y} = xdx.$$

Hence,

$$\log|y| = \frac{x^2}{2} + C,$$

i.e.,

$$y = C_1 e^{x^2/2}$$
.

Note that

$$y = C_1 e^{x^2/2} \implies y' = C_1 \left(e^{x^2/2} x \right) = xy.$$

 \Diamond

An equation with separated variables can also be written as

$$M(x)dx + N(y)dy = 0.$$

In this case, solution is implicitly defined by

$$\int M(x)dx + \int N(y)dy = 0.$$
 (5)

Equation of the form

$$M_1(x)N_1(y)dx + M_2(x)N_2(y)dy = 0 (6)$$

can be brought to the form (5): After dividing (6) by $N_1(y)M_2(x)$ we obtain

$$\frac{M_1(x)}{M_2(x)}dx + \frac{N_2(y)}{N_1(y)}dy = 0.$$

1.6 Homogeneous equations

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be **homogeneous of degree** n if

$$f(\lambda x, \lambda y) = \lambda^n f(x, y) \quad \forall \lambda \in \mathbb{R}$$

for some $n \in \mathbb{N}$.

The differential equation (1) is called a **homogeneous equation** if f is homogeneous of degree 0, i.e., if

$$f(\lambda x, \lambda y) = f(x, y) \quad \forall \lambda \in \mathbb{R}.$$

Suppose (1) is a homogeneous equation. Then we have

$$y' = f(x, y) = f(\frac{x}{x}, \frac{y}{x}) = f(1, u), \quad u := \frac{y}{x}.$$

Now,

$$u = \frac{y}{x} \implies ux = y \Longrightarrow u + x \frac{du}{dx} = y' = f(1, u).$$

Thus,

$$\frac{du}{f(1,u) - u} = \frac{dx}{x}$$

and hence, u and therefore, y is implicitly defined by

$$\int \frac{du}{f(1,u) - u} = \int \frac{dx}{x} + C.$$

1.7 Exact Equations

Suppose (1) is of the form

$$M(x,y)dx + N(x,y)dy = 0, (7)$$

where M and N are such that there exists u(x,y) with continuous first partial derivatives satisfying

$$M(x,y) = \frac{\partial u}{\partial x}, \quad N(x,y) = \frac{\partial u}{\partial y}.$$
 (8)

Then (7) takes the form

$$\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = 0;$$

equivalently,

$$du = 0.$$

Then the general solution is implicitly defined by

$$u(x,y) = C.$$

Equation (7) with M and N satisfying (8) is called an **exact differential equation**.

Note that, in the above, if there exists u(x,y) with continuous second partial derivatives $\frac{\partial^2 u}{\partial x \partial y}$ and $\frac{\partial^2 u}{\partial u \partial x}$, then

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$

In fact it is a sufficient condition of (7) to be an exact differential equation.

THEOREM 1.7. Suppose M and N are continuous and have continuous first partial derivatives $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ in $I \times J$, and

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$

Then the equation (7) is exact, and in that case the complete integral of (7) is given by

$$\int_{x_0}^x M(x, y) dx + \int_{y_0}^y N(x_0, y) dy = C.$$

Proof. Note that for any differentiable function g(y),

$$u(x,y) := \int_{x_0}^x M(x,y)dx + g(y)$$

satisfies $\frac{\partial u}{\partial x} = M(x, y)$. Then

$$\frac{\partial u}{\partial y} = \int_{x_0}^x \frac{\partial M}{\partial y} dx + g'(y) = \int_{x_0}^x \frac{\partial N}{\partial x} dx + g'(y) = N(x, y) - N(x_0, y) + g'(y).$$

Thus,

$$\frac{\partial u}{\partial y} = N \iff g'(y) = N(x_0, y) \iff g(y) = \int_{y_0}^{y} N(x_0, y) dy.$$

Thus, taking

$$g(y) = \int_{y_0}^y N(x_0, y) dy$$
 and $u(x, y) := \int_{x_0}^x M(x, y) dx + g(y)$

we obtain (8), and the complete integral of (7) is given by

$$\int_{x_0}^x M(x,y)dx + \int_{y_0}^y N(x_0,y)dy = C.$$

Example 1.8.

 $y\cos xydx + x\cos xydy = 0.$

$$\varphi(x,y) = \sin xy \implies \frac{\partial \varphi}{\partial x} = x \cos xy \text{ and } \frac{\partial \varphi}{\partial y} = x \cos xy.$$

Hence, $\sin xy = C$. Also,

$$y\cos xydx + x\cos xydy = 0 \iff y' = -\frac{y}{x} \iff \frac{dx}{x} + \frac{dy}{y} = 0.$$

Hence,
$$\log |xy| = C$$
.

Example 1.9.

$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0.$$

In this case

$$\frac{\partial M}{\partial y} = -\frac{6x}{y^4} = \frac{\partial N}{\partial x}.$$

Hence, the given DE is exact, and u is give by

$$u(x,y) = \int Mdx + \int N(0,y)dy = \frac{x^2}{y^3} - \frac{1}{y},$$

so that the complete integral is given by u(x,y) = C.

1.8 Equations reducible to homogeneous or variable separable or linear or exact form

1.8.1 Reducible to homogeneous or variable separable form

Note that the function

$$f(x,y) = \frac{ax + by + c}{a_1x + b_1y + c_1}$$

is not homogeneous if either $c \neq 0$ or $c_1 \neq 0$, and in such case,

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

 \Diamond

is not homogeneous. We shall convert this equation into a homogeneous equation in terms a variables: Consider the change of variables:

$$X = x - h$$
, $Y = y - k$.

Then

$$ax + by + c = a(X + h) + b(Y + k) + c = aX + bY + (ah + bk + c),$$

$$a_1x + b_1y + c_1 = a_1(X + h) + b_1(Y + k) + c_1 = a_1X + b_2Y + (a_1h + b_1k + c_1).$$

There are two cases:

$$\underline{\text{Case(i)}} : \det \begin{pmatrix} a & b \\ a_1 & b_1 \end{pmatrix} \neq 0.$$

In this case there exists a unique pair (h, k) such that

$$ah + bk + c = 0 (2)$$

$$a_1h + b_1k + c_1 \tag{3}$$

are satisfied. Hence, observing that

$$\frac{dY}{dX} = \frac{dY}{dy}\frac{dy}{dx}\frac{dx}{dX} = \frac{dy}{dx},$$

the equation (1) takes the form

$$\frac{dY}{dX} = \frac{aX + bY}{a_1X + b_1Y}.$$

This is a homogeneous equation. If $Y = \varphi(X)$ is a solution of this homogeneous equation, then a solution of (1) is given by

$$y = k + \varphi(x - h).$$

<u>Case(ii)</u>: $det \begin{pmatrix} a & b \\ a_1 & b_1 \end{pmatrix} = 0$. In this case either

$$a_1 = \alpha a, \quad b_1 = \alpha b \quad \text{ for some } \alpha \in \mathbb{R}$$

or

$$a_1 = \beta a_1, b = \beta b_1 \text{ for some } \beta \in \mathbb{R}.$$

Assume that $a_1 = \alpha a$ and $b_1 = \alpha b$ for some $\alpha \in \mathbb{R}$. Then, (1) takes the form

$$\frac{dy}{dx} = \frac{ax + by + c}{a_1x + b_1y + c_1} = \frac{ax + by + c}{\alpha(ax + by) + c_1}.$$

Taking z = ax + by, we obtain

$$\frac{dz}{dx} = a + b\frac{dy}{dx} = a + b\left(\frac{z+c}{\alpha(z+c_1)}\right).$$

This is an equation in variable separable form.

Example 1.10.

$$\frac{dy}{dx} = \frac{2x+y-1}{4x+2y+5}.$$

Taking z = 2x + y,

$$\frac{dz}{dx} = 2 + \frac{dy}{dx} = 2 + \frac{z-1}{2z+5} \iff \frac{dz}{dx} = \frac{5z+9}{2z+5}$$

i.e.,

$$\frac{2z+5}{5z+9}dz = dx.$$

Note that

$$\frac{2z+5}{5z+9} = \left(\frac{1}{5}\right) \frac{10z+25}{5z+9} = \left(\frac{1}{5}\right) \frac{2(5z+9)+7}{5z+9} = \left(\frac{2}{5}\right) + \left(\frac{7}{5}\right) \frac{1}{5z+9}$$

$$\int \frac{2z+5}{5z+9} dz = \inf dx \iff \frac{2z}{5} + \frac{7}{25} \log|5z+9| = x+9$$

$$\iff \frac{2(2x+y)}{5} + \frac{7}{25} \log|5(2x+y) + 9| = x+9$$

Thus, the solution y is given by

$$\frac{4x + 2y}{5} + \frac{7}{25}\log|10x + 5y + 9| = x + 9.$$

1.8.2 Reducible to linear form

Bernauli's equation:

$$y' + p(x)y = q(x)y^n.$$

Write it as

$$y^{-n}y' + p(x)y^{-n+1} = q(x).$$

Taking $z = y^{-n+1}$,

$$\frac{dz}{dx} = (-n+1)y^{-n}\frac{dy}{dx} = (-n+1)[-p(x)z + q(x)],$$

i.e.,

$$\frac{dz}{dx} - (-n+1)p(x)z = (-n+1)q(x).$$

Hence,

$$z = \frac{1}{\mu(x)} \left(\int \mu(x) (-n+1) q(x) dx + C \right), \quad \mu(x) = e^{(-n+1) \int p(x) dx}.$$

Example 1.11.

$$\frac{dy}{dx} + xy = x^3y^3.$$

Here, n = 3 so that -n + 1 = -2 and

$$\mu(x) = e^{(-n+1)\int p(x)dx} = e^{-2\int xdx} = e^{-x^2}.$$

$$z = \frac{1}{\mu(x)} \left(\int \mu(x)(-n+1)q(x)dx + C \right) = e^{x^2} \left(\int -2e^{-x^2}x^3dx + C \right)$$
$$= -2e^{x^2} \left(\int e^{-x^2}x^3dx - C/2 \right).$$

Gives:

$$(x^2 + 1 + Ce^{x^2})y^2 = 1.$$

1.8.3 Reducible to exact equations

Suppose M(x,y) and N(x,y) are functions with continuous partial derivatives $\frac{\partial M}{\partial x}$, $\frac{\partial N}{\partial x}$, $\frac{\partial M}{\partial y}$, $\frac{\partial N}{\partial x}$. Consider the differential equation

$$M(x,y)dx + N(x,y)dy = 0.$$

Recall that it is an exact equation if and only if

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}.$$

Suppose the equation is not exact. Then we look for a function $\mu := \mu(x)$ such that

$$\mu(x)[M(x,y)dx + N(x,y)dy] = 0 \tag{*}$$

is exact. So, requirement on μ should be

$$\frac{\partial}{\partial y}(\mu M) = \frac{\partial}{\partial x}(\mu N), i.e., \mu \frac{\partial M}{\partial y} = \mu \frac{\partial N}{\partial x} + \mu' N$$

$$\iff \frac{\mu'}{\mu} = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right).$$

Thus:

If $\varphi := \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ is a function of x alone, then the above differential equation for μ can be solved and with the resulting $\mu := e^{\int \varphi dx}$ the equation (*) is exact equation.

Similarly, looking for a function $\tilde{\mu} = \tilde{\mu}(y)$ such that

$$\tilde{\mu}(x)[M(x,y)dx + N(x,y)dy] = 0 \tag{**}$$

becomes exact, we arrive at the equation

$$\frac{\tilde{\mu}'(y)}{\tilde{\mu}(y)} = \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right).$$

Hence, we can make the following statement:

If $\psi := \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$ is a function of y alone, then the above differential equation for μ can be solved and with the resulting $\mu := e^{\int \psi dx}$ the equation (**) is exact equation.

Definition 1.12. Each of the functions $\mu(x)$ and $\tilde{\mu}(y)$ in the above discussion, if exists, is called an integrating factor.

Example 1.13.

$$(y + xy^2)dx - xdy = 0.$$

Note that $\frac{\partial M}{\partial y} = 1 + 2xy$, $\frac{\partial N}{\partial x} = -1$,

$$\varphi := \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{(1 + 2xy) + 1}{-x} = \frac{2(1 + xy)}{-x}.$$

$$\psi = \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = \frac{-2(1 + xy)}{y(1 + xy)} = -\frac{2}{y}.$$

Thus,

$$\tilde{\mu} := e^{\int \frac{-2}{y} dy} = -\frac{1}{y^2}$$

is an integrating factor, i.e.,

$$-\frac{1}{y^2}[(y+xy^2)dx - xdy] = 0 \iff \left(-\frac{1}{y} - x\right)dx - \frac{x}{y^2}dy = 0$$

is an exact equation. Then

$$u = \int M dx + \int N(0, y) dy = \int \left(-\frac{1}{y} - x\right) dx = -\frac{x}{y} - \frac{x^2}{2}.$$

 \Diamond

Thus the complete integral is given by $\frac{x}{y} + \frac{x^2}{2} = C$.

2 Second and higher order linear ODE

Second order linear ODE is of the form

$$y'' + a(x)y' + b(x)y = f(x)$$
(1)

where a(x), b(x), f(x) are functions defined on some interval I. The equation (1) is said to be

- 1. homogeneous if f(x) = 0 for all $x \in I$, and
- 2. **non-homogeneous** of f(x) = 0 for some $x \in I$.

THEOREM 2.1. (Existence and uniqueness) Suppose a(x), b(x), f(x) are continuous functions (defined on some interval I). Then for every $x_0 \in I$, $y_0 \in \mathbb{R}$, $z_0 \in \mathbb{R}$, there exists a unique solution y for (1) such that

$$y(x_0) = y_0, \quad y'(x_0) = z_0.$$

2.1 Second order linear homogeneous ODE

Consider second order linear homogeneous ODE:

$$y'' + a(x)y' + b(x)y = 0.$$
 (2)

Note that:

• If y_1 and y_2 are solutions of (2), then for any $\alpha, \beta \in \mathbb{R}$, the function $\alpha y_1 + \beta y_2$ is also a solution of (2).

Definition 2.2. Let y_1 and y_2 be functions defined on an interval I.

1. y_1 and y_2 are said to be **linearly dependent** if there exists $\lambda \in \mathbb{R}$ such that either $y_1(x) = \lambda y_2(x)$ or $y_2(x) = \lambda y_1(x)$; equivalently, there exists $\alpha, \beta \in \mathbb{R}$ with at least one of them nonzero, such that

$$\alpha y_1(x) + \beta y_2(x) = 0 \quad \forall x \in I.$$

2. y_1 and y_2 are said to be **linearly independent** if they are not linearly dependent, i.e. for $\alpha, \beta \in \mathbb{R}$,

$$\alpha y_1(x) + \beta y_2(x) = 0 \quad \forall x \in I \implies \alpha = 0, \beta = 0.$$

 \Diamond

We shall prove:

THEOREM 2.3. The following hold.

- 1. The differential equation (2) has two linearly independent solutions.
- 2. If y_1 and y_2 are linearly independent solutions of (2), then every solution y of (2) can be expressed as

$$y = \alpha y_1 + \beta y_2$$

for some $\alpha, \beta \in \mathbb{R}$.

Definition 2.4. Let y_1 and y_2 be differentiable functions (on an interval I). Then the function

$$W(y_1, y_2)(x) := \det \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}$$

 \Diamond

is called the **Wronskian** of y_1, y_2 .

Once the functions y_1, y_2 are fixed, we shall denote $W(y_1, y_2)(x)$ by W(x).

Note that:

• If y_1 and y_2 are linearly dependent, then W(x) = 0 for all $x \in I$.

Equivalently:

• If $W(x_0) \neq 0$ for some $x_0 \in I$, then y_1 and y_2 are linearly independent.

THEOREM 2.5. Consider a nonsingular matrix $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$. Let $x_0 \in I$. Let y_1 and y_2 be unique solutions of (2) satisfying the conditions

$$y_1(x_0) = a_1$$
 $y_2(x_0) = b_1$
 $y'_1(x_0) = a_2$ $y'_2(x_0) = b_2$

Then y_1 and y_2 are linearly independent solutions of (2).

Proof. Since $A = W(x_0)$ and $\det(A) \neq 0$, the proof follows from the earlier observation.

LEMMA 2.6. Let y_1 and y_2 be solutions of (2) and $x_0 \in I$. Then

$$W(x) = W(x_0)e^{-\int_{x_0}^x a(t)dt}$$
.

In particular, if y_1 and y_2 are solutions of (2), then

 $W(x_0) = 0$ at some point $x_0 \iff W(x) = 0$ at every point $x \in I$.

Proof. Since y_1 and y_2 are solutions of (2), we have

$$y_1'' + a(x)y_1' + b(x)y_1 = 0,$$

$$y_2'' + a(x)y_2' + b(x)y_2 = 0.$$

Hence,

$$(y_1y_2'' - y_2y_1'') + a(x)(y_1y_2' - y_2y_1') = 0.$$

Note that

$$W = y_1 y_2' - y_2 y_1', \quad W' = y_1 y_2'' - y_2 y_1''.$$

Hence

$$W' + a(x)W = 0.$$

Therefore,

$$W(x) = W(x_0)e^{-\int_{x_0}^x a(t)dt}.$$

THEOREM 2.7. Let y_1 and y_2 be solutions of (2) and $x_0 \in I$. Then

 y_1 and y_2 are linearly independent, $\iff W(x) \neq 0$ for every $x \in I$.

Proof. We have already observed that if $W(x_0) = 0$ for some $x_0 \in I$, then y_1 and y_2 are linearly independent. Hence, it remains to prove that if y_1 and y_2 are linearly independent, then $W(x) \neq 0$ for every $x \in I$.

Suppose $W(x_0) = 0$ for some $x_0 \in I$. Then by the Lemma 2.6, W(x) = 0 for every $x \in I$, i.e.,

$$y_1y_2' - y_2y_1' = 0$$
 on I .

Let $I_0 = \{x \in I : y_1(x) \neq 0\}$. Then we have

$$\frac{y_1y_2' - y_2y_1'}{y_1^2} = 0 \quad \text{on } I_0,$$

i.e.,

$$\frac{d}{dx}\left(\frac{y_2}{y_1}\right) = 0 \quad \text{on } I_0.$$

Hence, there exists $\lambda \in \mathbb{R}$ such that

$$\frac{y_2}{y_1} = \lambda \quad \text{on } I_0.$$

Hence, $y_2 = \lambda y_1$ on I, showing that y_1 and y_2 are linearly dependent.

THEOREM 2.8. Let y_1 and y_2 be linearly independent solutions of (2). Then every solution y of (2) can be expressed as

$$y = \alpha y_1 + \beta y_2$$

for some $\alpha, \beta \in \mathbb{R}$.

Proof. Let y be a solution of (2), and for $x_0 \in I$, let

$$y_0 := y(x_0), \quad z_0 := y'(x_0).$$

Let W(x) be the Wronskian of y_1, y_2 . Since y_1 and y_2 are linearly independent solutions of (2), by Theorem 2.5, $W(x_0) \neq 0$. Hence, there exists a unique pair α, β of real numbers such that

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \begin{bmatrix} y_0 \\ z_0 \end{bmatrix}.$$

Let

$$\varphi(x) = \alpha y_1(x) + \beta y_2(x), \quad x \in I.$$

Then φ is a solution of (2) satisfying

$$\varphi(x_0) = \alpha y_1(x_0) + \beta y_2(x_0) = y_0, \quad \varphi'(x_0) = \alpha y_1'(x_0) + \beta y_2'(x_0) = z_0.$$

By the existence and uniqueness theorem, we obtain $\varphi(x) = y(x)$ for all $x \in I$, i.e.,

$$y = \alpha y_1 + \beta y_2.$$

Theorem 2.5 and Theorem 2.8 give Theorem 2.3.

Now, the question is how to get linearly independent solutions for (2).

THEOREM 2.9. Let y_1 be a nonzero solution of (2). Then

$$y_2(x) := y_1(x) \int \frac{\psi(x)}{y_1(x)^2} dx, \quad \psi(x) := e^{-\int_{x_0}^x a(t)dt},$$

is a solution of (2), and y_1, y_2 are linearly independent.

Proof. Let $y_2(x) = y_1(x)\varphi(x)$, where

$$\varphi(x) := \int \frac{\psi(x)}{y_1(x)^2} dx, \quad \psi(x) := e^{-\int_{x_0}^x a(t)dt}.$$

Then

$$y_2' = y_1 \varphi' + y_1' \varphi, \quad y_2'' = y_1 \varphi'' + y_1' \varphi' + y_1' \varphi' + y_1'' \varphi = y_1 \varphi'' + 2y_1' \varphi' + y_1'' \varphi.$$

Hence,

$$y_2'' + ay' + by_2 = y_1\varphi'' + 2y_1'\varphi' + y_1''\varphi + a(y_1\varphi' + y_1'\varphi) + by_1\varphi$$

$$= y_1\varphi'' + 2y_1'\varphi' + (y_1'' + ay_1' + by_1\varphi)\varphi + ay_1\varphi'$$

$$= y_1\varphi'' + 2y_1'\varphi' + ay_1\varphi'$$

Note that

$$\varphi' = \frac{\psi(x)}{y_1(x)^2}$$
, i.e., $y_1^2 \varphi' = \psi$.

Hence

$$y_1^2 \varphi'' + 2y_1 y_1' \varphi' = \psi'$$
 i.e., $y_1(y_1 \varphi'' + 2y_1' \varphi') = \psi'$

so that

$$y_2'' + ay' + by_2 = y_1\varphi'' + 2y_1'\varphi' + ay_1\varphi' = \frac{\psi'}{y_1} + \frac{a\psi}{y_1} = \frac{\psi' + a\psi}{y_1} = 0.$$

Clearly, y_1 and y_2 are linearly independent.

Motivation for the above expression for y_2 :

If y_1 and y_2 are solutions of (2), then we know that

$$\frac{d}{dx}\left(\frac{y_2}{y_1}\right) = \frac{y_1y_2' - y_2y_1'}{y_1^2} = \frac{W(x)}{y_1^2} = \frac{Ce^{-\int_{x_0}^x a(t)dt}}{y_1^2}.$$

Hence,

$$y_2 = y_1 \int \left(\frac{Ce^{-\int_{x_0}^x a(t)dt}}{y_1^2} \right) dx.$$

2.2 Second order linear homogeneous ODE with constant coefficients

The DE in this case is of the form

$$y'' + py' + qy = 0, (1)$$

where p, q are real constants. Let us look for a solution (1) in the form $y = e^{\lambda x}$ for some λ , real or complex. Assuming that such a solution exists, from (1) we have

$$(\lambda^2 + p\lambda + q)e^{\lambda x} = 0$$

so that λ must satisfy the **auxiliary equation**:

$$\lambda^2 + p\lambda + q = 0. (2)$$

We have the following cases:

- 1. (2) has two distinct real roots λ_1, λ_2 ,
- 2. (2) has two distinct complex roots $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha i\beta$,
- 3. (2) has a multiple root λ .
- In case 1, $e^{\lambda_1 x}$, $e^{\lambda_2 x}$ are linearly independent solutions.
- In case 2, $e^{\alpha x} \cos \beta x$, $e^{\alpha x} \sin \beta x$ are linearly independent solutions.

• In case 1, $e^{\lambda x}$, $xe^{\lambda x}$ are linearly independent solutions.

Example 2.10.

$$y'' + y' - 2y = 0$$

Auxiliary equation: $\lambda^2 + \lambda - 2 = 0$ has two distinct real roots: $\lambda_1 = 1$, $\lambda_2 = -2$. General solution: $y = C_1 e^x + C_2 e^{-2x}$.

Example 2.11.

$$y'' + 2y' + 5y = 0$$

Auxiliary equation: $\lambda^2 + 2\lambda + 5 = 0$ has two complex roots: -1 + i2, = -1 - i2. General solution: $y = e^{-x}[C_1 \cos 2x + C_2 \sin 2x]$.

Example 2.12.

$$y'' - 4y' + 4y = 0$$

Auxiliary equation: $\lambda^2 - 4\lambda + 4 = 0$ has a multiple root: $\lambda_0 = 2$. General solution: $y = e^{2x}[C_1 + C_2 e^{2x}]$.

2.3 Second order linear non-homogeneous ODE

Consider the nonhomogeneous ODE:

$$y'' + a(x)y' + b(x)y = f(x), (1)$$

We observe that if y_0 is a solution of the homogeneous equation

$$y'' + a(x)y' + b(x)y = 0 (2)$$

and y^* is a particular solution of the nonhomogeneous equation (1), then

$$y = y_0 + y^*$$

is a solution of the nonhomogeneous equation (1). Also, if y^* is a particular solution of the nonhomogeneous equation (1) and if y is any solution of the nonhomogeneous equation (1), then $y - y^*$ is a solution of the homogeneous equation (2). Thus, knowing a particular solution y^* of the nonhomogeneous equation (1) and a general solution \bar{y} of homogeneous equation (2), we obtain a general solution of the nonhomogeneous equation (1) as

$$y = \bar{y} + y^*.$$

If the coefficients are constants, then we know a method of obtaining two linearly independent solutions for the homogeneous equation (2), and thus we obtain a general solution for the homogeneous equation (2).

How to get a particular solution for the nonhomogeneous equation (1)?

2.3.1 Method of variation of parameters

Suppose y_1 and y_2 are linearly independent solutions of the homogeneous ode:

$$y'' + a(x)y' + b(x)y = 0.$$
 (2)

The, look for a solution of (1) in the form

$$y = u_1 y_1 + u_2 y_2$$

where u_1 and u_2 are unctions to be determined. Assume for a moment that such a solution exists. Then

$$y' = u_1 y_1' + u_2 y_2' + u_1' y_1 + u_2' y_2.$$

We shall look for u_1, u_2 such that

$$u_1'y_1 + u_2'y_2 = 0 (3).$$

Then, we have

$$y' = u_1 y_1' + u_2 y_2', (4)$$

$$y'' = u_1 y_1'' + u_2 y_2'' + u_1' y_1' + u_2' y_2'.$$
(5)

Substituting (4-5) in (1),

$$(u_1y_1'' + u_2y_2'' + u_1'y_1' + u_2'y_2') + a(x)(u_1y_1' + u_2y_2') + b(x)(u_1y_1 + u_2y_2) = f(x),$$

i.e.,

$$u_1[y_1'' + a(x)y_1'b(x)y_1] + u_2[y_2'' + a(x)y_2'b(x)y_2] + u_1'y_1' + u_2'y_2' = f(x),$$

i.e.,

$$u_1'y_1' + u_2'y_2' = f(x). (6)$$

Now, (3) and (6):

$$\begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} \begin{bmatrix} u_1' \\ u_2' \end{bmatrix} = \begin{bmatrix} 0 \\ f \end{bmatrix}$$

gives

$$u_1' = -\frac{y_2 f}{W}, \quad u_2' = \frac{y_1 f}{W}.$$

Hence,

$$u_1 = -\int \frac{y_2 f}{W} + C_1, \quad u_2 = \int \frac{y_1 f}{W} + C_2.$$

Thus,

$$y = \left(-\int \frac{y_2 f}{W} + C_1\right) y_1 + \left(\int \frac{y_1 f}{W} + C_2\right) y_2$$

is the general solution. Thus we have proved the following theorem.

THEOREM 2.13. If y_1 , y_2 are linearly independent solutions of the homogeneous equation (2), and if W(x) is their Wronskian, then a general solution of the nonhomogeneous equation (1) is given by

$$y = u_1 y_1 + u_2 y_2,$$

where

$$u_1 = -\int \frac{y_2 f}{W} + C_1, \quad u_2 = \int \frac{y_1 f}{W} + C_2.$$

Analogously, it the following theorem also can be proved:

THEOREM 2.14. If y_1, y_2, \ldots, y_n are linearly independent solutions of the homogeneous equation

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y^{(1)} + a_n(x)y = 0,$$

where a_1, a_2, \ldots, a_n are continuous functions on an interval I, and if W(x) is their Wronskian, i.e.,

$$W(x) = \det \begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix},$$

then a general solution of the nonhomogeneous equation

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y^{(1)} + a_n(x)y = f(x)$$

is given by

$$y = (u_1 + C_1)y_1 + (u_2 + C_2)y_2 + \dots + (u_n + C_n)y_n$$

where u'_1, u'_2, \ldots, u'_n are obtained by solving the system

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \\ \vdots \\ u'_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ f \end{bmatrix}.$$

Remark 2.15. Suppose the right hand side of (1) is of the form $f(x) = f_1(x) + f_2(x)$. Then it can be easily seen that:

If y_1 and y_2 are solutions of

$$y'' + a(x)y' + b(x)y = f_1(x),$$
 $y'' + a(x)y' + b(x)y = f_2(x),$

respectively, then $y_1 + y_2$ are solutions of

$$y'' + a(x)y' + b(x)y = f_1(x) + f_2(x).$$

2.3.2 Method of undetermined coefficients

This method is when the coefficients of (1) are constants and f is of certain special forms. So, consider

$$y'' + py' + qy = f, (1)$$

where p, q are constants.

Case (i): $f(x) = P(x)e^{\alpha x}$, where P is a polynomial of degree n, and $\alpha \in \mathbb{R}$:

We look for a solution of the form

$$y = Q(x)e^{\alpha x},$$

where Q is a polynomial of degree n Substituting the above expression in the DE, we obtain:

$$[Q'' + (2\alpha + p)Q' + (\alpha^2 + p\alpha + q)Q]e^{\alpha x} = P(x)e^{\alpha x}.$$

Thus, we must have

$$Q'' + (2\alpha + p)Q' + (\alpha^2 + p\alpha + q)Q = P(x).$$

Note that, the above equation is an identity only if $\alpha^2 + p\alpha + q \neq 0$, i.e., α is not a root of the auxiliary equation $\lambda^2 + p\lambda + q = 0$. In such case, we can determine Q by comparing coefficients of powers of x^k for $k = 0, 1, \ldots, n$.

If α is a root of the auxiliary equation $\lambda^2 + p\lambda + q = 0$, then we must look for a solution of the form

$$y = \widetilde{Q}(x)e^{\alpha x},$$

where \widetilde{Q} is a polynomial of degree n+1, or we must look for a solution of the form

$$y = xQ(x)e^{\alpha x},$$

where Q is a polynomial of degree n. Proceeding as above we can determine Q provided $2\alpha + p \neq 0$, i.e., if α is not a double root of the auxiliary equation $\lambda^2 + p\lambda + q = 0$.

If α is a double root of the auxiliary equation $\lambda^2 + p\lambda + q = 0$, then we must look for a solution of the form

$$y = \widehat{Q}(x)e^{\alpha x},$$

where \hat{Q} is a polynomial of degree n+2, or we must look for a solution of the form

$$y = x^2 Q(x)e^{\alpha x}$$
,

where Q is a polynomial of degree n, which we can determine by comparing coefficients of powers of x.

Case (ii): $f(x) = P_1(x)e^{\alpha x}\cos\beta x + P_1(x)e^{\alpha x}\sin\beta x$, where P_1 and P_2 are polynomials and α, β are real numbers:

We look for a solution of the form

$$y = Q_1(x)e^{\alpha x}\cos\beta x + Q_1(x)e^{\alpha x}\sin\beta x,$$

where Q_1 and Q_2 are polynomials with

$$\deg Q_i(x) = \max\{P_1(x), P_2(x)\}, \quad j \in \{1, 2\}.$$

Substituting the above expression in the DE, we obtain the coefficients of Q_1, Q_2 if $\alpha + i\beta$ is not a root of the auxiliary equation $\lambda^2 + p\lambda + q = 0$.

If $\alpha + i\beta$ is a simple root of the auxiliary equation $\lambda^2 + p\lambda + q = 0$, then we look for a solution of the form

$$y = x[Q_1(x)e^{\alpha x}\cos\beta x + Q_1(x)e^{\alpha x}\sin\beta x],$$

where Q_1 and Q_2 are polynomials with $\deg Q_j(x) = \max\{P_1(x), P_2(x)\}, j \in \{1, 2\}$.

The following example illustrates the second part of case (ii) above:

Example 2.16. ² We find the general solution of

$$y'' + 4y = x \sin 2x.$$

The auxiliary equation corresponding to the homogeneous equation y'' + 4y = 0 is:

$$\lambda^2 + 4 = 0.$$

Its solutions are $\lambda = \pm 2i$. Hence, the general solution of the homogenous equation is:

$$y_0 = A\cos 2x + B\sin 2x.$$

Note that the non-homogenous term, $f(x) = x \sin 2x$, is of the form

$$f(x) = P_1(x)e^{\alpha x}\cos\beta x + P_1(x)e^{\alpha x}\sin\beta x,$$

with $P_1(x) = 0$, $\alpha = 0$, $\beta = 2$. Also, $2i = \alpha + i\beta$ is a simple root of the auxiliary equation. Hence, a particular solution is of the form

$$y = x[Q_1(x)e^{\alpha x}\cos\beta x + Q_1(x)e^{\alpha x}\sin\beta x],$$

where Q_1 and Q_2 are polynomials with $\deg Q_j(x) = \max\{P_1(x), P_2(x)\} = 1$. Thus, a particular solution is of the form

$$y = x[(A_0 + A_1x)\cos 2x + (B_0 + B_1x)\sin 2x].$$

Differentiating:

$$y' = [A_0 + (2A_1 + 2B_0)x + 2B_1x^2]\cos 2x + [B_0 + (2B_1 - 2A_0)x - 2A_1x^2]\sin 2x,$$

²This example is included in the notes on November 23, 2012 – mtnair.

$$y'' + 4y = 2[B_0 + (2B_1 - 2A_0)x - 2A_1x^2]\cos 2x$$
$$-2[A_0 + (2A_1 + 2B_0)x + 2B_1x^2]\sin 2x$$
$$+[(2B_1 - 2A_0) - 4A_1x]\sin 2x + [(2A_1 + 2B_0) + 4B_1x]\cos 2x$$
$$+4x[(A_0 + A_1x)\cos 2x + (B_0 + B_1x)\sin 2x].$$

Hence, $y'' + 4y = x \sin 2x$ if and only if

$$2[B_0 + (2B_1 - 2A_0)x - 2A_1x^2] + [(2A_1 + 2B_0) + 4B_1x] + 4x(A_0 + A_1x) = 0,$$

$$-2[A_0 + (2A_1 + 2B_0)x + 2B_1x^2] + [(2B_1 - 2A_0) - 4A_1x] + 4x(B_0 + B_1x) = x$$

 \iff

$$A_0 = 0$$
, $A_1 = -\frac{1}{8}$, $B_0 = \frac{1}{16}$, $B_1 = 0$,

so that

$$y = x[(A_0 + A_1 x)\cos 2x + (B_0 + B_1 x)\sin 2x] = -\frac{x^2}{8}\cos 2x + \frac{x}{16}\sin 2x.$$

Thus, the general solution of the equation is:

$$A\cos 2x + B\sin 2x - \frac{x^2}{8}\cos 2x + \frac{x}{16}\sin 2x.$$

Remark 2.17. The above method can be generalized, in a natural way, to higher order equation

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y^{(1)} + a_n y = f(x)$$

where f is of the form

$$f(x) = P_1(x)e^{\alpha x}\cos\beta x + P_1(x)e^{\alpha x}\sin\beta x$$

with P_1 and P_2 being polynomials and α, β are real numbers.

2.3.3 Equations reducible to constant coefficients case

A particular type of equations with non-constant coefficients can be reduced to the ones with constant coefficients. here it is: Consider

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy^{(1)} + a_{n}y = f(x).$$
(1)

 \Diamond

 \Diamond

In this case, we take the change of variable: $x \mapsto z$ defined by

$$x = e^z$$
.

Then the equation (1) can be brought to the form

$$D^{n}y + b_{1}D^{n-1}y + \dots + b_{n-1}Dy + a_{n}y = f(e^{z}), \quad D := \frac{d}{dz},$$

where b_1, b_2, \dots, b_n are constants. Let us consider the case of n = 2:

$$x^2y'' + a_1xy' + a_2y = f(x).$$

Taking $x = e^z$,

$$\frac{dy}{dz} = \frac{dy}{dx}\frac{dx}{dz} = y'x,$$

$$\frac{d^2y}{dz^2} = \frac{d}{dz}(y'x) = \frac{dy'}{dz}x + y'\frac{dx}{dz} = y''x^2 + y'x = y''x^2 + \frac{dy}{dz}.$$

Hence we have

$$x^{2}y'' + a_{1}xy' + a_{2}y = \left(\frac{d^{2}y}{dz^{2}} - \frac{dy}{dz}\right) + a_{1}\frac{dy}{dz} + a_{2}y = \frac{d^{2}y}{dz^{2}} + (a_{1} - 1)\frac{dy}{dz} + a_{2}y.$$

Thus, the equation takes the form:

$$\frac{d^2y}{dz^2} + (a_1 - 1)\frac{dy}{dz} + a_2y = f(e^z).$$

Note also that

$$\frac{d^3y}{dz^3} = \frac{d}{dz}(y''x^2 + y'x) = \frac{dy''}{dz}x^2 + y''2x\frac{dx}{dz} + y''x^2 + y'x$$

$$= y'''x^3 + 2y''x^2 + y''x^2 + y'x$$

$$= y'''x^3 + 3\left(\frac{d^2y}{dz^2} - \frac{dy}{dz}\right) + \frac{dy}{dz}.$$

Hence,

$$\begin{split} x^3y''' + ax^2y'' + bxy' + cy &= \frac{d^3y}{dz^3} - 3\left(\frac{d^2y}{dz^2} - \frac{dy}{dz}\right) - \frac{dy}{dz} + a\left(\frac{d^2y}{dz^2} - \frac{dy}{dz}\right) + b\frac{dy}{dz} + cy \\ &= \frac{d^3y}{dz^3} + (a-3)\frac{d^2y}{dz^2} + (b-a+3)\frac{dy}{dz} + cy. \end{split}$$

3 System of first order linear homogeneous ODE

Consider the system:

$$\frac{dx_1}{dt} = ax_1 + bx_2$$

$$\frac{dx_2}{dt} = cx_1 + dx_2$$

The above system can be written in matrix notation as:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{1}$$

or more compactly as:

$$\frac{dX}{dt} = AX,$$

where

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Here, we used the convention:

$$\frac{d}{dt} \begin{bmatrix} f \\ g \end{bmatrix} = \begin{bmatrix} f' \\ g' \end{bmatrix}.$$

In this case we look for a solution of the form

$$X = \begin{bmatrix} \alpha_1 e^{\lambda t} \\ \alpha_2 e^{\lambda t} \end{bmatrix} =: \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} e^{\lambda t}.$$

Substituting this into the system of equations we get

$$\lambda \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} e^{\lambda t} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} e^{\lambda t}.$$

Equivalently,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \lambda \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}.$$

That is,

$$\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{2}$$

Thus, if λ_0 is a root of the equation

$$\det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0, \tag{2}$$

then there is a nonzero vector $[\alpha_1, \alpha_2]^T$ satisfying (2), and $X = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} e^{\lambda_0 t}$ is a solution of the system (1).

Definition 3.1. The equation (3) is called the **auxiliary equation** for the system (1).

 \Diamond

Let us consider the following cases:

Case (i): Suppose the roots of the auxiliary equation (3) are real distinct, say λ_1 and λ_2 . Suppose

$$\begin{bmatrix} \alpha_1^{(1)} \\ \alpha_2^{(1)} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \alpha_1^{(2)} \\ \alpha_2^{(2)} \end{bmatrix}$$

are nonzero solutions of (2) corresponding to $\lambda = \lambda_1$ and $\lambda = \lambda_2$, respectively. Then, the vector valued functions

$$X_1 = \begin{bmatrix} \alpha_1^{(1)} \\ \alpha_2^{(1)} \end{bmatrix} e^{\lambda_1 t}, \quad X_2 = \begin{bmatrix} \alpha_1^{(2)} \\ \alpha_2^{(2)} \end{bmatrix} e^{\lambda_2 t}$$

are solutions of (1), and they are linearly independent. In this case, the general solution of (1) is given by $C_1X_1 + C_2X_2$.

Case (ii): Suppose the roots of the auxiliary equation (3) are complex non-real. Since the entries of the matrix are real, these roots are conjugate to each other. Thus, they are of the form $\alpha + i\beta$ and $\alpha - i\beta$ for $\beta \neq 0$. Suppose $\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ be a nonzero solution of (2) corresponding to $\lambda = \alpha + i\beta$. The numbers α_1 and α_2 need not be real. Thus,

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \alpha_1^{(1)} + i\alpha_1^{(2)} \\ \alpha_2^{(1)} + i\alpha_2^{(2)} \end{bmatrix}.$$

Then, the vector valued function

$$X := \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} e^{(\alpha+i\beta)t} = \begin{bmatrix} \alpha_1^{(1)} + i\alpha_1^{(2)} \\ \alpha_2^{(1)} + i\alpha_2^{(2)} \end{bmatrix} e^{\alpha t} [\cos \beta t + i\sin \beta t]$$

is a solution of (1). Note that

$$X = X_1 + iX_2,$$

where

$$X_1 = \begin{bmatrix} \alpha_1^{(1)} \cos \beta t - \alpha_1^{(2)} \sin \beta t \\ \alpha_2^{(1)} \cos \beta t - \alpha_2^{(2)} \sin \beta t \end{bmatrix} e^{\alpha t}, \quad X_2 = \begin{bmatrix} \alpha_1^{(1)} \sin \beta t + \alpha_1^{(2)} \cos \beta t \\ \alpha_2^{(1)} \sin \beta t + \alpha_2^{(2)} \cos \beta t \end{bmatrix} e^{\alpha t}.$$

We see that X_1 and X_2 are also are solutions of (1), and they are linearly independent. In this case, a general solution of (1) is given by $C_1X_1 + C_2X_2$.

Case (iii): Suppose λ_0 is a double root of the auxiliary equation (3). In this case there are two subcases:

- There are linearly independent solutions for (2).
- There is only one (up to scalar multiples) nonzero solution for (2).

In the first case if

$$\begin{bmatrix} \alpha_1^{(1)} \\ \alpha_2^{(1)} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \alpha_1^{(2)} \\ \alpha_2^{(2)} \end{bmatrix}$$

are the linearly independent solutions of (2) corresponding to $\lambda = \lambda_0$, then the vector valued functions

$$X_1 = \begin{bmatrix} \alpha_1^{(1)} \\ \alpha_2^{(1)} \end{bmatrix} e^{\lambda_0 t}, \quad X_2 = \begin{bmatrix} \alpha_1^{(2)} \\ \alpha_2^{(2)} \end{bmatrix} e^{\lambda_0 t}$$

are solutions of (1), and the general solution of (1) is given by

$$C_1X_1 + C_2X_2$$
.

In the second case, let $\underline{u} := \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ is a nonzero solution of (2) corresponding to $\lambda = \lambda_0$, and let $\underline{v} := \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$ is such that

$$(A - \lambda_0 I)\underline{v} = \underline{u}.$$

Then

$$X = C_1 \underline{u} e^{\lambda_0 t} + C_2 [t\underline{u} + \underline{v}] e^{\lambda_0 t}$$

is the general solution.

Remark 3.2. Another method of solving a system is to convert the given system into a second order system for one of x_1 and x_2 , and obtain the other.

4 Power series method

4.1 The method and some examples

Consider the differential equation:

$$y'' + f(x)y' + g(x)y = r(x). (1)$$

We would like to see if the above equation has a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
 (2)

 \Diamond

in some interval I containing some known x_0 , where c_0, c_1, \ldots are to determined.

Recall from calculus: Suppose the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges at some point other than x_0 .

- There exists $\rho > 0$ such that the series converges at every x with $|x x_0| < \rho$.
- The series diverges at every x with $|x x_0| > \rho$.
- $\sum_{n=0}^{\infty} a_n (x-x_0)^n = 0$ implies $a_n = 0$ for all n = 0, 1, 2, ...
- The series can be differentiated term by term in the interval $(x_0 r, x_0 + \rho)$ any number of times, i.e.,

$$\frac{d^k}{dx^k} \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (x - x_0)^{n-k}$$

for every x with $|x - x_0| < \rho$ and for every $k \in \mathbb{N}$.

• If
$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 for $|x - x_0| < \rho$, then $a_n = \frac{f^{(n)}(x_0)}{n!}$.

The above number ρ is called the radius of convergence of the series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$.

Definition 4.1. A (real valued) function f defined in a neighbourhood of a point $x_0 \in \mathbb{R}$ is said to be **analytic** at x_0 if it can be expressed as

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \quad |x - x_0| < \rho,$$

for some $\rho > 0$, where a_0, a_1, \ldots are real numbers.

Recall that if p(x) and q(x) are polynomials given by

$$p(x) = a_0 + a_1 x + \dots + a_n x^n, \quad q(x) = b_0 + b_1 x + \dots + b_n x^n,$$

then

$$p(x)q(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + \dots + (a_0b_n + a_1b_{n-1} + \dots + a_nb_0)x^n.$$

Motivated by this, for convergent power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ and $\sum_{n=0}^{\infty} b_n (x-x_0)^n$, we define

$$\left(\sum_{n=0}^{\infty} a_n (x-x_0)^n\right) \left(\sum_{n=0}^{\infty} b_n (x-x_0)^n\right) = \sum_{n=0}^{\infty} c_n (x-x_0)^n, \quad c_n := \sum_{k=0}^{n} a_k b_{n-k}.$$

Now, it may be too much to expect to have a solution of the form (2) for a differential equation (1) for arbitrary continuous functions f, gr. Note that we require the solution to have only second derivative, whereas we are looking for a solution having a series expansion; in particular, differentiable infinitely many times. But, it may not be too much expect to have a solution of the form (2) if f, g, r also have power series expansions about x_0 . **Power series method** is based on such assumptions.

The idea is to consider those cases when f, g, r also have power series expansions about x_0 , say

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
, $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$, $r(x) = \sum_{n=0}^{\infty} d_n (x - x_0)^n$..

Then substitute the expressions for f, g, r, y and obtain the coefficients $c_n, n \in \mathbb{N}$, by comparing coefficients of $(x - x_0)^k$ for $k = 0, 1, 2, \ldots$

Note that this case includes the situation when:

- Any of the functions f, g, r is a polynomial,
- Any of the functions f, g, r is a rational function, i.e., function of the form p(x)/q(x) where p(x) and q(x) are polynomials, and in that case the point x_0 should not be a zero of q(x).

Example 4.2.

$$y'' + y = 0. (*)$$

In this case, f = 0, g = 0, r = 0. So, we may assume that the equation has a solution power series expansion around any point $x_0 \in \mathbb{R}$. For simplicity, let $x_0 = 0$, and assume that the solution is of the form $y = \sum_{n=0}^{\infty} c_n x^n$. Note that

$$(*) \iff \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} + \sum_{n=0}^{\infty} c_n x^n = 0 \iff \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2} x^n + \sum_{n=0}^{\infty} c_n x^n = 0$$

$$\iff \sum_{n=0}^{\infty} [(n+2)(n+1)c_{n+2} + c_n] x^n = 0 \iff (n+2)(n+1)c_{n+2} + c_n \quad \forall n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

$$\iff (n+2)(n+1)c_{n+2} = -\frac{c_n}{(n+2)(n+1)} \quad \forall n \in \mathbb{N}_0$$

$$\iff c_{2n} = \frac{(-1)^n a_0}{(2n)!}, \quad c_{2n+1} = \frac{(-1)^n a_1}{(2n+1)!} \quad \forall n \in \mathbb{N}_0.$$

Thus, if $y = \sum_{n=0}^{\infty} c_n x^n$ is a solution of (*), then

$$y = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{2n} x^{2n} + \sum_{n=0}^{\infty} c_{2n+1} x^{2n+1} = c_0 \cos x + c_1 \sin x$$

for arbitrary c_0 and c_1 . We can see that this, indeed, is a solution.

The following theorem specifies conditions under which a power series solution is possible.

THEOREM 4.3. Let p, qr be analytic at a point x_0 . Then every solution of the equation

$$y'' + p(x)y' + q(x)y = r(x)$$

can be represented as a power series in powers of $x - x_0$.

4.2 Legendre's equation and Legendre polynomials

The differential equation

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0 \tag{*}$$

 \Diamond

is called Legendre equation. Here, α is a real constant. Note that the above equation can also be written as

$$\frac{d}{dx}\left[(1-x^2)\frac{dy}{dx}\right] + \alpha(\alpha+1)y = 0.$$

Note that (*) can also be written as

$$y'' - \frac{2xy'}{1 - x^2} + \frac{\alpha(\alpha + 1)y}{1 - x^2} = 0.$$

It is of the form (1) with

$$f(x) = -\frac{2x}{1 - x^2}, \quad g(x) = \frac{\alpha(\alpha + 1)}{1 - x^2}, \quad r(x) = 0.$$

Clearly, f, g, r are rational functions, and have power series expansions around the point $x_0 = 0$. Let us assume that a solution of (*) is of the form $y = \sum_{n=0}^{\infty} c_n x^n$. Substituting the expressions for y, y', y'' into (*), we obtain

$$(1-x^2)\sum_{n=2}^{\infty}n(n-1)c_nx^{n-2} - 2x\sum_{n=1}^{\infty}nc_nx^{n-1} + \alpha(\alpha+1)\sum_{n=0}^{\infty}c_nx^n = 0,$$

i.e.,

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=2}^{\infty} n(n-1)c_n x^n - \sum_{n=1}^{\infty} 2nc_n x^n + \alpha(\alpha+1)\sum_{n=0}^{\infty} c_n x^n = 0,$$

i.e., $\sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n - \sum_{n=2}^{\infty} n(n-1)c_nx^n - \sum_{n=1}^{\infty} 2nc_nx^n + \sum_{n=0}^{\infty} \alpha(\alpha+1)c_nx^n = 0.$

Equating coefficients of x^k to 0 for $k \in \mathbb{N}_0$, we obtain

$$2c_2 + \alpha(\alpha + 1)c_0 = 0, \quad 6c_3 - 2c_1 + \alpha(\alpha + 1)c_1 = 0,$$
$$(n+2)(n+1)c_{n+2} + [-n(n-1) - 2n + \alpha(\alpha + 1)]c_n = 0,$$

i.e.,

$$2c_2 + \alpha(\alpha + 1)c_0 = 0$$
, $6c_3 + [-2 + \alpha(\alpha + 1)]c_1 = 0$, $(n+2)(n+1)c_{n+2} + (\alpha - n)(\alpha + n + 1)c_n = 0$,

i.e.,

$$c_2 = -\frac{\alpha(\alpha+1)}{2}c_0$$
, $c_3 = \frac{-2 + \alpha(\alpha+1)}{6}c_1$, $c_{n+2} = -\frac{(\alpha-n)(\alpha+n+1)}{(n+2)(n+1)}c_n$.

Note that if $\alpha = k$ is a positive integer, then coefficients of x^{n+2} is zero for $n \in \{k, k+1, \ldots\}$. Thus, in this case we have $y = y_1(x) + y_2(x)$, where:

- If $\alpha = k$ is an even integer, then $y_1(x)$ is a polynomial of degree k with only even powers of x, and $y_2(x)$ is a power series with only odd powers of x,
- If $\alpha = k$ is an odd integer, then $y_2(x)$ is a polynomial of degree k with only odd powers of x, and $y_1(x)$ is a power series with only even powers of x.

Now, suppose $\alpha = k$ is a positive integer. Then, from the iterative formula

$$c_{n+2} = -\frac{(\alpha - n)(\alpha + n + 1)}{(n+2)(n+1)}c_n$$

we have $c_k \neq 0$ and $c_{k+2} = 0$ so that

$$c_{k+2j} = 0$$
 for $j \in \mathbb{N}$.

Thus,

$$c_{k-2} = -\frac{k(k-1)}{2(2k-1)}c_k,$$

$$c_{k-4} = -\frac{(k-2)(k-3)}{4(2k-3)}c_{k-2} = (-1)^2 \frac{k(k-1)(k-2)(k-3)}{2 \cdot 4 \cdot (2k-1)(2k-3)}c_k.$$

$$c_{k-6} = -\frac{(k-4)(k-5)}{6(2k-5)}c_{k-4} = (-1)^3 \frac{k(k-1)(k-2)(k-3)(k-4)(k-5)}{2 \cdot 4 \cdot 6(2k-1)(2k-3)(2k-5)}c_k.$$

In general, for $2\ell < k$,

$$c_{k-2\ell} = (-1)^{\ell} \frac{k(k-1)(k-2)\cdots(k-2\ell+1)}{[2\cdot 4\cdot \cdots (2\ell)](2k-1)(2k-3)\cdots(2k-2\ell+1)} c_k$$

$$= (-1)^{\ell} \frac{k!(2k-2)(2k-4)\cdots(2k-2\ell)}{(k-2\ell)!2^{\ell}\ell!(2k-1)(2k-2)(2k-3)(2k-4)\cdots(2k-2\ell+1)(2k-2\ell)} c_k$$

$$= (-1)^{\ell} \frac{k!2^{\ell}(k-1)(k-2)\cdots(k-\ell)}{(k-2\ell)!2^{\ell}\ell!(2k-1)(2k-2)(2k-3)(2k-4)\cdots(2k-2\ell+1)(2k-2\ell)} c_k$$

$$= (-1)^{\ell} \frac{k!(k-1)!(2k-2\ell-1)!}{(k-2\ell)!\ell!(k-\ell-1)!(2k-1)!} c_k$$

Taking

$$c_k := \frac{(2k)!}{2^k (k!)^2}$$

it follows that

$$c_{k-2\ell} = (-1)^{\ell} \frac{(2k-2\ell)!}{2^k \ell! (k-\ell)! (k-2\ell)!}.$$

Definition 4.4. The polynomial

$$P_n(x) = \sum_{\ell=0}^{M_n} (-1)^{\ell} \frac{(2n-2\ell)!}{2^n \ell! (n-\ell)! (n-2\ell)!} x^{n-2\ell}$$

is called the **Legendre polynomial** of degree n. Here, $M_n = n/2$ if n is even and $M_n = (n-1)/2$ if n is odd.

Recall

$$P_n(x) = \sum_{k=0}^{M_n} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k}.$$

It can be seen that

$$P_0(x) = 1, \quad P_1(x) = x, \quad P_2(x) = \frac{3}{2}(x^2 - 1), \quad P_2(x) = \frac{1}{5}(5x^3 - 3x),$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), \quad P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x).$$

$$P_n(-x) = \sum_{k=0}^{M_n} (-1)^k \frac{(2n - 2k)!}{2^n k! (n - k)! (n - 2k)!} (-x)^{n-2k} = (-1)^n P_n(x).$$

Rodrigues' formula: $P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$.

Let

$$f(x) = (x^2 - 1)^n = \sum_{r=0}^n (-1)^r ({}^nC_r) x^{2n-2r}.$$

Then

$$f'(x) = \sum_{r=0}^{M_1} (-1)^r {\binom{n}{C_r}} (2n - 2r) x^{2n-2r-1},$$

$$f''(x) = \sum_{r=0}^{M_2} (-1)^r {\binom{n}{C_r}} (2n - 2r) (2n - 2r - 1) x^{2n-2r-2},$$

$$f^n(x) = \sum_{r=0}^{M_n} (-1)^r {\binom{n}{C_r}} [(2n - 2r) (2n - 2r - 1) \cdot (2n - 2r - n + 1)] x^{2n-2r-n},$$

$$f(x) = \sum_{r=0}^{\infty} (-1)^r (C_r)[(2n-2r)(2n-2r-1) \cdot (2n-2r-n+1)]x^{n-2r},$$

$$= \sum_{r=0}^{M_n} (-1)^r ({}^nC_r)[(2n-2r)(2n-2r-1) \cdot (n-2r+1)]x^{n-2r},$$

$$= \sum_{r=0}^{M_n} (-1)^r \frac{n!}{r!(n-r)!} \frac{(2n-2r)!}{(n-2r)!} x^{n-2r}$$

$$= n! 2^n P_n(x),$$

Generating function:
$$\frac{1}{\sqrt{1-2xu+u^2}} = \sum_{n=0}^{\infty} P_n(x)u^n$$
.

For a fraction β , we use the expansion:

$$(1+\alpha)^{\beta} = 1 + \sum_{n=1}^{\infty} ({}^{\beta}C_n)\alpha^n, \quad ({}^{\beta}C_n) := \frac{1}{n!} [\beta(\beta-1)\cdots(\beta-n+1)].$$

Thus, for $\beta = -1/2$,

$$(^{-1/2}C_n) = \frac{1}{n!} \left[\left(-\frac{1}{2} \right) \left(-\frac{1}{2} - 1 \right) \left(-\frac{1}{2} - 2 \right) \cdots \left(-\frac{1}{2} - n + 1 \right) \right]$$

$$= (-1)^n \frac{1}{n!} \left[\left(\frac{1}{2} \right) \left(\frac{3}{2} \right) \left(\frac{5}{2} \right) \cdots \left(\frac{2n-1}{2} \right) \right]$$

$$= (-1)^n \frac{1}{n!2^n} \left[\frac{(2n)!}{2^n n!} \right]$$

$$= (-1)^n \frac{(2n)!}{2^{2n} (n!)^2}.$$

Thus,

$$(1-\alpha)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} a_n \alpha^n, \quad a_n := (-1)^n \frac{(2n)!}{2^{2n} (n!)^2}.$$

Also,

$$(2xu - u^2)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} (2xu)^{n-k} (-u^2)^k = \sum_{k=0}^n (-1)^k 2^{n-k} \frac{n!}{k!(n-k)!} x^{n-k} u^{n+k}.$$

Thus,

$$(2xu - u^2)^n = \sum_{k=0}^n b_{n,k} x^{n-k} u^{n+k}, \quad b_{n,k} = (-1)^k 2^{n-k} \frac{n!}{k!(n-k)!}$$

Taking $\alpha = 2xu - u^2$, we have

$$(1 - 2xu + u^{2})^{-\frac{1}{2}} = \sum_{n=0}^{\infty} a_{n} \left[\sum_{k=0}^{n} b_{n,k} x^{n-k} u^{n+k} \right]$$

$$= a_{0} + a_{1} b_{1,0} xu + (a_{1} b_{1,1} + a_{2} b_{2,0} x^{2}) u^{2}$$

$$+ (a_{2} b_{2,1} x + a_{3} b_{3,0} x^{3}) u^{3}$$

$$+ (a_{2} b_{2,2} + a_{3} b_{3,1} x^{2} + a_{4} b_{4,4} x^{4}) u^{4} + \cdots$$

$$= f_{0}(x) + f_{1}(x) u + f_{2}(x) u^{2} + \cdots,$$

where

$$f_n(x) = \sum_{k=0}^{M_n} a_{n-k} b_{n-k,k} x^{n-2k}.$$

Since

$$a_{n-k}b_{n-k,k} = \frac{[2(n-k)]!}{(2^{n-k})^2[(n-k)!]^2}(-1)^k \frac{(n-k)!}{k!(n-2k)!} 2^{n-2k} = (-1)^k \frac{(2n-2k)!}{2^n k!(n-k)!(n-2k)!},$$

we have

$$f_n(x) = P_n(x).$$

Thus,

$$\frac{1}{\sqrt{1 - 2xu - u^2}} = \sum_{n=0}^{\infty} P_n(x)u^n.$$

Note that, taking x = 1,

$$\sum_{n=0}^{\infty} u^n = \frac{1}{1-u} = \sum_{n=0}^{\infty} P_n(1)u^n$$

so that $P_n(1) = 1$ for all n.

Recurrence formulae:

1.
$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
.

2.
$$nP_n = xP'_n(x) - P'_{n-1}(x)$$
.

3.
$$(2n+1)P_{n+1}(x) = P'_{n+1}(x) - nP'_{n-1}(x)$$
.

4.
$$P'_{n+1}(x) = xP'_{n-1}(x) - nP_{n-1}(x)$$
.

5.
$$(1-x^2)P'_n(x) = n[P_{n-1}(x) - xP_n(x)].$$

Proofs. 1. Recall that the generating function for (P_n) is $(1-2xt+t^2)^{-\frac{1}{2}}$, i.e.,

$$(1 - 2xt + t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} P_n(x)t^n.$$

Differentiating with respect to t:

$$(x-t)(1-2xt+t^2)^{-\frac{3}{2}} = \sum_{n=1}^{\infty} nP_n(x)t^{n-1}$$

 \iff

$$(x-t)(1-2xt+t^2)^{-\frac{1}{2}} = (1-2xt+t^2)\sum_{n=1}^{\infty} nP_n(x)t^{n-1}$$

 \iff

$$(x-t)\sum_{n=0}^{\infty} P_n(x)t^n = (1-2xt+t^2)\sum_{n=1}^{\infty} nP_n(x)t^{n-1} = (1-2xt+t^2)\sum_{n=0}^{\infty} (n+1)P_{n+1}(x)t^n.$$

Equating the coefficients of t^n , we obtain

$$xP_nx - P_{n-1}(x) = (n+1)P_{n+1}(x) - 2x \, nP_n(x) + (n-1)P_{n-1}(x),$$

i.e.,

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$$

2. Differentiating with respect to t:

$$(x-t)(1-2xt+t^2)^{-\frac{3}{2}} = \sum_{n=1}^{\infty} nP_n(x)t^{n-1}$$

Differentiating with respect to x:

$$t(1 - 2xt + t^2)^{-\frac{3}{2}} = \sum_{n=0}^{\infty} P'_n(x)t^n$$

Hence,

$$(x-t)t(1-2xt+t^2)^{-\frac{3}{2}} = \sum_{n=1}^{\infty} nP_n(x)t^n = \sum_{n=0}^{\infty} nP_n(x)t^n$$

Thus,

$$(x-t)\sum_{n=0}^{\infty} P'_n(x)t^n = \sum_{n=0}^{\infty} nP_n(x)t^n$$

Equating the coefficients of t^n , we obtain $nP_n = xP'_n(x) - P'_{n-1}(x)$.

- 3. Differentiating the recurrence relation in (1) with respect to x and then using the expression for $xP'_n(x)$ from (2), we get the result in (3).
 - 4. Differentiating the recurrence relation in (1) with respect to x leads to

$$(n+1)P'_{n+1}(x) = (2n+1)P_n(x) + (n+1)xP'_n(x) + n[xP'_n(x) - P'_{n-1}(x)].$$

Now, using (2) and replacing n by n-1 leads to the required relation.

5. Recurrence relation in (2) and (4) imply the required relation.

Exercise 4.5. 1. Show that $P'_n(1) = \frac{n(n+1)}{2}$.

(Hint: Use the fact that $P_n(x)$ satisfies the Legendre equation.)

- 2. Using generating function derive
 - (a) $P_n(-1) = (-1)^n$,
 - (b) $P_n(-x) = (-1)^n P_n(x)$. (Hind: Replace x by y := -x and then t by $\tau := -t$.)
- 3. Find values of $\int_{-1}^1 x[P_n(x)]^2 dx$, $\int_{-1}^1 x^2[P_n(x)]^2 dx$, $\int_{-1}^1 x^2 P_{n+1}(x) P_{n-1}(x) dx$. (Hint: Use recurrence formula.)
- 4. Prove that for every polynomial q(x) of degree n, there exists a unique (n+1)-tuple (a_0, a_1, \ldots, a_n) of real numbers such that $q(x) = a_0 P_0(x) + a_1 P_1(x) + \ldots a_n P_n(x)$. (Hint: use induction on degree.)

4.3 Power series solution around singular points

Look at the DE:

$$x^2y'' - (1+x)y = 0.$$

Does it have a nonzero solution of the form $\sum_{n=0}^{\infty} a_n x^n$? Following our method of substitution and determination of coefficients, it can be see that $a_n = 0$ for all $n \in \mathbb{N}_0$.

What went wrong?

Note that the above DE is same as

$$y'' - \frac{1+x}{x^2}y = 0,$$

which is of the form

$$y'' + p(x)y' + q(x)y = 0 (1)$$

 \Diamond

with p(x) = 0 and $q(x) = \frac{1+x}{x^2}$. Note that p(x) is not analytic at $x_0 = 0$.

Definition 4.6. A point $x_0 \in \mathbb{R}$ is called a **regular point** of (1) if p(x) and q(x) are analytic at x_0 . If x_0 is not a regular point of (1), then it is called a **singular point** of (1).

Example 4.7. 1. Consider $(x-1)y'' + xy' + \frac{y}{x} = 0$. This takes the form (1) with

$$p(x) = \frac{x}{x-1}, \quad q(x) = \frac{1}{x(x-1)}.$$

Note that x = 0 and x = 1 are singular points of the DE. All other points in \mathbb{R} are regular points.

2. Consider the Cauchy equation: $x^2y'' + 2xy' - 2y = 0$. This takes the form (1) with

$$p(x) = \frac{2}{x}, \quad q(x) = \frac{2}{x^2}.$$

Note that x = 0 is the only singular point of this DE.

Definition 4.8. A singular point $x_0 \in \mathbb{R}$ of the DE (1) is called a **regular singular point** if $(x - x_0)p(x)$ and $(x - x_0)^2q(x)$ are analytic at x_0 . Otherwise, x_0 is called an **irregular singular point** of (1).

Example 4.9. Consider $x^2(x-2)y''+2y'+(x+1)y=0$. This takes the form (1) with

$$p(x) = \frac{2}{x^2(x-2)}, \quad q(x) = \frac{x+1}{x^2(x-2)}.$$

Note that

$$xp(x) = \frac{2}{x(x-2)}, \quad x^2q(x) = \frac{x+1}{x-2},$$

$$(x-2)p(x) = \frac{2}{x^2}, \quad (x-2)^2 q(x) = \frac{(x+1)(x-2)}{x^2}.$$

We see that

- x = 0 is an irregular singular point,
- x = 2 is a regular singular point.

\Diamond

Example 4.10. Consider the DE

$$y'' + \frac{b(x)}{x}y' + \frac{c(x)}{x^2}y = 0,$$

where a(x) and b(x) are analytic at 0. Note that the above equation is of the form (1) with $p(x) = \frac{b(x)}{x}$ and $q(x) = \frac{c(x)}{x^2}$. Thus, 0 is a regular singular point of the given DE.

4.3.1 Frobenius method

It is known that a DE of the form

$$y'' + \frac{b(x)}{x}y' + \frac{c(x)}{x^2}y = 0, (1)$$

where a(x) and b(x) are analytic at 0 has a solution of the form

$$y(x) = x^r \sum_{n=0}^{\infty} a_n x^n,$$

for some real or complex number r and for some real numbers a_0, a_1, a_2, \ldots with $a_0 \neq 0$.

Note that (*) is same as

$$x^{2}y'' + xb(x)y' + c(x)y = 0$$
(2)

and it reduces to the Euler-Cauchy equation when b(x) and c(x) are constant functions.

Substituting the expression for y in (2) into (1), we get:

$$x^{2} \sum_{n=0}^{\infty} (n+r)(n+r-1)a_{n}x^{n+r-2} + xb(x) \sum_{n=0}^{\infty} (n+r)a_{n}x^{n+r-1} + c(x) = 0.$$

That is,

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + b(x) \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + c(x) = 0.$$
 (3)

Let

$$b(x) = \sum_{n=0}^{\infty} b_n x^n, \quad c(x) = \sum_{n=0}^{\infty} c_n x^n.$$

Comparing coefficients of x^r , we get

$$[r(r-1) + b_0r + c_0]a_0 = 0.$$

This quadratic equation is called the **indicial equation** of (1).

Let r_1, r_2 be the roots of the indicial equation. Then one of the solutions is

$$y_1(x) = x^{r_1} \sum_{n=0}^{\infty} a_n x^n,$$

where a_0, a_1, \ldots are obtained by comparing coefficients of x^{n+r} , $n = 0, 1, 2, \ldots$, in (3) for $r = r_1$. Another solution, linearly independent of y_1 is obtained using the method of variation of parameter.

Recall that, in the method of variation of parameter,

- the second solution y_2 is assumed to be of the form $y_2(x) = u(x)y_1(x)$,
- substituting the expressions for y_2, y'_2, y''_2 in (2),
- use the fact that $y_1(x)$ satisfies (2),
- obtain a first order ODE for u(x), and
- solve it to obtain an expression for u(x).

We have seen that

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x)}}{[y_1(x)]^2} dx, \quad p(x) := \frac{a(x)}{x}.$$

In case $y_1(x)$ is already in a simple form, then the above expression can be used. Otherwise, one may use the above mentioned steps to reach appropriated expression for $y_2(x)$ by making use of the series expression for $y_1(x)$.

By the above procedure we have the following (see Kreiszig):

Case 1: If r_1 and r_2 distinct and not differing by an integer, then y_2 is of form

$$y_2(x) = x^{r_1} \sum_{n=0}^{\infty} A_n x^n.$$

Case 2: If $r_1 = r_2 = r$, say, i.e., r is a double root, then y_2 is of the form

$$y_2(x) = y_1(x)\ln(x) + x^r \sum_{n=1}^{\infty} A_n x^n.$$

Case 3: If r_1 and r_2 differ by an integer and $r_2 > r_1$, then y_2 is of the form

$$y_2(x) = ky_1(x)\ln(x) + x^{r_2} \sum_{n=0}^{\infty} A_n x^n.$$

The method described above is called the **Frobenius method** 3 .

 $^{^3{\}mbox{George}}$ Frobenius (1849–1917) was a German mathematician.

Example 4.11. Let us ind linearly independent solutions for the Euler-Cauchy equation:

$$x^2y'' + b_0xy' + c_0y = 0.$$

Note that this is of the form (2) with $b(x) = b_0$, $c(x) = c_0$, constants. Assuming a solution is of the form $y = x^r \sum_{n=0}^{\infty} a_n x^n$, we obtain

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + b_0 \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + c_0 = 0.$$

Now, equating the coefficient of x^r to 0, we get the indicial equation as $[r(r-1) + b_0 r + c_0]a_0 = 0$, $a_0 \neq 0$, so that

$$r^2 - (1 - b_0)r + c_0 = 0.$$

For a root r and $n \in \mathbb{N}$,

$$[(n+r)(n+r-1)+(n+r)b_0]a_n=0$$
, i.e., $(n+r)[(n+r-1)+b_0]a_n=0$, i.e., $[(n+r-1)+b_0]a_n=0$ $\forall n \in \mathbb{N}$.

We can take $a_n = 0$ for all $n \in \mathbb{N}$. Thus, $y_1(x) = x^r$. The other solution is given by

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x)}}{[y_1(x)]^2} dx, \quad p(x) := \frac{a(x)}{x}.$$

Thus,

$$y_2(x) = x^r \int \frac{e^{-\int p(x)}}{x^{2r}} dx$$
, $p(x) := \frac{b_0}{x}$, i.e., $y_2(x) = x^r \int \frac{1}{x^{2r+b_0}} dx$.

If r is a double root, then $2r + b_0 = 1$ so that

$$y_2(x) = x^r \ln(x).$$

If r is not a double root, then

$$y_2(x) = x^r \int \frac{1}{x^{2r+b_0}} dx = \frac{1}{-(2r+b_0-1)x^{r+b_0-1}}.$$

If $r = r_1$ and r_2 are the roots, then we have $r_1 + r_2 = 1 - b_0$ so that $r + b_0 - 1$ and hence,

$$y_2(x) = \frac{x^{r_2}}{-(2r_1 + b_0 - 1)}.$$

Thus, x^{r_1} and x^{r_2} are linearly independent solutions.

Example 4.12. Consider the DE:

$$x(x-1)y'' + (3x-1)y' + y = 0.$$
 (*)

 \Diamond

This is of the form (1) with $b(x) = \frac{3x-1}{x-1}$, $c(x) = \frac{x}{x-1}$. Now, taking $y = x^r \sum_{n=0}^{\infty} a_n x^n$, we obtain from (1):

$$x(x-1)y'' = (x^{2}-x)\sum_{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r-2}$$

$$= \sum_{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r} - \sum_{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r-1}$$

$$(3x-1)y' = (3x-1)\sum_{n=0}^{\infty}(n+r)a_{n}x^{n+r-1}$$

$$= \sum_{n=0}^{\infty}3(n+r)a_{n}x^{n+r} - \sum_{n=0}^{\infty}(n+r)a_{n}x^{n+r-1}.$$

Hence, (*):

$$\sum_{n=0}^{\infty} [(n+r)(n+r-1) + 3(n+r) + 1]a_n x^{n+r} + \sum_{n=0}^{\infty} [-(n+r)(n+r-1) - (n+r)]a_n x^{n+r-1} = 0.$$

Equating coefficient of x^{r-1} to 0, we get the indicial equation as -r(r-1)-r=0, i.e., $r^2=0$. Thus, r=0 is a double root of the indicial equation. Hence, we obtain:

$$\sum_{n=0}^{\infty} [(n)(n-1) + 3(n) + 1]a_n x^n + \sum_{n=1}^{\infty} [-(n)(n-1) - (n)]a_n x^{n-1} = 0,$$

i.e.,

$$\sum_{n=0}^{\infty} (n+1)^2 a_n x^n - \sum_{n=1}^{\infty} n^2 a_n x^{n-1} = 0, \quad i.e., \quad \sum_{n=0}^{\infty} (n+1)^2 a_n x^n - \sum_{n=0}^{\infty} (n+1)^2 a_{n+1} x^n = 0.$$

Thus, $a_{n+1} = a_n$ for all $n \in \mathbb{N}_0$, and consequently, taking $a_0 = 1$,

$$y_1(x) = \sum_{n=0}^{\infty} x^n = \frac{a_0}{1-x}.$$

Now,

$$y_2(x) = y_1(x) \int \frac{e^{-\int pdx}}{[y_1(x)]^2} dx, \quad p(x) := \frac{3x - 1}{x(x - 1)}.$$

Note that

$$\int p(x)dx = \int \frac{3}{x-1}dx - \int \frac{1}{x(x-1)}dx = \int \frac{3}{x-1}dx + \int \frac{1}{x}dx - \int \frac{1}{x-1}dx$$
$$= 3\ln|x-1| + \ln|x| - \ln|x-1| = 2\ln|x-1| + \ln|x| = \ln|(x-1)^2x|,$$

$$\frac{e^{-\int p dx}}{[y_1(x)]^2} = \frac{1}{|(x-1)^2 x| [y_1(x)]^2} = \frac{1}{x}.$$

Thus,

$$y_2(x) = \frac{\ln(x)}{1 - x}$$

Example 4.13. Consider the DE:

$$(x^{2}-1)x^{2}y'' - (x^{2}+1)xy' + (x^{2}+1)y = 0.$$
(*)

This is of the form (1) with $b(x) = -\frac{(x^2+1)}{(x^2-1)}$, $c(x) = \frac{x^2+1}{x^2-1}$. Now, taking $y = x^r \sum_{n=0}^{\infty} a_n x^n$, we obtain from (1):

$$(x^{2}-1)x^{2}y'' = (x^{2}-1)\sum_{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r}$$

$$= \sum_{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r+2} - \sum_{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r}$$

$$(x^{2}+1)xy' = (x^{2}+1)\sum_{n=0}^{\infty}(n+r)a_{n}x^{n+r}$$

$$= \sum_{n=0}^{\infty}(n+r)a_{n}x^{n+r+2} + \sum_{n=0}^{\infty}(n+r)a_{n}x^{n+r},$$

$$(x^{2}+1)y = \sum_{n=0}^{\infty}a_{n}x^{n+r+2} + \sum_{n=0}^{\infty}a_{n}x^{n+r}.$$

Thus, (*) takes the form

$$\sum_{n=0}^{\infty} [(n+r)(n+r-1) - (n+r) + 1] a_n x^{n+r+2} + \sum_{n=0}^{\infty} [-(n+r)(n+r-1) - (n+r) + 1] a_n x^{n+r} = 0. \quad (**)$$

Equating coefficient of x^r to 0, we get the indicial equation as

$$[-r(r-1) - r + 1]a_0 = 0$$
, i.e., $(r^2 - 1) = 0$.

The roots are $r_1 = 1$ and $r_2 = -1$. For $r_1 = 1$, (**) takes the form

$$\sum_{n=0}^{\infty} [(n+1)n - (n+1) + 1]a_n x^{n+3} + \sum_{n=0}^{\infty} [-(n+1)n - (n+1) + 1]a_n x^{n+1} = 0,$$

i.e.,

$$\sum_{n=0}^{\infty} n^2 a_n x^{n+3} - \sum_{n=0}^{\infty} n(n+2) a_n x^{n+1} = 0, \quad i.e.,$$

This implies $a_1 = 0$ and

$$n^2 a_n - (n+2)(n+4)a_{n+2} = 0 \quad \forall n \in \mathbb{N}.$$

Hence, $a_n = 0$ for all $n \in \mathbb{N}$ so that y(x) = x. Taking $y_1(x) = x$, we obtain the second solution y_2 as

$$y_2(x) = y_1 \int \frac{e^{-\int p}}{y_1^2},$$

where

$$p = -\frac{x^2 + 1}{(x^2 - 1)x} = -\frac{(x^2 - 1) + 2}{x^2 - 1)x} = -\left[\frac{1}{x} + \frac{2}{(x^2 - 1)x}\right] = -\left[\frac{1}{x - 1} + \frac{1}{x + 1} - \frac{1}{x}\right].$$

Hence, $e^{-\int p} = \frac{x^2 - 1}{x}$ so that

$$y_2(x) = y_1 \int \frac{e^{-\int p}}{y_1^2} = x \int \frac{1}{x^2} \left(\frac{x^2 - 1}{x}\right) dx = x \int \frac{x^2 - 1}{x^3} dx = x \left(\ln(x) + \frac{1}{2x^2}\right).$$

Thus,

$$y_1 = x$$
, $y_2 = x \ln(x) + \frac{1}{2x}$

 \Diamond

are linearly independent solutions.

Remark 4.14. It can be seen that if we take the solution as $y = x^r \sum_{n=0}^{\infty} A_n x^n$ with r = -1, then we arrive at $A_n = 0$ so that it violates our requirement, and the resulting expression will not be a solution.

4.3.2 Bessel's equation

Bessel's equation is given by

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0$$

where ν is a non-negative real number. This is a special case of the equation

$$y'' + p(x)y' + q(x)y = 0$$

where p,q are such that xp(x) and $x^2q(x)$ are analytic at 0, i.e., 0 is a regular singular point. Thus, Frobenius method can be applied.

Taking a solution y of the form $y = x^r \sum_{n=0}^{\infty} a_n x^n$, we have

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + \sum_{n=2}^{\infty} (a_{n-2} x^{n+r} - \sum_{n=0}^{\infty} \nu^2 a_n x^{n+r} = 0.$$

Coefficient of x^r is $0 \iff [r(r-1)+r-\nu^2]a_0 \iff r^2-\nu^2=0$.

Coefficient of x^{r+1} is $0 \iff [(r+1)^2 - \nu^2]a_1 = 0$

Coefficient of x^{r+n} : $[(n+r)(n+r-1) + (n+r) - \nu^2]a_n + a_{n-2}$.

Thus, roots of the indicial equation are $r_1 = \nu$, $r_2 = -\nu$. Taking $r = r_1 = \nu$, we have $a_1 = 0$ and

$$a_n = -\frac{a_{n-2}}{(n+r)(n+r-1) + (n+r) - \nu^2} = -\frac{a_{n-2}}{n^2 + 2n\nu}, \quad n = 2, 3, \dots$$

Hence, $a_{2n-1} = 0$ for all $n \in \mathbb{N}$ and

$$a_{2n} = -\frac{a_{2n-2}}{(2n)^2 + 4n\nu} = -\frac{a_{2n-2}}{2^2 n(n+\nu)}, \quad n \in \mathbb{N}.$$

It is a usual convention to take

$$a_0 = \frac{1}{2^{\nu}\Gamma(\nu+1)}, \quad \Gamma(\alpha) := \int_0^{\infty} e^{-t} t^{\alpha-1} dt, \quad \alpha > 0.$$

Recall that $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$. Then we have

$$a_{2} = -\frac{a_{0}}{2^{2}(1+\nu)} = -\frac{1}{2^{2+\nu}(\nu+1)\Gamma(\nu+1)} = -\frac{1}{2^{2+\nu}\Gamma(\nu+2)},$$

$$a_{4} = -\frac{a_{2}}{2^{2}2(2+\nu)} = (-1)^{2}\frac{1}{2^{4+\nu}2\Gamma(\nu+3)},$$

$$a_{2n} = \frac{(-1)^{n}}{2^{2n+\nu}n!\Gamma(\nu+n+1)}.$$

The corresponding solution is

$$J_{\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n+\nu} n! \Gamma(n+\nu+1)} x^{2n+\nu},$$

which is called the **Bessel function of the first kind** of order ν .

Observe:

• Since the Bessel equation involves only ν^2 , it follows that

$$J_{-\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n-\nu} n! \Gamma(n-\nu+1)} x^{2n-\nu}$$

is also a solution.

- If ν is not an integer, then $J_{\nu}(x)$ and $J_{-\nu}(x)$ are linearly independent solutions.
- If ν is an integer, then say $\nu = k \in \mathbb{N}$ then

$$J_{-k}(x) = (-1)^k J_k(x) \tag{*}$$

say $\nu = k \in \mathbb{N}$ then so that J_{-k} and J_k are linearly dependent.

To see the above relation (*), note that

$$J_k(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n+k} n! \Gamma(k+n+1)} x^{2n+k},$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n+k} n! (n+k)!} x^{2n+k},$$

Also,

$$J_{-\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n-\nu} n! \Gamma(n-\nu+1)!} x^{2n-\nu}.$$

It can be seen that if $n=1,2,\ldots,\nu-1$, then $\Gamma(n-\nu-k)\to\infty$ as $\nu\to n$. Hence for $\nu=-k,\,k\in\mathbb{N},$

$$J_{-k}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n-k} n! \Gamma(n-k+1)} x^{2n-k},$$

$$= \sum_{n=k}^{\infty} \frac{(-1)^n}{2^{2n+k} n! (n-k)!} x^{2n-k}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n+k}}{2^{2n+k} (n+k)! n!} x^{2n+k}$$

$$= (-1)^k J_k(x).$$

Now, for an integer k, for obtaining a second solution of the Bessel equation which is linearly independent of J_k , we can use the general method, i.e., write the Bessel equation as

$$y'' + p(x)y' + q(x0y = 0$$

and knowing a solution y_1 , obtain $y_2 := y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2} dx$. Note that

$$p(x) = \frac{1}{x}, \quad q(x) = \frac{x^2 - k^2}{x^2}.$$

Thus, the second solution according to the above formula is

$$Y_k(x) = J_k(x) \int \frac{dx}{x[J_k(x)]^2}.$$

This is called the Bessel equation of the second kind of order k.

Now, we observe few more relations:

1.
$$(x^{\nu}J_{\nu}(x))' = x^{\nu}J_{\nu-1}(x)$$
.

2.
$$(x^{-\nu}J_{\nu}(x))' = -x^{-\nu}J_{\nu+1}(x)$$
.

3.
$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{r} J_{\nu}(x)$$
.

4.
$$J_{\nu-1}(x) - J_{\nu-1}(x) = 2J'_{\nu}(x)$$
.

Proofs:

Note that

$$(x^{\nu}J_{\nu}(x))' = \sum_{n=0}^{\infty} (-1)^{n} \frac{(2n+2\nu)x^{2n+2\nu-1}}{2^{2n+\nu}n!\Gamma(n+\nu+1)}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{2(n+\nu)x^{2n+2\nu-1}}{2^{2n+\nu}n!(n+\nu)\Gamma(n+\nu)}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+2\nu-1}}{2^{2n+\nu-1}n!\Gamma(n+\nu)}$$

$$= x^{\nu} \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+2\nu-1}}{2^{2n+\nu-1}n!\Gamma(n+\nu)}$$

$$= x^{\nu}J_{\nu-1}(x).$$

This proves (1). To prove (2), note that

$$(x^{-\nu}J_{\nu}(x))' = \sum_{n=1}^{\infty} (-1)^n \frac{2nx^{2n-1}}{2^{2n+\nu}n!\Gamma(n+\nu+1)}$$

$$= \sum_{n=0}^{\infty} (-1)^{n+1} \frac{2(n+1)x^{2n+1}}{2^{2n+\nu+2}(n+1)!\Gamma(n+\nu+2)}$$

$$= \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2^{2n+\nu+1}n!\Gamma(n+\nu+2)}$$

$$= x^{-\nu} \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+\nu+1}}{2^{2n+\nu+1}n!\Gamma(n+\nu+2)}$$

$$= -x^{-\nu}J_{\nu+1}(x).$$

Proofs of (3) & (4): From (1) and (2),

$$J_{\nu-1}(x) + J_{\nu+1}(x) = x^{-\nu} (x^{\nu} J_{\nu}(x))' - x^{\nu} (x^{-\nu} J_{\nu}(x))'$$

$$= x^{-\nu} [x^{\nu} J'_{\nu}(x) + \nu x^{\nu-1} J_{\nu}(x)] - x^{\nu} [x^{-\nu} J'_{\nu}(x) - \nu x^{-\nu-1} J_{\nu}(x)]$$

$$= \frac{2\nu}{x} J_{\nu}(x).$$

$$J_{\nu-1}(x) - J_{\nu+1}(x) = x^{-\nu} (x^{\nu} J_{\nu}(x))' + x^{\nu} (x^{-\nu} J_{\nu}(x))'$$

$$= x^{-\nu} [x^{\nu} J'_{\nu}(x) + \nu x^{\nu-1} J_{\nu}(x)] + x^{\nu} [x^{-\nu} J'_{\nu}(x) - \nu x^{-\nu-1} J_{\nu}(x)]$$

$$= 2J'_{\nu}(x).$$

Using the fact $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, it can be shown (verify!) that

$$J_{\frac{1}{2}} = \sqrt{\frac{2}{\pi x}} \sin x, \quad J_{-\frac{1}{2}} = \sqrt{\frac{2}{\pi x}} \cos x.$$

4.4 Orthogonality of functions

Definition 4.15. Functions f and g defined on an interval [a, b] are said to be **orthogonal** with respect to a nonzero weight function w if

$$\int_{a}^{b} f(x)g(x)w(x)dx = 0.$$

A sequence (f_n) of functions is said to be an **orthogonal sequence of functions** with respect to w if

$$\int_a^b f_i(x)f_j(x)w(x)dx = 0 \text{ for } i \neq j.$$

[Here, we assume that the above integral exits; that is the case, if for example, they are continuous or bounded and piece-wise continuous.]

Note that

$$\int_0^{2\pi} \sin(nx)\sin(mx)dx = \begin{cases} 0 & \text{if } n \neq m, \\ \pi & \text{if } n \neq m, \end{cases}$$
$$\int_0^{2\pi} \cos(nx)\cos(mx)dx = \begin{cases} 0 & \text{if } n \neq m, \\ \pi & \text{if } n \neq m, \end{cases}$$
$$\int_0^{2\pi} \sin(nx)\cos(mx)dx = 0.$$

Thus, writing

$$f_{2n-2}(x) = \cos(nx), \quad f_{2n-1}(x) = \sin(nx) \quad \text{for} \quad n \in \mathbb{N},$$

then (f_n) is an orthogonal sequence of functions with respect to w=1.

Notation: We shall denote

$$\langle f, g \rangle_w := \int_a^b f_i(x) f_j(x) w(x) dx$$

and call this quantity as the **scalar product** of f and g with respect to w. If w(x) = 1 for every $x \in [a, b]$, then we shall denote $\langle f, g \rangle := \langle f, g \rangle_w$. We observe that

- $\langle f, f \rangle_w \geq 0$,
- $\langle f + q, h \rangle_w = \langle f, h \rangle_w + \langle q, h \rangle_w$
- $\langle cf, f \rangle_w = c \langle f, f \rangle_w$.

If f, g, w are continuous functions, then

• $\langle f, f \rangle_w = 0 \iff f = 0.$

Exercise 4.16. Let f_1, \ldots, f_n be linearly independent continuous functions. Let $g_1 = f_1$ and for $j = 1, \ldots, n$, define g_1, \ldots, g_n iteratively as follows:

$$g_{i+1} = f_{i+1} - \langle f_{i+1}, g_1 \rangle_w g_1 - \langle f_{i+1}, g_2 \rangle_w g_2 - \dots \langle f_{i+1}, g_i \rangle_w g_i, \quad j = 1, \dots, n-1$$

i.e., $g_{j+1} = f_{j+1} - \sum_{i=1}^{j} \langle f_{j+1}, f_i \rangle_w f_i$, $j = 1, 2, \dots, n-1$. Prove that g_1, \dots, g_n are orthogonal functions with respect to w.

Definition 4.17. Functions f_1, f_2, \ldots are said to be **linearly independent** if for every $n \in \mathbb{N}$, f_1, \ldots, f_n are linearly independent, i.e., for every $n \in \mathbb{N}$, if $\alpha_1, \ldots, \alpha_n$ are scalars such that $\alpha_1 f_1 + \cdots + \alpha_n f_n = 0$, then $\alpha_i = 0$ for $i = 1, \ldots, n$.

Definition 4.18. A sequence (f_n) on [a,b] is said to be an **orthonormal sequence** of functions with respect to w if (f_n) is an orthogonal sequence with respect to w and $\langle f_n, f_n \rangle_w = 1$ for every $j \in \mathbb{N}$. \diamondsuit

Exercise 4.19. Let $f_j(x) = x^{j-1}$ for $j \in \mathbb{N}$. Find g_1, g_2, \ldots as per the formula in Exercise 4.16 with w(x) = 1 and [a, b] = [-1, 1]. Observe that, for each $n \in \mathbb{N}$, g_n is a scalar multiple of the Legendre polynomial P_{n-1} .

4.4.1 Orthogonality of Legendre polynomials

Recall that for non-negative integers n, the Legendre equation is given by

$$(1-x^2)y'' - 2xy' + \lambda_n y = 0, \quad \lambda_n := n(n+1).$$

This equation can be written as:

$$[(1 - x^2)y']' + \lambda_n y = 0.$$
 (*)

Recall that for each $n \in \mathbb{N}_0$, the Legendre polynomial

$$P_n(x) = \sum_{k=0}^{M_n} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k}, \quad M_n := \begin{cases} \frac{n}{2} & \text{if } n \text{ even,} \\ \frac{n-1}{2} & \text{if } n \text{ odd.} \end{cases}$$

satisfies the equation (*). Thus,

$$[(1-x^2)P_n']' + \lambda_n P_n = 0, \tag{*}_1$$

$$[(1-x^2)P'_m]' + \lambda_m P_m = 0. (*)_2$$

 \Longrightarrow

$$[(1-x^2)P'_n]'P_m + \lambda_n P_n P_m = 0, \quad [(1-x^2)P'_m]'P_n + \lambda_m P_m P_n = 0$$

==

$$\{[(1-x^2)P_n']'P_m - [(1-x^2)P_m']'P_n\} + (\lambda_n - \lambda_m)P_nP_m = 0,$$

i.e.,

$$[(1-x^2)P'_nP_m]' - [(1-x^2)P'_mP_n]' + (\lambda_n - \lambda_m)P_nP_m = 0$$

<u>___</u>

$$\int_{-1}^{1} \{ [(1-x^2)P_n'P_m]' - [(1-x^2)P_m'P_n]' \} dx + (\lambda_n - \lambda_m) \int_{-1}^{1} P_n P_m dx = 0$$

i.e.,

$$(\lambda_n - \lambda_m) \int_{-1}^1 P_n P_m dx = 0.$$

Thus,

$$n \neq m \implies \lambda_n \neq \lambda_m \implies \int_{-1}^1 P_n P_m dx = 0.$$

Using the expression for P_n , it can be shown that

$$\int_{-1}^{1} P_n^2 dx = \frac{2}{2n+1}.$$

Hence,

• $\left\{\sqrt{\frac{2n+1}{2}}\,P_n:n\in\mathbb{N}_0\right\}$ is an orthonormal sequence of polynomials.

Remark 4.20. Recall that for $n \in \mathbb{N}_0$, the Legenendre polynomial $P_n(x)$ is of degree n and the P_0, P_1, P_2, \ldots are orthogonal. Hence P_0, P_1, P_2, \ldots are linearly independent. We recall the following result from *Linear Algebra*:

- If q_0, q_1, \ldots, q_n are polynomials which are
 - 1. linearly independent and
 - 2. degree of q_j is at most n for each $j = 0, 1, \ldots, n$,

then every polynomial q of degree at most n can be uniquely represented as

$$q = c_0 q_0 + c_1 q_1 + \ldots + c_n q_n.$$

In the above if q_0, q_1, \ldots, q_n are orthogonal also, i.e., $\langle q_j, q_k \rangle = 0$ for $j \neq k$, then we obtain

$$c_j = \frac{\langle q, q_j \rangle}{\langle q_j, q_j \rangle}, \quad j = 0, 1, \dots, n.$$

Thus,

$$q = \sum_{j=0}^{n} c_j q_j = \sum_{j=0}^{n} \frac{\langle q, q_j \rangle}{\langle q_j, q_j \rangle} q_j.$$

In particular:

• If q is a polynomial of degree n, then

$$q = \sum_{j=0}^{n} \frac{\langle q, P_j \rangle}{\langle P_j, P_j \rangle} P_j,$$

where P_0, P_1, \ldots are Legendre polynomials.

From *Real Analysis*, we recall that:

• For every continuous function f defined on a closed and bounded interval [a, b], there exists a sequence (q_n) of polynomials such that (q_n) converges to f uniformly on [a, b], i.e., for every $\varepsilon > 0$ there exists a positive integer N_{ε} such that

$$|f(x) - q_n(x)| < \varepsilon \quad \forall n > N_{\varepsilon}, \quad \forall x \in [a, b].$$

The above result is known as Weierstrass approximation theorem. Using the above result it can be shown that:

• If q_0, q_1, \ldots , are nonzero orthogonal polynomials on [a, b] such that $\max_{0 \le j \le n} \deg(q_j) \le n$, then every continuous function f defined on [a, b] can be represented as

$$f = \sum_{j=0}^{\infty} c_j q_j, \quad c_j := \frac{\langle q, q_j \rangle}{\langle q_j, q_j \rangle}, \quad j \in \mathbb{N}_0.$$
 (*)

The equality in the above should be understood in the sense that

$$||f - \sum_{j=n}^{\infty} c_j q_j|| \to 0$$
 as $n \to \infty$

where $||g||^2 := \langle g, g \rangle$.

The expansion in (*) above is called the **Fourier expansion of** f with respect to the orthogonal polynomials q_n , $n \in \mathbb{N}_0$. If we take P_0, P_1, P_2, \ldots on [-1, 1], then the corresponding Fourier expansion is known as **Fourier–Legendre expansion**.

4.4.2 Orthogonal polynomials defined by Bessel functions

Recall that for a positive integer $n \in \mathbb{N}$, the Bessel function of the first kind of order n is given by

$$J_n(x) = \sum_{j=0}^{\infty} \frac{(-1)^j}{2^{2j+n} j! \Gamma(n+j+1)} x^{2j+n}$$

is a power series, and it satisfies he Bessel equation:

$$x^2 J_n'' + x J_n' + (x^2 - n^2) J_n = 0.$$

THEOREM 4.21. If α and β are zeros of $J_n(x)$ in the interval [0,1], then

$$\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = \begin{cases} 0 & \text{if } \alpha \neq \beta, \\ \frac{1}{2} J_{n+1}(\alpha), & \text{if } \alpha = \beta. \end{cases}$$

Proof. Observe that, for $\lambda \in \mathbb{R}$, if $z = \lambda x$ and $y(x) = J_n(\lambda x)$, then

$$y'_n(x) = \lambda J'_n(\lambda x) = \lambda J_n(z), \quad y''_n(x) = \lambda^2 J''_n(z).$$

Thus, we have

$$z^{2}J_{n}''(z) + zJ_{n}'(z) + (z^{2} - n^{2})J_{n}(z) = 0 \iff \lambda^{2}x^{2}\frac{y_{n}''(x)}{\lambda^{2}} + \lambda x\frac{y_{n}'(x)}{\lambda} + (\lambda^{2}x^{2} - n^{2})y_{n}(x) = 0$$

 \iff

$$x^{2}y_{n}''(x) + xy_{n}'(x) + (\lambda^{2}x^{2} - n^{2})y_{n}(x) = 0$$

Now, let

$$u(x) = J_n(\alpha x), \quad v(x) = J_n(\beta x).$$

Thus, we have

$$x^{2}u'' + xu' + (\alpha^{2}x^{2} - n^{2})u = 0,$$
 $x^{2}v'' + xv' + (\beta^{2}x^{2} - n^{2})v = 0$

$$\iff$$
 $xu'' + u' + (\alpha^2 x - \frac{n^2}{r})u = 0, \qquad xv'' + v' + (\beta^2 x - \frac{n^2}{r})v = 0$

$$\Rightarrow v\left[xu'' + u' + (\alpha^2 x - \frac{n^2}{x})u\right] = 0, \qquad u\left[xv'' + v' + (\beta^2 x - \frac{n^2}{x})v\right] = 0$$

$$x[vu'' - uv''] + [vu' - uv'] + (\alpha^2 - \beta^2)xuv = 0$$

$$\Longrightarrow$$

$$\frac{d}{dx}[x(vu'-uv')] + (\alpha^2 - \beta^2)xuv = 0$$

$$\int_0^1 \frac{d}{dx} [x(vu' - uv')] dx + (\alpha^2 - \beta^2) \int_0^1 xuv dx = 0.$$

Since $u(1) = J_n(\alpha) = 0$ and $v(1) = J_n(\beta) = 0$, it follows that

$$(\alpha^2 - \beta^2) \int_0^1 x u v dx = 0.$$

Hence,

$$\alpha \neq \beta \implies \int_0^1 x J_n(\alpha x) J_n(\beta x) dx = 0.$$

Next, we consider the case of $\beta = \alpha$: Note that

$$2u'[x^2u'' + xu' + (\alpha^2x^2 - n^2)u = 0,$$

i.e.,

$$2x^2u'u'' + 2xu'u' + 2(\alpha^2x^2 - n^2)u'u = 0,$$

i.e.,

$$[x^{2}(u')^{2}]' + 2(\alpha^{2}x^{2} - n^{2})u'u = 0,$$

Also,

$$[\alpha^2 x^2 u^2 - n^2 u^2]' = \alpha^2 (2x^2 u u' + 2x u^2) - n^2 (2u u') = 2(\alpha^2 x^2 - n^2) u' u + 2\alpha^2 x u^2.$$

Thus,

$$[x^2(u')^2]' + 2(\alpha^2 x^2 - n^2)u'u = 0$$

 \iff

$$[x^2(u')^2]' + [\alpha^2 x^2 u^2 - n^2 u^2]' - 2\alpha^2 x u^2 = 0,$$

 \Longrightarrow

$$\int_0^1 [x^2(u')^2]' dx + \int_0^1 [\alpha^2 x^2 u^2 - n^2 u^2]' dx - 2\alpha^2 \int_0^1 x u^2 dx = 0,$$

i.e.,

$$[x^{2}(u')^{2}]_{0}^{1} + [\alpha^{2}x^{2}u^{2} - n^{2}u^{2}]_{0}^{1} - 2\alpha^{2} \int_{0}^{1} xu^{2}dx = 0,$$

Since $u(1) = J_n(\alpha) = 0$ and $u(0) = J_n(0) = 0$, it follows that

$$[u'(1)]^2 - 2\alpha^2 \int_0^1 xu^2 dx = 0,$$

i.e.,

$$\int_0^1 x [J_n(\alpha x)]^2 dx = \frac{1}{2} [J'_n(\alpha)]^2 = \frac{1}{2} J_{n+1}(\alpha).$$

The last equality follows, since:

$$(x^{-n}J_n)' = -x^{-n}J_{n+1} \iff x^{-n}J_n' - nx^{-n-1}J_n = -x^{-n}J_{n+1}$$

so that taking $x = \alpha$,

$$-\alpha^{-n}J_{n+1}(\alpha) = \alpha^{-n}J'_n(\alpha) - n\alpha^{-n-1}J_n(\alpha) = \alpha^{-n}J'_n(\alpha).$$

Thus, $J_n'(\alpha) = J_{n+1}(\alpha)$, and the proof is complete.

5 Sturm-Liouville problem (SLP)

Definition 5.1. For continuous real valued functions p, q, r defined on interval such that r' exists and continuous and p(x) > 0 for all $x \in [a, b]$, consider the differential equation

$$(r(x)y')' + [q(x) + \lambda p(x)]y = 0, (1)$$

together with the boundary conditions

$$k_1 y(a) + k_2 y'(a) = 0,$$
 (2)

$$\ell_1 y(b) + \ell_2 y'(b) = 0. (3)$$

The problem of determining a scalar λ and a corresponding nonzero function y satisfying (1)–(3) is called a **Sturm–Liouville problem (SLP)**. A scalar (real or complex number) λ for which there is a nonzero function y satisfying (1)–(3) is called an **eigenvalue** of the SLP, and in that case the function y is called the corresponding **eigenfunction**.

We assume the following known result.

THEOREM 5.2. Under the assumptions on p, q, r given in Definition 5.1, the set of all eigenvalues of SLP is a countably infinite set⁴.

THEOREM 5.3. Eigenfunctions corresponding to distinct eigenvalues are orthogonal on [a, b] with respect to the weight function p(x).

Proof. Suppose λ_1 and λ_2 are eigenvalues of the SLP with corresponding eigenvectors y_1 and y_2 , respectively. Let us denote

$$Ly := [r(x)y']' + q(x)y.$$

Then we have Let us denote

$$Ly_1 = -\lambda_1 p y_1, \qquad Ly_2 = -\lambda_2 p y_2.$$

 \Longrightarrow

$$(Ly_1)y_2 - (Ly_2)y_1 = (\lambda_2 - \lambda_1)py_1y_2.$$

 \Longrightarrow

$$\int_{a}^{b} [(Ly_1)y_2 - (Ly_2)y_1 dx = (\lambda_2 - \lambda_1) \int_{a}^{b} py_1 y_2 dx.$$

Note that

$$(Ly_1)y_2 - (Ly_2)y_1 = [(ry_1')y_2 - (ry_2')y_1]'.$$

⁴A set S is said to be *countably infinite* if it is in one-one corresponding to the set $\mathbb N$ of natural numbers. For example, other than $\mathbb N$ itself, the set $\mathbb Z$ of all integers, and the set $\mathbb Q$ of all rational numbers are countably infinite. However, the set $\{x \in \mathbb R: 0 < x < 1\}$ is not a countably infinite set. An infinite set which is not countably infinite is called an *uncountable set*. For example, the set $\{x \in \mathbb R: 0 < x < 1\}$ is an uncountable set; so also the set of all irrational numbers in $\{x \in \mathbb R: 0 < x < 1\}$

Hence

$$\int_{a}^{b} [(Ly_1)y_2 - (Ly_2)y_1 dx = [(ry_1')y_2 - (ry_2')y_1](b) - [(ry_1')y_2 - (ry_2')y_1](a).$$

Using the boundary conditions, the last expression on the above can be shown to be 0. Thus, we obtain

$$(\lambda_2 - \lambda_1) \int_a^b py_1y_2 dx = [(ry_1')y_2 - (ry_2')y_1](b) - [(ry_1')y_2 - (ry_2')y_1](a) = 0.$$

Therefore, if $\lambda_2 \neq \lambda_1$, we obtain $\int_a^b py_1y_2 dx = 0$.

THEOREM 5.4. Every eigenvalue of the SLP (1)-(3) is real.

Proof. Let us denote

$$Ly := [r(x)y']' + q(x)y.$$

Suppose $\lambda := \alpha + i\beta$ is an eigenvalue of SLP with corresponding eigenfunction y(x) = u(x) + iv(x), where $\alpha, \beta \in \mathbb{R}$, and u, v are real valued functions. Then we have

$$L(u+iv) = -(\alpha + i\beta)p(u+iv),$$

i.e.,

$$Lu + iLv = -p(\alpha u - \beta v) - ip(\alpha v + \beta u).$$

Hence,

$$Lu = -p(\alpha u - \beta v), \qquad Lv = -p(\alpha v + \beta u)$$

 \Longrightarrow

$$(Lu)v - (Lv)u = \beta p(v^2 + u^2).$$

 \Longrightarrow

$$\int_{a}^{b} [(Lu)v - (Lv)u]dx = \beta \int_{a}^{b} p(v^{2} + u^{2})dx.$$

But,

$$(Lu)v - (Lv)u = [(ru')v - (rv')u]'.$$

Hence,

$$\int_{a}^{b} [(Lu)v - (Lv)u]dx = \int_{a}^{b} [(ru') - (rv')u]'dx = [(ru')v - (rv')u](b) - [(ru')v - (rv')u](a).$$

Using the fact that u and v satisfy the boundary conditions (2)-(3), it can be shown that

$$[(ru')v - (rv')u](b) - [(ru')v - (rv')u](a) = 0.$$

Thus, we obtain $\beta \int_a^b p(v^2+u^2)dx=0$. Since $\beta \int_a^b p(v^2+u^2)dx$ we obtain $\beta=0$, and hence $\lambda=\alpha\in\mathbb{R}$.

THEOREM 5.5. If y_1 and y_2 are the eigenfunctions corresponding to an eigenvalue λ of the SLP, then prove that y_1, y_2 are linearly dependent.

Proof. Suppose y_1 and y_2 are eigenfunctions corresponding to an eigenvalue λ of the SLP. Then we have

$$Ly_1 = -\lambda py_1, \quad Ly_2 = -\lambda py_2.$$

Hence,

$$(Ly_1)y_2 - (Ly_2)y_1 = 0.$$

But,

$$(Ly_1)y_2 - (Ly_2)y_1 = [(ry_1')y_2 - (ry_2')y_1]' = [rW(y_1, y_2)]'.$$

Thus $[rW(y_1, y_2)]' = 0$ so that, using the assumption that r is not a zero function, we obtain $rW(y_1, y_2)$ is a constant function, say

$$r(x)W(y_1, y_2)(x) = c$$
, constant.

But, by the boundary condition (2) we have

$$k_1 y_1(a) + k_2 y_1'(a) = 0$$

$$k_1 y_2(a) + k_2 y_2'(a) = 0$$

i.e.,

$$\begin{bmatrix} y_1(a) & y_1'(a) \\ y_2(a) & y_2'(a) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Hence, $W(y_1, y_2)(a) = 0$ so that $r(a)W(y_1, y_2)(a) = 0$ and hence, c = 0. This implies that $W(y_1, y_2)$ is a zero function, and hence y_1, y_2 are linearly dependent.

Example 5.6. For $\lambda \in \mathbb{R}$, consider the SLP:

$$y'' + \lambda y = 0,$$
 $y(0) = 0 = y(\pi)$

Note that, for $\lambda = 0$, the problem has only zero solution. Hence, 0 is not an eigenvalue of the problem.

If $\lambda < 0$, say $\lambda = -\mu^2$, then a general solution is given by

$$y(x) = C_1 e^{\mu x} + C_2 e^{-\mu x}.$$

Now, y(0) implies $C_1 + C_2 = 0$ and $y(\pi) = 0$ implies $C_1 e^{i\mu\pi} + C_1 e^{-i\mu\pi} = 0$. Then, it follows that, $C_1 = 0 = C_2$. Hence, the SLP does not have any negative eigenvalues.

Next suppose that $\lambda > 0$, say $\lambda = \mu^2$. Then a general solution is given by

$$y(x) = C_1 \cos(\mu x) + C_2 \sin(\mu x).$$

Note that y(0) = 0 implies $C_1 = 0$. Now, $y(\pi) = 0$ implies $y(\pi) = C_2 \sin(\mu \pi) = 0$. Hence, for those values of μ for which $\sin(\mu \pi) = 0$, we obtain nonzero solution. Now,

$$\sin(\mu\pi) = 0 \iff \mu\pi = n\pi \text{ for } n \in \mathbb{Z}.$$

Thus the eigenvalues and corresponding eigenfunctions of the SLP are

$$\lambda_n := n^2, \quad y_n(x) := \sin(nx), \, n \in \mathbb{N}.$$

Example 5.7. For $\lambda \in \mathbb{R}$, consider the SLP:

$$y'' + \lambda y = 0,$$
 $y'(0) = 0 = y'(\pi)$

Note that, for $\lambda = 0$, $y(x) = \alpha + \beta x$ is a solution of the DE. Now, $y'(0) = 0 = y'(\pi) = 0$ imply $\beta = 0$. Hence, y(x) = 1 is a solution.

If $\lambda < 0$, say $\lambda = -\mu^2$, then a general solution is given by

$$y(x) = C_1 e^{\mu x} + C_2 e^{-\mu x}.$$

Note that $y'(x) = \mu C_1 e^{\mu x} - \mu C_2 e^{-\mu x}$. Hence,

$$y'(0) = 0 = y'(\pi) \implies C_1 - C_2 = 0, \quad C_1 e^{\mu \pi} - C_2 e^{-\mu \pi} = 0.$$

Hence, $C_1 = C_2 = 0$, and hence the SLP does not have any negative eigenvalues.

Next suppose that $\lambda > 0$, say $\lambda = \mu^2$. Then a general solution is given by

$$y(x) = C_1 \cos(\mu x) + C_2 \sin(\mu x).$$

Then.

$$y'(x) = -\mu C_1 \sin(\mu x) + \mu C_2 \cos(\mu x).$$

Now, y(0) implies $C_2 = 0$, and hence $y(\pi) = 0$ implies $sin(\mu\pi) = 0$. Note that

$$\sin(\mu\pi) = 0 \iff \mu\pi = n\pi \text{ for } n \in \mathbb{Z}.$$

Thus the eigenvalues and corresponding eigenfunctions of the SLP are

$$\lambda_n := n^2$$
, $y_n(x) := \cos(nx)$, $n \in \mathbb{N}_0$.

Exercise 5.8. For $\lambda \in \mathbb{R}$, consider the SLP:

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(\pi) = 0$.

Show that the eigenvalues and the corresponding eigenfunctions for the above SLP are given by

$$\lambda_n = \left(\frac{2n-1}{2}\right)^2, \quad y_n(x) = \sin\left[\left(\frac{2n-1}{2}\right)x\right], \quad n \in \mathbb{N}.$$

Exercise 5.9. Consider the Schrödinger equation:

$$-\frac{h^2}{2\pi m}\psi''(x) = \lambda \psi x, \quad x \in [0, \ell],$$

along with the boundary condition

$$\psi(0) = 0 = \psi(\ell).$$

Show that the eigenvalues and the corresponding eigenfunctions for the above SLP are given by

$$\lambda_n = \frac{h^2 \pi^2 n^2}{2m\ell^2}, \qquad \psi_n(x) = \sqrt{\frac{2}{\ell}} \sin\left(\frac{n\pi x}{\ell}\right), \quad n \in \mathbb{N}.$$

 \Diamond

 \Diamond

Exercise 5.10. Let

$$Ly := [r(x)y']' + q(x)y.$$

Prove that

$$\langle Ly, z \rangle_p = \langle y, Lz \rangle_p \quad \forall \, y, z \in C[a, b],$$

 \Diamond

 \Diamond

for every weight function p(x) > 0 on [a, b].

Definition 5.11. An orthogonal sequence (φ_n) of nonzero functions in C[a, b] is called a *complete* system for C[a, b] with respect to a weight function w if every $f \in C[a, b]$ can be written as

$$f = \sum_{n=1}^{\infty} c_n \varphi_n,$$

where the equality above is in the sense that

$$\int_{a}^{b} \left| f(x) - \sum_{n=1}^{N} c_n \varphi_n(x) \right|^2 w(x) dx \to 0 \quad \text{as} \quad N \to \infty.$$

It can be seen that $c_n = \frac{\langle f, \varphi_n \rangle_w}{\langle f_n, \varphi_n \rangle_w}$.

References

[1] William E. Boycee and Richard C. DiPrima (2012): *Elementary Differential Equations*, John Wiley and Sons, Inc.