QBUS6840 Lecture 9

Seasonal ARIMA Models and Forecast Combination

Discipline of Business Analytics

The University of Sydney Business School

Review of ARMA(p, q) and ARIMA(p, d, q) Processes

ightharpoonup ARMA(p, q) formulation with backshift operators

$$\left(1 - \sum_{i=1}^{p} \phi_i B^i\right) Y_t = c + \left(1 + \sum_{i=1}^{q} \theta_i B^i\right) \varepsilon_t,$$

ightharpoonup ARIMA(p, d, q) formulation with backshift operators

$$\left(1 - \sum_{i=1}^{p} \phi_i B^i\right) (1 - B)^d Y_t = c + \left(1 + \sum_{i=1}^{q} \theta_i B^i\right) \varepsilon_t$$

- Let $Z_t = (1 B)^d Y_t$, then Z_t is the d-order differencing of Y_t . Hence ARMA(p, q) of Z_t is the ARIMA(p, d, q) of Y_t
- ► These are nonseasonal models

Outline

Seasonal ARIMA Models

Seasonal ARMA $(P, Q)_m$ Seasonal ARIMA $(p, d, q)(P, D, Q)_m$

Forecast combinations

Variance stabilising transform

This is the Log transformed data.

ACF and PACF for the log visitors series

First differenced log visitors series

Take the first difference

ACF and PACF for the first differenced log visitors series

Is the data stationary yet?

Seasonal differencing

We can use seasonal differencing to remove the nonstationarity caused by the seasonality:

$$y_t - y_{t-12}$$

Seasonally differenced log visitors series

Take the first seasonal difference

ACF and PACF for the seasonally differenced log visitors series

ACF suggests that the transformed series is stationary, but there is clearly a seasonal effect on both ACF and PACF. We can use seasonal ARMA to model this transformed time series

Outline

Seasonal ARIMA Models Seasonal ARMA $(P, Q)_m$ Seasonal ARIMA $(p, d, q)(P, D, Q)_m$

Forecast combinations

Seasonal $AR(1)_m$

$$Y_t = c + \Phi_1 Y_{t-m} + \varepsilon_t$$

with m the seasonal frequency. In the form of B operator

$$(1 - \Phi_1 B^m) Y_t = c + \varepsilon_t$$

Compared to nonseasonal AR(1)

$$Y_t = c + \phi_1 Y_{t-1} + \varepsilon_t$$

Note the use of the notations Φ_1 and ϕ_1 .

ACF of $AR(1)_m$

$$\rho_k = \begin{cases} \Phi_1^i, & \text{if } k = i \times m, \ i = 0, 1, \dots \\ 0, & \text{else} \end{cases}$$

Seasonal $MA(1)_m$

$$Y_t = c + \Theta_1 \varepsilon_{t-m} + \varepsilon_t$$

Seasonal $MA(1)_m$

$$Y_t = c + \Theta_1 \varepsilon_{t-m} + \varepsilon_t$$

In the form of B operator

$$Y_t = c + (1 + \Theta_1 B^m) \varepsilon_t$$

ACF

$$\rho_k = \begin{cases} \frac{\Theta_1}{1 + \Theta_1^2}, & \text{if } k = m \\ 0, & k \ge 1 \text{ and } k \ne m. \end{cases}$$

$$\left(1 - \sum_{i=1}^{P} \Phi_{i} B^{im}\right) Y_{t} = c + \left(1 + \sum_{i=1}^{Q} \Theta_{i} B^{im}\right) \varepsilon_{t},$$

where error terms ε_t are white noise with mean zero and variance σ^2 .

Conditions for stationarity and invertibility are the same as for ARMA. E.g., $AR(1)_m$ is stationary if $|\Phi_1| < 1$

$$\left(1 - \sum_{i=1}^{P} \Phi_{i} B^{im}\right) Y_{t} = c + \left(1 + \sum_{i=1}^{Q} \Theta_{i} B^{im}\right) \varepsilon_{t},$$

where error terms ε_t are white noise with mean zero and variance σ^2 .

- Conditions for stationarity and invertibility are the same as for ARMA. E.g., $AR(1)_m$ is stationary if $|\Phi_1| < 1$
- For $AR(P)_m$ (which is $ARMA(P,0)_m$): ACF dies down at lags im, i=0,1,2,... and PACF cuts off after lag Pm.

$$\left(1 - \sum_{i=1}^{P} \Phi_{i} B^{im}\right) Y_{t} = c + \left(1 + \sum_{i=1}^{Q} \Theta_{i} B^{im}\right) \varepsilon_{t},$$

where error terms ε_t are white noise with mean zero and variance σ^2 .

- Conditions for stationarity and invertibility are the same as for ARMA. E.g., $AR(1)_m$ is stationary if $|\Phi_1| < 1$
- For $AR(P)_m$ (which is $ARMA(P,0)_m$): ACF dies down at lags im, i=0,1,2,... and PACF cuts off after lag Pm.
- For MA(Q)_m (which is ARMA(0, Q)_m): ACF cuts off after lag Qm and PACF dies down at lags im, i = 0, 1, 2, ...

$$\left(1 - \sum_{i=1}^{P} \Phi_i B^{im}\right) Y_t = c + \left(1 + \sum_{i=1}^{Q} \Theta_i B^{im}\right) \varepsilon_t,$$

where error terms ε_t are white noise with mean zero and variance σ^2 .

- Conditions for stationarity and invertibility are the same as for ARMA. E.g., $AR(1)_m$ is stationary if $|\Phi_1| < 1$
- For $AR(P)_m$ (which is $ARMA(P,0)_m$): ACF dies down at lags im, i=0,1,2,... and PACF cuts off after lag Pm.
- For MA(Q)_m (which is ARMA(0, Q)_m): ACF cuts off after lag Qm and PACF dies down at lags im, i = 0, 1, 2, ...
- For ARMA $(P, Q)_m$: both ACF and PACF die down at lags im, i = 0, 1, 2, ...

Mixed Seasonal ARMA $(p, q)(P, Q)_m$

In practice, many time series can be modeled well by a mixed seasonal ARMA model

$$\left(1 - \sum_{i=1}^{P} \Phi_i B^{im}\right) \left(1 - \sum_{i=1}^{P} \phi_i B^i\right) Y_t = c + \left(1 + \sum_{i=1}^{Q} \Theta_i B^{im}\right) \left(1 + \sum_{i=1}^{q} \theta_i B^i\right) \varepsilon_t$$

For example, an ARMA $(0,1)(1,0)_{12}$ model is a combination of a seasonal AR $(1)_{12}$ and a non-seasonal MA(1)

$$Y_t - \Phi_1 Y_{t-12} = c + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

► The behavior of ACF and PACF is a combination of behavior of the seasonal and nonseasonal parts of the model.

Mixed Seasonal ARMA $(p, q)(P, Q)_m$: Example

Transformed series of visitor arrival data

We can conclude that the seasonal part is $MA(1)_{12}$. The orders p and q of the non-seasonal part ARMA(p,q) are not clear – need to do model selection

Outline

Seasonal ARIMA Models

Seasonal ARMA $(P, Q)_m$

Seasonal ARIMA $(p, d, q)(P, D, Q)_m$

Forecast combinations

Seasonal ARIMA $(p, d, q)(P, D, Q)_m$ models

- Seasonal ARMA and mixed seasonal ARMA require stationarity
- \triangleright For non-stationary time series Y_t , by taking d-order difference

$$\nabla^d(Y_t) = (1 - B)^d(Y_t)$$

and D-order seasonal difference

$$\nabla_m^D(Y_t) = (1 - B^m)^D(Y_t)$$

we can arrive at a transformed time series Z_t which is stationary

By combining difference and seasonal difference with mixed seasonal ARMA, we have a very general seasonal autoregressive integrated moving average (Seasonal ARIMA) model, also called Seasonal Box-Jenkins models.

Seasonal ARIMA $(p, d, q)(P, D, Q)_m$ models

ARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$
 \uparrow

(Non-seasonal part of the model)

(Seasonal part of the model)

where m = seasonal period (e.g. m = 12).

$$\begin{split} &(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)(1 - \Phi_1 B^m - \Phi_2 B^{2m} - \dots - \Phi_p B^{pm})(1 - B)^d (1 - B^m)^D Y_t \\ = & c + (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q)(1 + \Theta_1 B^m + \Theta_2 B^{2m} + \dots + \Theta_Q B^{Qm}) \epsilon_t \end{split}$$

The above is an $ARIMA(1,1,1)(1,1,1)_4$ model (with c=0)

 $ARIMA(1,0,0)(0,1,1)_{12}$ for monthly data:

$$(1 - \phi_1 B)(1 - B^{12})Y_t = c + (1 + \Theta_1 B^{12})\varepsilon_t$$

This is equivalent to

$$Y_t - Y_{t-12} = c + \phi_1(Y_{t-1} - Y_{t-13}) + \varepsilon_t + \Theta_1\varepsilon_{t-12}$$

 $ARIMA(1,0,0)(1,0,0)_{12}$ for monthly data:

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})Y_t = c + \varepsilon_t$$

Or write it out

$$Y_{t} = c + \phi_{1} Y_{t-1} + \Phi_{1} Y_{t-12} - \phi_{1} \Phi_{1} Y_{t-13} + \varepsilon_{t}$$

This is because informally

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12}) = 1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}$$

Hence

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})Y_t = Y_t - \phi_1 Y_{t-1} - \Phi_1 Y_{t-12} + \phi_1 \Phi_1 Y_{t-13}$$

 $ARIMA(1,1,1)(1,1,0)_{12}$ model:

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})Y_t = c + (1 + \theta_1 B)\varepsilon_t$$

 $ARIMA(1,1,1)(1,1,0)_{12}$ model:

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})Y_t = c + (1 + \theta_1 B)\varepsilon_t$$

The transformed series is $Z_t = (1-B)(1-B^{12})Y_t$, whose model is mixed seasonal ARMA $(1,1)(1,0)_{12}$

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12}) Z_t = c + (1 + \theta_1 B) \varepsilon_t$$

 $ARIMA(1,1,1)(1,1,0)_{12}$ model:

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})Y_t = c + (1 + \theta_1 B)\varepsilon_t$$

The transformed series is $Z_t = (1 - B)(1 - B^{12})Y_t$, whose model is mixed seasonal ARMA $(1,1)(1,0)_{12}$

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12}) Z_t = c + (1 + \theta_1 B) \varepsilon_t$$

or

$$(1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}) Z_t = c + (1 + \theta_1 B) \varepsilon_t$$

 $ARIMA(1,1,1)(1,1,0)_{12}$ model:

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})Y_t = c + (1 + \theta_1 B)\varepsilon_t$$

The transformed series is $Z_t = (1 - B)(1 - B^{12})Y_t$, whose model is mixed seasonal ARMA $(1,1)(1,0)_{12}$

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})Z_t = c + (1 + \theta_1 B)\varepsilon_t$$

or

$$(1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}) Z_t = c + (1 + \theta_1 B) \varepsilon_t$$

Hence

$$Z_t = \phi_1 B Z_t + \Phi_1 B^{12} Z_t - \phi_1 \Phi_1 B^{13} Z_t + c + \varepsilon_t + \theta_1 B \varepsilon_t$$

or

$$Z_{t} = \phi_{1}Z_{t-1} + \Phi_{1}Z_{t-12} - \phi_{1}\Phi_{1}Z_{t-13} + c + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}$$

Because

$$Z_t = (1 - B)(1 - B^{12})Y_t = (Y_t - Y_{t-1}) - (Y_{t-12} - Y_{t-13}),$$

we have

$$\begin{split} (Y_{t} - Y_{t-1}) - (Y_{t-12} - Y_{t-13}) = & c + \phi_{1} \left[(Y_{t-1} - Y_{t-2}) - (Y_{t-13} - Y_{t-14}) \right] \\ & + \Phi_{1} \left[(Y_{t-12} - Y_{t-13}) - (Y_{t-24} - Y_{t-25}) \right] \\ & - \phi_{1} \Phi_{1} \left[(Y_{t-13} - Y_{t-14}) - (Y_{t-25} - Y_{t-26}) \right] \\ & + \varepsilon_{t} + \theta_{1} \varepsilon_{t-1}. \end{split}$$

Finally,

$$Y_{t} = c + Y_{t-1} + (Y_{t-12} - Y_{t-13}) + \phi_{1} [(Y_{t-1} - Y_{t-2}) - (Y_{t-13} - Y_{t-14})]$$

$$+ \Phi_{1} [(Y_{t-12} - Y_{t-13}) - (Y_{t-24} - Y_{t-25})]$$

$$- \phi_{1} \Phi_{1} [(Y_{t-13} - Y_{t-14}) - (Y_{t-25} - Y_{t-26})]$$

$$+ \varepsilon_{t} + \theta_{1} \varepsilon_{t-1}.$$

Seasonal ARIMA models: visitor data

We saw that both first difference and seasonal difference were needed to transform the log visitors series Y_t into a stationary series Z_t

$$Z_t = (1 - B^{12})(1 - B)Y_t = (Y_t - Y_{t-1}) - (Y_{t-12} - Y_{t-13})$$

Seasonal ARIMA models: visitor data

The seasonal part is $MA(1)_{12}$, for the non-seasonal part, let's try ARMA(2,2). Then we have an $ARIMA(2,1,2)(0,1,1)_{12}$ model

Estimation

 $ARIMA(2,1,2)(0,1,1)_{12}$ model:

$$(1-\phi_1B-\phi_2B^2)(1-B)(1-B^{12})Y_t = c+(1+\theta_1B+\theta_2B^2)(1+\Theta_1B^{12})\varepsilon_t$$

Estimated coefficients (using R):

	ar1	ar2	ma1	ma2	sma1
	-0.7817	-0.3154	-0.0300	-0.4007	-0.7471
s.e.	0.2212	0.1227	0.2213	0.1909	0.1073

log likelihood=178.99, AIC=-345.97, AICc=-345.08, BIC=-330.28.

 $ARIMA(2,1,2)(0,1,1)_{12}$ model: residuals

 $ARIMA(2,1,2)(0,1,1)_{12}$ model: forecasts

See a detailed Python example in Lecture09_Example01.py

Outline

Seasonal ARIMA Models

Seasonal ARMA $(P,Q)_m$ Seasonal ARIMA $(p,d,q)(P,D,Q)_m$

Forecast combinations

BBC: The Code - The Wisdom of the Crowd

https://www.youtube.com/watch?v=iOucwX7Z1HU

Forecast combinations

Introduction

Classical reference:

Bates, J. M., and C. W. J. Granger (1969). The combination of forecasts, *Operational Research Quarterly*, 20, 451–468.

They provide the following illustration:

TABLE 1. ERRORS IN FORECASTS (ACTUAL LESS ESTIMATED) OF PASSENGER MILES FLOWN, 1953

	Brown's exponential smoothing forecast errors	Box-Jenkins adaptive forecasting errors	Combined forecast (½ Brown+ ½ Box–Jenkins) errors
Jan	1	- 3	-1
Feb.	6	-10	-2
March	18	24	21
April	18	22	20
May	3	-9	-3
June	-17	-22	-19.5
July	-24	10	-7
Aug.	-16	2	-7
Sept.	-12	-11	-11.5
Oct.	-9	-10	-9.5
Nov.	-12	-12	-12
Dec.	-13	-7	-10
ariance of erre	ors 196	188	150

Forecast combinations

Introduction

- It is possible to combine unbiased forecasts $\hat{y}_{T+1|T}^{(i)}$ from models i = 1, ..., m.
- The models can be various ARIMA type of models or a set of ARIMA models, exponential smoothing models and regression models for example.
- $\hat{y}_{T+1|T}^{(i)}$, $i=1,\ldots,m$ could also be m expert forecasts.

Forecasting combinations

Weights

▶ The forecasts can be combined as follows

$$\hat{y}_{T+1|T}^{c} = \sum_{i=1}^{m} w_{i} \; \hat{y}_{T+1|T}^{(i)}$$

- ► The simplest way is to set $w_i = \frac{1}{m}$, then you are using a simple average.
- Simple averages often work surprisingly well.
- ▶ The question is how to combine forecasts "optimally"?

Forecasting combinations

There is extensive empirical evidence in favour of combinations as a forecasting strategy.

- Forecasting combinations offer diversification gains that make them very useful compared to relying on a single model, as we have just seen.
- ► There may be structural breaks in the data, making it plausible that combining models with different levels of adaptability will lead to better results than relying on a single model.

Combining predictions from multiple models are useful beyond time series, e.g. combining climate forecasts¹, ensembles in stats and machine learning.

Recap

In the last 3 lectures:

- Autoregressive processes, AR(p)
- Moving average processes, MA(q)
- ARMA and ARIMA processes
- Seasonal and mixed ARMA/ARIMA models

Next lectures: (Recurrent) neural networks for time series

Thank you!