Arbori de derivare

O metodă grafică de descriere a unei derivări într-o gramatică independentă de context, cu scopul de a o vizualiza rapid, o reprezintă noțiunea de **arbore de derivare**. Această noțiune derivă din noțiunea de arborescență cu rădăcină din teoria grafurilor (Berge Claude, *Teoria grafurilor și aplicațiile ei*, Editura Tehnică, București, 1969) și este prin definiție un graf finit orientat, fără circuite, în care orice vârf diferit de rădăcină este extremitatea terminală a unui singur arc și rădăcina nu este extremitatea terminală a nici unui arc.

Definiția 1. Se numește **arbore de derivare** asociat unei derivări generate de o gramatică independentă de context G = (N, T, S, P) o arborescență, având vârfurile așezate pe nivele și care are următoarele proprietăți:

- 1. rădăcina este etichetată cu simbolul S;
- 2. vârfurile cu cel puțin un descendent se numesc **vârfuri interne** sau **vârfuri neterminale** și sunt etichetate cu simboluri neterminale;
- 3. vârfurile fără niciun descendent se numesc **vârfuri terminale** sau **frunze** și sunt etichetate cu simboluri terminale;
- 4. dacă în mulțimea producțiilor ${\bf P}$ există producția $A \to A_1A_2 \dots A_k$, atunci în arborele de derivare vârfurile etichetate cu simbolurile A_1,A_2,\dots,A_k sunt în ordine de la stânga la dreapta descendenți direcți ai vârfului etichetat cu simbolul A.

Definiția 2. Cuvântul format din etichetele vârfurilor terminale, în ordine de la stânga la dreapta, se numește **frontiera arborelui de derivare**.

Exemplul 1. Fie gramatică independentă de context G = (N, T, S, P), unde $N = \{S, A\}$, $T = \{a, b\}$, iar P este alcătuită din următoarele producții:

$$S \rightarrow aAS$$
 (1)

$$S \rightarrow a$$
 (2)

$$A \rightarrow SbA$$
 (3)

$$A \rightarrow SS$$
 (4)

$$A \rightarrow ba$$
 (5)

Se consideră în gramatica *G* următoarea derivare:

$$S \xrightarrow[1]{} aAS \xrightarrow[3]{} aSbAS \xrightarrow[2]{} aSbAa \xrightarrow[2]{} aabAa \xrightarrow[3]{} aabbaa = a^2b^2a^2.$$

Acestei derivări i se asociază următorul arbore de derivare:

Se observă că frontiera arborelui de derivare coincide cu $a^2b^2a^2$, adică cuvântul generat de derivare.

Între două vârfuri terminale dintr-un arbore de derivare, etichetate cu X_1 şi X_2 se pot considera drumurile care le leagă de rădăcina arborelui şi fie vârful etichetat cu X din care cele două drumuri se despart. Se spune că X_1 este la stânga lui X_2 , dacă drumul de la X la X_1 se află la stânga celui de la X la X_2 .

Legătura dintre limbajul generat de o gramatică independentă de context și arborii de derivare atașați derivărilor generate de ea este stabilită de următoarea teoremă, a cărei demonstrație utilizează următoarea notație:

 $G_A = (N, T, A, P)$ gramatica independentă de context obținută din gramatica G = (N, T, S, P) prin înlocuirea simbolului inițial S cu simbolul A.

Teorema 1. Fie gramatică independentă de context G = (N, T, S, P) și $w \in T^*$. Atunci $w \in L(G)$ dacă și numai dacă există un arbore de derivare cu frontiera w.

Demonstrație. Este suficient să se demonstreze că pentru orice simbol $A \in \mathbf{N}$ are loc

 $A \stackrel{\cdot}{\Rightarrow} w$, dacă și numai dacă există un arbore de derivare cu frontiera $w \in T^*$.

Implicația (\Longrightarrow), adică presupunem că pentru $A \in N$ are loc derivarea $A \stackrel{*}{\Longrightarrow} w \in T^*$, în

k pași și se demonstrează prin inducție matematică după numărul de pași $k \in \mathbb{N}^*$ că există un arbore de derivare în gramatica G_A cu frontiera $w \in T^*$.

Într-adevăr, pentru k=1 se obține producția $A \to w \in P$. În acest caz, arborele de derivare atașat producției în gramatica G_A are două nivele și este de forma:

Se observă că pe nivelul doi se află frontiera w și deci afirmația este adevărată pentru k=1.

Ipoteza de inducție: presupunem că implicația este adevărată pentru orice simbol $A \in \mathbf{N}$ și orice derivare având k pași.

În baza ipotezei de inducție se demonstrează că implicația este adevărată pentru orice simbol $A \in \mathbb{N}$ și orice derivare având k+1 pași.

Fie derivarea în *k*+1 pași:

$$A \to A_1 A_2 \cdots A_n \xrightarrow[k \ pa si]{*} w = w_1 w_2 \cdots w_n$$
, astfel încât $A_i \xrightarrow[\leq k \ pa si]{*} w_i, \forall i = \overline{1, n}$.

Conform ipotezei de inducție, există în gramatica G_{A_i} arbore de derivare cu frontiera w_i , $\forall i=\overline{1,n}$. Atunci arborele de derivare asociat derivării în k+1 pași are forma:

Rezultă că implicația (\Longrightarrow) este adevărată pentru orice $k \in \mathbb{N}^*$.

Implicația (\Leftarrow), adică presupunem că există un arbore de derivare cu frontiera $w \in T^*$, având k vârfuri neterminale.

Se demonstrează implicația prin inducție matematică relativă la numărul vârfurilor neterminale $k \in \mathbb{N}^*$.

Pentru k = 1 arborele de derivare are un singur vârf neterminal etichetat cu A de forma:

Atunci există în gramatica P și $w = A_1 A_2 \cdots A_n \in T^*$.

 G_A producția $A \to A_1 A_2 \cdots A_n \in$

Ipoteza de inducție: presupunem implicația adevărată pentru orice $A \in N$ și orice arbore de derivare cu rădăcina A care are cel mult k vârfuri neterminale cu etichete din N și frontiera $w \in T^*$.

Fie un arbore de derivare cu rădăcina $A \in \mathbf{N}$ care are k+1 vârfuri neterminale cu etichete din \mathbf{N} și fie A_1, A_2, \cdots, A_n vârfurile descendente direct ale rădăcinii A. Atunci există în \mathbf{P} producția $A \to A_1 A_2 \cdots A_n$.

Pentru $i \in \{1,2,\ldots,n\}$ există un arbore de derivare cu rădăcina A_i și cel mult k vârfuri neterminale, având frontiera w_i , unde $A_i = w_i$ dacă $A_i \in T$.

În baza ipotezei de inducție, rezultă $A_i \stackrel{*}{\Rightarrow} w_i$, $\forall i = \overline{1,n}$, de unde se obține:

$$A \stackrel{*}{\Rightarrow} A_1 A_2 \cdots A_n \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_n = w \in \boldsymbol{L}(\boldsymbol{G}),$$

care este derivarea căreia îi este asociat arborele de derivare cu rădăcina $A \in N$ care are k+1 vârfuri neterminale cu etichete din N, iar w este frontiera arborelui de derivare cu rădăcina A.

Rezultă implicația adevărată pentru orice $k \in \mathbb{N}^*$.

Definiția 3. Un arbore de derivare se numește **binar**, dacă fiecare vârf neterminal are cel mult doi descendenți direcți.

Consecința 1. Orice arbore de derivare asociat unei derivări generate de o gramatică independentă de context în forma normală Chomsky este binar.

Justificarea rezultă din forma particulară a producțiilor în forma normală Chomsky.

Exemplul 2. Fie gramatica independentă de context în forma normală Chomsky

 ${\it G}=({\it N},{\it T},{\it S},{\it P})$ unde ${\it N}=\{{\it S},{\it A},{\it B},{\it C},{\it D},{\it E}\},{\it T}=\{a,b\},$ iar mulţimea producţiilor ${\it P}$ este:

$$S \rightarrow BE$$
 (1)

$$E \rightarrow AS$$
 (2)

$$S \rightarrow a$$
 (3)

$$A \rightarrow SD$$
 (4)

$$D \rightarrow CA$$
 (5)

$$A \rightarrow SS$$
 (6)

$$A \rightarrow CB$$
 (7)

$$C \rightarrow b$$
 (8)

$$B \rightarrow a$$
 (9)

Fie cuvântul w = aabbaa, a cărui derivare în gramatica G este:

$$S \xrightarrow{(1)} BE \xrightarrow{*} aAS \xrightarrow{*} aSDa \xrightarrow{*} aaCAa \xrightarrow{*} aabCBa \xrightarrow{*} aabbaa.$$

Arborele de derivare asociat derivării are următoarea formă binară:

Definiția 4. O gramatică independentă de context G se numește **ambiguă**, dacă un cuvânt $w \in L(G)$ se poate genera prin cel puţin două derivări stângi distincte.

Exemplul 3. Fie gramatica independentă de context G = (N, T, S, P), unde $N = \{S, A\}, T = \{a, b\}$, iar mulțimea producțiilor P este:

$$S \rightarrow ab$$
 (1)

$$S \rightarrow aSb$$
 (2)

$$S \rightarrow aA$$
 (3)

$$A \rightarrow aSbb$$
 (4).

Această gramatică este ambiguă. Într-adevăr, fie cuvântul $w = aaabbb \in L(G)$ care se poate genera prin două prin următoarele două derivări stângi distincte:

(i)
$$S \xrightarrow[(2)]{} aSb \xrightarrow[(2)]{} aaSbb \xrightarrow[(1)]{} aaabbb;$$

$$(ii) \mathrel{S} \underset{(3)}{\longrightarrow} a\mathbf{A} \underset{(4)}{\longrightarrow} aa\mathbf{S}bb \underset{(1)}{\longrightarrow} aaabbb.$$

Arborii de derivare asociați celor două derivări ajută la vizualizarea rapidă a ambiguității și sunt prezentați mai jos.

Arborele de derivare asociat derivării (i):

Arborele de derivare asociat derivării (ii):

Exemplu: Considerăm următoarea gramatică independentă de context G = (N, T, S, P), unde $N = \{S\}$, $T = \{+, *, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, iar mulțimea producțiilor P este următoarea:

$$S \to S + S$$
 (1)
 $S \to S * S$ (2)
 S (3)
 $\to 0|1|2|3|4|5|6|7|8|9$

Gramatica G este ambiguă, deoarece cuvântul $w=2*3+4\in T^*$ poate fi obținut prin două derivări stângi distincte din simbolul inițial S, după cum se poate cu uşurință observa din figurile de mai jos:

$$S \underset{(1)}{\longrightarrow} S + S \underset{(2)}{\longrightarrow} S * S + S \underset{(3)}{\longrightarrow} 2 * S + S \underset{(3)}{\longrightarrow} 2 * 3 + 4$$

$$\longrightarrow 2 * 3 + S \underset{(3)}{\longrightarrow} 2 * 3 + 4$$

$$S \xrightarrow{(2)} \mathbf{S} * S \xrightarrow{(3)} 2 * \mathbf{S} \xrightarrow{(1)} 2 * \mathbf{S} + S \xrightarrow{(3)}$$
$$\xrightarrow{(3)} 2 * 3 + \mathbf{S} \xrightarrow{(3)} 2 * 3 + 4$$

Eliminarea acestei ambiguități din procesul de evaluare a unei expresii aritmetice se poate realiza fie prin utilizarea parantezelor, fie prin asocierea unor priorități operatorilor aritmetici.

Temă.

1. Fie gramatica independentă de context G = (N, T, S, P), unde $N = \{S, X, Y\}$, $T = \{a, b\}$ și mulțimea producțiilor P este următoarea:

$$S \to X$$
 (1)

$$X \rightarrow XY \mid aYX \mid a \mid \lambda$$
 (2)

$$Y \rightarrow X \mid XYb \mid b$$
 (3)

- a) Desenați un arbore de derivare în **G** pentru un cuvânt de lungime cel puțin 5, indicând și cuvântul corespunzător arborelui respectiv.
- b) Simplificați gramatica **G**.
- c) Aduceți gramatica **G** la forma normală Chomsky.
- 2. Fie gramatica independentă de context G = (N, T, S, P), unde $N = \{S, X, Y\}$, $T = \{a, b\}$ și mulțimea producțiilor P este următoarea:

$$S \to X \mid Y \mid XY \tag{1}$$

$$X \rightarrow aXYX \mid bXY \mid Y \mid a$$
 (2)

$$Y \rightarrow XYXY \mid aXYb \mid b \mid \lambda$$
 (3)

- a) Desenați un arbore de derivare în **G** pentru un cuvânt de lungime cel puțin 7, indicând și cuvântul corespunzător arborelui respectiv.
- b) Simplificați gramatica **G**.
- c) Aduceți gramatica G la forma normală Chomsky.
- 3. Fie gramatica independentă de context G = (N, T, S, P), unde $N = \{S, A, B, C\}$, $T = \{a, b, c\}$ și mulțimea producțiilor P este următoarea:

$$S \to A \mid B \mid aA \mid bB \tag{1}$$

$$A \rightarrow aAa \mid bAb \mid B \mid \lambda$$
 (2)

$$B \rightarrow bBb \mid aBa \mid A \mid \lambda$$
 (3)

$$C \rightarrow cCc \mid aABb \mid \lambda$$
 (4)

- a) Desenați un arbore de derivare în **G** pentru un cuvânt de lungime cel puțin 7, indicând și cuvântul corespunzător arborelui respectiv.
- b) Simplificați gramatica **G**.
- c) Aduceți gramatica **G** la forma normală Chomsky.