

FIG. 1

FIG. 2

FIG. 3

FIG. 4 (a)

FIG. 4 (b)

FIG. 4 (c)

FIG. 5

FIG. 6

FIG. 7

P_s : NEGATIVE PRESSURE DUE TO VISCOSITY WHEN INK CARTRIDGE IS FULLY CHARGED WITH INK

P_i : INK TANK HEAD PRESSURE

P_e : CRITICAL PRESSURE DUE TO ABSORBING BODY WHEN INK CARTRIDGE IS EMPTY

P_m : CRITICAL PRESSURE DUE TO FILTER

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

$$R_d = \int_0^x \frac{1}{\{2\sqrt{(dm/2)^2 - X^2}\}^4} dX$$

$$R_m = \int_0^x \frac{1}{dm^4} dX$$

FIG. 14

FIG. 15

FIG. 16

$$\Delta P = \rho g d \cos \theta$$

FIG. 17

$$P_c = 4T/d$$

FIG. 18 (a)

FIG. 18 (e)

AMOUNT OF RETREAT

FIG. 18 (b)

FIG. 18 (f)

FIG. 18 (c)

FIG. 18 (g)

FIG. 18 (d)

FIG. 18 (h)

