# Actividad 8 Física Computacional

Brayan Alexis Ramírez Camacho Lic. en Física Universidad de Sonora

23 de Abril de 2019

#### 1. Introducción

El objetivo de esta actividad es el de estudiar las variaciones en la temperatura del aire y del suelo a distintas profundidades en una estación de Nogal.

El principal inconveniente para lograr esto es que los datos medidos bajo tierra poseen diferencias en cuanto a los información registrada al aire libre. Antes de buscar resultados, es preciso realizar modificaciones para hacer compatibles ambos conjuntos de datos en base a las variables temporales.

### 2. Desarrollo

- El primer paso en el análisis fue importar las librerías pandas, numpy, matplotlib.pyplot, seaborn, math y datetime, necesarias para realizar cálculos y visualizaciones, entre otros.
- Se leen los archivos de datos mediante la función pd.read\_csv() de Pandas para posteriormente incorporarlos como Dataframes utilizando la función pd.DataFrame().
- Se eliminaron las columnas y renglones innecesarios para el análisis haciendo uso de la función drop().
- Se convierten las variables de tipo *object* a float64 mediante la línea de código siguiente:

```
df1[df1.columns[0:14]] = df1[df1.columns[0:14]].apply(pd.to_numeric, errors='coerce')
```

donde df1 es el DataFrame que contiene la información de la temperatura del aire.

■ En el segundo DataFrame, **df2**, que almacena las variables de la temperatura del suelo, la variable temporal es convertida al tipo *string* mediante la función *astype(string)* 

```
df2["2 Year_RTM L"] = df2["2 Year_RTM L"].astype(str)
```

- La variable de fecha se transforma a una variable tipo Datetime con la función pd.to\_datetime.
- De la variable de fecha (DATETIME), se crea una nueva variable que contabiliza los minutos transcurridos

```
df1['MINUTOS'] = df1['DATETIME'].dt.minute
```

■ De df1 se toman solamente los valores de cada media hora y del año 2009, mediante la siguiente línea de código:

```
df1 = df1[((df1["MINUTOS"] == 30.0) | (df1["MINUTOS"] == 0.0)) & (df1["DATETIME"] < '2010
```

- En df2, es necesario separar la variable "4 Hour\_Minute\_RTM L.en horas y minutos con dígitos separados y bien identificados. Además, se debe aplicar una corrección cuando la hora **24:00**, marcando como las **00:00** del siguiente día. Para esto último se utiliza la función .replace().
- Se construye una variable que contenga el año, día, hora y minuto y se convierte a tipo Datetime.
- Se eliminan los datos repetidos utilizando la función .drop\_duplicates(), además de .reset\_index().
- Finalmente se unen los DataFrames a partir de los valores coincidentes de la variable FECHA:

#### 3. Resultados

Los resultados del análisis se muestran a continuación:





En las gráficas anteriores se muestra la variación de temperatura del aire y del suelo a 4 diferentes profundidades para el día 1ero de enero del año 2009.







Aquí es posible apreciar la variación de las temperaturas máxima, mínima y promedio del suelo (a 4 profundidades distintas) y del aire en el mes de enero del 2009.







En las gráficas anteriores se observa el cambio de las temperaturas del aire y dels Finalmente, a continuación se ilustra el uso de los promedios móviles para suavizar curvas:











## 4. Conclusiones

En las gráficas presentadas en la sección anterior es posible apreciar que la temperatura del aire oscila con una amplitud considerablemente grande durante el día y la noche, debido a la rotación de la Tierra y la diferencia en la radiación solar incidente que ésta provoca . Así mismo, se observa que al aumentar la profundidad del suelo, la diferencia en las temperaturas máxima y mínima disminuye. Esto puede explicarse debido a que los suelos poseen una mayor capacidad calorífica que el aire, es decir, se necesita una mayor cantidad de energía para calentar o enfriar el suelo que el aire, por lo que las variaciones en su temperatura son menos pronunciadas.