Government of Karnataka Department of Technical Education

Board of Technical Examinations, Bengaluru

Course Title: Computer Integrated Manufacturing System		Course Code:15MC61T
Mode (L:T:P): 4:0:0	Credits:4	Core/ Elective: Core
Type of Course: Lectures & Student Activities		Total Contact Hours: 52
CIE= 25 Marks		SEE= 100 Marks

Pre-requisites: Knowledge of Manufacturing Science, Engineering Graphics,

Course Objectives: Understand the various components of Computer Integrated Manufacturing,

Course Outcome: At the end of the course, the student should be able to

1. Explain concept of CIM and Automation

2. Develop CNC programs for a given component

3. Explain the concept and application of group technology

4. Explain various automated shop floor control activities

5. Explain different automated material handling systems

6. Explain the components of FMS

	Course Outcome	Cognitive Level		
CO1	Explain concept of CIM and Automation	U	2	5
CO2	Develop CNC programs for a given engineering drawing	A	2	15
соз	Explain the concept and application of group technology	U	2	8
CO4	Explain various automated shop floor control activities	U	2	8
C05	Explain different automated material handling systems	U	2	8
C06	Explain the components of FMS	U	2	8
		Total se	52	

Legend: R; Remember, U: Understand A: Application

Mapping of Course Outcomes with Program Outcomes

Course		Programme Outcomes								
	1	2	3	4	5	6	7	8	9	10
Computer Integrated Manufacturing		3	-	•	-	•	-	9	=	•

Course Content and Weightage For SEE

Unit No	Unit Name	СО	Hour	for di	s alloca fferent itive lev tions	Marks weightage (%)		
				R	U	A	T	
1	CIM and Automation	1	5	•	10	-	6.89	
2	CNC Machines	2	15	-	-	35	24.15	
3	Group Technology	3	8	-	25		17.24	
4	Automated Shop Floor Control	op Floor Control 4 8 - 25 -		17.24				
5	Automated Material Handling	5	8	•	- 25 -		17.24	
6	Flexible Manufacturing System	6	8	-	25	-	17.24	
	Total		52	145 Marks		100		

Contents

Unit-I

CIM and Automation

Production systems, (facilities, manufacturing support system), automation In production system (automated manufacturing system, computerized manufacturing support systems,) automation and principles and stagiest (USA principle, ten strategies for automation and process strategies) Basic elements of an automated system, levels of automation.

5 Hours

Unit-II

CNC Machines

Emergence of CNC Machines, Basic Configuration of CNC system, Machining Centre, Applications, Advantages and Disadvantages of CNC Machines, Introduction to Part Programming-Coordinate system-Dimensioning-Axes & motion nomenclature, Definition and importance of various positions like machine zero, home position, and work piece zero, CNC part programming- Structure of part programme -Word addressed format-Preparatory function(G)-Miscellaneous function(M)- Tool compensation-Subroutines (Macros)(L)-Canned cycles-Mirror image, Simple programme on Milling and Turning operations

15 Hours

Unit-III

Group Technology

Group technology-Definition-Advantages and limitations of GT-Part family formation-Classification and coding-Opitz coding system, Applications & benefits of GT, Cellular manufacturing, Computer aided process planning-Approaches to CAPP- retrieval type CAPP system and generative CAPP system, benefits of CAPP system

8 Hours

Unit-IV

Automated Shop Floor Control

Introduction to shop floor control, relationship between shop floor control and factory information control system, phases of shop floor control system-order release, order scheduling, order progress, factory data collection system,-online versus batch system, data input techniques, automated identification methods-barcodes, radio frequency system, magnetic strip, optical character recognition system

8 Hours

Unit-V

Automated Material Handling

Introduction to Automatic Guided Vehicles-driverless trains, AGV pallet trucks, AGV guidance and routing (frequency select method, path switch select method), traffic control and safety (on-board vehicle sensing, zone blocking), system management (on-board control panel, remote cell station, central computer control), Applications of AGV, Automated storage/retrieval system –Basic components of AS/RS.

Directorate Of Technical Education

Unit-VI

Flexible Manufacturing System

Introduction to FMS-Definition, Components of FMS, types of FMS-single machine cell, flexible manufacturing cell, flexible manufacturing systems, applications, advantages and disadvantages of FMS, types of machines used in FMS-machining centers, head changers, head indexers, milling modules, turning modules, assembly workstations, inspection stations, sheet metal processing machines, forging stations, FMS layout configurations-inline, loop, ladder, open-field, robot centered cell, FMS computer control system

8 Hour

Reference

- 1. Automation, Production Systems, and Computer-Aided Manufacturing- Mikell P Grover, Prentice-Hall International publication
- 2. Mechatronics -HMT Limited, McGraw Hill Education
- 3. CAD/CAM Principles and Applications-P N Rao, McGraw Hill Education
- 4. CAD/CAM/CIM- P. Radhakrishnan, S. Subramanyan, V. Raju, New Age International Publishers
- 5. CNC Machines- Pabla B.S., Adithan M., New Age International, New Delhi, 2014(reprint)
- 6. Computer Numerical Control-Turning and Machining centers- Quesada Robert, Prentice Hall 2014
- 7. CAD/CAM- Sareen Kuldeep, S Chand 2012

e-Reference

- 1. https://www.britannica.com/technology/automation/Computer-integrated-manufacturing
- 2. http://www.slideshare.net/suraj_21/computer-integrated-manufacturing
- 3. http://www.slideshare.net/100675720/automation-7437801
- 4. http://mosafavi.iut.ac.ir/sites/mosafavi.iut.ac.ir/files/files_course/cnc_1_0.pdf
- 5. http://wings.buffalo.edu/academic/department/eng/mae/courses/460-564/Course-Notes/CNC%20notes.pdf
- 6. http://www.engr.uvic.ca/~mech410/CAM_references/CNC_Computer_Numerical_Control_Programmig_Basics.pdf
- 7. http://www.meliksah.edu.tr/esefkatlioglu/wp-content/uploads/2014/06/01-Introduction-to-CNC-Technology.pdf
- 8. http://www.slideshare.net/NoumanKhan2/9-oct-2013-lec-13-1415161718
- 9. http://www.slideshare.net/PratikGandhi4/computer-aided-process-planning-capp-57682060
- 10. http://www.slideshare.net/SyedAjeesh/computer-integrated-manufacturing-42768294?qid=f7c2ba99-d26c-445f-81d5-355774a78c00&v=&b=&from search=1

- 11. http://www.wintriss.com/wcg/shopfloorconnect/docs/SFC_White_Paper.pdf
- 12. http://www.slideshare.net/subhashsv/barcode-technology
- 13. http://www.slideshare.net/IAMINURHEARTS1/ocr-ppt-35272335?qid=16588669-68fe-4a3b-ad29-2c69ba58f65f&v=&b=&from_search=1
- 14. http://tamcam.tamu.edu/courses/inen416/Handouts/AGV%20Presentation.p
 df
- 15. http://wings.buffalo.edu/eng/mae/courses/460-564/AGV.pdf
- 16. http://www.invata.com/warehouse-automation/automated-storage-and-retrieval-systems-asrs/
- 17. http://www.slideshare.net/RanjeetKumar41/flexible-manufacturing-system

Student Activity

Activity No.	Description of the Student Activity
1	Develop CNC part programming for a turning component having step turning, taper turning, thread cutting, Knurling operations
2	Develop CNC part programming for a milling component having mirroring, pocketing, contour milling operations etc.
3	Present a report on materials used for CNC tooling's (Hand written 2 0r 3 pages)
4	Present a report on inserts used in CNC cutting tools
5	Develop a CNC program for a simple component by using APT language.
6	Prepare a report on various CAM software

Note:

- Group of max four students should above activity or any other similar activity related to the course COs and get it approved from concerned Teacher and HOD.
- 2. No group should have activity repeated or similar
- 3. Teacher should asses every student by using suitable Rubrics approved by HOD

Directorate Of Technical Education

Sample Rubrics

Dimension	Exemplary	Accomplished	Developing	Beginning	Roll	No. of	f the S	Studer	nt
	5/4	3	2	1	1	2	3	4	5
Organization	Information presented in logical, interesting sequence	Information in logical sequence	Difficult to follow presentation student jumps around	Cannot understand presentation no sequence of information	Ex: 2				
Subject Knowledge	Demonstrates full knowledge by answering all class questions with explanations and elaborations	At ease with expected answers to questions but does not elaborate	Uncomfortable with information and is able to answer only rudimentary questions	Does not have a grasp of the information. Cannot answer questions about subject	4				
Graphics	Explain and reinforce screen text and presentation	Relate to text and presentation	Occasionally uses graphics that rarely support text and presentation	Uses superfluous graphics or no graphics	5				
Oral Presentation	Maintains eye contact and pronounces all terms precisely. All audience members can hear	Maintains eye contact most of the time and pronounces most words correctly. Most audience members can hear presentation	Occasionally uses eye contact, mostly reading presentation, and incorrectly pronounces terms. Audience members have difficulty hearing	Reads with no eye contact and incorrectly pronounces terms. Speaks too quietly	3				
	Total Sc	ore=2+3+4+5=14/	4=3.5=4	1	, , ,				

Institutional Activity

Activity No	Description of the Institutional Activity
1	Organize seminar, workshop, lecture from eminent person in the following domain: a) CNC safety b) CIM and its impact on environment c) materials for CNC Tooling d) Modern trends in advanced manufacturing e) Role of professional bodies in manufacturing such as institute of Engineers.
2	Organize industrial visit
3	Motivate student to take case study on particular manufacturing activity to inculcate self and continues learning

Course Assessment Pattern

Parti	culars	Max Marks	Evidence	Course outcomes	
Direct Assessment	CIE	Three tests (Average of three tests)	20	Blue books	1,2,3,4,5,6
		Student Activity	05	Student Activity Sheets	1,2,3,4,5,6
	SEE	End of the course	100	Answer scripts at BTE	1,2,3,4,5,6
Indirect Assessment	Student Feedback	Middle of the course		Feedback forms	1, 2&3
	on course	End of the course		Feedback forms	1,2,3, 4, 5&6

Note: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

Note to IA verifier: The following documents to be verified by CIE verifier at the end of semester

- 1. Blue books (20 marks)
- 2. Student suggested activities report for 5 marks and should be assessed on RUBRICS
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

Model Question Paper (CIE)

Date and	and Time Semester Course		Max Marks			
1Test(6 "week of sem) 10-11 Am VI SEM Manufacturing System		Computer Integrated Manufacturing System	20			
50111, 10 11	- ,	Year: 2017-18	Course code:15MC61T			
Name of Cou	Name of Course coordinator:					
All question	s carrie	es equal marks		-12	200	
Question No			Question	CL	со	РО
1	systen		U	1	2	
	Expla organi	process cycle in a manufacturing				
2	Explain the USA automation principle OR Explain ten strategies of automation and process improvement				1	2
3	1-24-21-40-42-42-42	Develop a CNC program for a given component involving turning operations				2
4	Develo operat	•	a given component involving milling	А	2	2

Model Question Paper VI Semester Diploma in Mechatronics Engineering Computer Integrated Manufacturing System

Instructions: Answer any six questions from part A and Seven full questions from part B

PART-A

Answer any six questions.

5X6=30 marks

- 1. Explain briefly the reasons for automation
- 2. Compare preparatory codes G02 with G03
- 3. Compare subroutine with canned cycle
- 4. Explain group technology
- 5. Explain the types of coding systems
- 6. Explain contact bar code readers
- 7. Explain Non contact bar code readers
- 8. Explain the importance of AGV system
- Explain dedicated FMS

PART-B

Answer any seven full questions.

10X7=70M

- $1. \ \ \, a)$ Explain with block diagram , the components of production system
 - b) Explain canned cycle with examples
- 2. Develop CNC turning program for the given component sketch
- 3. Develop CNC Milling program for the given component sketch
- 4. a) Explain the different methods available for forming groups in group technology
 - b) Explain the methodology to be followed for developing a retrieval type of computer aided process planning system
- 5. a) Explain about the Opitz coding system generally used in group technology
 - b) Explain three phases in shop floor control system with block diagram
- 6. a) Explain conversion of bar code in to pulse train of electrical signals
 - b) Explain automatic identification methods
- 7. a) Explain AGVS pallet trucks
 - b) Explain on board vehicle sensing traffic control system in AGV
- 8. a) Explain Basic components of AS/RS
 - b) Explain central computer control in managing in operations of in AGV
- 9. a) explain factors to be considered to be considered while planning and implementing EMS
 - b) Explain DEFUN commands in LISP programming
- 10. a) Explain Loop FMS layout configuration
 - b) Explain the machining cell

Model Question Bank VI Semester Diploma in Mechatronics Engineering Computer Integrated Manufacturing

Unit -1 CIM and Automation Cognitive level- Understanding

- 1. With a block diagram explain the components of production system
- 2. Explain the information process cycle in a manufacturing organization
- 3. Write the reasons for automation
- 4. Explain the USA automation principle
- 5. Explain ten strategies of automation and process improvement
- 6. Explain the automation migration strategies

Unit –II CNC Machines Cognitive level- Application

- 1. Compare preparatory and miscellaneous codes
- 2. Compare preparatory codes G02 with G03
- 3. compare use of subroutines (macros) with canned cycles
- 4. Develop CNC turning program for a given machine component
- 5. Develop CNC milling program for a given machine component

Unit –III Group Technology Cognitive level- Understanding

- 1. Explain the advantages and limitations of group technology
- 2. Explain the different methods available for forming groups in group technology
- 3. Explain the functions of classification and coding system
- 4. Explain the types of coding systems
- 5. Explain the applications of group technology
- 6. Explain the importance of group technology in present manufacturing scenario
- 7. Explain group technology
- 8. Explain about the Opitz coding system generally used in group technology
- 9. Explain the needs for computer aided process planning
- 10. Explain the retrieval type of computer aided process planning method
- 11. Explain the generative type of computer aided process planning method
- 12. Explain the methodology to be followed for developing a retrieval type of computer aided process planning system
- 13. Explain the methodology to be followed for developing a generative type of computer aided process planning system

Unit-IV Automated Shop Floor Control Cognitive level- Understanding

1. Explain factory information control system indicating the relationship of shop floor control in the system

- 2. Explain three phases in shop floor control system with block diagram
- 3. Explain varies data input techniques
- 4. Explain automatic identification methods
- 5. Explain conversion of bar code in to pulse train of electrical signals
- 6. Explain contact bar code readers
- 7. Explain Non contact bar code readers
- 8. Explain bar code printers
- 9. Explain multi level scanning in computer process monitoring

Unit-V Automated Material Handling Cognitive level- Understanding

- 1. Explain the importance of AGV system
- 2. Explain the drive less train of AGVS
- 3. Explain AGVS pallet trucks
- 4. Explain AGVS unit load carrier
- 5. Explain the applications of the AGV
- 6 Explain AGV guidance system
- 7. Explain the frequency select method in AGV routing
- 8. Explain path switch select method in AGV routing
- 9. Explain on board vehicle sensing traffic control system in AGV
- 10. Explain zone blocking system in AGV
- 11. Explain on board control panel in managing the operations of in AGV
- 12. Explain remote call stations in managing the operations of in AGV
- 13. Explain central computer control in managing in operations of in AGV
- 14. Explain Basic components of AS/RS

Unit-VI Flexible Manufacturing System Cognitive level- Understanding

- 1. Explain the components of FMS
- 2. Explain the machining cell
- 3. Explain dedicated FMS
- 4. Explain random order FMS
- 5. Explain in line FMS layout configuration
- 6. Explain Loop FMS layout configuration
- 7. Explain Ladder FMS layout configuration
- 8. Explain Open field FMS layout configuration
- 9. Explain Robot centered cell FMS layout configuration
- 10.Explain layout of FMS incorporating AS/RS for material handling
- 11.Explain the functions performed by FMS computer control system
- 12. Explain FMS data files
- 13. Explain the performance data collected during monitoring of FMS
- 14. Explain factors to be considered to be considered while planning and implementing FMS.

Directorate Of Technical Education