Evaluating Statistical Methods for Nuclear Forensics Analysis

Preliminary Examination

Arrielle Opotowsky

University of Wisconsin-Madison

29 January 2018

Outline

- Introduction Motivation Methodology
- 2 Literature Review
 Nuclear Forensics
 Statistical Models
 Algorithms for Prediction
 ML Model Assessment
 ML Model Validation
 Computational Tools

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- Summary

Nuclear Security and Forensics

Find/make image for discussion here, US/DHS Programs

Needs in Nuclear Forensics

- post-incident rapid characterization
- forensics database challenges
 - multidimensional
 - inconsistent uncertainties
 - international cooperation

Computational Methods

Figure 1: Nuclear forensics research: physical, experimental, and computational

Computational Methods

Figure 2: Comparison of computational approaches to nuclear forensics research

Statistical Methods

Need more space to explain more about ML Models giving rxtr params?

Statistical Methods

	TRAINING DATA	TESTING DATA
Physical Motivation		
Ideal World	Lab-Measured Mass Spectra	Lab-Measured Mass Spectra
Real World	Lab-Measured Gamma Spectra	Field-Measured Gamma Spectra
Computation	al Representation	
ldeal World	Simulation-Created Isotopics	Simulation-Created Isotopics
Real World	DRF-Derived Gamma Spectra	DRF- <i>Derived</i> Gamma Spectra

Figure 3: The benefits of data set modularity are easily implemented in this

Goal/Big Question

How does the ability to determine forensic-relevant spent nuclear fuel attributes using machine learning techniques degrade as less information is available?

Outline

- Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics Statistical Models

Algorithms for Prediction
ML Model Assessment
ML Model Validation

Computational Tools Previous Work

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- 4 Research Proposal
 Experiment 1
 Experiment 2
 Experiment 3
 Method Compariso
- Summary

Introduction Literature Review Demonstration Research Proposal Summary

Nuclear Forensics Statistical Models Computational Tools Previous Work

Technical Nuclear Forensics

something showing illicit trafficking probs. SNF is really just for RDDs, but least guarded

Types of Investigations

Post-detonation

- Debris collection (fallout pred/dose rate)
- Rapid (field) analysis (isotope ratios, debris characterization)
- Data evaluation (uncertainty quanification)

Pre-detonation

- Material characterization (separations, etc)
- Material provenance (inverse prob)

Nuclear Forensics as an Inverse Problem

Necessary to determine the quality of prediction Use Bayes' Framework:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

Machine Learning

machine vs. statistical (domain knowledge-¿none) supervised and unsupervised clustering, dimensionality reduction classification, regression – discrete and continuous variables

Vocabulary

labels features generalizability prediction error objective error metric v prediction error metric

Supervised Regression

Figure 4: Schematic of a representative prediction workflow

Linear Models

Objective: minimize error over all training data wrt their labels

Regularization using
$$\lambda$$

$$F(\mathbf{X}) = \beta_0 + \sum_{j=1}^{p} x_j \beta_j$$

Figure 5: How regularization might affect the generalizability of an ML model

Nearest Neighbor Methods

Objective: minimum distance between test sample and training instance(s)

$$Y(\boldsymbol{X}) = \frac{1}{k} \sum_{x_i \in N_k(\boldsymbol{X})} y_i$$

Input Feature (x)

Figure 6: Illustration of the regularization effects by choosing k

Support Vector Machines

Figure 7: Classification with SVM and regression with SVR

Support Vector Regression with Many Dimensions

Objective: minimize margin width and outliers

$$\begin{aligned} \min \ & \frac{1}{2} \|w\|^2 + C \sum_i \xi_i \\ \text{subject to} : \ & |y_i - (w\phi(x_i) + b)| \leq \varepsilon + \xi_i \\ \text{where} : & w = \sum_i \alpha_i y_i \phi(x_i) \\ \text{and} : & K(x_i, x_j) = \phi(x_i) \phi(x_j) = e^{\gamma \|x_i - x_j\|^2} \end{aligned}$$

Figure 8: Diagram showing the use of the kernel trick with SVR

Ŵ

Dimensionality Reduction

Manual via domain knowledge or some measure PCA Factor Analysis ICA

Sources of Error

Figure 9: Bias and variance comprise the prediction error

Types of Error

Figure 10: Diagram explaining the concept of k-fold cross-validation

Error Metrics

L1, L2: absolute error and squared error

Others: r2 score, percent error

Used for model prediction error and optimization of algs in obj funcs

Training Set Size: Learning Curves

Figure 11: Learning curves for three training scenarios: high bias, balanced bias and variance, and high variance

Ŵ

Model Complexity: Validation Curves

Figure 12: Validation curve showing different fitness of models

Model Comparison

Probabilities	Calculation Method and Example	
P(D M) Prior	Given: M = BWR U-oxide with burnup = x GWd/MTU This is true: D = nuclide vector with Pu-239 = y% With: 2% probability Calc'd from: ORIGEN simulations in training set	
P(M) Likelihood	Given: No direct information on D This is true: M = BWR U-oxide with burnup = x GWd/MTU With: 2% probability Calc'd from: Machine-learned model prediction	
P(D) Marginal L.	Given: No direct information on M This is true: D = nuclide vector with Pu-239 = y% With: 2% probability Calc'd from: Summation of training set instances	
P(M D) Posterior	Given: D = nuclide vector with Pu-239 = y% This is true: M = BWR U-Ox with burnup = x GWd/MTU With: 2% probability Calc'd from: All quantities above	

$$\textit{Posterior} = \frac{\textit{Likelihood} * \textit{Prior}}{\textit{Marginal Likelihood}}$$

Table 1: Bayes

Computational Tools

cite stuff

- Training Data : SCALE/ORIGEN-ARP
- Statistics Toolkit : scikit-learn (python)
- Information Reduction
 - Gamma energies: ORIGEN
 - Computational gamma spectra: GADRAS

Pre-detonation Materials of Interest

UOC UOX powder SNF Reprocessed SNF

Statistical Methods Employed

get images
Factor Analysis
SFCOMPO extension
Dayman paper on prediction ability wrt info reduction

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Previous Work

3 Demonstration

Training Data
Reactor Parameter Prediction
ML Model Validation

4 Research Proposal

Experiment 1

Experiment 2

Experiment 3

Method Comparison

5 Summary

Proposed Experiment Methodology

Figure 13: Workflow of the experiments with tools used for each step

Training Set

ORIGEN Rxtr	Rxtr Type	Enrichment
CE14x14	PWR	2.8
CE16x16	PWR	2.8
W14x14	PWR	2.8
W15x15	PWR	2.8
W17x17	PWR	2.8
S14x14	PWR	2.8
VVER440	PWR	3.60
VVER440_3.82	PWR	3.82
VVER440_4.25	PWR	4.25
VVER440_4.38	PWR	4.38
VVER1000	PWR	2.8
GE7x7-0	BWR	2.9
GE8x8-1	BWR	2.9
GE9x9-2	BWR	2.9
GE10x10-8	BWR	2.9
Abb8x8-1	BWR	2.9
Atrium9x9-9	BWR	2.9
SVEA64-1	BWR	2.9
SVEA100	BWR	2.9
CANDU28	PHWR	0.711
CANDU37	PHWR	0.711

PWR

PWR

DIVID

Independent Testing Set

CE16x16

CE16x16

CE7v7 0

Reactor	Type	Enrichment	Cooling Time
CANDU28	PHWR	0.711	{1m, 7d, 30d, 1y}
CANDU28	PHWR	0.711	{3m, 9d, 2y}
CE16x16	PWR	2.8	{1m, 7d, 30d, 1y}

2.8

3.1

GE7x7-0 BWR 2.9 {1m, 7d, 30d, 1y} GE7x7-0 BWR 2.9 {3m, 9d, 2y}

{3m, 9d, 2y}

{7d, 9d}

(24 04)

Information Reduction

Random error here gamma not implemented here

Algorithm Parameters

Algorithm	Parameter	Value
Nearest	<i>n</i> -neighbors	1
Neighbor	Weights	uniform
Regression	Distance Metric	L2: Euclidian Distance
	Regularization, α	1.0
Ridge Regression	Normalization	False
regression	Stopping Tolerance	0.001
	Kernel	Radial Basis Function
	Gamma, γ	0.001
Support Vector Regression	С	1000
regression	Epsilon, $arepsilon$	0.1
	Stopping Tolerance	0.001

Table 5: caption

Initial Results

Algorithm	Error Origin	MAPE	RMSE [MWd/MTU]
Nearest Neighbor	Testing Set	9.82	812.43
Regression	5-fold Cross-Validation	2.24	421.41
Ridge	Testing Set	15.68	1049.66
Regression	5-fold Cross-Validation	0.08	13.08
Support Vector	Testing Set	12.28	769.97
Regression	5-fold Cross-Validation	2.08	188.07

Table 6: caption

ML Model Prediction with Reduced Information

Figure 14: caption

SVR Learning Curve

add in example LCs for comparison add in NN or Ridge LC (They look the same)

TrainSize

SVR Validation Curve

add in example VCs for comparison add in NN or Ridge VC (They look the same)

T 11 0

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Provious Work

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- Research Proposal
 Experiment 1
 Experiment 2
 Experiment 3
 Method Comparison
- Summary

Experiment 1
Experiment 2
Experiment 3
Method Comparison

Research Proposal Preparations

Previous Work -¿ SFCOMPO-based Finalizing set of algorithms computational resources

W

Statistical Learning with Direct Isotopics

Goals: Understand limits of simplest scenario

- Usefulness of statistical methods for reactor parameter prediction
- Best performing methods

Variables

- 1 the complexity of the ML algorithm used,
- g feature reduction, and
- **3** different subsets of the decision space.

Statistical Learning with Direct Isotopics

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Manual preprocessing (feature reduction): speed, accuracy
- Reduction of decision space should help: PWR vs. BWR?

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Statistical preprocessing: PCA, ICA
- New materials: Pu, UOC, Post-detonation (urban canyon [1])

Statistical Learning with Gamma Spectra

Goals: Understand limits of real-world scenario

- Level of reduction in reactor parameter prediction
- Best performing methods

Variables

- 1 the complexity of the ML algorithm used,
- 2 feature reduction (implicit), and
- **3** quality of training and/or testing data set.

Statistical Learning with Gamma Spectra

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Indirect isotopics = implicit feature reduction: less accurate
- Higher quality gamma spectra will yield better results

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Further manual or statistical preprocessing
- Add isotope identification step

Ŵ

Statistical Learning with Reprocessed Fuel

Goals: Probe prediction performace in reprocessing scenario

- Experiment with both direct and indirect isotopics
- Presh evaluation of preprocessing
- 8 Best performing methods for materials with multiple sources

Variables

- the complexity of the ML algorithm used,
- 2 quality of training data set, and
- 3 type of preprocessing for feature reduction.

W

Statistical Learning with Reprocessed Fuel

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Reduced information will provide less accurate results
- ICA may outperform PCA, but factor analysis may outperform components analysis [4, 5, 6, 8, 7, 2, 3]

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Manual preprocessing
- Results may be interesting even if prediction fails
- Ensemble methods or other creative solutions [8, 7]

Probability Distributions

Include uncertainty for measures of confidence, posterior probs become prob distribs

C: constant given by marginal likelihood

d: training data set m: model parameters

 $P(\mathbf{d}|\mathbf{m})$: likelihood distribution function

P(m): prior probability distribution

 $P(\mathbf{m}|\mathbf{d})$: posterior probability distribution

$$P(\mathbf{m}|\mathbf{d}) = C * P(\mathbf{d}|\mathbf{m}) * P(\mathbf{m})$$

Integrate over prob densities to get prob distrib

m: range of predicted model parameters

d is a set of nuclide vectors

$$\rho(\mathbf{x}) = \prod_{i} \rho(x_{i})$$

$$P(\mathbf{m}) = \int_{\mathbf{m}} \rho(\mathbf{d}) d\mathbf{d}$$

$$P(\mathbf{m}) = \int_{\mathbf{m}} \rho(\mathbf{d}) d\mathbf{d}$$

Likelihood distribution function:

$$P(\boldsymbol{d}|\boldsymbol{m}) = \int_{\boldsymbol{d},\boldsymbol{m}} \rho(\boldsymbol{d}|\boldsymbol{m}) d\boldsymbol{m}$$

But, we infer them...

W

Estimating Density Functions

estimate rho, have a 'sense' or try different prior probability distributions are given by the model space, e.g., reactor parameters as predicted from the ML models. [?] Note: This implies the posterior is now only dependent on the likelihood.

likelihood function: the training phase provides the maximum likelihood distribution through the use of CV, since the results are reported as a mean error with a standard deviation (which can be converted to accuracy for likelihood) [?]

MLE is not this simple for other methods that do not employ CV [?, ?]

Posterior Odds

citations plz

calc a non-normalized posterior probability distribution, $P(m_i|d)$ then do it for a model obtained from a different algorithm, $P(m_j|d)$

relative posterior probability distribution : posterior odds $B_{ij} = \frac{\rho(d|m_i)}{\rho(d|m_i)}$: Bayes factor.

$$\frac{P(m_i|d)}{P(m_j|d)} = B_{ij} \frac{P(m_i)}{P(m_j)}$$

Likelihood Strength	Probability	$ \mathrm{In}B_{ij} $
Inconclusive	< 0.750	< 1.0
Weak	0.750	1.0
Moderate	0.923	2.5
Strong	0.993	5.0

Table 9: Model comparison using likelihood strength

posterior probabilities calculated from $|InB_{ij}|$ Summarize:

Given a mean-squared error and its standard deviation from using CV with any alg, get MLE

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools

3 Demonstration

Reactor Parameter Prediction

ML Model Validation

4 Research Proposal

Experiment 1

Experiment 2

Experiment 3

Method Comparison

5 Summary

Introduction Literature Review Demonstration Research Proposal Summary

Summary

Summarize

References I

[1] Kenneth G.W. Inn, Jacqueline Mann, Jeffrey Leggitt, JoAnne Buscaglia, Simon Jerome, John Molloy, and William Pramenko.

Nuclear forensic reference materials for attribution of urban nuclear terrorism, 2015.

Presentation for NIST.

- [2] Andrew Jones, Phillip Turner, Colin Zimmerman, and J.Y. Goulermas.
 Machine learning for classification and visualisation of radioactive substances for nuclear forensics.
 - In Techniques and Methods for Safeguards, Nonproliferation and Arms Control Verification Workshop, Portland, Oregon, May 2014.
- [3] Andrew E. Jones, Phillip Turner, Colin Zimmerman, and John Y. Goulermas. Classification of spent reactor fuel for nuclear forensics.

Analytical Chemistry, 86:5399–5405, 2014.

References II

[4] G. Nicolaou.

Determination of the origin of unknown irradiated nuclear fuel.

Journal of Environmental Radioactivity, 86:313-318, 2006.

[5] G. Nicolaou.

Identification of unknown irradiated nuclear fuel through its fission product content

Journal of Radioanalytical and Nuclear Chemistry, 279(2):503-508, 2009.

[6] G. Nicolaou.

Discrimination of spent nuclear fuels in nuclear forensics through isotopic fingerprinting.

Annals of Nuclear Energy, 72:130-133, Oct 2014.

Technical Note

References III

[7] Martin Robel and Michael J. Kristo.
Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.
Journal of Environmental Radioactivity, 99(11):1789–1797, November 2008.

[8] Martin Robel, Michael J. Kristo, and Martin A. Heller. Nuclear forensic inferences using iterative multidimensional statistics. In Proceedings of the Institute of Nuclear Materials Management 50th Annual Meeting, Tuscon, AZ, USA, Jul 2009. Institute of Nuclear Materials Management. LLNL-CONF-414001.