UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Mid-term exam for AST4220 — Cosmology I

Day of exam: Tuesday October 11th 2010

Time for exam: 15.00 - 18.00

This problem set consists of 3 pages.

Attachments: None

Allowed aids: All non-communicative aids.

Make sure that the problem set is complete before you start answering the questions.

Problem 1

A low-density universe may be approximated by setting the energy density in the Friedmann equation to zero. Beside the uninteresting possibility of $\dot{a}=k=0$ there is a non-trivial solution with curvature.

- a) Find a(t) for a nonzero curvature $(k \neq 0)$.
- b) Find the Hubble relation between the proper distance and redshift in such a model universe.

Problem 2

Our universe is spatially flat with the dominant component being matter and positive dark energy. Its fate is an unending exponential expansion. Now consider the same flat universe but with a negative dark energy $\Omega_{\Lambda} = 1 - \Omega_{M,0} < 0$, which provides a gravitational attraction. The universe will then start to contract.

- a) Show that this will slow the expansion down to a standstill when the scale factor reaches $a_{max} = (-\Omega_{\Lambda}/\Omega_{M,0})^{1/3}$.
- b) Show how you would calculate the age of the universe when a(t) reaches zero again. (At some point you will encounter a difficult integral. Stop there!)

Problem 3

Derive from the Friedman equation the relation between the deceleration parameter and the density parameter Ω in a flat matter dominated Friedman universe with $\Lambda=0$.

Problem 4

Suppose the universe is filled with a fluid of density ρ and pressure p, with an equation of state $p = w\rho$, where $w \neq -1$. Ignore all other contributions to the energy density of the universe.

- a) Find $\rho(a)$ in terms of w. Also, find $\rho(z)$, where z is the redshift of objects at time t.
- b) Assuming that k = 0, find a(t) in terms of w.
- c) What value of w corresponds to cold matter? What is the corresponding a(t)?
- d) What value of w corresponds to isotropic radiation? What is the corresponding a(t)?
- e) Find the present age of the universe t_o in terms of H_o and w. Suppose h is observed to be h = 2/3. What range of values for w are possible if the universe is determined to be at least 15×10^9 years old?

$$H_0 = h \ 100 \ Km \ s^{-1} \ Mpc^{-1}$$