

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MARCH/APRIL 2015 EXAMINATION

SCHOOL OF SCIENCE AND TECHNOLOGY

Course Code: MTH 312

Course Title: Groups and Rings TOTAL: 70

TIME: 3 HOURS

CREDIT UNIT: 3

INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE (5) QUESTIONS BEAR FULL MARKS

- **1.** a) Let $G = \langle a \rangle$ be a finite cyclic group of order n, with generator a. Prove that a^k generates G if and only if $\gcd(k,n)=1$ (4 marks)
 - b) Suppose that $n=p^k$, where p is a prime and k is a positive integer. Find the number of generators of G (4 marks)
 - c) Let $f: G \to G^1$ be a group homomorphism. Prove that ker f is a normal subgroup of G. This is denoted by $f \nabla G$ (6 marks)
- 2. a) Define Group homomorphism (2 marks)
 - b) Show that every permutation in S_n ($n \ge 2$) can be written as a product of transpositions. (6 marks)
 - c) Show that if H and K be normal subgroups of a group G such that K Í H. then $(G/K)/(H/K) \simeq G/H$. (6 marks)
- 3. a) Let X be a non-empty set, $\rho(X)$ be the collection of all subsets of X and Δ denote the

symmetric difference operation. Show that $(\rho(X), \Delta, \cap)$ is a ring. (4 marks)

- b) Show that the set $S = \left[x + y\sqrt[3]{3} + z\sqrt[3]{9} : x, y, z \in Q\right]$ is a ring with respect to addition and multiplication on R. (5 marks)
- c) Prove that the set $M = [(a,b,c,d):a,b,c,d \in Q]$ with addition and Multiplication define by

$$(a,b,c,d)+(e,f,g,h)=(a+e,b+f,c+g,d+h)$$

 $(a,b,c,d)(e,f,g,h)=(ae+bg,af+bh,ce+dg,cf+dh)$
for all $(a,b,c,d),(e,f,g,h) \in M$. is a ring. (5 marks)

4. a) The direct product of two groups G and H is the group GxH with group operation $(g,h)(g^1,h^1)=(gg^1=hh^1)$ for $g,g^1\in G$ and $h,h^1\in H$. Suppose $G=\langle a\rangle$ and $H=\langle h\rangle$ are cyclic of orders m and m, respectively, and that $\gcd(m,n)=1$.

Prove that GxH is cyclic. (4 marks)

- b) Let $s \in \mathbb{N}$, show that the map $f: Z \rightarrow Z_s$ given by f(m) = m for all $m \in Z$ is a homomorphism. Obtain Kernel of f and Image of f. (4 marks)
- c) Suppose G has two subgroups H, K with $K\nabla G$. Let $HK = \{hk: h \in H, k \in K\}$. Prove that HK is a subgroup of G. (6 marks)
- 5. a) Define an Ideal in a ring? (2 marks)
 - b) Show that the set of matrices $\begin{bmatrix} x & x \\ x & x \end{bmatrix} x \in \Re$ is a commutative ring with unity (6 marks)
 - c) Let X be a ring. Show that the identity map 1_X is a ring homomorphism. What are Ker 1_X and Im 1_X ?
 - d) (6 marks)

- 6. a) Define Epimorphism or an onto homomorphism in a ring. (2 marks)
 - b) Let $r \in \mathbb{N}$, show that the map $t: Z \rightarrow Z_r$ given by t(m) = m t(m) = m for all $m \in Z$ is a homomorphism. Obtain Ker t and Im t. (6 marks)
 - c) Let A and B be two rings. Show that the projection map $P: AxB \rightarrow A: p(x,y) = x$ is a homomorphism. (6 marks)
- 7. a) Let G be a group with normal subgroups $H\nabla G$ and $K\nabla G$. Assume that $H\cap G=\{e\}$ and HK=G. Prove that $G\simeq HxK$. (6 marks)
 - b) Let G be a nonabelian group of order 2n, where $n \ge 3$. Suppose there exist elements $a,b \in G$ such that a has order 2, and $bab^{-1} = a^{-1}$. Prove that $G \cong D_n$. (4 marks)
- c) Let $f: R \to S$ be an onto ring homomorphism. Show that if J is an ideal of S, then $f(f^{-1}(J)) = J$. (4 marks)