Approximation Linear Least-Squares

Sachin Shanbhag

Department of Scientific Computing Florida State University, Tallahassee, FL 32306.

References

- ▶ Burden and Faires, Numerical Analysis, 1993
- ► Pal, Numerical Analysis for Scientists and Engineers, 2007.

Contents

- ► Least Squares Approximation
 - ▶ Interpolation versus Approximation
 - ► The Least-Squares Formulation
 - ► Discrete Polynomial Approximation

Least Squares

Recall, for polynomial interpolation, given

$$x_0, x_1, \cdots, x_i, \cdots x_n$$

and the "values" at those points

$$f_0, f_1, \cdots, f_i, \cdots f_n$$

we sought an order n polynomial, which passed exactly though all the $\{x_i, f_i\}$

$$f_i = \sum_{j=0}^n a_j x_i^j$$

Least Squares

▶ Written in full, we wanted a polynomial $p_n(x)$ to pass through the n+1 points by solving the linear system

$$p_n(x_0) = a_0 + a_1 x_0 + \dots + a_n x_0^n = f_0$$

$$p_n(x_1) = a_0 + a_1 x_1 + \dots + a_n x_1^n = f_1$$

$$\vdots$$

$$p_n(x_n) = a_0 + a_1 x_n + \dots + a_n x_n^n = f_n$$

▶ In all, n+1 equations, n+1 unknowns (the a_i)

$$Xa = f$$

where X was the (square) Vandermonde matrix.

Least Squares: Motivation

- As n increases, the interpolating function becomes more complex
 - often picks up undesirable features
 - oscillations (Runge's phenomenon)
 - begins fitting noise, instead of the signal
- In least squares approximation
 - we do not require the approximating function to pass through points
 - we require it to lie as close as possible to the data "in some sense"
 - the approximating function is "coarser" than the data

Coarser Object

Suppose we wanted to fit a lower order polynomial p_m through n+1 points such that m < n.

Written in full, we seek a polynomial $p_m(x)$ that "passes" through the n+1 points by solving the linear system

$$a_{0} + a_{1}x_{0} + \dots + a_{m}x_{0}^{n} = f_{0}$$

$$a_{0} + a_{1}x_{1} + \dots + a_{m}x_{1}^{n} = f_{1}$$

$$\vdots$$

$$a_{0} + a_{1}x_{n} + \dots + a_{m}x_{n}^{n} = f_{n}$$

In all, n+1 equations, m+1 unknowns (the a_i)

$$Aa = f$$
.

Q: If n+1=100 and m+1=2, what is the size of A?

Least Squared Error

► In this case, we have too many equations, and too few unknowns.

- ► We can't "pass" or interpolate a straight-line through the 100 points!
- ▶ We can, however, try to "minimize" the distance between the straight line and the scatter of points.

Least Squared Error

For any line (defined by a), we define the squared-error as:

$$\epsilon^2 = ||\mathbf{A}\mathbf{a} - \mathbf{f}||_2^2$$

Written out more explicitly,

$$\epsilon^2 = (\mathbf{A}\mathbf{a} - \mathbf{f})^T (\mathbf{A}\mathbf{a} - \mathbf{f})$$

= $\mathbf{a}^T \mathbf{A}^T \mathbf{A} \mathbf{a} - 2\mathbf{f}^T \mathbf{A} \mathbf{a} + \mathbf{f}^T \mathbf{f}$

We want to minimize the squared error, so we set:

$$\frac{\partial \epsilon^2}{\partial \mathbf{a}} = 0.$$

This yields:

$$2\mathbf{A}^T\mathbf{A}\mathbf{a} - 2\mathbf{A}^T\mathbf{f} = \mathbf{0}$$

Least Squared Error

The least-squares solution \hat{a} can be obtained by solving the so-called "normal equations":

$$\mathbf{A}^T \mathbf{A} \hat{\mathbf{a}} = \mathbf{A}^T \mathbf{f}$$

Question:

If n+1=100 and m=2 as before, what is the size of:

- \rightarrow $\mathbf{A}^T\mathbf{A}$?
- $ightharpoonup A^T f?$

Are the normal equations over-determined?

Summary: Discrete Polynomial Approximation

Given an over-determined system,

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^m \\ 1 & x_1 & x_1^2 & \dots & x_1^m \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \dots \\ f_n \end{bmatrix}$$

$$\mathbf{A}_{(n+1)\times(m+1)}\mathbf{a}_{(m+1)\times 1}=\mathbf{f}_{(n+1)\times 1}$$

- ▶ In typical regression problems, $n \gg m$, and hence the matrix A is tall.
- ▶ In the usual sense, this corresponds to a case with too many equations (n+1), and too few unknowns (m+1 < n+1)

Discrete Polynomial Approximation

► The normal equations balance this mismatch by seeking to minimize the squared-error:

$$\mathbf{A}^T \mathbf{A} \hat{\mathbf{a}} = \mathbf{A}^T \mathbf{f}$$

- Essentially, by pre-multiplying both sides of the original equation by \mathbf{A}^T , we get a "square" linear system, where the number of equations is m+1
- ► This can be solved using methods from linear algebra.
- ► Let us consider a simple example.

Example

Problem: Consider the following data generated by adding "white noise" according to the equation

$$f = 5x + 1 + 2.5N(0,1)$$

x	f	
1.00	3.97	
2.00	9.66	
3.00	14.41	
4.00	19.38	
5.00	22.10	
6.00	31.00	
7.00	38.70	
8.00	35.53	
9.00	44.99	
10.00	54.54	

Code

```
n = 9;

x = (1:1:n+1)';

f = 5*x + 1 + 2.5 * randn(n+1,1); % adds white noise
```

We want to set the matrix A as

$$\mathbf{A} = \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \\ \dots \\ 1 & x_n \end{bmatrix}$$

and solve the linear system $\mathbf{A}^T \mathbf{A} \hat{\mathbf{a}} = \mathbf{A}^T \mathbf{f}$.

$$A = [ones(n+1,1) x];$$

$$ahat = (A'*A) \setminus (A'*f)$$

$$fhat = A * ahat;$$

where we have also finally set $\mathbf{\hat{f}} = \mathbf{A}\mathbf{\hat{a}}$

Solution

Example: Lorenz Function

► Given a function of the type

$$f(x) = \frac{a}{1+x^2} + \epsilon N(0,1), \qquad (\epsilon = 0.01)$$

where N(0,1) is the standard normal distribution.

- ▶ Given (x_i, f_i) , where $f_i = f(x_i)$, how can we get a smooth fit f(x) of the noisy data?
- ▶ In other words, can we use the machinery we just learned to find the (scalar) parameter *a*?
- We want to minimize $||\mathbf{A}\mathbf{a} \mathbf{f}||^2$.
- Let's ponder over the shape of the problem a bit.

Application: Lorenz Function

► The original system:

$$Aa = f$$

written out it full:

$$\begin{bmatrix} \frac{1}{1+x_1^2} \\ \frac{1}{1+x_2^2} \\ \vdots \\ \frac{1}{1+x_n^2} \end{bmatrix} [a] = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

▶ Again, we have too many equations, so we try to form the normal equations:

$$\mathbf{A}^T \mathbf{A} \hat{a} = \mathbf{A}^T \mathbf{f}$$

Q: What is the size of the problem?

Example

Consider the following data which we would like to fit to a Lorenz function:

$$f(x) = \frac{a}{1+x^2}$$

x	f	X	f
-4.00	0.29191	0.10	5.15839
-2.00	1.02558	0.25	4.71492
-1.00	2.53256	0.50	3.86039
-0.50	3.79663	1.00	2.44546
-0.25	4.71709	2.00	0.99122
-0.10	4.87615	4.00	0.29183
0.00	4.71467		

Alternatively generate data using the code:

```
x1 = [-4 -2 -1 -0.5 -0.25 -0.1];
x = [x1;0;-flipud(x1)]
f = 5./(1+x.^2) + 0.05*5./(1+x.^2).*randn(length(x),1);
```

Solution

