

Síntese e Análise de uma Unidade Lógica Aritmética (ULA)

Laboratório 4 (Circuitos Digitais I)

Abril, 2019

Turma 1COMP

Adriano Soares Rodrigues, Matheus Vidal de Menezes e Pedro Alves de Souza Neto Prof.º Osamu Saotome

Instituto Tecnológico de Aeronáutica (ITA)

São José dos Campos, São Paulo, Brasil.

{sadrianorod, matheusvidaldemenezes, alvesouza.pedro97@gmail.com}@gmail.com

I. Introdução

Com o progresso tecnológico dos transístores, criou-se a famosa família de circuitos integrados TTL, Transistor-Transistor Logic, responsáveis pelo desenvolvimento de portas lógicas, que, na verdade, são circuitos transistorizados, tecnologia essencial para o surgimento dos computadores pessoais (Personal Computer - PC) de hoje.

II. Objetivo

O objetivo da quarta prática laboratorial de EEA-21 Circuitos Digitais mostra-se de grande importância. Isso, porque introduz novos circuitos e, como nas práticas anteriores, trata da familiarização das portas lógicas estudadas teoricamente e do aprendizado quanto a utilização destas em simulações, via o software Quartus® 13.01, de circuitos integrados de uma Unidade Lógica Aritmética (ULA).

III. Tarefas

Problema 5.1)

Figura 1. Esquema do circuito projetado para a célula básica da ULA para o problema 5.1.

Foi verificada a validade da tabela, pelo circuito feito. Obtivemos a seguinte tabela verdade:

Tabela 1. Tabela verdade para a ULA de 1 bit do problema 5.1.

М	Ci	S_1	S_0	A_i	\boldsymbol{B}_{i}	$\boldsymbol{F_i}$	C_{i1}
0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	0
1	0	0	0	1	1	1	0
1	0	0	1	0	0	1	0
1	0	0	1	0	1	1	0
1	0	0	1	1	0	0	0
1	0	0	1	1	1	0	0
1	0	1	0	0	0	0	0
1	0	1	0	0	1	1	0
1	0	1	0	1	0	1	0
1	0	1	0	1	1	0	1
1	0	1	1	0	0	1	0
1	0	1	1	0	1	0	1
1	0	1	1	1	0	0	0
1	0	1	1	1	1	1	0
1	1	0	0	0	0	1	0
1	1	0	0	0	1	1	0
1	1	0	0	1	0	0	1
1	1	0	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	0	1	0	1	0	1
1	1	0	1	1	0	1	0
1	1	0	1	1	1	1	0
1	1	1	0	0	0	1	0
1	1	1	0	0	1	0	1
1	1	1	0	1	0	0	1
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	1
1	1	1	1	0	1	1	1
1	1	1	1	1	0	1	0
1	1	1	1	1	1	0	1

O resultado foi mostrado para o professor Osamu durante a pratica de laboratório e aprovada por ele.

Problema 5.2)

Para que o circuito funcionasse como pedido, *i.e.*, com uma única chave para comutar entre a operação de soma e de subtração, foi implementada uma inversão na entrada $\overline{C_n}$ para que as chaves seletoras S_3 , S_2 , S_1 e S_0 funcionassem, conforme a Tabela 2:

Tabela 2. Tabela verdade para fazer o chaveamento.

$\overline{C_n}$	S_3	S_2	S_1	S_0	Operação
0	$\overline{C_n}$	C_n	C_n	$\overline{C_n}$	Soma
1	C_n	$\overline{C_n}$	$\overline{C_n}$	C_n	Subtração

Note que para soma, temos $(S_3, S_2, S_1, S_0) = (1,0,0,1)$, e para subtração, $(S_3, S_2, S_1, S_0) = (0,1,1,0)$, o que está de acordo com a tabela verdade da ULA 74181 escolhida.

Assim, o circuito implementado está representado na Figura 2.

Figura 2. Esquema do circuito projetado, utilizando a ULA 74181 para o problema 5.2.

Para as somas/subtrações pedidas, obtivemos como simulação:

• $(0)_d + (0)_d$

	Name	Value at	0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns	400.0 r
		0 ps	0 ps					
in_	А3	B 0						
in	A2	В 0						
in	A1	В 0						
in	Α0	В 0						
in_	В3	В 0						
in_	B2	B 0						
in	B1	В 0						
in	B0	В 0						
in	Cn	B 1						
out	F4	В 0						
out	F3	В 0						
out	F2	B 0						
out	F1	B 0						
out	F0	В 0						

Figura 3. Resultado da simulação de $(0)_d + (0)_d$ com a ULA 74181.

• $(3)_d + (5)_d$

	Name	Value at	0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns
	rvanie	0 ps	0 ps				
<u></u>	A3	В 0					
-	A2	В 0					
-	A1	B 1					
-	Α0	B 1					
—	B3	В 0					
-	B2	B 1					
-	B1	В 0					
-	В0	B 1					
-	Cn	B 1					
it >	F4	В 0					
it >	F3	B 1					
it >	F2	B 0					
it >	F1	В 0					
it >	F0	В 0					

Figura 4. Resultado da simulação de $(3)_d + (5)_d$ com a ULA 74181.

• $(8)_d - (5)_d$

	Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns	400.0 ns
in_	А3	 B 1						
n_	A2	В 0						
<u>n</u>	A1	В 0						
n_	Α0	В 0						
<u>n</u>	В3	В 0						
B-	B2	B 1						
<u></u>	B1	В 0						
3-	ВО	B 1						
n_	Cn	В 0						
ut	F4	B 1						
ut	F3	В 0						
out	F2	В 0						
ut	F1	B 1						
ut	F0	B 1						

Figura 5. Resultado da simulação de $(8)_d - (5)_d$ com a ULA 74181.

• $(8)_d + (8)_d$

Figura 6. Resultado da simulação de $(8)_d + (8)_d$ com a ULA 74181.

Todos os resultados obtidos em simulação corroboram para o esperado teoricamente.

Todos os resultados obtidos em prática experimental em laboratório também corroboraram para o esperado teoricamente. Tais resultados foram mostrados para o Prof^o. Osamu.

Problema 6.1)

- a) Seguem as tabelas verdades para cada operação:
- \diamond Operações Lógicas, M=1:

•
$$F = \bar{A}$$

Tabela 3. Tabela verdade para a operação $F = \bar{A}$ da ULA de 1 bit desejada no problema 6.1.

A	В	C_{in}	$F = \overline{A}$	Cout
0	0	0	<mark>1</mark>	<mark>0</mark>
0	0	1	<mark>1</mark>	<mark>0</mark>
0	1	0	<mark>1</mark>	0
0	1	1	<mark>1</mark>	<mark>0</mark>
1	0	0	<mark>0</mark>	<mark>0</mark>
1	0	1	<mark>0</mark>	0
1	1	0	<mark>0</mark>	0
1	1	1	<mark>0</mark>	<mark>0</mark>

•
$$F = \overline{A \cdot B}$$

Tabela 4. Tabela verdade para a operação $F = \overline{A \cdot B}$ da ULA de 1 bit desejada no problema 6.1.

A	В	C_{in}	$F = \overline{A \cdot B}$	Cout
0	0	0	<mark>1</mark>	0
0	0	1	<mark>1</mark>	0
0	1	0	<mark>1</mark>	0
0	1	1	<mark>1</mark>	0
1	0	0	<mark>1</mark>	0
1	0	1	<mark>1</mark>	0
1	1	0	<mark>0</mark>	0
1	1	1	<mark>0</mark>	0

•
$$F = \bar{A} + B$$

Tabela 5. Tabela verdade para a operação $F = \bar{A} + B$ da ULA de 1 bit desejada no problema 6.1.

A	В	C_{in}	$F = \overline{A} + B$	Cout
0	0	0	<mark>1</mark>	0
0	0	1	<mark>1</mark>	0
0	1	0	<mark>1</mark>	0
0	1	1	<mark>1</mark>	0
1	0	0	<mark>0</mark>	0
1	0	1	<mark>0</mark>	0
1	1	0	1	0
1	1	1	<mark>1</mark>	0

•
$$F = A \oplus B$$

Tabela 6. Tabela verdade para a operação $F = A \oplus B$ da ULA de 1 bit desejada no problema 6.1.

A	В	C_{in}	$F = A \oplus B$	Cout
0	0	0	<mark>0</mark>	<mark>O</mark>
0	0	1	<mark>0</mark>	0
0	1	0	<mark>1</mark>	0
0	1	1	<mark>1</mark>	0
1	0	0	<mark>1</mark>	0
1	0	1	<mark>1</mark>	0
1	1	0	<mark>0</mark>	0
1	1	1	0	0

- Operações Aritméticas, M=0:

 - $S_2 = 0:$ $F = \bar{A} \text{ mais } C_{in}$

Tabela 7. Tabela verdade para a operação \bar{A} mais C_{in} da ULA de 1 bit desejada no problema 6.1.

A	В	C_{in}	$F = \overline{A} mais C_{in}$	C_{out}
0	0	0	<mark>1</mark>	<mark>0</mark>
0	0	1	<mark>0</mark>	1
0	1	0	<mark>1</mark>	<mark>0</mark>
0	1	1	<mark>O</mark>	1
1	0	0	<mark>O</mark>	<mark>0</mark>
1	0	1	<mark>1</mark>	0
1	1	0	<mark>0</mark>	0
1	1	1	1	0

• $F = A \text{ mais } B \text{ mais } C_{in}$

Tabela 8. Tabela verdade para a operação F=A mais B mais C_{in} da ULA de 1 bit desejada no problema 6.1.

A	В	C_{in}	$F = A mais B mais C_{in}$	C_{out}
0	0	0	<mark>0</mark>	0
0	0	1	1	0
0	1	0	1	0
0	1	1	<mark>0</mark>	1
1	0	0	1	<mark>0</mark>
1	0	1	<mark>0</mark>	<mark>1</mark>
1	1	0	0	1
1	1	1	1	1

• $F = \bar{A} \text{ mais } B \text{ mais } C_{in}$

 $\textit{Tabela 9. Tabela verdade para a operação } \textit{F} = \textit{\bar{A} mais B mais C}_{in} \textit{ da ULA de 1 bit desejada no problema 6.1.}$

A	В	C_{in}	$F = \overline{A}$ mais B mais C_{in}	Cout
0	0	0	1	<mark>0</mark>
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	<mark>0</mark>
1	0	1	1	0
1	1	0	1	0
1	1	1	<mark>0</mark>	1

• $F = A \text{ mais } 1 \text{ mais } C_{in}$

 $Tabela\ 10.\ Tabela\ verdade\ para\ a\ operação\ F\ = A\ mais\ 1\ mais\ C_{in}\ da\ ULA\ de\ 1\ bit\ desejada\ no\ problema\ 6.1.$

A	В	C_{in}	$F = A mais 1 mais C_{in}$	C_{out}
0	0	0	1	0
0	0	1	0	<mark>1</mark>
0	1	0	<u>1</u>	<mark>O</mark>
0	1	1	0	<mark>1</mark>
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	1	1

$> S_2 = 1$:

• $F = A \text{ menos } B \text{ menos } C_{in}$

 $\textit{Tabela 11. Tabela verdade para a operação } \textit{F} \textit{ = A menos B menos C}_{in} \textit{ da ULA de 1 bit desejada no problema 6.1.}$

\mathbf{A}	В	C_{in}	$F = A \ menos \ B \ menos \ C_{in}$	C_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	<mark>1</mark>	<mark>1</mark>
0	1	1	<mark>0</mark>	<mark>1</mark>
1	0	0	1	0
1	0	1	<mark>0</mark>	0
1	1	0	0	0
1	1	1	1	1

• $F = B \text{ menos } A \text{ menos } C_{in}$

 $Tabela~12.~Tabela~verdade~para~a~operação~F~=B~menos~A~menos~C_{in}~da~ULA~de~1~bit~desejada~no~problema~6.1.$

A	В	C_{in}	$F = B \ menos A \ menos C_{in}$	Cout
0	0	0	0	0
0	0	1	<mark>1</mark>	
0	1	0	<mark>1</mark>	0
0	1	1	0	0
1	0	0	<mark>1</mark>	
1	0	1	0	
1	1	0	<mark>0</mark>	0
1	1	1	1	

• $F = A menos 1 menos C_{in}$

 $Tabela\ 13.\ Tabela\ verdade\ para\ a\ operação\ F\ = A\ menos\ 1\ menos\ C_{in}\ da\ ULA\ de\ 1\ bit\ desejada\ no\ problema\ 6.1.$

A	В	C_{in}	$F = A \ menos 1 \ menos C_{in}$	C_{out}
0	0	0	1	1
0	0	1	<mark>0</mark>	1
0	1	0	1	1
0	1	1	0	1
1	0	0	<mark>O</mark>	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

• $F = A \text{ mais } (A + B) \text{ mais } 1 \text{ menos } C_{in}$

Tabela 14. Tabela verdade para a operação $F = A \text{ mais } (A + B) \text{ mais } 1 \text{ menos } C_{in} \text{ da ULA de 1 bit desejada no problema } 6.1.$

\mathbf{A}	В	C_{in}	$F = A \ mais (A + B) \ mais \ 1 \ menos \ C_{in}$	C_{out}
0	0	0	1	<mark>O</mark>
0	0	1	<mark>0</mark>	<mark>O</mark>
0	1	0	<mark>0</mark>	1
0	1	1	1	<mark>O</mark>
1	0	0	1	<mark>1</mark>
1	0	1	<mark>0</mark>	1
1	1	0	1	1
1	1	1	0	1

b) Para a implementação da ULA de 1 bit fornecida, foram, antes implementadas as funções de soma e subtração de 1 bit: somador (Figura 7) e subtrator (Figura 8).

Figura 7. Somador completo de 1 bit implementado.

Figura 8. Subtrator complete de 1 bit implementado.

Dado o tamanho do circuito, dividimos em três pedaços em um (Figura 9), conforme abaixo. Para melhor visualização, favor dar **zoom** em pelo menos 200%.

Figura 9. Esquema do circuito projetado para a célula básica da ULA, utilizando MUX 8x1, do problema 6.1.

O grupo implementou outra versão utilizando um MUX 4x1 para as saídas lógicas e MUX 8x1 para as saídas aritméticas. Acredita-se que essa tal versão se mostrou mais legível. Além disso, ela utilizou funções de soma (bit_add) e subtração (bit_sub), tais como as da Figuras 7 e 8, respectivamente.

OBS.: Tanto a primeira como a segunda versão apresentaram resultados coerentes com respeito à teoria. Os resultados são apresentados no problema 6.2.

Problema 6.2)

- - $F = \bar{A}$

	Name	Value at 0 ps	0 ps 0 ps	8.0 ns	16.0
<u>in</u>	М	B 1			
in_	S2	В 0			
in_	S1	В 0			
in_	S0	В 0			
in_	Α	В 0			
in_	В	В 0			
in	Cin	В 0			
out	F	B 1			
out	Cout	В 0			

Figura 10. Resultado da simulação para $(M, S_2, S_1, S_0) = (1, X, 0, 0)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 3.

• $F = \overline{A \cdot B}$

Figura 11. Resultado da simulação para $(M, S_2, S_1, S_0) = (1, X, 0, 1)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 4.

$\bullet \quad F = \bar{A} + B$

	Name	Value at 0 ps	0 ps 8.0 ns 0 ps	16.0
in_	М	B 1		
in_	S2	B 0		-
in_	S1	B 1		
<u>in</u>	S0	B 0		
<u>in</u>	Α	B 0		
<u>in</u>	В	B 0		
<u>in</u>	Cin	B 0		JŢ.
out -	F	B 1		
out -	Cout	В 0		

Figura 12. Resultado da simulação para $(M, S_2, S_1, S_0) = (1,X,1,0)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 5.

• $F = A \oplus B$

Figura 13. Resultado da simulação para (M, S_2 , S_1 , S_0) = (1,X,1,1).

Note que o resultado está de acordo com o esperado, conforme a Tabela 6.

- \diamond Operações Aritméticas, M=0:
 - $> S_2 = 0$:
 - $F = \bar{A} \text{ mais } C_{in}$

Figura 14. Resultado da simulação para $(M, S_2, S_1, S_0) = (0,0,0,0)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 7.

• $F = A \text{ mais } B \text{ mais } C_{in}$

Figura 15. Resultado da simulação para $(M, S_2, S_1, S_0) = (0,0,0,1)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 8.

• $F = \bar{A} \text{ mais } B \text{ mais } C_{in}$

Figura 16. Resultado da simulação para $(M, S_2, S_1, S_0) = (0,0,1,0)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 9.

• $F = A \text{ mais } 1 \text{ mais } C_{in}$

Figura 17. Resultado da simulação para $(M, S_2, S_1, S_0) = (0,0,1,1)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 10.

$> S_2 = 1$:

• $F = A \text{ menos } B \text{ menos } C_{in}$

Figura 18. Resultado da simulação para $(M, S_2, S_1, S_0) = (0,1,0,0)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 11.

• $F = B \text{ menos } A \text{ menos } C_{in}$

Figura 19. Resultado da simulação para $(M, S_2, S_1, S_0) = (0,1,0,1)$.

Note que o resultado está de acordo com o esperado, conforme a Tabela 12.

• $F = A \text{ menos } 1 \text{ menos } C_{in}$

Figura 20. Resultado da simulação para $(M,\,S_2,\,S_1,\,S_0)=(0,1,1,0).$

Note que o resultado está de acordo com o esperado, conforme a Tabela 13.

• $F = A \text{ mais } (A + B) \text{ mais } 1 \text{ menos } C_{in}$

Figura 21. Resultado da simulação para (M, S_2 , S_1 , S_0) = (0,1,1,1).

Note que o resultado está de acordo com o esperado, conforme a Tabela 14.

IV. Conclusão

As atividades laboratoriais desenvolvidas bem como o aprendizado na utilização do software *Quartus* 13.01 foram de grande importância para desenvolver os conhecimentos teóricos e práticos a respeito dos circuitos digitais, principalmente sobre o funcionamento e o projeto de Unidades Lógica e Aritmética (ULA).

Do experimento realizado, foi possível, embora toda simplicidade em sua metodologia, conseguir obter resultados coerentes com a teoria de circuitos digitais. Além disso, tanto o **software**, quanto as técnicas aplicadas foram de grande importância para o aprendizado da frente de EEA-21.