INTRO TO DATA SCIENCE LECTURE 5: MACHINE LEARNING

AGENDA

I. WHAT IS MACHINE LEARNING?
II. MACHINE LEARNING PROBLEMS
III. CLASSIFICATION PROBLEMS
IV. KNN CLASSIFICATION

LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

Algorithm has learned to:

- predict income of person
- cluster customers in segments
- predict if person has children

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

representation – extracting structure from data

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

- representation extracting structure from data
- generalization making predictions from data

from Coursera:

"Machine learning is the science of getting computers to act without being explicitly programmed."

from Coursera:

"Machine learning is the science of getting computers to act without being explicitly programmed."

Instead of programming a computer how to perform a task...

from Coursera:

"Machine learning is the science of getting computers to act without being explicitly programmed."

Instead of programming a computer how to perform a task...

...we show the computer a history of how others performed the task, and tell him to figure it out from there.

III. MACHINE LEARNING PROBLEMS

supervised unsupervised

supervised unsupervised

labeled examples no labeled examples

supervised unsupervised

making predictions discovering patterns

generalization

supervised unsupervised

making predictions discovering patterns

representation

TYPES OF DATA

categorical continuous

continuous categorical quantitative qualitative age, salary, height, etc. city, yes/no, vote, etc.

categorical continuous supervised classification regression unsupervised | dimension reduction clustering

categorical continuous Salary prediction supervised classification regression unsupervised dimension reduction clustering

continuous categorical Salary prediction Vote prediction supervised classification regression unsupervised dimension reduction clustering

continuous

categorical

supervised unsupervised

Salary prediction

regression
dimension reduction

Vote prediction

classification clustering

customer segmentation

continuous

categorical

supervised unsupervised

Salary prediction

regression dimension reduction

face recognition

Vote prediction

classification clustering

customer segmentation

What type of problem is this?

Priority Inbox

What type of problem is this?

Priority Inbox

Probably either.

What type of problem is this?

Priority Inbox

Supervised

Predict which mails users are most likely to star

What type of problem is this?

Priority Inbox

Supervised

Unsupervised

- Predict which mails users are most likely to star
- Group mails into groups and decide which group represents important mails

What type of problem is this?

Music Recommendation

What type of problem is this?

Music Recommendation

Probably either.

What type of problem is this?

Music Recommendation as Supervised Learning

Predict which songs a user will 'thumbs-up'

What type of problem is this?

Music Recommendation as Unsupervised Learning

Cluster songs based on attributes and recommend songs in the same group

HOW DO YOU DETERMINE

THE RIGHT
APPROACH?

solution and the data available.

	continuous	categorical classification clustering	
supervised unsupervised	regression dimension reduction		
			ANSWER The right approach is determined by the desired

HOW DO YOU REPRESENT

YOUR
DATA?

categorical continuous quantitative qualitative

TYPES OF DATA

	continuous	continuous categorical	
color	quantitative	or qualitative ?	
ratings			

	continuous	categorical
color	RGB-values	{red, blue}
ratings	1 — 10 rating	1-5 star rating

HOW DO YOU MEASURE

THE QUALITY?

supervised unsupervised

making predictions extracting structure

supervised

test out your predictions

supervised unsupervised

test out your predictions can't really (to be continued)

QUESTION

NHAT DO YOU WITH YOUR RESULTS?

ANSWER

Interpret them and react accordingly.

categorical continuous supervised classification regression unsupervised dimension reduction clustering

Here's (part of) an example dataset:

Fisher's iris dataset (1936)

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica

Here's (part of) an example dataset:

Fisher's iris dataset (1936)

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica

independent variables (also called *features*)

Here's (part of) an example dataset:

Fisher's iris dataset (1936)

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica

independent variables (also called *features*)

class labels (qualitative)

Here's (part of) an example dataset:

Fisher's iris dataset (1936)

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica

X = independent variables
 (also called features)

y = class labels
 (qualitative)

Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica

Q: How does a classification problem work?

1) train model

model 'learns' how

X and y relate to

each other

- 1) train model
- 2) make predictions

Q: How does a classification problem work?

- 1) train model
- 2) make predictions

model applies
what it learned
to new dataset **X'**

NOTE

CLASSIFICATION PROBLEMS

Q: How does a classification problem work?

- 1) train model
- 2) make predictions

model applies
what it learned
to new dataset **X'**

HOW DO YOU MEASURE

THE QUALITY?

supervised

test out your predictions

We could apply the model on the given dataset **X** and test predictions **y**

We could apply the model on the given dataset **X** and test predictions **y**

What could possibly go wrong here?

We could apply the model on the given dataset **X** and test predictions **y**

Model could just have memorized all labels (like a cheating student)

Train model on a part of **X**, and test the results on the rest of the data

Q: What steps does a classification problem require?

Q: What steps does a classification problem require?

dataset

Q: What steps does a classification problem require?

1) split dataset

dataset

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model
- 3) test model

CLASSIFICATION PROBLEMS

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

continuous categorical supervised classification regression unsupervised dimension reduction clustering

All supervised machine learning problems require using a training and test set

categorical continuous **kNN** supervised classification regression unsupervised dimension reduction clustering

Supervised problem (labeled data)

Categorical data (happy vs. sad)

Want to predict:

is the grey face happy?

Want to predict:

is the grey face happy?

what do **you** think? why?

Choose k e.g., k = 3

Choose k e.g., k = 3

Find k nearest neighbors

Choose k e.g., k = 3

Find k nearest neighbors

Take majority vote

CAVEATS OF KNN

Q: What could possibly go wrong here?

Q: What could possibly go wrong here?

What k?

Q: What could possibly go wrong here?

What k? What if k = 1000?

Q: What could possibly go wrong here?

What k? What if k = 1000?

Q: What could possibly go wrong here?

What k? What if k = 1000?

Q: What could possibly go wrong here?

What k? What if k = 1000?

Q: What could possibly go wrong here?

What k? What if k = 1000?

INTRO TO DATA SCIENCE

DISCUSSION