

Álgebra

Números complejos

Intensivo UNI 2024 - III

- 1. Calcule el valor de la expresión S. $S = i + 2i^3 + 3i^5 + 4i^7 + + 100i^{199}$
 - A) -50i
- B) -50
- C) 100i

D) -100i

- E) 0
- 2. Calcule $\overline{z}+z^*$ si se tiene que $z = (1+2i)^5 + (1-2i)^5 + |z|$
 - A) 2
- B) 4
- C) 6

D)-2

- La representación gráfica de $w = \frac{z+i}{z-i}$ es la siguiente:

Determine $z \times \overline{z}$.

- A) 1
- B) $\sqrt{2}$
- C) $\frac{1}{2}$

D) $\frac{1}{4}$

- E) $\sqrt{3}$
- Halle el módulo de z, donde

$$z = \frac{\left(2 + i\sqrt{5}\right)\left(1 + i\sqrt{3}\right)^3}{\sqrt{5} + i\sqrt{3}}$$

- A) $5\sqrt{2}$
- B) $6\sqrt{2}$
- C) $3\sqrt{2}$

D) $7\sqrt{2}$

E) $4\sqrt{2}$

UNI 2022-I

- 5. Calcule la suma de todos los $z \in \mathbb{C}$ de manera que cumpla la igualdad $z^2 = 2\overline{z}i$.
 - A) 1
- B) 0
- C) 2

D) $\frac{1}{2}$

E) -2

6. Si $z = -\frac{1}{2} + \frac{\sqrt{3}i}{2}$, entonces, determine

$$(\overline{z} - z^2)^5 + z^3$$

- A) 0
- B) 2
- C) 1

D) 3

- $E_{1} = 1$
- Exprese en su forma cis el resultado de la división $\frac{2+2i}{\sqrt{3}+i}$.
 - A) $\sqrt{2} \operatorname{cis} \left(\frac{\pi}{6} \right)$ B) $\sqrt{2} \operatorname{cis} \left(\frac{\pi}{12} \right)$ C) $\sqrt{2} \operatorname{cis} \left(\frac{\pi}{3} \right)$
- D) $\sqrt{2}$ cis $\left(\frac{\pi}{9}\right)$
- E) cis $\left(\frac{\pi}{10}\right)$
- 8. Si $z = \sqrt[6]{2} \left(\cos \frac{\pi}{24} + i \operatorname{sen} \frac{\pi}{24} \right)$, entonces, deter-

mine la parte real de $(z^{12}+z^8+z^6)$.

- A) $\sqrt[3]{2} + \sqrt{2}$ B) $2\sqrt{2}$

D) $\sqrt[3]{2} - \sqrt{2}$

- F) 3/2 + 4/2
- Determine el valor de la siguiente expresión. $i+3i^2+5i^3+7i^4+...+39i^{20}$
 - A) 20(1-i)
- B) 10(1+i)
- C) 10(1-i)

D) 20(1+i)

- E) 0
- 10. Calcule la parte imaginaria del resultado de la siguiente expresión.

$$\left(\frac{1+i}{1-i}\right)^3 + \left(\frac{5+2i}{2-5i}\right)^4 + \frac{1}{1+i}$$

- A) 3
- B) $-\frac{3}{2}$ C) $-\frac{1}{2}$
- D) $-\frac{3}{4}$

E)-1

- 11. Si $z = \frac{n+2i}{4-6i}$ es un complejo real y $w = \frac{3+mi}{2+4i}$ es un imaginario puro, entonces, determine *mn*.
 - A) 6
- B) 2
- C) 1

D) 3

- E)-1
- 12. Determine el |z| si se sabe que

$$z^{-2}i = z \left(\frac{(2+i)^3}{(2-i)} \cdot \frac{(3+4i)}{2(1-i)^2} \right)$$

- A) $\frac{25}{4}$ B) $\frac{5}{2}$
- C) $\frac{1}{4}$

D) 3

- E) 1
- 13. Determine el resultado de la siguiente expresión.

$$\frac{|z+1|^2 + |z-1|^2}{|z+1|^2 - |z-1|^2}$$

D) $\frac{z^2+1}{2z}$

- A) $\frac{|z|^2 + 1}{2z}$ B) $\frac{z^2 + 1}{z + z}$ C) $\frac{|z|^2 + 1}{z + z}$ D) (a-b)i
- **14.** Si z = 1 + i y la sumatoria

$$S = \sum_{n=0}^{999} z^n$$

entonces, el valor 1+iS es

- A) 0
- B) 1
- C) 2^{1000}

D) 2^{500}

- E) -1
- **15.** El número complejo z_0 satisface la ecuación:

$$\frac{5+3i}{-4+i} = \frac{2i}{z_0} - 2i$$

Determine el valor de $f(z_0)$, donde $f(x) = x^2 - 3x + 3$

- A) 1+i
- B) 1-i
- C) -2+i

D) $2 + \sqrt{2}i$

E) i

16. Sean z_1 y z_2 complejos opuestos, de manera que

$$z_1 = \frac{m}{1+i} + n$$
 y $z_2 = -m - \frac{1}{i}$

Calcule el valor de mn.

- A) -2
- B) 2
- C) 6

D) 4

E) -6

17. Si
$$z = \sqrt{4 + \sqrt{3}} + \sqrt{5 - \sqrt{3}}i$$
 y

calcule el valor de $|z\overline{u}+1|^2 - |z+m|^2$

- A) 4
- B) 8
- C) 24 E) 41

- D) 30
- **18.** Si |z+ai|=|z+bi| con $a;b\in\mathbb{R};a\neq b;z\in\mathbb{C}$, determine $z - \overline{z}$.
 - A) -(a+b)i
- B) (a+b)i C) 2(a+b)i

- E) $(a^2-b^2)i$
- E) $\frac{|z|^2 + 1}{2\overline{z}}$ 19. Si $z \in \mathbb{C}/|z^*(1 \sqrt{3}i)| = 4$ y arg $(zi) = 315^\circ$, determine z^8 .
 - A) 64 B) 256
- C) 128

D) 32

- E) 512
- **20.** Calcule el módulo de z.

$$z = \frac{\left(2e^{\frac{\pi}{8}i}\right)^3}{\left(e^{\pi i} + e^{\frac{\pi}{2}i}\right)^6 \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5}$$

- A) $\sqrt{2}$
- B) 2
- C) 1

D) 3

- F) 4
- **21.** Determine $|ze^i|$ si $z=|z|e^{\theta i}$ de modo que cumpla lo siguiente:

$$2z+|z|e^{(\theta+\pi)i}=(1-i)(4-3i)$$

- A) $5e\sqrt{2}$ B) $3e\sqrt{2}$
- C) $5\sqrt{2}$

D) 5

E) $4\sqrt{2}$

22. Calcule el valor reducido de la siguiente expre-

$$\left(\frac{\sqrt{2}e^{\frac{\pi}{4}i} + \sqrt{3}i + e^{\frac{3\pi}{2}i}}{1 - \sqrt{3}i}\right)^{31}$$

- A) $-\frac{1}{2}$ B) $\frac{1+\sqrt{3}i}{2}$ C) $\frac{-1+\sqrt{3}i}{2}$
- D) $\frac{1-\sqrt{3}i}{2}$

- E) 1
- **23.** Si $z \in \mathbb{C}$ de modo que $e^z = 2$, entonces, determine el valor de $Re(z) + \frac{Im(z)}{|z|}$.
 - A) $\ln 2 + k\pi i$: $k \in \mathbb{Z}$
 - B) $\ln 2 + 2k\pi i$: $k \in \mathbb{Z}$
 - C) $\ln 2 + k\pi$; $k \in \mathbb{Z}$

- D) $\ln 4 + k\pi i$; $k \in \mathbb{Z}$
- E) $\ln 3 + 2k\pi i$: $k \in \mathbb{Z}$
- **24.** Determine todos los $x \in \mathbb{R}$: *i* es la unidad imaginaria, de modo que se cumpla lo siguiente:

$$\frac{\pi + ei}{e - \pi i} = e^{2xi}$$

- A) $\frac{\pi}{4} + k\pi$; $k \in \mathbb{Z}$
- B) $\frac{\pi}{4} + 2k\pi$; $k \in \mathbb{Z}$
- C) $\frac{\pi}{3} + k\pi$; $k \in \mathbb{Z}$
- D) $\frac{\pi}{8} + k\pi$; $k \in \mathbb{Z}$
- E) $\frac{\pi}{4} + 4k\pi$; $k \in \mathbb{Z}$

