Feszültségosztó vizsgálata

Radványi Zita NEPTUN kód: F346YE Mérőpár: Zahoray Anna NEPTUN kód: EF2JUM

Mérés ideje: 2023. 03. 23. 8:00-10:30

Mérés helye: Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Magyarország, 1083, Budapest, Práter utca 50/a

radvanyi.zita@hallgato.ppke.hu

Abstract—Ismerkedés a feszültségosztó tétel alkalmazásával. A feladatok között méréssel kapcsolatos pontossági és felbontási kérdések alkalmazása.

Keywords-keyword; keyword; keyword

I. A MÉRÉS SORÁN HASZNÁLT PROGRAMOK, ESZKÖZÖK A. NI ELVIS

Az NI ELVIS rendszer egy oktatási célra fejlesztett különleges LabVIEW alkalmazás. A LabVIEW környezetben egy úgynevezett virtuális műszer megvalósítására van lehetőség grafikus programozási környezetben, általános célú programok természetesen fejlesztésére is felhasználható. A grafikus programozási környezet annyit jelent, hogy a programozás során nem szöveges kód készül, hanem különböző függvényeket/utasításokat reprezentáló elemek összekapcsolásával épül fel a program. LabVIEW környezetben folyamatvezérelt, adatfolyam elvű programozásra van lehetőség, a program végrehajtási sorrendjét az utasítások kapcsolódási rendszere határozza meg. A LabVIEW alapjaival amikor megismerkedtünk, akkor csak virtuális műszereket hoztunk létre. Az NI ELVIS rendszer valós műszereket is tartalmaz, a jelek valós külön műszerekkel is megfigyelhetők, az ELVIS rendszerrel valós jelek is mérhetők, vizsgálhatók.

B. LTspice

Az LTspice egy nagy teljesítményű, gyors és ingyenes SPICE szimulátor szoftver, sematikus rögzítés és hullámforma-néző, amely továbbfejlesztésekkel és modellekkel javítja az analóg áramkörök szimulációját. Grafikus sematikus rögzítési felülete lehetővé teszi a kapcsolási rajzok vizsgálatát és a szimulációs eredmények előállítását, amelyek a beépített hullámforma-nézegetőn keresztül tovább vizsgálhatók.

C. Digitális Multiméter

Kiválasztandó az előlapon az üzemmód (egyenfeszültség, egyenáram, váltófeszültség, váltóáram, ellenállás, kapacitás stb. értelemszerűen) Csatlakoztatandó a megfelelő mérendő eszköz a megfelelő bemenetekhez. Fontos, hogy feszültség mérésekor a VOLTAGE HI és VOLTAGE LO pontokhoz csatlakoztassunk, áram, ellenállás, kapacitás mérésekor pedig a CURRENT HI és CURRENT LO feliratú bemenetekhez. A méréshatár lehet automatikus vagy választható tartományú. A multiméter egy gyárilag többfunkciós műszer. Mindez a gyakorlatban azt jelenti, hogy mérési célt szolgál. Léteznek automatikus és manuális eszközök egyaránt. Az analóg multimétereket pedig leváltották a digitális szerkezetek. A kezdők

számára pedig egy jól felszerelt, alapbeállításokkal rendelkező eszköz egyszerűen kezelhető. Főként a következők mérésére szokás használni: egyen- és váltóáramú feszültség. Napjainkban egyre több a korszerű új eszköz, amely még több funkcióval bír. Egy újfajta multiméterrel 2021-ben már akár az ellenállást és a folytonosságot is mérhetjük. Speciális modellekkel a hőmérsékletet is megvizsgálhatjuk. Összességében tehát a mérőeszközök képesek a feszültségmérésre (AC/DC), ellenállás- és folytonosságmérésre, dióda teszt (nyitófeszültség elvégzésére), hőmérséklet- és kapacitásmérésre.

II. FOGALMAK

- Passzív áramköri elem: A villamos hálózatok passzív elemei között egyenáramú hálózatokban csak az ellenállás fordul elő általános elemként. Impulzusüzemű elektronikai áramköröknél és a be-, illetve kikapcsolási tranziensek tárgyalásáná azonban nem hagyható figyelmen kívül a kondenzátorok és az induktivitások (tekercsek) szerepe sem. Emellett meg kell említenünk két különleges elemet, az ideális vezetéket és az ideális szigetelést.
- Ellenállás (áramköri alkatrész): az elektronikai alkatrészek egyik fajtája, melynek feladata az, hogy megfelelő mértékű elektromos ellenállást biztosítson egy áramkör adott részén.
- Elektromos ellenállás: Az ellenállás a fogyasztóknak az a tulajdonsága, ami megszabja, hogy adott feszültség esetén mekkora lesz az átfolyó áram erőssége. Az ellenállás jele R, mértékegysége az ohm. Ennek jele: Ω.
- Feszültségmérő: A feszültséget voltmérővel, más néven feszültségmérővel mérjük. A feszültséget mindig az áramkör két kiválasztott pontja között mérjük. Ha a voltmérő két csatlakozóját az áramkör két pontjára csatlakoztatjuk, akkor az ezen két pont közti feszültséget mérhetjük meg.
- Feszültségosztó: Felépítését tekintve egy feszültségosztó nem más, mint egy ellenálláslánc, amelynek különböző ellenállásairól vehetünk le, az egész ellenállásláncra kapcsolt feszültségnél kisebb (leosztott) feszültséget. Két fontos esetet különböztetünk meg, a terheletlen és a terhelt feszültségosztó kapcsolást. A terhelt az előbbitől abban különbözik, hogy a feszültségosztó ellenállásán megjelenő feszültséget úgy használjuk fel, hogy a sarkai közé az alkalmazásoknak megfelelően különböző terheléseket kapcsolunk. Így tehát áramot (teljesítményt) veszünk ki a feszültségosztóból.

III. OHM-TÖRVÉNYE

Ohm törvénye egy fizikai törvényszerűség, amely egy fogyasztón (pl. elektromos vezetékszakaszon) átfolyó áram erőssége és a rajta eső feszültség összefüggését adja meg. A törvény kimondja, hogy az elektromosan vezető anyagok a bennük áramló töltések mozgásával szemben a közegellenálláshoz hasonlítható elektromos ellenállással rendelkeznek. Ohm kísérletileg megállapította, hogy az áramerősség a vezeték két rögzített pontja között mérhető feszültséggel egyenesen arányos, vagyis:

$$R = \frac{U}{I}$$

ahol az R egy állandó érték, az adott vezetékszakaszra jellemző elektromos ellenállás.

IV. KIRCHHOFF I. TÖRVÉNYE

A csomóponti törvény párhuzamos (elágazó) áramkörökre vonatkozik. Az elágazásnál csomópont keletkezik. A törvény értelmében a csomópontba befolyó áramok összege megegyezik az onnan elfolyó áramok összegével. A törvény alapja az, hogy egy villamos hálózat csomópontjaiban nincs töltésfelhalmozódás (forrásmentes hely). A csomópontnak létezik még egy fontos jellemzője, az, hogy elektromos potenciállal rendelkezik. Ez a potenciál egy másik csomóponthoz képest mérhető, nagysága függ az összekötő elem(ek) ellenállás-értékétől, és az átfolyó áram nagyságától. A potenciálkülönbség átfolyó áramot hoz létre egy ellenálláson, de azt is mondhatjuk, hogy az átfolyó áram hatására jön létre az ellenállás két végpontja között potenciálkülönbség.

V. KIRCHHOFF II. TÖRVÉNYE

Sorosan kapcsolt áramköri elemekre vonatkozik. A törvény értelmében bármely zárt hurokban a feszültségek előjeles összege nulla. Az előjel megállapítása úgy történik, hogy egy tetszőleges irányítású "körüljárási irányt" veszünk fel. A körüljárási irányt egy be nem záródó körvonal végén a nyíl jelzi. Ha az áramkör csak egy hurokból áll, a kör középpontjába írt "+" mutatja, hogy az ilyen irányú feszültségeket tekintjük pozitív előjelűnek (azok a feszültségek pedig, melyek iránya a körüljárási iránnyal ellentétes, negatív előjelűek). Ha az áramkör több hurokból áll, a kör középpontjába a hurok sorszáma kerül (az ábrán I.). Zárt hurokban a feszültségforrások összege megegyezik a feszültségesések összegével.

VI. MÉRÉSHEZ HASZNÁLT ELLENÁLLÁSOK PARAMÉTEREI

A mérés megkezdése előtt négy darab ellenállást választhattunk a megadott dobozból. Ezek közül egy darab négy csíkot tartalmazott, a maradék három viszont öt csíkos volt. Ez azért fontos, mert az ellenállás értékének meghatározásához fel kell használnunk ezt a számot, valamint a csíkok színét is. Ennek az értéknek a meghatározásához egy internetes weboldalt használtunk.

- ullet Első ellenállás: R_1 : ennek az alapszíne kék volt, a névleges értéke 1,1 KOhm , a hibahatár pedig 1% volt. (Ennek a színkódjai rendre: barna, barna, fekete, barna, barna)
- Második ellenállás: R₂: Az alapszíne türkiz zöld volt, a névleges értéke 61 Ohm, a hibahatár 1% volt. (Ennek a színkódjai rendre: kék, barna, fekete, arany, barna)
 A mérés közben kiderült, hogy ennek az ellenállásnak

- értéke nem egyezett meg a színkódjai által meghatározott értékkel, hanem ahelyett 58 Ohm volt.
- Harmadik ellenállás: R_3 : Az alapszín ebben az esetben bézs volt, a névleges értéke 22 KOhm, a hibahatár 5% (Ennek a színkódjai rendre: piros, piros, narancs, arany)
- Negyedik ellenállás: R₄: Alapszíne esetünkben sötétzöld volt, a névleges értéke 110 Ohm, hibahatára 1% volt, (Ennek a színkódjai rendre: barna, barna, fekete, fekete, barna)

VII. ELSŐ MÉRÉS

A tanórán elhangzott utasítás alapján a legkisebb, a 61 Ohm névleges értékkel rendelkező ellenállást választottuk meg a védő ellenállásnak, így végeztük a méréseket.

Legelső lépésként a LTspice rendszerben létrehoztuk a feladatnak megfelelő sorosan kapcsolt rendszert. Hozzáadtuk a 3 ellenállást, az R_1 volt a türkiz alapszínű védőellenállás, az R_2 a bézs alapszínű, 22 KOhm névleges értékkel rendelkező, majd az R_3 a sötétzöld alapszínű 110 Ohm-os ellenállás volt. A megvizsgált értékeket állítottuk be a szimulációban elhelyezett ellenállásoknak, emellett hozzáadtuk az áramforrást, amelynek az értéke 5 V volt, ezen kívül elhelyeztünk megfelelő mennyiségű csomópontot, valamint hozzáadtunk egy földelést is, hogy megfelelő módon működjön a szimuláció. Ez az alábbi képen látható:

Ezt követően az alábbi egyenlet használatával végeztük a számolásokat:

$$V_1 = V * \frac{R_1}{R1 + R2}$$

Ez alapján a kapott értékek:

- $V_1 = 0.013825 \text{ Ohm}$
- $V_2 = 0.024876 \text{ Ohm}$

Ezt követően az NI ELVIS II digitális multiméter segítségével létrehoztuk a modellezett soros kapcsolást és elvégeztük a mérést. Szerencsére a mért értékek tűréshatáron belülre estek, az egyetlen jelentősebb eltérés az az volt, hogy az egyik ellenállás jelentősen eltért a névleges értékétől, de ezt kivéve minden a megadott értékek szerint jelent meg a mérés során.

VIII. A MÉRÉS HIBÁJA

Számos külső, vagy belső hatásból adódhat a mérési hiba. Külső hatás lehet például a mi figyelmetlenségünk, pontatlanságunk, esetlegesen a kézremegés által nem megfelelően létrerött kontaktus a mérendő objektum, valamint a műszer között. Ezek viszont általában nagyon kis kilengéseket okozó problémák lehetnek, ezzel szemben amit mindenképpen

érdemes figyelembe venni, az a mérőműszer, az ELVIS II belső ellenállása. Ez az esetünkben a gyártó által meghatározott belső ellenállás 11 $M\Omega$. Ezzel szemben tudjuk, hogy ideális esetben a feszültségmérő műszer ellenállása végtelen, de ezt esetünkben nem tudtuk biztosítani. Ezeken a hibákon kívül a feladat megoldása zavaratalan folyamat volt, a műszerek és a programok használata gördülékeny volt számunkra, nem volt olyan dolog, ami megzavarta volna a mérési folyamatot.

IX. MÁSODIK MÉRÉS

A feladat során a megadott ábra alapján egészítettük ki az előző mérési feladatban létrehozott digitális szimulációt, valamint az ELVIS II-n bekötött ellenállásokat is. A leírás szerint ebben az esetben az R_2 ellenállással párhuzamosan kellett bekötni az R_3 ellenállást. Ezt az LTspice programban létrehozott szimulációban is megtettük, értéknek megadtuk az ellenállás névleges értékét, valamint még több csomópontot hozzáadtunk a megfelelő helyeken. Lefuttatva a programot megkaptuk a kívánt eredményeket, amelyeket később a mérés során magunk is elvégeztünk. A létrehozott szimulációt mutatja be az alábbi ábra:

Ebben a feladatban az újonnan bekötött ellenállás a kék alapszínű volt, melyen 4.2236 V feszültséget mértünk az ELVIS II mikrométert használva, azzal szemben, hogy az LTSPACE szimulációban (ahogy az ábrán is látható), 4.103 V értéket mértünk. Emellett az ELVIS-en mért értékek a türkiz, sötétzöld és a bézs alapszínű ellenállásokon rendre 0,2056 V, 0.4435 V, valamint 4.2237 V volt.

Ebben a feladatban is nagyon hasonlóan kell számolni az U_2 értékét, mint az első, korábbi feladat során. Annyi különbséget kell szemelőtt tartani, hogy ebben az esetben első lépésként helyettesíteni kell az R_2 -t, valamint az R_3 -t egy R_e eredő ellenállással. Ez a képlet behelyettesítés és megfelelő rendezés után nem más, mint:

$$U_{R2} = \frac{\frac{R_1*R_2}{R_1+R_2}}{R_1 + \frac{R_1*R_2}{R_1+R_2}}$$

X. A MÉRÉS HIBÁJA

Az előső feladathoz hasonlatosan számításba kellett venni az ELVIS II multiméter belső ellenállását, amely nem a legoptimálisabb értékkel rendelkezik. Emellett természetesen hibafaktor itt is az emberi tényező, az esetleges figyelmetlenségek, pontatlanságok. Viszont ezektől eltekintve nem volt más zavaró, befolyásoló tényező, a programok és az eszközök használata gördülékeny, egyértelmű volt, optimálisan haladtunk a feladat megoldásával, semmi nem szakította félbe