

Undergraduate Programs

Bachelor of Engineering (B.E) in

Information Science & Engineering

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME.

M. Tech (13) MCA, M.Sc. (Engg.)

Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AL& AS

2024

NIRF RANKING IN ENGINEERING (2024) TIMES HIGHER EDUCATION WORLD UNIVERSITY

1501+

TIMES HIGHER EDUCATION WORLD UNIVERSITY

501-600

EDUFUTURE EXCELLENCE AWARD

BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH)

BY ZEE DIGITAL

1001+

SUBJECT RANKING

801+

SUBJECT RANKING (COMPUTER SCIENCE)

IIRF 2023 ENGINEERING RANKING INDIA

NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5

QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)

Centers of Excellence

212

Publications On Web Of Science

669

Publications Scopul (2023 - 24)

1093
Citations

Skill Based Laboratories Across Four Semesters 70
Patents Filed

Centers of

Competence

39
Patents Granted

61
Published Patents

CURRICULUM STRUCTURE

61 CREDITS
PROFESSIONAL
CORES (PC)

23 CREDITS
BASIC SCIENCE

22 CREDITS ENGINEERING SCIENCE 18 CREDITS PROJECT WORK /

12 CREDITS*
OTHER ELECTIVES
& AEC

12 CREDITS PROFESSIONAL ELECTIVES

12 CREDITS HUMANITIES & SOCIAL SCIENCE

160 CREDITS TOTAL

*ABILITY ENHANCEMENT COURSES (AEC), UNIVERSAL HUMAN VALUES (UHV), INDIAN KNOWLEDGE SYSTEM (IKS), YOGA.

MOUS: 90+WITH
INSDUSTRIES / ACADEMIC
INSTITUTIONS IN INDIA & ABROAD

EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS & CONSULTANCY WORKS SINCE 3 YEARS

Undergraduate Programs

Bachelor of Engineering (B.E) in

Information Science & Engineering

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME.

M. Tech (13) MCA, M.Sc. (Engg.)

Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AL& AS

2024

DEPARTMENT VISION

To be the hub for innovation in Information Science & Engineering through Teaching, Research, Development and Consultancy; thus make the department a well-known resource centre in advanced, sustainable and inclusive technology.

DEPARTMENT MISSION

ISE1: To enable students to become responsible professionals, strong in fundamentals of Information Science and engineering through experiential learning.

ISE2: To bring research and entrepreneurship into classrooms by continuous design of innovative solutions through research publications and dynamic development oriented curriculum.

ISE3: To facilitate continuous interaction with the outside world through student internship, faculty consultancy, workshops, faculty development programmes, industry collaboration and association with the professional societies.

ISE4: To create a new generation of entrepreneurial problem solvers for a sustainable future through green technology with an emphasis on ethical practices, inclusive societal concerns and environment.

ISE5: To promote teamwork through inter-disciplinary projects, co-curricular and social activities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide adaptive and agile skills in Information Science and Engineering needed for professional excellence / higher studies /Employment, in rapidly changing scenarios.

PEO2: To provide students a strong foundation in basic sciences and its applications to technology.

PEO3: To train students in core areas of Information science and Engineering, enabling them to analyse, design and create products and solutions for the real-world problems, in the context of changing technical, financial, managerial and legal issues.

PEO4: To inculcate leadership, professional ethics, effective communication, team spirit, multi- disciplinary approach in students and an ability to relate Information Engineering issues to social and environmental context.

PEO5: To motivate students to develop passion for lifelong learning, innovation, career growth and professional achievement.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Recognize and appreciate the principles of theoretical foundations, data organization, data communication, security and data analytical methods in the evolving technology
PSO2	Learn the applicability of various system software for the development of quality products in solving real-world problems with a focus on performance optimization
PSO3	Demonstrate the ability of teamwork, professional ethics, communication, and documentation skills in designing and implementation of software products using the SDLC principles

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning						
1.	VTU	Visvesvaraya Technological University						
2.	BS	Basic Sciences						
3.	CIE	Continuous Internal Evaluation						
4.	SEE	Semester End Examination						
5.	PE	Professional Core Elective						
6.	ΙE	Institutional Elective						
7.	HS	Humanities and Social Sciences						
8.	PHY	Physics						
9.	CHY	Chemistry						
10.	MAT	Mathematics						
11.	AS	Aerospace Engineering						
12.	AI	Artificial Intelligence & Machine Learning						
13.	ВТ	Biotechnology						
14.	CH	Chemical Engineering						
15.	CS	Computer Science & Engineering						
16.	CV	Civil Engineering						
17.	EC	Electronics & Communication Engineering						
18.	EE	Electrical & Electronics Engineering						
19.	EI	Electronics & Instrumentation Engineering						
20.	ET	Electronics & Telecommunication Engineering						
21.	IM	Industrial Engineering & Management						
22.	IS	Information Science & Engineering						
23.	ME	Mechanical Engineering						
24.	CD	Computer Science & Engineering (Data Science)						
25.	CY	Computer Science & Engineering (Cyber Security)						

INDEX

THIRD YEAR COURSES						
Sl. No.	Course Code	Name of the Course	Page No.			
		V SEMESTER				
1.	HS251TA	Principles of Management and Economics	1			
2.	CD252IA	Database Management Systems (Common to CS & IS, AI, CD)	3			
3.	IS353IA	Artificial Intelligence and Machine Learning (Common to CS & IS, CD)	6			
4.	CS354TA	Theory of Computation (Common to CS, CY, CD & IS)	9			
5.	XXX55TBX	Professional Core Elective-I (Group-B)	11-19			
6.	IS256TCX	Professional Core Elective-II (Group C)	NPTEL			
		VI SEMESTER				
7.	HS361TA	Entrepreneurship and Intellectual Property Rights	20			
8.	IS362IA	Cryptography & Network Security	23			
9.	CS363IA	Compiler Design (Common to CS & IS)	26			
10.	IS364TA	Software Engineering with Agile Technologies (Common to CS, IS, CD & CY)	29			
11.	IS365TDX	Professional Core Elective (Group- D)	31-39			
12.	XX366TEX	Institutional Electives – I (Group E)	40-81			
13.	IS367P	Interdisciplinary Project	82			

Bachelor of Engineering in

INFORMATION SCIENCE AND ENGINEERING

	2022 SCHEME - CREDITS AND COMPONENTS												
	V SEMESTER												
Sl.			Credit Allocation			tion			Max Ma	rks CIE	SEE	Max Ma	rks SEE
No.	Course Code	Course Title	L	T	P	Total	BoS	Category	Theory	Lab	Duration (H)	Theory	Lab
1	HS251TA	Principles of Management and Economics	3	0	0	3	HS	Theory	100	****	3	100	****
2	CD252IA	Database Management Systems (Common to CS & IS, AI, CD)	3	0	1	4	CD	Theory + Lab	100	50	3	100	50
3	IS353IA	Artificial Intelligence and Machine Learning (Common to CS & IS, CD)	3	0	1	4	IS	Theory + Lab	100	50	3	100	50
4	CS354TA	Theory of Computation (Common to CS, CY, CD & IS)	3	1	0	4	CS	Theory	100	****	3	100	****
5	XXX55TBX	Professional Core Elective-I (Group-B)	3	0	0	3	XX	Theory	100	****	3	100	****
6	IS256TCX	Professional Core Elective-II (Group C)	2	0	0	2	IS	NPTEL	****	****	2	50	****
		Total				20							

Bachelor of Engineering in

INFORMATION SCIENCE AND ENGINEERING

	2022 SCHEME - CREDITS AND COMPONENTS													
	VI SEMESTER													
	Course		C	Credit Allocation					Max Ma	rks CIE		Max Ma	Max Marks SEE	
Sl. No.	Code	Course Title	L	T	P	Theory	BoS Lab	Category	Theory	Lab	Duration (H)			
1	HS361TA	Entrepreneurship and Intellectual Property Rights	3	0	0	3	HS	Theory	100	****	3	100	****	
2		Cryptography & Network Security	3	0	1	4	IS	Theory + Lab	100	50	3	100	50	
3	CS363IA	Compiler Design (Common to CS & IS)	3	0	1	4	CS	Theory + Lab	100	50	3	100	50	
4	IS364TA	Software Engineering with Agile Technologies (Common to CS, CD & IS)	4	0	0	4	IS	Theory	100	****	3	100	****	
5	IS365TDX	Professional Core Elective III (Group- D)	3	0	0	3	IS	Theory	100	****	3	100	****	
6	XX366TEX	Institutional Electives – I (Group E)	3	0	0	3	XX	Theory	100	****	3	100	****	
7	IS367P	Interdisciplinary Project	0	0	3	3	IS	Project	****	100	3	****	100	
		Total				24								

V Sem: Professional Core Electives

	GROUP - B								
Sl.No	Course Code	Course Title							
1	IS255TBA	Management Information Systems							
2	CS355TBB	Advanced Algorithms (Common to CS, IS & AI)							
3	IS355TBC	Natural Language Processing (Common to CS, CD & IS)							
4	IS355TBD	Cloud Computing (Common to CS, CD & IS)							

	GROUP – C								
Sl.No	Course Code	Course Title							
1	AI256TCA	Information Security - 5 - Secure Systems Engineering							
2	IS256TCB	Data Mining							
3	CS256TCC	Foundation of Cloud IoT Edge ML							
4	IS256TCD	Embedded System Design with ARM							
5	IS256TCE	Introduction to Soft Computing							

VI Sem: Professional Core Electives

	GROUP – D								
Sl.No	Course Code	Course Title							
1	IS365TDA	Information Retrieval							
2	IS365TDB	Human Computer Interface (Common to CS & IS)							
3	CS365TDC	Web Frameworks (Common to CS & IS)							
4	AI365TDD	Generative Artificial Intelligence (Common to AI, CS & IS)							

	GROUP – E								
Sl. No.	Course Code	Course Title							
1	AS266TEA	Fundamentals of Aerospace Engineering							
2	BT266TEB	Bioinformatics							
3	CH266TEC	Industrial Safety Engineering							
4	CS266TED	Robotics Process Automation							
5	CV266TEE	Intelligent Transport Systems							
6	CV266TEF	Integrated Health Monitoring of Structures							
7	CM266TEG	Advanced Energy Storage for E-Mobility							
8	EC266TEH	Human Machine Interface (HMI)							
9	EE266TEJ	Energy Auditing and Standards							
10	EI266TEK	Biomedical Instrumentation							
11	ET266TEM	Telecommunication Systems							
12	ET266TEN	Mobile Communication Networks and Standards							
13	IS266TEO	Mobile Application Development							
14	IM266TEQ	Elements of Financial Management							
15	IM266TER	Optimization Techniques							
16	ME266TES	Automotive Mechatronics							
17	MA266TEU	Mathematical Modelling							
18	MA266TEV	Mathematics of Quantum Computing							
19	HS266TEW	Applied Psychology for Engineers							
20	HS266TEY	Universal Human Values							

Semester V							
	PRINCIPLES OF MANAGEMENT & ECONOMICS						
			(Theory)				
Course Code	:	HS251TA		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45L		SEE Duration	:	3 Hours	
	•		Unit-I		•	06 Hrs	

Introduction to Management: Management Functions – POSDCORB – an overview, Management levels & Skills, Management History - **Classical Approach:** Scientific Management, Administrative Theory, **Quantitative Approach:** Operations Research, **Behavioral Approach:** Hawthorne Studies, **Contemporary Approach:** Systems Theory, Contingency Theory. **Caselets / Case studies**

Unit – II 10 Hrs

Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate strategies – types of corporate strategies, BCG matrix, Competitive Strategies – Porters Five force Model, types of Competitive Strategies. **Caselets / Case studies**

Organizational Structure & Design: Overview of Designing Organizational Structure - Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. **Caselets / Case studies**

Unit –III 10 Hrs

Motivation: Early Theories of Motivation - Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory. Contemporary Theories of Motivation: Adam's Equitytheory, Vroom's Expectancy Theory. **Caselets / Case studies**

Leadership: Behavioral Theories: Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. **Caselets / Case studies**

Unit –IV 10 Hrs

Introduction to Economics: Microeconomics and Macroeconomics, Circular flow model of economics, An Overview of Economic Systems.

Essentials of Microeconomics: Demand, Supply, and Equilibrium in Markets for Goods and Services, Price Elasticity of Demand and Price Elasticity of Supply, Elasticity and Pricing, Numericals on determining price elasticity of demand and supply. Changes in Income and Prices Affecting Consumption Choices, Monopolistic Competition, Oligopoly.

Unit –V 09 Hrs

Macroeconomic Indicators: Prices and inflation, Consumer Price Index, Exchange rate, Labor Market, Money and banks, Interest rate. Gross Domestic product (GDP) - components of GDP, Measures of GDP: Outcome Method, Income method and Expenditure method, Numericals on GDP Calculations, ESG an overview.

Macroeconomic models- The classical growth theory, Keynesian cross model, IS-LM-model, The AS-AD model, The complete Keynesian model, The neo-classical synthesis. National Budgeting process in India

Course	Course Outcomes: After completing the course, the students will be able to:-							
CO1	Elucidate the principles of management theory & recognize the characteristics of an organization.							
CO2	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.							
CO3	Compare and contrast early and contemporary theories of motivation and select and implement the right leadership practices in organizations that would enable systems orientation.							
CO4	Demonstrate an understanding on the usage and application of basic economic principles.							
CO5	Appreciate the various measures of macro-economic performance and interpret the prevailing economic health of the nation.							

Refe	erence Books:
1.	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 15 th Edition, 2021, Pearson Education Publications, ISBN: 13: 978-0-13-558185-8
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 2009, PHI, ISBN: 81-203-0981-2.
3.	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2 nd Edition, 2017, ISBN:978-1-947172-34-0
4.	Macroeconomics: Theory and Policy, Dwivedi D.N, 5 th Edition, 2021, McGraw Hill Education; ISBN: 9789353163334

_	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
MARKS	COMPONENTS
20	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.
40	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.
40	EXPERIENTIAL LEARNING: Some of the Experiential learning topics may include Reading Leadership books and summarizing, Analysis and interpretation of various economic reports, Visit to various organizations to understand organizational mechanics. Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .
100	MAXIMUM MARKS FOR THE CIE THEORY

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Ma	ximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related	topics)				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: V

DATABASE MANAGEMENT SYSTEMS Category: PROFESSIONAL CORE COURSE

(Theory and Lab)

(Common to CS & IS, AI, CD)

Course Code	:	CD252IA	CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50 Marks
Total Hours	:	45L+30P	SEE Duration	:	3+3 Hours

Unit-I 09 Hrs

Introduction to Database Systems -Databases and Database users: Introduction, An example, Characteristics of Database Approach Data Models, Schemas and Instances, Three-schema Architecture and Data Independence, The Database System Environment.

Data Modeling Using the Entity-Relationship Model- High-Level Conceptual Data Models for Database Design; A Sample Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types.

Unit – II 09 Hrs

Refining the ER Design for the COMPANY Database; ER Diagrams, Naming Conventions and Design Issues, ER- to-Relational Mapping.

Relational Model and Relational Algebra-Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations and Dealing with Constraint Violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION; Examples of Queries in Relational Algebra.

Unit –III 09 Hrs

Introduction to SQL- SQL Data Definition, Specifying Constraints in SQL, Basic Queries in SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries.

Relational Database Design - Functional Dependencies – Definition, Inference Rules, Equivalence of sets of FD's, Minimal Set of FD's; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions.

Unit –IV 09 Hrs

Transaction Processing Concepts- Introduction to transaction processing, Transaction states and additional operations, Desirable properties of transaction, Schedules of transactions. Characterizing schedules based on Serializability: Serial, Non serial and Conflict- Serializable schedules, Testing for Conflict serializability of schedule

Concurrency Control Techniques: Two phase locking techniques for concurrency control, types of locks and system lock tables

Unit –V 09 Hrs

Introduction to NoSQL: Aggregate data models: aggregates, key-value and document data models. Distribution models: sharing, master-slave replication, peer-peer replication – combining sharding and replication.

Big Data: Types of data: Structured, semi structured, unstructured. Distributed Architecture: Hadoop, Map Reduce Programming Model

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Understand and explore the needs and concepts of relational, NoSQL database and Distributed Architecture				
CO 2	Apply the knowledge of logical database design principles to real time issues.				
CO 3	Analyze and design data base systems using relational, NoSQL and Big Data concepts				
CO 4	Develop applications using relational and NoSQL database				
CO 5	Demonstrate database applications using various technologies.				

Refere	Reference Books				
1.	Elmasri and Navathe: Fundamentals of Database Systems, 6th Edition, Pearson				
	Education, 2011, ISBN-13: 978-0136086208.				
2.	Pramod J Sdalage, Martin Fowler: NoSQL A brief guide to the emerging world of Polyglot				
	Persistence, Addison-Wesley, 2012, ISBN 978-0-321-82662-6,				
3.	Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems,				
	3thEdition, McGraw-Hill, 2003 ISBN: 978-0072465631.				
4.	Seema Acharya and Subhashini Chellappan. Big Data and Analytics. Wiley India Pvt. Ltd. Second				
	Edition				

LABORATORY COMPONENT

$\overline{PART} - A$

Open Ended Mini Project should be implemented and shall be carried out in a batch of two students. The students will finalize a topic in consultation with the faculty. The mini project must be carried out in the college only.

The Mini Project tasks would involve:

- · Understand the complete domain knowledge of application and derive the complete data requirement specification of the Mini Project
- · Design of the project with Integrated database solution (SQL and NOSQL)
- · Normalization of the Relational design up to 3NF.
- · Appreciate the importance of security for database systems.
- · Documentation and submission of report.
- · Recent Trends used (Blockchain, NLP, AI, ML, AR, VR etc) and Societal Concern issues addressed

General Guidelines:

- Database management for the project- MySQL, DB2, Oracle, SQL Server, MongoDB (Any NoSQL DB) server or any database management tool.
- Front End for the project Java, VC++, C#, Python, Web Interface (HTML, Java Script) Use database Programming such as Embedded SQL/Dynamic SQL/SQLJ.

	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40

3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),	-0
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
	MAXIMUM MARKS FOR THE CIE	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS				
	PART A	-				
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
·	TOTAL	100				

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

Semester: V

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING Category: PROFESSIONAL CORE COURSE

(Theory and Lab)

(Common to CS & IS, CD)

Course Code	:	IS353IA	CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50 Marks
Total Hours	:	45L + 30P	SEE Duration	:	3 + 3 Hours

Unit-I 09 Hrs

Introduction: What is AI?

Intelligent agents: Intelligent Agents: Agents and environment; Rationality; the nature of environments;

the structure of agents

Problem Solving & Uninformed Search Strategies: Problem-solving agents, Breadth-first Search,

Depth-first Search, Depth-limited Search and Iterative Deepening Depth First Search.

Unit – II 09 Hrs

Informed (Heuristic) Search Strategies: A*Search, Heuristic Functions

Beyond Classical Search: Local Search Algorithms and Optimization Problems, Hill-climbing Search,

Simulated Annealing, Local-beam Search, Genetic Algorithms

Adversarial search: Games, Optimal decision in games, Alpha-Beta Pruning

Unit –III 09 Hrs

Supervised Learning: Basic Concepts, General Framework for Classification

Decision Tree Classifier-A Basic Algorithm to Build a Decision Tree, Methods for Expressing Attribute Test Conditions, Measures for Selecting an Attribute Test Condition, Algorithm for Decision Tree Induction, Characteristics of Decision Tree Classifiers,

Model Overfitting- Reasons for Model Overfitting

Model Selection - Using a Validation Set, Incorporating Model Complexity, Estimating Statistical Bounds, Model Selection for Decision Trees, Model Evaluation

Unit –IV 09 Hrs

Nearest Neighbor Classifiers-Characteristics of Nearest Neighbor Classifiers

Naive Bayes Classifier-Basics of Probability Theory, Naive Bayes assumption

Logistic Regression-Logistic Regression as a Generalized Linear Model, Learning Model Parameters, Characteristics of Logistic Regression

Ensemble Methods – Methods for constructing Ensemble classifier, Bagging, Boosting, Random Forests

Unit –V 09 Hrs

Unsupervised Learning- Overview, What Is Cluster Analysis, Different Types of Clustering's, Different Types of Clusters

K-means-The Basic K-means Algorithm, Additional Issues, Bisecting K-means, K-means and Different Types of Clusters, Strengths and Weaknesses, K-means as an Optimization Problem

Cluster Evaluation-Overview, Unsupervised Cluster Evaluation Using Cohesion and Separation, Unsupervised Cluster Evaluation Using the Proximity Matrix, Determining the Correct Number of Clusters, Supervised Measures of Cluster Validity, Assessing the Significance of Cluster Validity Measures, Choosing a Cluster Validity Measure

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Explain and apply AI and ML algorithms to address various requirements of real-world problems				
CO 2	Design and develop AI and ML solutions to benefit society, science, and industry.				
CO 3	Use modern tools to create AI and ML solutions.				
CO 4	Demonstrate effective communication through team presentations and reports to analyze the				
	impact of AI and ML solutions on society and nature.				
CO 5	Conduct performance evaluation, modeling, and validation of AI and ML solutions benefiting				
	lifelong learning				

Refere	Reference Books				
1.	AI – A Modern Approach, Stuart Russel, Peter Norvig, 3rd Edition, 2010, Pearson, ISBN-13: 978-				
	0136042594				
2.	Artificial Intelligence Basics: A Self Teaching Introduction, Neeru Gupta and Ramita Mangla,				
	Mercury Learning and Information, 1st Edition, 2020, ISBN: 978-1-68392-516-3				
3.	Machine Learning, Tom M. Mitchell, Indian Edition, 2013, McGraw Hill Education, ISBN – 10 –				
	1259096955				
4.	Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar,2nd edition,				
	2019, Pearson, ISBN-10-9332571406, ISBN-13 -978-9332571402				

LABORATORY COMPONENT

	PART – A				
Sl. No.	Implement the following algorithms (5 to 8) using required statistical formulae and				
	• do not use direct API's.				
	Demonstrate the working of the algorithms by considering appropriate datasets				
	Display the values of all the model parameters				
1	Solve the Tic-Tac-Toe problem using the Depth First Search technique				
2	Demonstrate the working of Alpha-Beta Pruning.				
3	Solve the 8-Puzzle problem using the A* algorithm				
4	Implement a Hill-climbing search algorithm to maximize a single variable function f(x).				
5	Logistic regression algorithm.				
6	Naïve Bayes Classifier				
7	KNN algorithm.				
8	K- means algorithm				

PART - B

Two students from the same batch must develop a Machine Learning model on the problem statements chosen from Agriculture, Health Care, Manufacturing, Automobiles and Process Control/Automation Domains preferably for Indian Scenarios. (Point No. 3 and 4 are optional)

- 1. The data collected should be cleansed and pre-processed.
- 2. The complete EDA process has to be demonstrated
- 3. Selection of the suitable algorithms and model-building
- 4. Model evaluation has to be carried out by selecting the proper metrics
 - a. Prediction/classification results have to be obtained
 - b. GUI should be created for demonstrating the results

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
	MAXIMUM MARKS FOR THE CIE	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS				
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of THREE Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)				
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

Semester: V						
THEORY OF COMPUTATION						
			(Theory)			
		(C	ommon to CS, CY, C	CD & IS)		
Course Code	:	CS354TA		CIE	:	100 Marks
Credits: L:T:P : 3:1:0						
Total Hours	:	45L + 30T		SEE Duration	:	3 Hours

Unit-I 09 Hrs

Regular Languages and Regular Expressions, Memory Required to Recognize a Language, Deterministic Finite Automata (DFA), Non Deterministic Finite Automata (NFA), Non Deterministic Finite Automata with ϵ -transitions (NFA- ϵ), Equivalence, Regular Expressions and Finite Automata, Applications of Regular Expressions, Algebraic laws of Regular Expressions, Minimization of Finite Automata.

Unit – II 09 Hrs

Pumping Lemma for Regular Languages, Closure properties of Regular Languages, Decision properties of Regular languages. Context-free grammars (CFG), Parse trees, Applications, Ambiguity in grammars & languages, Simplification of CFG, Normal forms of CFGs. Regular Grammars, Equivalence of Regular Grammars and Finite Automata.

Unit –III 09 Hrs

Push Down Automata (PDA): Definition, the languages of a PDA, Equivalence of PDA's & CFG's, Deterministic PDA. The Pumping Lemma for Context Free Languages (CFL), Closure properties of CFLs, Decision properties of CFLs

Unit –IV 09 Hrs

Context Sensitive Languages (CSL) and Linear Bounded Automata (LBA), Turing Machines (TM): Definitions and Examples, TM as a Language Accepter, Computing Partial Functions with Turing Machine, Variations of Turing Machines, Combining Turing Machines, Non Deterministic TM, Universal TM.

Unit –V 09 Hrs

Recursively Enumerable Languages (REL) and Recursive Languages. Properties of REL and Recursive Languages. More General Grammars: Context Sensitive Grammar and Unrestricted Grammar, Chomsky Hierarchy, Not all languages are Recursively Enumerable, Unsolvable Problem, Reducing One problem to another, The halting problem of TM, Post's Correspondence Problem (PCP), Time and Space Complexity of TM.

Course	Outcomes: After completing the course, the students will be able to: -
CO 1	Understand the fundamental concepts of theory of computations.
CO 2	Analyze the tools of finite automata to various fields of computer science.
CO 3	Design solution model for complex problems, using the appropriate skills of automata theory for better results.
CO 4	Apply automata skills in situations that describe computation effectively and efficiently.

Refere	Reference Books					
1.	Introduction to Languages & Theory of Computation, John C Martin, Tata McGraw-Hill, 4 th Edition, 2011 ISBN: 978-0-07-319146-1.					
2.	Introduction to Automata Theory, Languages & Computation, J.P.Hopcroft, Rajeev Motwani, J.D.Ullman, Pearson Education., 3 rd Edition, 2008,ISBN:81-3172-047-0.					
3.	An Introduction To Formal Languages & Automata, Peter Linz, Narosa Publishing House, 6 th Edition, 2007, ISBN: 07-6371-422-4.					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester V					
	MANAGEMENT INFORMATION SYSTEMS					
		Cate	gory: Professional Core Elective	:-1		
			(Group B) (Theory)			
Course Code	:	IS255TBA	CIE	:	100 Mark	S
Credits: L:T:P : 3:0:0				S		
Total Hours	:	45L	SEE Dur	ation :	3Hours	
	Unit-I 09 Hrs					

Information systems in Global Business Today:

The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems, Hands-on MIS projects. Global E-Business and Collaboration: Business process and information systems, Types of business information systems, Systems for collaboration and team work, The information systems function in business. A Case study on E business.

Unit – II 09 Hrs

Information Systems, Organizations and Strategy:

Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues, Ethical and Social issues in Information Systems: Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.

Unit –III 09 Hrs

IT Infrastructure and Emerging Technologies:

IT infrastructure, Infrastructure components, Contemporary hardware platform trends, Contemporary software platform trends, Management issues. Securing Information Systems: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.

Unit –IV 09Hrs

Achieving Operational Excellence and Customer Intimacy:

Enterprise systems, Supply chain management (SCM) systems, Customer relationship management (CRM) systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.

Unit –V 09Hrs

Managing Knowledge:

The knowledge management landscape, Enterprise-wide knowledge management system, Knowledge work systems, Intelligent techniques. **Enhancing Decision Making**: Decision making and information systems, Business intelligence in the enterprise. Business intelligence constituencies. **Building Information Systems**: Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understand and apply the fundamental concepts of information systems.				
CO2	Develop the knowledge about management of information systems.				
CO3	Interpret and recommend the use information technology to solve business problems.				
CO4	Apply a framework and process for aligning organization's IT objectives with business strategy.				

Refere	ence Books				
1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.				
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.				
3	Steven Alter: Information Systems The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.				
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40
MAXIMUM MARKS FOR THE CIE THEORY		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B	•				
	(Maximum of TWO Sub-divisions only)					
2	2 Unit 1 : (Compulsory)					
3 & 4	3 & 4 Unit 2 : Question 3 or 4					
5 & 6	5 & 6 Unit 3: Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	9 & 10 Unit 5: Question 9 or 10					
	TOTAL	100				

Semester: V							
	ADVANCED ALGORITHMS						
	\mathbf{C}	ategory: Profession	onal Core Course Elective-	I (Group-B)	(Theory)		
			(Common to CS, IS & AI)	_			
Course Code	Course Code : CS355TBB CIE : 100 Marks						
Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours	:	45L	SEE Du	ration :	3 Hours		

Analysis techniques: Growth of functions: Asymptotic notation, Standard notations and common functions, Substitution method for solving recurrences, Recursion tree method for solving recurrences, Master theorem.

Amortized Analysis: Aggregate analysis, The accounting method, The potential method.

Unit – II 09 Hrs

Sorting in Linear Time: Lower bounds for sorting, Counting sort, Radix sort, Bucket sort.

Demonsion Programming of Matrix along multiplication of Greedy Algorithms: An activity selection problem.

Dynamic Programming: Matrix-chain multiplication. **Greedy Algorithms:** An activity-selection problem, Elements of the greedy strategy.

Unit –III 09 Hrs

Graph Algorithms: Bellman-Ford Algorithm, Shortest paths in a DAG, Johnson's Algorithm for sparse graphs.

Maximum Flow: Flow networks, Ford Fulkerson method and Maximum Bipartite Matching.

Unit –IV 09 Hrs

Number Theoretic Algorithms: Elementary notions, GCD, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, RSA cryptosystem.

String Matching Algorithms: Naïve algorithm, Rabin-Karp algorithm, String matching with finite automata, Knuth-Morris-Pratt algorithm.

Unit –V 09 Hrs

Advanced Data structures: Structure of Fibonacci heaps, Mergeable-heap operations, Decreasing a key and deleting a node, Binomial Queues.

Polynomials and the FFT: Representing polynomials, The DFT and FFT, FFT circuits.

Course	Course Outcomes: After completing the course, the students will be able to: -			
CO 1	CO 1 Analyze various algorithms for their time and space complexity.			
CO 2	Demonstrate a familiarity with major algorithms and data structures			
CO 3	Apply appropriate design techniques for solving real world problems.			
CO 4	Design and implement solutions using appropriate mathematical techniques.			

Refere	Reference Books					
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein; Introduction					
	to Algorithms; Columbia University, 4th Edition; 2022, ISBN 9780262046305.					
2.	Mark Allen Weiss; Data Structures and Algorithm Analysis in C++, Addison-Wesley; 4th Revised					
	edition; 2014, ISBN-13: 978-0-13-284737-7.					
3.	Kozen DC, The design and analysis of algorithms, Springer Science & Business Media, 2012, ISBN:					
	978-0387976877					
4.	Kenneth A. Berman, Jerome L. Paul, Algorithms, Cengage Learning, 2002. ISBN: 978-8131505212					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A	•				
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	Semester: V						
	NATURAL LANGUAGE PROCESSING Category: Professional Core Elective-I (Group-B) (Theory) (Common to CS, CD & IS)						
C	ourse Code	:	IS355TBC	,	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	39L		SEE Duration	:	3 Hours
C	ourse Learning Objecti						
1	Demonstrate sensitivity	to to	linguistic phenome	na and an ability to r	nodel them with for	mal	grammars.
2	Train and evaluate empirical NLP systems						
3	Manipulate probabilities, construct statistical models over strings and trees, and estimate parameters					arameters	
	using supervised and unsupervised training methods						
4	Design, implement, and analyze NLP algorithms						

Unit-I 08 Hrs

Introduction to NLP: NLP in the Real-world, NLP Tasks, what is Language: Building Blocks of Language, Why NLP is Challenging, Machine Learning, Deep Learning, and NLP: An Overview, Approaches to NLP: Heuristic based NLP, Machine Learning for NLP, Deep Learning for NLP, Why Deep Learning is not Yet the Silver Bullet for NLP, An NLP Walkthrough: Conversational Agents **NLP Pipeline:** Data Acquisition, Text Extraction and Cleanup: HTML Parsing and Cleanup, Unicode Normalization, Spelling Correction, System-Specific Error Correction, Pre-Processing: Preliminaries, Frequent Steps, Other Pre-Processing Steps

Unit – II 08 Hrs

Accessing Text Corpora Accessing Text Corpora, Brown Corpus, Loading your own corpus, Annotated text corpus, Conditional Frequency Distributions, WordNet.

Processing Raw Text: Regular Expressions for Detecting Word Patterns, Useful Applications of Regular Expressions, Normalizing Text, Regular Expressions for Tokenizing Text

Extracting Information from the text:

Information Extraction, Chunking, Developing, Named Entity Recognition, Term weighting, Inverse document frequency

Unit –III 07 Hrs

Analyzing Sentence Structure: Some Grammatical Dilemmas, What's the Use of Syntax?, Context-Free Grammar, Parsing with Context-Free Grammar.

Analyzing the Meaning of words and Sentences:

The semantics of English sentences, Representing Meaning, Semantic Analysis, Lexical semantics, Wordsense disambiguation.

Unit –IV 08 Hrs

Transformers Basics

The Encoder-Decoder Framework, Attention Mechanisms, Transfer Learning in NLP, Hugging Face Transformers: Bridging the Gap, A Tour of Transformer Applications: Text Classification, Named Entity Recognition, Question Answering, Summarization, Translation, Text Generation, The Hugging Face Ecosystem: The Hugging Face Hub, Hugging Face Tokenizers, Hugging Face Datasets, Hugging Face Accelerate, Main Challenges with Transformers.

Text Classification

The Dataset: A First Look at Hugging Face Datasets, From Datasets to Data Frames, looking at the Class Distribution, How Long Are Our Tweets? From Text to Tokens: Character Tokenization, Word Tokenization, Subword Tokenization, Tokenizing the Whole Dataset, Training a Text Classifier: Transformers as Feature Extractors,

Fine-Tuning Transformers

Unit –V 08Hrs

NLP Applications: Machine translation, Basic issues in MT. Statistical translation, Sentiment Analysis, Chat-Bot, Question Answering System, Text Classification, Spell Checking and Market Intelligence. **Information Retrieval:** Vector space model, term weighting

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the approaches to syntax and semantics in Natural Language Processing, the various				
	types of language processors, the elements of formal language theory, the types of grammar, and				
	the computational morphology.				
CO2:	O2: Understand the basic parsing technique for context-free grammars, the data structures and				
	algorithms for parsing, and the approaches to ambiguity resolution.				
CO3:	Design and Develop agents that use Transformers for natural language understanding and				
	generation				
CO4:	Comprehend and compare different natural language models.				

Refere	Reference Books				
1	Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems, Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta & Harshit Surana ,1st Edition, 2020, O'Reilly, ISBN: 978-1-492-05405-4				
2	Steven Bird, Ewan Klein, Edward Loper, —Natural Language Processing with Python, Publisher: O'Reilly Media, June 2009, ISBN: 9780596516499				
3	Python 3 Text Processing with NLTK 3 Cookbook, Jacob Perkins 2014, 1st Edition, Packt Publishing, ISBN 978-1-78216-785-3				
4	Natural Language Processing with Transformers: Building Language Applications with Hugging Fac,Lewis Tunstall, Leandro von Werra, and Thomas Wolf, 2022, 1st Edition, O'Reilly Media, ISBN: 978-1-098-10324-8				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A	•			
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6 Unit 3: Question 5 or 6					
7 & 8 Unit 4: Question 7 or 8					
9 & 10	9 & 10 Unit 5: Question 9 or 10				
·	TOTAL	100			

Semester: V CLOUD COMPUTING

Category: Professional Core Elective-I (Group B) (Theory)

(Common to CS, CD & IS)

Course Code	:	IS355TBD	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3 Hours

Unit-I 08 Hrs

Defining Cloud Computing

Cloud Types, Examining the Characteristics of Cloud Computing, Assessing the Role of Open Standards

Understanding Services and Applications by Type

Defining Infrastructure as a Service (IaaS), Defining Platform as a Service (PaaS), Defining Software as a Service (SaaS), Defining Identity as a Service (IDaaS), Defining Compliance as a Service (CaaS)

Unit – II 08 Hrs

Understanding Cloud Architecture

Exploring the Cloud Computing Stack, Connecting to the Cloud

Understanding Service Oriented Architecture

Introducing Service Oriented Architecture, Defining SOA Communications, Managing and Monitoring SOA,

Relating SOA and Cloud Computing

Unit –III 09 Hrs

Cloud Computing Technology

Hardware and Infrastructure: Clients, Security, Network, Services

Accessing the Cloud: Platforms, Web Applications, Web APIs, Web Browsers

Cloud Storage: Overview, Cloud Storage Providers Standards: Application, Client, Infrastructure, Service

Unit –IV 09 Hrs

Understanding Abstraction and Virtualization

Using Virtualization Technologies, Load Balancing and Virtualization, Understanding Hypervisors,

Understanding Machine Imaging, Porting Applications

Capacity Planning

Capacity Planning, Defining Baseline and Metrics, Network Capacity, Scaling

Unit –V 08 Hrs

Developing Applications

Google, Microsoft, Intuit QuickBase, Cast Iron Cloud, Bungee Connect, Development, Troubleshooting,

Application Management

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understand the basics of cloud computing models and virtualization.				
CO2	Analyse the issues related to the development of cloud applications.				
CO3	Apply the concepts to design cloud based simple applications.				
CO4	Identify solutions through cloud based software for real world case studies.				

Refe	Reference Books				
1.	Barrie Sosinsky,"Cloud computing bible", CRC Press, 2010, ISBN: 978-0-470-90356-8.				
2	Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A practical Approach", Wiley				
2.	India, 2011, ISBN: 0071626948.				
3.	George Reese, "Cloud Application Architectures", Wiley India 2011, ISBN: 978-0596156367.				
4.	Eugene Ciurana, "Developing with Google App Engine" Wiley India 2011 ISBN: 978-1430218319.				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: VI		
	EN	TREPRENEURSHIP	& INTELLECTUAL PROPERTY (Theory)	RI	GHTS
Course Code	:	HS361TA	CIE	:	100 Marks
Credits: L: T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3 Hours

Unit-I 08 Hrs

Introduction to Entrepreneurship: Definition and Scope of Entrepreneurship, Importance of Entrepreneurship in Engineering Innovation and Economic Growth, Techniques for Identifying Entrepreneurial Opportunities, Types of Entrepreneurs: Innovative, Imitative, Fabian, Characteristics and Traits of Successful Entrepreneurs.

Role in economic development- Emerging Trends in Entrepreneurship, Entrepreneur and Entrepreneurship, characteristics of Entrepreneur, Myths about Entrepreneurship, Entrepreneur vs Intrapreneur, Role of Entrepreneurial Teams.

Activities: Case study on Entrepreneurship in Indian Scenario, <u>Ideation Workshops and Hackathons</u>.

Unit – II 08 Hrs

Entrepreneurial Opportunity Evaluation: Identifying Market Opportunities and Trends, Integration of Engineering Principles in Ideation Process, Cross-Disciplinary Collaboration for Technological Innovation, Assessing Market Feasibility and Demand Analysis, Evaluating Technical Feasibility: Prototype Development, Proof of Concept, Financial Feasibility Analysis: Cost Estimation, Revenue Projection, Break-Even Analysis.

Business Planning and Strategy Development: Elements of a Business Plan, Executive Summary, Company Description, Market Analysis, writing a Business Plan: Structure and Components, Strategic Planning: Vision, Mission, Goals, Objectives, SWOC Analysis, Competitive Strategy: Porter's Generic Strategies, Differentiation, Cost Leadership, Focus Strategy, Growth Strategies: Organic Growth, Mergers and Acquisitions, Strategic Alliances.

Activities: Writing a Business Plan on given templates, Developing Business Models and Prototypes Based on Generated Ideas.

Unit –III 08 Hrs

Entrepreneurial Marketing and Sales: Basics of Marketing: Product, Price, Place, Promotion (4Ps), Market Segmentation, Targeting, and Positioning (STP), Branding and Product Development Strategies, Creating a Unique Value Proposition (UVP) Digital Marketing: Social Media Marketing, Content Marketing, SEO, SEM, Sales Techniques and Customer Relationship Management (CRM).

Entrepreneurial Finance and Resource Management: Sources of Financing: Equity Financing, Debt Financing, Venture Capital, Angel Investors, Crowdfunding, Financial Management: Budgeting, Cash Flow Management, Financial Statements Analysis, Risk Management and Insurance, Human Resource Management: Recruitment, Training, Performance Evaluation, Legal and Ethical Issues in Entrepreneurship: Intellectual Property Rights, Contracts, Corporate Governance.

Activities: Case Studies and Practical Applications.

Unit –IV 09 Hrs

Introduction to IP: Types of Intellectual Property.

Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; protection of traditional knowledge, Infringement of patents and remedy, Case studies, Patent Search and Patent Drafting, Commercialization and Valuation of IP.

Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-registrable marks. Registration of Trade Mark; Deceptive similarity; Transfer of Trade Mark, ECO Label, Passing off, Infringement of Trade Mark with Case studies and Remedies.

Unit –V 09 Hrs

Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India.

Industrial Design: Introduction of Industrial Designs Features of Industrial, Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies.

Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Exceptions of Copy Right, Infringement of Copy Right with case studies.

Course	Outcomes: After completing the course, the students will be able to: -
CO1:	Understand the concepts of entrepreneurship and cultivate essential attributes to become an entrepreneur or Intrapreneur and demonstrate skills such as problem solving, team building, creativity and leadership.
CO2:	Comprehend the process of opportunity identification of market potential and customers while developing a compelling value proposition solutions.
CO3:	Analyse and refine business models to ensure sustainability and profitability and build a validated MVP of their practice venture idea and prepare business plan, conduct financial analysis and feasibility analysis to assess the financial viability of a venture.
CO4:	Apply insights into the strategies and methods employed to attain a range of benefits from these IPs and deliver an investible pitch deck of their practice venture to attract stakeholders
CO5:	Knowledge and competence related exposure to the various Legal issues pertaining to Intellectual Property Rights with the utility in engineering perspectives.

Ref	erence Books
1.	Donald F. Kuratko,"Entrepreneurship: Theory, Process, and Practice", South-Western Pub publishers, 10th edition, 2016,978-ISBN-13: 1305576247
	Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses", Crown Currency Publishers, 1st Edition, 2011, ISBN-13: 978-0307887894.
3.	Dr B L Wadehra, Law Relating to Intellectual Property, universa Law publishers 05th edition, ISBN: 9789350350300.
4.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR THE SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A				
1	Objective type of questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI						
	CRYPTOGRAPHY AND NETWORK SECURITY					
			(Theory and Lab)			
Course Code	:	IS362IA	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks	
Total Hours	:	45L+30P	SEE Duration	: 3 Hours		
	Unit-I 08 Hrs					

Classical Encryption Techniques: Symmetric Cipher Model: Cryptography, Cryptanalysis and Brute Force Attack, Substitution Techniques: Caeser cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One time pad., Transposition techniques, Rotor Machines, Steganography.

Unit – II 08 Hrs

Block Ciphers and the DES: Traditional Block Cipher Structure, Data Encryption Standard, A DES Example, Avalanche Effect, Strength of DES, Block Cipher Design principle.

Block Cipher Operation: Multiple Encryption and Triple DES, Electronic Code Book, Cipher Block Chaining mode, Cipher Feedback mode, Output Feedback mode, Counter Mode, XTS- AES mode for block oriented storage device.

Unit –III 08 Hrs

Public Key Cryptography and RSA: Principles of public key cryptosystems, RSA Algorithm, Diffie Hellman Key Exchange- Algorithm, Key exchange protocols, Man in the middle attack.

Cryptographic Hash functions: Applications, Two Simple hash functions, Requirements and Security, Hash functions based on Cipher block chaining, SHA-512 Logic, Round function, Example.

Unit –IV 08 Hrs

Message Authentication Codes: Message Authentication requirements, Functions, Requirements for MAC, Security of MAC, MAC Based on Hash functions: HMAC, MAC's based on block ciphers: DAA and CMAC, Authenticated Encryption: CCM and GCM, Digital Signatures: Properties, Attacks and Forgeries, Requirements, Direct digital signature.

Key Management and Distribution: Symmetric key distribution using symmetric encryption and asymmetric encryption, Distribution of public keys, X.509 Certificates, Public Key infrastructure.

Unit –V 08 Hrs

User Authentication: Remote User authentication principles and authentication using Symmetric encryption, Kerberos Version4, Version 5. **Transport Level Security:** Web Security, SSL, TLS **Electronic Mail Security:** PGP, IP **Security:** Encapsulating Security Payload, Format, Encryption and Authentication algorithms, padding, anti-replay service, transport and tunnel modes.

LABORATORY COMPONENT

PART- A

The following programs can be executed in C/C++/Java/Python

- 1. Write a program for error detecting code using CRC-CCITT (3 bits or more).
- 2. Demonstrate the working of Leaky bucket algorithm.
- 3. Write a program to create Ceaser and Play fair ciphers.
- 4. Write a program to implement Vigenère Cipher.
- 5. Write a program for simple RSA algorithm to encrypt and decrypt the data.
- 6. Implement the Diffie-Hellman protocol.

PART-B

Mini-Project Implementation

Note: The following are the possible list of topics to carry out mini project but not limited to:

- Using Machine learning for Privacy preservation of individual data.
- Implementation of Neural Key exchange protocol
- Security analysis for TELNET protocol.
- Simulation of SSL/TLS for security at Transport layer
- Employee website monitoring using packet analysis.
- Reversible Watermarking techniques in real-world applications
- IP spoofing demonstration.

- ARP Spoofing demonstration.
- Prevention of congestion collapse.
- Network border patrol demonstration.
- Evacuation of delayed packets in the network.
- Implementation of Access Control List.
- Development of Network monitoring framework
- Use of the performance monitoring system.
- Management of the IIS and FTP server.

Course	Course Outcomes: After completing the course, the students will be able to:-			
CO1	Identify and investigate for new solutions of network security threats, focusing on cryptography and			
	network security concepts.			
CO2	Apply security principles to design different computer applications.			
CO3	Demonstrate experiments for new network security solutions using cryptographic algorithms, protocols			
	to incorporate security in applications.			
CO4	Create and design simple network applications using the knowledge acquired about the services of			
	transport layer.			

Ref	Reference Books			
1.	William Stallings – Cryptography and Network Security, Principles and Practice, 6th Edition, Pearson India Education, 2014, ISBN: 978-93-325-1877-3.			
2.	Behrouz A Forouzan, Debdeep Mukhopadhyay – Cryptography and Network Security, 2nd Edition, Special Indian Edition, McGraw Hill Publication.			
3.	Matt Bishop – Introduction to Computer Security, Pearson Publications.			
4.	Menezes Bernard - Network Security and Cryptography, 1st Edition, Cengage Learning India, 2010, ISBN: 9788131513491			
5	Douglas Stinson- Cryptography Theory and Practice, 2nd Edition, Chapman & Hall/CRC, ISBN: 978-1584885085.			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS	MARKS			
PART A					
1	Objective type questions covering entire syllabus	20			
PART B					
(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
MAXIMUM MARKS FOR THE CIE THEORY			

Semester: VI								
COMPILER DESIGN								
			(Theory and La	ab)				
			(Common to CS &	& IS)				
Course Code	:	CS363IA		CIE	:	100 + 50 Marks		
Credits: L:T:P	Credits: L:T:P : 3:0:1							
Total Hours	Total Hours : 45L+30P SEE Duration : 3 + 3 Hours							
Unit-I 09 Hrs								

Unit-I 09 Hrs

Introduction to Compilation Process: Language Processors, The structure of Compiler, Evolution of programming Languages.

Lexical Analysis: The Role of Lexical Analyzer, Input Buffering, Specifications of Tokens, Recognition of Tokens

Unit – II 09 Hrs

Syntax Analysis: Introduction, Top-down Parsing, Bottom-up Parsing, Introduction to LR Parsing: Simple LR, Most powerful LR parsers (Excluding efficient construction and compaction of parsing tables), Using ambiguous grammars

Unit –III 09 Hrs

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation orders for SDD, Application of Syntax Directed Translation

Run-Time Environments: Storage Organization, Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management

Unit –IV 09 Hrs

Intermediate Code Generation: Variants of Syntax trees, Three address code, Types and Declaration-Type Expressions, Type Equivalence, Declaration, Translation of Expressions Control flow, Back patching, Intermediate Code for Procedures

Unit –V 09 Hrs

Code Generation: Issues in the design of Code Generator, Basic Blocks and Flow graphs, Optimization of Basic blocks, A Simple Code Generator, Peephole Optimization

Machine-Independent Optimizations: Principal Sources of Optimization, Introduction to Data-Flow Analysis

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Demonstrate the ability to design a compiler given a set of language features					
CO 2	Analyze various constructs of the language and develop lexical analyser, parser to transform input to					
	an appropriate representation					
CO 3	Apply the knowledge of computing and mathematics to generate the intermediate representation of					
	the code and to optimize the code					
CO 4	Design or develop solutions using modern compiler construction tools to build a compiler that converts					
	from a non-trivial high level language to machine code.					
CO 5	Exhibit skills like investigation, effective communication, working in team/Individual, following					
	ethical practices through experiential learning by implementing various phases of compiler and engage					
	in lifelong learning					

Refere	Reference Books					
1.	Compilers- Principles, Techniques and Tools, Alfred V Aho, Monica S.Lam, Ravi Sethi, Jeffrey D					
	Ullman; 2nd Edition, 2023, Pearson Education, ISBN-10 -9357054111, ISBN-13 -978-9357054119					
2.	Compiler Design, Santanu Chattopadhyay, 1st Edition, 2011, PHI Learning, ISBN-978-81-203-2725-2C					
3.	Compiler Construction Principles & Practice, Kenneth C Louden; Cengage Learning, 1st Edition, 2009. ISBN – 0534939724					
4.	Crafting a Compiler with C, Charles N. Fischer, Richard J. leBlanc, Jr., 1st Edition, 2009, Pearson Education, ISBN-13:978-0136067054, ISBN-10: 0136067050					

LABORATORY COMPONENT

PART – A

Student should be able to design phases of compiler by incorporating following features:

- 1. Writing a scanner, lexical analyzers for tokenizing code snippet written in programming languages such as C, C++, etc.
- 2. Experiment with scanner (LEX/FLEX) and parser (YACC/BISON) generators
- 3. Writing a predictive parser parsing for simple language constructs.
- 4. Translation of the language constructs to an intermediate form (e.g. three-address code),
- 5. Implementation of three address code using quadruple, triple and indirect triples.

PART – B

- 1. Writing simple compiler using compiler construction using tools such as Flex/lex, Bison,LLVM
- 2. Generation of target code (in assembly language) using compiler construction tool
- 3. Parsing sample code snippet written using programming languages such as C/C++ Objective C code and translating it into a representation using CLANG suitable for optimization
- 4. Code improvement and optimization using tools such as LLVM compiler.

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50	
	MAXIMUM MARKS FOR THE CIE	150	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	O. CONTENTS					
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3: Question 5 or 6					
7 & 8	7 & 8 Unit 4 : Question 7 or 8					
9 & 10	9 & 10 Unit 5: Question 9 or 10					
	TOTAL	100				

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS				
1	Write Up	10			
2	Conduction of the Experiments	20			
3	Viva	20			
	TOTAL	50			

Semester: VI								
SOFTWARE ENGINEERING WITH AGILE TECHNOLOGIES								
	(Common to CS, IS, CD & CY)							
	(Theory)							
Course Code	:	IS364TA		CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE : 100 Marks				
Total Hours	Total Hours : 40L SEE Duration : 3 Hours							
Unit-I 08 Hrs								

Overview: Introduction:

Professional Software Development, Software Engineering Ethics, Case studies.

Software Processes: Models, Process activities, Coping with Change, Process improvement.

Requirements Engineering and System Modeling:

Software Requirements: Functional and Non-functional requirements. Requirements Elicitation, Specification, Validation and Change

Unit – II 08 Hrs

System Modeling: Context models, Interaction models, Structural models, Behavioural models, Model driven architectura. Architectural Design: Design decisions, Architectural views, Architectural patterns and architectures Design and implementation: Object oriented design using UML, Design patterns, Implementation issues, Open-source development

Unit –III 08 Hrs

Software Testing: Development testing, Test-driven development, Release testing, User testing.

Software Evolution: Evolution processes. Legacy system evolution, Software maintenance Component based software engineering: Components and component models, CBSE processes, component composition

Unit –IV

Project Management: Risk Management, Managing People, Teamwork, Project Planning: Software Pricing, Plan driven development, Project Scheduling, Agile planning, Estimation Techniques, COCOMO cost modeling

Unit –V 08 Hrs

Agile Software Development: Introduction to agile methods, Agile development techniques, Agile project management and scaling agile methods.

Kanban, Flow, and Constantly Improving:

The Principles of Kanban, Improving Your Process with Kanban, Measure and Manage Flow, Emergent Behavior with Kanban

The Agile Coach: Coaches Understand Why People Don't Always Want to Change, Coaches Understand How People Learn, Coaches Understand What Makes a Methodology Work, The Principles of Coaching

Cours	Course Outcomes: After completing the course, the students will be able to:-						
CO1	Understand and apply key concepts and stages of the software development lifecycle, including						
	requirements analysis, design, implementation, testing, deployment, and maintenance.						
CO2	Demonstrate an ability to use the techniques and tools in the area of software engineering necessary for						
	engineering practice						
CO3	Examine the various software design and development solutions using appropriate techniques						
CO4	Students will be able to apply various Agile methodologies such as Scrum, Kanban, or XP effectively in						
	software development projects.						

08 Hrs

Refe	Reference Books						
1.	Ian Sommerville," Software Engineering", 9th Edition, Pearson Education, 2013, ISBN: 9788131762165						
2.	Learning Agile- Understanding Scrum, XP, Lean and Kanban, Andrew Stellman& Jennifer Greene, O'Reilly Media, 2015, ISBN 978-1-449-33192-4						
3.	Roger.S.Pressman," Software Engineering-A Practitioners Approach", 7 th Edition, Tata McGraw Hill, 2007, ISBN: 9780071267823						
4.	Pankaj Jalote," An Integrated Approach to Software Engineering", 3 rd Edition, Narosa Publishing House, 2013, ISBN: 9788173197024						
5	Rajib Mall, Fundamentals of Software Engineering, 3rd Edition, Prentice-hall Of India Pvt Ltd., 2012, ISBN: 9788120348981.						

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	IO. CONTENTS				
PART A					
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	5 & 6 Unit 3 : Question 5 or 6				
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI									
	INFORMATION RETRIEVAL								
	Category: Professional Core Elective-III (Group D) (Theory)								
Course Code	Course Code : IS365TDA CIE : 100 Marks								
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks								
Total Hours	:	45L		SEE Duration	:	03 Hours			

Unit-I	09 Hrs

Introduction:

Motivation, Basic concepts, Past, present, and future, The retrieval process.

Modeling: Introduction, A taxonomy of information retrieval models, Retrieval: Adhoc and filtering, A formal characterization of IR models, Classic information retrieval, Alternative set theoretic models, Alternative algebraic models,

Unit – II 09Hrs

Modeling:

Alternative probabilistic models, Structured text retrieval models, Models for browsing.

Retrieval Evaluation: Introduction, Retrieval performance evaluation, Reference collections.

Query Languages: Introduction, keyword-based querying, Pattern matching, Structural queries, Query protocols.

Query Operations: Introduction, User relevance feedback, Automatic local analysis, Automatic global analysis.

Unit –III 09Hrs

Text and Multimedia Languages and Properties:

Introduction, Metadata, Text, Markup languages, Multimedia.

Text Operations: Introduction, Document preprocessing, Document clustering, Text compression, Comparing text compression techniques.

Indexing and Searching: Introduction; Inverted Files; Other indices for text; Boolean queries; Sequential searching; Pattern matching; Structural queries; Compression.

Unit –IV 09 Hrs

Parallel and Distributed IR:

Introduction, Parallel IR, Distributed IR.

Searching the Web: Introduction, Challenges, Characterizing the web, Search engines, Browsing,

Metasearchers, Finding the needle in the haystack, Searching using hyperlinks.

Unit –V 09Hrs

User Interfaces and Visualization:

Introduction, Human-Computer interaction, The information access process, Starting points, Query specification, Context, Using relevance judgments, Interface support for the search process

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify and design the various components of an Information Retrieval system.				
CO2:	Apply machine learning techniques to text classification and clustering which is used for efficient Information Retrieval.				
CO3:	Analyze the Web content structure.				
CO4:	Evaluate the performance of search engines.				

Refere	Reference Books				
1	Ricardo Baeza – Yates, Berthier Ribeiro – Neto; Modern Information Retrieval; 1 st Edition; Pearson Education Limited; 2013; ISBN-9788131709771.				
2	David A. Grossman, Ophir Frieder; Information Retrieval Algorithms and Heuristics; 2 nd Edition; Springer Verlag; 2012; ISBN-9788181289179.				
3	William B. Frakes, Ricardo Baeza-Yates; Information Retrieval Data Structures and Algorithms; 1st Edition; Pearson Education Limited; 2012; ISBN-9788131716922.				
4	Hinrich Schutze, Prabhakar Raghavan, Christopher D Manning; Introduction To Information Retrieval; 1st Edition; Cambridge University Press India Pl; 2014; ISBN-9781107666399.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION	(THEORY)
CONTENTS	MARKS
PART A	
Objective type questions covering entire syllabus	20
PART B (Maximum of FOUR Sub-divisions only)	
Unit 1 : (Compulsory)	16
Unit 2 : Question 3 or 4	16
Unit 3: Question 5 or 6	16
Unit 4 : Question 7 or 8	16
Unit 5: Question 9 or 10	16
TOTAL	100

Semester: VI							
	HUMAN COMPUTER INTERFACE						
		Category: Profe	essional Core Electiv	ve-III (Group-D) (Theo	ory)	
Course Code	:	IS365TDB		CIE	:	100	
Credits: L:T:P	:	3:0:0		SEE	:	100	
Total Hours	:	45L		SEE Duration	:	3 Hours	
			Unit-I				09 Hrs

HCI Foundations

Input—output channels, Human memory, Thinking: reasoning and problem solving, Emotion, Individual differences, Psychology and the design of interactive systems, Text entry devices, Positioning, pointing and drawing, Display devices, Devices for virtual reality and 3D interaction, Physical controls, sensors and special devices, Paper: printing and scanning, Memory, processing and networks.

Unit – II 09 Hrs

Interaction and Design Process

Overview of Interaction Design Models, Models of interaction, Frameworks and HCI, Ergonomics, Interaction styles, Elements of WIMP interface, interactivity, the context of the interaction, paradigms for interaction. Interaction design basics, the process design, user focus, scenarios, Navigation design, screen design and layout, interaction and prototyping, Iterative design and prototyping.

Unit –III 09 Hrs

Design Models and Theories

Cognitive models, goal and task hierarchies, Linguistic models, physical and device models, cognitive architectures, socio-organizational issues and stake holder requirements, organizational issues, capturing requirements.

Unit –IV 09 Hrs

Collaboration And Communication

Face-to-face Communication, Conversation, Text-based Communication, Group working, Dialog design notations, Diagrammatic notations, Textual dialog notations, Dialog semantics, Dialog analysis and design.

Task Analysis

Difference between task analysis and other techniques, Task decomposition, Knowledge based analysis, Entity-relationship based techniques. Sources of information and data collection. Uses of task analysis.

Unit –V 09 Hrs

Groupware

Groupware systems, Computer mediated communication, Meeting and design support systems, shared applications and artifacts, Frameworks for groupware.

Ubiquitous computing and augmented Realities

Ubiquitous computing applications research, virtual and augmented reality, information and data visualization. Case studies.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Enumerate the basic concepts of human, computer interactions				
CO 2	Analyze and design the various interaction design models				
CO 3	Apply the interface design standards for evaluating the developed interactions				
CO 4	Establish the different levels of communication across the application models				
CO 5	Create human computer interactions through the prototype modelling				

Referen	nce Books
1.	Human-Computer Interaction by Alan Dix, Janet Finlay, G D Abowd, R Beale., 3rd Edition,
	Pearson Publishers, 2008, ISBN:978-0-13-046109-4.
2.	Shneiderman, Plaisant, Cohen and Jacobs, Designing the User Interface: Strategies for Effective
	Human Computer Interaction, 5th Edition, Pearson Publishers, 2010.
3.	Hans-Jorg Bullinger, "Human-Computer Interaction", Lawrence Erlbaum Associates, Publishers.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20)ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: VI			
			WEB FRAMEWO	RKS		
		Category: Profe	ssional Core Electiv	re-III (Group-D) (T	heo	ry)
		-	(Common to CS &	IS)		
Course Code	Course Code : CS365TDC CIE : 100					
Credits: L:T:P : 3:0:0 SEE : 100						
Total Hours	:	45L		SEE Duration	:	3 Hours

Unit-I 09 Hrs

The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements. **JavaScript (continued):**Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts

Unit – II 09 Hrs

JavaScript and HTML Documents: The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object.

Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.

Unit –III 09 Hrs

Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Cookies; Session Tracking.

XML: Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets.

Unit –IV 09 Hrs

Web Development Framework: AngularJS

Angular JS: Introduction, Angular JS Expressions, Modules, Data Binding, Controllers, DOM, Events, Forms, Validations.

Introduction to Node JS

Node JS and its advantages, Traditional Web Server Model, Node JS Process Model, Installation of Node JS, Node JS Basics, Modules Event Loop.

Introduction to React JS

Advantages of React JS, Understanding Components and Props, Handling Events, Working with Forms.

Unit –V 09 Hrs

Ajax: Overview of Ajax; History of Ajax; Ajax Technology; Implementing Ajax, Basics of Ajax: The Application; The Form Document; The Request Phase; The Response Document; The Receiver Phase; Cross-Browser Support.

Introduction to Django

What is Django, Django and Python, Django Model View Template , Installation of Django, Form Classes, Validation.

Course	Outcomes: After completing the course, the students will be able to: -
CO 1	Understand the basic syntax and semantics of web technology tools such as JavaScript, PHP and
	XML.
CO 2	Appy web technology tools for designing static and dynamic web pages.
CO 3	Investigate & web based design solution to a given problem using different modern web tools and appropriate techniques.
CO 4	Implement Client and Server side web based real-time applications using JavaScript, PHP, AJAX, Angular JS, Node JS, React JS and Django.
CO 5	Demonstrate good coding practices for web applications engaging in lifelong learning.

Ref	ference Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2.	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3.	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4.	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.
5.	Chris Northwood, 'The Full Stack Developer': Your Essential Guide to Everyday Skills, Apress, 2018, ISBN:484241525, 9781484241523

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS.	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: V	<u> </u>			
		Gener	ative Artificial I	ntelligence			
		Category: Pro	ofessional Core l	Elective-III (Grou	p-D) (Theory)	
		(Cor	nmon to AI, CS,	CD & IS)			
Course Code	:	AI365TDD		CIE	:	100 Mark	S
Credits: L: T: P	:	3:0:0		SEE	:	100 Mark	S
Total Hours	:	45L		SEE Duration	:	3.00 Hour	rs
	Unit-I 09 Hrs						

Introduction to Generative Deep Learning, Generative Modeling What Is Generative Modeling? Historical perspective on Generative AI, Generative Versus Discriminative Modeling, Introduction to Large Language Models (LLMs), Applications of Large Language Models, Limitations and Risks of Large Language Models

Unit – II 09 Hrs

Variational Autoencoders Introduction, Autoencoders, The Autoencoder Architecture the Encoder, The Decoder, Joining the Encoder to the Decoder, Analysis of the Autoencoder

Building a Variational Autoencoder The Encoder The Loss Function Analysis of the Variational Autoencoder Using VAEs to Generate Faces, Training the VAE, Analysis of the VAE, Generating New Faces, Latent Space Arithmetic, Morphing Between Faces

Unit –III 09 Hrs

Generative Adversarial Networks Introduction to GAN (GAN), The Discriminator, The Generator **Cycle GAN** Overview, The Generators (U-Net) The Discriminators Compiling the Cycle GAN Training the Cycle GAN Analysis of the Cycle GAN Creating a Cycle GAN to Paint Like Monet the Generators (ResNet) Analysis of the Cycle GAN.

Neural Style Transfer Content Loss Style Loss Total Variance Loss Running the Neural Style Transfer Analysis of the Neural Style Transfer Model

Unit -IV 09 Hrs

Diffusion Models Introduction Denoising Diffusion Models (DDM), The Flowers Dataset, The Forward Diffusion Process, The Reparameterization Trick, Diffusion Schedules, the Reverse Diffusion Process.

Energy-Based Models Introduction Energy-Based Models, The MNIST Dataset, The Energy Function Sampling, Using Langevin Dynamics

Unit -V 09 Hrs

Bias and Fairness in Generative AI: Understanding Bias in AI Types of biases (algorithmic, data, societal) Fairness Metrics Statistical parity, equal opportunity, disparate impact Mitigation Strategies Pre-processing, in-processing, and post-processing techniques

Ethical Design and Deployment of Generative AI Ethical AI Design Principles Human-centered design, ethical by design Deployment Challenges Real-world implementation, monitoring, and feedback loops Responsible AI Frameworks Guidelines and best practices for ethical deployment

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Apply the concepts and principles of Generative Artificial Intelligence to engineering
	requirements.
CO2:	Design and demonstrate proficiency in implementing and training various generative AI
	models using modern tools.
CO3:	Investigate the need for Generative AI techniques to solve real-world problems in diverse
	domains.
CO4:	Explore advanced topics and research directions in Generative AI and critically evaluate
	their potential applications.
CO5	Equip students with the knowledge to identify and address ethical issues in Generative AI,
	focusing on fairness, accountability, transparency, and human rights.

Refe	erence Books
1	"Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" by David Foster, 2 nd Edition, 2023. ISBN: 978-1492041948. Publisher: O'Reilly Media.
2	'Deep Learning" by Ian Good fellow, Yoshua Bengio, and Aaron Courville.2 nd Edition 2016, ISBN: 978-0262035613. Publisher: MIT Press.
3	"Fairness and Machine Learning: Limitations and Opportunities"; Author(s) Solon Barocas, Moritz Hardt, Arvind Narayanan, 2023, ISBN-10/ASIN: 0262048612, Publisher: MIT Press
4	"Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way" by Virginia Dignum, 1st Edition, 2021, ISBN 9783030303716, Publisher: MIT Press

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A	-				
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Environmental Control System.

Semester: VI						
	FUNDAMENTALS OF AEROSPACE ENGINEERING					
		Category: Institut	tional Electives-I	(Group-E) (Theory)	
Course Code	:	AS266TEA		CIE	:	100 Marks
Credits: L:T:P : 3:0:0						
Total Hours	:	45L		SEE Duration	:	3 Hours

10tal 110tils . 43L	SEE Duration . 3	110015		
Un	it-I	09 Hrs		
Basics of Flight Vehicles: History of avia	ation, International Standard atmosphere (ISA), Temperature,		
pressure and altitude relationships, Simple F	Problems on Standard Atmospheric Propertion	es, Classification of		
aircrafts, Anatomy of an aircraft & Helicopte	ers, Basic components and their functions.			
Uni	t – II	10 Hrs		
Aircraft Aerodynamics: Bernoulli's theo	orem, Centre of Pressure, Lift and Drag	g, Types of Drag,		
Aerodynamic Coefficients, Aerodynamic C	entre, Wing Planform Geometry, Airfoil N	omenclature, Basic		
Aerodynamic characteristics of Airfoil, Simp	le Numericals on Lift and Drag.			
Unit	t –III	12 Hrs		
Aerospace Propulsion: Introduction, Turbine Engines: Brayton Cycle, Operation of Turbojet, Turboprop,				
Turbofan, Turboshaft, RAMJET and SCRAMJET Engines, Rocket Engines: Principles of operation of Solid,				
Liquid, Hybrid, Nuclear and Electric Rockets.				
Introduction to Space Mechanics: Basic O	Orbital Mechanics-Types of Trajectories, I	Escape and Orbital		
Velocities, Kepler's Laws of Planetary Motion	on, Simple Numericals.			
Uni	t –IV	06 Hrs		
Aerospace Structures and Materials: Ge	neral types of construction-Monocoque, S	emi-Monocoque &		
Geodesic, Structure of Wing and Fuselage, M	Ietallic and Composite Materials.			
Uni	t –V	08 Hrs		
Aircraft Systems & Instruments: Instrument	nt Displays, Basic Air data systems & Pitot F	Probes- Mach meter,		
Air speed indicator, Vertical speed indicator,	Altimeter.			
Basics of Aircraft Systems: Hydraulic and pneumatic systems, Electrical System, Aircraft Fuel System,				

Course	Course Outcomes: At the end of this course the student will be able to:					
CO1:	Identify the fundamental nuances of Aerospace Engineering and appreciate their significance on the Flight Vehicles design and performance					
COI.	on the Flight Vehicles design and performance					
CO2:	Interpret the design parameters that influence the design of the Aerospace Vehicles systems					
CO2:	and its sub-systems					
CO3:	Evaluate critically the design strategy involved in the development of Aerospace vehicles					
CO4:	Categorically appraise the operation of the Aerospace Vehicles for different operating					
CO4:	conditions					

Ref	ference Books
1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Fundamentals of Aerodynamics, Anderson J.D, 5 th Edition, 2011, McGraw-Hill International Edition, New York ISBN:9780073398105.
3	Rocket Propulsion Elements, Sutton G.P., 8 th Edition, 2011, John Wiley, New York, ISBN: 1118174208, 9781118174203.
4	Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4
5	Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 3rd edition, 2011, ISBN: 9781119965206

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY						
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40				
	MAXIMUM MARKS FOR THE CIE THEORY					

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO	Q. NO CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of THREE Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8 Unit 4: Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Go, change the world

	Semester: VI								
	BIOINFORMATICS								
		Category: Inst	itutional Elective	s-I (Group-E) (Th	ioor	ry)			
Course Code	:	BT266TEB		CIE	:	100 Marks			
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Mark								
Total Hours	Total Hours : 45 Hrs SEE Duration : 3Hours								
Unit-I 09 Hrs									

Introduction to tools and databases: Introduction to Bioinformatics, Goals, Scope, Applications, Sequence databases, Structure databases, Special databases – genome and microarray, Applications of these databases, examples, Database similarity search: Unique requirements of database searching, Heuristic Database Searching, Basic Local Alignment Search Tool (BLAST), FASTA, Comparison of FASTA and BLAST, Database Searching with Smith-Waterman Method

Unit – II 09 Hrs

Sequence Analysis: Types of Sequence alignment -Pairwise and Multiple sequence alignment, Alignment algorithms, Scoring matrices, Statistical significance of sequence alignment. Multiple Sequence Alignment: Scoring function, Exhaustive algorithms, Heuristic algorithms, Profiles and Hidden Markov Models: Position-Specific scoring matrices, Profiles, Markov Model and Hidden Markov Model, Scoring matrices – BLOSSUM and PAM

Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation.

Unit –III 09 Hrs

Introduction to Next-Generation Sequencing (NGS) analysis: Sanger sequencing principles - history and landmarks, of Sequencing Technology Platforms, A survey of next-generation sequencing technologies, A review of DNA enrichment technologies, Base calling algorithms, Base quality, phred values, Reads quality checks, Interpretations from quality checks. Adapter and primer contamination. Processing reads using clipping of reads-Advantages and disadvantages of processing of reads, automation in NGS analysis and advantages (shell scripting)

Unit –IV 09 Hrs

Structural analysis & Systems Biology: Gene prediction programs – ab initio and homology-based approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and classification. Protein structure predictive methods using protein sequence, Protein identity based on composition. Structure prediction - Prediction of secondary structure, tertiary structure prediction methods, Scope, Applications. Concepts, implementation of systems biology, Mass spectrometry and Systems biology, Flux Balance analysis.

Unit –V 09 Hrs

Drug Screening: Introduction to Computer-aided drug discovery, target selection, ligand preparation and enumeration, molecular docking, post-docking processing, molecular dynamics simulations, applications and test cases, AI/ML in Drug discovery

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Gain proficiency in utilizing a range of bioinformatics tools and databases for comprehensive sequence and				
	structural analysis.				
CO2	Investigate and apply innovative sequencing technologies and analytical methods to solve complex biological				
	questions and advance research in genomics and molecular biology.				
CO3	Demonstrate expertise in NGS technologies, including performing data quality assessments, read processing,				
	and managing large-scale data.				
CO4	Apply bioinformatics tools for modeling and simulating biological processes, with a focus on gene prediction				
	using both ab initio and homology-based approaches.				

Refe	Reference Books				
1.	Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.				
2.	Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and medicine. CRC Press; 2005 Jun 23.				
3.	Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press; 2018 Jun 13.				
4.	Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics. WORLD SCIENTIFIC. 2017 Jul 26:1-21.				
5.	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.				
6.	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO. CONTENTS		MARKS			
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B				
(M	aximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related top	ics)			
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	9 & 10 Unit 5: Question 9 or 10				
	TOTAL	100			

Semester: VI INDUSTRIAL SAFETY ENGINEERING Category: Institutional Electives-I (Group-E) (Theory)								
								Course Code
Credits: L:T:P								
Total Hours	Fotal Hours : 40L SEE Duration : 3Hours							
Unit-I 08 Hrs								

Introduction Safety:

Introduction to industrial safety engineering, major industrial accidents, safety and health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation, Actuation transition, Causal factors, problems on OSHA

Unit – II 08 Hrs

Risk assessment and control: Risk assessment, Risk perception, acceptable risk, problems on net present value, internal rate of return, payback period concepts including real life examples.

Hazard Identification Methods: Preliminary Hazard List (PHL), worksheets, case study. Preliminary Hazard Analysis (PHA), Fault tree and Event tree analysis. Design and development of fault tree and event tree for high pressure reactor system.

Unit –III 08 Hrs

Hazard analysis: Hazard and Operability Study (HAZOP): Guide words, HAZOP matrix, Procedure, HAZOP studies on reactors, heat exchanger, design of HAZOP table, Failure Modes and Effects Analysis (FMEA) concept, methodology, problems of FMEA, examples.

Unit –IV 08 Hrs

Risk analysis on capital budgeting: Risk adjusted discount rate (RADAR) method, certainty equivalent approach, scenario analysis, probability distribution, quantification of risk using statistical parameters and associated problems.

Unit –V 08 Hrs

Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion and fire.

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understand the risk assessment techniques used in process industry				
CO2	Interpret the various risk assessment tools.				
CO3	Use hazard identification tools for safety management.				
CO4	Analyze tools and safety procedures for protection in process industries.				

Reference Books

- Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina,Lulu publication, ISBN:1291187235.
- 2. Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X.
- Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.
- ndustrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS				
	PART A	•			
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
·	TOTAL	100			

	Semester: VI							
	ADVANCED ENERGY STORAGE FOR E-MOBILITY Category: Institutional Electives-I (Group-E) (Theory)							
Cou	Course Code : CM266TEG CIE : 100 Marks							
Cred	Credits: L:T:P		3:0:0	SEE : 100		100 Marks		
Tota	Total Hours : 42L SEE Duration : 3.00 Hours						3.00 Hours	
Cou	rse Learning (Obje	ectives: The student	s will be able to				
1	Understand the	he fu	indamentals and tech	hnologies of energy s	storage in electric vel	nicle	S	
2	Analyze and	com	pare advanced batte	ry technologies for e	-mobility			
3	3 Impart the principles of electrochemistry for analyzing issues in electric/hybrid vehicles.							
4	4 Develop solutions for battery management systems and recycling of advanced storage devices.							
	Unit-I 07 Hrs							

Energy storage in electric vehicles

Introduction to E-mobility, background of alternative energy sources and sustainability. Types of electric vehicles and their salient features along with their energy requirement. Fundamentals of advanced battery technology. Battery characteristics. Specification of advanced battery for e mobility.

Unit – II 08 Hrs

Advanced lithium-ion batteries

Basic concepts of lithium batteries. Types of advanced cathode and anode materials employed in lithium batteries. Construction, working and future applications of lithium cobalt oxide, lithium iron phosphate, Lithium air, lithium sulfur and lithium polymer batteries with their advancement in vehicle electrification.

Unit –III 09 Hrs

Non lithium batteries for e mobility

Limitations of lithium batteries. Overview of non-lithium battery technology. Construction and working of advanced non-Lithium batteries such as Lead acid, Nickel Metal Hydride, Redox flow, Zebra, Sodium and Magnesium batteries. Electrode materials and electrolyte considerations in non lithium batteries. Performance comparison with lithium-ion batteries. Battery requirement in charging infrastructure.

Unit –IV 09 Hrs

Chemistry of alternative storage devices

Introduction to super capacitor. Construction, working and applications of supercapacitors along with the materials used in electrodes. Types of advanced supercapacitors. Application of supercapacitors in regenerative braking. Advancement in battery-supercapacitor hybrid, Battery-fuel cell hybrid, and Battery-solar cell hybrid electric vehicles with their advantages and limitations.

Unit –V 09 Hrs

Battery management and recycling:

Battery management systems (BMS): Fundamentals of battery management systems and controls, State-of-charge (SoC), state-of-health (SoH) and Cell balancing techniques.

Battery Thermal Management: Passive and active cooling systems. Safety mechanisms, thermal runaway and thermal management.

Battery recycling: Economic aspects, environmental safety and process of recycling of advanced batteries.

Course	Outcomes:	After	comp	leting t	he c	ourse,	the s	students	will be able to

CO1:	Implement the fundamentals of chemistry in advanced energy storage and conversion devices.								
CO2:	Apply the chemistry knowledge used for hybridization of various energy storage and conversion								
	devices.								
CO3:	Analyze the different battery system for achieving maximum energy storage for vehicle								
	electrification								
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy								
	consumption and recycling.								

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
3	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
1	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.
5	Electric Vehicle Technology Explained, James Larminie and John Lowry. 2nd Edition, Wiley,
3	ISBN-13: 978-1118505429.
6	Electric Vehicle Technology and Design, Antoni Gandia. CRC Press, ISBN-13: 978-1138551912.
7	Sustainable Transportation: Problems and Solutions. William R. Black, The Guilford Press,
/	ISBN-13: 978-1462532072.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	1	1	-	1
CO3	2	2	-	-	1	-	-	-	-	1	-	1
CO4	3	3	-	-	1	1	1	-	-	1	-	1

High-3: Medium-2: Low-1

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5 & 6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Semester: VI								
	ROBOTICS PROCESS AUTOMATION							
Cate	Category: Institutional Electives-I (Group-E) (Theory)							
Course Code	:	CS266TED		CIE	:	100		
Credits: L:T:P	Credits: L:T:P : 3:0:0							
Total Duration	:	36	•	SEE Duration	:	3 Hrs		

Unit – I 8 Hrs

RPA Concepts: RPA Basics, History of Automation, what is RPA? RPA vs Automation, Processes & Flowcharts, Programming Constructs in RPA, What Processes can be Automated? Types of Bots, Workloads that can be automated.

RPA Advanced Concepts: Standardization of processes, Setting up the Centre of Excellence, RPA Development methodologies, Difference from SDLC, RPA journey, RPA business case, RPA Team, Process Design Document/Solution Design Document, Industries best suited for RPA, Risks & Challenges with RPA, RPA and emerging ecosystem.

Unit – II 7 Hrs

RPA Tool Introduction: Introduction to UiPath - the User Interface, Types of Variables, Variables in UiPath, Managing Arguments, The Arguments Panel, Namespaces; Control flow statements in UiPath, Sequences and Flowcharts, Control Flow Activities

Data Manipulation Introduction, Data Manipulation Operations, Types of data storing variables, Text Manipulation, main string methods.

UiPath Recording: Basic, Desktop and Web Recording, Image and Native Citrix Recording, Input/output methods, Types of OCR, Data Scraping, Advanced Scraping techniques.

Unit – III 7 Hrs

Advanced Automation Concepts: Selectors, Types of Selectors (Full, partial, dynamic), Defining and Assessing Selectors, Customization, Debugging.

Image, Text & Advanced Citrix Automation – Introduction, Keyboard based automation, Information Retrieval, Best Practices

Excel Data Tables & PDF, Data Tables in RPA, Excel and Data Table, Extracting Data from Data Table, Anchors, Using anchors in PDF

Unit – IV 7 Hrs

Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Key concepts of email, email protocols, email automation in UiPath, email as input and output.

Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for solving issues, Catching errors.

Overview of orchestration Server, orchestrator functionalities, Connecting Bot to orchestrator

Unit – V 7 Hrs

Hyperautomation: Components and application of Hyperautomation, Automation versus hyperautomation, Benefits and challenges of hyperautomation, use cases, Phases (Integration, Discover, Orchestration and Governance), Trends in Hyperautomation (low-code/no-code platform, HaaS)

	Course Outcomes: After completing the course, the students will be able to
CO1	Understand RPA principles, its features and applications
CO2	Demonstrate proficiency in handling variables and decision making inside a workflow and data manipulation techniques
CO3	Gain insights into recording, Email Automation and exception handling and orchestrator.
CO4	Analyze the trends in automation and chose business strategy to design a real-world automation workflow.

Refere	nce Books:
1.	Alok Mani Tripathi, "Learning Robotic Process Automation, Publisher: Packt Publishing, Release Date: March 2018 ISBN: 9781788470940
2.	PASCAL BORNET, Intelligent automation: Welcome to the world of hyperautomation, World Scientific Publishing Company, ISBN-13: 978-9811235481 December 2020
3.	UiPath pdf manuals
4.	https://www.uipath.com/rpa/robotic-process-automation
5.	https://www.ibm.com/topics/hyperautomation
6.	https://www.pega.com/hyperautomation

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	O. CONTENTS						
	PART A	-					
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5 & 6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Semester: VI									
	INTELLIGENT TRANSPORTATION SYSTEMS								
	Category: Institutional Electives-I (Group-E) (Theory)								
Course Code	:	CV266TEE		CIE	:	100 Marks	5		
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	5		
Total Hours	:	40L		SEE Duration	:	3Hours			
Unit-I									

Introduction to Intelligent Transportation Systems (ITS): Historical background, Urbanisation, Motorisation, Transport system characteristics, Transport problems and issues, Challenges and opportunities in ITS: ITS-Today and tomorrow, ITS training and education needs, Role and importance of ITS in context of Indian Transport system and opportunity for sector growth of ITS.

Unit – II 08 Hrs

ITS Architecture: introduction, Functionalities required for User service, Logical architecture, Physical architecture, Equipment and Market packages, Need of ITS Architecture to solve problems in Urban area.

Technology building blocks for ITS: Introduction, Data acquisition, Communication tools, Data analysis and Traveller information. Various detection, Identification and collection methods for ITS.

Unit –III 08 Hrs

Traffic management system components and ITS: Introduction, objectives, traffic management measures, ITS for traffic management, Development of traffic management system, Traffic Management Centre, Advance Traffic Management System, Advanced Traveller Information System, Advance Vehicle Control Systems, Advance Public Transport System, Commercial Vehicle Operations, ITS For Intermodal Freight Transport.

Unit –IV 08 Hrs

ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines. ITS for Law Enforcement: Introduction, Enhance and support the enforcement traffic rules and regulations, ITS Funding options.

Unit –V 08 Hrs

ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing. ITS for smart cities and Case studies.

Course Outcomes: After completing the course, the students will be able to:-					
CO1	Identify and apply ITS applications at different levels				
CO2	llustrate ITS architecture for planning process				
CO3	Examine the significance of ITS for various levels				
CO4	Compose the importance of ITS in implementations				

Ref	erence Books
1	Pradip Kumar Sarkar and Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning Private Limited,
1.	Delhi,2018, ISBN-9789387472068
2.	Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning" Artech House
۷.	publishers (31 March 2003); ISBN-10: 1580531601
3.	Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008.
	ISBN-13: 978-1-59693-291-3
4	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola "Intelligent Transport
4.	Systems: Technologies and Applications" Wiley Publishing ©2015, ISBN:1118894782 9781118894781,
_	R.P Roess, E.S. Prassas, W.R. McShane. Traffic Engineering, Pearson Educational International, Third
5	Edition, 2004, ISBN-13: 978-0-13-459971-7.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	O. CONTENTS				
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
·	TOTAL	100			

	Semester: VI					
]		EALTH MONITOR			S
		Category: Insti	itutional Electives-I	(Group-E) (Theory))	
Course Code	se Code : CV266TEF CIE : 100 Marks					
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	••	3Hours
			Unit-I			08 Hrs
Structural Health:	Fac	tors affecting Healt	h of Structures, Cause	es of Distress, Regula	ar N	Maintenance, Importance
of maintenance		-		_		-
Structural Health	Mo	nitoring: Concepts.	, Various Measures,	Analysis of behavior	of	structures using remote
structural health mo	nito	oring, Structural Safe	ety in Alteration.	•		-
			Unit – II			08 Hrs
Materials: Piezo-e	lect	ric materials and ot	her smart materials, e	electro-mechanical in	mpe	edance (EMI) technique
adaptations of EMI	tecl	nnique, Sensor techn	ologies used in SHM		-	· · · · · · · · · · · · · · · · · · ·
Structural Audit: Assessment of Health of Structure, Collapse and Investigation, Investigation Management,						
SHM Procedures, S	SHM Procedures, SHM using Artificial Intelligence					
Unit –III 08 Hrs						
Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware						
requirements, Static	Re	sponse Measuremen	nt.	-		•
	Unit –IV 08 Hrs					
Dynamic Field Te	Dynamic Field Testing: Types of Dynamic Field Test, Stress History Data, Dynamic Response Methods,					
Hardware for Remote Data Acquisition Systems, Remote Structural Health Monitoring.						
Unit –V 08 Hrs						
Remote Structural Health Monitoring: Introduction, Hardware for Remote Data Acquisition Systems,						
Advantages, Case st	udi	es on conventional a	and Remote structural	health monitoring		•
Case studies: Structural Health Monitoring of Bridges, Buildings, Dams, Applications of SHM in offshore						
Structures- Methods used for non-destructive evaluation (NDE) and health monitoring of structural components						

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Diagnose the distress in the structure understanding the causes and factors.					
CO2	Understand safety aspects, components and materials used in Structural Health Monitoring.					
CO3	Assess the health of structure using static field methods and dynamic field tests.					
CO4	Analyse behavior of structures using remote structural health monitoring					

Refere	Reference Books					
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, 2006,					
	John Wiley and Sons, ISBN: 978-1905209019					
2	Health Monitoring of Structural Materials and Components Methods with Applications,					
	Douglas E Adams, 2007, John Wiley and Sons, ISBN:9780470033135					
3	Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan,					
	Vol1,2006, Taylor and Francis Group, London, UK. ISBN: 978-0415396523					
4	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, 2007, Academic					
	Press Inc, ISBN: 9780128101612					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	O. CONTENTS					
	PART A	-				
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
,	TOTAL	100				

	Semester: VI						
	HUMAN MACHINE INTERFACE (HMI)						
	Category: Institutional Electives-I (Group-E) (Theory)						
Course Code	:	EC266TEH		CIE	:	100 Marks	
Credits: L:T:P	Credits: L:T:P : 3:0:0						
Total Hours	:	45L		SEE Duration	:	03 Hrs	
	Unit-I 09 Hrs						

Foundations of HMI: The Human: History of User Interface Designing, I/O channels, Hardware, Software and Operating environments, The Psychopathology of everyday Things, Psychology of everyday actions, Reasoning and problem solving. The computer: Devices, Memory, Processing and networks. Interaction: Models, frameworks, Ergonomics, styles, elements, interactivity, Paradigms.

Introduction to HMI and Domains: Automotive, Industrial, CE, Medical, ECUs within car and their functionalities. Interaction between ECUs. Communication protocols for ECUs(CAN, LIN, Most, FlexRay, Ethernet etc)

Unit – II 09 Hrs

Automotive Human-Machine Interfaces: Automotive infotainment system - Evolution road map, Feature sets, System architecture, Trends, Human factors and ergonomics in automotive design, Automotive User Experience (UX) Design Principles, In-Vehicle Information Systems (IVIS), Driver-Assistance Systems (DAS) Interfaces, HMI design for adaptive cruise control, Voice and Gesture Recognition in Automotive HMIs, Touchscreen Interfaces and Controls, Usability Testing and Evaluation in Automotive HMIs, Safety Considerations and Regulations in Automotive HMIs, Emerging Technologies in Automotive HMIs, Human-Machine Interfaces for Autonomous Vehicles

Unit –III 09 Hrs

UX and Guidelines: Introduction to UX design - stages, theory, Design thinking, UX Study, Interaction concepts, Graphic design tools - Adobe Photoshop, Adobe XD, Blender, GIMP, Asset Design - Overview, Guidelines and norms, 2D/3D rendering, OpenGL, OSG.

Unit -IV **09 Hrs** HMI User Interface: User-centered HMI development of Web-Server. **Basics** process, Web-based HMI: Basics of **TwinCAT** and HTML, CSS. JavaScript. HMI on Mobile: Four Principles of Mobile UI Design, Benefits of Mobile HMIs, Mobile HMI Development Suites.

Unit –V 09 Hrs

HMI Control Systems: Introduction to Voice-Based HMI, Gesture-Based HMI, Sensor-Based UI controls. **Haptics in Automotive HMI**: Kinesthetic Feedback Systems, Tactile Feedback Systems, Haptics in Multimodal HMI, Automotive Use-Cases

HMI Testing: Limitations of Traditional Test Solutions, Case - Study: Bosch's HMI validation tool - Graphics Test Systems (GTS).

UI analytics: Usage patterns, Debugging, Performance Profiling, Use Cases.

Course Outcomes: After completing the course, the students will be able to:-						
CO1	Understanding the application of HMIs in various domain.					
CO2	Comparison of various communication protocols used in HMI development.					
CO3	Apply and analyse the car multimedia system free software and hardware evolution.					
CO4	Design and evaluate the graphic tools and advanced techniques for creating car dashboard multimedia					
	systems.					

Refer	Reference Books					
Touch based HMI; Principles and Applications, Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan,						
1.	Nature Switzerland AG, 1st Edition.					
2	Unity 2020 by Example: A Project based guide to building 2D, 3D augmented reality and Virtual reality					
2.	games from sratch, Robert Wells, Packt Publishing ltd, 2020.					
3.	GUI Design and Android Apps, Ryan Cohen, Tao Wang, Apress, Berkley, CA,2014.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	7 & 8 Unit 4: Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester: VI					
	ENERGY AUDITING & STANDARDS					
		Category: Instituti	ional Electives-I	(Group-E) (Theory)	
Course Code	:	EE266TEJ		CIE	:	50 Marks
Credits: L:T:P : 3:0:0 SEE : 50 Marks					50 Marks	
Total Hours	:	45 L		SEE Duration	:	2 Hours

Unit-I 06 Hrs

Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training.

Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Speed Measurement, Data Logger and Data Acquisition System,

Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of Power Plants, Energy Audit of Power Plant.

Unit – II 10 Hrs

Electrical-Load Management: Electrical Basics, Electrical Load Management, VariableFrequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit –III 09 Hrs

Communication & Standards:

Wireless technologies: WPANs, LAN, Wireless metropolitan area network, cellular network, satellite communication, Zigbee, Bluetooth, LAN, NAN

Wireline communication: Phone line technology, powerline technology, coaxial cable technology; Optical communication, TCP/IP networks

Unit –IV 09 Hrs

Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods.

Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency

Energy Audit of Steam-Distribution Systems : S team as Heating Fluid, Steam Basics, Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy Conservation Methods

Unit-V 09 Hrs

Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities.

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to: -		
CO 1	Explain the need for energy audit, prepare a flow for audit and identify the instruments needed.		
CO 2	O 2 Design and perform the energy audit process for electrical systems.		
CO 3	Design and perform the energy audit process for mechanical systems		
CO 4	Propose energy management scheme for a building		

Ref	ference Books
1.	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348.
2.	Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC Press, ISBN: 0-88173-542-6.
3.	Energy management, Sanjeev Singh and Umesh Rathore, 1st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014.
4.	Energy audit of building systems, Moncef Krarti, 2nd Edition, 2010, CRC Press ISBN: 9781439828717

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI						
	BIOMEDICAL INSTRUMENTATION					
		Category: Inst	itutional Electives-I (Group	o-E) (Theory)		
Course Code	:	EI266TEK	CIE	:	100 Mark	S
Credits: L:T:P	:	03:00:00	SEE	:	100 Mark	S
Total Hours	:	45L	SEE I	Ouration :	03 Hrs	
		•	Unit-I	•	•	09 Hrs

Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems.

Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recording electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrodes, Electrodes for ECG, EEG, EMG, Microelectrodes.

Unit – II 09 Hrs

Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Block diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine.

Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode system, Computerized analysis of EEG.

Unit –III 09 Hrs

Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average Heart Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct and indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method.

Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter.

Unit –IV 09 Hrs

Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultrasonic blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters.

Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmable Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchronizer.

Unit –V 09 Hrs

Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle of computed tomography, magnetic resonance imaging system and Ultrasonic imaging system.

Course	Course Outcomes: After completing the course, the students will be able to:-		
CO1	Understand the sources of biomedical signals and basic biomedical instruments.		
CO2	Apply concepts for the design of biomedical devices		
CO3	Analyze the methods of acquisition and signal conditioning to be applied to the physiological parameters.		
CO4	Develop instrumentation for measuring and monitoring biomedical parameters.		

Ref	erence Books
1.	Handbook of Biomedical Instrumentation, R. S. Khandpur,3 rd Edition, Reprint 2016, Tata McGraw-Hill, ISBN: 9780070473553.
2.	Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2 nd Edition, Reprint 2015, ISBN: 9780130771315.
3.	Medical instrumentation: Application and Design, J. G. Webster, 3 rd Edition, Reprint 2015, Wiley Publications, ISBN: 9788126511068.
4.	Principles of Medical Imaging, K.Kirk Shung, Michael B. Smith and Banjamin Tsui, Academic Press, 2016, ISBN: 978-0126409703.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20). Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	7 & 8 Unit 4: Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI									
	TELECOMMUNICATION SYSTEMS								
		Category: Insti	tutional Elective	es-I (Group-E) (Th	eory	y)			
Course Code	:	ET266TEM		CIE	:	100 Marks			
Credits: L:T:P	Credits: L:T:P : 3:0:0								
Total Hours	:	45L		SEE Duration	:	3 Hours			

Unit-I	8 Hrs
Introduction to Electronic Communication: The Significance of Human Communication	nunication,
Communication Systems, Types of Electronic Communication, Modulation and M	ultiplexing,
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.	
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.	
Radio Receivers: Super heterodyne receiver.	
Unit – II	10 Hrs
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK & QAM (Architecture).	
Wideband Modulation: Spread spectrum, FHSS, DSSS.	

Unit –III 10 Hrs

Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Subsystems,
Ground Stations, Satellite Applications, Global Positioning System.

Unit –IV 9 Hrs

Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Cables, Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Networks.

Unit –V 8 Hrs

Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Internet Telephony. **Wireless Technologies:** Wireless LAN, PANs and Bluetooth, Zig Bee, Mesh Wireless Networks, WiMax, and Wireless Metropolitan Area Networks.

Cours	Course Outcomes: After completing the course, the students will be able to :-				
CO1	CO1 Describe the basics of communication systems.				
CO2	Analyze the importance of modulation and multiple access schemes for communication systems.				
CO3	Analyze the operational concept of cell phone and other wireless technologies.				
CO4	Justify the use of different components and sub-system in advanced communication systems.				

Reference Books				
Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata				
McGraw Hill, ISBN: 978-0-07-337385-0.				
Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,				
ISBN: 0-02-800592-9.				
Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning				
ISBN: 981-240-081-8				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY				
#	# COMPONENTS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIMUM MARKS FOR THE CIE THEORY				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3: Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10 Unit 5: Question 9 or 10						
	TOTAL	100				

	Semester: VI								
MOBILE COMMUNICATION NETWORKS AND STANDARDS Category: Institutional Electives-I (Group-E) (Theory)									
Course Code	Course Code : ET266TEN CIE : 100 Marks								
Credits: L:T:P	Credits: L:T:P : 3:0:0								
Total Hours	Total Hours : 45L SEE Duration : 3 Hours								

Unit-I 9 Hrs

Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, Frequency Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, Frequency Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference Reduction Methods.

Unit – II 9 Hrs

Basic Cellular system: Consideration of components of a cellular system- A basic cellular system connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular system, Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of FDMA and TDMA systems

Unit –III 9 Hrs

Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers used in GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedure, GSM Hand-off Procedures.

Unit –IV 9 Hrs

3G Digital Cellular Technology: GPRS: GPRS technology, GPRS NetworkArchitecture, GPRS signalling, Mobility Management in GPRS. **UMTS:** UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specifications, UMTS Channels.

Unit –V 9 Hrs

Wireless Personal Area Networks: Network architecture, components, Bluetooth, Zigbee, Applications. **Wireless Local Area networks:** Network Architecture, Standards, Applications. Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN Network architecture, Protocol stack

Course	Course Outcomes: After completing the course, the students will be able to :-					
CO1	CO1 Describe the concepts and terminologies for Cellular Communication.					
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.					
CO3	Compare the performance features of 2G and 3G Cellular Technologies.					
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.					

Refe	Reference Books				
1.	Wireless Communications, T.L. Singal, 2nd Reprint 2011, Tata McGraw Hill Education Private Limited, ISBN: 978-0-07-068178-1				
2.	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar SManvi, 2010, Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.				
3.	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education, ISBN-13:978-0-19-806066-6.				
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition, Pearson, ISBN 97881-317-3186-4				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY				
# COMPONENTS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIMUM MARKS FOR THE CIE THEORY				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO. CONTENTS						
PART A						
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

	Semester: VI						
	ELEMENTS OF FINANCIAL MANAGEMENT Category: Institutional Electives-I (Group-E) (Theory)						
		Category. In	sututional Electives-1 (Group-E	(Theory)			
Course Code	:	IM266TEQ		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	S	EEE	:	100 Marks	
Total Hours	Total Hours : 45L SEE Duration : 3.00 Hours						
Unit-I						06	
						Hrs	

Financial Management-An overview: Financial Decisions in a firm, Goals of a firm, Fundamental principle of finance, Organization of finance function and its relation to other functions, Regulatory framework. **The financial System:** Functions, Assets, Markets, Market returns, Intermediaries, regulatory framework, Growth and trends in Indian financial system.

Unit – II 10 Hrs

Financial statements, Taxes and cash flow: Balance sheet, statement of profit and loss, items in annual report, manipulation of bottom line, Profits vs Cash flows, Taxes. (**Conceptual treatment only**)

Time Value of Money: Future value of a single amount, future value of an annuity, present value of a single amount, present value of an annuity.

Valuation of securities: Basic valuation model, bond valuation, equity valuation-dividend capitalization approach and other approaches.

Unit –III 10 Hrs

Risk and Return: Risk and Return of single assets and portfolios, measurement of market risk, relationship between risk and return, implications.

Techniques of Capital Budgeting: Capital budgeting process, project classification, investment criteria, Net present value, Benefit-Cost ratio, Internal Rate of return, Payback period, Accounting rate of return.

(Conceptual and Numerical treatment)

Unit –IV 10 Hrs

Long term finance: Sources- Equity capital, Internal accruals, preference capital, term loans, debentures. Raising long term finance- Venture capital, Initial Public Offer, Follow on Public Offer, Rights Issue, Private Placement, Term Loans, Investment Banking

Securities Market: Primary market vs Secondary market, Trading and Settlements, Stock market quotations and Indices, Govt. securities market, Corporate debt market.

Unit –V 09 Hrs

Working Capital – Policy and Financing: Factors influencing working capital requirements, Current assets financing policy, operating cycle and cash cycle. Accruals, trade credit, banks, public deposits, inter-corporate deposits, short term loans, right debentures, commercial paper, Factoring

(Conceptual treatment only)

Cours	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Explain the features and elements of a financial system.				
CO ₂	Recognize the relevance basic principles of financial management in decision making.				
CO3	Describe the processes and techniques of capital budgeting and working capital financing by				
	organizations.				
CO4	Demonstrate an understanding of various sources of finance.				

Ref	Reference Books:							
1	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw Hill							
1.	Education(India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5							
2.	Financial Management, I M Pandey, 12th edn, 2021, Pearson, ISBN-939057725X, 978-9390577255							
3.	Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018, McGraw							
3.	Hill Education(India) Pvt. Ltd, ISBN: 9353162181, 9789353162184							
1	Fundamentals of Financial Management, Eugene F Brigham, Joel F Houston, 8th Edition, 2014,							
4.	Cengage Learning, ISBN: 9781285065137, 1285065131.							

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	Y)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI							
	OPTIMIZATION TECHNIQUES						
		Category: Institution	onal Electives-I (Grou	ıp-E) (Theory)			
Course Code	:	IM266TER		CIE	:	100 M	Iarks
Credits: L:T:P	:	3:0:0		SEE	:	100 M	Iarks
Total Hours	:	42L		SEE Duration	:	03 Ho	urs
	IINIT – I 08 Hrs						

Introduction: OR Methodology, Definition of OR, Application of OR to Engineering and Managerial problems, Features of OR models, Limitations of OR.

Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution through Graphical Method. Problems on Product Mix, Blending, Marketing, Finance, Agriculture and Personnel.

Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.

UNIT – II 09 Hrs

Simplex Algorithm: How to Convert an LP to Standard Form, Preview of the Simplex Algorithm, Direction of Unboundedness, Why Does an LP Have an Optimal basic feasible solution, The Simplex Algorithm, Using the Simplex Algorithm to Solve Minimization Problems, Alternative Optimal Solutions, Degeneracy and the Convergence of the Simplex Algorithm, The Big M Method, The Two-Phase Simplex Method.

UNIT – III 09 Hrs

Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems.

Assignment Problem: Formulation of the Assignment problem, solution method of assignment problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).

UNIT – IV 08 Hrs

Project Management Using Network Analysis: Network construction, CPM & PERT, Determination of critical path and duration, floats. Crashing of Network. Usage of software tools to demonstrate N/W flow problems

UNIT – V 08 Hrs

Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without saddle point - Arithmetic method, Graphical Method, The rules of dominance

Course	Course Outcomes: After going through this course the student will be able to				
CO1	Understand the characteristics of different types of decision – making environments and the				
	appropriate decision making approaches and tools to be used in each type.				
CO2	Build and solve Transportation Models and Assignment Models.				
CO3	Design new simple models, like: CPM, PERT to improve decision –making and develop critical				
	thinking and objective analysis of decision problems.				
CO4	Implement practical cases, by using TORA, WinQSB, Excel, GAMS.				

Ref	Reference Books:				
1.	Operation Research An Introduction, Taha H A, 10 th Global Edition, 2017, Pearson Education Limited, ISBN 13: 978-1-292-16554-7				
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd Edition, 2007, John Wiley & Sons (Asia) Pvt Ltd, ISBN 13: 978-8126512560				
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 10 th Edition, 2017, McGraw Hill Education, ISBN 13: 978-9339221850				
4.	Operations Research Theory and Application, J K Sharma, 6 th Edition, 2009, Trinity Press, ISBN: 978-93-85935-14-5				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	CONTENTS	MARKS			
	PART A	•			
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester: VI					
	MOBILE APPLICATION DEVELOPMENT					
		Category: Ins	stitutional Electives	-I (Group-E) (Theor	ry)	
Course Code	:	IS266TEO		CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks						100 Marks
Total Hours	:	45L		SEE Duration	:	3 Hours

Prerequisite: - Programming in Java.

	Unit-I	09 Hrs
T 4 1 4		

Introduction:

Smart phone operating systems and smart phones applications. Introduction to Android, Installing Android Studio, creating an Android app project, deploying the app to the emulator and a device. UI Design: Building a layout with UI elements, Layouts, Views and Resources, Text and Scrolling Views.

Activities and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Intents, The Android Studio Debugger, Testing the Android app, The Android Support Library.

Unit-II 09 Hrs

User experience:

User interaction, User Input Controls, Menus, Screen Navigation, Recycler View, Delightful user experience, Drawables, Styles, and Themes, Material Design, Testing app UI, Testing the User Interface

Unit-III 09 Hrs

Working in the background:

Async Task and Async Task Loader, Connect to the Internet, Broadcast Receivers and Services. Scheduling and optimizing background tasks – Notifications, Scheduling Alarms, and Transferring Data Efficiently

Unit-IV 09 Hrs

All about data:

Preferences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQLite Database. Sharing data with content providers.

Advanced Android Programming: Internet, Entertainment and Services. Displaying web pages and maps, communicating with SMS and emails, Sensors.

Unit-V 09 Hrs

Hardware Support & devices:

Permissions and Libraries, Performance and Security. Fire base and AdMob, Publish and Polish, Multiple Form Factors, Using Google Services.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Comprehend the basic features of android platform and the application development process. Acquire				
	familiarity with basic building blocks of Android application and its architecture.				
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating				
	Android features in developing mobile applications.				
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android				
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting tools.				
CO4:	Create innovative applications, understand the economics and features of the app marketplace by offering				
	the applications for download.				

Refe	erence Books					
1	Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494					
2	AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089					
3	Android Programming–Pushing the limits, EricHellman, 2013, Wiley, ISBN-13:978-1118717370					
4	Professional Android2ApplicationDevelopment, RetoMeier, Wiley India Pvt. Ltd, 1stEdition, 2012, ISBN-13:9788126525898					
5	BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1stEdition,2011, ISBN-13:978-1-4302-3297-1					
6	AndroidDeveloperTraining-https://developers.google.com/training/android/ AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: V						
	AUTOMOTIVE MECHATRONICS					
	Category: Institutional Electives-I (Group-E) (Theory)					
Course Code	:	ME266TES		CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks					100 Marks	
Total Hours : 45 L SEE Duration : 03 Hours				03 Hours		

Total Hours	:	45 L		SEE Duration	:	03 Hours
	Unit-I 09 Hrs					
Automobile Engine	S					
Classifications of In	tern	al Combustion En	gines. Engine nomenclature and	mechanics. Mixture f	orm	ation – External,
internal, quality and	qua	antity control – ho	mogeneous and stratified injection	n. Thermodynamic pr	rinci	iples of Otto and
Diesel cycle. Charac	teri	stics – pressure cu	rve and energy yield, engine spe	ed, torque, and power		
			Unit-II			10 Hrs
Engine Auxiliary S	yste	ems:				
Turbocharger, Interc	ool	er, Exhaust manifo	old, 3-way catalytic convertor, Ex	khaust Gas Recirculat	ion	system.
Common Rail Fuel	Common Rail Fuel Injection system- Low pressure and high pressure fuel systems, Return line, Quantity control					
valve and Injectors.						
			Unit-III			10 Hrs
Vehicular Auxiliar	y Sy	ystems:				
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive Brakes - Disc and drum						
brakes, Antilock Br	brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In, Toe-Out, Caster and Camber angle.					
Classification of tyres, Radial, Tubeless.						

Classification of tyres, Radial, Tubeless.

Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator and air bags, Belt

Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.

Unit-IV

O9 Hrs

EV Technology: Types of EV's, ICE vs EV torque output, Architecture and Working of EV's.

Battery Thermal Management System, Regenerative braking, Safety system and Impacts of EV on the environment.

Unit-V 07 Hrs

Telematics in vehicles – Radio Transmission, Exchange of information, signal path & properties, Concept of radio waves.

Sensors: Oxygen sensors, Crankshaft/Cam shaft Sensor, Boost Pressure Sensor, Coolant Temperature Sensor, Hot Film Air Mass flow Sensor, Throttle Position Sensor, Rain/Light sensor

Course O	Course Outcomes: After completing the course, the students will be able to					
CO1:	CO1: Describe the functions of Mechatronic systems in a modern automobile					
CO2:	Evaluate the performance of an engine by its parameters					
CO3:	Analyse the automotive exhaust pollutants as per emission norms					
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit					

Refere	ence Books
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage Learning, ISBN-13: 978-1428311497
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004, SAE International, ISBN: 0768009871
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527
4.	Understanding Automotive Electronics, William B Ribbens, 5 th Edition, Butterworth–Heinemann, ISBN 0-7506-7008-8

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: (Internal Choice)	16					
5 & 6	Unit 3: (Internal Choice)	16					
7 & 8	Unit 4: (Internal Choice)	16					
9 & 10	Unit 5: (Internal Choice)	16					
	TOTAL	100					

	Semester: VI						
	MATHEMATICAL MODELLING Category: Institutional Electives-I (Group-E) (Theory)						
Cou	rse Code	:	MA266TEU		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours		:	45L		SEE Duration	:	3 Hours
Cou	rse Learning ()bje	ectives: The students	s will be able to			
1	1 Understand the basic procedure of mathematical modeling.						
2	Use the concepts of continuous and discrete process models to the problems arising in various fields.						
3	3 Apply the concepts of Markov modelling to stochastic problems.						
4	4 Demonstrate demonstrate the practical importance of graph theoretic models, variational problem and						
	dynamic programming.						

Unit-I	09 Hrs
Introduction to Mathematical Modelling:	
Basic concepts, steps involved in modelling, classification of models, assorted simple mathe	matical models
from diverse fields.	
Unit – II	09 Hrs
Mathematically Modelling Discrete Processes:	
Difference equations - first and second order, Introduction to Difference equations, Introdu	ction to discrete
models-simple examples, Mathematical modelling through difference equations in econ	nomics, finance,
population dynamics, genetics and other real world problems.	
Unit –III	09 Hrs
Markov modelling:	
Mathematical foundations of Markov chains, application of Markov Modelling to problems.	
Unit –IV	09 Hrs
Modelling through graphs:	
Graph theory concepts, Modelling situations through different types of graphs.	
Unit –V	09 Hrs
Variational Problem and Dynamic Programming:	
Optimization principles and techniques, Mathematical models of variational problem	n and dynamic
programming, Problems with applications.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explore the fundamental concepts of mathematical models arising in various fields engineering.					
CO2:	Apply the knowledge and skills of discrete and continuous models to understand various types of					
	analysis.					
CO3:	Analyze the appropriate mathematical model to solve the real world problem and to optimize the					
	solution.					
CO4:	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical					
	situations.					

Refere	Reference Books							
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN: 81-224-0006-X.							
2	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.							
3	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames, Cheltonham, ISBN: 0470271779, 9780470271773.							

4 Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13: 9780853122869.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)									
Q. NO.	CONTENTS									
PART A										
1	Objective type questions covering entire syllabus	20								
	PART B									
(Maxin	num of TWO Sub-divisions only; wherein one sub division will be a caselet in the rela	ted topics)								
2	Unit 1 : (Compulsory)	16								
3 & 4	Unit 2 : Question 3 or 4	16								
5 & 6	Unit 3: Question 5 or 6	16								
7 & 8	Unit 4: Question 7 or 8	16								
9 & 10	Unit 5: Question 9 or 10	16								
	TOTAL	100								

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	_	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

				Semester: VI						
	MATHEMATICS FOR QUANTUM COMPUTING									
	Category: Institutional Electives-I (Group-E) (Theory)									
Cou	Course Code : MA266TEV CIE : 100 Marks									
Cred	lits: L: T:P	:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	45L		SEE Duration	:	3 Hours			
Cou	rse Learning O	bj€	ectives: The student	s will be able to						
1	Understand th	e ba	asic principles of Qu	uantum Computing.						
2	Use the conce	pts	of Quantum gates to	o build quantum algor	rithms					
3	Apply the Qua	antı	ım algorithms to sol	ve the problems arisi	ng in various fields.					
4	Demonstrate t	he j	practical importance	of Quantum comput	ing.					
			Ţ	U nit-I			09 Hrs			
Univ	ntum Gates: ersal set of gat		quantum circuits, I	nit – II Dirac formalism, sup CNOT Gate, Phase						
_	position, Basic			CNOT Gate, Fliase	Gale, Z-1 decompo	SILIC	ni, Quantum Chcuit			
	<u>, , , , , , , , , , , , , , , , , , , </u>			nit —III			09 Hrs			
Deut		De		hm, Bernstein-Vazara ier transform.	ani Algorithm, Simo	on pe	eriodicity algorithm,			
			Uı	nit –IV			09 Hrs			
Quantum Algorithm - II: Grover search algorithm, Shor quantum factoring algorithm, Harrow-Hassidim-Lloyd (HHL) algorithm for solving linear system problems.										
Unit –V 09 Hrs										
Applications of Quantum Computing: Application to: order-finding, discrete logarithm, quantum counting, Boolean satisfiability problems(SAT),										

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of quantum computing.						
CO2:	Apply the knowledge and skills of quantum computing to understand various types of problems						
	arising in various fields engineering						
CO3:	Analyze the appropriate quantum algorithm to solve the real-world problem and to optimize the						
	solution.						
CO4 :	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical						
	situations.						

Reference Books										
1	An introduction	to	Quantum	Computing,	Phillip	Kaye,	Raymond	Laflamme,	2007,	Oxford
1	University press.									

graph theory problems.

	2	Quantum Computing for Everyone, Chris Bernhardt, 2020, The MIT Press, Cambridge.
	2	Quantum Computation and Quantum Information, M. A. Nielsen & I. Chuang, 2013, Cambridge
	3	University Press.
Ī	4	Quantum Computing for the quantum curious, Cirian Hughes et. al., 2021, Springer, ISBN 978-3-
	4	030-61600-7.
	_	Concise guide to quantum computing, Sergei Kurgalin, Sergei Borzunov, 2021, Springer, ISBN
	5	Concise guide to quantum computing, Sergei Kurgalin, Sergei Borzunov, 2021, Springer, ISBN 978-3-030-65051-3, ISBN 978-3-030-65052-0 (eBook).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)									
Q. NO.	CONTENTS									
	PART A									
1	Objective type questions covering entire syllabus	20								
	PART B									
(Maxin	num of TWO Sub-divisions only; wherein one sub division will be a caselet in the rela	ted topics)								
2	Unit 1 : (Compulsory)	16								
3 & 4	Unit 2 : Question 3 or 4	16								
5 & 6	Unit 3: Question 5 or 6	16								
7 & 8	Unit 4: Question 7 or 8	16								
9 & 10	Unit 5: Question 9 or 10	16								
	TOTAL	100								

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	1	-	-	3

High-3: Medium-2: Low-1

Semester: VI APPLIED PSYCHOLOGY FOR ENGINEERS Category: Institutional Electives-I (Group-E) (Theory) **HS266TEW CIE** 100 Marks **Course Code** Credits: L:T:P SEE 100 Marks 3:0:0 **Total Hours** : 45L **SEE Duration** 3 Hours **Unit-I** 08 Hrs

Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the Society: Today's Perspectives (Branches of psychology- Clinical, Industrial). Psychodynamic, Behavioristic, Cognitive, Humanistic, Psychological Research and Methods to study Human Behavior: Experimental, Observation, Questionnaire and Clinical Method.

Unit – II 08 Hrs

Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intelligence. Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of – Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.

Unit –III 10 Hrs

Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assessment.

Unit –IV 10 Hrs

Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.

Unit –V 09 Hrs

Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. **Psychological Stress:** a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control. Type A and Type B.**Psychological Counseling** - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.

Course	Outcomes: After completing the course, the students will be able to:-
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to behaviors and
	mental processes.
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and Humanistic theorists
	believe influence the learning process.
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in
	their enhancement and apply effective strategies for self-management and self-improvement.
CO4	Apply the theories into their own and others' lives in order to better understand their personalities and
	experiences.
CO5	Understand the application of psychology in engineering and technology and develop a route to
	accomplish goals in their work environment.

Ref	Reference Books				
1.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India				
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.				
3.	Organizational Behaviour, Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN – 81-				

Go, change the world

	317 - 1132 - 3
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5
5	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A	•			
1	Objective type questions covering entire syllabus	20			
	PART B				
(Ma	(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
•	TOTAL	100			

Semester: VI						
	UNIVERSAL HUMAN VALUES					
	Category: Institutional Electives-I (Group-E) (Theory)					
Course Code	Course Code : HS266TEY CIE : 100 Marks					
Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	42L		SEE Duration	:	3 Hours

Unit-I 10 Hrs

Introduction-Basic Human Aspiration, its fulfillment through All-encompassing Resolution. The basic human aspirations and their fulfillment through Right understanding and Resolution, Right understanding and Resolution are the activities of the Self, Self is central to Human Existence; All-encompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution.

Unit – II 10 Hrs

Right Understanding (Knowing)- Knower, Known & the Process. The domain of right understanding starts from understanding the human being (the knower, the experiencer and the doer); and extends up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).

Unit –III 08 Hrs

Understanding Existence (including Nature). A comprehensive understanding (knowledge) about the existence, which certainly includes the Nature. The need and the process of inner evolution (through self-exploration, self-awareness and self-evaluation)- particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).

Unit –IV 08 Hrs

Understanding Human Being. Understanding the human being comprehensively is the first step and the core theme of this course; human being as co-existence of the self and the body, the activities and potentialities of the self, Reasons for harmony/contradiction in the self.

Unit –V 08 Hrs

Understanding Human Conduct, All-encompassing Resolution & Holistic Way of Living. Understanding Human Conduct, Understanding different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All-encompassing Resolution covering all four dimensions of human endeavour viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from self to Nature and entire Existence.

Course	Course Outcomes: After completion of the course the students will be able to					
CO1	Understand the basic human aspiration with program of its fulfilment and meaning of resolution in the					
	complete expanse of human living.					
CO2	Understand human being in depth and see how self is central to human being					
CO3	Understand existence in depth and see how coexistence is central to existence					
CO4	Understand human conduct and the holistic way of living leading to human tradition					

Refe	Reference Books				
1	A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G P Bagaria, 2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1				
2	Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India, ISBN 978-8-174-46781-2				
3	Economy of Performance- a quest for social order based on non – violence, J C Kumarappa, 2010, Sarva-				
3	Seva-Sangh-Prakashan, Varanasi, India				
4	Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins, USA, ISBN, 0060803274, 9780060803278				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

Semester VI						
	INTERDISCIPLINARY PROJECT					
Course Code	:	IS367P	CIE	:	50 Marks	
Credits: L:T:P	:	0:0:3	SEE	:	50 Marks	
Total Hours	:	15P	SEE Duration	n :	2 Hours	

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the VI semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of VI semester.

Batch Formation:

- > Students are free to choose their project partners from any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house only.
- The project work is to be carried out by a team of two to four students.

Project Topic Selection:

The topics of the project work must be in the *field of Sustainable Development goals areas or in line* with CoE's(Centre of Excellence) identified by the college or List of project areas as given by Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

Continuous monitoring of project work will be carried out and cumulative evaluation will be done.

- > The students are required to meet their guides once in a week to report their progress in project work.
- ➤ Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Guide regularly.
- > For CIE assessment the project groups must give a final presentation with the draft copy of the project report.
- ➤ The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.

Cours	e Outcomes:
1	Identifying critical thinking and problem-solving abilities by analyzing and addressing interdisciplinary challenges, utilizing creative approaches and innovative solutions.
_	
2	Exhibit proficiency in conducting comprehensive research, including literature review, data collection, modelling, simulation, and analysis, to address significant technical challenges and propose innovative solutions.
3	Demonstrate the ability to do effective teamwork, leadership, project management, and communication skills, while adhering to ethical standards and professional responsibility in delivering the project outcomes within time and budget constraints.
4	Utilize appropriate engineering tools, technologies, and software to design, test, and implement project solutions, ensuring adherence to technical specifications, safety standards, and industry best practices.

CIE Assessment:

The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%

SEE Assessment:

The following are the weightages given during Viva Examination.

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Curriculum Design Process

Academic Planning and Implementation

Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

Knowledge and Attitude Profile (WK)

- WK1: A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- WK3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- WK4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- WK7: Knowledge of the role of engineering in society and identified issues in engineering
 practice in the discipline, such as the professional responsibility of an engineer to public safety
 and sustainable development.
- WK8: Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- WK9: Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

New Program Outcomes (PO)

- ➤ **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- ➤ PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- ▶ PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- ➤ PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- ➤ PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- ➤ **PO6**: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- ➤ **PO7:** Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- ➤ **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- ➤ PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- ➤ PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- ➤ PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing Al and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

VISION

Leadership in Quality Technical Education, Interdisciplinary
Research & Innovation, with a Focus on Sustainable and Inclusive
Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

