Midterm (II)

1. (20%) Finish the uncompleted logic diagram of 4-bit carry lookahead adder (CLA) design as shown in Fig. 1, where the PFA denotes partial full adder. Please answer the following items:

Fig. 1. Uncompleted 4-bit carry lookahead adder.

- (a) (4%) Show Boolean functions of carry propagate P_0 , P_1 , P_2 , P_3 and carry generate G_0 , G_1 , G_2 , G_3 .
- (b) (4%) Show Boolean functions of the carry-out bits C_1 , C_2 , C_3 , C_4 and sum S_0 , S_1 , S_2 , S_3 in terms of carry propagate and carry generate functions of (a).
- (c) (6%) Complete the block diagram of 4-bit carry lookahead adder (CLA) using AND, OR, XOR gates only.
- (d) (6%) Given delays of AND, OR, XOR gates with 2ut, 3ut, and 6ut, respectively, please calculate the propagation delay of 4-bit CLA.
- 2. (10%) Design a full-subtractor circuit (i.e., logic diagram) with three inputs, x, y, B_{in} , and two outputs Diff and B_{out} . The circuit subtracts $x y B_{in}$, where B_{in} is the input borrow, B_{out} is the output borrow, and Diff is the difference.
 - (a) (5%) show the truth table of a full-subtractor.
 - (b) (5%) show the logic diagram of a full-subtractor.
- 3. (5%) According to the Verilog code in Fig. 2, please write down the state equation.

```
module X1X2_FF (input X1, X2, CLK, output reg Q, output Q_b);
assign Q_b = ~Q;
    always @ (posedge CLK)
    case ({X1, X2})
    2'b00: Q <= !Q;
    2'b01: Q <= 1'b1;
    2'b10: Q <= 1'b0;
    2'b11: Q <= Q;
    endcase
endmodule</pre>
```

Fig. 2. Verilog Code.

4. (15%) According to the truth table in Table 1, please use a MUX-based approach to implement the Boolean function: $F(A, B, C, D) = \Sigma(0, 4, 6, 7, 8, 9, 11, 14)$. For example, the block diagram of function F is revealed in Fig. 3 while an 8x1 MUX is applied to implement the Table 1.

Table 1: Truth Table										
Iı	ıρι	ıts		Output						
A	A B C D		D	F						
0	0	0	0	1						
0	0	0	1	0						
0	0	1	0	0						
0	0	1	1	0						
0	1	0	0	1						
0	1	0	1	0						
0	1	1	0	1						
0	1	1	1	1						
1	0	0	0	1						
1	0	0	1	1						
1	0	1	0	0						
1	0	1	1	1						
1	1	0	0	0						
1	1	0	1	0						
1	1	1	0	1						
1	1	1	1	0						

Fig. 3. Block diagram using 8x1 MUX.

- (a) (7%) Using one 4x1 MUX and combinational gates to implement Table 1, please show the block diagram of function F.
- (b) (8%) Using one 2x1 MUX and combinational gates to implement Table 1, please show the block diagram of function F.
- 5. (22%) Considering the block diagram of Fig. 4, please answer the following questions:

Fig. 4. (a) Block diagram and (b) timing diagram.

- (a) (18%) According the block diagram of Fig. 4(a), finish the timing diagram in Fig. 4(b).
- (b) (2%) Is it a latch or flip-flop? Please provide the reasons.
- (c) (2%) Is the circuit positive level sensitive, negative level sensitive, positive edge trigger, or negative edge trigger?

- 6. (28%) Design a sequence detector that can <u>detect a sequence of three or more consecutive</u>

 <u>1s in a string of bits</u> coming through an input line. In this case, the detector output will be 1.

 Otherwise, the sequence detector output will be zero. Please answer the following questions.
 - (a) (5%) Please show the state diagram and state table in Table 2, where the branch denotes input and the circle denotes state(S)/output(Y). Given the state assignment as follow: S₀= AB=00, S₁= AB=01, S₂=AB=10, S₃=AB=11.
 - (b) (5%) Considering D flip-flop and applying the K-maps method to optimize the Boolean state functions and output equation \mathbf{Y} in terms of input \mathbf{X} and present state bits \mathbf{A} , \mathbf{B} , please write down the state equations ($\mathbf{D}_{\mathbf{A}}$ and $\mathbf{D}_{\mathbf{B}}$) and output equation (\mathbf{Y}) in terms of input and present states.
 - (c) (5%) Depict the logic diagram for this sequential sequence recognizer using positive edge-trigger D flip-flops with "Positive Asynchronous Reset" and "CLK" signals, and combinational gates.
 - (d) (5%) Considering JK flip-flop and applying the K-maps method to optimize the Boolean state functions and output equation Y in terms of input X and present state bits A, B, please write down the state equations (JA, KA, JB, and KB) and output equation (Y) in terms of input and present states.
 - (e) (5%) Depict the logic diagram for this sequential sequence recognizer using positive edge-trigger JK flip-flops with "Positive Asynchronous Reset" and "CLK" signals, and combinational gates.
 - (f) (3%) Does the circuit belong to Mealy machine or Moore machine? Please must give reasons.

Table 2 of Problem 5

Presen	t State	Input	Next	State	Output
A	В	X	\overline{A}	В	у
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0	0	0	
1	1	1	1	1	

The END