PadhAl: Backpropagation - the light math version

One Fourth Labs

Applying chain rule in a neural network

How many derivatives do we need to compute and how do we compute them?

1. Let's focus on the highlighted weight (w_{222}) of the following neural network

2. To learn this weight, we have to compute the partial derivative w.r.t loss function a $(w_{222})_{t+1} = (w_{222})_t - \eta * (\frac{\partial L}{\partial w_{222}})$

3. We can calculate $\frac{\partial L}{\partial w_{222}}$ as follows

a.
$$\frac{\partial L}{\partial w_{222}} = \left(\frac{\partial L}{\partial a_{22}}\right) \cdot \left(\frac{\partial a_{22}}{\partial w_{222}}\right)$$

b.
$$\frac{\partial L}{\partial w_{222}} = \left(\frac{\partial L}{\partial h_{22}}\right) \cdot \left(\frac{\partial h_{22}}{\partial a_{22}}\right) \cdot \left(\frac{\partial a_{22}}{\partial w_{222}}\right)$$

c.
$$\frac{\partial L}{\partial w_{222}} = \left(\frac{\partial L}{\partial a_{31}}\right) \cdot \left(\frac{\partial a_{31}}{\partial h_{22}}\right) \cdot \left(\frac{\partial h_{22}}{\partial a_{22}}\right) \cdot \left(\frac{\partial a_{22}}{\partial w_{222}}\right)$$

d.
$$\frac{\partial L}{\partial w_{222}} = \left(\frac{\partial L}{\partial \hat{y}}\right) \cdot \left(\frac{\partial \hat{y}}{\partial a_{31}}\right) \cdot \left(\frac{\partial a_{31}}{\partial h_{22}}\right) \cdot \left(\frac{\partial h_{22}}{\partial a_{22}}\right) \cdot \left(\frac{\partial a_{22}}{\partial w_{222}}\right)$$

4. Thus, by breaking the partial derivative into all the subdivisions along that path and multiplying it, we will get the required solution.