STA 601 homework 1

Lingyun Shao, MS stats Sep. 2, 2018

2.1

a)

This distribution can be obtained by calculating the row sums of the original chart. The marginal probability distribution of a father's occupation is:

Father's occupation (y_1)	farm	operatives	craftsmen	sale	professional
Marginal distribution $(p_{Y_1}(y_1))$	0.11	0.279	0.277	0.099	0.235

b)

This distribution can be obtained by calculating the column sums of the original chart. The marginal probability distribution of a son's occupation is:

Son's occupation (y_2)	farm	operatives	craftsmen	sale	professional
Marginal distribution $(p_{Y_2}(y_2))$	0.023	0.26	0.24	0.125	0.352

c)

This distribution can be obtained by normalizing (each probability divided by the sum of them) the row where the father's occupation is 'farm'. The conditional distribution of a son's occupation, given that the father is a farmer, is:

Son's occupation (y_2)	farm	operatives	craftsmen	sale	professional
Conditional distribution $(p_{Y_2 Y_1}(y_2 y_1 = farm))$	0.1635	0.318	0.282	0.073	0.1635

Note: The round-ups of last digits might vary because I try to make the sum equal to 1.

d)

This distribution can be obtained by normalizing the column where the son's occupation is 'farm'. The conditional distribution of a father's occupation, given that the son is a farmer, is:

Father's occupation (y_1)	farm	operatives	craftsmen	sale	professional
Conditional distribution $(p_{Y_1 Y_2}(y_1 y_2 = farm))$	0.7826	0.0869	0.0435	0.0435	0.0435

Note: The round-ups of last digits might vary because I try to make the sum equal to 1.

2.2

a)

Suppose Y_1, Y_2 are continuous (similarly for discrete situations, just substitute integral with sum and its corresponding notation) and respectively follow the pdf of $p_{Y_1}(y_1), p_{Y_2}(y_2)$.

By finition, $E[Y_i] = \int_{\mathcal{Y}_i} y_i p(y_i) dy_i$, where $p(y_i)$ refers to $p_{Y_i}(y_i)$. Because of independence, $p(y_1, y_2) = p(y_1)p(y_2)$. Therefore,

$$E[a_{1}Y_{1} + a_{2}Y_{2}] = \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} (a_{1}y_{1} + a_{2}y_{2})p(y_{1}, y_{2})dy_{1}dy_{2}$$

$$= \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} (a_{1}y_{1} + a_{2}y_{2})p(y_{1})p(y_{2})dy_{1}dy_{2}$$

$$= \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} [a_{1}y_{1}p(y_{1})p(y_{2}) + a_{2}y_{2}p(y_{1})p(y_{2})]dy_{1}dy_{2}$$

$$= \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} a_{1}y_{1}p(y_{1})p(y_{2})dy_{1}dy_{2} + \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} a_{2}y_{2}p(y_{1})p(y_{2})dy_{1}dy_{2}$$

$$= a_{1}\int_{\mathcal{Y}_{1}} y_{1}p(y_{1})dy_{1} + a_{2}\int_{\mathcal{Y}_{2}} y_{2}p(y_{2})dy_{2} \quad (\because \int_{\mathcal{Y}_{i}} p(y_{i})dy_{i} = 1)$$

$$= a_{1}\mu_{1} + a_{2}\mu_{2}$$

By the definition of variance, $Var[Y_i] = EY_i^2 - [EY_i]^2$. Therefore, $EY_i^2 = Var[Y_i] + E[Y_i]^2 = \mu_i^2 + \sigma_i^2$

$$Var[a_{1}Y_{1} + a_{2}Y_{2}] = E[(a_{1}Y_{1} + a_{2}Y_{2})^{2}] - (E[a_{1}Y_{1} + a_{2}Y_{2}])^{2}$$

$$= E[a_{1}^{2}Y_{1}^{2} + a_{2}^{2}Y_{2}^{2} + 2a_{1}a_{2}Y_{1}Y_{2}] - (a_{1}\mu_{1} + a_{2}\mu_{2})^{2}$$

$$= a_{1}^{2}E[Y_{1}]^{2} + a_{2}^{2}E[Y_{2}]^{2} + 2a_{1}a_{2}E[Y_{1}Y_{2}] - (a_{1}\mu_{1} + a_{2}\mu_{2})^{2} \quad (\because property \ of \ E)$$

$$= a_{1}^{2}(\mu_{1}^{2} + \sigma_{1}^{2}) + a_{2}^{2}(\mu_{2}^{2} + \sigma_{2}^{2}) + 2a_{1}a_{2}E[Y_{1}]E[Y_{2}] - (a_{1}\mu_{1} + a_{2}\mu_{2})^{2} \quad (\because independence)$$

$$= a_{1}^{2}(\mu_{1}^{2} + \sigma_{1}^{2}) + a_{2}^{2}(\mu_{2}^{2} + \sigma_{2}^{2}) + 2a_{1}a_{2}\mu_{1}\mu_{2} - (a_{1}\mu_{1} + a_{2}\mu_{2})^{2}$$

$$= a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma_{2}^{2}$$

b)

$$E[a_{1}Y_{1} - a_{2}Y_{2}] = \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} (a_{1}y_{1} - a_{2}y_{2})p(y_{1}, y_{2})dy_{1}dy_{2}$$

$$= \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} (a_{1}y_{1} - a_{2}y_{2})p(y_{1})p(y_{2})dy_{1}dy_{2}$$

$$= \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} [a_{1}y_{1}p(y_{1})p(y_{2}) - a_{2}y_{2}p(y_{1})p(y_{2})]dy_{1}dy_{2}$$

$$= \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} a_{1}y_{1}p(y_{1})p(y_{2})dy_{1}dy_{2} - \int_{\mathcal{Y}_{2}} \int_{\mathcal{Y}_{1}} a_{2}y_{2}p(y_{1})p(y_{2})dy_{1}dy_{2}$$

$$= a_{1}\int_{\mathcal{Y}_{1}} y_{1}p(y_{1})dy_{1} - a_{2}\int_{\mathcal{Y}_{2}} y_{2}p(y_{2})dy_{2} \quad (\because \int_{\mathcal{Y}_{i}} p(y_{i})dy_{i} = 1)$$

$$= a_{1}\mu_{1} - a_{2}\mu_{2}$$

$$Var[a_{1}Y_{1} - a_{2}Y_{2}] = E[(a_{1}Y_{1} - a_{2}Y_{2})^{2}] - (E[a_{1}Y_{1} - a_{2}Y_{2}])^{2}$$

$$= E[a_{1}^{2}Y_{1}^{2} + a_{2}^{2}Y_{2}^{2} - 2a_{1}a_{2}Y_{1}Y_{2}] - (a_{1}\mu_{1} - a_{2}\mu_{2})^{2}$$

$$= a_{1}^{2}E[Y_{1}]^{2} + a_{2}^{2}E[Y_{2}]^{2} - 2a_{1}a_{2}E[Y_{1}Y_{2}] - (a_{1}\mu_{1} - a_{2}\mu_{2})^{2} \quad (\because property \ of \ E)$$

$$= a_{1}^{2}(\mu_{1}^{2} + \sigma_{1}^{2}) + a_{2}^{2}(\mu_{2}^{2} + \sigma_{2}^{2}) - 2a_{1}a_{2}E[Y_{1}]E[Y_{2}] - (a_{1}\mu_{1} - a_{2}\mu_{2})^{2} \quad (\because independence)$$

$$= a_{1}^{2}(\mu_{1}^{2} + \sigma_{1}^{2}) + a_{2}^{2}(\mu_{2}^{2} + \sigma_{2}^{2}) - 2a_{1}a_{2}\mu_{1}\mu_{2} - (a_{1}\mu_{1} - a_{2}\mu_{2})^{2}$$

$$= a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma_{2}^{2}$$

2.3

The supports of X, Y, Z are denoted by $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$. We suppose these random variables are continuous (results can be similarly proved in discrete situations by substituting integral with sum and its corresponding notation) $p(x, y, z) \propto f(x, z)g(y, z)h(z)$, let p(x, y, z) = Cf(x, z)g(y, z)h(z), where $C \neq 0$ is a constant number.

a)

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}$$

$$= \frac{p(x,y,z)}{\int_{\mathcal{X}} p(x,y,z)dx}$$

$$= \frac{Cf(x,z)g(y,z)h(z)}{\int_{\mathcal{X}} Cf(x,z)g(y,z)h(z)dx}$$

$$= \frac{Cf(x,z)g(y,z)h(z)}{Cg(y,z)h(z)\int_{\mathcal{X}} f(x,z)dx}$$

$$= \frac{f(x,z)}{\int_{\mathcal{X}} f(x,z)dx}$$

$$\propto f(x,z)$$

Obviously, p(x|y,z) is a function of x and z.

b)

$$p(y|x,z) = \frac{p(x,y,z)}{p(x,z)}$$

$$= \frac{p(x,y,z)}{\int_{\mathcal{Y}} p(x,y,z)dy}$$

$$= \frac{Cf(x,z)g(y,z)h(z)}{\int_{\mathcal{Y}} Cf(x,z)g(y,z)h(z)dy}$$

$$= \frac{Cf(x,z)g(y,z)h(z)}{Cf(x,z)h(z)\int_{\mathcal{Y}} g(y,z)dy}$$

$$= \frac{g(y,z)}{\int_{\mathcal{Y}} g(y,z)dy}$$

$$\propto g(y,z)$$

Obviously, p(y|x, z) is a function of y and z.

 $\mathbf{c})$

$$\begin{split} p(z) &= \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y,z) dx dy \\ &= \int_{\mathcal{Y}} \int_{\mathcal{X}} Cf(x,z) g(y,z) h(z) dx dy \\ &= C h(z) \int_{\mathcal{Y}} g(y,z) dy \int_{\mathcal{X}} f(x,z) dx \end{split}$$

According to part a), we already have $p(x|y,z) = \frac{f(x,z)}{\int_{\mathcal{X}} f(x,z)dx}$

$$p(x|z) = \frac{p(x,z)}{p(z)}$$

$$= \frac{\int_{\mathcal{Y}} p(x,y,z)dy}{p(z)}$$

$$= \frac{C f(x,z)h(z) \int_{\mathcal{Y}} g(y,z)dy}{C h(z) \int_{\mathcal{Y}} g(y,z)dy \int_{\mathcal{X}} f(x,z)dx}$$

$$= \frac{f(x,z)}{\int_{\mathcal{Y}} f(x,z)dx}$$

$$= p(x|y,z)$$

Similarly, we can prove from the other side and get p(y|z) = p(y|x,z). It's no difference.

$$\frac{p(x,z)}{p(z)} = p(x|z) = p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}, \text{ so } \frac{p(x,z)}{p(z)} \frac{p(y,z)}{p(z)} = \frac{p(x,y,z)}{p(z)}. \text{ Therefore, we have } p(x|z)p(y|z) = p(x,y|z).$$

Actually, p(x|z) = p(x|y, z) is equivalent to conditional independence and it means that once we know the information of Z, Y provides no extra information about X. Therefore, we have proved that X and Y are conditionally independent given Z.

2.6

a)

Given $A \perp B|C$, $Pr(A \cap B|C) = Pr(A|C)Pr(B|C)$.

$$\begin{array}{lcl} Pr(A^c \cap B|C) & = & Pr(B|C) - Pr(A \cap B|C) \\ & = & Pr(B|C) - Pr(A|C)Pr(B|C) \\ & = & [1 - Pr(A|C)]Pr(B|C) \\ & = & Pr(A^c|C)Pr(B|C) \end{array}$$

$$\begin{array}{lcl} Pr(A \cap B^c | C) & = & Pr(A | C) - Pr(A \cap B | C) \\ & = & Pr(A | C) - Pr(A | C) Pr(B | C) \\ & = & [1 - Pr(B | C)] Pr(A | C) \\ & = & Pr(B^c | C) Pr(A | C) \end{array}$$

$$\begin{array}{lll} Pr(A^c \cap B^c | C) & = & Pr(A^c | C) - Pr(A^c \cap B | C) \\ & = & Pr(A^c | C) - [Pr(B | C) - Pr(A \cap B | C)] \\ & = & [1 - Pr(A | C)] - Pr(B | C) + Pr(A | C)(B | C) \\ & = & [1 - Pr(A | C)][1 - Pr(B | C)] \\ & = & P(A^c | C)P(B^c | C) \end{array}$$

As shown above, $A^c \perp B \mid C, A \perp B^c \mid C, A^c \perp B^c \mid C$ all hold if $A \perp B \mid C$ holds.

b)

One example where $A \perp B \mid C$ holds but $A \perp B \mid C^c$ does not is:

Suppose X_1, X_2 are i.i.d random variables from N(0, 1). We choose twice from $\{X_1, X_2\}$ with replacement to get two random variables T_1, T_2 .

$$A = \{T_1 > 0\}, B = \{T_2 > 0\}, C = \{We \ did \ not \ choose \ the \ same \ random \ variable\}$$

In this case, $Pr(A \cap B|C) = 1/4$ and Pr(A|C) = Pr(B|C) = 1/2. However, $Pr(A \cap B|C^c) = 1/2$ and $Pr(A|C^c) = Pr(B|C^c) = 1/2$. So this is a example where $A \perp B|C$ holds but $A \perp B|C^c$ does not.