```
In [1]: import numpy as np
   import pandas as pd
   from sklearn.metrics import confusion_matrix
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn.metrics import accuracy_score
   import matplotlib.pyplot as plt
%matplotlib inline
```

Data Preprocessing

```
In [2]: raw_data = pd.read_csv('wine_modified.csv')
In [3]: # Question 1
        raw_data = raw_data[raw_data.isnull().sum(axis=1)<8]</pre>
        raw_data = raw_data[raw_data['class'].notnull()]
        raw_data.shape[0]
Out[3]: 154
In [4]: # Ouestion 2
        raw data.isnull().sum(axis=0)
Out[4]: class
                                  0
        Alcohol
                                  0
        Malic acid
                                  0
        Ash
                                 95
                                  0
        Alcalinity of ash
        Magnesium
                                  9
        Total phenols
        Flavanoids
                                 35
        Nonflavanoid phenols
                                  0
        Proanthocyanins
                                  0
        Color intensity
                                  0
        Hue
                                  0
        OD280/OD315
                                  0
        Proline
        dtype: int64
In [5]: del raw data['Ash']
In [6]: avg = raw data['Magnesium'].mean()
        raw data['Magnesium'] = raw data['Magnesium'].fillna(avg)
In [7]: avg = raw_data['Flavanoids'].mean()
        raw data['Flavanoids'] = raw data['Flavanoids'].fillna(avg)
```

```
In [8]: raw_data.std(axis=0)
Out[8]: class
                                    0.766522
        Alcohol
                                    3.804067
        Malic acid
                                    1.116005
        Alcalinity of ash
                                    3.456794
        Magnesium
                                   14.440377
        Total phenols
                                    0.617237
        Flavanoids
                                    0.873573
        Nonflavanoid phenols
                                    0.127083
        Proanthocyanins
                                    0.587671
        Color intensity
                                    2.325204
        Hue
                                    0.229412
        OD280/OD315
                                    0.723261
        Proline
                                  303.033368
        dtype: float64
```

```
In [9]: #Question 3
plt.figure(figsize=(15,8))
plt.xlabel('Alcohol', fontsize=20)
plt.ylabel('Proline', fontsize=20)
plt.scatter(raw_data['Alcohol'], raw_data['Proline'], s=40,
c=raw_data['class'])
```

Out[9]: <matplotlib.collections.PathCollection at 0x1006c5cf8>


```
In [10]: # Outliers/Incorrect values Alcohol
    raw_data = raw_data[raw_data['Alcohol'] > 0]
```

```
In [11]: # Outliers/Incorrect values Proline
mean = raw_data['Proline'].mean()
std = raw_data['Proline'].std()
raw_data = raw_data[raw_data['Proline'].between(mean-4*std,mean+4*std)]
```

In [12]: raw_data

Out[12]:

	class	Alcohol	Malic acid	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Pro
0	1.0	14.23	1.71	15.6	127.000000	2.80	3.060000	0.28	2.29
1	1.0	13.20	1.78	11.2	100.000000	2.65	2.760000	0.26	1.28
2	1.0	13.16	2.36	18.6	101.000000	2.80	3.240000	0.30	2.8
4	1.0	13.24	2.59	21.0	118.000000	2.80	2.690000	0.39	1.82
5	1.0	14.20	1.76	15.2	112.000000	3.27	1.937983	0.34	1.97
6	1.0	14.39	1.87	14.6	96.000000	2.50	2.520000	0.30	1.98
7	1.0	14.06	2.15	17.6	121.000000	2.60	2.510000	0.31	1.25
8	1.0	14.83	1.64	14.0	97.000000	2.80	2.980000	0.29	1.98
9	1.0	13.86	1.35	16.0	98.000000	2.98	1.937983	0.22	1.85
10	1.0	14.10	2.16	18.0	99.496552	2.95	1.937983	0.22	2.38
12	1.0	13.75	1.73	16.0	89.000000	2.60	2.760000	0.29	1.8 ⁻
13	1.0	14.75	1.73	11.4	91.000000	3.10	3.690000	0.43	2.8
14	1.0	14.38	1.87	12.0	102.000000	3.30	1.937983	0.29	2.96
17	1.0	13.83	1.57	20.0	115.000000	2.95	3.400000	0.40	1.72
18	1.0	14.19	1.59	16.5	108.000000	3.30	1.937983	0.32	1.86
19	1.0	13.64	3.10	15.2	116.000000	2.70	1.937983	0.17	1.66
20	1.0	14.06	1.63	16.0	126.000000	3.00	3.170000	0.24	2.10
21	1.0	12.93	3.80	18.6	102.000000	2.41	2.410000	0.25	1.98
23	1.0	12.85	1.60	17.8	95.000000	2.48	2.370000	0.26	1.46
24	1.0	13.50	1.81	20.0	96.000000	2.53	2.610000	0.28	1.66
25	1.0	13.05	2.05	25.0	124.000000	2.63	2.680000	0.47	1.92
26	1.0	13.39	1.77	16.1	93.000000	2.85	1.937983	0.34	1.4
27	1.0	13.30	1.72	17.0	94.000000	2.40	2.190000	0.27	1.3
28	1.0	13.87	1.90	19.4	107.000000	2.95	2.970000	0.37	1.76
29	1.0	14.02	1.68	16.0	96.000000	2.65	2.330000	0.26	1.98
30	1.0	13.73	1.50	22.5	101.000000	3.00	3.250000	0.29	2.38
33	1.0	13.76	1.53	19.5	132.000000	2.95	2.740000	0.50	1.3
34	1.0	13.51	1.80	19.0	110.000000	2.35	2.530000	0.29	1.54
35	1.0	13.48	1.81	20.5	100.000000	2.70	1.937983	0.26	1.86
36	1.0	13.28	1.64	15.5	110.000000	2.60	2.680000	0.34	1.36

	class	Alcohol	Malic acid	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Pro
143	3.0	13.62	4.95	20.0	92.000000	2.00	1.937983	0.47	1.02
144	3.0	12.25	3.88	18.5	112.000000	1.38	1.937983	0.29	1.14
145	3.0	13.16	3.57	21.0	102.000000	1.50	0.550000	0.43	1.30
146	3.0	13.88	5.04	20.0	80.000000	0.98	0.340000	0.40	0.68
148	3.0	13.32	3.24	21.5	92.000000	1.93	0.760000	0.45	1.25
150	3.0	13.50	3.12	24.0	123.000000	1.40	1.570000	0.22	1.25
151	3.0	12.79	2.67	22.0	112.000000	1.48	1.937983	0.24	1.26
152	3.0	13.11	1.90	25.5	99.496552	2.20	1.280000	0.26	1.56
153	3.0	13.23	3.30	18.5	98.000000	1.80	0.830000	0.61	1.87
154	3.0	12.58	1.29	20.0	103.000000	1.48	0.580000	0.53	1.40
155	3.0	13.17	5.19	22.0	93.000000	1.74	0.630000	0.61	1.5
156	3.0	13.84	4.12	19.5	89.000000	1.80	0.830000	0.48	1.56
157	3.0	12.45	3.03	27.0	97.000000	1.90	0.580000	0.63	1.14
158	3.0	14.34	1.68	25.0	98.000000	2.80	1.310000	0.53	2.70
159	3.0	13.48	1.67	22.5	89.000000	2.60	1.937983	0.52	2.29
160	3.0	12.36	3.83	21.0	88.000000	2.30	0.920000	0.50	1.04
161	3.0	13.69	3.26	20.0	107.000000	1.83	0.560000	0.50	0.80
162	3.0	12.85	3.27	22.0	106.000000	1.65	1.937983	0.60	0.96
164	3.0	13.78	2.76	22.0	99.496552	1.35	0.680000	0.41	1.00
165	3.0	13.73	4.36	22.5	88.000000	1.28	0.470000	0.52	1.1
166	3.0	13.45	3.70	23.0	111.000000	1.70	0.920000	0.43	1.46
168	3.0	13.58	2.58	24.5	105.000000	1.55	1.937983	0.39	1.54
169	3.0	13.40	4.60	25.0	112.000000	1.98	0.960000	0.27	1.1
171	3.0	12.77	2.39	19.5	86.000000	1.39	0.510000	0.48	0.64
172	3.0	14.16	2.51	20.0	91.000000	1.68	0.700000	0.44	1.24
173	3.0	13.71	5.65	20.5	95.000000	1.68	0.610000	0.52	1.06
174	3.0	13.40	3.91	23.0	102.000000	1.80	1.937983	0.43	1.4
175	3.0	13.27	4.28	20.0	120.000000	1.59	0.690000	0.43	1.3
176	3.0	13.17	2.59	20.0	120.000000	1.65	0.680000	0.53	1.46
177	3.0	14.13	4.10	24.5	96.000000	2.05	1.937983	0.56	1.3

149 rows × 13 columns

Decision Tree

```
In [13]: train data = pd.read csv('wine train data.csv')
         train labels = pd.read csv('wine train labels.csv')
         val data = pd.read csv('wine val data.csv')
         val labels = pd.read csv('wine val labels.csv')
         test_data = pd.read_csv('wine_test_data.csv')
         test labels = pd.read csv('wine test labels.csv')
In [14]: total_data = pd.concat([train_data, val_data], ignore index=True)
         total labels = pd.concat([train labels, val labels], ignore index=True)
In [15]: #Question 4
         for crit in ['gini', 'entropy']:
             model = DecisionTreeClassifier(criterion=crit)
             model.fit(train_data, train_labels)
             pred = model.predict(val data)
             print ('Validation accuracy for criterion ' + crit + ' = ' + str(acc
         uracy_score(val_labels, pred)))
         Validation accuracy for criterion gini = 0.897435897436
         Validation accuracy for criterion entropy = 0.948717948718
In [16]: model = DecisionTreeClassifier(criterion='entropy')
         model.fit(total data, total labels)
         pred = model.predict(test data)
         print ('Test accuracy for criterion ' + 'entropy' + ' = ' + str(accuracy
         score(test labels, pred)))
         Test accuracy for criterion entropy = 0.794871794872
In [17]: # Question 5
         for sample split size in [2,5,10,20]:
             model = DecisionTreeClassifier(criterion='entropy', min_samples_spli
         t=sample split size)
             model.fit(train_data, train_labels)
             pred = model.predict(val data)
             print ('Validation accuracy for min sample split ' + str(sample spli
         t size) + ' = ' + str(accuracy score(val labels, pred)))
         Validation accuracy for min sample split 2 = 0.948717948718
         Validation accuracy for min sample split 5 = 0.974358974359
         Validation accuracy for min sample split 10 = 0.923076923077
         Validation accuracy for min sample split 20 = 0.948717948718
In [18]: model = DecisionTreeClassifier(criterion='entropy', min samples split=5)
         model.fit(total data, total labels)
         pred = model.predict(test data)
         print ('Test accuracy for criterion ' + 'entropy' + ' = ' + str(accuracy
         score(test labels, pred)))
         Test accuracy for criterion entropy = 0.820512820513
```

```
In [19]: # Question 6
    result=[]
    for data_size in [20,40,60,80, 100]:
        model = DecisionTreeClassifier(criterion='entropy', min_samples_spli
        t=5)
        model.fit(train_data[:data_size], train_labels[:data_size])
        pred = model.predict(val_data)
        result.append(accuracy_score(val_labels, pred))
        print ('Validation accuracy for data size ' + str(data_size) + ' = '
        + str(accuracy_score(val_labels, pred)))

Validation accuracy for data size 20 = 0.769230769231
Validation accuracy for data size 40 = 0.846153846154
```

Validation accuracy for data size 20 = 0.769230769231 Validation accuracy for data size 40 = 0.846153846154 Validation accuracy for data size 60 = 0.846153846154 Validation accuracy for data size 80 = 0.948717948718 Validation accuracy for data size 100 = 0.948717948718

```
In [20]: plt.ylabel('Validation Accuracy')
   plt.xlabel('Train Data Size')
   plt.plot([20,40,60,80, 100], result)
```

Out[20]: [<matplotlib.lines.Line2D at 0x112c31eb8>]

Nearest Neighbor

```
In [492]: # Normalize Data
mean = total_data.mean(axis=0)
std = total_data.std(axis=0)
total_data = (total_data - mean)/std
train_data = (train_data - mean)/std
val_data = (val_data - mean)/std
test_data = (test_data-mean)/std
```

In [23]: total_data

Out[23]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proa
0	12.53	5.51	2.64	25.0	96	1.79	0.60	0.63	1.10
1	13.49	1.66	2.24	24.0	87	1.88	1.84	0.27	1.03
2	13.75	1.73	2.41	16.0	89	2.60	2.76	0.29	1.81
3	12.29	2.83	2.22	18.0	88	2.45	2.25	0.25	1.99
4	14.10	2.16	2.30	18.0	105	2.95	3.32	0.22	2.38
5	11.66	1.88	1.92	16.0	97	1.61	1.57	0.34	1.15
6	13.45	3.70	2.60	23.0	111	1.70	0.92	0.43	1.46
7	13.73	4.36	2.26	22.5	88	1.28	0.47	0.52	1.15
8	12.69	1.53	2.26	20.7	80	1.38	1.46	0.58	1.62
9	12.42	4.43	2.73	26.5	102	2.20	2.13	0.43	1.71
10	14.22	1.70	2.30	16.3	118	3.20	3.00	0.26	2.03
11	13.05	1.73	2.04	12.4	92	2.72	3.27	0.17	2.91
12	13.17	5.19	2.32	22.0	93	1.74	0.63	0.61	1.55
13	13.11	1.01	1.70	15.0	78	2.98	3.18	0.26	2.28
14	12.37	0.94	1.36	10.6	88	1.98	0.57	0.28	0.42
15	11.87	4.31	2.39	21.0	82	2.86	3.03	0.21	2.91
16	11.84	2.89	2.23	18.0	112	1.72	1.32	0.43	0.95
17	12.42	1.61	2.19	22.5	108	2.00	2.09	0.34	1.61
18	14.38	1.87	2.38	12.0	102	3.30	3.64	0.29	2.96
19	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35
20	13.83	1.57	2.62	20.0	115	2.95	3.40	0.40	1.72
21	12.34	2.45	2.46	21.0	98	2.56	2.11	0.34	1.31
22	11.82	1.47	1.99	20.8	86	1.98	1.60	0.30	1.53
23	12.08	1.83	2.32	18.5	81	1.60	1.50	0.52	1.64
24	13.73	1.50	2.70	22.5	101	3.00	3.25	0.29	2.38
25	14.39	1.87	2.45	14.6	96	2.50	2.52	0.30	1.98
26	12.77	2.39	2.28	19.5	86	1.39	0.51	0.48	0.64
27	13.05	1.77	2.10	17.0	107	3.00	3.00	0.28	2.03
28	13.56	1.71	2.31	16.2	117	3.15	3.29	0.34	2.34
29	13.82	1.75	2.42	14.0	111	3.88	3.74	0.32	1.87

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proa
109	13.08	3.90	2.36	21.5	113	1.41	1.39	0.34	1.14
110	12.29	1.41	1.98	16.0	85	2.55	2.50	0.29	1.77
111	11.84	0.89	2.58	18.0	94	2.20	2.21	0.22	2.35
112	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46
113	12.25	4.72	2.54	21.0	89	1.38	0.47	0.53	0.80
114	13.64	3.10	2.56	15.2	116	2.70	3.03	0.17	1.66
115	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81
116	14.19	1.59	2.48	16.5	108	3.30	3.93	0.32	1.86
117	11.82	1.72	1.88	19.5	86	2.50	1.64	0.37	1.42
118	13.48	1.67	2.64	22.5	89	2.60	1.10	0.52	2.29
119	13.86	1.51	2.67	25.0	86	2.95	2.86	0.21	1.87
120	14.30	1.92	2.72	20.0	120	2.80	3.14	0.33	1.97
121	12.43	1.53	2.29	21.5	86	2.74	3.15	0.39	1.77
122	11.62	1.99	2.28	18.0	98	3.02	2.26	0.17	1.35
123	13.41	3.84	2.12	18.8	90	2.45	2.68	0.27	1.48
124	13.51	1.80	2.65	19.0	110	2.35	2.53	0.29	1.54
125	11.96	1.09	2.30	21.0	101	3.38	2.14	0.13	1.65
126	12.51	1.73	1.98	20.5	85	2.20	1.92	0.32	1.48
127	13.34	0.94	2.36	17.0	110	2.53	1.30	0.55	0.42
128	13.39	1.77	2.62	16.1	93	2.85	2.94	0.34	1.45
129	12.60	1.34	1.90	18.5	88	1.45	1.36	0.29	1.35
130	11.79	2.13	2.78	28.5	92	2.13	2.24	0.58	1.76
131	14.38	3.59	2.28	16.0	102	3.25	3.17	0.27	2.19
132	12.85	1.60	2.52	17.8	95	2.48	2.37	0.26	1.46
133	13.72	1.43	2.50	16.7	108	3.40	3.67	0.19	2.04
134	14.10	2.02	2.40	18.8	103	2.75	2.92	0.32	2.38
135	12.70	3.55	2.36	21.5	106	1.70	1.20	0.17	0.84
136	12.00	1.51	2.42	22.0	86	1.45	1.25	0.50	1.63
137	12.88	2.99	2.40	20.0	104	1.30	1.22	0.24	0.83
138	13.84	4.12	2.38	19.5	89	1.80	0.83	0.48	1.56

139 rows × 13 columns

```
In [493]: #Question 7
          model = KNeighborsClassifier(n neighbors=3)
          model.fit(total_data, total_labels)
          pred = model.predict(test_data)
          print('Test Accuracy = ' + str(accuracy_score(test_labels, pred)))
          Test Accuracy = 0.871794871795
          //anaconda/envs/py35/lib/python3.5/site-packages/ipykernel/ main .py:
          3: DataConversionWarning: A column-vector y was passed when a 1d array
           was expected. Please change the shape of y to (n_samples, ), for examp
          le using ravel().
            app.launch new instance()
In [494]: # Question 8
          dist_set = ['manhattan', 'euclidean', 'chebyshev']
          for dist in dist_set:
              model = KNeighborsClassifier(n neighbors=3, metric=dist)
              model.fit(train data, train labels)
              pred = model.predict(val data)
              print('Validation Accuracy for ' + dist + ' = ' +
          str(accuracy score(val labels, pred)))
          Validation Accuracy for manhattan = 0.948717948718
          Validation Accuracy for euclidean = 0.923076923077
          Validation Accuracy for chebyshev = 0.923076923077
          //anaconda/envs/py35/lib/python3.5/site-packages/ipykernel/ main .py:
          5: DataConversionWarning: A column-vector y was passed when a 1d array
           was expected. Please change the shape of y to (n samples, ), for examp
          le using ravel().
In [495]: model = KNeighborsClassifier(n neighbors=3, metric='manhattan')
          model.fit(total data, total labels)
          pred = model.predict(test_data)
          print('Test Accuracy = ' + str(accuracy score(test labels, pred)))
          Test Accuracy = 0.974358974359
          //anaconda/envs/py35/lib/python3.5/site-packages/ipykernel/ main .py:
          2: DataConversionWarning: A column-vector y was passed when a 1d array
           was expected. Please change the shape of y to (n samples, ), for examp
          le using ravel().
            from ipykernel import kernelapp as app
```

```
In [496]: #Question 9
    result = []
    k_set = [1,3,5,7,9]
    for k in k_set:
        model = KNeighborsClassifier(n_neighbors=k)
        model.fit(train_data, train_labels)
        pred = model.predict(val_data)
        result.append(accuracy_score(val_labels, pred))
    print(result)
    plt.ylabel('Accuracy')
    plt.xlabel('K')
    plt.plot(k_set, result)
```

[0.94871794871794868, 0.92307692307692313, 0.94871794871794868, 0.97435897435, 0.94871794871794871794868]

//anaconda/envs/py35/lib/python3.5/site-packages/ipykernel/__main__.py:
8: DataConversionWarning: A column-vector y was passed when a 1d array
was expected. Please change the shape of y to (n_samples,), for examp
le using ravel().

Out[496]: [<matplotlib.lines.Line2D at 0x11c93b358>]


```
In [497]: model = KNeighborsClassifier(n_neighbors=7)
    model.fit(total_data, total_labels)
    pred = model.predict(test_data)
    print('Test Accuracy = ' + str(accuracy_score(test_labels, pred)))
```

Test Accuracy = 0.923076923077

//anaconda/envs/py35/lib/python3.5/site-packages/ipykernel/__main__.py:
2: DataConversionWarning: A column-vector y was passed when a 1d array
was expected. Please change the shape of y to (n_samples,), for examp
le using ravel().

from ipykernel import kernelapp as app

```
In [498]: #Question 10
   model = KNeighborsClassifier(n_neighbors=3)
   result = []
   train_size = [20,40,60,80,100]
   for s in train_size:
        model.fit(train_data[:s], train_labels[:s])
        pred = model.predict(val_data)
        result.append(accuracy_score(val_labels, pred))
   print(result)
   plt.ylabel('Accuracy')
   plt.xlabel('Number of training samples')
   plt.plot(train_size, result)
```

[0.94871794871794868, 1.0, 1.0, 1.0, 0.92307692307692313]

//anaconda/envs/py35/lib/python3.5/site-packages/ipykernel/__main__.py:
8: DataConversionWarning: A column-vector y was passed when a 1d array
was expected. Please change the shape of y to (n_samples,), for examp
le using ravel().

Out[498]: [<matplotlib.lines.Line2D at 0x11c246c50>]

In []: