1a. Prova - Estat para CC

Renato Assunção - DCC, UFMG

Março de 2014

1. Considere um modelo de regressão linear em que a matriz de desenho \mathbf{X} é de dimensão $n \times 1$ com apenas uma única coluna. Esta coluna é a coluna de 1's. Isto é,

$$\mathbf{X} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

- Explique geometricamente o que é o espaço $\mathcal{M}(\mathbf{X})$ neste modelo particular.
- Obtenha a matriz \mathbf{H} de projeção ortogonal de \mathbf{Y} no espaço $\mathcal{M}(\mathbf{X})$.
- Obtenha o vetor projetado $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$.
- Qual a expressão de de $\hat{\beta}$?
- ullet O que é o vetor de resíduos ${f r}$ neste caso?

Solução:

- $\mathcal{M}(\mathbf{X}) = \{c\mathbf{1} : c \in \mathbb{R}\}$. Isto é, $\mathcal{M}(\mathbf{X})$ é formado pelos múltiplos do vetor 1.
- Por definição,

$$\mathbf{H} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' = \mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}'$$
 e $\mathbf{1}'\mathbf{1} = (1, \dots, 1) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = n$

Então

$$\mathbf{H} = \frac{1}{n} \mathbf{1} \mathbf{1}' = \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \dots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

- Temos $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y} = \bar{Y}\mathbf{1}$ onde $\bar{Y} = (Y_1 + \ldots + Y_n)/n$.
- $\hat{\boldsymbol{\beta}} = \bar{Y}$
- Temos

$$\mathbf{r} = \mathbf{Y} - \bar{Y}\mathbf{1} = \begin{bmatrix} Y_1 - \bar{Y} \\ Y_2 - \bar{Y} \\ \vdots \\ Y_n - \bar{Y} \end{bmatrix}$$

2. Considere o modelo de regressão usual com matriz de desenho \mathbf{X} de dimensão $n \times p$ cuja primeira coluna é o vetor $\mathbf{1}$. Mostre que a soma dos resíduos $\sum_i r_i$ é igual a zero.

Solução: O vetor de resíduos é dado por $\mathbf{r} = (\mathbf{I} - \mathbf{H}) \mathbf{Y}$ onde \mathbf{H} é a matriz de projeção ortogonal no espaço das combinações lineares das colunas de \mathbf{X} .

A soma $\sum_{i} r_i$ é igual ao produto interno dos vetores 1 e r:

$$r_1 + \ldots + r_n = \mathbf{r'1}$$

$$= \mathbf{Y'(I - H)' 1}$$

$$= \mathbf{Y'(I - H) 1} \quad \text{pois } \mathbf{H} \text{ \'e sim\'etrica}$$

$$= \mathbf{Y'(1 - H1)}$$

$$= \mathbf{Y'(1 - 1)}$$

$$= 0$$

A penúltima passagem é justificada pois 1 pertence ao espaço $\mathcal{M}(\mathbf{X})$ já que 1 é umas das colunas de \mathbf{X} . Assim, a projeção ortogonal de 1 em $\mathcal{M}(\mathbf{X})$ é o próprio 1.

3. Mostre que o vetor de resíduos \mathbf{r} é ortogonal ao vetor ajustado $\hat{\mathbf{Y}}$ e conclua que eles são vetores aleatórios independentes. Assuma o modelo de regressão usual com matriz de desenho \mathbf{X} $n \times p$ cuja primeira coluna é o vetor $\mathbf{1}$.

Solução: Temos

$$\begin{array}{lll} \langle \mathbf{r}, \hat{\mathbf{Y}} \rangle & = & \mathbf{r}' \hat{\mathbf{Y}} \\ & = & \mathbf{Y}' (\mathbf{I} - \mathbf{H})' \; \mathbf{H} \mathbf{Y} \\ & = & \mathbf{Y}' (\mathbf{I} - \mathbf{H}) \; \mathbf{H} \mathbf{Y} & \mathrm{pois} \; \mathbf{H} \; \mathrm{\acute{e}} \; \mathrm{sim\acute{e}trica} \\ & = & \mathbf{Y}' (\mathbf{H} - \mathbf{H}^2) \mathbf{Y} \\ & = & \mathbf{Y}' (\mathbf{H} - \mathbf{H}) \mathbf{Y} \\ & = & 0 \end{array}$$

Como \mathbf{r} e $\hat{\mathbf{Y}}$ são transformações lineares do vetor gaussiano multivariado \mathbf{Y} , a distribuição conjunta do vetor $(\mathbf{r}, \hat{\mathbf{Y}})$ de dimensão 2n é uma normal gaussiana com matriz de covariância $2n \times 2n$. O bloco (1,2) de dimensão $n \times n$ desta matriz representa a matriz de covariância entre \mathbf{r} e $\hat{\mathbf{Y}}$ e ele é dado por

$$Cov(\mathbf{r}, \hat{\mathbf{Y}}) = Cov((\mathbf{I} - \mathbf{H})\mathbf{Y}, \mathbf{H})\mathbf{Y})$$

$$= (\mathbf{I} - \mathbf{H})Cov(\mathbf{Y}, \mathbf{Y})\mathbf{H}'$$

$$= (\mathbf{I} - \mathbf{H})\sigma^{2}\mathbf{I}\mathbf{H}'$$

$$= \sigma^{2}(\mathbf{I} - \mathbf{H})\mathbf{H}$$

$$= \sigma^{2}(\mathbf{H} - \mathbf{H}^{2})$$

$$= \sigma^{2}(\mathbf{H} - \mathbf{H})$$

No caso gaussiano, covariância (ou correlação) nula implica independência. Assim, conclímos que ${\bf r}$ e $\hat{\bf Y}$ são independentes.

4. Seja $X_1, \ldots X_n$ v.a.'s i.i.d. N(0,1). Defina $Y_1 = X_1$ e $Y_i = X_i - X_{i-1}$ para $i=2,\ldots,n$. Encontre a distribuição do vetor $\mathbf{Y} = (Y_1,\ldots,Y_n)'$.

Solução: O vetor **X** segue uma distribuição gaussiana multivariada $N_n(\mathbf{0}, \mathbf{I})$ e

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ \vdots \\ X_n \end{bmatrix} = \mathbf{AX}$$

Portanto, Y também é um vetor gaussiano $N_n(\mathbf{A0}, \mathbf{AIA'}) = N_n(\mathbf{0}, \mathbf{AA'})$. A matriz de covariância é dada por

$$\mathbf{A}\mathbf{A}' = \begin{bmatrix} 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & 0 & -1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -1 & 2 \end{bmatrix}$$

5. Se X_1, \ldots, X_n são v.a.'s tais que $\mathbb{V}(X_1) = \sigma^2$ e satisfazendo $X_{i+1} = \rho X_i$ onde $\rho \in (0,1)$ é uma constante e $i = 2, \ldots, n$. Encontre a matriz de covariância $\mathbb{V}(\mathbf{X})$ do vetor \mathbf{X} .

Solução: Como $X_2 = \rho X_1$, $X_3 = \rho X_2 = \rho^2 X_1$ e, em geral, $X_i = \rho^{i-1} X_1$ para i > 1, temos as variâncias dadas por

$$\mathbb{V}(X_i) = \mathbb{V}(\rho^{i-1}X_1) = \rho^{2(i-1)}\mathbb{V}(X_1) = \rho^{2(i-1)}\sigma^2$$
.

Quanto às covariâncias, temos

$$Cov(X_i, X_j) = Cov(\rho^{i-1}X_1, \rho^{j-1}X_1) = \rho^{i-1}Cov(X_1, X_1)\rho^{j-1} = \rho^{i+j-2}\mathbb{V}(X_1) = \rho^{i+j-2}\sigma^2$$

6. No modelo abaixo,

$$Y = X\beta + \varepsilon$$

onde a matriz de desenho \mathbf{X} tem dimensão $n \times p$, o vetor $\boldsymbol{\varepsilon}$ tem distribuição normal multivariada com vetor esperado $\boldsymbol{\mu} = (0, \dots, 0)'$ e matriz de covariância igual a matriz diagonal com elementos

$$\operatorname{diag}(\mathbb{V}(\boldsymbol{\varepsilon}) = \sigma^2(c_1, c_2, \dots, c_n)$$

onde $c_i > 0$ são constantes CONHECIDAS. Assim, os erros não possuem variância constante.

Ignorando a matriz de covariância diferente da usual, aplica-se a fórmula matricial para obter o estimador de mínimos quadrados de β . Mostre que este estimador é não viciado para estimar β . EXTRA BONUS: Obtenha a matriz de covariância do estimador $\hat{\beta}$.

Solução: Como os erros ε possuem esperança zero, temos

$$\mathbb{E}(\mathbf{Y}) = \mathbb{E}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \mathbf{X}\boldsymbol{\beta} + \mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{X}\boldsymbol{\beta}$$

e portanto

$$\mathbb{E}\left(\hat{\boldsymbol{\beta}}\right) = \mathbb{E}\left(\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{Y}\right) = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbb{E}\left(\mathbf{Y}\right) = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}$$

BONUS:

$$\mathbb{V}\left(\hat{\boldsymbol{\beta}}\right) = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbb{V}(\mathbf{Y})\mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1} = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{V}\mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

7. Suponha que $\mathbf{Y}=(Y_1,Y_2)$ seja uma vetor aleatório gaussiano com valor esperado $\boldsymbol{\mu}=(10,15)$ e matriz de covariância

$$\mathbb{V}(\mathbf{Y}) = \left[\begin{array}{cc} 4 & 1.6 \\ 1.6 & 1 \end{array} \right]$$

Dois pontos que fazem da amostra são $\mathbf{y}_1 = (12, 15)$ e $\mathbf{y}_2 = (10, 17)$, ambos a uma distância euclidiana de 2 unidades de $\boldsymbol{\mu}$. Qual deles está a uma distância estatística maior de $\boldsymbol{\mu}$?

Solução:

$$d^{2}(\mathbf{y}_{1}, \boldsymbol{\mu}) = (\mathbf{y}_{1} - \boldsymbol{\mu})' \mathbb{V}(\mathbf{Y})^{-1}(\mathbf{y}_{1} - \boldsymbol{\mu}) = (2, 0) \mathbb{V}(\mathbf{Y})^{-1} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = (2)^{2} \left[\mathbb{V}(\mathbf{Y})^{-1} \right]_{11}$$

Uma fórmula similar para o segundo ponto.

8. Se colocarmos mais atributos na matriz \mathbf{X} (sempre mantendo as colunas lineamente independentes), podemos garantir que o \mathbb{R}^2 vai sempre aumentar. Explique porque isto acontece.

Solução: Seja \mathbf{X}^* a matriz de desenho aumentada. O espaço vetorial $\mathcal{M}(\mathbf{X}^*)$ inclui $\mathcal{M}(\mathbf{X})$ como sub-espaço vetorial. Assim, minimizar a distância entre \mathbf{Y} e um elemento de \mathbf{X}^* inclui todas as possíveis soluções restritas apenas a $\mathcal{M}(\mathbf{X})$ e o comprimento do vetor de resíduos deve ser, no mínimo, a solução encontrada usando apenas $\mathcal{M}(\mathbf{X})$. Como o R^2 é obtido como 1 menos a razão entre o comprimento ao quadrado do vetor de resíduos sobre $\sum_i (Y_i - \bar{Y})^2$, e este denominador não muda nos dois casos, devemos ter R^2 aumentando a medida que colocamos mais atributos na matriz de desenho.