

Fig. 29.4 - Velocità medie dell'aria e rapporti aria/materiale in funzione del peso specifico apparente dei materiali da trasportare.

Fig. 29.5 – Portate d'aria occorrenti in funzione del peso specifico apparente e delle portate di materiale da trasportare.

Tabella 29.1 – Valori della velocità dell'aria (in m/s) in funzione del diametro dei condotti e del peso specifico del materiale.

Peso specifico del materiale		Diametro del condotto (mm)						
kg _f /m³	Materiali campione	30	50	100	120	140	160	200
100÷400	crusca, colla, segatura	15	17	18	19	20	21	23
400÷600	farina, polveri	16	18	20	21	23	25	28
600÷700	semola, farine	17	19	21	23	25	27	30
700÷800	frumento, zuccheri	18	20	22	24	27	29	32

Tabella 29.11 – Valori di v e di r_p per il trasporto pneumatico in pressione di alcuni materiali sciolti.

Materiale	Peso specifico apparente	Granulometria (mm)	Velocità dell'aria ne (m	ei condotti	Valore m del rapp	
	(kg _f /m ³)	(min)	orizzontali	verticali	orizzontali	verticali
Carbone Carbone Grano Cubi di politene	720 720 750 480		12 9 9 9	15 12 12 12	10 13 20 20	13 20 26 26

Tabella 29.111 - Valori della velocità e del rapporto dei pesi materiale/aria per il trasporto pneumatico in pressione di materiali fluidizzabili.

Materiale	Peso specifico apparente (kg/m³)	Velocii dell'aria ne (m	ei condotti	Valore max del rapporto r _p (dm³/kg _f)		
	(righti)	orizzontali	verticali	orizzontali	verticali	
Cemento	1050÷1440	1,5	8	130	800	
Farina	560	1,5	.5	65	200	
Carbone in polvere	720	1,5	5	90	250	
Ceneri in polvere	720	1,5	5	130	400	
Bentonite	770÷1040	1,5	8	130	400	
Fluorite	1760	3,0	9	130	500	
Fosfato minerale	1280	3,0	9	90	250	
Farina fossile	1050	1,5	8	65	400	
Solfato di sodio	1280÷1450	3,0	12	65	200	
Perborato di sodio	860	3,0	9	40	130	
Bauxite	1440	1,5	8	110	500	
Allumina	930	1,5	8	85	400	
Tripoli	240	1,5	8	25	130	
Magnesite	1600	3,0	:9	130	400	
	1	1		4		

Tabella 29.IV – Valori di r_v e di v adottati per la progettazione di impianti di trasporto pneumatico.

Materiale	Peso specifico apparente kg _f /m³	Rapporto dei volumi ^r v	Velocità dell'aria m/s
Terra argillosa	1000	36	8-13
Amido (22% H,O)	600	32	.11
Amido (22% H ₂ O)	240	29	10
Perborato di Na	1000	41	11
Pigmenti coloranti	500	53	8-21
Pigmenti coloranti	680	18	7
PVC - E	390	40	_21_
PVC - S	500	25	21
Zucchero	900	60	14
Colla di urea	650	60	21
Farina di chamotte	1200	30	13
Sale	1000	27	17
Perlite	280	5	5
Farina ossea	700	17	6
Cacao (10% di grasso)	300	19	5
Cacao (20% di grasso)	300	16	.5
Polvere detersiva	400	19	3

 $\textbf{Tabella 29.V} - \text{Perdite di carico (in } kg_{\ell}/m^2) \text{ in un impianto di trasporto pneumatico.}$

Perdite di carico dovute a	Aria	Materiale	Note
energia di avviamento	$h_{1A} = \gamma_a \frac{v^2}{2g}$ (fig. 29.6)	$h_{1M} = \frac{Q}{A} \frac{v^2}{2g}$ (fig. 29.6)	γ _a = peso specifico dell'aria (kg/m²) v = velocità dell'aria (m/s) g = accelerazione di gravità (9,8 m/s²) Q = kg/s di materiale trasportato A = m³/s di aria necessaria per assicurare il trasporto.
ingresso nel circuito	h _{2A} = 3÷4h _{1A}	h _{2M} = 2÷3 h _{1M}	Negli impianti funzionanti in depressione: $h_{2A} \approx 3h_{1A}$; $h_{2M} \approx 3h_{1M}$. Negli impianti funzionanti in pressione: $h_{2A} \approx 4h_{1A}$; $h_{2M} \approx 2h_{1M}$.
attrito nei condotti	$h_{3A} \approx 8,12$ $\cdot 10^{-4} \gamma_a^{0.85}$ $\cdot \frac{v^2}{D^{1,3}} L$ (fig. 29.7)	$h_{3M} = $ $= 0.2 \text{ tg} \varphi \frac{Q}{A} \text{ L}$	D = diametro di ciascun condotto (m) L = lunghezza di ciascun condotto (m) φ = angolo di scorrimento del materiale trasportato sul materiale costituen- te i condotti (tab. 29.XI).
dislivelli	h ₄ A-Y _a ·H	$h_{4M} = \frac{Q}{A} H$	H = dislivello da superare (m).
resistenze accidentali	$h_{5A} = i \gamma_a \frac{v^2}{2g}$ (fig. 29.6)	$h_{5M} = h_{5A} \cdot r_{p}$ essendo $r_{p} = \frac{Q}{\gamma_{a} \cdot A}$	$j = 0,1\div0,3\left(\frac{S_2}{S_1}-1\right)^2 \text{ nel caso di aumenti di sezione raccordati (angoli compresi fra 5° e 15°).}$ $j = 0,1\div0,3\left(\frac{S_2}{S_3}-1\right)^2 \text{ nel caso di diminuzioni di sezione raccordate (angoli compresi fra 5° e 15°).}$ $j = 0,13+0,16\left(\frac{D}{R}\right)^{3,5} \text{ nel caso di curve con ampi raggi di curvatura (fig. 29.8e): v. tab. 29.X.}$ $j = 1 \text{ nel caso di riunione o divisione di due condotti secondo la fig. 29.8f.}$ $Nel caso di riunione o divisione di due condotti secondo la fig. 29.8g: - per il condotto deviato (di diametro D_1): j = 1,5; - per il condotto non deviato (di diametro D_2): j = 1;0,7;0,4;0,2;0 a seconda che D_2 = D_1;2,2 D_1;2,3 D_1;2,4 D_1.2$
ciclone	$h_{6A} \approx 10 \gamma_a \frac{v}{2g}$ (fig. 29.6)	-	
filtro	h7A: v. indica- zioni ditte co- struttrici	-	

HOLTIPUI CANDO TUTO PER B OTTENEO LE PERDITE NO 12

Tabella 29.VI – Valori del peso specifico dell'aria (kg/m³) in funzione della temperatura, alla pressione di 1 bar.

°c	γa	ria
	secca	satura
- 10	1,342	1,341
- 5	1,317	1,315
0	1,293	1,290
+ 5	1,270	1,266
+ 10	1,248	1,242
+ 15	1,226	1,218
+ 20	1,205	1,195
+ 25	1,185	1,171
+ 30	1,165	1,146
+ 35	1,146	1,121
+ 40	1,128	1,097
+ 50	1,093	1,070
+ 60	1,060	0,981
+ 70	1,029	0,909
+ 80	1,000	0,823
+ 90	0,973	0,718
+ 100	0,947	0,589
+ 125	0,887	_
+ 150	0,835	-
+ 175	0,788	
+ 200	0,746	_

Fig. 29.7 – Perdita di carico per attrito dell'aria in un metro di condotto lineare in funzione della velocità dell'aria e del diametro del condotto e per aria alla temperatura di 20°C, alla pressione di 1 bar e ad un grado medio di umidità (60% di umidità relativa).

Fig. 29.6 – Perdita di carico per il movimento dell'aria nei condotti in funzione della velocità e del peso specifico dell'aria secca alla pressione di 1 bar. Si noti che alla temperatura di 80°C risulta $\gamma_a = 1$ per cui la curva relativa fornisce i valori di $v^2/2g$.

Tabella 29.VII - Perdite di carico dovute a resistenze accidentali (deviazioni, variazioni di sezioni, ingressi e uscite dal circuito, ecc.) espresse in lunghezze di tubo equivalente.

Tabella 29.IX – Valori del coefficiente j nel caso di bruschi cambiamenti di direzione del condotto (fig. 29.8d).

	α =	20°	40°	60°	80°	90°
L	j≈	0,03	0,14	0,36	0,74	0,98

Tabella 29.X – Valori del coefficiente j nel caso di cambiamenti di direzione dei condotti raccordati e per $\alpha=90^{\circ}$ (fig. 29.8e).

D R	0,2	0,4	0,6	0,8	1,00
j≈	0,13	0,14	0,16	0,20	0,29

Tabella 29.XI – Pesi specifici assoluti e apparenti, angoli di attrito naturale e di scorrimento di alcuni materiali.

	Peso s	specifico	Angolo	li attrito		
Materiale	assoluto kg _f /m³	apparente kg _i /m³ (²)	naturale ϕ	contro superfici in acciaio φ (4)	.tg.φ	0,2 tgΨ (valori ar- rotondati)
Farina di frumento Frumento Amido in grani Amido in polvere Bentonite in polvere Cemento in polvere Ceneri in polvere Cioccolato in polvere Fosfato sodico in polv. Fosfato monocalcico Sabbia asciutta Argilla	2.000 2.000 1.640 1.640 2.300	580÷720 750÷780 650 500 800 1.400 700÷900 640 800÷900 960 980 1.600 1.800	35° 28° ÷ 34° 30° 40° ÷ 50° 45° ÷ 50° 40° ÷ 44° 43° ÷ 48° 47° 32' 45° 35° ÷ 40° 40° ÷ 48°	25° ÷ 29° 20° ÷ 28° 24° 45° 42° 39° 40° ÷ 45° 45° 40° 26° 40°	0,47÷0,55 0,36÷0,53 0,44 1 0,90 0,80 0,84÷1 1 0,84 0,49 0,84 0,70 0,84	0,09÷0,11 0,08÷0,11 0,9 0,2 0,18 0,16 0,17÷0,20 0,2 0,17 0,1 0,17 0,15 0,17
Zucchero	1.600	700	50°	45	1	0,2

⁽¹) Peso dell'unità di volume di materiale.

⁽²⁾ Peso del materiale in mucchio.

⁽³⁾ Pendenza naturale del materiale in mucchio: angolo che si forma fra il piano di posa (crizzontale) e la superficie limite di un mucchio di materiale quando questo è versato dall'alto e può scorrere sul mucchio stesso.

⁽⁴⁾ Angolo di scorrimento del materiale su una superficie in acciaio (tubazioni degli impianti di trasporto pneumatico).

N.B. - E' consigliabile che sia i valori qui riportati sia quelli forniti da altri Autori, vengano di volta in volta verificati per il materiale da trasportare.