פתרון תרגיל מספר 4 - חישוביות וסיבוכיות

שם: מיכאל גרינבאום, **ת.ז:** 211747639

1 במאי 2020

שאלה 5

a סעיף a חלק

 $L = \{w \mid w
eq w^{rev}\}$ ל־ CFG צ"ל: שפת

 $G = \langle \{S, A\}, \{0, 1\}, \{S \to 0S0 | 1S1 | 0A1 | 1A0, A \to 0A | 1A | \varepsilon \}, S \rangle$ נגדיר :הרעיון הפשוט בבנייה הוא ש

- 0.050, 1.05 אויון, כלומר כל עוד אם נקרא את המילה מההתחלה ומהסוף, נקבל שוויון, כלומר 0.050, 1.05.
- $w \neq w^{rev}$ או התנאי התנאי מילה A לרצוננו כי w כבר מקיימת את התנאי מותר לנו להוסיף איזה מילה A לרצוננו כי A ברגע שהשוויון נשבר, נכתב Aarepsilon ולכן מ־ A ניתן להוסיף 0.1 ולסיים עם טרמינל

.כנדרש, $L\left(G\right)=L$ כנדרש

@.1.א.ל.מ

b סעיף 1 חלק

$$L = \{ w \mid \#_0 \left(w \right) = \#_1 \left(w \right) \}$$
 לי CFG צ"ל: שפת

 $\sigma_i \in \Sigma$ כאשר כאשר מיט, $w = 0 \cdot \sigma_2 \dots \sigma_n$ כי הגבלת הכלליות כלי הגבלת נניח בלי $1 \leq k \leq n$ לכל להל $f_k\left(w
ight) = \#_0\left(0\sigma_2\dots\sigma_k
ight) - \#_1\left(0\sigma_2\dots\sigma_k
ight)$ לכל נשים לב כי $f_{n}\left(w
ight)=0$, נשים לב ל $f_{k}\left(w
ight)=0$ מינימלי המקיים $1 < k \leq n$ לכן קיים

 $\sigma_k=1$ נשים לב כי $f_k\left(w
ight)>0$ ולכן $f_k\left(w
ight)$ הפונקציה התאפסה לראשונה, מתקיים כי $f_k\left(w
ight)>0$ ולכן נשים לב כי , $w=0\sigma_2\dots\sigma_{k-1}\cdot 1\cdot\sigma_{k+1}\cdot\sigma_n$ כלומר

$$0 = f_{n}(w) = \#_{0}(0\sigma_{2}...\sigma_{n}) - \#_{1}(0\sigma_{2}...\sigma_{n})$$

$$= [\#_{0}(0\sigma_{2}...\sigma_{k}) - \#_{1}(0\sigma_{2}...\sigma_{k})] + [\#_{0}(\sigma_{k+1}...\sigma_{n}) - \#_{1}(\sigma_{k+1}...\sigma_{n})]$$

$$= f_{k}(w) + [\#_{0}(\sigma_{k+1}...\sigma_{n}) - \#_{1}(\sigma_{k+1}...\sigma_{n})]$$

$$= 0 + [\#_{0}(\sigma_{k+1}...\sigma_{n}) - \#_{1}(\sigma_{k+1}...\sigma_{n})]$$

$$= f_{n-k}(\sigma_{k+1}...\sigma_{n})$$

כלומר קיבלנו כי $\sigma_{k+1} \ldots \sigma_n \in L$ כלומר קיבלנו

$$0 = f_k(w) = \#_0(0\sigma_2 \dots \sigma_{k-1}1) - \#_1(0\sigma_2 \dots \sigma_{k-1}1)$$

$$= [1 + \#_0(\sigma_2 \dots \sigma_{k-1}1)] - [1 + \#_1(0\sigma_2 \dots \sigma_{k-1})]$$

$$= [1 + \#_0(\sigma_2 \dots \sigma_{k-1})] - [1 + \#_1(\sigma_2 \dots \sigma_{k-1})]$$

$$= \#_0(\sigma_2 \dots \sigma_{k-1}) - \#_1(\sigma_2 \dots \sigma_{k-1}) = f_{k-2}(\sigma_2 \dots \sigma_{k-1})$$

, $w_1,w_2\in L$ כלומר קיבלנו כי w=0 כאשר לכתוב את לכתוב את השפר לכתוב את היינו מניחים ש־w=0 מתחיל ב־1, היינו מקבלים באותו אופן שניתן לכתוב את $w=1\cdot w_1\cdot 0\cdot w_2$ כאשר אם היינו מניחים ש־w=1 מתחיל ב־1, היינו מקבלים באותו אופן שניתן לכתוב את $w=1\cdot w_1\cdot 0\cdot w_2$ כאשר את כדי להגדיר את הער לכן נשתמש בהגדרה רקורסבית זאת כדי להגדיר את הער הנימוק מלעיל נסיק כי L(G)=L והנימוק מלעיל נסיק כי L(G)=L

@.2.א.ל.מ

c סעיף f 1 חלק

 $L = \{w \mid \text{in every prefix of } w \text{ there are more } 0 \text{ than } 1\}$ לי CFG צ"ל: שפת

הוכחה:

 $\sigma_i\in\Sigma$ כאשר $w=\sigma_1\cdot\sigma_2\dots\sigma_n$ כאשר arphi, כאשר t_k (w) ב־ t_k (t_k) לכל t_k (t_k) ב t_k (t_k) ב t_k (t_k) t_k (t_k) ב t_k (t_k) לכל t_k (t_k) לכל t_k (t_k) ב t_k (t_k) לכל t_k (t_k) ב t_k (t_k) (t_k) ב t_k (t_k) (t_k

- $w=0\cdot\sigma_2\dots\sigma_n$, לכן ניתן לכתוב את לכל היתן לכתוב את לכל היתן לכתוב את לכתוב את לכתוב את לכתוב היתן לכתוב או לכתוב $u\in L$ לכל הית לכתוב לולכן לכתוב $f_i\left(u\right)=f_{i+1}\left(w\right)-1\geq 1-1=0$ משים לב כי $u=\sigma_2\dots\sigma_n$ לכל היתן לכתוב עוב לישר לכתוב הית לכתוב עוב לישר לכתוב הית לכתוב הית לכתוב לישר לכתוב הית לכתוב לישר לכתוב הית ל
 - $x=\sigma_1\dots\sigma_k,y=\sigma_{k+1}\dots\sigma_n$ נגדיר, נגדיר, $f_k\left(w
 ight)=0$ כך ש־ $1<\exists k< n$ נשים לב כי $x\in L$ וגם לב כי $y=f_i\left(w
 ight)=f_i\left(w
 ight)=f_i\left(w
 ight)=0$ לכל $1\leq i\leq k$ ולכן $1\leq i\leq n-k$ וגם $1\leq i\leq n-k$ ולכן $1\leq i\leq n-k$ לכל $1\leq i\leq n-k$ כלומר ניתן לכתוב את $1\leq i\leq n-k$ נאיר ביאר $1\leq i\leq n-k$ כאשר $1\leq i\leq n-k$
- 3. אחרת הפונקציה מתאפסת רק ב־ $\sigma_n=0$ כלומר $\sigma_n=1$ (כי ירדנו ממספר חיובי) וגם $\sigma_1=0$ (כי ההתחלה חייבת להתחיל ב0) ולכן נגדיר $\sigma_1=0$, כלומר $\sigma_1=0$, כלומר $\sigma_2=0$, כלומר $\sigma_1=0$, לכל $\sigma_2=0$, לכל $\sigma_1=0$, לכל $\sigma_2=0$, לכל $\sigma_1=0$, לכל $\sigma_2=0$, לכל $\sigma_1=0$, לכל $\sigma_1=0$, לכל $\sigma_1=0$, לכל $\sigma_2=0$, $\sigma_1=0$, לכל $\sigma_1=0$, לכל $\sigma_1=0$, $\sigma_2=0$, לכל $\sigma_1=0$, לכל $\sigma_1=0$, לכל מרכוב את לכתוב את לכתוב את $\sigma_1=0$, כלומר ניתן לכתוב את לבחוב אורם (כלומר ביתן לכתוב אורם) .

@.3.א.ל.מ

לכן נשתמש בהגדרה רקורסבית אאת כדי להגדיר את הCFGה את כדי להגדיר את רקורסבית אאת נחיק לכן נשתמש בהגדרה ה $G=\left\langle \left\{S\right\},\left\{0,1\right\},\left\{S\to0S1|SS|0S|\varepsilon\right\},S\right\rangle$ נגדיר לכן נסיק כי

a סעיף 2 חלק

צ"ל: מה השפה?

הוכחה:

נשים לב ש־ S זה משתנה שיוצר רצפים מהצורה $a^n\cdot A\cdot c^n$, ל־ A, ל־ A (כאשר A הוא משתנה) נשים לב ש־ A זוצר את השפה $a^k\cdot b^k$ ל־ $A^k\cdot b^k$ ל־ $A^k\cdot b^k$ ל־ $A^k\cdot b^k\cdot b^k$ לכן מחיבור שלהם נקבל שהשפה של ה־ $A^k\cdot b^k\cdot c^n$ היא $A^k\cdot b^k\cdot c^n$ וואר משפה של ה־ $A^k\cdot b^k\cdot c^n$ וואר מחיבור שלהם נקבל שהשפה של ה־ $A^k\cdot b^k\cdot c^n$ וואר מחיבור שלהם נקבל שהשפה של ה־ $A^k\cdot b^k\cdot c^n$ וואר משפה של משפה של משפה של ה־ $A^k\cdot b^k\cdot c^n$ וואר משפה של מש

מ.ש.ל.ב.1.©

b סעיף 2 חלק

צ"ל: מה השפה?

הוכחה:

 $n\in\mathbb{N}\cup\{0\}$ ל־ $\{0,1\}^n$ A $\{0,1\}^n$ משים לב ש־ S זה משתנה שיוצר רצפים מהצורה מהצורה מוצר $l\in\mathbb{N}\cup\{0\}$ עבור $\{0,1\}^l$ עבור B יוצר רצפים מהצורה ועתה נשים לב כי A יוצר רצפים מהצורה $\{0,1\}^k$ או $\{0,1\}^k$ ל־ $\{0,1\}^k$ ל־ $\{0,1\}^k$ משילוב של רצף $\{0,1\}^k$ ו־ $\{0,1\}^k$ נקבל כי

$$\left\{ \left\{ 0,1\right\} ^{n}0\left\{ 0,1\right\} ^{k}1\left\{ 0,1\right\} ^{n}\mid k,n\in\mathbb{N}\cup\left\{ 0\right\} \right\} \cup\left\{ \left\{ 0,1\right\} ^{n}1\left\{ 0,1\right\} ^{k}0\left\{ 0,1\right\} ^{n}\mid k,n\in\mathbb{N}\cup\left\{ 0\right\} \right\}$$

(או הפוך) מהצד השני היא 0 ומהצד האות ה־ אחד אחד מעד כי עבורם עבורם שמתקיים שמתקיים עבורם $w \neq w^{rev}$ כי שמתקיים שמתקיים לב שזה בעצם לב שזה אחד האות מעד אחד שמתקיים עבורם ולכן ניתן לכתוב את השפה בתור

$$\left\{w \in \left\{0,1\right\}^* \mid w \neq w^{rev}\right\}$$

מ.ש.ל.ב.2.©