

ЛИНЕЙНАЯ АЛГЕБРА И МАТРИЦЫ

О ЧЕМ ПОЙДЕТ РЕЧЬ

01	Векторы. Основные операции над векторами
02	Матрицы. Основные операции над матрицами
03	Определитель
04	Ранг матрицы
0 5	Применение в data science

Векторы

Вектор — это понятие из линейной алгебры, объект, имеющий длину и направление. Проще всего его описать как направленный отрезок. Он может обозначаться графически или на записи — стрелкой или числом. В аналитике и разработке вектор также понимают как упорядоченный набор чисел.

$$y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Векторы

Позволяет вычислять расстояния между объектами

Представление текста

Вектор пикселей

Векторы часто используются в машинном обучении для представления объектов в виде набора признаков. Например, изображение может быть представлено как вектор пиксельных значений. Векторы слов применяются в NLP для представления текстов.

Основные операции над векторами

• Сложение векторов

• Умножение вектора на число

Скалярное произведение векторов (вычисляет угол между векторами)

 Векторное произведение векторов (дает вектор, перпендикулярный векторам)

Сложение векторов

Сложение векторов выполняется поэлементно

$$\mathbf{a} = (a_1, a_2, ..., a_n)$$

 $\mathbf{b} = (b_1, b_2, ..., b_n)$

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$

Геометрически сложение соответствует построению диагонали параллелограмма.

Сложение векторов

Используется в NLP для комбинирования векторов слов в вектор предложения Применяется в компьютерном зрении для сложения векторов признаков изображений Используется в алгоритмах рекомендаций для сложения векторов

Умножение вектора на число

Умножение вектора а на число с выполняется покомпонентно

$$c\mathbf{a} = (ca_1, ca_2, ..., ca_n)$$

Геометрически это масштабирование вектора в с раз.

Умножение вектора на число

В машинном обучении применяется для масштабирования векторов признаков Позволяет приводить признаки к одному масштабу перед обучением модели Используется в компьютерном зрении для взвешивания значимости разных признаков изображения

Скалярное произведение

Скалярное произведение вычисляет проекцию одного вектора на другой

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}_1 \mathbf{b}_1 + \mathbf{a}_2 \mathbf{b}_2 + \dots + \mathbf{a}_n \mathbf{b}_n$$

Геометрически это произведение длин векторов на cos угла между ними.

Скалярное произведение

~	Вычисляет сходство между векторами в рекомендательных системах
✓	Применяется в информационном поиске для оценки релевантности документа запросу
~	Применяется в алгоритмах поиска ближайших соседей

Векторное произведение

Векторное произведение a и b дает вектор c, перпендикулярный плоскости векторов a и b

$$c = a \times b$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}$$

Его модуль равен площади параллелограмма, построенного на ${f a}$ И ${f b}$

Векторное произведение

✓	Используется в компьютерной графике для нахождения нормалей к поверхностям
~	Применяется в задачах трехмерного моделирования и распознавания объектов
✓	Помогает вычислять освещенность в трехмерных сценах (phong shading)

Матрицы

Матрица - это прямоугольная таблица чисел (элементов), расположенных в **m** строках и **n** столбцах.

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 5 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

Матрицы

Матрицы используются для компактного представления данных в машинном обучении

Каждый объект кодируется как строка матрицы, столбцы - признаки (матрица признаков)

Удобно для хранения и анализа структурированных данных (таблиц)

Матрицы широко применяются в машинном обучении для представления данных. Например, каждый пример может быть представлен как строка матрицы признаков. Матрицы используются в линейных моделях: линейной регрессии, логистической регрессии, методе опорных векторов.

Основные операции над матрицами

Сложение матриц одинакового размера

• Умножение матрицы на число

Умножение матриц (если число столбцов 1ой равно числу строк 2ой)

• Транспонирование матрицы

Сложение матриц

Чтобы сложить две матрицы A и B, они должны быть одинакового размера m×n. Сложение производится поэлементно

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$$

Сложение матриц

~	Используется в нейронных сетях, например в сверточных (CNN) для сложения матриц признаков
~	Применяется при обработке последовательностей (видео, аудио) для комбинирования кадров/отсчетов
~	Используется в компьютерном зрении при реализации алгоритмов выделения признаков
~	последовательностей (видео, аудио) для комбинирования кадров/отсчетов Используется в компьютерном зрении при реализации алгоритмов

Умножение на число

При умножении матрицы А на число с, каждый элемент матрицы умножается на с

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$c = 3$$

$$cA = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$$

Умножение на число

В машинном обучении применяется для масштабирования значений признаков

У Используется при нормализации данных перед обучением модели

Умножение матриц

Чтобы перемножить матрицы A размера m×n и B размера n×k, число столбцов A должно равняться числу строк B.

$$(AB)_{ik} = \sum_{j=1}^{n} A_{ij} B_{jk}$$

Т.е. каждый элемент получается как сумма произведений элементов і-й строки матрицы A и k-го столбца матрицы B.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 \\ 3 \end{pmatrix} (5 \quad 6) + \begin{pmatrix} 2 \\ 4 \end{pmatrix} (7 \quad 8) = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

Умножение матриц

~	Используется в линейных моделях машинного обучения (регрессия, классификация)
~	Применяется для вычисления предсказаний модели в виде произведения матрицы объектов на матрицу коэффициентов
~	Используется при обучении CNN для вычисления карт признаков

Транспонирование

Транспонирование матрицы A размера $m \times n$ дает матрицу A^T размера $n \times m$, полученную зеркальным отображением A относительно главной диагонали

$$\left(A^{\mathrm{T}}\right)_{ij} = A_{ji}$$

Например:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \quad A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Транспонирование

Применяется при выводе уравнений линейной регрессии с использованием матричных обозначений Используется в РСА для вычисления ковариационной матрицы данных Применяется в алгоритмах машинного обучения для упрощения матричных вычислений

Определитель матрицы

Определитель позволяет:

• Проверить, имеет ли матрица обратную

Найти решение системы линейных уравнений

Вычислить объем параллелепипеда, заданного векторамистолбцами матрицы

• Преобразовывать координаты при смене базиса

Определитель матрицы

Вычисляется как сумма произведений элементов матрицы. Только для квадратных матриц.

Пусть A - квадратная матрица размера n x n:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Тогда определитель матрицы A обозначается как det(A) или |A| и вычисляется по правилу Саррюса: $|A| = \sum_{k=1}^n a_{1k} A_{1k} = a_{11} A_{11} + a_{12} A_{12} + \cdots + a_{1n} A_{1n}$

Здесь A_{ik} — алгебраическое дополнение элемента a_{ik} . Алгебраическое дополнение элемента a_{ik} вычисляется как определитель матрицы A, из которой удалена i-я строка и k-й столбец, умноженный на $(-1)^{i+k}$.

Ранг матрицы

Ранг матрицы показывает количество линейно независимых строк (или столбцов) матрицы

Ранг используется для:

- Проверки совместности системы линейных уравнений
- Определения количества решений системы уравнений
- Вычисления базиса в линейном пространстве
- Определения размерности пространства строк (столбцов) матрицы

Применение в data science

анализа.

Представление данных в виде векторов и матриц.	Линейные модели	Сверточные нейронные сети	Тексты и изображения
 Объекты кодируются векторами признаков, данные формируются в матрицы - удобно для 	• Используют векторные и матричные вычисления для обучения - линейная регрессия, логистическая регрессия, метод опорных векторов.	• Активно применяют матричные операции, в частности перемножение матриц для получения карт	• Удобно представлять в виде векторов для дальнейшей обработки и классификации.

признаков.

Применение в data science

векторных и матричных операций.

Метрики	Методы	Обработка	Метод главных
	оптимизации	изображений	компонент (РСА)
• Позволяют оценить близость объектов, тенденции - вычисляются с помощью	 Градиентный спуск, SVD, PCA основаны на векторных и матричных представлениях. 	 Часто сводится к матричным преобразования м - сжатие, фильтрация, сегментация. 	• Позволяет снизить размерность данных, представленных матрицей.

Применение в data science

Поиск похожих объектов и кластеризация	В компьютерной графике	Линейные классификаторы	Анализ графов	Прогнозирование временных рядов
• Основаны на вычислении метрик между векторами признаков.	• Используются матрицы для моделирования преобразований - повороты, масштабирование.	• Логистическая регрессия, SVM часто применяются в задачах распознавания образов.	• Можно проводить с помощью матриц смежности, например PageRank, поиск компонент связности.	• Часто сводится к решению линейных уравнений - модели типа ARIMA, Holt- Winters.

СПАСИБО ЗА ВНИМАНИЕ

INNOSTAGE

Казань, ул. Подлужная, 60

+7 (843) 567-42-90

info@innostage-group.ru