1. Data Acquisition & Exploration

- 1. Obtain the Dataset
 - Download the Quora Question Pairs CSV from Kaggle.
 - Store a copy of the raw CSV in version-controlled storage (e.g. an S3 "raw/" folder).
- 2. Initial Inspection
 - Load the first 1,000 rows in a Jupyter notebook.
 - Check for missing values in question1, question2, and is_duplicate.

Compute basic class balance:

```
df['is_duplicate'].value_counts(normalize=True)
```

- 3. Data Profiling
 - Length distributions: plot histograms of question-length (in tokens and chars).
 - Vocabulary size: count unique tokens after simple whitespace splitting.
 - Sample edge cases: very short (<3 words) vs. very long (>50 words) questions.

2. Text Preparation & Cleaning

- 1. Strip HTML/Markdown
 - Use BeautifulSoup(text, "lxml").get_text() to remove tags.
- 2. Normalize Case & Whitespace
 - o text = text.lower().strip()
 - Collapse multi-spaces: re.sub(r'\s+', ' ', text).
- 3. Punctuation & Special Characters

Option A: Remove all non-alphanumeric except spaces:

```
text = re.sub(r'[^a-z0-9]+', '', text)
```

Option B: Keep question marks/exclamation if you want to retain sentiment cues.

4. Tokenization

Use SpaCy's tokenizer for robust handling:

```
import spacy
nlp = spacy.load("en_core_web_sm", disable=["parser","ner"])
tokens = [tok.text for tok in nlp(text)]
```

- 5. **Stopword Removal** (remove all stopwords)
 - Experiment with/without to see impact on downstream performance.
- 6. Stemming vs. Lemmatization
 - Lemmatize via SpaCy (tok.lemma_) to preserve dictionary forms but little bit slow due to searching.
- 7. **Spell-Correction & Contraction Expansion** (advanced)
 - Use symspellpy to correct common typos.
 - Expand "isn't" \rightarrow "is not" with contractions.fix(text).
- 8. Cache Preprocessed Text
 - Save cleaned token lists (e.g. with Pickle or parquet) so you don't reprocess on every run.

3. Feature Engineering

We'll extract both surface-level and semantic features to feed into our model.

3.1 Lexical Similarity Features

Feature	Description
Jaccard Index	tokens ₁ \cap tokens ₂ / tokens ₁ \cup tokens ₂
Overlap Coefficient	$ tokens < sub > 1 < /sub > \cap tokens < sub > 2 < /sub > / \\ min(tokens < sub > 1 < /sub > , tokens < sub > 2 < /sub >)$
Bigram Overlap	Same as Jaccard but on bigrams.
Edit Distance	Levenshtein distance normalized by max length.
Common Word Count	Raw count of shared tokens.
python	
CopyEdit	
from sklearn.metrics import jaccard_score	
# For binary indicator vectors over a fixed vocab.	

3.2 Statistical/Text-Vector Features

1. **TF-IDF Embeddings**

• Fit a TfidfVectorizer(ngram_range=(1,2), max_features=50_000).

- Transform both questions and compute:
 - Cosine similarity
 - **■** Euclidean distance

2. Length & Count Features

```
abs(len(q1_tokens) - len(q2_tokens))abs(len(q1_chars) - len(q2_chars))
```

3.3 Semantic Embeddings

- 1. Word2Vec / GloVe Averages
 - Load pretrained GloVe (e.g. 6B/300d).
 - o q_vec = np.mean([glove[w] for w in tokens if w in glove], axis=0).
 - Compute cosine similarity between q1_vec and q2_vec.
- 2. Universal Sentence Encoder (USE)
 - Use TensorFlow Hub to encode each question to a 512-dim vector.
 - Similarity features as above.
- 3. BERT-Style Encodings

```
Use transformers:
python
CopyEdit
from transformers import AutoTokenizer, AutoModel
tok = AutoTokenizer.from_pretrained("distilbert-base-uncased")
mdl = AutoModel.from_pretrained("distilbert-base-uncased")
inputs = tok(q1, q2, return_tensors="pt", truncation=True,
padding=True)
outputs = mdl(**inputs).last_hidden_state[:,0,:] # [CLS] tokens
```

• Use the CLS embedding directly as input to a downstream classifier.

4. Model Development & Training

4.1 Baseline Classical Models

- 1. Feature Matrix & Labels
 - Concatenate all lexical + statistical features into X.
 - o Labels y = df['is_duplicate'].
- 2. Train/Test Split

train_test_split(..., stratify=y, test_size=0.2, random_state=42).

3. Baseline Algorithms

- Logistic Regression (penalty='12', C=1.0).
- Random Forest (n_estimators=200, max_depth=10).

4. Cross-Validation

5-fold CV to tune hyperparameters via GridSearchCV.

5. Metrics

o Report Precision, Recall, F1, ROC-AUC on held-out test.

4.2 Neural Approaches

1. Siamese LSTM

Two shared LSTM encoders → dropout → merge (e.g. absolute diff + multiplication) → Dense → Sigmoid.

2. Fine-Tuned Transformer

- o Add binary classification head on top of BERT.
- Use Trainer API in HuggingFace with learning rate 2e-5, batch_size 16.
- Early stop on validation loss.

3. Training Tricks

- **Warmup** for first 10% steps.
- Grad-clipping at 1.0.
- Mixed precision (fp16) to speed up.

5. Evaluation & Error Analysis

1. Confusion Matrix

 Identify false positives (non-duplicates flagged) vs. false negatives (missed duplicates).

2. Error Sampling

- Manually inspect ~100 errors to categorize:
 - Paraphrase misses (same meaning, very different wording).
 - Negation flips ("Does IPL destroy..." vs. "Does IPL not destroy...").
 - Named-entity confusion ("India vs. Australia" vs. "Australia vs. India").

3. Feature Importance

o For tree-based models, plot top 20 features.

4. Threshold Tuning

 Move decision threshold away from 0.5 to balance precision vs. recall for production needs.

6. Deployment & Monitoring

1. Packaging

- Serialize model and vectorizers with joblib.dump().
- Wrap in a FastAPI app (app.post("/predict")).

2. Containerization

• Write a Dockerfile based on python:3.9-slim, install requirements, copy code.

3. Infrastructure

o Deploy on AWS ECS/EKS or GCP Cloud Run behind a load balancer.

4. Monitoring

- **Latency**: instrument with Prometheus + Grafana.
- Error Rates: track 4xx/5xx, timeouts.
- o **Data Drift**: compare live input distribution of similarity scores to training baseline.

5. **CI/CD**

- o On new commits: run unit tests, build Docker image, push to registry.
- Auto-deploy to a staging environment for smoke tests before pushing to production.

6. Retraining Pipeline

- Schedule a weekly job to pull newly labeled pairs, retrain, and validate against hold-out.
- Run A/B test on 10% traffic with the new model for two weeks before full rollout.