

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 27. November 2023

Prüfungsanmeldung freigeschaltet!!!

Graphentheorie

Graphentheorie — Kreis und Isomorphie

Kreis

- Ein Pfad mit endlich vielen Knoten v_0, v_1, \ldots, v_l , wo $v_0 = v_l$
- Einfacher Kreis: 1) Alle Knoten sind paarweise verschieden, 2) enthält keinen kleineren Kreisen

Isomorphie

- Zwei Graphen G,H sind isomorph, falls es eine Bijektion $\beta:V_G\to V_H$ gibt
- Copy und Paste

Graphentheorie — Gradfolge

Der Graph G besitzt eine Gradfolge $(\deg(v_1), \deg(v_2), \ldots, \deg(v_n))$ für $V = \{v_0, \ldots, v_n\}$

k-regulär

$$- \forall v \in V. \deg(v) = k$$

Graphentheorie — Gradfolge

Realisierbarkeit: Havel Hakimi

- 1) Aufsteigend Sortieren
- 2) Für jeden Schritt: Die höchsten Gradfolge eliminieren, zu entsprechenden Anzahl der Gradfolgen verteilen
- 3) Rekursiv bis alle Gradfolgen 0 sind

Graphentheorie — Gradfolge

Handschlaglemma

$$2|E| = \sum_{i \in [n]} \deg(v_i)$$

aka. Die Summe der Gradfolgen muss durch 2 teilbar sein, damit die Gradfolge realisierbar ist.

$$|E| = \frac{2+2+2+2+2}{2} = 6$$

Graphentheorie — Zusammenhang

- Auf Zusammenhang prüfen $\rightarrow Voraussetzung$ 1. $|E| \ge |V| 1$: Der Graph kann zusammenhängend sein.
- 2. $dh \ge |V| 1$. Der Graph ist zusammenhängend, da der Knoten mit dem höchsten Grad mit allen anderen Knoten verbunden sein muss.
- 3. $dh \ge |V| 2$ und es gibt keinen Knoten mit Grad 0: Der Graph ist zusammenhängend. Der Knoten mit dem höchsten Grad ist mit allen außer einem Knoten verbunden. Da es keinen Knoten mit Grad 0 gibt, muss der Knoten, der kein Nachbar von v ist, eine Kante zu einem Nachbarn von v haben.

Sonst könnte man keine Aussage ziehen. Man müsste ein Beispiel geben.

Sh: Knoten mit dem höchsten Grad

Graphentheorie — Baum

Baum ist ein einfacher Graph, der zusammenhängend und kreisfrei ist.

- Ist G = (V, E) ein Baum, dann gilt |E| = |V| 1.
- Jeder Baum G=(V,E) mit $|V|\geqslant 2$ hat mindestens 2 Blätter
- Jeder Baum ist kreisfrei

Perfekter Binärbaum B_h besitzt 2^h Blättern und $2^{h+1} - 1$ Knoten.

https://www.happycoders.eu/de/algorithmen/binaerbaum-java/

Graphentheorie — Baum

Auf Baum prüfen:

|E| = |V| - 1: Der Graph ist Kreisfrei. WENN der Graph ZUSAMMENHÄNGEND ist, dann ist er ein Baum

Sonst kann der Graph kein Baum sein.

Aufgabe

Zeigen Sie die folgenden Behauptungen mittels vollständiger Induktion.

Gliedern Sie den jeweiligen Beweis korrekt in Induktionsbasis, -schritt, -annahme und -behauptung.

(a) Wir definieren die Folge $(a_i)_{i\in\mathbb{N}_0}$ wie folgt:

$$a_0=3,\; a_1=3,\; \text{ und allgemein für } i\in\mathbb{N}_0\;\; a_{i+2}=2\cdot a_{i+1}+35\cdot a_i$$

Zeigen Sie mittels Induktion nach $i \in \mathbb{N}_0$, dass für alle $i \in \mathbb{N}_0$ gilt:

$$a_i = \frac{3 \cdot 7^i + 3 \cdot (-5)^i}{2}$$

Induktionsbasis ABei mehreren Base Cases: Für ALLE definieren

$$\Rightarrow i = 0$$
 $Q_0 =$

$$\Rightarrow i = 1$$
 $a_1 =$

Induktionsschritt

Angabe $a_0=3,\ a_1=3,\ \text{und allgemein für } i\in\mathbb{N}_0$ $a_{i+2}=2\cdot a_{i+1}+35\cdot a_i$

Induktionsannahme

Induktionsbehauptung

Induktionsbeweis

Probier die b) Autgabe selber nach dem Tutorium!

Gegeben seien folgende Gradsequenzen:

$$D_1 = (2, 2, 2, 2, 2, 2)$$

$$D_1 = (2, 2, 2, 2, 2, 2)$$
 $D_2 = (1, 1, 1, 1, 2, 3, 3)$ $D_3 = (1, 1, 2, 2, 2)$ $D_4 = (2, 3, 3, 4, 4)$

$$D_3 = (1, 1, 2, 2, 2)$$

$$D_4 = (2, 3, 3, 4, 4)$$

(a) Wenden Sie den Algorithmus von Havel-Hakimi auf jede der gegebenen Gradsequenzen an. Geben Sie hierbei auch alle rekursiv berechneten Gradsequenzen samt den jeweils konstruierten Graphen an.

Da

Gegeben seien folgende Gradsequenzen:

$$D_1 = (2, 2, 2, 2, 2, 2)$$

$$D_1 = (2, 2, 2, 2, 2, 2)$$
 $D_2 = (1, 1, 1, 1, 2, 3, 3)$ $D_3 = (1, 1, 2, 2, 2)$ $D_4 = (2, 3, 3, 4, 4)$

$$D_3 = (1, 1, 2, 2, 2)$$

$$D_4 = (2, 3, 3, 4, 4)$$

(a) Wenden Sie den Algorithmus von Havel-Hakimi auf jede der gegebenen Gradsequenzen an. Geben Sie hierbei auch alle rekursiv berechneten Gradsequenzen samt den jeweils konstruierten Graphen an.

seien folgende Gradsequenzen: $D_1 = (2,2,2,2,2,2)$ $D_2 = (1,1,1,1,2,3,3)$ $D_3 = (1,1,2,2,2)$ $D_4 = (2,3,3,4,4)$ Gegeben seien folgende Gradsequenzen:

$$D_1 = (2, 2, 2, 2, 2, 2)$$

$$D_2 = (1, 1, 1, 1, 2, 3, 3)$$

$$D_3 = (1, 1, 2, 2, 2)$$

$$D_4 = (2, 3, 3, 4, 4, 4)$$

Geben Sie, falls möglich, zu jeder der Gradsequenzen einen Baum an. Falls dies nicht möglich ist, begründen Sie dies.

- Erinnerung: ① | IE| = |V| 1 und Zusammenhängend ⇒ Baum ② Handschlaglemma: 2|E| = ∑ deg(V;) ③ Aut Zusammenhang prüfen: |E| > |V| 1 und dh > |V| - 1 oder dh > |V| - 2 and \$\frac{1}{4}i \. \deg(\varphi_i) = 0

dh: Knoten mit dem höchsten Grad

Gegeben seien folgende Gradsequenzen:

$$D_1 = (2, 2, 2, 2, 2, 2)$$

$$D_2 = (1, 1, 1, 1, 2, 3, 3)$$

$$D_3 = (1, 1, 2, 2, 2)$$

$$D_4 = (2, 3, 3, 4, 4)$$

seien folgende Gradsequenzen: $D_1=(2,2,2,2,2,2) \qquad D_2=(1,1,1,1,2,3,3) \qquad D_3=(1,1,2,2,2) \qquad D_4=(2,3,3,4,4)$ nden Sie explizit. dass es bis suf Legge 1 Begründen Sie explizit, dass es bis auf Isomorphie nur einen einfachen Graphen mit Gradsequenz D_4 gibt.

Nur eine Verbindungsmöglichkeit

Gegeben seien folgende Gradsequenzen:

$$D_1 = (2, 2, 2, 2, 2, 2)$$

$$D_2 = (1, 1, 1, 1, 2, 3, 3)$$

$$D_3 = (1, 1, 2, 2, 2)$$

$$D_4 = (2, 3, 3, 4, 4, 4)$$

Realisieren Sie eine der Gradsequenzen durch einen Graphen, der nicht durch den Algorithmus von Havel-Hakimi erzeugt werden kann, d.h. zu dem der Algorithmus von Havel-Hakimi keinen isomorphen Graphen konstruieren kann.

Begründen Sie explizit, warum der angegebene Graph nicht von dem Algorithmus konstruieren werden kann.

Sei G = (V, E) ein einfacher *nicht zusammenhängender* Graph mit n = |V| Knoten. Bestimmen Sie die maximale Zahl an Kanten m = |E| in Abhängigkeit von n, die G haben kann.

Es gibt daher mindestens 2 Teilgraphen, die nicht voneinander zusammenhängend sind

Fragen?