Katedra teoretické informatiky a matematické logiky

Daniel Crha

Board game with artificial intelligence

Obhajoba bakalářské práce

7. července 2020

- Klasické problémy teorie her jsou dobře prozkoumané
 - Mají i dobrou podporu
- Tyto problémy ale často nemodelují reálný svět

Složitější vlastnosti v teorii her

- Chtěli bychom zkoumat vlastnosti, které reálný svět modelují
- Konkrétně:
 - Neúplnost informace
 - Více hráčů
 - Prvky náhody
 - Netriviální větvící faktor
- Jedná se o méně zkoumanou oblast

Cíle

- Navrhnout hru se zmíněnými vlastnostmi
- Hru implementovat s podporou pro umělou inteligenci
- Implementovat a porovnat několik inteligencí

Návrh hry

Pravidla a vlastnosti

- Hra se imenuje Colonizers
- 4 hráči
- Hra se hraje v kolech s fázemi

Návrh hry

Pravidla a vlastnosti

Obrázek: Přehled hráče.

Implementace

Technologie

- GUI Electron + Angular
- Logika C# (.NET Core)
 - ASP.NET Core jako backend pro GUI
- Umělé inteligence Python

Implementace

Rozhraní pro umělou inteligenci

- Inteligence implementuje bázovou třídu
 - Na ní implementuje callback
- Bázová třída má další funkcionality
 - Determinizace
 - Simulace
- Soubor s umělou inteligencí je spouštěn jako <u>main</u>

Umělé inteligence

Implementované typy

- Náhodná inteligence
- Heuristická inteligence
- MaxN
 - Rozšíření Minimaxu na hry s více hráči
 - Determinizace + poziční vyhodnocování
- ISMCTS
 - Monte Carlo metoda
 - Determinizace + simulace

Experimenty

Vybalancování hry

Pozice	1	2	3	4
Výhry	230	202	282	286
Prohry	415	298	152	135
Průměrný výsledek	2.8	2.67	2.302	2.228

Tabulka: Výsledky hraní heuristických inteligencí, 1000 her.

 χ^2 test pro binomické rozdělení při analýze proher na první pozici:

$$\chi^2 = \frac{(415 - 250)^2}{250} + \frac{(585 - 750)^2}{750} \approx 145.2$$

To koresponduje velmi malé p-hodnotě (<< 0.05). Tedy zamítneme hypotézu, že heuristická inteligence na první pozici prohrává s pravděpodobností 0.25.

Experimenty Protovnání inteligencí

Al	Random	Heuristic	MaxN	ISMCTS
Výhry	0	5	8	37
Prohry	40	1	9	0
Průměrný výsledek	3.8	2.38	2.54	1.28

Tabulka: Výsledky hraní všech čtyř inteligencí dohromady, 50 her.

Al	Heuristic	MaxN
Výhry	35	15
Prohry	10	40
Průměrný výsledek	2.13	2.87

Tabulka: Výsledky hraní dvou heuristických a dvou MaxN inteligencí, 50 her.

Děkuji za pozornost!

Za ochotu a čas mně věnovaný při přípravě této bakalářské práce děkuji též svému vedoucímu Mgr. Martinu Pilátovi, Ph.D.

Připomínky oponenta

Determinizace

- Engine hry sleduje množiny informací pro jednotlivé hráče
- Konkrétně se determinizují:
 - Colonist pro ostatní hráče
 - Moduly v rukou ostatních hráčů

Připomínky oponenta

Běhové časy strategií

Al	Random	Heuristic	MaxN	ISMCTS
Běhový čas	1ms	1ms	24s	51s

Tabulka: Průměrný běhový čas potřebný pro jedno rozhodnutí. 10 her, zaokrouhleno.