目 录

1 IPv4 域名解析配置	1-1
1.1 域名解析简介	1-1
1.1.1 静态域名解析	1-1
1.1.2 动态域名解析	1-1
1.1.3 解析过程	1-1
1.2 配置IPv4 DNS client	1-2
1.2.1 配置静态域名解析	1-2
1.2.2 配置动态域名解析	1-3
1.3 IPv4 域名解析显示和维护	1-3
1.4 IPv4 域名解析典型配置举例	1-4
1.4.1 静态域名解析配置举例	1-4
1.4.2 动态域名解析配置举例	1-4
1.5 IPv4 域名解析常见配置错误举例	1-7
2 IPv6 域名解析配置	2-1
2.1 IPv6 域名解析简介	2-1
2.2 配置IPv6 DNS client	2-1
2.2.1 配置静态域名解析	2-1
2.2.2 配置动态域名解析	2-1
2.3 IPv6 域名解析显示和维护	2-2
2.4 IPv6 域名解析典型配置举例	2-2
2.4.1 静态域名解析配置举例	2-2
2.4.2 动态域名解析配置举例	2-3

1 IPv4 域名解析配置

1.1 域名解析简介

域名系统(DNS,Domain Name System)是一种用于 TCP/IP 应用程序的分布式数据库,提供域 名与 IP 地址之间的转换。通过域名系统,用户进行某些应用时,可以直接使用便于记忆的、有意义 的域名,而由网络中的域名解析服务器将域名解析为正确的 IP 地址。

域名解析分为静态域名解析和动态域名解析,二者可以配合使用。在解析域名时,首先采用静态域名解析(查找静态域名解析表),如果静态域名解析不成功,再采用动态域名解析。由于动态域名解析可能会花费一定的时间,且需要域名服务器的配合,因而可以将一些常用的域名放入静态域名解析表中,这样可以大大提高域名解析效率。

1.1.1 静态域名解析

静态域名解析就是手工建立域名和IP地址之间的对应关系。当用户使用域名进行某些应用(如 telnet 应用)时,系统查找静态域名解析表,从中获取指定域名对应的IP地址。

1.1.2 动态域名解析

1.1.3 解析过程

动态域名解析是通过对域名服务器的查询完成的。解析过程如下:

- (1) 当用户使用域名进行某些应用时,用户程序首先向 DNS 客户端中的解析器发出请求。
- (2) DNS 客户端收到请求后,首先查询本地的域名缓存。如果存在已解析成功的映射项,就将域名对应的 IP 地址返回给用户程序;如果没有发现所要查找的映射项,就向域名服务器(DNS Server)发送查询请求。
- (3) 域名服务器首先从自己的数据库中查找域名对应的 IP 地址。如果判断该域名不属于本域范围之内,就将请求交给上一级的域名解析服务器处理,直到完成解析,并将解析的结果返回给 DNS 客户端。
- (4) DNS 客户端收到域名服务器的响应报文后,将解析结果返回给应用程序。

图1-1 动态 DNS

用户程序、DNS客户端及域名服务器的关系如图 1-1所示,其中解析器和缓存构成DNS客户端。用户程序、DNS客户端在同一台设备上,而DNS客户端和服务器一般分布在两台设备上。

动态域名解析支持缓存功能。每次动态解析成功的域名与 IP 地址的映射均存放在动态域名缓存区 中,当下一次查询相同域名的时候,就可以直接从缓存区中读取,不用再向域名服务器进行请求。 缓存区中的映射在一段时间后会被老化删除,以保证及时从域名服务器得到最新的内容。老化时间 由域名服务器设置, DNS 客户端从协议报文中获得老化时间。

1. 域名后缀列表功能

动态域名解析支持域名后缀列表功能。用户可以预先设置一些域名后缀,在域名解析的时候,用户 只需要输入域名的部分字段,系统会自动将输入的域名加上不同的后缀进行解析。举例说明,用户 想查询域名 aabbcc.com,那么可以先在后缀列表中配置 com,然后输入 aabbcc 进行查询,系统 会自动将输入的域名与后缀连接成 aabbcc.com 进行查询。

使用域名后缀的时候,根据用户输入域名方式的不同,查询方式分成以下几种情况:

- 如果用户输入的域名中没有".",比如 aabbcc,系统认为这是一个主机名,会首先加上域名 后缀进行查询,如果所有加后缀的域名查询都失败,将使用最初输入的域名(如 aabbcc)进 行查询。
- 如果用户输入的域名中间有".",比如 www.aabbcc,系统直接用它进行查询,如果查询失 败,再依次加上各个域名后缀进行查询。
- 如果用户输入的域名最后有".",比如 aabbcc.com.,表示不需要进行域名后缀添加,系统 直接用输入的域名进行查询,不论成功与否都直接返回。就是说,如果用户输入的字符中最 后一个字符为".",就只根据用户输入的字符进行查找,而不会去匹配用户预先设置的域名 后缀,因此最后这个".",也被称为查找终止符。带有查询终止符的域名,称为绝对域名或 完全合格的域名 FQDN (Full Qualified Domain Name)。

目前,设备支持静态域名解析和动态域名解析的客户端功能。

如果域名服务器上配置了域名的别名,设备可以通过别名来解析主机的 IP 地址。

1.2 配置 IPv4 DNS client

配置静态域名解析就是配置将主机名与 IPv4 地址相对应。当使用 Telnet 等应用时,可以直接使用 主机名,由系统解析为 IPv4 地址。

1.2.1 配置静态域名解析

表1-1 配置静态域名解析

操作	命令	说明
进入系统视图	system-view	-
配置静态域名解析表中主机名和 对应的 IPv4 地址	ip host hostname ip-address	必选 缺省情况下,静态域名解析表中没有 主机名及其 IPv4 地址的对应关系

说明

- 每个主机名只能对应一个 IPv4 地址, 当对同一主机名进行多次配置时, 最后配置的 IPv4 地址有 效。
- 最多可配置 50 IPv4 条静态域名解析信息。

1.2.2 配置动态域名解析

如果用户需要使用动态域名解析功能,可以使用下面的命令使能动态域名解析功能,并配置域名服 务器,这样才能将查询请求报文发送到正确的服务器进行解析。

用户还可以配置域名后缀,以便实现只输入域名的部分字段,而由系统自动加上预先设置的后缀进 行解析。

表1-2 配置动态域名解析

操作	命令	说明
进入系统视图	system-view	-
开启动态域名解析功能	dns resolve	必选 缺省情况下,动态域名解析功能处于关闭 状态
配置域名服务器的 IPv4 地址	dns server ip-address	必选 缺省情况下,没有配置域名服务器的 IPv4 地址
配置域名后缀	dns domain domain-name	可选 缺省情况下,没有配置域名后缀,即只根 据用户输入的域名信息进行解析

- 包括 IPv6 域名服务器在内,设备上最多可配置 6 个域名服务器。
- 设备上最多可以配置 10 个域名后缀。

1.3 IPv4 域名解析显示和维护

在完成上述配置后,在任意视图下执行 display 命令可以显示域名解析配置后的运行情况,通过查 看显示信息验证配置的效果。

在用户视图下,执行 reset 命令可以清除动态域名缓存区信息。

表1-3 域名解析显示和维护

操作	命令
显示 IPv4 静态域名解析表	display ip host
显示 IPv4 域名服务器信息	display dns server [dynamic]
显示域名后缀列表信息	display dns domain [dynamic]
显示 IPv4 动态域名缓存区的信息	display dns dynamic-host

操作	命令
清空 IPv4 动态域名缓存信息	reset dns dynamic-host

1.4 IPv4 域名解析典型配置举例

1.4.1 静态域名解析配置举例

1. 组网需求

Device 利用静态域名解析功能,实现通过主机名 host.com 访问 IP 地址为 10.1.1.2 的主机 Host。

2. 组网图

图1-2 静态域名解析配置组网图

3. 配置步骤

配置主机名 host.com 对应的 IP 地址为 10.1.1.2。

```
<Sysname> system-view
[Sysname] ip host host.com 10.1.1.2
```

执行 ping host.com 命令, Device 通过静态域名解析可以解析到 host.com 对应的 IP 地址为 10.1.1.2。

```
[Sysname] ping host.com
PING host.com (10.1.1.2):
56  data bytes, press CTRL_C to break
Reply from 10.1.1.2: bytes=56 Sequence=1 ttl=128 time=1 ms
Reply from 10.1.1.2: bytes=56 Sequence=2 ttl=128 time=4 ms
Reply from 10.1.1.2: bytes=56 Sequence=3 ttl=128 time=3 ms
Reply from 10.1.1.2: bytes=56 Sequence=4 ttl=128 time=2 ms
Reply from 10.1.1.2: bytes=56 Sequence=5 ttl=128 time=3 ms
--- host.com ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 1/2/4 ms
```

1.4.2 动态域名解析配置举例

1. 组网需求

• 域名服务器的 IP 地址是 2.1.1.2/16, 配置域名后缀为 com, 且 com 域中包含域名"host"和 IP 地址 3.1.1.1/16 的对应关系。

• Device 作为 DNS 客户端,使用动态域名解析和域名后缀列表功能,实现通过输入 host 来访问域名为 host.com、IP 地址为 3.1.1.1/16 的主机 Host。

2. 组网图

图1-3 动态域名解析组网图

3. 配置步骤

- 在开始下面的配置之前,假设设备与主机之间的路由可达,设备和主机都已经配置完毕,接口IP地址如图 1-3所示。
- 不同域名服务器的配置方法不同,下面仅以 Windows Server 2000 为例,说明域名服务器的配置方法。

(1) 配置域名服务器

#进入域名服务器配置界面。

在开始菜单中,选择[程序/管理工具/DNS]。

#创建区域 com。

如图 1-4所示,右键点击[正向查找区域],选择[新建区域],按照提示创建新的区域com。

图1-4 创建区域

#添加域名和 IP 地址的映射。

如图 1-5所示,右键点击区域com。

图1-5 新建主机

选择[新建主机], 弹出如图 1-6的对话框。按照图 1-6输入域名host和IP地址 3.1.1.1。图1-6添加域名和IP地址的映射

(2) 配置 DNS 客户端 Device

#开启动态域名解析功能。

<Sysname> system-view
[Sysname] dns resolve

#配置域名服务器的 IP地址为 2.1.1.2。

[Sysname] dns server 2.1.1.2

#配置域名后缀 com。

[Sysname] dns domain com

(3) 验证配置结果

在设备上执行 ping host 命令,可以 ping 通主机,且对应的目的地址为 3.1.1.1。

```
[Sysname] ping host
Trying DNS resolve, press CTRL_C to break
Trying DNS server (2.1.1.2)
PING host.com (3.1.1.1):
56  data bytes, press CTRL_C to break
   Reply from 3.1.1.1: bytes=56 Sequence=1 ttl=126 time=3 ms
   Reply from 3.1.1.1: bytes=56 Sequence=2 ttl=126 time=1 ms
   Reply from 3.1.1.1: bytes=56 Sequence=3 ttl=126 time=1 ms
   Reply from 3.1.1.1: bytes=56 Sequence=4 ttl=126 time=1 ms
   Reply from 3.1.1.1: bytes=56 Sequence=5 ttl=126 time=1 ms

--- host.com ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 1/1/3 ms
```

1.5 IPv4 域名解析常见配置错误举例

1. 现象描述

配置了动态域名解析,但不能根据域名解析到正确的 IP 地址。

2. 故障分析

DNS 客户端需要和域名服务器配合使用,才能根据域名解析到正确的 IP 地址。

3. 故障排除

- 执行命令 display dns dynamic-host,检查动态域名缓存区中的信息是否存在指定域名。
- 如果不存在要解析的域名,检查 DNS 客户端是否和域名服务器通信正常,域名服务器是否工作正常,动态域名解析功能是否已经开启。
- 如果存在要解析的域名,但地址不对,则检查 DNS 客户端所配置的域名服务器的 IP 地址是 否正确。
- 检查域名服务器所设置的域名和地址映射表是否正确。

2 IPv6 域名解析配置

2.1 IPv6 域名解析简介

IPv6 网络中, DNS客户端通过IPv6 域名解析功能实现域名与IPv6 地址的转换。IPv6 DNS与IPv4 DNS相同,分为静态域名解析和动态域名解析。两种域名解析的作用和实现方式也与IPv4 DNS相 同。具体描述请参见"1 IPv4 域名解析配置"。IPv6 DNS与IPv4 DNS的区别仅在于IPv6 DNS将域 名转换为IPv6 地址,而非IPv4 地址。

2.2 配置 IPv6 DNS client

2.2.1 配置静态域名解析

配置静态域名解析就是配置将主机名与 IPv6 地址相对应。当使用 Telnet 等应用时,可以直接使用 主机名,由系统解析为 IPv6 地址。

表2-1 配置静态域名解析

操作	命令	说明
进入系统视图	system-view	-
配置主机名和对应的 IPv6 地址	ipv6 host hostname ipv6-address	必选 缺省情况下,静态域名解析表中没 有主机名及 IPv6 地址的对应关系

- 每个主机名只能对应一个 IPv6 地址, 当对同一主机名进行多次配置时, 最后配置的 IPv6 地址有
- 最多可配置 50 条 IPv6 静态域名解析信息。

2.2.2 配置动态域名解析

如果用户需要使用动态域名解析功能,可以使用下面的命令使能动态域名解析功能,并配置域名服 务器,这样才能将查询请求报文发送到正确的服务器进行解析。

用户还可以配置域名后缀,以便实现只输入域名的部分字段,而由系统自动加上预先设置的后缀进 行解析。

表2-2 配置动态域名解析

操作	命令	说明
进入系统视图	system-view	-
使能动态域名解析功能	dns resolve	必选 缺省情况下,动态域名解析功能处于关闭状态

操作	命令	说明
配置域名服务器的 IPv6 地址	dns server ipv6 ipv6-address [interface-type interface-number]	必选 缺省情况下,没有配置域名服务器的 IPv6 地址 当域名服务器的 IPv6 地址为链路本地地址时, 需要指定参数 interface-type 和 interface-number
配置域名后缀	dns domain domain-name	必选 缺省情况下,没有配置域名后缀,即只根据用 户输入的域名信息进行解析

- dns resolve 和 dns domain 命令与 IPv4 DNS 的命令相同。
- 包括 IPv4 域名服务器在内,设备上最多可配置 6 个域名服务器。
- 设备上最多可以配置 10 个域名后缀。

2.3 IPv6 域名解析显示和维护

在完成上述配置后,在任意视图下执行 **display** 命令可以显示 IPv6 域名解析配置后的运行情况,通过查看显示信息验证配置的效果。

在用户视图下,执行 reset 命令可以清除动态域名缓存信息。

表2-3 域名解析显示和维护

操作	命令
显示 IPv6 静态域名解析表	display ipv6 host
显示 IPv6 域名服务器信息	display dns ipv6 server [dynamic]
显示域名后缀列表信息	display dns domain [dynamic]
显示 IPv6 动态域名缓存信息	display dns ipv6 dynamic-host
清空 IPv6 动态域名缓存信息	reset dns ipv6 dynamic-host

2.4 IPv6 域名解析典型配置举例

2.4.1 静态域名解析配置举例

1. 组网需求

Device 利用静态域名解析功能,实现通过主机名 host.com 访问 IPv6 地址为 1::2 的主机 Host。

2. 组网图

图2-1 静态域名解析配置组网图

3. 配置步骤

配置主机名 host.com 对应的 IPv6 地址为 1::2。

```
<Device> system-view
[Device] ipv6 host host.com 1::2
```

使能 IPv6 报文转发功能。

[Device] ipv6

执行 ping ipv6 host.com 命令, Device 通过静态域名解析可以解析到 host.com 对应的 IPv6 地址为 1::2。

```
[Device] ping ipv6 host.com
  PING host.com (1::2):
  56 data bytes, press CTRL_C to break
   Reply from 1::2
   bytes=56 Sequence=1 hop limit=128 time = 3 ms
   Reply from 1::2
   bytes=56 Sequence=2 hop limit=128 time = 1 ms
   Reply from 1::2
   bytes=56 Sequence=3 hop limit=128 time = 1 ms
   Reply from 1::2
   bytes=56 Sequence=4 hop limit=128 time = 2 ms
   Reply from 1::2
   bytes=56 Sequence=5 hop limit=128 time = 2 ms
  --- host.com ping statistics ---
   5 packet(s) transmitted
   5 packet(s) received
   0.00% packet loss
   round-trip min/avg/max = 1/1/3 ms
```

2.4.2 动态域名解析配置举例

1. 组网需求

- 域名服务器的 IPv6 地址是 2::2/64,配置域名后缀为 com,且 com 域中包含域名"host"和 IPv6 地址 1::1/64 的对应关系。
- Device 作为 DNS 客户端,使用动态域名解析和域名后缀列表功能,实现通过输入 host 来访问域名为 host.com、IPv6 地址为 1::1/64 的主机 Host。

2. 组网图

图2-2 动态域名解析组网图

3. 配置步骤

- 在开始下面的配置之前,假设设备与主机之间的路由可达,设备和主机都已经配置完毕,接口IPv6 地址如图 2-2所示。
- 不同域名服务器的配置方法不同,下面仅以 Windows Server 2003 为例,说明域名服务器的配置方法。配置之前,需确保 DNS 服务器支持 IPv6 DNS 功能,以便处理 IPv6 域名解析报文;且 DNS 服务器的接口可以转发 IPv6 报文。

(1) 配置域名服务器

#进入域名服务器配置界面。

在开始菜单中,选择[程序/管理工具/DNS]。

#创建区域 com。

如图 2-3所示,右键点击[正向查找区域],选择[新建区域],按照提示创建新的区域com。

图2-3 创建区域

#添加域名和 IPv6 地址的映射。

如图 2-4所示,右键点击区域com。

图2-4 创建记录

选择[其他新记录],弹出如图 2-5的对话框,选择资源记录类型为"IPv6 主机(AAAA)"。图2-5 选择资源记录类型

按照图 2-6输入域名host和IPv6地址 1::1。点击<确定>按钮,添加域名和IPv6地址的映射。

图2-6 添加域名和 IPv6 地址的映射

(2) 配置 DNS 客户端 Device

#开启动态域名解析功能。

<Device> system-view
[Device] dns resolve

#配置域名服务器的 IPv6 地址为 2::2。

[Device] dns server ipv6 2::2

#配置域名后缀 com。

[Device] dns domain com

(3) 验证配置结果

#在设备上执行 ping ipv6 host 命令,可以 ping 通主机,且对应的目的地址为 1::1。

[Device] ping ipv6 host
Trying DNS resolve, press CTRL_C to break
Trying DNS server (2::2)
PING host.com (1::1):
56 data bytes, press CTRL_C to break
 Reply from 1::1
 bytes=56 Sequence=1 hop limit=126 time = 2 ms
 Reply from 1::1
 bytes=56 Sequence=2 hop limit=126 time = 1 ms
 Reply from 1::1
 bytes=56 Sequence=3 hop limit=126 time = 1 ms

```
Reply from 1::1
bytes=56 Sequence=4 hop limit=126    time = 1 ms
Reply from 1::1
bytes=56 Sequence=5 hop limit=126    time = 1 ms
--- host.com ping statistics ---
5 packet(s) transmitted
5 packet(s) received
```

0.00% packet loss

round-trip min/avg/max = 1/1/2 ms