HW 1

Joshua Ortiga

September 19, 2022

```
Problem 1.1. Let x, y, z \in \mathbb{R}

1. \forall x \exists y \ s.t. \ x+y=1

True

Negation: \neg(\forall x \exists y \ s.t. \ x+y=1) = \exists x \forall y \ s.t. \ x+y \neq 1

2. \exists x \forall y \ s.t. \ x+y=1

True

Negation: \neg(\exists x \forall y \ s.t. \ x+y=1) = \forall x \exists y \ s.t. \ x+y \neq 1

3. \exists x \exists y \forall z \ s.t. \ yz=1

True

Negation: \neg(\exists x \exists y \forall z \ s.t. \ yz=1) = \forall x \forall y \exists z \ s.t. \ yz \neq 1
```

Problem 1.2. Show that if a condition P is both necessary $(\overline{P} \Rightarrow \overline{Q})$ and sufficient $(P \Rightarrow Q)$, that this is logically equivalent to P = Q.

Problem 1.3. Let c,d be two single digit numbers, $0 \le c$, $d \le 9$. We will create functions $f_1, f_2, f_3...$ that are as follows:

$$f_1(c,d) = cd$$

$$f_2(c,d) = cdcd$$

$$f_3(c,d) = cdcdcd$$

$$f_4(c,d) = cdcdcdcd$$
:

References:

https://www.math.toronto.edu https://math.stackexchange.com