

FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling

Hao Lu Wenze Liu Hongtao Fu Zhiguo Cao

Huazhong University of Science and Technology, China

Motivations & Contributions

Observations: Some tasks like semantic segmentation and instance segmentation are region-sensitive, while some tasks such as image super-resolution and image matting are detail-sensitive. It is difficult for the same upsampling operator to generate semantically consistent features and recover boundary details simultaneously.

Motivations:

- Existing upsampling operators often can work well in either type of the tasks, but not both.
- There is not a task-agnostic feature upsampler in dense prediction.

Contributions:

- We observe that what features (encoder or decoder) to use to generate the upsampling kernels matters. Using both can encourage task-agnostic upsampling.
- We present FADE, a novel, plug-and-play, and task-agnostic upsampling operator.

Three Key Designs

1) Using both encoder and decoder features in generating upsampling kernels;

2) Semi-shift Convolution: Controlling per-point contribution in the upsampled feature;

The upsampling kernel weight takes the form:

$$w_{m} = \sum_{l=1}^{d} \sum_{i=1}^{h} \sum_{j=1}^{h} \beta_{ijlm} \sum_{k=1}^{C} \alpha_{kl}^{\text{en}} x_{ijk}^{\text{en}} +$$
(1)

$$\sum_{l=1}^{d} \sum_{i=1}^{h} \sum_{j=1}^{h} \beta_{ijlm} \left(\sum_{k=1}^{C} \alpha_{kl}^{\text{de}} x_{ijk}^{\text{de}} + a_l \right) + b_m \quad (2)$$

3) A Gating Mechanism: Per the pipeline (c),

$$\mathcal{F}_{\text{upsampled}} = \mathcal{F}_{\text{encoder}} \cdot \mathbf{G} + \mathcal{F}_{\text{pre-upsampled}} \cdot (1 - \mathbf{G})$$

(3)

Main Pipeline

From (a) the overview of FADE, feature up-sampling is executed by jointly exploiting the encoder and decoder feature with two key modules: a semi-shift convolutional operator in (b) and a decoder-dependent gating mechanism in (c).

Experimental Results

- We first use some experimental observations on toy datasets to showcase our motivation.
- We then validate FADE on large-scale dense prediction tasks, including image matting and semantic segmentation on the Adobe Composition-1k and ADE20K data sets, respectively.
- We further conduct ablation studies to justify each design choice of FADE.
- We also analyze computational complexity in terms of parameter counts and GFLOPs.

GRADIENT MAP

GATE MAP

Results of semantic segmentation on SUN RGBD and image reconstruction on Fashion MNIST

	Segme	entation	Reconstruction					
	accuracy metric ↑		accurac	y metric \uparrow	error metric \downarrow			
	mIoU	bIoU	PSNR	SSIM	MAE	MSE		
decoder-only	37.00	25.61	24.35	87.19	0.0357	0.0643		
encoder-only	36.71	27.89	32.25	97.73	0.0157	0.0257		
encoder-decoder	37.59	28.80	33.83	98.47	0.0122	0.0218		

Visualizations of inferred mask and reconstructed results on SUN RGBD and Fashion-MNIST

DECODER-ONLY ENCODER-ONLY

Encoder-Decoder

Image Matting and Semantic Segmentation Results:

A2U Matting/	ting/ Matting - error \				Segm - accuracy ↑			
SegFormer	SAD	MSE	Grad	Conn	Δ Param.	mIoU	bIoU	Δ Param.
Bilinear	37.31	0.0103	21.38	35.39	8.05M	41.68	27.80	13.7M
CARAFE	41.01	0.0118	21.39	39.01	+0.26M	42.82	29.84	+0.44M
IndexNet	34.28	0.0081	15.94	31.91	+12.26M	41.50	28.27	+12.60M
A2U	32.15	0.0082	16.39	29.25	+38K	41.45	27.31	+0.12M
FADE (Ours)	31.10	0.0073	14.52	28.11	+0.12M	44.41	32.65	+0.29M

Ablation Study:

No.	A2U Matting / SegFormer			Matting - $\mathtt{error}\downarrow$				Segm - accuracy ↑	
	source of feat.	kernel gen.	fusion	SAD	MSE	Grad	Conn	mIoU	bIoU
B1	en			34.22	0.0087	15.90	32.03	42.75	31.00
B2	de			41.01	0.0118	21.39	39.01	42.82	29.84
B3	en & de	naive		32.41	0.0083	16.56	29.82	43.27	31.55
B4	en & de	semi-shift		31.78	0.0075	15.12	28.95	43.33	32.06
B5	en & de	semi-shift	skipping	32.64	0.0076	15.90	29.92	43.22	31.85
B6	en & de	semi-shift	gating	31.10	0.0073	14.52	28.11	44.41	32.65

GFLOPs Comparison:

100 - FADE-naive FADE - CARAFE - A2U - A2U

Code @ Github:

E-mail: hlu@hust.edu.cn (Hao Lu)

resolution=112 channels=256