(Note: I cut my index finger open while cooking on 2/8, typing is challenging.)
1.

csipolate rcons quarter, gen(cub) ipolate rcons quarter, gen(lin)

diff_perc											
	Percentiles	Smallest									
1%	0031216	0039958									
5%	0019897	0031216									
10%	0018348	0028738	Obs	108							
25%	0008816	0020952	Sum of Wgt.	108							
50%	.0000535		Mean	0000867							
		Largest	Std. Dev.	.0012649							
75%	.0005097	.0025883									
90%	.0014312	.0026875	Variance	1.60e-06							
95%	.0019485	.0033632	Skewness	.0584529							
99%	.0033632	.0039727	Kurtosis	4.21895							

No notable differences between models.

2. A.

. tobit ecolbs lecoprc lfaminc lregprc educ hhsize num5_17

Iteration 0: log likelihood = -1535.1136
Iteration 1: log likelihood = -1535.1136

ecolbs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lecopro	-2.56959	.5833995	-4.40	0.000	-3.715152	-1.424028
lfaminc	.203861	.1551377	1.31	0.189	1007671	.5084891
lregpro	2.204184	.5871618	3.75	0.000	1.051234	3.357134
educ	.0251628	.0455542	0.55	0.581	0642873	.1146129
hhsize	.0015866	.0882216	0.02	0.986	1716452	.1748184
num5_17	.1111276	.1336623	0.83	0.406	1513314	.3735865
_cons	.7307278	.7570337	0.97	0.335	755782	2.217238
var(e.ecolbs)	6.134829	.3377112			5.506283	6.835125

. margins, dydx(*) predict(ystar(0,.))

Average marginal effects Number of obs = 660

Model VCE : OIM

Expression : E(ecolbs*|ecolbs>0), predict(ystar(0,.))
dy/dx w.r.t. : lecoprc lfaminc lregprc educ hhsize num5_17

	1	Delta-method				
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
lecoprc	-1.851027	.4184455	-4.42	0.000	-2.671165	-1.030889
lfaminc	.1468531	.1117172	1.31	0.189	0721086	.3658149
lregprc	1.587804	.4217173	3.77	0.000	.7612532	2.414355
educ	.0181263	.0328134	0.55	0.581	0461868	.0824393
hhsize	.0011429	.0635513	0.02	0.986	1234153	.1257011
num5 17	.0800518	.0962688	0.83	0.406	1086317	.2687352

Only the log price of eco and regular apples is significant at 95% level. B.

. keep if ecolbs>0 (248 observations deleted)

. reg ecolbs lecoprc lfaminc lregprc educ hhsize num5_17

	obs =	er of	Numl	MS	df	SS	Source
= 0	=	405)	F(6				
0.7	=) > F	Pro	4.29393091	6	25.7635854	Model
0.0	=	quared	R-se	8.18573079	405	3315.22097	Residual
-0.0	red =	R-squa	Adj				33
2.8	=	MSE	Roo	8.1289162	411	3340.98456	Total
. Interv	% Conf.	[95)> t	t	Std. Err.	Coef.	ecolbs
.5023	81994	-2.7	.173	-1.36	.8353574	-1.139816	lecoprc
.6318	49792	30	.493	0.69	.238272	.1634253	lfaminc
3.069	76985	33	.116	1.58	.8666128	1.365922	lregprc
.0853	87585	17	.487	-0.70	.0671759	0467014	educ
.2287	83288	2	.834	-0.21	.1302264	0272838	hhsize
.4132	67764	31	.795	0.26	.1856715	.0482239	num5_17
5.007	27268	70	.022	2.30	1.173709	2.70005	cons

. margins, dydx(*)

Average marginal effects Number of obs = 412

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : lecoprc lfaminc lregprc educ hhsize num5_17

	1	Delta-method				
	dy/dx	Std. Err.	t	P> t	[95% Conf.	Interval]
lecoprc	-1.139816	.8353574	-1.36	0.173	-2.781994	.5023619
lfaminc	.1634253	.238272	0.69	0.493	3049792	.6318297
lregprc	1.365922	.8666128	1.58	0.116	3376985	3.069543
educ	0467014	.0671759	-0.70	0.487	1787585	.0853556
hhsize	0272838	.1302264	-0.21	0.834	283288	.2287204
num5 17	.0482239	.1856715	0.26	0.795	3167764	.4132242

No variables are significant at the 95% level for the OLS model. This appears because of the model's selection bias from only selected people who purchase a single eco labeled apple.

3.A.heckman gift resplast avggift propresp mailsyear weekslast, select(respond = resplast avggift propresp mailsyear weekslast)

eckman select	ion model			Number	of obs	=	4,26
(regression mo	del with sam	ole selection	on)	S	elected	=	1,70
- 1 - - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				N	onselect	ed =	2,56
				Wald ch	i2(5)	=	137.7
og likelihood	= -9750.451			Prob >	chi2	=	0.000
	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval
gift				1012121			
resplast	.0357605	1.487353	0.02	0.981	-2.879	399	2.9509
avggift	.0249004	.0053889	4.62	0.000	.0143	383	.035462
propresp	-26.69666	3.304079	-8.08	0.000	-33.17	253	-20.2207
mailsyear	1.150477	.8424015	1.37	0.172	5006	6001	2.80155
weekslast	.1081762	.0231094	4.68	0.000	.0628	8826	.153469
_cons	44.83067	3.58776	12.50	0.000	37.79	879	51.8625
respond							
resplast	.0329906	.0565128	0.58	0.559	0777	725	.143753
avggift	.0212896	.0013692	15.55	0.000	.0186	059	.023973
propresp	1.734545	.1125834	15.41	0.000	1.513	885	1.95520
mailsyear	.0585138	.031464	1.86	0.063	0031	544	.120182
weekslast	0051586	.0007123	-7.24	0.000	0065	546	003762
_cons	-1.444665	.1116397	-12.94	0.000	-1.663	475	-1.22585
/athrho	-1.330056	.0958632	-13.87	0.000	-1.517	944	-1.14216
/lnsigma	3.270655	.0383795	85.22	0.000	3.195	432	3.34587
rho	869263	.0234272			9083	387	815142
sigma	26.32857	1.010477			24.42	073	28.3854
lambda	-22.88645	1.45797			-25.74	1402	-20.0288

. margins, dydx(*) predict(yexpected)

Average marginal effects Number of obs = 4,268

Model VCE : OIM

Expression : E(gift*|Pr(respond)), predict(yexpected)
dy/dx w.r.t. : resplast avggift propresp mailsyear weekslast

	1	Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
resplast	.3360517	.4893041	0.69	0.492	6229666	1.29507
avggift	.217525	.0148459	14.65	0.000	.1884276	.2466224
propresp	7.28027	1.060428	6.87	0.000	5.201869	9.358671
mailsyear	.9912053	.2917781	3.40	0.001	.4193306	1.56308
weekslast	0111895	.0070835	-1.58	0.114	0250729	.002694

B. reg respond resplast avggift propresp mailsyear weekslast

Source	SS	df	MS	Number of obs	=	4,268
		1-2-201		F(5, 4262)	-	232.68
Model	219.642439	5	43.9284878	Prob > F	=	0.0000
Residual	804.637552	4,262	.188793419	R-squared	=	0.2144
*	100 100 100 100 100 100 100 100 100 100	80		Adj R-squared	=	0.2135
Total	1024.27999	4,267	.240046869	Root MSE	_	.4345

respond	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
resplast	.0664608	.0190156	3.50	0.000	.0291804	.1037413
avggift	.0001827	.0000846	2.16	0.031	.0000169	.0003486
propresp	.6503363	.036999	17.58	0.000	.5777989	.7228736
mailsyear	.0519748	.0101928	5.10	0.000	.0319917	.071958
weekslast	0010783	.0002086	-5.17	0.000	0014874	0006692
_cons	.0165182	.0355887	0.46	0.643	0532541	.0862906

. keep if gift>0 (2,561 observations deleted)

. reg gift resplast avggift propresp mailsyear weekslast

1,707	5 =	er of ob	Numb	MS	df	SS	Source
7.32	=	1701)	- F(5,			1111111	
0.0000	=	> F	3 Prob	2582.5282	5	12912.6411	Model
0.0211	=	uared	7 R-sq	352.92073	1,701	600318.174	Residual
0.0182	d =	R-square	- Adj		116 7/8 / 11		
18.786	=	MSE	3 Root	359.45534	1,706	613230.815	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	gift
3.545569	335	-1.306	0.365	0.91	1.236872	1.119617	resplast
.0245314	261	.0098	0.000	4.58	.0037487	.0171787	avggift
3.931511	229	-5.463	0.749	-0.32	2.394956	7658592	propresp
4.087961	394	1.296	0.000	3.78	.7116409	2.692177	mailsyear
.0531769	162	0248	0.476	0.71	.0198824	.0141803	weekslast
17.11876	oca	6.50	0.000	4.37	2.704796	11.81369	_cons

The models have very different AMEs. Given most gifts are small or zero and you cannot have a negative gift the tobit type2 model fits our scenario. While, OLS overlooks these conditions causing incorrect estimates.

4.A.npregress kernel bwght faminc, reps(500) seed(1)

Local-li	near re	egression		Num	ber of obs	=	1,196
Kernel	: epar	nechnikov		E(K	ernel obs)	=	1,196
Bandwidt	andwidth: cross validation				quared	=	0.0193
		Observed	Bootstrap			Perc	entile
b	wght	Estimate	Std. Err.	z	P> z	[95% Conf	. Interval]
Mean							
b	wght	118.4696	.5948006	199.18	0.000	117.1872	119.624
Effect		3.89			011 Jugs 20	101/2017	11111111
fa	minc	.2103005	.0536238	3.92	0.000	.1058769	.3138146

Note: Effect estimates are averages of derivatives.

margins, dydx(*) at((median)faminc) reps(500) seed(1)

Conditional marginal effects Number of obs = 1,196
Replications = 500

Expression : mean function, predict()

dy/dx w.r.t. : faminc

at : faminc = 22.5 (median)

	Observed	Bootstrap			ntile	
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
faminc	.2471097	.1104106	2.24	0.025	.0155378	.4625784

. margins, dydx(*)

Average marginal effects Number of obs = 1,196

Expression : mean function, predict()

dy/dx w.r.t. : faminc

	dy/dx	
faminc	.2103005	

Note: You may compute standard errors using vce(bootstrap) or reps().

lpoly bwght cigs, degree(1) ci

B. npregress kernel bwght cigs faminc motheduc, reps(500) seed(1)

Bandwidth

	Mean	Effect
cigs	2.123657	2.682692
faminc	6.665646	8.420322
motheduc	.8968269	1.132909
9		

Local-linear regression Number of obs = 1,051
Kernel : epanechnikov E(Kernel obs) = 1,051
Bandwidth: cross validation R-squared = 0.1142

bwght	Observed Estimate	Bootstrap Std. Err.	z	P> z	81 F010 P	entile . Interval]	
Mean bwght	118.3683	.8650189	136.84	0.000	117.4011	120.6112	
Effect	8755-47878777		×15 15 ×			52 F 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 - 1-20 -	
cigs	4662423	.6705554	-0.70	0.487	-2.023998	.7743301	
faminc	.112927	.0759512	1.49	0.137	.0308194	.3249604	
motheduc	.6280309	.6602792	0.95	0.342	1675812	2.341429	
<u> </u>							

Note: Effect estimates are averages of derivatives.

margins, dydx(*) at((median) cigs faminc motheduc) reps(500) seed(1)

Conditional marginal effects Number of obs = 1,051
Replications = 355

Expression : mean function, predict() dy/dx w.r.t. : cigs faminc motheduc

at : cigs = 0 (median)

faminc = 22.5 (median)
motheduc = 12 (median)

	Observed	Bootstrap			Perce	ntile
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
cigs	.8569527	1.057085	0.81	0.418	-1.537849	2.706943
faminc	.2949901	.1046279	2.82	0.005	.0801142	.4931624
motheduc	1.684065	.9111718	1.85	0.065	1697928	3.615321

. margins, dydx(*)

Average marginal effects Number of obs = 1,051

Expression : mean function, predict()
dy/dx w.r.t. : cigs faminc motheduc

	dy/dx	
cigs	4662423	
faminc	.112927	
motheduc	.6280309	

Note: You may compute standard errors using vce(bootstrap) or reps().

C.

kdensity bwght, kernel(epanechnikov) bwidth(1)

kdensity bwght, kernel(epanechnikov) bwidth(2)

kdensity bwght, kernel(epanechnikov) bwidth(4)

As bandwidth increases the curve smooths.

. mkspline lemploy = lemploy, cubic knots(2.52 3.44 4.36 5.28 6.2)

46.68793

1.766979

knot2

1.196391

10.04059

45.15421

50.49528

2.677704

. reg lscrap lhrsemp lemploy?

Source	SS	df	MS	Number of ob	s =	32
280Xes222	54,000	Stets	1000	F(5, 26)	=	1.97
Model	14.661224	5	2.9322447	Prob > F	=	0.1170
Residual	38.7206984	26	1.4892576	R-squared	=	0.2746
				- Adj R-square	d =	0.1352
Total	53.3819223	31	1.7219974	Root MSE	=	1.2204
lscrap	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
lhrsemp	1653659	.1542777	-1.07	0.2944824	882	.1517565
lemploy1	1.850432	.6949242	2.66	0.013 .421	995	3.278869
lemploy2	-12.26077	5.457369	-2.25	0.033 -23.47	855	-1.042985
lemploy3	31.70542	20.48572	1.55	0.134 -10.40	358	73.81442

-0.51

-2.33

knot3

0.616

0.028

knot4

-119.686

-7.753023

knot5

72.25082

-.4888663

B.

lemploy4

lemploynat1

lemploynat2

lemploynat3

lemploynat4

_cons

_cons

. mkspline lemploynat = lemploy, cubic displayknots

-23.7176

-4.120944

knot1

.6431411

12.19826

-78.47533

99.96958

-1.588732

lemploy	1.930495	2.737093	3.218876	4.103436	5.314	1584	_
reg lscrap l	hrsemp lemplo	ynat?					
Source	SS	df	MS	Number	of obs	=	32
			100	F(5, 2	(6)	=	2.25
Model	16.1360516	5	3.22721032	Prob >	F	=	0.0790
Residual	37.2458707	26	1.43253349	R-squa	red	=	0.3023
ORT SECURITY CONTRACTOR	100 ft 7 ft in the state of the control of	1000	A STATE OF THE STA	- Adj R-	squared	=	0.1681
Total	53.3819223	31	1.72199749	Root M	ISE	=	1.1969
lscrap	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
lhrsemp	1841329	.149243	-1.23	0.228	490906	54	.1226405

0.54

1.21

-1.74

1.98

-0.59

0.595

0.235

0.094

0.058

0.558

-1.816077

-8.440468

-171.2911

-3.824957

-7.092832

3.102359

32.83699

14.34049

203.7641

3.915367

The initial expected change in percent scrap rate for percent change in annual firm sales stays about the same for both methods. Once the spline is added the models differ heavily mostly because of the different knot placements.

C.

. misschk scrap

Variables examined for missing values

Rate is the same for all years, 66%. Since 2/3 of the firms are missing scrap data interpolation variance will be too large to be applicable.