

Trigonometric Ratios and Identities

Lecture - 9

Trigonometric Identities in a triangle (conditional Identities):=

if A, B, c are angles of a triangle
$$A+B+C=TC$$

(i) $Sin(A+B) = Sin(TC-C) = SinC$
 $Sin(A+B) = SinC$
 $Sin($

$$(iii)$$
 $tan(A+B) = tan(\pi-c) = -tanc$

$$tan(A+B) = -tanc$$

(iv)
$$\sin(2A+2B) = \sin(2\pi - 2C) = -\sin 2C$$

 $\sin(2A+2B) = -\sin 2C$

(V)
$$\cos(2A+2B) = \cos(2\pi-2C) = \cos 2C$$

(Vii)
$$\sin\left(\frac{A+B}{2}\right) = \sin\left(\frac{\pi-c}{2}\right) = \sin\left(\frac{\pi}{2}-\frac{c}{2}\right) = \cos\frac{c}{2}$$

$$Sin\left(\frac{A+B}{2}\right) = Cos \frac{C}{2}$$

(Viii)
$$\cos\left(\frac{A+B}{2}\right) = \cos\left(\frac{TC-C}{2}\right) = \sin\frac{C}{2}$$

(ix)
$$tan\left(\frac{A+B}{2}\right) = tan\left(\frac{tE-C}{2}\right) = cot \frac{5}{2}$$

$$\tan\left(\frac{A+B}{2}\right) = \cot\frac{\zeta}{2}$$

$$(x) \quad \frac{\sin 2A + \sin 2B}{\sin 2A + \sin 2C} = \frac{4 \sin A \sin B}{\sin 2A \sin B} \sin C$$

$$LHS = \frac{2 \sin \left(\frac{2A + 2B}{2}\right)}{2} \cos \left(\frac{2A - 2B}{2}\right) + \sin(2C)$$

$$= \frac{2 \sin \left(A + B\right)}{2} \cos \left(A - B\right) + \sin 2C$$

$$= \frac{2 \sin \left(\pi - C\right)}{2} \cos \left(A - B\right) + \sin 2C$$

$$= \frac{2 \sin C}{2} \cos \left(A - B\right) + \cos C$$

$$= \frac{2 \sin C}{2} \cos \left(A - B\right) + \cos C$$

$$= \frac{2 \sin C}{2} \cos \left(A - B\right) + \cos \left(\pi - (A + B)\right)$$

$$= \frac{2 \sin C}{2} \cos \left(A - B\right) - \cos \left(A + B\right)$$

$$= \frac{2 \sin C}{2} \sin A \sin B$$

$$= \frac{2 \sin C}{2} \sin A \sin B$$

$$= \frac{2 \sin C}{2} \sin A \sin B$$

$$(xil) \qquad \qquad \mathcal{E} tanA = \prod tanA \qquad \qquad A+B+C=\pi$$

$$tanA + tanB + tanC = tanA tanB tanC$$

$$A+B+C = \pi$$

$$A+B = \pi - \mathbf{C}$$

$$tan(A+B) = tan(\pi - c)$$

$$tanA + tanB$$

$$1-tanA tanB = -tanC$$

$$tanA + tanB = -tanC + tanA tanB tanC$$

$$tanA + tanB + tanC = tanA tanB tanC$$

$$\mathcal{E} tanA = \pi tanA$$

$$(xiii) \quad \mathcal{E} \cot A \cot B = 1 \Rightarrow \cot A \cot B + \cot B \cot C$$

$$(xiv) \quad \mathcal{E} \tan \frac{A}{2} + \tan \frac{B}{2} = 1$$

$$(xv) \quad \mathcal{E} \cot \left(\frac{A}{2}\right) = \pi \cot \left(\frac{A}{2}\right)$$

$$\cot \left(\frac{A}{2}\right) = \pi \cot \left(\frac{A}{2}\right)$$

$$\cot \left(\frac{A}{2}\right) = \tan \left(\frac{A+B}{2}\right) = \tan \left(\frac{B-C}{2}\right)$$

$$\tan \left(\frac{A+B}{2}\right) = \tan \left(\frac{B-C}{2}\right)$$

$$\tan \left(\frac{A+B}{2}\right) + \tan \frac{B}{2}$$

$$(-\tan \frac{A}{2} + \tan \frac{B}{2}) = \tan \frac{C}{2}$$

(I)
$$Sin(B+c-A) + Sin(C+A-B) + Sin(A+B-c) = 4 SinAShBSinC$$

where $A+B+C=TC$

- = Sin (π-2A) + sin (π-2B) + sin (π-2c)
 - = Sin 2A + Sin 2B + Sin 2C
 - = 4 SINA SINB SINC

Sin 2A + Sin 2B - Sin 2C = 4 cos A cos B sin C (A+B+C=R)

LHS:
$$2 \sin (A+B) \cos (A-B) - \sin 2C$$

= $2 \sin (R-c) \cos (A-B) - \sin 2C$

= $2 \sin (R-c) \cos (A-B) - \sin 2C$

A + B + C = R

= $2 \sin (R-c) \cos (A-B) - \cos (R-c)$

= $2 \sin (R-c) \cos (A-c)$

= $2 \sin (R-c)$

= $2 \sin$

(3) Cos2A +	Cos 2B - Cos 2 C	= 1 - 4 sinA sinB cosc	(A+B+C) = TC

$$GIFA+B+C=TC, \quad \text{frome that} \quad Sin^2A+Sin^2B-Sin^2C=2 \text{ sin}A \text{ sin}B \text{ cos}C$$

$$LHS=Sin^2A+Sin(B+C) \text{ sin}(B+C)$$

$$=Sin^2A+Sin(TC-A) \text{ sin}(B-C)$$

$$=Sin^2A+Sin(TC-A) \text{ sin}(B-C)$$

$$=Sin^2A+Sin(TC-B+C)$$

$$=Sin^2A+Sin(B-C)$$

$$=Sin^2A+Sin(B+C)$$

$$=Sin^2A-Sin^2B$$

(5	Sin2(A)) + si	$n^2 \frac{B}{2}$	5,2 <u>C</u>	= 1 -	2 con <u>A</u> 2	cos B 2	જો	(A+B+C =TT)

6) If
$$A+B+C=2S$$
, prove that $Sin(S-A)$ Stn(S-B) + SinS(Sin(S-C))= SinA SinB.

		/	KOTA (RAJASTHAN)
	Solve Sin 25° 8in 20° + 8in 20° Sin 25° 8in 25° 8in 25°		
	Gove Cin 200 vin 500 vin 600		
	84 N 52 81 N 20 84 N 102		
_			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
_			

(8) find	Sin2A + sin2B + sin2C	(A+B+C=17)	
	SINA + SINB + SINC		

[]	regnaliti	es in	a t	riangle	•			
Q	In	a &	ABC,	Mow	flat	Cot ² A +	Cot ² B + Cot ²	c > 1
					2 4M			
			<u>C</u> 0 t	t ² A + co	t ² B >	V cot ² A co	t2B	
			- C	0 t 277 + Co) t ² B >	Co+A Co	+B	
		add		2		Z CO+ B C		
				Co +2 C 1	- Cot ² A	> Cot	c Cot A	
			Cot2 P	+ cot ² B	+60+ ² C	> Co+A	Cot B + Co+	t B Cot C + Cot C CotA
			Cot	44 + Cot	-B + Co+2		Fence	Proved

$$= \frac{\cos A}{2} \left(2 \cos B \cos C \right)$$

$$= \frac{Cos A}{2} \left[cos (B+c) + cos (B-c) \right]$$

$$=\frac{\cos A}{2}\left[\cos \left(\pi - A\right) + \cos \left(B - C\right)\right]$$

$$= \frac{\cos A}{2} \left[-\cos A + \cos (B-c) \right]$$

$$y = \frac{\cos A}{2} \left[\cos (B-c) - \cos A \right]$$

$$y \leq \frac{\cos A}{2} \left[1 - \cos A \right] \Rightarrow y \leq \left(\frac{\cos A}{2} - \frac{\cos^2 A}{2} \right)$$

$$y \leq \frac{\cos A}{2} - \frac{\cos^2 A}{2}$$

$$-\frac{t^2}{2} + \frac{t}{2}$$

Vertex

$$V_{x} = \frac{-b}{2a} = \frac{-1/2}{2(-\frac{1}{2})} = \frac{1}{2}$$

$$y \leq \frac{1}{8}$$

M-II

$$\frac{1}{2} \left[\cos \left(A + B \right) + \cos \left(A - B \right) \right] \cos C = y$$

$$\left[\cos \left(\pi - C \right) + \cos \left(A - B \right) \right] \cos C = 2y$$

$$- \cos^2 C + \cos (A - B) \cos C = 2y$$

