Binary Decision Diagrams

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objectives:
 - **▲** Definitions of BDDs, OBDDs and ROBDDs
 - **▲**Logic operations on BDDs
 - **▲**The ITE operator

Why?

- Efficient way to represent logic functions
- History
 - □ Original idea for BDD due to Lee (1959) and Akers (1978)
 - □ Refined and popularized by Bryant (1986)
 - Smaller structure
 - Canonical form each distinct function correspond to a unique distinct diagram

Canonical forms - review

Each logic function has a unique representation

Truth table

a	b	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0 1	0 1
1	0	1	1
1	1	0	0
1,	0 0 1 1 0 0 1	1 + 2	1 ab'c+abc

Sum of minterms

Non canonical forms - review

Each function has also multiple representations

Factored form

Logic gate representation

Terminology

- ◆ A Binary Decision Diagram (BDD) is a *directed acyclic graph*
 - **▲Graph**: set of vertices connected byedges
 - **▲ Directed:** edges have direction
 - ▲ Acyclic: no path in the graph can lead to a cycle

Often abbreviated as DAG

BDD - Example

$$+ F = (a + b) c$$

a	b	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0

- 1. Each vertex represents a decision on a variable
- 2. The value of the function is found at the leaves
- 3. Each path from root to leaf corresponds to a row in the truth table

(c) Giavanni De Machelia

BDD - observations

- The size of a BDD is as big as a truth table:
 - ▲1 leaf per row

- Each path from root to leaf evaluates variables in some order
 - but the order is not fixed:

1st idea: Ordered BDD (OBDD)

- **▲**Choose arbitrary total ordering on the variables
- ▲ Variables must appear in the same order along each path from root to leaves
- **▲** Each variable can appear at most once on a path

2nd idea: Reduced OBDD (ROBDD)

- Two reduction rules:
 - 1. Merge equivalent sub-trees
 - 2. Remove nodes with identical children

1. Merge equivalent sub-trees

2. Remove node with identical children

BDD semantics

Cofactor(F,x): the function you obtain when you substitute 1 for x in F

ROBDDs

- ROBDDs are canonical
 - ▲ for a given variable order
- ROBDD are more compact than other canonical forms
- ROBDD size depends on the variable order
 - many useful function have linear-space representation

$$F = x_1 \oplus x_2 \oplus x_3 \oplus x_4$$

A few simple functions

A network example

ROBDDs- why do we care?

- Easy to solve some important problems:
 - Tautology checking just check if BDD is identical to function

- 2. Identity checking
- 3. Satisfiability look for a path from root to leaf
- All while having a compact representation
 - Use small memory footprint

ROBDD- sharing

We already share subtrees within a ROBDD

...but we can share also among multiple ROBDDS

Logic operations with ROBDDs

- Problem: given two functions G and H, represented by their ROBDDs, compute the ROBDD of a function of (G,H)
- ite operator:
 - ▲ite(f,g,h)
 - ▲If (f) then (g) else (h)
- Recursive paradigm
 - exploit the generalized expansion of G and H

ite
$$(f,g,h)$$
 = ite $(x,ite(x,g_x,h_x),ite(x',g_{x'},h_{x'}))$

Example

Apply AND to two ROBDDs: f,g

$$\blacktriangle$$
fg = ite (f,g,0)

Apply OR to two ROBDDs: f,g

$$\blacktriangle$$
f+g = ite (f,1,g)

Similar for other Boolean operators

Boolean operators

Operator	Equivalent ite form
0	0
$f \cdot g$	ite(f, g, 0)
$f \cdot g'$	ite(f, g', 0)
f	f
f'g	ite(f, 0, g)
g	g
$f\oplus g$	ite(f, g', g)
f + g	ite(f, 1, g)
(f+g)'	ite(f, 0, g')
$f \oplus g$	ite(f, g, g')
g'	ite(g, 0, 1)
f+g'	ite(f, 1, g')
f'	ite(f, 0, 1)
f'+g	ite(f, g, 1)
$(f \cdot g)'$	ite(f, g', 1)
1	1

Example

- Compute AND of two ROBDDs
- Terminal cases:
 - \triangle AND (0,H) = 0
 - ▲ AND (1,H) = H
 - ▲ AND (G,0) = 0
 - ▲ AND (G,1) = G

Recursive step

- \bullet G(x,...) =x' G_{x=0}+ x G_{x=1}
- + H(x,...) = x' H_{x=0} + x H_{x=1}

♦
$$F = GH = x' G_{x=0} H_{x=0} + x G_{x=1} H_{x=1}$$

Now we have reduced the problem to computing 2 ANDs of smaller functions

One last problem

Suppose, we have computed

$$G_{x=0} H_{x=0}$$
 and $G_{x=1} H_{x=1}$

- We need to construct a new node,
 - label: x
 - \triangle 0-cofactor($F_{x=0}$): ROBDD of $G_{x=0}$ $H_{x=0}$
 - \triangle 1-cofactor($F_{x=1}$): ROBDD of $G_{x=1}H_{x=1}$
- BUT, first we need to make that we don't violate the reduction rules!

The unique table

To obey reduction rule #1:

Arr if $F_{x=0} == F_{x=1}$, the result if just $F_{x=0}$

To obey reduction rule #2:

▲ We keep a *unique table* of all the BDD nodes and check first if there is already a node

$$(x, F_{x=0}, F_{x=1})$$

Otherwise, we build the new node

and add it to the unique table

Putting all together

```
AND(G,H) {
        if (G==0) || (H==0) return 0;
        if (G==1) return H;
        if (H==1) return G;
        cmp = computed table lookup(G,H);
        if (cmp != NULL) return cmp;
        x = top variable(G,H);
        G1 = G.then; H1 = H.then;
        G0 = G.else; H0 = H.else;
        F0 = AND(G0,H0);
        F1 = AND(G1,H1);
        if (F0 == F1) return F0;
        F = find_or_add_unique_table(x,F0,F1);
        computed table insert(G,H,F);
        return F;
```

Logic operations - summary

- Recursive routines traverse the DAGs depth first
- Two tables:
 - **▲**Unique table hash table with and entry for each BDD node
 - **▲** Computed table store previously computed partial results
- To perform other operations, just change the terminal cases

Some algorithmic complexities

△Checking identity K time

△ Checking tautology K time

▲ Satisfiability linear (#vars)

▲Binary operators: AND, OR quadratic

▲ Smoothing, Consensus quadratic

Module 2

- Objectives:
 - **▲** Variable ordering (static and dynamic)
 - **▲**Other diagrams and applications

The importance of variable order

Ordering results

Function type	Best order	Worst order
addition	linear	exponential
symmetric	linear	quadratic
multiplication	exponential	exponential

In practice:

- **▼** Many common functions have reasonable size
- ▼ Can build ROBDDs with millions of nodes
- Algorithms to find good variables ordering

Variable ordering algorithms

- Problem: given a function F, find the variable order that minimizes the size of its ROBBDs
- ◆ *Answer*: problem is intractable
- Two heuristics
 - **▲** Static variable ordering (1988)
 - **△** Dynamic variable ordering (1993)

Static variable ordering

- Variables are ordered based on the network topology
 - How: put at the bottom the variables that are closer to circuit's outputs
 - Why: because those variables only affect a small part of the circuit

Disclaimer: it's a heuristic, results are not guaranteed

Dynamic variable ordering

- Changes the variable order on the fly whenever ROBDDs become too big
- How: trial and error SIFTING ALGORITHM
 - 1. Choose a variable
 - 2. Move it in all possible positions of the variable order
 - 3. Pick the position that leaves you with the smallest ROBDDs
 - 4. Choose another variable ...

Dynamic variable ordering

Tiny example: F=(a+b)c

we want to find the optimal position for variable c

Final order: c<a<b

initial order: Swap (b, c): Swap (a, c): a < b < c a < c < b c < a < b

Variable swapping

$$ITE(x_{i}, F_{1}, F_{0}) =$$

$$= ITE(x_{i}, ITE(x_{i+1}, F_{11}, F_{10}), ITE(x_{i+1}, F_{01}, F_{00}))$$

$$= ITE(x_{i+1}, ITE(x_{i}, F_{11}, F_{01}), ITE(x_{i}, F_{10}, F_{00}))$$

Dynamic variable ordering

- Key idea: swapping two variables can be done locally
 - **▲**Efficient:
 - **▼** can be done just by sweeping the unique table
 - **▲**Robust:
 - **▼** works well on many more circuits
 - **▲**Warning:
 - **▼**It's still non optimal.
 - **▼** At convergence, you most probably have found only a local minimum.

Improvements of BDDs

- Complement edges (1990)
 - Creates more opportunities for sharing
 - -> fewer nodes

- ▲ For every pair (F,F'), we
 - only construct the ROBDD for F
 - **▼** F' is given by using a complement edge to F
- ▲ Which do you pick?
 - THEN edge can never be complemented
 - **▼** Only constant value

Other types of Decision Diagram

- Based on different expansion
 - OFDD
 - Ordered functional decision diagrams

$$\Phi = \Phi_{\xi=0} \oplus \xi(\Phi_{\xi=0} \oplus \Phi_{\xi=1})$$

- For discrete functions:
 - ADD
 - Algebraic decision diagrams

ZDDs -- Zero-suppressed BDDs

- BDDs with different reduction rules
 - ▲ Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming edges to the 0-subgraph
 - **▲**Share all equivalent subgraphs
- Applicability
 - **▲**Good for representing ensembles of subsets
 - **▲** Most ensembles are very sparse: i.e., subsets have few elements

Example

$$f = ab'c' + a'bc'$$
 100 + 010

(c) Giovanni De Micheli

44

Summary

- BDDs
 - Very efficient data structure
 - Efficient manipulation routines
 - A few important functions don't come out well
 - Variable order can have a high impact on size
- Application in many areas of CAD
 - Hardware verification
 - Logic synthesis