ACS234 Maths and Data Modelling

Tutorial 2
Wednesday 1pm LT04

https://github.com/ineskris/ACS234/tree/master/Tutorial2

Done in Lecture (week 3 - week 4)

- Newton Interpolation
- Simple Linear Regression Least Squares
- Introduction Multiple Linear Regression

Newton Interpolation

Exercice 1

The data

- a) Write the cubic interpolating polynomial in the Newton form.
- b) Can you write a Matlab and a Python code to solve this problem and check your results.

Simple Linear Regression

Simple linear regression allows us to study the relationship between only two variables.

$$\mathbf{Model} \qquad \qquad \mathbf{y} = a_0 + a_1 \mathbf{x} + e$$

Prediction
$$\hat{y} = \hat{a}_0 + \hat{a}_1 x$$

Coefficient of determination
$$R^2 = 1 - \frac{S_r}{S_t}$$
 Sum of squared deviations $S_t = \sum_{i=1}^n (y_i - \bar{y})^2$

Sum of squares of the errors
$$S_r = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Standard Error of Estimate
$$S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$
 For a simple linear regression $m=1$

Exercice 2 - Calculate the coefficient of determination and the standard error of estimate of this dataset with the model y = 3.1 - x

Exercice 2bis

a) What model is the best to use for the dataset below (calculate the Mean square Error)

$$y = -2 + x$$
 Or $y = -3 + 2x$

b) We can find the exact model that minimises the MSE.

We need to find the two coefficients $\, \alpha \,$ and $\, \beta \,$ for the model $\, y = \alpha + \beta x \,$.

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Calculate these two coefficients with the dataset above?

Calculate the coefficient of determination for the model selected in (a) and the model defined in (b). Comment the result.

Multiple Linear Regression

Multiple regression is like linear regression, but with more than one independent value, meaning that we try to predict a value based on **two or more** variables.