BSM301 VİZE SINAVI

- 1.a) Σ =(0,1) alfabesinde tanımlı, $1^*(001^+)^*$ biçiminde kurgulanmış regüler ifadenin tanımış olduğu dili tanıyan bir NFA makinesini **3** durumlu olarak çiziniz.
- 1.b) L={W, (a,b)* içerisinde tanımlı ve W, baba alt katarını içermez.} DFA makinesini Giziniz.

 Cevap 1:

- 2. a) Σ =(a,b,c) alfabesinde tanımlı ve içerisindeki her a simgesinden önce VE her b simgesinden sonra en az bir c bulunan katarları tanımlayan regüler ifadeyi yazınız.
- b) Σ =(0,1) alfabesinde tanımlı ve içerisinde **000** alt katarı bulunmayan dili tanımlayan regüler ifadeyi yazınız.

Cevap 2: a) L1=
$$(ca+bc+c)^*$$
 b) L2= $(1+01+001)^*(\Lambda+0+00)$

3. Aşağıdaki DFA'yı minimum sayıda durum içerecek biçimde dönüştürünüz.

Cevap 3:

BU SORUDA BA LANGIÇ DURUMUKABUL DURUMU OLARAK VER LM SONUÇ NORMAL YÖNTEMLE ÇÖZÜLDÜ ÜZAMAN AYNI VERM YOR CEVABI

4. Aşağıdaki soruları verilen NFA-Λ makinesine göre cevaplayınız.

a) Makinenin tanıdığı dili regüler ifadeyi, b) Eşdeğer NFA makinesini, eşdeğer DFA makinesini çiziniz.

Cevap 4:

b)

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, \Lambda)$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	Ø	Ø	{2}	{2, 3}	Ø
2	{2, 3}	Ø	Ø	{2, 3}	Ø
3	Ø	{4}	Ø	Ø	$\{1, 2, 4\}$
4	Ø	{5}	{1}	{2, 3}	{5}
5	{4}	Ø	Ø	{1, 2, 4}	Ø

1 23 b 124 b a 5

5. L1 L2 ve L1∩L2 dillerini tanıyan DFA'yı çiziniz.

Cevap 5:

 $L = \frac{1}{2}a^{n}b^{m}c^{k}|m\rangle 0, k\rangle 0, n\rangle m+k$ => aSc \aAc A => a Bb/a Cb C=)aC/a