AI theory homework week 4

Hong Pengfei 1002949

June 2020

1 Logistic Problem I

load(x)

```
\mathbf{a}
   • PackageIn(x): Package is in location x, x \in \{a, b, c, Truck\}
   • TruckIn(y) Truck is in location y, y \in \{a, b, c\}
   • TruckFree Truck is load free
b. move(x,y)
  1. pre-conditions: TruckIn(x)
  2. post-conditions:
     add: TruckIn(y)
     delete: TruckIn(x)
   load(x)
  1. pre-conditions: TruckIn(x), PackageIn(x), TruckFree
  2. post-conditions:
     add: PackageIn(Truck)
     delete: TruckFree, PackageIn(x)
   unload(x)
  1. pre-conditions: TruckIn(x), PackageIn(Truck)
  2. post-conditions:
     add: TruckFree, PackageIn(x)
     delete: PackageIn(Truck)
Initial State. \{TruckIn(a) \hat{PackageIn(c)} \hat{TruckFree} \}
Goal state. \{PackageIn(b) \hat{\ } TruckFree\}
\mathbf{2}
     Logistic Problem II
    Optimal solution contains 5 steps: \{move(a, b), move(b, c), load(c), move(c, b), unload(b)\}
b. Changes are made to all the actions by remove the delete in their post effects. move(x,y)
  1. pre-conditions: TruckIn(x)
  2. post-conditions:
     add: TruckIn(y)
     delete: nil
```

- 1. pre-conditions: TruckIn(x), PackageIn(x), TruckFree
- 2. post-conditions:

add: PackageIn(Truck)

delete: nil

unload(x)

- 1. pre-conditions: TruckIn(x), PackageIn(Truck)
- 2. post-conditions:

add: TruckFree, PackageIn(x)

delete: nil

c. level 0

 $F_x = TruckIn(a), PackageIn(c), TruckFree$

 $A_x = move(a, b)$

level1

 $F_x = TruckIn(a), TruckIn(b), PackageIn(c), TruckFree$

 $A_x = move(a, b), move(b, a), move(b, c)$

level2

 $F_x = TruckIn(a), TruckIn(b), TruckIn(c), TruckFree, PackageIn(c)$

 $A_x = move(a, b), move(b, a), move(b, c), move(c, b), load(x)$

level3

 $F_x = TruckIn(a), TruckIn(b), TruckIn(c), TruckFree, PackageIn(c), PackageIn(Truck)$

 $A_x = move(a,b), move(b,a), move(b,c), move(c,b), load(c), unload(a), unload(b), unload(c), unloa$

level4

 $F_x = TruckIn(a), TruckIn(b), TruckIn(c), TruckFree, PackageIn(a), PackageIn(b), PackageIn(c), PackageIn(TruckIn(c), TruckIn(c), TruckIn$

 $A_x = move(a,b), move(b,a), move(b,c), move(c,b), load(a), load(b), load(c), unload(a), unload(b), unload(c), unload(c)$

3 Logistic Problem III

- **a.** solution: $\{move(a,b), move(b,c), load(c), unload(b)\}$ The heuristic is call h_+ heuristic
- **b.** 4, since the desired goal state PackageIn(c) first appears on the 4th level and TruckFree appears on the 0th level, so $h_{add} = 4 + 0 = 4$
- **c.** 4, since the desired goal state PackageIn(c) appears on the 4th level and TruckFree appears on the 0th level, so $h_{max} = max(4,0) = 4$

4 Generic Planning I

the relaxed problem is to remove the delete in post-condition level 0 ${\cal F}_x=m$ $A_x=A$

level1
$$F_x = m, n, o$$

 $A_x = B, D$

level2
$$F_x = m, n, o, p$$

 $A_x = A, B, C, D$

Goal state m appears at level 0, n, o appears at the level 1, p appears at level 2

- **a.** value of h_+ is 2, as we can see apply action A, B or A, D is the optimal solution for this deleterelaxed problem and it only requires 2 step.
- value of h_{add} is 4, the value is adding the first layer each state appears. 0+1+1+2=4
- value of h_{max} is 2, the value is taking the max of the first layer each state appears. max(0,1,1,2) =

5 Generic Planning II

the relaxed problem is to remove the delete in post-condition

level0

$$F_x = p$$

$$F_x = p$$
$$A_x = C$$

level1

$$F_x = p, m$$

$$A_x = A, C$$

level2

$$F_x = m, n, o, p$$

$$A_x = A, B, C, D$$

Goal state m appears at level 1, n, o appears at the level 2, p appears at level 0

- **a.** value of h_+ is the optimal plan for delete-relax problem, as we can see apply action $\{C,A\}$ is the optimal solution for this delete-relaxed problem so $h_{+}=2$
- **b.** value of h_{add} is 5, h_{add} is the summed cost of all goal facts. The value is adding the first layer each state appears, 0 + 1 + 2 + 2 = 5
- c. value of h_{max} is 2, h_{max} is the cost of the single most costly goal fact. The value is taking the max of the first layer each state appears. max(0,1,2,2)=2