Homework #2 Automata and Computation Theory Fall 2018

Written by Eric Rothman

September 27, 2018

1 Problem 1

Give the state diagram of a finite automaton recognizing the following language. The alphabet is $\{0, 1\}$.

 $\{w \mid w \text{ has length exactly 3 and its last symbol is different from its first symbol}\}$ Answer:

2 Problem 2

Give a finite automaton (both a state diagram and a formal description) recognizing the following language. The alphabet is $\{0, 1\}$.

 $\{w \mid w \text{ is not the empty string and every odd position of } w \text{ is a } 1\}$

Answer: M =

Formal Definiton:

$$M = \{\{start, q_odd, q_even, q_fail\}, \{0,1\}, \delta, start, \{q_even, q_odd\}\}$$

	0	1
start	q_fail	q_odd
q_odd	q_even	q_even
q_even	q_fail	q_odd
q_fail	q_fail	q_fail
	q_odd q_even	q_odd q_even q_fail

3 Problem 3

Show that the following language is regular, where the alphabet is $\{0, 1\}$. $\{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\}$

Answer:

A simpler way to write out the language is to observe that everytime the string returns to its starting character, there are an equal number of substrings of 01 and 10. I will prove why this is in the proof section of the answer. For a language to be regular, it needs to be the language for a finite automata. I claim and will prove that the given language, A, is the equal to the language, L(M), for the following automata:

Claim 1

I will prove $\{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\} = \{w \mid w \text{ starts and ends on the same symbol}\}$

First Direction

Prove $\{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\} \subset \{w \mid w \text{ starts and ends on the same symbol}\}$

let $a \in A$,

So a has an equal number of occurrences of the substrings 01 and 10

WLOG let a start with 0

Every time the substring 01 appears in a, the current character is a 1.

Since there are an equal number of 01 and 10 substrings in a and since to hava 01 substring, the current symbol must be a 0, the next occurance of one of those two substrings must be 10.

So every time 01 appears, a 10 must appear before another version of 01.

Since there are an equal number of substrings, every 01 substring is followed by a 10 substring. Otherwise there couldn't be an equal amount since either substring needs the other one between iterations.

So the last substring to appear is a 10 substring.

So a ends in a 0 and starts in a 0

So $a \in \{w \mid w \text{ starts and ends on the same symbol}\}\$

So $\{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\} \subset \{w \mid w \text{ starts and ends on the same symbol}\}$

Other Direction

Prove $\{w \mid w \text{ starts and ends on the same symbol}\} \subset \{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\}$

Let $a \in \{w \mid w \text{ starts and ends on the same symbol}\}$

So a starts and ends with the last symbol.

WLOG let a start and end in 0

Either there are no 1 in a, in which case there are 0 appearances of both 10 and 01 so $a \in A$, or there is at least a 1 in a

Since a starts and ends on the same symbol, for every appearance of the substring 01, when the current character becomes a 1 from a 0, there must eventually be an occurance of 10, otherwise a couldn't end in 0.

Since for every appearance of 01 there is a 10 associated with it, there are an equal number of 01 and 10 substrings in a

So $a \in A$

So $\{w \mid w \text{ starts and ends on the same symbol}\} \subset \{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\}$

Since both directions hold up, $\{w \mid w \text{ starts and ends on the same symbol}\} = \{w \mid w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\}$

Proof

Prove that L(M) = A.

Let $B = \{w \mid w \text{ starts and ends on the same symbol}\}$

First Direction

Prove that $L(M) \subset A$

FSOC let $L(M) \not\subset A$

So $\exists b \in L(M)$ such that $b \notin A$

Since $b \notin A$, $b \notin B$ by Claim 1

Since $b \notin B$, b must start and end with different symbols.

WLOG let b start with 0 and end with 1

Since b starts with 0, after the 0 is passed, the current state would be $q_{-}0$.

Since the current state is q_-0 , everytime a 1 is encountered the state becomes q_-01 .

Since b ends with 1, the last state is q_-01 .

This contradicts the fact that q_01 is not an accept state but $b\in L(M)$ from the assumption.

Since there is a contradiction when assumed false, $L(M) \subset A$.

Since there is a finite automata M for which A is the recognized language, A is a regular language.

Other direction

Prove $A \subset L(M)$

FOSC let $A \not\subset L(M)$

So $\exists b \in A \text{ such that } b \notin L(M)$

Since $b \notin L(M)$, after it is fed through M, the ending state is either q_01 or q_10.

WLOG let the ending state be q_01

Since the ending state is q_01, the first symbol in b must be 0 and the last one must be 1.

Since the first symbol in b is 0 and the last one is 1, the first and last symbols of b are not equal.

So $b \notin B$.

This contradicts Claim 1 since $b \in A$ but $b \notin B$ and by Claim 1, A = B

Since there is a contradiction when assumed false, $A \subset L(M)$

Since $A \subset L(M)$ and $L(M) \subset A$, L(M) = A.

4 Problem 4

For any string $w=w_1w_2w_n$, the reverse of w, written as w^R , is the string w in reverse order, $w_n-w_2w_1$. For any language A, let $A^R=\{w^R|w\in A\}$. Show that if A is regular, so is A^R

Proof:

Claim 1

If A is regular and it has only 1 accept state, then A^R is regular.

PROOF by construction: Since A is regular, it has a FA, $M = \{Q_1, \mathcal{E}, \delta, q_1, F_1\}$, that recognizes it, so L(M) = A

Since there is only one accept state, $|F_1|=1$. Let f_1 be the only value in F_1 To construct a FA that recognizes A^R , we modify M into a NFA $M^R=\{Q_1,\mathcal{E},\delta',f_1,\{q_1\}\}$ where δ' contains the flipped version of every transition. So if there was a transition from q_a to q_b in δ , there is a transition with the same requirement fom q_b to q_a in δ' .

Now we just need to show that $L(M^R) = A^R$.

Let the sequence of states M visits for input w be $p_1,p_2,...,p_{n+1}$ $w^R \in A^R <==>$ $w \in A <==>$

 $w \in L(M^R) <==> p_{n+1} \in F_1 and p_1 = q_1 <==>$

 $p_{n+1} = f_1 <==>$

 $p_{n+1}...p_2, p_1$ is a valid sequence in $M^R <==> w \in L(M^R)$

So $A^R = L(M^R)$.

Since an NFA recognizes the language, A^R is a regular language.

General Proof

I will prove that if A is regular, then ${\cal A}^R$ is regular.

I will prove so using induction on the number of accepted states in the finite automata M that recognizes A.

Base Case

n = 1, this was proven in claim 1

Induction Step

IH: $\exists k \in \mathcal{N}$ such that for all recognized languages A with a finite automata M that recognizes it and has k accepted states, A^R is a recognized language.

Lets look at when M that has k + 1 accepted states.

let $F = \{a_1, a_2, \dots, a_{n+1}\}$ where a_i is the ith accepted state.

So
$$M = \{Q, \mathcal{E}, \delta, q_0, F\}$$

Lets divide this into two languages C and D where C is the language recognized by $M_1 = \{Q, \mathcal{E}, \delta, q_0, F \{a_{n+1}\}\}$ and D is the language recognized by $M_2 = \{Q, \mathcal{E}, \delta, q_0, \{a_{N+1}\}\}$.

So $C \cup D = A$ because D contains all strings that end on a_{n+1} when put through M, and C contains all strings that end in anything besides a_{n+1} that is accepted. The actual proof is shown below.

Let
$$a \in C \cup D$$
, so $a \in C$ or $a \in D$.

If $a \in C$ then a, when run through M, ends on an accept state, So $a \in A$

If $a \in D$ then a, when un through M, ends on a_{n+1} which is an accept state, so $a \in A$

Now let $b \in A$, so when run through M, the last state is a state in the set of accept states.

If the last state, when b was run through M is a_{n+1} , then $b \in D$ so $b \in C \cup D$ If the last state, when b was run through M is not a_{n+1} , then $b \in C$ since b had to land on an accept state, so $b \in C \cup D$

Since $C \cup D = A$, $C^R \cup D^R = A^R$. This is proven below:

Let $a^R \in C^R \cup D^R$ be an arbitrary element.

so
$$a^R \in C^R$$
 or $a \in D^R$

If $a^R \in C^R$, $a \in C$ so $a \in C \cup D$ so $a \in A$ since $C \cup D = A$ so $a^R \in A^R$ If $a^R \in D^R$, $a \in D$ so $a \in C \cup D$ so $a \in A$ since $C \cup D = A$ so $a^R \in A^R$ so either way, $a^R \in A^R$, so $C^R \cup D^R \subset A^R$

Now let $a^R \in A^R$ be an arbitrary element.

Since $a^R \in A^R$, $a \in A$

So $a \in C \cup D$ since $C \cup D = A$

So $a \in C$ or $a \in D$

If $a \in C$ then $a \in C^R$ so $a \in C^R \cup D^R$

If $a \in D$ then $a \in D^R$ so $a \in C^R \cup D^R$

so
$$A^R \subset C^R \cup D^R$$

Since
$$A^R \subset C^R \cup D^R$$
 and $C^R \cup D^R \subset A^R$, $C^R \cup D^R = A^R$

Since C and D are defined of be the languages recognized by automata, they are regular languages.

Since C is a regular language and the number of accept states in M_1 is n, by IH C^R is a regular language.

Since D is a regular language and the number of accept states in M_2 is 1, by claim 1 D^R is a regular language.

Since C^R and D^R are regular languages, $C^R \cup D^R = A^R$ and regular languages are closed under union, A^R is a regular language.

So by induction for every regular language A whose finite automata has n>=1 accept states, A^R is a regular language.