Probability III

REA1121

Mathematics for programming

Outline

- Random variables
 - Discrete random variables
 - Probability distribution
- Measures of location and dispersion
 - Expectation
 - Variance, standard deviation
- Exercises

RANDOM VARIABLES

Example 1

- 3 balls 1 2 3
- Take 1 out of 3, and put it back -> label i
- Take 1 out of 3 again -> label j
- What lies in the sample space?

Sample						
		1	2	3		
	1	1,1	2,1	3,1		
J	2	1,2	2,2	3,2		
	3	1,3	2,3	3,3		

X=i+j					
		1	2	3	
	1	X=2	X=3	X=4	
j	2	X=3	X=4	X=5	
	3	X=4	X=5	X=6	

Probability

$$P(X=2) = 1/9$$

$$P(X=3) = 2/9$$

$$P(X=4) = 3/9$$

$$P(X=5) = 2/9$$

$$P(X=6) = 1/9$$

Example 2

- Toss 1 coin 3 times
- Order is not important
- What lies in the sample space?

Sample	ннн	ннт	нтн	тнн	нтт	тнт	ттн	ттт
x	3	2	2	2	1	1	1	0

X: the occurrence of Head

Probability

$$P(X=0) = 1/8$$

$$P(X=1) = 3/8$$

$$P(X=2) = 3/8$$

$$P(X=3) = 1/8$$

S: sample space

$$\{e_1, e_2, \cdots, e_m\}$$

- A list of possible numerical values $\{x_1, x_2, \dots, x_n\}$
- Probability

$$P(X = x_1), P(X = x_2), \dots, P(X = x_n)$$

- A function: X
- Values are unpredictable
- Values are within a range of probability
- Distinct from typical functions

- Examples?
 - Toss of a dice
 - Next month's rainfall
 - A flight delay
 - The time of tomorrow's sunrise
 - Number of attendees in the class tomorrow
 - Electricity consumed on campus per day

- Discrete random variables
 - Number of calls a taxi call centre receives per day
 - Card draw
 - Dice roll
- Continuous random variables
 - A flight delay
 - Electricity consumed per day
 - Lifespan of a computer

Discrete random variables

- X: a discrete random variable
- x_k , k = 1,2,...
- $P(X = x_k) = p_k, k = 1, 2, \cdots$
- p_k $p_k \ge 0, k = 1, 2, \cdots;$ $\sum_{k=1}^{\infty} p_k = 1.$

Probability distribution

- $P(X = x_k) = p_k, k = 1, 2, \dots$
- Table
- Graph

Example 3

- The number of ships arriving at a container terminal during any one day, X, can be any integer from 0 to 4, with respective probabilities 0.1, 0.3, 0.35, 0.2, 0.05
- Describe the probability distribution of X.

X	0	1	2	3	4
Р	0.1	0.3	0.35	0.2	0.05

Example 4

- A car running towards the destination has to pass 4 sets of traffic signal lamps
- Each set has ½ probability of "Green", and ½
 of "Red".
- X: number of set of lamps the car has passed when it first stops.
- Describe the probability distribution of X.

- Let p be the probability of "Red" Light of each set
- Then the probability of "Green" Light is (1-p) of each set

X	0	1	2	3	4
Р	p	(1-p)p	$(1-p)^2p$	$(1-p)^3p$	$(1-p)^4$
	0.5	0.25	0.125	0.0625	0.0625

Important probability distribution

- (0-1) distribution
- Bernoulli distribution
- Binominal distribution
- Poisson distribution

(0-1) distribution

• X: 0 or 1

•
$$P(X = k) = p^k (1 - p)^{1-k}, k = 0,1 (0$$

X	0	1
P	1-p	p

Examples?

Bernoulli distribution

- Generalisation of (0-1) distribution
- Bernoulli experiment
 - E: Experiment
 - Outcomes: A, \overline{A}
 - $-P(A) = p, \ 0$
 - $-P(\bar{A}) = 1 p$

Binominal distribution

- Repeat Bernoulli experiment independently n times
 - Repeat: p remains unchanged
 - Independently: outcomes do not influence each other
- X: number of events where A occurs
- X: $\{0,1,2,\ldots,n\}$
- Suppose $X = k, 0 \ll k \ll n$

Binominal distribution

•
$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, k = 0, 1, 2, \dots, n$$

• If a discrete random variable X follows binominal distribution, we write $X \sim b(n, p)$

Example 5

- In a shooting game
- Probability of hitting the target is 0.02 in each shooting
- Shoot 400 times
- What is the probability of hitting the target at least 2 times?

•
$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$$

= $1 - 0.98^{400} - 400 \cdot 0.02^{1} \cdot 0.98^{399}$
= 0.9972

- Discussions
 - $-P(X \ge 2)$ is fairly large despite p is small
 - As $P(X < 2) \approx 0.003$, one may question the fact that p = 0.02

Poisson distribution

- $X: \{0,1,2,\cdots,\}$
- $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots$
- Important in many fields
 - Photon shot noise

MEASURES OF LOCATION AND DISPERSION

Measures of random variable

- How do we characterise discrete random variables in an easier manner?
- Probability distribution
- Any other technique?

Measures of random variables

Measures of random variables

Measures of random variables

- Mathematical expectation
 - Mean (Average)
 - Measure of location

$$-E(X) = \mu_X = \sum_{k=1}^{\infty} x_k p_k$$

- Variance
 - Measure of dispersion

$$-D(X) = Var(X) = \sigma_X^2 = E\{[X - E(X)]^2\} = E(X^2) - [E(X)]^2$$

Standard deviation

$$-\sigma_X = \sigma(X) = \sqrt{D(X)} = \sqrt{\sigma_X^2}$$

Example 6

- Shooting game
- 2 persons A & B
- 10 shootings
- The performance
 - A: 3 x Ring 10, 5 x Ring 8, 1 x Ring 5, 1 x Ring 4
 - B: 6 x Ring 8, 2 x Ring 7, 2 x Ring 6
- How do you compare the two?

Solution to Example 6

For person A:

•
$$E(X) = \sum_{k=1}^{\infty} x_k p_k = 10 \cdot \frac{3}{10} + 8 \cdot \frac{5}{10} + 5 \cdot \frac{1}{10} + 4 \cdot \frac{1}{10} = 7.9$$

•
$$\sigma_X^2 = E(X^2) - [E(X)]^2 = 10^2 \cdot \frac{3}{10} + 8^2 \cdot \frac{5}{10} + 5^2 \cdot \frac{1}{10} + 4^2 \cdot \frac{1}{10} - 7.9^2 = 3.69$$

•
$$\sigma_X = \sqrt{{\sigma_X}^2} = \sqrt{3.69} = 1.9209$$

Solution to Example 6

• For person B:

•
$$E(X) = \sum_{k=1}^{\infty} x_k p_k = 8 \cdot \frac{6}{10} + 7 \cdot \frac{2}{10} + 6 \cdot \frac{2}{10} = 7.4$$

•
$$\sigma_X^2 = E(X^2) - [E(X)]^2 = 8^2 \cdot \frac{6}{10} + 7^2 \cdot \frac{2}{10} + 6^2 \cdot \frac{2}{10} - 7.4^2 = 0.64$$

•
$$\sigma_X = \sqrt{{\sigma_X}^2} = \sqrt{0.64} = 0.8$$

Properties of expectation

- E(C) = C, if C is a constant
- E(CX) = CE(X), if X is a random variable, C is a constant
- E(X + Y) = E(X) + E(Y), if X and Y are two random variables
- E(XY) = E(X)E(Y), if X and Y are two independent random variables

Properties of variance

- D(C) = 0, if C is a constant
- $D(CX) = C^2D(X)$, if X is a random variable, C is a constant
- $D(X + Y) = D(X) + D(Y) + 2E\{(X E(X))(Y E(Y))\}$, if X and Y are two random variables
- D(X + Y) = D(X) + D(Y), if X and Y are two independent random variables
- D(X) = 0, if and only if X = C or P(X = C) = 1 where C is a constant

EXERCISES

 Random variable X: Age of students attending the class on the basis of the information below:

40 students, 20 of them are 18 years old, 16 are 19 years old, 4 are 20 years old.

- Evaluate and present probability distribution by means of table and/or graph.
- Determine E(X), σ_X^2 , σ_X

- Throw a dice
 - You get 1 krone, if you get odd numbers
 - You pay 2 kroner, if you get even numbers
- What do you expect?
 - Will you gain or lose money?

- A coach bus carrying 20 passengers
- There are 10 stations where the passengers may get off
- The bus stops at a station when there is a call from passengers, and otherwise does not stop
- X: number of stops in total
- Evaluate E(X).
- Suppose
 - every passenger has equal probability of getting off at every station
 - passengers are independent from eath other.

- Random variable X follows (0-1) distribution
 - P(X = 0) = 1 p
 - P(X = 1) = p
- Determine σ_X^2

- Random variable X follows Binominal distribution, $X \sim b(n, p)$
- Determine E(X), σ_X^2

X	18	19	20
Р	20/40	16/40	4/40

Solution to Exercise 1 (cont.)

•
$$E(X) = \sum_{k=1}^{\infty} x_k p_k = 18 \cdot \frac{20}{40} + 19 \cdot \frac{16}{40} + 20 \cdot \frac{4}{40} = 18.6$$

•
$$\sigma_X^2 = E(X^2) - [E(X)]^2 = 18^2 \cdot \frac{20}{40} + 19^2 \cdot \frac{16}{40} + 20^2 \cdot \frac{4}{40} - 18.6^2 = 0.44$$

•
$$\sigma_X = \sqrt{{\sigma_X}^2} = \sqrt{0.44} = 0.6633$$

Event	1	2	3	4	5	6
X	+1	-2	+1	-2	+1	-2
Р	1/6	1/6	1/6	1/6	1/6	1/6

•
$$E(X) = \sum_{k=1}^{\infty} x_k p_k = 1 \cdot \frac{1}{6} + (-2) \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + (-2) \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + (-2) \cdot \frac{1}{6} = -0.5$$

- Let $X_i = \begin{cases} 0, nobody \ gets \ off \ at \ the \ ith \ station \\ 1, someone \ gets \ off \ at \ the \ ith \ station \end{cases}$, $i = 1, 2, \cdots, 10$
- Then $X = X_1 + X_2 + \cdots + X_{10}$
- The probability that any passenger who does not get off at the ith station is 9/10.
- Thus, the probability that all of 20 passengers do not get off at the ith station is $(9/10)^{20}$, and the probability that someone gets off at the ith station is $1 (9/10)^{20}$.
- $P(X_i = 0) = (9/10)^{20}$ and $P(X_i = 1) = 1 (9/10)^{20}$
- $E(X_i) = 0 \cdot [(9/10)^{20}] + 1 \cdot [1 (9/10)^{20}] = 1 (9/10)^{20}$
- $E(X) = E(X_1 + X_2 + \dots + X_{10}) = E(X_1) + E(X_2) + \dots + E(X_{10}) = 10 \cdot \left[1 \left(\frac{9}{10}\right)^{20}\right] = 8.7842$

•
$$E(X) = 0 \cdot (1 - p) + 1 \cdot p = p$$

•
$$E(X^2) = 0^2 \cdot (1 - p) + 1^2 \cdot p = p$$

•
$$\sigma_X^2 = E(X^2) - [E(X)]^2 = p - p^2$$

- X follows binominal distribution, which means X, a random variable, refers to number of instances where event A occurs, and the probability that A occurs in each Bernoulli experiment is p.
- Let random variable

$$x_k = \begin{cases} 1, & A \text{ happens in the } k^{th} \text{ experiment} \\ 0, A \text{ does not happen in the } k^{th} \text{ experiment} \end{cases}$$

$$k = 1, 2, \cdots, n$$

- $X = X_1 + X_2 + \dots + X_n$
- As x_k depends on the k^{th} experiment only, and each experiment is independent, X_1, X_2, \dots, X_n are independent
- x_k follows (0-1) distribution

Solution to Exercise 5 (cont.)

- As indicated by the solution to Exercise 4
 - \bullet $E(X_k) = p$
 - $D(X_k) = p(1-p), k = 1,2,\dots,n$
- Thus

$$E(X) = E(\sum_{k=1}^{n} X_k) = \sum_{k=1}^{n} E(X_k) = np$$

• As X_1, X_2, \dots, X_n are independent

•
$$\sigma_X^2 = D(\sum_{k=1}^n X_k) = \sum_{k=1}^n D(X_k) = np(1-p)$$