## Lab7 1

# **Design Specification**

✓ For a stopwatch:

Input:

start in // 開始倒數

rst n // control rst n button

clk

clk c // 控制秒的頻率(非必要,因此無在 block diagram 中顯示)

Output:

D\_ssd[7:0] // 7-segment display

d[3:0]

✓ Draw the block diagram of the design.



# **Design Implementation**

- ✓ 本題由 ssd\_freqdiv、divider26、debounce、rst、onepulse、fsm、decoder、counter、display 九個 module 組成。由於這次是用按鈕控制,因此有 debounce、rst、onepulse 三個 module。 Debounce 的功能是產生穩定的波型;rst 的功能是區分長按與短按;onepulse 的功能是製造一個 button 的訊號,讓按下 button 後可以一直保持在下個 state。以上皆在之前的 lab 有說明過,因此不再贅述。ssd\_freqdiv、divider26 則是做出需要的頻率;decoder 是將 binary 轉為 BCD 以呈現再 7-segment display 上;counter 的功能為計算秒與分,主要組成為 BCD upcounter;fsm 則是控制長按短按的狀態,以上在之前的 lab 皆有做過,因此此次重點將放在 display 中的 lab。
- ✓ Display

這次實驗重點為碼錶分圈。Input 的 lab 和 rst\_n 為同一個按鈕控制,其中 lab 為短按。和之前的 display 不同之處為 lab7 的 display 中多加了一個 mux,控制輸出為分圈的數字還是正在數的數字。若 lab = 1,則輸出分圈數字;lab = 0,則輸出正在數的數字。每當 lab 再次為 1 時,分圈的數字皆會改變。

✓ I/O pin

| I/O | D_ssd[7] | D_ssd[6] | D_ssd[5] | D_ssd[4] | D_ssd[3] | D_ssd[2] | D_ssd[1] | D_ssd[0] |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| VOC | W7       | W6       | U8       | V8       | U5       | V5       | U7       | V7       |
| I/O | d[3]     | d[2]     | d[1]     | d[0]     | clk      | rst_n    | start_in |          |
| VOC | W4       | V4       | U4       | U2       | W5       | W19      | T17      |          |

### Lab7 2

# **Design Specification**

✓ For a downcounter:

Input: clk,

rst n,

start, // 開始倒數 pause, // 暫停倒數

setting, // 允許設置時間

set\_min, // 設置分 set hour // 設置時

Output: D\_ssd[7:0], d[3:0]

✓ Draw the block diagram of the design.



### **Design Implementation**

- ✓ 此設計類似先前做過的時鐘與倒數計時器的結合,其中的 minute 與 hour 類似 lab6 中的時鐘,但為 down counter。本次的重點為時間的設置,因此以下將說明 set\_m、set\_h 的設計。 ✓ set m、set h
  - 其原理即為 up counter,當 setting = 1 時,允許設置時間,藉由 set\_ctl 的按紐,每按一下時間變加一。



上圖為分的設置,若是時(set\_h)只要將進位的條件更改即可。

set\_m:

|         | MUΣ     | MUX output    |           |
|---------|---------|---------------|-----------|
| setting | set_ctl | one_m == 4'd9 | one_m     |
| 1       | 1       | 0             | one_m + 1 |
| 1       | 1       | 1             | 0         |
| 0       | X       | X             | one_m     |
| X       | 0       | X             | one_m     |

|         | MUX 條件        |                                    |           |  |  |  |  |
|---------|---------------|------------------------------------|-----------|--|--|--|--|
| setting | one_m == 4'd9 | one_m == $4'd9 \&\& ten_m == 4'd5$ | ten_m     |  |  |  |  |
| 1       | 1             | 0                                  | ten_m + 1 |  |  |  |  |
| 1       | 1             | 1                                  | 0         |  |  |  |  |
| 0       | X             | X                                  | ten_m     |  |  |  |  |
| X       | 0             | X                                  | ten_m     |  |  |  |  |

set\_h:

|         | MUX     | MUX output    |           |  |
|---------|---------|---------------|-----------|--|
| setting | set_ctl | one_h == 4'd9 | one_h     |  |
| 1       | 1       | 0             | one_h + 1 |  |
| 1 1     |         | 1             | 0         |  |
| 0       | X       | X             | one_h     |  |
| X       | 0       | X             | one_h     |  |

|         | MUX 條件        |                                |           |  |  |  |
|---------|---------------|--------------------------------|-----------|--|--|--|
| setting | one_h == 4'd9 | one_h == 4'd3 && ten_h == 4'd2 | ten_h     |  |  |  |
| 1       | 1             | 0                              | ten_h + 1 |  |  |  |
| 1       | 0             | 1                              | 0         |  |  |  |
| 0       | X             | X                              | ten_h     |  |  |  |
| X       | 0             | X                              | ten_h     |  |  |  |

其 output 為設定好的時間,將其作為 minute 與 hour 的 input 即為倒數計時器的時間設定。

✓ I/O pin

| I/O | led[15]  | led[14]  | led[13]  | led[12]  | led[11]  | led[10]  | led[9]   | led[8]   |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| VOC | L1       | P1       | N3       | P3       | U3       | W3       | V3       | V13      |
| I/O | led[7]   | led[6]   | led[5]   | led[4]   | led[3]   | led[2]   | led[1]   | led[0]   |
| VOC | V14      | U14      | U15      | W18      | V19      | U19      | E19      | U16      |
| I/O | D_ssd[7] | D_ssd[6] | D_ssd[5] | D_ssd[4] | D_ssd[3] | D_ssd[2] | D_ssd[1] | D_ssd[0] |
| VOC | W7       | W6       | U8       | V8       | U5       | V5       | U7       | V7       |
| I/O | d[3]     | d[2]     | d[1]     | d[0]     | clk      | start    | pause    | set_min  |
| VOC | W4       | V4       | U4       | U2       | W5       | T18      | U17      | T17      |
| I/O | set_hour | setting  | rst_n    |          |          |          |          |          |
| VOC | W19      | V17      | U18      |          |          |          |          |          |

# Lab7 3

# **Design Specification**

Input: clk, rst n, mode, // 模式切換 button r, button 1 Output: D ssd[7:0], d[3:0], led[15:0] Draw the block diagram of the design.

rst-n debounce onepulse



### **Design Implementation**

第三題為第一題與第二題的結合,其中的 mode 功能為控制模式與按鈕的作用。其餘 module 皆與第一題與第二題差不多,因此不再討論。

```
mode
input:
     clk,
     rst n,
     mode,
     button_r_l,
                    // 右鍵長按
     button r s,
                   // 右鍵短按
     button_l_l,
                   // 左鍵長按
     button 1 s,
                   // 左鍵短按
output:
     lap,
     start in,
     start,
     pause,
     setting,
     set min,
     set hour
```

一開始的時候 output 皆為 0,此處我設計當 mode = 0 時為 stop watch 模式,mode = 1 時為 down counter 模式。

| mode | setting | set_min    | set_hour   | start      | pause      | lap        | start_in   |
|------|---------|------------|------------|------------|------------|------------|------------|
| 0    | 0       | 0          | 0          | 0          | 0          | button_r_s | button_l_s |
| 1    | 0       | 0          | 0          | button_r_s | button_l_s | 0          | 0          |
| 1    | 1       | button_r_s | button_1_s | 0          | 0          | 0          | 0          |

其中當 mode = 1 時, $setting \le button_r_l$ 。藉由 mode 的控制,此處將決定按鈕所輸出對應到的功能為何。

#### ✓ I/O pin

|   | ,,,,, |          |          |          |          |          |          |          |          |
|---|-------|----------|----------|----------|----------|----------|----------|----------|----------|
|   | I/O   | led[15]  | led[14]  | led[13]  | led[12]  | led[11]  | led[10]  | led[9]   | led[8]   |
| , | VOC   | L1       | P1       | N3       | Р3       | U3       | W3       | V3       | V13      |
|   | I/O   | led[7]   | led[6]   | led[5]   | led[4]   | led[3]   | led[2]   | led[1]   | led[0]   |
| , | VOC   | V14      | U14      | U15      | W18      | V19      | U19      | E19      | U16      |
|   | I/O   | D_ssd[7] | D_ssd[6] | D_ssd[5] | D_ssd[4] | D_ssd[3] | D_ssd[2] | D_ssd[1] | D_ssd[0] |
| , | VOC   | W7       | W6       | U8       | V8       | U5       | V5       | U7       | V7       |
|   | I/O   | d[3]     | d[2]     | d[1]     | d[0]     | clk      | rst_n    | mode     | button_r |
| , | VOC   | W4       | V4       | U4       | U2       | W5       | T18      | U18      | T17      |
|   | I/O   | button_l |          |          |          |          |          |          |          |
| , | VOC   | W19      |          |          |          |          |          |          |          |

#### Discussion

在第一題的 lap 設置中,我原本想在 counter 中先做好分圈,再將其輸出到 display 中顯示,但遇到的問題是因為會延遲一個 clock 所以分圈的值會多一秒,且這樣要多接線,造成不必要的浪費。因此最後我將其做在 display 中,當 lap = 1 時即控制顯示為分圈時的數字。

第二題為將時鐘改為倒數,並可以自己設定時間。在這題沒遇到太大的問題,主要是最後當歸零時要全部的 led 燈全亮,由於我原本的控制跟時與分的設定寫在一起,一直無法讓他在正確的時間亮,之後將其單獨分開判斷便成功了。

第三題需要把第一題與第二題中的 debounce、onepulse、fsm、rst 接在外面再做為 mode 的 input,無法直接藉由判斷 mode 的值來決定按鍵功能。此處須注意 mode 的 output 與 down counter、stop watch 的關聯。

#### **Conclusion**

這次的實驗幾乎都是重組之前做過的 module 並加以小修改,比較困難的是第三題不能直接用 mode 的值來決定按鍵功能,跟軟體的想法很不一樣。