6 Übersetzungen und Codierungen

6.1 Von Wörtern zu Zahlen und zurück

6.1.1 Dezimaldarstellung von Zahlen

Was verstehen wir unter Num₁₀

$$Num_{10}(\varepsilon) = 0 \tag{1}$$

$$\forall w \in Z_{10}^* \ \forall x \in Z_{10} : \text{Num}_{10}(wx) = 10 \cdot \text{Num}_{10}(w) + \text{num}_{10}(x) \tag{2}$$

- noch ein Beispiel oder langweilig?
- Beweis, dass Definition sinnvoll:
- **6.1 Lemma.** Durch die Gleichungen 1 und 2 ist Num_{10} wohldefiniert, das heißt, für jedes Wort $w \in Z^*$ wird eindeutig der Funktionswert $\operatorname{Num}_{10}(w)$ festgelgt.

Um das mittels vollständiger Induktion zu beweisen, formulieren wir etwas um:

6.2 Lemma. Durch die Gleichungen 1 und 2 ist Num₁₀ wohldefiniert, das heißt, für jede Wortlänge $n \in \mathbb{N}_0$ gilt: für alle $w \in \mathbb{Z}^n$ wird eindeutig der Funktionswert Num₁₀(w) festgelgt.

Beweis durch Induktion über die Wortlänge n:

Induktionsanfang n = 0: In diesem Fall ist zu beweisen: Für jedes Wort w der Länge n = 0 ist $\operatorname{Num}_{10}(w)$ festgelegt, und zwar eindeutig.

Das ist leicht: Wenn |w|=0 ist, dann ist $w=\varepsilon$. Tatsächlich legt Gleichung (1) offensichtlich eindeutig einen Funktionswert $\operatorname{Num}_{10}(\varepsilon)$ fest, nämlich 0. Und Gleichung (2) legt keinen Funktionswert für $\operatorname{Num}_{10}(\varepsilon)$ fest, denn die auf der linken Seite auftretenden Argumente haben alle eine Länge $|wx|=|w|+|x|=|w|+1\geq 1$, sind also ganz bestimmt nicht das leere Wort.

Induktionsvoraussetzung: für ein beliebiges aber festes $n \in \mathbb{N}_0$ gelte: Für alle Wörter $w \in \mathbb{Z}^n$ ist $\operatorname{Num}_{10}(w)$ eindeutig definiert.

Induktionsschritt $n \rightsquigarrow n+1$: Nun müssen wir beweisen, dass die Richtigkeit der Aussage des Lemmas für ein n zwingend auch die Richtigkeit der Aussage für n+1 nach sich zieht.

Bezeichne w' ein beliebiges Wort der Länge n+1. Wir müssen zeigen: $\operatorname{Num}_{10}(w')$ ist eindeutig festgelegt. Das geht so:

Wenn |w'| = n + 1, dann enthält w' mindestens ein Symbol, also auch ein letztes. Bezeichnen wir das mit x. Dann ist w' von der Form w' = wx mit $w \in \mathbb{Z}^n$ und $x \in \mathbb{Z}$.

In der Definition von Num_{10} passt nur Gleichung 2:

$$\operatorname{Num}_{10}(w') = \operatorname{Num}_{10}(wx) = 10 \cdot \operatorname{Num}_{10}(w) + \operatorname{num}_{10}(x)$$

Nach IV ist $Num_{10}(w)$ eindeutig festgelegt, also auch $Num_{10}(w')$.

6.1.2 Andere Zahldarstellungen

Beispielrechungen

- klar machen, wie allgemein bei Basis k die Umwandlung funktioniert: $\operatorname{Num}_k(wx) = k \cdot \operatorname{Num}_k(w) + \operatorname{num}_k(x)$.
- Beispiel rechnen, z.B. $Num_3(111) = \cdots = 13$.
- $\operatorname{Num}_2(1) = 1$, $\operatorname{Num}_2(11) = 3$, $\operatorname{Num}_2(111) = 7$, $\operatorname{Num}_2(1111) = 15$, Wer sieht allgemein: $\forall m \in \mathbb{N}_0 : \operatorname{Num}_2(1^m) = 2^m - 1$? Wie überträgt sich das auf den Fall k = 3? $\forall m \in \mathbb{N}_0 : \operatorname{Num}_3(2^m) = 3^m - 1$.

Algorithmus für Umwandlung von Binärdarstellung nach Zahl erarbeiten:

```
/\!\!/ Eingabe: w \in Z_2^* x \leftarrow 0 for i \leftarrow 0 to |w| - 1 do x \leftarrow 2x + \text{num}_2(w(i)) od /\!\!/ am Ende: x = \text{Num}_2(w)
```

Die Schleifeninvariante sieht man besser bei

$$\label{eq:continuous_energy} \begin{split} & \# \text{ Eingabe: } w \in Z_2^* \\ & x \leftarrow 0 \\ & v \leftarrow \varepsilon \\ & \textbf{for } i \leftarrow 0 \textbf{ to } |w| - 1 \textbf{ do} \\ & v \leftarrow v \cdot w(i) \\ & x \leftarrow 2x + \text{num}_2(w(i)) \\ & \textbf{od} \\ & \# \text{ am Ende: } v = w \wedge x = \text{Num}_2(w) \end{split}$$

Suchen lassen: $x = \text{Num}_2(v)$

Dass das eine Schleifeninvariante ist, nicht in allen Details beweisen. Aber den Kern erkennen: laut Definition von Num_2 ist nämlich

$$\operatorname{Num}_2(v \cdot w(i)) = 2\operatorname{Num}_2(v) + \operatorname{num}_2(w(i))$$

6.2 Von einem Alphabet zum anderen

6.2.1 Übersetzungen

Warum macht man Übersetzungen? Fällt jemandem noch was ein außer

- Lesbarkeit
- Kompression
- Verschlüsselung
- Fehlererkennung und Fehlerkorrektur

6.2.2 Ein Beispiel: Übersetzung von Zahldarstellungen

6.2.3 Homomorphismen

• Beispiel:

```
-h(a) = 001 \text{ und } h(b) = 1101

-\text{dann ist } h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001
```

 \bullet ε -freier Homomorphismus: Warum will man das? Sonst geht "Information verloren". keine Codierung mehr; Betrachte

- $-h(a) = 001 \text{ und } h(b) = \varepsilon$
- angenommen h(w) = 001 Was war dann w? Man weiß nur: es kam genau ein a vor, aber wieviele b und wo ist nicht klar.
- Information kann aber auch anders verloren gehen;
 - z. B. h(a) = 0, h(b) = 1, h(c) = 10 oder
 - -h(a)=h(b), oder ...

allgemeine Formalisierung von "Information geht verloren" suchen lassen: es gibt Wörter $w_1 \neq w_2$ (verschiedene!) mit $h^{**}(w_1) = h^{**}(w_2)$

• präfixfreier Code: für keine zwei verschiedenen Symbole $x_1, x_2 \in A$ gilt: $h(x_1)$ ist ein Präfix von $h(x_2)$.

Beispiel

- -h(a) = 001 und h(b) = 1101 ist präfixfrei
- -h(a) = 01 und h(b) = 011 ist nicht präfixfrei
- Präfixfreiheit leicht zu sehen, wenn alle h(x) gleich lang sind: präfixfrei \iff injektiv; Beispiel: ASCII

6.2.4 Beispiel Unicode: UTF-8 Codierung

• Man könnte, wenn die Zeit reicht, ja mal für ein paar Zeichen die UTF-8 Codierung bestimmen. Zum Beispiel gibt es für π in Unicode ein Zeichen, nämlich das mit der Nummer 0x03C0.

Wenn ich den Algorithmus richtig gemacht habe, ergibt sich

- Code Point 0x03C0
- in Bits 0000 0011 1100 0000 = 00000 01111 000000
- man benutzt die Zeile

Char. number range (hexadecimal)	UTF-8 octet sequence (binary)
0000 0080 - 0000 07FF	110 <i>xxxxx</i> 10 <i>xxxxxx</i>

- also UTF-8 Codierung 11001111 10000000
- Man mache sich klar, dass UTF-8 präfixfrei ist.

6.3 Huffman-Codierung

6.3.1 Algorithmus zur Berechnung von Huffman-Codes

Wie nehmen acht Symbole: a, b, c, d, e, f, g, h

- 1. Fall: Jedes Zeichen kommt genau einmal vor.
 Huffman-Code-Baum erstellen, Wort badcfehg codieren, wie lang wird die Codierung?
- 2. Fall: a kommt einmal vor, b zweimal, c 4-mal, d 8-mal, e 16-mal, f 32-mal, g 64-mal, h 128-mal.

Huffman-Code-Baum erstellen,

Ergebnis z. B. _ b d f Х С е h g h(x)0000000 000001 000001 00001 0001 001 1

aber nicht das Wort abbcccc...h¹²⁸ codieren, sondern das Wort badcfehg; wie lang wird die Codierung?...über 4 mal so lang

• Wie lange wird ein Wort mit zweiter Zeichenverteilung, wenn man es mit dem ersten Code codiert?

Dreimal so lang, weil jeder Buchstabe durch 3 Bits codiert wird.

• Wie lange wird ein Wort mit erster Zeichenverteilung, wenn man es mit dem zweiten Code codiert?

Ziel: Sehen, dass Huffman-Codierung irgendwie zu funktionieren scheint.

6.3.2 Weiteres zu Huffman-Codes

Blockcodierung mit Huffman

- Verallgemeinerung: nicht von den Häufigkeiten einzelner Symbole ausgehen, sondern für Teilwörter einer festen Länge b > 1 die Häufigkeiten berechnen.