

Model Predictive Control: Overview

Presenter:

Mohammadhadi Alizadeh

Summer 2022

Model Predictive Control (MPC): Overview

Fig5. MPC loop¹.

- Compiles
- Complex to debug

State Estimation: Overview

Nonlinear state transition and measurement

$$x_k = f(x_{k-1}, u_{k-1}) + w_{k-1}$$

 $z_k = h(x_k) + v_k$

Nonlinear state transition and measurement

$$x_k = f(x_{k-1}, u_{k-1}) + w_{k-1}$$

 $z_k = h(x_k) + v_k$

$$F_{k-1} = \frac{\partial f}{\partial x}|_{\hat{x}_{k-1}^+, u_{k-1}}$$

$$H_k = \frac{\partial h}{\partial x}|_{\hat{x}_k^-}$$

State Transition Matrix for covariance and gain calculations

Sensor space transformation Matrix

Nonlinear state transition and measurement

$$x_k = f(x_{k-1}, u_{k-1}) + w_{k-1}$$

 $z_k = h(x_k) + v_k$

$$F_{k-1} = \frac{\partial f}{\partial x}|_{\hat{\mathcal{X}}_{k-1}^+, u_{k-1}}$$

$$H_k = \frac{\partial h}{\partial x}|_{\hat{\mathcal{X}}_k^-}$$

State Transition Matrix for covariance and gain calculations

Sensor space transformation Matrix

Predict

$$\hat{x}_{k}^{-} = f(\hat{x}_{k-1}^{+}, u_{k-1})$$

$$P_{k}^{-} = F_{k-1}P_{k-1}^{+}F_{k-1}^{T} + Q$$

Update

$$\tilde{y}_{k} = z_{k} - h(\hat{x}_{k-1}^{-})
K_{k} = P_{k}^{-} H_{k}^{T} (R + H_{k} P_{k}^{-} H_{k}^{T})^{-1}
\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + K_{k} \tilde{y}_{k}
P_{k}^{+} = (I - K_{k} H_{k}) P_{k}^{-}$$

Nonlinear state transition and measurement

$$x_k = f(x_{k-1}, u_{k-1}) + w_{k-1}$$

 $z_k = h(x_k) + v_k$

$$F_{k-1} = \frac{\partial f}{\partial x}|_{\hat{\mathcal{X}}_{k-1}^+, u_{k-1}}$$

$$H_k = \frac{\partial h}{\partial x}|_{\hat{\mathcal{X}}_k^-}$$

Predict

$$\hat{x}_{k}^{-} = f(\hat{x}_{k-1}^{+}, u_{k-1})$$

$$P_{k}^{-} = F_{k-1}P_{k-1}^{+}F_{k-1}^{T} + Q$$

Update

$$\tilde{y}_{k} = z_{k} - h(\hat{x}_{k-1}^{-})
K_{k} = P_{k}^{-} H_{k}^{T} (R + H_{k} P_{k}^{-} H_{k}^{T})^{-1}
\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + K_{k} \tilde{y}_{k}
P_{k}^{+} = (I - K_{k} H_{k}) P_{k}^{-}$$

State Transition Matrix for covariance and gain calculations

Sensor space transformation Matrix

Prediction Model¹

- Step-test identification methods
 - Cannot be used for a SwoMV system

$$\dot{x} = f(x, u)$$

 $y = g(x, u)$
 $q = h(x, u)$

x is the state variableu is the process inputy is the outputq is the vector of quality

Prediction Model¹

- Step-test identification methods
 - Cannot be used for a SwoMV system

$$\dot{x} = f(x, u)$$

 $y = g(x, u)$
 $q = h(x, u)$

Linearizing the nonlinear model

x is the state variableu is the process inputy is the outputq is the vector of quality

Prediction Model¹

Step-test identification methods

Cannot be used for a SwoMV system

$$\dot{x} = f(x, u)$$

 $y = g(x, u)$
 $q = h(x, u)$

x is the state variableu is the process inputy is the outputq is the vector of quality

- Linearizing the nonlinear model
- Subspace identification methods

$$\tilde{x}(k+1) = A\tilde{x}(k) + Bu(k)$$

 $y(k) = C\tilde{x}(k) + Du(k)$
 $q = G\tilde{x}(k) + Fu(k)$

 \tilde{x} is the subspace state u is the process input y is the output q is the vector of quality

Dynamic Optimization: Single Shooting Method¹

$$min_u S(t_f)$$

With respect to:

Dynamic Model
Initial Conditions
Path constraints
Control(input) constraints
Terminal Constraints

Dynamic Optimization: Single Shooting Method¹

Example: Three connected tanks

Three tanks example: simulation

Fig9. Three tanks example simulation graphs with an EKF observer, a disturbance equation of $q_d = 1 + \sin(t) \cdot \exp(-0.1 \cdot t)$, and SP=0.25.

Three tanks example: simulation

Fig11. Three tanks example simulation graphs with an EKF observer, a disturbance equation of $q_d = 1$, and SP=0.3.

- Meidanshahi, Vida, and Thomas A Adams Ii. 2016. "Integrated Design and Control of Semicontinuous Distillation Systems Utilizing Mixed Integer
 Dynamic Optimization." Computers and Chemical Engineering.
- Phimister, James R, and Warren D Seider. 2000. "Semicontinuous, Middle-Vessel Distillation of Ternary Mixtures"
- Meidanshahi, Vida, and Thomas A. Adams. 2015. "A New Process for Ternary Separations: Semicontinuous Distillation without a Middle Vessel." Chemical Engineering Research and Design.
- Chachuat, Benoit. 2016. "OPTIMIZATION From Theory to Practice IC-32: Spring Term 2009,". August.
- Garg, Abhinav, and Prashant Mhaskar. 2017. "Subspace Identification-Based Modeling and Control of Batch Particulate Processes." Industrial & Engineering Chemistry Research 56 (26): 7491–7502.
- Mhaskar, Prashant, Abhinav Garg, and Brandon Corbett. n.d. Modeling and Control of Batch Processes.