2022 级 课程 高等数学三(1) (期中)卷

题目	1~5	6~10	11~15	16~20	总分
得分					

一、单项选择题 (3'×5=15')

1. 若 $x \to \infty$ 时, $f(x) = \frac{x^3}{x^2 + 2} - mx - n$ 是无穷小,则 m, n 的值是()

(A)
$$m = 1, n = 0$$

(B)
$$m = 0, n = 1$$

(C)
$$m = 1, n = 1$$

(D)
$$m = -1, n = 0$$

2. 曲线
$$f(x) = \frac{\sin(1-x^2)}{1+x}$$

()

)

- (A) 没有渐近线
- (B) 仅有铅直渐近线
- (C) 仅有水平渐近线
- (D) 既有水平渐近线,也有铅直渐近线
- 3. 已知函数 f(x) 可导,且 f(x)f'(x) > 0,则

(A)
$$f(1) > f(-1)$$

(B)
$$f(1) < f(-1)$$

(C)
$$|f(1)| > |f(-1)|$$

(D)
$$|f(1)| < |f(-1)|$$

学院

小学

第1页

4. 己知函数 $f(x) = \frac{mx^2 + nx + m + 1}{x^2 + 1}$	在	$x = -\sqrt{3}$	处取得极小值	0,那么	<i>m</i> , <i>n</i> 的
--	---	-----------------	--------	------	-----------------------

值是 ()

(A)
$$m = -1, n = -\sqrt{3}$$

(B)
$$m = 0, n = \frac{\sqrt{3}}{3}$$

(C)
$$m = \frac{1}{2}, n = \sqrt{3}$$

(D)
$$m = 2, n = 3\sqrt{3}$$

- 5. 已知函数 y = f(x)的 n-2阶导数为 $y^{(n-2)} = xe^{-x}$,则 $y^{(n)} =$
 - (A) $(1-x)e^{-x}$

(B) $(x-2)e^{-x}$

(C) $(2-x)e^{-x}$

(D) $(x-1)e^{-x}$

二、填空题 (3'×5=15')

- 6. 设函数 $f(x) = \begin{cases} n\cos x, & x \ge 0 \\ \frac{\ln(m-2x)}{x}, & x < 0 \end{cases}$ 在点 x = 0 处连续,那么 mn =______;
- 7. 极限 $\lim_{x\to 0} \left(\frac{2+x}{2-x}\right)^{\frac{1}{x}} =$ _______;
- 8. 设函数 $f(x) = \ln \sqrt{\frac{(1-x)e^x}{\arccos x}}$,则 f'(0) =_______;

三、求解下列各题
$$(6' \times 5 = 30')$$

11. 求极限
$$\lim_{x\to 0} \frac{1+x\sin x-\cos x}{3\tan^2 x}$$
.

12. 求极限
$$\lim_{x\to 0^+} \frac{1-\sqrt{\cos x}}{x(1-\cos\sqrt{x})}.$$

13. 设函数
$$y = \ln(1 + x + \sqrt{2x + x^2})$$
, 求 $y''|_{x=1}$.

14. 求曲线 $\begin{cases} x = e^{2t} \\ y = e^{-t} \end{cases}$ 在 t=0 相应的点处的切线方程.

15. 讨论函数 $f(x) = \lim_{n \to \infty} \frac{(n-1)x}{nx^2 + 1}$ 的连续性,如果有间断点,试判断间断点的类型.

.

四、求解下列各题 $(8' \times 5 = 40')$

16. 求极限
$$\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$$
.

17. 设
$$f(x) = \begin{cases} ax^2 + bx + c, & x < 0 \\ \ln(1+x), & x \ge 0 \end{cases}$$
 当常数 a, b, c 为何值时,才能使得函

数 f(x) 处处具有一阶连续导数,但在x=0 处不存在二阶导数.

18. 设曲线 $y = f(x) = x^n$ (n 为正整数) 在点(1,1) 处的切线与x 轴的交点为 $(\xi,0)$ 试求 $\lim_{n\to\infty} f(\xi)$.

19. 已知函数 y = y(x) 由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 确定,求 y(x) 的极值.

20. 设 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\lim_{x\to\infty} \frac{f(x)}{x} = 0$,证明存在 $\xi \in (-\infty, +\infty)$,使 $f(\xi) + \xi = 0.$