Linear Algebra Programming Project

2022-12-17

There are two iterative methods to estimate an eigenvalue. One is the power method for estimating a strictly dominant eigenvalue. The other is the inverse power method for estimating an eigenvalue λ with roughly estimated eigenvalues. The iterative process of these two methods are described as below.

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE

- 1. Select an initial vector \mathbf{x}_0 whose largest entry is 1.
- **2.** For $k = 0, 1, \ldots,$
 - a. Compute $A\mathbf{x}_k$.
 - b. Let μ_k be an entry in $A\mathbf{x}_k$ whose absolute value is as large as possible.
 - c. Compute $\mathbf{x}_{k+1} = (1/\mu_k) A \mathbf{x}_k$.
- 3. For almost all choices of \mathbf{x}_0 , the sequence $\{\mu_k\}$ approaches the dominant eigenvalue, and the sequence $\{\mathbf{x}_k\}$ approaches a corresponding eigenvector.

THE INVERSE POWER METHOD FOR ESTIMATING AN EIGENVALUE λ OF A

- 1. Select an initial estimate α sufficiently close to λ .
- 2. Select an initial vector (\mathbf{x}_0) whose largest entry is 1.
- 3. For $k = 0, 1, \dots$,
 - a. Solve $(A \alpha I)\mathbf{y}_k = \mathbf{x}_k$ for \mathbf{y}_k .
 - b. Let μ_k be an entry in \mathbf{y}_k whose absolute value is as large as possible.
 - c. Compute $v_k = \alpha + (1/\mu_k)$.
 - d. Compute $\mathbf{x}_{k+1} = (1/\mu_k)\mathbf{y}_k$.
- 4. For almost all choices of \mathbf{x}_0 , the sequence $\{v_k\}$ approaches the eigenvalue λ of A, and the sequence $\{\mathbf{x}_k\}$ approaches a corresponding eigenvector.

$$\begin{array}{c|c}
| & & & \\
\hline
| & & &$$

1. (15pt) Estimate a strictly dominant eigenvalue of a matrix A with initial vector \mathbf{x}_0 described as following.

$$A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}, \mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- Q1.1. What kind of method do you choose? Explain the reason of your selection.
- ower Method state dominant eigen. Whe for the Hope.

 Q1.2. Write a code to estimate a strictly dominant eigenvalue of A with initial vector x₀.
- Q1.3. Fill in the blanks in the table below.

Iteration	1	2	3	-n 000000000000000000000000000000000000	5
\mathbf{x}_k	04	0.205	6.20850BMJ	- 6.200p	[0.20014]
$A\mathbf{x}_k$	687	[1.135] [45]	1-01754385 7	[1.00249986]	71.000256887
$\rightarrow \mu_k$	B. 0.	7.125.	1.0N.544	1.0025	7.00351) = 1
			2004		· //

2. (15pt) Estimating an eigenvalue
$$\lambda$$
, which are the wo smallest eigenvalues of A with initial vector \mathbf{x}_0 described as following. And epon value λ , which are the wo smallest eigenvalues of A with initial vector \mathbf{x}_0 described as following. And \mathbf{x}_0 epon value λ , which are the wo smallest eigenvalues of A with initial vector \mathbf{x}_0 described as following. And \mathbf{x}_0 is a smallest eigenvalue of \mathbf{x}_0 and \mathbf{x}_0 and \mathbf{x}_0 is a smallest eigenvalue of \mathbf{x}_0 and \mathbf{x}_0 are smallest eigenvalues of \mathbf{x}_0 and \mathbf{x}_0 and \mathbf{x}_0 are smallest eigenvalues of \mathbf{x}_0 and \mathbf{x}_0 and \mathbf{x}_0 are smallest eigenvalues of \mathbf{x}_0 and \mathbf{x}_0 are smalle

- Q2.1. What kind of method do you choose? Explain the reason of your selection.

 [FINELS | DOWN | METHOD | STANDED | PROVIDED ON OPPOSITION OF CONTROL OF CONTROL OF A With Initial Vector
- Q2.3. Draw two tables to estimate the two smallest eigenvalues of A with initial vector \mathbf{x}_0 .

X=1-7								
Iteration	r13 0	- 0.50m T	0.505342	3	5,00266			
\mathbf{x}_k		0.064649	·.004453	3.03/63 3.0804/)	1 000000			
\mathbf{y}_k	0.50169L 1.758805	5.03050 0.044172 4.4191	3.126492.	5.0000 9 2.30646 9.999646	7.549-54 9.99901E			
μ_k	1.158505	9.9191	9.99493	q. 999646	9.999915			
v_k	2.°2685783	2.0008095	2.000058N2	2.00000354	عـ مرون المرون ا			

WZ-7.0:								
Heration	v	(ے	3	4			
Xk		6.98369.	0.0958 93]	0.181014 6.095661	[enorman]			
γ _k	741.045365·7 32.55410 3.312118]	41.36825). 21.36825). 1-4.55354	21.19502 21.083691 4.501185	41.125168 31.0880118 4508501	[41.12015] 31.088006 4.508489]			
Mk	41.045365	41.48662	41.119503	4n.125(68)	41.15015			
ν _η	3.324363.29	3.32105854	३,३२१२२२६३	3.32122008	3.321 72 0년 5 - 50 전 126.6			

3212201246b