<u>ATTACHMENT 2</u> IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

William SCOTT et al. Confirmation No.: 9834

Serial No.: 09/948.915 Examiner: Rita J. Desai

Filed: September 10, 2001 Group Art Unit: 1625

Title: @-CARBOXYARYL SUBSTITUTED DIPHENYL UREAS AS RAF KINEASE

INHIBITORS

SECOND NON-RESPONSIVE AMENDMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

To eliminate an obviousness type double patenting rejection in co-pending Application No. 09/899,227, kindly amend the above-identified application to cancel claim 61.

Amendments to the claims begin on page 2 of this paper.

Remarks/Arguments begin on page 50 of this paper.

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M- $L^{-1})_{q}$, where L is a 6 membered cyclic structure, which is substituted phenyl or unsubstituted phenyl, bound directly to D, L^{-1} comprises a substituted cyclic moiety having at least 5 members which is phenyl or pyridinyl,

M is a bridging group which comprises -O-, -S-, or -NR 7 - wherein R 7 is hydrogen, q is an integer of from 1-3; and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D which is phenyl or pyridinyl,

wherein L1 is substituted by -C(O)Rv.

, C_{3-10} cycloalkyl having 0-3 heteroatoms, C_{2-10} alkenyl, C_{1-10} alkenoyl, C_{6-12} aryl, C_3 - C_{12} hetaryl having 1-3 heteroatoms selected from, S, N and O, C_{7-24} alkaryl, C_{7-24} or aralkyl, and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl up to per halo cycloalkyl having 0-3 heteroatoms selected from N, S and O, halo substituted C_3 - C_{12} hetaryl up to per halo hetaryl having 1-3 heteroatoms selected from O, N and S, halo substituted C_7 - C_{24} alkaryl up to per halo aralkyl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, or - C_{10} - C_{10}

Rx is Rz or NRaRb where Ra and Rb are

independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O, which is C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkenyl, C_{1-10} alkenyl, C_{1-10} alkenyl, C_{3-10} cycloalkyl, having 0-3 heteroatoms selected from N, S and O, C_{7-24} aralkyl, or C_7 - C_{24} alkaryl, and is optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_{6} - C_{12} halo substituted aryl up to per halo aryl, C_{3} - C_{12} halo substituted C_{7} - C_{12} halo substituted C_{7} - C_{24} aralkyl up to per halo aralkyl, halo substituted C_{7} - C_{24} aralkyl up to per halo aralkyl, halo substituted C_{7} - C_{24} aralkyl up to per halo aralkyl, halo substituted C_{7} - C_{24} aralkyl up to per halo alkaryl, or - $C(O)R_{\pi}$ and are optionally substituted by halogen, or

-OSi(R_t)₃ where R_t is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O, which is C_{1-10} alkyl, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3} - C_{10} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{6-12} aryl, C_{3} - C_{12} hetaryl having 1-3 heteroatoms selected from O, S and N, or C_{7-24} aralkyl, and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} hetaryl up to per halo hetaryl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} aralkyl up to per halo alkaryl, or - $C(O)R_8$, or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, optionally substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N, C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₇ -C₂₄ alkaryl, C₇ -C₂₄ aralkyl, halo substituted C₁₋₆ alkyl up to per halo alkyl, halo

substituted C_6 - C_{12} aryl up to per halo aryl, halo substituted C_3 - C_{12} cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} hetaryl up to per halo hetaryl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, or - $C(O)R_g$, or

c) one of R_a or R_b is -C(O)-, a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted C_7 - C_{13} halo substituted C_7 - C_{14} aralkyl up to per halo alkaryl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, or - $C(O)R_8$.

where B is substituted, L is substituted or L^1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0-3:

wherein each W is independently selected from the group consisting of -CN, -CO $_2R^7$, -C(O)N R^7R^7 , -C(O)- R^7 , -NO $_2$, -OR $_2^7$, -SR $_2^7$, -NR $_2^7R^7$, -NR $_2^7$

heteroatoms selected from O, N and S, C₇-C₁₄ alkaryl, C₇-C₂₄ aralkyl, or C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by halogen,

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-, CHX^a-, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m-, where m=1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per-halo, and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷ -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which is C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₃-C₁₀ eycloalkyl having 0-3 heteroatoms selected from O, N and S, C₆-C₁₄ aryl, or C₃-C₁₃ hetaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by one or more substituents selected from the group consisting of -CN, -CO₂R⁷, -COR⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, and -NR⁷C(O)OR⁷, with R⁷ as defined above

where R_g is C_{1-10} alkyl; -CN, -CO₂R_d, -OR_d, -SR_d, -NO₂, -C(O)R_e, -NR_dR_e, -NR_d C(O)OR_e and -NR_d C(O)OR_e, and R_d and R_e are independently selected from the group consisting of hydrogen, C_{1-10} , alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl having 0-3 heteroatoms selected from O, N and S, C_{6-12} aryl, C_{3} - C_{12} hetaryl with 1-3 heteroatoms selected from O, N and S and C_{7} - C_{24} aralkyl, C_{7} - C_{24} alkaryl, up to per halo substituted C_{1} - C_{10} alkyl, up to per halo substituted C_{3} - C_{10} cycloalkyl having 0-3 heteroatoms selected from O, N and S, up to per halo substituted C_{6} - C_{14} aryl, up to per halo substituted C_{3} - C_{12} hetaryl having 1-3 heteroatoms selected from O, N, and S, halo substituted C_{7} - C_{24} alkaryl up to per halo alkaryl, and up to per halo substituted C_{7} - C_{24} aralkyl.

Claim 2. (Original) A compound as in claim 1 wherein:

 R_y is hydrogen, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl having 0-3 heteroatoms, C_{2-10} alkenyl, C_{1-10} alkenyl, C_{6-12} aryl, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{7-24} aralkyl, C_{7-24} alkaryl, substituted C_{1-10} alkyl, substituted C_{1-10} alkoxy, substituted C_{3-10} cycloalkyl having 0-3 heteroatoms selected from N, S and O, substituted C_{6} - C_{14} aryl, substituted C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O,

substituted $C_{7:24}$ alkaryl or substituted C_7 - C_{24} aralkyl, where R_y is a substituted group, it is substituted by halogen up to per halo.

 R_z is hydrogen, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl having 0-3 heteroatom, C_{2-10} alkenyl, C_{1-10} alkenoyl, C_{6-12} aryl, C_{3} – C_{12} hetaryl having 1-3 heteroatoms selected from, S, N and O, C_{7-24} alkaryl, C_{7-24} aralkyl, substituted C_{1-10} alkyl, substituted C_{1-10} alkoxy, substituted C_{6} – C_{14} aryl, substituted C_{3} – C_{10} cycloalkyl having 0-3 heteroatoms selected from S, N and O, substituted C_{3-12} hetaryl having 1-3 heteroatoms selected from S, N and O, substituted C_{7-24} aralkyl where R_z is a substituted group, it is substituted by halogen up to per halo, hydroxy, C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, O and O, O0, O1, O1, O1, O2, O3 and O4, O3, O4, O4, O5, O6, O7, O7, O8, O8, O8, O8, O8, O9, O

Ra and Rb are,

independently hydrogen,

a carbon based moiety selected from the group consisting of C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkenoyl, C_{6-12} aryl, C_{3-12} heteryl having 1-3 heteroatoms selected from O, N and S, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from N, S and O, C_{7-24} aralkyl, C_7 - C_{24} alkaryl, substituted C_{1-10} alkyl, substituted C_{1-10} alkoxy, substituted C_{3-10} cycloalkyl, having 0-3 heteroatoms selected from N, S and O, substituted C_{6-12} aryl, substituted C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, substituted C_{7-24} aralkyl, substituted C_{7-24} alkaryl, where R_a and R_b are a substituted group, they are substituted by halogen up to per halo, hydroxy, C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} hetaryl up to per halo heteraryl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, and - C_7 - C_{10}

 $-OSi(R_f)_3 \text{ where } R_f \text{ is hydrogen, } C_{1-10} \text{ alkyl, } C_{1-10} \text{ alkoxy, } C_3\text{-}C_{10} \text{ cycloalkyl} \\ \text{having } 0\text{-}3 \text{ heteroatoms selected from } O, S \text{ and } N, C_{6\text{-}12} \text{ aryl, } C_3\text{-}C_{12} \text{ hetaryl having } 1\text{-}3 \\ \text{ heteroatoms selected from } O, S \text{ and } N, C_{7\text{-}24} \text{ aralkyl, substituted } C_{1\text{-}10} \text{ alkyl, substituted } C_{1\text{-}C_{10}} \text{ alkoxy, substituted } C_3\text{-}C_{12} \text{ cycloalkyl having } 0\text{-}3 \text{ heteroatoms selected from } O, S \text{ and } N, \text{ substituted } C_3\text{-}C_{12} \text{ heteraryl having } 1\text{-}3 \text{ heteroatoms selected from } O, S, \text{ and } N, \text{ substituted } C_{6\text{-}12} \text{ aryl, and substituted } C_{7\text{-}24} \text{ alkaryl, where } R_f \text{ is a substituted group it is substituted halogen up to per halo, hydroxy, $C_{1\text{-}10} \text{ alkyl, } C_{3\text{-}12} \text{ cycloalkyl having } 0\text{-}3 \text{ heteroatoms selected from } O, S \text{ and } N, C_{3\text{-}12} \text{ hetaryl having } 1\text{-}3 \text{ heteroatoms selected from } N, S \text{ and } O, C_{1\text{-}10} \text{ alkoxy, } C_{6\text{-}12} \text{ aryl, } C_7\text{-}C_{24} \text{ alkaryl, } C_7\text{-}C_{24} \text{ aralkyl, } C_{1\text{-}6} \text{ halo substituted alkyl up to per halo alkyl, } halo substituted C_7\text{-}C_{24} \text{ alkaryl up to per halo alkyl, } halo substituted $C_7\text{-}C_{24} \text{ alkaryl up to per halo alkaryl, } \text{ and } C(O)R_8, }$

or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O with substitutents selected from the group consisting of halogen up to per halo, hydroxy, C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, $C_7 - C_{24}$ alkaryl, $C_7 - C_{24}$ aralkyl, halo substituted C_{1-6} alkyl up to per halo alkyl, halo substituted $C_3 - C_{12}$ cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted $C_3 - C_{12}$ hetaryl up to per halo heteraryl, halo substituted $C_7 - C_{24}$ aralkyl up to per halo aralkyl, halo substituted $C_7 - C_{24}$ alkaryl up to per halo alkaryl, and $-C(O)R_8$.

or

c) one of R_a or R_b is -C(O)-, a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members.

wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} hetaryl up to per halo heteraryl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, and - $C(O)R_g$,

where R_g is C_{1-10} alkyl; -CN, -CO₂R_d, -OR_d, -SR_d, -NO₂, -C(O)R_e, -NR_dR_e, -NR_d C(O)OR_e and -NR_d C(O)R_e, and R_d and R_e are independently selected from the group consisting of hydrogen, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl having 0-3 heteroatoms selected from O, N and S, C_{6-12} aryl, C_{3} - C_{12} hetaryl with 1-3 heteroatoms selected from O, N and S and C_{7} - C_{24} aralkyl, C_{7} - C_{24} alkaryl, up to per halo substituted C_{1} - C_{10} alkyl, up to per halo substituted C_{3} - C_{10} cycloalkyl having 0-3 heteroatoms selected from O, N and S, up to per halo substituted C_{3} - C_{10} cycloalkyl having 0-3 heteroatoms selected from O, N, and S, halo substituted C_{7} - C_{24} alkaryl up to per halo alkaryl, and up to per halo substituted C_{7} - C_{24} aralkyl,

W is independently selected from the group consisting of -CN, -CO₂R 7 , -C(O)NR 7 R 7 , -C(O)-R 7 , -NO₂, -OR 7 , -SR 7 , -NR 7 R 7 , -NR 7 C(O)OR 7 , -NR 7 C(O)R 7 , C₁-C₁₀ alkyl, C₁-C₁₀ alkyl, C₁-C₁₀ alkenoyl, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms selected from O, S and N, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₇-C₂₄ aralkyl, C₃-C₁₂ heteroaryl having 1-3 heteroatoms selected from O, N and S, C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms selected from O, N and S, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkenyl, substituted C₃-C₁₂ heteroatoms selected from O, N and S, substituted C₅-C₁₂ aryl, substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from O, N and S, substituted C₇-C₂₄ aralkyl, substituted C₇-C₂₄ alkaryl, substituted C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms selected from O, N and S, and -Q-Ar;

 R^7 is independently selected from H, $C_1 \cdot C_{10}$ alkyl, $C_1 \cdot C_{10}$ alkoxy, $C_2 \cdot C_{10}$ alkenyl, $C_1 \cdot C_{10}$ alkenoyl, $C_3 \cdot C_{10}$ cycloalkyl having 0-3 heteroatoms selected from O, S and N, $C_6 \cdot C_{14}$ aryl, $C_3 \cdot C_{13}$ heteryl having 1-3 heteroatoms selected from O, N and S, $C_7 \cdot C_{14}$ alkaryl, $C_7 \cdot C_{24}$ aralkyl, $C_4 \cdot C_{23}$ alkheteroaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_1 \cdot C_{10}$ alkyl, up to perhalosubstituted $C_3 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_6 \cdot C_{14}$ aryl, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 heteroatoms selected from O, N and S, up to perhalosubstituted $C_7 \cdot C_{13}$ hetaryl having 1-3 het

halosubstituted C_7 - C_{24} aralkyl, up to per-halosubstituted C_7 - C_{24} alkaryl, and up to per-halosubstituted C_4 - C_{23} alkheteroaryl; and

Claim 3. (Previously Presented) A compound as in claim 1 wherein M is -O-.

Claim 4. (Previously Presented) A compound as in claim 1 wherein the cyclic structures of B and L bound directly to D have hydrogen substituents in the ortho position.

Claim 5. (Canceled)

Claim 6. (Canceled)

Claim 7. (Previously Presented) A compound of claim 1 wherein B of Formula I is an unsubstituted phenyl group.

Claim 8. (Previously Presented) A compound of claim 1 wherein B of Formula I is a substituted phenyl group, substituted 1 to 3 times by 1 or more substituents

selected from the group consisting of -CN, halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, -OH, up to per halo substituted C_1 - C_{10} alkoxy or phenyl substituted by halogen up to per halo.

Claim 9. (Canceled)

Claim 10. (Previously presented) A compound of claim 8, wherein L, the 6 member cyclic structure bound directly to D, is an unsubstituted phenyl group.

Claim 11. (Canceled)

Claim 13. (Previously Presented) A compound of claim 3, wherein said substituted cyclic moiety L¹ is pyridinyl.

Claim 15. (Previously Presented) A compound of claim 8, wherein said substituted cyclic moiety L^1 is pyridinyl.

Claim 16. (Cancelled)

Claim 17. (Previously Presented) A compound of claim 10, wherein said substituted cyclic moiety L^1 is pyridinyl.

Claim 18. (Previously Presented) A compound of claim 14, wherein M is - O-.

Claim 19. (Previously Presented) A compound of claim 15, wherein M is - O-.

Claim 20. (Cancelled)

Claim 21. (Previously Presented) A compound of claim 17, wherein M is -O-.

Claim 23. (Original) A compound of claim 13 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.

Claim 24. (Original) A compound of claim 18 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.

Claim 25. (Original) A compound of claim 19 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.

Claim 26. (Canceled)

Claim 27. (Original) A compound of claim 21 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 -

 C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.

Claim 28. (Cancelled)

Claim 29. (Cancelled)

Claim 30. (Original) A compound of claim 1 wherein L^1 is substituted only by $-C(O)R_{\nu}$.

Claim 31. (Cancelled)

Claim 32. (Cancelled)

Claim 33. (Previously Presented) A compound of claim 13 wherein L^1 is substituted by $-C(O)R_x$ wherein R_x is NR_3R_b .

Claim 34. (Previously Presented) A compound of claim 18 wherein L^1 is substituted by -C(O)R_x wherein R_x is NR_aR_b.

Claim 35. (Previously Presented) A compound of claim 19 wherein L^1 is substituted by $-C(O)R_x$, wherein R_x is NR_aR_b .

Claim 36. (Cancelled)

Claim 37. (Previously Presented) A compound of claim 21 wherein L^1 is substituted by $-C(O)R_x$ wherein R_x is NR_aR_b .

Claim 38. (Previously Presented) A compound of Formula I:

A - D - B (I)

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M- $L^{-1})_q$ -where L is a 6 membered aryl moiety which is unsubstituted phenyl bound directly to D, L¹ comprises a substituted cyclic moiety having at least 5 members which is phenyl or pyridinyl, M is -O- and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D which is phenyl or pyridinyl

wherein L1 is substituted by -C(O)Rx

Rx is NRaRb where Ra and Rb are

a) independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O, which is of C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkenyl, C_{6-12} aryl, C_{3-12} heteryl having 1-3 heteroatoms selected from O, N and S, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from N, S and O, C_{7-24} aralkyl or C_7 - C_{24} alkaryl, and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_{6} - C_{12} halo substituted aryl up to per halo aryl, C_{3} - C_{12} halo substituted cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_{3} - C_{12} hetaryl up to per halo hetaryl, halo substituted C_{7} - C_{24} aralkyl up to per halo aralkyl, halo substituted C_{7} - C_{24} aralkyl up to per halo aralkyl, halo substituted C_{7} - C_{24} aralkyl up to per halo alkaryl, or - $C(O)R_{\pi}$ or

 $-OSi(R_f)_3$ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, C_{16} halo substituted alkyl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl having 0-3 heteroatoms selected from N, S and

O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} hetaryl up to per halo hetaryl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, or - $C(O)R_\pi$, or

- b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, halo substituted C_{1-6} alkyl up to per halo alkyl, halo substituted C_6 - C_{12} aryl up to per halo aryl, halo substituted C_3 - C_{12} cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} hetaryl up to per halo hetaryl, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, or - $C(0)R_8$, or
- c) one of R_a or R_b is -C(O)-, a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_3 - C_{12} heteroatoms selected from N, S and O, up to per halo cycloalkyl having O-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl having O-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl having O-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl having O-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl having O-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl having O-3 heteroatoms selected from N, S and O, up to p

where B is substituted, L is substituted or L^1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0-3:

wherein each W is independently selected from the group consisting of -CN, -CO $_2$ R 7 , -C(O)NR 7 R 7 , -C(O)-R 7 , -NO $_2$, -OR 7 , -SR 7 , -NR 7 R 7 , -NR 7 C(O)OR 7 , -NR 7 C(O)R 7 , -Q-Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected

from N, S and O, which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenoyl, C_3 - C_{10} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_6 - C_{14} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, or C_3 - C_{12} heteroaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by one or more substituents independently selected from the group consisting of -CN, - CO_2R^7 , - $C(O)R^7$, - $C(O)NR^7R^7$, - OR^7 , - SR^7 , - NR^7R^7 , - NO_2 , - $NR^7C(O)R^7$, - $NR^7C(O)GR^7$ and halogen up to per-halo; with each R^7 independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenoyl, C_3 - C_{10} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_6 - C_{14} aryl, C_3 - C_{13} heteroatoms selected from O, N and S, C_7 - C_{14} alkaryl, C_7 - C_{24} aralkyl, C_4 - C_{23} alkheteroaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by halogen,

 $\label{eq:wherein Q is -O-, -S-, -N(R^7)-, -(CH_2)_m-, -C(O)-, -CH(OH)-, -(CH_2)_mO-, -(CH_2)_mS-, -(CH_2)_mN(R^7)-, -O(CH_2)_m- CHX^a-, -CX^a_2-, -S-(CH_2)_m- \ and -N(R^7)(CH_2)_m-, \ where \ m=1-3, \ and \ X^a \ is \ halogen;$

Ar is a 5- or 6-member aromatic structure containing 0-2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per-halo, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷ -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which is C1-C10 alkyl, C1-C10 alkoxy, C2-C10 alkenyl, C1-C10 alkenyl, C3-C10 cycloalkyl having 0-3 heteroatoms selected from O, N and S, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl having 1-3 heteroatoms selected from O, N and S, C7-C24 alkaryl, C7-C24 aralkyl, C4-C23 alkheteroaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by one or more substituents are selected from the group consisting of -CN, -CO₂R⁷, -COR⁷, -C(O)NR⁷R⁷, -OR⁷. -SR⁷. NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, and -NR⁷C(O)OR⁷, with R⁷ as defined above; and—where R_g is C₁₋₁₀ alkyl; -CN, -CO₂R_d, -OR_d, -SR_d, -NO₂, -C(O)R_e, -NR_dR_e, -NR_d C(O)OR_e and -NR_d C(O)R_c, and R_d and R_c are independently selected from the group consisting of hydrogen, C₁. 10, alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms selected from O, N and S, C₆ 12 aryl, C3-C12 hetaryl with 1-3 heteroatoms selected from O, N and S and C7-C24 aralkyl, C7-C24 alkaryl, up to per halo substituted C1-C10 alkyl, up to per halo substituted C3 -C10 cycloalkyl having 0-3 heteroatoms selected from O, N and S, up to per halo substituted C_6 - C_{14} aryl, up to per halo substituted C_3 - C_{12} hetaryl having 1-3 heteroatoms selected from O, N, and S, halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, or up to per halo substituted C_7 - C_{24} aralkyl.

Claim 39. (Previously Presented) A compound of Formula I:

(I)

or a pharmaceutically acceptable salt thereof, wherein

A - D - B

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: $-L-(M-L^1)_{q_0}$ where L is a substituted or unsubstituted phenyl or pyridinyl moiety bound directly to D, L^1 comprises a substituted phenyl, or pyridinyl moiety, M is -O- and

B is a substituted or unsubstituted phenyl group bound directly to D, wherein L^1 is substituted by-C(O)R_x.

Rx is NRaRb where Ra and Rb are

independently hydrogen,

a moiety, which is C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkenoyl, C_{6-12} aryl, C_{3-12} hetaryl having 1-3 heteroatoms selected from O, N and S, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from N, S and O, C_{7-24} aralkyl, or C_7 - C_{24} alkaryl, and optionally substituted by halogen, hydroxy and carbon based substituents which are- C_{1-10} alkyl, C_{3-12} cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_{3-12} hetaryl having 1-3 heteroatoms selected from N, S and O, C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted cycloalkyl having 0-3 heteroatoms selected from N, S and O, up to per halo cycloalkyl, halo substituted C_7 - C_{12} hetaryl up to per halo hetaryl, halo substituted C_7 - C_{24} aralkyl up to per halo aralkyl, or halo substituted C_7 - C_{24} alkaryl up to per halo alkaryl, and -C(O)R_n.

where B is substituted, L is substituted or L^1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0-3:

wherein each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, and moieties which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenyl, C_3 - C_{10} alkenyl, C_3 - C_{10} alkoxy, C_3 - C_{10}

cycloalkyl having 0-3 heteroatoms selected from O, S and N, C_6 - C_{14} aryl, C_7 - C_{24} alkaryl, C_7 - C_{24} aralkyl, C_3 - C_{12} heteroatyl having 1-3 heteroatoms selected from O, N and S, or C_4 - C_{23} alkheteroaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by one or more substituents independently selected from the group consisting of -CN, - CO_2R^7 , - $C(O)R^7$, - $C(O)R^7$, - $C(O)R^7$, - CR^7

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m-, where m= 1-3, and X^a is halogen;

Ar is phenyl or pyridinyl which is optionally substituted by halogen, up to per-halo, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, - SR⁷ -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, and a moiety which is C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₂-C10 alkenyl, C1-C10 alkenoyl, C3-C10 cycloalkyl having 0-3 heteroatoms selected from O, N and S, C6-C14 aryl, C3-C13 hetaryl having 1-3 heteroatoms selected from O, N and S, C7-C24 alkaryl, C7-C24 aralkyl, or C4-C23 alkheteroaryl having 1-3 heteroatoms selected from O, N and S, and optionally substituted by one or more substituents selected from the group consisting of -CN, -CO₂ R^7 , -CO R^7 , -C(O)N R^7R^7 , -O R^7 , -S R^7 , -NO₂, -N R^7R^7 , -N R^7 C(O) R^7 , and $-NR^7C(O)OR^7$; and where R_α is C_{1-10} alkyl; -CN, $-CO_2R_d$, $-OR_d$, $-SR_d$, $-NO_2$, $-C(O)R_e$, $-CO_2R_d$ NR_dR_e, -NR_d C(O)OR_e and -NR_d C(O)R_e, and R_d and R_e are independently selected from the group consisting of hydrogen, C1-10, alkyl, C1-10 alkoxy, C3-10 cycloalkyl having 0-3 heteroatoms selected from O, N and S, C₆₋₁₂ aryl, C₃-C₁₂ hetaryl with 1-3 heteroatoms selected from O, N and S and C7-C24 aralkyl, C7-C24 alkaryl, up to per halo substituted C1-C₁₀ alkyl, up to per halo substituted C₃ -C₁₀ cycloalkyl having 0-3 heteroatoms selected from O, N and S, up to per halo substituted C₆-C₁₄ aryl, up to per halo substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from O, N, and S, halo substituted C7-C24 alkaryl up to per halo alkaryl, or up to per halo substituted C7-C24 aralkyl.

Claim 40. (Previously Presented) A compound as in claim 38 wherein the cyclic structures of B and L bound directly to D have hydrogen substituents in the ortho position.

Claim 41. (Cancelled)

Claim 42. (Previously Presented) A compound as in claim 39 wherein the cyclic structures of B and L bound directly to D have hydrogen substituents in the ortho position.

Claim 43. (Cancelled)

Claim 44. (Original) A compound as in claim 38 wherein substituents for B and L and additional substituents for L^1 , are selected from the group consisting of C_1 - C_{10} alkyl up to per halo substituted C_1 - C_{10} alkyl, CN, OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.

Claim 45. (Original) A compound as in claim 39 wherein substituents for B and L and additional substituents for L¹, are selected from the group consisting of C₁-C₁₀ alkyl up to per halo substituted C₁-C₁₀ alkyl, CN, OH, halogen, C₁-C₁₀ alkoxy and up to per halo substituted C₁-C₁₀ alkoxy.

Claim 46. (Cancelled)

Claim 47. (Cancelled)

 $\label{eq:Claim 48.} \textbf{(Previously Presented)} \ A \ compound \ of \ claim \ 38 \ wherein \ R_a \ and \ R_b$ are independently hydrogen and $C_{1\text{-}6}$ alkyl .

Claim 49. (Previously Presented) A compound of claim 39 wherein and R_a and R_b are independently hydrogen and C_{1-6} alkyl, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.

Claim 50. (Previously Presented) A pharmaceutically acceptable salt of a compound of formula I of claim 1 which is

- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

Claim 51. (Previously Presented) A pharmaceutically acceptable salt of a compound of claim 61 which is

- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

Claim 52. (Previously Presented) A pharmaceutically acceptable salt of a compound of claim 33 which is

a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or

an acid salt of an organic or inorganic base containing an alkali metal cation,
 an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium

Claim 53. (Previously Presented) A pharmaceutically acceptable salt of a compound of claim 38 which is

- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

Claim 54. (Previously Presented) A pharmaceutically acceptable salt of a compound of claim 39 which is

- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

Claim 55. (Original) A pharmaceutical composition comprising a compound of claim 1 or a pharmaceutically acceptable salt of a compound of formula I, and a physiologically acceptable carrier.

Claim 56. (Previously Presented) A pharmaceutical composition comprising a compound of claim 2 and a physiologically acceptable carrier.

Claim 57. (Previously Presented) A pharmaceutical composition comprising a compound of claim 33 and a physiologically acceptable carrier.

Claim 58. (Previously Presented) A pharmaceutical composition comprising a compound of claim 38 and a physiologically acceptable carrier.

Claim 59. (Previously Presented) A pharmaceutical composition comprising a compound of claim 39 and a physiologically acceptable carrier.

Claim 60. (Cancelled)

Claim 61. (Cancelled)

Claim 62. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of claim 1.

Claim 63. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of claim 33.

Claim 64. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of claim 38.

Claim 65. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of claim 39.

Claim 66. (Cancelled)

Claim 67. (Cancelled)

Claim 68. (Previously Presented) A compound of Formula I:

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-.

A is a substituted moiety of the formula:

-L-M-L1,

wherein L is

phenyl, optionally substituted with 1-3 substituents independently selected from the group consisting of C_1 - C_5 linear or branched alkyl, C_1 - C_5 linear or branched haloalkyl up to perhalo, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy up to per haloalkoxy, hydroxy, amino, C_1 - C_3 alkylamino, C_1 - C_6 dialkylamino, halogen, cyano, and nitro;

- L1 comprises a substituted cyclic moiety which is
- (i) phenyl, optionally substituted with 1-3 substituents independently selected from the group consisting of R^7 , OR^7 , NR^7R^7 , $O(O)R^7$, $O(O)OR^7$, O(
- (ii) pyridinyl optionally substituted with 1-3 substituents independently selected from the group consisting of R^7 , OR^7 , OR^7

wherein L^1 is substituted by $\text{-}C(O)R_x$

wherein R_x is R_z or NR_aR_b and R_a and R_b are independently, R_z

M is -O-

B is

- (i) phenyl, optionally substituted with 1-3 substituents independently selected from the group consisting of R^7 , OR^7 , NR^7R^7 , $C(O)R^7$, $C(O)OR^7$, $C(O)NR^7R^7$, $NR^7C(O)R^7$, $NR^7C(O)OR^7$ halogen, evano, and nitro: or
- (ii) pyridinyl optionally substituted with 1-3 substituents independently selected from the group consisting of R^7 , OR^7 , NR^7R^7 , $O(O)R^7$, $O(O)OR^7$,

each R^7 , R^T , R_z and R_f is independently

(a) hydrogen,

- (b) C₁-C₆ linear, branched, or cyclic alkyl, optionally substituted with 1-3 substituents independently selected from the group consisting of C₁-C₅ linear or branched alkyl, up to perhalo substituted C₁-C₅ linear or branched alkyl, C₁-C₃ alkoxy and hydroxy;
- (c) C_1 - C_6 alkoxy, optionally substituted with 1-3 substituents independently selected from the group consisting of C_1 - C_5 linear or branched alkyl, up to perhalo substituted C_1 - C_5 linear or branched alkyl, C_1 - C_3 alkoxy, hydroxy and halogen;
- (d) phenyl, optionally substituted with 1-3 substituents independently selected from the group consisting of C₁-C₅ linear or branched alkyl, up to perhalo substituted C₁-C₅ linear or branched alkyl, C₁-C₃ alkoxy, hydroxy and halogen.
- (e) 5-6 membered monocyclic heteroaryl having 1-4 heteroatoms selected from the group consisting of O, N and S or 8-10 membered bicyclic heteroaryl having 1-6 heteroatoms selected from the group consisting of O, N and S, optionally substituted with 1-3 substituents independently selected from the group consisting of C₁-C₅ linear or branched alkyl, up to perhalo substituted C₁-C₅ linear or branched alkyl, C₁-C₃ alkoxy, hydroxy and halogen,
- (f) C_1 - C_3 alkyl-phenyl, optionally substituted with 1-3 substituents independently selected from the group consisting of C_1 - C_3 linear or branched alkyl, up to perhalo substituted C_1 - C_3 linear or branched alkyl, C_1 - C_3 alkoxy, hydroxy and halogen; and
- (g) up to per-halo substituted C_1 - C_5 linear, branched or cyclic alkyl, and where not per-halo substituted, optionally substituted with 1-3 substituents independently selected from the group consisting of C_1 - C_5 linear or branched alkyl, up to perhalo substituted C_1 - C_5 linear or branched alkyl, C_1 - C_3 alkoxy and hydroxy.

Claim 69. (Cancelled)
Claim 70. (Cancelled)
Claim 71. (Cancelled)
Claim 72. (Cancelled)

Claim 73. (Previously Presented) A compound of claim 68 wherein the substitutents of the substituted structures of L are selected from the group consisting of methyl, triflouromethyl, ethyl, n-propyl, n-butyl, n-pentyl, i-propyl, t-butyl, methoxy, ethoxy, propoxy, Cl, Br, F, cyano, nitro, hydroxy, amino, methylamino, dimethylamino, ethylamino and diethylamino.

Claim 74. (Previously Presented) A compound of claim 68 wherein the substitutents of the substituted structures of B and L¹ are independently selected from the group consisting of methyl, triflouromethyl, ethyl, n-propyl, n-butyl, n-pentyl, isopropyl, tertbutyl, sec-butyl, isobutyl, cyclopropyl, cyclobutyl, cyclopentyl, methoxy, ethoxy, propoxy, Cl, Br and F, cyano, nitro, hydroxy, amino, methylamino, dimethylamino, ethylamino and diethylamino.

Claim 75. (Cancelled)

Claim 76. (Previously Presented) A compound as in claim 68 wherein B, L and L^1 follow one of the following of combinations:

B= phenyl, L=phenyl and L1 is phenyl,

B= phenyl, L=phenyl and L1 is pyridinyl,

B=pyridinyl, L= phenyl and L1 is phenyl,

B=pyridinyl, L=phenyl and L1 is pyridinyl,

Claim 77. (Previously Presented) A pharmaceutical composition for the treatment of a cancerous cell growth comprising a compound of claim 68 or a pharmaceutically acceptable salt of a compound of formula I and a physiologically acceptable carrier.

Claim 78. (Cancelled)

Claim 79. (Cancelled)

Claim 80. (Previously Presented) A pharmaceutical composition for the treatment of a cancerous cell growth as in claim 77 wherein the pharmaceutically acceptable salt is

a) a basic salt of an organic acid or an inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic

acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or

 an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

Claim 81. (Cancelled)

Claim 82. (Cancelled)

Claim 83. (Previously presented) A compound of Formula I:

A - D - B (I)

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M- $L^1)_q$, where L is a 6 membered cyclic structure, which is substituted phenyl or unsubstituted phenyl, bound directly to D, L^1 comprises a substituted cyclic moiety having at least 5 members which is phenyl or pyridinyl.

M is one or more bridging groups selected from the group consisting of -O-, -S-, - NR^7 - where R^7 is hydrogen, q is an integer of from 1-3; and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D which is phenyl or pyridinyl,

wherein L1 is substituted by -S(O)2Rx,

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,3,4-thiadi

thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

S, N and O, and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, 6-

 C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl up to per halo cycloalkyl halo substituted, up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl,

1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzotyll, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzoxazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

or $-C(O)R_g$;

Rx is Rz or NRaRb where Ra and Rb are

a) independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O, which is C₁ -C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-. 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolvl.

C₃₋₁₂ cycloalkyl and is optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, 6-

 C_{1-10} alkoxy, C_{6+12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl, up to per halo cycloalkyl, halo substituted up to per halo 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-

quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

or -C(O)Rg and are optionally substituted by halogen, or

-OSi(R_f)₃ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O, which is C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C_3 - C_{10} cycloalkyl, C_{6-12} aryl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolyl,

and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 1-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 4-, 5-, 6- or 7-benzofuryl, 2-, 4-, 5-, 6- or 7-benzofuryl, 2-, 4-, 5-, 6- or 7-benzofuryl, 1-, 3-, 4-, 5-

, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halo substituted alkyl up to per halo alkyl, C₆-C₁₂ halo substituted aryl up to per halo aryl, C3-C12 halo substituted cycloalkyl up to per halo cycloalkyl, halo substituted up to per halo 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolvl.

or -C(O)Rg, or

b) R_a and R_b together form 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofturyl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-

benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- or 9-carbazolyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl.

optionally substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁. 10 alkyl, C₃₋₁₂ cycloalkyl 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5vl, 1.3.4-thiadiazol-2- or -5-vl, 1.3.4-thiadiazol-3- or -5-vl, 1.2.3-thiadiazol-4- or -5-vl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

 C_{1-10} alkoxy, C_{6-12} aryl, $C_7 - C_{24}$ alkaryl, $C_7 - C_{24}$ aralkyl, halo substituted C_{1-6} alkyl up to per halo alkyl, halo substituted $C_6 - C_{12}$ aryl up to per halo aryl, halo substituted $C_3 - C_{12}$ cycloalkyl up to per halo cycloalkyl, halo substituted up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxhiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-txiazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-oxadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 3-, 3-, 4-, 5-,

3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzonzoryl, 2-, 4-, 5-, 6- or 7-benzonzoryl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

or $-C(O)R_g$, or

one of Ra or Rb is -C(O)-, a C1-C5 divalent alkylene group or a substituted C₁-C₅ divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C₁-C₅ divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pvridyl, 2-, 4-, 5- or 6pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1.3.4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolyl,

 C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl up to per halo cycloalkyl, halo substituted up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4-

or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinoxolinyl, 0- 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, 0- 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

or $-C(O)R_g$,

where B is substituted, L is substituted or L^1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0-3;

wherein each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenoyl, C_3 - C_{10} cycloalkyl C_6 - C_{14} aryl,

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or

benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

and optionally substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NR⁷R⁷, -NO₂, -NR⁷C(O)OR⁷ and halogen up to per-halo; with each R⁷ independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenyl, C_2 - C_{10} cycloalkyl C_6 - C_{14} aryl,

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, 5-thiazolyl, 2-thiazolyl, 2-thiazolyl, 2-thiazolyl, 5-thiazolyl, 5- or 5-thiazolyl, 2-thiazolyl, 2-thiazolyl, 5- or 5-thiazolyl, 2-thiazolyl, 2-thiazolyl, 5- or 5-thiazolyl, 5- or 5-thiazolyl, 2-thiazolyl, 2-thiazolyl, 5- or 5-thiazolyl, 2-thiazolyl, 2-thiazolyl, 5- or 5-thiazolyl, 5- or 5-thiazolyl,

and optionally substituted by halogen,

 $\label{eq:wherein Q is -O-, -S-, -N(R^7)-, -(CH_2)_m^-, -C(O)-, -CH(OH)-, -(CH_2)_m^-, -(CH_2)_m^-, -(CH_2)_m^-, -CH_2)_m^-, -CH_2^-, -CH_2^-, -S-(CH_2)_m^- \ \ and \ -N(R^7)(CH_2)_m^-, \ \ where \ \ m=1-3, \ \ \ and \ X^a \ \ is halogen; \ \ and$

Ar is phenyl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -

5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, or 3- or 4-pyridazinyl,pyrazine,

which is optionally substituted by halogen, up to per-halo, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, -NR7C(O)R7, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which is C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₃-C₁₀ cycloalkyl C₆-C₁₄ aryl, or 2- or 3-furyl, 2- or 3-thienyl, 2- or 4triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-. 3- or 4pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolvl,

and optionally substituted by one or more substituents selected from the group consisting of -CN, -CO₂ R^7 , -CO(R^7 , -CO(R^7 , -CO(R^7 , -OR R^7 , -NO₂, -NR R^7 , -NR R^7 CO(R^7 , and -NR R^7 CO(R^7), with R^7 as defined above.

where R_g is C_{1-10} alkyl; -CN, -CO₂R_d, -OR_d, -SR_d, -NO₂, -C(O)R_e, -NR_dR_e, -NR_d C(O)OR_e and -NR_d C(O)OR_e, and R_d and R_e are independently selected from the group consisting of hydrogen, C_{1-10} , alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl C_{6-12} aryl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl,

1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

up to per halo substituted C1-C10 alkyl, up to per halo substituted C3 -C10 cycloalkyl, up to per halo substituted C₆ -C₁₄ aryl, up to per halo substituted 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2or -5-vl, 1,2,4-oxadiazol-3- or -5-vl, 1,3,4-thiadiazol-2- or -5-vl, 1,3,4-thiadiazol-3- or -5-vl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1.3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolyl

Claim 84. (Previously presented) A compound of Formula I:

A - D - B (I)

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M- $L^1)$ $_{q_1}$ where L is a 6 membered cyclic structure, which is substituted phenyl or unsubstituted phenyl, bound directly to D, L^1 comprises a substituted cyclic moiety having at least 5 members which is phenyl or pyridinyl,

M is one or more bridging groups selected from the group consisting of -O-, -S-, and -NR⁷- wherein R⁷ is hydrogen, q is an integer of from 1-3; and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D which is phenyl or pyridinyl.

wherein L1 is substituted by -C(NR_v)R_z,

- R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O, which is $C_{1\text{-}10}$ alkyl, $C_{1\text{-}10}$ alkoxy, $C_{3\text{-}10}$ cycloalkyl, $C_{2\text{-}10}$ alkenyl, $C_{1\text{-}10}$ alkenyl, $C_{6\text{-}12}$ aryl,
- 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, 4- or 5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, 5-thiazo
- S, N and O, and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl
- 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-

thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halo substituted alkyl up to per halo alkyl, C₆-C₁₂ halo substituted aryl up to per halo aryl, C3-C12 halo substituted cycloalkyl up to per halo cycloalkyl halo substituted, up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolyl,

or $-C(O)R_g$;

Rx is Rz or NRaRb where Ra and Rb are

a) independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O, which is C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkenyl, C_{1-10}

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

 C_{3-12} cycloalkyl and is optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-

quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

C1-10 alkoxy, C6-12 aryl, C1-6 halo substituted alkyl up to per halo alkyl, C6-C12 halo substituted anyl up to per halo anyl, C3-C12 halo substituted cycloalkyl up to per halo cycloalkyl, halo substituted, up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-vl, 1,2,4-oxadiazol-3- or -5-vl, 1,3,4-thiadiazol-2- or -5-vl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolyl,

or -C(O)Rg and are optionally substituted by halogen, or

-OSi(R_t)₃ where R_t is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O, which is C_{1-10} alkyl, C_{1-10} alkoxy, C_3 - C_{10} cycloalkyl C_{6-12} aryl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 1-, 3-, 4-, 5-, 6- or 7-benzofuyl, 2-, 4-, 5-, 6- or 7-benzofuyl, 2-, 4-, 5-, 6- or 7-benzofuyl, 2-, 4-, 5-, 6- or 7-benzofuyl, 1-, 3-, 4-, 5-, 6- or 7-benzofuyl, 2-, 4-, 5-, 6- or 7-benzofuyl, 2-, 4-, 5-, 6- or 7-benzofuyl, 1-, 3-, 4

, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl.

and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5vl. 1.3.4-thiadiazol-2- or -5-vl. 1.3.4-thiadiazol-3- or -5-vl. 1.2.3-thiadiazol-4- or -5-vl. 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1.3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

 C_{1-10} alkoxy, C_{6-12} aryl, C_{1-6} halo substituted alkyl up to per halo alkyl, C_6 - C_{12} halo substituted aryl up to per halo aryl, C_3 - C_{12} halo substituted cycloalkyl up to per halo cycloalkyl, halo substituted, up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-

benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- or 9-carbazolyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

or $-C(O)R_g$, or

b) R_a and R_b together form 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

optionally substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-,

1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-cardinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₇ -C₂₄ alkaryl, C₇ -C₂₄ aralkyl, halo substituted C₁₋₆ alkyl up to per halo alkyl, halo substituted C6-C12 aryl up to per halo aryl, halo substituted C3-C12 cycloalkyl up to per halo cycloalkyl, halo substituted up to per halo, 2- or 3-furyl, 2- or 3thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

or $-C(O)R_g$, or

- c) one of R_a or R_b is -C(O)-, a C_1 -C₅ divalent alkylene group or a substituted C_1 -C₅ divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_1 -C₅ divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O, which are C_{1-10} alkyl, C_{3-12} cycloalkyl
- 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-

thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7- or 8-quinazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, 9- filiazolyl, 3- pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, 9- filiazolyl, 9- filiazoly

C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halo substituted alkyl up to per halo alkyl, C₆-C₁₂ halo substituted aryl up to per halo aryl, C3-C12 halo substituted cycloalkyl, up to per halo cycloalkyl, halo substituted, up to per halo, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5thiazolyl,

or -C(O)Rg,

where B is substituted, L is substituted or L^1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0.3° .

wherein each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)OR⁷, -Q-Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenoyl, C_3 - C_{10} cycloalkyl C_6 - C_{14} aryl,

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 3-, 4-, 5-, 6-, 7- or 8-quinazolyl, 2-, 4-, 5-,

and optionally substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NR⁷R⁷, -NO₂, -NR⁷C(O)OR⁷, and halogen up to per-halo; with each R⁷ independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which are C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl,

2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl,

1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 1-, 3-, 4-, 5-, 6- or 7-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

and optionally substituted by halogen,

 $\label{eq:wherein Q is -0-, -S-, -N(R^7)-, -(CH_2)_m-, -C(O)-, -CH(OH)-, -(CH_2)_mO-, -(CH_2)_mS-, -(CH_2)_mN(R^7)-, -O(CH_2)_m- CHX^a-, -CX^a_{2^-}, -S-(CH_2)_m- \ and -N(R^7)(CH_2)_m-, \ where \ m=1-3, \ and \ X^a \ is \ halogen; \ and$

Ar is phenyl, 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-4- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, or 3- or 4-pyridazinyl,pyrazine,

which is optionally substituted by halogen, up to per-halo, and optionally substituted by $Z_{n1},$ wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R 7 , -C(O)R 7 , -C(O)NR 7 R 7 , -NO₂, -OR 7 , -SR 7 -NR 7 R, -NR 7 C(O)OR 7 , -NR 7 C(O)OR 7 , and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O, which is C_1 -C10 alkyl, C_1 -C10 alkoxy, C_2 -C10 alkenyl, C_1 -C10 alkenoyl, C_3 -C10 cycloalkyl C_6 -C14 aryl, or 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isoxhiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,3,4-th

1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzosyrazolyl, 2-, 4-, 5-, 6- or 7-benzosyrazolyl, 2-, 4-, 5-, 6- or 7-benzosyrazolyl, 2-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

and optionally substituted by one or more substituents selected from the group consisting of -CN, -CO₂ R^7 , -CO(R^7 , -CO(R^7 , -OR R^7 , -OR R^7 , -NO₂, -NR R^7 , -NR R^7 CO(R^7 , and -NR R^7 CO(R^7), with R^7 as defined above.

where Rg is C1-10 alkyl; -CN, -CO2Rd, -ORd, -SRd, -NO2, -C(O)Re, -NRdRe, -NR_d C(O)OR_e and -NR_d C(O)R_e, and R_d and R_e are independently selected from the group consisting of hydrogen, C₁₋₁₀, alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₆₋₁₂ aryl, 2- or 3-furyl, 2or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl,

up to per halo substituted C_1 - C_{10} alkyl, up to per halo substituted C_3 - C_{10} cycloalkyl, up to per halo substituted C_6 - C_{14} aryl, up to per halo substituted 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4-

or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1-2,4-oxadiazol-3- or -5-yl, 1,2,3-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl.

REMARKS

The above amendment cancels claim 61 to eliminate an obviousness type double patenting rejection in a related application (Application No. 09/889,227) and is not responsive to the outstanding office action.

Respectfully submitted,

/Richard J. Traverso/

Richard J. Traverso, Reg. No. 30,595

Attorneys for Applicants

MILLEN, WHITE, ZELANO & BRANIGAN, P.C.

Arlington Courthouse Plaza 1, Suite 1400

2200 Clarendon Boulevard

Arlington, Virginia 22201 Telephone: (703) 243-6333

Facsimile: (703) 243-6410

Attorney Docket No.: BAYER-15 C1

Date: July 23, 2007