Capstone Project (EDA-Multivariate Analysis)

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

property_type vs price

sns.barplot(x=df['property_type'], y=df['price'], estimator=np.median)

Houses are more expensive

property_type vs area

sns.barplot(x=df['property_type'], y=df['built_up_area'], estimator=np.median)

property_type vs price_per_sqft

sns.barplot(x=df['property_type'], y=df['price_per_sqft'], estimator=np.media
n)

sns.boxplot(x=df['property_type'], y=df['price_per_sqft'])

There are outliers

Check outliers:

check outliers
df[df['price_per_sqft'] > 100000][['property_type','society','sector','price','pric
e_per_sqft','area','areaWithType', 'super_built_up_area', 'built_up_area', 'carpet
_area']]

sns.heatmap(pd.crosstab(df['property_type'],df['bedRoom']))

pd.crosstab(df['property_type'],df['bedRoom']).T

property_type	flat	house
bedRoom		
1	94	30
2	873	68
3	1367	129
4	453	207
5	28	182
6	2	72
7	0	28
8	0	30
9	0	41
10	0	20
11	0	1
12	0	28
13	0	4
14	0	1
16	0	12
18	0	2
19	0	2
20	0	1
21	0	1

plt.figure(figsize=(15,4))
sns.heatmap(pd.pivot_table(df,index='property_type',columns='bedRoom',val
ues='price',aggfunc='mean'),annot=True)

Sector Analysis

```
# sector analysis
import re
# Group by 'sector' and calculate the average price
avg_price_per_sector = df.groupby('sector')['price'].mean().reset_index()
# Function to extract sector numbers
def extract_sector_number(sector_name):
  match = re.search(r'\d+', sector_name)
  if match:
    return int(match.group())
  else:
    return float('inf') # Return a large number for non-numbered sectors
avg_price_per_sector['sector_number'] = avg_price_per_sector['sector'].appl
y(extract_sector_number)
# Sort by sector number
avg_price_per_sector_sorted_by_sector = avg_price_per_sector.sort_values(by
='sector_number')
```

```
# Plot the heatmap
plt.figure(figsize=(5, 25))
sns.heatmap(avg_price_per_sector_sorted_by_sector.set_index('sector')[['pric
e']], annot=True, fmt=".2f", linewidths=.5)
plt.title('Average Price per Sector (Sorted by Sector Number)')
plt.xlabel('Average Price')
plt.ylabel('Sector')
plt.show()
```


Price

 $plt.figure(figsize=(12,8))\\ sns.scatterplot(x=df[df['area']<10000]['area'],y=df['price'],hue=df['bedRoo'])\\ (area') = (12,8) +$

m'])

sns.barplot(x=df['bedRoom'],y=df['price'],estimator=np.median)

 $sns.barplot(x=df['furnishing_type'],y=df['price'],estimator=np.median)\\$

Correlation

```
numeric_df = df.select_dtypes(include=['number'])

# Plot the heatmap
plt.figure(figsize=(8,8))
sns.heatmap(numeric_df.corr(), )
plt.title('Correlation Matrix')
plt.show()
```


df.select_dtypes(include=['number']) :

We selected only numeric columns.