

Programmation par Contraintes

Module du Master "Systèmes Informatiques Intelligents" 2ème année

CHAPITRE II

CSP binaires discrets

Mr ISLI

Département d'Informatique Faculté d'Electronique et d'Informatique Université des Sciences et de la Technologie Houari Boumediène BP 32, El-Alia, Bab Ezzouar DZ-16111 ALGER

> http://perso.usthb.dz/~aisli/TA_PpC.htm aisli@usthb.dz

CSP binaire

- Chacune des contraintes porte sur au plus deux variables
- CSP discret
 - On se restreint aux domaines finis
 - Un sous-ensemble fini de IN :

Un ensemble fini de couleurs :

CSP binaire discret

- P=(X,D,C)
 - $X = \{X_1, ..., X_n\}$
 - D={D(X₁), ...,D(X_n)} : tous les domaines sont discrets finis
 - C={c₁, ...,c_m}: toutes les contraintes sont unaires ou binaires

CSP binaire discret: exemple

- P=(X,D,C)
 - $X = \{X_1, X_2, X_3\}$
 - $D(X_1) = \{1, ..., 8\}, D(X_2) = \{4, ..., 9\}, D(X_3) = \{2, ..., 7\}$
 - $\blacksquare C = \{c_1: X_1 \text{ pair,}$

c₂: X₂ impair,

 $c_3: X_1 < X_2,$

 $C_4: X_1+X_2>9$

4

CHAPITRE II CSP binaires discrets

Relations associées à une contrainte

- Soit P=(X,D,C) un CSP binaire discret, c_k une contrainte de P, et X_i et X_j les variables de P sur lesquelles porte c_k
- Les relations binaires associées à c_k, notées R_k(X_i,X_j) et R_k(X_j,X_i), sont définies comme suit :
 - $R_k(X_i,X_j) = \{(a,b) \in D(X_i) \times D(X_j) : (X_i,X_j) = (a,b) \text{ satisfait } c_k\}$
 - $R_k(X_j,X_i) = \{(a,b) \in D(X_j) \times D(X_i) : (X_j,X_i) = (a,b) \text{ satisfait } c_k\}$

Relations associées à une contrainte

- Pour un CSP binaire discret, les relations $R_k(X_i,X_j)$ et $R_k(X_j,X_i)$ associées à la contrainte c_k peuvent être représentées, respectivement, par les matrices booléennes $M_k(X_i,X_j)$ et $M_k(X_j,X_i)$ suivantes $(D(X_i)=\{a_1,...,a_{|D(X_i)|}\}, D(X_j)=\{b_1,...,b_{|D(X_j)|}\})$:
 - $M_k(X_i, X_j)$ a $|D(X_i)|$ lignes et $|D(X_j)|$ colonnes :

$$M_k(X_i,X_j)[p,q] = \begin{cases} 1 \text{ si } (X_i,X_j) = (a_p,b_q) \text{ satisfait } C_k, \\ 0 \text{ sinon} \end{cases}$$

• $M_k(X_j, X_i)$ a $|D(X_j)|$ lignes et $|D(X_i)|$ colonnes :

$$M_k(X_j,X_i)[p,q] = \begin{cases} 1 \text{ si } (X_j,X_i) = (b_p,a_q) \text{ satisfait } C_k, \\ 0 \text{ sinon} \end{cases}$$

Relations associées à une contrainte : exemple

- P=(X,D,C)
 - $X = \{X_1, X_2, X_3\}$
 - $D(X_1)=\{1,...,8\}, D(X_2)=\{4,...,9\}, D(X_3)=\{2,...,7\}$
 - C={c₁: X₁ pair,

c₂: X₂ impair,

 $c_3: X_1 < X_2,$

 c_4 : $X_1 + X_2 > 9$,

Transposée d'une matrice

La transposée d'une matrice M à m lignes et n colonnes est la matrice à n lignes et m colonnes notée M^t définie comme suit :

Pour tout i=1...n, pour tout j=1...m, $M^{t}[i,j]=M[j,i]$

Les matrices booléennes $M_k(X_i, X_j)$ et $M_k(X_j, X_i)$ représentant les relations associées à la contrainte c_k d'un CSP binaire discret sont transposées l'une de l'autre

Intersection de deux matrices booléennes

L'intersection de deux matrices booléennes M et N, à m lignes et n colonnes chacune, est la matrice booléenne à m lignes et n colonnes notée P=M∩N définie comme suit :

Pour tout i=1..m, pour tout j=1..n:

$$P[i,j] = \begin{cases} 1 & \text{si } M[i,j] = 1 \text{ et } N[i,j] = 1, \\ 0 & \text{sinon} \end{cases}$$

Produit de deux matrices booléennes

Le produit de deux matrices booléennes M et N, M à m lignes et n colonnes, et N à n lignes et p colonnes, est la matrice booléenne à m lignes et p colonnes notée P=M°N définie comme suit :

Pour tout i=1..m, pour tout j=1..p:

$$P[i,j] = \begin{cases} 1 \text{ s'il existe } k=1...n \text{ tel que } M[i,k]=1 \text{ et } N[k,j]=1, \\ 0 \text{ sinon} \end{cases}$$

Représentation graphique d'un CSP binaire

La représentation graphique d'un CSP discret P=(X,D,C) est un graphe orienté pondéré $G_P=(X,E,I)$ défini comme suit :

- L'ensemble des sommets de G_P est l'ensemble X des variables de P
- Pour toutes variables X_i et X_j , si P admet une contrainte portant sur X_i et X_j , alors G_P contient un et un seul des deux arcs (X_i, X_j) et (X_j, X_i)
- Pour toutes variables X_i et X_j , si P n'admet aucune contrainte portant sur X_i et X_j , alors G_P ne contient ni l'arc (X_i, X_j) ni l'arc (X_j, X_i)
- Pour tout arc (X_i, X_j) de G_P , l'étiquette $I(X_i, X_j)$ de (X_i, X_j) est l'intersection de toutes les matrices booléennes $M_k(X_i, X_j)$ représentant les relations $R_k(X_i, X_j)$ associées aux différentes contraintes C_k de P portant sur X_i et X_i

Représentation graphique d'un CSP binaire : exemple

- P=(X,D,C)
 - $X = \{X_1, X_2, X_3\}$
 - $D(X_1) = \{1, ..., 8\}, D(X_2) = \{4, ..., 9\}, D(X_3) = \{2, ..., 7\}$
 - C={c₁: X₁ pair,

c₂: X₂ impair,

 $c_3: X_1 < X_2,$

 $C_4: X_1+X_2>9$

Représentation matricielle d'un CSP binaire

La représentation matricielle d'un CSP discret P=(X,D,C) est une matrice carrée de matrices, notée M_P , à |X| lignes et |X| colonnes définie comme suit :

- Pour toutes variables X_i et X_j ($i \le j$) sur lesquelles il y a au moins une contrainte (unaire si i=j, binaire sinon), donc telles que (X_i, X_j) est arc de G_P , $M_p[i,j]$ est le poids de l'arc (X_i, X_j) et $M_p[j,i]$ est la transposée de $M_p[i,j]$
- Pour toutes les autres paires (X_i,X_i) de variables :
 - Si i=j: $M_p[i,i]$ est la matrice identité $|D(X_i)|x|D(X_i)|$
 - Sinon
 - M_p[i,j] est la matrice universelle |D(X_i)|x|D(X_i)|
 - M_p[j,i] est la matrice universelle |D(X_i)|x|D(X_i)|

Représentation matricielle d'un CSP binaire : exemple

- P=(X,D,C)
 - $X = \{X_1, X_2, X_3\}$
 - $D(X_1) = \{1, ..., 8\}, D(X_2) = \{4, ..., 9\}, D(X_3) = \{2, ..., 7\}$
 - \blacksquare C={c₁: X₁ pair,

c₂: X₂ impair,

 $c_3: X_1 < X_2,$

 $C_4: X_1+X_2>9$

Sous-CSP d'un CSP binaire

- Soit P=(X,D,C) un CSP binaire discret et X' un sous-ensemble de X
- Le sous-CSP de P sur les variables appartenant à X' (noté $P_{X'}$) est le CSP (X',D',C') défini comme suit :
 - $D' = \{D(X_i) : X_i \in X'\}$
 - C' est l'ensemble des contraintes de C portant exclusivement sur les variables appartenant à X'
- Une instanciation d'un sous-CSP strict de P est une instanciation partielle de P
- Une solution d'un sous-CSP strict de P est une solution partielle de P

Sous-CSP d'un CSP binaire : exemple

- P=(X,D,C)
 - $X = \{X_1, X_2, X_3\}$
 - $D(X_1)=\{1,...,8\}, D(X_2)=\{4,...,9\}, D(X_3)=\{2,...,7\}$
 - \blacksquare C={c₁: X₁ pair,

c₂: X₂ impair,

 $c_3: X_1 < X_2,$

 c_4 : $X_1 + X_2 > 9$,

Raffinement d'un CSP binaire

- Soit P=(X,D,C) un CSP binaire discret
- Un raffinement de P est un CSP P' de la forme (X,D',C) vérifiant
 - $D'(X_i)\subseteq D(X_i)$, pour toute variable X_i
- Une instanciation d'un raffinement de P est une instanciation de P
- Une solution d'un raffinement de P est une solution de P
- Un raffinement de P est strict si son ensemble de solutions est strictement inclus dans l'ensemble des solutions de P

Raffinement d'un CSP binaire : exemple

- P=(X,D,C)
 - $X = \{X_1, X_2, X_3\}$
 - $D(X_1)=\{1,...,8\}, D(X_2)=\{4,...,9\}, D(X_3)=\{2,...,7\}$
 - C={c₁: X₁ pair,

c₂: X₂ impair,

 $c_3: X_1 < X_2,$

 $c_4: X_1+X_2>9,$