Complementary Synthesis for Encoder with Flow Control Mechanism

YING QIN and SHENGYU SHEN and QINGBO WU and HUADONG DAI and YAN JIA, School of Computer, National University of Defense Technology

Complementary synthesis automatically generates an encoder's decoder with the assumption that the encoder's all input variables can always be uniquely determined by its output symbol sequence. However, many modern encoders employ flow control mechanism that fail this assumption. Such encoders, when its output symbol sequence is too fast to be processed by the decoder, will stop outputting data symbols, but instead output an idle symbol that can only uniquely determine a subset of the encoder's input variables. And the decoder should recognize and discard this idle symbol. Although this mechanism can prevent losing data symbols, it fail the assumption of all complementary synthesis algorithm, because some input variables can not be uniquely determined by the idle symbol.

This paper proposes the first algorithm to handle such encoders with flow control mechanism. **First**, it identifies all input variables that can be uniquely determined, and take them as flow control variables. **Second**, it infers a predicate over these flow control variables, that enables all other input variables to be uniquely determined. **Third**, the decoder's Boolean function for flow control variablescan be characterized with Craig interpolant. For other input variables, the inferred predicate must be enforced before characterizing their Boolean function with Craig interpolant.

Experimental results on several complex encoders indicate that our algorithm can always correctly identify the flow control variables, infer the predicates and generate the decoder's Boolean functions.

Categories and Subject Descriptors: B.5.2 [**Design Aids**]: Automatic synthesis; B.6.3 [**Design Aids**]: Automatic synthesis

General Terms: Algorithms, Logic synthesis, Verification

Additional Key Words and Phrases: Craig interpolation, decoder, encoder, finite-state transition system, satisfiability solving

ACM Reference Format:

Ying Qin and ShengYu Shen and QingBo Wu and HuaDong Dai and Yan Jia, 2014. Complementary Synthesis for Encoder with Flow Control Mechanism. *ACM Trans. Des. Autom. Electron. Syst.* 9, 4, Article 39 (March 2010), 27 pages.

DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

One of the most difficult jobs in designing communication and multimedia chips is to design and verify complex encoder and decoder pairs. The encoder maps its input variables \vec{i} to its output variables \vec{o} , while the decoder recovers \vec{i} from \vec{o} . Complementary synthesis [Shen et al. 2009;2010; 2011; 2012;Liu et al. 2011;2012;Tu and Jiang 2013] try to ease this job by automatically generating a decoder from

This work was funded by projects 61070132 and 61133007 supported by National Natural Science Foundation of China, the 863 Project of China under contract 2012AA01A301.

Author's addresses: Ying Qin, ShengYu Shen, QingBo Wu, HuaDong Dai and Yan Jia , School of Computer, National University of Defense Technology.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

© 2010 ACM 1084-4309/2010/03-ART39 \$15.00 DOI: http://dx.doi.org/10.1145/0000000.0000000

39:2 Ying Qin et al.

Fig. 1. An encoder with flow control mechanism

an encoder's specification, with the assumption that \vec{i} can always be uniquely determined by a bounded sequence of \vec{o} .

However, the encoders of many high speed communication systems employ flow control mechanism [Abts and Kim 2011] that fails this assumption. Figure 1a) shows the structure of a communication system with flow control mechanism, which include a faster transmitter and a slower receiver connected by a pair of encoder and decoder. There are two input variables from the transmitter to the encoder: the data bit d to be encoded, and the flow control bit f indicating the validness of d. Figure 1b) shows the encoding table of the encoder with flow control mechanism, which maps f and d to the output symbol \vec{o} .

The flow control mechanism prevent the faster transmitter from overwhelming the slower receiver in the following way. When the receiver can keep up with the transmitter, f will be 1, and the decoder can always recover both f and d according to Figure 1b). But when the receiver can not keep up with the transmitter, the transmitter will drop f to 0 to stop transmitting new D_i , but instead transmitting the idle symbol I without considering the value of d. And the decoder should discard this idle symbol I, and send $f \equiv 0$ to the receiver with whatever value on d.

This mechanism can prevent the faster transmitter from transmitting to many data that can not be handled by the slower receiver. But it fail the assumption of all current complementary synthesis algorithms [Shen et al. 2009;2010; 2011; 2012;Liu et al. 2011;2012;Tu and Jiang 2013], because d can not be uniquely by the idle symbol I. It is obvious that, to resolve this problem and generate the decoder, we only need to consider the case $f \equiv 1$, the predicate that enable d to be uniquely determined. For other case $f \equiv 0$, d is not need by the receiver and can be any value.

Thus, according to this insight, we propose in this paper the first complementary synthesis algorithm to handle encoders with flow control mechanism in three steps: **First**, it applies the classical halting complementary synthesis algorithm [Shen et al. 2011] to identify all the input variables of the encoder that can be uniquely determined, and call them the flow control variables \vec{f} . Other input variables that can not be uniquely determined is called the data variables \vec{d} . **Second**, it infers a sufficient and necessary predicate $valid(\vec{f})$ that enables \vec{d} to be uniquely determined by a bounded sequence of the encoder's output variables \vec{o} . **Finally**, it characterizes the decoder's Boolean function that computes each flow control variable $f \in \vec{f}$ by building a Craig

interpolant[McMillan 2003]. On the other hand, for other data variables \vec{d} , their values are meaningful only when $valid(\vec{f}) \equiv 1$. Thus, the decoder's Boolean functions that compute each $d \in \vec{d}$ can be built similarly, but only after enforcing $valid(\vec{f}) \equiv 1$.

The second step of this algorithm seems somewhat similar to that of [Shen et al. 2012] in the sense that both algorithms infer predicates that enable \vec{d} or \vec{i} to be uniquely determined. But the essential difference between them is that the algorithm of [Shen et al. 2012] infers a global assertion that must be enforced on all the steps along the unrolled transition relation, while our algorithm infers a local predicate that is only enforced at the current step when we need to recover the value of \vec{d} . Thus, our algorithm can be seen as a generalization of [Shen et al. 2012].

Experimental results indicate that, for several complex encoders from real projects (e.g., Ethernet [IEEE 2012] and PCI Express [PCI-SIG 2009]), our algorithms can always correctly identify the flow control variables, infer the predicates and generate the decoders. All these experimental results and programs can be downloaded from https://github.com/shengvushen/compsyn.

The remainder of this paper is organized as follows. Section 2 introduces the background material; Section 3 presents the algorithm that identifies the flow control variables, while Section 4 infers the predicate that enables \vec{d} to be uniquely determined by a bounded sequence of \vec{o} ; Section 5 presents the algorithm to characterize the decoder's Boolean function; Sections 6 and 7 present the experimental results and related works; Finally, Section 8 sums up the conclusion.

2. PRELIMINARIES

2.1. Propositional satisfiability

The Boolean value set is denoted as $B=\{0,1\}$. A vector of variables is represented as $\vec{v}=(v,\ldots)$. The number of variables in \vec{v} is denoted as $|\vec{v}|$. If a variable v is a member of \vec{v} , that is $\vec{v}=(\ldots,v,\ldots)$, then we say $v\in\vec{v}$; otherwise we say $v\notin\vec{v}$. For a variable v and a vector \vec{v} , if $v\notin\vec{v}$, then the new vector that contains both v and all members of \vec{v} is denoted as $v\cup\vec{v}$. If $v\in\vec{v}$, then the new vector that contains all members of \vec{v} except v, is denoted as $\vec{v}-v$. For the two vectors \vec{a} and \vec{b} , the new vector with all members of \vec{a} and \vec{b} is denoted as $\vec{u}\cup\vec{b}$. The set of truth valuations of \vec{v} is denoted as $[\![\vec{v}]\!]$, for instance, $[\![(v_1,v_2)]\!]=\{(0,0),(0,1),(1,0),(1,1)\}$.

A Boolean formula F over a variable set V is constructed by connecting variables from V with symbols \neg , \wedge , \vee and \Rightarrow , which stand for logical connectives negation, conjunction, disjunction, and implication, respectively.

The propositional satisfiability problem(abbreviated as SAT) for a Boolean formula F over a variable set V is to find a satisfying assignment $A:V\to B$, so that F can be evaluated to 1. If such a satisfying assignment exists, then F is satisfiable; otherwise, it is unsatisfiable.

According to [Ganai et al. 2004a], the positive and negative cofactors of $f(v_1 \dots v \dots v_n)$ with respect to variable v are $f_v = f(v_1 \dots 1 \dots v_n)$ and $f_{\overline{v}} = f(v_1 \dots 0 \dots v_n)$, respectively. **Cofactoring** is the action that applies 1 or 0 to v to get f_v or $f_{\overline{v}}$.

Given two Boolean formulas ϕ_A and ϕ_B , with $\phi_A \wedge \phi_B$ unsatisfiable, there exists a formula ϕ_I referring only to the common variables of ϕ_A and ϕ_B such that $\phi_A \Rightarrow \phi_I$ and $\phi_I \wedge \phi_B$ is unsatisfiable. We call ϕ_I the **interpolant**[Craig 1957] of ϕ_A with respect to ϕ_B and use McMillan's algorithm [McMillan 2003] to generate it.

39:4 Ying Qin et al.

2.2. Incremental SAT mechanism of MiniSAT solver

In this paper, we use the MiniSAT solver [Eén and Sörensson 2003] to solve the generated CNF formulas. Like many other SAT solver based on conflict driven learning [Zhang et al. 2001], MiniSAT generates learned clauses from conflicts in searching, and records them to prevent the same conflict from rising again. This mechanism can significantly speedup the search in a particular SAT solving.

In many applications, there often exists a serial of CNF formulas tightly related to each other. If the learned clauses can be shared between them, then these formulas can be solved much faster.

MiniSAT provides an incremental SAT mechanism to reuse these learned clause. This mechanism includes two procedures. The first is addClause(F) used to add a CNF formula F to the clause database of MiniSAT. The second is solve(A) that receives a list of clauses A as assumptions, each of which contains only one literal, and solves the CNF formula $F \wedge \bigwedge_{a \in A} a$.

2.3. Finite state machine

The encoder is modeled by a finite state machine(FSM) $M=(\vec{s},\vec{i},\vec{o},T)$, consisting of a state variable vector \vec{s} , an input variable vector \vec{i} , an output variable vector \vec{o} , and a transition function $T: [\![\vec{s}]\!] \times [\![\vec{i}]\!] \to [\![\vec{s}]\!] \times [\![\vec{o}]\!]$ that computes the next state and output variable vector from the current state and input variable vector.

The behavior of FSM M can be reasoned by unrolling transition function for multiple steps. The state variable $s \in \vec{s}$, input variable $i \in \vec{i}$ and output variable $o \in \vec{o}$ at the n-th step are respectively denoted as s_n , i_n and o_n . Furthermore, the state, the input and the output variable vectors at the n-th step are respectively denoted as \vec{s}_n , \vec{i}_n and \vec{o}_n . A **path** is a state sequence $(\vec{s}_n, \dots, \vec{s}_m)$ with $\exists \vec{i}_j \vec{o}_j (\vec{s}_{j+1}, \vec{o}_j) \equiv T(\vec{s}_j, \vec{i}_j)$ for all $n \leq j < m$. A **loop** is a path $(\vec{s}_n, \dots, \vec{s}_m)$ with $\vec{s}_n \equiv \vec{s}_m$.

2.4. The halting algorithm to determine if an input variable can be uniquely determined by a bounded sequence of output variable vector

All the state-of-the-art complementary synthesis algorithms [Shen et al. 2009;2010; 2011; 2012;Liu et al. 2011;2012;Tu and Jiang 2013] assume that \vec{i} can be uniquely determined, so they always take \vec{i} as a whole, and never consider individual variables $i \in \vec{i}$. But in this paper, we need to check each $i \in \vec{i}$ one by one, so there may be minor differences between our presentation and that of [Shen et al. 2009;2010; 2011; 2012;Liu et al. 2011;2012;Tu and Jiang 2013].

The first such halting algorithm is proposed in [Shen et al. 2011]. Its basic idea is to unroll the transition relation into longer and longer length. And for each length, we use two approximated approaches to determine the answer, the first is a sound one that presented in 2.4.1, while the second is a complete one presented in 2.4.2. That is, when the first says **YES** then the answer is **YES**, and when the second approach says **NO** then the answer is **NO**. And we will show in 2.4.3 that these two approach will eventually converge and give conclusive answer at some particular unrolling length.

2.4.1. The sound approach. .

As shown in Figure 2, on the unrolled transition relations, an input variable $i \in \vec{i}$ can be uniquely determined, if there exist three integers p, l and r, such that for any particular valuation of the output sequence $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$, i_{p+l} cannot take on two different values. This can be checked by solving $F_{PC}(p,l,r)$ in Equation (1).

Fig. 2. The sound approach checking if i_{p+l} can be uniquely determined

Here, p is the length of the prefix state transition sequence. l and r are the lengths of the two output sequences $\langle \vec{o}_{p+1}, \ldots, \vec{o}_{p+l} \rangle$ and $\langle \vec{o}_{p+l+1}, \ldots, \vec{o}_{p+l+r} \rangle$ that are on the left-hand and right-hand sides of i_{p+l} , which is used to determine i_{p+l} . Line 1 of Equation (1) corresponds to the left path in Figure 2, while Line 2 corresponds to the right path in Figure 2. These two paths are of the same length. Line 3 forces these two paths' output sequences to be the same, while Line 4 forces their i_{p+l} to be different. Line 5 and 6 are the assertion predicates given by the user that constrain the valid valuation on \vec{i} . PC in Equation 1 is the abbreviation of "Parameterized complementary", which means $F_{PC}(p,l,r)$ is used to check whether the encoder's input can be uniquely determined.

According to Figure 2, it is obvious that the first three lines of Equation (1) are always satisfiable, because they are just two unrolled transition relation sequence with the same output sequence. And the last two lines are constraints on input variables. We always check their satisfiability before running our algorithm. So the unsatisfiability of $F_{PC}(p,l,r)$ always means $i_{p+l} \equiv i'_{p+l}$.

According to Figure 2, it is obvious that, if $F_{PC}(p,l,r)$ is unsatisfiable, then $F_{PC}(p',l',r')$ is also unsatisfiable with $p'\geq p$, $l'\geq l$ and $r'\geq r$. By studying Equation (1), we can find that the clause set of $F_{PC}(p',l',r')$ is a super set of $F_{PC}(p,l,r)$. This also lead to the same conclusion.

This means, the bounded proof of $F_{PC}(p,l,r)$'s unsatisfiability can be generalized to all cases for larger p, l and r.

Ying Qin et al. 39:6

Fig. 3. The complete approach checking if i_{p+l} can NOT be uniquely determined

PROPOSITION 2.1. If $F_{PC}(p, l, r)$ is unsatisfiable, then i_{p+l} can be uniquely determined by $\langle \vec{o}_p, \dots, \vec{o}_{p+l+r} \rangle$ for all larger p, l and r.

Equation (1) does not include an initial state, instead it use the p steps prefix state transition sequence $\langle \vec{s_0}, \dots, \vec{s_p} \rangle$ to propagate the constraints $assertion(\vec{i})$ into the state sequence $s_{p+1}^{\vec{i}}, \ldots, s_{p+l+r}^{\vec{i}}$, such that some states that can not be reached with $assertion(\vec{i})$ can be eliminated. This leads to two major advantages over considering initial states: First, it simplify and speedup our algorithm by avoiding the need to compute the reachable state set or inductive invariants. A breakthrough algorithm is proposed in [Tu and Jiang 2013] to rule out unreachable states by inferring inductive invariants. But this algorithm can not handle our most complex XFIPCS benchmark [Shen et al. 2011], while our algorithms always can. Second and more important, ignoring initial states improve the decoder's reliability by preventing any corrupted data from affecting the decoder's state, that is, any corrupted \vec{o} fed to the decoder can only affect the decoder for finite number of steps.

Of course ignoring initial states have one drawback that it is a little bit too stronger than necessary. That is, it requires that \vec{i} must be uniquely determined on a larger state set R^p that is reachable in p steps from any states, instead of on the smaller reachable states R. It is obvious that $R \subset R^p$. Their work is orthogonal to ours. So to simplify our discussion, we will not integrate their work here. At the same time, for all the benchmarks we have tried, our current approach is sufficient.

2.4.2. The complete approach. .

We have just learned that, if $F_{PC}(p,l,r)$ is unsatisfiable, then i_{p+l} can be uniquely determined for larger p, l and r. On the other hand, if $F_{PC}(p, l, r)$ is satisfiable, then i_{p+l} cannot be uniquely determined by $\langle \vec{o}_p, \dots, \vec{o}_{p+l+r} \rangle$ for this particular valuation of p, l and r. There are two possible cases:

- (1) i_{p+l} can be uniquely determined by $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$ for larger p,l and r; (2) i_{p+l} can not be uniquely determined by $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$ for any p,l and r at all.

If it is the first case, then by iteratively increasing the value of p, l and r, $F_{PC}(p, l, r)$ will eventually become unsatisfiable. But if it is the second case, then this iterative algorithm will never terminate.

ALGORITHM 1: CheckUniqueness(i):The halting algorithm to determine whether i can be uniquely determined by a bounded sequence of output variable vector \vec{o}

```
Input: The input variable i.

Output: whether i can be uniquely determined by \vec{o}, and the value of p, l and r.

p:=1;\ l:=1;\ r:=1;

while l do

p++;\ l++;\ r++;

if F_{PC}(p,l,r) is unsatisfiable then

| return (1,p,l,r);

else if F_{LN}(p,l,r) is satisfiable then

| return (0,p,l,r);
```

So, to obtain a halting algorithm, we need to distinguish these two cases. One such solution is shown in Figure 3, which is similar to Figure 2 but with three additional constraints to detect loops on the three state sequences $<\vec{s}_0,\ldots,\vec{s}_p>$, $<\vec{s}_{p+1},\ldots,\vec{s}_{p+l}>$ and $<\vec{s}_{p+l+1},\ldots,\vec{s}_{p+l+r}>$. It is formally defined in Equation (2) with the last three lines corresponding to the three constraints used to detect loops.

$$F_{LN}(p,l,r) := \begin{cases} F_{PC}(p,l,r) \\ \wedge \bigvee_{x=0}^{p-1} \bigvee_{y=x+1}^{p} \{\vec{s}_{x} \equiv \vec{s}_{y} \wedge \vec{s'}_{x} \equiv \vec{s'}_{y}\} \\ \wedge \bigvee_{x=p+1}^{p+l-1} \bigvee_{y=x+1}^{p+l} \{\vec{s}_{x} \equiv \vec{s}_{y} \wedge \vec{s'}_{x} \equiv \vec{s'}_{y}\} \\ \wedge \bigvee_{x=p+l+1}^{p+l+r-1} \bigvee_{y=x+1}^{p+l+r} \{\vec{s}_{x} \equiv \vec{s}_{y} \wedge \vec{s'}_{x} \equiv \vec{s'}_{y}\} \end{cases}$$

$$(2)$$

LN stands for "loop non-complementary", which means $F_{LN}(p,l,r)$ with three loops is used to check whether the input variables can NOT be uniquely determined.

When $F_{LN}(p,l,r)$ is satisfiable, then i_{p+l} cannot be uniquely determined by $\langle \vec{o}_p,\ldots,\vec{o}_{p+l+r} \rangle$. More importantly, by unrolling these three loops, we can generalize this conclusion to all larger p, l and r:

PROPOSITION 2.2. If $F_{LN}(p,l,r)$ is satisfiable, then $i_{p'+l'}$ cannot be uniquely determined by $\langle \vec{o}_{p'}, \ldots, \vec{o}_{p'+l'+r'} \rangle$ for any larger $p' \geq p$, $l' \geq l$ and $r' \geq r$.

2.4.3. The full algorithm. .

With Propositions 2.1 and 2.2, we can generalize the bounded proof to unbounded proof. Thus, we can build the halting Algorithm 1 that determines if there exists p, l and r that enable an input variable i_{p+l} to be uniquely determined by the encoder's output sequence $\langle \vec{o}_p, \ldots, \vec{o}_{p+l+r} \rangle$.

On the one hand, if there actually exists such p, l and r, then eventually $F_{PC}(p, l, r)$ will become unsatisfiable in Line 4; on the other hand, if there does not exist such p, l and r, then eventually p, l and r will be larger than the encoder's longest path without loop, which means that there will be three loops in $\langle \vec{s}_0, \ldots, \vec{s}_p \rangle, \langle \vec{s}_{p+1}, \ldots, \vec{s}_{p+l} \rangle$ and $\langle \vec{s}_{p+l+1}, \ldots, \vec{s}_{p+l+r} \rangle$. This will make $F_{LN}(p, l, r)$ satisfiable in Line 6. Both cases will lead to this Algorithm's termination.

3. IDENTIFYING FLOW CONTROL VARIABLES

We will first introduce how to find out the set of flow control variables in Subsection 3.1, and then introduce how to speed up this algorithm with incremental SAT. We will then introduce how to remove the redundancy of p, l and r in Subsection 3.3, and finally present another possible structure of our algorithm in Subsection 3.4, and discuss why we have chose the one in Subsection 3.1 instead of the one in Subsection 3.4.

39:8 Ying Qin et al.

ALGORITHM 2: $FindFlowControl(\vec{i})$:Identifying the flow control variables

Input: The input variable vector \vec{i} .

Output: $\vec{f} \subset \vec{i}$ and $\vec{d} \subset \vec{i}$ are respectively the vector of the encoder's input variables that can and can not be uniquely determined by a bounded sequence of output variable vector \vec{o} , and the maximal value of p, l and r.

3.1. Finding out flow control variables

To facilitate the presentation of our algorithm, we partition the input variable vector \vec{i} into two vectors: the flow control vector \vec{f} and the data vector \vec{d} .

The flow control variables \vec{f} are used to represent the validness of \vec{d} . So, for a properly designed encoder, \vec{f} should always be uniquely determined by a bounded sequence of the encoder's output \vec{o} , or else the decoder cannot recognize the validness of \vec{d} .

Thus, Algorithm 2 is proposed to identify \vec{f} .

At Line 1, the initial value of f and d are set to empty vector. At Line 2, the initial value of p, l and r are all set to 0.

At Line 3, a while loop is used to iterate on all $i \in \vec{i}$.

At Line 8, the input variable i that can be uniquely determined will be added to the vector \vec{f} .

On the other hand, when \vec{i} is very long, the run time overhead of testing each $i \in \vec{i}$ one by one would also be very large. To speed up this testing procedure, when $F_{LN}(p,l,r)$ is satisfiable at Line 10, every $j \in \vec{i}$ that has different values for j_{p+l} and j'_{p+l} in the satisfying assignment of $F_{LN}(p,l,r)$ can also be ruled out at Line 12, because their own $F_{LN}(p,l,r)$ is also satisfiable.

In some particular case, some data variable $d \in \vec{d}$ can be uniquely determined, just like a flow control variable $f \in \vec{f}$. In this case, d may be identified as a flow control variable by Algorithm 2. But this do not harm our overall framework, because the decoder's Boolean function can still be correctly characterized in Section 5.

ALGORITHM 3: $FindFlowControlIncSAT(\vec{i})$: Identifying the flow control variables with incremental SAT

Input: The input variable vector \vec{i} .

Output: $\vec{f} \subset \vec{i}$ and $\vec{d} \subset \vec{i}$ are respectively the vector of the encoder's input variables that can and can not be uniquely determined by a bounded sequence of output variable vector \vec{o} , and the maximal value of p, l and r.

```
1 \vec{f} := \{\}; \vec{d} := \{\};
2 p := 0; l := 0; r := 0;
3 while \vec{i} \neq \{\} do
4 p + +; l + +; r + +;
5 addClause(C_{PC}(p, l, r));
6 foreach \ i \in \vec{i} do
7 |\vec{f}| := \vec{i} - i;
9 |\vec{f}| := \vec{i} - i;
10 addClause(C_{LN}(p, l, r));
11 foreach \ i \in \vec{i} do
12 |\vec{f}| := \vec{i} + \vec{i} +
```

3.2. Speeding up with incremental SAT

We can partition $F_{PC}(p, l, r)$ in Equation 1 into the following two equations:

$$C_{PC}(p,l,r) := \begin{cases} \bigwedge_{m=0}^{p+l+r} \{ (\vec{s}_{m+1}, \vec{o}_{m}) \equiv T(\vec{s}_{m}, \vec{i}_{m}) \} \\ \bigwedge_{m=0}^{p+l+r} \{ (\vec{s'}_{m+1}, \vec{o'}_{m}) \equiv T(\vec{s'}_{m}, \vec{i'}_{m}) \} \\ \bigwedge_{m=0}^{p+l+r} \vec{o}_{m} \equiv \vec{o'}_{m} \\ \bigwedge_{m=0}^{p+l+r} assertion(\vec{i}_{m}) \\ \bigwedge_{m=0}^{p+l+r} assertion(\vec{i'}_{m}) \end{cases}$$

$$(3)$$

$$A_{PC}(p,l,r) := \left\{ i_{p+l} \equiv 1 \land i'_{p+l} \equiv 0 \right\}$$
 (4)

Similarly we can partition $F_{LN}(p,l,r)$ in Equation 2 into the following two equations:

$$C_{LN}(p,l,r) := \begin{cases} C_{PC}(p,l,r) \\ \wedge \bigvee_{x=0}^{p-1} \bigvee_{y=x+1}^{p} \{\vec{s}_x \equiv \vec{s}_y \wedge \vec{s'}_x \equiv \vec{s'}_y \} \\ \wedge \bigvee_{x=p+1}^{p+l-1} \bigvee_{y=x+1}^{p+l} \{\vec{s}_x \equiv \vec{s}_y \wedge \vec{s'}_x \equiv \vec{s'}_y \} \\ \wedge \bigvee_{x=p+l+1}^{p+l+r-1} \bigvee_{y=x+1}^{p+l+r} \{\vec{s}_x \equiv \vec{s}_y \wedge \vec{s'}_x \equiv \vec{s'}_y \} \end{cases}$$
 (5)

$$A_{LN}(p,l,r) := \left\{ i_{p+l} \equiv 1 \land i'_{p+l} \equiv 0 \right\}$$
 (6)

It is obvious that C_{PC} and C_{LN} are independent of any particular $i \in \vec{i}$, so they can be added into the clause database on MiniSAT solver. At the same time, all clauses in A_{PC} and A_{LN} contain only one literal, so they can be used as the assumptions in calling solve procedure of MiniSAT solver.

39:10 Ying Qin et al.

Thus, with these new equations, we can change Algorithm 2 to Algorithm 3 with incremental SAT. The major changes are the two new addClause in Line 5 and 10, and the two new solve in Line 7 and 12. They are the procedures provided by MiniSAT's incremental SAT mechanism mentioned in Subsection 2.2.

3.3. Reducing the value of $p\ l$ and r

Although Algorithm 3 is sufficient to determine whether i can be uniquely determined, there are some redundancy in the valuations of < p, d, l > found by it, which may cause unnecessarily large overheads on the circuit area.

Thus, we use Algorithm 4 to minimize l and r one by one. For each r', r'-1 is used to checked for F_{PC} 's satisfiability at Line 2. If it is satisfiable, l' is returned because it is the smallest l that can make $F_{PC}(p,l,r)$ unsatisfiable. On the other hand, if it is unsatisfiable but l' already reach l, then terminate and return 0. l is handled similarly.

According to Figure 2, it is obvious that p does not affect the decoder's logic complexity and circuit area. So we do not minimize its valuation here.

3.4. An alternative approach for comparison

In this section, we first find out the flow control variables by increasing p, l and r simultaneously in Algorithm 3, and then minimize their valuations with Algorithm 4. This approach need to call SAT solver for O(n) times, with n = max(p, l, r).

There is another possible way to do this job, that is, increasing p, l and r one by one with three nested loops, instead of simultaneously. This approach need to call SAT solver for $O(n^3)$ times,

We will show in Subsection 6.5 that, increasing $p,\,l$ and r simultaneously is much faster than increasing them separately. We will also explain the reason there.

4. INFERRING PREDICATE THAT ENABLES THE ENCODER'S DATA VECTOR TO BE UNIQUELY DETERMINED

In subsection 4.1, we propose an algorithm to characterize a Boolean function that makes a Boolean formula satisfiable. In subsection 4.2, we apply this algorithm to

```
ALGORITHM 4: RemoveRedundancy(p, l, r)
   Input: The valuation of p, l and r.
   Output: The minmal valuation of l and r that can still make F_{PC}(p, l, r) unsatisfiable.
 1 for r'=r \rightarrow 1 do
       if F_{PC}(p, l, r' - 1) is satisfiable then
           break
       else if r' \equiv 1 then
 4
           r' := r' - 1
 5
           break
7 for l'=l \rightarrow 1 do
       if F_{PC}(p, l'-1, r') is satisfiable then
        break
9
       else if l' \equiv 1 then
10
           l' := l' - 1
11
           break
12
13 return < d', l' >
```

infer $valid(\vec{f})$, the predicate that enable \vec{d} to be uniquely determined by a bounded sequence of \vec{o} .

4.1. Characterizing a function that makes a Boolean formula satisfiable

Assume that $R(\vec{a}, \vec{b}, t)$ is a Boolean formula with $R(\vec{a}, \vec{b}, 0) \wedge R(\vec{a}, \vec{b}, 1)$ unsatisfiable. \vec{a} and \vec{b} are respectively called the important and the non-important variable vectors, while t is the target variable.

We need to characterize a Boolean function $FSAT(\vec{a})$, which covers and only covers all the valuations of \vec{a} that can make $R(\vec{a}, \vec{b}, 1)$ satisfiable. It is formally defined below:

$$FSAT(\vec{a}) := \begin{cases} 1 & \exists \vec{b}. R(\vec{a}, \vec{b}, 1) \\ 0 & otherwise \end{cases}$$
 (7)

Thus, a naive algorithm of computing $FSAT(\vec{a})$ is to enumerate all valuations of \vec{a} , and collect all those valuations that make $R(\vec{a}, \vec{b}, 1)$ satisfiable. But the number of valuations to be enumerated is $2^{|\vec{a}|}$, which will prevent this algorithm from terminating within reasonable time for a long \vec{a} .

We can speed up this naive algorithm by expanding each valuation of \vec{a} to a larger set with Craig interpolant[McMillan 2003]. Intuitively, assume that $R(\vec{a}, \vec{b}, 1)$ is satisfiable with a satisfying assignment $A: \vec{a} \cup \vec{b} \cup \{t\} \rightarrow \{0, 1\}$, the following new formula can be constructed by cofactoring:

$$R(\vec{a}, A(\vec{b}), 1) \tag{8}$$

Because $R(\vec{a},A(\vec{b}),0) \wedge R(\vec{a},A(\vec{b}),1)$ is unsatisfiable, the Craig interpolant $ITP(\vec{a})$ of $R(\vec{a},A(\vec{b}),1)$ with respect to $R(\vec{a},A(\vec{b}),0)$ can be computed and used as an overapproximation of the set of \vec{a} that makes $R(\vec{a},A(\vec{b}),1)$ satisfiable. At the same time, $ITP(\vec{a}) \wedge R(\vec{a},A(\vec{b}),0)$ is unsatisfiable, so $ITP(\vec{a})$ covers nothing that can make $R(\vec{a},A(\vec{b}),0)$ satisfiable. Thus, $ITP(\vec{a})$ covers exactly the set of valuations of \vec{a} that can make $R(\vec{a},A(\vec{b}),1)$ satisfiable.

Based on the foregoing discussion, Algorithm 5 is proposed to characterize $FSAT(\vec{a})$. Line 2 checks whether there is still some new valuation of \vec{a} that can make $R(\vec{a}, \vec{b}, 1)$ satisfiable, but has not been covered by $FSAT(\vec{a})$. Lines 4 and 5 assign the value of \vec{b}

ALGORITHM 5: CharacterizingFormulaSAT (R, \vec{a}, \vec{b}, t) :Characterizing a Boolean function over \vec{a} that can make $R(\vec{a}, \vec{b}, 1)$ satisfiable

```
Input: The Boolean formula R(\vec{a}, \vec{b}, t), its important variable vector \vec{a}, its non-important variable vector \vec{b}, and its target variable t.

Output: FSAT(\vec{a}) that makes R(\vec{a}, \vec{b}, 1) satisfiable.

1 FSAT(\vec{a}) := 0;

2 while R(\vec{a}, \vec{b}, 1) \land \neg FSAT(\vec{a}) is satisfiable do

3 assume A : \vec{a} \cup \vec{b} \cup \{t\} \rightarrow \{0, 1\} is the satisfying assignment;

4 \phi_A(\vec{a}) := R(\vec{a}, A(\vec{b}), 1);

5 \phi_B(\vec{a}) := R(\vec{a}, A(\vec{b}), 0);

assume ITP(\vec{a}) is the Craig interpolant of \phi_A with respect to \phi_B;

7 FSAT(\vec{a}) := ITP(\vec{a}) \lor FSAT(\vec{a});
```

39:12 Ying Qin et al.

Fig. 4. The monotonicity of $FSAT_{PC}(p,l,r)$ and $FSAT_{LN}(p,l,r)$

from the satisfying assignment to $R(\vec{a}, \vec{b}, 1)$ and $R(\vec{a}, \vec{b}, 0)$ respectively, to remove \vec{b} from them.

Thus, $\phi_A \wedge \phi_B$ in Line 6 is unsatisfiable, and the common variables vector of ϕ_A and ϕ_B is \vec{a} . So a Craig interpolant $ITP(\vec{a})$ can be generated with the McMillian's algorithm[McMillan 2003].

 $ITP(\vec{a})$ is added to $FSAT(\vec{a})$ in Line 7 and ruled out in Line 2.

Each iteration of the while loop in Algorithm 5 adds at least a valuation of \vec{a} to $FSAT(\vec{a})$, which means that $FSAT(\vec{a})$ is a Boolean function that covers a bounded and strictly increasing set of valuations of \vec{a} . So Algorithm 5 is a halting one.

4.2. Inferring $valid(\vec{f})$ that enables \vec{d} to be uniquely determined

This subsection introduces the non-trivial details of how to infer the predicate $valid(\vec{f})$. So we first present an intuitive and informal introduction in 4.2.1. And then present its details in 4.2.2 and 4.2.3. Finally, we present the overall algorithm framework in 4.2.4.

4.2.1. Intuitive introduction. .

In this Section, what we want is the predicate $valid(\vec{f})$ that enables \vec{d} to be uniquely determined, that is, the set of all valuations of $valid(\vec{f}_{p+l})$ that can make $F_{PC}(p,l,r)$ unsatisfiable for some p,l and r.

But what we have is only Algorithm 5 that can find out the set of valuation of \vec{f}_{p+l} that can make $F_{PC}(p,l,r)$ satisfiable. We call the predicate that cover and only cover this set $FSAT_{PC}(p,l,r)$. And we will present how to infer it in 4.2.2.

But as shown in Subsection 2.4, \vec{d}_{p+l} not uniquely determined for some particular p,l and r, may become uniquely determined for larger p,l and r. For example, an encoder with 3 step latency can not uniquely determine its input \vec{i} with p,l and r smaller than 3. But it can with p,l and r larger than 3. That means, a particular valuation of \vec{f}_{p+l} that makes $F_{PC}(p,l,r)$ satisfiable for some p,l and r, may make it unsatisfiable for some larger p,l and r.

So as shown in Figure 4, $\neg FSAT_{PC}(p,l,r)$ is only an under-approximation of $valid(\vec{f})$ which grow monotonically with respect to the valuation of p,l and r. We still need an over-approximation that shrink monotonically to construct a halting algorithm.

Inspired by the Figure 3 and $F_{LN}(p,l,r)$, we can compute this over-approximation by using Algorithm 5 to find out the set of valuation of \vec{f}_{p+l} that can make $F_{LN}(p,l,r)$ satisfiable. We call the predicate that covers and only covers this set $FSAT_{LN}(p,l,r)$. With a satisfiable $F_{LN}(p,l,r)$, by unrolling the three loops in Figure 3, we can prove that $F_{LN}(p,l,r)$ is still satisfiable for larger p,l and r. That means $FSAT_{LN}(p,l,r)$ is a

set of valuation of \vec{f}_{p+l} that makes $F_{LN}(p,l,r)$ satisfiable and grows monotonically with respect to p,l and r. So as shown in Figure 4, $\neg FSAT_{LN}(p,l,r)$ is an over-approximation of $valid(\vec{f})$ that shrinks monotonically. We will present how to infer it in 4.2.3.

Together with these two inferred predicates, an iterative algorithm is presented in 4.2.4 to infer $valid(\vec{f})$.

4.2.2. Computing $FSAT_{PC}(p,l,r)$. .

By replacing i in Equation (1) with \vec{d} , we have:

If $F_{PC}^d(p,l,r)$ is satisfiable, then \vec{d}_{p+l} cannot be uniquely determined by $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$. We define a new formula $T_{PC}(p,l,r)$ by collecting the 3rd line of Equation (9):

$$T_{PC}(p,l,r) := \left\{ \bigwedge_{m=p}^{p+l+r} \vec{o}_m \equiv \vec{o'}_m \right\}$$
 (10)

By substituting $T_{PC}(p,l,r)$ back into $F_{PC}^{d}(p,l,r)$, we have a new formula:

It is obvious that \vec{d} cannot be uniquely determined for a particular valuation of p, l and r if $F'_{PC}(p,l,r,1)$ is satisfiable. We further define:

$$\vec{a} := \vec{f}_{p+l} \tag{12}$$

$$\vec{b} := \vec{d}_{p+l} \cup \vec{d'}_{p+l} \cup \vec{s_0} \cup \vec{s'}_0 \cup \bigcup_{0 \le x \le p+l+r, x \ne (p+l)} (\vec{i}_x \cup \vec{i'}_x)$$
(13)

 $ec{f}_{p+l}$ can be uniquely determined, so we do not need to consider $ec{f'}_{p+l}$. Thus, $ec{a} \cup ec{b}$ is the vector that contains all the input variable vectors $< ec{i}_0, \ldots, ec{i}_{p+l+r} >$ and $< ec{i'}_0, \ldots, ec{i'}_{p+l+r} >$ at all steps for the two sequences of unrolled transition function. It also contains the two initial states $ec{s}_0$ and $ec{s'}_0$. In addition, T is a function that computes the next state and the output variable vector from the current state and input variable vector. So $ec{a}$ and $ec{b}$ can uniquely determine the value of t in $F'_{PC}(p,l,r,t)$. Thus, for a particular combination of p,l and r, the Boolean function over $ec{f}_{p+l}$ that makes $F'_{PC}(p,l,r,1)$ satisfiable can be computed by calling Algorithm 5 with $F'_{PC}(p,l,r,t)$, $ec{a}$ and $ec{b}$ defined above:

39:14 Ying Qin et al.

$$FSAT_{PC}(p, l, r) := CharacterizingFormulaSAT(F'_{PC}(p, l, r, t), \vec{a}, \vec{b}, t)$$
 (14)

Thus, we have the following proposition:

PROPOSITION 4.1. $FSAT_{PC}(p, l, r)$ is the Boolean function over \vec{f}_{p+l} that makes \vec{d}_{p+l} to be not uniquely determined for a particular p, l and r.

4.2.3. Computing $FSAT_{LN}(p, l, r)$.

Similarly, by replacing i in Equation (2) with \vec{d} , we have:

If $F_{LN}^d(p,l,r)$ is satisfiable, then \vec{d}_{p+l} cannot be uniquely determined by $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$. Furthermore, by unrolling those three loops in the last three lines of Equation (15), we can prove that \vec{d} cannot be uniquely determined for any larger $p'\geq p,l'\geq l$ and $r'\geq r$. We further define a new formula $T_{PC}(p,l,r)$ by collecting the 3rd line and the last three lines of Equation (15):

$$T_{LN}(p,l,r) := \begin{cases} \bigwedge_{m=p}^{p+l+r} \vec{o}_m \equiv \vec{o'}_m \\ \wedge \bigvee_{x=0}^{p-1} \bigvee_{y=x+1}^{p} \{\vec{s}_x \equiv \vec{s}_y \wedge \vec{s'}_x \equiv \vec{s'}_y \} \\ \wedge \bigvee_{x=p+1}^{p+l-1} \bigvee_{y=x+1}^{p+l} \{\vec{s}_x \equiv \vec{s}_y \wedge \vec{s'}_x \equiv \vec{s'}_y \} \\ \wedge \bigvee_{x=p+l+1}^{p+l+r-1} \bigvee_{y=x+1}^{p+l+r} \{\vec{s}_x \equiv \vec{s}_y \wedge \vec{s'}_x \equiv \vec{s'}_y \} \end{cases}$$
(16)

By replacing the 3rd line and the last three lines of Equation (15) with $T_{LN}(p,l,r)$, we got:

Then \vec{d} cannot be uniquely determined for any larger $p' \geq p, l' \geq l$ and $r' \geq r$ if $F'_{LN}(p,l,r,1)$ is satisfiable. Thus, for a particular combination of p,l and r, the formula over \vec{f}_{p+l} that makes $F'_{LN}(p,l,r,1)$ satisfiable can be computed by

$$FSAT_{LN}(p, l, r) := CharacterizingFormulaSAT(F'_{LN}(p, l, r, t), \vec{a}, \vec{b}, t)$$
 (18)

Thus we have the following proposition:

ALGORITHM 6: InferringUniqueFormula: inferring the predicate $valid(\vec{f}_{p+l})$ that enables \vec{d}_{p+l} to be uniquely determined

```
p:=p_{max}; l:=l_{max}; r:=r_{max};
\mathbf{while} \ \neg FSAT_{LN}(p,l,r) \land FSAT_{PC}(p,l,r) \ is \ satisfiable \ \mathbf{do}
p++; l++; r++;
\mathbf{4} \ \mathbf{end}
\mathbf{return} \ \neg FSAT_{LN}(p,l,r)
```

PROPOSITION 4.2. $FSAT_{LN}(p,l,r)$ is the formula over \vec{f}_{p+l} that makes \vec{d}_{p+l} to be not uniquely determined for every $p' \geq p$, $l' \geq l$ and $r' \geq r$.

4.2.4. The algorithm to compute $valid(\vec{f})$. .

With Propositions 4.1 and 4.2, the algorithm that infers the predicate $valid(\vec{f}_{p+l})$ is shown in Algorithm 6. It just iteratively increases the value of p, l and r, until $\neg FSAT_{LN}(p,l,r) \wedge FSAT_{PC}(p,l,r)$ is unsatisfiable. The proofs of its termination and correctness are given in the next subsection.

4.3. Proofs of termination and correctness

First we need to prove the following three lemmas:

LEMMA 4.3. $FSAT_{PC}(p, l, r)$ in Algorithm 6 monotonically decreases.

PROOF. For any p'>p,l'>l and r'>l, assume $A:\vec{f}_{p'+l'}\to B$ is a Boolean valuation of the flow control vector at (p'+l')-step. Further assume that A is covered by $FSAT_{PC}(p',l',r')$.

According to Equation (14) and Algorithm 5, we know that A can make $F'_{PC}(p',l',r',1)$ satisfiable, that is, there exists another satisfying assignment A' of $F'_{PC}(p',l',r',1)$ that has the same value for \vec{f}_{p+l} .

Intuitively, as shown in Figure 5, we can map the valuations of the state, input and output vectors in $F'_{PC}(p',l',r',1)$ to that of $F'_{PC}(p,l,r,1)$ by aligning the (p'+l')-step to (p+l)-step, and discard the two prefix and postfix state transition sequences. Formally, for each $p'+l'-l-p \le n \le p'+l'+r$, we map s_n in $F'_{PC}(p',l',r',1)$ to $s_{n-p'-l'+l+p}$ in $F'_{PC}(p,l,r,1)$. i_n and o_n are also mapped similarly.

With this mapping, we can transform the satisfying assignment A' of $F'_{PC}(p', l', r', 1)$ to yet another satisfying assignment A'' of $F'_{PC}(p, l, r, 1)$.

By restricting the domain of A'' to \vec{f}_{p+l} , we got the fourth satisfying assignment A'''. According to the mapping presented above, we know that $A''' \equiv A$.

Thus, every A covered by $FSAT_{PC}(p', l', r')$ is also covered by $FSAT_{PC}(p, l, r)$.

Thus, $FSAT_{PC}(p, l, r)$ monotonically decreases. \Box

LEMMA 4.4. FSAT_{LN}(p, l, r) in Algorithm 6 monotonically increases.

PROOF. According to the definition of $F'_{LN}(p,l,r,t)$ in Equation (17), with any satisfying assignment of $F'_{LN}(p,l,r,1)$, those three loops in $T_{LN}(p,l,r)$ can be unrolled to got a longer state transition sequence. With an mapping similar to Figure 5, we can prove that $F'_{LN}(p',l',r',1)$ is satisfiable for all larger p', l' and r'. So, according to Equation (18), we have $FSAT_{LN}(p,l,r) \Rightarrow FSAT_{LN}(p',l',r')$, that is, $FSAT_{LN}(p,l,r)$ monotonically increases. \square

```
LEMMA 4.5. FSAT_{LN}(p, l, r) \Rightarrow FSAT_{PC}(p, l, r)
```

PROOF. It is obvious that $F'_{LN}(p,l,r,1) \Rightarrow F'_{PC}(p,l,r,1)$, so $FSAT_{LN}(p,l,r) \Rightarrow FSAT_{PC}(p,l,r)$ holds. \Box

39:16 Ying Qin et al.

Fig. 5. Mapping $F_{PC}^{\prime}(p^{\prime},l^{\prime},r^{\prime},1)$ to $F_{PC}^{\prime}(p,l,r,1)$ by aligning

These three lemmas are depicted intuitively in Figure 4, which makes it obvious that $\neg FSAT_{LN}(p,l,r) \land FSAT_{PC}(p,l,r)$ monotonically decreases in Algorithm 6. With these lemmas, let's first prove that Algorithm 6 is a halting one.

Theorem 4.6. Algorithm 6 is a halting algorithm.

PROOF. As the encoder is represented by a finite state machine, the length of the longest path without loop is finite. If Algorithm 6 does not halt, then eventually the values of p, l and r in Algorithm 6 will be larger than the length of the longest path without loop, which means there will be loops in these three state sequences $\langle \vec{s}_0, \ldots, \vec{s}_p \rangle, \langle \vec{s}_{p+1}, \ldots, \vec{s}_{p+l} \rangle$ and $\langle \vec{s}_{p+l+1}, \ldots, \vec{s}_{p+l+r} \rangle$. Thus, every satisfying assignment of $F_{PC}^\prime(p,l,r,1)$ also satisfies $F_{LN}^\prime(p,l,r,1)$, which means $\neg FSAT_{LN}(p,l,r) \wedge FSAT_{PC}(p,l,r)$ is unsatisfiable. This will lead to the termination of Algorithm 6. So, it is a halting algorithm. \square

We will then prove the correctness of Algorithm 6.

THEOREM 4.7. $\neg FSAT_{LN}(p,l,r)$ returned by Algorithm 6 covers and only covers all valuations of \vec{f} that enable \vec{d} to be uniquely determined by a bounded sequence of \vec{o} .

PROOF. Let's first prove the covering case. $FSAT_{LN}(p,l,r)$ covers a set of valuations of \vec{f} that make \vec{d} to be not uniquely determined for some particular p, l and r. So $\neg FSAT_{LN}(p,l,r)$ rules them out and covers all valuations of \vec{f} that enable \vec{d} to be uniquely determined.

We then prove the only covering case. If $\neg FSAT_{LN}(p,l,r)$ covers a valuation of \vec{f} that makes \vec{d} to be **NOT** uniquely determined for some particular p', l' and r', then $FSAT_{LN}(p',l',r')$ also covers this valuation but $FSAT_{LN}(p,l,r)$ does not. But according to Lemmas 4.3, 4.4 and 4.5, this is impossible, because $FSAT_{LN}(p,l,r)$ is the maximal $FSAT_{LN}(p',l',r')$ for all possible p', l' and r'. So $\neg FSAT_{LN}(p,l,r)$ covers no valuation of \vec{f} that makes \vec{d} to be **NOT** uniquely determined. This proves the only covering case. \square

5. CHARACTERIZING THE DECODER'S BOOLEAN FUNCTION

In Section 3, the encoder's input vector \vec{i} has been partitioned into two vectors: the flow control vector \vec{f} and the data vector \vec{d} . The algorithms to characterize the decoder's

ALGORITHM 7: RemoveRedundancy(p, l, r)

```
1 for l':=l \rightarrow 1 do

2   | if F_{PC}(p,l'-1,r) \wedge valid(\vec{f}_{p+l'-1}) is satisfiable then

3   | else if l' \equiv 1 then

5   | l':=l'-1
   | break

7 for r':=r \rightarrow 1 do

8   | if F_{PC}(p,l',r'-1) \wedge valid(\vec{f}_{p+l'}) is satisfiable then

9   | break

10   | else if r' \equiv 1 then

11   | r':=r'-1
   | break

13 return < l', r'>
```

Boolean functions that compute \vec{f} and \vec{d} are different, so they are discussed separately in the following two subsections.

5.1. Minimizing the valuation of l and r

As we have increase the value of p,l and r simultaneously in Algorithm 6, there may be some redundancy in the valuation of p,l and r, which may lead to unnecessary overhead in the decoder's circuit area and delay.

For example, assume the encoder is a simple inverter whose $o_i := i_i$. With $l \equiv 0$ and $r \equiv 0$, we can get the simplest decoder that recover i_i by simply inverting o_i . In such a decoder, there is only one inverted and no registers. But with $l \equiv 1$ and $r \equiv 1$, we need an additional register to delay o_{i-1} for one step, and then recover i_i by inverting the delayed o_{i-1} .

The proposed Algorithm 7 is similar to Algorithm 4. There are two differences between them: First, we add the newly inferred predicate valid(vecf) into the formula whose satisfiability is to be checked, to make sure that the input vector \vec{i} can still be unsatisfiable. Second, we do not minimize the value of p, because it does not affect the decoder's area and delay.

To simply the presentation, we still use p, l and r instead of p', l' and r' in the remainder of this paper.

5.2. Characterizing the decoder's Boolean function that computes \vec{f}

Each variable $f \in \vec{f}$ can be uniquely determined by a bounded sequence of the encoder's output. So, for each particular valuation of the encoder's output sequence $\langle \vec{o}_p, \dots, \vec{o}_{p+l+r} \rangle$, f_{p+l} cannot be 0 and 1 at the same time. Thus, the decoder's Boolean function that computes f_{p+l} is exactly the Craig interpolant of ϕ_A with respect to ϕ_B :

$$\phi_A := \left\{ \bigwedge_{m=0}^{p+l+r} \{ (\vec{s}_{m+1}, \vec{o}_m) \equiv T(\vec{s}_m, \vec{i}_m) \} \right\}$$

$$f_{p+l} \equiv 1$$
(19)

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:18 Ying Qin et al.

It is obvious that $\phi_A \wedge \phi_B$ equals $F_{PC}(p,l,r)$ in Equation (1), so it is unsatisfiable. The common variable set of ϕ_A and ϕ_B is $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$. So, a Craig interpolant ITP can be derived by McMillian's algorithm[McMillan 2003] from the unsatisfiability proof of $\phi_A \wedge \phi_B$, which covers all values of $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$ that make $f_{p+l}\equiv 1$. At the same time, $ITP \wedge \phi_B$ is unsatisfiable, so ITP covers nothing that can make f_{p+l} 0. Thus, ITP is the decoder's Boolean function that computes $f\in \vec{f}$.

5.3. Characterizing the decoder's Boolean function that computes $ec{d}$

Assume that the predicate over \vec{f} inferred by Algorithm 6, is $valid(\vec{f})$. Let's define the following two formulas for each data variable $d \in \vec{d}$:

$$\phi_A' := \left\{ \begin{array}{l} \bigwedge_{m=0}^{p+l+r} \{ (\vec{s}_{m+1}, \vec{o}_m) \equiv T(\vec{s}_m, \vec{i}_m) \} \\ \wedge \qquad \qquad d_{p+l} \equiv 1 \\ \wedge \qquad \qquad valid(\vec{f}_{p+l}) \end{array} \right\}$$

$$(21)$$

$$\phi_{B}' := \left\{ \begin{array}{l} \bigwedge_{m=0}^{p+l+r} \{ (\vec{s'}_{m+1}, \vec{o'}_{m}) \equiv T(\vec{s'}_{m}, \vec{i'}_{m}) \} \\ \bigwedge_{m=p}^{p+l+r} \vec{o}_{m} \equiv \vec{o'}_{m} \\ \bigwedge_{m=p}^{d'} \vec{o'}_{m+l} \equiv 0 \\ \bigwedge_{m=p}^{d'} valid(\vec{f'}_{p+l}) \end{array} \right\}$$
(22)

Each variable $d \in \vec{d}$ can be uniquely determined by the encoder's output only when $valid(\vec{f})$ holds. So, if $valid(\vec{f}_{p+l})$ holds, for each particular valuation of the encoder's output sequence $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$, d_{p+l} cannot be 0 and 1 at the same time. So, $\phi_A' \wedge \phi_B'$ is unsatisfiable. Thus, a Craig interpolant ITP can be derived by McMillian's algorithm[McMillan 2003] from the unsatisfiability proof of $\phi_A' \wedge \phi_B'$, which covers and only covers all valuations of $<\vec{o}_p,\ldots,\vec{o}_{p+l+r}>$ that make $d_{p+l}\equiv 1$. Thus, ITP is the decoder's Boolean function that computes $d\in \vec{d}$.

Furthermore, when $valid(\vec{f}_{p+l})$ does not hold, the data variable $d \in \vec{d}_{p+l}$ cannot be uniquely determined. So, no function can be used to calculate its value. But this is not a problem, because the decoder is supposed to recognize the invalid data vector by computing the value of control flow vector \vec{f} , and ignore the exact value of \vec{d} .

6. EXPERIMENTAL RESULTS

We have implemented these algorithms in OCaml language, and solved the generated CNF formulas with Minisat 1.14[Eén and Sörensson 2003]. All experiments have been run on a server with 16 Intel Xeon E5648 processors at 2.67GHz, 192GB memory, and CentOS 5.4 Linux. All these experimental results and programs can be downloaded from https://github.com/shengyushen/compsyn.

Table I shows all benchmarks used in our previous paper [Shen et al. 2012], together with some benchmark with full synthesis result in [Liu et al. 2012]. [Liu et al. 2012] had also discussed some larger benchmarks such as HM(255,247), but they do not have experimental result that can be used to compare, so we will not include them here.

Each column of Table I shows respectively the number of input, output and register of each benchmarks. The area column shows the area of the encoder when mapped to mcnc.genlib library. In the remainder of this paper, all circuit areas are the values when mapped to mcnc.genlib library.

By studying the 5 benchmarks used in our previous papers [Shen et al. 2009;2010; 2011; 2012], we found that most of them have built-in flow control mechanisms. This is not a surprise to us, because these benchmarks all come from real industrial projects. We will present the experimental result for them in Subsections 6.1,6.2 and 6.3.

Names #in #out description #reg area 10 The data to be encoded pcie xgxs 1 means TXDATA is a controlling character, Benchmarks 1 1 0 means TXDATA is normal data from t2ether [Shen et al. 2012] Indicating the validness of TXDATA and TXDATAKxfi scrambler 10 10 10 10 The encoded data The electrical idle state Benchmarks CC_3 from CC_4 The electrical idle state [Liu et al. 2012] HM(7,4)The electrical idle state HM(15,11) The electrical idle state

Table I. Benchmarks

Table II. The input and output variables of the PCI Express 2.0 encoder

	variable name	width	description					
	TXDATA	8	The data to be encoded					
Inputs	TXDATAK	TAK 1 1 means $TXDATA$ is a controlling characteristic TAK 1						
			0 means $TXDATA$ is normal data					
	$CNTL_TXEnable_P0$	1	Indicating the validness of $TXDATA$ and $TXDATAK$					
Outputs	HSS_TXD	10	The encoded data					
	$HSS_TXELECIDLE$	1	The electrical idle state					

On the other hand, for those benchmarks without flow control mechanism, their input variables can always uniquely determined. So our algorithm can recognize all their input variables as flow control variables, and direct generate their decoder's Boolean functions.

We have also found that the benchmarks used in [Tu and Jiang 2013] contain no flow control mechanism. But our algorithm can also handle them, because they will make Algorithm 2 to find that there

6.1. PCI Express 2.0 encoder

This encoder is compliant with the PCI Express 2.0 standard [PCI-SIG 2009]. After deleting empty line and comments, its source code has 259 lines of verilog. After being mapped to LSI10K library, it contains 113 AND2 gates, 212 OR2 gates, 68 inverters and 23 registers. And its total area is 879.

The list of input and output variables is shown in Table II. According to the 8b/10b encoding scheme's coding table[Widmer and Franaszek 1983], when $TXDATAK \equiv 0$, TXDATA can be of any value. But when $TXDATAK \equiv 1$, TXDATA can only be 1C, 3C, 5C, 7C, 9C, BC, DC, FC, F7, FB, FD and FE. So, we write an assertion to rule out those combinations that are not in this coding table. This assertion is embed into the transition function T, so that it can be enforced at every step in the unrolled state sequences.

Algorithm 2 identifies the flow control variable $CNTL_TXEnable_P0$. And then Algorithm 6 infers the predicate $CNTL_TXEnable_P0 \equiv 1$ that enables the data vector to be uniquely determined.

The major breakthrough of this paper's algorithms is their ability to handle invalid data vector. So, it should be very interesting to show how the invalid data vector is mapped to output variable vector \vec{o} . By studying the source code of this encoder, we find that, when and only when $CNTL_TXEnable_P0 \equiv 0$ holds, that is, TXDATA and TXDATAK are invalid, the output electrical idle variable $HSS_TXELECIDLE$ becomes 1. So, the decoder can use the output variable $HSS_TXELECIDLE$ to uniquely determine the value of flow control variable $CNTL_TXEnable_P0$.

39:20 Ying Qin et al.

6.2. 10G Ethernet encoder

This encoder is compliant with clause 48 of IEEE 802.3 standard [IEEE 2012]. After deleting empty line and comments, this encoder has 214 lines of verilog. After being mapped to LSI10K library, it contains 65 AND2 gates, 192 OR2 gates, 75 inverters and 17 registers. Its total area is 708.

The list of input and output variables is shown in Table III. This encoder also employs an 8b/10b encoding scheme[Widmer and Franaszek 1983] with two inputs: the 8-bit $encode_data_in$ to be encoded and 1-bit konstant indicating a controlling character. According to the coding table in [Widmer and Franaszek 1983], when $konstant \equiv 0$, $encode_data_in$ can be of any value. But when $konstant \equiv 1$, $encode_data_in$ can only be 1C, 3C, 5C, 7C, 9C, BC, DC, FC, F7, FB, FD and FE. So, we write an assertion to exclude those combinations that are not in this table and embed it into the the transition function T.

Algorithm 2 identifies the flow control variable bad_code . And then Algorithm 6 infers the predicate $bad_code \equiv 0$ that enables the data vector to be uniquely determined.

Although this encoder uses the same coding mechanism as does the PCI Express 2.0 encoder mentioned above, the way it handles the invalid data vector is different. This encoder does not have a separate output variable to indicate the validness of the output data; instead, the validness and exact value of all input variables are both encoded in $encode_data_out$. By studying this encoder's source code, we find that when and only when $bad_code \equiv 1$, that is, $encode_data_in$ and konstant are invalid, the output variable $encode_data_out$ will become 00101111101. So the decoder can use the output variable $encode_data_out$ to uniquely determine the value of the flow control variable bad_code .

6.3. UltraSPARC T2 Ethernet encoder

This encoder comes from the UltraSPARC T2 open source processor designed by Sun Microsystems. It is compliant with clause 36 of IEEE 802.3 standard [IEEE 2012]. After deleting empty line and comments, this encoder's source code has 864 lines of verilog. After being mapped to LSI10K library, it contains 344 AND2 gates, 649 OR2 gates, 128 inverters and 53 registers. Its total area is 2485.

The list of input and output variables is shown in Table IV. This encoder also employs an 8b/10b encoding scheme[Widmer and Franaszek 1983], but with yet another style of flow control mechanism that is significantly different from that of the above two encoders. The data to be encoded is the 8-bit txd, but there is no standalone variable to indicate the control symbol. But only a 4-bit $tx_enc_ctrl_sel$ used to define the action to be performed, as shown in Table V. It is obvious that the functionalities of the control symbol indication and flow control mechanism are combined in $tx_enc_ctrl_sel$. The last four cases in Table V can never be uniquely determined, because they cannot be distinguished from the case of 'PCS_ENC_DATA. So we write an assertion to rule them out.

Algorithm 2 identifies the flow control variables $tx_enc_ctrl_sel$, tx_en and tx_er . And then Algorithm 6 infers the predicate $tx_enc_ctrl_sel \equiv `PCS_ENC_DATA'$ that enables the data vector to be uniquely determined.

	variable name	width	description
	$encode_data_in$	8	The data to be encoded
Inputs	konstant	1	1 means $encode_data_in$ is a special character,
			$0 ext{ means } encode_data_in ext{ is normal data}$
	bad_code	1	Indicating the validness of konstant and encode_data_in
Outputs	$encode_data_out$	10	The encoded data

Table III. The input and output variables of the 10G Ethernet encoder

variable name width description The data to be encoded txdRefer to Table V Inputs $tx_enc_ctrl_sel$ 1 Transmission enable tx_en Transmitting an error character tx_er 1 $tx_10bdata$ 10 The encoded data $txd_eq_crs_ext$ 10 Transmitting an special error character Outputs with $tx_er \equiv 1$ and $txd \equiv 8'h0F$ tx_er_d Transmitting an error character Transmission enable tx_en_d $pos_disp_tx_p$ Indicating positive parity

Table IV. The input and output variables of the UltraSPARC T2 Ethernet encoder

Table V. Actions to be performed in UltraSPARC T2 Ethernet encoder

The name of action	The meaning of action
'PCS_ENC_K285	sending K28.5 control symbol
'PCS_ENC_SOP	sending K27.7 control symbol
'PCS_ENC_T_CHAR	sending K29.7 control symbol
'PCS_ENC_R_CHAR	sending K23.7 control symbol
'PCS_ENC_H_CHAR	sending K30.7 control symbol
'PCS_ENC_DATA	sending the encoded txd
'PCS_ENC_IDLE2	sending D16.2 data symbol following K28.5
'PCS_ENC_IDLE1	sending D5.6 data symbol
'PCS_ENC_LINK_CONFA	sending D21.5 data symbol following K28.5
'PCS_ENC_LINK_CONFB	sending D2.2 data symbol following K28.5

As shown in the last column of Table V, the first 5 cases have their own particular control symbol values assigned to $tx_10bdata$, so the decoder can recover the value of the flow control variable $tx_enc_ctrl_sel$ from $tx_10bdata$.

6.4. Comparing our algorithm with the state-of-the-art algorithm on circuits without flow control mechanism

[Liu et al. 2012]

6.5. Comparing run time overhead of increasing p, l and r simultaneously and separately

In Algorithm 3, we increase p, l and r simultaneously, and then reduce them with Algorithm 4. We call it A1 in this subsection.

Subsection 3.4 shows another possible way to do this. It use three nested loops to increase p, l and r separately. We call it A2 in this subsection.

We compare these two approaches in Table VI. The first three benchmarks are those three circuits with flow control mechanism, and the last two benchmarks are those without flow control mechanism.

Table VI. Comparing run time overhead of increasing p, l and r simultaneously and separately

			A1:Inc	Increasing simultaneously				A2:Increasing separately					
benchmarks		p,l,r	time	time	time	total	p,l,r	time	time	time	total		
			find.	infer.	minimiz.	run		find.	infer.	minimiz.	run		
			$ec{f}$	$valid(\vec{f})$	p,l,r	time		$ec{f}$	$valid(\vec{f})$	p,l,r	time		
Flow	PCIE2	3,0,2	0.49	1.21	0.68	2.38	3,0,2	0.38	0.80	0.38	1.60		
Con-	Eth10G	3,0,1	0.31	0.88	0.52	1.71	3,0,1	0.23	0.58	0.30	1.11		
trol	T2Eth	4,0,4	4.28	15.17	6.25	25.70	4,0,4	15.47	13.85	6.19	35.51		
Non-	XFI	2,1,0	4.59	3.60	9.55	17.74	2,1,0	3.52	2.75	10.05	16.32		
Flow	Scrambler	2,1,0	0.64	0.58	1.33	2.55	2,1,0	0.48	0.43	1.47	2.38		
Con-	CC_3			7146	7146		5,0,4	19.92	7146	7146			
trol	CC_4			7146	7146		5,0,4	19.92	7146	7146			

39:22 Ying Qin et al.

By comparing the total run time in column 7 and 12 it is obvious that, A2 is faster than A1 in most of the case. The only exception is the T2Eth, for which A1 is faster than A2.

So does this means that we should use A2 instead of A1? The answer is no.

according to Subsection 3.4, A1 needs to call SAT solver for O(n) times, with $n = \max(p, l, r)$. And A2 need to call SAT solver for $O(n^3)$ times. For benchmarks with small n, these two approaches do not have too much difference on this overhead. But for benchmarks with larger n, such as T2Eth, their difference is significant. This can be witnessed by comparing column 4 and 9, especially the row of T2Eth.

So A2 beats A1 in smaller circuits, while A1 win on larger ones. So we chose A1, that is, Algorithm 3 instead of A2.

6.6. Comparing run times and circuit areas for the two cases with and without Algorithm 7

To improve the decoder's circuit area and timing, Algorithm 7 is invoked to reduce l and r before characterizing the decoder's Boolean function. To show its efficiency, we present the experimental result in Table VII.

The first column is the benchmarks. The second and third columns are the run time overhead of finding out the flow control vector \vec{f} and inferring $valid(\vec{f})$. When Algorithm 7 is not used, The fourth to seventh columns give respectively the p,l and r valuation, the runtime to generate the decoder, the decoder area and the number of registers in the generated decoder. When Algorithm 7 is used, these experimental result are again presented in the last four columns.

By comparing the 4-7 columns with the 8-11 columns, it is obvious that the decoders area and number of registers are significantly reduced, with significant runtime overhead in reducing p, l and r.

6.7. Comparing circuit area and timing for the decoders generated by our algorithm and hand written decoders

7. RELATED PUBLICATIONS

7.1. Complementary synthesis

The first complementary synthesis algorithm was proposed by [Shen et al. 2009]. It checks the decoder's existence by iteratively increasing the bound of unrolled transition function sequence, and generates the decoder's Boolean function by enumerating all satisfying assignments of the decoder's output. Its major shortcomings are that it may not halt and that it has large runtime overhead in building the decoder.

The halting problem was independently tackled in [Shen et al. 2011] and [Liu et al. 2011] by searching for loops in the state sequence, while the runtime overhead problem was addressed in [Shen et al. 2012; Liu et al. 2011] by Craig interpolant [McMillan 2003].

Shen et al.[2012] automatically inferred an assertion for configuration pins, which can lead to the decoder's existence. It can be seen as a special case of Algorithm 6 in Section 4, with the restriction that the inferred assertion must hold on all steps. Our Algorithm 6, on the other hand, is the first algorithm that allows states with and

	run	run		Without	Alg. 7	With Alg. 7				
bench-	time	time	p,l,r	runtime	decoder	#	p,l,r	runtime	decoder	#
marks	find.	find.	_	generat.	area	of		generat.	area	of
	$ec{f}$	$valid(\vec{f})$		decoder		reg		decoder		reg
PCIE2	1.04	1.86	4,4,4	2.77	1642	22	4,0,2	4.05	2363	0
Eth10G	0.45	1.39	4,4,4	2.03	1538	30	4,0,1	3.01	1484	0
T2Eth	12.37	21.58	5,5,5	19.92	7146	22	5,0,4	34.29	5212	9

Table VII. The summary of experimental results

Decoder generated by us Hand written decoder benchmarks area | critical path timing area critical path timing PCIE2 2363 952 19.03 Eth10G 1484 913 12.33 T2Eth 5212 2225 23.36

Table VIII. The summary of experimental results

without the inferred assertion to be interleaved freely with each other, which make it possible to handle encoder with flow control mechanism.

A break-through algorithm is proposed by [Tu and Jiang 2013] based on property directed reachability analysis [Bradley 2011; Eén et al. 2011] that can take the encoder's initial state into consideration, so that the infinite history of the encoder and the decoder can be used to generate the decoder's output. This algorithm can handle some special encoders that cannot be handled by the state-of-the-art algorithms. But for the encoders with flow control mechanism used in our experiments, our algorithm is enough, and therefore we have not implemented their algorithm in our framework.

7.2. Program inversion

According to [Gulwani 2010], program inversion involves deriving a program P^{-1} that negates the computation of a given program P. So, the definition of program inversion is very similar to complementary synthesis.

The initial work on deriving program inversion used proof-based approaches [Dijkstra 1979], which could handle only very small programs and very simple syntax structures.

Glück et al. proposed in [Glück and Kawabe. 2005] inverted first-order functional programs by eliminating nondeterminism with LR-based parsing methods. But, the use of functional languages in that work is incompatible with our complementary synthesis.

In [Srivastava et al. 2011], Srivastava et al. assumed that an inverse program was typically related to the original program, and so the space of possible inversions can be inferred by automatically mining the original program for expressions, predicates, and control flow. This algorithm inductively rules out invalid paths that cannot fulfill the requirement of inversion to narrow down the space of candidate programs until only the valid ones remain. So, it can only guarantee the existence of a solution, but not the correctness of this solution if its assumptions do not hold.

7.3. Protocol converter synthesis

Protocol converter synthesis is a process that automatically generates a translator between two different communication protocols. This is relevant to our work, because both focus on synthesizing communication circuits.

In [Avnit et al. 2008; Avnit et al. 2009], Avnit et al. first defined a general model for describing different protocols, and then provided an algorithm to decide whether there is some functionality of a protocol that cannot be translated into another. Finally, they synthesized a translator by computing the greatest fixed point for the update function of the buffer's control states. Latter in [Avnit and Sowmya 2009], they improved their algorithm with a more efficient design space exploration algorithm.

7.4. Satisfying Assignments Enumeration

Some algorithms enumerate all satisfying assignments by trying to enlarge the complete satisfying assignments, so that a large state set that contains more complete satisfying assignments can be obtained.

39:24 Ying Qin et al.

The first approach of this kind is proposed by [McMillan 2002]. He constructs an alternative implication graph in SAT solver, which records the reasoning relation that leads to the assignment of a particular object variable. All variables outside this graph can be ruled out from the complete assignment. In [Ravi and Somenzi 2004] and [Chauhan et al. 2004], those variables whose absence can not make $obj \equiv 0$ satisfiable are removed one by one. In [Shen et al. 2005] and [Jin and Somenzi: 2005; Jin et al. 2005], conflict analysis based approaches are used to remove multiple irrelevant variables in one SAT run. In [Grumberg et al. 2004], the variable set is divided into an important subset and an unimportant subset. Variables in the important subset have higher decision priority than those unimportant ones. Thus, the important subset forms a search tree, with each leaf being another search tree for the unimportant set. Cofactoring [Ganai et al. 2004b] qualifies out unimportant variables by setting them to constant value returned by the SAT solver.

Other algorithms tries to construct an Interpolation to cover all satisfying assignments. The first such algorithm was proposed by [Jie-Hong Roland Jiang 2009]. It construct a first formula with another formula that contradicts with it to get an unsatisfiable formula, from which an interpolation can be derived and used as an overapproximation of the first formula. In [Chockler et al. 2012], interpolation is generated with a framework similar to the iterative enumerating and enlarging approaches mentioned above. But there are two enlarging steps, each for the two formulas involving in computing interpolation. This make it the first paper that constructs interpolation without proof.

7.5. Logic synthesis with Craig interpolation

In [Lee et al. 2007; Lee et al. 2008], the functional dependency and logic decomposition problems are solved by formulating the base Boolean functions' output bits as the input bits to an unknown Boolean function, and characterize this unknown function by Craig interpolation. This algorithm is also used in our paper [Shen et al. 2012] to find out all the possible decoders.

In [Wu et al. 2010], an ECO is generated with Craig interpolation.

In [Jie-Hong Roland Jiang 2009], the first algorithm to characterize a Boolean function from a Boolean Relation was proposed. It includes two different algorithms: The first one handle a general non-deterministic Boolean relation that can not uniquely determined its output, The second one is a special case of the first one that handles a deterministic relation that can uniquely determine its output by Craig interpolation. The second one is used in [Shen et al. 2012].

This paper also need to handle a non-deterministic Boolean relation, which seems to be similar to that one handled by the first algorithm of [Jie-Hong Roland Jiang 2009]. But our case is much more complicated, because the Boolean relation to be handled is an unrolled transition relation with unknown length. That is, we must first find out the value of p, l and r. But these value must be determine together with finding out the set of flow control variables. So the way we handle non-determinism is significantly different from that of [Jie-Hong Roland Jiang 2009]. But after we got the value of p, l and r, together with the flow control variables \vec{f} and the predicate $valid(\vec{f})$, we can characterize the decoder's Boolean function with an algorithm similar to the second one in [Jie-Hong Roland Jiang 2009].

8. CONCLUSIONS

In this paper, we propose, for the first time, a framework to handle flow control mechanism in complementary synthesis problem. Experimental results indicate that our

framework can always successfully handle many complex encoders from real industrial projects, such as PCI Express [PCI-SIG 2009] and Ethernet [IEEE 2012].

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their fruitful suggestions.

REFERENCES

- Dennis Abts and John Kim. 2011. *High Performance Datacenter Networks* (1st. ed.). Synthesis Lectures on Computer Architecture, Vol. 14. Morgan and Claypool, Chapter 1.6, 7–9. DOI:http://dx.doi.org/10.2200/S00341ED1V01Y201103CAC014
- Karin Avnit, Vijay D'Silva, Arcot Sowmya, S. Ramesh, and Sri Parameswaran. 2009. Provably correct on-chip communication: A formal approach to automatic protocol converter synthesis. ACM Transactions on Design Automation of Electronic Systems 14, 2 (March 2009), 14:1–14:41. DOI: http://dx.doi.org/10.1145/1497561.1497562
- Karin Avnit and Arcot Sowmya. 2009. A formal approach to design space exploration of protocol converters. In Proceedings of the Conference on Design, Automation and Test in Europe, DATE 2009 (DATE '09). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 129–134. DOI: http://dx.doi.org/10.1109/DATE.2009.5090645
- Karin Avnit, Vijay D'Silvaand Arcot Sowmya, and S. Rameshand Sri Parameswaran. 2008. A Formal Approach To The Protocol Converter Problem. In *Proceedings of the conference on Design, automation and test in Europe,DATE 2008 (DATE '08)*. ACM Press, Munich, Germany, 294–299. DOI:http://dx.doi.org/10.1109/DATE.2008.4484695
- Aaron R. Bradley. 2011. SAT-based model checking without unrolling. In *Verification, Model Checking, and Abstract Interpretation, 12th International Conference, VMCAI 2011*, David A. Schmidt Ranjit Jhala (Ed.). Lecture Notes in Computer Science, Vol. 6538. Springer-Verlag, Berlin Heidelberg, 70–87. DOI: http://dx.doi.org/10.1007/978-3-642-18275-4-7
- Pankaj Chauhan, Edmund M. Clarke, and Daniel Kroening. 2004. A sat-based algorithm for reparameterization in symbolic simulation. In *Proceedings of the 41th Design Automation Conference*, DAC 2004 (DAC '04). IEEE, 524–529.
- Hana Chockler, Alexander Ivrii, and Arie Matsliah. 2012. Computing Interpolants without Proofs. In 8th International Haifa Verification Conference, HVC 2012, Tanja E. J. Vos Armin Biere, Amir Nahir (Ed.). Lecture Notes in Computer Science, Vol. 7857. Springer-Verlag, Berlin Heidelberg, 72–85. DOI:http://dx.doi.org/10.1007/978-3-642-39611-3_12
- William Craig. 1957. Linear reasoning: A new form of the herbrand-gentzen theorem. The Journal of Symbolic Logic 22, 3 (Sept. 1957), 250–268.
- Edsger W. Dijkstra. 1979. Program Inversion. In *Proceeding of Program Construction, International Summer School*. Springer-Verlag, London, UK, 54–57.
- Niklas Eén, Alan Mishchenko, and Robert K. Brayton. 2011. Efficient implementation of property-directed reachability. In *Proceedings of the International Conference on Formal Methods in Computer-Aided Design,FMCAD 2011 (FMCAD '11)*. FMCAD Inc, Austin, TX, USA, 125–134.
- Niklas Eén and Niklas Sörensson. 2003. An extensible sat-solver. In *Theory and Applications of Sat-isfiability Testing, 6th International Conference, SAT 2003*, Armando Tacchella Enrico Giunchiglia (Ed.). Lecture Notes in Computer Science, Vol. 2919. Springer-Verlag, Berlin Heidelberg, 502–518. DOI:http://dx.doi.org/10.1007/978-3-540-24605-3_37
- Malay K. Ganai, Aarti Gupta, and Pranav Ashar. 2004a. Efficient sat-based unbounded symbolic model checking using circuit cofactoring. In *Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design,ICCAD 2004 (ICCAD '04)*. IEEE Computer Society, San Jose, CA, USA, 510–517. DOI: http://dx.doi.org/10.1109/ICCAD.2004.1382631
- Malay K. Ganai, Aarti Gupta, and Pranav Ashar. 2004b. Efficient sat-based unbounded symbolic model checking using circuit cofactoring. In *Proceedings of the 2004 International Conference on Computer-Aided Design, ICCAD 2004 (ICCAD '04)*. ACM, 510–517. DOI:http://dx.doi.org/10.1109/ICCAD.2004.1382631

39:26 Ying Qin et al.

Robert Glück and Masahiko Kawabe. 2005. A method for automatic program inversion based on LR(0) parsing. *Journal Fundamenta Informaticae* 66, 4 (January 2005), 367–395. DOI:http://dx.doi.org/10.1109/TCAD.2012.2191288

- Orna Grumberg, Assaf Schuster, and Avi Yadgar. 2004. Memory efficient all-solutions sat solver and its application for reachability analysis. In *International Conference on Formal Methods in Computer-Aided Design,FMCAD 2011*, Andrew K. Martin Alan J. Hu (Ed.). Lecture Notes in Computer Science, Vol. 3312. Springer-Verlag, Berlin Heidelberg, 275–289. DOI: http://dx.doi.org/10.1007/978-3-540-30494-4-20
- Sumit Gulwani. 2010. Dimensions in program synthesis. In *Proceedings of the 12th international ACM SIG-PLAN symposium on Principles and practice of declarative programming,PPDP 2010 (PPDP '10)*. ACM Press, Hagenberg, Austria, 13–24. DOI: http://dx.doi.org/10.1145/1836089.1836091
- IEEE. 2012. IEEE Standard for Ethernet SECTION FOURTH. (2012). Retrieved January 25, 2013 from http://standards.ieee.org/getieee802/download/802.3-2012_section4.pdf
- Wei-Lun Hung Jie-Hong Roland Jiang, Hsuan-Po Lin. 2009. Interpolating functions from large Boolean relations. In *Proceedings of 2009 International Conference on Computer-Aided Design (ICCAD '09)*. IEEE, 779–784.
- HoonSang Jin, HyoJung Han, and Fabio Somenzi. 2005. Efficient conflict analysis for finding all satisfying assignments of a boolean circuit. In *Tools and Algorithms for the Construction and Analysis of Systems, 11th International Conference, TACAS 2005*, Lenore D. Zuck Nicolas Halbwachs (Ed.). Lecture Notes in Computer Science, Vol. 3440. Springer-Verlag, Berlin Heidelberg, 287–300. DOI:http://dx.doi.org/10.1007/978-3-540-31980-1_19
- HoonSang Jin and Fabio Somenzi:. 2005. Prime clauses for fast enumeration of satisfying assignments to boolean circuits. In *Proceedings of the 42th Design Automation Conference, DAC 2005 (DAC '05)*. IEEE, 750–753. DOI: http://dx.doi.org/10.1109/DAC.2005.193911
- Chih-Chun Lee, Jie-Hong Roland Jiang, Chung-Yang Huang, and Alan Mishchenko. 2007. Scalable exploration of functional dependency by interpolation and incremental SAT solving. In *Proceedings of 2007 International Conference on Computer-Aided Design (ICCAD '07)*. IEEE, 227–233.
- Ruei-Rung Lee, Jie-Hong Roland Jiang, and Wei-Lun Hung. 2008. Bi-decomposing large Boolean functions via interpolation and satisfiability solving. In *Proceedings of the 45th Design Automation Conference, DAC 2008 (DAC '08)*. IEEE, 636–641. DOI: http://dx.doi.org/10.1145/1391469.1391634
- Hsiou-Yuan Liu, Yen-Cheng Chou, Chen-Hsuan Lin, and Jie-Hong R. Jiang. 2011. Towards completely automatic decoder synthesis. In *Proceedings of the 2011 International Conference on Computer-Aided Design, ICCAD 2011 (ICCAD '11)*. IEEE Press, San Jose, CA, USA, 389–395. DOI:http://dx.doi.org/10.1109/ICCAD.2011.6105359
- Hsiou-Yuan Liu, Yen-Cheng Chou, Chen-Hsuan Lin, and Jie-Hong R. Jiang. 2012. Automatic Decoder Synthesis: Methods and Case Studies. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 31, 9 (September 2012), 31:1319–31:1331. DOI:http://dx.doi.org/10.1109/TCAD.2012.2191288
- Kenneth L. McMillan. 2002. Applying sat methods in unbounded symbolic model checking. In *International Conference on Computer Aided Verification*, CAV 2002, Kim Guldstrand Larsen Ed Brinksma (Ed.). Lecture Notes in Computer Science, Vol. 2404. Springer-Verlag, Berlin Heidelberg, 250–264. DOI: http://dx.doi.org/10.1007/3-540-45657-0_19
- Kenneth L. McMillan. 2003. Interpolation and sat-based model checking. In Computer Aided Verification, 15th International Conference, CAV 2003, Fabio Somenzi Warren A. Hunt Jr. (Ed.). Lecture Notes in Computer Science, Vol. 2725. Springer-Verlag, Berlin Heidelberg, 1–13. DOI: http://dx.doi.org/10.1007/978-3-540-45069-6_1
- PCI-SIG. 2009. PCI Express Base 2.1 Specification. (2009). Retrieved January 25, 2013 from http://www.pcisig.com/members/downloads/specifications/pciexpress/PCI_Express_Base_r2_1_04Mar09.pdf
- Kavita Ravi and Fabio Somenzi. 2004. Minimal assignments for bounded model checking. In *Tools and Algorithms for the Construction and Analysis of Systems, 10th International Conference, TACAS 2004*, Andreas Podelski Kurt Jensen (Ed.). Lecture Notes in Computer Science, Vol. 2988. Springer-Verlag, Berlin Heidelberg, 31–45. DOI: http://dx.doi.org/10.1007/978-3-540-24730-2_3
- ShengYu Shen, Ying Qin, and Sikun Li. 2005. Minimizing counterexample with unit core extraction and incremental sat. In *Verification, Model Checking, and Abstract Interpretation, 6th International Conference, VMCAI 2005*, Radhia Cousot (Ed.). Lecture Notes in Computer Science, Vol. 3385. Springer-Verlag, Berlin Heidelberg, 298–312. DOI: http://dx.doi.org/10.1007/978-3-540-30579-8-20
- ShengYu Shen, Ying Qin, KeFei Wang, Zhengbin Pang, Jianmin Zhang, and Sikun Li. 2012. Inferring Assertion for Complementary Synthesis. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 31, 8 (August 2012), 31:1288–31:1292. DOI: http://dx.doi.org/10.1109/TCAD.2012.2190735

- ShengYu Shen, Ying Qin, KeFei Wang, LiQuan Xiao, Jianmin Zhang, and Sikun Li. 2010. Synthesizing Complementary Circuits Automatically. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 29, 8 (August 2010), 29:1191–29:1202. DOI: http://dx.doi.org/10.1109/TCAD.2010.2049152
- ShengYu Shen, Ying Qin, LiQuan Xiao, KeFei Wang, Jianmin Zhang, and Sikun Li. 2011. A Halting Algorithm to Determine the Existence of the Decoder. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 30, 10 (October 2011), 30:1556–30:1563. DOI:http://dx.doi.org/10.1109/TCAD.2011.2159792
- ShengYu Shen, Jianmin Zhang, Ying Qin, and Sikun Li. 2009. Synthesizing complementary circuits automatically. In *Proceedings of the 2009 International Conference on Computer-Aided Design (ICCAD '09)*. IEEE Press, San Jose, CA, USA, 381–388. DOI: http://dx.doi.org/10.1145/1687399.1687472
- Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster. 2011. Path-based inductive synthesis for program inversion. In *Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation*, PLDI 2011 (PLDI '11). ACM Press, San Jose, CA, USA, 492–503. DOI: http://dx.doi.org/10.1145/1993498.1993557
- Kuan-Hua Tu and Jie-Hong R. Jiang. 2013. Synthesis of feedback decoders for initialized encoders. In *Proceedings of the 50th Annual Design Automation Conference, DAC 2013 (DAC '13*). ACM Press, Austin, TX, USA, 1–6. DOI: http://dx.doi.org/10.1145/2463209.2488794
- Al X. Widmer and Peter A. Franaszek. 1983. A DC-Balanced, Partitioned-Block, 8B/10B Transmission Code. *IBM Journal of Research and Development* 27, 5 (May 1983), 440–451. DOI:http://dx.doi.org/10.1147/rd.275.0440
- Bo-Han Wu, Chun-Ju Yanga, Chung-Yang Huang, and Jie-Hong Roland Jiang. 2010. A robust functional ECO engine by SAT proof minimization and interpolation techniques. In *Proceedings of 2010 International Conference on Computer-Aided Design (ICCAD '10)*. ACM, 729–734. DOI:http://dx.doi.org/10.1109/ICCAD.2010.5654265
- Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. 2001. Efficient Conflict Driven Learning in Boolean Satisfiability Solver. In *Proceedings of the 2001 International Conference on Computer-Aided Design, ICCAD 2001 (ICCAD '01)*. ACM, 279–285.

Received February 2014; revised March 2014; accepted June 2014

Online Appendix to: Complementary Synthesis for Encoder with Flow Control Mechanism

YING QIN and SHENGYU SHEN and QINGBO WU and HUADONG DAI and YAN JIA, School of Computer, National University of Defense Technology