

EE141-Spring 2012 Digital Integrated Circuits

Lecture 22 Timing + Clocks

EECS141 Lecture #22

Administrativia

- □ Project Phase 2 due Today.
- □ Project Phase 3 to be launched today
- □ Assignment 9 posted today
 - One more assignmnet (#10) will not be graded

EECS141 Lecture #22 2

Class Material

- □ Last lecture
 - Registers
- □ Today's lecture
 - Timing
- □ Reading (Ch 10)

Clock Nonidealities

□ Clock skew

 Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

□ Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term *t_{JL}*

□ Variation of the pulse width

Important for level sensitive clocking

Clock Skew and Jitter

□ Both skew and jitter affect the effective cycle time and the race margin

Timing Constraints

Minimum cycle time:

$$T_{clk} + \delta = t_{clk-q} + t_{setup} + t_{logic}$$

Worst case is when receiving edge arrives early (negative δ)

EECS141 Lecture #16 17

Timing Constraints

Hold time constraint:

$$t_{(clk-q,min)} + t_{(logic,min)} > t_{hold} + \delta$$

Worst case is when receiving edge arrives late Race between data and clock

Longest Logic Path in Edge-Triggered Systems

EECS141 Lecture #16

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$t_{clk-q} + t_{logic} + t_{setup} < T_{CLK} - t_{JS,1} - t_{JS,2} + \delta$$

Minimum cycle time is determined by the maximum delays through the logic

$$t_{clk-q} + t_{logic} + t_{setup} - \delta + 2t_{JS} < T_{CLK}$$

Skew can be either positive or negative

Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

$$t_{clk-q,min} + t_{logic,min} - t_{JS,1} > t_{hold} + t_{JS,2} + \delta$$

Minimum logic delay

$$t_{clk-q,min} + t_{logic,min} > t_{hold} + 2t_{JS} + \delta$$

(This assumes jitter at launching and receiving clocks are independent – which usually is not true)

Latch vs. Flip-flop

□ In a flip-flop based system:

- Data launches on one rising edge
 - And must arrive before next rising edge
- If data arrives late, system fails
 - If it arrives early, wasting time
- Flip-flops have hard edges

□ In a latch-based system:

- Data can pass through latch while it is transparent
- Long cycle of logic can borrow time into next cycle
 - As long as each loop finished in one cycle

Latch vs. Flip-flop Summary

- □ Flip-flops generally easier to use
 - Most digital ASICs designed with register-based timing
- □ But, latches (both pulsed and level-sensitive) allow more flexibility
 - And hence can potentially achieve higher performance
 - Latches can also be made more tolerant of clock un-certainty
 - More in EE241