IPT Summer Workshop Project Overview

2021 Summer Workshop Teams

December 2021

1 Introduction

In this project, the hardware and firmware required for the running of an RC car on a track using inductive power transfer (IPT) technology. The RC car used is the TAMIYA 1/10 TT-02 SUBARU IMPREZA MONTE CARLO '99 RC CAR.

2 Track

The track will have a length l and width w as shown in Figure 1.

Figure 1: Simplified sketch of track top view; blue dashed rectangle represents car.

For this project, the specifications are:

- l > 1000mm.
- w = 300 mm.
- Tolerance of car alignment¹: ± 50 mm.

3 System diagrams

Our design can be partitioned into three main sections:

- 1. The primary side.
- 2. The secondary (pick-up) side.
- 3. The motor driver.

¹This is the maximum deviation of the center of the car from the center line (red in Figure 1) of the track.

3.1 Primary side

Figure 2: System diagram for the primary side

Figure 2 outlines the hardware of our primary side. A DC voltage $30V \le V_{\text{IN}} \le 45V^2$ is used as the input. As we must have AC for IPT to work³, a **full-bridge inverter** (1) transforms the DC voltage to a high-frequency AC voltage. An **LCL** compensation network (2) with partial series compensation follows it. L_1 is the primary coil.

3.2 Secondary side

Unlike the primary, the secondary employs **parallel** compensation via the capacitor C_{st} . A rectifier followed by a voltage regulator (3) generates a DC voltage which is stepped up to V_{OUT} via a **boost converter** (4). V_{OUT} is optimally $10V^4$ but can drop as low as 4V depending on the alignment of the car with the center of the track.

Figure 3: System diagram for the secondary side

 L_2 is the secondary coil.

3.3 Motor driver

A pulse-width modulated (PWM) signal v_{PWM} used to drive the motor is produced via a full-bridge inverter (5)⁵. Depending on its duty cycle, the average power delivered to the motor will vary accordingly.

Figure 4: System diagram for the motor driver

²Duleepa recommends 30V as the benchtop power supply in the labs can be used to supply this voltage. The upper limit on $V_{\rm IN}$ ensures that it does not exceed about 48V above which we cannot operate them in the labs.

 $^{^{3}}$ As a changing current is required for a changing magnetic flux in the primary coil L_{1} , a DC current will not cause any changing flux and hence voltage induced in the secondary. Only AC will suffice.

⁴This is because the car's operating voltage is 10V. It can be operated down to 4V but it will have inferior performance.

 $^{^5{\}rm The}$ microcontroller and hence firmware play a major role in this.