

Klausur

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2024/2025

Prof. Dr.-Ing. Sebastian Schlesinger

Aufgabe 1 (Mengen und Funktionen)

(4 Punkte)

Gegeben seien die Mengen $A = \{a, \{a, b\}, c\}$ und $B = \{\{c\}, a\}$.

- (a) Geben Sie die Menge $A \cup B$ an.
- **(b)** Geben Sie die Menge $A \cap B$ an.
- (c) Geben Sie die Menge $A \setminus B$ an.
- (d) Geben Sie $\mathcal{P}(B)$ an.

Aufgabe 2 (Aussagen zu Mengen)

(10 Punkte)

Gegeben sei die Menge $A = \{1, 2, \{1\}, \{1, 2\}\}, \mathcal{P}(A)$ die Potenzmenge von A. Bewerten Sie die folgenden Aussagen (jeweils ja oder nein angeben).

- (a) $1 \in A$
- **(b)** $\{1\} \in A$
- **(c)** $\{1\} \subseteq A$
- (d) $\{\{1\}\}\in A$
- (e) $\{\{1\}\}\subseteq A$
- **(f)** $\{1\} \in \mathcal{P}(A)$
- (g) $\emptyset \in A$
- **(h)** $\emptyset \in \mathscr{P}(A)$
- (i) $\{\emptyset\} \in \mathscr{P}(A)$
- (j) $1 \in \mathcal{P}(A)$

Aufgabe 3 (Relationen)

(6 Punkte)

Gegeben seien die Relationen $R, S \subseteq \{a, b, c, d\} \times \{a, b, c, d\}$ mit $R = \{(a, b), (b, a), (b, b), (b, c), (d, b)\}$ und $S = \{(a, c), (a, d), (b, a), (c, b), (d, c)\}.$

- (a) Stellen Sie R und S als Graphen und Adjazenzmatrix dar.
- **(b)** Stellen Sie die Relation $R \circ S$ als Graphen dar.
- (c) Stellen Sie die Relation $S \circ R$ als Graphen dar.

(d) Zeichnen Sie jeweils für $(R \circ S)^*$ und $(S \circ R)^*$ die Hasse-Diagramme, sofern es Ordnungen sind. Hinweis: R^* bezeichnet die reflexiv-transitive Hülle einer Relation R.

Aufgabe 4 (Mengen und Relationen)

(8 Punkte)

Für die Menge $M = \{1, 2, 3\}$ seien folgende Relationen R_1, R_2, R_3 auf der Potenzmenge von M definiert (also $R_i \subseteq \mathcal{P}(M) \times \mathcal{P}(M)$ für $1 \le i \le 3$).

- 1. R₁: "hat die gleiche Anzahl von Elementen wie"
- **2.** R₂: "hat weniger Elemente als"
- 3. R₃: "hat kein Element gemeinsam mit"
- (a) Stellen Sie die Relationen R_1 , R_2 und R_3 dar (Format Ihrer Wahl).
- **(b)** Entscheiden Sie, welche Eigenschaften sie haben (einfach nennen, wenn es zutrifft): reflexiv, irreflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv.
- (c) Falls es Ordnungen sind, geben Sie die Relation an und zeichnen Sie die jeweiligen Hasse-Diagramme.
- (d) Falls es Äquivalenzrelationen sind, geben Sie die Relation an und geben für die Relation ein Beispiel für zwei äquivalente, also in Relation stehende Elemente an.

Aufgabe 5 (Mengenbeweis)

(5 Punkte)

Zeigen Sie, dass für beliebige Mengen A, B, X gilt:

$$X \setminus (A \cap B) = X \setminus A \cup X \setminus B$$

Formelsammlung

Hier eine kleine Formelsammlung. Sie ist nicht vollständig, enthält aber alle wichtigen Statements / Definitionen, die man brauchen könnte.

- 1. Aussagen- und Prädikatenlogik
 - a) Distributivgesetz: $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$
 - **b)** Distributivgesetz: $A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$
 - **c)** DeMorgan: $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
 - **d)** DeMorgan: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
 - e) Idempotenz: $A \wedge A \Leftrightarrow A$
 - **f)** Idempotenz: $A \lor A \Leftrightarrow A$
 - g) $A \wedge \neg A \Leftrightarrow \bot$
 - **h)** $A \vee \neg A \Leftrightarrow \top$
 - i) $\neg \neg A \Leftrightarrow A$
 - **j)** $\neg \forall x \in M : A(x) \Leftrightarrow \exists x \in M : \neg A(x)$
 - **k)** $\neg \exists x \in M : A(x) \Leftrightarrow \forall x \in M : \neg A(x)$
- 2. Mengen
 - a) Teilmenge: $A \subseteq B \Leftrightarrow \forall x \in A : x \in B$
 - **b)** Potenzmenge: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$
 - **c)** Vereinigung: $A \cup B = \{x \mid x \in A \lor x \in B\}$
 - **d)** Schnittmenge: $A \cap B = \{x \mid x \in A \land x \in B\}$
 - e) Differenzmenge: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
 - **f)** Distributivgesetz: $A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C)$
 - **g)** Distributivgesetz: $A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$
 - **h)** DeMorgan: $A \setminus (B \cup C) \Leftrightarrow (A \setminus B) \cap (A \setminus C)$
 - i) DeMorgan: $A \setminus (B \cap C) \Leftrightarrow (A \setminus B) \cup (A \setminus C)$
 - **j)** Es ist $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I : x \in A_i\}.$
 - **k)** Es ist $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I : x \in A_i\}$.
- 3. Relationen
 - a) Für Mengen M, N ist $R \subseteq M \times N$ eine Relation von M nach N.
 - **b)** $R \subseteq M \times M$ ist reflexiv, wenn $\forall x \in M : (x, x) \in R$.

- c) $R \subseteq M \times M$ ist symmetrisch, wenn $\forall x, y \in M : (x, y) \in R \Rightarrow (y, x) \in R$.
- **d)** $R \subseteq M \times M$ ist antisymmetrisch, wenn $\forall x, y \in M : (x, y) \in R \land (y, x) \in R \Rightarrow x = y$.
- e) $R \subseteq M \times M$ ist transitiv, wenn $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$.
- f) $R \subseteq M \times M$ ist eine Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.
- g) $R \subseteq M \times M$ ist eine Ordnungsrelation, wenn R reflexiv, antisymmetrisch und transitiv ist.
- h) Für eine Äquivalenzrelation \sim auf M ist $[x] = \{y \in M \mid x \sim y\}$ die Äquivalenzklasse von x, $M/\sim=\{[x]\mid x\in M\}$ die Menge der Äquivalenzklassen oder Quotientenmenge von M modulo \sim . Die Menge der Äquivalenzklassen ist eine Partition von M. Umgekehrt induziert jede Partition eine Äquivalenzrelation.
- i) Für eine Ordnungsrelation \leq auf M und $X \subseteq M$ ist g ein kleinstes Element von X, wenn $\forall x \in X$: $g \leq x$, g ein minimales Element von X, wenn $\forall g' \in X : g' \leq g \Rightarrow g = g'$, maximale und größte Elemente analog.
- j) Es ist R^* die reflexiv-transitive Hülle für eine Relation R.

4. Funktionen

- a) Eine Funktion $f: X \to Y$ ist eine Relation (also $f \subseteq X \times Y$), die jedem Element aus der Definitionsmenge X genau ein Element aus der Zielmenge Y zuordnet.
- **b)** f ist injektiv, wenn $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
- c) f ist surjektiv, wenn $\forall y \in Y : \exists x \in X : f(x) = y$.
- **d)** *f* ist bijektiv, wenn *f* injektiv und surjektiv ist.
- e) Die Umkehrfunktion f^{-1} ist definiert $f^{-1}(Y) = \{x \in X \mid \exists y \in Y : y = f(x)\}$