LUSHA WANG

9700 S Cass Ave, Bldg. 362, Lemont, IL 60439, USA

Post-doctoral Appointee, Energy System Division, Argonne National Laboratory

lusha.wang@anl.gov \diamond 509-592-1022 \diamond inlusha-wang

EDUCATION

Washington State University, Pullman, WA, USA

Aug.2017-Jan.2022

Ph.D. in Electrical Engineering, minor in Computer Science

GPA: 4/4

Advisor: Dr. Noel Schulz and Dr. Anamika Dubey

Thesis: Optimal Planning and Operation of Distribution Systems with Massive Electric Vehicles

Wuhan University, Wuhan, China

Sept.2012-Jun.2016

B.E in Electrical Engineering GPA: 3.4/4

WORK EXPERIENCE

Argonne National Lab, Illinois, United States

Feb.2022-Present

Post-doctoral Appointee

Argonne National Lab, Illinois, United States

May-Dec.2019, May-Aug.2020

Research Aide

Washington State University, Pullman, United States

Aug.2017-Jan.2022

Graduate Research Assistant

Virtue Intelligent Network Co., Ltd., Wuhan, China

Jul.2016-Jul.2017

Software Developer

RESEARCH PROJECTS

DOE OE: US-India Collaborative For Smart Distribution System with Storage 2017-2022

- · Conducted statistic analysis of real feeder data from Utility, including finding suitable probability density function for node degree, line length, commercial load and residential load.
- · Proposed and implemented a customized synthetic distribution test feeder generation tool using statistic information and ran simulations in OpenDSS and communicating with Mininet for cyber security.
- · Proposed a multi-time network clustering algorithm based on Louvain algorithm for distribution systems with PVs and EVs.
- · Proposed a MPC-based decentralized voltage control method using PV inverters and EV flexibility.

ANL: Laboratory Directed Research and Development

May-Dec.2019, May-Aug.2020

- · Proposed an EV charging station planning method to minimize the impact of EV charging on distribution system hosting capacity.
- \cdot Modeled power distribution system operation and expansion strategies in a two-stage model considering load and EV demand uncertainty.
- · Proposed a two-step TSO-DSO coordination method to evaluate EV flexibility capacity and implemented on IEEE 123 node test feeder with EV demand from POLARIS simulations.
- · Conducted sensitivity analysis of different distribution services (congestion management, voltage control, voltage imbalance) and extra flexibility from control devices (voltage regulator, capacitor banks).

DOE VTO: Assessing Vehicle Technologies Office Benefits in a Transportation Energy Ecosystem 2021-2022

- · Modeled transmission network in Atlanta-Chattanooga area and generating time-series profiles for load, generation and DER using realistic data.
- · Reduced the large-scale transmission model to a 120-node network to improve computation.
- · Economic dispatch simulations with different EV penetration levels and compare electricity prices under different scenarios.

DOE VTO: Demonstration of Utility Managed Smart Charging for Multiple Benefit Streams 2022-Present

- · Developing Cyme-OpenDSS conversion tool to model real distribution networks in OpenDSS.
- · Coordinating with ANL ATEAM to analyze the impact of predicted new EV charging infrastructure on power grid.
- · Conducting impact analysis of EV penetration on transmission-distribution co-simulation environment.

DOE OE: Dynamic Security Enhancement Platform of Converter Interfaced Resource Rich Power Grids using a Power Grid and Protection Co-model 2023-Present

· Literature review on ML-based techniques in distribution system protection.

RESEARCH PROPOSALS

DOE VTO: Tackling Fleet Electrification Economic Barriers Utilizing Grid Opportunities (FLEET-GO)

Full proposal under review ANL PI

PUBLICATIONS

Journals

- · Lusha Wang, Anamika Dubey, Assefaw Gebremedhin, Anurag Srivastava, Noel Schulz, "MPC-Based Decentralized Voltage Control in Power Distribution Systems with EV and PV Coordination." *IEEE Transactions on Smart Grid*, 13.4 (2022): 2908-2919.
- · Lusha Wang, Jonghwan Kwon, Noel Schulz, Zhi Zhou, "Evaluation of Aggregated EV Flexibility With TSO-DSO Coordination." *IEEE Transactions on Sustainable Energy*, 13.4 (2022): 2304-2315.
- · Lusha Wang, James Halvorsen, Sanjeev Pannala, Anurag Srivastava, Assefaw Gebremedhin, Noel Schulz, "CPSyNet: A tool for generating customised cyberpower synthetic network for distribution systems with distributed energy resources." *IET Smart Grid* (2022).
- · Shixin Liu, **Lusha Wang**, Jian Hu, Zhi Zhou, "A Two-Stage Charging Station Allocation Model for EV Taxi Fleet Considering Interdependence Between the Networks of Transportation and Power Distribution" (under second-round review of *IEEE Transactions on Power Systems*).
- · Lusha Wang, Bo Chen, Yanzhu Ye, Tianqi Hong, "Distribution System Restoration with the Integration of Crew Dispatch, Renewable Energy and Electric Vehicles" (submitted to *IEEE Transactions on Smart Grid*).
- · Rabia Khan, **Lusha Wang**, Sanjeev Pannala, Anurag K Srivastava, Noel N Schulz, "DER-rich Electric Distribution Feeder Models: Limitations, Challenges, and Path-Forward" (submitted to *IEEE Access*).
- · Lusha Wang, Anamika Dubey, "Three-phase Branch Flow Model and Optimization for Mesh Distribution System" (under preparation).

Conferences

Lusha Wang, Jonghwan Kwon, Omer Verbas, Aymeric Rousseau and Zhi Zhou, "Charging Station Planning to Maximize Extra Load Hosting Capacity in Unbalanced Distribution System," **2020 IEEE Power & Energy Society General Meeting (PESGM)**, 2020, pp. 1-5.

AWARDS

IEEE PES Grid Edge Technologies 3-Minute Ph.D. Dissertation Challenge Finalist

iREDEFINE Professional Development Award

Awarded to 12 PhD students and Post-doc in the US and Canada selected by ECE department chairs

SERVICE

Journal Reviewer

· IEEE Transactions on Power Systems, IEEE Transactions on Smart Grid, Renewable Power Generation

Mentoring

· Mentored an African American female graduate student intern in ANL

COMPUTER SKILLS

- · Power distribution system simulation using OpenDSS, GridLAB-D
- · Model-based optimization and ML-based algorithms using Python, C++