INF 331 - Prova 2

Sejam $M_1=(Q_1,\Sigma_1,\delta_1,q_1,F_1)$ e $M_2=(Q_2,\Sigma_2,\delta_2,q_2,F_2)$ dois autômatos finitos determinísticos. Para construir um autômato $M_3=(Q_3,\Sigma_3,\delta_3,q_3,F_3)$ que aceite a linguagem $L(M_1)\cap L(M_2)$, pode-se seguir os seguintes passos:

- $Q_3 = Q_1 \times Q_2$, isto é, os estados de M_3 são formados por pares de estados, sendo o primeiro componente de Q_1 , e o segundo componente de Q_2 .
- $\bullet \qquad \Sigma_3 = \Sigma_1 \cup \Sigma_2$
- $q_3 = [q_1, q_2]$, isto é, o estado inicial de M_3 é formado por um par onde o primeiro componente é o estado inicial de M_1 e o segundo componente é o estado inicial de M_2 .
- $F_3 = F_1 \times F_2$, isto é, os estados finais são os pares de estados que são finais em M_1 e M_2 .
- $\delta_3([r,s],a) = [\delta_1(r,a), \delta_2(s,a)]$, para $r \in Q_1, s \in Q_2, a \in \Sigma_3$; se $\delta_1(r,a)$ ou $\delta_2(s,a)$ forem indefinidos, então $\delta_3([r,s],a)$ também é indefinido.

Por exemplo, considere os autômatos finitos M_1 e M_2 abaixo:

Um autômato M_3 , que aceita uma linguagem que é a interseção entre $L(M_1)$ e $L(M_2)$, começou a ser construído abaixo:

- O estado inicial é [1,3], par formado pelos estados iniciais de M₁ e M₂.
- [1,3] é final porque 1 e 3 são ambos finais.
- $\delta_3([1,3],a) = [\delta_1(1,a),\delta_2(3,a)] = [2,3]$
- (A) Escreva expressões regulares que descrevem a linguagem $L(M_1)$ e a linguagem $L(M_2)$.
- (B) Descreva, em português, como são as palavras das linguagens $L(M_1)$ e $L(M_2)$.
- (C) Utilize o algoritmo apresentado acima para terminar a construção do autômato $\,M_{\,3}\,.$
- (D) Escreva uma expressão regular que descreve a linguagem $L(M_3)$.
- (E) Escreva uma gramática regular que descreve a linguagem $L(M_3)$.
- (F) Usando transições λ , construa um autômato M_4 que aceita a linguagem $L(M_1) \cup L(M_2)$.
- (G) Construa um autômato determinístico $\,M_{\,5}\,$ equivalente a $\,M_{\,4}\,.$
- (H) Construa um autômato de pilha que aceita a linguagem $a^x b^y c^z$ tal que z = /x y/ (o valor de z é o módulo da diferença entre x e y). Exemplos de palavras que devem ser aceitas: aaabcc, aaaccc, abbbcc, bbbccc.

Pontuação: (A) = 4 pontos; (B) = 2 pontos; (C) = 7 pontos; (D) = 5 pontos; (E) = 5 pontos; (F) = 2 pontos; (G) = 7 pontos; (H) = 8 pontos