Simetría: partículas como representaciones del grupo de Poincaré

Iván Mauricio Burbano Aldana

Universidad de los Andes

11 de diciembre de 2017

Tabla de Contenidos

Transformaciones de Lorentz

Grupos de Simetría en Mecánica Cuántica

3 Representaciones irreducibles del grupo de Poincaré

Espaciotiempo

Un espaciotiempo relativista es [Matolcsi, 1993] un par (M,g) donde:

- M es un espacio afín de 4 dimensiones modelado en un espacio vectorial M;
- $g: \mathbf{M} \times \mathbf{M} \to I \otimes I$ es una forma de Lorentz.

Espaciotiempo aritmético

Ejemplo

 (\mathbb{R}^4, η) donde $\eta : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$ en la base canónica

$$\eta_{ab} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}_{ab}$$
(1)

Todo espaciotiempo es isomorfo a este pero no de manera canónica!

Grupo de Poincaré \mathcal{P}

Transformaciones $\mathbb{R}^4 \to \mathbb{R}^4$ que preservan la estructura espacio tiempo. Entonces deben ser:

afines

$$\mathbb{R}^{4} \times \mathsf{Hom}(\mathbb{R}^{4}, \mathbb{R}^{4}) \ni (a, \Lambda) : \mathbb{R}^{4} \to \mathbb{R}^{4}$$

$$p \mapsto \Lambda p + a;$$
(2)

• ortogonales ($\Lambda \in \mathcal{L}$ el grupo de Lorentz)

$$\eta(u,v) = \eta(\Lambda u, \Lambda v). \tag{3}$$

Como $\mathcal L$ actúa de manera natural sobre $\mathbb R^4$ la estructura de grupo es la de producto semidirecto

$$\mathcal{P} = \mathbb{R}^4 \rtimes \mathcal{L}$$

$$(a, \Lambda)(a', \Lambda') = (a + \Lambda a', \Lambda \Lambda')$$
(4)

Transformaciones ortocronas propias

Podemos clasificar a las transformaciones de Lorentz por [Scheck, 2010]

Componente conexa	det Λ	Λ_0^0
\mathcal{L}_+^{\uparrow}	1	≥ 1
$\mathcal{L}_+^{\downarrow} = PT\mathcal{L}_+^{\uparrow}$	1	≤ -1
$\mathcal{L}_{-}^{\uparrow}=\mathcal{P}\mathcal{L}_{+}^{\uparrow}$	-1	≥ 1
$\mathcal{L}_{-}^{\downarrow}=\mathcal{T}\mathcal{L}_{+}^{\uparrow}$	-1	≤ -1

Como se vio en clase, el análisis de P y T debe hacerse con cuidado. Nos restringimos al grupo de Lorentz ortocrono propio \mathcal{L}_+^{\uparrow} y al grupo de Poincaré correspondiente $\mathcal{P}_+^{\uparrow} = \mathbb{R}^4 \rtimes \mathcal{L}_+^{\uparrow}$.

Recubridor Universal

$$\Phi: \mathbb{R}^4 \to \mathsf{Hom}(\mathbb{C}^2, \mathbb{C}^2)_s \\ v^{\alpha} e_{\alpha} \mapsto v^{\alpha} \sigma_{\alpha}$$
 (5)

$$\eta(u,u) = \det(\Phi(u))$$
 (6)

$$\Lambda: \mathsf{SL}(\mathbb{C}^2) \to \mathcal{L}_{\uparrow}^+ \quad (7)$$

Figura: Se muestra como \mathbb{R} es el recubridor universal de S^1 .

Simetrías en mecánica cuántica

- Estados puros y observables básicos: Proyecciones ρ_{ψ} sobre el subespacio generado por $\psi \in \mathcal{H}$
- Probabilidad de transición de ho_ϕ a ho_ψ es $\operatorname{tr}(
 ho_\psi
 ho_\phi) = \frac{|\langle \phi, \psi \rangle|^2}{\|\phi\|^2 \|\psi\|^2}$
- Las simetrías de un sistema están representadas por grupos G que actuan sobre el espacio de estados mediante una representación T tal que se preservan estas probabilidades, es decir, para todo $g \in G$

$$\operatorname{tr}(T(g)(\rho_{\psi})T(g)(\rho_{\phi})) = \operatorname{tr}(\rho_{\psi}\rho_{\phi}). \tag{8}$$

Importancia del recubridor fundamental

- ¡Es difícil trabajar con esta clase de mapas! Sería mejor poder trabajar con mapas entre vectores
- Para cierto grupos G, como el de Poincaré, se puede demostrar que cualquier representación como la descrita arriba viene de una representación unitaria $U: \tilde{G} \to U(\mathcal{H})$ del recubridor universal \tilde{G} .
- Solo tenemos que hallar representaciones unitarias de $\mathbb{R}^4 \rtimes SL(\mathbb{C}^2)$.

Rol de la energía-momento

Como tenemos representaciones unitarias, existe, operadores autoadjuntos P_a que generan traslaciones

$$U(a, \mathrm{id}_{\mathbb{C}^2}) = e^{ia^b P_b}. \tag{9}$$

Como las traslaciones conmutan, los generadores deben conmutar también. Además, transforman como cuadrivectores

$$U(0,\alpha)^{-1}P^{a}U(0,\alpha) = \Lambda(\alpha)^{a}_{b}P^{b}. \tag{10}$$

Entonces adquieren la interpretación de los operadores de energía momento. Las representaciones irreducibles van a estar etiquetadas por los subespacios propios que corresponden a p y que podemos conectar mediante \mathcal{P}_+^+ .

Programa

El esquema general va a ser[Sternberg, 1994]

- hallar las orbitas de la acción de $SL(\mathbb{C}^2)$;
- hallar el grupo de isotropía de un punto en cada órbita;
- entontrar las representaciones irreducibles de este.

Orbitas de la acción de $SL(\mathbb{C}^2)$

[Haag, 1992]

clase	órbita
m_+	$\eta(p,p)=m^2 \text{ y } p^0>0$
0_{+}	$\eta(\pmb{ ho},\pmb{ ho})=0$ y $\pmb{ ho}^0\geq 0$
00	p = 0
κ	$\eta(p,p) = -\kappa^2$
m_{-}	$\eta(p,p)=m^2 \text{ y } p^0<0$
0_	$\eta(p,p)=0$ y $p^0\leq 0$

Estudio de *m*₊

Veamos el ejemplo de m_+ y como nos podemos mover a través de ella. Escoja $\overline{p}=(m,0,0,0)$ y defina para todo p tal que $\eta(p,p)=m^2$ y $p^0>0$

$$\beta(p) = \left(\frac{E_p \operatorname{id}_{\mathbb{C}^2} + \sum_{\mu=1}^3 p^{\mu} \sigma_{\mu}}{m}\right)^{1/2}$$
(11)

con
$$E_p = \sqrt{\sum_{\mu=1}^3 (p^\mu)^2 + m^2} = p^0$$
. Luego

$$\Lambda(\beta(p))\overline{p} = p. \tag{12}$$

Grupo de isotropía

El grupo de isotropía de \overline{p} satisface

$$\overline{p} = \Lambda(\alpha)(\overline{p}) = \Phi^{-1}(\alpha\Phi(\overline{p})\alpha^*) = \Phi^{-1}(m\alpha\alpha^*) = m\Phi^{-1}(\alpha\alpha^*).$$
 (13)

Concluimos que el grupo de isotropía es $SU(\mathbb{C}^2)$ el recubridor universal de $SO(\mathbb{R}^3)$.

Clasificación en irreducibles

Sabemos que las representaciones irreducibles de $SU(\mathbb{C}^2)$ están etiquetadas por espín $s \in \mathbb{N}/2$ [Hall, 2013]. Luego las representaciones irreducibles de \mathcal{P}_{\uparrow}^+ están etiquetadas por una masa $m \in \mathbb{R}^+$ y espín $s \in \mathbb{N}/2$.

Referencias

Haag, R. (1992).

Local Quantum Physics: Fields, Particles, Algebras.

Springer, 2nd edition.

Hall, B. C. (2013).

Quantum Theory for Mathematicians.

Springer.

Matolcsi, T. (1993).

Spacetime Without Reference Frames.

Akadémiai Kiadó, Budapest.

Scheck, F. (2010).

Mechanics: From Newton's Laws to Deterministic Chaos.

Springer, 5th edition.

Sternberg, S. (1994).

Group Theory and Physics.

Cambridge University Press.