Numerical Algorithms

Jingke Li

Portland State University

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

1 / 28

Basic Numerical Algorithms

- ► Dense-Matrix Algorithms:
 - ► Matrix-vector multiplication
 - ► Matrix-matrix multiplication
 - ► Gaussian elimination
- ► Sparse-Matrix Algorithms:
 - ► Jacobi relaxation
 - Gauss-Seidel
 - ► Multi-grid method

For all these algorithms, parallelizing them to run on a shared-memory system is trivial. They all have easily-parallelizable loops.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

0 / 00

Matrix-Vector Multiplication

Compute y = Ax (A is an $n \times n$ matrix, x, y are $n \times 1$ vectors)

Sequential Algorithm:

```
void matrix_vector(int n, double a[n][n], double x[n], double y[n]) {
  int i, j;
  for (i = 0; i < n; i++) {
    y[i] = 0;
    for (j = 0; j < n; j++)
        y[i] += a[i][j] * x[j];
    }
}</pre>
```

Complexity: $T = O(n^2)$

Parallelization (for Distributed-Memory Systems):

▶ Need to decide partition and communication.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

3 / 28

Distributed-Memory Matrix-Vector Multiplication

▶ 1D Partition (row-wise):

Complexity: $T_p \approx \frac{n^2}{p} + t_s \log p + t_w n$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Distributed-Memory Matrix-Vector Multiplication (cont.)

▶ 2D Partition:

Complexity: $T_p \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Matrix-Matrix Multiplication

Compute C = AB $(A, B, C \text{ are } n \times n \text{ dense matrices})$

Sequential Algorithm:

```
void matrix_mult(int n, double a[n][n], double b[n][n], double c[n][n]) {
  int i, j, k;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      c[i][j] = 0;
      for (k = 0; k < n; k++)
      c[i][j] += a[i][k] * b[k][j];
    }
}</pre>
```

Complexity: $T = O(n^3)$ (Best is $O(n^{2.8})$ — Strassen's Algorithm)

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

6 / 28

Distributed-Memory Matrix-Matrix Multiplication

Partition Choices:

- Communication Choices:
 - A single broadcast The needed data is broadcast to all destinations once for all.
 - A single step, but needs a lot of buffer storage.
 - Multiple shifts The needed data is shifted towards its destination one step at a time.
 - Only local communication and very little buffer space, but takes multiple steps for data to reach destination.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

A Simple 2D Matrix-Mult Algorithm

- Processors are arranged in a logical $\sqrt{p} \times \sqrt{p}$ 2D topology.
- ► Each processor gets a block of $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ block of A, B, & C.
- ▶ Perform all-to-all broadcasts within processor rows for A's blocks
- ▶ Take \sqrt{p} iterations of the following steps:
 - 1. Multiply A's block with B's block to form C's block.
 - 2. Shift B's blocks within processor columns.

Complexity: $T_p \approx \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}$

Cannon's Matrix-Mult Algorithm

Memory efficient variant of the simple algorithm.

Key Idea: Replace the standard loop

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} \times B_{k,j}$$

with a skewed loop

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k) \bmod \sqrt{p}} \times B_{(i+j+k) \bmod \sqrt{p},j}$$

Communication: Multiple shifts for both arrays A and B.

Complexity: $T_p \approx \frac{n^3}{p} + 2t_s\sqrt{p} + 2t_w\frac{n^2}{\sqrt{p}}$

Jingke Li (Portland State University) CS 415/515 Numerical Algorithms

Cannon's Matrix-Mult Algorithm (cont.)

Initial Skewing of A and B:

A_{00}	A_{01}	A_{02}	A_{03}	В 00	В 11	B 22	B 33
A 11	A 12	A ₁₃	A 10	В 10	B 21	B 32	В 03
,		,	A_{21}	B 20	B 31	В 02	B 13
A 33	A 30	A_{31}	A 32	В 30	B_{01}	B 12	B 23

Iterations:

- Multiply A and B blocks.
- Shift A blocks towards left.
- Shift B blocks upwards.

$A_{0,0}$ $A_{0,1}$ $A_{0,2}$ $A_{0,3}$ $B_{0,9}$ $B_{3,1}$ $B_{3,2}$ $A_{3,1}$ $A_{3,2}$ $A_{3,3}$ $A_{3,2}$ $A_{3,3}$ $A_{3,2}$ $A_{3,3}$ $A_{3,4}$ $A_{3,5}$ A_{3		$B_{0,0}=B_{0,1} \ , B_{0,2} \ ,$
$A_{1,0}$ $A_{1,1}$ $A_{2,2}$ $A_{2,3}$ A_{2		
		B _{1,0} B _{1,1} B _{1,2}
	20 A ₂₃ A ₂₂ A ₂₃	B _{2.9} B _{2.1 A} B _{2.2}
3.0 A _{3.1} A _{3.2} A _{3.3} B _{3.0} B _{3.1} B _{3.2}		$B_{3,0}$ $B_{3,1}$ $B_{3,2}$

	4	,		,	(0) 0000			
4	A _{0,2} = B _{2,0}	A _{0,1} ~	A _{0,0} = B _{0,2}	A _{0,1} = B _{1,5}	$A_{0,3}$ $B_{3,0}$	A _{0,0} B _{0,1}	A _{0,1} B _{1,2}	A _{8,2} B _{2,3}
4	A _{1,3} ~	A _{1,0} ~	A _{1,1} ~ B _{1,2}	A _{1,2} ~ B _{2,3}	A _{1,0} B _{0,0}	A _{1,1} B _{1,1}	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}
Y	A _{2,0} ~	A _{2,1} ~	A _{2,2} * B _{2,2}	A _{2,3} ~	$A_{2,1}$ $B_{1,0}$	A _{2,2} B _{2,1}	A _{2,3} B _{3,2}	A _{2,0} B _{0,1}
4	A _{3,1} ~ B _{1,0}	A _{3,2} = B _{3,1}	A _{3,3} ~ B ₁ ,	A _{3,0} ~	A _{3,2} B _{2,0}	A _{3,3} B _{3,1}	A _{3,0} B _{0.2}	A _{3,1} B _{1,1}

CS 415/515 Numerical Algorithms

Gaussian Elimination

A well-known algorithm for solving a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Idea:

- First reduce Ax = b to an upper triangular system Tx = c.
- ▶ Then use back substitution to solve for x.

The two needed operations are:

- ▶ Interchange any two rows (this simply reorders the *n* equations).
- ▶ Replace any row by a linear combination of itself and another row.

Gaussian Elimination Example

► The initial linear system:

2.0 x1 5.0 x1 1.0 x1	+	1.0	x2	+	3.0	x3	+	4.0	x4	=	29.0
5.0 x1	+	2.0	x2	+	0.0	xЗ	+	1.0	x4	=	13.0
1.0 x1	+	0.0	x2	+	0.0	xЗ	+	1.0	x4	=	5.0
3.0 x1	+	1.0	x2	+	1.0	xЗ	+	0.0	x4	=	8.0

Matrix form and triangulating:

2.0 1.0 3.0 4.0 29.0		2.0	1.0	3.0	4.0	29.0
0.0 -0.5 -7.5 -9.0 -59.5	_ ⇒	0.0	-0.5	-7.5	-9.0	-59.5 50.0
0.0 -0.5 -1.5 -1.0 -9.5		0.0	0.0	6.0	8.0	50.0
0.0 -0.5 -3.5 -6.0 -35.5		0.0	0.0	0.0	-2.3	-9.3

CS 415/515 Numerical Algorithms

► Back to linear system form:

```
2.0 x1 + 1.0 x2 + 3.0 x3 + 4.0 x4 = 29.0

- 0.5 x2 - 7.5 x3 - 9.0 x4 = -59.5

6.0 x3 + 8.0 x4 = 50.0

-2.3 x4 = -9.3
```

▶ Use back-substitution to solve: x1=1, x2=2, x3=3, x4=4

Jingke Li (Portland State University)

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Naive Gaussian Elimination

```
void gaussian_naive(int n, double a[n][n], double b[n], double x[n]) {
  int i, j, k;
  for (k = 0; k < n; k++) {
    for (j = k+1; j < n; j++) {
      a[k][j] = a[k][j] / a[k][k];
    }
    x[k] = b[k] / a[k][k];
  for (i = k+1; i < n; i++) {
    for (j = k+1; j < n; j++) {
      a[i][j] = a[i][k] * a[k][j];
    }
  b[i] = a[i][k] * x[k];
    a[i][k] = 0;
  }
}</pre>
```

Complexity: $T = O(n^3)$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

13 / 28

Gaussian Elimination with Partial-Pivoting

The naive GE algorithm runs into trouble when a pivot element is zero. (In fact, it runs into trouble whenever a pivot element is "small.")

Partial-Pivoting — Search the column below the diagonal and find the largest element in absolute magnitude; perform row interchange to bring this element to the diagonal.

Example:

Initial:					=>	Pivoti	ng:					
2.0 1	.0	3.0	4.0	29.0		5.0	2.0	0.0	1.0	13.0		
1.0 0	.0	0.0	1.0	5.0		1.0	0.0	0.0	1.0	5.0		
3.0 1	.0	1.0	0.0	8.0		3.0	1.0	1.0	0.0	8.0		
5.0 2	.0	0.0	1.0	13.0		2.0	1.0	3.0	4.0	29.0		
=> Elimin	nat:	ion:			=>							
5.0 2	. 0	0.0	1.0	13.0								
0.0 -0	. 4	0.0	0.8	2.4		Contin	ue fo	r oth	er co	lumns		
0.0 -0	. 2	1.0	-0.6	0.2								
0.0 0	. 2	3.0	3.6	23.8								
Jingke Li (Portlar	nd Sta	ate Unive	ersity)	CS 4	15/5	15 Numerica	I Algoriti	nms				15 / 28

Parallel GE with 1-D Partitioning

Parallel GE with 1-D Partitioning

- ► Assign one row to each process.
- ▶ Execute the outer loop sequentially.
- ▶ At iteration k+1, process P_k either broadcast or shift its row to processes P_{k+1}, \ldots, P_{n-1} .
- ► Each process performs local computation.

Complexity:

$$T_{p} = \frac{3}{2}n(n-1) + t_{s}n\log n + \frac{1}{2}t_{w}n(n-1)\log n$$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Improvements

Jingke Li (Portland State University)

Problems with the Simple Algorithm — The partition is fine-grained, and towards the end, the active region of the matrix is shrinking towards lower right corner; implies that processes fall idle.

CS 415/515 Numerical Algorithms

Solutions: block and cyclic partitions.

_	1.	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_0	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P	0	0	0	(3,3)	(3.4)	(3,5)	(3.6)	(3.7
	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7
P_2	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5.7
	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7
P_3	0	0	0	(7.3)	(7.4)	(7.5)	(7,6)	(7.7)

(a) Block 1-D mapping

(b) Cyclic 1-D mapping

Jingke Li (Portland State University)

17 / 28

CS 415/515 Numerical Algorithms

18 / 2

Parallel GE with Partial-Pivoting

- ▶ Distribute the matrix as complete rows; each process stores approximately n/p rows of the matrix.
- ▶ Processes collectively decide on which two rows need to be swapped to do the partial pivoting.
- ► Two processes do a send/recv to each other to do the swap. (Alternatively, we can keep track of which row is which through an indirection array.)
- ▶ The pivot row is broadcast to all processes.
- In each process, we loop over those rows below the pivot row and apply the elimination step (an saxby() operation).
- ▶ Repeat until we hit bottom.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

19 / 28

Parallel GE with 2-D Partitioning

Each processor gets a 2D block of the matrix.

- ▶ Broadcast the "active" column along the rows.
- ► Prepare the pivot row concurrently.
- ► Broadcast the pivot row along the columns.
- ▶ Perform the elimination step concurrently.

1	(0.1)	(0,2)	(0.3)	(0,4)	(0.5)	(0,6)	(0.7)
0	1	(1.2)	(1.3)	(1,4)	(1.5)	(1.6)	(1.7)
0	0	1	(2.3)	(2,4)	(2.5)	(2.6)	(2.7)
0	0	0	(3.3)	(3.4)	(3.5)	(3.6)	(3.7)
0	0	0	(4.3)	(4.4)	(4.5)	(4.6)	(4.7)
0	0	0	(5.3)	(5.4)	(5.5)	(5.6)	(5.7)
0	0	0	(6.3)	(6,4)	(6.5)	(6,6)	(6.7)
0	0	0	\$12.39	(7.4)	(2.5)	(2.6)	(7.7)

(a) Rowwise broadcast of A[i,k]

1	(0.1)	(0,2)	(0,3)	(0.4)	(0.5)	(0,6)	(0.7)
0	1	(1.2)	(1.3)	(1.4)	(1.5)	(1.6)	(1.7)
0	0	1	(2.3)	(2.4)	(2.5)	(2.6)	(2.7
0	0	0	1	(3,4)	(3.5)	(3.6)	(3.7
0	0	0	(4,3)	(4.4)	(4.5)	(4.6)	(4.7)
0	0	0	(5.3)	(5.4)	(5.5)	(5.6)	(5,7
0	0	0	(6,3)	(6,4)	(6.5)	(6,6)	(6.7
0	0	0	(7.3)	(7.4)	(7.5)	(7,6)	(7,7

(c) Columnwise broadcast of A[k,j] for k ≤ i ≤ n

1	(0.1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0
0.	1	(1,2)	(1,3)	(1.4)	(1.5)	(1.6)	a
0	0.	1	(2,3)	(2,4)	(2,5)	(2.6)	(2
0	0	0	(3.3)	(3.4)	(3.5)	(3.6)	0
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4
0	0	0	(5,3)	(5.4)	(5.5)	(5.6)	(5
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6
0	0	0	(7.3)	(7.4)	(7.5)	(7.6)	(7

(b) A[k,j] := A[k,j]/A[k,k]

1	(0.1)	(0,2)	(0,3)	(0,4)	(0.5)	(0,6)	(0.7)
0	1	(1.2)	(1.3)	(1.4)	(1.5)	(1,6)	(1.7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2.7)
0	0	0	T	(3.4)	(3.5)	(3.6)	(3.7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5.7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7.3)	(7.4)	(7.5)	(7.6)	(7.7)

(d) A[i,j] := A[i,j]-A[i,k] × A[k,j] for k < i < n and k < i < n

CS 415/515 Numerical Algorithms

Block and Cyclic 2-D Partitions

(0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) 0 1 (1,2)(1,3)(1,4)(1,5)(1,6)(1,7) 0 0 1 (3,4)(3,5)(3,6)(3,7 0 0 0 (5,3)(5,4)(5,5)(5,6)(5,7 0 0 (7,3)(7,4)(7,5)(7,6)(7,

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7
0	1	(1,2)	(1,3)	(1.4)	(1,5)	(1,6)	(1.7
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7
0	0	0	(3.3)	(3.4)	(3.5)	(3,6)	(3.7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7
0	.0	0	(6,3)	(6,4)	(6.5)	(6,6)	(6,7
0	0	0	(7,3)	(7.4)	(7.5)	(7,6)	0.7

0 (4,4) 0 (4,5) 0 (4,6) (4,3) (4,7 0 (5.4) 0 (5.5) 0 (5.6) (5.3) (5.7

(a) Block-checkerboard mapping

CS 415/515 Numerical Algorith

Solving Large, Sparse Linear Systems

Large sparse matrices often appear in scientific or engineering applications when solving partial differential equations. As an example, consider the Laplace Equation:

$$\phi_{i,j} = \frac{1}{4} (\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1}), \quad 0 < i, j < n$$

It describes a computation over an n imes n mesh. $\phi_{i,j}$ deotes the value at the mesh point [i, j].

- The value at point [i, j] is related to the values of its four neighbors.
- The values at the four boarder lines are typically fixed.

Jingke Li (Portland State University) CS 415/515 Numerical Algorithms

Solving the Laplace Equation

The Laplace Equation is a linear system with n^2 unknowns. It can be turned into the standard Ax = b form:

Let $I = i \cdot n + j$, then the system becomes:

$$\phi_{I+n} + \phi_{I-n} + \phi_{I+1} + \phi_{I-1} - 4\phi_I = 0, \quad 0 < I < n^2$$

which can also be expressed in matrix form:

- -4 1 0 0 ... 1 0 ... 1 -4 1 0 ... 0 1 ... 0 1 -4 1 ... 0 0 ... 0 0 1 -4
- The matrix is very large, yet sparse.
- It can be solved by using Gaussian Elimination, but the cost would be very high: $O(n^6)$.

A better approach is to directly solve the system over the original $n \times n$ mesh domain

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Jacobi Relaxation Algorithm

It is an iterative algorithm:

▶ Cycle through the mesh points, compute a new value for each point using the average of the four-neighboring "old" values.

$$\phi_{i,j}^{(t+1)} = \frac{1}{4}(\phi_{i+1,j}^{(t)} + \phi_{i-1,j}^{(t)} + \phi_{i,j+1}^{(t)} + \phi_{i,j-1}^{(t)}), \quad \ 0 < i,j < \textit{N}$$

- ▶ Once all the new values are found, replace old values with new ones.
- Repeat until the difference between old and new is small enough.

Parallelization:

For the distributed-memory case, simply partition the mesh in both dimensions; each processor will handle a $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ sub-mesh. Communications are only required on the "peripheral" of the mesh region in each processor.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Jacobi Relaxation Algorithm (cont.)

```
int jacobi(int n, double x[n][n], double epsilon) {
   double xnew[n][n], delta;
  int i, j, cnt = 0;
     cnt++;
     delta = 0.0;
    delta = 0.0;
for (i = 1; i < n-1; i++) {
  for (j = 1; j < n-1; j++) {
    xnew[i][j] = (x[i-1][j] + x[i][j-1]
    ...-[::1][i] + x[i][j-1]</pre>
           + x[i+1][j] + x[i][j+1]) / 4.0;
delta = fmax(delta, fabs(xnew[i][j] - x[i][j]));
     for (i = 1; i < n-1; i++) {
  for (j = 1; j < n-1; j++) {
    x[i][j] = xnew[i][j];</pre>
 } while (delta > epsilon);
  return cnt;
```

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

Gauss-Seidel Algorithm

While simple, the Jacobi relaxation algorithm has two drawbacks, (1) It needs buffers to store old mesh point values; and (2) Its convergence speed can be slow.

Gauss-Seidel algorithm is an improvement over the Jacobi algorithm. It's like Jacobi, except that mesh points are updated "in-place," overwriting

The order of mesh point updates does not really matter. Here are two possible orders:

▶ Gauss-Seidel algorithm does not need buffers and has a better convergence speed (since newer values are used in all updates).

 ${\it Observations} - {\it Iterative algorithms converge to solutions faster on}$

the initial approx. of the values of the variables are good.

coarser grids than on finer grids. Iterative algorithms converge quicker if

▶ Begin with the original problem, where the solution is defined (and desired)

Jingke Li (Portland State University)

Multi-Grid Methods

on an $n \times n$ mesh.

Algorithm:

CS 415/515 Numerical Algorithms

Parallelizing Gauss-Seidel

Due to the "in-place" updates, race condition may happen among multiple reads and a single write to the same memory location. But this is not really a problem for an iterative algorithm — using an old value vs. using a new value affects only the convergency rate.

The following are the common parallel approaches:

- ▶ Natural index ordering (allow race condition)
- ▶ Red-black ordering (avoid race condition)
 - Denote alternating points as "red" and "black".
 - Repeat following two steps until convergence:
 - . update all red points (in any order)
 - . update all black points (in any order)
- ▶ Wavefront ordering (avoid race condition)
 - Proceed along diagonal line.
 - Repeat until success.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

r b r b

1 2 3 4 3 4 5

4 5

▶ (*Relaxation*) Solve the coarse version problem using any iterative solver. It should go fast since the mesh is small.

• (*Projection*) Coarsen the problem by several powers of 2: $n \to n/2^m$.

Boundary values need to be averaged down to the coarser mesh.

- ▶ (Interpolation) Boost up the problem by a factor of 2, interpolating field points. What was one mesh point turns into 4 mesh points.
- Re-run relaxation on this problem.
- ▶ Repeat *Relaxation/Interpolation* steps until back to original problem.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms