Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

Image Processing and Filtering (continued)

Lecture #6

Images are Discrete and Finite

Convolution

$$g(i,j) = \sum_{m=1}^{M} \sum_{n=1}^{N} f(m,n)h(i-m,j-n)$$

Fourier Transform

$$F(u,v) = \sum_{m=1}^{M} \sum_{n=1}^{N} f(m,n) e^{-i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

Inverse Fourier Transform

$$f(k,l) = \frac{1}{MN} \sum_{u=1}^{M} \sum_{v=1}^{N} F(u,v) e^{i2\pi \left(\frac{ku}{M} + \frac{lv}{N}\right)}$$

Averaging

Let's think about averaging pixel values

For n=2, convolve pixel values with $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

Which is faster?
$$(a) O(2(n+1))$$
 $(b) O((n+1)^2)$

Averaging

The convolution kernel

Repeated averaging ≈ Gaussian smoothing

Gaussian Smoothing

Gaussian kernel

$$h(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2}\left(\frac{i^2+j^2}{\sigma^2}\right)}$$

Filter size $N \propto \sigma$...can be very large (truncate, if necessary)

$$g(i,j) = \frac{1}{2\pi\sigma^2} \sum_{m=1} \sum_{n=1}^{\infty} e^{-\frac{1}{2} \left(\frac{m^2 + n^2}{\sigma^2}\right)} f(i-m, j-n)$$

2D Gaussian is separable!

$$g(i,j) = \frac{1}{2\pi\sigma^2} \sum_{m=1}^{\infty} e^{-\frac{1}{2}\frac{m^2}{\sigma^2}} \sum_{n=1}^{\infty} e^{-\frac{1}{2}\frac{n^2}{\sigma^2}} f(i-m,j-n)$$

Use two 1D Gaussian filters

Gaussian Smoothing

 A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

• This kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

Gaussian Smoothing

Gaussian Smoothing http://www.michaelbach.de/ot/cog_blureffects/index.html

Border Problem

- Ignore
 - Output image will be smaller than original
- · Pad with constant values
 - Can introduce substantial 1st order derivative values
- · Pad with reflection
 - Can introduce substantial 2nd order derivative values

Median Filter

- Smoothing is averaging
 - (a) Blurs edges
 - (b) Sensitive to outliers
- (b) — • •

- · Median filtering
 - Sort N^2-1 values around the pixel
 - Select middle value (median)

Non-linear (Cannot be implemented with convolution)

Correlation

template

How do we locate the template in the image?

Minimize

$$E(i,j) = \sum_{m} \sum_{n} [f(m,n) - t(m-i,n-j)]^{2}$$

$$= \sum_{m} \sum_{n} [f^{2}(m,n) + t^{2}(m-i,n-j) - 2f(m,n)t(m-i,n-j)]^{2}$$

Maximize

$$R_{if}(i,j) = \sum_{m} \sum_{n} t(m-i,n-j)f(m,n)$$
 Cross-correlation

Cross-correlation

$$R_{tf}(i,j) = \sum_{m} \sum_{n} t(m-i,n-j) f(m,n)$$
 $R_{tf} = t \otimes f$

Note: $t \otimes f \neq f \otimes t$

$$R_{\it ff} = f \otimes f$$
 Auto-correlation

Problem:

$$R_{tf}(C) > R_{tf}(B) > R_{tf}(A)$$

 $R_{tf}(C) > R_{tf}(B) > R_{tf}(A)$ We need $R_{tf}(A)$ to be the maximum!

Normalized Correlation

· Account for energy differences

$$N_{tf}(i,j) = \frac{\sum_{m} \sum_{n} t(m-i,n-j) f(m,n)}{\left[\sum_{m} \sum_{n} t^{2}(m-i,n-i)\right]^{\frac{1}{2}} \left[\sum_{m} \sum_{n} f^{2}(m,n)\right]^{\frac{1}{2}}}$$

Image Processing in the Fourier Domain

Magnitude of the FT

Does not look anything like what we have seen

Image Processing in the Fourier Domain

Magnitude of the FT

Does not look anything like what we have seen

Original image

FFT of original image

High-pass filter

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

High-pass image

FFT of high-pass image

Boosting High Frequencies

Original image

FFT of original image

High-boost filter

High boosted image

FFT of high boosted image

Image as a Discrete Function

Digital Images

The scene is

- projected on a 2D plane,
- sampled on a regular grid, and each sample is
- quantized (rounded to the nearest integer)

$$f(i, j) = \text{Quantize}\{f(i\Delta, j\Delta)\}$$

Image as a matrix

	\xrightarrow{j}							
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
¥	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Sampling Theorem

Continuous signal: f(x)

Shah function (Impulse train):

Sampled function:

$$f_s(x) = f(x)s(x) = f(x)\sum_{n=-\infty}^{\infty} \delta(x - nx_0)$$

Sampling Theorem

Sampled function:

Sampling
$$\frac{1}{x_0}$$

$$F_S(u) = F(u) * S(u) = F(u) * \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta(x - nx_0)$$

$$F(u) = F(u) * S(u) = F(u) * \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta(u - \frac{n}{x_0})$$

$$F(u)$$

$$F(u)$$

$$u_{\text{max}}$$

$$u$$

$$u_{\text{max}}$$

$$u$$

Only if
$$u_{\text{max}} \le \frac{1}{2x_0}$$

Nyquist Theorem

When can we recover F(u) from $F_s(u)$?

Only if
$$u_{\text{max}} \le \frac{1}{2x_0}$$
 (Nyquist Frequency)

We can use $C(u) = \begin{cases} x_0 & |u| < \frac{1}{2}x_0 \\ 0 & \text{otherwise} \end{cases}$

Then $F(u) = F_s(u)C(u)$ and f(x) = IFT[F(u)]

Sampling frequency must be greater than $2u_{\max}$

Aliasing

Image Scaling

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

Image Sub-Sampling

1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image Sub-Sampling

Really bad in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Sub-Sampling with Gaussian Pre-Filtering

G 1/4

Gaussian 1/2

- Solution: filter the image, then subsample
 - Filter size should double for each ½ size reduction. Why?

Sub-Sampling with Gaussian Pre-Filtering

Gaussian 1/2

G 1/4

G 1/8

Next Class

- Image Processing and Filtering (continued) –
 Edge Detection
- Horn, Chapter 6