Exercise 4.2: Predicting Fuel Efficiency

Author: Jordan, Andrew

Date: 06/27/2022

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%pwd
```

Out[53]: 'C:\\Users\\Andrew\\Documents\\Grad School\\DSC 550 - Data Mining\\Assignments'

1. Load the data as a Pandas data frame and ensure that it imported correctly.

```
In [44]: mpgs = pd.read_csv("data/auto-mpg.csv")
    mpgs.head(10)
```

Out[44]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
	0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
	1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
	2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
	3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
	4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
	5	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
	6	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
	7	14.0	8	440.0	215	4312	8.5	70	1	plymouth fury iii
	8	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
	9	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl

2 Begin by prepping the data for modeling

```
In [45]:
#Remove the car name column
mpgs = mpgs.drop(['car name'], axis=1)
mpgs.head(5)
```

Out[45]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
	0	18.0	8	307.0	130	3504	12.0	70	1
	1	15.0	8	350.0	165	3693	11.5	70	1
	2	18.0	8	318.0	150	3436	11.0	70	1
	3	16.0	8	304.0	150	3433	12.0	70	1
	4	17.0	8	302.0	140	3449	10.5	70	1

```
In [46]:
# The horsepower column values likely imported as a string data type.
# Figure out why and replace any strings with the column mean.
mpgs.dtypes
```

float64 mpg Out[46]: cylinders int64 float64 displacement horsepower object weight int64 acceleration float64 model year int64 origin int64 dtype: object

```
In [47]: mpgs['horsepower'].unique()
```

```
Out[47]: array(['130', '165', '150', '140', '198', '220', '215', '225', '190', '170', '160', '95', '97', '85', '88', '46', '87', '90', '113', '200', '210', '193', '?', '100', '105', '175', '153', '180', '110', '72', '86', '70', '76', '65', '69', '60', '80', '54', '208', '155', '112', '92', '145', '137', '158', '167', '94', '107', '230', '49', '75', '91', '122', '67', '83', '78', '52', '61', '93', '148', '129', '96', '71', '98', '115', '53', '81', '79', '120', '152', '102', '108', '68', '58', '149', '89', '63', '48', '66', '139',
```

```
It appears that the question marks have caused the column to be imported as an object
In [48]:
          # Convert data type to numeric
          mpgs['horsepower'] = pd.to numeric(mpgs['horsepower'], errors='coerce').astype('Float64')
          mpgs.dtypes
                         float64
         mpg
Out[48]:
         cylinders
                           int64
                         float64
         displacement
         horsepower
                         Float64
         weight
                           int64
         acceleration
                        float64
         model year
                           int64
         origin
                           int64
         dtype: object
In [49]:
          # Replace question marks with NaN
          mpgs['horsepower'] = mpgs['horsepower'].replace('?', np.nan)
          mpgs['horsepower'].unique()
Out[49]: <FloatingArray>
         [130.0, 165.0, 150.0, 140.0, 198.0, 220.0, 215.0, 225.0, 190.0, 170.0, 160.0,
           95.0, 97.0, 85.0, 88.0, 46.0, 87.0, 90.0, 113.0, 200.0, 210.0, 193.0,
           <NA>, 100.0, 105.0, 175.0, 153.0, 180.0, 110.0, 72.0, 86.0, 70.0, 76.0,
           65.0, 69.0, 60.0, 80.0, 54.0, 208.0, 155.0, 112.0, 92.0, 145.0, 137.0,
          158.0, 167.0, 94.0, 107.0, 230.0, 49.0, 75.0, 91.0, 122.0, 67.0, 83.0,
           78.0, 52.0, 61.0, 93.0, 148.0, 129.0, 96.0, 71.0, 98.0, 115.0, 53.0,
           81.0, 79.0, 120.0, 152.0, 102.0, 108.0, 68.0, 58.0, 149.0, 89.0, 63.0,
           48.0, 66.0, 139.0, 103.0, 125.0, 133.0, 138.0, 135.0, 142.0, 77.0, 62.0,
          132.0, 84.0, 64.0, 74.0, 116.0, 82.0]
         Length: 94, dtype: Float64
In [50]:
          # Replace NaN with column mean
          mpgs['horsepower'] = mpgs['horsepower'].fillna(mpgs['horsepower'].mean())
          mpgs['horsepower'].unique()
         <FloatingArray>
Out[50]:
                       130.0,
                                          165.0,
                                                              150.0,
```

220.0,

'103', '125', '133', '138', '135', '142', '77', '62', '132', '84',

'64', '74', '116', '82'], dtype=object)

140.0,

198.0,

215.0,	225.0,	190.0,
170.0,	160.0,	95.0,
97.0,	85.0,	88.0,
46.0,	87.0,	90.0,
113.0,	200.0,	210.0,
193.0,	104.46938775510205,	100.0,
105.0,	175.0,	153.0,
180.0,	110.0,	72.0,
86.0,	70.0,	76.0,
65.0,	69.0,	60.0,
80.0,	54.0,	208.0,
155.0,	112.0,	92.0,
145.0,	137.0,	158.0,
167.0,	94.0,	107.0,
230.0,	49.0,	75.0,
91.0,	122.0,	67.0,
83.0,	78.0,	52.0,
61.0,	93.0,	148.0,
129.0,	96.0,	71.0,
98.0,	115.0,	53.0,
81.0,	79.0,	120.0,
152.0,	102.0,	108.0,
68.0,	58.0,	149.0,
89.0,	63.0,	48.0,
66.0,	139.0,	103.0,
125.0,	133.0,	138.0,
135.0,	142.0,	77.0,
62.0,	132.0,	84.0,
64.0,	74.0,	116.0,
82.0]		

Another option would be to assign the mean value to a variable, then just use .replace to replace all the question marks with the mean value variable.

3. Create a correlation coefficient matrix and/or visualization. Are there features highly correlated with mpg?

In [52]: mpgs.corr()

Out[52]:	mpg		cylinders	displacement	horsepower	weight	acceleration	model year	origin
	mpg	1.000000	-0.775396	-0.804203	-0.771437	-0.831741	0.420289	0.579267	0.563450
	cylinders	-0.775396	1.000000	0.950721	0.838939	0.896017	-0.505419	-0.348746	-0.562543

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
displacement	-0.804203	0.950721	1.000000	0.893646	0.932824	-0.543684	-0.370164	-0.609409
horsepower	-0.771437	0.838939	0.893646	1.000000	0.860574	-0.684259	-0.411651	-0.453669
weight	-0.831741	0.896017	0.932824	0.860574	1.000000	-0.417457	-0.306564	-0.581024
acceleration	0.420289	-0.505419	-0.543684	-0.684259	-0.417457	1.000000	0.288137	0.205873
model year	0.579267	-0.348746	-0.370164	-0.411651	-0.306564	0.288137	1.000000	0.180662

Both displacement and weight have a negative correlation with mpg of -.80 or greater, indicating there likely is a relationship between mpg and those respective variables. Cylinders and horsepower also have a high negative correlation of -.77 or higher, inidicating there is also likely a relationship between mpg and these two variables. Though origin and model year both have positive correlations with mpg of over .55, there is much less indication of a statistically significant relationship than between mpg and displacement/weight.

4. Plot mpg versus weight. Analyze this graph and explain how it relates to the corresponding correlation coefficient.

```
In [57]: 
    plt.figure(figsize=(8,8))
    plt.scatter(mpgs['mpg'], mpgs['weight'], color='red')
    plt.xlabel('Miles Per Gallon')
    plt.ylabel('Weight')
    plt.title('Weight v. Miles Per Gallon')
    plt.show()
```


The negative correlation of -.83 between weight and mpg is illustrated well by the above plot. The downward slope shows the strong negative linear relationship, indicating that as a vehicle weight decreases the mpg improves.

5. Randomly split the data into 80% training data and 20% test data, where your target is mpg.

```
from sklearn.linear_model import LinearRegression
from sklearn.dummy import DummyRegressor
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
import sklearn.metrics as metrics
```

```
In [63]:
    mpgs_train, mpgs_test = train_test_split(mpgs, test_size=.2, random_state=42)
    #Random state chosen was calculated over 7.5 million years
    mpgs_train_target = mpgs_train['mpg']
    mpgs_test_target = mpgs_test['mpg']
```

6. Train an ordinary linear regression on the training data.

7. Calculate R2, RMSE, and MAE on both the training and test sets and interpret your results.

```
pred_train = ordinary_model.predict(mpgs_train)
actual_train = mpgs_train_target
pred_test = ordinary_model.predict(mpgs_test)
actual_test = mpgs_test_target
```

C:\Users\Andrew\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: FutureWarning: Arrays of bytes/strings is being converted to decimal numbers if dtype='numeric'. This behavior is deprecated in 0.24 and will be removed in 1.1 (renaming of 0.26). Please convert your data to numeric values explicitly instead.

return f(*args, **kwargs)

C:\Users\Andrew\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: FutureWarning: Arrays of bytes/strings is being converted to decimal numbers if dtype='numeric'. This behavior is deprecated in 0.24 and will be removed in 1.1 (renaming of 0.26). Please convert your data to numeric values explicitly instead.

```
return f(*args, **kwargs)
```

```
In [78]:
          r2 train = metrics.r2 score(actual train, pred train)
          mse train = metrics.mean squared error(actual train, pred train)
          rmse train = np.sqrt(mse train)
          mae train = metrics.mean absolute error(actual train, pred train)
          print("R-Squared:", r2_train)
          print("MSE:", mse train)
          print("RMSE:", rmse train)
          print("MAE:",mae_train)
         R-Squared: 1.0
         MSE: 5.7641421363885e-29
         RMSE: 7.592194765934618e-15
         MAE: 5.882087270089509e-15
In [79]:
          r2 test = metrics.r2 score(actual test, pred test)
          mse test = metrics.mean squared error(actual test, pred test)
          rmse test = np.sqrt(mse test)
          mae_test = metrics.mean_absolute_error(actual_test, pred_test)
          print("R-Squared:", r2_test)
          print("MSE:", mse test)
          print("RMSE:", rmse_test)
          print("MAE:",mae test)
         R-Squared: 1.0
         MSE: 5.265646542350254e-29
```

The R2 scores of 1.0 shows that the model is a perfect fit. Similar MAE scores of approximately 5.88, as well as approximate RMSE scores of 7.59 and 7.26, show a consistency in the residuals between the two sets.

RMSE: 7.256477480396569e-15 MAE: 5.88418203051333e-15

8. Pick another regression model and repeat the previous two steps. Note: Do NOT choose logistic regression as it is more like a classification model.

```
In [88]: from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler

In [90]: scaler=StandardScaler()
```

```
In [94]:
          train standardized = scaler.fit transform(mpgs train)
          test standardized = scaler.fit transform(mpgs test)
          print(train standardized)
          print(test standardized)
         [[-0.96085946 1.52718818 1.0901965 ... -1.31933367 -1.6966673
           -0.72949361]
          [ 0.42836365 -0.85051483 -0.92299623 ... -0.41318225 -1.6966673
            1.73836775]
          [ 1.69129374 -0.85051483 -0.98134964 ... 0.92792185 1.63897537
            1.73836775]
          [-0.31676511 -0.85051483 -0.56315019 ... -0.30444408 0.52709448
            1.73836775]
          [ 1.77969885 -0.85051483 -1.00080078 ... 0.60170734 1.36100515
            1.73836775]
          [ 0.30207064 -0.85051483 -0.92299623 ... 1.94281144 -0.86275663
            0.50443707]]
         [[ 1.34434622e+00 -8.80696034e-01 -9.95118603e-01 -1.33345311e+00
           -1.35587159e+00 7.79425888e-01 8.99775405e-02 1.97814142e+00]
          [ 6.62456176e-01 -8.80696034e-01 -7.29080903e-01 -7.15518077e-01
           -4.02993015e-01 1.22113123e+00 1.57926097e+00 -6.59380473e-01]
          [-5.64945900e-01 2.55685945e-01 2.98375041e-01 -2.16416708e-01
           -3.92660596e-01 -8.40160373e-01 -1.15109198e+00 -6.59380473e-01]
          [-1.38321395e+00 1.39206792e+00 1.08731443e+00 9.71919886e-01
            1.10668810e+00 -7.66542815e-01 8.99775405e-02 -6.59380473e-01]
          [-1.24683594e+00 1.39206792e+00 1.08731443e+00 9.71919886e-01
            1.44765791e+00 -2.88028693e-01 -6.54664174e-01 -6.59380473e-01]
          [ 5.26078167e-01 -8.80696034e-01 -9.40076320e-01 -5.01617490e-01
           -1.00571741e+00 4.48146880e-01 -9.02878079e-01 1.97814142e+00]
          [ 1.16944142e-01 -8.80696034e-01 -5.45606627e-01 -4.06550563e-01
           -1.27461860e-01 4.11338101e-01 1.57926097e+00 -6.59380473e-01
          [-1.38321395e+00 1.39206792e+00 2.20650751e+00 2.51675746e+00
            2.01938505e+00 -1.57633595e+00 -6.54664174e-01 -6.59380473e-01]
          [-8.37701917e-01 1.39206792e+00 5.55239027e-01 2.12506110e-02
            1.24445368e+00 1.36836635e+00 3.38191445e-01 -6.59380473e-01]
          [-2.92189883e-01 2.55685945e-01 4.81619974e-03 -1.10193967e-01
           -1.15981395e-01 6.32190773e-01 -4.06450269e-01 -6.59380473e-01]
          [-1.11045793e+00 1.39206792e+00 1.74782182e+00 1.92258916e+00
            1.00336392e+00 -2.49655541e+00 -1.39930589e+00 -6.59380473e-01
          [ 2.02623626e+00 -8.80696034e-01 -9.95118603e-01 -1.00071886e+00
           -1.16070369e+00 -1.03984800e-01 1.57926097e+00 1.97814142e+00]
          [ 3.89700159e-01 -8.80696034e-01 -9.95118603e-01 -9.29418664e-01
```

```
-1.17218415e+00 1.92049803e+00 -1.15109198e+00 -6.59380473e-01
[-1.11045793e+00 1.39206792e+00 9.58882433e-01 9.71919886e-01
 1.05158187e+00 -1.02420427e+00 -9.02878079e-01 -6.59380473e-01
[ 2.53322151e-01 -8.80696034e-01 -5.45606627e-01 -8.10585005e-01
-4.98280872e-01 6.32190773e-01 -4.06450269e-01 -6.59380473e-01]
[-1.51959196e+00 1.39206792e+00 1.68360582e+00 1.68492184e+00
 2.27195528e+00 -1.39229205e+00 -1.15109198e+00 -6.59380473e-01
[ 1.07159020e+00 -8.80696034e-01 -8.02470613e-01 -5.72917686e-01
-4.60395338e-01 3.37720544e-01 1.57926097e+00 -6.59380473e-01]
[-8.37701917e-01 2.55685945e-01 -3.34611210e-01 3.77751589e-01
 1.88250921e-01 -6.19307701e-01 5.86405350e-01 6.59380473e-01
[-9.74079925e-01 1.39206792e+00 1.83955896e+00 1.68492184e+00
 1.42814112e+00 -1.53952717e+00 3.38191445e-01 -6.59380473e-01
[ 1.07159020e+00 -8.80696034e-01 -9.95118603e-01 -9.76952128e-01
-1.15496346e+00 8.53043445e-01 1.57926097e+00 1.97814142e+00]
[-1.55811875e-01 -8.80696034e-01 -7.19907189e-01 -7.86818273e-01
-5.33870313e-01 1.00027856e+00 -9.02878079e-01 6.59380473e-01]
[-1.55811875e-01 2.55685945e-01 -1.35312278e-02 -3.35250367e-01
-1.64199347e-01 8.00590936e-02 -1.39930589e+00 -6.59380473e-01
[-1.55811875e-01 2.55685945e-01 2.98375041e-01 6.87840748e-02
-1.61903254e-01 -2.14411136e-01 1.57926097e+00 -6.59380473e-01
[ 1.41253522e+00 -8.80696034e-01 -9.30902606e-01 -6.20451150e-01
 -1.03441858e+00 2.27294208e-01 3.38191445e-01 -6.59380473e-01]
[-7.01323908e-01 1.39206792e+00 9.86403575e-01 4.96585249e-01
 6.06139839e-01 -1.20824816e+00 -1.39930589e+00 -6.59380473e-01
[ 2.84450431e+00 -8.80696034e-01 -9.40076320e-01 -1.35721984e+00
 -9.71276021e-01 3.42965795e+00 1.57926097e+00 6.59380473e-01]
[ 3.89700159e-01 -8.80696034e-01 -9.30902606e-01 -4.54084026e-01
 -8.16289746e-01 8.00590936e-02 -6.54664174e-01 6.59380473e-01
[ 1.85133146e-01 -8.80696034e-01 -4.44695776e-01 -5.01617490e-01
 -2.70967670e-01 2.64102987e-01 3.38191445e-01 -6.59380473e-01]
[-6.87686107e-01 2.55685945e-01 5.36891599e-01 2.58917930e-01
  4.98223470e-01 -6.71760210e-02 5.86405350e-01 -6.59380473e-01]
[-1.51959196e+00 1.39206792e+00 1.83955896e+00 1.37595433e+00
  2.21570100e+00 -1.02420427e+00 -6.54664174e-01 -6.59380473e-01]
[ 5.26078167e-01 -8.80696034e-01 -5.45606627e-01 -5.49150954e-01
-2.13565346e-01 1.16867872e-01 1.57926097e+00 -6.59380473e-01]
[ 1.75348024e+00 -8.80696034e-01 -8.66686610e-01 -8.34351736e-01
 -1.14348299e+00 6.44153626e-03 1.57926097e+00 6.59380473e-01]
[-1.94338662e-02 1.39206792e+00 1.38087327e+00 3.77751589e-01
 1.06076624e+00 7.79425888e-01 8.34619255e-01 -6.59380473e-01]
[ 1.16944142e-01 -8.80696034e-01 -7.93296899e-01 -3.35250367e-01
-8.01365142e-01 8.00590936e-02 -9.02878079e-01 1.97814142e+00]
[ 1.91713385e+00 -8.80696034e-01 -1.04098717e+00 -1.04825232e+00
```

```
-1.09870918e+00 4.11338101e-01 1.08283316e+00 1.97814142e+00]
[-9.74079925e-01 1.39206792e+00 1.83955896e+00 2.87325844e+00
 1.49472781e+00 -2.12846763e+00 -6.54664174e-01 -6.59380473e-01
[-2.92189883e-01 2.55685945e-01 -4.08000921e-01 -5.00495846e-02
-5.78644125e-01 -4.72072586e-01 -6.54664174e-01 -6.59380473e-01]
[-5.37670298e-01 1.39206792e+00 9.68056147e-01 8.53086227e-01
  5.15444167e-01 -7.66542815e-01 5.86405350e-01 -6.59380473e-01
[-9.74079925e-01 1.39206792e+00 1.08731443e+00 9.71919886e-01
 1.74729804e+00 -2.88028693e-01 -1.58236364e-01 -6.59380473e-01]
[ 7.98834184e-01 -8.80696034e-01 -9.30902606e-01 -6.20451150e-01
-8.69099884e-01 4.48146880e-01 -4.06450269e-01 6.59380473e-01
[ 4.98802566e-01 2.55685945e-01 -2.42874072e-01 1.40084270e-01
-3.16889529e-01 -8.76969151e-01 8.34619255e-01 -6.59380473e-01]
[ 5.26078167e-01 -8.80696034e-01 -9.40076320e-01 -1.16708598e+00
-1.31109778e+00 1.36836635e+00 -1.15109198e+00 6.59380473e-01
[-7.01323908e-01 -8.80696034e-01 -7.19907189e-01 6.87840748e-02
 -4.93946997e-02 -2.88028693e-01 -9.02878079e-01 6.59380473e-01]
[-1.79234798e+00 1.39206792e+00 1.47261041e+00 2.51675746e+00
 1.88161947e+00 -4.72072586e-01 -1.39930589e+00 -6.59380473e-01]
[-1.94338662e-02 -8.80696034e-01 -7.29080903e-01 -2.87716903e-01
-5.39610545e-01 -2.88028693e-01 -9.02878079e-01 1.97814142e+00]
[ 1.75348024e+00 -8.80696034e-01 -7.29080903e-01 -5.01617490e-01
 -9.36834626e-01 -2.88028693e-01 1.57926097e+00 1.97814142e+00]
[ 3.89700159e-01 -8.80696034e-01 -7.65775758e-01 -8.10585005e-01
 -8.38102629e-01 -4.72072586e-01 -4.06450269e-01 6.59380473e-01
[ 2.53322151e-01 -8.80696034e-01 -7.19907189e-01 1.40084270e-01
 -3.50182877e-01 -6.56116479e-01 -1.58236364e-01 6.59380473e-01]
[ 2.53322151e-01 -8.80696034e-01 -8.75860324e-01 -3.35250367e-01
-6.90004634e-01 8.16234666e-01 -1.39930589e+00 6.59380473e-01]
[ 2.53322151e-01 -8.80696034e-01 -1.00429232e+00 -9.05651932e-01
 -8.64507698e-01 4.48146880e-01 -1.58236364e-01 6.59380473e-01]
[-1.55811875e-01 -8.80696034e-01 -5.45606627e-01 -8.81885200e-01
 -6.52119100e-01 1.36836635e+00 -1.15109198e+00 -6.59380473e-01]
[ 1.49436203e+00 -8.80696034e-01 -1.04098717e+00 -1.04825232e+00
-1.14922322e+00 -3.03672424e-02 8.34619255e-01 1.97814142e+00]
[ 1.26251941e+00 -8.80696034e-01 -8.48339182e-01 -8.81885200e-01
-7.87588584e-01 6.32190773e-01 1.08283316e+00 1.97814142e+00]
[-1.38321395e+00 1.39206792e+00 1.83955896e+00 1.92258916e+00
 1.66004650e+00 -1.02420427e+00 -9.02878079e-01 -6.59380473e-01]
[ 4.87551380e-02  2.55685945e-01 -2.42874072e-01  2.12506110e-02
-2.88188367e-01 -9.87395487e-01 1.33104706e+00 -6.59380473e-01]
[-1.24683594e+00 1.39206792e+00 1.83955896e+00 1.56608818e+00
 1.70826446e+00 -1.39229205e+00 -1.15109198e+00 -6.59380473e-01
[-6.33134904e-01 1.39206792e+00 1.47261041e+00 9.71919886e-01
```

```
1.10668810e+00 -8.40160373e-01 8.34619255e-01 -6.59380473e-01
9.07936591e-01 -8.80696034e-01 -6.00648910e-01 -4.54084026e-01
-3.04261018e-01 8.00590936e-02 1.08283316e+00 1.97814142e+00]
[ 6.62456176e-01 -8.80696034e-01 -5.45606627e-01 -4.54084026e-01
 -8.17437793e-01 8.00590936e-02 -1.15109198e+00 -6.59380473e-01
[-5.64945900e-01 2.55685945e-01 2.34159044e-01 -3.35250367e-01
 3.30608684e-01 2.64102987e-01 -1.58236364e-01 -6.59380473e-01]
[-1.65596997e+00 1.39206792e+00 1.38087327e+00 1.68492184e+00
 7.89827275e-01 -1.57633595e+00 -6.54664174e-01 -6.59380473e-01]
[ 1.34434622e+00 -8.80696034e-01 -9.95118603e-01 -1.33345311e+00
-1.35587159e+00 8.16234666e-01 -1.58236364e-01 1.97814142e+00]
[-1.94338662e-02 -8.80696034e-01 -5.45606627e-01 -6.20451150e-01
-3.86920364e-01 6.32190773e-01 -1.58236364e-01 -6.59380473e-01]
[-2.92189883e-01 -8.80696034e-01 -7.29080903e-01 -5.25384222e-01
 3.41543827e-03 1.55241024e+00 -9.02878079e-01 6.59380473e-01
[-1.94338662e-02 2.55685945e-01 -1.35312278e-02 -3.35250367e-01
 -8.26880475e-02 2.64102987e-01 -6.54664174e-01 -6.59380473e-01]
[ 2.53322151e-01 -8.80696034e-01 -7.93296899e-01 -3.35250367e-01
 -8.58767466e-01 -4.72072586e-01 -1.15109198e+00 1.97814142e+00]
8.96685405e-02 -8.80696034e-01 -4.44695776e-01 -5.72917686e-01
 -1.38942325e-01 8.53043445e-01 5.86405350e-01 -6.59380473e-01]
[ 1.53527543e+00 -8.80696034e-01 -9.30902606e-01 -1.04825232e+00
 -1.06885997e+00 3.37720544e-01 1.33104706e+00 -6.59380473e-01]
[ 1.85133146e-01 -8.80696034e-01 -9.30902606e-01 -1.16708598e+00
 -9.32242440e-01 2.50943848e+00 8.99775405e-02 -6.59380473e-01
[-1.38321395e+00 1.39206792e+00 9.86403575e-01 4.96585249e-01
 1.28807945e+00 -4.72072586e-01 -9.02878079e-01 -6.59380473e-01]
[ 1.57618883e+00 -8.80696034e-01 -8.66686610e-01 -1.09578579e+00
 -8.73692070e-01 -1.40793578e-01 1.33104706e+00 -6.59380473e-01]
[-1.24683594e+00 1.39206792e+00 9.58882433e-01 9.71919886e-01
 1.47061884e+00 8.00590936e-02 -4.06450269e-01 -6.59380473e-01]
[-1.11045793e+00 1.39206792e+00 2.10559666e+00 2.11272302e+00
 1.56705474e+00 -1.94442373e+00 -1.39930589e+00 -6.59380473e-01]
[-7.01323908e-01 2.55685945e-01 5.36891599e-01 2.12506110e-02
-1.61013518e-02 -6.56116479e-01 -1.15109198e+00 -6.59380473e-01]
[ 2.53322151e-01  2.55685945e-01 -1.69484362e-01  2.12506110e-02
-3.56181419e-02 4.11338101e-01 1.57926097e+00 -6.59380473e-01]
[-4.42205692e-01 1.39206792e+00 5.55239027e-01 2.12506110e-02
 4.46561378e-01 8.00590936e-02 5.86405350e-01 -6.59380473e-01]
[-7.69512912e-01 2.55685945e-01 4.63501889e-01 2.12506110e-02
 6.24508582e-01 4.11338101e-01 3.38191445e-01 -6.59380473e-01]
[ 6.62456176e-01 -8.80696034e-01 -8.02470613e-01 -5.01617490e-01
-4.25953944e-01 1.58921902e+00 1.57926097e+00 -6.59380473e-01]
7.98834184e-01 -8.80696034e-01 -1.00429232e+00 -9.29418664e-01
```

```
-1.19284899e+00 -4.72072586e-01 -1.58236364e-01 6.59380473e-01]
[-8.37701917e-01 1.39206792e+00 9.68056147e-01 4.96585249e-01]

In [95]: ridge_regression = Ridge(alpha=.5)

In [96]: ridge_train = ridge_regression.fit(train_standardized, mpgs_train_target)
    ridge_test = ridge_regression.fit(test_standardized, mpgs_test_target)
```