

Veebiteenuste ja hajussüsteemide arendus

Loeng 7: Pilvetehnoloogia

Pelle Jakovits, jakovits@ut.ee

Märts 2025

Pilvetehnoloogia

Interneti eellase ARPANET'I üks rajajaid Leonard Kleinrock ütles 1969 aastal:

"Praeguse seisuga on arvutivõrgud alles lapsekingades, kuid nende kasvades ja keerukamaks muutudes näeme tõenäoliselt nn. arvuti kommunaalteenuste levikut, mis sarnaselt praeguste elektri- ja telefoniteenustega teenindavad kodusid ja kontoreid kõikjal üle riigi"

Pilveteenuste definitsioon

Gartner'i definitsioon:

"Pilveteenused on tehnoloogia, kus massiliselt skaleeritavaid IT ressursse pakutakse teenusena Interneti kaudu paljudele välistele klientidele"

Pilveteenused

- Arvutusressursside pakkumine mahupõhise teenusena
 - Nagu kommunaalteenused: vesi, elekter, gaas, jne
 - Tarbijad maksavad vastavalt nende kasutamise mahule
- Riistvara asub hiigelsuurtes andmekeskustes
- Kliendid saavad suvalisel hetkel ressursse juurde küsida

Pilveteenuste ajalugu

1990 1999 2001 ~2006

Grid-arvutused

- Suuremahulised arvutused
- Ülikoolide/asutuste vaheline koostöö

Utiliitarvutused

- Arvutusressurside mahu põhine arveldus
- · Serverite rentimine

Software-as-a-Service

- Rakenduste kasutamine üle interneti
- Brauseripõhised rakendused

Pilvetehnoloogia

- Uue generatsiooni andmekeskused
- Automaatne skaleeruvus
- Automatiseerimine

Esimesed suured pilved

- Amazon Web Services (AWS)
- Alustas ~2006 aastal
- Amazon veebipoodide populaarsuse kasv
 - Suur arvuti ressursside vajadus pühade ajal
 - Väike vajadus muul ajal, eriti öisel ajal
- Idee: rentida mitte kasutatud arvutiressursid välja teistele firmadele
 - Infrastruktuur teenusena
 - Arvutusressursse hakati rentima välja virtuaalmasinatena

Virtualiseerimine

- Virtualiseerimise tehnikad on pilvetehnoloogia aluseks
- Võimaldab pilveplatvormi haldajal jagada suured arvutid paljudeks väikesteks virtuaalseteks arvutiteks
 - Võimaldab pakkuda paindlikku ligipääsu arvutusressurssidele
- Virtuaalmasinate loomise lahendused
 - Virtualbox
 - VMware
 - Xen
 - KVM
 - Konteinerid (Docker)
 - Sarnane virtualiseerimisele, aga mitte sama
 - "väiksemad" ja "õhukesemad"
 - Ei ole eraldi virtualiseerimise kihti

Virtualiseerimise Motivatsioon

- Alakasutatud riist- ja tarkvara ressursid
 - Serverist piisab tavaliselt rohkem kui ühe rakenduse jooksutamiseks
- Lihtsustab keskkondade kohandamist rakenduste jaoks
 - Igal rakendusel oma individuaalne keskkond
- Keskkondade ja rakenduste teisaldatavus ja taaskasutavatus
 - Tihti piisab failisüsteemi koopia ja süsteemi konfiguratsiooni liigutamisest
- Lihtsustab haldust
 - riistvara jälgimine, defektse riistvara asendamine
 - serveri seadistamine ja värskendused, varukoopiate tegemine
- Turvalisus
 - Erinevates VM'des jooksvad rakendused on tugevalt üksteisest eraldatud

Konteinerid

On kergekaalulisemad

- Saab otse kasutada OS'I kernelit
 - Ei ole vaja eraldi hüperviisorit (hypervisor)
- Linux nimeruumid
- Igal konteineril on komplekt talle eraldatud ressurssidest

Kiire ülesseadmine

- Konteineri alustamine on kiirem kui VM alustamine
- Jõudlus
 - Ligilähedane serveri tavajõudlusele, parem kui VM puhul
- Erinevad konteinerite raamistikud
 - LXC, Docker, Linux VServer, OpenVZ
 - Docker on avatud platvorm

Virtualiseerimine vs konteineriseerimine

Containers vs. VMs

Containers are isolated, but share OS and, where appropriate, bins/libraries

Pilveplatvormide omadused

- NIST National Institute of Standards and Technology
- Pilveteenuseid saab defineerida nende 5 peamise omaduse järgi:
 - Iseteenindus
 - Laiaulatuslik interneti ligipääs
 - Ressursside koondamine
 - Kiire elastsus
 - Mõõdetav mahupõhine kasutus

Pilveteenuste omadus: Iseteenindus

- Kasutaja saab tellida ressursse ja teenuseid üle interneti veebiliideste kaudu
- Ressursside jooksvalt (on-demand) ja dünaamiliselt tellimine
 - Üldjuhul tellimuse vastuse saab koheselt
 - Ligipääs teenustele samuti koheselt
 - Ei ole kasutuses Inimene-Inimene "liidest"
 - nt. telefon, email
 - Pigem Inimene-pilveplatvorm või tarkvara-pilveplatvorm masinliides
- Kasutajal on kontroll ressursside üle
- Ressursside hankimist on võimalik automatiseerida
 - API kaudu

Pilveteenuste omadus: Laiaulatuslik ligipääs üle interneti

- Ressurssidele pääseb ligi üle interneti
 - neid saab hallata üle interneti
 - asukohast sõltumatult
- Neile pääseb juurde standardsete mehhanismide kaudu, mis on laialdaselt kasutuses
 - Tavalised veebistandardid (HTTP, REST)
 - Saab kasutada ükskõik milliseid klient-seadmeid
 - Brauseri, mobiiltelefonid, tahvelarvutid, jms.
 - Saab automatiseerida ressursside haldust
 - Rakendused saavad ise vajadusel endale ressursse juurde tellida
 - API kaudu juhitav

Pilveteenuste omadus: Ressursside koondamine

- Teenusepakkuja riistvaralised ressursid koondatakse, et pakkuda teenuseid paljudele klientidele samas keskkonnas
- Kasutusele võetud suured andmekeskused, mis asuvad tsentraalsetes asukohtades
 - Suur klientide arv
 - Odav elektri hind
- Klientide virtuaalmasinaid, rakendusi ja andmeid saab liigutada andmekeskuste vahel vastavalt vajadustele
 - NB! Lisaks liigutamisele saab ka replitseerida!

Pilveteenuste omadus: Kiire elastsus

- Kasutame ainult seda, mida vaja Elastne
 - Ettemakseid ei ole vaja, kasutada saab lühiajaliselt
- Ressursside mahtu ja teenuseid saab juurde tellida ja vabastada kiirelt ja reaalajas
 - Et skaleerida kiiresti, kui kasutusvajadus suureneb või väheneb
 - Võimaldab järsu kasutajate tõusuga hakkama saada
 - Võimaldab kulusid kokku hoida
- Olemasolevate ressursside maht on näiliselt lõpmatu
- Massiivselt skaleeritav

Pilveteenuste omadus: Mõõdetav mahupõhine kasutus

- Kasutatud arvutusressursid on täpselt mõõdetavad
 - Kasutatud protsessori "aeg"
 - Salvestusruumi maht ajaühikus (GB/kuus)
 - Interneti ribalaius (MB/s) ja maht (MB)
- Ligipääs teenustele ilma ettemaksuta
 - Tihti saab kasutama hakata tasuta, väikese ressursi kasutuse korral
 - Heroku, Google App Engine, Azure static websites
- Saab täpse ülevaate kasutusest, saab kontrollida ja piirata
 - Läbipaistvus nii teenusepakkuja kui ka kliendi jaoks
- Väikese granulaarsusega arveldusühikud
 - Tunnis Virtuaalmasinad (alguses)
 - Minutis Virtuaalmasinad tänapäeval
 - Millisekundis Pilve funktsioonid

Pilveplatvormide omadused

- Eraldatud keskkonnad
 - Tänu virtualiseerimisele
- Eeldatud efektiivsus
 - Teenuse pakuja kes haldab suurt hulka seadmeid ja palju kliente oskab tõenäoliselt paremini tagada IT-teenuste kvaliteedi taset

Pilved – Miks ei loodud varem?

- Kogemuse kasv suurte andmekeskuste ehitamisel
 - Enneolematu mastaap
 - Riskide ülekandmine andmekeskuste haldajatele
- Tehnoloogilised tegurid
 - Lairiba Interneti laiaulatuslik levik
 - Virtualiseerimise tehnoloogia küpsus
- Ärilised tegurid
 - Suurem nõudlus arvutusvõimsuse järele
 - Andmekeskuste ehitamise kõrge hind

Andmekeskused

- Globaalsete pilveteenuste serveerimiseks on vaja palju arvutusvõimsust
- Eeldab ülisuurte ja kallite andmekeskuste ehitamist
 - Hooned
 - Serverid, võrguseadmed, kettad
 - Massiivsed jahutussüsteemid, -jaamad
 - Elektri jaotus, varujaamad, lisajaamad (päikesesse paneelid)

Google andmekeskus Belgias

Google andmekeskus Belgias

Suuremad pilveandmekeskused (2020)

Pilve andmekeskuste asukoha valik

- Mõistlik ehitada sinna kus kulud on väiksemad
- Elekter on suur osa pilvekeskuste kuludest:

KWh hind (\$ senti)	Asukoht	Võimalikud põhjused
10.07	Idaho	Hüdroelektrijaamad, ei pea kaugele saatma
26.71	California	Elekter transporditakse kaugelt; piiratud ülekande liinid; Söekivi elektrijaamad ei ole lubatud
39.97	Hawaii	Vajab kütuse kohaletoimetamist laevadega

- Ka jahutus on kallis
 - Jõgede lähedale ehitamine
 - Google ehitas andmekeskuse Soome
 - Lumi superarvuti Soomes

Pilveteenuste mõju elektri kasutusele

- Pilvandmetöötlus tarbib kogu maailmas rohkem energiat kui enamik riike
 - Aastane elektritarbimine on hinnanguliselt vahemikus:
 - 200 terawatt tundi (TWh) (Jones, 2018)
 - 500 TWh (<u>Bashroush & Lawrence</u>, 2020).
 - Ainult 9 riiki (sh USA, Hiina, Venemaa ja Jaapan) ületasid pilvede kogu elektritarbimist 2020 aastal
- Bitcoin energia hinnanguline kulu 2022 aastal: 200
 TWh (aastate maksimum)

Suurim andmekeskus Baltikumis

HPC andmekeskus TÜ's

Pilvetehnoloogiate kasutuselevõtu lühiajalised tagajärjed

- Startupid ja prototüüpimine
 - Esialgse infrastruktuuri ostmise riski minimeerimine
 - Madalam sisenemiskulu
- Ülesannete skaleerimine
 - Jagame suured arvutusülesanded paljudeks väiksemateks ülesanneteks
- Ühekordsete ülesannete skaleerimine
 - New York Times pidi konverteerima 11 miljonit artiklit PDFvormingusse
 - IT-osakonna hinnanguline aeg: 7 nädalat (2008. aastal).
 - Seda õnnestus teha 24 tunniga, kasutades 100 EC2 virtuaalmasinat

- Paljudel rakendustel on tsüklilised nõudluskõverad
 - Päeva kaupa, nädala kaupa, kuu kaupa, ...

• Ülevarustamise oht: alakasutamine

Static data center

Suured pöördumatud kulud infrastruktuurile

Alavarustamise tulemus võib olla karm

- Suuremahulise andmekeskuse ehitamine on väga kallis
 - 100+ miljonit dollarit (minimaalne).
- Suured Interneti-ettevõtted on ehitanud tohutuid andmekeskusi
 - Google, Amazon, Microsoft...
- 5-7x mastaabisääst [Hamilton 2008]

Resource	Cost in Medium DC	Cost in Very Large DC	Ratio
Network	\$95 / Mbps / month	\$13 / Mbps / month	7.3x
Storage	\$2.20 / GB / month	\$0.40 / GB / month	5.5x
Administration	≈140 servers/admin	>1000 servers/admin	7.1x

Elekter:

Price per KWH	Where	Possible Reasons Why
3.6¢	Idaho	Hydroelectric power; not sent long distance
10.0¢	California	Electricity transmitted long distance over the grid; limited transmission lines in Bay Area; no coal fired electricity allowed in California.
18.0¢	Hawaii	Must ship fuel to generate electricity

Ka jahutus on kallis

- Jõgede lähedale ehitamine
- Google Ehitas soome andmekeskuse
- Lumi superarvuti Soomes

Pilveteenuste mudelid

- Tarkvara (pilve)teenusena Software as a Service (SaaS)
 - Pilves üles seatud rakenduste kasutamine veebibrauseri kaudu
- Platvorm (pilve)teenusena Platform as a Service (PaaS)
 - Pakub hallatud täis-platvormi rakenduste üles seadmise jaoks
- Infrastruktuur (pilve)teenusena Infrastructure as a Service (IaaS)
 - Pakub võimalust rentida virtuaalmasinaid ja muid arvutusvõi andmete ressursse üle interneti

Allikas: https://www.stackscale.com/blog/cloud-service-models/

Tarkvara teenusena

- Software as a Service (SaaS)
- Mingi rakendustarkvara pakkumine teenusena üle interneti
 - Tavaliselt brauseri kaudu
 - Ei nõua tarkvara installeerimist
- Teiste pilveteenuste mudelite eesmärk on tihti SaaS tarkvara arendamise jaoks keskkonna pakkumine

SaaS: Google Mail (GMail)

- Avalikustati 2004 aastal
- Enam ei pidanud kasutama eraldi programmi emailide lugemiseks
- Esialgu jooksis 300 Pentium III arvutil, mida Google töötajad enam ei kasutanud
- Algused saadeti kutsed 1000 inimesele
 - Neile anti õigus teisi kutsuda
- EBays müüdi kutseid kuni \$150 eest

SaaS: MicroSoft Office 365

- MS Word, PowerPoint, Excel, jt. pilveteenusena
- Läbi brauseri kasutamine
- Kui kasutaja avab lehe, pannakse ajutiselt tarkvara pilves tööle (konteineritena)
- Lisavõimalused: Automaatsed päästikud
 - Sarnased makrotele, aga integreeritav teiste teenustega
 - Näide: Kui saabub email, lisa kirjas saadetud info automaatselt Exceli tabelisse
 - Näide: Kui andmebaasis lisatakse kirje, lisa info ka Excelisse

Infrastruktuur teenusena

- Infrastructure as a Service (laaS)
- Arvutiressursside rentimine üle interneti
- Arvutusressursid on virtualiseeritud
 - Üldjuhul ei saa ligipääsu riistvarale
 - Virtuaalmasinad ja konteinerid
- Amazon EC2
- Google Cloud
- Microsoft Azure
- OpenStack (pakutakse ka TÜ HPC poolt)

Amazon EC2

- Amazon Elastic Compute Cloud
- Võimaldab reaalajas ja dünaamiliselt tellida virtuaalmasinaid ja neid konfigureerida
- Väga suur valik erinevateks vajadusteks optimeeritud valikuid
 - Väikesed VM'd, GPU, suure mäluga, jne.
- Võimaldab konfigureerida ligipääsu reegleid, tulemüüre, privaatseid võrke, staatilisi IP aadresse, jms.
- Seada üles monitoorimine, koormuse jaotus, automaatne skaleerimine.
- Kõige laialdasemalt kasutatud platvorm

Platvorm teenusena

(Platform as a Service - PaaS)

- Täis-platvorm rakenduste majutamiseks pilves
- Infrastruktuur ja tarkvara hallatakse platvormi omaniku poolt
- Ettevõtted saavad jooksvalt (on-demand) üles seada veebipõhiseid rakendusi
- Eemaldab riist- ja tarkvara valimise, ostmise, konfigureerimise ja haldamise keerukuse
- Vähendab märkimisväärselt esialgseid kulusid
- Sisseehitatud skaleeritavus
- Integreeritud teiste pilveteenuste ja andmebaasidega
- Näited: Google App Engine, AWS BeanStalk, Heroku

PaaS Näide:

Azure staatilised veebilehed

- Teenus staatiliste veebilehtede üles seadmiseks
- Mis on staatiline veebirakendus?
 - HTML, JavaScript (PHP, Python jms ei ole lubatud)
 - Rakendus jookseb kliendi brauseris (mitte serveris)
 - Üldjuhul, ei kasuta andmebaasi
- Integratsioon GitHub'ga
 - Sisu hoidmiseks
 - Automaatseks üles seadmiseks kui sisus muudatusi teha
- Tasuta teenus isiklikuks kasutamiseks, hobi tarbeks
 - Sobib näiteks kodulehe, CV üles seadmise jaoks

Google App Engine

- PaaS veebirakenduste arendamiseks ja hostimiseks Google'i hallatavates andmekeskustes
- Rakendusi on lihtne ehitada, hooldada ja skaleerida
- Pole servereid, mida on vaja ise hooldada või seadistada
- Toetatud keeled: Python, Java, PHP, Go, ...
- Integratsioon kõigi teiste Google'i pilveteenuste ja API-dega
- Jagab kliendi-päringuid mitmete serveri vahel ja skaleerib servereid, et dünaamilist ressursside vajadust
- Rakendus töötab turvalises ja usaldusväärses konteineriseeritud keskkonnas

Google App Engine keskkond

Rakenduse integratsioon pilveteenustega

PaaS Eelised

- Ei pea ise haldama madalatasemelisi ressursse ja teenuseid
- Paljud teenused on kasutamiseks valmis ilma üles-seadmise ja konfigureerimiseta
- Teenusepakkuja hoolitseb enamiku rakenduste mittefunktsionaalsetest nõuete tagamise eest
 - Teenuse kättesaadavus, tõrketaluvus, latentsus
- Platvorm hoolitseb skaleerimise eest automaatselt
- Lihtsustab prototüüpimist ja rakenduste/teenuste ülesseadmist
- Platvormi pakkujal on parimad teadmised oma riistvara peal üles seatud teenuste ja tarkvara optimeerimiseks

Pilvemudelite rakendamise keerukus

Pilveteenuste eelised

- Ressursside ja teenuste reaalajas ja nõudel ülesseadmine
- Ettemaks puudub ja tihti kasutusel tasuta kvoodid
- Vähem halduskoormust süsteemide seadistamisel
 - Kasutuslihtsus
- Paljud kohandatud teenused on koheselt kasutusvalmis
- Automaatne skaleeritavus sageli teenuse pakkuja poolt hallatud
- Teenuseid saab seada üles üle kogu maailma, et neid kasutajatele lähemale viia

Pilveteenuste puudused

- Piiratud kontroll alusressursside ja riistvara üle
- Kulusid võib olla raske ette hinnata
 - Kulude optimeerimine võib muutuda keeruliseks probleemiks
- Andmete konfidentsiaalsuse kaotamise oht
- Juurdepääsupoliitikate haldamine suure kasutajarühma jaoks muutub väga väikese granulaarsuse tõttu keeruliseks.
- Lukustatavus platvormi (Vendor lock-in)
- Mis juhtub, kui kellelgi õnnestus pääseda juurde asutuse pilvekontole?

Kokkuvõte

- Pilveteenused on kujunenud kaasaegse majanduse selgrooks
- Lühendab tehnoloogiliste iduettevõtete alustamiseks vajaminevat aega
- Lihtsustab globaalsete rakenduste loomist ja skaleerimist
- Pilveteenuste tulek on võimaldanud luua spetsialiseeritud ja lihtsasti hallatavaid teenuseid väga erinevate vajaduste jaoks
 - Everything as a Service (XaaS)

Selle nädala Praktikum

- Azure Pilveteenused
 - Azure staatilised veebilehed
 - Azure Virtuaalmasinad
 - Flask API üles seadmine Pilveserveris

Järgmine loeng

- Konteinerite tehnoloogiad
- Virtuaaliseerimine vs Konteineriseerimine
- Mikroteenused