Machine Learning from Data – IDC

1.

a. Let K, L be two kernels (operating on the same space) and let α, β be two positive scalars.

Prove that $\alpha K + \beta L$ is a kernel.

- b. Provide (two different) examples of non-zero kernels *K*, *L* (operating on the same space), so that:
 - i. K L is a kernel.
 - ii. K L is not a kernel.

Prove your answers.

2. Use Lagrange Multipliers to find the maximum and minimum values of the function subject to the given constraints:

Function:
$$f(x, y, z) = x^2 + y^2 + z^2$$
. Constraint: $g(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} = 1$, where $\alpha > \beta > 0$

3. Let $X = \mathbb{R}^3$. Let

 $C = H = \{h(a, b, c) = \{(x, y, z) \ s.t \ | x| \le a, |y| \le b, |z| \le c\} \ s.t.a, b, c \in \mathbb{R}_+\}$ the set of all origin centered boxes. Describe a polynomial sample complexity algorithm L that learns C using H. State the time complexity and the sample complexity of your suggested algorithm. Prove all your steps.