Ajuste Exponencial

a)
$$y = a e^{bx} \Leftrightarrow z = \ln(y)$$

$$z = \ln(a e^{bx}) = \ln(a) + \ln(e^{bx}) = \ln(a) + bx$$

$$\downarrow c_0$$

$$z = c_0 + bx$$

$$b) y = a x^b \iff z = ln(y)$$

$$z = ln(a x^b) = ln(a) + ln(x^b) = ln(a) + b ln(x)$$

$$\downarrow \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Exemplo: A intensidade de radiação de uma fonte radioativa é dada por $I = I_0 e^{-xt}$. Determine I_0 e x correspondente aos seguintes dados experimentais:

T	0.2	0.3	0.4	0.5	0.6	0.7	0.8
I	3.16	2.38	1.75	1.34	1.00	0.74	0.56

Primeiro fazemos z = ln(I) e $z_0 = ln(I_0)$

T	0.2	0.3	0.4	0.5	0.6	0.7	0.8
I	3.16	2.38	1.75	1.34	1.00	0.74	0.56
Z	1.150	0.867	0.559	0.292	0.000	-0.301	-0.579

Então
$$ln(I) = ln(I_0 e^{-xt}) = ln(I_0) + ln(e^{-xt}) = ln(I_0) - xt$$

 $z = z_0 - xt$

Desta forma obtemos uma regressão linear nas novas variáveis. Resolvendo o sistema de duas equações a duas incógnitas, obtemos:

$$\begin{bmatrix} 7 & 3.5 \\ 3.5 & 2.03 \end{bmatrix} \times \begin{bmatrix} z_0 \\ x \end{bmatrix} = \begin{bmatrix} 1.988 \\ 0.19 \end{bmatrix}$$

$$\begin{bmatrix} 7 & \sum_{i=1}^{7} t_i \\ \sum_{i=1}^{7} t_i & \sum_{i=1}^{7} t_i^2 \end{bmatrix} \times \begin{bmatrix} z_0 \\ x \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{7} z_i \\ \sum_{i=1}^{7} z_i t_i \end{bmatrix}$$

$$z_0 = 1.72$$
 $x = 2.87$

Portanto:
$$z = 1.72 - 2.87t \implies z_0 = \ln(I_0) \implies 1.72 = \ln(I_0)$$

 $\implies I_0 = e^{1.72} \implies I_0 = 5.5845$

Então,
$$I^* = 5.5845 e^{-2.87t}$$

Agora, podemos escrever a tabela associada a I *

T	0.2	0.3	0.4	0.5	0.6	0.7	0.8
I *	3.14	2.35	1.77	1.32	.99	0.74	0.56

Exercício:

Ajuste os pontos abaixo a equação $y = a e^{bx}$

X	0.1	1.5	3.3	4.5	5
Y	1.77	2.17	2.48	2.99	3.15

Resposta: $y = 1.7614 e^{0.1153x}$

Ajuste os pontos abaixo a equação $y = a e^{bx}$

X	-1	-0.7	-0.4	-0.1	0.2	0.5	0.8	1
Y	36.547	17.264	8.155	3.852	1.82	0.860	0.406	0.246

Resposta: $y = 3.001 e^{-2.5x}$