Programming Assignment

- 1. Visualizing the Hoeffding bound (10 pts).
 - (a) Use **numpy** to generate an $N \times n$ matrix of samples from Bernoulli(1/2). Calculate for each row i the empirical mean, $\bar{X}_i = \frac{1}{n} \sum_{j=1}^n X_{i,j}$, where N = 200000 and n = 20.
 - (b) Take 50 values of $\epsilon \in [0,1]$ (numpy.linspace(0,1, 50)), and calculate the empirical probability that $|\bar{X}_i 1/2| > \epsilon$. Plot the empirical probability as a function of ϵ .
 - (c) Add to your plot the Hoeffding bound of that probability, as a function of ϵ .

Submit your plots (no need to submit code for this question).

2. Nearest Neighbor (20 pts). In this question, we will study the performance of the Nearest Neighbor (NN) algorithm on the MNIST dataset. The MNIST dataset consists of images of handwritten digits, along with their labels. Each image has 28×28 pixels, where each pixel is in gray-scale, and can get an integer value from 0 to 255. Each label is a digit between 0 and 9. The dataset has 70,000 images. Although each image is square, we treat it as a vector of size 784.

The MNIST dataset can be loaded with sklearn as follows:

```
>>> from sklearn.datasets import fetch_openml
>>> mnist = fetch_openml('mnist_784', as_frame=False)
>>> data = mnist['data']
>>> labels = mnist['target']
```

Loading the dataset might take a while when first run, but will be immediate later. See http://scikit-learn.org/stable/datasets.html for more details. Define the training and test set of images as follows:

```
>>> import numpy.random
>>> idx = numpy.random.RandomState(0).choice(70000, 11000)
>>> train = data[idx[:10000], :].astype(int)
>>> train_labels = labels[idx[:10000]]
>>> test = data[idx[10000:], :].astype(int)
>>> test_labels = labels[idx[10000:]]
```

Make sure you have version 1.0.2 or above of scikit-learn installed or the code may not work properly!

It is recommended to use numpy and scipy where possible for speed, especially in distance computations. It is also highly recommended that you debug your code using a much smaller training set (e.g. 100 examples), and then run it on the larger training set once you're sure your code works properly.

The k-NN algorithm is the first (and most trivial) classification algorithm we encounter in the course. In order to classify a new data point, it finds the k nearest neighbors of that point in the dataset and classifies according to the majority label. More details can be found on Wikipedia.

- (a) Write a function that accepts as input: (i) a set of train images; (ii) a vector of labels, corresponding to the images; (iii) a query image; and (iv) a number k. The function will implement the k-NN algorithm to return a prediction of the query image, given the train images and labels. The function will use the k nearest neighbors, using the Euclidean L2 metric. In case of a tie between the k labels of neighbors, it will choose an arbitrary option.
- (b) Run the algorithm using the first n = 1000 training images, on each of the test images, using k = 10. What is the accuracy of the prediction (i.e. the percentage of correct classifications)? What would you expect from a completely random predictor?
- (c) Plot the prediction accuracy as a function of k, for k = 1, ..., 100 and n = 1000. Discuss the results. What is the best k?
- (d) Using k=1, run the algorithm on an increasing number of training images. Plot the prediction accuracy as a function of $n=100,200,\ldots,5000$. Discuss the results.