Recitation 2

Stefan Obradovic

Marble Problem Review from Last Time

You have 6 marbles: 3 green, 2 red, 1 orange, that you want to give away to your 6 friends in sequence as you encounter them through out the day. For each color, the marbles not distinguishable. How many different ways can you give out the 6 marbles? Use product rule.

Solution:

Marble Problem Review from Last Time

You have 6 marbles: 3 green, 2 red, 1 orange, that you want to give away to your 6 friends in sequence as you encounter them through out the day. For each color, the marbles not distinguishable. How many different ways can you give out the 6 marbles? Use product rule.

Solution:

Break up the sequence into subsets by marble color. The first subset is the number of ways you can give out the single orange marble to any of your 6 friends: 6. Assume orange the marble has been given to a friend, and now you have 5 friends left for green/red marbles. The second subset is the number of ways you can give out 3 green marbles to your 5 remaining friends: 10 (by enumeration). Last set has size 1 since you have 2 friends left and 2 marbles of the same color. Since these sets are independent, then by product rule the total number of sequences is 6*10*1=60.

Marble Problem Review from Last Time

You have 6 marbles: 3 green, 2 red, 1 orange, that you want to give away to your 6 friends in sequence as you encounter them through out the day. For each color, the marbles not distinguishable. How many different ways can you give out the 6 marbles? Use product rule.

Solution:

Break up the sequence into subsets by marble color. The first subset is the number of ways you can give out the single orange marble to any of your 6 friends: 6.

Assume orange the marble has been given to a friend, and now you have 5 friends left for green/red marbles. The second subset is the number of ways you can give out 3 green marbles to your 5 remaining friends: 10 (by enumeration). c (5,3)

Last set has size 1 since you have 2 friends left and 2 marbles of the same color. Since these sets are independent, then by product rule the total number of sequences is 6*10*1=60.

Section 1: Functions

Overview

Injection (1-to-1): $(\forall x_1, x_2 \in D)[(f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2)]$

Surjection (onto): $(\forall y \in C)(\exists x \in D)[f(x) = y]$

Bijection: Inj(f) ^ Sur(f)

Is this a function?

NO

F:
$$N \rightarrow N$$
, $f(x) = x/2$

Is this a function?

F:
$$N \rightarrow N$$
, $f(x) = x/2$

NO

Function:

F:
$$R \rightarrow R$$
, $f(x) = 2x+1$

Is it injective?

Is it surjective?

Is it bijective?

Function:

F:
$$R \rightarrow R$$
, $f(x) = 2x+1$

Is it injective? YES

Is it surjective? YES

Is it bijective? YES

Function:

$$F: R \rightarrow Z, f(x) = [x]$$

Is it injective?

Is it surjective?

Is it bijective?

Function:

$$F: R \rightarrow Z, f(x) = \lceil x \rceil$$

Is it injective? NO

Is it surjective? YES

Is it bijective? NO

Function:

$$F: Z \rightarrow Z, f(x) = x^4$$

Is it injective?

Is it surjective?

Is it bijective?

Function:

$$F: Z \rightarrow Z, f(x) = x^4$$

Is it injective? NO

Is it surjective? NO

Is it bijective? NO

Function:

F:
$$R \rightarrow R$$
, $f(x) = 5$

Is it injective?

Is it surjective?

Is it bijective?

Function:

F:
$$R \rightarrow R$$
, $f(x) = 5$

Is it injective? NO

Is it surjective? NO

Is it bijective? NO

Function:

F:
$$R \rightarrow R$$
, $f(x) = e^x$

Is it injective?

Is it surjective?

Is it bijective?

Function:

F:
$$R \rightarrow R$$
, $f(x) = e^x$

Is it injective? YES

Is it surjective? NO

Is it bijective? NO

Function:

F:
$$R \rightarrow R$$
, $f(x) = x^2$

Is it injective?

Is it surjective?

Is it bijective?

Function:

F:
$$R \rightarrow R$$
, $f(x) = x^2$

Is it injective? NO

Is it surjective? NO

Is it bijective? NO

Function:

$$F: R \to R^{\geq 0}, f(x) = x^2$$

Is it injective?

Is it surjective?

Is it bijective?

Function:

$$F: R \to R^{\geq 0}, f(x) = x^2$$

Is it injective? NO

Is it surjective? YES

Is it bijective? NO

Section 2: Proofs

Overview (for now...):

Direct Proof:

• $P \Rightarrow Q$, show that if P is assumed to be true, then Q follows

Indirect Proofs:

- Proof by Contradiction: To prove $P \Rightarrow Q$, Assume $\neg (P \Rightarrow Q) = P ^ \neg Q$, reach a contradiction $(r ^ \neg r)$
- Proof by Contrapositive: To prove $P \Rightarrow Q$, <u>directly</u> prove $\neg Q \Rightarrow \neg P$ (assume not Q, then not P follows)

Overview of Proofs (for now...):

Direct Proofs:

• $P \Rightarrow Q$, show that if P is assumed to be true, then Q follows

Indirect Proofs:

- Proof by Contradiction: To prove $P \Rightarrow Q$, Assume $\neg (P \Rightarrow Q) = P ^ \neg Q$, reach a contradiction $(r ^ \neg r)$
- Proof by Contrapositive: To prove $P \Rightarrow Q$, <u>directly</u> prove $\neg Q \Rightarrow \neg P$ (assume not Q, then not P follows)

Claim: The difference of squares of any two consecutive integers is odd

Claim: The difference of squares of any two consecutive integers is odd

Question re-written formally: (given n, n+1) \Rightarrow ((n+1)² - n²) is odd

 $(n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n+1$ which is odd by definition of parity.

Problem 2:

Claim: Prove that either $2*10^{500} + 15$ or $2*10^{500} + 16$ is not a perfect square

Problem 2:

Claim: Prove that either $2*10^{500} + 15$ or $2*10^{500} + 16$ is not a perfect square:

Question rewritten formally: $\sqrt{(2*10^{500}+15)} \in \mathbb{N} \iff \sqrt{(2*10^{500}+16)} \notin \mathbb{N}$

Suppose $2*10^{500} + 15$ is a perfect square, then by definition we have $n^2 = 2*10^{500} + 15$ By Algebra we have $2*10^{500} + 16 = (2*10^{500} + 15) + 1 = n^2 + 1$

By way of contradiction, suppose $n^2 + 1$ is <u>also</u> a perfect square, then by definition $m^2 = n^2 + 1$. $m^2 - n^2 = 1$. (m-n)(m+n) = 1. Since m and n are integers, this equation cannot hold so we have reached a contradiction, $n^2 + 1$ is not a perfect square.

Problem 3:

Claim: for a, b N if (a*b) % 6 = 0, a % 6 = 0 or b % 6 = 0

Problem 3:

Claim: for a, b N if (a*b) % 6 = 0, a % 6 = 0 or b % 6 = 0

Proof by Counter-example: a = 4, b = 9

6 divides into 36 but it does not divide into 4 or 9

Problem 4:

Claim: if n is an integer and $n^3 + 5$ is odd, then n is even

Problem 4:

Claim: if n is an integer and $n^3 + 5$ is odd, then n is even

$$n^3 + 5$$
 is odd⇒n, even
 $n^2 = (n \times n)$, even
 $n^3 = (n^2 \times n)$, even

$$n^3 + 5 = even + odd = odd$$

Problem 5 (Challenge):

Claim: If x and y are integers and $x^2 + y^2$ is even, prove that x+y is even

Problem 5 (Challenge):

Claim: If x and y are integers and $x^2 + y^2$ is even, prove that x+y is even

```
given (x^2 + y^2) is even, let (x^2 + y^2) = 2k for some integer k,
then for (x + y)^2 = x^2 + 2xy + y^2 = 2k + 2xy = 2(k + xy). Let k + xy = some integer g, then (x+y)^2 is even since it equals 2g (definition of parity)
```

Since $(x+y)^2$ is even, (x+y) must also be even since squaring an even number gives an even number and squaring an odd number gives an odd number:

Case 1: x+y is even

• If x + y is even then x+y = 2m. $(x + y)^2 = (x + y)(x + y) = (2m)(2m) = 2(2m^2)$ which is even by parity, so $(x + y)^2$ is even

Case 2: x+y is odd

• If x + y is odd then x+y = 2n + 1. $(x + y)^2 = (x + y)(x + y) = (2n+1)(2n+1) = 2(2n^2 + 2n) + 1$ which is odd by parity, so $(x + y)^2$ is odd

Coming Soon: Induction & Counting