第六章 图论

6.2 树

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 树的概念和性质

□ 连通且不含圈的无向图称为<mark>树</mark>。树中次为 1 的点称为树叶,次大于 1 的点称为<mark>分枝点</mark>。

■ 树的概念和性质

□ 连通且不含圈的无向图称为<mark>树</mark>。树中次为 1 的点称为树叶,次大于 1 的点称为<mark>分枝点</mark>。

■ 树的概念和性质

□ 连通且不含圈的无向图称为树。树中次为 1 的点称为树叶,次大于 1 的点称为分枝点。

- ② 图 T = (V, E), |V| = n, |E| = m, 则下列关于树的说法是等价的。
 - T 是一个树。
 - T 无圈,且 m=n-1。
 - T 连通,且 m = n 1。
 - T 无圈, 但每加一新边即得惟一一个圈。
 - T 连通, 但任舍去一边就不连通。
 - T 中任意两点,有惟一链相连。

■ 图的生成树

② 设图 $K = (V, E_1)$ 是图 G = (V, E) 的一支撑子图,如果图 $K = (V, E_1)$ 是一个树,那么称 K 是 G 的一个生成树(支撑树),或 简称为图 G 的树。图 G 中属于生成树的边称为树枝,不在生成树中的边称为<mark>弦</mark>。

■ 图的生成树

② 设图 $K = (V, E_1)$ 是图 G = (V, E) 的一支撑子图,如果图 $K = (V, E_1)$ 是一个树,那么称 K 是 G 的一个生成树(支撑树),或 简称为图 G 的树。图 G 中属于生成树的边称为树枝,不在生成树中的边称为弦。

■ 图的生成树

② 设图 $K = (V, E_1)$ 是图 G = (V, E) 的一支撑子图,如果图 $K = (V, E_1)$ 是一个树,那么称 K 是 G 的一个生成树(支撑树),或 简称为图 G 的树。图 G 中属于生成树的边称为树枝,不在生成树中的边称为弦。

 \Box 定理: 一个图 G 有生成树的充要条件是 G 是连通图。

■ 图的生成树

■最小生成树

回 如果图 $T=(V,E_1)$ 是图 G 的一个生成树,那么称 E_1 上所有边的权的和为生成树 T 的权,记作 S(T)。如果图 G 的生成树 T^* 的权 $S(T^*)$,在 G 的所有生成树 T 中的权最小,即 $S(T^*)=\min_T S(T)$,那么称 T^* 是 G 的最小生成树。

■ 最小生成树

- 回 如果图 $T=(V,E_1)$ 是图 G 的一个生成树,那么称 E_1 上所有边的权的和为生成树 T 的权,记作 S(T)。如果图 G 的生成树 T^* 的权 $S(T^*)$,在 G 的所有生成树 T 中的权最小,即 $S(T^*)=\min_T S(T)$,那么称 T^* 是 G 的最小生成树。
- 某六个城市之间的道路网如图所示,要求沿着已知长度的道路联结 六个城市的电话线网,使电话线的总长度最短。

■ 最小生成树

- 回 如果图 $T=(V,E_1)$ 是图 G 的一个生成树,那么称 E_1 上所有边的权的和为生成树 T 的权,记作 S(T)。如果图 G 的生成树 T^* 的权 $S(T^*)$,在 G 的所有生成树 T 中的权最小,即 $S(T^*)=\min_T S(T)$,那么称 T^* 是 G 的最小生成树。
- 某六个城市之间的道路网如图所示,要求沿着已知长度的道路联结 六个城市的电话线网,使电话线的总长度最短。

■ 最小生成树

- 回 如果图 $T=(V,E_1)$ 是图 G 的一个生成树,那么称 E_1 上所有边的权的和为生成树 T 的权,记作 S(T)。如果图 G 的生成树 T^* 的权 $S(T^*)$,在 G 的所有生成树 T 中的权最小,即 $S(T^*)=\min_T S(T)$,那么称 T^* 是 G 的最小生成树。
- 某六个城市之间的道路网如图所示,要求沿着已知长度的道路联结 六个城市的电话线网,使电话线的总长度最短。

根据破圈法和避圈法两种方式得到了图的两个不同的支撑树,由此可以看到连通图的支撑树不是唯一的。

- 根树及其应用
 - □ 若一个有向图在不考虑边的方向时是一棵树,则称这个有向图为<mark>有</mark> 向树。

■ 根树及其应用

- 若一个有向图在不考虑边的方向时是一棵树,则称这个有向图为有 向树。
- □ 有向树 T, 恰有一个结点入次为 0, 其余各点入次均为 1, 则称 T 为根树 (又称外向树)。

■ 根树及其应用

- 若一个有向图在不考虑边的方向时是一棵树,则称这个有向图为有 向树。
- □ 有向树 T, 恰有一个结点入次为 0, 其余各点入次均为 1, 则称 T 为根树 (又称外向树)。
- ② 在根树中,若每个顶点的出次小于或等于 m,称这棵树为m 叉树。若每个顶点的出次恰好等于 m 或零,则称这棵树为完全 m 叉树。当 m=2 时,称为二叉树、完全二叉树。

- 小结
 - □树
 - 🛮 生成树
 - 深探法
 - 广探法
 - □ 最小生成树
 - Kruskal 算法
 - 破圈法
 - □ 根树

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈