自

心小

卷无效

东南大学考试卷

 课程名称
 工程矩阵理论
 考试学期
 2020 秋
 得分

 适用专业
 工科硕士研究生
 考试形式
 闭卷
 考试时间长度
 150 分钟

 题号
 -- 二
 三
 四
 五
 六

 扣分
 -- 二
 二
 二
 二
 六

- $-. \qquad (20\%) \ \ \mathcal{U}_M \in C^{n\times n} \ , \ \ V_M = \left\{X \in C^{n\times n} \mid MX = XM\right\}.$
 - 1. 证明: V_M 是 $C^{n\times n}$ 的子空间.

2. 设
$$n=2$$
, $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. 分别求 V_A , V_B , $V_A \cap V_B$, $V_A + V_B$ 的一组基.

二. (10%) 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$$
,求 $M = \begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的广义逆矩阵 M^+ .

三. (20%) 已知 $C^{2\times 2}$ 上的线性变换f定义如下:

对任意
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C^{2\times 2}$$
, $f(X) = \begin{pmatrix} a+b & 2a+2b \\ c+2d & c+2d \end{pmatrix}$.

1. 求f在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵A;

2. 求 f 的特征值及相应的特征子空间的基;

3. 问:是否存在 C^{2*2} 的基,使得f的矩阵是对角阵?如存在,请给出这样的一组基及相应的对角阵,如不存在,请给出理由.

四. (12%) 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ -2 & 0 & 2 & 1 \end{pmatrix}$$
, 向显 $\eta = (1,0,0,0)^T$, R^4 的子空间
$$V = \left\{ x \in R^4 \mid Ax = 0 \right\}.$$

- 1. 求V在 R^4 中的正交补空间 V^1 的一组基.
- 2. 求 η 在 V^1 中的正投影.

五. (20%) 已知矩阵
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & a & 6 \\ -2 & 0 & -5 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & c \\ 0 & 0 & b \end{pmatrix}$$
相似.

1. 确定参数 a,b,c 的取值;

2. 求一个多项式 p(x), 使得 $e^A = p(A)$.

六. (18%) 证明题:

1. 已知 $\|\cdot\|_{m_o}$ 是 $C^{n\times n}$ 上矩阵 ∞ 范数,实数 $a \ge n$.证明:由 $\|A\|_a = a\|A\|_{m_o}$ ($\forall A \in C^{n\times n}$)定义的 $C^{n\times n}$ 上的范数是相容的.

2. 己知 α , β 是n维非零列向量,矩阵 $A=\alpha\beta^H$ 证明: $A^*=[tr(A^HA)]^{-1}A^H$.

3. 设A 是n 所 Hermite 矩阵, α 是n 维列向量,且 $\alpha^H \alpha$ < 1. 证明 $I - \alpha \alpha^H$ 是正定阵,且 $A - A \alpha \alpha^H$ 相似于实对角阵.

4. 设 A 是 $n \times n$ 矩阵. 证明: 矩阵方程 $A^2 X = A$ 有解当且仅当 $C^n = R(A) + K(A)$.