Link-wise Artificial Compressibility Method (part 1)

by Yifan Yang With supervisor Thomas Zeiser

27.01.2015

Outline

- project plan
- 2. Intro to LWACM
- 3. C implementation
- 4. results

seminar plan

Two presentations:

- 1. C implementation of Lwacm
- 2. code optimization and parallelization

All sources and data are available on Github:

http://github.com/cosailer/lwacm

Based on paper:

http://www.sciencedirect.com/science/article/pii/S0021999114004823

artificial compressibility method

The artificial compressibility method (ACM), is a numerical approach for solving the incompressible Navier-Stokes equations (INSE).

Link-wise formulation

The LW-ACM is a discrete formulation of the ACM within a framework similar to the one of the LBM. It operates on a regular Cartesian spatial mesh of mesh size δx with a regular time step δt . In accordance with the established practice of LBM, we shall express all following quantities in terms of lattice units, i.e. adopt δx as unit of length and δt as unit of time

single-step LW-ACM

```
1. for all time step t do
       for all mesh point x do
2.
3.
                for all index \alpha do
4.
                         load \rho(x-\xi\alpha, t) and u(x-\xi\alpha, t)
                         compute f(e)\alpha(x-\xi\alpha, t)
5.
                         compute f(e,o)\alpha(x-\xi\alpha, t)
6.
7.
                end for
8.
                for all index \alpha do
9.
                         compute f\alpha(x, t+1)
10.
                end for
11.
                compute \rho(x, t+1)
12.
                compute u(x, t+1)
                store \rho(x, t+1) and u(x, t+1)
13.
14. end for
15. End for
```

C implementation

>> Main array:

```
double p[2][N_X+2][N_Y+2][N_Z+2]
double u[2][N_X+2][N_Y+2][N_Z+2][3]
```

Array size can be really large if we increase domain size

```
>> Main loop:
```

```
for(t = 0; t < T MAX; t++)
    for( x = 1; x < N_X+1; x++)
        for( y = 1; y < N_Y+1; y++)
             for( z = 1; z < N_Z+1; z++)
                 alpha_0_call();
                 alpha_1_call();
                 alpha_18_call();
                 // step 11, compute p(x, t+1)
                 // step 12, compute u(x, t+1)
      _end for
    // set boundary condition
    // store p(x, t+1)
```

```
>> Function call for alpha loop:
void alpha 0 call()
     //load p(x-xia) and u(x-xia)
     p_load = p[t_now][x][y][z];
     u_load[0] = u[t_now][x][y][z][0];
     u_load[1] = u[t_now][x][y][z][1];
     u_load[<mark>2</mark>] = u[t_now][x][y][z][<mark>2</mark>];
     u xi = 0;
     u_2 = u_load[0]*u_load[0] + u_load[1]*u_load[1] + u_load[2]*u_load[2];
     u \times xi = 0;
     // step 5, compute f(e)(x-xi[0], t)
     f_e = 1.0/3.0 * p_load * ( 1 + 3*u_xi + 4.5*u_xi*u_xi - 1.5*u_2 );
     f e o = 3.0 * 1.0/3.0 * p load * u xi; // Eq.10
     f_x_t = 3.0 * 1.0/3.0 * p[t_now][x][y][z] * u_x_xi;
     // step 9, compute f(x, t+1)
     f[0] = f_e + 2*(omega-1/omega)*(f_x_t - f_e_o);
```

Results

Performance Measurement

- >> runtime: CPU timer, wall clock
- >> time step t = (Domain size) / (N_X* N_Y* N_Z)

	Domain size	Runtime (avg)	Stream results
Atom 450	31 250 000	58.57	5232 MB/S
Exynos 5250	24 000 000	21.48	3258 MB/S
l7 2600	200 000 000	39.62	12420 MB/S

Operation per lattice update¹²

```
Assume N_X = N_Y = N_Z = N

>> 543 * N^3 * t (FPOPs)

>> (338 * N^3 + 24 * N^2 + 48 * N) * t (mem OPs)
```

Performance

```
FPOPS:
     543 \, N^3 \, t / T
   = 543 * MLUPS
Memory speed:
     (338 N^3 + 24 N^2 + 48 N) t / T
   = (338 D + 24 N^2 t + 48 N) / T
   = 338 * MLUPS
D: domain size T: program runtime
```


Thank you for your time !

See you in part 2