Handbook for the dm R Package

Robert Schnitman

April 04, 2020

Contents

Int	troduction	5								
Ins	stallation	7								
1	between()									
2	<pre>dedup() 2.1 dup_rows()</pre>	11 11 11 11								
3	differ2()	13								
4	expected()	15								
5	keep()	17								
6	<pre>load_libraries()</pre>	19								
7	numNA() 7.1 rowNA()/colNA()	21 21								
8	<pre>parity()</pre>	23								
9	recode() 9.1 NAvl()	25 25 26								
10	rename_file()	27								
11	stopif()	29								
12	<pre>type_class()</pre>	31								
13	zero flag()	33								

1	CONTENTS
References	35
See also	37

Introduction

The dm package is inspired by the data management functions in other statistical packages such as Stata and SPSS. The purpose of this package is to simplify data management/checking.

6 CONTENTS

Installation

Currently, this package is only available on Github, so please use devtools to install this package.

```
if (!require(devools)) {
   install.packages('devtools')
   library(devtools)
}
install_github('robertschnitman/dm')
library(dm)
```

8 CONTENTS

between()

The between() function acts similar to SQL's BETWEEN clause¹, conditioning values between lower and upper limits.

The function has four parameters:

- 1. x, a vector;
- 2. low, a user-specified lower limit;
- 3. high, a user-specified upper limit; and
- 4. inclusive = TRUE, an input that determines whether the between() function will condition inclusive (if TRUE) of the specified limits or not (if FALSE).

A vector is returned by the function.

```
k <- 1:100
between(k, 5, 24)
##
                                                                                        [1] FALSE FALSE FALSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                                                                                                                    TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                      TRUE
                                                                     [25] FALSE F
                                                                     [37] FALSE F
                                                                     [49] FALSE F
                                                                     [61] FALSE F
                                                                     [73] FALSE F
                                                                     [85] FALSE F
                                                                     [97] FALSE FALSE FALSE
  subset(mtcars, between(mpg, 18, 21, inclusive = FALSE))
##
                                                                                                                                                                                                                                                                                                                                                                      mpg cyl disp hp drat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            wt qsec vs am gear carb
## Hornet Sportabout 18.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8 360.0 175 3.15 3.440 17.02 0
```

¹https://libguides.library.kent.edu/SPSS/RecodeVariables

## Va	aliant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
## Me	erc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
## Po	ontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
## Fo	rrari Dino	19 7	6	145 0	175	3 62	2 770	15 50	Λ	1	5	6

dedup()

The dedup() function deduplicates data. It functions the same as unique().

```
dedup(iris$Species)
```

```
## [1] setosa versicolor virginica
## Levels: setosa versicolor virginica
```

$2.1 \, \text{dup_rows()}$

The $dup_rows()$ functions returns the duplicated rows in a 2-dimensional dataset. Functionally the same as x[duplicated(x),], where x is a matrix or data frame

```
dup_rows(iris)
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 143 5.8 2.7 5.1 1.9 virginica
```

$2.2 \quad dup_nrow()$

The dup_nrow() function counts the number of duplicates in a dataset.

```
dup_nrow(iris)
```

```
## [1] 1
```

2.3 dup_mark()

The dup_mark() function codes duplicate rows with a 1 and non-duplicates with a 0.

```
dup_mark(iris)
```

differ2()

The differ2() function codes differences between two vectors as a 1; otherwise, 0. This function is based on Stata's egen differ() command. 1

```
x <- 1:5
y <- c(1, 6, 3, 8, 5)
z <- differ2(x, y)
cbind(x, y, z)
## x y z
## [1,] 1 1 0
## [2,] 2 6 1
## [3,] 3 3 0
## [4,] 4 8 1
## [5,] 5 5 0
```

 $^{^{1} \}rm https://libguides.library.kent.edu/SPSS/RecodeVariables$

expected()

```
The {\tt expected}() function stops an execution if a specific class is not expected.
```

```
expected(2, 'character')
```

Error in expected(2, "character"): Class "character" expected. Received class numeric.

keep()

The keep() function behaves the same as subset(). The naming scheme is inspired by Stata's keep command.¹

```
keep(mtcars, between(mpg, 18, 21))
```

```
##
                     mpg cyl disp hp drat
                                               wt qsec vs am gear carb
## Mazda RX4
                    21.0
                           6 160.0 110 3.90 2.620 16.46
## Mazda RX4 Wag
                    21.0
                           6 160.0 110 3.90 2.875 17.02
## Hornet Sportabout 18.7
                           8 360.0 175 3.15 3.440 17.02
                                                                     2
## Valiant
                    18.1
                           6 225.0 105 2.76 3.460 20.22
## Merc 280
                    19.2
                           6 167.6 123 3.92 3.440 18.30
                                                        1 0
## Pontiac Firebird 19.2
                           8 400.0 175 3.08 3.845 17.05
                                                        0 0
                                                                3
## Ferrari Dino
                    19.7
                          6 145.0 175 3.62 2.770 15.50 0 1
```

 $^{^{1} \}rm https://libguides.library.kent.edu/SPSS/RecodeVariables$

load_libraries()

The load_libraries() function checks whether a set of libraries have been installed: if the libraries exist, the function will load them; otherwise, the function will install and then load them.

```
load_libraries('tidyverse', 'abind', 'ggformula')
```

numNA()

Similar to Stata, numNA counts the number of missing values: if m is set to 1, then it counts the number of missing values per row; if set to 2, then it counts the number of missing values per column; otherwise, it counts the total number of missing values.

```
numNA(airquality)
```

[1] 44

7.1 rowNA()/colNA()

The function rowNA() is the equivalent of numNA(x, 1), where x is a data frame. It counts the number of missing values per row. The function colNA() does the same but per column.

```
rowNA(airquality)
```

colNA(airquality)

```
## Ozone Solar.R Wind Temp Month Day ## 37 7 0 0 0 0
```

¹https://libguides.library.kent.edu/SPSS/RecodeVariables

parity()

The function parity() determines whether a number is even or odd. This function and its related functions is.even() and is.odd() are inspired by Julia's iseven() and isodd() functions.¹ The get_even() and get_odd() functions subset a vector for its even and odd numbers respectively.

```
parity(mtcars$carb)
  [1] "even" "even" "odd"
                            "odd"
                                  "even" "odd"
                                               "even" "even" "even" "even"
## [11] "even" "odd"
                     "odd"
                            "odd"
                                  "even" "even" "even" "odd"
              "even" "even" "even" "odd"
                                                "even" "even" "even" "even"
## [21] "odd"
## [31] "even" "even"
is.even(1)
## [1] FALSE
is.even(mtcars$carb)
       TRUE TRUE FALSE FALSE
                                                TRUE TRUE
                               TRUE FALSE
                                           TRUE
                                                            TRUE
                                                                  TRUE FALSE
## [13] FALSE FALSE
                   TRUE
                               TRUE FALSE
                                           TRUE FALSE FALSE
                                                            TRUE
                                                                  TRUE TRUE
                         TRUE
## [25]
       TRUE FALSE
                   TRUE
                         TRUE
                               TRUE TRUE
                                           TRUE
is.odd(2)
## [1] FALSE
is.odd(mtcars$carb)
## [1] FALSE FALSE TRUE TRUE FALSE
                                    TRUE FALSE FALSE FALSE FALSE TRUE
       TRUE
             TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
              TRUE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE
```

¹https://libguides.library.kent.edu/SPSS/RecodeVariables

```
get_odd(mtcars$carb)
## [1] 1 1 1 3 3 3 1 1 1 1
get_even(mtcars$carb)
## [1] 4 4 2 4 2 2 4 4 4 4 4 2 2 2 4 6 8 2
```

recode()

The recode() function replaces an initial set of values with a new set of values for a vector. The function recode_all() applies recode() to all columns in a dataset

The inputs for recode() are the following:

- 1. a vector;
- 2. a set of values to replace ("initial values"); and
- 3. a set of values values that will replace the initial values.

```
mtcars$am
```

9.1 NAvl()

The NAvl() function replaces a vector's missing values with a specified value set. The function NAvlO replaces a vector's missing values with 0.

```
with(airquality, NAvl(Ozone, mean(Ozone, na.rm = TRUE)))
##
     [1]
          41.00000
                    36.00000
                               12.00000
                                         18.00000
                                                   42.12931
                                                              28.00000
                                                                        23.00000
##
     [8]
          19.00000
                     8.00000
                               42.12931
                                          7.00000
                                                   16.00000
                                                              11.00000
                                                                        14.00000
##
    [15]
          18.00000
                    14.00000
                               34.00000
                                          6.00000
                                                   30.00000
                                                              11.00000
                                                                         1.00000
##
    [22]
          11.00000
                     4.00000
                               32.00000
                                         42.12931
                                                   42.12931
                                                              42.12931
                                                                        23.00000
##
    [29]
          45.00000 115.00000
                               37.00000
                                         42.12931
                                                   42.12931
                                                              42.12931
                                                                        42.12931
##
    [36]
          42.12931
                   42.12931
                               29.00000
                                         42.12931
                                                   71.00000
                                                              39.00000
                                                                        42.12931
    [43]
          42.12931 23.00000 42.12931 42.12931 21.00000 37.00000
                                                                        20.00000
```

42.12931

42.12931

42.12931 135.00000

42.12931

49.00000

##

##

[50]

[57]

12.00000

42.12931

13.00000

42.12931

42.12931

42.12931

```
[64]
           32.00000
                      42.12931
                                  64.00000
                                             40.00000
                                                         77.00000
                                                                    97.00000
                                                                                97.00000
##
##
    [71]
           85.00000
                      42.12931
                                  10.00000
                                             27.00000
                                                         42.12931
                                                                     7.00000
                                                                                48.00000
##
    [78]
           35.00000
                      61.00000
                                  79.00000
                                             63.00000
                                                         16.00000
                                                                    42.12931
                                                                                42.12931
##
    [85]
           80.00000 108.00000
                                  20.00000
                                             52,00000
                                                         82,00000
                                                                    50.00000
                                                                                64.00000
    [92]
           59.00000
                      39.00000
                                   9.00000
                                                         78.00000
                                                                    35.00000
                                                                                66.00000
##
                                             16.00000
##
    [99]
          122.00000
                      89.00000 110.00000
                                             42.12931
                                                         42.12931
                                                                    44.00000
                                                                                28.00000
##
   [106]
           65.00000
                      42.12931
                                  22.00000
                                             59.00000
                                                         23.00000
                                                                    31.00000
                                                                                44.00000
##
   Γ1137
           21.00000
                        9.00000
                                  42.12931
                                             45.00000 168.00000
                                                                    73.00000
                                                                                42.12931
   [120]
           76.00000 118.00000
                                  84.00000
                                             85.00000
                                                         96.00000
                                                                    78.00000
                                                                                73.00000
   [127]
           91.00000
                      47.00000
                                  32.00000
                                             20.00000
                                                         23.00000
                                                                    21.00000
                                                                                24.00000
##
   [134]
           44.00000
                      21.00000
                                  28.00000
                                               9.00000
                                                         13.00000
                                                                    46.00000
                                                                                18.00000
##
                                  16.00000
           13.00000
                      24.00000
                                                                                 7.00000
## [141]
                                             13.00000
                                                         23.00000
                                                                    36.00000
## [148]
           14.00000
                      30.00000
                                  42.12931
                                             14.00000
                                                         18.00000
                                                                    20.00000
NAvl0(airquality$0zone)
                    12
                                  28
                                       23
                                                 8
                                                          7
                                                                                          6
##
     [1]
           41
               36
                         18
                              0
                                           19
                                                     0
                                                             16
                                                                  11
                                                                       14
                                                                           18
                                                                                14
                                                                                    34
##
    [19]
           30
               11
                     1
                              4
                                  32
                                       0
                                            0
                                                 0
                                                    23
                                                         45
                                                            115
                                                                  37
                                                                        0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                         11
##
    [37]
            0
                29
                     0
                         71
                             39
                                   0
                                       0
                                           23
                                                 0
                                                     0
                                                         21
                                                             37
                                                                  20
                                                                       12
                                                                           13
                                                                                 0
                                                                                      0
                                                                                          0
    [55]
            0
                     0
                              0
                                   0
                                          135
                                                    32
                                                             64
                                                                  40
                                                                      77
                                                                           97
                                                                                97
                                                                                    85
                                                                                          0
##
                0
                          0
                                       0
                                                49
                                                          0
               27
                          7
##
    [73]
           10
                     0
                             48
                                  35
                                       61
                                           79
                                                63
                                                    16
                                                          0
                                                               0
                                                                  80
                                                                     108
                                                                           20
                                                                                52
                                                                                    82
                                                                                         50
##
    [91]
           64
               59
                    39
                          9
                             16
                                  78
                                       35
                                           66 122
                                                    89
                                                       110
                                                               0
                                                                   0
                                                                       44
                                                                           28
                                                                                65
                                                                                      0
                                                                                         22
```

42.12931

42.12931

9.2 switchv()

59

91

23

23

47

36

31

32

7 14

44

20

21

23

30

9

0 14

21

0 45 168

24

44 21

18 20

73

28

0

9 13

76 118

46

84

18

85

13

96

24

78

16

73

13

[109]

[127]

[145]

##

##

##

The switchv() function behaves the same as switch() except that it applies over a vector (i.e., it is a vectorized version of the latter). The function swap is a shorthand synonym for switchv(). The function switchv_all()/swap_all() applies switchv()/swap() to all columns in a data frame.

These functions are inspired by SPSS's RECODE command.¹

 $^{^{1} \}rm https://libguides.library.kent.edu/SPSS/Recode Variables$

rename_file()

The function rename_file() renames files in a directory based on a given pattern. It has three inputs:

- 1. filepath, which specifies the desired directory of where the files to be renamed are;
- 2. pattern_now, which is a regular expression pattern of the file names as they currently are; and
- 3. pattern_new, which is the desired string that replaces the file names detected in pattern_now.

From a folder, replace file names having "Fall 2018" with "Spring 2019."
rename_file('C:/my/folder/', 'Fall 2018', 'Spring 2019')

stopif()

The stopif() function halts an execution if a condition is met.

```
stopif(2 < 3)
## Error in stopif(2 < 3): Stop condition met.
stopif(2 < 3, 'This is a custom message! STOP!')
## Error in stopif(2 < 3, "This is a custom message! STOP!"): This is a custom message! STOP!</pre>
```

type_class()

The function type_class() provides the type and class of an object—tc() is a synonym. The type() function provides the object's type.

```
type_class(mtcars)

## type class
## "list" "data.frame"

tc(mtcars)

## type class
## "list" "data.frame"

type(mtcars)

## [1] "list"
```

zero_flag()

The zero_flag() function flags a zero at the start of a value. This function is useful for formatting numbers with a specified number of digits such as Social Security Numbers.

```
zero_flag(700, 4, format = 'd') # == '0700'
## [1] "0700"
```

References

Julia documentation. numbers. https://docs.julialang.org/en/release-0.4/stdlib/numbers/

Kent State University. $SPSS\ Recode.$ https://libguides.library.kent.edu/SPSS/RecodeVariables

Stata. $egen.\ https://www.stata.com/manuals13/degen.pdf$

w3schools.com. SQL BETWEEN $OPERATOR.\ https://www.w3schools.com/sql/sql_between.asp$

See also

dm GitHub Page. https://github.com/robertschnitman/dm IBM's SPSS. https://www.ibm.com/analytics/spss-statistics-software Robert Schnitman's Profile. https://robertschnitman.netlify.com/ Stata's website. https://www.stata.com/