Performance auto-tuning of a fluid simulation on heterogeneous devices

Presentation 3

Olafs Vandans, s1139243

December progress

December progress

• Rendering

Current progress

- Simulation parallelised fully
- Functional auto-tuning of parameters

Parallelisation

• Each simulation step → OpenCL kernel(s)

•	kernel	runtime	used in
	addSource	$O(n^3)$	density, velocity step
	diffuse	$O(Sn^3)$	density, velocity step
	advect	$O(n^3)$	density, velocity step
	project1	$O(n^3)$	velocity step
	project2	$O(Sn^3)$	velocity step
	project3	$O(n^3)$	velocity step
	setBound	$O(n^2)$	advect, diffuse, project operations

Parameter changing

- Resolution
 - 3D-resize the simulation space
 - Separate kernel
 - Fast enough not to notice
- Precision of the linear equation solvers
 - Affects diffuse and projection steps
 - Changes number of iterations

Test run - CPU

Fluid steps execution times over 338 frames
Plot as stacked histogram

Test run - CPU

Fluid steps execution times over 338 frames Plot as stacked histogram

Time, ns

velocity-addSource
velocity-diffuse
velocity-project1
velocity-advect
velocity-project2
density-addSource
density-diffuse
density-advect

Test run - GPU

Test run - GPU

3586,76 y=

-0,152632

Roadmap

Things to do

- Parallel optimizations
 - Local reductions
 - Coalesced memory access
- Useful output (fire)
- Better parameter tuning explore the impact on FPS of each parameter, devise the optimum configuration)