Linkage disequilibrium.

We consider first genetic markers of two alleles in diploid case. Then the allelic marker has two levels "+" and "-", and the genotype marker has three levels "++", "+-" and "--".

1: Allelic linkage disequilibrium (LDE) is based on the alele frequencies p_+ and p_- . For any two fixed locuses denote p_{xy} is the frequency of the variant x at the first locus and variant y at the second one. In these notations we have the following frequency table:

Locus 1\Locus 2
 "+"
 "-"
 Total

 "+"

$$p_{++}$$
 p_{+-}
 $p_{+\bullet}$

 "-"
 p_{-+}
 p_{--}
 $p_{-\bullet}$

 Total
 $p_{\bullet+}$
 $p_{\bullet-}$
 1

Introduce the coefficient $D = p_{++} - p_{\bullet +} p_{+\bullet}$, which is the covariance between the two random variables taking values 0 under + variant and 1 under - variant (or vice versa).

There are two ways to determine the allelic LDE coefficients:

$$r = \frac{D}{\sqrt{p_{+\bullet}(1 - p_{+\bullet})p_{\bullet+}(1 - p_{\bullet+})}}$$

and r^2 is commonly used, and

$$D' = |D|/D_{\text{max}},$$

where

$$D_{\max} = \begin{cases} \min(p_{+\bullet}p_{\bullet+}, p_{-\bullet}p_{\bullet-}), \text{ under } D < 0\\ \min(p_{+\bullet}p_{\bullet-}, p_{-\bullet}p_{\bullet+}), \text{ under } D > 0. \end{cases}$$

We are using the signed version of the D' coefficient

$$D_s' = D/D_{\text{max}}$$

(or the r coefficient) to measure allelic LDE in two locuses.

2: Composite LDE. In the diploid organisms all the genome variants in two locuses (haplotypes) are collected in the following table:

Locus 1\Locus 2	"++"	"+-"	"-+"	""	Total
"++"	p_{++++}	p_{+++-}°	p_{++-+}°	p_{++}	$p_{++\bullet}$
"+-"	p_{+-++}°	p_{+-+-}°	p_{++}°	p_{+}°	$p_{+-\bullet}$
"-+"	p_{-+++}°	p_{-++-}°	p_{-+-+}°	p_{-+}°	$p_{-+\bullet}$
""	p_{++}	p_{+-}°	p_{+}°	$p_{}$	p_{\bullet}
Total	$p_{ullet++}$	$p_{\bullet +-}$	$p_{\bullet-+}$	p_{ullet}	1

After unification cells with identical combination we obtain 10-cells table:

Locus $1\setminus \text{Locus } 2$	"++"	"+-"	"-+"	""	Total
"++"	p_{++++}	p_{+++-}		p_{++}	$p_{++\bullet}$
"+-"	p_{+-++}	p_{+-+-}	p_{++}	p_{+}	$p_{+-ullet}$
""	p_{++}	p_{+-}		$p_{}$	p_{\bullet}
Total	$p_{ullet++}$	$p_{ullet+-}$		p_{ullet}	1

were $p_{ijks} = 2p_{ijks}^{\circ} = 2p_{ijsk}^{\circ} = 2p_{jiks}^{\circ}$.

The haploid (gametic) part of the LDE: $D_q = p_q - p_{+\bullet}p_{\bullet+}$, where

$$p_g = p_{++++} + p_{+++-}/2 + p_{+-++}/2 + (p_{+-+-} + p_{+--+})/4.$$

The diploid (non gametic) part LDE: $D_d = p_d - p_{+\bullet}p_{\bullet+}$ linkage disequilibrium, where

$$p_d = p_{++++} + p_{+++-}/2 + p_{+-++}/2 + p_{+-+-}/2.$$

The composite LDE:

$$\Delta = D_q + D_d = p_q + p_d - 2p_{+\bullet}p_{\bullet+}.$$

If genotypes are known only the composite LDE cannot be obtained. Then one use the within chromosome equilibrium $p_{+-+-} = p_{+--+}$. Under the within chromosome equilibrium $\Delta = 2D_g$.

The composite linkage disequilibrium correlation is defined as follows:

$$r = \frac{\Delta}{\sqrt{(p_{+\bullet}p_{-\bullet} + D_1)(p_{\bullet+}p_{\bullet-} + D_2)}},$$

where $D_1 = HWD_1 = p_{++\bullet} - p_{+\bullet}^2$, $D_2 = HWD_2 = p_{\bullet++} - p_{\bullet+}^2$.

Under within chromosome equilibrium assumption if to set

$$\xi_1 = \begin{cases} -1, & \text{if genotype is "++",} \\ 0, & \text{if genotype is "+-",} \\ 1, & \text{if genotype is "--",} \end{cases} \text{ and } \xi_2 = \begin{cases} -1, & \text{if genotype is "++",} \\ 0, & \text{if genotype is "+-",} \\ 1, & \text{if genotype is "---",} \end{cases}$$

then $\Delta = \mathbf{cov}(\xi_A, \xi_B)$ and $r = \mathbf{corr}(\xi_A, \xi_B)$.