Cálculo I

Pedro H A Konzen

15 de março de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios sobre cálculo de funções de uma variável.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Ca	apa			i
Licença Prefácio				ii
				iii
Su	ımár	io		iv
1	Fundamentos sobre funções			1
	1.1	Defini	ção e gráfico	. 1
	1.2	Tipos	de funções	. 4
		1.2.1	Tipos de funções fundamentais	
		1.2.2	Funções potência	
		1.2.3	Funções polinomiais	. 8
		1.2.4	Funções racionais	. 8
		1.2.5	Funções algébricas	. 8
		1.2.6	Funções transcendentes	. 8
		1.2.7	Funções definidas por partes	. 8
	1.3	Funçõ	ses trigonométricas	
		1.3.1	Funções seno e cosseno	. 10
		1.3.2	Tangente, cotangente, secante e cossecante	. 13
		1.3.3		
	1.4	Funçõ	ses exponenciais e logarítmicas	. 15
Re	espo	stas do	os Exercícios	16
Re	e <mark>ferê</mark>	ncias l	Bibliográficas	17
Ín	dice	Remis	ssivo	18

Capítulo 1

Fundamentos sobre funções

Ao longo deste capítulo, contaremos com o suporte de alguns códigos Python com o seguinte preâmbulo:

```
from sympy import *
init_session()
```

1.1 Definição e gráfico

Uma **função** de um conjunto D em um conjunto Y é uma regra que associa um único elemento $y \in Y^1$ a cada elemento $x \in D$. Costumeiramente, identificamos uma função por uma letra, por exemplo, f e escrevemos f: $D \to Y$, y = f(x), para denotar que a função f toma valores de entrada em D e de saída em Y.

O conjunto D de todos os possíveis valores de entrada da função é chamado de **domínio**. O conjunto de todos os valores f(x) tal que $x \in D$ é chamado de **imagem** da função.

Ao longo do curso de cálculo, as funções serão definidas apenas por expressões matemáticas. Nestes casos, salvo explicitado o contrário, suporemos que a função tem números reais como valores de entrada e de saída. O domínio e a imagem deverão ser inferidos da regra algébrica da função ou da aplicação de interesse.

Exemplo 1.1.1. Determinemos o domínio e a imagem de cada uma das seguintes funções:

 $y \in Y$ denota que y é um elemento do conjunto Y.

- $y = x^2$:
 - Para qualquer número real x, temos que x^2 também é um número real. Então, dizemos que seu domínio (natural)² é o conjunto $\mathbb{R} = (-\infty, \infty)$.
 - Para cada número real x, temos $y = x^2 \ge 0$. Além disso, para cada número real não negativo y, temos que $x = \sqrt{y}$ é tal que $y = x^2$. Assim sendo, concluímos que a imagem da função é o conjunto de todos os números reais não negativos, i.e. $[0, \infty)$.
- y = 1/x:
 - Lembremos que divisão por zeros não está definida. Logo, o domínio desta função é o conjunto dos números reais não nulos, i.e. $(-\infty,0) \cup (0,\infty)$.
 - Primeiramente, observemos que se y=0, então não existe número real tal que 0=1/x. Ou seja, 0 não pertence a imagem desta função. Por outro lado, dado qualquer número $y \neq 0$, temos que x=1/y é tal que y=1/x. Logo, concluímos que a imagem desta função é o conjunto de todos os números reais não nulos, i.e. $(-\infty,0) \cup (0,\infty)$.
- $y = \sqrt{1 x^2}$:
 - Lembremos que a raiz quadrada de números negativos não está definida. Portanto, precisamos que:

$$1 - x^2 \ge 0 \Rightarrow x^2 \le 1 \tag{1.1}$$

$$\Rightarrow -1 \le x \le 1. \tag{1.2}$$

Donde concluímos que o domínio desta função é o conjunto de todos os números x tal que $-1 \le x \le 1$ (ou, equivalentemente, o intervalo [-1,1]).

Com o Sympy, podemos usar o comando

reduce inequalities(1-x**2>=0,[x])

para resolvermos a inequação $1 - x^2 \ge 0$.

 $^{^2}$ O **domínio natural** é o conjunto de todos os números reais tais que a expressão matemática que define a função seja possível.

– Uma vez que $-1 \le x \le 1$, temos que $0 \le 1 - x^2 \le 1$ e, portanto, $0 \le \sqrt{1 - x^2} \le 1$. Ou seja, a imagem desta função é o intervalo [0,1].

O **gráfico** de uma função é o conjunto dos pares ordenados (x, f(x)) tal que x pertence ao domínio da função. Mais especificamente, para uma função $f: D \to \mathbb{R}$, o gráfico é o conjunto

$$\{(x, f(x))|x \in D\}.$$
 (1.3)

O **esboço do gráfico** de uma função é, costumeiramente, uma representação geométrica dos pontos de seu gráfico em um plano cartesiano.

Exemplo 1.1.2. A Figura 1.1 mostra os esboços dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$.

Figura 1.1: Esboço dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$ dadas no Exemplo 1.1.2.

Para plotarmos os gráficos destas funções usando SymPy podemos usar os seguintes comandos:

Exercícios

Em construção ...

1.2 Tipos de funções

Nesta seção, vamos ressaltar alguns tipos de funções que aparecerem com frequência nos estudos de cálculo.

1.2.1 Tipos de funções fundamentais

Uma **função linear** é uma função da forma f(x) = mx + b, sendo m e b parâmetros³ dados. Recebe este nome, pois seu gráfico é uma linha (uma reta)⁴.

Quando m=0, temos uma **função constante** f(x)=b. Esta tem domínio $(-\infty,\infty)$ e imagem $\{b\}$. Por outro lado, toda função linear com $m\neq 0$ tem $(-\infty,\infty)$ como domínio e imagem.

Exemplo 1.2.1. A Figura 1.2 mostra esboços dos gráficos das funções lineares f(x) = -5/2, f(x) = 2 e f(x) = 2x - 1.

Figura 1.2: Esboços dos gráficos das funções lineares y = -5/2, y = 2 e y = 2x - 1 discutidas no Exemplo 1.2.1.

 $^{^3 {\}rm n\'umeros}$ reais.

⁴Não confundir com o conceito de linearidade de operadores.

Observação 1.2.1. O lugar geométrico do gráfico de uma função linear é uma reta (ou linha). O parâmetro m controla a inclinação da reta em relação ao eixo x^5 . Quando m = 0, temos uma reta horizontal. Quando m > 0 temos uma reta com inclinação positiva (crescente) e, quando m < 0 temos uma reta com inclinação negativa. Verifique!

Quaisquer dois pontos (x_0, y_0) e (x_1, y_1) , com $x_0 \neq x_1$, determinam uma única função linear (reta) que passa por estes pontos. Para encontrar a expressão desta função, basta resolver o seguinte sistema linear

$$mx_0 + b = y_0 \tag{1.4}$$

$$mx_1 + b = y_1 \tag{1.5}$$

Subtraindo a primeira equação da segunda, obtemos

$$m(x_0 - x_1) = y_0 - y_1 \Rightarrow m = \frac{y_0 - y_1}{x_0 - x_1}.$$
 (1.6)

Daí, substituindo o valor de m na primeira equação do sistema, obtemos

$$\frac{y_0 - y_1}{x_0 - x_1} x_0 + b = y_0 \Rightarrow b = -\frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0. \tag{1.7}$$

Ou seja, a expressão da função linear (equação da reta) que passa pelos pontos (x_0, y_0) e (x_1, y_1) é

$$y = \underbrace{\frac{y_0 - y_1}{x_0 - x_1}}(x - x_0) + y_0. \tag{1.8}$$

1.2.2 Funções potência

Uma função da forma $f(x) = x^n$, onde $n \neq 0$ é uma constante, é chamada de **função potência**.

Funções potências têm comportamentos característicos, conforme o valor de n. Quando n é um inteiro positivo ímpar, seu domínio e sua imagem são $(-\infty,\infty)$. Veja a Figura 1.3.

⁵eixo das abscissas

Figura 1.3: Esboços dos gráficos das funções potências $y=x,\ y=x^3$ e $y=x^5.$

Funções potências com n positivo par estão definidas em toda parte e têm imagem $[0,\infty)$. Veja a Figura 1.4.

Figura 1.4: Esboços dos gráficos das funções potências $y=x^2,\ y=x^4$ e $y=x^6.$

Funções potências com n inteiro negativo ímpar não são definidas em x=0, tendo domínio e imagem igual a $(-\infty,0)\cup(0,\infty)$. Também, quando n inteiro negativo par, a função potência não está definida em x=0, tem domínio $(-\infty,0)\cup(0,\infty)$, mas imagem $(0,\infty)$. Veja a Figura 1.5.

Figura 1.5: Esboços dos gráficos das funções potências y=1/x (esquerda), $y=1/x^2$ (direita).

Há, ainda, comportamentos característicos quando $n=1/2,\,1/3,\,3/2$ e 2/3. Veja a Figura 1.6.

Figura 1.6: Esboços dos gráficos das funções potências. Esquerda $y=\sqrt{x}$ e $y=\sqrt{x^3}$. Direita: $y=\sqrt[3]{x}$ e $y=\sqrt[3]{x^2}$.

1.2.3 Funções polinomiais

Em construção ...

1.2.4 Funções racionais

Em construção ...

1.2.5 Funções algébricas

Em construção ...

1.2.6 Funções transcendentes

Em construção ...

1.2.7 Funções definidas por partes

Funções definidas por partes são funções definidas por diferentes expressões matemáticas em diferentes partes de seu domínio.

Exemplo 1.2.2. Consideremos a seguinte função definida por partes:

$$f(x) = \begin{cases} -x & , x < 0, \\ x^2 & , x \ge 0 \end{cases}$$
 (1.9)

Observemos que tanto o domínio como a imagem desta função são $(-\infty, \infty)$. A Figura 1.7 mostra o esboço do gráfico desta função.

Figura 1.7: Esboço do gráfico da função definida por partes f(x) dada no Exemplo 1.2.2.

Um exemplo de função definida por partes fundamental é a **função valor absoluto** 6

$$|x| = \begin{cases} x & , x \le 0 \\ -x & , x < 0 \end{cases} \tag{1.10}$$

Vejamos o esboço do seu gráfico dado na Figura 1.8.

⁶Esta função também pode ser definida por $|x| = \sqrt{x^2}$.

Figura 1.8: Esboço do gráfico da função valor absoluto y = |x|.

Exercícios

Em construção ...

1.3 Funções trigonométricas

1.3.1 Funções seno e cosseno

As funções trigonométricas seno y = sen(x) e cosseno $y = \cos(x)$ podem ser definidas a a partir do círculo trigonométrico (veja a Figura 1.9). Seja x o ângulo⁷ de declividade da reta que passa pela origem do plano cartesiano (reta r na Figura 1.9). Seja, então, (a,b) o ponto de interseção desta reta com a circunferência unitária⁸. Então, definimos:

$$sen(x) = a, cos(x) = b. (1.11)$$

A partir da definição, notemos que ambas funções têm domínio $(-\infty, \infty)$ e imagem [-1, 1].

 $^{^7\}mathrm{Em}$ geral utilizaremos a medida em radianos para ângulos.

⁸Circunferência do círculo de raio 1.

Figura 1.9: Funções seno e cosseno no círculo trigonométrico.

Na Figura 1.10 podemos extrair os valores das funções seno e cosseno para os ângulos fundamentais. Por exemplo, temos

$$\operatorname{sen}\left(\frac{\pi}{6}\right) = \frac{1}{2}, \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \tag{1.12}$$

$$\operatorname{sen}\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}, \qquad \cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \tag{1.13}$$

$$\operatorname{sen}\left(\frac{8\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \qquad \cos\left(\frac{8\pi}{6}\right) = -\frac{1}{2}, \tag{1.14}$$

$$\operatorname{sen}\left(\frac{11\pi}{6}\right) = -\frac{1}{2}, \qquad \cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}, \tag{1.15}$$

As funções seno e cosseno estão definidas no SymPy como sin e cos, respectivamente. Por exemplo, para computar o seno de $\pi/6$, digitamos:

sin(pi/6)

Figura 1.10: Funções seno e cosseno no círculo trigonométrico.

Uma função f(x) é dita **periódica** quando existe um número p, chamado de período da função, tal que

$$f(x+p) = f(x) \tag{1.17}$$

para qualquer valor de x no domínio da função. Da definição das funções seno e cosseno, notemos que ambas são periódicas com período 2π , i.e.

$$sen(x + 2\pi) = sen(x), cos(x + 2\pi) = cos(x), (1.18)$$

para qualquer valor de x.

Na Figura 1.11, temos os esboços dos gráficos das funções seno e cosseno.

Figura 1.11: Esboços dos gráficos das funções seno (esquerda) e cosseno (direita).

1.3.2 Tangente, cotangente, secante e cossecante

Das funções seno e cosseno, definimos as funções tangente, cotangente, secante e cossecante como seguem:

$$tg(x) := \frac{\operatorname{sen}(x)}{\cos(x)}, \qquad \cot g(x) := \frac{\cos(x)}{\operatorname{sen}(x)}, \tag{1.19}$$

$$tg(x) := \frac{\operatorname{sen}(x)}{\operatorname{cos}(x)}, \qquad \operatorname{cotg}(x) := \frac{\operatorname{cos}(x)}{\operatorname{sen}(x)}, \qquad (1.19)$$
$$\operatorname{sec}(x) := \frac{1}{\operatorname{cos}(x)}, \qquad \operatorname{cosec}(x) := \frac{1}{\operatorname{sen}(x)}. \qquad (1.20)$$

No SymPy, as funções tangente, cotangente, secante e cossecante podem ser computadas com as funções tan, cot, sec e csc, respectivamente. Por exemplo, podemos computar o valor de $\csc(\pi/4)$ com o comando

csc(pi/4)

Na Figura 1.13, temos os esboços dos gráficos das funções tangente e cotangente. Observemos que a função tangente não está definida nos pontos $(2k+1)\pi/2$, para todo k inteiro. Já, a função cotangente não está definida nos pontos $k\pi$, para todo k inteiro. Ambas estas funções têm imagem $(-\infty, \infty)$ e período π .

Figura 1.12: Esboços dos gráficos das funções tangente (esquerda) e cotangente (direita).

Na Figura ??, temos os esboços dos gráficos das funções secante e cossecante. Observemos que a função secante não está definida nos pontos $(2k+1)\pi/2$, para todo k inteiro. Já, a função cossecante não está definida nos pontos $k\pi$, para todo k inteiro. Ambas estas funções têm imagem $(-infty,1] \cup [1,\infty)$ e período π .

Figura 1.13: Esboços dos gráficos das funções tangente (esquerda) e cotangente(direita).

1.3.3 Identidades trigonométricas

Aqui, vamos apresentar algumas identidades trigonométricas que serão utilizadas ao longo do curso de cálculo. Comecemos pela identidade fundamental

$$\sin^2 x + \cos^2 x = 1. \tag{1.21}$$

Desta decorrem as identidades

$$tg^2(x) + 1 = \sec^2 x, (1.22)$$

$$1 + \cot^2(x) = \csc^2(x).$$
 (1.23)

Das seguintes fórmulas para adição/subtração de ângulos

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y), \tag{1.24}$$

$$\operatorname{sen}(x \pm y) = \operatorname{sen}(x)\cos(y) \pm \cos(x)\operatorname{sen}(y), \tag{1.25}$$

seguem as fórmulas para ângulo duplo

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{1.26}$$

$$\operatorname{sen}(2x) = 2\operatorname{sen} x \cos x. \tag{1.27}$$

Também, temos as fórmulas para o ângulo metade

$$\cos^2 x = \frac{1 + \cos 2x}{2},\tag{1.28}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}.\tag{1.29}$$

Exercícios

Em construção ...

1.4 Funções exponenciais e logarítmicas

Em construção ...

Exercícios

Resposta dos Exercícios

Referências Bibliográficas

[1] George Thomas. Cálculo, volume 1. Addison-Wesley, 12. edition, 2012.

Índice Remissivo

```
domínio, 1
natural, 2

função, 1
constante, 4
cossecante, 13
cotangente, 13
definida por partes, 8
linear, 4
periódica, 12
potência, 5
secante, 13
tangente, 13
valor absoluto, 9

gráfico, 3
imagem, 1
```