Data Science Major Project at INTERNSELITE (Oct Batch 2023)

(Submitted by Rajvardhan Mall Chalamalla Nikhil, Aditya Gupta, Neeharika PM,Devisetti VDSSS Desish and Muhammed Bilal p)

PROBLEM STATEMENT

There is a huge demand for used cars in the Indian Market today. As sales of new cars have slowed down in the recent past, the pre-owned car market has continued to grow over the past year and is larger than the new car market now. Consider this: In 2018-19, while new car sales were recorded at 3.6 million units, around 4 million second-hand cars were bought and sold. There is a slowdown in new car sales and that could mean that the demand is shifting towards the pre-owned market. In fact, some car sellers replace their old cars with pre-owned cars instead of buying new ones.

The goal of the case is as follows:

i.) Perform EDA:-

(This part is performed by Rajvardhan Mall)

Solution:-

import numpy as np

import pandas as pd

from sklearn.preprocessing import StandardScaler

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

sns.set(color_codes = True)

import timeit

from warnings import filterwarnings

filterwarnings('ignore')from datetime import date

a.) data = pd.read_csv('Cars.csv')

EDA (Exploratory data analysis)

b.) data.head()

head() will display the top 5 observations of the dataset

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Colour	Seats	No. of Doors	New_Price	Price
0	Mahindra Scorpio	Pune	2012.0	99000.0	Diesel	Manual	Third	12.05 kmpl	2179 CC	120 bhp	Black/Silver	8.0	5.0	NaN	6.00
1	Maruti Baleno	Kochi	2018.0	18678.0	Petrol	Manual	First	21.1 kmpl	998 CC	100 bhp	Others	5.0	4.0	NaN	8.32
2	Mahindra Xylo	Bangalore	2013.0	197000.0	Diesel	Manual	First	11.68 kmpl	2498 CC	112 bhp	White	7.0	5.0	NaN	4.00
3	Hyundai Grand	Delhi	2014.0	45000.0	Diesel	Manual	First	24.0 kmpl	1120 CC	70 bhp	White	5.0	4.0	NaN	3.49
4	Toyota Innova	Delhi	2011.0	65000.0	Diesel	Manual	First	12.8 kmpl	2494 CC	102 bhp	Others	8.0	5.0	NaN	6.40

c.) data.tail()

tail() will display the last 5 observations of the dataset

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Colour	Seats	No. of Doors	New_Price	F
5956	Honda Civic	Pune	2011.0	47000.0	Petrol	Automatic	Second	13.9 kmpl	1799 CC	130.3 bhp	Others	5.0	4.0	NaN	
5957	Hyundai i20	Delhi	2013.0	63777.0	Petrol	Manual	First	18.5 kmpl	1197 CC	82.9 bhp	Black/Silver	5.0	4.0	NaN	
5958	Maruti Swift	Coimbatore	2016.0	37806.0	Petrol	Manual	First	20.4 kmpl	1197 CC	81.80 bhp	Black/Silver	5.0	4.0	NaN	
5959	Mercedes- Benz SLK- Class	Coimbatore	2016.0	22732.0	Petrol	Automatic	First	18.1 kmpl	3498 CC	306 bhp	Black/Silver	2.0	2.0	NaN	ł
5960	Hyundai i10	Kolkata	2016.0	7000.0	Petrol	Manual	First	20.36 kmpl	1197 CC	78.9 bhp	White	5.0	4.0	NaN	

d.) data.shape

(5961, 15)

e.) data.dtypes

Name	object
Location	object
Kilometers_Driven	float64
Fuel_Type	object
Transmission	object
Owner_Type	object
Mileage	object
Engine	object
Power	object
Colour	object
Seats	float64
No. of Doors	float64
New_Price	object
Price	float64
dtype: object	

f.) print(data.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5961 entries, 0 to 5960
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Name	5961 non-null	object
1	Location	5950 non-null	object
2	Year	5959 non-null	float64
3	Kilometers Driven	5953 non-null	float64
4	Fuel_Type	5961 non-null	object
5	Transmission	5934 non-null	object
6	Owner Type	5946 non-null	object
7	Mileage	5959 non-null	object
8	Engine	5944 non-null	object
9	Power	5929 non-null	object
10	Colour	5950 non-null	object
11	Seats	5956 non-null	float64
12	No. of Doors	5960 non-null	float64
13	New Price	824 non-null	object
14	Price	5961 non-null	float64

dtypes: float64(5), object(10)

memory usage: 698.7+ KB

None

g.)data.describe()

	Year	Kilometers_Driven	Seats	No. of Doors	Price
count	5959.000000	5.953000e+03	5956.000000	5960.000000	5961.000000
mean	2013.389159	5.871110e+04	5.269140	4.114933	9.528103
std	3.243051	9.171221e+04	0.789048	0.344757	11.214382
min	1998.000000	1.710000e+02	2.000000	2.000000	0.440000
25%	2011.500000	3.393100e+04	5.000000	4.000000	3.500000
50%	2014.000000	5.300000e+04	5.000000	4.000000	5.660000
75%	2016.000000	7.300000e+04	5.000000	4.000000	10.000000
max	2019.000000	6.500000e+06	10.000000	5.000000	160.000000

h.) data.nunique()

nunique() based on several unique values in each column and the data description, we can identify the continuous and categorical columns in the data. Duplicated data can be handled or removed based on further analysis

Name	212
Location	11
Year	22
Kilometers_Driven	3068
Fuel_Type	5
Transmission	2
Owner_Type	4
Mileage	439
Engine	143
Power	369
Colour	3
Seats	8
No. of Doors	3
New Price	540
Price	1369
dtype: int64	

i.) data.isnull().sum()

Name	Ø
Location	11
Year	2
Kilometers_Driven	8
Fuel_Type	Ø
Transmission	27
Owner_Type	15
Mileage	2
Engine	17
Power	32
Colour	11
Seats	5
No. of Doors	1
New_Price	5137
Price	Ø
dtype: int64	

j.) (data.isnull().sum()/(len(data)))*100

```
Name
                      0.000000
Location
                      0.184533
Year
                      0.033551
Kilometers_Driven
                      0.134206
Fuel Type
                      0.000000
Transmission
                      0.452944
Owner_Type
                      0.251636
Mileage
                      0.033551
Engine
                      0.285187
Power
                      0.536823
Colour
                      0.184533
Seats
                      0.083879
No. of Doors
                      0.016776
New_Price
                     86.176816
Price
                      0.000000
dtype: float64
```

The percentage of missing values for the columns **New_Price** and **Price** is ~86% and 0%, respectively.

```
k.) data = data.drop(['Year'], axis = 1)
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5961 entries, 0 to 5960
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
ø	Name	5961 non-null	object
1	Location	5950 non-null	object
2	Kilometers_Driven	5953 non-null	float64
3	Fuel Type	5961 non-null	object
4	Transmission	5934 non-null	object
5	Owner Type	5946 non-null	object
6	Mileage	5959 non-null	object
7	Engine	5944 non-null	object
8	Power	5929 non-null	object
9	Colour	5950 non-null	object
10	Seats	5956 non-null	float64
11	No. of Doors	5960 non-null	float64
12	New_Price	824 non-null	object
13	Price	5961 non-null	float64
dtyp	es: float64(4), obj	ect(10)	

1.) data.describe(include='all').T

memory usage: 652.1+ KB

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Name	5961	212	Maruti Swift	343	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Location	5950	11	Mumbai	781	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Kilometers_Driven	5953.0	NaN	NaN	NaN	58711.100118	91712.207172	171.0	33931.0	53000.0	73000.0	6500000.0
Fuel_Type	5961	5	Diesel	3188	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Transmission	5934	2	Manual	4225	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Owner_Type	5946	4	First	4875	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Mileage	5959	439	18.9 kmpl	172	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Engine	5944	143	1197 CC	606	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Power	5929	369	74 bhp	233	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Colour	5950	3	White	2115	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Seats	5956.0	NaN	NaN	NaN	5.26914	0.789048	2.0	5.0	5.0	5.0	10.0
No. of Doors	5960.0	NaN	NaN	NaN	4.114933	0.344757	2.0	4.0	4.0	4.0	5.0
New_Price	824	540	4.78 Lakh	6	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Price	5961.0	NaN	NaN	NaN	9.528103	11.214382	0.44	3.5	5.66	10.0	160.0

From the statistics summary, we can infer the below findings:

- Maruti Swift has highest number of counts.
- On average of Kilometers-driven in Used cars are ~58k KM. The range shows a huge difference between min and max as max values show 650000 KM shows the evidence of an outlier. This record can be removed.
- Min value of Mileage shows 0 cars won't be sold with 0 mileage. This sounds like a data entry issue.
- It looks like Engine and Power have outliers, and the data is right-skewed.
- The average number of seats in a car is approx. 5. car seat is an important feature in price contribution.
- The max price of a used car is 160k which is quite weird, such a high price for used cars. There may be an outlier or data entry issue.

m.) data.describe().T

	count	mean	std	min	25%	50%	75%	max
Kilometers_Driven	5953.0	58711.100118	91712.207172	171.00	33931.0	53000.00	73000.0	6500000.0
Seats	5956.0	5.269140	0.789048	2.00	5.0	5.00	5.0	10.0
No. of Doors	5960.0	4.114933	0.344757	2.00	4.0	4.00	4.0	5.0
Price	5961.0	9.528103	11.214382	0.44	3.5	5.66	10.0	160.0

n.) print(data.Name.unique())

```
['Mahindra Scorpio' 'Maruti Baleno' 'Mahindra Xylo' 'Hyundai Grand' 'Toyota Innova' 'Honda WRV' 'Hyundai Verna' 'Toyota Fortuner'
```

^{&#}x27;Chevrolet Beat' 'Audi A6' 'Hyundai i20' 'Skoda Laura' 'Honda City'

^{&#}x27;Audi Q7' 'Renault Duster' 'Maruti Ertiga' 'Land Rover Freelander'

```
'Skoda Rapid' 'Maruti Zen' 'BMW 3' 'Maruti Wagon' 'Honda Jazz'
'Maruti Vitara' 'ISUZU D-MAX' 'Maruti SX4' 'Hyundai i10' 'Honda Amaze'
'Hyundai Xcent' 'Jaguar F' 'Mercedes-Benz C-Class' 'Volkswagen Polo'
'BMW 5' 'Mahindra Thar' 'Maruti Alto' 'Audi A3' 'Tata Xenon' 'BMW X1'
'Hyundai Getz' 'Volkswagen Vento' 'Chevrolet Sail' 'Volkswagen Jetta'
'Maruti Ciaz' 'Honda CR-V' 'Mahindra XUV500' 'Mercedes-Benz New'
'Honda Civic' 'Skoda Superb' 'Maruti Ritz' 'Mitsubishi Pajero'
'Toyota Corolla' 'Hyundai Elantra' 'Ford Figo' 'Hyundai EON'
'Nissan Teana' 'Maruti Swift' 'Mercedes-Benz CLA' 'Land Rover Range' 'Audi Q3' 'Ford Fiesta' 'Tata Indica' 'Ford Ecosport' 'Volvo S80'
'Skoda Fabia' 'Audi A4' 'Mercedes-Benz E-Class' 'Honda Brio'
'Land Rover Discovery' 'Ford Ikon' 'Hyundai Santa' 'Mahindra Bolero'
'Maruti Dzire' 'Renault KWID' 'Maruti Celerio' 'Chevrolet Optra'
'Mercedes-Benz GLC' 'BMW X3' 'Nissan Micra' 'Toyota Etios'
'Hyundai Creta' 'Ford Endeavour' 'BMW 7' 'BMW X5' 'Skoda Octavia'
'Tata Zest' 'Renault Scala' 'Mercedes-Benz B' 'Ford EcoSport'
'Mahindra TUV' 'Maruti Grand' 'Tata Hexa' 'Hyundai Elite'
'Hyundai Accent' 'Mercedes-Benz GLE' 'Fiat Linea' 'Maruti Omni' 'Audi Q5'
'Volkswagen Passat' 'Porsche Panamera' 'Honda BRV' 'Mini Cooper'
'Tata Indigo' 'Maruti A-Star' 'Tata Nano' 'Hyundai Santro'
'Volkswagen Tiguan' 'Mercedes-Benz R-Class' 'Honda Accord' 'Datsun GO'
'Ford Aspire' 'Toyota Camry' 'Chevrolet Cruze' 'Nissan Sunny'
'Datsun redi-GO' 'Jeep Compass' 'Audi RS5' 'Volvo S60' 'Fiat Punto'
'Volvo XC60' 'Honda Mobilio' 'Tata Manza' 'Mercedes-Benz S' 'Maruti Eeco'
'Mercedes-Benz GLA' 'Tata Bolt' 'BMW 6' 'Fiat Grande' 'Maruti Esteem'
'Mercedes-Benz M-Class' 'Audi TT' 'Skoda Yeti' 'Volkswagen Ameo'
'Mahindra Logan' 'Renault Pulse' 'Maruti Ignis' 'Mercedes-Benz GL-Class'
'Jaguar XF' 'Mitsubishi Lancer' 'Mercedes-Benz SLC' 'Porsche Cayenne'
'Mercedes-Benz A' 'Fiat Avventura' 'Tata Safari' 'Nissan Terrano'
'Maruti 800' 'Mercedes-Benz S-Class' 'Chevrolet Aveo' 'Ford Mustang'
'Maruti S' 'Volvo V40' 'Audi A7' 'Tata Sumo' 'Force One' 'Tata Tiago'
'Mahindra Verito' 'Mercedes-Benz CLS-Class' 'Toyota Platinum'
'Mercedes-Benz SLK-Class' 'Nissan X-Trail' 'BMW Z4' 'Mitsubishi Cedia'
'Jaguar XJ' 'Chevrolet Enjoy' 'Mahindra XUV300' 'Porsche Cayman'
'Chevrolet Spark' 'Mahindra KUV' 'Hyundai Sonata' 'Mahindra Quanto'
'Mahindra Renault' 'Volkswagen CrossPolo' 'Renault Captur'
'Mercedes-Benz SL-Class' 'Mahindra Jeep' 'Maruti S-Cross'
'Renault Fluence' 'Ford Fusion' 'Isuzu MUX' 'BMW X6' 'Toyota Qualis'
'Maruti 1000' 'Mitsubishi Outlander' 'Mahindra Ssangyong' 'Smart Fortwo'
'Renault Koleos' 'Tata Tigor' 'Mercedes-Benz GLS' 'Nissan Evalia'
'Tata Nexon' 'Honda BR-V' 'Jaquar XE' 'BMW 1' 'Ford Freestyle'
'Fiat Siena' 'Ford Classic' 'Honda WR-V' 'Mahindra NuvoSport' 'Tata New'
'Lamborghini Gallardo' 'Mitsubishi Montero' 'Datsun Redi'
'Mini Countryman' 'Toyota Prius' 'Fiat Petra' 'Volvo XC90'
'Hyundai Tucson' 'Audi A8' 'Volkswagen Beetle' 'Bentley Continental'
'Chevrolet Captiva' 'Mini Clubman' 'Porsche Boxster' 'Mahindra E']
```

o.) print(data.Name.nunique())

212

p.)sns.histplot(data.Fuel_Type, kde=True)
 plt.show()

From this histogram we can see that Cars with Fuel_Type Diesel has hightest number of count.

q.) sns.histplot(data.Seats, kde=True)

r.) sns.pairplot(data)
 plt.show()

s.) fig, axes = plt.subplots(3, 2, figsize = (20, 35))

print('Bar plot for all categorical variables in the dataset')

sns.countplot(ax = axes[0, 0], x = 'Location', data = data, color = 'skyblue',

order = data['Location'].value_counts().index);

sns.countplot(ax = axes[0, 1], x = 'Fuel_Type', data = data, color = 'skyblue',

Bar plot for all categorical variables in the dataset

From the count plot, we can have below observations

- Mumbai has the highest number of cars available for purchase, followed by Hyderabad and Coimbatore
- ~53% of cars have fuel type as Diesel this shows diesel cars provide higher performance
- ~72% of cars have manual transmission
- ~75 % of cars are First owned cars. This shows most of the buyers prefer to purchase first-owner cars
- ~35 % of cars are with colour white.
- Cars with seat number 5 are hightest in number.
- t.) labels = ['Diesel','Petrol',"CNG","LPG","Electric"]
 sizes = [3188,2731,86,9,0] #from above chart, we have, total number of males
 and females
 plt.figure(figsize=(8,8))
 plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
 plt.axis('equal')
 plt.title('Sample Pie Chart')
 plt.show()


```
u.) columns_for_heatmap = ['Seats', 'Kilometers_Driven','No. of Doors','Price']
heatmap_data = data[columns_for_heatmap]
correlation_matrix = heatmap_data.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f",
linewidths=.5)
plt.title('Correlation Heatmap')
plt.show()
sns.histplot(data.Year, kde=True)
plt.show()
```


v.)sns.histplot(data.Seats, kde=True) plt.show()

ii.) Building various Models to Predict the price:-

(This part is performed by Devisetti VDSSS Desish and Neeharika PM)

Model 1:- RANDOM FOREST MODEL CODE

```
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.impute import SimpleImputer
df = pd.read csv('Cars.csv')
premium threshold = 20
df['Premium'] = (df['Price'] >= premium threshold).astype(int)
# Extract features (X) and target variable (y)
X = df[['Year', 'Kilometers_Driven', 'Mileage', 'Engine', 'Power', 'Seats']]
y = df['Price']
# Extract numeric values from 'Mileage', 'Engine', and 'Power'
X['Mileage'] = X['Mileage'].str.extract('(\d+\.\d+)').astype(float)
X['Engine'] = X['Engine'].str.extract('(\d+)').astype(float)
X['Power'] = X['Power'].str.extract('(\d+\.\d+)').astype(float)
# Handle missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean')
X.loc[:, :] = imputer.fit transform(X)
```

```
# Train the Random Forest model
rf model = RandomForestRegressor()
rf_model.fit(X, y)
# Take user input for premium or non-premium
premium_input = input("Is the car premium or non-premium? (Type
'premium' or 'non-premium'): ").lower()
# Take user input for owner type
owner type input = input("Enter the owner type (Type 'first', 'second', or
'third'): ").lower()
# Take user input for the new car features
year = int(input("Enter the year of the car: "))
kilometers driven = int(input("Enter the kilometers driven: "))
mileage = float(input("Enter the mileage (kmpl): "))
engine = float(input("Enter the engine capacity (cc): "))
power = float(input("Enter the power (bhp): "))
seats = int(input("Enter the number of seats: "))
# Create a DataFrame with user input
new data = pd.DataFrame({
  'Year': [year],
  'Kilometers Driven': [kilometers driven],
  'Mileage': [f'{mileage} kmpl'],
  'Engine': [f'{engine} cc'],
  'Power': [f'{power} bhp'],
  'Seats': [seats]
```

```
})
# Extract and preprocess the features for the new car
new features = new data[['Year', 'Kilometers Driven', 'Mileage',
'Engine', 'Power', 'Seats']]
new features['Mileage'] =
new features['Mileage'].str.extract('(\d+\.\d+)').astype(float)
new features['Engine'] =
new features['Engine'].str.extract('(\d+)').astype(float)
new features['Power'] =
new_features['Power'].str.extract('(\d+\.\d+)').astype(float)
# Handle missing values using SimpleImputer
new features = pd.DataFrame(imputer.transform(new features),
columns=new features.columns)
# Make predictions
predicted price = rf model.predict(new features)
# Adjust predicted price based on owner type
if owner type input == 'first':
  predicted price *= 1.1
elif owner_type_input == 'second':
  predicted_price *= 0.9
elif owner_type_input == 'third':
  predicted price *= 0.7
if seats > 5:
  predicted price *= 1.1
```

print(f"Adjusted Predicted Price of the Car: {predicted_price[0]}")

Output :-

```
Is the car premium or non-premium? (Type 'premium' or 'non-premium'): premium

Enter the owner type (Type 'first', 'second', or 'third'): second

Enter the year of the car: 2009

Enter the kilometers driven: 94000

Enter the mileage (kmpl): 12.07

Enter the engine capacity (cc): 2967

Enter the power (bhp): 241.4

Enter the number of seats: 5

Adjusted Predicted Price of the Car: 12.235770000000002
```

Model 2:- LINEAR REGRESSION MODEL CODE

linear model = LinearRegression()

linear_model.fit(X, y)

```
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.impute import SimpleImputer
df = pd.read_csv('Cars.csv')
premium threshold = 20
df['Premium'] = (df['Price'] >= premium threshold).astype(int)
# Extract features (X) and target variable (y)
X = df[['Year', 'Kilometers Driven', 'Mileage', 'Engine', 'Power', 'Seats']]
v = df['Price']
# Extract numeric values from 'Mileage', 'Engine', and 'Power'
X['Mileage'] = X['Mileage'].str.extract('(\d+\.\d+)').astype(float)
X['Engine'] = X['Engine'].str.extract('(\d+)').astype(float)
X['Power'] = X['Power'].str.extract('(\d+\.\d+)').astype(float)
# Handle missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean')
X.loc[:, :] = imputer.fit transform(X)
# Train the Linear Regression model
```

```
# Take user input for premium or non-premium
premium_input = input("Is the car premium or non-premium? (Type
'premium' or 'non-premium'): ").lower()
# Take user input for owner type
owner type input = input("Enter the owner type (Type 'first', 'second', or
'third'): ").lower()
# Take user input for the new car features
year = int(input("Enter the year of the car: "))
kilometers driven = int(input("Enter the kilometers driven: "))
mileage = float(input("Enter the mileage (kmpl): "))
engine = float(input("Enter the engine capacity (cc): "))
power = float(input("Enter the power (bhp): "))
seats = int(input("Enter the number of seats: "))
# Create a DataFrame with user input
new data = pd.DataFrame({
  'Year': [year],
  'Kilometers Driven': [kilometers driven],
  'Mileage': [f'{mileage} kmpl'],
  'Engine': [f'{engine} cc'],
  'Power': [f'{power} bhp'],
  'Seats': [seats]
})
# Extract and preprocess the features for the new car
new_features = new_data[['Year', 'Kilometers_Driven', 'Mileage',
'Engine', 'Power', 'Seats']]
new_features['Mileage'] =
new_features['Mileage'].str.extract('(\d+\.\d+)').astype(float)
new features['Engine'] =
new features['Engine'].str.extract('(\d+)').astype(float)
new features['Power'] =
new features['Power'].str.extract('(\d+\.\d+)').astype(float)
# Handle missing values using SimpleImputer
new_features = pd.DataFrame(imputer.transform(new_features),
columns=new features.columns)
# Make predictions
predicted price = linear model.predict(new features)
```

```
# Adjust predicted price based on owner type
if owner_type_input == 'first':
    predicted_price *= 1.1
elif owner_type_input == 'second':
    predicted_price *= 0.9
elif owner_type_input == 'third':
    predicted_price *= 0.7

if seats > 5:
    predicted_price *= 1.1
```

print(f"Adjusted Predicted Price of the Car: {predicted_price[0]}")

Output:-

```
Is the car premium or non-premium? (Type 'premium' or 'non-premium'): premium

Enter the owner type (Type 'first', 'second', or 'third'): first

Enter the year of the car: 2014

Enter the kilometers driven: 4800

Enter the mileage (kmpl): 21.76

Enter the engine capacity (cc): 1995

Enter the power (bhp): 190

Enter the number of seats: 5

Adjusted Predicted Price of the Car: 19.788796919009428
```

COMPARING ABOVE TWO MODELS FOR PREDICTING THE PRICES

Comparing the performance of different machine learning models requires thorough evaluation metrics and testing on relevant datasets. In your case, you have used both Random Forest and Linear Regression for predicting car prices. Here are some considerations:

Linear Regression:

Pros: Simplicity and interpretability: Linear regression is easy to understand, and the coefficients provide insights into the relationship between features and the target variable. Less prone to overfitting: Linear regression may be less prone to overfitting compared to more complex models.

Cons: Assumes a linear relationship: Linear regression assumes a linear relationship between the features and the target, which may not always hold in real-world scenarios. Limited flexibility: Linear regression may not capture complex, non-linear relationships in the data.

Random Forest:

Pros: High flexibility: Random Forest is capable of capturing complex relationships and interactions in the data, making it suitable for non-linear problems. Robust to overfitting: Random Forest is less prone to overfitting compared to individual decision trees.

Cons: Less interpretability: Random Forest models are more complex, and the interpretation of individual trees can be challenging. More computational resources: Random Forest may require more computational resources compared to simpler models like Linear Regression. Suggestions:

If your dataset exhibits non-linear relationships and interactions between features, Random Forest might perform better. If interpretability and simplicity are crucial, or if the relationships in your data are primarily linear, Linear Regression might be a better choice. To make a more informed decision, you should perform cross-validation, evaluate metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), or R-squared on both models, and consider the specific characteristics of your dataset. It's recommended to split your dataset into training and testing sets for a fair evaluation.

iii.) Feature Engineering:-

(This part is performed by Rajvardhan Mall)

a.) data.columns

```
Output:-
```

```
Index(['Name', 'Location', 'Kilometers_Driven', 'Fuel_Type', 'Transmission',
    'Owner_Type', 'Mileage', 'Engine', 'Power', 'Colour', 'Seats',
    'No. of Doors', 'New_Price', 'Price'],
    dtype='object')
```

Price Visualization

b.) data["Price"].hist(bins=50)

Output :-

We see that its a right skewed distribution. In this case we can take the root or apply log function.

c.) Price_squareroot=np.sqrt(data['Price'])

Price_squareroot.hist(bins=50)

Output :-

d.) data['Price'].describe()

Output :-

count	5961.000000
mean	9.528103
std	11.214382
min	0.440000
25%	3.500000
50%	5.660000
75%	10.00000
max	160.000000
Name:	Price, dtype: float64

We can see that the min value is not zero. Hence, the log is defined

e.)Price_log=np.log(data["Price"]) Price_log.hist(bins=50)

Output:-

f.) data['Price'].value_counts()

Output :-

```
Price
4.50 88
3.50 82
5.50 82
4.25 73
3.25 69
...
13.69 1
0.63 1
13.23 1
4.59 1
55.54 1
Name: count, Length: 1369, dtype: int64
```

g.)data_encoded=pd.get_dummies(data) data_encoded.head()

Output:-

	Kilometers_Driven	Seats	No. of Doors	Price	Name_Audi A3	Name_Audi A4	Name_Audi A6	Name_Audi A7	Name
0	99000.0	8.0	5.0	6.00	False	False	False	False	
1	18678.0	5.0	4.0	8.32	False	False	False	False	
2	197000.0	7.0	5.0	4.00	False	False	False	False	
3	45000.0	5.0	4.0	3.49	False	False	False	False	
4	65000.0	8.0	5.0	6.40	False	False	False	False	

5 rows × 1732 columns