BECA / Huson / 12.1 IB Math SL 13 November 2017

Name:

Homework: Vectors (Paper 1 problems)

1a. Let u = 6i + 3j + 6k and v = 2i + 2j + k

[5 marks]

Find

- (i) $u \bullet v$;
- (ii) |u|;
- (iii) |v|.

1b. Find the angle between u and v.

[2 marks]

2a. The following diagram shows two perpendicular vectors \boldsymbol{u} and \boldsymbol{v} .

Let w=u-v. Represent w on the diagram above.

[2 marks]

$$u=egin{pmatrix} 3 \ 2 \ 1 \end{pmatrix}_{ ext{ and }}v=egin{pmatrix} 5 \ n \ 3 \end{pmatrix}$$
 , where $n\in\mathbb{Z}$, find n .

[4 marks]

3a. The vectors ${\it a}=\begin{pmatrix} 4\\2 \end{pmatrix}$ and ${\it b}=\begin{pmatrix} k+3\\k \end{pmatrix}$ are perpendicular to each other. [4 marks]

Find the value of k.

3b. Given that c = a + 2b, find c. [3 marks]

4. Let u = -3i + j + k and v = mj + nk, where $m, n \in \mathbb{R}$. Given that v is a unit vector perpendicular to u, find the possible values of m and of n. [7 marks]

5. The following diagram shows triangle ABC.

diagram not to scale

$$\overrightarrow{AB} \bullet \overrightarrow{AC} = -5\sqrt{3}$$
 and $\left|\overrightarrow{AB}\right| \left|\overrightarrow{AC}\right| = 10$. Find the area of triangle ABC .

$$m{a}=igg(rac{2}{-3}igg)_{ ext{ and }}m{b}=igg(rac{1}{4}igg)_{ ext{.}}$$
 [6 marks]

(a) Find

(i) 2a + b;

(ii)
$$|2\boldsymbol{a}+\boldsymbol{b}|$$
 [4 marks]

6b. Let $2oldsymbol{a}+oldsymbol{b}+oldsymbol{c}=0$, where 0 is the zero vector.

(b) Find \boldsymbol{c} . [2 marks]

7a. [2 marks]

Note: In this question, distance is in metres and time is in seconds.

Two particles P_1 and P_2 start moving from a point A at the same time, along different straight lines.

After t seconds, the position of P_1 is given by r = $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

Find the coordinates of A.

7b. [3 marks]

Two seconds after leaving A, P_1 is at point B.

Find \overrightarrow{AB} ;

7c. [2 marks]

$$\left|\overrightarrow{AB}\right|$$

7d. [5 marks]

 $\overrightarrow{\mathrm{AC}}=egin{pmatrix}3\\0\\4\end{pmatrix}$. Two seconds after leaving A, P_2 is at point C, where

Find cos BÂC.

7e. [4 marks]

Hence or otherwise, find the distance between P_1 and P_2 two seconds after they leave A.