

AMOSTRAGEM

Unidade 3

Amostragem – Visão Geral

©2011 - Pedro Luis do Nascimento Silva

SPIBGE

Definições e Notação para População de Pesquisa

 $U = \{1, 2, ..., i, ..., N\} \rightarrow \text{conjunto de N rótulos distintos}$

N = tamanho da população de pesquisa = #U

i → rótulo para unidade genérica da população

y → variável de pesquisa / de interesse

y_i → valor da variável y para unidade i

 $Y_U = \{ y_1, y_2, ..., y_N \}$ vetor populacional

Parâmetros-Alvo (de Interesse)

Total populacional
$$\rightarrow$$
 $Y = \sum_{i=1}^{N} y_i = \sum_{i \in U} y_i$

Média populacional
$$\rightarrow \overline{Y} = Y / N = \sum_{i \in U} y_i / N$$

Variância populacional →

$$S_y^2 = \frac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})^2 = \frac{1}{N-1} \left[\sum_{i \in U} y_i^2 - N \overline{Y}^2 \right]$$

©2011 - Pedro Luis do Nascimento Silva

Parâmetros-Alvo (de Interesse)

Seja z outra variável de pesquisa, tomando valores z_i , $i \in U$.

Razão populacional
$$\rightarrow$$
 R = $\sum_{i \in U} y_i / \sum_{i \in U} z_i$

Covariância populacional

$$S_{yz} = \frac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})(z_i - \overline{Z}) = \frac{1}{N-1} \left[\sum_{i \in U} y_i z_i - N \overline{Y} \overline{Z} \right]$$

Coeficiente de correlação populacional

$$\rho_{yz} = \frac{S_{yz}}{S_{y}S_{z}}$$

Amostra

Uma **amostra** $s=\{i_1, i_2, ..., i_n\}$ é qualquer **subconjunto** não vazio de unidades da população U ($s\subset U$) selecionadas para observação visando estimar os parâmetros de interesse.

Uma amostra de tamanho n é uma amostra contendo n **unidades distintas** tiradas da população U.

i∈s representa um rótulo de unidade incluída na amostra.

©2011 - Pedro Luis do Nascimento Silva

Dados e Estatísticas Amostrais

Dados amostrais $\rightarrow y_{i_1}, y_{i_2}, ..., y_{i_n}$

Total (soma) amostral

$$t(s) = t = \sum_{i \in s} y_i$$

Média amostral

$$\overline{y} = t / n = \frac{1}{n} \times \sum_{i \in S} y_i$$

Estimação

Suponha que o parâmetro-alvo é o total populacional Y.

O objetivo principal é usar os dados amostrais $y_{i_1}, y_{i_2}, ..., y_{i_n} \text{ para estimar } Y = \sum_{i \in U} y_i.$

Um objetivo secundário é conseguir medir / estimar também a precisão / margem de erro da estimativa produzida para Y.

©2011 - Pedro Luis do Nascimento Silva

,

Estimador Linear

Um estimador linear \hat{Y}_w é uma combinação linear dos valores amostrais y_i com pesos w_i , isto é:

$$\hat{\mathbf{Y}}_{\mathbf{W}} = \sum_{i \in \mathbf{S}} \mathbf{w}_{i} \mathbf{y}_{i}$$

Problema: como determinar os pesos w_i?

Precisamos de critérios!

Amostragem Probabilística

É um procedimento de amostragem satisfazendo as condições enumeradas a seguir.

- 1. O espaço amostral *S*, o conjunto de todas as amostras s possíveis, é bem definido.
- 2. Uma probabilidade p(s) <u>conhecida</u> (ou calculável) é associada a cada amostra $s \in S$, e $\sum_{s \in S} p(s) = 1$.

©2011 - Pedro Luis do Nascimento Silva

9

Amostragem Probabilística

- 3. Cada unidade $i \in U$ tem uma probabilidade não nula de ser selecionada para a amostra, isto é: $P(i \in s) > 0 \ \forall i \in U$.
- 4. Uma única amostra s ($s \in S$) é selecionada para observação usando um mecanismo de aleatorização (sorteio) tal que a amostra s é escolhida com probabilidade p(s).

População de 4 unidades (N=4) mulheres, de quem foi indagado o número de filhos tidos vivos (y).

Rótulo da	1	2	3	4	Total
unidade (i)					
Valor y _i	0	0	2	1	3

Existem
$$\binom{4}{2}$$
 = 6 amostras possíveis de tamanho n=2.

©2011 - Pedro Luis do Nascimento Silva

1.1

Conjunto de Todas as Amostras Possíveis

$$S = \{ (1;2); (1;3); (1;4); (2;3); (2;4); (3;4) \}.$$

Amostras selecionadas com igual probabilidade \rightarrow Cada amostra tem probabilidade de ser selecionada = $1/6 \rightarrow$ $p(s)=1/6 \forall s \in S$.

Conjunto de Todas as Amostras Possíveis

Amostra	Unidades na	Soma	Probabilidades
S	Amostra	Amostral	p(s)
		(t)	
1	(1;2)	0,0	1/6
2	(1;3)	2,0	1/6
3	(1;4)	1,0	1/6
4	(2;3)	2,0	1/6
5	(2;4)	1,0	1/6
6	(3;4)	3,0	1/6
Total		9,0	1,0

©2011 - Pedro Luis do Nascimento Silva

13

Distribuição da Soma Amostral

Valores possíveis de t	0,0	1,0	2,0	3,0
com probabilidade p(s)	1/6	2/6	2/6	1/6

O valor esperado de t é:

$$E_{p}(t) = \sum_{s \in S} t(s) p(s)$$

$$= 0.0 \times \frac{1}{6} + 1.0 \times \frac{2}{6} + 2.0 \times \frac{2}{6} + 3.0 \times \frac{1}{6}$$

$$= \frac{9}{6}$$

$$= 1.5$$

Porém o total populacional é:

$$Y = \sum_{i=1}^{4} y_i = 3$$

Como $1,5 = E_p(t) \neq Y = 3$, dizemos que t é um <u>estimador</u> <u>viciado</u> de Y sob o plano amostral p(s) adotado.

Como podemos "corrigir" o estimador de modo que fique não viciado?

Resposta: multiplicando por 2 o valor total amostral t.

©2011 - Pedro Luis do Nascimento Silva

15

Exemplo 3.1

Novo estimador do total populacional: $\hat{Y} = 2 \times t$

Estimador na forma linear \rightarrow

$$\hat{\mathbf{Y}} = 2 \times \mathbf{t} = \sum_{i \in s} 2 \times \mathbf{y}_i = \hat{\mathbf{Y}}_w$$

Valor de $\hat{\mathbf{Y}} = 2 \times \mathbf{t}$	0,0	2,0	4,0	6,0
com probabilidade	1/6	2/6	2/6	1/6
p(s)				

O valor esperado de $\hat{Y} = 2 \times t$ é:

$$E_{p}(\hat{Y}) = \sum_{s \in S} \hat{Y}_{s} p(s)$$

$$= 0.0 \times \frac{1}{6} + 2.0 \times \frac{2}{6} + 4.0 \times \frac{2}{6} + 6.0 \times \frac{1}{6}$$

$$= \frac{18}{6} = 3$$

Como $E_p(\hat{Y}) = 3 = Y$, dizemos que $\hat{Y} = 2 \times t$ é um <u>estimador</u> <u>não viciado</u> de Y sob o plano amostral p(s) adotado.

©2011 - Pedro Luis do Nascimento Silva

17

Exemplo 3.1 – Lição Importante

É essencial ter algum critério para escolha de estimadores.

Critério 1

Estimadores devem ser não viciados, ou ao menos aproximadamente não viciados.

A Distribuição de Aleatorização

- A função p(s) definida no conjunto *S* de todas as amostras possíveis é uma **distribuição de probabilidades.**
- A distribuição de probabilidades p(s), s∈ S, é chamada
 distribuição de aleatorização.
- Na amostragem *probabilística*, inferências são feitas considerando a distribuição de *aleatorização*.

©2011 - Pedro Luis do Nascimento Silva

19

A Distribuição de Aleatorização

- Tais inferências são baseadas no plano amostral, onde a fonte de variação ou incerteza é a repetição *hipotética* do processo de amostragem utilizando p(s), que resultaria em diferentes amostras $s_1, s_2, ... \in S$.
- A distribuição de $\hat{Y} = 2 \times t = \sum_{i \in s} 2 \times y_i = \hat{Y}_w$ determinada por p(s) é chamada de <u>distribuição amostral</u> do estimador.
- Suas propriedades é que vamos estudar para avaliar se é um bom estimador para estimar o total populacional Y.

Obtenção de Estimadores Não Viciados para o Total

- Trabalhar com a distribuição p(s) é complicado.
- O número total de amostras possíveis cresce muito rapidamente com N e com n.
- ullet Por exemplo, o número de amostras sem reposição de tamanho n de uma população com N unidades é $egin{pmatrix} N \\ n \end{pmatrix}$.
- A saída é usar propriedades simplificadoras desta distribuição.

©2011 - Pedro Luis do Nascimento Silva

21

Uma Propriedade Importante

$$\Pr(i \in s) = \pi_i = \sum_{s \supset i} p(s)$$

Se tomarmos o valor do inverso de sua probabilidade de seleção (1 / π_i) como peso (w_i) de uma unidade amostrada, é fácil verificar que o estimador dado por

$$\hat{Y}_{w} = \sum_{i \in s} w_{i} y_{i} = \sum_{i \in s} \frac{1}{\pi_{i}} y_{i} = \sum_{i \in s} \pi_{i}^{-1} y_{i}$$

é não viciado para o total populacional Y.

Exemplo 3.1 - Continuação

População de 4 unidades (N=4) mulheres, de quem foi indagado o número de filhos tidos vivos (y).

Rótulo da	1	2	3	4	Total
unidade (i)					
Valor y _i	0	0	2	1	3
Probabilidade	3/6	3/6	3/6	3/6	
de inclusão π_{i}	=1/2	=1/2	=1/2	=1/2	

©2011 - Pedro Luis do Nascimento Silva

23

Pesos Amostrais no Exemplo 3.1

$$w_i = 1/\pi_i = 1 / \frac{1}{2} = 2$$

Estimador ponderado do total

$$\hat{Y}_{w} = \sum_{i \in s} w_{i} y_{i} = \sum_{i \in s} \pi_{i}^{-1} y_{i} = \sum_{i \in s} 2 y_{i} = 2t$$

E já se mostrou que este estimador é não viciado para Y.

Considere a mesma população fictícia do exemplo 3.1.

Considere agora o plano amostral que retira amostras de tamanho 2 dessa população segundo o plano amostral dado na tabela a seguir.

©2011 - Pedro Luis do Nascimento Silva

25

Amostra	Unidades	Soma Amostral	Probabilidade
s	na Amostra	(t)	p(s)
1	(1;2)	0,0	0,00
2	(1;3)	2,0	0,20
3	(1;4)	1,0	0,15
4	(2;3)	2,0	0,20
5	(2;4)	1,0	0,15
6	(3;4)	3,0	0,30
Т	Cotal	9,0	1,00

Chamaremos este plano amostral de plano 2.

Use as informações acima para:

- 1. Verificar que o estimador baseado na soma amostral (t) é viciado para estimar o total populacional Y;
- 2. Obter / definir um estimador não viciado para o total populacional Y;
- 3. Comente sobre o uso de um plano amostral em que as diferentes amostras têm probabilidades desiguais de serem selecionadas. Surpresas? Dificuldades?

©2011 - Pedro Luis do Nascimento Silva

27

Distribuição do Total Amostral sob Plano 2

Valor de t	0,0	1,0	2,0	3,0
com probabilidade p(s)	0,0	0,3	0,4	0,3

O valor esperado de t é:

$$E_{p}(t) = \sum_{s \in S} t(s) p(s)$$

$$= 0.0 \times 0 + 1.0 \times 0.30 + 2.0 \times 0.40 + 3.0 \times 0.30$$

$$= 2.0 < 3 = Y$$

Para obter estimador não viciado, devemos calcular pesos adequados para unidades amostrais.

Estes requerem calcular as probabilidades de inclusão na amostra.

Unidade (i)	1	2	3	4
Probabilidade π_i	0,35	0,35	0,70	0,60
Peso w _i	20/7=	20/7=	10/7=	5/3=
	2,857	2,857	1,429	1,667

©2011 - Pedro Luis do Nascimento Silva

29

Estimador do Total com Pesos Adequados

	Unidades na	Total Amostral	Probabilidade	Valor do
Amostra	Amostra	Ponderado ($\boldsymbol{\hat{Y}}_W)$	p(s)	produto
1	(1;2)	0,0	0,00	0,00
2	(1;3)	$2,0 \times 10/7$	0,20	4/7
3	(1;4)	$1,0\times5/3$	0,15	1/4
4	(2;3)	$2,0 \times 10/7$	0,20	4/7
5	(2;4)	$1,0\times5/3$	0,15	1/4
6	(3;4)	$2,0\times10/7 + 1,0\times5/3$	0,30	6/7 + 1/2
Total				3

Notas

- Estimador \hat{Y}_w tem valor esperado igual ao total populacional Y \rightarrow logo é NÃO VICIADO.
- O fato de que a amostra (1;2) tem probabilidade nula de ser selecionada viola os critérios definidos para que o plano de amostragem 2 seja chamado de amostragem probabilística? Sim ou não? Porquê?

©2011 - Pedro Luis do Nascimento Silva

31

Notas

- Temos agora duas opções para selecionar amostras (de tamanho 2) da população U, e estimar o total populacional Y sem vício.
- Qual das duas é melhor?

Estratégia 1: seleção equiprovável de pares (amostras) com estimador ponderado

Valor de $\hat{Y}_w = 2 \times t$	0,0	2,0	4,0	6,0
com probabilidade p(s)	1/6	2/6	2/6	1/6

Estratégia 2: seleção de amostras com probabilidades desiguais, e estimador ponderado

Valor de \hat{Y}_w	5/3	20/7	20/7 + 5/3
com probabilidade p(s)	0,30	0,40	0,30

©2011 - Pedro Luis do Nascimento Silva

33

Como Escolher a Melhor Estratégia?

Medindo o *afastamento esperado* entre o valor do estimador e o valor do total populacional desconhecido (Y).

Para isso, usamos a variância do estimador, dada por:

$$V_p(\hat{Y}) = \sum_{s \in S} (\hat{Y} - Y)^2 \times p(s)$$

ou o desvio padrão do estimador, dado por

$$DP_p(\hat{Y}) = \sqrt{V_p(\hat{Y})} = \sqrt{\sum_{s \in S} (\hat{Y} - Y)^2 \times p(s)}$$

Variâncias dos Estimadores sob Duas Estratégias

Amos	Unidades na	Estimador	Probabilidade	Estimador	Probabilidade
-tra	Amostra	sob E2	p(s) sob E2	sob E1	p(s) sob E1
1	(1;2)	0,0	0,00	0,0	1/6
2	(1;3)	$2,0 \times 10/7$	0,20	4,0	1/6
3	(1;4)	$1,0 \times 5/3$	0,15	2,0	1/6
4	(2;3)	$2,0 \times 10/7$	0,20	4,0	1/6
5	(2;4)	$1,0\times5/3$	0,15	2,0	1/6
6	(3;4)	2,0×10/7 +	0,30	6,0	1/6
		1,0×5/3			
Var.		1,24		3,67	

©2011 - Pedro Luis do Nascimento Silva

35

Conclusões

- Ambas as estratégias permitem usar estimadores não viciados do total Y.
- A estratégia 2 tem o **estimador com menor variância**, e deve ser preferida à estratégia 1, pois o tamanho das amostras é o mesmo.
- Minimizar a variância é o critério de desempate para escolha entre estratégias não viciadas de amostragem e estimação de igual custo total.

Teoria Básica

Sejam $\delta_1, \ \delta_2, \ ..., \ \delta_N$ variáveis aleatórias indicadoras, tal que $\delta_i = I(i \in s) = \begin{cases} 1 & \text{se} \quad i \in s \\ 0 & \text{se} \quad i \notin s \end{cases} \text{ para qualquer } i \in U.$

As δ_i são variáveis indicadoras do evento inclusão da unidade i na amostra s.

©2011 - Pedro Luis do Nascimento Silva

37

Exemplo 3.1

Para N=4 e n=2, as amostras possíveis podem ser representadas por:

S	Rótulos	δ_1	δ_2	δ_3	δ_4
1	1;2	1	1	0	0
2	1;3	1	0	1	0
3	1;4	1	0	0	1
4	2;3	0	1	1	0
5	2;4	0	1	0	1
6	3;4	0	0	1	1

Teoria Básica

Cada amostra fica univocamente determinada pelas variáveis indicadoras correspondentes.

As variáveis indicadoras dependem da amostra s, apesar de não termos indicado isto explicitamente em nossa notação.

Então as probabilidades de seleção ou inclusão na amostra, denotadas π_i , são definidas como:

$$\pi_i = P(\delta_i = 1) = \operatorname{E}_p(\delta_i) = \underset{s \supset i}{\sum} p(s) \quad \forall i \in \operatorname{U}.$$

©2011 - Pedro Luis do Nascimento Silva

39

Teoria Básica

As probabilidades de inclusão π_i são ditas de primeira ordem. Precisaremos também definir as probabilidades de inclusão de segunda ordem, denotadas π_{ij} , dadas por:

$$\pi_{ij} = P(\delta_i \delta_j = 1) = E_p(\delta_i \delta_j) = \sum_{s \supset i, j} p(s) \quad \forall i, j \in U.$$

Note que quando i=j, $\pi_{ij}=\pi_{ii}=\pi_i \ \forall i\in U$.

Logo:

$$\begin{split} V_p(\delta_i) &= \pi_i \left(1 - \pi_i \right) \\ COV_p(\delta_i \; ; \; \delta_i) &= \pi_{ii} - \pi_i \, \pi_i \end{split}$$

Um Método Geral de Prova em Amostragem

Este método se baseia nas variáveis indicadoras δ_1 , δ_2 , ..., δ_N .

Uma propriedade importante das variáveis indicadoras é que:

$$\sum_{i \in s} \delta_i(s) = \sum_{i \in U} \delta_i(s)$$

Segue também que
$$\sum\limits_{i\in s}y_i=\sum\limits_{i\in s}\delta_iy_i=\sum\limits_{i\in U}\delta_iy_i.$$

Note que o truque é converter a soma amostral em uma soma na população.

Seja $Y = \sum_{i \in U} Y_i$ (total populacional) o parâmetro alvo.

©2011 - Pedro Luis do Nascimento Silva

41

Estimador Linear do Total

Um estimador linear de Y é sempre da forma

$$\hat{Y}_{W} = \sum_{i \in S} w_{i} y_{i} = \sum_{i \in U} w_{i} y_{i} \delta_{i}$$

onde w_i é o peso da unidade i.

Para que o estimador linear de Y seja não viciado, é preciso que:

$$E_p(\hat{Y}) = Y \Leftrightarrow \sum_{i \in U} w_i y_i E_p(\delta_i) = \sum_{i \in U} y_i \Leftrightarrow \sum_{i \in U} w_i \pi_i y_i = \sum_{i \in U} y_i$$

Um Método Geral de Prova em Amostragem

Esta relação só será válida para quaisquer valores populacionais y_i da variável de pesquisa caso

$$w_i \times \pi_i = 1 \ \forall i \in U.$$

Portanto a condição para que o estimador de total $\hat{Y}_W = \sum_{i \in s} w_i y_i \quad \text{seja SEMPRE não viciado é que os pesos das}$

unidades na amostra sejam iguais ao inverso das respectivas probabilidades de inclusão:

$$\mathbf{w}_{\mathbf{i}} = \pi_{\mathbf{i}}^{-1} \ \forall \mathbf{i} \in \mathbf{U}.$$

©2011 - Pedro Luis do Nascimento Silva

43

Um Método Geral de Prova em Amostragem

Logo o estimador não viciado de total fica dado por

$$\hat{Y}_{w} = \sum_{i \in s} \frac{y_{i}}{\pi_{i}} = \sum_{i \in s} \pi_{i}^{-1} y_{i} = \hat{Y}_{HT}$$

⇒ Estimador de **Horvitz-Thompson**

Este estimador está definido para qualquer plano amostral, desde que $\pi_i > 0 \ \forall i \in U$.

Propriedades do Estimador de Horvitz-Thompson

$$E_p(\hat{Y}_{HT}) = Y$$

Prova:

$$E_{p}(\hat{Y}_{HT}) = E_{p}\left[\sum_{i \in U} \delta_{i} y_{i} / \pi_{i}\right] = \sum_{i \in U} E_{p}(\delta_{i}) y_{i} / \pi_{i} = \sum_{i \in U} y_{i} = Y$$

Esta propriedade vale para qualquer população, variável de interesse y e plano amostral, desde que $\pi_i>0 \ \forall i\in U$.

©2011 - Pedro Luis do Nascimento Silva

45

Variância do Estimador Horvitz-Thompson

$$V_{p}(\hat{Y}_{HT}) = \sum_{i \in U} \pi_{i} (1 - \pi_{i}) \left(\frac{y_{i}}{\pi_{i}}\right)^{2} + \sum_{i \in U} \sum_{j \neq i \in U} \left(\pi_{ij} - \pi_{i}\pi_{j}\right) \left(\frac{y_{i}}{\pi_{i}}\frac{y_{j}}{\pi_{i}}\right)$$

Esta é a chamada forma de Horvitz-Thompson da variância.

Existe uma outra forma para esta variância, que vamos conhecer mais tarde.

Prova

$$\begin{split} &V_{p}(\hat{Y}_{HT}) = V_{p} \left[\sum_{i \in U} \left(\frac{y_{i}}{\pi_{i}} \right) \delta_{i} \right] \\ &= \sum_{i \in U} \left(\frac{y_{i}}{\pi_{i}} \right)^{2} V_{p}(\delta_{i}) + \sum_{i \in U} \sum_{j \neq i} \left(\frac{y_{i}}{\pi_{i}} \frac{y_{j}}{\pi_{j}} \right) COV_{p}(\delta_{i}; \delta_{j}) \\ &= \sum_{i \in U} \left(\frac{y_{i}}{\pi_{i}} \right)^{2} \pi_{i} (1 - \pi_{i}) + \sum_{i \in U} \sum_{j \neq i} \left(\frac{y_{i}}{\pi_{i}} \frac{y_{j}}{\pi_{j}} \right) (\pi_{ij} - \pi_{i} \pi_{j}) \end{split}$$

©2011 - Pedro Luis do Nascimento Silva

SIBGE

47

Estimador da Variância do Estimador de Total

Um estimador não viciado da variância do estimador de Horvitz-Thompson do total é dado por

$$\hat{V}_{1}(\hat{Y}_{HT}) = \sum_{i \in s} \frac{\pi_{i}(1-\pi_{i})}{\pi_{i}} \left(\frac{y_{i}}{\pi_{i}}\right)^{2} + \sum_{i \in s} \sum_{j \neq i} \frac{\left(\pi_{ij} - \pi_{i}\pi_{j}\right)}{\pi_{ij}} \left(\frac{y_{i}}{\pi_{i}}\frac{y_{j}}{\pi_{j}}\right)$$

Uma Forma Alternativa para a Variância

Para planos amostrais de tamanho pré-fixado, pode-se demonstrar que uma forma equivalente da variância do estimador de Horvitz-Thompson é dada pela expressão de Sen-Yates-Grundy a seguir.

$$V_{p}(\hat{Y}_{HT}) = \sum_{i \in U} \sum_{j>i} (\pi_{i}\pi_{j} - \pi_{ij}) \left(\frac{y_{i}}{\pi_{i}} - \frac{y_{j}}{\pi_{j}}\right)^{2}$$

Note a troca do sinal da diferença de probabilidades de inclusão em relação à fórmula anterior.

©2011 - Pedro Luis do Nascimento Silva

49

Outro Estimador da Variância do Estimador de Total

$$\hat{V}_{SYG}(\hat{Y}_{HT}) = \sum_{i \in s} \sum_{j > i} \frac{\left(\pi_i \pi_j - \pi_{ij}\right)}{\pi_{ij}} \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j}\right)^2$$

Obtido / motivado a partir da forma de Sen-Yates-Grundy para a variância do estimador de total.

Não coincide com o estimador de variância derivado a partir da expressão de Horvitz-Thompson.

Notas

- ✓ Fácil derivar estimadores de total e da variância do estimador de total como casos especiais para distintos planos amostrais.
- ✓ Fórmulas de variância disponíveis para permitir avaliar qualidade do estimador de total sob distintas situações (população, variável e plano amostral).
- \checkmark Um **total populacional** sempre pode ser estimado sem vício por uma soma amostral π -ponderada.

©2011 - Pedro Luis do Nascimento Silva