Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по лабораторной работе

«Генерация и визуализация исходных данных, основы классификации и аппроксимации» Нейроинформатика

Работу выполнил студент

группа 33501/4 Дьячков В.В.

Преподаватель

____ к.т.н., доц. Никитин К.В.

Содержание

1	Цели работы	4
2	Крестики-нолики 2.1 Задание 1	
3	Логическая функция 5 переменных	5
4	Разбиение плоскости на 2 класса	6
	4.1 Задание 1	6
	4.2 Задание 2	6
	4.3 Задание 3	6
	4.4 Задание 4	8
5	Разбиение плоскости на N классов	10
	5.1 Задание 1	10
	5.2 Задание 2	10
	5.3 Задание 3	10
6	Непрерывная функция одной переменной	12
	6.1 Задание 1	12
	6.2 Задание 2	12
	6.3 Задание 3	13
7	Линейная функция с памятью	14
	7.1 Задание 1	14
	7.2 Задание 2	14
8	Нелинейная функция с памятью	15
	8.1 Задание 1	15
	8.2 Задание 2	
9	Линейное разностное уравнение	16
		16
		16
10	Многомерные образы	17
	10.1 Задание 1	17
	10.2 Задание 2	

Список иллюстраций

2.1	Крестики-нолики	4
4.1	Разбиение и выбора на плоскости	6
4.2	Выборка, содержащая ошибки	7
4.3	Матрица неточностей	7
4.4	Разделение выборки на обучающую и тестовую	8
4.5	K-fold кросс-валидация	9
5.1	Разбиение и выборка на плоскости	10
5.2	Выборка, содержащая ошибки	11
5.3	Матрица неточностей	11
6.1	Непрерывная функция	12
6.2	Выборка значений непрерывной функции	13
6.3	Зашумленная непрерывная функция	13
7.1	Входной и выходной сигнал линейной функции с памятью	14
8.1	Входной и выходной сигнал нелинейной функции с памятью	15
9.1	Входной и выходной сигнал линейного разностного уравнения .	16
10.1	Примеры образов каждого класса	17
10.2	Зашумленные образы каждого класса	17
10.3	Повороты на различный угол образов каждого класса	18
10.4	Примеры искаженных образов каждого класса	18

1. Цели работы

- Научиться формировать выборки, состоящие из обучающих и тестовых примеров для решения типовых задач классификации, аппроксимации.
- Овладеть навыками визуализации данных на плоскости при решении задач классификации и аппроксимации.
- Научиться рассчитывать основные показатели качества распознавания и представлять полученные результаты в табличной и графической формах.

2. Крестики-нолики

2.1. Задание 1

Разделим таблицу 4×4 на крестики и нолики так, чтобы классы «О» и «Х» были линейно неразделимы:

$$\begin{cases} y = f(X) \\ X = [x_1, x_2] \\ x_i \in \{1, 2, 3, 4\} \\ y_i \in \{0, 1\} \end{cases}$$

2.2. Задание 2

На рис. 2.1 изображен полученный пример.

Рис. 2.1: Крестики-нолики

3. Логическая функция 5 переменных

Зададим логическую функцию 5 переменных так, чтобы множество ее выходных значений 0 и 1 было линейно неразделимым:

$$\begin{cases} y = f(X) \\ X = [x_1, x_2, x_3, x_4, x_5] \\ x_i \in \{0, 1\} \\ y_i \in \{0, 1\} \end{cases}$$

Таблица 3.1: Таблица истинности

x_1	x_2	x_3	x_4	x_5	y
0	0	0	0	0	$\begin{bmatrix} y \\ 0 \end{bmatrix}$
0				1	0
0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	1	0	0
0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 1 \end{array}$	1	0
0	0	1 1 1	0	0 1	0
0	0	1	0	1	1
0	0	1	1	0	0
0	0	1	1	1	0
0	1	1 0 0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0	0
0	1 1	0	0	1	0
0	1	0	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	1
0		0		1	0
0	$\begin{array}{ c c c }\hline 1 \\ 1 \end{array}$	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0	0
0	1	1	0	1	1
0	1	1	0 1	0	0
0	1	0 1 1 1 1 0 0	1	1	1
1	0	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0	1
1	0	0	0	1	0
1 1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	$egin{array}{c} 0 \ 1 \ 1 \end{array}$	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1		1	1
1	0	1	1	0	0
1	0	1	$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$	1	0
1 1	1	0	0	$\begin{array}{c} 1 \\ 0 \end{array}$	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1 1 1 1 0 0 0	1 1	1	0
1	1	1	0	0	0
1	1	1	0	1	0
1	1	1 1	1	0	0
1	1	1	1	1	0

4. Разбиение плоскости на 2 класса

4.1. Задание 1

Разобьем прямоугольный участок плоскости с помощью отрезков прямых линий на два класса. На рис. 4.1а приведен графический эскиз полученного разбиения плоскости.

4.2. Задание 2

Сформируем матрицу входных значений P в диапазоне рассматриваемого прямоугольного участка плоскости и найдем для нее вектор-столбец T, значения которого отвечают за номер класса (0 или 1). На рис. 4.1b изображена сформированная выборка, причем красным цветом отмечены значения, попадающие в область фигуры (1 класс).

Рис. 4.1: Разбиение и выбора на плоскости

4.3. Задание 3

Исказим сформированную ранее выборку (P,T), проинвертировав значения 10% случайно выбранных строк T, и будем интерпретировать эти данные, как ответ Y некоторого распознающего устройства (классификатора). На рис. 4.2 изображена полученная выборка (P,Y).

Рис. 4.2: Выборка, содержащая ошибки

На основании желаемых T и реальных Y ответов определим основные показатели качества распознавания. На рис. 4.3 изображена матрица неточностей.

Рис. 4.3: Матрица неточностей

По значениям матрицы неточностей найдем другие характеристики классификации:

• Средняя вероятность ошибки: $\frac{130+42}{1681} = 0.10$

• Средняя вероятность правильного распознавания: $\frac{1118+391}{1681} = 0.90$

• Спецефичность: $\frac{1135}{1681} = 0.68$

• Чувствительность: $=\frac{374}{1681}=0.22$

ullet Ошибка первого рода: $=\frac{130}{1681}=0.08$

ullet Ошибка второго рода: $=\frac{42}{1681}=0.02$

4.4. Задание 4

Разделим выборку на обучающую и тестовую, выбрав случайно 33% примеров как тестовые, а остальные — как обучающие. Полученное разделение изображено на рис. 4.4, причем большими точками отмечены примеры, попавшие в обучающую выборку, а маленькими — в тестовую.

Рис. 4.4: Разделение выборки на обучающую и тестовую

Применим **K-fold** кросс-валидацию при K=4 к исходной выборке. Результат разбиения изображен на рис. 4.5, причем большими точками отмечены примеры, попавшие в обучающую выборку, а маленькими – в тестовую.

Рис. 4.5: K-fold кросс-валидация

5. Разбиение плоскости на N классов

5.1. Задание 1

Разобьем прямоугольный участок плоскости с помощью отрезков прямых линий на 8 классов. На рис. 5.1а приведен графический эскиз полученного разбиения плоскости.

5.2. Задание 2

Сформируем матрицу входных значений P в диапазоне рассматриваемого прямоугольного участка плоскости и найдем для нее вектор-столбец T, значения которого отвечают за номер класса $(1, \dots, 8)$. На рис. 5.1b изображена сформированная выборка, причем разные классы отмечены разными цветами.

Рис. 5.1: Разбиение и выборка на плоскости

5.3. Задание 3

Исказим сформированную ранее выборку (P,T), изменив значение 10% случайно выбранных строк T на случайные значения от 1 до 8, и будем интерпретировать эти данные, как ответ Y некоторого распознающего устройства (классификатора). На рис. 5.2 изображена полученная выборка (P,Y).

Рис. 5.2: Выборка, содержащая ошибки

На основании желаемых T и реальных Y ответов определим основные показатели качества распознавания. На рис. 5.3 изображена матрица неточностей.

Рис. 5.3: Матрица неточностей

По значениям матрицы неточностей найдем другие характеристики классификации:

- Средняя вероятность ошибки: 0.08
- Средняя вероятность правильного распознавания: 0.92

В таблице 5.1 указаны значения ошибок первого и второго рода для каждого класса.

Ошибка\класс	1	2	3	4	5	6	7	8
1 род	0.04	0.05	0.08	0.06	0.29	0.36	0.24	0.00
2 род	0.09	0.08	0.08	0.11	0.11	0.09	0.06	0.06

Таблица 5.1: Ошибки первого и второго рода

6. Непрерывная функция одной переменной

6.1. Задание 1

Определим функцию одной переменной в интервале входных значений $x \in [0,1]$, имеющую несколько экстремумов и колебания различной частоты. Функция изображена на рис. 6.1.

Рис. 6.1: Непрерывная функция

6.2. Задание 2

Сформируем множество входных значений P в диапазоне возможных значений функции и определим соответствующие значения T. Полученная выборка изображена на рис. 6.2.

Рис. 6.2: Выборка значений непрерывной функции

6.3. Задание 3

Добавим к значениям T равномерный шум амплитуды, равной 10% от максимального значения. Будем интерпретировать полученный сигнал, как ответ Y некоторого распознающего устройства (нейронной сети).

Рис. 6.3: Зашумленная непрерывная функция

На основании желаемых T и реальных Y ответов определим основные показатели качества распознавания:

• Средняя абсолютная ошибка: 0.0506

• Средняя относительная ошибка: 0.1276

• Максимальная по модулю ошибка: 0.0994

7. Линейная функция с памятью

7.1. Задание 1

Зададим линейную функция с памятью:

$$y[n] = \sum_{i=0}^{h-1} x[n - i \cdot d] \cdot k_i,$$

где h — ширина окна, d — глубина задержек, k_i — коэффициенты. Зададим коэффициенты: h=8, d=4, $k_i=[0.183, -0.826, 0.286, -0.927, 0.970, -0.571, -0.143, -0.375].$

7.2. Задание 2

Подадим несколько вариантов входных сигналов: гармонический, ступенчато изменяющийся и случайный. Сформированные входные (синим цветом) и выходные (красным цветом) сигналы изображены на рис. 7.1.

Рис. 7.1: Входной и выходной сигнал линейной функции с памятью

8. Нелинейная функция с памятью

8.1. Задание 1

Зададим нелинейную функцию с памятью:

$$y[n] = f(x[n], x[n-d], ..., x[n-(h-1) \cdot d]),$$

где h – ширина окна, d – глубина задержек.

Зададим функцию: $f(x_1,x_2,...,x_n)=\sqrt{x_1^2+x_2^2+...+x_n^2}$. Зададим коэффициенты: h=3, d=2.

Задание 2 8.2.

Подадим несколько вариантов входных сигналов: гармонический, ступенчато изменяющийся и случайный. Сформированные входные (синим цветом) и выходные (красным цветом) сигналы изображены на рис. 8.1.

Рис. 8.1: Входной и выходной сигнал нелинейной функции с памятью

9. Линейное разностное уравнение

9.1. Задание 1

Зададим линейное разностное уравнение

$$y[n] = (z_1 + z_2) \cdot y[n-1] - z_1 \cdot z_2 \cdot y[n-2] + k_1 \cdot X[n] + k_2 \cdot X[n-1]$$

где z_1, z_2, k_1, k_2 – некоторые коэффициенты.

Зададим коэффициенты: $z_1 = 0.5, z_2 = -0.5, k_1 = 0.25, k_2 = 0.5.$

9.2. Задание 2

Подадим несколько вариантов входных сигналов: гармонический, ступенчато изменяющийся и случайный. Сформированные входные (синим цветом) и выходные (красным цветом) сигналы изображены на рис. 9.1.

Рис. 9.1: Входной и выходной сигнал линейного разностного уравнения

10. Многомерные образы

10.1. Задание 1

Для задачи классификации будем использовать набор, встроенный в библиотеку **scikit** для языка программирования Python. Набор включает в себя 1797 черно-белых изображений рукописных цифр (то есть 10 классов) размером 8×8 пикселей.

10.2. Задание 2

На рис 10.1 изображены примеры образов каждого класса.

Рис. 10.1: Примеры образов каждого класса

На рис. 10.2 изображены примеры образов, зашумленных с разной степенью интенсивности относительно исходных.

Рис. 10.2: Зашумленные образы каждого класса

На рис 10.3 изображены примеры образов, имеющих геометрические искажения (поворот на различный угол).

Рис. 10.3: Повороты на различный угол образов каждого класса

На рис 10.4 изображены образы, являющиеся некоторой частью от исходных.

Рис. 10.4: Примеры искаженных образов каждого класса