高雄中學 110 學年度第一學期 期末考 二年級自然組數學科試題

※將各題的答案寫在答案卷上對應題號的空格內。

- 一、單一選擇題:第1題至第3題,每題只有一個正確的選項。
- 1. 空間中,平面 E 上有一個 $\triangle ABC$,其面積為 m,若平面 E 與平面 F 的銳夾角為 60° ,則

$$\triangle ABC$$
在平面 F 上的投影面積 = $(1)\frac{1}{2}m$ $(2)\frac{\sqrt{3}}{2}m$ $(3)(\frac{1}{2})^2m$ $(4)(\frac{\sqrt{3}}{2})^2m$ $(5)(\frac{1}{2}m)^2$

- 2. 展開並因式分解: $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a), 則 k=$
 - (1)1 (2)a+b+c (3)ab+bc+ca (4) $a^2 + b^2 + c^2$ (5)abc
- 3. 設 $\mathbf{a} \cdot \mathbf{b}$ 為正實數常數,空間中有一個四面體 ABCD, $\overline{DA} = \overline{DB} = \overline{DC} = \frac{a+b}{2}$, $\overline{AB} = \sqrt{a^2 + b^2}$, $\overline{BC} = \mathbf{a}$, $\overline{CA} = \mathbf{b}$, 則 D 點到平面 ABC 的距離=

$$(1)\sqrt{\frac{a+b}{2}} \quad (2)\sqrt{\frac{ab}{2}} \quad (3)\frac{\sqrt{a+b}}{2} \quad (4)\frac{\sqrt{ab}}{2} \quad (5)\frac{\sqrt{a^2-ab+b^2}}{2}$$

- 二、多重選擇題:第4題至第6題,每題有5個選項,其中至少有一個是正確的選項。
- 4. 空間中有一正四面體ABCD,已知其中三頂點分別為 $A(\sqrt{3},0,0)$, $B(0,\sqrt{3},0)$, $C(0,0,\sqrt{3})$,而D點在第一卦限內,則下列各選項何者正確?
 - (1)D的坐標為 $(\sqrt{3},\sqrt{3},\sqrt{3})$ (2) 此正四面體的高=2 (3) 此正四面體之內切球的體積 $=\frac{1}{6}\pi$
 - (4) 設P,Q,R三點滿足 $\overline{AP} = \overline{PB}$, $2\overline{AQ} = \overline{QC}$, $3\overline{AR} = \overline{RD}$,G為 $\triangle BCD$ 的重心,若 \overline{AG} 與平面PQR交於點S,則 \overline{AS} 的長=1
 - (5) 承(4), 四面體APQR的體積= $\frac{\sqrt{3}}{6}$
- 5. 在空間中,下列各選項是獨立互不相關,選出恆正確的選項:
 - (1) 若直線L與平面E恰交於一點,且L與E不垂直,則恰有一平面F包含L且垂直平面E
 - (2) 設相異兩點B,C與一直線L皆在一平面E上,E外有點A,若線段AB與BC皆垂直L於B點,則AC與E垂直
 - (3) 有相異四點A,B,C,D, 若直線AB與直線CD互為歪斜線, 則直線AC與直線BD必不相交
 - (4) 平行六面體ABCD-EFGH的12條稜線中,互為歪斜線的稜線有24對
 - (5) 有不共線的五點O,P,A,B,C滿足 $\overline{OP} = x\overline{OA} + y\overline{OB} + z\overline{OC}$ (其中x,y,z為實數),若P,A,B,C四點共面,則x+y+z=1
- 6. 空間中三個非零向量 $\vec{a} = (a_1, a_2, a_3)$, $\vec{b} = (b_1, b_2, b_3)$, $\vec{c} = (c_1, c_2, c_3)$,設 $\vec{0} = (0, 0, 0)$,

下列各選項是獨立互不相關,選出恆正確的選項:

(1) 若 $\vec{a} \perp \vec{b} \mid \vec{b} \perp \vec{c}$,則 $\vec{a} \times \vec{c} = \vec{0}$

$$(2)\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}^2 + \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}^2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}^2 + (a_1b_1 + a_2b_2 + a_3b_3)^2 = (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$$

$$(3)\vec{c} \bullet (\vec{a} \times \vec{b}) = -\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- (4) 若 $|\vec{a} \times \vec{b}| = |\vec{a} \cdot \vec{b}|$,則「 \vec{b} 在 \vec{a} 上的正射影長」小於「 \vec{b} 長度的一半」
- (5) 若 $(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) = \vec{0}$,則必存在兩實數p,q, 使得 $\vec{a} = p\vec{b} + q\vec{c}$

三、填充題:第7題至第17題為填充題。

- 7. 空間直角坐標中三點A(2,-3,4),B(4,-5,4),C(2,-2,3), 求 △ ABC 的面積 = _____。
- 8. 空間直角坐標中,設點P在第一卦限內,P到x軸、y軸的距離各為 $3\sqrt{5}$ 、 $2\sqrt{10}$,P到xy平面距離為2,求P與原點的距離==。
- 9. 設x,y,z是實數,已知 $x^2 + 4y^2 + 9z^2 = 56$,求2x + 2y + 9z的最大值=_____。

10. 若
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 =1, 求值: $\begin{vmatrix} 3a_1 + b_1 & a_1 - 2c_1 & a_1 + b_1 + c_1 \\ 3a_2 + b_2 & a_2 - 2c_2 & a_2 + b_2 + c_2 \\ 3a_3 + b_3 & a_3 - 2c_3 & a_3 + b_3 + c_3 \end{vmatrix}$ =______ \circ

- 11. 空間中,設三線段 \overline{OA} , \overline{OB} , \overline{OC} 两兩互相垂直,若 \overline{OA} = 2, \overline{OB} = 4, \overline{OC} = 6,則 $\triangle ABC$ 的面積 = ______。
- 12. 空間直角坐標中有相異四點A(1,0,3),B(0,1,t),C(0,k,k+1),D(1,k-3,k)(其中t、k為定實數),若A,B,C,D四點共平面,求值:t=_____。
- 13. 在空間直角坐標中,xz平面為一面鏡子。有一光線通過點A(4,2,2),射向鏡面上的點B(2,0,4),反射後通過C點。若 $3\overline{AB}=2\overline{CB}$,則A與C的距離(即 \overline{AC})=____。
- 14. 將一塊邊長 $\overline{AB} = 2\sqrt{3}$ 公分、 $\overline{BC} = \sqrt{6}$ 公分的長方形鐵片ABCD沿對角線 \overline{BD} 對摺後豎立,使得平面ABD與平面CBD垂直,則A,C兩點(在空間)的距離(即 \overline{AC})= 公分。
- 15. 参考右圖,空間中,將一張正方形的紙ABCD沿著對角線 \overline{BD} 摺起使得銳角 $\angle ABC = \alpha$,此時二平面ABD與BCD的銳夾角為 β ,已知 $\cos \alpha = \frac{2}{3}$,求值: $\cos \beta = \underline{\hspace{1cm}}$ 。

- 16. 在空間中,三向量 \vec{a} , \vec{b} , \vec{c} 滿足 $(\vec{a} \times \vec{c})$ •($\vec{a} + 2\vec{b} + 3\vec{c}$)+($\vec{b} \times \vec{c}$)•($5\vec{a} + 4\vec{b} + 3\vec{c}$)=21, 求由 \vec{a} , \vec{b} , \vec{c} 所張出的平行六面體的體積=_____。
- 17. α, β, γ 為定實數,在空間直角坐標中, $\triangle ABC$ 的三頂點為 $A(7,2,\alpha)$ $B(\beta,8,-1)$ C(1,2,5)。 對於空間中任意動點 P,另有一定點 $Q(3,\gamma,1)$ 滿足 $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2 \geq \overline{QA}^2 + \overline{QB}^2 + \overline{QC}^2$ 。

若 D 點在第一卦限內,與 A、B、C 形成一個正四面體 ABCD,求正四面體 ABCD 的外接球球心的坐標為______。 四、計算題:第18題計算題。

18.(1) 空間中有四個非零向量: \vec{a} =(23,18,39), \vec{b} =(37,29,64), \vec{c} =(30,25,53), \vec{n} =(x,y,z),

已知
$$\vec{a} \cdot \vec{n} = \vec{b} \cdot \vec{n} = \vec{c} \cdot \vec{n}$$
,求值: $\frac{xy + yz + zx}{x^2 + y^2 + z^2} = ?$

(2) 承(1). 求由 $\vec{a}, \vec{b}, \vec{c}$ 所張成的四面體體積=?

高雄中學 110 學年度第一學期 期末考 二年級自然組數學科試題 答案卷

班級:二年_____组 座號:_____ 姓名:_____

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
得分	8	16	24	32	40	48	56	60	64	68	72	76	80	84	86	88	90

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	

※第18題計算題,將過程詳細寫在下面。(共佔10分)

高雄中學 110 學年度第一學期 期末考 二年級自然組數學科試題 參考答案

班級:二年_____组 座號:_____ 姓名:_____

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
得分	8	16	24	32	40	48	56	60	64	68	72	76	80	84	86	88	90

1	2	3	4	5	6
1	5	2	123	134	2
7	8	9	10	11	12
$\sqrt{3}$	7	28	3	14	2
13	14	15	16	17	
√51	$\sqrt{10}$	$\frac{1}{3}$	7	(4, 5, 2)	

※第18題計算題,將過程詳細寫在下面。(共佔10分)

答: $(1)-\frac{1}{3}$ (2)7