Basic categorical logic

YKY

Basic category theory

Category theory is poised to replace set theory as a *foundation* of mathematics.

Categorical logic is the application of category theory to logic.

Set theory

In set theory one talks about the **elements** of a set and how they are *mapped* to other elements by **functions**.

Category theory

In category theory one does not "see" the elements inside a set and instead talks about single **morphism**s between 2 categories.

Monic and epic

These are 2 important concepts:

in cat theory

in set theory

monic epic

 \longleftrightarrow

injection = one-to-one

surjection = onto

Injection (单射)

In an injection any source element can only map to a <u>single</u> target element.

Surjection(滿射)

In a surjection the map must cover the target domain <u>fully</u>.

Example: Cartesian product

Cartesian product

How can products be defined categorically?

First, note that there exist 2 maps that project the product object to each of the original objects.

Cartesian product

Given any set V and two arrows q1, q2, there exists a **unique arrow**, usually denoted by ! or a dotted line:

such that ...

Cartesian product

... the diagram **commutes**, that is to say, the different paths of composite mappings are always **equivalent**.

Section and retraction

This is a topological product:

line segment

base (= circle)

cylinder

neighborhood of x

The Möbius strip is globally not a product of the midline and the segment (which would be a cylinder), but it is locally around each neighborhood the product of an arc and the segment.

a fiber "grows" on the base point x

The map *p* **projects** the fiber to *x*.

The fiber is the **pre-image** $p^{-1}(x)$.

 \mathcal{X}

Abstractly, a bundle is a map p from a collection of sets A_i to an **index** set I.

Subobjects

subobject = subset
in cat theory in set theory

To say $A \subseteq D$ ("A is a subset of D") is equivalent to saying "there exists an *injective* map $A \rightarrow D$ ", denoted as:

$$A \hookrightarrow D$$

"injective" ↔ "inclusion"

Characteristic function

The characteristic function χ_A of a set A is defined as:

$$\chi_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Subobject classifier

- Ω is called the subobject classifier or the truth value object
- When we map a domain D to Ω via $f: D \rightarrow \Omega$ we sort the domain into various classes, thus giving it structure. This is known as **fibration**.
- The set inclusion relation ⊆ induces a pre-order and thus an equivalence class in the domain D. This means that in some domains, Ω may have more than 2 values, ie, varying shades of truth, suggestive of fuzzy logic.

Subobject classifier

What is topology?

Topology is really the study of **open sets**. (Open set = one that contains all of its **boundary points**)

closed

clopen (neither open nor closed)

What is topology?

The collection of all open subsets of a space is called the **topology** of that space.

Topological concepts are precisely those that can be defined purely in terms of open sets, eg:

- limit points / convergence
- continuity
- path-connectedness
- compactness

whereas distance is not topological.

Topological semantics

In **topological semantics**, the truth value $[]_{V}$ of a proposition is an **open set** on \mathbb{R} .

Eg:

$$[p]_{V} = (0,1)$$

$$[q]_{V} = (1,2)$$

$$0$$

$$1$$

Topological semantics

More examples: $[p]_{V} = (0,1)$ $[q]_{V} = (1,2)$ $[\neg p]_{\vee} = (-\infty, 0] \cup [1, \infty)$ $[p \rightarrow q]_{V} = (-\infty,0) \cup (1,\infty)$ $[(p \rightarrow q) \lor (q \rightarrow p)]_{\vee} =$ $(-\infty,1) \cup (1,\infty) = \mathbb{R} \setminus \{1\}$

Geometric logic

= logic of topology

Comparison

Orders	Logic	Sets
≤	\Rightarrow	
=	\iff	
top -	T	universe
bottom _	F	Ø
meet	\wedge	
join ⊔	V	U

Quantifiers

∃ and ∀ are respectively the left and right adjuncts to a substitution map *f*:

$$\exists \vdash f \vdash \forall$$

This discovery is due to Lawvere in the 1960's

Relations

A **relation** is defined by its **graph** and can be represented spatially, eg:

Relations

For illustration's sake assume that the domains are continuous, so the graph looks like this:

Existential quantification

 \exists is equivalent to **projection** onto R's range or domain.

If this set = ϕ then the existential statement is false.

Due to the shape of this projection, this kind of algebra is called **cylindrical algebra**.

Adjunction

An isomorphism between 2 categories

$$C \cong \mathcal{D}$$

means they have the same mathematical structure (ie, essentially the same).

The adjunction

$$C \dashv \mathcal{D}$$

is a *relaxation* of the idea of isomorphism.

Adjunction

This is the internal diagram of 2 categories

Example: monoid

Free monoid

... is an example of an adjunct situation

To-do

- Sheaves, locales, Heyting algebra
- Topoi and variable sets
- Awodey's idea "HOL is the logic of continuous variation"
- Probabilistic / fuzzy logic in categorical setting?

References

- Arbib & Manes 1975. Arrows, structures, and functors the categorical imperative
- Awodey 2006. Category theory
- Barr & Wells 1990. Category theory for computing science
- Boltyanskii & Efremovich 2001. Intuitive combinatorial topology
- Catster, Warrick Univ. on YouTube: Adjunction
- Goldblatt 1984. Topoi the categorial analysis of logic
- Halmos & Givant 1988. Logic as algebra
- Lawvere & Schanuel 1991. Conceptual mathematics a first introduction to categories
- Pierce 1991. Basic category theory for computer scientists
- Plotkin 1994. Universal algebra, algebraic logic, and databases
- Schechter 2005. Classical and nonclassical logics
- Vickers 1989. Topology via logic