

Regresja liniowa

infoShareAcademy.com

Rozkład jazdy

- Po co nam regresja liniowa?
- Funkcja, funkcja liniowa
- Regresja liniowa definicja
- Własna implementacja
- Ćwiczenia z wykorzystaniem sklearn

Regresja liniowa – wzrost społeczeństwa

Regresja liniowa – wzrost społeczeństwa

Regresja liniowa – wzrost społeczeństwa

Czym jest funkcja?

$$y = f(X)$$

KOSMICZNE I NIEPRAWDOPODOBNE OBLICZENIA

ODPOWIEDŹ

- X wejście funkcji, zmienna objaśniająca, niezależnaY odpowiedź funkcji, zmienna objaśniana, zależna
- a współczynnik "slope", kierunkowy
- b współczynnik ,intercept', przesunięcie

y=a*x+b

X – wejście funkcji, zmienna objaśniająca, niezależna
Y – odpowiedź funkcji, zmienna objaśniana, zależna

a – współczynnik "slope", kierunkowy

b – współczynnik ,intercept', przesunięcie

$$y=a_0+a_1*x_1+b_1$$

 $+a_2*x_2+b_2+...$

X – wejście funkcji, zmienna objaśniająca, niezależna

Y – odpowiedź funkcji, zmienna objaśniana, zależna

a – współczynnik "slope", kierunkowy

b - współczynnik ,intercept', przesunięcie

info Share ACADEMY

Funkcja liniowa wielu zmiennych - hiperpłaszczyzna

Tworzenie na podstawie dwóch punktów, A i B:

$$a = \frac{y_B - y_A}{x_B} - x_A$$

$$\mathbf{b} = y_A - ax_A$$

 $x_{A'}$ $x_{B'}$ $y_{A'}$ y_{B}^- wartości współrzędnych x i y punktu A i B

Regresja liniowa (definicja)

- Przedstawia korelację dwóch zmiennych: x, y
- X nazywamy zmienną objaśniającą
- Y nazywamy zmienną objaśnianą
- Modelem jest funkcja liniowa: y = ax + b
- Wyznaczenie funkcji liniowej polega na minimalizacji wartości błędu określanej metodą najmniejszych kwadratów (y - _y)^2

Regresja liniowa (implementacja)

$$a = \sigma^{\frac{1}{k=1}(x_i - x_{mean})(y_i - y_{mean})}$$

$$b = y_{mean} - \sigma^{\frac{1}{k=1}(x_i - x_{mean})^2}$$

n – ilość punktów do treningu y_i , x_i – wartość współrzędnych kolejnych punktów $x_{mean'}$ y_{mean} – wartość średnia współrzędnych ze wszystkich punktów

Regresja liniowa (współczynnik determinacji)

$$R^{2} = \sigma^{n=1} (y_{i}^{*} - y_{mean})^{2}$$

$$= \sigma^{n=1} (y_{i} - y_{mean})^{2}$$

$$y_{i}^{*} - \text{kolejna wartość predykcji}$$

 \boldsymbol{y}_i - kolejna wartość referencyjna \boldsymbol{y}_{mean} - wartość średnia ze wszystkich referencji

Regresja liniowa (metryki – reszty)

- Wielkości odchylenia odpowiedzi modelu od danych referencyjnych
- Pokazują jak mocno na przestrzeni danych nasz model odbiega od rzeczywistości
- Jeśli wartości reszt są mniej więcej podobno dla większości punktów, oznacza to dobre zastosowanie regresji liniowej

Regresja liniowa (błąd średniokwadratowy)

- Stosowany do porównywania jakości modeli regresji
- Przedstawia średni błąd odchylenia wszystkich próbek testowanych od referencyjnych
- W treningu regresji liniowej lepiej sprawdza się r^2, jednak jako dodatek również można go zastosować

Regresja liniowa (implementacja w sklearn)

- Pobieramy pakiet modeli liniowych:
 from sklearn.linear_model import LinearRegression
- Tworzymy model regresji liniowej:
 model = LinearRegression()
- Trening model.fit(???)
- Współczynniki model.intercept_, model.coef_
- Predykcja model.predict(???)

- https://www.gosc.pl/doc/759350.Rosniemy-jak-na-drozdzach
- https://www.statystyczny.pl/regresja-liniowa/
- Machine Learning for Developers, Rodolfo Bonnin, Birmingham-Mumbai, 2017
- https://www.naukowiec.org/wiedza/statystyka/regresja-liniowa 765.html

Dzięki!