Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ: 6 семестр.

Отчёт № 3.

Анализ параллельной программы на MPI, реализующей зашумленное преобразование n-Адамар

Работу выполнил

Федоров В. В.

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм квантового преобразования n-Адамар с зашумлением с использованием MPI, проанализировать зависимость времени выполнения программы от числа кубитов, потери точности преобразованного вектора от уровня шума и числа кубитов при помощи системы BlueGene.

Формат командной строки: Первый аргумент — единственный символ, означающий один из двух режимов работы:

- g вектор состояния инициализируется случайными значениями. Дальнейшие аргументы командной строки: <число кубитов n> <уровень шума e> <имя файла для вывода времени выполнения> <имя файла для вывода потери точности>
- f вектор состояния считывается из файла, вектор-результат также записывается в файл. Дальнейшие аргументы командной строки: <имя файла для считывания вектора> <уровень шума e> <имя файла для записи вектора>
 - Вектор записывается в файл в бинарном формате сначала идут 4 бита числа кубитов п, затем 2ⁿ пар восьмибайтовых чисел с плавающей точкой, соответствующих действительной и мнимой части соответствующего элемента вектора.

Описание программы

Как и в задании 2, разделим весь вектор состояния на $2\,p$ блоков, тогда у каждого процесса будет по 2 блока. Пусть вектор уже распределен по процессам так, чтобы соседние по k-му кубиту состояния находились у одного и того же процесса, тогда необходимо перепослать блоки так, чтобы на одном процессе находились состояния, соседние по m-му кубиту. Тогда как для k, так и для m подсчитаем расстояние между блоками, принадлежащими одному и тому же процессу, из чего можно легко подсчитать, какому процессу какой блок принадлежит. После этого каждый процесс сможет выяснить, какие блоки хранятся у него и какие ему будут нужны, а затем — номера процессов, которым нужно отправить имеющиеся блоки и у которых нужно получить новые.

	k = 1	m = 3
000	0	0
001	1	0
010	2	1
011	3	1
100	0	2
101	1	2
110	2	3
111	3	3

В примере, продемонстрированном таблицей выше, видно, что процесс с номером 1 должен отправить свои блоки процессам 0 и 2, а получить новые блоки — у процессов 2 и 3.

Для генерации шума над произвольным однокубитным оператором необходимо домножить его на случайную матрицу:

$$U(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}; \theta = e \; \xi; \xi \sim N(0,1)$$

Тестирование

Программа тестировалась при помощи режима «f» на 5 заранее сгенерированных файлах с n=9 всех количеств процессов от 1 до 16, равных степени двойки на нулевом уровне шума.

Результаты выполнения

Анализ скорости работы программы

Кол-во кубитов	Кол-во проц-в	Время работы, с	Ускорение	Эффективность
	32	9,297840	1,000000	1,000000
	64	4,862700	1,912074	0,956037
28	128	2,583660	3,598709	0,899677
	256	1,368560	6,793886	0,849236
	512	0,685979	13,554118	0,847132

Гистограммы распределения потерь точности

Средние значения потерь точности

24	0,000669	
25	0,000644	
26	0,054035	
27	0,061703	
28	0,058546	
e = 0,01		

0.1	0,096158
0.01	0,054035
0.001	0,052782

n = 26

Основные выводы.

В целом потери точности увеличиваются вместе с ростом числа кубитов, равно как и с ростом уровня шума. По графикам также можно заметить, что дисперсия тоже растет пропорционально этим величинам.