數據分析文件-學歷與職場發展之關聯

目錄

目錄	1
一. 前言	
資料來源 (Kaggle)	
匯入之套件	
二. 數據簡介	
三. 實作步驟	3
1.數據檢視與清理	3
2.欄位分析與可視化圖表	4
(1) 【晉升機會(Years_to_Promotion)之分析】(許瑞宏)	4
(2) 【起薪(Starting Salary)之分析】(黄晨宇)	7
四. 其他【綜合分析(Combination)】(孫耀庭)	10
五. 總結	12

一.前言

本技術文件詳細介紹了對 Kaggle 數據集之 "Education Career Success" 數據分析過程。我們將使用 Pandas, Numpy 等套件進行數據處理,並透過 Plotly, Matplotlib, Seaborn 等套件進行視覺化分析,以探索學歷、技能與職場表現(如起薪、工作滿意度)之間的關係。

(Kaggle 數據資料來源:https://www.kaggle.com/datasets/adilshamim8/education-and-career-success)

二.數據集簡介

此份 Kaggle 中"Education Career Success"的數據集包含 5000 筆數據(X 軸)和 20 個特徵(Y 軸),以下是數據集的主要欄位:

類別	欄位名稱	說明
基本資訊	Student_ID	學生編號
基本資訊	Age	年齡
基本資訊	Gender	性別(Male / Female / Other)
學術背景	High_School_GPA	高中 GPA
學術背景	SAT_Score	SAT 考試分數
學術背景	University_Ranking	大學排名(數值越小代表排名越高)
學術背景	University_GPA	大學 GPA
學術背景	Field_of_Study	學習領域(如 Computer Science、Law 等)
技能與經歷	Internships_Completed	完成的實習數量
技能與經歷	Projects_Completed	完成的專案數量
技能與經歷	Certifications	取得的證書數量
技能與經歷	Soft_Skills_Score	軟技能評分(1-10)
技能與經歷	Networking_Score	人脈網絡評分(1-10)
職業發展	Job_Offers	獲得的工作機會數
職業發展	Starting_Salary	起薪(美元)
職業發展	Career_Satisfaction	職業滿意度 (1-10)
職業發展	Years_to_Promotion	晉升所需年數
職業發展	Current_Job_Level	當前職位層級(Entry, Mid, Senior)
職業發展	Work_Life_Balance	工作與生活平衡(1-10)
職業發展	Entrepreneurship	是否創業(Yes/No)

三.實作步驟

1. 數據檢視與清理

(1)

					程式碼解析						
import import import import	numpy as n matplotlib pandas as plotly.exp plotly.gra CSV 標業 i.read_csv(pd pd ress ph_ob	as px jects as)					⑥↑↓占♀▮	· 匯入套件並進行數據 預覽 (education_career_succe ss.csv)
5	Student_ID	Age	Gender	High_School_GPA	SAT_Score	University_Ranking	University_GPA	Field_of_Study	Internships_Completed	Projects_Completed Certi	· 使用
0	S00001	24	Male	3.58	1052	291	3.96	Arts	3	7	pandas.read csv() 讀
1	S00002	21	Other	2.52	1211	112	3.63	Law	4	7	
2	S00003	28	Female	3.42	1193	715	2.63	Medicine	4	8	取 CSV 檔案後的結
3	S00004	25	Male	2.43	1497	170	2.81	Computer Science	3	9	果。
4	S00005	22	Male	2.08	1012	599	2.48	Engineering	4	6	
	***				***	***		***	***	***	
4995	S04996	26	Female	2.44	1258	776	2.44	Arts	3	7	
4996	S04997		Female	3.94		923	3.73	Law	0	9	
4997	S04998	19	Female	3.45		720	2.52	Law	3	5	
4998	S04999	19	Male	2.70	1038	319	3.94	Law	1	4	
4999	\$05000	23	Female	2.19	1145	82	3.19	Computer Science	2	6	
5000 rov	vs × 20 colu	umns									

(2)

(3)

				程	!式碼實	作				程式碼解析
df.des	cribe()									
	Age	High_School_GPA	SAT_Score	University_Ranking	University_GPA	Internships_Completed	Projects_Completed	Certifications	Soft_Skills_Score	使 df.describe()得到
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	統計資料
mean	23.442200	2.996978	1253.832000	504.335600	3.020028	1.982200	4.562800	2.512200	5.546000	
std	3.473712	0.575673	203.228954	291.060011	0.576047	1.408219	2.872927	1.703183	2.851159	
min	18.000000	2.000000	900.000000	1.000000	2.000000	0.000000	0.000000	0.000000	1.000000	
25%	20.000000	2.500000	1076.000000	256.000000	2.520000	1.000000	2.000000	1.000000	3.000000	
50%	23.000000	2.990000	1257.000000	501.500000	3.030000	2.000000	5.000000	3.000000	6.000000	
75%	26.000000	3.500000	1432.000000	759.000000	3.510000	3.000000	7.000000	4.000000	8.000000	
max	29.000000	4.000000	1600.000000	1000.00000	4.000000	4.000000	9.000000	5.000000	10.000000	
Netv	vorking_S	core Job_	Offers S	Starting_Salary	Career_Sa	tisfaction Year	s_to_Promotion	Work_L	ife_Balance	
	5000.000	0000 5000.0	00000	5000.000000	500	0.000000	5000.000000	5	000.00000	
	5.538	3000 2.4	88800	50563.540000		5.578000	3.015800)	5.482400	
	2.850	0084 1.7	11859	14494.958207		2.871997	1.417446	,	2.883427	
	1.000	0.0 0.00	00000	25000.000000		1.000000	1.000000)	1.000000	
	3.000	0000 1.0	00000	40200.000000		3.000000	2.000000		3.000000	
	6.000	0000 2.0	00000	50300.000000		6.000000	3.000000)	6.000000	
	8.000	0000 4.0	00000	60500.000000		8.000000	4.000000		8.000000	
	10.000			101000.000000	1	0.000000	5.000000		10.000000	

2. 欄位分析與可視化圖表 晉升機會(Years to Promotion) 分析 (1) 【學歷】與【晉升機會】分析

(1) 【學歷】與【普升機會】分析	
程式碼實作與可視化圖表	程式碼解析
	. 轉換分類大學排名(間
# 分類大學排名	距排名 333(含)以
<pre>def university_tier(rank):</pre>	
if rank <= 333:	下,333-667(含),以
return "Top Tier"	. (-)
elif rank <= 667:	及 667-1000(含)
return "Mid Tier"	. University_Tier 欄位扣
else:	·
return "Lower Tier"	學校排名轉換為類
df["University_Tier"] = df["University_Ranking"].apply(university_tier)	別。(Top Tier, Mid
# 計算不同排名組別的晉升情況	Tier, and Lower Tier
<pre>promotion_trend = df.groupby(["Years_to_Promotion", "University_Tier"]).size().reset_index(name="Count")</pre>	· 計算 不同學校層級
# **繪製堆疊柱狀圖**	的畢業生,在職場晉
fig = px.line(promotion_trend, x="Years_to_Promotion", y="Count", color="University_Tier",	升所需年數。
title="學歷 vs. 晉升機會 (依大學排名)",	
labels={"Years_to_Promotion": "晉升所需年數", "Count": "人數"}) # 設定為堆疊模式,讓不同學歷的晉升情況直接顯示	R/N
fig.show()	
(/	

- A. Top Tier (頂級學校) 的畢業生通常晉升較快 (較少 的
 - Years_to_Promotion) •
- B. Lower Tier (較低排名學校)

的畢業生晉升較慢,但仍然 有一定比例在短時間內晉 升。

C. Mid Tier(中等學校) 則 處於中間地位。

小結

- 學歷影響職場晉升速度,頂級學校的畢業生通常能夠更快獲得晉升機會。
- 中等學校畢業生晉升節奏較為平均,沒有明顯的優勢或劣勢,屬於職場的中堅份子。
- 較低排名學校的畢業生晉升較慢,但仍有一部分能夠在短時間內晉升,這可能取決於個人能力、 職業選擇或產業需求。

(2) 【性別】與【晉升機會】分析

程式碼實作與可視化圖表	程式碼解析
# 繪製不同性別的晉升年數直方圖(不堆疊) fig = px.histogram(df, x="Years_to_Promotion", color="Gender", # 依照性別分類不同顏色 barmode="group", # 分組顯示·不堆疊 histfunc="count", # 讓 Y 軸顯示性別總數 title="不同性別的晉升年數分佈", labels={ "Years_to_Promotion": "晉升所需年數", "count": "性別總數", # 修正 Y 軸標籤 "Gender": "性別" }) # 顯示圖表 fig.show()	· 此程式碼使用 Plotly 來繪製 不同性別在各晉升年數上的人數分佈,以直方圖顯示,並區分性別。 · histfunc="count" 讓 Y 軸顯示該晉升年數的性別總數。 · barmode="group": 讓不同性別的數據分開顯示(不堆疊),方便比較。

- 男性與女性的晉升 年數分佈較為相似, 但男性員工人數稍 多。
- Other(其他性別)的 人數較少,對晉升年 數的影響較小。
- 晉升時間大致分佈 均勻,沒有明顯的集 中於特定年數。

小結

- 男性在前期晉升可能因人數原因上升,並到中間年數有男性較趨向於轉換跑道或離職,並在往後繼續招募男性新鮮人比例較高。
- . 可能要再計算不同性別的平均晉升年數 來確定是否存在性別差異。
- . 並進一步分析各性別在不同職位層級的分佈,以確保晉升公平性。

(3) 【社交網路分數】與【晉升機會】分析

程式碼實作與可視化圖表 程式碼解析 數據範圍較寬:說明某組 import plotly.express as px 的 Networking Score 變 fig = px.violin(異較大。 df, x="Years_to_Promotion", 形狀較厚的部分:代表該 y="Networking_Score", 區間人數較多 (更常見)。 box=True, # 顯示箱型數據 points="all", # 顯示所有數據點 title="不同晉升狀態下的 Networking Score 分佈", labels={"Years_to_Promotion": "第幾年獲得晉升", "Networking_Score": "社交網絡分數"}, color="Years_to_Promotion" fig.show() 不同晉升狀態下的 Networking Score 分佈 第 1、2、4 年晉升者: Networking Score 分佈較 廣,部分低分者仍能晉升, 第幾年獲得晉升 5 高分者可能更快獲得晉 1 升。 3 2 第 3 年晉升者:分佈較集 4 中,顯示晉升標準較一致。 第 5 年晉升者:變異較 小,影響力較低,可能由資 歷或績效決定晉升時機。 第幾年獲得晉升

小結

- . Networking Score 與晉升有一定關聯,但並不是唯一因素。
- . 高 Networking Score 的員工,可能更早獲得晉升(1~2 年晉升者中,有部分高分者)。
- . 晉升時間較長(5年)的員工,Networking Score 影響力較小,可能由其他因素決定晉升時機。

起薪 (Starting Salary) 分析

(1)平均起薪性別比

(2)各領域最高與最低起薪(年薪)

程式碼實作與可視化圖表 程式碼解析 計算並繪製各領域 # 對對 Field_of_Study 找到每個領域的最高起薪 field_max_salary = df.groupby("Field_of_Study")["Starting_Salary"].max().reset_index() 的最高與最低起薪 print(field max salary) (年薪) 針對 Field of Study 找到每個領域的最低起薪 field_min_salary = df.groupby("Field_of_Study")["Starting_Salary"].min().reset_index() print(field_min_salary) # 合併最高與最低起薪資料 merged = pd.merge(field_max_salary, field_min_salary, on="Field_of_Study", suffixes=("_max", "_min")) # 設定周惠大/ plt.figure(figsize=(14, 8)) # 盘出最高起薪與最低起薪的條形圖 # 選立機能が新学機能と影射が限力機 bars_max = plt.barh(merged["Field_of_Study"], merged["Starting_Salary_max"], label="最高起解", color='b', alpha=0.6) bars_min = plt.barh(merged["Field_of_Study"], merged["Starting_Salary_min"], label="最低起解", color='r', alpha=0.6) # 存條形圖上顯示數值 for bar in bars_max: plt.text(bar.get_width(), bar.get_y() + bar.get_height()/2, f'{bar.get_width():,.2f}', va='center', ha='left', color='blue', fontsize=12) $plt.text(bar.get_width(), bar.get_y() + bar.get_height()/2, f'\{bar.get_width():,.2f\}', va='center', ha='left', color='white', fontsize=12)$ plt.title("各領域的最高與最低起薪(年薪)", fontsize=20) plt.title(音镜域的玻璃云玻璃起新(牛新) plt.xlabel("起薪 (美元)", fontsize=16) plt.ylabel("領域", fontsize=16) 比較包含了製藥業, 數學, 法律, 工程, 各領域的最高與最低起薪(年薪) 最高起薪 電腦科學, 商業與 90,400.00 Medicin 藝術等,不同領域的 89,900.00 Mathematics 最高與最低起薪。 最高的起薪是法律, 100,600.00 Law 其次則是藝術類領 8,200.00 Engineering 域。 Computer Science Business 101,000.00 Arts 20000 40000 60000 80000 100000

(3)校排名前 100 平均畢業起薪

【資管系】MI5125701 機器學習與大數據分析技術 Machine Learning and Big Data Analytics Home Work Assignment # 1

四.其他綜合分析

(1) [Field of Study & Work_Life_Balance]

(探索學習領域給予未來的工作生活平衡的關聯性)

程式碼:

小結:

在中位數1、中位數3基本都相差無異,但在中位數2中,電腦科學、工程、商業,有相較工作生活平衡上更好一些。

→學科領域選擇【影響】未來工作與生活平衡,具有未來影響性

(2) [University GPA & Job Offers]

(成績與獲得的工作機會數關係)

程式碼:

```
★ 回 ↑ ↓
# 2. University_GPA & Job_Offers (成績與獲得的工作機會數關係)
# 定義分類方式
def categorize_gpa(gpa):
   if gpa == 4.0:
       return '極好'
   elif 3.0 <= gpa < 4.0:
       return '一般'
       return '稍差
# 對 GPA 進行分組
df['GPA_Category'] = df['University_GPA'].apply(categorize_gpa)
# 計算各 GPA 分組的人數
gpa_category_counts = df['GPA_Category'].value_counts()
print("各 GPA 分組的人數:")
print(gpa_category_counts)
# 計算 GPA 三組的工作機會數平均值
gpa_job_offers_avg = df.groupby('GPA_Category')['Job_Offers'].mean().reset_index()
fig2 = px.bar(gpa_job_offers_avg, x='GPA_Category', y='Job_Offers', title='不同 GPA 分組的平均工作機會數',
            labels={'GPA_Category': 'GPA 分類', 'Job_Offers': '平均工作機會數'}, category_orders={'GPA_Category': ['穩差', '一般', '極好']})
fig2.show()
```

【資管系】MI5125701 機器學習與大數據分析技術 Machine Learning and Big Data Analytics Home Work Assignment # 1

小結:

稍差(2.0-未滿 3.0)、一般(3.0-未滿 4.0)、極好(4.0),一般(2.44)與稍差(2.53)並沒有太大的不一樣,甚至稍差大於一般的平均工作機會,但極好(2.85)有更多的工作機會是肯定的。

→GPA 成績【影響】獲得工作機會的數量, GPA 分數能提高面試官給予工作機會的機率

(3) [University_Ranking & Entrepreneurship]

(是否位於更高優質學校的人,會更勇於創業)

程式碼:

【資管系】MI5125701 機器學習與大數據分析技術 Machine Learning and Big Data Analytics Home Work Assignment # 1

小結:

在不同人數的學校等級中,透過百分比可以看到基本差異不大,其中 Mid Level 的學校為最高(20.6),可見其影響不大。→不同學校等級【不影響】未來創業的數量,可見在不同等級學校,都可以有一個想創業的想法並實際行動

五.總結

本次我們透過數據分析,全面探討了學歷與職場發展的關聯,包括晉升機會、起薪差異及綜合表現。結果顯示,不同學歷背景在職場中的起點、成長速度與長期發展確實存在顯著差異,反映出學歷在職涯初期扮演著重要角色。然而,數據也揭示了學歷並非唯一的成功因素,個人能力、行業選擇及機遇同樣左右著最終的職場成就。

最後用一句話總結本次的心得「數字會說話 」— 它讓我們更理性地看待職涯發展,提供未來規劃與 企業策略的重要參考。