# **NHL Shot Quality 2009-10**

## A look at shot angles and rebounds

Ken Krzywicki – June 2010

#### Overview

As in prior regular seasons, RTSS data was collected from the NHL in order to assess the quality of shots taken. However, after reading Gabe Desjardins' work using position on the ice, (x,y) coordinates, this additional data source was obtained from ESPN's website and appended to the NHL data in order to see what additional value, if any, it could bring to examining shot quality. A big "thanks" goes out to Gabe for helping me translate the ESPN data into English.

#### Data

As usual, RTSS data was collected from the NHL. As well, ESPN data, which contain the (x,y) coordinates for all events, was appended to it. Game 1163 ESPN data, however, was not available. The (x,y) coordinates represent the distance from the center ice red line towards the attacking goal; the distance from center ice to the goal line is 89 feet.

All regulation and overtime shots on goal were collected; empty net goals were excluded because they always go in. Since the data had issues, it was cleansed using the following three steps:

Step One: Shot Distance and Zone Reclassification

There were instances where the zone was incorrectly labeled or the distance was not correct. The first step in data cleansing was to calculate the minimum and maximum distance that a shot from each zone could take (see table at right) and compare the distance reported

|           | Theoretical Distance |     |  |  |  |
|-----------|----------------------|-----|--|--|--|
|           | Min                  | Max |  |  |  |
| Offensive | 0                    | 77  |  |  |  |
| Neutral   | 64                   | 122 |  |  |  |
| Defensive | 115                  | 189 |  |  |  |

1

with these theoretical values. If the shot was labeled as originating in the offensive zone and the distance was greater than 77 feet, the distance was recomputed using the Pythagorean formula as follows:

$$D_{Calc} = \sqrt{(89 - abs(x))^2 + y^2}$$
 (1)

If necessary, the zone was reclassified based on the theoretical minimum and maximum values given above.

A similar cleansing for the neutral zone was also performed. There were 579 shots reportedly coming from the defensive zone, 32 of which were goals. Since empty net goals were ignored for

this study, it was unlikely that goalies were beat 32 times from the shooter's defensive zone. Therefore, all shots listed as coming from the defensive zone were reclassified accordingly. I do realize that some shots on goal probably did originate in the defensive zone, but will accept the marginal error.

Step 2: X-Y Reclassification

Since teams shoot different ends of the rink, the (x,y) coordinates will vary based on the team in question and the period. That is why equation (1) above used the absolute value of the x-coordinate when we derived the computed distance. The example shot shown at right



is one coming off the left wing, with respect to the shooter. If we were to plot all the (x,y) shots for an entire game, we would see dots all over the graph. Therefore, I decided to transpose the (x,y) coordinates so they all faced the same ("east end") goal.

For shots in the offensive zone, this was trivial: I simply ensured that the x-coordinate was positive. If it was not, the sign of both the x- and y-coordinate was flipped. Using our example of a reported location of (-60,-10), a shot coming from the left wing, I reclassified that to



read (60,10) to maintain not only proper zone, but from which wing the shot came.

Shots coming from the neutral zone required a little more work and thought. Those from the attacking side of the red line should have a positive x-coordinate; the opposite for those from the defensive side of the red line. In order to come up with a set of rules for flipping or not flipping the (x,y) coordinates, I assumed that a majority of a team's neutral zone shots came from the offensive side of the red line. For each team, for each period of each game, I computed the percentage of shots with positive and negative x-coordinates. If a majority were positive, no (x,y) sign flipping was required; otherwise the signs were changed.

For both offensive and neutral zone shots, about half each had their (x,y) signs flipped. This makes intuitive sense based on the fact that each team faces each side of the rink roughly an equal number of times.

There were also a dozen instances where the NHL and ESPN distances did not match. These were mostly due to the NHL (correctly) changing the scoring after the fact; the ESPN data showed a long shot and the NHL data showed a deflection or tip-in from a closer distance with the ESPN shooter receiving the primary assist. Since the ESPN data was not corrected with respect to who scored the goal, I assumed the (x,y) coordinates also incorrect and set them to missing.

#### Step 3: Remove Distance Bias

The under- and over-reporting of *distance* across the NHL rinks is a well-known phenomenon<sup>1</sup>. To remove this bias, a general linear model (least squares) controlling for rink to predict the reported distance was built and the residuals of that model, which I'm calling *adjusted distance*, were used in a shot quality model. The correlation between reported and adjusted distance was about 86%, so I opted to use the adjusted value as in the past. Recall that an *adjusted distance* of, say, -25.32 represents a shot reported roughly 25 feet less than the reported rink mean distance.

One might argue that the (x,y) coordinates are also biased by rink. However, if distance is incorrect that does not necessarily mean that (x,y) are also incorrect. A shot reported from 30 feet at a  $20^{\circ}$  angle might really be a 35-foot shot from the same angle. And it is the angle of the shot

<sup>&</sup>lt;sup>1</sup> Please refer to *Product Recall Notice for Shot Quality*, June 2007 [Ryder] and *Removing Observer Bias from Shot Distance*, September 2009 [Krzywicki]

that was considered for inclusion in the shot quality model. For comparison sake, I did calculate an adjusted angle<sup>2</sup> and the correlation between it and the reported angle was 99%; therefore the angle is used as-is in model development since it is easier to interpret and visualize.

#### **Examining the Angles**

Where the (x,y) was not missing or where  $x \neq 89$ , the angle of the shot taken relative to the goalie's perspective was calculated (see right and equation (2) below). Missing angles accounted for only 0.2% of the shots on goal, an immaterial matter.



$$\theta = Tan^{-1} \left( \frac{y}{89 - x} \right) \left( \frac{180}{\pi} \right) \tag{2}$$

The goal rates were rather symmetrical with respect to shot angle, with the most dangerous shots coming from straight on, where there is the most net to see (2.4% of all shots). As well, those taken within 1° to 15° (either side) of the goaltenders were considerably more dangerous and comprised 22.0% of

| Shot Angle ( | (deg) | Shots  | Pct of Shots | Goals | Pct of Goals | Goal Rate |
|--------------|-------|--------|--------------|-------|--------------|-----------|
| Missing      |       | 142    | 0.2%         | 31    | 0.5%         | 21.8%     |
| -9046        | 8     | 8,490  | 11.4%        | 535   | 8.1%         | 6.3%      |
| -4531        | Wing  | 8,962  | 12.0%        | 682   | 10.3%        | 7.6%      |
| -3016        | Right | 11,272 | 15.2%        | 962   | 14.6%        | 8.5%      |
| -151         | ~     | 8,086  | 10.9%        | 986   | 14.9%        | 12.2%     |
| 0            |       | 1,769  | 2.4%         | 330   | 5.0%         | 18.7%     |
| I - I5       | b0    | 8,260  | 11.1%        | 1,023 | 15.5%        | 12.4%     |
| 16 - 30      | Wing  | 11,580 | 15.6%        | 948   | 14.4%        | 8.2%      |
| 31 - 45      | _eft  | 8,974  | 12.1%        | 67 I  | 10.2%        | 7.5%      |
| 46 - 90      |       | 6,842  | 9.2%         | 43 I  | 6.5%         | 6.3%      |
| Total        |       | 74,377 | 100.0%       | 6,599 | 100.0%       | 8.9%      |

all shots. Defensemen try to take the opponent wide ... and for good reason. This intuitive stance that there is less net to see from "bad" angles is backed up by the numbers. It is

<sup>&</sup>lt;sup>2</sup> GLM method, as with *distance*, was employed.

interesting, though, to note that angles from 15° to 30° (on either side of the net) are near the average goal rate of 8.9 percent. Taking an opponent wider than 30° on either side gives the goalie much easier shots to handle—yet only 35% of all goals came from angles greater than 30 degrees. This bit of information may factor into a team's defensive system.

For modeling, the absolute value of the shot angle was used in a continuous fashion, running from zero to ninety degrees; missing angles were assigned a value of zero since we cannot quantify the extent of their quality.

#### **Rebounds in Depth**

We have seen numerous times in the past that rebound shots are more dangerous than non-rebound shots. The rebound variable has been in all of my shot quality models as well as those of other analysts. The goal rate for rebound shots of 32.8% is 3.7 times higher than the overall goal rate of 8.9%, indicating their high quality. Rebounds constituted 4% of all shots taken.

With the addition of shot angle data, another variable was created for rebounds—the "push" a goalie had to make to face the rebound shot, given the angle of the prior (rebound generating) shot, i.e., the difference between the two angles. Values

| Push      | Rebound |        |       |           |
|-----------|---------|--------|-------|-----------|
| Direction | Shots   | Pct    | Goals | Goal Rate |
| Missing   | 17      | 0.6%   | 5     | 29.4%     |
| No push   | 61      | 2.0%   | 10    | 16.4%     |
| Left      | 1,505   | 50.1%  | 482   | 32.0%     |
| Right     | 1,422   | 47.3%  | 488   | 34.3%     |
| Total     | 3,005   | 100.0% | 985   | 32.8%     |

greater than zero represent a push to the right (blocker side for a majority, though not all, goalies), while those less than zero represent a push to the left (glove side for most). A rebound shot coming at exactly the same angle as the rebound generating shot required no push.

The near-perfect symmetry we saw for the shot angle did not quite hold up for degrees a goalie had to push. We note from the table that pushing off to the right to save a rebound shot was slightly more difficult. Perhaps this is due to the fact that most goalies catch with their left hand and a

| Push        |       | Rebound |       |       |           |
|-------------|-------|---------|-------|-------|-----------|
| Degrees     |       | Shots   | Pct   | Goals | Goal Rate |
| Missing     |       | 17      | 0.6%  | 5     | 29.4%     |
| -180 to -31 |       | 688     | 22.9% | 267   | 38.8%     |
| -30 to -16  | Left  | 325     | 10.8% | 99    | 30.5%     |
| -15 to 15   |       | 1,005   | 33.4% | 247   | 24.6%     |
| 16 to 30    | t t   | 351     | 11.7% | 123   | 35.0%     |
| 31 to 180   | Right | 619     | 20.6% | 244   | 39.4%     |
| Total       |       | 3,005   |       | 985   | 32.8%     |

5

blocker save offers a more difficult situation. We see a slightly higher goal rate pushing to the right 31 or more degrees than we do the same amount to the left. The interesting comparison is

between moving  $16^{\circ}$  to  $30^{\circ}$  to the right versus the same angle to the left: 35.0% versus 30.5%, each with roughly 11% of all rebound shots.

One example of a goalie having to move quite a bit in a short period of time comes from game seven—Chicago at Florida—with Tomas Vokoun, one of the few goalies to catch with his right hand, in net. The first shot from Brian Campbell came at 11:34 of the third period. Vokoun handled his shot from an angle of 71° and even pushed 81° to his left (blocker side) to save Kris Versteeg's wrist shot from an angle of -10 degrees. We could say that was a great save due to the high probability, 0.3535, of going in. However, Vokoun was not able to push back another 21° to the right (glove side) in less than a second to stop Patrick Sharp's wrist shot, which may be thought of as a "double rebound."



Video found at the NHL website revealed that Vokoun was down and out after the Versteeg shot; had the defense been able to clear that rebound, Sharp may not have had such an easy goal. Video also revealed that the RTSS mislabeled Campbell's shot as a backhand; it was in fact a wrist shot. However, this has no bearing on the shot quality model since both types of shots receive that same weight (see model below).

6

Though the difference in angles from the rebound generating shot to the rebound shot is an interesting variable, it did not make it to the final model due to high correlation to the more powerful *rebound* variable. Still, I presented it above due to intrinsic interest.

#### **Model Methodology**

Using a 70% random sample of the 2009-10 NHL play-by-play (PBP) files from the RTSS scoring system and (x,y) coordinates obtained from the ESPN website, a logistic regression was run. Note that the shot angle was not forced into the model, rather entered of its own accord and proved rather significant. Conspicuously missing are most shot types. Other than wrap-around, *shot type* did not make it into the model. I surmise that the shot angle provided a better predictor in the multivariate sense of the model, thus keeping *shot type* mostly out. As well, the shot angle helped temper the distance variable: in the past, a shorter shot from any angle was given the same weight; now those short shots from "bad" angles are differentiated from short shots at "good" angles.

#### **Model Results**

The logistic regression model given below was built on a 70% random sample of the shots on goal, excluding empty net goals, and validated on the 30% held out. The model did not over fit the training dataset and was deemed appropriate.

| Variable             | Interval                             | Points  | Marginal<br>Contribution |
|----------------------|--------------------------------------|---------|--------------------------|
| Intercept            | Add to all records                   | -2.2899 |                          |
| Distance (adjusted)  | Multiply points by adjusted distance | -0.0437 | 0.074                    |
| Shot angle           | Multiply points by abs(shot angle)   | -0.0162 | 0.016                    |
|                      | No                                   | 0.0000  | 0.013                    |
| Rebound              | Yes                                  | 0.9948  | 0.013                    |
|                      | EV                                   | 0.0000  |                          |
| Situation (shooting  | SH                                   | 0.0000  | 0.005                    |
| team)                | PP                                   | 0.4370  |                          |
| Shot after give-away | No                                   | 0.0000  | 0.000                    |
| (opposing team)      | Yes                                  | 0.5623  | 0.002                    |
| CI . T               | Wrap                                 | -1.0379 | 0.002                    |
| Shot Type            | Other                                | 0.0000  | 0.002                    |

Shot quality is defined as: 
$$P(GOAL) = \frac{1}{1 + e^{-\sum points}}$$

Applying the model to the entire population we find that the model fit the data very well:

KS = 36.67 IV = 79.31 D = 0.812 ROC = 0.740 Gini = 0.480

| Score    | Range    | Totals | Cuml %  | Save   | Int Rate | Cuml %  | Goal  | Int Rate | Cuml %  | Avg Scr  |
|----------|----------|--------|---------|--------|----------|---------|-------|----------|---------|----------|
| 0.185654 | 0.616943 | 7,437  | 10.00%  | 5,479  | 73.67%   | 8.08%   | 1,958 | 26.33%   | 29.67%  | 0.270407 |
| 0.136197 | 0.185638 | 7,438  | 20.00%  | 6,193  | 83.26%   | 17.22%  | 1,245 | 16.74%   | 48.54%  | 0.158609 |
| 0.103556 | 0.136183 | 7,438  | 30.00%  | 6,474  | 87.04%   | 26.77%  | 964   | 12.96%   | 63.15%  | 0.118869 |
| 0.078872 | 0.103554 | 7,438  | 40.00%  | 6,760  | 90.88%   | 36.75%  | 678   | 9.12%    | 73.42%  | 0.090580 |
| 0.061006 | 0.078862 | 7,437  | 50.00%  | 6,913  | 92.95%   | 46.95%  | 524   | 7.05%    | 81.36%  | 0.069429 |
| 0.048719 | 0.061005 | 7,438  | 60.00%  | 7,043  | 94.69%   | 57.34%  | 395   | 5.31%    | 87.35%  | 0.054662 |
| 0.038769 | 0.048718 | 7,438  | 70.00%  | 7,132  | 95.89%   | 67.86%  | 306   | 4.11%    | 91.98%  | 0.043534 |
| 0.030631 | 0.038764 | 7,438  | 80.00%  | 7,220  | 97.07%   | 78.51%  | 218   | 2.93%    | 95.29%  | 0.034566 |
| 0.023716 | 0.030630 | 7,438  | 90.00%  | 7,266  | 97.69%   | 89.23%  | 172   | 2.31%    | 97.89%  | 0.027166 |
| 0.001670 | 0.023715 | 7,437  | 100.00% | 7,298  | 98.13%   | 100.00% | 139   | 1.87%    | 100.00% | 0.017887 |
| Total    |          | 74,377 |         | 67,778 | 91.13%   |         | 6,599 | 8.87%    |         | 0.088570 |

A contour plot of the model's predicted P(GOAL) relative to the (x,y) data and viewed from the attacking side of the center red line (x = 0) looks as follows:



#### **Conclusions**

With an additional data source we were able to create additional variables for consideration when building a shot quality model, namely: shot angle and rebound push direction and degrees. Even though only one of these three made it into the model—possibly at the expense of the more traditional *shot type* variables—they all provided interesting insight into shot quality. Examining rebounds taught us that it was a bit more difficult to push off 16 or more degrees to the right than the same magnitude to the left.

As in the past, we were able to construct a robust model to describe the shots taken in the prior season and apply them at the individual level in order to compare actual versus predicted performance—a valuable player and team evaluation tool.

## **Appendix – Team by Team Comparison**

Below find a table of SQA = 1 - P(GOAL) and SQF = P(GOAL) sorted by SQA.

|    | Team  | SA     | GA    | SvPct | SQA  |             |
|----|-------|--------|-------|-------|------|-------------|
|    | TOTAL | 74,377 | 6,599 | .911  | .911 |             |
|    | СВЈ   | 2,512  | 246   | .902  | .917 |             |
| 2  | MIN   | 2,406  | 230   | .904  | .917 |             |
| 3  | NYR   | 2,440  | 204   | .916  | .916 |             |
| 4  | NJD   | 2,211  | 184   | .917  | .915 |             |
| 5  | COL   | 2,619  | 218   | .917  | .914 |             |
| 6  | CGY   | 2,367  | 198   | .916  | .914 | ŗŗ.         |
| 7  | DET   | 2,410  | 204   | .915  | .913 | asier       |
| 8  | NAS   | 2,389  | 214   | .910  | .913 | Easier SQA  |
| 9  | DAL   | 2,551  | 235   | .908  | .913 | ▶           |
| 10 | FLA   | 2,790  | 222   | .920  | .913 |             |
| П  | STL   | 2,464  | 208   | .916  | .913 |             |
| 12 | PHO   | 2,420  | 189   | .922  | .912 |             |
| 13 | LAK   | 2,256  | 206   | .909  | .912 |             |
| 14 | MTL   | 2,630  | 214   | .919  | .912 |             |
| 15 | ANA   | 2,728  | 234   | .914  | .911 |             |
| 16 | PHI   | 2,343  | 217   | .907  | .911 | Avg         |
| 17 | SJS   | 2,567  | 205   | .920  | .911 | SQA         |
| 18 | NYI   | 2,615  | 254   | .903  | .911 |             |
| 19 | WAS   | 2,534  | 226   | .911  | .910 |             |
| 20 | EDM   | 2,710  | 271   | .900  | .910 |             |
| 21 | BOS   | 2,442  | 188   | .923  | .910 |             |
| 22 | BUF   | 2,567  | 194   | .924  | .910 |             |
| 23 | PIT   | 2,340  | 225   | .904  | .910 | Tor         |
| 24 | OTT   | 2,333  | 226   | .903  | .910 | ughe        |
| 25 | VAN   | 2,412  | 211   | .913  | .910 | Tougher SQA |
| 26 | TOR   | 2,430  | 252   | .896  | .910 | ×           |
| 27 | CAR   | 2,559  | 236   | .908  | .909 |             |
| 28 | CHI   | 2,054  | 199   | .903  | .908 |             |
| 29 | ATL   | 2,709  | 242   | .911  | .904 |             |
| 30 | TBL   | 2,569  | 247   | .904  | .904 |             |

| SF     | GF    | ShotPct | SQF |
|--------|-------|---------|-----|
| 74,377 | 6,599 | 8.9     | 8.9 |
| 2,327  | 203   | 8.7     | 8.6 |
| 2,263  | 211   | 9.3     | 9.1 |
| 2,418  | 212   | 8.8     | 8.2 |
| 2,446  | 203   | 8.3     | 8.7 |
| 2,280  | 229   | 10.0    | 9.5 |
| 2,343  | 193   | 8.2     | 8.3 |
| 2,727  | 213   | 7.8     | 8.7 |
| 2,501  | 210   | 8.4     | 8.5 |
| 2,520  | 226   | 9.0     | 9.2 |
| 2,323  | 194   | 8.4     | 8.8 |
| 2,440  | 213   | 8.7     | 8.4 |
| 2,498  | 205   | 8.2     | 8.6 |
| 2,381  | 223   | 9.4     | 8.7 |
| 2,339  | 203   | 8.7     | 9.1 |
| 2,465  | 226   | 9.2     | 8.8 |
| 2,582  | 225   | 8.7     | 9.1 |
| 2,596  | 249   | 9.6     | 9.4 |
| 2,490  | 210   | 8.4     | 9.2 |
| 2,682  | 302   | 11.3    | 9.3 |
| 2,319  | 204   | 8.8     | 9.1 |
| 2,595  | 192   | 7.4     | 8.6 |
| 2,585  | 228   | 8.8     | 9.4 |
| 2,683  | 243   | 9.1     | 8.8 |
| 2,429  | 211   | 8.7     | 9.0 |
| 2,523  | 257   | 10.2    | 8.8 |
| 2,668  | 207   | 7.8     | 8.7 |
| 2,390  | 214   | 9.0     | 9.0 |
| 2,797  | 260   | 9.3     | 8.4 |
| 2,405  | 225   | 9.4     | 8.9 |
| 2,362  | 208   | 8.8     | 9.1 |
|        |       |         |     |

## Appendix – Goalie Comparison

| GOALIE     | TEAM | SA     | GA    | SvPct | SQA  |
|------------|------|--------|-------|-------|------|
| TOTAL      | NHL  | 74,377 | 6,599 | .911  | .911 |
|            |      |        |       |       |      |
| GIGUERE    | ANA  | 580    | 58    | .900  | .911 |
| HILLER     | ANA  | 1,860  | 152   | .918  | .911 |
| MCELHINNEY | ANA  | 288    | 24    | .917  | .913 |
| Total      | ANA  | 2,728  | 234   | .914  | .911 |
|            |      |        |       |       |      |
| HEDBERG    | ATL  | 1,356  | 115   | .915  | .905 |
| PAVELEC    | ATL  | 1,353  | 127   | .906  | .904 |
| Total      | ATL  | 2,709  | 242   | .911  | .904 |
|            |      |        |       |       |      |
| RASK       | BOS  | 1,221  | 84    | .931  | .907 |
| THOMAS     | BOS  | 1,221  | 104   | .915  | .914 |
| Total      | BOS  | 2,442  | 188   | .923  | .910 |
|            |      |        |       |       |      |
| ENROTH     | BUF  | 37     | 4     | .892  | .908 |
| LALIME     | BUF  | 432    | 40    | .907  | .908 |
| MILLER     | BUF  | 2,098  | 150   | .929  | .910 |
| Total      | BUF  | 2,567  | 194   | .924  | .910 |
|            |      |        |       |       |      |
| LEGACE     | CAR  | 745    | 69    | .907  | .912 |
| LEIGHTON   | CAR  | 164    | 25    | .848  | .903 |
| PETERS     | CAR  | 241    | 23    | .905  | .906 |
| WARD       | CAR  | 1,409  | 119   | .916  | .908 |
| Total      | CAR  | 2,559  | 236   | .908  | .909 |
|            |      |        |       |       |      |
| GARON      | СВЈ  | 858    | 83    | .903  | .916 |
| MASON      | СВЈ  | 1,654  | 163   | .901  | .918 |
| Total      | СВЈ  | 2,512  | 246   | .902  | .917 |
|            |      |        |       |       |      |
| KIPRUSOFF  | CGY  | 2,035  | 163   | .920  | .913 |
| MCELHINNEY | CGY  | 235    | 27    | .885  | .916 |
| TOSKALA    | CGY  | 97     | 8     | .918  | .923 |
| Total      | CGY  | 2,367  | 198   | .916  | .914 |
|            |      |        |       |       |      |
| CRAWFORD   | CHI  | 35     | 3     | .914  | .921 |
| HUET       | CHI  | 1,083  | 114   | .895  | .910 |
| NIEMI      | CHI  | 936    | 82    | .912  | .906 |
| Total      | CHI  | 2,054  | 199   | .903  | .908 |
|            |      |        |       |       |      |
| ANDERSON   | COL  | 2,233  | 186   | .917  | .914 |
| BUDAJ      | COL  | 386    | 32    | .917  | .917 |
| Total      | COL  | 2,619  | 218   | .917  | .914 |

| GOALIE      | TEAM | SA     | GA    | SvPct | SQA  |
|-------------|------|--------|-------|-------|------|
| TOTAL       | NHL  | 74,377 | 6,599 | .911  | .911 |
|             |      |        |       |       |      |
| AULD        | DAL  | 558    | 59    | .894  | .918 |
| CLIMIE      | DAL  | 38     | 5     | .868  | .908 |
| LEHTONEN    | DAL  | 350    | 31    | .911  | .906 |
| TURCO       | DAL  | 1,605  | 140   | .913  | .913 |
| Total       | DAL  | 2,551  | 235   | .908  | .913 |
|             |      |        |       |       |      |
| HOWARD      | DET  | 1,849  | 141   | .924  | .915 |
| OSGOOD      | DET  | 561    | 63    | .888  | .908 |
| Total       | DET  | 2,410  | 204   | .915  | .913 |
|             |      | ,      |       |       |      |
| DESLAURIERS | EDM  | 1,529  | 152   | .901  | .908 |
| DUBNYK      | EDM  | 579    | 64    | .889  | .911 |
| KHABIBULIN  | EDM  | 602    | 55    | .909  | .914 |
| Total       | EDM  | 2,710  | 271   | .900  | .910 |
|             |      | ,      |       |       |      |
| CLEMMENSEN  | FLA  | 668    | 59    | .912  | .913 |
| SALAK       | FLA  | 40     | 6     | .850  | .902 |
| VOKOUN      | FLA  | 2,082  | 157   | .925  | .913 |
| Total       | FLA  | 2,790  | 222   | .920  | .913 |
|             |      |        |       |       |      |
| BERNIER     | LAK  | 94     | 4     | .957  | .922 |
| ERSBERG     | LAK  | 234    | 22    | .906  | .911 |
| QUICK       | LAK  | 1,928  | 180   | .907  | .911 |
| Total       | LAK  | 2,256  | 206   | .909  | .912 |
|             |      |        |       |       |      |
| BACKSTROM   | MIN  | 1,632  | 158   | .903  | .918 |
| DUBIELEWICZ | MIN  | 34     | 5     | .853  | .928 |
| HARDING     | MIN  | 692    | 66    | .905  | .912 |
| KHUDOBIN    | MIN  | 48     | 1     | .979  | .915 |
| Total       | MIN  | 2,406  | 230   | .904  | .917 |
|             |      |        |       |       |      |
| HALAK       | MTL  | 1,386  | 105   | .924  | .910 |
| PRICE       | MTL  | 1,244  | 109   | .912  | .914 |
| Total       | MTL  | 2,630  | 214   | .919  | .912 |
|             |      |        |       |       |      |
| ELLIS       | NAS  | 848    | 77    | .909  | .912 |
| RINNE       | NAS  | 1,541  | 137   | .911  | .914 |
| Total       | NAS  | 2,389  | 214   | .910  | .913 |
|             |      |        |       |       |      |
| BRODEUR     | NJD  | 2,004  | 168   | .916  | .915 |
| DANIS       | NJD  | 207    | 16    | .923  | .914 |
| Total       | NJD  | 2,211  | 184   | .917  | .915 |
|             |      |        |       |       |      |

| GOALIE     | TEAM | SA      | GA    | SvPct | SQA    |
|------------|------|---------|-------|-------|--------|
| TOTAL      | NHL  | 74,377  | 6,599 | .911  | .911   |
| TOTAL      | TVIL | 7 1,377 | 0,577 | .711  | .,,,,, |
| BIRON      | NYI  | 859     | 89    | .896  | .910   |
| DIPIETRO   | NYI  | 201     | 20    | .900  | .926   |
| ROLOSON    | NYI  | 1,555   | 145   | .907  | .910   |
| Total      | NYI  | 2,615   | 254   | .903  | .911   |
|            |      |         |       |       |        |
| AULD       | NYR  | 52      | 5     | .904  | .920   |
| JOHNSON    | NYR  | 135     | 11    | .919  | .916   |
| LUNDQVIST  | NYR  | 2,109   | 167   | .921  | .917   |
| VALIQUETTE | NYR  | 128     | 19    | .852  | .903   |
| ZABA       | NYR  | 16      | 2     | .875  | .910   |
| Total      | NYR  | 2,440   | 204   | .916  | .916   |
|            |      |         |       |       |        |
| BRODEUR    | OTT  | 87      | 3     | .966  | .914   |
| ELLIOTT    | OTT  | 1,424   | 130   | .909  | .910   |
| LECLAIRE   | OTT  | 822     | 93    | .887  | .908   |
| Total      | OTT  | 2,333   | 226   | .903  | .910   |
|            |      |         |       |       |        |
| BACKLUND   | PHI  | 24      | 2     | .917  | .905   |
| BOUCHER    | PHI  | 796     | 80    | .899  | .915   |
| DUCHESNE   | PHI  | 4       | 1     | .750  | .929   |
| EMERY      | PHI  | 784     | 74    | .906  | .907   |
| LEIGHTON   | PHI  | 735     | 60    | .918  | .912   |
| Total      | PHI  | 2,343   | 217   | .907  | .911   |
|            |      |         |       |       |        |
| BRYZGALOV  | PHO  | 1,961   | 156   | .920  | .912   |
| LABARBERA  | PHO  | 459     | 33    | .928  | .913   |
| Total      | PHO  | 2,420   | 189   | .922  | .912   |
|            |      |         |       |       |        |
| CURRY      | PIT  | 14      | 5     | .643  | .882   |
| FLEURY     | PIT  | 1,772   | 168   | .905  | .910   |
| JOHNSON    | PIT  | 541     | 51    | .906  | .910   |
| PECHURSKI  | PIT  | 13      | 1     | .923  | .915   |
| Total      | PIT  | 2,340   | 225   | .904  | .910   |
|            |      |         |       |       |        |
| GREISS     | SJS  | 399     | 35    | .912  | .905   |
| NABOKOV    | SJS  | 2,168   | 170   | .922  | .912   |
| Total      | SJS  | 2,567   | 205   | .920  | .911   |
|            |      |         |       |       |        |
| CONKLIN    | STL  | 764     | 60    | .921  | .915   |
| MASON      | STL  | 1,700   | 148   | .913  | .912   |
| Total      | STL  | 2,464   | 208   | .916  | .913   |

| GOALIE     | TEAM | SA     | GA    | SvPct | SQA  |
|------------|------|--------|-------|-------|------|
| TOTAL      | NHL  | 74,377 | 6,599 | .911  | .911 |
|            |      |        |       |       |      |
| NIITTYMAKI | TBL  | 1,388  | 127   | .909  | .902 |
| SMITH      | TBL  | 1,165  | 117   | .900  | .906 |
| TOKARSKI   | TBL  | 16     | 3     | .813  | .922 |
| Total      | TBL  | 2,569  | 247   | .904  | .904 |
|            |      |        |       |       |      |
| GIGUERE    | TOR  | 451    | 38    | .916  | .910 |
| GUSTAVSSON | TOR  | 1,146  | 112   | .902  | .911 |
| MACDONALD  | TOR  | 157    | 17    | .892  | .917 |
| TOSKALA    | TOR  | 676    | 85    | .874  | .906 |
| Total      | TOR  | 2,430  | 252   | .896  | .910 |
|            |      |        |       |       |      |
| LUONGO     | VAN  | 1,915  | 167   | .913  | .910 |
| RAYCROFT   | VAN  | 438    | 39    | .911  | .911 |
| SCHNEIDER  | VAN  | 59     | 5     | .915  | .902 |
| Total      | VAN  | 2,412  | 211   | .913  | .910 |
|            |      |        |       |       |      |
| NEUVIRTH   | WAS  | 464    | 40    | .914  | .913 |
| THEODORE   | WAS  | 1,352  | 121   | .911  | .905 |
| VARLAMOV   | WAS  | 718    | 65    | .909  | .919 |
| Total      | WAS  | 2,534  | 226   | .911  | .910 |

### **Appendix – Shots on Goal Chart**

With the addition of (x,y) coordinates we are able to visually depict each shot on goal. After the data cleansing discussed above, here is what all 1,230 games combined looked like (74,377 shots on goal). Recall that these are for periods 1 through 4 and exclude empty net goals.



Author Contact: <u>kenkrzywicki@hotmail.com</u>

Acknowledgements: I wish to thank Alan, Gabe, Carol, Corey, MJD and Denis.

For more information on hockey analytics, see Alan Ryder's web site: <a href="www.hockeyanalytics.com">www.hockeyanalytics.com</a>