STABILITY OF SWITCHED SYSTEMS

Daniel Liberzon

Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign Coordinated Science Laboratory and U.S.A

SWITCHED VS. HYBRID SYSTEMS

Switched system:

$$\dot{x} = f_{\sigma}(x)$$

- $\dot{x}=f_p(x),\ p\in\mathcal{P}$ is a family of systems
- $\sigma:[0,\infty) \to \mathcal{P}$ is a switching signal

Switching can be:

- State-dependent or time-dependent
- Autonomous or controlled

Details of discrete behavior are "abstracted away"

Properties of the continuous state: stability

STABILITY ISSUE

Asymptotic stability of each subsystem is necessary for stability

STABILITY ISSUE

Asymptotic stability of each subsystem is necessary but not sufficient for stability (This only happens in dimensions 2 or higher)

TWO BASIC PROBLEMS

Stability for arbitrary switching

Stability for constrained switching

TWO BASIC PROBLEMS

Stability for arbitrary switching

Stability for constrained switching

GLOBAL UNIFORM ASYMPTOTIC STABILITY

GUAS is Lyapunov stability

$$\forall \varepsilon \exists \delta |x(0)| \le \delta \Rightarrow |x(t)| \le \varepsilon \ \forall t \ge 0, \forall \sigma$$

plus asymptotic convergence

$$\forall \varepsilon, \delta \exists T |x(0)| \leq \delta \Rightarrow |x(t)| \leq \varepsilon \ \forall t \geq T, \forall \sigma$$

Reduces to standard GAS notion for non-switched systems

COMPARISON FUNCTIONS

class K function

 $eta(\cdot,\cdot)$ is of class $\,\mathcal{KL}\,$ if

- ullet $(\cdot,t)\in\mathcal{K}$ for each fixed t
- ullet $eta(r,t) \searrow 0$ as $t o \infty$ for each r

Example:
$$\beta(r,t) = cre^{-\lambda t}, \ c,\lambda > 0$$
GUES

GUAS:

 $|x(t)| \le \beta(|x(0)|, t) \ \forall t \ge 0$

COMMON LYAPUNOV FUNCTION

Lyapunov theorem: $\dot{x}=f(x)$ is GAS iff \exists pos def rad unbdd

$$C^1$$
 function $V: \mathcal{R}^n \to \mathcal{R}$ s.t. $\frac{\partial V}{\partial x} f(x) < 0 \ \forall x \neq 0$

Similarly: $\dot{x}=f_{\sigma}(x)$ is GUAS iff $\exists V$ s.t.

$$\frac{\partial V}{\partial x} f_p(x) \le -W(x) \ \forall x, \forall p \in \mathcal{P}$$

where $\,W\,$ is positive definite

COMMON LYAPUNOV FUNCTION (continued)

$$\frac{\partial V}{\partial x} f_p(x) \le -W(x) < 0 \ \forall x \ne 0, p \in \mathcal{P}$$

Unless ${\cal P}$ is compact and f_p is continuous,

$$\frac{\partial V}{\partial x}f_p(x)<0 \ \forall x\neq 0, p\in \mathcal{P}$$
 is not enough

Example:
$$f_p(x) = -px$$
, $P = (0, 1]$

$$V(x) = \frac{x^2}{2}$$
, $\frac{\partial V}{\partial x} f_p(x) = -px^2 \to 0$ as $p \to 0$

$$x(t) = e^{-\int_0^t \sigma(\tau) d\tau} x(0) \not\to 0 \quad \text{if } \sigma \in L^1$$

CONVEX COMBINATIONS

$$\frac{\partial V}{\partial x} f_p(x) \le -W(x) < 0 \ \forall x \ne 0, p \in \mathcal{P}$$

Define $f_{p,q,\alpha}(x) = \alpha f_p(x) + (1-\alpha) f_q(x)$ $p, q \in \mathcal{P}, \ \alpha \in [0,1]$

Proof:

$$\frac{\partial V}{\partial x} f_{p,q,\alpha}(x) = \alpha \frac{\partial V}{\partial x} f_p(x) + (1-\alpha) \frac{\partial V}{\partial x} f_q(x) \le -W(x)$$

SWITCHED LINEAR SYSTEMS

$$\dot{x} = A_{\sigma} x$$

LAS for every $\,\sigma$

GUES

∃ common Lyapunov function

but not necessarily quadratic:

$$V(x) = x^T P x, \ A_p^T P + P A_p < 0 \ \forall p \in \mathcal{P}$$
 (LMIs)

COMMUTING STABLE MATRICES => GUES

$$P = \{1, 2\}, A_1 A_2 = A_2 A_1$$

$$x(t) = e^{A_2 t_k} e^{A_1 s_k} \dots e^{A_2 t_1} e^{A_1 s_1} x(0)$$
$$= e^{A_2 (t_{k^+ \dots + t_1})} e^{A_1 (s_{k^+ \dots + s_1})} x(0) \to 0$$

∃ quadratic common Lyap fcn:

$$A_1^T P_1 + P_1 A_1 = -I$$

$$A_2^T P_2 + P_2 A_2 = -P_1$$

LIE ALGEBRAS and STABILITY

Lie algebra:
$$g = \{A_p, p \in P\}_{LA}$$

Lie bracket:
$$[A_1, A_2] = A_1 A_2 - A_2 A_1$$

$$g^1 = g, \quad g^{k+1} = [g, g^k] \subset g^k \quad g \text{ is nilpotent if } \exists \ k \text{ s.t. } g^k = 0$$

 $g^{(1)} = g$, $g^{(k+1)} = [g^{(k)}, g^{(k)}] \subset g^{(k)}$ g is solvable if $\exists k \text{ s.t. } g^{(k)} = 0$

SOLVABLE LIE ALGEBRA => GUES

Lie's Theorem: g is solvable \Rightarrow triangular form

$$A_p = \begin{pmatrix} \lambda_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

Example:

$$A_1 = \begin{pmatrix} -a_1 & b_1 \\ 0 & -c_1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -a_2 & b_2 \\ 0 & -c_2 \end{pmatrix}$$

 $\dot{x}_2 = -c_{\sigma}x_2 \Rightarrow x_2 \to 0$ exponentially fast

$$\dot{x}_1 = -a_\sigma x_1 + b_\sigma x_2 \Rightarrow x_1 \to 0 \text{ exp fast}$$

 \exists quadratic common Lyap fcn x^TDx , D diagonal

MORE GENERAL LIE ALGEBRAS

Levi decomposition:

$$S = r \oplus s$$

radical (max solvable ideal)

- s is compact => GUES, quadratic common Lyap fcn
- s is not compact => not enough info in Lie algebra

NONLINEAR SYSTEMS

Commuting systems

$$[f_p, f_q] = 0 =>$$
GUAS

Linearization (Lyapunov's indirect method)

$$A_p = \frac{\partial f_p}{\partial x}(0), \ p \in \mathcal{P}$$

Nothing is known beyond this

REMARKS on LIE-ALGEBRAIC CRITERIA

Checkable conditions

Independent of representation

In terms of the original data

Not robust to small perturbations

SYSTEMS with SPECIAL STRUCTURE

Triangular systems

Feedback systems

passivity conditions

small-gain conditions

2-D systems

TRIANGULAR SYSTEMS

Recall: for linear systems, triangular => GUAS

For nonlinear systems, not true in general

Example:

$$\dot{x}_1 = f_1(x_1, x_2)$$
 $\dot{x}_1 = f_2(x_1, x_2)$
 $\dot{x}_2 = g_1(x_2)$ $\dot{x}_2 = g_2(x_2)$

$$\dot{x}_2 = g_{\sigma}(x_2) \Rightarrow x_2 \to 0$$

For stability need to know $x_2 \to 0 \Rightarrow x_1 \to 0$

Not necessarily true

INPUT-TO-STATE STABILITY (ISS)

Linear systems:

$$\dot{x} = Ax$$
 is AS $\Rightarrow \dot{x} = Ax + Bu$ is ISS:

- n pounded $\Rightarrow x$ pounded
- 0
 ightharpoonup x
 ightharpoonup 0
 ightharpoonup x
 ightharpoonup 0

Nonlinear systems:

$$\dot{x} = -x + x^2 u$$

 $u=0\Rightarrow x\rightarrow 0 \text{ but } u \text{ bdd} \not\Rightarrow x \text{ bdd, } u\rightarrow 0 \not\Rightarrow x\rightarrow 0$

$$\dot{x} = f(x, u)$$
 is input-to-state stable (ISS) if

$$|x(t)| \le \beta(|x(0)|, t) + \gamma(||u||_{[0,t]}) \quad \left| \begin{array}{c} \beta \in \mathcal{KL} \\ \gamma \in \mathcal{K} \end{array} \right|$$

For switched systems, triangular + ISS => GUAS

FEEDBACK SYSTEMS: ABSOLUTE STABILITY

 $h(s) = \frac{1 + k_2 g(s)}{1 + k_1 g(s)}$ is strictly positive real (SPR): $Re \, h(i\omega) > 0$ Circle criterion: ∃ quadratic common Lyapunov function ⇔

For $k_1=0, k_2=\infty$ this reduces to g(s) SPR (passivity)

Popov criterion not suitable: V depends on $arphi_p$

FEEDBACK SYSTEMS: SMALL-GAIN THEOREM

 $(k_1 = -1, k_2 = 1)$

Small-gain theorem.

∃ quadratic common Lyapunov function

$$\|g\|_{\infty} = \mathsf{max}_{\omega} \, |g(i\omega)| < 1$$

TWO-DIMENSIONAL SYSTEMS

Necessary and sufficient conditions for GUES known since 1970s

worst-case switching

$$\dot{x} = A_1 x, \ \dot{x} = A_2 x, \ x \in \mathcal{R}^2$$

∃ quadratic common Lyap fcn <=>

convex combinations of $A_1, A_2, A_1^{-1}, A_2^{-1}$ Hurwitz

WEAK LYAPUNOV FUNCTION

Barbashin-Krasovskii-LaSalle theorem: $\dot{x}=f(x)$ is GAS

if \exists pos def rad unbdd C^1 function $V:\mathcal{R}^n \to \mathcal{R}$ s.t.

- $\frac{\partial V}{\partial x}f(x) \leq 0 \ \forall x \ \ \text{(weak Lyapunov function)}$
- $ar{V}$ is not identically zero along any nonzero solution (observability with respect to V)

Example:

$$\dot{x} = Ax$$
, $V(x) = x^T Px$

$$A^TP + PA \le -C^TC$$
 $> => \mathsf{GAS}$ (A,C) observable

COMMON WEAK LYAPUNOV FUNCTION

Theorem: $\dot{x}=A_{\sigma}x$ is GAS if

•
$$A_p^T P + P A_p \le -C_p^T C_p \ \forall p, \quad P > 0$$

- ullet (A_p,C_p) observable for each p
- $\exists \tau > 0$ s.t. there are infinitely many switching intervals of length $\geq au$

nonquadratic common weak Lyapunov functions using a suitable nonlinear observability notion Extends to nonlinear switched systems and

TWO BASIC PROBLEMS

Stability for arbitrary switching

Stability for constrained switching

MULTIPLE LYAPUNOV FUNCTIONS

$$\dot{x} = f_1(x), \ \dot{x} = f_2(x) - \text{GAS}$$

 V_1 , V_2 — respective Lyapunov functions

Very useful for analysis of state-dependent switching

MULTIPLE LYAPUNOV FUNCTIONS

DWELL TIME

The switching times $t_1, t_2, ...$ satisfy $t_{i+1} - t_i \geq (au_D)$

$$\dot{x} = f_1(x), \ \dot{x} = f_2(x) - \text{GES}$$

dwell time

 V_1 , V_2 - respective Lyapunov functions

DWELL TIME

The switching times $t_1, t_2, ...$ satisfy $t_{i+1} - t_i \ge au_D$

$$\dot{x} = f_1(x), \ \dot{x} = f_2(x) - \text{GES}$$

$$a_1 |x|^2 \le V_1(x) \le b_1 |x|^2,$$

$$a_2 |x|^2 \le V_2(x) \le b_2 |x|^2,$$

$$\frac{\partial V_1}{\partial x} f_1(x) \le -\lambda_1 V_1(x)$$

$$\frac{\partial V_2}{\partial x} f_2(x) \le -\lambda_2 V_2(x)$$

Need: $V_1(t_2) < V_1(t_0)$

DWELL TIME

The switching times $t_1, t_2, ...$ satisfy $t_{i+1} - t_i \ge au_D$

$$\dot{x} = f_1(x), \ \dot{x} = f_2(x) - \text{GES}$$

$$a_1 |x|^2 \le V_1(x) \le b_1 |x|^2,$$

$$a_2 |x|^2 \le V_2(x) \le b_2 |x|^2,$$

$$\frac{\partial V_1}{\partial x} f_1(x) \le -\lambda_1 V_1(x)$$

$$\frac{\partial V_2}{\partial x} f_2(x) \le -\lambda_2 V_2(x)$$

Need: $V_1(t_2) < V_1(t_0)$

must be < 1

$$V_1(t_2) \le \frac{b_1}{a_2} V_2(t_2) \le \frac{b_1}{a_2} e^{-\lambda_2 \tau_D} V_2(t_1)$$

$$\le \frac{b_1}{a_2} \frac{b_2}{a_1} e^{-\lambda_2 \tau_D} V_1(t_1) \le \left(\frac{b_1}{a_2} \frac{b_2}{a_1} e^{-(\lambda_1 + \lambda_2) \tau_D}\right) V_1(t_0)$$

AVERAGE DWELL TIME

$$N_{\sigma}(T,t) \le N_0 + \frac{T - t}{(\tau_{AD})}$$

of switches on (t,T)

average dwell time

 $N_0 = 0$ — no switching: cannot switch if $T - t < \tau_{AD}$

 $N_0=1$ – dwell time: cannot switch twice if $T-t< au_{AD}$

$$\dot{x} = f_{\sigma}(x)$$

AVERAGE DWELL TIME

 $\dot{x} = f_{\sigma}(x)$

$$\alpha_1(|x|) \le V_p(x) \le \alpha_2(|x|)$$

$$\frac{\partial V_p}{\partial x} f_p(x) \le -\lambda V_p(x)$$

$$V_p(x) \le \mu V_q(x), \quad p, q \in P$$

$$\dot{x} = f_{\sigma}(x)$$

$$|\mathbf{f}| \frac{\tau_{AD}}{\lambda} > \frac{\log \mu}{\lambda}$$

SWITCHED LINEAR SYSTEMS

$$\dot{x} = A_{\sigma} x$$

- GUES over all σ with large enough au_{AD}
- Finite induced norms for

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$
$$y = C_{\sigma}x$$

The case when some subsystems are unstable

STATE-DEPENDENT SWITCHING

Switched system unstable for some σ \Rightarrow no common V

But switched system is stable for (many) other σ

switch on the axes

 $V(x) = x^T x$ is a Lyapunov function

STATE-DEPENDENT SWITCHING

unstable for some σ \Rightarrow no common VSwitched system

But switched system is stable for (many) other σ

MULTIPLE WEAK LYAPUNOV FUNCTIONS

Theorem: $\dot{x}=A_{\sigma}x$ is GAS if

•
$$A_p^T P_p + P_p A_p \le -C_p^T C_p \ \forall p, \quad P_p > 0$$
 (each $V_p(x) = x^T P_p x$ is a weak Lyapunov function)

- (A_p, C_p) observable for each p
- $\exists \tau > 0$ s.t. there are infinitely many switching intervals of length $\geq au$
- For every pair of switching times $t_i < t_j$ s.t. $\sigma(t_i) = \sigma(t_j) = p$ have $V_p(x(t_j)) \le V_p(x(t_{i+1}))$

STABILIZATION by SWITCHING

$$\dot{x} = A_1 x$$
, $\dot{x} = A_2 x$ – both unstable

Assume: $A = \alpha A_1 + (1-\alpha)A_2$ stable for some $\alpha \in (0,1)$

$$A^T P + PA < 0$$

STABILIZATION by SWITCHING

$$\dot{x} = A_1 x$$
, $\dot{x} = A_2 x$ – both unstable

Assume: $A = \alpha A_1 + (1 - \alpha)A_2$ stable for some $\alpha \in (0,1)$

$$\alpha(A_1^T P + PA_1) + (1 - \alpha)(A_2^T P + PA_2) < 0$$

So for each $x \neq 0$:

either $x^{T}(A_{1}^{T}P + PA_{1}) x < 0$ or $x^{T}(A_{2}^{T}P + PA_{2}) x < 0$

UNSTABLE CONVEX COMBINATIONS

Can also use multiple Lyapunov functions

LMIS

REFERENCES

Branicky, DeCarlo, Hespanha

