EOUIVALENCIAS LÓGICAS

Las fórmulas que tienen los mismos valores de verdad en todos los casos posibles se llaman lógicamente equivalentes. Podemos también definir esta noción como sigue.

DEFINICIÓN 2

Se dice que las proposiciones p y q son lógicamente equivalentes si $p \leftrightarrow q$ es una tautología. La notación $p \equiv q$ denota que $p \neq q$ son lógicamente equivalentes.

Nota: El símbolo \equiv no es un conectivo lógico, puesto que $p \equiv q$ no es una fórmula, sino la afirmación de que $p \leftrightarrow q$ es una tautología. El símbolo \Leftrightarrow se usa en ocasiones en lugar de \equiv para denotar una equivalencia lógica.

Una forma de determinar si dos proposiciones son equivalentes es utilizar una tabla de verdad. En particular, las proposiciones p y q son equivalentes si, y sólo si, las columnas que dan sus valores de verdad coinciden. Los siguientes ejemplos ilustran este método.

EJEMPLO 2

Muestra que $\neg(p \lor q)$ y $\neg p \land \neg q$ son lógicamente equivalentes. Esta equivalencia es una de las leyes de De Morgan para proposiciones, llamadas así por el matemático inglés Augustus de Morgan, de mediados del siglo XIX.

Solución: Las tablas de verdad para estas proposiciones se muestran en la Tabla 2. Como los valores de verdad de las proposiciones $\neg (p \lor q)$ y $\neg p \land \neg q$ concuerdan para todas las combinaciones posibles de valores de verdad para p y q, se sigue que $\neg(p \lor q) \leftrightarrow (\neg p \land \neg q)$ es una tautología y estas proposiciones son lógicamente equivalentes.

Tabla 1 . Ejemplos de una tautología y una contradicción.								
p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$					
V F	F V	V V	F F					

Tabla 2. Tablas de verdad para $\neg (p \lor q)$ y $\neg p \land \neg q$.							
p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$	
V	V	V	F	F	F	F	
V	F	V	F	F	V	F	
F	V	V	F	V	F	F	
F	F	F	V	V	V	V	

Tabla 3 . Tablas de verdad para $\neg p \lor q \ y \ p \to q$.							
p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$			
V V F F	V F V F	F F V	V F V V	V F V V			