Introduction Embedded System

Rudy Gunawan, Ir. MT.

Pengertian System Embedded

- Embedded system atau sistem tertanam merupakan sistem komputer khusus yang dirancang untuk menjalankan tugas tertentu.
- Sistem tersebut tertanam dalam satu kesatuan sistem yang lebih besar.
- Bidang embedded system mencakup penguasaan perangkat keras (hardware)

Contoh System Embedded

- Sistem Pengapian Kendaraan (EFI)
- Sistem Photo Copy
- Sistem Printer
- Mesin Cuci
- AC

Perbandingan Sistem Embedded vs Sistem Komputer(1)

Embedded	Desktop
Fungsi khusus	Fungsi umum
Banyak pilihan prosesor (dari 8 bit sampai 64 bit)	Pilihan prosesor terbatas (Pentium, AMD, PowerPC dsb)
Cost sensitive (harus murah)	Sedikit Mahal
Real time	
Operating System umumnya real- time OS / RTOS	Operating System umumnya tidak harus real-time OS : Unix, windows
Kegagalan sistem umumnya berakibat serius	Kegagalan tidak berakibat fatal

Perbandingan Sistem Embedded vs Sistem Komputer(2)

Embedded	Desktop
Daya terbatas (batere, solar cell)	Daya dari jala-jala
Sering dioperasikan pada tempat yang alamnya kurang bersahabat: Luar angkasa , Tengah laut, Tempat dingin/panas	Sering dioperasikan di tempat yang alamnya bersahabat
Sumber daya terbatas : RAM, ROM, CPU	Sumber daya banyak: RAM besar ,ROM besar, CPU cepat
Program disimpan di ROM	Program disimpan di hard disk / magnetic media

Prosess Design Embedded System

- Requirement -Persyaratan mungkin fungsional atau nonfungsional.
- Spesifikasinya lebih tepat ini berfungsi sebagai kontrak antara pelanggan dan arsitek. Oleh karena itu, spesifikasi harus ditulis dengan hati-hati sehingga secara akurat mencerminkan kebutuhan pelanggan dan melakukannya dengan cara yang dapat diikuti dengan jelas selama desain.
- Arsitektur merupakan suatu rencana untuk keseluruhan struktur sistem yang nantinya akan digunakan untuk merancang komponen-komponen penyusun arsitektur tersebut. (blok diagram)
- Komponen Deskripsi arsitektural memberi tahu kita komponen apa yang kita butuhkan.
- Itegration- Hanya setelah komponen dibuat, kita mendapatkan kepuasan dalam menyatukannya dan melihat sistem kerja.

Pertimbangan Lain

- Tetapi langkah-langkah dalam proses desain hanya satu aspek di mana kita dapat melihat desain sistem tertanam.
- Kita juga perlu mempertimbangkan tujuan utama dari desain:
 - 1) biaya produksi;
 - 2) kinerja (kecepatan dan tenggat waktu keseluruhan);
 - 3) konsumsi daya.

Pertimbangan Lainnya(2)

- Kita juga harus mempertimbangkan tugas yang perlu kita lakukan di setiap langkah dalam proses desain. Di setiap langkah dalam desain, kami bisa menambahkan detail:
 - 1) Kita harus menganalisis desain pada setiap langkah untuk menentukan bagaimana kita dapat memenuhi spesifikasinya.
 - 2) Kita kemudian harus menyempurnakan desain untuk menambahkan detail.
 - 3) Dan kita harus memverifikasi desainnya untuk memastikan bahwa itu masih memenuhi semua tujuan sistem, seperti biaya, kecepatan, dan sebagainya.