<u>Dashboard</u> / My courses / <u>Biología-3raG</u> / <u>Tercer Examen Parcial</u> / <u>Tercer Examen Parcial</u>

Question 1
Incorrect
Mark 0.00 out
of 1.00

La replicación del DNA es un proceso vital para la conservación de todo linaje celular. ¿cuál es la etapa más fuertemente regulada del proceso?

Select one:

a.

El cargado de las topoisomerasas

b.

El inicio

) c

La terminación

d.

La elongación

×

О е

El cargado del "sliding clamp"

Your answer is incorrect.

The correct answer is:

El inicio

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: La elongación	Answer saved	

3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **2**Incorrect
Mark 0.00 out of 1.00

En E. coli durante la elongación de la replicación ¿cuál de las siguientes propuestas es VERDADERA con respecto a la Primasa (DnaG)?

Select one:

a.

Solo se requiere al inicio de la replicación

×

b.

Se asocia con la Topo II para iniciar el primado

0 0

Siempre sintetiza prímeros de RNA usando como templado la cadena de síntesis continua

Sintetiza prímeros de RNA en la orientación opuesta a la que lleva el replisoma

) е

Usando como templado el DNA, sintetiza un fragmento pequeño de DNA

Your answer is incorrect.

The correct answer is:

Sintetiza prímeros de RNA en la orientación opuesta a la que lleva el replisoma

Response history				
Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: Solo se requiere al inicio de la replicación	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **3**Correct
Mark 1.00 out of 1.00

Dentro de la estructura del Empalme Prímero-Templado, ¿qué molécula es realmente el substrato de la reacción?

Select one:

a

El complejo formado por: DnaA, helicasa (DnaB), Cargador de helicasa (DnaC), sliding-clamp, el cargador de

sliding-clamps, la DNA polimerasa y el templado de DNA

b.
El DNA templado
c.
La DNA polimerasa DNA dependiente
d.
El complejo sliding clamp-DNA polimerasa
e.
El Prímero de RNA o de DNA

Your answer is correct.

The correct answer is: El Prímero de RNA o de DNA

Response history Action Step Time State Marks 1 7/12/20, 12:04 Started Not yet answered 2 7/12/20, 12:45 Saved: El Prímero de RNA o de DNA Answer saved 3 7/12/20, 12:46 Attempt finished Correct 1.00

Question **4**Incorrect
Mark 0.00 out of 1.00

¿Cuál de las siguientes reacciones provoca que la replicación del DNA sea termodinámicamente favorable?

Select one:

a.

La hidrólisis del enlace glicosídico

o b.

La hidrólisis de A TP

O

El ataque del 3'-hidroxilo al fosfato alfa del dNTP entrante

×

) d

La hidrólisis del pirofosfato

О е

La disociación del H2O

Your answer is incorrect.

ι ne correct answer is: La hidrólisis del pirofosfato

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: El ataque del 3´-hidroxilo al fosfato alfa del dNTP entrante	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **5**Incorrect
Mark 0.00 out of 1.00

¿Qué tipo de interacciones permite a la DNA polimerasa discernir cuál de los 4 dNTPs es el correcto?

Select one:

a.

Fuerzas de London

b

Enlaces covalentes

C

Puentes de hidrógeno

d

Interacciones de van der Waals

×

_ е

Interacciones iónicas

Your answer is incorrect.

The correct answer is: Puentes de hidrógeno

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/10/00 10:45	Savad: Interacciones de van der Masle	Anguar cauad	

<u> </u>	//12/20, 12.40	Saveu. IIIteracciones de van der vydais	Allowel Saveu	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question 6 Correct Mark 1.00 out

of 1.00

Las DNA polimerasas tienen la capacidad de doblar en aproximadamente 90° el templado justo dos nucleótidos después del borde de la empalme prímero:templado. ¿Cuál es la función de este doblés?

Select one:

- a.
- Exponer el fosfato α del deoxi-nucleótido entrante para promover un ataque nucleofílico

Provocar la pierda del hidrógeno del hidroxilo del extremo 3'- del prímero

Facilitar el correcto apareamiento del nucleótido entrante con el templado

Posicionar correctamente los fosfatos α , β y γ del nucleótido entrante

Alejar la segunda base (y las bases subsecuentes) del sitio activo de polimerización

Your answer is correct.

The correct answer is:

Alejar la segunda base (y las bases subsecuentes) del sitio activo de polimerización

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: Alejar la segunda base (y las bases subsecuentes) del sitio activo de polimerización	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

Question **7** Correct Mark 1.00 out of 1.00

¿Cuál de las siguientes polimerasas de vertebrados es procesiva?

Select one:

a.

La DNA polimerasa δ

b.
La DNA polimerasa ζ

c.
La DNA polimerasa η

d.
La DNA polimerasa κ

e.
La DNA polimerasa ι

Your answer is correct.

The correct answer is: La DNA polimerasa δ

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
<u>2</u>	7/12/20, 12:45	Saved: La DNA polimerasa δ	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

Question **8**Correct
Mark 1.00 out of 1.00

¿Cuál de las siguientes enzimas o proteínas NO SE requiere para que ocurra la replicación del DNA?

Select one:

a.

Primasa

b.Ligasa

C.

RNasa H

d.Helicasa

e.

RNasa P

~

Your answer is correct.

The correct answer is: RNasa P

Response history

-				
Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
<u>2</u>	7/12/20, 12:45	Saved: RNasa P	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

Question **9**Incorrect
Mark 0.00 out of 1.00

La RNasa H y la 5´-Exonucleasa remueven los ribonucleótidos de los prímeros de RNA usados durante la replicación del DNA in vivo. En E. coli, ¿qué enzima se encarga de llenar el hueco con DNA?

Select one:

a.

DNA polimerasa V

b.

DNA polimerasa II

c.

DNA polimerasa III

×

d.

DNA polimerasa IV

) е

DNA polimerasa I

Your answer is incorrect.

The correct answer is: DNA polimerasa I

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: DNA polimerasa III	Answer saved	

3 7/12/20, 12:46 Attempt finished Incorrect 0.00

Question 10 Correct Mark 1.00 out of 1.00

¿Qué enzima es encargada de terminar la replicación en los bordes de los cromosomas lineales de eucariontes extendiendo la cadena 3´-OH?

Select one:

a.

La Telomerasa

b.

La Primasa

C.

La DNA pol γ

d.

La DNA pol θ

e.

La DNA pol α

Your answer is correct.

The correct answer is:

La Telomerasa

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: La Telomerasa	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

Question **11**Incorrect
Mark 0.00 out of 1.00

¿Cuál de las siguientes NO ES un ejemplo de mutación puntual?

Select one:

a.

La inserción de un nucleótido

X

O b.

Una transición

c.
 Una translocación
d.
 La deleción de un nucleótido
e.
 Una transversión

Your answer is incorrect.

The correct answer is: Una translocación

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: La inserción de un nucleótido	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **12**Correct
Mark 1.00 out of 1.00

En el sistema de reparación de malos apareamientos (mismatch repair) de E. coli, ¿cuál de las siguientes enzimas **NO** forma parte de este sistema?

Select one:

a.

MutL

o b.

MutH

c.

RecA

~

d.

UvrD

О е.

MutS

Your answer is correct.

The correct answer is:

RecA

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: RecA	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

Question **13**Correct
Mark 1.00 out of 1.00

Se sabe que la actividad endonucleasa de Mut H en Escherichia coli siempre está latente. ¿Qué condiciones son necesarias para activarla?

Select one:

- a.
- Que MutH interaccione con SeqA
- O b

Que MutH interaccione con la Dam metilasa

C

Que MutH interaccione con MutL en un sitio hemimetilado próximo a MutS anclado en el mis-match

h d

Que MutH interaccione con MutS en un sitio hemimetilado próximo a MutL anclado en el mis-match

0 6

Que MutH interaccione simultaneamente con MutL y MutS

Your answer is correct.

The correct answer is:

Que MutH interaccione con MutL en un sitio hemimetilado próximo a MutS anclado en el mis-match

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: Que MutH interaccione con MutL en un sitio hemimetilado próximo a MutS anclado en el mis-match	Answer saved	

3 7/12/20, Attempt finished Correct 1.00 12:46

Question **14**Incorrect
Mark 0.00 out of 1.00

Coloca en orden cronológico los siguientes sucesos en el proceso de reparación de malos apareamientos de E. coli. 1) UvrD ,una helicasa específica, separa la cadena y una exonucleasa (Exo VI o Exo I) degrada una región del DNA hasta el mis-match; 2) una DNA polimerasa sintetiza el fragmento de DNA faltante; 3) MutS escanea el genoma en busca de mis-match; 4) la DNA ligasa une el extremo 3′ con el 5′; 5) MutS se ancla al sitio del mis-match; 6) MutL se desplaza a un sitio 5′-GATC-3′ hemimetilado próximo donde recluta y activa a MutH y 7) se recluta a MutL en el sitio del mis-match.

Select one:

- a.5, 7, 6, 3, 1, 2 y 4
- b.6, 7, 1, 3, 5, 2 y 4
- c.3, 5, 7, 6, 1, 2 y 4
- d.1, 5, 7, 6, 2, 4 y 3
- e.3, 2, 5, 6, 7, 1 y 4

Your answer is incorrect.

The correct answer is: 3, 5, 7, 6, 1, 2 y 4

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: 5, 7, 6, 3, 1, 2 y 4	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **15**Incorrect
Mark 0.00 out of 1.00

De las siguientes opciones, ¿cuál NO ES una mutación?

Select one:

(A)

Una Inversión

) b.

Una transición

_ c

Una deleción

d.

La desaminación de citosina

e.

Una transversión

Your answer is incorrect.

The correct answer is: La desaminación de citosina

Response history

- 1				
Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: Una Inversión	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **16**Incorrect
Mark 0.00 out of 1.00

De los siguiente cambios que pueden ocurrir en el DNA ¿cuál es más probable que genere una mutación?

Select one:

a.

Incorporación del tautómero de una base

b

La transformación de citosina en uracilo

×

O

La oxidación de guanina

_ d

La formación de un mis-match

_ е

La generación de un sitio abásico

Your answer is incorrect.

The correct answer is: Incorporación del tautómero de una base

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: La transformación de citosina en uracilo	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **17**Correct
Mark 1.00 out of 1.00

¿Cuál, de las siguientes reacciones post-replicativas, puede generar un mis-match G:T?

Select one:

a.

La oxidación de guanina

b

La desaminación de 5-metil-citosina

La metilación de Adenina

0 0

La hidrólisis del enlace glicosídico

О е

La desaminación de citosina

Your answer is correct.

The correct answer is:

La desaminación de 5-metil-citosina

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: La desaminación de 5-metil-citosina	Answer saved	
_	7/40/00 40:40	Associate disciplination	O	4.00

3 //12/20, 12:46 Attempt tinisned Correct 1.00

Question **18**Incorrect
Mark 0.00 out of 1.00

¿Qué efectos mutagénicos pueden provocar los agentes intercalantes en el DNA (ej. el etidio)?

Select one:

- a.
- Deaminación de citosinas
- O

Metilación de las citosinas

© C

Generación de sitios abásicos

×

_ d

Inserciones/deleciones

О е

Transversiones exclusivamente

Your answer is incorrect.

The correct answer is: Inserciones/deleciones

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: Generación de sitios abásicos	Answer saved	
3	7/12/20, 12:46	Attempt finished	Incorrect	0.00

Question **19**Correct
Mark 1.00 out of 1.00

Ordena cronológicamente el siguiente evento de reparación al DNA y menciona el nombre de dicho mecanismo. I) una DNA polimerasa resintetiza el fragmento de DNA y una DNA ligasa une los extremos, II) la enzima realiza el "base-flipping" de la base dañana, III) el backbone del sitio abásico es removido usando una AP-endonucleasa y exonucleasa, IV) la glicosilasa reconoce el sitio de la base dañada, V) se rompe el enlace glicosídico de la base dañada.

Select one:

O a

IV , V , II, III, I. Reparación por Escisión de Nucleótidos (NER)

o b.

IV , II, V , III, I. Reparación por Escisión de Nucleótidos (NER)

C.

IV, II, V, III, I. Reparación por Escisión de una Base (BER)

~

d.

II, IV, V, III, I. Reparación por Escisión de Nucleótidos (NER)

) e

IV, I, V, III, II. Reparación por Escisión de una Base (BER)

Your answer is correct.

The correct answer is:

IV, II, V, III, I. Reparación por Escisión de una Base (BER)

Respo	nse history			
Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: IV, II, V, III, I. Reparación por Escisión de una Base (BER)	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

Question 20 Correct Mark 1.00 out of 1.00

¿Qué tipo de sistema de reparación al DNA se basa en el reconocimiento de distorsiones a la estructura de la doble hélice? (En E. coli, este sistema se compone de UvrA, B, C, D)

Select one:

a

Reparación por escisión de bases (BER)

) b.

Foto-reactivación

О с.

Síntesis de trans-lesión

c

Reparación por escisión de nucleótidos (NER)

) e

Reparación de cortes en doble cadena por la unión de extremos no homólogos (NHEJ)

Your answer is correct.

The correct answer is:

Reparación por escisión de nucleótidos (NER)

Response history

Step	Time	Action	State	Marks
1	7/12/20, 12:04	Started	Not yet answered	
2	7/12/20, 12:45	Saved: Reparación por escisión de nucleótidos (NER)	Answer saved	
3	7/12/20, 12:46	Attempt finished	Correct	1.00

■ Segundo Examen Parcial

Jump to...

Transcripción y Splicin ▶