Fachrichtung Mathematik
Fakultät für Mathematik und Informatik
Universität des Saarlandes
Prof. Dr. Moritz Weber
Enes Ulus, Jonas Metzinger, Selina Schwindling

Interpolation

Mapleseminar 2024

Aufgabe 1. Langrangeinterpolation

- i) Schreiben Sie eine Prozedur, die zu einem gegebenen Datensatz von n Punkten das Interpolationspolynom P(x) nach Lagrange berechnet. Die Prozedur soll drei Argumente übergeben bekommen,
 - 1. die Anzahl der Interpolationspunkte,
 - 2. die Liste mit den x-Werten,
 - 3. die Liste mit den y-Werten.

Hierbei sind die Lagrangepolynome L_i zum Interpolationsproblem mit n Stützstellen (x_i, y_i) für $i = 1, \dots, n$ gegeben durch

$$L_i(x) = \prod_{\substack{j=1\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Das Gesuchte Polynom erhalten wir durch

$$P(x) = \sum_{i=1}^{n} y_i L_i(x).$$

ii) Testen Sie ihr Programm mit dem Datensatz:

iii) Visualisieren Sie das Interpolationspolynom.

Aufgabe 2. Algorithmus von Neville

i) Schreiben Sie eine Prozedur, die zu einem gegebenen Datensatz von n Punkten das Interpolationspolynom P(x) mit dem Algorithmus von Neville berechnet. Die Prozedur soll drei Argumente übergeben bekommen,

- 1. die Anzahl der Interpolationspunkte,
- 2. die Liste mit den x-Werten,
- 3. die Liste mit den y-Werten.

Hier werden rekursiv die Größen

$$p_{j,1}(x) := y_j, j = 1, \cdots, n$$

und für $k \le j \le n, k = 2, \dots, n$,

$$p_{j,k}(x) := p_{j,k-1}(x) - \frac{(x_j - x) \cdot (p_{j,k-1}(x) - p_{j-1,k-1}(x))}{x_j - x_{j-k}}$$

bestimmt. $P(x) = p_{n,n}(x)$ ist das gesuchte Interpolationspolynom.

ii) Testen Sie ihr Programm mit dem Datensatz:

iii) Visualisieren Sie das Interpolationspolynom.

Aufgabe 3. lineare Splines

i) Schreiben Sie eine Prozedur, die zu einem gegebenen Datensatz von fünf Punkten den linearen Spline berechnet.

Die Prozedur soll zwei Argumente übergeben bekommen,

- 2. die Liste mit den x-Werten,
- 3. die Liste mit den y-Werten.

Der lineare Spline ist für $x_i < x < x_{i+1}$ gegeben durch $x \cdot m_i + b_i$, wobei $m_i := \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$ und $b_i = -m_i \cdot x_i + y_i$ für $i = 1, \dots, 4$.

Hinweis: Benutzen Sie den Befehl piecewise().

ii) Testen Sie ihr Programm mit dem Datensatz:

2

iii) Visualisieren Sie den Spline.