Бином Ньютона. Последовательность.

1. Найти слагаемое, получающееся при разложении

$$\left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right)^{16}$$

и содержащее x^3 .

2. Доказать равенство

$$\sum_{k=0}^{n} C_n^k = 2^n$$

алгебраически и комбинаторно.

- 3. Найти коэффициент слагаемого многочлена $(1+x^2-x^3)^9$ при x^8 .
- 4. Показать, что последовательность a_n ограничена (т.е. ограничена и сверху и снизу) тогда и только тогда, когда

$$\exists C > 0 \quad \forall n \in \mathbb{N} : \quad |a_n| < C.$$

- 5. Доказать ограниченность последовательности $a_n = \frac{2n^2-1}{2+n^2}$.
- 6. Доказать неограниченность последовательности $b_n = n^2 n$.
- 7. Исследовать на монотонность последовательность $a_n = \frac{5^n}{n!}$.
- 8. Доказать, что последовательность, заданная рекуррентно

$$x_1 = a$$
, $x_{n+1} = \sqrt{6 + x_n}$

возрастает при a=0, убывает при a=4.

9. Исследовать на монотонность последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$.

Домашнее задание

- 1. Найти коэффициент многочлена $(1 + 2x 3x^2)^4$ при x^3 и x^4 .
- 2. Привести пример последовательности $\{x_n\}$, удовлетворяющей условию:
 - a) $\forall m \; \exists n : \; x_m \neq x_n;$
 - b) $\exists N \ \forall n > N : \ x_n < x_N;$
 - c) $\exists N_1 \ \forall n > N_1 : x_{N_1} > x_n \ \text{if} \ \exists N_2 \ \forall n > N_2 : x_{N_2} < x_n;$
 - d) $\exists N \ \forall n > N \ \forall m > n : \ x_n < x_m;$
 - e) $\forall n \exists m > n \exists k > n : x_m < x_n < x_k$.
- 3. Доказать ограниченность последовательности

a)
$$a_n = \frac{n^2 + 4n + 8}{(n+1)^2}$$
, b) $a_n = \sqrt{n-1} - \sqrt{n+1}$.

4. Доказать неограниченность последовательности

a)
$$a_n = \frac{n^3}{n^2 + 1}$$
, b) $a_n = \sqrt{n^2 + (-1)^n \cdot \sqrt{n^3}} - n$.

 Доказать, что последовательность монотонна, начиная с некоторого номера (указать номер!)

a)
$$a_n = \frac{3n+4}{n+2}$$
, b) $a_n = \frac{(3n+1)^2}{3^n}$.

- 6. Пусть $x_1 = 2$, $x_{n+1} = 0$, $5 \cdot x_n^2 1$, $n \in \mathbb{N}$.
 - а) Доказать, что последовательность ограничена.
 - b) Доказать, что подпоследовательности $\{x_{2k}\}$ и $\{x_{2k-1}\}$ данной последовательности монотонны, начиная с некоторого номера.

Задачи для самостоятельного решения

- 1. Найти коэффициент многочлена
 - а) $(1-x+x^2)^3$ при x^3 ;
 - b) $(1+x^2+x^3)^7$ при x^{11} .
- 2. Найти члены разложения, являющиеся целыми числами
 - a) $(\sqrt{2} + \sqrt[3]{3})^5$, b) $(\sqrt{5} \sqrt{2})^8$.
- 3. Доказать ограниченность последовательности

 - a) $a_n = \frac{1-n}{\sqrt{n^2+1}}$, b) $a_n = \frac{5n^6+6}{(n^4+1)(n^2-1)}$,
 - c) $a_n = n(\sqrt{n^4 + n} \sqrt{n^4 n}).$
- 4. Доказать неограниченность последовательности

 - a) $a_n = \frac{1-n}{\sqrt{n}}$, b) $a_n = \frac{n-n^4}{(n+2)^3}$,
 - c) $a_n = \sqrt{n^4 + n^3 + 1} \sqrt{n^4 n^3 + 1}$.
- 5. Доказать, что последовательность монотонна, начиная с некоторого номера (указать номер!)
 - a) $a_n = \frac{n^2 + 24}{n+1}$, b) $a_n = \frac{n^3}{2^n}$.
- 6. Пусть $x_1 = 3$, $x_{n+1} = 0, 5 \cdot x_n^2 1$, $n \in \mathbb{N}$.
 - а) Доказать, что последовательность ограничена снизу, но не ограничена сверху.
 - b) Возрастает
- 7. Доказать, что последовательность $\{x_n\}$, где $x_1=4,\ x_{n+1}=\frac{2+x_n^2}{2x_n}$ убывает.