

算法基础 Foundation of Algorithms

主讲人 徐云 Fall 2018, USTC

中国科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- Part 1 Foundation
- Part 2 Sorting and Order Statistics
- Part 3 Data Structure
- Part 4 Advanced Design and Analysis Techniques
- Part 5 Advanced Data Structures
 - chap 18 B-Tree
 - chap 19 Fibonacci Heaps (Binomial Heaps in v2)
 - chap 20 Van Emde Boas Trees
 - chap 21 Data Structures for Disjoint Sets
- Part 6 Graph Algorithms
- Part 7 Selected Topics
- Part 8 Supplement

Chapter 19 Binomial Heap (二项堆, in v2)

- 19.1 Priority Queue and Union op
- 19.2 Binomial Trees and Binomial Heap
- 19.3 Operations on a Binomial Heap

19.1 Priority Queue and Union op

- Priority queue
- Various implementations
- Comparison of efficiency
- Union operation

Priority Queue

• Priority Queue is an ADT (抽象数据类型) for maintaining a set S of elements, each with a key value and supports the following operations:

 \square Insert(S, x)

inserts element x into S (also write as $S \leftarrow S \cup \{x\}$)

 \square MINIMUM(S)

returns element in 5 with *min* key

□ EXTRACT-MIN(5)

removes and returns element in S with *min* key

DECREASE-KEY(S, x, k) decreases the value of element x's key to a new value k

PQ Implementations...

Many data structures proposed for PQ:

1964	Binary Heap	J. W. J. Williams
1972	Leftist Heap	C. A. Crane
1978	Binomial Heap	J. Vuillemin
1984	Fibonacci Heap	M. L. Fredman, R. E. Tarjan
1985	Skew Heap	D. D. Sleator R. E. Tarjan
1988	Relaxed Heap	Driscoll, Gabow Shrairman, Tarjan

Binary Min-Heap (as in Heapsort)

- Binary min-heap is an array A[1..n] that can be viewed as a nearly complete binary tree.
- Number the nodes using level order traversal.
 - \square LEFT(i) = 2i and RIGHT(i) = 2i+1 and
 - \square Parent(i) = $\lfloor i/2 \rfloor$
 - □ Height of tree $\approx \log n$
- Heap Property: (Each node ≥ its parent node)
 - \square $A[PARENT(i)] \leq A[i]$

PQ Implementations...

• Time Bounds for different PQ implementations. $\square n$ is the number of items in the PQ.

Data Str	INSERT	MIN	Extract -MIN	D-KEY	DELETE	Union
Binary H	$O(\lg n)$	0(1)	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$	O(n)
Binomial H	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$
Fibonacci	O (1)	0(1)	$O(\lg n)$	0(1)	$O(\lg n)$	O (1)

Comparison of Efficiency

Procedure	Binary (worst- case)	Binomial (worst- case)	Fibonacci (amortized)
Make-Heap	⊖(1)	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\lg n)$	$O(\lg n)$	⊖(1)
Minimum	⊖(1)	$O(\lg n)$	⊖(1)
Extract-Min	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$
Union	$\Theta(n)$	$O(\lg n)$	⊖(1)
Decrease-Key	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$
Delete	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$

Union Operation

- A mergeable heap (可含并维) is any data structure that supports the basic heap operation plus union.
- Union (H1, H2) creates and returns a new heap.

Chapter 19 Binomial Heap (二项堆, in v2)

- 19.1 Priority Queue and Union op
- 19.2 Binomial Trees and Binomial Heap
- 19.3 Operations on a Binomial Heap

19.2 Binomial Trees and Binomial Heap

- Binomial trees (二项树)
- Properties of binomial trees
- Binomial heaps
- Representing binomial heaps

Binomial Trees

Recursive definition:

Some examples:

Properties of Binomial Trees

- For a Binomial Tree B_k (of order k)
 - 1. there are 2^k nodes,
 - 2. the height of the tree is k,
 - 3. root has degree k and
 - 4. deleting the root gives binomial trees B_0 , B_1 , ..., B_{k-1} .

Proof: (DIY, by induction)

2018/11/21 算法基础

Defining Property of Binomial Trees

There are exactly $\binom{k}{i}$ nodes at depth i, for B_k

$$(0 \le i \le k)$$

Binomial Heap (Vuillemin, 1978)

- A sequence of binomial trees that satisfy
 - \square binomial heap property (each tree B_k is a min-heap)
 - \square 0 or 1 binomial tree B_k of order k,
- There are at most $\lfloor \log n \rfloor + 1$ binomial trees.
- Eg: A binomial heap H with n = 11 nodes.

Representing Binomial Heaps (1)

- Each node x stores
 - \square key[x]
 - \square degree[x]
 - $\Box p[x]$
 - \Box child[x]
 - \square sibling[x]
- (3 pointers per node)

Representing Binomial Heaps (2)

Chapter 19 Binomial Heap (二项堆, in v2)

- 19.1 Priority Queue and Union op
- 19.2 Binomial Trees and Binomial Heap
- 19.3 Operations on a Binomial Heap

19.3 Operations on a Binomial Heap

- Make and Minimum
- Linking Step: Fundamental Op
- Binomial Heap Union
- More Operations
- Summary

MAKE and MINIMUM

- MAKE-BINOMIAL-HEAP(H)
 - □ Allocate object H, make head[H] = NIL. $\Theta(1)$.
- BINOMIAL-HEAP-MINIMUM(H)
 - \square Search the root list for minimum. $O(\log n)$.

2018/11/21 算法基础

Linking Step: Fundamental Op

• BINOMIAL-LINK (y, z)


```
BINOMIAL-LINK (y, z) \rightarrow Assume z \le y
p[y] \leftarrow z
sibling[y] \leftarrow child[z]
child[z] \leftarrow y
degree[z] \leftarrow degree[z] + 1
```

Constant time O(1)

Binomial Heap Union (1)

Let us look at the procedure of an example:

$$19 + 7 = 26$$

The binomial trees in the Binomial Heap at last: B_1, B_3, B_4

		1	1	1		
	1	0	0	1	1	
+	0	0	1	1	1	Š
	1	1	0	1	0	

2018/11/21 算法基础 23

Binomial Heap Union

Temporary area:

Stable area:

Temporary area:

Stable area:

Stable area:


```
BINOMIAL-HEAP-UNION(H_1, H_2)
     H ← MAKE-BINOMIAL-HEAP()
                                                                                建铁矿 化二氯基苯
    head[H] \leftarrow BINOMIAL-HEAP-MERGE(H_1, H_2)
    free the objects H_1 and H_2 but not the lists they point to
    if head[H] = NIL
       then return H
     prev-x \leftarrow NIL
    x \leftarrow head[H]
    next-x \leftarrow sibling[x]
    while next - x \neq NIL
         do if (degree[x] \neq degree[next-x]) or
10
                (sibling[next-x] \neq NIL \text{ and } degree[sibling[next-x]] = degree[x])
11
              then prev-x \leftarrow x
                                                                                      Cases 1 and 2
12
                   x \leftarrow next-x
                                                                                      D Cases 1 and 2
13
              else if key[x] \leq key[next-x]
14
                    then sibling[x] \leftarrow sibling[next-x]
                                                                                      Case 3
                          BINOMIAL-LINK(next-x, x)
15
                                                                                      Case 3
16
              else if prev-x = NIL
                                                                                      DCase 4
17
                    then head[H] \leftarrow next-x
                                                                                      Case 4
                    else sibling [prev-x] \leftarrow next-x
18
                                                                                      DCase 4
19
                  BINOMIAL-LINK(x, next-x)
                                                                                      DCase 4
20
                  x \leftarrow next-x
                                                                                      Case 4
21
            next-x \leftarrow sibling[x]
22
     return H
```

Binomial Heap Union (3)

Case classification:

Binomial Heap Union (4)

Binomial Heap Union (5)

2018/11/21 算法基础

Binomial Heap Union (6)

- Make-Binomial-Heap-Union (H1, H2):
 - \square Create a heap H that is the union of two heaps H_1 and H_2
 - \square Analogous to binary addition of n_1 and n_2
- Running time.: $O(\log n)$ $[n = n_1 + n_2]$

More Operations (1)

- BINOMIAL-HEAP-INSERT(H, X)
 - □ Create a one-item (x) binomial heap H_1 and then union H and H_1 . $O(\lg n)$.
- BINOMIAL-HEAP-EXTRACT-MIN(H)
 - \square Find minimum, remove root, then union. $O(\lg n)$.

2018/11/21 算法基础

More Operations (2)

- BINOMIAL-HEAP-DECREASE (H, x, k)
- BINOMIAL-HEAP-DELETE (H, X)

2018/11/21 算法基础

Summary

O(|g|n)

MINIMUM(H)	
------------------------------	--

• UNION
$$(H_1, H_2)$$
 $O(\lg n)$

• INSERT
$$(H, x)$$
 $O(\lg n)$

• EXTRACT-MIN(
$$H$$
) $O(\lg n)$

• DELETE
$$(H, x)$$
 $O(\lg n)$

End of Ch19