WaterAid in Tanzania

"Let's Get These People Water"

Table of contents

01

Business Problem

02

Approach

03

Modeling

04

Evaluation

05

Conclusion

Business Problem

16 million 1

People without clean water

4 thousand ²

Children under 5 die each year from preventable water-borne illness

70%³

Health budget spent on WASH-related diseases

^{1.} Water.org (https://water.org/our-impact/where-we-work/tanzania/), 2. WaterAid (https://www.wateraid.org/us/where-we-work/tanzania/)

^{3.} Unicef (https://www.unicef.org/tanzania/what-we-do/wash)

Approach

Data

59k+ Wells

Status

- 1. Working
- 2. Not Working
- Working but Needs Repair

Features

40 features like:

- Location
- Management
- Year Built

Predict?

Using Machine Learning

Modeling

	Training Accuracy	Testing Accuracy	Testing Log Loss	"Functional" Recall	"Non-Functional" Recall	"Needs Repair" Recall
Dummy	54.2%	54.5%	15.70	100%	0%	0%
Simple LogReg	76.7%	75.9%	0.58	88.1%	69.5%	17.1%
Polynomial	76.4%	75.5%	0.58	87.9%	69.2%	15.1%
SMOTE	67.8%	66.3%	0.74	64.4%	68.2%	70.4%
Grid Search LogReg	76.7%	76.0%	0.58	88.5%	69.5%	15.8%

Evaluation - Logistic Regression

7000

6000

5000

4000

3000

2000

1000

- 1: Functioning
- 2: Needs Repair

Positive: Needs Attention (0 or 2)

Negative: No Attention

Needed (1)

False Positives ⇒
Waste resources

False Negatives ⇒
People in need

More Efficient

False Positives: 933

Less Safe

False Negatives: 2,374

Evaluation - LogReg with SMOTE

- 1: Functioning
- 2: Needs Repair

Positive: Needs Attention (0 or 2)

Negative: No Attention

Needed (1)

False Positives ⇒
Waste resources

False Negatives ⇒
People in need

- 5000

- 3000

2000

- 1000

False Positives: 2,883

Safer

False Negatives: 1,178

Conclusion

What's our priority?

Efficiency

Simple Logistic Regression

Safety

Logistic Regression with SMOTE

What can we afford?

Next Steps

Decision Tree?

K-Nearest Neighbors?

Random Forest?

Thanks!

Do you have any questions?

Tristan Trechsel

Email: tristantrechsel@gmail.com

Github: @ttrechsel LinkedIn: /in/trechsel

