

Circuit Decompositions of Eulerian Graphs

Genghua Fan¹

Department of Mathematics, Arizona State University, Tempe, Arizona 85287

and

Cun-Quan Zhang²

Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506-6310 Received February 25, 1991

Let G be an eulerian graph. For each vertex $v \in V(G)$, let P(v) be a partition of the edges incident with v and set $\mathcal{P} = \bigcup_{v \in V(G)} P(v)$, called a forbidden system of G. We say that \mathscr{P} is admissible if $|P \cap T| \leq \frac{1}{2}|T|$ for every $P \in \mathscr{P}$ and every edge cut T of G. H. Fleischner and A. Frank (1990, J. Combin. Theory Ser. B 50, 245–253) proved that if G is planar and \mathcal{P} is any admissible forbidden system of G, then G has a circuit decomposition \mathscr{F} such that $|C \cap P| \le 1$ for every $C \in \mathscr{F}$ and every $P \in \mathcal{P}$. We generalize this result to all eulerian graphs that do not contain K_5 as a minor. As a consequence, a conjecture of Sabidussi is settled for graphs that do not contain K_5 as a minor. Also, as a byproduct, our proof provides a different approach to the circuit cover theorem of B. Alspach, L. A. Goddyn, and C.-Q. Zhang (1994, Trans. Amer. Math. Soc. 344, No. 1, 131–154). © 2000 Academic Press

Key Words: circuit decomposition; eulerian graph.

1. INTRODUCTION

By a circuit, we mean a connected 2-regular graph, while a cycle is the union of edge-disjoint circuits. An eulerian graph is a connected cycle. Loops and multiple edges are allowed in graphs. Sometimes, we identify a graph with its edge-set. The symmetric difference of two cycles A and B, denoted by $A \triangle B$, is the cycle induced by $(E(A) \cup E(B)) \setminus (E(A) \cap E(B))$. Let G be a graph. A minor of G is a graph obtained from G by contractions of edges and deletions of vertices and edges. For a vertex $v \in V(G)$, the set of edges of G incident with v is denoted by $E_G(v)$ (if no confusion occurs, we simply write E(v)). The degree of a vertex v in G, denoted by $d_G(v)$, is the number of edges incident with v in G (if no confusion occurs, we simply

² This author's research was partially supported by NSF under Grants DMS-9104824 and DMS-9306379.

¹ Current address: Institute of System Science, Chinese Academy of Sciences, Beijing

write d(v)). An edge (vertex) cut of G is a minimal set of edges (vertices) whose removal increases the number of components.

Let G be an eulerian graph. For a vertex v in G, a forbidden set incident with v, denoted by $\mathcal{P}(v)$, is a partition of E(v) (the set of edges incident with v). A member of $\mathcal{P}(v)$ is called a *forbidden part* (incident with v). The set $\mathscr{P} = \bigcup_{v \in V(G)} \mathscr{P}(v)$ is called a *forbidden system* of G. \mathscr{P} is said to be admissible if $|P \cap T| \leq \frac{1}{2} |T|$ for every forbidden part $P \in \mathcal{P}$ and every edge cut T of G. If \mathcal{P} is an admissible forbidden system of G, we simply say that (G, \mathcal{P}) is admissible. A circuit decomposition of G is a set of edge-disjoint circuits (of G) whose union is G. We say that (G, \mathcal{P}) has a compatible circuit decomposition (CCD) if G has a circuit decomposition \mathcal{F} such that $|E(C) \cap P| \le 1$ for every $C \in \mathcal{F}$ and every $P \in \mathcal{P}$. A forbidden part is *trivial* if it consists of a single edge, and *non-trivial* otherwise. A vertex v in (G, \mathcal{P}) is trivial (with respect to \mathcal{P}) if every forbidden part incident with v is trivial, and non-trivial otherwise. Clearly, if every vertex of (G, \mathcal{P}) is trivial, then any circuit decomposition of G is a CCD of (G, \mathcal{P}) . Let $\mathcal{F} =$ $\{C_1, C_2, ..., C_m\}$ be a set of cycles of G. F is called a compatible cycle decomposition of (G, \mathcal{P}) if $|C_i \cap P| \leq 1$ for every C_i , $1 \leq i \leq m$, and every $P \in \mathcal{P}$. By this definition, if \mathcal{F} is a compatible cycle decomposition of (G, \mathcal{P}) , then arbitrary circuit decompositions of C_i into circuits, $1 \leq i \leq m$, result in a CCD of (G, \mathcal{P}) . Therefore, (G, \mathcal{P}) has a CCD if and only if it has a compatible cycle decomposition.

There are close connections between compatible circuit decompositions of eulerian graphs and faithful circuit covers of weighted graphs. Let w be a weight function from the edge-set of a graph G to the set of non-negative integers. For $T \subseteq E(G)$, define $w(T) = \sum_{e \in T} w(e)$. (G, w) is said to be eulerian if w(T) is even for every edge cut T of G and is said to be admissible if $w(e) \leq \frac{1}{2}w(T)$ for every edge cut T and any edge $e \in T$. A family $\mathscr F$ of circuits of G is called a faithful circuit cover of (G, w) if each edge e of G is contained in exactly w(e) circuits of $\mathscr F$.

Let G be an eulerian graph with an admissible forbidden system \mathscr{P} . For each vertex v, let $\mathscr{P}(v) = \{P_1, P_2, ..., P_k\}$. We split v into k vertices $v_1, v_2, ..., v_k$ such that v_i is incident with the edges in P_i and then add a new vertex v' joined to each v_i by a new edge of weight $|P_i|$, $1 \le i \le k$. Let H be the new graph obtained by applying this operation to every vertex v of G, and complete the weight function by assigning to every old edge (edge of G) weight 1. If we denote this weight function by w, then (G, \mathscr{P}) has a compatible circuit decomposition if and only if (H, w) has a faithful circuit cover.

Conversely, if H is a graph with an admissible, eulerian weight w, let G be the eulerian graph obtained from H by replacing each edge e by a set P_e of w(e) parallel edges (thus deleting e if w(e) = 0 and leaving e unaltered if w(e) = 1). Consider each P_e as a forbidden part (of G) incident with

either end of e (in H). Then, the set \mathcal{P} of all these forbidden parts is an admissible forbidden system of G. Evidently, (H, w) has a faithful circuit cover if and only if (G, \mathcal{P}) has a CCD.

It is clear that admissibility is necessary for (G, \mathcal{P}) to have a CCD. But, it is not sufficient. This can be seen from the following example. Let K_5 be the complete graph on five vertices $\{v_i: 0 \le i \le 4\}$. The forbidden set incident with v_i is defined by $\mathcal{P}(v_i) = \{\{v_iv_{i-1}, v_iv_{i+1}\}, \{v_iv_{i-2}, v_iv_{i+2}\}\}$, where $0 \le i \le 4$ and the subscripts are read modulo 5. Set $\mathcal{P} = \bigcup_{i=0}^{i=4} \mathcal{P}(v_i)$. Then (K_5, \mathcal{P}) is admissible, but has no CCD. Fleischner and Frank [6] proved that if G is a planar graph with an admissible forbidden system \mathcal{P} , then (G, \mathcal{P}) has a CCD. This result together with the prior one in [4] simplifies the proofs of Seymour's circuit cover theorem [8] and even circuit decomposition theorem [9] (see [5, 6]). Applications of the compatible circuit decompositions of planar graphs to the Chinese Postman Problem and Shortest Circuit Cover Problem can be found in Fleischner and Guan [7]. It is known that planar graphs do not contain K_5 or $K_{3,3}$ as a minor. The following theorem generalizes Fleischner and Frank's result [6].

Theorem 1.1. Let G be an eulerian graph with an admissible forbidden system \mathcal{P} . If G does not contain K_5 as a minor, then (G, \mathcal{P}) has a compatible circuit decomposition.

The proof of Theorem 1.1 is divided into two parts (part one, Sections 2, 3, and 4; and part two, Sections 5 and 6). In the first part, we prove that Theorem 1.1 is true for all (G, \mathcal{P}) in which each forbidden part has cardinality at most two (Theorem 4.2) (which generalizes an early result (Theorem 3.1) by Fleischner for planar graphs [4]). In the second part, we prove that if Theorem 1.1 is not true, then there would be counterexamples (G, \mathcal{P}) in which each forbidden part has cardinality at most 2 (Theorem 6.5). The combination of these two results gives Theorem 1.1.

Let $e_1e_2\cdots e_m$ be an Euler tour of an eulerian graph G. The forbidden system induced by the tour is defined by $\mathscr{P}=\{\{e_i,e_{i+1}\}:1\leqslant i\leqslant m \text{ and }e_{m+1}=e_1\}$. Sabidussi conjectured (see [5]) that if G contains no vertex of degree 2, then (G,\mathscr{P}) has a CCD. By Theorem 1.1, Sabidussi's Conjecture is true if G does not contain K_5 as a minor. As another application of Theorem 1.1, Zhang [10] generalizes a result of Seymour [9] by proving that if G is an eulerian graph containing no K_5 -minor, and in addition, if each block of G has an even number of edges, then G can be decomposed into circuits of even length. Theorem 1.1 is also applied to prove that every 2-connected graphs containing no K_5 -minor has a circular 2-cell embedding in some 2-manifold [11]. Also, as a byproduct (Section 7), our proof provides a different approach to the circuit cover theorem of Alspach, Goddyn, and Zhang [2].

2. MINIMAL CONTRA-PAIRS

DEFINITION 2.1. Let \mathscr{B} denote the set of all admissible pairs (G,\mathscr{P}) . Define a partial order \leq on \mathscr{B} as follows. $(G_1,\mathscr{P}_1) \leq (G_2,\mathscr{P}_2)$ if G_1 is a subgraph of G_2 and each member of \mathscr{P}_1 is a subset of some member of \mathscr{P}_2 . If $(G_1,\mathscr{P}_1) \leq (G_2,\mathscr{P}_2)$ but $(G_1,\mathscr{P}_1) \neq (G_2,\mathscr{P}_2)$, we write $(G_1,\mathscr{P}_1) < (G_2,\mathscr{P}_2)$. A pair $(G,\mathscr{P}) \in \mathscr{B}$ is called a *contra-pair* if it has no compatible circuit decompositions. A *minimal contra-pair* is a contra-pair that is minimal with respect to the partial order \leq defined above.

Before the proofs of the main results, we present a few lemmas which will provide some general structures about a minimal contra-pair. Note that the main theorems in this paper are minor-closed results. Thus, we could not apply the vertex splitting method since vertex splitting operations might create some un-expected minors.

DEFINITION 2.2. Let G be an eulerian graph with the maximum degree at most four and T be a vertex cut of G separating G into two parts G_1 and G_2 that $G_1 \cap G_2 = T$ and $G_1 \cup G_2 = G$. A vertex $x \in T$ is called an *even separator* if $d_{G_1}(x) = d_{G_2}(x) = 2$, and *odd separator* otherwise. An even separator x is *balanced* if $\mathcal{P}(x)$ has a forbidden part $\{e, f\}$ such that $e \in E(G_1)$ and $f \in E(G_2)$, and *unbalanced* otherwise.

LEMMA 2.3. Let G be a 4-regular graph and \mathcal{P} be a forbidden system of G with $|P| \leq 2$ for each $P \in \mathcal{P}$. Then \mathcal{P} is admissible in G if and only if no cut-vertex of G is an unbalanced, even separator in (G, \mathcal{P}) .

DEFINITION 2.4. Let G be an eulerian graph with the maximum degree at most four and $\mathscr P$ be a forbidden system of G with $|P|\leqslant 2$ for each $P\in \mathscr P$. Let v be a non-trivial vertex of degree 4 in $(G,\mathscr P)$ and let $\{e,f\}$ be a forbidden part incident with v. By splitting v (with respect to $\mathscr P$) we mean that v is split into two vertices, each of degree 2, such that e, f are incident with the same vertex. The split of $(G,\mathscr P)$, denoted by $SP(G,\mathscr P)$, is the graph obtained from $(G,\mathscr P)$ by splitting every non-trivial vertex of degree 4.

Lemma 2.5. Let H be an eulerian graph with the maximum degree at most four and 2 be a forbidden system of H. Suppose that $\{C', C''\}$ is a compatible cycle decomposition of (H, 2). If C is a cycle of SP(H, 2), then $\{C' \triangle C, C'' \triangle C\}$ is also a compatible cycle decomposition of (H, 2). Furthermore, if (H, 2) has some non-trivial vertex, then neither $C' \triangle C$ nor $C'' \triangle C$ is empty.

Lemma 2.6. Let H be an eulerian graph with the maximum degree at most four and 2 be a forbidden system of H. Assume that SP(H,2) has precisely two components R_1, R_2 . Let R_i^H be the subgraph of H induced by edges of R_i (i=1,2). Then (H,2) is admissible if and only if $|V(R_1^H) \cap V(R_2^H)| \neq 1$.

Lemmas 2.3, 2.5, and 2.6 follow directly from the definitions.

LEMMA 2.7. Let G be a 4-regular graph and \mathcal{P} be an admissible forbidden system of G. If each component of $SP(G, \mathcal{P})$ contains an even number of edges, then (G, \mathcal{P}) has a compatible circuit decomposition.

Proof. Color an Euler tour of each component of $SP(G, \mathcal{P})$ red and blue alternatively. Then the set of all mono-colored circuits in G is a CCD of (G, \mathcal{P}) .

DEFINITION 2.8. Let P be a forbidden part of (G, \mathcal{P}) with $P = \{e, e'\}$. Discharging P is the operation on \mathcal{P} of replacing P with $\{e\}, \{e'\}$ in \mathcal{P} , and the new system is said to be obtained from \mathcal{P} by discharging P. For a non-trivial vertex $v \in V(G)$, discharging at v is the operation on \mathcal{P} of discharging every forbidden part incident with v.

DEFINITION 2.9. Let $v \in V(G)$. A sequence of edge-disjoint circuits $\{C_1, ..., C_k\}$ $(k \ge 2)$ is a *circuit chain closed* at v if

- (1) for each $i, j \in \{1, ..., k\}$ with $i \neq j$, $[V(C_i) \cap V(C_j)] \setminus \{v\} \neq \emptyset$ if and only if $j i = \pm 1$,
 - (2) $v \in V(C_1) \cap V(C_k)$.

The *length* of the circuit chain $\{C_1, ..., C_k\}$ is k.

- LEMMA 2.10. Let (G, \mathcal{P}) be a minimal contra-pair. Assume that (G, \mathcal{P}) has a forbidden part P_0 with $|P_0| = 2$. Then
 - (1) the maximum degree of G is four and $|P| \leq 2$ for each $P \in \mathcal{P}$;
- (2) for each forbidden part P with |P| = 2, and forbidden system \mathcal{P}_P obtained from \mathcal{P} by discharging P, every compatible circuit decomposition of (G, \mathcal{P}_P) is a circuit chain closed at v where $P \in \mathcal{P}(v)$.
- *Proof.* By the minimality of (G, \mathcal{P}) , G is 2-connected. Let P be a forbidden part incident with v and |P|=2. Let \mathcal{P}_P be the forbidden system obtained from \mathcal{P} by discharging P. Clearly, (G, \mathcal{P}_P) is admissible and $(G, \mathcal{P}_P) \prec (G, \mathcal{P})$. Since (G, \mathcal{P}) is a minimal contra-pair, it follows that (G, \mathcal{P}_P) has a CCD, say \mathcal{F}_P . Since (G, \mathcal{P}) is a contra-pair, we have $|E(C) \cap P| \leq 1$ for every $C \in \mathcal{F}_P$ and every $P \in \mathcal{P}$, except for one $C^* \in \mathcal{F}_P$ in which $|E(C^*) \cap P| = 2$.

Construct an auxiliary graph A with the vertex set $V(A) = \mathscr{F}_P$ and two vertices of A are adjacent to each other if and only if their corresponding circuits of \mathscr{F}_P have a non-empty intersection in $G\setminus\{v\}$. Since G is 2-connected, A is connected. Let $S=C_1\cdots C_k$ be a shortest path in A joining $C^*=C_1$ and C_k where $C_k\in\mathscr{F}_P\setminus\{C_1\}$ is a circuit containing the vertex v. Obviously, $\{C_1,...,C_k\}$ is a circuit chain of G closed at v. Let G be the subgraph of G induced by the edges of $\{C_1,...,C_k\}$. Since the maximum degree of G induced by the edges of G induced, we see that G is admissible (by Lemma 2.3). If G is 2-connected, we see that G is admissible (by Lemma 2.3). If G is 2-connected, we see that G is 3-connected, which together with the circuits of G is 3-connected. The G is 3-connected in G is 3-connected in G is 3-connected in G is 3-connected in G in G is 3-connected in G is 3-connected in G in G in G in G is 3-connected in G in G

Let (G, \mathcal{P}) be a minimal contra-pair containing a forbidden part P with |P| = 2. For each non-trivial vertex $v \in V(G)$, by Lemma 2.10, we can see that $\mathcal{P}(v)$ consists of three forbidden parts, two of them are trivial. Thus, discharging a non-trivial forbidden part $P \in \mathcal{P}(v)$ is equivalent to discharging the non-trivial vertex v.

LEMMA 2.11. Let (G, \mathcal{P}) be a minimal contra-pair and suppose that G is 4-regular. Then

- (1) $SP(G, \mathcal{P})$ (see Definition 2.4) has exactly two components. Furthermore,
- (2) for each non-trivial vertex v, if x and y are the two vertices in $SP(G, \mathcal{P})$ which are split from v, then they are contained in different components of $SP(G, \mathcal{P})$.
- *Proof.* Let \mathscr{F}_v be a CCD of (G,\mathscr{P}_v) where \mathscr{P}_v is obtained from \mathscr{P} by discharging at a non-trivial vertex v. By Lemma 2.10, \mathscr{F}_v is a circuit chain, say $\{C_1,...,C_k\}$, closed at $v\in V(C_1)\cap V(C_k)$. Color the edges of $E(C_1)\cup E(C_3)\cup\cdots\cup E(C_{2i-1})\cup\cdots$ red, and the edges of $E(C_2)\cup E(C_4)\cup\cdots\cup E(C_{2i})\cup\cdots$ blue. It is easy to see that each component of $SP(G,\mathscr{P})$ containing neither x nor y has a red-blue alternatively colored Euler tour, therefore, has an even number of edges. If x and y are contained in the same component x of x of x of x has also an even number of edges. By Lemma 2.7, x has a CCD. This contradicts that x has a contrapair. Thus, x and y are contained in different components of x of x of x has a contrapair. Thus, x and x are contained in different components of x of x has a contrapair. Thus, x and x are contained in different components of x of x of x has a contrapair.

Let $R_1, ..., R_h$ be the components of $SP(G, \mathcal{P})$ where $|E(R_1)| \equiv |E(R_2)| \equiv 1 \mod 2$ and $|E(R_i)| \equiv 0 \mod 2$ for i > 2. Since the non-trivial vertex v is arbitrary chosen, with the above argument, we have already proved that for each non-trivial vertex v of (G, \mathcal{P}) , let x and y be the two vertices in $SP(G, \mathcal{P})$ which are split from v, each of $\{R_1, R_2\}$ must contain one of $\{x, y\}$. So, each edge e incident with a non-trivial vertex must be contained

in either R_1 or R_2 . Furthermore, no edge of R_i with i > 2 is incident with a non-trivial vertex. By the definition of $SP(G, \mathcal{P})$, each of R_i with i > 2 is also a component of G whose vertices are all trivial. This contradicts that G is a 2-connected (also contradicts that (G, \mathcal{P}) is a minimal contra-pair). Therefore, there exists no such component of even size in $SP(G, \mathcal{P})$ and this proves the lemma.

Lemma 2.12. Let (G, \mathcal{P}) be a minimal contra-pair and G be 4-regular. Let \mathcal{P}_v be the forbidden system obtained from \mathcal{P} by discharging at some nontrivial vertex v. If \mathcal{F}_v is a compatible circuit decomposition of (G, \mathcal{P}_v) with $|\mathcal{F}_v|$ maximum, then \mathcal{F}_v is a circuit chain of length at least three.

Proof. The length k of $\mathscr{F}_v = \{C_1, ..., C_k\}$ is greater than one since v is of degree four and \mathscr{F}_v is closed at v. Assume that k=2. Let R_1 and R_2 be the components of $SP(G,\mathscr{P})$. By Lemma 2.11 and Definition 2.4, without loss of generality, let $E(v) \cap E(C_1) \subseteq E(R_1)$ and let $E(v) \cap E(C_2) \subseteq E(R_2)$. Consider $\{C_1 \triangle R_1, C_2 \triangle R_1\}$. By Lemma 2.5, it is also a compatible cycle decomposition of (G,\mathscr{P}_v) . Note that $E(v) \subseteq E(C_2 \triangle R_1)$. The maximum degree of the cycle $C_2 \triangle R_1$ is four and hence any of its circuit decomposition consists of at least two circuits. Since $SP(G,\mathscr{P})$ has two components and \mathscr{P} is admissible, by Lemma 2.6, there are at least two non-trivial vertices in (G,\mathscr{P}) . so, by Lemma 2.5 again, $C_1 \triangle R_1 \neq \emptyset$. Thus, the union of circuit decompositions of $C_1 \triangle R_1$ and $C_2 \triangle R_1$ has at least three elements. This contradicts the maximality of $|\mathscr{F}_v|$ among all CCD's of (G,\mathscr{P}_v) . ■

Lemma 2.13. Let (G, \mathcal{P}) be a minimal contra-pair and G be 4-regular. Let \mathcal{P}_v be the forbidden system obtained from \mathcal{P} by discharging at some nontrivial vertex v, and $\mathcal{F}_v = \{C_1, ..., C_k\}$ be a CCD (a circuit chain) of (G, \mathcal{P}_v) . Let H be the subgraph of G induced by $E(C_i) \cup E(C_{i+1})$ (i=1, ..., k-1). If $\mathcal{F}_v = \{C_1, ..., C_k\}$ has been chosen so that $|\mathcal{F}_v| = k$ is as large as possible, then $SP(H, \mathcal{P} \mid H)$ is connected.

Proof. Assume that $SP(H, \mathcal{P} \mid H)$ is not connected. So, $SP(H, \mathcal{P} \mid H)$ contains some non-trivial vertex. Set $V_1 = V(C_i) \cap V(C_{i-1})$ if $i \ge 2$ or $V_1 = \{v\}$ if i = 1, and $V_2 = V(C_{i+1}) \cap V(C_{i+2})$ if $i + 2 \le k$ or $V_2 = \{v\}$ if i + 1 = k. For any $v_1 \in V_1$ and any $v_2 \in V_2$, we claim that

 v_1, v_2 are contained in the same component of $SP(H, \mathcal{P} \mid H)$.

Assume that a component Q of $SP(H, \mathcal{P} \mid H)$ contains exactly one of them, say $v_1 \in V(Q)$ and $v_2 \notin V(Q)$, let C be a circuit containing v_1 in Q. By Lemma 2.5, $\{C_i \triangle C, C_{i+1} \triangle C\}$ is a compatible cycle decomposition of $(H, \mathcal{P} \mid H)$. Let \mathcal{F}^* be the union of circuit decompositions of $C_i \triangle C$ and

 $C_{i+1} \triangle C$. Since $[\mathscr{F}_v \setminus \{C_i, C_{i+1}\}] \cup \mathscr{F}^*$ is a CCD of (G, \mathscr{P}_v) , by the maximality of $|\mathscr{F}_v|$, we must have that $|\mathscr{F}^*| = 2$. By Lemma 2.5 again, both $C_i \triangle C$ and $C_{i+1} \triangle C$ are non-empty since $(H, \mathscr{P} \mid H)$ contains some non-trivial vertex. Thus, both $C_i \triangle C$ and $C_{i+1} \triangle C$ are circuits. Note that the circuit $C_{i+1} \triangle C$ contains both v_1, v_2 . Thus, $\mathscr{F}' = [\mathscr{F}_v \setminus \{C_i, C_{i+1}\}] \cup \{C_{i+1} \triangle C\}$ is a circuit chain closed at v, but the CCD $[\mathscr{F}_v \setminus \{C_i, C_{i+1}\}] \cup \mathscr{F}^*$ is not a circuit chain. This contradicts Lemma 2.10 (2).

If $SP(H, \mathcal{P} \mid H)$ has more than one component, then there must be a component Q' such that $(V_1 \cup V_2) \cap V(Q') = \emptyset$. By the definition of V_1 and V_2 , Q' is also a component of $SP(G, \mathcal{P})$ and contains neither x nor y where x and y are two vertices in $SP(G, \mathcal{P})$ split from v. This contradicts Lemma 2.11. Therefore, $SP(H, \mathcal{P} \mid H)$ is connected, as required.

3. PLANAR GRAPHS

In this section, we present a pioneer result (Theorem 3.1) by Fleischner. Since this result will be used in the proof of Theorem 4.2, for completeness, we present it with an alternative proof.

Theorem 3.1 (Fleischner [4]). Let G be an eulerian graph and \mathcal{P} be an admissible forbidden system on G. If $|P| \leq 2$ for each $P \in \mathcal{P}$ and G is planar, then (G, \mathcal{P}) has a compatible circuit decomposition.

- *Proof.* Suppose, to the contrary, that the theorem is false. Let (G, \mathcal{P}) be a counterexample with |E(G)| as small as possible among all the minimal contra-pairs. By Lemma 2.10, $d(v) \leq 4$ for all $v \in V(G)$. It follows from the minimality of |E(G)| that G is 4-regular. By Lemma 2.11, let R_1, R_2 be the two components of $SP(G, \mathcal{P})$ and let R_i^G be the subgraph of G induced by the edges of R_i (i=1,2).
- (I) The theorem needs no proof if a graph has no non-trivial vertex since any circuit decomposition of G is a CCD of (G, \mathcal{P}) , and by Lemma 2.6, (G, \mathcal{P}) has at least two non-trivial vertices.
- (II) Let G be embedded in a plane. A non-trivial vertex v of (G, \mathcal{P}) is called a \mathscr{P} -crossing vertex if there is a $P_1 = \{e', e''\} \in \mathscr{P}(v)$ such that e' and e'' are not consecutive on the boundary of any face.

We claim that (G, \mathcal{P}) has no \mathcal{P} -crossing vertex. Assume that v is a \mathcal{P} -crossing vertex of (G, \mathcal{P}) . Let $E(v) = \{e_1, e_2, e_3, e_4\}$ be arranged on the plane in the cyclic order as e_1, e_2, e_3, e_4, e_1 . Without loss of generality, let $\mathcal{P}(v) = \{\{e_1, e_3\}, \{e_2\}, \{e_4\}\}$. Let \mathcal{F}_v be a CCD-of (G, \mathcal{P}_v) where \mathcal{P}_v is obtained from \mathcal{P} by discharging at v and \mathcal{F}_v is chosen so that $|\mathcal{F}_v|$ is as larger as possible. By Lemma 2.10, $\mathcal{F}_v = \{C_1, ..., C_k\}$ is a circuit chain

- closed at v. Without loss of generality, let $e_1, e_3 \in E(C_1)$ and $e_2, e_4 \in E(C_k)$. Thus, C_1 and C_k "cross" each other on the plane at the vertex v. Since both C_1 and C_k are circuits, they must "cross" each other again on the plane at another vertex. Thus, by the definition of circuit chain, k=2 since $|V(C_1) \cap V(C_k)| \ge 2$. This contradicts Lemma 2.12 and proves our claim.
- (III) We claim that (G, \mathcal{P}) has no trivial vertex. Assume that v is a trivial vertex of (G, \mathcal{P}) . Let $E(v) = \{e_1, ..., e_4\}$ and the edges of E(v) are embedded on the plane in the cyclic order as e_1, e_2, e_3, e_4, e_1 . Since v is trivial, without loss of generality, let $E(v) \subseteq E(R_1^G)$. Since R_1^G is a cycle of G, we can split a pair of edges e_i, e_{i+1} ($i \in \{1, 2\}$) away from v by preserving R_1^G as a connected cycle, and replacing the edges e_i, e_{i+1} with a single edge e'. Let G' be the resulting graph and consider \mathcal{P} as a forbidden system of G'. By Lemma 2.6, (G', \mathcal{P}) is admissible. Let \mathcal{F} be CCD of (G', \mathcal{P}) since |E(G')| < |E(G)|. It is obvious that \mathcal{F} is also at compatible cycle decomposition of (G, \mathcal{P}) (by replacing e' with the original edges e_i, e_{i+1} and identify the split vertices to the single vertex v). This is a contradiction.
- (IV) Since (G, \mathcal{P}) has neither trivial vertex and nor \mathcal{P} -crossing vertex, the components R_1 , R_2 of the split $SP(G, \mathcal{P})$ are two disjoint circuits on the plane. We let $R_1 = x_1 \cdots x_n x_1$ and $R_2 = y_1 \cdots y_n y_1$ where x_i and y_i are split from $v_i \in V(G) = \{v_1, ..., v_n\}$. By (I), $n \ge 2$. Thus, the collection of 2-circuits $v_i v_{i+1} v_i$, for all i=1, ..., n, mod n, is a CCD of (G, \mathcal{P}) . This contradicts the assumption that (G, \mathcal{P}) is a counterexample and completes the proof of the theorem.

4. K_5 -FREE GRAPHS

DEFINITION 4.1. Let T be a vertex-cut of a graph G separating G into two parts G_1 and G_2 that $G_1 \cap G_2 = T$ and $G_1 \cup G_2 = G$. For a cycle C of G, we say that C crosses $x \in T$ if $E(C) \cap E_{G_i}(x) \neq \emptyset$ for both i = 1, 2.

Let T be a vertex cut of an eulerian graph G. If a cycle C crosses a non-trivial vertex $x \in T$ with d(x) = 4, then it is obvious that $|T \cap V(C)| \ge 2$.

- Theorem 4.2. Suppose that G is an eulerian graph with an admissible forbidden system \mathcal{P} in which each forbidden part has cardinality at most 2. If G does not contain K_5 as a minor, then (G, \mathcal{P}) has a compatible circuit decomposition.
- *Proof.* Suppose, to the contrary, that the theorem is false. Let (G, \mathcal{P}) be a counterexample with |E(G)| as small as possible among all the minimal contra-pairs. By Lemma 2.10, $d(v) \le 4$ for all $v \in V(G)$. It follows from the

minimality of |E(G)| that G is 4-regular. For each non-trivial vertex v, let $\mathcal{P}(v) = \{P_1, P_2, P_3\}$ with $|P_1| = 2$, without causing any confusion and for the sake of convenience, we replace $\mathcal{P}(v)$ with $\{P_1, P_2 \cup P_3\}$.

- (I) By Theorem 3.1, G is non-planar. A result of Halin (see Lemma 3.10 of [3, pp. 252–253]) states that every 4-connected non-planar graph contains a K_5 -minor. Thus, G has a vertex cut of order at most three. Let $T = \{x_1, ..., x_t\}$ be a smallest vertex cut of G separating G into two parts G_1 and G_2 with $t = |T| \le 3$.
- (II) We claim that T must have a balanced separator (see Definition 2.2). Note that since G is eulerian and $|T| \leq 3$, T has either no or two odd separators. Assume that no vertex of T is balanced. Let G_T be the graph with the vertex set $V(G_T) = T$ and \mathscr{P}_T be a forbidden system of G_T constructed as follows. (1) If T has two odd separators, say x_1 and x_2 , then G_T is a path $e_1 \cdots e_{t-1}$ joining x_1 and x_2 and passing through all vertices of T, and $\mathscr{P}_T = \{\{e_1\}, \{e_1\}\} \text{ if } t = 2$ and $\mathscr{P}_T = \{\{e_1\}, \{e_1\}, \{e_2\}, \{e_2\}\} \text{ if } t = 3$; (2) If T has no odd separator, then G_T is a circuit $e_1 \cdots e_t$ containing all vertices of G_T and $\mathscr{P}_T = \{\{e_i, e_{i+1}\} : i = 1, ..., t, \text{mod } t\}$.

Let $H_i = G_i \cup G_T$ and $\mathscr{P}_i = [\mathscr{P} \mid G_i] \cup \mathscr{P}_T$ for each i = 1, 2. It is easy to see that H_i has no K_5 -minor and \mathscr{P}_i is admissible since H_i is 2-connected (by Lemma 2.3). Thus, (H_i, \mathscr{P}_i) has a CCD \mathscr{F}_{H_i} . Appropriate combination of elements of \mathscr{F}_{H_1} and \mathscr{F}_{H_2} containing edges of G_T yields a CCD of (G, \mathscr{P}) . This contradicts that (G, \mathscr{P}) is a contra-pair.

- (III) Let $x_1 \in T$ be a balanced separator. Let \mathscr{F}_{x_1} be a CCD of (G, \mathscr{P}_{x_1}) where \mathscr{P}_{x_1} is obtained from \mathscr{P} by discharging at x_1 with $|\mathscr{F}_{x_1}|$ as large as possible. By Lemma 2.10, $\mathscr{F}_{x_1} = \{C_1, ..., C_k\}$ is a circuit chain closed at x_1 . By Lemma 2.12, $k \geqslant 3$ and therefore $V(C_1) \cap V(C_k) = \{x_1\}$. Since both C_1 and C_k cross $x_1 \in T$ and $t \leqslant 3$, $|V(C_j) \cap T| = 2$ for both $j \in \{1, k\}$. Note that $V(C_1) \cap V(C_k) = \{x_1\}$. Without loss of generality, let $x_2 \in [V(C_1) \cap T] \setminus \{x_1\}$ and $x_3 \in [V(C_k) \cap T] \setminus \{x_1\}$. Here, we also proved that |T| = 3 and hence, G is 3-connected.
- (IV) We claim that both x_2 and x_3 are even separators of G and k=3. Let $G^*=G\setminus [\{x_1\}\cup E(C_1)\cup E(C_k)]$ which is the connected subgraph of G induced by edges contained in $\bigcup_{i=2}^{k-1} C_i$. The degree two vertices x_2 and x_3 of G^* become a 2-vertex cut of the graph G^* separating $G_1^*=G_1\setminus [\{x_1\}\cup E(C_1)\cup E(C_k)]$ and $G_2^*=G_2\setminus [\{x_1\}\cup E(C_1)\cup E(C_k)]$. Thus, x_2 and x_3 cannot be both odd separators of G for otherwise, either G^* is disconnected (when $d_{G_i}(x_2)\neq d_{G_i}(x_3)$ for both i=1,2), or one of $\{V(G_1)\setminus T, V(G_2)\setminus T\}$ is empty (when $d_{G_i}(x_2)=d_{G_i}(x_3)$ for both i=1,2) since $x_2\in V(C_2)$ and $x_3\in V(C_{k-1})$. So, each $x_i\in T$ must be an even separator.

Since C_2 crosses $x_2 \in T$, $|V(C_2) \cap T| = 2$. Note that $x_1 \in V(C_1) \cap V(C_k)$ and $k \ge 3$. C_2 must cross both x_2 and x_3 . Therefore, $C_{k-1} = C_2$. That is, k = 3.

- (V) Now we claim that T has precisely two balanced separators. Recall Lemma 2.11, let R_1 and R_2 be the components of $SP(G, \mathcal{P})$. Note that R_1 and R_2 are cycles in G. If every vertex of T is balanced, then each cycle R_1 , R_2 of G must cross every vertex of T. Note that |T| = 3. This contradicts that R_1 and R_2 are cycles of G. So, we assume that x_1 and x_3 are balanced and x_2 is even but not balanced.
- (VI) Now, let us recall all that we have (Fig. 1). G is 3-connected (by (III)), $T = \{x_1, x_2, x_3\}$ is a vertex cut of G separating G into two parts G_1 and G_2 where x_1 and x_3 are balanced, x_2 is even and unbalanced (by (IV) and (V)), $\mathscr{F}_{x_1} = \{C_1, C_2, C_3\}$ is a CCD (a circuit chain) of (G, \mathscr{P}_{x_1}) where $x_2 \in C_1 \cap C_2$, $x_3 \in C_2 \cap C_3$, and $\{x_1\} = C_1 \cap C_3$ (by (V)). In the following final step of the proof, let H be the subgraph induced by $E(C_2) \cup E(C_3)$, we will show that the split $SP(H, \mathscr{P} \mid H)$ is not connected which leads a contradiction to Lemma 2.13 and completes the proof of the theorem.

Let $L_{12} = C_1 \cap G_2$ which is a path joining x_1 and x_2 , $L_{23} = C_2 \cap G_2$ which is a path joining x_2 and x_3 , and $L_{13} = C_3 \cap G_2$ which is a path joining x_1 and x_3 . For each $h \in \{1, 2, 3\}$ and $i = h, h - 1 \pmod{3}$, let e_{hi} be the edge of C_h incident with x_i and contained in G_1 . Let G_1 be the graph

FIG. 1. The 3-cut $\{x_1, x_2, x_3\}$ and the *CCD* $\{C_1, C_2, C_3\}$ of (G, \mathscr{P}_{x_1}) .

obtained from G_1 by adding three new edges $\{f_{ij} = x_i x_j : 1 \le i < j \le 3\}$ and let

$$\mathcal{Q}_1 = \left[\bigcup_{v \in V(G_1) \setminus T} \mathcal{P}(v) \right] \cup \mathcal{Q}_1(x_1) \cup \mathcal{Q}_1(x_2) \cup \mathcal{Q}_1(x_3),$$

where

$$\mathcal{Q}_1(x_1) = \{ \{ f_{12}, e_{11} \}, \{ f_{13}, e_{31} \} \},$$

$$\mathcal{Q}_1(x_3) = \{ \{ f_{23}, e_{33} \}, \{ f_{13}, e_{23} \} \},$$

and

$$\mathcal{Q}_1(x_2) = \{ \{ f_{12}, f_{23} \}, \{ e_{12}, e_{22} \} \}.$$

Since (J_1, \mathcal{Q}_1) is smaller than the smallest counterexample (G, \mathcal{P}) and contains no K_5 -minor, let \mathcal{F}_{J_1} be a CCD of (J_1, \mathcal{Q}_1) . Since $\{f_{12}, f_{23}\} \in \mathcal{Q}_1$, f_{12}, f_{23} are not contained in the same circuit of \mathcal{F}_{J_1} . Thus, we have the following cases.

- (1) no pair of $\{f_{ij}: 1 \le i < j \le 3\}$ is contained in the same circuit of \mathscr{F}_{J_1} ;
 - (2) f_{12} , f_{13} are contained in the same circuit of \mathcal{F}_{J_1} ; and
 - (3) f_{13} , f_{23} are contained in the same circuit of \mathcal{F}_{J_1} .

Replacing each f_{ij} with L_{ij} , for each $1 \le i < j \le 3$, in each circuit of \mathscr{F}_{J_1} yields a cycle decomposition \mathscr{F} of (G,\mathscr{P}) . In the first two cases, this decomposition is compatible since $L_{12} \cap L_{13} = C_1 \cap C_3 = \{x_1\}$. In the third case, let C be the circuit of \mathscr{F}_{J_1} containing both f_{13} and f_{23} .

Note that $D = (C \setminus \{f_{23}, f_{13}\}) \cup (L_{23} \cup L_{13})$ is a cycle in \mathscr{F} . If $(D, \mathscr{P} \mid D)$ is admissible, then it has a CCD that together with $\mathscr{F} \setminus \{D\}$ is a CCD of (G, \mathscr{P}) , a contradiction. Thus, $(D, \mathscr{P} \mid D)$ is not admissible. By Lemma 2.3, the cycle $D = (C \setminus \{f_{23}, f_{13}\}) \cup (L_{23} \cup L_{13})$ has an unbalanced, nontrivial cut-vertex y. Since C is a circuit, the unbalanced, non-trivial vertex y in D is contained $V(L_{23}) \cap V(L_{13})$ which separates x_3 from $\{x_1, x_2\}$ in $G_2 \setminus E(C_1)$.

By a symmetric argument (with G_1 and G_2 exchanging the roles), there is a non-trivial vertex $z \in V(C_3 \cap G_1) \cap V(C_2 \cap G_1)$ such that z is a cutvertex of $G_1 \setminus E(C_1)$ which separates x_3 from $\{x_1, x_2\}$ and is unbalanced. It follows that $\{y, z\}$ is a vertex cut of $G \setminus E(C_1)$, which is induced by $E(C_2) \cup E(C_3)$. But, $SP(G \setminus E(C_1), \mathscr{P}|(G \setminus E(C_1)))$ is disconnected since both y, z are non-trivial and unbalanced. This contradicts Lemma 2.13, and completes the proof of the theorem.

5. ANTI-CHAIN AND ADMISSIBILITY

Let G be an eulerian graph and \mathscr{P} be a forbidden system of G. Let $v^* \in V(G)$ and $P^* \in \mathscr{P}(v^*)$ with $|P^*| \ge 2$ and $e^* \in P^*$. Let

$$\mathscr{P}' = [\mathscr{P} \setminus \{P^*\}] \cup \{P^* \setminus \{e^*\}, \{e^*\}\}.$$

Assume that (G, \mathscr{P}') has a compatible cycle decomposition \mathscr{F} and one circuit C^* of \mathscr{F} contains two edges of P^* , one of which is e^* . A cycle $C \in \mathscr{F}$ is bad if $|E(C) \cap P^*| = 1$, and is good otherwise. A compatible cycle decomposition \mathscr{F} of (G, \mathscr{P}') is special if each bad cycle of \mathscr{F} is a circuit, and each good cycle is connected. The cycle of \mathscr{F} containing the edge e^* is denoted by C^* .

Following the argument used by Seymour [8], we are to study the relation between the admissibility of (G, \mathcal{P}) and a special compatible cycle decomposition \mathscr{F} of (G, \mathcal{P}') . Construct an auxiliary digraph $G^d_{\mathscr{F}} = (V, A)$ as

$$V(G_{\mathscr{F}}^d) = V(G), \qquad A(G_{\mathscr{F}}^d) = \bigcup_{C \in \mathscr{F}} A(T_C),$$

where, for each bad circuit $C \in \mathcal{F}$, T_C is a transitive tournament with the vertex set $V(C) \setminus \{v^*\}$ and a Hamilton dipath $C \setminus \{v^*\}$ starting at w (where $\{v^*w\} = P^* \cap E(C)$), and for each good (connected) cycle $C \in \mathcal{F}$, T_C is a complete digraph on V(C). An arc a of $G_{\mathcal{F}}^d$ is said to be *induced by a cycle* C if $a \in A(T_C)$. An admissible dipath closed at v^* in $G_{\mathcal{F}}^d$ is a directed path $Q = x_0 \cdots x_k$ such that $x_0 = x_k = v^*$ and the arc $x_{k-1}x_k$ is induced by C^* and x_0x_1 is induced by a good cycle of \mathcal{F} other than C^* . The length of an admissible dipath Q is the number of arcs contained in Q.

The following lemma is adapted from [8] which was originally for faithful cycle cover problem.

LEMMA 5.1. Let G, \mathscr{P} and \mathscr{F} , etc. be defined as above. Then (G, \mathscr{P}) is admissible if and only if $G^d_{\mathscr{F}}$ has an admissible dipath closed at v^* .

Proof. (\Leftarrow) In order to prove that (G, \mathscr{P}) is admissible, we only need to check those edge-cuts T that intersect with the forbidden part P^* since (G, \mathscr{P}') has a compatible cycle decomposition \mathscr{F} . Assume that (G, \mathscr{P}) is not admissible. That is, the graph G has an edge-cut T' that

$$|P^* \cap T'| > |T' \setminus P^*|$$
.

Let \mathscr{F}' be the subset of \mathscr{F} such that each $C \in \mathscr{F}'$ contains some edges of T'. Note that for each $C \in \mathscr{F}' \setminus \{C^*\}$,

$$|C \cap (P^* \cap T')| \leq |C \cap (T' \setminus P^*)|$$

since \mathscr{F} is a compatible cycle decomposition of (G, \mathscr{P}') . Because of $|P^* \cap T'| > |T' \setminus P^*|$, it is obvious that $C^* \in \mathscr{F}'$ and every $C \in \mathscr{F}' \setminus \{C^*\}$ is a bad circuit with

$$|C \cap (P^* \cap T')| = |C \cap (T' \setminus P^*)| = 1.$$

Let $\{X', Y'\}$ be the partition of V(G) such that T' consists of all edges joining X' and Y' with $v^* \in X'$ and $w \in Y'$ for each $v^*w \in P^* \cap T'$. Thus, in of the auxiliary digraph $G_{\mathscr{F}}^d$, there are precisely two arcs oriented from X' to Y' (each of which is induced by C^*) and all other arcs joining X' and Y' are oriented from Y' to X'. Since the admissible dipath $Q = x_0 \cdots x_k$ contains the arc $x_{k-1}x_k = x_{k-1}v^*$ which is induced by C^* and is oriented from Y' to X', $Q \cap T'$ must contain another arc oriented from X' to Y'. But the only two arcs oriented from X' to Y' are induced by C^* and incident with v^* . This contradicts the definition of the admissible dipath Q.

$$(\Rightarrow)$$
 Let

 $X''_{o} = \{x : v^*x \in E(v^*) \setminus P^* \text{ and is not contained in any bad circuit of } \mathscr{F} \}.$

Since (G, \mathcal{P}) is admissible, we have that

$$|P^*| \leqslant \frac{d(v^*)}{2}.$$

Therefore, there is a good cycle of \mathscr{F} that contains at least two edges of $E(v^*)\backslash P^*$ because $|C^*\cap P^*|=2$ and $|C\cap P^*|=1$ for every bad circuit $C\in\mathscr{F}$. That is, $|X_o''|\geqslant 2$.

Let $\{v^*w_1, v^*w_2\} = C^* \cap P^*$. Let Y'' be the set consisting of all vertices $y \in V(G^d_{\mathscr{F}}) = V(G)$ that there is a dipath in $G^d_{\mathscr{F}}$ from y to $\{w_1, w_2\}$. If $X''_o \cap Y'' \neq \emptyset$, then $G^d_{\mathscr{F}}$ has an admissible dipath closed at v^* . So, we assume that $X''_o \cap Y'' = \emptyset$. Let $X'' = V(G) \setminus Y''$.

Let \mathscr{F}'' be the subset of \mathscr{F} such that each $C \in \mathscr{F}''$ induces some arc of $G^d_{\mathscr{F}}$ joining X'' and Y''. By the choice of Y'', all arcs joining X'' and Y'' in $G^d_{\mathscr{F}}$, except for v^*w_1 and v^*w_2 , are oriented from Y'' to X''. Thus, for every good cycle $C \in \mathscr{F} \setminus \{C^*\}$, either $V(C) \subseteq X''$ or $V(C) \subseteq Y''$, and $V(C^*) \setminus \{v^*\} \subseteq Y''$. Furthermore, every cycle of $\mathscr{F}'' \setminus \{C^*\}$ is a bad circuit and passes thorough the edge cut T'' = [X'', Y''] of G precisely twice: once in F^* and once in $T'' \setminus F^*$. Hence

$$|P^* \cap T''| = |\mathscr{F}'' \setminus \{C^*\}| + 2$$

and

$$|T'' \setminus P^*| = |\mathscr{F}'' \setminus \{C^*\}|.$$

This contradicts that (G, \mathscr{P}) is admissible since $|P^* \cap T''| \ge |T'' \setminus P^*|$.

Let $Q = x_0 \cdots x_k$ be an admissible dipath of $G^d_{\mathscr{F}}$ and let $S_Q = C_1 \cdots C_k$ be a sequence of cycles that $C_i \in \mathscr{F}$ is the cycle that induces the arc $x_{i-1}x_i$ (for i=1,...,k). The sequence S_Q is called an *anti-chain of* (G,\mathscr{P}') closed at v^* and induced by Q.

6. FORBIDDEN SYSTEM REDUCTION

Let (G, \mathcal{P}) be a minimal contra-pair. By the minimality of (G, \mathcal{P}) , G is 2-connected. Since (G, \mathcal{P}) is a contra-pair, it contains non-trivial forbidden parts. Let

$$r = \min\{|P|: P \in \mathscr{P} \text{ and } |P| \geqslant 2\}$$

and let P^* be a forbidden part incident with a vertex v^* such that $|P^*| = r$. Let $e \in P^*$. Set $P' = \{e^*\}$ and $P'' = P^* \setminus \{e^*\}$. Define $\mathscr{P}' = (\mathscr{P} \setminus \{P^*\}) \cup \{P', P''\}$. Clearly, (G, \mathscr{P}') is admissible and $(G, \mathscr{P}') \prec (G, \mathscr{P})$. Since (G, \mathscr{P}) is minimal, it follows that (G, \mathscr{P}') has a CCD. It is obvious that each special compatible cycle decomposition of (G, \mathscr{P}') has r-2 bad circuits.

By Lemma 5.1, for each special compatible cycle decomposition \mathscr{F} of (G, \mathscr{P}') , there is an admissible dipath $Q = x_0 \cdots x_k$ closed at v^* in $G^d_{\mathscr{F}}$ and an anti-chain $S_Q = C_1 \cdots C_k$ induced by Q (where the auxiliary graph $G^d_{\mathscr{F}}$, the admissible dipath Q and the anti-chain S_Q are as defined in Section 5).

We present a few lemmas to describe the structure of the minimal contra-pair (G, \mathcal{P}) before the final proof of Theorem 6.5. In the following Lemmas 6.1, 6.2, 6.3, and 6.4, the ordered pairs (G, \mathcal{P}) and (G, \mathcal{P}') are those defined above.

Lemma 6.1. For each special compatible cycle decomposition \mathscr{F} of (G,\mathscr{P}') and each admissible dipath Q of $G^d_{\mathscr{F}}$ closed at v, every element of \mathscr{F} must appear at least once in the anti-chain S_O which is induced by Q.

Proof. Assume that an element $C \in \mathscr{F}$ does not appear in S_Q . Let $H = G \setminus E(C)$. Since Q remains as an admissible dipath in $H^d_{\mathscr{F} \setminus \{C\}}$, by Lemma 5.1, $(H, \mathscr{P} \mid H)$ is admissible. Note that $(H, \mathscr{P} \mid H) \prec (G, \mathscr{P})$. Let \mathscr{F}' be a CCD of $(H, \mathscr{P} \mid H)$. Then $\mathscr{F}' \cup \{C\}$ is a compatible cycle decomposition of (G, \mathscr{P}) . This contradicts that (G, \mathscr{P}) is a contra-pair and proves the lemma.

LEMMA 6.2. Let \mathscr{F} be a special compatible cycle decomposition of (G, \mathscr{P}') . Let $Q = x_0 \cdots x_k$ be a shortest admissible dipath of $G^d_{\mathscr{F}}$ closed at v^* , and let $S_O = C_1 \cdots C_k$ be the anti-chain induced by Q. Then,

- (1) each vertex is contained in at most two good cycles of \mathcal{F} ;
- (2) for each pair of good cycles C_i and C_i ,

$$C_i \cap C_j \neq \emptyset$$

if and only if $i = j \pm 1$, except that $V(C_1) \cap V(C_k) = \{v^*\}$;

(3) for each good cycle C_{μ} of \mathscr{F} , $V(C_{\mu}) \cap \{x_0, ..., x_k\} = \{x_{\mu-1}, x_{\mu}\}$ and hence C_{μ} appears precisely once in the anti-chain S_Q .

Proof. Assume that C_i and C_j are two good cycles with j > i+1 and $V(C_i) \cap V(C_j) \neq \emptyset$. Let $x^* \in V(C_i) \cap V(C_j)$. Then $Q^* = x_0 \cdots x_{i-1} x^* x_j \cdots x_k$ is an admissible dipath of $G_{\mathscr{F}}^d$ shorter than Q. This contradicts our choice of Q and proves (1) and (2).

Assume that $x_{\alpha} \in V(C_{\mu}) \cap \{x_0, ..., x_k\}$ and $x_{\alpha} \notin \{x_{\mu-1}, x_{\mu}\}$. Without loss of generality, let $\alpha > \mu$. Then $Q^{**} = x_0 \cdots x_{\mu-1} x_{\alpha} \cdots x_k$ is an admissible dipath of $G_{\mathscr{F}}^d$ shorter than Q. This contradicts our choice of Q and proves the lemma.

- LEMMA 6.3. (1) $d(v) \leq 2r$, for each vertex v of G and
 - (2) |P| = r, for each non-trivial forbidden part $P \in \mathcal{P}$.

Proof. Let \mathscr{F} be a CCD of (G, \mathscr{P}') (note that each element of \mathscr{F} is a circuit in this proof). By Lemma 6.2 (1), each vertex of G is contained in at most two good circuits. Since \mathscr{F} has precisely r-2 bad circuits, each vertex is contained in at most r circuits. Therefore, $d(v) \leq 2r$.

Since $d(v) \leq 2r$ and (G, \mathcal{P}) is admissible, $|P| \leq r$ for each $P \in \mathcal{P}$. By the choice of P^* , we have that |P| = r for each non-trivial forbidden part $P \in \mathcal{P}$.

As an immediate corollary of Lemma 6.3 and Lemma 6.2 (1), we have the following lemma.

Lemma 6.4. For each special compatible cycle decomposition \mathscr{F} of (G, \mathscr{P}') ,

- (1) each non-trivial forbidden part P intersects all (r-2) bad circuits and precisely two good cycles of \mathcal{F} ,
- (2) and $d_C(v) = 2$ for every non-trivial vertex v and every element C of \mathcal{F} containing v.

In the proof of Theorem 6.5, we need one more lemma (Lemma 6.6) which is very technical and deals with the local structure of a minimal contra-pair. Due to its complicated description, we suggest that readers read the lemma when it is needed in the proof of Theorem 6.5 so that they may have a clear view and a better understanding of the lemma.

Theorem 6.5. If (G, \mathcal{P}) is a minimal contra-pair, then every forbidden part has cardinality at most 2 and every vertex has degree at most 4.

Proof. We continue the discussion at the beginning of this section. Among all special compatible cycle decompositions \mathscr{F} of (G, \mathscr{P}') and among all admissible dipaths Q of $G^d_{\mathscr{F}}$, we choose a special compatible cycle decomposition \mathscr{F}_0 of (G, \mathscr{P}') and an admissible dipath $Q_0 = x_0 \cdots x_k$ of $G^d_{\mathscr{F}_0}$ such that Q_0 is *shortest*.

If r = 2, the theorem follows from Lemma 2.10 (1). We assume that $r \ge 3$. Thus, \mathscr{F}_0 has some bad circuit.

Let $C_a = v_0 \cdots v_s$ be the bad circuit of \mathscr{F}_0 with the subscript a as small as possible where $v_0 = v_s = v^*$ and $\{v_0 v_1\} = E(C_a) \cap P^*$. Since C_1 is a good cycle, $a \geqslant 2$. Note that the arc $x_{a-1}x_a$ of Q_0 is induced by the bad circuit C_a . Let

$$v_m = x_{a-1}$$
 and $v_n = x_a$,

where 0 < m < n < s. For the sake of convenience, we choose $m = \min\{i \colon v_i \in V(C_a) \cap V(C_{a-1})\}$. Let G_a be the subgraph of G induced by $E(C_a) \cup E(C_{a-1})$. And denote the restriction of $\mathscr P$ on G_a by $\mathscr P_a$. In the proof, we are to study the structure of $(G_a, \mathscr P_a)$ and then we will find another compatible cycle decomposition $\mathscr F_a$ of $(G_a, \mathscr P_a)$ such that an admissible dipath in $G_{\mathscr F}^d$, closed at v^* is shorter than Q_0 where $\mathscr F' = [\mathscr F_0 \setminus \{C_{a-1}, C_a\}] \cup \mathscr F_a$. This contradicts the choice of Q_0 and finally proves the theorem.

(I) By the choice of $x_{a-1} = v_m$, we have that $d_{G_a}(v) = 2$ for each internal vertex v of the segment $v_0 \cdots v_m$ of C_a .

Since $v_n = x_a \in V(Q_0)$, by Lemma 6.2 (3), $v_n \notin V(C_{a-1})$. Thus $d_{G_a}(v_n) = 2$ since C_a is a circuit.

(II) Note that a bad circuit may appear in the anti-chain S_{Q_0} more than once. We claim that for each arc $x_{b-1}x_b$ of Q_0 induced by the bad circuit $C_a = C_b$ with b > a, x_{b-1} and x_b are contained in the segment $v_1 \cdots v_{m-1}$ of C_a .

Since $x_{b-1}x_b$ is an arc in the transitive tournament T_{C_q} , let $x_{b-1}=v_p$ and $x_b=v_q$ with p < q. Assume that $v_q=x_b$ is contained in the segment $v_m \cdots v_{s-1}$ of C_a . If q > m, there is an arc $v_m v_q = x_{a-1}x_b$ in the transitive tournament T_{C_a} . Thus, either $x_0 \cdots x_{a-1}x_b \cdots x_k$ (if q > m) or

 $x_0 \cdots x_{a-1} x_{b+1} \cdots x_k$ (if q=m) is an admissible dipath in $G^d_{\mathscr{F}_0}$ shorter than Q_0 . This contradicts the choice of Q_0 and proves our claim. For any compatible circuit decomposition \mathscr{F}_a of (G_a, \mathscr{P}_a) , let $D_1 \in \mathscr{F}_a$ be the circuit containing the edge $v_0 v_1$ ($\in P^* \cap E(G_a)$). By I., the segment $v_0 \cdots v_m$ of C_a remains as a segment in D_1 . Thus,

- (\star) for any special cycle decomposition \mathscr{F}_a of (G_a,\mathscr{P}_a) , the segments $x_0\cdots x_{a-2}$ and $x_a\cdots x_k$ of Q_0 remain as dipaths in $G^d_{\mathscr{F}'}$ where $\mathscr{F}'=[\mathscr{F}_0\backslash\{C_a,C_{a-1}\}]\cup\mathscr{F}_a$.
 - (III) We claim that (G_a, \mathcal{P}_a) must contain some non-trivial vertex.

If $a \geqslant 3$, we first show that there must be some non-trivial vertex of (G, \mathcal{P}) contained in $V(C_{a-1}) \cap V(C_{a-2})$. Suppose not, then $C_{a-1} \cup C_{a-2}$ is a connected good cycle and we can replace C_{a-1} , C_{a-2} in \mathcal{F}_0 with $C_{a-1} \cup C_a$. Thus, in the resulting digraph $G^d_{\mathcal{F}_0}$, we have a shorter admissible dipath $x_0 \cdots x_{a-3} x_{a-1} \cdots x_k$. This contradicts the choice of \mathcal{F}_0 and Q_0 . Since every non-trivial forbidden part of (G, \mathcal{P}) must intersect with every bad circuit of \mathcal{F}_0 (by Lemma 6.4 (1)), a non-trivial vertex of (G, \mathcal{P}) contained in $V(C_{a-2}) \cap V(C_{a-1})$ is also contained in $V(C_a)$ and is therefore a non-trivial vertex of (G_a, \mathcal{P}_a) .

Assume that a=2 and all vertices of G_a are trivial with respect to \mathscr{P}_a . Let P_1 be a path contained in the connected cycle C_1 ($=C_{a-1}$) joining $v^*=v_0$ and v_m , and P_2 be the segment $v_m\cdots v_s$ of C_2 ($=C_a$) passing through $v_n=x_a$ ($=x_2$). Let $D_1=P_1\cup P_2$, and $\{D_2,...\}$ be a circuit decomposition of $G_a\setminus E(D_1)$. Then $\mathscr{F}_1=[\mathscr{F}_0\setminus \{C_1,C_2\}]\cup \{D_1,D_2,...\}$ is a special compatible cycle decomposition of (G,\mathscr{P}') . Note that, by (\bigstar) , $x_2\cdots x_k$ remains as a dipath in $G_{\mathscr{F}_1}^d$. Since $v^*v_n=x_0x_2$ is an arc in the complete digraph T_{D_1} , we obtain an admissible dipath $x_0x_2\cdots x_k$ in $G_{\mathscr{F}_1}^d$, which is shorter than Q_0 . This is a contradiction.

- (IV) We claim that for each non-trivial vertex u of (G_a, \mathcal{P}_a) ,
 - (i) $d_{C_a}(u) = 2$, $d_{C_{a-1}}(u) = 2$ and $d_{G_a}(u) = 4$;
- (ii) $u \in V(C_{a-2})$ and $a \ge 3$;
- (iii) $u \in \{v_{n+1}, ..., v_{s-1}\}.$

Part (i) follows from Lemma 6.4 (2). Part (ii) follows from Lemma 6.4 (1) and Lemma 6.2 (2). For the proof of (iii), since $d_{G_a}(v_n)=2, \ u\neq v_n=x_a$. Note that $v_0=v_s=v^*$ is trivial in (G_a,\mathscr{P}_a) since the only non-trivial forbidden part P^* incident with $v_0=v_s=v^*$ contains only one edge v_0v_1 of G_a . Thus, $u\neq v_0=v_s$. Assume that $u\in\{v_1,...,v_{n-1}\}$. By (ii), $u\in V(C_{a-2})$. Note that $x_{a-3}u$ and uv_n are arcs in $T_{C_{a-2}}$ and T_{C_a} , respectively. $x_0\cdots,x_{a-3}ux_a\cdots x_k$ is an admissible dipath in $G_{\mathscr{F}_0}^d$ and is shorter than Q_0 . This contradicts the choice of Q_0 .

- (V) By (III) and (IV)(ii), (G_a, \mathcal{P}_a) must have some non-trivial vertex and $a \ge 3$. Thus, $d_{G_a}(v_0) = 2$.
- (VI) By Lemma 6.6, (G_a, \mathscr{P}_a) has a special compatible cycle decomposition $\mathscr{F}_a = \{C_1', C_2', ...\}$ such that $v_0v_1 \in E(C_1')$ and
- Case 1 (\diamondsuit). $v_n = x_a$ and some non-trivial vertex v_ℓ of (G_a, \mathscr{P}_a) are both contained in some cycle C'_i with $i \ge 2$.
- Case 2 ($\diamondsuit\diamondsuit$). Some non-trivial vertex z of (G_a, \mathscr{P}_a) is not contained in C_1' .

Let $\mathscr{F}' = [\mathscr{F}_0 \setminus \{C_{a-1}, C_a\}] \cup \mathscr{F}_a$ which is a special compatible cycle decomposition of (G, \mathscr{P}') and C_1' is the new bad circuit replacing C_a and all other elements of \mathscr{F}_a are good cycles. By (\bigstar) , the segments $x_a \cdots x_k$ and $x_0 \cdots x_{a-2}$ of Q_0 remain as dipaths in $G_{\mathscr{F}'}^d$.

In Case 1, the non-trivial vertex v_{ℓ} in (G_a, \mathscr{P}_a) is also non-trivial in (G, \mathscr{P}) . By (IV)(ii), $v_{\ell} \in V(C_{a-2})$. Thus, $x_0 \cdots x_{a-3} v_{\ell} x_a \cdots x_k$ is an admissible dipath in $G^d_{\mathscr{F}}$ shorter than Q_0 . This contradicts the choice of Q_0 .

In Case 2, the bad circuit C'_1 does not contain a non-trivial vertex z of (G, \mathcal{P}) , this contradicts Lemma 6.4 (1). The proof is completed.

A Technical Lemma

- LEMMA 6.6. Let G_a be an eulerian graph and \mathcal{P}_a be a forbidden system of G_a . Let $\{C_a, C_{a-1}\}$ be a compatible cycle decomposition of (G_a, \mathcal{P}_a) such that
- (a) $C_a = v_0 \cdots v_s$ is a circuit with $v_s = v_0$ and there are two integers m and n that 0 < m < n < s and $d(v_i) = 2$ for each $0 \le i < m$, $d(v_m) = 4$ and $d(v_n) = 2$;
 - (b) C_{a-1} is a connected cycle;
- (c) (G_a, \mathcal{P}_a) has some non-trivial vertex, and every non-trivial vertex is contained in $\{v_{n+1}, ..., v_{s-1}\}$ and is of degree four.

Then (G_a, \mathcal{P}_a) has another special compatible cycle decomposition $\{C_1', C_2', ...\}$ such that

- (1) each C'_i is connected, C'_1 is a circuit and contains the edge v_0v_1 ;
- (2) either
- (\diamondsuit) v_n and some non-trivial vertex v_ℓ are both contained in some cycle C_i' with $i \geqslant 2$; or
 - $(\diamondsuit\diamondsuit)$ some non-trivial vertex is not contained in C'_1 .

Unlike Theorem 6.5, Lemma 6.6 is not a minor-closed result. Hence, by taking the advantage of this, we apply the vertex splitting method in the proof.

For the sake of convenience in the proof, we use the notation

$$V_h = \{ v \in V(G_a) : d(v) = h \}, \qquad V_{\geq h} = \{ v \in V(G_a) : d(v) \geq h \},$$

and

$$V^t = \{ v \in V(G_a) : v \text{ is trivial} \}, \qquad V^{nt} = \{ v \in V(G_a) : v \text{ is non-trivial} \}.$$

Proof of Lemma 6.6. Let (G_a, \mathcal{P}_a) be a counterexample to the lemma with $\sum_{v \in V_{>4}} d(v)$ as small as possible.

(I) The structure of (G_a, \mathcal{P}_a) .

Let $v \in V_2 \setminus \{v_0, v_n\}$ with $E(v) = \{e, e'\}$. Every circuit of G_a containing one of $\{e, e'\}$ must contain both of e, e'. Thus, we always can replace e and e' with a single edge and delete the vertex e. Therefore, we assume that $V_2 = \{v_0, v_n\}$.

We claim that $V_{\geqslant 4} \cap V^t = \{v_m\}$. Assume that $v \in [V_{\geqslant 4} \cap V^t] \setminus \{v_m\}$. We construct a new graph G' from G_a by splitting two edges of C_{a-1} away from the vertex v and preserving C_{a-1} as a connected circle. For the same forbidden system \mathscr{P}_a on G', by our choice of (G_a, \mathscr{P}_a) , we have a compatible cycle decomposition of (G', \mathscr{P}_a) satisfying the lemma. Thus, by identifying the pair of split vertices to v, we obtain a compatible cycle decomposition of (G_a, \mathscr{P}_a) satisfying the lemma. This contradicts that (G_a, \mathscr{P}_a) is a counterexample and proves our claim.

So,

$$m = 1, \ n = 2,$$

$$V_2 = \{v_0, v_2\},$$

$$V^t \cap V_{\geqslant 4} = \{v_1\}$$

(that is, v_1 is the only degree four, trivial vertex of (G_a, \mathscr{P}_a)),

$$\begin{split} V^{nt} &= \left\{ v_3, ..., v_{s-1} \right\} \neq \varnothing, \\ V_{\geqslant 4} &= V_4 = V^{nt} \cup (V_{\geqslant 4} \cap V^t) = V^{nt} \cup \left\{ v_1 \right\} \end{split}$$

(that is, the maximum degree of G_a is 4 since each non-trivial vertex is of degree 4), and C_{a-1} is also a circuit since $V_{\geqslant 4} \cap V^t = \{v_1\}$ which is contained in both C_a and C_{a-1} (Fig. 2). The circuit C_{a-1} is of length at least two since $V(C_{a-1}) = V_4$ and $|V_4| \geqslant 2$. Furthermore, G_a has no loop since both C_a and C_{a-1} are circuits.

FIG. 2. (G_a, \mathscr{P}_a) .

- (II) We claim that for each CCD \mathscr{F}' of (G_a, \mathscr{P}_a) , an element $D \in \mathscr{F}'$ containing one of $\{v_0, v_2\}$ must contain both. Assume that $D \in \mathscr{F}'$ contains only v_2 but not v_0 . Since $d(v_2) = 2$, we must have that $v_1, v_3 \in V(D)$. Note that $v_3 \in V^{nt}$. Thus, the conclusion (\diamondsuit) of the lemma holds. This contradicts that (G_a, \mathscr{P}_a) is a counterexample.
- (III) We claim that a circuit of $SP(G_a, \mathscr{P}_a)$ containing one of $\{v_0, v_2\}$ must contain both of them. Assume that R is a circuit of $SP(G_a, \mathscr{P}_a)$ containing v_2 but not v_0 . Then, by Lemma 2.5, $\{C_a \triangle R, C_{a-1} \triangle R\}$ is a compatible cycle decomposition of (G_a, \mathscr{P}_a) . It is easy to see that $C_{a-1} \triangle R$ contains v_2 but not v_0 . Let \mathscr{D} be the union of circuit decompositions of $C_a \triangle R$, $C_{a-1} \triangle R$. Then \mathscr{D} has an element containing v_2 but not v_0 . This contradicts (II) and proves our claim.
- (IV) The structure of the split $SP(G_a, \mathscr{P}_a)$ of (G_a, \mathscr{P}_a) . Note that all vertices of $SP(G_a, \mathscr{P}_a)$ are of degree two except for v_1 which is of degree four. The component of $SP(G_a, \mathscr{P}_a)$ containing the vertex v_1 is the union of two circuits, say R' and R'', that $R' \cap R'' = \{v_1\}$. By (III), without loss of generality, let the circuit R' contain the vertices v_0 and v_2 (therefore, contain the segment $v_{s-1}v_0v_1v_2v_3$ of C_a).
- (V) By Lemma 2.5, $\{C_a \triangle R', C_{a-1} \triangle R'\}$ is a compatible cycle decomposition of (G_a, \mathcal{P}_a) . Let $\mathcal{D}' = \{D_1, ..., D_t\}$ be the union of circuit decompositions of $C_a \triangle R'$ and $C_{a-1} \triangle R'$. Since $C_{a-1} \triangle R'$ contains all

four edges incident with v_1 , any circuit decomposition of $C_{a-1} \triangle R'$ must have at least two elements. By Lemma 2.5 again, $C_a \triangle R'$ is not empty. Thus, $t \geqslant 3$. By (II), let D_1 be the circuit containing the segment $v_{s-1}v_0v_1v_2v_3$ of C_a (D_1 is the circuit C_1' described in the lemma). Let D_2 be another circuit containing v_1 since $d(v_1) = 4$. In the rest part of the proof, we are to find a non-trivial vertex contained in D_2 but not in D_1 . This would satisfy the conclusion $(\diamondsuit \diamondsuit)$ of the lemma and leads to a contradiction.

- (VI) We claim that $V(D_2) \cap V(D_1) = \{v_1\}$. If not, assume that $V(D_2) \cap V(D_1)$ contains another degree 4 vertex other than v_1 , which must be nontrivial. Let H be the subgraph of G_a induced by edges contained in D_1 and D_2 . It is easy to see that $(H, \mathcal{P}_a \mid H)$ also meets all descriptions of the lemma. Since $t \geqslant 3$, H has fewer degree 4 vertices than that of G_a . By our choice of (G_a, \mathcal{P}_a) , let \mathcal{P}'' be a CCD of $(H, \mathcal{P}_a \mid H)$ satisfying the lemma. Thus, $\mathcal{P}'' \cup \{D_3, ..., D_t\}$ is a CCD of (G_a, \mathcal{P}_a) satisfying the lemma. A contradiction.
- (VII) Since G_a has no loop and D_1 contains all vertices of V_2 , D_2 must contain two vertices of V_4 , one of which, say v, is not v_1 and is not trivial. By (VI), $v \notin V(D_1)$. This meets the conclusion $(\diamondsuit \diamondsuit)$ of the lemma and therefore contradicts the assumption that (G_a, \mathscr{P}_a) is a counterexample and completes the proof of the lemma.

7. FAITHFUL CYCLE COVERS

Let H (and H') be a graph with an admissible eulerian weight w (and w'). By (H', w') < (H, w), we mean that H' is a subgraph of H and $w'(e) \le w(e)$ for all $e \in E(H')$. (H, w) is called a *contra-pair* if it has no faithful circuit cover. The proof of the circuit cover theorem by Alspach, Goddyn, and Zhang [2] consists of two major parts, one of which is the following result. We give a proof here as an application of Theorem 6.5 and also as a different approach to the circuit cover theorem.

COROLLARY 7.1 (Lemma 1 of [2]). If (H, w) is a contra-pair, then there exists a contra-pair $(H', w') \leq (H, w)$ such that $w'(e) \leq 2$ for all $e \in E(H')$.

Proof. Let (G, \mathcal{P}) be obtained from (H, w) by the operation described in Section 1. By Theorem 6.5, there is a minimal contra-pair $(G', \mathcal{P}') \leq (G, \mathcal{P})$ such that $|P| \leq 2$ for all $P \in \mathcal{P}'$ and $d(v) \leq 4$ for all $v \in V(G')$. By the minimality of (G', \mathcal{P}') , no pair of vertices is joined by more than two parallel edges in G'. Therefore, (G', \mathcal{P}') gives rise to a contra-pair $(H', w') \leq (H, w)$ with the required property.

ACKNOWLEDGMENT

We thank Bill Jackson and the referees for their important comments and suggestions.

REFERENCES

- 1. B. Alspach and C.-Q. Zhang, Cycle covers of cubic multigraphs, *Discrete Math.* 111 (1993), 11–17.
- 2. B. Alspach, L. A. Goddyn, and C.-Q. Zhang, Graphs with the circuit cover property, *Trans. Amer. Math. Soc.* **344**, No. 1 (1994), 131–154.
- 3. B. Bollobás, "Extremal Graph Theory," Academic Press, London, 1978.
- H. Fleischner, Eulersche Linien und Kreisuberdeckungen die vorgegebene Duurchgange inden Kanten vermeiden, J. Combin. Theory Ser. B 29 (1980), 145–167.
- 5. H. Fleischner, Eulerian graph, *in* "Selected Topics in Graph Theory 2" (L. Beineke and R. Wilson, Eds.), pp. 17–53, Wiley, New York, 1983.
- H. Fleischner and A. Frank, On cycle decomposition of eulerian graph, J. Combin. Theory Ser. B 50 (1990), 245–253.
- M. Guan and H. Fleischner, On the minimum weighted cycle covering problem for planar graphs, Ars Combin. 20 (1985), 61–68.
- 8. P. T. Seymour, Sums of circuits, *in* "Graph Theory and Related Topics" (J. A. Bondy and U. S. R. Murty, Eds.), pp. 342–355, Academic Press, New York, 1979.
- P. T. Seymour, Even circuits in planar graphs, J. Combin. Theory Ser. B 31 (1981), 327–338.
- C.-Q. Zhang, On even circuit decompositions of eulerian graphs, J. Graph Theory 18, No. 1 (1994), 51–57.
- C.-Q. Zhang, On embeddings of graphs containing no K₅-minor, J. Graph Theory 21, No. 4 (1996), 401–404.