

Informes de Mercado para el Sector Automotriz mediante Ciencia de Datos

Proyecto desarrollado por Erick López, Christian Nüesch y Débora Zurita. Dirigido por los docentes Nahuel Pratta y Marcos Ugarte.

El objetivo es crear un sistema automatizado de informes de mercado para optimizar decisiones en el sector automotriz.

Resumen del Proyecto

Ciencia de Datos e IA

Uso de machine learning para análisis predictivo en el sector automotriz.

Análisis Predictivo

Identificación de tendencias y prevención de fraudes en la industria.

Automatización

Scripts en Python para generar informes automáticamente.

Visualización

Desarrollo de dashboards y gráficos interactivos para presentar datos.

Problemáticas Competencias y Metas

Problemáticas

Falta de datos actualizados y análisis predictivo en el sector automotriz.

Necesidad de herramientas de decisión en tiempo real para concesionarios y aseguradoras.

Metas

Generar 100 informes automatizados en tres meses.

Reducir tiempo de decisiones estratégicas en un 50%.

Disminuir fraudes en un 20% en el primer año.

Introducción y Objetivos

Análisis de Dataset

Características de automóviles obtenidas por web scraping en Argentina (enero 2023).

2 Objetivos Generales

3

Desarrollar habilidades de organización y comunicación de hallazgos de datos.

Objetivos Específicos

Limpieza de datos y análisis gráfico para relacionar variables relevantes.

Desarrollo y Procesamiento de Datos

2

Origen de Datos

Dataset de Kaggle con características de autos como precio y marca.

Limpieza

Tratamiento de valores ausentes y corrección de formatos incorrectos.

Análisis Estadístico

Extracción de estadísticas y visualización mediante gráficos diversos.

Conclusiones y Resultados Finales

Habilidades Desarrolladas

Limpieza de datos, detección de outliers y análisis exploratorio.

Insights Obtenidos

Identificación de tendencias clave en el mercado de autos en Argentina.

Resultados

Informe completo y códigos reproducibles en Python para análisis de datos.

Objetivo y Preparación de Datos

Objetivo

Explorar relaciones entre precio, kilometraje, año y potencia de vehículos en Argentina.

Carga de Datos

Importación de dataset desde GitHub y conversión de precios a dólares.

____ Herramientas

Uso de Python con librerías como Pandas, NumPy y Scikitlearn.

6 Made with Gamma

Análisis de Correlación y Modelo

Variable	Correlación con Precio
Kilometraje	-0.27
Año de Fabricación	0.24
Motor	0.56

Modelo de regresión lineal: $R^2 = 0.468$, RMSE = 33,964 km.

→ Regresión Lineal Múltiple

Regresión Lineal Múltiple y Análisis de Correlación

Preprocesamiento

Transformación de columnas categóricas y numéricas.

División del Dataset

80% entrenamiento, 20% prueba para evaluar el modelo.

Análisis de Correlación

Evaluación de relaciones entre variables mediante matriz y heatmap.

Hyperparameter 1

important hyperparameter)

Ajuste del Modelo y Resultados

Construcción del Modelo

> Uso de Statsmodels para regresión lineal múltiple y escalado de variables.

Selección de Variables

Métodos forward y backward para identificar las mejores predictoras.

3 Resultados

Alto R-cuadrado ajustado y buen equilibrio entre precisión y simplicidad.

Made with Gamma