The review of open-source tools in Energy community research papers from 2018 to 2022

Open- source Tool	Main purpose	Publications	The most used/descriptive keywords
LoadProfile	Residential electrical	18 in	Benefit allocations, Business models, Energy
Generator	and water	total,	communities, Scenario analysis, Energy
	consumption profiles	e.g., in	sharing, Grid tariff, Battery energy storage,
	based on	2022:	Investment optimization, Sector coupling,
	psychological and	[1],	Model predictive control, Neural networks,
	behavioral profiles of	[2],	Electricity market, CO2 emissions, Bidding
	the residents	[3],	strategy; Grid singularity exchange; Multi
		[4],	agent system; Peer-to-peer, Economic
		[5],	performance, Increased self-consumption,
			Power system modelling.
CREST	High-resolution	[6],	Photovoltaic systems, Uncertainty,
Demad	stochastic demand	[7],	Microgrids, Pricing, Dynamic scheduling,
Model	profile generator:	[8].	Electric vehicle charging, Community Energy
	database of 34 types		Storages System, Battery Sizing,
	of appliances,		Capacity Market, Firm Frequency Response,
	matching annual		Energy communities, Sustainable lifestyles,
	household appliance		Discrete choice experiment, Market
	consumption		segmentation.
	statistics in the UK		

EnergyPlus	Dynamic building	[9],	Building information modeling, Low carbon
	simulations and	[10],	city, System dynamic modeling, Carbon
	HVAC, climate data,	[11],	footprint, Energy systems analysis, Power
	heating and cooling	[12],	(co-) generation, Urban energy system
		[13],	modeling, Heat pump, Energy Community,
		[14],	Smart grid; Optimization; Energy storage;
		[15].	Energy performance, Renewable energy
			system, Community energy planning, Multi-
			criteria integrated evaluation.

The most used keywords:

Energy communities/Renewable energy communities/Community energy system/Zero energy community	
Renewable energy/Alternative energy sources/Distributed power generation	
Scenario analysis/Energy systems analysis	Ш
Greenhouse gas emission/CO2 emissions/Carbon footprint	
Net zero carbon districts/Positive energy districts/Nearly zero energy design	
Load flow modelling/Urban energy system modeling/System dynamic modeling	

References

- [1] V. Casalicchio, G. Manzolini, M. G. Prina, and D. Moser, "Optimal Allocation Method for a Fair Distribution of the Benefits in an Energy Community," *Sol. RRL*, vol. 6, no. 5, p. 2100473, May 2022, doi: 10.1002/SOLR.202100473.
- [2] S. Negri, F. Giani, N. Blasuttigh, A. Massi Pavan, A. Mellit, and E. Tironi, "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," *Renew. Energy*, vol. 198, pp. 440–454, Oct. 2022, doi: 10.1016/J.RENENE.2022.07.065.
- [3] G. C. Okwuibe *et al.*, "Evaluation of Hierarchical, Multi-Agent, Community-Based, Local Energy Markets Based on Key Performance Indicators," *Energies 2022, Vol. 15, Page 3575*, vol. 15, no. 10, p. 3575, May 2022, doi: 10.3390/EN15103575.
- [4] T. Korotko, I. Drovtar, A. Mutule, E. Kairisa, and A. Rosin, "Load Flow Modelling in Local Energy Community Electric Power Systems," 2022 IEEE 7th Int. Energy Conf., pp. 1–7, May 2022, doi: 10.1109/ENERGYCON53164.2022.9830203.
- [5] I. Drovtar, T. Korotko, A. Mutule, E. Kairisa, and A. Rosin, "Determining optimisation Framework for Local Energy Communities," 2022 IEEE 7th Int. Energy Conf., pp. 1–7, May 2022, doi: 10.1109/ENERGYCON53164.2022.9830444.
- [6] M. Alparslan Zehir, O. Tufan Dogan, H. Merdanoglu, E. Yakici, S. Duran, and H. Can Akyildirim, "Cloud-based Optimal Energy Scheduling of Photovoltaics and Electric Vehicle-integrated Community Microgrids," *Proc. 2022 IEEE 4th Glob. Power, Energy Commun. Conf. GPECOM 2022*, pp. 535–540, 2022, doi: 10.1109/GPECOM55404.2022.9815629.
- [7] D. Mihailova, I. Schubert, A. L. Martinez-Cruz, A. X. Hearn, and A. Sohre, "Preferences for configurations of Positive Energy Districts Insights from a discrete choice experiment on Swiss households," *Energy Policy*, vol. 163, p. 112824, Apr. 2022, doi: 10.1016/J.ENPOL.2022.112824.
- [8] M. Elkazaz, M. Sumner, and D. Thomas, "Sizing community energy storage systems -Used for bill management compared to use in capacity and firm frequency response markets," 2020 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. ISGT 2020, Feb. 2020, doi: 10.1109/ISGT45199.2020.9087724.
- [9] A. Valencia, M. U. Hossain, and N. Bin Chang, "Building energy retrofit simulation for exploring decarbonization pathways in a community-scale food-energy-water-waste nexus," *Sustain. Cities Soc.*, vol. 87, p. 104173, Dec. 2022, doi: 10.1016/J.SCS.2022.104173.
- [10] W. Becker *et al.*, "Technoeconomic Design of a Geothermal-Enabled Cold Climate Zero Energy Community," *J. Energy Resour. Technol. Trans. ASME*, vol. 143, no. 10, Oct. 2021, doi: 10.1115/1.4049456/1093915.
- [11] B. Samadzadegan *et al.*, "Novel Energy System Design Workflow for Zero-Carbon Energy District Development," *Front. Sustain. Cities*, vol. 3, p. 23, Apr. 2021, doi: 10.3389/FRSC.2021.662822/BIBTEX.
- [12] M. M. Fouad, J. Iskander, and L. A. Shihata, "Energy, carbon and cost analysis for an

- innovative zero energy community design," *Sol. Energy*, vol. 206, pp. 245–255, Aug. 2020, doi: 10.1016/J.SOLENER.2020.05.048.
- [13] A. Alzahrani, I. Petri, Y. Rezgui, and A. Ghoroghi, "Developing Smart Energy Communities around Fishery Ports: Toward Zero-Carbon Fishery Ports," *Energies 2020, Vol. 13, Page 2779*, vol. 13, no. 11, p. 2779, Jun. 2020, doi: 10.3390/EN13112779.
- [14] H. S. Suh and D. D. Kim, "Energy performance assessment towards nearly zero energy community buildings in South Korea," *Sustain. Cities Soc.*, vol. 44, pp. 488–498, Jan. 2019, doi: 10.1016/J.SCS.2018.10.036.
- [15] K. Yang, Y. Ding, N. Zhu, F. Yang, and Q. Wang, "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," *Appl. Energy*, vol. 229, pp. 352–363, Nov. 2018, doi: 10.1016/J.APENERGY.2018.08.016.