GWAS-identified bipolar disorder risk allele in the *FADS1/2* gene region links mood episodes and unsaturated fatty acid metabolism in mutant mice

Hirona Yamamoto, Hyeon-Cheol Lee-Okada, Masashi Ikeda, Takumi Nakamura, Takeo Saito, Atsushi Takata, Takehiko Yokomizo, Nakao Iwata, Tadafumi Kato & Takaoki Kasahara

Hirona Yamamoto (PhD student)

Bipolar Disorder (BD) and GWAS

Japanese population (2,964 cases and 61,887 controls)

Caucasian population (20,352 cases and 31,358 controls)

Carrying this risk allele makes

1.18 times more likely to have BD

- Reported as a risk gene in several populations
- FADS1/2 are functionally established gene
- →It has been focused on as a risk gene for BD.

Caucasian population (41,917 cases and 371,549 control)

FADS1/2 and PUFA(Polyunsaturated fatty acid)

BD risk allele and fatty acid metabolism

Haplotypes and PUFA synthesis in *FADS1/2*

Ameur A et al.,(2012) Am J Hum Genet

Haplotype A

- = **BD** risk haplotype
- = EPA, DHA, AA(decrease ↓)
- = Decreased activity of FADS1/2

In BD risk haplotypes decreased FADS1/2 activity is expected

Fads1/2 KO mice (originally generated by Dr. Kasahara)

Long-term wheel running analysis of $Fads(\Delta/+)$ mice

Days with a significant increase in activity compared to the days before and after **Hyperactive bouts (HABs)**

	Sex	Genotype	n	HABs (per half year)			
,	Male	Fads (Δ /+)	7	2.43			
		WT	13	0.15 J*			
	emale	Fads (Δ /+)	15	0.67			
		WT	6	0.17			
	Sex	Genotype	n	DEs (per half year)			
	Male	Fads (Δ /+)	7	0			
		WT	13	0			
_	emale	Fads (∆/+)	15	1.33 ב.ך			
		WT	6	o J*			

Days with a significant decrease in activity compared to the days before and after **Depressive-like episodes (DEs)**

Preventive effect of lithium administration

Depressive-like episodes in females were suppressed by lithium

(Period2 GroupA vs GroupB p<0.01, medium effect size)

 $Fads(\Delta/+)$ mice are

BD animal model that satisfies

three validities

Preventive effect of PUFA supplementation

In humans, several dosing patterns (DHA, EPA, DHA+EPA)
have been studied for prophylactic effects however, no
consistent results have been obtained for these effects. Bozzatello et al.,(2019) Int J Mol Sci
The preventive effect against depressive-like episodes was
examined by multiple administration methods.

Diet	n	DEs (per half year)			
AIN-93G	20	1	<u> </u>		
AIN+EPA	10	1.3	*		
AIN+DHA	18	0.28]		
AIN+EPA+DHA	12	0.34	# P<0.1		

Depressive-like episodes frequency was suppressed in female mice supplemented with DHA

Long-term wheel running analysis of Fads cKO mice

Hyperactive bouts →none

Sex	Genotype	n	HABs (per half year)
Male	Fads (flox/+);NC/+	20	0
IVIAIC	Fads (+/+);NC/+	17	0.06
	Fads (flox/+);NC/+	11	0
Female	Fads(+/+);NC/+	10	0

Depressive-like episodes → none

Sex	Genotype	n	DEs (per half year)
Male	Fads (flox/+);NC/+	20	0
Wale	Fads (+/+);NC/+	17	0
	Fads (flox/+);NC/+	11	0
Female	Fads(+/+);NC/+	10	0

Plasma fatty acid→ no changes Brain lipids

→ Separated by genotype

Behavior and plasma lipids were unchanged in cKO mice Lipid composition in the brain may be altered

Summary

Three validity

Construct validity

Decreased function of *Fads1/2*

Face validity

Mood Swing Episodes

Predictive validity

Effects of lithium administration

Diet	n	DEs (per half ye	ar)	_
AIN-93G	20	1 _		_
AIN+EPA	10	1.3		* _P <0.05
AIN+DHA	18	0.28		rene.
AIN+EPA+DHA	12	0.34 _		# <i>P</i> <0.1

Effect of **DHA** supplementation

Brain-specific cKO showed any episodic behavior

Utilization of BD model mice generated based on GWAS findings is expected to improve our understanding of the relationship between BD and PUFAs