CELESTIAL COORDINATES	
Law of Sines	$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$
Law of Cosines	$\cos a = \cos b \cos c + \sin b \sin c \cos A$
Parallax	$\Delta \alpha = M + N \sin \alpha \tan \delta$ $\Delta \delta = N \cos \alpha$ Where $M = 1.28123T + 0.0003879T^2 + 0.000010$ $N = 0.55675T - 0.0001185T^2 - 0.000011$ $T = (t - 2000.0)/100$ where t is the date, in years
Distance travelled	$(\Delta \theta)^2 = (\Delta \alpha \cos \delta)^2 + (\Delta \delta)^2$
CELESTIAL MECHANICS	
Ellipse equations	$b^{2} = a^{2}(1 - e^{2})$ $r = \frac{a(1 - e^{2})}{1 + e\cos\theta}$ $r = \frac{L^{2}/\mu^{2}}{GM(1 + e\cos\theta)}$
Parabola, where p is min distance	$r = \frac{2p}{1 + \cos\theta}$
Hyperbola	$r = \frac{a(e^2 - 1)}{1 + e \cos \theta}$
Reduced mass	$\mu = \frac{m_1 m_2}{m_1 + m_2}$ $M = m_1 + m_2$
Angular Momentum	$L = \mu \sqrt{GMa(1 - e^2)}$
Kepler's Second Law	$\frac{dA}{dt} = \frac{1}{2} \frac{L}{\mu}$
Perihelion-aphelion	$v_p^2 = \frac{GM}{a} \left(\frac{1+e}{1-e}\right)$ $v_a^2 = \frac{GM}{a} \left(\frac{1-e}{1+e}\right)$
Velocity	$v^2 = G(m_1 + m_2)(\frac{2}{r} - \frac{1}{a})$

Kepler's Third Law	$P^2 = \frac{4\pi^2}{G(m_1 + m_2)} a^3$
LIGHT	
Doppler Shift: Regular and relativistic	$\frac{\lambda_{obs} - \lambda_{rest}}{\lambda_{rest}} = \frac{\Delta \lambda}{\lambda_{rest}} = \frac{v_r}{c}$ $\lambda_{obs} = \lambda_{rest} \sqrt{\frac{1 + v_r/c}{1 - v_r/c}}$
Redshift Parameter	$z \equiv rac{\lambda_{obs} - \lambda_{rest}}{\lambda_{rest}} = rac{\Delta \lambda}{\lambda_{rest}}$ $z = \sqrt{rac{1 + v_r/c}{1 - v_r/c}} - 1$ $z + 1 = rac{\Delta t_{obs}}{\Delta t_{rest}}$
MAGNITUDE	
Parsec Distance: d in parsecs, p" in arcseconds.	$d = \frac{1}{p''}$ pc
Rayleigh Criterion: Angular resolution, in radians, wavelength, aperture	$\theta = 1.22 \frac{\lambda}{D}$ radians
Luminosity, Flux:	$F = \frac{L}{4\pi r^2}$
Magnitude Scale, where M_{Sun} = +4.74, L_{Sun} = 3.839*10^26, $F_{10,Sun}$ = 3.208*10^-10	$m - M = 5\log_{10}(d) - 5 = 5\log_{10}(\frac{d}{10pc})$ $M = M_{Sun} - 2.5\log_{10}(\frac{L}{L_{Sun}})$ $m = M_{Sun} - 2.5\log_{10}(\frac{F}{F_{10,Sun}})$
Magnitude Scale (reverse)	$d = 10^{(m-M+5)/5} \text{pc}$ $\frac{L_2}{L_1} = 100^{(M_1 - M_2)/5}$
Stefan-Boltzmann, where σ = 5.67*10^-8	$L = 4\pi R^2 \sigma T_e^4$
Bolometric Correction	$BC = m_{bol} - V = M_{bol} - M_{V}$
RELATIVITY	
Lorentz Factor	$\gamma = rac{1}{\sqrt{1 - u^2/c^2}}$ $\Delta t_{moving} = \gamma \Delta t_{rest}$ $x_{moving} = rac{1}{\gamma} x_{rest}$

De Broglie Wavelength	$\lambda = \frac{h}{n}$
	p
TELESCOPES, OPTICS	
Snell's Law	$n_{_{1}}\sin\theta_{_{1}}=n_{_{2}}\sin\theta_{_{2}}$
Lensmaker's Formula: where n_{λ} is index of refraction, and R_1 R_2 are the radii of curvature, positive when convex and negative when concave	$\frac{1}{f_{\lambda}} = (n_{\lambda} - 1)(\frac{1}{R_{1}} - \frac{1}{R_{2}})$
Plate Scale: Angular separation vs linear separation	$\frac{d\theta}{dy} = \frac{1}{f}$
Focal Ratio: Telescopes are usually labeled in the form f/F	$F \equiv \frac{f}{D}$
Refracting telescopes	$angular \ magnification \ = rac{f_{obj}}{f_{eye}}$
BINARY SYSTEMS	
Some equations, where d is the distance to the binary system, $\alpha_1\alpha_2$ are measured in radians	$\frac{m_1}{m_2} = \frac{r_2}{r_1} = \frac{a_2}{a_1}$ $\alpha_1 \equiv \frac{a_1}{d}, \alpha_2 \equiv \frac{a_2}{d}$
Angle of inclination (0 = plane is orthogonal, 90 = plane is on line of sight)	$\frac{m_1}{m_2} = \frac{\alpha_2}{\alpha_1} = \frac{\alpha_2 \cos i}{\alpha_1 \cos i} = \frac{\beta_2}{\beta_1}$
Kepler's Third Law, where $\beta = \beta_1 + \beta_2$	$m_1 + m_2 = \frac{4\pi^2}{G} \frac{(\alpha d)^3}{p^2} = \frac{4\pi^2}{G} \left(\frac{d}{\cos i}\right)^3 \frac{\beta^3}{p^2}$
Mass Function, when i is not known, $3\pi/16$ is a reasonable estimate for $\sin^3 i$	$\frac{m_2^3}{(m_1 + m_2)^2} \sin^3 i = \frac{P}{2\pi G} v_{1r}^3$
Eclipsing Binaries—brightness: where B is brightness (basically flux * area * constant) B_0 is when both are visible, B_p is primary minimum, B_s is secondary minimum.	$\frac{B_0 - B_p}{B_0 - B_s} = \left(\frac{T_s}{T_l}\right)^4$
STARS	
Hydrostatic Equilibrium	$\frac{dP}{dr} = - G \frac{M_r \rho}{r^2} = - \rho g$
Mass conservation equation	$\frac{dM_r}{dr} = 4\pi r^2 \rho$
Radiation Pressure, a = 7.566*10^-16	$P_{rad} = \frac{1}{3} \alpha T^4$
Radiative Temperature Gradient	$\frac{dT}{dr} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L_r}{4\pi r^2}$
Adiabatic Temperature Gradient, where $\gamma \approx 5/3$	$\frac{dT}{dr} = \left(\frac{1}{\gamma} - 1\right) \frac{\mu m_H}{k_h} \frac{GM_r}{r^2}$

Magnetic Energy Density	$u_m = \frac{B^2}{2\mu_0}$
Period-luminosity relation, where P_d is in days	$M_V = -[2.76(\log_{10}P_d - 1)] - 4.16$
COSMOLOGY	
Schwarzschild Radius	$R_{_{S}}=2GM/c^{2}$
Density, where ρ_0 is density today	$\rho(z) = \rho_0 (1+z)^3$
Critical Density. $\left[\rho_{c,0}\right]_{WMAP}=9.47\times10^{-27}, \text{and baryonic }\left[\rho_{b,0}\right]_{WMAP}=4.17\times10^{-28}$	$\rho_{c}(t) = \frac{3H^{2}(t)}{8\pi G}$ $\rho_{c,0} = \frac{3H_{0}^{2}}{8\pi G}$
Density Parameter. The WMAP result for average density of baryonic and dark matter is $\left[\Omega_{m,0}\right]_{WMAP}=0.27\pm0.04$. This corresponds to a mass density of $\left[\rho_{m,0}\right]_{WMAP}=2.56\times10^{-28}$	$\Omega(t) \equiv \frac{\rho(t)}{\rho_c(t)} = \frac{8\pi G \rho(t)}{3H^2(t)}$ $\Omega_0 \equiv \frac{\rho_0}{\rho_{c,0}} = \frac{8\pi G \rho_0}{3H_0^2}$