

Mechanisms of large-scale low-frequency Dynamic Sea Level in Australia-Antarctica Basin: an adjoint sensitivity analysis

Dong Jian

Advisors: Dr. Armin Köhl & Prof. Dr. Detlef Stammer

Institude of Oceanograhy, Universität Hamburg, January xx, 2022

1. Introduction: Sea Level

- GMSL rise 3.3 mm/yr
- Rate of rise has increased
- Thermal expansion (46%)
- Melting of grounded ice (44%)
- terestrial water change (10%)

- Not uniform spatially
- Southern Ocean
- Different regions have different dirvers/mechanisms

Processes that influence regional sea level

(1) Dynamical Sea Level

- Ocean circulation:
 - Waves
 - Ekman processes
- Density changes:
 - Salinity
 - temperature
- Surface Wind Stress
- Surface Heat Flux:
 - Sensiable heat
 - latent heat
 - radiation
- Freshwater Flux:
 - Precipitation/Evaporation
 - Land water

(2) Static Sea Level

- Ocean loadings:
 - Land motion
 - Gravity/rotation/solid earth

Region: Australia-Antarctica Basin

SSH EOF1 (Webb and de Cuevas, 2002)

- High-frequency barotropic variability
- Wind-driven Ekman pumping

- Increased interannual SSH variability under global warming
- regional wind stress

Relatively littile is known about low-frequency variability What is mechanism of low-frequency (> 3 years) sea-level variability?

Research question:

How sensitive of large—scale low-frequency dynamic sea level to surface forcing and whats its associated mechanism?

- 1. When/where/which forcing is able to generate SSH anomaly (a typical signal characterizing low-frequency variability)?
- 2. Which forcing has the most contribution?
- 3. What ocean dynamics are involved to produce SSH anomaly?

An estimate (which forcing contributes more)

- 1. Monthly-varying input forcing: zonal wind, meridional wind, heat flux, freshwater flux
- 2. Specify only one interannually-varying forcing + other forcing as monthly climatologies
- 3. Compare changes in SSH variability (RCP 8.5 scenerio historical scenario)

- Wind stress seems be to the most important to influence SSH variability
- Can we assess their contribution quantitatively?

2. Methodology: sensitivity analysis

$$S = \frac{\partial J}{\partial x}$$

S: Adjoint sensitivity

Output 2 Reveal how the changes in x can affect /

(b) Adjoint sensitivity experiment

distance

distance

!: Cost Function

A function of the mode state Quantity of interest (e.g., mean sea level)

x: Controls

Vector in time and space of model inputs that can affect / (e.g., surface wind stress)

How to derive the adjoint sensitivity?

$$\mathbf{y} = M(\mathbf{x})$$
Nonlinear Operator

Tangent Linear Operator

$$\mathbf{y'}_{i} = \underbrace{\sum_{j} \frac{\partial y_{i}}{\partial x_{j}} x'_{j}}_{\mathbf{Perturbation}}$$

$$J = J(y) = J[M(x)]$$

$$\frac{\partial J}{\partial x_j} = \underbrace{\sum_{i} \frac{\partial y_i}{\partial x_j}}_{\text{Adjoint Operator}} \frac{\partial J}{\partial y_i}$$
Adjoint Operator

A graphical TLM schematic

- Variables are different
- Reversed indices i & j
- Order of calculation differ
- Adjoint operator propagates gradients backward in time to the initial

3. Model

MITgcm and its adjoint

- Boussinesq Navier-Stokes equations
- Adjoint model via automatic differentiation

$ \frac{\partial \mathbf{v}}{\partial t} + (f + \zeta)\hat{\mathbf{k}} \times \mathbf{v} + \nabla_{\!\!z^*} \mathrm{KE} + w \frac{\partial \mathbf{v}}{\partial z} + g \nabla_{\!\!z^*} \eta + \nabla_{\!\!h} \Phi' $
$= D_{z^*,v} + D_{\perp,v} + \mathcal{F}_v,$
$\frac{\partial \Phi'}{\partial z} = g \frac{\rho'}{\rho_{\rm c}},$
$\frac{1}{H}\frac{\partial \eta}{\partial t} + \nabla_{z^*}(s^*v) + \frac{\partial w}{\partial z^*} = s^*\mathcal{F},$
$\frac{\partial (s^*\theta)}{\partial t} + \nabla_{z^*}(s^*\theta v_{\text{res}}) + \frac{\partial (\theta w_{\text{res}})}{\partial z^*}$
$= s^*(\mathcal{F}_{\theta} + D_{\sigma,\theta} + D_{\perp,\theta}),$
$\frac{\partial (s^*S)}{\partial t} + \nabla_{z^*}(s^*Sv_{\text{res}}) + \frac{\partial (Sw_{\text{res}})}{\partial z^*}$
$= s^*(\mathcal{F}_S + D_{\sigma,S} + D_{\perp,S}),$

MIT general circulation model

configuration

- 4°x4° spherical polar grid
- Quasi-global (80N-80S)
- 15 vertical layers (50m 690m)
- Climatological monthly mean forcing
- Spin-up: 100 year
- Integrated forward 10 years
- SST/SSS relaxation
- Timestep:
- Monthly snapshot fields are saved

https://github.com/MITgcm/MITgcm/tree/master/verification/global_ocean.90x40x15

Cost Function: last 3 yr mean SLA averaged over target region

$$J=rac{1}{(t_2-t_1)A}\int_{t_1}^{t_2}\int_A\eta \quad \mathrm{d}A\,\mathrm{d}t$$

Quantity of interest J: Characterizing large-scale (>300km), lowfrequency (> 3yr) SL variability off southwest Australia

Region of interest A: the box covering the first EOF mode [52-56S, 96-112E] (1x4 grids box)

Timescale:

(t2 – t1) is the last 3 year over a 10-year simulation

 η : Dynamic Sea Level (sea level above geoid due to ocean dynamics)

Forward versus adjoint

Forward model

Adjoint model

- Surface wind and fluxes drive the forward model
- Output of forward model is ocean states
- Produce a background for adjoint model
 - $S = \frac{\partial J}{\partial \underline{x}}$
- **Zonal wind stres**
- Meridional wind stress
- Net surface heat flux
- Net surface freshwater flux

- Cost function (SL) as a forcing in the adjoint simulation
- Output is sensitivity/gradient of cost function to controls throughout the model domain and back in time
- Spatial and temporal details of adjoint fileds sugguest causality

4. Results

Adjoint Solution produces sensitivity backward in time

Sensitivity to Forcing(e.g. Zonal wind stress)

Sensitivity to model states (e.g. SSH...)

Positive Sensitivity: Cost function increases if given a standard perturbation at earlier time

Nagetive Sensitivity: Cost function decreases if given a standard perturbation at earlier time

sensitivity to wind stress

9 years go

- Strip structure → waves
- Northeast-southwest tilt→ Beta effect/Coriolis
- Coatsal trapped waves
- Indonisian throughflow connects Pacific and Indian Oceans

1 year go

Dipole structure →
 Covergence/divengence

 Ekman pumping/suction

From past to now

 Primary sensitivities propagate westward against ACC

sensitivity to surface heat and freshwater flux Heat flux

- Negative sensitivity

 →Surface heating
- Positive sensitivity

 →Surface cooling
- Seasonal ocean wamring/cooling (not shown)

Freshwater flux

- Negative sensitivity → Surface freshening
- Positive sensitivity → Surface salinification
 - **Negative sensitivity** dominates

From past to now

Primary sensitivities propagate westward against ACC

Eastward ACC mean flow (carrying T/S anomaly)

Sensitivity to sea level anomaly

Theoretical Rossby wave speed (Chelton and Schlax, 1996)

Relative contribution under global warming scenario standard deviation of τ_x (Nm⁻²)

Scaled sensitivity=Sensitivity x Forcing Standard Deviation

Time lag (year)

$$\left|\frac{\partial J}{\partial x}\right| * 6$$

- $\left| \frac{\partial J}{\partial x} \right| * \delta$ Strong sensitivity + high forcing variability \rightarrow enhanced response Strong sensitivity + low forcing variability
 - **→**diminished response

Relative contribution

Wind stress dominates

perturbation experiments

Sensitivity-like zonal wind stresss perturbation lasts 3 years

60°E

Local wind versus nonlocal wind

Strengthened Equtorial zonal wind?

- Kelvin wave → coastal waves → reflected Rossby wave → passing through Tasman Sea
- Takes several years to arrive

Strengthened Southern Ocean wind stress curl?

- Westward Rossby wave (advected with ACC)
- Immediate response

Heat flux-perturbation experiments

- Sensitivity-like perturbation → generates signals chracterizing the cost function (positive SSH anomaly)
- Forcing, its location and timing, strength \rightarrow influences the ocean response

4. Conclusions

- Large-scale circulation and SSH variability is essentially forced by surface wind stress
- SSH variability is mainly driven by wind-induced Ekman pumping and waves
- · Local and regional winds is the leading factor, while remote winds take years
- Buoyancy fluxes modulate sea level variation via ACC mean flow
- · Different mechanisms cause opposite pathways of sensitivities in the ACC section

5. Outlook

1. Reconstruct sea level variability

$$f(t) = \sum_{i} \sum_{S} \sum_{\Delta t} \left(\frac{\partial J}{\partial F_i(S, \Delta t)} \delta F_i(S, t - \Delta t) \right)$$

2. Relation with ENSO, SAM?

- 3. Higher resolution configuration
 - Mesoscale processes?
 - Small Currents?