Introducción a la Lógica y la Computación, 04/12/2008.

Apellido y Nombre:

nota 1 2 3 . 4 5 L

- (1) Sea B un álgebra de Boole finita. Pruebe que
 - (a) Si $x \neq 0$ entonces existe un átomo a tal que $a \leq x$.
 - (b) Para todo x en el álgebra, $x = \{a \in At(B) : a \leq x\}$.
 - (c) Si $a \in At(B)$ entonces $[a) = \{x \in B : a \le x\}$ es un filtro primo.
- (2) Sea el NFA $M = (\{p_0, p_1, p_2\}, \{0, 1\}, \delta, p_0, \{p_2\})$ donde δ viene dada por la siguiente tabla de transición:

	0	1
Po	$\{p_0, p_1\}$	Ø
p_1	$\{p_0\}$	$\{p_0,p_1,p_2\}$
p_2	$\{p_1\}$	$\{p_2\}$

- (a) Hacer el diagrama de transición de M.
- (b) Caracterice con palabras, de la manera más sencilla posible, el lenguaje aceptado por el autómata.
- (c) Justifique la afirmación del apartado anterior.
- (d) Definir una gramática que genere L(M) usando el autómata original.
- (3) Considere la expresión regular $e = 0(0+1)^*1$. Aplique el algoritmo visto en el teórico para encontrar una gramática regular que-genere L(e).
- (4) Hallar derivaciones que muestren:
 - (a) $\{\neg\varphi\} \vdash \varphi \lor \psi \to \psi$.
 - (b) $\vdash \varphi \rightarrow ((\neg \psi \rightarrow \neg \varphi) \rightarrow \psi);$
- (5) Suponga que $\Gamma \vdash \varphi$. Pruebe:

 Γ inconsistente si y sólo $\Gamma \cup \{\varphi\}$ inconsistente.

Ejercicios para alumnos libres:

- L. Determina cuales de las siguientes propiedades son válidas en todo reticulado acotado. Pruébela o dé un contraejemplo, según el caso.
 - (1) $(x \land y) \lor x \le x$
 - (2) $(x \wedge y) \vee z \leq (x \wedge z) \vee (y \wedge z)$
 - (3) $(x \wedge y) \vee z \ge (x \wedge z) \vee (y \wedge z)$
 - (4) $x \wedge y = 0$ implies x = 0 o y = 0

