Alexander Tomoaki Taguchi

MIT Department of Chemistry, NW14-4107 77 Massachusetts Ave, Cambridge, MA 02139 taguchi@mit.edu (email) 480-274-2928 (phone)

Education

University of California at San Diego (2006-2010)

Degrees: Biophysics (Bachelor of Science) and Japanese Studies (Bachelor of Arts)

University of Illinois Urbana-Champaign (2010-2014)

Ph.D. in *Biophysics and Computational Biology*

Research: Pulsed EPR spectroscopy and simulations of photosynthetic membrane proteins

Advisors: Professors Colin A. Wraight and Sergei A. Dikanov

Nippon Medical School of Tokyo JSPS Postdoctoral Fellowship (2014-2015)

Research: Electronic structure and function of iron-sulfur clusters

Advisor: Professor Toshio Iwasaki

Massachusetts Institute of Technology NIH F32 Postdoctoral Fellowship (2016-present)

Research: Solid-state protein NMR structural investigations by fast spinning MAS

Advisors: Professors Robert G. Griffin and JoAnne Stubbe

Awards	
2018	Best Poster Award European Chemistry Conference at Rome, Italy
2018	MIT Medicine Dermatology Hackathon Winner (\$20000)
2018	MIT BASF Coding Chemistry Hackathon Top Team (\$1000)
2017-2019	F32 Postdoctoral Fellowship from National Institutes of Health (NIH)
2015	Travel grant for 17th International Conference on Biological Inorganic Chemistry
2014-2016	Postdoctoral Fellowship from Japan Society for the Promotion of Science (JSPS)
2010-2013	Molecular Biophysics Training Grant from National Institutes of Health (NIH)
2013	Travel grant for 6th Advanced EPR School at the Weizmann Institute in Israel

Oral Presentations

July, 2018	European Chemistry Conference 2018 at Rome, Italy Talk title: The Unpaired Electron Spin Density Distribution in Reduced [2Fe-2S] Clusters by $^{13}C_{\beta}$ -Cysteine Labeling
May, 2017	MIT Chemistry Student Seminar Series at Massachusetts Institute of Technology Talk title: Structural Modeling of Ribonucleotide Reductases: A Combination of Electron Microscopy, EPR, and NMR
Oct., 2015	High school outreach JSPS Science Dialogue lecture at Kamaishi High school, Japan Talk title: <i>How Magnets Have Changed the World We Live In</i>
July, 2015	17^{th} International Conference on Biological Inorganic Chemistry in Beijing, China Talk title: Mapping the Electron Spin Distribution in [2Fe-2S] Proteins by $^{13}C_{\beta}$ Cysteine Labeling: Implications in Electron Transport Pathways
Apr., 2014	$10^{\rm th}$ Illinois Biophysical Society Symposium at Univ. of Illinois Urbana-Champaign Talk title: Structural Determination of Q_{B^-} by high frequency pulsed EPR

- Nov., 2013 Molecular Biophysics Training Grant Symposium at Univ. of Illinois Urbana-Champaign Talk title: Pulsed EPR Investigation of the ^{13}C couplings in Q_A and Q_B Aug., 2013 16^{th} International Congress on Photosynthesis Symposium in St. Louis, Missouri
- Aug., 2013 16^{th} International Congress on Photosynthesis Symposium in St. Louis, Missouri Talk title: Q_A and Q_B Methoxy Dihedral Angles determined by pulsed EPR

Publications

- 1. Blaesi, E. J., Palowitch, G. M., Hu, K., Kim, A. J., Rose, H. R., Alapati, R. B., Lougee, M. G., Kim, H. J., **Taguchi, A. T.**, Tan, K. O., Laremore, T. N., Griffin, R. G., Krebs, C., Matthews, M. L., Silakov, A., Bollinger, M. J. Jr., Allen, B. D., Boal, A. K. Metal-free class I ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. *PNAS*, September, 2018.
- 2. **Taguchi, A. T.**, Ohmori, D., Dikanov, S. A., and Iwasaki, T. g-Tensor Directions in the Protein Structural Frame of Hyperthermophilic Archaeal Reduced Rieske-Type Ferredoxin Explored by ¹³C Pulsed Electron Paramagnetic Resonance. *Biochemistry*, Vol. 57, No. 28, pp. 4074-4082, June, 2018.
- 3. Dikanov, S. A. and **Taguchi**, **A. T.** Two-dimensional Pulsed EPR Resolves Hyperfine Coupling Strain in Nitrogen Hydrogen Bond Donors of Semiquinone Intermediates. *J. Phys. Chem. B.*, Vol. 122, No. 20, pp. 5205-5211, April, 2018.
- 4. Taguchi, A. T., Miyajima-Nakano, Y., Fukazawa, R., Lin, M. T., Baldansuren, A., Gennis, R. B., Hasegawa, K., Kumasaka, T., Dikanov, S. A., and Iwasaki, T. Unpaired Electron Spin Density Distribution across Reduced [2Fe-2S] Cluster Ligands by ¹³C_β-Cysteine Labeling. *Inorg. Chem.*, Vol. 57, No. 2, pp. 741-746, December, 2017.
- 5. Taguchi, A. T., O'Malley, P. J., Wraight, C. A., and Dikanov, S. A. Determination of the Complete Spin Density Distribution in ¹³C-Labeled Protein-Bound Radical Intermediates Using Advanced 2D Electron Paramagnetic Resonance Spectroscopy and Density Functional Theory. *J. Phys. Chem. B*, Vol. 121, No. 44, pp. 10256-10268, October, 2017. (4 minute LiveSlides presentation narrated by Taguchi, A. T. available at http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.7b10036)
- 6. Greene, B. L., **Taguchi, A. T.**, Stubbe, J., and Nocera, D. G. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. *J. Am. Chem. Soc.*, Vol. 139, No. 46, pp. 16657-16665, October, 2017.
- 7. Lin, Q.,* Parker, M. J.,* **Taguchi, A. T.**,* Ravichandran, K.,* Kim, A., Kang, G., Shao, J., Drennan, C. L., and Stubbe, J. Glutamate 52- β at the α/β Subunit Interface of *E. coli* Class Ia Ribonucleotide Reductase is essential for Conformational Gating of Radical Transfer. *J. Biol. Chem.*, Vol. 292, No. 22, pp. 9229-9239, April, 2017. (*authors contributed equally to this paper)
- 8. Ravichandran, K. R., Zong, A. B., **Taguchi, A. T.**, Nocera, D. G., Stubbe, J., and Tommos, C. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. *J. Am. Chem. Soc.*, Vol. 139, No. 8, pp. 2994-3004, February, 2017.
- 9. Ravichandran, K., Minnihan E. C., Lin Q., Yokoyama K., **Taguchi A. T.**, Shao J., Nocera, D. G., and Stubbe, J. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in *Escherichia coli* Class Ia Ribonucleotide Reductase. *Biochemistry*, Vol. 56, No. 6, pp. 856-868, January, 2017.
- 10. **Taguchi, A. T.**, Baldansuren, A., and Dikanov, S. A. Basic and Combination Cross-Features in X- and Q-band HYSCORE of the ¹⁵N Labeled Bacteriochlorophyll *a* Cation Radical. *Z. Phys. Chem.*, Vol. 231, pp. 725-744, February, 2017.
- 11. Sun, C., **Taguchi, A. T.**, Vermaas, J. V., Beal, N. J., O'Malley, P. J., Tajkhorshid, E., Gennis, R. B., Dikanov, S. A. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome *bo*₃ from *Escherichia coli*. *Biochemistry*, Vol. 55, No. 40, pp. 5714-5725, October, 2016.
- 12. Ravichandran, K. R., **Taguchi, A. T.**, Wei, Y., Tommos, C., Nocera, D. G., and Stubbe, J. A >200 meV Uphill Thermodynamic Landscape for Radical Transport in *Escherichia coli* Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. *J. Am. Chem. Soc.*, Vol. 138, No. 41, pp. 13706-13716, September, 2016.
- 13. Sun, C., **Taguchi**, **A. T.**, Beal, N., O'Malley, P. J., Dikanov, S. A., and Wraight, C. A. Regulation of the Primary Quinone Binding Conformation by the H Subunit in Reaction Centers from *Rhodobacter sphaeroides*. *J. Phys. Chem. Lett.*, Vol. 6, No. 22, pp. 4541-4546, October, 2015.
- 14. Yi, S., **Taguchi, A. T.**, Samoilova, R. I., O'Malley, P. J., Gennis, R. B., and Dikanov, S. A. Plasticity in the High Affinity Menaquinone Binding Site of the Cytochrome *aa*₃-600 Menaquinol Oxidase from *Bacillus subtilis*. *Biochemistry*, Vol. 54, No. 32, pp. 5030-5044, July, 2015.

- 15. **Taguchi, A. T.**, O'Malley, P. J., Wraight, C. A., and Dikanov, S. A. Hydrogen Bond Network around the Semiquinone of the Secondary Quinone Acceptor Q_B in Bacterial Photosynthetic Reaction Centers. *J. Phys. Chem. B*, Vol. 119, No. 18, pp. 5805-5814, April, 2015.
- 16. Vermaas, J. V., **Taguchi, A. T.**, Dikanov, S. A., Wraight, C. A., and Tajkhorshid, E. Redox Potential Tuning through Differential Quinone Binding in the Photosynthetic Reaction Center of *Rhodobacter sphaeroides*. *Biochemistry*, Vol. 54, No. 12, pp. 2104-2116, March, 2015.
- 17. Hong, S., De Almeida, W., **Taguchi, A. T.**, Samoilova, R. I., Gennis, R. B., O'Malley P. J., Dikanov, S. A., and Crofts, A. R. The Semiquinone at the Q_i Site of the *bc*₁ Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in *Rhodobacter sphaeroides* via ¹³C Methionine and Construction of a Methionine Auxotroph. *Biochemistry*, Vol. 53, No. 38, pp. 6022-6031, September, 2014.
- 18. Samoilova, R. I., **Taguchi, A. T.**, O'Malley P. J., Dikanov, S. A., and Lugtenburg, J. Hyperfine Interaction Tensors of ¹³C Nuclei for Ring Carbons of Ubisemiquinone-10 Hydrogen Bonded in Alcohol Solvents. *Appl. Magn. Reson.*, Vol. 45, No. 9, pp. 941-953, September, 2014.
- 19. **Taguchi, A. T.**, O'Malley, P. J., Wraight, C. A., and Dikanov, S. A. Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the Q_A Site of Bacterial Reaction Centers: Correlation of the Histidine N_δ Tensors with Hydrogen Bond Strength. *J. Phys. Chem. B*, Vol. 118, No. 31, pp. 9225-9237, July, 2014.
- 20. De Almeida, W., **Taguchi, A. T.**, Dikanov, S. A., Wraight, C. A., and O'Malley, P. J. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (Q_A) and Secondary (Q_B) Quinones of Type II Bacterial Photosynthetic Reaction Centers. *J. Phys. Chem. Lett.*, Vol. 5, No. 15, pp.2506-2509, June, 2014. (5 minute LiveSlides presentation narrated by **Taguchi, A. T.** available at http://pubs.acs.org/doi/suppl/10.1021/jz500967d)
- 21. **Taguchi, A. T.**, O'Malley, P. J., Wraight, C. A., and Dikanov, S. A. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the Q_B site in bacterial reaction centers: A combined X- and S-band ^{14,15}N ESEEM and DFT study. *J. Phys. Chem. B*, Vol. 118, No. 6, pp. 1501-1509, February, 2014.
- 22. **Taguchi, A. T.**, Mattis, A. J., O'Malley, P. J., Dikanov, S. A., and Wraight, C. A. Tuning Cofactor Redox Potentials: The 2-Methoxy Dihedral Angle Generates a Redox Potential Difference of >160 mV between the Primary (Q_A) and Secondary (Q_B) Quinones of the Bacterial Photosynthetic Reaction Center. *Biochemistry*, Vol. 52, No. 41, pp. 7164-7166, September, 2013.
- 23. **Taguchi, A. T.**, O'Malley, P. J., Wraight, C. A., and Dikanov, S. A. Conformational Differences between the Methoxy Groups of Q_A and Q_B Site Ubisemiquinones in Bacterial Reaction Centers: A Key Role for Methoxy Group Orientation in Modulating Ubiquinone Redox Potential. *Biochemistry*, Vol. 52, No. 27, pp. 4648-4655, June, 2013.

Patents

1. Woodbury, N. W., **Taguchi, A. T.** Methods, Systems, and Media for Predicting Functions of Molecular Sequences. M18-149L / 0118090.200-US1. *Patent pending.*

Poster Abstracts and Other Publications

- Iwasaki, T., Fukazawa, R., Miyajima-Nakano, Y., Taguchi, A. T., Hasegawa, K., Kumasaka, T., Lin, M. T., Dikanov, S. A., Gennis, R. B. *Escherichia coli* Amino Acid Auxotrophic Expression Strains for the Structure-function Studies of Metalloenzymes. 14th European Biological Inorganic Chemistry Conference (EuroBIC 14), Birmingham, United Kingdom, August, 2018. (conference abstract)
- 2. **Taguchi, A. T.**, Kang, G., Ni, Q. Z., Can, T. V., Lin, Q., Drennan, C. L., Stubbe, J., Griffin, R. G. Structural Studies of the *E. coli* Class Ia Ribonucleotide Reductase. *European Chemistry Conference 2018*, Rome, Italy, July, 2018. (*conference abstract*)
- 3. **Taguchi, A. T.**, Miyajima-Nakano, Y., Fukazawa, F., Matsushita, S., Lin, M. T., Baldansuren, A., Samoilova, R. I., Gennis, R. B., Hasegawa, K., Kumasaka, T., Dikanov, S. A., and Iwasaki, T. The Spin Density Distribution is a Sensitive Probe of the Cysteine Ligand Geometries in Rieske, mitoNEET, and Plant-Type

- [2Fe-2S] Ferredoxins. *17th International Conference on Biological Inorganic Chemistry (ICBIC 16)*, Beijing, China, July, 2015. (*conference abstract*)
- 4. **Taguchi, A. T.** Investigation of the Quinone Sites in Reaction Centers from *Rhodobacter Sphaeroides* by Pulsed EPR and Spectral Simulations. Thesis. University of Illinois at Urbana-Champaign, Ann Arbor: ProQuest LLC, 2014. (*dissertation*)
- 5. **Taguchi, A. T.**, Mattis, A. J., O'Malley, P. J., Dikanov, S. A., and Wraight, C. A. Methoxy dihedral angles of Ubiquinone contribute more than 160 mV to the redox potential difference between the primary (Q_A) and secondary (Q_B) quinones of the photosynthetic reaction center. *Biophysical Journal*, Vol. 106, No. 2, pp. 370a, San Francisco, USA, January, 2014. (*conference abstract*)
- 6. Matsushita, S., Fukazawa, R., Iwasaki, T., **Taguchi, A. T.**, Baldansuren, A., Dikanov, S. A. 2D pulsed EPR analysis of histidine ligand residue(s) of the thermophile Rieske and mitoNEET type iron-sulfur proteins. **16**th International Conference on Biological Inorganic Chemistry (ICBIC 16), #1714640, Mz76, Grenoble, France, July, 2013. (conference abstract)
- 7. **Taguchi, A.**, Nick, T., Doll, A., and Smith, G. Impressions from the 6th EF-EPR School in Rehovot. *EPR Newsletter*, Vol. 22, No. 4, pp. 17–19, 2013. (*invited article, non-refereed*)
- 8. **Taguchi, A. T.**, Kokhan, O., and Wraight, C. A. Pyrazole Cytochrome C Complexes. *Biophysical Journal*, Vol. 102, No. 3, pp. 466a–467a, San Diego, USA, January, 2012. (*conference abstract*)