Deljenje skrivnosti Shamirjeva Metoda

Predmet: Izbrani Algoritmi

Izdelal: Stefan Srnjakov

Deljenje Skrivn	osti in Analiza Rekonstrukcije	3
1. Uvod		3
2. Implem	entacija	3
3. Rezulta	ii in Analiza	3
3.1 Nata	nčnost rekonstrukcije	3
Robus	stna metoda:	4
Običa	jna metoda:	4
3.2 Časo	ovna zahtevnost	5
BigInt	metoda:	5
Deljer	je po bajtih:	6
4. Dodatno)	7
5. Zaključe	ek	7

Deljenje Skrivnosti in Analiza Rekonstrukcije

1. Uvod

V tem poročilu predstavimo implementacijo aplikacije za deljenje skrivnosti na podlagi Shamirjeve metode. Cilj je omogočiti razbitje skrivnosti na deleže in rekonstrukcijo originalne skrivnosti na osnovi kombinacij deležev. V nalogi smo razvili robustno rešitev z uporabo knjižnice BigInt in omogočili testiranje delovanja algoritma pri različnih nastavitvah (n, k) ter različnih velikostih datotek.

2. Implementacija

Implementacija je bila razdeljena na dva dela:

1. Deljenje skrivnosti:

- a. Skrivnost razbijemo na n deležev, pri čemer za rekonstrukcijo zadostuje vsaj k deležev.
- b. Algoritem generira deleže z uporabo polinoma stopnje k-1, kjer je prosti člen skrivnost.

2. Rekonstrukcija skrivnosti:

- a. Za rekonstrukcijo skrivnosti uporabimo metodo Lagrangeve interpolacije.
- b. Implementirana je bila robustna različica algoritma, ki deluje zgolj s celimi števili (BigInt).

Aplikacija omogoča:

- Izbiro metode deljenja (BigInt ali deljenje po bajtih).
- Rekonstrukcija skrivnosti
- Grafično analizo časovne zahtevnosti in natančnosti rekonstrukcije.

3. Rezultati in Analiza

3.1 Natančnost rekonstrukcije

Na spodnjih grafih so prikazane natančnosti rekonstrukcije za robusten algoritem (BigInt metoda) in običajen algoritem (BigInt metoda).

Robustna metoda:

• **Graf:** Prikazuje uspešnost rekonstrukcije 1KB datotek za različne pare (n, k) pri 100 ponovitvah.

• Rezultati:

- Natančnost rekonstrukcije je bila konstantno blizu 100 % pri vseh testnih primerih.
- Robustna metoda se je izkazala za izjemno zanesljivo, tudi pri večjih vrednostih n in k.

Secret Sharing App

Split files into secure shares, reconstruct them, and analyze performance.

SHARING SECRETS RECONSTRUCTION ANALYSIS ANALYSIS RECONSTRUCTION

Analyze Precision of Robust Reconstruction

START ANALYSIS

Analysis of reconstruction of 1kb file, for each pair of shares (n, k). repeated 100 times.

Običajna metoda:

- Graf: Prikazuje rezultate za natančnost rekonstrukcije brez robustnega ravnanja.
- Rezultati:
 - Pri večjih vrednostih n in k so bile opazne napake zaradi zaokroževanja in omejitev pri decimalnih številih.
 - o Metoda je bila uspešna pri manjših vrednostih k

Secret Sharing App

Split files into secure shares, reconstruct them, and analyze performance.

SHARING SECRETS

RECONSTRUCTION

ANALYSIS

ANALYSIS RECONSTRUCTION

Analyze Precision of not precise reconstruction

START ANALYSIS

Analysis of reconstruction of 1kb file, for each pair of shares (n, k). repeated 100 times.

3.2 Časovna zahtevnost

Na spodnjih grafih je prikazana časovna zahtevnost deljenja in rekonstrukcije skrivnosti glede na velikost datotek in uporabljeno metodo.

BigInt metoda:

- Graf: Časovna zahtevnost za deljenje in rekonstrukcijo z BigInt.
- Rezultati:
 - o Časovna zahtevnost narašča linearno z velikostjo datotek.
 - o N in k parametri nimajo veliki vpliv

Analyze Performance

START ANALYSIS

BigInt Method Analysis

Deljenje po bajtih:

- Graf: Časovna zahtevnost za deljenje in rekonstrukcijo po bajtih.
- Rezultati:
 - Deljenje in rekonstrukcija sta bila počasnejsa v primerjavi z BigInt metodo. Najbolj velika razlika se opazi pri narascanje n in k.

Byte Method Analysis

4. Dodatno

Posnetki zaslona:

Secret Sharing App Split files into secure shares, reconstruct them, and analyze performance. SHARING SECRETS RECONSTRUCTION ANALYSIS ANALYSIS RECONSTRUCTION Reconstruct Secrets k (threshold) Upload share files: UPLOAD SHARE FILES Reconstruct By Bytes Couput File Name reconstructed_secret

5. Zaključek

- Robustna metoda rekonstrukcije je bistveno bolj zanesljiva in natančna ter popolnoma odpravlja napake, ki jih povzroča zaokroževanje v decimalnih operacijah.
- Navadna metoda rekonstrukcije je primerna zgolj za manjše vrednosti n in k, saj napake zaradi zaokroževanja postanejo preveč izrazite pri velikih vrednostih.

- **BigInt metoda** je hitrejša in natančnejša za deljenje in rekonstrukcijo skrivnosti, še posebej v primerjavi z metodo bajt za bajtom.
- **Metoda bajt za bajtom** je počasnejša in manj primerna za obdelavo velikih datotek ali visokih vrednosti n in k.