COURSE 2

2.2. Lagrange interpolation

Let $[a,b] \subset \mathbb{R}$, $x_i \in [a,b]$, i=0,1,...,m such that $x_i \neq x_j$ for $i \neq j$ and consider $f:[a,b] \to \mathbb{R}$.

The Lagrange interpolation problem (LIP) consists in determining the polynomial P of the smallest degree for which

$$P(x_i) = f(x_i), \ i = 0, 1, ..., m \tag{1}$$

i.e., the polynomial of the smallest degree which passes through the distinct points $(x_i, f(x_i))$, i = 0, 1, ..., m.

Since in (1) there are m+1 conditions to be satisfied, we need m+1 degrees of freedom. Consider the m-th degree polynomial

$$P(x) = a_0 + a_1 x + \dots + a_{m-1} x^{m-1} + a_m x^m.$$
 (2)

The m+1 coefficients $\{a_i\}$ have to be determined in such way that (1) are satisfied. This leads to the linear system of equations:

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_{m-1} x_0^{m-1} + a_m x_0^m = f(x_0) \\ a_0 + a_1 x_1 + \dots + a_{m-1} x_1^{m-1} + a_m x_1^m = f(x_1) \end{cases}$$

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_{m-1} x_1^{m-1} + a_m x_1^m = f(x_0) \\ a_0 + a_1 x_m + \dots + a_{m-1} x_m^{m-1} + a_m x_m^m = f(x_m). \end{cases}$$

Written in the matrix form, the system is

$$\underbrace{\begin{pmatrix} 1 & x_0 & \dots & x_0^{m-1} & x_0^m \\ 1 & x_1 & \dots & x_1^{m-1} & x_1^m \\ \vdots & & & & \\ 1 & x_m & \dots & x_m^{m-1} & x_m^m \end{pmatrix}}_{V} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_m). \end{pmatrix}.$$

The matrix V with the special structure containing the powers of the nodes is called a Vandermonde matrix.

Remark 1 For m+1 distinct nodes the Vandermonde matrix is non-singular and there exists a unique interpolating polynomial P of degree less or equal to m with $P(x_i) = f(x_i), i = 0, 1, ..., m$.

Remark 2 Because the Vandermonde matrix is ill conditioned this method is not recomended for computing the Lagrange polynomial.

Definition 3 A solution of (LIP) is called **Lagrange interpolation polynomial**, denoted by $L_m f$.

Remark 4 We have $(L_m f)(x_i) = f(x_i), i = 0, 1, ..., m.$

 $L_m f \in \mathbb{P}_m$ (\mathbb{P}_m is the space of polynomials of at most m-th degree).

The Lagrange interpolation polynomial is given by

$$(L_m f)(x) = \sum_{i=0}^{m} \ell_i(x) f(x_i),$$
 (3)

where by $\ell_i(x)$ denote the Lagrange fundamental interpolation polynomials.

We have

$$u(x) = \prod_{j=0}^{m} (x - x_j),$$

$$u_i(x) = \frac{u(x)}{x - x_i} = (x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_m) = \prod_{\substack{j=0 \ j \neq i}}^{m} (x - x_j)$$

and

$$\ell_i(x) = \frac{u_i(x)}{u_i(x_i)} = \frac{(x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_m)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_m)} = \prod_{\substack{j=0\\j \neq i}}^m \frac{x - x_j}{x_i - x_j},$$
(4)

for i = 0, 1, ..., m.

How do we know that the interpolation polynomial expanded in powers of x as in (2) and the polynomial constructed as in (3) represent the same polynomial?

Assume we have computed two interpolating polynomials Q(x) and P(x) each of degree m such that

$$Q(x_j) = f(x_j) = P(x_j), \quad j = 0, ..., m.$$

Then we can form the difference

$$d(x) = Q(x) - P(x),$$

that is a polynomial of degree less or equal to m.

Because of the interpolation property of P and Q, we have

$$d(x_j) = Q(x_j) - P(x_j) = 0, \quad j = 0, ..., m.$$

A non-zero polynomial of degree less than or equal to m cannot have more than m zeros. But d has m+1 distint zeros, hence it must be indentically zero, so Q(x) = P(x).

Proposition 5 We also have

$$\ell_i(x) = \frac{u(x)}{(x - x_i)u'(x_i)}, \ i = 0, 1, ..., m.$$
 (5)

Proof. We have $u_i(x) = \frac{u(x)}{x - x_i}$, so $u(x) = u_i(x)(x - x_i)$. We get $u'(x) = u_i(x) + (x - x_i)u'_i(x)$, whence it follows $u'(x_i) = u_i(x_i)$. So, as

$$\ell_i(x) = \frac{u_i(x)}{u_i(x_i)}$$

we get

$$\ell_i(x) = \frac{u_i(x)}{u'(x_i)} = \frac{u(x)}{(x - x_i)u'(x_i)}, \ i = 0, 1, ..., m.$$
 (6)

Theorem 6 The operator L_m is linear.

Proof.

$$L_{m}(\alpha f + \beta g)(x) = \sum_{i=0}^{m} \ell_{i}(x)(\alpha f + \beta g)(x_{i}) = \sum_{i=0}^{m} [\ell_{i}(x)\alpha f(x_{i}) + \ell_{i}(x)\beta g(x_{i})]$$

= $\alpha(L_{m}f)(x) + \beta(L_{m}g)(x),$

SO

$$L_m(\alpha f + \beta g) = \alpha L_m f + \beta L_m g, \quad \forall f, g : [a, b] \to \mathbb{R} \text{ and } \alpha, \beta \in \mathbb{R}.$$

Example 7 1) Consider the nodes x_0, x_1 and a function f to be interpolated.

We have m = 1,

$$u(x) = (x - x_0)(x - x_1)$$

 $u_0(x) = x - x_1$
 $u_1(x) = x - x_0$

$$(L_1 f)(x) = l_0(x) f(x_0) + l_1(x) f(x_1)$$

= $\frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1),$

which is the line passing through the given points $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

Example 8 Find the Lagrange polynomial that interpolates the data in the following table and find the approximative value of f(-0.5).

Sol. We have m = 2. The Lagrange polynomial is

$$(L_2f)(x) = l_0(x)f(x_0) + l_1(x)f(x_1) + l_2(x)f(x_2).$$

u(x) = (x + 1)(x - 0)(x - 3) and it follows

$$l_0(x) = \frac{(x-0)(x-3)}{(-1-0)(-1-3)} = \frac{1}{4}x(x-3)$$

$$l_1(x) = \frac{(x+1)(x-3)}{(0+1)(0-3)} = -\frac{1}{3}(x+1)(x-3)$$

$$l_2(x) = \frac{(x+1)(x-0)}{(3+1)(3-0)} = \frac{1}{12}x(x+1),$$

The polynomial is

$$(L_2f)(x) = 2x(x-3) + \frac{2}{3}(x+1)(x-3) + \frac{1}{3}x(x+1).$$

and $(L_2f)(-0.5) = 2.25$.

Remark 9 Disadvantages of the form (3) of Lagrange polynomial: requires many computations and if we add or substract a point we have to start with a complete new set of computations.

Some calculations allow us to reduce the number of operations:

$$(L_m f)(x) = \frac{(L_m f)(x)}{1} = \frac{\sum_{i=0}^{m} l_i(x) f(x_i)}{\sum_{i=0}^{m} l_i(x)}.$$

Dividing the numerator and the denominator by

$$u(x) = \prod_{i=1}^{m} (x - x_i)$$

and denoting

$$A_i = \frac{1}{\prod_{j=0, j \neq i}^{m} (x_i - x_j)} = \frac{1}{u_i(x_i)}$$

one obtains

$$(L_m f)(x) = \frac{\sum_{i=0}^{m} \frac{A_i f(x_i)}{x - x_i}}{\sum_{i=0}^{m} \frac{A_i}{x - x_i}},$$
(7)

called the barycentric form of Lagrange interpolation polynomial.

Remark 10 Formula (7) needs half of the number of arithmetic operations needed for (3) and it is easier to add or substract a point.

The Lagrange polynomial generates the Lagrange interpolation formula

$$f = L_m f + R_m f,$$

where $R_m f$ denotes the remainder (the error).

Theorem 11 Let $\alpha = \min\{x, x_0, ..., x_m\}$ and $\beta = \max\{x, x_0, ..., x_m\}$. If $f \in C^m[\alpha, \beta]$ and $f^{(m)}$ is derivable on (α, β) then $\forall x \in (\alpha, \beta)$, there exists $\xi \in (\alpha, \beta)$ such that

$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi).$$
 (8)

Proof. Consider

$$F(z) = \begin{vmatrix} u(z) & (R_m f)(z) \\ u(x) & (R_m f)(x) \end{vmatrix}.$$

From hypothesis it follows that $F \in C^m[\alpha, \beta]$ and there exists $F^{(m+1)}$ on (α, β) .

We have

$$F(x) = 0, F(x_i) = 0, i = 0, 1, ..., m,$$

as

$$u(x_i) = \prod_{j=0}^{m} (x_i - x_j) = 0$$

and

$$(R_m f)(x_i) = f(x_i) - (L_m f)(x_i) = f(x_i) - f(x_i) = 0,$$

so F has m+2 distinct zeros in (α,β) . Applying successively the Rolle theorem it follows that: F has m+2 zeros in $(\alpha,\beta) \Rightarrow F'$ has at least m+1 zeros in $(\alpha,\beta) \Rightarrow ... \Rightarrow F^{(m+1)}$ has at least one zero in (α,β)

So $F^{(m+1)}$ has at least one zero $\xi \in (\alpha, \beta), F^{(m+1)}(\xi) = 0.$

We have

$$F^{(m+1)}(z) = \begin{vmatrix} u^{(m+1)}(z) & (R_m f)^{(m+1)}(z) \\ u(x) & (R_m f)(x) \end{vmatrix},$$

with

$$u(z) = \prod_{i=0}^{m} (z - z_i) \Rightarrow u^{(m+1)}(z) = (m+1)!,$$

and

$$(R_m f)^{(m+1)}(z) = (f - (L_m f))^{(m+1)}(z)$$

= $f^{(m+1)}(z) - (L_m f)^{(m+1)}(z) = f^{(m+1)}(z)$

(as, $L_m f \in \mathbb{P}_m$).

We have $F^{(m+1)}(\xi) = 0$, for $\xi \in (\alpha, \beta)$, so

$$F^{(m+1)}(\xi) = \begin{vmatrix} (m+1)! & f^{(m+1)}(\xi) \\ u(x) & (R_m f)(x) \end{vmatrix} = 0,$$

i.e.,
$$(m+1)!(R_m f)(x) = u(x)f^{(m+1)}(\xi)$$
,

whence $(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi)$.

Corolar 12 If $f \in C^{m+1}[a,b]$ then

$$|(R_m f)(x)| \le \frac{|u(x)|}{(m+1)!} ||f^{(m+1)}||_{\infty}, \quad x \in [a,b]$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm, and $\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$.