Micro-Instabilities of Tokamak Edge Pedestal

万维钢

University of Colorado, Boulder

Collaborators:

Y. Chen and S.E. Parker, University of Colorado-Boulder

R. Groebner and P. Snyder, General Atomics

Z. Yan, University of Wisconsin-Madison

中科院等离子体研究所,合肥 2011.12

Outline

- What is the dominant linear micro-instability of edge pedestal?
 - Three DIII-D experimental profiles.
 - Global gyrokinetic particle simulations.
- A high n, low frequency mode caused mostly by electron temperature gradient.
 - Agrees with our and other flux tube simulations.
 - NOT expected Kinetic Ballooning Mode
- A low n, high frequency mode caused mostly by density gradient.
 - Only seen in global simulations.
 - Likey to be peeling-ballooning mode.

Edge pedestal evolution between ELMs

After an ELM cycle, pedestal density builds up within 10 ms.

Callen et al., Nucl. Fusion (2010.)

Two questions:

- 1. How does the pedestal build up?
- 2. When does the pedestal collapse?

A typical DIII-D shot (131997) profile

Predicting the pedestal: the EPED1 model

- Pedestal height and width rise together until an ELM is triggered.
- EPED1 model: P. Snyder et al. PoP 16, 056118 (2009)
- Pedestal height: peeling-ballooning stability
 - Well studied with MHD
 - Accurately reproduce the observed pedestal height at a given pedestal width.
- Pedestal width: kinetic ballooning mode (KBM)?
 - Used in EPED1 model, but not confirmed by experiments and simulations yet.
 - Requires electromagnetic kinetic simulations.

Looking for kinetic ballooning mode...

- Driven by ion temperature gradient
- Long wave length, intermediate n
- Electromagnetic
- Sudden change of real frequency
- Propagates in ion diamagnetic direction
- Even parity electrostatic potential in the ballooning structure.

Falchetto 2003, GK simulation at core.

Phys. Plasmas, Vol. 10, No. 5, May 2003

1432

KBM @ DIII-D edge: experimental clues

- DIII-D H-mode: Z. Yan et al. PoP 18, 056117 (2011)
 - A high frequency electron mode
 - A low frequency ion mode
 - Seems to be driven by electron pressure and density gradient
- DIII-D <u>quiescent H-mode</u>: Z. Yan et al. PRL 107, 055404 (2011)
 - An ion mode dominates
 - Low frequency
 - Intermediate n
 - Long wave length
 - high decorrelation rates
 - Driven by pressure gradient
 - Very likely to be KBM

GENE Simlations of ASDEX Upgrade Edge

- Fluxtube simulations
 - No Er
 - Sees the dominant linear instability
- Top: ITG and ETG
- Steep gradient region: micro-tearing, ITG and ETG
- Finite kx observed.
- No KBM found.

FIG. 6. (Color online) Growth rate and frequency spectra at ϱ_{pol} =0.93. Negative frequencies are indicated by (-).

D. Told et al., PoP 15, 102306 (2008)

GS2 Simulations of the MAST Edge

- Dickinson et al. PPCF 53, 115 010 (2011)
- Dickinson et al. submitted to PRL
- Top: likely micrto-tearing mode, but high k
- Steep gradient region: likely KBM
- Instabilities are distinguished by parity.

What about DIII-D H-mode simulations?

GEM is a comprehensive GK turbulence code

The GEM Code

- Gyrokinetic, particle-in-cell, electromagnetic, with drift-kinetic electrons, coarse-graining procedure
- Radially global with Miller equilibrium, ITERDB
- $-\delta f$
- Multiple-ion species
- This simulation
 - Global and flux tube
 - Collisionless and collisional
 - Edge: r/a=[0.899, 0.999]

[Y. Chen et al, J. Comput. Phys., **220**, 839 (2007)]. [Y. Chen et al, J. Comput. Phys., **189**, 463 (2003)].

I. flux tube simulation

- Local density, temperature and q, keep the gradients
- With or without E_r
- Periodic BC in r
- Electromagnetic (with experimental β) and electrostatic (with low β) runs

A radial scan with $k_y \rho_i = 0.25$ shows the steep gradient region is more unstable

Higher pressure gradient, higher growth rate

Simulations at ψ_N =0.98

A set of 8 equilibria, all from DIII-D shot 131997 time 3011

(1). Pedestal top $\rho_N = 0.94$: ITG

- Electrostatic.
- The linear mode propagates in the ion diamagnetic direction.
- A finite k_x ballooning mode structure
- $\eta_i > \eta_e$ in this region

GEM and GYRO have good agreement of growth rate in this region

Top of pedestal

Results for GEM, GYRO (eigen solver) and HD7 (eigen solver) linear calculations

A high k_v study of pedestal top

 Ψ =0.94, r/a=0.9334

- The mode remains electrostatic even for large k_y.
 - Not micro-tearing mode
 - ETG?
- Linear growth rate becomes higher for higher k_y, but higher k_y mode may saturate nonlinearly, not known yet.
- Into the limit of GK simulation.
 - Convergence test done with smaller L_v.

Φ(x,z) remains even parity in z, like ITG/KBM

 $k_{\nu}\rho_{D}$ =0.2, ψ =0.94

$$z = q_0 R_{maj} \theta$$

... even for high k

$$K_{\nu}\rho_{D}=2., \ \psi=0.94$$

And k_x gets bigger too.

... and in the steep gradient region

$$k_{v}\rho_{D}=0.2, \psi=0.98$$

(2). Steep gradient region ρ_N =0.975: an electron mode

- High k mode may propagates in the ion diamagnetic direction without ExB drift
 - ExB drift makes all modes go in electron direction
- The mode is significantly destabilized by electron temperature gradient
 - ion temperature gradient has little effect.

GEM and GYRO have some agreement in this region too

Results from GYRO, eigenmode calculations

Mode 2 here are comparable with GEM.

E, makes a Doppler shift of real frequency

Little effect on the growth rate.

The mode is driven by density and electron temperature gradients

- A test of pressure gradients.
- Keep density, temperatures, and density gradient.
- Keep total pressure gradient.

$$\nabla T_{el} = g \nabla T_e$$

$$\nabla T_{il} = \nabla T_i + (1-g) \nabla T_e$$

- <u>Electron temperature gradient</u> is more effective than ion temperature gradient.
- Density gradient is also important.

Flux tube conclusions

- Pedestal top:
 - Low k_y : ITG
 - Finite k_x
 - High k_y : micro-tearing? ETG?
- Steep gradient region:
 - Electrostatic
 - Even parity for Φ
 - Propagates in the electron direction for low k and in the ion direction for high $k_{_{V}}$
 - Driven by density and electron temperature gradients.
- Results agree well with GYRO.

II. Global Simulations

Three very different DIII-D profiles

Er NOT necessarily balances grad P

Experimental data

$$E_r = \frac{1}{en_i} \frac{\partial}{\partial r} P_i + (u \times B)_r$$

XGC0 simulation results

 E_r may balance grad P in full-f neoclassical GK simulations

Two kinds of instabilities

A low n, high frequency mode

$$\omega_r \sim \omega_A$$

A high n, low frequency mode

$$\omega_r \ll \omega * i$$

The global cross sections of the two modes

Both appear at the steep gradient region

- Density and temperature profiles smoothed at the boundary.
- The E_r shear and magnetic shear also affect the peak of turbulence.
- The high n mode has finite I_x structure.
- Preliminary nonlinear runs show similar phenomenon.

The ballooning structure

Shot 131997, n=56

- A clear even parity
 p ballooning
 structure.
- Finite k_x for high n modes
- Seen in both global and flux tube runs.

Effects of E_r , β , and collision

- The low n mode is electromagnetic, the high n mode is electrostatic.
- E_r causes a Doppler shift
 of the real frequency
 towards the electron
 diamagnetic drift direction.
- Collision has little effect for the high n mode but may bring the low n mode down to low frequency.

The high frequency mode has a β threshold

- A critical β exists as a threshold for the low n mode, for both frequency and growth rate.
- A phenomenon looks like KBM, except the mode propagates in the electron diamagnetic drift direction.

A pressure gradient scan of the two modes

DEFINITION of MODIFIED TANHFIT

The low n, high frequency mode is mostly destabilized by density gradient

Real frequency drops down to the "high n mode" level when density gradient is small enough.

Same trend seen for all three shots.

The high n, low frequency mode is mostly destabilized by electron temperature gradient

- Electron temperature gradient is the strongest drive in all three shots.
- The effects of density and temperature gradients vary for different shots.

Compare to flux tube simulations

- The global results agree well with flux tube for the high n mode.
 - And our flux tube results agree well with GYRO (see the other poster of us in the same session.)
- The low n mode is only found in global simulations.

Flux tube simulation of the low n mode sees a much lower growth rate

The low n mode is very sensitive to q

We fit an analytical *q* profile and vary the "width" of it near the turning point.

High frequency modes only found in the *q* profiles in black dashed lines. ==> it is caused by the sudden change of magnetic shear.

Conclusions

- In global gyrokinetic particle simulations, two kinds of modes are found with different experimental H-mode profiles.
- The high-n, low frequency mode
 - Mostly destabilized by electron temperature gradient.
 - Agrees well with flux tube simulations.
 - Electrostatic
- The low-n, high frequency mode
 - Mostly destabilized by density gradient.
 - Electromagnetic.
 - Only seen in global simulations.
 - Caused by the sudden change of magnetic shear.