TCC- SELF BALANCING ROBOT USING PID

S.B.R-Ideias

Ideia principal:

O projeto tem como objetivo principal desenvolver um robô que seja capaz de se equilibrar sozinho em duas rodas, mantendo a estabilidade mesmo diante de pequenas inclinações ou movimentos externos. Junto a isso, será criada uma interface gráfica (dashboard) para visualização dos dados do sistema em tempo real e ajuste dos parâmetros de controle de forma prática. Em uma segunda etapa, será implementado um controle remoto sem fio, permitindo ao usuário comandar os movimentos do robô com mais liberdade.

Componentes base Robô:

□ Componentes TCC

Componentes:	Escolhidos:	
1x-Microcontrolador	ESP32	
2x-Motor	NEMA 17 - 1.5A - 420 mN.m	
2x-Driver Motor	DRV8825	
1x-Sensor IMU	MPU6050	
1x-Bateria 12V	Makita BL1016	
1x-Conversor 12v-5v	???????	
1x-Switch geral/bateria	???????	
Estrutura/Chassi	Impresso 3D	
2x-Rodas	Impresso 3D???Comprar pronto	

Peso componentes:620g -VAI AUMENTAR

COLOCAR TABELA COM PESO DOS COMPONENTES

========MOTORES=========

Nema 17 420 mN.m

VREF:

70% de 1.5a = 1,05a

 $Vref = 1,05 A \times 0,5 = 0,525 V$

VREF motores: 0.5v

========BATER|A==========

1. Identificação do Componente - Bateria Makita BL1016

2. Especificações Técnicas da Bateria

Modelo: Makita BL1016

Tipo: Íon de lítio (Li-ion)

Tensão nominal: 12V

Capacidade: 1.5Ah

Energia total: 16,2Wh

Circuito de proteção (BMS): Sim

Contra sobrecarga

Contra superaquecimento

o Contra descarga profunda

Dimensões: 87 x 64 x 37 mm

Peso: 210 g

Tempo de recarga: Aproximadamente 30 minutos (com carregador rápido)

Indicador de carga: Sim

3. Justificativa da Escolha da Bateria

A escolha da bateria Makita BL1016 se justifica por apresentar uma série de vantagens:

Segurança: Presença de circuito de proteção integrado (BMS), fundamental para evitar falhas elétricas

Eficiência: Energia suficiente para alimentar o sistema por um período viável de teste e operação

Portabilidade: Tamanho e peso reduzidos, ideais para aplicações embarcadas

Compatibilidade: Fácil acesso a conectores e carregadores, dada a ampla utilização na indústria

4. Cálculo de Consumo do Sistema

Componente	Tensão Operacional	Corrente Estimada
ESP32	3.3V (via regulador)	150 mA (pico 300 mA)
2x DRV8825 + motores	12V	2.4 A (pico), 1.5 A (limitado)

Gasto extra estimado (sensores, LEDs etc.): ~50 mA

Total de corrente estimada (otimizada): ~1.8 A @ 12V

5. Cálculo de Autonomia

Energia disponível: $1.5 \text{ Ah} \times 12 \text{ V} = 18 \text{ Wh (nominal)}$

Tempo de operação:

Tempo=1.5Ah1.8A \approx 0.83h \approx 50min\text{Tempo} = \frac{1.5\text{Ah}}{1.8\text{A}} \approx 0.83\text{h} \approx 50\text{min}

Resultado: Autonomia estimada de **45 a 60 minutos**, dependendo do perfil de uso dos motores e eficiência dos conversores.

=========CALCULOS==========

~

Como encontrar o Centro de Massa?

1. Método Teórico (por cálculo)

Se você conhece as massas e posições de cada parte do robô (bateria, motores, estrutura), dá pra calcular:

$$x_{cm} = rac{\sum m_i \cdot x_i}{\sum m_i}$$

Onde:

- $m_i o$ massa de cada parte
- ullet $x_i
 ightarrow ext{distância}$ da base (ou outro ponto de referência)
- Exemplo:
- Estrutura: 500g a 10 cm
- Motores: 300g a 15 cm
- Bateria: 400g a 20 cm

$$x_{cm} = rac{(500 imes 10) + (300 imes 15) + (400 imes 20)}{500 + 300 + 400}$$

Depois é só calcular!

=========IDEIAS===========

Software:

- -Interface(Dashboard) onde dê pra visualizar dados e controlar parâmetros(ki,kd,kp)
- -Gráfico plotando a ação de cada uma dos controle P I D sobre o robô
- -Opção de calibrar o sensor(Talvez)

_

Hardware:

-Controle remoto para controlar o robô andar(ESP-NOW(controle universal))