This is an exploration notebook of the spectroscopic reshifts in the 18'x18' area around the Musket Ball Cluster.

```
In [19]: from __future__ import division
    import tools
    import CAT
    import ds9tools
    import cosmo
    # improve the dpi of imbeded figures
    matplotlib.rcParams['savefig.dpi'] = 120
```

User Inputs

```
In [2]: # redshift catalog
        catalog = '/Users/dawson/SkyDrive/Research/Clusters/DLSCL09162953/Spec z/2013catalog/
        # Approximate Cluster redshift range
        z_range = (0.52,0.55) #same used for 2012 analysis
        z ttype = 'z'
        # using trace coordinates since very percise spatial accuracy
        # is not needed. Also don't need to worry about object image
        # properties
        ra_ttype = 'ra_trace'
        dec ttype = 'dec trace'
        # System center (approximate RA and Dec)
        sys_center = (139.05, 29.85)
        # galaxy density centers for north and south subclusters
        # see 2013 Subcluster Centers OneNote
        north center = (139.04767, 29.865626)
        south_center = (139.06686,29.82093)
```

Program

```
In [3]: # read in the catalog
    cat = tools.readcatalog(catalog,False)
    key = tools.readheader(catalog)
    # assign parameter arrays
    ra = cat[:,key[ra_ttype]]
    dec = cat[:,key[dec_ttype]]
    z = cat[:,key[z_ttype]]
```

```
In [20]: # Create a redshift histogram of all spectroscopic galaxies
CAT.zhist(catalog, (ra_ttype,dec_ttype,z_ttype), sys_center, zbinwidth=500, zrange=(0)
```



```
In [5]: # create region files for foreground, cluster and background spectroscopic galaxies
    mask_z_fore = z < z_range[0]
    mask_z_cluster = numpy.logical_and(z >= z_range[0], z <= z_range[1])
    mask_z_back = z > z_range[1]
```

255 foreground galaxies with spectroscopic redshift 309 cluster galaxies with spectroscopic redshift

210 background galaxies with spectroscopic redshift

```
In [7]: # parse the associated parameter arrays
    ra_fore = ra[mask_z_fore]
    dec_fore = dec[mask_z_fore]
    z_fore = z[mask_z_fore]
    ra_cluster = ra[mask_z_cluster]
    dec_cluster = dec[mask_z_cluster]
    z_cluster = z[mask_z_cluster]
    ra_back = ra[mask_z_back]
    dec_back = dec[mask_z_back]
    z_back = z[mask_z_back]
```

Subcluster Redshift Histograms

North Subcluster

South Subcluster


```
In [23]: # create a redshift map of the cluster redshifts
    fig = pylab.figure()
    pylab.scatter(ra_cluster,dec_cluster,s=20,c=z_cluster,marker='o',linewidths=0,alpha=5
    xlim = pylab.xlim()
    pylab.xlim((xlim[1],xlim[0]))
    pylab.xlabel('RA')
    pylab.ylabel('Dec')
    cbar = pylab.colorbar()
    cbar.set_label('z')
    pylab.savefig('redshiftmap')
```


- In [24]: # create ds9 regions files
 ds9tools.pointregions('foreground',ra_fore,dec_fore,style='circle',color='blue',size=
 ds9tools.pointregions('cluster',ra_cluster,dec_cluster,style='diamond',color='green',
 ds9tools.pointregions('background',ra_back,dec_back,style='circle',color='red',size=1
- In [25]: # create a distinction between the lower redshift cluster members
 # and the higher redshift cluster members
 mask_low = numpy.logical_and(z>=0.52,z<0.5335)
 mask_high = numpy.logical_and(z>=0.5335,z<0.55)
 ds9tools.pointregions('cluster_lowz',ra[mask_low],dec[mask_low],style='diamond',color ds9tools.pointregions('cluster highz',ra[mask high],dec[mask high],style='diamond',color</pre>

z/2013catalog/RedshiftCatalog_pythonfmt.txt

readcatalog: read in /Users/dawson/SkyDrive/Research/Clusters/DLSCL09162953/Spec z/2013catalog/RedshiftCatalog_pythonfmt.txt containing 774 rows and 20 columns of data

Cluster central redshift estimate converged to 0.53148 after 2 iterations. Cluster redshift results; upper and lower 1sigma confidence limits are quoted:

Center Lower Upper Units

For galaxies with r < 0.5 Mpc

Redshift 0.53148 0.53092 0.53206

Velocity Dispersion 854 811 923 km/s

readcatalog: reading in /Users/dawson/SkyDrive/Research/Clusters/DLSCL09162953/Spec z/2013catalog/RedshiftCatalog pythonfmt.txt

readcatalog: read in /Users/dawson/SkyDrive/Research/Clusters/DLSCL09162953/Spec z/2013catalog/RedshiftCatalog_pythonfmt.txt containing 774 rows and 20 columns of data

Cluster central redshift estimate converged to 0.53431 after 2 iterations. Cluster redshift results; upper and lower 1sigma confidence limits are quoted:

Center Lower Upper Units

For galaxies with r < 0.5 Mpc

Redshift 0.53431 0.53367 0.53497

Velocity Dispersion 761 692 873 km/s

These results hardly vary from the results of Dawson et al. (2012), and are well within the previous errors that I don't see much use in redoing the analysis.

In []:	