GCE August, 2017

Jiamin JIAN

Exercise 1:

Let h_n be a sequence of non-negative, borel measurable functions on the interval (0,1) such that $h_n \to 0$ in $L^1((0,1))$.

- (i) Show $\sqrt{h_n} \to 0$ in $L^1((0,1))$.
- (ii) Given an example to show that h_n^2 need not converge to zero in $L^1((0,1))$.
- (iii) If g_n is in $L^1(\mathbb{R})$ such that $|g_n|^{\frac{1}{2}}$ is in $L^1(\mathbb{R})$, and g_n converges to zero in $L^1(\mathbb{R})$ as n tends to infinity, does $|g_n|^{\frac{1}{2}}$ converges to zero in $L^1(\mathbb{R})$?

Solution:

(i) We want to show that $\int_0^1 |\sqrt{h_n} - 0| d\mu \to 0$ as $n \to \infty$. Since $h_n \to 0$ in $L^1((0,1))$ and by the Hölder inequality, we have

$$\int_{0}^{1} |\sqrt{h_{n}} - 0| d\mu \leq \left(\int_{0}^{1} |(\sqrt{h_{n}})^{2}| d\mu \right)^{\frac{1}{2}} \left(\int_{0}^{1} 1^{2} d\mu \right)^{\frac{1}{2}}$$

$$= \left(\int_{0}^{1} h_{n} d\mu \right)^{\frac{1}{2}} \left(\int_{0}^{1} 1 d\mu \right)^{\frac{1}{2}}$$

$$= \left(\int_{0}^{1} |h_{n} - 0| d\mu \right)^{\frac{1}{2}}.$$

So when n goes to infinity, we have $\int_0^1 |\sqrt{h_n} - 0| d\mu \to 0$. Thus we know that $\sqrt{h_n} \to 0$ in $L^1((0,1))$.

(ii) For $n \in \mathbb{N}$, let

$$h_n(x) = n^{\frac{3}{2}} x \mathbb{I}_{\left[\frac{1}{-2}, \frac{1}{n}\right)}(x).$$

Then we have

$$\int_0^1 n^{\frac{3}{2}} x \mathbb{I}_{\left[\frac{1}{n^2}, \frac{1}{n}\right)}(x) \, dx = n^{\frac{3}{2}} \int_{\frac{1}{n^2}}^{\frac{1}{n}} x \, dx = \frac{1}{2} \left(\frac{1}{\sqrt{n}} - \frac{1}{n^{\frac{5}{2}}}\right),$$

when $n \to +\infty$, we get $||h_n||_1 \to 0$, so we know that $h_n \to 0$ in $L^1((0,1))$. But for the $h_n^2(x)$, we have

$$\int_0^1 n^3 x^2 \mathbb{I}_{\left[\frac{1}{n^2}, \frac{1}{n}\right)}(x) \, dx = n^3 \int_{\frac{1}{n^2}}^{\frac{1}{n}} x^2 \, dx = \frac{1}{3} n^3 \left(\frac{1}{n^3} - \frac{1}{n^6}\right) = \frac{1}{3} - \frac{1}{3n^3}.$$

When n tends to infinity, $\int_0^1 n^3 x^2 \mathbb{I}_{\left[\frac{1}{n^2},\frac{1}{n}\right)}(x) dx \to \frac{1}{3}$, which is not goes to 0. So, we know that $h_n^2(x)$ don't converge to zero in $L^1((0,1))$.

The counter example on above is hard and not elegant. For all $n \in \mathbb{N}$, let $h_n(x) = n1_{(0,1/n^2)}$, then h_n be a sequence of non-negative, borel measurable functions on the interval (0,1) and

$$||h_n||_1 = \int_0^1 n 1_{(0, \frac{1}{n^2})}(x) dx = n \frac{1}{n^2} = \frac{1}{n} \to 0$$

as $n \to \infty$, thus $h_n \to 0$ in $L^1((0,1))$. But for each $n \in \mathbb{N}$,

$$\int_0^1 h_n^2(x) \, dx = \int_0^1 n^2 1_{\left(0, \frac{1}{n^2}\right)} \, dx = n^2 \frac{1}{n^2} = 1.$$

Therefore h_n^2 does not converges to 0 in $L^1((0,1))$.

(iii) No, $|g_n|^{\frac{1}{2}}$ need not converge to zero in $L^1(\mathbb{R})$. We can give a counter example. Suppose $g_n(x) = \frac{1}{x^2} \mathbb{I}_{[n,n^2]}(x)$, then we have

$$\int_{\mathbb{R}} |g_n(x)| \, dx = \int_n^{n^2} \frac{1}{x^2} \, dx = \frac{1}{n} - \frac{1}{n^2}.$$

When n goes to infinity, we have $||g_n(x)||_1 \to 0$, so $g_n(x)$ is in $L^1(\mathbb{R})$ and g_n converges to zero in $L^1(\mathbb{R})$. For the $|g_n|^{\frac{1}{2}} = \frac{1}{x} \mathbb{I}_{[n,n^2]}(x)$, for any $n \in \mathbb{N}$ we have

$$\int_{\mathbb{R}} |g_n(x)|^{\frac{1}{2}} dx = \int_n^{n^2} \frac{1}{x} dx = \ln n.$$

When n goes to infinity, we have $\int_{\mathbb{R}} |g_n(x)|^{\frac{1}{2}} dx \to +\infty$, so $|g_n|^{\frac{1}{2}}$ is in $L^1(\mathbb{R})$ for each $n \in \mathbb{N}$, but g_n don't converges to zero in $L^1(\mathbb{R})$.

Another counter example is as follows. For each $n \in \mathbb{N}$, let

$$g_n(x) = \frac{1}{n^2} 1_{[0,n]},$$

then

$$\int_{\mathbb{R}} |g_n| = \int_{\mathbb{R}} \frac{1}{n^2} 1_{[0,n]}(x) \, dx = \frac{1}{n} \to 0$$

as $n \to \infty$. Thus $g_n \in L^1(\mathbb{R})$ and g_n converges to 0 in $L^1(\mathbb{R})$ as n goes to infinity. And note that

$$\int_{\mathbb{R}} |g_n|^{\frac{1}{2}} = \int_{\mathbb{R}} \frac{1}{n} 1_{[0,n]}(x) \, dx = 1 < \infty,$$

thus $|g_n|^{1/2} \in L^1(\mathbb{R})$. But we have that $|g_n|^{1/2}$ does not converges to 0 in $L^1(\mathbb{R})$.

Exercise 2:

Let f be in $L^{\infty}((0,1))$. Show that $||f||_p \to ||f||_{\infty}$ as $p \to \infty$.

Solution:

Since $f \in L^{\infty}((0,1))$ and $\mu((0,1)) = 1 < \infty$, then for all $p \ge 1$,

$$\int_{(0,1)} |f|^p d\mu \ge ||f||_{\infty}^p \mu((0,1)) < \infty,$$

thus $f \in L^p((0,1))$. Let

$$A = \{x \in (0,1) : f(x) > ||f||_{\infty} - \epsilon\},\$$

by the definition of $||f||_{\infty}$, we know that $\mu(A) > 0$. For all $p \in [1, \infty)$, since

$$||f||_{p} = \left(\int_{(0,1)} |f|^{p} d\mu \right)^{\frac{1}{p}} \ge \left(\int_{A} |f|^{p} d\mu \right)^{\frac{1}{p}}$$

$$\ge \left((||f||_{\infty} - \epsilon)^{p} \mu(A) \right)^{\frac{1}{p}} = (||f||_{\infty} - \epsilon)(\mu(A))^{\frac{1}{p}},$$

and since $\mu(A) \leq 1$, we have

$$\liminf_{p \to +\infty} ||f||_p \ge \liminf_{p \to +\infty} (||f||_{\infty} - \epsilon) (\mu(A))^{\frac{1}{p}} = ||f||_{\infty} - \epsilon.$$

By the arbitrary of $\epsilon > 0$, we have

$$\liminf_{p \to +\infty} ||f||_p \ge ||f||_{\infty}.$$

On the other hand, as $|f(x)| \leq ||f||_{\infty}$ for almost every $x \in (0,1)$, then for $1 \leq q < p$, since f(x) is in $L^p((0,1))$ and f(x) is in $L^q((0,1))$, we have

$$||f||_{p} = \left(\int_{(0,1)} |f|^{p} d\mu \right)^{\frac{1}{p}}$$

$$= \left(\int_{(0,1)} |f|^{q} |f|^{p-q} d\mu \right)^{\frac{1}{p}}$$

$$\leq (||f||_{\infty})^{\frac{p-q}{p}} (||f||_{q})^{\frac{q}{p}}.$$

Since $||f||_q < +\infty$, then when $p \to +\infty$, we know that

$$\limsup_{p \to +\infty} ||f||_p \le ||f||_{\infty}.$$

We also can get $\limsup_{p\to +\infty} \|f\|_p \leq \|f\|_\infty$ directly as follows

$$||f||_{p} = \left(\int_{(0,1)} |f|^{p} d\mu \right)^{\frac{1}{p}}$$

$$\leq \left(\int_{(0,1)} ||f||_{\infty}^{p} d\mu \right)^{\frac{1}{p}}$$

$$\leq ||f||_{\infty} (\mu((0,1)))^{\frac{1}{p}}.$$

Thus we have

$$\limsup_{p \to +\infty} ||f||_p \le ||f||_\infty \le \liminf_{p \to +\infty} ||f||_p,$$

then we know that $||f||_p \to ||f||_\infty$ as $p \to \infty$.

Exercise 3:

Let a_n be a sequence in [0,1] such that the set $S=\{a_n:n=1,2,\dots\}$ is dense in [0,1]. Set

$$f(x) = \sum_{n=1}^{\infty} \frac{|x - a_n|^{-\frac{1}{2}}}{n^2}.$$

- (i) Show that f is in $L^1([0,1])$.
- (ii) Is f in $L^2([0,1])$?
- (iii) Is there a continuous function

$$g:[0,1]\setminus S\to\mathbb{R}$$

such that f = g almost everywhere?

Solution:

(i) We check $f \in L^1([0,1])$ by definition, since

$$\int_{0}^{1} \sum_{n=1}^{\infty} \frac{|x - a_{n}|^{-\frac{1}{2}}}{n^{2}} dx = \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{0}^{1} |x - a_{n}|^{-\frac{1}{2}} dx$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left[\int_{0}^{a_{n}} (a_{n} - x)^{-\frac{1}{2}} dx + \int_{a_{n}}^{1} (x - a_{n})^{-\frac{1}{2}} dx \right]$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left[2(a_{n})^{\frac{1}{2}} + 2(1 - a_{n})^{\frac{1}{2}} \right]$$

and $a_n \in [0, 1]$, then we know that

$$\int_0^1 \sum_{n=1}^\infty \frac{|x - a_n|^{-\frac{1}{2}}}{n^2} dx \le 4 \sum_{n=1}^\infty \frac{1}{n^2} < +\infty$$

as $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Thus we know that $f \in L^1([0,1])$.

(ii) No, we can show that $f \notin L^2([0,1])$. For $x \in [0,1]$, we have

$$||f||_{2} = \int_{0}^{1} \left(\sum_{n=1}^{\infty} \frac{|x - a_{n}|^{-\frac{1}{2}}}{n^{2}} \right)^{2} dx$$

$$\geq \int_{0}^{1} \sum_{n=1}^{\infty} \left(\frac{|x - a_{n}|^{-\frac{1}{2}}}{n^{2}} \right)^{2} dx$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^{4}} \int_{0}^{1} |x - a_{n}|^{-1} dx.$$

To show $f \notin L^2([0,1])$, we just need to prove that $\int_0^1 |x-a_n|^{-1} dx = +\infty$. We denote $y = x - a_n$, then we have

$$\int_0^1 |x - a_n|^{-1} dx = \int_{-a_n}^{1-a_n} |y|^{-1} dy.$$

Since there exists k > 0 such that $\frac{1}{k} < a_n$, then we have $-\frac{1}{k} < 0 < 1 - a_n$ and

$$\int_0^1 |x - a_n|^{-1} dx \ge \int_{-a_n}^{-\frac{1}{k}} |y|^{-1} dy = \int_{\frac{1}{k}}^{a_n} y^{-1} dy = \ln a_n + \ln k.$$

When $k \to +\infty$, we have $\ln k + \ln a_n \to \infty$. So, we know that $\int_0^1 |x - a_n|^{-1} dx = +\infty$. Thus $||f||_2 = +\infty$, then we have $f \notin L^2([0,1])$.

(iii) To show that there is a continuous function $g:[0,1]\setminus S\to \mathbb{R}$ such that f=g almost everywhere, we just need to prove that f is continuous in $[0,1]\setminus S$. So for $x\in [0,1]\setminus S$, we want to show that: $\forall \epsilon>0, \, \exists \delta>0$ such that $\forall y\in [0,1]\setminus S$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\epsilon$. Note that

$$|f(x) - f(y)| = \left| \sum_{n=1}^{\infty} \frac{|x - a_n|^{-\frac{1}{2}}}{n^2} - \sum_{n=1}^{\infty} \frac{|y - a_n|^{-\frac{1}{2}}}{n^2} \right|$$

$$= \left| \sum_{n=1}^{\infty} \frac{1}{n^2} (|x - a_n|^{-\frac{1}{2}} - |y - a_n|^{-\frac{1}{2}}) \right|$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{n^2} ||x - a_n|^{-\frac{1}{2}} - |y - a_n|^{-\frac{1}{2}}|.$$

Since $g(x) = |x - a_n|^{-\frac{1}{2}}$ is continuous on (0,1], then $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall y \in (0,1]$ with $|x - y| < \delta$, we have

$$\left| |x - a_n|^{-\frac{1}{2}} - |y - a_n|^{-\frac{1}{2}} \right| < \frac{6}{\pi^2} \epsilon.$$

Since S is countable and dense in [0,1], then for the above ϵ and δ , $\forall y \in [0,1] \setminus S$ with $|x-y| < \delta$, we have

$$|f(x) - f(y)| \le \sum_{n=1}^{\infty} \frac{1}{n^2} ||x - a_n|^{-\frac{1}{2}} - |y - a_n|^{-\frac{1}{2}}| < \frac{\pi^2}{6} \times \frac{6}{\pi^2} \epsilon = \epsilon.$$

Thus we know that f(x) is continuous in $[0,1] \setminus S$, then f(x) is continuous almost everywhere in [0,1]. So, there exists a continuous function $g:[0,1] \setminus S \to \mathbb{R}$ such that f=g almost everywhere.

Exercise 4:

Let \mathcal{R} be the set of all rectangles $(a_1, b_1) \times (a_2, b_2)$ in \mathbb{R}^2 such that a_1, b_1, a_2, b_2 are rational numbers.

(i) Let V be an open set in \mathbb{R}^2 . Show that

$$V = \bigcup_{R \in \mathcal{R}, R \subset V} R.$$

(ii) Recall that the Borel sets of \mathbb{R}^2 are the sets in the smallest sigma algebra of \mathbb{R}^2 containing all open sets. Show that the smallest sigma algebra of \mathbb{R}^2 containing \mathcal{R} is equal to the set set of Borel sets of \mathbb{R}^2 .

Solution:

- (i) Since $\bigcup_{R \in \mathcal{R}, R \subset V} R \subset V$, to prove $V = \bigcup_{R \in \mathcal{R}, R \subset V} R$, we just need to show that $V \subset \bigcup_{R \in \mathcal{R}, R \subset V} R$. Suppose that $\vec{x} = (x_1, x_2) \in V$, since V is an open set, then there exists an open ball such that $B(\vec{x}, r) \subset V$, where r is a positive constant and it is called the radius of the ball. So we can find a rectangle $R = (a_1, b_1) \times (a_2, b_2)$, whose center is exactly \vec{x} . We denote $d((a_1, b_1), (a_2, b_2))$ is the distance between (a_1, b_1) and (a_2, b_2) . Suppose $d((a_1, b_1), (a_2, b_2)) < r$, then when know that $\vec{x} \in R$, $R \subset V$ and $R \in \mathcal{R}$. For any $x \in V$ we can do same thing, so we have $V \subset \bigcup_{R \in \mathcal{R}, R \subset V} R$. Thus we know that $V = \bigcup_{R \in \mathcal{R}, R \subset V} R$.
- (ii) We denote $\sigma(\mathcal{R})$ is the sigma algebra on \mathbb{R}^2 generated by sets in \mathcal{R} . And we denote $\mathcal{B}(\mathbb{R}^2)$ as the Borel sets of \mathbb{R}^2 . Since R is open rectangle in \mathbb{R}^2 and $\mathcal{R} = \{(a_1, b_1) \times (a_2, b_2) | a_i, b_i \in \mathbb{Q}, i = 1, 2\}$, so \mathcal{R} is the open set in \mathbb{R}^2 . Then we know that $\sigma(\mathcal{R}) \subset \mathcal{B}(\mathbb{R}^2)$. On the other hand, V is open set and by the result we get in (i), we have $V = \bigcup_{R \in \mathcal{R}, R \subset V} R$. Since the number of set R is countable, then we have $V \in \sigma(\mathcal{R})$. Thus the open sets in \mathbb{R}^2 is subset of $\sigma(\mathcal{R})$. Since $\mathcal{B}(\mathbb{R}^2)$ is generated by the open sets in \mathbb{R}^2 , then we have $\mathcal{B}(\mathbb{R}^2) \subset \sigma(\mathcal{R})$. So we can get $\mathcal{B}(\mathbb{R}^2) = \sigma(\mathcal{R})$. Then we know that the smallest sigma algebra of \mathbb{R}^2 containing \mathcal{R} is equal to the set set of Borel sets of \mathbb{R}^2 .