

Overview

- Q³Sat mission setup
- Why a CubeSat?
- Satellite design
- Choice of orbit
- Crucial parameters for high SNR and key rate
- Expected performance

Uplink Mission Setup

Why uplink?

- Simple setup on satellite
- Usable for several protocols

Why a CubeSat?

3U: 10x10x34cm, 4kg; ideal for precursor missions

Figures: CubeSat design specification sheet by CalTech and http://spaceflight.com/schedule-pricing/

DETAIL	CONT	AINERIZEI	D
PAYLOAD TYPE	3U	6U	12U
LENGTH (CM)	34.05	34.05	34.05
HEIGHT/DIA (CM)	10	10	22.63
WIDTH (CM)	10	22.63	22.63
MASS (KG)	5	10	20
PRICE-LEO	\$295	\$545	\$995
PRICE-GTO	\$915	\$1,400	\$2,750
Pricing in thousands (USD)			

CubeSat-Design

Block diagram

Preliminary CAD drawing I(Q)I

LEO Orbit Calculations I(Q)I

LEO:

- 500 km
- >30° elevation
- night only

70 000 Fotal Q.Com link duration per year (s) 60 000 CO (500 km) 50 000 SSO (500 km) 40 000 30 000 20 000 10 000 1 30 30 40 50 60 70 80 90 100 Orbit inclination (°)

→ Link duration calculations by group of Carsten Scharlemann (FH Wiener Neustadt):

Signal-to-Noise Ratio I(Q)I

$$SNR = \frac{R_s}{R_n} = \frac{AR_P(1 - e_{opt}) + \frac{1}{2}R_{acc}}{\frac{1}{2}R_{acc} + R_{opt}}$$
 > 4.8 for Bell test > 8.8 for QKD

- $R_{acc} \propto 2R_P R_{NC} \tau$
- $R_{opt} = \Lambda R_P e_{opt}$
- Λ: total loss
- R_P : pair rate
- e_{opt} : optical errors

accidental rate optical error counts

- τ: coincidence window
- R_{NC} : noise count rate

 $\Lambda \sim 60 \text{dB} \rightarrow \text{low } R_{NC}$ and short τ are crucial!

Noise Counts

Dark counts: radiation → tiny 20µm detectors, shielding optional thermal → passive cooling in total max. 200 cps per detector

E. Anisimova et al., "Mitigating radiation damage of single photon detectors for space applications," EPJ Quantum Technology, vol. 4, no. 1, p. 10, 2017.

FFG Attitude Control: XACT I(Q)I

Background counts: prop. to field of view (FOV) \rightarrow has to be as small as possible (~100µrad)

Space heritage, ~40µrad precision without tracking!

 \rightarrow In total, $R_{NC} \sim 480$ cps (zenith) 580 cps (30° elevation)

Pictures + table from www.bluecanyontech.com

Spacecraft Pointing Accuracy	± 0.003 deg (1-sigma) for 2 axes; ± 0.007 deg (1-sigma) for 3rd axis		
Spacecraft Lifetime			
Mass	0.91 kg		
Volume	10 x 10 x 5 cm (0.5U)		
Electronics Input Voltage	12V		
Data Interface	RS-422, RS-485 & SPI		
Slew Rate	≥10 deg/sec (4kg, 3U CubeSat)		

Coincidence Window

for E91 (entangled photon pairs):

- On ground: Superconducting nanowire SPD,
 19ps jitter (rms), "no" dark counts
- On CubeSat: PDM: 35ps jitter, <5Hz dark counts
- Time taggers: 3ps on ground / 20ps on Q³Sat

$$\rightarrow \tau_{E91} = 2\sqrt{\tau_{DCS}^2 + \tau_{TTCS}^2 + \tau_{DOGS}^2 + \tau_{TTOGS}^2} = 90ps$$

 No detection on ground necessary, just limited by electronics

$$\rightarrow \tau_{DSP} = 80ps$$

Trade-Off SNR vs. R_{sec}

Link Quality

Performance

- 71 435s link time / year
 - 13.0 Mbit / year with decoy
 - 4.0 Mbit / year with E91
- Launch + material cost: 500k€
 - → 20 € / kbit assuming lifetime of 2 years, but low threshold costs

Publication

Neumann et al. *EPJ Quantum Technology* (2018) 5:4 https://doi.org/10.1140/epjqt/s40507-018-0068-1

RESEARCH

Open Access

Q³Sat: quantum communications uplink to a 3U CubeSat—feasibility & design

Sebastian Philipp Neumann^{1,2†}, Siddarth Koduru Joshi^{1,2†}, Matthias Fink^{1,2}, Thomas Scheidl^{1,2}, Roland Blach¹, Carsten Scharlemann³, Sameh Abouagaga³, Daanish Bambery³, Erik Kerstel⁴, Mathieu Barthelemy⁴ and Rupert Ursin^{1,2*}

Abstract

Satellites are the most efficient way to achieve global scale quantum communication (Q.Com) because unavoidable losses restrict fiber based Q.Com to a few hundred kilometers. We demonstrate the feasibility of establishing a Q.Com uplink with a 3U CubeSat, measuring only $10 \times 10 \times 34$ cm³, using commercial off-the-shelf components, the majority of which have space heritage. We demonstrate how to leverage the latest advancements in nano-satellite body-pointing to show that our 4 kg CubeSat can generate a quantum-secure key, which has so far only been shown by a much larger 600 kg satellite mission. A comprehensive link budget and simulation was performed to calculate the secure key rates. We discuss design

^{*}Correspondence: rupert.ursin@oeaw.ac.at ¹Institute for Quantum Optics and Quantum Information Vienna, Vienna, Austria ²Vienna Center for Quantum Science and Technology, Vienna, Austria Full list of author information is available at the end of the article ¹Equal contributors

Co-Authors

Siddarth K. Joshi Matthias Fink

Thomas Scheidl

Rupert Ursin

Carsten Scharlemann Sameh Abouagaga

Daanish Bambery

Erik Kerstel

Mathieu Barthelemy

Thank you for your attention!