

More on SPARQL

Madhushi Bandara and Fethi Rabhi

Never Stand Still

Faculty of Engineering

Computer Science and Engineering

Different types of SPARQL queries

 So far, all queries we saw returned a table (SELECT statement)

Construct queries

CONSTRUCT can be used to create new triples

```
CONSTRUCT {?d rdf:type :Director .
?d rdfs:label ?name . }
WHERE {?any :directedBy ?d .
?d rdfs:label ?name . }
```


Processing returned triples

- Sophisticated RDF query systems allow you to process newly created triples in different ways:
 - Insert the constructed triples back into the original data source
 - Store the constructed triples as a separate graph
 - Store the constructed triples into a new dataset
 - Serialize the results into a file

Defining rules using SPARQL

- Rule = a way to derive new information from the existing one
- We saw that SPARQL (CONSTRUCT) can be used to create new triples

• For example: a system defines the following relationships:

- Brother
- Sister
- Father
- Mother
- How do you define uncle?

:John a :Man.

:Joe a :Man.

:Eunice a :Woman .

:Maria a :Woman .

:Caroline a :Woman .

:Ted a :Man .

:Socrates a :Man .

:Caroline:hasFather:John.

:Ted::hasBrother:John.

:John:hasFather:Joe.

:Maria:hasMother:Eunice.

:Maria:hasFather:Sargent.

:Ted::hasSister:Eunice.

Solution 1

Defining a SPARQL construct query as

```
CONSTRUCT {?q1 :hasUncle ?q2}
WHERE {?q2 :hasSister ?s .
?q1 :hasMother ?s .}
```

What is the problem here?

Solution 2

First define sibling

```
CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasBrother ?q2} CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasSister ?q2} CONSTRUCT {?q1 :hasParent ?q2} WHERE {?q1 :hasFather ?q2} CONSTRUCT {?q1 :hasParent ?q2} WHERE {?q1 :hasMother ?q2}
```

Then define uncle

```
CONSTRUCT {?q1 :hasUncle ?q2}
WHERE {?q2 :hasSibling ?parent .
?q2 a :Man .
?q1 :hasParent ?parent }
```

Federated SPARQL queries

Querying large datasets

Problem

- when data sets are very large, it can be impractical to merge them together before querying them
- Copying whole datasets may not be possible

Federating data sources

- means to virtually combine the data sources in the query, while leaving each component with its own identity
- both endpoints and named graphs can participate in federated SPARQL queries

Example

Ask:

```
SELECT ?entry
     WHERE {?actor :playedIn :Giant .
        ?actor rdfs:label ?name .
            SERVICE <http://dbpedia.org/sparql>
               {?entry rdfs:label ?name .}
Answer:
?entry
<http://dbpedia.org/resource/Carroll Baker>
<http://dbpedia.org/resource/Elizabeth Taylor>
<http://dbpedia.org/resource/James Dean>
<http://dbpedia.org/resource/Mercedes McCambridge>
<http://dbpedia.org/resource/Rock Hudson>
<http://dbpedia.org/resource/Sal Mineo>
```

Querying RDF Cube

RDF Data Cube

- Standard for sharing statistical datasets
- Published by W3C
- Builds on other standards

RDF Cube Ontology

Example Data Cube Table 1

	2004-2006		2005-2007		2006-2008	
	Male	Female	Male	Female	Male	Female
Newport	76.7	80.7	77.1	80.9	77.0	81.5
Cardiff	78.7	83.3	78.6	83.7	78.7	83.4
Monmouth shire	76.6	81.3	76.5	81.5	76.6	81.7
Merthyr Tydfil	75.5	79.1	75.5	79.4	74.9	79.6

^{*}data set extracted from <u>StatsWales</u> report number 003311 which describes life expectancy broken down by region (unitary authority), age and time

Example Implemented

- You can find the complete implementation of Table 1 in following URL:
- http://adage.cse.unsw.edu.au/Resources/Sam pleData/TripleData/LifeExpectancyDataSet.ttl

You can import it to Protégé and explore

Querying RDF Cube

- Once you import a dataset in RDF format you can query is using standard vocabulary and answer questions such as:
 - What is the label and description?
 - What are the dimensions specified in the dataset?
 - Given values for each dimension, what is the measured value of observation?
 - Etc...
- Following slides provide example SPARQL queries for these questions.

Explore Data Sets

```
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#>
                    <a href="http://purl.org/linked-data/cube#">http://purl.org/linked-data/cube#></a>
PREFIX qb:
                     <a href="http://purl.org/dc/terms/">http://purl.org/dc/terms/>
PREFIX dct:
SELECT DISTINCT ?label ?description
WHERE {
                       ?id a qb:DataSet.
                       ?id rdfs:label ?label.
                       ?id dct:description ?description
Output for Example LifeExpectancy Dataset:
```

"Life expectancy within Welsh Unitary authorities - extracted from Stats Wales"@en

"Life expectancy"@en

Explore Dimensions

PREFIX qb: http://purl.org/linked-data/cube#

SELECT DISTINCT ?dim

WHERE {

? ?id a qb:DataSet.

?id qb:structure ?dsd.

?dsd qb:component ?comp.

?comp qb:dimension ?dim.

Alternative Query Format

• }

Output for Example LifeExpectency Dataset:

http://purl.org/linked-data/sdmx/2009/dimension#sex http://example.org/ns#refPeriod http://example.org/ns#refArea

Retrieve Specific Value

```
<a href="http://purl.org/linked-data/cube#">http://purl.org/linked-data/cube#></a>
PREFIX ab:
PREFIX sdmx-code:
                                 <a href="http://purl.org/linked-data/sdmx/2009/code#">http://purl.org/linked-data/sdmx/2009/code#></a>
PREFIX sdmx-dimension: <a href="http://purl.org/linked-data/sdmx/2009/dimension#">http://purl.org/linked-data/sdmx/2009/dimension#>
PREFIX ex-geo: <a href="http://example.org/geo#">http://example.org/geo#>
PREFIX eg:
                  <a href="http://example.org/ns#">http://example.org/ns#>
SELECT DISTINCT ?val
 WHERE {
          ?data_eg:refPeriod <a href="http://reference.data.gov.uk/id/gregorian-interval/2004-01-01T00:00:00/P3Y">http://reference.data.gov.uk/id/gregorian-interval/2004-01-01T00:00:00/P3Y</a>.
                                                                                                                 #2004-2007
         ?data sdmx-dimension:sex_sdmx-code:sex-M.
                                                                                                                #Male
         ?data eg:refArea ex-geo:newport 00pr .
                                                                                                                #From Newport
         ?data eg:lifeExpectancy ?val
```

Output for Example LifeExpectency Dataset:

"76.7"^^<http://www.w3.org/2001/XMLSchema#decimal>

RDF Cube Applications

- Apps can be built on top of SPARQL endpoints
- CubViz
 - a facetted browser for statistical data utilizing the <u>RDF Data Cube vocabulary</u>
 - provides possibilities to interactively filter
 observations which are to be visualized as charts
 - Available from EU Open Data Portal: https://data.europa.eu/euodp/cubeviz/

Selecting a statistical dataset

Starting CubViz

Selecting dimensions and creating chart

Changing visualizations

Show Information About Solected Configuration Retrieved Data

Export

Thank You

