Empirical Cumulative Distribution

Song Liu (song.liu@bristol.ac.uk)

GA 18, Fry Building,

Microsoft Teams (search "song liu").

Poisson Distribution

- Poisson distribution is the probability of the number of events occurring during a fixed interval.
 - given a constant mean rate.
- ullet On average, a flood happens once a hundred years. What is the probability of having k floods in the next a hundred years?

$$\circ~P(k)=rac{\lambda^k\exp(-\lambda)}{k!}=rac{\exp(-1)}{k!}$$

- \circ where λ is the mean rate.
- Assuming the flood rate is a constant.

Probability Mass Function

Cumulative Distribution Function

Empirical Cumulative Distribution Function

- In reality, we do not know the distribution our data comes from.
- In this case, we can still visualize the distribution of our data using a concept called Empirical Cumulative Distribution Function (ECDF).
- Assume you have n random samples from an unknown distribution, $X_1, X_2, ... X_n$:

$$\circ \ \mathrm{ECDF}(k) = rac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq k)$$

 $\circ \ 1(X \leq k) = 1$ if $X \leq k$, and 0 otherwise.

Computing ECDF

- Using a simple program, we can compute ECDF easily.
- Notice $\sum_{i=1}^n 1(X_i \leq k)$ is just the count of my samples which are $\leq k$.

Pseudo Code

- input: an int array X with length len.
- output: a double array ECDF with values of $\mathrm{ECDF}(k=0),...\mathrm{ECDF}(k=5).$
- For loop: k = 0...5
 - ECDF[i] = (double) count(k)/n;

Pseudo Code count

- input: an int array X with length len.
- input: k
- output: number of elements in X smaller or equal to k.
- c = 0
- For loop: i = 1...n
 - \circ if $x_i <= k$
 - C++;

Practice

- Write your code using provided skeleton code and data.
- What distribution do you think the data come from?