

S5. ACTIVE MATRIX LCD ADDRESSING AND ELECTRONICS

Why AM Aim of AM Principles
Electronic subsystems
Timing Waveforms Kickback

Why active matrix addressing?

REVIEW CONSTRAINTS OF PM ADDRESSING

Passive matrix is

- (In principle) simple
- Uses low-tech, low-cost backplane technology

But due to low duty cycle and crosstalk

- Requires very sophisticated drive waveforms
- Still cannot drive very large numbers of rows
 - Each row of pixels is "intentionally" addressed for at most 1/n of the frame time (where n = number of rows)
 - Each row of pixels is subject to the data signals that drive the other rows of pixels (for (n-1)/n of the frame time)

The Aim of Active Matrix Addressing

The aim of AM Addressing is to overcome the limitations of PM Addressing by

- Increasing the duty cycle
 - Putting the drive signal into the pixel electrode during a line-addressing time <u>and</u> keeping it there for all or most of the frame time
- Reducing cross-talk
 - Isolating the pixel electrode from the effect of signals driving pixels in other rows
- In short we need a non-linear element in each pixel
 - In practice this is frequently implemented as a "sample-and-hold" circuit as show

Active Matrix

Row and column electrodes on active (back) substrate

Common electrode on front

substrate Switch = TFT

 Active switch and storage element per pixel isolates electronic addressing of pixel from drive EO element

• Per row / column Storage Cap =

- One driver pixel electrode
- One connecting wire

MxN pixels requires only M+N drivers

Active matrix LC display

TFT-LCD Exploded View

MMXXII

Active Matrix Technologies

AM Pixel Circuit

Active Matrix Addressing

- Reduces crosstalk
- Simplifies addressing waveforms
- Increases pixel drive time from 1/N of field time to ~ field time
- Allows more rows of pixels

DM-MJR

Active Matrix Structure

Row Sequential Addressing 1/5

Each row of pixels is addressed in sequence

Pixel data is applied to the column electrodes

Column data is transferred into a row of pixels

- Achieved by applying a pulse to the row electrode
- Closes the switches (turns the TFTs on)
- Charges up the pixel capacitance, C_{LC}

When pixel is charged the TFT switch is opened

- Pixel capacitance is isolated
- Charge remains on pixel

Row Sequential Addressing 2/5

Row Sequential Addressing 3/5

Row Sequential Addressing 4/5

Row Sequential Addressing 5/5

AM LCD Module (including backlight)

Figure 9.3 The major functions within an Active Matrix LCD

Panel Interface Timing

Fig. 2 Typical example of parallel panel interface timing which is practically the same for Timing Controller data input (for details see section "Timing Controller and Intrapanel Interface")

LCD Timing Controller

Fig. 4 Simplified block diagram of an LCD Timing Controller with its inputs and outputs

Panel Electronics

Data Rates

Resolution /106 Pixel

Pixel frequency = Resolution x Frame frequency (limit for parallel interfacing)

Data rate = Pixel frequency x RGB x Colour depth (limit for serial interfacing)

Row Driver and Timing

Shift register passes token

Token determines which row is active

Dir sets scan direction

Output enable cuts gate voltage before next line to prevent cross-talk

Row Driver Timing Diagram

Row Driver Timing Diagram

Example Column Driver

Example shown is

Digital in, analog out

Could also be

- Digital in, digital out
- Analog in, analog out

Polarity for inversion V_{gamma} for EO TF Clocks etc not shown

Column driver timing diagram

Fig. 11 Typical timing diagram (clock and some control signals omitted) of an XGA AMLCD column driver

MMXXII

Power Budget

Voltage levels of the LC & Common Electrode

Consider Nth row

1xTFT, 1xC pixel – circuit schematic

Black / solid is designed-in"

Red / dashed is "parasitic"

Kickback – the issue

Figure 14.5 The gate impulses and their effect on the pixel voltage $V_{\rm p}$

Kickback – the problem

Cause

- -Gate drain overlap capacitance
- Gate turn-off edge

Effects

Asymmetry of + and – field drive voltages

-Net d.c. signal to LC

Electro-chemical degradation

-Inequality of light level in + and - fields

Transmission after--ve charging

Visible flicker

Transmission (%)

Exaggerated !

MMXXII Section 5 - AM Addressing Page 34

 V_{KB}

Kickback - solution

Improvements

MMXXII

Bias the common electrode to rebalance the symmetry

 DC balance not by field but by row, column or pixel

Page 35

External Sources of Information

Handbook of Visual Display Technology 3rd Edition 2020

https://link.springer.com/referencework/10.1007/978-3-642-35947-7

Part X Fundamentals of Driving

Active Matrix Driving Blankenbach

Acknowledgement – some Figures taken from the above source

Mobile Displays: Technology and Applications.

Ed A. K. Bhowmik, Z. Li, and P. J. Bos © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72374-6

Chapter 9 Advances in Mobile Display Driver Electronics

James E. Schuessler, National Semiconductor, Santa Clara, California, USA

Nox 7sx edition 2072