

COMPUTER SCIENCE DEPARTMENT

CS0053

(PROGRAMMING TOOLS AND TECHNIQUES)

EXERCISE

5

GUI-Based Grading System Module

Name:	Professor:	
ALBUFERA, Joshua	Dr. Beau Gray Habal	
AMBONG, Darren Jake		
BESAGAS, John Paul		
Date Performed:	Date Submitted:	
October 9, 2024	October 15, 2024	

I. OBJECTIVES

At the end of this exercise, students must be able to:

Cognitive

a.) Understand the topics they have learned from lesson 5.

Psychomotor:

- a.) Apply different programming paradigms.
- b.) Create a GUI-based Java program using programming paradigm.

Affective

a.) Appreciate the concept behind this exercise.

II. BACKGROUND INFORMATION

In order to accomplish this exercise, the student must have a clear understanding of the following topics:

- Programming Paradigms
- try-catch statements
- Import packages or libraries

III.LABORATORY PROCEDURE

1. Create a new program.

Program Name: GradingSystem.java

2. Design your layout as shown below

3. Requirements

- The program will only accept 0-100.
- The program will display notification info: Computed Final Grade, Equivalent Grade and Remarks: Passed/Failed/Invalid.
- Apply coding conventions.
- The program must be free from any errors.

IV. QUESTION AND ANSWER

1. Discuss the programming paradigms you used in the program.

In our program, we primarily used Object-Oriented Programming in our program to organize it into distinct classes. The main class, GradingSystem_T5, handles both the logic and the graphical user interface. Each GUI component, such as buttons and text fields, is treated as an object, encapsulating its behavior and properties. This object-based approach enhances modularity, making the code more maintainable and reusable. Organizing the program around objects helped us separate concerns and ensure a clear, scalable structure throughout the application.

2. Explain the significance and the difference of each paradigm you use.

The use of Object-Oriented Programming in our project helps to organize the code around objects, making it more reusable and easier to maintain. By encapsulating data and behavior within objects, we can efficiently manage the GUI and grading logic. OOP enables us to create modular components representing real-world elements, promoting reusability and improving maintainability. This approach ensures that the program is logically structured and scalable, with clear interactions between its components.

V. QUESTION AND ANSWER

Department	Computer Science
Subject Code	CSSSPEC2
Description	Programming Tools and Techniques
Term/Academic Year	1st Term SY 2016-2017

Topic	Programming Paradigms
Lab Activity No	5
Lab Activity	GUI-Based Grading System
	Module
CLO	1, 2

Note: The following rubrics/metrics will be used to grade students' output in the lab exercise 5.

Criteria	Exceptional	Acceptable	Amateur	Unsatisfactory
Specifications (40%)	The program works and	The program works and	The program	The program is
	meets all of the	produces the correct	produces correct	producing incorrect
	specifications. (40)	results and displays	results but does not	results. (20-29)
		them correctly. It also	display them	
		meets most of the other	correctly. (30-34)	
		specifications. (35-39)		
	The design is	The design is fairly	The design is fairly	The design is
Design attractive (15 %) inform consistent	exceptionally	attractive. Program is	attractive. Program	unattractive and not
	attractive. Program is	"user-friendly" with	is not "user-	user-friendly (8-9)
	"user-friendly" with	informative and	friendly" but still	
	informative and	consistent prompts and	provide informative	
	consistent prompts and	messages. (13-14)	and consistent	
	messages. (15)		prompts and	
			messages. (10-12)	
Efficiency (20%)	The code is extremely	The code is fairly	The code is brute	The code is huge
	efficient without	efficient without	force and	and appears to be
	sacrificing readability	sacrificing readability	unnecessarily long.	patched together.
	and understanding.	and understanding. (17-	(14-16)	(10-13)
	(20)	19)		
1 (10)%)	The code is	The code is fairly easy to	The code is readable	The code is poorly
	exceptionally well	read. (8-9)	only by someone	organized and very
	organized and very		who knows what it	difficult to read. (4-
	easy to follow. (10)		is supposed to be	5)
			doing. (6-7)	
Delivery (15%)	The program was	The program was	The code was within	The code was within
	delivered on time. (15)	delivered within a day of	2 days of the due	a week of the due
		the due date. (13-14)	date. (10-12)	date. (8-9)
Total: 100%				