Descriptive Complexity

Space-Based Complexity

Definition (class DSPACE): Let $T: \mathbb{N} \to \mathbb{N}$ be some function. A language L is in **DSPACE**(T(n)) iff there is a Turing machine that uses O(T(n)) cells of the tape and decides L.

Definition (class NSPACE): Similarly defined using NDTM.

$$\mathbf{PSPACE} = \bigcup_{c \ge 1} \mathbf{DSPACE}(n^c)$$

Savitch' Theorem (1970):

$$\mathbf{PSPACE} = \bigcup_{c \ge 1} \mathbf{NSPACE}(n^c)$$

Similar Definitions:

• DLOGSPACE, NLOGSPACE

Polynomial Hierarchy

Definition (class PH): Languages in **PH** are those accepted, in polynomial time, by a NTDM can make "calls" to other similar machines.

The Complexity Zoo

Exponential classes

- EXPTIME = $\bigcup_{c\geq 1} \mathbf{DTIME}(2^{n^c})$
- NEXPTIME = $\bigcup_{c>1}$ NTIME (2^{n^c})
- EXPSPACE = $\bigcup_{c\geq 1}$ DSPACE (2^{n^c})

What do we know?

DLOGSPACE \subseteq NLOGSPACE \subseteq P \subseteq $\begin{Bmatrix} NP \\ coNP \end{Bmatrix} \subseteq$ PH \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE

Proper subsets?

• All we know is **NLOGSPACE** \subsetneq **PSPACE** \subsetneq **EXPSPACE**, **P** \subsetneq **EXPTIME**, **NP** \subsetneq **NEXPTIME**

Logic vs. Complexity

Problem	Logical characterization	Complexity
GCD test	$\exists p, q(p \cdot z = x \land q \cdot z = y)$ $\lor \neg \exists z', p', q'(z' > z \land p' \cdot z' = x \land q' \cdot z' = y)$	LOGSPACE
Graph Connectivity	$\forall x \forall y \big(x \neq y \to \mathbf{TC}(E)(x,y) \big)$	P
Graph Hamiltonicity	$\exists L \exists S \begin{pmatrix} \text{linearOrder}(L) \\ \land "S \text{ is the successor relation of } L" \\ \land \forall x \exists y \big(L(x,y) \lor L(y,x) \big) \\ \land \forall x \forall y \big(S(x,y) \to E(x,y) \big) \end{pmatrix}$	NP-complete

Logic vs. Complexity

Definition: A logic \mathcal{L} captures a complexity class \mathcal{H} if:

- The data complexity of \mathcal{L} is \mathcal{K} : that is, for every \mathcal{L} -sentence Φ , deciding if $\mathcal{A} \models \Phi$ for a *finite structure* \mathcal{A} is in \mathcal{K} .
- For every property \mathcal{P} that can be decided with complexity \mathcal{K} , there is a sentence $\Phi_{\mathcal{P}}$ of \mathcal{L} such that $\mathcal{A} \models \Phi_{\mathcal{P}}$ iff \mathcal{A} has the property \mathcal{P} , for every finite structure \mathcal{A} .

$\exists SO = NP$

Fagin's Theorem (1973): $\exists SO$ captures NP.

 $(\exists SO \text{ consists of SO sentences of the form } \exists X_1 \dots \exists X_n \varphi \text{ where } \varphi \text{ is a FO formula with } X_1, \dots, X_n)$

To show a problem is in \mathbf{NP} , it suffices to write a $\exists SO$ sentence capturing the desired property! (e.g., Graph Hamiltonicity)

Corollary: $\forall SO$ captures **coNP**.

Open problem: $\exists SO \neq \forall SO$ over finite structures?

 $(\exists SO \neq \forall SO \Rightarrow \mathbf{NP} \neq \mathbf{coNP} \Rightarrow \mathbf{P} \neq \mathbf{NP})$

$\exists SO = NP$

Corollary (Cook-Levin Theorem): The satisfiability problem for propositional logic is **NP** - complete.

Proof: Let \mathcal{P} be a problem in **NP**. Then by Fagin's theorem, there is a $\exists SO$ sentence $\Phi \equiv \exists S_1 \dots \exists S_n \varphi$ such that $\mathcal{A} \models \Phi$ iff \mathcal{A} is in \mathcal{P} .

Now to check $\mathcal{A} \models \Phi$, we can construct a propositional formula from Φ :

- A is finite! (with universe A)
- Replace $\exists x (... x ...)$ with $\bigvee_{a \in A} (... a ...)$
- Replace $\forall x (... x ...)$ with $\bigwedge_{a \in A} (... a ...)$
- Replace every $a \in S_i$ with a proposition " $a_i = S_i$ "
- Everything else can be evaluated to true or false on ${\mathcal A}$

$\exists SO = NP$

Proof idea:

- $\exists SO \subseteq \mathbf{NP}$: Suppose $\Phi = \exists X_1 \dots \exists X_n \ \varphi$. Given \mathcal{A} , the NTDM first guesses S_1, \dots, S_n as the certificate and checks if $\varphi(S_1, \dots, S_n)$ holds, which can be done in polynomial time.
- NP $\subseteq \exists SO$: Yet another encoding of Turing machine, but more challenging!
 - NDTM now, and for arbitrarily long input
 - Solution: explicitly encode the tape as a SO relation L
 - Time and position are bounded by n^k so can be encoded as a k-tuple!

 $NP = \exists SO, coNP = \forall SO, P = ?$

Gurevich's Conjecture: There is no logic that captures **P**.

• If true, then $P \neq NP!$

Some logics do capture **P** on ordered structures

FO(LFP) = P on ordered structures

Immerman-Vardi Theorem (1982): FO(LFP) + < captures **P**.

FO(LFP) extends FO with an **lfp** operator

- For every monotone operator F, the sequence \emptyset , $F(\emptyset)$, $F^2(\emptyset)$, ... stabilizes at the least fixed point, denoted by $\mathbf{lfp}(F)$
- E.g., if $F(S) = \{x \mid \forall y (E(y, x) \rightarrow y \in S)\}$, then $\forall u. [\mathbf{lfp} \ F](u)$ says a graph is acyclic

< is a linear order of the structure

More results for ordered structures

$FO(PFP) + < \text{captures } \mathbf{PSPACE}$

• Partial fixed point: $\mathbf{pfp} F \triangleq \begin{cases} F^{\infty}(\emptyset) & \text{if the sequence stabilizes} \\ \emptyset & \text{othewise} \end{cases}$

FO(TC) +< captures **NLOGSPACE**

• Transitive closure (TC) is a special LFP

FO(DTC) +< captures **LOGSPACE**

• Deterministic transitive closure (e.g., TC applied on the successor relation)