		-
	\int_{ce}^{c} $\sqrt{\zeta} = \sqrt{\zeta}$	
+(n)	$cre_{2}+T(n-1)$ $n > 1$	
coonsin cous	que n>1	-
Paso (1)	cte2 + T (N-1)	
P050 (2)	crez + [crez + T(N-z)] =	
	= zczez + T (n-z)	
Pa.50 (3)	crez + (crez +T(n-3)] =	
	3 cre z +T(7-3)	
Paso i (paso		
T(n) =	i.cte2 + T(n-i)	
2200 0200		
	-i <= 1 - n	
	1 >= h - 1	
reempla zo i		
(n-1).	crez + T (n-(n-1)) =	
= (n-1) c		
O (N)		
	Fscaneado con CamScanner	

Escaneado con CamScanner

suponiendo que Paso 1 2 + T(N-1) + arz 2 * / 2 * + (N-2) + ctez] Po € = 4 T (N-2) +3 xez P000 (3) 4 [2 * T (N-3) + xez +3xez = = 8 + (n-3) + 4 crez B 2+ + (n-4) + crez + 4 ctez Poso (4) 16 7 (n-4) + 15 crez 2^{i} . \top (n-i) + $(2^{i}-1)$. αe_{2} Caso base n-i/= 1 -i /= 1- M i >= n-1 reemplazo i . T (n-(n-1)) + (2n-1-1) crez

$$= \left(\frac{2^{n-1}}{2}\right), \quad \cot \left(\frac{1}{2}\right) + \left(\frac{2^{n-1}}{2}\right), \quad \cot \left(\frac{1}{2}\right), \quad \cot \left(\frac{1}{2}\right) + \left(\frac{2^{n-1}}{2}\right), \quad \cot \left(\frac{1}{2}\right), \quad \cot \left(\frac{$$

T	h) =		Te 1		1=0 xez + 1z	5 1	1	- 0	
	5 6 1						- 3	3	0 <> N
сте	(= J	2 ⁿ .	and the same				transfer The		
como	se	TIATA	de	υN	ix, e1	Tiemp	29 0	وا ت	
		office design		disk b	que			que	
12n	crece	mas	rapie	s ax	the cre	asi	que		
T (n)) =	12n	1/2/.	cre z	+ 124	. 7 2	CC 2 -	crez	
orden	Ngn								
	1								

$$T(s) = \alpha e_1 + \max (T(s), T(s_2)).$$

$$T(s_1) = \alpha e_2$$

$$T(s_2) = \max (T(s_3), T(s_4))$$

$$\alpha e_3$$

$$T(s_4) = \alpha e_4 + (n-1), \alpha e_5$$

$$T(s_2) = \alpha e_4 + (n-1), \alpha e_5$$

```
T (n) =
                cte 1 + cre 4 + N-1. cres
  0(n) 7
V. T(n) = max (T(si), T(sz)
 T (si) = ae1.
                                             zolo if
 = (52) T
                  aez
                \left(\frac{n}{z}\right)^{\frac{1}{10003}} ( la olif everte imegor y pror coiso es casi nado)
 supongamos que nero y neri
paso 1
                           + aez
                         \left(\frac{n}{H}\right) + \alpha e_3 + \alpha e_3
baso (S)
poso(3)
                   T\left(\frac{n}{2^3}\right) + 3 = 3
paso
                          + i cte3
caso base
                10g2 (n) = i
```

recemplo 30 i.

$$T\left(\frac{N}{2}\log_2(n)\right) + \log_2(n) \cdot \alpha e_3.$$

$$= T(1) + \log_2(n) \cdot \alpha e_3 =$$

$$= \alpha e_2 + \log_2(n) \cdot \alpha e_3 = T(s_2)$$

$$T(n) = \max\left(T(s_1), T(s_2)\right).$$

$$= \max\left((\alpha e_1), (\alpha e_2 + \log_2(n), \alpha e_3)\right).$$

$$= \alpha e_2 + \log_2(n) \cdot \alpha e_3 = T(n)$$

$$= \alpha e_2 + \log_2(n) \cdot \alpha e_3 = T(n)$$

$$= \alpha e_2 + \log_2(n) \cdot \alpha e_3 = T(n)$$