Composition of functions

Composition - process of applying a function to the result of another function

Composition of functions

fand g are two functions where $f:X \rightarrow Y$ and $g:Y \rightarrow Z$. The composition of g with f, denoted $g \circ f$ is the function $(g \circ f): X \rightarrow Z$ such that for all $x \in X$ $(g \circ f) = g(f(x))$

Order is important!!!! fog is not equivalent to g.f!!!

Composition is associative $f \circ g \circ h = (f \circ g) \circ h = f \circ (g \circ h) = f(g(h(x)))$

Identity function

Always maps a set unto itself and maps every element onto itself Motatron IA: A > A, where IA(a) = a for all a EA

the identity function on A

If a function $f: A \rightarrow B$ has an inverse, then $f^{-1} \circ f$ is the identity function.

(f · f ·) (b) = f (f ·) (b) = a (f · f ·) (a) = f ·) (f(a)) = f ·) (b) = a (x · f ·) (b) = f (f ·) (b) = a

Let f: A→B be a bijection. Then f'of=IA and fof'=IB