Lecture Summary: Null Space and Basis – Part 2

Source: Lec37.pdf

Key Points

- Recap: Null Space and Nullity:
 - The null space of an $m \times n$ matrix A is:

$$Null(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}.$$

- Nullity is the dimension of the null space.
- Rank-Nullity Theorem:

$$rank(A) + nullity(A) = n.$$

- Procedure to Find the Null Space and Basis:
 - 1. Form the augmented matrix $[A \mid 0]$.
 - 2. Perform row reduction to bring A to reduced row echelon form (RREF).
 - 3. Identify dependent and independent variables:
 - Columns with leading 1s correspond to dependent variables.
 - Other columns correspond to independent variables.
 - 4. Assign parameters to independent variables and solve for dependent variables in terms of the parameters.
 - 5. Basis for the null space consists of vectors generated by setting one parameter to 1 and the others to 0.
- Example: 3×4 Matrix
 - Given:

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 3 & 0 & 3 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$$

- Row reduction to RREF:

$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

- Dependent variables: x_1, x_2, x_3 .
- Independent variable: x_4 .
- Solve for x_1, x_2, x_3 in terms of $x_4 = t$:

$$x_1 = 3t$$
, $x_2 = -3t$, $x_3 = -2t$.

- General solution:

$$\{(3t, -3t, -2t, t) \mid t \in \mathbb{R}\}.$$

- Basis vector for the null space:

$$(3, -3, -2, 1).$$

- Nullity = 1 (one independent variable).

- Rank and Nullity Relationship:
 - Rank is the number of non-zero rows in the row-reduced matrix.
 - Nullity is the number of free (independent) variables.
 - For A with 4 columns:

$$rank(A) = 3$$
, $rank(A) + rank(A) + rank(A) = 4$.

Simplified Explanation

Example 1: Null Space and Basis in \mathbb{R}^3 For A:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix},$$

RREF:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- x_1 is dependent, x_2, x_3 are independent.
- Solve for x_1 :

$$x_1 = -x_2 - x_3$$
.

• Basis vectors:

$$(-1,1,0), (-1,0,1).$$

• Nullity = 2.

Example 2: Basis Verification Using Determinants Given vectors (1,2,3), (0,1,2), and (1,3,0) in \mathbb{R}^3 :

• Form matrix A with these as columns:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 3 & 2 & 0 \end{bmatrix}.$$

• Compute determinant:

$$\det(A) = -5 \neq 0.$$

• Non-zero determinant implies linear independence, so these vectors form a basis.

Conclusion

In this lecture, we:

- Computed null space and nullity using Gaussian elimination.
- Verified rank and nullity using the rank-nullity theorem.
- Connected linear independence to determinant checks for basis validation.

Understanding null spaces and bases enhances our ability to analyze matrix transformations and solve systems of equations.