EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 10 – DERS 2 24 Nisan 2025

Dr. Sibel ÇİMEN

Ardışıl devre tasarım adımları:

Adım 1:

Problemin tanımına uygun olarak ilk olarak durum diyagramı çizilir ve sonra diyagrama uygun olarak durum tablosunu yapılır. Tablo şimdiki durumları, girişleri, gelecek durumları ve çıkışları içermelidir.

Adım 2:

Durum tablosundaki durumlara binary kod atanır. N tane durum varsa, binary kodlar en az log2 n digit olmalıdır ve devrede en az log2 n flip-flop olacaktır.

<u>Adım 3:</u>

Her bir flip-flop ve durum tablosundaki her bir satır için, gelecek durumları belirleyebilmek amacıyla, flip-flop giriş değerleri bulunur. Bunun için flip-flop excitation (ters karakteristik) tabloları kullanılabilir.

<u>Adım 4:</u>

Flip-flop giriş ve çıkışları için basitleştirilmiş ifadeler bulunur.

<u>Adım 5:</u>

Devre kurulur! Devre, lojik kapılar kullanılarak veya MSI, LSI devre elemanları kullanılarak gerçeklenebilir.

Örnek: Dizi Dedektörü (Yakalayıcısı)

- Bir dizi yakalayıcısı devrenin girişinde özel bir bit dizisini arayan özel bir ardışıl devredir.
- Yakalayıcı devrenin tek bir girişi vardır: X.
 - Girişin her bir biti bir saat periyotunda sağlanır.
 - Bu uzun giriş dizilerinin uygulanması için en kolay yoldur.
- Tek bir çıkış vardır: Z. İstenen bit dizisi bulunduğunda 1 çıkışını verir.
- Örnek: Aranacak olan bit dizisi: 1001

Inputs: 11100110100100110...

Outputs: 0000010000100100...

İçiçe geçen dizi dedektörü

 Bu tasarım da bir ardışıl devre tasarlanması gerekmektedir. Çünkü devrenin diziyi yakalayabilmesi için birkaç önceki çıkışı da <u>hatırlayabilmesi</u> gerekmektedir.

Örnek: Dizi Dedektörü (Yakalayıcısı)

Adım 1:

• Dizi yakalayıcısı için öncelikle durum diyagramı yapıp, ardından tabloyu oluşturalım:

İlk olarak mealy modeline göre ardışıl devre sentezi yapalım.

Şimdiki		Gel.	
durum	Giriş	durum	Çıkış
Α	0	Α	0
A	1	В	0
В	0	С	0
В	1	В	0
С	0	D	0
С	1	В	0
D	0	Α	0
٥	1	В	1

Örnek: Dizi Dedektörü (Yakalayıcısı)

Adım 2: Durumlara ikili kod atamak

- Dört durumumuz var: ABCD. O halde en az iki flip-flop'a ihtiyacımız var: Q₁Q₀
- Bunun için en kolay yöntem: A için Q₁Q₀ = 00, B için 01, C için 10 ve D için 11.

Şimdiki		Gelecek	
Durum	Giriş	Durum	Çıkış
Α	0	Α	0
Α	1	В	0
В	0	С	0
В	1	В	0
С	0	٥	0
С	1	В	0
D	0	Α	0
D	1	В	1

Şimdiki			Gelecek		
Dur	um	Giriş	Dur	um	Çıkış
Q_1	Q_0	Х	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Örnek: Dizi Dedektörü (Yakalayıcısı)

Adım 3: Flip-flop giriş değerlerinin bulunması

- Bu hangi tip flip-flop kullandığınıza göre değişir!
- İki tane JK FF kullanacağız. Her bir flip-flop için, şimdiki ve gelecek durumlarına bakarak bu durum değişikliğini sağlayacak olan J_i ve K_i girişlerinin ne olması gerektiği belirlenir.

Şim	diki		Gele	ecek					
Dur	um	Giriş	Dui	rum	Fli	p flop	girişle	eri	Çıkış
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K_0	Ζ
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Örnek: Dizi Dedektörü (Yakalayıcısı)

Adım 3: Flip-flop giriş değerlerinin bulunması

JK Flip-Flop Karakteristik Tablosu

J	K	Q(†+1)	İşlem
0	0	Q(†)	Değişmez
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Tümleme

JK Flip-Flop Ters Karakteristik Tablosu (excitation table)

Q(†)	Q(†+1)	J	K	İşlem
0	0	0	X	Değişmez/Reset
0	1	1	×	Set/Tümleme
1	0	×	1	Reset/ Tümleme
1	1	×	0	Değişmez/Set

Örnek: Dizi Dedektörü (Yakalayıcısı)

Adım 3: Flip-flop giriş değerlerinin bulunması

	diki rum	Giriş	Gelecek durum		Flip flop girişleri				Çıkış
Q_1	Q_0	X	Q_1	\mathbf{Q}_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	×	0	Х	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	×	1	0
1	1	1	0	1	×	1	×	0	1

Q(†)	Q(†+1)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Örnek: Dizi Dedektörü (Yakalavıcısı) Adım 4: FF giris ve cıkısları için denklemlerin bulunması

- Karnaugh diyagramı yardımıyla dört flip-flop'un her biri için girişlere ve çıkışa a denklemler bulunur.
- Bu denklemler şimdiki durum ve girişler cinsindendir.
- JK FF kullanmanın avantajı: birkaç tane don't care durumuna sahip olmalarıdır.
 Bu sayede daha basit denklemler elde edilir.

Şim	diki		Gele	ecek					
dur	um	Giriş	dur	rum	Fli	p flop	girişle	eri	Çıkış
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K ₀	Z
0	0	0	0	0	0	×	0	×	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	×	×	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	×	1	0
1	1	1	0	1	×	1	×	0	1

$$J_1 = X' Q_0$$

 $K_1 = X + Q_0$

$$J_0 = X + Q_1$$
$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Örnek: Dizi Dedektörü (Yakalayıcısı)

Adım 5: Devrenin kurulumu

Son olarak, bu basitleştirilmiş denklemler temel alınarak devre kurulur.

$$J_1 = X' Q_0$$

 $K_1 = X + Q_0$

$$J_0 = X + Q_1$$

$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Örnek: Dizi Dedektörü (Yakalayıcısı)

Zaman Diyagramı

Tüm Flip-Flop(FF)lar için karakteristik tablolar

Q(†)	Q(†+1)	Δ	İşlem
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Q(†)	Q(†+1)	J	K	İşlem
0	0	0	×	Değişmez/reset
0	1	1	×	Set/tümleyen
1	0	×	1	Reset/tümleyen
1	1	×	0	Değişmez/set

Q(†)	Q(†+1)	Т	Operation
0	0	0	Değişmez
0	1	1	Tümleyen
1	0	1	Tümleyen
1	1	0	Değişmez

Örnek: Dizi Dedektörü (Yakalayıcısı)

Avnı tasarımı D flip-flop ile gerceklestirmek

Q(†)	Q(†+1)	Δ
0	0	0
0	1	1
1	0	0
1	1	1

9			pp go. şooş	$D_1 = Q_1 Q_0^T X^T + Q_1^T Q_0^T X^T$
Q(†)	Q(†+1)	Δ		
0	0	0		$D_0 = X + Q_1 Q_0'$
0	1	1		$Z = Q_1 Q_0 X$
1	0 1 0	0		-1 -0

Şimdiki durum		Giriş	Gelecek durum		Flip flop girişleri		Çıkış
Q_1	Q_0	X	Q_1	Q_0	D ₁	D ₀	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.
- 4. 'Lojik Devreler', Prof. Dr. Ertuğrul ERİŞ Ders Notları, 1995.