Zápočtová práce 1

Jméno a přijmení: Jan Fakulta, ročník: FAV4

Rozhodování podle maximální aposteriorní pravděpodobnosti

Zadaní:

Uvažujeme diskrétní systém v čase, mající 4 stavové hodnoty x_1, x_2, x_3 a x_4 . Z dlouhodobějšího pozorování víme, že pravděpodobnost výskytu jednotlivých hodnot stavové proměnné X jsou známé a dány hodnotami $P(x_1) = \mathbf{0.34}, P(x_2) = \mathbf{0.21}, P(x_3) = \mathbf{0.05}$ a $P(x_4) = \mathbf{0.40}$. Na systému je možno pozorovat binární výstup Y s hodnotami 0 či I. Předpokládáme, že v průběhu pozorování se v okamžicích $t_0, \ldots, t_{k-1}, t_k$ \ldots hodnota stavové proměnné X nemění. Tedy, že

$$x(t_{k+1}) = x(t_k) = x(t_0) = x$$

Předpokládáme dále, že hodnoty y výstupní proměnné Y jsou v jednotlivých okamžicích t_k závislé jen na hodnotě stavové proměnné X systému, nikoli na minulých hodnotách výstupu $y(t_k)$. Platí

$$P(y(t_k)=0 | x, y(t_{k-1}), ..., y(t_0))=P(y(t_k) | x) \quad \forall k$$

Považujeme tyto pravděpodobnosti za známé, přičemž $P(y(t_k)=0|X=x_k)=**$, pro k=1,2,3,4 viz tabulka

$p(y(t_k=0 \mid$	$ x_1\rangle$	$p(y(t_k=0\mid x_2))$	$p(y(t_k=0\mid x_3))$	$p(y(t_k = 0 \mid x_4))$
0.15		0.34	0.28	0.23

Úkoly

- 1. Metodou maximální aposteriorní pravděpodobnosti (Bayssovský přístup) určete optimální rozhodovací pravidlo pro odhad neznámé hodnoty x stavové proměnné X systému ze tří po sobě jdoucích pozorování hodnot $y(t_0)$, $y(t_1)$ a $y(t_2)$ výstupní proměnné Y.
- 2. Stanovte pravděpodobnost správného a chybného rozhodnutí.}

Pomůcky:

Platí

$$P(y(t_0), y(t_1), y(t_2) | x) =$$

$$= P(y(t_2) | y(t_1), y(t_0), x) P(y(t_1) | y(t_0), x) P(y(t_0) | x)$$