ESERCIZI SUI NUMERI COMPLESSI

Prima di svolgere gli esercizi, leggere attentamente le slides pubblicate su elearning.

(1) Trovare la parte reale e la parte immaginaria dei seguenti numeri complessi, determinandone anche la posizione come punto sul piano di Argand-Gauss.

$$z = 3$$
, $z = -3$, $z = i - \sqrt{3}$, $z = -i\pi/2$.

(2) Svolgere le operazioni sottoindicate trovando la parte reale e la parte immaginaria del risultato ottenuto:

$$(1-2i) + (\sqrt{2}-i);$$
 $(1-2i) + (\sqrt{2}-i);$ $(1+2i) \cdot (1-2i);$ $(1-2i)^3$

$$(1+i)^3;$$
 $\frac{3-2i}{-1+i};$ $3\left(\frac{1+i}{1-i}\right)^2 - 2\left(\frac{1-i}{1+i}\right)^3.$

(3) Determinare le seguenti potenze dell'unità immaginaria (trovandone la parte reale e la parte immaginaria):

$$i^{12}$$
, i^{17} , i^{-15}

(4) Se z=a+ib, il numero complesso $\overline{z}=a-ib$ si dice il coniugato di \underline{z} . Dati due numeri complessi z,z' dimostrare che $\overline{z+z'}=\overline{z}+\overline{z}'$, $\overline{z\cdot z'}=\overline{z}\cdot\overline{z}'$ (in particolare, vale $(\overline{z})^n=\overline{z^n}$). Quali sono i numeri complessi tali che $z=\overline{z}$?

- (5) Determinare la parte reale e la parte immaginaria del coniugato del numero $(1-i)^3$.
- (6) Verificare che il numero complesso z=-1+2i e il suo coniugato \bar{z} soddisfano l'equazione $z^3+z^2+3z-5=0$. Più in generale, usando l'esercizio (4) mostrare che se un numero z è soluzione di un'equazione

$$a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0,$$

dove i coefficienti a_i sono reali, allora anche \overline{z} è soluzione del polinomio.

(7) Se z è un numero complesso, indichiamo con |z| il suo modulo (ovvero, la lunghezza del vettore che rappresenta z sul piano di Argand-Gauss). Sia E la relazione d'equivalenza definita sui numeri complessi da

$$z E z' \Leftrightarrow |z| = |z'|.$$

Determinare la classe del numero i ed un insieme di rappresentanti per le classi d'equivalenza di E su \mathbb{C} .