Name	e: Student ID:
GAUS	SIAN PROCESSES PROBLEM SHEET
1 Per	forming integrals over normal distributes takes practice.
(a) C	onsider the integral
	$I_1 = \int_{-\infty}^{\infty} e^{-x^2/2} \mathrm{d}x.$
D	irectly evaluating this is difficult, but there is a trick. Consider instead
	$I_1^2 = \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy.$
$ heta ag{th}$ to	y making the change of variables to polar coordinates where $r=\sqrt{x^2+y^2}$ and $=\arctan(y/x)$ (so that $x=r\cos(\theta),\ y=r\sin(\theta)$) then $\mathrm{d} x\mathrm{d} y=r\mathrm{d} r\mathrm{d} \theta$. Note lat to integrate over all space we let θ vary from 0 to 2π and r to vary from 0 ∞ . Write down the integral in polar coordinate, make a further the change of ariables $u=r^2/2$ to evaluate I_1^2 hence compute I_1 [5 marks]
(b) B	y making a change of variables compute
	$I_2 = \int_{-\infty}^{\infty} e^{-(x-\mu)^2/(2\sigma^2)} dx$
	[5 marks]

5

(c)	By using	g the ic	dentity e^{a+b}	$=\mathrm{e}^a\mathrm{e}^b,$	or more	generally
-----	----------	----------	-------------------	------------------------------	---------	-----------

$$e^{\sum_i a_i} = \prod_i e^{a_i}$$

compute

$$I_3 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2} \|\boldsymbol{x}\|_2^2} dx_1 \cdots dx_n$$

where $x = (x_1, x_2, ..., x_n)^T$. [3 marks]

(d) By using the fact that for a positive semi-definite matrix, Ξ , we can use the eigenvector decomposition $\Xi^{-1} = V \Lambda^{-1} V^{\mathsf{T}}$ where V is an orthogonal matrix with determinant $\det(\mathbf{V}) = \pm 1$ and Λ^{-1} is a diagonal matrix with elements λ_i^{-1} compute

$$I_4 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Xi}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})} dx_1 \cdots dx_n.$$

[6 marks]

 $\overline{6}$

(e) Using the facts, that $\Xi = V\Lambda V^{\mathsf{T}}$, for any two square matrices \mathbf{A} and \mathbf{B} the determinants satisfy $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$, and $\det(\mathbf{V}) = \det(\mathbf{V}^{\mathsf{T}}) = \pm 1$ show that $\det(\Xi) = \prod_i \lambda_i$. [1 mark]

End of question 1

(a)
$$\frac{}{5}$$
 (b) $\frac{}{5}$ (c) $\frac{}{3}$ (d) $\frac{}{6}$ (e) $\frac{}{1}$ Total $\frac{}{20}$

2 Consider a multivariate normal distribution

$$f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\!\boldsymbol{y}) = \mathcal{N}\bigg(\begin{pmatrix}\boldsymbol{x}\\\boldsymbol{y}\end{pmatrix}\bigg|\begin{pmatrix}\boldsymbol{0}\\\boldsymbol{0}\end{pmatrix},\begin{pmatrix}\boldsymbol{A} & \boldsymbol{B}\\\boldsymbol{B}^\mathsf{T} & \boldsymbol{C}\end{pmatrix}\bigg)$$

where A and C are symmetric (positive definite) matrices. The matrix

$$\Xi = \begin{pmatrix} A & B \\ B^\mathsf{T} & C \end{pmatrix}$$

is the covariance matrix.

We want to compute the conditional probability density function $f_{X,Y}(x \mid y)$. This is complicated because the normal distribution involve the inverse of the covariance matrix. Let

$$\boldsymbol{U} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{B} \, \boldsymbol{C}^{-1} \\ \boldsymbol{0} & \boldsymbol{I} \end{pmatrix}, \qquad \qquad \boldsymbol{D} = \begin{pmatrix} \boldsymbol{A} - \boldsymbol{B} \, \boldsymbol{C}^{-1} \boldsymbol{B}^\mathsf{T} & \boldsymbol{0} \\ \boldsymbol{0}^\mathsf{T} & \boldsymbol{C} \end{pmatrix}$$

where I is the identity matrix.

(a) Compute UD [3	marks]
	3
(b) Using the previous result compute $(\mathbf{UD})\mathbf{U}^T.$ Hence show $\mathbf{\Xi} = \mathbf{UD}\mathbf{U}^T.$ [3	marks]
(b) Using the previous result compute $(\mathbf{UD})\mathbf{U}^{T}.$ Hence show $\Xi = \mathbf{UD}\mathbf{U}^{T}.$ [3	marks]
(b) Using the previous result compute $(u\mathbf{D})u^{T}.$ Hence show $\Xi=u\mathbf{D}u^{T}.$ [3	marks]
(b) Using the previous result compute $(u\mathbf{D})u^T.$ Hence show $\Xi=u\mathbf{D}u^T.$ [3	marks]
(b) Using the previous result compute $(\mathbf{UD})\mathbf{U}^T.$ Hence show $\mathbf{\Xi} = \mathbf{UDU}^T.$ [3	marks]
(b) Using the previous result compute $(\mathbf{UD})\mathbf{U}^T.$ Hence show $\mathbf{\Xi} = \mathbf{UDU}^T.$ [3	marks]

(c) Given that $\Xi = \mathbf{U}\mathbf{D}\mathbf{U}^T$ write down Ξ^{-1} in terms of \mathbf{U} and \mathbf{D}	[1 mark]

(d) Demonstrate by direct multiplication that

$$u^{-1} = \begin{pmatrix} \mathbf{I} & -\mathbf{B}\mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \quad \mathbf{D}^{-1} = \begin{pmatrix} (\mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^\mathsf{T})^{-1} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C}^{-1} \end{pmatrix} \quad (u^\mathsf{T})^{-1} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{C}^{-1}\mathbf{B}^\mathsf{T} & \mathbf{I} \end{pmatrix}$$

i.e. show $\mathbf{U}^{-1}\mathbf{U} = \mathbf{I}$, $\mathbf{D}^{-1}\mathbf{D} = \mathbf{I}$ and $(\mathbf{U}^\mathsf{T})^{-1}\mathbf{U}^\mathsf{T} = \mathbf{I}$. [6 marks]

1 I	
::	
l II	
iii	
1111	
1	
1	
1	
1	

(e) Letting $z={x \choose y}$ then we can write

$$f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) = f_{\boldsymbol{Z}}(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z} \mid \boldsymbol{0},\boldsymbol{\Xi}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} \mathrm{e}^{-\frac{1}{2}\boldsymbol{z}^\mathsf{T}\boldsymbol{\Xi}^{-1}\boldsymbol{z}}.$$

where $\det(2\pi\Xi)$ is the determinant of the matrix $2\pi\Xi$ and is introduced to ensures that $f_{X,Y}(x,y)$ is normalised. From parts (c) and (d)

$$\Xi^{-1} = \begin{pmatrix} I & \textbf{0} \\ -\textbf{C}^{-1}\textbf{B}^\mathsf{T} & I \end{pmatrix} \begin{pmatrix} (\textbf{A} - \textbf{B}\,\textbf{C}^{-1}\textbf{B}^\mathsf{T})^{-1} & \textbf{0} \\ \textbf{0}^\mathsf{T} & \textbf{C}^{-1} \end{pmatrix} \begin{pmatrix} I & -\textbf{B}\,\textbf{C}^{-1} \\ \textbf{0} & I \end{pmatrix}.$$

Expand out $z^{\mathsf{T}}\Xi^{-1}z=(x^{\mathsf{T}},y^{\mathsf{T}})\Xi^{-1}\binom{x}{y}$ (start by multiplying the vectors z^{T} by $(\mathbf{U}^{\mathsf{T}})^{-1}$ and z by \mathbf{U}^{-1}) [4 marks]

1

In the next question we use the short-hand notation

$$\int f(\boldsymbol{z}) d\boldsymbol{z} = \int \cdots \int f(\boldsymbol{z}) dz_1 dz_2 \dots dz_n$$

(f) To compute $f_{{m X}|{m Y}}({m x}\mid {m y}) = f_{{m X},{m Y}}({m x},{m y})/f_{{m Y}}({m y})$ we need to find

$$f_{\boldsymbol{Y}}(\boldsymbol{y}) = \int_{-\infty}^{\infty} f(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x}$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} e^{-\frac{1}{2}(\boldsymbol{x}^{\mathsf{T}} - \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1} (\boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y}) - \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \boldsymbol{y}} d\boldsymbol{x}$$

$$= \frac{e^{-\frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \boldsymbol{y}}}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} (\boldsymbol{x}^{\mathsf{T}} - \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1} (\boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y})} d\boldsymbol{x}$$

By making a change of variable from x to $u=x-\operatorname{B}\operatorname{C}^{-1}y$ rewrite the integral

$$I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\boldsymbol{x}^{\mathsf{T}} - \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1}(\boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y})} d\boldsymbol{x}$$

then use

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}\boldsymbol{u}^{\mathsf{T}} \mathbf{M}^{-1} \boldsymbol{u}} d\boldsymbol{u} = \sqrt{\det(2\pi \mathbf{M})}$$

to evaluate $f_{\mathbf{Y}}(\mathbf{y})$. [5 marks]

(g) Using $f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}\mid \boldsymbol{y}) = f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})/f_{\boldsymbol{Y}}(\boldsymbol{y})$ write down $f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}\mid \boldsymbol{y})$.	[3 marks]

End of question 2

(a)
$$\frac{}{3}$$
 (b) $\frac{}{3}$ (c) $\frac{}{1}$ (d) $\frac{}{6}$ (e) $\frac{}{4}$ (f) $\frac{}{5}$ (g) $\frac{}{3}$ Total $\frac{}{25}$