A Machine Learning approach for Recognizing Intellectual Development Disorder using EEG

Talha Anwar

Content

- Introduction
- Motivation
- Objective
- Methodology
 - Preprocessing
 - Feature Selection
 - Classification
- Result
- Conclusion

Introduction

- Intellectual developmental disorder
 - malfunctioning of brain area
 - functional and mental limitations
- Symptoms
 - Slow learning
- Causes
 - Genetic conditions.
 - Problems during pregnancy
 - Problems during childbirth
 - Illness or injury.
 - Unknown

Motivation

- Population of IDD
 - United state and other developed countries have 2.5-5 severe cases per 1000 children and 2-30 mild cases per 1000 children[1]
 - India has around 10.5/1000 cases of intellectual disability.[2]
 - Pakistan has the highest reported rate of intellectual disabilities in the world with an estimated 19/1000 [3]
- Diagnosis
 - Physical abnormalities can be identified easily

Objective

• Propose an approach that can identify Intellectual development disorder using electroencephalogram with the help of machine learning.

Methodology

- Dataset
 - 7 Healthy 7 Patients
 - Collected using Emotiv EPOCH+
 - Data duration is 2 minute, under rest and music stimuli
- Preprocessing
 - Band pass filter 1-30 Hz
 - Segmented into 4 second
- Feature Selection
 - Discrete Wavelet Transform
 - Fourth-order Daubechies wavelet
 - Average, Standard Deviation, Energy
 - Combined all three

Methodology

- Classification
 - K-Nearest Neighbor (KNN)
 - Logistic Regression (LR)
 - Support Vector Machine
 - Decision Tree Classifier (DT)
 - Random Forest Classifier (RF)
 - AdaBoost Classifier (AB)
 - Gradient Boosting Classifier (GB)
 - Naive Bayes (NB)
 - Linear Discriminant Analysis (LDA)
 - Quadratic Discriminant Analysis (QDA)

Results

Results

Accuracy of data collected while listening music

Results

Result

Rest condition

Listening to Music

	Average		Std		Energy		Combined			Average		Std		Energy		Combined	
	Acc	F1	Acc	F1	Acc	F1	Acc	F1		Acc	F1	Acc	F1	Acc	F1	Acc	F1
KNN	69.3	77.0	67.3	74.3	71.6	77.4	68.8	76.8	KNN	71.2	78.1	65.7	74.4	70.7	77.0	68.1	75.8
c-SVM	76.9	76.8	62.3	65.5	50.7	35.7	67.6	66.2	c-SVM	81.2	80.4	67.8	71.3	69.2	69.5	70.4	70.5
nu-SVM	81.4	81.2	61.9	62.4	60.9	61.2	70.2	68.6	nu-SVM	83.6	83.2	67.1	67.4	67.1	67.0	69.5	68.4
DT	64.7	64.4	60.2	58.3	52.6	55.2	61.4	57.6	DT	76.4	76.7	56.6	62.6	63.8	67.9	51.9	59.2
RF	77.16	76.4	55.7	51.9	55.7	54.1	56.6	57.2	RF	84.5	85.2	62.3	66.4	60.9	66.8	64.5	69.1
AB	40.24	39.7	49.7	48.4	45.0	44.7	54.7	54.0	AB	61.2	62.8	65.4	67.5	60.2	68.2	57.1	61.8
GB	86.9	88.0	60.0	65.0	59.5	63.2	59.7	64.0	GB	88.6	89.9	62.1	65.9	66.4	68.4	65.7	68.6
NB	45.5	8.8	49.5	10.8	48.8	10.5	49.0	10.9	NB	60	56.7	58.8	54.7	54.0	43.5	58.8	52.4
LDA	51.9	54.2	58.1	60.8	60.9	65.1	58.1	59.4	LDA	56.2	58.9	62.6	67.7	59.0	66.3	72.3	77.2
QDA	91.9	89.9	66.1	38.8	67.6	44.7	51.6	60.1	QDA	92.6	91.3	56.9	28.9	61.4	36.6	59.0	55.7
LR	50.0	53.0	68.5	72.6	67.3	69.8	63.5	63.7	LR	55.0	57.3	78.3	80.8	78.8	81.5	76.6	79.3

Conclusion

- Machine learning can be used to diagnose IDD using EEG signal.
- Performance can be improved by increasing features and tuning the classifiers.

References

- F. Boat and J. T. Wu, Mental disorders and disabilities among low-income children. National Academies Press, 2015
- Lakhan, O. T. Ek unday o, and M. Shahbazi, "An estimation of the prevalence of intellectual disabilities and its association with age inr ural and urban populations in india," Journal of neurosciences in rural practice, vol. 6, no. 04, pp. 523–528, 2015.
- Mirza, A. Tareen, L. Davidson, and A. Rahman, "Community management of intellectual disabilities in pakistan: a mixed methods study,"Journal of Intellectual Disability Research, vol. 53, no. 6, pp. 559–570,2009