Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

	· •	
1.	$a_7 = a_1 + 6r$	3p
	$a_7 = 7$	2p
2.	$G_f \cap Ox = \big\{ A(3,0) \big\}$	3 p
	$G_f \cap Ox = \{A(3,0)\}$ $G_f \cap Oy = \{B(0,4)\}$	2 p
3.	$\Delta = \left(2m+1\right)^2 - 4\left(m^2 + m\right)$	2 p
	$\Delta = 1 > 0$, deci ecuația admite două soluții reale distincte pentru orice $m \in \mathbb{R}$	3 p
4.	$5 \cdot 3^x = 45 \Leftrightarrow 3^x = 9$	3 p
	x = 2	2p
5.	Notăm cu O centrul paralelogramului $ABCD \Rightarrow \overrightarrow{AM} + \overrightarrow{AQ} = \overrightarrow{AO}$	2p
	$\overrightarrow{CN} + \overrightarrow{CP} = \overrightarrow{CO}$	2 p
	$\overrightarrow{AO} + \overrightarrow{CO} = \overrightarrow{0}$	1p
6.	$\cos B = \frac{3}{5} \Rightarrow AB = 12$	2 p
		_
	$AB^2 + AC^2 = BC^2 \Rightarrow AC = 16$	2p
	Perimetrul este egal cu 48	1 p

SUBIECTUL al II-lea

(30 de puncte)

	· · · · · · · · · · · · · · · · · · ·	
a)	(-5)*5=1	2p
	(-10)*10=1	2p
	(-5)*5 = (-10)*10	1p
b)	$x^2 * x \le 13 \Leftrightarrow x^2 + x - 12 \le 0$	2p
	$x \in [-4,3]$	3 p
c)	$4^x * 2^x = 21 \Leftrightarrow 4^x + 2^x = 20$	1p
	Cu notația $2^x = t$ obținem $t^2 + t = 20$	1р
	t = 4 sau $t = -5$	2p
	Finalizare: $x = 2$	-р 1р
d)	$(x*y)*z = x + y + z + 2$, pentru orice $x, y, z \in \mathbb{R}$	2 p
	$x*(y*z) = x + y + z + 2$, pentru orice $x, y, z \in \mathbb{R}$	2p
	Finalizare	2р 1р
e)	3*x' = x'*3 = -1	2p
	x' = -5	3 p
f)	n*(n+1) = 2n+2	1p
	$2n + 2 \le 2012 \Leftrightarrow n \le 1005$	2 p
	A are 1006 elemente	2 p

SUBIECTUL al III-lea		(30 de puncte)	
a)	$\det A = 18 - 36 =$	3p	
	=-18	2 p	
b)	Matricea B este inversabilă \Leftrightarrow det $B \neq 0$	3p	
	Finalizare	2 p	
c)	$a = 1 \Rightarrow B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	1p	
	$A \cdot B = \begin{pmatrix} 5 & 3 & 4 \\ 4 & 5 & 3 \\ 3 & 4 & 5 \end{pmatrix}, B \cdot A = \begin{pmatrix} 5 & 4 & 3 \\ 3 & 5 & 4 \\ 4 & 3 & 5 \end{pmatrix}$	2p	
	${}^{t}(A \cdot B) = \begin{pmatrix} 5 & 4 & 3 \\ 3 & 5 & 4 \\ 4 & 3 & 5 \end{pmatrix} = B \cdot A$	2 p	
d)	$a = 1 \Rightarrow (S) \begin{cases} y + z = 1 \\ x + y = 0 \\ x + z = 2 \end{cases}$	2p	
	Verificare: $\left(\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$ este soluție a sistemului (S)	3 p	
e)	$\det B \neq 0 \Rightarrow$ sistemul este de tip Cramer	2p	
	$x = \frac{1}{2a}, \ y = -\frac{1}{2a}, \ z = \frac{3}{2a}$	3р	
f)	$x = \frac{1}{2a}, \ y = -\frac{1}{2a}, \ z = \frac{3}{2a}$ $x_0 + y_0 + z_0 = \frac{1}{4} \Leftrightarrow \frac{3}{2a} = \frac{1}{4}$	3p	
	a = 6	2 p	