Exercise 1. True or false? Justify your answers either by a proof or a counterexample.

(i) For a probability space (Ω, \mathcal{A}, P) we have $P(\Omega \setminus A) = 1 - P(A)$ for all $A \in \mathcal{A}$.

- $\mu(B \setminus A) = \mu(B) \mu(A)$, if $A \subseteq B$ and $\mu(A) < \infty$,
- (ii) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, $A, B \in \mathcal{A}$ such that $\mu(A \cap B) < \infty$. Then $\mu(B \setminus A) =$ $\mu(B) - \mu(A \cap B)$.

$$\longrightarrow$$
 $\mu(B \setminus A) = \mu(B) - \mu(A)$, if $A \subseteq B$ and $\mu(A) < \infty$, (*)

$$|BnA| \leq B$$

(iii) For a probability space (Ω, \mathcal{A}, P) and a sequence $(A_i)_{i \in \mathbb{N}}$ in \mathcal{A} , we have

$$P\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \sup_{i\in\mathbb{N}}P(A_i).$$

Let $S \subseteq \mathbb{R}$. A real number $u \in \mathbb{R}$ is called an *upper bound* of S if $x \leq u$ for all $x \in S$. An upper bound s of S is called *supremum* or *least upper bound* if for all upper bounds u of S in \mathbb{R} we have $s \leq u$. We then write $\sup_{i \in \mathbb{N}} x_i = s$. Suprema and infima can be defined for subsets of any partially ordered set.

(iv) Let (Ω, \mathcal{A}, P) be a probability space and $A, B, C \in \mathcal{A}$. Then

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$\Rightarrow P(A \cup B \cup C) = P(A) + P(B) + P(A \cap B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B \cup C) = P(A \cap B) - P(A \cap B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B \cup C) = P(A \cap B) - P(A \cap B) - P(A \cap B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B \cup C) = P(A \cap B) - P(A \cap B) - P(A \cap B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B \cup C) = P(A \cap B) - P(A \cap B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B \cup C) = P(A \cap B) - P(A \cap B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B \cup C) = P(A \cap B) - P(A \cap B) - P(A \cap B)$$

$$\mu: \mathcal{P}(\mathbb{N}) \to [0,\infty], \ A \mapsto \begin{cases} 0 & A \text{ finite} \\ \infty & A \text{ infinite} \end{cases}$$

form a measure space.

Definition 1.16 (measure, measure space). Let (Ω, \mathcal{A}) be a measurable space. We call $\mu : \mathcal{A} \to [0, \infty]$ a *measure* if

(i)
$$\mu(\emptyset) = 0$$
,

- (ii) it is non-negative, i.e., for all $A \in \mathcal{A}$ we have $\mu(A) \geq 0$, and
- (iii) it is σ -additive, i.e., for all countable collections $(A_i)_{i\in\mathbb{N}}$ of pairwise disjoint sets in \mathcal{A} , we have

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i)$$
.

The triple $(\Omega, \mathcal{A}, \mu)$ is then called a *measure space*.

$$\begin{cases} A_{1} = \{i\} \forall i \in \mathbb{N} \\ A_{2} = \{i\} \forall i \in$$

(vi) We consider the two-time fair oin flip, where we interpret the two sides to count as 0 or 1. We are only interested in the sum of the two outcomes. Then the cdf is given by

$$F(x) = \begin{cases} 0 & x < 0, \\ \frac{1}{4} & x \in [0, 1), \\ \frac{3}{4} & x \in [1, 2), \\ 1 & x \ge 2. \end{cases}$$

$$\mathcal{L} = \left\{ (0,0), (0,1), (1,0), (1,1) \right\} \leftarrow \text{Uniformity: } \forall w \in \mathcal{L}: \mathcal{P}(w) = \mathcal{I}_{|\mathcal{L}|}$$

$$A_{4} := \left\{ (0,1), (1,0) \right\} \Rightarrow \mathcal{P}(A_{4}) = \frac{1}{|\mathcal{L}|} = \frac{1}{|\mathcal{L}|} = \frac{1}{|\mathcal{L}|} = \frac{1}{|\mathcal{L}|} = \frac{1}{|\mathcal{L}|}$$

$$F(x) = P((-\infty, xJ)) = \sum_{n \in \{0,1\}, 2\}} P(A_n) = \begin{cases} 0, x < 0 \\ 1 |_{L_{1}}, x \in [0,1] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{1}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0 \\ 0, x < 0 \end{cases} \cdot \begin{cases} 0, x < 0 \\ 1 |_{L_{2}}, x \in [1,2] \end{cases} \cdot \begin{cases} 0, x < 0$$

Exercise 2. Let $\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$, representing the rolling of a fair die. Assume a uniform distribution over Ω and let $p \in [0,1]$ be the probability of obtaining at least one \boxdot when throwing six fair dice at once. Compute p (using rigorous mathematical notation, i.e., setting up the probability spaces properly).

$$I':= \{1, \dots, 6\} := [6]$$

$$I = \{w = [w_1 \dots w_6] \mid \forall i \in [6] : w_i \in \mathcal{L}^i\} = [6]^6$$

$$7$$

$$|\mathcal{L}| = |\mathcal{L}(\mathcal{J}^i)| = |\mathcal{L}(\mathcal{J}^i)| = 6^6$$

$$\forall w \in \mathcal{L}: \forall w \in \mathcal{L} : \forall w \in \mathcal{L}^i\} = \frac{1}{|\mathcal{L}|}$$

$$A^{c}_{z} \left\{ w = (w_{1} ... w_{6}) \mid \forall i \in [6]; w_{i} \in \mathbb{L}^{1} \setminus \{L_{i}^{2}\}^{d} = (\mathbb{L}^{1} \setminus \{L_{i}^{2}\})^{d} \right\}$$

$$|A^{c}_{z}| = |(\mathbb{L}^{1} \setminus \{L_{i}^{2}\})^{d}| = 5^{6}$$

$$P(A) = 1 - P(A^c) = 1 - \frac{|A^c|}{|D|} = 1 - (\frac{5}{6})^4 \approx 0.665$$

Exercise 3 (*Inclusion-exclusion formula*). Let (Ω, \mathcal{A}, P) be a probability space, $(A_i)_{i \in [n]} \in \mathcal{A}^{[n]}$ for a given $n \in \mathbb{N}$. Then

$$P(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n} P(A_{i_1} \cap \ldots \cap A_{i_k})$$

In particular, it holds that

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2).$$

$$15: A(n) \longrightarrow A(n+1)$$

$$14$$

Exercise 3 (*Inclusion-exclusion formula*). Let (Ω, \mathcal{A}, P) be a probability space, $(A_i)_{i \in [n]} \in \mathcal{A}^{[n]}$ for a given $n \in \mathbb{N}$. Then

If
$$P(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k-1}$$
. $\sum_{k \in [n]} P(A_{i_1} \cap \ldots \cap A_{i_k})$ $\sum_{k \in [n]} P(A_{i_1} \cap \ldots \cap A_{i_k})$ In particular, it holds that
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$
.
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$
.

13:
$$(n=1)$$
 $P(A_1 \cup A_2) = \sum_{h=1}^{2} (-1)^{(h-1)} \cdot \sum_{h=1}^{2} P(A_{11} \cap \dots \cap A_{1h}) = P(A_1) + P(A_2) - \sum_{h=1}^{2} (-1)^{(h-1)} \cdot \sum_{h=1}^{2} P(A_1 \cap A_2) + P(A_1 \cap A_2)$

13: $(n=1)$ $P(A_1 \cup A_2) = \sum_{h=1}^{2} (-1)^{(h-1)} \cdot \sum_{h=1}^{2} P(A_1 \cap \dots \cap A_{1h}) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$

15:
$$A(n) \rightarrow A(n+1)$$

14

$$A(n+1) \cdot P(J_{n+1}) \cdot \sum_{h=1}^{n+1} (-1)^{(h-1)} \cdot \sum_{h=1}^{n+1} P(J_{n+1} n \cdot n \cdot d_{n+1})$$

$$I_h \in [n+1]$$

$$P(J_{n+1}) = P(A_{n+1} \cup J_n) \stackrel{B}{=} P(A_{n+1}) + P(J_n) - P(A_{n+1} \cap J_n)$$

$$P(A_{n+1} n J_n) = P(A_{n+1} n (A_4 u \dots u A_n)) = P(\bigcup_{i=1}^{n} (A_i n A_{n+1}))$$

$$A(m1) \cdot P(J_{m+1}) \cdot \sum_{h=3}^{m+1} \frac{(-1)^{(h-1)} \cdot \sum_{h \in I_{m+1} J} P(J_{i_{1}} n ... n ... d_{i_{k}})}{I_{i_{k}} \in I_{m+1} J}$$

$$P(J_{m+1}) = P(A_{m+1} u J_{m}) \stackrel{\mathbb{R}}{=} P(A_{m+1}) + P(J_{m}) - P(A_{m+1} n J_{m})$$

$$= P(A_{m+1} n J_{m}) = -P(A_{m+1} n (A_{i_{1}} u ... u A_{m})) - P(\bigcup_{l=1}^{m} (A_{i_{1}} n A_{m+1}))$$

$$= \sum_{h=1}^{m} \frac{(-1)^{h-1}}{I_{m+1}} \cdot \sum_{h=1}^{m} P(X_{i_{1}} n ... n A_{i_{k}} n A_{m+1})$$

$$= \sum_{h=1}^{m} \frac{(-1)^{h-1}}{I_{m+1}} \cdot \sum_{h=1}^{m} P(X_{i_{1}} n ... n A_{i_{k}} n A_{m+1})$$

$$= \sum_{h=1}^{m} \frac{(-1)^{h-1}}{I_{m+1}} \cdot \sum_{h=1}^{m} P(X_{i_{1}} n ... n A_{i_{k}} n A_{m+1})$$

$$= \sum_{h=1}^{m} \frac{(-1)^{h-1}}{I_{m+1}} \cdot \sum_{h=1}^{m} P(X_{i_{1}} n ... n A_{i_{k}} n A_{m+1})$$

$$= \sum_{h=1}^{m} \frac{(-1)^{h-1}}{I_{m+1}} \cdot \sum_{h=1}^{m} P(X_{i_{1}} n ... n A_{i_{k}} n A_{m+1})$$

$$= \sum_{h=1}^{m} \frac{(-1)^{h-1}}{I_{m+1}} \cdot \sum_{h=1}^{m} P(X_{i_{1}} n ... n A_{i_{k}} n A_{m+1})$$

$$P(J_{n+1}) = P(A_{n+1} \cup J_n) \stackrel{B}{=} P(A_{n+1}) + P(J_n) - P(A_{n+1} \cap J_n)$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1}) + P(A_{h+1})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h+1} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h} \cap A_{h})$$

$$= \sum_{h=1}^{n} (-1)^{(h-1)} \cdot \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h} \cap A_{h})$$

$$= \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h} \cap A_{h})$$

$$= \sum_{h=1}^{n} P(A_{h} \cap A_{h}) + P(A_{h} \cap A_{h})$$

$$= \sum_{h=1}^{n+1} (-1)^{(h-1)} \cdot \sum_{h=1}^{n+1} (A_{i,h} \cdot n \cdot n \cdot A_{i,h}) \quad D$$

Exercise 4. The DWT tutor Angelika supervises an exercise group with n sheets being submitted anonymously. After grading, Angelika randomly redistributes the sheets. What is the probability that no one gets their original sheet back? How does this probability behave as $n \to \infty$?

[Hint: Use the inclusion-exclusion formula and that $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$]

(ii) Without replacement, ordered draws. The space of possible outcomes is

$$\Omega = \left\{ (\omega_1, \dots, \omega_k) \in [n]^k \,\middle|\, \omega_i \neq \omega_j \text{ for } i \neq j \right\} \quad \text{with} \quad |\Omega| = \frac{n!}{(n-k)!}.$$

(iii) Without replacement, unordered draws. The space of possible outcomes is

$$\Omega = \{ S \subseteq [n] \mid |S| = k \} \quad \text{with} \quad |\Omega| = \binom{n}{k}.$$

$$P(A_1) = \frac{|A_1|}{|A_1|} = \frac{(n-4)!}{n!}$$

$$P(A_{i_4} n A_{i_2}) = \frac{(n-2)!}{n!}$$

$$P(A_{i_1} n \cdots n A_{i_k}) = \frac{(n-k)!}{n!}$$

$$P(A_{1} \cup A_{n}) = \sum_{i=1}^{n} (-1)^{k-i} \sum_{j=1}^{n} P(A_{ij} \cap A_{ik})$$

$$= \sum_{k=1}^{n} (-1)^{k-i} \sum_{j=1}^{n} \frac{(n-k)!}{n!}$$

$$= \sum_{k=1}^{n} (-1)^{k-i} \sum_{j=1}^{n} \frac{(n-k)!}{n!}$$

$$= \sum_{k=1}^{n} (-1)^{k-i} \sum_{j=1}^{n} \frac{(n-k)!}{n!}$$

$$= \sum_{h=1}^{n} (-1)^{k-1} {n \choose h} \cdot \frac{(n-h)!}{n!} = \sum_{h=1}^{n} (-1)^{k-1} \cdot \frac{a!}{(n-h)!} \cdot \frac{(n-h)!}{n!} \cdot \frac{1}{n!} = \mathcal{V}(A^{c})$$

$$\Rightarrow 7|A| = 1 - P(A') = 1 - \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k!}$$

$$\exp(x) = \sum_{h=0}^{p} \frac{x^h}{h!}$$
 $= e^{-1}$

$$\lim_{n \to \infty} 1 + \sum_{h=1}^{n} (-1)^{h} \cdot \frac{1}{h!} = \sum_{h=0}^{n} (-1)^{h} \cdot \frac{1}{h!} = e^{-1}$$

Exercise 5 ([Bonus exercise]). Show that the Borel σ -algebra $\mathcal{B}^n := \sigma(\mathcal{E}_1)$, generated by the set of open sets

$$\mathcal{E}_1 := \{ A \subseteq \mathbb{R}^n : A \text{ is open} \}$$

can also be generated by the set of half-open intervals

$$\mathcal{E}_2 := \{ [a, b) : a, b \in \mathbb{Q}^n, a < b \}$$

meaning that $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$.

[Hint: Show $\mathcal{E}_i \subseteq \sigma(\mathcal{E}_j)$ and use the fact that $\sigma(\mathcal{E}_i)$ is the smallest σ -algebra containing \mathcal{E}_i .]

Remark 1 (Other possible generator sets). *The Borel* σ -algebra \mathcal{B}^n can also be generated by

$$\mathcal{E}_{3} := \{A \subseteq \mathbb{R}^{n} \mid A \text{ is compact}\}$$

$$\mathcal{E}_{5} := \{A \subseteq \mathbb{R}^{N} \mid A \text{ is closed}\}$$

$$\mathcal{E}_{7} := \{(a,b] \mid a,b \in \mathbb{Q}^{n},a < b\}$$

$$\mathcal{E}_{9} := \{(-\infty,b) \mid b \in \mathbb{Q}^{n}\}$$

$$\mathcal{E}_{11} := \{(a,\infty) \mid a \in \mathbb{Q}^{n}\}$$

$$\mathcal{E}_{12} := \{[a,\infty) \mid a \in \mathbb{Q}^{n}\}$$

$$\mathcal{E}_{12} := \{[a,\infty) \mid a \in \mathbb{Q}^{n}\}$$

meaning it holds $\mathcal{B}^n = \sigma(\mathcal{E}_i)$ for all $i \in [12]$.

Definition 1.10 (measurable space, measurable sets). A measurable space is a tuple (Ω, \mathcal{A}) , where Ω is a set and \mathcal{A} is a σ -algebra on Ω . The elements of \mathcal{A} are then called measurable sets.

Definition 1.16 (measure, measure space). Let (Ω, \mathcal{A}) be a measurable space. We call $\mu : \mathcal{A} \to [0, \infty]$ a *measure* if

- (i) $\mu(\emptyset) = 0$,
- (ii) it is non-negative, i.e., for all $A \in \mathcal{A}$ we have $\mu(A) \geq 0$, and
- (iii) it is σ -additive, i.e., for all countable collections $(A_i)_{i\in\mathbb{N}}$ of pairwise disjoint sets in \mathcal{A} , we have

$$\mu\Big(\bigcup_{i\in\mathbb{N}}A_i\Big)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

The triple $(\Omega, \mathcal{A}, \mu)$ is then called a *measure space*.

Proposition 1.17 (basic properties of measures). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, $A, B \in \mathcal{A}$, and $(A_i)_{i \in \mathbb{N}} \subseteq \mathcal{A}$. Then

- $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$, $\mu(A \cup B) = \mu(A \cup B \setminus A)$
- $\mu(B\setminus A)=\mu(B)-\mu(A), \ if \ A\subseteq B \ and \ \mu(A)<\infty,$ = $\mu(A)+\mu(B)-\mu(B)$
- μ is monotone, meaning that whenever $A \subseteq B$ we have $\mu(A) \leq \mu(B)$,
- μ is continuous from below, i.e., $\mu(A_k) \uparrow \mu(\bigcup_{i \in \mathbb{N}} A_i)$ for $A_0 \subseteq A_1 \subseteq A_2 \subseteq \ldots$
- μ is continuous from above, i.e., $\mu(A_k) \downarrow \mu\left(\bigcap_{i \in \mathbb{N}} A_i\right)$ for $A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$ with $\mu(A_0) < \infty$,
- μ is σ -subadditive, meaning that

$$\mu\Big(\bigcup_{i\in\mathbb{N}}A_i\Big)\leq\sum_{i\in\mathbb{N}}\mu(A_i)$$
.

Definition 1.18 (probability measure, probability space). Let (Ω, \mathcal{A}) be a measurable space. A measure $P: \mathcal{A} \to [0, \infty]$ is called *probability measure* if $P(\Omega) = 1$. The triple (Ω, \mathcal{A}, P) is then called *probability space*. In this case, \mathcal{A} is called the *event space* or *set of events of interest*.

Lemma 1.33 (classical urn models). We consider an urn with $n \in \mathbb{N}_{>0}$ distinct objects and $k \in \mathbb{N}_{>0}$ draws.

(i) With replacement, ordered draws. The space of possible outcomes is

$$\Omega = [n]^k \quad with \quad |\Omega| = n^k$$
.

(ii) Without replacement, ordered draws. The space of possible outcomes is

$$\Omega = \left\{ (\omega_1, \dots, \omega_k) \in [n]^k \,\middle|\, \omega_i \neq \omega_j \text{ for } i \neq j \right\} \quad \text{with} \quad |\Omega| = \frac{n!}{(n-k)!}.$$

(iii) Without replacement, unordered draws. The space of possible outcomes is

$$\Omega = \{ S \subseteq [n] \mid |S| = k \} \quad with \quad |\Omega| = \binom{n}{k}.$$

(iv) With replacement, unordered draws. The space of possible outcomes is

$$\Omega = \left\{ (a_1, \dots, a_n) \in \mathbb{N}_0^n \middle| \sum_{i=1}^n a_i = k \right\} \quad with \quad |\Omega| = \binom{n+k-1}{k},$$

where a_i counts how often object i is drawn.