問題3 次の論理演算に関する説明を読み、各設問に答えよ。

論理演算とは、真と偽や1と0のように、2つの値のいずれか一方の値を持つデータ間で行われるもので、結果も真と偽や1と0となる。論理演算を表にまとめたものを真理値表と呼ぶ。また、次の手順により、真理値表から論理式を求めることができる。

[手順1] 出力が"1"の行に注目し、入力が"1"の項はそのまま、入力が"0" の項は否定の形式にして、各項の論理積をとる。

次の真理値表から論理式を求めてみる。なお、論理和を"+"、論理積を"・"、A の否定を \overline{A} で表す。

入力		出力		
A	В	X		
0	0	0		
0	1	1	\rightarrow	$\overline{A} \cdot B$
1	0	1	\rightarrow	$A \cdot \overline{B}$
1	1	1	\rightarrow	A • B

図1 真理値表

[手順2] 手順1で作った項の論理和をとる。

$$\overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$

[手順3] 論理法則 (A + A = A など) を利用し、簡素化する。

$$\overline{A} \cdot B + A \cdot \overline{B} + A \cdot B = B \cdot (\overline{A} + A) + A \cdot (\overline{B} + B)$$

$$= B \cdot 1 + A \cdot 1$$

$$= B + A$$

となり、AとBの論理和を表していることがわかる。

<設問1> 次の真理値表から得られる論理式を解答群から選べ。

(1)

入力		出力
A	В	X
0	0	0
0	1	1
1	0	0
1	1	1

(2)

	入力		出力
	A	В	X
	0	0	1
	0	1	0
	1	0	0
	1	1	0
			•

(3)

入	力	出力
A	В	X
0	0	1
0	1	0
1	0	0
1	1	1

図2 真理値表

(1) ~ (3) の解答群

<設問2> 次のビットの加算に関する記述中の に入れるべき適切な字句を 解答群から選べ。

同じけたにあるビット同士の加算を考える。1ビットの加算は、図3のようになり、 真理値表は表1のようになる。

A: 0 0 1 1 1 B:
$$\frac{+ \ 0}{0 \ 0}$$
 $\frac{+ \ 1}{0 \ 1}$ $\frac{+ \ 0}{0 \ 1}$ $\frac{+ \ 1}{0 \ 1}$

図3 1ビットの加算

表 1 1ビットの加算結果表

		演算結果		
A	В	けた上がり(C)	同けたの和(S)	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

表1から,同けたの和(S)は (4) ,けた上がり(C)は (5) の論理 式で表現できることがわかる。このように、二つの2進数を加算して同けたの値と

繰り上がり出力するものを (6) と呼ぶ。ただし, (6) は、下位からのけ た上がりを考慮していないため、最下位ビットの演算しか行えない。 そこで、下位 からのけた上がりを含めた加算回路が必要である。これを (7) と呼ぶ。

(4), (5)の解答群

ア. A・B

ウ. Ā・B

工. A + B

イ. $A \cdot \overline{B}$ オ. $\overline{A} \cdot B + A \cdot \overline{B}$

(6), (7)の解答群

ア. カウンタ

イ.シフトレジスタ ウ.全加算器

工. 半加算器

オ. フリップフロップ