Instructor: Andrey Gogolev

1 Important Background

[$Fundamental\ Theorem\ of\ Algebra$] Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots.

Application in matrix and eigenvalues: Every $n \times n$ matrix characteristic polynomial $C(\lambda)$ can be factor into linear factors as $C(\lambda) = (\lambda - 1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$. Therefor, every $n \times n$ matrix has exactly n eigenvalues, counted with multiplicity.

2 Problem Statement

Every square complex matrix $A: \mathbb{C}^n \to \mathbb{C}^n$ can be reduced into Jordan Normal Form.

i.e. Every A can be expressed as $A = CA_JC^{-1}$, where A_J composed by Jordan Blocks, C changing basis.

3 Proof Structure

Method used here is to simply the matrix by choosing suitable new basis. When there are eigenvalues' multiplicity > 1 and eigenvectors not enough to make a basis, pull root vectors of repeated eigenvalues, basis of root subspaces to form a linearly independent set as basis.

The proof is consisted by three steps.

- STEP 1. Every square complex matrix can be reduced into matrix A in upper triangular form. (skip in this proof)
- STEP 2. Upper triangular A can be expressed as

$$A = \begin{bmatrix} A|V^{\lambda_1} & & 0\\ & A|V^{\lambda_2} & & \\ & & \ddots & \\ 0 & & & A|V^{\lambda_k} \end{bmatrix}$$

, where $A|V^{\lambda_i}$ is restricted A on root subspace V^{λ_i} of each distinct eigenvalues λ_i .

$$A|V^{\lambda_i} = \begin{bmatrix} \lambda_i & & * \\ & \ddots & \\ 0 & & \lambda_i \end{bmatrix}$$

Further, $\mathbb{C}^n = V^{\lambda_1} \bigoplus V^{\lambda_2} \bigoplus ... \bigoplus V^{\lambda_k}$.

STEP 3. Every upper triangular $A|V^{\lambda_i}$ can be reduced into Jordan Block.

Instructor: Andrey Gogolev

4 STEP 2: Understand Root Subspace V^{λ_i}

• Find $A|V^{\lambda_i}$.

By definition of root vector, v is a root vector if for some m, $(A - \lambda Id)^m v = 0$. Root subspace $V^{\lambda}(A) = ker(A - \lambda Id)^m$, is the space of all root vectors of λ .

Also, $ker(A - \lambda Id) \subset ker(A - \lambda Id)^2 \subset ... \subset ker(A - \lambda Id)^m = ker(A - \lambda Id)^{m+1}$.

Suppose e_1, e_2 basis of $ker(A-\lambda Id)$, then e_1, e_2 eigenvectors of A. $Ae_1 = \lambda e_1, Ae_2 = 0e_1 + \lambda e_2$.

Further suppose e_1, e_2, e_3, e_4 basis of $ker(A - \lambda Id)^2$. Then $(A - \lambda Id)(A - \lambda Id)e_3 = 0$. $(A - \lambda Id)e_3 \in ker(A - \lambda Id)$, is linearly combination of e_1, e_2 . $A(e_3) - \lambda e_3 = ae_1 + be_2$, then $A(e_3) = ae_1 + be_2 + \lambda e_3$.

Similarly, we can get basis of V^{λ_i} such that $A(e_i) = l.c.\{e_1, e_2, ...e_{i-1}\} + \lambda e_i$.

So that, $A|V^{\lambda_i}$ is upper triangular matrix with λ on all diagonal entries .

$$A|V^{\lambda_i} = \begin{bmatrix} \lambda_i & & * \\ & \ddots & \\ 0 & & \lambda_i \end{bmatrix}$$

Assume $\dim V^{\lambda}(A) = k$, then subordinate basis $\{e_1, ..., e_k\}$, $A|V^{\lambda_i}$ is $k \times k$ matrix. Further, characteristic polynomial of $A|V^{\lambda_i}$ will be $\det(A|V^{\lambda_i} - tId|V^{\lambda_i}) = (\lambda - t)^k$.

Lemma 1. For $\lambda_i \neq \lambda_j$, $(A - \lambda_j Id)|V^{\lambda_i}(A)$ is invertible.

Proof: Diagonal entries: $\lambda_i - \lambda_j \neq 0$. Thus, $det = (\lambda_i - \lambda_j)^k \neq 0$. Invertible. (will be used in proof of Proposition 2)

• Proposition 1

Let $k = dim V^{\lambda}(A)$, then multiplicity of λ in characteristic polynomial of A is k. Proof: Expend $e_1, ..., e_k$ to basis of \mathbb{C}^n , then A can be written as:

$$A = \begin{bmatrix} \lambda_i & * & \\ & \ddots & & \\ 0 & & \lambda_i & \\ & 0 & & B \end{bmatrix}$$

The characteristic polynomial of A: $det(A - tId) = (\lambda - t)^k \times det(B - tId)$.

If not a root of det(B-tId), λ only exists in $(\lambda-t)^k$, then multiplicity is k.

Assume λ is a root det((B-tId)), then λ is an eigenvalue of B. There is $w \neq 0$, $Bw = \lambda w$.

Then extend w into \mathbb{C}^n with 0 on $e_1, ..., e_k$, we can get w'. $Aw' = \lambda w' + v$, where $v \in V^{\lambda}(A)$.

Instructor: Andrey Gogolev

Then $(A - \lambda Id)w' = v \in V^{\lambda}(A)$, which means w' also in $V^{\lambda}(A)$.

But $w' = (0, ...0, w_1, ..., w_{n-k})$, can not be expressed in $e_1, ...e_k$ described above, not a root vector of λ . Contradiction.

Thus, there is no λ in det(B - tId), the multiplicity of λ is k.

Then, for each distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$ of A, there are root subspaces $V^{\lambda_1}, V^{\lambda_2}, ..., V^{\lambda_k}$ of each eigenvalues. λ_i has multiplicity $m_i = dim V^{\lambda_i}$.

According to Fundamental Theorem of Algebra, $m_1 + m_2 + ... + m_k = n$. Then $dimV^{\lambda_1} + dimV^{\lambda_2} + ... + dimV^{\lambda_k} = n$.

To prove $\mathbb{C}^n = V^{\lambda_1} \bigoplus V^{\lambda_2} \bigoplus ... \bigoplus V^{\lambda_k}$, we still need to prove that set of all vectors in bases of $V^{\lambda_1}, V^{\lambda_2}, ..., V^{\lambda_k}$ is linearly independent.

Lemma 2. Let $m = dim V^{\lambda}(A), v \in V^{\lambda}(A)$. Then $v \in ker(A - \lambda Id)^m$.

Proof: By definition of root vector, $(A - \lambda Id)^k v = 0$, for some k. $V^{\lambda}(A) = ker(A - \lambda Id)^k$. Assume k > m.

Then $ker(A - \lambda Id) \subset ... \subset ker(A - \lambda Id)^m \subset ... \subset ker(A - \lambda Id)^k = V^{\lambda}(A)$.

Each time degree of $(A - \lambda Id$ increase by 1, dimension of set increase at least by 1.

Then $dim V^{\lambda}(A) > m$. Contradiction. Only $k \leq m$ possible.

Thus, $(A - \lambda Id)^m v = (A - \lambda Id)^{m-k} v \times (A - \lambda Id)^k v = 0$. $v \in ker(A - \lambda Id)^m$.

• Proposition 2.

Let $e_1 \in V^{\lambda_1}, ..., e_k \in V^{\lambda_k}, e_1, ...e_k \neq 0$. Then $\{e_1, ..., e_k\}$ linearly independent.

Proof: To prove linearly independence, suppose $\mu_1 e_1 + \mu_2 e_2 + ... + \mu_k e_k = 0$.

When k=2:

To kill e_1 , let $dimV^{\lambda_1} = m_1$. Then by Lemma 2, $(A - \lambda_1 Id)^{m_1}e_1 = 0$.

Multiply by $(A - \lambda_1 Id)^{m_1}$, get $\mu_1 0 + \mu_2 (A - \lambda_1 Id)^{m_1} e_2 = 0$.

Since $\lambda_1 \neq \lambda_2$, diagonal entries of $(A - \lambda_1 Id)|V^{\lambda_2} = \lambda_2 - \lambda_1 \neq 0$.

Then $(A - \lambda_1 Id)^m$ can not send e_2 gradually to 0. $(A - \lambda_1 Id)^{m_1}e_2 \neq 0$.

 $\mu_2(A-\lambda_1 Id)^{m_1}e_2=0$, thus μ_2 must be 0. $e_1\neq 0$, then μ_1 also must be 0.

Therefore, $\{e_1, e_2\}$ linearly independent.

When k = 3:

Similarly, $\mu_1 0 + \mu_2 (A - \lambda_1 Id)^{m_1} e_2 + \mu_3 (A - \lambda_1 Id)^{m_1} e_3 = 0$

To kill e_2 , let $dimV^{\lambda_2}=m_2$. Then by Lemma 2, $(A-\lambda_2 Id)^{m_2}e_2=0$.

Multiply, get $\mu_2(A - \lambda_1 Id)^{m_1}(A - \lambda_2 Id)^{m_2}e_2 + \mu_3(A - \lambda_1 Id)^{m_1}(A - \lambda_2 Id)^{m_2}e_3 = 0.$

Similarly, by Lemma 1, $(A - \lambda_1 Id)^{m_1} (A - \lambda_2 Id)^{m_2} |V^{\lambda_3}| det \neq 0$, invertible.

 $(A - \lambda_1 Id)^{m_1} (A - \lambda_2 Id)^{m_2} e_3 \neq 0$, then μ_3 must be 0.

Then $\mu_2(A - \lambda_1 Id)^{m_1}(A - \lambda_2 Id)^{m_2}e_2 = 0$, μ_2 must 0. Similarly, $\mu_1 = 0$.

Therefore, $\{e_1, e_2, e_3\}$ linearly independent.

For k root spaces, repeated this process applying $(A - \lambda_i Id)^{m_i}$ to kill terms $e_1, ..., e_{k-1}$. Then we can get $\mu_k, \mu_{k-1}, ..., \mu_1 = 0, \{e_1, ..., e_k\}$ linearly independent.

 $V^{\lambda_2},...,V^{\lambda_k}$ each has adapted basis. Let basis of V^{λ_j} be $E_j=\{e_1^{\lambda_j},e_2^{\lambda_j},...,e_{m_k}^{\lambda_j}\}$

Then we can let
$$\sum_{i=1}^{m_1} \mu_i^{\lambda_1} e_i^{\lambda_1} + \sum_{i=1}^{m_2} \mu_i^{\lambda_2} e_i^{\lambda_2} + \dots + \sum_{i=1}^{m_k} \mu_i^{\lambda_k} e_i^{\lambda_k} = 0$$

By Proposition 2, each $\sum_{i=1}^{m_j} \mu_i^{\lambda_j} e_i^{\lambda_j}$ is 0. Then every μ is 0. Set of all vectors $E_1, E_2, ..., E_k$ is linearly independent.

Thus consider $E = \bigcup E_j$ for j = 1, ..., k. By Proposition 1, dimE = n. E is a basis of \mathbb{C}^n .

$$\mathbb{C}^n = V^{\lambda_1} \bigoplus V^{\lambda_2} \bigoplus \ldots \bigoplus V^{\lambda_k}$$

$$A = \begin{bmatrix} A|V^{\lambda_1} & & 0\\ & A|V^{\lambda_2} & & \\ & & \ddots & \\ 0 & & & A|V^{\lambda_k} \end{bmatrix}$$

5 STEP 3: Jordan Block

• Proposition 3.

Let $N: V \to V$ nilpotent, then $\exists v_1, ..., v_q$, $height(v_i) = m_i$ such that $v_1.Nv_1, ...N^{(m_1-1)}v_1$ Proof:

6 Special Case: Diagonalization of Symmetic Matrix

7 Note

- 0. Jordan
- 1. just one version of story telling
- 2. open the door to modern linear algebra to me
- 3. further edit on this
- 4. Example with notation.