RADIATION HEAT TRANSFER LAB 10

RADIATION HEAT TRANSFER

- Electromagnetic Waves Radiation
- Radiative Heat Flux
- Radiation Intensity
- Black Body Radiation
- Stefan-Boltzmann Law
- Solar Heat Flux
- Lab 10 Goal: To verify that the total radiation emitted by a heat source is proportional to the fourth power of its absolute temperature (Stefan-Boltzmann Law) and the effect emissivity has on measured emission

 Radiation refers to the emission of electromagnetic waves from the surface of an object

 ullet Each photon of frequency v is considered to have energy of

$$e = h\nu = \frac{hc}{\lambda}$$

RADIATIVE HEAT FLUX

Table 12.1 Radiative fluxes (over all wavelengths and in all directions)

Description	Comment
Rate at which radiation is emitted from a surface per unit area	$E = \varepsilon \sigma T_s^4$
Rate at which radiation is incident upon a surface per unit area	Irradiation can be reflected, absorbed, or transmitted
Rate at which radiation leaves a surface per unit area	For an opaque surface $J = E + \rho G$
Net rate of radiation leaving a surface per unit area	For an opaque surface $q''_{\text{rad}} = \varepsilon \sigma T_s^4 - \alpha G$
	Rate at which radiation is emitted from a surface per unit area Rate at which radiation is incident upon a surface per unit area Rate at which radiation leaves a surface per unit area Net rate of radiation leaving a

RADIATIVE HEAT FLUX

- Reflectivity The fraction reflected (ρ)
- Absorptivity The fraction absorbed (α)
- Transmissivity The fraction transmitted (τ)

$$\rho + \alpha + \tau = 1$$

RADIATION INTENSITY

• Solid angle

$$d\omega = \frac{dA_n}{r^2}$$
$$dA_n = r^2 \sin\theta d\theta d\phi$$

RADIATION INTENSITY

• Emission

$$E = \pi I_e$$

Irradiation

$$E = \pi I_i$$

Radiosity

$$J = \pi I_{e+r}$$

BLACK BODY RADIATION

- A blackbody absorbs all incident radiation, regardless of wavelength and direction.
- For a prescribed temperature and wavelength, no surface can emit more energy than a blackbody.
- Although the radiation emitted by a blackbody is a function of wavelength and temperature, it is independent of direction.
 That is, the blackbody is a diffuse emitter.

BLACK BODY RADIATION

† Plank distribution

$$E_{\lambda,b}(\lambda,T) = \pi I_{\lambda,b}(\lambda,T) = \frac{C_1}{\lambda^5 \left[\exp\left(\frac{C_2}{\lambda T}\right) - 1 \right]}$$

$$C_1 = 2\pi h c_o^2 = 3.742 \times 10^8 \, W \cdot \frac{\mu m^4}{m^2}$$

$$C_2 = \frac{hc_o}{k_B} = 1.439 \times 10^4 \mu m \cdot K$$

Wien's displacement law

$$\lambda_{max}T = 2898\mu m \cdot K$$

BLACK BODY RADIATION

STEFAN BOLTZMANN LAW

Black Body Irradiation

$$E_b = \sigma T^4$$
$$I_b = E_b/\pi$$

Ambient Effects

$$E_T = E_{HS} + E_{amb}$$
$$E_{amb} = \sigma T_{amb}^4$$

Real Irradiation

$$E = \varepsilon(\lambda, T)\sigma T^4$$

EMISSIVITY

SOLAR HEAT FLUX

- The sun is located $1.5 \times 10^{11} \, m$ from the earth and emits as a blackbody at 5800 K.
- Solar Flux at the outer edge of the Earth's atmosphere is 1368 W/m^2 , 950 W/m^2 at Earth's surface.
- Photovoltaics
 - Conversion into Electrical Energy
- Concentrated Solar Power
 - Conversion into Heat

SOLAR FLUX

LAB 10

- Radiative temperature measurement from a conductively heated source
 - Please briefly describe what you observed in relation to "heat conduction" during this experimental step.
 - Explain the temperature difference between different samples under different heat up times.
- Radiative temperature measurement from a conductively heated source
 - Why is there a temperature difference between the samples with and without black tape?
 - How do emissivity values differ for each of the materials tested?
- Radiative emission at different temperatures
 - Log-log plot used to verify the Stefan-Boltzmann Law
 - A non-log scale plot of the same data
 - A plot of the emissivity as a function of the temperature
 - A table showing the equations used to calculate uncertainty in emissivity and listing uncertainty in emissivity for each temperature point.

LAB 10

- Diameter of Sensor: 5 cm
- Distance to Heat Source: 350 mm
- Blackbody Heat Source Emission: $E_b = \sigma T^4$
- Theoretical Irradiance at Sensor: $\frac{E_b A_{sensor}}{r^2}$

Heat Source E_b (W/m ²⁾	Theoretical (W/m ²)	Emissivity
697.2041972	11.17516	0.715873
880.4037434	14.11158	0.779502
1097.535019	17.59188	0.852666
1352.549787	21.67939	0.922535
1649.617539	26.44095	0.983323

LAB 10

Room T	Heat Source T (°C)	Heat Source T (K)	Heat Source T ⁴ (K ⁴)	Measured I (W/m^2)
21	60	333	12296370321	8
21	80	353	15527402881	11
21	100	373	19356878641	15
21	120	393	23854493601	20
21	140	413	29093783761	26

Log Heat Source (K)	Log Adjusted I (W/m^2)
2.522444234	0.903089987
2.547774705	1.041392685
2.571708832	1.1 <i>7</i> 6091259
2.59439255	1.301029996
2.615950052	1.414973348

