1830

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федерального государственного автономного образовательного учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

отчет

по домашней работе

№ 2 ПО КУРСУ

«Конструкторско-технологическое обеспечение производства ЭВМ» вариант № 21

Студент К3-66Б	<u> Чернов В.Д.</u>
Доцент К2, к.т.н.	Удалов М.Е.

Домашнее задание 2. Задача 1.

Вариант №21

Собственная частота печатной платы f0, Гц, с распределённой нагрузкой для различных вариантов закрепления определяется выражением необходимо выполнить следующие действия:

$$f_0 = (1/2\pi)^* (K_\alpha/\alpha^2)^* \sqrt{(Dab/M)},$$

где а = 0,07 м — длина большей стороны печатной платы; b = 0,06 м — длина меньшей стороны печатной платы, м; M = 0,0319 кг — общая масса печатной платы; D — цилиндрическая жёсткость печатной платы, H · м; K_{α} — коэффициент, зависящий от способа закрепления печатного узла, определяется выражением

$$K_{\alpha}=k\sqrt{(\alpha+\beta(\alpha^2 b^2)+\gamma(\alpha^4 b^4))},$$

где k = 22,37; $\alpha = 0$; $\beta = 0$; $\gamma = 1$.

Цилиндрическая жёсткость печатной платы D, H*м, определяется формулой

D=
$$Eh^3/(12(1-\mu^2))$$
,

где E=3 H/м2 — модуль упругости; $\mu=0,22$ — коэффициент Пуассона, h=0,00075 м — толщина печатной платы.

$$K_{\alpha} = 22,37\sqrt{(0+0(0,07^2/0,06^2)+1(0,07^4/0,06^4))} \approx 30,45$$

$$D=3*10^{10}*0,00075^3/(12(1-0,22^2))\approx 1,11 \text{ H*m}$$

$$f_0 = (1/2\pi)^* (30,45/0,07^2)^* \sqrt{(1,11^*0,07^*0,06/0,0319)} \approx 378,1 \ \Gamma$$
ц

Максимальное смещение блока $\varepsilon_{\rm 6n}^{\rm max}$, м, вычисляется по формуле

$$\varepsilon_{\text{бл}}^{\text{max}} = a_{\text{\tiny B}} / (4 * \pi^2 * f_{\text{\tiny B}}^2),$$

где $a_{\scriptscriptstyle B}=19,6\,$ м/с² — ускорение внешнего источника вибрации; fв, Γ ц — частота вибрации внешнего источника.

$$f_{\rm B} = f_0/2 = 189,1 \; \Gamma_{\rm II}$$

$$\varepsilon_{6\pi}^{max} = 19.6 / (4*\pi^2*189.1^2) = 1.39*10^{-5} M$$

Ответ:

- 1) конструкция с собственной частотой f_0 =378,1 Γ ц защищена от внешней вибрации с частотой $f_в \sim$ 189,1 Γ ц ;
- 2) для $f_{\rm B}$ = 189,1 Гц максимальное смещение блока для вычисленной внешней вибрации составит $\varepsilon_{\rm бл}^{max}$ =1,39 * 10⁻⁵м.

Задача №2

Коэффициент передачи удара определяется формулой

$$K_v = 2\sin(\pi\Delta\omega/2)$$
,

где $\Delta\omega$ – коэффициент расстройки, вычисляется по формуле

$$\Delta\omega = \omega/\omega_0 = \omega/2\pi f_0$$
,

где ω – условная частота удара, рад/с:

$$\omega = \pi/\tau$$
.

где τ — длительность ударного импульса, мс; τ = 10 мс = 0,01 с, (см. ГОСТ 16019—01)

$$\omega = \pi/0,01=314 \text{ рад/c}$$

$$\Delta\omega = 314/(2\pi*378,1)\approx 0,13$$
 рад/с

$$K_y = 2\sin((\pi * 0.13)/2) \approx 0.405$$

Рассчитывается коэффициент передачи при ударе:

а) для прямоугольного импульса

$$K_{y}^{'}=\pi*\cos(\pi\Delta\omega/2)=\pi\cos(\pi*0.13/2)\approx3.07;$$

б) для полусинусоидального импульса

$$K''_y = -(\pi^2 \sin(\pi \Delta \omega/2))/2 = -(\pi 2 \sin(\pi * 0.13/2))/2 \approx -1$$

Рассчитывается ударное ускорение

$$a_y = Hy *Ky = 147 * 0,405 = 59,535 \text{ M/c}^2,$$

$$a'_y = 147 * 3,07 = 451,29 \text{ M/c}^2$$

$$a''_y = 147 * 1 = 147 \text{ M/c}^2$$

где у H – амплитуда ускорения ударного импульса, m/c^2 ; $H_y = 147 \text{ м/c}^2$ (исходя из четвёртой группы по механическим воздействиям).

Максимальное смещение печатного узла под действием удара

$$S_v = (a_v/w_0^2) * K_v = (a_v/(2\pi f_0)^2) * K_v = 59,535 (2\pi *378,1)^2 * 0,405 = 4,27*10^{-6} \text{ M}$$

Задача №3

Рассчитываются статические нагрузки на амортизаторы. Условия статического равновесия системы амортизации:

$$\sum pi = G$$

$$\sum pixi = 0$$
, $\sum piyi = 0$, $\sum pizi = 0$;

$$\sum pixiyi = 0$$
, $\sum pixizi = 0$, $\sum piyizi = 0$,

где pi – весовая нагрузка, приходящаяся на i-й амортизатор; G – вес блока.

Блок устанавливается на носителе без перекосов (поэтому Z = 0), тогда получаем $\sum Pi = G$, $\sum pixi = 0$, $\sum piyi = 0$.

Задаваясь координатами размещения амортизаторов, получаем систему из четырёх линейных уравнений:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ x_1y_1 & x_2y_2 & x_3y_3 & x_4y_4 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} = \begin{bmatrix} G \\ 0 \\ 0 \\ 0 \end{bmatrix},$$
 где x1 = 0,05998 м, x2 = $\begin{bmatrix} 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 & 0.05999 \\ 0.05999 & 0.059$

где x1 = 0.05998 м, x2 = 1.07 газа изи при x1 = 0.05998 м, x3 = -0.05998 м, x4 = 0.05998 м, x4 = 0.05998 м, x4 = 0.0225 м, x5 = 0.0225 м, x5

Решая эту систему относительно нагрузок на амортизаторы, находятся статические нагрузки на амортизаторы: p1, p2, p3, p4:

$$p1 = p2 = p3 = p4 = 0,551 H$$

Исходя из полученных значений, выбирается тип амортизаторов АД Φ -1, статические нагрузки в пределах 2...3 H.

Рассчитывается резонансная частота блока на амортизаторах. Так как амортизаторы расположены симметрично и центр масс совпадает с центром жёсткости (рис. 2.7), то резонансная частота находится по формуле

$$f$$
pe3 = $1/2\pi \sqrt{\text{K}\Sigma} / \text{m}$

где m — масса блока; $K\sum$ — суммарная жёсткость системы.

$$K\Sigma = \sum K_{\text{am}} i = 1*4=40 \text{ H/cm}$$

$$f$$
рез = $1/2\pi \sqrt{(40/0,056)} \approx 4,25 \Gamma$ ц

Список источников

1. Компьютерные технологии для расчёта тепловых режимов и механических воздействий : учебное пособие / Д.Ю. Муромцев, О.А. Белоусов — Тамбов : Изд-во ФГБОУ ВПО «ТГТУ», 2012.-88 с. -100 экз. — ISBN 978-5-8265-1063-6.