Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Methods

Analysis

Thesis Outline

Timeline

Investigation of Ultrasound Transducer Response

Katelyn N. Joyce[†], Alison E. Malcolm[‡] and Kristin M. Poduska[†]

†Department of Physics & Physical Oceanography, [‡]Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada

August 1, 2022

Introduction

Motivation

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Methods

Analysis

Thesis Outline

- Ultrasound transducers are used by geophysicists to characterize heterogeneous rocks, and by medical professionals for diagnostics and therapeutics.
- Existing research suggests that the waves induced in a material do not necessarily have the same properties as the input waveforms [1].
- Transducer outputs vary when transducers are coupled with different materials. Each coupled system is unique and requires study.

Introduction

Objectives

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and Methods

Analysis

Thesis Outline

Timeline

Goals:

- (a) Quality Control Understand transducer outputs for different coupled systems.
- (b) Develop a protocol to inform researchers of necessary parameter adjustments when working with ultrasound transducers.

Materials and Methods

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Analysis

Thesis Outline

Analysis

Raw Data

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Methods Analysis

Thesis Outline

Timeline

Data collection parameters:

- Input frequency: 100 kHz 1 MHz
- Sample material: No sample, Sandstone, Aluminium, Tofu, etc.
- Transducers: No transducers, various P- and S-wave transducers
- Cycles (1,4, continuous)
- Sampling (collection time)

Analysis

Signal Processing

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and Methods

Analysis

Thesis Outline

Timeline

Analyze FFT spectrum:

- Frequency Shifts
- Peak Widths
- Relative Amplitudes

After varying:

- Decimation
- Padding

Thesis Outline

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and Methods

Analysis

Thesis Outline

Timeline

Chapter 1 - Introduction

Motivation - Jacob's unexpected results [1]

Chapter 2 - Theory

- General Wave Physics
- Ultrasound, Piezoelectric Effect
- FFT

Chapter 3 - Materials & Methods

Chapter 4 - Results

- Control: Generator to Scope
- Frequency Shift
- Cycle & Material Comparison
- Padding & Decimation

Chapter 5 - Discussions & Conclusions

Progress

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

....

Materials and

Analysis

Thesis Outline

- Data Collection In progress
- Data Analysis In progress
- ✓ Course Requirements:
 - CMSC6920, P6000, P6900, MED6106
- √ Background Reading
- ✓ Python Review ACENET
- ✓ Department Poster Session

Estimated Timeline

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and Methods

Analysis

Thesis Outline

	Task	Completion Date
Fall 2022	Data Collection	October 2022
	Data Analysis	December 2022
	First Draft/Thesis Outline	December 2022
Winter 2023	Introduction/Theory	January 2023
	Results	February 2023
	Discussions and Conclusions	March 2023
	Protocol	April 2023
	Complete Revisions	April 2023
Summer 2023	Seminar	May 2023
	Submit Thesis to SGS	June 2023
	Degree Completed	August 2023

References

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Analysis

Thesis Outline

Tilesis Outi

Timeline

Jacob Edward Newman.

Dependence of elastic nonlinearity on aligned inhomogeneities. PhD thesis, Memorial University of Newfoundland, 2021.

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Methods

Analysis

Thesis Outline

Investigation of Ultrasound Transducer Response

Katelyn N.
Joyce[†], Alison
E. Malcolm[‡]
and Kristin M.
Poduska[†]

Introduction

Materials and

Methods

Analysis

Thesis Outline

