STAT 4005 Time Series Assignment 1

Due date: 3 Feb 2021; 5pm

Let $a_t \sim WN(0, \sigma^2)$

- 1. Does the quadratic trend $T_t = \alpha + \beta t^2$ pass through the moving average filter $(a_{-1}, a_0, a_1) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$?
- 2. Suppose $Z_t = 8 + 4t + 2X_t$, where X_t is a zero-mean stationary series with autocovariance function γ_k .
 - (a) Find the mean and the autocovariance function of Z_t .
 - (b) Is Z_t stationary? Why?
 - (c) Find the mean and the autocovariance function of $\Delta Z_t = (1 B)Z_t$.
 - (d) Is ΔZ_t stationary? Why?
- 3. Suppose that $Z_t = (a_t + a_{t-1} + a_{t-3})/3$
 - (a) Show that Z_t is weakly stationary.
 - (b) Find ρ_k , k = 0, 1, 2, 3, ...
 - (c) Find Var $\left(\frac{1}{5}\sum_{t=1}^{5} Z_t\right)$.
- 4. Consider the time series $\{Z_t\}$ satisfying

$$Z_t = 0.2Z_{t-1} + a_t.$$

- (a) Assuming that $\{Z_t\}$ is stationary, find the mean $E(Z_t)$.
- (b) Assuming that $\{Z_t\}$ is stationary and $Cov(Z_s, a_t) = 0$ for s < t, find the variance $Var(Z_t)$. (Hints: take variance on both sides.)
- (c) Find $Cov(Z_t, Z_{t-k})$ for k = 1, 2, 3, ... (Hints: multiply Z_{t-k} on both sides and take expectation.)
- 5. Consider the time series $\{Z_t\}$ satisfying

$$Z_1 = a_1$$
; $Z_t = 0.2Z_{t-1} + a_t$ for $t > 1$.

- (a) By mathematical induction, show that $Z_t = \sum_{k=0}^{t-1} 0.2^k a_{t-k}$.
- (b) Find the mean $E(Z_t)$ and the variance $Var(Z_t)$.
- (c) Find $Cov(Z_t, Z_{t-k})$ for t > k and $k \ge 0$.
- 6. Consider the data set **monthly_milk.csv** in the class website that contains the monthly milk production from 1962 to 1975. Using R, decompose the series into three components.