Tutorial3	Graded
Student	
Abhinav Shripad	
Total Points	
3 / 3 pts	
Question 1	
(no title)	3 / 3 pts
+ 0.6 pts Written "I do not know how to approach this problem" - 0.6 pointsCorrect	
 ✓ + 2 pts Binary search idea + correctness	
→ + 1 pt Showing \$O(n \log (\max (L)))\$ time complexity	
+ 1.25 pts On the right tract with binary search idea but informal/no correctness	
+ 0 pts Incorrect	
perfect!	

COL351: Analysis and Design of Algorithms Tutorial 3

Name: Abhinax R. Shipad Date: August 13, 2024 Entry number: 2022CS11596 Group: 3 Algorithm: - from a peice of emoth e. I. can get [e/d] peices of length d. Observe that $\sum_{i=1}^{N} |a_{ij}|$ where a_{ij} are element of away, this is a 'decreasing function". Mence we can apply binary search to find max d such that \\ \frac{\subset}{2} Lail \rightarrow K. Code: (Den log(mx) = O(n-bits in mx) low:= this = 0 (total bits in L)=polynomial fine mx = maximum (d) # maximum element in away L. low:=1, high= mx, ans=1, mid = 0; while (dow <= high): mid = 10w+ (nigh-10w)/2 total = 5/LCi] # O(n) if (total > K): ans=mid, troph= no low=mid+1 else: high=mid-1 return ans #ans==-1 -> no solution

->T.C. = O (Mog(mx)) = O(n xno-abits in mx))
= O(totalbits to represent
L) -> polynamial