Termodinámica - Clase 10

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

Aplicaciones de las relaciones de Maxwel

Conceptos en esta clase

• Aplicaciones de las relaciones de Maxwell

Contenido

Conceptos en esta clase

Aplicaciones de las relaciones de Maxwell

Capacidades caloríficas

$$C_P - C_V = TV\beta^2 K$$

- Una relación entre cantidades termodinámicas y mecánicas.
- K>0 para todas las sustancias (estabilidad mecánica), $\beta>0$ típicamente: $C_P>C_V$ generalmente.

Capacidades caloríficas

$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 P}{\partial T^2}\right)_V \qquad \left(\frac{\partial C_P}{\partial P}\right)_T = -T \left(\frac{\partial^2 V}{\partial T^2}\right)_P$$

Se puede usar la ecuación de estado para determinar como varian C_V y C_P con cambios en V y P. Por ejemplo, para un gas ideal y un gas de van der Waals $(\partial C_V/\partial V)_T=0$.

Ecuación de energía

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\beta K_{T} - P$$

$$\left(\frac{\partial U}{\partial P}\right)_{T} = -TV\beta + \frac{PV}{K_{T}}$$

donde $K_T=-V(\partial P/\partial V)_T$. De la primera ecuación tenemos: $F=-\left(\frac{\partial U}{\partial x}\right)_T+AT\beta K_T$

Cociente de capacidades caloríficas

$$\frac{C_P}{C_V} = \frac{\kappa_T}{\kappa_S}$$
 donde $\kappa_T = -(1/V)(\partial V/\partial P)_T$ y $\kappa_S = -(1/V)(\partial V/\partial P)_S$.

Ondas sonoras

La rápidez de una onda sonora está dada por

$$c = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{S}} = \sqrt{\frac{K_{S}}{\rho}}$$

Coeficiente de Joule (expansión libre)

$$\mu_{J} = \frac{1}{C_{V}} \left(P - T \left(\frac{\partial P}{\partial T} \right)_{V} \right)$$

Coeficiente de Joule-Kelvin (proceso de estrangulamiento)

$$\mu_{JK} = \frac{1}{C_P} \left(T \left(\frac{\partial V}{\partial T} \right)_P - V \right)$$