

1 Filtercharakteristik eines belasteten Tiefpasses

Ein unbelastetes Tiefpass-Filter (in nachfolgender Schaltung für den Fall $R_L \to \infty$) hat eine Grenz-Kreisfrequenz von ω_g = 1/(R_1C). Im folgenden wird der Einfluss eines Lastwiderstandes R_L untersucht.

- a) Berechnen Sie den Frequenzgang \underline{U}_{out} / \underline{U}_1 und daraus den Amplitudengang der folgenden Schaltung bei Belastung mit R_L.
- b) Bestimmen Sie für diesen Fall die Grenzfrequenz $\omega_{g,Last}$. Dabei bezieht man sich auf die maximale Amplitude und bestimmt die Kreisfrequenz, bei der sich ein Abfall des Amplitudenganges auf $1/\sqrt{2}$ der maximalen Amplitude ergibt.

Hinweis:

Ein möglicher Lösungsweg ist die Betrachtung der Ersatzquelle der Schaltung, wenn C rechentechnisch als "externe Last" behandelt wird.

[Lösung:

- a) $\underline{F} = R_L / (R_1 + R_L) \cdot (1 + j \omega R_i C)^{-1} \text{ mit } R_i = R_1 R_L / (R_1 + R_L)$
- b) $\omega_{q, Last} = 1/(R_i \cdot C)$ mit R_i wie bei a)]

2 Filtercharakteristik eines RL-Netzwerkes

Der Reihenwiderstand von L sei $R_k = k \cdot R$, also ein Vielfaches von R.

- a) Berechnen Sie den Frequenzgang $\underline{U}_{out}/\underline{U}_{in}$ als Funktion der normierten Frequenz $\Omega = \omega L/R$.
- b) Geben Sie die Grenzfrequenz Ω_q in Abhängigkeit von k an.
- c) Skizzieren Sie Ω_q über k.

[Lösung: a) $\underline{F} = (k + 1 + j\Omega)^{-1}$ b) $\Omega_g = k + 1$]