Retiarii: A Deep Learning Exploratory-Training Framework

Authors: Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, Lidong Zhou

Members: Yibo Pi, Jiachen Liu and Qinye Li

Prevalence of Deep Neural Network (DNN)

• Success in perception-based tasks: vision and speech

• Widely used to empower many cloud/edge applications

Important to design new DNN models

How DNNs Are Commonly Designed?

Designing new DNNs is an exploratory process

This process is called exploratory-training.

Typical Types of Model Space Explorations

2. Adding a skip connection

1. Replace an operator

3 & 4. Rule-based replacement and insertion, e.g., inserting *relu* between *conv* and *dense*

Typical Types of Model Space Explorations

5. Generalizing a cell structure to find a better one

Evolving from a base model

Typical Implementation of Model Space Exploration

I. Specifying model space:a jumbo model with manycontrol flows

2. Exploring model space: encoding an exploration strategy in the jumbo model

A coupling between model space and exploration strategy

Existing Ways to Achieve Exploratory-Training

- Manually try each new DNN model with deep learning frameworks, e.g., PyTorch
- Neural architecture search (NAS) algorithms or AutoML systems
 - Lack of modularity: coupling between model space, exploration strategy, and model training
 - Lack of reusability: model space and exploration strategy need to be parameterized
- Missed opportunities to exploit model similarities to speed up the exploration process

A Framework for Exploratory Training?

No framework

Deep learning framework

Exploratory-training framework

Program with libraries: C++, Matlab

Program DNN models easier and faster with Pytorch

Explore and choose the best model easier and faster

Retiarii: A Deep Learning Exploratory-Training Framework

Key idea

- Program the model space rather than single models
- model space = base model + mutators (basic operations to modify models)

Mutator as the core abstraction

- I. Defining arbitrary model space with mutators
- 2. Decoupling model space from model exploration
 - Model exploration is a set of policies or rules
 - One model exploration strategy can be used for different model spaces
- 3. Exposing correlations between models
 - Easy to analyze model similarities with mutators

Mutator-based Programming Paradigm

Mutation primitives

Replace the third node in this 4-node base model with an inception cell

Define the mutator


```
# define the graph mutation behavior
class InceptionMutator(BaseMutator):

def __init__(self, paths_range, candidate_ops):
    self.paths_range = paths_range # [2, 3, 4, 5]
    self.ops = candidate_ops # {conv, dconv, ...}
def mutate(self, targets):
```

 Check the target node chain (relu, maxpool, dense)


```
# define the graph mutation behavior
class InceptionMutator(BaseMutator):

def __init__(self, paths_range, candidate_ops):
    self.paths_range = paths_range # [2, 3, 4, 5]
    self.ops = candidate_ops # {conv, dconv, ...}

def mutate(self, targets):
    if not three_node_chain(targets):
        return err
```

Choose # of paths

```
"model/conv"
          "model/relu"
              relu
    conv
```

```
"model/dense" 8
    dense
```

```
1 # define the graph mutation behavior
2 class InceptionMutator(BaseMutator):
   def __init__(self, paths_range, candidate_ops):
     self.paths_range = paths_range # [2, 3, 4, 5]
     self.ops = candidate_ops # {conv, dconv, ...}
   def mutate(self, targets):
     if not three_node_chain(targets):
       return err
     n = choose(candidates=self.paths_range)
     delete_node(targets[1])
```

Two paths

Creating paths


```
define the graph mutation behavior
2 class InceptionMutator(BaseMutator):
    def __init__(self, paths_range, candidate_ops):
      self.paths_range = paths_range # [2, 3, 4, 5]
      self.ops = candidate_ops # {conv, dconv, ...}
    def mutate(self, targets):
      if not three_node_chain(targets):
        return err
      n = choose(candidates=self.paths_range)
      delete node (targets[1])
10
      for i in range(n): # create n paths
11
        op = choose(candidates=self.ops)
12
        nd = create_node(name='way_'+str(i), op=op)
13
        connect (src=targets[0].output, dst=nd.input)
14
        connect (src=nd.output, dst=targets[2].input)
15
```

System Architecture

Inputs

- One or more base models
- A set of mutators
- A policy describing the exploration strategy

System Architecture

Model space

- Mutator
- Base models

System Architecture, put to Exploratory-Training

Exploration engine

Instantiation control

• Choice suggestion

Training control

System Architecture

Model training

• Optimized data-flow graphs

Expressiveness and Reusability

• Retiarii currently supports 27 neural architecture search (NAS) solutions

			Required Mutator Class			
NAS Solution	Model Space	Exploration Strategy	Input	Operator	Inserting	Customized
			Mutator	Mutator	Mutator	Mutator
MnasNet [59]	MobileNetV2-based space	Reinforcement Learning		✓	✓	20
NASNet [70]	NASNet cell	Reinforcement Learning	✓	✓		
ENAS-CNN [50]	NASNet cell variant	Reinforcement Learning	✓	✓		
AmoebaNet [51]	NASNet cell	Evolutionary	✓	✓		
Single-Path One Shot (SPOS) [27]	ShuffleNetV2-based space	Evolutionary		✓		
	Evolving space w/			,		,
Weight Agnostic Networks [23]	adding/altering nodes	Evolutionary		✓		~
	adding connections					
Path-level NAS [13]	Evolving space w/	Reinforcement Learning				1
	replication and split					· ·
TextNAS [62]	TextNAS space	Reinforcement Learning	✓	✓		
•••						

Cross-Model Optimization

Optimization opportunities

- Same training data
- Same data preprocessing
- Common layers
- Weight sharing among models

De-duplicating CPU-based common prefix operations

Experiment: training MnasNet0.5 on ImageNet with 4 V100 GPUs and 20 CPU cores

CSE of CPU-based operation

CSE + device placement for GPU-based embedding

Dedicating one GPU for BERT-embedding improves pipeline and reduce memory consumption

Experiment: training TextNAS, one of the state-of-the art NLP models

Speeding up Neural Architecture Search (NAS)

Three popular NAS solutions

NAS Solution	Search Space	Exploration Strategy
MnasNet	Factorized Hierarchical Search Space	Reinforcement Learning
NASNet	Normal Cell + Reduction Cell	Reinforcement Learning
AmoebaNet	Normal Cell + Reduction Cell	Evolutionary Algorithm

Baselines

- Exclusive execution: training one model per GPU at a time
- Packing: training multiple models per GPU using NVIDIA CUDA MPS

Speeding up Neural Architecture Search (NAS)

- Running on 4 NVIDIA Tesla V I 00 GPUs
- Training 1000 models for 1 epoch on ImageNet

(a) NVIDIA Data Loading Library (DALI)

(b) PyTorch DataLoader

3/23/21 EECS 598 – W21

Conclusion

• Retiarii is a new DNN framework for exploratory training

 Retiarii provides new interfaces for model developers to explore new models efficiently

- Retiarii uses the Mutator abstraction to achieve
 - Strong expressiveness in model space
 - Reusability of exploration strategies
 - Cross-model optimization

Discussion

Limitations of Retiarii mentioned by the authors

- 1. Limited support to dynamic graphs
- 2. Limited support to operator batching
- 3. Possible shape mismatch between adjacent layers' input/output tensors

Other limitations:

- 1. A whitelist is used to identify operators requiring dedicated GPUs
- 2. Retiarii greedily packs as many models as possible into one GPU
 - What if single models are too large to fit in to one GPU?
- 3. What if there are significant mutations to the base model?
 - Is it easy for developers to manage these mutations?
 - How will cross-model optimization perform when models are very different?

Operator Batching

What is weight sharing?

Building a super-graph to encode the search space

• Building a super-graph to encode the search space

Limited space size and hard to scale to a large GPU cluster

- Mixed Parallelism for weight sharing
 - Model parallelism partitions the super-graph to multiple GPUs
 - Data parallelism feeds each partition with a different batch of data

3/23/21

Experiment with a popular weight-shared NAS, SPOS [*]

3/23/21 EECS 598 – W21

^[*] Guo Z, et al. "Single path one-shot neural architecture search with uniform sampling". arXiv preprint. 2019 Mar 31.

Fluid: Resource-aware Hyperparameter Tuning Engine

Peifeng Yu[†], Jiachen Liu[†], Mosharaf Chowdhury

† Equal contribution

Outline

I. Background and Motivation

2. Abstraction and Algorithms

3. Evaluation

Hyperparameter Tuning Today

- Hyperparameters
 - # of layers/# of neurons
 - Dropout rate
 - # of channels
 - Learning rate
 - Optimizer parameters
 - Etc.

Non-differentiable & high dimensional search space

Hyperparameter Tuning Today

- Evaluation of hyperparameters is time/resource consuming
 - train a model to know if it works

- Many algorithms & techniques
 - Random/Grid
 - Model-based config generation (BO, PTE ...)
 - Bandit-based / early-stopping (SHA, HB, BOHB...)
 - Many others (ASHA...)

Example: SHA

- Resource underutilized
- 2. Straggler problem

Example: ASHA / BOHB

1. Maximize resource utilization by improving parallelism

Example: BOHB

- Higher time to accuracy with the increase of #worker
- 2. Unknown resource to accuracy performance (goodput)
- 3. Simply improving parallelism may waste resources

Trials Execution Resource utilization overtime

Resource Parallelism

Inter-GPU parallelism: Distributed training

Fully utilize the idle resources

Intra-GPU parallelism: Nvidia MPS

Execute more trials with under-utilized resources

Goal:

- 1. Improve resource utilization
- 2. Minimize the makespan

Hyperparameter Execution Engine: Fluid

- Direct interaction with the cluster to execute trials
- Trials gets executed in FIFO order

Hyperparameter Execution Engine: Fluid

Hyperparameter Execution Engine: Fluid

Challenge:

- Wide variety of tuning algorithms
 - Random/Iterative/Sequential
 - **✓** TrialGroup

- Heterogeneity & dynamicity
- ✓ Integrated algorithm for leveraging multiple source of parallelism

Outline

I. Background and Motivation

2. Abstraction and Algorithms

3. Evaluation

The Interface: TrialGroup

Definition

A group of training trials with a training budget associated to each trial.

- Example
 - Given 5 trials to evaluate:

• Grid/random search:

Sequential model-based algorithms:

The Interface: TrialGroup

Definition

A group of training trials with a training budget associated to each trial.

- Generalization
 - All kinds of hyperparameter tuning algorithms could be expressed by a sequence of TrialGroup and executed by Fluid.

Problem Definition: Strip Packing

- Input: Trial Group $A=\{a_1,a_2,\cdots,a_k\}$, resources $M=\{m_1,m_2,\cdots,m_n\}$
- Output: resource allocation $W = \{w_1, w_2, \dots, w_n\}$
- Goal: minimize the length L of strips

$$w = 1$$

$$l = 30$$

$$w = 1$$
 $l = 1$

Problem Definition: Strip Packing

- Input: Trial Group $A=\{a_1,a_2,\cdots,a_k\}$, resources $M=\{m_1,m_2,\cdots,m_n\}$
- Output: resource allocation $W = \{w_1, w_2, \dots, w_n\}$
- Goal: minimize the length L of strips

$$w = 1$$

$$l = 1$$

$$w=0.5$$

l = 2

Intra-GPU

Toy Example

Different solutions to execute 4 trials (I TrialGroup) scheduled on 5 workers

Fully utilize the resources and mitigate the straggler

Algorithm: StaticFluid

$$w_i = \min(\max(\left[\frac{h_{i,1}}{\sum_j h_{j,1}}n\right], \frac{1}{c}), d)$$

Budget ratio

h: trial training budget

• n: available resources

• c: maximum intra-GPU parallelism (# of packing trials)

d: maximum inter-GPU parallelism (# of distributed workers)

Inter-GPU overhead

Intra-GPU overhead

Algorithm: DynamicFluid

Fluid is event-driven:

- I. Trials added / removed
- 2. Resource added / changed

Algorithm: DynamicFluid

$$w_i = \min(\max(\left\lfloor \frac{h_{i,1}}{\sum_j h_{j,1}} n \right\rfloor, \frac{1}{c}), d)$$
if $w_i' > w_i$ and $h_{i,w_i'} + \epsilon < h_{i,w_i}$

Update a_i with w_i resources \triangleright Scale up

else if $w_i' < w_i$ and $w_i'(h_{i,w_i'} + \epsilon) < w_i h_{i,w_i}$

Update a_i with w_i resources \triangleright Scale down

ε: scale up / down overhead

Outline

I. Background and Motivation

2. Abstraction and Algorithms

3. Evaluation

Evaluation Setup

- Implementation: an alternative Ray^[1] executor
- Workloads

Task	Base Model	# of Params.	Target
CIFAR-I 0	AlexNet	7	Acc. >= 90%
WLM	RNN	10	PPL <= 140
DCGAN	CNN	2	Inception >= 5.2

Evaluation Results

- Average resource utilization: 10%-100% improvement
- Average job completion time: 10%-70% improvement

Evaluation Results: Visualization

Resource utilization over time

Evaluation Results: Visualization

Resource utilization over time

0%

20%

40%

60%

80%

100%

Conclusion

- Fluid
 - Hyperparameter tuning execution engine
 - Can be combined with most tuning algorithms
 - Improve utilization and end-to-end tuning time
- Open source
 - https://github.com/SymbioticLab/fluid
- Q&A

