

#### **PRIORITY**

This application claims priority under 35 U.S.C. § 119 to an application entitled "Method for Fast Roaming in a Wireless Network" filed in the U.S. Patent and Trademark Office on January 14, 2003 and assigned Serial No. 60/439,891, the contents of which are incorporated herein by reference.

#### **BACKGROUND OF THE INVENTION**

## 1. Field of the Invention

The present invention relates generally to a roaming service in a fast and secure wireless network, and in particular, to a method of providing a security key to minimize time required for a roaming service.

### 2. Description of the Related Art

A LAN (Local Area Network) is a collection of personal terminals, main frames, and workstations which share a common communication link generally within a range of 300m. The LAN is a fast communication network built within a distance that allows an accurate transfer of current or signals between the personal terminals. For example, the LAN provides connectivity to equipment within an office building so that workers can efficiently share the information contained on the equipment. In its initial developmental stage, the LAN usually adopted as its communication link a wired network that directly transfers electrical signals. Along with the development of wireless protocols, a wireless network has substituted for the wired network. A LAN using a wireless network is called WLAN (Wireless LAN) or in-building wireless network. One WLAN is based on IEEE 802.11 and proposed by the U.S. IEEE (International Electric and Electronic Engineers) group. IEEE 802.11-based WLAN has seen rapid growth and deployment in the recent years. Owing to convenient network connectivity, the widespread deployment of the WLAN in the future is easily predicted. To meet increasing demands for a very highspeed wireless Internet, existing WLAN systems emerge as a foundation for a fast wireless public network. The WLAN attracts more attention because of the expectations

that the WLAN provides a high speed link which mobile communication systems do not and guarantees secure communications for WLAN users owing to the rapid development of WLAN security technology. Therefore, the WLAN security technology as well as the increase of data rate is a significant task to achieve for the WLAN systems.

The IEEE 802.11 network MAC (media access control) specification allows for two operating modes, namely, ad hoc and infrastructure. In the ad hoc mode, two or more wireless stations (STAs) recognize each other and establish a peer-to-peer communication without any existing infrastructure, whereas in the infrastructure mode, there is a fixed entity referred to an access point (AP) that bridges all data between the STAs associated with it. An AP and associated STAs form a basic service set (BSS) communicating on the unlicensed RF (Radio Frequency) spectrum.

FIG. 1 illustrates the configuration of a typical WLAN that supports the infrastructure mode.

Referring to FIG. 1, a plurality of APs 120a and 120b are connected via a single distributed system (DS) 110. The DS 110 is a wired network and establishes a communication link between the APs 120a and 120b. Each of the APs 120a and 120b forms a predetermined service area and bridges between the DS 110 and STAs 130a and 130b (or 130c and 130d) within its service area. As mentioned before, an AP and associated STAs form a BSS and a service is provided on a BSS basis. A collection of the APs 120a and 120b can extend the BSSs to an extended service set (ESS). The STAs 130a to 130d authenticate to their respective APs 120a and 120b to access the WLAN system. In other words, the STAs 130a to 130d are allowed to access the network only by an authentication procedure. The authentication involves transfer of state information. The state information contains a key (hereinafter, referred to as a security key) that provides security between the DS and the STA or between the AP and the STA.

As stated above, to communicate with the DS via a particular AP, an STA needs a security key. Hereinbelow, a process of assigning a security key is defined as

authentication. The authentication procedure involves encryption key distribution and an encryption algorithm to encrypt wireless data.

The IEEE 802.11 standard regulates that data is encrypted by a WEP (Wired Equivalent Privacy) algorithm and the encryption key is shared preliminarily and used as fixed. For details, see "ISO/IEC, "Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) specifications," ISO/IEC 8802-11, ANSI/IEEE Std 802.11, 1999".

To correct wireless security flaws of the IEEE 802.11-based WLAN systems, IEEE 802.11i specifies IEEE 802.1X/1aa-based access control, security session management, dynamic key exchange and key management, and application of a new symmetric key encryption algorithm for protection of wireless data. IEEE 802.1X/1aa provides a framework for user authentication and key exchange, whereas IEEE 802.11i regulates that IEEE 802.1X/1aa can be used as a comprehensive framework for user authentication and key exchange. IEEE 802.11i further defines 4-way handshake as a key exchange method, key hierarchy, and new cipher suites.

FIG. 12 is a view illustrating a signal flow for WLAN security access based on IEEE 802.1X/1aa and IEEE 802.11i. As noted from FIG. 12, IEEE 802.11 access, IEEE 802.1X authentication, IEEE 802.11i key exchange, and IEEE 802.1aa authentication must be connected to one another to authorize connection to an external network via an AP through authentication and key exchange.

FIG. 2 illustrates a hierarchy of security keys for the typical WLAN. Referring to FIG. 2, the security keys include a master key (MK), a pairwise master key (PMK), and a pairwise transient key (PTK). A higher-layer server, an AAA (Authentication, Authorization and Accounting) server in the DS derives the PMK from the MK and provides it to an STA via an AP to which the STA has connectivity. The AP and the STA generate the PTK from the PMK. The MK, already known to the STA as well as the AAA server, provides security between the STA and the AAA server. The PTK provides security between the STA and the AP. The PTK serves as a key confirmation key (KCK),

a key encryption key (KEK), and a temporal key. Bits 0-127 of the PTK are assigned to the KCK, bits 128 to 255 to the KEK, and the remaining bits to the temporary key.

FIG. 3 illustrates an example of key assignment to each component in the typical WLAN. The key assignment presupposes that a new STA 340 attempts to access a first AP 320 (AP1). Referring to FIG. 3, an AAA server 310 generates a PMK from a known MK upon request for key assignment from the STA 340 and transmits it to AP1. AP1 in turn provides the PMK to the STA 340 and derives a PTK from the PMK. The STA 340 also generates the PTK from the PMK. Hence, the STA 340 knows the MK, PMK and PTK. A RADIUS (Remote Authentication Dial-In User Service) server is generally used as the AAA server 310.

Because of the mobility-enabling nature of the WLAN having the configuration illustrated in FIG. 1, the STA can move from a prior-AP to a new-AP. To continue an ongoing service provided by the prior-AP, a roaming service is needed for the STA. The AP to which the STA had physical layer connectivity is referred to as the prior-AP or current-AP, while the AT to which the STA gets physical layer connectivity after roaming is referred to as the new-AP.

The roaming process refers to the mechanism or sequence of messages exchanged between APs and an STA. To continue an on-going service in the new-AP after roaming, the STA needs an additional security key, accurately speaking, another PMK.

The complete roaming process can be divided into two distinct logical steps: discovery and re-authentication as described below.

1. Discovery: Attributing to mobility, the signal strength and the signal-to-noise ratio of the signal from an STA's current AP might degrade and cause it to loose connectivity and to initiate a handoff. At this point, the STA might not be able to communicate with its current AP (prior-AP). Thus, the STA needs to find potential APs in range to potentially associate with. This is accomplished by a MAC layer scan

function. During a scan, the STA listens for beacon messages sent out periodically by APs at a rate of 10ms on assigned channels. Thus the STA can create a list of APs prioritized by the received signal strength.

There are two kinds of scanning methods defined in the standard: active and passive. As the names suggest, in the passive mode, the STA searches for the potential APs simply by listening for beacon messages. In the active mode, apart from listening to beacon messages, the STA sends additional probe broadcast packets on each channel and receives responses from APs. Thus, the STA actively probes for the APs.

2. Re-authentication: The STA attempts to reauthenticate to an AP according to the priority list. The re-authentication process typically involves an authentication and a reassociation to the new-AP. The re-authentication phase involves the transfer of a security key from the prior-AP. This can be achieved through an IAPP (Inter Access Point Protocol). The re-authentication process can be divided into the authentication phase and the reassociation phase.

FIG. 4 illustrates a re-authentication procedure performed by an EAP-TLS protocol for a roaming service in a conventional WLAN. In the illustrated case, it is assumed that an STA 440 moves from AP\_A 420 to AP\_B 430. Thus AP\_A 420 is a prior-AP and AP\_B 430 is a new-AP. Referring to FIG. 4, the STA 440 recognizes that AP\_B 430 exists as a neighbor AP in the discovery phase and then requests from AP\_A 420 a security key by which to communicate with AP\_B 430. AP\_A 420 requests the security key from an AAA server 410 via AP\_B 430. The AAA server 410 generates a new PMK and provides it to AP\_B 430. AP\_B 430 stores the PMK and provides it to AP\_A 420. AP\_A 420 in turn provides the PMK to the STA 440. Thus the STA 440 and AP\_B 430 can create a PTK from the PMK. When the STA 440 moves to AP\_B 430, it can maintain an on-going service using the PTK.

As described above, in the conventional roaming process, the STA moves from the current AP, scans all potential APs, and associates with an AP having the highest RSSI (Received Signal Strength Indicator). The association procedure starts with requesting a PMK for the new-AP and ends with creating a PTK from the PMK.

Accordingly, the conventional roaming process involves probe delay in the discovery phase, and pre-authentication delay in the re-authentication phase.

- 1. Probe Delay: Messages from an active scan for roaming are referred to as probe messages. The latency for this process is called probe delay. The STA transmits a probe request message and waits for responses from APs on each channel. Probe wait latency is defined as the time the STA waits on one particular channel after sending the probe request. This is measured as the time difference between subsequent probe request messages. Thus according to the above procedure, the traffic on the channel and the timing of probe response messages affect the probe-wait time.
- 2. Pre-Authentication Delay: This is the latency incurred during the exchange of re-authentication frames. Pre-authentication consists of two or four consecutive frames depending on the authentication method used by the AP. The pre-authentication delay has been described with reference to FIG. 4.

As described above, the conventional WLAN involves various delays during roaming of an STA. As a result, a total roaming time is extended to 1 to 13 seconds. This implies that communication disconnection from the STA is lengthened, which may adversely affect service quality. Even fast roaming may be impossible when the STA fails to receive a security key for communication with the new AP from the current AP.

### **SUMMARY OF THE INVENTION**

An object of the present invention is to substantially solve at least the above problems and/or disadvantages and to provide at least the advantages below. Accordingly, an object of the present invention is to provide a method of minimizing delay involved in a roaming process.

Another object of the present invention is to provide a roaming service method for precluding the effects of the security system of a prior-AP on that of a new-AP even if the security system of the prior-AP is impaired.

A further object of the present invention is to provide a method of providing neighbor APs with security keys needed for roaming by a security caching technique.

Still another object of the present invention is to provide a method of acquiring security keys for neighbor APs using a security key used for an AP which an STA is currently associated with and providing the security keys to the neighbor APs.

Still further object of the present invention is to provide a method of providing security keys to neighbor APs using an AP-neighborhood graph managed by an AP, which an STA is currently associated to.

Yet another object of the present invention is to provide a method of distributing security keys to APs neighboring an AP which an STA is currently associated with in an authentication server.

Yet further object of the present invention is to provide a method of managing an AP-neighborhood graph to distribute security keys to APs neighboring a current AP, which an STA is currently associated to in a higher-layer server.

Yet still another object of the present invention is to provide a method of performing a roaming process between a neighbor AP and an STA using a security key distributed to the neighbor AP before the roaming process.

The above objects are achieved by providing a roaming service method for a fast and secure wireless network.

According to one aspect of the present invention, in a wireless network, having at least two APs, each AP having a predetermined service area, and an STA that receives a communication service by associating with a first AP being one of the at least two APs, to support a roaming service for the STA, the first AP generates an AP-neighborhood graph with neighbor APs to which the STA is likely to move, acquires security keys for the respective neighbor APs based on association information gained from the association of the STA to the first AP, and transmits the security keys to the respective neighbor APs by security caching. Thus, a pre-authentication is performed such that when the STA attempts to roam to one of the neighbor APs, fast roaming is provided via a security key provided to the neighbor AP.

According to another aspect of the present invention, in a wireless network having at least two APs, each AP having a predetermined service area, and an STA that receives a communication service by associating with a first AP being one of the at least two APs, to support a roaming service for the STA, a neighbor AP of the first AP, which is managed by an AP-neighborhood graph drawn for the first AP, receives a security key from the first AP by security caching from among security keys generated by the first AP for respective neighbor APs using association information gained from the association of the STA to the first AP, and performs fast roaming using the security key when the STA attempts to roam to the neighbor AP.

According to a further aspect of the present invention, in a wireless network having at least two APs, each AP having a predetermined service area, and an STA that receives a communication service by associating with a first AP being one of the at least two APs, to support a roaming service between the first AP and a neighbor AP of the first AP, managed by an AP-neighborhood graph drawn for the first AP, security keys are acquired for respective neighbor APs based on association information and transmits the security keys to the respective APs by security caching. Here, the association information is gained by the first AP from the association of the STA to the first AP. The neighbor AP receives a security key from the first AP and performs fast roaming using the security key when the STA attempts to roam to the neighbor AP.

According to the first three aspects of the present invention, it is preferred that the association information includes a PMK and an RK, which are acquired by the first AP, and the MAC addresses of the STA and the neighbor APs.

According to still another aspect of the present invention, in a wireless network having at least two APs, each AP having a predetermined service area, an STA that receives a communication service by associating with a first AP being one of the at least two APs, an authentication server (AS) that authenticates the STA, and an accounting server that provides billing for the STA, to support a roaming service for the STA, the accounting server generates an AP-neighborhood graph for the first AP to manage neighbor APs to which the STA is likely to move from the first AP. When the first AP reports to the accounting server completed association of the STA to the first AP, the accounting server notifies the neighbor APs of the association. Each of the neighbor APs requests a security key to the AS in response to the notification from the accounting server. The AS generates a security key for each of the neighbor APs based on association information from the association of the STA to the first AP in response to the request and transmits the security key to each of the neighbor APs. When the STA attempts to roam to one of the neighbor APs, a neighbor AP, to which the STA is to form a connection, performs a pre-authentication, so that fast roaming can be carried out using the security key provided to the neighbor AP.

According to the fourth aspect of the present invention, it is preferred that the association information includes an MK, a PMK assigned to the first AP, and the MAC addresses of the STA and the neighbor APs.

#### BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:

- FIG. 1 illustrates the configuration of a typical WLAN as an example of a wireless network;
  - FIG. 2 illustrates a hierarchy of security keys in the typical WLAN;
- FIG. 3 illustrates an example of key assignment to each component in the typical WLAN;
- FIG. 4 illustrates assignment of a security key needed for roaming in a conventional WLAN;
- FIGs. 5A and 5B illustrate AP-neighborhood graph generation according to the present invention;
- FIG. 6 illustrates an example of a roaming path in which an STA roams, referred to for describing the present invention;
- FIG. 7 illustrates generation of security keys according to an embodiment of the present invention;
- FIGs. 8A, 8B and 8C illustrate a roaming process according to the embodiment of the present invention;
- FIG. 9 is a diagram illustrating signaling in the roaming process according to the embodiment of the present invention;
- FIGs. 10A to 10E illustrate a roaming process according to another embodiment of the present invention;
- FIG. 11 illustrates an example of PMKs generated for a particular STA roam pattern;
- FIG. 12 is a diagram illustrating signaling for initial association in the typical WLAN:
- FIG. 13 is a diagram illustrating signaling before roaming according to the second embodiment of the present invention;
- FIG. 14 is a diagram illustrating signaling after roaming according to the second embodiment of the present invention; and
- FIG. 15 is a graph comparing experiment results for a conventional roaming scheme (full authentication) and a roaming scheme of the present invention (reauthentications).

#### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

Three schemes can be considered to support fast roaming in a WLAN.

First, APs each preserve all necessary security keys for roaming. Each AP reserves memory space for the roaming service, stores all security keys needed for the roaming service in the memory, and retrieves one security key from the memory when necessary. A distinctive shortcoming of this scheme is the requirement of a large-capacity memory.

A second scheme is to provide neighbor APs with necessary security keys for roaming by security caching accomplished by the IAPP protocol. To do so, each AP manages information about its neighbor APs using an AP-neighborhood graph. Also, the AP generates security keys for the neighbor APs using a known security key and provides the generated security keys to the neighbor APs by the security caching.

The third scheme is that a higher-layer server (accounting server) manages neighbor APs for each AP and provides the neighbor APs with security keys necessary for roaming when an STA accesses the AP. To implement this scheme, the higher-layer server is provided to manage the AP-neighborhood graph for each AP. The higher-layer server may be an existing AAA server or a separately procured server. Depending on the amount of information regarding the managed AP-neighborhood graphs, a plurality of higher-layer servers can be used.

The above-described second and third schemes are implemented as first and second embodiments of the present invention. These embodiments commonly require the

AP-neighborhood graph by which neighbor APs are managed for each AP. They differ in that each AP manages its AP-neighborhood graph in the first embodiment, while a higher-layer server manages its AP-neighborhood graph in the second embodiment. In the embodiments of the present invention, the process of providing potential APs with security keys needed for roaming is further included. The AP-neighborhood graph is required in both embodiments since the potential APs are a set of APs to which an STA may move. The AP-neighborhood graph defines connections between an STA and its potential APs, which the STA may be associated with by roaming. Hence, before detailing the embodiments of the present invention, the process of how the AP-neighborhood graph is created will first be described.

# 1. Generation of AP-Neighborhood Graph

The AP-neighborhood graph required to implement the present invention can be generated based on the locations of APs in a WLAN. Because potential APs are different for each AP, an AP-neighborhood graph is created for each AP. This is done in three methods. One of them is that an administrator manually generates AP-neighborhood graphs for individual APs based on the locations of the APs and registers them. Each time a change is made to the AP layout, the administrator updates the AP-neighborhood graphs. Another method is that initial AP-neighborhood graphs are registered by the administrator and automatically updated each time the AP layout is changed.

The third method is that the AP-neighborhood graph is automatically generated for each AP and automatically updated each time the AP layout is changed. According to this method, however, roaming is carried out by the conventional roaming process until the AP-neighborhood graph is generated. In other words, a procedure for checking connections to each AP is needed. For example, if an STA associated to AP\_A attempts to initially roam to AP\_B that the STA has never moved to, AP\_B performs an IAPP procedure to receive a context corresponding to the STA from AP\_A. AP\_A and AP\_B then confirm that there is a connection between them for roaming and thus can update their AP-neighborhood graphs. After the updating, the STA can roam from AP\_A to AP\_B or vice versa without the IAPP procedure.

The physical path and distance between APs are considerations to take into account when constructing an AP-neighborhood graph in any of the above methods. To draw a connection between APs in an AP-neighborhood graph, there must exist a physical connection between the APs without passing through any other AP. Also, the distance between the physically connected APs should not exceed a threshold. As a matter of fact, the STA would perform an initial procedure for establishing a communication with a nearby AP rather than roam to a remote AP.

An example of an AP-neighborhood graph will be shown below.

FIG. 5A illustrates an example of an AP layout in a WLAN to which the present invention is applied and FIG. 5B illustrates an AP-neighborhood graph constructed based on the AP layout.

Referring to FIG. 5A, AP\_C is located in a closed space with one entrance. Thus AP\_B is the only AP to which an STA can move from AP\_C. This implies that roaming only to AP\_B is allowed for the STA in AP\_C. Meanwhile, an STA in AP\_B can move to any of AP\_A, AP\_D, AP\_E and AP\_C because corridors (physical connections) run from AP\_B to these APs. That is, the STA is free to roam from AP\_B to all APs illustrated in FIG. 5A. If the STA is located in AP\_A, it can only move to AP\_B or AP\_E without passing through any other AP. Hence, the STA can roam from AP\_A to AP\_B or AP\_E as directly connected to all APs except AP\_C, so that an STA in AP\_E can roam to any of the APs other than AP\_C. Direct roaming for an STA from AP\_D is confined to AP\_B and AP\_E. Roaming from AP\_A to AP\_D, or from AP\_D to AP\_A, is not allowed due to a long distance between them. Instead of roaming, the STA reassociates to AP\_B before it roams to AP\_D or AP\_A.

Referring to FIG. 5B, the illustrated AP-neighborhood graph shows all of the connections among the APs in the WLAN. Yet, the above-described second neighborhood graph generation method is viable as long as each AP has knowledge of

potential APs to which it may have connectivity. For example, knowledge of AP\_B and AP\_E as potential APs is substantially sufficient for AP\_A and knowledge of AP\_A, AP\_C, AP\_D and AP\_E as potential APs is substantially sufficient for AP\_B. On the other hand, in the third neighborhood graph generation method, an accounting server manages an AP-neighborhood graph for each AP.

As mentioned earlier, the AP-neighborhood graph is manually generated by the administrator or automatically generated by the conventional handoff procedure.

In the case where each AP automatically generates an AP-neighborhood graph, upon receipt of a reassignment request message from an STA, the AP determines whether a temporarily stored context corresponding to the STA exists. The AP is a new-AP for the STA. If the context exists, it means that the AP has already created an AP-neighborhood graph containing a prior-AP to which the STA had connectivity. On the contrary, if the context is absent, it means that connectivity to the prior-AP has not yet been defined in the AP-neighborhood graph. The new-AP then receives the context corresponding to the STA from the prior-AP by the conventional IAPP procedure and updates the AP-neighborhood graph so that a connection line is drawn between the new-AP and the prior-AP in the AP-neighborhood graph.

In this manner, the AP-neighborhood graph is generated in the first embodiment of the present invention characterized by management of the AP-neighborhood graph at each AP. Meanwhile, in the second embodiment of the present invention, since a higher-layer server manages an AP-neighborhood graph for each AP, when a new connection is established, a corresponding AP reports the new connection to the higher-layer server so that the AP-neighborhood graph of the AP can be updated with the latest information. It is also possible that if an STA roams to a new-AP, the higher-layer server updates an AP-neighborhood graph for a prior-AP by adding the new-AP to the graph as a neighbor AP of the prior-AP.

### 2. First Embodiment

An AP generates PMKs for neighbor APs managed in its AP-neighborhood graph and transmits the PMKs to the neighbor APs using a security caching technique accomplished by the IAPP protocol. When an STA roams to one of the neighbor APs, a security system operates based on the PMK provided to the neighbor AP, thereby enabling fast roaming.

The security caching technique refers to a scheme in which each AP recognizes potential APs that it may get connectivity to by its AP-neighborhood graph, generates PMKs for the potential APs, and transmits the PMKs to the neighbor APs. Therefore, reauthentication latency involved in the roaming process is minimized. The security caching technique is based on a locality of mobility principle. In this environment, an STA association pattern is the sequence of APs that the STA becomes associated with in a given interval of time.

The first embodiment of the present invention will be detailed with reference to the attached drawings. It is assumed herein that each AP manages its own AP-neighborhood graph.

FIG. 6 is a view conceptually illustrating a roaming process by the security caching technique according to the present invention. The roaming process presupposes that an STA moves from AP\_A to AP\_B.

Referring to FIG. 6, the STA transmits an association request to AP\_A in step 1. AP\_A authenticates the STA in a general initial authentication procedure and acquires a security key. The STA already knows an MK used for security between the STA and an AAA server (not shown) and receives a PMK from the AAA server. AP\_A receives the PMK from the AAA server. Both the STA and the AP\_A then acquire a PTK and an RK (Roam Key). A random number (RN) is needed to generate the RK and a 4-way handshake is carried out using the PMK to generate the PTK. The RN is generated during the 4-way handshake. Obviously, the RN may be generated in any other way. After the

authentication, AP\_A transmits a response for the association request to the STA. Thus, the STA communicates with AP\_A.

Meanwhile, AP\_A generates a PMK for a neighbor AP, AP\_B, managed by its AP-neighborhood graph. Let the PMK for the neighbor AP be PMK<sub>next</sub>. PMK<sub>next</sub> is generated using the RK, the current PMK, PMK<sub>curr</sub>, the MAC address of the STA, STA<sub>mac</sub>, and the MAC address of a new-AP, next AP<sub>mac</sub> by a PRF (Pseudo-Random Function), expressed as

$$PMK_{next} = PRF(RK, PMK_{curr}, STA_{mac}, _{next}AP_{mac})$$
....(1)

where STA<sub>mac</sub> is known to AP\_A during communication and next AP<sub>mac</sub> is information that AP A receives by the IAPP protocol or from the AAA server.

In step 2; AP\_A transmits PMK<sub>next</sub> to AP\_B. While one AP is assumed as a potential AP in the case illustrated in FIG. 6, if a plurality of potential APs exist, AP\_A transmits PMKs, PMK<sub>next</sub> calculated for the respective potential APs to each of them. AP\_B stores PMK<sub>next</sub> in a cache. As the STA moves to AP\_B in the shown path, the STA requests a reassociation to AP\_B in step 3. To maintain an on-going communication service in response to the reassociation request, a security system must be established between AP\_B and the STA. That is, a PTK must be gained for security between AP\_B and the STA. The PTK is derived from a PMK, namely PMK<sub>next</sub>. Hence, AP\_B sets PMK<sub>next</sub> as the PMK by which AP\_B can communicate with the STA. Meanwhile, the STA can gain PMK<sub>next</sub> in various ways. For example, AP\_A or AP\_B provides the STA with PMK<sub>next</sub>. Or the STA can directly generate PMK<sub>next</sub> from next AP<sub>mac</sub> received from AP\_A or AP\_B.

As AP\_B and the STA acquire the same PMK, the PTK can be created in the conventional method, so that a normal security system can be established between them. Consequently, the latency involved with the conventional pre-authentication is reduced, thereby enabling fast roaming and achieving implementation speedups. In the mean time,

AP\_B generates PMK<sub>next</sub> using an RK achieved together with the PTK and transmits PMK<sub>next</sub> to its neighbor APs, in preparation for roaming of the STA to any of the neighbor APs.

In the embodiment of the present invention, the security caching technique is adopted to provide a security key used to preserve security between an STA and at least one predicted new-AP to which the STA becomes associated. Apart from the roaming process, the security caching involves the transfer of the security key from a prior-AP to potential new-APs. To implement the security caching technique, potential new-APs for each AP must be predicted. This has been detailed in relation to the AP-neighborhood graph.

FIG. 7 illustrates a security key generation procedure according to the first embodiment of the present invention.

Referring to FIG. 7, the AAA server generates PMK<sub>curr</sub> for an AP, AP<sub>curr</sub> that the STA initially attempts to access and transmits PMK<sub>curr</sub> to AP<sub>curr</sub>. AP<sub>curr</sub> acquires a PTK and an RK from PMK<sub>curr</sub>. The RK is determined using a PRF expressed as

$$RK = PRF(PMK, "Roam Key", AP_{nonce}, STA_{nonce})$$
....(2)

where AP<sub>nonce</sub> is a random number set by AP<sub>curr</sub>, STA<sub>nonce</sub> is a random number set by the STA, and "Roam Key" is the RN generated during the 4-way handshake.

After the RK is gained by Eq. (2), a PMK for a neighbor AP, PMK<sub>next</sub> is computed by Eq. (1) and transmitted to  $AP_{next}$  by the security caching technique. In the presence of a plurality of neighbor APs, as many PMKs, PMK<sub>next</sub> as the number of the neighbor APs are generated.

The provisioning of the fast roaming service with a reduced reassociation latency owing to the security caching technique will be described in detail with reference to

FIGs. 8A, 8B and 8C. It is to be appreciated that the following description is under the assumption that the STA is initially connected to AP\_A, and AP\_B and AP\_E are neighbor APs to AP\_A.

FIG. 8A illustrates acquisition of necessary security keys in AP\_A and the STA when the STA initially attempts to access AP\_A. The security keys the STA acquires are MK, PMK<sub>curr</sub>, PTK<sub>curr</sub> and RK, while the security keys AP\_A acquires are PMK<sub>curr</sub>, PTK<sub>curr</sub> and RK. The procedure for acquiring the security keys has been described earlier and thus its description is not provided here.

FIG. 8B illustrates the generation of PMKs for neighbor APs using the security keys in AP\_A and the transfer of them from AP\_A to the neighbor APs by the security caching technique. In this example the neighbor APs to AP\_A are AP\_B and AP\_E. PMK<sub>next</sub> for AP\_B (PMK(AP\_B)<sub>next</sub>) is determined by

$$PMK(AP\_B)_{next} = PRF(RK, PMK_{curr}, STA_{mac}, AP\_B_{mac})$$
.....(3)

and PMK<sub>next</sub> for AP\_E (PMK(AP\_E)<sub>next</sub>) is determined by

$$PMK(AP_E)_{next} = PRF(RK, PMK_{curr}, STA_{mac}, AP_E_{mac})$$
.....(4)

For roaming that may occur later, the STA must have knowledge of PMK<sub>next</sub> corresponding to the neighbor APs. In accordance with the first embodiment of the present invention, the STA gains PMK<sub>next</sub> corresponding to the neighbor APs in two ways, AP\_A directly provides the STA with PMK<sub>next</sub> delivered to the neighbor APs; and AP\_A provides the STA with MAC addresses needed to calculate PMK<sub>next</sub> for the neighbor APs. In the latter case, the STA computes PMK<sub>next</sub> for the respective neighbor APs by Eq. (3) and Eq. (4).

FIG. 8C illustrates AP\_B's resumption of a communication service that AP\_A provided, using PMK<sub>next</sub> after the STA moves from AP\_A to AP\_B. AP\_B translates PMK<sub>next</sub> received from AP\_A into its PMK. If the STA attempts to access AP\_B, AP\_B derives a PTK from the PMK. Similarly, the STA acquires the PTK using already known PMK<sub>next</sub>. Thus, the STA resumes the communication service with AP\_B, which was provided in AP\_A. Meanwhile, AP\_B acquires the PTK and an RK simultaneously. Using the RK, AP\_B generates PMKs for its neighbor APs managed by its AP-neighborhood graph. AP\_B transmits the PMKs to the neighbor APs by the security caching technique.

Although the case illustrated in FIGs. 8A, 8B and 8C has been detailed on the assumption that the STA roams from AP\_A to AP\_B, the STA can roam from AP\_B to AP\_A in the same procedure.

FIG. 9 is a diagram illustrating signaling between the STA and the APs in the roaming process according to the first embodiment of the present invention. Let AP\_A be a prior-AP and AP\_B be a new-AP. Since the STA accesses AP\_A and after roaming, the STA operates with AP\_B in the conventional manner, the following description is focused on the signaling for the roaming process.

Referring to FIG. 9, the STA and AP\_A derive a PTK and an RK from a PMK received from the AAA server (not shown) in step 901 so that they are capable of communicating with each other. AP\_A derives PMKs, PMK<sub>next</sub> for its neighbor APs in step 903 and transmits the PMKs to its neighbor APs in steps 905 to 907. Thus the neighbor Aps now have the PMKs which will be used for security when the STA moves to them.

As the STA roams to AP\_B, the STA and AP\_B derive a PTK and an RK from PMK<sub>next</sub> in step 909, so that STA and AP\_B establish a security system that allows a communication service from AP A to be resumed in AP\_B ap\_B generates PMKs,

PMK<sub>next</sub> for its neighbor APs in step 911 and transmits the PMKs to its neighbor APs in steps 913 to 915.

In accordance with the first embodiment of the present invention, the need for accessing the AAA server for pre-authentication needed to provide a roaming service for the STA is eliminated, thereby reducing time required for roaming. This implies that fast roaming is enabled.

#### 3. Second Embodiment

Higher-layer servers manage neighbor APs for individual APs by their AP-neighborhood graphs. When necessary, the servers generate PMKs for APs neighboring to a particular AP and transmits them to the neighbor APs. Thus when an STA roams to one of the neighbor APs, a security system operates using the already known PMK, thereby providing fast roaming.

The second embodiment of the present invention presupposes that the AP-neighborhood graphs are managed by a novel higher-layer server, an accounting server. The accounting server may be incorporated in an existing AAA server or implemented as a separate server. Also, a plurality of accounting servers can be adopted according to the amount of information regarding the managed AP-neighborhood graphs. It is to be appreciated that the following description is made in the context of an accounting server implemented independently of an existing AAA server and this AAA server free of the accounting function is called an authentication server (AS).

With reference to FIGs. 10A to 10E, fast roaming through security key distribution from the higher-layer servers will be described in detail on the assumption that the STA initially accesses AP A, and AP B and AP E are neighboring to AP A.

Referring to FIG. 10A, as the STA initially attempts to associate to AP\_A, AP\_A and the STA each acquire their necessary security keys. An MK, a PMK and a PTK are security keys for the STA, while the PMK and the PTK are security keys for AP\_A. How

the keys are acquired has been detailed earlier and thus its description is not provided here. The acquisition of the security keys is equivalent to establishment of a security system that allows communication between the STA and AP\_A.

Referring to FIG. 10B, AP\_A notifies the accounting server of the initiation of a communication service with the STA, for example by an Accounting-Request message. Thus the accounting server executes an accounting function for the STA and announces the initiation of the communication service between the STA and AP\_A to the neighbor APs.

Referring to FIG. 10C, the accounting server searches for the neighbor APs using an AP-neighborhood graph that the accounting server manages for AP\_A, and notifies by a Notify-Request message the neighbor APs, AP\_B and AP\_E, that the STA has associated to AP\_A. The Notify-Request message includes the MAC address of the STA, STA-mac-Addr. Upon receipt of the Notify-Request message, AP\_B and AP\_E consider that the STA is likely to move from AP\_A to them.

Referring to FIG. 10D, the AS provides the neighbor APs (AP\_B shown as a representative) with PMKs by which they can communication with the STA if and when it roams to them. Specifically, AP\_B transmits to the AS an Access-Request message including STA-mac-Addr received from the accounting server, and the AS generates a PMK, PMK<sub>B</sub> for AP\_B by

$$PMK_B = PRF(MK, PMK_A, STA_{mac}, AP\_B_{mac})$$
....(5)

where PMK<sub>A</sub> is a PMK assigned to AP\_A, and STA<sub>mac</sub> and AP\_B<sub>mac</sub> are the respective MAC addresses of the STA and AP\_B.

The AS transmits to AP\_B an Access-Accept message including PMK<sub>B</sub>. By receiving the Access-Accept message, AP B acquires the PMK to use for security

between the STA and AP\_B when the STA moves to AP\_B. While FIG. 10D illustrates an operation between AP B and the AS, the same thing is also applicable to AP\_E.

Referring to FIG. 10E, a roaming service is provided to the STA as the STA moves to AP\_B. When the STA attempts to access AP\_B, AP\_B reports the access attempt to the accounting server. The accounting server then updates an AP-neighborhood graph for AP\_B. Meanwhile, the STA acquires the PMK, PMK<sub>B</sub> required to establish a security system with AP\_B by

$$PMK_B = PRF(MK, PMK_A, STA_{mac}, AP_B_{mac})$$
....(6)

where PMK<sub>A</sub> is a PMK assigned to AP\_A, and STA<sub>mac</sub> and AP\_B<sub>mac</sub> are the MAC addresses of the STA and AP\_B. The STA already has the knowledge of PMK<sub>A</sub> and STA<sub>mac</sub>, while it cannot know AP\_B<sub>mac</sub> without aid from an external device. Therefore, the STA receives AP\_B<sub>mac</sub> from AP\_A, or from AP\_B after it moves to AP\_B. Alternatively, the STA may receive PMK<sub>B</sub> from AP\_B, instead of generating PMK<sub>B</sub> directly. This is possible on the assumption that AP\_B has PMK<sub>B</sub>, which has been described earlier.

Once AP\_B and the STA know PMK<sub>B</sub>, they can acquire a PTK from PMK<sub>B</sub> in a known manner. Thus, the method of deriving the PTK from PMK<sub>B</sub> will not be described here.

In the above-described procedure, the STA and AP\_B share the same PTK. This implies that a security system has been established between the STA and AP\_B. Therefore, a communication service provided from AP\_A can be resumed between the AP N and the STA.

FIG. 11 illustrates an example of PMK generation when the STA roams in a pattern of AP A, AP B, and AP C or AP D in this order.

Referring to FIG. 11, as the STA initially associates to AP\_A, PMK<sub>0</sub> is generated in a first generation stage. In a second generation stage, the AS generates PMK<sub>B</sub> for AP\_B from PMK<sub>0</sub> in preparation for roaming of the STA to AP\_B. As the STA roams to AP\_B, the AS generates PMK<sub>C</sub> for AP\_C from PMK<sub>B</sub> in preparation for roaming of the STA to AP\_C in a third generation stage. In a fourth generation stage, the AS generates PMK<sub>D</sub> for AP\_D from PMK<sub>B</sub> and PMK<sub>B</sub> for AP\_B from PMK<sub>C</sub> in preparation for roaming of the STA to AP\_D or AP\_B. In a fifth generation stage, the AS generates PMK<sub>B</sub> for AP\_B and PMK<sub>E</sub> for AP\_E from PMK<sub>D</sub> in preparation for roaming of the STA from AP\_D to AP\_B or AP\_E.

Sequential generation of a PMK for the next AP from a PMK for the previous PMK and generation of PMKS for next PMKs from the same previous PMK have been described. Only normal transfer of the PMKs from an AP to the neighbor APs has been considered in the above description. Nonetheless, erroneous PMK transfer causes no security problems because a neighbor AP can acquire a PMK in the conventional roaming process when it fails to acquire the PMK due to the erroneous PMK transfer.

FIG. 13 is a diagram illustrating signaling before the STA roams according to the second embodiment of the present invention. In FIG. 13, an AP that the STA initially associates with is called a first AP, and potential APs to which the STA may move are called first and second neighbor APs, respectively.

Referring to FIG. 13, an initial association procedure is carried out among the STA, the first AP and the AS, as illustrated in FIG. 12 for acquisition of security keys needed for the initial association. In step 1301 the first AP notifies the accounting server of the start of a communication service with the STA by an Accounting-Request message including Acct-Multi-Session-ID and PMK-Generation. Upon receipt of the Accounting-Request message, the accounting server determines whether an AP-neighborhood graph is managed for the first AP and transmits an Accounting-Response message to the first AP in step 1303. At the same time, the accounting server confirms that the first and second neighbor APs exist for the first AP by the AP-neighborhood graph.

The accounting server transmits a Notify-Request message to the first neighbor AP in step 1305 and to the second neighbor AP in step 1307. The Notify-Request message indicates the association of the STA to the first AP. This message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation. By receiving the Notify-Request message, the first and second neighbor APs consider that the STA may move from the first AP to them. The first neighbor AP transmits a Notify-Response Message to the accounting server in step 1309 and the second neighbor AP transmits another Notify-Response Message to the accounting server in step 1311.

The first and second neighbor APs transmit to the AS an Access-Request message including Acct-Session-ID, Acct-Multi-Session-ID and PMK-Generation in steps 1313 and 1317, respectively.

Upon receipt of the Access-Request message from the first neighbor AP, the AS generates a PMK for the first neighbor AP. In step 1315, the AS transmits to the first neighbor AP an Access-Accept message including the generated PMK. The Access-Accept message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the first neighbor AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the first neighbor AP.

Upon receipt of the Access-Request message from the second neighbor AP, the AS generates a PMK for the second neighbor AP and transmits to the second neighbor AP an Access-Accept message including the generated PMK in step 1319. The Access-Accept message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the second neighbor AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the second neighbor AP.

Meanwhile, the STA and the first AP perform typical operations needed for a communication service between them, such as acquisition of a PTK by 4-way handshake. When the communication service is available, the STA and the first AP transmit/receive communication service data.

FIG. 14 is a diagram illustrating signaling after the STA roams according to the second embodiment of the present invention. In FIG. 14, the STA moves from the first AP to the first neighbor AP and the first AP and the second neighbor AP are neighbor APs to the first neighbor AP.

Referring to FIG. 14, after the STA moves to the first neighbor AP, it attempts to reassociate to the first neighbor AP by transmitting a Probe Request message to the first neighbor AP in step 1401. In step 1403, the first neighbor AP transmits to the STA a Probe Response message in response to the Probe Request message. The STA transmits a Reassociation Request RSN IE to the first neighbor AP in step 1409 and the first neighbor AP transmits a Reassociation Response RSN IE to the STA in step 1411.

Meanwhile, the first neighbor AP transmits an Accounting-Request message to the accounting server to report the reassociation of the STA to the first neighbor AP in step 1413. The Accounting-Request message contains information about Acct-Multi-Session-ID and PMK-Generation. Upon receipt of the Accounting-Request message, the accounting server updates the AP-neighborhood graph corresponding to the first neighbor AP. The accounting server transmits an Accounting-Response message to the first neighbor AP in step 1415. At this time, the accounting server confirms by the AP-neighborhood graph that the first AP and the second neighbor AP are neighboring to the first neighbor AP.

The accounting server transmits a Notify-Request message to the first AP in step 1417 and to the second neighbor AP in step 1419. The Notify-Request message indicates the association of the STA to the first neighbor AP. This message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation. By receiving the

Notify-Request message, the first AP and the second neighbor AP consider that the STA may move from the first neighbor AP to them. The first AP transmits a Notify-Response Message to the accounting server in step 1421 and the second neighbor AP transmits another Notify-Response Message to the accounting server in step 1423.

Upon receipt of the Notify-Request message, the first AP transmits an Access-Request message to the AS in step 1425. The Access-Request message contains information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation.

Upon receipt of the Notify-Request message from the first AP, the AS generates a PMK for the first AP, for example, referring to the information included in the Access-Request message. The AS then transmits an Access-Accept message to the first AP in step 1427. The Access-Accept message contains information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the first AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the first AP.

Upon receipt of the Notify-Request message, the second neighbor AP transmits an Access-Request message to the AS in step 1429. The Access-Request message contains information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation.

Upon receipt of the Notify-Request message from the second neighbor AP, the AS generates a PMK for the second neighbor AP, for example, referring to the information included in the Access-Request message. The AS then transmits an Access-Accept message to the second neighbor AP in step 1431. The Access-Accept message contains information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the second neighbor AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the second neighbor AP.

Meanwhile, the STA and the first neighbor AP perform typical operations needed for a communication service between them, such as acquisition of a PTK by 4-way handshake. When the communication service is available, the STA and the first neighbor AP transmit/receive communication service data.

3

It can be further contemplated as other embodiments that the step of determining whether to apply the inventive roaming technique between an STA and APs is further performed in addition to the procedures according to the first and second embodiments of the present invention. For example, the STA notifies whether it supports fast roaming by one of reserved bits in the RSN IE of a Reassociation-Request message. The AP notifies whether it supports fast roaming by the same bit of a Reassociation-Response message. A PMK acquired for the STA can be provided by the bit.

FIG. 15 is a graph illustrating the results of an experiment that compares the conventional roaming scheme (full authentication) with the inventive roaming scheme (re-authentications). As noted from FIG. 15, latency of about 800ms was observed in the full authentication, whereas the latency was reduced to 50ms on an average in the reauthentications. Thus the conclusion is drawn that the inventive roaming scheme supports fast roaming.

As described above, the present invention offers a simplified roaming process and so reduces roaming time, resulting in communication implementation speedup between an STA and a new-AP in a WLAN. Also, service quality is stably ensured and fast roaming is enabled.

While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.