17MA1301A

UNIT-IV

8. a. A slider in a machine moves along a fixed rod. Its distance x centimeters along the rod is given below for various values of the time t seconds. Find the velocity and acceleration of the slider at 0.1 second 8M

t	0	0 0.1 0.2		0.3	0.4	0.5	0.6	
X	30.13	31.62	32.87	33.64	33.95	33.81	33.24	

b. Calculate by Simpson's rule an approximate value of $\int_{-3}^{3} x^4 dx$ by taking seven equidistant ordinates. Compare it with exact value.

7M

(or)

- 9. a. Apply R-K method of fourth order to solve $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 at x = 0.2 in steps of 0.1.
 - b. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10)$ over the square with x=0=y, x = 3 = y with u = 0 on the boundary and mesh length is 1.

7M

* * *

VR17

Reg. No:					

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B.Tech. DEGREE EXAMINATION, NOVEMBER, 2019
Third Semester

17MA1301A COMPLEX ANALYSIS & NUMERICAL METHODS

(CE/EC/EI/IT)

Time: 3hours

Part-A is compulsory

Answer One Question from each Unit of Part-B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

Max. Marks: 70

- 1. a. Express e^z in the form a + ib.
 - b. Define harmonic function.
 - c. Write C-R equations in polar form.
 - d. Classify the type of the singular point of $\frac{z \sin z}{z^2}$.
 - e. Find the invariant points of the transformation $w = \frac{z-1}{z+1}$.
 - f. Illustrate transcendental equation.
 - g. State Trapezoidal rule.
 - h. Show that $(1 + \Delta)(1 \nabla) = 1$.
 - i. When does Newton Raphson method fail?
 - j. Write the limitation of Picard's method.

17MA1301A

PART-B

 $4 \times 15 = 60M$

UNIT-I

- 2. a. Find v(x, y) such that the function f(z) = u(x, y) + iv(x, y) is an analytic function, where $u(x, y) = 2\sin x \sinh y 3x^2y + y^3$. 7M
 - b. Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2 + y^2} ; & \text{if } z \neq 0 \\ 0 & \text{; if } z = 0 \end{cases}$$
 is not analytic at the origin even

though C-R equations are satisfied at the origin. **8M**

(or)

- 3. a. Evaluate $\int_{C} \frac{\sin z}{4z + \pi} dz$, where c is the circle |z| = 1 with positive orientation using Cauchy's integral formula. **7M**
 - b. Evaluate $\int_{C} |z| dz$, where c is the contour left half of the circle |z| = 1 from z = i to z = -i in clock wise direction.

UNIT-II

4. a. Evaluate $\int_{C} \frac{z \cos z}{(z - \pi/2)^3} dz$, where 'c' is the circle |z-1|=1, by using Cauchy's residue theorem. 7M

VR17 17MA1301A

b. Find the bilinear transformation which maps the points z = 1, i, -1 in to the points w = i, 0, -i. Hence find the image of |z| < 1 under this transformation.

(or)

- 5. a. Expand $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region

 i) |z| < 1 ii) 1 < |z| < 4 iii) |z| > 4
 - b. Evaluate $\int_0^{2\pi} \frac{d\theta}{1-2 a \sin\theta + a^2}$, 0 < a < 1, by using residue theorem.

UNIT-III

- a. Using Newton-Raphson method find an iterative scheme to compute the cube root of a positive number. Hence find ³√18 correct to four decimals.
 - b. Solve the following equations by Gauss Seidel method 7M7x + 52y + 13z = 104; 83x + 11y - 4z = 95; 3x + 8y + 29z = 71

(or)

- 7. a. Discuss the use of various interpolation formulae. 7M
 - b. Find the polynomial f(x) of the lowest possible degree which assumes the values -21, 15, 12, 3 when x has the values -1, 1, 2, 3 respectively.