GAIA Reference Manual

Version v8p3 December 6, 2021

Contents

1	Detail list of keywords	8
1.1	ACCURACY FOR DIFFUSION OF SUSPENSION	8
1.2	ACTIVE LAYER THICKNESS	8
1.3	ACTIVE LAYER THICKNESS FORMULA	8
1.4	AD LINEAR SOLVER DERIVATIVE CONVERGENCE	9
1.5	AD LINEAR SOLVER RESET DERIVATIVES	9
1.6	AD NAMES OF DERIVATIVES	9
1.7	AD NUMBER OF DERIVATIVES	9
1.8	AD NUMBER OF DIRECTIONS	9
1.9	AD SYMBOLIC LINEAR SOLVER	9
1.10	ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY	10
1.11	B VALUE FOR THE BIJKER FORMULA	10
1.12	BED LOAD FOR ALL SANDS	10
1.13	BED MODEL	10
1.14	BED ROUGHNESS PREDICTOR OPTION	10
1.15	BED-LOAD TRANSPORT FORMULA FOR ALL SANDS	11
1.16	BEDLOAD BOUNDARIES FILE	11
1.17	BETA	11
1.18	BOTTOM TOPOGRAPHY FILE	11
1.19	BOUNDARY CONDITIONS FILE	12
1.20	C-VSM FULL PRINTOUT PERIOD	12
1.21	C-VSM MAXIMUM SECTIONS	12
1.22	C-VSM PRINTOUT SELECTION	12
1.23	C-VSM RESULTS FILE	12
1.24	C-VSM RESULTS FILE FORMAT	13
1.25	CHECKING THE MESH	13

1.26	CLASSES CRITICAL SHEAR STRESS FOR MUD DEPOSITION	13
1.27	CLASSES HIDING FACTOR	13
1.28	CLASSES IMPOSED SOLID DISCHARGES DISTRIBUTION	13
1.29	CLASSES INITIAL FRACTION	14
1.30	CLASSES SEDIMENT DENSITY	14
1.31	CLASSES SEDIMENT DIAMETERS	14
1.32	CLASSES SETTLING VELOCITIES	14
1.33	CLASSES SHIELDS PARAMETERS	14
1.34	CLASSES TYPE OF SEDIMENT	15
1.35	COEFFICIENT FOR DIFFUSION OF SUSPENDED SEDIMENTS	15
1.36	COEFFICIENT FOR HORIZONTAL DIFFUSION OF SUSPENDED SEDIMENTS	15
1.37	COEFFICIENT FOR VERTICAL DIFFUSION OF SUSPENDED SEDIMENTS	15
1.38	COEFFICIENT RELATIVE TO FLOC DESTRUCTION	15
1.39	COMPUTATION CONTINUED	16
1.40	COMPUTE BED ROUGHNESS AT SEDIMENT SCALE	16
1.41	CONSTANT ACTIVE LAYER THICKNESS	16
1.42	CONTROL SECTIONS	16
1.43	CORRECTION ON CONVECTION VELOCITY	16
1.44	D90 SAND DIAMETER FOR ONLY ONE CLASS	17
1.45	DEBUGGER	17
1.46	DICTIONARY	17
1.47	EFFECT OF WAVES	17
1.48	EQUILIBRIUM INFLOW CONCENTRATION	17
1.49	FINITE VOLUME SCHEME FOR SUSPENDED SEDIMENTS DIFFUSION	18
1.50	FINITE VOLUMES	18
1.51	FLOCCULATION	18
1.52	FLOCCULATION COEFFICIENT	18
1.53	FLOCCULATION FORMULA	18
1.54	FLUXLINE	19
1.55	FLUXLINE INPUT FILE	19
1.56	FORMULA FOR DEVIATION	19
1.57	FORMULA FOR SLOPE EFFECT	19
1.58	FORTRAN FILE	19
1.59	FRICTION ANGLE OF THE SEDIMENT	20
1.60	GEOMETRY FILE	20
1.61	GEOMETRY FILE FORMAT	20

1.62	HIDING FACTOR FORMULA	20
1.63	HINDERED SETTLING	20
1.64	HINDERED SETTLING FORMULA	21
1.65	INITIAL SUSPENDED SEDIMENTS CONCENTRATION VALUES	21
1.66	LAYERS CRITICAL EROSION SHEAR STRESS OF THE MUD	21
1.67	LAYERS INITIAL THICKNESS	21
1.68	LAYERS MASS TRANSFER	21
1.69	LAYERS MUD CONCENTRATION	22
1.70	LAYERS NON COHESIVE BED POROSITY	22
1.71	LAYERS PARTHENIADES CONSTANT	22
1.72	LISTING PRINTOUT PERIOD	22
1.73	MASS-BALANCE	22
1.74	MATRIX STORAGE	23
1.75	MATRIX-VECTOR PRODUCT	23
1.76	MAXIMUM NUMBER OF BOUNDARIES	23
1.77	MAXIMUM NUMBER OF ITERATIONS FOR POSITIVE THICKNESS	23
1.78	MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION	23
1.79	MINIMAL VALUE OF THE WATER HEIGHT	24
1.80	MINIMUM DEPTH FOR BEDLOAD	24
1.81	MORPHOLOGICAL FACTOR ON BED EVOLUTION	24
1.82	MORPHOLOGICAL FACTOR ON TIME SCALE	24
1.83	MPM COEFFICIENT	24
1.84	NAMES OF PRIVATE VARIABLES	24
1.85	NESTOR	25
1.86	NESTOR ACTION FILE	25
1.87	NESTOR POLYGON FILE	25
1.88	NESTOR RESTART FILE	25
1.89	NESTOR SURFACE REFERENCE FILE	25
1.90	NUMBER OF LAYERS FOR INITIAL STRATIFICATION	26
1.91	NUMBER OF LAYERS OF THE CONSOLIDATION MODEL	26
1.92	NUMBER OF PRIVATE ARRAYS	26
1.93	NUMBER OF SUB-ITERATIONS	26
1.94	OPTION FOR THE TREATMENT OF TIDAL FLATS	26
1.95	ORIGIN COORDINATES	27
1.96	ORIGINAL DATE OF TIME	27
1.97	ORIGINAL HOUR OF TIME	27

1.98	PARALLEL PROCESSORS	27
1.99	PARAMETER FOR DEVIATION	27
1.100	PRECONDITIONING FOR DIFFUSION OF SUSPENSION	28
1.101	PRESCRIBED SOLID DISCHARGES	28
1.102	PRESCRIBED SUSPENDED SEDIMENTS CONCENTRATION VALUES	28
1.103	PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE	29
1.104	PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE FORMAT	29
1.105	RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER	29
1.106	REFERENCE FILE	29
1.107	REFERENCE FILE FORMAT	29
1.108	RELEASE	30
1.109	RESULTS FILE	30
1.110	RESULTS FILE FORMAT	30
1.111	SCHEME FOR ADVECTION OF SUSPENDED SEDIMENTS	30
1.112	SCHEME FOR DIFFUSION OF SUSPENDED SEDIMENTS IN 3D	30
1.113	SCHEME OPTION FOR ADVECTION OF SUSPENDED SEDIMENTS	31
1.114	SECONDARY CURRENTS	31
1.115	SECONDARY CURRENTS ALPHA COEFFICIENT	31
1.116	SECONDARY CURRENTS FILE	31
1.117	SECTIONS INPUT FILE	31
1.118	SECTIONS OUTPUT FILE	32
1.119	SEDIMENT SLIDE	32
1.120	SETTLING LAG	32
1.121	SKIN FRICTION CORRECTION	32
1.122	SLOPE EFFECT	32
1.123	SOLVER FOR DIFFUSION OF SUSPENSION	33
1.124	SOLVER OPTION FOR DIFFUSION OF SUSPENSION	33
1.125	STEERING FILE	33
1.126	SUSPENDED SEDIMENTS CONCENTRATION VALUES AT THE SOURCES	33
1.127	SUSPENSION FOR ALL SANDS	34
1.128	SUSPENSION TRANSPORT FORMULA FOR ALL SANDS	34
1.129	THETA IMPLICITATION FOR SUSPENSION	34
1.130	THRESHOLD CONCENTRATION FOR HINDERED SETTLING	34
1.131	TIDAL FLATS	34
1.132	TITLE	35
1.133	TRIGONOMETRICAL CONVENTION IN WAVE FILE	35

1.134	TYPE OF WAVES	35
1.135	UPWINDING FOR BEDLOAD	35
1.136	VALIDATION	35
1.137	VARIABLES FOR GRAPHIC PRINTOUTS	36
1.138	VARIABLES TO BE PRINTED	36
1.139	VECTOR LENGTH	36
1.140	VERTICAL GRAIN SORTING MODEL	36
1.141	VERTICAL PROFILES OF SUSPENDED SEDIMENTS	36
1.142	WATER VISCOSITY	37
1.143	WAVE FILE	37
1.144	WAVE FILE FORMAT	37
1.145	WEAK SOIL CONCENTRATION FOR MUD	37
1.146	ZERO	38
2	List of keywords classified according to type	39
2.1	BED MATERIAL	39
2.1.1	C-VSM	39
2.2	BED STRUCTURE	39
2.2.1	INITIALIZATION	
2.3	BOUNDARY CONDITIONS SETTING	39
2.3.1 2.4	COHESIVE	39
2.4 2.4.1	BED STRUCTURE	
2.4.2	CONSOLIDATION	40
2.4.3 2.4.4	INITIALIZATION	
2.4.5	SUSPENSION	
2.5	COHESIVE AND NON COHESIVE	40
2.5.1	BED MATERIAL	
2.5.2 2.5.3	CHARRIAGE	
2.6	COMPUTATION ENVIRONMENT	41
2.6.1	GLOBAL	41
2.6.2 2.6.3	INPUTOUTPUT	
2.0.3 2.7	DATA FILES	41
2.7	GENERAL GENERAL	41
2.9 2.9.1	GENERAL PARAMETERS LOCATION	41
2.10	HYDRODYNAMICS	42
_	TIDAL FLATS INFO	42

		7
2.11	INITIAL CONDITION	42
2.11.1	SETTING	42
2.12	INITIAL CONDITIONS	42
2.13	INPUT-OUTPUT, FILES	42
2.13.1	NAMES	42
2.14	INPUT-OUTPUT, GRAPHICS AND LISTING	42
2.15	INTERNAL	42
2.16	MISCELLANEOUS	43
2.17	NON COHESIVE	43
2.17.1	BED MATERIAL	43
2.17.2 2.17.3	BEDLOAD	
2.17.4		
	FRICTION	
	SUSPENSION	
2.18	NUMERICAL	44
2.19	NUMERICAL PARAMETERS	44
2.19.1 2.19.2	ADVECTION INFO	44 44
2.19.3	BEDLOAD	
2.19.4 2.19.5		
2.19.5	PHYSICS	45
2.21	RESULTS	45
2.22 2.22.1	SETILING VELOCITY	45 45
2.23	SEDIMENTOLOGY	45
_	GENERAL	
2.24	SUSPENSION	46
2.24.1	TURBULENCE	
2.25	SUSPENSIONS	46
2.25.1	TURBULENCE	46
2.26	TIME	46
2.27	USELESS	46
3	Glossary	47
3.1	English/French glossary	47
3.2		51
J.Z	French/English glossary	IJΙ

Bibliography 57

1. Detail list of keywords

1.1 ACCURACY FOR DIFFUSION OF SUSPENSION

Type: Real Dimension: 0

Mnemo SLVSED%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR LA DIFFUSION DE LA SUSPENSION Sets the accuracy needed for the computation of the diffusion of suspension. It is not possible to set different values for different solvers, only one is accepted.

1.2 ACTIVE LAYER THICKNESS

Type: Real
Dimension: 0
Mnemo ELAY0
DEFAULT VALUE: 10000.

French keyword: EPAISSEUR DE COUCHE ACTIVE

Thickness for bed stratification. Composition of first layer is used to compute bed load transport rate. If you do not want a stratification, use a large value

1.3 ACTIVE LAYER THICKNESS FORMULA

Type: Integer Dimension: 0

Mnemo ALT_MODEL

DEFAULT VALUE: 0

French keyword: ACTIVE LAYER THICKNESS FORMULA

MODEL FOR ACTIVE LAYER THICKNESS 0 = ELAY0 (Keyword: ACTIVE LAYER THICKNESS) $1 = \text{Hunziker} \& G\ddot{u}$ nther 2 = Fredsoe & Deigaard (1992) 3 = van RIJN (1993) 4 = Wong (2006) 5 = Malcherek (2003) 6 = 3 * d50 within last time steps ALT

1.4 AD LINEAR SOLVER DERIVATIVE CONVERGENCE

Type: Logical

Dimension: 1

Mnemo AD_LINSOLV_DERIVATIVE_CONVERGENCE

DEFAULT VALUE: YES

French keyword: AD CONVERGENCE DES DERIVEES POUR LE SOLVEUR LINEAIRE

Iterative linear solvers: derivative convergence test for AD.

1.5 AD LINEAR SOLVER RESET DERIVATIVES

Type: Logical

Dimension: 1

Mnemo AD_LINSOLV_RESETDERIV

DEFAULT VALUE: YES

French keyword: AD REMISE A ZERO DES DERIVEES DU SOLVEUR LINEAIRE

Resets the derivatives for AD.

1.6 AD NAMES OF DERIVATIVES

Type: String Dimension: 2

Mnemo NAME_ADVAR
DEFAULT VALUE: 'MANDATORY'

French keyword: AD NOMS DES DERIVEES

Name of user derivatives in 32 characters, 16 for the name, 16 for the unit.

1.7 AD NUMBER OF DERIVATIVES

Type: Integer

Dimension: 0

Mnemo NADVAR

DEFAULT VALUE: 0

French keyword: AD NOMBRE DE DERIVEES

Defines the number of user derivatives, within the framework of the algorithmic differentiation.

1.8 AD NUMBER OF DIRECTIONS

Type: Integer Dimension: 0

Mnemo AD_NUMOFDIR

DEFAULT VALUE: 1

French keyword: AD NOMBRE DE DIRECTIONS Defines the number of directions for the differentiators

1.9 AD SYMBOLIC LINEAR SOLVER

Type: Logical

Dimension: 1

Mnemo AD_SYMBLINSOLV

DEFAULT VALUE: NO

French keyword: AD SOLVEUR LINEAIRE SYMBOLIQUE

Enables the symbolic linear solver for AD.

1.10 ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY

Type: Integer Dimension: 1

Mnemo SETDEP

DEFAULT VALUE: 0

French keyword: SCHEMA DE CONVECTION DIFFUSION AVEC VITESSE DE CHUTE

Choice of the vertical scheme for diffusion and settling of sediment (only in 3D):

- 0: Implicit-diffusion scheme,
- 1: Implicit-convection scheme (Tridiagonal matrix solver),
- 2: set_fall.f

1.11 B VALUE FOR THE BIJKER FORMULA

Type: Real
Dimension: 1
Mnemo BIJK
DEFAULT VALUE: 2.E0

French keyword: COEFFICIENT B DE LA FORMULE DE BIJKER

b value for the Bijker formula

1.12 BED LOAD FOR ALL SANDS

Type: Logical

Dimension: 1

Mnemo CHARR DEFAULT VALUE: NO

French keyword: CHARRIAGE POUR TOUS LES SABLES

TODO: WRITE HELP FOR THAT KEYWORD

1.13 BED MODEL

Type: Integer Dimension: 1

Mnemo BED_MODEL

DEFAULT VALUE: 1

French keyword: MODELE DE LIT

 $3\ kinds\ of\ bed\ model\ are\ available:\ 1:\ multilayers\ (automatic\ active\ layer\ if\ several\ classes)\ 2:$

multilayer with consolidation 3: consolidation model based on Gibson theory

1.14 BED ROUGHNESS PREDICTOR OPTION

Type: Integer
Dimension: 1
Mnemo IKS
DEFAULT VALUE: 1

French keyword: OPTION DU PREDICTEUR DE RUGOSITE 1: Flat bed, 2: Rippled bed, 3: Dunes and mega ripples (Method of Van Rijn)

1.15 BED-LOAD TRANSPORT FORMULA FOR ALL SANDS

Type: Integer
Dimension: 1
Mnemo ICF
DEFAULT VALUE: 1

French keyword: FORMULE DE TRANSPORT SOLIDE POUR TOUS LES SABLES 10 bed-load or total load transport formulas are implemented in GAIA. The formula Ne3, Ne30 and Ne9 should not be used in the case of coupling with the suspension. The formula Ne4, Ne5, Ne8 and Ne9 model the transport under the combined action of currents and waves: 1: MEYER-PETER (bed load) 2: EINSTEIN-BROWN (bed load) 3: ENGELUND-HANSEN + CHOLLET AND CUNGE (VERSION 5.3) 30: ENGELUND-HANSEN (total) 4: BIJKER (bed load + suspension) 5: SOULSBY - VAN RIJN (bed load + suspension) 6: HUNZIKER (only for sand grading) IN THIS CASE HIDING FACTOR KEYWORD DISCARDED And Hunziker formula used 7: VAN RIJN (bed load) 8: BAILARD (bed load + suspension) 9: DIBAJNIA ET WATANABE (total) 10: WILCOCK AND CROWE (graded sediment) Users can also program other formulas (subroutine bedload_qb_user.f) setting this key word to zero: 0: FORMULA PROGRAMMED BY USER Warning: it is not then possible to choose the option VARIABLE TIME-STEP

1.16 BEDLOAD BOUNDARIES FILE

Type: String Dimension: 1

Mnemo GAI_FILES(GAILIQ)

DEFAULT VALUE: '

French keyword: FICHIER DES FRONTIERES POUR LE CHARRIAGE

Variations in time of boundary conditions in bedload. Data of this file are read on channel GAI_FILES(GAILIQ)

1.17 **BETA**

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 1.3 French keyword: BETA

Specifies the value of the beta coefficient used in the Koch and Flokstra slope effect formulation.

1.18 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 1

Mnemo GAI_FILES(GAIFON)

DEFAULT VALUE: '

French keyword: FICHIER DES FONDS

Name of the possible file containing the bathymetric data.

1.19 **BOUNDARY CONDITIONS FILE**

Type: String Dimension:

Mnemo GAI FILES(GAILIM)

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is filled automatically by the mesh generator through colours that are assigned to the computation domain boundary nodes.

1.20 C-VSM FULL PRINTOUT PERIOD

Type: Integer O

Dimension:

CVSMPPERIOD Mnemo

DEFAULT VALUE:

French keyword: C-VSM FULL PRINTOUT PERIOD

Number of Timesteps to next printout of the full C-VSM. These printouts are highly time and disc consuming. 0 = Coupled to GRAPHIC PRINTOUT PERIOD >0 = Own printout period for the C-VSM

1.21 **C-VSM MAXIMUM SECTIONS**

Type: Integer

Dimension:

Mnemo PRO_MAX_MAX

DEFAULT VALUE: 200

French keyword: C-VSM MAXIMUM SECTIONS

Defines the maximum discretisation of the Continous Vertical Sorting Model: Should be bigger than 8xNumber of Fractions. The bigger the higher the RAM requirements, but the faster and accurater the bookkeeping of the sediments.

1.22 C-VSM PRINTOUT SELECTION

String Type: Dimension:

Mnemo **CVSMOUTPUT**

DEFAULT VALUE: '0;0;0;0;0;0;0;0;0;0;0;0;0'

French keyword: C-VSM PRINTOUT SELECTION

Printout the C-VSM for the whole model as 3D C-VSM RESULTS FILE or / and for some nodes as C-VSM NODE FILE Give Up to 100 INTEGER numbers separated by ";" 0 = Full model .-> VSPRES N = 1,2...NPOINT; 2D-ID of a SELFIN MESH POINT ->*_VSP.CSV

1.23 C-VSM RESULTS FILE

Type: String Dimension:

Mnemo GAI_FILES(VSPRES)%NAME

DEFAULT VALUE:

FICHIER DES RESULTATS C-VSM French keyword:

Name of the file into which the C-VSM results of the computation are written, the periodicity being given by the keyword: C-VSM FULL PRINTOUT PERIOD.

1.24 C-VSM RESULTS FILE FORMAT

Type: String Dimension: 1

Mnemo GAI_FILES(VSPRES)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES C-VSM RESULTATS

Format of the C-VSM RESULT FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED : MED double precision format based on HDF5.

1.25 CHECKING THE MESH

Type: Logical

Dimension: 0

Mnemo CHECK MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

if this key word is equal to yes, a call to subroutine checkmesh will look for errors in the mesh, superimposed points, etc.

1.26 CLASSES CRITICAL SHEAR STRESS FOR MUD DEPOSITION

Type: Real Dimension: 2

Mnemo TOCD_MUD0 DEFAULT VALUE: 1000.;1000.

French keyword: CONTRAINTE CRITIQUE DE DEPOT DE LA VASE PAR CLASSE

Critical shear stress for deposition (Pa)

1.27 CLASSES HIDING FACTOR

Type: Real
Dimension: 2
Mnemo HIDI
DEFAULT VALUE: 1.;1.

French keyword: HIDING FACTOR PAR CLASSE

Sets value of hiding factor for particular size class.

1.28 CLASSES IMPOSED SOLID DISCHARGES DISTRIBUTION

Type: Real Dimension: 2

Mnemo RATIO_DEBIMP DEFAULT VALUE: MANDATORY

French keyword: DISTRIBUTION DES DEBITS IMPOSES PAR CLASSE Gives the proportion of the imposed solid discharge for each class. Give one numbre for each non-cohesive class

1.29 CLASSES INITIAL FRACTION

Type: Real
Dimension: 2
Mnemo AVA0
DEFAULT VALUE: 1.;0.

French keyword: FRACTION INITIALE PAR CLASSE

Sets the value of the initial fraction of each sediment class. Beware that the sum over all classes must be equal to 1.

1.30 CLASSES SEDIMENT DENSITY

Type: Real
Dimension: 2
Mnemo XMVS0
DEFAULT VALUE: 2650.;2650.

French keyword: MASSE VOLUMIQUE DU SEDIMENT PAR CLASSE

Sets the value of the sediment density for each class en Kg/m3

1.31 CLASSES SEDIMENT DIAMETERS

Type: Real
Dimension: 2
Mnemo DCLA
DEFAULT VALUE: .01;.01

French keyword: DIAMETRES DES GRAINS PAR CLASSE

Sets value of diameter dm for particular size class.

1.32 CLASSES SETTLING VELOCITIES

Type: Real
Dimension: 2
Mnemo XWC0
DEFAULT VALUE: -9:-9.

French keyword: VITESSES DE CHUTE PAR CLASSE

Sets the value of settling velocity for every sediment. Give a negative value to use the Stokes, Zanke or Van Rijn formulae (depending on the grain size)

1.33 CLASSES SHIELDS PARAMETERS

Type: Real
Dimension: 2
Mnemo AC
DEFAULT VALUE: -9.;-9.

French keyword: PARAMETRES DE SHIELDS PAR CLASSE

Used to determine the critical bed shear stress value (non-cohesive sediments). For multi grain size, the shields parameter needs to be specified for each class. It is necessary to give a negative value in the parameter file for cohesive sediments.

1.34 CLASSES TYPE OF SEDIMENT

Type: String Dimension: 2

Mnemo TYPE_SED
DEFAULT VALUE: 'MANDATORY'

French keyword: TYPE DE SEDIMENT PAR CLASSE Liste of types of sediment: cohesive (CO) ou non cohesive (NCO).

1.35 COEFFICIENT FOR DIFFUSION OF SUSPENDED SEDIMENTS

Type: Real Dimension: 1

Mnemo DIFSEDNU DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION DES SEDIMENTS EN SUSPENSION

Sets the value of the suspended sediments diffusivity in 2D. This value may have a significant effect on the evolution of sediments in time. It is a scalar (one value for all sediments).

1.36 COEFFICIENT FOR HORIZONTAL DIFFUSION OF SUSPENDED SEDIMENTS

Type: Real Dimension: 2

Mnemo DNUSEDH DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENT DE DIFFUSION HORIZONTAL DES SEDIMENTS EN SUSPENS. Sets the values of the horizontal diffusion of sediments in 3D. These values may have a signif-

icant effect on the evolution of sediments in time. It is an array, with one value per suspended sediment, separated by semicolons.

1.37 COEFFICIENT FOR VERTICAL DIFFUSION OF SUSPENDED SEDIMENTS

Type: Real Dimension: 2

Mnemo DNUSEDV DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENT DE DIFFUSION VERTICAL DES SEDIMENTS EN SUSPENSION

Sets the values of the vertical diffusion of sediments in 3D. These values may have a significant effect on the evolution of sediments in time. It is an array, with one value per suspended sediment, separated by semicolons.

1.38 COEFFICIENT RELATIVE TO FLOC DESTRUCTION

Type: Real Dimension: 1

Mnemo TURBB DEFAULT VALUE: 0.09

French keyword: COEFFICIENT TRADUISANT LA DESTRUCTION DES FLOCS When the influence of turbulence on the settling velocity is modelled, this coefficient traduces the breaking of flocs by turbulence (coefficient b of Van Leussen formula). Value to be imposed if INFLUENCE OF TURBULENCE ON SETTLING VELOCITY = YES.

1.39 COMPUTATION CONTINUED

Type: Logical
Dimension: 0
Mnemo DEBU
DEFAULT VALUE: NO

French keyword: SUITE DE CALCUL

Determines whether the computation under way is an independent result or is following an earlier result. NO: It is the first run for this computation and a whole set of initial conditions should be defined. YES: It follows a former computation: the initial conditions consist in the last time step of the PREVIOUS COMPUTATION FILE in the steering file used for submitting the computation. All the data from the steering file may be defined once again, which provides an opportunity to change, for example, the time step. It is also possible to define new boundary conditions.

1.40 COMPUTE BED ROUGHNESS AT SEDIMENT SCALE

Type: Logical

Dimension: 0

Mnemo KSCALC DEFAULT VALUE: NO

French keyword: CALCUL DE LA RUGOSITE SEDIMENTAIRE

Compute a bed roughness at the sediment scale - see BED ROUGHNESS PREDICTOR OP-TION -. It can be different from the hydrodynamics roughness due to the action of waves or to a space-time varying grain size distribution. This roughness could be sent to Telemac but it is not supported yet.

1.41 CONSTANT ACTIVE LAYER THICKNESS

Type: Logical

Dimension: 1

Mnemo CONST_ALAYER

DEFAULT VALUE: YES

French keyword: EPAISSEUR DE COUCHE ACTIVE CONSTANTE

constant active layer thickness or not

1.42 CONTROL SECTIONS

Type: Integer
Dimension: 3
Mnemo CTRLSC
DEFAULT VALUE: MANDATORY

French keyword: SECTIONS DE CONTROLE

Couples of points (global numbers in the mesh) defining sections where the instantaneous and cumulated discharges will be given

1.43 CORRECTION ON CONVECTION VELOCITY

Type: Logical Dimension: 0

Mnemo CORR_CONV

DEFAULT VALUE: NO

French keyword: CORRECTION DU CHAMP CONVECTEUR

Modification of 2D convection velocities to account for velocity and concentration profiles

1.44 D90 SAND DIAMETER FOR ONLY ONE CLASS

Type: Real
Dimension: 1
Mnemo D90
DEFAULT VALUE: .01

French keyword: DIAMETRE D90 POUR UNE SEULE CLASSE DE SABLE Sets the value of diameter d90 for simulations with one sand class. With multiple sand classes, D90 is computed by GAIA.

1.45 DEBUGGER

Type: Integer
Dimension: 0
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing

1.46 DICTIONARY

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'gaia.dico'

French keyword: DICTIONNAIRE

Key word dictionary.

1.47 EFFECT OF WAVES

Type: Logical
Dimension: 1
Mnemo HOULE
DEFAULT VALUE: NO

French keyword: PRISE EN COMPTE DE LA HOULE

Takes into account the effect of waves

1.48 EQUILIBRIUM INFLOW CONCENTRATION

Type: Logical

Dimension: 0

Mnemo IMP_INFLOW_C

DEFAULT VALUE: NO

French keyword: CONCENTRATION D'EQUILIBRE EN ENTREE

Imposes the equilibrium concentration at the inlet boundaries in 2D cases. For non cohesive sediments, the equilibrium near bed concentration is computed with respect to the suspension transport formula for all sands.

1.49 FINITE VOLUME SCHEME FOR SUSPENDED SEDIMENTS DIFFUSION

Type: Integer

Dimension: 2

Mnemo MVIST_SED

DEFAULT VALUE:

French keyword: SCHEMA VOLUMES FINIS POUR LA DIFFUSION DES SEDIMENTS

Choice of the finite volume diffusion model:

• 1: explicit P1 finite element,

• 2: two points flux,

• 3: reconstructed two points flux.

1.50 FINITE VOLUMES

Type: Logical Dimension: 0 Mnemo VF DEFAULT VALUE: NO

French keyword: VOLUMES FINIS

Set finite volumes method or not

1.51 FLOCCULATION

Type: Logical
Dimension: 1
Mnemo FLOC
DEFAULT VALUE: NO

French keyword: FLOCULATION

Decides if hindered formulation is to be used to compute settling velocity for mud.

1.52 FLOCCULATION COEFFICIENT

Type: Real Dimension: 1

Mnemo TURBA DEFAULT VALUE: 0.3

French keyword: COEFFICIENT TRADUISANT LA FORMATION DES FLOCS When the influence of turbulence on the settling velocity is modelled, this coefficient traduces the formation of flocs by turbulence (coefficient a of Van Leussen formula). Value to be imposed if INFLUENCE OF TURBULENCE ON SETTLING VELOCITY = YES.

1.53 FLOCCULATION FORMULA

Type: Integer Dimension: 1

Mnemo FLOC_TYPE

DEFAULT VALUE:

French keyword: FORMULE POUR FLOCULATION

Type of flocculation formula:

• 1: Van Leussen,

1.54 FLUXLINE

• 2: Soulsby et al. (2013).

1.54 FLUXLINE

Type: Logical

Dimension: 1

Mnemo DOFLUX DEFAULT VALUE: NO

French keyword: FLUXLINE Use Fluxline to compute flux over lines

1.55 FLUXLINE INPUT FILE

Type: String Dimension: 1

Mnemo GAI_FILES(GAIFLX)

DEFAULT VALUE:

French keyword: FICHIER DE FLUXLINE

Name of the Fluxline file

1.56 FORMULA FOR DEVIATION

Type: Integer
Dimension: 1
Mnemo DEVIA

DEFAULT VALUE: 1

French keyword: FORMULE POUR LA DEVIATION

1: Koch and Flokstra 2: formula of Talmon et al. 1995, JHR 33(4) formulas (1) and (17) linked

keyword: BETA2

1.57 FORMULA FOR SLOPE EFFECT

Type: Integer Dimension: 1

Mnemo SLOPEFF

DEFAULT VALUE: 1

French keyword: FORMULE POUR EFFET DE PENTE

1 : formula of Koch et Flokstra, modification of bed load linked keyword : BETA 2 : formula of Soulsby, modification critical shear stress, can only be used with a threshold fomula linked keyword : FRICTION ANGLE OF THE SEDIMENT

1.58 FORTRAN FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER FORTRAN Name of FORTRAN file to be submitted.

1.59 FRICTION ANGLE OF THE SEDIMENT

Type: Real
Dimension: 1
Mnemo PHISED
DEFAULT VALUE: 40.

French keyword: ANGLE DE FROTTEMENT DU SEDIMENT

Angle of repose of the sediment. Used in the Soulsby formula to take into account the influence of bed slope on critical shear stress. Use if ...=2

1.60 GEOMETRY FILE

Type: String Dimension: 0

Mnemo GAI_FILES(GAIGEO)

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh. This file may also contain the topography and the friction coefficients.

1.61 GEOMETRY FILE FORMAT

Type: String
Dimension: 1
Mnemo ?????

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Geometry file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format

based on HDF5

1.62 HIDING FACTOR FORMULA

Type: Integer
Dimension: 0
Mnemo HIDFAC

DEFAULT VALUE: 0

French keyword: HIDING FACTOR FORMULA

4 hiding factor formulas are implemented in GAIA 0: const => need to give CLASSES HIDING

FACTOR 1: Egiazaroff 2: Ashida & Michiue: 4: Karim, Holly & Yang

1.63 HINDERED SETTLING

Type: Logical Dimension: 1

Mnemo HINDER DEFAULT VALUE: NO

French keyword: VITESSE DE CHUTE ENTRAVEE

Decides if hindered formulation is to be used to compute settling velocity for mud.

1.64 HINDERED SETTLING FORMULA

Type: Integer

Dimension: 1

Mnemo HIND_TYPE

DEFAULT VALUE: 1

French keyword: FORMULE POUR VITESSE DE CHUTE ENTRAVEE

Type of hindered settling:

- 1: Whitehouse et al. (2000) working,
- 2: Winterwerp (1999) not currently working.

1.65 INITIAL SUSPENDED SEDIMENTS CONCENTRATION VALUES

Type: Real
Dimension: 2
Mnemo SED0
DEFAULT VALUE: 0.;0.

French keyword: VALEURS INITIALES DE CONCENTRATION DES SEDIMENTS EN SUSPENSIO

Sets the initial values of suspended sediment concentration.

1.66 LAYERS CRITICAL EROSION SHEAR STRESS OF THE MUD

Type: Real Dimension: 2

Mnemo TOCE_MUD0

DEFAULT VALUE: 0.5;1.

French keyword: CONTRAINTE CRITIQUE D'EROSION DE LA VASE PAR COUCHE

Critical erosion shear stress of the mud per layer (N per m2)

1.67 LAYERS INITIAL THICKNESS

Type: Real Dimension: 2

Mnemo SED_THICK DEFAULT VALUE: MANDATORY

French keyword: EPAISSEURS INITIALES PAR COUCHE

Sediment layers thickness (m) for initialisation.

1.68 LAYERS MASS TRANSFER

Type: Real Dimension: 2

Mnemo TRANS_MASS0 DEFAULT VALUE: MANDATORY

French keyword: TRANSFERT DE MASSE PAR COUCHE Mass transfert coefficients of the multilayer consolidation model in s-1

1.69 LAYERS MUD CONCENTRATION

Type: Real Dimension: 2

Mnemo CONC_MUD0
DEFAULT VALUE: MANDATORY

French keyword: CONCENTRATIONS DE LA VASE PAR COUCHE

Concentrations of the mud-bed in g per l (per layer)

1.70 LAYERS NON COHESIVE BED POROSITY

Type: Real
Dimension: 2
Mnemo XKV0
DEFAULT VALUE: 0.4;0.4

French keyword: POROSITE DU LIT NON COHESIF PAR COUCHE

The bed volume concentration CSF=(1-porosity) is used to calculate the bed evolution of non-cohesive sand transport.

1.71 LAYERS PARTHENIADES CONSTANT

Type: Real Dimension: 2

Mnemo PARTHENIADES0

DEFAULT VALUE: 1.E-3;1.E-3

French keyword: CONSTANTE DE PARTHENIADES PAR COUCHE

constant of the Krone and Partheniades erosion law (Kg/m2/s)

1.72 LISTING PRINTOUT PERIOD

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE LISTING

Determines, in number of time steps, the printout period of the "VARIABLES TO BE PRINTED". The results are printed out on the listing file (file cas_numerodeprocessus.sortie on a workstation).

1.73 MASS-BALANCE

Type: Logical Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: BILAN DE MASSE

Determines whether a check of the mass-balance over the domain is made or not

1.74 MATRIX STORAGE

Type: Integer
Dimension: 0
Mnome OPTAS

Mnemo OPTASS

DEFAULT VALUE: 1

French keyword: STOCKAGE DES MATRICES

TODO: WRITE HELP FOR THAT KEYWORD

1.75 MATRIX-VECTOR PRODUCT

Type: Integer Dimension: 0

Mnemo PRODUC

DEFAULT VALUE: 1

French keyword: PRODUIT MATRICE-VECTEUR

TODO: WRITE HELP FOR THAT KEYWORD

1.76 MAXIMUM NUMBER OF BOUNDARIES

Type: Integer Dimension: 1

Mnemo MAXFRO

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES

maximal number of boundaries in the mesh. Used for dimensioning arrays. Can be increased if

needed

1.77 MAXIMUM NUMBER OF ITERATIONS FOR POSITIVE THICKNESS

Type: Integer Dimension: 0

Mnemo MAXADV

DEFAULT VALUE: 50

release 8.1.

1.78 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION

Type: Integer Dimension: 1

Mnemo SLVSED(I)%NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LE SOLVEUR POUR LA SUSPENSION

Limits the number of solver iterations for the diffusion of sediments.

1.79 MINIMAL VALUE OF THE WATER HEIGHT

Type: Real
Dimension: 1
Mnemo HMIN
DEFAULT VALUE: 1.E-3

French keyword: VALEUR MINIMUM DE H

Sets the minimum value of the water depth. Is used when the keyword TIDAL FLATS is equal

to yes.

1.80 MINIMUM DEPTH FOR BEDLOAD

Type: Real Dimension: 1

Mnemo HMIN_BEDLOAD

DEFAULT VALUE: 1.E-2

French keyword: PROFONDEUR MINIMUM POUR LE CHARRIAGE

To cancel sediment fluxes to and from dry points

1.81 MORPHOLOGICAL FACTOR ON BED EVOLUTION

Type: Real Dimension: 1

Mnemo MOFAC_BED

DEFAULT VALUE: 1.

French keyword: FACTEUR MORPHOLOGIQUE SUR L'EVOLUTION DU LIT

amplification coefficient of bed evolution

1.82 MORPHOLOGICAL FACTOR ON TIME SCALE

Type: Real
Dimension: 1
Mnemo MOFAC

DEFAULT VALUE: 1.

French keyword: FACTEUR MORPHOLOGIQUE SUR L'ECHELLE DES TEMPS

amplification coefficient of time scale

1.83 MPM COEFFICIENT

Type: Real
Dimension: 1
Mnemo MPM
DEFAULT VALUE: 8.0E-00

French keyword: MPM COEFFICIENT TODO: WRITE HELP FOR THAT KEYWORD

1.84 NAMES OF PRIVATE VARIABLES

Type: String Dimension: 2

Mnemo NAMES_PRIVE DEFAULT VALUE: 'MANDATORY'

French keyword: NOMS DES VARIABLES PRIVEES

1.85 NESTOR 25

Name of private variables in 32 characters, 16 for the name, 16 for the unit. They are stored in the block PRIVE and can be read in the geometry file if they are here with their name

1.85 NESTOR

Type: Logical Dimension: 0

Mnemo NESTOR
DEFAULT VALUE: NO
French keyword: NESTOR
For coupling with NESTOR

1.86 NESTOR ACTION FILE

Type: String Dimension: 1

Mnemo GAI_FILES(SINACT)

DEFAULT VALUE: "

French keyword: FICHIER DE NESTOR ACTION

Name of the Nestor steering file

1.87 NESTOR POLYGON FILE

Type: String Dimension: 1

Mnemo GAI_FILES(SINPOL)

DEFAULT VALUE:

French keyword: FICHIER DE NESTOR POLYGON

Name of the Nestor polygon file

1.88 NESTOR RESTART FILE

Type: String Dimension: 1

Mnemo GAI_FILES(SINRST)

DEFAULT VALUE: '

French keyword: FICHIER DE NESTOR RESTART

Name of the Nestor file phydef-cf.cfg.ds

1.89 NESTOR SURFACE REFERENCE FILE

Type: String Dimension: 1

Mnemo GAI_FILES(SINREF)

DEFAULT VALUE:

French keyword: FICHIER DE NESTOR DE SURFACE REFERENCE

Name of the Nestor file which contains the reference water surface

1.90 NUMBER OF LAYERS FOR INITIAL STRATIFICATION

Type: Integer Dimension: 1

Mnemo NUMSTRAT

DEFAULT VALUE: 1

French keyword: NOMBRE DE COUCHES POUR STRATIFICATION INITIALE

Number of layers for initial stratification, default NUMSTRAT=1

1.91 NUMBER OF LAYERS OF THE CONSOLIDATION MODEL

Type: Integer Dimension: 0

Mnemo NCOUCH_TASS

DEFAULT VALUE:

French keyword: NOMBRE DE COUCHES POUR LE TASSEMENT

Vertical bed structure - The number of layers should be less than 10

1.92 NUMBER OF PRIVATE ARRAYS

Type: Integer
Dimension: 0
Mnemo NPRIV
DEFAULT VALUE: 1

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of arrays for own user programming

1.93 NUMBER OF SUB-ITERATIONS

Type: Integer
Dimension: 0
Mnemo NSOUS

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-ITERATIONS

enable to realize sub-iteration inside a time step (this key word is not used if the key word VARIABLE TIME-STEP is set equal to yes). It could be useful for a non steady case be useful for a non steady case when the time step which is fixed by the graphic printout period of the HYDRODYNAMIC FILE is too large.

1.94 OPTION FOR THE TREATMENT OF TIDAL FLATS

Type: Integer Dimension: 1

Mnemo OPTBAN

DEFAULT VALUE: 1

French keyword: OPTION DE TRAITEMENT DES BANCS DECOUVRANTS Used if "TIDAL FLATS" is true 1 : EQUATIONS SOLVED EVERYWHERE WITH CORRECTION ON TIDAL FLATS 2 : DRY ELEMENTS FROZEN It is recommended to choose 1 since it ensures mass conservation.

1.95 ORIGIN COORDINATES

Type: Integer Dimension: 2

Mnemo I_ORIG,J_ORIG

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE L'ORIGINE

Value in metres, used to avoid large real numbers, added in Selafin format, but so far no other

treatment

1.96 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo MARDAT DEFAULT VALUE: 0;0;0

French keyword: DATE DE L'ORIGINE DES TEMPS

Give the date of the time origin of the model when taking into account the tide generating force.

1.97 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo MARTIM DEFAULT VALUE: 0;0;0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Give the time of the time origin of the model when taking into account of the tide generator

force.

1.98 PARALLEL PROCESSORS

Type: Integer
Dimension: 0
Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

NUMBER OF PROCESSORS FOR PARALLEL PROCESSING 0 : 1 machine, compiling without parallel library 1 : 1 machine, compiling with a parallel library 2 : 2 processors or machines in parallel etc....

1.99 PARAMETER FOR DEVIATION

Type: Real
Dimension: 1
Mnemo BETA2
DEFAULT VALUE: 0.85

French keyword: PARAMETRE POUR LA DEVIATION Parameter pour la deviation pour la formule de Talmon et al.

1.100 PRECONDITIONING FOR DIFFUSION OF SUSPENSION

Type: Integer

Dimension: 1

Mnemo SLVSED(I)%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DE LA SUSPENSION

Choice of preconditioning for the diffusion of sediments. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix in 3D,
- 5: diagonal with absolute values in 3D,
- 7: Crout,
- 11: Gauss-Seidel EBE in 3D,
- 13: matrix defined by the user in 3D,
- 14: diagonal and Crout,
- 17: direct solver on the vertical in 3D,
- 21: diagonal condensed and Crout in 3D,
- 34: diagonal and direct solver on the vertical in 3D.

1.101 PRESCRIBED SOLID DISCHARGES

Type: Real Dimension: 2

Mnemo SOLDIS

DEFAULT VALUE: MANDATORY

French keyword: DEBITS SOLIDES IMPOSES

Values of prescribed solid discharges at the inflow boundaries (kg/s). One value per liquid

boundary

1.102 PRESCRIBED SUSPENDED SEDIMENTS CONCENTRATION VALUES

Type: Real Dimension: 2

Mnemo PRESED
DEFAULT VALUE: MANDATORY

French keyword: VALEURS IMPOSEES DES CONCENTRATIONS DES SEDIMENTS EN SUSPENS

Suspended sediment concentration values prescribed at the inflow boundaries. Determines the imposed value of sediments at the first boundary, then at the second and so on, with the same logic as tracers.

1.103 PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE

Type: String Dimension: 0

Mnemo GAI_FILES(GAIPRE)

DEFAULT VALUE: '

French keyword: FICHIER PRECEDENT SEDIMENTOLOGIQUE

Name of a file containing the results of an earlier sedimentological computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation.

1.104 PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE FORMAT

Type: String
Dimension: 1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER PRECEDENT SEDIMENTOLOGIQUE Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

1.105 RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER

Type: Real Dimension: 1

Mnemo KSPRATIO

DEFAULT VALUE: 3.0

French keyword: RATIO ENTRE LA RUGOSITE DE PEAU ET LE DIAMETRE MOYEN

Ratio for the computation of skin friction. skin roughness = ratio * mean diameter (for the mixture of sand, the mean diameter used is a value per node which is computed thanks to the fraction and the mean diameter of each sediment for each node of the mesh) if KSPRATIO =0: use skin friction prediction from Van Rijn (2007) for currents and the Wiberg and Harris method for waves

1.106 REFERENCE FILE

Type: String Dimension: 0

Mnemo GAI FILES(GAIREF)

DEFAULT VALUE: '

French keyword: FICHIER DE REFERENCE

Name of the file used to validate the computation. If VALIDATION = YES, the results of the computation will be compared with the values of this file. The comparison is made by the subroutine VALIDA.

1.107 REFERENCE FILE FORMAT

Type: String
Dimension: 1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -MED: MED format based on HDF5

1.108 RELEASE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'TRUNK'

French keyword: NUMERO DE VERSION

Release of the libraries used by GAIA.

1.109 **RESULTS FILE**

String Type: Dimension:

Mnemo GAI FILES(GAIRES)

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DES RESULTATS

Name of the file into wich the computation results shall be written, the periodicity being given by the keyword GRAPHIC PRINTOUT PERIOD in telemac2d or telemac3d.

RESULTS FILE FORMAT 1.110

Type: String Dimension: 1 Mnemo ????? 'SERAFIN' DEFAULT VALUE:

French keyword: FORMAT DU FICHIER DES RESULTATS

Results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format

based on HDF5

SCHEME FOR ADVECTION OF SUSPENDED SEDIMENTS 1.111

Type: Integer Dimension:

Mnemo **SCHADVSED**

DEFAULT VALUE:

French keyword: SCHEMA POUR LA CONVECTION DES SEDIMENTS EN SUSPENSION

Choice of the advection scheme for the suspended sediments, ERIA works only in 3D. The order of the chosen scheme must follow the order of the suspended sediments.

1.112 SCHEME FOR DIFFUSION OF SUSPENDED SEDIMENTS IN 3D

Type: Integer Dimension: 1

Mnemo **SCHDSED**

DEFAULT VALUE:

French keyword: SCHEMA POUR LA DIFFUSION DES SEDIMENTS EN SUSPENSION EN 3D

Monitors the choice of the diffusion scheme for sediments in 3D simulations. Possible choices

are:

• 0: no diffusion,

• 1: implicit,

• 2: vertical diffusion only.

1.113 SCHEME OPTION FOR ADVECTION OF SUSPENDED SEDIMENTS

Type: Integer

Dimension: 2

Mnemo OPTADV_SED

DEFAULT VALUE: 4;4

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES SEDIMENTS EN SUSPENS:

If N or PSI SCHEME: 1=explicit 2=predictor-corrector 3= predictor-corrector second-order in

time 4= implicit

1.114 SECONDARY CURRENTS

Type: Logical

Dimension: 0

Mnemo SECCURRENT

DEFAULT VALUE: NO

French keyword: COURANTS SECONDAIRES using the parametrisation for secondary currents

1.115 SECONDARY CURRENTS ALPHA COEFFICIENT

Type: Real Dimension: 1

Mnemo ALPHA DEFAULT VALUE: 1.0E-00

French keyword: SECONDARY CURRENTS ALPHA COEFFICIENT

Alpha coefficient of secondary current(-), Should be chosen between 0.75 (rough bottom) and

1 (smooth bottom)

1.116 SECONDARY CURRENTS FILE

Type: Logical Dimension: 0

Mnemo HAVESECFILE

DEFAULT VALUE: NO

French keyword: FICHIER DE COURANTS SECONDAIRES

The radii needed for the parametrisation of secondary currents are read from SELAFIN file

1.117 SECTIONS INPUT FILE

Type: String Dimension: 1

Mnemo GAI_FILES(GAISEC)

DEFAULT VALUE:

French keyword: FICHIER DES SECTIONS DE CONTROLE

sections input file, partitioned

1.118 SECTIONS OUTPUT FILE

Type: String Dimension: 1

Mnemo GAI_FILES(GAISEO)

DEFAULT VALUE:

French keyword: SECTIONS OUTPUT FILE

sections output file, written by the master

1.119 SEDIMENT SLIDE

Type: Logical
Dimension: 0
Mnemo SLIDE
DEFAULT VALUE: NO

French keyword: GLISSEMENT DU SEDIMENT

If yes, the key-word FRICTION ANGLE OF THE SEDIMENT is taken into account for slope

stability

1.120 SETTLING LAG

Type: Logical Dimension: 1

Mnemo SET_LAG DEFAULT VALUE: NO

French keyword: SETTLING LAG

Uses the velocity profile based on the Miles approximation

1.121 SKIN FRICTION CORRECTION

Type: Integer
Dimension: 1
Mnemo ICR
DEFAULT VALUE: 1

French keyword: CORRECTION FROTTEMENT DE PEAU

Formula to modify the shear stress in sediment flow rate formulae so they use the skin bed roughness (see also KSPRATIO) 0: No correction (TAUP= TOB), valid if the roughness provided to TELEMAC is physical - close to the skin roughness, usually estimated to 3d50 1: Correction for a flat bed (KSP= KSPRATIO * D50) 2: Ripple correction factor

1.122 SLOPE EFFECT

Type: Logical
Dimension: 0
Mnemo EFFPEN
DEFAULT VALUE: YES

French keyword: EFFET DE PENTE

If yes, slope effect taken into account: deviation + modification of critical shear stress. NO will cancel the key-words FORMULA FOR SLOPE EFFECT and FORMULA FOR DEVIATION

1.123 SOLVER FOR DIFFUSION OF SUSPENSION

Type: Integer

Dimension: 2

Mnemo SLVSED(I)%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA DIFFUSION DE LA SUSPENSION

Choice of the solver for suspension resolution. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.124 SOLVER OPTION FOR DIFFUSION OF SUSPENSION

Type: Integer

Dimension: 1

Mnemo SLVSED(I)%KRYLOV

DEFAULT VALUE: 5

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DE LA SUSPENSION

Dimension of Krylov space for the GMRES method (7).

1.125 STEERING FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation. Could be written by the user with EDAMOX.

1.126 SUSPENDED SEDIMENTS CONCENTRATION VALUES AT THE SOURCES

Type: Real Dimension: 2

Mnemo SEDSCE
DEFAULT VALUE: MANDATORY

French keyword: VALEURS DES SEDIMENTS EN SUSPENSION DES SOURCES Values of the suspended sediments at the sources. All sources for the first suspended sediment, then all sources for the second suspended sediment, etc. For example, if there are 3 suspended sediments (SED1, SED2 and SED3) and 2 sources (S1 and S2), the following syntax is used:

S1_SED1;S1_SED2;S1_SED3;S2_SED1;S2_SED2;S2_SED3

10.0; 10.0; 0.0; 0.0; 10.0; 10.0

1.127 SUSPENSION FOR ALL SANDS

Type: Logical

Dimension: 1

Mnemo SUSP_SAND

DEFAULT VALUE: NO

French keyword: SUSPENSION POUR TOUS LES SABLES

Activate suspension for all the sands in the simulation. It is not possible to have a different behaviour between sand classes. Mud is always considered in suspension.

1.128 SUSPENSION TRANSPORT FORMULA FOR ALL SANDS

Type: Integer
Dimension: 1
Mnemo ICQ
DEFAULT VALUE: 1

French keyword: FORMULE DE TRANSPORT POUR TOUS LES SABLES

Different choice to compute the equilibrium near-bed concentration 1: Zysderman and Fredsoe, equilibrium formula 2: Bijker method. The near bed concentration is related to the bedload. This option cannot be used without bedload transport 3: Van Rijn formula 4: Soulsby_van Rijn formula

1.129 THETA IMPLICITATION FOR SUSPENSION

Type: Real Dimension: 0

Mnemo TETA SUSP

DEFAULT VALUE: 1.

French keyword: THETA IMPLICITATION POUR SUSPENSION

implicitation factor for the deposition flux and the diffusion. for teta =0, the deposition flux is only explicit. Only valid for the 2D model.

1.130 THRESHOLD CONCENTRATION FOR HINDERED SETTLING

Type: Real
Dimension: 1
Mnemo CINI
DEFAULT VALUE: 0.0

French keyword: CONCENTRATION LIMITE POUR VITESSE DE CHUTE ENTRAVEE The sediment concentration at which hindered settling is initiated. These values are needed

when HINDERED SETTLING = YES.

1.131 TIDAL FLATS

Type: Logical Dimension: 1

Mnemo

DEFAULT VALUE: YES

French keyword: BANCS DECOUVRANTS

When no, the specific treatments for tidal flats are by-passed. This spares time, but of course you must be sure that you have no tidal flats

1.132 TITLE 35

1.132 TITLE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: TITRE Title of the case being considered.

1.133 TRIGONOMETRICAL CONVENTION IN WAVE FILE

Type: Logical

Dimension: 1

Mnemo CONV_WAVES

DEFAULT VALUE: NO

French keyword: CONVENTION TRIGONOMETRIQUE DANS LE FICHIER DE HOULE

True if the wave directions in the wave file are measured counterclockwise from the positive x-axis, false if they are measured clockwise fron geographic North

1.134 TYPE OF WAVES

Type: Integer

Dimension: 1

Mnemo TYPE_HOULE

DEFAULT VALUE: 2

French keyword: TYPE DE HOULE

is used to calculate Uw if Uw is calculated with Tomawac, choose 2 (default) 1= regular (monochromatic) waves 2= irregular (spectral) waves

1.135 UPWINDING FOR BEDLOAD

Type: Real
Dimension: 1
Mnemo DVF
DEFAULT VALUE: 0.5E0

French keyword: DECENTREMENT POUR LE CHARRIAGE

Parameter for FV solving the Exner equation, 0.5 = Centered (precise), 1 = Upwind (stable

because diffusive)

1.136 VALIDATION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. If this keyword is equal to YES, the REFERENCE FILE is then considered as a reference which the computation is going to be compared with. The comparison is made by the subroutine VALIDA, which can be modified so as to include, for example, a comparison with an exact solution.

1.137 VARIABLES FOR GRAPHIC PRINTOUTS

Type: String Dimension: 1

Mnemo SORTIS

DEFAULT VALUE: 'U;V;H;S;B;R;E'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES

Names of variables the user wants to write into the graphic results file. Each variable is represented by a letter. See CHOIX1 above. One can use *, *A* means all fractions

1.138 VARIABLES TO BE PRINTED

Type: String
Dimension: 1
Mnemo VARIM

DEFAULT VALUE: "

French keyword: VARIABLES A IMPRIMER

Names of variables the user wants to write on the listing. Each variable is represented by a letter in the same manner as it is done in the graphic results file.

1.139 VECTOR LENGTH

Type: Integer Dimension: 1

Mnemo LVMAC

DEFAULT VALUE:

French keyword: LONGUEUR DU VECTEUR

vector length on vector machines.

1.140 VERTICAL GRAIN SORTING MODEL

Type: Integer Dimension: 0

Mnemo VSMTYPE

DEFAULT VALUE: 0

French keyword: VERTICAL GRAIN SORTING MODEL

Defines the model of the vertical grain sorting: 0 = HR-VSM = Layer Model (Classic Hirano /

Ribberink approach) 1 = C-VSM (Continous Vertical Grain Sorting Model)

1.141 VERTICAL PROFILES OF SUSPENDED SEDIMENTS

Type: Integer Dimension: 2

Mnemo VERPROSED
DEFAULT VALUE: MANDATORY

French keyword: PROFILS DES SEDIMENTS EN SUSPENSION SUR LA VERTICALE

Specifies the type of profiles of sediment concentration on the vertical (only for 3D simulations).

Possible choices are:

- 0: user defined,
- 1: constant,
- 2: Rouse equilibrium, constant (diluted sediment) or Rouse (sediment),

- 3: Rouse (normalized) and imposed concentration.
- 4: Rouse modified with molecular viscosity.

1.142 WATER VISCOSITY

Type: Real
Dimension: 1
Mnemo VCE
DEFAULT VALUE: 1.E-6

French keyword: VISCOSITE CINEMATIQUE EAU

Specifies the water kinematic viscosity. M/S2

1.143 WAVE FILE

Type: String Dimension: 0

Mnemo GAI_FILES(GAICOU)

DEFAULT VALUE:

French keyword: FICHIER DE HOULE

Name of a file containing the results a previous TOMAWAC computation made on the same mesh. The wave data (wave height, wave period, wave angle) will be given by the last record of the file. The user has to verify that both informations (wave and current data) are consistent. Remark: The wave data can also be specified in the hydrodynamic file. the user has also the possibility to give the values of the wave data in the subroutine USER_FORCING_GAIA. This is recommended for non-steady flow simulation.

1.144 WAVE FILE FORMAT

Type: String
Dimension: 1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE HOULE

Wave file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format based on HDF5

1.145 WEAK SOIL CONCENTRATION FOR MUD

Type: Real
Dimension: 1
Mnemo CGEL
DEFAULT VALUE: 0.0

French keyword: CONCENTRATION LIMITE FLUIDE-SOLIDE

The sediment concentration at which sediment forms a weak soil in kg/m^3 . These values are needed when HINDERED SETTLING = YES.

1.146 ZERO

Type: Real Dimension:

Mnemo

DEFAULT VALUE: 1.E-10

 $\begin{tabular}{ll} French keyword: & $\tt ZERO$ \\ Sets the zero of GAIA used for clipping values. \\ \end{tabular}$

2. List of keywords classified according to type

2.1 BED MATERIAL

2.1.1 C-VSM

ACTIVE LAYER THICKNESS FORMULA
C-VSM FULL PRINTOUT PERIOD
C-VSM MAXIMUM SECTIONS
C-VSM PRINTOUT SELECTION
VERTICAL GRAIN SORTING MODEL

2.2 BED STRUCTURE

2.2.1 INITIALIZATION

NUMBER OF LAYERS FOR INITIAL STRATIFICATION

2.3 BOUNDARY CONDITIONS

2.3.1 SETTING

SUSPENSION

PRESCRIBED SUSPENDED SEDIMENTS CONCENTRATION VALUES SUSPENDED SEDIMENTS CONCENTRATION VALUES AT THE SOURCES VERTICAL PROFILES OF SUSPENDED SEDIMENTS

2.4 COHESIVE

2.4.1 BED STRUCTURE

INITIALIZATION

LAYERS MUD CONCENTRATION

2.4.2 CONSOLIDATION

LAYERS MASS TRANSFER
NUMBER OF LAYERS OF THE CONSOLIDATION MODEL

2.4.3 INITIALIZATION

SUSPENSION

LAYERS CRITICAL EROSION SHEAR STRESS OF THE MUD

2.4.4 SETTLING VELOCITY

COEFFICIENT RELATIVE TO FLOC DESTRUCTION
FLOCCULATION
FLOCCULATION COEFFICIENT
FLOCCULATION FORMULA
HINDERED SETTLING
HINDERED SETTLING FORMULA
THRESHOLD CONCENTRATION FOR HINDERED SETTLING
WEAK SOIL CONCENTRATION FOR MUD

2.4.5 SUSPENSION

CLASSES CRITICAL SHEAR STRESS FOR MUD DEPOSITION LAYERS PARTHENIADES CONSTANT

2.5 COHESIVE AND NON COHESIVE

BED MODEL

2.5.1 BED MATERIAL

CLASSES HIDING FACTOR
CLASSES INITIAL FRACTION
CLASSES SEDIMENT DIAMETERS
CLASSES TYPE OF SEDIMENT
LAYERS INITIAL THICKNESS

2.5.2 CHARRIAGE

CLASSES SHIELDS PARAMETERS

2.5.3 SUSPENSION

CLASSES SETTLING VELOCITIES EQUILIBRIUM INFLOW CONCENTRATION

2.6 COMPUTATION ENVIRONMENT

2.6.1 GLOBAL

CHECKING THE MESH
MAXIMUM NUMBER OF BOUNDARIES
PARALLEL PROCESSORS
TITLE

2.6.2 INPUT

DATA

VALIDATION

2.6.3 OUTPUT

RESULTS

NUMBER OF PRIVATE ARRAYS

2.7 DATA FILES

BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORTRAN FILE
REFERENCE FILE
REFERENCE FILE FORMAT
SECTIONS INPUT FILE
WAVE FILE
WAVE FILE FORMAT

2.8 GENERAL

CONTROL SECTIONS

EFFECT OF WAVES

FLUXLINE

FLUXLINE INPUT FILE

SECONDARY CURRENTS

SECONDARY CURRENTS FILE

TRIGONOMETRICAL CONVENTION IN WAVE FILE

TYPE OF WAVES

2.9 GENERAL PARAMETERS

DEBUGGER

2.9.1 LOCATION

ORIGIN COORDINATES

2.10 HYDRODYNAMICS

2.10.1 TIDAL FLATS INFO

MINIMAL VALUE OF THE WATER HEIGHT OPTION FOR THE TREATMENT OF TIDAL FLATS TIDAL FLATS

2.11 INITIAL CONDITION

2.11.1 SETTING

SUSPENSION

INITIAL SUSPENDED SEDIMENTS CONCENTRATION VALUES

2.12 INITIAL CONDITIONS

COMPUTATION CONTINUED

PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE

PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE FORMAT

2.13 INPUT-OUTPUT, FILES

GEOMETRY FILE FORMAT

2.13.1 NAMES

BEDLOAD BOUNDARIES FILE GEOMETRY FILE NAMES OF PRIVATE VARIABLES

2.14 INPUT-OUTPUT, GRAPHICS AND LISTING

VARIABLES FOR GRAPHIC PRINTOUTS

2.15 INTERNAL

DICTIONARY RELEASE

2.16 MISCELLANEOUS

NESTOR

NESTOR ACTION FILE

NESTOR POLYGON FILE

NESTOR RESTART FILE

NESTOR SURFACE REFERENCE FILE

2.17 NON COHESIVE

LAYERS NON COHESIVE BED POROSITY

2.17.1 BED MATERIAL

ACTIVE LAYER THICKNESS

CONSTANT ACTIVE LAYER THICKNESS

D90 SAND DIAMETER FOR ONLY ONE CLASS
HIDING FACTOR FORMULA

2.17.2 BED STRUCTURE

ADVANCED

SEDIMENT SLIDE

2.17.3 **BEDLOAD**

B VALUE FOR THE BIJKER FORMULA
BED LOAD FOR ALL SANDS
BED-LOAD TRANSPORT FORMULA FOR ALL SANDS
MINIMUM DEPTH FOR BEDLOAD
MORPHOLOGICAL FACTOR ON BED EVOLUTION
MORPHOLOGICAL FACTOR ON TIME SCALE
MPM COEFFICIENT

BOUNDARY CONDITIONS

PRESCRIBED SOLID DISCHARGES

SLOPE INFLUENCE

BETA
FORMULA FOR DEVIATION
FORMULA FOR SLOPE EFFECT
FRICTION ANGLE OF THE SEDIMENT
PARAMETER FOR DEVIATION
SLOPE EFFECT

2.17.4 CHARRIAGE

BOUNDARY CONDITIONS

CLASSES IMPOSED SOLID DISCHARGES DISTRIBUTION

2.17.5 FRICTION

RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER SKIN FRICTION CORRECTION

ADVANCED

BED ROUGHNESS PREDICTOR OPTION
COMPUTE BED ROUGHNESS AT SEDIMENT SCALE

2.17.6 SUSPENSION

SETTLING LAG SUSPENSION FOR ALL SANDS SUSPENSION TRANSPORT FORMULA FOR ALL SANDS

2.18 NUMERICAL

FINITE VOLUMES
MATRIX STORAGE
MATRIX-VECTOR PRODUCT
ZERO

2.19 NUMERICAL PARAMETERS

MAXIMUM NUMBER OF ITERATIONS FOR POSITIVE THICKNESS

2.19.1 ADVECTION INFO SUSPENSION

SCHEME FOR ADVECTION OF SUSPENDED SEDIMENTS
SCHEME OPTION FOR ADVECTION OF SUSPENDED SEDIMENTS

2.19.2 AUTOMATIC DIFFERENTIATION

- AD LINEAR SOLVER DERIVATIVE CONVERGENCE
- AD LINEAR SOLVER RESET DERIVATIVES
- AD NAMES OF DERIVATIVES
- AD NUMBER OF DERIVATIVES
- AD NUMBER OF DIRECTIONS
- AD SYMBOLIC LINEAR SOLVER

2.20 PHYSICS 45

2.19.3 **BEDLOAD**

UPWINDING FOR BEDLOAD

2.19.4 DIFFUSION

FINITE VOLUME SCHEME FOR SUSPENDED SEDIMENTS DIFFUSION

2.19.5 **SOLVER**

SUSPENSION

ACCURACY FOR DIFFUSION OF SUSPENSION

MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION

PRECONDITIONING FOR DIFFUSION OF SUSPENSION

SCHEME FOR DIFFUSION OF SUSPENDED SEDIMENTS IN 3D

SOLVER FOR DIFFUSION OF SUSPENSION

SOLVER OPTION FOR DIFFUSION OF SUSPENSION

2.20 PHYSICS

CLASSES SEDIMENT DENSITY WATER VISCOSITY

2.21 RESULTS

C-VSM RESULTS FILE
C-VSM RESULTS FILE FORMAT
LISTING PRINTOUT PERIOD
MASS-BALANCE
RESULTS FILE
RESULTS FILE FORMAT
SECTIONS OUTPUT FILE
VARIABLES TO BE PRINTED

2.22 SEDIMENT INFO

2.22.1 SETTLING VELOCITY

ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY

2.23 SEDIMENTOLOGY

2.23.1 GENERAL

SECONDARY CURRENTS ALPHA COEFFICIENT

2.24 SUSPENSION

CORRECTION ON CONVECTION VELOCITY
THETA IMPLICITATION FOR SUSPENSION

2.24.1 TURBULENCE

COEFFICIENT FOR DIFFUSION OF SUSPENDED SEDIMENTS
COEFFICIENT FOR HORIZONTAL DIFFUSION OF SUSPENDED SEDIMENTS

2.25 SUSPENSIONS

2.25.1 TURBULENCE

COEFFICIENT FOR VERTICAL DIFFUSION OF SUSPENDED SEDIMENTS

2.26 TIME

NUMBER OF SUB-ITERATIONS ORIGINAL DATE OF TIME ORIGINAL HOUR OF TIME

2.27 USELESS

STEERING FILE VECTOR LENGTH

3. Glossary

3.1 English/French glossary

ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DE
SUSPENSION	LA SUSPENSION
ACTIVE LAYER THICKNESS	EPAISSEUR DE COUCHE ACTIVE
ACTIVE LAYER THICKNESS FORMULA	ACTIVE LAYER THICKNESS FORMULA
AD LINEAR SOLVER DERIVATIVE	AD CONVERGENCE DES DERIVEES
CONVERGENCE	POUR LE SOLVEUR LINEAIRE
AD LINEAR SOLVER RESET	AD REMISE A ZERO DES DERIVEES
DERIVATIVES	DU SOLVEUR LINEAIRE
AD NAMES OF DERIVATIVES	AD NOMS DES DERIVEES
AD NUMBER OF DERIVATIVES	AD NOMBRE DE DERIVEES
AD NUMBER OF DIRECTIONS	AD NOMBRE DE DIRECTIONS
AD SYMBOLIC LINEAR SOLVER	AD SOLVEUR LINEAIRE SYMBOLIQUE
ADVECTION-DIFFUSION SCHEME WITH	SCHEMA DE CONVECTION DIFFUSION
SETTLING VELOCITY	AVEC VITESSE DE CHUTE
B VALUE FOR THE BIJKER FORMULA	COEFFICIENT B DE LA FORMULE DE
	BIJKER
BED LOAD FOR ALL SANDS	CHARRIAGE POUR TOUS LES SABLES
BED MODEL	MODELE DE LIT
BED ROUGHNESS PREDICTOR OPTION	OPTION DU PREDICTEUR DE
	RUGOSITE
BED-LOAD TRANSPORT FORMULA FOR	FORMULE DE TRANSPORT SOLIDE
ALL SANDS	POUR TOUS LES SABLES
BEDLOAD BOUNDARIES FILE	FICHIER DES FRONTIERES POUR LE
	CHARRIAGE
BETA	BETA
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX
	LIMITES
C-VSM FULL PRINTOUT PERIOD	C-VSM FULL PRINTOUT PERIOD
C-VSM MAXIMUM SECTIONS	C-VSM MAXIMUM SECTIONS
C-VSM PRINTOUT SELECTION	C-VSM PRINTOUT SELECTION

C-VSM RESULTS FILE	FICHIER DES RESULTATS C-VSM
C-VSM RESULTS FILE FORMAT	FORMAT DU FICHIER DES C-VSM
C-ASM KEROTIS LITE LOKMAI	
CHECKING THE MECH	RESULTATS
CHECKING THE MESH	VERIFICATION DU MAILLAGE
CLASSES CRITICAL SHEAR STRESS	CONTRAINTE CRITIQUE DE DEPOT DE
FOR MUD DEPOSITION	LA VASE PAR CLASSE
CLASSES HIDING FACTOR	HIDING FACTOR PAR CLASSE
CLASSES IMPOSED SOLID	DISTRIBUTION DES DEBITS IMPOSES
DISCHARGES DISTRIBUTION	PAR CLASSE
CLASSES INITIAL FRACTION	FRACTION INITIALE PAR CLASSE
CLASSES SEDIMENT DENSITY	MASSE VOLUMIQUE DU SEDIMENT PAR CLASSE
CLASSES SEDIMENT DIAMETERS	DIAMETRES DES GRAINS PAR CLASSE
CLASSES SETTLING VELOCITIES	VITESSES DE CHUTE PAR CLASSE
CLASSES SHIELDS PARAMETERS	PARAMETRES DE SHIELDS PAR
	CLASSE
CLASSES TYPE OF SEDIMENT	TYPE DE SEDIMENT PAR CLASSE
COEFFICIENT FOR DIFFUSION OF	COEFFICIENT DE DIFFUSION DES
SUSPENDED SEDIMENTS	SEDIMENTS EN SUSPENSION
COEFFICIENT FOR HORIZONTAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF SUSPENDED	HORIZONTAL DES SEDIMENTS EN
SEDIMENTS	SUSPENSION
COEFFICIENT FOR VERTICAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF SUSPENDED	VERTICAL DES SEDIMENTS EN
SEDIMENTS	SUSPENSION
COEFFICIENT RELATIVE TO FLOC	COEFFICIENT TRADUISANT LA
DESTRUCTION	DESTRUCTION DES FLOCS
COMPUTATION CONTINUED	SUITE DE CALCUL
COMPUTE BED ROUGHNESS AT	CALCUL DE LA RUGOSITE
SEDIMENT SCALE	SEDIMENTAIRE
CONSTANT ACTIVE LAYER THICKNESS	EPAISSEUR DE COUCHE ACTIVE
	CONSTANTE
CONTROL SECTIONS	SECTIONS DE CONTROLE
CORRECTION ON CONVECTION	CORRECTION DU CHAMP CONVECTEUR
VELOCITY	
D90 SAND DIAMETER FOR ONLY ONE	DIAMETRE D90 POUR UNE SEULE
CLASS	CLASSE DE SABLE
DEBUGGER	DEBUGGER
DICTIONARY	DICTIONNAIRE
EFFECT OF WAVES	PRISE EN COMPTE DE LA HOULE
EQUILIBRIUM INFLOW	CONCENTRATION D'EQUILIBRE EN
CONCENTRATION	ENTREE
FINITE VOLUME SCHEME FOR	SCHEMA VOLUMES FINIS POUR LA
SUSPENDED SEDIMENTS DIFFUSION	DIFFUSION DES SEDIMENTS
FINITE VOLUMES	VOLUMES FINIS
FLOCCULATION	FLOCULATION
t e e e e e e e e e e e e e e e e e e e	II.

FLOCCULATION COEFFICIENT	COEFFICIENT TRADUISANT LA
	FORMATION DES FLOCS
FLOCCULATION FORMULA	FORMULE POUR FLOCULATION
FLUXLINE	FLUXLINE
FLUXLINE INPUT FILE	FICHIER DE FLUXLINE
FORMULA FOR DEVIATION	FORMULE POUR LA DEVIATION
FORMULA FOR SLOPE EFFECT	FORMULE POUR EFFET DE PENTE
FORTRAN FILE	FICHIER FORTRAN
FRICTION ANGLE OF THE SEDIMENT	ANGLE DE FROTTEMENT DU SEDIMENT
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
HIDING FACTOR FORMULA	HIDING FACTOR FORMULA
HINDERED SETTLING	VITESSE DE CHUTE ENTRAVEE
HINDERED SETTLING FORMULA	FORMULE POUR VITESSE DE CHUTE
	ENTRAVEE
INITIAL SUSPENDED SEDIMENTS	VALEURS INITIALES DE
CONCENTRATION VALUES	CONCENTRATION DES SEDIMENTS
	EN SUSPENSION
LAYERS CRITICAL EROSION SHEAR	CONTRAINTE CRITIQUE D'EROSION
STRESS OF THE MUD	DE LA VASE PAR COUCHE
LAYERS INITIAL THICKNESS	EPAISSEURS INITIALES PAR COUCHE
LAYERS MASS TRANSFER	TRANSFERT DE MASSE PAR COUCHE
LAYERS MUD CONCENTRATION	CONCENTRATIONS DE LA VASE PAR
	COUCHE
LAYERS NON COHESIVE BED	POROSITE DU LIT NON COHESIF PAR
POROSITY	COUCHE
LAYERS PARTHENIADES CONSTANT	CONSTANTE DE PARTHENIADES PAR
	COUCHE
LISTING PRINTOUT PERIOD	PERIODE DE SORTIE LISTING
MASS-BALANCE	BILAN DE MASSE
MATRIX STORAGE	STOCKAGE DES MATRICES
MATRIX-VECTOR PRODUCT	PRODUIT MATRICE-VECTEUR
MAXIMUM NUMBER OF BOUNDARIES	NOMBRE MAXIMUM DE FRONTIERES
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LES
FOR POSITIVE THICKNESS	EPAISSEURS POSITIVES
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LE
FOR SOLVER FOR SUSPENSION	SOLVEUR POUR LA SUSPENSION
MINIMAL VALUE OF THE WATER	VALEUR MINIMUM DE H
HEIGHT	
MINIMUM DEPTH FOR BEDLOAD	PROFONDEUR MINIMUM POUR LE
	CHARRIAGE
MORPHOLOGICAL FACTOR ON BED	FACTEUR MORPHOLOGIQUE SUR
EVOLUTION	L'EVOLUTION DU LIT
MORPHOLOGICAL FACTOR ON TIME	FACTEUR MORPHOLOGIQUE SUR
SCALE	L'ECHELLE DES TEMPS
MPM COEFFICIENT	MPM COEFFICIENT
NAMES OF PRIVATE VARIABLES	NOMS DES VARIABLES PRIVEES

NESTOR	NESTOR
NESTOR ACTION FILE	FICHIER DE NESTOR ACTION
NESTOR POLYGON FILE	FICHIER DE NESTOR POLYGON
NESTOR RESTART FILE	FICHIER DE NESTOR RESTART
NESTOR SURFACE REFERENCE FILE	FICHIER DE NESTOR DE SURFACE
NESTOR SURFACE REFERENCE FILE	REFERENCE
NUMBER OF LAYERS FOR INITIAL	NOMBRE DE COUCHES POUR
STRATIFICATION	STRATIFICATION INITIALE
NUMBER OF LAYERS OF THE	NOMBRE DE COUCHES POUR LE
CONSOLIDATION MODEL	TASSEMENT
NUMBER OF PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES
NUMBER OF SUB-ITERATIONS	NOMBRE DE SOUS-ITERATIONS
OPTION FOR THE TREATMENT OF	OPTION DE TRAITEMENT DES BANCS
TIDAL FLATS	DECOUVRANTS
ORIGIN COORDINATES	COORDONNEES DE L'ORIGINE
ORIGINAL DATE OF TIME	DATE DE L'ORIGINE DES TEMPS
ORIGINAL HOUR OF TIME	HEURE DE L'ORIGINE DES TEMPS
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARAMETER FOR DEVIATION	PARAMETRE POUR LA DEVIATION
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF SUSPENSION	DIFFUSION DE LA SUSPENSION
PRESCRIBED SOLID DISCHARGES	DEBITS SOLIDES IMPOSES
PRESCRIBED SUSPENDED SEDIMENTS	VALEURS IMPOSEES DES
CONCENTRATION VALUES	CONCENTRATIONS DES SEDIMENTS
	EN SUSPENSION
PREVIOUS SEDIMENTOLOGICAL	FICHIER PRECEDENT
COMPUTATION FILE	SEDIMENTOLOGIQUE
PREVIOUS SEDIMENTOLOGICAL	FORMAT DU FICHIER PRECEDENT
COMPUTATION FILE FORMAT	SEDIMENTOLOGIQUE
RATIO BETWEEN SKIN FRICTION AND	RATIO ENTRE LA RUGOSITE DE PEAU
MEAN DIAMETER	ET LE DIAMETRE MOYEN
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
RELEASE	NUMERO DE VERSION
RESULTS FILE	FICHIER DES RESULTATS
RESULTS FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DES
SUSPENDED SEDIMENTS	SEDIMENTS EN SUSPENSION
SCHEME FOR DIFFUSION OF	SCHEMA POUR LA DIFFUSION DES
SUSPENDED SEDIMENTS IN 3D	SEDIMENTS EN SUSPENSION EN 3D
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
SUSPENDED SEDIMENTS	CONVECTION DES SEDIMENTS EN
	SUSPENSION
SECONDARY CURRENTS	COURANTS SECONDAIRES
SECONDARY CURRENTS ALPHA	SECONDARY CURRENTS ALPHA
COEFFICIENT	LOODDDIGIDAD
SECONDARY CURRENTS FILE	COEFFICIENT FICHIER DE COURANTS SECONDAIRES

SECTIONS INPUT FILE	FICHIER DES SECTIONS DE
	CONTROLE
SECTIONS OUTPUT FILE	SECTIONS OUTPUT FILE
SEDIMENT SLIDE	GLISSEMENT DU SEDIMENT
SETTLING LAG	SETTLING LAG
SKIN FRICTION CORRECTION	CORRECTION FROTTEMENT DE PEAU
SLOPE EFFECT	EFFET DE PENTE
SOLVER FOR DIFFUSION OF	SOLVEUR POUR LA DIFFUSION DE LA
SUSPENSION	SUSPENSION
SOLVER OPTION FOR DIFFUSION OF	OPTION DU SOLVEUR POUR LA
SUSPENSION	DIFFUSION DE LA SUSPENSION
STEERING FILE	FICHIER DES PARAMETRES
SUSPENDED SEDIMENTS	VALEURS DES SEDIMENTS EN
CONCENTRATION VALUES AT THE	SUSPENSION DES SOURCES
SOURCES	
SUSPENSION FOR ALL SANDS	SUSPENSION POUR TOUS LES SABLES
SUSPENSION TRANSPORT FORMULA	FORMULE DE TRANSPORT POUR TOUS
FOR ALL SANDS	LES SABLES
THETA IMPLICITATION FOR	THETA IMPLICITATION POUR
SUSPENSION	SUSPENSION
THRESHOLD CONCENTRATION FOR	CONCENTRATION LIMITE POUR
HINDERED SETTLING	VITESSE DE CHUTE ENTRAVEE
TIDAL FLATS	BANCS DECOUVRANTS
TITLE	TITRE
TRIGONOMETRICAL CONVENTION IN	CONVENTION TRIGONOMETRIQUE DANS
WAVE FILE	LE FICHIER DE HOULE
TYPE OF WAVES	TYPE DE HOULE
UPWINDING FOR BEDLOAD	DECENTREMENT POUR LE CHARRIAGE
VALIDATION	VALIDATION
VARIABLES FOR GRAPHIC PRINTOUTS	VARIABLES POUR LES SORTIES
	GRAPHIQUES
VARIABLES TO BE PRINTED	VARIABLES A IMPRIMER
VECTOR LENGTH	LONGUEUR DU VECTEUR
VERTICAL GRAIN SORTING MODEL	VERTICAL GRAIN SORTING MODEL
VERTICAL PROFILES OF SUSPENDED	PROFILS DES SEDIMENTS EN
SEDIMENTS	SUSPENSION SUR LA VERTICALE
WATER VISCOSITY	VISCOSITE CINEMATIQUE EAU
WAVE FILE	FICHIER DE HOULE
WAVE FILE FORMAT	FORMAT DU FICHIER DE HOULE
WEAK SOIL CONCENTRATION FOR MUD	CONCENTRATION LIMITE
	FLUIDE-SOLIDE
ZERO	ZERO
221.0	221.0

3.2 French/English glossary

ACTIVE LAYER THICKNESS FORMULA	ACTIVE LAYER THICKNESS FORMULA
AD CONVERGENCE DES DERIVEES	AD LINEAR SOLVER DERIVATIVE
POUR LE SOLVEUR LINEAIRE	CONVERGENCE

AD NOMBRE DE DERIVEES	AD NUMBER OF DERIVATIVES
AD NOMBRE DE DIRECTIONS	AD NUMBER OF DIRECTIONS
AD NOMS DES DERIVEES	AD NAMES OF DERIVATIVES
AD REMISE A ZERO DES DERIVEES	AD LINEAR SOLVER RESET
DU SOLVEUR LINEAIRE	DERIVATIVES
AD SOLVEUR LINEAIRE SYMBOLIQUE	AD SYMBOLIC LINEAR SOLVER
ANGLE DE FROTTEMENT DU SEDIMENT	FRICTION ANGLE OF THE SEDIMENT
BANCS DECOUVRANTS	TIDAL FLATS
BETA	BETA
BILAN DE MASSE	MASS-BALANCE
C-VSM FULL PRINTOUT PERIOD	C-VSM FULL PRINTOUT PERIOD
C-VSM MAXIMUM SECTIONS	C-VSM MAXIMUM SECTIONS
C-VSM PRINTOUT SELECTION	C-VSM PRINTOUT SELECTION
CALCUL DE LA RUGOSITE	COMPUTE BED ROUGHNESS AT
SEDIMENTAIRE	SEDIMENT SCALE
CHARRIAGE POUR TOUS LES SABLES	BED LOAD FOR ALL SANDS
COEFFICIENT B DE LA FORMULE DE	B VALUE FOR THE BIJKER FORMULA
BIJKER	
COEFFICIENT DE DIFFUSION DES	COEFFICIENT FOR DIFFUSION OF
SEDIMENTS EN SUSPENSION	SUSPENDED SEDIMENTS
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR HORIZONTAL
HORIZONTAL DES SEDIMENTS EN	DIFFUSION OF SUSPENDED
SUSPENSION	SEDIMENTS
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR VERTICAL
VERTICAL DES SEDIMENTS EN	DIFFUSION OF SUSPENDED
SUSPENSION	SEDIMENTS
COEFFICIENT TRADUISANT LA	COEFFICIENT RELATIVE TO FLOC
DESTRUCTION DES FLOCS	DESTRUCTION
COEFFICIENT TRADUISANT LA	FLOCCULATION COEFFICIENT
FORMATION DES FLOCS	
CONCENTRATION D'EQUILIBRE EN	EQUILIBRIUM INFLOW
ENTREE	CONCENTRATION
CONCENTRATION LIMITE	WEAK SOIL CONCENTRATION FOR MUD
FLUIDE-SOLIDE	
CONCENTRATION LIMITE POUR	THRESHOLD CONCENTRATION FOR
VITESSE DE CHUTE ENTRAVEE	HINDERED SETTLING
CONCENTRATIONS DE LA VASE PAR	LAYERS MUD CONCENTRATION
COUCHE	
CONSTANTE DE PARTHENIADES PAR	LAYERS PARTHENIADES CONSTANT
COUCHE	
CONTRAINTE CRITIQUE D'EROSION	LAYERS CRITICAL EROSION SHEAR
DE LA VASE PAR COUCHE	STRESS OF THE MUD
CONTRAINTE CRITIQUE DE DEPOT DE	CLASSES CRITICAL SHEAR STRESS
LA VASE PAR CLASSE	FOR MUD DEPOSITION
CONVENTION TRIGONOMETRIQUE DANS	TRIGONOMETRICAL CONVENTION IN
LE FICHIER DE HOULE	WAVE FILE
COORDONNEES DE L'ORIGINE	ORIGIN COORDINATES
111120111220 22 2 01(1011)2	

CORRECTION DU CHAMP CONVECTEUR	CORRECTION ON CONVECTION
	VELOCITY
CORRECTION FROTTEMENT DE PEAU	SKIN FRICTION CORRECTION
COURANTS SECONDAIRES	SECONDARY CURRENTS
DATE DE L'ORIGINE DES TEMPS	ORIGINAL DATE OF TIME
DEBITS SOLIDES IMPOSES	PRESCRIBED SOLID DISCHARGES
DEBUGGER	DEBUGGER
DECENTREMENT POUR LE CHARRIAGE	UPWINDING FOR BEDLOAD
DIAMETRE D90 POUR UNE SEULE	D90 SAND DIAMETER FOR ONLY ONE
CLASSE DE SABLE	CLASS
DIAMETRES DES GRAINS PAR CLASSE	CLASSES SEDIMENT DIAMETERS
DICTIONNAIRE	DICTIONARY
DISTRIBUTION DES DEBITS IMPOSES	CLASSES IMPOSED SOLID
PAR CLASSE	DISCHARGES DISTRIBUTION
EFFET DE PENTE	SLOPE EFFECT
EPAISSEUR DE COUCHE ACTIVE	ACTIVE LAYER THICKNESS
EPAISSEUR DE COUCHE ACTIVE	CONSTANT ACTIVE LAYER THICKNESS
CONSTANTE	
EPAISSEURS INITIALES PAR COUCHE	LAYERS INITIAL THICKNESS
FACTEUR MORPHOLOGIQUE SUR	MORPHOLOGICAL FACTOR ON TIME
L'ECHELLE DES TEMPS	SCALE
FACTEUR MORPHOLOGIQUE SUR	MORPHOLOGICAL FACTOR ON BED
L'EVOLUTION DU LIT	EVOLUTION
FICHIER DE COURANTS SECONDAIRES	SECONDARY CURRENTS FILE
FICHIER DE FLUXLINE	FLUXLINE INPUT FILE
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE HOULE	WAVE FILE
FICHIER DE NESTOR ACTION	NESTOR ACTION FILE
FICHIER DE NESTOR DE SURFACE	NESTOR SURFACE REFERENCE FILE
REFERENCE	
FICHIER DE NESTOR POLYGON	NESTOR POLYGON FILE
FICHIER DE NESTOR RESTART	NESTOR RESTART FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES FRONTIERES POUR LE	BEDLOAD BOUNDARIES FILE
CHARRIAGE	
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES RESULTATS	RESULTS FILE
FICHIER DES RESULTATS C-VSM	C-VSM RESULTS FILE
FICHIER DES SECTIONS DE	SECTIONS INPUT FILE
CONTROLE	
FICHIER FORTRAN	FORTRAN FILE
FICHIER PRECEDENT	PREVIOUS SEDIMENTOLOGICAL
SEDIMENTOLOGIQUE	COMPUTATION FILE
FLOCULATION	FLOCCULATION
	1

FLUXLINE	FLUXLINE
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE HOULE	WAVE FILE FORMAT
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DES C-VSM	C-VSM RESULTS FILE FORMAT
RESULTATS	
FORMAT DU FICHIER DES RESULTATS	RESULTS FILE FORMAT
FORMAT DU FICHIER PRECEDENT	PREVIOUS SEDIMENTOLOGICAL
SEDIMENTOLOGIQUE	COMPUTATION FILE FORMAT
FORMULE DE TRANSPORT POUR TOUS	SUSPENSION TRANSPORT FORMULA
LES SABLES	FOR ALL SANDS
FORMULE DE TRANSPORT SOLIDE	BED-LOAD TRANSPORT FORMULA FOR
POUR TOUS LES SABLES	ALL SANDS
FORMULE POUR EFFET DE PENTE	FORMULA FOR SLOPE EFFECT
FORMULE POUR FLOCULATION	FLOCCULATION FORMULA
FORMULE POUR LA DEVIATION	FORMULA FOR DEVIATION
FORMULE POUR VITESSE DE CHUTE	HINDERED SETTLING FORMULA
ENTRAVEE	
FRACTION INITIALE PAR CLASSE	CLASSES INITIAL FRACTION
GLISSEMENT DU SEDIMENT	SEDIMENT SLIDE
HEURE DE L'ORIGINE DES TEMPS	ORIGINAL HOUR OF TIME
HIDING FACTOR FORMULA	HIDING FACTOR FORMULA
HIDING FACTOR PAR CLASSE	CLASSES HIDING FACTOR
LONGUEUR DU VECTEUR	VECTOR LENGTH
MASSE VOLUMIQUE DU SEDIMENT PAR	CLASSES SEDIMENT DENSITY
CLASSE	
MAXIMUM D'ITERATIONS POUR LE	MAXIMUM NUMBER OF ITERATIONS
SOLVEUR POUR LA SUSPENSION	FOR SOLVER FOR SUSPENSION
MAXIMUM D'ITERATIONS POUR LES	MAXIMUM NUMBER OF ITERATIONS
EPAISSEURS POSITIVES	FOR POSITIVE THICKNESS
MODELE DE LIT	BED MODEL
MPM COEFFICIENT	MPM COEFFICIENT
NESTOR	NESTOR
NOMBRE DE COUCHES POUR LE	NUMBER OF LAYERS OF THE
TASSEMENT	CONSOLIDATION MODEL
NOMBRE DE COUCHES POUR	NUMBER OF LAYERS FOR INITIAL
STRATIFICATION INITIALE	STRATIFICATION
NOMBRE DE SOUS-ITERATIONS	NUMBER OF SUB-ITERATIONS
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES
NOMS DES VARIABLES PRIVEES	NAMES OF PRIVATE VARIABLES
NUMERO DE VERSION	RELEASE
OPTION DE TRAITEMENT DES BANCS	OPTION FOR THE TREATMENT OF
DECOUVRANTS	TIDAL FLATS
OPTION DU PREDICTEUR DE	BED ROUGHNESS PREDICTOR OPTION
RUGOSITE	

OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES SEDIMENTS EN	SUSPENDED SEDIMENTS
SUSPENSION	
OPTION DU SOLVEUR POUR LA	SOLVER OPTION FOR DIFFUSION OF
DIFFUSION DE LA SUSPENSION	SUSPENSION
PARAMETRE POUR LA DEVIATION	PARAMETER FOR DEVIATION
PARAMETRES DE SHIELDS PAR	CLASSES SHIELDS PARAMETERS
CLASSE	
PERIODE DE SORTIE LISTING	LISTING PRINTOUT PERIOD
POROSITE DU LIT NON COHESIF PAR	LAYERS NON COHESIVE BED
COUCHE	POROSITY
PRECISION POUR LA DIFFUSION DE	ACCURACY FOR DIFFUSION OF
LA SUSPENSION	SUSPENSION
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DE LA SUSPENSION	OF SUSPENSION
PRISE EN COMPTE DE LA HOULE	EFFECT OF WAVES
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PRODUIT MATRICE-VECTEUR	MATRIX-VECTOR PRODUCT
PROFILS DES SEDIMENTS EN	VERTICAL PROFILES OF SUSPENDED
SUSPENSION SUR LA VERTICALE	SEDIMENTS
PROFONDEUR MINIMUM POUR LE	MINIMUM DEPTH FOR BEDLOAD
CHARRIAGE	THINITION BELLIN TON BEBEGIE
RATIO ENTRE LA RUGOSITE DE PEAU	RATIO BETWEEN SKIN FRICTION AND
ET LE DIAMETRE MOYEN	MEAN DIAMETER
SCHEMA DE CONVECTION DIFFUSION	ADVECTION-DIFFUSION SCHEME WITH
AVEC VITESSE DE CHUTE	SETTLING VELOCITY
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF
SEDIMENTS EN SUSPENSION	SUSPENDED SEDIMENTS
SCHEMA POUR LA DIFFUSION DES	SCHEME FOR DIFFUSION OF
SEDIMENTS EN SUSPENSION EN 3D	SUSPENDED SEDIMENTS IN 3D
SCHEMA VOLUMES FINIS POUR LA	FINITE VOLUME SCHEME FOR
DIFFUSION DES SEDIMENTS	SUSPENDED SEDIMENTS DIFFUSION
SECONDARY CURRENTS ALPHA	SECONDARY CURRENTS ALPHA
COEFFICIENT	COEFFICIENT
SECTIONS DE CONTROLE	CONTROL SECTIONS
SECTIONS OUTPUT FILE	SECTIONS OUTPUT FILE
SETTLING LAG	SETTLING LAG
SOLVEUR POUR LA DIFFUSION DE LA	SOLVER FOR DIFFUSION OF
SUSPENSION	SUSPENSION
STOCKAGE DES MATRICES	MATRIX STORAGE
SUITE DE CALCUL	COMPUTATION CONTINUED
SUSPENSION POUR TOUS LES SABLES	SUSPENSION FOR ALL SANDS
THETA IMPLICITATION POUR	THETA IMPLICITATION FOR
SUSPENSION	SUSPENSION
TITRE	TITLE
TRANSFERT DE MASSE PAR COUCHE	LAYERS MASS TRANSFER
TYPE DE HOULE	TYPE OF WAVES

56 Bibliography

TYPE DE SEDIMENT PAR CLASSE	CLASSES TYPE OF SEDIMENT
VALEUR MINIMUM DE H	MINIMAL VALUE OF THE WATER
	HEIGHT
VALEURS DES SEDIMENTS EN	SUSPENDED SEDIMENTS
SUSPENSION DES SOURCES	CONCENTRATION VALUES AT THE
	SOURCES
VALEURS IMPOSEES DES	PRESCRIBED SUSPENDED SEDIMENTS
CONCENTRATIONS DES SEDIMENTS	CONCENTRATION VALUES
EN SUSPENSION	
VALEURS INITIALES DE	INITIAL SUSPENDED SEDIMENTS
CONCENTRATION DES SEDIMENTS	CONCENTRATION VALUES
EN SUSPENSION	
VALIDATION	VALIDATION
VARIABLES A IMPRIMER	VARIABLES TO BE PRINTED
VARIABLES POUR LES SORTIES	VARIABLES FOR GRAPHIC PRINTOUTS
GRAPHIQUES	
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VERTICAL GRAIN SORTING MODEL	VERTICAL GRAIN SORTING MODEL
VISCOSITE CINEMATIQUE EAU	WATER VISCOSITY
VITESSE DE CHUTE ENTRAVEE	HINDERED SETTLING
VITESSES DE CHUTE PAR CLASSE	CLASSES SETTLING VELOCITIES
VOLUMES FINIS	FINITE VOLUMES
ZERO	ZERO

[1] J-M. HERVOUET. Hydrodynamics of free surface flows. Modelling with the finite element method. John Wiley & Sons, Ltd, Paris, 2007.