vakum. Kedua lempeng terpisah pada jarak yang sangat kecil dibandingkan terhadap dimensi lempengnya. Masing-masing lempeng memiliki temperatur T_1 dan T_2 dimana $T_1 > T_2$.

a. [6 poin] Jika kedua lempeng tidak transparan terhadap radiasi kalor, dan

[20 poin, 25 menit] Diketahui dua buah lempeng logam sejajar berada dalam ruang

masing-masing lempeng memiliki daya emisi e_1 dan e_2 , dan daya emisi benda hitamnya adalah E_1 dan E_2 , tentukan energi total yang ditransfer per satuan luas per detik, W (nyatakan dalam e_1 , e_2 , E_1 , dan E_2).

b. [4 poin] Jika kedua lempeng tersebut adalah benda hitam, dan diketahui T_1 =

b. [4 poin] Jika kedua lempeng tersebut adalah benda hitam, dan diketahui T₁ = 300 K dan T₂ = 4,2 K, tentukan nilai W!
c. [10 poin] Tentukanlah nilai W jika antara kedua lempeng pada soal (b) diselipkan n buah lempeng benda hitam yang identik.

yang ada, arus konveksi, dan abaikan juga variasi gravitasi. Anggap massa udara *m* dengan temperatur *T* dan percepatan gravitasi *g*.

a. [10 poin] Anggap atmosfer dalam keadaan isothermal (0 °C). Estimasi secara kasar, pada ketinggian berapakah distribusi molekul udara akan menjadi setengahnya. Anggap berat molekul rata-rata dari udara di atmosfer adalah 30.

[20 poin, 25 menit] Tinjau suatu model sederhana atmosfer Bumi. Abaikan angin

b. [10 poin] Sekarang anggap atmosfer dalam keadaan adiabatik. Tunjukkan apakah temperatur mengalami penurunan/pertambahan terhadap ketinggian?! Tentukan pula nilai laju perubahan temperaturnya terhadap ketinggian atmosfer.

konstan dan melakukan kontak dengan sebuah reservoar termal bersuhu T_2 . Anggap kalor jenis dari sistim adalah c_v , dan tidak tergantung suhu. a. [9 poin] lika temperatur awal dari sistim adalah T_1 , hitung perubahan entropi

total sistim dan reservoar, ΔS .

[27 poin, 30 menit] Sebuah sistim yang dipertahankan untuk tetap dalam volume

- b. [12 poin] Sekarang asumsikan bahwa perubahan temperatur sistim pada soal (a) telah membentuk sederet N buah reservoar yang saling kontak secara seri dengan temperatur setiap reservoar tersebut $T_1 + \Delta T$, $T_1 + 2\Delta T$, ..., $T_2 - \Delta T$, T_2 , dimana $N\Delta T = T_2 - T_1$. Dalam limit $N \to \infty$ dan $\Delta T \to 0$, tentukanlah perubahan entropi total dari sistim dan reservoar tersebut.
- [6 poin] Apa kesimpulan Anda terhadap fenomena (a) dan (b) ditinjau dari Hukum Termodinamika kedua?

N partikel dengan temperatur T. Level energi dari populasi partikel dianggap memenuhi hukum distribusi klasik.

[33 poin, 40 menit] Suatu sistim yang terdiri dari dua level energi E_0 dan E_1 berisi

- a. [10 poin] Tentukan suatu ekspresi yang menggambarkan energi rata-rata per partikel (nyatakan dalam E_0 , E_1 , ΔE , dan $\beta = 1/kT$).
 - b. [6 poin] Hitung energi rata-rata per partikel versus temperatur dalam kondisi T → 0 dan T →∞ (nyatakan dalam E₀, E₁, ΔE, dan β = 1/kT).
 c. [10 poin] Tentukan kalor jenis dari sistim N partikel (dinyatakan dalam E₀, E₁,
 - ΔE , dan $\beta = 1/kT$). d. [7 **poin**] Hitung nilai kalor jenis dalam limit $T \to 0$ dan $T \to \infty$ (dinyatakan dalam E_0 , E_1 , ΔE , dan $\beta = 1/kT$).