Proyecto final de series de tiempo: análisis de la serie SP500

Rodrigo Leo

Mayo de 2021

Resumen

Este documento presenta un breve análisis estadístico, llevado a cabo en el lenguaje de programación R, de la serie de tiempo del precio y los retornos logarítmicos del índice accionario Standard and Poor's 500, que refleja las condiciones del mercado accionario estadounidense y resulta, por extensión, un buen indicador del estado de los mercados bursátiles mundiales. Se encuentran resultados consistentes con la teoría tradicional de las series de tiempo en lo que respecta a datos financieros de alta volatilidad.

${\rm \acute{I}ndice}$

1.	Introducción y métodos	3
2.	Descripción de la serie de tiempo	4
3.	Modelo ARMA	g
4.	Modelo de volatilidad GARCH	2 0
5.	Modelo de vectores autorregresivos	2 5

1. Introducción y métodos

Este documento presenta un análisis de la serie de tiempo del precio del índice accionario Standard and Poor's 500, para el periodo comprendido entre el 4 de enero de 2000 hasta el 20 de abril de 2021, abarcando así un total de 21 años de datos diarios. La serie se obtuvo del sitio web de Yahoo! Finanzas (https://finance.yahoo.com/quote/%5EGSPC), con periodicidad diaria.

La relevancia de este índice accionario es que representa un excelente indicador de las condiciones del mercado bursátil estadounidense. Esto tiene una conexión directa con mi trabajo de tesis, que estudia el equity premium puzzle bajo choques de consumo, y emplea este índice como referencia del retorno de un activo riesgoso representativo. Por este motivo, el análisis de esta serie tiene el potencial de ofrecer una comprensión más profunda de su comportamiento en el largo plazo, y de arrojar luz sobre los resultados de mi proyecto de investigación.

Debido a la imposibilidad de ejecutar una versión suficientemente funcional de EViews en MacOS, el trabajo de análisis se llevó a cabo por completo en R. Esto tiene la ventaja de ofrecer un excelente ejercicio de programación en este lenguaje, especializado en análisis estadístico, pero tiene también la desventaja de consumir una cantidad significativamente mayor de tiempo debido a la necesidad de instalar y familiarizarse con paquetes nuevos.

Para que los resultados sean replicables y accesibles, el código en R con el análisis de la serie de tiempo, así como las gráficas y las bases de datos empleadas se encuentran publicados en el siguiente repositorio de Github, desde donde se pueden accesar libremente:

https://github.com/r-leo/proyecto-series

2. Descripción de la serie de tiempo

La serie de tiempo se llama sp500, y tiene los parámetros estadísticos mostrados en el cuadro (1). Por otra parte, la figura (1) muestra la gráfica de esta serie.

Figura 1: Gráfica de la serie de tiempo sp500.

Se puede observar fácilmente que la serie presenta una tendencia ascendente clara. Existen caídas importantes en el año 2000 (debida a la crisis dotcom) y en el año 2009 (debida a la crisis financiera originada en Estados Unidos). Se observa también una caída fuerte alrededor del año 2019 seguida de una rápida recuperación. Esta última caída se asocia a la crisis provocada por la pandemia del COVID-19.

Parámetro	Valor
Mínimo Máximo Media	$676.5 \\ 4185.5 \\ 1684.8$

Cuadro 1: Parámetros estadísticos de la serie sp500.

Aunque el gráfico muestra una tendencia clara, para probar formalmente la estacionariedad de la serie se emplea la prueba aumentada de Dickey-Fuller. Como resultado se obtiene un valor del estadístico de -0.49676 para un regazo de 17 periodos, que se traduce en un valor p de 0.982. El valor p cercano a uno indica que no se puede rechazar la hipótesis nula de que la serie presenta una raíz unitaria.

Para tratar de corregir este efecto, se obtiene la serie de las primeras diferencias logarímicas, que corresponen a los retornos logarítmicos del activo. Esta serie se denota sp500-1. La figura (2) muestra la gráfica de esta nueva serie.

Figura 2: Gráfica de la serie de tiempo sp500-1, que corresponde a las primeras diferencias logarítmicas de la serie sp500.

Al realizar la prueba aumentada de Dickey-Fuller sobre esta nueva serie se obtiene un valor del estadístico de -17.641, para un rezago de 17 periodos, que corresponde a un valor p de 0.01. Por lo tanto, la serie de primeras diferencias logarítmicas sp500-1 no tiene raíz unitaria, con un nivel de significancia $\alpha = 0.05$.

Al obtener las funciones de autocorrelación y autocorrelación parcial de la serie sp500-1, se observa que la serie presenta autocorrelación significativa. Las figuras (3) y (4) muestran estas funciones de autocorrelación y autocorrelación parcial, respectivamente.

Series sp500

Figura 3: Gráfica de la función de autocorrelación de la serie sp500-1.

Series sp500

Figura 4: Gráfica de la función de autocorrelación parcial de la serie sp500-1.

Con el propósito de probar formalmente la existencia de autocorrelación serial, se lleva a cabo la prueba de Ljung-Box para órdenes de rezago desde 1 hasta 10. Los resultados se muestran en la tabla (2).

Orden	Estadístico de Ljung-Box	Valor p
1	68.8	1.110223e-16
2	68.9	1.110223e-15
3	70.1	3.996803e-15
4	73.3	4.551914e-15
5	74.3	1.276756e-14
6	81.9	1.44329e-15
7	87.8	3.330669e-16
8	92.5	1.110223e-16
9	100.3	0
10	100.3	0

Cuadro 2: Resultados de la prueba de Ljung-Box sobre la serie sp500-1, para probar la existencia de autocorrelación.

La prueba de Ljung-Box se realizó hasta el orden 30, obteniendo en todos los casos un valor p menor a 0.05. Esto indica que se rechaza la hipótesis nula de que las observaciones de la serie no tienen autocorrelación serial para órdenes menores o iguales a 30. Esto confirma lo observado en las gráficas de las figuras (3) y (4).

La existencia de autocorrelación sugiere que el uso de un modelo autorregresivo AR(p) puede dar buenos resultados para modelar esta serie de tiempo.

3. Modelo ARMA

La especificación más general de un modelo ARMA(p,q) es

$$y_t = a_0 + a_1 y_{t-1} + \dots + a_p y_{t-p} + b_1 e_{t-1} + \dots + b_q e_{t-q} + e_t$$

donde $e_t \sim N \ \forall t$.

Dado que en R sólo se pueden calcular criterios de información para modelos ARIMA(p,d,q) estimados mediante máxima verosimilitud (MLE), este será el método de estimación que se empleará para ajustar la serie al modelo. Sin embargo, dado que trabajamos con una serie estacionaria, el orden de diferencia del modelo ARIMA(p,d,q) será cero, lo que equivale a un modelo ARIMA(p,q).

En primer lugar se estima el modelo ARMA(1,1), obteniendo los siguientes coeficientes:

ar1	ma1	media
0.0071	-0.1225	2e-04
(0.1140)	(0.1132)	(2e-04)

Cuadro 3: Coeficientes de la estimación del modelo ARMA(1, 1). Los valores entre paréntesis son errores estándar.

A este modelo le corresponde una σ^2 estimada de 0.0001546, un valor de log-likelihood de 15,902.42, y los siguientes valores de criterios de información:

- Criterio de información de Akaike (AIC): -31,796.83.
- Criterio de información bayesiano (BIC): -31,770.49.

Para determinar la mejor combinación de parámetros (p,q), se estimaron 100 modelos ARMA(p,q), variando ambos parámetros de forma independiente entre 1 y 10 y calculando el valor del criterio de información de Akaike para cada modelo. Los resultados fueron los siguientes:

p			q		
P	1	2	3	4	5
1	-31796.83	-31794.85	-31797.92	-31799.09	-31797.62
2	-31794.97	-31793.88	-31792.37	-31798.09	-31797.17
3	-31793.83	-31791.83	-31793.82	-31801.75	-31799.75
4	-31798.27	-31800.00	-31801.23	-31799.93	-31804.20
5	-31797.20	-31797.85	-31799.79	-31805.14	-31824.08
6	-31808.80	-31814.52	-31815.80	-31816.47	-31813.69
7	-31807.15	-31804.92	-31811.22	-31815.32	-31815.08
8	-31806.75	-31820.05	-31801.15	-31826.01	-31824.20
9	-31808.56	-31830.77	-31825.19	-31820.85	-31824.14
10	-31806.61	-31804.60	-31830.82	-31828.03	-31817.85
p			q		
P	6	7	8	9	10
1	-31805.47	-31804.77	-31803.20	-31804.44	-31802.50
2	-31815.28	-31802.85	-31818.27	-31802.54	-31800.50
3	-31815.01	-31811.51	-31815.39	-31817.91	-31817.64
4	-31815.45	-31815.01	-31809.93	-31810.88	-31823.46
5	-31822.41	-31819.64	-31821.80	-31830.96	-31841.80
6	-31821.95	-31829.05	-31820.85	-31827.64	-31836.98
7	-31829.58	-31826.89	-31835.50	-31830.42	-31834.89
8	-31822.00	-31823.08	-31831.50	-31831.22	-31834.37
9	-31833.60	-31832.09	-31831.05	-31844.89	-31840.76
10	-31828.08	-31829.97	-31836.79	-31843.16	-31841.25

Cuadro 4: Valores del criterio de información de Akaike (AIC) para el modelo ARMA(p,q), donde el valor de p es el número de fila y el valor de q es el número de columna.

A partir de los resultados del cuadro (4), se observa que el valor mínimo del criterio de información es -31,844.89, que corresponde a la entrada p = 9, q = 9. Por lo tanto, se considera que el mejor modelo para esta serie es ARMA(9,9).

Al estimar el modelo ARMA(9,9) seleccionado se obtienen los siguientes coeficientes:

Coeficiente	Valor	Error estándar
ar1	0.1031	0.0706
ar2	-0.3081	0.0387
ar3	0.5003	0.0796
ar4	0.3950	0.0872
ar5	-0.2157	0.0602
ar6	-0.5844	0.0674
ar7	0.1778	0.0805
ar8	-0.4054	0.0611
ar9	0.3980	0.0694
ma1	-0.2165	0.0690
ma2	0.3167	0.0623
ma3	-0.5186	0.0937
ma4	-0.3737	0.1013
ma5	-0.2616	0.0786
ma6	0.5165	0.0806
ma7	0.1524	0.0754
ma8	0.3641	0.0649
ma9	-0.3697	0.0747
Media	2e-04	1e-04

Cuadro 5: Coeficientes de la estimación del modelo ARMA(9, 9). Los valores entre paréntesis son errores estándar.

A este modelo le corresponde una σ^2 estimada de 0.0001528, un valor de log-likelihood de 15m942.44, y los siguientes valores de criterios de información:

- Criterio de información de Akaike (AIC): -31,844.89.
- Criterio de información bayesiano (BIC): -31,713.17.

Para evaluar si el modelo ARMA(9,9) seleccionado es adecuado, se verifica que los residuales sean ruido blanco. La figura (5) muestra la gráfica de los mismos, así como su función de autocorrelación y su histograma. Se observa que parece existir autocorrelación, lo cual indicaría que los residuales no son ruido blanco y por lo tanto el modelo seleccionado no es capaz de capturar adecuadamente la información de la serie.

Para verificar formalmente la posible autocorrelación de los residuales, se lleva a cabo la prueba de Ljung-Box, la cual resulta en un estadístico $Q^* = 21.2$ para 22 rezagos, que equivale a un valor p de $9.567 \times 10^{05} \approx 0$. Por lo tanto no se puede rechazar la hipótesis nula de que los residuales del modelo ajustado presentan autocorrelación, y por lo tanto no puede asumirse que sean ruido

blanco, lo cual invalida el modelo seleccionado.

Figura 5: Gráfica de los residuales del modelo ARMA(4,4), su autocorrelación y su histograma, para la serie sp500-1.

Para tratar de solucionar el problema que presenta el modelo se puede optar por tratar de encontrar un mejor ajuste empleando órdenes (p,q) mayores. Sin embargo, dado que la serie es de frecuencia diaria y se trata de un índice del mercado financiero que opera un gran volumen diario, es posible que las dificultades del ajuste provengan de la fuerte volatilidad diaria de la serie. Por lo tanto, se propone reducir la frecuencia de los datos a periodicidad mensual empleando el valor de cierre del último día del mes como la observación mensual correspondiente. Esta nueva serie se denomina $\mathfrak{sp}500m$.

La figura (6) muestra la gráfica de esta serie de tiempo. Es fácil observar que la volatilidad es menor si se compara visualmente con la figura (1), que corresponde a la serie original de frecuencia diaria.

Figura 6: Gráfica de la serie sp500m, correspondiente a la serie sp500 convertida a datos de frecuencia mensual.

Aunque la serie con frecuencia mensual muestra claramente una tendencia (no estacionariedad), se lleva a cabo la prueba aumentada de Dickey-Fuller para probarla formalmente. Se obtiene un valor del estadístico de 0.24955, y un valor p correspondiente de 0.99, lo cual indica que no se puede rechazar la hipótesis nula de que la serie ${\tt sp500m}$ presenta raíz unitaria y es por tanto no estacionaria.

Para obtener una serie estacionaria se calculan las primeras diferencias logarímicas y se almacenan en una nueva serie llamada sp500m-1. La figura (7) muestra la gráfica de esta serie.

Figura 7: Gráfica de la serie sp500m-1, correspondiente a las primeras diferencias logarítmicas de la serie sp500m.

Al llevar a cabo la prueba aumentada de Dickey-Fuller sobre la serie sp500m-1, se obtiene un valor del estadístico igual a -5.6307, y un valor p de 0.01, por lo cual se rechaza la hipótesis nula de que la serie sp500m-1 tiene raíz unitaria, con un nivel de significancia $\alpha = 0.05$.

Con esta nueva serie se repite el procedimiento de búsqueda del modelo ARMA(p,q) óptimo, esta vez variando independientemente los parámetros p y q entre 1 y 10. Los criterios de información de Akaike (AIC) para cada modelo estimado son los siguientes:

p			q		
P	1	2	3	4	5
1	-867.2541	-865.3633	-864.71	-862.7104	-861.8807
2	-865.3693	-863.3677	-862.7102	-864.6792	-866.0731
3	-864.6408	-866.7266	-860.7138	-862.9615	-864.1541
4	-862.711	-864.7479	-863.3447	-866.093	-864.2054
5	-862.2362	-865.7666	-865.8954	-864.2013	-862.1549
6	-861.5606	-863.7697	-861.8072	-859.7982	-858.1328
7	-860.716	-861.5805	-859.8537	-860.7448	-860.7414
8	-859.7129	-860.6694	-858.0276	-858.8732	-858.1847
9	-858.6157	-856.6158	-854.6661	-859.8558	-857.7075
10	-856.6165	-854.6157	-856.795	-855.3184	-854.8144
p			q		
P	6	7	8	9	10
1	-860.7557	-859.5645	-859.6983	-859.3776	-857.9054
2	-864.1559	-861.7982	-860.6344	-858.666	-864.0275
3	-862.1545	-860.1897	-858.2261	-856.6941	-861.3563
4	-860.1826	-863.0429	-860.0398	-854.6932	-854.4539
5	-858.212	-857.1438	-858.3866	-857.857	-855.7522
6	-856.1995	-860.2383	-860.4172	-860.8915	-858.9088
7	-859.1952	-862.6002	-857.2897	-858.8627	-856.9329
8	-862.6773	-855.7247	-857.2197	-857.0902	-855.2309
9	-860.8289	-858.8275	-857.1309	-857.057	-856.0372
10	-858.8293	-856.2785	-854.71	-855.846	-859.5798

Cuadro 6: Valores del criterio de información de Akaike (AIC) para el modelo ARMA(p,q), donde el valor de p es el número de fila y el valor de q es el número de columna, para la serie sp500m-1.

Como se puede observar en el cuadro (6), el valor mínimo del criterio de información AIC es -867.2541 y corresponde al modelo de orden p=1, q=1, por lo que el modelo óptimo es ARMA(1,1). Al estimarlo se obtienen los siguientes coeficientes:

Coeficiente	Valor	Error estándar
ar1	-0.6531	0.2674
ma1	-0.7552	0.2323
Media	0.0043	0.0029

Cuadro 7: Coeficientes de la estimación del modelo ARMA(1, 1), para la serie sp500m-1. Los valores entre paréntesis son errores estándar.

A este modelo le corresponde una σ^2 estimada de 0.001914, un valor de log-likelihood de 437.63,

y los siguientes valores de criterios de información:

- Criterio de información de Akaike (AIC): -867.25.
- Criterio de información bayesiano (BIC): -853.09.

Para verificar si en este caso el modelo es adecuado, se evalúa si los residuales del modelo estimado son ruido blanco. La figura (8) muestra la gráfica de los mismos, así como su función de autocorrelación y su histograma de frecuencias. Se observa que la gráfica parece ser estacionaria alrededor de la media cero, lo cual indica que no tienen tendencia. Además, no existe autocorrelación significativa y parecen distribuirse normalmente con media cero. Esto sugiere que efectivamente se comportan como ruido blanco.

Se llevó a cabo la prueba de Ljung-Box sobre los residuales del modelo ajustado, obteniendo un valor del estadístico $Q^* = 22.279$ para 24 rezagos, que equivale a un valor p de 0.3836, por lo que se rechaza la hipótesis nula de que los residuales presentan autocorrelación conjunta, con un nivel de significancia $\alpha = 0.05$.

Como resultado de este análisis, se puede concluir que los residuales del modelo estimado se comportan como ruido blanco, lo cual indica que el modelo captura adecuadamente la información de la serie de tiempo, y no es necesario por lo tanto buscar una especificación más compleja. La especificación del modelo ARMA sobre la serie sp500m-1, que corresponde a las observaciones de la serie original sp500-1 con frecuencia mensual, es la siguiente:

$$y_t = 0.0043 - 0.6531y_{t-1} + 0.7552 + e_t$$

Figura 8: Gráfica de los residuales del modelo ARMA(7,7), su autocorrelación y su histograma, para la serie sp500m-1.

Finalmente, se generaron pronósticos dentro y fuera de la muestra, utilizando como serie de ajuste (training set) las observaciones hasta el 31 de diciembre de 2018, y como serie de evaluación las observaciones a partir del 1 de enero de 2019. La figura (9) muestra estos pronósticos.

Figura 9: Gráfica de los pronósticos dentro de la muestra (arriba) y fuera de la muestra (abajo) del modelo ARMA(1,1) para la serie sp500m-1.

Oct 01

Dec 01

Feb 01

Aug 01 2021 -0.02

pronostico sp500_1

Apr 01

-0.02

Jan 04 Feb 22

Apr 12 2021 Jun 01

En la figura (9) se observa que los pronósticos decaen rápidamente a cero, debido al bajo orden de la especificación del modelo ARMA elegido.

Adicionalmente se calcularon algunas medidas de error para el pronóstico dentro de la muestra:

Medida de error	Valor
MAE	4.49%
MSE	0.31%
RMSE	5.61%
MAPE	102.33%

Cuadro 8: Medidas del error de pronóstico.

4. Modelo de volatilidad GARCH

A continuación se busca estimar un modelo de volatilidad de clase GARCH para la serie $\mathfrak{sp}500-1$. La forma general de un modelo $\mathsf{GARCH}(p,q)$ es la siguiente:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i u_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

La metodología para seleccionar el mejor modelo es análoga a la que se empleó para encontrar el modelo ARMA óptimo: se estimarán 25 modelos GARCH(p,q) diferentes, variando independientemente los parámetros p y q entre 1 y 5. Para cada modelo estimado se calculó el criterio de información bayesiano (BIC), y los resultados son los siguientes:

p			q		
r	1	2	3	4	5
1	-6.449218	-6.446946	-6.443827	-6.44072	-6.437653
2	-6.449317	-6.446842	-6.443833	-6.440217	-6.437456
3	-6.445972	-6.443891	-6.440953	-6.439616	-6.434335
4	-6.442883	-6.440892	-6.437719	-6.43575	-6.43287
5	-6.439802	-6.437584	-6.438893	-6.432912	-6.430124

Cuadro 9: Valores del criterio de información bayesiano (BIC) para el modelo GARCH(p,q), donde el valor de p es el número de fila y el valor de q es el número de columna, para la serie sp500-1.

Al analizar los resultados del criterio de información bayesiano presentados en el cuadro (9), se observa que el valor mínimo es -6.449317, que corresponde a la parametrización p = 2, q = 1. Por lo tanto, la especificación de modelo de volatilidad GARCH óptima es GARCH(2, 1).

Al estimar este modelo se obtienen los siguientes resultados:

Parámetro	Estimación	Error estándar	Estadístico t	Valor p
mu	0.000621	0.000075	8.3143	0
ar1	0.891415	0.014314	62.275	0
ar2	0.043317	0.014708	2.9452	0.003228
ma1	-0.95618	0.001249	-765.305	0
omega	0.000003	0.000001	3.3912	0.000696
alpha1	0.081623	0.013697	5.9591	0
alpha2	0.064236	0.016971	3.7849	0.000154
beta1	0.834458	0.012874	64.8185	0

Cuadro 10: Resultados de la estimación del modelo GARCH(2,1) sobre la serie sp500-1.

Este modelo tiene un log-likelihood de 17308.84, y los siguientes criterios de información:

■ Akaike: -6.4592.

■ Bayes: -6.4493.

■ Hannan-Quinn: -6.4557.

Además, al analizar los valores p mostrados en el cuadro (10) se observa que todos los coeficientes son significativos con un nivel de significancia $\alpha = 0.05$.

Cabe preguntarse qué sucede al aumentar el orden del modelo a p=3, q=2, para evaluar si es capaz de ajustarse mejor a los datos. Al estimar el modelo GARCH(3,2) se obtienen los siguientes resultados:

Parámetro	Estimación	Error estándar	Estadístico t	Valor p
mu	0.000621	0.000072	8.56391	0
ar1	0.594759	0.014221	41.82339	0
ar2	0.30497	0.016806	18.14609	0
ar3	0.016698	0.014684	1.13714	0.255482
ma1	-0.659325	0.001306	-504.96046	0
ma2	-0.28514	0.003228	-88.34446	0
omega	0.000005	0.000001	3.99799	0.000064
alpha1	0.079003	0.013758	5.74248	0
alpha2	0.143467	0.01355	10.58773	0
alpha3	0.025565	0.017609	1.45182	0.146552
beta1	0.069598	0.092797	0.75001	0.453251
beta2	0.649545	0.087091	7.45821	0

Cuadro 11: Resultados de la estimación del modelo GARCH(3,2) sobre la serie sp500-1.

Este modelo tiene un log-likelihood de 17,311.48, y los siguientes valores para los criterios de información:

■ Akaike: -6.4586.

■ Bayes: -6.4439.

■ Hannan-Quinn: -6.4535.

Al observar en el cuadro (11) los valores p de los coeficientes, se observa que α_3 y β_1 no son significativos. Por este motivo, conservamos la especificación original GARCH(2, 1).

Así, el modelo de volatilidad elegido es una especificación GARCH(2,1) que tiene la siguiente forma:

$$\sigma_t^2 = 0.0006 + 0.0816u_{t-1}^2 + 0.0642u_{t-2}^2 + 0.8345\sigma_{t-1}^2$$

Resta verificar si los residuales se comportan como ruido blanco. La figura (10) muestra la gráfica de normalidad (QQ plot) y de autocorrelación de los residuales del modelo estimado. Se observa que si bien los residuales parecen alejarse de la normalidad en los valores extremos, en general se ajustan bien a una distribución normal, y además no presentan autocorrelación significativa (los coeficientes de autocorrelación se encuentran dentro de las bandas de 95 % de confianza, lo que indica que con un nivel de significancia de $\alpha = 0.05$, la autocorrelación conjunta de los residuales es cero).

ACF of Standardized Residuals 800 100 1 3 5 7 9 11 14 17 20 23 26 29 32 35 lag

Figura 10: Gráfica de normalidad (QQ plot) (arriba) y de autocorrelación (abajo) de los residuales del modelo GARCH(2, 1) para la serie sp500-1.

Además, en la figura (11) se muestra la volatilidad de la serie con bandas de 2 desviaciones estándar de acuerdo a la volatilidad estimada. Se observa que el modelo GARCH propuesto estima adecuadamente la volatilidad de la serie.

Series with 2 Conditional SD Superimposed

Figura 11: Gráfica de volatilidad estimada $(\pm 2\sigma)$ mediante el modelo GARCH(2,1) para la serie sp500-1.

Finalmente, se desea calcular el valor en riesgo de la serie (VaR_p) , para valores de p (probabilidades de pérdida) de 0.10, 0.05 y 0.01. Se emplea el método histórico, que consiste en calcular el valor en riesgo con probabilidad p como el valor absoluto del percentil 1-p. Así, se obtienen los siguientes resultados:

Probabilidad p	Valor en riesgo (VaR_p)
0.10	1.3012%
0.05	1.9132%
0.01	3.5206%

Cuadro 12: Valor en riesgo calculado para p=0.90,0.95,0.99 para los retornos de la serie sp500.

Esto se interpreta de la siguiente forma: con probabilidad de $10\,\%$ se puede observar una pérdida (en un día) de $1.3\,\%$, mientras que con probabilidad de $5\,\%$ la pérdida puede ser de $1.9\,\%$, y con probabilidad de $1\,\%$ puede llegar a ser de $3.5\,\%$.

5. Modelo de vectores autorregresivos

Finalmente, se estimará un modelo de vectores autorregresivos (VAR). Para ello se emplea, además de la serie ya presentada sp500, una serie que contiene el retorno de los bonos de largo plazo (10 años) del Tesoro de EUA. El objetivo es determinar si las variaciones de una serie afectan a la otra. La figura (12) presenta la gráfica de esta serie de tiempo.

Figura 12: Gráfica de la serie 1tc, que representa el retorno de los bonos de largo plazo (10 años) del Tesoro estadounidense.

Para la estimación de modelos VAR, R dispone de una función que permite seleccionar automáticamente el número óptimo de rezagos. La tabla (13) muestra los criterios de información de Akaike (AIC) y Hannan-Quinn (HQ) para rezagos del 1 al 10. Se observa que el número óptimo es 10.

Rezagos	AIC	HQ
1	0.1771518	0.1797549
2	0.1528343	0.1571728
3	0.1477548	0.1538286
4	0.1478244	0.1556336
5	0.146091	0.1556355
6	0.1473937	0.1586736
7	0.1343622	0.1473775
8	0.1229181	0.1376687
9	0.1187283	0.1352143
10	0.1129452	0.1311666

Cuadro 13: Criterios de información de acuerdo al número de rezagos (1 a 10).

Se estima el modelo y se obtienen los siguientes resultados para los coeficientes de la ecuación de sp500:

Variable	Valor	Error estándar	Estadístico \boldsymbol{t}	Valor p
sp500.l1	0.87675	0.01448	60.543	< 2e-16 ***
ltc.l1	-1.87876	5.44382	-0.345	0.73002
sp500.12	0.17905	0.01933	9.261	< 2e-16 ****
ltc.l2	-9.2554	7.72063	-1.199	0.230664
sp500.l3	-0.02093	0.01935	-1.081	0.279546
ltc.l3	7.64278	7.71843	0.99	0.322122
sp500.14	-0.08706	0.01915	-4.545	5.61e-06 ***
ltc.l4	3.69813	7.71172	0.48	0.631569
sp500.15	0.04667	0.01914	2.439	0.014778 *
ltc.l5	-4.34354	7.70504	-0.564	0.572964
sp500.16	-0.09209	0.01915	-4.81	1.55e-06 ***
ltc.l6	16.75382	7.70438	2.175	0.029706 *
sp500.17	0.19857	0.01916	10.366	< 2e-16 ****
ltc.17	-28.9444	7.70762	-3.755	0.000175 ***
sp500.18	-0.15877	0.01939	-8.19	3.24e-16 ***
ltc.18	18.66746	7.71211	2.421	0.015531 *
sp500.19	0.14443	0.01936	7.46	1.01e-13 ***
ltc.l9	-6.24425	7.71494	-0.809	0.418338
sp500.110	-0.08713	0.0145	-6.011	1.97e-09 ***
ltc.l10	2.99994	5.43673	0.552	0.581115
const	4.75519	1.98274	2.398	0.016506 *

Cuadro 14: Coeficientes de la estimación de la ecuación de $\mathfrak{sp}500$ en el modelo VAR. Códigos de significancia: *** = 0, ** = 0.001, * = 0.05, . = 0.1, vacío = 1.

Mientras que para la ecuación de 1tc los coeficientes son:

Variable	Valor	Error estándar	Estadístico \boldsymbol{t}	Valor p
sp500.l1	-0.0001181	0.00003864	-3.057	0.00225 **
ltc.l1	1.005	0.01453	69.183	< 2e-16 ****
sp500.12	0.0001292	0.00005159	2.504	0.01230 *
ltc.l2	-0.05484	0.0206	-2.662	0.00779 **
sp500.13	-0.00004919	0.00005164	-0.952	0.34089
ltc.l3	0.04448	0.0206	2.16	0.03085 *
sp500.14	-0.00004633	0.00005111	-0.906	0.36471
ltc.l4	0.0007148	0.02058	0.035	0.97229
sp500.15	0.00008841	0.00005107	1.731	0.08347 .
ltc.l5	-0.001864	0.02056	-0.091	0.92778
sp500.16	0.00003611	0.00005109	0.707	0.47967
ltc.16	0.005426	0.02056	0.264	0.79186
sp500.17	-0.00002949	0.00005112	-0.577	0.56408
ltc.17	0.001737	0.02057	0.084	0.93271
sp500.18	-0.00001946	0.00005173	-0.376	0.7068
ltc.l8	-0.03623	0.02058	-1.761	0.07835 .
sp500.19	0.0001025	0.00005166	1.984	0.04730 *
ltc.l9	0.03062	0.02059	1.487	0.13703
sp500.110	-0.00009559	0.00003868	-2.471	0.01349 *
ltc.l10	0.002915	0.01451	0.201	0.84076
const	0.01021	0.005291	1.931	0.05359 .

Cuadro 15: Coeficientes de la estimación de la ecuación de 1tc en el modelo VAR. Códigos de significancia: *** = 0, ** = 0.001, * = 0.05, . = 0.1, vacío = 1.

Por otra parte, la figura (13) muestra el análisis de residuales de ambas ecuaciones. Se observa que ambas series de residuales parecen ser estacionarias y no tener autocorrelación, lo cual sugiere que se comportan como ruido blanco.

Diagram of fit and residuals for sp500

Diagram of fit and residuals for Itc

Figura 13: Gráfica de los residuales, su autocorrelación y su autocorrelación parcial para las estimaciones del modelo VAR, para las ecuaciones de la variable sp500 (arriba) y 1tc (abajo).

Finalmente, en las figuras (14) y (15) se muestran las gráficas de impulso-respuesta para choques unitarios al sistema, tanto para la variable sp500 como para la variable 1tc (consideradas como variables dependientes, respectivamente).

Orthogonal Impulse Response from sp500

Figura 14: Gráfica de impulso-respuesta para choques unitarios al sistema, como respuesta de la variable sp500.

Se observa que al inducir un choque unitario en el sistema, ambas variables responden y los efectos persisten incluso hasta diez periodos después del choque. Esto se puede verificar examinando los valores de los coeficientes del sistema al introducir el choque unitario. Estos coeficientes se muestran en el cuadro (16) para la variable sp500 y en el cuadro (17) para la variable ltc.

Rezagos	sp500	ltc
1	20.41322	0.01736539
2	17.86466	0.01504078
3	19.1288	0.01469069
4	19.50848	0.01375604
5	18.39539	0.01204305
6	18.56075	0.01236441
7	16.69747	0.01310932
8	18.86988	0.01347808
9	17.06684	0.01249074
10	19.27205	0.01472273
11	18.90516	0.0142297

Cuadro 16: Respuestas a un impulso unitario (variable dependiente: sp500).

Orthogonal Impulse Response from Itc

 ${\bf Figura~15:~Gr\'{a}fica~de~impulso-respuesta~para~choques~unitarios~al~sistema,~como~respuesta~de~la~variable~ltc.}$

Rezagos	sp500	ltc
1	0	0.05162921
2	-0.09699875	0.05188628
3	-0.66037459	0.04932462
4	-0.77465724	0.04908652
5	-0.75664287	0.04898153
6	-0.98155554	0.04869442
7	-0.27452383	0.0487309
8	-1.18072949	0.04871283
9	-0.90665051	0.0469771
10	-1.15325776	0.04664313
11	-1.19386703	0.04671415

Cuadro 17: Respuestas a un impulso unitario (variable dependiente: ltc).