Applied Linear Algebra in Data Analaysis Orthogonality Assignment

1. Consider an orthonormal set of vectors,

$$V = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_r\} \quad \mathbf{v}_i \in \mathbb{R}^n \quad \forall i \in \{1, 2, \dots r\}$$

If there is a vector $\mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{v}_i^T \mathbf{w} = 0 \ \forall i \in \{1, 2, \dots r\}$. Prove that $\mathbf{w} \notin span(V)$.

2. Consider the following set of vectors in \mathbb{R}^4 .

$$V = \left\{ \begin{bmatrix} 1\\-2\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1\\4 \end{bmatrix} \right\}$$

Find the set of all vectors that are orthogonal to V?

- 3. For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, prove that $C(\mathbf{A}) \perp N(\mathbf{A}^T)$ and $C(\mathbf{A}^T) \perp N(\mathbf{A})$.
- 4. If the columns of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are orthonormal, prove that $\mathbf{A}^{-1} = \mathbf{A}^{T}$. What is $\mathbf{A}^{T}\mathbf{A}$ when \mathbf{A} is rectangular $(\mathbf{A} \in \mathbb{R}^{m \times n})$ with orthonormal columns?
- 5. What will happen when the Gram-Schmidt procedure is applied to: (a) orthonormal set of vectors; and (b) orthogonal set of vectors? If the set of vectors are columns of a matrix **A**, then what are the corresponding **Q** and **R** matrices for the orthonormal and orthogonal cases?
- 6. Prove that the rank of an orthogonal projection matrix $\mathbf{P}_S = \mathbf{U}\mathbf{U}^T$ onto a subspace \mathcal{S} is equal to the dim \mathcal{S} , where the columns of \mathbf{U} form an orthonormal basis of \mathcal{S} .
- 7. If the columns of $\mathbf{A} \in \mathbb{R}^{m \times n}$ represent a basis for the subspace $\mathcal{S} \subset \mathbb{R}^m$. Find the orthogonal projection matrix $\mathbf{P}_{\mathcal{S}}$ onto the subspace \mathcal{S} . Hint: Gram-Schmidt orthogonalization.
- 8. Consider two orthogonal matrices \mathbf{Q}_1 and \mathbf{Q}_2 . Is the $\mathbf{Q}_2^T\mathbf{Q}_1$ an orthogonal matrix? If yes, prove that it is so, else provide a counter-example showing $\mathbf{Q}_2^T\mathbf{Q}_1$ is not orthogonal.
- 9. Let $\mathbf{P}_{\mathcal{S}}$ represent an orthogonal projection matrix onto to the subspace $\mathcal{S} \subset \mathbb{R}^n$. What can you say about the rank of the matrix $\mathbf{P}_{\mathcal{S}}$? Explain how you can obtain an orthonormal basis for \mathcal{S} from $\mathbf{P}_{\mathcal{S}}$.
- 10. Consider a 1 dimensional subspace spanned by the vector $\mathbf{u} \in \mathbb{R}^n$. What kind of a geometric operation does the matrix $\mathbf{I} 2\frac{\mathbf{u}\mathbf{u}^T}{\mathbf{u}^T\mathbf{u}}$ represent?
- 11. Prove that when a triangular matrix is orthogonal, it is diagonal.
- 12. If an orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is to be partitioned such that, $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix}$, then prove that $C(\mathbf{Q}_1) \perp C(\mathbf{Q}_2)$.
- 13. Find an orthonormal basis for the subspace spanned by $\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-3\\3 \end{bmatrix} \right\}$.

1