Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

2 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 112.89

Figure 1: Outline of path 1

2.1.1 Oxidation of primary alcohols with DMP

Substrates:

1. 2,3-Dibromoallyl alcohol - available at Sigma-Aldrich

Products:

1. 2,3-dibromo-propenal

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

2.1.2 Wittig-Horner Reaction

Substrates:

- $1.\ \ 2, 3\text{-}dibromo\text{-}propenal$
- 2. diethylphosphono-2 butanoate de methyle

Products:

1. CCC(=CC(Br)=CBr)C(=O)OC

Typical conditions: NaH.THF.0 C or NaH.DMF.0-50 C

Protections: none

Reference: 10.1021/acs.jmedchem.5b01239 p. 63, 71 and 10.1021/jm950725r p. 3150, 3153

Retrosynthesis ID: 11549

2.1.3 Enol esters and ethers synthesis

Substrates:

- $1. \ TMSCl- \quad \textit{available at Sigma-Aldrich}$
- 2. 4-(4-methoxybenzyl)oxy-1-butanal

Products:

 $1. \ \ COc1ccc(COCCC{=}CO[Si](C)(C)C)cc1 \\$

 $\textbf{Typical conditions:} \ 1. LDA. 2. Electrophile$

Protections: none

Reference: US2467095A AND WO2014169833a1 AND 10.1016/j.steroids.2011.03.014 AND 10.1021/ol200875m (SI) AND 10.1021/ja00531a034

Retrosynthesis ID: 7797

2.1.4 Allylic Oxidation of Alkenes

Substrates:

1.
$$CCC(=CC(Br)=CBr)C(=O)OC$$

Products:

1.
$$COC(=O)C(=CC(Br)=CBr)C(C)=O$$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.1.5 Dehydrogenation of silyl enol ethers

Substrates:

1. COc1ccc(COCCC=CO[Si](C)(C)C)cc1

Products:

 $1. \ \, COc1ccc(COCC{=}CC{=}O)cc1$

Typical conditions: Pd(OAc)2.Cu(OAc)2.O2.MeCN

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

Retrosynthesis ID: 9999877

2.1.6 Synthesis of acid chlorides from esters

Substrates:

1. COC(=O)C(=CC(Br)=CBr)C(C)=O

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)Cl

Typical conditions: 1. LiOH.H2O.THF.2. evapo-

rate. 3. SOCl 2. or. oxalyl. chloride

Protections: none

Reference: 10.1021/ja073476s and 10.1016/j.tet.2007.04.043 and

10.1002/adsc.200303011 and 10.3390/50500714

Retrosynthesis ID: 24406

2.1.7 Deprotection of PMB ethers

Substrates:

 $1. \ \, COc1ccc(COCC{=}CC{=}O)cc1$

Products:

1. 4-hydroxy-but-2-enal

 $\textbf{Typical conditions:} \ \mathrm{DDQ.H2O.DCM} \ \mathrm{or} \ \mathrm{CAN.H2O.ACN}$

Protections: none

Reference: 10.1080/00397911.2019.1639757 and 10.1039/C9OB01504C and 10.1080/00397911.2019.1660900 and 10.1039/C9OB00556K

Retrosynthesis ID: 31010150

2.1.8 Reaction of acyl chlorides with alcohols and phenols

Substrates:

1. CC(=O)C(=CC(Br)=CBr)C(=O)Cl

2. 4-hydroxy-but-2-enal

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O

Typical conditions: base.DCM

Protections: none

Reference: 10.1016/j.bmcl.2012.03.021 AND 10.1021/ja026266i (SI, hydroperoxides) AND 10.1016/j.tetasy.2004.07.044 AND 10.1021/jm1006929 (SI) AND 10.1016/j.tet.2011.05.017 AND 10.1016/j.tetasy.2012.09.002 AND 10.1021/ol016268s (SI) AND 10.1021/jo801116n AND 10.1021/jo00279a041 AND WO2013/64518 A1, 2013 (page 102)

Retrosynthesis ID: 28549

2.1.9 Diels-Alder

Substrates:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O

Products:

1. CC(=O)C12C=C(Br)C(Br)C(C=O)C1COC2=O

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

ANIE1668>3.0.CO;2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.1.10 Takai olefination

Substrates:

1. 1,1-Diiodoethane - available at Sigma-Aldrich

 $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C} = \mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{C} = \mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2 = \mathrm{O}$

Products:

 $1. \ C/C = C/C1C(Br)C(Br) = CC2(C(C) = O)C(=O)OCC12$

Typical conditions: CrCl2.THF.DMF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

2.1.11 Alkylation of amines with alkyl bromides

Substrates:

 $1. \ 2 \hbox{-} (\hbox{p-Toluenesulfonylamino}) \hbox{phenylboronic acid pinacol ester -} \quad \ \ \underbrace{available}_{at \ Sigma-Aldrich}$

2. C/C=C/C1C(Br)C(Br)=CC2(C(C)=O)C(=O)OCC12

Products:

Typical conditions: K2CO3 or other base

Protections: none

Reference: 10.1016/j.tetlet.2007.09.110

Retrosynthesis ID: 7668

2.1.12 Suzuki coupling of arylboronic pinacol esters with vinyl Bromides

Substrates:

Products:

 $1. \ C/C = C/C1C2C(=CC3(C(C)=O)C(=O)OCC13)c1ccccc1N2S(=O)(=O)c1ccc(C)cc1$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 10695

2.2 Path 2

Score: 250.22

Figure 2: Outline of path 2

2.2.1 Reduction of alkynes to alkenes

Substrates:

1. g-hydroxybut-2-ynenitrile

Products:

1. 4-hydroxycrotonitril

 $\textbf{Typical conditions:} \ \ \textbf{H2.Lindlar's catalyst}$

Protections: none

Reference: 10.1021/ja054487t (SI) AND 10.1021/jm9810912

Retrosynthesis ID: 14627

2.2.2 Reduction of nitriles to aldehydes

Substrates:

1. 4-hydroxycrotonitril

Products:

1. 4-hydroxy-but-2-enal

 $\textbf{Typical conditions:} \ \mathrm{DIBALH.DCM}$

Protections: none

Reference: 10.1016/j.bmc.2006.01.061 and 10.1016/j.tet.2012.07.022 and 10.1016/j.bmcl.2009.01.075 and 10.1016/j.bmcl.2007.09.081 and 10.1021/jo000502v

Retrosynthesis ID: 31406

2.2.3 Appel Reaction

Substrates:

1. 2,3-Dibromoallyl alcohol - available at Sigma-Aldrich

Products:

1. 1,2,3-tribrom-propen

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

2.2.4 HWE/Wittig Olefination

Substrates:

- 1. 1,2,3-tribrom-propen
- 2. Methyl 2-ketobutyrate available at Sigma-Aldrich

Products:

1. CCC(=CC(Br)=CBr)C(=O)OC

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

Reference: 10.1002/anie.200705005 and 10.1021/ol052106a and

10.1021/jo00075a064 and 10.1021/ol3027297

2.2.5 Allylic Oxidation of Alkenes

Substrates:

1.
$$CCC(=CC(Br)=CBr)C(=O)OC$$

Products:

1.
$$COC(=O)C(=CC(Br)=CBr)C(C)=O$$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and 10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.2.6 Acid catalyzed transesterification

Substrates:

- 1. 4-hydroxy-but-2-enal
- 2. COC(=O)C(=CC(Br)=CBr)C(C)=O

Products:

1.
$$CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O$$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004 Retrosynthesis ID: 50438

2.2.7 Diels-Alder

Substrates:

$$1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{CC}(\mathrm{Br})=\mathrm{CBr})\mathrm{C}(=\mathrm{O})\mathrm{OCC}=\mathrm{CC}=\mathrm{O}$$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}{=}\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{C}{=}\mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2{=}\mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.2.8 Takai olefination

Substrates:

1. 1,1-Diiodoethane - available at Sigma-Aldrich

 $2. \ \mathrm{CC(=O)C12C=C(Br)C(Br)C(C=O)C1COC2=O}$

Products:

 $1. \ \mathrm{C/C=C/C1C(Br)C(Br)=CC2(C(C)=O)C(=O)OCC12}$

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF.DMF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10942

2.2.9 Alkylation of amines with alkyl bromides

Substrates:

1. 2-(p-Toluenesulfonylamino)phenylboronic acid pinacol ester - available at Sigma-Aldrich

 $2. \ \mathrm{C/C}{=}\mathrm{C/C1C(Br)C(Br)}{=}\mathrm{CC2(C(C)}{=}\mathrm{O)C(=O)OCC12}$

Products:

Typical conditions: K2CO3 or other base

Protections: none

Reference: 10.1016/j.tetlet.2007.09.110

${\bf 2.2.10} \quad {\bf Suzuki\ coupling\ of\ arylboronic\ pinacol\ esters\ with\ vinyl\ Bromides}$

Substrates:

Products:

 $1. \ \ C/C=C/C1C2C(=CC3(C(C)=O)C(=O)OCC13)c1ccccc1N2S(=O)(=O)c1ccc(C)cc1$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H