Evolution after duplication The fate of gene function studied in eight Brassicaceae

Asis Hallab, university of applied sciences Bingen

Introduction

- Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution.
- A duplicate can mutate and change its gene function without reducing fitness through loss of function.
- No large scale comparison of tandem and trans duplication done.

Material

- Eight Brassicaceaen genomes
- Coding Sequences

Gan, X. et al. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity.

Nature Plants 2, 16167 (2016).

Methods: Ortholog and Tandem detection

- Reciprocal highest local pairwise sequence similarity
- Synteny: Gene neighborhood

Methods: Gene family reconstruction

 Markov clustering on local pairwise sequence similarity (Blast)

Methods: Expansion / Contraction of gene families

- Ultrametric gene tree (UST)
 - Concatonated
 MSA of approx.
 10,000 ortholog
 clusters
 - A prioriknowledge drivenscaling
- Fit gene birth/death
 rate to UST
- Compare per species gene number with simulated trees

UST Gene Family Tree

Methods: trans duplicate identification

- Member of significantly expanded gene family
- By exclusion
 - Non-Ortholog
 - Non-Tandem

Poor guy - I mean: Gene

Results: Some numbers

- 10,111 groups of orthologous genes
- 16,910 non singleton gene families
- 758 families were significantly expanded or contracted
- 3,266 tandemly duplicated gene clusters

Results: Gene Families

Methods: Protein domain architecture

- InterProScan identified conserved protein domains
- Each protein has a unique domain architecture
- Groups of genes (families, ortholog clusters, tandem clusters) have diversity of domain architecture
 - Shannon Entropy

Results: Domain Architecture Diversity

Results: Intra-Group domain architecture diversity

Methods: Expression Diversity

- RNA-Seq for five tissues:
 - Two species <u>only</u>:
 - A. thaliana
 - C. hirsuta
 - Seedling
 - Cotyledon
 - Developing Leaf
 - Flower stage 9
 - Flower stage 16
- Expression vector space on RPKM values
 - Relative for euclidean distance measures
 - Median of in-group pairwise euclidean distances

Results: median Expression Distances

Methods: Significant diversification of expression

- Group-wise mean expression: Orthologs vs Duplicated
- Standard deviation space
- Separation or overlap?

Methods: Change in tissue versatility

- Groups with significant separation of expression
- Gain or loss in number of tissues?

Results: Change in tissue versatility

Methods: Change in tissue specificity

- Groups with significant separation of expression
- Switch to other tissues?

Results: Change in tissue specificity

Conclusion

After gene duplication

- Tandem Duplicates tend to expressional diversification
- Trans Duplicates tend to molecular diversification

Side story: The developmental hourglass

- Expression diversity is highest in early and late developmental stages of embryos
- Conserved in animals and plants
- What kind of genes contribute to this effect?
- Plants develop through their whole life-span

Results: Tandems - Tissue specific expression diversity

Results: trans duplicates -Tissue specific expression diversity

Expanded Families

median of Euclidean distances between expression profiles

Results: Pos. selected genes Tissue specific expression diversity

Side Story Conclusion

- Indication for a developmental hourglass throughout the plant's life-span?
- Tandem duplicates, trans duplicates, and positively selected genes appear to underpin this expression diversity.
- Gene duplication and diversification of expression leads to differential morphogenesis?
- Evidence might be too weak.

Thank you very much

Yokozuna Harumafuji gives you all a big big hug