$M_X(t)$	Var[x]	E[x]	$p_x(k) \setminus f_X(t)$	$F_X(t)$	
$1-p+p e^t$	p(1-p)	p	$p_x(1) = p,$ $p_x(0) = 1 - p$		X~Ber(p)
	$\frac{N^2-1}{12}$	$\frac{N+1}{2}$	$\begin{cases} \frac{1}{N} & k \in [N] \\ 0 & else \end{cases}$		$X \sim U([N])$
$(1-p+p e^t)^n$	np(1-p)	np	$\binom{n}{k} p^k (1-p)^{n-k}$		$X \sim Bin(n, p)$
$\frac{e^t p}{1 - e^t (1 - p)}$	$\frac{1-p}{p^2}$	$\frac{1}{p}$	$\begin{cases} p(1-p)^{k-1} & k \in \mathbb{N} \\ 0 & else \end{cases}$		$X \sim Geo(n,p)$
$e^{\lambda(e^t-1)}$	λ	λ	$\begin{cases} \frac{e^{-\lambda}\lambda^k}{k!} & k \in \mathbb{N} \cup \{0\} \\ 0 & else \end{cases}$		<i>X~Po</i> (λ)
$\frac{e^{bt}-e^{at}}{(b-a)t}$	$\frac{(b-a)^2}{12}$	$\frac{a+b}{2}$	$\frac{1}{b-a} \qquad a \le t \le b$	$\frac{t-a}{b-a}$	$X \sim Unif([a,b])$
$\frac{\lambda}{\lambda - t} \qquad t < \lambda$	$\frac{1}{\lambda^2}$	$\frac{1}{\lambda}$	$\begin{cases} \lambda e^{-\lambda t} & t \ge 0 \\ 0 & t < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda t} & t \ge 0 \\ 0 & t < 0 \end{cases}$	$X \sim Exp(\lambda > 0)$
	1	0	$\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$		$X \sim \mathcal{N}(0,1)$