09/02/20

If
$$\hat{\theta} = \overline{X} \implies \hat{\theta}$$
 is unbiased

$$SE[\hat{\Theta}] = \sqrt{Var \frac{1}{n}(X_1 + ... + X_n)} = \sqrt{\frac{1}{n^2}} \geq Var[X_i]$$

$$= \sqrt{\frac{1}{n^2}} n \sigma^2 = \frac{\sigma}{\sqrt{n}} R(\hat{\partial}, \Phi) = \frac{\Phi(1-\hat{\theta})}{h} = MSE$$

$$= \int_{1}^{\Phi} \frac{(1-\Phi)}{n}$$

$$X_{1} \dots X_{n} \stackrel{\text{iid}}{\sim} \text{Bern}(\Phi)$$

Sup
$$R(\vec{0}, \theta) = \frac{1}{4n}$$

You have some well specified mathematical theory about the DGP. For example, in the iPhone Survey, "I think the proportion of iPhone users in the population is NOT 52.4%

I want to prove my theory to the world (using my sample)

Note: It is absolutely impossible to prove or disprove my theory, because you cannot see the whole population. We must use inference which is always a guess.

Two ways to go about "proving" my theory:

- 1) I assume I'm right and wait for other people to Show me data that contradicts my theory
- Z) I assume my theory is wrong. Then I bring evidence (i.e. data) to the contrary until people are convinced my theory is right.

#2 is more intellectually honest and more likely to convince

A "hypothesis" is a mathematical Statement about the DGP e.g. $\theta = 0.9$

0 > 0.9, theta is not equal to 0.9, or $0 \leq 0.9$ or $0 \leq 0.9$ or $0 \leq 0.9$ is in the set [0.89, 0.91]

The alternative hypothesis (Ha) is the theory you want to prove.

The "null hypothesis" (Ho) is the opposite you assume in #2 for the purpose of contradicting it.

Usual cases:

$$H_0: \Theta \leq \Theta_0$$
, $H_a: \Theta > \Theta_0$ (right-tailed test)

Ho:
$$\theta = \theta_0$$
, Ha: $\theta \neq \theta_0$ (two-tailed test)

How to perform this test? There are many many options even for the same DGP. The protocol goes as follows:

- 1) You think of a "Test Statistic" that could measure the Leparture away from Ho
- z) Derive the Statistical estimators distribution under
- 3) Gauge the departure

We begin with DGP: iid Bern (0) and the binomial exact test

1) My test statistic is $\partial = \overline{X}$ ∂ is a realization from ∂

$$\frac{1}{0} = X_1 + \dots + X_{20}$$

Then in a 2-tailed test, I apportion about $\frac{\infty}{2}$ to the left tail and about $\frac{\infty}{2}$ to the right tail

In my RET, $\infty = P(\hat{\theta} = 0 | H_0) + ... + P(\hat{\theta} = 0.3 | H_0)$ $+ P(\hat{\theta}^2 = 0.75 | H_0) + ... + P(\hat{\theta}^2 = 1 | H_0) = 7.06\%$ The choice of alpha is up to you. The scientific community's Standard is 5% and sometimes 1%.

If you would like to prove your theory, you have to accept a positive probability of a Type I

error.

If I fail to reject the when the is true, that's a different error, a "type II error" Failure to prove your theory. The Smaller the alpha, the larger the P(Type II error)

	Decision		
		Retain Ho	1 Reject Ho
	Ho	$\sqrt{}$	Reject Ho Type I error
Truth			
	1.1	type II error	/ /
	Ha	error	

AS of now, we cannot calculate the P(Type II error)