1 Бинарные отношения

1.1 Определение бинарного отношения

Определение

Пусть A, B - два множества. Тогда **бинарное отношение** между множествами A и B - любое подмножество $r \subseteq A \times B$.

Замечание

Любое отображение $f: A \to B$ - это подмножество $f \subseteq A \times B$, поэтому отображения - это частные случаи бинарных отношений.

Определение

Пусть A - множество. Бинарное отношение **на множестве** A - любое подмножество $r \subseteq A \times A = A^2$.

1.2 Композиция бинарных отношений

Определение

Пусть A, B, C - множества, $r \subseteq A \times B$ и $s \subseteq B \times C$ - бинарные отношения. Тогда **Композиция** бинарных отношений r и s - это бинарное отношение $r \circ s \subseteq A \times C$, определённое следующим образом:

$$(a,c) \in r \circ' s \Leftrightarrow$$
 существует $b \in B$ такой, что $(a,b) \in r$ и $(b,c) \in s$

Предложение

Операция композиции отображений о, определённая ранее, совпадает с операцией композиции бинарных отношений о' если рассматривать отображения как бинарные отношения.

Доказательство

Пусть $f:A\to B,g:B\to C$ - два отображения. Тогда для любой пары $(a,c)\in A\times C$: $(a,c)\in (f\circ g)\overset{def}{\Leftrightarrow} c=g(f(a))\Leftrightarrow$ существует $b\in B$ такой, что c=g(b) и $b=f(a)\overset{def}{\Leftrightarrow} (a,c)\in (f\circ' g)$

Следствие

Так как операции композиции \circ и \circ' в общем случае совпадают, далее будет использоваться общее обозначение \circ для обоих.

1.3 Ассоциативность композиции

Предложение

Пусть $r \subseteq A \times B$, $s \subseteq B \times C$ и $t \subseteq C \times D$ - бинарные отношения. Тогда $(r \circ s) \circ t = r \circ (s \circ t)$ - т.е. операция \circ ассоциативна.

Доказательство

Пусть $(a,d) \in A \times D$ - произвольная пара. Перепишем левую часть уравнения по определению:

$$(a,d) \in ((r \circ s) \circ t) \stackrel{def}{\Leftrightarrow} \exists c \in C((a,c) \in (r \circ s) \text{ и } (c,d) \in t) \stackrel{def}{\Leftrightarrow} \exists c \in C (\exists b \in B((a,b) \in r \text{ и } (b,c) \in s) \text{ и } (c,d) \in t)$$

Аналогично перепишем правую часть: $(a,d) \in (r \circ (s \circ t)) \stackrel{def}{\Leftrightarrow} \exists b \in B((a,b) \in r \text{ и } (b,d) \in (s \circ t)) \stackrel{def}{\Leftrightarrow} \exists b \in B((a,b) \in r \text{ и } \exists c \in C((b,c) \in s \text{ и } (c,d) \in s))$ Обе части эквивалентны $\exists b \in B \exists c \in C((a,b) \in r \text{ и } (b,c) \in s \text{ и } (c,d) \in s)$

1.4 n-я степень отношений

Определение

Дано отношение r на множестве A, определим его n-ю степень как

- $r^0 = id_A$
- \bullet $r^{n+1} = r^n \circ r$

Замечание

Это определение верно, так как \circ ассоциативна, поэтому результат $\underbrace{r \circ r \circ \ldots \circ r}_n$ не зависит от того, как расставлены скобки внутри этого составного выражения.

1.5 Композиция и тождественное отображение

Предложение

Пусть $r \subseteq A \times B$ - бинарное отношение. Тогда:

- 1. $r \circ id_B = r$
- 2. $id_A \circ r = r$

Доказательство

Докажем первое утверждение. Пусть $(a,b) \in A \times B$ - произвольная пара. Тогда

$$(a,b) \in (r \circ id_B) \stackrel{def}{\Leftrightarrow} \exists c \in B((a,c) \in r \land (c,b) \in id_B) \Leftrightarrow$$

$$\left| (x,y) \in id_Z \stackrel{def}{\Leftrightarrow} (x=y) \right|$$

$$\Leftrightarrow \exists c \in B((a,c) \in r \land (c=b)) \Leftrightarrow (a,b) \in r$$

Второе равенство доказывается аналогично.

1.6 Обратные отношения

Определение

Пусть $r \subseteq A \times B$ - бинарное отношение. Тогда **обратное отношение** к r - это отношение $r^{-1} \subseteq B \times A$, определённое как:

$$r^{-1} = \{(b,a) | (a,b) \in r\}$$

Замечание

В отличие от обратных отображений, обратные отношения всегда существуют для любого бинарного отношения.

1.7 Обратные отношения и обратные отображения

Предложение

Если $f:A\to B$ - отображение и существует обратное к f отображение g, то $g=f^{-1}$

Доказательство

По предложению о единственности обратного отображения, достаточно проверить, что f^{-1} - обратное отображение, т.е. что $f \circ f^{-1} = id_A$ и $f^{-1} \circ f = id_B$. Проверим первое утверждение. Пусть $a \in A$, b = f(a), т.е. $(a,b) \in f$. Тогда по определению, $(b,a) \in f^{-1}$, следовательно, $(a,a) \in f^{-1} \circ f$. Это означает, что $id_A \subseteq f^{-1} \circ f$. С другой стороны, если $(a_1,a_2) \in f^{-1} \circ f$, то существует такой $b \in B$, что $(a_1,b) \in f$ и $(b,a_2) \in f^{-1}$, т.е. $(a_2,b) \in f$. Так как f инъективно, $a_1 = a_2$, поэтому $f^{-1} \circ f \subseteq id_A$. Следовательно, равенство $f \circ f^{-1} = id_A$ доказано. Второе равенство доказывается аналогично.

1.8 Классы бинарных отношений

Определение

Пусть $r \subseteq A^2$ - бинарное отношение на множестве A. Тогда

- r называется **рефлексивным**, тогда и только тогда, когда $id_A \subseteq r$
- r называется **симметричным**, тогда и только тогда, когда $r=r^{-1}$, т.е. оно совпадает со своим обратным отношением
- r называется **транзитивным**, тогда и только тогда, когда $r \circ r \subseteq r$
- r называется **антисимметричным**, тогда и только тогда, когда $r \cap r^{-1} \subseteq id_A$

1.9 Примеры отношений

Пример 1

Рассмотрим множество действительных чисел \mathbb{R} .

- отношение \leq рефлексивно, транзитивно и антисимметрично,
- отношение \sim , определённое как: $a \sim b \Leftrightarrow [a] = [b]$, рефлексивно, транзитивно и симметрично

Пример 2

Рассмотрим бинарные отношения \subseteq_X и \sim_X на множестве $\mathcal{P}(X)$.

- отношение \subseteq_X определённое как: $A \subseteq_X B \Leftrightarrow A \subseteq B$ рефлексивно, транзитивно и антисимметрично,
- отношение \sim_X , определённое как: $A \sim B \Leftrightarrow B$ и в B содержится одинаковое количество элементов рефлексивно, транзитивно и симметрично.

1.10 Характеризация рефлексивных отношений

Предложение

Бинарное отношение $r\subseteq A^2$ рефлексивно \Leftrightarrow для любого $a\in A$ пара (a,a) лежит в r, т.е. $(a,a)\in r$

Доказательство

Следует из определения диагонали: $id_A = \{(a, a) | a \in A\}$

1.11 Характеризация симметричных отношений

Предложение

Бинарное отношение $r\subseteq A^2$ симметрично \Leftrightarrow для любого $a,b\in A,\,(a,b)\in r\Leftrightarrow (b,a)\in r.$

Доказательство

Покажем следствие \Leftarrow . Пусть $r=r^{-1}$ и $(a,b)\in r$. Тогда $(b,a)\in r^{-1}$, так как $r=r^{-1}$, $(b,a)\in r$. Обратное следствие \Rightarrow . Известно, что для любого $a,b\in A$ верно, что $(a,b)\in r\Leftrightarrow (b,a)\in r$. Нам нужно показать, что $r=r^{-1}$. Покажем два включения: $r\subseteq r^{-1}$ и $r^{-1}\subseteq r$. Первое: если $(a,b)\in r$, то $(b,a)\in r$, тогда по определению обратного отношения, $(a,b)\in r^{-1}$. Второе включение доказывается аналогично.

1.12 Характеризация транзитивных отношений

Предложение

Бинарное отношение $r \subseteq A^2$ транзитивно \Leftrightarrow для любого $a,b,c \in A$ из $(a,b) \in r$ и $(b,c) \in r$ следует, что $(a,c) \in r$.

Доказательство

Покажем следствие \Leftarrow . Пусть $r \circ r \subseteq r$, и $(a,b) \in r$ и $(b,c) \in r$. Тогда по определению композиции $(a,c) \in r \circ r$, следовательно, $(a,c) \in r$, Ч.Т.Д. Обратное следствие \Rightarrow . Нужно показать, что $r \circ r \subseteq r$. Пусть $(a,c) \in r \circ r$. Значит, существует такой $b \in A$, что $(a,b) \in r$ и $(b,c) \in r$. Следовательно, $(a,c) \in r - \mathsf{Ч}$.Т.Д.

1.13 Характеризация антисимметричных отношений

Предложение

Бинарное отношение $r \subseteq A^2$ антисимметрично \Leftrightarrow для любых $a, b \in A$ из $(a, b) \in r$ и $(b, a) \in r$ следует, что a = b.

Доказательство

Покажем следствие \Leftarrow . Пусть $r \cap r^{-1} \subseteq id_A$, $(a,b) \in r$ и $(b,a) \in r$. Тогда $(a,b) \in r^{-1}$, поэтому $(a,b) \in r \cap r^{-1} \subseteq id_A$, тогда $(a,b) \subseteq id_A$. Следовательно, a=b. Обратное следствие \Rightarrow - аналогично.

2 Эквивалентности

2.1 Определение отношения эквивалентности

Определение

Бинарное отношение $r \subseteq A^2$ называется **отношением эквивалентно- сти**, тогда и только тогда, когда оно рефлексивно, симметрично и транзитивно. Другими словами, выполняются следующие свойства:

- 1. рефлексивность $\forall a \in A \ (a, a) \in r$
- 2. симметричность $\forall a,b \in A \ (a,b) \in r \Rightarrow (b,a) \in r$

3. транзитивность $\forall a, b, c \in A \ (a, b) \in r, \ (b, c) \in r \Rightarrow (a, c) \in r$

Для обозначения отношений эквивалентности используются символы вида \sim , \equiv . Если использовать символ \sim (или \equiv) для отношения эквивалентности r, то вместо $(a,b) \in \sim$ можно писать $a \sim b$ и называть \sim просто эквивалентностью.

2.2 Примеры отношений эквивалентности

Пример 1

Определим эквивалентность $\sim_{\mathbb{Q}}$ на множестве $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$:

$$(n_1, n_2) \sim_{\mathbb{Q}} (m_1, m_2) \Leftrightarrow n_1 \cdot m_2 = n_2 \cdot m_1$$

Понятно, что $(n_1, n_2) \sim_{\mathbb{Q}} (m_1, m_2)$ означает, что $\frac{n_1}{n_2} = \frac{m_1}{m_2}$ Пусть $n, k \in \mathbb{N}$ - натуральные числа. Введем следующие обозначения:

- $\lfloor n/k \rfloor$ целая часть от деления n на k, т.е. $\lfloor n/k \rfloor \cdot k \leq n < (\lfloor n/k \rfloor + 1) \cdot k$
- $rest(n,k) \rightleftharpoons n \lfloor n/k \rfloor \cdot k$ остаток от деления n на k

Пример 2

Мы можем определить отношение эквивалентности \equiv_k на множестве \mathbb{Z} :

$$n_1 \equiv_k n_2 \Leftrightarrow rest(n_1, k) = rest(n_2, k)$$

2.3 Унарное пересечение и объединение

Мы знаем бинарные операции \cup и \cap на множествах. Теперь давайте определим унарные операции \cup и \cap .

Определение

Пусть $A\{a_1, \ldots, a_n\}$ - конечное множество. Тогда:

- $\bullet \cup \{a_1, \dots, a_n\} \rightleftharpoons a_1 \cup a_2 \cup \dots \cup a_n$
- $\bullet \cap \{a_1, \dots, a_n\} \rightleftharpoons a_1 \cap a_2 \cap \dots \cap a_n$

Определение

Пусть A - произвольное множество. Тогда:

$$\cup A \rightleftharpoons \bigcup_{a \in A} a \quad \text{if} \quad \cap A \rightleftharpoons \bigcap_{a \in A} a$$

2.4 Классы эквивалентности

Определение

Пусть \sim - эквивалентность на множестве $A, a \in A$. Тогда множество

$$[a]_{\sim} \leftrightharpoons \{b|b \in A, a \sim b\}$$

называется **классом эквивалентности** элемента a относительно эквивалентности r.

Подмножество $X \subseteq A$ называется классом эквивалентности относительно \sim , тогда и только тогда, когда $X = [a]_{\sim}$ для некоторого $a \in A$.

2.5 Свойства классов эквивалентности

Лемма

Пусть \sim - эквивалентность. Тогда:

- 1. $a \in [a]_{\sim}$
- 2. если $[a_1]_{\sim} \cap [a_2]_{\sim} \neq \emptyset$, то $[a_1]_{\sim} = [a_2]_{\sim}$
- $3. \ A = \bigcup \{ [a]_{\sim} | a \in A \}$

Доказательство

Первое следует из рефлексивности \sim . Докажем второе. Пусть $b \in [a_1]_{\sim} \cap [a_2]_{\sim}$. Тогда $b \in [a_1]_{\sim}$ и $b \in [a_2]_{\sim}$. По определению класса эквивалентности это означает, что $a_1 \sim b$ и $a_2 \sim b$. Поскольку \sim симметрично, $b \sim a_2$, и так как \sim транзитивно, $a_1 \sim a_2$.

Теперь покажем, что $[a_1]_{\sim} \subseteq [a_2]_{\sim}$. Пусть $b \in [a_1]_{\sim}$, тогда $b \sim a_1$, $a_1 \sim a_2$, поэтому $b \sim a_2$, следовательно, $b \in [a_2]_{\sim}$ по определению класса эквивалентности. Обратное включение получается таким же образом, заменим a_1 на a_2 , а a_2 на a_1 . Третье следует из первого.

2.6 Разбиение множеств

Определение

Пусть A - множество. Тогда множество подмножеств $X \subseteq \mathcal{P}(A)$ называется **разбиением** множества A, тогда и только тогда, когда

- 1. $\emptyset \notin X$
- 2. для любых $a, b \in X$, если $a \cap b \neq \emptyset$, то a = b
- 3. $A = \bigcup X$

Следствие (из леммы)

Если \sim - эквивалентность на множестве A, то множество всех классов эквивалентности относительно \sim - это разбиение A.

2.7 Разбиения как множества классов эквивалентности

Лемма

Пусть $X\subseteq \mathcal{P}(A)$ - разбиение множества A. Определим бинарное отношение \sim_X следующим образом:

$$a \sim_X b \Leftrightarrow \exists x \in X \ (a \in x)$$
 и $(b \in x)$

Тогда \sim_X - отношение эквивалентности и $X=\{[a]_{\sim_X}|a\in A\}.$

Доказательство

Симметричность \sim_X очевидно из определения. Рефлексивность: так как $A=\cup X$, любой элемент a попадает в какой-то элемент разбиения $a\in x\in X$. Тогда по определению $a\sim_X a$. Транзитивность: пусть $a\sim_X b$ и $b\sim_X c$. Это означает, что для некоторых элементов разбиения $x,y\in X$, $a,b\in x$ и $b,c\in y$. Тогда $b\in x\cap y$, поэтому $x\cap y\neq \emptyset$, следовательно, x=y. Отсюда следует, что $a,c\in x$, это значит, что $a\sim_X c$. Нам нужно показать, что $X=\{[a]_{\sim_X}|a\in A\}$. Докажем включение $X\subseteq \{[a]_{\sim_X}|a\in A\}$. Пусть $x\in X$. тогда $x\neq \emptyset$, следовательно, существует некоторый $a\in x$. Но тогда любой элемент $b\sim_X a$ будет лежать в x, так как, если $a\sim_X b$, то

для некоторого $y \in X$ выполняется $a, b \in y$. Поскольку $a \in x, x \cap y \neq \emptyset$, поэтому x = y, тогда $b \in y$. Это означает, что $[a]_{\sim_X} \subseteq x$. Обратное, если некоторое $b \in x$, то по определению \sim_X , $b \sim_X a$, т.е. $b \in [a]_{\sim_X}$. Следовательно, $x = [a]_{\sim_X}$.

Обратное включение: если $[a]_{\sim_X}$ - некоторый класс эквивалентности, то так как $A=\cup X,\ a\in x$ для некоторого $x\in X.$ Дальше, рассуждая как в предыдущем случае, мы получим $[a]_{\sim_X}=x.$

2.8 Фактор-множества

Определение

Пусть A - множество, \sim - эквивалентность на A. Тогда разбиение A относительно классов эквивалентности \sim называется фактор-множеством A относительно \sim и обозначается A/\sim

Пример 1

Рассмотрим эквивалентность $\sim_{\mathbb{Q}}$. Тогда

$$\mathbb{Q} \rightleftharpoons \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) / \sim_{\mathbb{Q}}$$

Пример 2

Рассмотрим эквивалентность \equiv_k . Тогда

$$\mathbb{Z}_k \rightleftharpoons \mathbb{Z}/\equiv_k$$

множество целых чисел по модулю k.

2.9 Пересечение эквивалентностей

Теорема

Пусть I - множество эквивалентности на множестве A. Тогда $r=\cap I$ - эквивалентность.

Доказательство

Проверим, что r рефлексивно: для любой эквивалентности \sim , $id_A \subseteq \sim$, тогда id_A будет подмножеством пересечения множества эквивалентностей I.

Симметричность. Пусть $(a, b) \in r$. Тогда для любой эквивалентности $\sim \in I$, оно будет содержать (a, b). Но оно также будет содержать (b, a) по симметричности, поэтому $(b, a) \in r$.

Транзитивность. Пусть $(a,b) \in r$ и $(b,c) \in r$. Тогда для любой эквивалентности $\sim \in I$, мы получим $a \sim b \sim c$. Тогда, По транзитивности $a \sim c$, поэтому $(a,c) \in r$.

2.10 Сумма эквивалентностей

Определение

Пусть \sim_1, \ldots, \sim_n - множество эквивалентностей на множестве A. Определим бинарное отношение

$$\sum_{i=1}^n \sim_i \rightleftharpoons \bigcap \{ \sim \mid \sim \subseteq A^2 \text{ - эквивалентность и } (\sim_1 \cup \ldots \cup \sim_n) \subseteq \sim \}$$

- **сумма** эквивалентностей \sim_1, \ldots, \sim_2 .

Теорема

Для любых эквивалентностей \sim_1, \ldots, \sim_n на множестве A, их сумма $\sim_1 + \ldots + \sim_n$ будет эквивалентностью, наименьший по включению эквивалентности, содержащей все \sim_1, \ldots, \sim_n .

Доказательство

 $\sim_1+\ldots+\sim_n$ будет эквивалентностью по предыдущей теореме, и если некоторая эквивалентность \sim содержит все \sim_1,\ldots,\sim_n , т.е. $\sim_1\cup\ldots\cup\sim_n\subseteq\sim$, то \sim попадает в множество пересечения этих эквивалентностей, поэтому $\sim_1+\ldots+\sim_n\subseteq\sim$.