

# Plano de Ensino

Curso: Bacharel em Sistemas de Informação

Componente Curricular: Organização e Arquitetura de Computadores

Período de Execução: 2023/1

Professor (es): Julio Cesar Goldner Vendramini

Período Letivo: 1º

Carga Horária: 60h Aulas Previstas: 72

**OBJETIVOS** 

**Geral:** Identificar o funcionamento e o relacionamento entre os componentes de computadores e seus periféricos.

#### Específicos:

- Conhecer o princípio de funcionamento dos componentes de um computador;
- Conceituar e reconhecer os vários tipos de hardware existentes no mercado;
- Avaliar custo-benefício para aquisição de componentes de hardware;

## **EMENTA**

Introdução à organização de computadores; Álgebra de Boole; Circuitos lógicos, Representação de informações; Memória principal e secundária; Memória Cache; Organização da unidade central de processamento; Entrada e saída; Conjunto de instruções; Linguagem assembly.

## PRÉ-REQUISITOS E CO-REQUISITOS (SE HOUVER)

| CONTEÚDOS PROGRAMÁTICOS Nº DE AULAS |                                                      |   |  |  |
|-------------------------------------|------------------------------------------------------|---|--|--|
| 1.                                  | Introdução à organização de computadores:            | 4 |  |  |
|                                     | a. Histórico;                                        | 4 |  |  |
| 2.                                  | Sistemas numéricos                                   | 8 |  |  |
|                                     | a. Base Decimal, binária, octal e hexadecimal        | 0 |  |  |
| 3.                                  | Álgebra de Boole                                     |   |  |  |
|                                     | a. Conceitos                                         | 4 |  |  |
|                                     | b. Operadores da álgebra de Boole                    |   |  |  |
| 4.                                  | Circuitos lógicos                                    |   |  |  |
|                                     | a. Criação de circuitos lógicos                      | 8 |  |  |
|                                     | b. Simplificação de circuitos                        |   |  |  |
|                                     | i. Mapa de Karnaugh                                  |   |  |  |
| 5.                                  | Organização da unidade central de processamento:     |   |  |  |
|                                     | a. Registradores;                                    |   |  |  |
|                                     | b. Unidade de lógica e aritmética;                   | 8 |  |  |
|                                     | c. Unidade de controle;                              |   |  |  |
|                                     | d. Arquitetura das máquinas atuais (RISC e CISC);    |   |  |  |
| 6.                                  | Representação de informações:                        | 4 |  |  |
|                                     | a. Representação interna de números;                 | 4 |  |  |
| 7                                   | b. Representação interna de áudio, imagem e vídeo;   |   |  |  |
| 7.                                  | Memória principal e secundária:  a. Características: |   |  |  |
|                                     | ,                                                    | 8 |  |  |
|                                     | b. Organização;<br>c. Arquitetura;                   | 0 |  |  |
|                                     | d. Hierarquia;                                       |   |  |  |
| 8.                                  | Barramento                                           | 4 |  |  |
| 9.                                  | ·                                                    |   |  |  |
|                                     | a. Princípio da localidade;                          |   |  |  |
|                                     | b. Funcionamento;                                    | 4 |  |  |
|                                     | c. Mapeamento de dados;                              |   |  |  |
|                                     | d. Algoritmos de substituição;                       |   |  |  |
| 10 Entrada e saída:                 |                                                      |   |  |  |
|                                     | a. Interfaces e dispositivos de E/S;                 | 8 |  |  |



| b.                     | Operações de E/S;              |    |  |  |  |
|------------------------|--------------------------------|----|--|--|--|
| C.                     | Meios de armazenamento;        |    |  |  |  |
| 11. Conjun             | 11. Conjunto de instruções:    |    |  |  |  |
| a.                     | Tipos de dados;                |    |  |  |  |
| b.                     | Formatos de instrução;         |    |  |  |  |
| C.                     | Endereçamento;                 | 6  |  |  |  |
| d.                     | Tipos de instrução;            |    |  |  |  |
| e.                     | Ciclo de instrução e pipeline; |    |  |  |  |
| f.                     | Arquiteturas Risc e Cisc;      |    |  |  |  |
| 12. Linguagem Assembly |                                |    |  |  |  |
| a.                     | Macros;                        | 6  |  |  |  |
| b.                     | Processo de montagem;          |    |  |  |  |
| C.                     | Ligação e carregamento.        |    |  |  |  |
|                        | TOTAL                          | 72 |  |  |  |

#### OBSERVAÇÃO:

A Educação das relações Étnico-Raciais, bem como o tratamento de questões temáticas que dizem respeito aos afrodescendentes e a integração da educação ambiental serão desenvolvidos de modo transversal, contínuo e permanente no enfoque dos conteúdos. Será dada atenção à influência dos afrodescendentes na criação das arquiteturas abordadas neste curso, bem como a influência do consumo de energia na questão ambiental, como por exemplo o uso sustentável de recursos enérgeticos.

Os alunos serão incentivados a participarem das programações realizadas pelo NEABI durante datas específicas, como por exemplo: 19/04: Dia do Índio.

#### **SÁBADOS LETIVOS**

(Conforme Orientação Normativa Nº 01/2011, de 24/01/2011, as atividades a serem desenvolvidas nos sábados letivos podem ser: aulas presenciais, seminários, palestras, avaliações, atividades de nivelamento e interdisciplinares e outras definidas pelo Colegiado do Curso).

(As atividades relativas aos sábados que forem antecipadas devem ser: atividades complementares que a turma desenvolverá durante a semana fora do seu horário regular de aula; estudos dirigidos não presenciais, feiras e eventos similares, atividades utilizando as TĪCs e outras atividades definidas pelo Colegiado do Curso).

| DATA  | ATIVIDADE(S)                                                | NÚMERO DE AULAS |
|-------|-------------------------------------------------------------|-----------------|
| 01/04 | Atividade sobre Conversão de Base                           | 2               |
| 22/04 | Aula sobre circuitos lógicos                                | 2               |
| 06/05 | Aula sobre organização da unidade central de processamento. | 2               |
| 20/05 | Aula sobre memória principal e secundária                   | 2               |
| 27/05 | Aula sobre memória principal e secundária                   | 2               |
| 17/06 | Aula sobre barramentos                                      | 2               |
| 01/07 | Aula sobre dispositivos de entrada e saída                  | 2               |
| 08/07 | Atividades sobre Assembly                                   | 2               |

## **ESTRATÉGIAS DE APRENDIZAGEM**

Aulas Expositivas Interativas, videoaulas, Trabalhos práticos aplicando o conhecimento adquirido com apoio de referências bibliográficas. Aplicação de lista de exercícios. Atendimento individualizado.

# **RECURSOS METODOLÓGICOS**

Apresentações, internet e moodle.

Critérios:

# AVALIAÇÃO DA APRENDIZAGEM

Observação desempenho verificando se o aluno identificou, sugeriu e Lista de exercícios = 10 pontos. assimilou as atividades solicitadas de acordo Seminário = 15 pontos. com as técnicas de aprendizagem previstas.

Instrumentos: individual 3 Avaliações = 25 pontos cada.



## AÇÕES PEDAGÓGICAS ADEQUADAS ÀS NECESSIDADES ESPECÍFICAS

Serão disponibilizados os materiais em formato adaptado para os alunos com necessidades específicas.

BIBLIOGRAFIA BÁSICA (Título. Periódicos, etc.)

TANENBAUM, Andrew S.; AUSTIN, Todd. **Organização estruturada de computadores**. 6º Ed. São Paulo: Pearson Prentice Hall, 2013.

MONTEIRO, Mário A. **Introdução à organização de computadores**. 5º Ed. Rio de Janeiro: LTC, 2007.

TORRES, Gabriel. Hardware: curso completo. 4º Ed. Rio de Janeiro: Axcel Books, 2001.

## **BIBLIOGRAFIA COMPLEMENTAR (Título. Periódicos, etc.)**

STALLINGS, William. Arquitetura e organização de computadores: projeto para o desempenho. 5º Ed. São Paulo, Pearson Prentice Hall, 2003.

VASCONCELOS, Laércio. **Hardware na prática**. 3º ed. Rio de Janeiro: Laércio Vasconcelos Computação, 2009.

MORIMOTO, Carlos E. Hardware, o guia definitivo. 1º ed. Porto Alegre: Sul Editores, 2009.

MORIMOTO, Carlos E. **Hardware II, o guia definitivo**. 1º Ed. Porto Alegre: Sul Editores, 2010.

MACHADO, Francis B.; MAIA, Luiz Paulo. **Arquitetura de sistemas operacionais**. 4º Ed. Rio de Janeiro: LTC, 2007.