Lagrangian density	

	η I Π	M 11	4	11	11 m	H 0	ו ה	m
			М	assiv	е ра	rticl	e	
?		Po	Pole residue:		e:	$-\frac{1}{r_2}$	>	
$J^P = 0^-$	(Po	laris	atior	is:	1		
	k^{μ}		So	quare	ma	ss:	$-\frac{t_2}{r_2}$	> (
		?	Sp	oin:			0	
			Pa	arity:			Odd	 b

	Massive partic	le
	Pole residue:	$-\frac{1}{r_2} > 0$
9	Polarisations:	1
- ?	Square mass:	$-\frac{t_2}{r_2} > 0$
	Spin:	0

sive particl	<i>7</i> ₂ <	
residue:	$-\frac{1}{r_2} > 0$	< 0 && t ₂
risations:	1	(t_2)
are mass:	$-\frac{t_2}{r_2} > 0$	0
1 :	0	

$-\frac{1}{3}t_{1} \omega_{\kappa \alpha}^{\ \alpha'} \omega_{\kappa \alpha}^{\ \kappa'} - \frac{1}{3}t_{1} \omega_{\kappa \lambda}^{\ \kappa'} + \frac{2}{3}t_{2} \omega_{\kappa \lambda}^{\ \kappa'} + \frac{1}{3}t_{1} \omega_{\kappa \lambda}^{\ \kappa'} + \frac{1}{3}t_{1} \omega_{\kappa \lambda}^{\ \kappa'} + \frac{1}{3}t_{2} \omega_{\kappa \lambda}^{\ \kappa'} + \frac{1}{3}t_{$	$\begin{split} &4 \Gamma_3 \partial_\theta \omega_\lambda^{ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{3} t_1 \partial^\alpha f_{ \theta \kappa} \partial^\kappa f_{ \alpha}^{ \theta} + \frac{1}{6} t_2 \partial^\alpha f_{ \theta \kappa} \partial^\kappa f_{ \alpha}^{ \theta} - \frac{2}{3} t_1 \partial^\alpha f_{ \kappa \theta} \partial^\kappa f_{ \alpha}^{ \theta} - \frac{2}{3} t_1 \partial^\alpha f_{ \kappa \theta}^{ \theta} \partial^\kappa f_{ \alpha}^{ \theta} - \frac{2}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} + \frac{1}{6} t_2 \partial^\alpha f^{ \lambda}_{ \kappa} \partial^\kappa f_{ \alpha \lambda}^{ \lambda} + \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} + \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} + \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} + \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} + \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} + \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \omega_\kappa^{ \alpha} \partial^\kappa f'_{ \kappa}^{ \beta} - \frac{1}{3} t_1 \partial^\kappa f_{ \lambda}^{ \beta} + \frac{1}{3} t_2 \partial^\kappa f_{ \lambda}^{ \beta} + \frac{1}{3} t_2 \partial^\kappa f_{ \lambda}^{ \beta} + \frac{1}{3} t_2 \partial^\kappa f_{ \lambda}^{ \beta} - \frac{1}{3} t_1 \partial^\kappa f_{ \lambda}^{ \beta} + \frac{1}{3} t_2 \partial^\kappa G_{ \alpha}^{ \beta} + \frac{1}{3}$	$\frac{2}{3} r_2 \partial^\beta \omega_{,}{}^{\lambda \alpha} \partial_\lambda \omega_{\alpha\beta}^{} - 4 r_3 \partial^\beta \omega_{,}{}^{\lambda \alpha} \partial_\lambda \omega_{\alpha\beta}^{} - 4 r_3 \partial_\alpha \omega_{,}{}^{\alpha} \partial_\lambda \omega_{,}{}^{\theta \kappa} + 4 r_3 \partial_\theta \omega_{,}{}^{\alpha} \partial^\lambda \omega_{,}{}^{\theta \kappa}$
$J^{P} = 0^{-} $ k^{μ} ?	Massive particle Pole residue: $-\frac{1}{r_2} > 0$ Polarisations: 1 Square mass: $-\frac{t_2}{r_2} > 0$ Spin: Parity: Odd	(No massless particles)

$f_{1^-}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\overline{\imath}kt_1\Big -\frac{1}{3}\overline{\imath}\sqrt{2}kt_1\Big $
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	9 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0
$\omega_1^{\#_2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1 + t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)$ $\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	$\left \frac{1}{6}\left(t_1+4t_2\right)\right $	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta} \frac{1}{6}$	$\omega_{1}^{\#2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + \alpha$

 $\frac{12\,i\,k}{(3+4\,k^2)^2\,t_1}$

0

 $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$

 $\frac{6}{(3+4\,k^2)^2\,t_1}$

0

0

0

 $\sigma_{1}^{\#_1} \dagger^\alpha$

0

0

0

0

 $\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$

 $-\frac{i\,k\,(t_1+4\,t_2)}{3\,(1+k^2)^2\,t_1\,t_2}$

 $\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$

 $\tau_1^{\#1} + \alpha\beta$

0

0

0

0

 $\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$

 $\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$

 $\frac{2(t_1+t_2)}{3t_1t_2}$ $\frac{\sqrt{2}(t_1-2t_2)}{3(1+k^2)t_1t_2}$

 $\sigma_1^{\#2} + \alpha \beta$

0

0

0

0

 $\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$

 $\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$

 $\sigma_1^{\#1} +^{\alpha\beta}$

 $\tau_{1}^{\#1}{}_{\alpha}$

 $\sigma_{1^{-}\alpha}^{\#2}$

 $\sigma_{1}^{\#1}$

 $\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$

0

 $\frac{12}{(3+4\,k^2)^2\,t_1}$

 $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$

0

0

0

 $\sigma_1^{\#2} +^{\alpha}$

0

0

0

0

0

0

0

 $\tau_1^{\#_1} +^{\alpha}$

 $\frac{24\,k^2}{(3+4\,k^2)^2\,t_1}$

0

 $-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$

 $\frac{12\,i\,k}{(3+4\,k^2)^2\,t_1}$

0

0

0

 $\tau_1^{\#2} + \alpha$

$\tau_{0}^{\#2}$	†	0	0	0	()			
$ \tau_{0}^{\#2} $ $ \sigma_{0}^{\#1} $	+	0	0	0		$\frac{1}{2^{+t}2}$			
	_								
	#	1	1	3	3	3	3	2	19
Source constraints	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_0^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 \bar{l} k \sigma_{1}^{\#1}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

į	ω_2^{*1}	72+	$\omega_2^{\#1} \dagger$	
	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ † $\tau_{0^{+}}^{\#1}$ † $\tau_{0^{+}}^{\#2}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0^+}^{\#1} \dagger$	0	0	0	0
$\tau_{0^+}^{\#2} \dagger$	0	0	0	0
				1

$\omega_{2}^{\#1}$ $\qquad f_{2}^{\#1}$ $\qquad \omega_{2}^{\#1}$ $\qquad \omega_{3}^{\#1}$	0	0	$\frac{t_1}{2}$	
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0	
	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_{2+}^{#1} +^{\alpha\beta}$	$\omega_{2}^{#1} +^{lphaeta\chi}$	

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_0^{\#1}$	$6 k^2 r_3$	0	0	0
) ₀ [#] † †	c#1 +	c#2 0 ⁺ †	$\omega_{0}^{\#1}$ \dagger

3				$k^2 r$	
$f_{0}^{#1} f_{0}^{#2}$	0	0	0	0	
$f_{0}^{\#1}$	0	0	0	0	
$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0	
	$\omega_0^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1} \dagger$	
			×		

0

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_2^{\#1} + \alpha\beta$

0

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{2}{(1+2\,k^2)^2\,t_1}$

 $\sigma_2^{\#1} + \alpha \beta$

 $\sigma_{2}^{\#1}{}_{\alpha\beta}$

2 t₁

0

0

 $\sigma_{2}^{\#1} +^{\alpha \beta \chi}$