Is speech production organized for robust and efficient information transfer?

Esteban Buz

BCS lunch talk — 3/26/2014

patient: HUCKLEBERRY HOUND

agent: DOG action: CHASE

active or passive?

dog chase hound
hound chased by dog

stress/syllabification?
/'hʌk əl bε ri/
or
/hək əl bε ri 'haʊnd/

Lexical choice?

dog
or
bulldog
or
English bulldog

speech rate? hyper-articulation?

Articulation, according to most psycholinguists

- Predictable words are shorter (Aylett & Turk, 2004; Bell et al., 2009; Pluymaekers et al., 2005)
- Predictable → easier to plan → reduced articulated form (Bard et al., 2000; Gahl et al., 2012)
- Production ease drives articulation

Articulation: goal-directed (my view)

- Production planning is important
- But, being understood is also important, faithfully transmitting a message is the goal

Articulation: Parallels with motor theory

- Parallels arguments made in the motor control literature: behavior is best understood via reducing task-relevant error (Todorov & Jordan 2002)
- If articulation is similar to other motor systems we can view it as including a forward model plus learning from past task-relevant error (cf. perspective discussed in Jaeger & Ferreira, 2013)

Articulation is *fast*

In casual speech speakers utter ~5-7 syllables per second

eg. 1 second of speech: 10 syllables, 21 segments, completely incomprehensible out of context.

Can we see modulations of behaviors like this?

Talk overview

- Prior evidence, two views, and mine
- Three (or four) properties of articulation
- Preliminary data from a (large (partially complete)) study
- Conclusions

Communication and confusability

Communication and confusability

Communication and confusability

Two standard accounts of these effects

- Word specific phonetics (Pierrehumbert, 2002)
 - acquired
 - not due to decisions
 - → All lexicalized
- Dynamics of production processes (Baese-Berk & Goldrick, 2009; Goldrick et al., 2013)
 - encoding difficulty
 - not due to communicative pressures
 - → Production ease drives articulation

Task-relevant modulation

- Contextualized modulations of articulation
 - Lexical account does not predict contextually driven differences

- Production-ease modulations of articulation
 - production-ease account predicts articulatory changes are solely the result of planning difficulties

- Task-specific modulations of articulation
 - to the extent that speakers learn from task-relevant error, modulations should be task-specific

- Learning drives modulations of articulation
 - perceived miscommunications should result in taskrelevant changes

Is the cloud's production system organized for robust communication?

IS IT ALL LEXICAL: DOES CONTEXT MATTER?

Web-based production

bill pill raft

bill pill raft

Web-based production

bill pill raft

bill pill raft

Web-based production

bill pill raft

bill pill raft

Demo

speaker task demo

Study: context and specificity

- Interactive word reading
- 36 voiceless onset critical targets
- Context manipulation: target presented with or without voiced minimal pair
- Question: do participants change target articulation based on visual context?

Annotations

VOTs change across contexts

- VOTs are longer when a voiced competitor is co-present (linear mixed models, maximal RE structure, n = 10 speakers, p < .01)
- Contextual confusable words produced /w more distinguishable signal (hyper-articulation)
- robust communication hypothesis?

Interim summary

- Mirrors other confusability modulated articulatory changes
 - lexically based VOT changes (Baese-Berk & Goldrick, 2009; Kirov & Wilson, 2012)
 - nhd → increases vowel distinguishability, duration and co-articulation (Munson & Solomon, 2004; Munson, 2007; Scarborough 2010; 2012
- Contextually driven affects rule out lexical account

IS IT PRODUCTION EASE?

But could this after all be due to production planning?

- Modulations of articulation are only driven by production ease (Baese-Berk & Goldrick, 2009; Bell et al., 2009; Gahl et al., 2012)
- Differences in VOTs are the result of differences in planning difficulty (Baese-Berk & Goldrick, 2009)

Speech onset latencies as a measure of planning difficulty

 Predictions: a) Speech onset latencies should be longer for more confusable targets and b) latencies should predict VOTs

Production planning does not explain hyperarticulation

 Speech onset latencies are equivalent with or without competitor copresent (p ≈ .9)

→ NOT production-ease account

Production planning does not explain hyperarticulation

 If anything, we find longer latencies predict shorter VOT

Latencies don't change over time

- Latencies are not significantly different
- Taken with VOT trialdata can't be accounted for by production-ease accounts

Interim summary

- Ruled out lexical account: context matters
- Ruled out production-ease: context doesn't affect planning difficulty (latencies)
- Tentative support for the idea that articulatory modulations are task-relevant
- Next, ...
- Specificity: To the extent that speakers can infer the task-relevant hyper-articulation that is informative?
- Learning: Does hyper-articulation change as a result of task-relevant error (perceived miscommunication)?

HOW SPECIFIC IS HYPER-ARTICULATION?

How specific is the hyper-articulation?

- Interestingly, both specific and coarse-grained measures of hyper-articulation have been found to correlate with (contextual) confusability
 - nhd → co-articulation (Scarborough, 2010, 2012)
 - nhd → vowel dispersion (Gahl et al 2012; Munson & Solomon, 2004; Munson 2007, Scarborough, 2010, 2012)
 - nhd → duration (Buz & Jaeger, 2012b, 2013; Gahl et al 2012; Munson & Solomon, 2004; Munson 2007)
 - predictability → duration (Buz & Jaeger, 2012a, 2012b)
- But, specific and coarse-grained measures tend to be correlated

So, how specific is the hyper-articulation?

 To the extent that speakers infer (and learn from) the task-relevant error then modulations should be specific: the part of the signal that carries contextually relevant contrastive information (/p/ in pill when bill is present) should be hyperarticulated

Word durations do not change across contexts

 Word durations not significantly different with or without competitor co-present (p ≈ .4)

Hyper-articulation is specific to segment that carries distinguishing information

- Word durations do predict VOTs (p < .01)
- But, context effect holds beyond duration (p < .01)
- Interaction: VOTs are increasingly longer for longer word durations

Interim summary

- Hyper-articulation is specific to the contextually relevant distinguishing segment
 - VOTs preferentially lengthened
 - Overall word length doesn't significantly differ across context

DO WE *LEARN* WHEN AND HOW TO HYPER-ARTICULATE?

Feedback (speaker internal vs external)

Speakers in previous study 'evaluate' their own speech

Case for learning?

 VOTs are longer at the end of the experiment (p < .01)

Feedback (speaker internal vs external)

 But the goal is transmit information to someone else, not yourself

Web-based production w/ feedback

bill pill raft

bill pill raft

Web-based production w/ feedback

Web-based production w/ feedback

raft

Study: Manipulating feedback

- Same stimuli as the prior study
 - Interactive word reading
 - 36 voiceless onset critical targets
 - Context manipulation: target presented with or without voiced minimal pair
- Participants split into two feedback groups: Positive and Mixed
 - Positive: partner was always right
 - Mixed: partner was occasionally wrong (5 critical trials; 1 filler)
- Question: do participants change target articulation based on feedback?

Preliminary VOT results

- Feedback nominally affects VOT, though not significantly (p ≈ .2)
- Slight interaction, speakers with mixed feedback show greater difference across context (p ≈ .2)
- → Participants adjust articulations based on perceived communicative success?

(not predicted by production-ease account)

Hyper-articulation is specific to segment that carries distinguishing information

- Word durations predict VOTs (p < .01)
- But, context effect holds beyond duration (p < .01)
- plus marginally significant interaction: VOTs are increasingly longer for longer word durations

Preliminary latency/production difficulty results

Competitor presence

- Speech onset latencies are equivalent with or without competitor copresent
- Again, no evidence that context causes production difficulty
- Argues productionease account of VOT differences

Feedback study summary

- Replication of context effect across feedback groups
 - Participants hyper-articulate VOTs of voiceless target words in the presence of voiced competitors
- Suggestive evidence for the role of feedback
 - Participants across feedback groups had nominal differences in overall VOTs and possible interaction

• all tentative (!!)

Conclusions

- Context specific articulations
 - rejects other accounts
- argues for task-relevant modulations of articulation to achieve communicative goals

Potential account for predictability -> reduction

- Speakers provide the input for the next generation of learners
- Production biases toward efficient communication may affect what is learned (see also communicative biases in acquisition, Fedzechkina et al., 2012; 2013)
- Possible route toward generating communicatively efficient properties of language structure
 - Lexical evidence for efficient communication (Piantadosi et al., 2011)
 - Phonetic/phonological (Graff & Jaeger, 2009)
 - Language entropy (Qian & Jaeger, 2012)
 - Dependency length (Gildea & Temperley, 2010)

Open questions: feedback

- Role of feedback on learning
 - What kind?
 - How much?
 - How often?

Open questions: feedback

 Our findings are consistent with other evidence of the role of feedback on syntactic choice in production

Roche, Dale, Jaeger, & Kreuz, under revision

Open questions: speaker behavior

- Speaker-internal
 - What contexts result in articulatory changes?
 - Do speakers make 'arbitrary' articulatory changes?

Open questions: comprehension

- How do these differences affect comprehension?
 - 'Clear' speech does improve comprehension (Smiljanic & Bradlow, 2004)
 - Evaluating effects of feature specific modulations on comprehension like the ones presented today is as of yet un-explored
 - Two pilots run by myself have thus-far failed to find comprehension differences

Open questions: comprehension

- Do participants believe our paradigm?
 - Unprompted, majority do not say they noticed anything odd
 - Caveat: when participants are asked to rate how 'human' their partner is, many give relatively low ratings
 - Interestingly, this rating is mildly predictive of VOTs

Evidence for robust communication at other levels of production

- Lexical 'choice': lab/laboratory usage varies based on predictability (Mahowald et al., 2013)
- Reference choice supports communication (Arnold, 2008; Clark & Murphy, 1982; Tily & Piantadosi, 2009)
- Inclusion of optional words based predictability
 (Jaeger, 2006)
- Optional argument omission based on predictability (Kravtchenko, 2013)
- Syntactic structure results mixed: speakers do not avoid syntactic ambiguities (cf. Ferreira, 2008)

Thanks!

- Andrew Watts
- HLP RAs:
 - N. Craycraft
 - A. Grealish
 - A. Venuti
 - A. MacDonald
 - E. Rowe
- HLP/MTan/CLS family
- Funding:
 - NSF CAREER Award (NSF IIS-1150028) to TFJ
 - NIH training Grant at the University of Rochester (#T32 DC000035)