DEVCONF.cz

Explainable AI for Business Processing Models

Rui Vieira

Senior Software Engineer, Red Hat rui@redhat.com

Business process modelling Process automation

Process automation

Modern enterprise automation

Business processing models

ML/AI in business decisions

Black-box models

Model interpretability

Black-box models

The less we understand a model, the less we trust it

Regulations and ethics

- Is everyone being treated fairly?
- Are we sure our model doesn't discriminate?
- Does it follow the law?
- Does it follow the company's ethical guidelines?
- Can we explain the predictions?

Methods

- Intrinsic
 - Restricting complexity
- Post-hoc
 - · Apply to trained models

Methods

- Intrinsic
 - Restricting complexity
- Post-hoc
 - · Apply to trained models

Post-hoc

- · Global
- Local

Methods

- Intrinsic
 - Restricting complexity
- Post-hoc
 - · Apply to trained models

Post-hoc

- · Global
- Local

Local

- Model specific
- Model agnostic

TrustyAl's explainability

TrustyAl

Explainability algorithms

LIME	Counterfactuals	SHAP
Gives you the feature importances.	Counterfactuals explanations.	Feature contributions for the model's outcome.
"What are the most important inputs to our model?"	"What would I need to change in my inputs to get my desired outcome?"	"How much does each input contribute to the outcome?"

Local Interpretable Model-Agnostic Explanations

Which features are more important? How do they affect the result?

Local Interpretable Model-Agnostic Explanations

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

ABSTRACT

Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is, however, quite important in assessing *trust*, which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech

how much the human understands a model's behaviour, as opposed to seeing it as a black box.

Determining trust in individual predictions is an important problem when the model is used for decision making. When using machine learning for medical diagnosis [6] or terrorism detection, for example, predictions cannot be acted upon on blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a need to evaluate the model as a whole before deploying it "in the wild". To make this decision, users need to be confident

- · Complex decision function
- · Difficult to explain

- · Permute data
- · Calculate distance between permutations and original data

- · Permute data
- · Calculate distance between permutations and original data
- · Make predictions on data using complex model
- Pick \emph{m} features best describing the complex model from the permuted data

- · Permute data
- \cdot Calculate distance between permutations and original data
- · Make predictions on data using complex model
- Pick \emph{m} features best describing the complex model from the permuted data
- . Fit a simple model to the permuted data with \emph{m} features and and similarity score as weights

- · Permute data
- · Calculate distance between permutations and original data
- · Make predictions on data using complex model
- \cdot Pick m features best describing the complex model from the permuted data
- Fit a simple model to the permuted data with m features and and similarity score as weights
- Feature **weights** from the simple model make explanations for the complex model local behaviour

Example

```
int noOfSamples = 100;
int noOfPerturbations = 1;
LimeExplainer limeExplainer =
new LimeExplainer(noOfSamples, noOfPerturbations);

List<Feature> features = new ArrayList ◇();
//...
PredictionInput input = new PredictionInput(features);
PredictionProvider predictionProvider = ...
PredictionOutput output =
predictionProvider.predictAsync(List.of(input)).get().get(0);
Prediction prediction = new Prediction(input, output);
Map<String, Saliency> saliencyMap =
limeExplainer.explainAsync(prediction, model).get();
```


Question

In order to get *this* outcome, what *should* my inputs be?

Counterfactual explanations

Desiderata

- Validity
- Actionability
- Sparsity
- Data manifold closeness
- Causality
- Amortised inference

Desiderata

- Validity
- Actionability
- Sparsity
- Data manifold closeness
- Causality
- Amortised inference

Validity

- A counterfactual has the minimum distance between its outcome and the goal and its features and the original ones
- $\quad \bullet \quad d(x,x_a') < d(x,x_b')$

Sparsity

- An effective counterfactual implementation should change the least amount of features as possible
- g(x'-x)
- $\underset{\lambda}{\text{arg min max}} \lambda \cdot (\hat{f}(x') y')^2 + d(x, x') + g(x' x)$

Actionability

- The ability of a counterfactual method to separate between mutable and immutable features
- $\underset{x' \in \mathcal{A}}{\operatorname{arg \ min \ max}} \ \lambda \cdot (\hat{f}(x') y')^2 + d(x, x') + g(x' x)$

Implementation

· Define search boundaries

Implementation

- · Define search boundaries
- · Explore feature space
- $\boldsymbol{\cdot}$ Minimising with validity, sparsity and actionability

Example

```
final List<Output> goal =
    List.of(new Output("approved", Type.BOOLEAN, new Value(true), 0.0d));
```

State our desired outcome


```
List<Feature> features = // ... original features
```



```
List<FeatureDomain> featureBoundaries = new LinkedList♦();
featureBoundaries.add(NumericalFeatureDomain.create(0.0, 1000.0));
List<Boolean> constraints = new LinkedList⇔();
constraints.add(false);
```


Example

```
final CounterfactualExplainer counterfactualExplainer =
        new CounterfactualExplainer();
PredictionProvider model = // ... model
PredictionInput input = new PredictionInput(features);
PredictionOutput output = new PredictionOutput(goal);
Prediction prediction =
        new CounterfactualPrediction(input,
                output,
                new PredictionFeatureDomain(featureBoundaries),
                constraints);
```

State our desired outcome
Original inputs
Define search boundaries and constraints

Initialise explainer and build context


```
CounterfactualResult counterfactualResult =
                                                                                  Request counterfactual
   counterfactualExplainer.explainAsync(prediction, model)
        .qet();
```


SHapley Additive exPlanations

Question

How much did each individual input contribute to the result?

Shapley values

- · "A Unified Approach to Interpreting Model Predictions"
 - · Lundberg, Lee, 2017
- · Based on Shapley values
- · A coalition of cooperating values each contributing to a final outcome

Marginal contributions

- · Select a feature
- · Calculate marginal contribution of A to the outcome of B, C, D

Marginal contributions

Marginal contributions

- · Select a feature
- \cdot Calculate marginal contribution of A to the outcome of B, C, D
- · We do this for all coalition not including A
- $\cdot\,$ Mean marginal contributions is the A's Shapley value

$$\phi_i = \frac{1}{N} \sum_{\forall Ci \notin C} \frac{M_C(i)}{|C|}$$

SHapley Additive exPlanations

- \cdot Define a model g, which takes a simplified set of inputs x^\prime
- · If $x' \approx x$, then $y' \approx y$

$$g(x') = \phi_0 + \sum_{i}^{N} \phi_i x_i'$$

 $\cdot \; \phi_0$ is the average output of the model

SHapley Additive exPlanations

- · Combinatorial explosion with number of features
- · Shapley Kernel
- \cdot Fill the missing features with background data
- Calculate the average outcome for the background synthetic data

SHapley Additive exPlanations

- · Solver the linear system
- · Coefficients are the Shapley values

Example

```
List<Feature> features = // ... original features
List<PredictionInput> input = List.of(new PredictionInput(features));
Prediction prediction = new SimplePrediction(input, output);
PredictionProvider model = // ... model
ShapKernelExplainer shap = new ShapKernelExplainer();
Saliency[] explanation = shap.explainAsync(prediction, model)
```

Input of prediction to explain


```
List<Feature> features = // ... original features
List<PredictionInput> input = List.of(new PredictionInput(features));
Prediction prediction = new SimplePrediction(input, output);
PredictionProvider model = // ... model
ShapKernelExplainer shap = new ShapKernelExplainer();
Saliency[] explanation = shap.explainAsync(prediction, model)
```



```
List<Feature> features = // ... original features
List<PredictionInput> input = List.of(new PredictionInput(features));
Prediction prediction = new SimplePrediction(input, output);
PredictionProvider model = // ... model
ShapKernelExplainer shap = new ShapKernelExplainer();
Saliency[] explanation = shap.explainAsync(prediction, model)
```


Summary

- Explainability/Interpretability is a critical concern
- Trust on AI/ML outcomes is essential
- Active research area
- Open Source tooling and implementations

Resources

TrustyAI https://kogito.kie.org/trustyai/

TrustyAl pre-print https://arxiv.org/abs/2104.12717

TrustyAl chat https://kie.zulipchat.com/#narrow/stream/232681-trusty-ai

TrustyAl code https://github.com/kiegroup/kogito-apps/tree/main/explainability

Acknowledgements

Rob Geada rgeada@redhat.com

Rebecca Whitworth rsimmond@redhat.com

Daniele Zonca dzonca@redhat.com

