# Collusion in the Austro-Hungarian Sugar Industry 1889-1914

PhD Research Seminar in Microeconomics

Nikolaus Fink<sup>†</sup> Philipp Schmidt-Dengler<sup>‡</sup> Moritz Schwarz<sup>‡</sup> Christine Zulehner<sup>‡</sup>

†Rundfunk und Telekom Regulierungs-GmbH

<sup>‡</sup>University of Vienna

 We study the success and failure of several cartels in historical Austria-Hungary's sugar industry



 We study the success and failure of several cartels in historical Austria-Hungary's sugar industry



- We study the success and failure of several cartels in historical Austria-Hungary's sugar industry
- Cartel dates are known, we aim to compare achieved degree of collusion



- We study the success and failure of several cartels in historical Austria-Hungary's sugar industry
- Cartel dates are known, we aim to compare achieved degree of collusion
- To measure the degree of collusion we estimate a *conduct parameter* Details



 $\bullet$  Sugar industry was important for monarchy's economy (10% of total trade flows)

- Sugar industry was important for monarchy's economy (10% of total trade flows)
- Comparing achieved collusion lets us compare integrated with downstream cartels

- Sugar industry was important for monarchy's economy (10% of total trade flows)
- Comparing achieved collusion lets us compare integrated with downstream cartels
- Contemporary sugar cartel cases: KR 2007, AUT 2010, GER 2014

- Sugar industry was important for monarchy's economy (10% of total trade flows)
- Comparing achieved collusion lets us compare integrated with downstream cartels
- Contemporary sugar cartel cases: KR 2007, AUT 2010, GER 2014
- Refine methodology used in the empirical IO literature

 $\bullet$  Estimating conduct requires demand and supply estimation

- Estimating conduct requires demand and supply estimation
  - 1. model how consumers make purchase decisions

- Estimating conduct requires demand and supply estimation
  - 1. model how consumers make purchase decisions
  - 2. model how firms compete

- Estimating conduct requires demand and supply estimation
  - 1. model how consumers make purchase decisions
  - 2. model how firms compete
- Today's focus is on 1: (a dynamic) model of demand

- Estimating conduct requires demand and supply estimation
  - 1. model how consumers make purchase decisions
  - 2. model how firms compete
- Today's focus is on 1: (a dynamic) model of demand
- Next steps: supply and eventually conduct estimation

• Large share of IO literature is based on static models of demand

- Large share of IO literature is based on static models of demand
- What if consumers, however, do engage in dynamic behaviour such as stockpiling?

- Large share of IO literature is based on static models of demand
- What if consumers, however, do engage in dynamic behaviour such as stockpiling?
- Hendel and Nevo (2006): static own-price elasticity estimates are upward-biased

- Large share of IO literature is based on static models of demand
- What if consumers, however, do engage in dynamic behaviour such as stockpiling?
- Hendel and Nevo (2006): static own-price elasticity estimates are upward-biased
- Sugar is a storable product

- Large share of IO literature is based on static models of demand
- What if consumers, however, do engage in dynamic behaviour such as stockpiling?
- Hendel and Nevo (2006): static own-price elasticity estimates are upward-biased
- Sugar is a storable product
- Suggestive evidence that consumers stockpiled before known price increases

### Hints of stockpiling

 Demand peaks 1 month before price increases



## Hints of stockpiling

- Demand peaks 1 month before price increases
- Looks like some consumers stockpile



### Hints of stockpiling

- Demand peaks 1 month before price increases
- Looks like some consumers stockpile
- There is actual historical evidence of stockpiling



Benefits

- Benefits
  - Accounts for stockpiling, which removes associated upward bias

#### Benefits

- Accounts for stockpiling, which removes associated upward bias
- Can also incorporate consumer heterogeneity in stockpiling (and taste)

- Benefits
  - Accounts for stockpiling, which removes associated upward bias
  - Can also incorporate consumer heterogeneity in stockpiling (and taste)
- Costs

#### Benefits

- Accounts for stockpiling, which removes associated upward bias
- Can also incorporate consumer heterogeneity in stockpiling (and taste)

#### Costs

 $\circ \ \ \mathsf{Non\text{-}linear\ model\ (in\ parameters)} \to \mathsf{cannot\ use\ OLS}$ 

#### Benefits

- Accounts for stockpiling, which removes associated upward bias
- Can also incorporate consumer heterogeneity in stockpiling (and taste)

#### Costs

- $\circ$  Non-linear model (in parameters)  $\to$  cannot use OLS
- $\circ$  Evaluation of moment conditions more involved ightarrow cannot use standard GMM/NLLS

#### Benefits

- Accounts for stockpiling, which removes associated upward bias
- Can also incorporate consumer heterogeneity in stockpiling (and taste)

#### Costs

- $\circ$  Non-linear model (in parameters)  $\to$  cannot use OLS
- $\circ$  Evaluation of moment conditions more involved o cannot use standard GMM/NLLS

#### Constraints

#### Benefits

- Accounts for stockpiling, which removes associated upward bias
- Can also incorporate consumer heterogeneity in stockpiling (and taste)

#### Costs

- $\circ$  Non-linear model (in parameters)  $\to$  cannot use OLS
- $\circ$  Evaluation of moment conditions more involved o cannot use standard GMM/NLLS

#### Constraints

 $\circ~$  Only have monthly aggregate data  $\rightarrow$  use a method with low data requirements

#### Benefits

- Accounts for stockpiling, which removes associated upward bias
- Can also incorporate consumer heterogeneity in stockpiling (and taste)

#### Costs

- $\circ$  Non-linear model (in parameters)  $\to$  cannot use OLS
- $\circ$  Evaluation of moment conditions more involved o cannot use standard GMM/NLLS

#### Constraints

- $\circ~$  Only have monthly aggregate data  $\rightarrow$  use a method with low data requirements
- $\circ$  Prices are endogenous  $\rightarrow$  need instruments: tax changes, cartel dates

• Preliminary Results

- Preliminary Results
  - Very first static IV demand elasticity estimates are large (possibly consistent with expected upward bias)

### Preliminary Results

- Very first static IV demand elasticity estimates are large (possibly consistent with expected upward bias)
- o An estimator based on a dynamic model used in the literature looks inconsistent

### Preliminary Results

- Very first static IV demand elasticity estimates are large (possibly consistent with expected upward bias)
- An estimator based on a dynamic model used in the literature looks inconsistent
- A Method of Simulated Moments estimator is a feasible alternative

### **Related Literature**

- Dynamic demand estimation. Hendel and Nevo (2006), Hendel and Nevo (2013), Perrone (2017)
  - ightarrow We add a refined application that addresses endogeneity in prices

#### Related Literature

- Dynamic demand estimation. Hendel and Nevo (2006), Hendel and Nevo (2013), Perrone (2017)
  - ightarrow We add a refined application that addresses endogeneity in prices
- Narrative evidence on cartels in the sugar industry. Genesove and Mullin (1997), Fink (2016)
  - ightarrow We complement the narrative evidence with quantitative evidence

#### Related Literature

- Dynamic demand estimation. Hendel and Nevo (2006), Hendel and Nevo (2013), Perrone (2017)
  - ightarrow We add a refined application that addresses endogeneity in prices
- Narrative evidence on cartels in the sugar industry. Genesove and Mullin (1997), Fink (2016)
  - ightarrow We complement the narrative evidence with quantitative evidence
- Estimating firm conduct. Bresnahan (1982), Porter (1983), Genesove and Mullin (1998), Corts (1999), Salvo (2010), Berry and Haile (2014)

#### Related Literature

- Dynamic demand estimation. Hendel and Nevo (2006), Hendel and Nevo (2013), Perrone (2017)
  - ightarrow We add a refined application that addresses endogeneity in prices
- Narrative evidence on cartels in the sugar industry. Genesove and Mullin (1997), Fink (2016)
  - ightarrow We complement the narrative evidence with quantitative evidence
- Estimating firm conduct. Bresnahan (1982), Porter (1983), Genesove and Mullin (1998), Corts (1999), Salvo (2010), Berry and Haile (2014)
- Testing firm conduct. Nevo (1998), Miller and Weinberg (2017), Magnolfi and Sullivan (2022), Duarte et al. (2023)

• We focus on refined beet sugar

- We focus on refined beet sugar
- Treat as homogenous product like Genesove and Mullin (1998)

- We focus on refined beet sugar
- Treat as homogenous product like Genesove and Mullin (1998)
- Main types of refined sugar exhibit limited differentiation

- We focus on refined beet sugar
- Treat as homogenous product like Genesove and Mullin (1998)
- Main types of refined sugar exhibit limited differentiation
  - o packaging (horizontal): sugar loaves, sugar cubes, sugar pieces

- We focus on refined beet sugar
- Treat as homogenous product like Genesove and Mullin (1998)
- Main types of refined sugar exhibit limited differentiation
  - o packaging (horizontal): sugar loaves, sugar cubes, sugar pieces
  - o purity (vertical): Wiener Raffinade, Pilé Centrifugal Triest

# Value Chain of the Sugar Industry



# Geographical Market (demand side)

- We consider the monarchy as a single market
- Transport cost small fraction of price
- Limited competition between Cis- and Transleithania
- No imports but suggestive evidence of import constraint as in Salvo (2010)



Source: Schober (1906)

### **Data Sources**

### Centralverein

- monthly prices
- monthly quantities
- monthly Ex/Im
- transport cost (ballpark)

#### K. & K. Ministries

- sugar taxes
- import tariff
- export subsidy

## **Various**

- pop: Schulze (2000)
- GDP: Schulze (2000)
- CPI: Mühlpeck et al. (1979)
- cartel periods: various

# Prices (excl. tax)



# **Summary Statistics**

Table 1: Summary Statistics

| Variable           | Mean    | SD      | Min    | Max     |
|--------------------|---------|---------|--------|---------|
| Quantity $X_t$     | 328,250 | 110,218 | 36,294 | 627,049 |
| $Price\; P_t$      | 74.57   | 8.53    | 55.75  | 97.75   |
| Sales Period $S_t$ | 0.08    | 0.27    | 0.00   | 1.00    |

• We borrow from Hendel and Nevo (2013), which is to assume **A1-4** 

- We borrow from Hendel and Nevo (2013), which is to assume A1-4
- A1. Two types of consumers: storers and non-storers

- We borrow from Hendel and Nevo (2013), which is to assume A1-4
- A1. Two types of consumers: storers and non-storers
  - $\circ\,$  They have potentially different quasi-linear (concave) utility functions

- We borrow from Hendel and Nevo (2013), which is to assume A1-4
- A1. Two types of consumers: storers and non-storers
  - They have potentially different quasi-linear (concave) utility functions
  - Which change over time through demand shocks

- We borrow from Hendel and Nevo (2013), which is to assume A1-4
- A1. Two types of consumers: storers and non-storers
  - They have potentially different quasi-linear (concave) utility functions
  - Which change over time through demand shocks
  - Expenses for sugar small relative to wealth, so can abstract from income effects

• **A2.** Simple storage technology:

- **A2.** Simple storage technology:
  - $\circ~$  Consumers store for free for  ${\cal T}$  periods

- **A2.** Simple storage technology:
  - $\circ~$  Consumers store for free for T periods
  - $\circ~$  But purchases perish after T periods

- **A2.** Simple storage technology:
  - $\circ~$  Consumers store for free for  ${\cal T}$  periods
  - $\circ~$  But purchases perish after T periods
- $\bullet$  A3. Consumers know utility, and shocks  $\varepsilon_{t+\tau}$  ,  $\tau=0,1,...,T$  periods ahead

- **A2.** Simple storage technology:
  - $\circ~$  Consumers store for free for  ${\cal T}$  periods
  - $\circ~$  But purchases perish after T periods
- $\bullet$  A3. Consumers know utility, and shocks  $\varepsilon_{t+\tau}$  ,  $\tau=0,1,...,T$  periods ahead
- A4. For now: perfect foresight of prices (rational expectations possible)

• Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today

- Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today
- ullet Definition for T=1. A product is at sale in period t if  $p_t \leq p_{t+1}$

- Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today
- Definition for T=1. A product is at sale in period t if  $p_t \leq p_{t+1}$
- $\bullet$  Iterating backward: a product was at sale in period t-1 if  $p_{t-1} \leq p_t$

- Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today
- Definition for T=1. A product is at sale in period t if  $p_t \leq p_{t+1}$
- $\bullet$  Iterating backward: a product was at sale in period t-1 if  $p_{t-1} \leq p_t$
- With perfect foresight consumer knows

- Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today
- Definition for T=1. A product is at sale in period t if  $p_t \leq p_{t+1}$
- $\bullet$  Iterating backward: a product was at sale in period t-1 if  $p_{t-1} \leq p_t$
- With perfect foresight consumer knows
  - $\circ p_{t+1}$  in period t

- Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today
- Definition for T=1. A product is at sale in period t if  $p_t \leq p_{t+1}$
- $\bullet$  Iterating backward: a product was at sale in period t-1 if  $p_{t-1} \leq p_t$
- With perfect foresight consumer knows
  - $\circ \ p_{t+1}$  in period t
  - $\circ \ p_t \ \text{in period} \ t-1$

- Idea: a "sales period" is one when it is optimal for the storing consumers to purchase (and store) future demand needs already today
- Definition for T=1. A product is at sale in period t if  $p_t \leq p_{t+1}$
- $\bullet$  Iterating backward: a product was at sale in period t-1 if  $p_{t-1} \leq p_t$
- With perfect foresight consumer knows
  - $\circ \ p_{t+1}$  in period t
  - $\circ \ p_t \ \text{in period} \ t-1$
- ullet Definition can be generalised for T>1 (with  $p_t=p_t^{ef}:=\min\{p_{t-T},...,p_t\}$ )

ullet In a given period t a product is either at sale ("cheap") or not  $\{C,N\}$ 

- ullet In a given period t a product is either at sale ("cheap") or not  $\{C,N\}$
- $\bullet\,$  For today T=1 , consumers store only for 1 period

- ullet In a given period t a product is either at sale ("cheap") or not  $\{C,N\}$
- ullet For today T=1, consumers store only for 1 period
- $\bullet$  Then it suffices to look at yesterday t-1 and today t, i.e.,  $\mathcal{S} = \{(s_{t-1}, s_t)\}$

- ullet In a given period t a product is either at sale ("cheap") or not  $\{C,N\}$
- ullet For today T=1, consumers store only for 1 period
- $\bullet$  Then it suffices to look at yesterday t-1 and today t, i.e.,  $\mathcal{S} = \{(s_{t-1}, s_t)\}$
- $\bullet$  This gives four states of the world  $\{C,N\}^2=\{(N,N),(C,N),(N,C),(C,C)\}$

- ullet In a given period t a product is either at sale ("cheap") or not  $\{C,N\}$
- ullet For today T=1, consumers store only for 1 period
- $\bullet$  Then it suffices to look at yesterday t-1 and today t, i.e.,  $\mathcal{S} = \{(s_{t-1}, s_t)\}$
- $\bullet$  This gives four states of the world  $\{C,N\}^2=\{(N,N),(C,N),(N,C),(C,C)\}$
- ullet E.g., state (C,N) means that there was a sale at t-1, but no sale at t

# What does a storing consumer buy today? (T=1)



## **Purchasing Patterns**

ullet Storers' purchases  $X_t^s$  vary by state

$$X_t^s(p_{t-1}, p_t, p_{t+1}) = \begin{cases} Q_t^s(p_t) & \text{NN} \\ Q_t^s(p_t) + Q_{t+1}^s(p_t) & \text{NC} \\ 0 & \text{CN} \\ Q_{t+1}^s(p_t) & \text{CC} \end{cases}$$

## **Purchasing Patterns**

ullet Storers' purchases  $X_t^s$  vary by state

$$X_t^s(p_{t-1}, p_t, p_{t+1}) = \begin{cases} Q_t^s(p_t) & \text{NN} \\ Q_t^s(p_t) + Q_{t+1}^s(p_t) & \text{NC} \\ 0 & \text{CN} \\ Q_{t+1}^s(p_t) & \text{CC} \end{cases}$$

 Intuition for identification: purchases in each state can be expressed as linear combination of others

## **Purchasing Patterns**

ullet Storers' purchases  $X_t^s$  vary by state

$$X_t^s(p_{t-1}, p_t, p_{t+1}) = \begin{cases} Q_t^s(p_t) & \text{NN} \\ Q_t^s(p_t) + Q_{t+1}^s(p_t) & \text{NC} \\ 0 & \text{CN} \\ Q_{t+1}^s(p_t) & \text{CC} \end{cases}$$

- Intuition for identification: purchases in each state can be expressed as linear combination of others
- $\bullet \ \ \text{Non-storers always purchase} \ X^n_t(P_t) = Q^n_t(P_t)$

## **Hints of State Dependence**

Table 2: Quantity of Refined Sugar Sold

|           | $C_{t-1}=0$ | $C_{t-1}=1$ |         |
|-----------|-------------|-------------|---------|
| $C_t = 0$ | 324,906     | 287,129     | 322,777 |
| $C_t = 1$ | 363,274     | 452,483     | 393,011 |
|           | 327,067     | 342,247     | 328,250 |

 $\it Notes:$  The table presents the average across all months of the 26 years from 1889-1914. The unit is 100 kg.

ullet Log-linear demand needs in period t+ au when purchases in period t Implied Elasticity

$$\log q_{t, \mathrm{buy\;for}\; t+\tau}^h = \log(\omega^h) + \alpha - \beta^h p_t + \varepsilon_{t+\tau}$$

ullet Log-linear demand needs in period t+ au when purchases in period t Implied Elasticity

$$\log q_{t, \mathrm{buy \; for \; } t+\tau}^h = \log(\omega^h) + \alpha - \beta^h p_t + \varepsilon_{t+\tau}$$

ullet h=s,n ... storers and non-storers

ullet Log-linear demand needs in period t+ au when purchases in period t Implied Elasticity

$$\log q_{t,\mathrm{buy\ for\ }t+\tau}^h = \log(\omega^h) + \alpha - \beta^h p_t + \varepsilon_{t+\tau}$$

- ullet h=s,n ... storers and non-storers
- $\bullet$   $\,\tau=1$  marks purchases of storers for future periods (  $\tau=0$  for non-storers always)

ullet Log-linear  $demand\ needs$  in period t+ au when purchases in period t (Implied Elasticity)

$$\log q_{t, \mathrm{buy \; for \; } t + \tau}^h = \log(\omega^h) + \alpha - \beta^h p_t + \varepsilon_{t + \tau}$$

- ullet h=s,n ... storers and non-storers
- au=1 marks purchases of storers for future periods ( au=0 for non-storers always)
- $\bullet$  Consumers know the demand shock  $\varepsilon_{t+\tau}$  with general distribution  $F(\varepsilon_t)$

ullet Log-linear  $demand\ needs$  in period t+ au when purchases in period t (Implied Elasticity)

$$\log q_{t, \mathrm{buy\;for}\; t+\tau}^h = \log(\omega^h) + \alpha - \beta^h p_t + \varepsilon_{t+\tau}$$

- ullet h=s,n ... storers and non-storers
- au=1 marks purchases of storers for future periods ( au=0 for non-storers always)
- $\bullet$  Consumers know the demand shock  $\varepsilon_{t+\tau}$  with general distribution  $F(\varepsilon_t)$
- $\bullet \ \omega^h$  type specific weight, where  $\omega^n = \omega$  and  $\omega^s = (1-\omega)$

### Purchases can include future demand

• A non-storing consumer only considers buying for today

$$X^n_t = q^n_t = \omega e^{\alpha - \beta^n p_t + \varepsilon_t}$$

#### Purchases can include future demand

• A non-storing consumer only considers buying for today

$$X_t^n = q_t^n = \omega e^{\alpha - \beta^n p_t + \varepsilon_t}$$

 A storing consumer knows tomorrow's demand shock today, and considers buying today for consumption in future periods

$$X^s_t = (1-\omega)(\mathbb{1}_{\text{buy for t}}\,e^{\alpha-\beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t}+1}\,e^{\alpha-\beta^s p_t + \varepsilon_{t+1}})$$

### Purchases can include future demand

• A non-storing consumer only considers buying for today

$$X_t^n = q_t^n = \omega e^{\alpha - \beta^n p_t + \varepsilon_t}$$

 A storing consumer knows tomorrow's demand shock today, and considers buying today for consumption in future periods

$$X_t^s = (1-\omega)(\mathbb{1}_{\text{buy for t}}\,e^{\alpha-\beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t}+1}\,e^{\alpha-\beta^s p_t + \varepsilon_{t+1}})$$

ullet Aggregate demand in period t

$$Q_t = X_t^n + X_t^s = \omega e^{\alpha - \beta^n p_t + \varepsilon_t} + (1 - \omega) (\mathbb{1}_{\text{buy for t}} \ e^{\alpha - \beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t} + 1} \ e^{\alpha - \beta^s p_t + \varepsilon_{t+1}})$$

ullet Rearranging to isolate constant lpha

$$Q_t = \underbrace{e^{\alpha}}_{=:\tilde{Q}_t} \underbrace{\left[ \omega e^{-\beta^n p_t + \varepsilon_t} + (1-\omega) (\mathbb{1}_{\text{buy for t}} \, e^{-\beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t}+1} \, e^{-\beta^s p_t + \varepsilon_{t+1}}) \right]}_{=:\tilde{Q}_t}$$

• Rearranging to isolate constant  $\alpha$ 

$$Q_t = \underbrace{e^{\alpha}}_{=:\tilde{Q}_t} \underbrace{\left[ \underline{\omega e^{-\beta^n p_t + \varepsilon_t} + (1-\omega)(\mathbb{1}_{\text{buy for t}} \, e^{-\beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t}+1} \, e^{-\beta^s p_t + \varepsilon_{t+1}}) \right]}_{=:\tilde{Q}_t}$$

 $\bullet$  Take log:  $\log Q_t = \log(\tilde{Q}_t e^{\alpha}) = \log(\tilde{Q}_t) + \alpha$ 

• Rearranging to isolate constant  $\alpha$ 

$$Q_t = \underbrace{e^{\alpha}}_{=:\tilde{Q}_t} \underbrace{\left[ \underline{\omega e^{-\beta^n p_t + \varepsilon_t} + (1-\omega)(\mathbb{1}_{\text{buy for t}} \ e^{-\beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t}+1} \ e^{-\beta^s p_t + \varepsilon_{t+1}}) \right]}_{=:\tilde{Q}_t}$$

- $\bullet$  Take log:  $\log Q_t = \log(\tilde{Q}_t e^{\alpha}) = \log(\tilde{Q}_t) + \alpha$
- Specifying an *additive* econometric error term we arrive at the estimating equation:

$$\log X_t = \alpha + \log \tilde{Q} + u_t$$

• Rearranging to isolate constant  $\alpha$ 

$$Q_t = \underbrace{e^{\alpha}}_{=:\tilde{Q}_t} \underbrace{\left[ \omega e^{-\beta^n p_t + \varepsilon_t} + (1-\omega) (\mathbb{1}_{\text{buy for t}} \, e^{-\beta^s p_t + \varepsilon_t} + \mathbb{1}_{\text{buy for t}+1} \, e^{-\beta^s p_t + \varepsilon_{t+1}}) \right]}_{=:\tilde{Q}_t}$$

- $\bullet$  Take log:  $\log Q_t = \log(\tilde{Q}_t e^{\alpha}) = \log(\tilde{Q}_t) + \alpha$
- Specifying an *additive* econometric error term we arrive at the estimating equation:

$$\log X_t = \alpha + \log \tilde{Q} + u_t$$

 Because of aggregation over types (and state dependence) the parameters enter in a non-linear way

• Hendel and Nevo (2013) only include  $u_t$ , but not  $\varepsilon_t, \varepsilon_{t+1}$ , in their estimating equation

- Hendel and Nevo (2013) only include  $u_t$ , but not  $\varepsilon_t, \varepsilon_{t+1}$ , in their estimating equation
- $\bullet$  We argue that ignoring  $\varepsilon_t, \varepsilon_{t+1}$  is to estimate a different model

- Hendel and Nevo (2013) only include  $u_t$ , but not  $\varepsilon_t, \varepsilon_{t+1}$ , in their estimating equation
- $\bullet$  We argue that ignoring  $\varepsilon_t, \varepsilon_{t+1}$  is to estimate a different model
- $\bullet$  The issue: not only parameters, but also demand shocks  $\varepsilon_t, \varepsilon_{t+1}$  enter non-linearly

- Hendel and Nevo (2013) only include  $u_t$ , but not  $\varepsilon_t, \varepsilon_{t+1}$ , in their estimating equation
- $\bullet$  We argue that ignoring  $\varepsilon_t, \varepsilon_{t+1}$  is to estimate a different model
- ullet The issue: not only parameters, but also demand shocks  $arepsilon_t, arepsilon_{t+1}$  enter non-linearly
- $\bullet$  Non-additively separable shocks are not subsumed by an additive error term  $\boldsymbol{u}_t$

# Non-additively separable shocks

 $\bullet$  Essentially, if demand shocks are iid, e.g.,  $\varepsilon_t \overset{\mathrm{iid}}{\sim} N(0,1)$ 

$$\begin{split} E(\varepsilon_t + \varepsilon_{t+1}) &= 0 \\ E(\ln(e^{\varepsilon_t + \varepsilon_{t+1}})) &= 0 \\ \text{But:} \quad E(\ln(e^{\varepsilon_t} + e^{\varepsilon_{t+1}})) \neq 0 \end{split}$$

# Non-additively separable shocks

 $\bullet$  Essentially, if demand shocks are iid, e.g.,  $\varepsilon_t \stackrel{\mathrm{iid}}{\sim} N(0,1)$ 

$$\begin{split} E(\varepsilon_t + \varepsilon_{t+1}) &= 0 \\ E(\ln(e^{\varepsilon_t + \varepsilon_{t+1}})) &= 0 \\ \text{But:} \quad E(\ln(e^{\varepsilon_t} + e^{\varepsilon_{t+1}})) \neq 0 \end{split}$$

 If they estimate a different model, it is not clear why their NLLS estimator should be consistent for the actual model

# Non-additively separable shocks

 $\bullet$  Essentially, if demand shocks are iid, e.g.,  $\varepsilon_t \stackrel{\mathrm{iid}}{\sim} N(0,1)$ 

$$\begin{split} E(\varepsilon_t + \varepsilon_{t+1}) &= 0 \\ E(\ln(e^{\varepsilon_t + \varepsilon_{t+1}})) &= 0 \\ \text{But:} \quad E(\ln(e^{\varepsilon_t} + e^{\varepsilon_{t+1}})) \neq 0 \end{split}$$

- If they estimate a different model, it is not clear why their NLLS estimator should be consistent for the actual model
- $\bullet$  Thus we examine the sampling distribution of  $\hat{\theta}^{H\&N(2013)}$  in a Monte Carlo simulation

## Simulation Set Up

- Attempt to replicate setting of Hendel and Nevo (2013)
  - o Similar mean and sd of price, quantity, sales periods and sales definition
  - Set true parameters approx. equal to their estimates
  - $\circ \ P_t \overset{\mathrm{iid}}{\sim} \ \mathrm{mixture} \ \mathrm{of} \ \mathrm{truncated} \ L(0.95, 0.1), L(1.25, 0.1) \ \ \mathrm{^{Histogram}}$
- Differences
  - $\circ\,$  Can only assume demand shocks, and use  $\varepsilon_t \stackrel{\mathrm{iid}}{\sim} \mathsf{truncated}\,\, N(0,1)$
  - Time series rather than panel
  - Homogenous product rather than differentiated products
- Identification arguments rely on time series variation, so method should work
- ullet We initialise the NLLS estimation routine with the true heta

# Simulation of Hendel and Nevo (2013)

Small Sample







Repetitions = 1000 Sample Sizes: 100, 200, 300

# Simulation of Hendel and Nevo (2013)

Large Sample







Repetitions = 1000 Sample Sizes: 500, 5000, 50000

 $\bullet$   $\hat{\theta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{\beta}^n$  performs worst

- $\hat{\theta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{\beta}^n$  performs worst
- This was just one (very nice) set up, deviation from true value could be larger

- $\hat{\theta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{\beta}^n$  performs worst
- This was just one (very nice) set up, deviation from true value could be larger
- $\bullet$  We try to estimate the actual model in a GMM estimator

- $\hat{\theta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{\beta}^n$  performs worst
- This was just one (very nice) set up, deviation from true value could be larger
- $\bullet$  We try to estimate the actual model in a GMM estimator
- Alternatives do not seem appealing

- $\hat{\theta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{\beta}^n$  performs worst
- This was just one (very nice) set up, deviation from true value could be larger
- We try to estimate the actual model in a GMM estimator
- Alternatives do not seem appealing
  - $\circ~$  Drop non-additive shocks  $\varepsilon_t$  entirely, rely only on additive shock  $u_t$

- ullet  $\hat{ heta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{eta}^n$  performs worst
- This was just one (very nice) set up, deviation from true value could be larger
- We try to estimate the actual model in a GMM estimator
- Alternatives do not seem appealing
  - $\circ~$  Drop non-additive shocks  $\varepsilon_t$  entirely, rely only on additive shock  $u_t$
  - $\circ$  Or (for estimator) assume storing consumers think  $\varepsilon_{t+1}=\varepsilon_t$  and difference goes into  $u_t$

- ullet  $\hat{ heta}^{H\&N(2013)}$  looks inconsistent, as expected  $\hat{eta}^n$  performs worst
- This was just one (very nice) set up, deviation from true value could be larger
- We try to estimate the actual model in a GMM estimator
- Alternatives do not seem appealing
  - $\circ~$  Drop non-additive shocks  $\varepsilon_t$  entirely, rely only on additive shock  $u_t$
  - $\circ$  Or (for estimator) assume storing consumers think  $\varepsilon_{t+1}=\varepsilon_t$  and difference goes into  $u_t$
  - $\circ\,$  Linear specification discarded by Hendel and Nevo (2013) due to negative predicted demand

## **GMM**

 $\bullet$  Want to estimate  $\theta = (\omega, \beta^n, \beta^s)$  with GMM

### **GMM**

- Want to estimate  $\theta = (\omega, \beta^n, \beta^s)$  with GMM
- $\bullet$  Standard GMM finds  $\theta$  by minimising sample analog of unconditional moment conditions, e.g.,  $E(x_tu(\theta))=0$

- Want to estimate  $\theta = (\omega, \beta^n, \beta^s)$  with GMM
- Standard GMM finds  $\theta$  by minimising sample analog of unconditional moment conditions, e.g.,  $E(x_t u(\theta))=0$
- $\bullet$  Endogeneity: cannot use moments like  $E(p_tu_t)$  ,  $E(p_{t-1}u_t)$  ,  $E(p_{t+1}u_t)$  as prices are endogenous

- Want to estimate  $\theta = (\omega, \beta^n, \beta^s)$  with GMM
- $\bullet$  Standard GMM finds  $\theta$  by minimising sample analog of unconditional moment conditions, e.g.,  $E(x_tu(\theta))=0$
- $\bullet$  Endogeneity: cannot use moments like  $E(p_tu_t)$  ,  $E(p_{t-1}u_t)$  ,  $E(p_{t+1}u_t)$  as prices are endogenous
- $\bullet$  Want to find instruments that satisfy  $E(u_t|z_{t-1},z_t,z_{t+1})=0$

- Want to estimate  $\theta = (\omega, \beta^n, \beta^s)$  with GMM
- $\bullet$  Standard GMM finds  $\theta$  by minimising sample analog of unconditional moment conditions, e.g.,  $E(x_tu(\theta))=0$
- $\bullet$  Endogeneity: cannot use moments like  $E(p_tu_t)$  ,  $E(p_{t-1}u_t)$  ,  $E(p_{t+1}u_t)$  as prices are endogenous
- $\bullet$  Want to find instruments that satisfy  $E(u_t|z_{t-1},z_t,z_{t+1})=0$
- $\bullet$  And let GMM push sample analoga of, e.g.,  $E(u_t)$ ,  $E(z_tu_t)$ ,  $E(z_{t-1}u_t)$  ,  $E(z_{t+1}u_t)$  to zero

# Non-additively separable shocks

• Even given suitable instruments there is a practical problem:

$$E(z_t u(\theta)) = \int \int \int z_t (\log \, Q_t - \widehat{\log \, Q}_t(P_t, \varepsilon_t, \varepsilon_{t+1}, \theta)) d \, \Pr(\varepsilon_t) \, d \, \Pr(\varepsilon_{t+1}) \, d \, \Pr(Q_t, P_t)$$

# Non-additively separable shocks

• Even given suitable instruments there is a practical problem:

$$E(z_t u(\theta)) = \int \int \int z_t (\log \, Q_t - \widehat{\log \, Q}_t(P_t, \varepsilon_t, \varepsilon_{t+1}, \theta)) d \, \Pr(\varepsilon_t) \, d \, \Pr(\varepsilon_{t+1}) \, d \, \Pr(Q_t, P_t)$$

We cannot calculate the sample analog of this moment

# Non-additively separable shocks

• Even given suitable instruments there is a practical problem:

$$E(z_t u(\theta)) = \int \int \int z_t (\log \, Q_t - \widehat{\log \, Q}_t(P_t, \varepsilon_t, \varepsilon_{t+1}, \theta)) d \, \Pr(\varepsilon_t) \, d \, \Pr(\varepsilon_{t+1}) \, d \, \Pr(Q_t, P_t)$$

- We cannot calculate the sample analog of this moment
- $\bullet$  We neither observe  $(\varepsilon_t,\varepsilon_{t+1}),$  nor can analytically evaluate inner double integral

### **Method of Simulated Moments**

ullet Following Pakes and Pollard (1989) we replace the intractable function with a random function generated from a simulation sample s imes (n+1)

### **Method of Simulated Moments**

ullet Following Pakes and Pollard (1989) we replace the intractable function with a random function generated from a simulation sample s imes (n+1)

### **Method of Simulated Moments**

- Following Pakes and Pollard (1989) we replace the intractable function with a random function generated from a simulation sample  $s \times (n+1)$
- The algorithm is
  - 1. Draw s random vectors for  $\varepsilon_t$
  - 2. Fix a candidate parameter vector  $\theta_0$
  - 3. Calculate the simulation analog of the moments, e.g.,  $\hat{h}(P_t,\theta) = \tfrac{1}{s} \sum \log \, Q_t \widehat{\log \, Q}_t(P_t,\varepsilon_t,\varepsilon_{t+1},\theta_0)$
  - 4. iterate over 2. and 3. to find the  $\theta^*$  that pushes the sample analoga of the simulated moments as close to 0 as possible

## Simulation of MSM

MSM - Small Sample







 $\begin{array}{l} \text{Repetitions} = 1000 \\ \text{Sample Sizes: } 100, \ 200, \ 300 \end{array}$ 

## Simulation of MSM

MSM - Large Sample







 $\begin{array}{l} \text{Repetitions} = 1000 \\ \text{Sample Sizes: } 500, \ 5000, \ 50000 \end{array}$ 

# Histogram





### Results - Static

| Dependent variable                               | Log(Q)       |              |              |  |
|--------------------------------------------------|--------------|--------------|--------------|--|
|                                                  | OLS          | 2SLS         | 2SLS         |  |
| log(Price)                                       | -1.23***     | -1.931***    | -4.75**      |  |
|                                                  | (.243)       | (.413)       | (1.911)      |  |
| First Stage Instruments: Cartel Dates, Sugar Tax |              |              |              |  |
| F statistic for IV in first stage                |              | 3224         | 6587         |  |
| N                                                | 308          | 308          | 300          |  |
| Year FE                                          | $\checkmark$ | $\checkmark$ |              |  |
| Sugar Year FE                                    |              |              | $\checkmark$ |  |

Robust standard errors in parenthesis. \* p<0.10, \*\* p<0.05, \*\*\* p<0.01

Compare with Genesove and Mullin (1998): between approx. -2 and -1 (Sugar Year)

• Sugar is a storable product exhibiting significant dynamics in purchases

- Sugar is a storable product exhibiting significant dynamics in purchases
- In the presence of dynamics static models yield upward biased estimators of the own-price elasticity

- Sugar is a storable product exhibiting significant dynamics in purchases
- In the presence of dynamics static models yield upward biased estimators of the own-price elasticity
- A simple model of dynamic demand that accounts for a storage decision may thus improve estimates

- Sugar is a storable product exhibiting significant dynamics in purchases
- In the presence of dynamics static models yield upward biased estimators of the own-price elasticity
- A simple model of dynamic demand that accounts for a storage decision may thus improve estimates
- A method for aggregate data from the literature is inconsistent but can be refined to a consistent method of simulated moments estimator

## Work in Progress

• Want to estimate conduct parameter  $\theta$ , but only prices are observed

$$\frac{\theta}{N} = \eta(P) \frac{P - MC}{P}$$

#### Need to

- $\circ$  estimate elasticity of demand  $\eta o$  Demand Estimation (75%  $\checkmark$ )
  - $\qquad \hbox{Might also use } T>1 \ \hbox{or Rational Expectations} \\$
  - Use MSM with real data, perhaps incorporate importance sampling, or Schennach (2014)
- $\circ~$  estimate price-cost margin  $\frac{P-MC}{P} \rightarrow \text{Supply Estimation}~(\rightarrow~\text{next})$
- Supply and thus Conduct estimation may benefit from taking into account constraints from imports as in Salvo (2010)

- Sugar is a storable product exhibiting significant dynamics in purchases
- In the presence of dynamics static models yield upward biased estimators of the own-price elasticity
- A simple model of dynamic demand that accounts for a storage decision may thus improve estimates
- A method for aggregate data from the literature is inconsistent but can be refined to a consistent method of simulated moments estimator

# Appendix

### Conduct Parameter $\theta$

- $\bullet$  As if firm j thinks aggregate demand was a function of "conduct"  $Q(\theta_j)$
- ullet Then heta shows up in FOC, e.g., for static one-shot Cournot game

$$\text{FOC:}\quad P(Q) + P'(Q) \frac{\theta_j}{q_j} q_j = MC_j(q_j)$$

- ullet  $\theta_{j}$  measures deviation from given game like Cournot
- $\bullet$  Average  $\theta$  can be backed out from FOC, say under symmetry

$$\frac{\theta}{N} = \eta \frac{P - MC}{P}$$

 $\bullet$  If you know the number of firms, the elasticity of demand  $\eta,$  and price cost margin

## Interpretations

1.  $\theta$  as a reduced-form parameter for average degree of collusion

$$\frac{\theta}{N} = \frac{\frac{P - MC}{P}}{\frac{1}{\eta}}$$

Ratio of actual market power over maximum (i.e., monopoly) market power

Advantage over comparing prices

Back

- 2. Testing firm conduct with general FOC (now renewed interest!)  $\theta=0$  in perfect competition,  $\theta=\frac{1}{n}$  in symmetric Cournot  $\theta=1$  in monopoly
- 3. As if  $\theta$  captures firms' belief what game is played ("conjectural variation")

### **Identification of Conduct**

Goal: identify conduct separately from (slope of) marginal cost

### Four strategies:

- 1. assume constant marginal cost MC(q) = c
- 2. construct marginal cost estimates and plug them in
- 3. have a good demand rotator, that does not change marginal cost parameters and optimally also not shift demand
- focus on changes in conduct or assume that firms compete perfectly outside of cartel periods

# Classic Intuition why demand rotators identify conduct

Bresnahan (1982)



Fig. 2.

# Average prices during cartels (excl. tax)



# Comparison with world market price (Triest)



# Average difference to world market price (Triest)



# Price distribution for Simulation of Hendel & Nevo (2013)





Back

# Implied long-run elasticity

Long-run elasticity is quantity weighted average of storers and non-storers  $\beta$  (Back)

$$\begin{split} \frac{\partial Q}{\partial P} \frac{P}{Q} &= \frac{\frac{\partial}{\partial P} [\omega e^{\alpha + \beta^n p_t} + (1 - \omega) e^{\alpha + \beta^s p_t}]}{Q} P \\ &= \frac{\beta^n \omega e^{\alpha + \beta^n p_t} + \beta^s (1 - \omega) e^{\alpha + \beta^s p_t}}{\omega e^{\alpha + \beta^n p_t} + (1 - \omega) e^{\alpha + \beta^s p_t}} P \\ &= [\beta^n \frac{\omega e^{\alpha + \beta^n p_t}}{\omega e^{\alpha + \beta^n p_t} + (1 - \omega) e^{\alpha + \beta^s p_t}} + \beta^s \frac{(1 - \omega) e^{\alpha + \beta^s p_t}}{\omega e^{\alpha + \beta^n p_t} + (1 - \omega) e^{\alpha + \beta^s p_t}}] P \\ &= [\beta^n Q share_n + \beta^s Q share_s] P \end{split}$$

### Season

- Sugar was produced and thus sold mainly during last quarter of calendar year
- "sugar year" lasting from Sept-Aug captures harvest period ("Kampagne") Back



### References

- Berry ST, Haile PA (2014) Identification in Differentiated Products Markets Using Market Level Data. *Econometrica* 82(5):1749–1797.
- Bresnahan TF (1982) The oligopoly solution concept is identified. *Economics Letters* 10(1-2):87–92.
- Corts KS (1999) Conduct parameters and the measurement of market power. *Journal of Econometrics* 88(2):227–250.
- Duarte M, Magnolfi L, Sølvsten M, Sullivan C (2023) Testing Firm Conduct.
- Fink N (2016) Essays on Legal Cartels. PhD thesis. (JKU Linz, Linz).
- Genesove D, Mullin W (1997) The Sugar Institute Learns to Organize Information Exchange (National Bureau of Economic Research, Cambridge, MA).

# References (cont.)

- Genesove D, Mullin WP (1998) Testing Static Oligopoly Models: Conduct and Cost in the Sugar Industry, 1890-1914. *The RAND Journal of Economics* 29(2):355–377.
- Hendel I, Nevo A (2006) Measuring the Implications of Sales and Consumer Inventory Behavior. *Econometrica* 74(6):1637–1673.
- Hendel I, Nevo A (2013) Intertemporal Price Discrimination in Storable Goods Markets. *American Economic Review* 103(7):2722–2751.
- Magnolfi L, Sullivan C (2022) A comparison of testing and estimation of firm conduct. *Economics Letters* 212:110316.
- Miller NH, Weinberg MC (2017) Understanding the Price Effects of the Millercoors Joint Venture. *Econometrica* 85(6):1763–1791.
- Nevo A (1998) Identification of the oligopoly solution concept in a differentiated-products industry. *Economics Letters* 59(3):391–395.

# References (cont.)

- Pakes A, Pollard D (1989) Simulation and the Asymptotics of Optimization Estimators. *Econometrica* 57(5):1027–1057.
- Perrone H (2017) Demand for nondurable goods: A shortcut to estimating long-run price elasticities. *The RAND Journal of Economics* 48(3):856–873.
- Porter RH (1983) A Study of Cartel Stability: The Joint Executive Committee, 1880-1886. *The Bell Journal of Economics* 14(2):301–314.
- Salvo A (2010) Inferring market power under the threat of entry: The case of the Brazilian cement industry. *The RAND Journal of Economics* 41(2):326–350.
- Schennach SM (2014) Entropic Latent Variable Integration via Simulation. *Econometrica* 82(1):345–385.