Linear Algebra II

Felix Chen

Contents

1	Introduction	1
	1.1 recap	1
2	Eigenvectors and eigenvalues	3

§1 Introduction

Teacher: An Jinpeng

Homepage: https://www.math.pku.edu.cn/teachers/anjp/algebra

§1.1 recap

Direct sums of vector spaces Given a field F, let V_1, \ldots, V_k be vector spaces over F. The set

$$V_1 \times \cdots \times V_k = \{(v_1, \dots, v_k) \mid v_i \in V_i\}$$

forms a vector space by the operations

$$(v_1,\ldots,v_k)+(w_1,\ldots,w_k)=(v_1+w_1,\ldots,v_k+w_k)$$

and

$$c \cdot (v_1, \dots, v_k) = (cv_1, \dots, cv_k).$$

We call this vector space the external direct sum of V_1, \ldots, V_k , denoted by $\bigoplus_{i=1}^k V_i$. Obviously $(U \oplus V) \oplus W \simeq U \oplus (V \oplus W)$.

For every i, we have an injective linear map:

$$\tau_i : V_i \to \bigoplus_{j=1}^k V_j$$
$$v_i \mapsto (0, \dots, v_i, \dots, 0)$$

Lemma 1.1

If \mathcal{B}_i are the bases of V_i , then $\bigcup_{i=1}^k \tau_i(\mathcal{B}_i)$ is a basis for $\bigoplus_{i=1}^k V_i$. In paricular,

$$\dim \bigoplus_{i=1}^k V_i = \sum_{i=1}^k \dim V_i.$$

INTRODUCTION Linear Algebra II

Proof. Spanning part:

For any $(v_1, \ldots, v_k) \in \bigoplus_{i=1}^k V_i$,

$$v_i \in V_i = \operatorname{span}(\mathcal{B}_i) \implies \tau_i(v_i) \in \operatorname{span}(\tau_i(\mathcal{B})_i) \implies (v_1, \dots, v_k) \in \operatorname{span}\left(\bigcup_{i=1}^k \tau_i(\mathcal{B}_i)\right)$$

Linearly independent part:

If $\bigcup_{i=1}^k \tau_i(\mathcal{B}_i)$ is linearly dependent, i.e. exists $e_{ij} \in \mathcal{B}_i$ satisfying $\exists c_{ij} \in F$,

$$\sum_{i,j} c_{ij} \tau_i(e_{ij}) = 0.$$

This expands to

$$\left(\sum_{j=1}^{m_1} c_{1j}e_{1j}, \dots, \sum_{j=1}^{m_k} c_{kj}e_{kj}\right) = 0.$$

but e_{1j} are linear independent, which implies $c_{1j} = 0$.

Remark 1.2 — Let V be a vector space over F, and V_1, \ldots, V_k are subspaces of V.

Consider a linear map $\Phi: V_1 \oplus \cdots \oplus V_k \to V$ by $(v_1, \ldots, v_k) \mapsto v_1 + \cdots + v_k$.

Then $\operatorname{Im}(\Phi) = V_1 + \cdots + V_k$. If Φ is injective, i.e. V_1, \ldots, V_k are independent, we say $V_1 + \cdots + V_k$ the internal direct sum of V_1, \ldots, V_k .

In this case Φ gives an isomorphism of external and internal sums:

$$\Phi: \bigoplus_{i=1}^k V_i \xrightarrow{\sim} \sum_{i=1}^k V_i.$$

Lemma 1.3

The following statements are equivalent:

- 1. V_1, \ldots, V_k are independent;
- 2. For $v_i \in V_i$, (i = 1, ..., k), if $\sum_{i=1}^k v_i = 0$, then $v_i = 0$.
- 3. For any $1 \le i \le k$, $V_i \cap (V_1 + \dots + V_{i-1}) = \{0\}$.
- 4. Given arbitary bases \mathcal{B}_i of V_i , they are disjoint and their union is a basis of $\bigoplus_{i=1}^k V_i$.
- 5. If dim $V < +\infty$, they are also equivalent to:

$$\dim \sum_{i=1}^k V_i = \sum_{i=1}^k \dim V_i.$$

Proof. It's easy but verbose so I leave it out.

Example 1.4

Let char $F \neq 2$, $V = F^{n \times n}$, $V_1 = \{A \in V \mid A^t = A\}$, $V_2 = \{A \in V \mid A^t = -A\}$. Note that $V_1 \cap V_2 = \{0\}$, and $V_1 + V_2 = V$, hence $V_1 \oplus V_2 = V$ is an internal direct sum.

§2 Eigenvectors and eigenvalues

Example: google page rank?

Definition 2.1 (Diagonizable maps). Let V be a vector space over $F, T \in L(V)$ is a linear map from V to itself. If the matrix of T under a certain basis is diagonal, we say T is diagonizable.

In this case the linear map T can be simply described as a diagonal matrix, thus we'll study under what condition is T diagonizable.

Definition 2.2 (Eigenvalue). Let $T:V\to V$ be a linear map, for $c\in F$, let

$$V_c = \{ v \in V \mid Tv = cv \} = \ker(T - c \cdot \mathrm{id}_V).$$

If $V_c \neq \{0\}$, we call c an eigenvalue of T, and V_c the eigenspace of T with respect to c. the vectors in V_c are called eigenvectors.

All the eigenvalues of T are called the spectrum of T, denoted by $\sigma(T)$.

Proposition 2.3

Let \mathcal{B} be a basis of V, then $[T]_{\mathcal{B}}$ is diagonizable \iff vectors in \mathcal{B} are all eigenvectors.

Proof. Let $\mathcal{B} = \{e_1, \dots, e_k\}, A = [T]_{\mathcal{B}}$.

$$Te_j = \sum_{i=1}^k A_{ij} e_i.$$

So A is diagonal \iff $A_{ij} = 0$ when $i \neq j$,

 $\iff \exists c_j \in F, Te_j = c_j e_j,$

 \iff all the vectors e_i are eigenvectors.

Example 2.4

Let $V = F^{n \times n}$, then V_{sym} is the eigenspace of 1, and $V_{antisym}$ is the eigenspace of -1.

Lemma 2.5

Let T be a linear operator, then

$$\sigma(T) = \{ c \in F \mid \det(c \cdot id_V - T) = 0 \}.$$

Proof. $V_c = \ker(c \cdot \mathrm{id}_V - T)$,

$$c \in \sigma(T) \iff V_c \neq \{0\} \iff \det(c \cdot \mathrm{id}_V - T) = 0.$$