11. We know that $\sin(0) = 0$ and $\sin(\pi) = 0$.

Thus, 0 and π have the same image.

So, *f* is many-one.

Range $(f) = [-1, 1] \subset R$. Hence, f is into.

So, f is neither one-one nor onto.

12.
$$f(n_1) = f(n_2) \Rightarrow n_1^2 + n_1 + 1 = n_2^2 + n_2 + 1$$

$$\Rightarrow (n_1^2 - n_2^2) + (n_1 - n_2) = 0$$

$$\Rightarrow (n_1 - n_2)(n_1 + n_2 + 1) = 0$$

$$\Rightarrow n_1 - n_2 = 0 \Rightarrow n_1 = n_2.$$

 \therefore f is one-one.

But,
$$f(n) = 1 \implies n^2 + n + 1 = 1 \implies n^2 + n = 0$$

 $\implies n(n+1) = 0 \implies n = 0 \text{ or } n = -1$

And, none of 0 and -1 is a natural number.

Thus, $1 \in N$ has no pre-image in N.

 \therefore f is into.

14. Dom (f) = R. Also, $y = x^2 + 1 \implies x = \sqrt{y - 1}$.

x is defined when $y - 1 \ge 0$, i.e., $y \ge 1$.

.. range
$$(f) = \{y \in R : y \ge 1\}.$$

15. g is not a function, since 1 has two images under g.

16. When *x* is real, $1 + x^2 \neq 0$. So, dom (*f*) = *R*.

$$y = \frac{x^2}{(1+x^2)} \implies x^2(1-y) = y \implies x = \sqrt{\frac{y}{1-y}}.$$

For x to be real, $\frac{y}{(1-y)} \ge 0$ and $(1-y) \ne 0$.

:. range $(f) = \{y \in R : 0 \le y < 1\}$.

Also, 1 and –1 have the same image $\left(\frac{1}{2}\right)$.

Composition of Functions

Let $f: A \to B$ and $g: B \to C$ be two given functions. Then, the composition of f and g, denoted by $g \circ f$ is the function, defined by

$$(g \circ f): A \to C: (g \circ f)(x) = g\{f(x)\} \ \forall \ x \in A.$$

Clearly, $dom(g \circ f) = dom(f)$.

Also, $g \circ f$ is defined only when range $(f) \subseteq dom(g)$.

REMARK $(f \circ g)$ is defined only when range $(g) \subseteq \text{dom}(f)$. And, dom $(f \circ g) = \text{dom}(g)$.