Thị giác máy tính Bài 6: Calibration

Nội dung

- · Camera và phép chiếu
- Tham số camera và hiệu chỉnh camera
- · Chỉnh méo

2

Điểm vô cực và đường chân trời

- Tất cả các đường thẳng song song giao nhau tại 1 điểm trong ảnh: điểm vô cực vanishing point
 - // = khác điểm xuất phát cùng hướng
 - Vanishing point: đại diện cho hướng đó
 - Trong ảnh có thể có nhiều vanishing points
- Đường chân trời: giao giữa mặt phẳng ảnh và mặt phẳng đi qua tâm chiếu và song song với mặt phẳng chứa đối tượng quan sát

5

Phép chiếu phối cảnh

- Tại sao có thể cảm nhận được thế giới 3D trong bức ảnh?
 - Do phép chiếu phối cảnh
- Ngoài ra, có thể cảm nhận thế giới 3D
 - Do texture
 - Do đổ bóng
 - Do chuyển động

http://www.julianbeever.net/pave.htm

Phép chiếu trong ảnh (Projection)

- Là phép ánh xạ từ 1 điểm trên thế giới thực (3d) thành 1 điểm toa độ ảnh (2D)
- Trong 1 hệ thống quang học, thường có 1 trong 2 phép chiếu:
 - Phép chiếu phối cảnh (perspective projection)
 - Ảnh nhìn thấy trông như ảnh thế giới thực 3D
 - Phép chiếu trực giao (orthographic projection).

6

Phép chiếu phối cảnh

- Các tia chiếu:
 - không song song với nhau
 - xuất phát từ tâm chiếu
- Tạo ra hiệu ứng
 - về khoảng cách xa gần → cảm giác về độ sâu của đối tương trong thế giới thật
- Tham số:
 - Centre of projection (COP)
 - field of view (θ, ϕ)
 - projection direction
 - up direction

· ·

Biến đổi affine

 Là biến đổi căn bản gồm các phép tịnh tiến, xoay, kéo giãn, tỉ lệ

10

Phép chiếu trực giao

 Là một trường hợp đặc biệt của phép chiếu phối cảnh

- tia chiếu vuông góc với mặt phẳng chiếu thường dùng mặt phẳng z=0
- → còn được gọi là "parallel projection":

$$(x, y, z) \rightarrow (x, y)$$

- Thường dùng trong các hệ thống ống kính tele

11

14

Nội dung

- Camera và phép chiếu
- Tham số camera và hiệu chỉnh camera
- Chỉnh méo

VARIOUR VINGROUP

Homogeneous coordinates

Line:
$$ax + by + c = 0$$

$$line_i = \begin{bmatrix} \overline{a} \\ b \\ c \end{bmatrix}$$

Point
$$(x, y)$$
 $p_i = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

$$p_i = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Line is defined by 2 points:

$$line_{ij} = p_i \times p_j$$

 $q_{ii} = line_i \times line_i$ Intersection between 2 lines:

21

Homogeneous coordinates: Why?

- Basic 2D transformation in cartesian coordinates:
 - Rotation
 - Scaling
 - Translation

23

Homogeneous coordinates

Matrix multiplication

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \quad \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \qquad \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Homogeneous coordinates: Why?

- Basic 2D transformation in cartesian coordinates:
 - Rotation: matrix multiplication

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

$$P' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Homogeneous coordinates: Why?

- Basic 2D transformation in cartesian coordinates:
 - Scaling: matrix multiplication

$$x' = S_{x^*} x$$
$$y' = S_{y^*} y$$

$$P' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

25

Homogeneous coordinates: Why?

- · Basic 2D transformation in Homogeneous coordinates:
 - transformation = matrix multiplication

General transformation matrix =

Scaling

Translation

$$\begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & T_{x} \\ 0 & 1 & T_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Homogeneous coordinates: Why?

- Basic 2D transformation in cartesian coordinates:
 - Translation: matrix addition

$$x' = x + T_{x}$$
$$y' = y + T_{y}$$

26

1) Tham số ngoài của camera

- Vị trí và hướng của camera → phép biến đổi trong KG 3D :
 - Phép dịch T: chuyển gốc tạo độ môi trường về trùng với vị trí hệ quy
 - Phép quay R: chỉnh để các trục cho cùng hướng với trục camera

1) Tham số ngoài của camera

Tham số ngoài: R et T

$$P_c = R \cdot P_e + T$$

Homogeneous coordinates:

$$\begin{pmatrix} x_c \cdot w \\ y_c \cdot w \\ z_c \cdot w \\ w \end{pmatrix} = \begin{pmatrix} r_{x/x} & r_{x/y} & r_{x/z} & t_x \\ r_{y/x} & r_{y/y} & r_{y/z} & t_y \\ r_{z/x} & r_{z/y} & r_{z/z} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_e \\ y_e \\ z_e \\ 1 \end{pmatrix} = \begin{bmatrix} R & t \end{bmatrix} P_e = T_1 \cdot P_e$$

29

3) Tham số trong camera

- Chuyển từ tọa độ 2D camera sang tọa độ trong hệ quy chiếu ảnh:
 - (c_x, c_v): tâm ảnh
 - (s_x, s_y): hệ số scale của điểm ảnh (pixels/meter)
 - (f/s_X, f/s_Y)

$$\begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix} = \begin{pmatrix} 1/s_x & 0 & c_x \\ 0 & 1/s_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_c' \\ y_c' \\ 1 \end{pmatrix}$$

Homogeneous coordinates

2) Phép chiếu phối cảnh (perspective projection)

f: tiêu cự camera (tham số trong)

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{-1}{f} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{f} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Mô hình camera

Calibration matrix K

 $P_i = \mathbf{P} P_e = K[R \ t] P_e$

Camera matrix (một số tài liệu cũng gọi là calibration matrix). Nếu P biết => K cũng tính được

32

Mô hình camera

Trong trường hợp tổng quát, ma trận K được biểu diễn như sau

$$\mathbf{K} = \begin{bmatrix} -f & s & c_x \\ 0 & -\alpha f & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

VINEIGDATA VINEIG

33

Vanishing point

$$P_{i}^{vp} = K[R \ t] \cdot \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} = KR \begin{bmatrix} x \\ y \\ z \end{bmatrix} = K \begin{bmatrix} x_{R} \\ y_{R} \\ z_{R} \end{bmatrix}$$

VINEIGDATA VINGRO

35

Camera calibration

- Tìm ma trận **P**:
 - Do tất cả các tham số đều được tính tương đối với 1 hệ số tỷ lệ == > đặt $p_{12} = 1$
 - P gồm 11 biến cần xác định
 - Cần 5 ½ điểm
 - Cần nhiều điểm hơn để giảm lỗi

$$\mathbf{P} = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

- Giải pháp tối ưu
 - · Least squares method
 - SVD (Singular value decomposition)

VINBIGDATA VINGRO

3/1

34

Calibration target

- Sử dụng 1 vật tham chiếu để tìm P
- Đối tượng tham chiếu cần chứa hình dáng để phát hiện (góc, tâm hình tròn), và vị trí của chúng là dễ xác định trong hệ quy chiếu của cảnh.
- Đối tượng tham chiếu phải chứa các điểm tham chiêu không đồng phẳng

37

Ma trận P dùng để làm gì?

• Tính được các tham số trong và ngoài (K, R, t)

VINEIGOATA VINGROI

- Tính được các tham số trong và ngoài
- Chỉnh sửa ảnh
 - Sửa lỗi méo do lens

- Xác định được tọa độ điểm ảnh cho 1 điểm bất kỳ trong không gian thực.
- Xác định được đường thẳng trong không gian 3D được chiếu thành 1 điểm trên ảnh

38

Phân rã Camera Matrix

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 \ p_9 & p_{10} & p_{11} \end{array}
ight| egin{array}{c} p_4 \ p_8 \ p_{12} \end{array}
ight] \qquad egin{array}{c} \mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}] \ = \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}] \ = [\mathbf{M}|-\mathbf{M}\mathbf{c}] \end{array}$$

Find the camera center C

What is the projection of the camera center?

$$\mathbf{Pc}=\mathbf{0}$$

Solve?

MAC COME

Phân rã Camera Matrix

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 \ p_9 & p_{10} & p_{11} \end{array}
ight| egin{array}{c} p_4 \ p_8 \ p_{12} \end{array}
ight] \qquad egin{array}{c} \mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}] \ = \mathbf{K}[\mathbf{R}| - \mathbf{Rc}] \ = [\mathbf{M}| - \mathbf{Mc}] \end{array}$$

Find the camera center \boldsymbol{C}

Pc = 0

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic **K** and rotation **R**

M = KR

QR decomposition

41

Calibration using a calibration target (reference object)

Sử dụng 1 object biết trước đặt trong cảnh:

- Xác định các điểm tương ứng giữa ảnh và điểm thật 3D
- Tìm ánh xạ tương ứng từ cảnh vào ảnh

Vấn đề:

- Cần thông tin hình học chính xác của đối tượng tham chiếu
- Cần biết sự tương ứng của điểm 3D và điểm 2D trong ảnh thu được

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, oldsymbol{x}_i\}$ point in point in the 3D space image

Where do we get these matched points from?

and camera model $oldsymbol{x} = oldsymbol{f}(\mathbf{X}; oldsymbol{p}) = \mathbf{P}\mathbf{X}$ projection parameters model Camera material Camera material model (Camera material Camera ma

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

42

Calibration using a calibration target (reference object)

Ưu điểm:

- Đơn giản
- Rõ ràng

Nhươc:

- Không mô hình méo xuyên tâm (radial distorsion)
- Không tối thiểu lỗi
- → Phương pháp phi tuyến được ưu chuộng hơn
 - Định nghĩa hàm lỗi E giữa hình chiếu của điểm 3D và điểm ảnh
 - -E : hàm phi tuyến của các tham số trong, ngoài và méo xuyên tâm
 - Tối thiểu E

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{cccc} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array}\right] \left[\begin{array}{c} X \\ Y \\ Z \\ 1 \end{array}\right]$$

Heterogeneous coordinates

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

NOTICE VICENCE V

45

Radial distortion

What causes this distortion?

VINEIGDATA VINGROUP

47

Vicana

46

Ideal: Distorted

$$x' = f \frac{x}{z}$$
 $x'' = \frac{1}{\lambda}x'$
 $y' = f \frac{y}{z}$ $y'' = \frac{1}{\lambda}y'$ $\lambda = 1 + k_1 r^2 + k_2 r^4 + \cdots$

50

Nội dung

- Camera và phép chiếu
- Tham số camera và hiệu chỉnh camera
- · Chỉnh méo do lens

VINBIGDATA VINE

Idea

- · Vật tham chiếu: bàn cờ
 - Gồm các ô bàn cờ có cấu hình và kích thước biết trước
 - Thường dùng trong quá trình calibration để xác định
 - tham số trong
 - góc chụp của mỗi camera

- Dùng 1 bàn cờ, xác định tọa độ các góc
 - → object point
- · Ảnh bàn cờ ở các góc khác nhau
 - → Phát hiện các điểm góc trên ảnh → image point
- (object point, image point)
 - → Xác định tham số trong, ngoài, tham số méo → chỉnh méo

53

References

- Lecture 15, 16: CS 376: Computer Vision, Kristen Grauman, University of Texas at Austin
- · Vision par Ordinateur, Alain Boucher, IFI
- Z. Zhang, "A flexible new technique for camera calibration," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov. 2000, doi: 10.1109/34.888718.

Nội dung

- Camera và phép chiếu
- Tham số camera và hiệu chỉnh camera
- Chỉnh méo do lens
- Thực hành chỉnh méo len

58

