Finite Automata Esoterica (Section 11.3)

NFA to DFA

- The only thing we are going to cover from this section is how to transform an NFA into a DFA.
- First we define a λ -closure of a state s, denoted $\lambda(s)$, to be the set consisting of s together with all states that can be reached from s by traversing λ -edges. The λ -closure of a set S of states, denoted by $\lambda(S)$, is the union of the λ -closures of the states in S.

λ -closure examples

Given the following NFA as a graph and as a transition table:

Example λ -closures

Some same λ -closures for the previous NFA are:

- $\lambda(0) = \{0, 1, 2\}$
- $\lambda(1) = \{1, 2\}$
- $\lambda(2) = \{2\}$
- $\lambda(\varnothing) = \varnothing$
- $\lambda(\{1,2\}) = \{1,2\}$
- $\lambda(\{0,1,2\}) = \{0,1,2\}$

Transform an NFA to a DFA

Algorithm: Construct a DFA table T_D from an NFA table T_N as follows:

- 1. The start state of the DFA is $\lambda(s)$, where s is the start state of the NFA.
- 2. If $\{s_1, \ldots, s_n\}$ is a DFA state and $a \in A$, then:
 - $T_D(\{s_1,\ldots,s_n\},a) = \lambda(T_N(s_1,a)\cup\ldots\cup T_N(s_n,a))$
- 3. A DFA state is final if one of its elements is an NFA final state.

Example

Given the following NFA:

Solution

The algorithm constructs the following DFA transition table T_D , where we can simplify it by renaming the states as shown on the right:

	T_D	a	b		T_D	a	Ь
S,F	{0,3}	{3}	$\{0, 1, 3\}$	S,F			
F	{3}	{3}	Ø	F	1	1	5
	$\{0, 1, 3\}$			F	2	3	2
F	$\{2, 3\}$	{3}	{2}		3		
F	{2}	Ø	{2}	F	4	5	4
	Ø	Ø	Ø		5	5	5

Another Example

Given the following NFA:

Solution

The algorithm constructs the following DFA transition table T_D , where we can simplify it by renaming the states as shown on the right:

	T_D	a	Ь		T_D	а	b
S	{0,3}	{1, 2, 3}	Ø		0		
F	$\{1, 2, 3\}$	{2,3}	{2}	F	1	2	3
F	{2,3}	{2,3}	Ø	F	2		
F	{2}	Ø	Ø	F	3	4	4
	Ø	Ø	Ø		4	4	4

Rest of the section

The rest of this section is about minimizing the number of states in a DFA. We will not cover that topic, but I guess you should know that it is a thing that can be done.