icipe

Fruit Fly Management Activities in East Africa: State of the art

Sunday Ekesi Leader, African fruit fly programme (AFFP) icipe, Nairobi, Kenya

Technical and Socioeconomic Background

- ☐ In East Africa the horticultural industry is very dynamic and known to be the fastest growing agricultural sub-sector
- Horticulture play a major role in the economy:
 - major source of income; ensures food security
 - creates job (employs over 4 million people in East Africa)
- ☐ Kenya: Horticulture earned US\$1 billion in 2008 overtaking tourism as the main source of foreign exchange
- ☐ Tanzania: US\$ 9.2 million
- ☐ For example, mango is a lucrative crop (export valued at US\$ 42 million annually)

Programme

Technical and socioeconomic background

☐ Fruit flies cause major production constrainst to horticulture, e.g. out of 1.9 million tonnes of mangoes produced annually in Africa about 30-50% (up to 760,000 tonnes) is destroyed by fruit flies
☐ The fruit fly species that cause the damage are very little known (Ceratitis
cosyra, C. fasciventris, C. rosa, C. anonae and most recently Bactrocera invadens)
☐ Bactrocera invadens is an invasive species and is rapidly displacing the native
Ceratitis species listed above
☐ All these fruit fly species also have the potential to invade other tropical regions
and are listed quarantine pests
☐ The huge damage they cause is associated to lack of local expertise and
affordable technologies for management of African fruit flies.

African Fruit Fly Initiative (AFFI) – Born in 1999

Objectives...

□ Establish a regional network on African fruit flies and link it with similar network existing and operating in other regions
☐ Assess the economic scale and implications of the FF problem in Africa
☐ Develop an IPM package (based on bait, biopesticide, parasitoids, orchard sanitation) for management of the fruit fly complex
☐ Conduct on-farm evaluation and demonstrations of the fruit fly management technology in several countries in Africa
☐ Develop locally produced alternatives to expensive imported products (baits, biopesticides)
☐ Commercialise the fruit fly management products: baits, pathogens and traps

African Fruit Fly Programme

AFFI Objectives ...

African Insect Science for Food and Health

☐ Build local capacity by creating a cadre of young African experts trained in fruit
fly biology and management at MSc and PhD level
☐ Organise and train National Fruit Fly Teams in the participating African countries
☐ Train large group of trainers for technology dissemination at the national level
(NARS)
☐ Produce support and training materials to be used in the participating
countries for training local trainers and broadcasting the technology (in English,
French and selected local languages)
☐ Provide information and tools to build local and regional capacity for rational
quarantine setting and Pest Risk Analysis (fruit fly identification tools, host range
databases and fruit fly distribution maps)
icipe

AFFI Accomplishments

☐ A network of AFFI established (over 10 African countries, several technical
agencies, regional and commodity bodies)
☐ Fruit infestation levels and yield losses assessed in participating countries (10-
80% on mango) and colonies of the flies established
☐ Control and monitoring methods based on commercially available attractants
evaluated and large-scale on-farm evaluation completed in 5 countries
☐ Food bait effective against native fruit fly species developed, which could be
locally produced from locally available materials (waste brewer's yeast at 10-15% of
the costs of the imported ones)
☐ Entomopathogenic fungi identified and tested, which could replace pesticides

used in fruit fly control (potential for pesticide-free or even organic fruit growing)

AFFI Accomplishments

☐ Colonies of 3 parasitoid species established and their host relations characterised			
□ Parasitoids shipped to California, Hawaii, Guatemala, St Helena			
☐ Conduct studies on fruit fly behavioral ecology, population genetics and molecular identification			
☐ Built regional capacity for quarantine setting through production and distribution of user-friendly taxonomic tools, maps of fruit fly distribution in Africa, and creation of database			
□Training and capacity building in progress:			
☐ 8 African PhD students trained and 3 others still enrolled			
□15 advanced training courses organised for NPPOs/NARs			
□National fruit fly teams established in 6 African countries			

Network of AFFI Collaborators in Africa

- Kenya
- Tanzania
- Uganda
- Sudan
- Nigeria
- Cote d'Ivoire
- Benin
- South Africa
- Namibia
- Ethiopia
- Ghana
- Mozambique
- Cape Verde

Request

- Guinea
- Burkina Faso
- DRC

Core operations: Kenya, Tanzania, Uganda, Nigeria, Cote d'Ivoire

AFFI Re-named

In 2005, AFFI was renamed African Fruit Fly Program (AFFP)

☐ Core Operations (Monito	ring, suppression, postharvest, capacity building)	
☐ Kenya		
□ Tanzania		
☐ Benin	GTZ/BMZ, FAO, IAEA	
□ Uganda		
■ Mozambique		
☐ Limited operations (Monitoring/Surveillance, MAT, Capacity building)		
☐ South Africa		
☐ Rwanda		
□ Swaziland		
□ Botswana	USDA/APHIS, USAID, CRI,	
□ Ethiopia	SAAGA	
☐ Sudan		

■ Nigeria

Challenges

- □ IFAD grants ended (Main donor to AFFI)
- ☐ Follow-up funds from the CFC was put on hold
- ☐ Extensive request for network expansion and collaborators
- ☐ Increasing threats of invasive species
- ☐ Re-assessment of IPM package against new invasive
- Limited donor funding

Project operational block

- ☐ Block 1: Bio-ecological studies
- ☐ Block 2: Classical biological control
- □ Block 3: IPM
- □ Block 4: Post harvest treatment
- ☐ Block 5: Capacity building

African Insect Science for Food and He

Block 1 – Bioecological studies

B. invadens is now known from 28 Africa countries and still extending its range
It is an emerging polyphagous pests recorded from over 40 host plants (cultivated and wild)
Spatio-temporal distribution shows clear preference to field borders
Morphometric studies completed and depicted that <i>B. invadens</i> could not be separated from other <i>Bactrocera</i> within the <i>B. dorsalis</i> complex.
A total of 11 polymorphic microsatellite loci have been isolated and characterised from <i>B. invadens</i> – relevance for quarantine officers
Annual population dynamic of <i>B. invadens</i> show a clear peak abundance between October-December with a small peak in Jun-Jul (mango fruiting period).
Fruit infestation from the ground were generally higher than fruits collected from

the tree; highlights importance of orchard sanitation

Block 2- Classical biological control

- No native parasitoid have been found attacking B. invadens in over 70,000 fruits collected across sub-Saharan Africa
- Exploration of natural enemies of B. invadens initiated in Sri Lanka Seven parasitoid species recovered and biological studies on target pest initiated
- □ Two parasitoids species (Fopius arisanus and Diachasmimorpha longicaudata) imported from Hawaii pre-releases studies conducted and experimental releases initiated in 3 target countries
- Recovery of released parasitoid documented from Kenya and Benin.

Output 3 – IPM technology

Food baits effective against <i>B. invadens</i> identified, which could be produced from locally available waste brewer's yeast at 10-15% of the costs of the imported ones
Several isolates of entomopathogenic fungi have been identified and tested, which could replace pesticides used in fruit fly and MSW control (potential for pesticide-free or even organic fruit growing)
Application of M. anisopliae in bait stations utilizing waste brewer's yeast resulted in over 80% suppression of <i>B. invadens</i> populations
Field suppression trials revealed up to 77% suppression of <i>B. invadens</i> and native <i>Ceratitis</i> species by combined application of GF-120 and <i>M. anisopliae</i> and mazoferm and locally available soft pesticides
Mazoferm is locally available and cheap but GF-120 is not registered in E/Africa
Male annihilation also hold significant promise in management – product not yet registered in Kenya and several African countries

Block 4- Post harvest treatment

- On citrus, B. invadens development assessed
- ☐ The 3rd instar found to be the most cold tolerant stage at 1.1°C
- Assessment of duration of exposure to achieve probit 9 level of mortality (99.9968) completed
- ☐ Similar protocol is being applied to avocado
- ☐ Hot treatment trials on mango underway

Pratique Pour la Gestion e Mouches des ruits (Tephritid) d'Importance **Economique** en Afrique Edite par S. Ekesi et M.K. Billah Deuxieme Edition USDA

Block 6: Managerial structure

Committee and responsibilities

- 1. Project Coordination committee (PCC)
- 2. Technical Advisory Committee (TAC)
- 3. Project steering committee (PSC)
- 4. National Fruit Fly Team (NFFT)
 - ✓ Coordination and supervision
 - ✓ Policy issues and funding mobilisation
 - Technical oversight of operations and international/national recognition
 - ✓ Monitoring and evaluation
 - Priority settings and adjustment according to resources
 - ✓ Budget control and accounting
 - ✓ Contact with donors, reporting
 - ✓ Maintenance of AFFnet

Summary of available control options

Proven pre-harvest management options based on AFFP/icipe research

Systematic monitoring for pest population/trapping in key partner countries
Baiting techniques (use of food baits such as waste brewer's yeast, mazoferm, GF-120) – apply on 1 m ² of canopy weekly
Male annihilation with methyl eugenol as an IPM component
Soil inoculation of the fungus <i>Metarhizium anisopliae</i> at the onset of fruiting and use in baiting stations targeting adults
Orchard sanitation – weekly collection of fallen fruits into augmentorium
Release of <i>Fopius arisanus</i> (egg parasitoids) – Parasitoid culture available at <i>icipe</i> and IITA
The above could bring down the population of <i>B. invadens</i> by over 70% (67% reduction in rejection at one benchmark site – Embu)
However for quarantine sensitive market, post harvest treatment will be required. Parameters are being generated for citrus, avocado, manyo!

Lessons

☐ There is the need for understanding and synergy between different development partners
☐ Single bullet management approach is inefficient
☐ Interventions should be geared towards compliance with export market (also help boost domestic urban market)
☐ Standard required for export market increase adoption of new technologies
☐ Certain management packages are expensive for smallholder (need for local product development)
☐ Stringent market requirement (certification) threatens smallholders
☐ There is the need to link farmers to marketing channels
☐ Identify and work with successful functional farmers group to help technology diffusion
☐ Poor phytosanitary management skill threatens invasion by alien pests
☐ Commitment by regional bodies crucial to all efforts icipe African Insect Science for Food and Health

Proposed synergies/partnership – East & West

Subject area	icipe	IITA/CIRAD	CIRAD
Bioecological studies	x	X	x
Local Bait development	X	X	
Entomopathogens	X		
Classical biocontrol	X	x	
Ant technology		X	
Post harvest treatment	X		X
Technology transfer	X	X	
Capacity building	X	X	X
Databasing	X	X	
Phytosanitary magt.			X

Acknowledgement

- ☐ IFAD
- □ BMZ/GTZ
- ☐ FAO
- ☐ IAEA
- ☐ USDA-APHIS
- ☐ USAID
- ☐ ICIPE CORE
- ☐ Dutch DSO
- ☐ Staff of AFFP
- ☐ Fruit fliers worldwide

ICIPE
African Insect Science for Food and Health

