Probabilistic Graphical Models*

Bayesian Networks

*Thanks to Carlos Guestrin, Pedro Domingos and many others for making their slides publically available

What you need to know thus far

- Independence and conditional independence
- Definition of a Bayesian network
- Local Markov assumption
- The representation theorem
 - G is I-map for P iff P factorizes according to G
 - Interpretation

Independencies encoded in BN

- We said: all you need is the local Markov assumption (Xi ⊥ NonDescendants_{xi} | Pa_{xi})
- But then we talked about other (in)dependencies such as explaining away

- So, what are the independencies encoded by a BN?
 - Only assumption is local Markov but many other independencies can be derived using the algebra of conditional independencies!

Understanding independencies in BNs (with 3 nodes)

Local Markov Assumption: A variable X is independent of ist non-descendants given its parents and only ist parents:

 $(Xi \perp NonDescendants_{xi} \mid Pa_{xi})$

Indirect causal effect:

$$X \perp Y \mid Z$$

$$\neg X \perp Y$$

Indirect evidential effect:

$$X \perp Y \mid Z$$

$$\neg X \perp Y$$

Common cause:

$$X \perp Y \mid Z$$

Represent all

same distribution (v-structure) Common effect:

$$\begin{array}{c} X \perp Y \\ \neg X \perp Y \mid Z \end{array}$$

This can be generlized using the notion of active trails

A trail is an undirected path that never visits a node twice

This can be generlized using the notion of active trails

- A trail $X'_1 X'_2 \cdots X'_k$ is **active** (when some variables $O \subseteq \{X_1, ..., X_m\}$ are observed) **if** for each consecutive triplet in the trail it holds:
 - $-X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $-X_{i-1}\leftarrow X_i\leftarrow X_{i+1}$, and X_i is **not observed** $(X_i\not\in \mathbf{O})$
 - $-X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $-X_{i-1}$ → X_i ← X_{i+1} , and X_i is observed (X_i O), or one of its descendents (v-structure)

Intuitively, information flows a long active trials!

Active and Blocked Trails in BNs Some Examples –

Active and Blocked Trails in BNs Some Examples –

Information can flow if there is a trail x...y that is not blocked by z (active trail)

Active trail and independence?

• Theorem: Sets of variables X_i and X_j are independent given $Z \{X_1,...,X_n\}$ if there is no active trail between X_i and X_j when variables $Z \{X_1,...,X_n\}$ are observed

We say that X_i and X_j are d-separated given Z
 (dependence separation)

More generally: Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation: $I(G) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : d\text{-sep}_G(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$
- Theorem: Soundness of d-separation
 - If P factorizes over G then $I(G) \subseteq I(P)$ and not only $I_I(G) \subseteq I(P)$
- That means d-separation only captures true independencies

Existence of dependency when not d-separated

Theorem: If X and Y are not dseparated given Z, then X and Y are dependent given Z under some P that factorizes over G

Proof sketch:

- Choose an active trail between X and Y given Z
- Make this trail dependent
- Make all else uniform (independent) to avoid "canceling" out influence

 $\neg F \perp G \mid H$

Excursion: Faithful Distribution

 P is said to be faithful if it does not declare extra independence assumption that cannot be read from G

False	True
0.8	0.2

False	True
0.8	0.2

AB\C	False	True
FF	0.9	0.1
FT	0.9	0.1
TF	0.9	0.1
TT	0.9	0.1

P entails $C \perp A,B$!!

P is **not** faithful

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - For "almost all" distributions where P factorizes over G, we have that I(G) = I(P)
 - "almost all" distributions: except for a set of measure zero parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
 - Means that if X and Y are **not** d-separated given Z, then $\neg (X \perp Y \mid Z)$
- Proof sketch for very simple case:

Polynomials are either identical zero or they are non-zero almost everywhere. Thus, the equality happens with probability 0

d-sep says $\neg A \perp B$ but it holds $A \perp B$

i.e., P(B|A) = P(B), which is a polynomial equality over the space of CPDs

$$\theta_{B} = \theta_{B|A=t} = \theta_{A=t} \cdot \theta_{B|A=t} + (1 - \theta_{A=t}) \cdot \theta_{B|A=f}$$

Algorithm for d-separation: The Bayes' Ball

- Correct algorithm:
 - Shade in evidence
 - Start at source node
 - Try to reach target by search
 - States: pair of (node X, previous state S)
 - Successor function:
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent
 - If you can't reach a node, it's conditionally independent of the start node given evidence

Interpretation of completeness

- Theorem: Completeness of d-separation
 - For "almost all" distributions that P factorize over G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - P says $(X=x\perp Y=y \mid Z=z)$, $\forall x \in Val(X)$, $y \in Val(Y)$, $z \in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\exists x \in Val(X), y \in Val(Y), z \in Val(Z): P \text{ says } (X=x \perp Y=y \mid Z=z)$
 - Many factors may affect your grade

Excursion: Context specific indepencence

Excursion: Context specific indepencence

Excursion: Context specific independence

After observing a variable, some vars become independent

CSI Representation: Tree CPD

- Represent $P(X_i | \mathbf{Pa}_{x_i})$ using a decision tree
 - Path to leaf is an assignment to (a subset of) Paxi
 - Leaves are distributions over X_i given assignment of **Pa**_{xi} on path to leaf
- **Interpretation of leaf:**
 - For specific assignment of Pa_{Xi} on path to this leaf X_i is independent of other parents
- Representation can be exponentially smaller than equivalent table

irrelevant - E.0. irrelevant $J \perp S, L \mid A = no$ 4 params

Assuming binary RVs

Table: $O(2^k)$ In the strutcure: O(k)

Determinism and inference

- Determinism gives a little sparsity in table, but much bigger impact on inference
- Multiplying deterministic factor with other factor often introduces many new zeros
 - Operations related to theorem proving, e.g., unit resolution

	Lights		
_		ON	OFF
Battery Power	ОК	.99	.01
	WEAK	.20	.80
	DEAD	0	1

$$g(Y) = \prod f_j$$
 and $f_i(x_i) = 0$ then
all values of the $g(Y)$ table where
 $X_i = x_i$ will be zero

State-of-the-art Models ...

Often characterized by:

- Richness in local structure (determinism, CSI)
- Massiveness in size (10,000's variables)
- High connectivity (treewidth, explained later in class)

Enabled by:

- High level modeling tools:
 - relational, first order (more about this maybe later in class!!!!)
- Advances in machine learning
- New application areas (synthesis):
 - Bioinformatics (e.g. linkage analysis)
 - Sensor networks
- Exploiting local and relational structure a must!

- -If G is an I-map of P then $I_I(G) \subseteq I(P)$
- Also, it is always true that $I(G) \subseteq I(P)$ means d-separation is **sound**
- And for almost all Ps that factor over G, I(G) = I(P), P is faithful to G

What you need to know

- d-separation and independence
 - sound procedure for finding independencies

- existence of distributions with these independencies
- (almost) all independencies can be read directly from graph without looking at CPTs T(G) = T(P)
- Context-specific indpendence (CSI)
- Bayes' Ball

What's next

Inference

Is Inference in BNs hopeless?

- In general, yes!
 - Even approximate!
- In practice
 - Exploit structure
 - Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference
 - Approximate inference later this semester

Theorem:

Inference in Bayesian networks (even approximate, without proof) is NP-hard

General probabilistic inference

• Query: $P(X \mid e)$

Using def. of cond. prob.:

$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$
Headache

Normalization: (we stopped here) $P(X \mid e) \propto P(X, e)$

Probabilistic inference example

Inference seems exponential in number of variables!

Inference in Simple Chains

How do we compute

$$P(x_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2) = \sum_{x_1} P(x_1) P(x_2 \mid x_1)$$
CPDs

Inference in Simple Chains (cont.)

How do we compute $P(x_3)$?

• We already know how to compute $P(x_2)$...

$$P(x_2) = \sum_{x_1} P(x_1, x_2) = \sum_{x_1} P(x_1) P(x_2 \mid x_1)$$

Inference in Simple Chains (cont.)

How do we compute

$$P(x_n)$$

• Iteratively compute
$$P(x_1), P(x_2), P(x_3), \dots$$
 using

$$P(x_{i+1}) = \sum_{x_i \text{ computed}} P(x_i) P(x_{i+1} \mid x_i)$$

Complexity of inference: Simple Chains

 $O(n \cdot k^2)$ v.s. exponentially in n

Variable Elimination

General idea:

Write query in the form

$$P(x_n, \boldsymbol{e}) = \sum_{x_k} \cdots \sum_{x_3} \sum_{x_2} \prod_{i} P(x_i \mid pa_i)$$

- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

A More Complex Example

"Asia" network:

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$$

Eliminate: ν

Compute: $f_v(t) = \sum_{v} P(v)P(t|v)$

 $\Rightarrow \underline{f_v(t)}P(s)P(l\mid s)P(b\mid s)P(a\mid t,l)P(x\mid a)P(d\mid a,b)$

Note: $f_{\nu}(t) = P(t)$

In general, result of elimination is not necessarily a probability term

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$$

$$\Rightarrow f_{v}(t)P(s)P(l\mid s)P(b\mid s)P(a\mid t,l)P(x\mid a)P(d\mid a,b)$$

Eliminate: 5

Compute: $f_s(b,l) = \sum P(s)P(b|s)P(l|s)$

$$\Rightarrow f_{v}(t)f_{s}(b,l)P(a|t,l)P(x|a)P(d|a,b)$$

Summing on s results in a factor with two arguments $f_s(b,l)$ In general, result of elimination may be a function of several variables

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

$$P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$$

$$\Rightarrow f_{v}(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$$

Eliminate: x

Compute:
$$f_x(a) = \sum_{x} P(x \mid a)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)f_{x}(a)P(a|t,l)P(d|a,b)$$

Note: $f_{x}(a) = 1$ for all values of a!!

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

$$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)f_{x}(a)P(a|t,l)P(d|a,b)$$

Eliminate: †

Compute:
$$f_t(a,l) = \sum_t f_v(t) P(a \mid t, l)$$

 $\Rightarrow f_s(b,l) f_x(a) f_t(a,l) P(d \mid a,b)$

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b


```
P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)
   \Rightarrow f_{v}(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)
   \Rightarrow f_{v}(t)f_{s}(b,l)P(a|t,l)P(x|a)P(d|a,b)
   \Rightarrow f_{v}(t)f_{s}(b,l)f_{x}(a)P(a|t,l)P(d|a,b)
   \Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d \mid a,b)
Eliminate: /
Compute: f_l(a,b) = \sum f_s(b,l) f_t(a,l)
    \Rightarrow f_l(a,b)f_r(a)P(d \mid a,b)
```

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$$

$$\Rightarrow f_v(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)f_{s}(a)P(a|t,l)P(d|a,b)$$

$$\Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d \mid a,b)$$

$$\Rightarrow f_l(a,b)f_x(a)P(d \mid a,b) \Rightarrow f_a(b,d) \Rightarrow f_b(d)$$

Eliminate: a,b

Compute:
$$f_a(b,d) = \sum_a f_l(a,b) f_x(a) p(d | a,b)$$
 $f_b(d) = \sum_b f_a(b,d)$

Variable Elimination

- We now understand variable elimination as a sequence of rewriting operations
- Computation depends on order of elimination

How do we deal with evidence?

Suppose get evidence

We want to compute

$$P(L, V = t, S = f, D = t)$$

We start by writing the factors:

$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$

- Since we know that V = t, we don't need to eliminate V
- Instead, we can replace the factors P(V) and P(T/V) with

$$f_{P(V)} = P(V = t)$$
 $f_{p(T|V)}(T) = P(T | V = t)$

- This "selects" the appropriate parts of the original factors given the evidence
- Note that $f_{p(V)}$ is a constant, and thus does not appear in elimination of other variables

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)P(x \mid a)f_{P(d|a,b)}(a,b)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)P(x \mid a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)

• Initial factors, after setting evidence:

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)P(x \mid a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

Eliminating t, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_t(a,l)f_x(a)f_{P(d|a,b)}(a,b)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)

• Initial factors, after setting evidence:

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

Eliminating t, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_t(a,l)f_x(a)f_{P(d|a,b)}(a,b)$$

Eliminating a, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_a(b,l)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_x(a)f_{P(d|a,b)}(a,b)$$

Eliminating t, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

• Eliminating a_{r} we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_{a}(b,l)$$

Eliminating b, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_b(l)$$

Summary: Variable elimination algorithm

- Given a BN and a query P(X|e) / P(X,e)
- Instantiate evidence e

IMPORTANT!!!

- Prune non-active vars for {X,e}
- Choose an ordering on variables, e.g., X₁, ..., X_n
- Initial factors $\{f_1,...,f_n\}$: $f_i = P(X_i | Pa_{X_i})$ (CPT for X_i)
- For i = 1 to n, If $X_i \notin \{X, E\}$ t must be climinated
 - Collect factors f₁,...,f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- Variable X_i has been eliminated! Add g to the set of factors
- Normalize P(X,e) to obtain P(X|e)

Complexity of VE: (Poly)-tree graphs

Variable elimination order:

Start from "leaves" inwards:

- Start from skeleton!
- Choose a "root", any node
- Find topological order for root
- Eliminate variables in reverse order

Does not creat factors any bigger than original CPTs

Linear in CPT sizes!!! (versus exponential)

Distributor

SparkPlugs

Complexity of VE: General Case

During VE, we multiply and marginalize factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- Mult.: exponential in the number of involved vars
- Marg. : linear in the size of the product factor
- Exponential in the # of vars in intermediate factors, i.e., dominated by the largest intermediate factor

What's next

- Thus far: Variable elimination
 - (Often) Efficient algorithm for inference in graphical models
- Next: Understanding complexity of variable elimination in more detail
 - Will lead to cool junction tree algorithm later