Week of march 9th

Mapping Cases

N_C: Number of cores available

 N_{τ} : Number of Tasks available

- 1. $N_T \le N_C$: Easy distribution if the number of cores is more than the number of tasks.
- 2. $N_T > N_C$: If the number of tasks is greater than the number of cores, then the execution can take more than one generation. Currently, I am working on this. I know what vivek's emulator is doing for execution of multiple generations.

Vivek's Emulator

Baseline (random)	ops per task	Execution time
	1 1026.427692	31.09916683
	2 1024.641687	31.24511859
	3 1026.341718	32.20272548
	4 1026.400217	30.59070303
	5 1022.200646	31.97277931
	1025.202392	31.42209865
Baseline (I2f)		
	1 1027.920653	31.07045886
	2 1024.919197	31.03858136
	3 1023.031644	31.18779537
	4 1020.878482	31.35398596
	5 1020.671986	32.1969615
	1023.484392	31.36955661

Resource Workload Engine

Task selector Core selector

Task sorter Spatial binder

Executor

Figures taken from Vivek's Thesis**

IoT-SIM- Simulator for Edge environment

$$MI = f(DS),$$

$$Time_{proc} = \frac{MI}{CPU Capacity (MIPS)},$$

$$Total_Proc_Time_{MEL} = max(Time_{shrink}, Time_{proc}).$$

$$Time_{trans} = \frac{N_{packet}}{data \ rate_{P}},$$

Architecture

EMULATE

Setup for Edge Environment

NETWORK PROTOCOL

Technology	Frequency	Data Rate	Range	Power Usage	Cost		
2G/3G	Cellular Bands	10 Iviops	Several Miles	High	High		
Bluetooth/BLE	2.4Ghz	1, 2, 3 Mbps	~300 feet	Low	Low		
802.15.4	subGhz, 2.4GHz	40, 250 kbps	> 100 square miles	Low	Low		
LoRa	subGhz	< 50 kbps	1-3 miles	Low	Medium		
LTE Cat 0/1	Cellular Bands	1-10 Mbps	Several Miles	Medium	High		
NB-IoT	Cellular Bands	0.1-1 Mbps	Several Miles	Medium	High		
SigFox	subGhz	< 1 kbps	Several Miles	Low	Medium		
Weightless	subGhz	0.1-24 Mbps	Several Miles	Low	Low		
Wi-Fi	subGhz, 2.4Ghz, 5Ghz	0.1-54 Mbps	< 300 feet	Medium	Low		
WirelessHART	2.4Ghz	250 kbps	~300 feet	Medium	Medium		
ZigBee	2.4Ghz	250 kbps	~300 feet	Low	Medium		
Z-Wave	subGhz	40 kbps	~100 feet	Low	Medium		

Reference Architecture

TASK EVALUATOR: Identifies the characteristics associated with a task that are presented by the user such as minimum execution time required, minimum memory required, or/and latency range for completion.

RESOURCE EVALUATOR: For instance, evaluates the processing speed, memory capacity, filesystem type at a given time and pairs a resource with the given task for execution of the task.