National University of Colombia Department of Mathematics

Introduction to Optimization Linear Matrix Inequality

Jorge Luis Castillo Orduz

Show that the solution set of a linear matrix inequality is convex.

Solution

Given a linear matrix polynomial $A: \mathbb{R}^n \to SM(\mathbb{R}^{mxm})$ defined by:

$$A(x) = A_0 + x_1 A_1 + \dots + x_n A - n$$

where $SM(\mathbb{R}^{mxm})$ is the set of mxm symmetric matrices of real numbers, and matrices A_0, A_1, \dots, A_n are symmetric as well. We can form the following linear matrix inequality $A(x) \leq B_m$ whose solution set is $S := \{x \in \mathbb{R}^n \mid A(x) \leq B_m\}$. Then, this set S is the one to demonstrate is convex. Let $x, y \in S$ and $\lambda \in [0, 1]$. Hence:

$$A(\lambda x + (1 - \lambda)y) \leq B_{m}$$

$$A_{0} + (\lambda x_{1} + (1 - \lambda)y_{1})A_{1} + \dots + (\lambda x_{n} + (1 - \lambda)y_{n})A_{n} \leq B_{m}$$

$$A_{0} + \lambda x_{1}A_{1} + (1 - \lambda)yA_{1} + \dots + \lambda x_{n}A_{n} + (1 - \lambda)yA_{n} \leq B_{m}$$

$$A_{0} + \lambda(x_{1}A_{1} + \dots + x_{n}A_{n}) + (1 - \lambda)(y_{1}A_{1} + \dots + y_{n}A_{n}) \leq B_{m}$$

$$\lambda A(x) + (1 - \lambda)A(y) \leq B_{m}$$

Since $x, y \in S$ then $A(x) \leq B_m$ and $A(y) \leq B_m$. Since a convex combination of two positive semidefinite matrices is also positive semidefinite, we conclude that set S is convex.