Note: The following has been tested successfully on NU Discovery cluster

1. Connect to the Discovery cluster

2. Install/load Anaconda

We have two options here:

1. Obtain and install Miniconda executable specifically for python 2.7

Obtain:

```
$ wget https://repo.anaconda.com/miniconda/Miniconda2-py27_4.8.3-Linux-x86_64.sh
```

Install:

```
$ bash Miniconda2-py27_4.8.3-Linux-x86_64.sh
```

2. Load Anaconda module and activate it

```
$ module load anaconda2/2018.12
$ echo ". /shared/centos7/anaconda2/2018.12/etc/profile.d/conda.sh" >> ~/.bashrc
$ source ~/.bashrc
```

3. Reserve a gpu/multigpu compute node

```
$ srun -p gpu --nodes=1 --pty --gres=gpu:1 --time=04:00:00 --export=ALL /bin/bash
```

4. Activate the environment

If you went with the first option:

```
$ source miniconda2/bin/activate
```

If you went with the second option:

```
$ conda activate
```

If everything goes well, (base) will show up next to your username@computenode in shell, as

(base)[username@c0001]\$

5. Load the required modules

```
$ module load boost/1.63.0
$ module load cuda/10.2
```

6. Create a conda environemnt for PyGBe (takes a while)

First, delete the previously created pygbe-env environment from the old installation. You might have named it differently. If that's the case, you can see your environments at

```
$ ls ~/.conda/envs
```

To remove the old environment

```
$ conda remove -n pygbe-env --all
```

or delete the env folder

```
$ rm -rf ~/.conda/envs/pygbe-env
```

To create the new environment

```
$ conda create -n pygbe-env python=2.7
```

7. Activate the PyGBe environment

```
$ conda activate pygbe-env
```

8. Install the remaining dependencies

8.1 numpy and scipy

```
$ conda install numpy scipy
```

8.2 pycuda

before installing pycuda, we want to make sure there is absolutely no trace of previous installations left on your machine. So we delete them from the potential locations.

```
$ rm -rf ~/.conda/pkgs/pycuda*
$ rm -rf ~/.local/lib/python2.7/site-packages/pycuda*
```

Now install pycuda

```
$ pip install -Iv pycuda
```

9. Clone the repository

```
$ git clone https://github.com/alineu/pygbe.git
```

or

```
$ git clone git@github.com:alineu/pygbe.git
$ cd pygbe
```

10. checkout the asymmetric branch

```
$ git checkout asymmetric
```

11. Download and install SWIG

```
$ mkdir src
$ cd src
$ wget https://versaweb.dl.sourceforge.net/project/swig/swig/swig-3.0.12/swig-3.0.12.tar.gz
$ tar -xvzf swig-3.0.12.tar.gz
$ cd swig-3.0.12
$ ./configure --prefix=$PWD
$ make
$ make install
```

12. Install PyGBe and test the installation

12.1 Install

```
$ cd ../../bem_pycuda/
$ make all
```

12.2 Test

```
$ python main_asymmetric.py input_files/his.param input_files/his_stern.config --asymmetric --chargeForm
```

If the library is installed properly, you should see something like

```
Run started on:
Date: year/m/d
Time: hr:min:sec
Reading pqr for region 2 from ../geometry/his/his_prot.pqr
Reading surface 0 from file ../geometry/his/his_d01
Time load mesh: 0.036644
Removed areas=0: 0
Reading surface 1 from file ../geometry/his/his_d01_stern
Time load mesh: 0.041806
Removed areas=0: 81
Total elements: 1555
Total equations: 3110
. . .
. . .
Totals:
Esolv = -19.045255 \text{ kcal/mol}
Esurf = 0.000000 kcal/mol
Ecoul = -119.087367 \ kcal/mol
Time = 15.916039 s
```

13. Whenever you're done:

```
$ conda deactivate
$ conda deactivate
```

twice!

Note

Next time, when you connect to a GPU compute node you only need to run the following to enable and use PyGBe library:

Activate the Anaconda Module

If you installed Miniconda locally (via first option):

```
$ source activate miniconda2
```

otherwise.

```
$ module load anaconda2/2018.12
$ conda activate
```

Activate the PyGBe Environment

```
$ conda activate pygbe-env
```

Load the Rest of the Modules

```
$ module load boost/1.63.0
$ module load cuda/10.2
```

The library should be ready to use!

Important

You might have to add the location of pycuda library to your PATH if Python fails to import the library. You can do this by adding

```
export PATH=$PATH:path_to_pycuda
```

to your ~/.bashrc file (and then source it!). path_to_pycuda is the location where the pycuda library is installed, e.g. \$HOME/.conda/envs/pygbe-env/lib/python2.7/site-packages/pycuda If you don't know the location of pycuda library you can find it using

```
find ~ -type d -name 'pycuda*'
```