Teoretyczne Podstawy Informatyki Zadanie Domowe

Jakub Musiał 268442

Maj 2024

Lista 5 - Zadanie 32

Opis zadania

Pokazać, że dla gramatyki bezkontekstowej G nie jest rozstrzygalne, czy $L(G) = \Sigma^*$.

Rozwiązanie

Ustalmy alfabet Σ oraz weźmy instancję problemu odpowiedniości Posta nad Σ :

$$A = (a_1, ..., a_k)$$
 oraz $B = (b_1, ..., b_k)$ taką że $(\forall 1 \leq i \leq k)(a_i, b_i \in \Sigma^* \setminus \{\varepsilon\})$

Niech $\Sigma' = \Sigma \cup \{1, ..., k\}$, gdzie $\{1, ..., k\} \notin \Sigma$.

Stwórzmy gramatyki bezkontekstowe nad Σ' :

- $\bullet \ G_A: S_A -> a_i S_A i |a_i i|$
- $\bullet \ G_B: S_B > b_i S_B i | b_i i$

Gdzie gdzie $i \in \{1, ..., k\}$ oraz $a_i \in \Sigma$.

Zatem po pewnej sekwencji wyprowadzeń otrzymujemy słowa postaci:

$$S_A \to a_{i_1} S_A i_1 -> a_{i_1} a_{i_2} S_A i_2 i_1 \to \dots \to \underbrace{a_{i_1} a_{i_2} \dots a_{i_j}}_{a_{i_l} \in \Sigma} \underbrace{i_j i_{j-1} \dots i_1}_{i_l \in \{1, \dots, k\}}$$

oraz analogicznie dla wyprowadzeń w gramatyce G_B . Możemy zauważyć, że gramatyki G_A oraz G_B są jednoznaczne.

Dodatkowo możemy zauważyć, że jeżeli słowo w jest wyprowadzalne w G_A oraz w G_B , to istnieje rozwiązanie zadanej instancji problemu Posta. Otrzymujemy zatem:

$$L(G_A) \cap L(G_B) \neq \emptyset \iff \exists \ a_{i_1} a_{i_2} ... a_{i_j} i_j i_{j-1} ... i_1 = b_{i_1} b_{i_2} ... b_{i_j} i_j i_{j-1} ... i_1$$

Wtedy $i_1 i_2 ... i_j$ jest rozwiązaniem problemu Posta.

Analogicznie $L(G_A) \cap L(G_B) = \emptyset \iff PCP$ nie ma rozwiązania.

Zatem z nierozstrzygalności PCP widzimy, że pytanie, czy $L(G_A) \cap L(G_B) \neq \emptyset$ nie jest rozstrzygalne.

Wiemy z założenia, że gramatyki G_A i G_B są bezkontekstowe. Możemy zatem skonstruować dla nich PDA wg poniższego schematu:

- ullet Tworzymy k par stanów każda związana z ciągiem a_i
- ullet Dopóki widzimy na wejściu symbole z alfabetu Σ , to wrzucamy je na stos
- Gdy zobaczymy na wejści symbol $i_j \in \{1, ..., k\}$, to w stanach odpowiadających ciągowi a_{i_j} sprawdzamy, czy na szczycie stosu znajduje się $(a_{i_j})^R$. Jeśli nie, to przechodzimy do stanu śmietnikowego, który ignoruje resztę wejścia i nie jest stanem akceptującym. Jeśli tak, to przechodzimy dalej na wejściu znajduje się symbol $a \in \Sigma$, więc przechodzimy do stany śmietnikowego albo na wejści znajduje się symbol i_{j-1} , więc przeprowadzamy dla niego analogiczne rozumowanie w odpowiednich stanach
- Jeśli stos został opróżniony, nie odrzuciwszy wcześniej wejścia, to słowo jest akceptowane

oraz analogiczne dla gramatyki G_B .

Widzimy, że powyżej opisany automat jest zawsze determiniztyczny oraz zawsze odpowiada TAK lub NIE. Zatem zamieniając stany akceptujące z nieakceptującymi uzyskamy DPDA dla $L((G_A)^C)$ oraz $L((G_B)^C)$. Zatem mozemy wyznaczyć gramatyki bezkontekstowe $(G_A)^C$ oraz $(G_B)^C$.

Rozważmy zatem wcześniejszy problem. Mamy:

$$L(G_A) \cap L(G_B)$$
 $\begin{cases} \neq \varnothing & \text{PCP ma rozwiązanie} \\ = \varnothing & \text{PCP nie ma rozwiązania} \end{cases}$

Możemy jednak zauważyć, że:

$$\begin{cases}
L(G_A) \cap L(G_B) = \emptyset \iff \overline{L(G_A)} \cup \overline{L(G_B)} = \Sigma^* \\
L(G_A) \cap L(G_B) \neq \emptyset \iff \overline{L(G_A)} \cup \overline{L(G_B)} \neq \Sigma^*
\end{cases}$$

Gdzie $\overline{L(G)} = L(G^C)$.

Stąd możemy stwierdzić, że pytanie, czy $\overline{L(G_A)} \cup \overline{L(G_B)} = \Sigma^*$ jest równoważne pytaniu, czy PCP(A,B) ma rozwiązanie.

Możemy więc skonstruować gramatykę bezkontekstową $G:S\to S_A|S_B$ (gdzie S_A i S_B są symbolami startowymi gramatyk G_A i G_B), dla której łatwo zauważyć, że:

$$L(G) = L(G_A) \cup L(G_B)$$

Stąd pytanie, czy $L(G) = \Sigma^*$ sprowadza się do pytania, czy $L(G_A) \cup L(G_B) = \Sigma^*$, a zatem jest ono nierozstrzygalne na podstawie nierozstrzygalności PCP. \square