1 Языки

1.1 Алфавиты и слова

Определение

Пусть \mathcal{A} - произвольное множество. Тогда мы можем рассмотреть множество \mathcal{A} алфавит, и любой кортеж $(a_1, \ldots, a_n) \in \mathcal{A}^n$ - слово алфавита \mathcal{A} .

Обозначение

Если $(a_1, \ldots, a_n) \in \mathcal{A}^n$ является словом алфавита \mathcal{A} , то будем писать его без скобок и запятых:

$$a_1 \dots a_n \rightleftharpoons (a_1, \dots, a_n)$$

Определение

Пусть \mathcal{A} - алфавит. Тогда множество всех слов алфавита \mathcal{A} обозначается следующим образом

$$\mathcal{A}^* \rightleftharpoons \bigcup_{n \in \omega} \mathcal{A}^n$$

1.2 Конкатенация слов, подслова

Определение

Пусть $\alpha = a_1 \dots a_n$ и $\beta = b_1 \dots b_m$ - два слова алфавита \mathcal{A} . Тогда слово $a_1 \dots a_n b_1 \dots b_m$ называется конкатенацией слов α и β . Обозначается следующем образом:

$$\alpha \hat{\beta} \rightleftharpoons a_1 \dots a_n b_1 \dots b_m$$

Определение

Пусть α и β - два слова алфавита \mathcal{A} . Тогда β называется **подсловом** α , и обозначается следующим образом: $\beta \sqsubseteq \alpha$, тогда и только тогда, когда существуют такие слова $\gamma, \delta \in \mathcal{A}^*$, что $\alpha = \gamma \hat{\beta} \delta$. β называется **начальным** подсловом, тогда и только тогда, когда существует такое слово δ , что $\alpha = \beta \hat{\delta}$. Обозначается следующим образом $\beta \sqsubseteq_{beg} \alpha$

Замечание

Отношение \sqsubseteq на множестве \mathcal{A}^* является частичным порядком.

1.3 Язык алфавита ${\cal A}$

Определение

Пусть \mathcal{A} - алфавит. Тогда **языком** W алфавита \mathcal{A} является любое множество слов этого алфавита:

$$W \subset \mathcal{A}^*$$

пример

Пусть $\mathcal{A} = \{a, b, (,), +, *\}$. Тогда

- $W_1 = \{a + b * a, (a + b) * a, a\}$
- $W_2 = \{a, aa, aaa, aaaa, \ldots\}$
- $W_3 = \{+ab, +a*ab\}$
- $W_4 = \emptyset$

языки алфавита \mathcal{A}

1.4 Мощность языков

Теорема

Пусть $\mathcal{A} \neq \emptyset$ - алфавит. Тогда $|\mathcal{A}^*| = \max(\omega, |\mathcal{A}|).$

Доказательство

Покажем, что $|\mathcal{A}^*| \geq \omega$ и $|\mathcal{A}^*| \geq |\mathcal{A}|$. Действительно, если $a \in \mathcal{A}$, то $a \in \mathcal{A}^1$, следовательно, существует инъекция $id_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}^*$, тогда $|\mathcal{A}^*| \geq |\mathcal{A}|$. Так как существует некоторое $a \in \mathcal{A}$, отображение

$$f: n \mapsto \underbrace{(a, \dots, a)}_{n} \in \mathcal{A}^{*}$$

инъективно, отсюда следует, что $|\mathcal{A}^*| \geq \omega$. Обратное неравенство. Если \mathcal{A} конечное множество, то любое A^n конечно, и $\mathcal{A}^* = \cup \{\mathcal{A}^n | n \in \omega\}$ - счетно. Если \mathcal{A} бесконечно, то по теореме о мощности квадрата множества $|\mathcal{A}^*| = |\cup \{A^n | n \in \omega\}| = |\mathcal{A}|$.

2 Пропозициональные формулы

2.1 Формулы логики высказываний

Определение

Алфавит логики высказываний: $\mathcal{A}_{prop} = \{(,), \land, \lor, \rightarrow, \neg, \top, \bot\} \cup V$ где $V = \{v_i | i \in \omega\}$ - бесконечное множество пропозициональных переменных.

Определение

формула логики высказываний - это слово алфавита \mathcal{A}_{prop} , определяемое по индукции:

- 1. \top, \bot и v_i для всех $i \in \omega$ являются **атомарными** формулами
- 2. если ϕ, ψ являются формулами, то следующие слова также являются формулами:
 - $(\phi \wedge \psi)$
 - $(\phi \lor \psi)$
 - $(\phi \to \psi)$
 - ¬ф

Для сокращения записей внешние скобки в формулах далее будем опускать.

2.2 Язык логики высказываний

Определение

Язык логики высказываний - это множество L_{prop} всех формул логики высказываний:

 $L_{prop} \rightleftharpoons \{\phi | \phi$ является пропозициональной формулой $\}$

Замечание

Язык логики высказываний является счетным.

Доказательство

По теореме о мощности множества всех слов $|\mathcal{A}^*_{prop}| = \omega$. Так как $L_{prop} \subseteq \mathcal{A}^*_{prop}$, то $|L_{prop}| \leq \omega$. Поскольку для любого n формула

$$\underbrace{\neg\neg\dots\neg}_{n}v_0\in L_{prop}$$

To $|L_{prop}| \ge \omega$.

2.3 Множество переменных и глубина формулы

Определение

Для любой формулы ϕ определим множество $V(\phi)$ переменных формулы ϕ и глубину $d(\phi) \in \omega$ индукцией по построению ϕ :

- $V(\top) = V(\bot) = \emptyset$ и $d(\top) = d(\bot) = 0$
- $V(v_i) = \{v_i\}$ и $d(v_i) = 0$ для всех $v_i \in V$
- $V(\neg \phi) = V(\phi)$ и $d(\neg \phi) = d(\phi) + 1$
- $V(\phi \bullet \psi) = V(\phi) \cup V(\psi)$ и $d(\phi \bullet \psi) = \max(d(\phi), d(\psi))) + 1$, где $\{\land, \lor, \to\}$

Обозначение

Запись $\phi(v_1,\ldots,v_n)$ означает, что $V(\phi)\subseteq\{v_1,\ldots,v_n\}$

Определение

Формула ϕ называется **подформулой** формулы ψ , тогда и только тогда, когда ϕ является подсловом слова ψ . Обозначение: $\phi \sqsubseteq \psi$.

3 Семантика пропозициональных формул

3.1 Означивание переменных

Определение

Пусть V - множество пропозициональных переменных. Тогда отображение $\gamma: V \to \mathcal{P}(1) = \{0,1\}$ называется **означиванием** переменных V.

Определение

Пусть γ - означивание переменных V. Отображение γ может быть расширено на все формулы из L_{prop} индукцией по построению формул:

- $\gamma(\top) = 1, \gamma(\bot) = 0$
- $\gamma(\neg \phi) = 1 \setminus \gamma(\phi)$
- $\gamma(\phi \wedge \psi) = \gamma(\phi) \cap \gamma(\psi)$
- $\gamma(\phi \lor \psi) = \gamma(\phi) \cup \gamma(\psi)$
- $\gamma(\phi \to \psi) = \gamma(\neg \phi) \cup \gamma(\psi) = (1 \setminus \gamma(\phi)) \cup \gamma(\psi)$

 $\gamma(\phi)$ называется **значением** формулы ϕ при означивании γ .

3.2 Основные классы формул

Определение

Формула ϕ называется

- тождественно истинной, тогда и только тогда, когда для любого означивания γ : $\gamma(\phi)=1$
- выполнимой, тогда и только тогда, когда для некоторого означивания γ : $\gamma(\phi)=1$
- невыполнимой, тогда и только тогда, когда для любого означивания γ : $\gamma(\phi)=0$

Если $\gamma(\phi)=1$, то будем говорить, что эта формула **истинна** при означивании γ , если $\gamma(\phi)=0$ будем говорить, что формула **ложна** при означивании γ .

пример

- $v_i \wedge \neg v_i$ является невыполнимой
- $v_i \lor \neg v_i$ является тождественно истинной
- ullet $v_i
 ightarrow
 eg v_i$ является невыполнимой
- ullet $(v_i
 ightarrow (v_j
 ightarrow v_i)$ является тождественно истинной
- $(v_i \to (v_j \land v_i))$ не является тождественно истинной, но является выполнимой.

3.3 Таблицы истинности

Определение

Таблица истинности формулы ϕ - это таблица вида

v_1		v_{n-2}	v_{n-1}	v_n	ϕ
0		0	0	0	ε^1
0		0	0	1	ε^2
0		0	1	0	ε^3
0		0	1	1	ε^4
0		$1 = \delta_{n-2}^5$	0	0	ε^5
1		1	1	1	ε^{2^n}

где ε^i определяется как значение $\gamma(\phi)$ при означивании γ , определяемой соответствующей строкой: $\gamma(v_j)=\delta^i_j$

3.4 Таблицы истинности для основных логических операций

Определение

Таблицы истинности для операций \wedge, \vee и \rightarrow

v_1	v_2	$ (v_1 \wedge v_2) $
0	0	0
0	1	0
1	0	0
1	1	1

v_1	v_2	$ (v_1 \vee v_2) $	
0	0	0	
0	1	1 1	
1	0	1 1	
1	1	1 1	
v_1	v_2	$(v_1 \rightarrow v_2)$	
0	0	1	
0	1	1	
1	0	0	
1	$\mid 1 \mid$	1	
v_1	$\neg v_1$	l	
0	1		
1	0		

3.5 Алгоритм проверки тождественной истинности / выполнимости

Алгоритм

Чтобы проверить, является ли некоторая формула тождественно истинной / выполнимой ϕ достаточно построить таблицу истинности формулы ϕ и проверить, что:

- ullet если все значения ϕ равны 1, то ϕ является тождественно истинной
- \bullet если некоторые значения ϕ равны 1, то ϕ является выполнимой

Сложность алгоритма

Размер таблицы истинности (количество строк) растет как 2^n , где $n=|V(\phi)|$. Следовательно, при больших n (например n>50) невозможно построить таблицу истинности, так как она становится слишком большой.

пример

Даже при очень больших n возможно проверить, являются ли некоторые формулы тождественно истинными / выполнимыми. Например: $(v_0 \wedge (\neg v_0 \wedge \phi))$ является тождественно истинной при любом ϕ

4 Семантическая эквивалентность

4.1 Семантическая эквивалентность формул

Определение

Формулы $\phi(v_1, \ldots, v_n)$ и $\psi(v_1, \ldots, v_n)$ называются **семантически эквивалентными**, тогда и только тогда, когда при любом означивании $\gamma: \{v_1, \ldots, v_n\} \to \{0, 1\}$ верно, что

$$\gamma(\phi) = \gamma(\psi)$$

Отношение семантической эквивалентности $\sim \subseteq L^2_{prop}$ обозначается следующим образом:

$$\phi \sim \psi \overset{def}{\Leftrightarrow} \phi$$
 и ψ семантически эквивалентны

Замечание

Формулы $\phi(v_1,\ldots,v_n)$ и $\psi(v_1,\ldots,v_n)$ семантически эквивалентны \Leftrightarrow тогда и только тогда, когда их таблицы истинности совпадают.

4.2 Свойства семантической эквивалентности

Предложение

Отношение семантической эквивалентности - это отношение эквивалентности, т.е. оно является рефлексивным, транзитивным и симметричным.

Доказательство

Рефлексивность, симметричность и транзитивность следуют из соответствующих свойств равенства =.

4.3 Семантически эквивалентные формулы

Лемма 1

Следующие формулы семантически эквивалентны:

1.
$$(v_1 \bullet v_1) \sim v_1$$
 - идемпотентность •

2.
$$(v_1 \bullet v_2) \sim (v_2 \bullet v_1)$$
 - коммутативность \bullet

3.
$$(v_1 \bullet (v_2 \bullet v_3)) \sim ((v_1 \bullet v_2) \bullet v_3)$$
 - ассоциативность \bullet

где
$$\bullet \in \{\land, \lor\}$$

Доказательство

Доказывается сравнением соответствующих таблиц истинности.

Лемма 2

Следующие формулы семантически эквивалентны:

- 1. $\neg \neg v_1 \sim v_1$
- 2. $(v_1 \to v_2) \sim (\neg v_1 \lor v_2)$,
- 3. $(v_1 \wedge (v_2 \vee v_3)) \sim ((v_1 \wedge v_2) \vee (v_1 \wedge v_3))$ дистрибутивность \wedge над \vee
- 4. $(v_1 \wedge (v_2 \vee v_3)) \sim ((v_1 \wedge v_2) \vee (v_1 \wedge v_3))$ дистрибутивность \vee над \wedge
- 5. $\neg(v_1 \wedge v_2) \sim (\neg v_1 \vee \neg v_2)$ Закон де Моргана
- 6. $\neg(v_1 \lor v_2) \sim (\neg v_1 \land \neg v_2)$ Закон де Моргана

Доказательство

Доказывается сравнением соответствующих таблиц истинности.

4.4 Эквивалентность и логические операции

Лемма 3.

Даны две формулы: $\phi_1 \sim \phi_2$ и $\psi_1 \sim \psi_2$, верно, что

- 1. $\neg \phi_1 \sim \neg \phi_2$
- 2. $(\phi_1 \wedge \psi_1) \sim (\phi_2 \wedge \psi_2)$
- 3. $(\phi_1 \vee \psi_1) \sim (\phi_2 \vee \psi_2)$
- 4. $(\phi_1 \to \psi_1) \sim (\phi_2 \to \psi_2)$

Доказательство

Пусть $\phi_1 \sim \phi_2$. Покажем, что $\neg \phi_1 \sim \neg \phi_2$. Действительно, пусть γ - произвольное означивание. Тогда $\gamma(\neg \phi_1) = 1 \setminus \gamma(\phi_1) = 1 \setminus \gamma(\phi_2) = \gamma(\neg \phi_2)$. Теперь рассмотрим $\phi_1 \sim \phi_2$ и $\psi_1 \sim \psi_2$, γ - означивание. Отсюда следует, что $\gamma(\phi_1 \wedge \psi_1) = \gamma(\phi_1) \cap \gamma(\psi_1) = \gamma(\phi_2) \cap \gamma(\psi_2) = \gamma(\phi_2 \wedge \psi_2)$. Остальные случаи доказываются аналогично.

4.5 Лемма о начальной подформуле

Лемма (о начальной подформуле)

Пусть ϕ и ψ - две формулы, и $\phi \sqsubseteq_{beg} \psi$ - начальная формула формулы ψ . Тогда $\phi = \psi$.

Доказательство

Индукция по глубине ψ . Основание индукции: $d(\psi) = 0$, тогда ψ является переменной или \top , \bot . Утверждение очевидно. Предположим теперь, что лемма верна для всех формул ψ глубины $\leq n$, и докажем утверждение при n+1. Пусть, например, $\phi \sqsubseteq_{beg} (\phi_1 \bullet \phi_2)$, где $\bullet \in \{\land, \lor, \to\}$. Тогда ψ начинается с символа (, поэтому она имеет вид $\psi = (\psi_1 \bullet' \psi_2)$, где $\bullet' \in \{\land, \lor, \to\}$. Отсюда следует, что $\psi_1 \sqsubseteq_{beg} \phi_1$ или $\phi_1 \sqsubseteq_{beg} \psi_1$. По предположению индукции, $\phi_1 = \psi_1$. Тогда $\bullet = \bullet'$. Но в этом случае снова получается, что $\psi_2 \sqsubseteq_{beg} \phi_2$ или $\phi_2 \sqsubseteq_{beg} \psi_2$. По предположению индукции $\phi_2 = \psi_2$. Следовательно, $\phi = \psi$. Случай, когда ψ начинается с символа \neg доказывается таким же образом.

Лемма 4.

- 1. если $\psi \sqsubseteq \neg \phi$, то $\psi \sqsubseteq \phi$
- 2. если $\psi \sqsubset (\phi_1 \bullet \phi_2)$, то $\psi \sqsubseteq \phi_1$ или $\psi \sqsubseteq \phi_2$. Здесь $\bullet \in \{\land, \lor, \rightarrow\}$.

Доказательство

Докажем первое утверждение. Пусть $\psi \sqsubseteq \neg \phi$. Тогда ψ и ϕ две подформулы формулы $\neg \phi$, имеющие общие символы. Следовательно, по свойствам подформул $\phi \sqsubseteq \psi$, тогда $\phi = \psi$, или $\psi \sqsubseteq \phi$. Второе утверждение. Пусть $\psi \sqsubseteq (\phi_1 \bullet \phi_2)$. Тогда ψ , ϕ_1 и ϕ_2 - три подформулы формулы $\neg \phi$. Отметим,

что ψ имеет общие символы с ϕ_1 , и, следовательно, $\psi \sqsubseteq \phi_1$, или же с ϕ_2 , и, следовательно, $\psi \sqsubseteq \phi_2$.

4.6 Теорема о замене (семантической)

Теорема (о семантической замене)

Пусть ϕ - формула, $\psi \sqsubseteq \phi$ - подформула и $\psi \sim \psi'$. Тогда если ϕ' является результатом замены некоторого вхождения подформулы ψ на ψ' , то $\phi \sim \phi'$

Доказательство

Доказывается индукцией по разности глубин $n=d(\phi)-d(\psi)$. Основание индукции: при $n=0,\ d(\phi)=d(\psi),$ и, следовательно, $\phi=\psi$. Шаг индукции. Предположим, что утверждение доказано для n, докажем его для n+1. Пусть $d(\phi)-d(\psi)=n+1>0$, тогда имеет место один из следующих случаев:

- $\phi = \neg \chi$
- $\phi = (\chi_1 \wedge \chi_2)$
- $\phi = (\chi_2 \vee \chi_2)$
- $\phi = (\chi_1 \rightarrow \chi_2)$

Рассмотрим каждый из этих случаев. Пусть $\phi = \neg \chi$, $\psi \sqsubseteq \phi$. Тогда по лемме $4\ \psi \sqsubseteq \chi$. Так как $d(\chi) = d(\phi) - 1$, то разность глубин ψ и χ будет равна $d(\chi) - d(\psi) = n$. Тогда., по предположению индукции, если χ' является результатом замены соответствующего вхождения ψ на ψ' , то по лемме 3 верно, что: $\phi' = \neg \chi' \sim \neg \chi = \phi$. Пусть $\phi = (\chi_1 \wedge \chi_2)$, $\psi \sqsubseteq \phi$. Тогда по лемме $4\ \psi \sqsubseteq \chi_1$ или $\psi \sqsubseteq \chi_2$. Пусть ψ является подформулой формулы χ_1 . Так как $d(\chi_1) \leq d(\phi) - 1$, то разность глубин ψ и χ_1 будет равна $d(\chi_1) - d(\psi) \leq n$. Тогда, по предположению индукции, если χ'_1 является результатом замены соответствующего вхождения ψ в формулу χ_1 на ψ' , то по лемме 3 верно, что: $\phi' = (\chi'_1 \wedge \chi_2) \sim (\chi_1 \wedge \chi_2) = \phi$. Остальные случаи доказываются аналогично. \square