<u>Dense CNN with Self-Attention for Time-</u> <u>Domain Speech Enhancement</u>

Ashutosh Pandey, DeLiang Wang

Outline

- Introduction
- Methodology
- Architecture
- Experiments
- Conclusion

Introduction

當語音受到背景噪音污染時,不只是頻率的大小會受到影響,連同相位也會跟著改變,但是調整相位的風險極大,很有可能會使語音品質變得非常糟。

而從在時域處理訊號時,可以將頻率的大小與相位一同改變,而且比從頻域 處理相位更加安全。

因此本篇論文提出了一種結合了 Dense CNN 與 Self Attention 的時域語音增強模型,並使用了對語音及背景音同時約束的新損失函數。

Methodology

```
U-Net

+
Dense Net

+
Sub-pixel Convolution

+
Self Attention
```

Input

U-Net

Dense Net

Methodology Sub-pixel Convolution

Self Attention

Causal: Softmax(Mask(QK^T))V

Non Causal:Softmax(QK^T)V

Loss

• Time-Domain Loss

$$\mathcal{L}_T(s,\hat{s}) = MSE(s,\hat{s})$$

- STFT Magnitude Loss $\mathcal{L}_{SM}(s,\hat{s}) = MAE(mag(s), mag(\hat{s}))$
- Time-frequency Loss

$$\mathcal{L}_{TF}(s,\hat{s}) = \alpha \mathcal{L}_{T} + (1-\alpha) \mathcal{L}_{SM}$$

Phase Constrained Magnitude Loss

$$\mathcal{L}_{PCM}(s,\hat{s}) = 0.5\mathcal{L}_{SM}(s,\hat{s}) + 0.5\mathcal{L}_{SM}(n,x-\hat{s})$$

Architecture

1 x 3 Conv

Architecture Self Attention Shape

Architecture Self Attention Shape

Dense Net Conv

Causal

Dense Net Conv

- Sample rate: 16kHz
- Hamming window
 - size: 512
 - ∘ stride: 256
- Optimizer: Adam

Data Set

- 語音:WSJ0 SI-84 dataset
- 訓練用噪音: <u>10000 non-speech sounds from</u> <u>Sound Ideas</u>
- 測試用噪音:<u>babble and cafeteria noises from</u> <u>an Auditec CD</u>

	Me	etric		STOI							PESQ								SNR								
	Test	noise	,	Babble					Cafeteria			Babble				Cafeteria				Babble			Cafeteria				
Test SNR (dB)				-5	0	5	Avg.	-5	0	5	Avg.	-5	0	5	Avg.	-5	0	5	Avg.	-5	0	5	Avg.	-5	0	5	Avg.
Mixture			58.4	70.5	81.3	70.1	57.1	69.7	81.0	69.2	1.56	1.82	2.12	1.83	1.46	1.77	2.12	1.78	-5.0	0.0	5.0	0	-5.0	0.0	5.0	0.0	
Causal	1	×	X	76.7	88.0	93.2	86.0	76.4	87.8	92.9	85.7	1.90	2.39	2.76	2.35	2.02	2.49	2.84	2.45	5.5	9.9	13.4	9.6	6.5	10.4	13.4	10.1
	2	×	X	81.6	91.3	95.0	89.3	80.5	90.2	94.3	88.3	2.13	2.70	3.08	2.64	2.17	2.68	3.05	2.63	7.4	11.5	14.7	11.2	7.7	11.4	14.4	11.2
	2	✓	X	83.5	91.9	95.2	90.2	81.4	90.5	94.5	88.8	2.23	2.75	3.12	2.70	2.21	2.70	3.07	2.66	7.7	11.8	15.0	11.5	7.9	11.5	14.5	11.3
	2	✓	✓	84.9	92.2	95.3	90.8	82.1	90.7	94.6	89.1	2.30	2.77	3.14	2.74	2.23	2.71	3.08	2.67	8.2	12.0	15.1	11.8	8.2	11.7	14.7	11.5
	2	×	✓	85.3	92.3	95.4	91.0	82.3	90.8	94.7	89.3	2.34	2.81	3.17	2.77	2.24	2.72	3.09	2.68	8.5	12.1	15.1	11.9	8.2	11.7	14.7	11.5
	1	×	✓	83.9	91.8	95.2	90.3	81.0	90.3	94.5	88.6	2.23	2.72	3.09	2.68	2.15	2.62	3.01	2.59	7.9	11.8	15.0	11.6	7.9	11.5	14.5	11.3
al	3	X	X	84.7	92.5	95.7	90.9	83.1	91.4	95.0	89.8	2.37	2.88	3.22	2.82	2.34	2.82	3.16	2.77	8.2	12.2	15.2	11.9	8.3	11.8	14.7	11.6
ans	3	✓	X	86.6	92.9	95.7	91.7	84.1	91.7	95.0	90.3	2.53	2.96	3.24	2.91	2.44	2.88	3.19	2.84	9.1	12.5	15.3	12.3	8.7	12.0	14.8	11.8
<mark>፡</mark>	3	✓	✓	87.9	93.5	96.0	92.4	85.0	92.0	95.2	90.8	2.61	3.02	3.32	2.98	2.47	2.91	3.24	2.87	9.6	12.9	15.7	12.7	8.9	12.2	15.0	12.0
Non	3	×	✓	87.9	93.5	96.1	92.5	85.0	92.1	95.3	90.8	2.61	3.04	3.33	2.99	2.45	2.91	3.23	2.86	9.6	12.9	15.8	12.8	8.9	12.3	15.1	12.1
	1	×	✓	83.7	91.5	95.2	90.1	80.1	89.8	94.3	88.1	2.24	2.71	3.09	2.68	2.13	2.59	2.98	2.57	8.3	12.0	15.2	11.8	7.8	11.4	14.6	11.3
	m	Dil.	Att.																								

Approach	Causal?	le?	Metric	STOI								PESQ							
		Real-time	Test Noise	Babble				Cafeteria				Babble				Cafeteria			
ıdd			Test SNR	-5 db	0 dB	5 dB	AVG	-5 dB	0 dB	5 dB	AVG	-5 db	0 dB	5 dB	AVG	-5 dB	0 dB	5 dB	AVG
A			Mixture	58.4	70.5	81.3	70.1	57.1	69.7	81.0	69.2	1.56	1.82	2.12	1.83	1.46	1.77	2.12	1.78
a)	X	×	BLSTM [12]	77.4	85.8	91.0	84.7	76.1	84.7	90.5	83.7	1.97	2.37	2.69	2.34	2.01	2.38	2.51	2.30
b)	×	×	GRN [13]	80.2	88.9	93.4	87.5	79.4	88.0	92.9	86.8	2.16	2.63	2.97	2.59	2.23	2.62	2.96	2.60
c)	✓	✓	GCRN [19]	82.4	90.9	94.8	89.4	79.1	89.3	94.0	87.5	2.17	2.70	3.07	2.65	2.10	2.60	2.99	2.56
	$ \times $	×	NC-GCRN [19]	87.0	93.0	95.6	91.9	84.1	91.7	95.1	90.3	2.53	2.96	3.25	2.91	2.40	2.85	3.17	2.81
	✓	×	SEGAN-T [20]	81.5	90.3	94.1	88.6	79.8	89.5	93.5	87.6	2.11	2.62	2.97	2.57	2.15	2.61	2.94	2.57
	/	×	AECNN-SM [24]	82.6	91.5	95.1	89.7	81.1	90.7	94.5	88.8	2.21	2.80	3.17	2.73	2.23	2.76	3.12	2.70
	/	✓	TCNN [25]	82.8	91.3	94.8	89.6	80.6	89.8	94.0	88.1	2.18	2.70	3.06	2.65	2.14	2.62	2.98	2.58
	✓	✓	DCN-T	85.3	92.3	95.4	91.0	82.3	90.8	94.7	89.3	2.34	2.81	3.17	2.77	2.24	2.72	3.09	2.68
d)	/	✓	DCN-SM	85.2	92.7	95.8	91.2	82.5	91.3	95.1	89.6	2.35	2.93	3.31	2.86	2.33	2.85	3.22	2.80
	/	✓	DCN-PCM	85.1	92.7	95.8	91.2	82.5	91.3	95.1	89.6	2.31	2.91	3.30	2.84	2.29	2.82	3.22	2.78
	$ \times $	×	NC-DCN-T	87.9	93.5	96.1	92.5	85.0	92.1	95.3	90.8	2.61	3.04	3.33	2.99	2.45	2.91	3.23	2.86
	$ \times $	×	NC-DCN-SM	89.1	94.2	96.5	93.3	85.8	92.9	95.8	91.5	2.75	3.19	3.46	3.13	2.61	3.07	3.37	3.02
	×	X	NC-DCN-PCM	89.0	94.3	96.6	93.3	85.6	93.0	95.9	91.5	2.71	3.18	3.48	3.12	2.56	3.07	3.39	3.01

Demo

```
https://web.cse.ohio-
state.edu/~wang.77/pnl/demo/PandeyDCN.html
```

Conclusion

- 本篇論文提出基於時域的 DCN 模型並搭配時頻的損失函數在語音增強的 任務中獲得了良好的成果。
- 雖然在 STOI 與 PESQ 的評估指標上, SM loss 具有較好的結果,但 在實際由人耳評斷時 PCM loss 更接近乾淨的語音。
- 作者提到,基於 DNN 的語音增強方法不易泛化到未曾學習過的資料上面。
- 時域的 loss 有助於提升 SNR、頻域 loss 則能使 STOI 與 PESQ 上的分數提升。