## Predicting Flight Delays



**Drew Hibbard** 

### Prepare for the Worst

- Flight delays are relatively common
- Understand the factors that affect delays



### Obtaining the Data

- Kaggle all 2015 US flights
- Airfleets.net aircraft info
- NOAA weather data
- FlightAware real-time flight data



### **Exploratory Data Analysis**

### Model Testing and Results





| Model                   | AUC  | F1<br>(delays) | F1<br>(non-<br>delays) |
|-------------------------|------|----------------|------------------------|
| Logistic Regression     | 0.74 | 0.43           | 0.86                   |
| Random Forest           | 0.76 | 0.49           | 0.85                   |
| Gaussian Naive<br>Bayes | 0.71 | 0.40           | 0.86                   |
| XG Boost                | 0.76 | 0.48           | 0.85                   |

Threshold = 0.25

### Recorded Demo

# Questions?

#### Next Steps

- Use more recent data
- Update web app to allow users to change each predictive feature

at will

## Appendix

### Modeling Methods Used

- KNN too slow
- SVC too slow
- How to handle imbalanced data?
  - Performed random undersampling
  - Also used balanced class weights
    - Performance between these two methods was roughly equal

#### **XG Boost Parameters**

- Learning Rate 0.2
- Max Depth 8
- Min Child Weight 1
- Subsample 1
- Col sample by tree = 0.8

#### **Ensemble Methods**

| Prediction<br>Correlations | XG Boost | Random Forest | Logistic Regression |
|----------------------------|----------|---------------|---------------------|
| XG Boost                   | 1        | 0.56          | 0.51                |
| Random Forest              | 0.56     | 1             | 0.50                |
| Logistic Regression        | 0.51     | 0.50          | 1                   |

Increased AUC to 0.77, but not enough to justify slower speed