Заметки курса «Современная оптика»

Лектор: Колдунов Л. М.

Восторженные слушатели: Хоружий К.

Примак Е.

От: 9 февраля 2021 г.

Содержание

1	Γ eo	метрическая оптика	2
	1.1	Волновое уравнение	2
	1.2	Уравнения эйконала	2
	1.3	Принцип Ферма	
	1.4	Траектория луча (?)	
	1.5	Уравнение луча в параксиальном приближение	
	1.6	Пример слоистой среды	4

1 Геометрическая оптика

1.1 Волновое уравнение

В общем оптика устроена как-то так: ГО \subset ВО \subset ЭО \subset КО. Вспомним уравнения Максвелла

$$\begin{cases} \operatorname{div} \mathbf{D} = 4\pi\rho \\ \operatorname{div} \mathbf{B} = 0 \end{cases}$$

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \Rightarrow \quad \operatorname{rot} \operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial}{\partial t} \operatorname{rot} \mathbf{B} \qquad \Rightarrow \quad \nabla^2 \mathbf{E} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

$$\operatorname{rot} \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}.$$

Будем считать, что нет свободных токов и зарядов. Как вариант, можно найти решение в виде

$$\boldsymbol{E} = \boldsymbol{E}_0 \exp\left(i\omega t - \boldsymbol{k} \cdot \boldsymbol{r}\right).$$

Важно, что верны формально замены

$$\frac{\partial}{\partial t} \to i\omega, \qquad \begin{cases} \partial_x \to -ik_x, \\ \partial_y \to -ik_y, \\ \partial_z \to -ik_z, \end{cases} \Rightarrow \nabla \to -i\mathbf{k}, \qquad \nabla^2 \to -k^2.$$

Приходим к уравнению вида

$$-k^2 \boldsymbol{E} + \frac{\varepsilon \mu}{c^2} \omega^2 \boldsymbol{E} = 0 \quad \Rightarrow \quad \frac{\omega^2}{k^2} = \frac{c^2}{\varepsilon \mu}, \quad \rightarrow \quad \frac{\omega}{k} = \frac{c}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon}} = \frac{c}{n}.$$

Можем посмотреть на $\omega t - \mathbf{k} \cdot \mathbf{r} = \mathrm{const.}$ Тогда

$$\omega dt - k dz = 0, \quad \Rightarrow \quad \frac{dz}{dt} = \frac{\omega}{k}$$

1.2 Уравнения эйконала

- 1. Свет распространяется в виде лучей.
- 2. Среда характеризуется показателем преломления n, более того $c_{\rm cp} = c/n$.
- 3. $\int n \, dl \to \min$ (принцип Ферма).

Def 1.1. Оптический путь можем определить, как

$$S = \int_{A}^{B} n(\mathbf{r}) \, dl.$$

Посмотрим на уравнение

$$abla^2 \boldsymbol{E} - rac{n^2}{c^2} rac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0, \quad \Rightarrow \quad E(\boldsymbol{r}, t) = a(\boldsymbol{r}) \exp\left(ik_0 \Phi(\boldsymbol{r}) - i\omega t\right),$$

где $\Phi(r)$ называем *эйконалом*, а a - амплитуда.

Тогда формально получаем следующее:

$$\frac{\partial}{\partial t} \to -i\omega, \ \frac{\partial^2}{\partial t^2} \to -\omega^2, \qquad \frac{\partial}{\partial x} E = a_x' \exp(\ldots) + a(\mathbf{r})ik_0 \, \Phi_x' \exp(\ldots),$$

И для второй производной

$$\frac{\partial^2 E}{\partial x^2} = a''_{xx} \exp(\dots) + 2ik_0 a'_x \Phi'_x \exp(\dots) + ik_0 a \Phi''_{xx} \exp(\dots) - a(r)k_0^2 |\Phi'_x|^2 \exp(\dots).$$

Таким образом нашли ΔE

$$\nabla^2 E = \nabla^2 a \exp(\ldots) - a(\mathbf{r}) k_0^2 |\operatorname{grad} \Phi|^2 \exp(\ldots) + i \left(2k_0 (\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \nabla^2 \Phi \right) \exp(\ldots).$$

Внимательно посмотрели на волновое уравнение, решили сгруппировать вещественную часть и мнимую

$$\nabla^2 a \exp(\ldots) - a(\boldsymbol{r}) k_0^2 |\operatorname{grad} \Phi|^2 \exp(\ldots) + \frac{\omega^2}{c^2} n^2 a \exp(\ldots) = 0, \quad \Rightarrow \quad |\operatorname{grad} \Phi|^2 = \underbrace{\frac{1}{a l_0^2} \nabla^2 a}_{\text{\tiny H3M. AMIJJ.}} + n^2.$$

 $[\]overline{{}^{1}{
m Будем}}$ считать, что лучу нужно проходить больший оптический путь.

Ну, будем считать, что (настоящая область применимости волновой оптики)

$$\left|\lambda \frac{\partial^2 a}{\partial x^2}\right| \ll \left|\frac{\partial a}{\partial x}\right|, \quad \Leftrightarrow \quad \left|\lambda \frac{\partial a}{\partial x}\right| \ll a, \quad \lambda \to 0.$$

И приходим к уравнению Эйконала

Ещё раз вспомним, что волновой фронт имеет вид

$$\omega t - k_0 \Phi = \text{const.}$$

Запишем, что (живём вдоль S)

$$\operatorname{grad} \Phi = n\mathbf{S}, \qquad \|\mathbf{S}\| = 1, \qquad \frac{\partial \Phi}{\partial \mathbf{S}} = n.$$

Тогда

$$\omega dt - k_0 d\Phi = 0, \quad \Rightarrow \quad \omega dt = k_0 d\Phi = k_0 \frac{\partial \Phi}{\partial S} dS = k_0 n dS.$$

1.3 Принцип Ферма

Пусть Ф – однозначно задан, тогда

$$\operatorname{grad} \Phi = n\boldsymbol{S}, \quad \Rightarrow \quad \oint n\boldsymbol{S} \cdot \, d\boldsymbol{l} = 0, \quad \Rightarrow \quad \int_{ACB} n\boldsymbol{S} \cdot \, d\boldsymbol{l} = \int_{ADB} n\boldsymbol{S} \cdot \, d\boldsymbol{l}.$$

Ho $\boldsymbol{S} \cdot d\boldsymbol{l} = S dl = dl$ на ACB. Тогда

$$\int_{ACB} n \, dl = \int_{ADB} n \boldsymbol{S} \cdot \, d\boldsymbol{l} \leqslant \int_{ADB} n \, dl.$$

Что доказывает принцип Ферма.

1.4 Траектория луча (?)

Для луча верно, что

$$n\mathbf{S} = \operatorname{grad} \Phi, \qquad |d\mathbf{r}| = dl, \qquad \mathbf{S} = \frac{d\mathbf{r}}{dl}.$$

В таком случае верно, что

$$n\frac{d\mathbf{r}}{dl} = \operatorname{grad}\Phi, \quad \Rightarrow \quad \frac{d}{dl}(n\frac{d\mathbf{r}}{dl}) = \frac{d}{dl}\operatorname{grad}\Phi = \operatorname{grad}\frac{d\Phi}{dl} = \operatorname{grad}n.$$

Получили уравнение траектории луча

$$\frac{d}{dl}\left(n\frac{d\mathbf{r}}{dl}\right) = \operatorname{grad} n \ . \tag{1.2}$$

Например, в однородной среде

$$n = \mathrm{const}, \quad \Rightarrow \quad \frac{d^2 \mathbf{r}}{dl^2} = 0, \quad \Rightarrow \quad \mathbf{r} = \mathbf{a}l + \mathbf{b}.$$

Можно сделать ещё так (найти кривизну траектории?)

$$S\frac{dn}{dl} + n\frac{dS}{dl} = \nabla n, \quad \Rightarrow \quad \frac{dS}{dl} = \frac{1}{n}\left(\nabla n - S\frac{dn}{dl}\right).$$

Получаем (вспомнив трёхгранник Френе)

$$\frac{\mathbf{N}}{R} = \frac{1}{n} \left(\nabla n - \mathbf{S} \frac{dn}{dl} \right), \quad \Rightarrow \quad 0 < \frac{N^2}{R} = \frac{(\mathbf{N} \cdot \nabla n)}{n},$$

или

$$(N \cdot \nabla n) > 0, \quad \Rightarrow \quad$$
 луч поворачивает в \(\gamma \) n . (1.3)

1.5 Уравнение луча в параксиальном приближение

Пусть есть некоторая n(y). Пусть луч движется $\theta(y)$, рассмотрим ситуацию преломления, тогда

$$n(y)\cos\theta(y) = n(y+dy)\cos\theta(y+dy), \quad \Rightarrow \quad \left(n(y) + \frac{dn}{dy}\Delta y\right)(\cos\theta(y) - \sin\theta(y)).$$

Раскрыв скобки, получим

$$n(y)\cos\theta(y) = n(y)\cos\theta(y) + \frac{dn}{dy}\cos\theta(y)\Delta y - n(y)\sin\theta(y)\frac{d\theta}{dy}\Delta y.$$

Запишем чуть аккуратнее:

$$\frac{dn}{dy}\cos\theta(y) = n(y)\sin\theta(y)\frac{d\theta}{dy},$$

Считая, что $\sin \theta(y) \approx \theta(y) = dy/dx$, тогда

$$\frac{1}{n}\frac{dn}{dy} = \operatorname{tg}\theta \frac{d\theta}{dy} = \frac{d\theta}{dx} = \frac{d^2y}{dx^2}, \quad \Rightarrow \quad y''_{xx} = \frac{1}{n}\frac{dn}{dy}.$$
 (1.4)

1.6 Пример слоистой среды

Рассмотрим вещество с коммерческим названием SELFOC и переменным показателем преломления вида

$$n^2 = n_0^2 (1 - \alpha^2 y^2)$$

Считая $\alpha y \ll 1$, подставляя в уравнение луча находим, что

$$y_{xx}^{"} = \frac{1}{n_0(1 - \alpha^2 y^2)^{1/2}} \frac{dn}{dy} = \frac{-n_0 \alpha^2 y}{n_0} = -\alpha^2 y,$$

и мы снова всё свели к гармоническому осциллятору.

Нужно ещё разобрать мнимую часть, в которой сидит факт об отсутствии взаимодействия лучей.