

### BİL 1014 - İSTATİSTİĞE GİRİŞ

-5-

#### Tanımlayıcı İstatistikler

# Tanımlayıcı İstatistikler

Merkezi Eğilim

<u>Ölçüleri</u>

1)Aritmetik ort.

2)Ağırlıklı(Tartılı)

Aritmetik ort.

3)Geometrik ort.

4) Harmonik ort.

5)Mod

6)Medyan

7)Kartiller

Değişkenlik Ölçüleri

Range (Değişim Aralığı)

2) Ort. Mutlak sapma

3) Varyans

4) Standart Sapma

Değişkenlik(Varyasyon)Katsayısı

Çarpıklık Ölçüleri

<u>Basıklık</u>

<u>Ölçüleri</u>

1)Pearson Asimetri

Ölçüsü

2)Bowley Asimetri

Ölçüsü

#### **Kartiller**

- Bir veri setini büyükten küçüğe veya küçükten büyüğe sıraladığımızda dört eşit parçaya ayıran üç değere kartiller adı verilir.
- İlk % 25'lik kısmı içinde bulunduran 1. Kartil  $(Q_1)$ , % 50'lik kısmı içinde bulunduran 2. Kartil  $(Q_2)$ , % 75'lik kısmı içinde bulunduran 3. Kartil  $(Q_3)$ , olarak adlandırılır.
- %50'lik kısmı içinde bulunduran 2. Kartil ( $Q_2$ ) aynı zamanda veri setinin medyanıdır.



#### Basit Seriler İçin Kartiller

Veri seti küçükten büyüğe sıralanmış olsun.

- 1.Kartil  $Q_1$   $\frac{n+1}{4}$  nci gözlem değeri,
- 2.Kartil  $Q_2$   $\frac{n+1}{2}$  nci gözlem değeri,
- 3.Kartil  $Q_3$   $\frac{3n+1}{4}$  nci gözlem değeridir.

(n+1) değeri 4'ün katı bir değer değilse, küsurata göre hesaplanır.

#### Basit Seriler İçin Kartiller

**Örnek**: İstatistik I dersini alan 10 öğrencinin yaşları aşağıdaki gibi sıralanmıştır. Buna göre yaşlar için Q<sub>1</sub>, Q<sub>2</sub> ve Q<sub>3</sub> değerlerini hesaplayınız.

```
19, 20, 21, 22, 23, 23, 23, 24, 25, 26
(n+1)/4=(10+1)/4=2.75 nci eleman ile hesaplanır.
=20+(3/4)(21-20)
             Q_1 = 20,75
(n+1)/2=(10+1)/2=5.5 nci eleman ile hesaplanır.
=23+(1/2)(23-23)
             Q_2 = 23
3(n+1)/4=3(10+1)/4=8.25 nci eleman ile hesaplanır.
=(24+(1/4)(25-24)
             Q_3 = 24.25
```

#### Gruplanmış Seriler İçin Kartiller

 Gruplanmış serilerde kartiller hesaplanırken veri setinin ilk çeyrek ve son çeyrek kısmını tam olarak ifade etmek amacıyla kümülatif frekans sütünü oluşturulur.

 Gruplanmış serilerde örnek hacminin tek veya çift olduğuna bakılmaksızın

n/4 ncü eleman 1.Kartil (Q<sub>1</sub>),

(3n)/4 ncü eleman ise 3. Kartil  $(Q_3)$ , olarak ifade edilir.

#### Gruplanmış Seriler İçin Kartiller

| Grup           | riekans        | <u> </u>                                               |
|----------------|----------------|--------------------------------------------------------|
| 51             | 1              | 1                                                      |
| 66             | 3              | 4                                                      |
| 72             | 4              | 8                                                      |
| 82             | 5              | 13                                                     |
| 94             | 7              | 20                                                     |
|                |                |                                                        |
| <u>Grup</u>    | <u>Frekans</u> | $\sum \underline{\mathbf{f}}_{\underline{\mathbf{i}}}$ |
| <u>Grup</u> 51 | Frekans<br>1   | $\frac{\sum f_i}{1}$                                   |
| •              |                | _                                                      |
| 51             | 1              | 1                                                      |
| 51<br>66       | 1 3            | 1<br>4                                                 |
| 51<br>66<br>72 | 1<br>3<br>4    | 1<br>4<br>8                                            |

Grun Frakans Tf

Örnek: Yandaki tabloda bir Samsung bayisindeki LCD televizyonların ekran boyutlarına göre satış miktarları verilmiştir. Frekans dağılımının 1. ve 3 ncü Kartillerini hesaplayınız.

- n/4=20/4=5 değerine karşılık gelen sıra grup değeri **72** olduğundan 1.Kartil; ve 3(20)/4 =60/4=15 değerine karşılık gelen grup değeri **94** olduğundan 3.Kartil olarak ifade edilir.
- Frekans dağılımı yandaki gibi verilmiş olsaydı n/4=3.75 değerine karşılık
   Q<sub>1</sub> = 66 ve 3(15)/4 =11.25

 $Q_1 = 66 \text{ ve } Q_3 = 82 \text{ olacak idi.}$ 

#### Sınıflanmış Seriler İçin Kartiller

- Sınıflanmış serilerde kartiller hesaplanırken ilk olarak kümülatif frekans sütunu oluşturularak kartil sınıfları belirlenir.
- Kartil sınıfları belirlenirken gruplanmış serilerde olduğu gibi n/4 ve (3n)/4 ncü sıralardaki elemanların hangi sınıflara ait iseler o sınıflar kartil sınıfları olur.
- Kartil sınıfları belirlendikten sonra bu sınıflardan bir önceki sınıfın kümülatif frekansı ve mevcut sınıf frekansı dikkate alınarak kartil değerleri hesaplanır.

### Sınıflanmış Seriler İçin Kartiller

1. Kartil

2. Kartil

$$Q_2 = Medyan = L_{Q_2} + \frac{2}{f_{Q_2}}.i$$

3. Kartil

$$Q_{3} = L_{Q_{3}} + \frac{-J_{1}}{f_{0}}.i$$

#### Sınıflanmış Seriler İçin Kartiller

Ornek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımı verilmiştir. Günlük kullanılan et miktarının 1 nci ve 3 ncü

| Timedilini daginini volimingeni odinak kanalinan ot linkedilini i libi vo o liba |               |    |               |  |
|----------------------------------------------------------------------------------|---------------|----|---------------|--|
| kartillerini hesaplayınız.                                                       | Sınıflar      | fi | Birikimli Fr. |  |
|                                                                                  | 30-36'dan az  | 2  | 2             |  |
| Q <sub>1</sub> sınıfı                                                            | →36-42'den az | 6  | 8             |  |
| <b>Q</b> <sub>1</sub> 311111                                                     | 42-48'den az  | 10 | 18            |  |
|                                                                                  | 48-54'dan az  | 7  | 25            |  |
| Q <sub>3</sub> sınıfı                                                            | 54-60'den az  | 4  | 29            |  |
|                                                                                  | 60-66'den az  | 1  | 30            |  |
| $\mathbf{\nabla}$                                                                | Toplam        | 30 |               |  |

$$Q_{1} = L_{Q_{1}} + \frac{\frac{\sum f_{i}}{4} - f_{l}}{f_{Q_{1}}}.i$$

$$=36+\frac{7,5-2}{6}.6=41,5 kg.$$

$$Q_{1} = L_{Q_{1}} + \frac{\sum_{i} f_{i}}{4} - f_{l}$$

$$Q_{3} = L_{Q_{3}} + \frac{3\sum_{i} f_{i}}{4} - f_{l}$$

$$Q_{3} = L_{Q_{3}} + \frac{4}{f_{Q_{3}}} \cdot i = 48 + \frac{22,5 - 18}{7} \cdot 6 = 51,9 \text{ kg}.$$

$$= 36 + \frac{7,5 - 2}{6} \cdot 6 = 41,5 \text{ kg}.$$

#### Uygulama 5.1-2

1. Aşağıdaki sınıflandırılmış serinin aritmetik ortalamasını, medyanını ve modunu bulunuz.

| Sınıflar |   |     |         | fi |
|----------|---|-----|---------|----|
| 40       | - | 50  | 'den az | 3  |
| 50       | - | 60  | 'den az | 5  |
| 60       | - | 70  | 'den az | 11 |
| 70       | - | 80  | 'den az | 22 |
| 80       | - | 90  | 'den az | 15 |
| 90       | - | 100 | 'den az | 6  |

2. Aşağıdaki sınıflandırılmış serinin 1.,2. ve 3. kartillerini elde ediniz.

| Sinifl     | ar | Frekans | Birikimli | Frekans |
|------------|----|---------|-----------|---------|
| 0-20'den   | az | 8       |           | 8       |
| 20-40'dan  | az | 12      |           | 20      |
| 40-60'dan  | az | 25      |           | 45      |
| 60-80'den  | az | 15      |           | 60      |
| 80-100'den | az | 10      |           | 70      |

#### Tanımlayıcı İstatistikler

# Tanımlayıcı İstatistikler

Merkezi Eğilim

<u>Ölçüleri</u>

1)Aritmetik ort.

2)Ağırlıklı(Tartılı)

Aritmetik ort.

3)Geometrik ort.

4) Harmonik ort.

5)Mod

6)Medyan

7)Kartiller

Değişkenlik Ölçüleri

1) Range (Değişim Aralığı)

2) Ort. Mutlak sapma

3) Varyans

4) Standart Sapma

5) Değişkenlik(Varyasyon) Katsayısı

2)Bowley Asimetri

Ölçüsü

Çarpıklık Ölçüleri Basıklık

<u>Ölçüleri</u> 1)Pearson Asimetri

Ölçüsü

- İki farklı anakütleyi birbirinden ayırmak için her zaman yalnızca yer ölçüleri yeterli olmayabilir.
- Dağılımları birbirinden ayırt etmede kullanılan ve genellikle aritmetik ortalama etrafındaki değişimi dikkate alarak hesaplanan istatistiklere değişkenlik(yayılım) ölçüleri adı verilir.

Aşağıdaki iki grafik, n = 1500 hacimlik alınan iki farklı örnek doğrultusunda oluşturulan histogramlardır. Her iki örnek ortalaması yaklaşık olarak 100 olduğuna göre iki örneğin aynı anakütleden alındığı söylenebilir mi?





Χ

- İki örneğin aynı anakütleden geldiği söylenemez.
- Bunun nedeni alınan örnek sonucunda oluşturulan histogramda dağılımların ortalama etrafında farklı olmasından kaynaklanmaktadır.
- Dağılımları birbirinden ayırt etmede kullanılan yayılım ölçüleri aritmetik ortalama etrafındaki değişimleri dikkate alan tanımlayıcı istatistiklerdir.
- Bir veri setinde aritmetik ortalamalardan her bir gözlemin farkı alınıp bu değerlerin tümü toplandığında sonucun 0 olduğu görülür.

Örnek: 4,8,9,13,16 şeklinde verilen bir basit seri için;

Soru: Gözlemlerin aritmetik ortalamadan uzaklığı alınıp toplandığında 0 elde edildiğini gösteriniz.

Örnek: 4,8,9,13,16 şeklinde verilen bir basit seri için;

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{4+8+9+13+16}{5} = 10$$

$$\sum_{i=1}^{n} (x_i - \overline{x}) = (4-10) + (8-10) + (9-10)$$

$$= (13-10) + (16-10) = 0$$

• Bu örnekten görüleceği üzere gözlemlerin aritmetik ortalamadan uzaklığı alıp toplandığında 0 elde edildiğinden dolayı bu problem mutlak değer kullanarak veya karesel uzaklık alınarak ortadan kaldırılır.

- 1. Ortalama Mutlak Sapma
- 2. Varyans
- 3. Standart Sapma
- 4. Range (Değişim Aralığı)
- 5. Değişkenlik Katsayısı

- Veri setindeki her bir gözlem değerinin aritmetik ortalamadan farklarının mutlak değerlerinin toplamının örnek hacmine bölünmesiyle elde edilir.
- Gözlem değerlerinin aritmetik ortalamadan faklarının toplamı 0 olacağından bu problemi ortadan kaldırmak için mutlak değer ifadesi kullanılır.  $\mathbf{r}_{-}$

Basit seriler için:  $OMS = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{|x_i - \overline{x}|}$ 

Gruplanmış seriler için:

Sınıflanmış Seriler için :

$$OMS = \frac{\sum_{i=1}^{k} f_i |x_i - \overline{x}|}{\sum_{i=1}^{k} f_i}$$

$$OMS = \frac{\sum_{i=1}^{k} f_i |m_i - \overline{x}|}{\sum_{i=1}^{k} f_i}$$

Örnek: İstatistik I dersini alan 10 öğrencinin vize notları aşağıdaki gibi sıralanmıştır. Buna göre vize notları için ortalama mutlak sapma değerini hesaplayınız.

30, 41, 53, 61, 68, 79, 82, 88, 90, 98

$$OMS = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

Örnek: İstatistik I dersini alan 10 öğrencinin vize notları aşağıdaki gibi sıralanmıştır. Buna göre vize notları için ortalama mutlak sapma değerini hesaplayınız.

30,41,53,61,68,79,82,88,90,98

$$\overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n} = \frac{30 + 41 + \dots + 98}{10} = 69$$

$$OMS = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n} = \frac{|30 - 69| + |41 - 69| + \dots + |98 - 69|}{10}$$

OMS=184/10=18,4

Örnek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımı verilmiştir. Günlük kullanılan et miktarının ortalama mutlak sapmasını hesaplayınız.

| Sınıflar     | fi | <b>m</b> i | $ f_i(m_i-\vec{x}) $ |
|--------------|----|------------|----------------------|
| 30-36'dan az | 2  | 33         |                      |
| 36-42'den az | 6  | <b>39</b>  |                      |
| 42-48'den az | 10 | <i>45</i>  |                      |
| 48-54'dan az | 7  | <b>51</b>  |                      |
| 54-60'den az | 4  | <b>57</b>  |                      |
| 60-66'den az | 1  | <b>63</b>  |                      |
| Toplam       | 30 |            |                      |

| fi*mi |       |
|-------|-------|
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       | fi*mi |

$$\overline{x} = \frac{\sum_{i=1}^{k} m_i f_i}{\sum_{i=1}^{k} f_i} \qquad OMS = \frac{\sum_{i=1}^{k} f_i |m_i - \overline{x}|}{\sum_{i=1}^{k} f_i}$$

Örnek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımı verilmiştir. Günlük kullanılan et miktarının ortalama mutlak sapmasını hesaplayınız.

| Sınıflar     | fi | <b>m</b> i | $ f_i(m_i-\bar{x}) $ |
|--------------|----|------------|----------------------|
| 30-36'dan az | 2  | <b>33</b>  | 2*(33-46,6)          |
| 36-42'den az | 6  | <b>39</b>  | 6*(39-46,6)          |
| 42-48'den az | 10 | <i>45</i>  | 10*(45-46,6)         |
| 48-54'dan az | 7  | <b>51</b>  | 7*(51-46,6)          |
| 54-60'den az | 4  | <b>57</b>  | 4*(57-46,6)          |
| 60-66'den az | 1  | <b>63</b>  | 1*(63-46,6)          |
| Toplam       | 30 |            | 177,6                |

| fi <sup>,</sup> | *mi  |
|-----------------|------|
|                 | 66   |
|                 | 234  |
|                 | 450  |
|                 | 357  |
|                 | 228  |
|                 | 63   |
|                 | 1398 |

$$\bar{x} = \frac{\sum_{i=1}^{k} m_i f_i}{\sum_{i=1}^{k} f_i}$$

$$OMS = \frac{\sum_{i=1}^{k} f_i |m_i - \bar{x}|}{\sum_{i=1}^{k} f_i}$$

Örnek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımı verilmiştir. Günlük kullanılan et miktarının ortalama mutlak sapmasını hesaplayınız.

| Sınıflar     | fi | <b>m</b> i | $ f_i(m_i-\bar{x}) $ |
|--------------|----|------------|----------------------|
| 30-36'dan az | 2  | <b>33</b>  | 2*(33-46,6)          |
| 36-42'den az | 6  | <b>39</b>  | 6*(39-46,6)          |
| 42-48'den az | 10 | <i>45</i>  | 10*(45-46,6)         |
| 48-54'dan az | 7  | <b>51</b>  | 7*(51-46,6)          |
| 54-60'den az | 4  | <i>57</i>  | 4*(57-46,6)          |
| 60-66'den az | 1  | <b>63</b>  | 1*(63-46,6)          |
| Toplam       | 30 |            | 177,6                |

| fi*mi |   |
|-------|---|
| 66    | ; |
| 234   | Ļ |
| 450   | ) |
| 357   | 7 |
| 228   | 3 |
| 63    | 3 |
| 1398  | 3 |

$$\overline{x} = \frac{\sum_{i=1}^{k} m_{i} f_{i}}{\sum_{i=1}^{k} f_{i}} = 46,6 kg.$$

$$OMS = \frac{\sum_{i=1}^{k} f_i |m_i - \overline{x}|}{\sum_{i=1}^{k} f_i} = 177,6/30 = 5,92$$

#### 1) Ortalama Mutlak Sapma(OMS) Uygulama 5.3

#### Örnek Soru:

| Sınıflar     | fi | <b>m</b> i | $ f_i(m_i-\bar{x}) $ |
|--------------|----|------------|----------------------|
| 10-20'den az | 3  |            |                      |
| 20-30'dan az | 6  |            |                      |
| 30-40'dan az | 9  |            |                      |
| 40-50'den az | 12 |            |                      |
| 50-60'dan az | 15 |            |                      |

$$\overline{x} = \frac{\sum_{i=1}^{k} m_i f_i}{\sum_{i=1}^{k} f_i}$$

$$OMS = \frac{\sum_{i=1}^{k} f_i |m_i - \overline{x}|}{\sum_{i=1}^{k} f_i}$$

- Ortalama Mutlak Sapma
- 2. Varyans
- 3. Standart Sapma
- 4. Range (Değişim Aralığı)
- 5. Değişkenlik Katsayısı

- Ortalama mutlak sapmada kullanılan mutlak değerli ifadeler ile işlem yapmanın zor hatta bazı durumlarda imkansız olması sebebiyle yeni değişkenlik ölçüsüne ihtiyaç duyulmaktadır.
- Mutlak değer ifadesindeki zorluk aritmetik ortalamadan farkların karelerinin alınmasıyla ortadan kalkmaktadır.
- Veri setindeki her bir gözlem değerinin aritmetik ortalamadan farklarının karelerinin toplamının örnek hacminin bir eksiğine bölünmesinden elde edilen değişkenlik ölçüsüne örnek varyansı adı verilir.

#### Basit seriler İçin:

asit seriler lçin:
Populasyon Varyansı: 
$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

μ : Populasyon Ortalaması Ν : Populasyon Hacmi

Örnek Varyansı : 
$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$
ruplanmış Seriler İçin:  $s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sum_{i=1}^k f_i (x_i - \overline{x})^2}$ 

Gruplanmış Seriler İçin:

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{k} f_{i} - 1}$$

Sınıflanmış Seriler İçin:

$$\frac{\sum_{i=1}^{k} f_i(m_i - x)}{\sum_{i=1}^{k} f_i - 1}$$

$$\sum_{i=1}^{n} \left( \mathcal{X}_{i} - \overline{\mathcal{X}} \right)^{2}$$
 ifadesi istatistikte bir çok

formülde kullanılır ve *kareler toplamı* olarak adlandırılır.

Matematiksel olarak hesaplama kolaylığı sağlaması açısından formüllerde kareler toplamının açılımı olan aşağıdaki eşitlik kullanılabilir.

$$\sum_{i=1}^{n} \left( x_i - \overline{x} \right)^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left( \sum_{i=1}^{n} x_i \right)^2}{n}$$

Ispat: 
$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2)$$

$$= \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i \overline{x} + n \overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + n \overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2\frac{\sum_{i=1}^{n} x_i}{n} \sum_{i=1}^{n} x_i + n \left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2\frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} + \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$

$$\left(\sum_{i=1}^{n} x_i\right)^2$$

Basit Seriler İçin: 
$$s^2 = \frac{\sum_{i=1}^{n} N_i}{n}$$

Gruplanmış Seriler İçin:

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i}}{\sum_{i=1}^{k} f_{i}}$$

$$\sum_{i=1}^{k} f_i m_i - \sum_{i=1}^{k} f_i$$

Sınıflanmış Seriler İçin :

$$\sum_{i=1}^{k} f_i - 1$$

- Ortalama Mutlak Sapma
- 2. Varyans
- 3. Standart Sapma
- 4. Range (Değişim Aralığı)
- 5. Değişkenlik Katsayısı

 Varyans hesaplanırken kullanılan verilerin kareleri alındığından verilerin ölçü biriminin karesi varyansın ölçü birimi olur.

• Örnek: kg², cm² gibi.

• Bu nitelendirme veriler açısından bir anlam taşımayacağından varyans yerine ortalama etrafındaki değişimin bir ölçüsü olarak onun pozitif karekökü olan **standart sapma** kullanılır.

Basit seriler İçin:

Populasyon Standart Sapması:  $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$ 

μ : Populasyon Standart Sapması N : Populasyon Hacmi

Örnek Standart Sapması :  $s = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}{n}}$ 

Örnek Standarı  $S_{i=1}$ Gruplanmış Seriler İçin:  $s = \sqrt{\frac{\sum\limits_{i=1}^{k} f_i(x_i - \overline{x})^2}{\sum\limits_{i=1}^{k} f_i - 1}}$   $s = \sqrt{\frac{\sum\limits_{i=1}^{k} f_i(m_i - \overline{x})^2}{\sum\limits_{i=1}^{k} f_i - 1}}$ 

$$\sqrt{\frac{\sum_{i=1}^{k} f_i (m_i - \bar{x})^2}{\sum_{i=1}^{k} f_i - 1}}$$

Örnek: İstatistik I dersini alan 10 öğrencinin vize notları aşağıdaki gibi sıralanmıştır. Buna göre vize notları için varyans ve standart sapmayı hesaplayınız.

30, 41, 53, 61, 68, 79, 82, 88, 90, 98

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$s = \sqrt{s^{2}}$$

Örnek: İstatistik I dersini alan 10 öğrencinin vize notları aşağıdaki gibi sıralanmıştır. Buna göre vize notları için varyans ve standart sapmayı hesaplayınız.

30,41,53,61,68,79,82,88,90,98 
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{30 + 41 + \dots + 98}{10} = 69$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{(30-69)^{2} + (41-69)^{2} + \dots + (98-69)^{2}}{9}$$
$$= \frac{4538}{9} \approx 504,22$$

$$s^2 \approx 504,22 \rightarrow s = \sqrt{s^2} = \sqrt{504,22} \approx 22,45$$

İstatistik I vizesinden alınan notların ortalama etrafında yaklaşık olarak 22 puan değiştiği görülmektedir.

kullanılarak soru kareler ortalamasının açılımı Aynı çözüldüğünde aynı sonuçları verecektir.

| X                        | $\chi^2$                   |
|--------------------------|----------------------------|
| 30                       | 900                        |
| 41                       | 1681                       |
| 53                       | 2809                       |
| 61                       | 3721                       |
| 68                       | 4624                       |
| 79                       | 6241                       |
| 82                       | 6724                       |
| 88                       | 7744                       |
| 90                       | 8100                       |
| 98                       | 9604                       |
| $\sum_{i=1}^{n} x_i = ?$ | $\sum_{i=1}^{n} x_i^2 = ?$ |

$$s = \sqrt{s^2}$$

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x\right)^{2}}{n}}{n-1}$$

$$S = \sqrt{S^{2}}$$

Aynı soru kareler ortalamasının açılımı kullanılarak çözüldüğünde aynı sonuçları verecektir.

| X       | $x^2$ |  |  |
|---------|-------|--|--|
| 30      | 900   |  |  |
| 41      | 1681  |  |  |
| 53      | 2809  |  |  |
| 61      | 3721  |  |  |
| 68      | 4624  |  |  |
| 79      | 6241  |  |  |
| 82      | 6724  |  |  |
| 88      | 7744  |  |  |
| 90      | 8100  |  |  |
| 98 9604 |       |  |  |

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x\right)^{2}}{n}}{n-1} = \frac{52148 - \frac{(690)^{2}}{10}}{9}$$

$$s^2 \approx 504,22$$

$$s = \sqrt{s^2} = \sqrt{504,22} \approx 22,45$$

$$\sum_{i=1}^{n} x_{i} = 690 \sum_{i=1}^{n} x_{i}^{2} = 52148$$

Örnek: Yandaki tabloda bir Samsung bayisindeki LCD televizyonların ekran boyutlarına göre satış miktarları verilmiştir. Frekans dağılımının varyans ve standart sapmasını hesaplayınız.

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2} - \frac{\left(\sum_{i=1}^{k} f_{i} x_{i}\right)^{2}}{\sum_{i=1}^{k} f_{i}}}{\sum_{i=1}^{k} f_{i} - 1}$$

Grup Frekans

51 1
66 3
72 4
82 5
94 7
$$\sum f_i = 20$$

$$s = \sqrt{s^2}$$

**Örnek:** Aşağıdaki tabloda bir Samsung bayisindeki LCD televizyonların ekran boyutlarına göre satış miktarları verilmiştir. Frekans dağılımının varyans ve standart sapmasını hesaplayınız.

Frekans  $x_i f_i$   $x_i^2 f_i$ Grup 288 20736 410 33620  $\sum f_i = 20 \ 1605 \ 131607$ 

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2} - \frac{\left(\sum_{i=1}^{k} f_{i} x_{i}\right)^{2}}{\sum_{i=1}^{k} f_{i}}}{\sum_{i=1}^{k} f_{i} - 1} = \frac{131607 - \frac{\left(1605\right)^{2}}{20}}{\sum_{i=1}^{k} f_{i} - 1} \approx 147,67$$

$$s = \sqrt{s^{2}} = \sqrt{147,67} \approx 12,15$$

Örnek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımı verilmiştir. Günlük kullanılan et miktarının varyansını ve standart sapmasını hesaplayınız.

| Sınıflar     | f <sub>i</sub> |
|--------------|----------------|
| 30-36'dan az | 2              |
| 36-42'den az | 6              |
| 42-48'den az | 10             |
| 48-54'dan az | 7              |
| 54-60'den az | 4              |
| 60-66'den az | 1              |
| Toplam       | 30             |

$$\bar{x} = \frac{\sum_{i=1}^{k} m_i f_i}{\sum_{i=1}^{k} f_i}$$

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i} (m_{i} - \bar{x})^{2}}{\sum_{i=1}^{k} f_{i} - 1}$$

$$s = \sqrt{s^2}$$

Örnek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımı verilmiştir. Günlük kullanılan et miktarının varyansını ve standart sapmasını hesaplayınız.

| Sınıflar     | f <sub>i</sub> | <b>m</b> <sub>i</sub> | $f_i(m_i-\bar{x})^2$     |
|--------------|----------------|-----------------------|--------------------------|
| 30-36'dan az | 2              | 33                    | 2(33-46,6) <sup>2</sup>  |
| 36-42'den az | 6              | <b>39</b>             | $6(39-46,6)^2$           |
| 42-48'den az | 10             | 45                    | 10(45-46,6) <sup>2</sup> |
| 48-54'dan az | 7              | <b>51</b>             | 7(51-46,6) <sup>2</sup>  |
| 54-60'den az | 4              | <b>57</b>             | $4(57-46,6)^2$           |
| 60-66'den az | 1              | <b>63</b>             | 1(63-46,6) <sup>2</sup>  |
| Toplam       | 30             |                       | 1579,2                   |
| 1_           |                | ц                     |                          |

$$\overline{x} = \frac{\sum_{i=1}^{k} m_{i} f_{i}}{\sum_{i=1}^{k} f_{i}} = 46,6 \, kg$$

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i}(m_{i} - \overline{x})^{2}}{\sum_{i=1}^{k} f_{i} - 1} = \frac{1579.2}{30 - 1} \approx 54.46$$

$$s = \sqrt{s^2} = \sqrt{54,46} \approx 7,38 kg$$
.



$$\overline{x} \mp \sigma =$$
 gözlemlerin %68.27'sini

 $\overline{x} \mp OMS = \text{g\"ozlemlerin } \%57.5$ 'ini kapsar. (Ortalama Mutlak Sapma(OMS))

