Лабораторная работа: Метод наименьших квадратов. Вариант 23

Правила выполнения лабораторной работы:

- Лабораторная работа выполняется в директории labs/lab5.
- В рамках лабораторной работы две предложенные по варианту задачи решаются с помощью электронных таблиц и приложения с графическим интерфейсом.
- Рекомендуется разделить создание графического интерфейса и выполнения внутренних вычислений. Для этого можно создать дополнительные файлы и импортировать функции, реализованные в них.
- Для построения интерфейса можно выбрать любую библиотеку (https://wiki.python.org/moin/ GuiProgramming)
- Входные неизвестные задаются через ввод с элементов графического интерфейса с учётом типов данных. При этом на стадиях разработки и отладки допускается задать эти параметры напрямую в программе.
- Программа должна быть предназначена для работы с пользователем, то есть ввод/вывод значений сопровождается текстовой подписью.
- Все известные параметры задаются в качестве констант в программе.
- Если в задаче указаны названия переменных, то используйте их, иначе придумайте названия самостоятельно.
- Если нужно построить графики, то можно воспользоваться библиотекой matplotlib.
- Оценка за работу зависит от сделанных заданий и подзаданий (шаги реализации).
- В процессе выполнения собирается отчёт. Представление выполенного задания в отчете:
 - 1. Постановка в виде текста задания.
 - 2. Алгоритм решения в виде блок-схемы, выведенных формул.
 - 3. Текст метода решения задачи (сохранить исходный вид при копировании из IDE).
 - 4. Снимки окна графического интерфейса программы
 - 5. Тестирование функционала программы с различными входными параметрами.

Задача 1.

При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от радиуса обслуживания базовой станции $(x, \kappa m.)$ при плотности населения $\sqrt{\kappa m^2}$.

	1.0									
У	6702	3507	2101	1302	1102	901	849	831	820	815

Спрогнозировать стоимость подключения потенциального абонента в случае, если радиус обслуживания базовой станции составит 8 км.

Задача 2.

В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака. В таблице приведены данные об изменении высоты (у, м) и времени (х, мин).

X	1	2	4	6	8	10	12	15	18	20
У	7,6	7,2	6,57	5,95	5,45	5,09	4,9	4,6	4,3	4,1

Проанализировать, какая высота воды в баке останется на 25 минуте, после открытия бака.

Задание 1. Использование МНК в электронных таблицах

Шаги решения задания:

1. (оценка 3) Исходя из данных задачи подобрать функцию аппроксимации исходных точек.

Таблица 23: Примеры различных аппроксимирующих функций

$a_0 + a_1 x + a_2 x^2 + a_3 x^3$	$a_0 + a_1 \cos(0.1\pi - x) + a_2 \cos(0.2\pi - x) + a_2 \cos(0.3\pi - x)$
$a_0 + a_1 \sin \left \frac{x}{2} \right + a_2 \sin \left \frac{x}{4} \right + a_3 \sin \left \frac{x}{8} \right $	$a_0 + a_1 \sin(3x - 2) + a_2 \sin^2(3x - 2) + a_3 \sin^3(3x - 2)$
$a_0 + a_1 \sin x + a_2 \sin 2x + a_3 \sin 3x $	$a_0 + a_1 \cos(0.1\pi + x) + a_2 \cos(0.2\pi + x) + a_3 \cos(0.3\pi + x)$
$a_0 + a_1 e^{\cos(x+1)} + a_2 e^{\cos(x+2)} + a_3 e^{\cos(x+3)}$	$a_0 + a_1 e^{\sin(x+1)} + a_2 e^{\sin(x+2)} + a_3 e^{\sin(x+3)}$
$a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3}$	$a_0 + a_1 \sin(x+1) + a_2 \sin(x+2) + a_3 \sin(x+3)$
$a_0 + a_1 e^{0.1\pi x} + a_2 e^{0.2\pi x} + a_3 e^{0.3\pi x}$	$a_0 + a_1 \cos(2x+1) + a_2 \cos(2x+2) + a_3 \cos(2x+3)$
$a_0 + a_1\sqrt{ x } + a_2\sqrt{ 2x } + a_3\sqrt{ 3x }$	$a_0 + a_1 \cos(\pi x) + a_2 \cos(\pi x) + a_3 \cos(\pi x)$
$a_0 + a_1 \sin(x) + a_2 \sin(x^2) + a_3 \sin(x^3)$	$a_0 + a_1 \cos(0.1\pi x) + a_2 \cos(0.2\pi x) + a_3 \cos(0.3\pi x)$
$a_0 + a_1 \cos \left \frac{x}{2} \right + a_2 \cos \left \frac{x}{4} \right + a_3 \cos \left \frac{x}{8} \right $	$a_0 + a_1 \sin(\pi x) + a_2 \sin^2(\pi x) + a_3 \sin^3(\pi x)$

- 2. (оценка 3) Построить систему линейных алгебраических уравнений для определения коэффициентов выбранной функции.
- 3. (оценка 3) С помощью электронных таблиц определить коэффициенты аппроксимирующей исходные данные функции методом наименьших квадратов.
- 4. (оценка 3) Построить точечную диаграмму исходных данных (маркеры без линии). Добавить кривую полученной функции (линия без маркеров). Диаграмма должна включать подписи осей, легенду, сетку. В диаграмме не должно быть названия, внешней границы фигуры.
- 5. (оценка 4) Повторить шаги 1-4 для функции другого вида. Разместить новое решение необходимо на новом листе.
- 6. (оценка 4) Найти квадратичную невязку каждой функции по формуле $Q_i = (y_i y(x_i))^2$ для каждой точки (x_i, y_i) . Найти максимум квадратичной невязки. При помощи функции ЕСЛИ сделать вывод о том, какая функция лучше описывает исходные данные.
- 7. (оценка 5) На основе лучшей по итогу 5 шага функции сделать прогноз для одной точки за пределами исходного диапазона. Добавить точку на диаграмму.

Задание 2. Программирование МНК

Разработать программу, определяющую коэффициенты аппроксимирующей исходные данные функции методом наименьших квадратов. С помощью программы определить коэффициенты функций, выбранных в Задании 1 и сравнить результаты. Шаги реализации:

- 1. (оценка 3) Создать два класса аппроксимирующих функций разного вида (из задания 1) со следующими методами, атрибутами, переменными:
 - метод __init__ конструктор класса, инициализирует экземпляр класса;
 - метод __str__ строковое представление аппроксимирующей функции с помощью понятной для пользователя формулы вида (пример для функции $f(x) = a + bx + cx^2$):

$$f(x)=1.634+4.561*x-8.320*x**2$$

- метод approximate вычисляет коэффициенты аппроксимирующей функции по полученным в качестве аргумента(-ов) точкам;
- метод __call__ делает экземпляр класса вызываемым (callable), необходим для использования объекта как функции;
- атрибуты неизвестные коэффициенты функции.
- 2. (оценка 4) Добавить методы:
 - метод __len__ возвращает длину объекта (в рассматриваемом примере количество неизвестных коэффициентов функции);

- метод del деструктор класса, удаляет экземпляр класса;
- метод residual определяет квадратичную невязку по полученным в качестве аргумента(-ов) точкам;
- переменная класса count, которая в себе содержит количество созданных аппроксимирующих функций (экземпляров);
- 3. (оценка 5) Добавить метод:
 - метод __repr__ строковое представление аппроксимирующей функции в виде выражения конструктора объекта данного класса (тот же пример, для класса с именем QuadraticFunction):

'QuadraticFunction(1.634, 4.561, 8.320)'

Данное представление можно использовать для создания нового объекта функции с помощью функции eval(), например:

function2 = eval(repr(function1))

4. (оценка 5) Создать абстрактный класс аппроксимирующей функции, являющийся родительским для классов из предыдущего задания

Задание 3. Графический интерфейс программы МНК

Разработать графический пользовательский интерфейс программы, реализующей аппроксимацию данных методом наименьших квадратов. Шаги реализации:

- 1. (оценка 3) График показывает точки исходных данных, заданные в программе. Нажатие на кнопку расчитывает коэффициенты заданной в программе аппроксимирующей функции и выводит кривую функции на график.
- 2. (оценка 4) Ввод координат точек реализован через таблицу в интерфейсе.
- 3. (оценка 4) Заданные аппроксимирующие функции выбираются из зада0нного списка (минимум две функции).
- 4. (оценка 5) Доступно добавление произвольной аппроксимирующей функции в список функций.
- 5. (оценка 5) Реализована обработка ошибок ввода.