物理科研实践期末成果总结

—2018 autumn semester

姓名: 林渊野 学号: F17072910007 班级: F1707201

Contents

1	Introduction	2
2	Method	2
3	Main Sequence 3.1 SFR distribution	3 3 4 4
4	Halo Property4.1 Fraction of Central Galaxy within Active Galaxy4.2 Halo Mass	5 6
5	Metallicity	7
6	Discussion 6.1 Conclusion 6.2 Question 6.3 Future Improvement	8 8 8 9
7	Appendix I 7.1 Dex=0.1 7.2 Dex=0.3 7.3 Dex=0.5 7.4 Dex=0.7 7.5 Dex=1.0 7.6 Dex=1.5	10 10 11 12 13 14 15
8	References	15

1 Introduction

在宇宙天文学的研究范畴内,对于星系演化的过程,人们的研究工作目前还处于比较初步的 范畴。相比较于大尺度宇宙结构,现在利用 CMG 等等技术,对宇观尺度上的演化有了较为深入认识,并且引入了参数描述这一过程,但对于星系演化的过程,其更为复杂,也更难以描述。

其主要的困难点在于,第一,观测结果十分有限;第二,模型建构难以进行,引入参数过多;事实上,我们对于每个星系,都只有现在观测者所接受到的数据,类比于一个胚胎的演化,到孩子长大的过程,我们现在能够得到的只是现在这一时刻,每一个处于胚胎或者人类的观测结果,相比于胚胎,我们可以通过对一个胚胎的演化进行追踪,从而研究其演化过程,而对于星系则不能如此,因为观测者的观测时间尺度远小于演化时间尺度,因此从观测角度对其进行研究是十分困难的。

从而人们希望从另外一个角度对星系演化进行探究,利用流体模拟对星系形成过程进行探究;如果模拟的结果与已观测到的结果相符,可以认为这个模拟结果是可能正确的。再从模拟结果中得到其他信息 (可观测的信息),利用模拟结果对观测进行指导。如果再观测结果与模拟结果相符,则认为模拟结果仍是可信的;倘若再模拟结果与观测不符,则认为需对模拟进行修正。其最终目标是对模拟进行不断的修正,使得模拟结果与观测结果在足够多的观测维度下,始终是符合的。那么人们就可以通过对这个星系形成的模拟过程进行探究,从而找到一个研究星系形成的方法。

2 Method

我的研究主要是针对对于 EAGLE 模拟结果进行分析,主要研究的是星系形成速率 (Star Formation Rate) 与星系的性质进行探究,包括星系的恒星质量 (Stellar Mass),星系的金属锋度 (Metallicity),以及其所处的暗物质晕 (halo) 的性质差异。对中央星系与卫星星系,以及对高星系形成率与低星系形成率星系的性质的探究。

我目前的研究主要针对以下模拟结果以及参数:

模拟模型: RefL BoxSize: 100Mpc initial Particle Number:1504³

Field	Unit	Description
GroupID	-	The number to identifier the FoF group
Redshift	-	Redshift at which the properties are computed
SnapNum	-	Snapshot number containing that halo
GroupMass	M_{sun}	Total Friends-of-Friends mass of the halo

Table 1: $RefL0100N1504_{FOF}$

利用上述参数表,我的研究步骤如下:

- 1. **Find the MS**: 利用 *MassType_{star}* 与 StarFormationRate 条目,找到星系形成速率与恒星总质量的 Main Sequence, 并定义在 MS 上方的星系为 Galaxies above MS; 定义在 MS 下方的星系为 Galaxies below MS; 并通过 Quench Cut 定义 Active Galaxy(关于 Galaxies Above与 Below 的定义范围在 Active 之内)
- 2. **Halo Property**: 利用 *SubGroupNumber* 条目探究 Central Galaxy 的占比; 利用 *GroupMass* 条目探究 Central Galaxies 的 StellarMass 与 HaloMass 之间的关系
- 3. Metallicity: 利用 SF_{Oxygen} 与 SF_{Hydrogen}, 计算金属锋度与 StellarMass 的关系

Field	Unit	Description
GalaxyID	-	The number to identifier each galaxy
LastProgID	-	GalaxyID of the last progenitor of this galaxy
TopLeafID	-	GalaxyID of the last progenitor in the main progenitor branch
DescendantID	-	GalaxyID of the descendant of this galaxy
GroupID	-	The number to identifier the FoF group
Redshift	-	Redshift at which these properties
SnapNum	-	Snapshot number at which these properties are computed
SubGroupNumber	-	To identify the galaxy: Central Galaxy = 0 ; Otherwise > 0
$CentreOfMass_x$	сМрс	
$CentreOfMass_y$	сМрс	Co-moving position of the centre of mass.
$CentreOfMass_z$	сМрс	
$MassType_{star}$	M_{sun}	Total stellar mass.
StarFormationRate	$M_{sun}yr^{-1}$	Total star formation rate before any mass loss
$SF_{Hydrogen}$	-	Hydrogen particle mass fraction within Star-Forming Gas
SF_{Oxygen}	-	Oxygen particle mass fraction within Star-Forming Gas

Table 2: $RefL0100N1504_{subhalo}$

3 Main Sequence

在天体观测中,结果显示 StellarMass 与 StarFormationRate 存在一个比较强的依赖关系,根据观测结果可以看到 StellarMass-StarFormationRate 中存在一个对角的 MainSequence,下面为尝试在 EAGLE 模拟中找到不同 z 处对应的 Main Sequence

3.1 SFR distribution

(a) StellarMass-StarFormationRate

(b) SFR distribution at fixed StellarMass

Figure 1: Main Sequence

如图一 (a) 所示,x 轴对应的是星系的恒星质量 (log10),y 轴对应的是星系的恒星形成速率 (log10),我设置 StarFormationRate=0 的 Galaxies 的 y 值为 -10;我对 StellarMass 进行分 Bin, set $Width_{Bin}=0.3$;图中颜色设置方式如图 b 所示,对于固定的 StellarMass(在一个 Bin 内),对 SFR 的分布进行 Normalize,找到对应分布的分值对应的星系数量为 $Number_{Max}$,Ratio 定义为:

 $Ratio = Number_{sfr}/Number_{Max}$

由此可以发现在图 (a) 中,最大值点对应红色区域有一个对角线的分布,该分布就是我们想要找到的 Main Sequence

对应的蓝色的点为在每一个 Bin 中找到的 Maximum Point, 紫色的直线为利用最大值点进行线性拟合找到的 Linear MS, 蓝色的曲线为利用插值函数找到的经过每一个最大值点的 MS

图二 (b) 中对应的虚线为 Linear MS 与实际 MS 分布的差异,可以看到在高恒星质量端,分布的差别会比较大,这个结果在图一 (a) 中也能比较明显的看出

3.2 Quench Cut

利用 MS 我们可以在固定的恒星质量利用恒星形成速率对星系进行分类,将 Galaxy 分成 Above the MS 与 Below the MS; 但是在分类之前,我们需要先定义活跃的星系 (Active Galaxy), 在图一(b) 中可以看出,在 Galaxies Below the MS 的定义范围内,有很多低 sfr 的星系,对于这些星系我们认为是不重要的,因为这些星系的性质与高恒星形成率的星系有明显的不同,因此我们定义一个 Quench Cut,定义在 Cut 以外的星系为沉寂的,这类星系在之后的探究中会在第一步被剔除;

Quench Cut 的定义方法如下,利用插值函数法找到的 MS 分布,将函数曲线往下平移一定的数值,我们尝试定义不同的 cut 下,Active Galaxies 对应的 SFR distribution:

Figure 2: Different Quench Cut

可以看到在不同的 Cut 下的 SFR Distribution: 我们想要的 cut 应该是这样的,在固定的 StellarMass 下,The Number of Galaxies Above the MS 与 Galaxies Below the MS 的数量尽可能接近,在这样的条件下,可以看到 0.7dex 与 1dex 的 cut 是比较理想的

3.3 MS at different z

根据以上对 Main Sequence 以及 Quenen Cut 的定义,可以 MS at different redshift:

Figure 3: Main Sequence at different z

如图三所示,可以看出,对于 high redshift 对应的 Main Sequence 分布更高,也就是说,随着时间的推移,在同一 StellarMass 的情况下,对应的 StarFormationRate 逐渐降低;拟合范围选取为 9.8-11.0;可观测的星系对应的 StellarMass 大部分位于这一范围内;

4 Halo Property

每一个星系都处于一个大的暗物质晕的结构中 (可以想象为果实在树上生长),而在每一个暗物质晕中心有一个 Central Galaxy,通常认为 Central Galaxy 的性质与 Halo 的性质关系最为紧密,而 Satellite Galaxy 与 Halo 的性质则相对关系不大;

Figure 4: Central Galaxy Ratio

4.1 Fraction of Central Galaxy within Active Galaxy

如图四所示,是设置 quench cut dex=0.7 的情况下,对于活跃的星系,在不同的恒星质量下,中心星系所占的比例;红线对应的是 Above,蓝线对应 Below,粉线对应的是 All Galxies;其中 ErrorBar 得出的方法如下,利用 $RefL0100N1504_{subhalo}$ 中对应的 $CentreOfMass_x$, $CentreOfMass_y$, $CentreOfMass_z$, 图中的 ErrorBar 的获得方法如图 1 所示:利用 Jackinife's Resampple Method:将宇宙分成八块相同的 Cubic:将每一小个 Cubic 除去,计算其他样本中的数据,利用这种方法得到八个数据:

 x_0 : number of all active central galaxies

 y_0 : the number of all active galaxies

 x_i : the central galaxies (active) in $cube_i$

 y_i the active galaxies except in $cube_i$

利用 Jackinife resample method 可以计算 Central Fraction Errorbar:

$$\theta_i = \frac{x_0 - x_i}{y_0 - y_i}; \bar{\theta} = \frac{1}{8} \sum_{i=1}^{i} (theta_i)$$

$$se_{jack}^{\hat{}} = \sqrt{\frac{n-1}{n} \sum_{i=1}^{i} (\theta_i - \bar{\theta})^2}$$

4.2 Halo Mass

Figure 5: HaloMass-StellarMass Relationship

如图四 (b) 所示,横轴对应的为中心星系的恒星质量,纵轴对应的为中心星系所处的暗物质晕的质量,可以看到对于 Galaxy Above 对应的 HaloMass 在各个 bin 对应的平均值均要大于 Below 对应的值;这个方面是一个比较令人奇怪的点,因为在一般的星系模型中,由于 Feedback等效应,对于处于较高质量暗物质晕中的 galaxies 的 StarFormationRate 会被一定程度上的抑制,因此在这种模型下的曲线应该是 Below 对应的 HaloMass 更高一些;当然影响 SFR 的效应远远不止 HaloMass 的 Feedback 这一种效应,但是 EAGLE 模拟下得到的该曲线是否与观测相符是一个十分值得验证的问题。

最为对比,可以简单的看一下中心星系和卫星系对应的 HaloMass-StellarMass 的点分布图: 如图六所示可以看到对于 Central Galaxy 有明显的相分离现象,而对于 Satellite 很明显二者之间关系不大,这与我们最初认为 Halo 的性质与 Central Galaxy 的性质更为紧密的假设是一

Figure 6: SFR-HaloMass Relationship

致的;

5 Metallicity

在宇宙观测学中,最主要的就是对光谱进行分析;因此对可以利用对接受谱线的分析可以很容易得到星系的金属锋度,因此研究 EAGLE 模拟中的金属锋度,并与实际观测进行对比也是一个很有意义的方面:在宇宙学的定义中,比 He 重的元素均定义为 Metal;对金属锋度(Metallcity)的定义如下:

$$Metallicity = 12 + log10(\frac{Particle_O}{Particle_H})$$

其中 $Particle_O$, $Particle_H$ 代表在 Star-Forming Gas 中 O 原子 (离子) 的数量与 H 原子 (离子) 的数量:

Figure 7: StellarMass-Metallicity Relationship

如图七所示,蓝线对应的为 Below, 红线对应 Above 数据,×,*,o 分别对应 Central, Satellite and All Galaxies, 黑线对应的为所有 Active 星系的拟合结果; 结果可以看出:

1. Below the MS 对应的金属锋度要明显高于 the Galaxies Above the MS

2. 对于 Galaxies Above the MS,金属锋度的分布对于 CG 以及 SG 几乎没有区别;比较令人惊异的是对于 Below, Satellite 的星系的金属锋度要明显高于 Central

6 Discussion

我的研究工作主要是基于通过 EAGLE 宇宙模拟结果的分析,找到物理量之间的相关性,并指导观测,与结果进行对比,从而验证模型的正确性,并尝试对模型进行相关修正:

6.1 Conclusion

根据以上的结果,我们得到的一些结论如下:

- 1. **Main Sequence**: 星系的恒星质量与恒星形成速率相图中存在一个 Main Sequence, 且随着时间的推移, MS 逐渐下降;
- 2. **Central Galaxies Ratio**: 活跃的星系中,中心星系的占比比较大 (65% 90%), 且在高质量端 (样本多),高恒星形成率的中心星系占比比低恒星形成率高;在低质量端则相反;
- 3. Halo Mass: 高恒星形成率中心星系对应的 Halo Mass 质量高于低恒星形成率中心星系;
- 4. **Metallicity**: 低恒星形成率星系对应的金属锋度要高于高恒星形成率的星系,且在低恒星 形成率的星系中,卫星星系的金属分度与中心星系有较大的区别 (明显高于),但在高恒星 形成率中则几乎没有差别;

6.2 Question

在上述结果中,比较值得探讨(存疑)的为3、4两点:

- 1. Halo Mass: 在一般的星系形成模型中,HaloMass 越高一般认为对应着模型结构更为成熟,所对应的恒星形成速率应相对较低,在附录中可以看出,当我们改变 Quench cut 时,若将 SFR 更低的星系纳入分析范围,会发现蓝线 (Below) 逐渐上移,也就意味着较低的 SFR 对应较高的 HaloMass,与模型相符;而 EAGLE 模拟结果显示,高恒星形成速率的中心星系对应的 Halo Mass 更高,这一点是十分值得探讨,并且是可以与观测结果进行相关对比的;
- 2. Metallicity: 观测结果中显示,对于低恒星形成率的星系,卫星星系的金属锋度明显高于中心星系,由于金属锋度与恒星形成速率有很强的相关性,金属性越强对应的 SFR 越低,一个猜想是在 StellarMass Bin 内,卫星星系的平均 SFR 有可能低于中心星系

Figure 8: Metallcity-SFR

如图八 (b) 所示,子图中展示的是 Above Central,Above Satellite,Below Central,Below Satellite 对应的 SteallarMass-SFR 分布,图中显示在低质量端,Above Central 的 SFR 要低

于 Satellite; 而在高质量端二者相近; 而在低质量端, Below Central 的 SFR 与 Satellite 相近, 而在高质量端 Central 要高于 Satellite; 对比左右两图,倘若假设 SFR 只与 Metallicity 相关,仍无法得到结论 (对于 Above 区域的 Galaxy Metallicity 几乎没有区别);

6.3 Future Improvement

- 1. 作 StellarMass-SFR 图时,由于 StellarMass Bin 具有一定的宽度,因此会有一定的问题:在同一个 Bin 内最低恒星质量的星系与最高恒星质量的星系性质存在一定差异,一个 Improvement 的方法是,将 y 轴的 log10(SFR) 可以改为 log10(sSFR)=log10(SFR/StellarMass),从而可以增加 Distribuion 分布的有意义性;
- 2. 关于金属锋度的取值问题:由于在观测中 Apreture 是一定的,因此 EAGLE 中更有意义的数据也应如此,可以选定一个星系中心,选择一固定大小的 Apreture,计算在该 Apreture 下的金属锋度,而不是计算整个星系(星系边界也为 EAGLE 模拟人为定义)的金属锋度;
- 3. 对于第二个 Question,目前的另外一个猜想可以认为是这样的,对于卫星星系,由于其受到 Halo 的 Feedback 效应,其会更少的吸收来自与 CGM 的气体 (Star-Forming fuel),因此 H 元素的补充被切断,而内部仍然在不断的进行恒星形成的过程,从而使得卫星星系的Metallicity 不断上升;验证该猜想的一个方法如下:可以探究卫星星系距离 Halo 中心的距离 r_p 与 Metallicity 的分布曲线,如果其为一正相关曲线,说明该猜想具有一定的科学性;

7 Appendix I

设置不同的 Quencut,观察以上研究结果是否有明显变化:设置 Dex 分别为 0.1,0.3,0.5,0.7,1.0,1.5:

7.1 Dex = 0.1

Figure 9: 0.1 Dex Below MS

7.2 Dex = 0.3

Figure 10: 0.3 Dex Below MS

7.3 Dex = 0.5

Figure 11: 0.5 Dex Below MS

7.4 Dex = 0.7

Figure 12: 0.7 Dex Below MS

7.5 Dex = 1.0

Figure 13: 1.0 Dex Below MS

7.6 Dex = 1.5

Figure 14: 1.5 Dex Below MS

8 References

- 1. The eagle simulations of galaxy formation: Public release of particle data, The EAGLE team, arXiv:1706.0 [astro-ph.GA] 29 Jun 2017
- 2. The origin of scatter in the star formation rate stellar mass relation, Jorryt Mattheel, Joop Schayell Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands, arXiv:1805.05956v1 [astro-ph.GA] 15 May 2018
- 3. Galaxy metallicity scaling relations in the EAGLE simulations, Mar´ıa Emilia De Rossi , Richard G. Bower , Andreea S. Font , Joop Schaye and Tom Theuns, arXiv:1704.00006 [astro-ph.GA] 21 Aug 2017

- 4. A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING "MAIN SEQUENCE" FROM Z =0 -6,arXiv:1405.2041v2 [astro-ph.GA] 2 Jul 20
- 5. The dependence of the galaxy mass-metallicity relation on environment and the implied metallicity of the IGM, Ying-jie Peng1,2, Roberto Maiolino1,2, Accepted for publication in MNRAS, submitted on June 26, 2013
- 6. The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are A Major Reservoir of Galactic Metals, J. Tumlinson, 1* C. Thom, 1 J. K. Werk, 2 J. X. Prochaska, 2 T. M. Tripp, 3D. H. Weinberg, 4 M. S. Peeples, 5, J. M. O' Meara, 6 B. D. Oppenheimer, J. D. Meiring, 3 N. S. Katz, 3 R. Dave, '8 A. B. Ford, 8 K. R. Sembac, arXiv:1111.3980v1 [astro-ph.CO] 16 Nov 20