Name: Iyiola, Oluwaleke

Student ID: IDEAS/24/21635

Lab 4: Basic Port Scanning

Step 1: Gather the IP Address of Your OWASP VM

Exercise 1: Record the IP Address:

• OWASP VM IP Address: 192.168.23.133

Step 2: Basic Port Scanning with nmap

Exercise 1:

Perform a basic port scan on your OWASP VM IP address and record your findings:

```
s nmap 192,168,23,133
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-11-05 09:33 EST
Nmap scan report for 192.168.23.133
Host is up (0.0042s latency).
Not shown: 991 closed tcp ports (reset)
        STATE SERVICE
PORT
22/tcp open ssh
80/tcp open http
139/tcp open netbios-ssn
143/tcp open imap
443/tcp open https
445/tcp open microsoft-ds
5001/tcp open commplex-link
8080/tcp open http-proxy
8081/tcp open blackice-icecap
MAC Address: 00:0C:29:83:79:69 (VMware)
Nmap done: 1 IP address (1 host up) scanned in 0.56 seconds
```

Step 3: Aggressive Scanning with nmap

rcise	

Perf	orm an aggressive scan on y	our OWASP	VM IP address and	record '	vour find	lings:
	orini ani aggi essive sean on y	your over to	VIVI II dadicos alla	1 C C C I G	your min	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

• Service Versions: SF:(NULL,4,"\xac\xed\0\x05")

o • Operating System: OS details: Linux 2.6.17 - 2.6.36

Step 4: Vulnerability Scanning with nmap

Exercise 3:

References:

Conduct a vulnerability scan on your OWASP VM IP address and record your findings:

• \	/ulnerabilities:
VU	JLNERABLE:
	Cross-domain and Client Access policies.
	State: VULNERABLE
 Ad	A cross-domain policy file specifies the permissions that a web client such as Java, Adobe Flash, obe Reader,
 po	etc. use to access data across different domains. A client acces policy file is similar to cross-domain licy
 Re	but is used for M\$ Silverlight applications. Overly permissive configurations enables Cross-site quest
	Forgery attacks, and may allow third parties to access sensitive data meant for the user.
	Check results:
	/crossdomain.xml:
	xml version="1.0"?
 po	cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-licy.dtd"
	<cross-domain-policy></cross-domain-policy>
	<allow-access-from domain="*"></allow-access-from>
	Extra information:
	Trusted domains:*

https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/CrossDomain_PolicyFile_Specification.pdf
http://acunetix.com/vulnerabilities/web/insecure-clientaccesspolicy-xml-file
http://sethsec.blogspot.com/2014/03/exploiting-misconfigured-crossdomainxml.html
https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://gursevkalra.blogspot.com/2013/08/bypassing-same-origin-policy-with-flash.html
_ https://www.owasp.org/index.php/Test_RIA_cross_domain_policy_%28OTG-CONFIG-008%29
ssl-ccs-injection:
VULNERABLE:
SSL/TLS MITM vulnerability (CCS Injection)
State: VULNERABLE
Risk factor: High
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h
does not properly restrict processing of ChangeCipherSpec messages,
which allows man-in-the-middle attackers to trigger use of a zero
length master key in certain OpenSSL-to-OpenSSL communications, and
consequently hijack sessions or obtain sensitive information, via
a crafted TLS handshake, aka the "CCS Injection" vulnerability.
T .
References:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
http://www.cvedetails.com/cve/2014-0224
_ http://www.openssl.org/news/secadv_20140605.txt
_http-dombased-xss: Couldn't find any DOM based XSS.
http-cookie-flags:
/mono/:
ASP.NET_SessionId:
secure flag not set and HTTPS in use
_ httponly flag not set
http-vuln-cve2011-3192:


```
| http-csrf:
| Spidering limited to: maxdepth=3; maxpagecount=20; withinhost=192.168.23.133
Found the following possible CSRF vulnerabilities:
   Path: https://192.168.23.133:443/ghost/
   Form id:
   Form action: submit.php
   Path: https://192.168.23.133:443/gallery2/main.php
   Form id: search_searchblock
   Form action: main.php
   Path: https://192.168.23.133:443/shepherd/login.jsp
   Form id:
   Form action: login
   Path: https://192.168.23.133:443/getboo/
   Form id: search_box
   Form action: psearch.php
   Path: https://192.168.23.133:443/AppSensorDemo/login.jsp
   Form id:
_ Form action: Login
| ssl-dh-params:
| VULNERABLE:
Diffie-Hellman Key Exchange Insufficient Group Strength
   State: VULNERABLE
    Transport Layer Security (TLS) services that use Diffie-Hellman groups
    of insufficient strength, especially those using one of a few commonly
    shared groups, may be susceptible to passive eavesdropping attacks.
```


/examples/: Sample scripts
/manager/html/upload: Apache Tomcat (401 Unauthorized)
/manager/html: Apache Tomcat (401 Unauthorized)
_ /docs/: Potentially interesting folder
8081/tcp open blackice-icecap
MAC Address: 00:0C:29:83:79:69 (VMware)
Host script results:
smb-vuln-regsvc-dos:
VULNERABLE:
Service regsvc in Microsoft Windows systems vulnerable to denial of service
State: VULNERABLE
The service regsvc in Microsoft Windows 2000 systems is vulnerable to denial of service caused by a null deference
pointer. This script will crash the service if it is vulnerable. This vulnerability was discovered by Ron Bowes
while working on smb-enum-sessions.
I_
_smb-vuln-ms10-061: Could not negotiate a connection:SMB: ERROR: Server returned less data than it was supposed to (one or more fields are missing); aborting [14]
_samba-vuln-cve-2012-1182: Could not negotiate a connection:SMB: ERROR: Server returned less data than it was supposed to (one or more fields are missing); aborting [14]
_smb-vuln-ms10-054: false

INT302: Kali Linux Tools and System Security – Lab 5: Wireshark

Exercise 1:

• Explore the Wireshark GUI. Identify and list the main components you see, including where to find the Statistics menu.

Wireshark GUI Components:

1. Main Menu Bar

1. File

2. Edit

3. View

Step 2: Capturing Network Traffic Using the Wireshark GUI:

Exercise 2:

• Capture network traffic using both Wireshark and tshark. Compare the two methods and note any differences in the user experience

Answer:

The differences are as follows:

- Interface: WireShark uses GUI while TSHARK uses CLI
- Resource: Wireshark uses more resource than TShark (Lightweight)
- Scalability: Tshark is better for large capture while Wireshark is limited
- Automation: TShark is easier than WireShark in automation
- Wireshark has more visual representation than TShark (Text-Based)

Step 3: Analyzing Captured Packets

Exercise 3:

 Use filters to analyze different types of traffic. Record the following:
o Number of HTTP packets captured:

o Number of DNS packets captured:

o Specific IP addresses you identified in the traffic: $_$	
---	--

Step 4: Understanding Packet Details

Exercise 4:

• Select a packet and list the following information:

o Source IP: 192.168.23.1

o Destination IP: 192.168.23.2

o Protocol: 4, IPV4 (0x0800

o Any TCP Flags observed:No

Step 5: Advanced Packet Analysis Techniques

Exercise 6:

• Take a screenshot of the Protocol Hierarchy and analyze the data. Which protocol is most

prevalent in your capture? IpV6

Protocol	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s	PDUs
▼ Frame	100.0	73	100.0	4995	67	0	0	0	73
▼ Ethernet	100.0	73	44.3	2215	30	0	0	0	73
Link Layer Discovery Protocol	1.4	1	0.9	46	0	1	46	0	
 Internet Protocol Version 6 	2.7	2	1.6	80		0	0	0	2
Internet Control Message Protocol v6	2.7	2	0.3	16	0	2	16	0	2
 Internet Protocol Version 4 	4.1	3	1.2	60	0	0	0	0	3
 User Datagram Protocol 	4.1	3	0.5	24	0	0	0	0	3
Multicast Domain Name System	1.4	1	2.0	101	1	1	101	1	1
Dynamic Host Configuration Protocol	2.7	2	11.7	582	7	2	582	7	2
Address Resolution Protocol	91.8	67	61.3	3064	41	67	3064	41	67

3. IO Graphs:

Exercise 7:

• Create an IO Graph showing TCP traffic. Describe any noticeable patterns you observe:

Step 6: Exporting Captured Data

Exercise 8:

• Save your capture file and describe a scenario where you would need to review this data later.

What specific findings do you hope to extract?

Answer:

Scenario: A situation whereby a cloud-based CRN system office is experiencing concurrent connectivity issues.

Symptoms: disconnections that has become frequents. Slow data loading, Connection Time out.

Troubleshooting:

First capture the office network router. CRM IP address traffic filter, analysis of the lose packet, latency and TCP retransmission, Look for potential bottlenecks

Step 7: Practical Applications of Wireshark

1. Detecting Network Issues:

Exercise 9:

• Describe a real-world scenario where you would use Wireshark to troubleshoot a network issue.

What specific symptoms would you investigate? _____

2. Security Analysis:
Exercise 10:
• Identify at least two potential security threats in your captured traffic. What indicators led you to
suspect these activities?
INT302: Kali Linux Tools and System Security – Lab 6: Advanced Packet Analysis Techniques
Lab Steps
Step 1: Dissecting Protocols 1. TCP Analysis:
Exercise 1: Describe the purpose of the SYN and ACK flags in the TCP handshake. How do these flags
indicate the status of a connection?
2. HTTP Analysis:
o Filter the captured traffic to show only HTTP packets using the filter: http.
o Examine the headers of an HTTP request and response
Key Headers to Focus On:
• Request Method (GET, POST, etc.)
• Status Code (200, 404, etc.)
• User-Agent
Exercise 2:
Choose an HTTP packet and summarize its request method, status code, and any notable
headers. What can you infer about the transaction?
3. DNS Analysis:
Exercise 3:
• Identify a DNS query and its corresponding response. What information does the response
provide, and how is it structured?

Step 2: Creating Custom Filters

Exercise 4:
• Create a custom filter that captures only TCP traffic from your machine to a specific target IP.
Document the filter syntax and the packets captured
Exercise 5:
• Write a filter that captures traffic on a specific port (e.g., HTTP port 80) and analyze the results.
What packets were captured?
Step 3: Identifying Vulnerabilities
 Recognizing Anomalies: Exercise 6:
 Analyze your capture for any anomalies or indicators of potential vulnerabilities. Document your findings and suggest possible remediation steps.
3. Security Protocols:
Exercise 7:
 Capture HTTPS traffic and identify the initial handshake packets. What information is exchanged during this handshake, and how does it contribute to security?
Step 4: Practical Applications and Reporting 1. Conduct a Security Assessment: Exercise 8:
• Prepare a brief report summarizing your findings during the assessment. Include potential risks and recommended actions
2. Creating a Capture Report: Exercise 9:
Create a capture report that includes your objectives, methods, key findings, and any recommendations for improving naturally society.