Examen VWO

2011

tijdvak 2 woensdag 22 juni 13.30 - 16.30 uur

natuurkunde (pilot)

Bij dit examen hoort een uitwerkbijlage.

Dit examen bestaat uit 26 vragen.

Voor dit examen zijn maximaal 79 punten te behalen.

Voor elk vraagnummer staat hoeveel punten met een goed antwoord behaald kunnen worden.

Als bij een vraag een verklaring, uitleg, berekening of afleiding gevraagd wordt, worden aan het antwoord meestal geen punten toegekend als deze verklaring, uitleg, berekening of afleiding ontbreekt.

Geef niet meer antwoorden (redenen, voorbeelden e.d.) dan er worden gevraagd. Als er bijvoorbeeld twee redenen worden gevraagd en je geeft meer dan twee redenen, dan worden alleen de eerste twee in de beoordeling meegeteld.

Formuleblad

Formules die bij het pilot-programma horen en die niet in Binas staan.

C Beweging en wisselwerking

$$F_{\rm w,l} = \frac{1}{2} \rho c_{\rm w} A v^2$$

$$E_{\rm chem} = r_{\rm v} V$$

$$E_{\text{chem}} = r_{\text{v}}V$$
 $E_{\text{chem}} = r_{\text{m}}m$

$$\Sigma p_{\text{voor}} = \Sigma p_{\text{na}}$$

D Lading en veld

$$I = GU$$

E Straling en materie

$$\frac{P}{\Delta} = \sigma T^{4}$$

$$\frac{P}{A} = \sigma T^4 \qquad \qquad L = 4\pi R^2 \sigma T^4 \qquad \qquad v = \frac{\Delta \lambda}{\lambda} c$$

$$v = \frac{\Delta \lambda}{\lambda} c$$

$$D = \frac{E}{m} \qquad \qquad H = QD$$

$$H = QD$$

Opgave 1 Wega

Wega is een heldere ster in het sterrenbeeld Lyra (Lier). Op grond van een analyse van de straling van Wega kunnen eigenschappen van de ster bepaald worden, zoals de temperatuur en het uitgestraald vermogen.

Hiervoor heeft men op aarde heel nauwkeurig de ontvangen stralingsintensiteit (per golflengtegebied van 1 nm) in het zichtbare gebied als functie van de golflengte bepaald. In figuur 1 staan de resultaten.

figuur 1

Hieruit kan worden afgeleid dat de temperatuur van Wega hoger is dan $7000~{\rm K}.$ 3p **1** Laat dat zien.

Met behulp van figuur 1 kan de grootte van de stralingsintensiteit in het gebied van het zichtbare licht geschat worden.

Men heeft ook de totale stralingsintensiteit van Wega gemeten die per seconde bij de aarde aankomt. Over het gehele spectrum gemeten is dit $2.9 \cdot 10^{-8}~\mathrm{W\,m^{-2}}$. Een percentage hiervan ligt in het zichtbare gebied.

4p **2** Bepaal dit percentage.

Het uitgestraald vermogen van Wega is groter dan het uitgestraald vermogen van de zon.

Bereken hoeveel maal zo groot. Je hoeft geen rekening te houden met absorptie in de atmosfeer.

Opgave 2 Vijftig meter vlinderslag

Lees de onderstaande tekst.

De vlinderslag:

Bij de vlinderslag moet je beide armen tegelijk gebruiken. Je maakt met je armen wel enorme halen: boven water naar voren, onder water naar achteren. Je benen maken dolfijn-achtige bewegingen.

Bij een wedstrijd mag je vanaf de start de eerste vijftien meter onder water zwemmen. De rest van de afstand moet bij voorkeur bestaan uit een geheel aantal slagen, zodat je met de armen gestrekt naar voren de finish aantikt.

Joep traint voor de vijftig meter vlinderslag. Bij een van zijn trainingen horen de volgende gegevens:

- Na de afzet zwemt hij onder water tot 15,0 m vanaf het startpunt. Hiervoor heeft hij 6,80 s nodig.
- Daarna maakt hij een aantal gelijke slagen met een slagfrequentie van 0,833 Hz en een slaglengte van 2,50 m.
- 3p **4** Bereken de tijd die Joep voor deze 50,0 meter nodig heeft.

Joep wil een snellere tijd halen en wil gaan trainen op een hogere slagfrequentie van $0.880~{\rm Hz}$ en een slaglengte van $2.40~{\rm m}.$

Joep doet hierover twee beweringen:

- Mijn slagfrequentie neemt relatief meer toe dan dat mijn slaglengte afneemt.
- Op deze manier zwem ik zeker een snellere tijd.
- 4p 5 Leg voor beide beweringen afzonderlijk met behulp van berekeningen uit of ze waar zijn.

In figuur 1 staat het verloop van de voortstuwingskracht en de weerstandskracht tijdens één zwemslag. In figuur 2 staat het verloop van de snelheid van het zwaartepunt van de zwemmer.

figuur 1

figuur 2

Het tijdstip waarop de snelheid maximaal is, valt later dan het tijdstip waarop de voortstuwingskracht maximaal is.

2p 6 Verklaar dit.

De weerstandskracht is in goede benadering alleen afkomstig van het water. Deze kracht is evenredig met het kwadraat van de snelheid van de zwemmer. In formulevorm: $F_{\rm w}=kv^2$.

3p **7** Bepaal de evenredigheidsconstante k met de bijbehorende eenheid.

De zwemmer verricht de meeste arbeid in de eerste 0.5 s. De arbeid die hij tussen t = 0 s en t = 0.5 s verricht, is (ongeveer) gelijk aan:

- a 0,09 kJ
- b 0,3 kJ
- c 0,9 kJ
- d 3,0 kJ
- Welke van deze antwoorden is juist? Licht je antwoord toe op basis van schattingen.

Opgave 3 Satelliet met tether

Een satelliet cirkelt rond de aarde. Voor de omlooptijd *T* geldt:

$$T = 2\pi \sqrt{\frac{r^3}{GM}}$$

Hierin is:

- r de afstand van de satelliet tot het middelpunt van de aarde;
- *G* de gravitatieconstante;
- M de massa van de aarde.
- 4p **9** Leid deze formule af met behulp van formules in Binas.

Een satelliet die door de buitenste lagen van de atmosfeer rondcirkelt, ondervindt een kleine wrijvingskracht. Als hij geen aandrijfmotor heeft, zal hij daardoor in een steeds lagere baan rond de aarde gaan cirkelen en uiteindelijk op de aarde neerstorten. In figuur 1 staat de grafiek van dit proces. Figuur 1 staat ook op de uitwerkbijlage.

figuur 1

Op een bepaald moment bevindt de satelliet zich op een hoogte van $400\ \mathrm{km}$ boven de aarde.

5p **10** Bepaal mede met behulp van de figuur op de uitwerkbijlage het hoogteverlies van de satelliet per omwenteling om de aarde.

Wetenschappers onderzoeken of het mogelijk is om een satelliet zonder brandstof op 400 km hoogte te houden met een zogenaamde tether. Een tether is een lange, elektrisch geïsoleerde, metalen kabel die uit de satelliet richting aarde hangt. Onderaan de tether zit een metalen bol die lading uitwisselt met de ionosfeer. Zie figuur 2.

Figuur 3 geeft de positie weer van zo'n satelliet met een tether in een baan om de aarde. Doordat de tether zich in het aardmagnetisch veld bevindt, ontstaat er een lorentzkracht die de satelliet voortstuwt in zijn bewegingsrichting. De richting van de stroom in de tether is aangegeven. Figuur 3 staat vergroot weergegeven op de uitwerkbijlage.

3p 11 Beredeneer in welke richting de satelliet in figuur 3 beweegt, in oostelijke of in westelijke richting.

Teken daartoe op de uitwerkbijlage de richtingen van het magnetisch veld van de aarde en van de lorentzkracht bij de tether.

figuur 2

figuur 3

De wrijvingskracht op de satelliet bedraagt 4,7 mN.

De sterkte van het magneetveld van de aarde bij de tether is $8,4~\mu T.$ De stroomsterkte in de tether is 1,1~A.

Bereken de lengte die de tether moet hebben om de satelliet op gelijke hoogte met constante snelheid te laten bewegen.

Er bestaan ook zogenoemde 'polaire' satellieten waarbij de baan over de Noord- en Zuidpool van de aarde loopt.

2p **13** Leg uit of deze manier van voortstuwen met een tether ook bij polaire satellieten kan werken.

Opgave 4 Radondochters

Radon is een radioactief edelgas dat uit de bodem en uit bouwmaterialen kan ontsnappen en terecht kan komen in kelders en kruipruimtes die slecht geventileerd worden.

De meest voorkomende isotoop van radon is radon-222. Radioactieve isotopen met atoomnummers tussen 82 en 90 komen in de natuur voor omdat ze voortdurend aangemaakt worden. Er bestaan in de natuur twee zogenoemde 'radioactieve reeksen'. De ene reeks begint bij thorium-232, de andere bij uraan-238.

Beredeneer of radon-222 ontstaat uit thorium-232 of uit uraan-238. Beschouw daartoe het aantal nucleonen van de kernen. Hint: het is niet nodig om de vervalvergelijkingen op te schrijven.

In figuur 1 zijn het verval van radon-222 en de daarop volgende vervalstappen weergegeven. Bij elke isotoop is de halfwaardetijd gegeven.

NB: uit de gegevens in Binas zou ook een alternatieve vervalroute kunnen worden afgeleid. Deze komt echter zo weinig voor, dat we hem in deze opgave verwaarlozen.

figuur 1

De vier grijze isotopen worden 'radondochters' genoemd. Zij hebben een betrekkelijk kleine halveringstijd: als een radon-222 kern vervalt, vervallen vrij snel daarna ook de radondochters. De radondochters hechten zich aan microscopische stofdeeltjes en blijven in de lucht zweven. De lucht in een gesloten kelderruimte bevat dus radon en radondochters.

Ook als er per seconde steeds dezelfde hoeveelheid radon ontsnapt, gaat het ophopen van radon in een gesloten kelderruimte niet eindeloos door. Als er niet geventileerd wordt, bereikt de activiteit (in Becquerel) van het radon een bepaalde constante waarde.

2p **15** Leg uit:

- waarom in dat geval de activiteit van radon-222 uiteindelijk constant wordt;
- dat elk van de radondochters dan dezelfde activiteit heeft als radon-222.

Een persoon die een tijdje in zo'n kelderruimte verblijft, ademt lucht in met de daarin aanwezige isotopen. Stel dat een persoon tijdens zijn verblijf in de kelderruimte $1\ m^3$ lucht inademt. De persoon ademt het radon weer uit omdat het een edelgas is. De microscopische stofdeeltjes met de radondochters blijven achter in de longen. Bij het verval hiervan worden de longen (totale massa van $2.5\ kg$) bestraald.

In tabel 1 staat het aantal kernen in $1\ m^3$ lucht van elk van de radondochters in de kelderruimte.

Voor de stralingsdosis *D* geldt:

$$D = \frac{E_{\rm str}}{m}$$

tabel 1

Aantal kernen (in 1 m ³ lucht) in	
de kelderruimte	
Po-218	$2,6\cdot10^4$
Pb-214	$2,3\cdot10^5$
Bi-214	$1,7\cdot10^5$
Po-214	≈ 0

Hierin is:

- $E_{\rm str}$ de stralingsenergie, die geabsorbeerd wordt;
- m de massa van het bestraalde orgaan.
- 4p **16** Bereken de stralingsdosis die de longen ontvangen ten gevolge van alfa-straling.

Opgave 5 Geluid

In figuur 1 is schematisch een bron weergegeven die geluidsgolven uitzendt. Geluidsgolven zijn longitudinaal. In figuur 1 zie je verdichtingen en verdunningen die zich naar rechts verplaatsen. De ruimte is gevuld met koolzuurgas (CO_2) .

figuur 1

In de punten P en Q wordt het geluid waargenomen met behulp van twee microfoons die aangesloten zijn op een oscilloscoop. Dit levert het beeld op de oscilloscoop dat is weergegeven in figuur 2.

De tijdbasis van de oscilloscoop is ingesteld op 0,5 ms/hokje.

figuur 2

2p 17 Bepaal de frequentie van het waargenomen geluid.

De amplitude van het geluid in P is verschillend van de amplitude van het geluid in Q. Toch zijn de amplitudes op het scoopbeeld gelijk. Dat komt omdat de gevoeligheid in mV/hokje van de twee kanalen anders is ingesteld.

Leg uit of de gevoeligheid van het kanaal van de microfoon in P groter of kleiner is dan de gevoeligheid van het kanaal van de microfoon in Q.

De twee signalen in het oscilloscoopbeeld vertonen een faseverschil.

3p **19** Leg op grond daarvan uit of de microfoon in P aangesloten is op kanaal 1 of op kanaal 2.

Voor het bepalen van de geluidssnelheid in koolzuurgas worden de microfoons verplaatst. De afstand tussen P en Q is nu $1,19~\mathrm{m}$.

De frequentie van de geluidsbron is regelbaar. Bij verschillende frequenties wordt het gereduceerde faseverschil tussen P en Q bepaald. Zie figuur 3.

figuur 3

4p **20** Bepaal met behulp van figuur 3 de geluidssnelheid in dit koolzuurgas.

Opgave 6 Spoel van koperdraad

Henk en Nina krijgen van hun natuurkundeleraar een spoel van geïsoleerd koperdraad met de opdracht de lengte van de draad te bepalen. De spoel mag niet afgewikkeld worden. De spoel heeft twee aansluitpunten. Zie figuur 1.

Proef A

Hun eerste plan is om de weerstand van de draad te bepalen en met behulp daarvan de lengte van de draad uit te

rekenen. Ze hebben een gelijkspanningsbron, een stroommeter en een spanningsmeter. Hiermee maken zij een schakeling. Op de uitwerkbijlage staan deze onderdelen getekend.

figuur 1

2p **21** Teken in de figuur op de uitwerkbijlage de verbindingssnoeren zodat een schakeling ontstaat om de weerstand van de draad te bepalen.

Ze lezen de meters af:

spanningsmeter: 0,56 V;

- stroommeter: 0,23 A.

Verder meten ze de diameter van de koperdraad: 1,5 mm.

4p 22 Bereken de lengte van de koperdraad.

Proef B

Hun tweede plan is om de magnetische veldsterkte van de spoel te meten en met behulp daarvan ook de draadlengte te berekenen. Ze gebruiken de schakeling van proef A en schuiven een magneetveldsensor midden in de spoel. Ze meten de magnetische veldsterkte B als functie van de stroomsterkte I. De meetpunten staan in de grafiek van figuur 2.

In Binas vindt Henk de volgende formule voor de grootte van het magneetveld in een spoel.

$$B = \mu_0 \frac{NI}{L}$$

Hierin is:

- B de grootte van het magneetveld;
- $-~\mu_0~$ magnetische permeabiliteit, gelijk aan $1,25664\cdot 10^{-6}~{\rm H\,m^{-1}}$;
- N het aantal windingen;
- I de stroomsterkte door de spoel;
- L de lengte van de spoel.

figuur 2

Op grond van deze formule en de meetresultaten gebruikt Henk een rechte lijn door de oorsprong als trendlijn.

2p **23** Leg uit waarom dit de juiste keuze is.

De vergelijking van de getrokken trendlijn staat bij de grafiek van figuur 2. Om hiermee de lengte van het koperdraad te berekenen is het nodig om de afmetingen van de spoel te weten. Deze staan weergegeven in figuur 3.

figuur 3

Let op: de laatste vragen van dit examen staan op de volgende pagina.

Nina vindt in een theorieboek een uitgebreidere formule voor de magnetische veldsterkte in het midden van een spoel.

$$B = \mu_0 \frac{NI}{\sqrt{L^2 + d^2}}$$

Hierin is:

- L de lengte van de spoel;
- d de diameter van de spoel.

Volgens Nina volgt de formule uit Binas uit de uitgebreidere formule met de aanname dat de diameter veel kleiner is dan de lengte van de spoel.

2p 24 Leg dat uit.

Nina gebruikt de uitgebreidere formule om het aantal windingen ${\cal N}$ te bepalen en daaruit de draadlengte af te leiden.

4p **25** Bereken hoe groot de draadlengte is die Nina op deze manier bepaalt.

Daarna gebruikt Henk de formule uit Binas om hetzelfde te doen.

2p **26** Leg uit of Henk op deze manier een te grote of een te kleine lengte zal vinden.