COL 351: Analysis and Design of Algorithms

Lecture 21

Perfect Hashing

Goals:

- **1.** Expected size = O(n).
- 2. Expected number of total collisions is O(1), for each secondary table

Lemma 1

- Universe U = [1, M].
- $p = \text{prime in range } [M + 1, 2M], \quad r = \text{integer in range } [1, p 1]$

Hash Function:

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

Lemma 1: Let $x, y \in U$, and 'r' be randomly chosen. Then, $\text{Prob}\Big(H_r(x) = H_r(y)\Big) \leq \frac{2}{n}$

Lemma 2

Hash Function:

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

Lemma 2: For a set S of size n, the expected number of total collisions is:

$$\sum_{\substack{x, y \in S \\ x \neq y}} \operatorname{Prob}\left(H_r(y) = H_r(x)\right) \leq {}^{n}C_2 \cdot \frac{2}{n} \leq n$$

Two-Level Hash Table

Outer Hash Function:

 $H_r(z) = ((r \cdot z) \mod p) \mod n$

Inner Hash Function:

 $z \mapsto ((r_0 \cdot z) \mod p) \mod n_i^2$

where, $n_i = \text{size of } T[i]$

• r, r_0 = random integers from [1, p - 1]

New Table

Expected Size of Data-structure

Size is:
$$n + \sum_{i=0}^{n-1} n_i^2$$

$$\leq n + \sum_{0 \leq i \leq n-1} (n_i^2 - n_i^2) + \sum_{0 \leq i \leq n-1} n_i^2$$
 $n_i \geq 1$

$$E \times p \text{ size} = n + E \times pected no. of total = O(n)$$
collisions from outer hash

New Table

Number of Collisions in a Secondary table

Hash Function:

$$z \mapsto ((r_0 \cdot z) \mod p) \mod n_i^2$$

Question: For a set of size n_i , what is expected number of **total** collisions?

Answer:
$$\sum_{\substack{x,y \in \text{Set} \\ x \neq y}} \text{Prob}\left(H_r(y) = H_r(x)\right) \leq {n_i \choose 2} \cdot \frac{2}{n_i^2} = O(1)$$

Perfect Hashing

Goals:

- **1.** Expected size = O(n).
- 2. Expected number of total collisions is O(1), for each secondary table

Pattern Matching

Pattern Matching

Given: String $T = (t_{n-1}, ..., t_1, t_0)$ and a pattern $X = (x_{k-1}, ..., x_1, x_0)$, both binary.

Find: If there exists a sub-string of T that is identical to X.

Know algorithms:

- Brute-force comparison
- KMP algorithm

Can we have a simpler hashing based algorithm?

Numeric/Decimal Representation

$$X = (x_{k-1}, ..., x_1, x_0)$$

$$N_X = 2^{k-1} x_{k-1} + \dots + 2^1 x_1 + 2^0 x_0$$

(decimal form of *X*)

$$X = 0101$$

$$N_{X} = 5$$

$$T = (t_{n-1}, ..., t_1, t_0)$$

$$N_T(j) = 2^{k-1} t_{j+k-1} + \dots + 2^1 t_{j+1} + 2^0 t_j$$

(decimal form of $(t_{j+k-1}, \dots, t_{j+1}, t_j)$)

H A S H
3 2 1 0

$$f \rightarrow N_{T}(j) = 13$$

Algorithm

Flag= False

For
$$j = 0$$
 to $(n - k)$:

If $N_X = N_T(j)$ then

Flag = True

Return Flag

Time = $\frac{O(n \cdot k)}{V}$ Time to $\frac{compute N_X, N_T(j)}{check if N_X = N_T(j)}$

Algorithm

• If
$$N_X = N_T(j)$$
, then $H(N_X) = H(N_T(j))$
• If $N_X \neq N_T(j)$, then we want with high prob. $H(N_X) \neq H(N_T(j))$

Hash Function:

$$H: z \to z \mod p$$

 $p = \text{random prime in range } [2, n^4].$

Flag= False

For
$$j = 0$$
 to $(n - k)$:

If $H(N_X) = H(N_T(j))$ then

Flag = True

Return Flag

Show:

- Answer returned is correct with probability (1 - 1/n).
- Implementation in O(n) time.

Hints:

Claim 1: For any integer $z \le 2^k$, the number of distinct prime factors of z is at most k.

Claim 2: For any $j \le n - k$, the number of distinct prime factors of $(N_T(j) - N_X)$ is at most n.

How to compute Prob (
$$H(N_x) = H(N_T(j))$$
 for $N_x \neq N_T(j)$) ?

Prime Number Theorem: Number of primes in the range [2,L] is $\Theta\left(\frac{L}{\log L}\right)$.

$$H(N_x) = H(N_\tau(j))$$
 => p divides $N_\tau(j) - N_x$
• No of Prime factors of $N_\tau(j) - N_x$ is $\leq n$.
• No of choices for $p = D(\frac{n^4}{\log n^4})$

$$\frac{\log_{3}}{\text{Prob}\left(H(N_{x})=H(N_{T}(j))\right)} \leq \frac{n}{\theta(n^{4}/\log n^{4})} \leq \frac{c \cdot \log n}{n^{3}}$$