

Instrucciones de uso Sensor de temperatura por infrarrojos

> TW20xx TW21xx

Índice de contenidos

1	Advertencia preliminar	
2	Indicaciones de seguridad	
3	Uso previsto	4
	Función	5 6 7 8 9 9
5	Montaje	. 11
	Conexión eléctrica	
7	Elementos de manejo y visualización	
	Menú	.17 .17 .18
9	Puesta en marcha	.19
1(Parametrización	.20 .21 .21 .21
	10.2.1 Configurar el grado de emisión	.22

10.2.2 Grados de emisión para TW2000 / TW2003 / TW2100	23
10.2.3 Grados de emisión para TW2001, TW2101, TW2011, TW2002	24
10.2.4 Configurar la supervisión del valor límite con OUT1	25
10.2.5 Configurar la señal analógica para OUT2	25
10.3 Configuraciones de usuario (opcional)	25
10.3.1 Fijar la unidad de medida estándar para temperatura	25
10.3.2 Fijar el tiempo de retardo para OUT1	25
10.3.3 Configurar la atenuación de los valores de medición	25
10.3.4 Configurar la función de retención de picos	25
10.3.5 Configurar la función de simulación	26
10.4 Funciones de asistencia	26
10.4.1 Restablecer todos los parámetros a la configuración de fábrica	26
11 Funcionamiento	26
11.1 Cambio de la unidad de indicación en el modo RUN	
11.2 Lectura de la configuración de los parámetros	26
12 Datos técnicos y dibujo a escala	27
13 Solución de fallos	27
14 Mantenimiento, reparaciones, eliminación	27
15 Configuración de fábrica	28

1 Advertencia preliminar

Datos técnicos, homologaciones, accesorios y más información en www.ifm.com.

1.1 Explicación de los signos

- Operación requerida
- > Reacción, resultado
- [...] Referencia a teclas, botones o indicadores
- → Referencia cruzada
- Nota importante
 El incumplimiento de estas indicaciones puede acarrear funcionamientos erróneos o averías.
- Información Indicaciones complementarias.

2 Indicaciones de seguridad

- Lea este documento antes de la puesta en marcha del producto y consérvelo durante el tiempo que se siga utilizando.
- El producto debe ser apto para las aplicaciones y condicionales ambientales correspondientes sin ningún tipo de restricción.
- Utilizar el producto solamente según el uso previsto (→ Uso previsto).
- El incumplimiento de las indicaciones de utilización o de los datos técnicos puede provocar daños personales y/o materiales.
- El fabricante no asume ninguna responsabilidad ni garantía derivada de manipulaciones en el producto o de un uso incorrecto por parte del operario.
- El montaje, la conexión eléctrica, la puesta en marcha, el manejo y el mantenimiento del producto solo pueden ser llevados a cabo por personal cualificado y autorizado por el responsable de la instalación.
- Proteger de forma segura los equipos y cables contra daños.

3 Uso previsto

El equipo supervisa la temperatura de objetos extremadamente calientes o de difícil acceso.

Detecta sin contacto la radiación infrarroja emitida por objetos y la convierte en una señal eléctrica de conmutación y en una señal de salida analógica (4...20 mA).

4 Función

4.1 Procesamiento de las señales de medición

- El equipo dispone de una interfaz IO-Link
- El equipo muestra la temperatura medida en una pantalla.
- Genera dos señales de salida en función de los parámetros:

OUT1: salida de conmutación / IO-Link Parametrización

- Señal de conmutación: valores límites de temperatura (→ 10.2.4)

OUT2: salida analógica Parametrización

- Señal analógica para temperatura $(\rightarrow 10.2.5)$

4.2 Grado de emisión de los objetos de medición

El sensor de temperatura por infrarrojos reacciona ante la radiación infrarroja o de calor emitida por el objeto. Dicha radiación depende del material y la superficie. Para obtener resultados de medición precisos, es necesario configurar en el equipo el grado de emisión del objeto de medición (→ 10.2.1 Configurar el grado de emisión).

El grado de emisión de un emisor térmico ideal (cuerpo negro) es de un 100 %. El grado de emisión para cuerpos reales está por debajo del 100 %. Los grados de emisión indicados en las tablas (\rightarrow 10.2.2 y \rightarrow 10.2.3) solo son valores indicativos aproximados. Para una definición precisa de la temperatura, recomendamos realizar una medición del valor de referencia.

- Para los TW2000 / TW2003 / TW2100 se puede utilizar la etiqueta adhesiva incluida para la medición del valor de referencia hasta una temperatura de 250 °C.
- Para la compensación de los efectos ambientales puede ser útil configurar un grado de emisión más alto. Por eso el ajuste es posible hasta el 110 %.
- Un grado de emisión mal configurado provoca errores en la medición de temperatura.

4.3 Función de conmutación

OUT1 cambia su estado de conmutación en caso de que se alcance un valor que supere o que esté por debajo de los límites de conmutación configurados (SP1, rP1).

Normalmente abierto: [ou1] = [Hno] Normalmente cerrado: [ou1] = [Hnc] Primero se fija el punto de conmutación (SP1) y después se configura el punto de desconmutación (rP1) con la diferencia deseada.

ĭ

Si se modifica SP1, rP1 cambia también automáticamente con la misma diferencia anterior.

Excepción: SP1 se reduce tanto que al mantener la diferencia constante, el valor de rP1 está por debajo del rango de medición. En tal caso, rP1 se mantiene en el valor inicial del rango de medición.

4.4 Función analógica

El equipo convierte la señal de medición en una señal analógica de 4...20 mA proporcional a la temperatura.

El rango de medición es escalable:

- [ASP2] determina el valor de medición en el cual la señal de salida tiene 4 mA.
- [AEP2] determina el valor de medición en el cual la señal de salida tiene 20 mA.

MAW = valor inicial del rango de medición MEW = valor final del rango de medición

ASP2 = punto inicial analógico AEP2 = punto final analógico

4.5 Tiempo de retardo para la salida de conmutación OUT1

Cuando se ajusta un tiempo de retardo (→ 10.3.2), OUT1 no cambia su estado de conmutación inmediatamente en caso de valores superiores o inferiores a los límites de conmutación configurados (SP1, rP1), sino una vez haya transcurrido el tiempo de retardo (tiempo de retardo de activación dS1, tiempo de retardo de desactivación dr1). Si la conmutación ya no tiene lugar tras el tiempo de retardo, el estado de conmutación de la salida no varía.

Función de conmutación en OUT1 con o sin tiempo de retardo:

T = temperatura
SP = punto de conmutación
rP = punto de desconmutación
t = tiempo
dS1 = tiempo de retardo de activación
dr1 = tiempo de retardo de desactivación
8

- (1) curva de temperatura del fluido
- (2) Hno (función de histéresis, normalmente abierto)
- (3) Hno con retardo de activación y desactivación
- (4) Hnc (función de histéresis, normalmente cerrado)
- (5) Hnc con retardo de activación y desactivación

4.6 Función de simulación

La función de simulación sirve de apoyo en la puesta en marcha de la instalación. A través del menú SIM (→ 10.3.5) se puede activar la simulación de cualquier temperatura de medición dentro del rango de medición. La simulación tiene efecto sobre la indicación y las salidas. La función de simulación finaliza automáticamente tras un tiempo configurable. Para señalar que el modo de simulación está activo, la indicación de la pantalla cambia entre el valor de medición simulado y "SIM".

4.7 Función de prueba

El sensor de temperatura por infrarrojos dispone de una función interna de prueba para comprobar el completo procesamiento de señales, así como para controlar la salida de conmutación y la salida analógica.

La función de prueba se activa durante el funcionamiento a través de una señal estática en el pin 5 o mediante IO-Link. La función de prueba simula una señal de un detector de radiación que, en caso de un correcto funcionamiento del sensor, genera una corriente de salida de 20,5 mA y activa la función de conmutación, siempre y cuando la salida de conmutación no haya conmutado ya debido a la configuración. En la pantalla se indica [OL].

El equipo permanece en el modo de prueba mientras que la señal estática esté aplicada en el pin 5. Si la función de prueba se inicia a través de IO-Link, la duración es de 10 s. Después el equipo retorna automáticamente al modo RUN.

Para activar la función de prueba a través del pin 5, debe aplicarse una señal estática (10...34 V según IEC 61131-2) > 300 ms. La función de prueba se desactiva a través una señal estática "Low" > 300 ms en el pin 5.

Si no se utiliza la función de prueba:

- ► Poner la entrada de prueba (pin 5) en alimentación negativa.
- Otra opción sería utilizar un conector hembra de 4 polos en el cual el pin 5 no esté conectado.

4.8 Función de atenuación

En caso de producirse fluctuaciones momentáneas de la temperatura del objeto de medición, la función de atenuación se encarga de estabilizar la señal de medición. Cuanto mayor sea la constante de tiempo dAP elegida (→ 10.3.3 Configurar la atenuación de los valores de medición), menor influencia tendrán las fluctuaciones interferentes de temperatura sobre el valor de medición.

- (1) Señal de salida sin función de suavizado
- (2) Seña de salida con función de suavizado

4.9 Función de retención de picos

Para la detección de temperaturas cíclicas, por ejemplo en caso de objetos en movimiento que pasan delante del sensor de temperatura por infrarrojos, se puede configurar un tiempo de espera. Durante este tiempo de espera solo se indica y emite el valor máximo de medición.

Se recomienda configurar el tiempo de espera con un valor aprox. 1,5 veces más que el del tiempo de ciclo del objeto.

El tiempo de espera [Phld] se puede configurar entre 0...600 s (\rightarrow 10.3.4 Configurar la función de retención de picos).

4.10 IO-Link

Este equipo dispone de una interfaz de comunicación IO-Link que permite el acceso directo a datos de proceso y de diagnóstico. Asimismo existe la posibilidad de ajustar los parámetros del equipo durante el funcionamiento. El funcionamiento del equipo a través de la interfaz IO-Link requiere la utilización de un módulo que soporte IO-Link (maestro IO-Link).

Cuando el equipo no está en funcionamiento, la comunicación es posible con un PC, el correspondiente software IO-Link y un cable adaptador IO-Link.

Los IODD necesarios para la configuración del equipo, la información detallada sobre la estructura de los datos del proceso, la información de diagnóstico y las direcciones de parámetros, así como toda la información necesaria sobre el hardware y software IO-Link requerido, están disponibles en nuestra web www. ifm.com.

5 Montaje

► Fijar el equipo con un soporte de montaje adecuado.

Accesorios → www.ifm.com.

Con temperaturas ambientes > 65 °C, el equipo debe ser enfriado o protegido contra la radiación de calor (p. ej. mediante una chapa protectora).

Para una orientación correcta, observar el diámetro del campo de medición (1) y la distancia de medición (2). El objeto de medición no debe ser más pequeño que el diámetro del campo de medición:

- (1) Diámetro del campo de medición
- (2) Distancia de medición

ñ

Para los tipos TW21xx:

➤ Orientar el cabezal de medición de tal forma que el piloto LED verde se vea en el objeto de medición en forma de punto luminoso redondo.

- (1) Diámetro del campo de medición; Diámetro del piloto LED
- (2) Distancia de medición

6 Conexión eléctrica

- El equipo solo puede ser instalado por técnicos electricistas.

 Se deben cumplir los reglamentos tanto nacionales como internacionales para el establecimiento de instalaciones electrotécnicas.

 Suministro de tensión según EN 50178, MBTS y MBTP.
- El equipo está alimentado con baja tensión de 24 V DC (18...32 V DC). El suministro de tensión debe cumplir con las disposiciones de tensión baja de protección según EN 50178, MBTS y MBTP.
- ▶ Desconectar la tensión de alimentación
- ► Conectar el equipo de la siguiente manera:

Pin 1	L+
Pin 2 (OUT2)	Salida analógica
Pin 3	L-
Pin 4 (OUT1)	Salida de conmutación IO-Link
Pin 5	Entrada de prueba

- Utilizar un cable apantallado. La malla del cable debe estar conectada con el cuerpo del sensor.
- 1

En caso de conmutación de cargas inductivas:

► Utilizar un diodo de protección.

6.1 Apantallamiento y puesta a tierra

El cuerpo del equipo está conectado con la malla del cable a través del conector.

En caso de diferencias de potencial entre los puntos de puesta a tierra, puede fluir una corriente de compensación a través de la malla conectada por ambos lados. En tal caso, se debe tender un cable adicional de conexión equipotencial.

Para evitar corrientes de compensación, el equipo también puede ser montado aislado eléctricamente. La malla debe estar conectada con la tierra funcional de la instalación.

Sin montaje aislado y sin conexión equipotencial, la tensión parásita en el sensor de temperatura por infrarrojos debe ser como máximo de 32 V.

7 Elementos de manejo y visualización

1 a 3: LED indicadores

LED 1 = estado de conmutación de la salida

LED 2 = indicación de la temperatura en °F

LED 3 = indicación de la temperatura en °C

4: Botón [Enter]

- Selección de los parámetros
- Lectura de los valores configurados
- Confirmación de los valores de los parámetros

5: Botones Set [▲] y [▼]

- Selección de parámetros
- Activación de la función de ajuste
- Modificación de los valores de los parámetros
- Cambio de la unidad de indicación en el modo operativo normal (modo RUN)
- Bloquear / desbloquear

6: Pantalla alfanumérica de 4 dígitos

- Indicación del valor de temperatura
- Indicación de los parámetros y configuración
- Indicación de errores

8 Menú

8.1 Estructura del menú

8.2 Explicación del menú principal

Parámetros	Función y opciones de ajuste
EPSI	Grado de emisión: corrección de las características de radiación del objeto de medición
SP1	Punto de conmutación 1 = valor límite superior para la salida de conmutación OUT1
rP1	Punto de desconmutación = valor límite inferior para la salida de conmutación OUT1
ASP2	Punto inicial analógico en caso de rango de medición escalado para la salida analógica OUT2
AEP2	Punto final analógico en caso de rango de medición escalado para la salida analógica OUT2

EF	Acceso al nivel de menú inferior "Funciones avanzadas"
----	--

8.3 Explicación de las funciones avanzadas (EF)

Parámetros	Función y opciones de ajuste
rES	Restablecer las configuraciones de fábrica del sensor
dS1	Retardo de activación para OUT1: valor en segundos (máximo 10 s en intervalos de 0,1 s)
dr1	Retardo de desactivación para OUT1: valor en segundos (máximo 10 s en intervalos de 0,1 s)
ou1	Función de salida para OUT1: - Hno: histéresis, normalmente abierto - Hnc: histéresis, normalmente cerrado
uni	Unidad de medida estándar para temperatura: °F o °C
dAP	Atenuación para la indicación de la temperatura, la salida de conmutación y la salida analógica
PhLd	Configuración de la función de retención de picos
SIM	Acceso al nivel de menú inferior "Simulación"

8.4 Explicación del submenú de simulación (SIM)

Parámetros	Función y opciones de ajuste
S.TMP	Valor de temperatura simulado
S.Tim	Duración de la simulación en minutos
S.On	Inicio de la simulación: - On (se inicia la simulación) - OFF (simulación inactiva)

9 Puesta en marcha

Tras el primer encendido de la alimentación o después de restablecer los parámetros a la configuración de fábrica, se muestra la indicación [= = = =] en la pantalla. El grado de emisión debe ser configurado:

► Presionar [Enter]

En la pantalla se indica [EPSI]

- ▶ Presionar [Enter]
- > En la pantalla se indica [nonE]
- ► Mantener pulsado [▼] hasta que aparezca el valor deseado en la pantalla
- Presionar [Enter]
- > Se indica el valor de temperatura actual. El equipo funciona ahora permanentemente con el grado de emisión configurado.

Cuando el grado de emisión está configurado, el equipo lleva a cabo una inicialización interna y un autodiagnóstico tras el encendido de la alimentación. Después de aprox. 0,5 segundos, el equipo está operativo e inicia sus funciones de medición y evaluación.

10 Parametrización

Los parámetros se pueden configurar antes del montaje y de la puesta en marcha del equipo o durante el funcionamiento.

La modificación de parámetros durante el funcionamiento puede tener efecto en la funcionalidad de la instalación.

Garantizar que no se produzcan errores de funcionamiento en la instalación.

Durante el proceso de parametrización el sensor permanece en el modo operativo. Sigue llevando a cabo sus funciones de supervisión con el parámetro existente hasta que la parametrización haya concluido.

La parametrización también es posible a través de la interfaz IO-Link (→ 4.10 IO-Link).

10.1 Proceso general de parametrización

Seleccionar el parámetro

- 1. Presionar brevemente [Enter].
- Presionar [▲] o [▼] hasta que aparezca el parámetro deseado.

1 Enter 2 5 P 1

Modificar el valor del parámetro

- Presionar brevemente [Enter].
 Se indica el valor configurado actualmente.
- Mantener presionado [▲] o [▼] durante
 1 s.
 - > La pantalla primero parpadea, después se queda fija.
- 5. Modificar el valor con [▲] o [▼].

Mantener presionado [▲] o [▼] .

Los valores avanzan más rápido.

Confirmar el valor del parámetro

- 6. Presionar brevemente [Enter].
- El parámetro se muestra de nuevo. El nuevo valor de configuración ha sido memorizado.

Finalizar la parametrización y cambiar a la indicación del valor del proceso:

- ► Esperar 30 segundos
- 0
- Cambiar con [▲] o [▼] del submenú al menú principal y del menú principal a la indicación del valor del proceso.

10.1.1 Cambio entre los niveles de menú

Cambiar al submenú	➤ Seleccionar [EF] o [SIM] y cambiar al submenú presionando [Enter].
Volver a la indicación del valor del proceso	 Cambiar con [▲] o [▼] del submenú al menú principal y del menú principal a la indicación del valor del proceso o Timeout: Esperar 30 segundos o la función Escape: Presionar [▲] y [▼] simultáneamente.

10.1.2 Bloquear / desbloquear

El equipo se puede bloquear electrónicamente para evitar un ajuste erróneo no intencionado. Ajuste por defecto: desbloqueado.

Bloquear ➤ Asegurarse de que el equipo se encuentra en el modo operativo normal. ➤ Presionar [▲] y [▼] simultáneamente durante 10 s. > [Loc] aparece en la pantalla. Durante el funcionamiento: si se intentan modificar los valores de los parámetros, en la pantalla aparecerá [Loc]. Desbloquear ➤ Presionar [▲] y [▼] simultáneamente durante 10 s. > [uLoc] aparece en la pantalla.

10.1.3 Timeout

Si durante la configuración de un parámetro no se pulsa ningún botón durante 30 s, el equipo retorna al modo operativo sin que se produzca ninguna modificación en los parámetros.

10.2 Ajustes para la supervisión de temperatura

10.2.1 Configurar el grado de emisión

► Seleccionar [EPSI] y configurar el grado de emisión para el objeto de medición mediante los botones [▲] o [▼].

Al soltar el botón [▲] o [▼], se muestra la temperatura modifica-

en la pantalla. Confirmar el valor deseado con [Enter].

principal: [EPSI]

Menú

TW2000 / TW2003 / TW2100 - Configurar el grado de emisión con la etiqueta adhesiva incluida (hasta máx. 250 °C):

da durante aprox. 2 s. A continuación se muestra de nuevo EPSI

Garantizar durante las siguientes mediciones que la temperatura del objeto de medición se mantenga constante.

- ► Seleccionar [EPSI] y configurar un grado de emisión del 94 %.
- ▶ Pegar la etiqueta adhesiva sobre el objeto de medición y medir la temperatura con el sensor de temperatura por infrarrojos (= temperatura de referencia).
- ► Retirar la etiqueta adhesiva y medir de nuevo la temperatura del objeto de medición.
- > La temperatura indicada varía de la temperatura de referencia.
- Seleccionar [EPSI] y modificar el grado de emisión.
- Medir de nuevo el objeto de medición.
- ► Repetir el proceso hasta que el valor indicado se corresponda con la temperatura de referencia determinada.
 - ű

Una reducción del grado de emisión provoca un aumento de la temperatura indicada y viceversa.

DE

10.2.2 Grados de emisión para TW2000 / TW2003 / TW2100

 $(\lambda = 8...14 \mu m)$

Material	[%]
Alúmina	76
Asfalto	9098
Horno	96
Hormigón	5565
Betún (cartón asfáltico)	96
Pan en horno	88
Óxido de hierro	8589
Esmalte	8488
Tierra	9296
Pinturas y barnices, brillantes	92
Pinturas y barnices, mates	96
Yeso	8090
Vidrio	8595
Grafito	98
Goma, negra	94
Piel, humana	98
Radiador	8085
Madera	8090

Material	[%]
Revoque de cal	91
Ladrillo recocido, esmaltado	75
Fogón	95
Cobre, oxidado	78
Plástico, opaco	6595
Cuero	7580
Mármol	94
Latón, oxidado	5664
Papel	7094
Arena	90
Chamota	75
Cuerpo negro	100
Acero, inoxidable	45
Acero, rojo oxidado	69
Textiles	7588
Agua	9298
Cemento	90
Ladrillo	9396

10.2.3 Grados de emisión para TW2001, TW2101, TW2011, TW2002

	TW2001, TW2101, TW2011 (λ = 1,11,7 μm)	TW2002 (λ = 0,781,06 μm)
Material	[%]	[%]
Aluminio, pulido	5	15
Aluminio, mecanizado	10	25
Cemento de amianto	60	70
Bronce, pulido	1	3
Bronce, mecanizado	15	30
Cromo, pulido	15	30
Hierro, con gran formación de cascarilla	90	95
Hierro, laminado	75	90
Hierro, líquido	15	30
Oro y plata	1	2
Grafito, mecanizado	85	90
Cobre, oxidado	70	90
Latón, oxidado (envejecido)	50	70
Níquel	8	20
Porcelana, esmaltada	50	60
Porcelana, rugosa	75	85
Hollín	90	95
Chamota	40	50
Escoria	80	85
Cuerpo negro	100	100
Loza, esmaltada	85	90
Ladrillo	85	90
Zinc	40	60

EC

10.2.4 Configurar la supervisión del valor límite con OUT1

•	Seleccionar [ou1] y configurar la función de conmutación: - Hno = función de histéresis/normalmente abierto, - Hnc = función de histéresis/normalmente cerrado Seleccionar [SP1] y configurar el valor en el cual la salida tiene que conmutar. Seleccionar [rP1] y configurar el valor en el cual la salida tiene que ser	Menú EF: [ou1] Menú principal: [SP1] [rP1]
	desactivada.	[rP1]

10.2.5 Configurar la señal analógica para OUT2

1	 Seleccionar [ASP2] y configurar el valor con el cual se emitirá el valor 	Menú
	mínimo.	principal:
1	 Seleccionar [AEP2] y configurar el valor con el cual se emitirá el valor 	[ASP2]
	máximo.	[AEP2]

10.3 Configuraciones de usuario (opcional)

10.3.1 Fijar la unidad de medida estándar para temperatura

•	Seleccionar [uni] y fijar la unidad de medida: [°C] o [°F].	Menú EF: [uni]	
----------	---	-------------------	--

10.3.2 Fijar el tiempo de retardo para OUT1

[dS1] = retardo de activación, [dr1] = retardo de desactivación.	Menú EF:
► Seleccionar [dS1] o [dr1] y configurar un valor en segundos (con 0,0 el	[dS1]
tiempo de retardo no está activo).	[dr1]

10.3.3 Configurar la atenuación de los valores de medición

Ī	► Seleccionar [dAP] y configurar la constante de atenuación en segundos:	Menú EF:
l	0600 s en intervalos de 0,1 s.	[dAP]

10.3.4 Configurar la función de retención de picos

Seleccionar [Phld] y configurar el tiempo de espera en segundos:	Menú EF:
0600 s en intervalos de 0,1 s.	[Phld]

10.3.5 Configurar la función de simulación

Seleccionar [S.TMP] y configurar el valor de temperatura que se desea simular.	Menú SIM: [S.TMP]
► Seleccionar [S.Tim] y configurar el tiempo de simulación en minutos.	[S.Tim]
► Seleccionar [S.On] y configurar la función:	[S.On]
- On: se inicia la simulación. Se simulan los valores durante el tiempo con-	
figurado en [S.Tim]. En la pantalla aparece alternativamente la indicación	
SIM y los valores del proceso. Cancelar con [Enter].	
- OFF: la simulación no está activa.	

10.4 Funciones de asistencia

10.4.1 Restablecer todos los parámetros a la configuración de fábrica

► Seleccionar [rES].	Menú EF:
➤ Presionar brevemente [Enter].	[rES]
Mantener presionado [▲] o [▼].	
> Aparece [] en la pantalla.	
➤ Presionar brevemente [Enter].	
> Aparece [
Es recomendable anotar las configuraciones propias antes de ejecutar la función de reseteo (\rightarrow 15 Configuración de fábrica).	

11 Funcionamiento

11.1 Cambio de la unidad de indicación en el modo RUN

La temperatura se indica en la unidad de medida estándar configurada (→ 10.3.1). Pulsando un botón se puede cambiar la unidad de indicación:

- ▶ Presionar brevemente [▼] o [▲] en el modo RUN.
- > El valor del proceso se indica en la otra unidad de temperatura durante 30 s, el LED correspondiente se enciende.

11.2 Lectura de la configuración de los parámetros

- ► Presionar brevemente [Enter]
- ▶ Presionar [▼] o [▲] hasta que aparezca el parámetro deseado.
- ► Presionar brevemente [Enter].
- > El equipo muestra durante 30 segundos el valor del parámetro configurado actualmente. Después retorna al modo RUN.

12 Datos técnicos y dibujo a escala

Datos técnicos y dibujo a escala en www.ifm.com.

13 Solución de fallos

Indicación	Fallo
[SC1] parpadea con 2 Hz EI LED OUT1 parpadea con 4 Hz	Sobrecarga en la salida de conmutación
La indicación [ot] y el valor del proceso se muestran alternativamente con 0,5 Hz	Exceso de temperatura en el equipo (> 75 °C)
La indicación [ot] y el valor del proceso se muestran alternativamente con 0,5 Hz El LED OUT1 parpadea con 4 Hz	Exceso de temperatura en el equipo (> 120 °C) > La salida de conmutación se desactiva.
El LED OUT1 parpadea con 2 Hz	Conexión errónea de la tensión de alimentación
Ninguna indicación	Tensión de alimentación demasiado baja
[UL]	Valor por debajo del rango de medición
[OL]	Valor por encima del rango de medición

14 Mantenimiento, reparaciones, eliminación

La suciedad en la lente provoca que el valor de medición no se indique correctamente.

- ► Revisar con regularidad la lente y limpiar en caso necesario:
 - Retirar el polvo soplando o mediante un pincel suave.
 - Utilizar paños suaves, limpios y que no dejen pelusa o toallitas disponibles en el mercado para la limpieza de lentes.

- Para la suciedad más fuerte utilizar un lavavajillas o jabón líquido de uso normal. Posteriormente enjuagar cuidadosamente la lente con agua limpia. Mantener para ello la lente mirando hacia abajo.
- Durante la limpieza se debe ejercer poca presión sobre la lente para evitar arañazos.

15 Configuración de fábrica

Paráme-	Configuración de fábrica					Configu-
tros	TW2000 TW2100	TW2003	TW2001 TW2101	TW2002	TW2011	ración del usuario
SP1	250 °C	50 °C	500 °C	1000 °C	550 °C	
rP1	230 °C	45 °C	480 °C	960 °C	530 °C	
ASP2	0 °C	-30 °C	250 °C	500 °C	300 °C	
AEP2	1000 °C	300 °C	1600 °C	2500 °C	1600 °C	
rES						
dS1						
dr1						
ou1						
uni	°C					
dAP		0,0 s				
PhLd		0				
EPSI		None				
tESt		OFF				

IVIAS IIIIOITIIACIOTI CIT WWW.IIITI.COTT	Más	inform	nación	en	www.ifm.com	1
--	-----	--------	--------	----	-------------	---