Zadanie 4

Marko Golovko

21 maja 2020

Przygotowanie danych

Ze strony www.populationpyramid.net, pobrałem dane dla 20 krajów (dane z dnia 14.05.2020). Program, który zawiera się w csv_convert.py tworzy tabelę z 10-letnimi przedziałami czasowymi dla ludności ogółem.

Dla przykładu część tabeli. Wierszy odpowiadają za przedziały czasowe od 0-9 do 100+. Cała tablica znajduje się w pliku CountriesPopulation.csv.

RUS	ESP	UK	ITA	GER	TUR	FRA	BEL
$1.86 \cdot 10^{7}$	$4.23\cdot 10^6$	$8.04\cdot 10^6$	$4.99\cdot 10^6$	$7.88 \cdot 10^{6}$	$1.34 \cdot 10^{7}$	$7.53\cdot 10^6$	$1.3\cdot 10^6$
$1.53 \cdot 10^{7}$	$4.74 \cdot 10^{6}$	$7.64 \cdot 10^{6}$	$5.73 \cdot 10^{6}$	$7.93 \cdot 10^{6}$	$1.36 \cdot 10^{7}$	$7.88 \cdot 10^{6}$	$1.31 \cdot 10^{6}$
$1.56 \cdot 10^{7}$	$4.62\cdot 10^6$	$8.56 \cdot 10^6$	$6.1 \cdot 10^{6}$	$9.38 \cdot 10^{6}$	$1.32 \cdot 10^{7}$	$7.37\cdot 10^6$	$1.39 \cdot 10^{6}$
$2.45 \cdot 10^{7}$	$5.9 \cdot 10^{6}$	$9.3 \cdot 10^{6}$	$7 \cdot 10^{6}$	$1.09 \cdot 10^{7}$	$1.28 \cdot 10^{7}$	$8.01 \cdot 10^{6}$	$1.5 \cdot 10^6$
$2.04 \cdot 10^{7}$	$7.94\cdot 10^6$	$8.6 \cdot 10^6$	$9.02 \cdot 10^{6}$	$1.02 \cdot 10^{7}$	$1.14 \cdot 10^{7}$	$8.33 \cdot 10^{6}$	$1.52\cdot 10^6$
$1.89 \cdot 10^{7}$	$7.05 \cdot 10^6$	$9.17 \cdot 10^{6}$	$9.57 \cdot 10^{6}$	$1.35 \cdot 10^{7}$	$8.91 \cdot 10^{6}$	$8.64 \cdot 10^{6}$	$1.6 \cdot 10^{6}$
$1.85 \cdot 10^{7}$	$5.34 \cdot 10^{6}$	$7.29 \cdot 10^{6}$	$7.48 \cdot 10^{6}$	$1.06 \cdot 10^{7}$	$6.19 \cdot 10^{6}$	$7.76 \cdot 10^{6}$	$1.37 \cdot 10^{6}$
$8.55 \cdot 10^{6}$	$4.02 \cdot 10^{6}$	$5.83 \cdot 10^{6}$	$6.03 \cdot 10^{6}$	$7.47 \cdot 10^6$	$3.35 \cdot 10^{6}$	$5.73 \cdot 10^6$	$9.39 \cdot 10^{5}$
$4.88 \cdot 10^6$	$2.33 \cdot 10^{6}$	$2.81 \cdot 10^{6}$	$3.7 \cdot 10^{6}$	$4.89 \cdot 10^{6}$	$1.33 \cdot 10^{6}$	$3.14 \cdot 10^{6}$	$5.38 \cdot 10^5$
$7.71 \cdot 10^5$	$5.83 \cdot 10^{5}$	$6.21 \cdot 10^{5}$	$8.12 \cdot 10^{5}$	$9.62 \cdot 10^{5}$	$1.43 \cdot 10^{5}$	$8.66 \cdot 10^{5}$	$1.19 \cdot 10^5$
9,407	13,083	$15,\!834$	$16,\!517$	19,295	1,277	19,443	1,885

W pliku dane0512.ods znajduję się łączna liczba zachorowań w tych krajach oraz liczba zgonów.

Teoria

Regresja (względem) wielu zmiennych.

Dane są niezależne obserwacje $(x_{i1}, x_{i2}, \ldots, x_{ik}, y_i)$, dla $i = 1, \ldots, n$. Szukamy wektor $\beta = [\beta_0, \beta_1, \ldots, \beta_k]$ minimalizujący wartość funkcji

$$f(\beta) = \sum_{i=1}^{n} (\beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k - y_i)^2.$$

Gdzie n to ilość krajów. y_i łączna liczba zachorowań w i-tym kraju lub łączna liczba zgonów w zależności od przypadku. x_{ik} liczba ludzi w i-tym kraju i k-tym przedziale

 $(x_1 \text{ to } 0 - 9, \dots, x_{10} \text{ to } 100+).$ Przechodząc do wersji macierzowej.

$$\begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \quad \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_k \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Mnożąć powyższą równość lewostronnie, przez X^T otrzymujemy

$$X^T X \beta = X^T Y$$

I obliczamy wektor

$$\beta = (X^T X)^{-1} X^T Y$$

Obliczenia i wnioski

Wyniki obliczeń

Obliczenia są zapisane w pliku dz4.py. Pokazuję tylko końcowy wynik ze względu na rozmiar macierzy otrzymanych w pośrednich obliczeniach. Dla równania regresji zachorowań

Dla równania regresji zgonów

Wnoiski

Wizualizując obliczenia, otrzymałem takie dwa wykresy. zachorowania i zgony

Rysunek 1: Zachorowania

Rysunek 2: Zgony

 ${\bf Z}$ wykresów wynika przypuszczenie, że dla osób w wieku więcej od 60, zwiększa się ryzyko.