11.1组会

汇报人: 王浩宇

目录

一、Unet系列

二、PSPNet

三、Deeplab系列

UNet系列

UNet

Encoder-Decoder结构

Unet++

极致的密集连接,特征融合

Unet++

不同深度的Unet++模型在不同数据上的表现,可以根据模型学习能力进行剪枝

PSPNet

Pipline With Pyramid Pooling Module

Important Observations: Mismatched Relationship

Confusion Categories

Inconspicuous Classes

Auxiliary loss

$$Loss = Loss_1 + 0.4 * Loss_2$$

DeepLab系列

Dilated Convolution

空洞卷积,避免下采样的情况下获得更大感受野

DeepLabV1

Method	mean IOU (%)		
MSRA-CFM	61.8		
FCN-8s	62.2		
TTI-Zoomout-16	64.4		
DeepLab-CRF	66.4		
DeepLab-MSc-CRF	67.1		
DeepLab-CRF-7x7	70.3		
DeepLab-CRF-LargeFOV	70.3		
DeepLab-MSc-CRF-LargeFOV	71.6		

Method	kernel size	input stride	receptive field	# parameters	mean IOU (%)	Training speed (img/sec)
DeepLab-CRF-7x7	7×7	4	224	134.3M	67.64	1.44
DeepLab-CRF	4×4	4	128	65.1M	63.74	2.90
DeepLab-CRF-4x4	4×4	8	224	65.1M	67.14	2.90
DeepLab-CRF-LargeFOV	3×3	12	224	20.5M	67.64	4.84

消融实验,验证DeepLabV1相关组件作用

DeepLabV2

Atrous convolution for upsampling & Atrous Spatial Pyramid Pooling

Learning rate policy: poly

$$lr imes (1 - rac{iter}{max_iter})^{power}$$

Learning policy	Batch size	Iteration	mean IOU 62.25	
step	30	6K		
poly	30	6K	63.42	
poly poly	30	10K	64.90	
poly	10	10K	64.71	
poly poly	10	20K	65.88	

使用poly学习率更新策略

Experiments

MSC	COCO	Aug	LargeFOV	ASPP	CRF	mIOU
						68.72
1						71.27
1	✓					73.28
1	1	1				74.87
1	✓	1	✓			75.54
1	1	1		1		76.35
1	1	1		1	1	77.69

TABLE 4: Employing ResNet-101 for DeepLab on PASCAL VOC 2012 *val* set. **MSC**: Employing mutli-scale inputs with max fusion. **COCO**: Models pretrained on MS-COCO. **Aug**: Data augmentation by randomly rescaling inputs.

消融实验,验证DeepLabV1相关组件作用

DeepLabV3

根据VGG16修改的级联结构和新的特征金字塔

DeepLabV3+

引入Encoder-Decoder思想

Xception

Traditional Convolution

Depthwise Separable Convolution

Reference

Xception: Deep Learning with Depthwise Separable Convolutions
UNet++: A Nested U-Net Architecture for Medical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
Rethinking Atrous Convolution for Semantic Image Segmentation
Pyramid Scene Parsing Network
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

https://blog.csdn.net/qq_40092110/article/details/108498089

Thank you!