Analysis of Gene Expression

Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease

Niek Scholten

2022-03-24

```
# Options for all chunks
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(cache = TRUE)
\# Load the packages \& register the amount of workers
packages <- c("affy", "scales", "DESeq2", "BiocParallel", "pheatmap", "PoiClaClu", "ggplot2", "knitr",</pre>
invisible(lapply(packages, library, character.only = TRUE))
register(MulticoreParam(12))
setwd("/home/nieks/PycharmProjects/Bio-Informatica-Hanze/Thema 07 - Analyse van Genexpressie/Praktijkop
# Load the data into a data frame
data <- read.table("Data/GSE144028.txt")</pre>
# Define groups for the replicants
group <- c("X51D_5_NBH",</pre>
            "X51D_5_S",
            "X51D_30_NBH",
            "X51D_30_S",
            "PrPCyt_5_NBH",
            "PrPCyt_5_S",
            "PrPCyt_30_NBH",
            "PrPCyt_30_S",
            "PrPGPI_5_NBH",
            "PrPGPI_5_S",
            "PrPGPI_40_NBH",
            "PrPGPI_40_S")
groups <- factor(rep(1:12, each=3),</pre>
                 labels = group)
# Set color distributions for the graphs
colors12 <- hue_pal()(12)</pre>
colors36 <- rep(colors12, each=3)</pre>
pander::pander(summary(data), split.tables = 64)
```

Table 1: Table continues below

X51D_30_NBH_1	X51D_30_NBH_2	X51D_30_NBH_3
Min. : 0	Min. : 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 7	Median: 18	Median: 19
Mean: 377	Mean: 972	Mean: 1030
3rd Qu.: 75	3rd Qu.: 200	3rd Qu.: 209
Max. $:3445037$	Max. :8342368	Max. $:8875291$

Table 2: Table continues below

X51D_30_S_1	X51D_30_S_2	X51D_30_S_3
Min. : 0	Min.: 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 10	Median: 10	Median: 10
Mean : 568	Mean: 480	Mean : 509
3rd Qu.: 113	3rd Qu.: 104	3rd Qu.: 107
Max. $:5560520$	Max. :4122340	Max. :4386825

Table 3: Table continues below

X51D_5_NBH_1	X51D_5_NBH_2	X51D_5_NBH_3
Min.: 0	Min.: 0.0	Min.: 0.0
1st Qu.: 0	1st Qu.: 0.0	1st Qu.: 0.0
Median: 26	Median: 21.0	Median: 21.5
Mean: 869	Mean: 688.3	Mean: 718.8
3rd Qu.: 388	3rd Qu.: 325.0	3rd Qu.: 337.0
Max. :3832490	Max. :2415360.0	Max. :2533918.0

Table 4: Table continues below

X51D_5_S_1	X51D_5_S_2	X51D_5_S_3
Min.: 0.0	Min. : 0	Min.: 0
1st Qu.: 0.0	1st Qu.: 1	1st Qu.: 1
Median: 31.0	Median: 89	Median: 92
Mean: 722.4	Mean: 1999	Mean: 2092
3rd Qu.: 320.0	3rd Qu.: 925	3rd Qu.: 961
Max. :3111359.0	Max. :7272134	Max. $:7625567$

Table 5: Table continues below

PrPCyt_30_NBH_1	$PrPCyt_30_NBH_2$	PrPCyt_30_NBH_3
Min. : 0	Min.: 0.0	Min.: 0.0
1st Qu.: 0	1st Qu.: 0.0	1st Qu.: 0.0
Median: 22	Median: 4.0	Median: 4.0
Mean:855	Mean: 176.5	Mean: 181.1
3rd Qu.: 254	3rd Qu.: 52.0	3rd Qu.: 53.0

PrPCyt_30_NBH_1	$PrPCyt_30_NBH_2$	PrPCyt_30_NBH_3
Max. :5261726	Max. :1059586.0	Max. :1096115.0

Table 6: Table continues below

PrPCyt_30_S_1	PrPCyt_30_S_2	PrPCyt_30_S_3
Min. : 0	Min. : 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 23	Median: 27	Median: 28
Mean: 793	Mean: 857	Mean: 914
3rd Qu.: 299	3rd Qu.: 351	3rd Qu.: 374
Max. $:4058764$	Max. $:3769299$	Max. :4079216

Table 7: Table continues below

PrPCyt_5_NBH_1	$PrPCyt_5_NBH_2$	$PrPCyt_5_NBH_3$
Min.: 0	Min.: 0.0	Min.: 0.0
1st Qu.: 0	1st Qu.: 0.0	1st Qu.: 0.0
Median: 43	Median: 29.0	Median: 30.0
Mean: 828	Mean: 591.5	Mean: 603.4
3rd Qu.: 421	3rd Qu.: 286.0	3rd Qu.: 294.0
Max. :3163765	Max. :2692026.0	Max. $:2734069.0$

Table 8: Table continues below

PrPCyt_5_S_1	$PrPCyt_5_S_2$	PrPCyt_5_S_3
Min.: 0	Min.: 0.0	Min.: 0.0
1st Qu.: 0	1st Qu.: 0.0	1st Qu.: 0.0
Median: 60	Median: 31.0	Median: 32.0
Mean: 1537	Mean: 764.7	Mean: 821.5
3rd Qu.: 838	3rd Qu.: 403.8	3rd Qu.: 435.0
Max. :4603176	Max. :2386987.0	Max. $:2556960.0$

Table 9: Table continues below

PrPGPI_40_NBH_1	PrPGPI_40_NBH_2	PrPGPI_40_NBH_3
Min. : 0	Min. : 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 14	Median: 13	Median: 10
Mean: 1556	Mean: 1521	Mean: 1116
3rd Qu.: 160	3rd Qu.: 150	3rd Qu.: 115
Max. :18885278	Max. $:18935887$	Max. :13407360

Table 10: Table continues below

PrPGPI_40_S_1	$PrPGPI_40_S_2$	PrPGPI_40_S_3
Min.: 0	Min. : 0	Min.: 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 14	Median: 17	Median: 13
Mean: 1235	Mean: 1318	Mean : 979
3rd Qu.: 163	3rd Qu.: 191	3rd Qu.: 148
Max. $:14289546$	Max. :14709751	Max. $:9635362$

Table 11: Table continues below

PrPGPI_5_NBH_1	$PrPGPI_5_NBH_2$	PrPGPI_5_NBH_3
Min. : 0	Min. : 0	Min.: 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 9	Median: 5	Median: 7
Mean: 1077	Mean: 629	Mean : 968
3rd Qu.: 101	3rd Qu.: 50	3rd Qu.: 79
Max. :11252267	Max. :6579166	Max. $:10120453$

PrPGPI_5_S_1	PrPGPI_5_S_2	PrPGPI_5_S_3
Min. : 0	Min.: 0	Min. : 0
1st Qu.: 0 Median : 11	1st Qu.: 0 Median : 12	1st Qu.: 0 Median : 15
Mean: 793	Mean: 782	Mean: 1018
3rd Qu.: 113 Max. :6111197	3rd Qu.: 120 Max. :6215874	3rd Qu.: 152 Max. :7851434

```
boxplot(data,
    outline = FALSE,
    col = colors36,
    horizontal = TRUE,
    las = 2,
    main = "Distrubution of count values",
    cex.axis= 0.4)
```

Distrubution of count values

Expression Distribution


```
(ddsMat <- DESeqDataSetFromMatrix(countData = data,</pre>
                                    colData = data.frame(samples = names(data)),
                                    design = ~1))
## class: DESeqDataSet
## dim: 17742 36
## metadata(1): version
## assays(1): counts
## rownames(17742): FBgn0000003 FBgn0000008 ... __not_aligned
     __too_low_aQual
## rowData names(0):
## colnames(36): X51D_30_NBH_1 X51D_30_NBH_2 ... PrPGPI_5_S_2 PrPGPI_5_S_3
## colData names(1): samples
rld.dds <- vst(ddsMat)</pre>
rld <- assay(rld.dds)</pre>
sampledists <- dist( t( rld ))</pre>
sampleDistMatrix <- as.matrix(sampledists)</pre>
annotation <- data.frame(Type = factor(rep(rep(1:2, each = 3), each = 6),
                                            labels = c("Normal Brain Homogenate",
                                                        "Scrapie")))
rownames(annotation) <- names(counts)</pre>
pheatmap(sampleDistMatrix, show_colnames = FALSE,
         # annotation_col = annotation, # Gives an error
         clustering_distance_rows = sampledists,
```

```
clustering_distance_cols = sampledists,
main = "Euclidian Sample Distances")
```



```
dds <- assay(ddsMat)
poisd <- PoissonDistance( t(dds) )

samplePoisDistMatrix <- as.matrix(poisd$dd)

mdsPoisData <- data.frame( cmdscale(samplePoisDistMatrix) )

names(mdsPoisData) <- c('x_coord', 'y_coord')

coldata <- names(data)

ggplot(mdsPoisData, aes(x_coord, y_coord, color = groups, label = coldata)) +
    geom_text(size = 4) +
    ggtitle('Multi Dimensional Scaling') +
    labs(x = "Poisson Distance", y = "Poisson Distance") +
    theme_bw()</pre>
```

Multi Dimensional Scaling

Some samples clearly deviate from the other 2 in the group. This is especially clear with X51D_5_S, PrPCyt_30_NBH, X51D_30_NBH & PrPCyt_5_S. Strangely, these samples are all the first one in their respective group. This could indicate that the first tests were less accurate. Since 3 samples must remain in each group, no data will be removed from the set.

```
counts.fpm <- log2( fpm(ddsMat, robust = TRUE) + 1 )</pre>
dds <- DESeq(ddsMat, parallel = TRUE)</pre>
## Warning in DESeq(ddsMat, parallel = TRUE): the design is ~ 1 (just an
## intercept). is this intended?
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates: 12 workers
## mean-dispersion relationship
## final dispersion estimates, fitting model and testing: 12 workers
## -- replacing outliers and refitting for 147 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
res <- results(dds)
beforeCounts <- counts(dds)
keep <- rowSums(beforeCounts) >= 10
```

Counts before filtering	Counts after filtering	Difference in counts
17742	13618	4124

The dataset has been trimmed to filter out genes with count values lower than 10. This results in a smaller dataset because more than 4000 genes have been removed.