$\begin{array}{c} {\rm HW\text{-}1} \\ {\rm Math~537~Ordinary~Differential~Equations} \\ {\rm Due~11\text{:}59~PM~Sep~11,~2020} \end{array}$

Solve the following problems, discuss results, and performanalysis near equilibrium points.	m linear stability
1: [20+5 points]	
$\frac{dx}{dt} = f(x),$	
here (i) $f(x) = x$; (ii) $f(x) = x^2$; and (iii) $f(x) = x^3$.	
(a) Perform (linear) stability analysis.	[20 points]
(b) Find and analyze the corresponding solutions.	[5 bonus points]

Student Name: _____ID ____

: [20 points]

$$\frac{dx}{dt} = x^2 - 2x.$$

: [30 points]

$$\frac{dx}{dt} = -(\alpha x + x^3)$$

for $x \ge 0$ and $x(t = 0) = x_o$. [Hint: set $r = x^2$, solve for r and discuss the results when $\alpha < 0$, $\alpha = 0$ or $0 < \alpha$.]

4: [30 points] Analyze the following ODE with $\beta>0$:

$$\frac{dx}{dt} = \beta x (1 - x) - h$$

for all values of the parameter h > 0.