https://powcoder.com

The University of Manchester

Add WeChat powcoder

Outline of today's lecture

Assignment Project Exam Help

- Testing hypotheses about individual coefficients

 https://powcoder.com

 Testing hypotheses about linear combinations of the coefficients
- Add We Chat powcoder
- Variable selection

Examples of parameter restrictions in econometric models

• asset returns: $R - R_f = \beta_0 (R_m - R_f) + error$

Assignment Project Exam Help

- $\beta_0 = 1 \Rightarrow$ stock moves in line with market index.
- ratification of the reparameterizing).

Add * powcoder * powco

- D=1 is female and zero else
- $\beta_{0,3} = 0$, $\beta_{0,4} = 0 \Rightarrow$ no difference between men and women.

$$\begin{array}{l} \text{lnQ} \equiv \beta_{0,1} + \beta_{0,2} * \text{ln(L)} + \beta_{0,3} * \text{ln(K)} + \text{error} \\ \text{NTPS://powcoder.com} \\ & \beta_{0,2} + \beta_{0,3} \begin{cases} < \\ = \\ \end{cases} \\ 1 \Rightarrow \begin{cases} \text{diminishing} \\ \text{constant} \\ \text{Powcoder} \end{cases} \text{returns to scale} \\ \text{Add WeChat powcoder} \\ \end{array}$$

Testing hypotheses about $\beta_{0,i}$

Consider inference about $\beta_{0,i}$ based on $\hat{\beta}_{T,i}$.

Assignment Project Exam Help

 $\begin{array}{c} \frac{\hat{\beta}_{T,i} - \beta_{0,i}}{\text{https://powcoder.com}} \sim \textit{N(0,1),} \\ \text{https://powcoder.com} \\ \text{where } \textit{m_{i,i}} \text{ is the } \textit{i^{th}} \text{ main diagonal element of } (\textit{X'X})^{-1}, \end{array}$

and noted that if Weel that powcoder

 $\frac{\beta_{T,i} - \beta_{0,i}}{\hat{\sigma}_{T}\sqrt{m_{i,i}}} \sim \text{Student's t distribution with T-k df}$

Inference about $\beta_{0,i}$

Consider the two-sided test: $H_0: \beta_{0,i} = \beta_{*,i}$ vs. $H_1: \beta_{0,i} \neq \beta_{*,i}$. Assignment Project Exam Help Nature to base test statistic on:

https://power.com

because under H_0 :

 $\underset{\hat{\tau}_{\mathcal{T},i}(\beta_{*,i})}{Add} \underbrace{WeChat\ powcoder}_{\text{Student's t distribution with T-k df}}$

Assignment Project Exam Help Decision rule: reject H₀ at 100\alpha\% significance level if

https://powcoder?com

Note: significance level is $100 \times P(\text{Type I error})$. Add WeChat powcoder

Inference about $\beta_{0,i}$

Suppose H_0 is false. How does our test statistic behave?

Assignment
$$P_{\sigma}$$
 oject F_{σ} amp $Help$

So unhttps://spowcoder.com

 $\hat{ au}_{T,i}(eta_{*,i}) \sim ext{Student's t distribution with } T-k ext{ df and ncp }
u$

where the dod We Chat powcoder

$$\nu = \frac{\beta_{0,i} - \beta_{*,i}}{\sigma_0 \sqrt{m_{i,i}}}$$

- $\Pr(\text{reject } H_0 \mid H_1 \text{ true}) > \alpha \Rightarrow \text{unbiased test.}$ $\Pr(\text{power } T_0 \mid H_1 \text{ true}) > \alpha \Rightarrow \text{unbiased test.}$ $\Pr(\text{power } T_0 \mid H_1 \text{ true}) > \alpha \Rightarrow \text{unbiased test.}$
- · Avedden We and that the power oder

Example: traffic fatalities

From Lecture 1:

Assignment Project Exam Help

Did passage of seat belt law affect % of accidents with fatalities?

• https://powcoder.com
•
$$H_0: \beta_{left,0} = 0$$
 (poeffect) vs $H_1: \beta_{belt,0} \neq 0$ (has effect)

test statistic:

$$Add We chat |\hat{\tau}_{belt}| = \left| \frac{\text{powed}}{\text{s.e.}(\hat{\beta}_{belt})} \right| = \frac{\text{powed}}{\text{0.023}} = 1.304 er$$

p-value is 0.195 and so fail to reject at all conventional significance levels.

Example: traffic fatalities

Did passage of seat belt law reduce % of accidents with fatalities?

$\begin{array}{c} \textbf{Assignment Project Exam Help} \\ \textbf{example of one-sided test: } \textbf{\textit{H}}_{0}: \beta_{0,i} \geq \beta_{*,i} \text{ vs } \textbf{\textit{H}}_{1}: \beta_{0,i} < \beta_{*,i} \end{array}$

- Test statistic is now: $\frac{1}{n} \frac{1}{n} \frac{1}$
- Decision rule is to reject H_0 in favour of H_1 at the $100\alpha\%$ significance level in the power of the significant power of the significant

$$\hat{\tau}_{T,i}(\beta_{*,i}) < \tau_{T-k}(\alpha)$$

• In our example, the critical value is -1.291 (-1.662) for the 10% (5%) significance level test and so marginal evidence against H_0 .

Inference about $R\beta_0 = r$

Consider testing: H_0 : $R\beta_0 = r$ vs H_1 : $R\beta_0 \neq r$ where R, r are

Assignment Project Exam Help We need $rank(R) = n_r$ to rule our redundancies.

Natural to base inference on: $R\hat{\beta}_{\tau} - r$. The sum of the sum Given sampling distribution of $\hat{\beta}_{\tau}$, we have:

Add[®]WeChat[®]powcoder and so under H_0

$$R\hat{\beta}_{T} - r \sim N(0, \sigma_{0}^{2}R(X'X)^{-1}R')$$

Inference about $R\beta_0 = r$

Test statistic:

Assignment Project Exam Help

 $\begin{array}{c} \text{Under } H_{0} F_{0} F_{0} f_{0} f_{0} \\ \text{https://powcoder.com}^{\text{f.}} \end{array} \text{ for } f_{0} f_{0} f_{0} f_{0} \\ \text{https://powcoder.com}^{\text{f.}} f_{0} f_{0} f_{0} \\ \text{f.} \end{array}$

Decision rule: reject H_0 : $R\beta_0 = r$ at the $100\alpha\%$ significance level if:

Add WeChat powcoder $F > F_{n_r, T-k}(1-\alpha)$

where $F_{n_r,T-k}(1-\alpha)$ is the $100(1-\alpha)^{th}$ percentile of the F distribution with $(n_r, T - k)$ df.

$$https://powcoder.com$$

where

- RSS_U is RSS from regression without imposing $R\beta = r$ RSS_R is RSS from regression without imposing $R\beta = r$

Example: traffic fatalities

Assity trifficents Protect Exam Help

- H_0 : $\beta_{belt,0} + \beta_{mph,0} = 0$ vs H_1 : $\beta_{belt,0} + \beta_{mph,0} \neq 0$.
- . https://powgrader.com. $_{1(1-\alpha)}$.
- F = 3.126, $F_{1.91}(.95) = 3.946 \Rightarrow$ Fail to reject at 5% level. Add WeChat powcoder

 p-value = 0.080 so reject at 10% agnificance level.

Do regressors collectively help to explain y?

ullet $H_0:$ $Reta_0=0_{k-1}$ (no) vs $H_1:$ $Reta_0
eq 0_{k-1}$ (yes) for

Assignment Project Exam Help

where 0_{k-1} is $(k-1) \times 1$ null vector.

- https://eipawcoderecom $F > F_{k-1,T-k}(1-\alpha)$.
- · Inthicket, Wester that powcoder

$$F = \left(\frac{R^2}{1 - R^2}\right) \left(\frac{T - k}{k - 1}\right)$$

Example: traffic fatalities

A Soll) Condition to explan, Coftratic X along in to the fatalities)?

- https://powcoder.com
- F = 14.625
- Add (1W) e Chato power oder conventional sig. levels.

Restricted Least Squares

Suppose we wish to impose linear restrictions on estimated coefficients. Can do this via method of Restricted Least Squares.

Assignment Project Exam Help Recall that OLS is: $\hat{\beta}_{\tau} = \operatorname{argmin}_{\beta \in \mathcal{B}} Q_{\tau}(\beta)$.

Definhttps://powscoder.com

Note: $R\hat{\beta}_{R,T} = r$ by construction.

 $\mathcal{L}(\beta,\lambda) = Q_{\mathcal{T}}(\beta) + 2\lambda'(R\beta - r)$

https://powcoder.com

 $\overset{\hat{\beta}_{R,T}}{\text{Add}} \overset{\hat{\beta}_{T}}{\text{WeChat powcoder}} \overset{(X'X)^{-1}R'\{R(X'X)^{-1}R'\}^{-1}(R\hat{\beta}_{T} - r).}{\text{Notice of the powcoder}}$

Sampling distribution of RLS

If Assumptions CA1- CA6, $rank(R) = n_r$ and $R\beta_0 = r$ then

Assignment Project Exam Help

$$\begin{array}{l} D = (X'X)^{-1} - (X'X)^{-1}R'\{R(X'X)^{-1}R'\}^{-1}R(X'X)^{-1}. \\ \textbf{https://powcoder.com} \end{array}$$

Under these assumptions, RLS is at least as efficient as OLS

However, if $R\beta_0 \neq r$ then: $E[\hat{\beta}_{R,T}] \neq \beta_0$.

Alastair R. Hall

ECON 61001: Lecture 3

Variable selection

So far have taken X as given but in practice need to choose

Assignment Project Exam Help

- Choice may come from economic theory.
- https://powcoder.com
 - Maximize R^2 ? Not a good idea.

For further discussion please read Notes Section 2.9

- Notes: Sections 2.8 2.10 and Section 2.13 (Appendix on Statistical Distributions)
- https://powcoder.com
 - Classical hypothesis testing framework, Section C.7
 - Inference based on OLS estimators Sections 5.1-5.5

Add WeChat powcoder