

LENGUAJES FORMALES Y AUTÓMATAS

4 CRÉDITOS

A. Información del profesor

Nombre del profesor

Moises Antonio Alonso Gonzalez

Correo electrónico

maalonsog@correo.url.edu.gt

Campus o sede

Campus Central

Horario

Jueves (T-306) 07:00-08:20 / sábado (T-408) 08:30-09:50

B. Información general

Descripción

Presenta las distintas familias de lenguajes formales, su definición mediante gramáticas o expresiones (regulares) y las máquinas (autómatas y Turing) que los reconocen.

Estos conceptos son la base para la definición de lenguajes de programación y la traducción a código ejecutable.

El curso sirve de introducción para el estudio de compiladores en el curso con mismo nombre.

Modalidad

Mixta (Blended). Se combinarán momentos de aprendizaje autónomo, de parte del estudiante y guiado en la plataforma de aprendizaje de la Universidad; así como conferencias virtuales con los profesores, donde se favorecerá la metodología activa.

C. Malla curricular

COMPETENCIAS GENÉRICAS

El egresado landivariano se identifica por:

Pensamiento lógico, reflexivo y analógico	Pensamiento crítico	Resolución de problemas
Habilidades de investigación	Uso de TIC y gestión de la información	Comunicación efectiva, escrita y oral
Comprensión lectora	Compromiso ético y ciudadanía	Liderazgo constructivo
A		

Aprecio y respeto por la diversidad e interculturalidad

Creatividad

COMPETENCIAS ESPECÍFICAS (propias del curso)

Competencia 1

Conoce los fundamentos y propiedades de los lenguajes formales así como su utilidad en las ciencias de la computación.

Competencia 2

Utiliza expresiones y gramáticas regulares en la definición de lenguajes regulares.

Competencia 3

Diseña autómatas finitos para el reconocimiento o generación de palabras dentro de un lenguaje regular.

Competencia 4

Construye máquinas (autómatas y de Turing) para problemas de reconocimiento de palabras, decisión o cálculo de funciones.

Facultad de Ingeniería

METODOLOGÍA

Este curso se desarrollará a través de los siguientes métodos de aprendizaje-enseñanza: Aprendizaje invertido

«La exposición de saberes se realiza por medio de documentos, videos y otros materiales por parte del estudiante. El tiempo de sesión síncrona1 se dedica a la discusión, resolución de problemas y actividades prácticas bajo la supervisión del profesor» Edutrends, Tecnológico de Monterrey.

Aprendizaje cooperativo

«Una metodología que los maestros usan para agrupar a los estudiantes e impactar de forma positiva. Quienes utilizan este método aseguran que hacerlo permite que los estudiantes mejoren la atención y la adquisición de conocimientos. El objetivo de esta metodología es que cada miembro de un grupo establecido realice con éxito sus tareas apoyándose en el trabajo de los demás». CHILE ELIGE EDUCAR 2021.

Aprendizaje basado en proyectos

«Se orienta en el diseño y desarrollo de un proyecto de manera colaborativa por un grupo de alumnos, como una forma de lograr los objetivos de aprendizaje de una o más áreas disciplinares y además lograr el desarrollo de las competencias relacionadas con la administración de proyectos reales». Edutrends, Tecnológico de Monterrey.

Sesión sincrónica: es el espacio en tiempo real, donde se reúnen los participantes del proceso de aprendizaje.

COMPETENCIA 1

Conoce los fundamentos y propiedades de los lenguajes formales así como su utilidad en las ciencias de la computación.

Saber conceptual (contenido temático)

- 1. Lenguajes Formales:
- 1.1 Alfabetos y palabras
- 1.2 Lenguajes formales
- 1.3 Operaciones con lenguajes
- 1.4 Gramáticas formales
- 1.5 Nociones básicas sobre traductores

Saber procedimental (habilidades y destrezas)

- Recuerda la relación entre alfabeto, palabras y lenguajes.
- Nombra los componentes de una gramática formal.
- Lista los pasos en el proceso de traducción de programas.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Verifica material de apoyo en preparación a la sesión y participa activamente en la discusión.
- Trabaja diligentemente en los ejercicios propuestos para aplicar los conceptos.
- Presenta una solución completa y realizada con excelencia.

Indicador de logro 1 (resultado):

Describe los fundamentos y propiedades de los lenguajes formales así como su utilidad en las ciencias de la computación.

COMPETENCIA 2

Utiliza expresiones y gramáticas regulares en la definición de lenguajes regulares.

Saber conceptual (contenido temático)

- 2. Expresiones Regulares (ER)
- 2.1 Lenguajes regulares
- 2.2 Definición de expresión regular.
- 2.3 Lenguaje descrito por una ER
- 2.4 Propiedades de la ER
- 2.5 Diseño de ER
- 2.6 Expresiones y gramáticas regulares (GR)

Saber procedimental (habilidades y destrezas)

- Reconoce las palabras generadas mediante una expresión regular.
- Revisa que una expresión regular cumpla en corrección y completez del lenguaje solicitado.
- Contrasta la definición de un lenguaje mediante expresiones y gramáticas regulares.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Verifica material de apoyo en preparación a la sesión y participa activamente en la discusión.

Facultad de Ingeniería

- Trabaja diligentemente en los ejercicios propuestos para aplicar los conceptos.
- Presenta una solución completa y realizada con excelencia.

Indicador de logro 2 (resultado):

Construye expresiones regulares para la validación de cadenas de entrada de usuario.

COMPETENCIA 3

Diseña autómatas finitos para el reconocimiento o generación de palabras dentro de un lenguaje regular.

Saber conceptual (contenido temático)

- 3. Autómatas Finitos
- 3.1 Definición de un autómata finito (AF).
- 3.2 Lenguaje aceptado por un AF.
- 3.3 Autómatas finitos deterministas (AFD).
- 3.4 Diseño de AF.
- 3.5 Autómatas finitos con Salida.
- 3.6 Autómatas finitos no deterministas (AFND).
- 3.7 Autómatas finitos, expresiones y gramáticas regulares.
- 3.8 Limitante de los lenguajes regulares.

Saber procedimental (habilidades y destrezas)

- Identifica los componentes de un AF.
- Selecciona un patrón de diseño contemplando los tipos de AF.
- Traduce la definición de un lenguaje regular (ER o GR) a un AF para su reconocimiento (y viceversa).

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Verifica material de apoyo en preparación a la sesión y participa activamente en la discusión.
- Trabaja diligentemente en los ejercicios propuestos para aplicar los conceptos.
- Presenta una solución completa y realizada con excelencia.

Indicador de logro 3 (resultado):

Bosqueja el funcionamiento de un autómata finito utilizando un lenguaje de programación.

COMPETENCIA 4

Construye máquinas (autómatas y de Turing) para problemas de reconocimiento de palabras, decisión o cálculo de funciones.

Saber conceptual (contenido temático)

- 4. Gramáticas Libres de Contexto (GLC)
- 4.1 Definiciones básicas
- 4.2 Diseño de GLC
- 4.3 Árboles de derivación
- 4.4 Formas normales
- 4.5 Autómatas de Pila (AP)
- 5. Máquinas de Turing (MT)
- 5.1 Funcionamiento de la MT.
- 5.2 Formalización de las MT.
- 5.3 Cálculos y problemas sobre MT.
- 6. Introducción al Análisis Sintáctico

Facultad de Ingeniería

Saber procedimental (habilidades y destrezas)

- Distingue las diferencias entre lenguajes/gramáticas regulares y libres de contexto.
- Comprende la funcionalidad que cada máquina puede brindar para el reconocimiento de lenguajes formales.
- Diseña AP y MT para la resolución de problemas.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Verifica material de apoyo en preparación a la sesión y participa activamente en la discusión.
- Trabaja diligentemente en los ejercicios propuestos para aplicar los conceptos.
- Presenta una solución completa y realizada con excelencia.

Indicador de logro 4 (resultado):

Construye máquinas para reconocimiento de un lenguaje de programación simplificado.

Universidad Rafael Landívar

EVALUACIÓN

a. Estrategias de evaluación sumativa

Estrategias	Puntaje
3 exámenes parciales (10, 10, 10)	30
Proyecto de programación (3 Fases)	25
Exámenes Cortos	5
Hojas de trabajo y tareas en general	10
Examen final	30
TOTAL	100

b. Estrategias de evaluación formativa

Técnicas formativas	Procedimiento	
Retroalimentación	Comentarios al devolver los trabajos revisados.	
Diálogo socrático	Preguntas y respuestas orales a ejemplos y problemas que se realizarán lo largo de la secuencia de aprendizaje.	
Quiz	Evaluaciones rápidas para validar presaberes o comprensión de conceptos.	
Trabajos en pequeños grupos	Ejercicios o actividades que favorezcan la discusión más	
para resolver dudas	cercana entre alumnos y catedrático.	

CALENDARIO DE REFERENCIA POR TEMAS

Fecha	Tema	Actividad de evaluación
Semana 1	Lenguaje Formales	Ejercicio
Semana 2	Gramática y lenguajes Regulares (LR) Autómatas	Ejercicio
Semana 3	Expresiones Regulares	Examen Corto
Semana 4	Métodos de Diseño de Autómatas Finitos Deterministas (AFD) Equivalencia y simplificación de Autómatas	Examen Corto
Semana 5	Simplificación de autómatas	Hoja de Trabajo Primer Parcial (17/feb)
Semana 6	Autómatas con Salida Autómatas Finitos no deterministas (AFN)	Examen Corto
Semana 7	Diseño AFN y equivalencia AFN y AFD	Examen Corto
Semana 8	Expresiones Regulares Equivalencias ER + Notación POSIX	Examen Corto
Semana 9	Equivalencias ER-AF (y GR)	Examen Corto

Semana 10		Hoja de Trabajo
		Primera entrega de proyecto
		Segunda Evaluación Parcial
		(21/ mar)
Semana 12	Limitaciones de los LR	Examen Corto
	Gramáticas Libres de Contexto	
Semana 13	Diseño de GLC	Examen Corto
	Árboles de Derivación	
Semana 14	Forma Normal de Chomsky	Examen Corto
	Autómatas de Pila	
Semana 15	Autómatas de Pila	Hoja de Trabajo
		Tercera evaluación parcial (27/abr)
Semana 16	Máquinas de Turing	Examen Corto
		Segunda entrega proyecto
Semana 17	Máquinas de Turing	Examen Corto
	Introducción al análisis sintáctico	
Semana 18	Compilador LL1	Examen Corto
Semana 19	Compilador LR1	Examen Corto
		Hoja de Trabajo
Semana 20		Evaluación final (30/may)
Semana 21		Evaluación final – Segunda
		Convocatoria (06/jun)

REFERENCIAS BIBLIOGRÁFICAS

- 1. KELLY, Dean. Teoría de autómatas y lenguajes formales. Prentice Hall. España, 1995.
- 2. AHO, Alfred; Sethi, Ravi y Ulmann, Jeffrey. Compiladores. Principios, técnicas y herramientas. Addison-Wesley Iberoamericana. Estados Unidos, 1990
- 3. Brena, R. (2003). Autómatas y Lenguajes Un enfoque de diseño. México: TEC de Monterrey. Hopcroft, J.,
- 4. Motwani, R., y Ullman, J. (2006). *Automata Theory, Languages, and Computation* (3ª Ed.). USA: Pearson.

DISPOSICIONES GENERALES

Artículo 12. Faltas académicas

Constituyen faltas académicas las siguientes:

- a) La conducta del estudiante que perturbe u obstaculice el normal desarrollo de la actividad académica.
- b) La interrupción sistemática de la actividad académica dentro del aula.
- c) El uso de celulares o dispositivos de reproducción de música dentro del aula.
- d) La desobediencia a las instrucciones del docente en el ejercicio de sus funciones académicas.
- e) La falta de respeto y consideración hacia el docente o estudiante dentro del aula.
- f) La hostilidad manifiesta, la agresión de palabra o de obra contra un docente o estudiante dentro del aula.
- g) El uso de lenguaje no apropiado en el aula.

Facultad de Ingeniería

- h) La utilización intencionada o negligente de medios informáticos de la Universidad Rafael Landívar de forma que perjudiquen el desarrollo de las actividades académicas.
- Todas las modalidades de plagio o fraude y en general, cualquier conducta contraria a la verdad y a la honradez encaminada a engañar al docente con intención de obtener un provecho académico personal o ajeno.
- j) Defraudar el sistema de comprobación del rendimiento académico, ya sea individual o en colaboración con otros para su ejecución.
- k) Brindar o recibir información por cualquier medio, durante una evaluación; intercambiar exámenes o sustracción de estos.
- I) Suplantar a una persona en cualquier evaluación o actividad académica.
- m) El incurrir en una conducta no expresamente incluida en los incisos anteriores, que, debido a su naturaleza académica, deba ser considerada como falta en atención a los principios y valores de la Universidad Rafael Landívar y del bienestar general de la comunidad educativa landivariana.