A Brief Introduction to Deep Learning and Computer Vision

J.S. Blum

Department of Radiology, Washington University in St. Louis School of Medicine

July 16, 2023

Outline

1 About Me

2 Image Processing

About Me

About:

I am a researcher at the Mallinckrodt Institute of Radiology in Washington University in Saint Louis. I received a BA in Applied Mathematics and Statistics at WashU, advised by Sheng-Kwei Song (Radiology) and Donsub Rim (Mathematics).

Github: @jacobblum

- 2 Research Interests:

 My interests are in inverse problems and computational applications in medical imaging:
 coupled-physics imaging (NMR/dMRI), proton dynamics, deep learning, high performance
 computing.
- 3 Some Selected Publications/ Software:
 - simDRIFT: a software package for massively parallel forward simulation of diffusion weighted MRI on biophysically accurate tissue systems

 J. Open Source Softw. (2023)
 - Diffusion basis spectrum imaging provides insights into cervical spondylotic myelopathy pathology Neurosurgery (2022)
 - Analysis of combined clinical and diffusion basis spectrum imaging metrics predicts the outcome of chronic cervical spondylotic myelopathy following cervical decompression surgery

 J. of Neurosurgery: Spine (2022)
 - Diffusion Basis Spectrum Imaging Distinguishes High Grade Glioma Treatment Effect From Tumor Progression Neuro-Oncology (2023)
 - Utility of Diffusion Basis Spectrum Imaging in Quantifying Baseline Disease Severity and Prognosis of Cervical Spondylotic Myelopathy Spine (2022)

What Are Images: ND-Arrays

Definition

Diverse mathematical descriptions of obejcts and images can be unifed by the imaging equation.

$$\mathbf{g} = \mathcal{H}\mathbf{f} \tag{1}$$

Where \mathbf{g} is the image, \mathbf{f} the imaging object, and \mathcal{H} the imaging system. For example ...

Figure 1: The Imaging system (a camera) produces a discretized represtnation of the imaging object. Typically, this is can be thought of as a 2D array

What do we do with Images: Image Processing

There is an enormous demand for image processing in a diverse range of application areas including biomedical imaging, autonomous systems, and reomote sensing.

Figure 2: (Left) MNIST Dataset, a common benchmark for image classication models; T2W/FLAIR images of GBM with ML guided segmentation; A self driving car using computer vision; A SAR system on a UAV

Tools for Image Processing