수치해석 HW#6

2018008559 컴퓨터소프트웨어학부 신상윤

1. Introduction

1. 목적

최소제곱법을 통해 data를 fitting 시키는 함수의 parameter를 최적화한다.

2. 최소제곱법을 통한 parameter 최적화 공식

2. Process

```
tmp = []
with open("fitdata1.dat", "r") as f:
             while True
                              s = f.readline()
                                 if not s:
                                             break
                                 tmp.append(s.split())
n = len(tmp)
print("n = ",n)
 x,y,f,g,xy,xx,yy,xf,yf,xg,yg = 0,0,0,0,0,0,0,0,0,0,0
for s in tmp:
             x_{tmp}, y_{tmp}, f_{tmp}, g_{tmp} = float(s[0]), float(s[1]), float(s[2]), float(s[3])
             \times += \times_tmp
             y += y_tmp
              f += f_tmp
              g += g_tmp
              xy += x_tmp * y_tmp
               xx += x_tmp * x_tmp
              yy += y_tmp * y_tmp
               xf += x_t p * f_t p
              yf += y_tmp * f_tmp
               xg += x_tmp * g_tmp
                yg += y_tmp * g_tmp
 \texttt{print("x:",x,"\#n","y:",y,"\#n","f:",f,"\#n","g:",g,"\#n","xy:",xy,"\#n","xx:",xx,"\#n","yy:",yy,"\#n","xf:",xf,"\#n","yf:",yf,"\mn","xf:",xf,"\mn","yf:",xf,"\mn","yf:",xf,"\mn","yf:",xf,"\mn","yf:",xf,"\mn","xf:",xf,"\mn","yf:",xf,"\mn","xf:",xf,"\mn","yf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn","xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf,"\mn",xf:",xf
```

data를 가져와서 x_i , y_i , f_i , g_i 값을 tmp에 저장한다. 이후에 parameter를 구하기위해 필요한 값인 $\sum x$, $\sum y$, $\sum f$, $\sum g$, $\sum xy$, $\sum x^2$, $\sum y^2$, $\sum xf$, $\sum yf$, $\sum xg$, $\sum yg$ 를 구한 후 식을 세우고 연립방정식을 풀면 된다.

3. Result

3.1 fitdata1.dat

```
n =
     77
     -592.839999999998
 \times:
    -1971.5700000000045
 v:
 f:
   -616.0
     -1848.0
 g:
     7667.740399999995
 ху:
     3274242.0570000014
 XX:
     1355803.0851000005
 уу:
     3215182.400000001
 xf:
 yf:
     11713.04
     10938.560000000063
 xg:
     1329346.4799999995
 уд:
```

연립 방정식:

3274242.05700000: X1 +	7667.740399999999	X2 +	-592.8399999999999	X3+	0	×4 +	0	+	0	:=	3215182.40000000
7667.74039999999! X ₁ +	1355803.08510000	x2 +	-1971.57000000000	X3 +	0	x_4^{+}	0	X5 +	0	_{X6} =	11713.04
-592.839999999999 X ₁ +	-1971.5700000000	x2 +	77	X3 +	0	x_4^{+}	0	x5+	0	X ₆ =	-616.0
0 X ₁ +	0	x2 +	9	X3 +	3274242.05700000	X_4^{+}	7667.74039999999	<i>x</i> ₅ +	-592.83999999999	X6 =	10938.5600000000
0 X ₁ +	0	x2+	0	X3 +	7667.740399999999	x_4^{+}	1355803.08510000	X ₅ +	-1971.57000000000	X ₆ =	1329346.479999999
0 X ₁ +	0	x2+	0	X3 +	-592.839999999999	×4 +	-1971.57000000000	X5+	77	X ₆ =	-1848.0

3.2 fitdata2.dat

n = 77

x: -534.059999999999

y: -1924.2400000000002

f: -616.0

g: -1848.0

xy: 16324.710100000011

xx: 3288267.2390000005

yy: 1360720.7228

xf: 3222840.159999999

yf: 18905.60000000057

xg: 12224.79999999952

yg: 1333014.4

연립 방정식:

3288267.239000001 2 +	16324.7101000000	X2 +	-534.059999999999	X3 +	0	X4 +	0	+	0	=	3222840.15999999
16324.7101000000: X ₁ +	1360720.7228	X2+	-1924.24000000000	X3 +	0	X4 +	0	X5 +	0	_{X6} =	18905.6000000000
-534.05999999999! X ₁ +	-1924.24000000000	x2+	77	X3 +	0	X4 +	0	X5 +	0	X6 =	-616.0
0 X ₁ +	0	x2 +	0	X3 +	3288267.23900000	X4 +	16324.7101000000	X ₅ +	-534.05999999999	_{X6} =	12224.7999999999
0 X ₁ +	0	x2+	0	X3 +	16324.7101000000	X4 +	1360720.7228	X5 +	-1924.24000000000	X6 =	1333014.4
0 X ₁ +	0	X2 +	0	X3 +	-534.059999999999	X4 +	-1924.24000000000	X5 +	77	X ₆ =	-1848.0

3.3 fitdata3.dat

n = 77

x: -552.839999999998

y: -1921.5700000000045

f: -616.0

g: -1848.0

xy: 15451.140400000018

xx: 3282454.0570000014

yy: 1363876.0851000005

xf: 3219982.400000001

yf: 17713.04

xg: 12538.56000000005

yg: 1334546.4799999995

연립 방정식:

4. Discussion

4.1 independent(독립성)

에러함수를 미분했을 때 a1, a2, a3와 y'은 독립이므로 a1, a2, a3에 대한 연립방정식이 3개 a4, a5, a6에 대한 연립방정식 3개 각각 총 6개의 연립방정식을 풀면 된다. 또한 x', y'식이 서로 관계가 없어 x, y에 대해서 x'을 fitting 해주고, x, y에 대해서 y'을 fitting 해도 문제가 없다는 것을 의미한다.

5. Reference

[1] http://numerical.recipes/book/book.html