Raport szczegółowy porównania plików

29stycznia $2020\,$

Plik bazowy:

Plik:

 $\label{lem:c:stable} C:\Users\mbox{\backslash Desktop\IO_Projekt\Skradzione_wzory\Plagiator 3000\TEXfiles\Folder_Z_Orygings and by the projekt $\langle Projekt\Skradzione_wzory\Plagiator 3000\TEXfiles\Folder_Z_Orygings and $\langle Projekt\Skradzione_wzory\Folder_Z_Orygings and $\langle Projekt\Skradzione_wz$

Wzór	Jest podobny do wzoru oryginalnego	Procent podobieństwa
$x^2 = 4$	$x^2 = 4$	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$\lim (a_n - b_n) = a - b$ x^{2+a}	$\lim (a_n - b_n) = a - b$ x^{2+a}	100
x^{2+a}	x^{2+a}	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\xi fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$ \lim (a_n + b_n) = a + b $	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$\lim (a_n + b_n) = a + b$	$\lim \left(a_n - b_n\right) = a - b$	95, 9166304662544
$\lim (a_n - b_n) = a - b$	$ \lim (a_n + b_n) = a + b $	95, 9166304662544
$ \lim (a_n + b_n) = a + b $	$\lim (a_n - b_n) = a - b$	95, 9166304662544
$ \lim (a_n + b_n) = a + b $	$\lim (a_n - b_n) = a - b$	95, 9166304662544
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	91,7900064190468

$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$n_1 = n2 - n3$	88,7262104765662
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$n_1 = n2 - n3$	87, 3810412493348
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$h = \frac{a\sqrt{3}}{2}$	86,9267120656187
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$F(s) = \{Lf\}(s) = \int_{0}^{2\pi} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85,5283359552053
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n_2 - n_3$	85,5283359552053
$f(a) = \frac{1}{2\Pi i} \oint \frac{2\pi a}{z-a} dz$ $\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $f(x) = \{Lf\}(x) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $f(x) = \{Lf\}(x) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85,5283359552053
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$n_1 = n2 - n3$	84,8026494969475
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$ x^{2+a}	84, 5742551972309
n_{k+1}^2	x^{2+a}	84, 5154254728516
n_{k+1}^{2} $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n} \cdot dx^{n}}$ $\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ n_{k+1}^{2}	x^{2+a}	83,8627869377535
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	83,6017183545168
n_{k+1}^2	$n_1 = n2 - n3$	83, 3687867845579
n_{k+1}^{2} $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$	$\lim (a_n - b_n) = a - b$	82,8626886213748
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$	$x^2 = 4$	80,903983495589
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\frac{x^2 = 4}{x^{2+a}}$	80, 1783725737273
$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	80, 1783725737273
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n - b_n) = a - b$	79,236790063212
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\int_0^2 x^2 dx$ x^{2+a}	$x^{2} = 4$	77, 4596669241483
	$x^2 = 4$	77, 4596669241483
$\int_0^2 x^2 dx$	$x^2 = 4$	77, 4596669241483
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	x^{2+a}	77, 1516749810459
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\lim_{n \to \epsilon fty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$	x^{2+a}	76, 1218926204254
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$h = \frac{a\sqrt{3}}{2}$	76,0529318788239
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	75,9256602365297
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu} \qquad $	$n_1 = n2 - n3$	73, 2098066191115
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221

$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$ x^{2+a}	71, 4285714285714
$a^{\overline{n}} = \sqrt[n]{a^m}$	x^{2+a}	71,4285714285714
$\int x^n dx$	x^{2+a}	71,2696645099798
$\int_{\substack{x \in Z \\ \int x^n dx}} x^n dx$	x^{2+a}	71, 2696645099798
	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a \vee 3}{2}$	x^{2+a}	70,9299365615191
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,9299365615191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70, 2764221499934
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70, 2764221499934
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	x^{2+a}	70, 1934021302851
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n + b_n) = a + b$	69, 3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim \left(a_n + b_n\right) = a + b$	69, 3073500570453
$\int x^n dx$	$n_1 = n2 - n3$	68,7614164172529
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\int x^n dx$ $x \in \mathbb{Z}$ $\int x^n dx$	$n_1 = n2 - n3$	68,7614164172529
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$x^2 = 4$	68, 3130051063973
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n + b_n) = a + b$	67,6600666226735
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z-a} dz$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$	$h = \frac{a\sqrt{3}}{2}$	66, 1518584475779
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	66, 1437827766148
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n - b_n) = a - b$	66, 1437827766148
$F = q \left(E + v \times B \right)$	$\lim \left(a_n + b_n\right) = a + b$	65,9966329107444
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	65,6102841606878
$\int_0^2 x^2 dx$	x^{2+a}	65, 4653670707977
n_{k+1}	x^{2+a}	65,4653670707977
$x^2 = 4$	x^{2+a}	65,4653670707977
n_{k+1})	x^{2+a}	65, 4653670707977
$\int_0^2 x^2 dx$	x^{2+a}	65, 4653670707977
n_{k+1}	x^{2+a}	65, 4653670707977

$F = q \left(E + v \times B \right)$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	65,3720450460613
n_{k+1}	$n_1 = n2 - n3$	65,2328073053442
n_{k+1} $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$ $F = q(E + v \times B)$	$\lim \left(a_n + b_n\right) = a + b$	64,6632301492381
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n \cdot 1} \cdot dx^n}$	$n_1 = n2 - n3$	64,577184562022
$F = q\left(E + v \times B\right)$	$\lim (a_n - b_n) = a - b$	64, 5423449040572
$K^{\mu} = -qu_{\nu}F^{\mu\nu} = qu_{\nu}F^{\nu\mu}$	$n_1 = n2 - n3$ $\lim (a_n - b_n) = a - b$ x^{2+a}	64, 1688947919748
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\sim 2+a$	64, 1688947919748
$F = q \left(E + v \times B \right)$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	63,8066462232701
$\int_{x \in C} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	63,6396103067893
$F = q(E + v \times B)$ $\int_{x \in C} dx$ $\int_{x \in C} dx$	$ \lim (a_n + b_n) = a + b $	63,6396103067893
$ \int_{x \in C} dx $ $ \lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} $ $ \lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} $ $ \int_{0}^{2} x^2 dx $	$\lim (a_n - b_n) = a - b$	63, 3237790257263
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$\lim (a_n + b_n) = a + b$	63, 3237790257263
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63,2455532033676
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63,2455532033676
n_{k+1}^2	$x^2 = 4$	63,2455532033676
$h = \frac{a\sqrt{3}}{2}$ $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $\int_0^2 x^2 dx$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $\frac{n_{k+1}^2}{F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt}$ $h = \frac{a\sqrt{3}}{2}$ $\int_0^2 x^2 dx$ $F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	$x^2 = 4$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63,2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$ $x^2 = 4$	63, 2455532033676
$ \int_{0}^{2} x^{2} dx $ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt $ $ \int_{0}^{2} x^{2} dx $ $h = \frac{a\sqrt{3}}{2} $ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt $ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt $ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt $ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt $ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} $ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} $ $K^{\mu} = -qu_{\nu}F^{\mu\nu} = qu_{\nu}F^{\nu\mu} $	$x^2 = 4$	63,2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63,2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$F(s) = \{Lf\}(s) = \int_{0}^{c} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n - b_n) = a - b$	62,5430084579943
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n + b_n) = a + b$	62,5430084579943
	$\lim (a_n + b_n) = a + b$ $x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	62,0173672946042
$K^{\mu} = -au_{\nu}F^{\mu\nu} = au_{\nu}F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$	61,8852747755276
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$ x^{2+a}	61,8852747755276
$\int dx$	x^{2+a}	61,7213399848368
$\int_{x \in C} dx$	$n_1 = n2 - n3$	60,6449631061968
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$ $\lim (a_n + b_n) = a + b$	60,4691800765517
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$	60,4691800765517

$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$h = \frac{a\sqrt{3}}{2}$	60,3957173970203
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60,1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n + b_n\right) = a + b$	60, 1040764008565
$\log_a(x \cdot y) = \log_a x + \log_a y$	$x^2 = 4$	60
$\log_a(x \cdot y) = \log_a x + \log_a y$	$x^2 = 4$	60
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$\lim (a_n - b_n) = a - b$	$h = \frac{a\sqrt{3}}{2}$	59,402807414242
$ \lim (a_n + b_n) = a + b $	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$ \lim (a_n + b_n) = a + b $	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\xi fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$ \lim_{x \to \infty} (a_n + b_n) = d + b $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $ $ \int_{x \in Z} x^n dx $	$x^2 = 4$	56,5685424949238
$\int_{-\infty}^{x \in Z} x^n dx$	$x^2 = 4$	56, 5685424949238
$x \in Z$	w 1	
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n - b_n) = a - b$	56,1321625463615
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n + b_n) = a + b$	56, 1321625463615
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56,1248608016091
$a^{rac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56,1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$ \lim (a_n + b_n) = a + b $	56, 1248608016091
$\int_{x \in Z} x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54,5500550139438
$\int\limits_{x\in Z} x^ndx$	$h = \frac{a\sqrt{3}}{2}$	54,5500550139438
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	54, 1919786756002
$\lim (a_n + b_n) = a + b$	x^{2+a}	53,4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\lim (a_n + b_n) = a + b$ $\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\int x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$	51,9110422449865
$x\in Z$, and the second	

$\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
	$\lim (a_n - b_n) = a - b$	50
$\frac{n_{k+1}}{n_{k+1}^2}$	$ \lim (a_n - b_n) = a - b $	50
n_{k+1}	$\lim (a_n - b_n) = a - b$	50
	$\lim (a_n + b_n) = a + b$	48,9897948556636
$n_{k+1} \\ n_{k+1}^2$	$\lim (a_n + b_n) = a + b$	48,9897948556636
n_{k+1}	$\lim (a_n + b_n) = a + b$	48,9897948556636
$\int_{x \in C} dx$	$h = \frac{a\sqrt{3}}{2}$	48,0384461415261
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	47,2666267845013
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$ F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt $	47,2666267845013
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$n_1 - n_2 - n_3$	46, 1265604014443
n_{k+1}	$n_1 = n2 - n3$	45,662965113741
n_{k+1}	$n_1 = n2 - n3$	45,662965113741
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$ $\int_{x \in Z} x^n dx$	$n_{1} = n2 - n3$ $n_{1} = n2 - n3$ $n_{1} = n2 - n3$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_{n} - b_{n}) = a - b$	44,9561189559213
$\int_{x \in Z} x^n dx$	$ \lim (a_n + b_n) = a + b $	44,9561189559213
$ \int_{x \in Z} x^n dx $ $ \int_{x \in Z} x^n dx $	$ \lim (a_n - b_n) = a - b $	44,9561189559213
$\int_{x \in Z} x^n dx$	$ \lim (a_n + b_n) = a + b $	44,9561189559213
$\lim_{x \in Z} (a_n - b_n) = a - b$	$x^2 = 4$	44,7213595499958
$\lim (a_n + b_n) = a + b$	$x^2 = 4$	44,7213595499958
$\lim (a_n + b_n) = a + b$ $\int dx$	$x^2 = 4$	44,7213595499958
$\lim_{x \in C} (a_n + b_n) = a + b$	$x^2 = 4$	44,7213595499958
$ \lim (a_n + b_n) = a + b $	$x^2 = 4$	44,7213595499958
$F = q\left(E + v \times B\right)$	$x^2 = 4$	44,7213595499958
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$x^2 = 4$	44,7213595499958
$\lim (a_n - b_n) = a - b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	44,6779008952404
$\lim (a_n - b_n) = a - b$	$n_1 = n2 - n3$	44,5012366734504
$\lim (a_n + b_n) = a + b$	$n_1 = n^2 - n^3$	43,7594974493684
	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$ $\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ x^{2+a}	$n_{1} = n2 - n3$ $n_{1} = n2 - n3$ $n_{1} = n2 - n3$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $n_{1} = n2 - n3$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
$x^{2+\tilde{a}}$	$n_1 = n2 - n3$	42,1075960533259

$\int_{x \in C} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	40,4198523701271
$ \begin{array}{c c} & x \in C \\ \hline & x^{2+a} \end{array} $	$h = \frac{a\sqrt{3}}{2}$ x^{2+a}	40,0320384512718
$\lim (a_n - b_n) = a - b$		37,7964473009227
$F = q\left(E + v \times B\right)$	x^{2+a}	37,7964473009227
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	36,9325303683626
$\int_0^2 x^2 dx$ $\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\int_0^2 x^2 dx$	$n_{1} = n2 - n3$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_{n} + b_{n}) = a + b$	35,7294800505248
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	35,7013883159531
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	35,7013883159531
n_{k+1})	$\lim \left(a_n + b_n\right) = a + b$	35,3553390593274
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	34,5657464643885
$ \frac{n_{k+1}}{\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}} $ $ \frac{n_{k+1}}{n_{k+1}^2} $	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33,8659512618095
n_{k+1})	$F(s) = \{Lf\}(s) = \int_0^{c} e^{-st} f(t) dt$	33,8659512618095
$\frac{n_{k+1}}{\sqrt[3]{8} = 8^{\frac{1}{3}} = 2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	33, 3977990195616
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33, 3977990195616
n_{k+1})	$\lim (a_n - b_n) = a - b$	32,659863237109
$\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	30,4432262438651
$ \frac{n_{k+1}}{\int_0^2 x^2 dx} $ $ \int_0^2 x^2 dx $	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	30,4432262438651
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$	28,4808609776442
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$ $x^2 = 4$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	28,4808609776442
	$\lim (a_n - b_n) = a - b$	28, 2842712474619
$x^2 = 4$	$\lim (a_n + b_n) = a + b$	28, 2842712474619
$\frac{n_{k+1}^2}{\int_0^2 x^2 dx}$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	27,7350098112615
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26,1488180184245
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$ \begin{array}{c} n_{k+1} \\ x^2 = 4 \end{array} $	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1})	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	22,6455406828919
	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$ \begin{array}{c} n_{k+1} \\ x^2 = 4 \end{array} $	$n_1 = n2 - n3$	20,6284249251759
x^{2+a}	$\lim (a_n + b_n) = a + b$	20
$F = q\left(E + v \times B\right)$	$n_1 = n2 - n3$	14,5864991497895
x^{2+a}	$\lim (a_n - b_n) = a - b$	14, 1421356237309
n_{k+1}	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
n_{k+1}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
x^{2+a}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	7, 28679251335891
$x^2 = 4$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	5,94964117308729
n_{k+1}	$x^2 = 4$	0

n_{k+1}	$x^2 = 4$	0
n_{k+1}	$x^2 = 4$	0

 $\label{lem:condition} Plik: \\ C:\Users\matik\Desktop\IO_Projekt\Projekt\Skradzione_wzory\Plagiator3000\TEXfiles\Folder_Z_Oryging Lista podobnych wzorów: \\ \\$

Wzór	Jest podobny do wzoru oryginalnego	Procent podobieństwa
$x^2 = 4$	$x^2 = 4$	100
$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$ r^{2+a}	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$ x^{2+a}	100
$\lim \left(a_n - b_n\right) = a - b$	$\lim \left(a_n - b_n\right) = a - b$	100
, a	a a	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	100
$\lim (a_n + b_n) = a + b$		100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	100
		95,9166304662544
$\lim (a_n - b_n) = a - b$	$ \lim (a_n + b_n) = a + b $	95,9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95,9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95,9166304662544
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	92,8442061738191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	91,7900064190468
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$n_1 = n2 - n3$	88,7262104765662
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$n_1 = n2 - n3$	87, 3810412493348
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$h = \frac{a\sqrt{3}}{2}$	86,9267120656187
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$f(a) = \frac{1}{2\Pi i} \oint \frac{1}{z-a} dz$ $\lim_{n \to \xi f t y} \sum_{k=1}^{n} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $f(s) = \{Lf\}(s) = \int_{0}^{\xi f t y} e^{-st} f(t) dt$ $f(s) = \{Lf\}(s) = \int_{0}^{\xi f t y} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85,5283359552053
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053

$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$n_1 = n2 - n3$	84,8026494969475
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84,5742551972309
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
n_{k+1}^2	x^{2+a}	84, 5154254728516
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$	x^{2+a}	83,8627869377535
$\lim_{n\to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	83,6017183545168
n_{k+1}^2	$n_1 = n2 - n3$	83,3687867845579
$a^{\frac{-n}{n}} = \sqrt[n]{a^m}$ n_{k+1}^2 $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $\lim_{n \to fty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$ n_{k+1}^2 $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $\log_a(x \cdot y) = \log_a x + \log_a y$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n - b_n) = a - b$	82,8626886213748
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n!} \cdot dx^n}$	$\frac{x^2 = 4}{x^{2+a}}$	80,903983495589
$\log_a(x \cdot y) = \log_a x + \log_a y$		80, 1783725737273
$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	80, 1783725737273
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n - b_n) = a - b$	79, 236790063212
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	77,9117071672311
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\frac{\int_0^2 x^2 dx}{x^{2+a}}$	$x^{2} = 4$	77,4596669241483
	$x^2 = 4$	77, 4596669241483
$\int_0^2 x^2 dx$	$x^2 = 4$	77, 4596669241483
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	x^{2+a}	77, 1516749810459
$\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	x^{2+a}	76, 1218926204254
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z-a} dz$	$h = \frac{a\sqrt{3}}{2}$	76,0529318788239
$\lim_{n \to \xi fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	75,9256602365297
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $a^{\frac{m}{n}} = \sqrt[n]{a^{m}}$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim \left(a_n - b_n \right) = a - b$	71,6653495777219
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	x^{2+a}	71, 4285714285714
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	x^{2+a}	71,4285714285714
$\int\limits_{x\in Z} x^ndx$	x^{2+a}	71, 2696645099798
$\int_{x \in Z} x^n dx$	x^{2+a}	71, 2696645099798
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191

$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,9299365615191
	x^{2+a}	70,2764221499934
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,2764221499934
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	x^{2+a}	70,1934021302851
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $\lim (a_n + b_n) = a + b$	70,0218852592498
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$\log_{x}(x \cdot y) = \log_{x} x + \log_{x} y$	$\lim \left(a_n + b_n\right) = a + b$	69, 3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n + b_n) = a + b$	69, 3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\int x^n dx$ $x \in Z$ $\int x^n dx$	$n_1 = n2 - n3$	68, 7614164172529
$\int_{x \in Z} x^n dx$	$n_1 = n2 - n3$	68, 7614164172529
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$x^2 = 4$	68,3130051063973
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n + b_n) = a + b$	67,6600666226735
$J = \frac{1}{x \in Z}$ $U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	66, 1518584475779
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	66, 1437827766148
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n - b_n) = a - b$	66, 1437827766148
$F = q (E + v \times B)$	$\lim (a_n + b_n) = a + b$	65,9966329107444
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $\int_{0}^{2} x^{2} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	65,6102841606878
$\int_0^2 x^2 dx$		65,4653670707977
n_{k+1} $x^2 = 4$	x^{2+a}	65,4653670707977
	x^{2+a}	65,4653670707977
$\frac{n_{k+1}}{\int_0^2 x^2 dx}$	x^{2+a}	65,4653670707977
$\int_0^2 x^2 dx$	x^{2+a}	65,4653670707977
n_{k+1}	x^{2+a}	65,4653670707977
$F = q \left(E + v \times B \right)$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	65,3720450460613
n_{k+1})	$n_1 = n2 - n3$	65,2328073053442
$P_n(x) = \frac{1 \cdot d^n(x^2 - 1)^2}{2^n! \cdot dx^n}$ $P_n(x) = \frac{1 \cdot d^n(x^2 - 1)^2}{2^n! \cdot dx^n}$	$\lim \left(a_n + b_n\right) = a + b$	64,6632301492381
$P_n(x) = \frac{1 \cdot d^n \left(x^2 - 1\right)^2}{2^n \cdot dx^n}$	$n_1 = n2 - n3$	64,577184562022
$F = q (E + v \times B)$ $K^{\mu} = -q u_v F^{\mu\nu} = q u_v F^{\nu\mu}$	$\lim_{n \to a} (a_n - b_n) = a - b$	64, 5423449040572
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$		64, 1688947919748
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	x^{2+a}	64, 1688947919748
$F = q (E + v \times B)$ $\int dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	63,8066462232701
		63,6396103067893
$\int_{x \in C} \frac{dx}{\int_{x \in C}} dx$	$\lim (a_n + b_n) = a + b$	63,6396103067893

$\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ $\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ $\int_{0}^{2} x^{2} dx$	$\lim (a_n - b_n) = a - b$	63, 3237790257263
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$\lim (a_n + b_n) = a + b$	63,3237790257263
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^{2} = 4$	63, 2455532033676
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z-a} dz$	$x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^{2} = 4$	63, 2455532033676
n_{k+1}^2	$x^2 = 4$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$ $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $\int_0^2 x^2 dx$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\frac{n_{k+1}^2}{n}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$ $\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63,2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$ \frac{\int_{0} x^{-} dx}{h = \frac{a\sqrt{3}}{2}} \\ F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt \\ F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt \\ F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt \\ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ K^{\mu} = -qu_{v} F^{\mu\nu} = qu_{v} F^{\nu\mu} $	x^{2+a}	62,9940788348712
$F(s) = \{Lf\}(s) = \int_{0}^{cfty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n - b_n) = a - b$	62,5430084579943
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n + b_n) = a + b$	62,5430084579943
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$ $x^2 = 4$	62,0173672946042
$II = -qu_v I = -qu_v I$	$x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$	61,8852747755276
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$ x^{2+a}	61,8852747755276
$\int_{x \in C} dx$	x^{z+u}	61,7213399848368
$\int_{x \in C} dx$ $\int_{C} dx$	$n_1 = n2 - n3$	60,6449631061968
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$	60,4691800765517
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$ \lim (a_n + b_n) = a + b $	60,4691800765517
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$h = \frac{a\sqrt{3}}{2}$	60, 3957173970203
$h = \frac{a\sqrt{3}}{2}$	$ \overline{\lim (a_n - b_n)} = a - b $	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n + b_n\right) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim \left(a_n - b_n\right) = a - b$	60, 1040764008565
$h = \frac{2\sqrt{3}}{2}$		60, 1040764008565
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n + b_n) = a + b$ $x^2 = 4$	60
$\log_a(x \cdot y) = \log_a x + \log_a y$	$x^2 = 4$	60
$\frac{\log_a(x \cdot y) = \log_a x + \log_a y}{a^{\frac{m}{n}} = \sqrt[n]{a^m}}$	$x^2 = 4$	60
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60

1. / 1) 1	$a\sqrt{3}$	F0 400007414040
$\lim (a_n - b_n) = a - b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59,402807414242
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_{0}^{c} \int_{0}^{c} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{c} \int_{0}^{c} e^{-st} f(t) dt$ $\int_{x \in Z} x^{n} dx$	$x^2 = 4$	56, 5685424949238
$\int x^n dx$	$x^2 = 4$	56, 5685424949238
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n - b_n) = a - b$	56, 1321625463615
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim \left(a_n + b_n \right) = a + b$	56, 1321625463615
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim \left(a_n + b_n \right) = a + b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$ \lim (a_n + b_n) = a + b $	56, 1248608016091
$\int x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54,5500550139438
$\int_{x \in Z} x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54, 5500550139438
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	54, 1919786756002
$\lim \left(a_n + b_n\right) = a + b$	x^{2+a}	53, 4522483824849
$\lim \left(a_n + b_n \right) = a + b$	x^{2+a}	53, 4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
$\int\limits_{x\in Z} x^ndx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
	$\lim (a_n - b_n) = a - b$	50
$\frac{n_{k+1}}{n_{k+1}^2}$	$\lim (a_n - b_n) = a - b$	50
n_{k+1}	$\lim (a_n - b_n) = a - b$	50
n_{k+1}	$\lim (a_n + b_n) = a + b$	48,9897948556636
n_{k+1}^2	$\lim (a_n + b_n) = a + b$	48,9897948556636
n_{k+1}	$\lim (a_n + b_n) = a + b$	48, 9897948556636
$\int_{x \in C} dx$	$h = \frac{a\sqrt{3}}{2}$	48,0384461415261
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	47, 2666267845013
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_0^{6fty} e^{-st} f(t) dt$	47, 2666267845013
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$n_1 = n2 - n3$	46, 1265604014443

n_{k+1}	$n_1 = n2 - n3$	45,662965113741
n_{k+1}	$n_1 = n2 - n3$	45,662965113741
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\int x^n dx$	$F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	44,9561189559213
$\lim (a_n + b_n) = a + b$ $\int_{x \in Z} x^n dx$ $\int_{x \in Z} x^n dx$	$\lim (a_n + b_n) = a + b$	44,9561189559213
$\int_{x \in Z} x^n dx$ $\int_{x \in Z} x^n dx$	$\lim (a_n - b_n) = a - b$	44,9561189559213
$\int_{0}^{x \in Z} x^n dx$	$\lim (a_n + b_n) = a + b$	44,9561189559213
$\lim_{x \in Z} (a_n - b_n) = a - b$	$x^2 = 4$	44,7213595499958
$\lim_{n \to \infty} (a_n + b_n) = a + b$	$x^2 = 4$	44,7213595499958
$\lim (a_n + b_n) = a + b$ $\int dx$	$x^2 = 4$	44,7213595499958
$\lim_{x \in C} \frac{x \in C}{\lim (a_n + b_n) = a + b}$	$x^2 = 4$	44 7912505400059
	$x^2 \equiv 4$	44,7213595499958
$\lim_{E \to a} (a_n + b_n) = a + b$	$x^2 = 4$ $x^2 = 4$	44,7213595499958 44,7213595499958
$F = q (E + v \times B)$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$,
	$x^2 = 4$	44,7213595499958
$\lim (a_n - b_n) = a - b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	44,6779008952404
$\lim_{n \to \infty} (a_n - b_n) = a - b$	$n_1 = n2 - n3$	44,5012366734504
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$	$n_1 = n_2 - n_3$	43,7594974493684
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ x^{2+a}	$n_{1} = n2 - n3$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $n_{1} = n2 - n3$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
x^{2+a}	$n_1 = n2 - n3$	42,1075960533259
$\int_{x \in C} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	40,4198523701271
$ \begin{array}{c c} x \in C \\ x^{2+a} \end{array} $	$h = \frac{a\sqrt{3}}{2}$	40,0320384512718
$\lim (a_n - b_n) = a - b$	$h = \frac{a\sqrt{3}}{2}$ x^{2+a}	37,7964473009227
$F = q(E + v \times B)$	x^{2+a}	37,7964473009227
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	36,9325303683626
$\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	35,7013883159531
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	35,7013883159531
	$\lim (a_n + b_n) = a + b$	35, 3553390593274
$\frac{n_{k+1}}{\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}}$	$F(s) = \{Lf\}(s) = \int_{0}^{efty} e^{-st} f(t) dt$	34, 5657464643885
n_{k+1}^2	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33,8659512618095
n ±		

n_{k+1})	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33,8659512618095
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_{-\infty}^{\infty} e^{-st} f(t) dt$	33,3977990195616
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	33, 3977990195616
n_{k+1})	$\lim \left(a_n - b_n\right) = a - b$	32,659863237109
$\frac{n_{k+1}}{\int_0^2 x^2 dx}$	$F(s) = \{Lf\}(s) = \int_{0}^{e^{-t}} e^{-st} f(t) dt$	30,4432262438651
$\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_{0}^{e^{-t}} e^{-st} f(t) dt$	30,4432262438651
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	28,4808609776442
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{c} f^{ty} e^{-st} f(t) dt$	28, 4808609776442
$x^2 = 4$	$\lim (a_n - b_n) = a - b$	28, 2842712474619
$x^2 = 4$	$\lim (a_n + b_n) = a + b$	28, 2842712474619
n_{k+1}^2	$h = \frac{a\sqrt{3}}{2}$	27,7350098112615
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$x^2 = 4$	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1})	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1} $x^2 = 4$	$n_1 = n2 - n3$	20,6284249251759
x^{2+a}	$\lim \left(a_n + b_n\right) = a + b$	20
$F = q \left(E + v \times B \right)$	$n_1 = n_2 - n_3$	14,5864991497895
x^{2+a}	$\lim (a_n - b_n) = a - b$	14,1421356237309
n_{k+1}	$F(s) = \{Lf\}(s) = \int_{s}^{\epsilon} f(t) dt$	10,5175790477918
	$F(s) = \{Lf\}(s) = \int_{s}^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
$ \begin{array}{c c} n_{k+1} \\ x^{2+a} \end{array} $	$F(s) = \{Lf\}(s) = \int_{0}^{e^{-t}} e^{-st} f(t) dt$	7, 28679251335891
$x^2 = 4$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	5,94964117308729
n_{k+1}	$x^2 = 4$	0
n_{k+1})	$x^2 = 4$	0
n_{k+1}	$x^2 = 4$	0
		·

 $\label{lem:condition} Plik: C:\Users\matik\Desktop\IO_Projekt\Projekt\Skradzione_wzory\Plagiator3000\TEXfiles\Folder_Z_Oryging Lista podobnych wzorów:$

Wzór	Jest podobny do wzoru oryginalnego	Procent podobieństwa
$x^2 = 4$	$x^2 = 4$	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$\lim (a_n - b_n) = a - b$	$\lim (a_n - b_n) = a - b$	100
x^{2+a}	x^{2+a}	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100

$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	100
$ \lim (a_n + b_n) = a + b $		95, 9166304662544
$\lim (a_n - b_n) = a - b$	$\lim (a_n + b_n) = a + b$	95, 9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95, 9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95,9166304662544
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $f(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	91,7900064190468
$f(z) = f(z) J_z$	$n_1 = n2 - n3$	88,7262104765662
$\lim_{n\to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$n_1 = n2 - n3$	87, 3810412493348
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$h = \frac{a\sqrt{3}}{2}$	86,9267120656187
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$f(a) = \frac{1}{2\Pi i} \oint \frac{1}{z-a} dz$ $\lim_{n \to \xi fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $f(x) = \{Lf\}(x) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $f(x) = \{Lf\}(x) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85, 5283359552053
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85, 5283359552053
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$n_1 = n2 - n3$	84,8026494969475
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
n_{k+1}^2	x^{2+a}	84,5154254728516
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n \ln dx^n}$	x^{2+a}	83,8627869377535
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$h = \frac{a\sqrt{3}}{2}$	83,6017183545168
n_{k+1}^2	$n_1 = n2 - n3$	83, 3687867845579
(2)2	$\lim (a_n - b_n) = a - b$	82,8626886213748
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^n}{2^{n_1} \cdot dx^n}$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$\frac{x^2 = 4}{x^{2+a}}$	80,903983495589
$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	80, 1783725737273
$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	80, 1783725737273
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n - b_n) = a - b$	79, 236790063212

$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\int_0^2 x^2 dx$ x^{2+a}	$x^2 = 4$	77, 4596669241483
	$x^2 = 4$	77,4596669241483
$\int_0^2 x^2 dx$	$x^2 = 4$	77, 4596669241483
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	x^{2+a}	77, 1516749810459
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	x^{2+a}	76, 1218926204254
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z} dz$	$h = \frac{a\sqrt{3}}{2}$	76,0529318788239
$\lim_{n \to efty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	75,9256602365297
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$ x^{2+a}	71,6653495777219
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$		71,4285714285714
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	x^{2+a}	71,4285714285714
$\int_{\mathcal{A}} x^n dx$	x^{2+a}	71, 2696645099798
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$ $\int_{x \in Z} x^n dx$ $\int_{x \in Z} x^n dx$	x^{2+a}	71, 2696645099798
$ \begin{array}{c} x \in \mathbb{Z} \\ h = \frac{a\sqrt{3}}{2} \\ h = \frac{a\sqrt{3}}{2} \\ h = \frac{a\sqrt{3}}{2} \\ U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2} \\ \sqrt[3]{8} = 8^{\frac{1}{3}} = 2 \end{array} $	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$U(q_1 - q_2) = k \cdot \sqrt{[u(q_1)]^2 + [u(q_2)]^2}$	x^{2+a}	70,9299365615191
$\frac{\sqrt[3]{8} + \sqrt[3]{3}}{\sqrt[3]{8} + \sqrt[3]{3}} = 2$	x^{2+a}	70,2764221499934
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,2764221499934
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	x^{2+a}	70, 1934021302851
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{2\sqrt{3}}{3}$	70,0218852592498
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $\lim (a_n + b_n) = a + b$	69,3073500570453
$\log_{x}(x \cdot y) = \log_{x} x + \log_{x} y$	$\lim (a_n + b_n) = a + b$	69,3073500570453
$\int x^n dx$	$n_1 = n2 - n3$	68,7614164172529
$\int x^n dx$ $x \in \mathbb{Z}$ $\int x^n dx$	$n_1 = n2 - n3$	68,7614164172529
$x \in Z$	$x^2 = 4$	68,3130051063973
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n + b_n) = a + b$	67,6600666226735
211t J Z-u	1	

$\frac{n}{2}$		
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	66,1518584475779
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	66, 1437827766148
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n - b_n) = a - b$	66, 1437827766148
$F = q\left(E + v \times B\right)$	$\lim (a_n + b_n) = a + b$	65,9966329107444
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $\int_{0}^{2} x^{2} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ x^{2+a}	65,6102841606878
$\int_0^2 x^2 dx$		65,4653670707977
	x^{2+a}	65,4653670707977
$ \frac{n_{k+1}}{x^2 = 4} $	x^{2+a}	65,4653670707977
$\frac{n_{k+1}}{\int_0^2 x^2 dx}$	x^{2+a}	65,4653670707977
$\int_0^2 x^2 dx$	x^{2+a}	65,4653670707977
n_{k+1}	x^{2+a}	65,4653670707977
$F = q \left(E + v \times B \right)$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	65,3720450460613
n_{k+1})	$n_1 = n2 - n3$	65, 2328073053442
n_{k+1} $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $F = q(E+v \times B)$	$\lim (a_n + b_n) = a + b$	64,6632301492381
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n \cdot dx^n}$	$n_1 = n2 - n3$	64, 577184562022
$F = q \left(E + v \times B \right)$	$n_1 = n2 - n3$ $\lim (a_n - b_n) = a - b$ x^{2+a}	64,5423449040572
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	w .	64,1688947919748
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	x^{2+a}	64, 1688947919748
$F = q \left(E + v \times B \right)$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	63,8066462232701
$F = q(E + v \times B)$ $\int_{x \in C} dx$	$ \lim (a_n - b_n) = a - b $	63,6396103067893
$\int_{x \in C} \frac{dx}{dx}$	$ \lim (a_n + b_n) = a + b $	63,6396103067893
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\int_{0}^{2} x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 3237790257263
$\lim_{n \to e} \frac{1}{fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$\lim (a_n + b_n) = a + b$	63, 3237790257263
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$ $x^2 = 4$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$ $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$x^2 = 4$	63, 2455532033676
$\int_{-\infty}^{\infty} dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ n_{k+1}^{2} $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $h = \frac{a\sqrt{3}}{2}$ $\int_{0}^{2} x^{2} dx$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63, 2455532033676
n_{k+1}^2	$x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$		63, 2455532033676
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$ $x^2 = 4$	63, 2455532033676
		,

$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$\begin{array}{c c} J_0 & a & a \\ \hline & a & \sqrt{3} \end{array}$	$\frac{\operatorname{mn}(a_n + b_n) - a + b}{x^2 - 4}$	· ·
$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	$x^{2} = 4$ x^{2+a}	63,2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\infty} e^{-st} f(t) dt$		62,9940788348712
$F(s) = \{Lf\}(s) = \int_{0}^{cft} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$F'(s) = \{Lf\}(s) = L^{s,s}e^{-st}f(t)dt$	x^{2+a}	62,9940788348712
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $K^{\mu} = -qu_{v}F^{\mu\nu} = qu_{v}F^{\nu\mu}$	$\lim \left(a_n - b_n\right) = a - b$	62,5430084579943
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n + b_n) = a + b$ $x^2 = 4$	62,5430084579943
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$	61,8852747755276
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$ x^{2+a}	61,8852747755276
$K^{\mu} = qu_v - qu_v $ $K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$ $\int_{x \in C} dx$ $\int_{x \in C} dx$	x^{2+a}	61,7213399848368
$\int_{x \in C} dx$	$n_1 = n2 - n3$	60,6449631061968
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim \left(a_n + b_n\right) = a + b$	60,4691800765517
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim \left(a_n + b_n \right) = a + b$	60, 4691800765517
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$h = \frac{a\sqrt{3}}{2}$	60, 3957173970203
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$\log_a(x \cdot y) = \log_a x + \log_a y$	$x^2 = 4$	60
$\log_a(x \cdot y) = \log_a x + \log_a y$	$x^2 = 4$	60
$\log_a(x \cdot y) = \log_a x + \log_a y$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$\lim (a_n - b_n) = a - b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$ \lim (a_n + b_n) = a + b $	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	$h = \frac{\sqrt[2]{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\xi fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	58,0829985245103
$\int x^n dx$	$x^2 = 4$	56, 5685424949238
$x \in Z$		

$\int_{x \in Z} x^n dx$	$x^2 = 4$	56, 5685424949238
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n - b_n) = a - b$	56, 1321625463615
$U(q_1-q_2)=k\cdot\sqrt{[u(q_1)]^2+[u(q_2)]^2}$	$\lim (a_n + b_n) = a + b$	56, 1321625463615
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56, 1248608016091
$\int_{x \in Z} x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54, 5500550139438
$\int_{x \in Z} x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54, 5500550139438
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	54, 1919786756002
$\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a} x^{2+a}	53, 4522483824849
$\lim (a_n + b_n) = a + b$		53, 4522483824849
$\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
$\int\limits_{x\in Z} x^ndx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
	$\lim (a_n - b_n) = a - b$	50
$ \begin{array}{ c c }\hline n_{k+1}\\\hline n_{k+1}^2\\ \end{array}$	$\lim (a_n - b_n) = a - b$	50
n_{k+1}	$\lim (a_n - b_n) = a - b$	50
	$\lim (a_n + b_n) = a + b$	48,9897948556636
n_{k+1} n_{k+1}^2	$\lim \left(a_n + b_n\right) = a + b$	48,9897948556636
n_{k+1}	$ \lim (a_n + b_n) = a + b $	48,9897948556636
$\int_{x \in C} dx$	$h = \frac{a\sqrt{3}}{2}$	48,0384461415261
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	47,2666267845013
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	47, 2666267845013
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$n_1 = n2 - n3$	46, 1265604014443
n_{k+1}	$n_1 = n2 - n3$	45,662965113741
n_{k+1}	$n_1 = n2 - n3$	45,662965113741
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\int x^n dx$	$\lim (a_n - b_n) = a - b$	44,9561189559213
$\int_{-\infty}^{\infty} x^n dx$	$\lim (a_n + b_n) = a + b$	44,9561189559213
$\int_{x \in Z} x^n dx$	$\lim \left(a_n - b_n\right) = a - b$	44,9561189559213
$\int_{x \in Z} x^n dx$	$\lim \left(a_n + b_n\right) = a + b$	44,9561189559213
$\lim_{n \to a} (a_n - b_n) = a - b$	$x^2 = 4$	44,7213595499958

$\lim (a_n + b_n) = a + b$	$x^2 = 4$	44,7213595499958
$ \lim (a_n + b_n) = a + b $ $ \int dx $	$x^2 = 4$	44,7213595499958
$\lim_{x \in C} (a_n + b_n) = a + b$	$x^2 = 4$	44 7019505400050
$\lim_{n \to \infty} (a_n + b_n) = a + b$	$x^2 = 4$ $x^2 = 4$	44,7213595499958
$\lim_{E \to a} (a_n + b_n) = a + b$	$x^{2} = 4$ $x^{2} = 4$	44,7213595499958
$F = q\left(E + v \times B\right)$ $f(x+h) - f(x)$		44,7213595499958
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$x^2 = 4$	44,7213595499958
$\lim (a_n - b_n) = a - b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	44,6779008952404
$\lim (a_n - b_n) = a - b$	$n_1 = n2 - n3$	44,5012366734504
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{cft} e^{-st} f(t) dt$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ x^{2+a}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon f t y} e^{-st} f(t) dt$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
x^{2+a}	$n_1 = n2 - n3$	42,1075960533259
$\int_{x \in C} dx$	$F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $n_1 = n2 - n3$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$	40,4198523701271
$x \in C$ x^{2+a}	$h = \frac{a\sqrt{3}}{2}$ x^{2+a}	40,0320384512718
$\lim (a_n - b_n) = a - b$		37,7964473009227
$F = q\left(E + v \times B\right)$	x^{2+a}	37,7964473009227
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	36,9325303683626
$\int_0^2 x^2 dx$ $\int_0^2 x^2 dx$	$n_1 = n_2 - n_3$	35,7294800505248
$\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_{1} = n2 - n3$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $\lim_{s \to \infty} (a_{n} + b_{n}) = a + b$	35,7013883159531
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	35,7013883159531
n_{k+1}	$\lim (a_n + b_n) = a + b$	35, 3553390593274
$\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	34, 5657464643885
n_{k+1}^2	$F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$	33,8659512618095
n_{k+1}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33,8659512618095
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33, 3977990195616
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33, 3977990195616
n_{k+1}	$\lim (a_n - b_n) = a - b$	32,659863237109
$\frac{n_{k+1}}{\int_0^2 x^2 dx}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	30,4432262438651
$\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	30,4432262438651
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{c} f^{ty} e^{-st} f(t) dt$	28,4808609776442
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$ $x^2 = 4$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	28,4808609776442
	$\min (a_n - o_n) = a - o$	28, 2842712474619
$x^2 = 4$	$\lim (a_n + b_n) = a + b$	28, 2842712474619
n_{k+1}^2	$h = \frac{a\sqrt{3}}{2}$	27,7350098112615

$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$x^2 = 4$	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1})	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$x^2 = 4$	$n_1 = n2 - n3$	20,6284249251759
x^{2+a}	$\lim (a_n + b_n) = a + b$	20
$F = q\left(E + v \times B\right)$	$n_1 = n2 - n3$	14,5864991497895
x^{2+a}	$\lim (a_n - b_n) = a - b$	14,1421356237309
n_{k+1}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
n_{k+1}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
x^{2+a}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	7, 28679251335891
$x^2 = 4$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	5,94964117308729
n_{k+1}	$x^2 = 4$	0
n_{k+1}	$x^2 = 4$	0
n_{k+1}	$x^2 = 4$	0
27.4		

 $\label{lem:condition} Plik: C:\Users\matik\Desktop\IO_Projekt\Projekt\Skradzione_wzory\Plagiator3000\TEXfiles\Folder_Z_Oryging Lista podobnych wzorów:$

Wzór	Jest podobny do wzoru oryginalnego	Procent podobieństwa
$x^2 = 4$	$x^2 = 4$	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$\lim \left(a_n - b_n\right) = a - b$	$\lim \left(a_n - b_n\right) = a - b$	100
x^{2+a}	x^{2+a}	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim \left(a_n + b_n\right) = a + b$	$\lim (a_n + b_n) = a + b$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$ \lim \left(a_n + b_n\right) = a + b $	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$ \overline{\lim (a_n + b_n)} = a + b $	$\lim \left(a_n - b_n\right) = a - b$	95,9166304662544
$\lim (a_n - b_n) = a - b$	$\lim (a_n + b_n) = a + b$	95,9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95,9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95,9166304662544
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/2 21 2	$\frac{1}{\sqrt{3}}$	00 0440004 = 00404
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a \vee 3}{2}$	92,8442061738191
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	91,7900064190468
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f(a) = \frac{1}{2H\epsilon} \oint \frac{f(z)}{z} dz$		88,7262104765662
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$n_1 = n2 - n3$	87, 3810412493348
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$h = \frac{a\sqrt{3}}{2}$	86,9267120656187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h = \frac{a\sqrt{3}}{2}$		85,9419469006961
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85,5283359552053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85, 5283359552053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$		85,5283359552053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85, 5283359552053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sqrt[3]{8} = 8^{\frac{7}{3}} = 2$	$n_1 = n2 - n3$	85,5283359552053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$n_1 = n2 - n3$	84,8026494969475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_{k+1}^2	x^{2+a}	84,5154254728516
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n}! \cdot dx^n}$		83,8627869377535
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim_{n\to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$h = \frac{a\sqrt{3}}{2}$	83,6017183545168
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_{k+1}^2	$n_1 = n2 - n3$	83, 3687867845579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$	$\lim \left(a_n - b_n\right) = a - b$	82,8626886213748
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n+1} dx^n}$	$x^2 = 4$	80,903983495589
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	80, 1783725737273
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n - b_n) = a - b$	79,236790063212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_0^2 x^2 dx$	$x^2 = 4$	77, 4596669241483
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x^{2+a}	$x^2 = 4$	77, 4596669241483
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_0^2 x^2 dx$	$x^2 = 4$	77, 4596669241483
$\begin{array}{ c c c c c c } \log_a(x \cdot y) = \log_a x + \log_a y & n_1 = n2 - n3 & 77,184498498796 \\ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} & x^{2+a} & 77,1516749810459 \\ \lim_{n \to \in fty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} & x^{2+a} & 76,1218926204254 \\ f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z-a} dz & h = \frac{a\sqrt{3}}{2} & 76,0529318788239 \\ \end{array}$		$n_1 = n2 - n3$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log_a(x \cdot y) = \log_a x + \log_a y$		77, 184498498796
$\lim_{n \to \epsilon_{fty}} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ x^{2+a} $f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z-a} dz$ $h = \frac{a\sqrt{3}}{2}$ $76,1218926204254$ $h = \frac{a\sqrt{3}}{2}$ $76,0529318788239$	$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$		77,1516749810459
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $h = \frac{a\sqrt{3}}{2}$ 76,0529318788239	$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$		76, 1218926204254
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} $ $x^2 = 4$ $75,9256602365297$	$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$h = \frac{a\sqrt{3}}{2}$	76,0529318788239
		$x^2 = 4$	75,9256602365297

$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73,2098066191115
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
	$x^2 = 4$	73,0296743340221
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\in fty} e^{-st} f(t) dt$ $a^{\frac{m}{n}} = \sqrt[n]{a^{m}}$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$ x^{2+a}	71,6653495777219
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	1.	71,4285714285714
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	x^{2+a}	71,4285714285714
$\int_{x \in \mathbb{Z}} x^n dx$	x^{2+a}	71,2696645099798
$\int_{\substack{x \in Z \\ \int x^n dx \\ x \in Z}} x^n dx$	x^{2+a}	71, 2696645099798
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,9299365615191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,2764221499934
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70, 2764221499934
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	x^{2+a}	70, 1934021302851
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim \left(a_n + b_n\right) = a + b$	69,3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n + b_n) = a + b$	69,3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\int_{x \in Z} x^n dx$ $\int_{x \in Z} x^n dx$	$n_1 = n2 - n3$	68,7614164172529
$\int_{x \in Z} x^n dx$	$n_1 = n2 - n3$	68, 7614164172529
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$x^2 = 4$	68, 3130051063973
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z-a} dz$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n \cdot dx^n}$	$\lim (a_n + b_n) = a + b$	67,6600666226735
$P_n(x) = \frac{1 \cdot d^n(x^2 - 1)^2}{2n \cdot d^n(x^2 - 1)^2}$	$h = \frac{a\sqrt{3}}{2}$	66, 1518584475779
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	66, 1437827766148
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n - b_n) = a - b$	66, 1437827766148
$F = q\left(E + v \times B\right)$	$\lim (a_n + b_n) = a + b$	65,9966329107444
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ x^{2+a}	65,6102841606878
$\int_0^2 x^2 dx$	x^{2+a}	65,4653670707977
n_{k+1}	x^{2+a}	65,4653670707977

$x^2 = 4$	x^{2+a}	65, 4653670707977
	x^{2+a}	65, 4653670707977
$\frac{n_{k+1}}{\int_0^2 x^2 dx}$	x^{2+a}	65, 4653670707977
n_{k+1}	x^{2+a}	65, 4653670707977
$F = q\left(E + v \times B\right)$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	65, 3720450460613
n_{k+1}	$n_1 = n2 - n3$	65, 2328073053442
n_{k+1} $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$ $F = q(E + v \times B)$	$\lim (a_n + b_n) = a + b$	64,6632301492381
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$	$n_1 = n2 - n3$	64,577184562022
$F = q \left(E + v \times B \right)$	$n_1 = n2 - n3$ $\lim (a_n - b_n) = a - b$ x^{2+a}	64,5423449040572
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$		64, 1688947919748
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	x^{2+a}	64, 1688947919748
$F = q \left(E + v \times B \right)$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	63,8066462232701
$F = q(E + v \times B)$ $\int_{x \in C} dx$		63,6396103067893
$\int_{x \in C} \frac{dx}{dx}$	$\lim (a_n + b_n) = a + b$	63,6396103067893
$\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63,3237790257263
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$\lim (a_n + b_n) = a + b$	63,3237790257263
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63,2455532033676
$h = \frac{a\sqrt{3}}{2}$		63, 2455532033676
	$x^2 = 4$ $x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63,2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$ $x^2 = 4$	63, 2455532033676
n_{k+1}^2		63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63,2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$ $x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_{0}^{\xi - fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $\int_{0}^{2} x^{2} dx$ $h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\xi fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\lim (a_n - b_n) = a - b$	62,5430084579943
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n + b_n) = a + b$	62,5430084579943
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$ $\lim (a_n - b_n) = a - b$	61,8852747755276
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim \left(a_n - \overline{b_n}\right) = a - b$	61,8852747755276

	2 ~	
$\int_{x \in C} dx$	x^{2+a}	61,7213399848368
$ \begin{array}{c} x \in C \\ \int dx \\ x \in C \end{array} $	$n_1 = n2 - n3$	60,6449631061968
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$	60,4691800765517
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$ \lim (a_n + b_n) = a + b $	60, 4691800765517
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$h = \frac{a\sqrt{3}}{2}$	60, 3957173970203
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n - b_n\right) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n + b_n\right) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n + b_n) = a + b$ $x^2 = 4$	60, 1040764008565
$\log_a(x \cdot y) = \log_a x + \log_a y$	**	60
$\log_a(x \cdot y) = \log_a x + \log_a y$	$x^2 = 4$	60
$a^{\overline{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$\lim (a_n - b_n) = a - b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{c} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$\lim (a_n + b_n) = a + b$ $F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$ $\int_{x \in Z} x^n dx$	$x^2 = 4$	56, 5685424949238
$\int_{x \in Z} x^n dx$	$x^2 = 4$	56, 5685424949238
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n - b_n) = a - b$	56, 1321625463615
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n + b_n) = a + b$	56, 1321625463615
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$ \lim (a_n - b_n) = a - b $	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_m - b_m) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56, 1248608016091
$\int_{x \in Z} x^n dx$	$\lim_{n \to \infty} (a_n + b_n) = a + b$ $h = \frac{a\sqrt{3}}{2}$	54, 5500550139438
$\int x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54, 5500550139438
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	54, 1919786756002

	210	
$\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a}	53, 4522483824849
$\int_{x \in Z} x^n dx$ $\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
$\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
	$\lim (a_n - b_n) = a - b$	50
$n_{k+1} \\ n_{k+1}^2$	$\lim (a_n - b_n) = a - b$	50
n_{k+1}	$\lim (a_n - b_n) = a - b$	50
	$\lim (a_n + b_n) = a + b$	48,9897948556636
$n_{k+1} \\ n_{k+1}^2$	$\lim (a_n + b_n) = a + b$	48,9897948556636
n_{k+1}	$\lim (a_n + b_n) = a + b$	48,9897948556636
$\int dx$	$h = \frac{a\sqrt{3}}{2}$	48,0384461415261
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $n_1 = n2 - n3$	47, 2666267845013
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	47, 2666267845013
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$n_1 = n2 - n3$	46, 1265604014443
n_{k+1}	$n_1 = n_2 - n_3$	45,662965113741
n_{k+1}	$n_1 = n2 - n3$	45,662965113741
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$n_{1} = n2 - n3$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_{n} - b_{n}) = a - b$	45,6476946911307
$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_{0}^{c} e^{-st} f(t) dt$	45,6476946911307
$\lim (a_n + b_n) = a + b$ $\int_{x \in \mathbb{Z}} x^n dx$	$\lim (a_n - b_n) = a - b$	44,9561189559213
$\int_{x \in Z} x^n dx$	$ \lim (a_n + b_n) = a + b $	44,9561189559213
$\int_{x \in Z} x^n dx$	$\lim (a_n - b_n) = a - b$	44,9561189559213
$\int_{x \in Z} x^n dx$	$\lim (a_n + b_n) = a + b$	44,9561189559213
$\lim_{x \in Z} (a_n - b_n) = a - b$	$x^2 = 4$ $x^2 = 4$	44,7213595499958
$\lim (a_n + b_n) = a + b$		44,7213595499958
$\lim (a_n + b_n) = a + b$ $\int_{x \in C} dx$	$x^2 = 4$	44,7213595499958
$\lim_{n \to \infty} (a_n + b_n) = a + b$	$x^2 = 4$	44,7213595499958
$\lim (a_n + b_n) = a + b$	$x^2 = 4$	44,7213595499958
$F = a(E + v \times B)$	$x^2 = 4$	44,7213595499958
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$x^2 = 4$	44,7213595499958
$\lim (a_n - b_n) = a - b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	44,6779008952404
$\lim (a_n - b_n) = a - b$	$n_1 = n2 - n3$	44,5012366734504
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684

$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
$h = \frac{a\sqrt{3}}{2}$ x^{2+a}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
$x^{2+\tilde{a}}$	$n_1 = n2 - n3$	42, 1075960533259
$\int_{x \in C} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $n_1 = n2 - n3$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	40, 4198523701271
$x \in C$ x^{2+a}	$h = \frac{a\sqrt{3}}{2}$ x^{2+a}	40,0320384512718
$\lim (a_n - b_n) = a - b$		37,7964473009227
$F = q\left(E + v \times B\right)$	x^{2+a}	37,7964473009227
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	36,9325303683626
$\int_0^2 x^2 dx$ $\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$ $F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	35,7013883159531
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{c} e^{-st} f(t) dt$	35,7013883159531
n_{k+1}	$\lim (a_n + b_n) = a + b$	35, 3553390593274
$\frac{n_{k+1}}{\lim_{n \to \epsilon fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	34, 5657464643885
n_{k+1}^2	$F(s) = \{Lf\}(s) = \int_0^{c} f^{ty} e^{-st} f(t) dt$	33,8659512618095
n_{k+1})	$F(s) = \{Lf\}(s) = \int_0^{c} f^{ty} e^{-st} f(t) dt$	33,8659512618095
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	33, 3977990195616
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	33, 3977990195616
n_{k+1})	$\lim (a_n - b_n) = a - b$	32,659863237109
$\frac{n_{k+1}}{\int_0^2 x^2 dx}$	$F(s) = \{Lf\}(s) = \int_{0}^{e^{-t}y} e^{-st} f(t) dt$	30,4432262438651
$\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_{-1}^{c} f(t) dt$	30,4432262438651
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	28,4808609776442
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	28,4808609776442
$x^2 = 4$	$\lim (a_n - b_n) = a - b$	28, 2842712474619
$x^2 = 4$	$\lim (a_n + b_n) = a + b$	28, 2842712474619
n_{k+1}^{2}	$h = \frac{a\sqrt{3}}{2}$	27,7350098112615
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$x^2 = 4$	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1})	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	22,6455406828919
$\frac{n_{k+1}}{x^2 = 4}$	$n_1 = n2 - n3$	20,6284249251759
x^{2+a}	$\lim (a_n + b_n) = a + b$	20
$F = q\left(E + v \times B\right)$ x^{2+a}	$n_1 = n2 - n3$	14,5864991497895
x^{2+a}	$\lim_{n \to \infty} (a_n - b_n) = a - b$ $F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	14, 1421356237309
n_{k+1}	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918

n_{k+1}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	
x^{2+a}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	7,28679251335891
$x^2 = 4$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	5,94964117308729
n_{k+1}	$x^2 = 4$	0
n_{k+1})	$x^2 = 4$	0
n_{k+1}	$x^2 = 4$	0

Plik: $\label{lem:condition} C:\Users\matik\Desktop\IO_Projekt\Projekt\Skradzione_wzory\Plagiator 3000\TEXfiles\Folder_Z_Oryging Lista podobnych wzorów:$

Wzór	Jest podobny do wzoru oryginalnego	Procent podobieństwa
$x^2 = 4$	$x^2 = 4$	100
$h = \frac{\omega \sqrt{5}}{2}$	$h = \frac{\alpha\sqrt{3}}{2}$	100
$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$ x^{2+a}	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$ x^{2+a}	100
		100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n + b_n) = a + b$	100
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n + b_n) = a + b$	100
$\lim \left(a_n + b_n\right) = a + b$		100
$h = \frac{a\sqrt{3}}{2}$	$h = \frac{a\sqrt{3}}{2}$	100
$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	100
$ \lim (a_n + b_n) = a + b $	$\lim (a_n + b_n) = a + b$	100
$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	100
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95, 9166304662544
$\lim (a_n - b_n) = a - b$	$ \lim (a_n + b_n) = a + b $	95, 9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95, 9166304662544
$\lim (a_n + b_n) = a + b$	$\lim (a_n - b_n) = a - b$	95,9166304662544
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	92,8442061738191
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$h = \frac{a\sqrt{3}}{2}$	91,8337558167546
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	91,7900064190468
$f(a) = \frac{1}{a} \oint \frac{f(z)}{a} dz$	$n_1 = n2 - n3$	88,7262104765662
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$n_1 = n2 - n3$	87, 3810412493348
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$h = \frac{a\sqrt{3}}{2}$	86,9267120656187
$h = \frac{a \vee 5}{2}$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85,9419469006961
$h = \frac{a\sqrt{3}}{2}$	$n_1 = n2 - n3$	85,9419469006961
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$n_1 = n2 - n3$	85, 5283359552053

- 6.		
$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85,5283359552053
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85,5283359552053
$F(s) = \{Lf\} (s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85,5283359552053
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$n_1 = n2 - n3$	85,5283359552053
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84,8026494969475
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$n_1 = n2 - n3$	84, 5742551972309
<u>m</u> n/m	$n_1 = n2 - n3$	84, 5742551972309
n_{k+1}^{2}	x^{2+a}	84,5154254728516
$P_n(x) = \frac{1 \cdot d^n(x^2 - 1)^2}{2^n! \cdot dx^n}$	x^{2+a}	83,8627869377535
$\lim_{n\to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	83,6017183545168
n_{k+1}^2	$n_1 = n2 - n3$	83,3687867845579
$a_{n} = \sqrt[n]{a^{m}}$ n_{k+1}^{2} $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ n_{k+1}^{2} $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $P_{n}(x) = \frac{1 \cdot d^{n}(x^{2}-1)^{2}}{2^{n}! \cdot dx^{n}}$ $\log(x \cdot y) = \log(x + \log y)$	$\lim (a_n - b_n) = a - b$	82,8626886213748
$P_n(x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^{n_1} \cdot dx^n}$	$\frac{x^2 = 4}{x^{2+a}}$	80,903983495589
$\log_a(x \cdot y) = \log_a x + \log_a y$		80,1783725737273
$\log_a(x \cdot y) = \log_a x + \log_a y$	x^{2+a}	80,1783725737273
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n - b_n) = a - b$	79,236790063212
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	77,9117071672311
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\int_0^2 x^2 dx$ x^{2+a}	$h = \frac{a\sqrt{3}}{2}$	77,9117071672311
$\int_0^2 x^2 dx$	$x^2 = 4$	77, 4596669241483
x^{2+a}	$x^2 = 4$	77, 4596669241483
$\int_0^2 x^2 dx$	$x^2 = 4$	77,4596669241483
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\log_a(x \cdot y) = \log_a x + \log_a y$	$n_1 = n2 - n3$	77, 184498498796
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	x^{2+a}	77,1516749810459
$\lim_{n \to c fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	x^{2+a}	76,1218926204254
$f(a) = \frac{1}{2\Pi i} \phi \frac{f(z)}{z} dz$	$h = \frac{a\sqrt{3}}{2}$	76,0529318788239
$\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$ $K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$x^2 = 4$	75,9256602365297
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$n_1 = n2 - n3$	73, 2098066191115
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$x^2 = 4$	73,0296743340221
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$	71,6653495777219
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n - b_n) = a - b$ x^{2+a}	71,6653495777219
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$		71,4285714285714
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	x^{2+a}	71,4285714285714
$\int_{\mathcal{C}} x^n dx$	x^{2+a}	71, 2696645099798
$x \in \mathbb{Z}$		

$\int_{x \in Z} x^n dx$	x^{2+a}	71, 2696645099798
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$h = \frac{a\sqrt{3}}{2}$	x^{2+a}	70,9299365615191
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70,9299365615191
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70, 2764221499934
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	x^{2+a}	70, 2764221499934
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	x^{2+a}	70, 1934021302851
$K^{\mu} = -qu_{v}F^{\mu\nu} = qu_{v}F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$	70,0218852592498
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $\lim (a_n + b_n) = a + b$	70,0218852592498
$\log_{\sigma}(x \cdot y) = \log_{\sigma} x + \log_{\sigma} y$	$\lim (a_n + b_n) = a + b$	69, 3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n + b_n) = a + b$	69, 3073500570453
$\log_a(x \cdot y) = \log_a x + \log_a y$ $\log_a(x \cdot y) = \log_a x + \log_a y$ $\int_{x \in Z} x^n dx$ $\int_{x \in Z} x^n dx$	$n_1 = n2 - n3$	68,7614164172529
$x \in Z$ $\int_{-\infty}^{\infty} n dx$	$n_1 = n2 - n3$	68,7614164172529
$\int_{x \in Z} x dx$	$n_1 = n_2 - n_3$	08,7014104172329
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$x^2 = 4$	68,3130051063973
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$	$\lim (a_n + b_n) = a + b$	67,6600666226735
$f(a) = \frac{1}{2\Pi i} \oint \frac{f(z)}{z - a} dz$ $P_n(x) = \frac{1 \cdot d^n(x^2 - 1)^2}{2^n! \cdot dx^n}$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$	66, 1518584475779
$\log_a(x \cdot y) = \log_a x + \log_a y$	$h = \frac{a\sqrt{3}}{2}$ $\lim (a_n - b_n) = a - b$	66, 1437827766148
$\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n - b_n) = a - b$	66, 1437827766148
$F = q \left(E + v \times B \right)$	$\lim (a_n + b_n) = a + b$	65,9966329107444
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n - b_n) = a - b$	65,7267069006199
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$\lim (a_n + b_n) = a + b$	65,7267069006199
$P_{n}(x) = \frac{1 \cdot d^{n}(x^{2} - 1)^{2}}{2^{n}! \cdot dx^{n}}$ $\int_{0}^{2} x^{2} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ x^{2+a}	65,6102841606878
$\int_0^2 x^2 dx$		65,4653670707977
n_{k+1}	x^{2+a}	65,4653670707977
n_{k+1} $x^2 = 4$	x^{2+a}	65,4653670707977
n_{k+1})	x^{2+a}	65,4653670707977
$\int_0^2 x^2 dx$	x^{2+a}	65,4653670707977
n_{k+1}	x^{2+a}	65,4653670707977
$F = q \left(E + v \times B \right)$	$h = \frac{a\sqrt{3}}{2}$ $n_1 = n2 - n3$	65,3720450460613
n_{k+1})	$n_1 = n2 - n3$	65,2328073053442
$F = q (E + v \times B)$ n_{k+1} $P_n (x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$ $P_n (x) = \frac{1 \cdot d^n (x^2 - 1)^2}{2^n! \cdot dx^n}$ $F = q (E + v \times B)$	$\lim (a_n + b_n) = a + b$	64,6632301492381
$P_n(x) = \frac{1 \cdot d^n(x^2 - 1)^2}{2^n! \cdot dx^n}$		64,577184562022
$F = q\left(E + v \times B\right)$	$n_1 = n2 - n3$ $\lim (a_n - b_n) = a - b$	64,5423449040572
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	x^{2+a}	64, 1688947919748

$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	x^{2+a}	64, 1688947919748
	***	63,8066462232701
$F = q(E + v \times B)$ $\int_{x \in C} dx$ $\int_{C} dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $\lim (a_n - b_n) = a - b$	63,6396103067893
$x \in C$	(·
$\int_{x \in C} dx$	$\lim \left(a_n + b_n\right) = a + b$	63,6396103067893
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$ $\int_{0}^{2} x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 3237790257263
$\lim_{n \to \in fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$\lim (a_n + b_n) = a + b$	63,3237790257263
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63,2455532033676
	$x^2 = 4$	63, 2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63, 2455532033676
n_{k+1}^2	$x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$x^2 = 4$	63,2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63,2455532033676
$\int_0^2 x^2 dx$	$\lim (a_n - b_n) = a - b$	63, 2455532033676
$\Gamma = \Gamma =$	$x^2 = 4$	63, 2455532033676
$\int_{a}^{2} x^{2} dx$	$\lim (a_n + b_n) = a + b$	63, 2455532033676
$h = \frac{a\sqrt{3}}{2}$	$x^2 = 4$	63, 2455532033676
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$h = \frac{a\sqrt{3}}{2}$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	x^{2+a}	62,9940788348712
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $K^{\mu} = -qu_{v}F^{\mu\nu} = qu_{v}F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$	62,5430084579943
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$\lim (a_n + b_n) = a + b$	62,5430084579943
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$ $x^2 = 4$ $x^2 = 4$	62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$		62,0173672946042
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n - b_n) = a - b$	61,8852747755276
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$ $\int dx$	$\lim (a_n - b_n) = a - b$ x^{2+a}	61,8852747755276
$\int_{x \in C} dx$	x^{2+a}	61,7213399848368
$\int_{x \in C} dx$	$n_1 = n2 - n3$	60,6449631061968
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim \left(a_n + b_n \right) = a + b$	60,4691800765517
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$\lim (a_n + b_n) = a + b$	60,4691800765517
$U(q_1 - q_2) = k \cdot \sqrt{ u(q_1) ^2 + u(q_2) ^2}$	$h = \frac{a\sqrt{3}}{2}$	60, 3957173970203
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n + b_n \right) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim (a_n - b_n) = a - b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n + b_n\right) = a + b$	60, 1040764008565
$h = \frac{a\sqrt{3}}{2}$	$\lim \left(a_n - b_n\right) = a - b$	60, 1040764008565
		,

- /2		
$h = \frac{a\sqrt{3}}{2}$ $\log_a(x \cdot y) = \log_a x + \log_a y$	$\lim (a_n + b_n) = a + b$ $x^2 = 4$	60, 1040764008565
$\log_a(x \cdot y) = \log_a x + \log_a y$		60
$\log_a(x \cdot y) = \log_a x + \log_a y$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$a^{\frac{n}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$x^2 = 4$	60
$\lim (a_n - b_n) = a - b$	$h = \frac{a\sqrt{3}}{2}$	59, 402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59,402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	59,402807414242
$\lim (a_n + b_n) = a + b$	$h = \frac{a\sqrt{3}}{2}$	59,402807414242
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$\lim (a_n + b_n) = a + b$	58,6355889858697
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$ $x^2 = 4$	58,0829985245103
$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	$h = \frac{a\sqrt{3}}{2}$	58,0829985245103
$\lim (a_n + b_n) = a + b$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $\int_{x \in Z} x^n dx$	$x^2 = 4$	56, 5685424949238
$\int_{x \in Z} x^n dx$	$x^2 = 4$	56,5685424949238
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$\lim (a_n - b_n) = a - b$	56, 1321625463615
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56, 1321625463615
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56, 1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n - b_n) = a - b$	56,1248608016091
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\lim (a_n + b_n) = a + b$	56,1248608016091
$\int_{\mathbb{R}^n} x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54,5500550139438
$\int_{-\infty}^{\infty} x^n dx$	$h = \frac{a\sqrt{3}}{2}$	54, 5500550139438
$x \in Z$	<u>-</u>	,
$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$F(s) = \{Lf\} (s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	54,1919786756002
$ \lim (a_n + b_n) = a + b $		53,4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a}	53,4522483824849
$\lim (a_n + b_n) = a + b$	x^{2+a}	53,4522483824849
$\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
$\int_{x \in Z} x^n dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	51,9110422449865
n_{k+1}	$\lim (a_n - b_n) = a - b$	50
n_{k+1}^2	$\lim (a_n - b_n) = a - b$ $\lim (a_n - b_n) = a - b$ $\lim (a_n - b_n) = a - b$	50
n_{k+1}	$\lim (a_n - b_n) = a - b$	50
	$\lim (a_n + b_n) = a + b$	48,9897948556636
$n_{k+1} \\ n_{k+1}^2$	$\lim (a_n + b_n) = a + b$ $\lim (a_n + b_n) = a + b$	48,9897948556636

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_{k+1}	$\lim (a_n + b_n) = a + b$	48,9897948556636
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	47, 2666267845013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	47,2666267845013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$U(g_1 - g_2) = k \cdot \sqrt{[u(g_1)]^2 + [u(g_2)]^2}$	$n_1 = n2 - n3$	46,1265604014443
$ \begin{aligned} & \lim (a_n + b_n) = a + b & F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st}f(t) dt \\ & \lim (a_n + b_n) = a + b & F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st}f(t) dt \\ & \text{45,6476946911307} \end{aligned} \\ & \lim (a_n + b_n) = a + b & F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st}f(t) dt \\ & \text{45,6476946911307} \end{aligned} \\ & \lim (a_n + b_n) = a + b & F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st}f(t) dt \\ & \text{45,6476946911307} \end{aligned} \\ & \lim (a_n + b_n) = a - b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n - b_n) = a - b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n - b_n) = a - b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n - b_n) = a - b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n - b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n - b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \lim (a_n + b_n) = a + b & \text{44,9561189559213} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \text{44,7213595499958} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \text{44,72135954994958} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & \text{44,7213595499958} \end{aligned} \\ & \frac{e^{2Z}}{x \in Z} & 4$	n_{k+1}		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$n_1 = n2 - n3$	45,662965113741
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	45,6476946911307
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lim (a_n + b_n) = a + b$	$F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt$	45,6476946911307
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_{x \in Z} x^n dx$	$\lim (a_n - b_n) = a - b$	44,9561189559213
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_{x \in Z} x^n dx$	$ \lim (a_n + b_n) = a + b $	44,9561189559213
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_{x \in Z} x^n dx$	$ \lim (a_n - b_n) = a - b $	44,9561189559213
$\lim_{x \in C} (a_n + b_n) = a + b$ $\int_{x \in C} dx$ $\int_$	$\int_{x \in Z} x^n dx$	$ \lim (a_n + b_n) = a + b $	44,9561189559213
$\lim_{x \in C} (a_n + b_n) = a + b$ $\int_{x \in C} dx$ $\int_$	$\lim (a_n - b_n) = a - b$	$x^2 = 4$	44,7213595499958
	$ \lim (a_n + b_n) = a + b $	$x^2 = 4$	44,7213595499958
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_{x \in C} dx$	$x^2 = 4$	44,7213595499958
$F = q(E + v \times B)$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $x^2 = 4$ $x^2 = 7$ $x^3 = 7$	$\lim (a_n + b_n) = a + b$		44,7213595499958
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,7213595499958$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 44,721359549952$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 37,7964473009227$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 37,7964473009227$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad x^2 = 4 \qquad 37,7964473009227$	$\lim (a_n + b_n) = a + b$		44,7213595499958
$\lim_{} (a_n - b_n) = a - b \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 44,6779008952404$ $\lim_{} (a_n - b_n) = a - b \qquad n_1 = n2 - n3 \qquad 44,5012366734504$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $x^{2+a} \qquad n_1 = n2 - n3 \qquad 42,1075960533259$ $\int_{x \in C} dx \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 40,4198523701271$ $x^{2+a} \qquad h = \frac{a\sqrt{3}}{2} \qquad 40,0320384512718$ $\lim_{} (a_n - b_n) = a - b \qquad x^{2+a} \qquad 37,7964473009227$ $F = q(E + v \times B) \qquad x^{2+a} \qquad 37,7964473009227$ $\lim_{} h \to 0 \frac{f(x + b) - f(x)}{b} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 36,9325303683626$	$F = q\left(E + v \times B\right)$		44,7213595499958
$\lim_{} (a_n - b_n) = a - b \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 44,6779008952404$ $\lim_{} (a_n - b_n) = a - b \qquad n_1 = n2 - n3 \qquad 44,5012366734504$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $\lim_{} (a_n + b_n) = a + b \qquad n_1 = n2 - n3 \qquad 43,7594974493684$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $x^{2+a} \qquad n_1 = n2 - n3 \qquad 42,1075960533259$ $\int_{x \in C} dx \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 40,4198523701271$ $x^{2+a} \qquad h = \frac{a\sqrt{3}}{2} \qquad 40,0320384512718$ $\lim_{} (a_n - b_n) = a - b \qquad x^{2+a} \qquad 37,7964473009227$ $F = q(E + v \times B) \qquad x^{2+a} \qquad 37,7964473009227$ $\lim_{} h \to 0 \frac{f(x + b) - f(x)}{b} \qquad F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt \qquad 36,9325303683626$	$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$		44,7213595499958
$\lim (a_n - b_n) = a - b$ $\lim (a_n + b_n) = a + b$ $\lim (a$		$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	44,6779008952404
$\lim (a_n + b_n) = a + b$ $\lim (a$		$n_1 = n2 - n3$	44,5012366734504
$\lim_{n \to \infty} (a_n + b_n) = a + b$ $n_1 = n2 - n3$ $h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{3}$			-
$h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $h = \frac{a\sqrt{3}}{2} \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 43,069495521496$ $x^{2+a} \qquad n_1 = n2 - n3 \qquad 42,1075960533259$ $\int_{x \in C} dx \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 40,4198523701271$ $x^{2+a} \qquad h = \frac{a\sqrt{3}}{2} \qquad 40,0320384512718$ $\lim_{t \to 0} (a_n - b_n) = a - b \qquad x^{2+a} \qquad 37,7964473009227$ $F = q(E + v \times B) \qquad x^{2+a} \qquad 37,7964473009227$ $\lim_{t \to 0} \frac{f(x+h) - f(x)}{b} \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 36,9325303683626$			*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lim (a_n + b_n) = a + b$	$n_1 = n2 - n3$	43,7594974493684
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	43,069495521496
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_{0}^{efty} e^{-st} f(t) dt$	43,069495521496
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$h = \frac{a\sqrt{3}}{2}$	$F(s) = \{Lf\}(s) = \int_{0}^{c} f^{ty} e^{-st} f(t) dt$	43,069495521496
$ \int_{x \in C} dx \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 40,4198523701271 $ $ x^{2+a} \qquad h = \frac{a\sqrt{3}}{2} \qquad 40,0320384512718 $ $ \lim_{t \to 0} (a_n - b_n) = a - b \qquad x^{2+a} \qquad 37,7964473009227 $ $ F = q(E + v \times B) \qquad x^{2+a} \qquad 37,7964473009227 $ $ \lim_{t \to 0} \frac{f(x+h)-f(x)}{b} \qquad F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt \qquad 36,9325303683626 $	$x^{2+\tilde{a}}$	$n_1 = n2 - n3$	
$\begin{array}{c cccc} x^{2+a} & h = \frac{a\sqrt{3}}{2} & 40,0320384512718 \\ \lim (a_n - b_n) = a - b & x^{2+a} & 37,7964473009227 \\ F = q(E + v \times B) & x^{2+a} & 37,7964473009227 \\ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} & F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt & 36,9325303683626 \end{array}$	$\int dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	40,4198523701271
$F = q(E + v \times B) $ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} $ $F(s) = \{Lf\}(s) = \int_{0}^{\epsilon fty} e^{-st} f(t) dt $ $37,7964473009227$ $36,9325303683626$	x^{2+a}	$h = \frac{a\sqrt{3}}{2}$	40,0320384512718
$F = q(E + v \times B) $ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} $ $F(s) = \{Lf\}(s) = \int_{0}^{efty} e^{-st} f(t) dt $ $37,7964473009227$ $36,9325303683626$	1	$\frac{2}{x^{2+a}}$	*
$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $36,9325303683626$		x^{2+a}	*
$\int_{0}^{2} x^{2} dx$ $n_{1} = n2 - n3$ $35,7294800505248$	$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	36,9325303683626
.iii	$\int_{0}^{\infty} x^{2} dx$	$n_1 = n2 - n3$	· · · · · · · · · · · · · · · · · · ·

$\int_0^2 x^2 dx$	$n_1 = n2 - n3$	35,7294800505248
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	35,7013883159531
$\log_a(x \cdot y) = \log_a x + \log_a y$	$F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{efty} e^{-st} f(t) dt$	35,7013883159531
	$\lim (a_{-} + b_{-}) = a + b$	35,3553390593274
n_{k+1} $\lim_{n \to fty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	34,5657464643885
n_{k+1}^2	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33,8659512618095
n_{k+1})	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	33,8659512618095
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_0^{s} e^{-st} f(t) dt$	33, 3977990195616
$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$	$F(s) = \{Lf\}(s) = \int_{0}^{cfty} e^{-st} f(t) dt$	33, 3977990195616
n_{k+1})		32,659863237109
$\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	30,4432262438651
$\int_0^2 x^2 dx$	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	30,4432262438651
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{s} e^{-st} f(t) dt$	28,4808609776442
$K^{\mu} = -qu_v F^{\mu\nu} = qu_v F^{\nu\mu}$	$F(s) = \{Lf\}(s) = \int_0^{s} e^{-st} f(t) dt$	28,4808609776442
$x^{2} = 4$	$\lim (a_n - b_n) = a - b$	28, 2842712474619
$x^2 = 4$	$\lim (a_n + b_n) = a + b$	28, 2842712474619
n_{k+1}^{2}	$h = \frac{a\sqrt{3}}{2}$	27,7350098112615
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
$\int_0^2 x^2 dx$	$h = \frac{a\sqrt{3}}{2}$	26, 1488180184245
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$x^2 = 4$	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1})	$h = \frac{a\sqrt{3}}{2}$ $h = \frac{a\sqrt{3}}{2}$	22,6455406828919
n_{k+1}	$h = \frac{a\sqrt{3}}{2}$	22,6455406828919
$x^{2} = 4$	$n_1 = n2 - n3$	20,6284249251759
x^{2+a}	$\lim (a_n + b_n) = a + b$	20
$F = q\left(E + v \times B\right)$ x^{2+a}	$n_1 = n_2 - n_3$	14,5864991497895
x^{2+a}	$\lim (a_n - b_n) = a - b$	14, 1421356237309
n_{k+1}	$\lim (a_n - b_n) = a - b$ $F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
n_{k+1}	$F(s) = \{Lf\}(s) = \int_0^{\epsilon fty} e^{-st} f(t) dt$	10,5175790477918
x^{2+a}	$F(s) = \{Lf\}(s) = \int_0^{\infty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $F(s) = \{Lf\}(s) = \int_0^{\in fty} e^{-st} f(t) dt$ $x^2 = 4$	7, 28679251335891
$x^2 = 4$	$F(s) = \{Lf\}(s) = \int_0^{c} f^{ty} e^{-st} f(t) dt$	5,94964117308729
n_{k+1}	$x^2 = 4$	0
n_{k+1})	x = 4	0
n_{k+1}	$x^2 = 4$	0