

MEET THE GROUP!

Khushbu Lalchandani Arun Nair Anushka Sawant Simran Patel Khushi Ajgaonkar Samiksha Garibe

Problem Statement

- Air quality has been a matter of concern, particularly in urban areas. Air pollution means the undesirable presence of impurities or the abnormal rise in the proportion of some constituents of the atmosphere. In addition, monitoring air pollution levels has become very important to detect pollution peaks, better control air pollution and eventually improve air quality.
- This project aims to inform people about the quality of air they breathe in simple terms as well as its possible health impacts.
- This would certainly make people more aware and enhance their involvement in improving air quality.

Dataset Introduction

The dataset used in our project has been taken from https://www.kaggle.com/

- No. of rows: 5,97,002
- No. of columns: 20
- The main headings in dataset are as follows:
- 1) City: It represents the cities whose air quality data is measured. Number of cities covered under this dataset are 23.
 - 2) Year: The data set covers AQI data for 5 years from 2015 to 2019.
 - 3) Quarter: The dataset is divided into 4 quarters.

- 4) Month: The dataset contains the data for all 12 months.
- 5) Date: The following dataset contains AQI data from 01-01-2015 to 31-12-2019.
- 6) Day: The dataset contains data for all 7 days of the week.
- 7) Hour: The following dataset contain hourly data in the 24 hour format.
- 8) Elements/Chemical Compounds: PM2.5, PM10, NO, NO2, NOx, NH3, CO, SO2, O3, Benzene, Toluene are the elements covered in dataset.
- 9) AQI: It represents Air Quality Index for each city.
- 10) AQI Bucket: It represents the category of AQI each city falls under.

Element	▼ Description
PM2.5	PM2.5 refers to the atmospheric particulate matter that has a diameter of less than 2.5 micrometres, which is about 3% of the diameter of human hair. particulate matter (PM2.5) is an air pollutant that is a concern for people's health when levels in air are high. PM2.5 are tiny particles in the air that reduce visibility and cause the air to appear hazy when levels are elevated.
PM10	PM10 describes inhalable particles, with diameters that are generally 10 micrometers and smaller. Depending on their chemical composition, the effects of PM10 settling may include: making lakes and streams acidic. changing the nutrient balance in coastal waters and large river basins, depleting the nutrients in soil.
NO	Nitric oxide is colourless and is oxidised in the atmosphere to form nitrogen dioxide. Nitrogen dioxide has an odour, and is an acidic and highly corrosive gas that can affect our health and environment.
NO2	Nitrogen Dioxide (NO2) is one of a group of highly reactive gases known as oxides of nitrogen or nitrogen oxides. NO2 and other interact with water, oxygen and other chemicals in the atmosphere to form acid rain. Acid rain harms sensitive ecosystems such as lakes and forests.
NOx	Nitrogen oxide (NOx) is a chemical compound of oxygen and nitrogen that is formed by reacting with each other during combustion at high temperatures, mainly combustion of fuel such as oil, diesel, gas and organic matter. High levels of NOx can have a negative effect on vegetation, including leaf damage and reduced growth. It can make vegetation more susceptible to disease and frost damage.
NH3	NH3 is Nitrogen trihydride which is known as ammonia. Ammonia is a colourless gas, which is directly or indirectly used in many pharmaceutical products. Ammonia is one of the main sources of nitrogen pollution, alongside nitrogen oxides. Ammonia pollution also effects species composition through soil acidification, direct toxic damage to leaves.
со	Carbon monoxide, (CO), a highly toxic, colourless, odourless, flammable gas produced industrially for use in the manufacture of numerous organic and inorganic chemical products; it is also present in the exhaust gases of internal-combustion engines and furnaces. When carbon monoxide is emitted into the atmosphere it effects the amount of greenhouse gases, which are linked to climate change and global warming. This means that land and sea temperature increases changing to ecosystems, increasing storm activity and causing other extreme weather events.
SO2	Sulfur dioxide (SO2) is a colourless gas with a sharp, irritating odour. It is produced by burning fossil fuels and by the smelting of mineral ores that contain sulfur. Sulfur dioxide affects the respiratory system, particularly lung function, and can irritate the eyes. Sulfur dioxide irritates the respiratory tract and increases the risk of tract infections. It causes coughing, mucus secretion and aggravates conditions such as asthma and chronic bronchitis.
О3	Ozone, O3, is a form of oxygen; a blue gas with a pungent odor noticeable when gas is formed by an electrical discharge. Ozone affects sensitive vegetation and ecosystems, including forests, parks, wildlife refuges and wilderness areas.
Benzene	Benzene is a colourless liquid with a characteristic odour and is primarily used in the production of polystyrene. benzene can react with other chemicals to create smog. This could break down naturally but it might also attach to rain and snow and be carried to the ground to contaminate water and soil.
Toluene	Toluene occurs as a colorless, fractive liquid, that is slightly soluble in water. Toluene has a sweet, pungent odor, with an odor threshold of 2.9 parts per million (ppm). The Central Nervous System is the primary target organ for toluene toxicity in both humans and animals for acute and chronic exposures. Cardiac arrhythmia has also been reported in humans acutely exposed to toluene.

Assumptions and Constraints

• Data for the year 2020 has been removed because the information provided was incomplete.

• The blank spaces have been replaced with 0.0 using fillna(0.0)

• For the AQI Bucket analysis the blank values have been deleted using dropna().

Technical Approach

- Data Cleaning in Excel: Data for the year 2020 had to be deleted, as it was available only up till the first quarter.
- Data Transformation Using Pandas: Blank cells have been replaced with 0.0 using fillna(). dropna() has been used for analysis of AQI Bucket.
- Visualization: Modules like seaborn, matplotlib and plotly were used to get different kinds of graphs and enhance visualizations.

Let's define and visualize the significance of each colour that is used in the Air Quality Index

• Following chart shows the operational scheme of AQI system based of maximum operator (i.e. maximum sub-index being the overall index). To present status of the air quality and its effects on human health, the following description categories.

AQI	Remark	Colour Code	Possible Health Effects
0-50	Good		Minimal impact
51-100	Satisfactory		Minor breathing discomfort to sensitive people
101-200	Moderate		Breathing discomfort to the people with lungs, asthma and heart diseases
201-300	Poor		Breathing discomfort to most people on prolonged exposure
301-400	Very Poor		Respiratory illness on prolonged exposure
401-500	Severe		Affects healthy people and seriously impacts those with existing diseases

Cities With Highest AQI

- Vishakhapatnam has the highest level of AQI.
- Thiruvananthapuram,
 Coimbatore, Mumbai,
 Shilong are the least
 affected cities.

Cities With Lowest AQI

- Jaipur has the lowest level of AQI.
- Bhopal, Patna,
 Gurugram and
 Lucknow are the least
 affected cities.

Year-wise AQI Analysis

- India's average air quality has deteriorated throughout the years.
- AQI has increased exponentially from 2015 to 2016 and there is a sudden decrease from 2016 to 2017.
- There is an increase in AQI from the second quarter of 2017 to 2018 which decreased gradually till 2019.
- India has moderate air quality throughout the year.

Quarter-wise AQI Analysis

- AQI increases in 1st quarter and decreases from 170 to 100 during 2nd and 3rd quarters.
- After 3rd quarter there is linear growth in AQI level till 4th quarter.
- So, air quality is better in the summers as compared to the winters.
- Air quality is good in summers, moderate in monsoon and poor in winters.

Month-wise AQI Analysis

- For monthly analysis, the AQI started off with a decrease in the starting 4-5 months.
- Then there was a sudden spike in the AQI levels at the end of the year i.e between August and December.

Hour-wise AQI Analysis

- AQI is least during the daytime.
- Air quality is good from 10am to 1pm. However AQI increases between 2pm-5 pm.
- There is exponential growth of AQI between 6pm-llpm. Thus the air quality is poor/severe during night time.

Day-wise AQI Analysis

- There is gradual increase in AQI from Monday to mid-week and gradual decrease from Thursday to Sunday.
- The lowest AQI is usually recorded on Monday, whereas the highest AQI is recorded on Thursday.
- As a result, the air quality is good on weekends and deteriorates moderately during weekdays.

Quarter-wise Analysis of Elements

	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	03	Benzene	Toluene	AQI
Quarter												
1	53.000000	41.000000	6.930000	19.990000	18.560000	6.490000	0.810000	6.700000	23.060000	0.320000	0.900000	131.000000
2	33.250000	0.000000	4.920000	15.130000	14.480000	2.620000	0.600000	5.300000	21.400000	0.100000	0.180000	99.000000
3	21.250000	11.760000	6.300000	12.990000	13.580000	3.460000	0.580000	5.320000	14.300000	0.130000	0.250000	72.000000
4	56.860000	54.500000	7.650000	22.570000	21.100000	7.590000	0.830000	7.610000	20.360000	0.610000	1.090000	132.000000

Monthly Analysis of Elements

	PM2.5	PM10	NO	NO2	NOx	NH3	co	SO 2	O 3	Benzene	Toluene	AQI
Month												
1	64.790000	0.000000	7.180000	22.560000	19.650000	6.490000	0.880000	7.260000	20.895000	0.330000	0.780000	152.000000
2	53.210000	47.250000	6.940000	19.780000	18.620000	6.450000	0.810000	6.490000	22.740000	0.240000	0.660000	131.000000
3	45.250000	47.900000	6.710000	18.380000	17.670000	6.530000	0.750000	6.420000	25.130000	0.350000	1.300000	117.000000
4	38.000000	0.000000	5.100000	16.640000	15.470000	3.300000	0.660000	5.520000	22.400000	0.060000	0.480000	105.500000
5	36.200000	6.440000	4.970000	15.710000	14.560000	2.950000	0.620000	5.650000	24.410000	0.160000	0.310000	106.000000
6	26.000000	0.000000	4.680000	13.210000	13.480000	1.450000	0.520000	4.850000	17.880000	0.090000	0.000000	83.000000
7	21.500000	10.000000	6.360000	12.740000	14.080000	4.260000	0.540000	5.210000	15.000000	0.130000	0.200000	71.000000
8	20.250000	7.540000	6.330000	12.440000	13.550000	3.235000	0.600000	5.500000	12.925000	0.140000	0.180000	70.000000
9	22.100000	15.750000	6.210000	14.040000	13.120000	2.695000	0.610000	5.220000	15.050000	0.140000	0.470000	74.000000
10	42.250000	27.250000	6.990000	19.670000	18.200000	6.840000	0.720000	6.480000	18.120000	0.290000	0.730000	107.000000
11	63.145000	64.250000	7.965000	23.885000	22.900000	7.160000	0.860000	8.390000	22.480000	0.870000	1.600000	151.000000
12	66.250000	74.090000	7.870000	24.490000	22.200000	9.250000	0.910000	8.100000	20.940000	0.730000	1.000000	147.000000

Day-wise Analysis of Elements

	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	О3	Benzene	Toluene	AQI
Day												
Friday	37.115000	24.865000	6.620000	17.160000	16.960000	5.630000	0.710000	6.220000	18.740000	0.250000	0.620000	102.000000
Monday	36.180000	20.500000	6.320000	16.670000	16.370000	5.050000	0.700000	6.130000	18.990000	0.230000	0.530000	99.000000
Saturday	37.310000	25.000000	6.460000	16.930000	16.730000	5.670000	0.700000	6.180000	18.900000	0.240000	0.580000	102.000000
Sunday	35.020000	19.500000	5.930000	15.640000	15.400000	4.880000	0.660000	5.920000	18.880000	0.180000	0.430000	102.000000
Thursday	37.000000	24.100000	6.640000	17.430000	17.230000	5.690000	0.720000	6.220000	18.810000	0.250000	0.650000	103.000000
Tuesday	37.790000	25.350000	6.660000	17.340000	17.210000	5.650000	0.730000	6.220000	18.980000	0.240000	0.610000	104.000000
Wednesday	37.470000	25.270000	6.560000	17.300000	17.140000	5.670000	0.720000	6.180000	18.830000	0.240000	0.620000	104.000000

Hour-wise Analysis of Elements

	PM2.5	PM10	NO	NO2	NOx	NH3	co	SO2	03	Benzene	Toluene	AQI
Hour												
00:00:00	41.500000	24.350000	7.220000	18.790000	18.950000	5.440000	0.750000	6.170000	13.750000	0.300000	0.670000	102.000000
01:00:00	39.040000	22.305000	6.490000	17.120000	16.990000	5.430000	0.670000	6.030000	14.045000	0.240000	0.520000	102.000000
02:00:00	36.520000	19.705000	5.900000	15.715000	15.615000	5.250000	0.620000	5.910000	14.410000	0.200000	0.440000	101.000000
03:00:00	34.980000	17.870000	5.610000	14.800000	14.725000	5.140000	0.590000	5.800000	14.690000	0.170000	0.400000	101.000000
04:00:00	33.670000	16.190000	5.625000	14.460000	14.400000	5.340000	0.580000	5.765000	14.420000	0.160000	0.370000	101.000000
05:00:00	32.960000	16.165000	6.020000	14.650000	14.860000	5.005000	0.590000	5.750000	13.010000	0.150000	0.350000	100.000000
06:00:00	33.490000	16.020000	6.890000	15.690000	16.375000	4.900000	0.620000	5.720000	12.120000	0.150000	0.340000	99.000000
07:00:00	35.535000	17.500000	7.820000	16.730000	18.060000	4.900000	0.690000	5.910000	11.365000	0.170000	0.400000	98.000000
08:00:00	38.500000	20.135000	8.240000	17.150000	18.570000	5.000000	0.740000	6.055000	12.740000	0.200000	0.480000	98.000000
09:00:00	40.130000	23.000000	7.510000	16.770000	17.700000	5.120000	0.750000	6.260000	17.100000	0.220000	0.520000	98.000000
10:00:00	39.440000	24.750000	6.680000	16.660000	16.860000	5.320000	0.720000	6.380000	23.150000	0.250000	0.600000	99.000000
11:00:00	38.340000	25.990000	5.930000	18.250000	15.890000	5.670000	0.720000	6.430000	28.970000	0.270000	0.680000	101.000000
12:00:00	38.445000	25.815000	5.730000	15.635000	15.130000	5.700000	0.670000	6.610000	33.520000	0.250000	0.650000	102.000000
13:00:00	34.750000	25.760000	6.430000	15.475000	16.700000	5.620000	0.630000	6.400000	37.040000	0.230000	0.590000	104.000000
14:00:00	33.895000	24.990000	5.080000	15.180000	13.830000	5.700000	0.620000	6.150000	38.550000	0.220000	0.580000	104.000000
15:00:00	33.000000	25.000000	5.040000	15.030000	13.470000	5.660000	0.610000	5.930000	38.930000	0.210000	0.560000	105.000000
16:00:00	32.340000	25.445000	5.130000	15.300000	13.780000	5.655000	0.610000	5.960000	38.145000	0.200000	0.560000	105.000000
17:00:00	32.740000	26.500000	5.320000	16.090000	14.700000	5.640000	0.650000	5.960000	35.750000	0.210000	0.620000	105.000000
18:00:00	34.200000	29.750000	5.900000	18.350000	16.950000	5.720000	0.740000	6.160000	28.850000	0.230000	0.690000	105.000000
19:00:00	37.200000	32.950000	6.870000	21.370000	19.730000	5.780000	0.890000	6.430000	21.100000	0.290000	0.870000	105.000000
20:00:00	41.500000	33.750000	7.890000	22.770000	21.580000	5.720000	1.000000	6.620000	16.600000	0.350000	1.000000	104.000000
21:00:00	44.050000	32.195000	8.280000	22.650000	21.810000	5.690000	1.020000	6.570000	14.685000	0.400000	1.030000	104.000000
22:00:00	44.250000	29.710000	8.280000	21.485000	21.305000	5.625000	0.960000	6.480000	14.050000	0.385000	0.970000	104.000000
23:00:00	43.480000	27.250000	7.950000	20.240000	20.320000	5.600000	0.880000	6.400000	13.670000	0.350000	0.830000	103.000000

AQI_Bucket Analysis of Elements

	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	O 3	Benzene	Toluene	AQI
AQI_Bucket												
0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Good	13.850000	25.570000	3.460000	10.570000	8.570000	5.670000	0.350000	4.560000	16.310000	0.100000	0.340000	42.000000
Moderate	52.390000	92.000000	7.600000	22.060000	20.000000	11.550000	0.840000	8.160000	28.920000	0.670000	1.480000	132.000000
Poor	82.810000	102.570000	9.330000	27.610000	25.490000	11.270000	1.090000	10.250000	30.910000	1.180000	2.920000	242.000000
Satisfactory	28.020000	45.320000	6.510000	16.540000	15.640000	9.120000	0.680000	5.860000	21.180000	0.280000	0.640000	77.000000
Severe	154.085000	0.000000	22.130000	51.825000	46.230000	0.000000	2.740000	19.340000	21.400000	3.780000	16.265000	471.000000
Very Poor	144.000000	0.000000	13.380000	35.640000	32.100000	0.000000	1.400000	11.920000	27.340000	1.740000	4.240000	339.000000

City-wise Analysis for PM2.5

- PM2.5 is of specific concern because it contains a high proportion of various toxic metals and acids, and aerodynamically it can penetrate deeper into the respiratory tract.
- PM2.5 levels in Indian cities are about 4-5 times higher than in the US cities.
- 56% of PM 2.5 is contributed by the 3 states namely New Delhi, Lucknow, Gurugram.

City-wise Analysis for PM10

- WHO (2005) suggests that there is no threshold for particulate concentration below which there is no harmful effect.
- High PM10 background concentration in India cannot be disregarded which is reflected in relatively high level of INAQS (Indian National Air Quality Standards).
- Delhi produces the highest amount of PM10 whereas Talcher produces the lowest amount of PM10.

City-wise Analysis for SO2

- SO2 is soluble in aqueous media and affects mucous membranes of the nose and upper respiratory tract.
- Reduction in mean lung function values among groups of healthy individual have been observed for 10-minute exposures at 4000 ppb.
- Talcher is the highest contributor of SO2 whereas Bajrangpur does the lowest contribution.

City-wise Analysis for NO2

- The major source of NO2 is combustion processes. An appreciable quantity of NO2 is present in rural and urban environments.
- Further, NO2 is showing alarmingly high increasing trend in Indian cities due to increase in number of vehicles.
- Delhi produces the most amount of NO2 whereas Ahemdabad produces the least.

City-wise Analysis for NO

- Nitric oxide (NO), also called nitrogen monoxide, colourless toxic gas that is formed by the oxidation of nitrogen.
- Nitric oxide performs important chemicalsignaling functions in humans and other animals and has various applications in medicine.
- Delhi has the highest level of NO
 while jorapokhar has the least level of
 NO

City-wise Analysis for NOx

- Nitrogen oxides (NOx) is a collective term used to refer to nitrogen monoxide (nitric oxide or NO).
- Nitrogen oxides (NOx) react to form smog and acid rain. The impacts of NOx on human health include damage to the lung tissue, breathing and respiratory problems.
- Delhi has the highest production of NOx and Ahmedabad produces the least amount of NOx.

City-wise Analysis for NH3

- Inhalation of high levels of NH3 causes irritation to the nose, throat and respiratory tract.
- Increased inhalation may result in cough and an increased respiratory rate as well as respiratory distress.
- Delhi is the highest contributor of NH3 and Bajrangpur is the lowest contributor.

City-wise Analysis For CO

- Carbon monoxide (CO) is an important criteria pollutant which is ubiquitous in urban environment and it's production mostly occurs due to incomplete combustion.
- Ahemdabad has the highest production of CO followed by other cities like Bajrangpur, Talcher, Coimbatore and Chennai produces the least amount of CO.

City-wise Analysis for O3

- Ozone, a secondary pollutant formed in the atmosphere, has serious health impacts.
- Ozone is a strong oxidant, and it can react with a wide range of cellular components and biological materials.
- Bhopal has the highest level of ozone followed by other cities like Delhi, Jaipur...etc while Coimbatore has the lowest level of ozone.

City-wise Analysis for Benzene

- Benzene is a natural constituent of crude oil and is one of the elementary petrochemicals.
- Benzene is a colorless and highly flammable liquid with a sweet smell.
- Kolkata produces the highest level of benzene while Hyderabad produces the least.

City-wise Analysis for Toluene

- Toluene is believed to be the most prevalent hydrocarbon in the troposphere.
- It is widespread in the environment owing to its use in a wide variety of commercial and household products.
- Delhi produces more amount of Toluene than any other cities while Bengaluru produces the least amount of Toluene.

AQI Bucket Analysis

- Most of the cities are in Moderate AQI bucket.
- 32.1% cities are in satisfactory AQI bucket.
- Very few i.e 5.9% cities are in Good AQI bucket whereas 3.5% cities in Severe AQI bucket.

Year-wise AQI for Delhi

- There is linear decrease in AQI for Delhi from the year 2015 to 2019.
- AQI increased in second half of 2015 but dropped in the year 2016.
- AQI was stable in the year 2017 and decreased again in 2018 and 2019.

Delhi

- Minimum AQI recorded for the city of Delhi is 53.
- Maximum AQI recorded for the city of Delhi is 762.
- Delhi occurred 474 times in 'Good' AQI bucket and 23,479 times in 'Poor' AQI Bucket.
- Main elements that contribute to AQI of Delhi are PM2.5, PM10, NH3, NO and O3.

Amritsar

- Minimum AQI recorded for the city of Amritsar is 32.
- Maximum AQI recorded for the city of Amritsar is 1052.
- Amritsar occurred 1794 times in the 'Good' AQI Bucket and 2673 times in the 'Poor' AQI Bucket.
- Main elements are PM2.5, PM10, NH3, NO and O3.

Hyderabad

- Minimum AQI recorded for the city of Hyderabad is 20.
- Maximum AQI recorded for the city of Hyderabad is 877.
- Hyderabad occurred 4591 times in 'Good' AQI bucket and 1862 times in 'Poor' AQI Bucket.
- Main elements that contribute to AQI of Hyderabad are PM2.5, PM10, NH3, NO and O3.

Kolkata

- Minimum AQI recorded for the city of Kolkata is 23.
- Maximum AQI recorded for the city of Kolkata is 500.
- Kolkata occurred 1886 times in 'Good' AQI bucket and 3659 times in 'Poor' AQI Bucket.
- Main elements that contribute to AQI of Kolkata are PM2.5, PM10, NH3, NO and O3.

Mumbai

- Maximum AQI recorded for the city of Mumbai is 317.
- Mumbai occurred 257 times in 'Good' AQI bucket and 689 times in 'Poor' AQI Bucket.
- Main elements that contribute to AQI of Mumbai are PM2.5, PM10, NH3, NO and O3.

Conclusion

- India has moderate air quality throughout the year.
- The air quality is good on weekends and deteriorates moderately during weekdays.
- Most of the cities are in Moderate AQI bucket.
- Air quality is good in summers, moderate in monsoon and poor in winters.
- Main elements that contribute to AQI are PM2.5, PM10, NH3, NO and O3.

- Delhi, Kolkata and Hyderabad are the most affected cities.
- Delhi which is known to have dangerously high levels of AQI almost all year round, experienced a linear decrease in AQI from the year 2015 to 2019.
- 37.9% cities are in 'Moderate' AQI bucket, 32.1% cities are in 'Satisfactory' AQI bucket. Very few i.e 3.5% cities are in 'Severe' AQI bucket followed by 5.9% of cities in 'Good' AQI bucket whereas 8.8% cities and 11.8% cities are in 'Poor' and 'Very Poor' AQI buckets respectively.

Thankyou!