Probabilistic Methods and Statistics

Rafał Włodarczyk

INA 3, 2024

Example 0.0.1. • Ustalmy przestrzeń Ω

- $A, B \in \Omega, A \neq B, A, B \neq A, B \neq \Omega$
- Oznaczmy $A = A^1, A^C = A^{-1}$
- Mamy 4 ätomowežbiory postaci $A^i \cap B^j$; $i, j \in \{-1, 1\}$
- Przy pomocy sumy zbiorów możemy z nich budowac bardziej złożone zbiory
- Ile takich zbiorów możemy zbudować?

Defiition 0.0.1. Ustalmy przestrzeń Ω Rodzinę $S \in \mathcal{P}(\Omega)$ nazywamy ciałem podzbiorów zbioru Ω (ang. field, alebra), jeśli:

- $S \neq \emptyset$
- $A \in S \implies A^C$
- $A, B \in S \implies A \cup B \in S$

Fact 1. Weźmy $A, B \in S \implies A^C, B^C \in S$, wtedy $A^C \cup B^C \in S$, zatem z Prawa de Morgana $A \cap B \in S$. Jak widać, wynika to z definicji ciała.

Fact 2.
$$\cap_{i \in I} A_i = \left(\cup_{i \in I} A^C \right)^C \in S$$

Defiition 0.0.2. Ustalmy przestrzeń Ω . Rodzinę $S \in \mathcal{P}(\Omega)$ nazywamy σ -ciałem podzbiorów zbioru Ω , jeśli:

- $S \neq \emptyset$
- $\bullet \ A \in S \implies A^C \in S$
- $A_1, A_2, \dots \in S \implies \bigcup_{i \geqslant 1} A_i \in S$

Fact 3. Niech S będzie σ -ciałem podzbiorów Ω i załóżm, że dla pewnego przeliczalnego zbioru indeksów I zachodzi $\forall i \in IA_i \in S$ wówczas:

$$\bigcap_{i \in I} A_i \in S$$

Fact 4. Jeśli S jest skończonym ciałem podzbiorów Ω to S jest σ -ciałem podzbiorów Ω Istotnie, wówczas przeliczalne sumy "redukują się" do sum skończonych

Example 0.0.2. Trywialne sigma ciała:

- $\mathcal{P}(\Omega)$ zbiór potęgowy jest $\sigma\text{-ciałem}$

Example 0.0.3. Ustalmy zbiór Ω . Niech $A \subseteq \Omega, A \neq \emptyset$.

- $S = \{\emptyset, A, A^C, \Omega\}$ jest σ -ciałem.
- Niech \mathcal{F} dowolne σ -ciało zawierające A.

$$A^C \in \mathcal{F}$$

$$A^C \cup A = \Omega \in \mathcal{F}$$

$$A^{C} \in \mathcal{F}$$

$$A^{C} \cup A = \Omega \in \mathcal{F}$$

$$\Omega^{C} = \emptyset \in \mathcal{F} \implies S \subseteq \mathcal{F}$$

Fact 5. Przekrój σ -ciał jest σ -ciałem.