

(Lecture 18 – Particle Filtering: Part I)

Dr. John L. Crassidis

University at Buffalo – State University of New York
Department of Mechanical & Aerospace Engineering
Amherst, NY 14260-4400

johnc@buffalo.edu

http://www.buffalo.edu/~johnc

Particle Filtering (Sequential Monte Carlo Estimation)

"I think that a particle must have a separate reality independent of the measurements. That is an electron has spin, location and so forth even when it is not being measured. I like to think that the moon is there even if I am not looking at it."

Albert Einstein

Einstein may be right in the physics world, but for our particles the measurements are extremely useful (used to compute weights)

Particle Filtering _

- PFs perform sequential Monte Carlo (SMC) estimation
 - Dates back to 1950's!

Hammersley, J.M., and Morton, K.W., "Poor Man's Monte Carlo," *Journal of the Royal Statistical Society*, Vol. 16, 1954, pp. 23-38.

- Most applications used plain sequential importance sampling, which degenerates over time
- We now have the tools and computer power for PFs
- Posterior distributions can't be analytical obtained
 - PFs approximate the continuous posterior distribution using a set of weighted particles
 - Each particle corresponds to a possible value of the state
 - Particles constitute random support of the approximating discrete distribution
 - PFs do not provide measures of uncertainty, such as mean and covariance

 May live 1001- 9005147

3

Monte Carlo Integration (i)

- Simple example: consider $\tilde{\mathbf{y}} = \mathbf{h}(\mathbf{x}) + \mathbf{v}$, and let's say we are given the prior density $p(\mathbf{x})$ and $\mathbf{v} \sim N(\mathbf{0},R)$
 - $p(\tilde{\mathbf{y}})$ is not Gaussian but $p(\tilde{\mathbf{y}}|\mathbf{x}) \sim N(\mathbf{h}(\mathbf{x}), R)$
 - We wish to determine the integral for various reasons

$$G = \int \mathbf{f}(\mathbf{x}) \, p(\mathbf{x}|\tilde{\mathbf{y}}) \, d\mathbf{x}$$

- For example, choosing f(x) = x gives the estimate of x
- Perfect Monte Carlo integration
 - Draw $N\gg 1$ samples $\{\mathbf{x}^{(i)};\,i=1,\ldots,N\}$ from $p(\mathbf{x}|\tilde{\mathbf{y}})$
 - Estimate of G is given by

$$\hat{G} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{f}(\mathbf{x}^{(i)})$$

• Note: This is not a function of $p(\mathbf{x}|\tilde{\mathbf{y}})$, but we must be able to draw from $p(\mathbf{x}|\tilde{\mathbf{y}})$

Monte Carlo Integration (ii)

- If Central Limit Theorem holds (key to choose N!)
 - Error of estimate on the order of $N^{-1/2}$
 - Rate of estimate convergence independent of the dimension of the integrand (samples come from regions important for the integration result)
 - Usual "numerical integration" has rate of convergence decreasing as the dimension increases
 - Bayesian estimation, $p(\mathbf{x}|\tilde{\mathbf{y}})$ is the posterior density
 - Can't draw from this in practice since it's too complicated!!!
- Generate samples from $q(\mathbf{x})$, Importance Density
 - Importance density is similar to $p(\mathbf{x}|\tilde{\mathbf{y}})$
 - If $p(\mathbf{x}|\tilde{\mathbf{y}})/q(\mathbf{x})$ is upper bounded, then

$$G = \int \mathbf{f}(\mathbf{x}) p(\mathbf{x}|\tilde{\mathbf{y}}) \ d\mathbf{x} = \int \mathbf{f}(\mathbf{x}) \frac{p(\mathbf{x}|\tilde{\mathbf{y}})}{q(\mathbf{x})} q(\mathbf{x}) \ d\mathbf{x}$$

• Draw $N \gg 1$ samples $\{\mathbf{x}^{(i)}; i = 1, ..., N\}$ from $q(\mathbf{x})$

母

Importance Sampling (i)

Bayes' rule

$$p(\mathbf{x}|\tilde{\mathbf{y}}) = \frac{p(\tilde{\mathbf{y}}|\mathbf{x}) p(\tilde{\mathbf{x}})}{p(\tilde{\mathbf{y}})} = \frac{p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x})}{\int p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}} \equiv \frac{p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x})}{\text{normalizing constant}}$$

- So, we can evaluate $p(\mathbf{x}|\tilde{\mathbf{y}})$ to within a constant!
- Substituting into G gives

$$G = \int \mathbf{f}(\mathbf{x}) p(\mathbf{x}|\tilde{\mathbf{y}}) \ d\mathbf{x} = \frac{\int \mathbf{f}(\mathbf{x}) \frac{p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) \ d\mathbf{x}}{\int \frac{p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) \ d\mathbf{x}}$$

- Importance sampling uses weighted samples
 - All quantities in the integral can now be calculated
 - Weight the importance of the particles
 - We'll use the same approximation approach as was done for the perfect Monte Carlo integration approach to find an estimate of G

Importance Sampling (ii)

Estimate given by

$$\hat{G} = \frac{N^{-1} \sum_{i=1}^{N} \mathbf{f}(\mathbf{x}^{(i)}) \tilde{\omega}^{(i)}}{N^{-1} \sum_{i=1}^{N} \tilde{\omega}^{(i)}}, \qquad \tilde{\omega}^{(i)} \equiv \frac{p(\tilde{\mathbf{y}}|\mathbf{x}^{(i)}) p(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})}$$

or
$$\hat{G} = \sum_{i=1}^{N} \mathbf{f}(\mathbf{x}^{(i)}) \varpi^{(i)}, \qquad \varpi^{(i)} = \frac{\tilde{\varpi}^{(i)}}{\sum_{j=1}^{N} \tilde{\varpi}^{(i)}}$$

- Note: $\sum_{i=1}^{N} \varpi^{(i)} = 1$ (probablites must equal 1)
- Also

$$p(\tilde{\mathbf{y}}) = \int p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \int \frac{p(\tilde{\mathbf{y}}|\mathbf{x}) p(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) d\mathbf{x} \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\varpi}^{(i)}$$

- Choice of $q(\mathbf{x})$
 - Easiest choice: $q(\mathbf{x}) = p(\mathbf{x})$, which gives (more later on this)

$$\widetilde{\varpi}^{(i)} = p(\widetilde{\mathbf{y}}|\mathbf{x}^{(i)})$$

Simple "Sequential" Example

- Consider $\tilde{y} = e^{-xt} + v$
 - High noise case $\Rightarrow \sigma = 0.01$
 - Low noise case $\Rightarrow \sigma = 0.001$
 - Generate 101 measurements with $\Delta t = 0.1$ seconds
 - Choose 2,000 particles $\Rightarrow N = 2000$
 - True value given by x=2
 - Assume that q(x) = p(x) is a uniform distribution from 0 to 3
 - Draw 2,000 samples from this distribution
 - Weight updated "sequentially" with each new measurement
 - Start with $\varpi_0^{(i)} = 1/N = 0.0005$

$$\varpi_{k+1}^{(i)} = \varpi_k^{(i)} \exp\left[-\frac{(\tilde{y}_k - e^{-x^{(i)}t_k})^2}{2\sigma^2}\right]$$

$$\varpi_{k+1}^{(i)} \leftarrow \frac{\varpi_{k+1}^{(i)}}{\sum_{i=1}^{N} \varpi_{k+1}^{(i)}}$$

Gaussian Particle estimater

$$\hat{x}_k = \sum_{i=1}^N x^{(i)} \varpi_k^{(i)}$$

Code (i)

```
clear
% Truth and Measurements
% High Noise
r=0.01^2;ylimit_movie=[0 0.01];
% Low Noise
%r=0.001^2;ylimit movie=[0 0.1];
t=[0:0.1:10]';m=length(t);
x true=2;
y=exp(-x true*t);
ym=y+sqrt(r)*randn(m,1);
% Particles and Weights
m part=2000;x est=zeros(m,1);
x_particle=3*rand(m_part,1);[x_particle_sort,ix]=sort(x_particle);
w=ones(m part,1)/m part;
```

Code (ii)

```
% Settings for Movie clf clear m_get % Low Noise % set(gca,'xlim',[0 3],'ylim',[0 0.3],'NextPlot','replace','Visible','on') % set(gca,'ytick',[0 0.05 0.1 0.15 0.2 0.25 0.3]); % High Noise set(gca,'xlim',[0 3],'ylim',[0 0.04],'NextPlot','replace','Visible','on') set(gca,'nextplot','replacechildren');
```

Code (iii)

```
% Update Weights and Get Estimate
for i=1:m,
w_nonnorm=w.*exp(-(ym(i)-exp(-x_particle*t(i))).^2/(2*r));
w=w nonnorm/sum(w nonnorm);
x est(i)=sum(x particle.*w);
h=stem(x particle sort,w(ix));
set(gcf,'color',[1 1 1]);
set(gca,'fontsize',16);
m get(:,i)=getframe(gcf);
end
movie2gif(m get,'out.gif','DelayTime',0.1)
% Show Estimate at Final Time
x xest final time=x est(m)
% Plot Results
plot(t,x est,'*')
set(gca,'Fontsize',16);
ylabel('Estimate')
xlabel('Time (Sec)')
```

Code (iv)

```
function movie2gif(mov, gifFile, varargin)
% Movie2Gif ver. 1.0
% Matlab movie to GIF Converter.
0/0
% Syntax: movie2gif(mov, gifFile, prop, value, ...)
% The list of properties is the same like for the command 'imwrite' for the
% file format gif:
0/0
% 'BackgroundColor' - A scalar integer. This value specifies which index in
                the colormap should be treated as the transparent
\frac{0}{0}
                color for the image and is used for certain disposal
%
\frac{0}{0}
                methods in animated GIFs. If X is uint8 or logical,
\frac{0}{0}
                then indexing starts at 0. If X is double, then
                indexing starts at 1.
\frac{0}{0}
\frac{0}{0}
% 'Comment' - A string or cell array of strings containing a comment to be
           added to the image. For a cell array of strings, a carriage
\frac{0}{0}
           return is added after each row.
\frac{0}{0}
```

Code (v)

% Copyright 2007 Nicolae CINDEA

```
% 'DelayTime' - A scalar value between 0 and 655 inclusive, that specifies
            the delay in seconds before displaying the next image.
0/0
\frac{0}{0}
% 'DisposalMethod' - One of the following strings, which sets the disposal
%
               method of an animated GIF: 'leaveInPlace',
\frac{0}{0}
               'restoreBG', 'restorePrevious', or 'doNotSpecify'.
\frac{0}{0}
% 'LoopCount' - A finite integer between 0 and 65535 or the value Inf (the
\frac{0}{0}
            default) which specifies the number of times to repeat the
%
            animation. By default, the animation loops continuously.
            For a value of 0, the animation will be played once. For a
\frac{0}{0}
\frac{0}{0}
            value of 1, the animation will be played twice, etc.
\frac{0}{0}
% 'TransparentColor' - A scalar integer. This value specifies which index
%
                in the colormap should be treated as the transparent
                color for the image. If X is uint8 or logical, then
\frac{0}{0}
                indexing starts at 0. If X is double, then indexing
%
\frac{0}{0}
                starts at 1
0/0 *****************************
```

Code (vi)

```
if (nargin < 2)
 error('Too few input arguments');
end
if (nargin == 2)
  h = waitbar(0, 'Generate GIF file...');
  frameNb = size(mov, 2);
  isFirst = true;
  for i = 1:frameNb
     waitbar((i-1)/frameNb, h);
     [RGB, colMap] = frame2im(mov(i));
     [IND, map] = aRGB2IND(RGB);
     if isFirst
       imwrite(IND, map, gifFile, 'gif');
       isFirst=false;
     else
       imwrite(IND, map, gifFile, 'gif', 'WriteMode', 'append');
     end
  end
  close(h);
end
```

Code (vii)

```
if (nargin > 2)
  h = waitbar(0, 'Generate GIF file...');
  frameNb = size(mov, 2);
  isFirst = true;
  for i = 1:frameNb
     waitbar((i-1)/frameNb, h);
     [RGB, colMap] = frame2im(mov(i));
     [IND, map] = aRGB2IND(RGB);
     if isFirst
       imwrite(IND, map, gifFile, 'gif', varargin{:});
       isFirst=false;
     else
       imwrite(IND, map, gifFile, 'gif', 'WriteMode', 'append', ...
          varargin(:));
     end
  end
  close(h);
end
```

Code (viii)

```
function [X, map] = aRGB2IND(RGB)
% written by Nicolae CINDEA
m = size(RGB, 1); n = size(RGB, 2); X = zeros(m, n);
map(1,:) = RGB(1, 1, :)./255;
for i = 1:m
  for j = 1:n
    RGBij = double(reshape(RGB(i,j,:), 1, 3)./255);
    isNotFound = true;
    k = 0;
    while is Not Found & \& k < size(map, 1)
       k = k + 1;
       if map(k,:) = RGBij
         isNotFound = false;
       end
    end
    if isNotFound, map = [map; RGBij];end
    X(i,j) = double(k);
  end
end
```


Simple Example (i)

True Value is 2

 $x_{est}(m) = 2.0095$

 $x_{est}(m) = 1.9987$

Simple Example (ii)

Multivariable Example

- Consider $\tilde{y} = e^{-x_1 t} \sin(x_2 t) + v$
 - Measurement noise $\Rightarrow \sigma = 0.01$
 - Generate 101 measurements with $\Delta t = 0.1$ seconds
 - Choose 4,000 \times 2 particles $\Rightarrow N = 4000$
 - True value given by $\mathbf{x} = \begin{bmatrix} 1 & 1.5 \end{bmatrix}^T$
 - Assume that $q(\mathbf{x}) = p(\mathbf{x})$ is a uniform distribution from 0 to 3
 - Draw 4,000 × 2 samples from this distribution
 - · Weight updated "sequentially" with each new measurement

- Start with
$$\varpi_0^{(i)}=1/N=0.00025$$

$$\varpi_{k+1}^{(i)} = \varpi_k^{(i)} \exp \left[-\frac{\left(\tilde{y}_k - e^{-x_1^{(i)} t_k} \sin(x_2^{(i)} t_k) \right)^2}{2\sigma^2} \right]^{-1}$$

$$\varpi_{k+1}^{(i)} \leftarrow \frac{\varpi_{k+1}^{(i)}}{\sum_{i=1}^{N} \varpi_{k+1}^{(i)}}$$

Gaussian

$$\hat{\mathbf{x}}_k = \sum_{i=1}^N \mathbf{x}^{(i)} \varpi_k^{(i)}$$

Code (i)

```
clear
% Truth and Measurements
r=0.01^2;ylimit movie=[0 0.1];
t=[0:0.1:10]';m=length(t);
x true=[1;1.5];
y=\exp(-x_true(1))t).*\sin(x_true(2))t;
ym=y+sqrt(r)*randn(m,1);
% Particles and Weights
m part=4000;x est=zeros(m,2);
x particle=3*rand(m part,2);
[x_particle_sort1,ix1]=sort(x_particle(:,1));
[x_particle_sort2,ix2]=sort(x_particle(:,2));
w=ones(m part,1)/m part;
% Settings for Movie
clf
clear m get
set(gca,'xlim',[0 3],'ylim',[0 0.8],'NextPlot','replace','Visible','on')
set(gca,'nextplot','replacechildren');
```

Code (ii)

```
% Update Weights and Get Estimates
for i=1:m,
w nonnorm=w.*exp(-(ym(i)-exp(-x particle(:,1)*t(i)).*sin(x particle(:,2)*t(i))).^2/(2*r);
w=w nonnorm/sum(w nonnorm);
x est(i,:)=sum(x_particle.*[w w]);
h=stem(x particle sort1,w(ix1));
%h=stem(x particle sort2,w(ix2));
set(gcf,'color',[1 1 1])
set(gca,'fontsize',16);
m get(:,i)=getframe(gcf);
end
movie2gif(m get,'out.gif','DelayTime',0.1)
% Show Estimate at Final Time
x xest final time=x est(m,:)
```


Sorted Weights for x_I

Multivariable Example (i)

True Values are [1 1.5]

$$p(x_1^{(i)}|\tilde{y})$$
 with $\sigma = 0.01$

Particle Values

$$x \text{ est}(m,1) = 0.9823$$

$$x \text{ est}(m,1) = 1.5414$$

Particle Values

Multivariable Example (ii)

Estimates

Covariance Estimate

- A Particle filter does not compute covariance
 - Computed as the sample covariance

$$P_k = \sum_{i=1}^{N} \varpi_k^{(i)} \left(\mathbf{x}_k^{(i)} - \hat{\mathbf{x}}_k \right) \left(\mathbf{x}_k^{(i)} - \hat{\mathbf{x}}_k \right)^T$$

Last example

$$P^{\text{mle}} = \begin{bmatrix} 6.2962 \times 10^{-4} & 2.2154 \times 10^{-5} \\ 2.2154 \times 10^{-5} & 1.2705 \times 10^{-3} \end{bmatrix}$$

$$P_{11} = \begin{bmatrix} 5.4594 \times 10^{-4} & 1.9367 \times 10^{-4} \\ 1.9367 \times 10^{-4} & 1.8413 \times 10^{-3} \end{bmatrix}$$

• What happened? Need more particles $\Rightarrow N = 500,000$

$$P_{11} = \begin{bmatrix} 6.2445 \times 10^{-4} & 3.7379 \times 10^{-5} \\ 3.7379 \times 10^{-5} & 1.2333 \times 10^{-3} \end{bmatrix}$$

- Actually needed a lot more particles
 - Signs of the famous "Curse"

Multivariable Example

• Do again with true values [1 0.1] and N = 500,000

$$p(x_1^{(i)}|\tilde{y})$$
 with $\sigma = 0.01$

$$p(x_2^{(i)}|\tilde{y})$$
 with $\sigma = 0.01$

- Highly non-Gaussian ⇒ computed mean ≠ MLE in this case $\hat{\mathbf{x}} = [2.4512 \ 1.0094]^T, \quad \hat{\mathbf{x}}^{\text{mle}} = [1.8934 \ 0.2649]$
- Requires more data points to find estimate because we have a lower frequency sinusoid than before $\Rightarrow m = 1001$ works better

Simple Non-Gaussian Example

- Consider $\tilde{y} = e^{-xt} + v$
 - Noise v is uniform $[-0.01 \ 0.01] \Rightarrow v \sim U[-0.01, 0.01]$
 - Generate 11 measurements with $\Delta t = 1$ second; truth is x = 2
 - Choose 2,000 particles $\Rightarrow N = 2000$
 - Assume that q(x) = p(x) is a uniform distribution from 0 to 3
 - Weight updated "sequentially" with each new measurement
 - Start with $\varpi_0^{(i)}=1/N=0.0005$
 - By the definition of uniform distribution the probability that a point is outside this bound is zero
 - Set weights to zero that have the property

$$|\tilde{y}_k - e^{-x^{(i)}t_k}| > 0.01$$

- The points inside this bound cannot be discriminated; they are equally good
- Compared with the Gaussian distribution, the uniform distribution only has two grades of data: good or bad ⇒ pass or fail

Code (i)

```
clear
% Truth and Measurements
a=0.01;x true=2;
t=[0:1:10]';m=length(t);
y=exp(-x_true*t);
ym=y+a*sign(randn(m,1)).*rand(m,1);
% Particles and Weights
m part=2000;x est=zeros(m,1);ylimit movie=[0 0.1];
x particle=3*rand(m part,1);
w=ones(m_part,1)/m part;
% Settings for Movie
clf
clear m_get
set(gca,'xlim',[0 3],'ylim',[0 0.02],'NextPlot','replace','Visible','on')
set(gca,'nextplot','replacechildren');
```

Code (ii)

```
% Update Weights and Get Estimate
for i=1:m,
w nonnorm = w;
res = ym(i)-exp(-x particle*t(i));
j = find(abs(res)>a);
w nonnorm(j) = 0;
w = w nonnorm/sum(w nonnorm);
x = st(i) = sum(x = particle.*w);
h = stem(x particle, w);
set(gcf,'color',[1 1 1])
set(gca,'fontsize',16);
m get(:,i)=getframe(gcf);
end
movie2gif(m get,'out.gif','DelayTime',1)
% Show Estimate at Final Time
x est(m)
```


Non-Gaussian Example (i)

$$x_{est}(m) = 2.0110$$

Non-Gaussian Example (ii)

Some notes

- When a is too small and m is not too large, it is possible that all the initial points are outside the interval with nonzero likelihood
 - Then all the weights vanish after a single update
- Consider the simpler equation $\tilde{y} = e^{-x} + v$ with x = 2
 - If the magnitude of v is smaller than 1×10^{-4} , then the particles with distance from x larger than 1×10^{-3} (approximately) would be assigned zero weight
 - Because the prior distribution of x is in [0, 3], $2 \times 10^{-3} / 3$ is the probability that a particle drawn from the uniform distribution falls in the small neighborhood of the true value
 - For 2,000 particles, only about 2 particles can have nonzero weights
 - As a keeps decreasing, the problem will become much more severe
- The Particle filter is finite and discrete
 - It does not seem to be as good at very small or very large numbers since it is based on Monte Carlo simulation

Optimal Filtering

Truth model

$$\mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k)$$
 $\mathbf{x}_0 \sim p(\mathbf{x}_0), \quad \mathbf{w}_k \sim p(\mathbf{w}_k)$ $\tilde{\mathbf{y}}_k = \mathbf{h}_k(\mathbf{x}_k, \mathbf{v}_k)$ $\mathbf{v}_k \sim p(\mathbf{v}_k)$

- Objective of optimal filtering
 - To construct posterior probability distribution $p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k)$ where $\tilde{\mathbf{Y}}_k = \{\tilde{\mathbf{y}}_1, \, \tilde{\mathbf{y}}_2, \, \dots, \, \tilde{\mathbf{y}}_k\}$
- Recursion of optimal filtering

$$\left\{ \begin{array}{c} p(\mathbf{x}_{k}|\tilde{\mathbf{Y}}_{k}) \\ p(\mathbf{x}_{k+1}|\mathbf{x}_{k}) \\ p(\tilde{\mathbf{y}}_{k+1}|\mathbf{x}_{k+1}) \end{array} \right\} \Rightarrow p(\mathbf{x}_{k+1}|\tilde{\mathbf{Y}}_{k+1}) ?$$

由

Approximate Filtering (i)

• Let $\mathbf{X}_k = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}$; joint posterior approximation is

$$p(\mathbf{X}_k|\tilde{\mathbf{Y}}_k) \approx \sum_{i=1}^N \varpi_k^{(i)} \delta(\mathbf{X}_k - \mathbf{X}_k^{(i)}), \quad \sum_{i=1}^N \varpi_k^{(i)} = 1$$

• Say $\mathbf{X}_k^{(i)}$ are drawn from an importance density $q(\mathbf{X}_k| ilde{\mathbf{Y}}_k)$, then

$$\varpi_k^{(i)} \propto \frac{p(\mathbf{X}_k^{(i)}|\tilde{\mathbf{Y}}_k)}{q(\mathbf{X}_k^{(i)}|\tilde{\mathbf{Y}}_k)}$$
(1)

• We now choose the importance density at time t_{k+1} to be factorized by correct time

$$q(\mathbf{X}_{k+1}|\tilde{\mathbf{Y}}_{k+1}) = q(\mathbf{x}_{k+1}|\mathbf{X}_k, \tilde{\mathbf{Y}}_{k+1}) q(\mathbf{X}_k|\tilde{\mathbf{Y}}_k)$$
(2)

- Now we can obtain samples $\mathbf{X}_{k+1}^{(i)} \sim q(\mathbf{X}_{k+1}|\tilde{\mathbf{Y}}_{k+1})$ by augmenting each of the existing samples $\mathbf{X}_k^{(i)} \sim q(\mathbf{X}_k|\tilde{\mathbf{Y}}_k)$ with the new state $\mathbf{x}_{k+1}^{(i)} \sim q(\mathbf{x}_{k+1}|\mathbf{X}_k,\tilde{\mathbf{Y}}_{k+1})$
- Use Bayes' rule to derive weights as before

Approximate Filtering (ii)

Formal solution (Bayes' formula)

$$p(\mathbf{X}_{k+1}|\tilde{\mathbf{Y}}_{k+1}) = \frac{p(\tilde{\mathbf{y}}_{k+1}|\mathbf{X}_{k+1},\tilde{\mathbf{Y}}_{k}) p(\mathbf{X}_{k+1}|\tilde{\mathbf{Y}}_{k})}{p(\tilde{\mathbf{y}}_{k+1}|\tilde{\mathbf{Y}}_{k})}$$

$$= \frac{p(\tilde{\mathbf{y}}_{k+1}|\mathbf{X}_{k+1},\tilde{\mathbf{Y}}_{k}) p(\mathbf{x}_{k+1}|\mathbf{X}_{k},\tilde{\mathbf{Y}}_{k}) p(\mathbf{X}_{k}|\tilde{\mathbf{Y}}_{k})}{p(\tilde{\mathbf{y}}_{k+1}|\tilde{\mathbf{Y}}_{k})}$$

$$= \frac{p(\tilde{\mathbf{y}}_{k+1}|\mathbf{X}_{k+1},\tilde{\mathbf{Y}}_{k}) p(\mathbf{x}_{k+1}|\mathbf{X}_{k})}{p(\tilde{\mathbf{y}}_{k+1}|\tilde{\mathbf{Y}}_{k})} p(\mathbf{X}_{k}|\tilde{\mathbf{Y}}_{k})$$

$$\propto p(\tilde{\mathbf{y}}_{k+1}|\mathbf{x}_{k+1}) p(\mathbf{x}_{k+1}|\mathbf{x}_{k}) p(\mathbf{X}_{k}|\tilde{\mathbf{Y}}_{k})$$

$$\propto p(\tilde{\mathbf{y}}_{k+1}|\mathbf{x}_{k+1}) p(\mathbf{x}_{k+1}|\mathbf{x}_{k}) p(\mathbf{X}_{k}|\tilde{\mathbf{Y}}_{k})$$
(3)

• Substituting Eqs. (2) and (3) into Eq. (1) at time t_{k+1} gives

$$\varpi_{k+1}^{(i)} \propto \frac{p(\tilde{\mathbf{y}}_{k+1}|\mathbf{x}_{k+1}^{(i)}) p(\mathbf{x}_{k+1}^{(i)}|\mathbf{x}_{k}^{(i)}) p(\mathbf{X}_{k}^{(i)}|\tilde{\mathbf{Y}}_{k}^{(i)})}{q(\mathbf{x}_{k+1}^{(i)}|\mathbf{X}_{k}^{(i)}, \tilde{\mathbf{Y}}_{k+1}) q(\mathbf{X}_{k}^{(i)}|\tilde{\mathbf{Y}}_{k})} \\
= \varpi_{k}^{(i)} \frac{p(\tilde{\mathbf{y}}_{k+1}|\mathbf{x}_{k+1}^{(i)}) p(\mathbf{x}_{k+1}^{(i)}|\mathbf{x}_{k}^{(i)})}{q(\mathbf{x}_{k+1}^{(i)}|\mathbf{X}_{k}^{(i)}, \tilde{\mathbf{Y}}_{k+1})}$$

Sequential Importance Sampling

- Assume that $q(\mathbf{x}_{k+1}|\mathbf{X}_k, \tilde{\mathbf{Y}}_{k+1}) = q(\mathbf{x}_{k+1}|\mathbf{x}_k, \tilde{\mathbf{y}}_{k+1})$
 - Useful since posterior $p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k)$ is required for filtering
 - Only $\mathbf{x}_k^{(i)}$ need to be stored
 - Weight is given by

$$\varpi_{k+1}^{(i)} = \varpi_k^{(i)} \frac{p(\tilde{\mathbf{y}}_{k+1} | \mathbf{x}_{k+1}^{(i)}) p(\mathbf{x}_{k+1}^{(i)} | \mathbf{x}_k^{(i)})}{q(\mathbf{x}_{k+1}^{(i)} | \mathbf{x}_k^{(i)}, \tilde{\mathbf{y}}_{k+1})}$$

Posterior density is given by

$$p(\mathbf{x}_k | \tilde{\mathbf{Y}}_k) \approx \sum_{i=1}^N \varpi_k^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)})$$

- As $N \to \infty$ this approximation becomes exact!
- Approach is known as Sequential Importance Sampling (SIS)
 - Basis for all Particle filtering approaches

SIS Pseudocode

$$[\{\mathbf{x}_{k+1}^{(i)}, \, \varpi_{k+1}^{(i)}\}_{i=1}^{N}] = SIS[\{\mathbf{x}_{k}^{(i)}, \, \varpi_{k}^{(i)}\}_{i=1}^{N}, \, \tilde{\mathbf{y}}_{k+1}]$$

- FOR i = 1:N
 - Draw $\mathbf{x}_{k+1}^{(i)} \sim q(\mathbf{x}_{k+1}|\mathbf{x}_k^{(i)}, \tilde{\mathbf{y}}_{k+1})$
 - Evaluate non-normalized weights

$$\tilde{\omega}_{k+1}^{(i)} = \omega_k^{(i)} \frac{p(\tilde{\mathbf{y}}_{k+1} | \mathbf{x}_{k+1}^{(i)}) p(\mathbf{x}_{k+1}^{(i)} | \mathbf{x}_k^{(i)})}{q(\mathbf{x}_{k+1}^{(i)} | \mathbf{x}_k^{(i)}, \tilde{\mathbf{y}}_{k+1})}$$

- END FOR
- Calculate total weight $\varpi_{\text{tot}} = \sum_{i=1}^{N} \tilde{\varpi}_{k+1}^{(i)}$
- FOR i = 1:N
 - Normalize: $\varpi_{k+1}^{(i)} = \tilde{\varpi}_{k+1}^{(i)} / \varpi_{\text{tot}}$
- END FOR

Estimates

- State Estimate and Covariance
 - State Estimate

$$\hat{\mathbf{x}}_k = \sum_{i=1}^N \varpi_k^{(i)} \mathbf{x}_k^{(i)}$$

Covariance (not needed for PF algorithm)

$$P_k = \sum_{i=1}^{N} \varpi_k^{(i)} \left(\mathbf{x}_k^{(i)} - \hat{\mathbf{x}}_k \right) \left(\mathbf{x}_k^{(i)} - \hat{\mathbf{x}}_k \right)^T$$

Degeneracy Problem

- The degeneracy phenomenon
 - It can be shown that the variance of the importance weights can only increase over time
 - After a certain number of time steps, all but one particle will have negligible weight
 - Unfortunately impossible to avoid!
- Measure of degeneracy
 - Effective sample size

$$N_{\text{eff}} = \frac{1}{\sum_{i=1}^{N} (\varpi_k^{(i)})^2}$$

- We can easily show that $1 \le N_{\rm eff} \le N$
 - $N_{\rm eff} = N \Rightarrow$ uniform weights (all are equal to 1/N)
 - $N_{\rm eff} = 1 \Rightarrow$ one weight is equal to 1 (others are zero)
- Choose a threshold $N_{\rm eff} < \epsilon \;$ to indicate action is needed
 - Usual action is resampling

- Resampling algorithms
 - Basic idea: to discard particles with small weights and multiply particles with large weights
 - Maps random measure $\{\mathbf{x}_k^{(i)}, \varpi_k^{(i)}\} \Rightarrow$ random measure $\{\mathbf{x}_k^{(i)*}, 1/N\}$
 - New set formed by resampling (with replacement) N times from an approximate discrete representation $p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k)$

$$p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k) \approx \sum_{i=1}^N \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)})$$

- So $P\{\mathbf{x}_k^{(i)*}=\mathbf{x}_k^{(i)}\}=arpi_k^{(i)}$
- Gives an independent and identically distributed (i.i.d.) sample from this pdf
 - Therefore, the weights must be equal
- Selection is based on the cumulative sum of weights (CSW)

4

Resampling (ii)

 $u_i \sim U[0,\,1]$ maps into index j; since $\varpi_k^{(j)}$ has a high value, its corresponding particle has a good chance of being selected and multiplied

Resampling Schemes

- Direct implementation
 - Generate N i.i.d. variables from a uniform distribution
 - Sort these in ascending order
 - Compare them with the cumulative sum of normalized weights
 - Complexity is $\mathcal{O}(N \ln(N))$
- Many efficient approaches exist though $\approx \mathcal{O}(N)$
 - Stratified Sampling
 - Residual Sampling
 - Systematic Sampling (shown here)
 - Simple to implement
 - Minimizes the Monte Carlo variation

Cappé, O., Douc, R., and Moulines, E., "Comparison of Resampling Schemes for Particle Filtering," *Fourth International Symposium on Image and Signal Processing and Analysis (ISPA)*, Zagreb, Croatia, Sept. 2005.

Resampling Pseudocode

$$[\{\mathbf{x}_k^{(j)*}, \, \varpi_k^{(j)}, \, i^{(j)}\}_{i=1}^N] = \text{RESAMPLE}[\{\mathbf{x}_k^{(i)}, \, \varpi_k^{(i)}\}_{i=1}^N]$$

- Initialize the CSW: $c_1 = \varpi_k^{(1)}$
- FOR i = 2: N
 - Construct CSW: $c_i = c_{i-1} + \varpi_i^{(i)}$
- END FOR
- Start at i = 1 and draw $u_1 \sim U[0, N^{-1}]$
- FOR j = 1 : N
 - Move along the CSW: $u_j = u_1 + N^{-1}(j-1)$
 - WHILE $u_j > c_i$, i = i + 1, END WHILE
 - New Sample and Weight: $\mathbf{x}_k^{(j)*} = \mathbf{x}_k^{(i)}, \ \varpi_k^{(j)} = N^{-1}; \text{ Parent: } i^{(j)} = i$
- END FOR

MATLAB Code (i)

```
function [x_resamp,w_resamp,index]=resample_pf(x_particle,w_particle);
% Get Length of Particles
n=length(x particle);
% Cumulative Sum of Particles
w particle=w particle(:);
c=cumsum(w particle);
% Compute u Vector
u=zeros(n,1);
u(1)=inv(n)*rand(1);
u(2:n)=u(1)+inv(n)*(1:n-1)';
% Pre-allocate Index
index=zeros(n,1);
```

MATLAB Code (ii)

```
% Compute Index for Resampling
i=1;
for j=1:n
   while u(j)>c(i)
        i=i+1;
   end
   index(j)=i;
end

% Resampled Data
x_resamp=x_particle(index,:);
w_resamp=inv(n)*ones(n,1);
```

Resampling

- Note: calculate estimates before resampling!
- Resampling reduces degeneracy... BUT
 - Limits opportunity to parallelize implementation
 - All particle must be combined
 - Particles with high weights are statistically selected many times
 - Leads to loss of diversity since resultant sample will contain many repeated points ⇒ known as Sample Impoverishment
 - Severe in the case of small process noise
 - Other problems too
- Many methods to overcome sample impoverishment
 - Markov Chain Monte Carlo (MCMC)
 - Sound theoretical foundations
 - Regularized PF
 - Found to improve performance despite a less rigorous derivation

Regularized PF (i)

- Resamples from a continuous approximation of $p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k)$
 - Effectively "jitters" the resampled values
 - Samples are drawn from

$$p(\mathbf{x}_k|\tilde{\mathbf{Y}}_k) \approx \sum_{i=1}^N \varpi_k^{(i)} \frac{1}{h^n} K\left(\frac{\mathbf{x}_k - \mathbf{x}_k^{(i)}}{h}\right)$$

- $K(\cdot)$ is rescaled kernel density and h is the bandwidth
- Kernel density is a symmetric PDF

$$\int \mathbf{x} K(\mathbf{x}) \ d\mathbf{x} = \mathbf{0}, \quad \int ||\mathbf{x}||^2 K(\mathbf{x}) \ d\mathbf{x} < \infty$$

- Optimal bandwidth is chosen to minimize the meanintegrated square-error between true posterior and the approximated one shown above
- Note: kernel approximation becomes increasingly less appropriate as the dimension of the state increases

Regularized PF (ii)

- For equally spaced weights, optimal choice is given by Epanechnikov kernel (not shown here)
 - Can determine the optimal h when the underlying density is Gaussian with unit covariance
 - Can still be used in general case ⇒ suboptimal filter
- Reduce computational load by using a Gaussian kernel
 - Optimal bandwidth is given by

$$h_{\text{opt}} = \left(\frac{4}{n+2}\right)^{\frac{1}{n+4}} N^{-\frac{1}{n+4}}$$

• After resampling
$$\mathbf{x}_k^{(j)*} \leftarrow \mathbf{x}_k^{(j)*} + h_{\mathrm{opt}} D_k \, \mathbf{g}, \quad \mathbf{g} \sim N(\mathbf{0}, I_{n \times n})$$

$$D_k D_k^T = P_k = \sum_{i=1}^N \varpi_k^{(i)} \left(\mathbf{x}_k^{(i)} - \hat{\mathbf{x}}_k \right) \left(\mathbf{x}_k^{(i)} - \hat{\mathbf{x}}_k \right)^T$$

- Can use Cholesky decomposition to determine D_k
- Note: the empirical covariance is computed before resampling

