Math 835 Homework 4

Theo Koss

September 2024

Chapter 13

Section 4

1. Determine the splitting field and its degree over \mathbb{Q} for $x^4 - 2$.

4 roots:
$$x = \{\pm\sqrt[4]{2}, \pm i\sqrt[4]{2}\}$$

Field: $\mathbb{Q}(\sqrt[4]{2}, i)$ has degree

$$[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})] \cdot [\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4 \cdot 2 = 8$$

Minimal polynomial of $\sqrt[4]{2}$ is $x^4 - 2$, minimal polynomial of i is $x^2 + 1$.

2. Determine the splitting field and its degree over \mathbb{Q} for $x^4 + 2$.

4 roots:
$$x = \{\pm \sqrt[4]{-2}, \pm i \sqrt[4]{-2}\}$$

Field: $\mathbb{Q}(\sqrt[4]{-2},i)$ has degree

$$[\mathbb{Q}(\sqrt[4]{-2},i):\mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{-2},i):\mathbb{Q}(\sqrt[4]{-2})] \cdot [\mathbb{Q}(\sqrt[4]{-2}):\mathbb{Q}] = 4 \cdot 2 = 8$$

Minimal polynomial of $\sqrt[4]{-2}$ is x^4+2 , minimal polynomial of i is x^2+1 .

3. Determine the splitting field and its degree over \mathbb{Q} for $x^4 + x^2 + 1$.

Let
$$t = x^2$$
, $t^2 + t + 1 = 0$ Quadratic formula: $t = \frac{-1 \pm \sqrt{-3}}{2}$

Notice $y = -(x^2)$ also has $x^4 + x^2 + 1 = 0 \iff y^2 - y + 1 = 0$. So quadratic formula again,

$$y^2 - y + 1 = 0 \implies y = \frac{1 \pm \sqrt{-3}}{2}$$

So the 4 roots are

$$x = \{t, y\} = \left\{\frac{-1 \pm \sqrt{-3}}{2}, \frac{1 \pm \sqrt{-3}}{2}\right\}$$

So we only need to adjoin $\sqrt{-3}$, which has minimal polynomial x^2+3 , so $[\mathbb{Q}(\sqrt{-3}):\mathbb{Q}]=2$, need only a quadratic extension.