Edge Colouring

Jun Eeo

Mapping c : E→S, $uv, vt \in E \Rightarrow c(uv) \neq c(vt)$ ∆=3

Vizing's Theorem

$$\triangle \leq \chi' \leq \triangle + 1$$
Class 1 Class 2

Determining if G is Class 1 or 2 is NP-hard in general!

Project Aim

"Do Class 2 graphs possess any common sub-structures?"

Deliverables

Basic:

- B.1: Implement Misra-Gries heuristic. (✓)
- B.2: Implement Vizing heuristic (by Januario & Urrutia). (✓)
- B.3: Duplicate Januario & Urrutia's results (B1 vs B2). (✓)
- **B.4:** Perform experimental confirmation of Erdos & Wilson's results. (✓)

B.1 MG Heuristic B.2 VH HeuristicB.3 VH vs MG

B.4 Random graphs

- Constructive proofs of Vizing's Theorem.
- Januario & Urrutia's idea: try △ colours first, fall back to △+1.
- Correctness tested on multiple graph families.

Vizing vs Misra-Gries Heuristic

B.1 MG Heuristic B.2 VH Heuristic B.3 VH vs MG B.4 Random graphs

Instance	Δ	VH colours used	MG colours used
le450_15a	99	99	99
le450_15c	139	139	140
myciel3	5	5	6
myciel4	11	11	12

We found the same results!

Random Graphs

B.1 MG Heuristic B.2 VH Heuristic B.3 VH vs MG **B.4 Random graphs**

Erdos-Renyi model:

G(n, p)

n = # of nodes

p = probability of an edge between two distinct nodes

Erdos & Wilson:

For $G(n, \frac{1}{2})$: as $n \rightarrow \infty$, probability that graph is Class $1 \rightarrow 1$.

B.1 MG Heuristic

B.1 MG HeuristicB.2 VH HeuristicB.3 VH vs MGB.4 Random graphs

Behzad et al.:

$$\chi'(K_n) = \begin{cases} n-1 & \text{if } n \text{ is even} \\ n & \text{otherwise} \end{cases}$$

Complete graph on n vertices (All nodes linked to each other)

Deliverables

Intermediate

- I.1: Investigate case Δ=5 of Hilton Zhao Conjecture. (✓)
- I.2: Find bad cores. (✓)
- I.3: Implement counting-based heuristic. (✓)

I.1 HZ conjecture

I.2 Bad cores

Hilton Zhao Conjecture

Core of a graph = induced subgraph of nodes with degree Δ (blue nodes)

Hilton Zhao Conjecture

Graphs with $\Delta(\text{core}) = 2$ and $\Delta \ge 4$ are Class 2 iff $|E| > \Delta L|V|/2 J$ (overfull).

 Δ =4 is proven by Cranston & Rabern.

Our experiments (Δ =5):

Bad Cores

Graph **H** is a **bad core** if ∃ G s.t.:

- 1. G's core is H,
- 2. $|E(G)| \le \Delta L|V(G)|/2J$ (underfull),
- 3. G is **Class 2**.

Bad Cores

One family:

- n=5, $C_3 \times 2P_1$
- n=7, C₄ × 3P₁
 n=9, C₅ × 4P₁
- ...(?)

I.1 HZ conjecture I.2 Bad cores I.3 CB heuristic

Counting Based Heuristic (Ehrenfeucht et al.)

Deliverables

Advanced

For Hilton Zhao conjecture and Bad Cores:

- A.1: Use Hamilton supercomputer to get more results. (~WIP)
- A.2: Deduce theoretical conjectures, and try to prove them. (~WIP)

Thanks for listening!