

Suites réelles

Spécialité Maths

Définition

Une suite (u_n) peut-être définie :

 \Rightarrow de manière **explicite** : $u_n = f(n)$

$$\Rightarrow \text{ par } \mathbf{r\acute{e}currence}: \left\{ egin{array}{l} u_0 \\ u_{n+1} = f(u_n) \end{array} \right.$$

Variations

À partir du rang n_0 , la suite (u_n) est :

- ✓ monotone si à partir du rang n_0 , (u_n) ne change pas de variation (strictement si les inégalités sont strictes)
- ✓ croissante si $\forall n \in \mathbb{N}, n \ge n_0 : u_{n+1} \ge u_n$
- ✓ décroissante si $\forall n \in \mathbb{N}, n \ge n_0 : u_{n+1} \le u_n$
- \checkmark constante si $\forall n \in \mathbb{N}, n \geqslant n_0 : u_{n+1} = u_n$

Méthode

Pour déterminer le sens de variation de (u_n) :

- ✓ comparer directement u_n et u_{n+1}
- ✓ étudier le signe de $u_{n+1} u_n$ ✓ comparer $\frac{u_{n+1}}{u_n}$ avec 1
- ✓ étudier les variations d'une fonction $f(n) = u_n$
- ✓ utiliser un raisonnement par récurrence

Suites bornées

La suite $(u_n)_{n\in\mathbb{N}}$ est :

- \Rightarrow majorée $\Leftrightarrow \exists M \in \mathbb{R} \ tq \ \forall n \in \mathbb{N}, u_n \leqslant M$
- \Rightarrow minorée $\Leftrightarrow \exists m \in \mathbb{R} \ tq \ \forall n \in \mathbb{N}, u_n \geqslant m$
- ♦ bornée si elle est majorée et minorée

Propriété:

- ♦ suite décroissante = majorée par son 1er terme
- ⇒ suite croissante = minorée par son 1er terme

Raisonnement par récurrence

But : montrer qu'une propriété $\mathcal{P}(n)$ est vraie pour tout entier $n \ge n_0$

- ♦ Initialisation : on vérifie que la propriété est vraie au
- ♦ **Hérédité** : on montre que si la propriété est vraie à un rang n fixé, alors elle est encore vraie au rang n+1

Conclusion : $\forall n \in \mathbb{Z}, n \geqslant n_0 : \mathcal{P}(n)$ est vraie

Suites arithmétiques

Récurrence : $u_{n+1} = u_n + r$

Explicite: $u_n = u_0 + nr$ ou $u_n = u_p + (n - p)r$

Somme : nb termes $\times \frac{1 \text{er terme} + \text{dernier terme}}{2}$

 $S_n = u_0 + \dots + u_n = (n+1) \times \frac{u_0 + u_n}{2}$

Suites géométriques

Récurrence : $v_{n+1} = q \times v_n$

Explicite: $v_n = u_0 \times q^n$ ou $v_n = v_p \times q^{(n-p)}$

Somme : 1er terme $\times \frac{1 - q^{\text{nb termes}}}{1 - q}$

 $S_n = 1 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Propriétés

Arithmétique si : $u_{n+1} - u_n = r$, $r \in \mathbb{R}$

sinon Mq : $u_2 - u_1 \neq u_1 - u_0$

1er terme : $u_0 = u_5 - 5r$ Raison : $u_9 = u_5 + 4r$

Propriétés

Géométrique si : $v_n \neq 0$ et $\frac{v_{n+1}}{v_n} = q$, $q \in \mathbb{R}$

 $sinon Mq: \frac{v_1}{v_0} \neq \frac{v_2}{v_1}$

Raison : $v_7 = v_4 \times q^3$ 1er terme : $v_4 = v_0 \times q^4$ $q^3 = \frac{v_7}{r}$ $v_0 = \frac{v_4}{q^4}$

 $q^3 = \frac{v_7}{v_5}$ $q = \sqrt[3]{q^3}$