Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Seungmin Lee (profile2697@gmail.com; 2013-11420), Dept. of Computer Science and Engineering, Seoul National University

1. Motivation

Despite the tremendous advances in deep learning, there exists only a limited number of research on effective interpreting methods. The complexity of models is the main reason for the limitation. Additionally, because most of the models are trained on low-level features such as images rather than human-interpretable concepts, devising a useful interpreting tool that uses high-level concepts is difficult. This paper tries to solve these problems by suggesting a new interpreting method called *Concept Activation Vectors* (CAV).

CAV is a vector that represents a high-level concept. To calculate CAV, the first thing to do is defining a high-level concept using images. For example, the pictures of zebras can reveal the concept of "striped." After that, train a linear classifier that discriminates the concept's images and random images on the target model's intermediate feature space. Then, the orthogonal vector of the decision boundary is the CAV.

2. Notations

Assume there is a model that inputs an image $\mathbf{x} \in \mathbb{R}^n$, and the model consists of an encoder $f_l : \mathbb{R}^n \to \mathbb{R}^m$ and a decoder $h_{l,k} : \mathbb{R}^m \to \mathbb{R}$ mapping features to k-th class.

3. Proposed Method

In this section, the details of the proposed method will be explained.

3.1. Define a high-level concept of interest

As mentioned before, the concept of interest is defined using a set of images. Therefore, the user can specify a new concept without knowledge of ML. Formally, a concept of interest C (e.g., dotted) is revealed by $\mathbf{x} \in P_C$ (e.g., photos of dalmatian) and $\mathbf{x} \in N$ (e.g., randomly selected images such as zebra).

3.2. Calculate CAVs

After defining a new concept, train a linear classifier discriminating features of P_C and N. Formally, the classifier classifies $\{f_l(\mathbf{x}): \mathbf{x} \in P_C\}$ and $\{f_l(\mathbf{x}): \mathbf{x} \in N\}$. Then, the normal vector of the decision boundary $\mathbf{v}^l{}_C \in \mathbb{R}^m$ becomes the CAV of the concept C.

3.3. Interprete using the CAVs: Conceptual Sensitivity

Using CAVs, the model's sensitivity of concepts can be measured. For this, this paper adopts directional derivatives. More specifically, the sensitivity of class k to the concept C at layer l $(S_{C,k,l})$ is defined using the directional derivative as follows:

$$S_{C,k,l}(\mathbf{x}) = \lim_{\epsilon \to 0} \frac{h_{l,k}(f_l(\mathbf{x}) + \epsilon \mathbf{v}^l{}_C) - h_{l,k}(f_l(\mathbf{x}))}{\epsilon}$$
(1)
= $\nabla h_{l,k}(f_l(\mathbf{x})) \cdot \mathbf{v}^l{}_C$

This equation represents how fastly confidence will increase if the concept is added. Thus, it can be interpreted as the conceptual sensitivity.

3.4. Testing with CAVs (TCAV)

The method for measuring conceptual sensitivity can be extended to the entire images of a class. This paper defines this measurement called *Testing with CAVs (TCAV)* as follows:

$$TCAV_{C,k,l} = \frac{|\{\mathbf{x} : \mathbf{x} \in X_k \text{ and } S_{C,k,l} > 0\}|}{|X_k|}$$
 (2)

where X_k is the entire images of a class k. TCAVs can be used for measuring global conceptual sensitivities of the model rather than a single example.

4. Results

This paper has conducted experiments such as changing layer l, the alignments between the method and human intuition (sort images using various concepts' CAVs).

5. Personal Memo

I think the proposed method is simple and easy to use. Defining a concept using images seems a practical idea. However, I wonder whether a linear classifier can always be trainable. If the model's task and a concept are not aligned well, the linear classifier can not be well trained.