Intégration sur un intervalle quelconque

Intégrabilité

Exercice 1 [02349] [Correction]

Étudier l'existence des intégrales suivantes :

(a)
$$\int_0^{+\infty} \frac{t e^{-\sqrt{t}}}{1+t^2} dt$$
 (c) $\int_0^{+\infty} \frac{dt}{e^t - 1}$

(c)
$$\int_0^{+\infty} \frac{\mathrm{d}t}{\mathrm{e}^t - 1}$$

(e)
$$\int_0^{+\infty} e^{-t \arctan t} dt$$

(b)
$$\int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$$
 (d) $\int_0^{+\infty} e^{-(\ln t)^2} dt$

(d)
$$\int_0^{+\infty} e^{-(\ln t)^2} dt$$

(f)
$$\int_0^{+\infty} t + 2 - \sqrt{t^2 + 4t + 1} \, dt$$

Exercice 2 [03385] [Correction]

(a) Étudier l'intégrabilité sur $]1;+\infty[$ de

$$f(x) = \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}}.$$

(b) Montrer

$$\int_2^3 f(x) \, \mathrm{d}x \le \frac{\ln 3}{2}.$$

Exercice 3 [03221] [Correction]

Étudier l'existence de

$$\int_0^{+\infty} \ln(\operatorname{th} t) \, \mathrm{d}t.$$

Exercice 4 [00661] [Correction]

Montrer que les fonctions $t \mapsto \sin t$ et $t \mapsto \frac{\sin t}{t}$ ne sont pas intégrables sur $[0; +\infty[$.

Exercice 5 [03206] [Correction]

Soit $f: [1; +\infty[\to \mathbb{R} \text{ continue vérifiant}]$

$$\forall x, a \ge 1, 0 \le f(x) \le \frac{a}{x^2} + \frac{1}{a^2}.$$

La fonction f est-elle intégrable sur $[1; +\infty]$?

Exercice 6 [03441] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R}]]$ une fonction continue, positive et décroissante.

On pose $g: [0; +\infty[\to \mathbb{R} \text{ donn\'ee par }$

$$g(x) = f(x)\sin x$$
.

Montrer que les intégrabilités de f et de q sont équivalentes.

Exercice 7 [03627] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue et positive. On suppose}]$

$$\frac{f(x+1)}{f(x)} \xrightarrow[x \to +\infty]{} \ell \in [0;1[.$$

Déterminer la nature de $\int_0^{+\infty} f(t) dt$.

Exercice 8 [03442] [Correction]

Soit $f: [0;1] \to \mathbb{R}$ donnée par

$$f(x) = x^2 \cos(1/x^2)$$
 si $x \in [0, 1]$ et $f(0) = 0$.

Montrer que f est dérivable sur [0;1] mais que sa dérivée f' n'est pas intégrable sur [0;1].

Exercice 9 [01770] [Correction]

Soit g définie sur \mathbb{R}_+^* par

$$g(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

où f est continue, de carré intégrable sur \mathbb{R}_+ .

- (a) Étudier le prolongement par continuité de g en 0.
- (b) Exprimer q'(x) en fonction de f(x) et de q(x) pour x > 0.
- (c) Pour 0 < a < b, montrer que

$$\int_{a}^{b} g^{2}(t) dt = 2 \int_{a}^{b} f(t)g(t) dt + ag^{2}(a) - bg^{2}(b)$$

puis montrer que

$$\sqrt{\int_{a}^{b} g^{2}(t) dt} \leq \sqrt{\int_{0}^{+\infty} f^{2}(t) dt} + \sqrt{ag^{2}(a) + \int_{0}^{+\infty} f^{2}(t) dt}.$$

(d) Étudier la nature de

$$\int_0^{+\infty} g^2(t) \, \mathrm{d}t.$$

Intégrabilité dépendant de paramètres

Exercice 10 [00660] [Correction]

Énoncer une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}$ pour l'existence de

$$\int_0^{+\infty} \frac{t - \sin t}{t^{\alpha}} \, \mathrm{d}t.$$

Exercice 11 [03705] [Correction]

(a) a désigne un réel strictement supérieur à -1. En posant $x = \tan t$, montrer

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)} = \frac{\pi}{2\sqrt{1+a}}.$$

(b) Donner en fonction de $\alpha > 0$, la nature de la série

$$\sum \int_0^{\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}.$$

(c) Même question pour

$$\sum \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + t^{\alpha} \sin^2(t)}.$$

(d) Donner la nature de l'intégrale

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^\alpha \sin^2(t)}.$$

Intégrabilité et comportement asymptotique

Exercice 12 [03440] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1]$.

On suppose que f^2 et f'^2 sont intégrables. Déterminer la limite de f en $+\infty$.

Exercice 13 [03231] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ une fonction continue par morceaux.}]$

On suppose que f est intégrable. Montrer

$$\int_{x}^{x+1} f(t) \, \mathrm{d}t \xrightarrow[x \to +\infty]{} 0.$$

Exercice 14 [00663] [Correction]

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue, décroissante et intégrable sur \mathbb{R}_+ .

- (a) Montrer que f tend vers zéro en $+\infty$.
- (b) Montrer que xf(x) tend vers zéro quand $x \to +\infty$
- (c) Si on supprime l'hypothèse décroissante, déterminer un exemple de fonction f continue et intégrable sur \mathbb{R}_+ telle que f ne tend pas vers zéro en $+\infty$.

Exercice 15 [03238] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue par morceaux et intégrable.}]$ Montrer qu'il existe une suite (x_n) de réels positifs vérifiant

$$x_n \to +\infty$$
 et $x_n f(x_n) \to 0$.

Exercice 16 [02829] [Correction]

Donner un exemple de $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+)$ intégrable et non bornée.

Exercice 17 [00572] [Correction]

Soit $f \in \mathcal{C}^2([0; +\infty[, \mathbb{R})])$. On suppose que f et f'' sont intégrables.

- (a) Montrer que $f'(x) \to 0$ quand $x \to +\infty$.
- (b) Montrer que f.f' est intégrable.

Exercice 18 [00693] [Correction]

Soit $g: \mathbb{R}_+ \to \mathbb{R}$ continue et intégrable.

(a) Justifier

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}, \left| \int_0^{+\infty} |g(t)| \, \mathrm{d}t - \int_0^M |g(t)| \, \mathrm{d}t \right| \le \varepsilon.$$

(b) En déduire que toute primitive de g est uniformément continue.

Exercice 19 [02538] [Correction]

Soit f de classe C^2 sur $[0; +\infty[$ telle que f'' est intégrable sur $[0; +\infty[$ et telle que l'intégrale $\int_0^{+\infty} f(t) dt$ soit convergente.

(a) Montrer que

$$\lim_{x \to +\infty} f'(x) = 0 \text{ et } \lim_{x \to +\infty} f(x) = 0.$$

(b) Étudier les séries

$$\sum f(n)$$
 et $\sum f'(n)$.

Calcul d'intégrales

Exercice 20 [00666] [Correction]

Calculer les intégrales suivantes :

(a)
$$\int_0^{+\infty} \frac{\mathrm{d}t}{(t+1)(t+2)}$$

(a)
$$\int_0^{+\infty} \frac{dt}{(t+1)(t+2)}$$
 (c) $\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$ (d) $\int_0^{+\infty} e^{-\sqrt{t}} dt$ (e) $\int_0^{+\infty} \frac{dt}{(t+t)^2} dt$

(d)
$$\int_0^{+\infty} e^{-\sqrt{t}} dt$$

(b)
$$\int_0^{+\infty} \frac{dt}{(e^t+1)(e^{-t}+1)}$$

(e)
$$\int_0^{+\infty} \frac{\ln t}{(1+t)^2} dt$$

Exercice 21 [02350] [Correction]

Calculer les intégrales suivantes :

(a)
$$\int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{\mathrm{e}^t + 1}}$$

(a)
$$\int_0^{+\infty} \frac{dt}{\sqrt{e^t + 1}}$$
 (c) $\int_0^{+\infty} \frac{t \ln t}{(t^2 + 1)^2} dt$

(e)
$$\int_0^1 \frac{\ln t}{\sqrt{t}} dt$$

(b)
$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\sinh t}$$

(b)
$$\int_1^{+\infty} \frac{dt}{\sinh t}$$
 (d) $\int_1^{+\infty} \frac{dt}{t^2 \sqrt{1+t^2}}$

Exercice 22 [00667] [Correction]

Calculer les intégrales suivantes :

(a)
$$\int_0^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt$$
 (d) $\int_0^{+\infty} \frac{dx}{(x+1)\sqrt[3]{x}}$ (g) $\int_0^{2\pi} \frac{dx}{2+\cos x}$

(d)
$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)\sqrt[3]{x}}$$

$$(g) \int_0^{2\pi} \frac{\mathrm{d}x}{2 + \cos x}$$

(b)
$$\int_0^{\pi/2} \sin x \ln(\sin x) dx$$
 (e)
$$\int_0^{+\infty} \frac{\sqrt{1+x}-1}{x(1+x)} dx$$
 (h)
$$\int_0^{2\pi} \frac{\sin^2(x)}{3\cos^2(x)+1} dx$$

(e)
$$\int_0^{+\infty} \frac{\sqrt{1+x}-1}{x(1+x)} dx$$

(h)
$$\int_0^{2\pi} \frac{\sin^2(x)}{3\cos^2(x)+1} dx$$

(c)
$$\int_0^1 \frac{\ln t}{\sqrt{1-t}} \, \mathrm{d}t$$

(f)
$$\int_0^{+\infty} \frac{(1+x)^{1/3} - 1}{x(1+x)^{2/3}} dx$$
 (i) $\int_0^1 \frac{x dx}{\sqrt{x-x^2}}$

(i)
$$\int_0^1 \frac{x \, \mathrm{d}x}{\sqrt{x - x^2}}$$

Exercice 23 [00670] [Correction]

(a) Calculer

$$J = \int_0^{+\infty} \frac{t \, \mathrm{d}t}{1 + t^4}.$$

(b) Établir

$$I = \int_0^{+\infty} \frac{dt}{1 + t^4} = \int_0^{+\infty} \frac{t^2 dt}{1 + t^4}.$$

(c) En factorisant $1 + t^4$ déterminer la valeur de I.

Exercice 24 [03237] [Correction]

Justifier et calculer

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+\mathrm{i}t)}.$$

Exercice 25 [00676] [Correction]

(a) Justifier l'existence de

$$I = \int_0^{+\infty} \frac{\sin^3(t)}{t^2} \, \mathrm{d}t.$$

Pour x > 0, on pose

$$I(x) = \int_{\tau}^{+\infty} \frac{\sin^3(t)}{t^2} dt.$$

(a) On rappelle $\sin(3a) = 3\sin(a) - 4\sin^3(a)$. Établir que

$$I(x) = \frac{3}{4} \int_{x}^{3x} \frac{\sin(t)}{t^2} dt.$$

(b) En déduire la valeur de I.

Exercice 26 [01334] [Correction]

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ admettant une limite finie ℓ en $-\infty$ et telle que $\int_0^{+\infty} f$ existe.

Justifier l'existence, puis calculer :

$$\int_{-\infty}^{+\infty} \left(f(a+x) - f(b+x) \right) dx.$$

Exercice 27 [00677] [Correction]

Existence et valeur de

$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan x}{x} \, \mathrm{d}x.$$

Exercice 28 [01333] [Correction]

Calculer

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1 + x^4 + x^8}.$$

Exercice 29 [03375] [Correction]

(a) Montrer que

$$\forall x \in \mathbb{R}, e^x \ge 1 + x.$$

En déduire

$$\forall t \in \mathbb{R}, 1 - t^2 \le e^{-t^2} \le \frac{1}{1 + t^2}.$$

(b) Soit $n \in \mathbb{N}^*$. Établir l'existence des intégrales suivantes

$$I = \int_0^{+\infty} e^{-t^2} dt, I_n = \int_0^1 (1 - t^2)^n dt \text{ et } J_n = \int_0^{+\infty} \frac{dt}{(1 + t^2)^n}$$

puis établir

$$I_n \le \frac{I}{\sqrt{n}} \le J_n.$$

(c) On pose

$$W_n = \int_0^{\pi/2} \cos^n x \, \mathrm{d}x.$$

Établir

$$I_n = W_{2n+1}$$
 et $J_{n+1} = W_{2n}$.

(d) Trouver une relation de récurrence entre W_n et W_{n+2} . En déduire la constance de la suite de terme général

$$u_n = (n+1)W_n W_{n+1}.$$

(e) Donner un équivalent de W_n et en déduire la valeur de I.

Exercice 30 [00525] [Correction]

Justifier l'existence et calculer

$$I = \int_0^{+\infty} t \lfloor 1/t \rfloor \, \mathrm{d}t.$$

Exercice 31 [03630] [Correction]

Soit $f: [0;1] \to \mathbb{R}$ continue, décroissante et positive. On pose pour $n \in \mathbb{N}^*$

$$S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

Montrer que f est intégrable sur]0;1] si, et seulement si, la suite (S_n) est convergente et que si tel est le cas

$$\int_{[0:1]} f(t) \, \mathrm{d}t = \lim_{n \to +\infty} S_n.$$

Exercice 32 [05015] [Correction]

Existence et valeur de

$$\int_{1}^{+\infty} \frac{(-1)^{\lfloor t \rfloor}}{t} \, \mathrm{d}t.$$

Calcul d'intégrales comportant un paramètre

Exercice 33 [00683] [Correction]

Existence et valeur pour a > 0 de

$$I(a) = \int_0^{+\infty} \sin(t) e^{-at} dt.$$

Exercice 34 [00684] [Correction]

Soit a > 0. En procédant au changement de variable u = a/t, calculer

$$I(a) = \int_0^{+\infty} \frac{\ln t}{a^2 + t^2} \, \mathrm{d}t.$$

Exercice 35 [02826] [Correction]

Calculer

$$\int_0^{+\infty} \frac{\ln t}{t^2 + a^2} \, \mathrm{d}t$$

où a > 0.

Exercice 36 [03628] [Correction]

Pour quelles valeurs de a et b l'intégrale suivante est-elle définie?

$$\int_0^{+\infty} \left(\sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2}\right) dt.$$

La calculer lorsque c'est le cas.

Exercice 37 [00681] [Correction]

Pour a > 0, calculer

$$I(a) = \int_0^{+\infty} (t - \lfloor t \rfloor) e^{-at} dt.$$

Exercice 38 [00686] [Correction]

Soit f une fonction continue et croissante sur \mathbb{R} telle que $\lim_{x\to+\infty} f(x) = \ell$.

(a) Pour a > 0, montrer que l'intégrale

$$\int_0^{+\infty} f(x+a) - f(x) \, \mathrm{d}x$$

est définie et la calculer.

(b) Calculer

$$\int_{-\infty}^{+\infty} \arctan(x+a) - \arctan(x) \, \mathrm{d}x.$$

Exercice 39 [02827] [Correction]

Trouver une expression simple de

$$\int_0^{\pi} \frac{\sin^2 t}{(1 - 2x\cos t + x^2)(1 - 2y\cos t + y^2)} dt$$

où $x, y \in]-1; 1[$.

Exercice 40 [02825] [Correction]

Existence et calcul éventuel de

$$\int_{-\infty}^{+\infty} \frac{1}{1 + (t + \mathrm{i}b)^2} \, \mathrm{d}t.$$

Exercice 41 [03884] [Correction]

Pour $\alpha \in \mathbb{R}$, étudier l'existence et déterminer l'éventuelle valeur de

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + \alpha x + 1}.$$

Exercice 42 [03222] [Correction]

Pour a, b > 0, calculer

$$I(a,b) = \int_{-\infty}^{+\infty} \frac{dt}{(t^2 + a^2)(t^2 + b^2)}.$$

Exercice 43 [02968] [Correction]

Soient P et Q dans $\mathbb{R}[X]$, où Q ne s'annule pas sur \mathbb{R} et $\deg P \leq \deg Q - 2$. Exprimer $\int_{\mathbb{R}} P/Q$ à l'aide des coefficients intervenant dans la décomposition en éléments simple de P/Q.

Exercice 44 [04060] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue telle que l'intégrale suivante converge} :$

$$\int_{1}^{+\infty} \frac{f(t)}{t} \, \mathrm{d}t.$$

On se donne deux réels 0 < a < b.

(a) Établir que pour tout x > 0

$$\int_{T}^{+\infty} \frac{f(at) - f(bt)}{t} dt = \int_{aT}^{bx} \frac{f(t)}{t} dt.$$

(b) En déduire convergence et valeur de

$$\int_0^{+\infty} \frac{f(at) - f(bt)}{t} \, \mathrm{d}t.$$

Changement de variable

Exercice 45 [03177] [Correction]

En opérant le changement de variable $t = e^{-x}$, calculer

$$I = \int_0^1 \frac{1 + t^2}{1 + t^4} \, \mathrm{d}t.$$

Exercice 46 [02509] [Correction]

(a) Calculer

$$\int_0^{+\infty} \frac{1+x^2}{1+x^4} \, \mathrm{d}x$$

en effectuant notamment le changement de variable $x = e^t$.

(b) En déduire la valeur de

$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^4}.$$

Exercice 47 [00668] [Correction]

Existence et valeur de

$$I = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^2}.$$

On pourra exploiter le changement de variable u = 1/t.

Exercice 48 [00669] [Correction]

(a) Établir

$$I = \int_0^{+\infty} \frac{dx}{x^3 + 1} = \int_0^{+\infty} \frac{x}{x^3 + 1} dx.$$

(b) En déduire la valeur de I.

Exercice 49 [02824] [Correction]

Existence et calcul de

$$\int_0^{\pi/2} \sqrt{\tan \theta} \, \mathrm{d}\theta.$$

Exercice 50 [02965] [Correction]

Calculer

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x(1-x)}} \text{ et } \int_0^1 \sqrt{x(1-x)} \,\mathrm{d}x.$$

Intégration par parties

Exercice 51 [00680] [Correction]

Calculer pour $n \in \mathbb{N}$,

$$I_n = \int_0^1 (x \ln x)^n \, \mathrm{d}x.$$

Exercice 52 [00679] [Correction]

Existence et calcul pour $n \in \mathbb{N}$ de

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}}.$$

Exercice 53 [02555] [Correction]

On considère

$$f \colon t \mapsto \frac{\ln t}{(1+t)^2}.$$

- (a) Étudier l'intégrabilité de f sur [0;1] et $[1;+\infty[$
- (b) Calculer

$$\int_0^1 \frac{\ln t}{(1+t)^2} \, dt \text{ et } \int_1^{+\infty} \frac{\ln t}{(1+t)^2} \, dt.$$

Exercice 54 [00671] [Correction]

Calculer

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} \, \mathrm{d}x.$$

Exercice 55 [03629] [Correction]

Soit $f: [1; +\infty] \to \mathbb{R}$ continue et intégrable. Montrer que les fonctions u et v suivantes sont intégrables sur $[1; +\infty[$ et que leurs intégrales y sont égales :

$$u(x) = \frac{1}{x^2} \int_1^x f(t) dt$$
 et $v(x) = \frac{f(x)}{x}$.

Exercice 56 [03443] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ et vérifiant } f(0) = 0.$ Établir

$$\forall x > 0, \int_0^x \left(\frac{f(t)}{t}\right)^2 dt \le 2 \int_0^x \frac{f(t)f'(t)}{t} dt$$

en justifiant l'existence des intégrales écrites.

Exercice 57 [00665] [Correction]

Soit $u: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que

$$\int_{-\infty}^{+\infty} ((1+x^2)u(x)^2 + u'(x)^2) \, \mathrm{d}x < +\infty.$$

- (a) Déterminer les limites de $x \mapsto xu(x)^2$ en $\pm \infty$.
- (b) Établir

$$\int_{-\infty}^{+\infty} u'(x)^2 dx \int_{-\infty}^{+\infty} x^2 u(x)^2 dx \ge \frac{1}{4} \left(\int_{-\infty}^{+\infty} u(x)^2 dx \right)^2.$$

Exercice 58 [03990] [Correction]

Existence et calcul de

$$I = \int_0^{+\infty} \ln\left(\frac{1+t^2}{t^2}\right) dt.$$

Exercice 59 [04190] [Correction]

En réalisant une intégration par parties, calculer

$$\int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt.$$

Exercice 60 [04962] [Correction]

Pour $n \in \mathbb{N}$, calculer

$$I_n = \int_0^1 \frac{t^n}{\sqrt{1-t}} \, \mathrm{d}t$$

Suites d'intégrales

Exercice 61 [03584] [Correction]

On pose

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^n} \text{ pour } n \in \mathbb{N}, n \ge 2.$$

(a) Déterminer une suite de fonctions (f_n) telle que

$$I_n = \int_0^1 f_n(t) \, \mathrm{d}t.$$

(b) Déterminer deux réels a et b tels que

$$I_n = a + \frac{b}{n} + o\left(\frac{1}{n}\right)$$
 quand $n \to +\infty$.

Exercice 62 [00682] [Correction]

On pose

$$J_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^{n+1}}.$$

- (a) Calculer J_0 .
- (b) Former une relation de récurrence engageant J_n et J_{n+1} .
- (c) Établir qu'il existe A > 0 tel que

$$J_n \sim \frac{A}{\sqrt[3]{n}}$$
.

Exercice 63 [00157] [Correction]

Pour $n \in \mathbb{N}^*$, on pose

$$u_n = \int_0^{+\infty} \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t$$

- où $\lfloor t \rfloor$ représente la partie entière de t.
- (a) Justifier la bonne définition de la suite $(u_n)_{n\geq 1}$.
- (b) Montrer que pour tout A > 0

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} dt = \frac{1}{n} \left(\int_0^n \frac{t - \lfloor t \rfloor}{t} dt - \int_A^{A+n} \frac{t - \lfloor t \rfloor}{t} dt \right).$$

En déduire une nouvelle expression intégrale de u_n

(c) On pose

$$v_n = nu_n$$
.

Montrer la convergence de la série de terme général

$$v_n - v_{n-1} - \frac{1}{2n}.$$

(d) En déduire un équivalent de u_n .

Exercice 64 [02446] [Correction]

(a) Soit $f \in \mathcal{C}^1([a;b],\mathbb{R})$. Déterminer les limites des suites

$$\left(\int_a^b f(t)\sin(nt)\,\mathrm{d}t\right)_{n\in\mathbb{N}}\quad\mathrm{et}\quad \left(\int_a^b f(t)\cos(nt)\,\mathrm{d}t\right)_{n\in\mathbb{N}}.$$

(b) Calculer, pour $n \in \mathbb{N}^*$,

$$\int_0^{\pi/2} \frac{\sin(2nt)\cos t}{\sin t} \,\mathrm{d}t$$

(on procédera par récurrence)

(c) En déduire

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

(d) Étudier la limite puis un équivalent de

$$\left(\int_0^{\pi/2} \ln(2\sin(t/2))\cos(nt) dt\right)_{n \in \mathbb{N}}.$$

Intégrales seulement convergentes

Exercice 65 [02346] [Correction]

(Intégrale de Dirichlet) Justifier la convergence de l'intégrale suivante

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

On peut montrer que celle-ci est égale à $\pi/2$ mais c'est une autre histoire...

Exercice 66 [03178] [Correction]

Soit $f\colon [0\,;+\infty[\,\to\,\mathbb{R}\,$ une fonction continue par morceaux, décroissante et de limite nulle. Montrer la convergence de l'intégrale

$$\int_0^{+\infty} f(t) \sin(t) dt.$$

Exercice 67 [03334] [Correction]

La fonction $x \mapsto \int_0^x \sin(e^t) dt$ admet-elle une limite en $+\infty$?

Exercice 68 [02421] [Correction]

Convergence de

$$\int_{-\infty}^{+\infty} e^{it^2} dt.$$

Exercice 69 [03414] [Correction]

Trouver un équivalent en $+\infty$ de

$$f(\lambda) = \int_0^1 e^{i\lambda x^2} dx.$$

Exercice 70 [00691] [Correction]

Pour x > 0, on pose

$$f(x) = \int_0^x e^{it^2} dt = \int_0^x \cos(t^2) dt + i \int_0^x \sin(t^2) dt.$$

(a) Montrer

$$f(x) = \frac{e^{ix^2} - 1}{2ix} + \frac{1}{2i} \int_0^x \frac{e^{it^2} - 1}{t^2} dt.$$

En déduire que f admet une limite notée λ en $+\infty$.

(b) On pose $g(x) = \lambda - f(x)$. Montrer que pour x > 0

$$g(x) = \frac{1}{2i} \int_{x}^{+\infty} \frac{e^{it^2}}{t^2} dt - \frac{e^{ix^2}}{2ix}.$$

(c) Montrer qu'au voisinage de $+\infty$

$$g(x) = -\frac{e^{ix^2}}{2ix} + O\left(\frac{1}{x^3}\right).$$

Exercice 71 [00695] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue. On suppose que l'intégrale suivante converge} :$

$$\int_0^{+\infty} f(t) \, \mathrm{d}t.$$

Calculer

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x t f(t) \, \mathrm{d}t.$$

Exercice 72 [03631] [Correction]

Soit $f: [1; +\infty[\to \mathbb{R} \text{ continue. Montrer}]$

$$\int_{1}^{+\infty} f(t) dt \text{ converge } \implies \int_{1}^{+\infty} \frac{f(t)}{t} dt \text{ converge.}$$

Exercice 73 [02378] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue et } \alpha > 0. \text{ Montrer}]$

$$\int_0^{+\infty} f(t) \, \mathrm{d}t \text{ converge } \implies \int_0^{+\infty} \frac{f(t)}{1+t^\alpha} \, \mathrm{d}t \text{ converge.}$$

Exercice 74 [03900] [Correction]

Soit $f: [a; +\infty[\to \mathbb{R} \text{ avec } f \text{ de classe } \mathcal{C}^1, \text{ décroissante et de limite nulle en } +\infty.$ Soit $g: [a; +\infty[\to \mathbb{R} \text{ continue telle qu'il existe } M \in \mathbb{R}_+ \text{ vérifiant}$

$$\forall x \in [a; +\infty[, \left| \int_{a}^{x} g(t) \, \mathrm{d}t \right| \leq M.$$

Montrer la convergence de l'intégrale suivante

$$\int_{a}^{+\infty} f(t)g(t) \, \mathrm{d}t.$$

Étude d'intégrales dépendant d'un paramètre

Exercice 75 [00688] [Correction]

On pose pour

$$f(a) = \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^a + 1}.$$

- (a) Pour quelles valeurs de a, l'intégrale définissant f(a) existe-t-elle?
- (b) Montrer que la fonction est décroissante et de limite nulle en $+\infty$.

Exercice 76 [00687] [Correction]

(Fonction Γ d'Euler) Pour x > 0 on note

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- (a) Montrer que cette dernière intégrale est bien définie pour tout x > 0.
- (b) Justifier

$$\forall x > 1, \Gamma(x) = (x-1)\Gamma(x-1)$$

et calculer $\Gamma(n)$ pour $n \in \mathbb{N}^*$.

Exercice 77 [00689] [Correction]

(a) Pour quelles valeurs de x, l'intégrale

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

est-elle définie?

- (b) Étudier la monotonie de f.
- (c) Calculer

$$f(x) + f(x+1) \text{ pour } x > 0.$$

- (d) Déterminer la limite de f en $+\infty$ ainsi qu'un équivalent.
- (e) Déterminer la limite de f en 0^+ ainsi qu'un équivalent.

Exercice 78 [00692] [Correction]

Soit $\varphi \colon \mathbb{R}_+ \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 intégrable.

(a) Soit A > 0. Montrer

$$\int_0^A \varphi(t) \cos(xt) dt \xrightarrow[x \to +\infty]{} 0.$$

(b) Montrer

$$\int_0^{+\infty} \varphi(t) \cos(xt) dt \xrightarrow[x \to +\infty]{} 0.$$

Intégrales fonctions des bornes

Exercice 79 [00690] [Correction]

Pour x > 0, on pose

$$F(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt.$$

- (a) Montrer que F(x) est bien définie pour tout x > 0.
- (b) Établir que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et calculer F'(x).
- (c) Montrer

$$\lim_{x \to +\infty} xF(x) = 0 \quad \text{et} \quad \lim_{x \to 0^+} xF(x) = 0.$$

(d) Sans exprimer F(x), justifier l'existence et calculer

$$\int_0^{+\infty} F(x) \, \mathrm{d}x.$$

Exercice 80 [02879] [Correction]

(a) Donner la nature de l'intégrale

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

On pose pour tout réel x

$$f(x) = \int_{x}^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

- (b) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer sa dérivée.
- (c) Calculer

$$\int_{0}^{+\infty} f(t) \, \mathrm{d}t.$$

Exercice 81 [00281] [Correction]

Pour tout $x \in [1; +\infty[$, on pose

$$F(x) = \int_1^x \frac{t}{\sqrt{t^3 - 1}} \, \mathrm{d}t.$$

- (a) Montrer que F est bien définie, continue sur $[1; +\infty[$ et de classe \mathcal{C}^{∞} sur $[1; +\infty[$. Exprimer F'(x).
- (b) Étudier la dérivabilité de F en 1. Préciser la tangente au graphe de F en 1.
- (c) Étudier la limite de F en $+\infty$.
- (d) Justifier que F réalise une bijection de $[1; +\infty[$ sur un intervalle à préciser et que F^{-1} est dérivable sur $[0; +\infty[$ et solution de l'équation différentielle

$$yy' = \sqrt{y^3 - 1}.$$

(e) Étudier la dérivabilité de F^{-1} en 0

Exercice 82 [02348] [Correction]

(a) Justifier que

$$G(x,y) = \int_0^y \frac{t - \lfloor t \rfloor}{t(t+x)} dt$$

où $\lfloor t \rfloor$ représente la partie entière de t, est définie sur $(\mathbb{R}_+^*)^2$.

- (b) Montrer que G(x,y) tend vers une limite G(x) quand y tend vers $+\infty$.
- (c) Montrer que

$$\forall n \in \mathbb{N}^*, G(n, y) = \frac{1}{n} \left(\int_0^n \frac{t - \lfloor t \rfloor}{t} \, dt - \int_y^{y+n} \frac{t - \lfloor t \rfloor}{t} \, dt \right).$$

(d) On note H(n) = nG(n); montrer que la série de terme général

$$H(n) - H(n-1) - \frac{1}{2n}$$

converge et en déduire un équivalent de G(n).

Intégration des relations de comparaison

Exercice 83 [03893] [Correction]

Déterminer un équivalent quand $x \to +\infty$ du terme

$$\int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t.$$

Exercice 84 [03894] [Correction]

Déterminer un développement asymptotique à trois termes quand $x \to +\infty$ de l'expression

$$\int_1^x \frac{e^t}{t} dt.$$

Exercice 85 [04059] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R}]] \to \mathbb{R}$ une fonction continue. Pour 0 < a < b, déterminer

$$\lim_{x \to 0^+} \int_{ax}^{bx} \frac{f(t)}{t} \, \mathrm{d}t.$$

Exercice 86 [04075] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R}_+^*]$ de classe C^1 et non intégrable. On suppose f'(x) = o(f(x)).

Montrer

$$f(x) \underset{x \to +\infty}{=} o\left(\int_0^x f(t) dt\right).$$

Applications

Exercice 87 [05031] [Correction]

Soit $f:]0; 1[\to \mathbb{R}$ continue par morceaux, monotone et intégrable sur]0; 1[.

(a) Étudier

$$\lim_{n \to +\infty} \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f\left(\frac{n-1}{n}\right) \right).$$

(b) Application: Déterminer

$$\lim_{n\to+\infty} \sqrt[n]{\sin\left(\frac{\pi}{2n}\right)\sin\left(\frac{2\pi}{2n}\right)}\times\cdots\times\sin\left(\frac{(n-1)\pi}{2n}\right).$$

Corrections

Exercice 1 : [énoncé]

On notera f la fonction intégrée et I l'intervalle d'étude, à chaque fois f s'avère continue par morceaux sur I.

- (a) $I = [0; +\infty[, t^2 f(t) \xrightarrow[t \to +\infty]{} 0 \text{ donc } f \text{ est intégrable et } \int_0^{+\infty} \frac{t e^{-\sqrt{t}}}{1+t^2} dt \text{ converge.}$
- (b) $I =]0; 1[, \sqrt{t}f(t) \xrightarrow[t \to 0+]{} 0 \text{ et } \frac{\ln t}{\sqrt{(1-t)^3}} = \frac{\ln(1-u)}{u^{3/2}} \sim -\frac{1}{\sqrt{u}} \text{ donc } f \text{ est}$ intégrable et $\int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$ converge
- (c) $I =]0; +\infty[, \frac{1}{\mathrm{e}^t 1} \underset{t \to 0^+}{\sim} \frac{1}{t}$ donc f n'est pas intégrable au voisinage de 0. Puisque de plus cette fonction est positive, on peut affirmer que l'intégrale diverge.
- (d) $I =]0; +\infty[, f(t) \xrightarrow[t \to 0^+]{} 0$ et $t^2 f(t) = e^{2 \ln t (\ln t)^2} = e^{\ln t (2 \ln t)} \xrightarrow[t \to +\infty]{} 0$ donc f est intégrable et $\int_0^{+\infty} e^{-(\ln t)^2} dt$ converge.
- (e) $I = [0; +\infty[, t^2 f(t) = e^{2 \ln t t \arctan t} \xrightarrow[t \to +\infty]{} 0 \text{ donc } f \text{ est intégrable et}$ $\int_0^{+\infty} e^{-t \arctan t} dt \text{ converge.}$
- (f) $I = [0; +\infty[$. Quand $t \to +\infty$,

$$f(t) = t + 2 - t\sqrt{1 + \frac{4}{t} + \frac{1}{t^2}} = t + 2 - t(1 + \frac{2}{t} + \frac{1}{2t^2} - \frac{2}{t^2} + \mathcal{O}(1/t^3)) \sim \frac{3}{2t}$$

f n'est pas intégrable en $+\infty$. Puisque de plus cette fonction est positive, on peut affirmer que l'intégrale diverge.

Exercice 2: [énoncé]

(a) La fonction f est définie et continue par morceaux sur $]1;+\infty[$. Quand $x\to 1^+,$

$$f(x) \sim \frac{\sqrt{(x-1)}}{(x-1)} = \frac{1}{\sqrt{x-1}}$$

et quand $x \to +\infty$

$$f(x) \sim \frac{\sqrt{\ln x}}{x^{3/2}} = o\left(\frac{1}{x^{1,0001}}\right)$$

donc f est intégrable sur $]1; +\infty[$.

(b) Par l'inégalité de Cauchy-Schwarz

$$\int_{2}^{3} \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} \, \mathrm{d}x \le \left(\int_{2}^{3} \frac{\mathrm{d}x}{(x-1)^{2}} \right)^{1/2} \left(\int_{2}^{3} \frac{\ln x}{x} \, \mathrm{d}x \right)^{1/2}.$$

En calculant les intégrales introduites

$$\int_2^3 \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} \, \mathrm{d}x \leq \left(1 - \frac{1}{2}\right)^{\!\!1/2} \! \left(\frac{1}{2} \! \left((\ln 3)^2 - (\ln 2)^2 \right) \right)^{\!\!1/2} \leq \frac{\ln 3}{2}.$$

Exercice 3: [énoncé]

La fonction $f : t \mapsto \ln(\operatorname{th} t)$ est définie et continue par morceaux sur $]0 ; +\infty[$. Quand $t \to 0^+, \text{ th } t \sim t \to 0 \neq 1$ donc $\ln(\operatorname{th} t) \sim \ln t$ puis $\sqrt{t} \ln(\operatorname{th} t) \sim \sqrt{t} \ln t \to 0$. Quand $t \to +\infty, \text{ th } t = 1 - \frac{2}{\mathrm{e}^{2t} + 1}$ donc $\ln(\operatorname{th} t) \sim -2\mathrm{e}^{-2t}$ puis $t^2 \ln(\operatorname{th} t) \to 0$. On en déduit que f est intégrable sur $]0 ; +\infty[$.

Exercice 4: [énoncé]

On a

$$\int_0^{n\pi} |\sin t| \, \mathrm{d}t = \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} |\sin t| \, \mathrm{d}t = n \int_0^{\pi} \sin(t) \, \mathrm{d}t = 2n \to +\infty$$

et donc $t \mapsto \sin t$ n'est pas intégrable sur $[0; +\infty[$.

La fonction $t \mapsto \frac{\sin t}{t}$ est prolongeable par continuité en 0 et c'est ce prolongement qu'on considère pour étudier son intégrabilité sur $[0; +\infty[$.

$$\int_0^{n\pi} \frac{|\sin t|}{t} dt = \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{t} dt.$$

Or pour k > 1,

$$\int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{t} \, \mathrm{d}t \ge \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{k\pi} \, \mathrm{d}t \ge \frac{2}{k\pi}$$

donc

$$\int_0^{n\pi} \frac{|\sin t|}{t} \, \mathrm{d}t \ge \sum_{k=1}^n \frac{2}{k\pi} = \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k} \to +\infty.$$

Exercice 5 : [énoncé]

Pour $a = x^{\alpha}$ avec $\alpha > 0$ on obtient

$$0 \le f(x) \le \frac{1}{x^{2-\alpha}} + \frac{1}{x^{2\alpha}}.$$

En prenant $\alpha = 2/3$,

$$0 \le f(x) \le \frac{2}{x^{4/3}}$$

et donc, par comparaison de fonctions positives, f est intégrable sur $[1; +\infty[$

Exercice 6: [énoncé]

Puisque $|g| \le |f|$, l'intégrabilité de f entraı̂ne celle de g. Inversement, supposons g intégrable.

On a

$$\int_0^{n\pi} |f(t)| \, \mathrm{d}t = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} f(t) \, \mathrm{d}t$$

avec par décroissance de f

$$\int_{k\pi}^{(k+1)\pi} f(t) \, \mathrm{d}t \le \pi f(k\pi).$$

Parallèlement

$$\int_{(k-1)\pi}^{k\pi} \bigl|f(t)\bigr| \bigl|\sin(t)\bigr| \,\mathrm{d}t \geq f(k\pi) \int_0^\pi \sin(t) \,\mathrm{d}t = 2f(k\pi)$$

donc

$$\int_{k\pi}^{(k+1)\pi} f(t) \, \mathrm{d}t \le \frac{\pi}{2} \int_{(k-1)\pi}^{k\pi} f(t) \big| \sin(t) \big| \, \mathrm{d}t.$$

Ainsi

$$\int_{0}^{n\pi} |f(t)| dt \le \int_{0}^{\pi} f(t) dt + \int_{0}^{(n-1)\pi} f(t) |\sin(t)| dt$$

et donc

$$\int_0^{n\pi} |f(t)| dt \le \int_0^{\pi} f(t) dt + \int_0^{+\infty} |g(t)| dt.$$

On peut alors affirmer que les intégrales de |f| sur les segments inclus dans $[0; +\infty[$ sont majorées ce qui signifie que la fonction f est intégrable sur $[0; +\infty[$.

Exercice 7: [énoncé]

Soit $q \in]\ell; 1[$. Il existe $A \in \mathbb{R}_+$ tel que

$$\forall x \ge A, \frac{f(x+1)}{f(x)} \le q$$

et donc

$$\forall x \ge A, f(x+1) \le qf(x).$$

On a alors

$$\int_{A}^{A+n} f(t) dt = \sum_{k=0}^{n-1} \int_{A}^{A+1} f(t+k) dt \le \sum_{k=0}^{n-1} \int_{A}^{A+1} q^{k} f(t) dt = \int_{A}^{A+1} f(t) \sum_{k=0}^{n-1} q^{k} dt$$

et donc

$$\int_{A}^{A+n} f(t) \, dt \le \frac{1}{1-q} \int_{A}^{A+1} f(t) \, dt = M.$$

On en déduit que les intégrales sur [A;A+n] de la fonction positive f sont majorées et donc f est intégrable sur $[A;A+\infty[$ puis sur $[0;+\infty[$. L'intégrale étudiée est donc convergente.

Exercice 8: [énoncé]

f est évidement dérivable sur]0;1] avec

$$f'(x) = 2x \cos\left(\frac{1}{x^2}\right) + \frac{2}{x} \sin\left(\frac{1}{x^2}\right)$$

et puisque

$$\frac{f(x) - f(0)}{x} = x \cos\left(\frac{1}{x^2}\right) \xrightarrow[x \to 0^+]{} 0$$

f est aussi dérivable en 0 avec f'(0) = 0.

La fonction $x \mapsto x \cos(1/x^2)$ est intégrable sur]0;1] car bornée.

En revanche, la fonction $g: x \mapsto \sin(1/x^2)/x$ n'est pas intégrable sur]0;1]. En effet, par le changement de variable \mathcal{C}^1 bijectif $t = 1/x^2$, l' intégrabilité de g sur]0;1] équivaut à l'intégrabilité sur $[1;+\infty[$ de

 $t\mapsto \sin(t)/t$ et cette dernière est connue comme étant fausse.

On en déduit que f' n'est pas intégrable sur [0;1].

Exercice 9: [énoncé]

(a) Soit F une primitive de la fonction continue f. On a

$$g(x) = \frac{1}{x} (F(x) - F(0)) \xrightarrow[x \to 0^+]{} F'(0) = f(0).$$

Ainsi on peut prolonger g par continuité en 0 en posant g(0) = f(0).

(b) Soit F une primitive de f (il en existe car f est continue). On a

$$g(x) = \frac{1}{x} (F(x) - F(0)).$$

On en déduit que g est dérivable sur \mathbb{R}_+^* et

$$g'(x) = -\frac{1}{x^2} (F(x) - F(0)) + \frac{f(x)}{x} = \frac{f(x) - g(x)}{x}.$$

(c) Par intégration par parties

$$\int_{a}^{b} g^{2}(t) dt = \left[tg^{2}(t) \right]_{a}^{b} - 2 \int_{a}^{b} tg'(t)g(t) dt$$

donc

$$\int_{a}^{b} g^{2}(t) dt = \left[tg^{2}(t) \right]_{a}^{b} - 2 \int_{a}^{b} (f(t) - g(t))g(t) dt$$

puis la relation proposée.

On en déduit par l'inégalité de Cauchy-Schwarz

$$\int_{a}^{b} g^{2}(t) dt \leq 2\sqrt{\int_{a}^{b} f^{2}(t) dt} \sqrt{\int_{a}^{b} g^{2}(t) dt} + ag^{2}(a)$$

puis

$$\int_{a}^{b} g^{2}(t) dt - 2\sqrt{\int_{a}^{b} f^{2}(t) dt} \sqrt{\int_{a}^{b} g^{2}(t) dt} \le ag^{2}(a)$$

en ajoutant un même terme de part et d'autre

$$\left(\sqrt{\int_{a}^{b} g^{2}(t) dt} - \sqrt{\int_{a}^{b} f^{2}(t) dt}\right)^{2} \le ag^{2}(a) + \int_{a}^{b} f^{2}(t) dt$$

puis par la croissance de la fonction racine carrée

$$\sqrt{\int_a^b g^2(t) dt} - \sqrt{\int_a^b f^2(t) dt} \le \left| \sqrt{\int_a^b g^2(t) dt} - \sqrt{\int_a^b f^2(t) dt} \right|$$
$$\le \sqrt{ag^2(a) + \int_a^b f^2(t) dt}$$

et enfin

$$\sqrt{\int_{a}^{b} g^{2}(t) dt} \leq \sqrt{\int_{0}^{b} f^{2}(t) dt} + \sqrt{ag^{2}(a) + \int_{0}^{b} f^{2}(t) dt}
\leq \sqrt{\int_{0}^{+\infty} f^{2}(t) dt} + \sqrt{ag^{2}(a) + \int_{0}^{+\infty} f^{2}(t) dt}.$$

(d) En faisant tendre a vers 0, on obtient

$$\sqrt{\int_0^b g^2(t) \, \mathrm{d}t} \le 2\sqrt{\int_0^{+\infty} f^2(t) \, \mathrm{d}t}$$

et on en déduit que la fonction g^2 est intégrable sur \mathbb{R}_+ car les intégrales de g^2 sur les segments inclus dans \mathbb{R}_+ sont majorées.

Exercice 10: [énoncé]

 $f: t \mapsto \frac{t-\sin t}{t^{\alpha}}$ est définie et continue sur $]0; +\infty[$.

Quand $t \to 0$, $f(t) \sim \frac{1}{6t^{\alpha-3}}$ donc $\int_0^1 f(t) dt$ est définie si, et seulement si, $\alpha - 3 < 1$ i.e. $\alpha < 4$.

Quand $t \to +\infty$, $f(t) \sim \frac{1}{t^{\alpha-1}}$ donc $\int_1^{+\infty} f(t) dt$ est définie si, et seulement si, $\alpha - 1 > 1$ i.e. $\alpha > 2$.

Finalement $\int_0^{+\infty} \frac{t-\sin t}{t^{\alpha}} dt$ est définie si, et seulement si, $\alpha \in]2;4[$.

Exercice 11: [énoncé]

(a) L'intégrale étudiée est bien définie pour a > -1 en tant qu'intégrale d'une fonction définie et continue sur le segment $[0; \pi/2]$. Par le changement de variable proposé, qui est \mathcal{C}^1 strictement monotone, on obtient

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)} = \int_0^{+\infty} \frac{\mathrm{d}x}{1 + (1+a)x^2}$$

En considérant $u = x\sqrt{1+a}$, on détermine une primitive de la fonction intégrée

$$\int_0^{+\infty} \frac{\mathrm{d}x}{1 + (1+a)x^2} = \left[\frac{1}{\sqrt{1+a}} \arctan\left(\sqrt{1+a}x\right) \right]_0^{+\infty}.$$

Finalement

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)} = \frac{\pi}{2\sqrt{1+a}}.$$

(b) Par la symétrie du graphe de fonction sinus en $\pi/2$, on peut directement affirmer

$$\int_0^{\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)} = 2 \int_0^{\pi/2} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}.$$

Le calcul qui précède donne alors

$$\int_0^{\pi} \frac{dt}{1 + (n\pi)^{\alpha} \sin^2(t)} = \frac{\pi}{\sqrt{1 + (n\pi)^{\alpha}}} \sim \frac{\pi^{1 - \alpha/2}}{n^{\alpha/2}}.$$

Par équivalence de séries à termes positifs, la série étudiée converge si, et seulement si, $\alpha > 2$.

(c) Pour $t \in [n\pi; (n+1)\pi]$, on a

$$1 + (n\pi)^{\alpha} \sin^2(t) \le 1 + t^{\alpha} \sin^2(t) \le 1 + ((n+1)\pi)^{\alpha} \sin^2(t).$$

Puis en passant à l'inverse et en intégrant, on obtient l'encadrement

$$\int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + ((n+1)\pi)^{\alpha} \sin^2(t)} \le \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + t^{\alpha} \sin^2(t)} \le \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}$$

Par comparaison de séries à termes positifs, la convergence de la série étudiée équivaut à la convergence de la série précédente. La condition attendue est donc encore $\alpha > 2$.

(d) Les sommes partielles de la série étudiée ci-dessus correspondent aux intégrales suivantes

$$\int_0^{n\pi} \frac{\mathrm{d}t}{1 + t^\alpha \sin^2(t)}.$$

La fonction intégrée étant positive et la suite de segments $[0\,;n\pi]$ étant croissante et de réunion \mathbb{R}_+ , la convergence de l'intégrale proposée entraı̂ne la convergence de la série et inversement. On conclut que l'intégrale étudiée converge si, et seulement si, $\alpha>2$.

Exercice 12: [énoncé]

Par l'inégalité

$$ab \le \frac{1}{2}(a^2 + b^2)$$

on peut affirmer

$$|ff'| \le \frac{1}{2} \left(f^2 + f'^2 \right)$$

et assurer que la fonction ff' est intégrable sur $[0; +\infty[$. Or

$$\int_0^x ff'(t) dt = \frac{1}{2} (f(x))^2$$

donc f^2 converge quand $x \to +\infty$. Puisque la fonction f^2 est intégrable sur $[0; +\infty[$ et converge en $+\infty$, sa limite est nécessairement nulle et donc $f \xrightarrow[+\infty]{} 0$.

Exercice 13: [énoncé]

Par la relation de Chasles

$$\int_{x}^{x+1} f(t) dt = \int_{0}^{x+1} f(t) dt - \int_{0}^{x} f(t) dt$$

donc, quand $x \to +\infty$,

$$\int_{x}^{x+1} f(t) dt \to \int_{0}^{+\infty} f(t) dt - \int_{0}^{+\infty} f(t) dt = 0.$$

Exercice 14: [énoncé]

(a) Pour x > 1, la décroissance de f donne

$$\int_{x}^{x+1} f(t) dt \le f(x) \le \int_{x-1}^{x} f(t) dt.$$

Or

$$\int_{x}^{x+1} f(t) dt = \int_{0}^{x+1} f(t) dt - \int_{0}^{x} f(t) dt$$

et puisque l'intégrale de f sur $[0\,;+\infty[$ converge

$$\int_{x}^{x+1} f(t) dt \xrightarrow[x \to +\infty]{} \int_{0}^{+\infty} f(t) dt - \int_{0}^{+\infty} f(t) dt = 0.$$

Aussi

$$\int_{x=1}^{x} f(t) dt \xrightarrow[x \to +\infty]{} 0$$

et donc par encadrement

$$f(x) \xrightarrow[x \to +\infty]{} 0.$$

(b) La fonction f est positive car décroît vers 0 en $+\infty$ et

$$0 \le \frac{x}{2} f(x) \le \int_{x/2}^{x} f(t) dt \xrightarrow[x \to +\infty]{} 0$$

ce qui permet d'affirmer

$$xf(x) \xrightarrow[x \to +\infty]{} 0.$$

(c) Soit f la fonction définie sur \mathbb{R}_+ par :

$$\forall x \in [0; 2[, f(x) = 0]$$

et

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \forall t \in [0; 1[, f(t+n)] = \begin{cases} n^2 t & \text{si } t \in [0; 1/n^2] \\ n^2 (2/n^2 - t) & \text{si } t \in [1/n^2; 2/n^2] \\ 0 & \text{sinon} \end{cases}$$

f est continue sur \mathbb{R}_+ et

$$\int_0^n f(t) dt = \sum_{k=0}^{n-1} \int_k^{k+1} f(t) dt = \sum_{k=2}^{n-1} \frac{1}{k^2} \le \sum_{k=2}^{n-1} \frac{1}{k(k-1)} = \sum_{k=2}^{n-1} \frac{1}{k-1} - \frac{1}{k} = 1 - \frac{1}{n-1}$$

Puisque la suite $([0;n])_{n\in\mathbb{N}}$ est une suite croissante de segments de réunion \mathbb{R}_+ et que f est positive on peut affirmer que f est intégrable sur $[0;+\infty[$.

Exercice 15: [énoncé]

Montrons pour commencer

$$\forall \varepsilon > 0, \forall A \in \mathbb{R}_+, \exists x \ge A, |xf(x)| \le \varepsilon.$$

Par l'absurde, supposons qu'il existe $\varepsilon > 0$ et $A \in \mathbb{R}_+$ vérifiant

$$\forall x \ge A, |xf(x)| \ge \varepsilon$$

on a alors au voisinage de $+\infty$

$$|f(x)| \ge \frac{\varepsilon}{x}$$

ce qui est contradictoire avec l'intégrabilité de f.

Sachant

$$\forall \varepsilon > 0, \forall A \in \mathbb{R}_+, \exists x \ge A, |xf(x)| \le \varepsilon$$

on peut construire une suite (x_n) solution en prenant $\varepsilon = 1/(n+1) > 0$, A = n et en choisissant x_n vérifiant

$$x_n \ge n$$
 et $|x_n f(x_n)| \le 1/(n+1)$.

Exercice 16: [énoncé]

On peut prendre f nulle sur [0;1], puis pour chaque intervalle [n;n+1] avec $n\in\mathbb{N}^*$, la fonction f affine par morceaux définie par les nœuds f(n)=0, $f(n+\frac{1}{n^3})=n$, $f(n+\frac{2}{n^3})=0$ et f(n+1)=0 ce qui définit une fonction f positive continue vérifiant $\int_n^{n+1}f=\frac{1}{n^2}$ et donc intégrable sur \mathbb{R}_+ bien que non bornée.

Exercice 17: [énoncé]

(a) On a

$$f'(x) = f'(0) + \int_0^x f''(t) dt$$

donc f'(x) admet une limite finie ℓ quand $x \to +\infty$.

Si $\ell > 0$ alors pour x assez grand $f'(x) \ge \ell/2$ puis $f(x) \ge \ell x/2 + m$ ce qui empêche la convergence de $\int_0^{+\infty} f(t) dt$.

Si $\ell < 0$ on obtient aussi une absurdité. Il reste donc $\ell = 0$.

(b) Puisque la fonction f' est continue et converge en $+\infty$, cette fonction est $\frac{1}{1} \leq 1$ pornée et donc $t \mapsto f(t)f'(t)$ est intégrable sur $[0; +\infty[$.

Exercice 18: [énoncé]

- (a) Par convergence, $\lim_{M\to+\infty} \int_0^M |g(t)| dt = \int_0^\infty |g(t)| dt$ d'où le résultat.
- (b) Soit f une primitive de g. On peut écrire $f(x) = \int_0^x g(t) dt + C$. Pour tout $x \leq y \in \mathbb{R}$ on a alors : $\left| f(y) - f(x) \right| \leq \int_x^y \left| g(t) \right| dt$. Soient $\varepsilon > 0$ et M tel qu'introduit ci-dessus. Si x > M alors

$$|f(y) - f(x)| \le \int_{M}^{+\infty} |g(t)| dt \le \varepsilon.$$

De plus, la fonction $t \mapsto |g(t)|$ étant continue sur le segment [0; M+1], elle y est bornée par un certain A et on a donc $|f(y) - f(x)| \le A|y-x|$ pour tout $x \le y \in [0; M+1]$

Par suite, pour $\alpha = \min(1, \varepsilon/A) > 0$, on a pour tout $x \leq y \in \mathbb{R}$,

$$|y - x| \le \alpha \implies |f(y) - f(x)| \le \varepsilon.$$

La fonction f est donc uniformément continue.

Exercice 19: [énoncé]

(a) Puisque f est de classe C^2 , on peut écrire

$$f'(x) = f'(0) + \int_0^x f''(t) dt.$$

Par intégrabilité de f'', la fonction f' admet une limite finie ℓ quand $x \to +\infty$.

Si $\ell > 0$ alors, pour x assez grand $f'(x) \ge \ell/2$. Notons $A \ge 0$ tel que ce qui précède soit vrai pour $x \ge A$. On a alors

$$f(x) = f(0) + \int_0^x f'(t) dt \ge f(0) + \int_0^A f'(t) dt + \int_A^x \frac{\ell}{2} dt$$

et donc $f(x) \ge \ell x/2 + C^{te}$ ce qui empêche la convergence de $\int_0^{+\infty} f(t) dt$. Si $\ell < 0$ on obtient aussi une absurdité. Il reste donc $\ell = 0$. Posons

$$F(x) = \int_0^x f(t) \, \mathrm{d}t.$$

Par l'égalité de Taylor avec reste intégrale

$$F(x+1) = F(x) + f(x) + \int_{x}^{x+1} (x+1-t)f'(t) dt.$$

Quand $x \to +\infty$,

$$F(x), F(x+1) \to \int_0^{+\infty} f(t) dt.$$

Aussi $f'(x) \to 0$ et

$$\left| \int_{x}^{x+1} (x+1-t)f'(t) \, \mathrm{d}t \right| \le \max_{t \in [x;x+1]} |f'(t)| \to 0$$

donc par opération $f(x) \to 0$.

(b) Par l'égalité de Taylor avec reste intégrale

$$f(n+1) = f(n) + f'(n) + \int_{n}^{n+1} ((n+1) - t)f''(t) dt$$

donc

$$f'(n) = f(n+1) - f(n) + \int_{n}^{n+1} (n+1-t)f''(t) dt.$$

La série de terme général f(n+1) - f(n) est convergente car de même nature que la suite (f(n)) qui converge en $+\infty$. La série de terme général $\int_{n}^{n+1} (n+1-t)f''(t) dt$ est absolument convergente car

$$\left| \int_{n}^{n+1} (n+1-t)f''(t) \, \mathrm{d}t \right| \le \int_{n}^{n+1} \left| f''(t) \right| \, \mathrm{d}t$$

et le terme majorant est sommable par intégrabilité de f''. Par conséquent, la série $\sum f'(n)$ est convergente. Aussi

$$F(n+1) = F(n) + f(n) + \frac{1}{2}f'(n) + \int_{n}^{n+1} \frac{(n+1-t)^2}{2}f''(t) dt.$$

On peut alors mener le même raisonnement et conclure que $\sum f(n)$ converge.

Exercice 20: [énoncé]

On notera f la fonction intégrée et I l'intervalle d'étude, à chaque fois f s'avère continue par morceaux sur I.

(a) $I=[0\,;+\infty[,\,f(t)\underset{t\to+\infty}{\sim}\frac{1}{t^2},\,{\rm donc}\,\,f$ est intégrable et l'intégrale étudiée converge.

$$\int_0^{+\infty} \frac{\mathrm{d}t}{(t+1)(t+2)} = \int_0^{+\infty} \frac{1}{t+1} - \frac{1}{t+2} \, \mathrm{d}t = \left[\ln \frac{t+1}{t+2} \right]_0^{+\infty} = \ln 2.$$

(b) $I = [0; +\infty[, t^2 f(t) \xrightarrow[t \to +\infty]{} 0$, donc f est intégrable et l'intégrale étudiée converge.

$$\int_0^{+\infty} \frac{\mathrm{d}t}{(e^t + 1)(e^{-t} + 1)} = \int_1^{+\infty} \frac{\mathrm{d}u}{(u + 1)^2} = \frac{1}{2}.$$

(c) $I =]0; +\infty[, \sqrt{t}f(t) \xrightarrow[t\to 0]{} 0$ et $f(t) \underset{t\to +\infty}{\sim} \frac{1}{t^2}$ donc f est intégrable et l'intégrale étudiée converge.

$$\int_0^{+\infty} \ln \biggl(1 + \frac{1}{t^2} \biggr) \, \mathrm{d}t \mathop{=}_{IPP} \left[t \ln \bigl(1 + 1/t^2 \bigr) \right]_0^{+\infty} + \int_0^{+\infty} \frac{2 \, \mathrm{d}t}{1 + t^2} = \pi.$$

L'intégration par parties est justifiée par deux convergences.

(d) $I = [0; +\infty[, t^2 f(t) \xrightarrow[t \to +\infty]{} 0, \text{ donc } f \text{ est intégrable et l'intégrale étudiée converge.}$

$$\int_0^{+\infty} e^{-\sqrt{t}} dt = \int_0^{+\infty} 2u e^{-u} du = \left[-2u e^{-u} \right]_0^{+\infty} + \int_0^{+\infty} 2e^{-u} du = 2.$$

L'intégration par parties est justifiée par deux convergences.

(e) $I =]0; +\infty[, \sqrt{t}f(t) \xrightarrow[t\to 0^+]{} 0$ et $t^{3/2}f(t) \xrightarrow[t\to +\infty]{} 0$ donc f est intégrable et l'intégrale étudiée converge.

$$\int_0^{+\infty} \frac{\ln t}{(1+t)^2} dt = \int_0^{+\infty} \frac{\ln 1/u}{u^2 (1+1/u)^2} du = \int_0^{+\infty} \frac{-\ln u}{(u+1)^2} du$$

donc

$$\int_0^{+\infty} \frac{\ln t}{(1+t)^2} \, \mathrm{d}t = 0.$$

Exercice 21 : [énoncé]

On notera f la fonction intégrée et I l'intervalle d'étude, à chaque fois f s'avère continue par morceaux sur I.

(a) $I = [0; +\infty[, t^2 f(t) \xrightarrow[t \to +\infty]{} 0, \text{ donc } f \text{ est intégrable et } \int_0^{+\infty} \frac{dt}{\sqrt{e^t + 1}} \text{ converge.}$

$$\int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{\mathrm{e}^t + 1}} = \int_{u = \sqrt{\mathrm{e}^t + 1}}^{+\infty} \frac{2 \, \mathrm{d}u}{u^2 - 1} = \left[\ln \frac{u - 1}{u + 1} \right]_{\sqrt{2}}^{+\infty} = \ln \frac{\sqrt{2} + 1}{\sqrt{2} - 1} = 2 \ln(1 + \sqrt{2}).$$

(b) $I = [1; +\infty[, t^2 f(t) \xrightarrow[t \to +\infty]{} 0, \text{ donc } f \text{ est intégrable et } \int_1^{+\infty} \frac{dt}{\sinh t} \text{ converge.}$

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\sinh t} = \int_{1}^{+\infty} \frac{2\,\mathrm{d}t}{\mathrm{e}^{t} - \mathrm{e}^{-t}} = \int_{\mathrm{e}}^{+\infty} \frac{2\,\mathrm{d}u}{u^{2} - 1} = \left(\ln\frac{u - 1}{u + 1}\right)_{\mathrm{e}}^{+\infty} = \ln\frac{\mathrm{e} + 1}{\mathrm{e} - 1}.$$

(c) $I =]0; +\infty[, f(t) \xrightarrow[t\to 0]{} 0$ et $t^2 f(t) \xrightarrow[t\to +\infty]{} 0$ donc f est intégrable et $\int_0^{+\infty} \frac{t \ln t}{(t^2+1)^2} dt$ converge.

$$\int_0^{+\infty} \frac{t \ln t}{(t^2 + 1)^2} dt = \int_0^{+\infty} \frac{\ln 1/u}{u^3 (1 + 1/u^2)^2} du = \int_0^{+\infty} \frac{-u \ln u}{(u^2 + 1)^2} du$$

donc

$$\int_0^{+\infty} \frac{t \ln t}{(t^2 + 1)^2} \, \mathrm{d}t = 0.$$

(d) $I = [1; +\infty[, t^2 f(t) \xrightarrow[t \to +\infty]{} 0, \text{ donc } f \text{ est intégrable et } \int_1^{+\infty} \frac{dt}{t^2 \sqrt{1+t^2}} \text{ converge.}$

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{2}\sqrt{1+t^{2}}} \underset{t=\sin x}{=} \int_{\operatorname{argsh} 1}^{+\infty} \frac{\mathrm{d}x}{\sinh^{2}x} = \int_{\operatorname{argsh} 1}^{+\infty} \frac{4\,\mathrm{d}x}{(\mathrm{e}^{x}-\mathrm{e}^{-x})^{2}} \underset{u=e^{x}}{=} \int_{1+\sqrt{2}}^{+\infty} \frac{4\,\mathrm{d}u}{u(u-1/u)^{2}}$$

donc

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^2 \sqrt{1+t^2}} = \int_{1+\sqrt{2}}^{+\infty} \frac{4u \, \mathrm{d}u}{(u^2-1)^2} = \left[2\frac{1}{1-u^2}\right]_{1+\sqrt{2}}^{+\infty} = 2\frac{1}{(\sqrt{2}+1)^2-1} = \sqrt{2}-1.$$

(e) $I =]0;1], t^{2/3}f(t) \xrightarrow[t\to 0+]{} 0$ donc f est intégrable et $\int_0^1 \frac{\ln t}{\sqrt{t}} dt$ converge.

$$\int_0^1 \frac{\ln t}{\sqrt{t}} dt = \int_0^1 4 \ln u du = \left[4u \ln u - 4u \right]_0^1 = -4.$$

Exercice 22 : [énoncé]

(a) $f: t \mapsto \frac{e^{-\sqrt{t}}}{\sqrt{t}}$ est définie et continue sur $]0; +\infty[$, $f(t) \underset{0}{\sim} \frac{1}{\sqrt{t}}$ et $t^2 f(t) \xrightarrow[t \to +\infty]{} 0$ donc f est intégrable et l'intégrale étudiée converge. Via le changement de variable $u = \sqrt{t}$

$$I = 2 \int_0^{+\infty} e^{-u} du = 2.$$

(b) $f \colon x \mapsto \sin x \ln(\sin x)$ est définie et continue sur $]0 \colon \pi/2]$ et $f(x) \xrightarrow[x \to 0]{} 0$ donc f est intégrable et l'intégrale étudiée converge. Via le changement de variable $t = \cos x$

$$I = \frac{1}{2} \int_0^1 \ln(1 - x^2) \, dx = \frac{1}{2} \int_0^1 \ln(1 - x) + \ln(1 + x) \, dx = \ln 2 - 1.$$

(c) $f: t \mapsto \frac{\ln t}{\sqrt{1-t}}$ est définie et continue sur $]0; 1[, \sqrt{t}f(t) \xrightarrow[t \to 0]{} 0$ et $f(t) \xrightarrow[t \to 1]{} 0$ donc f est intégrable et l'intégrale étudiée converge. Via le changement de variable $u = \sqrt{1-t}$

$$I = -\int_{1}^{0} 2\ln(1 - u^{2}) du = \int_{0}^{1} 2\ln(1 - u^{2}) du.$$
Or $\int_{0}^{1} \ln(1 - u^{2}) du = \int_{0}^{1} \ln(1 - u) du + \int_{0}^{1} \ln(1 + u) du = 2\ln 2 - 2$, donc
$$I = 4\ln 2 - 4.$$

(d) $f: x \mapsto \frac{1}{(x+1)\sqrt[3]{x}}$ est définie et continue sur $]0; +\infty[$, $f(x) \underset{x \to 0^+}{\sim} \frac{1}{x^{1/3}}$ et $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^{4/3}}$ donc f est intégrable et l'intégrale étudiée converge. Via le changement de variable $t = \sqrt[3]{x}, x = t^3, dx = 3t^2 dt$.

$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)\sqrt[3]{x}} = \int_0^{+\infty} \frac{3t^2 \,\mathrm{d}t}{(t^3+1)t} = 3\int_0^{+\infty} \frac{t \,\mathrm{d}t}{t^3+1}$$

puis

$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)\sqrt[3]{x}} = \left[\ln \frac{t+1}{\sqrt{t^2 - t + 1}} + \sqrt{3} \arctan \frac{2t-1}{\sqrt{3}} \right]_0^{+\infty} = \frac{2\pi}{\sqrt{3}}.$$

(e) $f: x \mapsto \frac{\sqrt{1+x}-1}{x(1+x)}$ est définie et continue sur $]0; +\infty[, f(x) \xrightarrow[x \to 0^+]{} \frac{1}{2}$ et $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^{3/2}}$ donc f est intégrable et l'intégrale étudiée converge.

Via le changement de variable $t = \sqrt{1+x}, x = t^2 - 1, dx = 2t dt$.

$$\int_0^{+\infty} \frac{\sqrt{1+x}-1}{x(1+x)} \, \mathrm{d}x = \int_1^{+\infty} \frac{t-1}{(t^2-1)t^2} 2t \, \mathrm{d}t = \int_1^{+\infty} \frac{2 \, \mathrm{d}t}{t(t+1)} = 2 \ln 2.$$

(f) $f: x \mapsto \frac{(1+x)^{1/3}-1}{x(1+x)^{2/3}}$ est définie et continue sur $]0; +\infty[$, $f(x) \xrightarrow[x \to +\infty]{1} \frac{1}{3}$ et $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^{4/3}}$ donc f est intégrable et l'intégrale étudiée converge. Via le changement de variable $t = (1+x)^{1/3}, x = t^3 - 1, dx = 3t^2 dt$.

$$\int_0^{+\infty} \frac{(1+x)^{1/3} - 1}{x(1+x)^{2/3}} \, \mathrm{d}x = 3 \int_1^{+\infty} \frac{\mathrm{d}t}{t^2 + t + 1}$$

or

$$\int_1^{+\infty} \frac{\mathrm{d}t}{t^2+t+1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2t+1}{\sqrt{3}} \right]_1^{+\infty} = \frac{\pi}{3\sqrt{3}}$$

donc

$$\int_0^{+\infty} \frac{(1+x)^{1/3} - 1}{x(1+x)^{2/3}} \, \mathrm{d}x = \frac{\pi}{\sqrt{3}}.$$

(g) Par 2π périodicité,

$$\int_0^{2\pi} \frac{\mathrm{d}x}{2 + \cos x} = \int_{-\pi}^{\pi} \frac{\mathrm{d}x}{2 + \cos x}.$$

Sur $]-\pi;\pi[$, on peut réaliser le changement de variable $t=\tan x/2$.

$$\int_0^{2\pi} \frac{\mathrm{d}x}{2 + \cos x} = \int_{-\infty}^{+\infty} \frac{2 \, \mathrm{d}t}{(1 + t^2)(2 + \frac{1 - t^2}{1 + t^2})} = \int_{-\infty}^{+\infty} \frac{2 \, \mathrm{d}t}{3 + t^2} = \frac{2\pi}{\sqrt{3}}.$$

(h) Sur $[0; \pi/2[,]\pi/2; 3\pi/2[$ ou $]3\pi/2; 2\pi]$ on a

$$\int \frac{\sin^2 x}{3\cos^2 x + 1} \, \mathrm{d}x = \int \frac{t^2 \, \mathrm{d}t}{(1 + t^2)(4 + t^2)} = -\frac{x}{3} + \frac{2}{3} \arctan \frac{\tan x}{2} + C^{te}.$$

Par recollement, on détermine une primitive sur $[0; 2\pi]$ et on conclut

$$\int_0^{2\pi} \frac{\sin^2(x)}{3\cos^2(x) + 1} \, \mathrm{d}x = \frac{2\pi}{3}.$$

(i) $f: x \mapsto \frac{x}{\sqrt{x-x^2}}$ est définie et continue sur $]0; 1[, f(x) \xrightarrow[x \to 0^+]{} 0$ et $f(x) \underset{x \to 1^-}{\sim} \frac{1}{\sqrt{1-x}}$ donc f est intégrable et l'intégrale étudiée converge

On écrit

$$x - x^2 = \frac{1}{4} - \left(x - \frac{1}{2}\right)^2.$$

On pose alors $x - \frac{1}{2} = \frac{1}{2} \sin t$ et on a $\sqrt{x - x^2} = \frac{1}{2} \cos t$. Par changement de variable

$$\int_0^1 \frac{x \, dx}{\sqrt{x - x^2}} = \int_{-\pi/2}^{\pi/2} \frac{\sin t + 1}{2 \cos t} \cos t \, dt = \frac{\pi}{2}.$$

Exercice 23: [énoncé]

(a) $f: t \mapsto \frac{t}{1+t^4}$ est définie et continue sur $[0; +\infty[, f(t) \underset{t \to +\infty}{\sim} \frac{1}{t^3} \text{ donc } f$ est intégrable et l'intégrale J converge.

$$\int_0^{+\infty} \frac{t \, \mathrm{d}t}{1 + t^4} = \left[\frac{1}{2} \arctan t^2 \right]_0^{+\infty} = \frac{\pi}{4}.$$

- (b) $\frac{1}{1+t^4} \sim \frac{1}{t \to +\infty} \frac{1}{t^4}$ et $\frac{t^2}{1+t^4} \sim \frac{1}{t \to +\infty} \frac{1}{t^2}$ donc les deux intégrales introduites convergent. Le changement de variable x = 1/t transforme l'une en l'autre.
- (c) On a la factorisation

$$t^4 + 1 = (t^2 + 1)^2 - 2t^2 = (t^2 + \sqrt{2}t + 1)(t^2 - \sqrt{2}t + 1)$$

donc

$$I - \sqrt{2}J + I = \int_0^{+\infty} \frac{dt}{t^2 + \sqrt{2}t + 1} = \int_0^{+\infty} \frac{dt}{\left(t + \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2}} = \left[\sqrt{2}\arctan(\sqrt{2}t + 1)\right]_0^{+\infty}$$

puis

$$I = \frac{1}{2} \left(\frac{\pi}{2\sqrt{2}} + \frac{\pi}{2\sqrt{2}} \right) = \frac{\pi}{2\sqrt{2}}.$$

Exercice 24 : [énoncé]

La fonction intégrée est définie et continue par morceaux sur \mathbb{R} et est dominée par $1/t^3$ quand $|t| \to +\infty$, donc elle est intégrable et l'intégrale étudiée existe. Par découpage et changement de variable

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+\mathrm{i}t)} = \int_{0}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+\mathrm{i}t)} + \int_{0}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1-\mathrm{i}t)}$$

 $_{
m donc}$

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+\mathrm{i}t)} = \int_{0}^{+\infty} \frac{2\,\mathrm{d}t}{(1+t^2)^2}.$$

Or

$$\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^2} = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)} - \int_0^{+\infty} \frac{t^2 \, \mathrm{d}t}{(1+t^2)^2}.$$

Une intégration par parties justifiée par deux convergences donne

$$\int_0^{+\infty} \frac{t^2 dt}{(1+t^2)^2} = \left[-\frac{1}{2} \frac{t}{1+t^2} \right]_0^{+\infty} + \frac{1}{2} \int_0^{+\infty} \frac{dt}{1+t^2}$$

et donc

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+\mathrm{i}t)} = \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{2}.$$

Exercice 25 : [énoncé]

- (a) $f: t \mapsto \frac{\sin^3(t)}{t^2}$ est définie et continue par morceaux sur $]0; +\infty[$. Quand $t \to 0$, $f(t) \to 0$ et quand $t \to +\infty$, $f(t) = O(1/t^2)$. On en déduit que f est intégrable sur I ce qui assure l'existence de I.
- (b) On a $\sin(3t) = 3\sin(t) 4\sin^3(t)$ donc

$$4I(x) = \int_{x}^{+\infty} \frac{3\sin(t) - \sin(3t)}{t^2} dt.$$

Par convergence des intégrales écrites, on a

$$4I(x) = 3 \int_{x}^{+\infty} \frac{\sin(t)}{t^2} dt - \int_{x}^{+\infty} \frac{\sin(3t)}{t^2} dt.$$

Or

$$\int_{x}^{+\infty} \frac{\sin(3t)}{t^{2}} dt = \int_{u=3t}^{+\infty} \frac{\sin(u)}{u^{2}} du$$

 $_{
m donc}$

$$I(x) = \frac{3}{4} \int_{x}^{3x} \frac{\sin(t)}{t^2} dt.$$

(c) $I = \lim_{x\to 0} I(x)$. Or $\sin(t) = t + t^2 \varepsilon(t)$ avec $\varepsilon \to 0$ donc

$$\int_{x}^{3x} \frac{\sin(t)}{t^2} dt = \ln(3) + \int_{x}^{3x} \varepsilon(t) dt.$$

Puisque $\int_x^{3x} \varepsilon(t) dt \xrightarrow[x \to 0]{} 0$, on obtient

$$I = \frac{3}{4}\ln(3).$$

Exercice 26: [énoncé]

Puisque l'intégrale $\int_0^{+\infty} f$ converge, il en est de même de

$$\int_0^{+\infty} f(a+x) \, \mathrm{d}x \, \mathrm{et} \, \int_0^{+\infty} f(b+x) \, \mathrm{d}x$$

avec

$$\int_0^{+\infty} f(a+x) \, \mathrm{d}x = \int_a^{+\infty} f(x) \, \mathrm{d}x \text{ et } \int_0^{+\infty} f(b+x) \, \mathrm{d}x = \int_b^{+\infty} f(x) \, \mathrm{d}x.$$

On en déduit la convergence de l'intégrale suivante et sa valeur

$$\int_0^{+\infty} (f(a+x) - f(b+x)) dx = \int_a^b f(x) dx.$$

D'autre part, on a par découpage et pour tout $A \ge 0$

$$\int_{-A}^{0} (f(a+x) - f(b+x)) dx = \int_{-A+a}^{-A+b} f(x) dx - \int_{a}^{b} f(x) dx.$$

Or

$$(b-a) \min_{[-A+a;-A+b]} f \le \int_{-A+a}^{-A+b} f(x) \, \mathrm{d}x \le (b-a) \max_{[-A+a;-A+b]} f$$

avec

$$\min_{[-A+a:-A+b]} f \xrightarrow[A \to +\infty]{} \ell \text{ et } \max_{[-A+a:-A+b]} f \xrightarrow[A \to +\infty]{} \ell$$

car f converge vers ℓ en $-\infty$.

On en déduit la convergence et la valeur de l'intégrale suivante

$$\int_{-\infty}^{0} \left(f(a+x) - f(b+x) \right) dx = (b-a)\ell - \int_{a}^{b} f(x) dx$$

et finalement on obtient la convergence et la valeur de l'intégrale suivante

$$\int_{-\infty}^{+\infty} \left(f(a+x) - f(b+x) \right) dx = (b-a)\ell.$$

Exercice 27: [énoncé]

La fonction $f: x \mapsto \frac{\arctan(2x) - \arctan x}{x}$ est définie et continue par morceaux sur $]0;+\infty[.$

Quand $x \to 0^+$,

$$f(x) = \frac{2x - x + \mathrm{o}(x)}{x} \to 1.$$

Quand $x \to +\infty$,

$$f(x) = \frac{\frac{\pi}{2} - \arctan\frac{1}{2x} - \frac{\pi}{2} + \arctan\frac{1}{x}}{x} = O\left(\frac{1}{x^2}\right).$$

Ainsi f est intégrable sur $]0; +\infty[$ Pour $A \geq 0$,

$$\int_0^A \frac{\arctan(2x) - \arctan x}{x} \, \mathrm{d}x = \int_0^A \frac{\arctan(2x)}{x} \, \mathrm{d}x - \int_0^A \frac{\arctan x}{x} \, \mathrm{d}x$$

avec convergence des deux nouvelles intégrale.

Par changement de variable u = 2x sur la première,

$$\int_0^A \frac{\arctan(2x) - \arctan x}{x} \, \mathrm{d}x = \int_0^{2A} \frac{\arctan x}{x} \, \mathrm{d}x - \int_0^A \frac{\arctan x}{x} \, \mathrm{d}x = \int_A^{2A} \frac{\arctan x}{x} \, \mathrm{d}x.$$
 et on en déduit

Par la croissance de la fonction arctan,

$$\arctan(A) \int_A^{2A} \frac{\mathrm{d}x}{x} \le \int_A^{2A} \frac{\arctan x}{x} \, \mathrm{d}x \le \arctan(2A) \int_A^{2A} \frac{\mathrm{d}x}{x}.$$

À la limite quand $A \to +\infty$, on conclut

$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan x}{x} \, \mathrm{d}x = \frac{\pi}{2} \ln 2.$$

Exercice 28 : [énoncé]

On a

$$\frac{1}{1+X^4+X^8} = \frac{1-X^4}{1-X^{12}}.$$

Les pôles de cette fraction rationnelle sont les éléments de $U_{12} \setminus U_4$ et ils sont simples.

On peut donc écrire en combinant les parties polaires conjuguées

$$\frac{1}{1+X^4+X^8} = 2\operatorname{Re}\left(\frac{\alpha_1}{X-\omega_1}\right) + 2\operatorname{Re}\left(\frac{\alpha_2}{X-\omega_2}\right) + 2\operatorname{Re}\left(\frac{\alpha_4}{X-\omega_4}\right) + 2\operatorname{Re}\left(\frac{\alpha_5}{X-\omega_5}\right)$$

avec $\omega_k = \exp(2ik\pi/12)$, les $\omega_1, \omega_2, \omega_4$ et ω_5 de parties imaginaires strictement positives.

$$\alpha_k = \frac{1 - X^4}{(1 - X^{12})'} \bigg|_{X = \omega_k} = \frac{1}{12} (\omega_k^5 - \omega_k).$$

Soit $\omega = a + ib \in \mathbb{C}$ avec $a \in \mathbb{R}$ et b > 0. On a

$$\int_{-A}^{A} \frac{\mathrm{d}t}{t-\omega} = \int_{-A}^{A} \frac{(t-a)+\mathrm{i}b}{(t-a)^2+b^2} \, \mathrm{d}t = \left[\frac{1}{2}\ln\left((t-a)^2+b^2\right) + \mathrm{i}\arctan\frac{t-a}{b}\right]_{-A}^{A} \xrightarrow[A\to+\infty]{} \mathrm{i}\pi$$

la limite de l'arc tangente étant obtenue sachant b > 0. Soit de plus $\alpha \in \mathbb{C}$.

$$\lim_{A\to +\infty} \biggl(\int_{-A}^A 2\operatorname{Re}\biggl(\frac{\alpha}{t-\omega}\biggr) \,\mathrm{d}t \biggr) = 2\operatorname{Re}\biggl(\lim_{A\to +\infty} \alpha \int_{-A}^A \frac{\,\mathrm{d}t}{t-\omega}\biggr) = -2\pi\operatorname{Im}\alpha.$$

Puisque la convergence de l'intégrale que nous étudions est assurée

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1 + x^4 + x^8} = \lim_{A \to +\infty} \int_{-A}^{A} \frac{\mathrm{d}x}{1 + x^4 + x^8}$$

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1 + x^4 + x^8} = -2\pi \operatorname{Im}(\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5)$$

ce qui donne

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1 + x^4 + x^8} = \frac{\pi}{6} \operatorname{Im} (\omega^2 - \omega^{10} + \omega^4 - \omega^8).$$

Or

$$\omega^2 - \omega^{10} = 2i\sin\frac{\pi}{3} = i\sqrt{3} \text{ et } \omega^4 - \omega^8 = 2i\sin\frac{2\pi}{3} = i\sqrt{3}$$

et finalement

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1 + x^4 + x^8} = \frac{\pi}{\sqrt{3}}.$$

Exercice 29 : [énoncé]

(a) Il suffit d'étudier la variation de la fonction $x \mapsto e^x - (1+x)$ pour obtenir cette inégalité de convexité classique. On en déduit

$$1 - t^2 \le e^{-t^2} = \frac{1}{e^{t^2}} \le \frac{1}{1 + t^2}$$

(b) La fonction $t \mapsto e^{-t^2}$ est définie et continue par morceaux sur $[0; +\infty[$. Puisque $t^2e^{-t^2} \xrightarrow[t \to +\infty]{} 0$, cette fonction est intégrable sur $[0; +\infty[$ ce qui assure l'existence de I.

La fonction $t \mapsto (1-t^2)^n$ est définie et continue par morceaux sur le segment [0;1], donc l'intégrale définissant I_n existe.

La fonction $t \mapsto 1/(1+t^2)^n$ est définie et continue par morceaux sur $[0; +\infty[$ Puisque $1/(1+t^2)^n \underset{t\to +\infty}{\sim} 1/t^{2n}$ avec 2n>1, cette fonction est intégrable sur $[0; +\infty[$ ce qui assure l'existence de J_n .

On a

$$(1-t^2)^n \le e^{-nt^2} \le \frac{1}{(1+t^2)^n}$$

donc

$$I_n \le \int_0^1 e^{-nt^2} dt = \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} e^{-y^2} dy \le \frac{I}{\sqrt{n}}$$

 $_{
m et}$

$$\frac{I}{\sqrt{n}} = \frac{1}{\sqrt{n}} \int_0^{+\infty} e^{-y^2} dy = \int_0^{+\infty} e^{-nx^2} dx \le J_n.$$

- (c) Le changement de variable $t = \sin x$ donne $I_n = W_{2n+1}$. Le changement de variable $t = \tan x$ donne $J_{n+1} = W_{2n}$.
- (d) Par intégration par parties

$$W_{n+2} = \frac{n+1}{n+2} W_n.$$

On en déduit $u_{n+1} = u_n$ donc la suite (u_n) est constante égale à

$$u_1 = \pi/2$$
.

(e) Puisque

$$\forall x \in [0; \pi/2], (\cos x)^{n+1} < (\cos x)^n < (\cos x)^{n-1}$$

on obtient en intégrant

$$W_{n+1} \le W_n \le W_{n-1}$$

Or

$$W_{n+1} = \frac{n}{n+1} W_{n-1} \sim W_{n-1}$$

donc par encadrement

$$W_{n+1} \sim W_n$$
.

On en déduit

$$u_n \sim nW_n^2$$

puis

$$W_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$$
.

Par suite

$$I_n \sim \frac{\sqrt{\pi}}{2\sqrt{n}}$$
 et $J_n \sim \frac{\sqrt{\pi}}{2\sqrt{n}}$.

L'encadrement du b) donne alors

$$I = \frac{\sqrt{\pi}}{2}.$$

Exercice 30: [énoncé]

La fonction $f: t \mapsto t \lfloor 1/t \rfloor$ est définie et continue par morceaux sur $]0; +\infty[$. Pour t > 1, $\lfloor 1/t \rfloor = 0$ et donc f(t) = 0. Ainsi f est intégrable sur $[1; +\infty[$. Pour t > 0, $1/t - 1 \le \lfloor 1/t \rfloor \le 1/t$ et donc $f(t) \xrightarrow[t \to 0^+]{} 1$. Ainsi f est intégrable sur [0; 1].

On a

$$I = \lim_{n \to +\infty} \int_{1/n}^{1} f(t) \, \mathrm{d}t.$$

Or

$$\int_{1/n}^{1} f(t) dt = \sum_{k=1}^{n-1} \int_{1/(k+1)}^{1/k} t \lfloor 1/t \rfloor dt = \sum_{k=1}^{n-1} \int_{1/(k+1)}^{1/k} kt dt$$

puis

$$\int_{1/n}^{1} f(t) dt = \frac{1}{2} \sum_{k=1}^{n-1} \frac{2k+1}{k(k+1)^2}.$$

Par décomposition en éléments simples

$$\int_{1/n}^{1} f(t) dt = \frac{1}{2} \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{(k+1)^2} \right)$$

et après réorganisation

$$\int_{1/n}^{1} f(t) dt = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}}.$$

On en déduit

$$I = \frac{\pi^2}{12}.$$

Exercice 31 : [énoncé]

Supposons f intégrable sur [0;1].

Par la décroissance de f, on remarque

$$\int_{k/n}^{(k+1)/n} f(t) dt \le \frac{1}{n} f\left(\frac{k}{n}\right) \le \int_{(k-1)/n}^{k/n} f(t) dt.$$

En sommant pour k allant de 1 à n-1, on obtient

$$\int_{1/n}^{1} f(t) dt \le S_n - \frac{1}{n} f(1) \le \int_{0}^{1 - 1/n} f(t) dt.$$

Par théorème d'encadrement, on obtient

$$S_n \xrightarrow[n \to +\infty]{} \int_0^1 f(t) dt.$$

Inversement, supposons la suite (S_n) convergente.

Par la décroissance de f, on a

$$\int_{k/n}^{(k+1)/n} f(t) \, \mathrm{d}t \le f\left(\frac{k}{n}\right).$$

En sommant pour k allant de 1 à n-1, on obtient

$$\int_{1/n}^{1} f(t) dt \le S_n - \frac{1}{n} f(1) \xrightarrow[n \to +\infty]{} \lim_{n \to +\infty} S_n.$$

On en déduit que la suite des intégrales précédente est majorée et puisque la fonction f est positive, cela suffit pour conclure que l'intégrale de f converge.

Exercice 32: [énoncé]

On commence par étudier l'intégrale partielle sur [1;n] avec $n \in \mathbb{N}^*$ que l'on découpe afin de concrétiser la valeur de |t| sur l'intervalle d'intégration.

Par la relation de Chasles

$$\int_{1}^{n} \frac{(-1)^{\lfloor t \rfloor}}{t} dt = \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{(-1)^{k}}{t} dt = \sum_{k=1}^{n-1} (-1)^{k} \ln\left(1 + \frac{1}{k}\right)$$

Par application du critère spécial des séries alternées, on peut affirmer la convergence de la série $\sum (-1)^k \ln(1+\frac{1}{k})$. Notons S sa somme. On a donc

$$\int_{1}^{n} \frac{(-1)^{\lfloor t \rfloor}}{t} dt \xrightarrow[n \to +\infty]{} S.$$

Ceci suffit pas pour autant pour affirmer la convergence de l'intégrale. En effet, on

$$\int_0^{2n\pi} \sin(t) dt = 0 \xrightarrow[n \to +\infty]{} 0 \text{ et } \int_0^{+\infty} \sin(t) dt \text{ diverge.}$$

On étudie alors l'intégrale sur [1;x] en introduisant $n_x = |x|$ de sorte que $n_x \le x < n_x + 1$. On peut alors écrire

$$\int_{1}^{x} \frac{(-1)^{\lfloor t \rfloor}}{t} dt = \int_{1}^{n_x} \frac{(-1)^{\lfloor t \rfloor}}{t} dt + (-1)^n \int_{n_x}^{x} \frac{dt}{t}$$

avec

$$\int_{n_x}^x \frac{\mathrm{d}t}{t} = \ln \left(\frac{x}{n_x} \right) \xrightarrow[x \to +\infty]{} 0 \quad \text{car} \quad n_x \underset{x \to +\infty}{\sim} x.$$

On en déduit

$$\int_{1}^{x} \frac{(-1)^{\lfloor t \rfloor}}{t} \, \mathrm{d}t \xrightarrow[x \to +\infty]{} S.$$

Ainsi, l'intégrale étudiée converge et

$$\int_{1}^{+\infty} \frac{(-1)^{\lfloor t \rfloor}}{t} = S.$$

Le calcul de S est réalisé dans le sujet 1058. On obtient

$$\int_{1}^{+\infty} \frac{(-1)^{\lfloor t \rfloor}}{t} = \ln\left(\frac{2}{\pi}\right).$$

Exercice 33 : [énoncé] Comme $a>0,\ t^2\sin t\mathrm{e}^{-at}\xrightarrow[t\to+\infty]{}0,\ \mathrm{la}$ fonction continue par morceaux

 $t\mapsto \sin(t)\mathrm{e}^{-at}$ est intégrable sur $[0;+\infty[$ et $I(a)=\int_0^{+\infty}\sin(t)\mathrm{e}^{-at}\,\mathrm{d}t$ converge.

$$I(a) = \operatorname{Im}\left(\int_0^{+\infty} e^{it-at} dt\right) = \operatorname{Im}\left(\left[\frac{1}{i-a}e^{it-at}\right]_0^{+\infty}\right) = \frac{1}{a^2+1}.$$

Exercice 34 : [énoncé]

La fonction $t \mapsto \frac{\ln t}{a^2+t^2}$ est définie et continue par morceaux sur $]0; +\infty[$ Cette fonction est intégrable car

$$\sqrt{t} \frac{\ln t}{a^2 + t^2} \xrightarrow[t \to 0+]{} 0 \text{ et } t^{3/2} \frac{\ln t}{a^2 + t^2} \xrightarrow[t \to +\infty]{} 0.$$

L'intégrale définissant I(a) est donc bien définie. Par le changement de variable \mathcal{C}^1 bijectif proposé

$$I(a) = \int_0^{+\infty} \frac{\ln t}{a^2 + t^2} dt = \int_0^{+\infty} \frac{\ln a - \ln u}{a(u^2 + 1)} du = \frac{\ln a}{a} \int_0^{+\infty} \frac{du}{u^2 + 1} - \frac{1}{a}I(1).$$

Pour a = 1, on obtient I(1) = 0 et donc

$$I(a) = \frac{\ln a}{a} \frac{\pi}{2}.$$

Exercice 35: [énoncé]

L'intégrabilité est entendue.

Par le changement de variable $u = a^2/t$ on obtient

$$\int_0^{+\infty} \frac{\ln t}{t^2 + a^2} \, \mathrm{d}t = \int_0^{+\infty} \frac{2 \ln a - \ln u}{a^2 + u^2} \, \mathrm{d}u$$

donc

$$\int_0^{+\infty} \frac{\ln t}{t^2 + a^2} \, \mathrm{d}t = \frac{\pi}{2a} \ln a.$$

Exercice 36: [énoncé]

La fonction $f: t \mapsto \sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2}$ est définie et continue par morceaux sur $[0; +\infty[$.

Par développements limités

$$f(t) = (1 + a + b)\sqrt{t} + \frac{a + 2b}{2} \frac{1}{\sqrt{t}} + O\left(\frac{1}{t^{3/2}}\right) \text{ quand } t \to +\infty.$$

Si $1+a+b\neq 0$ alors $f(t)\xrightarrow[t\to+\infty]{}+\infty$ ou $-\infty$ et l'intégrale n'est assurément pas convergente.

Si 1+a+b=0 et $a+2b\neq 0$ alors $f(t)\sim \frac{\lambda}{t^{1/2}}$ avec $\lambda\neq 0$. Par équivalence de fonction de signe constant au voisinage de $+\infty$, on peut affirmer que l'intégrale diverge.

Si 1 + a + b = 0 et a + 2b = 0 i.e. (a, b) = (-2, 1) alors $f(t) = O(1/t^{3/2})$ et donc f est intégrable.

Finalement, l'intégrale étudiée converge si, et seulement si, (a,b)=(-2,1). Supposons que tel soit le cas.

$$\int_0^x \left(\sqrt{t} - 2\sqrt{t+1} + \sqrt{t+2}\right) dt = \frac{2}{3} \left[t^{3/2} - 2(t+1)^{3/2} + (t+2)^{3/2} \right]_0^x.$$

Par développements limités

$$x^{3/2} - 2(x+1)^{3/2} + (x+2)^{3/2} \sim \frac{3}{4\sqrt{x}} \xrightarrow[x \to +\infty]{} 0$$

et donc

$$\int_0^{+\infty} (\sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2}) dt = \frac{4}{3}(1 - \sqrt{2}).$$

Exercice 37 : [énoncé]

La fonction $f: t \mapsto (t - \lfloor t \rfloor) e^{-at}$ est définie et continue par morceaux sur $[0; +\infty[$. Quand $t \to +\infty$, $t^2 f(t) \to 0$ donc f est intégrable sur $[0; +\infty[$.

$$\int_0^n f(t) dt = \sum_{k=0}^{n-1} \int_k^{k+1} f(t) dt = \sum_{k=0}^{n-1} \int_0^1 t e^{-a(t+k)} dt = \frac{1 - e^{-na}}{1 - e^{-a}} \frac{1 - (a+1)e^{-a}}{a^2}.$$

Quand $n \to +\infty$,

$$\int_0^{+\infty} f(t) dt = \frac{1 - (a+1)e^{-a}}{a^2(1 - e^{-a})}.$$

Exercice 38: [énoncé]

(a) $x \mapsto f(x+a) - f(x)$ est continue et positive (car f est croissante).

$$\int_0^A f(x+a) - f(x) \, \mathrm{d}x = \int_a^{A+a} f(x) \, \mathrm{d}x - \int_0^A f(x) \, \mathrm{d}x = \int_A^{A+a} f(x) \, \mathrm{d}x - \int_0^a f(x) \, \mathrm{d}x.$$

Or $f(x) \xrightarrow[x \to +\infty]{} \ell$ donc

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}, x > M \implies |f(x) - \ell| < \varepsilon$$

et alors

$$\forall A \ge M, \left| \int_A^{A+a} f(x) \, \mathrm{d}x - a\ell \right| \le \int_A^{A+a} \left| f(x) - \ell \right| \, \mathrm{d}x \le a\varepsilon$$

donc

$$\int_{A}^{A+a} f(x) \, \mathrm{d}x \xrightarrow[A \to +\infty]{} a\ell$$

puis

$$\int_0^A f(x+a) - f(x) dx \xrightarrow[A \to +\infty]{} a\ell - \int_0^a f(x) dx.$$

On peut conclure que $\int_0^{+\infty} f(x+a) - f(x) dx$ est définie et

$$\int_0^{+\infty} f(x+a) - f(x) dx = a\ell - \int_0^a f(x) dx.$$

(b) Comme ci-dessus, mais en faisant $A \to -\infty$, on établie

$$\int_0^{-\infty} f(x+a) - f(x) dx = a\ell' - \int_0^a f(x) dx$$

avec $\ell' = \lim_{x \to -\infty} f(x)$. Par conséquent $\int_{-\infty}^{+\infty} \arctan(x+a) - \arctan(x) dx$ est définie par application du théorème de Chasles et

$$\int_{-\infty}^{+\infty} \arctan(x+a) - \arctan(x) \, \mathrm{d}x = \pi a.$$

Exercice 39: [énoncé]

Par le changement de variable $u = \tan \frac{t}{2}$ on parvient à l'intégrale

$$I = \int_0^{+\infty} \frac{8u^2 \, \mathrm{d}u}{(1+u^2)((1-x)^2 + (1+x)^2 u^2)((1-y)^2 + (1+y)^2 u^2)}$$

On peut réaliser une décomposition en éléments simples réelles de la fraction rationnelle intégrée qui pour des raisons de parité sera de la forme

$$\frac{a}{1+u^2} + \frac{b}{(1-x)^2 + (1+x)^2 u^2} + \frac{c}{(1-y)^2 + (1+y)^2 u^2}$$

avec

$$a = -\frac{1}{2xy}, b = -\frac{(1-x)^2(1+x)^2}{2x(x-y)(1-xy)}$$
 et $c = -\frac{(1-y)^2(1+y)^2}{2y(y-x)(1-xy)}$

sous réserve que $x \neq y$ et $xy \neq 0$.

Puisque

$$\int_0^{+\infty} \frac{\mathrm{d}u}{\alpha^2 + \beta^2 u^2} = \frac{1}{\alpha \beta} \frac{\pi}{2}$$

on parvient à

$$I = \frac{\pi}{2} \left(-\frac{1}{2xy} - \frac{1 - x^2}{2x(x - y)(1 - xy)} + \frac{1 - y^2}{2y(x - y)(1 - xy)} \right) = \frac{\pi}{2(1 - xy)}.$$

Les cas exclus $x \neq y$ et $xy \neq 0$ peuvent être récupérés par continuité. Il m'a peut-être échappé une démarche plus simple...

Exercice 40: [énoncé]

On peut écrire

$$1 + (t + ib)^2 = (t + i(b+1))(t + i(b-1)).$$

Si $b=\pm 1$ la fonction n'est pas intégrable sur $\mathbb R$ à cause d'une singularité en 0. Si $b\neq \pm 1$ alors la fonction $f\colon t\mapsto \frac{1}{1+(t+\mathrm{i}b)^2}$ est continue par morceaux sur $\mathbb R$ et

$$f(t) = O\left(\frac{1}{t^2}\right)$$
 quand $t \to \pm \infty$ donc f est intégrable sur \mathbb{R} .

En procédant à une décomposition en éléments simples :

$$\int_{-A}^{A} \frac{\mathrm{d}t}{1 + (t + \mathrm{i}b)^2} = \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b+1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \arctan\left(\frac{t}{b+1}\right) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \frac{1}{2} \ln(t^2 + (b-1)^2) + \frac{1}{2} \ln(t^2 + (b-1)^2) + \frac{1}{2} \ln(t^2 + (b-1)^2) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \left[\frac{1}{2} \ln(t^2 + (b-1)^2) + \frac{1}{2} \ln(t^2 + (b-1)^2) \right]_{-A}^{A} - \frac{\mathrm{i}}{2} \ln(t^2 + (b-1)^2) + \frac{1}{2} \ln(t^2 + (b-1)^$$

Si |b| > 1 alors

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{1 + (t + \mathrm{i}b)^2} = 0.$$

Si |b| < 1 alors

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{1 + (t + \mathrm{i}b)^2} = \pi.$$

Exercice 41 : [énoncé]

Le discriminant du trinôme $x^2 + \alpha x + 1$ vaut $\Delta = \alpha^2 - 4$.

Cas $|\alpha| < 2$

On a $\Delta < 0$, le trinôme ne s'annule pas et la fonction $x \mapsto 1/(x^2 + \alpha x + 1)$ est définie et continue par morceaux sur $[0; +\infty[$. La fonction est intégrable car équivalente à $1/x^2$ en $+\infty$.

Cas $\alpha \geq 2$, le trinôme ne s'annule pas sur $[0\,;+\infty[$ car il est somme de termes positifs. À nouveau la fonction $x\mapsto 1/(x^2+\alpha x+1)$ est intégrable sur $[0\,;+\infty[$. Cas $\alpha\leq 2$, le trinôme $x^2+\alpha x+1$ présente deux racines positives et la fonction $x\mapsto 1/(x^2+\alpha x+1)$ n'est pas définie sur l'intégralité de l'intervalle $]0\,;+\infty[$. Même en découpant l'intégrale aux points singuliers, on peut observer que les intégrales introduites ne sont pas définies. On ne parvient donc pas à donner un sens à l'intégrale étudiée dans ce cas.

Reste à calculer l'intégrale.

Cas $|\alpha| < 2$

Le trinôme $x^2 + \alpha x + 1$ s'écrit peut se réécrire

$$\left(x + \frac{\alpha}{2}\right)^2 + a^2 \text{ avec } a = \sqrt{1 - \frac{\alpha^2}{4}}.$$

On a alors

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + \alpha x + 1} = \left[\frac{1}{a} \arctan\left(\frac{2x + \alpha}{a}\right) \right]_0^{+\infty}$$

puis

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + \alpha x + 1} = \frac{1}{a} \left(\frac{\pi}{2} - \arctan\left(\frac{\alpha}{a}\right) \right).$$

Cas $\alpha = 2$

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 1} = \left[-\frac{1}{x+1} \right]_0^{+\infty} = 1.$$

Cas $\alpha > 2$

Le trinôme $x^2 + \alpha x + 1$ à deux racines x_0, x_1 distinctes strictement négatives.

$$x_0 = \frac{-\alpha - \sqrt{\Delta}}{2}$$
 et $x_1 = \frac{-\alpha + \sqrt{\Delta}}{2}$.

Par décomposition en éléments

$$\frac{1}{x^2 + \alpha x + 1} = \frac{a}{x - x_0} + \frac{b}{x - x_1}$$

avec

$$a = \frac{1}{x_1 - x_0} = \frac{1}{\sqrt{\Delta}}$$
 et $b = \frac{1}{x_0 - x_1} = -a$.

On a alors

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + \alpha x + 1} = \frac{1}{x_1 - x_0} \left[\ln \left(\frac{x - x_0}{x - x_1} \right) \right]_0^{+\infty} = \frac{1}{\sqrt{\Delta}} \ln \frac{\alpha + \sqrt{\Delta}}{\alpha - \sqrt{\Delta}}.$$

Exercice 42 : [énoncé] La fonction $t \mapsto \frac{1}{(t^2+a^2)(t^2+b^2)}$ est définie et continue par morceaux sur $]-\infty$; $+\infty$ [. Quand $t \to +\infty$, $f(t) \sim \frac{1}{t^4}$ donc f est intégrable sur $[0; +\infty[$. Quand $t \to -\infty$, $f(t) \sim \frac{1}{t^4}$ donc f est intégrable sur $]-\infty; 0]$

On remarque

$$\frac{1}{t^2 + a^2} - \frac{1}{t^2 + b^2} = \frac{b^2 - a^2}{(t^2 + a^2)(t^2 + b^2)}.$$

Pour $a \neq b$

$$I(a,b) = \frac{1}{b^2 - a^2} \left(\int_{-\infty}^{+\infty} \frac{dt}{t^2 + a^2} - \int_{-\infty}^{+\infty} \frac{dt}{t^2 + b^2} \right)$$

avec convergence des deux intégrales introduites.

Ainsi

$$I(a,b) = \frac{\pi}{ab(a+b)}.$$

Pour a=b,

$$I(a,a) = \frac{1}{a^2} \int_{-\infty}^{+\infty} \frac{(t^2 + a^2 - t^2) dt}{(t^2 + a^2)^2} = \frac{1}{a^2} \left(\int_{-\infty}^{+\infty} \frac{dt}{(t^2 + a^2)} - \int_{-\infty}^{+\infty} \frac{t^2}{(t^2 + a^2)^2} dt \right).$$

Par intégration par parties (avec deux convergences)

$$\int_{-\infty}^{+\infty} \frac{t \times t}{(t^2 + a^2)^2} dt = \left[-\frac{1}{2} \frac{t}{t^2 + a^2} \right]_{-\infty}^{+\infty} + \frac{1}{2} \int_{-\infty}^{+\infty} \frac{dt}{t^2 + a^2} = \frac{\pi}{2a}$$

donc

$$I(a,a) = \frac{\pi}{2a^3}.$$

Exercice 43: [énoncé]

La fonction $t \mapsto P(t)/Q(t)$ est définie et continue sur \mathbb{R} .

Pour $|t| \to +\infty$, $P(t)/Q(t) = O(1/t^2)$ car $\deg(P/Q) \le -2$.

Par suite l'intégrale $\int_{\mathbb{R}} \frac{P}{Q}$ converge.

Les pôles de la fraction P/Q sont complexes conjugués non réels et les parties polaires correspondantes sont deux à deux conjuguées. On en déduit que $P/Q = 2\operatorname{Re}(F)$ où F est la fraction rationnelle obtenue en sommant les parties polaires relatives aux pôles de partie imaginaire strictement positive.

Considérons un pôle $a = \alpha + i\beta$ avec $\alpha \in \mathbb{R}$ et $\beta > 0$.

Pour les éléments simples de la forme $\frac{1}{(X-a)^m}$ avec m>1, on a

$$\int_{\mathbb{R}} \frac{\mathrm{d}t}{(t-a)^m} = \left[-\frac{1}{m-1} \frac{1}{(t-a)^{m-1}} \right]_{-\infty}^{+\infty} = 0.$$

Pour les éléments simples de la forme $\frac{1}{X-a}$ on a

$$\int_{-A}^{A} \frac{dt}{t-a} = \int_{-A}^{A} \frac{t-\alpha+i\beta}{(t-\alpha)^2+\beta^2} = \left[\ln|t-a| + i \arctan\left(\frac{t-\alpha}{\beta}\right) \right]_{-A}^{A}. \text{ Quand } A \to +\infty, \text{ on } A \to +\infty$$

obtient $\int_{-A}^{A} \frac{dt}{t-a} \to i\pi$.

Puisque $\int_{\mathbb{R}} \frac{P}{Q} = \lim_{A \to +\infty} \int_{-A}^{A} \frac{P(t)}{Q(t)} dt$, on obtient $\int_{\mathbb{R}} \frac{P}{Q} = 2 \operatorname{Re}(\sigma) \pi$ avec σ la somme des coefficients facteurs des éléments simples $\frac{1}{X-a}$ avec a de parties imaginaires strictement positive.

Exercice 44 : [énoncé]

(a) L'intégrale en premier membre existe et définit une fonction dérivable de x avec

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_x^{+\infty} \frac{f(at) - f(bt)}{t} \, \mathrm{d}t \right) = -\frac{f(ax) - f(bx)}{x}.$$

L'intégrale en second membre définit aussi une fonction dérivable de x avec

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{ax}^{bx} \frac{f(u)}{u} \, \mathrm{d}u \right) = b \frac{f(bx)}{bx} - a \frac{f(ax)}{ax} = \frac{f(bx) - f(ax)}{x}.$$

On en déduit que les deux membres de l'égalité voulue sont égaux à une constante près.

Or ces deux fonctions de x sont de limite nulle quand $x\to +\infty$ et la constante précédente est alors nulle.

(b) Par continuité de f en 0, on peut écrire

$$f(t) = f(0) + \varphi(t)$$
 avec φ de limite nulle en 0.

On a alors

$$\int_{ax}^{bx} \frac{f(t)}{t} dt = f(0) \ln \left(\frac{b}{a}\right) + \int_{ax}^{bx} \frac{\varphi(t)}{t} dt.$$

Or

$$\left| \int_{ax}^{bx} \frac{\varphi(t)}{t} dt \right| \le \max_{t \in [ax;bx]} \left| \varphi(t) \right| \int_{ax}^{bx} \frac{dt}{t} = \ln\left(\frac{b}{a}\right) \max_{t \in [ax;bx]} \left| \varphi(t) \right| \xrightarrow[x \to 0^+]{} 0.$$

On conclut à la convergence de l'intégrale et à la valeur

$$\int_0^{+\infty} \frac{f(at) - f(bt)}{t} dt = f(0) \ln \left(\frac{b}{a}\right)$$

Exercice 45: [énoncé]

L'intégrale étudiée est évidemment convergente car il s'agit de l'intégrale d'une fonction continue sur le segment [0;1]. La fonction $x\mapsto \mathrm{e}^{-x}$ réalise une bijection de classe \mathcal{C}^1 de $[0;+\infty[$ vers]0;1]. Quitte à considérer l'intégrale initiale comme portant sur l'intervalle]0;1], on peut opérer le changement de variable $t=\mathrm{e}^{-x}$

$$I = \int_0^{+\infty} \frac{1 + e^{-2x}}{1 + e^{-4x}} e^{-x} dx = \int_0^{+\infty} \frac{e^x + e^{-x}}{e^{2x} + e^{-2x}} dx \text{ car } dt = -e^{-x} dx.$$

Par le théorème de changement de variable, l'intégrale introduite est assurément convergente. On peut aussi exprimer l'intégrale à l'aide des fonctions de trigonométrie hyperbolique

$$I = \int_0^{+\infty} \frac{\operatorname{ch} x}{\operatorname{ch}(2x)} \, \mathrm{d}x = \int_0^{+\infty} \frac{\operatorname{ch} x}{1 + 2\operatorname{sh}^2 x} \, \mathrm{d}x.$$

Par le changement de variable $u = \operatorname{sh} x$ (la fonction $x \mapsto \operatorname{sh} x$ induit une bijection \mathcal{C}^1)

$$I = \int_0^{+\infty} \frac{1}{1 + 2u^2} \, \mathrm{d}u \, \operatorname{car} \, \mathrm{d}u = \operatorname{ch} x \, \mathrm{d}x.$$

Enfin, par la formule d'intégration

$$\int \frac{\mathrm{d}u}{u^2 + a^2} = \frac{1}{a}\arctan\left(\frac{u}{a}\right)$$

avec $a=1/\sqrt{2}$, on peut achever le calcul

$$I = \frac{1}{\sqrt{2}} \left[\arctan\left(\sqrt{2}u\right) \right]_0^{+\infty} = \frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - 0\right) = \frac{\pi}{2\sqrt{2}}.$$

Exercice 46: [énoncé]

(a) L'intégrale de départ est bien définie. En effet, la fonction $f\colon x\mapsto (1+x^2)/(1+x^4)$ est définie et continue par morceaux sur $[0\,;+\infty[$ et on vérifie $f(x) {\sim \atop x\to +\infty} 1/x^2$ ce qui donne un argument d'intégrabilité.

Par le changement de variable C^1 strictement croissant $x = e^t$,

$$\int_0^{+\infty} \frac{1+x^2}{1+x^4} \, \mathrm{d}x = \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{2t}+1}{\mathrm{e}^{4t}+1} \mathrm{e}^t \, \mathrm{d}t = \int_{-\infty}^{+\infty} \frac{\mathrm{ch}\,t}{\mathrm{ch}\,2t} \, \mathrm{d}t.$$

Or

$$\operatorname{ch} 2t = 2\operatorname{ch}^2 t - 1 = 1 + 2\operatorname{sh}^2 t.$$

Par le nouveau changement de variable C^1 strictement croissant $u = \operatorname{sh} t$

$$\int_0^{+\infty} \frac{1+x^2}{1+x^4} \, \mathrm{d}x = \int_{-\infty}^{+\infty} \frac{\mathrm{d}u}{1+2u^2} = \frac{1}{\sqrt{2}} \left[\arctan(\sqrt{2}u) \right]_{-\infty}^{+\infty} = \frac{\pi}{\sqrt{2}}.$$

(b) Par le changement de variable C^1 strictement monotone x = 1/t, on obtient

$$\int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^4} = \int_0^{+\infty} \frac{x^2 \, \mathrm{d}x}{1 + x^4}$$

et donc

$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^4} = \frac{\pi}{2\sqrt{2}}.$$

Exercice 47 : [énoncé]

 $f: t \mapsto \frac{1}{(1+t^2)^2}$ est définie et continue sur $[0; +\infty[$ et $f(t) \sim \frac{1}{t^4}$ donc I existe. Via le changement de variable u = 1/t:

$$I = \int_0^{+\infty} \frac{u^2 \, \mathrm{d}u}{(1 + u^2)^2}$$

d'où

$$2I = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2} = \frac{\pi}{2}$$

puis $I = \frac{\pi}{4}$.

Exercice 48: [énoncé]

- (a) Les deux intégrales convergent. Le changement de variable u=1/xtransforme l'une en l'autre.
- (b)

$$2I = \int_0^{+\infty} \frac{(x+1) \, \mathrm{d}x}{x^3 + 1} = \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 - x + 1} = \int_0^{+\infty} \frac{\mathrm{d}x}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} = \left[\frac{2}{\sqrt{3}} \arctan \left(\frac{1}{2}\right)^2 + \frac{3}{4}\right] = \left[\frac{2}{\sqrt{3}} \arctan \left(\frac{1}{2}\right)^2 + \frac{3}{4}\right]$$

 $_{
m donc}$

$$I = \frac{2\pi}{3\sqrt{3}}.$$

Exercice 49: [énoncé]

On a

$$\sqrt{\tan \theta} = \int_{\theta = \pi/2 - h} \sqrt{\frac{\sin(\pi/2 - h)}{\cos(\pi/2 - h)}} = \sqrt{\frac{\cos h}{\sin h}} \sim \frac{1}{\sqrt{h}}$$

donc l'intégrale est bien définie.

$$\int_0^{\pi/2} \sqrt{\tan \theta} \, \mathrm{d}\theta = \int_0^{+\infty} \frac{2u^2}{1 + u^4} \, \mathrm{d}u = \frac{\pi}{\sqrt{2}}$$

après calculs...

Exercice 50 : [énoncé]

On procède au changement de variable

$$x = \frac{1}{2} + \frac{1}{2}\sin t$$

avec $t \in [-\pi/2; \pi/2]$.

On obtient

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = \pi$$

(avec convergence de l'intégrale) et

$$\int_0^1 \sqrt{x(1-x)} \, \mathrm{d}x = \frac{\pi}{8}.$$

Exercice 51 : [énoncé]

La fonction $x \mapsto x^n(\ln x)^n$ est définie et continue sur [0;1] et y est intégrable car on peut la prolonger par continuité en 0 sachant $x \ln x \xrightarrow[x \to 0^+]{} 0$. L'intégrale définissant I_n est donc convergente.

$$2I = \int_0^{+\infty} \frac{(x+1) \, \mathrm{d}x}{x^3+1} = \int_0^{+\infty} \frac{\mathrm{d}x}{x^2-x+1} = \int_0^{+\infty} \frac{\mathrm{d}x}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2x^2 \sin \left(\frac{1}{2}\right)^2}{\sqrt{3}}\right]_0^{+\infty} = \frac{3\sqrt{3}}{x^n (\ln x)^n \, \mathrm{d}x} = \left[\frac{x^{n+1}}{n+1} (\ln x)^n\right]_{\varepsilon}^1 - \frac{n}{n+1} \int_{\varepsilon}^1 x^n (\ln x)^{n-1} \, \mathrm{d}x.$$

Quand $\varepsilon \to 0$, on obtient

$$I_n = -\frac{n}{n+1} \int_0^1 x^n (\ln x)^{n-1} dx$$

la nouvelle intégrale étant convergente par le même argument qu'au dessus. En répétant l'opération, on obtient

$$I_n = (-1)^n \frac{n!}{(n+1)^n} \int_0^1 x^n \, \mathrm{d}x = (-1)^n \frac{n!}{(n+1)^{n+1}}.$$

On peut aussi procéder au calcul par le changement de variable $u = -\ln(x^{n+1})$ \mathcal{C}^1 strictement monotone

$$I_n = \frac{(-1)^n}{(n+1)^{n+1}} \int_0^{+\infty} u^n e^{-u} du = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

Exercice 52 : [énoncé]

 $f \colon x \mapsto \frac{1}{(1+x^2)^{n+1}}$ est définie et continue sur \mathbb{R}_+ .

 $f(x) = O\left(\frac{1}{x^2}\right)$ donc f est intégrable et $I_n = \int_0^{+\infty} f(x) dx$ existe. Pour $n \in \mathbb{N}^*$:

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}} = \int_0^{+\infty} \frac{1+x^2-x^2}{(1+x^2)^{n+1}} \, \mathrm{d}x = I_{n-1} - \int_0^{+\infty} \frac{x^2}{(1+x^2)^{n+1}} \, \mathrm{d}x.$$

Or

$$\int_0^{+\infty} \frac{x^2}{(1+x^2)^{n+1}} \, \mathrm{d}x \underset{\mathrm{ipp}}{=} \left[-\frac{1}{2} \frac{1}{n} \frac{x}{(1+x^2)^n} \right]_0^{+\infty} + \frac{1}{2n} \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^n} = \frac{1}{2n} I_{n-1}.$$

L'intégration par parties est justifiée par deux convergences.

On obtient ainsi

$$I_n = \frac{2n-1}{2n} I_{n-1}.$$

Puisque $I_0 = \int_0^{+\infty} \frac{dx}{1+x^2} = \frac{\pi}{2}$,

$$I_n = \frac{(2n-1)(2n-3)\dots 1}{(2n)(2n-2)\dots 2}I_0 = \frac{(2n)!}{2^{2n+1}(n!)^2}\pi.$$

Exercice 53: [énoncé]

- (a) La fonction f est continue par morceaux sur $]0; +\infty[$. Quand $t \to 0^+, \sqrt{t}f(t) \to 0$ et quand $t \to +\infty, t^{3/2}f(t) \to 0$ donc f est intégrable sur]0; 1] et $[1; +\infty[$.
- (b) Par une intégration par parties où l'on choisit judicieusement une primitive s'annulant en 0

$$\int_0^1 \frac{\ln t}{(1+t)^2} \, \mathrm{d}t = \left[\ln t \left(1 - \frac{1}{1+t} \right) \right]_0^1 - \int_0^1 \frac{1}{1+t} \, \mathrm{d}t = -\ln 2.$$

Par le changement de variable u = 1/t

$$\int_{1}^{+\infty} \frac{\ln t}{(1+t)^2} dt = -\int_{0}^{1} \frac{\ln u}{(u+1)^2} du = \ln 2.$$

Exercice 54: [énoncé]

Sous réserve de convergence, nous calculons l'intégrale en procédant par intégration par parties en intégrant $\frac{1}{x^2}$ en $\frac{x-1}{x}$ qui s'annule en 1.

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} \, \mathrm{d}x = \left[\ln(1-x^2) \frac{x-1}{x} \right]_0^1 + \int_0^1 \frac{2x}{(1-x^2)} \frac{x-1}{x} \, \mathrm{d}x.$$

L'intégration par parties est licite car le crochet converge. L'intégrale en second membre est faussement généralisée car se résume à

$$\int_0^1 -\frac{\mathrm{d}x}{1+x}.$$

On en déduit que l'intégrale initiale converge et

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} \, \mathrm{d}x = -\int_0^1 \frac{2}{(1+x)} \, \mathrm{d}x = -2\ln 2.$$

Exercice 55: [énoncé]

Les fonctions u et v sont définies et continues par morceaux sur $[1; +\infty[$ Puisque l'intégrale de f sur $[1; +\infty[$ converge, on a

$$u(x) = O\left(\frac{1}{x^2}\right)$$
 quand $x \to +\infty$

et donc u est intégrable sur $[1; +\infty[$.

Puisque $1/x \xrightarrow[x \to +\infty]{} 0$, on a

$$v(x) = o(f(x))$$
 quand $x \to +\infty$

et donc v aussi est intégrable sur $[1; +\infty[$

Par intégration par parties

$$\int_{1}^{A} u(x) \, dx = \left[-\frac{1}{x} \int_{1}^{x} f(t) \, dt \right]_{1}^{A} + \int_{1}^{A} v(x) \, dx$$

et donc $A \to +\infty$ on obtient

$$\int_{1}^{+\infty} u(x) \, \mathrm{d}x = \int_{1}^{+\infty} v(x) \, \mathrm{d}x.$$

Exercice 56: [énoncé]

Quand $t \to 0^+$,

$$\frac{f(t)}{t} = \frac{f(t) - f(0)}{t} \to f'(0).$$

La fonction $t \mapsto f(t)/t$ peut donc se prolonger par continuité en 0 ce qui permet d'assurer l'existence des intégrales écrites.

Par intégration par parties

$$\int_{\varepsilon}^{x} \left(\frac{f(t)}{t}\right)^{2} dt = \left[-\frac{(f(t))^{2}}{t}\right]_{\varepsilon}^{x} + 2 \int_{\varepsilon}^{x} \frac{f(t)f'(t)}{t} dt.$$

Quand $\varepsilon \to 0^+$, on obtient

$$\int_0^x \left(\frac{f(t)}{t}\right)^2 dt = -\frac{(f(x))^2}{x} + 2\int_0^x \frac{f(t)f'(t)}{t} dt$$

et l'inégalité affirmée est désormais évidente.

Exercice 57: [énoncé]

- (a) $x \mapsto u'(x), x \mapsto u(x)$ et $x \mapsto xu(x)$ sont de carrés intégrables donc $x \mapsto (xu(x)^2)' = u(x)^2 + xu'(x)u(x)$ est intégrable sur \mathbb{R} . Par suite $x \mapsto xu(x)^2$ admet des limites finies quand $x \to \pm \infty$. Or cette fonction est elle-même intégrable sur \mathbb{R} donc ses limites en $\pm \infty$ ne peuvent qu'être nulles.
- (b) Par l'inégalité de Cauchy-Schwarz,

$$\int_{-\infty}^{+\infty} u'(x)^2 dx \int_{-\infty}^{+\infty} x^2 u(x)^2 dx \ge \left(\int_{-\infty}^{+\infty} x u'(x) u(x) dx\right)^2.$$

Or par intégration par parties

$$\int_{-n}^{n} x u'(x) u(x) dx = \left[x u^{2}(x) \right]_{-n}^{n} - \int_{-n}^{n} u(x) (u(x) + x u'(x)) dx \text{ donc.}$$

Ainsi

$$\int_{-n}^{n} x u'(x) u(x) \, \mathrm{d}x = \frac{1}{2} \left[x u^{2}(x) \right]_{-n}^{n} - \frac{1}{2} \int_{-n}^{n} u^{2}(x) \, \mathrm{d}x$$

puis à la limite

$$\int_{-\infty}^{+\infty} x u'(x) u(x) dx = -\frac{1}{2} \int_{-\infty}^{+\infty} u^2(x) dx$$

et enfin l'inégalité voulue.

Exercice 58: [énoncé]

La fonction $f: t \mapsto \ln(1 + t^2/t^2)$ est définie et continue sur $I =]0; +\infty[$. On a

$$\sqrt{t}f(t) \xrightarrow[t\to 0^+]{} 0 \text{ et } f(t) \underset{t\to +\infty}{\sim} \frac{1}{t^2}$$

donc f est intégrable et l'intégrale étudiée converge.

Par intégration par parties justifiée par la convergence des deux intégrales écrites

$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt = \left[t \ln\left(1 + 1/t^2\right)\right]_0^{+\infty} + \int_0^{+\infty} \frac{2 dt}{1 + t^2} = \pi.$$

Exercice 59: [énoncé]

On réalise l'intégration par parties avec

$$u(t) = \ln t \text{ et } v(t) = e^{-t} - e^{-2t}$$

Les fonctions u et v sont de classe C^1 et le produit uv converge aux bornes d'intégration 0 et $+\infty$:

$$u(t)v(t) \underset{t\to 0^+}{\sim} t \ln(t) \xrightarrow[t\to 0^+]{} 0 \text{ et } u(t)v(t) \underset{t\to +\infty}{\sim} \ln(t)e^{-t} \xrightarrow[t\to +\infty]{} 0.$$

Sous réserve d'existence, la formule d'intégration par parties donne

$$\int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_0^{+\infty} \ln(t) (e^{-t} - 2e^{-2t}) dt.$$

La fonction $t \mapsto \ln(t) \mathrm{e}^{-t}$ est intégrable sur $]0; +\infty[$ car négligeable devant $1/t^2$ en $+\infty$ et devant $1/\sqrt{t}$ en 0. De même, la fonction $t \mapsto \ln(t) \mathrm{e}^{-2t}$ est intégrable. On peut donc écrire la séparation

$$\int_0^{+\infty} \ln(t) \left(e^{-t} - 2e^{-2t} \right) dt = \int_0^{+\infty} \ln(t) e^{-t} dt - 2 \int_0^{+\infty} \ln(t) e^{-2t} dt.$$

Cette identité justifie l'existence de l'intégrale en premier membre et donc aussi (en vertu du théorème d'intégration par parties) l'existence de l'intégrale initiale. Par le changement de variable u=2t

$$2\int_0^{+\infty} \ln(t)e^{-2t} dt = \int_0^{+\infty} \ln(u/2)e^{-u} du$$
$$= \int_0^{+\infty} \ln(u)e^{-u} du - \ln 2\underbrace{\int_0^{+\infty} e^{-u} du}_{-1}.$$

On en déduit par simplification

$$\int_0^{+\infty} \ln(t) (e^{-t} - 2e^{-2t}) dt = \ln 2.$$

Exercice 60 : [énoncé] La fonction $f_n \colon t \mapsto \frac{t^n}{\sqrt{1-t}}$ est définie et continue par morceaux sur $[0\,;1[$. Elle y est aussi intégrable car

$$f_n(t) \underset{t \to 1^-}{\sim} \frac{1}{\sqrt{1-t}}$$

Pour $n \in \mathbb{N}^*$, on obtient par intégration par parties généralisée

$$I_n = \underbrace{\left[-2t^n \sqrt{1-t}\right]_0^1}_{-0} + \int_0^1 2nt^{n-1} \sqrt{1-t} \, dt$$

En écrivant

$$\sqrt{1-t} = \frac{1}{\sqrt{1-t}} - \frac{t}{\sqrt{1-t}}$$

il vient la relation de récurrence

$$I_n = 2n(I_{n-1} - I_n)$$
 donc $I_n = \frac{2n}{2n+1}I_{n-1}$

Un calcul direct donne $I_0 = 2$ et donc

$$I_n = \frac{2n}{2n+1} \times \frac{2n-2}{2n-1} \times \dots \times \frac{2}{3} I_0 = \frac{2^{2n+1}(n!)^2}{(2n+1)!}$$

Exercice 61 : [énoncé]

Notons que l'intégrale I_n est bien définie.

(a) On découpe l'intégrale en deux

$$I_n = \int_0^1 \frac{\mathrm{d}x}{1+x^n} + \int_1^{+\infty} \frac{\mathrm{d}x}{1+x^n}.$$

On réalise le changement de variable x = 1/t sur la deuxième intégrale

$$I_n = \int_0^1 \frac{\mathrm{d}x}{1+x^n} + \int_1^0 -\frac{t^{n-2}\,\mathrm{d}t}{1+t^n}$$

puis on combine les deux intégrales pour obtenir

$$I_n = \int_0^1 \frac{1 + t^{n-2}}{1 + t^n} \, \mathrm{d}t.$$

(b) On peut écrire

$$I_n = 1 + \int_0^1 \frac{t^{n-2} - t^n}{(1 + t^n)} \, \mathrm{d}t.$$

D'une part

$$\int_0^1 \frac{t^n}{1+t^n} \, \mathrm{d}t = \frac{1}{n} \int_0^1 t \frac{nt^{n-1}}{1+t^n} \, \mathrm{d}t$$

ce qui donne par intégration par parties

$$\int_0^1 \frac{t^n}{1+t^n} dt = \frac{1}{n} \ln 2 - \frac{1}{n} \int_0^1 \ln(1+t^n) dt$$

avec

$$0 \le \int_0^1 \ln(1+t^n) \, \mathrm{d}t \le \int_0^1 t^n \, \mathrm{d}t = \frac{1}{n+1} \to 0.$$

D'une part

$$\int_0^1 \frac{t^{n-2}}{1+t^n} \, \mathrm{d}t = \frac{1}{n} \int_{[0:1]} \frac{1}{t} \frac{nt^{n-1}}{1+t^n} \, \mathrm{d}t$$

avec par intégration par parties

$$\int_{\varepsilon}^{1} \frac{1}{t} \frac{nt^{n-1}}{1+t^{n}} dt = \left[\frac{\ln(1+t^{n})}{t} \right]_{\varepsilon}^{1} + \int_{\varepsilon}^{1} \frac{\ln(1+t^{n})}{t^{2}} dt.$$

Quand $\varepsilon \to 0^+$, on obtient

$$\int_{]0;1]} \frac{1}{t} \frac{nt^{n-1}}{1+t^n} dt = \ln 2 + \int_{]0;1]} \frac{\ln(1+t^n)}{t^2} dt$$

où, sachant $\ln(1+u) \le u$,

$$0 \le \int_{]0;1]} \frac{\ln(1+t^n)}{t^2} \, \mathrm{d}t \le \int_0^1 t^{n-2} \, \mathrm{d}t = \frac{1}{n-1} \to 0.$$

On en déduit

$$I_n = 1 + \mathrm{o}(1/n).$$

Exercice 62 : [énoncé]

La fonction $f: x \mapsto \frac{1}{(1+x^3)^{n+1}}$ est définie et continue sur $[0; +\infty[$. Puisque $f(x) \sim \frac{1}{x^{3n+3}}$, la fonction f est intégrable sur $[0; +\infty[$ et l'intégrale définissant J_n converge.

(a) Via une décomposition en éléments simples, on obtient

$$J_0 = \frac{2\pi}{3\sqrt{3}}.$$

(b) On écrit

$$J_n - J_{n+1} = \int_0^{+\infty} x \times \frac{x^2}{(1+x^3)^{n+2}} dx.$$

On opère une intégration par parties avec convergence du crocher pour obtenir

$$J_{n+1} = \frac{3n+2}{3n+3}J_n.$$

(c) On pose $v_n = \sqrt[3]{n}J_n$.

$$\ln v_{n+1} - \ln v_n = \ln \sqrt[3]{1 + \frac{1}{n}} + \ln \left(1 - \frac{1}{3n+3}\right) \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right)$$

donc la série de terme général $\ln v_{n+1} - \ln v_n$ converge et donc la suite de terme général $\ln v_n$ converge vers une certain réel ℓ . En posant $A = e^{\ell} > 0$, on obtient $v_n \to A$ donc $J_n \sim \frac{A}{3\sqrt{n}}$.

Exercice 63: [énoncé]

(a) La fonction

$$f \colon t \mapsto \frac{t - \lfloor t \rfloor}{t(t+n)}$$

est définie et continue par morceaux sur $]0;+\infty[$. Quand $t\to 0^+,$

$$f(t) = \frac{t}{t(t+n)} = \frac{1}{t+n} \to \frac{1}{n}.$$

Quand $t \to +\infty$,

$$f(t) = \frac{\mathrm{O}(1)}{t(t+n)} = \mathrm{O}\left(\frac{1}{t^2}\right).$$

On en déduit que f est intégrable sur $]0; +\infty[$.

(b) On remarque que

$$\frac{1}{t(t+n)} = \frac{1}{n} \left(\frac{1}{t} - \frac{1}{t+n} \right)$$

et on en déduit

$$\int_0^A \frac{t-\lfloor t\rfloor}{t(t+n)}\,\mathrm{d}t = \frac{1}{n}\int_0^A \frac{t-\lfloor t\rfloor}{t} - \frac{t-\lfloor t\rfloor}{t+n}\,\mathrm{d}t.$$

Par linéarité de l'intégrale et changement de variable, on obtient

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t = \frac{1}{n} \left(\int_0^A \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t - \int_n^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \right).$$

Enfin par la relation de Chasles

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t = \frac{1}{n} \left(\int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t - \int_A^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \right).$$

Puisque

$$0 \le \int_A^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \le \frac{1}{A} \int_A^{A+n} t - \lfloor t \rfloor \, \mathrm{d}t \le \frac{n}{A}$$

on obtient quand $A \to +\infty$

$$u_n = \frac{1}{n} \int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t.$$

 $v_n = \int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t.$

Par suite

(c)

$$v_n - v_{n-1} = \int_{n-1}^n \frac{t - \lfloor t \rfloor}{t} dt = \int_0^1 \frac{u}{u + (n-1)} du$$

puis

$$v_n - v_{n-1} = 1 - (n-1)\ln\left(1 + \frac{1}{n-1}\right).$$

Par développement limité, on obtient

$$v_n - v_{n-1} = \frac{1}{2(n-1)} + O\left(\frac{1}{n^2}\right) = \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

On en déduit que la série de terme général

$$v_n - v_{n-1} - \frac{1}{2n} = O\left(\frac{1}{n^2}\right).$$

(d) Posons

$$S = \sum_{n=2}^{+\infty} \left(H(n) - H(n-1) - \frac{1}{2n} \right).$$

On a

$$\sum_{k=1}^{n} \left(v_k - v_{k-1} - \frac{1}{2k} \right) = S + o(1)$$

donc

$$v_n - v_1 - \frac{1}{2} \sum_{k=2}^{n} \frac{1}{k} = S + o(1).$$

Sachant

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \mathrm{o}(1)$$

on obtient

$$v_n \sim \frac{\ln n}{2}$$

puis

$$u_n \sim \frac{\ln n}{2n}$$
.

Exercice 64: [énoncé]

- (a) 0, cf. lemme de Lebesgue.
- (b) Posons

$$I_n = \int_0^{\pi/2} \frac{\sin(2nt)\cos t}{\sin t} \,\mathrm{d}t.$$

Cette intégrale existe car un prolongement par continuité est possible en 0. On observe

$$\sin(2(n+1)t) - \sin(2nt) = 2\sin t \cos(2n+1)t$$

et donc

$$I_{n+1} - I_n = \int_0^{\pi/2} 2\cos((2n+1)t)\cos t \,dt = 0.$$

La suite (I_n) est constante égale à

$$I_1 = \int_0^{\pi/2} 2\cos^2 t \, \mathrm{d}t = \frac{\pi}{2}.$$

(c) On a

$$\int_0^{\pi/2} \frac{\sin(2nt)\cos t}{\sin t} \, \mathrm{d}t - \int_0^{\pi/2} \frac{\sin(2nt)}{t} \, \mathrm{d}t = \int_0^{\pi/2} \sin(2nt) f(t) \, \mathrm{d}t$$

avec

$$f(t) = \cot t - \frac{1}{t}$$

qui se prolonge en une fonction de classe C^1 sur $[0; \pi/2]$.

Ainsi

$$\int_0^{\pi/2} \frac{\sin(2nt)}{t} \, \mathrm{d}t \to \frac{\pi}{2}.$$

Or

$$\int_0^{\pi/2} \frac{\sin(2nt)}{t} \, \mathrm{d}t = \int_0^{n\pi} \frac{\sin u}{u} \, \mathrm{d}u$$

donc la convergence de l'intégrale de Dirichlet étant supposée connue, on obtient

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}.$$

(d) On a

$$\int_0^{\pi/2} \ln(2\sin(t/2))\cos(nt) dt = \int_0^{\pi/2} \ln\left(\frac{\sin(t/2)}{t/2}\right)\cos(nt) dt + \int_0^{\pi/2} \ln(t)\cos(nt) dt.$$

Par intégration par parties,

$$\int_0^{\pi/2} \ln(t) \cos(nt) dt = \frac{\ln(\pi/2) \sin(n\pi/2)}{n} - \frac{1}{n} \int_0^{n\pi/2} \frac{\sin u}{u} du.$$

La fonction $t \mapsto \ln\left(\frac{\sin(t/2)}{t/2}\right)$ se prolonge en une fonction de classe \mathcal{C}^2 sur $[0:\pi/2]$.

Par intégration par parties,

$$\int_0^{\pi/2} \ln\biggl(\frac{\sin(t/2)}{t/2}\biggr) \cos(nt) \,\mathrm{d}t = \frac{1}{n} \ln\biggl(\frac{2\sqrt{2}}{\pi}\biggr) \sin(n\pi/2) - \frac{1}{n} \int_0^{\pi/2} \biggl(\ln\biggl(\frac{\sin(t/2)}{t/2}\biggr)\biggr)' \sin(n\pi/2) + \frac{1}{n} \ln\biggl(\frac{\sin(t/2)}{t/2}\biggr) + \frac{1}{n} \ln\biggl(\frac{\sin(t/2)}{$$

La fonction $t \mapsto \left(\ln\left(\frac{\sin(t/2)}{t/2}\right)\right)'$ étant de classe \mathcal{C}^1 sur $[0\,;\pi/2]$, on a

$$\frac{1}{n} \int_0^{\pi/2} \left(\ln \left(\frac{\sin(t/2)}{t/2} \right) \right)' \sin(nt) dt = o\left(\frac{1}{n} \right)$$

et donc

$$\int_0^{\pi/2} \ln(2\sin(t/2))\cos(nt) dt \sim \frac{(\ln 2)\sin(n\pi/2) - \pi}{2n}.$$

Exercice 65: [énoncé]

La fonction intégrée est définie et continue par morceaux sur $]0;+\infty[$. Elle se prolonge par continuité par la valeur 1 en 0 et est donc intégrable sur]0;1]. Par une intégration par parties

$$\int_{1}^{A} \frac{\sin t}{t} dt = \left[\frac{-\cos t}{t} \right]_{1}^{A} - \int_{1}^{A} \frac{\cos t}{t^{2}} dt.$$

Or il y a convergence des deux termes en second membre quand $A \to +\infty$ et donc il y a convergence de

$$\int_{1}^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

Finalement, l'intégrale étudiée converge.

Exercice 66: [énoncé]

Commençons par étudier la convergence de la suite (S_n) de terme général

$$S_n = \int_0^{n\pi} f(t) \sin(t) \, \mathrm{d}t.$$

Par la relation de Chasles, on peut découper l'intégrale

$$S_n = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} f(t) \sin(t) dt.$$

Par translation de la variable

$$\int_{k\pi}^{(k+1)\pi} f(t)\sin(t) dt = \int_0^{\pi} f(t+k\pi)\sin(t+k\pi) dt = (-1)^k v_k$$

avec

$$v_k = \int_0^{\pi} f(t + k\pi) \sin(t) dt.$$

Puisque f est positive, la suite (v_k) est à termes positifs. Puisque f est décroissante, la suite (v_k) est décroissante. Enfin, puisque f tend vers 0 en $+\infty$ et puisque

$$0 \le v_k \le f(k\pi)\pi$$

la suite (v_n) tend vers 0.

Par le critère spécial des séries alternées, on obtient que la série de terme général $(-1)^k v_k$ converge, autrement dit, que la suite (S_n) converge. Notons S sa limite.

Soit $X \geq 0$. En notant n_X la partie entière de X/π , on peut écrire

$$\int_0^X f(t)\sin(t) dt = S_{n_X} + \int_{n_X \pi}^X f(t) dt$$

avec

$$0 \le \int_{n_X \pi}^X f(t) \, dt \le \int_{n_X \pi}^X f(n_X \pi) \, dt = f(n_X \pi)(X - n_X \pi) \le f(n_X \pi) \pi.$$

Quand $X \to +\infty$, on a $n_X \to +\infty$, $S_{n_X} \to S$ et par l'encadrement qui précède

$$\int_{n_X \pi}^X f(t) \, \mathrm{d}t \to 0.$$

On en déduit

$$\int_0^X f(t)\sin(t)\,\mathrm{d}t \to S.$$

Exercice 67: [énoncé]

Par intégration par parties

$$\int_0^x \sin(e^t) dt = \int_0^x e^t \sin(e^t) e^{-t} dt = \left[-\cos(e^t) e^{-t} \right]_0^x - \int_0^x \cos(e^t) e^{-t} dt.$$

D'une part

$$\cos(e^x)e^{-x} \xrightarrow[x \to +\infty]{} 0$$

et d'autre part $t \mapsto \cos(e^t)e^{-t}$ est intégrable sur $[0; +\infty]$ car

$$t^2 \cos(e^t) e^{-t} \xrightarrow[t \to +\infty]{} 0$$

donc l'intégrale $\int_0^{+\infty} \sin(e^t) dt$ converge.

Exercice 68: [énoncé]

Par un argument de parité, il suffit d'établir la convergence de

$$\int_0^{+\infty} e^{it^2} dt = \int_0^{+\infty} \frac{2t}{2t} e^{it^2} dt.$$

Formellement

$$\int_0^{+\infty} e^{it^2} dt = \int_{-\infty}^{+\infty} \frac{2t}{2t} e^{it^2} dt = \left[\frac{e^{it^2} - 1}{2it} \right]_0^{+\infty} + \frac{1}{2i} \int_0^{+\infty} \frac{e^{it^2} - 1}{t^2} dt$$

où la primitive de $2te^{it^2}$ a été choisie de sorte de s'annuler en 0. Puisque les deux termes en second membre sont convergents, le théorème d'intégration par parties s'applique et assure la convergence de

$$\int_0^{+\infty} e^{it^2} dt.$$

Exercice 69: [énoncé]

Procédons au changement de variable de classe C^1 , $t = \sqrt{\lambda}x$

$$f(\lambda) = \frac{1}{\sqrt{\lambda}} \int_0^{\sqrt{\lambda}} e^{it^2} dt.$$

Or par le changement de variable $u = t^2$

$$\int_0^A e^{it^2} dt = \frac{1}{2} \int_0^{A^2} \frac{e^{iu}}{\sqrt{u}} du$$

puis par intégration par parties

$$\int_0^A e^{it^2} dt = \frac{1}{2} \left(\left[\frac{e^{iu} - 1}{i\sqrt{u}} \right]_0^A + \frac{1}{2} \int_0^{A^2} \frac{e^{iu} - 1}{iu^{3/2}} du \right)$$

et donc

$$\int_0^A e^{it^2} dt = \frac{i}{4} \int_0^{A^2} \frac{1 - e^{iu}}{u^{3/2}} du.$$

L'intégrale en second membre converge donc

$$\int_0^A e^{it^2} dt \xrightarrow[A \to +\infty]{} C.$$

De plus, la partie imaginaire de C est strictement positive en vertu de l'expression intégrale précédente, donc

$$f(\lambda) \underset{\lambda \to +\infty}{\sim} \frac{C}{\sqrt{\lambda}}.$$

Le calcul explicite de C est difficile, cf. intégrale de Fresnel

Exercice 70 : [énoncé]

(a) Pour x > a > 0

$$\int_{a}^{x} e^{it^{2}} dt = \int_{a}^{x} \frac{2it}{2it} e^{it^{2}} dt = \left[\frac{e^{it^{2}} - 1}{2it} \right]_{a}^{x} + \int_{a}^{x} \frac{e^{it^{2}} - 1}{2it^{2}} dt.$$

À la limite quand $a \to 0$,

$$\int_{a}^{x} e^{it^{2}} dt \rightarrow \int_{0}^{x} e^{it^{2}} dt, \frac{e^{ia^{2}} - 1}{2ia} \sim \frac{a}{2} \rightarrow 0$$

et

$$\int_{a}^{x} \frac{e^{it^{2}} - 1}{2it^{2}} dt \to \int_{0}^{x} \frac{e^{it^{2}} - 1}{2it^{2}} dt$$

car cette dernière intégrale converge.

Ainsi

$$f(x) = \frac{e^{ix^2} - 1}{2ix} + \frac{1}{2i} \int_0^x \frac{e^{it^2} - 1}{t^2} dt.$$

Puisque

$$\left| \frac{e^{ix^2} - 1}{2ix} \right| \le \frac{1}{x} \to 0 \text{ et } \int_0^x \frac{e^{it^2} - 1}{2it^2} dt \to \int_0^{+\infty} \frac{e^{it^2} - 1}{2it^2} dt$$

car cette dernière intégrale converge.

Par suite

$$f(x) \to \lambda = \int_0^{+\infty} \frac{e^{it^2} - 1}{2it^2} dt.$$

(b)
$$g(x) = \lambda - f(x) = \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{it^2} - 1}{t^2} dt - \frac{e^{ix^2} - 1}{2ix}$$

donc

$$g(x) = \frac{1}{2i} \int_{x}^{+\infty} \frac{e^{it^2}}{t^2} dt - \frac{1}{2i} \int_{x}^{+\infty} \frac{1}{t^2} dt - \frac{e^{ix^2} - 1}{2ix}$$

car ces deux dernières intégrales sont bien définies. Par suite

$$g(x) = \frac{1}{2i} \int_{x}^{+\infty} \frac{e^{it^2}}{t^2} dt - \frac{e^{ix^2}}{2ix}.$$

(c) Par intégration par parties généralisée

$$\int_{x}^{+\infty} \frac{e^{it^{2}} dt}{t^{2}} = \int_{x}^{+\infty} \frac{t e^{it^{2}} dt}{t^{3}} = \left[\frac{e^{it^{2}}}{2it^{3}} \right]_{x}^{+\infty} + \frac{3}{2i} \int_{x}^{+\infty} \frac{e^{it^{2}} dt}{t^{4}}.$$

Par suite

$$\left| \int_x^{+\infty} \frac{\mathrm{e}^{\mathrm{i} t^2} \, \mathrm{d} t}{t^2} \right| = \left| -\frac{\mathrm{e}^{\mathrm{i} x^2}}{2\mathrm{i} x^3} + \frac{3}{2\mathrm{i}} \int_x^{+\infty} \frac{\mathrm{e}^{\mathrm{i} t^2} \, \mathrm{d} t}{t^4} \right| \le \frac{1}{2x^3} + \frac{3}{2} \int_x^{+\infty} \frac{\mathrm{d} t}{t^4} = \frac{1}{x^3}.$$

Donc

$$\int_{x}^{+\infty} \frac{e^{it^2} dt}{t^2} = O\left(\frac{1}{x^3}\right).$$

Exercice 71: [énoncé]

Soit F la primitive de f s'annulant en 0. Par hypothèse

$$F(x) \xrightarrow[x \to +\infty]{} \ell = \int_0^{+\infty} f(t) dt.$$

Par intégration par parties, on peut écrire

$$\frac{1}{x} \int_0^x t f(t) dt = F(x) - \frac{1}{x} \int_0^x F(t) dt.$$

Or

$$\left| \frac{1}{x} \int_0^x F(t) dt - \ell \right| \le \frac{1}{x} \int_0^x \left| F(t) - \ell \right| dt.$$

Soit $\varepsilon > 0$. Il existe $A \in \mathbb{R}_+$ tel que

$$\forall t \geq A, |F(t) - \ell| \leq \varepsilon.$$

Par continuité sur [0; A], $|F(t) - \ell|$ est majorée par un certain M > 0. Pour $x \ge \max(A, AM/\varepsilon)$ on a

$$\frac{1}{x} \int_0^x \left| F(t) - \ell \right| dt = \frac{1}{x} \int_0^A \left| F(t) - \ell \right| dt + \frac{1}{x} \int_A^x \left| F(t) - \ell \right| dt \le 2\varepsilon.$$

Par conséquent

$$\frac{1}{x} \int_0^x F(t) \, \mathrm{d}t \xrightarrow[x \to +\infty]{} \ell$$

puis

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x t f(t) \, \mathrm{d}t = 0.$$

Notons que sans l'hypothèse d'intégrabilité de f, on ne peut pas exploiter le théorème de convergence dominée.

Exercice 72: [énoncé]

Supposons la convergence de l'intégrale de f sur $[1; +\infty[$.

Puisque f est continue, on peut introduire une primitive F de f et celle-ci admet donc une limite finie en $+\infty$. Par intégration par parties

$$\int_1^A \frac{f(t)}{t} dt = \left[\frac{F(t)}{t} \right]_1^A + \int_1^A \frac{F(t)}{t^2} dt.$$

Or $F(A)/A \xrightarrow[A \to +\infty]{} 0$ et $t \mapsto F(t)/t^2$ est intégrable sur $[1; +\infty[$ car F est bornée au voisinage de $+\infty$.

On en déduit donc par opérations la convergence de l'intégrale de $t \mapsto f(t)/t$ sur $[1; +\infty[$.

Exercice 73: [énoncé]

Soit F une primitive de la fonction continue f sur $[0; +\infty[$. Formellement

$$\int_0^{+\infty} \frac{f(t)}{t^{\alpha} + 1} dt = \left[\frac{F(t)}{t^{\alpha} + 1} \right]_0^{+\infty} + \alpha \int_0^{+\infty} \frac{F(t)t^{\alpha - 1}}{(t^{\alpha} + 1)^2} dt.$$

Supposons la convergence de $\int_0^{+\infty} f(t) dt$. La primitive F est alors convergente en $+\infty$ et donc dans l'intégration par parties précédente, le crochet est convergent en $+\infty$.

De plus, la fonction F est bornée car continue sur $[0; +\infty[$ et convergente en $+\infty$. Par suite, quand $t \to +\infty$,

$$\frac{F(t)t^{\alpha-1}}{(t^{\alpha}+1)^2} = O\left(\frac{1}{t^{\alpha+1}}\right)$$

et puisque $\alpha > 0$, on a la convergence de la deuxième intégrale dans la formule d'intégration par parties précédente.

Par le théorème d'intégration par parties, on peut affirmer que $\int_0^{+\infty} \frac{f(t)}{1+t^{\alpha}} dt$ converge.

Exercice 74: [énoncé]

Posons

$$G(x) = \int_{a}^{x} g(t) \, \mathrm{d}t.$$

Par intégration par parties

$$\int_a^x f(t)g(t) dt = \left[f(t)G(t) \right]_a^x - \int_a^x f'(t)G(t) dt.$$

D'une part

$$\left[f(t)G(t)\right]_a^x = f(x)G(x) - f(a)G(a) \xrightarrow[x \to +\infty]{} 0$$

car G est bornée et f de limite nulle en $+\infty$.

D'autre part, il y a convergence de l'intégrale $\int_a^{+\infty} f'(t)G(t) dt$. En effet

$$\int_a^x \left| f'(t)G(t) \right| \mathrm{d}t = \int_a^x -f'(t) \left| G(t) \right| \mathrm{d}t \le \int_a^x -f'(t)M \, \mathrm{d}t = \left(f(a) - f(x) \right) M.$$

Ainsi

$$\int_{a}^{x} |f'(t)G(t)| \, \mathrm{d}t \le f(a)M.$$

Ses intégrales partielles étant majorées, il y a convergence de $\int_a^{+\infty} |f'(t)G(t)| dt$. Ainsi f'G est intégrable sur $[a; +\infty[$. On peut alors conclure

$$\int_{a}^{x} f(t)g(t) dt \xrightarrow[x \to +\infty]{} \int_{a}^{+\infty} f'(t)G(t) dt.$$

Exercice 75 : [énoncé]

- (a) Pour $a \leq 0$, l'intégrale n'est pas définie. Pour a > 0, $\frac{1}{t^a+1} \underset{t \to +\infty}{\sim} \frac{1}{t^a}$, par suite $\int_1^{+\infty} \frac{\mathrm{d}t}{t^a+1}$ n'est définie que pour a > 1. Finalement f est définie sur $]1; +\infty[$.
- (b) Si $1 < a \le b$ alors

$$\forall t \ge 1, \frac{1}{t^b + 1} \le \frac{1}{t^a + 1}$$

donc $f(b) \leq f(a)$. Ainsi f est décroissante.

$$0 \le f(a) \le \int_1^{+\infty} \frac{\mathrm{d}t}{t^a} = \frac{1}{1-a} \left[\frac{1}{t^{a-1}} \right]_1^{+\infty} = \frac{1}{a-1} \xrightarrow[a \to +\infty]{} 0.$$

Exercice 76: [énoncé]

- (a) $t^{x-1}e^{-t} \underset{t\to 0^+}{\sim} t^{x-1}$ et $t^{x-1}e^{-t} = O_{+\infty}(1/t^2)$ la fonction $t\mapsto t^{x-1}e^{-t}$ est intégrable sur $]0\;;+\infty[$ et par suite $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}\,\mathrm{d}t$ est bien définie pour x>0.
- (b) Pour x > 1, les deux intégrales étant définies :

$$\int_0^{+\infty} t^{x-1} e^{-t} dt = \left[-t^{x-1} e^{-t} \right]_0^{+\infty} + (x-1) \int_0^{+\infty} t^{x-2} e^{-t} dt.$$

Ainsi

$$\forall x > 1, \Gamma(x) = (x-1)\Gamma(x-1).$$

Sachant

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = (-e^{-t}) = 1.$$

on obtient par récurrence sur $n \in \mathbb{N}^*$

$$\Gamma(n) = (n-1)!$$

Exercice 77: [énoncé]

- (a) La fonction $t \mapsto \frac{t^{x-1}}{1+t}$ est définie et continue sur]0;1] et $\frac{t^{x-1}}{1+t} \underset{t\to 0}{\sim} \frac{1}{t^{1-x}}$. Par équivalence de fonctions positives, l'intégrale définissant f(x) existe si, et seulement si, x>0.
- (b) Pour $x \leq y$, on a

$$\forall t \in]0;1], \frac{t^{x-1}}{1+t} \ge \frac{t^{y-1}}{1+t}$$

puis en intégrant $f(x) \ge f(y)$.

La fonction f est donc décroissante.

(c) On a

$$f(x) + f(x+1) = \int_0^1 t^{x-1} dt = \frac{1}{x}.$$

(d) Puisque f est décroissante et positive, f converge en $+\infty$. Posons ℓ sa limite. En passant à la limite la relation obtenue ci-dessus, on obtient $2\ell=0$ donc $\ell=0$.

Par décroissance

$$f(x) + f(x+1) \le 2f(x) \le f(x-1) + f(x)$$

donc

$$\frac{1}{x} \le 2f(x) \le \frac{1}{x-1}.$$

On en déduit

$$f(x) \sim \frac{1}{2x}$$
.

(e) c) Quand $x \to 0^+$,

$$0 \le f(x+1) = \int_0^1 \frac{t^x}{1+t} \, \mathrm{d}t \le \int_0^1 t^x \, \mathrm{d}t = \frac{1}{x+1} \le 1$$

donc

$$f(x+1) = O(1) = O(1/x)$$

et par suite

$$f(x) = 1/x - f(x+1) \underset{x \to 0^+}{\sim} 1/x \to +\infty.$$

Exercice 78: [énoncé]

(a) Par intégration par parties,

$$\left| \int_0^A \varphi(t) \cos(xt) \, \mathrm{d}t \right| \le \frac{|\varphi(0)| + |\varphi(A)|}{x} + \frac{1}{x} \int_0^A |\varphi'(t)| \, \mathrm{d}t$$

qui permet de conclure.

(b) Pour $\varepsilon > 0$, il existe $A \in \mathbb{R}_+$ tel que

$$\int_{A}^{+\infty} |\varphi(t)| \, \mathrm{d}t \le \varepsilon$$

car φ est intégrable sur \mathbb{R}_+ . De plus, pour x assez grand.

$$\left| \int_0^A \varphi(t) \cos(xt) \, \mathrm{d}t \right| \le \varepsilon$$

donc

$$\left| \int_0^{+\infty} \varphi(t) \cos(xt) \, \mathrm{d}t \right| \le 2\varepsilon$$

ce qui permet de conclure.

Exercice 79 : [énoncé]

- (a) Quand $t \to +\infty$, $e^{-t}/t = O(e^{-t})$ donc $t \mapsto e^{-t}/t$ est intégrable sur tout $[x; +\infty[\subset]0; +\infty[$.
- (b)

$$F(x) = \int_{1}^{+\infty} \frac{e^{-t}}{t} dt - \int_{1}^{x} \frac{e^{-t}}{t} dt = F(1) - \int_{1}^{x} \frac{e^{-t}}{t} dt$$

est de classe C^{∞} sur \mathbb{R}_+^* et $F'(x) = -\frac{e^{-x}}{x}$.

(c) Quand $x \to +\infty$

$$0 \le xF(x) = \int_{x}^{+\infty} \frac{xe^{-t}}{t} dt \le \int_{x}^{+\infty} e^{-t} dt = \int_{1}^{+\infty} e^{-t} dt - \int_{1}^{x} e^{-t} dt \to 0.$$

Quand $x \to 0^+$

$$xF(x) = x \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = x \left(\int_{1}^{+\infty} \frac{e^{-t}}{t} dt + \int_{x}^{1} \frac{e^{-t}}{t} dt \right)$$

donc

$$0 \le xF(x) \le x(F(1) + \int_x^1 \frac{1}{t} dt) \le xF(1) + x \ln x \to 0.$$

(d) Par intégration par parties formelle

$$\int_0^{+\infty} F(x) dx = \left[xF(x) \right]_0^{+\infty} + \int_0^{+\infty} e^{-x} dx.$$

L'intégration par parties est justifiée par deux convergences et finalement

$$\int_0^{+\infty} F(t) \, \mathrm{d}t = 1.$$

Exercice 80 : [énoncé]

(a) La fonction $t \mapsto \sin(t)/t$ est définie et continue par morceaux sur $]0; +\infty[$. On peut la prolonger par continuité en 0 en y posant la valeur 1. Par intégration par parties où l'on intègre l'expression $\sin t$ en $1-\cos t$

$$\int_0^x \frac{\sin t}{t} dt = \left[\frac{1 - \cos t}{t} \right]_0^x + \int_0^x \frac{1 - \cos t}{t^2} dt.$$

Quand $x \to +\infty$, on a

$$\frac{1 - \cos x}{x} \to 0$$

et

$$\int_0^x \frac{1 - \cos t}{t^2} dt \to \int_0^{+\infty} \frac{1 - \cos t}{t^2} dt$$

cette dernière intégrale étant convergente car la fonction peut être prolongée par continuité en 0 et est dominée par la fonction intégrable $t \mapsto 1/t^2$ en $+\infty$.

(b) Soit F la primitive s'annulant en 0 du prolongement par continuité de $t\mapsto \sin(t)/t.$ On a

$$f(x) = \lim_{+\infty} F - F(x).$$

Puisque la fonction F est de classe C^1 , la fonction f est aussi de classe C^1 sur \mathbb{R} et

$$f'(x) = -F'(x) = -\frac{\sin x}{x}.$$

(c) Par intégration par parties,

$$\int_0^x f(t) dt = \left[t f(t) \right]_0^x - \int_0^x t f'(t) dt = x f(x) + \int_0^x \sin t dt.$$

Or

$$\int_{x}^{+\infty} \frac{\sin t}{t} dt = \left[-\frac{\cos t}{t} \right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{\cos t}{t^{2}} dt$$

donc

$$xf(x) = \cos x - x \int_{x}^{+\infty} \frac{\cos t}{t^2} dt$$

puis

$$\int_0^x f(t) dt = 1 - x \int_x^{+\infty} \frac{\cos t}{t^2} dt.$$

Mais par intégration par parties on établit encore

$$\int_{x}^{+\infty} \frac{\cos t}{t^{2}} dt = \left[\frac{\sin t}{t^{2}} \right]_{x}^{+\infty} - 2 \int_{x}^{+\infty} \frac{\sin t}{t^{3}} dt$$

avec

$$\left| \int_{x}^{+\infty} 2 \frac{\sin t}{t^3} \, \mathrm{d}t \right| \le \int_{x}^{+\infty} \frac{2 \, \mathrm{d}t}{t^3} = \frac{1}{x^2}$$

ce qui permet d'affirmer

$$x \int_{r}^{+\infty} \frac{\cos t}{t^2} dt \xrightarrow[x \to +\infty]{} 0.$$

Finalement $\int_0^{+\infty} f(t) dt$ converge et

$$\int_0^{+\infty} f(t) \, \mathrm{d}t = 1.$$

(a)

$$f \colon t \mapsto \frac{t}{\sqrt{t^3 - 1}} = \frac{t}{\sqrt{(t - 1)(t^2 + t + 1)}}$$

est définie et continue sur [1;x] et

$$f(t) \sim \frac{1}{\sqrt{3}\sqrt{t-1}}$$

donc F(x) existe.

F est primitive de la fonction continue f sur $]1; +\infty[$ donc F est de classe \mathcal{C}^1 et F'(x) = f(x).

Comme f est de classe \mathcal{C}^{∞} , F est finalement de classe \mathcal{C}^{∞} et sur $]1;+\infty[$

$$F'(x) = \frac{x}{\sqrt{x^3 - 1}}.$$

- (b) F est continue en 1 et $F'(x) \xrightarrow[x \to 1]{} +\infty$. Tangente verticale en 1.
- (c) $\sqrt{t^3 1} \le t^{3/2}$ donc

$$F(x) \ge \int_1^x \frac{\mathrm{d}t}{\sqrt{t}} = 2\sqrt{x} - 2 \xrightarrow[x \to +\infty]{} + \infty$$

donc $F(x) \xrightarrow{+\infty} +\infty$.

(d) F est continue et strictement croissante sur $[1; +\infty[$ donc F réalise une bijection de $[1; +\infty[$ sur $[0; +\infty[$.

F réalise une bijection de classe C^{∞} de $]1; +\infty[$ sur $]0; +\infty[$ avec $F'(x) \neq 0$ donc F^{-1} est de classe C^{∞} sur $]0; +\infty[$.

$$(F^{-1})' = \frac{1}{F' \circ F^{-1}} = \frac{\sqrt{(F^{-1})^3 - 1}}{F^{-1}}$$

donc F^{-1} est solution de l'équation différentielle considérée.

(e) F^{-1} est continue en 0 et $F^{-1}(0) = 1$. En vertu de la relation

$$(F^{-1})' = \frac{\sqrt{(F^{-1})^3 - 1}}{F^{-1}}$$

on obtient

$$(F^{-1})'(x) \xrightarrow[x \to 0]{} 0$$

 F^{-1} est donc dérivable en 0 et $(F^{-1})'(0) = 0$

Exercice 82: [énoncé]

(a) Soient x, y > 0. La fonction

$$f \colon t \mapsto \frac{t - \lfloor t \rfloor}{t(t+x)}$$

est définie et continue par morceaux sur $]0; +\infty[\supset]0; y]$ et quand $t\to 0$,

$$f(t) = \frac{t}{t(t+x)} = \frac{1}{t+x} \to \frac{1}{x}$$

donc f est prolongeable par continuité en 0. Par suite l'intégrale définissant G(x, y) existe bien.

(b) Quand $t \to +\infty$,

$$f(t) = \frac{\mathcal{O}(1)}{t(t+x)} = \mathcal{O}\left(\frac{1}{t^2}\right)$$

donc f est intégrable sur $]0; +\infty[$.

Par suite G(x,y) converge quand $y \to +\infty$ vers

$$G(x) = \int_0^{+\infty} \frac{t - \lfloor t \rfloor}{t(t+x)} \, \mathrm{d}t.$$

(c) On remarque que

$$\frac{1}{t(t+n)} = \frac{1}{n} \left(\frac{1}{t} - \frac{1}{t+n} \right)$$

et on en déduit

$$G(n,y) = \frac{1}{n} \int_0^y \frac{t - \lfloor t \rfloor}{t} - \frac{t - \lfloor t \rfloor}{t + n} dt.$$

Par linéarité de l'intégrale et changement de variable, on obtient

$$G(n,y) = \frac{1}{n} \left(\int_0^y \frac{t - \lfloor t \rfloor}{t} dt - \int_n^{y+n} \frac{t - \lfloor t \rfloor}{t} dt \right).$$

Enfin par la relation de Chasles

$$G(n,y) = \frac{1}{n} \left(\int_0^n \frac{t - \lfloor t \rfloor}{t} dt - \int_y^{y+n} \frac{t - \lfloor t \rfloor}{t} dt \right)$$

(d) Puisque

$$0 \le \int_y^{y+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \le \frac{1}{y} \int_y^{y+n} t - \lfloor t \rfloor \, \mathrm{d}t \le \frac{n}{y}$$

on obtient quand $y \to +\infty$

$$G(n) = \frac{1}{n} \int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t$$

et on a alors

$$H(n) = \int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t.$$

Par suite

$$H(n) - H(n-1) = \int_{n-1}^{n} \frac{t - \lfloor t \rfloor}{t} dt = \int_{0}^{1} \frac{u}{u + (n-1)} du$$

puis

$$H(n) - H(n-1) = 1 - (n-1)\ln\left(1 + \frac{1}{n-1}\right).$$

Par développement limité, on obtient

$$H(n) - H(n-1) = \frac{1}{2(n-1)} + O\left(\frac{1}{n^2}\right) = \frac{1}{2n} + O\left(\frac{1}{n^2}\right).$$

On en déduit que la série de terme général

$$H(n) - H(n-1) - \frac{1}{2n} = O\left(\frac{1}{n^2}\right).$$

Posons

$$S = \sum_{n=2}^{+\infty} \left(H(n) - H(n-1) - \frac{1}{2n} \right).$$

On a

$$\sum_{k=1}^{n} \left(H(k) - H(k-1) - \frac{1}{2k} \right) = S + o(1)$$

donc

$$H(n) - H(1) - \frac{1}{2} \sum_{k=0}^{n} \frac{1}{k} = S + o(1).$$

Sachant

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \mathrm{o}(1)$$

on obtient

$$H(n) \sim \frac{1}{2} \ln n$$

puis

$$G(n) \sim \frac{\ln n}{2n}$$
.

Exercice 83: [énoncé]

L'intégrale étudiée est convergente puisque $t^2e^{-t}/t \xrightarrow[t \to +\infty]{} 0$.

Procédons à une intégration par parties avec $u(t) = -e^{-t}$ et v(t) = 1/t.

Les fonctions u et v sont de classe \mathcal{C}^1 et le produit uv converge en $+\infty$. On a donc

$$\int_x^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t = \frac{\mathrm{e}^{-x}}{x} - \int_x^{+\infty} \frac{\mathrm{e}^{-t}}{t^2} \, \mathrm{d}t.$$

Or

$$\frac{e^{-t}}{t^2} \underset{t \to +\infty}{=} o\left(\frac{e^{-t}}{t}\right)$$

donc, par intégration de relation de comparaison

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = o\left(\int_{x}^{+\infty} \frac{e^{-t}}{t} dt\right)$$

et donc

$$\int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t \underset{x \to +\infty}{\sim} \frac{\mathrm{e}^{-x}}{x}.$$

Exercice 84: [énoncé]

Par intégration par parties

$$\int_{1}^{x} \frac{e^{t}}{t} dt = \left[\frac{e^{t}}{t} \right]_{1}^{x} + \int_{1}^{x} \frac{e^{t}}{t^{2}} dt$$

et en répétant celle-ci

$$\int_1^x \frac{\mathrm{e}^t}{t} \, \mathrm{d}t = \left[\frac{\mathrm{e}^t}{t} + \frac{\mathrm{e}^t}{t^2} \right]_1^x + \int_1^x 2 \frac{\mathrm{e}^t}{t^3} \, \mathrm{d}t.$$

Or, toujours par intégration par parties

$$\int_{1}^{x} 2 \frac{e^{t}}{t^{3}} dt = \left[\frac{2e^{t}}{t^{3}} \right]_{1}^{x} + \int_{1}^{x} \frac{6e^{t}}{t^{4}} dt.$$

Mais

$$\frac{\mathrm{e}^t}{t^4} \mathop{=}_{t \to +\infty} \mathrm{o} \left(\frac{\mathrm{e}^t}{t^3} \right) \text{ et } t \mapsto \frac{\mathrm{e}^t}{t} \text{ est positive non intégrable sur } [1; +\infty[$$

donc, par intégration de relation de comparaison

$$\int_1^x \frac{e^t}{t^4} dt = o\left(\int_1^x \frac{e^t}{t^3}\right).$$

Ceci donne

$$\int_{1}^{x} 2 \frac{e^{t}}{t^{3}} dt = \frac{2e^{x}}{x^{3}} - 2e + o\left(\int_{1}^{x} \frac{e^{t}}{t^{3}} dt\right) \sim \frac{2e^{x}}{x^{3}}$$

puis, dans le calcul initial

$$\int_{1}^{x} \frac{e^{t}}{t} dt = \frac{e^{x}}{x \to +\infty} + \frac{e^{x}}{x^{2}} + \frac{2e^{x}}{x^{3}} + o\left(\frac{2e^{x}}{x^{3}}\right)$$

en ayant intégré le terme constant dans le terme négligeable.

Exercice 85: [énoncé]

Puisque f est continue en 0, on peut écrire

$$f(x) = f(0) + \varepsilon(x) \text{ avec } \varepsilon \xrightarrow{0} 0.$$

On a alors

$$\int_{ax}^{bx} \frac{f(t)}{t} dt = \int_{ax}^{bx} \frac{f(0)}{t} dt + \int_{ax}^{bx} \frac{\varepsilon(t)}{t} dt.$$

D'une part

$$\int_{ax}^{bx} \frac{f(0)}{t} \, \mathrm{d}t = f(0) \ln \frac{b}{a}$$

et d'autre part

$$\left| \int_{ax}^{bx} \frac{\varepsilon(t)}{t} \, \mathrm{d}t \right| \le \max_{t \in [ax;bx]} \left| \varepsilon(t) \right| \ln \frac{b}{a} \xrightarrow[x \to 0]{} 0.$$

On peut conclure

$$\lim_{x \to 0^+} \int_{ax}^{bx} \frac{f(t)}{t} \, \mathrm{d}t = f(0) \ln \frac{b}{a}.$$

Exercice 86: [énoncé]

Puisque f est positive et non intégrable, on sait

$$\int_0^x f(t) dt \xrightarrow[x \to +\infty]{} +\infty.$$

Soit $\varepsilon > 0$. Il existe $A \ge 0$ tel que

$$\forall x \ge A, |f'(x)| \le \varepsilon |f(x)|$$

et alors

$$\forall x \ge A, f(x) = f(A) + \int_A^x f'(t) \, \mathrm{d}t \le f(A) + \varepsilon \int_0^x f(t) \, \mathrm{d}t.$$

Puisque f(A) est une constante et $\int_0^x f(t) dt \xrightarrow[x \to +\infty]{} +\infty$, il existe $A' \geq 0$ tel que

$$\forall x \ge A', f(A) \le \varepsilon \int_0^x f(t) dt.$$

Pour $x \ge \max(A, A')$, on obtient

$$0 \le f(x) \le 2\varepsilon \int_0^x f(t) \, \mathrm{d}t$$

et on peut alors conclure.

Exercice 87: [énoncé]

(a) Par la monotonie de f, on encadre f(k/n) à l'aide d'intégrales dont k/n est une borne.

Cas: f est croissante. Pour tout $k \in [1; n-1]$, on a $f(k/n) \leq f(t)$ pour tout t d'un intervalle d'extrémités k/n et (k+1)/n. En intégrant en bon ordre, on obtient

$$\frac{1}{n}f\left(\frac{k}{n}\right) = \int_{k/n}^{(k+1)/n} f\left(\frac{k}{n}\right) dt \le \int_{k/n}^{(k+1)/n} f(t) dt.$$

De façon semblable, on a aussi

$$\int_{(k-1)/n}^{k/n} f(t) \, \mathrm{d}t \le \frac{1}{n} f\left(\frac{k}{n}\right).$$

En sommant ces comparaisons pour k allant de 1 à n, on obtient

$$\sum_{k=1}^{n} \int_{(k-1)/n}^{k/n} f(t) dt \le \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \le \sum_{k=1}^{n} \int_{k/n}^{(k+1)/n} f(t) dt.$$

Enfin, par la relation de Chasles,

$$\int_0^{1-1/n} f(t) \, \mathrm{d}t \le \frac{1}{n} \sum_{k=1}^n f\bigg(\frac{k}{n}\bigg) \le \int_{1/n}^1 f(t) \, \mathrm{d}t.$$

À l'aide de la convergence de l'intégrale de f sur]0;1[, on peut affirmer

$$\lim_{n\to +\infty} \int_0^{1-1/n} f(t) \, \mathrm{d}t = \lim_{n\to +\infty} \int_{1/n}^1 f(t) \, \mathrm{d}t = \int_0^1 f(t) \, \mathrm{d}t$$

et l'on conclut par le théorème de convergence par encadrement

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(t) dt.$$

Cas: f est décroissante. L'étude est analogue 2 à la précédente sauf que les inégalités sont renversées. La conclusion est identique.

(b) On passe au logarithme pour retrouver la forme de la question précédente.

On a

$$\ln\left(\sqrt[n]{\sin\left(\frac{\pi}{2n}\right)\sin\left(\frac{2\pi}{2n}\right)\times\cdots\times\sin\left(\frac{(n-1)\pi}{2n}\right)}\right) = \frac{1}{n}\sum_{k=1}^{n-1}\ln\left(\sin\left(\frac{k\pi}{2n}\right)\right)$$

ce qui invite à introduire la fonction $f: [0;1] \to \mathbb{R}$ définie par

$$f(t) = \ln\left(\sin\left(\frac{\pi t}{2}\right)\right).$$

Celle-ci est continue, croissante et intégrable sur]0;1] car négligeable devant $t\mapsto t^{-1/2}$ en 0+ :

$$\sqrt{t} \ln \left(\sin \left(\frac{\pi t}{2} \right) \right) = \underbrace{\sqrt{t} \ln(t)}_{\to 0} + \underbrace{\sqrt{t}}_{\to 0} \underbrace{\ln \left(\frac{1}{t} \sin \left(\frac{\pi t}{2} \right) \right)}_{\to \ln(\pi/2)} \xrightarrow[t \to 0^+]{} 0.$$

On en déduit

$$\lim_{n \to +\infty} \ln \left(\sqrt[n]{\sin\left(\frac{\pi}{2n}\right) \sin\left(\frac{2\pi}{2n}\right)} \times \dots \times \sin\left(\frac{(n-1)\pi}{2n}\right) \right) = \int_0^1 \ln \left(\sin\left(\frac{\pi t}{2}\right)\right) dt.$$

Enfin, par le changement de variable $t = \frac{\pi x}{2}$, on transforme cette intégrale en celle calculée dans le sujet 673 et l'on peut conclure

$$\lim_{n \to +\infty} \sqrt[n]{\sin\left(\frac{\pi}{2n}\right)} \sin\left(\frac{2\pi}{2n}\right) \times \dots \times \sin\left(\frac{(n-1)\pi}{2n}\right) = e^{-\ln(2)} = \frac{1}{2}.$$

2. On peut aussi considérer -f au lieu de f pour se ramener à la situation du dessus.

^{1.} L'extrémité k/n est fermée et l'extrémité (k+1)/n aussi sauf lorsque k=n-1 auquel cas l'intégrale qui suit est généralisée en sa borne supérieure.