Ec 370

Money and Banking

Chapter 6: The Risk and Term Structure of Interest Rates - PART II

Xiang LI May 4, 2020

- **Previous lecture**: default risk, liquidity, income tax consideration explain why bonds with the **same maturity** have different interest rates
 - Risk structure of interest rates
- **Today's lecture**: three theories explaining why bonds with *identical* default risk, liquidity, tax consideration have *different* interest rates because their terms to **maturity are different**
 - Term structure of interest rates

Term structure of interest rates

- **Yield curve**: a plot of the yields on bonds with **differing** terms to maturity but the **same** risk, liquidity, and tax considerations
- Yield curves have three basic shapes
 - upward-sloping (most common): long-term interest rates > shortterm interest rates
 - **flat**: short- and long-term interest rates are the same
 - downward-sloping or inverted: long-term interest rates < short-term interest rates

Upward-sloping yield curve:

long-term interest rates is larger than short-term interest rates

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&year=2020

A good theory of the yield curve must explain these following **three important empirical facts**:

- Fact #1: interest rates on bonds of different maturities move together over time
- **Fact #2**: When short-term interest rates are low, yield curves are more likely to have an upward slope; when short-term interest rates are high, yield curves are more likely to slope downward
- Fact #3: Yield curves almost always slope upward

Three theories of the yield curve:

- Expectations theory: can only explain Fact #1 & #2
- Segmented markets theory: can only explain Fact #3
- Liquidity premium theory:
 - combination of expectations theory and segmented markets theory
 - can explain Fact #1 & #2 & #3

For an investment of \$1, there are two investment strategies for the choice of holding for 2 periods:

Option 1: purchase a 1-yr bond, and when it matures in 1 year, purchase another 1-yr bond

Option 2: purchase a 2-yr bond and hold it until maturity

- ullet interest rate on a 1-yr bond at time t: i_t
- ullet interest rate on a 1-yr bond *expected* for time t + 1: i_{t+1}^e
- ullet interest rate on the 2-yr bond at time t: i_{2t}

expected return for Strategy 1:

$$(1+i_t)(1+i_{t+1}^e)-1=i_t+i_{t+1}^e+i_t(i_{t+1}^e)pprox i_t+i_{t+1}^e$$

• expected return for Strategy 2:

$$(1+i_{2t})(1+i_{2t})-1=2i_{2t}+(i_{2t})^2pprox 2i_{2t}$$

- **Key assumption of Expectations Theory**: bonds with different maturities are perfect substitutes
 - the expected returns on bonds with different maturities are equal

• equalize:

$$2i_{2t} = i_t + i_{t+1}^e$$

rewrite:

$$i_{2t}=rac{i_t+i_{t+1}^e}{2}$$

• generalize: interest rate on an n-yr bond is

$$\circ \qquad \qquad i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n}$$

• Q1 (1): the current interest rate on the one-year bond is 5%. If the 1-yr interest rates over the next four years are **expected** to be 6%, 7%, 8%, and 9%. Find out the interest rate on a 2-yr bond, a 3-yr bond, a 4-yr bond, and a 5-yr bond. Also draw the yield curve.

$$i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n}$$

(1) Given
$$i_t=5\%$$
, $i_{t+1}^e=6\%$, $i_{t+2}^e=7\%$, $i_{t+3}^e=8\%$, $i_{t+4}^e=9\%$:

$$ullet \ i_{2t}=rac{5\%+6\%}{2}=5.5\%$$

$$ullet \ i_{3t} = rac{5\% + 6\% + 7\%}{3} = 6\%$$

$$ullet \ i_{4t} = rac{5\% + 6\% + 7\% + 8\%}{4} = 6.5\%$$

$$ullet \ i_{5t} = rac{5\% + 6\% + 7\% + 8\% + 9\%}{5} = 7\%$$

- Q1 (2): if i_t increases from 5% to 6%. Assume people expect interest rate on a 1-yr bond at time t+1 increases from 6% to 7%, and interest rate on a 1-yr bond at time t+2 increases from 7% to 8%, but do no adjust expectations further.
- Find out the interest rate on a 2-yr bond, a 3-yr bond, a 4-yr bond, a 5-yr bond, and draw the yield curve

(2) Given
$$i_t = 6\%$$
, $i_{t+1}^e = 7\%$, $i_{t+2}^e = 8\%$, $i_{t+3}^e = 8\%$, $i_{t+4}^e = 9\%$:

$$ullet \ i_{2t}=rac{6\%+7\%}{2}=6.5\%$$

$$ullet i_{3t} = rac{6\% + 7\% + 8\%}{3} = 7\%$$

$$ullet \ i_{4t} = rac{6\% + 7\% + 8\% + 8\%}{4} = 7.25\%$$

$$ullet i_{5t} = rac{6\% + 7\% + 8\% + 8\% + 9\%}{5} = 7.6\%$$

- In summary, A rise in actual short-term rates raises people's
 expectation on future short-term rates. Therefore, increasing actual and
 expected short-term rates jointly drives up longer-term rates
- This is exactly why we observe **Fact #1**: interest rates on bonds of different maturities move together over time

$$egin{array}{ll} \circ i_t \uparrow \Rightarrow i_{2t} \uparrow, \ldots, i_{nt} \uparrow \ \circ i_t \downarrow \Rightarrow i_{2t} \downarrow, \ldots, i_{nt} \downarrow \end{array}$$

• How does Expectations Theory explains Fact #2?

Post the 2007-2009 Great Recession, interest rate on 1-yr T-bills is usually less than 2%. So the current 5% 1-yr interest rate is way too high. Therefore, people expect the rates to decline in the future.

- ullet Q1 (3): Assume people expect interest rate on a 1-yr bond at time t+1 decreases from 6% to 4%, and interest rate on a 1-yr bond at time t+2 increases from 7% to 3%, and interest rate on a 1-yr bond at time t+3 and t+4 are back to 2%.
- Find out the interest rate on a 2-yr bond, a 3-yr bond, a 4-yr bond, a 5-yr bond, and draw the yield curve

(3) Given
$$i_t=5\%$$
, $i_{t+1}^e=4\%$, $i_{t+2}^e=3\%$, $i_{t+3}^e=2\%$, $i_{t+4}^e=2\%$:

$$ullet \ i_{2t}=rac{5\%+4\%}{2}=4.5\%$$

$$ullet i_{3t} = rac{5\% + 4\% + 3\%}{3} = 4\%$$

$$ullet \ i_{4t} = rac{5\% + 4\% + 3\% + 2\%}{4} = 3.5\%$$

$$ullet \ i_{5t} = rac{5\% + 4\% + 3\% + 2\% + 2\%}{5} = 3.2\%$$

(2) Segmented Markets Theory

- Expectations Theory assumes that investors do not prefer bonds of one maturity over another
- However, people may prefer short-term bonds to long-term bonds
 - people who are limited by a short holding period will prefer to hold short-term bonds
- And people may prefer long-term bonds to short-term bonds
 - someone who was putting funds away for their young child to go to college would want to hold longer-term bonds
- So when expectations theory does not hold and fails to explain Fact #3,
 we need another theory

(2) Segmented Markets Theory

- Key assumption of segmented markets theory: bonds of different maturities are NOT substitutes
- demand/supply for different maturity bonds are independent and completely separated
- interest rates of bonds of different maturity are determined by the demand and supply of that bond only are independent
- Recall Chapter 4: shorter-term bonds have less interest rate risk, and shorter-term bonds are typically more liquid
- Therefore, investors typically prefer shorter-term bonds

(2) Segmented Markets Theory

Hence, **demand** for long-term bonds is **typically** lower than that for shortterm bonds

 In summary: under segemented markets theory, long-term bonds typically have higher interest rates (this is exactly Fact #3)

(3) Liquidity Premium Theory

- Let's call the additional interest that investors require as compensation for buying longer-term bonds: **liquidity premium**
- ullet l_{nt} : liquidity premium for the n-year bond at time t
 - $\circ \ l_{nt} > 0$, for all n
 - \circ l_{nt} grows with the term to maturity n (longer-term bonds have greater liquidity premium)

$$i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n} + l_{nt}$$

(3) Liquidity Premium Theory

$$i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n} + l_{nt}$$

- As a combination of expectation theory and segmented markets theory, liquidity premium theory assumes bonds of different maturity are partial (not perfect) substitutes
- Fact #1 and #2 are explained by the first term in the equation
- Fact #3 is explained by the second term in the equation the liquidity premium term

- Let's return to the exercise
- Q1 (4): the current 1-yr interest rate is 5%, and 1-yr interest rates over the next four years are expected to be 6%, 7%, 8%, and 9%. Assume liquidity premiums for 2- to 5-yr bonds are 0.25%, 0.5%, 0.75%, and 1.0%, respectively.
- Find out the interest rate on a 2-yr bond, a 3-yr bond, a 4-yr bond, a 5-yr bond, and draw the yield curve

$$i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n} + l_{nt}$$

(4) In part (1), we have solved the first term for each bond to be: 5%, 5.5%, 6%, 6.5%, 7%. Given $l_t=0\%$, $l_{2t}=0.25\%$, $l_{3t}=0.5\%$, $l_{4t}=0.75\%$, $l_{5t}=1\%$:

- $i_t = 5\% + 0\% = 5\%$
- $ullet i_{2t} = 5.5\% + 0.25\% = 5.75\%$
- $i_{3t} = 6\% + 0.5\% = 6.5\%$
- $ullet i_{4t} = 6.5\% + 0.75\% = 7.25\%$
- $i_{5t} = 7\% + 1\% = 8\%$

- Recall Chapter 5: falling interest rates are associated with recessions (procyclical)
- when inverted yield curve is observed, short-term interest rates are expected to fall sharply in the future, and the economy is expected to be more likely to enter a recession
- Yield curve is a powerful predictor of an economic downturn

The steep inverted yield curve occurred on January 15, 1981

- This indicated that short-term interest rates were expected to decline sharply in the future
- Indeed, by March 1981, 3-month Treasury bill rates had declined from the 16% to 13%
- Soon afterwards, a recession started in July 1981

Who discovered the predictive power of the yield curve?

• The relationship between inverted yield curve and recessions was discovered by Professor Campbell Harvey in his dissertation in 1986. He got his Ph.D. from University of Chicago

What measure to choose?

- Common measures are 2-year/10-year spread and 3-month/10-year spread
 - available from 1976-: https://fred.stlouisfed.org/series/T10Y2Y
 - available from 1982-: https://fred.stlouisfed.org/series/T10Y3M

If the yield curve flattens, when will it invert? If the yield curve inverts, when will the recession happen?

- Indeterminate ... The lags can be 12 months, 18 or 20 months. But the recession will not happen right away.
- Professor Harvey said the curve needs to stay inverted for three months to be reliable
- Although the yield curve has a strong track record, it is not a cause of a financial crisis, nor does it share any insight onto the timing and magnitude of a recession (there can be false positives)

Steeply rising yield curve: short-term interest rates are expected to rise in the future

Moderately steep yield curve: short-term interest rates are not expected to rise or fall much in the future

Flat yield curve: short-term interest rates are expected fall moderately in the future

Inverted yield curve: short-term interest rates are expected to fall sharply in the future

What does yield curve say about inflation?

- ullet Recall Chapter 4 Fisher Equation: $i=r+\pi^e$
 - \circ when observing flat or inverted yield curve: short-term i are expected to fall
 - hence inflation is expected to decline in the near future

A 3-D View of a Chart That Predicts The Economic Future:

https://www.nytimes.com/interactive/2015/03/19/upshot/3d-yield-curve-economic-growth.html?

fbclid=IwAR1y8BI1JOx3DMrZlOmStEeeeYOpnU_GJY_MO69Lap0HY8GR5jz0qvh1FZs