

Stock Market Prediction Using Random Forest Algorithm

Submitted in partial fulfillment of the course CSE4027 Data Analysis

Under the guidance of **Dr. N. Senthil Murugan**, Senior Assistant Professor, VIT-AP University.

SUBMITTED BY:

NAOMI GEORGE KOTHA SAI LAXMAN YANDRA HEMANTH CHINTA SURYA VARSHIT 19BCE7572 19BCE7505 19BCE7567 19BCE7494

TABLE OF CONTENTS

s.no	TOPIC	Page Number			
1.	Abstract	2			
2.	Overview	2			
3.	Problem Statement	3			
4.	Software Requirements	4-15			
5.	Result And Analysis	15			
6.	Conclusion	16			
7.	Member Responsibility	16			

ABSTRACT

In Stock Market Prediction, the aim is to predict the future value of the financial stocks of a company. The recent trend in stock market prediction technologies is the use of machine learning which makes predictions based on the values of current stock market indices by training on their previous values. Machine learning itself employs different models to make prediction easier and authentic. The report focuses on the use of Random forest based model to predict stock values. Factors considered are open, close, low, high and volume. An algorithm with high accuracy we do the process of comparison for the accuracy of each of the model and finally is considered as better algorithm for predicting stock price. As share market is a vague domain we cannot predict the conditions occur, and also share market can never be predicted, this job can be done easily and technically through this work and the main aim of this paper is to apply algorithms in predicting the stock prices.

OVERVIEW

Random forest is a supervised learning algorithm. The "forest" it builds, is an ensemble of decision trees, usually trained with the "bagging" method. The general idea of the bagging method is that a combination of learning models increases the overall result.

Put simply: random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction.

The random forest means data about data estimator. It fits a number decision trees on various sub samples of the given data. It control over-fitting. It improve the predictive accuracy.

PROBLEM STATEMENT

Stock Exchanges are financial institutions which allow transferability of different goods (monetary values, actions, precious metals) between stock broker components. With a turnover of trading around thousands of billions of dollars, this gets people's eager attention of making a profit. Goods are traded on the market, following their subsequent value to determine if the transaction has generated profit or not. In general the value of a stock is given by its entry on the stock exchange and the volume of its transactions. The more a share is transacted, the more it is valuable, and conversely, if a share is put into transaction in a low volume, it is not so important for some traders and by default its value decreases. This anticipation of the market can generate profits or losses. Depending on the power to predict future values. Therefore the problem becomes: for a given Stock market history, determine the moment of buying/entry or the selling/exit the good for generating profit. An aspect that has attracted researchers is predicting the values of the goods. Thus an algorithm used to train models, namely Random Forest, is used to tackle the problem.

WORKING OF RANDOM FOREST:

Algorithm:

Step 1: From the dataset pick N random records.

Step 2: Based on N records, build a decision tree.

Step 3: From the algorithm, choose the number of trees and repeat steps 1 & 2

Step 4: In case of a regression problem, for a new record, each tree in the

forest predicts a value for Y(output)

SOFTWARE REQUIREMENTS

Code:

```
##READING THE DATASET##
```

```
stock <- read.csv("D://R/Machine Learning/Stock Market Prediction
Using random Forest/istanbul_stock_exchange.csv")
print(head(stock))
print(str(stock))
print(summary(stock))</pre>
```

DATA MANIPULATION

```
library(dplyr)

max.exchange <- filter(stock, TL.BASED.ISE > 0 & USD.BASED.ISE > 0)
print(head(max.exchange))

for(i in 1:dim(stock)) {
   if(stock$TL.BASED.ISE[i] < 0 && stock$USD.BASED.ISE[i] < 0) {
     stock$Result[i] <- 'Loss'
   } else {
     stock$Result[i] <- 'Profit'
   }
}</pre>
```

DATA CLEANING

```
print(is.na(stock))
print(sum(is.na(stock$date)))
print(sum(is.na(stock$TL.BASED.ISE)))
print(sum(is.na(stock$USD.BASED.ISE)))
print(sum(is.na(stock$SP)))
print(sum(is.na(stock$SP)))
```

```
print(sum(is.na(stock$FTSE)))
print(sum(is.na(stock$NIKKEI)))
print(sum(is.na(stock$BOVESPA)))
print(sum(is.na(stock$EU)))
print(sum(is.na(stock$EM)))
## DATA VISUALIZATION ##
library(ggplot2)
library(plotly)
pl <- ggplot(max.exchange, aes(TL.BASED.ISE, USD.BASED.ISE)) +</pre>
geom point(color='red', alpha=0.5)
pl2 <- ggplotly(pl)</pre>
print(pl2)
p <- ggplot(stock, aes(USD.BASED.ISE)) +</pre>
geom_histogram(aes(fill=Result), color='black', bins=50, alpha=0.6) +
theme_bw() + xlab('USD Limit') + ylab('Count') + ggtitle('Market
Share')
# print(p)
plot <- ggplot(stock, aes(x=stock$TL.BASED.ISE,</pre>
y=stock$USD.BASED.ISE))
plot2 <- plot + geom_hex() + xlab('Trade Limit') + ylab('USD Limit')</pre>
+ ggtitle('Stock Trade v USD')
print(plot2 + scale_fill_gradient(high='red', low='blue'))
## APPLYING ML ##
## TRAIN TEST SPLIT ##
```

```
library(caTools)
set.seed(101)
sample <- sample.split(stock$Result, SplitRatio = 0.70)</pre>
train <- subset(stock, sample==T)</pre>
test <- subset(stock, sample==F)</pre>
```

```
library(randomForest)
rf.model <- randomForest(as.factor(Result) ~ ., data = train,</pre>
importance = TRUE)
# print(rf.model$confusion)
# print(rf.model$importance)
## PREDICTIONS ##
rf.preds <- predict(rf.model, test)</pre>
print(table(rf.preds, test$Result))
```

OUTPUT:

```
> stock <- read.csv(file.choose())</pre>
> print(head(stock))
      date TL.BASED.ISE USD.BASED.ISE
                                               SP
1 5-Jan-09 0.035753708 0.038376187 -0.004679315 0.002193419 0.003894376
2 6-Jan-09 0.025425873 0.031812743 0.007786738 0.008455341 0.012865611
3 7-Jan-09 -0.028861730 -0.026352966 -0.030469134 -0.017833062 -0.028734593
4 8-Jan-09 -0.062208079 -0.084715902 0.003391364 -0.011726277 -0.000465999
5 9-Jan-09 0.009859905 0.009658112 -0.021533208 -0.019872754 -0.012709717
6 12-Jan-09 -0.029191028 -0.042361155 -0.022822626 -0.013525735 -0.005025533
> print(str(stock))
'data.frame':
               536 obs. of 10 variables:
                : chr "5-Jan-09" "6-Jan-09" "7-Jan-09" "8-Jan-09" ...
 $ date
 $ TL.BASED.ISE : num 0.03575 0.02543 -0.02886 -0.06221 0.00986 ...
 $ USD.BASED.ISE: num 0.03838 0.03181 -0.02635 -0.08472 0.00966 ...
 $ SP
               : num -0.00468 0.00779 -0.03047 0.00339 -0.02153 ...
 $ DAX
               : num 0.00219 0.00846 -0.01783 -0.01173 -0.01987 ...
 $ FTSE
               : num 0.003894 0.012866 -0.028735 -0.000466 -0.01271 ...
 $ NIKKEI
               : num 0 0.00416 0.01729 -0.04006 -0.00447 ...
 $ BOVESPA
               : num 0.03119 0.01892 -0.0359 0.02828 -0.00976 ...
               : num 0.0127 0.01134 -0.01707 -0.00556 -0.01099 ...
 S EU
               : num 0.02852 0.00877 -0.02002 -0.01942 -0.0078 ...
 $ EM
NULL
```

> print(summary(stock))

date	TL.BASED.ISE	USD.BASED.ISE			
Length:536	Min. :-0.062208	Min. :-0.084716			
Class :character	lst Qu.:-0.006669	1st Qu.:-0.009753			
Mode :character	Median : 0.002189	Median : 0.002643			
	Mean : 0.001629	Mean : 0.001552			
	3rd Qu.: 0.010584	3rd Qu.: 0.013809			
	Max. : 0.068952	Max. : 0.100621			
SP	DAX	FTSE			
Min. :-0.0542620	Min. :-0.0523312	2 Min. :-0.0548160			
1st Qu.:-0.0046748	lst Qu.:-0.006212	l 1st Qu.:-0.0058084			
Median : 0.0008764	Median: 0.000887	5 Median: 0.0004086			
Mean : 0.0006433	Mean : 0.000720	B Mean : 0.0005103			
3rd Qu.: 0.0067056	3rd Qu.: 0.008223	5 3rd Qu.: 0.0074282			
Max. : 0.0683664	Max. : 0.058950	5 Max. : 0.0503227			
ATT DEFEND T	BOVESPA	EU			
NIKKEI	DOVESTA				
		5 Min. :-0.0488168			
Min. :-0.0504476					
Min. :-0.0504476	Min. :-0.053849	6 lst Qu.:-0.0059518			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.0000000	Min. :-0.0538499	6 lst Qu.:-0.0059518 0 Median : 0.0001958			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.00000000 Mean : 0.0003077	Min. :-0.0538499 1st Qu.:-0.0072140 Median : 0.0002790	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.0000000 Mean : 0.0003077 3rd Qu.: 0.0078821	Min. :-0.0538499 1st Qu.:-0.0072140 Median : 0.0002790 Mean : 0.0009353 3rd Qu.: 0.0088800	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.0000000 Mean : 0.0003077 3rd Qu.: 0.0078821	Min. :-0.0538499 1st Qu.:-0.0072140 Median : 0.0002790 Mean : 0.0009353 3rd Qu.: 0.0088800	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706 3 rd Qu.: 0.0077915			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.00000000 Mean : 0.0003077 3rd Qu.: 0.0078821 Max. : 0.0612293	Min. :-0.0538499 1st Qu.:-0.0072140 Median : 0.0002790 Mean : 0.0009353 3rd Qu.: 0.0088800 Max. : 0.0637919	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706 3 rd Qu.: 0.0077915			
Min. :-0.0504476 1st Qu::-0.0074072 Median : 0.0000000 Mean : 0.0003077 3rd Qu:: 0.0078821 Max. : 0.0612293 EM	Min. :-0.0538499 lst Qu.:-0.0072146 Median : 0.0002796 Mean : 0.0009353 3rd Qu.: 0.0088808 Max. : 0.0637919	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706 3 rd Qu.: 0.0077915			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.00000000 Mean : 0.0003077 3rd Qu.: 0.0078821 Max. : 0.0612293 EM Min. :-0.0385645	Min. :-0.0538499 1st Qu.:-0.0072140 Median : 0.0002790 Mean : 0.0009353 3rd Qu.: 0.0088800 Max. : 0.0637919	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706 3 rd Qu.: 0.0077915			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.0000000 Mean : 0.0003077 3rd Qu.: 0.0078821 Max. : 0.0612293 EM Min. :-0.0385645 1st Qu.:-0.0049114	Min. :-0.0538499 lst Qu.:-0.0072146 Median : 0.0002796 Mean : 0.0009353 3rd Qu.: 0.0088808 Max. : 0.0637919	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706 3 rd Qu.: 0.0077915			
Min. :-0.0504476 1st Qu.:-0.0074072 Median : 0.00000000 Mean : 0.0003077 3rd Qu.: 0.0078821 Max. : 0.0612293 EM Min. :-0.0385645 1st Qu.:-0.0049114 Median : 0.0010772	Min. :-0.0538499 lst Qu.:-0.0072140 Median : 0.0002790 Mean : 0.0009353 3rd Qu.: 0.0088800 Max. : 0.0637919	1st Qu.:-0.0059518 Median : 0.0001958 Mean : 0.0004706 3 rd Qu.: 0.0077915			

DATA MANIPULATION:

> library(dplyr) Attaching package: 'dplyr' The following objects are masked from 'package:stats': filter, lag The following objects are masked from 'package:base': intersect, setdiff, setequal, union Warning message: package 'dplyr' was built under R version 4.0.5 > max.exchange <- filter(stock, TL.BASED.ISE > 0 & USD.BASED.ISE > 0) > print(head(max.exchange)) date TL.BASED.ISE USD.BASED.ISE SP DAX FTSE 1 5-Jan-09 0.035753708 0.038376187 -0.004679315 0.002193419 0.003894376 2 6-Jan-09 0.025425873 0.031812743 0.007786738 0.008455341 0.012865611 3 9-Jan-09 0.009859905 0.009658112 -0.021533208 -0.019872754 -0.012709717 4 16-Jan-09 0.022037345 0.032278032 0.007533126 0.006790780 0.006289177 5 21-Jan-09 0.000864697 0.001529430 0.042572033 0.005011186 -0.007728867 6 26-Jan-09 0.046831302 0.061708176 0.005537856 0.034786791 0.037891115 NIKKEI BOVESPA EU EM Result 1 0.000000000 0.031190229 0.012698039 0.028524462 Profit 2 0.004162452 0.018919580 0.011340652 0.008772644 Profit 3 -0.004473502 -0.009763880 -0.010988634 -0.007802212 Profit 4 0.025453186 0.004866686 0.008560858 0.010916893 Profit 5 -0.020561328 0.033532127 -0.003338563 -0.005092242 Profit 6 -0.008181598 0.009838156 0.032799581 0.010319685 Profit

```
> for(i in 1:dim(stock)) {
+ if(stock$TL.BASED.ISE[i] < 0 && stock$USD.BASED.ISE[i] < 0) {
    stock$Result[i] <- 'Loss'
   stock$Result[i] <- 'Profit'
+ }
Warning message:
In 1:dim(stock) : numerical expression has 2 elements: only the first used
> print(stock$Result)
 [1] "Profit" "Profit" "Loss"
                            "Loss"
                                     "Profit" "Loss" "Profit" "Loss"
 [9] "Profit" "Profit" "Loss" "Profit" "Profit" "Profit" "Profit"
                             "Loss"
                                             "Profit" "Profit" "Loss"
[17] "Profit" "Profit" "Loss"
                                     "Loss"
                             "Loss" "Loss" "Profit" "Loss" "Loss"
[25] "Profit" "Profit" "Loss"
[33] "Loss" "Profit" "Loss"
                              "Profit" "Profit" "Profit" "Profit" "Loss"
 [41] "Loss" "Profit" "Profit" "Loss" "Profit" "Loss" "Profit" "Profit"
[49] "Profit" "Profit" "Profit" "Loss" "Profit" "Profit" "Profit" "Profit"
[57] "Profit" "Profit" "Profit" "Loss" "Profit" "Profit" "Profit"
[65] "Profit" "Profit" "Loss" "Profit" "Profit" "Profit" "Loss" "Loss"
[73] "Profit" "Profit" "Loss" "Loss" "Profit" "Profit" "Profit" "Loss"
             "Profit" "Profit" "Profit" "Profit" "Loss" "Loss"
[81] "Loss"
[89] "Loss" "Profit" "Loss" "Profit" "Profit" "Profit" "Profit" "Loss"
[97] "Profit" "Profit" "Loss" "Profit" "Loss" "Profit" "Profit" "Loss"
            "Loss" "Profit" "Loss" "Profit" "Profit" "Profit"
[105] "Loss"
[113] "Loss" "Loss" "Profit" "Profit" "Profit" "Loss"
                                                      "Loss"
                                                              "Profit"
[121] "Profit" "Profit" "Profit" "Profit" "Loss" "Loss" "Loss"
[129] "Profit" "Loss" "Loss" "Profit" "Profit" "Profit" "Profit"
[137] "Loss" "Profit" "Loss" "Profit" "Profit" "Profit" "Profit" "Profit"
[145] "Profit" "Profit" "Profit" "Profit" "Loss" "Loss" "Profit"
[153] "Profit" "Loss" "Profit" "Profit" "Loss" "Loss" "Profit" "Profit"
[161] "Profit" "Profit" "Profit" "Loss" "Profit" "Profit" "Loss"
[169] "Profit" "Loss" "Profit" "Loss" "Profit" "Loss" "Loss" "Profit"
[177] "Profit" "Loss" "Loss" "Profit" "Profit" "Profit" "Profit"
[185] "Loss" "Profit" "Profit" "Loss" "Loss" "Loss" "Profit" "Profit"
[193] "Loss" "Profit" "Profit" "Loss" "Profit" "Profit" "Loss"
[201] "Profit" "Profit" "Profit" "Loss" "Profit" "Loss" "Loss" "Loss"
[209] "Loss" "Profit" "Loss" "Profit" "Profit" "Loss"
                                                      "Profit" "Profit"
[217] "Profit" "Loss" "Loss" "Profit" "Loss" "Loss" "Loss" "Loss"
```

[241]	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Profit"	"Loss"	"Profit
[249]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"
[257]	"Loss"	"Profit"	"Profit"	"Loss"	"Profit"	"Profit"	"Profit"	"Loss"
[265]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Loss"
[273]	"Profit"	"Loss"	"Loss"	"Loss"	"Profit"	"Loss"	"Profit"	"Loss"
[281]	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Loss"	"Loss"	"Loss"
[289]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Profit
[297]	"Loss"	"Loss"	"Loss"	"Profit"	"Loss"	"Profit"	"Profit"	"Loss"
[305]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Profit
[313]	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Loss"	"Profit
[321]	"Loss"	"Loss"	"Profit"	"Loss"	"Loss"	"Loss"	"Profit"	"Loss"
[329]	"Loss"	"Profit"	"Loss"	"Loss"	"Profit"	"Profit"	"Loss"	"Loss"
[337]	"Loss"	"Loss"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"
[345]	"Profit"	"Profit"	"Loss"	"Loss"	"Profit"	"Loss"	"Profit"	"Profit
[353]	"Profit"	"Loss"	"Profit"	"Profit"	"Profit"	"Loss"	"Loss"	"Loss"
[361]	"Profit"	"Profit						
[369]	"Profit"	"Loss"	"Loss"	"Profit"	"Loss"	"Profit"	"Loss"	"Loss"
[377]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Profit
[385]	"Profit"	"Profit"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit
[393]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Profit"	"Loss"
[401]	"Loss"	"Loss"	"Profit"	"Profit"	"Loss"	"Loss"	"Profit"	"Profit
[409]	"Profit"	"Profit"	"Loss"	"Loss"	"Loss"	"Profit"	"Loss"	"Loss"
[417]	"Profit"	"Loss"						
[425]	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit
[433]	"Profit"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"
[441]	"Profit"	"Profit						
[449]	"Loss"	"Profit"	"Profit"	"Loss"	"Loss"	"Profit"	"Profit"	"Profit
[457]	"Loss"	"Loss"	"Profit"	"Loss"	"Profit"	"Profit"	"Loss"	"Profit
[465]	"Profit"	"Loss"	"Loss"	"Loss"	"Profit"	"Loss"	"Loss"	"Profit
[473]	"Profit"	"Loss"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit
[481]	"Profit"	"Loss"	"Loss"	"Loss"	"Profit"	"Profit"	"Loss"	"Loss"
[489]	"Loss"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit
[497]	"Profit"	"Profit"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"
[505]	"Loss"	"Profit"	"Profit"	"Profit"	"Loss"	"Loss"	"Profit"	"Profit
[513]	"Loss"	"Profit"	"Loss"	"Profit"	"Profit"	"Loss"	"Loss"	"Profit
[521]	"Profit"	"Profit"	"Loss"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"
[529]	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Profit"	"Loss"	"Loss"

DATA MANIPULATION

> print(is.na(stock))

_	date	TL.BASED.ISE	USD.BASED.ISE	SP	DAX	FTSE	NIKKEI	BOVESPA	EU	EM	Result
[1,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
[2,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
[3,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE		FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	
	FALSE	FALSE			FALSE		FALSE	FALSE	FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE	FALSE		FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE	FALSE		FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE	FALSE		FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE	FALSE		FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE		
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE	FALSE		FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE	FALSE		FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE			FALSE		FALSE FALSE		FALSE	FALSE	FALSE
	FALSE	FALSE FALSE			FALSE		FALSE		FALSE	FALSE	FALSE
	FALSE				FALSE		FALSE	FALSE		FALSE	FALSE
[36,]	PALSE	FALSE	FALSE	FALSE	PALSE	FALSE	PALSE	PALSE	PALSE		

This continues for the rest of the 536 values

```
> print(sum(is.na(stock$date)))
[1] 0
> print(sum(is.na(stock$TL.BASED.ISE)))
[1] 0
> print(sum(is.na(stock$USD.BASED.ISE)))
[1] 0
> print(sum(is.na(stock$SP)))
[1] 0
> print(sum(is.na(stock$DAX)))
[1] 0
> print(sum(is.na(stock$FTSE)))
[11 0
> print(sum(is.na(stock$NIKKEI)))
[1] 0
> print(sum(is.na(stock$BOVESPA)))
[1] 0
> print(sum(is.na(stock$EU)))
[1] 0
> print(sum(is.na(stock$EM)))
[1] 0
```

DATA VISUALIZATION

TRAIN MODEL

```
> library(randomForest)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Attaching package: 'randomForest'
The following object is masked from 'package:ggplot2':
   margin
The following object is masked from 'package:dplyr':
   combine
Warning message:
package 'randomForest' was built under R version 4.0.5
> rf.model <- randomForest(as.factor(Result) ~ ., data = train, importance = TRUE)</pre>
> print(rf.model$confusion)
     Loss Profit class.error
Loss 138
            3 0.0212766
Profit 0
             234
                  0.0000000
> print(rf.model$importance)
                           Profit MeanDecreaseAccuracy MeanDecreaseGini
                   Loss
            1.580831e-04 8.274676e-04
                                         5.667153e-04
                                                            1.793577
TL.BASED.ISE 4.058070e-01 1.016201e-01
                                         2.153439e-01
                                                           83.282801
USD.BASED.ISE 3.338907e-01 8.711966e-02
                                         1.794313e-01
                                                           57.598418
            5.131805e-03 6.816244e-04
                                          2.435457e-03
                                                            2.164771
DAX
           9.446476e-03 1.905767e-03
                                         4.695145e-03
                                                            3.899034
FTSE
            1.188505e-02 6.094825e-03
                                         8.159911e-03
                                                            6.436103
           5.120186e-07 2.848723e-05
NIKKEI
                                         4.852813e-05
                                                            1.853142
BOVESPA
           1.940085e-03 1.614041e-03
                                         1.721698e-03
                                                            1.738225
EU
            1.722513e-02 5.337190e-03
                                         9.747150e-03
                                                            8.268843
                                         7.968418e-03
EM
           1.504930e-02 3.787106e-03
                                                            8.136095
PREDICTIONS
> rf.preds <- predict(rf.model, test)
> print(table(rf.preds, test$Result))
rf.preds Loss Profit
   Loss
                  59
   Profit 2 100
```

Result and Analysis:

Random Forest is a great algorithm, for both classification and regression problems, to produce a predictive model. Its default hyperparameters already return great results and the system is great at avoiding overfitting. Moreover, it is a pretty good indicator of the importance it assigns to your features.

From this the dataset taken we find the profit respective to various countries. We from the last confusion matrix get the conclusion of profit-profit percentage to be 100%.

We analyze and observe that random forest is the best algorithm for classifying giving the best result out of all the trees it finds, the only problem we face is the since the output would be large it takes a lot of time thus increasing the computation time.

Conclusion:

The Random Forest algorithm is one of the most popular machine learning algorithms that is used for both classification and regression. The ability to perform both tasks makes it unique, and enhances its wide-spread usage across a myriad of applications. It also assures high accuracy most of the time, making it one of the most sought-after classification algorithms. Random Forests are comprised of <u>Decision Trees</u>. The more trees it has, the more sophisticated the algorithm is. It selects the best result out of the votes that are pooled by the trees, making it robust.

THANK YOU!!