Homework 2

Breakfast Cereals. Use the data *cereal.xlsx* to explore and summarize the data as follows: (note that a few records contain missing values; since there are just a few, a simple solution is to remove them first.)

- a. Which variables are quantitative/numerical? Which are ordinal? Which are nominal? (10 point)
- b. Create a table with the average, median, min, max, and standard deviation for each of the quantitative variables. This can be done through Excel's functions or Excel's $Data \rightarrow Data$ Analysis $\rightarrow Descriptive Statistics$ menu. (5 point)
- c. Use RapidMiner to plot a histogram for each of the quantitative variables (5 pt). Based on the histograms and summary statistics, answer the following questions:
 - i. Which variables have the largest variability? (5 pt)
 - ii. Which variables seem skewed? (5 pt)
 - iii. Are there any values that seem extreme? (5 pt)
- d. Plot a sidebyside boxplot comparing the calories in hot vs. cold cereals. What does this plot show us? (5 pt)
- e. Plot a sidebyside boxplot of consumer rating as a function of the shelf height. If we were to predict consumer rating from shelf height, does it appear that we need to keep all three categories of shelf height? (5 pt)
- f. Compute the correlation table for the quantitative variable
 - i. Which pair of variables is most strongly correlated? (2.5 pt)
 - ii. How can we reduce the number of variables based on these correlations? (2.5 pt)

ANSWERS:

a. Which variables are quantitative/numerical? Which are ordinal? Which are nominal? (10 point)

Order	Variable	Туре	Description
1	Name	Nominal	Name of cereal
			Manufacturer (A = American Home Food Products, G = General
2	mfr	Nominal	Mills, etc.)
3	type	Nominal	Type of cereal (cold or hot)
4	calories	Quantitative	Calories per serving
5	protein	Quantitative	Grams of protein
6	fat	Quantitative	Grams of fat
7	sodium	Quantitative	Milligrams of sodium
8	fiber	Quantitative	Grams of dietary fiber
9	carbo	Quantitative	Grams of complex carbohydrates
10	sugars	Quantitative	Grams of sugars
11	potass	Quantitative	Milligrams of potassium
12	vitamins	Ordinal	Vitamins and minerals (0, 25, or 100% of FDA recommendation)
13	shelf	Ordinal	Display shelf position (1 = bottom, 2 = middle, 3 = top)
14	weight	Quantitative	Weight in ounces of one serving
15	cups	Quantitative	Number of cups in one serving
16	rating	Quantitative	Consumer Reports rating of the cereal

b. Create a table with the average, median, min, max, and standard deviation for each of the quantitative variables. This can be done through Excel's functions or Excel's Data \rightarrow Data Analysis \rightarrow Descriptive Statistics menu. (5 point)

Data Analysis wasn't accessible at first and so I had to do the following to make it available: File \rightarrow Options \rightarrow Add-ins \rightarrow Manage: Excel Add-ins, and check Analysis ToolPak

To use Descriptive Analysis, I had to move the quantitative variable next each other as the data needed to be contiguous for the Data Analysis tool to work. This created a new sheet with a summary statistics of all the quantitative rows.

calories	protein	fat	sodium	fiber	carbo	sugars	potass	weight	cups	rating	
Mean	107.027 Mean	2.513514 Mean	1 Mean	162.3649 Mean	2.175676 Mean	14.72973 Mean	7.108108 Mean	98.51351 Mean	1.030811 Mean	0.821622 Mean	42.37179
Standard E	2.306806 Standard E	0.125059 Standar	d E 0.117041 Standard	E 9.621792 Standard I	0.281714 Standard I	0.452398 Standard I	0.506736 Standard I	8.239479 Standard E	0.017834 Standard I	0.027401 Standard E	1.631386
Median	110 Median	2.5 Median	1 Median	180 Median	2 Median	14.5 Median	7 Median	90 Median	1 Median	0.75 Median	40.25309
Mode	110 Mode	3 Mode	1 Mode	0 Mode	0 Mode	15 Mode	3 Mode	35 Mode	1 Mode	1 Mode	#N/A
Standard	19.84389 Standard	1.075802 Standa	d 1.006826 Standard	82.76979 Standard	2.423391 Standard	3.891675 Standard	4.359111 Standard	70.87868 Standard	0.153416 Standard	0.235715 Standard	14.03371
Sample Va	393.7801 Sample Va	1.157349 Sample	Va 1.013699 Sample \	/a 6850.838 Sample Va	5.872825 Sample Va	15.14513 Sample Va	19.00185 Sample Va	5023.787 Sample Va	0.023536 Sample Va	0.055562 Sample Va	196.9451
Kurtosis	2.217752 Kurtosis	1.380291 Kurtosis	2.285592 Kurtosis	-0.21758 Kurtosis	8.272757 Kurtosis	-0.30027 Kurtosis	-1.16827 Kurtosis	1.915156 Kurtosis	5.123173 Kurtosis	0.313974 Kurtosis	1.520231
Skewness	-0.46066 Skewness	0.744335 Skewne	ss 1.241525 Skewnes	s -0.61164 Skewness	2.383501 Skewness	0.118335 Skewness	0.047257 Skewness	1.398722 Skewness	0.280912 Skewness	-0.11498 Skewness	0.962866
Range	110 Range	5 Range	5 Range	320 Range	14 Range	18 Range	15 Range	315 Range	1 Range	1.25 Range	75.66206
Minimum	50 Minimum	1 Minimu	n 0 Minimum	0 Minimum	0 Minimum	5 Minimum	0 Minimum	15 Minimum	0.5 Minimum	0.25 Minimum	18.04285
Maximum	160 Maximum	6 Maximu	m 5 Maximur	n 320 Maximum	14 Maximum	23 Maximum	15 Maximum	330 Maximum	1.5 Maximum	1.5 Maximum	93.70491
Sum	7920 Sum	186 Sum	74 Sum	12015 Sum	161 Sum	1090 Sum	526 Sum	7290 Sum	76.28 Sum	60.8 Sum	3135.512
Count	74 Count	74 Count	74 Count	74 Count	74 Count	74 Count	74 Count	74 Count	74 Count	74 Count	74

After removing the other statistical values, we have the answer for the question below.

calories		protein		fat		sodium	
Mean	107.027	Mean	2.513514	Mean	1	Mean	162.3649
Median	110	Median	2.5	Median	1	Median	180
Standard		Standard		Standard		Standard	
Deviation	19.84389	Deviation	1.075802	Deviation	1.006826	Deviation	82.76979
Minimum	50	Minimum	1	Minimum	0	Minimum	0
Maximum	160	Maximum	6	Maximum	5	Maximum	320

fiber		carbo		sugars		potass	
Mean	2.175676	Mean	14.72973	Mean	7.108108	Mean	98.51351
Median	2	Median	14.5	Median	7	Median	90
Standard		Standard		Standard		Standard	
Deviation	2.423391	Deviation	3.891675	Deviation	4.359111	Deviation	70.87868
Minimum	0	Minimum	5	Minimum	0	Minimum	15
Maximum	14	Maximum	23	Maximum	15	Maximum	330

weight		cups		rating	
Mean	1.030811	Mean	0.821622	Mean	42.37179
Median	1	Median	0.75	Median	40.25309
Standard		Standard		Standard	
Deviation	0.153416	Deviation	0.235715	Deviation	14.03371
Minimum	0.5	Minimum	0.25	Minimum	18.04285
Maximum	1.5	Maximum	1.5	Maximum	93.70491

c. Use RapidMiner to plot a histogram for each of the quantitative variables (5 pt). Based on the histograms and summary statistics, answer the following questions:

i. Which variables have the largest variability? (5 pt)

Variability is represented by the standard deviation. The larger the standard deviation, the more variability exists in the data. From the data we can observe high standard deviation from the following variables.

Sodium: Standard deviation of 82.77
Potass: Standard deviation of 70.88
Rating: Standard deviation of 14.03
Sugars: Standard deviation of 4.36

So we can say that Sodium, Potassium, and Rating have the largest variability.

ii. Which variables seem skewed? (5 pt)

For skewness, we compare the mean and median of each variable. If the mean is significantly higher or lower than the median, this suggests skewness.

We can also observe this with the histograms as in a normal distribution, both tails are symmetrical. In left (negative) skew, the left tail is longer, in right (positive) skew, the right tail is longer, and the mean is greater than the mode. This is marked in the histograms to compare the skew and highlighted with red boxes.

So we can say **Sodium** is showing *slight negative skew*, and **Rating and Potass** showing *positive skew*.

iii. Are there any values that seem extreme? (5 pt)

We may be able to identify extreme values with maximum and minimum. Using this we can see that Sodium, Potassium and Rating have maximums that are larger than the mean and having high standard deviation can suggest that they have extreme values.

But by looking at the histograms we can see that isolated bars in Fat, Fiber, Weight and Rating which suggests outliers as the rest of the bars are crammed together.

Using the above logic we can say **Fat, Fiber, Weight** and **Rating** have values that seem extreme.

d. Plot a sidebyside boxplot comparing the calories in hot vs. cold cereals. What does this plot show us? (5 pt)

For cold cereals the lower whisker extends to 50 and the upper whisker extends to 160, with a median of 110, indicating the full range of data. The interquartile range, that is the middle 50% of values lie between 100 and 115. There's some variation but no extreme outliers.

For hot cereal values we can observe that all calorie values are exactly 100 with no variability at all. This tells us that there isn't a good distribution for hot cereals or hot cereals tend to be more consistent.

But since we observed the data before comparing the boxplot, we know this is because only 1 hot cereal entry exits, and the observations made above are due to that.

.....

e. Plot a side¬by¬side boxplot of consumer rating as a function of the shelf height. If we were to predict consumer rating from shelf height, does it appear that we need to keep all three categories of shelf height? (5 pt)

Shelf 3 has a wide range of ratings, from approximately 30 to 90, with a median around 45. The IQR (middle 50% of data) spans from around 40 to 60, indicating a diverse spread of consumer ratings.

Shelf 2 ratings are slightly more concentrated, with a range from around 30 to 75, and a median around 40. It has a narrower IQR compared to Shelf 3.

Shelf 2 has the smallest range, with ratings from approximately 30 to 70 and a median just above 35. The IQR is tighter compared to Shelves 1 and 3, indicating more consistency in ratings for products placed on this shelf.

The differences in ranges, medians, and spread suggests that removing any of the three categories may result in a loss of important information. So, it's mostly beneficial to keep all three shelf heights If we were to predict consumer rating from shelf height.

f. Compute the correlation table for the quantitative variable

i. Which pair of variables is most strongly correlated? (2.5 pt)

The pair of variables that are most strongly correlated are potass and fiber.

ii. How can we reduce the number of variables based on these correlations? (2.5 pt)

After examining the correlation matrix, we can choose only the attributes with above 0.3 and below -0.3 correlation to the label, so all attributes with correlation between -0.3 and +0.3 can be rejected. Then to prevent any multicollinearity we can discard one of the variables of a pair of variables which have a correlation of above +0.8 or below -0.8.

We can see in the image above that using the strategy above reduces the number of variables.