Feuille d'exercices n. 3 : Fonctions holomorphes.

Equation de Cauchy-Riemann.

Exercice 1 Pour z = x + iy on pose $f(z) := x + iy^2$.

- (a) Vérifier que f est \mathbb{R} -différentiable sur \mathbb{C} ;
- (b) En quels points f est \mathbb{C} -différentiable? Existe-t-il un ouvert non vide U de \mathbb{C} où f soit holomorphe?

Exercice 2 Montrer que $z \mapsto |z|^2$ n'est pas holomorphe, de même que Re(z) et Im(z).

Exercice 3 Soit f = u + iv une fonction holomorphe sur un ouvert $U \subset \mathbb{C}$. Montrer que u et v sont harmoniques, i.e.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}.$$

Exercice 4 Soit $U \subset \mathbb{C}$ un ouver<u>t</u> et f une fonction holomorphe sur U. Soit $V := \{z \in \mathbb{C} : \bar{z} \in U\}$. Pour tout $z \in V$ on pose $g(z) := \overline{f(\bar{z})}$. Montrer que g est holomorphe sur V.

Exercice 5 Soit $U \subset \mathbb{C}$ un ouvert connexe et f une fonction holomorphe sur U. Ecrivons f = u + iv. Montrer que les propriétés suivantes sont équivalentes :

- (a) f est constante;
- (b) u est constante;
- (c) v est constante;
- (d) \bar{f} est holomorphe;
- (e) |f| est constante.

Exercice 6 Soient $a, b, c \in \mathbb{R}$. Pour z = x + iy on pose $P(z) = ax^2 + 2bxy + cy^2$. Déterminer une condition nécessaire et suffisante sur a, b, c pour qu'il existe une fonction holomorphe f sur \mathbb{C} vérifiant Re(f) = P.

Exercice 7 On identifie \mathbb{R}^2 et \mathbb{C} en envoyant (x,y) sur z=x+iy. Soit $U\subset\mathbb{C}$ un ouvert et $f:U\to\mathbb{C}$ une fonction de classe \mathcal{C}^1 sur U. On note

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) et \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

- (a) Montrer que $\frac{\partial f}{\partial \bar{z}} = \overline{\frac{\partial f}{\partial z}}$.
- (b) Montrer que f holomorphe $\Leftrightarrow \frac{\partial f}{\partial \bar{z}} = 0$ et que dans ce cas $f'(z_0) = \frac{\partial f}{\partial z}(z_0), \ \forall z_0 \in U.$

Exercice 8 Soit f = P + iQ une fonction holomorphe sur un ouvert $U \subset \mathbb{C}$. Montrer qu'en tout point $z_0 = x_0 + iy_0$ où $f'(z_0) \neq 0$ les tangentes en z_0 aux courbes P(x, y) = constante et Q(x, y) = constante sont orthogonales.

Exercice 9 Montrer qu'en coordonnées polaires ρ, θ les équations de Cauchy-Riemann pour une fonction f sont équivalentes à

$$\frac{\partial f}{\partial \theta} = i\rho \frac{\partial f}{\partial \rho}.$$