MATHEMATICS-II

 $UNIT\text{-}3:\ ORDINARY\ DIFFERENTIAL\ EQUATIONS$

Chapter 5

Higher Order Linear ODEs

The differential equation in which dependent variable and its derivatives occur only in first degree and are not multiplied together is called a *linear differential equation*. The standard form of an n^{th} -order linear ODE is

$$\frac{d^n y}{dx^n} + p_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + p_{n-2}(x)\frac{d^{n-2} y}{dx^{n-2}} + \dots + p_1(x)\frac{dy}{dx} + p_0(x)y = r(x),$$
 (5.0.1)

where the coefficients $p_0(x), p_1(x), \ldots, p_{n-1}(x)$ and r(x) are functions of x. If r(x) = 0 for all x under consideration (usually in some open interval I), then equation (5.0.1) is called homogeneous. If $r(x) \neq 0$ for at least one x under consideration, then equation (5.0.1) is called nonhomogeneous.

5.1 Tutorial: Homogeneous Linear ODEs with Constant Coefficients

The standard form of an $n^{\rm th}$ order homogeneous linear ODE with constant coefficients is

$$\frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0,$$
 (5.1.1)

where $a_0, a_1, \ldots, a_{n-1}$ are constants.

Method of Solution

• Write the given homogeneous linear ODE

$$\frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0,$$
 (5.1.2)

in symbolic form as

$$(D^n + a_{n-1}D^{n-1} + a_{n-2}D^{n-2} + \dots + a_0)y = 0$$
, where $D = \frac{d}{dx}$

• Write the auxiliary equation for (5.1.2) as

$$m^{n} + a_{n-1}m^{n-1} + a_{n-2}m^{n-2} + \dots + a_{0} = 0$$
(5.1.3)

- Find the roots m_1, m_2, \ldots, m_n of equation (5.1.3). The general solution of the differential equation (5.1.2) depends on the nature of these roots. We have following four possibilities for the roots:
 - (1) Distinct real roots: If all the roots are real and distinct, then the general solution of the differential equation (5.1.2) is given by

$$y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x}.$$

(2) Equal real roots: If two roots are equal, say $m_1 = m_2$, then the general solution of the differential equation (5.1.2) is given by

$$y(x) = (c_1 + c_2 x)e^{m_1 x} + c_3 e^{m_3 x} + \dots + c_n e^{m_n x}.$$

Similarly, if three roots are equal, say $m_1 = m_2 = m_3$, then the general solution of the differential equation (5.1.2) is given by

$$y(x) = (c_1 + c_2 x + c_3 x^2)e^{m_1 x} + c_4 e^{m_4 x} + \dots + c_n e^{m_n x}.$$

(3) One pair of roots is complex: If one pair of roots is complex, say $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, then the general solution of the differential equation (5.1.2) is given by

$$y(x) = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x) + c_3 e^{m_3 x} + \dots + c_n e^{m_n x}.$$

(4) Two pairs of complex roots are equal: If two pairs of roots are complex and equal, say

$$m_1 = m_2 = \alpha + i\beta$$
 and $m_3 = m_4 = \alpha - i\beta$,

then the general solution of the differential equation (5.1.2) is given by

$$y(x) = e^{\alpha x} [(c_1 + c_2 x) \cos \beta x + (c_3 + c_4 x) \sin \beta x] + c_5 e^{m_5 x} + \dots + c_n e^{m_n x}.$$

Solved Examples

Example 5.1.1. Solve the initial value problem y'' + y' - 2y = 0; y(0) = 4 and y'(0) = -5.

Solution. The symbolic form of the given equation is

$$(D^2 + D - 2)y = 0$$
, where $D = \frac{d}{dx}$.

Therefore, the auxiliary equation is

$$m^2 + m - 2 = 0$$
 \Rightarrow $(m+2)(m-1) = 0$ \Rightarrow $m = -2, 1$ (distinct real roots).

Thus the general solution is

$$y(x) = c_1 e^{-2x} + c_2 e^x. (5.1.4)$$

Differentiating equation (5.1.4), we get

$$y'(x) = -2c_1e^{-2x} + c_2e^x. (5.1.5)$$

Since y(0) = 4, from (5.1.4) we obtain

$$c_1 + c_2 = 4. (5.1.6)$$

Since y'(0) = -5, from (5.1.5) we obtain

$$-2c_1 + c_2 = -5. (5.1.7)$$

Solving equations (5.1.6) and (5.1.7), we get $c_1 = 3$ and $c_2 = 1$. Hence, the required particular solution is

$$y(x) = 3e^{-2x} + e^x. \quad \blacksquare$$

Example 5.1.2. Solve the initial value problem

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0, \quad y(0) = 1, \ y'(0) = 0.$$

Solution. The symbolic form of the given equation is

$$(D^2 - 6D + 9)y = 0$$
, where $D = \frac{d}{dx}$.

Therefore, the auxiliary equation is

$$m^2 - 6m + 9 = 0$$
 \Rightarrow $(m-3)^2 = 0$ \Rightarrow $m = 3, 3$ (equal real roots).

Thus the general solution of the given equation is

$$y(x) = (c_1 + c_2 x)e^{3x}. (5.1.8)$$

Differentiating equation (5.1.8), we get

$$y'(x) = (c_1 + c_2 x)3e^{3x} + c_2 e^{3x}. (5.1.9)$$

Since y(0) = 1, from (5.1.8) we obtain

$$c_1 = 1$$
.

Since y'(0) = 0, from (5.1.9) we obtain

$$3c_1 + c_2 = 0 \implies c_2 = -3c_1 = -3 \quad (\because c_1 = 1).$$

Hence, the required particular solution is

$$y(x) = (1 - 3x)e^{3x}$$
.

Example 5.1.3. Find the general solution of 16y'' - 8y' + 5y = 0.

Solution. The symbolic form of the given equation is

$$(16D^2 - 8D + 5)y = 0$$
, where $D = \frac{d}{dx}$.

Therefore, the auxiliary equation is

$$16m^{2} - 8m + 5 = 0$$

$$\Rightarrow m = \frac{8 \pm \sqrt{64 - 320}}{32}$$

$$\Rightarrow m = \frac{8 \pm \sqrt{-256}}{32}$$

$$\Rightarrow m = \frac{8 \pm 16i}{32}$$

$$\Rightarrow m = \frac{1}{4} \pm i\frac{1}{2} \quad (pair of complex roots).$$

Hence, the general solution is given by

$$y(x) = e^{\frac{x}{4}} \left(c_1 \cos \frac{x}{2} + c_2 \sin \frac{x}{2} \right). \quad \blacksquare$$

Example 5.1.4. Find the general solution of the differential equation

$$\frac{d^4y}{dx^4} + 4\frac{d^2y}{dx^2} + 4y = 0.$$

Solution. The symbolic form of the given equation is

$$(D^4 + 4D^2 + 4)y = 0$$
, where $D = \frac{d}{dx}$.

Therefore, the auxiliary equation is

$$m^4 + 4m^2 + 4 = 0 \implies (m^2 + 2)^2 = 0 \implies m = \pm \sqrt{2}i, \pm \sqrt{2}i$$
 (equal pairs of complex roots).

Hence, the general solution is

$$y(x) = (c_1 + c_2 x) \cos \sqrt{2}x + (c_3 + c_4 x) \sin \sqrt{2}x.$$

Exercises

Exercise 5.1.1. Find the general solution of the differential equation

$$y'' + 4y' - 12y = 0.$$

Exercise 5.1.2. Solve the initial value problem y'' - 4y' + 4y = 0; y(0) = 3, y'(0) = 1.

Exercise 5.1.3. Find the general solution of $\frac{d^4y}{dx^4} - 18\frac{d^2y}{dx^2} + 81y = 0$.

Exercise 5.1.4. Solve $(D^3 - 3D^2 + 3D - 1)y = 0$.

Exercise 5.1.5. Solve y'' + 2y' + 2y = 0, y(0) = 1, $y(\pi/2) = 0$.

Exercise 5.1.6. Solve y''' - y'' + 100y' - 100y = 0, y(0) = 4, y'(0) = 11, y''(0) = -299.

Additional Exercises

Exercise 5.1.7. Find the general solution of $(D^2 - 2D + 4)y = 0$.

Exercise 5.1.8. Find the solution of differential equation y'' - 5y' + 6y = 0 with initial condition $y(1) = e^2$ and $y'(1) = 3e^2$.

Viva Questions

Question 5.1.9. What is meant by D?

Question 5.1.10. Define auxiliary equation.

Question 5.1.11. Find the general solution of the following differential equation:

(i)
$$y'' + 5y' + 4y = 0$$
; (ii) $y'' - y = 0$;

(ii)
$$y'' - y = 0$$

(iii)
$$(D^2 + 1)y = 0$$
.

Answers

5.1.1
$$c_1e^{-6x} + c_2e^{2x}$$
 5.1.2 $(3-5x)e^{2x}$ **5.1.3** $(c_1+c_2x)e^{-3x} + (c_3+c_4x)e^{3x}$

5.1.4
$$(c_1 + c_2 x + c_3 x^2)e^x$$
 5.1.5 $e^{-x}\cos x$ **5.1.6** $e^x + 3\cos 10x + \sin 10x$

5.1.7
$$e^x(c_1\cos\sqrt{3}x + c_2\sin\sqrt{3}x)$$
 5.1.8 e^{3x-1}

5.1.11 (i)
$$c_1 e^{-x} + c_2 e^{-4x}$$
, (ii) $c_1 e^x + c_2 e^{-x}$, (iii) $c_1 \cos x + c_2 \sin x$

5.2 Tutorial: Nonhomogeneous Linear ODEs with Constant Coefficients

The standard form of an n^{th} order nonhomogeneous linear ODE with constant coefficients is

$$\frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_1 \frac{dy}{dx} + a_0 y = r(x), \tag{5.2.1}$$

where $a_0, a_1, \ldots, a_{n-1}$ are constants and $r(x) \neq 0$ for at least one x under consideration.

Method of Solution

Consider a nonhomogeneous linear ODE with constant coefficients of the form

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = r(x).$$
(5.2.2)

• First find the general solution of the corresponding homogeneous equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$
(5.2.3)

by the usual method described in the section 3.2. This solution is called the *complementary* function (C.F.) of (5.2.2). It is denoted by Y_C .

• The symbolic form of (5.2.2) is

$$(D^n + a_{n-1}D^{n-1} + \ldots + a_1D + a_0)y = r(x) \Rightarrow f(D)y = r(x).$$

Applying $\frac{1}{f(D)}$ (inverse of f(D)) on both sides, we obtain

$$\frac{1}{f(D)}\big(f(D)y\big) = \frac{1}{f(D)}r(x) \quad \Rightarrow \quad y = \frac{1}{f(D)}r(x).$$

This solution is called the particular integral (P.I.) of (5.2.2). It is denoted by Y_P .

• The general solution of (5.2.2) is given by

$$y = C.F. + P.I. = Y_C + Y_P.$$

Direct Method For Finding Particular Integral

Consider the nonhomogeneous equation of the form

$$(D^n + a_{n-1}D^{n-1} + \ldots + a_1D + a_0)y = r(x)$$
 or $f(D)y = r(x)$. (5.2.4)

Then the particular integral (P.I.) is given by

P.I. =
$$Y_P = \frac{1}{f(D)}r(x)$$
.

The expression of Y_P depends on the nature of r(x). The following are some special cases for r(x):

Case-1.
$$r(x) = e^{ax}$$

In this case,

$$Y_P = \frac{1}{f(D)}e^{ax} = \frac{1}{f(a)}e^{ax}$$
, provided $f(a) \neq 0$.

If f(a) = 0, then

$$Y_P = \frac{1}{f(D)}e^{ax} = \frac{x}{f'(a)}e^{ax}$$
, provided $f'(a) \neq 0$.

If f'(a) = 0, then

$$Y_P = \frac{1}{f(D)}e^{ax} = \frac{x^2}{f''(a)}e^{ax}$$
, provided $f''(a) \neq 0$

and so on. If $f(D) = (D - a)^r e^{ax}$, then

$$Y_P = \frac{1}{(D-a)^r} e^{ax} = \frac{x^r}{r!} e^{ax}.$$

Case-2. $r(x) = \cos(ax + b)$ or $\sin(ax + b)$

In this case,

$$Y_P = \frac{1}{f(D^2)}\cos(ax+b) = \frac{1}{f(-a^2)}\cos(ax+b), \text{ provided } f(-a^2) \neq 0.$$

If $f(-a^2) = 0$, then

$$Y_P = \frac{1}{f(D^2)}\cos(ax+b) = \frac{x}{f'(-a^2)}\cos(ax+b)$$
, provided $f'(-a^2) \neq 0$.

If $f''(-a^2) = 0$, then

$$Y_P = \frac{1}{f(D^2)}\cos(ax+b) = \frac{x^2}{f''(-a^2)}\cos(ax+b), \text{ provided } f''(-a^2) \neq 0$$

and so on. If $f(D^2) = (D^2 + a^2)^2$, then

$$Y_P = \frac{1}{(D^2 + a^2)^2} \cos ax = -\frac{1}{4a^2} \cdot \frac{x^2}{2!} \cos ax.$$

The method for $r(x) = \sin(ax + b)$ is similar.

Case-3. $r(x) = x^n$

In this case,

$$Y_P = \frac{1}{f(D)} x^n.$$

Take the constant, if not, then the lowest powered D (with sign) common from f(D) and then expand $\frac{1}{f(D)}$ by either of the following binomial expansions:

$$\frac{1}{1-D} = 1 + D + D^2 + \dots$$
 or $\frac{1}{1+D} = 1 - D + D^2 - \dots$

Operate the resulting expansion on x^n . We need to expand up to power D^n as higher derivatives vanish.

Case-4. $r(x) = e^{ax}\phi(x)$, where $\phi(x)$ is any function of x

In this case,

$$Y_P = \frac{1}{f(D)} e^{ax} \phi(x) = e^{ax} \frac{1}{f(D+a)} \phi(x).$$

Case-5. $r(x) = x \cos ax$ or $x \sin ax$

In this case,

$$Y_P = \frac{1}{f(D)} x \cos ax = \left[x - \frac{f'(D)}{f(D)} \right] \frac{1}{f(D)} \cos ax.$$

The method for $r(x) = x \sin ax$ is similar.

Solved Examples

Example 5.2.1. Solve the differential equation $y'' + 7y' + 10y = e^{-x}$.

Solution. The symbolic form of given equation is

$$(D^2 + 7D + 10)y = e^{-x}.$$

First we find Y_C by solving the corresponding homogeneous equation

$$(D^2 + 7D + 10)y = 0.$$

The auxiliary equation is

$$m^2 + 7m + 10 = 0 \implies (m+2)(m+5) = 0 \implies m = -2, -5.$$

Thus

$$Y_C = c_1 e^{-2x} + c_2 e^{-5x}.$$

Now

$$Y_{P} = \frac{1}{f(D)} r(x)$$

$$= \frac{1}{D^{2} + 7D + 10} e^{-x}$$

$$= \frac{1}{(-1)^{2} + 7(-1) + 10} e^{-x}$$

$$= \frac{1}{4} e^{-x}.$$

Hence, the general solution is given by

$$y = Y_C + Y_P \implies y = c_1 e^{-2x} + c_2 e^{-5x} + \frac{e^{-x}}{4}.$$

Example 5.2.2. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{2x}.$$

Solution. The symbolic form of given equation is

$$(D^2 - 3D + 2)y = e^{2x}.$$

Therefore, the auxiliary equation is

$$m^2 - 3m + 2 = 0 \implies (m-1)(m-2) = 0 \implies m = 1, 2.$$

Thus

$$Y_C = c_1 e^x + c_2 e^{2x}.$$

Now

$$Y_{P} = \frac{1}{f(D)} r(x)$$

$$= \frac{1}{D^{2} - 3D + 2} e^{2x}$$

$$= \frac{x}{2D - 3} e^{2x} \quad (\because f(2) = 0)$$

$$= \frac{x}{2(2) - 3} e^{2x}$$

$$= xe^{2x}.$$

Hence, the general solution is given by

$$y = Y_C + Y_P \implies y = c_1 e^x + c_2 e^{2x} + x e^{2x}.$$

Example 5.2.3. Find the general solution of the differential equation

$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = \sin 2x.$$

Solution. The symbolic form of given equation is

$$(D^3 + D^2 - D - 1)y = \sin 2x.$$

Therefore, the auxiliary equation is

$$m^{3} + m^{2} - m - 1 = 0$$

$$\Rightarrow m^{2}(m+1) - (m+1) = 0$$

$$\Rightarrow (m+1)(m^{2} - 1) = 0$$

$$\Rightarrow (m+1)(m+1)(m-1) = 0$$

$$\Rightarrow m = -1, -1, 1.$$

Thus

$$Y_C = (c_1 + c_2 x)e^{-x} + c_3 e^x.$$

Now,

$$Y_P = \frac{1}{f(D^2)} r(x)$$

$$= \frac{1}{DD^2 + D^2 - D - 1} \sin 2x$$

$$= \frac{1}{D(-2^2) + (-2^2) - D - 1} \sin 2x$$

$$= \frac{1}{-4D - 4 - D - 1} \sin 2x$$

$$= \frac{1}{-5D - 5} \sin 2x$$

$$= -\frac{1}{5} \left[\frac{1}{D+1} \sin 2x \right]$$

$$= -\frac{1}{5} \left[\frac{D-1}{(D-1)(D+1)} \sin 2x \right]$$

$$= -\frac{1}{5} \left[\frac{D-1}{D^2 - 1} \sin 2x \right]$$

$$= -\frac{1}{5} \left[\frac{D-1}{-2^2 - 1} \sin 2x \right]$$

$$= \frac{1}{25} (D-1) \sin 2x$$

$$= \frac{1}{25} (D \sin 2x - \sin 2x)$$

$$= \frac{1}{25} (2 \cos 2x - \sin 2x).$$

Hence, the general solution is given by

$$y = Y_C + Y_P \implies y = (c_1 + c_2 x)e^{-x} + c_3 e^x + \frac{1}{25}(2\cos 2x - \sin 2x).$$

Example 5.2.4. Solve $(D^4 + 2a^2D^2 + a^4)y = \cos ax$.

Solution. The auxiliary equation equation is

$$m^4 + 2a^2m^2 + a^4 = 0 \implies (m^2 + a^2)^2 = 0 \implies m = \pm ia, \pm ia.$$

Thus

$$Y_C = (c_1 + c_2 x) \cos ax + (c_3 + c_4 x) \sin ax.$$

Now,

$$Y_P = \frac{1}{D^4 + 2a^2D^2 + a^4}\cos ax = \frac{1}{(D^2 + a^2)^2}\cos ax = -\frac{1}{4a^2} \cdot \frac{x^2}{2!}\cos ax = -\frac{x^2}{8a^2}\cos ax.$$

Hence, the general solution is given by

$$y = Y_C + Y_P = (c_1 + c_2 x)\cos ax + (c_3 + c_4 x)\sin ax - \frac{x^2}{8a^2}\cos ax$$
.

Example 5.2.5. Solve $y'' + 2y' + 3y = 2x^2$.

Solution. The symbolic form of the given equation is

$$(D^2 + 2D + 3)y = 2x^2.$$

Therefore, the auxiliary equation is

$$m^2 + 2m + 3 = 0 \implies m = \frac{-2 \pm \sqrt{4 - 12}}{2} \implies m = \frac{-2 \pm 2\sqrt{2}i}{2} \implies m = -1 \pm \sqrt{2}i.$$

Thus

$$Y_C = e^{-x}(c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x).$$

Now,

$$Y_{P} = \frac{1}{(D^{2} + 2D + 3)} 2x^{2}$$

$$= \frac{1}{3 \left[1 + \left(\frac{D^{2} + 2D}{3}\right)\right]} 2x^{2}$$

$$= \frac{2}{3} \left[1 - \left(\frac{D^{2} + 2D}{3}\right) + \left(\frac{D^{2} + 2D}{3}\right)^{2} - \cdots\right] x^{2}$$

$$= \frac{2}{3} \left[x^{2} - \frac{1}{3}(D^{2} + 2D)x^{2} + \frac{1}{9}(D^{4} + 4D^{3} + 4D^{2})x^{2}\right]$$

$$= \frac{2}{3} \left[x^{2} - \frac{1}{3}(2 + 4x) + \frac{1}{9}(0 + 0 + 8)\right]$$

$$= \frac{2}{3} \left[x^{2} - \frac{4}{3}x + \frac{2}{9}\right]$$

Hence, the general solution is given by

$$y = Y_C + Y_P = e^{-x} (c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x) + \frac{2}{3} \left[x^2 - \frac{4}{3}x + \frac{2}{9} \right].$$

Example 5.2.6. Solve the initial value problem

$$y'' + 4y = 8e^{-2x} + 4x^2 + 2$$
, $y(0) = 2$, $y'(0) = 2$.

Solution. The symbolic form of the given equation is

$$(D^2 + 4)y = 8e^{-2x} + 4x^2 + 2.$$

Therefore, the auxiliary equation is

$$m^2 + 4 = 0 \quad \Rightarrow \quad m^2 = -4 \quad \Rightarrow \quad m = \pm 2i.$$

Thus

$$Y_C = c_1 \cos 2x + c_2 \sin 2x.$$

Now,

$$Y_P = \frac{1}{D^2 + 4} (8e^{-2x} + 4x^2 + 2)$$

$$= 8 \left[\frac{1}{D^2 + 4} e^{-2x} \right] + 4 \left[\frac{1}{D^2 + 4} x^2 \right] + 2 \left[\frac{1}{D^2 + 4} 1 \right]$$

$$= 8 \left[\frac{1}{(-2)^2 + 4} e^{-2x} \right] + \left[\frac{1}{1 + \frac{D^2}{4}} x^2 \right] + 2 \left[\frac{1}{D^2 + 4} e^{0x} \right]$$

$$= 8 \left[\frac{1}{8} e^{-2x} \right] + \left[1 - \frac{D^2}{4} + \frac{D^4}{16} - \cdots \right] x^2 + 2 \left[\frac{1}{0^2 + 4} e^{0x} \right]$$

$$= e^{-2x} + \left[x^2 - \frac{1}{4} D^2(x^2) + \frac{1}{16} D^4(x^2) \right] + \frac{1}{2}$$

$$= e^{-2x} + \left[x^2 - \frac{1}{2} \right] + \frac{1}{2}$$

$$= e^{-2x} + x^2.$$

Hence, the general solution is given by

$$y = Y_C + Y_P = c_1 \cos 2x + c_2 \sin 2x + e^{-2x} + x^2. \tag{5.2.5}$$

Using the condition y(0) = 2, we get

$$c_1 \cos 0 + c_2 \sin 0 + e^0 + 0 = 2 \implies c_1 + 1 = 2 \implies c_1 = 1.$$

Differentiating (5.2.5) w. r. t. x, we get

$$y'(x) = -2c_1 \sin 2x + 2c_2 \cos 2x - 2e^{-2x} + 2x.$$

Using the condition y'(0) = 2, we get

$$-2c_1 \sin 0 + 2c_2 \cos 0 - 2e^0 + 2(0) = 2 \implies 2c_2 - 2 = 2 \implies c_2 = 2.$$

Thus the required particular solution is

$$\cos 2x + 2\sin 2x + e^{-2x} + x^2$$
.

Example 5.2.7. Solve $(D^3 - 3D + 2)y = xe^x$.

Solution. The auxiliary equation is

$$m^3 - 3m + 2 = 0 \implies (m-1)(m^2 + m - 2) = 0 \implies (m-1)(m-1)(m+2) = 0 \implies m = 1, 1, -2.$$

Thus

$$Y_C = (c_1 + c_2 x)e^x + c_3 e^{-2x}.$$

Now

$$Y_P = \frac{1}{f(D)} r(x)$$
$$= \frac{1}{D^3 - 3D + 2} xe^x$$

$$= \frac{1}{(D-1)(D-1)(D+2)} xe^{x}$$

$$= e^{x} \frac{1}{(D)(D)(D+1+2)} x$$

$$= e^{x} \frac{1}{D^{2}(D+3)} x$$

$$= e^{x} \frac{1}{D^{2}} \frac{1}{3} \left[\frac{1}{1+D/3} \right] x$$

$$= \frac{e^{x}}{3} \frac{1}{D^{2}} \left[1 - \frac{D}{3} + \cdots \right] x$$

$$= \frac{e^{x}}{3} \frac{1}{D^{2}} \left[x - \frac{1}{3}(1) \right]$$

$$= \frac{e^{x}}{3} \frac{1}{D} \left[\frac{x^{2}}{2} - \frac{x}{3} \right]$$

$$= \frac{e^{x}}{3} \left[\frac{x^{3}}{6} - \frac{x^{2}}{6} \right]$$

$$= \frac{x^{2}e^{x}}{18} (x - 1).$$

Hence, the general solution is

$$y = Y_C + Y_P \implies y = (c_1 + c_2 x)e^x + c_3 e^{-2x} + \frac{x^2 e^x}{18}(x - 1).$$

Example 5.2.8. Solve $(D^2 + 1)y = x \sin 2x$.

Solution. The auxiliary equation is

$$m^2 + 1 = 0 \quad \Rightarrow \quad m = \pm i.$$

Thus

$$Y_C = c_1 \cos x + c_2 \sin x.$$

Now,

$$Y_P = \frac{1}{f(D)} x \sin 2x$$

$$= \left[x - \frac{f'(D)}{f(D)} \right] \frac{1}{f(D)} \sin 2x$$

$$= \left[x - \frac{2D}{D^2 + 1} \right] \frac{1}{D^2 + 1} \sin 2x$$

$$= \left[x - \frac{2D}{D^2 + 1} \right] \frac{1}{-2^2 + 1} \sin 2x$$

$$= \left[x - \frac{2D}{D^2 + 1} \right] \left(-\frac{1}{3} \right) \sin 2x$$

$$= -\frac{1}{3} \left[x \sin 2x - 2D \frac{1}{D^2 + 1} \sin 2x \right]$$

$$= -\frac{1}{3} \left[x \sin 2x - 2D \frac{1}{-2^2 + 1} \sin 2x \right]$$

$$= -\frac{1}{3} \left[x \sin 2x + \frac{2}{3} \frac{d}{dx} \sin 2x \right]$$

$$= -\frac{1}{3} \left[x \sin 2x + \frac{4}{3} \cos 2x \right]$$

$$= -\frac{1}{9} \left[3x \sin 2x + 4 \cos 2x \right].$$

Hence, the general solution is

$$y = Y_C + Y_P \implies y = c_1 \cos x + c_2 \sin x - \frac{1}{9} (3x \sin 2x + 4 \cos 2x).$$

Exercises

Exercise 5.2.1. Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = e^{6x}$.

Exercise 5.2.2. Solve the non-homogeneous equation $y'' - 3y' + 2y = e^x$.

Exercise 5.2.3. Find the particular solution of $y = \frac{1}{(D+1)^2} \cosh x$, where $D = \frac{d}{dx}$.

Exercise 5.2.4. Solve $y''' - 3y'' + 3y' - y = 4e^t$.

Exercise 5.2.5. Find the general solution of $\frac{d^4y}{dt^4} - 2\frac{d^2y}{dt^2} + y = \cos t + e^{2t} + e^t$.

Exercise 5.2.6. Solve $(D^2 + 1)y = \sin x \sin 2x$.

Exercise 5.2.7. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 9y = x^2.$$

Exercise 5.2.8. Solve $(D^3 - D^2 - 6D)y = x^2 + 1$.

Exercise 5.2.9. Solve $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 5y = e^x \cos 3x$.

Exercise 5.2.10. Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = \frac{e^{2x}}{x^5}$.

Exercise 5.2.11. Solve $(D^2 + 4)y = x \sin x$.

Exercise 5.2.12. Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$.

Exercise 5.2.13. Find the particular solution of $y'' - 2y' + 5y = 5x^3 - 6x^2 + 6x$.

Exercise 5.2.14. Find the general solution of $(D^2 - 4)y = x^3e^{2x}$.

Exercise 5.2.15. Solve the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 2e^x \cos\left(\frac{x}{2}\right)$.

Exercise 5.2.16. Solve $(D^2 - 4D + 4)y = \frac{e^{2x}}{1 + r^2}$, where $D = \frac{d}{dx}$.

Viva Questions

Question 5.2.17. When a linear differential equation is nonhomogeneous?

Question 5.2.18. How to give the general solution of a non-homogeneous equation?

Question 5.2.19. What will be P.I. for $(D^2 + 2D + 1)y = e^{-x} \sin x$?

Question 5.2.20. How to find P.I. when $r(x) = e^{ax}$?

Question 5.2.21. How to find P.I. when $r(x) = \sin ax$?

Answers

5.2.1
$$c_1e^{-4x} + c_2e^{3x} + \frac{e^{6x}}{30}$$

5.2.2
$$c_1e^{2x} + c_2e^x - xe^x$$

5.2.3
$$\frac{1}{8}e^x + \frac{1}{4}x^2e^{-x}$$

5.2.4
$$(c_1 + c_2t + c_3t^2)e^t + \frac{2}{3}t^3e^t$$

5.2.5
$$(c_1 + c_2 t)e^{-t} + (c_3 + c_4 t)e^t + \frac{\cos t}{4} + \frac{e^{2t}}{9} + \frac{t^2 e^t}{8}$$

5.2.6 $c_1 \cos x + c_2 \sin x + \frac{1}{2} \left[\frac{x \sin x}{2} + \frac{\cos 3x}{8} \right]$

5.2.6
$$c_1 \cos x + c_2 \sin x + \frac{1}{2} \left[\frac{x \sin x}{2} + \frac{\cos 3x}{8} \right]$$

5.2.7
$$c_1e^{3x} + c_2e^{-3x} - \frac{x^2}{9} - \frac{2}{81}$$

5.2.7
$$c_1e^{3x} + c_2e^{-3x} - \frac{x^2}{9} - \frac{2}{81}$$

5.2.8 $c_1 + c_2e^{3x} + c_3e^{-2x} - \frac{1}{18}x^3 + \frac{1}{36}x^2 - \frac{25}{108}x$

5.2.9
$$c_1 e^{-x} + e^x (c_2 \cos 2x + c_3 \sin 2x) - \frac{e^x}{65} (3 \sin 3x + 2 \cos 3x)$$

5.2.10
$$(c_1+c_2x)e^{2x}+\frac{1}{12}\frac{e^{2x}}{x^3}$$

5.2.11
$$y = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{9} (3x \sin x - 2 \cos x)$$

5.2.12
$$c_1 e^x + c_2 e^{3x} + \frac{1}{884} (10\cos 5x - 11\sin 5x) + \frac{1}{20} (2\cos x + \sin x)$$

5.2.13
$$x^3$$

5.2.14
$$c_1e^{2x} + c_2e^{-2x} + \frac{e^{2x}}{128}(8x^4 - 8x^3 + 6x^2 - 3x)$$

5.2.15
$$c_1 e^x + c_2 e^{2x} - \frac{8}{5} e^x \left(\cos\frac{x}{2} + 2\sin\frac{x}{2}\right)$$

5.2.16
$$(c_1 + c_2 x)e^{2x} + e^{2x} \left[x \tan^{-1} x - \frac{1}{2} \log(x^2 + 1) \right]$$

5.2.19
$$-e^{-x}\sin x$$

XXXXXXX

5.3 Tutorial: Method of Undetermined Coefficients

This method can be applied when the function r(x) is an exponential function, a power of x, a cosine or sine, or sums or products of such functions. These functions have derivatives similar to r(x) itself. In this method we will assume a form of Y_P similar to r(x), but with unknown coefficients to be determined by substituting that Y_P and its derivatives into the given differential equation. The choice of Y_P depending on r(x) and corresponding rules are as follows:

Term in r(x)	Set of Solutions	Choice for \mathbf{Y}_P
Ke^{ax}	$\{e^{ax}\}$	Ce^{ax}
Kx^n	$\left\{x^n, x^{n-1}, \dots, x, 1\right\}$	$K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$
$K\cos ax$	$\{\cos ax, \sin ax\}$	$K_1\cos ax + K_2\sin ax$
$K\sin ax$	$\{\cos ax, \sin ax\}$	$K_1 \cos ax + K_2 \sin ax$
$Ke^{ax}\cos ax$	$e^{ax}\cos ax, e^{ax}\sin ax$	$e^{ax}(K_1\cos ax + K_2\sin ax)$
$Ke^{ax}\sin ax$	$\left\{ e^{ax}\cos ax, e^{ax}\sin ax \right\}$	$e^{ax}(K_1\cos ax + K_2\sin ax)$

Basic Rule

If r(x) is one of the functions in the first column of above table, choose Y_P in the same line and determine its unknown coefficients by substituting Y_P and its derivatives into the given equation.

Modification Rule

If any member from the solution set of r(x) occurs in Y_C corresponding to a simple root, then multiply each member of the set by x (or by x^2 if the member is corresponding to a double root and so on.)

Sum Rule

If r(x) is a sum of functions in the first column of above table, choose for Y_P the sum of the functions in the corresponding lines of the third column.

Solved Examples

Example 5.3.1. Using the method of undetermined coefficients, solve the differential equation

$$y'' + 4y = 8x^2.$$

Solution. The symbolic form of the given equation is

$$(D^2+4)y=8x^2.$$

First we find Y_C by solving

$$(D^2 + 4)y = 0.$$

The auxiliary equation is

$$m^2 + 4 = 0 \implies m^2 = -4 \implies m = \pm 2i$$
.

Thus

$$Y_C = c_1 \cos 2x + c_2 \sin 2x.$$

Now, the solution set of $8x^2$ is $\{x^2, x, 1\}$. Therefore,

$$Y_P = K_2 x^2 + K_1 x + K_0$$

 $Y_P' = 2K_2 x + K_1$
 $Y_P'' = 2K_2$.

Substituting all these values in the given equation, we get

$$2K_2 + 4K_2x^2 + 4K_1x + 4K_0 = 8x^2$$

$$\Rightarrow 4K_2x^2 + 4K_1x + (4K_0 + 2K_2) = 8x^2.$$

Equating the corresponding coefficients on both the sides, we get

$$4K_2 = 8$$
, $4K_1 = 0$, $4K_0 + 2K_2 = 0$.

Solving, we get

$$K_2 = 2$$
. $K_1 = 0$, $K_0 = -1$.

Thus

$$Y_P = 2x^2 - 1.$$

Hence, the general solution is given by

$$y = Y_C + Y_P \implies y = c_1 \cos 2x + c_2 \sin 2x + 2x^2 - 1.$$

Example 5.3.2. By the method of undetermined coefficients, find the general solution of

$$y'' + y = 6\cos 2x.$$

Solution. The symbolic form of the given equation is

$$(D^2 + 1)y = 6\cos 2x.$$

Therefore, the auxiliary equation is

$$m^2 + 1 = 0 \implies m^2 = -1 \implies m = \pm i.$$

Thus

$$Y_C = c_1 \cos x + c_2 \sin x.$$

Now, the solution set of $6\cos 2x$ is $\{\cos 2x, \sin 2x\}$. Therefore,

$$Y_P = K_1 \cos 2x + K_2 \sin 2x$$

 $Y_P' = -2K_1 \sin 2x + 2K_2 \cos 2x$
 $Y_P'' = -4K_1 \cos 2x - 4K_2 \sin 2x$.

Substituting all these values in the given equation, we get

$$-4K_1\cos 2x - 4K_2\sin 2x + K_1\cos 2x + K_2\sin 2x = 6\cos 2x$$

$$\Rightarrow -3K_1\cos 2x - 4K_2\sin 2x = 6\cos 2x.$$

Equating the corresponding coefficients on both the sides, we get

$$-3K_1 = 6$$
 and $-4K_2 = 0$ \Rightarrow $K_1 = -2$ and $K_2 = 0$.

Thus

$$Y_P = -2\cos 2x$$
.

Hence, the general solution is given by

$$y = Y_C + Y_P$$
 \Rightarrow $y = c_1 \cos 2x + c_2 \sin 2x - 2 \cos 2x$.

Example 5.3.3. Using the method of undetermined coefficients solve the differential equation

$$\frac{d^2y}{dx^2} - 4y = e^{-2x} - 2x.$$

Solution. The symbolic form of the given equation is

$$(D^2 - 4)y = e^{-2x} - 2x.$$

Therefore, the auxiliary equation is

$$m^2 - 4 = 0 \implies (m-2)(m+2) = 0 \implies m = 2, -2.$$

Thus

$$Y_C = c_1 e^{2x} + c_2 e^{-2x}.$$

Now, the solution sets of e^{-2x} and -2x are $\{e^{-2x}\}$ and $\{x,1\}$ respectively. Since e^{-2x} occurs in Y_C corresponding to a simple root, we have to modify the first solution set as $\{xe^{-2x}\}$. Thus

$$Y_P = Axe^{-2x} + Bx + C$$

 $Y_P' = -2Axe^{-2x} + Ae^{-2x} + B$
 $Y_P'' = 4Axe^{-2x} - 2Ae^{-2x} - 2Ae^{-2x}$

Substituting all these values in the given equation, we get

$$4Axe^{-2x} - 4Ae^{-2x} - 4Axe^{-2x} - 4Bx - 4C = e^{-2x} - 2x$$

$$\Rightarrow -4Ae^{-2x} - 4Bx - 4C = e^{-2x} - 2x.$$

Equating the corresponding coefficients on both the sides, we get

$$-4A = 1$$
, $-4B = -2$, $-4C = 0$.

Solving, we get

$$A = -\frac{1}{4}, \quad B = \frac{1}{2}, \quad C = 0.$$

Therefore,

$$Y_P = -\frac{1}{4}xe^{-2x} + \frac{1}{2}x.$$

Hence, the general solution is given by

$$y = Y_C + Y_P \implies y = c_1 e^{2x} + c_2 e^{-2x} - \frac{1}{4} x e^{-2x} + \frac{1}{2} x.$$

Exercises

Exercise 5.3.1. Find the solution of differential equation $y'' + 4y = 2\sin 3x$ by the method of undetermined coefficients.

Exercise 5.3.2. Using the method of undetermined coefficients, find the general solution of the differential equation $y'' + 2y' + 10y = 25x^2 + 3$.

Exercise 5.3.3. Using the method of undetermined coefficients, find the general solution of

$$y'' + 8y' + 16y = 64\cosh 4x.$$

Hint: Use the formula $\cosh ax = \frac{e^{ax} + e^{-ax}}{2}$

Exercise 5.3.4. Use the method of undetermined coefficients to solve the initial value problem

$$y'' + 4y = 16\cos 2x$$
, $y(0) = 0$, $y'(0) = 0$.

Exercise 5.3.5. Solve the initial value problem

$$y'' + y' = 2 + 2x + x^2$$
, $y(0) = 8$, $y'(0) = -1$

using the method of undetermined coefficients.

Viva Questions

Question 5.3.6. For which r(x), the method of undetermined coefficients is applicable?

Question 5.3.7. For the differential equation $y'' + y = x^2 + 4$, give the form of Y_P .

Question 5.3.8. How to modify the form of Y_P if one of the terms in Y_P is a solution of the corresponding homogeneous equation (i.e., the term occurs in Y_C)?

Question 5.3.9. For the differential equation $y'' + 4y = e^{4x} + \sin 2x$, give the form of Y_P .

Answers

5.3.1
$$c_1 \cos 2x + c_2 \sin 2x - \frac{2}{5} \sin 3x$$

5.3.3
$$(c_1 + c_2 x)e^{-4x} + \frac{1}{2}e^{4x} + 16x^2e^{-4x}$$

5.3.4 $4x \sin 2x$

5.3.5
$$3e^{-x} + 5 + 2x + \frac{1}{3}x^3$$

5.3.7
$$Ax^2 + Bx + C$$

5.3.9
$$Ae^{2x} + Bx \cos 2x + Cx \sin 2x$$

XXXXXXX

5.4 Tutorial: Method of Variation of Parameters

The method of undetermined coefficients is restricted to functions r(x) whose derivatives are of a form similar to r(x) itself. Of course direct method is applicable almost in all cases but some times turns out to be complicated. So, it is required to establish a more general method. One such method, called the method of variation of parameters. We now discuss this method.

Method for Second Order Linear ODEs

Consider a nonhomogeneous linear ODEs of the form

$$y'' + p(x)y' + q(x)y = r(x)$$
 (where $p(x)$ and $q(x)$ are continuous).

Suppose that

$$Y_C(x) = c_1 y_1(x) + c_2 y_2(x).$$

Then

$$Y_P(x) = -y_1(x) \int \frac{y_2(x)}{W(x)} r(x) dx + y_2(x) \int \frac{y_1(x)}{W(x)} r(x) dx,$$

where W is the Wronskian of y_1 , y_2 , i.e.,

$$W(x) = \left| \begin{array}{cc} y_1 & y_2 \\ y_1' & y_2' \end{array} \right|.$$

Method for Third Order Linear ODEs

Consider a nonhomogeneous linear ODE of the form

$$y''' + p_2(x)y'' + p_1(x)y' + p_0(x)y = r(x)$$
 (where $p_0(x)$, $p_1(x)$ and $p_2(x)$ are continuous).

Suppose that

$$Y_C(x) = c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x).$$

Then

$$Y_P(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + y_3(x) \int \frac{W_3(x)}{W(x)} r(x) dx,$$

where

$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}, \quad W_1 = y_2 y_3' - y_3 y_2', \quad W_2 = y_3 y_1' - y_1 y_3', \quad W_3 = y_1 y_2' - y_2 y_1'.$$

Solved Examples

Example 5.4.1. Using the method of variation of parameters solve the differential equation

$$y'' + y = \csc x.$$

Solution. The symbolic form of the given equation is

$$(D^2 + 1)y = \csc x.$$

First we find Y_C by solving the corresponding homogeneous equation

$$(D^2+1)y=0.$$

The auxiliary equation is

$$m^2 + 1 = 0 \implies m^2 = -1 \implies m = \pm i.$$

Thus

$$Y_C = c_1 \cos x + c_2 \sin x.$$

Comparing this with

$$Y_C = c_1 y_1 + c_2 y_2,$$

we obtain

$$y_1 = \cos x$$
, $y_2 = \sin x$.

Now

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1.$$

By the method of variation of parameters, we have

$$Y_P = -y_1(x) \int \frac{y_2(x)}{W(x)} r(x) dx + y_2(x) \int \frac{y_1(x)}{W(x)} r(x) dx$$

$$= -\cos x \int \frac{\sin x}{1} \csc x dx + \sin x \int \frac{\cos x}{1} \csc x dx$$

$$= -\cos x \int dx + \sin x \int \cot x dx$$

$$= -x \cos x + \sin x \cdot \ln|\sin x|.$$

Hence, the general solution is

$$y = Y_C + Y_P$$
 \Rightarrow $y = c_1 \cos x + c_2 \sin x - x \cos x + \sin x \cdot \ln|\sin x|$.

Example 5.4.2. Find the general solution of the differential equation

$$y''' - 6y'' + 11y' - 6y = e^{-x}$$

using the method of variation of parameters.

Solution. The symbolic form of the given equation is

$$(D^3 - 6D^2 + 11D - 6)y = e^{-x}.$$

First we find Y_C by solving the corresponding homogeneous equation

$$(D^3 - 6D^2 + 11D - 6)y = 0.$$

The auxiliary equation is

$$m^{3} - 6m^{2} + 11m - 6 = 0$$

$$\Rightarrow (m-1)(m^{2} - 5m + 6) = 0$$

$$\Rightarrow (m-1)(m-2)(m-3) = 0$$

$$\Rightarrow m = 1, 2, 3.$$

Thus

$$Y_C = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}.$$

Comparing this with

$$Y_C = c_1 y_1 + c_2 y_2 + c_3 y_3,$$

we obtain

$$y_1 = e^x$$
, $y_2 = e^{2x}$, $y_3 = e^{3x}$
 $\Rightarrow y'_1 = e^x$, $y'_2 = 2e^{2x}$, $y'_3 = 3e^{3x}$
 $\Rightarrow y''_1 = e^x$, $y''_2 = 4e^{2x}$, $y''_3 = 9e^{3x}$

By the method of variation of parameters, we have

$$Y_P(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + y_3(x) \int \frac{W_3(x)}{W(x)} r(x) dx.$$
 (5.4.1)

Now

$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} e^x & e^{2x} & e^{3x} \\ e^x & 2e^{2x} & 3e^{3x} \\ e^x & 4e^{2x} & 9e^{3x} \end{vmatrix} = \begin{vmatrix} e^x & e^{2x} & e^{3x} \\ 0 & e^{2x} & 2e^{3x} \\ 0 & 3e^{2x} & 8e^{3x} \end{vmatrix} = e^x (8e^{5x} - 6e^{5x}) = 2e^{6x};$$

$$W_1 = y_2 y_3' - y_3 y_2' = (e^{2x}) (3e^{3x}) - (e^{3x}) (2e^{2x}) = 3e^{5x} - 2e^{5x} = e^{5x};$$

$$W_2 = y_3 y_1' - y_1 y_3' = (e^{3x}) (e^x) - (e^x) (3e^{3x}) = e^{4x} - 3e^{4x} = -2e^{4x};$$

$$W_3 = y_1 y_2' - y_2 y_1' = (e^x) (2e^{2x}) - (e^{2x}) (e^x) = 2e^{3x} - e^{3x} = e^{3x}.$$

Substituting all these values in Equation (5.4.1), we get

$$Y_{P} = e^{x} \int \frac{e^{5x}}{2e^{6x}} e^{-x} dx + e^{2x} \int \frac{-2e^{4x}}{2e^{6x}} e^{-x} dx + e^{3x} \int \frac{e^{3x}}{2e^{6x}} e^{-x} dx$$

$$= \frac{1}{2} e^{x} \int e^{-2x} dx - e^{2x} \int e^{-3x} dx + \frac{1}{2} e^{3x} \int e^{-4x} dx$$

$$= \frac{1}{2} e^{x} \left(\frac{e^{-2x}}{-2} \right) - e^{2x} \left(\frac{e^{-3x}}{-3} \right) + \frac{1}{2} e^{3x} \left(\frac{e^{-4x}}{-4} \right)$$

$$= -\frac{1}{4} e^{-x} + \frac{1}{3} e^{-x} - \frac{1}{8} e^{-x}$$

$$= -\frac{1}{24} e^{-x}.$$

Hence, the general solution is

$$y = Y_C + Y_P \implies y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x} - \frac{1}{24} e^{-x}.$$

Exercises

Exercise 5.4.1. Solve $y'' + 9y = \sec 3x$ by the method of variation of parameters.

Exercise 5.4.2. Solve $(D^2 - 3D + 2)y = \frac{e^x}{1 + e^x}$ by method of variation of parameters.

Exercise 5.4.3. Use the method of variation of parameters to find the general solution of

$$y'' - 4y' + 4y = \frac{e^{2x}}{x}.$$

Exercise 5.4.4. Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by method of variation of parameters.

Exercise 5.4.5. Solve the differential equation $\frac{d^3y}{dx^3} + \frac{dy}{dx} = \csc x$ by method of variation of parameters.

Exercise 5.4.6. Using the method of variation of parameters find the general solution of the differential equation

$$(D^2 - 2D + 1)y = 3x^{3/2}e^x.$$

Exercise 5.4.7. Solve $(D^2 + 2D + 2)y = 4e^{-x} \sec^3 x$ using the method of variation of parameters.

Viva Questions

Question 5.4.8. When should we use the method of variation of parameters?

Question 5.4.9. In the method of variation of parameters, what is the form of Y_P for a second order linear ODE?

Question 5.4.10. In the method of variation of parameters, what is the form of Y_P for a third order linear ODE?

Answers

5.4.1
$$c_1 \cos 3x + c_2 \sin 3x + \frac{1}{9} \cos 3x \log \cos 3x + \frac{1}{3} x \sin 3x$$

5.4.2
$$c_1 e^x + c_2 e^{2x} + e^x \log(1 + e^{-x}) - e^x + e^{2x} \log(1 + e^{-x})$$

5.4.3
$$(c_1 + c_2 x)e^{2x} + (\ln x - 1)xe^{2x}$$

5.4.4
$$c_1 \cos 2x + c_2 \sin 2x - \frac{1}{4} \cos 2x \log(\sec 2x + \tan 2x)$$

5.4.5
$$c_1 + c_2 \cos x + c_3 \sin x + \log(\csc x - \cot x) - \cos x \log \sin x - x \sin x$$

5.4.6
$$(c_1+c_2x)e^x+\frac{12}{35}x^{7/2}e^x$$

5.4.7
$$e^{-x}(c_1\cos x + c_2\sin x) + 2e^{-x}\sin^2 x\sec x$$

5.5 Tutorial: Euler-Cauchy Equations

Definition

An equation of the form

$$x^{n}y^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + \dots + a_{1}xy^{(1)} + a_{0}y = r(x),$$
(5.5.1)

where a_0, a_1, \dots, a_{n-1} are constants, is called an Euler-Cauchy Equation of order n.

Method of Solution

• For a given Euler-Cauchy equation, substitute $x = e^z$ or $z = \ln x$. Then we obtain

$$xy' = Dy$$
, $x^2y'' = D(D-1)y$, $x^3y''' = D(D-1)(D-2)y$ (where $D = \frac{d}{dz}$)

and so on.

- Substitute all these values in the given equation. Now the equation becomes a linear differential equation with constant coefficients. Solve it by the usual methods discussed in the previous chapter. Here the solution will be in the form $y \equiv y(z)$.
- Replace z by $\ln x$ or e^z by x to obtain the general solution of the given equation.

Solved Examples

Example 5.5.1. Solve $x^3 \frac{d^3y}{dx^3} + 7x \frac{dy}{dx} - 27y = 0$.

Solution. Let $x = e^z$ or $z = \ln x$. Then

$$x\frac{dy}{dx} = Dy$$
, $x^3\frac{d^2y}{dx^3} = D(D-1)(D-2)y$ (where $D = \frac{d}{dz}$).

Substituting all these values in the given equation, we get

$$[D(D-1)(D-2) + 7D - 27]y = 0$$

$$\Rightarrow [D(D^2 - 3D + 2) + 7D - 27]y = 0$$

$$\Rightarrow (D^3 - 3D^2 + 9D - 27)y = 0$$

which is a linear differential equation with constant coefficients. The auxiliary equation is

$$m^{3} - 3m^{2} + 9m - 27 = 0$$

 $\Rightarrow m^{2}(m-3) + 9(m-3) = 0$
 $\Rightarrow (m-3)(m^{2} + 9) = 0$
 $\Rightarrow m = 3, \pm 3i.$

Hence, the general solution is

$$y = c_1 e^{3z} + c_2 \cos 3z + c_3 \sin 3z.$$

Replacing z by $\ln x$ or e^z by x, we obtain

$$y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$$
.

Example 5.5.2. Solve $x^2y'' + 3xy' + y = x^2 \log x$.

Solution. Let $x = e^z$ or $z = \ln x$. Then

$$xy' = Dy$$
, $x^2y'' = D(D-1)y$ (where $D = \frac{d}{dz}$).

Substituting all these values in the given equation, we get

$$[D(D-1) + 3D + 1]y = e^{2z}z$$

$$\Rightarrow (D^2 + 2D + 1)y = e^{2z}z.$$

which is a linear differential equation with constant coefficients. The auxiliary equation is

$$m^2 + 2m + 1 = 0 \implies (m+1)^2 = 0 \implies m = -1, -1.$$

Thus

$$Y_C = (c_1 + c_2 z)e^{-z}.$$

Now

$$Y_{P} = \frac{1}{(D^{2} + 2D + 1)^{2}} e^{2z} z$$

$$= \frac{1}{(D+1)^{2}} e^{2z} z$$

$$= e^{2z} \frac{1}{(D+3)^{2}} z$$

$$= e^{2z} \frac{1}{D^{2} + 6D + 9} z$$

$$= \frac{e^{2z}}{9} \left(\frac{1}{1 + \frac{D^{2} + 6D}{9}} \right) z$$

$$= \frac{e^{2z}}{9} \left(1 - \frac{D^{2} + 6D}{9} + \cdots \right) z$$

$$= \frac{e^{2z}}{9} \left(z - \frac{2}{3} \right)$$

$$= \frac{e^{2z}}{27} (3z - 2).$$

Hence, the general solution is given by

$$y = Y_C + Y_P \implies y = (c_1 + c_2 z)e^{-z} + \frac{e^{2z}}{27}(3z - 2).$$

Replacing z by $\ln x$ or e^z by x, we obtain

$$y = \frac{c_1 + c_2 \ln x}{x} + \frac{x^2}{27} (3 \ln x - 2). \quad \blacksquare$$

Exercises

Exercise 5.5.1. Solve the Euler-Cauchy equation $x^2y'' - 7xy' + 16y = 0$.

Exercise 5.5.2. Solve $(x^2D^2 - 3xD + 4)y = 0$, y(1) = 0, y'(1) = 3.

Exercise 5.5.3. Solve $(x^2D^2 + xD - 9)y = 48x^5$.

Exercise 5.5.4. Find the general solution of the equation $(x^2D^2 - 2xD + 2)y = x^3\cos x$.

[Hint: Use method of variation of parameters to find P.I.]

Exercise 5.5.5. Find the general solution of the differential equation

$$x^{3}\frac{d^{3}y}{dx^{3}} + 2x^{2}\frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right).$$

Exercise 5.5.6. Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 3y = 3\log x - 4$.

Viva Questions

Question 5.5.7. What is the standard form of an Euler-Cauchy equation of n^{th} order?

Question 5.5.8. How to solve an Euler-Cauchy equation?

Question 5.5.9. Which of the following are Euler-Cauchy equations?

(i)
$$x^3y''' - 5xy' + 6y = \sin x$$

(iii)
$$xy''' + y' = 0$$

(ii)
$$xy'' + 10y' = 12x^7$$

$$(iv) xy''' + 3y'' = e^x$$

Answers

5.5.1
$$(c_1 + c_2 \ln x)x^4$$

5.5.2
$$3x^2 \log x$$

5.5.3
$$c_1x^3 + c_2x^{-3} + 3x^5$$

5.5.4
$$c_1x + c_2x^2 - x\cos x$$

5.5.5
$$\frac{c_1}{x} + x[c_2\cos(\log x) + c_3\sin(\log x)] + 5x + \frac{2}{x}\log x$$

5.5.6
$$c_1 x + c_2 x^3 + \log x$$

$$5.5.9$$
 (i), (ii), (iv)

5.6 Tutorial: Legendre's Linear Equation

An equation of the form

$$(ax+b)^{n}y^{(n)} + a_{n-1}(ax+b)^{n-1}y^{(n-1)} + \dots + a_{1}(ax+b)y^{(1)} + a_{0}y = r(x),$$
(5.6.1)

where a_0, a_1, \dots, a_{n-1} are constants, is called an Euler-Cauchy Equation of order n.

Method of Solution

- For a given Legendre's equation, substitute $(ax + b) = e^z$ or $z = \ln(ax + b)$. Then we obtain (ax + b)y' = aDy, $(ax + b)^2y'' = a^2D(D 1)y$, $(ax + b)^3y''' = a^3D(D 1)(D 2)y$, ... where $D = \frac{d}{dz}$.
- Substitute all these values in the given equation. Now the equation becomes a linear differential equation with constant coefficients. Solve it by the usual methods discussed earlier. Here the solution will be in the form $y \equiv y(z)$.
- Replace z by $\ln(ax+b)$ or e^z by ax+b to obtain the general solution of the given equation.

Solved Examples

Example 5.6.1. Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)].$

Solution. The given equation is a Legendre's equation. Let

$$1 + x = e^t \quad \Rightarrow \quad z = \ln(1 + x).$$

Then

$$(1+x)\frac{dy}{dx} = Dy$$
, $(1+x)^2 \frac{d^2y}{dx^2} = D(D-1)y$, where $D = \frac{d}{dz}$.

So the given equation becomes

$$D(D-1)y + Dy + y = 2\sin t \quad \Rightarrow \quad (D^2+1)y = 2\sin t$$

which is a linear equation with constant coefficients. It's a.e. is

$$m^2 + 1 = 0 \implies m = \pm i$$
.

Thus

$$C.F. = c_1 \cos z + c_2 \sin z.$$

Also

$$P.I. = 2\frac{1}{D^2 + 1}\sin z = 2z\frac{1}{2D}\sin z = -z\cos z.$$

Hence, the general solution is given

$$y = C.F. + P.I. = c_1 \cos z + c_2 \sin z - z \cos z$$

Replacing z by $\log(1+x)$, we get

$$y = C.F. + P.I. = c_1 \cos[\log(1+x)] + c_2 \sin[\log(1+x)] - \log(1+x) \cos[\log(1+x)].$$

Exercises

Exercise 5.6.1. Solve
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x)$$

Exercise 5.6.2. Solve
$$(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$

Exercise 5.6.3. Solve
$$(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$$

Answers

5.6.1
$$y = c_1 \cos[\log(1+x)] + c_2 \sin[\log(1+x)] + 2\log(1+x)\sin[\log(1+x)]$$

5.6.2
$$y = c_1(3x+2)^2 + c_2(3x+2)^{-2} + \frac{1}{108}[(3x+2)^2\log(3x+3)]$$

5.6.3
$$y = c_1(2x+3)^a + c_2(2x+3)^b - \frac{3}{14}(2x+3) + \frac{3}{4}$$
, where $a, b = \frac{3 \pm \sqrt{57}}{4}$

XXXXXXX