False Discovery Rates, A New Deal

Matthew Stephens

2014/2/24

 Over ~10 years of working with graduate students + postdocs, I've noticed something.

- Over ~10 years of working with graduate students + postdocs, I've noticed something.
- Organized researchers get more done (and better!).

- Over ~10 years of working with graduate students + postdocs, I've noticed something.
- Organized researchers get more done (and better!).
- Many of them are more organized than I am!

- Over ~10 years of working with graduate students + postdocs, I've noticed something.
- Organized researchers get more done (and better!).
- Many of them are more organized than I am!
- Thought: I should get organized; I should help others get organized.

• Buy a notebook; bring it to meetings; make notes!

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.
- Use version control (git) and internet repositories (bitbucket, github) to organize notes, code, etc.

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.
- Use version control (git) and internet repositories (bitbucket, github) to organize notes, code, etc.
- Use knitr to help make your research reproducible.

What are these repository things?

 A repository: a central place in which an aggregation of data is kept and maintained in an organized way (searcharticle.com)

What are these repository things?

- A repository: a central place in which an aggregation of data is kept and maintained in an organized way (searcharticle.com)
- Great for sharing material across multiple people (eg student and advisor!)

What are these repository things?

- A repository: a central place in which an aggregation of data is kept and maintained in an organized way (searcharticle.com)
- Great for sharing material across multiple people (eg student and advisor!)
- An amateur example: http://github.com/stephens999/ash

• An R package

- An R package
- A tool for literate programming

- An R package
- A tool for literate programming
- Text, and R code are interleaved

- An R package
- A tool for literate programming
- Text, and R code are interleaved
- When you compile the document, the code is run, and output inserted into the text.

- An R package
- A tool for literate programming
- Text, and R code are interleaved
- When you compile the document, the code is run, and output inserted into the text.
- Great for writing reports, and keeping a track of what you did and what the result was!

- An R package
- A tool for literate programming
- Text, and R code are interleaved
- When you compile the document, the code is run, and output inserted into the text.
- Great for writing reports, and keeping a track of what you did and what the result was!
- This talk was written with knitr (with RStudio)!

What is Reproducible Research?

• Principle: when publishing results of computational procedures, we should publish the code that produced the results.

What is Reproducible Research?

- Principle: when publishing results of computational procedures, we should publish the code that produced the results.
- "publishing figures or results without the complete software environment could be compared to a mathematician publishing an announcement of a mathematical theorem without giving the proof" (Buckheit and Donohoe)

What is Reproducible Research?

- Principle: when publishing results of computational procedures, we should publish the code that produced the results.
- "publishing figures or results without the complete software environment could be compared to a mathematician publishing an announcement of a mathematical theorem without giving the proof" (Buckheit and Donohoe)
- "an article about a computational result is advertising, not scholarship. The actual scholarship is the full software environment, code and data, that produced the result." [Claerbout]

Not only because people are forgetful, error-prone, or dishonest!

- Not only because people are forgetful, error-prone, or dishonest!
- Reproducing work is also the first step to extending it.

- Not only because people are forgetful, error-prone, or dishonest!
- Reproducing work is also the first step to extending it.
- Helps communications among researchers (eg student + advisor).

- Not only because people are forgetful, error-prone, or dishonest!
- Reproducing work is also the first step to extending it.
- ullet Helps communications among researchers (eg student + advisor).
- If you do not publish code implementing your methods, your methods will likely go unused.

More on git, github, knitr, reproducibility

• Google "The git book", to get started on git.

8 / 70

More on git, github, knitr, reproducibility

- Google "The git book", to get started on git.
- Google "Karl Broman github tutorial" for statistics-oriented intro to github.

8 / 70

More on git, github, knitr, reproducibility

- Google "The git book", to get started on git.
- Google "Karl Broman github tutorial" for statistics-oriented intro to github.
- Google "donohoe buckheit" for "Wavelab and reproducible research"

Measure lots of things, with error

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- ullet Turn these into Z-scores, $z_j=\hat{eta}_j/s_j$

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$
- Turn these into p values, p_j

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$
- Turn these into p values, p_j
- Apply qvalue to identify findings "significant" at a given False Discovery Rate.

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$
- Turn these into p values, p_j
- Apply qvalue to identify findings "significant" at a given False Discovery Rate.
- ...?

FDR, local fdr, and q values

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

• The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

FDR, local fdr, and q values

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

• The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

• The q value for observation j is $q_j = FDR(p_j)$.

FDR, local fdr, and q values

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

- The q value for observation j is $q_j = FDR(p_j)$.
- The local false discovery rate, fdr, at threshold P is

$$fdr(P) = Pr(\beta_j = 0 | p_j = P).$$

FDR, local fdr, and q values

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

- The q value for observation j is $q_j = FDR(p_j)$.
- The local false discovery rate, fdr, at threshold P is

$$fdr(P) = Pr(\beta_j = 0 | p_j = P).$$

• The fdr is more relevant, but slightly harder to estimate than FDR because it involves density estimation rather than tail-area estimation.

Example: FDR estimation

Example: FDR estimation

Example: FDR estimation

Example: fdr estimation

Example: fdr estimation

Example: fdr estimation

FDR problem 1: different measurement precision

 If some effects are measured very imprecisely, those tests "lack power" and simply add noise

FDR problem 1: different measurement precision

- If some effects are measured very imprecisely, those tests "lack power" and simply add noise
- In particular, such tests increase the estimated number of nulls, and increase the FDR for other tests

FDR problem 1: different measurement precision

- If some effects are measured very imprecisely, those tests "lack power" and simply add noise
- In particular, such tests increase the estimated number of nulls, and increase the FDR for other tests
- It would seem preferable to simply ignore the tests with very low precision. Summarizing each test by a *p* value (or *Z* score) loses the information about precision.

Example: Mouse Heart Data

```
##
        gene
              lv1 lv2 rv1
                                rv2 genelength
## 1
       Itm2a 2236 2174
                         9484 10883
                                           1626
##
      Sergef
               97
                     90
                          341
                                 408
                                           1449
    Fam109a 383
                   314
                         1864
                               2384
                                           2331
        Dhx9 2688 2631 18501
                                           4585
## 4
                              20879
              762
                    674
## 5
       Ssu72
                         2806
                               3435
                                           1446
## 8
      Eif2b2
              736
                    762
                         3081
                               3601
                                           1565
```

 Data on 150 mouse hearts, dissected into left and right ventricle (courtesy Scott Schmemo, Marcelo Nobrega)

Example: Mouse Heart Data

Mouse Data: Counts vary considerably across genes

Distribution of total counts

Lower count genes, less power

p values, low count genes

Higher count genes, more power

p values, high count genes

FDR problem 1: low count genes add noise, increase q values

q values for high count genes

FDR problem 1: Summary

 Analyzing p values or Z scores doesn't fully account for measurement precision.

Problem 2: The Zero Assumption (ZA)

 The standard qvalue approach assumes that all the p values near 1 are null.

Problem 2: The Zero Assumption (ZA)

- The standard qvalue approach assumes that all the p values near 1 are null.
- Analogously, one can assume that all Z scores near 0 are null. Efron refers to this as the "Zero Assumption".

Problem 2: The Zero Assumption (ZA)

- The standard qvalue approach assumes that all the p values near 1 are null.
- Analogously, one can assume that all Z scores near 0 are null. Efron refers to this as the "Zero Assumption".
- The ZA allows us to estimate the null proportion, π_0 , using the density of p values near 1 (or Z scores near 0).

Problem 2: The ZA

• The ZA seems initially natural.

Problem 2: The ZA

- The ZA seems initially natural.
- However, it turns out to imply unrealistic assumptions about the distribution of non-zero effects.

Implied distribution of p values under H_1

Implied distribution of Z scores under alternative (fdrtool)

Implied distribution of Z scores under alternative (locfdr)

Implied distribution of Z scores under alternative (mixfdr)

Problems: Summary

 By summarizing each observation by a Z score or p value, standard fdr tools ignore precision of different measurements

Problems: Summary

- By summarizing each observation by a Z score or p value, standard fdr tools ignore precision of different measurements
- Standard tools make the ZA, which implies actual effects have a (probably unrealistic) bimodal distribution. [and tends to overestimate π_0 , losing power]

Problems: Summary

- By summarizing each observation by a Z score or p value, standard fdr tools ignore precision of different measurements
- Standard tools make the ZA, which implies actual effects have a (probably unrealistic) bimodal distribution. [and tends to overestimate π_0 , losing power]
- Also standard tools focus only on zero vs non-zero effects. (eg what if we would like to identify genes that have at least a 2-fold change?)

• Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.

- Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.
- Eg Efron assumes that the Z scores come from a mixture of null, and alternative:

$$Z_j \sim f_Z(.) = \pi_0 N(.; 0, 1) + (1 - \pi_0) f_1(.)$$

where f_1 is to be estimated from the data.

- Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.
- Eg Efron assumes that the Z scores come from a mixture of null, and alternative:

$$Z_j \sim f_Z(.) = \pi_0 N(.; 0, 1) + (1 - \pi_0) f_1(.)$$

where f_1 is to be estimated from the data.

• Various semi-parametric approaches taken to estimating f_1 . For example, Efron uses Poisson regression; Muralidharan uses mixture of normal distributions.

- Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.
- Eg Efron assumes that the Z scores come from a mixture of null, and alternative:

$$Z_j \sim f_Z(.) = \pi_0 N(.; 0, 1) + (1 - \pi_0) f_1(.)$$

where f_1 is to be estimated from the data.

- Various semi-parametric approaches taken to estimating f_1 . For example, Efron uses Poisson regression; Muralidharan uses mixture of normal distributions.
- $fdr(Z) \approx \pi_0 N(Z; 0, 1) / f_Z(Z)$

FDR: The New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

FDR: The New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

• Constrain g to be unimodal about 0; estimate g from data.

FDR: The New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

- Constrain g to be unimodal about 0; estimate g from data.
- Incorporate precision of each observation $\hat{\beta}$ into the likelihood. Specifically, approximate likelihood for β_i by a normal:

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

[From $\hat{\beta}_j \sim N(\beta_j, s_j)$]

FDR: The New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

- Constrain g to be unimodal about 0; estimate g from data.
- Incorporate precision of each observation $\hat{\beta}$ into the likelihood. Specifically, approximate likelihood for β_i by a normal:

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

[From
$$\hat{\beta}_j \sim N(\beta_j, s_j)$$
]

fdr given by

$$p(\beta_j = 0|\hat{\beta}_j) = \pi_0 p(\hat{\beta}_j | \beta_j = 0) / p(\hat{\beta}_j)$$

 A convenient way to model g is by a mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

 A convenient way to model g is by a mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

• Estimating g comes down to estimating π . Joint estimation of π_0, π easy by maximum likelihood (EM algorithm) or variational Bayes.

 A convenient way to model g is by a mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

- Estimating g comes down to estimating π . Joint estimation of π_0, π easy by maximum likelihood (EM algorithm) or variational Bayes.
- By allowing K large, and σ_k to span a dense grid of values, we get a fairly flexible unimodal symmetric distribution.

 A convenient way to model g is by a mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

- Estimating g comes down to estimating π . Joint estimation of π_0, π easy by maximum likelihood (EM algorithm) or variational Bayes.
- By allowing K large, and σ_k to span a dense grid of values, we get a fairly flexible unimodal symmetric distribution.
- Can approximate, arbitrarily closely, any scale mixture of normals. Includes almost all priors used for sparse regression problems (spike-and-slab, double exponential/Laplace/Bayesian Lasso, horseshoe).

 Alternatively, a mixture of uniforms, with 0 as one end-point of the range, provides still more flexibility, and in particular allows for asymmetry.

- Alternatively, a mixture of uniforms, with 0 as one end-point of the range, provides still more flexibility, and in particular allows for asymmetry.
- If allow a very large number of uniforms this provides the non-parametric mle for g; cf Grenander 1953; Campy + Thomas.

Illustration: g a mixture of 0-centered normals

Illustration: g a mixture of 0-centered normals

Illustration: g a mixture of 0-anchored uniforms

Illustration: g a mixture of 0-anchored uniforms

ullet For estimating False Discoveries, we are asking whether $eta_j=0$.

- ullet For estimating False Discoveries, we are asking whether $eta_j=0$.
- However, the data cannot distinguish between $\beta_j=0$ and β_j "very small"

- For estimating False Discoveries, we are asking whether $\beta_j = 0$.
- However, the data cannot distinguish between $\beta_j=0$ and β_j "very small"
- As a result π_0 is formally unidentifiable. Eg data can never rule out $\pi_0 = 0$.

• The Zero assumption (ZA) solves the identifiability problem by assuming that there are no β_j near zero!

- The Zero assumption (ZA) solves the identifiability problem by assuming that there are no β_i near zero!
- The ZA makes π_0 identifiable.

- The Zero assumption (ZA) solves the identifiability problem by assuming that there are no β_i near zero!
- The ZA makes π_0 identifiable.
- Another view is that the estimate of π_0 under ZA will systematically tend to overestimate π_0 , and so is "conservative".

- The Zero assumption (ZA) solves the identifiability problem by assuming that there are no β_j near zero!
- The ZA makes π_0 identifiable.
- Another view is that the estimate of π_0 under ZA will systematically tend to overestimate π_0 , and so is "conservative".
- ullet That is it provides an "upper bound" on π_0

• We replaced the ZA with the unimodal assumption on g.

- We replaced the ZA with the unimodal assumption on g.
- This does not make π_0 identifiable, but it does effectively provide an upper bound on π_0 .

- We replaced the ZA with the unimodal assumption on g.
- This does not make π_0 identifiable, but it does effectively provide an upper bound on π_0 .
- Indeed, we saw that when we estimated π_0 under the ZA the data then contradicted the unimodal assumption on g. Thus the upper bound is more conservative than under ZA.

- We replaced the ZA with the unimodal assumption on g.
- This does not make π_0 identifiable, but it does effectively provide an upper bound on π_0 .
- Indeed, we saw that when we estimated π_0 under the ZA the data then contradicted the unimodal assumption on g. Thus the upper bound is more conservative than under ZA.
- In practice, implement upper bound by using penalized likelihood that encourages π_0 to be as big as possible.

Illustration: Simulated Example

Example: BRCA data

Recall Problem: distribution of alternative Z values multimodal

Problem Fixed: distribution of alternative Z values unimodal

BRCA1: Compare π_0 estimates

```
round(c(hh.fdrtool$param[3], hh.locfdr$fp0[1, 3], hh.mixfdr$p;
2)
```

```
## [1] 0.64 0.74 0.80 0.21
```

BRCA1: Compare number significant at fdr<0.05

```
c(sum(hh.fdrtool$lfdr < 0.05), sum(hh.locfdr$fdr < 0.05), sum (0.05), sum(hh.ashz$ZeroProb < 0.05))
```

```
## [1] 154 171 162 341
```

• Identifiability of π_0 is primarily an issue if we insist on asking question is $\beta_i = 0$?

- Identifiability of π_0 is primarily an issue if we insist on asking question is $\beta_i = 0$?
- How about we change focus: assume *none* of the β_j are zero ("one group approach"), and ask for which β_j are we confident about the sign (Gelman et al, 2012).

- Identifiability of π_0 is primarily an issue if we insist on asking question is $\beta_i = 0$?
- How about we change focus: assume *none* of the β_j are zero ("one group approach"), and ask for which β_j are we confident about the sign (Gelman et al, 2012).
- Positive and negative effects are often treated differently in practice anyway.

- Identifiability of π_0 is primarily an issue if we insist on asking question is $\beta_i = 0$?
- How about we change focus: assume *none* of the β_j are zero ("one group approach"), and ask for which β_j are we confident about the sign (Gelman et al, 2012).
- Positive and negative effects are often treated differently in practice anyway.
- That is we replace fdr with False Sign Rate (fsr), the probability that if we say an effect is positive (negative), it is not.

- Identifiability of π_0 is primarily an issue if we insist on asking question is $\beta_i = 0$?
- How about we change focus: assume *none* of the β_j are zero ("one group approach"), and ask for which β_j are we confident about the sign (Gelman et al, 2012).
- Positive and negative effects are often treated differently in practice anyway.
- That is we replace fdr with False Sign Rate (fsr), the probability that
 if we say an effect is positive (negative), it is not.
- Example: suppose we estimate that $\Pr(\beta_j < 0) = 0.975$ and $\Pr(\beta_j > 0) = 0.025$. Then we report β_j as a "(negative) discovery", and estimate its fsr as 0.025.

The fsr is more robust than fdr

The fsr is more robust than fdr

• Besides allowing one to estimate fdr and fsr, this approach also provides a full posterior distribution for each β_i .

- Besides allowing one to estimate fdr and fsr, this approach also provides a full posterior distribution for each β_j .
- So for example we can easily compute fdrs for discoveries other than "non-zero" (eg compute $\Pr(\beta_j > 2|\hat{\beta}_j)$).

- Besides allowing one to estimate fdr and fsr, this approach also provides a full posterior distribution for each β_j .
- So for example we can easily compute fdrs for discoveries other than "non-zero" (eg compute $\Pr(\beta_j > 2|\hat{\beta}_j)$).
- And use it to obtain point estimates and credible intervals for each β_j , taking account of information from all the other β_j .

- Besides allowing one to estimate fdr and fsr, this approach also provides a full posterior distribution for each β_j .
- So for example we can easily compute fdrs for discoveries other than "non-zero" (eg compute $\Pr(\beta_j > 2|\hat{\beta}_j)$).
- And use it to obtain point estimates and credible intervals for each β_j , taking account of information from all the other β_j .
- Because $f(\beta)$ is unimodal, the point estimates will tend to be "shrunk" towards the overall mean (0).

- Besides allowing one to estimate fdr and fsr, this approach also provides a full posterior distribution for each β_j .
- So for example we can easily compute fdrs for discoveries other than "non-zero" (eg compute $\Pr(\beta_j > 2|\hat{\beta}_j)$).
- And use it to obtain point estimates and credible intervals for each β_j , taking account of information from all the other β_j .
- Because $f(\beta)$ is unimodal, the point estimates will tend to be "shrunk" towards the overall mean (0).
- Because $f(\beta)$ is estimated from the data, the amount of shrinkage is adaptive to the data. And because of the role of s_j , the amount of shrinkage adapts to the information on each gene.

- Besides allowing one to estimate fdr and fsr, this approach also provides a full posterior distribution for each β_j .
- So for example we can easily compute fdrs for discoveries other than "non-zero" (eg compute $\Pr(\beta_j > 2|\hat{\beta}_j)$).
- And use it to obtain point estimates and credible intervals for each β_j , taking account of information from all the other β_j .
- Because $f(\beta)$ is unimodal, the point estimates will tend to be "shrunk" towards the overall mean (0).
- Because $f(\beta)$ is estimated from the data, the amount of shrinkage is adaptive to the data. And because of the role of s_j , the amount of shrinkage adapts to the information on each gene.
- So we call the approach "Adaptive Shrinkage" (ASH).

Raw effect size estimates

Raw effect size estimates

Shrunken estimates

Estimates vs Shrunken estimates

 ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.

- ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values or z scores) precision of different measurementscan be better accounted for.

- ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values or z scores) precision of different measurementscan be better accounted for.
- Unimodal assumption for effects reduces conservatism

- ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values or z scores) precision of different measurementscan be better accounted for.
- Unimodal assumption for effects reduces conservatism
- False Sign Rate is more robust to assumptions, and perhaps therefore preferable, than False Discovery Rate.

Other Applications

• Widely applicable: requiring only an estimated effect size and standard error for each object.

Other Applications

- Widely applicable: requiring only an estimated effect size and standard error for each object.
- Currently applying it to wavelet shrinkage applications.

Guarantees?

• "I think you have some nice ideas. How will you convince people to use them?" (C Morris)

Guarantees?

- "I think you have some nice ideas. How will you convince people to use them?" (C Morris)
- Theory anyone?

• Incorporate *t* likelihood as well as normal.

- Incorporate *t* likelihood as well as normal.
- Incorporate shrinkage of variances and not just means.

- Incorporate *t* likelihood as well as normal.
- Incorporate shrinkage of variances and not just means.
- Extend to allow $g(\cdot; \pi)$ to depend on covariates X.

- Incorporate *t* likelihood as well as normal.
- Incorporate shrinkage of variances and not just means.
- Extend to allow $g(\cdot; \pi)$ to depend on covariates X.
- Extend to allow for correlations in the measured $\hat{\beta}_j$.

Thanks

• to the several postdoctoral researchers and students who have worked with me on related topics.

Thanks

- to the several postdoctoral researchers and students who have worked with me on related topics.
- Including Scott Powers, Mengyin Lu, Tian Sen, Wei Wang, Zhengrong Xing.

Reproducible research

• This document is produced with **knitr**, **Rstudio** and **Pandoc**.

Reproducible research

- This document is produced with **knitr**, **Rstudio** and **Pandoc**.
- For more details see my stephens999/ash repository at http://www.github.com/stephens999/ash

Reproducible research

- This document is produced with **knitr**, **Rstudio** and **Pandoc**.
- For more details see my stephens999/ash repository at http://www.github.com/stephens999/ash
- Website: http://stephenslab.uchicago.edu

Pandoc Command used

```
pandoc -s -S -i --template=my.beamer -t beamer -V
theme: CambridgeUS -V colortheme: beaver slides.md -o
slides.pdf
(alternative to produce html slides; but figures would need reworking)
pandoc -s -S -i -t dzslides --mathjax slides.md -o
slides.html
Here is my session info:
print(sessionInfo(), locale = FALSE)
## R version 3.0.2 (2013-09-25)
## Platform: x86_64-apple-darwin10.8.0 (64-bit)
##
## attached base packages:
## [1] splines parallel stats
                                       graphics grDevices utils
  [8] methods base
                                         4日 → 4周 → 4 重 → 4 重 → 9 9 ○
```

Some odd things in the data

Figure: plot of chunk unnamed-chunk-40

Error: incorrect number of dimensions

A technicality

• Suppose you estimate $\Pr(\beta_j < 0) = 0.98$, $\Pr(\beta_j > 0) = 0.01$, $\Pr(\beta_j = 0) = 0.01$.

A technicality

- Suppose you estimate $\Pr(\beta_j < 0) = 0.98$, $\Pr(\beta_j > 0) = 0.01$, $\Pr(\beta_j = 0) = 0.01$.
- Should you declare an fdr of 0.01 or 0.02?

A technicality

- Suppose you estimate $\Pr(\beta_j < 0) = 0.98$, $\Pr(\beta_j > 0) = 0.01$, $\Pr(\beta_j = 0) = 0.01$.
- Should you declare an fdr of 0.01 or 0.02?
- Maybe fsr makes more sense anyway?

Shrinkage is adaptive to information

Need to fix counts.associate to use fdr method in ash

Shrinkage is adaptive to information

Shrinkage is adaptive to information

```
## gene lv1 lv2 rv1 rv2 pval zdat.ash$lfdr
## 19422 Mgat5b 7 10 320 452 0.03795 0
## 20432 Sec63 1042 1034 5496 6649 0.04908 0
```

Recall FDR problem 1: q values increased by low count genes

q values for high count genes

2014/2/24

ASH q values more robust to inclusion of low count genes

Compare fitted $f(\beta)$, both estimating π_0 and fixing $\pi_0 = 0$.