PARFOR Variables Classification (Exercises)

What is the value of each variable after the loop

```
a: ones(1:10) (broadcast)
 a = ones(1.10);
 e=0:
                                   b: undefined (temp)
 f=5:
 q=0;
                                   c: undefined (temp)
 h=10;
                                   d: 1:10 (sliced)
parfor idx = 1:10
     b=2*a:
                                   e: 55 (reduction)
     c=a(idx);
                                   f: 5 (temp)
     d(idx) = idx;
     e = e + idx;
                                   g: 20 (reduction)
     f = idx:
                                   h: 10 (temp)
     \alpha = \alpha + 2;
     h = 20:
                                   idx: undefined (loop)
 end
```

H and f are not broadcast, although they are declared before the loop; because they are never read inside the loop so there is no need to send them to the workers

PARFOR Variables Classification (Exercises)

What is the value of each variable after the loop

```
a:0(temporary)
c=pi;
                        c:pi(broadcast)
z=0:
                        z:55(reduction)
r = rand(1,10);
parfor i=1:10
                        i:undefined(loop)
     a=i;
                        r:10 randoms(sliced input)
     z=z+i:
                        b:same 10 randoms(sliced output)
     b(i)=r(i);
                        d:undefined(temporary)
     if i<=c
         d=2*a:
     end
```

Write a script to find the prime numbers in a range (a,b):

- + isPrime function takes only one argument and returns 1 or 0
- + getPrimesPar function takes a,b and returns an array of the prime numbers found in that range and uses "parfor loop"
- +getPrimesSeq function takes a,b and returns an array of the prime numbers found in that range and uses "for-loop"

(try both For and PARFOR)

Monte-Carlo Method:

Estimate the value of $PI(\pi)$

Area of circle
$$=\frac{\pi . r^2}{2 \times 2} = \frac{\pi}{4}$$
Area of square

Total area = 4

Area = π

Randomly choose points

Count the points that lie in the circle

When the number of points is large enough;

Write a Matlab script to estimate the value of Plusing Monte-Carlo Method

```
+inCircle Function: takes arguments x and y; finds if the specified point is in the circle (distance <radius)
```

```
+FindPi Function: generates x and y, if in circle; increment the counter
```

Simple Image Compression Method (using DCT)

- -Image energy can be compressed in a few DCT Coefficients
- -if we eliminate (zero out) the high-frequency coefficients we can benefit from many compression algorithms (like RLC) while still having reasonable image quality

PARFOR in Action(Optional)

write a Matlab script that compresses the input image using the previous method

- +read input image
- +perform DCT
- + take only some high-energy coefficients
- +perform IDCT

Use both for and Parfor

Which one is faster here?