Algorithmen zur Berechnung diskreter Logarithmen

- Das Problem des 'diskreten Logarithmus' ist die Basis vom Diffie-Hellman und El-Gamal-Verfahren.
- Etablierte Annahme: Dieses Problem ist schwierig zu lösen (Grundlage für Verwendung der obigen Verfahren).
- Inhalt: Übersicht über die bekannten Algorithmen für Logarithmus-Berechnungen.

Beschreibung des Problems

Recap: Diskrete Logarithmen

- Problemstellung: Lösung der Gleichung $g^x = a$ in einer Gruppe
- Anders ausgedrückt: Bestimmung von $log_a(a)$.

Zusammenhang zu Verschlüsselungsverfahren

Recap: Diffie Hellman und El Gamal Verfahren

- Diffie Hellman:
 - private Schlüssel: a, b
 - öffentlich bekannte Werte: g^a , g^b
 - gemeinsamer geheimer Schlüssel: $g^{ab} \pmod{p}$
- El Gamal (leicht vereinfacht):
 - private Schlüssel: a, b
 - öffentlich bekannte Werte: g^a , g^b
 - Verschlüsselung von Bob: $c = g^{ab} \pmod{p}$

Bem: In beiden Fällen sind *a*, *b* diskrete Logarithmen. (Jeder effiziente Algorithmus für diskrete Logarithmen knackt automatisch die beiden obigen Algorithmen.)

Übersicht

Inhalt

- Strategie 1: Enumeration
- Strategie 2: Baby Step Giant Step Algorithmus
- Strategie 3: Index Calculus
- **Strategie 4: Pollard** ρ **-Methode**

Strategie 1: Enumeration

Vorgehen: Die Zahlen x = 1, 2, 3, ..., n der Reihe nach durchgehen und prüfen, ob die Gleichung $a^x = g$ erfüllt ist.

 Algorithmus hat exponentielle Laufzeit (→ nicht praktikabel für grosse n).

Strategie 2: Baby Step - Giant Step Algorithmus

Bem: Dieser Algorithmus hat im Vergleich zur Enumeration:

- + eine schnellere Laufzeit
- grösseren Speicher-Bedarf

Strategie 2: Baby Step – Giant Step Algorithmus

Vorüberlegungen I

- Ganzzahl-Division: 50 : 8 = 6, Rest 2. Somit: $50 = 6 \cdot 8 + 2$.
- Ganzzahl-Division: 77 : 8 = 9, Rest 5. Somit: $77 = 9 \cdot 8 + 5$.
- Allgemein: Jede ganze Zahl x lässt sich darstellen als $x = q \cdot 8 + r$.
- Noch allgemeiner: Für jedes m gilt: Jede ganze Zahl lässt sich darstellen als $x = q \cdot m + r$.

7/10

Strategie 2: Baby Step – Giant Step Algorithmus

Recap: Gesucht: Lösung der Gleichung $g^x = a$ (in einer Gruppe G).

Vorüberlegungen II:

- Setze n := Ordnung der betrachteten (zyklischen) Gruppe G.
- Setze $m := \lceil \sqrt{n} \rceil$
- Ansatz für x: $x = \mathbf{q} \cdot m + r$ für entsprechende Werte \mathbf{q}, r . (Hinweis: \mathbf{q}, r sind spezifiert durch die Ganzzahl-Division x : m.)
- Einsetzen des Ansatzes gibt: $g^x = g^{qm+r} = g^{qm} \cdot g^r \stackrel{!}{=} a$
- Diese Gleichung lässt sich umformen zu $g^r = a \cdot g^{-qm} = a \cdot (g^{-m})^q$
- Verbleibende Gleichung ist somit: $g^r = \underbrace{a \cdot (g^{-m})^q}_{\text{Giant Steps}}$

Grundidee des Algorithmus

- Berechnung von g^r für alle r mit $0 \le r \le m 1$ (Baby Steps)
- Berechnung von $a \cdot (g^{-m})^q$ für alle q mit $0 \le q \le \frac{n}{m}$ (Giant Steps)
- Suche nach einem Paar (r, q), bei dem obige 2 Werte gleich sind.

Bem: m wurde so gewählt, dass #(Baby Steps) \approx #(Giant Steps) ist.

Strategie 2: Baby Step – Giant Step Algorithmus

Eigentlicher Algorithmus

```
Input: Gruppe G und ein Element g
n := |G|, m := \lceil \sqrt{n} \rceil.
for j \in \{0, 1, 2, \dots, m-1\}
   Berechne (i, g^i) (in der Gruppe G). // Baby Step
end
h := q^{-m}
for i \in \{0, 1, 2, ..., \lceil \frac{n}{m} \rceil \}
   Berechne (i, ah^i) (in der Gruppe G). // Giant Step
   Prüfe, ob es (aus den Baby Steps) ein i gibt mit a^{j} = ah^{i}.
   if (Prüfung erfolgreich)
      return x := im + i // Giant Step
   end
end
```

Beispiel

Aufgabe: Bestimme den diskreten Logarithmus von 57 zur Basis 3 in der Gruppe \mathbb{Z}_{113}^*