What do you assume?

HYPOTHESIS TESTING IN PYTHON

James Chapman
Content Developer, DataCamp

Randomness

Assumption

The samples are random subsets of larger populations

Consequence

Sample is not representative of population

How to check this

- Understand how your data was collected
- Speak to the data collector/domain expert

¹ Sampling techniques are discussed in "Sampling in Python".

Independence of observations

Assumption

Each observation (row) in the dataset is independent

Consequence

Increased chance of false negative/positive error

How to check this

Understand how our data was collected

Large sample size

Assumption

The sample is big enough to mitigate uncertainty, so that the Central Limit Theorem applies

Consequence

- Wider confidence intervals
- Increased chance of false negative/positive errors

How to check this

It depends on the test

Large sample size: t-test

One sample

At least 30 observations in the sample

$$n \ge 30$$

n: sample size

Paired samples

At least 30 pairs of observations across the samples

Number of rows in our data ≥ 30

Two samples

• At least 30 observations in each sample

$$n_1 \geq 30, n_2 \geq 30$$

 n_i : sample size for group i

ANOVA

• At least 30 observations in each sample

$$n_i \geq 30$$
 for all values of i

Large sample size: proportion tests

One sample

 Number of successes in sample is greater than or equal to 10

$$n imes \hat{p} \geq 10$$

 Number of failures in sample is greater than or equal to 10

$$n imes (1-\hat{p}) \geq 10$$

n: sample size

 \hat{p} : proportion of successes in sample

Two samples

 Number of successes in each sample is greater than or equal to 10

$$n_1 imes \hat{p}_1 \geq 10$$

$$n_2 imes \hat{p}_2 \geq 10$$

 Number of failures in each sample is greater than or equal to 10

$$n_1 imes (1-\hat{p}_1)\geq 10$$

$$n_2 imes (1-\hat{p}_2) \geq 10$$

Large sample size: chi-square tests

• The number of successes in each group in greater than or equal to 5

$$n_i imes \hat{p}_i \geq 5$$
 for all values of i

The number of failures in each group in greater than or equal to 5

$$n_i imes (1-\hat{p}_i) \geq 5$$
 for all values of i

 n_i : sample size for group i

 \hat{p}_i : proportion of successes in sample group i

Sanity check

If the bootstrap distribution doesn't look normal, assumptions likely aren't valid

Revisit data collection to check for randomness, independence, and sample size

Let's practice!

HYPOTHESIS TESTING IN PYTHON

Assumptions not met

HYPOTHESIS TESTING IN PYTHON

James Chapman
Content Developer, DataCamp

Parametric tests

- z-test, t-test, and ANOVA are all parametric tests
- Assume a normal distribution
- Require sufficiently large sample sizes

Smaller Republican votes data

print(repub_votes_small)

	state	county	repub_percent_08	repub_percent_12
80	Texas	Red River	68.507522	69.944817
84	Texas	Walker	60.707197	64.971903
33	Kentucky	Powell	57.059533	61.727293
81	Texas	Schleicher	74.386503	77.384464
93	West Virginia	Morgan	60.857614	64.068711

Results with pingouin.ttest()

- 5 pairs is not enough to meet the sample size condition for the paired t-test:
 - At least 30 pairs of observations across the samples.

```
T dof alternative p-val CI95% cohen-d BF10 power T-test -5.875753 4 less 0.002096 [-inf, -2.11] 0.500068 26.468 0.239034
```

Non-parametric tests

- Non-parametric tests avoid the parametric assumptions and conditions
- Many non-parametric tests use ranks of the data

```
x = [1, 15, 3, 10, 6]
```

```
from scipy.stats import rankdata
rankdata(x)
```

```
array([1., 5., 2., 4., 3.])
```

Non-parametric tests

• Non-parametric tests are more reliable than parametric tests for **small sample sizes** and when data **isn't normally distributed**

Non-parametric tests

 Non-parametric tests are more reliable than parametric tests for small sample sizes and when data isn't normally distributed

Wilcoxon-signed rank test

- Developed by Frank Wilcoxon in 1945
- One of the first non-parametric procedures

Wilcoxon-signed rank test (Step 1)

• Works on the ranked absolute differences between the pairs of data

	state	county	repub_percent_08	repub_percent_12 dif	f
80	Texas	Red River	68.507522	69.944817 -1.43729	5
84	Texas	Walker	60.707197	64.971903 -4.26470	5
33	Kentucky	Powell	57.059533	61.727293 -4.66776	0
81	Texas	Schleicher	74.386503	77.384464 -2.99796	1
93	West Virginia	Morgan	60.857614	64.068711 -3.21109	7

Wilcoxon-signed rank test (Step 2)

Works on the ranked absolute differences between the pairs of data

```
repub_votes_small['abs_diff'] = repub_votes_small['diff'].abs()
print(repub_votes_small)
```

	state	county	repub_percent_08	repub_percent_12	diff	abs_diff
80	Texas	Red River	68.507522	69.944817	-1.437295	1.437295
84	Texas	Walker	60.707197	64.971903	-4.264705	4.264705
33	Kentucky	Powell	57.059533	61.727293	-4.667760	4.667760
81	Texas	Schleicher	74.386503	77.384464	-2.997961	2.997961
93	West Virginia	Morgan	60.857614	64.068711	-3.211097	3.211097

Wilcoxon-signed rank test (Step 3)

• Works on the ranked absolute differences between the pairs of data

```
from scipy.stats import rankdata
repub_votes_small['rank_abs_diff'] = rankdata(repub_votes_small['abs_diff'])
print(repub_votes_small)
```

							· ·
	state	county	repub_percent_08	repub_percent_12	diff	abs_diff	rank_abs_diff
80	Texas	Red River	68.507522	69.944817	-1.437295	1.437295	1.0
84	Texas	Walker	60.707197	64.971903	-4.264705	4.264705	4.0
33	Kentucky	Powell	57.059533	61.727293	-4.667760	4.667760	5.0
81	Texas	Schleicher	74.386503	77.384464	-2.997961	2.997961	2.0
93	West Virginia	Morgan	60.857614	64.068711	-3.211097	3.211097	3.0

Wilcoxon-signed rank test (Step 4)

	state	county	repub_percent_08	repub_percent_12	diff	abs_diff	rank_abs_diff
80	Texas	Red River	68.507522	69.944817 -	-1.437295	1.437295	1.0
84	Texas	Walker	60.707197	64.971903 -	-4.264705	4.264705	4.0
33	Kentucky	Powell	57.059533	61.727293 -	-4.667760	4.667760	5.0
82	L Texas	Schleicher	74.386503	77.384464	-2.997961	2.997961	2.0
93	8 West Virginia	Morgan	60.857614	64.068711 -	-3.211097	3.211097	3.0

• Incorporate the sum of the ranks for negative and positive differences

```
T_minus = 1 + 4 + 5 + 2 + 3
T_plus = 0
W = np.min([T_minus, T_plus])
```

0

Implementation with pingouin.wilcoxon()

```
W-val alternative p-val RBC CLES
Wilcoxon 0.0 less 0.03125 -1.0 0.72
```

Fail to reject H_0 , since 0.03125 > 0.01

Let's practice!

HYPOTHESIS TESTING IN PYTHON

Look ma! Still no parameters!

HYPOTHESIS TESTING IN PYTHON

James Chapman
Content Developer, DataCamp

Wilcoxon-Mann-Whitney test

- Also know as the Mann Whitney U test
- A t-test on the ranks of the numeric input
- Works on unpaired data

Wilcoxon-Mann-Whitney test setup

```
age_first_code_cut
                        adult
                                  child
                                    NaN
                      77556.0
0
                          NaN
                                74970.0
2
                          NaN 594539.0
2258
                          NaN
                               97284.0
2259
                                72000.0
                          NaN
2260
                               180000.0
                          NaN
[2261 rows x 2 columns]
```


Wilcoxon-Mann-Whitney test

```
alpha=0.01
```

```
U-val alternative p-val RBC CLES
MWU 744365.5 greater 1.902723e-19 -0.222516 0.611258
```


Kruskal-Wallis test

Kruskal-Wallis test is to Wilcoxon-Mann-Whitney test as ANOVA is to t-test

```
Source ddof1 H p-unc
Kruskal job_sat 4 72.814939 5.772915e-15
```

Let's practice!

HYPOTHESIS TESTING IN PYTHON

Congratulations!

HYPOTHESIS TESTING IN PYTHON

James Chapman
Content Developer, DataCamp

Course recap

Chapter 1

- Workflow for testing proportions vs. a hypothesized value
- False negative/false positive errors

Chapter 2

- Testing differences in sample means between two groups using t-tests
- Extending this to more than two groups using ANOVA and pairwise t-tests

Chapter 3

- Testing differences in sample proportions between two groups using proportion tests
- Using chi-square independence/goodness of fit tests

Chapter 4

- Reviewing assumptions of parametric hypothesis tests
- Examined non-parametric alternatives when assumptions aren't valid

More courses

Inference

Statistics Fundamentals with Python skill track

Bayesian statistics

Bayesian Data Analysis in Python

Applications

Customer Analytics and A/B Testing in Python

Congratulations!

HYPOTHESIS TESTING IN PYTHON

