### **MATEMATIKA**

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

21. april 2025

 Jan Kastelic (GAA)
 MATEMATIKA
 21. april 2025
 1/33

# Vsebina

¶ Funkcija

 Jan Kastelic (GAA)
 MATEMATIKA
 21. april 2025
 2 / 33

## Section 1

Funkcija



Jan Kastelic (GAA)

- Funkcija
  - Funkcija
  - Linearna funkcija
  - Graf linearne funkcije



4/33



5/33

21. april 2025

Jan Kastelic (GAA) MATEMATIKA

Preslikava



21. april 2025

#### Preslikava

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni množici.



5/33

#### Preslikava

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni množici.

**Preslikava** *f* sestoji iz:

f :

#### Preslikava

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni množici.

**Preslikava** *f* sestoji iz:

• množice  $\mathcal{X}$ , ki ji pravimo **domena**,

 $f: \mathcal{X}$ 

5/33

#### Preslikava

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni množici.

**Preslikava** *f* sestoji iz:

- množice  $\mathcal{X}$ , ki ji pravimo **domena**,
- ullet množice  $\mathcal{Y}$ , ki ji pravimo **kodomena** in

 $f: \mathcal{X} \to \mathcal{Y}$ 

5/33

#### Preslikava

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni množici.

### **Preslikava** *f* sestoji iz:

- množice  $\mathcal{X}$ , ki ji pravimo **domena**,
- ullet množice  ${\cal Y}$ , ki ji pravimo **kodomena** in
- **prirejanja**, ki vsakemu elementu *x* domene priredi natanko en element *y* kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$  $f: x \mapsto y$ 

5/33

#### Preslikava

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni množici.

**Preslikava** *f* sestoji iz:

- množice  $\mathcal{X}$ , ki ji pravimo **domena**,
- ullet množice  ${\mathcal Y}$ , ki ji pravimo **kodomena** in
- **prirejanja**, ki vsakemu elementu *x* domene priredi natanko en element *y* kodomene.

Elemente x kodomene  $\mathcal{X}$  imenujemo **originali** preslikave.

$$f: \mathcal{X} \to \mathcal{Y}$$
$$f: x \mapsto y$$

5/33

#### Preslikava

Naj bosta  $\mathcal{X}$  in  $\mathcal{Y}$  neprazni množici.

**Preslikava** *f* sestoji iz:

- množice  $\mathcal{X}$ , ki ji pravimo **domena**,
- množice  $\mathcal{Y}$ , ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element v kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$  $f: x \mapsto y$ 

Elemente x kodomene  $\mathcal{X}$  imenujemo **originali** preslikave.

Če elementu x priredimo element y iz kodomene, potem y imenujemo **slika** elemeta x.

5/33

#### Preslikava

Naj bosta  $\mathcal{X}$  in  $\mathcal{Y}$  neprazni množici.

**Preslikava** *f* sestoji iz:

- množice  $\mathcal{X}$ , ki ji pravimo **domena**,
- $\bullet$  množice  $\mathcal{Y}$ , ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element v kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$  $f: x \mapsto y$ 

Elemente x kodomene  $\mathcal{X}$  imenujemo **originali** preslikave.

Če elementu x priredimo element y iz kodomene, potem y imenujemo **slika** elemeta x.

Preslikavo lahko podamo s predpisom, puščičnim diagramom, besednim opisom ...



5/33



Jan Kastelic (GAA)

### Funkcija



Jan Kastelic (GAA)

### Funkcija

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni številski množici.



6/33

### Funkcija

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni številski množici.

**Funkcija** f je preslikava med številskima množicama  $\mathcal{X}$  in  $\mathcal{Y}$ :



6/33

### Funkcija

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni številski množici.

**Funkcija** f je preslikava med številskima množicama  $\mathcal{X}$  in  $\mathcal{Y}$ :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

6/33

### Funkcija

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni številski množici.

**Funkcija** f je preslikava med številskima množicama  $\mathcal{X}$  in  $\mathcal{Y}$ :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

Število y je **funkcijska vrednost** števila x, če se število x preslika v število y.

$$f(x) = y$$



6/33

#### Funkcija

Naj bosta  ${\mathcal X}$  in  ${\mathcal Y}$  neprazni številski množici.

**Funkcija** f je preslikava med številskima množicama  $\mathcal{X}$  in  $\mathcal{Y}$ :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

Število y je **funkcijska vrednost** števila x, če se število x preslika v število y.

$$f(x) = y$$

x je neodvisna spremenjlivka, f(x) je od x odvisna spremenljivka.



6/33

Jan Kastelic (GAA)

•  $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{R}$  – realna funkcija realne spremenljivke;



7/33

- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{R}$  realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{N}$  realna funkcija naravne spremenljivke;



7/33

- $f: \mathcal{X} \to \mathbb{R}$ ;  $\mathcal{X} \subseteq \mathbb{R}$  realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{N}$  realna funkcija naravne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{R}$  naravna funkcija realne spremenljivke;



7/33

- $f: \mathcal{X} \to \mathbb{R}$ ;  $\mathcal{X} \subseteq \mathbb{R}$  realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{N}$  realna funkcija naravne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{R}$  naravna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{N}$  naravna funkcija naravne spremenljivke.



7 / 33



Definicijsko območje



8/33

21. april 2025

Jan Kastelic (GAA) MATEMATIKA

### Definicijsko območje

**Definicijsko območje** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka:  $D_f$ .



8 / 33

### Definicijsko območje

**Definicijsko območje** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka:  $D_f$ .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.



8 / 33

### Definicijsko območje

**Definicijsko območje** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka:  $D_f$ .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

### Zaloga vrednosti



8 / 33

### Definicijsko območje

**Definicijsko območje** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka:  $D_f$ .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

### Zaloga vrednosti

**Zaloga vrednosti** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh slik oziroma funkcijskih vrednosti. Oznaka:  $Z_f$ .



8/33

### Definicijsko območje

**Definicijsko območje** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka:  $D_f$ .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

### Zaloga vrednosti

**Zaloga vrednosti** preslikave ali funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica vseh slik oziroma funkcijskih vrednosti. Oznaka:  $Z_f$ .

Zaloga vrednosti  $Z_f$  je podmnožica kodomene  $\mathcal{Y}$ :  $Z_f \subseteq \mathcal{Y}$ .

8/33

### Naloga

Funkcijo  $f:A\to B$  predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

• 
$$A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$$

• 
$$A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$$

• 
$$A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$$



9/33

### Naloga

Funkcijo  $f:A\to B$  predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

- $A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$
- $A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$
- $A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$

### Naloga

Tabelirajte funkcijo g(x) = 2x + |x| od -3 do 3 s korakom 1.



9/33

Funkcija

### Naloga

Zapišite definicijska območja funkcij.

$$f(x) = \frac{-7}{x+1}$$

• 
$$g(x) = \frac{1}{(x+2)(x+6)}$$

• 
$$h(x) = \frac{3x^2 + 1}{5}$$

• 
$$i(x) = \sqrt{x-2}$$

• 
$$j(x) = x^3 - \frac{2}{3}$$

• 
$$k(x) = \sqrt{x^2 + 7}$$

$$I(x) = \frac{3}{x}$$

• 
$$m(x) = \frac{x^2 + 1}{x^2 - 5x - 6}$$

Jan Kastelic (GAA)

MATEMATIKA



11/33

Ničla funkcije



### Ničla funkcije

**Ničla** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je tista vrednost  $x_0 \in \mathcal{X}$  neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka  $0: f(x_0) = 0$ .



11/33

### Ničla funkcije

**Ničla** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je tista vrednost  $x_0 \in \mathcal{X}$  neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka  $0: f(x_0) = 0$ .

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.



11 / 33

### Ničla funkcije

**Ničla** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je tista vrednost  $x_0 \in \mathcal{X}$  neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka  $0: f(x_0) = 0$ .

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju  $D_f$  funkcije f.



11/33

### Ničla funkcije

**Ničla** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je tista vrednost  $x_0 \in \mathcal{X}$  neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka  $0: f(x_0) = 0$ .

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju  $D_f$  funkcije f.

#### Začetna vrednost



11/33

### Ničla funkcije

**Ničla** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je tista vrednost  $x_0 \in \mathcal{X}$  neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka  $0: f(x_0) = 0$ .

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju  $D_f$  funkcije f.

#### Začetna vrednost

**Začetna vrednost** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je funkcijska vrednost pri x = 0, to je f(0).



11/33

#### Ničla funkcije

**Ničla** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je tista vrednost  $x_0 \in \mathcal{X}$  neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka  $0: f(x_0) = 0$ .

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju  $D_f$  funkcije f.

#### Začetna vrednost

**Začetna vrednost** funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je funkcijska vrednost pri x = 0, to je f(0).

Začetna vrednost obstaja le, če je 0 v definicijskem območju funkcije  $f: 0 \in D_f$ .

|ロト 4回 ト 4 重 ト 4 重 ト | 重 | め Q ()

11/33

Funkcija

12/33

### Naloga

Izračunajte ničle funkcij.

• 
$$f(x) = \frac{4}{5} - 6x$$

• 
$$g(x) = x^2 - 7x + 12$$

• 
$$h(x) = \frac{3x+6}{5}$$

• 
$$i(x) = x^2 - 9$$

• 
$$j(x) = x^2 + 1$$

• 
$$k(x) = x^2 - 3x^2 - 4x + 12$$

• 
$$I(x) = \sqrt{x+7}$$

$$m(x) = \frac{3}{x}$$

21. april 2025

Funkcija

### Naloga

Izračunajte začetne vrednosti funkcij.

• 
$$f(x) = \frac{4}{5} - 6x$$

• 
$$g(x) = x^2 - 7x + 12$$

• 
$$h(x) = \frac{3x+6}{5}$$

• 
$$i(x) = x^2 - 9$$

$$j(x) = x^2 - 3x^2 - 4x + 12$$

• 
$$k(x) = \sqrt{x+7}$$

$$I(x) = \frac{3}{x}$$

• 
$$m(x) = \frac{x^3 - 2x^2 - 4}{x^4 + 2x^3 + 3}$$



21. april 2025

Graf funkcije



21. april 2025

### Graf funkcije

**Graf**  $\Gamma_f$  funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica urejenih parov  $(x, y) \in \mathcal{X} \times \mathcal{Y}$ , kjer element x preteče celotno definicijsko območje  $D_f$  funkcije, element y pa je slika pripadajočega x, torej y = f(x).



14 / 33

### Graf funkcije

**Graf**  $\Gamma_f$  funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica urejenih parov  $(x, y) \in \mathcal{X} \times \mathcal{Y}$ , kjer element x preteče celotno definicijsko območje  $D_f$  funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$



14 / 33

### Graf funkcije

**Graf**  $\Gamma_f$  funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica urejenih parov  $(x, y) \in \mathcal{X} \times \mathcal{Y}$ , kjer element x preteče celotno definicijsko območje  $D_f$  funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice  $\Gamma_f$  lahko upodobimo v koordinatnem sistemu.



14 / 33

### Graf funkcije

**Graf**  $\Gamma_f$  funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica urejenih parov  $(x, y) \in \mathcal{X} \times \mathcal{Y}$ , kjer element x preteče celotno definicijsko območje  $D_f$  funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice  $\Gamma_f$  lahko upodobimo v koordinatnem sistemu. Vsakemu elementu (x, f(x)) iz zgornje množice pripada natanko ena točka v koordinatnem sistemu, katere abscisa je enaka x, ordinata pa je njegova slika f(x).



14 / 33

### Graf funkcije

**Graf**  $\Gamma_f$  funkcije  $f: \mathcal{X} \to \mathcal{Y}$  je množica urejenih parov  $(x, y) \in \mathcal{X} \times \mathcal{Y}$ , kjer element x preteče celotno definicijsko območje  $D_f$  funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice  $\Gamma_f$  lahko upodobimo v koordinatnem sistemu. Vsakemu elementu (x, f(x)) iz zgornje množice pripada natanko ena točka v koordinatnem sistemu, katere abscisa je enaka x, ordinata pa je njegova slika f(x).

V ničli graf funkcije seka abscisno os, v začetni vrednosti pa ordinatno os.

14 / 33



15 / 33

Jan Kastelic (GAA) MATEMATIKA

Naraščajoča funkcija



15 / 33

Jan Kastelic (GAA) MATEMATIKA

### Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) < f(x_2)$ .



15 / 33

### Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) \le f(x_2)$ .

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) < f(x_2)$ .



15 / 33

### Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) \le f(x_2)$ .

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) < f(x_2)$ .

### Padajoča funkcija



15 / 33

### Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) \le f(x_2)$ .

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) < f(x_2)$ .

### Padajoča funkcija

Funkcija f je na intervalu (a, b) **padajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) \ge f(x_2)$ .



15 / 33

### Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) \le f(x_2)$ .

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) < f(x_2)$ .

### Padajoča funkcija

Funkcija f je na intervalu (a, b) **padajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) \ge f(x_2)$ .

Funkcija f je na intervalu (a, b) **strogo padajoča**, če za poljubna  $x_1, x_2 \in (a, b)$ , kjer je  $x_1 < x_2$ , velja  $f(x_1) > f(x_2)$ .

15/33



Jan Kastelic (GAA)

MATEMATIKA

Surjektivnost



21. april 2025

### Surjektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **surjektivna**, če je zaloga vrednosti  $Z_f$  funkcije enaka njeni kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika vsaj enega elementa iz domene  $\mathcal{X}$ .



16 / 33

### Surjektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **surjektivna**, če je zaloga vrednosti  $Z_f$  funkcije enaka njeni kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika vsaj enega elementa iz domene  $\mathcal{X}$ .

$$\forall y \in \mathcal{Y}. \exists x \in \mathcal{X} \ni : f(x) = y$$



16 / 33

### Surjektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **surjektivna**, če je zaloga vrednosti  $Z_f$  funkcije enaka njeni kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika vsaj enega elementa iz domene  $\mathcal{X}$ .

$$\forall y \in \mathcal{Y}. \exists x \in \mathcal{X} \ni : f(x) = y$$

### Injektivnost



16 / 33

### Surjektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **surjektivna**, če je zaloga vrednosti  $Z_f$  funkcije enaka njeni kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika vsaj enega elementa iz domene  $\mathcal{X}$ .

$$\forall y \in \mathcal{Y}.\exists x \in \mathcal{X} \ni : f(x) = y$$

### Injektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **injektivna**, če se dva poljubna različna originala iz domene  $\mathcal{X}$  preslikata v različni sliki v kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika kvečjemu enega elementa iz domene  $\mathcal{X}$ .



16 / 33

### Surjektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **surjektivna**, če je zaloga vrednosti  $Z_f$  funkcije enaka njeni kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika vsaj enega elementa iz domene  $\mathcal{X}$ .

$$\forall y \in \mathcal{Y}.\exists x \in \mathcal{X} \ni : f(x) = y$$

### Injektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **injektivna**, če se dva poljubna različna originala iz domene  $\mathcal{X}$  preslikata v različni sliki v kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika kvečjemu enega elementa iz domene  $\mathcal{X}$ .

$$\forall x, y \in \mathcal{X} : f(x) = f(y) \Rightarrow x = y$$



16 / 33

## Injektivnost in surjektivnost

#### Surjektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **surjektivna**, če je zaloga vrednosti  $Z_f$  funkcije enaka njeni kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika vsaj enega elementa iz domene  $\mathcal{X}$ .

$$\forall y \in \mathcal{Y}.\exists x \in \mathcal{X} \ni : f(x) = y$$

#### Injektivnost

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **injektivna**, če se dva poljubna različna originala iz domene  $\mathcal{X}$  preslikata v različni sliki v kodomeni  $\mathcal{Y}$  – vsak element kodomene  $\mathcal{Y}$  je slika kvečjemu enega elementa iz domene  $\mathcal{X}$ .

$$\forall x, y \in \mathcal{X} : f(x) = f(y) \Rightarrow x = y$$

Funkcija  $f: \mathcal{X} \to \mathcal{Y}$  je **bijektivna**, če je injektivna in surjektivna hkrati – vsak element iz kodomene  $\mathcal{Y}$  je slika natanko enega elementa domene  $\mathcal{X}$ .

Jan Kastelic (GAA) MATEMATIKA 21. april 2025 16/33

Funkcija

Zapišite in narišite grafe funkcij ter zapišite začetne vrednosti in ničle funkcije. Določite, kje je funkcija naraščajoča oziroma padajoča, ter preverite surjektivnost in injektivnost.

• 
$$f(x) = x$$
  $D_f = \mathbb{R}$ 

• 
$$i(x) = \frac{1}{x^2}$$
  $D_i = \left\{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2\right\}$ 

• 
$$j(x) = \frac{x+2}{x-3}$$
  $D_j = \{-2, -1, 0, 1, 2\}$ 



17/33

## Predpis linearne funkcije



18 / 33

Jan Kastelic (GAA) MATEMATIKA

Linearna funkcija

Ugotovite, ali je dana funkcija linearna. Linearnim funkcijam določite smerni koeficient in začetno vrednost.

$$f(x) = \frac{1}{7x} - \frac{3}{4}$$

$$g(x) = \frac{2}{3} - \pi x$$

• 
$$h(x) = \frac{8+6x}{24}$$

• 
$$i(x) = 0.\overline{3}x + 1$$

$$ightarrow j(x) = \frac{x^2 - 3}{5}$$

• 
$$k(x) = -\sqrt{2}x + \frac{2}{3}$$

• 
$$I(x) = 2$$

Jan Kastelic (GAA)

Linearna funkcija

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.



20 / 33

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

## Naloga

Dana je linearna funkcija p(x) = 3x - 4. Izračunaj p(-2), p(0); p(5) in  $p(\sqrt{2})$ .



20 / 33

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

## Naloga

Dana je linearna funkcija p(x) = 3x - 4. Izračunaj p(-2), p(0); p(5) in  $p(\sqrt{2})$ .

## Naloga

Zapišite predpis linearne funkcije, za katero je u(-2) = 10 in u(0) = 2.



20/33

Linearna funkcija

Ali je funkcija naraščajoča ali padajoča?

• 
$$f(x) = 3x + 5$$

• 
$$g(x) = -2x + 7$$

• 
$$h(x) = 10 - \frac{1}{2}x$$

$$i(x) = \frac{x-1}{2}$$

$$i(x) = \frac{5-2x}{3}$$

$$k(x) = \frac{-\sqrt{3}x + 1}{3}$$

• 
$$I(x) = -\frac{2-4x}{17}$$



21 / 33

Linearna funkcija

Izračunajte ničlo linearne funkcije.

• 
$$f(x) = 6x + 12$$

• 
$$g(x) = 5x + 2$$

• 
$$h(x) = 3x - 12$$

• 
$$i(x) = -4x + 8$$

• 
$$j(x) = -3x + 2$$

• 
$$k(x) = -x - 7$$

• 
$$I(x) = \frac{3}{4}x - \frac{1}{4}$$

• 
$$m(x) = -\frac{2x+3}{6}$$

$$n(x) = \frac{1-4x}{2}$$

$$o(x) = \frac{\pi x + 4}{3}$$

• 
$$p(x) = \sqrt{2}x + 1$$

• 
$$r(x) = 4$$

Linearna funkcija

Dana je linearna funkcija f. Zapišite predpis funkcije g v obliki g(x) = kx + n.

• 
$$f(x) = 2x - 6$$
,  $g(x) = 3f(x)$ 

• 
$$f(x) = 5x - 3$$
;  $g(x) = f(x + 1)$ 

• 
$$f(x) = \frac{2x-5}{3}$$
;  $g(x) = f(1-x)$ 

• 
$$f(x) = \frac{10-4x}{7}$$
;  $g(x) = f(3x)$ 



23 / 33

Linearna funkcija

Dana je družina linearnih funkcij  $f(x) = (2m-1)x + (3-m); \ m \in \mathbb{R}.$ 

- Za katero vrednost parametra m ima funkcija diferenčni količnik enak -5?
- Za katero vrednost parametra m je funkcija padajoča?
- Za katero vrednost parametra m je funkcija konstantna?
- Za katero vrednost parametra m je funkcija naraščajoča?
- Za katero vrednost parametra *m* je začetna vrednost enaka 2?
- Za katero vrednost parametra m ima funkcija ničlo x = -4?



24 / 33

Linearna funkcija

Taksist meri razdaljo, ki jo je prevozil. Vsak kilometer stane  $2.5 \in$ , startnina pa 7 €. Zapišite funkcijo, po kateri taksist izračuna znesek za plačilo, ko prebere število prevoženih kilometrov x. Izračunajte, koliko bi pačali, če bi se peljali  $12 \ km$ .



25 / 33

Taksist meri razdaljo, ki jo je prevozil. Vsak kilometer stane  $2.5 \in$ , startnina pa  $7 \in$ . Zapišite funkcijo, po kateri taksist izračuna znesek za plačilo, ko prebere število prevoženih kilometrov x. Izračunajte, koliko bi pačali, če bi se peljali  $12 \ km$ .

## Naloga

V bezenu je 12 I vode. V bazen po cevi vsako minuto pritečejo še 4 I vode. Zapišite funkcijo, s katero bomo lahko izračunali, koliko je vode v bazenu po pretečenih x minutah. Izračunajte, koliko vode je v bazenu po 9 minutah.

25/33

# Graf linearne funkcije



21. april 2025

26/33

Jan Kastelic (GAA) MATEMATIKA

MATEMATIKA

Katere od točk A(1,1), B(4,0), C(7,-2),  $D(-4,\frac{5}{2})$ ,  $E(0,\frac{3}{2})$ , F(2,2) in G(3,0) ležijo na grafu funkcije  $f(x)=-\frac{1}{2}x+\frac{3}{2}$ ?



27 / 33

Katere od točk A(1,1), B(4,0), C(7,-2),  $D(-4,\frac{5}{2})$ ,  $E(0,\frac{3}{2})$ , F(2,2) in G(3,0) ležijo na grafu funkcije  $f(x) = -\frac{1}{2}x + \frac{3}{2}$ ?

## Naloga

Dana je funkcija g(x) = 3x - 2. Za koliko se spremeni vrednost funkcije g, če se vrednost x

- poveča za 1?
- poveča za 2?
- zmanjša za 5?
- zmanjša za −10?



27/33

Narišite graf linearne funkcije. Zapišite začetno vrednost in izračunajte ničlo funkcije. Določite, kje je funkcija pozitivna oziroma negativna, ter ali je naraščajoča ali padajoča?

• 
$$f(x) = -x + \frac{1}{2}$$

• 
$$g(x) = 2x + 2$$

• 
$$h(x) = 3 - 2x$$

• 
$$i(x) = -x$$

• 
$$j(x) = -3$$

$$k(x) = \frac{6x-1}{3}$$

• 
$$I(x) = -\frac{2-3x}{4}$$

• 
$$m(x) = 3 - \frac{3}{5}x$$

Graf linearne funkcije

V isti koordinatni sistem narišite grafe funkcij f(x) = 2x - 2, g(x) = 2x + 1, h(x) = 2x + 2 in i(x) = 2x. Kaj opazite?



29 / 33

V isti koordinatni sistem narišite grafe funkcij f(x) = 2x - 2, g(x) = 2x + 1, h(x) = 2x + 2 in i(x) = 2x. Kaj opazite?

## Naloga

V isti koordinatni sistem narišite grafe funkcij f(x) = 2x - 2, g(x) = 3x - 2, h(x) = x - 2 in  $i(x) = \frac{1}{2}x - 2$ . Kaj opazite?



29 / 33

Graf linearne funkcije

Zapišite predpis linearne funkcije, ki jo prikzauje graf.





Jan Kastelic (GAA)

MATEMATIKA

Graf linearne funkcije

31/33

Zapišite predpis linearne funkcije, ki jo prikzauje graf.





21. april 2025

Graf linearne funkcije

32 / 33

Zapišite predpis linearne funkcije, ki jo prikzauje graf.





Graf linearne funkcije

Narišite graf sestavljene funkcije in zapišite njeno zalogo vrednosti.

$$f(x) = \begin{cases} 2x; & x \le 2 \\ 4; & x > 2 \end{cases}$$

• 
$$k(x) = \begin{cases} -x+1; & x \le 2 \\ -1; & 2 < x < 4 \\ x-5; & x \ge 4 \end{cases}$$

$$I(x) = \begin{cases} 0.5x; & x \le 2\\ 2x - 3; & 2 < x < 4\\ 0.5x + 3; & x \ge 4 \end{cases}$$



33 / 33