Jan Rehwaldt, 2012-04-13, University of Tartu Exercise 6, Principles of Secure Software Design

Will B be convinced that K_{AB} is fresh?

According to the attack description below KAB may be hijacked by an attacker masquerading the initiator Ann. Therefore K_{AB} may not be fresh when using this protocol.

- A → B: A, N_a
- (2) $B \to S$: $B, N_b, \{A, N_a, \}_{K_{bs}}$ (3) $S \to A$: $N_b, \{B, K_{ab}, N_a\}_{K_{as}}, \{A, K_{ab}, N_b\}_{K_{bs}}$
- (4) $A \to B: \{\tilde{A}, K_{ab}, N_b\}_{K_{bs}}, \{\tilde{N}_b\}_{K_{ab}}$
 - 1. Ann send name A and nonce N_A (random number used to prove freshness) to Bob
 - 2. Bob replies to server his name, an own nonce N_B , K_{BS} and $\{A + N_A\}$ encrypted with Key K_{BS}
 - 3. Server sends to Ann N_B, {B, K_{AB}, N_A} encrypted with K_{AS} and {A, K_{AB}, N_B} encrypted with K_{BS}
 - {B, K_{AB}, N_A} shows name of target (B), session key (K_{AB}) and freshness of message (N_A)
 - {A, K_{AB}, N_B} should be passed on to Bob
 - 4. Ann sends chunk {A, K_{AB}, N_B} and N_B encrypted with session key to Bob
- (1) $A \rightarrow B$: A, N_a
- (2) $B \rightarrow S$: $B, N_b, \{A, N_a\}_{K_{ba}}$

$$\begin{array}{ccc} (1') & E_a \to B \colon A, (N_a, N_b) \\ (2') & B \to E_s \colon B, N_b', \{A, N_a, N_b\}_{K_{bs}} \end{array}$$

- Omitted.
- (4) $E_a \to B$: $\{A, N_a (= K_{ab}), N_b\}_{K_{bs}}, \{N_b\}_{K_{ab}}$

For attacking this protocol attacker E may intercept the messages and send own messages in-between acting like Ann (after step 2).

- 1. Ann send name A and nonce N_A (random number used to prove freshness) to Bob
- 2. Bob replies to server own nonce N_B , K_{BS} and $\{A + N_A\}$ encrypted with Key K_{BS}
 - a. Attacker masquerades as Ann sending $N_E = N_A + N_B$ to Bob
 - b. Bob replies to attacker his name, an new nonce N_{B2}, K_{BS} and {N_A + N_A} encrypted with Key K_{BS}
- 3. Omitted: Server sends to Ann N_B, {B, K_{AB}, N_A} encrypted with K_{AS} and {A, K_{AB}, N_B} encrypted with K_{BS}
- 4. Ann sends chunk {A, K_{AB}, N_B} and N_B encrypted with session key to Bob
- 5. Attacker sends encrypted chunk from omitted message {B, KAB, NB} and NB encrypted with NA, which became the session key KAB, to Bob
- Attacker overtook the communication masquerading Ann 6.

Source:

A Taxonomy of Replay Attacks

Paul Syverson Code 5543 Naval Research Laboratory Washington, DC 20375

(syverson@itd.nrl.navy.mil)

What attack is possible if the intruder learns an old session key?

Session may be recovered, **overtaken by impersonation** or if messages are stored for requesting them depending on the session they may be obtained later on. Additionally if the session key is used for de- and encryption caught encrypted messages may be decrypted with this information. Therefore session keys may be assumed as being secret, especially after their expiration.