Total Type Error Localization and Recovery with Holes

A	reface	3						
	.1 Organization							
	.2 Mechanization	. 3						
В	Marked lambda calculus							
	.1 Syntax	. 4						
	.2 Types	. 4						
	.3 Unmarked expressions							
	.4 Marking	. 6						
	.5 Marked expressions							
	.6 Mark erasure	. 9						
	.7 Metatheorems	. 9						
	.8 Alternative conditional rules	. 10						
C	xtension: patterned let expressions	11						
	.1 Syntax	. 11						
	.2 Types	. 11						
	.3 Unmarked patterns							
	.4 Pattern marking							
	.5 Marked patterns							
	.6 Pattern mark erasure							
	.7 Unmarked expressions							
	.8 Marking	. 14						
	.9 Marked expressions							
	.10 Mark erasure	. 14						
	.11 Metatheorems	. 15						
D		10						
D	xtension: System F-style polymorphism	16						
	.1 Syntax							
	.2 Unmarked types							
	.3 Type marking							
	.4 Marked types							
	7.5 Type mark erasure							
	.6 Unmarked expressions							
	.7 Marking							
	*							
	The state of the s							
	.10 Metatheorems	. 20						
E	intyped hazelnut	21						
	.1 Syntax							
	2 Cursor erasure							
	3 Action model							
	.4 Metatheorems	. 26						

F	Type	ed hazelnut	27
	F.1	Syntax	27
	F.2	Cursor erasure	28
	F.3	Action model	28
	F.4	Mark erasure	37
	F.5	Metatheorems	37
G	Con	straint generation	39

A Preface

This is the complete formalism demonstrating the *marked lambda calculus*, a judgmental framework for precise bidirectional error localization and recovery that employs gradual typing.

A.1 Organization

Though more is said in each individual section, the overall structure of the document is as follows:

- Section B employs the framework on a gradually typed lambda calculus.
- Section C extends the demonstration with patterned let expressions.
- Section D extends the demonstration with System F-style parametric polymorphism.
- Section E gives a version of the Hazelnut structure editor calculus that uses the marked lambda calculus to solve Hazelnut's deficiency with regards to non-local hole fixes.
- Section F is similar, except that it employs the marking procedure in a roughly incremental fashion.
- Section G additionally gives the rules for constraint generation in relation to the type hole inference work of Section 4.

Note that each of the sections following Section B build upon that same core language.

A.2 Mechanization

Not all parts of the formalism are mechanized in Agda. It is noted in each section whether or not the section has been mechanized and, if so, where to find the relevant definitions and theorems.

As possible, the names of judgments and rules that appear in the mechanization have been made to follow those in this formalism. Refer also to the mechanization's README for more details.

B Marked lambda calculus

The *marked lambda calculus* is a judgmental framework for bidirectional type error localization and recovery. Here, we demonstrate it on a gradually typed lambda calculus with numbers, booleans, and product types, as described in Section 2.1 of the paper.

MECHANIZATION O

- ▶ core.agda
- ▶ marking.agda

B.1 Syntax

Type
$$\tau$$
 ::= ? | num | bool | $\tau \to \tau$ | $\tau \times \tau$ | UExp e ::= $x \mid \lambda x : \tau$. $e \mid e \mid e \mid \text{let } x = e \text{ in } e \mid \underline{n} \mid e + e$ | tt | ff | if e then e else $e \mid (e, e) \mid \pi_1 e \mid \pi_2 e \mid (||)$ | MExp \check{e} ::= $x \mid \lambda x : \tau$. $\check{e} \mid \check{e} \mid \check{e} \mid \text{let } x = \check{e} \mid n \mid \check{e} \mid \underline{n} \mid \check{e} + \check{e}$ | tt | ff | if $\check{e} \mid \text{then } \check{e} \mid \text{else } \check{e} \mid (\check{e}, \check{e}) \mid \pi_1 \check{e} \mid \pi_2 \check{e} \mid (||)$ | $(|x|)_{\square} \mid (|\check{e}|)_{\square} \mid (|x|)_{\square} \mid (||x|)_{\square} \mid ($

B.2 Types

 $\boxed{\tau_1 \sim \tau_2} \tau_1$ is consistent with τ_2

TCUnknown1	TCUnknown2	TCREFL	TCARR $\tau_1 \sim \tau_1' \qquad \tau_2 \sim \tau_2'$	TCProd $\tau_1 \sim \tau_1' \qquad \tau_2 \sim \tau_2'$
<u>?</u> ~ τ	$\overline{\tau} \sim ?$	$\overline{\tau \sim \tau}$	$\frac{\tau_1 \to \tau_2 \sim \tau_1' \to \tau_2'}{\tau_1 \to \tau_2'}$	$\frac{\tau_1 \times \tau_2 \sim \tau_1' \times \tau_2'}{\tau_1 \times \tau_2}$

 $\tau \Vdash_{\rightarrow} \tau_1 \longrightarrow \tau_2 \mid \tau$ has matched arrow type $\tau_1 \longrightarrow \tau_2$

TMAUNKNOWN TMAARR
$$\frac{\tau_1 \to \tau_2}{\tau_1 \to \tau_2} \to \tau_1 \to \tau_2$$

 $\tau \triangleright_{\times} \tau_1 \times \tau_2 \mid \tau$ has matched binary product type $\tau_1 \times \tau_2$

TMPUNKNOWN
$$\frac{\text{TMPProd}}{?_{\triangleright_{\times}}?\times?} \frac{\tau_{1}\times\tau_{2}}{\tau_{1}\times\tau_{2}}$$

 $\tau_1 \sqcap \tau_2$ is a *partial* metafunction Type × Type \longrightarrow Type defined as follows:

$$? \sqcap \tau = \tau$$

$$\tau \sqcap ? = \tau$$

$$\text{num} \sqcap \text{num} = \text{num}$$

$$\text{bool} \sqcap \text{bool} = \text{bool}$$

$$(\tau_1 \to \tau_2) \sqcap (\tau_1' \to \tau_2') = (\tau_1 \sqcap \tau_1') \to (\tau_2 \sqcap \tau_2')$$

$$(\tau_1 \times \tau_2) \sqcap (\tau_1' \times \tau_2') = (\tau_1 \sqcap \tau_1') \times (\tau_2 \sqcap \tau_2')$$

 τ base $| \tau$ is a base type

TBNum TBBool ______ num base bool base

B.3 Unmarked expressions

 $\Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau \quad e \text{ synthesizes type } \tau$

$$\frac{\text{USHole}}{\Gamma \vdash_{\overline{U}} (\!\!\!\!/) \Rightarrow ?} \quad \frac{\text{USVar}}{\Gamma \vdash_{\overline{U}} x \Rightarrow \tau} \quad \frac{\text{USLam}}{\Gamma \vdash_{\overline{U}} \lambda x : \tau_{1} \vdash_{\overline{U}} e \Rightarrow \tau_{2}} \quad \frac{\text{USAP}}{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau} \quad \tau \vdash_{\longrightarrow} \tau_{1} \to \tau_{2} \quad \Gamma \vdash_{\overline{U}} e_{2} \Leftarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} \lambda x : \tau_{1} . \ e \Rightarrow \tau_{1} \to \tau_{2}} \quad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau}{\Gamma \vdash_{\overline{U}} e_{1} e_{2} \Rightarrow \tau_{2}} \quad \Gamma \vdash_{\overline{U}} e_{2} \Leftarrow \tau_{1}}$$

$$\frac{\text{USLet}}{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma, \ x : \tau_{1} \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2}}{\Gamma \vdash_{\overline{U}} \text{let } x = e_{1} \text{ in } e_{2} \Rightarrow \tau_{2}} \qquad \frac{\text{USNum}}{\Gamma \vdash_{\overline{U}} \underline{n} \Rightarrow \text{num}} \qquad \frac{\text{USPLUS}}{\Gamma \vdash_{\overline{U}} e_{1} \Leftarrow \text{num}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{2} \Leftarrow \text{num}}{\Gamma \vdash_{\overline{U}} e_{1} + e_{2} \Rightarrow \text{num}}$$

 $\Gamma \vdash_{\overline{U}} e \leftarrow \tau \quad e \text{ analyzes against type } \tau$

$$\frac{\text{UALam}}{\tau_{3} \Vdash_{\rightarrow} \tau_{1} \rightarrow \tau_{2}} \frac{\tau_{\sim} \tau_{1}}{\Gamma \vdash_{\overline{U}} \lambda x : \tau. \ e \Leftarrow \tau_{3}} \qquad \frac{\text{UALet}}{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}} \frac{\Gamma, \ x : \tau_{1} \vdash_{\overline{U}} e_{2} \Leftarrow \tau_{2}}{\Gamma \vdash_{\overline{U}} \text{let } x = e_{1} \text{ in } e_{2} \Leftarrow \tau_{2}}$$
 UAPair

$$\frac{\Gamma \vdash_{\overline{U}} e_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash_{\overline{U}} e_1 \Leftarrow \tau \qquad \Gamma \vdash_{\overline{U}} e_2 \Leftarrow \tau}{\Gamma \vdash_{\overline{U}} \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \Leftarrow \tau} \qquad \frac{\tau \triangleright_{\times} \tau_1 \times \tau_2 \qquad \Gamma \vdash_{\overline{U}} e_1 \Leftarrow \tau_1 \qquad \Gamma \vdash_{\overline{U}} e_2 \Leftarrow \tau_2}{\Gamma \vdash_{\overline{U}} (e_1, e_2) \Leftarrow \tau}$$

 $\frac{\Gamma \vdash_{\overline{U}} e \Rightarrow \tau' \qquad \tau \backsim \tau' \qquad e \text{ subsumable}}{\Gamma \vdash_{\overline{U}} e \Leftarrow \tau}$

e subsumable *e* is subsumable

B.4 Marking

 $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau \mid e \text{ is marked into } \check{e} \text{ and synthesizes type } \tau$

B.5 Marked expressions

B.6 Mark erasure

 $|\check{e}^{\square}|$ is a metafunction MExp \rightarrow UExp defined as follows:

```
x^{\square} = x
                                                       (x) = x
                                  (\lambda x : \tau. \check{e})^{\square} = \lambda x : \tau. (\check{e}^{\square})
                               (\lambda x : \tau. \check{e})_{:} = \lambda x : \tau. (\check{e})
                          (\lambda x : \tau. \check{e}) = \lambda x : \tau. (\check{e}^{\square})
                                                (\check{e}_1 \ \check{e}_2)^{\square} = (\check{e}_1^{\square}) (\check{e}_2^{\square})
                                   ((\check{e}_1)^{\rightarrow}_{\downarrow 0} \check{e}_2)^{\square} = (\check{e}_1^{\square}) (\check{e}_2^{\square})
                  (\text{let } x = \check{e}_1 \text{ in } \check{e}_2)^{\square} = \text{let } x = (\check{e}_1^{\square}) \text{ in } (\check{e}_2^{\square})
                                         \begin{array}{rcl} \underline{n}^{\square} & = & \underline{n} \\ \left(\check{e}_{1} + \check{e}_{2}\right)^{\square} & = & \left(\check{e}_{1}^{\square}\right) + \left(\check{e}_{2}^{\square}\right) \end{array}
                                                            tt^{\Box} = tt
                                                              ff□ = ff
    (if \check{e}_1 then \check{e}_2 else \check{e}_3) = if (\check{e}_1^{\square}) then (\check{e}_2^{\square}) else (\check{e}_3^{\square})
(if \check{e}_1 then \check{e}_2 else \check{e}_3) \Box = if (\check{e}_1^{\square}) then (\check{e}_2^{\square}) else (\check{e}_3^{\square})
                                               (\check{e}_1,\check{e}_2)^{\square} = (\check{e}_1^{\square},\check{e}_2^{\square})
                                     ((\check{e}_1,\check{e}_2)) = (\check{e}_1,\check{e}_2)
                                                    (\pi_1 \check{e})^{\square} = \pi_1(\check{e}^{\square})
                                         (\pi_1(\check{e})^{\rightarrow})^{\square} = \pi_1(\check{e}^{\square})
                                                    (\pi_2 \check{e})^{\square} = \pi_2(\check{e}^{\square})
                                         (\pi_2(\check{e})^{\rightarrow})^{\square} = \pi_2(\check{e}^{\square})
                                                       (|\check{e}|)_{\downarrow}^{\Box} = \check{e}^{\Box}
```

B.7 Metatheorems

Theorem B.1 (Marking Totality).

- 1. For all Γ and e, there exist \check{e} and τ such that $\Gamma \vdash e \hookrightarrow \check{e} \Longrightarrow \tau$.
- 2. For all Γ , e, and τ , there exists \check{e} such that $\Gamma \vdash e \hookrightarrow \check{e} \leftarrow \tau$.

Theorem B.2 (Marking Well-Formedness).

- 1. If $\Gamma \vdash e \hookrightarrow \check{e} \Longrightarrow \tau$, then $\Gamma \vdash_{\mathbb{M}} \check{e} \Longrightarrow \tau$ and $\check{e}^{\square} = e$.
- 2. If $\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau$, then $\Gamma \vdash_{\mathbb{M}} \check{e} \Leftarrow \tau$ and $\check{e}^{\square} = e$.

Theorem B.3 (Marking of Well-Typed/Ill-Typed Expressions).

- 1. (a) If $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$ and $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$, then \check{e} markless.
 - (b) If $\Gamma \vdash_{\overline{\iota}} e \leftarrow \tau$ and $\Gamma \vdash_{\overline{\iota}} e \hookrightarrow_{\overline{\iota}} \epsilon \leftarrow \tau$, then \check{e} markless.
- 2. (a) If there does not exist τ such that $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$, then for all \check{e} and τ' such that $\Gamma \vdash_{\overline{e}} e \Rightarrow \tau'$, it is not the case that \check{e} markless.
 - (b) If there does not exist τ such that $\Gamma \vdash_{\overline{\upsilon}} e \Leftarrow \tau$, then for all \check{e} and τ' such that $\Gamma \vdash_{\overline{\upsilon}} e \Leftrightarrow \tau'$, it is not the case that \check{e} markless.

Theorem B.4 (Marking Unicity).

- 1. If $\Gamma \vdash e \hookrightarrow \check{e}_1 \Rightarrow \tau_1$ and $\Gamma \vdash e \hookrightarrow \check{e}_2 \Rightarrow \tau_2$, then $\check{e}_1 = \check{e}_2$ and $\tau_1 = \tau_2$.
- 2. If $\Gamma \vdash e \hookrightarrow \check{e}_1 \leftarrow \tau$ and $\Gamma \vdash e \hookrightarrow \check{e}_2 \leftarrow \tau$, then $\check{e}_1 = \check{e}_2$.

B.8 Alternative conditional rules

There are alternative ways to formulate error localization in conditionals. Below, we provide two alternatives to the rules above.

B.8.1 Localize to second

In this formulation, we always select the first branch as "correct" and localize errors to the second.

B.8.2 Localize to first

In this formulation, we always select the second branch as "correct" and localize errors to the first.

$$\begin{array}{c} \Gamma \vdash_{\overline{v}} e \Rightarrow \tau \quad e \text{ synthesizes type } \tau \\ \\ \underline{\Gamma \vdash_{\overline{v}} e_1 \Leftarrow \text{bool} \quad \Gamma \vdash_{\overline{v}} e_3 \Rightarrow \tau \quad \Gamma \vdash_{\overline{v}} e_2 \Leftarrow \tau} \\ \hline \Gamma \vdash_{\overline{v}} \text{ if } e_1 \text{ then } e_2 \text{ else } e_3 \Rightarrow \tau \\ \\ \underline{\Gamma \vdash_{e} e \looparrowright \check{e} \Rightarrow \tau} \quad e \text{ is marked into } \check{e} \text{ and synthesizes type } \tau \\ \\ \underline{MKSIr}^{"} \\ \underline{\Gamma \vdash_{e_1} \looparrowright \check{e}_1 \Leftarrow_{b_1} \Leftrightarrow \text{bool} \quad \Gamma \vdash_{e_3} \looparrowright \check{e}_3 \Rightarrow \tau \quad \Gamma \vdash_{e_2} \looparrowright \check{e}_2 \Leftarrow \tau} \\ \underline{\Gamma \vdash_{e_1} \looparrowright \check{e}_1 \Leftrightarrow \text{bool} \quad \Gamma \vdash_{e_3} \looparrowright \check{e}_3 \Rightarrow \tau \quad \Gamma \vdash_{e_2} \looparrowright \check{e}_2 \Leftarrow \tau} \\ \hline \Gamma \vdash_{e_1} \text{ if } e_1 \text{ then } e_2 \text{ else } e_3 \looparrowright \text{ if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau \\ \hline \end{array}$$

C Extension: patterned let expressions

In this section, we describe an extension of the marked lambda calculus for destructuring let expressions, as described in Section 2.3 of the paper.

MECHANIZATION ×

C.1 Syntax

Type
$$\tau$$
 ::= \cdots | ? \Rightarrow
UExp e ::= \cdots | let $p = e$ in e
MExp \check{e} ::= \cdots | let $p = \check{e}$ in \check{e}
UPat p ::= $-$ | x | (p,p) | p : τ
MPat \check{p} ::= $-$ | x | (\check{p},\check{p}) | \check{p} : τ
| $(|\check{p})_{\tau}$ | $((\check{p},\check{p}))_{\tau_{\kappa}}^{\leftarrow}$

C.2 Types

 $\boxed{\tau_1 \sim \tau_2} \tau_1$ is consistent with τ_2

TCUnknownSwitch1

TCUnknownSwitch2

 $\boxed{\tau \triangleright_{\rightarrow} \tau_1 \to \tau_2} \ \tau$ has matched arrow type $\tau_1 \to \tau_2$

TMAUNKNOWNSWITCH

$$\overline{?^{\Rightarrow}}_{\triangleright_{\rightarrow}}?^{\Rightarrow}\rightarrow?^{\Rightarrow}$$

 $\tau_{\mathbb{R}} \times \tau_1 \times \tau_2 \mid \tau$ has matched binary product type $\tau_1 \times \tau_2$

TMPUnknownSwitch

$$\overrightarrow{?^{\Rightarrow}} \xrightarrow{?^{\Rightarrow}} \times ?^{\Rightarrow}$$

 $\boxed{\tau_1 \sqcap \tau_2}$ is a *partial* metafunction Type × Type \longrightarrow Type defined as follows:

$$\begin{array}{cccc} & \vdots & & \vdots \\ ?^{\Rightarrow}\sqcap\tau & = & ?^{\Rightarrow} \\ \tau\sqcap?^{\Rightarrow} & = & ?^{\Rightarrow} \end{array}$$

C.3 Unmarked patterns

 $\Gamma \vdash_{\overline{U}} p \Rightarrow \tau \quad p \text{ synthesizes type } \tau$

$$\frac{\text{USPValR}}{\Gamma \vdash_{\overline{U}} - \Rightarrow ?^{\Rightarrow}} \qquad \frac{\text{USPVar}}{\Gamma \vdash_{\overline{U}} x \Rightarrow ?^{\Rightarrow}} \qquad \frac{\frac{\text{USPPAIR}}{\Gamma \vdash_{\overline{U}} p_{1} \Rightarrow \tau_{1}} \qquad \frac{\Gamma \vdash_{\overline{U}} p_{2} \Rightarrow \tau_{2}}{\Gamma \vdash_{\overline{U}} (p_{1}, p_{2}) \Rightarrow \tau_{1} \times \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} p \Leftarrow \tau \dashv \Gamma'}{\Gamma \vdash_{\overline{U}} p : \tau \Rightarrow \tau}$$

 $\Gamma_1 \vdash_{\overline{v}} p \leftarrow \tau \dashv \Gamma_2$ p analyzes against type τ producing context Γ_2

C.4 Pattern marking

 $\Gamma \vdash p \hookrightarrow \check{p} \Longrightarrow \tau$ *p* is marked into \check{p} and synthesizes τ

 $\Gamma_1 \vdash p \hookrightarrow \check{p} \longleftarrow \tau \dashv \Gamma_2 \mid p$ is marked into \check{p} and analyzes against τ producing Γ_2

$$\begin{array}{c} \text{MKAPPAIR1} \\ \tau \Vdash_{\times} \tau_{1} \times \tau_{2} & \Gamma \vdash p_{1} \hookrightarrow \check{p}_{1} \Leftarrow \tau_{1} \dashv \Gamma_{1} \\ \hline \\ \text{MKAPWILD} & \frac{\text{MKAPVAR}}{\Gamma \vdash_{\times} \hookrightarrow_{-} \leftarrow \tau \dashv \Gamma} & \frac{\Gamma_{1} \vdash_{-} p_{2} \hookrightarrow_{-} \check{p}_{2} \Leftarrow \tau_{2} \dashv \Gamma_{2}}{\Gamma \vdash_{-} (p_{1}, p_{2}) \hookrightarrow_{-} (\check{p}_{1}, \check{p}_{2}) \Leftarrow_{-} \tau \dashv \Gamma_{2}} \end{array}$$

MKAPPair2

C.5 Marked patterns

$$\frac{\text{MSPWILD}}{\Gamma \vdash_{\mathbb{M}} - \Rightarrow ?^{\Rightarrow}} \qquad \frac{\text{MSPVAR}}{\Gamma \vdash_{\mathbb{M}} x \Rightarrow ?^{\Rightarrow}} \qquad \frac{\Gamma \vdash_{\mathbb{M}} \check{p}_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\mathbb{M}} (\check{p}_{1}, \check{p}_{2}) \Rightarrow \tau_{1} \times \tau_{2}} \qquad \frac{\Gamma \vdash_{\mathbb{M}} \check{p} \Leftarrow \tau \dashv \Gamma'}{\Gamma \vdash_{\mathbb{M}} \check{p} : \tau \Rightarrow \tau}$$

 $\Gamma_1 \sqsubseteq \check{p} \longleftarrow \tau \dashv \Gamma_2 \mid \check{p}$ analyzes against type τ producing context Γ_2

 $|\check{p}|$ markless $|\check{p}|$ has no marks

C.6 Pattern mark erasure

 $\left|\check{p}^{\square}\right|$ is a metafunction MPat \rightarrow UPat defined as follows:

$$\begin{array}{cccc} - & = & -\\ x^{\square} & = & x\\ (\check{p}_{1},\check{p}_{2})^{\square} & = & (\check{p}_{1}^{\square},\check{p}_{2}^{\square})\\ ((\check{p}_{1},\check{p}_{2}))_{r_{k}}^{\square} & = & (\check{p}_{1}^{\square},\check{p}_{2}^{\square})\\ (\check{p}:\tau)^{\square} & = & (\check{p}^{\square}):\tau\\ (\check{p}:\tau)_{r}^{\square} & = & (\check{p}^{\square}):\tau \end{array}$$

C.7 Unmarked expressions

 $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau \mid e \text{ synthesizes type } \tau$

$$\frac{\text{USLetPat}}{\frac{\Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1}{\Gamma \vdash_{\overline{U}} p \Leftarrow \tau_1 \dashv \Gamma'} \qquad \frac{\Gamma' \vdash_{\overline{U}} e_2 \Rightarrow \tau_2}{\Gamma \vdash_{\overline{U}} \text{let } p = e_1 \text{ in } e_2 \Rightarrow \tau_2}$$

 $\Gamma \vdash_{\overline{U}} e \leftarrow \tau \mid e \text{ analyzes against type } \tau$

$$\begin{array}{c} \text{UASynSwitch} \\ \Gamma \vdash_{\overline{U}} e \Rightarrow \tau \\ \hline \Gamma \vdash_{\overline{U}} e \Leftarrow ?^{\Rightarrow} \end{array} \begin{array}{c} \text{UALetPat} \\ \hline \Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1 \qquad \Gamma \vdash_{\overline{U}} p \Leftarrow \tau_1 \dashv \Gamma' \qquad \Gamma' \vdash_{\overline{U}} e_2 \Leftarrow \tau_2 \\ \hline \hline \Gamma \vdash_{\overline{U}} \text{let } p = e_1 \text{ in } e_2 \Leftarrow \tau_2 \end{array}$$

e subsumable |e| is subsumable

USuLetPat

 $\overline{\text{let } p = e_1 \text{ in } e_2 \text{ subsumable}}$

C.8 Marking

 $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau \mid e \text{ is marked into } \check{e} \text{ and synthesizes type } \tau$

MKSLETPAT

$$\frac{\Gamma \vdash p \looparrowright \check{p} \Rightarrow \tau_{p} \qquad \Gamma \vdash e_{1} \looparrowright \check{e}_{1} \Leftarrow \tau_{p}}{\Gamma \vdash_{\overline{v}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{v}} p \Leftarrow \tau_{1} \dashv \Gamma' \qquad \Gamma' \vdash e_{2} \looparrowright \check{e}_{2} \Rightarrow \tau_{2}}$$

$$\frac{\Gamma \vdash_{\overline{v}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{v}} p \Leftarrow \tau_{1} \dashv \Gamma' \qquad \Gamma' \vdash_{e_{2}} \looparrowright \check{e}_{2} \Rightarrow \tau_{2}}{\Gamma \vdash_{\overline{v}} \vdash_{\overline{v}}$$

 $\Gamma \vdash e \hookrightarrow \check{e} \leftarrow \tau \mid e \text{ is marked into } \check{e} \text{ and analyzes against type } \tau$

MKALETPAT

$$\Gamma \vdash p \looparrowright \check{p} \Longrightarrow \tau_{p} \qquad \Gamma \vdash e_{1} \looparrowright \check{e}_{1} \longleftarrow \tau_{p}$$

$$\Gamma \vdash_{\overline{v}} e_{1} \Longrightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{v}} p \longleftarrow \tau_{1} \dashv \Gamma' \qquad \Gamma' \vdash e_{2} \looparrowright \check{e}_{2} \longleftarrow \tau_{2}$$

$$\Gamma \vdash_{\overline{v}} \text{let } p = e_{1} \text{ in } e_{2} \looparrowright \text{let } \check{p} = \check{e}_{1} \text{ in } \check{e}_{2} \longleftarrow \tau_{2}$$

C.9 Marked expressions

MSLETPAT

MALETPAT

 \check{e} subsumable $|\check{e}|$ is subsumable

$$\overline{\text{let } p = \check{e}_1 \text{ in } \check{e}_2 \text{ subsumable}}$$

ě markless | ě has no marks

$$\frac{\text{MLLetPat}}{\check{p} \text{ markless}} \underbrace{\check{e}_{1} \text{ markless}}_{\check{e}_{2} \text{ markless}} \underbrace{\check{e}_{2} \text{ markless}}_{\check{e}_{1} \text{ in } \check{e}_{2} \text{ markless}}$$

C.10 Mark erasure

 $[\check{e}^{\scriptscriptstyle \square}]$ is a metafunction MExp \rightarrow UExp defined as follows:

$$\begin{array}{cccc} & & \vdots \\ (\text{let } \check{p} = \check{e}_1 \text{ in } \check{e}_2)^{\scriptscriptstyle \square} & = & \text{let } (\check{p}^{\scriptscriptstyle \square}) = (\check{e}_1^{\scriptscriptstyle \square}) \text{ in } (\check{e}_2^{\scriptscriptstyle \square}) \end{array}$$

C.11 Metatheorems

In addition to the original metatheorems above (see Section B.7), the following ones governing patterns additionally hold.

Theorem C.1 (Pattern Marking Totality).

- 1. For all Γ and p, there exist \check{p} and τ such that $\Gamma \vdash p \hookrightarrow \check{p} \Longrightarrow \tau$.
- 2. For all Γ , p, and τ , there exists \check{p} and Γ' such that $\Gamma \vdash p \hookrightarrow \check{p} \Leftarrow \tau \dashv \Gamma'$.

Theorem C.2 (Pattern Marking Well-Formedness).

1. If
$$\Gamma \vdash p \hookrightarrow \check{p} \Longrightarrow \tau$$
, then $\Gamma \vdash_{\mathbb{M}} \check{p} \Longrightarrow \tau$ and $\check{p}^{\square} = p$.

2. If
$$\Gamma \vdash p \hookrightarrow \check{p} \Leftarrow \tau \dashv \Gamma'$$
, then $\Gamma \vdash_{\mathbb{M}} \check{p} \Leftarrow \tau \dashv \Gamma'$ and $\check{p}^{\square} = p$.

Theorem C.3 (Pattern Marking of Well-Typed/Ill-Typed Patterns).

1. (a) If
$$\Gamma \vdash_{\overline{U}} p \Rightarrow \tau$$
 and $\Gamma \vdash p \looparrowright \check{p} \Rightarrow \tau$, then \check{p} markless.

(b) If
$$\Gamma \vdash_{\overline{v}} p \leftarrow \tau \dashv \Gamma'$$
 and $\Gamma \vdash p \hookrightarrow \check{p} \leftarrow \tau \dashv \Gamma'$, then \check{p} markless.

- 2. (a) If there does not exist τ such that $\Gamma \vdash_{\overline{\nu}} p \Rightarrow \tau$, then for all \check{p} and τ' such that $\Gamma \vdash_{p} p \Rightarrow \check{p} \Rightarrow \tau'$, it is not the case that \check{p} markless.
 - (b) If there does not exist τ and Γ' such that $\Gamma \vdash_{\overline{\nu}} p \Leftarrow \tau \dashv \Gamma'$, then for all \check{p} , τ' , and Γ' such that $\Gamma \vdash_{\overline{\nu}} p \Leftrightarrow \check{p} \Leftarrow \tau' \dashv \Gamma'$, it is not the case that \check{p} markless.

Theorem C.4 (Pattern Marking Unicity).

1. If
$$\Gamma \vdash p \hookrightarrow \check{p_1} \Longrightarrow \tau_1$$
 and $\Gamma \vdash p \hookrightarrow \check{p_2} \Longrightarrow \tau_2$, then $\check{p_1} = \check{p_2}$ and $\tau_1 = \tau_2$.

2. If
$$\Gamma \vdash p \hookrightarrow \check{p_1} \leftarrow \tau \dashv \Gamma_1$$
 and $\Gamma \vdash p \hookrightarrow \check{p_2} \leftarrow \tau \dashv \Gamma_2$, then $\check{p_1} = \check{p_2}$ and $\Gamma_1 = \Gamma_2$.

D Extension: System F-style polymorphism

In this section, we describe an extension of the marked lambda calculus for System F-style parametric polymorphism, as sketched out in Section 2.4 of the paper.

MECHANIZATION ×

D.1 Syntax

Type
$$\tau$$
 ::= \cdots | $\forall \alpha$. τ | α
MType $\check{\tau}$::= \cdots | $\forall \alpha$. $\check{\tau}$ | α | $(\alpha)_{\Box}$
UExp e ::= \cdots | $\Lambda \alpha$. e | e [τ]
MExp \check{e} ::= \cdots | $\Lambda \alpha$. \check{e} | \check{e} [$\check{\tau}$]
| $(\Lambda \alpha \cdot \check{e})_{\Box c}$ | $(\check{e})_{\Box c}$ [$\check{\tau}$]

D.2 Unmarked types

 $\Sigma \vdash_{\overline{U}} \tau_1 \sim \tau_2 \tau_1 \text{ and } \tau_2 \text{ are consistent}$

$$\begin{array}{ll}
\text{TCFORALL} & \text{TCVAR} \\
\underline{\Sigma, \alpha \mid_{\overline{U}} \tau \sim \tau'} & \underline{\alpha \in \Sigma} \\
\overline{\Sigma \mid_{\overline{U}} \forall \alpha. \tau \sim \forall \alpha. \tau'} & \overline{\Sigma \mid_{\overline{U}} \alpha \sim \alpha}
\end{array}$$

 $\Sigma \vdash_{\overline{\upsilon}} \tau \mid \tau$ is well-formed

$$\frac{\text{TWFUnknown}}{\sum \vdash_{\overline{U}}?} \quad \frac{\text{TWFNum}}{\sum \vdash_{\overline{U}} \text{ num}} \quad \frac{\text{TWFBool}}{\sum \vdash_{\overline{U}} \text{ bool}} \quad \frac{\frac{\text{TWFARR}}{\sum \vdash_{\overline{U}} \check{\tau}_{1}} \quad \frac{\text{TWFProd}}{\sum \vdash_{\overline{U}} \check{\tau}_{1}} \quad \frac{\text{TWFPool}}{\sum \vdash_{\overline{U}} \check{\tau}_{1}} \quad \frac{\text{TWFPool}}{$$

 $\tau \triangleright_{\forall} \forall \alpha. \ \tau'$ τ has matched for all type $\forall \alpha. \ \tau'$

TMFUNKNOWN
$$\frac{\text{TMFForall}}{? \triangleright_{\forall} \forall \alpha. ?} \qquad \frac{\forall \alpha. \ \tau \triangleright_{\forall} \forall \alpha. \tau}{\forall \alpha. \tau}$$

 $\overline{\tau_1 \sqcap \tau_2}$ is a *partial* metafunction Type × Type \longrightarrow Type defined as follows:

$$(\forall \alpha. \ \tau) \sqcap (\forall \alpha. \ \tau') = \forall \alpha. \ (\tau \sqcap \tau')$$
$$\alpha \sqcap \alpha = \alpha$$

 $\overline{\tau_1[\tau_2/\alpha]}$ is a metafunction Type × Type × TypeVar \rightarrow Type defined as follows:

$$\begin{array}{rcl} ?[\tau/\alpha] & = & ?\\ num[\tau/\alpha] & = & num\\ bool[\tau/\alpha] & = & bool\\ (\tau_1 \to \tau_2)[\tau/\alpha] & = & (\tau_1[\tau/\alpha]) \to (\tau_2[\tau/\alpha])\\ (\tau_1 \times \tau_2)[\tau/\alpha] & = & (\tau_1[\tau/\alpha]) \times (\tau_2[\tau/\alpha])\\ (\forall \alpha'. \ \tau')[\tau/\alpha] & = & \forall \alpha'. \ \tau' & \alpha = \alpha'\\ (\forall \alpha'. \ \tau')[\tau/\alpha] & = & \forall \alpha'. \ (\tau'[\tau/\alpha]) & \alpha \neq \alpha'\\ \alpha'[\tau/\alpha] & = & \tau & \alpha = \alpha'\\ \alpha'[\tau/\alpha] & = & \alpha' & \alpha \neq \alpha' \end{array}$$

D.3 Type marking

 $\Sigma \vdash \tau \hookrightarrow \check{\tau} \quad \tau \text{ is marked into } \check{\tau}$

$$\frac{\text{MKTUnknown}}{\sum \vdash ? \leftrightarrow ?} \frac{\text{MKTNum}}{\sum \vdash \text{num} \leftrightarrow \text{num}} \frac{\text{MKTBool}}{\sum \vdash \text{bool} \leftrightarrow \text{bool}} \frac{\frac{\text{MKTArr}}{\sum \vdash \tau_1 \leftrightarrow \check{\tau}_1} \sum \vdash \tau_2 \leftrightarrow \check{\tau}_2}{\sum \vdash \tau_1 \leftrightarrow \check{\tau}_1 \rightarrow \check{\tau}_2}$$

$$\frac{\text{MKTProd}}{\sum \vdash \tau_1 \leftrightarrow \check{\tau}_1} \frac{\text{MKTForall}}{\sum \vdash \tau_2 \leftrightarrow \check{\tau}_2} \frac{\frac{\text{MKTVar}}{\sum \vdash \tau_2 \leftrightarrow \check{\tau}_2}}{\sum \vdash \tau_1 \leftrightarrow \check{\tau}_2} \frac{\frac{\text{MKTFree}}{\sum \vdash \tau_2 \leftrightarrow \check{\tau}_2}}{\sum \vdash \forall \alpha. \ \check{\tau} \leftrightarrow \forall \alpha. \ \check{\tau}} \frac{\frac{\text{MKTVar}}{\sum \vdash \alpha \leftrightarrow \alpha}}{\sum \vdash \alpha \leftrightarrow \alpha} \frac{\frac{\text{MKTFree}}{\sum \vdash \alpha \leftrightarrow (\alpha)}}{\sum \vdash \alpha \leftrightarrow (\alpha)}_{\alpha}$$

D.4 Marked types

 $\Sigma \vdash_{\mathbb{M}} \check{\tau}_1 \sim \check{\tau}_2$ $\check{\tau}_1$ and $\check{\tau}_2$ are consistent

 $\Sigma \vdash_{\overline{M}} \check{\tau} \quad \check{\tau} \quad \text{is well-formed}$

 $\bar{t} \triangleright_{\forall} \forall \alpha. \ \check{t}' \quad \check{t} \text{ has matched for all type } \forall \alpha. \ \check{t}'$

 $[\check{\tau}_1 \sqcap \check{\tau}_2]$ is a *partial* metafunction MType × MType \longrightarrow MType defined as follows:

$$(\forall \alpha. \ \check{\tau}) \sqcap (\forall \alpha. \ \check{\tau}') = \forall \alpha. \ (\check{\tau} \sqcap \check{\tau}')$$

$$\alpha \sqcap \alpha = \alpha$$

$$(\alpha)_{\square} \sqcap \check{\tau} = \check{\tau}$$

$$\check{\tau} \sqcap (\alpha)_{\square} = \check{\tau}$$

 $\check{\tau}_1[\check{\tau}_2/\alpha]$ is a metafunction MType × MType × MTypeVar \rightarrow MType defined as follows:

```
\begin{array}{rcl} ?[\check{\tau}/\alpha] & = & ?\\ num[\check{\tau}/\alpha] & = & num\\ bool[\check{\tau}/\alpha] & = & bool\\ (\check{\tau}_1 \to \check{\tau}_2)[\check{\tau}/\alpha] & = & (\check{\tau}_1[\check{\tau}/\alpha]) \to (\check{\tau}_2[\check{\tau}/\alpha])\\ (\check{\tau}_1 \times \check{\tau}_2)[\check{\tau}/\alpha] & = & (\check{\tau}_1[\check{\tau}/\alpha]) \times (\check{\tau}_2[\check{\tau}/\alpha])\\ (\forall \alpha'. \ \check{\tau}')[\check{\tau}/\alpha] & = & \forall \alpha'. \ \check{\tau}' & \alpha = \alpha'\\ (\forall \alpha'. \ \check{\tau}')[\check{\tau}/\alpha] & = & \forall \alpha'. \ (\check{\tau}'[\check{\tau}/\alpha]) & \alpha \neq \alpha'\\ \alpha'[\check{\tau}/\alpha] & = & \check{\tau} & \alpha = \alpha'\\ \alpha'[\check{\tau}/\alpha] & = & \alpha' & \alpha \neq \alpha'\\ (\alpha')_0[\check{\tau}/\alpha] & = & (\alpha')_0 \end{array}
```

 $\check{\tau}$ markless $\check{\tau}$ has no marks

MLTUnknown	MLTNum	MLTBool	MLTArr $\check{ au}_1$ markless	$\check{ au}_2$ markless
? markless	num markless	bool markless	$\check{\tau}_1 \rightarrow \check{\tau}_2 \; r$	markless
MLTP $_{ m rod}$ $\check{ au}_{ m 1}$ markless	$\check{ au}_2$ markless	MLTForall $\check{ au}$ markless	MLTVA	LR.
$\check{ au}_1 imes \check{ au}_2$ markless		$\forall \alpha. \ \check{\tau} \ \text{markless}$	α mar	kless

D.5 Type mark erasure

 $\check{\tau}^{\scriptscriptstyle \square}$ is a metafunction MType \to Type defined as follows:

$$?^{\square} = ?$$

$$\operatorname{num}^{\square} = \operatorname{num}$$

$$\operatorname{bool}^{\square} = \operatorname{bool}$$

$$(\check{\tau}_{1} \to \check{\tau}_{2})^{\square} = (\check{\tau}_{1}^{\square}) \to (\check{\tau}_{2}^{\square})$$

$$(\check{\tau}_{1} \times \check{\tau}_{2})^{\square} = (\check{\tau}_{1}^{\square}) \times (\check{\tau}_{2}^{\square})$$

$$(\forall \alpha. \check{\tau})^{\square} = \forall \alpha. (\check{\tau}^{\square})$$

$$\alpha^{\square} = \alpha$$

$$(\alpha)_{\square}^{\square} = \alpha$$

D.6 Unmarked expressions

$$\Sigma; \Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau \quad \text{e synthesizes type τ}$$

$$\dots \quad \frac{\text{USTypeLam}}{\sum; \Gamma \vdash_{\overline{\upsilon}} \Lambda \alpha. \ e \Rightarrow \forall \alpha. \ \tau} \quad \frac{\text{USTypeAp}}{\sum; \Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau} \quad \frac{\Sigma \vdash_{\overline{\upsilon}} \tau_2}{\sum; \Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau} \quad \Sigma \vdash_{\overline{\upsilon}} \tau_2 \quad \tau \vdash_{\overline{\upsilon}} \forall \alpha. \ \tau_1}{\sum; \Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau}$$

$$\Sigma; \Gamma \vdash_{\overline{\upsilon}} e \Leftarrow \tau \quad \text{e analyzes against type τ}$$

$$... \frac{\text{UATypeLam}}{\tau \Vdash_{\forall} \forall \alpha. \ \tau' \qquad \Sigma, \alpha; \Gamma \vdash_{\overline{U}} e \Leftarrow \tau'}{\Sigma; \Gamma \vdash_{\overline{U}} \Lambda \alpha. \ e \Leftarrow \tau}$$

e subsumable |e| is subsumable

 $\frac{\text{USuTypeAp}}{e[\tau] \text{ subsumable}}$

D.7 Marking

 $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Longrightarrow \check{\tau}$ *e* is marked into \check{e} and synthesizes type $\check{\tau}$

$$\frac{\text{MKSTypeAp2}}{\Sigma; \Gamma \vdash e \looparrowright \check{e} \Rightarrow \check{\tau} \qquad \Sigma \vdash \tau_2 \looparrowright \check{\tau}_2 \qquad \check{\tau} \blacktriangleright_{\blacktriangledown}}{\Sigma; \Gamma \vdash e \left[\tau_2\right] \looparrowright \left(\!\!\left[\check{e}\right]\!\!\right)_{\blacktriangleright_{\blacktriangledown}}^{-}\left[\check{\tau}_2\right] \Rightarrow ?}$$

 $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \leftarrow \check{\tau}$ *e* is marked into \check{e} and analyzes against type $\check{\tau}$

$$\cdots \frac{\begin{array}{c} \text{MKATypeLam1} \\ \check{\tau} \blacktriangleright_{\forall} \forall \alpha. \ \check{\tau}' \qquad \Sigma, \alpha; \Gamma \vdash e \looparrowright \check{e} \Leftarrow \check{\tau}' \\ \Sigma; \Gamma \vdash \Lambda \alpha. \ e \looparrowright \Lambda \alpha. \ \check{e} \Leftarrow \check{\tau} \end{array} }{\Sigma; \Gamma \vdash \Lambda \alpha. \ e \looparrowright \Lambda \alpha. \ \check{e} \Leftarrow \check{\tau}} \frac{\begin{array}{c} \text{MKATypeLam2} \\ \check{\tau} \blacktriangleright_{\forall} \qquad \Sigma, \alpha; \Gamma \vdash e \looparrowright \check{e} \Leftarrow ? \\ \hline \Sigma; \Gamma \vdash \Lambda \alpha. \ e \looparrowright (\hspace{-0.5mm} \Lambda \alpha. \ \check{e} \hspace{-0.5mm}) \stackrel{=}{\longleftarrow} \check{\tau} \end{array} }$$

D.8 Marked expressions

 $\Sigma; \Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \check{\tau} \quad \check{e} \text{ synthesizes type } \check{\tau}$

$$... \quad \frac{MSTypeLam}{\sum, \alpha; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau}}{\Sigma; \Gamma \mid_{\overline{\mathbb{M}}} \Lambda \alpha. \ \check{e} \Rightarrow \forall \alpha. \ \check{\tau}} \quad \frac{MSTypeAp1}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \sum \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \Vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \sum \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}} \qquad \frac{MSTypeAp2}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \sum \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \sum \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}} \qquad \frac{\Sigma; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \Sigma \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \Sigma \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}} \qquad \frac{\Sigma; \Gamma \mid_{\overline{\mathbb{M}}} \check{e} \Rightarrow \check{\tau} \qquad \Sigma \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \forall \alpha. \ \check{\tau}_{1}}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{\tau}_{1}} \qquad \frac{\Sigma; \Gamma \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \check{\tau}_{2}}{\sum; \Gamma \mid_{\overline{\mathbb{M}}} \check{\tau}_{2} \qquad \check{\tau} \vdash_{\forall} \check{\tau}_{2}} \qquad \check{\tau} \vdash_{\forall} \check{\tau}_{2}} \qquad \check{\tau} \vdash_{\forall} \check{\tau}_{2} \qquad \check{\tau}_{2} \Rightarrow \check{\tau} \qquad \check{\tau}_{2} \Rightarrow \check{\tau} \qquad \check{\tau}_{2} \Rightarrow \check{\tau} \qquad \check{\tau}_{2} \Rightarrow \check{\tau} \qquad \check{\tau}_{2} \Rightarrow \check{\tau}_{2$$

$$... \frac{\mathsf{MATypeLam1}}{\check{\tau} \Vdash_{\forall} \forall \alpha. \; \check{\tau}' \qquad \Sigma, \alpha; \Gamma \vdash_{\!\!\!M} \check{e} \Leftarrow \check{\tau}'}{\Sigma; \Gamma \vdash_{\!\!\!M} \Lambda \alpha. \; \check{e} \Leftarrow \check{\tau}} \frac{\mathsf{MATypeLam2}}{\check{\tau} \vdash_{\!\!\!\!\forall} \qquad \sum, \alpha; \Gamma \vdash_{\!\!\!M} \check{e} \Leftarrow ?}$$

 \check{e} subsumable \check{e} is subsumable

ě markless ě has no marks

D.9 Mark erasure

$$\begin{array}{rcl} & \vdots \\ (\Lambda\alpha.\ \check{e})^{\scriptscriptstyle\square} & = & \Lambda\alpha.\ (\check{e}^{\scriptscriptstyle\square}) \\ \hline (\![\Lambda\alpha.\ \check{e}]\!]_{{}^{\!\!\square}{}$$

D.10 Metatheorems

With polymorphism, we have the following modified metatheorems which additionally account for type well-formedness and marking.

Lemma D.1 (Unmarked Synthesis). If Σ ; $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$, then $\Sigma \vdash_{\overline{U}} \tau$.

Lemma D.2 (Marked Synthesis). If Σ ; $\Gamma \bowtie \check{e} \Rightarrow \check{\tau}$, then $\Sigma \bowtie \check{\tau}$.

Theorem D.3 (Marking Totality).

- 1. For all Σ and τ , there exists $\check{\tau}$ such that $\Sigma \vdash \tau \hookrightarrow \check{\tau}$.
- 2. For all Σ , Γ , and e, there exist \check{e} and $\check{\tau}$ such that Σ ; $\Gamma \vdash e \hookrightarrow \check{e} \Longrightarrow \check{\tau}$.
- 3. For all Σ , Γ , e, and $\check{\tau}$ such that $\Sigma \vdash_{\mathbb{M}} \check{\tau}$, there exists \check{e} such that Σ ; $\Gamma \vdash_{e} \vdash_{e} \hookrightarrow_{e} \check{\epsilon} = \check{\tau}$.

Theorem D.4 (Marking Well-Formedness).

- 1. If $\Sigma \vdash \tau \hookrightarrow \check{\tau}$, then $\Sigma \vdash_{\overline{M}} \check{\tau}$ and $\check{\tau}^{\square} = \tau$.
- 2. If $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Longrightarrow \check{\tau}$, then $\Sigma \vdash_{\mathbb{M}} \check{\tau}$ and $\Sigma; \Gamma \vdash_{\mathbb{M}} \check{e} \Longrightarrow \check{\tau}$ and $\check{e}^{\square} = e$.
- 3. If $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \check{\tau}$ and $\Sigma \vdash_{M} \check{\tau}$, then $\Sigma; \Gamma \vdash_{M} \check{e} \Leftarrow \check{\tau}$ and $\check{e}^{\square} = e$.

Theorem D.5 (Marking of Well-Typed/Ill-Typed Expressions).

- 1. (a) If $\Sigma \vdash_{\overline{U}} \tau$ and $\Sigma \vdash_{\tau} \tau \hookrightarrow_{\tau} \tau$, then $\check{\tau}$ markless.
 - (b) If $\Sigma; \Gamma \vdash_{\overline{U}} e \Rightarrow \tau$ and $\Sigma; \Gamma \vdash_{\overline{U}} e \Rightarrow \check{\tau}$, then $\Sigma \vdash_{\overline{U}} \tau \hookrightarrow_{\overline{U}} \check{\tau}$ and \check{e} markless.
 - (c) If $\Sigma; \Gamma \vdash_{\overline{U}} e \leftarrow \tau$ and $\Sigma \vdash_{\tau} \tau \hookrightarrow_{\tau} \check{\tau}$ and $\Sigma; \Gamma \vdash_{e} r \hookrightarrow_{\tau} \check{e} \leftarrow_{\tau} \check{\tau}$, then \check{e} markless.
- 2. (a) If it is not the case that $\Sigma \vdash_{\overline{\tau}} \tau$, then for all $\check{\tau}$ such that $\Sigma \vdash_{\overline{\tau}} \tau \hookrightarrow \check{\tau}$, it is not the case that $\check{\tau}$ markless.
 - (b) If there does not exist τ such that Σ ; $\Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau$, then for all \check{e} and $\check{\tau}$ such that Σ ; $\Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \check{\tau}$, it is not the case that \check{e} markless.
 - (c) If there does not exist τ such that $\Sigma; \Gamma \vdash_{\overline{\upsilon}} e \longleftarrow \tau$, then for all \check{e} and $\check{\tau}$ such that $\Sigma; \Gamma \vdash_{e} e \hookrightarrow \check{e} \longleftarrow \check{\tau}$, it is not the case that \check{e} markless.

Theorem D.6 (Marking Unicity).

- 1. If $\Sigma \vdash \tau \hookrightarrow \check{\tau}_1$, and $\Sigma \vdash \tau \hookrightarrow \check{\tau}_2$, then $\check{\tau}_1 = \check{\tau}_2$.
- 2. If $\Sigma; \Gamma \vdash e \hookrightarrow \check{e}_1 \implies \check{\tau}_1$ and $\Sigma; \Gamma \vdash e \hookrightarrow \check{e}_2 \implies \check{\tau}_2$, then $\check{e}_1 = \check{e}_2$ and $\check{\tau}_1 = \check{\tau}_2$.
- 3. If Σ ; $\Gamma \vdash e \hookrightarrow \check{e}_1 \leftarrow \check{\tau}$ and Σ ; $\Gamma \vdash e \hookrightarrow \check{e}_2 \leftarrow \check{\tau}$, then $\check{e}_1 = \check{e}_2$.

E Untyped hazelnut

In this section we describe an *untyped* version of the Hazelnut action calculus that might be layered with the marked lambda calculus to yield a structure editing calculus that supports non-local hole fixes. This is described in Section 3.2 of the paper.

MECHANIZATION O

▶ hazelnut.agda

E.1 Syntax

```
ZType \underline{\tau} ::= \triangleright \tau \triangleleft |\underline{\tau} \rightarrow \tau| \tau \rightarrow \underline{\tau} |\underline{\tau} \times \tau| \tau \times \underline{\tau}

ZExp \underline{e} ::= \triangleright e \triangleleft |\lambda x : \underline{\tau}. e | \lambda x : \tau. \underline{e} | \underline{e} e | e \underline{e}

| \text{let } x = \underline{e} \text{ in } e | \text{let } x = e \text{ in } \underline{e}

| \underline{e} + e | e + \underline{e}

| \text{if } \underline{e} \text{ then } e \text{ else } e | \text{if } e \text{ then } \underline{e} \text{ else } e | \text{if } e \text{ then } e \text{ else } \underline{e}

| (\underline{e}, e) | (\underline{e}, \underline{e}) | \pi_1 \underline{e} | \pi_2 \underline{e}
```

E.2 Cursor erasure

E.2.1 Type cursor erasure

 $\underline{\underline{\tau}}^{\diamond}$ is a metafunction ZType \rightarrow Type defined as follows:

E.2.2 Expression cursor erasure

 \underline{e}^{\diamond} is a metafunction ZExp \rightarrow UExp defined as follows:

```
\triangleright e \triangleleft ^{\diamond} = e
                         (\lambda x : \underline{\tau}. e)^{\diamond} = \lambda x : (\underline{\tau}^{\diamond}). e
                         (\lambda x : \tau . \underline{e})^{\diamond} = \lambda x : \tau . (\underline{e}^{\diamond})
                                           (\underline{e}\ e)^{\diamond} = (\underline{e}^{\diamond})\ e
                                           (e \underline{e})^{\diamond} = e (\underline{e}^{\diamond})
              (\operatorname{let} x = e \operatorname{in} e)^{\diamond} = \operatorname{let} x = (e^{\diamond}) \operatorname{in} e
              (\text{let } x = e \text{ in } \underline{e})^{\diamond} = \text{let } x = e \text{ in } (\underline{e}^{\diamond})
                                     (\underline{e} + \overline{e})^{\diamond} = (\underline{e}^{\diamond}) + e
                                     (e + \underline{e})^{\diamond} = e + (\underline{e}^{\diamond})
(if \underline{e} then e_1 else e_2)\diamond = if (\underline{e}\diamond) then e_1 else e_2
(if e_1 then \underline{e} else e_2)\diamond = if e_1 then (\underline{e}^{\diamond}) else e_2
(if e_1 then e_2 else \underline{e})^{\diamond} = if e_1 then e_2 else (\underline{e}^{\diamond})
                                          (\underline{e}, e)^{\diamond} = (\underline{e}^{\diamond}, e)
                                          (e, \underline{e})^{\diamond} = (e, \underline{e}^{\diamond})
                                         (\pi_1 \underline{e})^{\diamond} = \pi_1(\underline{e}^{\diamond})
                                         (\pi_2 \underline{e})^{\diamond} = \pi_2(\underline{e}^{\diamond})
```

E.3 Action model

E.3.1 Shape sort

 ψ tshape ψ is a shape on types

 $\frac{\text{ASORTARROW1}}{\text{arrow}_{L} \text{ tshape}} \quad \frac{\text{ASORTPROD1}}{\text{arrow}_{R} \text{ tshape}} \quad \frac{\text{ASORTPROD2}}{\text{prod}_{L} \text{ tshape}} \quad \frac{\text{ASORTNUM}}{\text{prod}_{R} \text{ tshape}} \quad \frac{\text{ASORTBOOL}}{\text{num tshape}} \quad \frac{\text{ASORTBOOL}}{\text{bool tshape}}$

 ψ eshape ψ is a shape on expressions

ASortVar	ASortLan	ı А	SORTAP1	ASortAi	2 ASor	RTLET1	ASortLet2
var <i>x</i> eshape	$\overline{\operatorname{lam} x \operatorname{es}}$	nape a	ıp _L eshape	ap _R esh	ape let _L	x eshape	$\overline{\text{let}_{R} x \text{ eshape}}$
ASortLit	ASortPlus1	ASortPl	us2 ASc	ORTTRUE	ASortFalse	ASortIf	1 ASortIf2
lit <i>n</i> eshape	plus _L eshape	plus _R es	hape tru	e eshape	false eshape	$\overline{if_{C}}$ esha	pe if _L eshape
ASortIf	3 ASo	RTPAIRL	ASortP.	AIRR	ASortProjL	. ASo	ortProjR
if _P esha	ne maii	eshape	nair⊳ e	shape	proi eshar	e pro	oi _e eshape

E.3.2 Type actions

$$\underline{\tau} \xrightarrow{\alpha} \underline{\tau}'$$

Movement

Deletion

$$\frac{\text{ATDEL}}{} \Rightarrow \tau \triangleleft \xrightarrow{\text{del}} \Rightarrow ? \triangleleft$$

Construction

ATConArrow2

$$ightarrow au^{<} \xrightarrow{\text{construct arrow}_L} au
ightarrow au^{<}$$

$$\tau \triangleleft \xrightarrow{\mathsf{construct}\;\mathsf{prod}_\mathsf{L}} \tau \times \triangleright ? \triangleleft$$

ATConProd2

ATCONNUM

$$\triangleright ? \triangleleft \xrightarrow{construct num} \triangleright num \triangleleft$$

ATConBool

$$\triangleright$$
? \triangleleft $\xrightarrow{\text{construct bool}} \triangleright \text{bool} \triangleleft$

Zipper Cases

ATZIPARR2
$$\underline{\tau} \xrightarrow{\alpha} \underline{\tau}'$$

ATZIPPROD1
$$\frac{\tau \xrightarrow{\alpha} \tau'}{\tau \times \tau \xrightarrow{\alpha} \tau'}$$

ATZIPPROD2
$$\underline{\tau} \xrightarrow{\alpha} \underline{\tau}'$$

E.3.3 Expression movement

$$\underline{e} \xrightarrow{\text{move } \delta} \underline{e}'$$

AEMLAMCHILD1

$$\triangleright \lambda x : \tau. e \triangleleft \xrightarrow{\text{move child } 1} \lambda x : \triangleright \tau \triangleleft. e$$

$$\triangleright \lambda x : \tau. e \triangleleft \xrightarrow{\text{move child 2}} \lambda x : \tau. \triangleright e \triangleleft$$

AEMLAMPARENT1

AEMLAMPARENT2

AEMAPCHILD1

$$\lambda x: \, \triangleright \tau \triangleleft. \, e \xrightarrow{\mathsf{move parent}} \, \triangleright \lambda x: \, \tau. \, e \triangleleft \qquad \qquad \lambda x: \, \tau. \, \triangleright e \triangleleft \xrightarrow{\mathsf{move parent}} \, \triangleright \lambda x: \, \tau. \, e \triangleleft \qquad \qquad \triangleright e_1 \, e_2 \triangleleft \xrightarrow{\mathsf{move child 1}} \, \triangleright e_1 \triangleleft e_2 \triangleleft \longrightarrow e_1 \triangleleft e_2 \triangleleft \longrightarrow e_1 \triangleleft e_2 \triangleleft \longrightarrow e_2 \triangleleft e_2 \triangleleft \longrightarrow e_1 \triangleleft e_2 \triangleleft \longrightarrow e_2 \triangleleft e_2 \triangleleft e_2 \triangleleft e_2 \square e_2 \square$$

$$\lambda x : \tau. \triangleright e \triangleleft \xrightarrow{\text{move parent}} \triangleright \lambda x : \tau. e \triangleleft$$

$$\triangleright e_1 \ e_2 \triangleleft \xrightarrow{\mathsf{move child 1}} \triangleright e_1 \triangleleft e_2$$

AEMA_PCHILD2

$$\triangleright e_1 \ e_2 \triangleleft \xrightarrow{\mathsf{move child 2}} e_1 \ \triangleright e_2 \triangleleft$$

AEMAPPARENT1

AEMAPPARENT2

$$e_1 \triangleright e_2 \triangleleft \xrightarrow{\text{move parent}} \triangleright e_1 e_2 \triangleleft$$

AEMLetChild1

$$\triangleright$$
 let $x = e_1$ in $e_2 \triangleleft \xrightarrow{\text{move child 1}}$ let $x = \triangleright e_1 \triangleleft$ in e_2

AEMLetChild2

$$\triangleright$$
 let $x = e_1$ in $e_2 \triangleleft \xrightarrow{\text{move child 2}}$ let $x = e_1$ in $\triangleright e_2 \triangleleft$

AEMLetParent1

AEMLetParent2

et
$$x = e_1$$
 in $\triangleright e_2 \triangleleft \xrightarrow{\text{move parent}} \triangleright \text{let } x = e_1 \text{ in } e_2 \triangleleft$

AEMPLUSCHILD1

$$\triangleright e_1 + e_2 \triangleleft \xrightarrow{\text{move child 1}} \triangleright e_1 \triangleleft + e_2 \triangleleft$$

AEMPlusParent2

$$e_1 + \triangleright e_2 \triangleleft \xrightarrow{\text{move parent}} \triangleright e_1 + e_2 \triangleleft$$

AEMIFCHILD1

$$ightharpoonup$$
 if e_1 then e_2 else $e_3
ightharpoonup \frac{\text{move child 1}}{}{}$ if $ightharpoonup e_1
ightharpoonup$ then e_2 else e_3

AEMIrChild2

$$\triangleright$$
 if e_1 then e_2 else $e_3 \triangleleft \xrightarrow{\mathsf{move child 2}}$ if e_1 then $\triangleright e_2 \triangleleft$ else e_3

AEMIrChild3

$$ightharpoonup$$
 if e_1 then e_2 else $e_3
ightharpoonup$ if e_1 then e_2 else $ightharpoonup e_3
ightharpoonup$

AEMIFPARENT1

if $\triangleright e_1 \triangleleft$ then e_2 else $e_3 \xrightarrow{\text{move parent}} \triangleright \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \triangleleft$

AEMIFPARENT2

if e_1 then $\triangleright e_2 \triangleleft$ else $e_3 \xrightarrow{\text{move parent}} \triangleright \text{if } e_1$ then e_2 else $e_3 \triangleleft$

AEMIFPARENT3

AEMPairChild1

$\triangleright (e_1, e_2) \triangleleft \xrightarrow{\mathsf{move child 1}} (\triangleright e_1 \triangleleft, e_2)$

AEMPairChild2

AEMPairParent1

AEMPairParent2

$$(\triangleright e_1 \triangleleft, e_2) \xrightarrow{\mathsf{move parent}} \triangleright (e_1, e_2) \triangleleft$$

$$(e_1, \triangleright e_2 \triangleleft) \xrightarrow{\mathsf{move parent}} \triangleright (e_1, e_2) \triangleleft$$

AEMProjlChild

$$\pi_1 \triangleright e_1 \triangleleft \xrightarrow{\mathsf{move parent}} \triangleright \pi_1 e_1 \triangleleft$$

AEMProjRParent

$$\pi_2 \triangleright e_1 \triangleleft \xrightarrow{\mathsf{move parent}} \triangleright \pi_2 e_1 \triangleleft$$

E.3.4 Expression actions

$$\underline{e} \xrightarrow{\alpha} \underline{e}'$$

Movement

$$\frac{\underline{e} \xrightarrow{\text{move } \delta} \underline{e'}}{\underline{e} \xrightarrow{\text{move } \delta} \underline{e'}}$$

Deletion

$$\triangleright e \triangleleft \xrightarrow{\text{del}} \triangleright () \triangleleft$$

Construction

$$\triangleright e \triangleleft \xrightarrow{\text{construct lam } x} \lambda x : \triangleright ? \triangleleft . e$$

AEConAp2

$$AEConLet 1\\$$

AEConNum

$$| > (|) < | \xrightarrow{\text{construct true}} | > tt < |$$

Zipper Cases

$$\frac{AEZIPLAM1}{\frac{x^{\alpha} - x^{\prime}}{\lambda x : \underline{\tau}. e^{\frac{\alpha}{\beta}} - x^{\prime}}} \underbrace{\frac{e^{\frac{\alpha}{\beta}} e^{\prime}}{\lambda x : \underline{\tau}. e^{\frac{\alpha}{\beta}} - x^{\prime}}} \underbrace{\frac{e^{\frac{\alpha}{\beta}} e^{\prime}}{\lambda x : \underline{\tau}. e^{\frac{\alpha}{\beta}} - x^{\prime}}} \underbrace{\frac{e^{\frac{\alpha}{\beta}} e^{\prime}}{e^{\frac{\alpha}{\beta}} - e^{\beta}}} \underbrace{\frac{e^{\frac{\alpha}{\beta}} e^{\prime}}{e^{\frac{\alpha}\beta}} \underbrace{\frac{e^{\frac{\alpha}{\beta}} e^{\prime}}{e^{\beta}}} \underbrace{\frac{e^{\alpha}} e^{\prime}$$

E.4 Metatheorems

Theorem E.1 (Movement Erasure Invariance).

1. If
$$\underline{\tau} \xrightarrow{\text{move } \delta} \underline{\tau}'$$
, then $\underline{\tau}^{\diamond} = \underline{\tau}'^{\diamond}$.

2. If
$$\underline{e} \xrightarrow{\text{move } \delta} \underline{e}'$$
, then $\underline{e}^{\diamond} = \underline{e}'^{\diamond}$.

Theorem E.2 (Reachability).

- 1. If $\underline{\tau}^{\circ} = \underline{\tau}'^{\circ}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} * \underline{\tau}'$.
- 2. If $\underline{e}^{\diamond} = \underline{e'}^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{e} \xrightarrow{\overline{\alpha}} \underline{e'}$.

Lemma E.2.1 (Reach Up).

- 1. If $\underline{\tau}^{\circ} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} * \triangleright \tau \triangleleft$.
- 2. If $\underline{e}^{\diamond} = e$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{e} \xrightarrow{\overline{\alpha}} * \triangleright e \triangleleft$.

Lemma E.2.2 (Reach Down).

- 1. If $\underline{\tau}^{\diamond} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\neg \tau \triangleleft \xrightarrow{\overline{\alpha}} \underline{\tau}$.
- 2. If $\underline{e}^{\diamond} = e$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{e} = \underline{\alpha} \xrightarrow{\overline{\alpha}} \underline{e}$.

Theorem E.3 (Constructability).

- 1. For every τ , there exists $\overline{\alpha}$ such that $\triangleright ? \triangleleft \xrightarrow{\overline{\alpha}} * \triangleright \tau \triangleleft$.
- 2. For every e, there exists $\overline{\alpha}$ such that $\triangleright () \triangleleft \xrightarrow{\overline{\alpha}} * \triangleright e \triangleleft$.

Theorem E.4 (Determinism).

- 1. If $\underline{\tau} \xrightarrow{\alpha} \underline{\tau}'$ and $\underline{\tau} \xrightarrow{\alpha} \underline{\tau}''$, then $\underline{\tau}' = \underline{\tau}''$.
- 2. If $e \xrightarrow{\alpha} e'$ and $e \xrightarrow{\alpha} e''$, then e' = e''.

F Typed hazelnut

We now give a description of a *typed* version of the Hazelnut action calculus that incorporates the marked lambda calculus to solve the problem of non-local hole fixes. Here, unlike in the integration of the untyped version and the marked lambda calculus given in Section E, remarking is performed only when necessary instead of after every action. This system is sketched out in Section 3.2 of the paper.

MECHANIZATION ×

F.1 Syntax

Zippered types are the same as in the untyped model.

F.1.1 Well-formedness

 $\underline{\check{e}}$ WF $\underline{\check{e}}$ is well-formed

WFCursor	WFLAm1	WFL	ам2 <u>ě</u> WF	WFLAM3	WFLam4 <u>ě</u> W	F	WFLAM5
⊳ě⊲ WF	$\overline{\lambda x} : \underline{\tau}. \check{e}$	$\overline{WF} = \overline{\lambda x}$:	τ. <u>ě</u> WF	$\sqrt{ \lambda x } : \underline{\tau}. \check{e})_{\bullet}^{\leftarrow} V$	\sqrt{F} $\sqrt{ \lambda x } : \tau. \underline{\check{e}}$) <mark>←</mark> WF	$(\lambda x : \underline{\tau}. \check{e})$. WF
				WFAp3 <u>ě</u> WF			FLET1 <u>ě</u> WF
$(\lambda x : \tau.$	<u>ě</u>). WF	<u>ě</u> ě WF	ě <u>ě</u> WF	$(\underline{\check{e}})_{\bullet}^{\Rightarrow} \check{e} WF$	$(\check{e})_{\bullet \to}^{\Rightarrow} \check{e} \text{ WI}$	F let	$t x = \underline{\check{e}} \text{ in } \check{e} \text{ WF}$
WFLet2 <u>ě</u> W	/F	WFPLUS1 <u>ě</u> WF			<u>ě</u> WF	WFI _F 2	<u>ě</u> WF
$let x = \check{e}$	/F in <u>ě</u> WF	$\underline{\underline{\check{e}}} + \check{e} WF$	$ \underline{\check{e}} + \underline{\check{e}} W I $	F if <u>ě</u> ther	$ \underline{\check{e}} $ WF $ \check{e}_1 $ else \check{e}_2 WF	if \check{e}_1 th	en $\underline{\check{e}}$ else \check{e}_2 WF
WFI _F 3	F	WFInconsis:	rentBranches WF		istentBranches2 <u>ě</u> WF	WFInco	onsistentBranches3 <u>ě</u> WF
if \check{e}_1 then \check{e}_2	else <u>ě</u> WF	(if $\underline{\check{e}}$ then \check{e}	else \check{e}_2 $ _{\not\!\!\!/}$ WF	(if \check{e}_1 then	$ \underline{\check{e}} $ else $ \check{e}_2 $ WF	(lif ě ₁ th	nen \check{e}_2 else $\underline{\check{e}}$ $ _{\not\!\!\!/}$ WF
	WFPAIR2 <u>ě</u> WF (ě, ě) W	<u>ě</u> '	WF	WFPAIR4	<u>ě</u> WF		<u>ě</u> WF
WFProjR2 <u>ě</u> WF	WFI	i ((<u>e,</u> e) iconsistentT: >ě⊲ <u>ě</u> W	YPES WE	LAM3	WFLAM4 <u>e</u> WF	,	7FLAM5
$ \overline{\pi_2(\![\check{\underline{e}}]\!)^{\Rightarrow}_{\bullet_{\star}}} W $	F	$(\underline{\check{e}})_{+}$ WF	(\lambda	$c: \underline{\tau}. \check{e})_{:} WF$	$(\lambda x : \tau. \underline{e})$. W	/F ($\lambda x : \underline{\tau}. \check{e})_{\bullet \rightarrow}^{\leftarrow} WF$
WFLAM6 <u>e</u> WF		FA _P 3 <u>e</u> WF	WFAp4 <u>e</u> WF		TENTBRANCHES1	WFInco	nsistentBranches2 <u>e</u> WF
$(\lambda x : \tau. \underline{e})_{\bullet_{+}}^{\leftarrow}$	WF (<u>e</u>) → ě WF	$(\check{e})^{\Rightarrow}_{\downarrow} \underline{e} \text{ WF}$	(if <u>e</u> then ě	\tilde{e}_1 else \tilde{e}_2 \mathbb{V}_{1} WF	(if \check{e}_1 th	ien <u>e</u> else ě₂) _ự WF

WFInconsistentBranches3	WFPAIR3	WFPair4	WFProjL2	WFProjR2
<u>e</u> WF	<u>e</u> WF	<u>e</u> WF	<u>e</u> WF	<u>e</u> WF
(if \check{e}_1 then \check{e}_2 else \underline{e}) $\forall WF$	$\overline{((\underline{e}, \check{e}))}_{k}^{\leftarrow} WF$	$\overline{((\check{e},\underline{e}))}_{\star}^{=}WF$	$\overline{\pi_1(\underline{e})} \rightarrow WF$	$\overline{\pi_2(\underline{e})} \rightarrow WF$

F.2 Cursor erasure

F.2.1 Type cursor erasure

Type cursor erasure is the same as in the untyped model.

F.2.2 Expression cursor erasure

 $|\underline{\check{e}}^{\diamond}|$ is a metafunction ZMExp \rightarrow MExp defined as follows:

```
\triangleright \check{e} \triangleleft^{\diamond} = \check{e}
                                          (\lambda x : \underline{\tau}. \check{e})^{\diamond} = \lambda x : (\underline{\tau}^{\diamond}). \check{e}
                                          (\lambda x : \tau. \underline{\check{e}})^{\diamond} = \lambda x : \tau. (\underline{\check{e}}^{\diamond})
                                 \begin{array}{rcl} (\lambda x: \underline{\tau}.\ \check{e})_{\star,+}^{=\circ} &=& (\lambda x: (\underline{\tau}^{\circ}).\ \check{e})_{\star,+}^{=} \\ (\lambda x: \underline{\tau}.\ \check{e})_{\star,+}^{=\circ} &=& (\lambda x: \tau.\ (\check{\underline{e}}^{\circ}))_{\star,+}^{=} \\ (\lambda x: \underline{\tau}.\ \check{e})_{\star,-}^{=\circ} &=& (\lambda x: (\underline{\tau}^{\circ}).\ \check{e})_{\star,-}^{=} \end{array} 
                                     (\lambda x : \tau . \underline{\check{e}}) \cdot = (\lambda x : \tau . (\underline{\check{e}}))
                                                                  (\underline{\check{e}}\ \check{e})^{\diamond} = (\underline{\check{e}}^{\diamond})\ \check{e}
                                                                 (\check{e}\ \check{\underline{e}})^{\diamond} = \check{e}\ (\check{\underline{e}}^{\diamond})
                                                  ((\underline{\check{e}})^{\Rightarrow}_{\bullet \to} \check{e})^{\diamond} = (\underline{\check{e}}^{\diamond})^{\Rightarrow}_{\bullet \to} \check{e}
                                                  ((|\check{e}|) \xrightarrow{\rightarrow} \check{e})^{\diamond} = (|\check{e}|) \xrightarrow{\rightarrow} (\check{e}^{\diamond})
                            (\text{let } x = \underline{\check{e}} \text{ in } \check{e})^{\diamond} = \text{let } x = (\underline{\check{e}}^{\diamond}) \text{ in } \check{e}
                            (\text{let } x = \check{e} \text{ in } \check{e})^{\diamond} = \text{let } x = \check{e} \text{ in } (\check{e}^{\diamond})
                                                           (\check{e} + \check{e})^{\diamond} = (\check{e}^{\diamond}) + \check{e}
                                                           (\check{e} + \underline{\check{e}})^{\diamond} = \check{e} + (\underline{\check{e}}^{\diamond})
        (if \underline{\check{e}} then \check{e}_1 else \check{e}_2)^{\diamond} = if (\underline{\check{e}}^{\diamond}) then \check{e}_1 else \check{e}_2
       (if \check{e}_1 then \underline{\check{e}} else \check{e}_2) = if \check{e}_1 then (\underline{\check{e}}^{\diamond}) else \check{e}_2
        (if \check{e}_1 then \check{e}_2 else \underline{\check{e}})^{\diamond} = if \check{e}_1 then \check{e}_2 else (\underline{\check{e}}^{\diamond})
(\underline{\check{e}}, \check{e})^{\diamond} = (\underline{\check{e}}^{\diamond}, \check{e})
                                                                 (\check{e}, \underline{\check{e}})^{\diamond} = (\check{e}, \underline{\check{e}}^{\diamond})
                                                   (\pi_1\underline{\check{e}})^{\diamond} = \pi_1(\underline{\check{e}}^{\diamond})
                                                    (\pi_1(\underline{\underline{e}})^{\Rightarrow})^{\diamond} = \pi_1(\underline{\underline{e}}^{\diamond})^{\Rightarrow}
                                                                 (\pi_2\underline{\check{e}})^{\diamond} = \pi_2(\underline{\check{e}}^{\diamond})
                                                    (\pi_2(|\underline{\check{e}}|)^{\rightarrow})^{\diamond} = \pi_2(|\underline{\check{e}}^{\diamond}|)^{\rightarrow}
                                                                      (|\underline{e}|)_{+}^{\diamond} = (|\underline{e}|^{\diamond})_{+}
```

F.3 Action model

The action syntax is the same in the untyped model.

F.3.1 Shape sort

The shape sort judgments are the same as in the untyped model.

F.3.2 Type actions

Type actions are the same as in the untyped model.

F.3.3 Expression movement

 $\stackrel{\triangleright}{\check{e}_1} + \check{e}_2 \stackrel{\neg}{\longrightarrow} \stackrel{\text{move child 1}}{\longrightarrow} \stackrel{\triangleright}{\check{e}_1} \stackrel{\rightarrow}{\longrightarrow} \stackrel{\bullet}{\check{e}_2} \stackrel{\rightarrow}{\longrightarrow} \stackrel{\bullet}{\check{e}_1} + \check{e}_2 \stackrel{\neg}{\longrightarrow} \stackrel{\text{move child 2}}{\longrightarrow} \stackrel{\bullet}{\check{e}_1} + \stackrel{\triangleright}{\check{e}_2} \stackrel{\neg}{\longrightarrow} \stackrel{\bullet}{\to} \check{e}_1 + \check{e}_2 \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\to} \check{e}_1 + \check{e}_2 \stackrel{\bullet}{\to} \stackrel{\bullet}{$

AEMPLUSPARENT2

AEMIrChild1

$$\check{e}_1 + \triangleright \check{e}_2 \triangleleft \xrightarrow{\text{move parent}} \triangleright \check{e}_1 + \check{e}_2 \triangleleft$$

 $\triangleright \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \triangleleft \xrightarrow{\text{move child } 1} \text{if } \triangleright \check{e}_1 \triangleleft \text{ then } \check{e}_2 \text{ else } \check{e}_3$

AEMIrChild2

 \triangleright if \check{e}_1 then \check{e}_2 else $\check{e}_3 \triangleleft \xrightarrow{\mathsf{move child 2}}$ if \check{e}_1 then $\triangleright \check{e}_2 \triangleleft$ else \check{e}_3

AEMIrChild3

AEMIFPARENT1

if $\triangleright \check{e}_1 \triangleleft$ then \check{e}_2 else $\check{e}_3 \xrightarrow{\text{move parent}} \triangleright \text{if } \check{e}_1$ then \check{e}_2 else $\check{e}_3 \triangleleft$

AEMIFPARENT2

if \check{e}_1 then $\triangleright \check{e}_2 \triangleleft$ else $\check{e}_3 \xrightarrow{\text{move parent}} \triangleright \text{if } \check{e}_1$ then \check{e}_2 else $\check{e}_3 \triangleleft$

AEMIFPARENT3

if \check{e}_1 then \check{e}_2 else $\triangleright \check{e}_3 \triangleleft \xrightarrow{\mathsf{move\ parent}} \triangleright \mathsf{if}\ \check{e}_1$ then \check{e}_2 else $\check{e}_3 \triangleleft$

AEMInconsistentBranchesChild1

$$\vdash (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\not \cap} \stackrel{\text{move child } 1}{\longrightarrow} (\text{if } \vdash \check{e}_1 \multimap \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\not \cap}$$

AEMInconsistentBranchesChild2

AEMInconsistentBranchesChild3

$$\hspace{0.38cm} \hspace{0.38cm} \hspace{0$$

AEMInconsistentBranchesParent1

$$(\text{if } \triangleright \check{e}_1 \triangleleft \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\nmid \! \! \mid} \xrightarrow{\text{move parent}} \triangleright (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\nmid \! \! \mid} \triangleleft$$

AEMInconsistentBranchesParent2

$$(\text{if } \check{e}_1 \text{ then } \triangleright \check{e}_2 \triangleleft \text{ else } \check{e}_3)_{\not | 1} \xrightarrow{\text{move parent}} \triangleright (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\not | 1} \triangleleft$$

AEMInconsistentBranchesParent3

AEMPairChild1

$$\triangleright (\check{e}_1, \check{e}_2) \triangleleft \xrightarrow{\text{move child } 1} (\triangleright \check{e}_1 \triangleleft , \check{e}_2)$$

AEMPairChild2

$$\triangleright (\check{e}_1, \check{e}_2) \triangleleft \xrightarrow{\text{move child 2}} (\check{e}_1, \triangleright \check{e}_2 \triangleleft)$$

AEMPAIRCHILD3

AEMPairChild4

$$(\triangleright \check{e}_1 \triangleleft, \check{e}_2) \xrightarrow{\text{move parent}} \triangleright (\check{e}_1, \check{e}_2) \triangleleft$$

$$(\check{e}_1, \triangleright \check{e}_2 \triangleleft) \xrightarrow{\text{move parent}} \triangleright (\check{e}_1, \check{e}_2) \triangleleft$$

AEMPairParent3

$$((\triangleright \check{e}_1 \triangleleft, \check{e}_2)) \stackrel{=}{\longrightarrow} \longrightarrow ((\check{e}_1, \check{e}_2)) \stackrel{=}{\longrightarrow} ((\check{e}_1, \check{e$$

AEMProjLChild2

AEMProjRChild1

AEMProjRParent2

AEMPairParent4

$$((\check{e}_1, \triangleright \check{e}_2 \triangleleft)) \stackrel{\leftarrow}{\longrightarrow} \xrightarrow{\text{move parent}} \triangleright ((\check{e}_1, \check{e}_2)) \stackrel{\leftarrow}{\longrightarrow}$$

AEMProjLChild1

$$\triangleright \pi_1 \check{e} \triangleleft \xrightarrow{\text{move child 1}} \pi_1 \triangleright \check{e} \triangleleft$$

AEMProjLParent1

AEMProjRChild2

$$\pi_1 \triangleright \check{e} \triangleleft \xrightarrow{\text{move parent}} \triangleright \pi_1 \check{e} \triangleleft$$

AEMProjLParent2

$$\pi_1(\!\!\mid\! \triangleright \check{e} \!\!\mid\!)) \xrightarrow{\longrightarrow} \frac{\text{move parent}}{\longrightarrow} \triangleright \pi_1(\!\!\mid\! \check{e} \!\!\mid\!) \xrightarrow{\longrightarrow}$$

AEMProjRParent1

$$\pi_2 \triangleright \check{e} \triangleleft \xrightarrow{\text{move parent}} \triangleright \pi_2 \check{e} \triangleleft$$

$$\pi_2(\triangleright\check{e}\triangleleft) \xrightarrow{\Rightarrow} \xrightarrow{\text{move parent}} \triangleright \pi_2(\check{e}) \xrightarrow{\Rightarrow}$$

F.3.4 Synthetic expression actions

$$\boxed{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau'}$$

Movement

$$\frac{\underline{\check{e}} \xrightarrow{\text{move } \delta} \underline{\check{e}}'}{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\text{move } \delta} \underline{\check{e}}' \Rightarrow \tau}$$

Deletion

$$\frac{}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{del}} \triangleright () \triangleleft \Rightarrow ?}$$

Construction

ASEConVar

ASECONVAR
$$x : \tau \in \Gamma$$

$$\Gamma \vdash \triangleright \langle | \rangle \triangleleft \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright x \triangleleft \Rightarrow \tau$$

$$ASECONFREE$$

$$x \notin \text{dom}(\Gamma)$$

$$\Gamma \vdash \triangleright \langle | \rangle \triangleleft \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright \langle | x \rangle_{\neg} \triangleleft \Rightarrow ?$$

$$\Gamma \vdash \triangleright \emptyset \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright x \triangleleft \Rightarrow \tau$$

ASEConFree

$$\Gamma \vdash \triangleright () \triangleleft \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright (x) \triangleleft \Rightarrow ?$$

ASEConLam

$$\Gamma, x : ? \vdash e^{\Box} \hookrightarrow e' \Longrightarrow \tau'$$

ASECONLAM
$$\begin{array}{c}
\Gamma, \ x : ? \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Rightarrow \tau' \\
\hline
\Gamma \vdash \rhd \check{e}^{\lhd} \Rightarrow \tau \xrightarrow{\text{construct lam } x} \lambda x : \rhd ? \lhd . \ \check{e}' \Rightarrow ? \to \tau'
\end{array}$$

$$\begin{array}{c}
ASECONAPL1 \\
\tau \rhd \to \tau_1 \to \tau_2 \\
\hline
\Gamma \vdash \rhd \check{e}^{\lhd} \Rightarrow \tau \xrightarrow{\text{construct apl}} (|\check{e}|)_{+} \rhd (|)^{\lhd} \Rightarrow \tau_2$$

$$\tau \triangleright_{\rightarrow} \tau_1 \rightarrow \tau_2$$

$$\xrightarrow{\text{construct ap}_L} \tau_2 \rightarrow \tau_2$$

ASEConApL2

$$\begin{array}{ccc}
& & & \downarrow & \downarrow \\
\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau & \xrightarrow{\text{construct ap}_L} & |\check{e}| & \triangleright | | \triangleleft \Rightarrow 1
\end{array}$$

ASEConApR

$$\frac{\tau \blacktriangleright_{+}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct ap}_{L}} (|\check{e}|)_{+} \triangleright (|) \triangleleft \Rightarrow ?} \qquad \frac{\Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow ?}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct ap}_{R}} \triangleright (|) \triangleleft \check{e}' \Rightarrow ?}$$

$$\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct let}_{L} x} \text{let } x = \check{e} \text{ in } \triangleright \emptyset \triangleleft \Rightarrow ?$$

ASECONLET1
$$\Gamma, x : ? \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Rightarrow \tau'$$

$$\Gamma \vdash \triangleright \check{e}^{\lhd} \Rightarrow \tau \xrightarrow{\text{construct let}_{L} x} \text{let } x = \check{e} \text{ in } \triangleright \emptyset \Rightarrow ?$$

$$\Gamma \vdash \triangleright \check{e}^{\lhd} \Rightarrow \tau \xrightarrow{\text{construct let}_{L} x} \text{let } x = \triangleright \emptyset \Rightarrow \text{ in } \check{e}' \Rightarrow \tau'$$

ASEConNum

$$\Gamma \vdash |\!\!| |\!\!| | |\!\!| \Rightarrow ? \xrightarrow{\mathsf{construct lit } \underline{n}} |\!\!| \underline{n} |\!\!| \Rightarrow \mathsf{num}$$

ASEConPlusR

$$\Gamma \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Leftarrow \mathsf{num}$$

$$\mathsf{construct plus}_{\mathsf{R}}$$

ASEConIfL

$$\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct if}_L} \text{if } \triangleright () \triangleleft \text{ then } \check{e} \text{ else } () \Rightarrow \tau$$

ASEConPairL

$$\frac{}{\Gamma \vdash \triangleright \check{e}^{\triangleleft}} \Rightarrow \tau \xrightarrow{\text{construct pair}_{L}} (\triangleright \check{e}^{\triangleleft}, \|) \Rightarrow \tau \times ?$$

ASEConProjL

$$\frac{\tau \Vdash_{\times} \tau_{1} \times \tau_{2}}{\Gamma \vdash_{} \vdash \check{e}\check{e}^{\triangleleft} \implies \tau \xrightarrow{\text{construct proj}_{L}} \pi_{1} \vdash_{} \check{e}^{\triangleleft} \implies \tau_{1}}$$

ASEConProjR1

$$\frac{\tau \triangleright_{\times} \tau_{1} \times \tau_{2}}{\Gamma \vdash \triangleright \check{e} \triangleleft \implies \tau \xrightarrow{\text{construct proj}_{R}} \pi_{2} \triangleright \check{e} \triangleleft \implies \tau_{2}}$$

ASEConPlusL

$$\frac{\Gamma \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Leftarrow \mathsf{num}}{\Gamma \vdash \triangleright \check{e}^{\triangleleft} \Rightarrow \tau \xrightarrow{\mathsf{construct plus_L}} \check{e}' + \triangleright ()\!\!\!/ \Rightarrow \mathsf{num}}$$

ASEConIfC

$$\frac{\Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow \mathsf{bool}}{\Gamma \vdash \trianglerighteq \check{e} \dashv \Rightarrow \tau \xrightarrow{\mathsf{construct} \; \mathsf{if}_{\mathsf{C}}} \mathsf{if} \; \check{e}' \; \mathsf{then} \; \trianglerighteq (\!\!\! \ \!\! \) \dashv \; \mathsf{else} \; (\!\!\! \ \!\!\! \) \Rightarrow ?}$$

ASEConIfR

$$\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct if}_{\mathbb{R}}} \text{if } \triangleright () \triangleleft \text{ then } () \text{ else } \check{e} \Rightarrow \tau$$

ASEConPairR

$$\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct pair}_{R}} ((||), \triangleright \check{e} \triangleleft) \Rightarrow ? \times \tau$$

ASEConProjL2

$$\frac{\tau \blacktriangleright_{\star}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct proj}_{L}} \pi_{1} (\triangleright \check{e} \triangleleft) \xrightarrow{\rightarrow} ?$$

ASEConProjR2

$$\frac{\tau}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau} \xrightarrow{\text{construct proj}_{\mathbb{R}}} \pi_2 (\triangleright \check{e} \triangleleft) \xrightarrow{\downarrow} \Rightarrow ?$$

Zipper Cases

ASEZIPLAMT1

$$\frac{\underline{\tau_1} \xrightarrow{\alpha} \underline{\tau_1'} \qquad \underline{\tau_1'} = \underline{\tau_1'}^{\diamond}}{\Gamma \vdash \lambda x : \tau_1. \check{e} \Rightarrow \tau_1^{\diamond} \to \tau_2 \xrightarrow{\alpha} \lambda x : \tau_1'. \check{e} \Rightarrow \tau_1^{\diamond} \to \tau_2}$$

$$\frac{\underline{\tau_{1}} \stackrel{\alpha}{\to} \underline{\tau'_{1}} \qquad \underline{\tau'_{1}} = \underline{\tau'_{1}}^{\circ}}{\Gamma \vdash \lambda x : \underline{\tau_{1}} . \ \check{e} \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau_{2} \stackrel{\alpha}{\to} \lambda x : \underline{\tau'_{1}} . \ \check{e} \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau_{2}$$

$$\frac{\underline{\tau_{1}} \stackrel{\alpha}{\to} \underline{\tau'_{1}}}{\Gamma \vdash \lambda x : \underline{\tau_{1}} . \ \check{e} \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau_{2} \stackrel{\alpha}{\to} \lambda x : \underline{\tau'_{1}} . \ \check{e}' \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau'_{2}}$$

$$\frac{\underline{\tau_{1}} \stackrel{\alpha}{\to} \underline{\tau'_{1}}}{\Gamma \vdash \lambda x : \underline{\tau_{1}} . \ \check{e} \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau_{2} \stackrel{\alpha}{\to} \lambda x : \underline{\tau'_{1}} . \ \check{e}' \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau'_{2}}$$

ASEZIPLAME

$$\frac{\Gamma, \ x : \tau_1 \vdash \underline{\check{e}} \Rightarrow \tau_2 \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau_2'}{\Gamma \vdash \lambda x : \tau_1 . \ \underline{\check{e}} \Rightarrow \tau_1 \to \tau_2 \xrightarrow{\alpha} \lambda x : \tau_1 . \ \underline{\check{e}}' \Rightarrow \underline{\tau}_1 \to \tau_2'}$$

$$\frac{\Gamma \vdash_{M} \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash \check{\underline{e}}_{1} \Rightarrow \tau_{1} \stackrel{\alpha}{\to} \check{\underline{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime}}{\tau_{1}^{\prime} \triangleright_{\to} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{e}_{2} \Leftarrow \tau_{2}}$$

$$\frac{\tau_{1}^{\prime} \triangleright_{\to} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{e}_{2} \Leftarrow \tau_{2}}{\Gamma \vdash \check{\underline{e}}_{1} \ \check{e}_{2} \Rightarrow \tau \stackrel{\alpha}{\to} \check{\underline{e}}_{1}^{\prime} \ \check{e}_{2} \Rightarrow \tau_{3}}$$

$$\frac{\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash \check{\underline{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}_{1}' \Rightarrow \tau_{1}'}{\tau_{1}' \vdash_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{e}_{2} \nleftrightarrow \tau_{2}}$$

$$\frac{\tau_{1}' \vdash_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{e}_{2} \nleftrightarrow \tau_{2}}{\Gamma \vdash \check{e}_{1} \not e_{2} \Rightarrow \tau \xrightarrow{\alpha} \check{e}_{1}' (|\check{e}_{2}|) \Rightarrow \tau_{2}}$$

$$\frac{\Gamma \bowtie \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash \check{\underline{e}}_{1} \Rightarrow \tau_{1} \stackrel{\alpha}{\to} \check{\underline{e}}_{1}' \Rightarrow \tau_{1}'}{\tau_{1}' \bowtie_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{\underline{e}}_{2} \not\Leftarrow \tau_{2}} \qquad \frac{\Gamma \bowtie \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1}}{\Gamma \vdash \check{\underline{e}}_{1}^{\circ} \check{\underline{e}}_{2} \Rightarrow \tau \stackrel{\alpha}{\to} \check{\underline{e}}_{1}' (\check{\underline{e}}_{2})_{+} \Rightarrow \tau_{3}} \qquad \frac{\tau_{1}' \bowtie_{\rightarrow} \tau_{1}}{\Gamma \vdash \check{\underline{e}}_{1}^{\circ} \check{\underline{e}}_{2} \Rightarrow \tau \stackrel{\alpha}{\to} (|\check{\underline{e}}_{1}'|)_{+}^{\circ} \check{\underline{e}}_{2} \Rightarrow ?}$$

ASEZIPAPL4

$$\frac{\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\underline{\check{e}}_{1}} \Rightarrow \tau_{1}^{\alpha} \xrightarrow{\underline{e}'_{1}} \Rightarrow \tau'_{1}}{\tau'_{1} \vdash_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash_{\underline{\check{e}}_{2}} \leftarrow \tau_{2}}$$

$$\frac{\tau'_{1} \vdash_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash_{\underline{\check{e}}_{2}} \leftarrow \tau_{2}}{\Gamma \vdash_{\alpha} \vdash$$

ASEZ_{IP}A_PL5

ASEZIPAPLA
$$\Gamma \vdash_{\overline{M}} \underbrace{\check{e}_{1}^{\circ}} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\underline{\check{e}}_{1}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underbrace{\check{e}_{1}^{\prime}} \Rightarrow \tau_{1}^{\prime} \qquad \qquad \Gamma \vdash_{\underline{\check{e}}_{1}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}_{1}^{\prime}} \Rightarrow \tau_{1}^{\prime} \qquad \qquad \Gamma \vdash_{\underline{\check{e}}_{1}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}_{1}^{\prime}} \Rightarrow \tau_{1}^{\prime} \Rightarrow \tau_{1}^{\prime}$$

$$\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash \underline{\check{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}}_{1}' \Rightarrow \tau_{1}'$$

$$\tau_{1}' \vdash_{\rightarrow}$$

$$\frac{\Gamma \vdash \underline{\check{e}}_2 \xrightarrow{\alpha} \underline{\check{e}}_2' \Leftarrow ?}{\Gamma \vdash (|\underline{\check{e}}_1|)^{-}, \underline{\check{e}}_2 \Rightarrow ? \xrightarrow{\alpha} (|\underline{\check{e}}_1|)^{-}, \underline{\check{e}}_2' \Rightarrow ?}$$

$$\frac{\Gamma \vdash \underline{\check{e}}_{2} \xrightarrow{\alpha} \underline{\check{e}}'_{2} \Leftarrow ?}{\Gamma \vdash (\underline{\check{e}}_{1})_{-1}^{-1} \underline{\check{e}}_{2} \Rightarrow ? \xrightarrow{\alpha} (|\underline{\check{e}}_{1})_{-1}^{-1} \underline{\check{e}}'_{2} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}}_{1} \Rightarrow \tau_{1}}{\Gamma \vdash \text{let } x = \underline{\check{e}}_{1} \text{ in } \underline{\check{e}}_{2} \Rightarrow \tau_{2} \xrightarrow{\alpha} \text{let } x = \underline{\check{e}}'_{1} \text{ in } \underline{\check{e}}_{2} \Rightarrow \tau_{2}}$$

ASEZIPLETL2

ASEZIPLETR

ASEZIPLETR
$$\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1}^{\diamond} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\check{\underline{e}}_{1}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime} \qquad \Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1} \Rightarrow \tau_{1}^{\prime} \qquad \Gamma, \ x : \tau_{1} \vdash_{\mathbb{M}} \check{\underline{e}}_{2}^{\diamond} \Rightarrow \tau_{2}$$

$$\underline{\tau_{1} \neq \tau_{1}^{\prime}} \qquad \Gamma, \ x : \tau_{1}^{\prime} \vdash_{\check{\underline{e}}_{2}} \hookrightarrow_{\check{\underline{e}}_{2}^{\prime}} \hookrightarrow_{\check{\underline{e}}_{2}^{\prime}} \Rightarrow \tau_{2}^{\prime} \qquad \Gamma, \ x : \tau_{1} \vdash_{\check{\underline{e}}_{2}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \check{\underline{e}}_{2}^{\prime} \Rightarrow \tau_{2}^{\prime}$$

$$\underline{\Gamma} \vdash_{\mathbb{H}} \text{let } x = \check{\underline{e}}_{1} \text{ in } \check{\underline{e}}_{2} \Rightarrow \tau_{2} \xrightarrow{\alpha} \text{let } x = \check{\underline{e}}_{1} \text{ in } \check{\underline{e}}_{2}^{\prime} \Rightarrow \tau_{2}^{\prime}$$

$$\underline{\Gamma} \vdash_{\mathbb{H}} \text{let } x = \check{\underline{e}}_{1} \text{ in } \check{\underline{e}}_{2} \Rightarrow \tau_{2} \xrightarrow{\alpha} \text{let } x = \check{\underline{e}}_{1} \text{ in } \check{\underline{e}}_{2}^{\prime} \Rightarrow \tau_{2}^{\prime}$$

$$\frac{\Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \text{num}}{\Gamma \vdash \check{e} + \check{e} \Rightarrow \text{num} \xrightarrow{\alpha} \check{e}' + \check{e} \Rightarrow \text{num}}$$

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \mathsf{bool}$$

 $\frac{\Gamma \vdash \check{\underline{e}} \overset{\alpha}{\to} \check{\underline{e}}' \Leftarrow \mathsf{bool}}{\Gamma \vdash \mathsf{if} \, \check{\underline{e}} \, \mathsf{then} \, \check{e}_1 \, \mathsf{else} \, \check{e}_2 \Rightarrow \tau \overset{\alpha}{\to} \mathsf{if} \, \check{\underline{e}}' \, \mathsf{then} \, \check{e}_1 \, \mathsf{else} \, \check{e}_2 \Rightarrow \tau}$

ASEZIPIFL1

ASEZ_{IP}I_FL2

ASEZIPIFR1

ASEZ_{IP}I_FR2

$$\begin{array}{cccc} \Gamma \mid_{\overline{M}} \check{e}_{1} \Longrightarrow \tau_{1} & \Gamma \mid_{\overline{M}} \underline{\check{e}}^{\circ} \Longrightarrow \tau_{2} \\ \Gamma \vdash \underline{\check{e}} \Longrightarrow \tau_{2} \stackrel{\alpha}{\longrightarrow} \underline{\check{e}}' \Longrightarrow \tau_{2}' & \tau_{1} \not \tau_{2}' \end{array}$$

 $\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_2 \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau_2' \qquad \tau_1 \neq \tau_2'}{\Gamma \vdash \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \underline{\check{e}}')_{\uparrow \uparrow} \Rightarrow ?}$

ASEZIPINCONSISTENTBRANCHESC

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow bool$$

 $\frac{\Gamma \vdash \check{\underline{e}} \stackrel{\alpha}{\to} \check{\underline{e}}' \Leftarrow \mathsf{bool}}{\Gamma \vdash (\mathsf{if} \; \check{\underline{e}} \; \mathsf{then} \; \check{e}_1 \; \mathsf{else} \; \check{e}_2)_{|\!\!| |} \Rightarrow \tau \stackrel{\alpha}{\to} (\mathsf{if} \; \check{\underline{e}}' \; \mathsf{then} \; \check{e}_1 \; \mathsf{else} \; \check{e}_2)_{|\!\!| |} \Rightarrow \tau$

ASEZIPINCONSISTENTBRANCHES

$$\begin{array}{c} \Gamma \vdash \underline{\check{e}} \Rightarrow \tau_1 \overset{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau_1' \\ \Gamma \vdash_{\overline{\mathsf{M}}} \check{e}_2 \Rightarrow \tau_2 \qquad \tau_1' \sim \tau_2 \qquad \tau' = \tau_1' \sqcap \tau_2 \\ \hline \Gamma \vdash (\!\!| \mathsf{if} \; \underline{\check{e}}_1 \; \mathsf{then} \; \underline{\check{e}} \; \mathsf{else} \; \underline{\check{e}}_2)_{\not \!| \uparrow} \Rightarrow \tau \overset{\alpha}{\to} \; \mathsf{if} \; \underline{\check{e}}_1 \; \mathsf{then} \; \underline{\check{e}}' \; \mathsf{else} \; \underline{\check{e}}_2 \Rightarrow \tau' \end{array}$$

ASEZ ip In consistent Branches L2

$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_1 \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau_1'$$

$$\Gamma \vdash_{\overline{M}} \check{e}_2 \Rightarrow \tau_2 \qquad \tau_1' \not = \tau_2$$

 $\frac{\Gamma \vdash_{\mathbb{M}} \stackrel{-}{\check{e}_2} \Rightarrow \stackrel{-}{\tau_2} \stackrel{-}{\tau_1} \stackrel{-}{\not} \stackrel{-}{\tau_2}}{\Gamma \vdash (\text{if } \check{e}_1 \text{ then } \underline{\check{e}} \text{ else } \check{e}_2)_{\not \cap} \Rightarrow \tau \stackrel{\alpha}{\to} (\text{if } \check{e}_1 \text{ then } \underline{\check{e}}' \text{ else } \check{e}_2)_{\not \cap} \Rightarrow ?}$

ASEZIPINCONSISTENTBRANCHESR1

$$\Gamma \vdash_{\overline{M}} \check{e}_{1} \Rightarrow \tau_{1}$$

$$\Gamma \vdash_{\underline{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \check{\underline{e}}' \Rightarrow \tau'_{2} \qquad \tau_{1} \sim \tau'_{2} \qquad \tau' = \tau_{1} \sqcap \tau'_{2}$$

$$\Gamma \vdash_{\overline{e}} \text{ (if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \check{\underline{e}}) \xrightarrow{\pi} \tau \xrightarrow{\alpha} \text{ if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \check{\underline{e}}' \Rightarrow \tau'$$

ASEZIPInconsistentBranchesR2

$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_{2} \stackrel{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau_{2}'}{\Gamma \vdash (\text{if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \underline{\check{e}}')_{||} \Rightarrow \tau \stackrel{\alpha}{\to} (\text{if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \underline{\check{e}}')_{||} \Rightarrow ?} \qquad \frac{\text{ASEZIPPAIRL}}{\Gamma \vdash (\check{e}, \check{e}) \Rightarrow \tau_{1} \stackrel{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau_{1}'} \\ \Gamma \vdash (\check{e}, \check{e}) \Rightarrow \tau_{1} \times \tau_{2} \stackrel{\alpha}{\to} (\underline{\check{e}}', \check{e}) \Rightarrow \tau_{1}' \times \tau_{2}}$$

$$\begin{array}{ll} \text{ASEZipPairR} & \text{ASEZipProjL1} \\ \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_2 \overset{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau_2'}{\Gamma \vdash (\check{e}, \underline{\check{e}}) \Rightarrow \tau_1 \times \tau_2 \overset{\alpha}{\to} (\check{e}, \underline{\check{e}}') \Rightarrow \tau_1' \times \tau_2} & \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \overset{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \Vdash_{\times} \tau_1' \times \tau_2'}{\Gamma \vdash \pi_1 \underline{\check{e}} \Rightarrow \tau_1 \overset{\alpha}{\to} \pi_1 \underline{\check{e}}' \Rightarrow \tau_1'} \end{array}$$

ASEZIPPROJL2
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\check{e}}}{\Gamma \vdash \pi_1 \underline{\check{e}} \Rightarrow \tau_1 \xrightarrow{\alpha} \pi_1 (|\underline{\check{e}}'|) \xrightarrow{\bullet} \Rightarrow ?}$$

$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}\underline{\check{e}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \pi_{1}(\underline{\check{e}}')_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\Xi} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\Xi} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\Xi} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\bullet_{\star}}^{=} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\Xi} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \vdash_{\star}}{\Gamma} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \vdash_{\star}}{\Gamma} \qquad \Gamma \vdash_{\star}$$

ASEZIPPROJL4
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\star}}{\Gamma \vdash \pi_{1}(|\underline{\check{e}}'|_{\blacktriangleright_{\star}}^{-} \Rightarrow ? \xrightarrow{\alpha} \pi_{1}(|\underline{\check{e}}'|_{\blacktriangleright_{\star}}^{-} \Rightarrow ?$$

ASEZIPPROJR1
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \triangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{2}\underline{\check{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \pi_{2}\underline{\check{e}}' \Rightarrow \tau'_{2}} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \triangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{2}\underline{\check{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \pi_{2}(|\underline{\check{e}}'|)_{\bullet_{x}}^{=} \Rightarrow ?}$$
ASEZIPPROJR3
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \triangleright_{\times} \tau'_{2}}{\Gamma \vdash \pi_{2}\underline{\check{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \pi_{2}(|\underline{\check{e}}'|)_{\bullet_{x}}^{=} \Rightarrow ?}$$
ASEZIPPROJR4

ASEZIPPROJL3
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{2}(|\underline{\check{e}}|)_{\blacktriangleright_{*}}^{-} \Rightarrow ? \xrightarrow{\alpha} \pi_{2} \underline{\check{e}}' \Rightarrow \tau'_{2}} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times}}{\Gamma \vdash \pi_{2}(|\underline{\check{e}}|)_{\blacktriangleright_{*}}^{-} \Rightarrow ? \xrightarrow{\alpha} \pi_{2}(|\underline{\check{e}}'|)_{\blacktriangleright_{*}}^{-} \Rightarrow ?}$$

ASEZIPPROJR2
$$\underline{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\varkappa}}$$

$$\underline{\Gamma \vdash \pi_{0} \check{e} \Rightarrow \tau_{0} \xrightarrow{\alpha} \pi_{0} (|\underline{\check{e}}'|)^{-}} \Rightarrow ?$$

ASEZIPPROJR4
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{*}}{\Gamma \vdash \pi_{2}(\underline{\check{e}})_{\blacktriangleright_{*}}^{\rightarrow} \Rightarrow ? \xrightarrow{\alpha} \pi_{2}(\underline{\check{e}}')_{\blacktriangleright_{*}}^{\rightarrow} \Rightarrow ?}$$

F.3.5 Analytic expression actions

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau'$$

Subsumption

Movement

AAEMOVE
$$\frac{\underline{\check{e}} \xrightarrow{\text{move } \delta} \underline{\check{e}}'}{\Gamma \vdash \underline{\check{e}} \xrightarrow{\text{move } \delta} \underline{\check{e}}' \Leftarrow \tau}$$

Deletion

$$\frac{\text{AAEDel}}{\Gamma \vdash \vdash \check{e}^{\triangleleft} \stackrel{\text{del}}{\longrightarrow} \vdash () \mid \neg \mid \leftarrow \tau}$$

Construction

AAEConLam1

$$\tau \vdash_{\rightarrow} \tau_{1} \to \tau_{2} \qquad \Gamma, x : \tau_{1} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Leftarrow \tau_{2}$$
 $\Gamma \vdash \trianglerighteq \check{e} \trianglelefteq \xrightarrow{\text{construct lam } x} \lambda x : \trianglerighteq \tau_{1} \trianglelefteq . \check{e}' \Leftarrow \tau$

AAEConLetL

$$\Gamma \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Rightarrow \tau$$

$$\Gamma \vdash \trianglerighteq \check{e} \trianglelefteq \xrightarrow{\text{construct let}_{L} x} \text{ let } x = \check{e}' \text{ in } \trianglerighteq () \trianglerighteq \Leftrightarrow \tau$$

AAEConIfC

$$\Gamma \vdash \trianglerighteq \check{e} \hookrightarrow \check{e}' \Leftrightarrow \check{e}' \Leftrightarrow \text{bool}$$

$$\Gamma \vdash \trianglerighteq \check{e} \trianglelefteq \xrightarrow{\text{construct lif}_{C}} \text{ if } \check{e}' \text{ then } \trianglerighteq () \trianglerighteq \Leftrightarrow e \text{ les } () \Leftrightarrow \tau$$

AAEConIfR

$$\Gamma \vdash \trianglerighteq \check{e} \trianglelefteq \xrightarrow{\text{construct lif}_{C}} \text{ if } \check{e}' \text{ then } \trianglerighteq () \trianglerighteq \Leftrightarrow e \text{ les } () \Leftrightarrow \tau$$

AAEConParR1

$$T \vdash \trianglerighteq \check{e} \trianglelefteq \xrightarrow{\text{construct lif}_{C}} \text{ if } \trianglerighteq () \trianglerighteq \Rightarrow \text{ then } () \Leftrightarrow e \text{ les } \check{e}' \Leftrightarrow \tau$$

AAEConParR2

$$T \vdash \trianglerighteq \check{e} \trianglelefteq \xrightarrow{\text{construct lif}_{C}} \text{ if } \trianglerighteq () \trianglerighteq \Rightarrow \Leftrightarrow \check{e}' \Leftrightarrow \tau$$

AAEConParR1

$$T \vdash \trianglerighteq \check{e} \trianglerighteq \Rightarrow \xrightarrow{\text{construct lif}_{C}} \text{ lif } \trianglerighteq () \trianglerighteq \Rightarrow \Leftrightarrow \check{e}' \Leftrightarrow \tau$$

AAEConParR2

$$T \vdash \trianglerighteq \check{e} \trianglerighteq \Rightarrow \xrightarrow{\text{construct pair}_{L}} ((\check{e}', \trianglerighteq ()) \trianglerighteq)) \implies \leftarrow \tau$$

AAEConParR2

$$T \vdash \trianglerighteq \check{e} \trianglerighteq \Rightarrow \xrightarrow{\text{construct pair}_{R}} (\trianglerighteq () \trianglerighteq () \trianglerighteq , \check{e}')) \implies \leftarrow \tau$$

AAEConParR2

$$T \vdash \trianglerighteq \check{e} \trianglerighteq \Rightarrow \xrightarrow{\text{construct pair}_{R}} ((\trianglerighteq () \trianglerighteq , \check{e}')) \implies \leftarrow \tau$$

AAEConParR2

$$T \vdash \trianglerighteq \check{e} \trianglerighteq \Rightarrow \xrightarrow{\text{construct pair}_{R}} ((\trianglerighteq () \trianglerighteq ,))) \implies \leftarrow \tau$$

Zipper Cases

$$\begin{array}{c} \text{AAEZIPLAMT2} \\ \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{3}'} \quad \underline{\tau_{3}^{\circ}} = \underline{\tau_{3}'^{\circ}} \\ \Gamma \vdash \lambda x : \underline{\tau_{3}}. \ \check{e} \overset{\alpha}{\to} \lambda x : \underline{\tau_{3}'}. \ \check{e} \leftarrow \tau \end{array} \qquad \begin{array}{c} \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{3}'} \quad \underline{\tau_{3}^{\circ}} \neq \underline{\tau_{3}'^{\circ}} \\ \Gamma \vdash \lambda x : \underline{\tau_{3}}. \ \check{e} \overset{\alpha}{\to} \lambda x : \underline{\tau_{3}'}. \ \check{e} \leftarrow \tau \end{array} \qquad \begin{array}{c} \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{3}'} \quad \underline{\tau_{3}'} \neq \underline{\tau_{3}'^{\circ}} \quad \tau_{}^{} \vdash \to \tau_{1} \to \tau_{2} \\ \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{3}'} \quad \underline{\tau_{3}'} \neq \underline{\tau_{1}'} \quad \Gamma, \ x : \underline{\tau_{3}'^{\circ}} \vdash \check{e}^{} \vdash \to \check{e}' \leftarrow \tau_{2} \\ \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{1}'} \quad \Gamma, \ x : \underline{\tau_{3}'} \overset{\alpha}{\to} \check{e}' \to \check{e}' \leftarrow \tau_{2} \end{array} \qquad \begin{array}{c} \text{AAEZIPLAMT4} \\ \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{3}'} \quad \underline{\tau_{3}'} = \underline{\tau_{3}'^{\circ}} \\ \Gamma \vdash \lambda x : \underline{\tau_{3}}. \ \check{e} \overset{\alpha}{\to} (\lambda x : \underline{\tau_{3}'}. \ \check{e}')_{:} \leftarrow \tau \end{array} \qquad \begin{array}{c} \text{AAEZIPLAMT4} \\ \underline{\tau_{3}} \overset{\alpha}{\to} \underline{\tau_{3}'} \quad \underline{\tau_{3}'} = \underline{\tau_{3}'^{\circ}} \\ \Gamma \vdash (\lambda x : \underline{\tau_{3}}. \ \check{e})_{:\rightarrow} \overset{\alpha}{\to} (\lambda x : \underline{\tau_{3}'}. \ \check{e}')_{:\rightarrow} \leftarrow \tau \end{array}$$

$$\underline{\underline{\tau}_{3}} \xrightarrow{\alpha} \underline{\tau}_{3}' \qquad \underline{\underline{\tau}_{3}} \neq \underline{\tau}_{3}'^{\circ} \qquad \tau \triangleright_{\rightarrow} \tau_{1} \to \tau_{2}$$

$$\underline{\underline{\tau}_{3}'^{\circ}} \sim \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}'^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Leftarrow \underline{\tau}_{2}$$

$$\Gamma \vdash (\lambda x : \tau_{2}, \check{e}) \xrightarrow{\alpha} \lambda x : \tau_{2}', \check{e}' \Leftarrow \underline{\tau}$$

$$\frac{\tau \Vdash_{\rightarrow} \tau_1 \to \tau_2 \qquad \Gamma, \ x : \tau_3 \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau_2}{\Gamma \vdash \lambda x : \tau_3. \ \check{e} \xrightarrow{\alpha} \lambda x : \tau_3. \ \check{e}' \Leftarrow \tau}$$

AAEZIPLAME3

$$\frac{\tau \triangleright_{\rightarrow} \tau_1 \to \tau_2 \qquad \Gamma, \ x : \tau_3 \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau_2}{\Gamma \vdash (\lambda x : \tau_3 . \underline{\check{e}}') : \xrightarrow{\alpha} (\lambda x : \tau_3 . \underline{\check{e}}') : \Leftarrow \tau}$$

$$\Gamma \vdash \check{e} \xrightarrow{\alpha} \check{e}' \Leftarrow \mathsf{boo}$$

AAEZIPLAM18
$$\underline{\tau}_{3} \stackrel{\alpha}{\to} \underline{\tau}_{3}' \qquad \underline{\tau}_{3}^{\circ} \neq \underline{\tau}_{3}'^{\circ} \qquad \tau \Vdash_{\to} \tau_{1} \to \tau_{2}$$

$$\underline{\tau}_{3}'^{\circ} \sim \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}'^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \leftarrow \underline{\tau}_{2}$$

$$\Gamma \vdash (\lambda x : \underline{\tau}_{3}. \ \check{e})_{:} \stackrel{\alpha}{\to} \lambda x : \underline{\tau}_{3}'. \ \check{e}' \leftarrow \tau$$

$$\underline{\tau}_{3}'^{\circ} \leftarrow \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}'^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \leftarrow \underline{\tau}_{2}$$

$$\underline{\tau}_{3}'^{\circ} + \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}'^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \leftarrow \underline{\tau}_{2}$$

$$\underline{\tau}_{3}'^{\circ} + \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}'^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \leftarrow \underline{\tau}_{2}$$

$$\underline{\tau}_{3}'^{\circ} \leftarrow \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}'^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \leftarrow \underline{\tau}_{2}$$

AAEZIPLAME1
$$\frac{\tau \Vdash_{\rightarrow} \tau_{1} \to \tau_{2} \qquad \Gamma, \ x : \tau_{3} \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau_{2}}{\Gamma \vdash \lambda x : \tau_{3} . \ \underline{\check{e}} \xrightarrow{\alpha} \lambda x : \tau_{3} . \ \underline{\check{e}}' \Leftarrow \tau}$$

$$\frac{\Delta \text{AEZIPLAME2}}{\Gamma \vdash \lambda x : \tau_{3} . \ \underline{\check{e}} \xrightarrow{\alpha} \lambda x : \tau_{3} . \ \underline{\check{e}}' \Leftarrow \tau}{\Gamma \vdash (\lambda x : \tau_{3} . \ \underline{\check{e}})_{\vdash_{\rightarrow}}^{=} \xrightarrow{\alpha} (\lambda x : \tau_{3} . \ \underline{\check{e}}')_{\vdash_{\rightarrow}}^{=} \Leftarrow \tau}$$

AAEZIPLAME3
$$\frac{\tau \Vdash_{\rightarrow} \tau_{1} \to \tau_{2} \qquad \Gamma, \ x : \tau_{3} \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \tau_{2}}{\Gamma \vdash (\lambda x : \tau_{3} . \check{\underline{e}})_{:} \xrightarrow{\alpha} (\lambda x : \tau_{3} . \check{\underline{e}}')_{:} \Leftarrow \tau}$$

$$\frac{\Gamma \vdash_{M} \check{\underline{e}}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\check{\underline{e}}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}' \Rightarrow \tau_{1}' \qquad \tau_{1} = \tau_{1}'}{\Gamma \vdash_{M} \check{\underline{e}} \xrightarrow{\alpha} \det x = \check{\underline{e}}' \text{ in } \check{\underline{e}} \Leftarrow \tau}$$

$$\Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \tau_1 \qquad \Gamma, \ x : \tau_1 \vdash_{\underline{e}} \xrightarrow{\alpha} \underline{e}' \Leftarrow \tau$$

$$\Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \check{\tau}_1 \qquad \Gamma, \ x : \tau_1 \vdash_{\underline{e}} \xrightarrow{\alpha} \underline{e}' \Leftarrow \tau$$

$$\Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \check{e} \text{ in } \check{e} \xrightarrow{\alpha}_{\overline{e}} \mathsf{let} \ x = \check{e} \text{ in } \check{e}' \Leftarrow \tau$$

$$\Gamma \vdash \check{e} \xrightarrow{\alpha} \check{e}' \Leftarrow \tau$$

AAEZıpIfR

$$\frac{\Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \tau}{\Gamma \vdash \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{\underline{e}} \xrightarrow{\alpha} \text{ if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{\underline{e}}' \Leftarrow \tau} \qquad \frac{\tau \triangleright_{\times} \tau_1 \times \tau_2 \qquad \Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \tau_1}{\Gamma \vdash (\check{\underline{e}}, \check{\underline{e}}) \xrightarrow{\alpha} (\check{\underline{e}}', \check{\underline{e}}) \Leftarrow \tau}$$

$$\frac{\tau \Vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau}{\Gamma \vdash (\check{e}, \check{e}) \xrightarrow{\alpha} (\check{e}, \check{e}') \Leftarrow \tau}$$

$$\frac{\Gamma \triangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \leftarrow \tau_{1}}{\Gamma \vdash (\underline{\check{e}}, \check{e}) \xrightarrow{\alpha} (\underline{\check{e}}', \check{e}) \leftarrow \tau}$$

F.3.6 Iterated actions

The iterated type action and movements judgments are the same as in the untyped model.

$$\Gamma \vdash \underline{\check{e}} \Longrightarrow \tau \xrightarrow{\overline{\alpha}} * \underline{\check{e}}' \Longrightarrow \tau'$$

ASEIREFL
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \Gamma \vdash \underline{\check{e}}' \Rightarrow \tau' \xrightarrow{\overline{\alpha}} \underline{\check{e}}'' \Rightarrow \tau''}{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}'' \Rightarrow \tau''}$$

$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}'' \Rightarrow \tau''$$

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\overline{\alpha}} * \underline{\check{e}}' \Leftarrow \tau$$

AAEIEXP
$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau' \qquad \Gamma \vdash \underline{\check{e}}' \xrightarrow{\overline{\alpha}} \underline{\check{e}}'' \Leftarrow \tau''$$

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau' \qquad \Gamma \vdash \underline{\check{e}}' \xrightarrow{\overline{\alpha}} \underline{\check{e}}'' \Leftarrow \tau''$$

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha; \overline{\alpha}} \underline{\check{e}}'' \Leftarrow \tau''$$

F.4 Mark erasure

 $\underline{\underline{e}}^{\square}$ is a metafunction ZMExp \rightarrow ZExp defined as follows:

```
\triangleright \check{e} \triangleleft^{\square} = \triangleright \check{e}^{\square} \triangleleft
                                                            (\lambda x : \underline{\tau}. \check{e})^{\square} = \lambda x : \underline{\tau}. (\check{e}^{\square})
                                                           (\lambda x : \tau. \underline{\check{e}})^{\square} = \lambda x : \tau. (\underline{\check{e}}^{\square})
                                               (\lambda x : \tau. \check{e})^{\Box} = \lambda x : \tau. (\check{e}^{\Box})
                                                                                               (\underline{\check{e}}\ \check{e})^{\square} = (\underline{\check{e}}^{\square})(\underline{\check{e}}^{\square})
                                                                                              (\check{e}\ \check{e})^{\square} = (\check{e}^{\square})(\check{e}^{\square})
                                                                       ((\underbrace{\check{e}})^{\rightarrow}_{\longleftarrow}\check{e})^{\Box} = \underline{\check{e}}^{\Box}(\check{e}^{\Box})
                                                                      ((\check{e})) \xrightarrow{\Rightarrow} \check{e})^{\square} = \check{e}^{\square} (\check{e}^{\square})
                                       (\text{let } x = \underline{\check{e}} \text{ in } \check{e})^{\square} = \text{let } x = (\underline{\check{e}}^{\square}) \text{ in } (\check{e}^{\square})
                                       (\text{let } x = \check{e} \text{ in } \check{e})^{\square} = \text{let } x = (\check{e}^{\square}) \text{ in } (\check{e}^{\square})
                                                                                    (\underline{\check{e}} + \check{e})^{\square} = (\underline{\check{e}}^{\square}) + (\check{e}^{\square})
                                                                                    (\check{e} + \underline{\check{e}})^{\square} = (\check{e}^{\square}) + (\underline{\check{e}}^{\square})
           (if \underline{\check{e}} then \check{e}_1 else \check{e}_2) = if (\underline{\check{e}}^{\square}) then (\check{e}_1^{\square}) else (\check{e}_2^{\square})
           (if \check{e}_1 then \underline{\check{e}} else \check{e}_2)<sup>\square</sup> = if (\check{e}_1^{\square}) then (\underline{\check{e}}^{\square}) else (\check{e}_2^{\square})
\begin{array}{lll} (\text{if } \underline{e}_1 \text{ then } \underline{e}_2 \text{ else } \underline{e}_2)^{\square} &=& \text{if } (\underline{e}_1^{\square}) \text{ then } (\underline{e}_2^{\square}) \text{ else } (\underline{e}_2^{\square}) \\ (\text{if } \underline{e}_1 \text{ then } \underline{e}_1 \text{ else } \underline{e}_2)^{\square} &=& \text{if } (\underline{e}_1^{\square}) \text{ then } (\underline{e}_1^{\square}) \text{ else } (\underline{e}_2^{\square}) \\ (\text{if } \underline{e}_1 \text{ then } \underline{e}_2 \text{ else } \underline{e}_2)^{\square} &=& \text{if } (\underline{e}_1^{\square}) \text{ then } (\underline{e}_1^{\square}) \text{ else } (\underline{e}_2^{\square}) \\ (\text{if } \underline{e}_1 \text{ then } \underline{e}_2 \text{ else } \underline{e}_2^{\square})^{\square} &=& \text{if } (\underline{e}_1^{\square}) \text{ then } (\underline{e}_2^{\square}) \text{ else } (\underline{e}_2^{\square}) \\ (\text{if } \underline{e}_1 \text{ then } \underline{e}_2 \text{ else } \underline{e}_2^{\square})^{\square} &=& \text{if } (\underline{e}_1^{\square}) \text{ then } (\underline{e}_2^{\square}) \text{ else } (\underline{e}_2^{\square}) \end{array}
                                                                                             (\underline{\check{e}},\underline{\check{e}})^{\square} = (\underline{\check{e}}^{\square},\underline{\check{e}}^{\square})
                                                                                           (\check{e},\underline{\check{e}})^{\square} = (\check{e}^{\square},\underline{\check{e}}^{\square})
                                                                          (\pi_1 \underline{\check{e}})^{\square} = \pi_1 (\underline{\check{e}}^{\square})
(\pi_1 (\underline{\check{e}})_{-})^{\square} = \pi_1 \underline{\check{e}}^{\square}
(\pi_2 \underline{\check{e}})^{\square} = \pi_2 (\underline{\check{e}}^{\square})
                                                                         (\pi_2(\underbrace{\check{e}})^{\rightarrow})^{\square} = \pi_2\check{e}^{\square}(\underbrace{\check{e}})^{\rightarrow}_{\downarrow \downarrow} = \underbrace{\check{e}}^{\square}
```

F.5 Metatheorems

Theorem F.1 (Erasure Commutativity). For all $\underline{\check{e}}$, $(\underline{\check{e}}^{\square})^{\diamond} = (\underline{\check{e}}^{\diamond})^{\square}$.

Theorem F.2 (Correctness).

1. If
$$\underline{\check{e}}$$
 WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\circ} \Rightarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \underline{\check{e}} \Rightarrow \tau \stackrel{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau'$ and $\underline{\check{e}}^{\square} \stackrel{\alpha}{\to} \underline{e}'$, then $\underline{\check{e}}'^{\square} = \underline{e}'$.

2. If
$$\underline{\check{e}}$$
 WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \Leftarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \tau$ and $\underline{\check{e}}^{\square} \xrightarrow{\alpha} \underline{e}'$, then $\underline{\check{e}}'^{\square} = \underline{e}'$.

Theorem F.3 (Sensibility).

1. If
$$\underline{\check{e}}$$
 WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \underline{\check{e}} \Rightarrow \tau \stackrel{\alpha}{\to} \underline{\check{e}}' \Rightarrow \tau'$, then $\underline{\check{e}}'$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}'^{\diamond} \Rightarrow \tau'$.

2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\Gamma \vdash \underline{\check{e}}^{-\alpha} \underline{\check{e}}' \leftarrow \tau$, then $\underline{\check{e}}'$ WF and $\Gamma \vdash \underline{\check{e}}'^{\diamond} \leftarrow \tau$.

Theorem F.4 (Movement Erasure Invariance).

1. If $\underline{\tau} \xrightarrow{\text{move } \delta} \underline{\tau}'$, then $\underline{\tau}^{\diamond} = \underline{\tau}'^{\diamond}$.

2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \Rightarrow \tau \xrightarrow{\mathsf{move} \ \delta} \underline{\check{e}}' \Rightarrow \tau'$, then $\underline{\check{e}}'$ WF and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$ and $\tau = \tau'$.

3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \Leftarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \xrightarrow{\mathsf{move } \delta} \underline{\check{e}}' \Leftarrow \tau$, then $\underline{\check{e}}'$ WF and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$.

Theorem F.5 (Reachability).

1. If $\underline{\tau}^{\diamond} = \underline{\tau}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} \underline{\tau}'$.

2. If $\underline{\check{e}}$ WF and $\underline{\check{e}}'$ WF and $\Gamma \vdash_{\overline{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\overline{\alpha}} \star \underline{\check{e}}' \Rightarrow \tau$.

3. If $\underline{\check{e}}$ WF and $\underline{\check{e}}'$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\overline{\alpha}} \star \check{e}' \leftarrow \tau$.

Lemma F.5.1 (Reach Up).

1. If $\underline{\tau}^{\diamond} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} * \triangleright \tau \triangleleft$.

2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\overline{\alpha}} {}^{\flat} \triangleright \check{e}^{\triangleleft} \Rightarrow \tau$.

3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\overline{\alpha}} * \trianglerighteq \check{e} \checkmark \leftarrow \tau$.

Lemma F.5.2 (Reach Down).

1. If $\underline{\tau}^{\circ} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\neg \tau = \overline{\alpha}$.

2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}} \Rightarrow \tau \xrightarrow{\overline{\alpha}} \underline{\check{e}} \Rightarrow \tau$.

3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}} \leftarrow \tau$.

Theorem F.6 (Constructability).

1. For every τ , there exists $\overline{\alpha}$ such that $\triangleright ? \triangleleft \overline{\alpha} \longrightarrow * \triangleright \tau \triangleleft$.

2. If $\Gamma \vdash_{\mathbb{M}} \check{e} \Rightarrow \tau$, then there exists $\overline{\alpha}$ such that $\Gamma \vdash \triangleright (|| \triangleleft | \Rightarrow ? \xrightarrow{\overline{\alpha}} * \triangleright \check{e} \triangleleft \Rightarrow \tau$.

3. If $\Gamma \vdash_{\mathbb{M}} \check{e} \leftarrow \tau$, then there exists $\overline{\alpha}$ such that $\Gamma \vdash \triangleright \langle | \rangle \triangleleft \xrightarrow{\overline{\alpha}} * \triangleright \check{e} \triangleleft \leftarrow \tau$.

Theorem F.7 (Determinism).

1. If $\underline{\tau} \xrightarrow{\alpha} * \underline{\tau}'$ and $\underline{\tau} \xrightarrow{\alpha} * \underline{\tau}''$ then $\underline{\tau}' = \underline{\tau}''$.

2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\circ} \Rightarrow \tau$ and $\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau'$ and $\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}'' \Rightarrow \tau''$, then $\underline{\check{e}}' = \underline{\check{e}}''$ and $\tau' = \tau''$.

3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \Leftarrow \tau$ and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} * \underline{\check{e}}' \Leftarrow \tau$ and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} * \underline{\check{e}}'' \Leftarrow \tau$, then $\underline{\check{e}}' = \underline{\check{e}}''$.

G Constraint generation

Here, we give the list of constraint-generating bidirectional typing rules under the marked lambda calculus for type hole inference, described in Section 4 of the paper.

MECHANIZATION ×

$$\tau \triangleright_{\rightarrow} \tau_1 \longrightarrow \tau_2 \mid C \mid \tau$$
 has matched arrow type $\tau_1 \longrightarrow \tau_2$ and generates constraints C

$$\tau_1 \times \tau_1 \times \tau_2 \mid C \mid \tau$$
 has matched binary product type $\tau_1 \times \tau_2$ and generates constraints C

$$\begin{array}{ll} \text{TMPHole-C} & \text{TMPProd-C} \\ \hline ?^p \Vdash_\times ? \times ? \mid \{?^p \approx ?^{\times_L(p)} \times ?^{\times_R(p)}\} & \hline \tau_1 \times \tau_2 \Vdash_\times \tau_1 \times \tau_2 \mid \{\} \end{array}$$

$$\Gamma \vdash \check{e} \Rightarrow \tau \mid C$$
 \check{e} synthesizes type τ and generates constraints C

$$\frac{}{\Gamma \vdash (||)^u \Rightarrow ?^{exp(u)} \mid \{?^{exp(u)} \approx \text{etc}\}}$$

$$\frac{x: \tau \in \Gamma}{\Gamma \vdash x \Rightarrow \tau \mid \{\}} \qquad \frac{\text{MSFree-C}}{\Gamma \vdash (x)^{u}_{\alpha} \Rightarrow ?^{exp(u)} \mid \{?^{exp(u)} \approx \text{etc}\}} \qquad \frac{\text{MSLam-C}}{\Gamma, \ x: \tau \vdash \check{e} \Rightarrow \tau_{2} \mid C}$$

$$\frac{\Gamma, \ x: \tau \vdash \check{e} \Rightarrow \tau_{2} \mid C}{\Gamma \vdash \lambda x: \tau_{1}. \ \check{e} \Rightarrow \tau_{1} \rightarrow \tau_{2} \mid C}$$

$$\frac{\text{MSAP1-C}}{\Gamma}$$

$$\frac{\Gamma \vdash \check{e}_1 \Rightarrow \tau \mid C_1 \qquad \tau \Vdash_{\rightarrow} \tau_1 \rightarrow \tau_2 \mid C_2 \qquad \Gamma \vdash \check{e}_2 \Leftarrow \tau_1 \mid C_3}{\Gamma \vdash \check{e}_1 \ \check{e}_2 \Rightarrow \tau_2 \mid C_1 \cup C_2 \cup C_3}$$

MSA_P2-C

$$\frac{\Gamma \vdash \check{e}_1 \Rightarrow \tau \mid C_1 \qquad \tau \blacktriangleright_{\rightarrow} \qquad \Gamma \vdash \check{e}_2 \Leftarrow ?^{\rightarrow_L(exp(u))} \mid C_2}{\Gamma \vdash (\check{e}_1)_{\rightarrow_{\rightarrow}}^{\rightarrow_L} \quad \check{e}_2 \Rightarrow ?^{\rightarrow_R(exp(u))} \mid C_1 \cup C_2 \cup \{?^{exp(u)} \approx ?^{\rightarrow_L(exp(u))} \rightarrow ?^{\rightarrow_R(exp(u))}\}} \qquad \frac{\text{MSNum-C}}{\Gamma \vdash \underline{n} \Rightarrow \text{num} \mid \{\}}$$

MSPLUS-C

$$\frac{\text{MSPLUS-C}}{\Gamma \vdash \check{e}_1 \leftarrow \text{num} \mid C_1 \qquad \Gamma \vdash \check{e}_2 \leftarrow \text{num} \mid C_2}{\Gamma \vdash \check{e}_1 + \check{e}_2 \Rightarrow \text{num} \mid C_1 \cup C_2} \qquad \frac{\text{MSTrue-C}}{\Gamma \vdash \text{tt} \Rightarrow \text{bool} \mid \{\}} \qquad \frac{\text{MSFalse-C}}{\Gamma \vdash \text{ff} \Rightarrow \text{bool} \mid \{\}}$$

$$\frac{\text{MSIF-C}}{\Gamma \vdash \check{e}_1 \Leftarrow \text{bool} \mid C_1 \qquad \Gamma \vdash \check{e}_2 \Rightarrow \tau_1 \mid C_2 \qquad \Gamma \vdash \check{e}_3 \Rightarrow \tau_2 \mid C_3 \qquad \tau_3 = \tau_1 \sqcap \tau_2}{\Gamma \vdash \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3 \mid C_1 \cup C_2 \cup C_3 \cup \{\tau_1 \approx \tau_2\}}$$

MSInconsistentBranches-C

$$\frac{\Gamma \vdash \check{e}_{1} \Leftarrow \mathsf{bool} \mid C_{1} \qquad \Gamma \vdash \check{e}_{2} \Rightarrow \tau_{1} \mid C_{2} \qquad \Gamma \vdash \check{e}_{3} \Rightarrow \tau_{2} \mid C_{3} \qquad \tau_{1} \neq \tau_{2}}{\Gamma \vdash (\mathsf{if} \; \check{e}_{1} \; \mathsf{then} \; \check{e}_{2} \; \mathsf{else} \; \check{e}_{3})^{u}_{||} \Rightarrow ?^{exp(u)} \mid C_{1} \cup C_{2} \cup C_{3} \cup \{\tau_{1} \approx \tau_{2}, ?^{exp(u)} \approx \mathsf{etc}\}}$$

$$\frac{\text{MSPair-C}}{\Gamma \vdash \check{e}_1 \Rightarrow \tau_1 \mid C_1 \qquad \Gamma \vdash \check{e}_2 \Rightarrow \tau_2 \mid C_2}{\Gamma \vdash (\check{e}_1, \check{e}_2) \Rightarrow \tau_1 \times \tau_2 \mid C_1 \cup C_2} \qquad \frac{\text{MSProjL1-C}}{\Gamma \vdash \check{e} \Rightarrow \tau \mid C_1 \qquad \tau_{\triangleright_{\times}} \tau_1 \times \tau_2 \mid C_2}{\Gamma \vdash \pi_1 \check{e} \Rightarrow \tau_1 \mid C_1 \cup C_3}$$

$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C_1 \qquad \tau \triangleright_{\times} \tau_1 \times \tau_2 \mid C_2}{\Gamma \vdash_{\times} \tau_1 \times \tau_2 \mid C_2 + C_2}$$

MSProjR1-C
$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C_{1} \qquad \tau \Vdash_{\times} \tau_{1} \times \tau_{2} \mid C_{2}}{\Gamma \vdash \pi_{2}\check{e} \Rightarrow \tau_{2} \mid C_{1} \cup C_{2}} \qquad \frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C \qquad \tau \Vdash_{\times}}{\Gamma \vdash \pi_{1}(\check{e})^{\rightarrow, u} \Rightarrow ?^{\times_{L}(exp(u))} \mid C \cup \{?^{exp(u)} \approx ?^{\times_{L}(exp(u))} \times ?^{\times_{R}(exp(u))}, ?^{exp(u)} \approx \text{etc}\}}$$

MSProjR2-C

$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C \qquad \tau \blacktriangleright_{\star}}{\Gamma \vdash \pi_{2}(|\check{e})^{-, u} \Rightarrow ?^{\times_{R}(exp(u))} \mid C \cup \{?^{exp(u)} \approx ?^{\times_{L}(exp(u))} \times ?^{\times_{R}(exp(u))}, ?^{exp(u)} \approx \text{etc}\}}$$

 $\Gamma \vdash \check{e} \leftarrow \tau \mid C \mid \check{e}$ analyzes against type τ and generates constraints C

MALAM1-C
$$\tau_0 \triangleright \tau_1 \longrightarrow \tau_0 \mid C_1 \qquad \tau \sim \tau_1$$

$$\Gamma, x : \tau \vdash \check{e} \leftarrow \tau_2 \mid C_2$$

MALAM3-C

$$\tau_3 \triangleright_{\rightarrow} \tau_1 \to \tau_2 \mid C_1 \qquad \tau \not = \tau_1$$

$$\Gamma, x : \tau \vdash \check{e} \Leftarrow \tau_2 \mid C_2$$

$$\begin{array}{c}
C \\
\tau_{3} \triangleright_{\rightarrow} \tau_{1} \to \tau_{2} \mid C_{1} & \tau \neq \tau_{1} \\
\Gamma, \ x : \tau \vdash \check{e} \Leftarrow \tau_{2} \mid C_{2} \\
\vdots \ \tau. \ \check{e})^{u}_{:} \Leftarrow \tau_{3} \mid C_{1} \cup C_{2} \cup \{?^{exp(u)} \approx \tau_{3}\}
\end{array}$$

$$\begin{array}{c}
MAI_{F} \\
\Gamma \vdash \check{e}_{1} \Leftarrow bool \mid C_{1} \qquad \Gamma \vdash \check{e}_{1} \Leftarrow \tau \mid C_{2} \qquad \Gamma \vdash \check{e}_{2} \Leftarrow \tau \mid C_{3} \\
\Gamma \vdash \text{if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \check{e}_{3} \Leftarrow \tau \mid C_{1} \cup C_{2} \cup C_{3}
\end{array}$$

 $\Gamma \vdash (\lambda x : \tau . \check{e})^u \leftarrow \tau_3 \mid C_1 \cup C_2 \cup \{?^{exp(u)} \approx \tau_3\}$

$$\frac{\tau_{\mathbb{P}_{\times}}\tau_{1}\times\tau_{2}\mid C_{1} \qquad \Gamma\vdash\check{e}_{1}\Leftarrow\tau_{1}\mid C_{2} \qquad \Gamma\vdash\check{e}_{2}\Leftarrow\tau_{2}\mid C_{3}}{\Gamma\vdash(\check{e}_{1},\check{e}_{2})\Leftarrow\tau\mid C_{1}\cup C_{2}\cup C_{3}}$$

$$\Gamma \vdash \check{e}_1 \leftarrow ?^{anon} \mid C_1 \qquad \Gamma$$

$$\Gamma \vdash \check{e}_2 \Leftarrow ?^{anon} \mid C_2$$

MAPAIR2-C
$$\frac{\tau \blacktriangleright_{\star} \qquad \Gamma \vdash \check{e}_{1} \Leftarrow ?^{anon} \mid C_{1} \qquad \Gamma \vdash \check{e}_{2} \Leftarrow ?^{anon} \mid C_{2}}{\Gamma \vdash ((\check{e}_{1}, \check{e}_{2}))) \blacktriangleright_{\star}^{=, u} \Leftarrow \tau \mid C_{1} \cup C_{2} \cup \{?^{exp(u)} \approx \tau\}}$$
MAINCONSISTENTTYPES-C
$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \neq \tau' \qquad \check{e} \text{ subsumable}}{\Gamma \vdash ((\check{e}_{1}, \check{e}_{2}))) \vdash_{\star}^{u} \leftarrow \tau \mid C_{1} \cup C_{2} \cup \{?^{exp(u)} \approx \tau\}}$$

$$\Gamma \vdash ((\check{e}_{1}, \check{e}_{2})) \vdash_{\star}^{u} \leftarrow \tau \mid C \cup \{\tau \approx ?^{exp(u)}\}$$

MASUBSUME-C

$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \sim \tau' \qquad \check{e} \text{ subsumable}}{\Gamma \vdash \check{e} \Leftarrow \tau \mid C \cup \{\tau \approx \tau'\}}$$