# **Exploratory Factor Analysis**

Name - Amith Korada

Course - AI & ML (Batch - 4)

Duration - 12 Months

Problem Statement - Building a Machine Learning model for factor analysis on Airline Passenger Satisfaction Dataset.

Prerequisites -

What things you need to install the software and how to install them:

Python 3.6 This setup requires that your machine has the latest version of python. The following URL https://www.python.org/downloads/ can be referred to as download python.

The second and easier option is to download anaconda and use its anaconda prompt to run the commands. To install anaconda check this URL https://www.anaconda.com/download/You will also need to download and install the below 3 packages after you install either python or anaconda from the steps above Sklearn (scikit-learn) numpy scipy if you have chosen to install python 3.6 then run the below commands in command prompt/terminal to install these packages pip install -U sci-kit-learn pip install NumPy pip install scipy if you have chosen to install anaconda then run the below commands in anaconda prompt to install these packages conda install -c sci-kit-learn conda install -c anaconda numpy conda install -c anaconda scipy.

Dataset Used - Airline Passenger Satisfaction Dataset

# 1. Importing required libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import os
```

# 2. Loading the dataset

```
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')

train.shape
(103904, 25)

test.shape
(25976, 25)
```

# 3. Data Analysis

train.head()

|   | Unnamed:<br>0 | id     | Gender | Customer<br>Type     | Age | Type of<br>Travel  | Class    | Flight<br>Distance | Inflight<br>wifi<br>service | Departure/Arrival time convenient | <br>Inflight<br>entertainment | On-<br>board<br>service | Leg<br>room<br>service | Baggage<br>handling | Checkin<br>service |
|---|---------------|--------|--------|----------------------|-----|--------------------|----------|--------------------|-----------------------------|-----------------------------------|-------------------------------|-------------------------|------------------------|---------------------|--------------------|
| 0 | 0             | 70172  | Male   | Loyal<br>Customer    | 13  | Personal<br>Travel | Eco Plus | 460                | 3                           | 4                                 | <br>5                         | 4                       | 3                      | 4                   | 4                  |
| 1 | 1             | 5047   | Male   | disloyal<br>Customer | 25  | Business<br>travel | Business | 235                | 3                           | 2                                 | <br>1                         | 1                       | 5                      | 3                   | 1                  |
| 2 | 2             | 110028 | Female | Loyal<br>Customer    | 26  | Business<br>travel | Business | 1142               | 2                           | 2                                 | <br>5                         | 4                       | 3                      | 4                   | 4                  |
| 3 | 3             | 24026  | Female | Loyal<br>Customer    | 25  | Business<br>travel | Business | 562                | 2                           | 5                                 | <br>2                         | 2                       | 5                      | 3                   | 1                  |
| 4 | 4             | 119299 | Male   | Loyal<br>Customer    | 61  | Business<br>travel | Business | 214                | 3                           | 3                                 | <br>3                         | 3                       | 4                      | 4                   | 3                  |

5 rows × 25 columns

X\_train = train.iloc[:,8:-3]
X\_test = test.iloc[:,8:-3]

X\_train.shape

(103904, 14)

 $\mathbf{X}_{\mathtt{test.shape}}$ 

(25976, 14)

X\_train.head()

|   | Inflight<br>wifi<br>service | Departure/Arrival time convenient | Ease of<br>Online<br>booking | Gate<br>location | Food<br>and<br>drink | Online<br>boarding | Seat<br>comfort | Inflight<br>entertainment | On-<br>board<br>service | Leg<br>room<br>service | Baggage<br>handling | Checkin<br>service | Inflight<br>service | Cleanliness |
|---|-----------------------------|-----------------------------------|------------------------------|------------------|----------------------|--------------------|-----------------|---------------------------|-------------------------|------------------------|---------------------|--------------------|---------------------|-------------|
| 0 | 3                           | 4                                 | 3                            | 1                | 5                    | 3                  | 5               | 5                         | 4                       | 3                      | 4                   | 4                  | 5                   | 5           |
| 1 | 3                           | 2                                 | 3                            | 3                | 1                    | 3                  | 1               | 1                         | 1                       | 5                      | 3                   | 1                  | 4                   | 1           |
| 2 | 2                           | 2                                 | 2                            | 2                | 5                    | 5                  | 5               | 5                         | 4                       | 3                      | 4                   | 4                  | 4                   | 5           |
| 3 | 2                           | 5                                 | 5                            | 5                | 2                    | 2                  | 2               | 2                         | 2                       | 5                      | 3                   | 1                  | 4                   | 2           |
| 4 | 3                           | 3                                 | 3                            | 3                | 4                    | 5                  | 5               | 3                         | 3                       | 4                      | 4                   | 3                  | 3                   | 3           |

train\_target = train.iloc[:,-1:]
train\_target.shape

(103904, 1)

np.unique(train\_target, return\_counts = True)

(array(['neutral or dissatisfied', 'satisfied'], dtype=object),
array([58879, 45025], dtype=int64))

#### 4. Zero Centering the data

#### 5. Covariance and Correlation

```
c1 = np.cov(x_n)
c2 = np.corrcoef(x_n)
```



#### 6. Extracting the Eiigenvalues and Eigenvectors

7. Estimating V (Factor Loading Matrix)

```
eig_val_arr = np.array(eig_val_ls)
lambda_i = np.diag(eig_val_arr)
eig_vec_mat = np.matrix(eig_vec_ls).T
V = eig_vec_mat@np.sqrt(lambda_i)
print(V)
[[ 0.69070483  0.82525254  0.09831266]
   0.39580866 1.03738639 -0.01528359
    0.55183905 1.08911378 0.13910223
    0.23314023 0.80047953 0.11865892
   0.8239477 -0.42848608 0.59172685
   0.79237896 0.20490276 0.27004569]
   0.90888385 -0.42178611 0.50058914
   1.08558032 -0.46636909 0.00699471]
0.62039882 -0.14063987 -0.81084737]
0.5198665 -0.05004723 -0.67430674]
0.51494257 -0.09498759 -0.78536494]
   0.41553912 -0.09627489 -0.30402772]
0.51784555 -0.1042679 -0.79985753]
   0.9290176 -0.46472989 0.50394211]]
```

8. Computing Variance of the important Eigenvectors and Estimating S (Source Vector)

```
var_ls = []
x_var = np.var(x_n, axis=1)
x_var = np.ravel(x_var)
print(x_var.shape)
print(x_var)
for i in range(V.shape[0]):
    s = np.sum(np.square(np.ravel(V[i,:])))
    sig_2 = x_var[i]-s
var_ls.append(sig_2)
var_ls = np.array(var_ls)
S = np.diag(var_ls)
print(S)
1.76311414 2.32583197 1.95698483 1.63229974 1.76764022 1.82115689
 1.73997514 1.77684714 1.65984098 1.73079886 1.39451944 1.60121119
 1.38217027 1.72204345]
[[0.59533385 0.
                          0.
                          0.
                                     0.
                                                 0.
  0.
              0.
              1.09276337 0.
                                      ۵.
 [0.
                                                 0.
                                                              0.
  0.
              0.
                         0.
                                     0.
                                                 0.
                                                             0.
                         ]
 [0.
              0.
                          0.44694024 0.
                                                 0.
  0.
              0.
                          0.
                                     0.
                                                 0.
                                                             0.
  0.
              0.
                        1
              0.
                                      0.92309795 0.
  0.
              0.
                          0.
                                      0.
                                                 0.
                                                              0.
  0.
              0.
                        ]
                                                  0.55500941 0.
 [0.
              0.
              0.
                          0.
                                      0.
  0.
              0.
                        1
                          0.
                                  0.
                                                 0.
                                                             1.07838266
 [0.
              0.
                          0. 0.
  0.
              0.
                                                 0.
                                                              0.
              0.
                        1
  0.
  0.48541226 0.
                          0.
                                      0.
                                                  0.
                                                              0.
  0.
              0.
                        ]
                                                              0.
 [0.
              0.
              0.38081347 0.
  0.
              0.
 [0.
              0.
                          0.
                                                  0.
                                                              0.
                          0.59769326 0.
  0.
              0.
                                                  0.
                                                              0.
 [0.
              0.
                          a.
                                                  ۵.
                                                              ۵.
                                     1.00334337 0.
  0.
              0.
                          0.
                                                              0.
  0.
              0.
 [0.
  0.
              0.
                          0.
                                     0.
                                                  0.50353286 0.
              0.
  0.
 [0.
              0.
              0.
                          0.
                                                  0.
                                                              1.32683672
  0.
              0.
                          0.
                                      0.
                                                  0.
                                                              0.
 [0.
              0.
                                                  0.
                                                              0.
                         ]
0.
  0.46336238 0.
                                      0.
                                                  0.
                                                              0.
 [0.
              0.
              0.
                          0.
  0.
                                                  0.
                                                              0.
              0.38903823]]
```

# 9. Dimensionality Reduction Transformation (Z - LAtent Factor Vector)

```
C1_inv = np.linalg.inv(c1)
W = V.T@C1_inv
print(W.shape)
print(W.s
```