Вопрос №1

Точные грани числовых множеств

Определение. Множество X вещественных чисел ограничено сверху, если $\exists b \in \mathbb{R} : \forall x \in X \Rightarrow x \leq b$.

Определение. Множество X вещественных чисел ограничено снизу, если $\exists a \in \mathbb{R}: \ \forall x \in X \ \Rightarrow a \leq x.$

Определение. Множество X вещественных чисел ограничено тогда и только тогда, когда X ограничено сверху и снизу: $\exists b \in \mathbb{R} : \forall x \in X \Rightarrow |x| \leq b$

Определение. Число $b \in \mathbb{R}$ называется верхней гранью множества X, если

$$\forall x \in X \Rightarrow x < b \tag{1}$$

Аналогично дается определение нижней грани множества X:

$$\forall x \in X \Rightarrow a < x \tag{2}$$

Определение. Наименьшая из верхних граней множества $X \subset \mathbb{R}$ называется его точной верхней гранью и обозначается $\sup x$.

Согласно этому определению, $M = \sup x \Leftrightarrow (\forall x \in X \Rightarrow x \leq M) \land (\forall M_0 < M \exists x_0 \in X : x_0 > M_0).$

Определение. Наибольшая из нижних граней множества $X \subset \mathbb{R}$ называется его точной нижней гранью и обозначается $\inf x$.

Согласно этому определению, $m = \inf x \Leftrightarrow (\forall x \in X \Rightarrow x \geq m) \land (\forall m_0 < m \; \exists x_0 \in X : \; x_0 < m_0).$

Если множество X имеет наибольший элемент, то он и будет точной верхней гранью X.

Если множество X имеет наименьший элемент, то он и будет точной нижней гранью X.

Если X неограничено сверху, то полагаем $\sup x = +\infty$.

Если X неограничено снизу, то полагаем inf $x = -\infty$.

Любое множество вещественных чисел может иметь лишь одну точную верхнюю грань и одну точную нижнюю грань.

Теорема существования

Теорема (существование sup.) Любое непустое множество вещественных чисел, ограниченное сверху, имеет точную верхнюю грань, являющуюся

вещественным числом.

Доказательство. Пусть $X \subset \mathbb{R}, x \neq \emptyset$. Тогда $\exists a \in X$. Если X ограничено сверху, то $\exists b \in \mathbb{R} : \forall x \in X \Rightarrow x \leq b$. В частности, $a \leq b$. Таким образом, отрезок [a,b] содержит хотя бы один элемент множества X. Если a=b, то искомая точная верхняя грань задается равенством $\sup x = a$.

Пусть a < b. Тогда проведем следующие построения по индукции.

- 1. Возьмем $c_0 = \frac{a+b}{2}$. Если $\forall x \in X \Rightarrow x \leq c_0$, то возьмем $a_1 = a$, $b_1 = c_0$ и рассмотрим отрезок $[a_1, b_1]$, вместо [a, b]. Если же $\exists x \in X \Rightarrow x > c_0$, то возьмем $a_1 = c_0$, $b_1 = b$ и далее снова рассмотрим отрезок $[a_1, b_1]$, вместо [a, b].
- 2. Полагаем $c_1=\frac{a_1+b_1}{2}$ и далее построим отрезок $[a_2,b_2]$ по той же схеме, что и на шаге 1. В результате получим $[a_2,b_2]\subset [a_1,b_1]$ и $b_2-a_2=\frac{b_1-a_1}{2}$.

Таким образом, продолжая индуктивное построение, найдем последовательность вложенных отрезков $[a_n, b_n]$, обладающую свойствами:

1.
$$\forall x \in X \Rightarrow x \leq b_n, n = 1, 2, \dots$$

$$2. \ \forall n = 1, 2, \dots \ \exists x_n \in X : \ x_n > a_n$$

3.
$$b_n - a_n = (b - a) \cdot \frac{1}{2^n}, n = 1, 2, \dots$$

Таким образом, последовательность отрезков $[a_n, b_n]$ является стягивающейся. Согласно аксиоме непрерывности Кантора, эти отрезки имеют одну общую точку $c = a_n = b_n$.

При этом из оценки $x \le b \ \forall x \in X$ следует, что $\forall x \in X \Rightarrow x \le c$, т.е. c - это верхняя грань X.

Предположим, что $c_0 < c$. Тогда $\exists x_{n_0} \in X : x_{n_0} > a_{n_0} > c_0$. Следовательно, c_0 не может быть верхней гранью $X \Rightarrow c = \sup x$.

Аналогично доказывается теорема о существовании inf у любого ограниченного снизу множества чисел.

В множестве \mathbb{Q} рациональных чисел точные верхние и нижние грани множеств могут не существовать.

Определение покрытия промежутка числовой оси

Определение. Семейство интервалов называется покрытием промежутка числовой оси, если любая точка этого промежутка принадлежит некоторому интервалу исходного семейства.

Иными словами, промежуток должен содержаться в объединении всех интервалов заданного семейства.

Пример. Пусть $a=10^{-n}$ и $b=1-10^{-n}$. Тогда последовательность интервалов (a_n,b_n) является покрытием интервала (0,1). $\forall x \in (0,1) \ \exists n \in N: \ 10^{-n} < x < 1-10^{-n}$.

При этом точки $x_0=0$ и $x_1=1$ не принадлежат $\bigcup_{n=0}^{\infty}(a_n,b_n)$ и поэтому последовательность (a_n,b_n) не является покрытием отрезка [0,1].

Лемма о покрытии (Лемма Гейне-Бореля)

Лемма. Из любого покрытия интервалами конечного отрезка числовой прямой можно выделить конечное подпокрытие этого отрезка.

Доказательство. Предположим противное. Тогда существует отрезок $[a,b] \subset \mathbb{R}$ и некоторое его покрытие интервалами, никакая конечная совокупность которых не является покрытием [a,b]. При этом необходимо, чтобы a было меньше b (иначе, т.е. при a=b, отрезок состоит из одной точки и покрывается одним интервалом).

Полагаем $c_0 = \frac{a+b}{2}$. Согласно предположению, по меньшей мере один из отрезков $[a, c_0]$ или $[c_0, b]$ не покрывается никакой конечной совокупностью интервалов рассматриваемого покрытия. Если указанным свойством обладает отрезок $[a, c_0]$, то полагаем $[a_1, b_1] = [a, c_0]$, в противном случае возьмем $[a_1, b_1] = [c_0, b]$.

Дальнейшее построение проведем по индукции: отрезок $[a_1,b_1]$ разобьем на два равных, взяв $c_1=\frac{a_1+b_1}{2}$; через $[a_2,b_2]$ обозначим либо $[a_1,c_1]$, если для него не существует конечного подпокрытия, либо $[c_1,b_1]$ - и тогда для $[a_2,b_2]$ также нет конечного подпокрытия.

В результате получим последовательность $[a_n, b_n]$ отрезков, вложенных друг в друга, каждый из которых не покрывается никакой конечной совокупностью исходных интервалов. Эти вложенные отрезки стягиваются в единственную общую точку

$$c = a_n = b_n \tag{3}$$

При этом $a \le c \le b$, следовательно, существует интервал (α, β) из исходного покрытия: $\alpha < c < \beta$.

Из 3 следует, что $\exists N: \alpha < a_n < b_n < \beta$. Таким образом, отрезок $[a_n, b_n]$ покрывается в точности одним интервалом исходного покрытия. Это противоречит построению $[a_n, b_n]$.

Следовательно, исходное предположение неверно.

Компактность замкнутого конечного отрезка

Следствие леммы о покрытии. Любой конечный отрезок числовой оси обладает свойством компактности: из любого его покрытия интервалами всегда можно выделить конечное подпокрытие.

Замечание. В условии леммы нельзя заменить семейство интервалов на семейство отрезков. Пример: [0, 1] покрывается последовательностью $[10^{-n}, 1-10^{-n}], [-10^{-n}, 0]$ и $[1, 1+10^{-n}]$. Однако никакая конечная подпоследовательность указанного покрытия весь отрезок [0,1] не покрывает.

Теорема. Множество \mathbb{R} вещественных чисел несчетно.

Доказательство. Пусть \mathbb{R} - счетное, т.е. все его элементы можно пронумеровать натуральными числами:

$$x_n = p_{0n}, \alpha_{1n}, \alpha_{2n}, \dots, \alpha_{kn}, \dots; n = 1, 2, \dots$$
 (4)

Как обычно, будем предполагать, что среди бесконечных дробей нет периодических с периодом 9.

Рассмотрим теперь вещественное число x, построенное согласно следующему правилу:

$$x = 0, \alpha_1 \alpha_2 \dots \alpha_k \dots \tag{5}$$

где $\alpha_1 \neq 9$ и $\alpha_1 \neq \alpha_{11}$; $\alpha_2 \neq 9$ и $\alpha_2 \neq \alpha_{22}$; ... $\alpha_k \neq 9$ и $\alpha_k \neq \alpha_{kk}$; Тогда $\nexists n$: $x = x_n$, т.е. $\bigcup_{n=1}^{\infty} \{x_n\} \neq \mathbb{R}$. Это противоречит предположению.

Вопрос №2

Определение Аффинного пространства связанного с линейным

Пусть A - некоторое непустое множество, элементы которого условимся называть точками и обозначать как $\dot{p}, \dot{q}, \dot{r}, \dots$

Пусть также имеется линейное пространство над полем k.

Определение. Множество A называется аффинным пространством, связанным с X, если задано отображение $(\dot{p}, v) \in A \cdot X \to \dot{p} + v \in A$, обладающее свойствами:

- 1. $\dot{p} + 0 = \dot{p}$;
- 2. $(\dot{p} + u) + v = \dot{p} + (u + v) \ \forall \dot{p} \in A$ и $\forall u, v \in X$;
- 3. $\forall \dot{p}, \dot{q} \in A \exists \vec{v} \in X : \dot{p} + \vec{v} = \dot{q}$ Этот вектор \vec{v} обозначается как \vec{pq} или $\dot{q} \dot{p}$.

Иногда аффинным пространством называют пару (A, X) + отображение с указанными свойствами.

Размерность аффинного пространства X равна размерности связанного с A линейного пространства: $\dim A = \dim X = n$.

Иногда, чтобы подчеркнуть размерность, пишут A^n . Если $k = \mathbb{R}$, то говорят о вещественном аффинном пространстве.

Сдвиги на Аффинном пространстве

Аксиома из определения аффинного пространства утверждает, что $\forall \dot{p} \in A$ работает биекция $v \to \dot{p} + v$ множеств X и A.

Определение. Биективное отображение T_v : $\dot{p} \to \dot{p} + v = T_v (\dot{p}), \, \dot{p} \in A$ на множестве A называется сдвигом в A (или параллельным переносом в A) на вектор v из X.

Из определения следует, что $T_u \circ T_v = T_{u+v}, \ T_v \circ T_{-v} = I, \ I$ - тождественное отображение.

Таким образом, множество сдвигов $\{T_n|n\in X\}$ образует группу, изоморфную аддитивной группе пространства X.

Если определить линейную комбинацию сдвигов $aT_u + bT_v = T_{au+bv}$, то множество всех сдвигов становится векторным пространством (изоморфным пространству X).

Пусть $\dot{p},\ \dot{q},\ \dot{r},\ \dot{s}$ - такие точки из A, что $\dot{p}+v=\dot{q},\ \dot{r}+v=\dot{s}.$ Тогда $p\vec{q}$ и $r\vec{s}$ - это разные представители класса эквиваленции, соответствующие вектору v. Из определения получаем, $p\vec{q}+q\vec{r}=p\vec{r};\ p\vec{q}=-q\vec{p};\ p\vec{p}=0$ или $(\dot{q}-\dot{p})+(\dot{r}-\dot{q})=(\dot{r}-\dot{p});\ (\dot{q}-\dot{p})=-(\dot{p}-\dot{q});\ (\dot{p}-\dot{p})=0.$

Определение евклидова векторного пространства

Определение. Евклидовым векторным пространством называется вещественное линейное пространство X с заданным на нем скалярным произведением $\langle x,y \rangle$, для которого выполнены следующие условия:

- 1. $\langle x, x \rangle > 0 \ \forall x \neq 0$, иначе $\langle x, x \rangle = 0$
- 2. $\langle x, y \rangle = \langle y, x \rangle$
- 3. $\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, x \rangle$

 $\forall x,y \in X$ скалярное произведение – вещественное число.

Скалярное произведение и его свойства

По определению, $\langle x,y\rangle$ - это произведение длин векторов на косинус угла между ними: $\langle x,y\rangle=|x|\cdot|y|\cdot\cos\phi$. Если $x=(x_1,x_2,x_3)$, разложение по базису пространства \mathbb{R}^3 , $x=x_1e_1+x_2e_2+x_3e_3$, то длина $|x|=\sqrt{x_1^2+x_2^2+x_3^2}$. Если $y=y_1e_1+y_2e_2+y_3e_3$, то $\langle x,y\rangle=x_1y_1+x_2y_2+x_3y_3$.

Длина вектора в евклидовом пространстве

Пусть X - евклидово векторное пространство со скалярным произведением $\langle x,y \rangle$.

Определение. Длиной или нормой вектора $x \in X$ называется неотрицательное вещественное число $|v| = \sqrt{\langle v, v \rangle} = \langle v, v \rangle^{\frac{1}{2}}$.

Пример. поле вещественных чисел \mathbb{R} представляет собой одномерное евклидово векторное пространство, длина вектора в котором совпадает с абсолютным значением (модулем) соответствующего вещественного числа.

Неравенство Коши-Буняковского

Теорема (неравенство Коши-Буняковского). Для всех x, y из евклидова векторного пространства X имеет место неравенство $|\langle x, y \rangle| \leq |x| \cdot |y|$.

Доказательство. Рассмотрим следующее выражение: $\langle x+ly,x+ly\rangle=\langle x,x\rangle+\langle x,ly\rangle+\langle ly,x\rangle+\langle ly,ly\rangle=\langle x,x\rangle+2l\langle x,y\rangle+l^2\langle y,y\rangle$. Фиксируя

x, y, получаем квадратный трехчлен от l. Коэффициент при l^2 - неотрицателен (при y=0, нулевой). Значения этого квадратичного трехчлена также неотрицательны.

Это возможно только при $D \le 0$: $D = (2\langle x,y\rangle)^2 - 4\langle x,x\rangle\langle y,y\rangle \le 0$, или, что то же самое $|\langle x,y\rangle| \le \langle x,x\rangle^{\frac{1}{2}}\langle y,y\rangle^{\frac{1}{2}}$ это и есть требуемое неравенство.

Замечание. Если $|\langle x,y\rangle| = |x|\cdot |y|$, то D=0, квадратный трехчлен имеет только один вещественный корень l_0 . При этом $\langle x+l_0y,x+l_0y\rangle=0 \Rightarrow x+l_0y=0$. То есть векторы линейно зависимы. Получили, что равенство в неравенстве Коши-Буняковского достигается только когда векторы линейно зависимы (коллинеарны).

Угол между векторами

Из неравенства Коши-Буняковского: $|\langle x,y\rangle| \leq |x|\cdot |y| \Rightarrow \frac{|\langle x,y\rangle|}{|x|\cdot |y|} \leq 1 \Rightarrow -1 \leq \frac{|\langle x,y\rangle|}{|x|\cdot |y|} \leq 1.$

Следовательно, уравнение $\cos \phi = \frac{|\langle x,y \rangle|}{|x|\cdot|y|}$ на интервале $0 \le \phi \le \pi$ имеет ровно одно решение ϕ . Этот корень называется углом между векторами x и y.

Определение. Векторы x и y называются ортогональными $(x \perp y)$, если соответствующий угол между ними равен $\frac{\pi}{2}$.

Нулевой вектор ортогонален любому вектору из X.

Теорема Пифагора

Теорема. Если $x \perp y$, то $|x + y|^2 = |x|^2 + |y|^2$.

Неравенство треугольника

Следствие. Пусть x и y - произвольные векторы евклидова пространства E^n , т.е. $x \in E^n$ и $y \in E^n$. Докажем, что

$$|x+y| \le |x| + |y|$$
. (Неравенство треугольника)

Доказательство. Очевидно, что $(x+y,x+y)=|x+y|^2$. С другой стороны, (x+y,x+y)=(x,x)+2(x,y)+(y,y)=|x|+2(x,y)+|y|. Принимая во внимание неравенство Коши-Буняковского, получим $|x+y|^2 \le |x|^2 + 2 \cdot |x||y| + |y|^2 = (|x|+|y|)^2 \Rightarrow |x+y| \le |x|+|y|$.