PERTEMUAN 2

RUANG VEKTOR BAGIAN, VEKTOR BERGANTUNG DAN BEBAS LINIER

A. Tujuan Pembelajaran

Setelah menyelesaikan pertemuan ini Mahasiswa mampu memahami tentang ruang vektor dan ruang bagian.

B. Uraian Materi

1. Ruang Vektor

Apabila diketahui sebuah himpunan vektor v dan suatu medan skalar k, diartikan bahwa operasi penjumlahan terhadap suatu elemen-elemen v sendiri dan operasi perkalian suatu elemen v dengan sebuah elemen k disebut sebagai perkalian skalar. Dimana v disebut suatu ruang vektor jika memenuhi suatu syarat berikut:

- a. Setiap u, v ∈ V dan α ∈ k maka dapat dinyatakan: u + v ∈ V, α u ∈ V (tertutup terhadap sebuah operasi penjumlahan dan perkalian skalar).
- b. Untuk setiap u, v, w € V maka (u+v) + w = u + (v + w).
- c. Setiap u, v € V dan α € K maka dapat dinyatakan α * (u + v) = α * u + α * v
- d. Terdapat 0 € V disebut vektor nol sehingga 0 + u = u + 0 = u, dimana u € V.
- e. Setiap u € V dimana –u € V sehingga (-u) + u = u + (-u) = 0.
- f. Setiap u, v € V maka u + v = v + u
- g. Setiap u € V akan berlaku 1* u = u, dimana 1 merupakan elemen satuan dariK.

Contoh:

 $V_2 \equiv$ merupakan himpunan yang berisi polynomial yang berderajat dua atau kurang dimana operasi penjumlahan dan perkalian merupakan sebuah ruang vektor yang berada di atas medan skalar R (dimana R merupakan bilangan riil).

Langkah Penyelesaiannya:

Langkah pertama kita harus menguji apakah syarat 1 dan 8 terpenuhi. Misal:

$$U = a_2 x^2 + a_1 x + a_0,$$

$$V = b_2 x^2 + b_1 x + b_0,$$

$$W = c_2 x^2 + c_1 x + c_0,$$

Apabila c dan d merupakan bilangan skalar, maka:

$$U + V = (a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) + (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

$$\in V^3$$

Karena u + v merupakan polynomial yang berderajat dua atau kurang maka:

Step 1:

$$u + v = (a_2x^2 + a_1x + a_0) + (b_2x^2 + bx + b_0)$$

$$= (a_2 + b_2) x^2 + (a_1 + b_1) x + (a_0 + b_0)$$

$$= (b_2 + a_2) x^2 + (b_1 + a_1) x + (b_0 + a_0)$$

$$= (b_2x^2 + b_1x + b_0) + (a_2x^2 + a_1x + a_0) = v + u$$

Step 2:

$$\begin{aligned} \mathbf{u} + (\mathbf{v} + \mathbf{w}) &= (a_2 x^2 + a_1 \mathbf{x} + a_0) + [(b_2 + c_2) \ x^2 + ((b_1 + c_1) \mathbf{x} + (b_0 + c_0)) \\ &= (a_2 + b_2 + c_2) \ x^2 + (a_1 + b_1 + c_1) \mathbf{x} + (a_0 + b_0 + c_0) \\ &= [(a_2 + b_2) \ x^2 + (a_1 + b_1) \ \mathbf{x} + (a_0 + b_0)] + c_2 x^2 + c_1 \mathbf{x} + c_0 \\ &= (\mathbf{u} + \mathbf{v}) + \mathbf{w} \end{aligned}$$

Step 3:

$$Misalkan 0 = 0x^2 + 0x + 0, maka,$$

$$u + 0 = (a_2 + 0)x^2 + (a_1 + 0) x + (a_0 + 0) = (0 + a_2) x^2 + ((0 + a_1) x + ((0 + a_2) x^2 + a_1) x + ((0 + a_2) x^2 + a_2) x + (a_1 + a_2) x + (a_2 + a$$

Step 4:

Misalkan
$$-u = (-a_2)x^2 + (-a_1)x + (-a_0)$$
 maka
$$u + -v = [a_2 + (-a_2)]x^2 + [a_1 + (-a_1)]x + [a_2 + (-a_2)] + [a_0 + (-a_0)]$$
$$= 0x^2 + 0x + 0 = 0$$
$$Cu = (ca_2)x^2 + (ca_1)x + (ca_0) \in V_3$$

Karena cu merupakan sebuah polynomial berderajat dua atau kurang.

Step 5:

C (u + v) =
$$[c(a_2 + b_2)]x^2 + [c(a_1 + b_1)] \times + [c(a_0 + b_0)]$$

= $(ca_2 + cb_2) x^2 + (ca_1 + cb_1) \times + (ca_0 + cb_0)$
= cu + cv

Step 6:

(c + d) u =
$$[(c + d) a_2]x^2 + [(c + d) a_1] x + [(c + d) a_0]$$

= $[(ca_2) x^2 + (ca_1) x + (ca_0)] + [(da_2) x^2 + (da_1) x + (da_0)]$

$$= cu + du$$

Step 7:

C (du) = c [(d
$$a_2$$
) x^2 + (d a_1) x + (d a_0)]
= c (d a_2) x^2 + c (d a_1) x + c (d a_0)
= (cd) a_2x^2 + (cd) a_1 x + (cd) a_0
= (cd) u

Step 8:

$$1u = 1a_2x^2 + 1a_1x + 1a_0$$
$$= a_2x^2 + a_1x + a_0$$
$$= u$$

Dikarenakan syarat 1 dan 8 terpenuhi maka V_3 merupakan sebuah ruang vektor.

2. Vektor Bebas Linier

Apabila s adalah (v1, v2, ..., vr) merupakan suatu himpunan vektor – vektor yang bukan kosong, maka dapat dituliskan persamaan vektornya sebagai berikut:

$$K_1V_1 + K_2V_2 + \dots + K_rV_r = 0$$

Harus memiliki paling tidak satu penyelesaian, yaitu:

$$K_1 = 0, K_2 = 0, \ldots K_r = 0$$

Apabila ini merupakan salah satu langkah salam penyelesaian, maka s dikatakan himpunan yang bebas linier. Tetapi apabila tidak ada penyelesaian, maka s merupakan suatu himpunan yang tak bebas secara linier.

Contoh:

1) Selidiki dan tentukan apakah himpunan vektor – vektor dibawah ini bebas linier atau bergantung linier ?

a)
$$A = \{2, 2, 3\}$$
 dan $B = \{3, 1, 2\}$

b)
$$B = \{2, 3, 4\} \text{ dan } C = \{4, 6, 8\}$$

c)
$$U = \{1, 2, 3\} V = \{2, 3, 7\} dan W = \{0, 0, 0\}$$

Jawab:

a) Himpunan vektor ini termasuk bebas linier karena semua anggota himpunannya tidak berkelipatan.

b) Himpunan vektor ini disebut bergantung linier karena semua anggota himpunannya berkelipatan satu sama lain yaitu C=2B.

- c) Jika ada himpunan yang mengandung nol berarti disebut bergantung linier walaupun himpunan lain bebas linier tetapi jika ada himpunan yang mengandung nol tetap disebut bergantung linier.
- 2) Diketahui dua buah vektor yaitu vektor u = (-1, 3, 2) dan vektor v = (1, 1, -1). Buktikan apakah saling bebas linier?

Jawab:

$$K_1 u + K_1 a = 0$$

Maka:

$$\begin{bmatrix} -1 & 1 \\ 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} K1 \\ K2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Langkah pertama adalah kita menggunakan operasi baris elementer. Dimana operasi baris elementer digunakan untuk menghasikan matriks identitas. Sehingga:

$$\begin{bmatrix} -1 & 1 \\ 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} b2 + 3b1 = \begin{bmatrix} -1 & 1 \\ 0 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} b3 + 2b1 = \begin{bmatrix} -1 & 1 \\ 0 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Maka:

$$\begin{bmatrix} -1 & 1 \\ 0 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - b1 = \begin{bmatrix} 1 & -1 \\ 0 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} b1 + b3 = \begin{bmatrix} 1 & 0 \\ 0 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \frac{1}{4} b2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Lalu

$$b3 - b2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} k1 \\ k2 \\ k3 \end{bmatrix}$$

Maka akan diperoleh sebuah solusi tunggal yaitu:

$$K_1 = 0$$

$$K_2 = 0$$

Karena hasil yang diperoleh sama dengan nol, maka vektor u dan vektor v dikatakan vektor yang saling bebas linier.

3) Diketahui tiga buah vektor yaitu:

$$A = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} dan C = \begin{bmatrix} 2 \\ -6 \\ -4 \end{bmatrix}$$

Apakah ketiga vektor diatas dapat dikatakan saling bebas linier?

Jawab:

$$K_1$$
a + K_2 b + K_3 c = 0

Maka:

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & 1 & -6 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} k1 \\ k2 \\ k3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Langkah pertama adalah kita menggunakan operasi baris elementer. Dimana operasi baris elementer digunakan untuk menghasikan matriks identitas. Sehingga:

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & 1 & -6 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = b2 + 3b1 = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 4 & 0 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$b3 + 2b1 = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - b1 = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$1/4b2 = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} b3 - b2 = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Sehingga diperoleh:

$$\begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} k1 \\ k2 \\ k3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Hal ini menunjukkan bahwa nilai k1, k2, k3 merupakan solusi tak hingga banyak. Sehingga vektor a, vektor b dan vektor c merupakan vektor – vektor yang bergantung linier.

3. Vektor Bergantung Linier

- a. Apabila diketahui himpunan sebanyak m buah vektor (U1, U2, ...Un) maka disebut bergantung linier apabila memiliki skalar skalar yaitu (λ 1, λ 2, ... λ m) yang bukan nol sehingga berlaku λ 1U1 + λ 2U2 + + λ nUm = 0
- b. Apabila diketahui himbunan sebanyak m buah vektor yaitu (U1, U2, ...Un) maka disebut vektor vektor bebas linier jika skalar skalar (λ 1, λ 2, ... λ m) yang semuanya adalah nol. Dimana λ 1 = λ 2 = λ 3 = λ m = 0. Maka berlaku λ 1U1 + λ 2U2 + + λ nUm = 0

Contoh:

1) Diketahui 3 buah vektor yaitu vektor a = (3, 1, 2) vektor b = (1, 2, 1) dan vektor c = (2, -1, 1). Buktikan apakah vektor – vektor tersebut merupakan bebas atau bergantung linier?

Jawab:

$$\lambda 1a + \lambda 2b + \lambda 3c = 0$$

 $\lambda 1 (3, 1, 2) + \lambda 2 (1, 2, 1) + \lambda 3 (2, -1, 1) = (0, 0, 0)$

Terdapat λ yang bukan nol, yaitu $\lambda 1 = 1$, $\lambda 2 = -1$, $\lambda 3 = -1$ sehingga karena memiliki λ yang bukan nol maka vektor a, vektor b dan vektor c disebut vektor yang bergantung linier.

2) Buktikan apakah vektor

$$\mathbf{s} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ merupakan vektor bebas linier atau tidak?}$$

Jawab:

Diketahui:

$$\lambda 1 = (1, 0, 0)$$

$$\lambda 2 = (0, 1, 0)$$

$$\lambda 3 = (0, 0, 1)$$

Maka:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\lambda = (1)(1)(1) + (0)(0)(0) + (0)(0)(0) - (0)(1)(0) - (0)(0)(1) - (1)(0)(1)$$

$$\lambda = 1 + 0 + 0 - 0 - 0 - 0$$

$$\lambda = 1$$

Karena $\lambda = 1$ maka vektor diatas terbukti vektor bebas linier.

Note:

Apabila menentukan himpunan suatu vektor, maka dapat dilakukan dengan matriks, yaitu sebagai berikut:

- a) Apabila determinan = 0, maka himpunan tersebut dikatakan vektor bergantung linier
- b) Apabila nilai determinan # = 0, maka himpunan tersebut dikatakan vektor bebas linier

3) Diketahui tiga buah vektor yaitu:

$$A = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} dan C = \begin{bmatrix} 2 \\ -6 \\ -4 \end{bmatrix}$$

Apakah ketiga vektor diatas dapat dikatakan saling bebas linier?

Jawab:

$$K_1$$
a + K_2 b + K_3 c = 0

Maka:

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & 1 & -6 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} k1 \\ k2 \\ k3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Langkah pertama adalah kita menggunakan operasi baris elementer. Dimana operasi baris elementer digunakan untuk menghasikan matriks identitas.

Sehingga:

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & 1 & -6 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} =$$

$$b2 + 3b1 = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 4 & 0 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$b3 + 2b1 = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - b1 = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$1/4b2 = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$b3 - b2 = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Sehingga diperoleh:

$$\begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} k1 \\ k2 \\ k3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Hal ini menunjukkan bahwa nilai k1, k2, k3 merupakan solusi tak hingga banyak. Sehingga vektor a, vektor b dan vektor c merupakan vektor – vektor yang bergantung linier.

4) Selidiki dan tentukan apakah himpunan vektor – vektor dibawah ini bebas linier atau bergantung linier ?

a)
$$A = \{2,2,3\}$$
 dan $B = \{3,1,2\}$

- b) $B = \{2,3,4\}$ dan $C = \{4,6,8\}$
- c) $U = \{1,2,3\} V = \{2,3,7\} dan W = \{0,0,0\}$

Jawab:

- a) Himpunan vektor ini termasuk bebas linier karena semua anggota himpunannya tidak berkelipatan.
- b) Himpunan vektor ini disebut bergantung linier karena semua anggota himpunannya berkelipatan satu sama lain yaitu C=2B.
- c) Jika ada himpunan yang mengandung nol berarti disebut bergantung linier walaupun himpunan lain bebas linier tetapi jika ada himpunan yang mengandung nol tetap disebut bergantung linier.

C. Soal Latihan/Tugas

1. Apabila diketahui dua buah vektor yaitu u dan v. dimana vektor u = [2, 3] dan vektor v = [1, 3]. Buktikan apakah kedua vektor tersebut termasuk vektor bebas linier atau bergantung linier?

- 2. Buktikan bahwa vektor vektor berikut merupakan bebas linier atau bergantung linier:
 - a. U = (-1, 2, 4), V = (5, -10, -20)
 - b. U = (-3, 0, 4), V = (5, -1, 2), (1, 1, 3)
- 3. Buktikan apakah vektor $s = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ merupakan vektor bebas linier atau tidak?
- 4. Apabila diketahui dua buah vektor yaitu u dan v. dimana vektor $u = [-1, 3 \ 5]$ dan vektor $v = [2, 4 \ 7]$. Buktikan apakah kedua vektor tersebut termasuk vektor bebas linier atau bergantung linier?
- 5. Diketahui u = (3, -5, 6) dan v = (8, 2, 4). Apakah vektor tersebut merupakan vektor bergantung linier?

D. Daftar Pustaka

Anton, Howard. (2010). *Elementary Linear Algebra: Applications Version (10th ed)*. John Wiley & Sons. Inc, New Your, NY.

- Atmadja, J., Bandung, I. T., & Bandung, J. G. (2016). Penerapan Aljabar Lanjar pada Grafis Komputer, 1–9.
- Kusumawati, Ririen (2006). *Diktat Aljabar Liniear dan Matriks*. Malang: Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN Malang.
- Lay, David C. (2000). *Linear Algebra and Its Aplication (2nd ed)*. Addison-Wesley Publ. Co., Reading, Mass.