Spectral Temporal Graph Neural Network for

Multivariate Time-series Forecasting with

applications to crypto data

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting

Why:

- Graph based methods are now finding their use in finance
- Captures both inter- and intra-series correlations
- Converts multiple-time series to graph data structure through transformer based module
- Versatile framework

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting

How it works

- The first step converts matrix X, a multiple time series table of size N × T in graph data structure, in particular, it returns a pair (X,W), where W is the adjacency matrix
- (Advantage) Constructing the adjacency matrix operation takes O(N^2 * d) (usually N is fixed and d is not a very large constant)
- The second step works with the obtained pair and applied so-called StemGNN block (this roughly does some inter and intra-series analysis)

Data

- Kaggle dataset with 400+ cryptocurrency pairs with resolution of 1 minute collected from Bitfinex exchange
- Observations are temporally misaligned
- 95110 observations for each of 12 cryptocurrencies: BTC, ZEC, OMG, UST, LEO, NEO, ETCIOT, EOS, XRP, LTC and ETH.
- We take 80% of the dataset for training, 10% for validation and the 10% for testing

Trading strategy

- Pairs trading statistical arbitrage strategy that aims at exploiting long-run relationships between asset prices X and U
- Need to calculate spread S=X U, thresholds α_L for buying assets, α_S for selling and α_{ext} for exiting position.
- Spread S=X-U is calculated and is used to fit the model. This model is used to make a 1 step prediction of spread, which is used to calculate expected spread change.
- If this change is less than the lowest threshold, α_s then we sell all of X and invest all in U If this change is larger than highest threshold α_s sell all of U and invest in X
- The portfolio is revalued on each day prior to any trades

Results

Obtain the following graph (MAE 26.14, MAPE 0.01, RMSE 107.62)

Use minimum spanning tree and disparity filter to obtain backbone

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 $MAPE = \frac{1}{n} \sum_{i=1}^{n} |\frac{y_i - \hat{y}_i}{y_i}|$

Results

Results

Based on the graph constructed from adjacency matrix W, we identified the following cryptocurrencies with the highest correlation from which 3 pairs were constructed based on validation dataset: BTC, ZEC and UST

We use ARIMA(1,0,1) as baseline model

$$y_t = a_0 + a_1 y_{t-1} + b_1 e_1$$

StemGNN seems to underperform in comparison with simple ARIMA model, since it does not identify any profitable pairs while ARIMA finds BTC-ZEC and BTC-UST profitable

Pair	StemGNN return (%)	ARIMA return (%)
BTC-ZEC	-1.20	1.00
BTC-UST	-0.10	1.00
ZEC-UST	-0.10	-1.18

Social Network Analysis for stocks: additional case study

- We study a more classical approach of SNA applied to daily stock data
- Motivation: capture more fundamental properties that are not present in higher frequency
- Data is simpler (and aligned which is perfect). Data was collected for Russian stocks from 2010 to 2020 september on daily basis
- Interesting to combine with other approaches such classical time series analysis and classical machine learning such as boosting

Social Network Analysis for stocks: results

- By using graph-based methods we can analyze stock data in a form of a network
- This gives opportunities to generate statistically significant features and do an interpretable analysis

Social Network Analysis for stocks: results

Network of Russian stocks 5 months prior to coronavirus crisis

Network of Russian stocks during the peak of coronavirus crisis in March-April

Social Network Analysis for stocks: results

Performance of dynamic portfolio allocation strategy with network-based features

Performance of dynamic portfolio allocation strategy based on basic time series analysis