Machine Learning Exercise Sheet 3

Probabilistic Inference

Exercise sheets consist of two parts: homework and in-class exercises. You solve the homework exercises on your own or with your registered group and upload it to Moodle for a possible grade bonus. The inclass exercises will be solved and discussed during the tutorial along with some difficult and/or important homework exercises. You do not have to upload any solutions of the in-class exercises.

In-class Exercises

Consider the probabilistic model

$$p(\mu \mid \alpha) = \mathcal{N}(\mu \mid 0, \alpha^{-1}) = \sqrt{\frac{\alpha}{2\pi}} \exp\left(-\frac{\alpha}{2}\mu^{2}\right)$$
$$p(x \mid \mu) = \mathcal{N}(x \mid \mu, 1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \mu)^{2}\right)$$

and a set of observations $\mathcal{D} = \{x_1, ..., x_N\}$ consisting of N samples $x_i \in \mathbb{R}$.

Note: We parametrize $\mu \mid \alpha$ with the precision parameter $\alpha = 1/\sigma^2$ instead of the usual variance σ^2 because it leads to a nicer solution.

Problem 1: Derive the maximum likelihood estimate μ_{MLE} . Show your work.

Our goal is to find

$$\begin{split} \mu_{\text{MLE}} &= \operatorname*{arg\,max}_{\mu \in \mathbb{R}} p(\mathcal{D} \mid \mu) \\ &= \operatorname*{arg\,max}_{\mu \in \mathbb{R}} \, \log p(\mathcal{D} \mid \mu) \end{split}$$

We solve this problem in two steps:

- 1. Write down & simplify the expression for $\log p(\mathcal{D} \mid \mu)$.
- 2. Solve $\frac{\partial}{\partial \mu} \log p(\mathcal{D} \mid \mu) \stackrel{!}{=} 0$ for μ .

$$\begin{split} \log p(\mathcal{D} \mid \mu) &= \log \operatorname{p}(x_1, ..., x_N \mid \mu) \\ &= \log \left(\prod_{i=1}^N \operatorname{p}(x_i \mid \mu) \right) & \text{iid assumption} \\ &= \sum_{i=1}^N \log \operatorname{p}(x_i \mid \mu) \\ &= \sum_{i=1}^N \left[\log \left(\frac{1}{\sqrt{2\pi}} \right) + \log \left(\exp \left(-\frac{1}{2} (x_i - \mu)^2 \right) \right) \right] \\ &= \sum_{i=1}^N \left[-\frac{1}{2} (x_i - \mu)^2 \right] + \operatorname{const.} \\ &= -\frac{1}{2} \sum_{i=1}^N (x_i^2 - 2x_i \mu + \mu^2) + \operatorname{const.} \\ &= \left[-\frac{1}{2} \sum_{i=1}^N x_i^2 \right] + \left[\sum_{i=1}^N x_i \mu \right] - \left[\frac{1}{2} \sum_{i=1}^N \mu^2 \right] + \operatorname{const.} \\ &= \mu \sum_{i=1}^N x_i - \frac{N}{2} \mu^2 + \operatorname{const.} \end{split}$$

Now compute the derivative and set it to zero.

$$\frac{\partial}{\partial \mu} \log p(\mathcal{D} \mid \mu) = \frac{\partial}{\partial \mu} \left(\mu \sum_{i=1}^{N} x_i - \frac{N}{2} \mu^2 + \text{const.} \right)$$
$$= \sum_{i=1}^{N} x_i - N\mu \stackrel{!}{=} 0$$

Solving for μ we obtain

$$\mu_{\text{MLE}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

That is, μ_{MLE} is just the average of the datapoints.

Problem 2: Derive the maximum a posteriori estimate μ_{MAP} . Show your work.

Our goal is to find

$$\begin{split} \mu_{\text{MAP}} &= \mathop{\arg\max}_{\mu \in \mathbb{R}} p(\mu \mid \mathcal{D}, \alpha) \\ &= \mathop{\arg\max}_{\mu \in \mathbb{R}} \log p(\mu \mid \mathcal{D}, \alpha) \\ &= \mathop{\arg\max}_{\mu \in \mathbb{R}} \left[\log p(\mathcal{D} \mid \mu) + \log p(\mu \mid \alpha) \right] \end{split}$$

We solve this problem in two steps:

- 1. Write down & simplify the expression for $\log p(\mathcal{D} \mid \mu) + \log p(\mu \mid \alpha)$.
- 2. Solve $\frac{\partial}{\partial \mu} (\log p(\mathcal{D} \mid \mu) + \log p(\mu \mid \alpha)) \stackrel{!}{=} 0$ for μ .

$$\begin{split} \log p(\mu \mid \alpha) &= \log \left(\sqrt{\frac{\alpha}{2\pi}} \right) + \log \left(\exp \left(-\frac{\alpha}{2} \mu^2 \right) \right) \\ &= -\frac{\alpha}{2} \mu^2 + \text{const.} \end{split}$$

From the previous task, we know that

$$\log p(\mathcal{D} \mid \mu) = \mu \sum_{i=1}^{N} x_i - \frac{N}{2} \mu^2 + \text{const.}$$

Therefore, we get

log p(
$$\mathcal{D} \mid \mu$$
) + log p($\mu \mid \alpha$) = $\mu \sum_{i=1}^{N} x_i - \frac{N}{2} \mu^2 - \frac{\alpha}{2} \mu^2 + \text{const.}$

Now compute the derivative and set it to zero.

$$\frac{\partial}{\partial \mu} \left(\log p(\mathcal{D} \mid \mu) + \log p(\mu \mid \alpha) \right) = \frac{\partial}{\partial \mu} \left(\mu \sum_{i=1}^{N} x_i - \frac{N}{2} \mu^2 - \frac{\alpha}{2} \mu^2 + \text{const.} \right)$$
$$= \sum_{i=1}^{N} x_i - N\mu - \alpha\mu \stackrel{!}{=} 0$$

Solving for μ we obtain

$$\mu_{\text{MAP}} = \frac{1}{N + \alpha} \sum_{i=1}^{N} x_i$$

By comparing this to μ_{MLE} , we can understand the effect of a 0-mean Gaussian prior on our estimate of μ . Since $\alpha > 0$, we see that μ_{MAP} is always closer to zero than μ_{MLE} .

Problem 3: Does there exist a prior distribution over μ such that $\mu_{\text{MLE}} = \mu_{\text{MAP}}$? Justify your answer.

Let's compare the expressions for μ_{MLE} and μ_{MAP}

$$\mu_{\text{MAP}} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \qquad \mu_{\text{MAP}} = \frac{1}{N+\alpha} \sum_{i=1}^{N} x_i$$

As α approaches zero ($\alpha \to 0$), μ_{MAP} gets closer to μ_{MLE} . As the *precision* of the prior distribution decreases, its variance increases. The prior distribution is getting more and more flat, thus being less informative and having a smaller effect on the posterior.

If we could set $\alpha = 0$, we would have a uniform prior on μ , and thus $\mu_{\text{MLE}} = \mu_{\text{MAP}}$. However, technically, we are not allowed to do that — since the distribution $p(\mu \mid \alpha)$ is defined over all of \mathbb{R} , it has to integrate to one $(\int_{-\infty}^{\infty} p(\mu \mid \alpha) d\mu = 1)$.

We can ignore this restriction and assume that we have a uniform prior over μ . Such prior would be called *improper*. While in many cases it's fine to use an improper prior, it might lead to subtle problems in certain situations.

Problem 4: Derive the posterior distribution $p(\mu \mid \mathcal{D}, \alpha)$. Show your work.

We obtain the posterior distribution using Bayes formula

$$p(\mu \mid \mathcal{D}, \alpha) = \frac{p(\mathcal{D} \mid \mu) p(\mu \mid \alpha)}{p(\mathcal{D} \mid \alpha)}$$

$$\propto p(\mathcal{D} \mid \mu) p(\mu \mid \alpha)$$

$$\propto \left(\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x_i - \mu)^2\right) \right) \sqrt{\frac{\alpha}{2\pi}} \exp\left(-\frac{\alpha}{2}\mu^2\right)$$

$$\propto \left(\prod_{i=1}^{N} \exp\left(-\frac{1}{2}(x_i - \mu)^2\right) \right) \exp\left(-\frac{\alpha}{2}\mu^2\right)$$

$$\propto \exp\left(-\frac{1}{2}\sum_{i=1}^{N} (x_i - \mu)^2 - \frac{\alpha}{2}\mu^2\right)$$

$$\propto \exp\left(-\frac{1}{2}\sum_{i=1}^{N} x_i^2 + \mu \sum_{i=1}^{N} x_i - \frac{1}{2}\sum_{i=1}^{N} \mu^2 - \frac{\alpha}{2}\mu^2\right)$$

$$\propto \exp\left(-\frac{N + \alpha}{2}\mu^2 + \mu \sum_{i=1}^{N} x_i\right)$$
(1)

We know that the posterior distribution has to integrate to 1, but we don't know the normalizing constant. However, we know that it's proportional to $\exp(a\mu^2 + b\mu)$. This looks very similar to a normal distribution — we have an quadratic form inside the exponential.

How can we use this fact? Consider a normal distribution over μ with mean m and precision β

$$\mathcal{N}(\mu \mid m, \beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left(-\frac{\beta}{2}(\mu - m)^2\right)$$
$$\propto \exp\left(-\frac{\beta}{2}\mu^2 + \beta m\mu\right) \tag{2}$$

If we find β and m such that Equations 1 and 2 are equal, we will know that our posterior $p(\mu \mid \mathcal{D}, \alpha)$ is a normal distribution with mean m and precision β .

First we observe that

$$\beta = N + \alpha$$

Now we need to find m such that

$$\beta m = \sum_{i=1}^{N} x_i$$

$$m = \frac{1}{\beta} \sum_{i=1}^{N} x_i$$

$$m = \frac{1}{N+\alpha} \sum_{i=1}^{N} x_i$$

Putting everything together we see that

$$p(\mu \mid \mathcal{D}, \alpha) = \mathcal{N}\left(\mu \mid \frac{1}{N+\alpha} \sum_{i=1}^{N} x_i, (N+\alpha)^{-1}\right)$$

Since the posterior is a normal distribution, its mean coincides with its mode — this means that $\mathbb{E}_{p(\mu|\mathcal{D},\alpha)}[\mu] = \mu_{MAP}$. We can see that this is indeed the case, which is a good sanity check.

Problem 5: Derive the posterior predictive distribution $p(x_{new} \mid \mathcal{D}, \alpha)$. Show your work.

The posterior over μ is $p(\mu \mid \mathcal{D}, \alpha) = \mathcal{N}(\mu \mid m, \beta^{-1})$. Our goal is to find the *posterior predictive* distribution over the next sample $p(x_{new} \mid \mathcal{D}, \alpha)$. For brevity, we will drop the new subscript.

From the lecture we remember that thanks to the conditional independence assumption the posterior predictive is

$$p(x \mid \mathcal{D}, \alpha) = \int_{-\infty}^{\infty} p(x \mid \mu) p(\mu \mid \mathcal{D}, \alpha) d\mu$$

There are two (equivalent) ways to approach this problem.

Approach 1. Basically, we are modeling the following process

- We draw μ from the posterior distribution $\mu \sim \mathcal{N}(m, \beta^{-1})$.
- We draw x from the conditional distribution $x \sim \mathcal{N}(\mu, 1)$.

This process is identical to the following procedure

- We draw μ from the posterior distribution $\mu \sim \mathcal{N}(m, \beta^{-1})$.
- We draw y from the standard normal distribution $y \sim \mathcal{N}(0,1)$.
- We calculate x as $\mu + y$.

Clearly, x is a sum of two *independent* normally distributed random variables. Hence, x also follows a normal distribution with mean m + 0 and precision $(\beta^{-1} + 1)^{-1}$.

$$p(x \mid \mathcal{D}, \alpha) = \mathcal{N}(x \mid m, \beta^{-1} + 1)$$

where m and β were computed in the previous problem.

Approach 2. We can directly look at the integral

$$p(x \mid \mathcal{D}, \alpha) = \int_{-\infty}^{\infty} p(x \mid \mu) p(\mu \mid \mathcal{D}, \alpha) d\mu$$
$$= \int_{-\infty}^{\infty} \mathcal{N}(x \mid \mu, 1) \mathcal{N}(\mu \mid m, \beta^{-1}) d\mu$$
$$= \int_{-\infty}^{\infty} \mathcal{N}(x - \mu \mid 0, 1) \mathcal{N}(\mu \mid m, \beta^{-1}) d\mu$$

This a convolution of two Gaussian densities — the result is a Gaussian density as well

$$= \mathcal{N}(x \mid m, \beta^{-1} + 1)$$

You can find the proof on Wikipedia https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables#Proof_using_convolutions.

The two approaches are effectively identical, and both rely on two facts:

- 1. μ is the location parameter of the normal distribution. That means that if $p(x) = \mathcal{N}(x \mid \mu, \sigma^2)$ and y = x + a (for a fixed $a \in \mathbb{R}$), then $p(y) = \mathcal{N}(y \mid \mu + a, \sigma^2)$.
- 2. the sum of two normally distributed RVs is a normally distributed RV