NALAIYATHIRAN IBM PROJECT SMART WASTE MANAGEMENT FOR METROPOLITAN CITIES

PROJECT REPORT

TEAM ID	PNT2022TMID06149
PROJECT NAME	SMART WASTE MANAGEMENT FOR METROPOLITAN CITIES
TEAM MEMBERS	R.S. KARNICA SHIVANI S. LAKSHMIDEVI S. RAMADEVI A.SUGAPRIYA

SI NO	TABLE OF CONTENTS	PAGE NO
1.	1. INTRODUCTION	
	1.1 Project Review 1.2 Purpose	4
2.	2. LITERATURE SURVEY	
4.	2. LITERATURE SURVET	
	2.1 Existing problem	
	2.2 References	6
	2.3 Problem Statement Definition	
3.	3. IDEATION & PROPOSED SOLUTION	
	3.1 Empathy Map Canvas	
	3.2 Ideation & Brainstorming	9
	3.3 Problem Solution Fit	
	3.4 Proposed Solution	
4.	4. REQUIREMENT ANALYSIS	
	4.1 Functional Requirements	13
	4.2 Non-Functional Requirements	
5.	5. PROJECT DESIGN	
	5.1 Data flow diagrams	
	5.2 Solution and Technical Architecture	15
	5.3 User Stories	

6.	6. PROJECT PLANNING AND SCHEDULING 6.1 Sprint planning & Estimation 6.2 Sprint Delivery Schedule 6.3 Reports from JIRA	18
7.	7. CODING AND SOLUTIONING 7.1 Feature 1 7.2 Feature 2	23
8.	8. TESTING 8.1 Test cases 8.2 User Acceptance Testing	25

9.	9. RESULTS	26
	9.1 Performance Metrics	
10.	10. ADVANTAGES AND	27
	DISADVANTAGES	
11.	11. CONCLUSION	28
12.	12. FUTURE SCOPE	29
13.	13. APPENDIX	30
	Source code GitHub & Project Demo	
	Link	

1.INTRODUCTION:

1.1 Project Review:

The world is currently facing with lots of health hazards, The amount of waste produced everyday by the industries and the households is increasing at an appalling rate, and the major reason for this is soaring use of packaged items, textiles, paper, food, plastics, metals, glass etc., thus management of this refuse becomes a crucial part in our everyday life. Due to the increasing waste, the public bins which are used for collecting this waste are overflowing, the locality is jumbled of trash, causing not only malodorous streets but also a negative impact on the health and environment. Waste is a crucial issue, which needs to be addressed smartly. we segregate the waste at our homes for ease at processing and recycling. We observed trash vans come irregular to homes creating a despoliation of households. Due to this many civilians empty their overloaded dustbins in open spaces. This in turn increases environmental pollution. Some of them are like government should enact stringent laws against the people throwing trash, against the industries for not using biodegradable material, more use of recycle items, reduce the use of nondegradable stuff, reuse the items, thus implementing this can reduce the waste up to some extent. Along with this use of technology for proper dumping of trash and diminishing its hazardous effects is the concept put forward.

1.2 Purpose:

Wi-Fi facility for dumping waste into the dustbin would solve the issue of waste and the internet facility plus availability of free service would help people go crazy and would act as reward for maintain cleanliness in the locality. We amalgamate technology along with waste management in order to effectively create a safe and a hygienic environment. Smart waste management is about using technology and data to create a more efficient waste industry based on IoT (Internet of Things) technology. This makes it possible to plan more efficient routes for the trash collectors who empty the bins, but also lowers the chance of any bin being full for over a week. A good level of coordination exists between the garbage collectors and the information supplied via technology. This makes them well aware of the existing garbage level and instigate them whenever the bins reach the threshold level. They are sent with alert messages so that they can collect the garbage on time without littering the surrounding area. Moreover we have provided with a servo motor in each garbage can so whenever the threshold level reaches, the servo motor which is connected with lid of the garbage closes automatically so there is no overflow of waste in the surroundings. The fill patterns of specific containers can be identified by historical data and managed accordingly in the long term. In addition to hardware solutions, mobile applications are used to overcome the challenges in the regular waste management system, such as keeping track of the drivers while they are operating on the field. Thus, smart waste management provides us with the most optimal way of managing the waste in an efficient manner using technology.

2. LITERATURE SURVEY:

2.1 Existing Problems:

Lots of Ideas were implemented in the early days to manage the waste. Only alerting the system was initially provided but the main problem is even before the truck driver arrives to collect the garbage, the garbage starts overflowing in the surroundings which may result in some serious health hazards to the people as well as the animals. The main problems of the existing solid waste collection process and management system are as follows:

- More complications in the processing
- ♣ Many controlling units linked with each other
- ♣ Higher implementation cost

2.2 References:

CLAC BIELE OF ATIENTOR

SI.NO	TITLE OF THE PAPER	AUTHOR	METHODOLOGY	MERITS	YEAR OF PUBLICATION
1	Smart waste bin Management	Parthasarathi Manickaraja	Uses the Ultrasonic sensor to level the dustbin and also uses the GSM module	Provides an alert message once the level has reached to the authority	2022
2	Smart waste management using IOT	Tejashree Kadus	Technology used is a load cell and a Wi-Fi module	Segregate the waste in the dustbin and provides and alert message	2020
3	Smart waste management systems using machine learning	David Rutgvist	Uses automated machine learning for a real life smart waste management	It focusses on problems of detection of emptying of a recycling container using sensor measurements	2019
4	Real time solid waste	Thiyagapriyadharshini	Smart bin based on a microcontroller	Waste management	2019

	bin monitoring system framework using wireless sensor network		based platform Arduino which is interfaced with GSM module	efficiency and it avoids lumping of wastes	
5	Smart waste collection system	Muhamad Javed Ramzan	Technology based on sensor based collection and uses route algorithm	It identifies the status of waste bin levels along with the location to replace the bin	2018
6	Waste management and tracking	Ben choon yeong	Integration of Near field communication with web and mobile application	To improve the efficiency of waste collection process, provides real- time bin status for householders	2017
7	Smart waste collection system based on location intelligence	Jose .M.guiterrez	Uses an ultrasonic sensor to identify the level of waste	Provides information to the authority once the can is filled	2015

2.3 Problem Statement:

A Smart way to monitor the level of the waste generated

Malarvizhi, a domestic scavenger, is asked to manually monitor the garbage bin at all times, regardless of the weather.

- Current garbage collection is inefficient
- This problem is slowly killing the planet
- It creates unhygienic conditions and spreads deadly diseases
- Adversely affect the local economy
- This problem causes extreme climate changes
- Results in land, air contamination

3. IDEATION AND PROPOSED SOLUTION

3.1 Empathy map canvas

3.2 Brainstorming and Idea Prioritization:

3.3 Problem solution:

3.4 Proposed solution:

SI NO	PARAMETER	DESCRIPTION	
1	Problem Statement (Problem to	The dumping of waste in the	
	be solved	surroundings leads to serious health	
		issues and there is no proper method	
		to manage the waste generated	
2	Idea / Solution description	A smart way to manage the waste	
		generated and thereby providing an	
		alert message to the authority.	
4	Social Impact / Customer	There is no need for manual	
	Satisfaction	monitoring, the time is saved, prevents	
		from several health issues.	
5	Business Model (Revenue	It is user-friendly. It is beneficiary for	
	Model)	all kinds of people.	
6	Scalability of the Solution	It is possible to implement in any	
		surroundings and it can withstand any	
		kind of temperature and pressure	

4.REQUIREMENT ANALYSIS

4.1. Functional Requirements:

	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
1	Location of Bins	The particular authority must contain the location details of all the garbage cans in that particular location for easy accessing of the location.	
2	Bin Monitoring System	Once the garbage can is installed the next step is to monitor the level of the waste generated by using an ultrasonic sensor and also a servo motor is installed to close the garbage can once the waste is dumped so that the waste does not spread in the surroundings.	
3	Message Alerting System	A threshold level must be set, and once that waste level is reached then the sensor must sense the level and provide an alert message to the particular authority.	
4	Truck Arranging System	When the authority receives an alerting message then it must identify the location of the bin and it must send the message along with the GPS location of the bin to the truck that is available to collect the garbage can using the GSM module	

4.2 Non-functional Requirements:

SI.No	Non-Functional	Description	
	Requirement		
1 Usability The IOT base		The IOT based project is easily usable	
		by all kinds of people, because it is user-	
		friendly and a basic knowledge on	
		internet is sufficient to use this product	
2	Security	There is no security problems with this	
		product .It is highly secured	
3	Reliability	The Product is highly reliable that it can	
		withstand any kind of situations. The	
		garbage cans can be installed in any kind	
		of environment and can withstand all	
		kinds of weather conditions and	
		moreover the network facility is possible	
		even in rural areas.	
4	Performance	In terms of performance, it is highly	
		efficient.	
5	Availability	By developing the required hardware	
	-	and software we empower cities	
		,businesses and countries to manage	
		waste smarter	
6	Scalability	Since the project is IOT based it is much	
		cost effective and it has high scalability	

5. PROJECT DESIGN:

5.1 Data flow:

5.2 User stories:

User Type	Functional Requirement (Epic)	User Story Numbe	User story	Accep tance criteri	Priority	Sprint
		r		а		
Admin	Location of Bins	USN 1	The particular authority must contain the location details of all the garbage cans in that particular	Mana ging the web	Mediu m	Sprint 2

			location for easy accessing of the location	accou nt		
Coadmi	Bin monitoring	USN 2	Once the garbage can is installed the next step is to monitor the level of the waste generated by using an ultrasonic sensor and also a servo motor is installed to close the garbage can once the waste is dumped so that the waste does not spread in the surroundings	Monit oring the level of the waste	High	Sprint 1
Co- admin	Message alerting system	USN 3	A threshold level must be set, and once that waste level is reached then the sensor must sense the level and provide an alert message to the particular authority	Provid ing an alert messa ge	High	Sprint 1
Truck Driver	Truck arranging system	USN 4	When the authority receives an alerting message then it must identify the location of the bin and it must send the message along with the GPS location of the bin to the truck that is available to collect the garbage can using the GSM module	Arran ging the truck to collect the garbag e can	High	Sprint 1
Municip ality	Supervision	USN 5	The municipality officers must supervise whether all the process is on its proper way.	Supervi sing the process	High	Sprint 1

5.3 Solution Architecture:

6. PROJECT PLANNING & SCHEDULING:

6.1 Sprint planning and Estimation:

Title	Description	Date
Literature survey and	Literature survey on the	10 September 2022
Information gathering	selected project&	
	gathering information by	
	referring the technical	
	papers, research	
	publications etc	
Prepare Empathy Map	To capture the user pains	10 September 2022
Prepare empathy map	and gains. Prepare list of	
canvas	problem statement	
Ideation	List the by organizing	18 September 2022
	the brainstorming session	
	and prioritize the top	
	three ideas based on the	
	feasibility and	
	importance.	
Proposed solution	Prepare the proposed	24 September 2022
	solution document which	
	includes the novelty,	
	feasibility of idea,	
	business model, social	
	impact, scalability of	
D 11	solution etc.	01.0 . 1 . 2022
Problem solution	Prepare problem solution	01 October 2022
	fit document	00.0 . 1 . 2022
Solution Architecture	Prepare solution	08 October 2022
	architecture document	17.0 . 1 2022
Customer journey	Prepare the customer	17 October 2022
	journey maps to	
	understand the user	
	interactions and	
	experiences with the	
T (1	application	10.0 / 1 2022
Functional requirements	Prepare the functional	18 October 2022
	requirements document	

Data flow diagrams	Draw the data flow	16 October 2022
	diagrams and submit for	
	review	
Technology Architecture	Prepare the technology	16 October 2022
	architecture diagram.	
Prepare Milestone and	List Prepare the	31 October 2022
Activity	milestone and activity list	
	of the project.	
Sprint Delivery plan	Prepare the sprint	31 October 2022
	delivery plan.	
Project	Develop and submit the	19 November 2022
DevelopmentDelivery of	developed code by	
sprint-1,2,3 & 4	testing it.	

6.2 Sprint Delivery Plan:

Sprint	Functional	User	User Story /	Story	Priority	Team	
	Requirement	Story	Task	Points		Member	
	(Epic)	Number					
sprint-	Location of	USN-1	The	10	High	Karnica	
1	Bins		particular authority			shivani	
			must contain				
			the location				
			details of all				
			the garbage				
			cans in that				
			particular				
			location for				
			easy				
			accessing of				
			the location.				
Sprint-	Bin	USN-2	Once the	20	High	Lakshmidevi	
2	Monitoring		garbage can				
			is installed				
			the next step				
			is to monitor				
			the level of				

			the waste				
			generated by				
			using an				
			ultrasonic				
			sensor and				
			also a servo				
			motor is				
			installed to				
			close the				
			garbage can				
			once the				
			waste is				
			dumped so				
			that the waste				
			does not				
			spread in the				
			surroundings				
			20 High				
a • •	3.6	TIGNEO	Lakshmidevi	20	TT: 1	D 1 :	
Sprint-	Message	USN-3	Threshold	20	High	Ramadevi	
3	Alerting		level must be				
	System		set, and once				
			that waste				
			level is				
			reached then				
			the sensor				
			must sense				
			the level and				
			provide an				
			alert message				
			to the				
			particular				
			authority				
Sprint-	Truck	USN-4	When the	20	High	Sugapriya	
4	Arranging		authority				
	System		receives an				
			alerting				
			message then				
			it must				
			identify the				

location of the bin and it must send the message along with the GPS location of the bin to the truck that is available to collect the garbage can

Sprint	Total	Duration	Sprint	Sprint	Story	Sprint Release
	Story		Start	End Date	Points	Date (Actual)
	Points		Date	(Planned)	Completed	
					(as on	
					Planned	
					End Date)	
Sprint-1	20	6 Days	24 Oct	29 Oct	20	29 Oct 2022
			2022	2022		
Sprint-2	20	6 Days	31 Oct	05 Nov	20	05 Nov 2022
			2022	2022		
Sprint-3	20	6 Days	07 Nov	12 Nov	20	12 Nov 2022
			2022	2022		
Sprint-4	20	6 Days	14 Nov	19 Nov	20	19 Nov 2022
_			2022	2022		

Average = 20/10 =2

Jira Software:

7. Coding And Solutioning:

7.1 Feature 1:

7.2 Feature 2:

8. TESTING:

Section	Total Cases	Not Tested	Fail	Pass
Web page	5	0	0	7
Node red Dashboard	32	0	0	32
IBM Watson IOT platform	2	0	0	2
MIT app Inventor	3	0	0	3

9.RESULTS

9.1 Performance Metrics

10. ADVANTAGES AND DISADVANTAGES:

10.1 Advantages:

- **♣** There is no need for manual monitoring
- **♣** Cost efficient
- **♣** Can withstand any kind of temperature
- **♣** Reduced overflow of waste around the surroundings

10.2 Disadvantages:

- ♣ System requires a greater number of waste bins for separate waste collection as per population in the city.
- ♣ Sensor nodes used in the dustbins have limited memory size.

11.CONCLUSION:

Improper disposal and improper maintainance of domestic waste create issues in public health and environment pollution thus this paper attempts to provide practical solution towards managing the waste collaborating it with the use of IOT i.e. providing free internet facilities for a specific time once the trash is dumped into the bin. The proposed system will definitely help to overcome all the serious issues related to waste and keep the environment clean.

12.FUTURE SCOPES:

- ♣ Change the system of user authentication and atomic lock of bins, which would aid in protecting the bin from damage or theft.
- → The moisture sensor can be implemented hand in hand with the other sensors and the compartments for segregating the dry and wet waste can be created which will solve the issues related to waste segregation.

13. SOURCE CODE:

```
#include <WiFi.h>
#include <PubSubClient.h>
#include <LiquidCrystal I2C.h>
#include <ESP32Servo.h>
LiquidCrystal I2C lcd(0x27, 16, 2);
#define ORG "i5w9m5"
#define DEVICE TYPE "smart"
#define DEVICE ID "smartID"
#define TOKEN "123456789"
char server[] = ORG
".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/data/fmt/json";
char topic[] = "iot-2/cmd/led/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
//
WiFiClient wifiClient; // creating instance for wificlient
PubSubClient client(server, 1883, wifiClient);
#define echoPin 14
#define trigPin 12
#define led 2
Servo myservo;
long duration;
float distance;
void setup()
{
  pinMode(12, OUTPUT);
  pinMode(14, INPUT);
  pinMode(2, OUTPUT);
  myservo.attach(13);
  Serial.begin(115200);
  lcd.init();
  lcd.backlight();
```

```
lcd.setCursor(1, 0);
  lcd.print("");
  wifiConnect();
  mqttConnect();
}
float readcmCM()
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
return duration*0.034/2;
}
void loop()
{
lcd.clear();
publishData();
delay(500);
if (!client.loop())
mqttConnect(); // function call to connect to IBM
/* -retrieving to cloud */
void wifiConnect()
Serial.print("Connecting to ");
Serial.print("Wifi");
WiFi.begin("Wokwi-GUEST", "", 6);
while (WiFi.status() != WL CONNECTED)
delay(500);
Serial.print(".");
Serial.print("WiFi connected, IP address: ");
Serial.println(WiFi.localIP());
```

```
void mqttConnect()
if (!client.connected())
Serial.print("Reconnecting MQTT client to ");
Serial.println(server); while
(!client.connect(clientId, authMethod, token))
Serial.print(".");
delay(500);
initManagedDevice();
 Serial.println();
void initManagedDevice()
if (client.subscribe(topic))
Serial.println("IBM subscribe to cmd OK");
}
else
Serial.println("subscribe to cmd FAILED");
}
void publishData()
float cm = readcmCM();
if(distance>=100)
    Serial.println("distance:"+String(distance));
    digitalWrite(2, LOW);
    myservo.write(0);
  }
  else
```

```
{
    Serial.println("ALERT!! The garbage has reached the
maximum capacity value");
    digitalWrite(2, HIGH);
    myservo.write(180);
  }
String payload = "{\"Warning!!\":\"";
payload += distance; payload += "left\" }";
Serial.print("\n");
Serial.print("Sending distance: "); Serial.println(cm);
 if(client.publish(publishTopic,(char*) payload.c_str()))
Serial.println("Publish OK");
}
else
Serial.println("Publish FAILED");
float inches = (cm / 2.54); //print on LCD
lcd.setCursor(0,0); lcd.print("Inches"); lcd.setCursor(4,0);
lcd.setCursor(12,0);
lcd.print("cm");
lcd.setCursor(1,1);
lcd.print(inches, 1);
lcd.setCursor(11,1);
lcd.print(cm, 1);
lcd.setCursor(14,1);
delay(1000);
lcd.clear();
```

PYTHON CODE:

```
import requests
import json
import ibmiotf.application
import ibmiotf.device
import time
import random
import sys
 watson device details
organization = "ms9s41"
devicType = "Project"
deviceId = "TMID01046"
authMethod= "token"
authToken= "13150415"
def myCommandCallback(cmd):
    print("command recieved:%s" %cmd.data['command'])
    control=cmd.data['command']
    print(control)
try:
deviceOptions={"org": organization, "type": devicType,"id":
deviceId,"auth-method":authMethod,"auth-token":authToken}
        deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
         print("caught exception connecting device %s" %str(e))
         sys.exit()
#connect and send a datapoint "distance and loadcell" with value integer value 
into the cloud as a type of event for every 10 seconds
deviceCli.connect()
while True:
    distance= random.randint(10,70)
```

```
data= {'dist':distance,'load':loadcell}
   if loadcell < 13 and loadcell > 15:
       load = "90 %"
   elif loadcell < 8 and loadcell > 12:
         load = "60 %"
   elif loadcell < 4 and loadcell > 7:
         load = "40 %"
         load = "0 %"
   if distance < 15:
         dist = 'Risk warning:' 'Dumpster poundage getting high, Time to
collect :) 90 %'
   elif distance < 40 and distance >16:
   elif distance < 60 and distance > 41:
         dist = 'Risk warning:' '40 %'
   if load == "90 %" or distance == "90 %":
         warn = 'alert :' 'Risk Warning: Dumpster poundage getting high,
   elif load == "60 %" or distance == "60 %":
         warn = 'alert :' 'dumpster is above 60%'
         warn = 'alert :' 'No need to collect right now '
   if distance <20:
       warn={'alert':'NEED BIN CHANGE!!!!!'}
   time.sleep(10)
   success=deviceCli.publishEvent ("IoTSensor", "json", warn, qos=0, on_publish=
myOnPublishCallback)
   success=deviceCli.publishEvent ("IoTSensor", "json", data, qos=0, on_publish=
myOnPublishCallback)
   if not success:
       print("not connected to ibmiot")
   time.sleep(10)
   deviceCli.commandCallback=myCommandCallback
deviceCli.disconnect()
```

GIT HUB LINK:

https://github.com/IBM-EPBL/IBM-Project-15256-1659595999

DEMO LINK:

 $\frac{https://drive.google.com/folderview?id=1aHbpmJBtTJQfHRlXNjVmsctAkilvUUP}{\underline{E}}$