1.10 Theorem. Let $a, b, n \in \mathbb{Z}$ with n > 0. If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

Proof. Let $a, b, n \in \mathbb{Z}$ with n > 0 be given such that $a \equiv b \pmod{n}$. Then by definition, $n \mid (a - b)$. We may choose $k \in \mathbb{Z}$ such that a - b = nk. Multiplying both sides by -1,

$$-(a-b) = -(nk),$$
$$b-a = -kn.$$

By CPI, we may choose $t \in \mathbb{Z}$ such that -k = t. Therefore, b - a = tn, and by definition of divisibility, $n \mid (b - a)$. Lastly, by definition of congruence of modulo, $b \equiv a \pmod{n}$.