Integrated Supply Chain and Financial Management System

OVERVIEW

This project aims to develop an all-encompassing Database Schema for Enterprise Resource Planning (ERP) tailored for a manufacturing and supply chain enterprise. The primary focus is on refining the journey from design to production, regulating internal departments, and optimizing the management of materials from diverse suppliers. A pivotal aspect involves skillfully handling invoices to ensure sender details are crystal clear, facilitating precise processing by the accounting department. The objective is to deliver a resilient database schema adept at efficiently meeting the operational needs of a modern manufacturing entity, emphasizing peak performance, meticulous employee management, and precise financial oversight. Key components include streamlined employee administration, product life cycle oversight, efficient raw material flow, and seamless tracking and processing of supplier invoices.

INITIAL TIMELINE DECIDED

Please find a visual of the timeline below. Further details are listed afterward for each step of the timeline.

	10/4/2023	10/18/2023	10/25/2023	11/8/2023	11/23/2023	12/3/2023
Week 1						
Weeks 2-3						
Week 4						
Weeks 5-6						
Weeks 7-8						
Week 9						
Week 10						

Week 1: INITIATION, PLANNING AND PROPOSAL

- Create a preliminary draft for the project proposal.
- Finalize the project proposal.
- Develop a detailed project plan, including a timeline and deliverables.
- Submit the finalized project proposal.

Week 2 - 3: ANALYSIS, METADATA COMPILATION

- Perform a comprehensive analysis of project objectives and requirements using existing data.
- Compile metadata, including entity details, attributes, data types, and relationships.
- Refine the metadata as necessary, adding attributes and metadata as required, and making any needed improvements.

Week 4: ESTABLISHING BUSINESS RULES AND CREATE EER DIAGRAM

• Align the project with established business rules to ensure seamless integration with the database design and the EER model.

- Create the project structure with the above-defined metadata and business rules and the listed tasks requirements.
- Establish a systematic organization for easy interpretation of the EER diagram.

Week 5 - 6: RELATION AND NORMALIZATION

- Document the steps taken and define the relationships, and integrity constraints involved.
- Create relations, normalize them, and describe the anomalies found.

Week 7 - 8: SQL QUERIES REVISION, TESTING, AND QUALITY CONTROL

- Create SQL queries to make tables with the provided data
- Conduct a thorough review of the created project to ensure it adheres to established guidelines.
- Revise and refine the project based on feedback and suggestions from reviewers.
- Engage in formal and deliberate testing for Quality Control.

Week 9: PROJECT SUBMISSION

Week 10: PROJECT PRESENTATION

THE ACTUAL TIMELINE

Week 1: INITIATION, PLANNING AND PROPOSAL

- Created a preliminary draft for the project proposal.
- Finalized and submitted the project proposal.
- Developed a detailed project plan, including a timeline and deliverables.

Week 2 - 3: TASK 0 - ANALYSIS, METADATA AND BUSINESS RULES COMPILATION

- Performed a comprehensive analysis of project objectives and requirements using existing data.
- Compiled metadata, including entity details, attributes, data types, and relationships.
- Refined the metadata as necessary, adding attributes and metadata as required, and making any needed improvements.
- Aligned the project with established business rules to ensure seamless integration with the database design.

Week 4: TASK 1 and TASK 2 – PRIMARY KEY, FOREIGN KEY, EER DIAGRAM

• Identified the primary key, and foreign key and began putting the EER diagram together

Week 5: COMPLETED TASK 2, EER DIAGRAM

- Finalized the EER diagram.
- Made sure that all the relationships were according to the business rules, and that the final diagram was devoid of any redundant entities, relationships, or attributes.

Week 6: TASK 3 – RELATIONAL SCHEMA, INTEGRITY CONSTRAINTS, RELATIONSHIPS

• Transformed the EER diagram into a relational schema. Identified the binary and ternary relationships and established the relevant integrity constraints.

Week 7 - 8: TASK 4 – FUNCTIONAL DEPENDENCIES, ANOMALIES, NORMALIZATION

- We listed the functional dependencies for each relation, identified the anomalies, and normalized the relations wherever required.
- Explanations for every step taken were created.
- Started working on the project paper.

Week 9: TASK 5 – SQL QUERIES FOR THE NORMALIZED TABLES, COMPLETION OF PAPER

- Carried out the SQL queries for each relation, created tables with the normalized data, and designed three meaningful SQL queries on the data.
- Conducted a thorough review of the created project to ensure it adheres to established guidelines.
- Revised and refined the project based on feedback and suggestions from reviewers.
- Engaged in formal and deliberate testing for Quality Control.

Week 10: PROJECT PRESENTATION

TASK 0: REPOSITORY OF META DATA AND BUSINESS RULES

CONTENTS OF REPOSITORY STRUCTURE:

The repository's structure outlined below will encompass essential components, including metadata, associated metadata types, and Business Rules.

Table 1: METADATA

Metadata for Integrat	ted Supply Chain a	nd Financial Management Sy	stem
Data Item	N	Ietadata	
Name Source	Type	Description	
Position	VARCHAR	Worker's Position	
Salary	NUM	Worker's Salary	
ID	NUM	Worker's ID	Employee
first name	VARCHAR	Worker's first name	
last name	VARCHAR	Worker's last name	
Name	VARCHAR	Department Name	
Location	NUM	Department Location	
Phone Number	NUM	Department Phone no	Department
Number of Employees	NUM	Total Employees in department	Department
Product Number	NUM	Product Number	
Name	VARCHAR	Product Name	
Price	NUM	Product Price	
Cost	NUM	Product Cost	Product
Dimensions	NUM	Product Dimension	110 0000
Colour	VARCHAR	Product Colour	
Weight	NUM	Product Weight	
Raw Material	VARCHAR	Product raw material	
Line Number	NUM	Production line number	
Line Capacity	NUM	Production Line capacity	Production Line
Company Name	VARCHAR	Company Name	
Address	VARCHAR	Company Address	
Speciality	VARCHAR	Company Speciality	
Phone number	NUM	Company Phone number	Vendor
Invoice Number	NUM	Invoice Number	
Total Amount	NUM	Invoice Amount	Invoice
Address	NUM	Warehouse Address	
Phone Number	VARCHAR	Warehouse Phone Number	Warehouse

 Table 2: Business Rules

BUSIN	ESS RULES
B1	CLUSTER 1 – ENTITIES: PRODUCT, PRODUCTION LINE
B1-1	Each product must be produced by one specific production line.
B1-2	Each production line can produce only one type of product.
B1-3	For repair purposes, production lines may produce no products.
B2	CLUSTER 2 – ENTITIES: VENDOR, WAREHOUSE, RAW MATERIAL
B2-1	Each vendor can supply many raw materials to any number of warehouses.
B2-2	Raw materials are supplied by any number of warehouses, which are supplied by any number of vendors.
B2-3	Raw materials may also be directly supplied by vendors.
B2-4	Each warehouse can be supplied with any number of raw materials from more than one vendor, but each warehouse must be supplied with at least one raw material.
В3	CLUSTER 3 – ENTITIES: EMPLOYEE, WAREHOUSE, DEPARTMENT
B3-1	The company has departments, warehouses, and production lines.
B3-2	The company designs and produces products.
B3-3	Each department, warehouse, and production line have multiple employees.
B3-4	Each employee works in only one department, warehouse, or production line.
B3-5	Only Employees within the design department design products.
B3-6	Each designer can design multiple products.
B3-7	Each product has exactly one designer
B4	CLUSTER 4 – ENTITIES: INVOICE, DEPARTMENT
B4-1	Vendors submit an invoice when they supply a raw material.
B4-2	Invoices are processed by the accounting department

TASK 1 and TASK 2 – REPRESENTATION OF PRIMARY KEY, FOREIGN KEY, EER DIAGRAM

FIGURE: EER DIAGRAM

In the above diagrams, the primary keys of each entity are denoted by PK and are underlined by a solid line. Whereas, if there is a foreign key it is denoted by FK. Some of the attributes have more than one foreign keys. And the entity 'Raw Material' has a composite primary key.

TASK 3 CONVERSION TO RELATIONAL SCHEMA

FIGURE: RELATION SCHEMA

LIST OF ALL THE IDENTIFIED RELATIONSHIPS

1) UNARY RELATIONSHIP

There is no Unary relationship.

2) TERNARY RELATIONSHIP

This used to be the only ternary relationship until I brought the associative entity 'supply schedule'.

(Vendor - Warehouse - Raw Material):

- **Business Rule:** "Vendor warehouse and raw material participate in a ternary relationship with supply schedule as an associative entity."
- **Description:** Involves vendors, warehouses, and raw materials in a ternary relationship. This captures the logistics of raw material supply from vendors to warehouses based on the business rules governing these entities.

After bringing the associative entity 'supply schedule' we have now three binary relationships between supply schedule and vendor, supply schedule and warehouse, and supply schedule and raw materials.

3) BINARY RELATIONSHIPS

- 1. (Production Line Raw Material)
- 2. (Product Raw Material)
- 3. (Production Line Employee Production Line)
- 4. (Warehouse Employee Warehouse)
- 5. (Department Employee Department)
- 6. (Vendor Invoice)
- 7. (Product Department)
- 8. (Department Invoice)
- 9. (Supply Schedule Vendor)
- 10. (Supply Schedule Raw Materials)
- 11. (Supply Schedule Warehouse)

INTEGRITY CONSTRAINTS

There are three integrity constraints which are also depicted in the above relational schema.

1)DOMAIN INTEGRITY CONSTRAINTS – A domain definition usually consists of the following components: domain name, meaning, data type, size (or length), and allowable values or allowable range (if applicable). Below table table shows the domain defination.

Domain Constraints – Domain definition is listed below:

Attribute	Domain Name	Description	Domain
ProductNumber	Product Number	Set of all product numbers	NUM
ProductType	Product Type	Set of all product type	VARCHAR
ProductName	Product Name	Set of all possible product	VARCHAR
		names	
DesignerID	Designer IDs	Set of all possible Designer	VARCHAR
		ID	
Price	Product Price	Set of all possible product	NUM
		price	
Cost	Product Cost	Set of all possible product	NUM
		cost	
Color	Colors	Set of all possible colors	VARCHAR
Weight (lbs)	Weights	Set of weights	NUM
Line Number Line Number		Set of all possible line	VARCHAR
		numbers	
LineCapacity(items/hour)	Line Capacity	Set of all line capacity	VARCHAR
PhoneNumber	Phone Number	Set of phone numbers	NUM
Address	Full Address	Set of all address	VARCHAR
RawmaterialName	Rawmaterial Name	Set of all possible raw	VARCHAR
		material names	
WarehouseNumber	Warehouse Number	Set of all possible	VARCHAR
		warehouse number	
VendorNumber	Vendor Number	Set of all possible vendor	VARCHAR
		number	
VendorName	Vendor Name	Set of all possible vendor	VARCHAR
		name	
SupplyCode	Supply Code	Set of all possible supply	VARCHAR
		code	
VendorID	Vendor IDs	Set of all possible vendor	VARCHAR
		IDs	
DepartmentID	Department IDs	Set of all possible	VARCHAR
7		department IDs	T. D. C. T T.
DepartmentName	Department Name	Set of all possible	VARCHAR
-	D 11 7	department names	TILD CITE
Location	Full Location	Set of all possible locations	VARCHAR
NumberOfEmployees	Number of	Set of all possible number	NUM
	Employees	of employees	TAN DOLL : D
EmployeeID	Employee ID	Set of all possible	VARCHAR
E. M	E' AN	employee IDs	MADOILAD
FirstName	First Name	Set of all first name	VARCHAR
LastName	Last Name	Set of all last name	VARCHAR
Position	Designation	Set of all possible positions	VARCHAR
Salary	Salary Details	Set of all possible salaries	NUM

InvoiceNumber	Invoice Number	Set of all possible invoice	VARCHAR
		numbers	
Total Amount (\$)	TotalAmount	Set of total amounts	NUM
VendorPaymentType	Vendor Payment	Set of all possible vendor	VARCHAR
	Type	payment type	

FIGURE: TABLE FOR DOMAIN DEFINITION FOR THE DOMAIN ASSOCIATED WITH THE ATTRIBUTES

2) ENTITY INTEGRITY CONSTRAINT

• Explanation:

• Entity constraints ensure the uniqueness of primary keys within a table, allowing each entity to be uniquely identified.

• Example:

• In the "Employee" entity, we enforce an entity constraint that ensures each employee has a unique "EmployeeID."

3) REFERENTIAL INTEGRITY CONSTRAINT:

Referential Integrity is a principle that stipulates that any foreign key value, located on the many sides of a relationship, must correspond to a primary key value in the table on the one side. Alternatively, the foreign key can be null. This rule is crucial for maintaining the consistency of relationships in a database. For instance, when it comes to deletion rules:

- **Restrict:** This rule prohibits the deletion of the "parent" side if related rows exist in the "dependent" side.
- Cascade: It involves the automatic deletion of rows on the "dependent" side that correspond to the "parent" side row being deleted.
- **Set-to-Null:** This rule entails setting the foreign key on the dependent side to null if a deletion occurs on the parent side. However, it's important to note that this is not allowed for weak entities.

Referential integrity constraints are visually represented using arrows that point from the dependent table to the parent table. This graphical representation helps to depict the direction of the relationship and ensures that foreign keys align with corresponding primary keys, thus maintaining the integrity of the database structure.

TASK 4 DEPENDENCIES, ANOMALIES, NORMALIZATION

FUNCTIONAL DEPENDENCIES WILL BE LISTED BELOW BEFORE THAT LET'S DESCRIBE NORMALIZATION:

NORMALIZATION PROCESS

Normalization is the process used to organize and structure a relational database in such a way that data redundancy is minimized, and data integrity is preserved. The goal of normalization is to remove the functional dependency, and well-organized tables to reduce data duplication and anomalies.

1. First Normal Form (1NF):

• Ensures that each column in a table contains atomic (indivisible) values and that each entry in a column is of the same data type. It eliminates multivalued attributes and ensures a unique primary key for each record.

2. Second Normal Form (2NF):

• Extends 1NF by ensuring that all non-key attributes are fully functionally dependent on the entire primary key. This means that no partial dependencies exist, and every column in a table depends on the entire primary key.

3. Third Normal Form (3NF):

• Extends 2NF by eliminating transitive dependencies. In 3NF, no non-key attribute should depend on another non-key attribute. Each attribute should be dependent only on the primary key.

FUNCTIONAL DEPENDENCIES AND NORMALIZATION

Partial, full, and transitive dependencies are shown below in the relations and required normalization.

FIGURE: NORMALIZATION

NORMALIZATION STEPS TAKEN

The entities, 'Employee', 'Product', 'Production line', 'Warehouse', 'Vendor', 'Department', 'Supply Schedule' are in 3NF already, which means they only have complete or full dependencies.

However, 'Raw Material' has partial dependency as 'Line Number' comes from only 'Product Number'. But in 'Raw Materials' we have composite primary keys so for it to be a complete dependency, line number should have come from both the primary keys.

So, to normalize, we break the relations into two: One only with the 'Product Number' and 'Rawmaterial name' and the other relation with 'Product Number' and 'Line Number'.

'Invoice' also has transitive dependency because the 'Vendor No' which is not a primary key gives the attribute 'Vendor Payment Type' in the relation.

So, to normalize the relation, we break it into two: One containing the 'Invoice No' as the primary key and the other containing 'Vendor No' as the primary key.

Hence, after this, all the relations are in 3NF and are normalized.

WELL STRUCTURED - FINAL NORMALIZED RELATION SCHEMA

FIGURE: WELL-STRUCTURED NORMALIZED RELATION SCHEMA

THE ANOMALIES NOTICED BEFORE NORMALIZATION ARE LISTED BELOW:

Since, the entities, 'Employee', 'Product', 'Production line', 'Warehouse', 'Vendor', 'Department', and 'Supply Schedule' were in 3NF already they do not have deletion, modification, or insertion anomalies.

However, 'raw-material' and 'invoice' had a few anomalies which are listed below:

RAW MATERIAL

1. Modification anomaly:

• If we need to update the 'LineNumber' for a specific 'ProductNumber' and 'RawmaterialName', we will have to update multiple records with the same 'LineNumber', leading to redundancy and increasing the likelihood of errors.

2. Deletion anomaly:

- There is deletion anomaly concerning 'Line number' which is a foreign key referencing production line relation. So, to delete the record, we will have to set the value of Line no as null.
- To delete the product number which is a primary key as well as a foreign key so we cannot set it to null. Hence, we will delete the product number as cascade which is deleting from both the tables.

3. Insertion anomaly:

• There will be insertion anomaly, if we need to add a new product number, we will also have to enter the raw material name and the line number repeatedly.

INVOICE

1. Update Anomaly:

• If the payment type for a vendor changes, we will have to update multiple records in the invoice table to reflect this change accurately. For instance, if the payment type for V001 changes from 'Cash' to 'Credit,' we will have to update all invoices associated with V001. If we do not update all the relevant records could lead to inconsistencies where some invoices will still show the old payment type.

2. Insertion Anomaly:

3. Deletion Anomaly:

• There is deletion anomaly because the vendor number is a foreign key that is referencing another relation. So, to delete a record, we will have to set its value to null.

TASK 5: TABLES OF ENTITIES AND THE SQL QUERIES

1)DEPARTMENT

DEPARTMENT TABLE

Oracle APEX US_A925_SQL_S30.DEPARTMENT

Column Name	Data Type	Nullable	Default	Primary Key
DEPARTMENTID	VARCHAR2(100)	No		1
DEPARTMENTNAME	VARCHAR2(250)	Yes		
STREET	VARCHAR2(250)	Yes		
CITY	VARCHAR2(250)	Yes		
NUMBEROFEMPLOYEES	NUMBER(2,0)	Yes		
PHONENUMBER	VARCHAR2(250)	Yes		

SQL QUERY FOR DEPARTMENT

```
EMPLOYEES
Table
               Data
                             Indexes
                                                 Model
                                                                   Constraints
                                                                                             Grants
                                                                                                              Statistics
                                                                                                                                     UI Defaults
                                                                                                                                                              Triggers
                                                                                                                                                                                   Dependencies
CREATE TABLE "EMPLOYEES"
                "FIRSTNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",
                "FIRSTNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",
"LASTNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",
"POSITION" VARCHAR2(100) COLLATE "USING_NLS_COMP",
"SALARY" NUMBER(10,2),
"WORKCATEGORY" VARCHAR2(100) COLLATE "USING_NLS_COMP",
"DEPARTMENTID" VARCHAR2(100) COLLATE "USING_NLS_COMP",
"NAME OF THE OWNER OF THE OWNER OF THE OWNER OWNER, COMP",
                "WAREHOUSENUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP",
                "LINENUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP",
"EMPLOYEEID" VARCHAR2(100) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
CONSTRAINT "EMPLOYEES_PK" PRIMARY KEY ("EMPLOYEEID")
   USING INDEX ENABLE
) DEFAULT COLLATION "USING_NLS_COMP"
```

2) EMPLOYEE

EMPLOYEE TABLE

Oracle APEX US_A925_SQL_S30.EMPLOYEES

Column Name	Data Type	Nullable	Default	
EMPLOYEEID	VARCHAR2(100)	No		1
FIRSTNAME	VARCHAR2(250)	Yes		
LASTNAME	VARCHAR2(250)	Yes		
POSITION	VARCHAR2(100)	Yes		
SALARY	NUMBER(10,2)	Yes		
WORKCATEGORY	VARCHAR2(100)	Yes		
DEPARTMENTID	VARCHAR2(100)	Yes		
WAREHOUSENUMBER	VARCHAR2(100)	Yes		
LINENUMBER	VARCHAR2(100)	Yes		

SQL QUERY FOR EMPLOYEE

```
EMPLOYEES
Table
        Data
               Indexes
                         Model
                                   Constraints
                                                Grants
                                                         Statistics
                                                                     UI Defaults
                                                                                  Triggers
                                                                                             Dependencies
                                                                                                             SQL
CREATE TABLE "EMPLOYEES"
        "FIRSTNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        "LASTNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        "POSITION" VARCHAR2(100) COLLATE "USING_NLS_COMP",
        "SALARY" NUMBER(10,2),
        "WORKCATEGORY" VARCHAR2(100) COLLATE "USING_NLS_COMP",
        "DEPARTMENTID" VARCHAR2(100) COLLATE "USING_NLS_COMP",
        "WAREHOUSENUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP",
        "LINENUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP",
"EMPLOYEEID" VARCHAR2(100) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
         CONSTRAINT "EMPLOYEES_PK" PRIMARY KEY ("EMPLOYEEID")
  USING INDEX ENABLE
   ) DEFAULT COLLATION "USING_NLS_COMP"
```

3) INVOICE AMOUNT

TABLE FOR NORMALIZED RELATION INVOICE AMOUNT

Oracle APEX US_A925_SQL_S30.INVOICEAMOUNT

Column Name	Data Type	Nullable	Default	Primary Key
INVOICENUMBER	VARCHAR2(100)	No		1
TOTAL_AMOUNT_(\$)	NUMBER(6,2)	Yes		
VENDORNUMBER	VARCHAR2(100)	Yes		
DEPARTMENTID	VARCHAR2(100)	Yes		

SQL QUERY FOR INVOICE AMOUNT

```
Table Data Indexes Model Constraints Grants Statistics UI Defaults Triggers Dependencies SQL REST

CREATE TABLE "INVOICEAMOUNT"

( "INVOICENUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
 "TOTAL_AMOUNT_($)" NUMBER(6,2),
 "VENDORNUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP",
 "DEPARTMENTID" VARCHAR2(100) COLLATE "USING_NLS_COMP",
 "CONSTRAINT "INVOICE_AMT_PK" PRIMARY KEY ("INVOICENUMBER")

USING INDEX ENABLE
 ) DEFAULT COLLATION "USING_NLS_COMP"

//
ALTER TABLE "INVOICEAMOUNT" ADD CONSTRAINT "INVOICE_AMOUNT_FK" FOREIGN KEY ("DEPARTMENTID")
 REFERENCES "DEPARTMENTS" ("DEPARTMENTID") ON DELETE SET NULL ENABLE

//
ALTER TABLE "INVOICEAMOUNT" ADD CONSTRAINT "INVOICE_AMT_FK" FOREIGN KEY ("VENDORNUMBER")

REFERENCES "VENDOR" ("VENDORNUMBER") ENABLE
```

4) INVOICE PAYMENT

TABLE FOR THE NORMALIZED RELATION INVOICE PAYMENT

Oracle APEX US_A925_SQL_S30.INVOICEPAYMENT

Column Name	Data Type	Nullable	Default	Primary Key
VENDORNUMBER	VARCHAR2(100)	No		1
VENDORPAYMENTTYPE	VARCHAR2(100)	Yes		

SQL QUERY FOR INVOICE PAYMENT

5)PRODUCT

TABLE FOR PRODUCT

Oracle APEX US_A925_SQL_S30.PRODUCT

Column Name	Data Type	Nullable	Default	Primary Key
PRODUCTNUMBER	VARCHAR2(100)	No		1
PRODCUTTYPE	VARCHAR2(100)	Yes		
PRODUCTNAME	VARCHAR2(300)	Yes		
DESIGNERID	VARCHAR2(100)	Yes		
PRICE	NUMBER(5,2)	Yes		
COST	NUMBER(4,2)	Yes		
COLOR	VARCHAR2(100)	Yes		
WEIGHT	NUMBER(5,2)	Yes		

SQL QUERY FOR PRODUCT

```
PRODUCT
Table
        Data
                           Model
                                     Constraints
                                                             Statistics
                                                                         UI Defaults
                                                                                                                    SOL
                Indexes
                                                   Grants
                                                                                       Triggers
                                                                                                   Dependencies
CREATE TABLE "PRODUCT"
         "PRODUCTNUMBER" VARCHAR2(100) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
         "PRODCUTTYPE" VARCHAR2(100) COLLATE "USING_NLS_COMP", "PRODUCTNAME" VARCHAR2(300) COLLATE "USING_NLS_COMP",
         "EMPLOYEEID" VARCHAR2(100) COLLATE "USING_NLS_COMP",
         "PRICE" NUMBER(5,2),
"COST" NUMBER(4,2),
"COLOR" VARCHAR2(100) COLLATE "USING_NLS_COMP",
         "WEIGHT" NUMBER(5,2),
          CONSTRAINT "PRODUCT_PK" PRIMARY KEY ("PRODUCTNUMBER")
  USING INDEX ENABLE
   ) DEFAULT COLLATION "USING_NLS_COMP"
ALTER TABLE "PRODUCT" ADD CONSTRAINT "PRODUCT_FK" FOREIGN KEY ("EMPLOYEEID")
           REFERENCES "EMPLOYEES" ("EMPLOYEEID") ON DELETE SET NULL ENABLE
```

6)PRODUCTION LINE

TABLE FOR PRODUCTION LINE

Oracle APEX US_A925_SQL_S30.PRODUCTIONLINE

Column Name	Data Type	Nullable	Default	Primary Key
LINENUMBER	VARCHAR2(250)	No		1
LINECAPACITY_(ITEMS/HOUR)	NUMBER(4,0)	Yes		
PHONENUMBER	VARCHAR2(250)	Yes		
STREET	VARCHAR2(250)	Yes		
CITY	VARCHAR2(250)	Yes		
ZIPCODE	VARCHAR2(250)	Yes		

QUERY FOR PRODUCTION LINE

```
PRODUCTIONLINE
       Data Indexes Model
Table
                               Constraints
                                           Grants
                                                   Statistics
                                                              UI Defaults
                                                                          Triggers
                                                                                    Dependencies
                                                                                                  SQL
                                                                                                        REST
CREATE TABLE "PRODUCTIONLINE"
       "LINENUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
       "LINECAPACITY_(ITEMS/HOUR)" NUMBER(4,0),
        "PHONENUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP",
       "STREET" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        "CITY" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        "ZIPCODE" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        CONSTRAINT "PRODUCTIONLINE_PK" PRIMARY KEY ("LINENUMBER")
 USING INDEX ENABLE
  ) DEFAULT COLLATION "USING_NLS_COMP"
```

7) RAWMATERIAL LINE NUMBER

TABLE FOR NORMALIZED RELATION RAWMATERIAL LINE NUMBER

Oracle APEX US_A925_SQL_S30.RAWMATERIALINENUMBER

Column Name	Data Type	Nullable	Default	Primary Key
PRODUCTNUMBER	VARCHAR2(250)	No		1
LINENUMBER	VARCHAR2(250)	Yes		

QUERY FOR RAWMATER LINE NUMBER

```
RAWMATERIALINENUMBER
                                                                                                  SQL
Table
       Data
              Indexes
                       Model
                              Constraints
                                           Grants
                                                    Statistics
                                                              UI Defaults
                                                                          Triggers
                                                                                    Dependencies
                                                                                                         REST
CREATE TABLE "RAWMATERIALINENUMBER"
       "PRODUCTNUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
        "LINENUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        CONSTRAINT "RAWMATERIALINENUMBER_PK" PRIMARY KEY ("PRODUCTNUMBER")
 USING INDEX ENABLE
  ) DEFAULT COLLATION "USING_NLS_COMP"
ALTER TABLE "RAWMATERIALINENUMBER" ADD CONSTRAINT "RAWMATERIALINENUMBER_FK" FOREIGN KEY ("PRODUCTNUMBER")
          REFERENCES "PRODUCT" ("PRODUCTNUMBER") ON DELETE CASCADE ENABLE
ALTER TABLE "RAWMATERIALINENUMBER" ADD CONSTRAINT "RAWMATERIALINENUMBER_FK2" FOREIGN KEY ("LINENUMBER")
          REFERENCES "PRODUCLINE" ("LINENUMBER") ON DELETE SET NULL ENABLE
```

8) RAWMATERIAL PRODUCT

TABLE FOR NORMALIZED RELATION RAWMATERIAL PRODUCT

Oracle APEX
US_A925_SQL_S30.RAWMATERIALPRODUCT

Column Name	Data Type	Nullable	Default	Primary Key
PRODUCTNUMBER	VARCHAR2(250)	No		1
RAWMATERIALNAME	VARCHAR2(250)	No		2

QUERY FOR RAWMATERIAL PRODUCT

```
RAWMATERIALPRODUCT
Table
        Data
               Indexes
                          Model
                                    Constraints
                                                 Grants
                                                           Statistics
                                                                       UI Defaults
                                                                                    Triggers
                                                                                               Dependencies
                                                                                                                SQL
                                                                                                                       REST
CREATE TABLE "RAWMATERIALPRODUCT"
         "PRODUCTNUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
         "RAWMATERIALNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
         CONSTRAINT "RAWMATERIALPRODUCT PK" PRIMARY KEY ("PRODUCTNUMBER", "RAWMATERIALNAME")
  USING INDEX ENABLE
   ) DEFAULT COLLATION "USING NLS COMP"
ALTER TABLE "RAWMATERIALPRODUCT" ADD CONSTRAINT "RAWMATERIALPRODUCT_FK1" FOREIGN KEY ("PRODUCTNUMBER")

REFERENCES "PRODUCT" ("PRODUCTNUMBER") ON DELETE CASCADE ENABLE
```

9) SUPPLY SCHEDULE

TABLE FOR SUPPLU SCHEDULE

Oracle APEX US_A925_SQL_S30.SUPPLYSCHEDULE

Column Name	Data Type	Nullable	Default	Primary Key
SUPPLYCODE	VARCHAR2(250)	No		1
PRODUCTNUMBER	VARCHAR2(250)	Yes		
RAWMATERIALNAME	VARCHAR2(250)	No		
WAREHOUSENUMBER	VARCHAR2(250)	Yes		
VENDORNUMBER	VARCHAR2(250)	Yes		
DATES	VARCHAR2(250)	Yes		

QUERY FOR SUPPLY SCHEDULE

```
SUPPLYSCHEDULE
         Data
                                                 Constraints Grants Statistics UI Defaults Triggers Dependencies
Table
                    Indexes Model
                                                                                                                                                           SOL
                                                                                                                                                                     REST
                                                                                                                                                                                 Sami
CREATE TABLE "SUPPLYSCHEDULE"
             "SUPPLYCODE" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
            "PRODUCTNUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP"
            "RAMMATERIALNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",

"RAMMATERIALNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,

"WARCHOUSENUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP",

"VENDORNUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP",

"DATES" VARCHAR2(250) COLLATE "USING_NLS_COMP",

CONSTRAINT "SUPPLYSCHEDULE_PK" PRIMARY KEY ("SUPPLYCODE")

TNDEY ENABLE
  USING INDEX ENABLE
    ) DEFAULT COLLATION "USING_NLS_COMP"
ALTER TABLE "SUPPLYSCHEDULE" ADD CONSTRAINT "SUPPLYSCHEDULE_FK1" FOREIGN KEY ("PRODUCTNUMBER")

REFERENCES "PRODUCT" ("PRODUCTNUMBER") ON DELETE SET NULL ENABLE
ALTER TABLE "SUPPLYSCHEDULE" ADD CONSTRAINT "SUPPLYSCHEDULE_FK2" FOREIGN KEY ("WAREHOUSENUMBER")

REFERENCES "WAREHOUSE" ("WAREHOUSENUMBER") ON DELETE SET NULL ENABLE
ALTER TABLE "SUPPLYSCHEDULE" ADD CONSTRAINT "SUPPLYSCHEDULE_FK3" FOREIGN KEY ("VENDORNUMBER")
               REFERENCES "VENDOR" ("VENDORNUMBER") ON DELETE SET NULL ENABLE
, ALTER TABLE "SUPPLYSCHEDULE" ADD CONSTRAINT "SUPPLY_SCHEDUL_FK4" FOREIGN KEY ("PRODUCTNUMBER", "RAWMATERIALNAME") REFERENCES "RAWMATERIALPRODUCT" ("PRODUCTNUMBER", "RAWMATERIALNAME") ENABLE
```

10) VENDOR

TABLE FOR VENDOR

Oracle APEX US_A925_SQL_S30.VENDORS

Column Name	Data Type	Nullable	Default	Primary Key
VENDORNUMBER	VARCHAR2(250)	No		1
VENDORNAME	VARCHAR2(250)	Yes		
STREET	VARCHAR2(250)	Yes		
CITY	VARCHAR2(250)	Yes		
PHONENUMBER	VARCHAR2(250)	Yes		

SQL QUERY FOR VENDOR

```
VENDORS
                                                               UI Defaults
Table
       Data
             Indexes
                       Model
                               Constraints Grants
                                                    Statistics
                                                                           Triggers
                                                                                     Dependencies
                                                                                                   SQL
CREATE TABLE "VENDORS"
       "VENDORNUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP" NOT NULL ENABLE,
       "VENDORNAME" VARCHAR2(250) COLLATE "USING_NLS_COMP",
       "STREET" VARCHAR2(250) COLLATE "USING_NLS_COMP",
       "CITY" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        "PHONENUMBER" VARCHAR2(250) COLLATE "USING_NLS_COMP",
        CONSTRAINT "VENDORS_PK" PRIMARY KEY ("VENDORNUMBER")
 USING INDEX ENABLE
   ) DEFAULT COLLATION "USING_NLS_COMP"
```

11) WAREHOUSE

TABLE FOR WAREHOUSE

Oracle APEX US_A925_SQL_S30.WAREHOUSE

Column Name	Data Type	Nullable	Default	Primary Key
WAREHOUSENUMBER	VARCHAR2(250)	No		1
STREET	VARCHAR2(250)	Yes		
CITY	VARCHAR2(250)	Yes		
PHONE_NUMBER	VARCHAR2(250)	Yes		

SQL QUERY FOR WAREHOUSE

THREE MEANINGFUL QUERIES

1) QUERY: What is the query to extract information of the employees who are only responsible for designing the products?

THE SQL QUERY AND THE RESULTS ARE AS BELOW

2) QUERY: What is the query to fetch distinct details about vendors who supplied raw materials after the date '11/10/23,' including VendorName, PhoneNumber, and the type of raw material they supplied?

THE SQL QUERY AND THE RESULTS ARE AS BELOW

3) QUERY: What is the query to retrieve details such as ProductName and Price for products manufactured using the raw materials 'Vinyl' and 'Cotton,' with a cost exceeding 10 and is of red color?

THE SQL QUERY AND THE RESULTS ARE AS BELOW

CITATIONS

1.	Modern Database Management,	13th	edition	(eBook	or	print	versions)	By:	Jeff	Hoffer,	Ramesh
	Venkataraman, Heikki Topi					-		•			