I have decided to use a water potabilty dataset from kaggle for my portfolio project. The reason being that it is a binary classification project that uses a number of measurements to predict whether the water is drinkable or not.

https://www.kaggle.com/code/imakash3011/water-quality-prediction-7-model/notebook?select=water_potability.csv

The water_potability.csv file contains water quality metrics for 3276 different water bodies.

The file contains the following fields:

- 1. pH value: PH is an important parameter in evaluating the acid-base balance of water.
- 2. Hardness: Hardness is mainly caused by calcium and magnesium salts.
- 3. Solids: Total dissolved solids TDS.
- 4. Chloramines: Chlorine and chloramine are the major disinfectants used in public water systems.
- 5. Sulfate: Sulfates are naturally occurring substances that are found in minerals, soil, and rocks.
- 6. Conductivity: Pure water is not a good conductor of electric current.
- 7. Organic_carbon: Total Organic Carbon (TOC) in source waters comes from decaying natural organic matter (NOM) as well as synthetic sources.
- 8. Trihalomethanes: THMs are chemicals which may be found in water treated with chlorine.
- 9. Turbidity: The turbidity of water depends on the quantity of solid matter present in the suspended state.
- 10. Potability: Indicates if water is safe for human consumption where 1 means 'potable' and 0 means 'not potable'.

```
In [901... # The first step is to import some libraries

import numpy as np # linear algebra
import pandas as pd # data processing

In [902... # I now read the csv file and make a copy

main_df = pd.read_csv("water_potability.csv")
data_df = main_df.copy()
data_df_PCA = main_df.copy()

In [903... # Examining the dataframe...
```

data_df

I see that all fields are present, and there are indeed 3276 rows (samples) in the dataset. # I also note that there are some missing data (NaN), which I need to deal with later on.

Out[903...

		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
	0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
	1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	0
	2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	0
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
	•••										
3	271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419	66.687695	4.435821	1
3	272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.903225	NaN	2.798243	1
3	273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.039070	69.845400	3.298875	1
3	274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.168946	77.488213	4.708658	1
3	275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.140368	78.698446	2.309149	1

3276 rows × 10 columns

I now want to create X and y dataframes that I can use to train and tune my model.

Create X and y dataframes

```
In [906... # First off, I create y_df with the Potability column of my original dataframe.

y_df = data_df.Potability

# Check that it worked
#y_df

In [907... # Next, I want to remove the Potability column from my original dataframe and assign it to X_df

X_df = data_df.drop("Potability", axis='columns')

# Check that it worked
#print(X_df)
```

I noted missing data in the original dataset. Let's see how many missing data points there are in each feature of X_df

```
X df.isnull().sum()
In [909...
Out[909...
           ph
                               491
           Hardness
                                 0
           Solids
           Chloramines
                                 0
           Sulfate
                               781
           Conductivity
                                 0
           Organic carbon
           Trihalomethanes
                               162
           Turbidity
                                 0
           dtype: int64
```

At this point, one way I can deal with missing data is to drop the rows containing any NaN values. Note: I tried this in a separate notebook (to avoid excessive clutter in this notebook), and the model's accuracy, precision and recall didn't improve. Perhaps the dataset became too small when I dropped the NaN rows?

Another option is to use imputation to replace NaN with another value. These values could be mean, median, mode, etc; however, if I do this before splitting the data into train and test datasets, I will introduce dataleakage.

The datafields also have very different scales, so normalisation/standardisation will be necessary. Again, I don't want to do this before splitting for the same reason, namely, I will introduce data leakage.

Let's go ahead and split the data into train and test datasets...

Train test split before pre-processing to prevent data leakage

```
In [912... # Import the necessary library
    from sklearn.model_selection import train_test_split
        # Randomly split 30 % of the original dataset into test and the remaining 70 % into train datasets
        X_train, X_test, y_train, y_test = train_test_split(X_df, y_df, test_size=0.3, random_state=1234)
In [913... # Looking at the train dataset to check that the split has worked.
        # 2293 random samples from the original dataset out of 3276 samples gives 69.994 %
        X_train
```

\circ		г	$\overline{}$	4	\neg	
U	uт	П	y	Т	3	

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
2029	7.560392	223.232250	14739.068540	6.731611	372.028909	481.341774	8.900409	62.134281	4.257805
389	5.477912	211.398844	27361.659066	5.810457	340.623806	358.044130	16.629384	NaN	3.774256
2222	7.301464	205.721880	23778.758719	8.179967	333.339282	529.624618	12.352311	41.032062	3.942709
3176	8.610963	125.158770	32079.774815	9.844921	264.052839	342.205252	12.947376	53.950269	4.614400
1133	7.890354	180.158098	32160.533923	7.773484	360.283983	344.550619	11.246460	60.292187	3.209588
•••									
664	NaN	188.743562	19037.462638	6.034236	NaN	388.065857	15.149068	78.499418	2.723651
3125	6.103731	184.328693	17977.525649	7.275531	NaN	334.949739	7.655381	59.000666	3.383049
1318	6.724639	223.175415	41552.019664	7.744700	271.157120	463.885216	13.165035	61.058796	2.921415
723	10.137932	242.005716	15088.827653	8.677789	NaN	596.346346	14.971199	62.365824	3.872018
2863	5.547576	182.644736	27417.998043	9.586090	378.526141	596.650495	11.565242	78.878604	4.448671

```
In [914... # Convert y_train to pandas dataframe
```

y_train.to_frame()

Out[914...

	Potability
2029	1
389	1
2222	0
3176	1
1133	1
•••	•••
664	1
3125	1

1318

723

2863

2293 rows × 1 columns

```
In [915...
```

```
# Convert y_test to pandas dataframe
y_test.to_frame()
```

Out[915		Potability
	576	0
	1712	0
	1505	1
	118	0
	2706	0
	•••	
	2724	1
	1407	0
	1646	0

3025

919

983 rows × 1 columns

Now that I've split the dataset into train and test sets, I can do the necessary pre-processing without worrying about data leakage

Pre-process X_train and X_test

0

X_train & y_train

```
In [919... # Counting NaN values in all columns
nan_count = X_train.isna().sum()
print(nan_count)
```

342 ph Hardness Solids Chloramines 0 Sulfate 538 Conductivity 0 Organic carbon Trihalomethanes 117 Turbidity 0 dtype: int64

Earlier in this notebook, I discussed dealing with missing values. I mentioned that I had tried dropping rows containing NaN. In this notebook, I will use imputation to replace missing values.

The question arises: what should I replace missing values with? Should the replacements be column specific, i.e. should missing pH values be replaced with the column mean, and missing sulphate values be replaced with the column median?

Should I consider other types of imputation, e.g. hot/cold deck imputation?

https://www.theanalysisfactor.com/seven-ways-to-make-up-data-common-methods-to-imputing-missing-data/

```
In [921... # I'll try the three main types of imputation, mean, median and mode to see which, if any, gives better model prediction.

# Calculate the mean, median or mode of each column
mean = X_train.mean()
median = X_train.median()
#mode = X_train.mode()

# fill NaN values with the mean of each column
X_train.fillna(median, inplace=True)

In [922... # Counting NaN values in all columns
nan_count = X_train.isna().sum()
print(nan count)
```

ph	0
Hardness	0
Solids	0
Chloramines	0
Sulfate	0
Conductivity	0
Organic_carbon	0
Trihalomethanes	0
Turbidity	0
44 3464	

dtype: int64

In [923...

X_train

Out[923...

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
2029	7.560392	223.232250	14739.068540	6.731611	372.028909	481.341774	8.900409	62.134281	4.257805
389	5.477912	211.398844	27361.659066	5.810457	340.623806	358.044130	16.629384	66.762190	3.774256
2222	7.301464	205.721880	23778.758719	8.179967	333.339282	529.624618	12.352311	41.032062	3.942709
3176	8.610963	125.158770	32079.774815	9.844921	264.052839	342.205252	12.947376	53.950269	4.614400
1133	7.890354	180.158098	32160.533923	7.773484	360.283983	344.550619	11.246460	60.292187	3.209588
•••									
664	7.080446	188.743562	19037.462638	6.034236	333.198191	388.065857	15.149068	78.499418	2.723651
3125	6.103731	184.328693	17977.525649	7.275531	333.198191	334.949739	7.655381	59.000666	3.383049
1318	6.724639	223.175415	41552.019664	7.744700	271.157120	463.885216	13.165035	61.058796	2.921415
723	10.137932	242.005716	15088.827653	8.677789	333.198191	596.346346	14.971199	62.365824	3.872018
2863	5.547576	182.644736	27417.998043	9.586090	378.526141	596.650495	11.565242	78.878604	4.448671

2293 rows × 9 columns

Now I need to standardise the dataset. Looking at the first and last 5 rows in X_train (above), we see can that there is a huge variation in feature values and their ranges. I need to rescale the datasets, so I use MinMaxScaler to rescale each column to a common range [0, 1], while preserving the original shape and distribution of the datasets.

```
from sklearn import preprocessing
In [924...
          min max scaler = preprocessing.MinMaxScaler()
          X train = min max scaler.fit transform(X train)
          X train = pd.DataFrame(X train)
          X train
In [925...
Out[925...
                       0
                                1
                                         2
                                                  3
                                                           4
                                                                    5
                                                                             6
                                                                                      7
                                                                                                8
              0 0.550776 0.614076 0.236727 0.511528 0.690363 0.569269 0.256721 0.514672 0.530876
              1 0.394360 0.565548 0.443973 0.435544 0.601152 0.335193 0.552850 0.553467 0.439451
              2 0.531328 0.542267 0.385146 0.631000 0.580459 0.660932 0.388977 0.337777 0.471301
              3 0.629685 0.211882 0.521438 0.768338 0.383639 0.305123 0.411777 0.446067 0.598298
              4 0.575560 0.437431 0.522764 0.597470 0.657000 0.309576 0.346608 0.499230 0.332688
           2288 0.514727 0.472640 0.307300 0.454003 0.580058 0.392188 0.496133 0.651857 0.240811
           2289 0.441366 0.454535 0.289898 0.556395 0.580058 0.291349 0.209018 0.488403 0.365485
           2290 0.488003 0.613843 0.676960 0.595095 0.403820 0.536128 0.420116 0.505656 0.278203
          2291 0.744376 0.691066 0.242469 0.672064 0.580058 0.787600 0.489318 0.516613 0.457935
          2292 0.399593 0.447629 0.444898 0.746988 0.708819 0.788178 0.358822 0.655036 0.566964
         2293 rows × 9 columns
In [926...
          # I appear to have lost my column headings, so I will rename them by index
          X train.rename(columns={X train.columns[0]: 'pH', X train.columns[1]: 'Hardness', X train.columns[2]: 'Solids',
                                    X train.columns[3]: 'Chloramines', X train.columns[4]: 'Sulfate',
                                    X train.columns[5]: 'Conductivity', X train.columns[6]: 'Organic carbon',
                                    X train.columns[7]: 'Trihalomethanes', X train.columns[8]: 'Turbidity'},inplace=True)
```

In [927... X_train

Out[927...

	рН	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
0	0.550776	0.614076	0.236727	0.511528	0.690363	0.569269	0.256721	0.514672	0.530876
1	0.394360	0.565548	0.443973	0.435544	0.601152	0.335193	0.552850	0.553467	0.439451
2	0.531328	0.542267	0.385146	0.631000	0.580459	0.660932	0.388977	0.337777	0.471301
3	0.629685	0.211882	0.521438	0.768338	0.383639	0.305123	0.411777	0.446067	0.598298
4	0.575560	0.437431	0.522764	0.597470	0.657000	0.309576	0.346608	0.499230	0.332688
•••									
2288	0.514727	0.472640	0.307300	0.454003	0.580058	0.392188	0.496133	0.651857	0.240811
2289	0.441366	0.454535	0.289898	0.556395	0.580058	0.291349	0.209018	0.488403	0.365485
2290	0.488003	0.613843	0.676960	0.595095	0.403820	0.536128	0.420116	0.505656	0.278203
2291	0.744376	0.691066	0.242469	0.672064	0.580058	0.787600	0.489318	0.516613	0.457935
2292	0.399593	0.447629	0.444898	0.746988	0.708819	0.788178	0.358822	0.655036	0.566964

2293 rows × 9 columns

In [928... y_train

```
Out[928...
          2029
                  1
          389
                  1
          2222
                  0
          3176
                  1
          1133
                  1
                  . .
          664
                  1
          3125
                  1
          1318
                  0
          723
                  1
          2863
                  1
          Name: Potability, Length: 2293, dtype: int64
In [929... y_train.to_frame()
Out[929...
                Potability
          2029
                        1
           389
                       1
          2222
                        0
          3176
          1133
           664
                        1
```

	index	Potability
0	2029	1
1	389	1
2	2222	0
3	3176	1
4	1133	1
•••		
2288	664	1
2289	3125	1
2290	1318	0
2291	723	1
2292	2863	1

```
In [932... y_train = y_train.drop("index", axis='columns')
```

In [933... **y_train**

Out[933		Potability
	0	1
	1	1
	2	0
	3	1
	4	1
	•••	
	2288	1
	2289	1
	2290	0
	2291	1
	2292	1

Now I need to repeat the process for X_test and y_test datsaset.

X_test & y_test

```
In [936... # Counting NaN values in all columns
nan_count = X_test.isna().sum()
print(nan_count)
```

```
ph
                            149
         Hardness
                              0
         Solids
                              0
         Chloramines
                              0
         Sulfate
                            243
         Conductivity
                              0
         Organic carbon
         Trihalomethanes
                             45
         Turbidity
                              0
         dtype: int64
In [937...
          # calculate the mean of each column
          mean = X test.mean()
          median = X test.median()
          #mode = X_test.mode()
          # fill NaN values with the mean of each column
          X_test.fillna(median, inplace=True)
          # Counting NaN values in all columns
In [938...
          nan_count = X_test.isna().sum()
          print(nan count)
         ph
                            0
                            0
         Hardness
         Solids
                            0
         Chloramines
         Sulfate
                            0
         Conductivity
                            0
         Organic_carbon
                            0
         Trihalomethanes
                            0
         Turbidity
         dtype: int64
In [939... X_test
```

\bigcirc	г	\cap	\neg	\cap	
Uul	L	J	0	J	

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
576	6.124672	179.579752	27951.613070	8.075627	303.646928	467.171822	13.835117	69.017488	3.631007
1712	5.853561	186.807751	19790.856926	6.615781	332.477743	489.796888	19.670703	65.040007	3.756874
1505	6.931357	190.267367	15255.115258	7.597688	366.192327	418.476742	13.312723	68.944888	3.796737
118	7.397413	122.541040	8855.114121	6.888689	241.607532	489.851600	13.365906	66.139792	3.149158
2706	7.873272	182.646658	25337.122963	3.715065	362.484604	315.189948	12.132425	65.499925	3.306393
•••									•••
2724	6.232011	208.668172	12149.696730	8.560039	332.477743	325.344706	13.246995	33.380354	1.641515
1407	8.470546	199.489716	26559.380406	7.904381	351.738925	491.519705	9.504880	66.146355	2.935802
1646	6.179810	248.833263	15391.559151	8.014257	273.086890	487.625733	9.696478	69.697025	3.704324
3025	7.149125	202.582542	23158.389096	6.067812	302.002743	301.984240	17.622595	42.292766	3.787033
919	5.606856	211.513097	32423.462685	6.812943	332.477743	446.386404	20.926950	52.218979	4.070966

```
In [940... X_test = min_max_scaler.fit_transform(X_test)
X_test = pd.DataFrame(X_test)
```

In [941... X_test

\cap		LU12	
U	uч	[345	۰

	рН	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
0	0.437477	0.479331	0.489420	0.604589	0.416559	0.481314	0.492046	0.523643	0.436313
1	0.418111	0.505549	0.342704	0.490316	0.513851	0.522322	0.795470	0.489183	0.462037
2	0.495097	0.518098	0.261159	0.567177	0.627624	0.393054	0.464883	0.523014	0.470184
3	0.528387	0.272438	0.146098	0.511678	0.207202	0.522421	0.467649	0.498712	0.337837
4	0.562377	0.490456	0.442416	0.263254	0.615112	0.205846	0.403513	0.493168	0.369971
•••									
978	0.445144	0.584842	0.205329	0.642508	0.513851	0.224252	0.461466	0.214891	0.029718
979	0.605039	0.551549	0.464391	0.591184	0.578849	0.525445	0.266892	0.498768	0.294233
980	0.441415	0.730530	0.263612	0.599785	0.313432	0.518387	0.276855	0.529531	0.451297
981	0.510652	0.562768	0.403247	0.447422	0.411011	0.181911	0.688978	0.292106	0.468200
982	0.400490	0.595161	0.569817	0.505749	0.513851	0.443641	0.860790	0.378105	0.526228

```
In [944...
```

```
y_test
Out[944...
         576
                  0
                  0
          1712
          1505
                  1
          118
                  0
          2706
                  0
          2724
                  1
          1407
          1646
          3025
                  0
          919
```

Name: Potability, Length: 983, dtype: int64

In [945... y_test.to_frame()

Out[945...

	Potability
576	0
1712	0
1505	1
118	0
2706	0
•••	
2724	1
1407	0
1646	0
3025	0
919	0

983 rows × 1 columns

In [946... y_test = y_test.reset_index()

In [947... **y_test**

\circ		г	$\overline{}$	Л	-	
U	uт	П	y	4	/	

	index	Potability
0	576	0
1	1712	0
2	1505	1
3	118	0
4	2706	0
•••		
978	2724	1
979	1407	0
980	1646	0
981	3025	0
982	919	0

```
In [948... y_test = y_test.drop("index", axis='columns')
```

In [949... y_test

Out[949		Potability
	0	0
	1	0
	2	1
	3	0
	4	0
	•••	•••
	978	1
	979	0
	980	0
	981	0
	982	0

Let's visualise the datasets using a histogram plot. I want to see what the distributions look like and find out if there are any outliers in my data.

Visualising the datasets

```
import matplotlib.pyplot as plt
plt.figure(figsize=(2,2))
plt.ylabel("pH (X_train)")
plt.hist(X_train.pH)
plt.show()

plt.figure(figsize=(2,2))
plt.ylabel("pH (X_test)")
plt.hist(X_test.pH)
```

```
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Hardness (X train)")
plt.hist(X train.Hardness)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Hardness (X test)")
plt.hist(X test.Hardness)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Solids (X train)")
plt.hist(X train.Solids)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Solids (X test)")
plt.hist(X_test.Solids)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Chloramines (X train)")
plt.hist(X train.Chloramines)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Chloramines (X test)")
plt.hist(X_test.Chloramines)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Sulfate (X_train)")
plt.hist(X train.Sulfate)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Sulfate (X test)")
plt.hist(X_test.Sulfate)
plt.show()
```

```
plt.figure(figsize=(2,2))
plt.ylabel("Conductivity (X train)")
plt.hist(X train.Conductivity)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Conductivity (X test)")
plt.hist(X test.Conductivity)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Organic carbon (X train)")
plt.hist(X train.Organic carbon)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Organic carbon (X test)")
plt.hist(X test.Organic carbon)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Trihalomethanes (X_train)")
plt.hist(X train.Trihalomethanes)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Trihalomethanes (X test)")
plt.hist(X test.Trihalomethanes)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Turbidity (X_train)")
plt.hist(X train.Turbidity)
plt.show()
plt.figure(figsize=(2,2))
plt.ylabel("Turbidity (X test)")
plt.hist(X test.Turbidity)
plt.show()
```


I don't see any obvious outliers in the datasets.

Many ML algorithms assume normality in data distribution. Skewed data distributions can lead to biased models, inaccurate predictions, and suboptimal performance.

https://medium.com/@samiraalipour/understanding-and-handling-skewness-in-machine-6e8fc8b15382#:~:text=Skewed%20data%20distributions%20can%20lead,distribution%20or%20balance%20the%20data.

Some of the histograms in my dataset (solids, sulphate and conductivity) are ever so slightly skewed. But only very slightly, so I will proceed with my model training.

However, I also want to look at the distribution of my predictors, y_train and y_test...

```
In [954... plt.figure(figsize=(2,2))
    plt.ylabel("Potability (y_train)")
    plt.hist(y_train)
    plt.show()

print(y_train.eq(0).all(axis=1).sum())
    print(y_train.eq(1).all(axis=1).sum())
    print("y_train potable/not potable:", y_train.eq(1).all(axis=1).sum()/y_train.eq(0).all(axis=1).sum())
```


1415 878 y_train potable/not potable: 0.620494699646643

```
In [955... plt.figure(figsize=(2,2))
    plt.ylabel("Potability (y_test)")
    plt.hist(y_test)
    plt.show()

print(y_test.eq(0).all(axis=1).sum())
```

```
print(y_test.eq(1).all(axis=1).sum())
print("Ratio y_test potable/not potable:", y_test.eq(1).all(axis=1).sum()/y_test.eq(0).all(axis=1).sum())
```


583 400

Ratio y_test potable/not potable: 0.6861063464837049

I see that there are more 0 values predictors, i.e. not potable water than there are 1 value predictors (potable).

It is possible to address class imbalances using some form of resampling; however, there are risks involved, so I will keep my data as it is.

https://pmc.ncbi.nlm.nih.gov/articles/PMC9382395/#:~:text=Commonly%20suggested%20solutions%20to%20address, (Synthetic%20Minority%20Oversampling%20Technique).

Finally, let's do one final check on the two datasets

```
In [958... print('Training data shape:', X_train.shape, y_train.shape)
print('Testing data shape:', X_test.shape, y_test.shape)

Training data shape: (2293, 9) (2293, 1)
Testing data shape: (983, 9) (983, 1)

In [959... # Find the unique numbers from the train Labels
classes = np.unique(y_train)
nClasses = len(classes)
print('Total number of outputs : ', nClasses)
print('Output classes : ', classes)
```

```
Total number of outputs : 2
Output classes : [0 1]
```

PCA

See Discussion section for comment on PCA

Now let's train a model!

MODEL TRAINING

I will point out here that I trained and tuned a variety of models earlier (in a different notebook, which I will include in my github repository). I have summarised accuracy metrics of the models below:

```
DT = 0.6276703967446592

RF = 0.6520854526958291

SVM = 0.6581892166836215
```

LogReg = 0.619129

GradBoost = 0.624618514750763

I was dissapointed that with my accuracy scores, so I had a look to see what others had achieved with the same dataset. I was encouraged to see that my accuracy scores are completely in line with other kaggle members' scores on the same dataset. I will discuss this more at the end of the notebook.

Looking at my accuracy scores, there's not a lot of difference betwen the models.

What about other metrics? For example, precision and recall?

The predictor in my dataset is potability, i.e. is the water safe or unsafe to drink. In this case, I'd say that precision is going to be important, since predicting water is safe to drink when it's actually unsafe to drink is an undesirable outcome.

DT Recall: 0.1825 Precision: 0.6517857142857143 RF Recall: 0.355 Precision: 0.636771300448430

SVM Recall: 0.255 Precision: 0.7285714285714285 LogReg* Recall: 0.005 Precision: 1. *predictions are essentially always 0, i.e. not drinkable

GradBoost Recall: 0.2775 Precision: 0.5873015873015873

In my opinion, the 4 M

SVM classifier gave the best predictions in terms of accuracy and precision met So SVM cassifier model is where I e, I will SVMmy r my portfolio project submis

If I had time, I would investigate other models, such as DNNs. However, looking at what others have done, their attempts with neural networks haven't scored any better. They're still in the region of 60-70 % accuracy. sion.

Support Vector Machine classifier

In [966...

from sklearn.model_selection import train_test_split # Import train_test_split function
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
from sklearn import svm

```
#Create a svm Classifier
          # I tried three different kernels, but defaul settings (kernel='rbf', C=1, gamma='scale') performed best
          svmc = svm.SVC(kernel='rbf')
          #Train the model using the training sets
          svmc.fit(X train, y train)
          #Predict the response for test dataset
          y pred = svmc.predict(X test)
          #Import scikit-learn metrics module for accuracy calculation
In [967...
          from sklearn import metrics
          # Model Accuracy: how often is the classifier correct?
          print("Accuracy:",metrics.accuracy score(y test, y pred))
          print("Recall:", metrics.recall score(y test, y pred))
          print("Precision:",metrics.precision score(y test, y pred))
         Accuracy: 0.6581892166836215
         Recall: 0.255
         Precision: 0.7285714285714285
          Let's look at the confusion matrix to see what's happened.
          from sklearn import metrics
```

```
In [969... from sklearn import metrics

confusion_matrix = metrics.confusion_matrix(y_test, y_pred)
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = [0, 1])
cm_display.plot()
plt.show()
```


We can see that SVM misclassified a lot of potable samples as not potable. Although this isn't ideal, it's better than misclassifying not potable as potable!

SVM Hyperparameter tuning

```
Requirement already satisfied: scikit-optimize in c:\users\kris\anaconda3\lib\site-packages (0.10.2)

Requirement already satisfied: joblib>=0.11 in c:\users\kris\anaconda3\lib\site-packages (from scikit-optimize) (1.4.2)

Requirement already satisfied: pyaml>=16.9 in c:\users\kris\anaconda3\lib\site-packages (from scikit-optimize) (25.1.0)

Requirement already satisfied: numpy>=1.20.3 in c:\users\kris\anaconda3\lib\site-packages (from scikit-optimize) (1.26.4)

Requirement already satisfied: scipy>=1.1.0 in c:\users\kris\anaconda3\lib\site-packages (from scikit-optimize) (1.12.0)

Requirement already satisfied: scikit-learn>=1.0.0 in c:\users\kris\anaconda3\lib\site-packages (from scikit-optimize) (1.4.2)

Requirement already satisfied: packaging>=21.3 in c:\users\kris\anaconda3\lib\site-packages (from scikit-optimize) (23.2)

Requirement already satisfied: PyYAML in c:\users\kris\anaconda3\lib\site-packages (from pyaml>=16.9->scikit-optimize) (6.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\kris\anaconda3\lib\site-packages (from scikit-learn>=1.0.0->scikit-optimize) (2.2.0)
```

Note: you may need to restart the kernel to use updated packages.

```
In [973... pip install GPyOpt
```

```
Requirement already satisfied: GPyOpt in c:\users\kris\anaconda3\lib\site-packages (1.2.6)

Requirement already satisfied: numpy>=1.7 in c:\users\kris\anaconda3\lib\site-packages (from GPyOpt) (1.26.4)

Requirement already satisfied: scipy>=0.16 in c:\users\kris\anaconda3\lib\site-packages (from GPyOpt) (1.12.0)

Requirement already satisfied: GPy>=1.8 in c:\users\kris\anaconda3\lib\site-packages (from GPyOpt) (1.13.2)

Requirement already satisfied: six in c:\users\kris\anaconda3\lib\site-packages (from GPy>=1.8->GPyOpt) (1.16.0)

Requirement already satisfied: paramz>=0.9.6 in c:\users\kris\anaconda3\lib\site-packages (from GPy>=1.8->GPyOpt) (0.9.6)

Requirement already satisfied: cython>=0.29 in c:\users\kris\anaconda3\lib\site-packages (from GPy>=1.8->GPyOpt) (3.0.12)

Requirement already satisfied: decorator>=4.0.10 in c:\users\kris\anaconda3\lib\site-packages (from paramz>=0.9.6->GPy>=1.8->GPyOpt) (5.1.1)

Note: you may need to restart the kernel to use updated packages.
```

For hyperparameter optimisation, I want to investigate Grid Search and Bayesian Optimisation

Grid Search

Start by establishing a disctionary of parameters and a search area.

Then I'll do the grid search and print the best fit.

The best f1-score was: 0.45666759232767884

I've played around with the parameter dictionary and tested different ranges, but none of them come close to the default settings in terms of

The best parameter values were: {'C': 10, 'gamma': 10, 'kernel': 'rbf'}

So let's give Bayesian Optimisation a try!

Bayesian Optimisation

accuracy and precision!

```
In [981... # https://sites.gatech.edu/omscs7641/2024/02/16/tutorial-on-hyperparameter-tuning-using-scikit-learn/
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report
from GPyOpt.methods import BayesianOptimization
from skopt import BayesSearchCV, space, plots
from sklearn.svm import SVC

# Bayesian Search search space
search_spaces = {
    'C': (1e-2, 1e2, 'log-uniform'),
```

```
'gamma': (1e-2, 1e2, 'log-uniform'),
     'kernel': ['rbf']
 bayes opt = BayesSearchCV(
     SVC(),
     search spaces=search spaces,
     n iter=81,
     cv=5,
     n jobs=4
 bayes opt.fit(X train, y train)
 print(f'Best Params: {bayes opt.best params }')
 y pred = bayes opt.predict(X test)
 print(classification report(y test, y pred))
Best Params: OrderedDict({'C': 23.41332112903636, 'gamma': 1.7102665528341037, 'kernel': 'rbf'})
                           recall f1-score support
              precision
           0
                   0.65
                             0.87
                                       0.74
                                                  583
                   0.62
                             0.31
           1
                                       0.41
                                                  400
                                       0.64
                                                  983
    accuracy
                                       0.58
  macro avg
                   0.63
                             0.59
                                                  983
weighted avg
                   0.64
                             0.64
                                       0.61
                                                  983
```

Discussion

At first, I was disappointed with my model performances. I thought I'd missed something or done something wrong.

I had plenty of time to abandon this dataset and look for something that would allow me to achieve a much better test set accuracy. However, the more I thought about it, the more I realised that this dataset offers some really good learning and discussion points.

Therefore, I decided to look at what others had done. It was only at that point that I realised that my model performances weren't bad at all. They were actually on-par with what others had done! I've summarised some of the other users' results in the next cell. Some of the users

achieved very slightly (1-2 %) better accuracies, so I looked at their code and saw that they had pre-processed their datasets prior to splitting. I've already discussed why I chose not to do this. Rather, my approach was to split first, then pre-process.

I pondered why we all might be getting such poor accuracies, etc. So, I looked more at the dataset. Where did it come from? There is precious little information regarding the dataset, apart from a description of the input features.

One glaring question was regarding the predictor, potability. How was it determined?

No methods are mentioned on the (About this Dataset) section on the kaggle site.

I did a quick google search to find out more about potability testing.

A commonly used method is the Coliform-Test-Technique (Multiple-Tube Fermentation Test), which is a standard method followed all over the world to determine whether the water is potable or faecally polluted [1]. This is a bacteria test, where a test result of 'Absent' indicates the well or distribution system is free of coliform bacterial contamination, and is therefore considered potable with respect to bacteria.

Are there any other metrics that are used to test for potability? I only know that dataset consists of input features: pH, hardness, solids, chloramines, sulphate, conductivity, organic carbon, trihalomethanes, and turbidity. Organic carbon may indicate some sort of bactria test, but who knows! It may be that the test for potability was a taste test, in which case it becomes very subjective.

I tried dimentionality reduction (PCA) to see if I could get my models to perform any better. Unfortunately, PCA appears to confirm that the dataset is probably bogus, since all variance ratios of all four principal components are roughly the same.

This exercise has highlighted the importance of creating and maintaining good data and model cards.

I have learned a lot from this dataset. In future, my first task will always be to examine and scrutinise the data. Where has it come from? How large is the dataset? The dataset could definitely have done with being much larger, especially given the difficulty in training models with good accuracy.

I will apply this hindsight to any professional work that I do in machine learning. I cannot produce good models if the data is garbage!

References

[1] https://www.biologydiscussion.com/water-microbiology/determining-potability-of-water-water-microbiology/55536

Other users' results on this same dataset

joefred101

Accuracy:

DT = 0.641015; RF = 0.655270; SVC = 0.674803

Precision:

SVC = 0.686933

Recall:

SVC = 0.674803

https://www.kaggle.com/code/joefred101/water-quality-classification-modeling

Karthik

Accuracy

DT = 0.6104218362282878; RF = 0.7096774193548387; SVM = 0.724565756823821; LogReg = 0.6178660049627791

https://www.kaggle.com/code/karthikreddy77/water-quality-prediction-with-all-classifications

sadık oktay bicici

Accuracy

RF = 0.6683485384472165

https://www.kaggle.com/code/sadkoktaybicici/su-kalitesi-veri-analizi

Lea Ben Zvi

Accuracy

RF = 0.655448717948718

https://www.kaggle.com/code/leabenzvi/water-potability-classification

Ashfak Yeafi

Accuracy

LogReg = 0.607245; RF = 0.646330; DT = 0.586273

https://www.kaggle.com/code/ashfakyeafi/random-forest-with-water-quality

```
In [ ]:
```