Prediction of Ternary Vapor-Liquid Equilibria from Binary Data

MICHAEL J. HOLMES MATTHEW VAN WINKLE

Wilson equation used to predict vapor compositions

An essential ingredient in the industrial design of distillation equipment is a knowledge of the vaporliquid equilibria of the system to be separated. Many articles containing experimental equilibrium data for binary systems have appeared in the literature in recent years. However, the vast majority of industrial separations involves several components, and experimental data for systems containing four or more components are almost nonexistent.

Because the cost and time involved in obtaining experimental equilibrium data increase rapidly with the number of components, the distillation practitioner has turned to thermodynamics in search of effective predictive methods.

Our knowledge of liquid mixtures is still far from complete. Ultimately, the design engineer would like to predict multicomponent data from pure component properties. However, the present methods involve reduction of binary data to a small number of parameters with various solution models. These models are then used with the binary parameters to predict multicomponent behavior.

Solution Models

Many solution models which relate activity coefficients to liquid composition and satisfy the well-known Gibbs-Duhem equation

$$\sum_{i}^{N} x_i (d \ln \gamma_i)_{T,P} = 0 \tag{1}$$

have been proposed. A common procedure in model development is first to relate the molar excess free energy to the liquid composition. For example, Wohl (69, 70) has shown that the Margules, van Laar, and Scatchard-Hamer equations can all be developed as variations of one mathematical scheme. In the derivation the molar excess free energy of the mixture is equated to a sum of empirical interaction terms

$$\frac{g^{E}}{2.303 \ RT \sum_{i} q_{i}x_{i}} = \sum_{ij} z_{i}z_{j}a_{ij} + \sum_{ijk} z_{i}z_{j}z_{k}a_{ijk} + \sum_{ijk} z_{i}z_{j}z_{k}z_{i}a_{ijk} + \dots$$
(2)

where q_i is called the effective molar volume of the *i*th component and z_i is the effective volumetric fraction

$$z_i \equiv \frac{q_i x_i}{\sum_i q_j x_j} \tag{3}$$

with the molar excess free energy expressed in terms of the liquid composition, the various models relating activity coefficients to composition can be obtained by the exact relation

$$RT \ln \gamma_i = \left(\frac{\partial n_T g^E}{\partial n_i}\right)_{T,P,n_{i\neq i}} \tag{4}$$

Four solution models for liquid phase activity coefficients have been compared in this study: the Margules, Bonham, van Laar, and Wilson equations.

Margules equation. One of the most commonly used solution models is that of Margules (30). The third-order Margules equations for a binary system are:

$$\log_{10} \gamma_1 = x_2^2 [A_{12} + 2 x_1 (A_{21} - A_{12})] \tag{5}$$

$$\log_{10} \gamma_2 = x_1^2 [A_{21} + 2 x_2 (A_{12} - A_{21})] \tag{6}$$

The third-order Margules equations for a ternary system involve the parameters for the three constituent binary systems and a single ternary parameter:

$$\log_{10} \gamma_{1} = x_{2}^{2} [A_{12} + 2 x_{1} (A_{21} - A_{12})] + x_{3}^{2} [A_{13} + 2 x_{1} (A_{31} - A_{13})] + x_{2} x_{3} [(A_{21} + A_{12} + A_{31} + A_{13} - A_{23} - A_{32})/2 + x_{1} (A_{21} - A_{12} + A_{31} - A_{13}) + (x_{2} - x_{3}) (A_{23} - A_{32}) - (1 - 2 x_{1}) C^{*}]$$

$$(7)$$

The expressions for the activity coefficients of the other two components can be obtained by the rotation principle

As stated by Wohl (69) in a supplement to his earlier work (70), the ternary constant C^* can be set equal to zero for systems in which the ternary interactions are negligible. In this case, only binary data are needed for the representation of the ternary system.

Van Laar equation. Van Laar (63) attempted to employ a more theoretical approach than Margules by examining the thermodynamic changes occurring during mixing of the pure liquids. The resulting equations are

$$T \ln \gamma_1 = \frac{B_{12}}{[1 + A_{12}(x_1/x_2)]^2}$$
 (8)

$$T \ln \gamma_2 = \frac{A_{12}B_{12}}{[A_{12} + (x_2/x_1)]^2}$$
 (9)

Based on van Laar's assumptions, the binary parameters A_{12} and B_{12} can be expressed in terms of van der Waals constants

$$A_{12} = \frac{b_1}{b_2} \tag{10}$$

$$B_{12} = \frac{b_1}{R} \left[\frac{a_1^{0.5}}{b_1} - \frac{a_2^{0.5}}{b_2} \right]^2 \tag{11}$$

However, in practice the van der Waals constants do not yield satisfactory estimates of the binary parameters.

Carlson and Colburn (9) modified the original van Laar equations by defining new parameters

$$\bar{A}_{12} = \frac{B_{12}}{2.303 \ T} \tag{12}$$

$$\bar{A}_{21} \equiv \frac{B_{12}}{2.303 \ A_{12}T} \tag{13}$$

The resulting equations are

$$\log_{10} \gamma_1 = \frac{\bar{A}_{12}}{\left(1 + \frac{x_1}{x_2} \frac{\bar{A}_{12}}{\bar{A}_{12}}\right)^2} \tag{14}$$

$$\log_{10} \gamma_2 = \frac{\bar{A}_{21}}{\left(1 + \frac{x_2}{x_1} \frac{\bar{A}_{21}}{\bar{A}_{12}}\right)^2} \tag{15}$$

It is apparent from Equations 12 and 13 that the equations above are equivalent to the original van Laar equations only under isothermal conditions. In spite of this, the equations presented by Carlson and Colburn are much more widely used today than the original van Laar relations and are generally referred to simply as the "van Laar equations."

These equations have been extended to ternary

systems by Wohl (70). The second-order equation for the first component is

$$\log_{10} \gamma_{1} = \left[x_{2}^{2} \bar{A}_{12} \left(\frac{\bar{A}_{21}}{\bar{A}_{12}} \right)^{2} + x_{3}^{2} \bar{A}_{13} \left(\frac{\bar{A}_{31}}{\bar{A}_{13}} \right)^{2} + x_{3}^{2} \bar{A}_{13} \left(\bar{A}_{12} + \bar{A}_{13} - \bar{A}_{32} \frac{\bar{A}_{13}}{\bar{A}_{31}} \right) \right] / \left[x_{1} + x_{2} \frac{\bar{A}_{21}}{\bar{A}_{12}} + x_{3} \frac{\bar{A}_{31}}{\bar{A}_{13}} \right]^{2}$$
(16)

The corresponding expressions for the other components can be obtained by the rotation principle.

The equation above involves no ternary parameters. However, it was developed with the following restriction

$$\frac{\bar{A}_{12}}{\bar{A}_{21}} \times \frac{\bar{A}_{23}}{\bar{A}_{32}} \times \frac{\bar{A}_{31}}{\bar{A}_{13}} = 1 \tag{17}$$

Often the parameters obtained by a least-squares fit of the binary data do not satisfy Equation 17.

Bonham equation. Bonham (5) extended the original van Laar Equations 8 and 9 to multicomponent systems resulting in

$$T \ln \gamma_1 = \frac{(x_2 B_{12}^{0.5} + x_3 A_{32} B_{13}^{0.5})^2}{(x_1 A_{12} + x_2 + x_3 A_{32})^2}$$
(18)

$$T \ln \gamma_2 = \frac{(x_1 A_{12} B_{21}^{0.5} + x_3 A_{32} B_{23}^{0.5})^2}{(x_1 A_{12} + x_2 + x_3 A_{32})^2}$$
(19)

$$T \ln \gamma_3 = \frac{(x_1 A_{12} B_{31}^{0.5} + x_2 B_{32}^{0.5})^2}{(x_1 A_{12} + x_2 + x_3 A_{32})^2}$$
(20)

for a ternary system. The parameters are related by the equations below.

$$A_{ji} = \frac{1}{A_{ji}} \tag{21}$$

$$B_{ji} = \frac{B_{ij}}{A_{ij}} \tag{22}$$

Several difficulties arise when applying the Bonham equations to the prediction of vapor-liquid equilibria. According to the assumptions of van Laar, the parameters in the original van Laar equations can assume only positive values (see Equations 10 and 11). This restriction on B_{ij} prevents adequate representation of a binary system which shows negative deviations from ideality. The van Laar assumptions were used in the development of the Bonham multicomponent equations, and, thus, the model is not satisfactory for multicomponent systems in which some of the B_{ij} are negative. This is apparent from inspection of Equations 18, 19, and 20 where the square root of B_{ij} appears.

A second difficulty with the Bonham equation concerns the sign of $B_{tj}^{0.5}$. According to Robinson and Gilliland (52), the sign is determined by the relative polarity of the components in the binary system. For example, if component 1 is more polar than component 2, $B_{12}^{0.5}$ is positive and $B_{21}^{0.5}$ is negative.

A final difficulty with the Bonham equation is the restrictions given by Equations 23 and 24

TABLE I. ANTOINE CONSTANTS

Component	A	В	G	Temperature range, °C	Data reference
Acetone	7.02447	1161.0	224.		(26)
Acetonitrile	7.07354	1279.2	224.	5 to 119	(11)
Benzene	6.90565	1211.033	220,790	0 to 160	(11)
1-Butanol	8.27488	1873.9	230.		(66)
Butyl cellosolve	7.16462	1538.7	188.0		(47)
Carbon tetrachloride	6.93390	1242.43	230.0	-15 to 138	(11)
Cellosolve	8.416	2135.0	253.0		(60)
Chloroform	6.90328	1163.03	227.4	-30 to 150	(26)
Cyclohexane	6.84498	1203.526	222.863	-20 to 142	(11)
Cyclopentane	6.88676	1124,162	231,361	-25 to 110	(11)
2,3-Dimethylbutane	6.80983	1127.187	228.900	-20 to 100	(11)
1,4-Dioxane	7.8642	1866.7	273.0		(60)
Ethanol	8.04494	1554.3	222.65		(26)
Ethyl acetate	7.09808	1238.71	217.0	-20 to 150	(26)
Ethylbenzene	6.95719	1424.255	213.206	45 to 190	(11)
Ethylcyclohexane	6.87041	1384.036	215.128	40 to 170	(11)
n-Heptane	6.90240	1268.115	216.900	15 to 130	(11)
n-Hexane	6.87776	1171.530	224.366	-10 to 110	(11)
Hexene-1	6.8657	1152.97	225.85		(60)
Hexylene glycol	7.8876	1890.38	180.46		(50)
Methanol	7.87863	1473.11	230.0	-20 to 140	(26)
Methyl acetate	7.20211	1232,83	228.0		(26)
Methylcyclohexane	6.82689	1276.864	221.630	. 10 to 155	(11)
Methylcyclopentane	6.86283	1186.059	226,042	-5 to 125	(11)
Methyl-ethyl-ketone	6.97421	1209.6	216		(26)
n-Octane	6.92377	1355.126	209.517	40 to 155	(11)
n-Pentane	6.85221	1064.63	232.000	-35 to 80	(11)
1-Propanol	7.99733	1569.70	209.5		(26)
2-Propanol	6,66040	813.055	132.93	0 to 113	(26)
Toluene	6.95334	1343.943	219.377	20 to 200	(11)
1,2,3-Trichloropropane	6.98716	1502.3	209.	64 to 204	(11)
2,2,4-Trimethylpentane	6.81189	1257.840	220.735	15 to 135	(11)
Water	7.96681	1668.21	228.0	60 to 150	(11)

$$A_{jk} = A_{ji}A_{ik}$$

$$\left(\frac{B_{12}}{A_{12}}\right)^{0.5} + \left(\frac{B_{23}}{A_{22}}\right)^{0.5} + \left(\frac{B_{34}}{A_{32}}\right)^{0.5} + \dots + \left(\frac{B_{N1}}{A_{N2}}\right)^{0.5} = 0$$
(24)

Thus, for a ternary system, data on only two binaries are needed for use with the Bonham equations; the parameters for the third binary can be calculated by the relations above. This is useful if experimental data for one of the binaries are not available. However, if data for all the binaries are available, the parameters obtained by a least-squares fit often do not satisfy Equations 23 and 24.

Wilson equation. Recently, Wilson (68) proposed an expression for the molar-excess free-energy which differs from the usual Wohl expansion. Instead of the polynomial expansion given by Equation 2, Wilson proposed the following logarithmic function

$$\frac{g^E}{RT} = -\sum_{i=1}^{N} x_i \ln \left[\sum_{j=1}^{N} \wedge_{ij} x_j \right]$$
 (25)

AUTHORS Matthew Van Winkle is a Professor in the Chemical Engineering Department, University of Texas, Austin, Tex., 78712. Michael Holmes was formerly with the Chemical Engineering Department of Texas but is now employed by the Humble Oil & Refining Co., Baytown, Tex.

TABLE II. MOLAR VOLUME DATA

							4.5
Component	${}^{T_1,}_{\circ K}$	v_1^{L} , $cc/g \ mol$	$\overset{T_2,}{\circ K}$	v_2L , $cc/g \ mol$	$\overset{T_3,}{\circ}_K$	v_3^L , cc/g mol	Data refer- ence
Acetone	228.15	67.380	273.15	71.483	323.15	76.826	(49)
Acetonitrile	273.15	51.092	303.15	53,214	355.15	57.4	(49)
Benzene	273.15	86.783	323.15	92.263	373.15	98,537	(49)
1-Butanol	273.15	89.873	343.15	97.8	413.15	108.7	(49, C)
Butyl cello- solve	293.15	130.86	373.15	143.1	453.15	161.1	(26, C)
Carbon tetra- chloride	293.15	96.518	353.15	104.192	413.15	114.379	(49)
Cellosolve	293.15	96.80	353.15	104.1	413.15	114.0	(26, C)
Chloroform	273.15	78.218	303.15	81.185	333.15	84.5	(49, C)
Cyclohexane	288,15	107.470	306.30	109.841	352,35	116.630	(49)
Cyclopentane	273.15	91.9	333.15	99.4	373.15	105.2	(18)
2,3-Dimethyl-	000 45	124.00		400.07			
butane	273.15	126.80	303.15	132,06	333.15	138.03	(53)
1,4-Dioxane	293.15	85.24	333.15	89.3	373.15	93.9	(61, C)
Ethanol	273.15	57.141	323.15	60.356	373.15	64.371	(49)
Ethyl acetate	273.15	95.3	323.15	102.1	373.15	110.5	(13)
Ethylbenzene	273.15	120.02	343.15	129.09	413.15	140.29	(53)
Ethylcyclo- hexane	293,15	142.48	353.15	152.1	413.15	163.9	(62, C)
n-Heptane	273.15	143.045	323,15	152.303	373.15	163,619	(49)
n-Hexane	273.15	127.301	323.15	136.388	373.15	148.211	(49)
Hexene-1	273.15	121,62	303.15	126.80	333.15	132.45	(53)
Hexylene glycol	273.15	122.20	373.15	135.0	473.15	154.1	(26, C)
Methanol	273.15	39.556	373.15	44.874	473.15	57.939	(49)
Methyl ace- tate	273,15	77.221	373.15	90.111	473.15	121.443	(49)
Methylcyclo- hexane	303.15	129.116	333.85	133.833	372.65	140.609	(49)
Methylcyclo- pentane	273.15	109.670	303.15	113.810	373.15	126.2	(49, C)
Methyl-ethyl- ketone	273.15	87.3	333.15	94.5	373.15	100.0	(18)
n-Octane	273.15	158.970	333.15	170.630	393,15	185.182	(49)
n-Pentane	273.15	111.8	333.15	122.9	373.15	131.4	(18)
1-Propanol	293.15	74.785	343.15	78.962	393.15	84.515	(49)
2-Propanol	298.15	77.0	333.15	80.5	373.15	86.1	(18, C)
Toluene	303.15	107.415	353.15	113.717	400.00	120.879	(49)
1,2,3-Tri- chloro- propane	293.15	106.22	353.15	112.6	433.15	124.1	(62, C)
2,2,4-Tri-							
methyl- pentane	273.15	161.26	323.15	171.24	373.15	183.66	(53)
Water	277.13	18.060	323.15	18,278	373.15	18.844	(49)

 a "C" indicates that one or two of the molar volumes were calculated from a molar volume at another temperature by an appropriate method in reference (51).

where

$$\wedge_{ij} \equiv \frac{v_j^L}{v_i^L} \exp \left[-\frac{(\lambda_{ij} - \lambda_{ii})}{RT} \right] \tag{26}$$

When we apply Equation 4 to the expression above, the Wilson equation for a multicomponent system becomes

$$\ln \gamma_i = 1 - \ln \left[\sum_{j=1}^N x_j \wedge_{ij} - \sum_{k=1}^N \frac{x_k \wedge_{ki}}{\sum_{j=1}^N x_j \wedge_{ki}} \right]$$
(27)

For a binary system, the equations reduce to

$$\ln \gamma_1 = -\ln (x_1 + \Lambda_{12}x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right]$$
 (28)

$$\ln \gamma_2 = -\ln (x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right]$$
(29)

An advantage of the Wilson equation is that it involves only two parameters per binary, $(\lambda_{ij} - \lambda_{ii})$ and (Continued on page 28)

TABLE III. WILSON PARAMETERS

Compo 1	nents 2	λ_{12} - λ_{11} , cal/g mol	$\lambda_{12}-\lambda_{22}, \\ cal/g \\ mol$	Press., mm Hg	$T_{emp.,} \circ C$, Data ref.	1	Compon	ents 2	λ ₁₂ -λ ₁₁ , cal/g mol	λ_{12} - λ_{22} , cal/g mol	Press., mm Hg	$T_{emp., \circ C}$	Data ref.
Acetone	Benzene Carbon tetra-	494.92 651.76	-167.91 -12.67	760 760		(14) (2)		Ethylcyclohexane (Contd.)	Ethylbenzene Hexylene	-240,92 76,95	396.01 3592.40	400 400		(50) (50)
	chloride Chloroform 2,3-Dimethyl- butane	-72,20 948.29	-332,23 234,96	760 760		(21) (67)		n-Heptane	glycol Benzene Ethanol	292.94 364.63 617.57	99.35 73.63 2096.50	760 760	75	(55) (16) (22)
	Ethanol Methanol	38.17 -214.95 -203.03	418.96 664.08 666.99	760 760	 55	(1) (1) (15)		n-Hexane	1-Propanol Benzene	316,22 169,92	1353.98 173.93	760	75 	(16) (48)
	n-Pentane 2-Propanol	996.75 127.43 429.17	262.74 284.99 53.40	760 760	 55	(27) (15) (15)			Cellosolve 1,4-Dioxane Ethanol	656.23 164.58 283.63	834.86 806.80 2281.99	760 760 760	• •	(59) (59) (56)
Acetonitrile	Water Water	439.64 694.08	1405.49 1610.07	760 760		(45) (46)			Hexene-1 Methylcyclo- pentane	415.18 272.09	-279.86 -175.70	760 760		(59) (35)
Benzene	Acetone 1-Butanol Carbon tetra- chloride	-167.91 160.12 -103.41	494,93 817,67 204,82	760 760 760	• •	(14) (29) (12)			1-Propanol 1,2,3-Tri- chloro- propane	834.85 116.39	812.66 1106.54	760 760	• •	(48) (59)
	Chloroform Cyclohexane Cyclopentane Ethanol	141.62 187.23 266.56 131.47	-204.22 80.02 -24.18 1297.90	760 760 760		(37) (39) (34) (25)		Hexene-1	Cellosolve 1,4-Dioxane n-Hexane	705.47 176.39 -279.86	370.05 495.19 415.18	760 760 760		(59) (59) (59)
	n-Heptane	99.35 73.63 173.93	292.94 364.63 169.92	760 760 760	75 	(55) (16) (48)			1,2,3-Tri- chloro- propane	156.93	570.31	760		(59)
	Methanol Methyl acetate Methylcyclo- hexane	153.86 229.25 -4.15	1620,36 -23,84 360,92	760 760 760		(41) (19) (34)		Hexylene glycol	Ethylbenzene Ethylcyclo- hexane	1601.04 3592.40	52.43 76.95	400 400	• •	(50) (50)
	Methylcyclo- pentane	161.44	97.33 1370.32	760 760		(34) (48)		Methanol	Acetone	664.08 666.99	-214.95 -203.03	760 760	55	(1) (15)
	1-Propanol 2-Propanol	-73.91 67.14 160.53 272.35	1222.07 1007.94 1066.93	760 760 500	75 	(16) (36) (40)			Benzene Chloroform 2,3-Dimethyl- butane	1620.36 1703.68 2771.85	153.86 -373.30 449.08	760 760 760		(41) (38) (23)
1-Butanol	Benzene Toluene	817.67 887.80	160.12 104.68	760 760	• •	(29) (28)			Ethanol Ethyl acetate	598.44 985.69 1203.57	-511.39 -200.36 -316.92	760 760	40	(10) (38) (33)
Butyl cellosolve	Ethylcyclo- hexane n-Octane	643.51 1070.54	636,11 298,62	400 400	• •	(47) (47)			Methyl acetate	866.15 1030.15 834.06	20,32 -173,45 -78,81	760	50 60	(33) (33) (33) (33) (7) (3) (44)
Carbon tetra- chloride	Acetone Benzene	-12.67 204.82	651.76 -103.41	760 760	• •	(2) (12)			2-Propanol Water	88.02 205.30	-30,19 482,16	760 760	• •	(3) (44)
Cellosolve	2-Propanol Ethylbenzene n-Hexane	111.11 755.77 834.86	1232.94 121.89 656.23	760 760 760 760		(40) (32) (59)		Methyl acetate	Benzene Chloroform Cyclohexane	-23.84 113.24 691.65	229.25 -451.09 345.11	760 760 760	• •	(19) (37) (39)
	Hexene-1 n-Octane	370,05 989.04	705.47 622.77	760 760	::	(59) (32)		Methylcyclohexane	Methanol Benzene 2-Propanol	-78.81 360.92 209.75	834.06 -4.15 1831.76	760 760 500		(7) (34) (40)
Chloroform	Acetone Benzene 2,3-Dimethyl- butane	-332.23 -204.22 213.88	-72.20 141.62 223.69	760 760 760	• • • • • • • • • • • • • • • • • • • •	(21) (37) (31)		Methylcyclopentane	Benzene Ethanol n-Hexane	97.33 161.53 -175.70	161.44 2221.47 272.09	760 760 760		(34) (56) (35)
	Ethyl acetate Methanol Methyl acetate	-367.50 -373.30 -451.09	-92.50 1703.68 113.24	760 760 760		(38) (38) (37)		Methyl-ethyl-ketone	Toluene Chloroform	-451.92 -235.12	957.61 -231.61	760 760	,,	(34) (24)
Cyclohexane	Methyl-ethyl- ketone Benzene	-231.61 80.02	-235.12 187.23	760 760		(39)		n-Octane	Butyl cellosolve Cellosolve Ethylbenzene	298.62 622.77 -134.87	1070.54 989.04 304.31 1391.09	400 760 760 400	• •	(47) (32) (71)
	Ethanol Methyl acetate 2-Propanol	303.42 345.11 69.02	2151.01 691.65 1734.12	760 760 760		(72) (39) (72)		n-Pentane	2-Propanol Acetone	422.41 262.74	996.75	760		(47) (27)
	Toluene	223.13 -414.68	1590.51 909.36	500 760		(40) (34)		1-Propanol	Benzene Ethyl acetate	1370.32 1222.07 661.24	-73.91 67.14 -198.72	760 760	75 	(48) (16) (33)
Cyclopentane 2,3-Dimethylbutane	Benzene Acetone	-24.18 234.96	266,56 948,29	760 760		(<i>34</i>) (<i>67</i>)			n-Heptane	558.40 519.67	42.39 -25.10 316.22		40 60 75	(33) (33) (16)
1,4-Dioxane	Chloroform Methanol n-Hexane	223.69 449.08 806.80	213.88 2771.85 164.58	760 760 760		(31) (23) (59)			n-Hexane Water	1353.98 812.66 1015.80 1942.36	834.85 1284.61 1144.00	760 760	 40	(48) (33) (33) (33)
Ethanol	Hexene-1 Acetone	495.19 418.96	164.58 176.39 38.17	760 760		(59) (1)		2-Propanol	Acetone	1051,44	1188,52 127,43 429,17	760	60	
	Benzene Cyclohexane Ethyl acetate	1297.90 2151.01 844.69	131,47 303,42 -178,81	760 760 760	• •	(25) (72) (33)		-	Benzene	284.99 53.40 1007.94 1066.93 1232.94	429.17 160.53 272.35 111.11	760 500	55	(15) (15) (36) (40)
	n-Heptane	822.03 744.81 2096.50	-62.43 -52.14 617.57	760	40 60	(33) (33) (33) (22)			Carbon tetra- chloride Cyclohexane	1734,12	69.02	760 760	• •	(40) (72) (40)
	n-Hexane Methanol Methylcyclo-	2281.99 -511.39 2221.47	283.63 598.44 161.53	760 760 760		(56) (10) (56)			Ethyl acetate	1590.51 289.68 664.42	223.13 60.99 39.77	500 760 	40	(<i>33</i>) (<i>33</i>)
	pentane Toluene Water	1238.70 382.30	251.93 955.45	756 760	::	(25) (8)			Methanol Methylcyclo- hexane	$ \begin{array}{r} 418.11 \\ -30.19 \\ 1831.76 \end{array} $	45.72 88.02 209.75	760 500	60	(33) (3) (40)
Ethyl acetate	Chloroform Ethanol	-92.50 -178.81 -62.43 -52.14	-367.50 844.69 822.03 744.81	760 760	40 60	(38) (33) (33)			n-Octane 2,2,4-Tri- methyl-	1391.09 1231.69	422.41 183.12	400 760	• •	(47) (6)
	Methanol	-200.36 -316.92 20.32	985.69 1203.57 866.15 1030.15	760 	60 40 50	(33) (33) (38) (33) (33) (33) (33) (33)		Toluene	pentane 1-Butanol Cyclohexane	104.68 909.36	887.80 -414.68 1238.70	760 760 756	• •	(28) (34) (25)
	1-Propanol	-173.45 -198.72 42.39 -25.10	1030.15 661.24 558.40 519.67	760 	60 40 60	(33) (33) (33) (33)		400 77 111	Ethanol Methylcyclo- pentane	251.93 957.61	-452.92	760		(34)
	2-Propanol	60.99 39.77 45.72	289.68 664.42 488.11	760 	40 60	(33) (33) (33)		1,2,3-Trichloro- propane	n-Hexane Hexene-1	1106.54 570.31	116.93 156.39	760 760		(59) (59)
Ethylbenzene	Cellosolve Ethylcyclo-	121.89 396.01	755.77 -240.92	760 400		(32) (50)		2,2,4-Trimethyl- pentane water	2-Propanol Acetone	183.12 1405.49	1231.69 439.64	760 760 760		(6) (45) (46)
	hexane Hexylene glycol	52.43	1601.04	400		(50)	1		Acetonitrile Ethanol Methanol	1610.07 955.45 482.61 1284.61	694.08 382.30 205.30	760 760 760		(8)
Ethylcyclohexane	n-Octane Butyl cellosolve	304.31 636.11	-134.87 643.51	760 4 00		(71)· (47)			1-Propanol	1284.61 1144.00 1188.52	1015.80 1942.36 1051.44	760 	40 60	(33) (33) (33)

TABLE IV. MARGULES PARAMETERS

Co	mponents				Press.,	Tomb	, Data	1	Compon	ents			Press.,	Temp.,	Data
1		2	A_{12}	A_{21}	mm Hg	°C	ref.		1	2	A_{12}	A 21	mm Hg	°C,	ref.
Acetone	Benze Carbo	n tetra-	0.2012 0.3874	0.1533 0.3282	760 760		(14) (2)		Ethylcyclohexane (Contd.)	Hexylene glycol	0.4293	0.9448	400	• •	(50)
	Chlor	oride oform imethyl-	-0.3051 0.6345	-0.2676 0.6358	760 760		(21) (67)	ļ	n-Heptane	Benzene	0.1899 0.2088	0.0842	760	75	(55) (16)
		ane	0.0545	0.2870	760		(1)			Ethanol 1-Propanol	1.0226 0.7719	1.0806 0.7548	760 	7 5	(16) (22) (16)
	Meth		0.2634 0.2762	0.2798 0.2877	760	55	(1) (15)		n-Hexane	Benzene Cellosolve	0.2010 0.7183	0.1430 0.6633	760 760	• •	(48) (59)
	n-Pen 2-Proj		0.7386 0.2152	0.6329 0.2688	760 760	55	(27) (15)	•		1,4-Dioxane Ethanol	0.4857 0.8337	0.5238 1.1738 0.0078	760 760 760		(59) (56) (59)
	Water	r	0.3154 0.9709	0.2428 0.5576	760		(15) (45)	.		Hexene-1 Methylcyclo- pentane	0.0283 0.0188	0.0014	760	::	(35)
Acetonitrile Benzene	Water Aceto		1.0489 0.1533	0.8231	760 760		(46) (14)			1-Propanol 1,2,3-Tri-	0.8511 0.4298	0.5763 0.6916	760 760		(48) (59)
Benzene	1-But Carbo	anol on tetra-	0.3449	0.5651	760 760		(29) (12)			chloro- propane					, .,
	Chlor	oride oform	-0.0824	-0.0532	760 760		(37) (39)		Hexene-1	Cellosolve 1,4-Dioxane	0.5818 0.3755	0.4228 0.3577	760 760	• • •	(59) (59)
*	Cyclo Cyclo Ethar	hexane pentane	0.1462 0.1634 0.5718	0.1640 0.1290 0.7883	760 760 760	• • •	(34)			n-Hexane 1,2,3-Tri-	0.0078 0.3382	0.0283 0.4307	760 760		(59) (59)
	n-Hep		0.0842 0.0953	0.1899 0.2088	760	7.5	(55) (16)			chloro- propane					
	n-Hex Meth		0.1430 0.7494	0.2010 0.8923	760 760		(48) (41)		Hexylene glycol	Ethylbenzene Ethylcyclo-	0.7358 0.9448	0.3105 0.4293	400 400		(50) (50)
	Meth Meth	yl acetate ylcyclo-	0.1219 0.0760	0.0939 0.1760	760 760	• •	(19) (34)		Methanol	hexane Acetone	0.2798	0.2634	760		(1)
	Meth	ane ylcyclo-	0.1342	0.1606	760	• • •	(34)		17201111101	Benzene	0.2877 0.8923	0.2762 0.7494	760	55	(15) (41)
	1-Pro	itane panol	0.3251 0.4303	0.7332 0.7286	760	75	(48) (16)			Chloroform 2,3-Dimethyl-	0.7767 1.5255	0.3702 1.1265	760 760		(38) (23)
	2-Pro	panol	0.4523 0.5392	0.6551 0.7527	760 500		(39) (40)			butane Ethanol	0.0189	0.0081	760 760		(10) (38)
1-Butanol	Benze Tolue		0.5651 0.5340	0.3449 0.3699	760 760		(29) (28)	.		Ethyl acetate	0.4229 0.5626 0.4482	0.4463 0.4213 0.5324	700	40 50	(33)
Butyl cellosolve	Ethyl	cyclo-	0,5814	0.5784	400		(47)			Methyl acetate	0.4767 0.4393	0.4737 0.4261	760	60	(33) (7) (3)
	n-Oct		0.6903	0.5227	400		(47)			2-Propanol Water	-0.0326 0.3794	-0.0329 0.2211	760 760		(3) (44)
Carbon tetra- chloride	Aceto Benze	ene	0.3282 0.0488	0.3874	760 760		(2) (12)		Methyl acetate	Benzene Chloroform	0.0939 -0.3270	0.1219 -0.2112	760 760		(19) (37)
Cellosolve	Ethyl	panol benzene	0.4763	0.7656	760 760		(40) (32)			Cyclohexane Methanol	0.5313 0.4261	0.5789	760 760		(39) (7)
	n-Hexe	ne-1	0.6633 0.4228	0.7183 0.5818	760 760		(59) (59) (32)		Methylcyclohexane	Benzene	0.1760	0.0760	760 500		(34) (40)
Chloroform	n-Oct	ne	0.6117 -0.2676	0.7467 -0.3051	760 760		(21)		Methylcyclopentane	2-Propanol Benzene	0.6785 0.1606	0.1342	760		(34)
		imethyl-	-0.0532 0.1637	-0.0824 0.2677	760 760		(37) (31)			Ethanol n-Hexane	0.7065 0.0014	1.1965	760 760		(56)
		ane acetate anol	-0.2726 0.3702	-0.4275 0.7767	760 760		(38) (38)		Methyl-ethyl-ketone	Toluene Chloroform	0.0694 -0.3507	0.1627 -0.2938	760 760		(34) (24)
	Meth	yl acetate yl-ethyl-	$-0.2112 \\ -0.2938$	-0.3270 -0.3507	760 760		(37) (24)	-	n-Octane	Butyl cello- solve	0.5227	0.6903	400		(47)
Cyclohexane	ket Benze	one	0.1640	0.1462	760		(39)			Cellosolve Ethylbenzene	0.7467 0.0903	0.6117	760 760		(<i>32</i>) (<i>71</i>)
Cyclonexamo	Ethai		0.7743 0.5789	1.0699 0.5313	760 760		(72) (39)		n-Pentane	2-Propanol	0.8524 0.6329	0.8044			(47) (27)
		panol	0.5006 0.5883	0.9539 0.9795	500	• •	(72) (40)		1-Propanol	Acetone Benzene	0.7332	0.3251	760		(48)
Cyclopentane	Tolue Benze		0.0689	0.1563	760 760	. • •	(34)			Ethyl acetate	0.7286 0.2849	0.4303		75	(16) (33)
2,3-Dimethylbu	tane Aceto	ne	0.6358	0.6345	760 760		(67) (31)			n-Heptane	0.3923 0.3094 0.7548	0.3412 0.2749 0.7719		40 60 75	(33) (33) (16)
	Meth		0.2677 1.1265	0.1637 1.5255	.760	• • •	(23)	ļ		n-Hexane Water	0.5763	0.8511 0.4393 0.4507	760 760		(48) (33)
1,4-Dioxane	n-He: Hexe	xane ne-1	0.5230 0.3577	0.4857 0.3755		::	(59) (59)				1.0536 1.0748 1.0825	0.4507 0.4653		40 60	(48) (33) (33) (33)
Ethanol	Aceto Benze	ene	0.2870 0.7883 1.0699	0.2569 0.5718 0.7743	760 760		(1) (25) (72)		2-Propanol	Acetone	0.2688 0.2428 0.6551	0.2152 0.3154		55	(15) (15)
	Cycle Ethyl	hexane acetate	0,3925	0.3313	.760		(72) (33)			Benzene	0.7527	0.4523 0.5392	760 500		(36) (40) (40)
	Ua	otane	0.4816 0.4080 1.0806	0.4130 0.3849 1.0226		40 60	(33) (33) (33) (22) (56)			Carbon tetra- chloride	0.7656	0.4763		• • •	
	n-He: Meth	kane	1.1738	0.8337 0.0189	760	• • • • • • • • • • • • • • • • • • • •	(56) (10)			Cyclohexane Ethyl acetate	0.9539 0.9795 0.1961	0.5006 0.5883	760 500 760	• • •	(40)
	Meth per Tolue	ylcyclo-	1.1965	0.7065	760	• •	(56)			Binyi acciate	0.4573 0.3256	0.5883 0.2112 0.3717 0.3037 -0.0326		40 60	(72) (40) (33) (33) (33) (3) (40)
	Tolue Wate	ene r	0.7066 0.6848	0.6933 0.3781	756 760	• • •	(25) (8)	.		Methanol Methylcyclo-	-0.0329 1.0343	-0.0326 0.6785	760 500		(3) (40)
Ethyl acetate	Chlor Etha	roform nol	-0.4275 0.3313	$-0.2726 \\ 0.3925$	760 760	٠.	(38)			hexane n-Octane	0.8044	0.8524	400		(47)
			0.4130 0.3849	0.4816 0.4080	• • • •	40 60	(33)			2,2,4-Tri- methyl-	0.6601	0.6924	760	• •	(6)
	Meth	anol	0.4463 0.4213	0.4229 0.5626		40 50 60	(38)		Toluene	pentane 1-Butanol	0.3699	0.5340	760 760		(28)
	1-Pro	panol	0.5324 0.4737 0.1982	0.4482 0.4767 0.2849	760	60	(33)			Cyclohexane Ethanol	0.1563 0.6933	0.7066	756		(28) (34) (25) (34)
		Panor	0.3412 0.2749 0.2112	0.4767 0.2849 0.3923 0.3094 0.1961		40 60	(33) (33) (38) (33) (33) (33) (33) (33)			Methylcyclo- pentane	0.1627	0.0694		• •	
	2-Pro	panol	0.3717	0.45/3		40	(33) (3 3) (33)	1	1,2,3-Trichloro- propane	n-Hexane	0.6916	0.4298			(59)
Ethylbenzene	Cello	solve	0.3037	0.3256	•••	60			2,2,4-Trimethyl-	Hexene-1 2-Propanol	0.4307 0.6924	0,3382			(59) (6)
,	Ethyl he:	lcyclo- kane	0.0800	0.0626	400	::	(32) (50)		pentane			0.9709			
	Hexy gly n-Oc	lene	0.3105	0.7358		•••	(50)		Water	Acetone Acetonitrile Ethanol	0.5576 0.8231 0.3781 0.2211	1.0489	760 760		(45) (46) (8)
Ethylcyclohexa		tane l cello-	0.0889 0.5784	0.0903 0.5814		• • •	(71) (47)			Methanol 1-Propanol	0.2211 0.4393 0.4507	0.3794 1.0536	4 760 5 760		(44)
, ,	sol	ve lbenzene	0.0626	0.0800			(50)				0.4507 0.4653	1.0748 1.0825	3	40 60	(33) (33) (33)

TABLE V. VAN LAAR PARAMETERS

Gom _f	onents 2	$ \overline{A}_{12}$	\overline{A}_{21}	Press., mm Hg	Temp	., Data	Compone	ents 2	\overline{A}_{12}	$ar{A}_{21}$		$Temp., \circ C$	
Acetone	Benzene	0.2039	0.1563	760		ref. (14)	Ethylcyclohexane	Butyl cellosolve	0.5784	0.5814	mm H g 400		ref. (47)
	Carbon tetra- chloride Chloroform 2,3-Dimethyl-	0.3889 -0.3045 0.6345	0.3301 -0.2709 0.6358	760 760 760		(2) (21) (67)		Ethylbenzene Hexylene glycol	0.0628 0.4770	0.0821 1.1219	400 400	• • •	(50) (50)
	butane Ethanol Methanol	0.2574 0.2635	0.2879 0.2801	760 760		(1) (1)		Benzene Ethanol	0.2135 0.2361 1.0208	0.0985 0.1072 1.0832	760 760	75 75	(55) (16) (22)
	n-Pentane	0.2763 0.7403	0.2878 0.6364	760	55	(15) (27)	n-Hexane	1-Propanol Benzene	0.7719	0.7550 0.1457	760	/5	(16) (48)
•	2-Propanol Water	0.2186 0.3158 0.9972	0.2690 0.2495 0.6105	760 760	5.5 	(15) (15) (45)		Cellosolve 1,4-Dioxane Ethanol	0.7206 0.4850 0.8422	0.6629 0.5260 1.2005	760 760 760		(59) (59) (56)
Acetonitrile	Water	1.0680	0.8207	760	.:	(46)		Hexene-1 Methylcyclo-	0.0393 0.0023	0.0114 0.0226	760 760	• •	(59) (35)
Benzene	Acetone 1-Butanol Carbon tetra- chloride	0.1563 0.3594 0.0360	0.2039 0.5865 0.0509	760 760 760	• •	(14) (29) (12)		pentane 1-Propanol 1,2,3-Tri- chloro-	0.8734 0.4520	0.5952 0.7257	760 760		(48) (59)
	Chloroform Cyclohexane Cyclopentane	-0.0858 0.1466 0.1655	-0.0556 0.1646 0.1302	760 760 760		(37) (39) (34)		propane Cellosolve 1,4-Dioxane	0.5860 0.3757	0.4367 0.3578	760 760		(59) (59)
	Ethanol n-Heptane	0.5804 0.0985	0.7969 0.2135	760 760	 75	(25) (55)	.	n-Hexane 1,2,3-Tri-	0.0114 0.3419	0.0393	760 760	• •	(59) (59)
	n-Hexane Methanol	0.1072 0.1457 0.7518	0.2361 0.2063 0.8975	760 760		(16) (48) (41)		chloro- propane					
	Methyl acetate Methylcyclo-	0.1292 0.0910	0.0919 0.1901	760 760		(19) (34)		Ethylbenzene Ethylcyclo- hexane	0.8383 1.1219	0.3719 0.4770	400 400		(50) (50)
	hexane Methylcyclo- pentane	0.1360	0.1605	760		(.34)	Methanol .	Acetone	0,2801 0,2878	0.2635	760	::	(1)
	1-Propanol	0.3772 0.4508	0.7703 0.7564	760 	7.5	(48) (16)		Benzene Chloroform	0.2878 0.8975 0.8263	0.2763 0.7518 0.4104	760 760	55 	(15) (41) (38)
	2-Propanol	0.4638 0.5455	0.6723 0.7716	760 500		(36) (40)	;	2,3-Dimethyl- butane	1.5408	1.1276	760	• •	(23)
1-Butanol	Benzene Toluene	0.5865 0.5430	0.3594 0.3841	760 760	• •	(24) (28)		Ethanol Ethyl acetate	0.0254 0.4227 0.5741	0.0088 0.4470 0.4278	760 760	40	(10) (38) (33)
Butyl cellosolve	Ethylcyclo- hexane	0.5814	0.5784	400		(47)			0.4476 0.4768	0.5399 0.4736	760	50 60	(<i>33</i>) (<i>3</i> 3)
Carbon tetra-	n-Octane Acetone	0.6967 0.3301	0.5318	400 760		(47) (2)	1	Methyl acetate 2-Propanol Water	0.4394 -0.0325 0.3861	$ \begin{array}{r} 0.4262 \\ -0.0329 \\ 0.2439 \end{array} $	760 760 760		(7) (3) (44)
chloride	Benzene 2-Propanol	0.0509 0.4918	0.0360 0.7868	760 760		(12) (40)	Methyl acetate	Benzene Chloroform	0.0919 -0.3343	0.1292 -0.2249	760 760		(19)
Cellosolve	Ethylbenzene n-Hexane	0.4402 0.6629	0.3762 0.7206	760 760		(32) (59)		Cyclohexane Methanol	0.5317 0.4262	0.5799	760 760	• •	(37) (39) (7)
	Hexene-1 n-Octane	0.4367 0.6158	0.5860 0.7507	760 760		(59) (32)		Benzene 2-Propanol	0.1901 0.6886	0.0910 1.0659	760 500		(34) (40)
Chloroform	Acetone Benzene 2,3-Dimethyl- butane	-0.2709 -0.0556 0.1736	-0.3045 -0.0858 0.2790	760 760 760	• •	(21) (37) (31)	,	Benzene Ethanol n-Hexane Toluene	0.1605 0.7332 0.0226 0.0717	0,1360 1,2330 0,0023 0,2475	760 760 760 760	• • •	(34) (56) (35) (34)
	Ethyl acetate Methanol Methyl acetate	-0.2868 0.4104 -0.2249	-0.4478 0.8263 -0.3343	760 760 760		(38) (38) (37)	Methyl-ethyl-ketone	Chloroform	-0.3486	-0.2990	760		(24)
	Methyl-ethyl- ketone	-0.2990	-0.3486	760	• • • • • • • • • • • • • • • • • • • •	(24)	.	Butyl cellosolve Cellosolve Ethylbenzene	0.5318 0.7507 0.0902	0.6967 0.6158 0.0890	400 760 760		(47) (32) (71)
Cyclohexane	Benzene Ethanol	0.1646 0.7811	0.1466	760 760		(39) (72)	- !	2-Propanol Acetone	0.8535	0.8043	400 760		(47) (27)
	Methyl acetate 2-Propanol	0.5799 0.5322 0.6156	0.5317 1.0162 1.0158	760 760 500	• •	(39) (72) (40)	i i	Benzene	0.7703 0.7564	0.3772 0.4508	760	75	(48) (16)
	Toluene	0.0702	0.2578	760	::	(34)]	Ethyl acetate	0.2893 0.3913	0.2051 0.3444	760	40	(<i>33</i>) (<i>33</i>)
Cyclopentane 2,3-Dimethyl-	Benzene Acetone	0.1302 0.6358	0.1655 0.6345	760 760		(<i>34</i>) (<i>67</i>)	,	n-Heptane n-Hexane	0.3092 0.7550 0.5952	0.2762 0.7719 0.8734	760	60 75	(33) (16) (48)
butane	Chloroform Methanol	0.2790 1.1276	0.1736 1.5408	760 760	• •	(31) (23)		Water	1.1433 1.2315	0.5037 0.5305	760 	40 60	(33) (33) (33)
1,4-Dioxane	n-Hexane Hexene-1	0.5260 0.3578	0.4850 0.3757	760 760		(59) (59)	2-Propanol	Acetone	1.1879 0.2690	0.5224 0.2186 0.3158	760	55	(15) (15) (36)
Ethanol	Acetone Benzene	0.2879 0.7969 1.1031	0.2574 0.5804 0.7811	760 760 760		(1) (25) (72) (33)	1	Benzene	0.2690 0.2495 0.6723 0.7716 0.7868	0.4638 0.5455 0.4918	760 500		(40)
	Cyclohexane Ethyl acetate	0.3972 0.4833	0.3311 0.4151	760	 40	(33) (33) (33) (33)		Carbon tetra- chloride			760 760	• •	(40)
	n-Heptane	0.4093 1.0832	0.3842 1.0208	760	60 	(22)		Cyclohexane Ethyl acetate	1.0162 1.0158 0.1964	0.5322 0.6156 0.2113	500 760		(72) (40) (33)
	n-Hexane Methanol Methylcyclo-	1.2005 0.0088 1.2330	0.8422 0.0254 0.7332	760 760 760		(56) (10) (56)			0.4604 0.3261	0.3747 0.3039	760	40 60	(<i>33</i>) (<i>33</i>)
	pentane Toluene	0.7067	0.6932	756		(25) (8)	İ	Methanol Methylcyclo- hexane	-0.0329 1.0659	-0.0325 0.6886	500		(3) (40)
Ethyl acetate	Water Chloroform Ethanol	0.7292 -0.4478 0.3311 0.4151	0.4104 -0.2868 0.3972 0.4833	760 760 760	 40	(38) (33)		2-Octane 2,2,4-Tri- methyl- pentane	0.8043 0.6603	0.8535 0.6927	400 760		(47) (6)
	Methanol	0.3842 0.4470 0.4278 0.5399	0.4093 0.4227 0.5741 0.4476	760 	60 40 50	(33) (33) (38) (33) (33) (33) (33) (33)		l-Butanol Cyclohexane Ethanol Methylcyclo-	0.3841 0.2578 0.6932 0.2475	0.5430 0.0702 0.7067 0.0717	760 760 756 760		(28) (34) (25) (34)
	1-Propanol	0.4736 0.2051 0.3444	0.4768 0.2893 0.3913	760	60 40	(33) (33) (33)	1,2,3-Trichloro-	pentane 2-Hexane	0.7257 0.4372	0.4520	760		(59)
	2-Propanol	0.2762 0.2113 0.3747 0.3039	0.3092 0.1964 0.4604 0.3261	760 	60 40 60	(33) (33) (33) (33)	propane I 2,2,4-Trimethyl- pentane	Hexene-1 2-Propanol	0.6927	0.3419	760 760	• •	(59) (6)
Ethylbenzene	Cellosolve Ethylcyclo-	0.3762 0.0821	0.4402 0.0628	760 400		(32) (50)	. A	Acetone Acetonitrile Ethanol	0.6105 0.8207 0.4104	0.9972 1.0680 0.7292	760 760 760		(45) (46) (8)
	hexane Hexylene	0.3719	0.8383	400		(50)	l I	Methanol I-Propanol	0.2439 0.5037 0.5305	0.3861 1.1433	760 760	40	(45) (46) (8) (44) (33)
	glýcol n-Octane	0.0890	0.0902	760		(71)			0.5305 0.5224	1.2315 1.1879		40 60	(33) (33)

TABLE VI. BONHAM PARAMETERS

Compo	onents			Press.,	Temp.,	Data	1	Compo	nents	_	_	Press.,	Temp.,	Data
A cottons	7 Benzene	A ₁₂ 1,3956	B_{12} 165.00	mm Hg 760	°C	Ref. (14)		1 Ethylcyclohexane	9 Butyl cellosolve	A_{12} 1.0818	B ₁₂ 546.86	mm Hg 400	°C	Ref. (47)
Acetone	Carbon tetra- chloride Chloroform	1.2453	309.17 -235.66	760 760	::	(2) (21)			Ethylbenzene Hexylene glycol	0.7721 0.4747	55.71 448.72	400 400	::	(50) (50)
	2,3-Dimethyl- butane	1.0136	476.83	760 760	::	(67) (1)		n-Heptane	Benzene Ethanol	2.0702 2.2015 0.9241	172.32 189.27 807.35	760 760	75 75	(55) (16) (22) (16)
	Ethanol Methanol	0.9703 0.9601	203.96 208.77	760	55	(1) (15)		n-Hexane	1-Propanol Benzene	1.0229	618.90 166.36	760	75 	(48)
	n-Pentane 2-Propanol	1.1152 0.8735 1.2604	518.82 176.70 238.20	760 760	55	(27) (15) (15)			Cellosolve 1,4-Dioxane Ethanol	1.1981 0.9944 0.7175	610.08 405.05 657.40	760 760 760	• •	(59) (59) (56)
Acetonitrile	Water Water	1.7808	809,19 880.60	760 760		(45) (46)			Hexene-1 Methylcyclo-	6.8583 2.2445	54.43 12.72	760 760	::	(59) (35)
Benzene	Acetone 1-Butanol Carbon tetra-	0.7165 0.6749 0.7154	118.23 316.04 28.76	760 760 760		(14) (29) (12)			pentane 1-Propanol 1,2,3-Trichloro- propane	1.5664 0.7269	719.18 401.53	760 760	• •	(48) (59)
	chloride Chloroform Cyclohexane	1.4841 0.8889	-65.91 118.61	760 760	::	(37) (39)		Hexane-1	Cellosolve 1,4-Dioxane	1.5793	519.23 315.20 7.94	760 760		(59) (59)
	Cyclopentane Ethanol	1.1850 0.7285	122.99 463.40	760 760		(34) (25)			n-Hexane 1,2,3-Trichloro- propane	0.1458 0.9258	308.67	760 760		(59) (59)
	n-Heptane n-Hexane	0.4831 0.4542 0.6919	83.24 85.97 115.10	760 760	75 	(55) (16) (48)		Hexylene glycol	Ethylbenzene Ethylcyclohexane	1.9878 2.1068	717.54 945.37	400 400		(50) (50)
	Methanol Methyl acetate	0.8182 1.3793	574.98 99.38 77.46	760 760 760	• •	(41) (19) (34)		Methanol	Acetone	1.03 0 7 1.0 4 16	210.21 217.44	760	55	(1) (15) (41)
	Methylcyclo- hexane Methylcyclo- pentane	0.5030	107.89	760	••	(34)			Benzene Chloroform 2,3-Dimethyl- butane	1.2222 1.9909 1.3462	702.72 626.32 1140.38	760 760 760	• •	(41) (38) (23)
	1-Propanol 2-Propanol	0.5107 0.5960 0.6984	315.03 361.35 374.64	760 760	75 • •	(48) (16) (36)			Ethanol Ethyl acetate	2.9767 0.9762	20.53 335.65	760 760		(10) (38)
1-Butanol	Benzene	0.7186 1.4816	427.16 468,26	500 760		(40) (29)				1.3418 0.8291 1.0068	413.96 333.09 365.76		40 50 60	(33) (33) (33)
Butyl cellosolve	Toluene Ethylcyclohexane	1.3975 0.9244	474.56 505.49	76 0 400	• •	(28) (47)			Methyl acetate 2-Propanol Water	1.0103 1.0196 1.7376	330.77 -26.05 328.21	760 760 760	• •	(33) (7) (3) (44)
Carbon tetra-	n-Octane Acetone	1.2027 0.8030	594.72 248.26	400 760		(47) (2)		Methyl acetate	Benzene Chloroform	0.7250 1.5004	72.05 -259.36	760 760		(19) (37)
chloride	Benzene 2-Propanol	1.3979 0.6345	40.20 396.69	760 760		(12) (40)			Cyclohexane Methanol	0.9759	422.62 327.41	760 760	• •	(39)
Cellosolve	Ethylbenzene n-Hexane	1.1752 0.8347	410.97 509.22	760 760		(32) (59)		Methylcyclohexane	Benzene 2-Propanol	1.9881 0.6317	154.00 539.24	760 500		(34) (40)
	Hexene-1 n-Octane	0.6332	328.77 556.00	760 760	• •	(59) (32)		Methylcyclopentane	Ethanol	1.2037	129.87 577.66	760 760		(34) (56)
Chloroform	Acetone Benzene 2,3-Dimethyl-	0.8831 0.6738 0.6145	-208.11 -44.41 131.28	760 760 760		(21) (37) (31)		Mathal athal large	n-Hexane Toluene	0.4455 0.3296	5.67 62.38	760 760 760	• •	(35) (34) (24)
	butane Ethyl acetate Methanol	0.6559 0.5023	-230.60 314.59	760 760		(38) (38)		Methyl-ethyl-ketone n-Octane	Butyl cellosolve Cellosolve	1.1288 0.8314 1.2456	-273.65 494.48 692.54	400 760		(47) (32)
	Methyl acetate Methyl-ethyl-	0.6665	-172.86 -242.43	76 0 76 0	• •	(37) (24)			Ethylbenzene 2-Propanol	1.0211	83.74 659.05	760 40 0		(71) (47)
Cyclohexane	ketone Benzene	1.1250	133.44	760		(39)		n-Pentane 1-Propanol	Acetone Benzene	0.8967 1.9583	465.22 616.91	760 760		(27) (48)
*	Ethanol Methyl acetate 2-Propanol	0.7186 1.0249 0.5240	616.87 433.12 424.58	760 760 760	• • •	(72) (39) (72)		1-1 Topanoi	Ethyl acetate	1.6779 1.3303	606.32 230.79	760 760	75 40	(16) (33)
	Toluene	0.6120 0.2964	477.61 61.08	500 760	::	(40) (34)			n-Heptane	1.1359 1.1192 0.9776	282.12 237.16 605.06		40 60 75	(33) (33) (16)
Cyclopentane 2,3-Dimethylbutane	Benzene Acetone	0.8439 0.9866	103.79 470.43	760 760		(<i>34</i>) (<i>67</i>)			n-Hexane Water	0.6384 2.2542	459.11 956.85	760 760	40	(48) (33)
	Chloroform Methanol	1.6273 0.7428	213.64 847.09	760 760	::	(31) (23)		2 Page 2 - 1		2,3212 2,2738	887.98 911.26	7.0	60	(33)
1,4-Dioxane	n-Hexane Hexene-1	1.0057 0.8744	407.35 275.80	760 760	::	(59) (59)	ŀ	2-Propanol	Acetone Benzene	1.1449 0.7934 1.4317	202.30 188.98 536.39	760 760	55	(15) (15) (36)
Ethanol	Acetone Benzene Cyclohexane	1.0453 1.3762 1.3916	216.80 636.07	760 760 760	• •	(1) (25) (72)			Carbon tetra- chloride	1.3917 1.5760	594.47 625.18	500 760	• •	(40) (40)
	Ethyl acetate	1.1933 1.1641	858.41 317.30 348.46	760 760	40	(33)			Cyclohexane	1.9083 1.6339	810.24 780.39 158.14 331.93	760 500		(72) (40)
	n-Heptane n-Hexane	1.0641 1.0821 1.3937	313.91 873.68 916.21	760 760	60	(25) (72) (33) (33) (33) (22) (56) (10)			Ethyl acetate	1.9083 1.6339 0.9214 1.2287 1.0730 0.9808 1.5831	158.14 331.93 250.16	760	40 60	(72) (40) (33) (33) (33) (3) (40)
	Methanol Methylcyclo-	1.3937 0.3359 1.6462	916.21 6.90 950.96	760 760		(10) (56)	-	e e e e e e e e e e e e e e e e e e e	Methanol Methylcyclo-	0.9808 1.5831	250.16 -25.55 853.67	760 500		(3) (40)
	pentane Toluene Water	1.0654 1.8512	592.14 611.20	756 760		(25) (8)			hexane n-Octane 2,2,4-Trimethyl- pentane	1.0004 0.9820	659.33 549.24	400 760		(47) (6)
Ethyl acetate	Chloroform Ethanol	1.5246 0.8380 0.8590 0.9397	-351.57 265.90 299.34	760 760	 40	(<i>3</i> 8) (<i>33</i>) (<i>33</i>)		Toluene	1-Butanol Cyclohexane	0.7156 3.3744 0.9386	339.57 206.10	760 760		(28) (34)
	Methanol	0.9397 1.0244 0.7452 1.2061 0.9932 0.7517	-351.57 265.90 299.34 295.00 343.83 308.50 401.73	760	60 40 50 60	(33) (38) (33)			Ethanol Methylcyclo- pentane	0.9386 3.0343	555.77 189.29	756 760		(25) (34)
	1-Propanol		363.28 173.49 248.36 211.89	760	60 40 60	(38) (33) (33) (33) (38) (33) (33) (33)		1,2,3-Trichloro- propane 2,2,4-Trimethyl-	n-Hexane Hexene-1 2-Propanol	1.3757 1.0802 1.0183	552.37 333.41 559.31	760 760 760	•	(59) (59) (6)
	2-Propanol	0.8935 1.0853 0.8139	171.63 270.15	760	40	(33) (33)		pentane Water	Acetone Acetonitrile	0.5615 0.7505 0.5402	454.39 660.85 330.17	760 760		(45) (46)
Ethylbenzene	Cellosolve Ethylcyclohexane	0.9319 0.8509 1.2951	233.13 349.69 72.15	760 400 400	60	(33) (32) (50) (50)			Ethanol Methanol 1-Propanol	0.5755 0.4436	330.17 188.89 424.48 382.55 400.77	760 760 760 760	40	(45) (46) (8) (44) (33)
	Hexylene glycol n-Octane	0.5031 0.9793	360.97 82.01	760		(71)				0.4308 0.4398	400.77		60	(33) (33)

 $(\lambda_{ij} - \lambda_{jj})$, with no restrictions such as those that limit the van Laar and Bonham equations. A second advantage suggested by Orye and Prausnitz (43) is that the assumption of temperature independence for the parameters has a least approximate theoretical significance.

Binary Systems

The parameters for 89 binary systems were calculated by the authors for the four models listed below:

Third-order Margules equation

Bonham equation (original van Laar equation)

Van Laar equation (as modified by Carlson and Colburn)

Wilson equation

Each equation requires the determination of two parameters for a binary system. These parameters have been calculated by using a computer program to minimize the following objective function

$$\phi = \omega_1 \sum_{i=1}^{n} (\gamma_{1\text{exp}} - \gamma_{1\text{calc}})_i^2 + \omega_2 \sum_{i=1}^{n} (\gamma_{2\text{exp}} - \gamma_{2\text{calc}})_i^2$$
(30)

The scale factors ω_1 and ω_2 , given by

$$\omega_1 = \left[\sum_{i=1}^{n} (\gamma_{1_{\text{exp}}} - 1.0)_i^2 \right]^{-1}$$
 (31)

$$\omega_2 \equiv \left[\sum_{i=1}^n (\gamma_{2\text{exp}} - 1.0)_i^2\right]^{-1}$$
 (32)

serve to scale the objective function if the system is highly unsymmetrical. For systems that are fairly symmetrical

$$\omega_1 \equiv \omega_2$$
 (33)

and minimization of ϕ is approximately equivalent to minimization of the unscaled objective function.

The activity coefficients were calculated from experimental binary data by Equation 34

$$\gamma_i = \frac{y_i P}{x_i P_i^*} \tag{34}$$

All of the systems used in the study were at or below atmospheric pressure where this simplified expression is usually adequate. The vapor pressures were calculated using the Antoine equation

$$\log_{10} P^* = A - \frac{B}{C + t} \tag{35}$$

The Antoine constants that were used are tabulated in Table I.

To use the Wilson equation it is also necessary to have the liquid molar volume as a function of temperature for each component. The volumetric data used in this study are listed in Table II. Using the molar volumes at three different temperatures, the constants in the quadratic equation

$$v^{L} = a' + b'T + c'T^{2}$$
 (36)

were calculated for each component. The molar volume at any temperature could then be calculated

when required in the computer program by using Equation 36.

A general minimum seeking method was used to determine the set of binary parameters which minimizes Equation 30. The Wilson parameters for 89 binary systems are listed in Table III. The van Laar, Margules, and Bonham parameters were calculated and are presented in Tables IV, V, and VI deposited with the ASIS.

Multicomponent Systems

The capabilities of the four equations to predict multicomponent vapor-liquid equilibria were determined by the authors by comparing the predictions to the data for 19 ternary systems. Each of the equations requires only binary parameters for the three constituent binaries (it was assumed that $C^*=0$ in the Margules equation). The ternary systems are listed in Table VII.

A computer program was used for each of the four equations to predict the ternary equilibrium data. In the computer programs the liquid composition and total pressure were fixed by the experimental data and the solution models were used to predict the vapor composition and temperature.

Results

For almost all the ternary systems that were investigated the equations can be ranked in the order given below, with the Wilson equation being the most useful:

Wilson equation

Margules equation

Van Laar equation

Bonham equation

Examples of the results in the prediction of vapor compositions are shown for three of the systems in Figures 1, 2, and 3.

For the ternary systems exhibiting behavior close to ideality (for example, the benzene-methylcyclopentane-n-hexane system and the acetone-carbon tetrachloride-benzene system) the differences in the calculated results from the different equations are small. However, for highly nonideal systems (e.g., the 2,3-dimethylbutane-methanol-chloroform system and the 2,3-dimethylbutane-acetone-methanol system), the Wilson equation gives much better predictions than any of the other equations.

The prediction accuracy of the Wilson equation is shown in Table VIII where

$$\Delta T \equiv |T_{\rm exp} - T_{\rm calc}| \tag{37}$$

$$\Delta y_i \equiv \left| y_{i_{\text{exp}}} - y_{i_{\text{calc}}} \right| \tag{38}$$

For the 262 ternary data points examined, 92% of the predicted vapor mole fractions were within 0.020 mole fraction of the experimental data and 85% of the predicted temperatures were within $1.0^{\circ}\mathrm{C}$ of the experimental data. For the essentially ideal systems, the predictions were as would be expected, much better.

For a few of the systems, the prediction accuracy is significantly below the average. The poorest predic-

Figure 1. Ethanol-methylcyclopentane-n-hexane system at 760 mm

△ Ethanol. ○ Methylcyclopentane. □ n-Hexane

Figure 2. n-Hexane-hexene-1-1,4-dioxane system at 760 mm Hg. △ n-Hexane. ○ Hexene-1. □ 1,4-Dioxane

TABLE VII. TERNARY SYSTEMS

	System	Reference
1	Benzene-Methylcyclopentane-n-Hexane	(4)
2	Ethanol-Methylcyclopentane-n-Hexane	(20)
3	Methylcyclopentane-Ethanol-Benzene	(56)
4	Benzene-Ethanol-n-Hexane	(65)
5	Acetone-Carbon tetrachloride-Benzene	(58)
6	Acetone-Methanol-2-Propanol	(15)
7	n-Octane-Ethylbenzene-Cellosolve	(32)
8	Chloroform-Methanol-Ethyl acetate	(38)
9	Ethanol-Benzene-n-Heptane	(64)
10	Acetone-Chloroform-2,3-Dimethylbutane	(17)
11	n-Hexane-Hexene-1-1,4-Dioxane	(60)
12	n-Hexane-Hexene-1-Cellosolve	(60)
13	n-Hexane-Hexene-1-1,2,3-Trichloropropane	(60)
14	2,3-Dimethylbutane-Acetone-Chloroform	(23)
15	2,3-Dimethylbutane-Acetone-Methanol	(67)
16	Benzene-Cyclohexane-2-Propanol	(36)
17	Methyl acetate-Benzene-Cyclohexane	(39)
18	Methyl acetate-Chloroform-Benzene	(37)
19	Methanol-Ethanol-Water	(10)

TABLE VIII. DEVIATIONS OF PREDICTED AND EXPERIMENTAL DATA

(Using Wilson equation binary parameters)

Ternary	No. of Data	Δ	r,°C	Δy1 (× 103)	Δy_2 ()	< 10 ³)	Δy³ (× 103)
Systema	Points	Av.	Max.	Av.	Max.	Av.	Max.	Av.	Max.
1	15	0.3	0.5	3	7	3	9	2	7
2	15	0.2	0.6	9	25	6	31	5	14
3	15	1.2	1.6	10	26	8	21	4	9
4	7	0.5	0.8	8	16	6	10	9	19
5	15	0.4	1.7	10	22	7	17	4	14
6	15	0.5	1.1	7	22	7	20	6	25
7	15	0.8	2,1	20	30	5	27	22	35
8	15	0.4	1.2	6	16	10	23	7	22
9	15	0.4	1.2	8	27	13	25	10	25
10	15	0.4	0.7	7	· 21	6	22	8	15
11	12	0.9	2.1	7	18	7	23	14	24
12	9	2.5	5.1	13	18	10	23	14	29
13	9	2.2	5.7	19	76	13	35	27	97
14	15	0.1	0.2	6	15	7	23	5	16
15	15	0.9	1.7	6	20	5	14	5	16
16	15	0.6	0.9	3	7	7	19	10	26
17	15	0.5	1.1	13	31	9	30	4	10
18	15	0.2	0.4	5	10	5	20	6	16
19	15	0.2	0.5	20	46	18	54	29	84

The components are considered in the order shown in Table VII. For example, for ternary system 1: y_1 refers to benzene, y_2 refers to methylcyclopentane, and y_3 refers to n-hexane.

Figure 3. 2,3-Dimethylbutane-methanol-chloroform system at 760 mm Hg

△ 2,3-Dimethylbutane. ○ Methanol. □ Chloroform

tions of vapor composition were obtained for the systems listed below:

n-Octane-ethylbenzene-Cellosolve

n-Hexane-hexene-1-1,2,3-trichloropropane

Methanol-ethanol-water

For these systems only 62% of the predicted vapor mole fractions were within 0.020 mole fraction of experimental data.

The temperature predictions for the systems listed below do not fall within the 1°C rule-of-thumb

Methylcyclopentane-ethanol-benzene

n-Hexane-hexene-1-cellosolve

n-Hexane-hexene-1-1,2,3-trichloropropane

For these systems only 12% of the predicted temperatures were within 1.0°C of experimental data. Most of the temperature predictions for the first system differed

a The system number refers to the corresponding number in Table VII.

from the experimental data by slightly over 1.0°, with the worst error being 1.6°C. However, the predictions for the other two systems were much poorer with some in error by more than 5°C. Of all the temperature predictions made in this study with the Wilson equation for the other sixteen ternary systems, only two points were in error by more than 2°C.

Conclusions

For the systems investigated, the Wilson equation appears to be a much better model of the multicomponent vapor-liquid equilibria. For most of the systems, the equation gives predictions of vapor compositions within 0.020 mole fraction of experimental data and predictions of temperature within 1.0°C of experimental data. In addition, the equation is relatively simple to use and can be easily extended to systems involving more than three components.

Nomenclature

\boldsymbol{A}	= Antoine constant
A_{12}, A_{21}	= parameters in the Margules and Bonham equa- tions
$\bar{A}_{12}, \bar{A}_{21}$	= parameters in the van Laar equation (in the
,	Carlson and Colburn modification)
a'	= constant in Equation 36
a_1, a_2	= Van der Waals constants, atm(cm ³ /g mol) ²
aij, aijk, etc.	
B	= Antoine constant, °C
B_{12}, B_{21}	= parameters in the Bonham equation
b'	= constant in Equation 36
b_1, b_2	= Van der Waals constants, cm³/g mol
C	= Antoine constant, °C
C^*	= ternary parameter in the third-order Margules equation
c'	= constant in Equation 36
g^E	= molar excess free energy, cal/g mol
N	= number of components
<i>n</i> .	= number of experimental points
n_i	= number of moles of the <i>i</i> th component
n_T	= total number of moles
P	= pressure, atm.
P_i *	= vapor pressure of the <i>i</i> th component, cc/g mol
R	= gas law constant, cal/g mol/°K
$T_{ m exp}$	= experimental temperature, °K
$T_{ m calc}$	= calculated temperature, °K
T_1 , T_2 , T_3	= temperatures at which liquid molar volumes are known, °K
t	= temperature, °C
v_i^L	= liquid molar volume of the <i>i</i> th component, c/g mol
x_i	= liquid mole fraction of the <i>i</i> th component
y_i	= vapor mole fraction of the <i>i</i> th component
Yiexp	= experimental vapor mole fraction of the ith
•	component
Yicale	= calculated vapor mole fraction of the <i>i</i> th component
z_i	= effective volumetric fraction of the <i>i</i> th component

Greek Letters

 $\omega_1, \, \omega_2$

γ_i		activity coefficient of the ith component
$\gamma_{i \exp}$	=	experimental activity coefficient for the ith com-
		ponent
Vicale.	=	calculated activity coefficient for the ith com-
A	_	•
\wedge_{ij}	=	variables defined by Equation 26
$(\lambda_{ij} - \lambda_{ii})$		
$(\lambda_{ij} - \lambda_{ii}) \langle (\lambda_{ij} - \lambda_{jj}) \rangle$	_	parameters in the Wilson equation, cal/g mol
4	_	chicative function
Ψ	_	objective function

LITERATURE CITED

(1) Amer, H. H., Paxton, R. R. and Van Winkle, Matthew, Ind. Eng. Chem. 48, 142 (1956).

= scale factors in Equation 30

- (2) Bachman, K. C. and Simons, E. L., Ind. Eng. CHEM. 44, 202 (1952).
- (3) Ballard, L. H. and Van Winkle, Matthew, Ind. Eng. CHEM. 44, 2450 (1952).
- (4) Belknap, R. C. and Weber, J. H., J. Chem. Eng. Data 6, 485 (1961).
- (5) Bonham, M. S., M.S. Thesis in Chemical Engineering, MIT, 1941.
- (6) Bures, E., Cano, C. and De Wirth, A., J. Chem. Eng. Data 4, 199 (1959).
- (7) Bushmakin, Y. N. and Kish, Y. N., Zhur. Prikl. Khim. 30, 200 (1957).
- (8) Carey, J. S. and Lewis, W. K., Ind. Eng. Chem. 24, 882 (1932).
- (9) Carlson, H. D. and Colburn, A. P., Ind. Eng. Chem. 34, 581 (1942).
- (10) Delzenne, A. O., Chem. Eng. Data 3, 224 (1958). (11) Dreishach, R. R., "Physical Properties of Chemical Compounds I, II, III," Monograph Ser. nos. 15, 22, 29 (1955, 1959, 1961).
- (12) Fowler, R. T. and Lim, S. C., J. Appl. Chem. (London) 6, 74 (1956).
- (13) Francis, A. W., Chem. Eng. Sci. 10, 37 (1959).
- (14) Free, K. W. and Hutchison, H. P., J. Chem. Eng. Data 4, 193 (1959).
- (15) Freshwater, D. C. and Pike, K. A., J. Chem. Eng. Data 12, 179 (1967).
- (16) Fu, S. Jean and Lu, B. C. Y., J. Appl. Chem. (London), 16, 324 (1966). (17) Garrett, G. R., M.S. Thesis in Chemical Engineering, University of Texas, 1968.
- (18) Helpinstill, J. G. and Van Winkle, M., Ind. Eng. Chem., Process Des. Develop. 7, 213 (1968).
- (19) Hudson, J. W., Ph.D. Dissertation, University of Texas, 1969.
- (20) Kaes, G. L. and Weber, J. H., J. Chem. Eng. Data 7, 345 (1962).
- (21) Karr, E. A., Scheibel, E. G., Bowes, N. W. and Othmer, D. F., Ind. Eng. CHEM. 43, 961 (1951).
- (22) Katz, K. and Newman, M., Ind. Eng. CHEM. 48, 137 (1956).
- (23) Kirby, C. E., M.S. Thesis in Chemical Engineering, University of Texas, 1969.
- (24) Krishnamurty, V. V. G. and Venkata Rao, C., J. Sci. Ind. Research (India) 14B, 55 (1955).
- (25) Landwehr, J. C., Yerazunis, S. and Steinhauser, H., J. Chem. Eng. Data 3, 231 (1958).
- (26) Lange, N. A., "Handbook of Chemistry," Rev. 10th ed., McGraw-Hill Book Company, New York, 1967.
- (27) Lo, T. C., Bieber, H. B. and Karr, A. E., J. Chem. Eng. Data 7, 327 (1962).
- (28) Mann, R. S. and Shemilt, L. W., J. Chem. Eng. Data 8, 189 (1963).
- (29) Mann, R. S., Shemilt, L. W. and Waldichuck, M., J. Chem. Eng. Data 8, 502 (1963).
- (30) Margules, Sitzber, math.-naturw. K. Kaiserlichen Akad. Wiss. (Vienna), 104, 1243 (1895).
- (31) McConnell, C. G. and Van Winkle, M., J. Chem. Eng. Data 12, 430 (1967).
- (32) Murti, P. S. and Van Winkle, M., A.I.Ch.E. J. 3, 517 (1957).
- (33) Murti, P. S. and Van Winkle, M., J. Chem. Eng. Data 3, 72 (1958).
- (34) Myers, H. S., Ind. Eng. Chem. 48, 1104 (1956).
- (35) Myers, H. S., Petroleum Refiner 36, No. 3, 175 (1957).
- (36) Nagata, I., Can. J. Chem. Eng. 42, 82 (1964).
- (37) Nagata, I., J. Chem. Eng. Data 7, 360 (1962).
- (38) Nagata, I., ibid., pp 367.
- (39) Nagata, I., ibid., pp 461.
- (40) Nagata, I., ibid., 10, 106 (1965).
- (41) Ocon, J. and Espantoso, J., An. Real Soc. Espan. Fis. y Quim. 54B, 421 (1958).
- (42) Oyer, R. V. Ph.D. Dissertation, University of California, 1965.
- (43) Oyer, R. V. and J. M. Prausnitz, Ind. Eng. Chem. 57 (5), 18 (1965).
- (44) Othmer, D. F. and Benenati, R. F., IND. Eng. CHEM. 37, 299 (1945).
- (45) Othmer, D. F., Chudgar, M. M. and Levy, S. L., Ind. Eng. CHEM. 44, 1872 (1952).
- (46) Othmer, D. F. and Josefowitz, S., Ind. Eng. Chem. 39, 1175 (1947).
- (47) Prabhu, P. S. and Van Winkle, M., J. Chem. Eng. Data 8, 14 (1963).
- (48) Prabhu, P. S. and Van Winkle, M., ibid., p 210.
- (49) Prausnitz, J. M., Eckert, C. A., Orye, R. V. and O'Connell, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," Prentice-Hall, Englewood Cliffs, N. J., 1967.
- (50) Quozati, A. and Van Winkle, M., J. Chem. Eng. Data 5, 269 (1960).
 (51) Reid, R. C. and Sherwood, T. K., "The Properties of Gases and Liquids," Second ed., McGraw-Hill Book Company, Inc., New York, 1966.
- (52) Robinson, Clark Shove and Gilliland, Edwin Richard, "Elements of Fractional Distillation," 4th ed., 74, McGraw-Hill Book Company, Inc., New York, 1950.
- (53) Rossini, F. D. et al., "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds," API Proj. 44, Carnegie Press, Pittsburgh, 1953.
- (54) Scatchard, G. and Wilson, G. M., J. Amer. Chem. Soc. 86, 133 (1964).
- (55) Sieg, L., Chem. Ing. Techn. 15, 322 (1950).
- (56) Sinor, J. E. and Weber, J. H., J. Chem. Eng. Data 5, 243 (1960).
- (57) Smith, B., "Design of Equilibrium Stage Processes," 11, McGraw-Hill Book Company, Inc., New York, 1963.
- (58) Subba Rao, B. V. and Venkata Rao, C., J. Chem. Eng. Data 11, 158 (1966).
- (59) Suryanarayana, Y. S., Ph.D. Dissertation, University of Texas, 1965.
- (60) Suryanarayana, Y. S. and Van Winkle, M., J. Chem. Eng. Data 11, 7 (1966).
- (61) Timmermans, J., "Physico-Chemical Constants of Pure Organic Compounds," Elsevier Publishing Company, Inc., New York, 1950.
- (62) Timmermans, J., "Physico-Chemical Contents of Pure Organic Compounds," Elsevier Publishing Co., New York, 1965.
- (63) Van Laar, J. J., Z. Phys. Chem. 185, 35 (1929).
- (64) Wagner, I. F. and Weber, J. H., J. Chem. Eng. Data 3, 220 (1958).
- (65) Walso, R. A. and Weber, J. H., J. Chem. Eng. Data 8, 349 (1963).
- (66) Weissberger, A., ed., "Organic Solvents," Second ed., Vol. VII, Interscience Publishers, Inc., New York, 1955.
- (67) Willock, J. M., M.S. Thesis in Chemical Engineering, University of Texas, 1969.
- (68) Wilson, G. M., J. Am. Chem. Soc. 86, 127 (1964).
- (69) Wohl, K., Chem. Eng. Progr. 49, 218 (1953).
- (70) Wohl, K., Trans. A.I.Ch.E. 42, 215 (1946).
- (71) Yang, C. P. and Van Winkle, M., IND. ENG. CHEM. 47, 293 (1955).
- (72) Yuan, Kuan Shih and Lu, B. C. Y., J. Chem. Eng. Data 8, 549 (1963).