HW2 Solutions STAT 431 Spring 2019

February 2019

Contents

1	Bay	vesian inference on Binomial π	1
	1.1	A - Posterior densities	2
		1.1.1 I - Uniform prior	2
		1.1.2 II - Informative Beta prior	2
	1.2	B - Posterior mean and standard deviations	3
		1.2.1 I - Uniform prior	3
		1.2.2 II - Informative Beta prior	3
	1.3	C - 95% Equal-tailed credible intervals	4
		1.3.1 I - Uniform prior	4
		1.3.2 II - Informative Beta prior	4
	1.4	D - Posterior inference	4
		1.4.1 I - Uniform prior	4
		1.4.2 II - Informative Beta prior	4
2	Cov	vles, Problem 5.3	4
3	$\mathbf{G}\mathbf{R}$	ADUTE SECTION ONLY	5
	3.1	Frequentist inference	5
	3.2	Posterior predictive probabilities	5

1 Bayesian inference on Binomial π

We observe X=6 successes in our sample of size N=70, where we assume $X\sim \text{Binomial}(N=70,\pi)$, where the success probability π is unknown. The likelihood of this model is given by

$$P(X \mid \pi, N) = \binom{N}{X} \pi^X (1 - \pi)^{N - X} \tag{1}$$

A - Posterior densities 1.1

1.1.1 I - Uniform prior

$$P(\pi \mid X) \propto P(X \mid \pi, N)P(\pi) \tag{2}$$

$$= P(X \mid \pi, N) \tag{3}$$

$$= \binom{N}{X} \pi^X (1-\pi)^{N-X} \tag{4}$$

$$= P(X \mid \pi, N)$$

$$= {N \choose X} \pi^X (1 - \pi)^{N - X}$$

$$= {70 \choose 6} \pi^6 (1 - \pi)^{64}$$
(5)

The posterior distribution for π (under a uniform prior) is $P(\pi \mid X) =$ Beta $(X + 1, N - X + 1) = \mathbf{Beta}(7, 65)$. The full density is then:

$$P(\pi \mid X) = \frac{\Gamma(72)}{\Gamma(7)\Gamma(65)} \pi^6 (1 - \pi)^{64}, \qquad 0 < \pi < 1$$
 (6)

Figure 1: Posterior distribution of π under a uniform prior for π .

1.1.2 II - Informative Beta prior

A priori $\pi \sim \text{Beta}(100, 100)$. Then the form of the posterior is given as follows

$$P(\pi \mid X) \propto P(X \mid \pi, N)P(\pi) \tag{7}$$

$$= \pi^X (1 - \pi)^{N - X} \left(\pi^{99} (1 - \pi)^{99} \right) \tag{8}$$

$$= \pi^{X+99} (1-\pi)^{N-X+99} \tag{9}$$

$$=\pi^{105}(1-\pi)^{163}\tag{10}$$

The posterior distribution for π is $P(\pi \mid X) = \text{Beta}(X+100, N-X+100) = \text{Beta}(\mathbf{106}, \mathbf{164})$. The full density is:

$$P(\pi \mid X) = \frac{\Gamma(270)}{\Gamma(106)\Gamma(164)} \pi^{105} (1 - \pi)^{163}, \qquad 0 < \pi < 1$$
 (11)

Figure 2: Posterior distribution of π under a Beta(100, 100) prior for π .

1.2 B - Posterior mean and standard deviations

1.2.1 I - Uniform prior

The posterior mean is $\frac{X+1}{X+1+N-X+1} = \frac{X+1}{N+2} = \frac{7}{72} = \mathbf{0.09722}$, and the posterior standard deviation is $\sqrt{\frac{(X+1)*(N-X+1)}{(X+1+N-X+1)^2(X+1+N-X+1+1)}} = \sqrt{\frac{455}{72^2*73}} = \mathbf{0.03467}$.

1.2.2 II - Informative Beta prior

The posterior mean is **0.3925**, and the posterior standard deviation is **0.02966**.

1.3~ C - 95% Equal-tailed credible intervals

1.3.1 I - Uniform prior

We obtain our 95% posterior credible interval for π under a uniform prior for π using the following R commands:

Our credible interval is (0.041, 0.175).

1.3.2 II - Informative Beta prior

Our credible interval is (0.335, 0.451).

1.4 D - Posterior inference

1.4.1 I - Uniform prior

Under a uniform prior for π ,

$$P(\pi \ge 0.2 \mid X, N) = \mathbf{0.007} \tag{12}$$

$$P(\pi < 0.2 \mid X, N) = \mathbf{0.993} \tag{13}$$

Where we found the first probability using the following R command:

(1-pbeta(0.2, 7, 65)) %>% round(3)

1.4.2 II - Informative Beta prior

Under a Beta(100, 100) prior for π ,

$$P(\pi \ge 0.2 \mid X, N) = 1 \tag{14}$$

$$P(\pi < 0.2 \mid X, N) = \mathbf{0} \tag{15}$$

2 Cowles, Problem 5.3

Prompt: If $\phi = g(\pi) = \text{logit}(\pi)$, show that a uniform prior on π induces the following density for ϕ :

$$P_{\phi}(\phi) = \frac{e^{\phi}}{(1 + e^{\phi})^2} \tag{16}$$

Solution:

$$P_{\phi}(\phi) = P_{\pi}(g^{-1}(\phi)) \left| \frac{d\pi}{d\phi} \right| \tag{17}$$

$$= P_{\pi} \left(\frac{e^{\phi}}{1 + e^{\phi}} \right) \left(\frac{d}{d\phi} \frac{e^{\phi}}{1 + e^{\phi}} \right) \tag{18}$$

$$= P_{\pi}(\pi) \frac{(e^{\phi})'(1 + e^{\phi}) - (e^{\phi})(1 + e^{\phi})'}{(1 + e^{\phi})^2}$$
(19)

$$= \frac{(e^{\phi})(1+e^{\phi}) - (e^{\phi})(e^{\phi})}{(1+e^{\phi})^2}$$
 (20)

$$=\frac{e^{\phi}}{(1+e^{\phi})^2}\tag{21}$$

In line 15 we apply the quotient rule. Going from line 15 to line 16, $P_{\pi}(\pi) = 1$ as P_{π} is the uniform distribution.

3 GRADUTE SECTION ONLY

Continuing Problem 1, suppose that we encounter N=20 new individuals, who we assume are a random sample from a population of "people like us".

3.1 Frequentist inference

The frequentist estimate for π is simply what we observe, i.e. $\hat{\pi} = \frac{6}{70} = 0.0857$. The probability that at least 4 individuals have played Euchre before $P(X \ge 4 \mid \pi, N = 20)$ can be equivalently written as $1 - P(X < 4 \mid \pi, N = 20)$.

We evaluate this in R using the following command:

and we find that $P(\tilde{X} \ge 4 \mid \hat{\pi}, \tilde{N} = 20) =$ **0.08639**.

3.2 Posterior predictive probabilities

Using the LearnBayes package in R, with the following commands,

library(LearnBayes)

$$1 - (pbetap(c(7, 65), 20, 0:3) \%\% sum)$$

We find that $= P(\tilde{X} \ge 4 \mid X, \tilde{N} = 20) = \mathbf{0.1459}.$