Proyecto Mochila

June 11, 2014

Enrique Ballesteros Horcajo

Programa general sobre los algoritmos de la mochila

Vamos a tener tres opciones cuando el programa esté finalizado. Podremos probar la mochila con objetos divisibles, con objetos con tamaños enteros e indivisibles y con objetos de cualquier tamaño indivisibles.

El menú inicial nos ofrecerá las tres posibilidades:

1 Mochila con objetos divisibles

En esta sección vamos a tener tres posibilidades: una batería con pruebas con distintas mochilas, número de objetos y algoritmos de ordenación; una mochila de objetos aleatorios que nos permite elegir los parámetros para los objetos; y una mochila en la que podemos introducir los objetos manualmente uno a uno.

1.1 Batería de pruebas

Para cada relación entre los objetos y la mochila, vamos a tener distintas pruebas con un número de objetos que permita sacar conclusiones interesantes.

- Todos: Todos los objetos caben en la mochila, por lo que no sería necesario ordenarlos.
- Dos tercios: Caben dos tercios de los objetos, los mejores algoritmos aquí van a ser los que ordenen más rápido.
- Mitad: En la mochila caben aproximadamente la mitad de los objetos.
- Un tercio: Caben un tercio de los objetos, aquí siguen siendo mejores los algoritmos que mejor ordenan.
- Pocos: Caben relativamente pocos objetos. Aquí, algoritmos inteligentes que no ordenen los objetos y que busquen el máximo directamente pueden ser los mejores. Entre ellos, el quick selection.
- Objetos ya ordenados: Los objetos que se van a introducir en la mochila están previamente ordenados, con lo que los algoritmos que funcionen bien con los objetos previamente ordenados serán los mejores.
- Ordenados inverso: Los objetos están previamente ordenados al revés, es decir, de menor a mayor densidad.

En cada modo para los objetos, tenemos los siguientes algoritmos:

• monticulo: Algoritmo de ordenación mediante una cola de prioridad de implementación propia, insterta todos los objetos en la cola, y saca hasta que se llena la mochila.

- quickSort: El quick sort tradicional con algunas mejoras implementadas por Weiss.
- quickSelection: Algoritmo que toma un elemento al azar y a partir de él mete todos los mayores a la mochila. Si no caben, descarta los menores y vuelve a ejecutarse. Si caben todos, los mete y se vuelve a ejecutar sobre los menores.
- mergeSort: Algoritmo tradicional merge sort implementado por Weiss.
- heapSort: Ordenación mediante un montículo. Ordena todos los objetos.
- insertionSort: Algoritmo de ordenación mediante inserciones. Es bastante malo, por lo que para muchos objetos no se ejecuta.
- sellSort: El algoritmo sell sort implementado por Weis.

1.2 Objetos Aleatorios

En esta opción, podemos elegir los parámetros que queremos para los objetos, así como su número y el tamaño de la mochila, nos los genera aleatoriamente, y mete en la mochila los que debe.

Se nos muestra una tabla con todos los objetos y otra con los objetos que han entrado en la mochila. El último se puede observar cómo no se mete entero, sino que se parte.

1.3 Introducción manual

Sencillamente vamos introduciendo los objetos uno a uno, y cuando hemos terminado metemos los objetos en la mochila. La solución nos muestra una lista con los que han entrado.

