Visualisasi dan Perhitungan Geometri dengan EMT

Euler menyediakan beberapa fungsi untuk melakukan visualisasi dan perhitungan geometri, baik secara numerik maupun analitik (seperti biasanya tentunya, menggunakan Maxima). Fungsi-fungsi untuk visualisasi dan perhitungan geometeri tersebut disimpan di dalam file program "geometry.e", sehingga file tersebut harus dipanggil sebelum menggunakan fungsi-fungsi atau perintah-perintah untuk geometri.

>load geometry

Numerical and symbolic geometry.

Fungsi-fungsi Geometri

Fungsi-fungsi untuk Menggambar Objek Geometri:

```
defaultd:=textheight()*1.5: nilai asli untuk parameter d
setPlotrange(x1,x2,y1,y2): menentukan rentang x dan y pada bidang
```

koordinat

```
setPlotRange(r): pusat bidang koordinat (0,0) dan batas-batas
```

```
sumbu-x dan y adalah -r sd r
  plotPoint (P, "P"): menggambar titik P dan diberi label "P"
 plotSegment (A,B, "AB", d): menggambar ruas garis AB, diberi label
"AB" sejauh d
  plotLine (g, "g", d): menggambar garis g diberi label "g" sejauh d
  plotCircle (c,"c",v,d): Menggambar lingkaran c dan diberi label "c"
  plotLabel (label, P, V, d): menuliskan label pada posisi P
Fungsi-fungsi Geometri Analitik (numerik maupun simbolik):
  turn(v, phi): memutar vektor v sejauh phi
  turnLeft(v): memutar vektor v ke kiri
  turnRight(v): memutar vektor v ke kanan
  normalize(v): normal vektor v
  crossProduct(v, w): hasil kali silang vektorv dan w.
  lineThrough(A, B): garis melalui A dan B, hasilnya [a,b,c] sdh.
```

ax+by=c.

```
lineWithDirection(A,v): garis melalui A searah vektor v
getLineDirection(g): vektor arah (gradien) garis g
getNormal(g): vektor normal (tegak lurus) garis g
getPointOnLine(g): titik pada garis g
perpendicular(A, g): garis melalui A tegak lurus garis g
parallel (A, g): garis melalui A sejajar garis g
lineIntersection(g, h): titik potong garis g dan h
projectToLine(A, g): proveksi titik A pada garis g
distance(A, B): jarak titik A dan B
distanceSquared(A, B): kuadrat jarak A dan B
quadrance(A, B): kuadrat jarak A dan B
areaTriangle(A, B, C): luas segitiga ABC
computeAngle(A, B, C): besar sudut <ABC</pre>
angleBisector(A, B, C): garis bagi sudut <ABC
circleWithCenter (A, r): lingkaran dengan pusat A dan jari-jari r
getCircleCenter(c): pusat lingkaran c
getCircleRadius(c): jari-jari lingkaran c
circleThrough(A,B,C): lingkaran melalui A, B, C
middlePerpendicular(A, B): titik tengah AB
lineCircleIntersections(g, c): titik potong garis g dan lingkran c
circleCircleIntersections (c1, c2): titik potong lingkaran c1 dan
```

c2

```
planeThrough(A, B, C): bidang melalui titik A, B, C
```

Fungsi-fungsi Khusus Untuk Geometri Simbolik:

```
getLineEquation (g,x,y): persamaan garis g dinyatakan dalam x dan y getHesseForm (g,x,y,A): bentuk Hesse garis g dinyatakan dalam x dan
```

```
y dengan titik A pada
  sisi positif (kanan/atas) garis
  quad(A,B): kuadrat jarak AB
  spread(a,b,c): Spread segitiga dengan panjang sisi-sisi a,b,c, yakni
sin(alpha)^2 dengan
  alpha sudut yang menghadap sisi a.
  crosslaw(a,b,c,sa): persamaan 3 quads dan 1 spread pada segitiga
dengan panjang sisi a, b, c.
  triplespread(sa,sb,sc): persamaan 3 spread sa,sb,sc yang memebntuk
suatu segitiga
  doublespread(sa): Spread sudut rangkap Spread 2*phi, dengan
sa=sin(phi)^2 spread a.
```

Untuk menggambar objek-objek geometri, langkah pertama adalah menentukan rentang sumbu-sumbu koordinat. Semua objek geometri akan digambar pada satu bidang koordinat, sampai didefinisikan bidang koordinat yang baru.

```
>setPlotRange(-0.5,2.5,-0.5,2.5); // mendefinisikan bidang koordinat baru
```

Sekarang tetapkan tiga poin dan plot.

```
>A=[1,0]; plotPoint(A,"A"); // definisi dan gambar tiga titik
>B=[0,1]; plotPoint(B,"B");
>C=[2,2]; plotPoint(C,"C");
```

Kemudian untuk tiga segmen.

```
>plotSegment(A,B,"c"); // c=AB
>plotSegment(B,C,"a"); // a=BC
>plotSegment(A,C,"b"); // b=AC
```

Fungsi geometri mencakup fungsi untuk membuat garis dan lingkaran. Format untuk garis adalah [a,b,c], yang mewakili garis dengan persamaan ax+by=c.

```
>lineThrough(B,C) // garis yang melalui B dan C
```

```
[-1, 2, 2]
```

Hitung garis tegak lurus melalui A pada BC.

```
>h=perpendicular(A,lineThrough(B,C)); // garis h tegak lurus BC melalui A
```

Dan persimpangan dengan BC.

```
>D=lineIntersection(h,lineThrough(B,C)); // D adalah titik potong h dan BC
```

Plot that.

```
>plotPoint(D,value=1); // koordinat D ditampilkan
>aspect(1); plotSegment(A,D): // tampilkan semua gambar hasil plot...()
```

Hitung luas ABC:

$$L_{\triangle ABC} = \frac{1}{2}AD.BC.$$

>norm(A-D)*norm(B-C)/2 // AD=norm(A-D), BC=norm(B-C)

1.5

Bandingkan dengan rumus determinan.

>areaTriangle(A,B,C) // hitung luas segitiga langusng dengan fungsi

1.5

Cara lain menghitung luas segitigas ABC:

>distance(A,D)*distance(B,C)/2

1.5

Sudut di C.

```
>degprint(computeAngle(B,C,A))
```

```
36°52'11.63''
```

Kemudian menggambarkan lingkaran luar segitiga.

```
>c=circleThrough(A,B,C); // lingkaran luar segitiga ABC
>R=getCircleRadius(c); // jari2 lingkaran luar
>0=getCircleCenter(c); // titik pusat lingkaran c
>plotPoint(0,"0"); // gambar titik "0"
>plotCircle(c,"Lingkaran luar segitiga ABC"):
```

Tampilkan koordinat titik pusat dan jari-jari lingkaran luar.

```
>0, R
```

```
[1.16667, 1.16667]
1.17851130198
```

Sekarang akan digambar lingkaran dalam segitiga ABC. Titik pusat lingkaran dalam adalah titik potong garis-garis bagi sudut.

```
>l=angleBisector(A,C,B); // garis bagi <ACB</pre>
>g=angleBisector(C,A,B); // garis bagi <CAB
>P=lineIntersection(1,g) // titik potong kedua garis bagi sudut
  [0.86038, 0.86038]
Tambahkan semuanya ke plot.
>color(5); plotLine(1); plotLine(g); color(1); // gambar kedua garis bagi sudut
>plotPoint(P,"P"); // gambar titik potongnya
>r=norm(P-projectToLine(P,lineThrough(A,B))) // jari-jari lingkaran dalam
  0.509653732104
>plotCircle(circleWithCenter(P,r), "Lingkaran dalam segitiga ABC"): // gambar lingkaran dalam
```

Latihan

1. Tentukan ketiga titik singgung lingkaran dalam dengan sisi-sisi segitiga ABC.

```
>setPlotRange(-3.5,5.5,-3.5,5.5);
>A=[-3,1]; plotPoint(A,"A");
>B=[1,-3]; plotPoint(B,"B");
>C=[5,5]; plotPoint(C,"C");
```

2. Gambar segitiga dengan titik-titik sudut ketiga titik singgung tersebut. Merupakan segitiga apakah itu?

```
>plotSegment(A,B,"c")
>plotSegment(B,C,"a")
```

 $3.\ {\rm Hitung\ luas\ segitiga\ tersebut.}$

>lineThrough(A,B)

>plotSegment(A,C,"b")

>aspect(1):

```
[4, 4, -8]
```

```
>h=perpendicular(C,lineThrough(A,B));
>D=lineIntersection(h,lineThrough(A,B));
>plotPoint(D,value=1);
>aspect(1); plotSegment(C,D):
```

>distance(C,D)*distance(A,B)/2

Jadi luas segitiga di atas adalah 24

4. Tunjukkan bahwa garis bagi sudut yang ke tiga juga melalui titik pusat lingkaran dalam.

```
>l=angleBisector(A,C,B);
>g=angleBisector(C,A,B);
>P=lineIntersection(1,g)
```

```
[0.441518, 0.441518]
```

```
>color(5); plotLine(l); plotLine(g); color(1);
>plotPoint(P,"P");
>r=norm(P-projectToLine(P,lineThrough(A,B)))
```

2.03861492842

```
>plotCircle(circleWithCenter(P,r),"Lingkaran dalam segitiga ABC"):
```

Jadi, terbukti bahwa garis bagi sudut yang ketiga juga melalui titik pusat lingkaran dalam.

5. Gambar jari-jari lingkaran dalam.

```
>r=norm(P-projectToLine(P,lineThrough(A,B)))
```

2.03861492842

```
>plotCircle(circleWithCenter(P,r),"Lingkaran dalam segitiga ABC"):
```

6. Hitung luas lingkaran luar dan luas lingkaran dalam segitiga ABC. Adakah hubungan antara luas kedua lingkaran tersebut dengan luas segitiga ABC?

```
>c=circleThrough(A,B,C);
>R=getCircleRadius(c);
>0=getCircleCenter(c);
>plotPoint(0,"0");
>plotCircle(c,"Lingkaran luar segitiga ABC"):
```

Contoh 2: Geometri Simbolik

Kita dapat menghitung geometri eksak dan simbolik menggunakan Maxima.

File geometri.e menyediakan fungsi yang sama (dan lebih banyak lagi) di Maxima. Namun, kita dapat menggunakan perhitungan simbolis sekarang.

```
>A &= [1,0]; B &= [0,1]; C &= [2,2]; // menentukan tiga titik A, B, C
```

Fungsi untuk garis dan lingkaran bekerja seperti fungsi Euler, tetapi memberikan perhitungan simbolis.

```
>c &= lineThrough(B,C) // c=BC
```

Kita bisa mendapatkan persamaan garis dengan mudah.

```
>$getLineEquation(c,x,y), $solve(%,y) | expand // persamaan garis c
>$getLineEquation(lineThrough([x1,y1],[x2,y2]),x,y), $solve(%,y) // persamaan garis melalui(x1, y1)
>$getLineEquation(lineThrough(A,[x1,y1]),x,y) // persamaan garis melalui A dan (x1, y1)
>h &= perpendicular(A,lineThrough(B,C)) // h melalui A tegak lurus BC
```

```
>Q &= lineIntersection(c,h) // Q titik potong garis c=BC dan h
```

```
2 6
[-, -]
```

```
>$projectToLine(A,lineThrough(B,C)) // proyeksi A pada BC
>$distance(A,Q) // jarak AQ
>cc &= circleThrough(A,B,C); $cc // (titik pusat dan jari-jari) lingkaran melalui A, B, C
>r&=getCircleRadius(cc); $r , $float(r) // tampilkan nilai jari-jari
>$computeAngle(A,C,B) // nilai <ACB
>$solve(getLineEquation(angleBisector(A,C,B),x,y),y)[1] // persamaan garis bagi <ACB
>P &= lineIntersection(angleBisector(A,C,B),angleBisector(C,B,A)); $P // titik potong 2 garis bagi s
>P() // hasilnya sama dengan perhitungan sebelumnya
```

[0.86038, 0.86038]

Garis dan Lingkaran yang Berpotongan

Tentu saja, kita juga bisa memotong garis dengan lingkaran, dan lingkaran dengan lingkaran.

```
>A &:= [1,0]; c=circleWithCenter(A,4);
>B &:= [1,2]; C &:= [2,1]; l=lineThrough(B,C);
>setPlotRange(5); plotCircle(c); plotLine(1);
```

Persimpangan garis dengan lingkaran mengembalikan dua titik dan jumlah titik persimpangan.

```
>{P1,P2,f}=lineCircleIntersections(1,c);
>P1, P2, f
```

```
[4.64575, -1.64575]
[-0.645751, 3.64575]
2
```

```
>plotPoint(P1); plotPoint(P2):
```

Begitu pula di Maxima.

```
>c &= circleWithCenter(A,4) // lingkaran dengan pusat A jari-jari 4
```

[1, 0, 4]

```
>1 &= lineThrough(B,C) // garis 1 melalui B dan C
```

[1, 1, 3]

```
>$lineCircleIntersections(1,c) | radcan, // titik potong lingkaran c dan garis 1
```

Akan ditunjukkan bahwa sudut-sudut yang menghadap busur yang sama adalah sama besar.

```
>C=A+normalize([-2,-3])*4; plotPoint(C); plotSegment(P1,C); plotSegment(P2,C);
>degprint(computeAngle(P1,C,P2))
```

```
>C=A+normalize([-4,-3])*4; plotPoint(C); plotSegment(P1,C); plotSegment(P2,C);
>degprint(computeAngle(P1,C,P2))
69°17'42.68''
```

```
>insimg;
```

Garis Sumbu

Berikut adalah langkah-langkah menggambar garis sumbu ruas garis AB:

- 1. Gambar lingkaran dengan pusat A melalui B.
- 2. Gambar lingkaran dengan pusat B melalui A.
- 3. Tarik garis melallui kedua titik potong kedua lingkaran tersebut. Garis ini merupakan garis sumbu (melalui titik tengah dan tegak lurus) AB.

```
>A=[2,2]; B=[-1,-2];
>c1=circleWithCenter(A,distance(A,B));
>c2=circleWithCenter(B,distance(A,B));
>{P1,P2,f}=circleCircleIntersections(c1,c2);
>l=lineThrough(P1,P2);
>setPlotRange(5); plotCircle(c1); plotCircle(c2);
>plotPoint(A); plotPoint(B); plotSegment(A,B); plotLine(1):
```

Selanjutnya, kami melakukan hal yang sama di Maxima dengan koordinat umum.

```
>A &= [a1,a2]; B &= [b1,b2];
>c1 &= circleWithCenter(A,distance(A,B));
>c2 &= circleWithCenter(B,distance(A,B));
>P &= circleCircleIntersections(c1,c2); P1 &= P[1]; P2 &= P[2];
```

Persamaan untuk persimpangan cukup terlibat. Tetapi kita dapat menyederhanakannya, jika kita memecahkan y.

```
>g &= getLineEquation(lineThrough(P1,P2),x,y);
>$solve(g,y)
```

Ini memang sama dengan tegak lurus tengah, yang dihitung dengan cara yang sama sekali berbeda.

```
>$solve(getLineEquation(middlePerpendicular(A,B),x,y),y)
>h &=getLineEquation(lineThrough(A,B),x,y);
>$solve(h,y)
```

Perhatikan hasil kali gradien garis g dan h adalah:

$$\frac{-(b_1 - a_1)}{(b_2 - a_2)} \times \frac{(b_2 - a_2)}{(b_1 - a_1)} = -1.$$

Artinya kedua garis tegak lurus.

Contoh 3: Rumus Heron

Rumus Heron menyatakan bahwa luas segitiga dengan panjang sisi-sisi a, b dan c adalah:

$$L = \sqrt{s(s-a)(s-b)(s-c)} \quad \text{dengan } s = (a+b+c)/2,$$

atau bisa ditulis dalam bentuk lain:

$$L = \frac{1}{4}\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)}$$

Untuk membuktikan hal ini kita misalkan C(0,0), B(a,0) dan A(x,y), b=AC, c=AB. Luas segitiga ABC adalah

$$L_{\triangle ABC} = \frac{1}{2}a \times y.$$

Nilai y didapat dengan menyelesaikan sistem persamaan:

$$x^{2} + y^{2} = b^{2}$$
, $(x - a)^{2} + y^{2} = c^{2}$.

```
>setPlotRange(-1,10,-1,8); plotPoint([0,0], "C(0,0)"); plotPoint([5.5,0], "B(a,0)"); ...
> plotPoint([7.5,6], "A(x,y)");
>plotSegment([0,0],[5.5,0], "a",25); plotSegment([5.5,0],[7.5,6],"c",15); ...
>plotSegment([0,0],[7.5,6],"b",25);
>plotSegment([7.5,6],[7.5,0],"t=y",25):
>sol &= solve([x^2+y^2=b^2,(x-a)^2+y^2=c^2],[x,y])
```

[]

```
>ysol &= y with sol[2][2]; $'y=sqrt(factor(ysol^2))
```

```
Maxima said:
part: invalid index of list or matrix.
  -- an error. To debug this try: debugmode(true);

Error in:
ysol &= y with sol[2][2]; $'y=sqrt(factor(ysol^2)) ...
```

Kami mendapatkan formula Heron.

```
>function H(a,b,c) &= sqrt(factor((ysol*a/2)^2)); $'H(a,b,c)=H(a,b,c)
>$'Luas=H(2,5,6) // luas segitiga dengan panjang sisi-sisi 2, 5, 6
```

Tentu saja, setiap segitiga persegi panjang adalah kasus yang terkenal.

```
>$H(3,4,5) //luas segitiga siku-siku dengan panjang sisi 3, 4, 5
```

Dan juga jelas, bahwa ini adalah segitiga dengan luas maksimal dan dua sisi 3 dan 4.

```
>aspect (1.5); plot2d($H(3,4,x),1,7): // Kurva luas segitiga sengan panjang sisi 3, 4, x

Variable or function ysol not found.
Error in expression: 3*abs(ysol)/2
```

```
%ploteval:
    y0=f$(x[1],args());
adaptiveevalone:
    s=%ploteval(g$,t;args());
Try "trace errors" to inspect local variables after errors.
plot2d:
    dw/n,dw/n^2,dw/n,auto;args());
```

Kasus umum juga berhasil.

```
>$solve(diff(H(a,b,c)^2,c)=0,c)
```

```
Maxima said:
diff: second argument must be a variable; found [1,0,4]
-- an error. To debug this try: debugmode(true);

Error in:
$solve(diff(H(a,b,c)^2,c)=0,c) ...
```

Sekarang mari kita temukan himpunan semua titik di mana b+c=d untuk beberapa konstanta d. Diketahui bahwa ini adalah elips.

```
>s1 &= subst(d-c,b,sol[2]); $s1
```

```
Maxima said:
part: invalid index of list or matrix.
-- an error. To debug this try: debugmode(true);
Error in:
s1 &= subst(d-c,b,sol[2]); $s1 ...
```

And make functions of this.

>function
$$fx(a,c,d) \&= rhs(s1[1]); \$fx(a,c,d), function $fy(a,c,d) \&= rhs(s1[2]); \$fy(a,c,d)$$$

Sekarang kita bisa menggambar set. Sisi b bervariasi dari 1 hingga 4. Sudah diketahui bahwa kita mendapatkan elips.

Kita dapat memeriksa persamaan umum untuk elips ini, i.e.

$$\frac{(x-x_m)^2}{u^2} + \frac{(y-y_m)}{v^2} = 1,$$

dimana (xm,ym) adalah pusatnya, dan u dan v adalah setengah sumbu.

Kita melihat bahwa tinggi dan dengan demikian luas segitiga adalah maksimum untuk x=0. Dengan demikian luas segitiga dengan a+b+c=d adalah maksimal, jika sama sisi. Kami ingin menurunkan ini secara analitis.

>eqns &=
$$[diff(H(a,b,d-(a+b))^2,a)=0,diff(H(a,b,d-(a+b))^2,b)=0];$$
 \$eqns

Kita mendapatkan beberapa minimum, yang termasuk segitiga dengan satu sisi 0, dan solusi a=b=c=d/3.

```
>$solve(eqns,[a,b])
```

Ada juga metode Lagrange, memaksimalkan H(a,b,c)^2 sehubungan dengan a+b+d=d.

```
>&solve([diff(H(a,b,c)^2,a)=la,diff(H(a,b,c)^2,b)=la, ...
> diff(H(a,b,c)^2,c)=la,a+b+c=d],[a,b,c,la])
```

```
Maxima said:
diff: second argument must be a variable; found [1,0,4]
-- an error. To debug this try: debugmode(true);

Error in:
... la, diff(H(a,b,c)^2,c)=la,a+b+c=d],[a,b,c,la]) ...
```

Kita bisa membuat plot situasinya

First set the points in Maxima.

```
Maxima said:
part: invalid index of list or matrix.
-- an error. To debug this try: debugmode(true);

Error in:
A &= at([x,y],sol[2]); $A ...
>B &= [0,0]; $B, C &= [a,0]; $C
```

Kemudian atur rentang plot, dan plot poinnya.

```
>setPlotRange(0,5,-2,3); ...
>a=4; b=3; c=2; ...
>plotPoint(mxmeval("B"),"B"); plotPoint(mxmeval("C"),"C"); ...
>plotPoint(mxmeval("A"),"A"):
```

```
Variable a1 not found!
Use global variables or parameters for string evaluation.
Error in Evaluate, superfluous characters found.
Try "trace errors" to inspect local variables after errors.
```

```
mxmeval:
      return evaluate(mxm(s));
  Error in:
  ... otPoint(mxmeval("C"),"C"); plotPoint(mxmeval("A"),"A"): ...
Plot the segments.
>plotSegment(mxmeval("A"),mxmeval("C")); ...
>plotSegment(mxmeval("B"),mxmeval("C")); ...
>plotSegment(mxmeval("B"),mxmeval("A")):
  Variable a1 not found!
 Use global variables or parameters for string evaluation.
 Error in Evaluate, superfluous characters found.
 Try "trace errors" to inspect local variables after errors.
  mxmeval:
      return evaluate(mxm(s));
  Error in:
 plotSegment(mxmeval("A"),mxmeval("C")); plotSegment(mxmeval("B ...
```

CompHitung tengah tegak lurus di Maxima.

```
>h &= middlePerpendicular(A,B); g &= middlePerpendicular(B,C);
```

Dan pusat keliling.

```
>U &= lineIntersection(h,g);
```

Kita mendapatkan rumus untuk jari-jari lingkaran melingkar.

```
>&assume(a>0,b>0,c>0); $distance(U,B) | radcan
```

Mari kita tambahkan ini ke plot.

```
>plotPoint(U()); ...
>plotCircle(circleWithCenter(mxmeval("U"),mxmeval("distance(U,C)"))):
```

```
Variable a2 not found!
Use global variables or parameters for string evaluation.
Error in ^
Error in expression: [a/2,(a2^2+a1^2-a*a1)/(2*a2)]
Error in:
plotPoint(U()); plotCircle(circleWithCenter(mxmeval("U"),mxmev ...
```

Dengan menggunakan geometri, kita mendapatkan rumus sederhana

$$\frac{a}{\sin(\alpha)} = 2r$$

untuk radius. Kita dapat memeriksa, apakah ini benar-benar benar dengan Maxima. Maxima akan memperhitungkan ini hanya jika kita mengkutududukkannya.

>\$c^2/sin(computeAngle(A,B,C))^2 | factor

Contoh 4: Garis Euler dan Parabola

Garis Euler adalah garis yang ditentukan dari segitiga apa pun yang tidak sama sisi. Ini adalah garis tengah segitiga, dan melewati beberapa titik penting yang ditentukan dari segitiga, termasuk ortosentrum, pusat lilitan, centroid, titik Exeter dan pusat lingkaran sembilan titik segitiga.

Untuk demonstrasi, kita menghitung dan memplot garis Euler dalam segitiga.

Pertama, kita mendefinisikan sudut segitiga di Euler. Kami menggunakan definisi, yang terlihat dalam ekspresi simbolis.

```
>A::=[-1,-1]; B::=[2,0]; C::=[1,2];
```

Untuk memplot objek geometris, kita mengatur area plot, dan menambahkan titik-titik ke dalamnya. Semua plot objek geometris ditambahkan ke plot saat ini.

```
>setPlotRange(3); plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C");
```

Kita juga bisa menambahkan sisi segitiga.

```
>plotSegment(A,B,""); plotSegment(B,C,""); plotSegment(C,A,""):
```

Berikut adalah luas segitiga, menggunakan rumus penentu. Tentu saja, kita harus mengambil nilai absolut dari hasil ini.

>\$areaTriangle(A,B,C)

Kita dapat menghitung koefisien sisi c.

$$[-1, 3, -2]$$

Dan juga dapatkan rumus untuk baris ini.

```
>$getLineEquation(c,x,y)
```

Untuk bentuk Hesse, kita perlu menentukan titik, sehingga titik tersebut berada di sisi positif dari Hesseform. Memasukkan titik menghasilkan jarak positif ke garis.

```
>$getHesseForm(c,x,y,C), at(%,[x=C[1],y=C[2]])
```

Sekarang kita menghitung lingkaran lingkaran ABC.

```
>LL &= circleThrough(A,B,C); $getCircleEquation(LL,x,y)
>0 &= getCircleCenter(LL); $0
```

Plot lingkaran dan pusatnya. Cu dan Anda simbolis. Kami mengevaluasi ekspresi ini untuk Euler.

```
>plotCircle(LL()); plotPoint(0(),"0"):
```

Kita dapat menghitung persimpangan ketinggian di ABC (ortosent) secara numerik dengan perintah berikut.

```
>H &= lineIntersection(perpendicular(A,lineThrough(C,B)),...
> perpendicular(B,lineThrough(A,C))); $H
```

Sekarang kita dapat menghitung garis Euler dari segitiga.

```
>el &= lineThrough(H,0); $getLineEquation(el,x,y)
```

Tambahkan ke plot kita.

```
>plotPoint(H(),"H"); plotLine(el(),"Garis Euler"):
```

Pusat gravitasi harus berada di garis ini.

```
>M &= (A+B+C)/3; $getLineEquation(el,x,y) with [x=M[1],y=M[2]]
>plotPoint(M(),"M"): // titik berat
```

Teorinya memberitahu kita MH=2*MO. Kita perlu menyederhanakan dengan rad
can untuk mencapai ini.

```
>$distance(M,H)/distance(M,O)|radcan
```

Fungsi termasuk fungsi untuk sudut juga.

```
>$computeAngle(A,C,B), degprint(%())
```

Persamaan untuk pusat incircle tidak terlalu bagus.

```
>Q &= lineIntersection(angleBisector(A,C,B),angleBisector(C,B,A))|radcan; $Q
```

Mari kita hitung juga ekspresi untuk jari-jari lingkaran yang tertulis.

```
>r &= distance(Q,projectToLine(Q,lineThrough(A,B)))|ratsimp; $r
>LD &= circleWithCenter(Q,r); // Lingkaran dalam
```

Mari kita tambahkan ini ke plot.

```
>color(5); plotCircle(LD()):
```

Parabola

Selanjutnya akan dicari persamaan tempat kedudukan titik-titik yang berjarak sama ke titik C dan ke garis AB.

```
>p &= getHesseForm(lineThrough(A,B),x,y,C)-distance([x,y],C); p=0
```

Persamaan tersebut dapat digambar menjadi satu dengan gambar sebelumnya.

```
>plot2d(p,level=0,add=1,contourcolor=6):
```

Ini seharusnya menjadi beberapa fungsi, tetapi pemecah default Maxima hanya dapat menemukan solusinya, jika kita kuadratkan persamaannya. Akibatnya, kami mendapatkan solusi palsu.

```
>akar &= solve(getHesseForm(lineThrough(A,B),x,y,C)^2-distance([x,y],C)^2,y)
```

[y = -3 x -
$$sqrt(70)$$
 $sqrt(9 - 2 x) + 26,$
y = -3 x + $sqrt(70)$ $sqrt(9 - 2 x) + 26]$

Solusi pertama adalah

maxima: akar[1]

Menambahkan solusi pertama ke plot menunjukkan, bahwa itu memang jalan yang kita cari. Teorinya memberi tahu kita bahwa itu adalah parabola yang diputar.

```
>plot2d(&rhs(akar[1]),add=1):
>function g(x) &= rhs(akar[1]); $'g(x)= g(x)// fungsi yang mendefinisikan kurva di atas
>T &=[-1, g(-1)]; // ambil sebarang titik pada kurva tersebut
>dTC &= distance(T,C); $fullratsimp(dTC), $float(%) // jarak T ke C
>U &= projectToLine(T,lineThrough(A,B)); $U // proyeksi T pada garis AB
>dU2AB &= distance(T,U); $fullratsimp(dU2AB), $float(%) // jatak T ke AB
```

Ternyata jarak T ke C sama dengan jarak T ke AB. Coba Anda pilih titik T yang lain dan ulangi perhitungan-perhitungan di atas untuk menunjukkan bahwa hasilnya juga sama.

Ini terinspirasi oleh sebuah pembicaraan N.J.Wildberger. Dalam bukunya "Divine Proportions", Wildberger mengusulkan untuk mengganti gagasan klasik tentang jarak dan sudut dengan segi empat dan penyebaran. Dengan menggunakan ini, memang mungkin untuk menghindari fungsi trigonometri dalam banyak contoh, dan tetap "rasional".

Berikut ini, saya memperkenalkan konsep, dan memecahkan beberapa masalah. Saya menggunakan perhitungan simbolik Maxima di sini, yang menyembunyikan keuntungan utama dari trigonometri rasional bahwa perhitungan dapat dilakukan hanya dengan kertas dan pensil. Anda diundang untuk memeriksa hasilnya tanpa komputer.

Intinya adalah bahwa perhitungan rasional simbolik sering kali menghasilkan hasil yang sederhana. Sebaliknya, trigonometri klasik menghasilkan hasil trigonometri yang rumit, yang mengevaluasi perkiraan numerik saja.

```
>load geometry;
```

Untuk perkenalan pertama, kami menggunakan segitiga persegi panjang dengan proporsi Mesir yang terkenal 3, 4 dan 5. Perintah berikut adalah perintah Euler untuk memplot geometri bidang yang terkandung dalam file Euler "geometry.e".

```
>C&:=[0,0]; A&:=[4,0]; B&:=[0,3]; ...
>setPlotRange(-1,5,-1,5); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg(30);
```

Tentu,

$$\sin(w_a) = \frac{a}{c},$$

di mana wa adalah sudut pada A. Cara biasa untuk menghitung sudut ini, adalah dengan mengambil kebalikan dari fungsi sinus. Hasilnya adalah sudut yang tidak dapat dicerna, yang hanya dapat dicetak kira-kira.

36°52'11.63''

Trigonometri rasional mencoba menghindari hal ini.

Gagasan pertama dari trigonometri rasional adalah segi empat, yang menggantikan jarak. Faktanya, itu hanya jarak kuadrat. Berikut ini, a, b, dan c menunjukkan segi empat sisi.

Teorema Pythogoras hanya menjadi a+b=c kemudian.

Gagasan kedua dari trigonometri rasional adalah penyebaran. Spread mengukur pembukaan antar garis. Ini adalah 0, jika garisnya sejajar, dan 1, jika garisnya persegi panjang. Ini adalah kuadrat sinus dari sudut antara dua garis.

Penyebaran garis AB dan AC pada gambar di atas didefinisikan sebagaithe lines AB and AC in the image above is defined as

$$s_a = \sin(\alpha)^2 = \frac{a}{c},$$

di mana a dan c adalah kuadrat dari segitiga persegi panjang dengan satu sudut di A.

Ini lebih mudah dihitung daripada sudut, tentu saja. Tetapi Anda kehilangan properti bahwa sudut dapat ditambahkan dengan mudah.

Tentu saja, kita dapat mengonversi nilai perkiraan kita untuk sudut wa menjadi sprad, dan mencetaknya sebagai pecahan.

>fracprint(sin(wa)^2)

9/25

Hukum kosinus trgonometri klasik diterjemahkan menjadi berikut "cross law".

$$(c+b-a)^2 = 4bc(1-s_a)$$

Di sini a, b, dan c adalah segi empat dari sisi-sisi segitiga, dan sa adalah penyebaran di sudut A. Sisi a, seperti biasa, berlawanan dengan sudut A.

Hukum ini diimplementasikan dalam file geometri.e yang kita muat ke Euler.

```
>$crosslaw(aa,bb,cc,saa)
```

Dalam kasus kami, kami mendapatkan

```
>$crosslaw(a,b,c,sa)
```

Mari kita gunakan crosslaw ini untuk menemukan penyebaran di A. Untuk melakukan ini, kami menghasilkan crosslaw untuk segi empat a, b, dan c, dan menyelesaikannya untuk spread sa yang tidak diketahui.

Anda dapat melakukan ini dengan tangan dengan mudah, tetapi saya menggunakan Maxima. Tentu saja, kami mendapatkan hasilnya, kami sudah memilikinya.

```
>$crosslaw(a,b,c,x), $solve(%,x)
```

Kami sudah tahu ini. Definisi spread adalah kasus khusus dari crosslaw.

Kita juga dapat menyelesaikan ini untuk umum a, b, c. Hasilnya adalah rumus yang menghitung penyebaran sudut segitiga yang diberikan segi empat dari tiga sisi.

>\$solve(crosslaw(aa,bb,cc,x),x)

Kita bisa membuat fungsi dari hasilnya. Fungsi seperti itu sudah didefinisikan dalam file geometri.e Euler.

>\$spread(a,b,c)

Sebagai contoh, kita dapat menggunakannya untuk menghitung sudut segitiga dengan sisi

$$a, \quad a, \quad \frac{4a}{7}$$

Hasilnya rasional, yang tidak mudah didapatkan jika kita menggunakan trigonometri klasik.

>\$spread(a,a,4*a/7)

Ini adalah sudut dalam derajat.

```
>degprint(arcsin(sqrt(6/7)))
```

67°47'32.44''

Contoh lain

Sekarang, mari kita coba contoh yang lebih lanjut.

Kami menetapkan tiga sudut segitiga sebagai berikut.

```
>A&:=[1,2]; B&:=[4,3]; C&:=[0,4]; ...
>setPlotRange(-1,5,1,7); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg;
```

Dengan menggunakan Pythogoras, mudah untuk menghitung jarak antara dua titik. Pertama-tama saya menggunakan jarak fungsi file Euler untuk geometri. Fungsi jarak menggunakan geometri klasik.

```
>$distance(A,B)
```

Euler juga berisi fungsi untuk kuadran antara dua titik.

Dalam contoh berikut, karena c+b bukan a, segitiga tidak persegi panjang.

Pertama, mari kita hitung sudut tradisional. Fungsi computeAngle menggunakan metode biasa berdasarkan produk titik dari dua vektor. Hasilnya adalah beberapa perkiraan floating point.

$$A = <1,2> \quad B = <4,3>, \quad C = <0,4>$$

$$\mathbf{a} = C - B = <-4,1>, \quad \mathbf{c} = A - B = <-3,-1>, \quad \beta = \angle ABC$$

$$\mathbf{a}.\mathbf{c} = |\mathbf{a}|.|\mathbf{c}|\cos\beta$$

$$\cos\angle ABC = \cos\beta = \frac{\mathbf{a}.\mathbf{c}}{|\mathbf{a}|.|\mathbf{c}|} = \frac{12-1}{\sqrt{17}\sqrt{10}} = \frac{11}{\sqrt{17}\sqrt{10}}$$

32.4711922908

Dengan menggunakan pensil dan kertas, kita dapat melakukan hal yang sama dengan hukum silang. Kami memasukkan kuadrat a, b, dan c ke dalam hukum silang dan menyelesaikan x.

$$>$$
\$crosslaw(a,b,c,x), \$solve(%,x), //(b+c-a)^=4b.c(1-x)

Artinya, apa yang dilakukan penyebaran fungsi yang didefinisikan dalam "geometri.e".

>sb &= spread(b,a,c); \$sb

Maxima mendapatkan hasil yang sama dengan menggunakan trigonometri biasa, jika kita memaksanya. Itu menyelesaikan suku $\sin(\arccos(...))$ menjadi hasil pecahan. Sebagian besar siswa tidak dapat melakukan ini.

>\$sin(computeAngle(A,B,C))^2

Setelah kita memiliki penyebaran di B, kita dapat menghitung tinggi ha di sisi a. Ingatlah bahwa

$$s_b = \frac{h_a}{c}$$

by definition.

>ha &= c*sb; \$ha

Gambar berikut telah diproduksi dengan program geometri C.a.R., yang dapat menggambar segi empat dan penyebaran.

gambar: (20) Rational_Geometry_CaR.png

Menurut definisi panjang ha adalah akar kuadrat dari segi empatnya.

>\$sqrt(ha)

Sekarang kita dapat menghitung luas segitiga. Jangan lupa, bahwa kita berurusan dengan segi empat!

>\$sqrt(ha)*sqrt(a)/2

Rumus penentu yang biasa menghasilkan hasil yang sama.

>\$areaTriangle(B,A,C)

Rumus Heron

Sekarang, mari kita selesaikan masalah ini secara umum!

```
>&remvalue(a,b,c,sb,ha);
```

Pertama-tama kita menghitung spread di B untuk segitiga dengan sisi a, b, dan c. Kemudian kita menghitung luas kuadrat ("quadrea"?), faktorkan dengan Maxima, dan kita mendapatkan rumus Heron yang terkenal.

Harus diakui, ini sulit dilakukan dengan pensil dan kertas.

```
>$spread(b^2,c^2,a^2), $factor(%*c^2*a^2/4)
```

Aturan Triple Spread

Kerugian spread adalah tidak lagi sekadar menambahkan sudut yang sama.

Namun, tiga spread segitiga memenuhi aturan "triple spread" berikut.

```
>&remvalue(sa,sb,sc); $triplespread(sa,sb,sc)
```

Aturan ini berlaku untuk tiga sudut mana pun yang jumlahnya mencapai 180°.

$$\alpha + \beta + \gamma = \pi$$

Sejak penyebaran

$$\alpha, \pi - \alpha$$

sama, aturan penyebaran tiga kali lipat juga benar, jika

$$\alpha + \beta = \gamma$$

Karena penyebaran sudut negatifnya sama, maka aturan penyebaran rangkap tiga juga berlaku, jika

$$\alpha + \beta + \gamma = 0$$

Misalnya, kita dapat menghitung sebaran sudut 60°. Yaitu 3/4. Persamaan tersebut memiliki solusi kedua, di mana semua sebarannya adalah 0.

>\$solve(triplespread(x,x,x),x)

Sebaran 90° jelas adalah 1. Jika dua sudut dijumlahkan menjadi 90°, sebarannya memecahkan persamaan sebaran rangkap tiga dengan a,b,1. Dengan perhitungan berikut kita memperoleh a+b=1.

```
>$triplespread(x,y,1), $solve(%,x)
```

Karena sebaran 180°-t sama dengan sebaran t, rumus sebaran rangkap tiga juga berlaku, jika satu sudut adalah jumlah atau selisih dari dua sudut lainnya.

Jadi kita dapat menemukan sebaran sudut yang digandakan. Perhatikan bahwa ada dua solusi lagi. Kita buat ini menjadi fungsi.

```
>$solve(triplespread(a,a,x),x), function doublespread(a) &= factor(rhs(%[1]))
```

Garis Bagi Sudut

Kita sudah tahu situasinya seperti ini.

```
>C&:=[0,0]; A&:=[4,0]; B&:=[0,3]; ...
>setPlotRange(-1,5,-1,5); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg;
```

Mari kita hitung panjang garis bagi sudut di A. Namun, kita ingin menyelesaikannya untuk a,b,c umum.

```
>&remvalue(a,b,c);
```

 Jadi pertama-tama kita hitung sebaran sudut yang dibagi dua di $\operatorname{A},$ menggunakan rumus sebaran rangkap tiga.

Masalah dengan rumus ini muncul lagi. Rumus ini memiliki dua solusi. Kita harus memilih yang benar. Solusi lainnya mengacu pada sudut yang dibagi dua 180° -wa.

```
>triplespread(x,x,a/(a+b)), solve(%,x), sa2 &= rhs(%[1]); sa2
```

Mari kita periksa persegi panjang Mesir.

```
>$sa2 with [a=3^2,b=4^2]
```

Kita dapat mencetak sudut dalam Euler, setelah mentransfer sebaran ke radian.

```
>wa2 := arcsin(sqrt(1/10)); degprint(wa2)
```

Titik P merupakan perpotongan garis bagi sudut dengan sumbu y.

```
>P := [0,tan(wa2)*4]
```

```
[0, 1.33333]
```

18°26'5.82''

```
>plotPoint(P,"P"); plotSegment(A,P):
```

Mari kita periksa sudut-sudut pada contoh spesifik kita.

```
>computeAngle(C,A,P), computeAngle(P,A,B)
```

```
0.321750554397
0.321750554397
```

Sekarang kita hitung panjang garis bagi AP.

Kita gunakan teorema sinus pada segitiga APC. Teorema ini menyatakan bahwa

$$\frac{BC}{\sin(w_a)} = \frac{AC}{\sin(w_b)} = \frac{AB}{\sin(w_c)}$$

berlaku di sembarang segitiga. Kuadratkan, itu diterjemahkan menjadi apa yang disebut "hukum sebaran"

$$\frac{a}{s_a} = \frac{b}{s_b} = \frac{c}{s_b}$$

di mana a, b, c menunjukkan kuadran.

Karena CPA sebarannya adalah 1-sa2, kita memperoleh bisa/1=b/(1-sa2) dan dapat menghitung bisa (kuadran garis bagi sudut).

```
>&factor(ratsimp(b/(1-sa2))); bisa &= %; $bisa
```

Mari kita periksa rumus ini untuk nilai-nilai Mesir kita.

```
>sqrt(mxmeval("at(bisa,[a=3^2,b=4^2])")), distance(A,P)
```

- 4.21637021356
- 4.21637021356

Kita juga dapat menghitung P menggunakan rumus spread.

```
>py&=factor(ratsimp(sa2*bisa)); $py
```

Nilainya sama dengan yang kita dapatkan dengan rumus trigonometri.

```
>sqrt(mxmeval("at(py,[a=3^2,b=4^2])"))
```

1.33333333333

Sudut Tali Busur

Perhatikan situasi berikut.

```
>setPlotRange(1.2); ...
>color(1); plotCircle(circleWithCenter([0,0],1)); ...
>A:=[cos(1),sin(1)]; B:=[cos(2),sin(2)]; C:=[cos(6),sin(6)]; ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>color(3); plotSegment(A,B,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>color(1); 0:=[0,0]; plotPoint(0,"0"); ...
>plotSegment(A,0); plotSegment(B,0); plotSegment(C,0,"r"); ...
>insimg;
```

Kita dapat menggunakan Maxima untuk memecahkan rumus penyebaran rangkap tiga untuk sudut-sudut di pusat O untuk r. Dengan demikian, kita memperoleh rumus untuk jari-jari kuadrat pericircle dalam bentuk kuadran sisi-sisinya.

Kali ini, Maxima menghasilkan beberapa nol kompleks, yang kita abaikan.

```
>&remvalue(a,b,c,r); // hapus nilai-nilai sebelumnya untuk perhitungan baru
>rabc &= rhs(solve(triplespread(spread(b,r,r),spread(a,r,r),spread(c,r,r)),r)[4]); $rabc
```

Kita dapat menjadikannya fungsi Euler.

```
>function periradius(a,b,c) &= rabc;
```

Mari kita periksa hasilnya untuk titik A, B, C.

```
>a:=quadrance(B,C); b:=quadrance(A,C); c:=quadrance(A,B);
```

Radiusnya memang 1.

```
>periradius(a,b,c)
```

Faktanya, sebaran CBA hanya bergantung pada b dan c. Ini adalah teorema sudut tali busur.

>\$spread(b,a,c)*rabc | ratsimp

Faktanya, sebarannya adalah b/(4r), dan kita melihat bahwa sudut tali busur b adalah setengah sudut pusat.

>\$doublespread(b/(4*r))-spread(b,r,r) | ratsimp

Contoh 6: Jarak Minimal pada Bidang

Catatan awal

Fungsi yang, pada titik M di bidang, menetapkan jarak AM antara titik tetap A dan M, memiliki garis datar yang agak sederhana: lingkaran yang berpusat di A.

```
>&remvalue();
>A=[-1,-1];
>function d1(x,y):=sqrt((x-A[1])^2+(y-A[2])^2)
>fcontour("d1",xmin=-2,xmax=0,ymin=-2,ymax=0,hue=1, ...
>title="If you see ellipses, please set your window square"):
```

dan grafiknya cukup sederhana: bagian atas kerucut:

```
>plot3d("d1",xmin=-2,xmax=0,ymin=-2,ymax=0):
```

Tentu saja minimum 0 dicapai di A.

Sekarang kita lihat fungsi MA+MB di mana A dan B adalah dua titik (tetap). Merupakan "fakta yang diketahui" bahwa kurva level adalah elips, titik fokusnya adalah A dan B; kecuali untuk minimum AB yang konstan pada segmen [AB]:

```
>B=[1,-1];
>function d2(x,y):=d1(x,y)+sqrt((x-B[1])^2+(y-B[2])^2)
>fcontour("d2",xmin=-2,xmax=2,ymin=-3,ymax=1,hue=1):
```

Grafiknya lebih menarik:

```
>plot3d("d2",xmin=-2,xmax=2,ymin=-3,ymax=1):
```

Pembatasan pada garis (AB) lebih terkenal:

```
>plot2d("abs(x+1)+abs(x-1)",xmin=-3,xmax=3):
```

Sekarang semuanya menjadi kurang sederhana: Tidak banyak yang tahu bahwa MA+MB+MC mencapai nilai minimumnya di satu titik bidang, tetapi menentukannya tidaklah sesederhana itu:

1) Jika salah satu sudut segitiga ABC lebih dari 120° (misalkan di A), maka nilai minimumnya tercapai di titik ini (misalkan AB+AC).

Contoh:

```
>C=[-4,1];
>function d3(x,y):=d2(x,y)+sqrt((x-C[1])^2+(y-C[2])^2)
>plot3d("d3",xmin=-5,xmax=3,ymin=-4,ymax=4);
>insimg;
>fcontour("d3",xmin=-4,xmax=1,ymin=-2,ymax=2,hue=1,title="The minimum is on A");
>P=(A_B_C_A)'; plot2d(P[1],P[2],add=1,color=12);
>insimg;
```

2) Namun jika semua sudut segitiga ABC kurang dari 120°, maka nilai minimumnya berada di titik F di bagian dalam segitiga, yang merupakan satu-satunya titik yang sudut-sudut sisi ABC-nya sama (masing-masing sudutnya 120°):

```
>C=[-0.5,1];
>plot3d("d3",xmin=-2,xmax=2,ymin=-2,ymax=2):
>fcontour("d3",xmin=-2,xmax=2,ymin=-2,ymax=2,hue=1,title="The Fermat point");
>P=(A_B_C_A)'; plot2d(P[1],P[2],add=1,color=12);
>insimg;
```

Merupakan aktivitas yang menarik untuk mewujudkan gambar di atas dengan perangkat lunak geometri; misalnya, saya mengetahui perangkat lunak yang ditulis dalam Java yang memiliki instruksi "garis kontur"...

Semua ini ditemukan oleh seorang hakim Prancis bernama Pierre de Fermat; ia menulis surat kepada para dilettan lain seperti pendeta Marin Mersenne dan Blaise Pascal yang bekerja di pajak penghasilan. Jadi titik unik F sehingga FA+FB+FC minimal, disebut titik Fermat dari segitiga tersebut. Namun tampaknya beberapa tahun sebelumnya, Torriccelli dari Italia telah menemukan titik ini sebelum Fermat menemukannya! Bagaimanapun tradisinya adalah mencatat titik F ini...

Empat titik

Langkah berikutnya adalah menambahkan titik ke-4 D dan mencoba meminimalkan MA+MB+MC+MD; katakanlah Anda adalah operator TV kabel dan ingin mencari di bidang mana Anda harus meletakkan antena Anda sehingga Anda dapat menyalurkan sinyal ke empat desa dan menggunakan panjang kabel sesedikit mungkin!

```
>D=[1,1];
>function d4(x,y):=d3(x,y)+sqrt((x-D[1])^2+(y-D[2])^2)
>plot3d("d4",xmin=-1.5,xmax=1.5,ymin=-1.5,ymax=1.5):
>fcontour("d4",xmin=-1.5,xmax=1.5,ymin=-1.5,ymax=1.5,hue=1);
>P=(A_B_C_D)'; plot2d(P[1],P[2],points=1,add=1,color=12);
>insimg;
```

Masih terdapat nilai minimum dan tidak tercapai di titik A, B, C, maupun D:

```
>function f(x):=d4(x[1],x[2])
>neldermin("f",[0.2,0.2])
```

```
[0.142858, 0.142857]
```

Tampaknya dalam kasus ini, koordinat titik optimal bersifat rasional atau mendekati rasional... Sekarang ABCD adalah persegi, kita mengharapkan bahwa titik optimal akan menjadi pusat ABCD:

```
>C=[-1,1];
>plot3d("d4",xmin=-1,xmax=1,ymin=-1,ymax=1):
>fcontour("d4",xmin=-1.5,xmax=1.5,ymin=-1.5,ymax=1.5,hue=1);
>P=(A_B_C_D)'; plot2d(P[1],P[2],add=1,color=12,points=1);
>insimg;
```

Contoh 7: Bola Dandelin dengan Povray

Anda dapat menjalankan demonstrasi ini, jika Anda telah menginstal Povray, dan prengine.exe di jalur program.

Pertama, kita hitung jari-jari bola.

Jika Anda melihat gambar di bawah, Anda melihat bahwa kita memerlukan dua lingkaran yang menyentuh dua garis yang membentuk kerucut, dan satu garis yang membentuk bidang yang memotong kerucut.

Kami menggunakan file geometry.e milik Euler untuk ini.

>load geometry;

Pertama dua garis membentuk kerucut.

```
[- a, - 1, 0]
```

Lalu baris ketiga.

```
>g &= lineThrough([-1,0],[1,1])
```

Kita merencanakan segalanya sejauh ini.

```
>setPlotRange(-1,1,0,2);
>color(black); plotLine(g(),"")
>a:=2; color(blue); plotLine(g1(),""), plotLine(g2(),""):
```

Sekarang kita ambil titik umum pada sumbu y.

>P &= [0,u]

[0, u]

Hitunglah jarak ke g1.

>d1 &= distance(P,projectToLine(P,g1)); \$d1

Hitunglah jarak ke g.

>d &= distance(P,projectToLine(P,g)); \$d

Dan temukan pusat kedua lingkaran, yang jaraknya sama.

>sol &= solve(d1^2=d^2,u); \$sol

Ada dua solusi.

Kita mengevaluasi solusi simbolik, dan menemukan kedua pusat, dan kedua jarak.

```
>u := sol()
```

[0.333333, 1]

```
>dd := d()
```

```
[0.149071, 0.447214]
```

Gambarkan lingkaran-lingkaran tersebut ke dalam gambar.

```
>color(red);
>plotCircle(circleWithCenter([0,u[1]],dd[1]),"");
>plotCircle(circleWithCenter([0,u[2]],dd[2]),"");
>insimg;
```

Plot dengan Povray

Selanjutnya kita plot semuanya dengan Povray. Perhatikan bahwa Anda mengubah perintah apa pun dalam urutan perintah Povray berikut, dan menjalankan kembali semua perintah dengan Shift-Return.

Pertama-tama kita memuat fungsi povray.

```
>load povray;
>defaultpovray="C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe"
```

```
C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe
```

Kami menyiapkan suasananya dengan tepat.

```
>povstart(zoom=11,center=[0,0,0.5],height=10°,angle=140°);
```

Berikutnya kita menulis kedua bola itu ke dalam file Povray.

```
>writeln(povsphere([0,0,u[1]],dd[1],povlook(red)));
>writeln(povsphere([0,0,u[2]],dd[2],povlook(red)));
```

Dan kerucutnya, transparan.

```
>writeln(povcone([0,0,0],0,[0,0,a],1,povlook(lightgray,1)));
```

Kita buat bidang yang dibatasi pada kerucut.

```
>gp=g();
>pc=povcone([0,0,0],0,[0,0,a],1,"");
>vp=[gp[1],0,gp[2]]; dp=gp[3];
>writeln(povplane(vp,dp,povlook(blue,0.5),pc));
```

Sekarang kita buat dua titik pada lingkaran, di mana bola menyentuh kerucut.

```
>function turnz(v) := return [-v[2],v[1],v[3]]
>P1=projectToLine([0,u[1]],g1()); P1=turnz([P1[1],0,P1[2]]);
>writeln(povpoint(P1,povlook(yellow)));
>P2=projectToLine([0,u[2]],g1()); P2=turnz([P2[1],0,P2[2]]);
>writeln(povpoint(P2,povlook(yellow)));
```

Kemudian kita buat dua titik tempat bola-bola tersebut menyentuh bidang. Titik-titik ini adalah fokus elips.

```
>P3=projectToLine([0,u[1]],g()); P3=[P3[1],0,P3[2]];
>writeln(povpoint(P3,povlook(yellow)));
>P4=projectToLine([0,u[2]],g()); P4=[P4[1],0,P4[2]];
>writeln(povpoint(P4,povlook(yellow)));
```

Berikutnya kita hitung perpotongan P1P2 dengan bidang.

```
>t1=scalp(vp,P1)-dp; t2=scalp(vp,P2)-dp; P5=P1+t1/(t1-t2)*(P2-P1);
>writeln(povpoint(P5,povlook(yellow)));
```

Kita menghubungkan titik-titik dengan segmen garis.

```
>writeln(povsegment(P1,P2,povlook(yellow)));
>writeln(povsegment(P5,P3,povlook(yellow)));
>writeln(povsegment(P5,P4,povlook(yellow)));
```

Sekarang kita buat pita abu-abu, di mana bola-bola menyentuh kerucut.

```
>pcw=povcone([0,0,0],0,[0,0,a],1.01);
>pc1=povcylinder([0,0,P1[3]-defaultpointsize/2],[0,0,P1[3]+defaultpointsize/2],1);
>writeln(povintersection([pcw,pc1],povlook(gray)));
>pc2=povcylinder([0,0,P2[3]-defaultpointsize/2],[0,0,P2[3]+defaultpointsize/2],1);
>writeln(povintersection([pcw,pc2],povlook(gray)));
```

Mulai program Povray.

```
>povend();
```

Untuk mendapatkan Anaglyph ini, kita perlu memasukkan semuanya ke dalam fungsi scene. Fungsi ini akan digunakan dua kali nanti.

```
>function scene () ...
```

```
global a,u,dd,g,g1,defaultpointsize;
writeln(povsphere([0,0,u[1]],dd[1],povlook(red)));
writeln(povsphere([0,0,u[2]],dd[2],povlook(red)));
writeln(povcone([0,0,0],0,[0,0,a],1,povlook(lightgray,1)));
gp=g();
pc=povcone([0,0,0],0,[0,0,a],1,"");
vp=[gp[1],0,gp[2]]; dp=gp[3];
writeln(povplane(vp,dp,povlook(blue,0.5),pc));
```

```
P1=projectToLine([0,u[1]],g1()); P1=turnz([P1[1],0,P1[2]]);
writeln(povpoint(P1,povlook(yellow)));
P2=projectToLine([0,u[2]],g1()); P2=turnz([P2[1],0,P2[2]]);
writeln(povpoint(P2,povlook(yellow)));
P3=projectToLine([0,u[1]],g()); P3=[P3[1],0,P3[2]];
writeln(povpoint(P3,povlook(yellow)));
P4=projectToLine([0,u[2]],g()); P4=[P4[1],0,P4[2]];
writeln(povpoint(P4,povlook(yellow)));
t1=scalp(vp,P1)-dp; t2=scalp(vp,P2)-dp; P5=P1+t1/(t1-t2)*(P2-P1);
writeln(povpoint(P5,povlook(yellow)));
writeln(povsegment(P1,P2,povlook(yellow)));
writeln(povsegment(P5,P3,povlook(yellow)));
writeln(povsegment(P5,P4,povlook(vellow)));
pcw=povcone([0,0,0],0,[0,0,a],1.01);
pc1=povcylinder([0,0,P1[3]-defaultpointsize/2],[0,0,P1[3]+defaultpointsize/2],1);
writeln(povintersection([pcw,pc1],povlook(gray)));
pc2=povcylinder([0,0,P2[3]-defaultpointsize/2],[0,0,P2[3]+defaultpointsize/2],1);
writeln(povintersection([pcw,pc2],povlook(gray)));
endfunction
```

 Anda memerlukan kacamata merah/cyan untuk menghargai efek berikut.

```
>povanaglyph("scene",zoom=11,center=[0,0,0.5],height=10°,angle=140°);
```

Dalam buku catatan ini, kami ingin melakukan beberapa perhitungan sferis. Fungsi-fungsi tersebut terdapat dalam berkas "spherical.e" di folder contoh. Kami perlu memuat berkas tersebut terlebih dahulu.

```
>load "spherical.e";
```

Untuk memasukkan posisi geografis, kami menggunakan vektor dengan dua koordinat dalam radian (utara dan timur, nilai negatif untuk selatan dan barat). Berikut ini adalah koordinat untuk Kampus FMIPA UNY.

```
>FMIPA=[rad(-7,-46.467),rad(110,23.05)]
```

```
[-0.13569, 1.92657]
```

Anda dapat mencetak posisi ini dengan sposprint (cetak posisi bulat).

```
>sposprint(FMIPA) // posisi garis lintang dan garis bujur FMIPA UNY
```

Mari kita tambahkan dua kota lagi, Solo dan Semarang.

```
>Solo=[rad(-7,-34.333),rad(110,49.683)]; Semarang=[rad(-6,-59.05),rad(110,24.533)]; >sposprint(Solo), sposprint(Semarang),
```

```
S 7°34.333' E 110°49.683'
S 6°59.050' E 110°24.533'
```

Pertama, kita hitung vektor dari satu ke yang lain pada bola ideal. Vektor ini adalah [arah, jarak] dalam radian. Untuk menghitung jarak di bumi, kita kalikan dengan jari-jari bumi pada garis lintang 7°.

```
>br=svector(FMIPA,Solo); degprint(br[1]), br[2]*rearth(7°)->km // perkiraan jarak FMIPA-Solo
```

```
65°20'26.60''
53.8945384608
```

Ini adalah perkiraan yang bagus. Rutin berikut menggunakan perkiraan yang lebih baik lagi. Pada jarak yang pendek, hasilnya hampir sama.

```
\verb| >esdist(FMIPA,Semarang) -> " km" // perkiraan jarak FMIPA-Semarang| \\
```

```
Commands must be separated by semicolon or comma!

Found: // perkiraan jarak FMIPA-Semarang (character 32)

You can disable this in the Options menu.

Error in:
esdist(FMIPA,Semarang)->" km" // perkiraan jarak FMIPA-Semaran ...
```

Ada fungsi untuk judul, yang memperhitungkan bentuk elips bumi. Sekali lagi, kami mencetak dengan cara yang canggih.

```
>sdegprint(esdir(FMIPA,Solo))
```

65.34°

Sudut suatu segitiga melebihi 180° pada bola.

```
>asum=sangle(Solo,FMIPA,Semarang)+sangle(FMIPA,Solo,Semarang)+sangle(FMIPA,Semarang,Solo); degprint(
```

180°0'10.77''

Ini dapat digunakan untuk menghitung luas segitiga. Catatan: Untuk segitiga kecil, ini tidak akurat karena kesalahan pengurangan dalam asum-pi.

```
>(asum-pi)*rearth(48°)^2->" km^2" // perkiraan luas segitiga FMIPA-Solo-Semarang
```

```
Commands must be separated by semicolon or comma!
Found: // perkiraan luas segitiga FMIPA-Solo-Semarang (character 32)
You can disable this in the Options menu.
Error in:
(asum-pi)*rearth(48°)^2->" km^2" // perkiraan luas segitiga FM ...
```

Ada fungsi untuk ini, yang menggunakan lintang rata-rata segitiga untuk menghitung jari-jari bumi, dan menangani kesalahan pembulatan untuk segitiga yang sangat kecil.

```
>esarea(Solo,FMIPA,Semarang)->" km^2", //perkiraan yang sama dengan fungsi esarea()
```

2123.64310526 km²

Kita juga dapat menambahkan vektor ke posisi. Vektor berisi arah dan jarak, keduanya dalam radian. Untuk mendapatkan vektor, kita menggunakan svector. Untuk menambahkan vektor ke posisi, kita menggunakan saddvector.

```
>v=svector(FMIPA,Solo); sposprint(saddvector(FMIPA,v)), sposprint(Solo),
```

```
S 7°34.333' E 110°49.683'
S 7°34.333' E 110°49.683'
```

Fungsi-fungsi ini mengasumsikan bentuk bola yang ideal. Sama halnya di bumi.

```
>sposprint(esadd(FMIPA,esdir(FMIPA,Solo),esdist(FMIPA,Solo))), sposprint(Solo),
```

```
S 7°34.333' E 110°49.683'
S 7°34.333' E 110°49.683'
```

Mari kita lihat contoh yang lebih besar, Tugu Jogja dan Monas Jakarta (menggunakan Google Earth untuk mencari koordinatnya).

```
>Tugu=[-7.7833°,110.3661°]; Monas=[-6.175°,106.811944°];
>sposprint(Tugu), sposprint(Monas)
```

```
S 7°46.998' E 110°21.966'
S 6°10.500' E 106°48.717'
```

Menurut Google Earth, jaraknya adalah 429,66 km. Kami memperoleh perkiraan yang baik.

```
>esdist(Tugu,Monas)->" km" // perkiraan jarak Tugu Jogja - Monas Jakarta
```

```
Commands must be separated by semicolon or comma!

Found: // perkiraan jarak Tugu Jogja - Monas Jakarta (character 32)

You can disable this in the Options menu.

Error in:
esdist(Tugu, Monas) -> " km" // perkiraan jarak Tugu Jogja - Mona ...
```

Judulnya sama dengan yang dihitung di Google Earth.

```
>degprint(esdir(Tugu,Monas))
```

```
294°17'2.85''
```

Akan tetapi, kita tidak lagi memperoleh posisi target yang tepat, jika kita menambahkan arah dan jarak ke posisi awal. Hal ini terjadi karena kita tidak menghitung fungsi invers secara tepat, tetapi mengambil perkiraan radius bumi di sepanjang lintasan.

```
>sposprint(esadd(Tugu,esdir(Tugu,Monas),esdist(Tugu,Monas)))
```

```
S 6°10.500' E 106°48.717'
```

Namun, kesalahannya tidak besar.

```
>sposprint(Monas),
```

```
S 6°10.500' E 106°48.717'
```

Tentu saja, kita tidak dapat berlayar dengan arah yang sama dari satu tujuan ke tujuan lain, jika kita ingin mengambil jalur terpendek. Bayangkan, Anda terbang ke arah timur laut mulai dari titik mana pun di bumi. Kemudian Anda akan berputar ke kutub utara. Lingkaran besar tidak mengikuti arah yang konstan!

Perhitungan berikut menunjukkan bahwa kita jauh dari tujuan yang benar, jika kita menggunakan arah yang sama selama perjalanan kita.

```
>dist=esdist(Tugu, Monas); hd=esdir(Tugu, Monas);
```

Sekarang kita tambahkan 10 dikalikan sepersepuluh jaraknya, dengan memakai arah ke Monas, kita sampai di Tugu.

```
>p=Tugu; loop 1 to 10; p=esadd(p,hd,dist/10); end;
```

Hasilnya sangat jauh.

```
>sposprint(p), skmprint(esdist(p,Monas))
```

```
S 6°11.250' E 106°48.372'
1.529km
```

Sebagai contoh lain, mari kita ambil dua titik di bumi pada garis lintang yang sama.

```
>P1=[30°,10°]; P2=[30°,50°];
```

Lintasan terpendek dari P1 ke P2 bukanlah lingkaran lintang 30°, tetapi lintasan yang lebih pendek yang dimulai 10° lebih jauh ke utara di P1.

```
>sdegprint(esdir(P1,P2))
```

79.69°

Namun, jika kita mengikuti pembacaan kompas ini, kita akan berputar ke kutub utara! Jadi kita harus menyesuaikan arah kita di sepanjang jalan. Untuk tujuan kasar, kita menyesuaikannya pada 1/10 dari total jarak.

```
>p=P1; dist=esdist(P1,P2); ...
> loop 1 to 10; dir=esdir(p,P2); sdegprint(dir), p=esadd(p,dir,dist/10); end;
```

```
79.69°
81.67°
83.71°
85.78°
87.89°
90.00°
92.12°
94.22°
96.29°
98.33°
```

Jaraknya tidak tepat, karena kita akan menambahkan sedikit kesalahan, jika kita mengikuti arah yang sama terlalu lama.

```
>skmprint(esdist(p,P2))
```

0.203km

Kita memperoleh perkiraan yang baik, jika kita menyesuaikan arah setelah setiap 1/100 jarak total dari Tugu ke Monas.

```
>p=Tugu; dist=esdist(Tugu,Monas); ...
> loop 1 to 100; p=esadd(p,esdir(p,Monas),dist/100); end;
>skmprint(esdist(p,Monas))
```

0.000km

Untuk keperluan navigasi, kita bisa mendapatkan urutan posisi GPS sepanjang lingkaran besar menuju Monas dengan fungsi navigasi.

```
>load spherical; v=navigate(Tugu,Monas,10); ...
> loop 1 to rows(v); sposprint(v[#]), end;
```

```
S 7°46.998' E 110°21.966'
S 7°37.422' E 110°0.573'
S 7°27.829' E 109°39.196'
S 7°18.219' E 109°17.834'
S 7°8.592' E 108°56.488'
S 6°58.948' E 108°35.157'
S 6°49.289' E 108°13.841'
S 6°39.614' E 107°52.539'
S 6°29.924' E 107°31.251'
S 6°20.219' E 107°9.977'
S 6°10.500' E 106°48.717'
```

Kita menulis suatu fungsi yang memplot bumi, dua posisi, dan posisi di antaranya.

```
>function testplot ...
```

```
useglobal;
plotearth;
plotpos(Tugu, "Tugu Jogja"); plotpos(Monas, "Tugu Monas");
plotposline(v);
endfunction
```

Sekarang rencanakan semuanya.

```
>plot3d("testplot",angle=25, height=6,>own,>user,zoom=4):
```

Atau gunakan plot3d untuk mendapatkan tampilan anaglifnya. Ini tampak sangat bagus dengan kaca mata merah/biru kehijauan.

```
>plot3d("testplot",angle=25,height=6,distance=5,own=1,anaglyph=1,zoom=4):
```

1. Gambarlah segi-n beraturan jika diketahui titik pusat O, n, dan jarak titik pusat ke titik-titik sudut segi-n tersebut (jari-jari lingkaran luar segi-n), r.

Petunjuk:

- Besar sudut pusat yang menghadap masing-masing sisi segi-n adalah (360/n).
- Titik-titik sudut segi-n merupakan perpotongan lingkaran luar segi-n dan garis-garis yang melalui pusat dan saling membentuk sudut sebesar kelipatan (360/n).
- Untuk n ganjil, pilih salah satu titik sudut adalah di atas.
- Untuk n genap, pilih 2 titik di kanan dan kiri lurus dengan titik pusat.
- Anda dapat menggambar segi-3, 4, 5, 6, 7, dst beraturan.

```
>load geometry
```

Numerical and symbolic geometry.

```
>setPlotRange(-3.5,3.5,-3.5,3.5);
>A=[-2,-2]; plotPoint(A,"A");
>B=[2,-2]; plotPoint(B,"B");
>C=[0,3]; plotPoint(C,"C");
>plotSegment(A,B,"c");
>plotSegment(B,C,"a");
>plotSegment(A,C,"b");
>aspect(1):
>c=circleThrough(A,B,C);
>R=getCircleRadius(c);
>0=getCircleCenter(c);
```

```
>plotPoint(0,"0");
>l=angleBisector(A,C,B);
>color(2); plotLine(1); color(1);
>plotCircle(c,"Lingkaran luar segitiga ABC"):
```

2. Gambarlah suatu parabola yang melalui 3 titik yang diketahui.

Petunjuk:

- Misalkan persamaan parabolanya y= ax^2+bx+c.
- Substitusikan koordinat titik-titik yang diketahui ke persamaan tersebut.
- Selesaikan SPL yang terbentuk untuk mendapatkan nilai-nilai a, b, c.

```
>load geometry;
>setPlotRange(5); P=[2,0]; Q=[4,0]; R=[0,-4];
>plotPoint(P,"P"); plotPoint(Q,"Q"); plotPoint(R,"R"):
>sol &= solve([a+b=-c,16*a+4*b=-c,c=-4],[a,b,c])
```

$$[[a = -1, b = 5, c = -4]]$$

Sehingga dapat ditentukan nilai a = -1, b = 5 dan c = -4

>function
$$y&=4*x^2+5*x-12$$

>plot2d("4*x^2+5*x-12",-13,13,-13,13):

- 3. Gambarlah suatu segi-4 yang diketahui keempat titik sudutnya, misalnya A, B, C, D.
 - Tentukan apakah segi-4 tersebut merupakan segi-4 garis singgung

(sisinya-sisintya merupakan garis singgung lingkaran yang sama yakni lingkaran dalam segi-4 tersebut).

- Suatu segi-4 merupakan segi-4 garis singgung apabila keempat

garis bagi sudutnya bertemu di satu titik.

- Jika segi-4 tersebut merupakan segi-4 garis singgung, gambar

lingkaran dalamnya.

- Tunjukkan bahwa syarat suatu segi-4 merupakan segi-4 garis

singgung apabila hasil kali panjang sisi-sisi yang berhadapan sama.

```
>load geometry
```

Numerical and symbolic geometry.

```
>setPlotRange(-5,5,-5,5);
>A=[-4,-4]; plotPoint(A,"A");
>B=[4,-4]; plotPoint(B,"B");
>C=[4,4]; plotPoint(C,"C");
>D=[-4,4]; plotPoint(D,"D");
>plotSegment(A,B,"");
>plotSegment(B,C,"");
>plotSegment(C,D,"");
>plotSegment(A,D,"");
>aspect(1):
>l=angleBisector(A,B,C);
>m=angleBisector(B,C,D);
>P=lineIntersection(l,m);
>color(5); plotLine(1); plotLine(m); color(1);
>plotPoint(P,"P"):
```

Dapat dilihat bahwa keempat garis bagi sudutnya bertemu di satu titik yaitu titik P.

```
>r=norm(P-projectToLine(P,lineThrough(A,B)));
>plotCircle(circleWithCenter(P,r),"Lingkaran dalam segiempat ABCD"):
```

Dapat dilihat bahwa sisi-sisinya merupakan garis singgung lingkaran yang sama. Akan ditunjukkan bahwa hasil kali panjang sisi-sisi yang berhadapan sama.

```
>AB=norm(A-B)
```

8

```
>CD=norm(C-D)
```

8

```
>AD=norm(A-D)
```

>BC=norm(B-C)

8

>AB.CD

64

>AD.BC

64

Terbukti bahwa hasil kali panjang sisi-sisi yang berhadapan sama yaitu 64. Jadi dapat dipastikan bahwa segiempat tersebut merupakan segiempat garis singgung.

4. Gambarlah suatu ellips jika diketahui kedua titik fokusnya, misalnya P dan Q. Ingat ellips dengan fokus P dan Q adalah tempat kedudukan titik-titik yang jumlah jarak ke P dan ke Q selalu sama (konstan).

Penyelesaian:

Diketahui kedua titik fokus P = [-2,-2] dan Q = [2,-2]

```
>P=[-2,-2]; Q=[2,-2];
>function d1(x,y):=sqrt((x-P[1])^2+(y-P[2])^2)
>Q=[2,-2]; function d2(x,y):=sqrt((x-P[1])^2+(y-P[2])^2)+sqrt((x-Q[1])^2+(y-Q[2])^2)
>fcontour("d2",xmin=-2,xmax=2,ymin=-3,ymax=1,hue=1):
>plot3d("d2",xmin=-2,xmax=2,ymin=-3,ymax=1):
>plot2d("abs(x+1)+abs(x-1)",xmin=-3,xmax=3):
```

5. Gambarlah suatu hiperbola jika diketahui kedua titik fokusnya, misalnya P dan Q. Ingat ellips dengan fokus P dan Q adalah tempat kedudukan titik-titik yang selisih jarak ke P dan ke Q selalu sama (konstan).

```
>P=[-2,-2]; Q=[2,-2];
>function d1(x,y):=sqrt((x-p[1])^2+(y-p[2])^2)
>Q=[2,-2]; function d2(x,y):=sqrt((x-P[1])^2+(y-P[2])^2)+sqrt((x+Q[1])^2+(y+Q[2])^2)
>fcontour("d2",xmin=-2,xmax=2,ymin=-3,ymax=1,hue=1):
>plot3d("d2",xmin=-2,xmax=2,ymin=-3,ymax=1):
>plot2d("abs(x+1)+abs(x-1)",xmin=-3,xmax=3):
```