Discrete Mathematics

回头看

〈*R*, +, · 〉是一个代数系统,

- (1) 〈*R*, +〉是一个Abel群.
- (2) 〈R,·〉是一个半群.
- (3) · 对 + 满足分配律,即

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$(b+c) \cdot a = (b\cdot a) + (a\cdot c)$$

整数环、高斯环、模m剩余环、零环

回头看

有单位元、无零因子的交换环称为整环设R是一个有 1 的环, $R*(\hat{R}=R-\{0\}\neq \phi)$ 如果〈 $R*, \cdot$ 〉是一个群,则称R*为除环,可交换的除环称为域

有限整环必为域.(域就是一种特殊的环。)若p为素数,则〈 $\mathbf{Z}p$,+p,×p〉为域.

Chapter 7

格与布尔代数 Lattices &Boolean Algebra

半加器 half adder

(一位加法器)

输 A	入 B	输 S	出 C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{A} \cdot B + A \cdot \overline{B} = (A + B) \cdot (\overline{A \cdot B})$$
 $C = A \cdot B$

$$C = A \cdot B$$

全加器 Full adder

全加器 Full adder

In A	pu ¹ B	t Cin	Output S Cout
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

$$S = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

$$C_{out} = \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

n位加法器 n-adder

$S = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$

$$C_{out} = \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

布尔代数 Boolean Algebra

布尔表达式

格与布尔代数 Lattice&Boolean Algebra

偏序集 Posets $\langle P, \leq \rangle$ P是自反的,反对称的,可传递的

例
$$1:S_{30} = \{1,2,3,5,6,10,15,30\}$$

$$| = \{ \langle x, y \rangle \mid x, y \in S_{30} \perp x \mid y \}$$

$$S_6 = \{1, 2, 3, 6\} \subseteq S_{30}$$

$$S_{15} = \{1, 3, 5, 15\} \subseteq S_{30}$$

偏序集:

$$, $|>$, $, $|>$, $, $|>$$$$$

定义 1 设〈L,≤〉是一个偏序集, 如果 $\forall x$, $y \in L$, $\{x, y\}$ 必有最小上界和最大下界,则称〈L,≤〉为格.

Example:

例 判断下图中的哈斯图表示的偏序集是否构成格,说明为什么。

{d,e} 没有最小上界

2020/4/12

例 集合S的幂集P(S)和定义在其上的包含关系构成偏序集 $\langle P(S) , \subseteq \rangle$. 分析格中任意两个元素的最小上界和最大下界 对于任意子集 $A, B \in p(S)$, $\{A, B\}$ 必有最小上界和最大下界 因为ACAUB, BCAUB, 而且若 $A \subseteq C$, $B \subseteq C$, 则 $A \cup B \subseteq C$ 。 因此, {A, B} 的最小上界 A ⊕ B=A∪B。 同理{A, B}的最大下界 A * B=A∩B。 于是, $\langle P(S) , \subseteq \rangle$ 是格; $(\langle P(S), \oplus, * \rangle, \langle P(S), \cup, \cap \rangle)$ 。

由集合 $S=\{a,b,c\}$ 得到的格〈L, \subseteq 〉的Hass图,如下图所示。

例 设 Z^+ 为正整数集合,对于 $a,b \in Z^+$,关系" \leq "定义为: $a \leq b$ 当且仅当a整除b(a|b)。则偏序集〈 Z^+ , \leq 〉构成格,

其中:

a⊕ b 是a,b的最小公倍数(记作LCM, Least Common Multiple)

a * b 是a,b的最大公因数(记作GCD, Greatest Common Divisor)

 $\mathbb{P}a \oplus b = LCM(a,b), \quad a * b = GCD(a,b)$

⟨Z⁺, |>格 代数系统⟨Z⁺, ⊕ , * > **<**Z⁺, LCM, GCD>

并运算与交运算

在格 ⟨**L**, ≤⟩ 中, ⟨L, ⊕ , * ⟩

a, b的最小上界用 a⊕b 表示,

a, b的最大下界用 a*b表示.

∀ a, b ∈ L, 由最小上界、最大下界的唯一性,a ⊕ b, a*b都在L 上唯一确定

将 ⊕, * 视为L上的两个运算,通常称为〈L,≤〉上的并(Join, \vee)运算与交(Meet, \wedge)运算.

并、交 运算的性质

定理 1 设〈L,≤〉是一个格,并运算⊕与交运算*满足如下性质: (并运算⊕ 求取最小上界,交运算*求取最大下界)

$$L1$$
 $a \oplus a = a$ $a * a = a$ (幂等律)

L2
$$a \oplus b = b \oplus a$$
 $a * b = b * a$ (交換律)

L3
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

 $(a*b)*c = a*(b*c)$ (结合律)

$$L4 \quad a \oplus (a * b) = a$$
$$a* (a \oplus b) = a \qquad (吸收集)$$

L1: $a \oplus a = a$ a * a = a

定义7 设〈P, \leq 〉是偏序集, $A \subseteq P$, $\exists a \in P$, 如果 $\forall x \in A$,都有 $x \leq a$,称a为A的上界. 如果 $\forall x \in A$,都有 $a \leq x$,称a为A的下界.

定义8 设〈P, \leq 〉是偏序集, $A \subseteq P$, 若a是A的上界,且对A的任意上界b,有 $a \leq b$,则称a为A的最小上界(上确界),若a是A的下界,且对A的任意下界b,有 $b \leq a$,则称a为A的最大下界(下确界).

L1: $a \oplus a = a$ a * a = a $\langle L, \oplus, * \rangle$

证明:

由于 $a \le a$,故a是 $A = \{a, a\}$ 的上界,又设c是 $A = \{a, a\}$ 的任一上界,则 $a \le c$,故a是 $\{a, a\}$ 的最小上界,即 $a \oplus a = a$,同理可证 a * a = a,即L1成立.

(并运算⊕ 求取最小上界,交运算*求取最大下界)

L2: $a \oplus b = b \oplus a$, a * b = b * a

证明

由于 $\{a,b\}=\{b,a\}$,故 $a\oplus b=b\oplus a$,

同理a * b = b * a. 即L2成立.

L3: (a * b) * c = a * (b * c)

 $(a*b)*c \le a*b \le a$ (依据*交运算的定义) 最大下界也是下界 $(a*b)*c \le a*b \le b$ ($(a*b)*c \le c$

因此,(a*b)*c是b,c的下界,从而小于等于其最大下界,即 $(a*b)*c \le b*c$ ($x \le a$ 且 $x \le b$,则 $x \le b \land c$)

因此又知(a*b)*c是a,b*c的下界,从而 $(a*b)*c \le a*(b*c)$ (1)

同理
$$a*(b*c) \le (a*b)*c$$
 (2)
所以 $a*(b*c) = (a*b)*c$

(并运算⊕ 求取最小上界,交运算*求取最大下界)

L4: $a * (a \oplus b) = a \ a \oplus (a*b) = a$

由于a是 $\{a, a \oplus b\}$ 的下界,故 $a \le a^*(a \oplus b)$,再由*的定义, $a^*(a \oplus b) \le a$,从而 $a^*(a \oplus b) = a$.

同理 $a \oplus (a*b) = a$

格<L, ≤ > ⇒ 代数系统 <L, ⊕, *>

(并运算⊕ 求取最小上界,交运算*求取最大下界)

(吸收集)

←?

 $a^* (a \oplus b) = a$

定理1

L1
$$a \oplus a = a$$
 $a*a = a$ (幂等律)
L2 $a \oplus b = b \oplus a$ $a*b = b*a$ (交换律)
L3 $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 $(a*b)*c = a*(b*c)$ (结合律)
L4 $a \oplus (a*b) = a$

偏序集〈L, \leq 〉构成格,则 $\forall A \subseteq L$,子集A必有最小上界和最大下界。

- A 正确
- B 错误

右图哈斯图所表示的偏序关系是否是格?

- A 是格
- B 不是格

右图哈斯图所表示的偏序关系是否是格?

是格

不是格

设Z+为正整数集合, ∀a,b ∈ Z+,则偏序集〈Z+, D)构成格〈Z+, ⊕,*〉,

a ⊕ b 是a,b的最小公倍数(记作LCM, Least Common Multiple);

a * b 是a,b的最大公因数(记作GCD, Greatest Common Divisor)

 $\mathbb{P}a \oplus b = LCM(a,b), \quad a * b = GCD(a,b)$

- A 正确
- B 错误

对于任意格〈L,≤〉都可以找到与其对应的代数系统〈L,⊕,*〉,其中⊕代表并运算,*代表交运算。

- A 上述论述正确
- B 上述论述错误

对于任意格〈L,≤〉所对应的代数系统〈L,⊕,*〉,并运算 ⊕与交运算*分别满足幂等律,交换律,结合律,分配律。

- A 上述论述正确
- B 上述论述错误

格与代数系统的关系

设<L,⊕,*>是一个代数系统,⊕和*是L上的两个二元运算,如果这两个运算满足幂等律(L1)、交换律(L2)、结合律(L3)和吸收律(L4),则称<L,⊕,*>是一个格(Lattice)。

例 < P(S), \subseteq > 是格 表示为 < P(S), \oplus ,* > 又可表示为 < P(S), \cup , \cap > 幂等律,交换律,结合律,吸收集

例〈Z+, ≪〉, 或〈Z+, |〉 **〈**Z+, ⊕, * >

<Z⁺, LCM, GCD> 幂等律,交换律,结合律,吸收集

格〈L, ≤〉中**自然存在**两个运算 ⊕ 和 * ,从而派生出一个代数系统〈L, ⊕, *〉

⊕与 * 满足L1-L4。

反之,若给定一个代数系统〈L, \oplus , *〉,其中,运算 \oplus 与 *满足L1 -L4,是否一定能找到一个与该代数系统对应的格? **是,一定能**。

先定义运算 并运算⊕ 求取最小上界, 交运算 *求取最大下界

定理 1 设〈L, ≤〉是一个格,则对任意a, b∈L a≤b \Leftrightarrow a*b=a \Leftrightarrow a⊕b=b

证明: $a \le b \Leftrightarrow a*b=a$ 设 $a \le b$,则 $a \ne a \ne b$,的下界,故 $a \le a*b$,又 $a*b \le a$,从而a*b=a; 反之,设a*b=a,则由 $a*b \le b$ 即知 $a \le b$. 同理可证 $a \le b \Leftrightarrow a \oplus b=b$

如何定义偏序?

偏序 \leq 必须满足 $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$ 用 $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$ 定义偏序 \leq 首先要求给定的运算 \oplus 与*满足 $a * b = a \Leftrightarrow a \oplus b = b$

引理 设 $\langle L, \oplus, * \rangle$ 是一个代数系统, \oplus ,*满足L1-L4(幂等,交换,结合,吸收律),

则 $a*b=a \Leftrightarrow a \oplus b=b$.

证明 设
$$a*b=a$$
,则
$$a \oplus b = (a*b) \oplus b = b \oplus (b*a) = b$$
 反之,设 $a \oplus b = b$ 则
$$a*b=a*(a \oplus b) = a$$
。

引理告诉我们在偏序关系上寻找*是可行的。

 \mathbb{H} a≤b \Leftrightarrow a * b=a (a \oplus b=b)

规定关系 ≤ 是可行的

但这样规定的关系 ≤ 是否一定是要求的偏序关系呢?

定理 2 设〈L, \oplus , *〉是一个代数系统,运算 \oplus 与 * 满足L1 -L4 令 L上的关系 \leq 定义如下:

 $a \le b \Leftrightarrow a * b = a (a \oplus b = b)$

则 ≤ 是一个偏序关系,

且 $\forall a, b \in L, a*b, a \oplus b$ 分别为a, b在〈 L, \leq 〉中的最大下界与最小上界,即

 $a * b = \inf \{a, b\}; a \oplus b = \sup \{a, b\}$

从而〈L, \leq 〉是一个格,其中的并、交运算恰为给定的 \oplus 与 *.

证明 ≤ 为偏序关系

- (1)自反性; $\forall a \in L$,因为a * a = a,故 $a \le a$,即≤满足自反性;
- (2)反对称性; $\forall a, b \in L$,设 $a \le b, b \le a$,则a * b = a, b * a = b,因为a * b = b * a,故a = b,即≤满足反对称性;
- (3)传递性 $\forall a, b, c \in L$,设a $\leq b, b \leq c$,则a * b=a,b * c=b,故 a * c= (a * b) * c=a * (b * c) =a * b=a,即a $\leq c$,故 \leq 满足传递性.

证〈L, \leq 〉为要求的格 $a \oplus b$ 最小上界; a*b最大下界

$$\forall a, b \in L, (a*b)*a = a*(a*b) = (a*b) = (a*a)*b = a*b, & a*b \le a,$$

同理 $a*b\leq b$,因此a*b是 $\{a,b\}$ 的下界,

又设c是 {a, b} 的任一下界,即c≤a, c<b, 则 a* c=c, b* c=c, 于是(a*b) *c=a*(b*c) =a*c=c, 即 c≤a*b, 所以 a*b是 {a, b} 的最大下界,即 a*b=inf {a, b},

同理可证 $a \oplus b = \sup \{a, b\}$,

这就证明了〈L, \leq 〉是格且其中的并、交运算分别为 \oplus , *.

代数格

定义 1 设〈L, \oplus , *〉是一个代数系统,如果 \oplus , * 满足L1 -L4,则称〈L, \oplus , *〉为格.

例 1 设N是自然数集合,对任意a, $b \in \mathbb{N}$, 规定 $a \oplus b = \text{lcm}(a, b)$, a*b = gcd(a, b),

由于任意两自然数a,b都有唯一确定的最小公倍数与最大公因数,故*, \oplus 是N上的两个运算.

L1、L2、L3、L4是不是成立? 可以验证是成立的。

例 2 设S是一个集合,U, Ω 为集合的并、交运算,则 〈P(S),U, Ω 〉是格,且其中的偏序为集合的包含关系.

定理 3 设 $\langle L, \leq \rangle$ 是格, $a, b \in L$,则

- $(1) a*b \le a a*b \le b$
- $(2) a \leq a \oplus b \qquad b \leq a \oplus b$

定理 4 设〈L, ≤〉是格,a, b, c∈L.

若 c≤a, c≤b则c≤a*b

若 $a \le c$, $b \le c$ 则 $a ⊕ b \le c$

定理 5 设〈L, \leq 〉是一个格, a_1 , a_2 , b_1 , $b_2 \in L$, 如果 $a_1 \leq b_1$, $a_2 \leq b_2$, 则 $a_1 * a_2 \leq b_1 * b_2$, $a_1 \oplus a_2 \leq b_1 \oplus b_2$

定理 6 设L是一个格, a, b, $c \in L$, 则 $a*(b \oplus c) \ge (a*b) \oplus (a*c)$ $a \oplus (b*c) \le (a \oplus b)*(a \oplus c)$

$$c * (b \oplus d) = c * a = c$$

 $(c * b) \oplus (c * d) = e \oplus d = d$
 $c \ge d$

§7.3 子格与格同态

定义1子格(Sublattice): 设〈L, ⊕, * 〉是一个格,如果〈S, ⊕, * 〉是〈L, ⊕, * 〉的子 代数,则称〈S, ⊕, * 〉是〈L, ⊕, * 〉的子格。

子格也是一个格,因为当运算⊕和*限制在S上时,幂等律、交换律、结合律和吸收律也是成立的。

例设〈L, ⊕,*〉是一个格, 如下图

$$\diamondsuit S_1 = \{c, e, f, g\} \quad S_2 = \{a, b, e, g\}$$

$$S_3 = \{a, e, f, g\}$$

则 $\langle S_1, \oplus, * \rangle$ 和 $\langle S_2, \oplus, * \rangle$ 是 $\langle L, \oplus, * \rangle$ 的一个子格,

 $\langle S_3, \oplus, * \rangle$ 不是〈L, $\oplus, * \rangle$ 的子格,这是因为 $e * f = c \notin S_3$

§7.3 子格与格同态

,但它不是〈L,≤〉的子格.

§ 7.3 子格与格同态

例如 **<S**_{30,}|**>是格,<S**_{6,}|**>,<S**_{15,}|**>**是子格。

例 < N, \oplus ,* > 或 < N,|> 对任意a, $b \in$ N,规定, $a \oplus b = [a, b]$ (LCM (a,b)),a*b = (a, b) (GCD (a,b)) 令 S 为 N 中 所 有 偶 数 构 成 的 集 合 S 是 N 的 子 格

定义 1 设〈L, \leq 〉是一个格,如果L的任意子集均有最小上界和最大下界,则称其为**完全格**.

有限格必为完全格.

整数集**Z**在通常数的小于等于关系 \leq 下是一个格,其子集E={ ..., -4, -2, 0, 2, ...} 既无最小上界也无最大下界。 因此〈**Z**, \leq 〉不是完全格。

例 1 实数闭区间 [0 , 1] 在通常的小于等于 关系 ≤ 下是完全格, 实数开区间 (0 , 1) 则 不然.

例 2 集合A的幂集格 $\langle P(A), \subseteq \rangle$ 是完全格.

定义 2 设〈L, \leq 〉是一个格,如果L中存在最大元与最小元,则称L是有界格.

最大元也称为**全上界**或**单位元**,用1表示;最小元也称为**全下界**或**零元**,用0表示,对应地,有界格也称为有单位元和零元的格

有界格的一种更明确的表示〈L,⊕,*,0,1〉

完全格必为有界格.

例 3 设A是集合,A的幂集格〈P(A), \subseteq 〉是有界格,其单位元(全上界)为A,零元(全下界)为 \emptyset .

例 4 实数开区间(0,1)在通常小于等于关系≤下构成的格不是有界格.而闭区间[0,1]是有界格。

定理 1
设L是一个有界格,则对任意 $x \in L$,有 $x \oplus 0 = x \oplus 1 = x \times 0 = x \times 1 = x \times 1$

定义3 设L是一个有界格,对于 $a \in L$,如果存在 $b \in L$ 使 $a \oplus b = 1$; a * b = 0 则称 $b \in B$ 则称

例 $5 \langle P(A), \subseteq \rangle$ 是A的幂集格,则对P(A)中任意元素 S,有A-S是S的补元(单位元为A,零元为 \emptyset).

例 6

单位元为a,零元为c b的补元是c,d

单位元为a,零元为f b的补元是e, d,c无补元

定理 2 设L是有界格,则单位元 1 是零元 0 的唯一补元。

定义4 设L是一个有界格,如果L中每个元素都有补元,则称其为**补格**或**有补格**.

例如:集合A的幂集格P(A)是补格

完全格、有界格、补格讨论d的是元素之间的结构关系,并不涉及运算之间的关系。

定义 1 设L是一个格,如果L中的并、交运算互相可分配,即对任意a,b,c \in L $a*(b\oplus c)=(a*b)\oplus(a*c)$ $a\oplus(b*c)=(a\oplus b)*(a\oplus c)$ 则称L是分配格.

$$a^*(b\oplus c)=a^*1=a$$

 $(a^*b)\oplus (a^*c)=0\oplus a=a$

$$a\oplus(b^*c)=a\oplus0=a$$

 $(a\oplus b)^*(a\oplus c)=1^*a=a$

定理1设L是一个格,如果L中的交对并可分配,则并对交必可分配.反之亦然.

证明: 若
$$a * (b \oplus c) = (a * b) \oplus (a * c)$$

则 $(a \oplus b) * (a \oplus c)$
 $= ((a \oplus b) * a) \oplus ((a \oplus b) * c)$ 分配
 $= a \oplus ((a \oplus b) * c)$ 吸收
 $= a \oplus ((a * c) \oplus (b * c))$ 分配
 $= (a \oplus (a * c)) \oplus (b * c)$ 结合
 $= a \oplus (b * c)$ 吸收

- 集合A的幂集格P(A)是分配格
- 下图所示的两个格都不是分配格

$$c * (b \oplus d) = c * a = c$$

 $(c * b) \oplus (c * d) = e \oplus d = d$

定理 2 设〈L, \oplus , *〉是一个分配格,a, b, $c \in L$, 如果 a * b = a * c, $a \oplus b = a \oplus c$ 则 b = c.

证明:
$$b=b^*(b\oplus a)$$
 吸收律 L4
 $=b^*(a\oplus b)$ 交换律 L2
 $=b^*(a\oplus c)$ 代入
 $=(b^*a)\oplus(b^*c)$ 分配律
 $=(a^*c)\oplus(b^*c)$ 代入
 $=(a\oplus b)^*c$ 分配律
 $=(a\oplus c)^*c$ 代入
 $=c$ 吸收律L4

推论 设〈L, \oplus , *〉是一个分配格, $a \in L$,a的补元若存在则是唯一的.

证明:设 a_1 , a_2 都是a的补元,则由补元的定义,有

$$a * a_1 = 0 = a * a_2$$

$$a \oplus a_1 = 1 = a \oplus a_2$$
 由定理**2**可得。

$$a_1 = a_2$$

例 在有界分配格中,所有有补元构成的集合为一个子格。

例 在格中,若a≤b≤c,则有

- 1. a⊕b= b*c
- 2. $(a*b)\oplus(b*c)=(a\oplus b)*(a\oplus c)$

布尔格-有补分配格 Boolean lattice

定义:有补分配格中每个元素的补元唯一,从而可定义一个"取补"的一元运算.因此,此种格是一个有两个二元运算,一个一元运算和常数0,1的代数 $\langle L, *, \oplus, ', 0, 1 \rangle$,称为布尔代数. (例如,幂集格 $\langle \rho(S), \cap, \cup, ', \emptyset, S \rangle$ 是布尔代数.)

定义1: 布尔代数是有补分配格.

定义2(公理化定义): 有两个二元运算的代数⟨B, ⊕, * ⟩ 称为布尔代数,如果对任意元素a,b,c∈B,成立:

```
①(交換律) a*b=b*a,a⊕b=b⊕a;
②(分配律) a*(b⊕c)=(a*b)⊕(a*c),
a⊕(b*c)=(a⊕b)*(a⊕c);
③(有界) 存在0,1∈B,使得
a*1=a,a⊕0=a,a∈B;
④(有补) B的每一元a都有(唯一)a'∈S,使得
a*a'=0,a⊕a'=1.
```

例如:

1 幂集代数: ⟨p(S), ∩, ∪,',∅,S⟩;

2 命题代数: ⟨B, ∨, ∧,¬,F,T⟩;

例题:设集合L= $\{1, 2, 5, 10, 11, 22, 55, 110\}$, 是110的正因子集合, \leq 是整除关系, 偏序集<L, \leq >是否构成布尔代数, 为什么?

布尔表达式

- 定义: 假设 B 是一个布尔代数, $x_1,x_2,...,x_n$ 是 B 上的变量,B上由 $x_1,x_2,...,x_n$ 生成的布尔表达式归纳定义如下:
- (1) B中的元素是B上由 $x_1,x_2,...,x_n$ 生成的布尔表达式;
- (2) B上任意变量x_i(i=1,2,...,n)是B上由x₁,x₂,...,x_n生成的布尔表达式;
- (3)如果 α ,β是B上由 $x_1,x_2,...,x_n$ 生成的布尔表达式,则 α ∨β, α Λβ, α ′(α 的补元)是B上由 $x_1,x_2,...,x_n$ 生成的布尔表达式:
- (4)只有通过有限次使用(1),(2),(3)得到的符号串是B上由 $x_1,x_2,...,x_n$ 生成的布尔表达式。

布尔表达式

例: 假设 $B = \{0,1,\alpha,\beta\}$ 是由图示确定的一个布尔代数,x,y 是 B 上的变量。B上的布尔表达式为:

$$f(x,y) = (\beta \land x' \land y) \lor (\beta \land x \land (x \lor y)') \lor (\alpha \land (x' \land y))$$

$$f(0,0) = (\beta \land 1 \land 0) \lor (\beta \land 0 \land (0 \lor 0)') \lor (\alpha \land (1 \land 0)) = 0$$

$$f(1,0) = (\beta \land 0 \land 0) \lor (\beta \land 1 \land (1 \lor 0)') \lor (\alpha \land (0 \land 0)) = 0$$

$$f(\alpha,\beta) = (\beta \land \beta \land \beta) \lor (\beta \land \alpha \land (\alpha \lor \beta)') \lor (\alpha \land (\beta \land \beta)) = \beta$$

布尔函数

设 B={0,1}, B^n ={($x_1,x_2,...,x_n$) | $x_i \in B$ 其中 1 $\leq i \leq n$ } 是n元有序对集合。函数f: $B^n \to B$,为布尔函数。

布尔函数

例如: 计算由下式表示的布尔函数的值。

$$f(x, y) = (x' \cdot y) + (x \cdot (x + y)') + (x \cdot y')$$

X	У	x'	x' ·y	x+y	(x+y)'	У′	x·y′	f(x,y)
0	0	1	0	0	1	1	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	1	0	1	1	1
1	1	0	0	1	0	0	0	0

门电路

(1) AND 门

$\mathbf{V}_{\mathbf{A}}$	V_{B}	$\mathbf{V}_{\mathbf{Z}}$	D1	<i>D</i> 2
0V	0V	0V	通	通
0V	5V	0V	通	止
5V	0 V	0V	止	通
5V	5V	5V	通	通

真值表				
A	В	Z		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

(1) AND 门

(2) OR 门

(3) NOT 门

组合门

半加器 half adder

输入 A B	输出 S C
0 0	0 0
0 1	1 0
1 0	1 0
1 1	0 1

$$S = \overline{A} \cdot B + A \cdot \overline{B} = (A + B) \cdot (\overline{A \cdot B})$$

$$C = A \cdot B$$

全加器 Full adder

In A	pu ^t B	t Cin	Output S Cout
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

$$S = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

$$C_{out} = \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

n位加法器 n-adder

$$S = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

$$C_{out} = \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

作业

习题一1,2

习题二3

习题三1

习题四1,2,3

习题五1,2,3

习题六1

 $\forall \exists \emptyset \cap \cup \subset \subset \not \in \forall \in \leq \geq \dots \not \in \Sigma$ αβσρυωζψηδεφλμπΔ θ ±ΠΛ∨∀ }..√⊃ $\leftrightarrow \lor \land \neg \rightarrow \leftarrow \Rightarrow \Leftrightarrow \qquad \downarrow \uparrow \land \oplus \neq \bigcirc - \langle \rangle$ //::::: \ \ / \ \