Practica 1

Autor: Carlos Giudice

Ejercicio 1

Nodo n	IN[n]	OUT[n]
1	-	\emptyset
2	Ø	$\{[x,2]\}$
3	$\{[x,2]\}$	$\{[x,2],[y,3]\}$
4	$\{[x,2],[y,3],[x,6],[y,5]\}$	$\{[x,2],[y,3],[x,6],[y,5]\}$
5	$\{[x,2],[y,3],[x,6],[y,5]\}$	$\{[x,2],[y,5],[x,6]\}$
6	$\{[x,2],[y,5],[x,6]\}$	$\{[x,6],[y,5]\}$
7	$\{[x,2],[y,3],[x,6],[y,5]\}$	-

Ejercicio 2

$$IN[n] = \bigcup_{n' \in pred(n)} OUT[n']$$

$$OUT[n] = (IN[n] - KILL[n]) \cup GEN[n]$$

Ejercicio 3

Nodo n	IN[n]	OUT[n]
1	-	b-a
2	$\{b-a\}$	$\{b-a\}$
3	$\{a-b, b-a\}$	$\{a-b\}$
4	$\{b-a\}$	Ø
5	Ø	$\{a-b\}$
6	$\{a-b\}$	Ø
7	$\{a-b\}$	Ø
8	Ø	-

Ejercicio 4

$$OUT[n] = \bigcup_{n' \in pred(n)} IN[n']$$

$$IN[n] = (OUT[n] - KILL[n]) \cup GEN[n]$$

Ejercicio 5

b)

Nodo n	IN[n]	OUT[n]
0	-	{pid}
1	$\{\text{pid}\}$	$\{pid, j\}$
2	$\{pid, j\}$	$\{pid, j, i\}$
3	$\{pid, j, i\}$	$\{pid, k, j\}$
4	$\{pid, k, j\}$	$\{pid, k, j\}$
5	$\{pid, k, j\}$	$\{pid, k, h\}$

Nodo n	IN[n]	OUT[n]
6	{pid, k, h}	{pid, k, h}
7	$\{pid, k\}$	$\{pid, k, h\}$
8	$\{pid, k, h\}$	$\{answer, pid, k\}$
9	$\{answer, pid, k\}$	Ø
10	Ø	-

Ejercicio 6

En available expressions analysis vamos a considerar que se mata toda expresión que tenga algún operando overrideado por la operación actual. Se genera la expresión actual.

Nodo n	IN[n]	OUT[n]
0	-	Ø
1	Ø	Ø
2	Ø	Ø
3	Ø	Ø
4	Ø	$\{m[i]\}$
5	$\{m[i]\}$	Ø
6	Ø	Ø
8	Ø	$\{bar(M, a)\}$
9	$\{bar(M, a)\}$	-

Ejercicio 7

	Forward	Backward
May	Reaching definitions	Live variables
Must	Available Expressions	Very busy expressions

Ejercicio 8

Figure 1: Points to graph

Ejercicio 9

Las siguientes reglas deben ser especificadas como hechos ya conocidos sobre el programa:

```
\begin{array}{l} kill(n:N,\,v:V)\\ gen(n:N,\,v:V)\\ next(n:N,\,m:N) \end{array}
```

Defino las siguientes reglas:

```
\begin{array}{l} in(n,\,v) := out(n,\,v),\,!kill(n,\,v) \\ in(n,v) := gen(n,\,v) \\ out(n,\,v) := next(n,\,m),\,in(m,\,v) \end{array}
```