

بهبود مکانیزمهای مبتنی بر چنداجرایی برای اعمال خطمشیهای جریان اطلاعات

سید محمدمهدی احمدپناه smahmadpanah@aut.ac.ir

استاد راهنما: دكتر مهران سليمان فلاح

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر ۲۹ مهر ۱۳۹۶

فهرست

- مقدمه و تعریف مسئله
- خطمشیهای جریان اطلاعات و عدم تداخل
 - انواع جریانهای اطلاعات غیرمجاز
 - روش چنداجرایی امن
 - مفاهيم اوليه
 - فوق خاصیت امنیتی
 - مكانيزم اعمال خطمشيهاي امنيتي
 - درستی و شفافیت
- دستهبندی کلی روشهای اعمال خطمشی
- مقایسه مکانیزمهای مبتنی بر چنداجرایی امن
 - شرح مکانیزم پیشنهادی
 - صوریسازی و اثبات
 - جمعبندی و کارهای آینده

مقدمه

- خطمشی امنیتی عدم تداخل
- بیان گزارههایی روی اجراهای برنامه
 - جریان اطاجریانها: جریانها:

جريان اطلاعات غيرمجاز

inH x; // high input : x

if ⇒ Ø; 0 then

if extget Tritheth) two endoustkip;

شكل ١-برنامه دارا else= Othen

out y; ská ploskiput y

outget finde (bwt) utput: y

if t > 2 then t > 2

$$y=1$$
;

outL y; // low output : y

• جریان صریح

• جریان ضمنی

• كانال نهان خاتمه

• كانال نهان زماني

۰ داخلی

• خارجي

روش چنداجرایی امن

- پویا و جعبه سیاه
- تهیه رونوشت از برنامه به تعداد سطوح امنیتی
- محدودیت روی ورودیها و خروجیهای هر رونوشت

• زمانبندی اجرای رونوشتها بط

شکل۶ – نمایی از روش چنداجرایی امن [۱]

تعریف مسئله

- بهبود مکانیزمهای مبتنی بر روش چنداجرایی امن
 - اعمال خطمشی عدم تداخل حساس به زمان
 - تضمین امنیت
- حفظ ترتیب رویدادها در کانالهای خروجی نسبت به یکدیگر برای اجراهای برنامه امن

- ایده کلی برای حل
- استفاده از بافر و زمانبندی مناسب

خطمشی امنیتی؛ خاصیتها و فوقخاصیتها

- خطمشی امنیتی
- خاصیت: خطمشیهای قابل تعریف روی تک اجرا
 - مانند کنترل دسترسی
- ° فوقخاصیت: خطمشیهای قابل تعریف روی مجموعهای از اجراها [۲]
 - مانند جریان اطلاعات

S dotestiest Satisfy A

Hypercopreptyenety H

■ = trace

- ۰ روش، ابزار یا رویهای برای اعمال خطمشی امنیتی
 - خواستههای مورد انتظار
 - ٔ درستی
 - همه برنامهها پس از اعمال توسط مكانيزم امن باشند.
 - شفافیت
- برنامه امن توسط مکانیزم نیز امن شناخته شود و دست نخورده بماند.

دستهبندی روشهای اعمال خطمشی

مکانیزمهای مبتنی بر چنداجرایی امن

- مکانیزم چنداجرایی امن با زمانبندی اولویت با سطح پایینتر [۱]
 - نقض امنیت برای سطوح غیرقابل مقایسه
 - امكان وقوع قحطىزدگى اجراى رونوشتهاى سطح بالا
 - حفظ ترتیب خروجیها در هر کانال
 - بررسی زمانبندهای مختلف و تأثیر آنها در توانایی اعمال عدم تداخل [۴]
 - پیشنهاد زمانبندی تسهیم و مبتنی بر مشبکه

مکانیزمهای مبتنی بر چنداجرایی امن (ادامه)

- بازنویس برنامه چنداجرایی امن [۵]
 - عدم تغییر محیط اجرا
 - ناظر چنداجرایی امن [۶، ۷]
- اجرای همزمان برنامه اصلی و چنداجرایی امن و مقایسه آنها
- حفظ ترتیب خروجیها در هر کانال در اعمال حساس به خاتمه
 - پشتیبانی از کانالهای پویا
 - عدم تضمین عدم تداخل حساس به زمان خارجی
 - چنداجرایی امن نامتقارن [۸]
 - برش نامتقارن برنامه برای رونوشت سطح پایین

مکانیزمهای مبتنی بر چنداجرایی امن (ادامه)

[9]Sabelfeld 9 Rafnsson •

- ایجاد تمایز بین سطح امنیتی حضور و محتوای پیام
 - پشتیبانی از خطمشیهای حذف ردهبندی
 - همگامسازی حصار
 - تضمین عدم تداخل حساس به خاتمه
 - حفظ ترتیب خروجیها نسبت به یکدیگر

شکل۹ – چنداجرایی امن همراه با همگامسازی حصار [۹]

مروری بر مزایا و چالشهای چنداجرایی امن

- امنیت به واسطه طراحی
 - پویا و جعبه سیاه
- مستقل از زبان برنامهنویسی و پیچیدگیهای آن
- حفظ ترتیب رویدادهای خروجی در هر کانال به طور مستقل
 - تغییر در ترتیب رویدادهای خروجی نسبت به یکدیگر
 - وابستگی به زمانبند
 - عدم تشخیص نقض امنیت

اعمال عدم تداخل حساس به زمان همراه با حفظ ترتیب خروجیها در کانالهای مختلف نسبت به یکدیگر

شرح مكانيزم پيشنهادي

- چنداجرایی امن بافردار
- استفاده از زمانبندی تسهیم و اولویت با سطح پایین

شرح مکانیزم پیشنهادی (ادامه)

• حالت همراه با گزارش نقض امنیت

شکل ۱۳- نمایی از مکانیزم چنداجرایی امن بافردار همراه با گزارش نقض امنیت برای مشبکه چهارسطحی

مثالهایی از نحوه اجرای مکانیزم پیشنهادی

۱۶ از ۳۷

مثالهایی از نحوه اجرای مکانیزم پیشنهادی (ادامه)

	\rightarrow			
P_{H}	in , H , V ₁			\sim
P_L	in , H , if X the	n while true do	skip ;	\sim
else skip ;				
P_H	\sim inL γ ;	// low input : y		~
P_L	in , L , v ₂	شکل۱۵— برنامه دارای کانال خاتمه		
P_{H}	~	~		\sim
P_L				
۲۹ مهر ۱۳۹۶		سید محمدمهدی احمدپناه		•

۲۷ از ۲۷

مثالهایی از نحوه اجرای مکانیزم پیشنهادی (ادامه)

مثالهایی از نحوه اجرای مکانیزم پیشنهادی (ادامه)

۲۹ مهر ۱۳۹۶

صوریسازی مکانیزم

و زبان مدل

شکل ۲۱ – نحو دستورات موجود در زبان برنامهنویسی مدل

$$\frac{I(i) = q \quad p(i) = n \quad q(n) = v}{read(I, i, p) = v}$$

$$O(o) = [v_1, \dots, v_n]$$

$$write(O, o, v) = O[o \mapsto [v_1, \dots, v_n, v]]$$

صوریسازی مکانیزم (ادامه)

- $\langle c,m,p,I,O \rangle$ پیکربندی اجرای استاندارد
 - خاتمه

$$\langle P, m_0, p_0, I, O_0 \rangle \rightarrow^* \langle \mathbf{skip}, m_f, p_f, I, O_f \rangle$$

 $(P, I) \rightarrow^* (p_f, O_f)$

رابطه اجرای زماندار $\langle c,m,p,I,O\rangle \rightarrow^{n} \langle c',m',p',I,O'\rangle$ $(P,I) \rightarrow^{n} (p',O')$

صوریسازی مکانیزم (ادامه)

$$c = \mathbf{if} \ e \ \mathbf{then} \ c_{true} \ \mathbf{else} \ c_{false} \quad m(e) = b$$

$$\langle c, m, p, I, O \rangle \rightarrow \langle c_b, m, p, I, O \rangle$$

$$\langle c_1, m, p, I, O \rangle \rightarrow \langle c'_1, m', p', I, O' \rangle$$

$$\langle c_1; c_2, m, p, I, O \rangle \rightarrow \langle c'_1; c_2, m', p', I, O' \rangle$$

$$\langle \mathbf{skip}; c, m, p, I, O \rangle \rightarrow \langle c, m, p, I, O \rangle$$

$$c = \mathbf{while} \ e \ \mathbf{do} \ c_{loop} \quad m(e) = true$$

$$\langle c, m, p, I, O \rangle \rightarrow \langle c_{loop}; c, m, p, I, O \rangle$$

$$c = \mathbf{while} \ e \ \mathbf{do} \ c_{loop} \quad m(e) = false$$

$$\langle c, m, p, I, O \rangle \rightarrow \langle \mathbf{skip}, m, p, I, O \rangle$$

$$m(e) = v \quad m' = m[x \mapsto v]$$

$$\langle x \coloneqq e, m, p, I, O \rangle \rightarrow \langle \mathbf{skip}, m', p, I, O \rangle$$

$$c = \mathbf{output} \ e \ \mathbf{to} \ o \quad m(e) = v \quad O' = write(O, o, v)$$

$$\langle c, m, p, I, O \rangle \rightarrow \langle \mathbf{skip}, m, p, I, O' \rangle$$

$$c = \mathbf{input} \ x \ \mathbf{from} \ i \quad read(I, i, p) = v \quad p' = p[i \mapsto p(i) + 1] \quad m' = m[x \mapsto v]$$

$$\langle c, m, p, I, O \rangle \rightarrow \langle \mathbf{skip}, m', p', I, O \rangle$$

صوریسازی مکانیزم (ادامه)

- معناشناخت محلى
- نحوه اجرای رونوشتها به طور مستقل از دیگری
 - $\langle c,m,p,n\rangle_l$ پیکربندی محلی $^{\circ}$
 - معناشناخت سراسری
 - همگامسازی و زمانبندی اجرای رونوشتها
- $\langle [lec_1,\ldots,lec_j],r,I,O,B,s \rangle$ پیکربندی سراسری $\langle L_0,r_0,I,O_0,B_0,s_0 \rangle \Rightarrow^n \langle L_f,r_f,I,O_f,B_f,s_f \rangle$

$$\frac{I(i) = q \quad p(i) = n \quad q(n) = v}{read(I, i, p) = v}$$

$$\frac{B(o) = [d_0, ..., d_{t-1}] \quad 0 \le index < t}{write(B, o, d, index) = B(o)[d_{index} \mapsto d]}$$

معناشناخت محلي

۲۹ مهر ۱۳۹۶

 $\langle c, m, p, n \rangle_l, r, l, B \mapsto \langle \mathbf{skip}, m, p, n' \rangle_l, r, l, B$

زمانبند مورد استفاده

شکل ۲۴ – تابع تعیین اولویت زمانبندی سطوح امنیتی

معناشناخت سراسری

• قسمت بررسی بافر و خروجیدادن

$$\begin{aligned} \underline{O(o_1) &= [v_{11}, \dots, v_{1n}] \quad O(o_2) = [v_{21}, \dots, v_{2n\prime}] \quad \dots \quad O(o_s) = [v_{s1}, \dots, v_{sn\prime\prime}] \\ & writeOut\left(O, (o_1, o_2, \dots, o_s), (v_1, v_2, \dots, v_s)\right) = \\ O[o_1 &\mapsto [v_{11}, \dots, v_{1n}, v_1], o_2 &\mapsto [v_{21}, \dots, v_{2n\prime}, v_2], \dots, o_s &\mapsto [v_{s1}, \dots, v_{sn\prime\prime}, v_s]] \end{aligned}$$

$$k' = k + 1 \quad k \leq t - 1$$

$$\forall o_{S}. (B(o_{S})[k] = v \leftrightarrow (o_{S}, B(o_{S})[k]) \in Temp)$$

$$\underline{O' = writeOut(O, Temp. o, Temp. v) \quad B' = B[\forall o_{S}. B(o_{S})[k] \mapsto \emptyset]}$$

$$B, O, k \mapsto B', O', k'$$

$$\frac{k' = k+1 \quad k \le t-1 \quad \forall o. B(o)[k] = \emptyset}{B, 0, k \mapsto B, 0, k'}$$

شکل ۲۵ – معناشناخت قسمت بررسی و خروجیدادن در حالت عدم گزارش نقض امنیت

معناشناخت سراسری (ادامه)

$$s \neq j \quad lec = lec_s \quad s' = s + 1$$

$$\underbrace{lec,r,I,B \Rightarrow^t lec',r',I,B' \quad L' = L[lec \mapsto lec']}_{\langle L,r,I,O,B,s\rangle \Rightarrow^t \langle L',r',I,O,B',s'\rangle}$$

$$s = j \quad lec = lec_s \quad s' = 1$$

$$\underbrace{lec,r,I,B \Rightarrow^t lec',r',I,B' \quad L' = L[lec \mapsto lec'] \quad B',O,O \Rightarrow^t B_0,O',t}_{\langle L,r,I,O,B,s\rangle \Rightarrow^{2t} \langle L',r',I,O',B_0,s'\rangle}$$

$$\underline{s = 1 \quad \forall lec_{index} \in L.lec_{index} = \langle \mathbf{skip}, m, p, n \rangle_l}_{L = []}$$

شکل ۲۶ – معناشناخت سراسری برای چنداجرایی امن بافردار در حالت عدم گزارش نقض امنیت

اثبات درستي مكانيزم

• تعریف ۱ (تعریف خطمشی عدم تداخل حساس به زمان) [1] – برنامه P عدم تعریف ۱ (تعریف خطمشی عدم تداخل حساس به زمان را طبق رابطه معناشناخت داده شده P برآورده می تداخل حساس به زمان را طبق رابطه معناشناخت داده شده P برای هر ورودی می تداخل حساس به زمان را طبق رابطه معناشناخت داده شده و رودی می تداخل اگر برای هر سطح امنیتی P برای آنها برقرار است، اگر P (P برای P برای آنها برقرار است، اگر P (P برای P برای P برای P و P و P و P و P و P و P و P عدم امراه عدم P اعدم امراه و ام

• قضیه P (درستی مکانیزم چنداجرایی امن بافردار) - هر برنامه P تحت مکانیزم چنداجرایی امن بافردار عدم تداخل حساس به زمان را برآورده می کند.

اثبات درستی مکانیزم (ادامه)

لم ۱ (نامتغیرهای حالت اجرای سراسری) – فرض کنید $\langle L_0, r_0, I, O_0, B_0, s_0 \rangle \Rightarrow^n \langle L_f, r_f, I, O_f, B_f, s_f \rangle$

پس خواهیم داشت،

است. r(i)=p(i) $\sigma_{in}(i)=l$ که $i\in C_{in}$ است. $c,m,p,n\rangle_l\in L$ است. - برای هر سطح امنیتی l فقط یک اجرا $c,m,p,n\rangle_l$ در طحح امنیتی l در l وجود دارد.

سطح l_s سطح رصیانت درستی برای معناشناخت محلی، بخش اول) – فرض کنید l_s یک سطح $c,m,p,n\rangle_l,r_1,I_1,B_1$ \Rightarrow $\langle c',m',p',n'\rangle_l,r_1',I_1,B_1'$ را در امنیتی و l_s باشد. l_s باشد. l

اثبات درستی مکانیزم (ادامه)

سطح الم T (صیانت درستی برای معناشناخت محلی، بخش دوم) T فرض کنید l_s یک سطح امنیتی و t_s باشد. t_s باشد.

لم ۴ (صیانت درستی برای معناشناخت سراسری) - فرض کنید l_s یک سطح امنیتی باشد. در نظر بگیرید که

$$\langle L_1, r_1, I_1, O_1, B_1, s_1 \rangle \Rightarrow \langle L'_1, r'_1, I_1, O'_1, B'_1, s'_1 \rangle$$

 $\langle L_2,r_2,I_2,O_2,B_2,s_2 \rangle \Rightarrow \langle L_2',r_2',I_2,O_2',B_2',s_2' \rangle$ $s_1 =_{l_s} s_2$ ه $B_1 =_{l_s} B_2$ $O_1 =_{l_s} O_2$ $I_1 =_{l_s} I_2$ $I_2 =_{l_s} I_2$ $I_3 =_{l_s} I_2$ $I_4 =_{l_s} I_2$ که $L_1' =_{l_s} L_2'$ مانبد انگاه به خاطر استفاده از زمانبند پیشنهادشده خواهیم داشت $s_1' =_{l_s} s_2'$ ه $B_1' =_{l_s} B_2'$ $O_1' =_{l_s} O_2'$ $I_1' =_{l_s} I_2'$ $I_2' =_{l_s} I_2'$

۲۹ز ۳۷

اثبات شفافیت کامل مکانیزم

• قضیه Υ (شفافیت کامل مکانیزم چنداجرایی امن بافردار) - اگر برنامه P عدم

تداخل حساس به زمان را برآورده می کند، آنگاه برای هر ورودی برنامه I برای

هر $n \geq 0$ ، وجود دارد g و g' به طوری که

$$(P,I) \rightarrow^n (r_1, O_1) \Longrightarrow (P,I) \Longrightarrow^g (r_1, O_1)$$

9

$$(P,I) \rightarrow^{n+1} (r_2, O_2) \Longrightarrow (P,I) \Longrightarrow^{g'} (r_2, O_2)$$

 $g' > g \ge n$ که

٢٩ مهر ١٣٩۶

اثبات شفافیت کامل مکانیزم (ادامه)

 $P \in \mathcal{L}$ و $A \in \mathcal{L}$ فرض کنید $A \in \mathcal{L}$ و $A \in \mathcal{L}$ او $A \in \mathcal{L}$ یک برنامه باشد. در نظر بگیرید که

 $\langle L_{P,0}, r_0, I, O_0, B_0, s_0 \rangle \Rightarrow^g \langle L, r, I, O, B, s \rangle$

که در آن $I_l = I_{|l}(i)$ تعریف می کنیم که $I_l = I_{|l}(i)$ است. آنگاه که در آن $I_l = I_{|l}(i)$ تعریف می کنیم که برای هر کانال خروجی O که O که برای هر کانال خروجی O که برای هر کانال خروجی O'(o) = O(o) باشد، O'(o) = O(o) برقرار است. علاوه بر این، فرض کنید O'(o) = O(o) باشد. O برقرار است. علاوه بر این، فرض کنید O باشد. O برقرار است. بر مشبکه و O مقدار سهم زمانی باشد. O می دانیم که اندازه بافر هر سطح نیز برابر با O عنصر است. پس رابطه بین تعداد گامهای محلی و سراسری اجرا تحت مکانیزم چنداجرایی امن بافردار و تعداد گامهای اجرای استاندارد یک برنامه عبارت است از

 $g = (n/t).(j + 1).t + j.t + n \mod t$

جمعبندي

- بهبود مکانیزمهای مبتنی بر چنداجرایی امن برای اعمال خطمشی امنیتی عدم تداخل حساس به زمان و حفظ ترتیب رویدادهای خروجی نسبت به یکدیگر
 - مكانيزم چنداجرايي امن بافردار
 - اثبات درستی و شفافیت کامل مکانیزم ارائهشده
 - بررسی هزینه زمان اجرا

کارهای آینده

- پشتیبانی از حذف ردهبندی
 - کاهش سربار زمان اجرا
 - تکنیکهای بهینهسازی
- پشتیبانی از قابلیت همروندی و عدم قطعیت
 - انتخاب مقدار پیشفرض مناسب
 - پیادهسازی مکانیزم پیشنهادی
- پیادهسازی چنداجرایی امن برای تلفن همراه

منابع و مراجع

- [1] D. Devriese and F. Piessens, "Noninterference through secure multi-execution," in *Proceedings IEEE Symposium on Security and Privacy*, 2010, pp. 109–124.
- [7] M. R. Clarkson and F. B. Schneider, "Hyperproperties," *Journal of Computer Security*, vol. 18, no. 6, 2010, pp. 1157–1210.
- [$^{\circ}$] A. Lamei, "Formal Characterization of Security Policy Enforcement through Program Rewriting," Ph.D. thesis, Amirkabir University of Technology, 2016..
- [f] V. Kashyap, B. Wiedermann, and B. Hardekopf, "Timing- and Termination-Sensitive Secure Information Flow: Exploring a New Approach," in *IEEE Symposium on Security and Privacy* (S&P 2011), 2011, pp. 413–428.
- [Δ] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas, "Secure multi-execution through static program transformation," in *Formal Techniques for Distributed Systems* '12, 2012, pp. 186–202.
- [9] D. Zanarini, M. Jaskelioff, and A. Russo, "Precise enforcement of confidentiality for reactive systems," in *Proceedings of the 2013 IEEE 26th Computer Security Foundations Symposium (CSF '13)*, 2013, pp. 18–32.
- [Y] D. Zanarini and M. Jaskelioff, "Monitoring Reactive Systems with Dynamic Channels," in *Proceedings of the Ninth Workshop on Programming Languages and Analysis for Security*, 2014, pp. 66–78.

منابع و مراجع

[A] I. Bolosteanu and D. Garg, "Asymmetric Secure Multi-execution with Declassification," in *Proceedings of the 5th International Conference on Principles of Security and Trust*, vol. 9635, Springer-Verlag New York, Inc., 2016, pp. 24–45

[9] W. Rafnsson and A. Sabelfeld, "Secure Multi-execution: Fine-Grained, Declassification-Aware, and Transparent," in 2013 IEEE 26th Computer Security Foundations Symposium (CSF '13), 2013, pp. 33–48.

[1.] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, "Secure multi-execution of web scripts: Theory and practice," *Journal of Computer Security - Web Application Security*, vol. 22, no. 4, 2014, pp. 469–509.

[11] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk, "Stateful Declassification Policies for Event-Driven Programs," in 2014 IEEE 27th Computer Security Foundations Symposium (CSF '14), 2014, pp. 293–307.

[17] M. Jaskelioff and A. Russo, "Secure multi-execution in haskell," in *Proceedings of the 8th International Conference on Perspectives of System Informatics*, 2012, pp. 170–178.

[18] T. H. Austin and C. Flanagan, "Multiple facets for dynamic information flow," ACM SIGPLAN-SIGACT Symposium on Principles of programming languages - POPL '12, vol. 47, no. 1, 2012, p. 165-178.

[14] N. N. M. Ngo, "A Programmable Enforcement Framework for Security Policies," Ph.D. thesis, University of Trento, 2016.

[1\alpha] N. Bielova and T. Rezk, "A taxonomy of information flow monitors," in *Proceedings of the 5th International Conference on Principles of Security and Trust*, vol. 9635, 2016, pp. 46–67.

[18] N. Bielova and T. Rezk, "Spot the Difference: Secure Multi-execution and Multiple Facets," in *Computer Security – ESORICS 2016*: 21st European Symposium on Research in Computer Security, Springer International Publishing, 2016, pp. 501–519.

با سپاس از توجه شما! ©

