Foundations of Machine Learning

Online Perceptron and Linear SVM

Lecturer: Yann Chevaleyre Lecture n°7
Scribe: Alexandre NGAU 09/11/2023

1 Linear Discrimination

1.1 Formulation

Let $D = \{(x_i, y_i) \in X \times \{-1, 1\}\}_{i=1}^n$ be a set of labeled points. The goal is to build from D a function $f: X \to \{-1, 1\}$ or $f: X \to \mathbb{R}$ which predicts the class -1 or 1 of a point $x \in X$.

Definition 1. Scoring Function

We assume the input space $X = \mathbb{R}^d$.

The scoring function: $f: \mathbb{R}^d \to \mathbb{R}$ such that if f(x) < 0, assign x to class -1, and if f(x) > 0, assign x to class 1.

The linear decision function: f(x) = w > x + b, where w is a d-dimensional weight vector and b is a scalar bias term.

Definition 2. Linearly Separable Problem

The points (x_i, y_i) are linearly separable if there exists a hyperplane that can correctly discriminate the entire dataset. Otherwise, we refer to them as linearly non-separable examples. In this lecture, we choose the one that maximizes the margin (see Figure 1).

Figure 1: Separable and Non-separable Linear Problems

1.2 Linear Separator and Margin Maximization

Definition 3. Distance from a Point to the Decision Boundary

Let $H(w,b) = \{z \in \mathbb{R}^d \mid f(z) = w^T z + b = 0\}$ be a hyperplane, and let $x \in \mathbb{R}^d$. The distance from the point x to the hyperplane H is $d(x,H) = |w^T x + b| = |f(x)|$ (see Figure 2).

class 1 class 2 5 4 3 f(x) = 0

Figure 2: Distance from a Point to the Decision Boundary

Proof.

Let
$$x = x_p + \frac{w}{\|w\|} \times d$$
 where $d = \frac{f(x)}{\|w\|}$.

$$w^{T}w = w^{T}x_{p} + \frac{w^{T}w}{\|w\|}d$$
 where $\frac{w^{T}w}{\|w\|}d = \|w\|d$

Õ

Let
$$x = x_p + \frac{w}{\|w\|} \times d$$
 where $d = \frac{f(x)}{\|w\|}$.
Take the dot product of x with w :
$$w^T w = w^T x_p + \frac{w^T w}{\|w\|} d$$
 where
$$\frac{w^T w}{\|w\|} d = \|w\| d$$
So,
$$\|w\| d = w^T x - w^T x_p = (w^T x + b) - (w^T x_p + b) = w^T x + b \text{ because } w^T x_p + b = 0$$
Finally,
$$d = \frac{w^T x + b}{\|w\|}$$

2

6

4

Definition 4.

Canonical Hyperplane

-2

 $\overline{A \text{ hyperplane is said to be}} \text{ canonical with respect to the data } \{x_1, \dots, x_N\} \text{ if } \min_{x_i} |w^T x_i + b| = 0$ 1.

Margin

The geometrical margin is $M = \frac{2}{\|\mathbf{w}\|}$

Optimal Canonical Hyperplane

The optimal canonical hyperplane maximizes the margin, and classes correctly each point i.e. $\forall i, y_i f(x_i) > 1$

1.3 Perceptron Algorithm

The following **Perceptron Algorithm** is for homogenous linear classifiers $f(x) = w^T x$ (with no bias b for the moment.

Algorithm 1: The Perceptron Algorithm (online setting)

```
Data:
  t \leftarrow 0
  w_0 \leftarrow 0
1 repeat
       Receive x_t;
\mathbf{2}
       Predict \hat{y_t} = \text{sign}(w_t^T x_t);
3
       Receive y_t \in \{-1, 1\};
4
       if y_t \neq \hat{y_t} then
        Update w_{t+1} \leftarrow w_t + y_t w_t
6
7
       else
         Update w_{t+1} \leftarrow w_t
8
9 until convergence;
```

Theorem 1. Block, Norikoff

Assume: $\forall t, ||x_t|| < R, y_t \in \{-1, 1\}.$

Assume there exists a canonical hyperplane w^* classifying data perfectly, and passing through the origin with a half margin $\rho = \frac{1}{\|w^*\|}$.

Then, the number of mistakes of perceptron is at most $\frac{R^2}{q^2}$.

Proof.

Step 1

After an update (a prediction error), w_{t+1} is "more aligned to w^* ".

$$< w_{t+1}, w^* > = < w_t + y_t x_t, w^* >$$

= $< w_t, w^* > + y_t < x_t, w^* >$
 $\ge < w_t, w^* > + 1$ because $y_t < x_t, w^* > \ge 1$ (w^* is canonical

Unrolling, we get $\langle w_t, w^* \rangle \geq t$

Step 2

After an update (classification error):

$$||w_{t+1}||^2 = \langle w_t + y_t x_t, w_t + y_t x_t \rangle$$

$$= ||w_t||^2 + 2y_t \langle w_t, x_t \rangle + ||y_t x_t||^2$$

$$\leq ||w_t||^2 + R^2 \text{because } 2y_t \langle w_t, x_t \rangle \leq 0$$

$$\implies ||w_t||^2 \langle tR^2 \rangle$$

Step 3

$$t \leq < w_t, w^* >$$

$$\leq ||w_t|| ||w^*|| \text{Cauchy-Schwarz}$$

$$\leq \sqrt{t}R ||w^*||$$

$$= \sqrt{t} \frac{R}{\rho}$$

$$\implies sqrtt \leq \frac{R}{\rho}$$

$$t \leq \frac{R^2}{\rho^2}$$

1.4 Perceptron Algorithm as an SGD Online Learner

Let $s_t = w_t^T x$

Perceptron Algorithm Update:

SGD Update:

$$w_{t+1} \leftarrow w_t - \alpha \nabla_w l^{perceptron}(s_t, y) \text{ with } l^{perceptron}(s_t, y) = \begin{cases} 0 & \text{if } y_t s_t \ge 0 \\ -y_t x_t & \text{otherwise} \end{cases} = max(0, -ys_t)$$

If
$$\alpha = 1$$
 then applying SGD here gives : $w_{t+1} \leftarrow w_t - \alpha \begin{cases} 0 & \text{if } y_t s_t \geq 0 \\ -y_t x_t & \text{otherwise} \end{cases}$

Figure 3: Graph of the Perceptron loss and the 0/1 loss

Definition 5.

VC Bound

Risk R on a class of functions H with a probability $1 - \delta$ is: $R(h) \leq R_{emp}(h) + C\sqrt{\frac{D(\log(2N/D)+1)+\log(4\delta)}{N}}$ where D is the VC-dimension of H.

VC-dimension of the Class of Linear Functions with Margin ρ

Let H be the class of functions $f(x) = w^T x + b$ with a margin ρ from the learning examples. Then $D \leq 1 + \min(d, \frac{R^2}{\rho^2})R$, where R is the radius of a ball containing the training data.

Definition 6. SVM and Formulation of the Maximisation Problem

Let $D = \{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$ be a set of linearly separable points. The goal is to find a decision function $f(x) = w^T x + b$ that maximizes the margin and correctly discriminates the points in D i.e. $\min \frac{1}{2} ||w||^2$ subject to $y_i(w^T x_i + b) \ge 1$ for all $i = 1, \ldots, n$ (all points correctly classified).

2 Solving the SVM Problem

2.1 Primal Problem and Lagrangian

Definition 7. Primal Problem of SVM

 $min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||\overline{w}||^2 subject \ to \ y_i(w \cdot x_i + b) \ge 1, \ \forall \ i = 1, \dots, n$

We then introduce Lagrange multipliers $\alpha_i \geq 0$ associated with the *n* inequality constraints, i.e., *n* parameters α_i .

Finally, the Lagrangian of the problem is : $L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1)$.

2.2 SVM Dual Problem

Stationarity Condition

$$\frac{\partial L(w, b, \alpha)}{\partial b} = 0$$
 and $\frac{\partial L(w, b, \alpha)}{\partial w} = 0$

So,

$$\sum_{i=1}^{n} \alpha_i y_i = 0 \quad \text{and} \quad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

Definition 8. Dual Problem of SVM: quadratic programming problem

By substituting these values into the Lagrangian, we obtain:

$$\max_{\{\alpha_i\}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
s.t. $\alpha_i \ge 0, \quad \forall i = 1, \dots, n$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

5

With complementary slackness: $\alpha_i (y_i(w^Tx_i + b) - 1) = 0$

Problem Resolution

First, solve the dual to find the *n* parameters $\{\alpha_i\}_{i=1}^n$. Two types of parameters α_i are subsequently found:

- For a point x_j , if $y_j(w^Tx_j + b) > 1$, then $\alpha_j = 0$.
- For a point x_i , if $y_i(w^Tx_i + b) = 1$, then $\alpha_i \ge 0$.

The solution is then: $w = \sum_{i=1}^{n} \alpha_i y_i x_i$, where w is defined only for the points such that $y_i(w^T x_i + b) = 1$. These points are called **support vectors**.

Figure 4: SVM in the Linearly Separable Case

In practice (for the linearly separable case (see Figure 4)

ullet Calculation of w

Use the data $D = \{(x_i, y_i)\}_{i=1}^n$ to solve the dual. We obtain the parameters $\{\alpha_i\}_{i=1}^n$. Therefore, deduce the solution $w = \sum_{i=1}^n \alpha_i y_i x_i$.

• Calculation of b

The $\alpha_i > 0$ correspond to the support points that satisfy the relationship $y_i(w^T x_i + b) = 1$. Therefore, deduce the value of b.

• The Score Function is then $f(x) = w^T x + b = \sum_{i=1}^n \alpha_i y_i x_i^T x + b$.

3 SVM for Linearly Non-separable Problems

What happens if the data is not linearly separable?

Well, you will have to relax the constraints by allowing $y_i(w^Tx_i + b) \ge 1 - \xi_i$, where $\xi_i \ge 0$ is the 'error' term, and include the sum of these 'errors' $(\sum_{i=1}^n \xi_i)$ in the SVM problem.

Primal Problem

$$\min_{w,b,\{\xi_{i}\}} \quad \frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$y_{i}(w^{T}x_{i} + b) \ge 1 - \xi_{i}, \quad \forall i = 1, \dots, n$$

$$\xi_{i} \ge 0, \quad \forall i = 1, \dots, n$$

C > 0 is a regularization parameter (trade-off between error and margin), the value of which is to be determined by the use.

Dual Problem

The Lagrangian becomes $L(w, b, \xi, \alpha, \nu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^n \nu_i \xi_i$.

The dual problem is then formulated as such:

$$\max_{\{\alpha_i\}} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$
s.t.
$$0 \ge \alpha_i \ge C, \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

Optimality Conditions of Stationarity

$$\frac{\partial L(w, b, \xi_i, \alpha)}{\partial b} = 0 \quad \text{and} \quad \frac{\partial L(w, b, \xi_i, \alpha)}{\partial w} = 0 \quad \text{and} \quad \frac{\partial L(w, b, \xi_i, \alpha)}{\partial \xi_k} = 0$$

Which gives:

$$\sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i \qquad \qquad C - \alpha_i - \nu_i = 0, \forall i = 1, \dots, n$$

Theorem 2. Solution of a linear SVM: non-separable case

Consider a non-separable linear SVM problem with the decision function $f(x) = w^T x + b$. The vector w is defined as $w = \sum_{i=1}^{n} \alpha_i y_i x_i$, where the coefficients α_i are solutions to the dual problem above.

What has changed? Nothing except the constraints on α_i which are now $0 \le \alpha_i \le C$.

In Figure 5, we resolve an SVM problem for C=0.01 small, and C=1000 large. The choice of C influences the solution : small C results in a large margin, while a large C results in a small margin.

Figure 5: SVM in the Linearly Separable Case

4 SVM in Practice

N.B.: some widespread SVM solvers that you can use are LibSVM¹ and Scikit-Learn²

In practice:

Input elements:

Labeled data: $\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n\}$

Methodology:

- 1. Center the data: $\{x_i\}_{i=1}^n \leftarrow \{x_i \bar{x}\}_{i=1}^n\}$
- 2. Set the parameter C > 0 for the SVM.
- 3. Use a solver to solve the dual problem and obtain $\alpha_i \neq 0$, the corresponding support points x_i , and the bias b.
- 4. Deduce the decision function: $f(x) = \sum_{i \in SV} \alpha_i y_i x_i^T x + b$.
- 5. Evaluate the generalization error of the obtained SVM (cross-validation, etc.).
- 6. Restart from step 2 if it is not satisfactory.

Model Selection: tuning of C:

function $C \leftarrow \text{tuneC}(X, Y, \text{options})$

- 1. Split the data $(X_a, Y_a, X_v, Y_v) \leftarrow \text{SplitData}(X, Y, \text{options})$
- 2. For different values of C:
 - $(w, b) \leftarrow \text{TrainLinearSVM}(X_a, Y_a, C, \text{options})$

¹http://www.csie.ntu.edu.tw/~cjlin/libsvm/

²http://scikit-learn.org/stable/modules/svm.html

- error \leftarrow EvaluateError (X_v, Y_v, w, b)
- 3. $C \leftarrow \operatorname{argmin}_C \operatorname{error}$

- (a) Training set to calculate w and b
- (b) Validation set to evaluate the classification error for different values of C
 - (c) Test set to evaluate the 'best model'

Figure 6: C Parameter Tuning Procedure

Relation between soft-SVM, Hinge loss, and Hinge loss perceptron:

Soft-SVM (SVM with slack variables (non-separable conditions)

$$\begin{cases} \min_{w,b,\{\xi_i\}} & \frac{1}{2} \|w\|^2 & + & C \sum_{i=1}^n \xi_i \\ y_i(< w, x_i > +b) & \geq & 1 - \xi_i \\ \xi_i & \geq & 0 \end{cases}$$

 $\begin{cases} \min_{w,b,\{\xi_i\}} & \frac{1}{2} \|w\|^2 & + C \sum_{i=1}^n \xi_i \\ y_i(< w, x_i > +b) & \geq 1 - \xi_i \\ & \xi_i & \geq 0 \end{cases}$ The constraints on ξ_i are then: $\begin{cases} \xi_i & \geq 0 \\ \xi_i & \geq 1 - y_i(< w, x_i > +b) = 1 - y_i s_i \text{ with } s_i = < w, x_i > +b' \end{cases}$

Consider this optimization sub-problem:

$$\begin{cases} \min & \sum_{i=1}^{n} \xi_{i} \\ \text{s.t.} & \xi \geq \max(0, 1 - y_{i}s_{i}) \end{cases} \xrightarrow{\text{solution}} \underbrace{\xi_{i} = \max(0, 1 - y_{i}s_{i})}_{\text{this is also the solution on } \xi_{i} \text{ to the original problem}}$$

The problem becomes : $\min_{w,b,\{\xi_i\}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0,1-y_i(< w,x_i>+b))$

$$\Leftrightarrow$$

$$\min_{w,b,\{\xi_i\}} \frac{1}{2C} ||w||^2 + \sum_{i=1}^n l^{hinge}(\langle w, x_i \rangle + b, y_i) \text{ where } l^{hinge}(s_i, y_i) = \max(0, 1 - y_i s_i)$$

SGD of soft-SVM on the objective function

$$\nabla_{w}(\frac{1}{2C}\|w\|^{2} + \sum_{i=1}^{n} l^{hinge}(s_{i}, y_{i})) = \frac{w}{C} + \sum_{i=1}^{n} \begin{cases} 0 & \text{if } y_{i}s_{i} > 1\\ -y_{i}x_{i} & \text{otherwise} \end{cases}$$

if
$$y_t < w_t, y_t > < 1$$
 then
Update $w_{t+1} \leftarrow w_t + \alpha y_t x_t - \alpha \frac{w_t}{C}$
else
Update $w_{t+1} \leftarrow w_t - \alpha \frac{w_t}{C}$

Figure 7: Graph of the Perceptron, the 0/1, and the Hinge loss

 ${\mathbb R}$ As we can see in Figure 7, $l^{hinge}(\ldots) \geq l^{0,1}(\ldots).$

5 Conclusions

In this lecture, we learned:

- To build an optimal hyperplane
- Maximizing the margin is the goal
- In-depth theoretical analysis reveals that maximizing the margin is equivalent to minimizing a bound on the generalization error
- The non-linear case, where a non-linear decision function is sought, can be handled through kernels
- Possible extension to the case of multiple classes
- Widely used classification algorithm in practice