

ER-IMODEL INTRODUCTION TO DATA SCIENCE

CARSTEN BINNIG
BROWN UNIVERSITY

DATABASES FOR DATA SCIENTIST

MODELING ELENTS

ENTITY/RELATIONSHIP (ER) MODEL

Other Notations exist!!!

ENTITY/RELATIONSHIP (ER) MODEL

Entity

Relationship

Attribute

Key

Role

WHY ER?

Advantages

- ER diagrams are easy to create / edit/ read (from the layman)
- ER diagrams express all information requirements independent of concrete implementation (e.g., relational, XML, ...)

Other aspects

- Minimality
- Tools (e.g., Visio)
- Graphical representation

General

- Try to be concise, complete, comprehensible, and correct
- Controversy whether ER/UML is useful in practice
- No controversy that everybody needs to learn ER/UML

RULES OF THUMB

Attribute vs. Entity

- Entity if the concept has more than one relationship
- Attribute if the concept has only one 1:1 relationship

Partitioning of ER Models

- Most realistic models are larger than a page
- Partition by domains (library, research, finances, ...)

Good vs. Bad models

- Do not model redundancy or tricks to improve performance
- Less entities is better (the fewer, the better!)
- Follow the 5 C's (clear, concise, correct, complete, compliant)

ENTITY/RELATIONSHIP MODEL

FUNCTIONALITIES

FUNCTIONALITIES

EXAMPLE: PROFESSOR <-> LECTURE

SOMETIMES ALSO SHOWN AS

FUNCTIONALITIES OF N-ARY RELATIONSHIPS

 $R: E_1 \times ... \times E_{k-1} \times E_{k+1} \times ... \times E_n \longrightarrow E_k$

EXAMPLE: RESEARCH PROJECT SUPERVISION

- Each student can be supervised by the same professor only on one research topic
- The student can not use the same research topic with different professors
- The same professor can give the same research topic to different students

supervise : Professor x Student → Topic

supervise : Topic x Student → Professor

- A customer can have several orders
- An order belongs to a single customer
- Every order has exactly one shipping method (e.g., Post, Fexed, UPS,...)

- A customer can have several orders
- An order belongs to a single customer
- Every order has exactly one shipping method (e.g., Post, Fexed, UPS,...)

ENTITY/RELATIONSHIP MODEL

(MIN, MAX) NOTATION

(MIN, MAX)-NOTATION

(min, max)-Notation is more precise than functionalities:

- Lower-bound (min)
- Upper-bound (max)

BUT: different definition!

(MIN, MAX)-NOTATION

Definition (min₁, max₁) means that for each $e_1 \in E_1$ there exist

- At least min_1 relationships with $(e_1, *) \in R$
- Maximally \max_1 relationships with $(e_1, *) \in R$

^{*} means any $e_2 \in \mathbf{E}_2$

A lecture can be attended by maximally 100 students and a student can not attend more than 20 lectures. What is the correct (min, max) notation to represent these two cases?

- A. Student (0,100) -----< attends>---- (0,20) Lecture
- B. Student(20,20) -----<attends>---- (100,100) Lecture
- C. Student(0,20) -----<attends>---- (0,100) Lecture

A lecture can be attended by maximally 100 students and a student can not attend more than 20 lectures. What is the correct (min, max) notation to represent these two cases?

- A. Student (0,100) -----<attends>---- (0,20) Lecture
- B. Student(20,20) -----<attends>---- (100,100) Lecture
- C. Student(0,20) -----<attends>---- (0,100) Lecture

EXAMPLE: POLYHEDRON

EXAMPLE: POLYHEDRON

NOT COVERED

Weak Entities

Compound attributes

Enhanced ERM

- Generalization (i.e., inheritance)
- Aggregation

...

Model a music record database

- An album has a unique name and songs have unique titles
- An album contains several songs
- A playlist has a unique name and is created by one user with a unique login
- A playlist contains several songs from potential different albums

Name Name B) Album **Playlist** n m contains contains creates n n Songs User **Title** login

- An album has a unique name and songs have unique titles
- An album contains several songs
- A playlist has a unique name and is created by one user with a unique login
 - A playlist contains several songs from potential different albums

Name Name B) Album **Playlist** n m contains contains creates n n Songs User **Title** login

- An album has a unique name and songs have unique titles
- An album contains several songs
- A playlist has a unique name and is created by one user with a unique login
 - A playlist contains several songs from potential different albums

SUMMARY

Elements of ER-Models

Functionalities

- · 1:1
- 1:N
- **N:M**

(min, max)-Notation