Linear Algebra

Linear algebra is the study of linear structures and functions that preserve this structure. Vector spaces are a mathematical sweet spot. They are completely characterized by their dimension.

Vector Space

A vector space over the real numbers \mathbf{R} is set V with a binary operation $V \times V \to V$, $(v,w) \mapsto v+w$, and a scalar product $\mathbf{R} \times V \to V$, $(a,v) \mapsto av$, satisfying the distributive law. The binary addition is commutative (v+w=w+v), associative ((u+v)+w=u+(w+v)), has an identity element $\mathbf{0}$ $(v+\mathbf{0}=v)$, and each element has an inverse $((-v)+v=\mathbf{0})$. The scalar product satisfies the distributive laws a(v+w)=av+aw, (a+b)v=av+bv, (ab)v=a(bv) and 1v=v, $a,b\in\mathbf{R}$, $v,w\in V$.

Exercise. Show $a\mathbf{0} = \mathbf{0}$, $0v = \mathbf{0}$, and (-1)v = -v, $a \in \mathbf{R}$, $v \in V$.

If S is any set then the set of all functions from S to the real numbers, $\mathbb{R}^S = \{v \colon S \to \mathbb{R}\}$, is a vector space. The addition is defined pointwise

$$(v+w)(s) = v(s) + w(s) \text{ for } v, w \in \mathbb{R}^{S}$$

as is the scalar product

$$(av)(s) = av(s)$$
 for $a \in \mathbf{R}, v \in \mathbf{R}^S$.

The additive identity, $\mathbf{0}$, is the function $\mathbf{0}(s) = 0$ for all $s \in S$.

Exercise. Show \mathbf{R}^S is a vector space.

You are probably already familiar with the vector space $\mathbf{R}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbf{R}, 1 \leq i \leq n\}$. If $S = \{1, \dots, n\}$ and $x \in \mathbf{R}^S$ then $x(i) = x_i$ provides a correspondence between $\mathbf{R}^{\{1,\dots,n\}}$ and \mathbf{R}^n .

Subspace

A subset $W \subseteq V$ is a *subspace* of V if W is also a vector space. Clearly $\{0\}$ is the smallest subspace and V is the largest subspace of V.

Exercise. If $v \in V$ then $\mathbf{R}v = \{av \mid a \in \mathbf{R}\}$ is a subspace.

Given any set $S \subset V$ define span S to be the smallest subspace containing S.

Exercise. If $S \subseteq V$ then span $S = \{\sum_{s \in S_0} a_s s \mid a_s \in \mathbf{R}, S_0 \subseteq S \text{ finite } \}.$

We need S_0 to be finite for the sum to be defined.

Solution

Taking $S_0 = \{s\}$ and $a_s = 1$ we see S is a subset of the right hand side. Every term of the form $\sum_{s \in S_0} a_s s$ must belong to span S. Since the right hand side is a subspace it must be equal to the span of S.

A set of vectors $\{v_i\}_{i\in I}$ are independent if every finite sum $\sum_i a_i v_i = 0$ implies $a_i = 0$ for all i. A basis of a vector space is a set of independent vectors that span V.

Linear Operators

A linear operator from the vector space V to the vector space W, $T: V \to W$, is a function that preserves the vector space structure: T(u+v) = Tu + Tv and T(au) = aTu for $u, v \in V$, and $a \in \mathbf{R}$.

Exercise. Show T(au + v) = aTu + v, $a \in \mathbb{R}$, $u, v \in V$ implies T is a linear operator.

If $T: V \to V$ is a linear operator and U is a subspace of V then it is *invariant* under T if $TW \subseteq W$.

The set of all linear operators from a vector space V to a vector space W, $\mathcal{L}(V,W)$, is also a vector space. The addition is defined by (S+T)v=Sv+Tv, $S,T\in\mathcal{L}(V,W),\ v\in V$ and scalar multiplication by $(aT)v=a(Tv),\ a\in\mathbf{R}$.

Exercise. Show $\mathcal{L}(V, W)$ is a vector space.

The kernel of a linear transformation $T: V \to W$ is $\ker T = \{v \in V \mid Tv = 0\}$ and the range is $\operatorname{ran} T = \{Tv \mid v \in V\} \subseteq W$.

Exercise. If $T: V \to W$ is a linear operator show the kernel is a subspace of V and the range is a subspace of W.

Exercise. Show $\ker T = \{0\}$ implies T is one-to-one.

Hint: Show Tu = Tv implies $u = v, u, v \in V$.

If $T: V \to W$ is one-to-one we can define the inverse T^{-1} : ran $T \to V$ by $T^{-1}w = v$ if and only if w = Tv.

Exercise. If $T: V \to V$ is a linear operator then the kernel and range are invariant under T.

Solution

We have $T(\ker T) = \{\mathbf{0}\} \subset \ker T \text{ and } T(\operatorname{ran} T) = T(TV) \subset TV = \operatorname{ran} T.$

Eigenvectors/values

If $T: V \to V$ is a linear operator and $\mathbf{R}v$ is invariant under T then v is an eigenvector of T. The number $\lambda \in \mathbf{R}$ with $Tv = \lambda v$ is the eigenvalue corresponding to v. Note if $Tv = \lambda v$ then $v \in \ker T - \lambda I \neq \{0\}$ and so $T - \lambda I$ is not invertible.

The *spectrum* of an operator is the set of all eigenvalues: $\sigma(T) = \{\lambda \in \mathbf{R} \mid \ker(T - \lambda I) \neq \{\mathbf{0}\}\}$. For $\lambda \in \sigma(T)$ let $V_{\lambda} = \ker(T - \lambda I)$.

Exercise. Show $V_{\lambda} \cap V_{\mu} = \{\mathbf{0}\}$ if $\lambda \neq \mu$.

For $v \in V$ let $V_v = \text{span}\{T^j v \mid j \geq 0\}$. Clearly V_v is invariant for T.

Spectral mapping theorem If p is a polynomial then $p(\sigma(T)) = \sigma(p(T))$.

Shift Operator

Given $v_1, \ldots, v_n \in V$ define the *shift operator* $J: V \to V$ by $Jv_i = v_{i+1}$, $1 \le j < n$ and $Jv_n = \mathbf{0}$.