Lineárne rovnice a nerovnice

Lineárna rovnica s jednou neznámou

- má tvar ax + b = 0, alebo sa na tento tvar dá upraviť; $a; b \in R$; a, b koeficienty rovnice; x premenná (neznáma)
- riešiť rovnicu znamená hľadať takú hodnotu premennej x (koreň), aby vyhovovala rovnici, teda, aby sme po jej dosadení dostali rovnosť
- na úpravu rovníc používame ekvivalentné úpravy také, pri ktorých sa nemení množina koreňov – patria sem:
 - a) vzájomná výmena strán rovnice
 - b) pripočítanie toho istého čísla alebo výrazu k obom stranám rovnice
 - vynásobenie alebo vydelenie oboch strán rovnice tým istým nenulovým číslom alebo výrazom
 - d) umocnenie oboch strán rovnice prirodzeným mocniteľom, ak sú obe strany rovnice nezáporné
 - e) odmocnenie oboch strán rovnice prirodzeným odmocniteľom, ak sú obe strany rovnice nezáporné
 - f) zlogaritmovanie oboch strán rovnice s tým istým základom, ak sú obe strany rovnice kladné
- neekvivalentné (dôsledkové) úpravy rovnice také, pri ktorých sa rozširuje množina koreňov = množina koreňov upravene rovnice je nadmnožinou množiny koreňov pôvodnej rovnice – patria sem:
 - a) umocnenie obidvoch strán rovnice
 - b) odmocnenie obidvoch strán rovnice
- keďže pre neekvivalentných úpravách môže dôjsť k rozšíreniu množiny koreňov, je tu nutná skúška správnosti = overenie správnosti koreňov dosadením do pôvodnej rovnice
- lineárna rovnica ax + b = 0, kde $a; b \in R$, môže mať:
 - a) jedno riešenie riešením je jedno reálne číslo, ak platí, že $a \neq 0$, potom jeho hodnota je

$$K = \left\{ -\frac{b}{a} \right\}$$

- b) žiadne riešenie, ak $\alpha = 0 \land b \neq 0$, teda $K = \emptyset$
- c) nekonečne veľa riešení, ak a = 0 \wedge b = 0, teda K = R

Lineárna nerovnica

- má jeden z tvarov (alebo sa dá na ten tvar upraviť)

$$ax + b > 0$$

$$ax + b < 0$$

$$ax + b \le 0$$

- ekvivalentné úpravy nerovníc:
 - a) vzájomná výmena strán nerovnice, ak súčasne zmeníme znak nerovnosti na obrátený
 - b) pripočítanie toho istého čísla alebo výrazu k obom stranám nerovnice
 - c) vynásobenie oboch strán nerovnice kladným číslom
 - d) vynásobenie oboch strán nerovnice záporným číslom, ak súčasne zmeníme znak nerovnosti na obrátený
 - e) umocnenie oboch strán nerovnice prirodzeným mocniteľom (ak sú obe strany nerovnice kladné, znak nerovnosti sa nemení, ak sú obe záporné, znak nerovnosti sa mení na obrátený)
 - f) odmocnenie oboch strán nerovnice prirodzeným odmocniteľom, ak sú obe strany nerovnice kladné
 - g) zlogaritmovanie oboch strán nerovnice s rovnakým základom väčším ako 1, ak sú obe strany kladné
- riešením lineárnej nerovnice je interval (otvorený alebo polouzavretý) $I \subset R$ (riešením môže byť aj \emptyset aleboR)