Un abeto parecido al helecho de Barnsley

Sean f_1 , f_2 , y f_3 las cuatro transformaciones afines de $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ representadas por

$$f_1(x) = \begin{bmatrix} 0.75 & 0.03 \\ -0.07 & 0.7 \end{bmatrix} \vec{x} + \begin{bmatrix} 10 \\ 150 \end{bmatrix}$$

$$f_2(x) = \begin{bmatrix} -0.15 & 0.51 \\ 0.5 & 0.15 \end{bmatrix} \vec{x} + \begin{bmatrix} 10 \\ 40 \end{bmatrix}$$

$$f_3(x) = \begin{bmatrix} 0.2 & -0.25 \\ 0.21 & 0.4 \end{bmatrix} \vec{x} + \begin{bmatrix} 30 \\ 150 \end{bmatrix}$$

$$f_4(x) = \begin{bmatrix} 0.02 & -0.05 \\ 0.03 & 0.2 \end{bmatrix} \vec{x} + \begin{bmatrix} 10 \\ 1 \end{bmatrix}$$

Algoritmo

- 1. Comenzar con un conjunto adecuado de transformaciones afines $S = \{f_1, f_2,, f_n\}$ y un punto inicial (x_k, y_k) .
- 2. Elegir al azar una transformación afin de S, por ejemplo f_i .
- 3. Calcular y graficar el punto $f_i(x_k, y_k)$. Igualar $(x_k, y_k) = f_i(x_k, y_k)$.
- 4. Ir al paso 2 y repetir.