Def. Sea $a = x_0 < x_1 < ... < x_n = b$ partición de [a,b]Spline de grado m relat a era partición

es una función s(x) que verifica:

i) $s(x) = p(x) \in P_m$, $x \in [x_1, x_{i+1}]$ i = 0, ... n-1ii) $s(x) \in C^{m-1}[a,b] \Longrightarrow s^{(i)}(x_i^*) = s^{(i)}(x_i^*)$ i = 1, ... n-1 i = 0, ... m-1

Tecrema: Si Sm(xo,...xn) conjunto de los splines de grado m can nodos xo,...xn, será un ev de dimensión n+m Vecesitaremos n+m datos de interpolación

- · Spline lineal cm=1)
 · scx;) = fcx;) i=0,1...n
- · Spline cuadreatico Cm=2)

 · SCx;) = {Cx; > i=0,1,...n

 · Dato adicional C Voranalmente {'Cxk'} keho,1...n'
- Spline aubicos Cm=3)
 scx;) = fcx;) = f; i = 0,...n
 a datos adicionales.
 digado o extremo sueto: sca) = x scb) p
 - Natural: 3"(a) = 5(b) = 0

- Periodico: s'(a) = s'(b), s'(a) = s'(b)

Para détener cas derivadas (d; i=0,1...n)

ec, y ecr dependen de las condiciones adicionales provistas

- Extrem. suj. do - s'ca) i dn = s'Cb) (provistos)

- Periodicos:
$$do - dn = 0$$
 is $\frac{1}{h_0 d_1} + 2 \left(\frac{do}{h_0} + \frac{dn}{h_{n-1}} \right) + \frac{1}{h_{n-1}} dn_{-1} = 3 \left(\frac{\Delta_0}{h_0} + \frac{\Delta_{n-1}}{h_{n-1}} \right)$