PERTEMUAN 7:

GRAPH TERAPAN

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dijelaskan mengenai sejarah graph dan apa itu graph, Anda harus mampu:

- 1.1 Mengetahui Lintasan dan sirkuit Euler dalam Graph
- 1.2 Dapat membedakan sirkuit euler dan lintasan euler

B. URAIAN MATERI

Tujuan Pembelajaran 1.1:

Mengetahui lintasan dan sirkuit euler dalam graph dan mampu menerapkannya pada gambar.

LINTASAN DAN SIRKUIT EULER

Lintasan Euler ialah lintasan yang melalui masing-masing sisi di dalam graf tepat satu kali. Sirkuit Euler ialah sirkuit yang melewati masing-masing sisi tepat satu kali. Graf yang mempunyai sirkuit Euler disebut **graf Euler** (*Eulerian graph*). Graf yang mempunyai lintasan Euler dinamakan juga graf **semi-Euler** (*semi-Eulerian graph*).

Contoh 1.3.

Lintasan Euler pada graf Gambar 1.21 (a): 3, 1, 2, 3, 4, 1

Lintasan Euler pada graf Gambar 1.21 (b): 1, 2, 4, 6, 2, 3, 6, 5, 1, 3

Sirkuit Euler pada graf Gambar 1.21 (c) : 1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1

Sirkuit Euler pada graf Gambar 1.21 (d) : a, c, f, e, c, b, d, e, a, d, f, b, a

Graf (e) dan (f) tidak mempunyai lintasan maupun sirkuit Euler

Teorema 1.1.

Graf tidak berarah memiliki lintasan Euler jika dan hanya jika terhubung dan memiliki dua buah simpul berderajat ganjil atau tidak ada simpul berderajat ganjil sama sekali.

Teorema 1.2.

Graf tidak berarah *G* adalah graf Euler (memiliki sirkuit Euler) jika dan hanya jika setiap simpul berderajat genap.

Gambar 1.23. (a) dan (b) graf semi-Euler, (c) dan (d) graf Euler (e) dan (f) bukan graf semi-Euler atau graf Euler

(Catatlah bahwa graf yang memiliki sirkuit Euler pasti mempunyai lintasan Euler, tetapi tidak sebaliknya)

Teorema 1.3.

Graf berarah G memiliki sirkuit Euler jika dan hanya jika G terhubung dan setiap simpul memiliki derajat-masuk dan derajat-keluar sama. G memiliki lintasan Euler jika dan hanya jika G terhubung dan setiap simpul memiliki derajat-masuk dan derajat-keluar sama kecuali dua simpul, yang pertama memiliki derajat-keluar satu lebih besar derajat-masuk, dan yang kedua memiliki derajat-masuk satu lebih besar dari derajat-keluar.

Gambar 1.24. (a) Graf berarah Euler (a, g, c, b, g, e, d, f, a) (b) Graf berarah semi-Euler (d, a, b, d, c, b)

(c) Graf berarah bukan Euler maupun semi-Euler

Gambar 1.25. Graf Bulan sabit Muhammad

C. SOAL LATIHAN/TUGAS

DAFTAR PUSTAKA

Munir, Rinaldi. Matematika Diskrit. Bandung: Informatika, 2005.

Siang, Jong Jek. *Matematika Diskrit dan Aplikasinya pada Ilmu komputer*. Yogyakarta: Andi Offset, 2004.

Wibisono, Samuel. Matematika Diskrit. Yogyakarta: Graha Ilmu, 2008.