1. Sarsa State-Action-Reward-State-Action (SARSA)

Derive TD Target

• Assume R_t depends on (S_t, A_t, S_{t+1}) . $\frac{\text{为什么?}}{\text{不就已经得到了吗?}}$ 在t时刻的奖励 R_t 在给定t时刻状态 s_t 并做出动作 a_t 后,不就已经得到了吗?为什么依赖于t+1时刻的状态 s_{t+1} ?

基于policy
$$\pi$$
的 • $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | s_t, a_t]$ action-value function
$$= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t]$$

$$= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[U_{t+1} | s_t, a_t]$$
 ?
$$= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t].$$
 Identity: $Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1})]$, for all π . • We do not know the expectation. • Approximate it using Monte Carlo (MC).
$$\approx r_t \qquad \approx Q_{\pi}(s_{t+1}, a_{t+1})$$

$$\approx r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$$
 TD target γ_t

TD learning: Encourage $Q_{\pi}(s_t, \mathbf{a_t})$ to approach y_t .

Sarsa: Tabular Version

- We want to learn $Q_{\overline{\pi}}(s, a)$.
- Suppose the numbers of states and actions are finite.
- Draw a table and learn the entries.

- **Algorithm** Use $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ for updating Q_{π} .
 State-Action-Reward-State-Action (SARSA).
- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is the policy function.
- TD target: $y_t = r_t + \gamma \cdot Q_\pi(s_{t+1}, a_{t+1})$. 注意! t+1时刻的Q是基于一个随机采样的 a_{t+1} ; 在接下来的Q learning中, t+1时刻的Q是所有Q值中(a取值不同)最大的;
- TD error: $\delta_t = Q_{\pi}(s_t, \mathbf{a}_t) y_t$.
- Update: $Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) \alpha \cdot \delta_t$. 直接更新表格, 减小error

Sarsa: Neural Network Version

Actor-critic method中, value net就是这么训练的

• Approximate $Q_{\pi}(s, \mathbf{a})$ by the value network, $q(s, \mathbf{a}; \mathbf{w})$.

- q is used as the critic who evaluates the actor. (Actor-Critic Method.)
- We want to learn the parameter, w.

TD Error & Gradient

- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w})$.
- TD error: $\delta_t = q(s_t, \mathbf{a_t}; \mathbf{w}) y_t$.
- Loss: $\delta_t^2/2$.
- Gradient: $\frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = \delta_t \cdot \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial \ q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \ \mathbf{w}}$.

2. Q-Learning

Derive TD Target

• We have proved that for all π ,

$$Q_{\pi}(S_t, \mathbf{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A_{t+1}})].$$

• If π is the optimal policy π^* , then

$$Q_{\pi^{\star}}(S_t, \mathbf{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi^{\star}}(S_{t+1}, \mathbf{A_{t+1}})].$$

• Q_{π^*} and Q^* both denote the optimal action-value function.

Identity:
$$Q^*(s_t, \mathbf{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, \mathbf{A_{t+1}})].$$

• The action A_{t+1} is computed by

$$A_{t+1} = \operatorname*{argmax}_{a} Q^{*}(S_{t+1}, a).$$

 A_{t+1} 是随机变量,当 S_{t+1} 取值不同时, A_{t+1} 取值会不同。

• Thus $Q^*(S_{t+1}, A_{t+1})$ 只由 S_{t+1} 取值来决定。Q* 就是在 s_{t+1} 条件下,变换不同action得到的最大的Q值

$$Q^*(S_{t+1}, A_{t+1}) = \max_{a} Q^*(S_{t+1}, a).$$

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a)\right].$$
We do not know the expectation.
Approximate it using Monte Carlo (MC).
$$\approx r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a)$$
TD target y_t

Q-Learning: Tabular Version

- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$. 查表。虽然当前的表可能还不够好。
- TD error: $\delta_t = Q^*(s_t, \mathbf{a_t}) y_t$.
- Update: $Q^*(s_t, a_t) \leftarrow Q^*(s_t, a_t) \alpha \cdot \delta_t$. 将更新值写入表中。

Q-Learning: DQN Version

• Approximate $Q^*(s, \mathbf{a})$ by DQN, $Q(s, \mathbf{a}; \mathbf{w})$.

- (parameterized by w)

 DQN controls the agent by: $a_t = \operatorname{argmax} Q(s_t, a; \mathbf{w})$.
- We seek to learn the parameter, w.

Algorithm

- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}).$
- TD error: $\delta_t = Q(s_t, \mathbf{a_t}; \mathbf{w}) y_t$.
- Update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial \ Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \ \mathbf{w}}$.

Sarsa VS Q-Learning

- Sarsa is for training action-value function, $Q_{\pi}(s, a)$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.
- We used Sarsa for updating value network (critic).

- Q-learning is for training the optimal action-value function, $Q^*(s, a)$.
- TD target: $y_t = r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a)$.
- We used Q-learning for updating DQN.

3. Multi-Step TD Target

Multi-Step Return

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot U_{t+3}$$
.

• *m*-step TD target for **Sarsa**:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot Q_{\pi}(s_{t+m}, a_{t+m}).$$

• *m*-step TD target for **Q-learning**:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot \max_{a} Q^*(s_{t+m}, a).$$

One-Step versus Multi-Step

- One-step TD target uses only one reward: r_t .
- m-step TD target uses m rewards: $r_t, r_{t+1}, r_{t+2}, \cdots, r_{t+m-1}$.
- If m is suitably tuned, m-step target works better than one-step target [1].

Reference:

1. Hossel et al. Rainbow: combining improvements in deep reinforcement learning. In AAAI, 2018.