數學解題方法 作業二

Canadian Mathematical Olympiad 2003

第一組

410631111 數四甲 林佳儀 410631135 數四甲 孔儀馨 410631226 數四乙 白元亦 410731238 數三乙 呂若慈 410731239 數三乙 江晏淳

TABLE OF CONTENTS

01 題目翻譯

Topic translation

題目變變變

Topic Bang Bang Bang

O2 題目講解
Topic explanation

04 變化題講解

Topic explanation

01 題目翻譯

Topic translation

第一題:

(代數主題)

有一個標準的圓形指針時鐘(包含時針和分針)。假設m為一整數,且1≤m≤720。「從12:00起,經過m分鐘後,時針和分針的夾角恰為一度」,求出m的所有可能。

第二題:

(數論主題)

請找出 200320022001 的末三位數字

第三題:

(代數主題)

若有解,請找到所有正實數解

$$x^3 + y^3 + z^3 = x + y + z$$

及

$$x^2 + y^2 + z^2 = xyz$$

第四題:

(幾何主題)

證明:

當有 3 個圓共享了 \overline{AB} 弦,每條通過 A 的直線(非 \overline{AB}) 決定了一樣的比例 \overline{XY} : \overline{YZ} ,其中 X 是第<u>一個圓上的</u>任意點(非 B),而 Y 和 Z 分別為 \overline{AX} 和剩下兩個圓的交點 (Y 在 X 和 Z 之間)。 \leftarrow

第五題:

(幾何主題)

令S為平面中n個點的集合,使S的任意兩個點至少相隔1個單位。 證明S的子集T至少具有n / 7個點,使得T的任意兩個點至少相隔 $\sqrt{3}$ 個單位

Topic explanation

第一題:

(代數主題)

有一個標準的圓形指針時鐘(包含時針和分針)。假設m為一整數,且1≤m≤720。「從12:00起,經過m分鐘後,時針和分針的夾角恰為一度」,求出m的所有可能。

有一個標準的圓形指針時鐘(包含時針和分針)。 假設m為一整數,且 $1 \le m \le 720$ 。「從12:00起,經過m分鐘後,時針和分針的夾角恰為一度」,求出m的所有可能。

Sol:

step1

- ★ 時鐘一圈360度(每過60分鐘,分針繞一圈) 因此,每過m分鐘,分針移動(360/60)m = 6m度
- ★ 時鐘一圈360度(每過12小時/720分鐘,時針繞一圈) 因此,每過m小時,時針移動(360/720)m = 0.5m度

有一個標準的圓形指針時鐘(包含時針和分針)。 假設m為一整數,且 $1 \le m \le 720$ 。「從12:00起,經過m分鐘後,時針和分針的夾角恰為一度」,求出m的所有可能。

Sol:

step1

- ★ 時鐘一圈360度(每過60分鐘,分針繞一圈) 因此,每過m分鐘,分針移動(360/60)m = 6m度
- ★ 時鐘一圈360度(每過12小時/720分鐘,時針繞一圈) 因此,每過m小時,時針移動(360/720)m = 0.5m度

step2

★ 由step2的結論,列出關係式 6m - 0.5m = ± 1 + 360k (k為整數)

有一個標準的圓形指針時鐘(包含時針和分針)。 假設m為一整數,且1≤m≤720。「從12:00起,經過m分鐘後, 時針和分針的夾角恰為一度」,求出m的所有可能。

Sol:

step2

★ 由step2的結論,列出關係式 6m - 0.5m = ± 1 + 360k (k為整數)

step3
 ★ 經整理

$$m = \frac{720k \pm 2}{11} = 65k + \frac{5k \pm 2}{11}$$

★ 因為m為整數,所以(5k±2)能被11整除

有一個標準的圓形指針時鐘(包含時針和分針)。 假設m為一整數,且1≤m≤720。「從12:00起,經過m分鐘後, 時針和分針的夾角恰為一度」,求出m的所有可能。

Sol:

step3

* 經整理
$$m = \frac{720k \pm 2}{11} = 65k + \frac{5k \pm 2}{11}$$
 ,且 $1 \le k \le 11$

★ 因為m為整數,所以 $(5k \pm 2)$ 能被11整除

step4

- ★ 討論後,可以得到 q=2,3,則 k=4,7
- ★ 帶回step3關係式,可以得到m=262,458

Topic Bang Bang Bang

第一題的變化題:

(代數主題)

有天,想要減肥的阿豬和小龜相約到燕巢400公尺操場慢跑。阿豬跑一圈操場只要花80秒,小龜則要耗費1000秒才能跑完一圈。

假設s為一正整數,「若兩人皆從起跑線出發,經過s 秒後,兩人恰好距離10公尺」,求符合條件之s最小值

0

(假設阿豬和小龜均等速運動)

Topic explanation

有天,想要減肥的阿豬和小龜相約到燕巢400公尺操場慢跑。阿豬跑一圈操場只要花80秒,小龜則要耗費1000秒才能跑完一圈。假設s為一正整數,「若兩人皆從起跑線出發,經過s秒後,兩人恰好距離10公尺」,求符合條件之s最小值。

Sol:

step1

★ 操場一圈400公尺(阿豬花80秒跑完一圈) 因此,每過s秒,阿豬移動 (400/80)s = 5s 公尺 其實這就是在 算速率!

★ 操場一圈400公尺(小龜花1000秒跑完一圈) 因此,每過m小時,時針移動(400/1000)m = 0.4公尺 有天,想要減肥的阿豬和小龜相約到燕巢400公尺操場慢跑。阿豬跑一圈操場只要花80秒,小龜則要耗費1000秒才能跑完一圈。假設s為一正整數,「若兩人皆從起跑線出發,經過s秒後,兩人恰好距離10公尺」,求符合條件之s最小值。

Sol:

step1

- ★ 操場一圈400公尺(阿豬花80秒跑完一圈) 因此,每過s秒,阿豬移動 (400/80)s = 5s 公尺
- ★ 操場一圈400公尺(小龜花1000秒跑完一圈) 因此,每過m小時,時針移動(400/1000)m = 0.4公尺

step2

★ 由step2的結論,列出關係式 5s-0.4m = ± 10 + 400k (k為整數)

有天,想要减肥的阿豬和小龜相約到燕巢400公尺操場慢跑。阿豬跑一圈 操場只要花80秒,小龜則要耗費1000秒才能跑完一圈。 假設s為一正整數,「若兩人皆從起跑線出發,經過s秒後,兩人恰好距離 10公尺」,求符合條件之s最小值。

Sol:

step2

★ 由step2的結論,列出關係式 5s - 0.4m = ± 10 + 400k (x為整數)

★ 經整理
$$23s = \pm 50 + 2000k \implies s = \frac{2000k \pm 50}{23} = 86k + \frac{22k \pm 50}{23}$$

★ 因為s為整數,所以($22k \pm 50$)能被23整除

有天,想要减肥的阿豬和小龜相約到燕巢400公尺操場慢跑。阿豬跑一圈 操場只要花80秒,小龜則要耗費1000秒才能跑完一圈。 假設s為一正整數,「若兩人皆從起跑線出發,經過s秒後,兩人恰好距離 10公尺」,求符合條件之s最小值。

Sol:

step3

* 經整理
$$23s = \pm 50 + 2000k \Rightarrow s = \frac{2000k \pm 50}{23} = 86k + \frac{22k \pm 50}{23}$$

★ 因為m為整數,所以($22k \pm 50$)能被23整除

step4

★ 由此可得,
$$22k = 23q \pm 50 \Rightarrow k = \frac{23q \pm 50}{22} = q + \frac{q \pm 50}{22}$$

- ★ 討論後,可以得到 q的最小值為 6 ,則 k=4
- ★ 帶回step3關係式,可以得到s的最小值=350

Thanks!