Examenul de bacalaureat național 2013 Proba E. c) Matematică *M st-nat*

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul a = 3(2+5i) 5(1+3i) este real.
- **5p** 2. Determinați coordonatele punctului de intersecție cu axa Ox a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 10x + 25$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_5(x^2 + x + 1) = \log_5(x + 2)$.
- **5p 4.** După o ieftinire cu 10% prețul unui produs este 90 de lei. Calculați prețul produsului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră dreapta h de ecuație y = x 1 și punctul A(2,2). Determinați ecuația dreptei d care trece prin A și este paralelă cu h.
- **5p** | **6.** Calculați cosinusul unghiului A al triunghiului ABC în care AB = 5, AC = 6 și BC = 7.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru fiecare număr real x se consideră matricea $A(x) = \begin{pmatrix} 1 & 1 & 0 \\ x & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.
- **5p** a) Arătați că A(2) + A(6) = 2A(4).
- **5p b**) Determinați numărul real x pentru care $\det(A(x)) = 0$.
- **5p c**) Determinați inversa matricei A(2).
 - **2.** Se consideră x_1 , x_2 și x_3 rădăcinile complexe ale polinomului $f = X^3 + X^2 + mX + m$, unde m este un număr real.
- **5p** a) Arătați că f este divizibil cu X+1, pentru orice număr real m.
- **5p b**) Determinați numărul real *m* pentru care $x_1^2 + x_2^2 + x_3^2 = 11$.
- **5p** | **c**) Determinați valorile reale ale lui m știind că $|x_1| = |x_2| = |x_3|$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x \ln x$.
- **5p** a) Calculați f'(x), $x \in (0, +\infty)$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
- **5p** c) Demonstrați că $x \ge \ln x + 1$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x(x+1)(x-1).
- **5p** a) Arătați că $\int_{2}^{3} \frac{f(x)}{x(x-1)} dx = \frac{7}{2}.$
- **5p b**) Determinați primitiva $F: \mathbb{R} \to \mathbb{R}$ a funcției f știind că F(1) = -1.
- **5p** c) Arătați că $\int_{2}^{e} \frac{f(x) \ln x}{x^2 1} dx = \frac{e^2}{4} 2 \ln 2 + 1$.