NLP Tutorial: Machine Learning

February 24, 2022

Introduction

Tom Mitchell, 1997

- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks T, as measured by P, improves with experience E.
- For example Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam mails.
 - T?
 - ② E?
 - P?
- The sub-field of computer science "gives a computer an ability to learn without being explicitly programmed".

Types of Machine learning Algorithms

- Supervised learning
- Unsupervised learning

Supervised Learning

- Types of learning algorithm in which we have associated truth values for each sample during training.
- Based on the nature of output:
 - Regression: A regression problem is when the output variable is a real value, such as predict the age on the basis of the given picture.
 - Classification: A classification problem is when the output variable is categorical, such as whether the tumor is malignant or benign.

Linear Regression

Linear regression is a linear model, that assumes a linear relationship between the input variables (x) and the output variable (y).

	Size in sq. ft. (x)	Price (\$) in 1000's (y)	
(x^1,y^1)	2104	460	
(x^2,y^2)	1416	232	
(x^i, y^i)	1534	315	
		• • •	
(x^m, y^m)	• • •	• • •	

Table: Training set for housing problem

- A pair (x^i, y^i) is called a training sample.
- A list of m training samples $\{(x^i, y^i), i = 1, ..., m\}$ is called a training set.

Linear Regression

Simple Linear Regression Example: Graphical Representation

DCOVA House price model: Scatter Plot and Prediction Line

Linear Regression

Model Representation, Hypothesis Function and Cost Function

Model Representation

- Hypothesis Function: $h_{\theta}(x) = \theta_0 + \theta_1 x$. (where θ 's : Parameters)
- How to choose θ_i 's?
 - Intuition: Choose θ_0 & θ_i so that $h_{\theta}(x)$ is close to y for our training sample (x^i, y^i) .

Cost Function

- To measure the accuracy of our hypothesis function.
- Also called as Squared error function or Mean squared error.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=0}^{m-1} (h_{\theta}(x) - y_i)^2$$
 (1)

Gradient Decent & Learning Rate

Gradient decent

- To minimize cost function $J(\theta_0, \theta_1)$.
- Gradient descent is an optimization algorithm that enables a model to learn the gradient or direction that the model should take in order to reduce errors.
- repeat until convergence{ $\theta_j = \theta_j \alpha \ \frac{\delta}{\delta \theta_j} J(\theta_0, \theta_1) \ (\text{for } j = 0 \ \& \ j = 1) }$ }
- ullet α is learning rate.
- Both the θ 's are are updated simultaneously.

Logistic Regression

- Logistics Regression is a useful regression method for solving the classification problem.
- It uses the sigmoid function.
- The sigmoid function gives an 'S' shaped curve that can take any real-valued number and map it into a value between 0 and 1.
- Hypothesis function given by:

$$h_{\theta}(x) = g(z) \tag{2}$$

$$z = \theta^{\mathsf{T}} x \tag{3}$$

$$g(z) = \frac{1}{1 + e^{-z}} \tag{4}$$

Artificial Neural Network (ANN)

- An artificial neural network is a highly interconnected network of large number of processing elements called neuron.
- Neural network derives its origin from human brain:
 - Knowledge is acquired by the network from its environment through a learning process.
 - Inter neuron connection strengths, known as synaptic weights, are used to store the acquired knowledge.
- Non linear classification.

Types of neural network architecture

- Single-Layer Feedforward Networks
- Multi-Layer Feedforward Networks
- Recurrent Neural Networks

Artificial Neural Network

Single-Layer Feedforward Networks

- An input layer of source nodes that projects directly onto an output layer of neurons.
- "Single layer" referring to the output layer of computation nodes (neurons).

Figure: Single-Layer Feedforward Networks

Artificial Neural Network

Multi-Layer Feedforward Networks

- Consists of one or more layer of hidden neurons.
- Hidden layers are responsible for computation.
- More the hidden layer, more the complexity of the network, but efficient output is produced.

Figure: Multi-Layer Feedforward Networks

Artificial Neural Network

Recurrent Neural Networks

- Consist of at least one feedback loop.
- x_t input at time/step t. U, W, V shared across all steps.
- s_t hidden state (memory) at t: $s_t = g(Ux_t + Ws_{t-1})$.
- o_t output at t: $o_t = \operatorname{softmax}(Vs_t)$.

Figure: Recurrent Neural Network.

Unsupervised Machine Learning

Unsupervised Learning

- In unsupervised learning, we use unlabeled data.
- The goal for unsupervised learning is to model the underlying structure or pattern to learn more about the data.
- Clustering Algorithms are the examples of unsupervised learning.
 - Clustering is the process of dividing the entire data into groups (also known as clusters) based on the patterns in the data.
 - Document Clustering, Image segmentation, etc.

K-Means Clustering Algorithm

- Initialize cluster centers. (randomly pick k points).
- Assign observations to the closest cluster center.
- Revise cluster centers as mean of assigned observations.
- Repeat step 2 and step 3 until convergence.

Underfitting and Overfitting

Overfitting

- The model is performing too well on the training data but the performance drops significantly over the test set.
- This is also known as high variance problem.
- Overfitting occurs when the machine learning model captures the noise from the data.

Underfitting

- The model is performing poorly over the training and the test dataset.
- This is also known as high bias problem.
- Underfitting occurs when a machine learning model cannot capture the underlying trend of the data.

Performance Metrics

Confusion Matrix

- A confusion matrix is a matrix representation to describe the performance of a classification model.
- The tabular representation between the actual and predicted values as shown below:

	/ total value		
		Positive	Negative
Predicted Values	Predicted	True Positive	False Positive
	Positive	(TP)	(FP)
	Predicted	False Negative	True Negative
	Negative	(FN)	(TN)

Actual Values

 Accuracy: Accuracy is the percentage of correctly classified cases.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 (5)

 Precision: Precision is the percentage of correctly predicted positive observations of the total predicted positive observations.

$$Precision(P) = \frac{TP}{TP + FP}$$
 (6)

 Recall: Recall is the percentage of correctly predicted positive observations of all observations in the actual class.

$$Recall(R) = \frac{TP}{TP + FN} \tag{7}$$

• **F1-Score**: F1-score is the harmonic mean of precision and recall.

$$F1 - score = \frac{2 \times P \times R}{P + R} \tag{8}$$

Thank you