Stochastic Optimization in Machine Learning

Fin Bauer, Stanislas Chambon, Roland Halbig, Stefan Heidekrüger, Jakob Heuke

Technische Universität München

27. Mai 2015

Outline

- 1 Introduction
- 2 Machine Learning Problems and Optimization Models
- 3 Stochastic Quasi-Newton Method
 - Algorithm
 - Algorithm Benchmarking
- 4 Sparsity
 - Algorithm
- 5 Conclusion

Introduction (1)

Challenges in Machine Learning

- massive amounts of training data
- construction of very large models
- how to handle the high memory/computational demands?

Stochastic Methods: Update on small amounts of training data!

Introduction (2)

Optimization Problem

$$\min_{w\in\mathbb{R}^n}F(w)=\mathbb{E}[f(w;\xi)],$$

where $f(w; \xi) = f(w; x_i, z_i) = \mathcal{L}(h(w; x_i); z_i)$.

Empirical Form of Objective Function

$$F(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i, z_i)$$

Introduction (3)

Mini-batch Stochastic Gradient

Consider small subset $\mathcal{S} \subset \{1, \dots, N\}$, with $b := |\mathcal{S}| \ll N$

Construct

$$\widehat{\nabla}F(w) = \frac{1}{b}\sum_{i\in\mathcal{S}}\nabla f(w;x_i,z_i)$$

Structure of this Case Study

Machine Learning Problems and Optimization Models

Possible Applications:

- Face recognition
- Text classification
- Speech recognition

Machine Learning Problems and Optimization Models

Possible Applications:

- Face recognition
- Text classification
- Speech recognition

Possible Optimization Models:

- Linear Regression: $\min_{w} \frac{1}{N} \sum_{i=1}^{N} ||z_i x_i w||_2^2$
- Binary Classification:

$$f(w; x_i, z_i) = z_i \log(c(w; x_i)) + (1 - z_i) \log(1 - c(w; x_i))$$

with $c(w; x_i) = \frac{1}{1 + \exp(-x_i^T w)}$

Neural Nets: Back propagation

Stochastic Quasi-Newton Method (1)

Problem:

- Incorporating second-order information via full Hessian too expensive for large-scale problems
- Use of curvature information highly beneficial for algorithm performance

Stochastic Quasi-Newton Method (1)

Problem:

- Incorporating second-order information via full Hessian too expensive for large-scale problems
- Use of curvature information highly beneficial for algorithm performance

Idea:

- Adapt BFGS method to stochastic framework
- Employ limited memory version of BFGS algorithm (L-BFGS)
- lacksquare Compute gradient based on sample ${\mathcal S}$ of training set
- Compute Hessian update at regular intervals of length L based on small subsample S_H of training set

Stochastic Quasi-Newton Method (2)

Iteration

$$w_{k+1} = w_k - \alpha_k H_t \widehat{\nabla} F(w_k)$$

Hessian-Update

Choose

$$s_t = \bar{w}_t - \bar{w}_{t-1}$$
 $y_t = \widehat{\nabla}^2 F(\bar{w}_t) s_t$

with $\bar{w}_t := \sum_{i=k-L}^k w_i$ and $\widehat{\nabla}^2 F(w) := \frac{1}{b_H} \sum_{i \in \mathcal{S}_H} \nabla^2 f(w; x_i, z_i)$.

Compute

$$H_{t+1} = (I - \rho_t s_t y_t^T) H_t (I - \rho_t y_t s_t^T) + \rho_t s_t s_t^T,$$

with $\rho_t = \frac{1}{y_t^T s_t}$.

Stochastic Quasi-Newton Method (3)

Stochastic L-BFGS Algorithm

```
1: Initialize w_1, H_1, step-length sequence \alpha_k > 0

2: for k = 1, \ldots, do

3: Choose a sample S \subset \{1, \ldots, N\}

4: Compute w_{k+1} = w_k - \alpha^k H_t \widehat{\nabla} F(w^k)

5: if mod (k, L) = 0 then

6: Choose a sample S_H \subset \{1, \ldots, N\}

7: Compute H_t

8: end if

9: end for
```

Benchmarking of Stochastic Quasi-Newton Method

Challenge: Economical implementation of Algorithm is necessary for meaningful benchmarking

- Memory-efficient sparse coding
- Calculation of Hessian-Vector Product without storing the Hessian
- Computation of BFGS-Update via two-loop recursion

Benchmarking of Stochastic Quasi-Newton Method

Challenge: Economical implementation of Algorithm is necessary for meaningful benchmarking

- Memory-efficient sparse coding
- Calculation of Hessian-Vector Product without storing the Hessian
- Computation of BFGS-Update via two-loop recursion

Benchmarking:

- Comparison to Stochastic Gradient Descent Method, Standard L-BFGS Method, (Stochastic) Conjugate Gradient Descent
- Comparison of run-time, accuracy, access-points etc. under different parameter regimes and objective functions

Inducing Sparsity

Dictionary Learning

$$\min_{D,\alpha} \frac{1}{N} \sum_{i=1}^{N} \|x_i - D\alpha_i\|_2^2 + \lambda \|\alpha_i\|_1$$

- $lue{}$ control on D and lpha
- better convergence
- modifications of the algorithms

Conclusion

Situation

- Increasing amount of data in Machine Learning applications
- Need for robust and fast algorithms for smooth and non smooth optimization

Stochastic Second-Order Methods

- Faster convergence through curvature information
- Moderate computational cost through mini-batches