Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 1

Aufgabe 1 (Fell-Topologie)

Zeigen Sie, dass $\mathcal{F}^d \setminus \{\emptyset\}$ lokalkompakt ist, d.h., dass für jedes $F \in \mathcal{F}^d \setminus \{\emptyset\}$ eine kompakte Teilmenge $V \subset \mathcal{F}^d \setminus \{\emptyset\}$ und eine offene Teilmenge $U \subset \mathcal{F}^d \setminus \{\emptyset\}$ existieren mit

$$F \in U \subset V$$
.

Aufgabe 2 (siehe Satz 1.1.3)

Sei $(F_i)_{i\in\mathbb{N}}$ eine Folge in \mathcal{F} und $F\in\mathcal{F}$. Dann sind die beiden folgenden Aussagen äquivalent:

- (a) Es gelten die beiden Aussagen (a₁) und (a₂).
 - (a₁) Für alle $G \in \mathcal{G}$ mit $G \cap F \neq \emptyset$ gilt $G \cap F_j \neq \emptyset$ für fast alle $j \in \mathbb{N}$.
 - (a₂) Für alle $C \in \mathcal{C}$ mit $C \cap F = \emptyset$ gilt $C \cap F_j = \emptyset$ für fast alle $j \in \mathbb{N}$.
- (b) Es gelten die beiden Aussagen (b_1) und (b_2) .
 - (b₁) Zu $x \in F$ existieren $x_j \in F_j$ für fast alle $j \in \mathbb{N}$, sodass $x_j \to x$ für $j \to \infty$.
 - (b₂) Ist $(i_j)_{j\in\mathbb{N}}$ eine Folge in \mathbb{N} und $(x_{i_j})_{j\in\mathbb{N}}$ eine konvergente Folge mit $x_{i_j}\in F_{i_j}$ für $j\in\mathbb{N}$, so gilt $\lim_{j\to\infty}x_{i_j}\in F$.

Aufgabe 3 (siehe Beispiel 1.1.6)

Zeigen Sie:

- (a) Wenn $x_n \to x$ in \mathbb{R}^d und $r_n \to r$ in \mathbb{R}_+ , dann folgt $B(x_n, r_n) \to B(x, r)$.
- (b) Aus $||x_n|| \to \infty$ folgt $\{x_n\} \to \emptyset$.

Dabei ist jeweils die Konvergenz in der Fell-Topologie gemeint.

Aufgabe 4 (Stetigkeit bezüglich der Fell-Topologie; siehe Satz 1.1.12) Zeigen Sie:

- (a) Die Abbildung $\mathcal{F}^d \to \mathcal{F}^d$, $F \mapsto -F$ ist stetig.
- (b) Die Abbildung $(0, \infty) \times \mathcal{F}^d \to \mathcal{F}^d$, $(\alpha, F) \mapsto \alpha F$ ist stetig.
- (c) Die Abbildung $[0,\infty)\times\mathcal{F}^d\to\mathcal{F}^d$, $(\alpha,F)\mapsto\alpha F$ ist **nicht** stetig.

Aufgabe 5 (Hausdorff-Metrik; siehe Definition 1.1.16 und Satz 1.1.17)

- (a) Zeigen Sie Satz 1.1.17: Die Hausdorff-Metrik δ ist sowohl auf $\mathcal{C}^d \setminus \{\emptyset\}$ als auch auf \mathcal{C}^d eine Metrik.
- (b) Es seien $A, A', B, B' \in \mathcal{C}^d \setminus \emptyset$. Zeigen Sie:
 - (i) $\delta(\text{conv } A, \text{conv } B) \leq \delta(A, B)$.
 - (ii) $\delta(A + A', B + B') \le \delta(A, B) + \delta(A', B')$.
 - (iii) $\delta(A \cup A', B \cup B') \le \max\{\delta(A, B), \delta(A', B')\}.$