BAE SYSTEMS

ASPECTS OF USE OF CFD FOR UAV CONFIGURATION DESIGN

Presentation at UAV Workshop, Bath University, November 2002

Tim Pemberton,

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 26 JUL 2004		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Aspects Of Use Of Cfd For Uav Configuration Design				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) BAE SYSTEMS				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 85, CSP 02-5078, Pr al document contain	_	dynamic Issues of	'Unmanned	Air Vehicles	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	20	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

UCAV DESIGN PROBLEM

- Problem (for Aerodynamics) is as much due to novel planforms as Unmanned
- Novel planforms negate traditional Aerodynamic ground rules (sweep, span, AR etc)
- S&C is a significant challenge
- Requirement for rapid proto-typing for planform/basic layout studies and control surface optimisation
- Fast-response WT small scale, stereo-lithography, PSP
- Fast-response CFD -Euler, High RE turb models RANS

TYPICAL EXAMPLE

BAE SYSTEMS

Investigation of Fin Position on a typical Novel Planform

- Establish credibility of CFD for prediction of general flow trends at low speed, high incidence for novel planforms
- Assist in interpretation of 'small-scale' wind tunnel testing

TYPICAL EXAMPLE

BAE SYSTEMS

Small Scale WT testing - Effect of fin position

Datum (flat-plate) model

NOTES ON CFD CALCULATIONS

- 6-8million unstructured grid cells required for credible vortex capture from Euler, with particular emphasis on field resolution
- 2-3million 'BAE Systems Autogrid' cells required for equivalent capture from RANS
- kεRNG turbulence model (wall function) suitable
- Euler solution turnround 4hrs on 8 Origin processors,
 RANS 2 days

EFFECT OF FIN ON FORCES

BAE SYSTEMS

Flat Plate Wind Tunnel v CFD (Euler)

EFFECT OF FIN ON FLOWFIELD High Inc Fin Pos2 Fin Off Datum Flat Plate CFD Euler, velocity vectors, local vel contours

EFFECT OF THICKNESS BAE SYSTEMS 10% t/c Flat Plate Moderate Incidence High Incidence Flat Plate v Symmetric airfoil, CFD Euler, local vel contours

EFFECT OF T/C ON FLOWFIELD High Inc 10% t/c Flat plate 5% t/c CFD Euler, velocity vectors and local vel contours

EFFECT OF THICKNESS BAE SYSTEMS 10% t/c 5% t/c Flat Plate High Inc **RANS** CFD RANS, surface flow patterns

SUMMARY

- Euler showing good prediction of flat plate
- Absolute values of pitching moment poor at high incidence, though engineering decisions can be made by interpretation
- RANS improves absolute predictions, though at too great an overhead in CPU time to be practical for design optimisation
- Difference in flow behaviour between thin and thick airfoils defines limit of applicability of flat plate wind tunnel models

FURTHER ASSESSMENT OF CFD

- RANS assessed on BAE Systems Autogrid meshes for a vortical flow case and a mixed attached/separated flow case
- kg results poor for both cases in terms of comparison with limited WT data, RANS (kε RNG) and engineering judgement
- kε RNG results good for both cases

MIXED ATTACHED/SEPARATED FLOW CASE BAE SYSTEMS

BWB

MIXED ATTACHED/SEPARATED FLOW CASE BAE SYSTEMS

BWB High Incidence

RANS KERNG

WIND TUNNEL

CONCLUSIONS

- Novel Planforms mean S+C Issues must be addressed early in the UCAV design cycle
- CFD and WT must work together here
- Requirement for rapid assessment
- Flat-plate and stereo-lith small-scale WT models, in conjunction with Euler and 'reducedaccuracy' RANS CFD can be applied here
- This approach requires engineering judgement and expertise to be fully effective