《電子學與電路學》

	第一題:題目未述明 OPA 是否為理想,作答則以非理想 OPA 作答,再將條件調整為理想 OPA;
	另須考慮 OPA 輸出端之飽和電壓値。
	第二題:著重交流小信號分析之推導,可透過泰勒展開式,即可知小信號之條件;另配合驅動點
試題評析	阻抗法,可得等效電阻。
	第三題:答題須有等效觀念,再使用傳統諾頓等效電路推導方式,即可輕易得解。
	第四題:自耦變壓器感應電流與電壓之方向與極性須了解,即可輕易獲解。
	第五題:須了解OPA最基本求解觀念,再配合拉氏,即可求 V(t)之全態響應值。
	第一題:《高點電子學筆記第十一章》,張鼎老師編撰。
考點命中	第二題:《高點電子學筆記第七章》,張鼎老師編撰。
	第三題:《高點電子學筆記第一章》,張鼎老師編撰。
	第四題:《高點電子學筆記第四章》,張鼎老師編撰。
	第五題:《高點電子學筆記第九章》,張鼎老師編撰。

- 一、圖中所示為運算放大器和二極體形成的電路, $R_1=10\,k\Omega$, $R_2=2\,k\Omega$, $R_3=10k\Omega$ 。
 - (-)求本電路的特性,(-)若輸入信號 $V_i=5\sin\omega t(V)$,畫出輸出信號 V_0 的波形。假設運算放大器的供應電壓源是 $\pm 15V$,最大輸出電壓是 $\pm 14V$,二極體的導通電壓是0.7V。(20分)

【擬答】

若 $V_i > 0 \text{ V}$, 則 D: on , 得:

二、一顆雙極介面電晶體(Bipolar Junction Transistor),其集極(Collector)電流是呈自然指數關係,但小訊號模型卻是以線性關係來計算。(一)試問在何情況之下,小訊號模型可以成立? (二)假設 $I_C = I_S(e^{V_{BE}/V_T}-1)$,其中 I_C 是集極電流, I_S 是逆向飽和電流, V_{BE} 是基極(Base)和射極(Emitter)之間的電壓, V_T 是溫度電壓。請推導從射極看入的小訊號內阻。(20分)

【高點法律專班】

版權所有,重製必究!

【擬答】

$$(--) i_{c_t} = I_s e^{\frac{v_{BE}}{V_T}} = I_s e^{\frac{V_{BE} + v_{be}}{V_T}} = I_s e^{\frac{V_{BE}}{V_T}} \cdot e^{\frac{v_{be}}{V_T}}$$

$$\stackrel{\text{£}}{\pounds} I_c \cdot (1 + \frac{v_{be}}{V_T}) \cdot \dots \cdot \left| \frac{v_{be}}{V_T} \right| \square 1$$

$$\Rightarrow i_c + I_c = I_c (1 + \frac{v_{be}}{V_T})$$

$$\Rightarrow i_c = (\frac{I_c}{V_T}) \cdot v_{be}$$

其中:小訊號模型成立之條件爲 $|v_{be}|$ \square V_T

三、求從 a, b 兩端看進去的諾頓對等電路 (Norton Equivalent Circuit)。其中菱形電流源是依賴電流源 (dependent current source)。(20 分)

【擬答】

102 高點檢事官電資組·全套詳解

四、一個自動變壓器 (autotransformer) 總共有 100 匝且可以調整輸出入的線圈匝數,下列電路的 輸入端有 40 匝且 Z_o =3-j4 Ω , 求 I_i , I_l , I_o 。 (20 分)

【擬答】

五、求輸出電壓 $V_0(t)$,當開關在 t=0 接通電路,其中 $V_i=5V$, $R_1=8$ k Ω , $R_2=12$ k Ω , $R_3=10$ k Ω , $R_4=20$ k Ω ,C=5 μF 。(20 分)

【擬答】

此題題目中未說明電容器之初值電壓值:以下解法是假設電容器之初值電壓值=0V,作答之

$$\frac{V_o}{L[\frac{12}{8+12}\times 5]} = 1 + \frac{SC//R_4}{R_3} = 1 + \frac{R_4/R_3}{1+SCR_4} = 1 + \frac{20}{S+10},$$

$$\frac{12}{S+10} \times \frac{1}{S+10} \times \frac{1}{S+10}$$

$$\Rightarrow V_o(s) = \frac{3}{S} + \frac{20}{S(S+10)} = \frac{3}{S} + \frac{2}{S} + \frac{-2}{S+10}$$

$$\Rightarrow v_o(t) = (5 - 2e^{-10t})u(t) V$$