Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Отчёт

Параллельная реализация решения СЛАУ с помощью метода отражений.

Работу выполнил: Лесцов Б.А. 423 группа

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм решения СЛАУ с помощью метода отражений.

Постановка задачи:

Заданы невырожденная вещественная матрица A размера NxN и вещественный вектор b длины N такие что система Ax=b имеет единственное решение. Необходимо найти вектор x, являющийся решением этой системы.

Компиляция:

- 1) С помощью gnu make:
 - > make
- 2) C помощью cmake:
 - > mkdir build
 - > cd build
 - > cmake ...

Запуск:

- 1) Считать матрицу из файла:
- > mpirun -np 'число процессов' build/bin/Prak 'путь к файлу с матрицей'

Пример:

- > mpirun -np 2 build/bin/Prak data/mat.txt
- 2) Сгенерировать с помощью функции f(i, j), заданной в source/main.cpp:
- > mpirun -np 'число процессов' build/bin/Prak 'N' 'N+1', где N размер матрицы системы

Пример:

> mpirun -np 4 build/bin/Prak 1024 1025

Формат входных файлов:

Входной файл:

1) Файл с матрицей размера Nx(N+1) в текстовом виде. В начале файла располагаются два числа m, n типа size_t – размеры матрицы. Далее следуют n*m вещественных чисел – сама матрица. Последний столбец этой матрицы – это вектор b.

Формат входных файлов:

В стандартный поток вывода будет выдано решение заданной СЛАУ в формате:

 $x_{-1} = '$ значение переменной x_{1}' ... $x_{-i} = '$ значение переменной x_{i}' ... $x_{-N} = '$ значение переменной x_{N}'

Далее следует строка:

Mat_size 'размер матрицы' Comm_size 'число процессов' Forward_Time_(microsec) 'время приведения к верхнетреугольному виду в микросекундах' Backward_Time_(microsec) 'время обратного хода метода Гаусса' diff 'невязка'

Описание алгоритма:

Метод отражений основан на разложении матрицы A системы Ax=b в произведение унитарной матрицы на верхнюю треугольную. Матрица A называется унитарной, если она удовлетворяет уравнению $A \cdot A^* = E$, где A^* - матрица, сопряженная с A. Вещественные унитарные матрицы называются ортогональными.

По своей структуре метод отражений близок к методу Гаусса, но исключение проводится с помощью матриц отражения, которые являются унитарными и эрмитовыми. Достоинством метода отражений является единая схема вычислительного процесса, не зависящая от структуры матрицы.

Теорема. Пусть *S* и *I* произвольные вектор-столбцы, причем вектор *I* имеет единичную длину. Тогда найдется такой вектор W, что построенная по нему матрица отражения $U = E - 2ww^{||}$ переведет вектор Sв вектор, коллинеарный вектору I, т.е. $Us = \alpha I$.

Вектор Wстроится по правилу
$$w = \frac{1}{\rho}(s - \alpha l)$$
, где $|\alpha| = \sqrt{(\alpha, \alpha)}$, arg $\alpha = \arg(s, l) - \pi$, $\rho = \sqrt{(s - \alpha l, s - \alpha l)} = \sqrt{2|\alpha|^2 + 2|\alpha|(s, l)|}$.

Будем преобразовывать расширенную матрицу систему по правилу $A_{k+1} = U_{k+1}A_k$, $k = 0,1,\dots,n-2$

с помощью умножения слева на последовательность матриц отражения U_1, U_2, \dots, U_{n-1} . Для построения матрицы U_1 на первом шаге метода в качестве вектора S берется первый столбец расширенной матрицы, а в качестве вектора I - координатный вектор $I = (1,0,0,\dots,0)\mathbb{I}$. В силу выбора векторов S и I все координаты первого столбца расширенной матрицы, кроме первой, после выполнения первого шага метода будут равны нулю.

Пусть уже построена матрица A_k , у которой $a_{i,j}^{(k)} = 0$, i > j, $j = \overline{1,k}$. Теперь в качестве S и I берутся вектора

$$s = (0, ..., 0, a_{k+1, k+1}^{(k)}, a_{k+2, k+1}^{(k)}, ..., a_{n, k+1}^{(k)}) \mathbb{I}, I = (0, ..., 0, 1, 0, ..., 0) \mathbb{I},$$

где в векторе / единица стоит на k+1-ом месте. После выполнения kго шага метода отражений получим матрицу A_{k+1} , у которой все
элементы, стоящие ниже главной диагонали, в первых k+1-ом
столбцах будут равны нулю. Невозможность выполнения очередного
шага связана только с равенством нулю вектора S, а это невозможно,
так как матрица A является невырожденной.

После (n-1)-шага получим матрицу, первые nстолбцов которой образуют верхнюю треугольную матрицу L. Система уравнений, соответствующая полученной расширенной матрице, равносильна исходной системе. Значения неизвестных находятся аналогично обратному ходу метода Гаусса

$$x_{n} = -\frac{a_{n,n+1}^{(n-1)}}{a_{n,n}^{(n-1)}}, \quad x_{i} = -\frac{a_{i,n+1}^{(n-1)} + \sum\limits_{j=i+1}^{n} a_{i,j}^{(n-1)} x_{j}}{a_{n,n}(n-1)}, \quad i = n-1, n-2, \dots, 1$$

Параллельная версия алгоритма подразумевает разделение матрицы А между процессами по столбцам. При этом на каждом этапе работы алгоритма один из процессов подсчитывает вектор w, и рассылает его остальным процессам. Получив нужный вектор, каждый процесс производит обновление всех столбцов своей части матрицы по правилу: $\underline{v}_i = 2*alpha*w$, $\underline{r}_i = alpha*v$

Во время параллельного выполнения обратного хода метода Гаусса процессы последовательно вычисляют переменные x_i , после чего отсылают остальным процессам вычеселнный x_y , а также вектор $x_i^*y_i$ где y_i – i-й столбец верхнетреугольной матрицы.

Результаты выполнения.

Тестирование производилось на системе Blue Gene/P. Использовались матрицы размеров 1024 x 1024, 2048 x 2048, 4096 x 4096 и 8192x8192. Для 8192x8192 приведены результаты для 128, 256, 512 и 1024 процессов, так как на меньшем количестве процессов программа работает слишком долго.

Результаты:

Число	Прямой ход	Обратный	Общее время	Невязка			
процессов		ход					
Размер матрицы: 1024x1024							
1	6.722922	0.018040	6.740962	0.000051			
2	3.299157	0.014167	3.313324	0.000010			
4	1.722122	0.014498	1.736620	0.000107			
8	0.878477	0.011157	0.889634	0.000012			
16	0.474213	0.009077	0.483290	0.000058			
32	0.264235	0.008723	0.272958	0.000030			
64	0.161500	0.008833	0.170333	0.000034			
128	0.108091	0.009212	0.117303	0.000117			
256	0.080308	0.009623	0.089931	0.000012			
512	0.066610	0.012077	0.078687	0.000011			
1024	0.058774	0.014110	0.072884	0.000062			
Размер матрицы: 2048x2048							
1	58.058826	0.185454	58.244280	0.000073			
2	29.406341	0.158643	29.564984	0.001528			
4	14.656131	0.158322	14.814453	0.000219			
8	7.610560	0.071177	7.681737	0.000398			
16	4.059188	0.022106	4.081294	0.000068			
32	2.030635	0.018013	2.048648	0.000072			
64	1.113021	0.017605	1.130626	0.000066			
128	0.665552	0.017770	0.683322	0.000059			
256	0.438169	0.017623	0.455792	0.000094			
512	0.323093	0.019399	0.342492	0.000051			
1024	0.263822	0.021516	0.285338	0.000452			

Число процессов	Прямой ход	Обратный ход	Общее время	Невязка			
Размер матрицы: 4096х4096							
1	530.84392	0.749686	531.59361	0.000107			
2	265.82526	0.635387	266.46064	0.000056			
4	160.59724	0.637392	161.23463	0.000056			
8	80.594747	0.331587	80.926334	0.000609			
16	40.772724	0.172879	40.945603	0.000153			
32	20.792026	0.082310	20.874336	0.038190			
64	10.655758	0.037592	10.693350	0.000635			
128	5.685375	0.035878	5.721253	0.000051			
256	3.439362	0.035092	3.474454	0.000035			
512	2.122923	0.036788	2.159711	0.000094			
1024	1.488376	0.038696	1.527072	0.000218			
Размер матрицы: 8192x8192							
128	42.617031	0.112642	42.729673	0.004127			
256	23.868935	0.079526	23.948461	0.001467			
512	13.053445	0.077279	13.130724	0.000168			
1024	8.595275	0.076496	8.671771	0.000999			

Ускорение и эффективность:

Число процессов	Ускорение	Эффективно сть	Ускорение	Эффективно сть	
	1024x1024		2048x2048		
1	1.0	1.000000	1.0	1.000000	
2	2.0345	1.017251	1.97004	0.985021	
4	3.88166	0.970414	3.93158	0.982896	
8	7.57723	0.947154	7.58218	0.947772	
16	13.9481	0.871754	14.271	0.891940	
32	24.696	0.771749	28.4306	0.888456	
64	39.5752	0.618362	51.5151	0.804923	
128	57.4662	0.448955	85.2369	0.665914	
256	74.957	0.292801	127.787	0.499168	
512	85.6681	0.167320	170.06	0.332149	
1024	92.4889	0.090321	204.124	0.199340	
	409	4096x4096		8192x8192	
1	1.0	1.000000	-	-	
2	1.99502	0.997509	-	-	
4	3.29702	0.824255	-	-	
8	6.56886	0.821107	-	-	
16	12.9829	0.811433	-	-	
32	25.4664	0.795824	-	-	
64	49.7125	0.776758	-	-	
128	92.9156	0.725903	-	-	
256	153.001	0.597659	-	-	
512	246.141	0.480744	-	-	
1024	311.184	0.303890	-	-	

Графики

Далее приедены графики для матриц 1024x1024, 2048x2048, 4096x4096 и 8192x8192.

16 32 64 Number of Processors 16 32 64 Number of Processors

Основные выводы

С увеличением числа процессов время выполнения значительно уменьшается. Задача решения СЛАУ с помощью метода отражений эффективно распараллеливается, и можно получить значительное ускорение при достаточно высокой эффективности. При небольшом размере матрицы эффективность обратного хода метода Гаусса существенно снижается, по сравнению с большими матрицами. При увелечении числа процессов может наблюдаться суперлинейное ускорение в связи с тем, что части матрицы начинают полностью помещаться в кэш-линии L2 процессов.