I Noninteracting EG-X Model and structure

I.1 Lattice Structure of Graphene

 $Structure\ of\ honeycomb\ lattice\ following\ [\textbf{yangStructureGrapheneIts2018}].$

Monolayer graphene forms a hexagonal lattice.

Primitive lattice vectors of the hexagonal lattice:

$$\mathbf{a}_1 = \frac{a}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{I.1}$$

$$\mathbf{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\ -\sqrt{3} \end{pmatrix} \tag{I.2}$$

with lattice constant $a \approx 2.46 \,\text{Å}$ (distance between unit cells). Have

$$a = \sqrt{3}a_0 \tag{I.3}$$

with the nearest-neighbour distance a_0 .

Vectors to the nearest-neighbor B_i (i=1,2,3,) atoms from atom A:

$$\boldsymbol{\delta}_{AB,1} = \begin{pmatrix} 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{AB,2} = \begin{pmatrix} \frac{a}{2} \\ -\frac{a}{2\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{AB,3} = \begin{pmatrix} -\frac{a}{2} \\ -\frac{a}{2\sqrt{3}} \end{pmatrix}$$
(I.4)

Vectors to the nearest-neighbor A_i (i = 1, 2, 3,) atoms from atom B:

$$\boldsymbol{\delta}_{BA,1} = \begin{pmatrix} 0 \\ -\frac{a}{\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{BA,2} = \begin{pmatrix} \frac{a}{2} \\ \frac{a}{2\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{BA,3} = \begin{pmatrix} -\frac{a}{2} \\ \frac{a}{2\sqrt{3}} \end{pmatrix}$$
(I.5)

Figure I.1: Graphene lattice structure

The vectors between the Graphene A atom and the six neighbours on the same sub lattice can be found by rotating \mathbf{a}_1 six times by $1/6 * 2\pi = \pi/3$:

$$\delta_{AA,1} = \mathbf{a}_1 = \frac{a}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} = a \begin{pmatrix} \frac{1}{2}\\\frac{\sqrt{3}}{2} \end{pmatrix} = a \begin{pmatrix} \sin\left(\frac{\pi}{6}\right)\\\cos\left(\frac{\pi}{6}\right) \end{pmatrix}$$
(I.6)

$$\delta_{AA,2} = a \begin{pmatrix} \sin\left(\frac{3\pi}{6}\right) \\ \cos\left(\frac{3\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{I.7}$$

$$\delta_{AA,3} = a \begin{pmatrix} \sin\left(\frac{5\pi}{6}\right) \\ \cos\left(\frac{5\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.8)

$$\delta_{AA,4} = a \begin{pmatrix} \sin\left(\frac{7\pi}{6}\right) \\ \cos\left(\frac{7\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.9)

$$\delta_{AA,5} = a \begin{pmatrix} \sin\left(\frac{9\pi}{6}\right) \\ \cos\left(\frac{9\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 (I.10)

$$\delta_{AA,6} = a \begin{pmatrix} \sin\left(\frac{11\pi}{6}\right) \\ \cos\left(\frac{11\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.11)

Figure I.2: Graphene Brillouin Zone

The primitive reciprocal lattice vectors $\mathbf{b}_1,\,\mathbf{b}_2$ fulfill

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = \mathbf{a}_2 \cdot \mathbf{b}_2 = 2\pi \tag{I.12}$$

$$\mathbf{a}_1 \cdot \mathbf{b}_2 = \mathbf{a}_2 \cdot \mathbf{b}_1 = 0 , \qquad (I.13)$$

so we have:

$$\mathbf{b}_{1} = \frac{2\pi}{a} \begin{pmatrix} 1\\ \frac{1}{\sqrt{3}} \end{pmatrix}$$

$$\mathbf{b}_{2} = \frac{2\pi}{a} \begin{pmatrix} 1\\ -\frac{1}{\sqrt{3}} \end{pmatrix}$$
(I.14)

$$\mathbf{b}_2 = \frac{2\pi}{a} \begin{pmatrix} 1\\ -\frac{1}{\sqrt{3}} \end{pmatrix} \tag{I.15}$$

Points of high symmetry in the Brillouin zone are:

$$\Gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{I.16}$$

$$M = \frac{\pi}{a} \begin{pmatrix} 1\\ \frac{1}{\sqrt{3}} \end{pmatrix}$$

$$K = \frac{4\pi}{3a} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
(I.17)

$$K = \frac{4\pi}{3a} \begin{pmatrix} 1\\0 \end{pmatrix} \tag{I.18}$$

I.2 EG-X Model

Graphene lattice and a site X. Real-life motivation: layer of graphene on top

Figure I.3: EG-X model

of a substrate of another material (which provides the additional X atoms). There is no spin-orbit coupling considered in the model (but when according to Niklas: when mapping to substrates Sn or Pb, it could be necessary (but does not the qualitative result?)).

Spin-orbit coupling, drop second spin index?

Without interaction:

I.2 EG-X Model 5

$$H_{0} = -t_{X} \sum_{\langle ij \rangle, \sigma\sigma'} d_{i,\sigma}^{\dagger} d_{j,\sigma'} + \text{h.c.} - t_{Gr} \sum_{\langle ij \rangle, \sigma\sigma'} \left(c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} + c_{j,\sigma'}^{(B),\dagger} c_{i,\sigma}^{(A)} + \text{h.c.} \right)$$
(I.19)

$$+ V \sum_{i,\sigma\sigma'} \left(d_{i,\sigma}^{\dagger} c_{i,\sigma'}^{(A)} + c_{i,\sigma}^{(A),\dagger} d_{i,\sigma'} \right) \tag{I.20}$$

with:

- d operators on the X atom
- $c^{(\epsilon)}$ operators on the graphene site $(\epsilon = A, B)$
- t_X NN hopping for X
- t_{Gr} NN hopping of Gr
- V hybridization between X and Graphene B sites

We can also introduce an onsite Hubbard interaction:

$$H_{\rm int} = U_{\rm X} \sum_{i} d_{i,\uparrow}^{\dagger} d_{i,\downarrow}^{\dagger} d_{i,\downarrow} d_{i,\uparrow} + U_{\rm Gr} \sum_{i,\epsilon=A,B} c_{i,\uparrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{\epsilon} c_{i,\uparrow}^{\epsilon}$$
(I.21)

I.2.1 Review: Hubbard model on the honeycomb lattice

Write review for Hubbard model on the honeycomb lattice

I.2.2 Band structure of the non-interacting EG-X model

To treat eq. I.20, we first write out the sums over nearest neighbours $\langle i, j \rangle$ explicitly, writing $\delta_{\rm X}$, δ_{ϵ} ($\epsilon = A, B$) for the connections to the nearest neighbours of the X atoms and Graphene A, B sites. Doing the calculation for the example of the X atoms:

$$-t_{\mathbf{X}} \sum_{\langle ij\rangle, \sigma\sigma'} (d_{i,\sigma}^{\dagger} d_{j,\sigma'} + d_{j,\sigma}^{\dagger} d_{i,\sigma'})$$
(I.22)

$$= -\frac{t_X}{2} \sum_{i,\sigma,\sigma'} \sum_{\delta_{\mathbf{X}}} d_{i,\sigma}^{\dagger} d_{i+\delta_{\mathbf{X}},\sigma'} - \frac{t_X}{2} \sum_{i,\sigma,\sigma'} \sum_{\delta_{\mathbf{X}}} d_{j,\sigma}^{\dagger} d_{j+\delta_{\mathbf{X}},\sigma'}$$
(I.23)

$$= -t_X \sum_{i,\sigma,\sigma'} \sum_{\delta_{X}} d_{i,\sigma}^{\dagger} d_{i+\delta_{X},\sigma'}$$
 (I.24)

(The factor 1/2 is to account for double counting when going to the sum over all lattice sites i)

Now we can input the discrete Fourier transform (for both graphene and X operators) into eq. I.24

$$c_i = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}} \tag{I.25}$$

$$c_i^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}^{\dagger} \tag{I.26}$$

with the completeness relation:

$$\sum_{i} e^{i\mathbf{k}\mathbf{r}_{i}} e^{-i\mathbf{k}'\mathbf{r}_{i}} = N\delta_{\mathbf{k},\mathbf{k}'} . \tag{I.27}$$

We get:

$$-t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}d_{i,\sigma}^{\dagger}d_{i+\boldsymbol{\delta}_{\mathbf{X}},\sigma'} = -t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}\sum_{\mathbf{k},\mathbf{k'}}e^{-i\mathbf{k}\mathbf{r}_{i}}d_{\mathbf{k},\sigma}^{\dagger}e^{i\mathbf{k'}\mathbf{r}_{i}}e^{i\mathbf{k'}\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k'},\sigma'}$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k'},\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k},\sigma}^{\dagger}e^{i\mathbf{k'}\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k'},\sigma'}\sum_{i}e^{-i\mathbf{k}\mathbf{r}_{i}}e^{i\mathbf{k'}\mathbf{r}_{i}}$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k'},\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k},\sigma}^{\dagger}e^{i\mathbf{k'}\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k'},\sigma'}N\boldsymbol{\delta}_{\mathbf{k},\mathbf{k'}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{i\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{i\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{i\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{i\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{i\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}^{\dagger}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma'}$$

I.2 EG-X Model 7

The nearest neighbours for X atoms are the vectors $\boldsymbol{\delta}_{AA,i}$ from section I.1. With that, we can calculate:

$$f_{\mathcal{X}}(\mathbf{k}) = -t_{\mathcal{X}} \sum_{\boldsymbol{\delta}_{\mathcal{X}}} e^{i\mathbf{k}\boldsymbol{\delta}_{\mathcal{X}}}$$
(I.32)

$$= -t_X \left(e^{ia(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})} + e^{iak_x} + e^{ia(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} \right)$$
 (I.33)

$$+ e^{ia(-\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} + e^{-iak_x} + e^{ia(-\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})}$$
 (I.34)

$$= -t_X \left(2\cos(ak_x) + 2e^{ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) + 2e^{-ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) \right)$$
(I.35)

$$= -2t_X \left(\cos\left(ak_x\right) + 2\cos\left(\frac{a}{2}k_x\right)\cos\left(\sqrt{3}\frac{a}{2}k_y\right)\right) \tag{I.36}$$

We can do the same for the hopping between Graphene sites, for example:

$$-t_{\rm Gr} \sum_{\langle ij\rangle,\sigma\sigma'} c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} = -t_{\rm Gr} \sum_{i,\sigma\sigma'} \sum_{\delta_{AB}} c_{i,\sigma}^{(A),\dagger} c_{i+\delta_{AB},\sigma'}^{(B)}$$
(I.37)

$$= -t_{Gr} \sum_{\mathbf{k}, \sigma, \sigma'} c_{\mathbf{k}, \sigma}^{(A)\dagger} c_{\mathbf{k}, \sigma'}^{(B)} \sum_{\boldsymbol{\delta}_{AB}} e^{i\mathbf{k}\boldsymbol{\delta}_{AB}}$$
(I.38)

We note

$$\sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} = \left(\sum_{\delta_{BA}} e^{i\mathbf{k}\delta_{BA}}\right)^* = \sum_{\delta_{BA}} e^{-i\mathbf{k}\delta_{BA}}$$
(I.39)

and calculate

$$f_{Gr} = -t_{Gr} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} \tag{I.40}$$

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{i\frac{a}{2\sqrt{3}}(\sqrt{3}k_x - k_y)} + e^{i\frac{a}{2\sqrt{3}}(-\sqrt{3}k_x - k_y)} \right)$$
(I.41)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{-i\frac{a}{2\sqrt{3}}k_y} \left(e^{i\frac{a}{2}k_x} + e^{-i\frac{a}{2}k_x} \right) \right)$$
 (I.42)

$$= -t_{Gr} \left(e^{i\frac{\alpha}{\sqrt{3}}k_y} + 2e^{-i\frac{\alpha}{2\sqrt{3}}k_y} \cos\left(\frac{a}{2}k_x\right) \right)$$
 (I.43)

Figure I.4: Bands of the non-interacting EG-X model. All the bands are spin-degenerate.

All together, we get:

$$H_0 = \sum_{\mathbf{k}, \sigma, \sigma'} \begin{pmatrix} c_{k, \sigma}^{A, \dagger} & c_{k, \sigma}^{B, \dagger} & d_{k, \sigma}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & f_{Gr} & V \\ f_{Gr}^* & 0 & 0 \\ V & 0 & f_X \end{pmatrix} \begin{pmatrix} c_{k, \sigma}^A \\ c_{k, \sigma}^B \\ d_{k, \sigma} \end{pmatrix}$$
(I.44)

The band structure for the non-interacting EG-X model is easily obtained by diagonalising the matrix in eq. I.44. This was done in fig. I.4.

Values used for calculation:

- $a_0 = 1$
- $t_{\rm Gr} = 1$
- $t_{\rm X} = 0.01$

V is the control parameter. (According to Niklas), a range from V=0.1 to V=2 can be mapped onto materials in experiment.