EE16B Designing Information Devices and Systems II

Lecture 9B Finish PCA, SVD

- -Last Time:
 - -Show procedure via AAT
 - PCA
- -Today:
- Continue PCA
- -Examples of PCA
- -K-means
- Continue proofs (symmetric matrices)

Example -- PCA

Consider miterm data

Example -- PCA

Consider miterm data

Example -- PCA

PCA Procedure

Remove averages from column of A

From A^TA, find σ_i , $\vec{v_i}$

 $\vec{v_i}$ are principal components!

A^TA as sample covariance matrix

$$A = \vec{a} \qquad a_{\mu} = \frac{1}{N} \sum_{i=0}^{N-1} a_{i} \qquad \tilde{A} = \vec{a} - a_{\mu} \vec{1}$$

$$\tilde{A}^{T} \tilde{A} = (\vec{a} - a_{\mu} \vec{1})^{T} (\vec{a} - a_{\mu} \vec{1})$$

$$= \vec{a}^{T} \vec{a} - 2N a_{\mu}^{2} + N a_{\mu}^{2} = \vec{a}^{T} \vec{a} - N a_{\mu}^{2}$$

$$\frac{1}{N} \tilde{A}^{T} \tilde{A} = \frac{1}{N} \vec{a}^{T} \vec{a} - a_{\mu}^{2} = \frac{1}{N} \sum_{i=0}^{N-1} a_{i}^{2} - a_{\mu}^{2} = a_{\sigma}^{2}$$

Example midterm

Mid Semester Survey Results

- 1) How's going
- 2) Circuits lecture
- 3) Systems lecture
- 4) Homework difficulty
- 5) Length of HW
- 6) Lab difficulty
- 7) Length of lab
- 8) Time to checkoff
- 9) 16A
- 10) Attend lecture

Singular values

 $A^T \vec{u}_2$

-) 16A
- 10) Attend lecture

Strong correlation with time to checkoff – lab staff satisfaction?

 $A^T \vec{u}_5$

- How's going
 Circuits lecture
 Systems lecture
 Homework difficulty
 Length of HW
- S) Lab difficulty
- 7) Length of lab
- 8) Time to checkoff
-) 16A
- 10) Attend lecture

$A\vec{v}_2$

PCA in Genetics Reveals Geography

Study:

Genes mirror geography within Europe *Nature* **456**, 98-101 (6 November 2008)

Characterized genetic variatios in 3,000 Europeans from 36 Countries

Built a matrix of 200K SNPs (single nucleotide polymorphisms)

Computed largest 2 principle components

Projected subjects on 2 dimentional data

Overlayed the result on the map of Europe $A\vec{v}_1$ $A\vec{v}_2$

Interesting conclusions

"The results have implications for a lot of biomedical research. Many scientists are scanning entire genomes on a hunt for SNPs that affect a person's risk of diseases like cancer or their reaction to drugs. Novembre says that researchers who are running these "whole-genome studies" need to bear in mind where their sample has come from. Even if a study looks at a small and seemingly related parts of Europe, it would have to adjust for any geographical influences in the genetic variations it uncovers."

http://phenomena.nationalgeographic.com/2008/09/01/european-genes-mirror-european-geography/

23 and me

100%
98.9%
0.9%
< 0.1%
0.2%

k-means

Given: $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_m \in \mathbb{R}^n$

Partition them into k << m groups

- 0) Guess cluster centers to initialize
- 1) Group points around nearest center
- 2) Update cluster centers by averaging within group
- 3) If centers have changed, repeat 1-3

k-means 1D example

$$n = 1, m = 8, k = 2$$

General k-means Algorithm

- 0) Initialize k cluster centers $\vec{m}_1, \vec{m}_2, \cdots, \vec{m}_k$
- 1) Assign points to cluster: point \vec{x} goes to cluster i if, $||\vec{x} \vec{m}_i|| < ||\vec{x} \vec{m}_i|| \quad \forall j \neq i$
- 2) Let S_i be the set of samples in cluster i recompute cluster centers:

$$\vec{m}_i = \frac{1}{|S_i|} \sum_{\vec{x} \in S_i} \vec{x}$$

3) If any m_i has changed, repeat 1-3

Objective Function

Find the clustering of which minimizes:

$$\vec{x}_1, \dots$$

$$S_1, \cdots, S_k$$

$$D = \sum_{i=1}^{k} \sum_{\vec{x} \in S_i} ||\vec{x} - \mu_i||$$

$$\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} \vec{x}$$

While the algorithm decreases the objective, the objective is non-convex and can be stuck on local mimima.

General problem is N-P Complete

Management of intersections with multi-modal high-resolution data *,**

Ajith Muralidharan 1, Samuel Coogan 2, Christopher Flores, Pravin Varaiya *

Sensys Networks, Inc., Berkeley, CA 94710, United States

Traffic Patterns

Hours of the day

What would k-means cluster to?

Fig. 5. Clustering of daily data for Dec 2014 to May 2015 in an intersection in Beaufort, SC.

Symmetric Matrices

We assumed before that,

A^TA has only real eigenvalues, r of them are positive and the rest are zero A^TA has orthonormal eigenvectors (to be proven next time)

For symmetric matrices: $Q^{T} = Q$

$$Q^T = Q$$

$$(AB)^T = B^T A^T$$

$$(A^T A)^T = A^T A$$

$$(AA^T)^T = AA^T$$

Properties of Symmetric Matrices

1) A real-valued symmetric matrix has real eigenvalues and eigenvectors

$$Qx = \lambda x \qquad \lambda = a + ib \qquad \overline{\lambda} = a - ib$$

Somehow we need to use the symmetric and real-ness property of Q to show that b==0

$$Q\overline{x} = \overline{\lambda}\overline{x}$$

$$\overline{x}^T Q = \overline{\lambda}\overline{x}^T$$

$$\overline{x}^T Q x = \overline{\lambda}\overline{x}^T x$$

$$\overline{x}^T Q x = \lambda \overline{x}^T x$$

$$\overline{\lambda} \overline{x}^T x = \lambda \overline{x}^T x \implies \lambda = \overline{\lambda} \implies \lambda \in \mathbf{R}$$

Properties of Symmetric Matrices

$$Qx = \lambda x$$

$$(Q - \lambda I)x = 0$$
 So x is real as well real

A real-valued symmetric matrix has real eigenvalues and eigenvectors

Properties of Symmetric Matrices

2) Eigenvectors of a symmetrix matrix can be chosen to be orthonormal

Choose two distinct eigenvalues and vectors $\lambda_1 \neq \lambda_2$

$$Qx_1 = \lambda_1 x_1 \qquad Qx_2 = \lambda_2 x_2$$

$$x_2^T Q x_1 = \lambda_1 x_2^T x_1 \qquad x_1^T Q x_2 = \lambda_2 x_1^T x_2$$

$$(\lambda_1 - \lambda_2) x_2^T x_1 = 0$$

$$\lambda_1 \neq \lambda_2 \Rightarrow x_2^T x_1 = 0$$

Eigenvectors of a symmetrix matrix can be chosen to be orthonormal

Positiveness of Eigenvalues

3) If Q can be written as $Q = R^TR$ for real R, then Q is positive semidefinite – eigenvalues greater of equal to zero

$$Qx = \lambda x$$

$$R^T R x = \lambda x$$

$$x^T R^T R x = \lambda x^T x$$

$$(Rx)^T (Rx) = \lambda x^T x$$

$$||Rx||^2 = \lambda ||x||^2 \implies \lambda \ge 0$$

If Q can be written as $Q = R^TR$ for real R, then Q is positive semidefinite – eigenvalues greater of equal to zero