МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет: «Информационных технологий и программирования» **Кафедра:** «Информационных систем»

Дисциплина:

«Методы оптимизации»

Лабораторная работы №2

Выполнили студенты группы № М33071:

Щагина Анастасия Сергеевна Ципко Алина Алексеевна

Проверила:

Москаленко Мария Александровна

Тестирование реализованных алгоритмов на заданных функциях:

	Покоординатный спуск										
F(x) x1 x2 (x3) (x4) x1 min x2 min (x3 min) (x4 min)		(x4 min)	f(x1, x2, (x3, x4))	Eps.	Итерации						
1	3,0	-1,0			0,9999091690	0,9998181649			0,000000008253562	0,0000000001	3135
2	3,0	0,5			0,9999985282	0,9999955328			0,000000000004487	0,0000000001	48
3	3,2	-1,0			2,9999865985	0,4999967573			0,000000000028897	0,0000000001	98
4	1,0	1,0	1,0	1,0	0,0006214630	-0,0006184676	0,0051303925	0,0051303925	0,000000018150891	0,0000000001	1908

F3

	Наискорейший спуск											
F(x)	x1	x2	(x3)	(x4)	x1 min	x2 min	(x3 min)	(x4 min)	f(x1, x2, (x3, x4))	Eps.	Итерации	
1	3,2	-1,0			1,00	1,00			0,00000006973946	0,0001	8695	
2	3,0	0,5			0,99	0,98			0,000075086152863	0,0100	30	
3	2,2	-1,8			3,23	0,54			0,010739946978303	0,0100	1197	
4	1,2	1,0	0,3	1,0	0,00	0,00	0,01	0,01	0,000000314246522	0,0001	747	

F3

	Овражный градиент											
F(x)	Х	(1	x2	(x3)	(x4)	x1 min	x2 min	(x3 min)	(x4 min)	f(x1, x2, (x3, x4))	Eps.	Итерации
	1	4,0	-2,0			1,00108680	1,00217934			1,183213871E-06	0,00001	24
	2	8,0	8,0			1,00000466	1,00001120			2,526509003E-11	0,00010	9
;	3	1,0	-1,9			-1,20382887	1,53356758			1,386451676E+00	0,01000	4
4	4	1,2	1,0	0,3	1,0	0,04781487	-0,0550789	-0,03660772	-0,03627446	5,534222928E-04	0,00010	12

F1

	Проекционный градиент											
F(x)	x1	x2	(x3)	(x4)	x1 min	x2 min	(x3 min)	(x4 min)	f(x1, x2, (x3, x4))	Eps.	Итерации	
1	3,0	1,2			1,12156341	1,25906716			0,0149128449297	0,0001	46	
2	5,0	5,0			1,02385387	1,06189890			0,000754570217691	0,0001	27	
3	2,0	-2,0			2,68969257	0,40535561			0,0229875445689	0,0001	10	
4	2,0	-2,0	4,0	5,0	0,01329612	-0,0071071	0,06846262	0,07225918	0,0006616120031	0,0001	36	

F1

Метод Брендта с производной

a	b	iters	Eps.	lg(eps)
0	10	8	0,1	-1
0	10	12	0,01	-2
0	10	15	0,001	-3
0	10	18	0,0001	-4
0	10	22	0,00001	-5
0	10	25	0,000001	-6
0	10	28	0,000001	-7
0	10	32	0,0000001	-8
0	10	35	0,00000001	-9

Метод Брендта с производной

Графики зависимости количества итераций от выбранной точности:

Покоординатный спуск iters(log(eps)) (F1, x1 = 3, x2 = -1)

Наискорейший спуск iters(log(eps)) (F2, x1 = 3, x2 = 0.5)

Проекционный градиент iters(log(eps)) (F1, x1 = 3, x2 = 1,2)

Овражный градиент iters(log(eps)) (F1, x1 = 4, x2 = -2)

Графики зависимости количества итераций от начального приближения:

Покоординатный спуск iters(length) (F1)

Наискорейший спуск iters(length) (F2)

Проекционный градиент iters(length) (F1)

Овражный градиент iters(length) (F1)

Выводы:

Метода Брендта:

- Линейная скорость сходимости вблизи точки минимума
- Построение кубической аппроксимации по значениям функции в трех точках и значению производной в одной из них или по значениям функции и производной в двух точках

• Возможна медленная сходимость на начальных итерациях

Покоординатный спуск

- Не вычисляется производная
- Простота выбора направления: Только в направлении одной из осей
- Используется на сверхбольших пространствах

- Огромное количество маленьких шагов, за счет того что напраление выбирается только вдоль одной оси
- Возможность застревания в промежуточной точке

Наискорейший спуск

• Поиск происходит меньшими шагами

- Можно найти только локальный экстремум функции
- Скорость сходимости зависит от точности вычисления градиента

Проекционный градиент

• Быстрая сходимость

"-":

• Вычисление точки на ограничивающую плоскость

Овражный градиент:

• Скорость сходимости сильно зависит от выбора шага

Работа всех алгоритмов зависит от функции, начального приближения и точности. Зависимость от расстояния в случае обычной функции похожа на экспоненциальную, разве что у градиентных методов есть "впадины", которые, вероятно, появляются из-за сочетания особенностей функции и точки начального приближения.

На графиках покоординатного метода видно, что отрезки релаксационной последовательности параллельны осям координат. Покоординатный метод является более экономным к ресурсам, но при этом медленнее сходится, по графикам заметно, что покоординатный метод требует значительно больше итераций, чем метод наискорейшего спуска. При этом на каждой итерации он обращается к оракулу для вычисления лишь одной производной, в то время как наискорейший метод вычисляет полный градиент и к тому же дополнительно обращается к оракулу для вычисления шага.

В реализации градиентных методов использовался метод Брента с производной. Конкретно, метод использовался для нахождения оптимального размера шага по антиградиенту.

Метод овражного градиента сходится быстрее других, благодаря изменяющейся длине шага, которую мы настраиваем на каждой итерации.