Specyfikacja spi_exe_unit_2

lmię:	Ivan

Nazwisko: Lisovyi

Numer albumu: 317361

Opis sygnałów

wejścia

i_rst

Sygnał resetu modułu spi_exe_unit

i_sclk

Sygnał zegara modułu spi_exe_unit, generowany z mastera.

i_mosi

Wejście slave

i_cs

Sygnał odpowiadjący czy slave powinien komunikować się z master'em

wyjścia

o_miso

Wyjście slave

Parametry

NUM

Parametr pomocniczy, który służy do określenia liczby bitów, na których pracuje moduł watchdog

BITS

Parametr, służący do określenia liczby bitów danych, na których ma pracować slave

Automat stanów

1

Stan oznaczający gotowość slave do otrzymania danych od mastera. Dodatkowo w tym stanie do modułu watchdog wpisywana jest odpowiednia ilość cykli pobudzenia

2

Stan, w którym dane z zmiennej s_wyniki są przypisywane do odpowiednich zmiennych pomocniczych, które następnie przypisywane są do rejestrów.

Stan, w którym przypisywane są wartości wyjść modułu exe_unit do odpowiednich zmiennych pomocniczych w celu późniejszego zapisania ich do rejestrów.

4

Stan, w którym wartości zapisane w rejestrach są zapisane równolegle na głównym rejestrze slave.

Opis sygnałów pomocniczych

- s_transfer sygnał pozwalający na pracę shifter
- s_bit sygnał przechowujący pojedynczy bit, który jest podawany na wyjście slave
- s_bit_next sygnał przechowujący kolejną wartość s_bit
- reg_argA rejestr sygnału i_argA modułu exe_unit , przechowujący wartość zmiennej, na której moduł exe_unit będzie wykonywał operacje.
- reg_argB rejestr sygnału i_argB modułu exe_unit, przechowujący wartość zmiennej, na której moduł exe_unit będzie wykonywał operacje.
- reg_oper rejestr sygnału i_oper modułu exe_unit, przechowujący numer operacji, którą ten moduł ma wykonać
- reg_results rejestr sygnału o_results modułu exe_unit, przechowujący wynik operacji wykonanej przez ten moduł
- reg_flags rejestr flag modułu exe_unit, w którym przechowywane są wartości poszczególnych flag zwracanych przez ten moduł
- s_argA_next sygnał przechowujący kolejną wartość sygnału s_argA
- s_argB_next sygnał przechowujący kolejną wartość sygnału s_argB
- s_oper_next sygnał przechowujący kolejną wartość sygnału s_oper
- s_results_next sygnał przechowujący kolejną wartość sygnału s_results
- s_flags_next sygnał przechowujący kolejną wartość sygnału s_flags
- s_argA sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_argA
- s_argB sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_argB
- s_oper sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_oper
- s_results sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_results
- s_flags sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_flags
- s_wyniki wyjście równelegle shiftera
- s_watchdog_we zezwolenie na wpis
- s_wrt sygnał na wpisanie równolegle/szeregowe shift'era
- s_data sygnał pomocniczy do zapisywania na niego po kolei rejestrów wyników i argumentów

s_state – sygnał przechowujący wartość mówiącą o aktualnym stanie slave

s_state_next – sygnał przechowujący wartość kolejnego stanu slave.

Instancjonowane moduły

Shifter

Moduł jest odpowiedzialny za przesuwanie bitów otrzymanych z master'a. Slave otzymuje kolejno pojedyncze bity od master'a i dzięki temu modułowi są one pojedynczo wsuwane i przypisywane do sygnału pomocniczego s_wyniki. W tym modulę znajduję się tak naprawdę rejestr naszego slave'a

watchdog

Moduł, które zadaniem jest pobudzenie slave'a do pracy na 20-bitowym ciągu. Watchdog ma 20 cykli, dzięki którym możliwe jest zapisanie danych do odpowiednich rejestrów i wykonanie na nich odpowiednich operacji.

exe unit

Moduł, którego zdaniem jest wykonanie operacji na danych otrzymanych z master'a. Przyjmuje on odpowiednio argument i_argA, i_argB, i_oper oraz zwraca wyniki w postaci o_result, o_flags. Jego szczegółowa specyfikacja jest opisana w dokumentacji projektu 1.

Algorytm pracy spi exe unit 2

W pierwszym stanie pracy spi_exe_unit_2 zapisywana jest odpowiednia ilość cykli do modułu watchdog sterującym tą jednostką. Dodatkowo ustawiane są odpowiednie wartości sygnałów zezwalające do transfer danych oraz zmianę stanu do stanu numer 2.

W kolejnym stanie pracy slave'a blokowany jest zapis nowej ilości cykli do modułu watchdog. Dodatkowo do zmiennych pomocniczych s_argA_next, s_argB_next, s_oper_next, s_results_next, s_flags_next, przypisywane są dane otrzymane z master'a. Stan ten jest powtarzany do momenty, gdy watchdog zgłosi koniec pracy poprzez sygnał s_inter.

W kolejnym stanie pracy slave'a, przypisywane są do odpowiednich zmiennych pomocniczych s_flags_next, s_results, wyniki obliczeń zwrócone przez moduł exe_unit.

Ostatnim stanem pracy slave'a jest stan, w którym otrzymane wartości wyników oraz danych wejściowych są przypisywane do wyjścia równoległego i cała informacja jest zwracana do jednostki master.