Lista 1: Cálculo II

A. Ramos *

August 20, 2018

Abstract

Lista em constante atualização.

- 1. Funções vetoriais de variável real;
- 2. Limites, continuidade, derivadas, integração e comprimento de arco para curvas paramétricas;
- 3. Curvatura, torsão de curvas em \mathbb{R}^3 .

1 Exercícios

Faça do livro texto, os exercícios correspondentes aos temas desenvolvidos em aula.

2 Exercícios adicionais

2.1 Funções vetoriais de variável real

- 1. Encontre o domínio de $\overrightarrow{\alpha}(t) = (\ln(t+1), \sqrt{t^2+2t-8})$. Rpta: Domínio $[2, \infty)$.
- 2. Encontre o domínio de $\overrightarrow{\alpha}(t) = (\frac{1+t}{1-t}, (t+2)^{-3/2}, \frac{1}{t-4})$. Rpta: Domínio $(-2, \infty) \setminus \{4\}$.
- 3. Mostre que a trajétoria de $\overrightarrow{\alpha}(t) = t\hat{i} + t^2\hat{j}, t \in \mathbb{R}$ é uma parábola.
- 4. Descreva a trajétoria de $\overrightarrow{\alpha}(t) = (3\cos(t), 3\sin(t), t), t \in \mathbb{R}$. Rpta: Hélice.
- 5. Descreva a trajetória de $\overrightarrow{\alpha}(t) = (t\cos(t), t\sin(t), t), t \in \mathbb{R}$. Rpta: A trajetória está contida num cone circular.
- 6. Descreva a trajetória de $\overrightarrow{\alpha}(t) = (t, t, \sin(t)), t \in \mathbb{R}$.
- 7. Uma partícula encontra-se no primeiro quadrante de \mathbb{R}^2 . A partícula move-se de forma que a distância à origem é igual à inclinação t da reta que une a origem e a posição da partícula. Encontre uma parametrização do movimento da partícula usando t como parâmetro. $Rpta: \overrightarrow{\alpha}(t) = (\frac{t}{\sqrt{1+t^2}}, \frac{t^2}{\sqrt{1+t^2}}), t \geq 0$.
- 8. Defina uma função vetorial em \mathbb{R}^3 com domínio [-2,2] cuja trajetória é o triângulo de vértices A=(3,2,-1), B=(2,0,1) e C=(1,-2,1).

2.2 Limites, continuidade, derivadas e integração

- 1. Calcule, se existe, os seguintes limites
 - (a) $\lim_{t\to 3} \overrightarrow{\alpha}(t)$ onde $\overrightarrow{\alpha}(t) = (\frac{t^2-2t-3}{t-3}, \frac{t^2-5t+6}{t-3})$. Rpta: (4,1).
 - (b) $\lim_{t\to 0} \overrightarrow{\alpha}(t)$ onde $\overrightarrow{\alpha}(t) = (\frac{1-\sqrt{1+t}}{1-t}, \frac{t}{t+1}, 1)$. Rpta: (0,0,1).
 - (c) $\lim_{t\to 0} \overrightarrow{\alpha}(t)$ onde $\overrightarrow{\alpha}(t) = (\frac{\sin 7t}{t}, \frac{\sin 5t}{\sin 3t}, \frac{\tan 3t}{\sin 2t})$. Rpta: (7,5/3,3/2).
 - (d) $\lim_{t\to 2} \overrightarrow{\alpha}(t)$ onde $\overrightarrow{\alpha}(t)=(\ln t,\sqrt{1+t^2},\frac{3t}{4-t^2})$. Rpta: Não existe.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- 2. Seja \mathcal{C} uma curva parametrizada por $\overrightarrow{\alpha}(t) = (1 2t, t^2, 2e^{2t-2})$. Encontre a equação da reta tangente a \mathcal{C} no ponto onde $\overrightarrow{\alpha}'(t)$ é paralelo a $\overrightarrow{\alpha}(t)$. Rpta: $r: (-1,1,2)+t(-1,1,2); t \in \mathbb{R}$.
- 3. Sejam as curvas parametrizadas por $\overrightarrow{\alpha}(t) = (e^t, e^{2t}, 1 e^{-t})$ e $\overrightarrow{\beta}(t) = (1 t, \cos t, \sin t)$. Encontre a interseção das trajétorias das curvas e o ângulo da interseção. Rpta: Interseção P = (1, 1, 0); Ângulo $\theta = \pi/2$.
- 4. Suponha que $\|\overrightarrow{\alpha}(t)\|$ é constante para todo $t \in \mathbb{R}$. Verifique que $\overrightarrow{\alpha}(t) \cdot \overrightarrow{\alpha}'(t) = 0$
- 5. Encontre os pontos em que a curva $\overrightarrow{\alpha}(t) = (t^2 1, t^2 + 1, 3t)$ corta o plano $\mathcal{P}: 3x 2y z + 7 = 0$. Rpta: P = (3, 5, 6) e Q = (0, 2, 3).
- 6. Calcule o produto interno de \overrightarrow{a} e \overrightarrow{b} onde $\overrightarrow{a}=(2,-4,1)$ e $\overrightarrow{b}=\int_0^1 (te^t,t\sinh 2t,2te^{-2t})dt$. Rpta: 0.
- 7. Considere $\overrightarrow{\alpha}(t) = \overrightarrow{d}\cos(\omega t) + \overrightarrow{b}\sin(\omega t)$, com $t \in \mathbb{R}$. Verifique que

(a)
$$\overrightarrow{\alpha}(t) \times \frac{d\overrightarrow{\alpha}(t)}{dt} = \omega \overrightarrow{\alpha} \times \overrightarrow{b}$$
 e (b) $\frac{d^2\overrightarrow{\alpha}(t)}{dt^2} + \omega^2 \overrightarrow{\alpha}(t) = \overrightarrow{0}$.

- 8. Em \mathbb{R}^3 considere $\overrightarrow{\alpha}(t)$ uma curva derivável com derivada contínua, não nula. Mostre que
 - (a) $\overrightarrow{\alpha}(t)$ tem norma constante se, e somente se $\overrightarrow{\alpha}(t) \cdot \overrightarrow{\alpha}'(t) = 0$.
 - (b) $\overrightarrow{\alpha}(t)$ tem direção constante se, e somente se $\overrightarrow{\alpha}(t) \times \overrightarrow{\alpha}'(t) = 0$.
- 9. Encontre uma equação paramétrica da curva C definida por a interseção da superfície $z = \sqrt{4 x^2 y^2}$ e $x^2 + y^2 = 2y$. Expresse o comprimento de arco dessa curva como uma integral.

$$Rpta: \overrightarrow{\alpha}(t) = (\pm \sqrt{2t - t^2}, t, \sqrt{4 - 2t})0, t \in [0, 2]$$
 e comprimento de arco $S = \int_0^2 \sqrt{\frac{2 + 9t}{4t - 2t^2}} dt$.

- 10. Uma partícula se encontra no plano XY seguindo as equações $x(t) = e^{-2t}\cos 3t$ e $y(t) = e^{-2t}\sin 3t$. Encontre o comprimento de arco desde o ponto t = 0 até o ponto $t = \pi$. Rpta: $S = \sqrt{132}(1 e^{-2\pi})$.
- 11. Considere a curva \mathcal{C} : $\overrightarrow{\alpha}(t) = (e^t \cos t, e^t \sin t, e^t), t \geq 0$. Reparametrize a curva \mathcal{C} por comprimento de arco. Rpta: $\overrightarrow{\beta}(s) = \overrightarrow{\alpha}(t(s)) == (\frac{\sqrt{3}+s}{s} \cos \ln \frac{\sqrt{3}+s}{s}, \frac{\sqrt{3}+s}{s} \sin \ln \frac{\sqrt{3}+s}{s}, \frac{\sqrt{3}+s}{s}), s \geq 0$

2.3 Vetor tangente, normal, binormal, curvatura, torção, etc ...

- 1. Uma partícula realiza um movimento descrito pela curva paramétrica $\overrightarrow{\alpha}(t) = (\cos t, \frac{\sin t}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}})$.
 - (a) Encontre os vetores tangentes, normal e binormal em $t = \pi/4$. $Rpta: \overrightarrow{T}(t) = (-\sin t, \frac{\cos t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}); \overrightarrow{N}(t) = (-\cos t, -\frac{\sin t}{\sqrt{2}}, -\frac{\sin t}{\sqrt{2}}) e \overrightarrow{B}(t) = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$
 - (b) Calcule o plano osculador, retificante e normal para a curva $\overrightarrow{\alpha}(t)$ no ponto $t = \pi/4$.
- 2. Seja a > 0. Considere a interseção da esfera $x^2 + y^2 + z^2 = 4a^2$ com o cilindro $(x a)^2 + y^2 = a^2$.
 - (a) Verifique que $\overrightarrow{\alpha}(t) = (a(1+\cos t), a\sin t, 2a\sin(t/2))$ está contido nessa interseção.
 - (b) Calcule o vetor tangente $\overrightarrow{T}(t)$ e a curvatura $\kappa(t)$. $Rpta: \overrightarrow{T}(t) = \frac{(-\sqrt{2}a\sin t, \sqrt{2}a\cos t, \sqrt{2}a\cos(t/2))}{a\sqrt{3+\cos t}}$ e $\kappa(t) = \frac{\sqrt{13+3\cos t}}{a(3+\cos t)^{3/2}}$.
- 3. Encontre a reta tangente, o plano normal e o plano osculador da curva paramétrica $\overrightarrow{\alpha}(t) = (e^t \cos t, e^t \sin t, \sqrt{3}e^t)$ no ponto t = 0.

Rpta: reta tangente: $x-1=y=\frac{z-\sqrt{3}}{\sqrt{3}}$; plano normal: $x+y+\sqrt{3}z=4$; plano osculador: $\sqrt{3}x+\sqrt{3}y+\sqrt{3}=2z$.

4. Encontre o vetor tangente, o plano normal, o plano osculador e o plano retificante da curva paramétrica $\overrightarrow{\alpha}(t) = (t^2 + 1, 8t, t^2 - 3)$ no ponto t = 1.

 $Rpta: \overrightarrow{T}(1) = \frac{1}{3\sqrt{2}}(1,4,1)$; plano normal: x+4y+z=32; plano retificante: 2x-y+2z=-8 e plano oscilador: x-z=4.

5. Seja \mathcal{C} uma curva paramétrica definida como $\overrightarrow{\alpha}(t)=(1-\frac{4t^3}{3},1-2t^2,t)$. Encontre a equação do plano osculador paralelo ao plano x+2=0. no ponto t=1.

$$Rpta:$$
 Plano: $x=1.$

6. Se $\overrightarrow{\alpha}(t) = (t - \sin t, 1 - \cos t, t)$, encontre a equação do plano osculador em $\overrightarrow{\alpha}(0)$.

Rpta: Plano:
$$x = 0$$
.

7. Considere $\overrightarrow{\alpha}(t) = (2\sqrt{at}, 1 - \cos t, 1)$ com a > 0. Encontre o ponto onde o raio de curvatura atinge seu mínimo e forneça tal valor.

Rpta: Raio de curvatura
$$\rho(t) = \frac{2}{\sqrt{a}}t^{3/2}(\frac{a}{t}+1)^{3/2}$$
.

8. Seja \mathcal{C} uma curva no plano XY, descrito em coordenadas polares $r=e^{\theta}$. Calcule o circulo osculador, indicando o centro e o raio, quando o vetor normal é paralelo a (-1,1).

Rpta: Raio=
$$\sqrt{2}$$
 e centro= $(0,1)$.

9. Seja \mathcal{C} uma curva em \mathbb{R}^3 , descrito por $\overrightarrow{\alpha}(t)$, (t>0). Se $\|\overrightarrow{\alpha}'(t)\| = \frac{1}{t+1}$, $\overrightarrow{B}'(t) = \frac{1}{(1+t)^2}(-1, -1, \frac{1-t}{\sqrt{2t}})$, (t>0) e a torção $\tau(t)$ é positiva. Calcule a torção.

Rpta:
$$\tau(t) = \sqrt{2t}$$
.

10. O pulo de uma rã é descrita por $\overrightarrow{\alpha}(t) = (t^2, |t|)$. Calcule o distância percorrida pela rã no intervalo $t \in [-1, 1]$. Também calcule a curvatura no ponto $(1/2, \sqrt{2}2)$.

Rpta: Distância:
$$\sqrt{5} + \ln(\sqrt{5} + 2)$$
 e Curvatura: $2\sqrt{5}/15$.