

Seattle Airbnb Open Data

Analysis by:

- Stergios Sozos 8170129
- Aliki Ntouzgou 8170091

A sneak peek into the Airbnb activity in Seattle, WA, USA for the year 2016

Data Info

LISTINGS

REVIEWS

Full descriptions and average score From 2009 to 2015

Reviewer ID and detailed comments
From 2009 to 2015

CALENDAR

Listing's price and availability each date
From 2016 to 2017

Data metrics

Rows per file

Columns per file

Listings: 3.818

Listings: 92

Reviews: 84.849

Reviews: 6

Calendar: 1.393.570

Calendar: 4

Main categories - Dimensions

Data Cleaning

Selected usable columns

Fixed NaNs and empty cells

Turned float into int

Renamed columns, for better understanding and easier use

Turned "date" column into datetime type

Removed Dollar sign from Prices

Star Scheme

	Column Na	me	D	ata Type	Allow	Nulls	
	neighbourhood_group	o_cleansed	nvarchar(5	0)			
	latitude	float					
	longitude		float				
₽¥	location_id	int					
						٦	
Fore	eign Key Relationships				?	×	
	ected Relationship:				27.1	203	
FK_Listing_BedDim FK_Listing_DateDim FK_Listing_FacilitiesDim FK_Listing_HostDim FK_Listing_LocationDim FK_Listing_OptionsDim FK_Listing_PriceDim		CGeneral) Check Existing Data On Ci Yes Tables And Columns Spec Identity (Name) FK_List Description Table Designer Enforce For Replication Yes Enforce Foreign Key Cons Yes INSERT And UPDATE Spec		Yes FK_Listing_BedDim Yes Yes			
	Add Delete				Clo	se	

Star Scheme

Fact Table – Metrics

Data Cube

Data Cube

Calculated Measures

- 2699 Total Listings
- 17 Seattle Neighborhoods referred
- 32% of the Cancellation Policies is Strict
- The Average (mean) Regular Price of the Listings is 137\$.
- The Average (mean) Price of the Listing the day the day they were searched for is
 150\$
- The Average Price Addition for the Cleaning Fee is 62\$
- More than 2/3 of the Searches for Listings were conducted in Winter

Data Visualization

Which is the most popular bed type offered?

Which is the area with the most listings offered?

Which is the cancellation policy for the majority of the listings?

How does the owner of each listing determine on average their price according to season?

How does the owner of each listing determine on average its price according to region?

Do superhosts exploit their title to charge more?

How does the host of each listing determine on average its price according to the type of listing he offers?

How different does the average listing price set by the host differ from the average price when adjusted on the basis of season and demand?

How does each host charge their listing according to the kind of room they offer?

How does each host adapt its listing according to the demand season?

What is the variance of reviews per month?

What's the most common name among tourists?

Classification

Based on the sentiment of the (English reviews)

TOOLS USED: NLTK LIBRARY FROM PYTHON

NUMBER OF CLASSES: THREE

Steps before classification

Remove all the reviews that are in any other language other besides English

```
from langdetect import detect

def detect_lang(sente):
    sente=str(sente)
    try:
        return detect(sente)
    except:
        return "None"

for index,row in reviewsDF.iterrows():
    lang=detect_lang(row['comments'])
    reviewsDF.at[index,'language'] = lang
```

Run the classification

Run the actual classification with the NLTK library

```
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()

reviews_new['polarity_value']="Default"
reviews_new['neg']=0.0

reviews_new['pos']=0.0

reviews_new['neu']=0.0

reviews_new['compound']=0.0

for index,row in reviews_new.iterrows():
    ss = sid.polarity_scores(row['comments'])
    reviews_new.at[index,'polarity_value'] = ss
    reviews_new.at[index,'polarity_value'] = ss
    reviews_new.at[index,'neg'] = ss['neg']
    reviews_new.at[index,'neu'] = ss['pos']
    reviews_new.at[index,'neu'] = ss['neu']
    reviews_new.at[index,'compound'] = ss['compound']
reviews_new.head()
```

Extract the polarity scores

 Create a dataframe with every information about the reviews and append the columns with the polarity score for each row

	listing_id	id	date	reviewer_id	reviewer_name	comments	polarity_value	neg	pos	neu	com
0	7202016	38917982	2015- 07-19	28943674	Bianca	Cute and cozy place. Perfect location to every	{'neg': 0.0, 'neu': 0.462, 'pos': 0.538, 'comp	0.000	0.538	0.462	0.79
1	7202016	39087409	2015- 07-20	32440555	Frank	Kelly has a great room in a very central locat	{'neg': 0.0, 'neu': 0.609, 'pos': 0.391, 'comp	0.000	0.391	0.609	0.98
2	7202016	39820030	2015- 07-26	37722850	lan	Very spacious apartment, and in a great neighb	{'neg': 0.043, 'neu': 0.772, 'pos': 0.185, 'co	0.043	0.185	0.772	0.87
3	7202016	40813543	2015- 08-02	33671805	George	Close to Seattle Center and all it has to offe	{'neg': 0.035, 'neu': 0.765, 'pos': 0.2, 'comp	0.035	0.200	0.765	0.83
4	7202016	41986501	2015- 08-10	34959538	Ming	Kelly was a great host and very accommodating 	{'neg': 0.0, 'neu': 0.655, 'pos': 0.345, 'comp	0.000	0.345	0.655	0.97

Visualize the classes

Create 3 different arrays to visualize the polarity scores

	count_of_Comments	RANGE	Sentiment
0	1640	0.0	positive
1	14126	0.1	positive
2	29151	0.2	positive
3	22306	0.3	positive
4	9881	0.4	positive

	count_of_Comments	RANGE	Sentiment
0	24916	0.0	negative
1	1156	0.1	negative
2	86	0.2	negative
3	21	0.3	negative
4	3	0.4	negative

	count_of_Comments	RANGE	Sentiment
0	8	0.0	neutral
1	157	0.1	neutral
2	569	0.2	neutral
3	1347	0.3	neutral
4	3864	0.4	neutral

Understand the distributions

Visualize in a better way the polarity scores

Clustering

Based on text descriptions:

id

name

space

description

neighborhood_overview

neighbourhood_cleansed

Clustering

ALGORITHM USED:

K-MEANS

NUMBER OF CLUSTERS:

6

Steps before clustering

Combine column's text into one column

Stylish Queen Anne Apartment Make your self at home in this charming one-bedroom apartment, centrally-located on the west side of Queen Anne hill. This elegantly-decorated, completely private apartment (bottom unit of a duplex) has an open floor plan, bamboo floors, a fully equipped kitchen, a TV, DVD player, basic cable, and a very cozy bedroom with a queen-size bed. The unit sleeps up to four (two in the bedroom and two on the very comfortable fold out couch, linens included) and includes free WiFi and laundry. The apartment opens onto a private deck, complete with it's own BBQ, overlooking a garden and a forest of black bamboo. The Apartment is perfectly-located just one block from the bus lines where you can catch a bus and be downto wn Seattle in fifteen minutes or historic Ballard in ten or a quick five-minute walk will bring you to Whole Foods and Peet's Coffee or take a fifteen minute walk to the top of Queen Anne Hill where you will find a variety of eclectic shops, bars, and restaurants. There is no Make your self at home in this charming one-bedroom apartment, centrally-located on the west side of Queen Anne hill. This elegantly-decorated, completely private apartment (bottom unit of a duplex) has an open floor plan, bamboo floors, a fully equipped kitchen, a TV, DVD player, basic cable, and a very cozy bedroom with a queen-size bed. The unit sleeps up to four (two in the bedroom and two on the very comfortable fold out couch, linens included) and includes free WiFi and laundry. The apartment opens onto a private deck, complete with it's own BBQ, overlooking a garden and a forest of black bamboo. The Apart ment is perfectly-located just one block from the bus lines where you can catch a bus and be downtown Seattle in fifteen minutes or historic Ballard in ten or a quick five-minute walk will bring you to Whole Foods and Peet's Coffee or take a fifteen minute walk to the top of Queen Anne Hill where you will find a variety of eclectic shops, bars, and restaurants. There is no nan

Steps before clustering and Clustering

Set weight for words

```
# Transform combined_description into tfidf format
tfidf = TfidfVectorizer(ngram_range=(1,2),stop_words='english',tokenizer=LemmaTokenizer())
tfidf.fit(df['combined_description'])
DescTfidf = tfidf.transform(df['combined_description'])|
```

Keep top 30 words

Number of Listings per Cluster

Clusters Overview with wordcloud

Clusters

Cluster 1: «Next to Capitol»

Cluster 2: «Furnished»

Clusters

Cluster 3: «Next to a Lake»

Cluster 4: «Tech House»,

Clusters

Cluster 5: «With a balcony»

Cluster 6: «Chinese»

Prediction

Predict prices based on

Steps before predicting

Create dummies

```
# select non-numeric variables and create dummies
non_num_vars = df2.select_dtypes(include=['object']).columns
df2[non_num_vars].head()
```

```
# split into test and training data
np.random.seed(1)
indices = np.random.permutation(len(df3))
train_size = int(round(0.8*len(df3)))
test_size = len(df3)-train_size
y = df3['price']
x = df3.drop('price', axis = 1)
x.train = x.iloc[indices[0:train_size]]
y.train = y.iloc[indices[0:train_size]]
x.test = x.iloc[indices[train_size+1:]]
y.test = y.iloc[indices[train_size+1:]]
x2 = x.train.as_matrix()
y2 = y.train.as_matrix()
```

Random Forest

MSE train: 360.229, test: 2275.514 R*2 train: 0.945, test: 0.670

Plot results

Any Questions?

Thank you