10 клас Задача № 1

Обладнання:

Групове:

Клейка стрічка (скотч). Відро для зливу води.

Вода підфарбована. Серветки. Вода тепла та холодна Шприц 5 мл Нитки Ножиці.

Індивідуальне:

Штатив шкільний.

Два корпуси від медичного шприца на 20 мл. Хлорвінілова трубка довжиною біля 1 м. Дерев'яна рейка. Термометр. Пластиковий стаканчик. Лінійка 50 см. Дві гумові надувні кульки. Психрометрична таблиця. Міліметровий папір.

Завдання:

- 1. Із запропонованого обладнання виготовте термометр для вимірювання різниці температур (диференціальний термометр).
- 2. Запропонуйте теоретичну модель створеного приладу.
- 3. Побудуйте градуювальний графік на міліметровому папері. Порівняйте з теоретичною моделлю.
- 4. Використайте створений диференціальний термометр для визначення відносної вологості повітря у кімнаті.

Вказівки до розв'язання:

Побудова диференціального термометра можлива, наприклад, за такою схемою:

Показана схема представляє по суті два з'єднані газові термометри. Робочим тілом термометру в цьому разі є повітря, що знаходиться в балоні шприца.

Переміщення стовпчика визначається різницею об'ємів резервуарів термометрів, яке пов'язане з тепловим розширенням газу. Диференціальним такий термометр буде тому, що різниця об'ємів визначається саме різницею їх температур. Значний об'єм резервуару шприца (порівняно з об'ємом повітря в трубці) та невеликий переріз трубки приводить до великої чутливості такого термометру. В моделі побудовані журі зміщення стовпчика при різниці температур 1°С було близько до 1 см.

Теоретично описати теплове розширення у вказаному приладі можна за допомогою рівняння стану ідеального газу:

$$PV = \nu RT$$

У наближенні малого об'єму трубки переміщення стовпчика рідини в трубці задовольняє відношенню:

$$\frac{\Delta V}{V} = \frac{1}{2} \cdot \frac{\Delta T}{T}$$

Де $\Delta V = S \cdot \Delta L$ пов'язано зі зміщенням стовпчика рідини ΔL . Залежність приблизно лінійна. Тому в невеликому діапазоні зміни температур апроксимація лінійною частиною, для визначення температури вологого термометру є достатньо коректною.

На графіку наведено приблизну залежність, температури від зміщення стовпчика рідини, а також проведена наближена апроксимація графіку до показів вологої частини термометру, яка необхідна для визначення відносної вологості по виданій таблиці (24°С — покази сухого термометру, 4° - різниця температур, що відповідає 69% - покази еталонного психрометру показали біля 60%). Вологість, яку вимірювали учні, могла бути значно вище за рахунок умов, в яких проводився дослід.

Задача 2

Обладнання індивідуальне:

- світлодіод з номінальним робочим струмом 350 мА з припаяними провідниками (жовтий «+», білий «-»)
- реостат шкільний
- амперметр
- батарейка
- термометр
- два пластикових стаканчики різного розміру
- штатив з лапкою.

Обладнання групове:

- вода дистильована
- мензурка
- ізоляційна чорна стрічка
- годинник з секундною стрілкою
- серветки для витирання калюж
- відро для зливу використаної води

Завдання

Визначте номінальну електричну потужність світлодіода. Введіть поняття коефіцієнта корисної дії світлодіода у вашому експерименті та визначте його величину.

Застереження

Струм через світлодіод не повинен перевищувати 350 мА!!!

Не дивіться довго на ввімкнений світлодіод, щоб запобігти ушкодженню зору.

Перед першим включенням необхідно щоб електричне коло перевірив черговий викладач.

Розв'язок

Складаємо електричне коло за схемою:

З двох стаканчиків виготовляємо калориметр, наливаємо у нього близько 30-50 мл води. Кількість води має бути мінімально необхідною, щоб повністю занурити у неї світлодіод та термометр. Визначаємо початкову температуру води, світлодіод занурюємо у воду, вмикаємо струм. Заміряємо час, необхідний для нагрівання води в калориметрі на кілька градусів. Воду періодично перемішуємо для точного визначення температури. Слідкуємо, щоб сила струму у світлодіоді залишалася 350 мА. Визначаємо теплову потужність світлодіода (без врахування втрат у навколишнє середовище):

$$P_{\text{тепл}} = \frac{cm\Delta t}{\tau_1}$$
, $P_{\text{тепл}} = \frac{4200 \frac{\text{Дж}}{\text{K}\Gamma^{\circ}\text{C}} \cdot 0,05 \text{ K}\Gamma \cdot 3^{\circ}\text{C}}{940 \text{ c}} = 0,67 \text{ Bt.}$

Замотуємо світлодіод в непрозору ізоляційну стрічку і повторюємо експеримент, замінивши воду холодною (кімнатної температури), щоб забезпечити однакові теплові втрати в навколишнє середовище. Тепер за результатами експерименту можна визначити повну потужність світлодіода (без врахування втрат), оскільки світлова енергія також перетворюється в тепло.

$$P_{\text{повн.}} = \frac{cm\Delta t}{\tau_2}, \qquad P_{\text{повн.}} = \frac{4200 \frac{\rlap{\slash} \slash \slash}{\kappa \Gamma^{\circ} \slash} \cdot 0,05 \ \kappa \Gamma \cdot 3^{\circ} \slash}{780 \ c} = 0,81 \ \mathrm{BT}$$

Вимикаємо струм, чекаємо доки вода охолодиться на 1–2°C в середині вимірюваного діапазону температур, визначаємо середню потужність теплових втрат.

$$P_{\text{втр.}} = \frac{cm\Delta t}{\tau_3}, \qquad P_{\text{втр.}} = \frac{4200 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}} \cdot 0.05 \text{ кг} \cdot 1^{\circ}\text{C}}{1200 \text{ c}} = 0.18 \text{ Bt.}$$

Обчислюємо номінальну потужність світлодіода ($P_{\text{повн.}}$ разом з втратами $P_{\text{втр.}}$)

$$P_{\text{HOM.}} = P_{\text{ПОВН.}} + P_{\text{ВТР.}}, \qquad P_{\text{HOM.}} = 0.81 \,\text{BT} + 0.18 \,\text{BT} = 0.99 \,\text{BT.}$$

Обчислюємо відношення η потужності, що перетворюється на світло ($P_{\text{повн.}} - P_{\text{тепл.}}$), до повної номінальної потужності ($P_{\text{повн.}} + P_{\text{втр.}}$):

$$\eta = \frac{P_{\text{повн.}} - P_{\text{тепл.}}}{P_{\text{повн.}} + P_{\text{втр.}}}, \qquad \eta = \frac{0.81 \text{ Bt} - 0.67 \text{ Bt}}{0.81 \text{ Bt} + 0.18 \text{ Bt}} = 0.14 \text{ Bt}.$$

Таким чином, $P_{\text{ном.}} = 0.99 \text{ Bt}, \eta = 0.14.$