Projet HMSN204

BLAISON, LAIDLAW Jeudi, 11 avril 2019

Partie Biopython : Alignement et manipulation des sequences

Vue d'Ensemble

Recuperation des sequences

- NCBI detient 3 sequences RNAm pour SEX1, et 1 sequence cDNA genomique
 - Les 3 ne sont pas des mutants, mais des variants d'epissage alternative variants

Recuperation des sequences

 les SNP variants décrit dans dbSNP servait pour creer le fasta de SEX1 mutant.

Region	Chr. position	mRNA pos	dbSNP rs# cluster id	Hetero- zygosity	<u>Validation</u>	MAF	Allele origin	3D	Clinically Associated	Clinical Significance	Function		Protein residue	Codon	Amino acid pos	PubMed
	3581249	<u>4621</u>	rs1106309714	N.D.							missense	-	Glu [E]	3	1387	
											contig reference	С	Asp [D]	3	1387	
	3581250	<u>4620</u>	rs1095915538	N.D.							missense	-	Val [V]	2	1387	
											contig reference	Α	Asp [D]	2	<u>1387</u>	
	3581273	4597	rs1102763773	N.D.							synonymous	-	Gln [Q]	3	1379	
											contig reference	G	Gln [Q]	3	<u>1379</u>	
	3581278	<u>4592</u>	rs1104980834	N.D.							missense	-	Thr [T]	1	1378	
											contig reference	G	Ala [A]	1	1378	
	3581332	<u>4538</u>	rs346781335	N.D.							missense	-	lle [l]	1	1360	
											contig reference	G	Val [V]	1	1360	
	3581350	4520	rs347439271	N.D.							missense	-	Val [V]	1	1354	
											contig reference	т	Leu [L]	1	<u>1354</u>	
	3581370	4500	rs1104490444	N.D.							missense	-	Lys [K]	2	1347	
											contig reference	С	Thr [T]	2	1347	

Fig. 2: dbSNP page for geneID:837619

Recuperation des sequences

Used dbSNP IDs						
rs1105066589	rs1103971843	rs1095089377	rs1100808719			
rs1095780989	rs1095659046	rs1097407346	rs1097236347			
rs1105152302	rs1097124183	rs347038182	rs346885812			
rs1101762250	rs1100942745	rs1106840358	rs346897346			
rs1099291378	rs1102995172	rs1096948278	rs1099609436			
rs1104510198						

Instantiation du Tableau

Comment faire le tableau?

 Pour creer un tableau 2D en code, on a utilisé les DataFrame de la librarie pandas.

Pourquoi Pandas?

- Permet l'acces et l'enregistrement de données par coordonées de cellule (permettant ecriture automatique)
- permet visualisation de tout le tableau

Remplissage du Tableau

 Tableau des scores d'alignements selon le standard du Needleman–Wunsch

```
-7 -8 -9 -10 -11 -12 -13 -14 -15
                   10
                               10
                               14
                               15
```

Remplissage du Tableau

- Dans un autre tableau le direction qui a amené au score a été enregistré
- permet à l'algorithme d'ensuite effectuer le backtracking

Backtracking du Tableau

 la sortie du fonction est deux listes contenant le version aligné des deux sequences.

$$\begin{split} \text{SeqA} &= [\text{`G', `-', `A', `T', `T', `A', `C', `A', `A']} \\ \text{SeqB} &= [\text{`G', `C', `A', `T', `-', `G', `C', `-', `U']} \\ \text{Variations} &= \{1, \, 4, \, 5, \, 7, \, 8\} \end{split}$$

Problèmes d'Alignement

Optimisation	Alignment Time (s)
None	18.6
Function Caching	18.16
Cython	18.02
JIT Compilation	18.22
Combined	18.55

Schema de la base de données

Requêtes

```
select m.type, avg(ph.Root_area)
from milieu m, boite b, plant p, phenotype ph
where m.id_boite = b.id_boite and b.plant_id = \
p.plant_id and p.plant_id = ph.plant_id
group by m.type;
```

Tab. 3: Résultat de la requête :

type	avg
Milieu_5	0.127835366556921
Milieu_1	0.179657717053341
Milieu_2	0.309144144189787
Milieu_3	0.151981368513419
Milieu_4	0.302773334148029