Logic

Question

If
$$X_1 + X_2 = 10$$
 and $X_1 - X_2 = 4$, what is X_1 ?

-

Course plan

Taking a step back

Examples: search problems, MDPs, games, CSPs, Bayesian networks

Modeling paradigms

State-based models: search problems, MDPs, games

Applications: route finding, game playing, etc.

Think in terms of states, actions, and costs

Variable-based models: CSPs, Bayesian networks

Applications: scheduling, tracking, medical diagnosis, etc.

Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic

Applications: theorem proving, verification, reasoning

Think in terms of logical formulas and inference rules

A historical note

• Logic was dominant paradigm in Al before 1990s

```
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
(1997 97 )
```

- Problem 1: deterministic, didn't handle uncertainty (probability addresses this)
- Problem 2: rule-based, didn't allow fine tuning from **data** (machine learning addresses this)
- Strength: provides **expressiveness** in a compact way

Motivation: smart personal assistant

Motivation: smart personal assistant

Tell information

Ask questions

Use natural language!

[demo: python nli.py]

Need to:

- Digest **heterogenous** information
- Reason **deeply** with that information

Natural language

Example:

- A dime is better than a nickel.
- A **nickel** is better than a **penny**.
- Therefore, a **dime** is better than a **penny**.

Example:

- A **penny** is better than **nothing**.
- Nothing is better than world peace.
- Therefore, a **penny** is better than **world peace**???

Natural language is slippery...

Language

Language is a mechanism for expression.

Natural languages (informal):

English: Two divides even numbers.

German: Zwei dividiert gerade Zahlen.

Programming languages (formal):

```
Python: def even(x): return x % 2 == 0
```

C++: bool even(int x) { return x % 2 == 0; }

Logical languages (formal):

First-order-logic: $\forall x. \mathsf{Even}(x) \to \mathsf{Divides}(x, 2)$

Two goals of a logic language

• Represent knowledge about the world

• Reason with that knowledge

Ingredients of a logic

Syntax: defines a set of valid formulas (Formulas)

Example: Rain ∧ Wet

Semantics: for each formula, specify a set of **models** (assignments / configurations of the world)

CS221

Inference rules: given f, what new formulas g can be added that are guaranteed to follow

Example: from Rain \(\text{Wet, derive Rain} \)

Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Different syntax, same semantics (5):

$$2 + 3 \Leftrightarrow 3 + 2$$

Same syntax, different semantics (1 versus 1.5):

3 / 2 (Python 2.7)
$$\Leftrightarrow$$
 3 / 2 (Python 3)

221

Propositional logic

Logics

- Propositional logic with only Horn clauses
- Propositional logic
- Modal logic
- First-order logic with only Horn clauses
- First-order logic
- Second-order logic
- ...

Key idea: tradeoff —

Balance expressivity and computational efficiency.

Roadmap

Modeling

Inference

Propositional Logic Syntax

Inference Rules

Propositional Logic Semantics

Propositional modus ponens

First-order Logic

Propositional resolution

First-order modus ponens

First-order resolution

Lecture

Overview

Propositional logic syntax

Propositional logic semantics

Inference rules

Propositional logic

Syntax of propositional logic

Propositional symbols (atomic formulas); A, B, C:

Logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation: $\neg f$
- Conjunction: $f \wedge g$
- Disjunction: $f \vee g$
- Implication: $f \rightarrow g$
- Biconditional: $f \leftrightarrow g$

Syntax of propositional logic

- \bullet Formula: A
- Formula: $\neg A$
- Formula: $\neg B \rightarrow C$
- $\bullet \ \ \text{Formula:} \ \ \neg A \wedge (\neg B \to C) \vee (\neg B \vee D) \\$
- Formula: $\neg \neg A$
- Non-formula: $A \neg B$
- Non-formula: A + B

Syntax of propositional logic

Key idea: syntax provides symbols

Formulas by themselves are just symbols (syntax). No meaning yet (semantics)!

TU

Lecture

Overview

Propositional logic syntax

Propositional logic semantics

Inference rules

Propositional logic

Model

Definition: model

A **model** w in propositional logic is an **assignment** of truth values to propositional symbols.

Example:

3 propositional symbols; A, B, C:

• $2^3 = 8$ possible models w:

```
 \begin{cases} A:0,B:0,C:0 \rbrace \\ \{A:0,B:0,C:1 \rbrace \\ \{A:0,B:1,C:0 \rbrace \\ \{A:0,B:1,C:1 \rbrace \\ \{A:1,B:0,C:0 \rbrace \\ \{A:1,B:0,C:1 \rbrace \\ \{A:1,B:1,C:0 \rbrace \\ \{A:1,B:1,C:1 \rbrace \end{cases}
```

Interpretation function

Definition: interpretation function

Let f be a formula.

Let w be a model.

An interpretation function $\mathcal{I}(f, w)$ returns:

- true (1) (say that w satisfies f)
- false (0) (say that w does not satisfy f)

Interpretation function: definition

Base case:

• For a propositional symbol p (e.g., A, B, C): $\mathcal{I}(p, w) = w(p)$

Recursive case:

 \bullet For any two formulas f and g, define:

								ı
$\mathcal{I}(f, w)$	$\mathcal{I}(g, w)$	-	$\mathcal{I}(\neg f, w)$	$\mathcal{I}(f \wedge g, w)$	$\mathcal{I}(f \vee g, w)$	$\mathcal{I}(f o g,w)$	$\mathcal{I}(f \leftrightarrow g, w)$	
0	0	-	1	0	0	1	1	
0	1		1	0	1	1	0	
1	0		0	0	1	0	0	
1	1		0	1	1	1	1	
								ı

Interpretation function: example

Formula represents a set of models

So far: each formula f and model w has an interpretation $\mathcal{I}(f,w) \in \{0,1\}$

Definition: models -

Let $\mathcal{M}(f)$ be the set of **models** w for which $\mathcal{I}(f,w)=1$.

Models: example

Formula:

$$f = \mathsf{Rain} \vee \mathsf{Wet}$$

Models:

$$\mathcal{M}(f) = \begin{bmatrix} & & & & & \\ & & 0 & 1 \\ & & & & \\ & & 2 & 1 \end{bmatrix}$$

Key idea: compact representation

A formula compactly represents a set of models.

Knowledge base

Definition: Knowledge base

A **knowledge base** KB is a set of formulas representing their conjunction / intersection:

$$\mathcal{M}(\mathsf{KB}) = \bigcap_{f \in \mathsf{KB}} \mathcal{M}(f).$$

Intuition: KB specifies constraints on the world. $\mathcal{M}(KB)$ is the set of all worlds satisfying those constraints.

Let $KB = \{Rain \lor Snow, Traffic\}.$

Knowledge base: example

Intersection:

$$\mathcal{M}(\{\mathsf{Rain},\mathsf{Rain}\to\mathsf{Wet}\})$$
 Wet

Adding to the knowledge base

Adding more formulas to the knowledge base:

$$\mathsf{KB} \longrightarrow \mathsf{KB} \cup \{f\}$$

Shrinks the set of models:

$$\mathcal{M}(\mathsf{KB})$$
 \longrightarrow $\mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f)$

How much does $\mathcal{M}(KB)$ shrink?

[whiteboard]

Entailment

Intuition: f added no information/constraints (it was already known).

Definition: entailment -

KB entails f (written KB $\models f$) iff $\mathcal{M}(\mathsf{KB}) \subseteq \mathcal{M}(f)$.

Example: Rain \land Snow \models Snow

Contradiction

Intuition: f contradicts what we know (captured in KB).

Definition: contradiction

KB contradicts f iff $\mathcal{M}(KB) \cap \mathcal{M}(f) = \emptyset$.

Example: Rain ∧ Snow contradicts ¬Snow

Contradiction and entailment

Contradiction:

Entailment:

Proposition: contradiction and entailment ¬

KB contradicts f iff KB entails $\neg f$.

Contingency

Intuition: f adds non-trivial information to KB

$$\emptyset \subsetneq \mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f) \subsetneq \mathcal{M}(\mathsf{KB})$$

Example: Rain and Snow

Tell operation

$$Tell[f] \longrightarrow KB \longrightarrow ?$$

Tell: It is raining.

Tell[Rain]

Possible responses:

- Already knew that: entailment (KB $\models f$)
- Don't believe that: contradiction (KB $\models \neg f$)
- Learned something new (update KB): contingent

Ask operation

$$Ask[f] \longrightarrow KB \longrightarrow 3$$

Ask: Is it raining?

Ask[Rain]

Possible responses:

- Yes: entailment (KB $\models f$)
- No: contradiction (KB $\models \neg f$)
- I don't know: contingent

Digression: probabilistic generalization

Bayesian network: distribution over assignments (models)

CS221

$$\begin{cases} w & \mathbb{P}(W=w) \\ \text{{ A: 0, B: 0, C: 0 }} & \text{{ 0.3}} \\ \text{{ A: 0, B: 0, C: 1 }} & \text{{ 0.1}} \\ \dots & \dots & \dots \end{cases}$$

$$\mathbb{P}(f \mid \mathsf{KB}) = \frac{\sum_{w \in \mathcal{M}(\mathsf{KB} \cup \{f\})} \mathbb{P}(W = w)}{\sum_{w \in \mathcal{M}(\mathsf{KB})} \mathbb{P}(W = w)}$$

76

Satisfiability

Definition: satisfiability

A knowledge base KB is **satisfiable** if $\mathcal{M}(KB) \neq \emptyset$.

Reduce Ask[f] and Tell[f] to satisfiability:

Model checking

Checking satisfiability (SAT) in propositional logic is special case of solving CSPs!

Mapping:

```
\begin{array}{cccc} \text{propositional symbol} & \Rightarrow & \text{variable} \\ & \text{formula} & \Rightarrow & \text{constraint} \\ & \text{model} & \Leftarrow & \text{assignment} \end{array}
```

Model checking

Example: model checking

$$\mathsf{KB} = \{A \vee B, B \leftrightarrow \neg C\}$$

Propositional symbols (CSP variables):

$$\{A, B, C\}$$

CSP:

Consistent assignment (satisfying model):

$${A:1,B:0,C:1}$$

Model checking

Definition: model checking

Input: knowledge base KB

Output: exists satisfying model $(\mathcal{M}(KB) \neq \emptyset)$?

Popular algorithms:

- DPLL (backtracking search + pruning)
- WalkSat (randomized local search)

Next: Can we exploit the fact that factors are formulas?

Lecture

Overview

Propositional logic syntax

Propositional logic semantics

Inference rules

Propositional logic

Inference rules

Example of making an inference:

It is raining. (Rain)

If it is raining, then it is wet. (Rain o Wet)

Therefore, it is wet. (Wet)

$$\frac{\text{Rain}, \quad \text{Rain} \rightarrow \text{Wet}}{\text{Wet}} \qquad \frac{\text{(premises)}}{\text{(conclusion)}}$$

Definition: Modus ponens inference rule -

For any propositional symbols p and q:

$$\frac{p, \quad p \rightarrow q}{q}$$

Inference framework

Definition: inference rule -

If f_1, \ldots, f_k, g are formulas, then the following is an **inference rule**:

$$\frac{f_1, \dots, f_k}{g}$$

Key idea: inference rules -

Rules operate directly on syntax, not on semantics.

Inference algorithm

Algorithm: forward inference

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas $f_1, \ldots, f_k \in KB$.

If matching rule $\frac{f_1, \dots, f_k}{g}$ exists:

Add g to KB.

CS221

Definition: derivation

KB derives/proves f (KB $\vdash f$) iff f eventually gets added to KB.

Inference example

Example: Modus ponens inference

Starting point:

$$\mathsf{KB} = \{\mathsf{Rain}, \mathsf{Rain} \to \mathsf{Wet}, \mathsf{Wet} \to \mathsf{Slippery}\}\$$

Apply modus ponens to Rain and Rain \rightarrow Wet:

$$KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery, Wet\}$$

Apply modus ponens to Wet and Wet \rightarrow Slippery:

$$\mathsf{KB} = \{\mathsf{Rain}, \mathsf{Rain} \to \mathsf{Wet}, \mathsf{Wet} \to \mathsf{Slippery}, \mathsf{Wet}, \mathsf{Slippery}\}$$

Converged.

Can't derive some formulas: $\neg Wet$, Rain $\rightarrow Slippery$

Desiderata for inference rules

Semantics

Interpretation defines **entailed/true** formulas: $KB \models f$:

Syntax:

Inference rules **derive** formulas: $KB \vdash f$

How does $\{f : \mathsf{KB} \models f\}$ relate to $\{f : \mathsf{KB} \vdash f\}$?

Truth

 $\{f:\mathsf{KB}\models f\}$

Soundness

Definition: soundness

A set of inference rules Rules is sound if:

$$\{f: \mathsf{KB} \vdash f\} \subseteq \{f: \mathsf{KB} \models f\}$$

102

Completeness

Definition: completeness

A set of inference rules Rules is complete if:

$$\{f: \mathsf{KB} \vdash f\} \supseteq \{f: \mathsf{KB} \models f\}$$

Soundness and completeness

The truth, the whole truth, and nothing but the truth.

• **Soundness**: nothing but the truth

• Completeness: whole truth

Soundness: example

Is
$$\frac{\mathsf{Rain},\quad \mathsf{Rain} \to \mathsf{Wet}}{\mathsf{Wet}}$$
 (Modus ponens) sound?

 $\mathcal{M}(\mathsf{Rain}) \cap \mathcal{M}(\mathsf{Rain} \to \mathsf{Wet}) \subseteq ? \mathcal{M}(\mathsf{Wet})$

108

Sound!

Soundness: example

Is
$$\frac{\text{Wet}, \quad \text{Rain} \rightarrow \text{Wet}}{\text{Rain}}$$
 sound?

$$\mathcal{M}(\mathsf{Wet})$$

 $\mathcal{M}(\mathsf{Wet}) \quad \cap \quad \mathcal{M}(\mathsf{Rain} \to \mathsf{Wet}) \quad \subseteq ? \quad \mathcal{M}(\mathsf{Rain})$

Unsound!

Completeness: example

Recall completeness: inference rules derive all entailed formulas (f such that KB $\models f$)

Fixing completeness

Option 1: Restrict the allowed set of formulas

propositional logic

propositional logic with only Horn clauses

Option 2: Use more powerful inference rules

Modus ponens
resolution

Summary

