REPORT DOCUMENTATION PAGE

b. ABSTRACT

Unclassified

a. REPORT

Unclassified

c. THIS PAGE

Unclassified

Form Approved OMB No. 0704-0188

Public reporting burdep for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including stiggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highly Suite 1204, Artington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a subject to information if it does not display a currently wight OMB control pumper. PLEASE DO NOT RETLIEN YOUR FORM TO THE ABOVE ADDRESS.

collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABO	OVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Technical Papers	3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER
	5b. GRANT NUMBER
Please see	5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)	5d. PROJECT NUMBER
Hacker	5e. TASK NUMBER
CCV!	5f. WORK UNIT NUMBER
	346204
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT
Air Force Research Laboratory (AFMC)	
AFRL/PRS 5 Pollux Drive	
Edwards AFB CA 93524-7048	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S
	ACRONYM(S)
Air Force Research Laboratory (AFMC)	11. SPONSOR/MONITOR'S
AFRL/PRS	NUMBER(S)
5 Pollux Drive Edwards AFB CA 93524-7048	
	Please see attached
12. DISTRIBUTION / AVAILABILITY STATEMENT	·
Approved for public release; distribution unlimited.	
13. SUPPLEMENTARY NOTES	
14. ABSTRACT	
	*
2007	0116 042
2003	U110 U42
15. SUBJECT TERMS	
	IDED TO NAME OF BEODOLOGISTS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT OF PAGE	ES PERSON
	Leilani Richardson

19b. TELEPHONE NUMBER

(include area code) (661) 275-5015 FROM: PROI (TI) (STINFO)

19 Jun 2000

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2000-135 Mead, F., "Beamed Energy (Laser) Propulsion"

(Submission Deadline: 9 Jun 2000)

AIAA Short Course (Huntsville, AL, 21-22 Jul 2000) (Statement A)

Office for: a.) appropriateness of distribution statement, r distribution restrictions, hnical sensitivity and/or economic sensitivity.
Date
ce for: a.) appropriateness for public release
Date
anges if approved as amended, conal critical technology, d.) economic sensitivity, completion of meeting clearance form if required
Date
curacy, b.) appropriateness for audience, c.) ivity and economic sensitivity, e.) military/ lity

LESLIE. S. PERKINS, Ph.D Staff Scientist Propulsion Directorate

APPROVED/APPROVED AS AMENDED/DISAPPROVED

(Date)

BEAMED ENERGY (LASER) PROPULSION (A Perspective)

by

Dr. Franklin B. Mead, Jr.

AFRL/PRSP

10 East Saturn Blvd.

Edwards AFB CA 93524

Phone: (661)275-5929

E-mail: franklin_mead@ple.af.mil

pistribuction. Statement: Approved for Jublic release; distribution unlimited

Outline

- Preliminaries
- Historical Overview
- The Early Years 1970-1990
- · Concepts From The Early Years
- Project Outgrowth
- Paraboloid
- Absorption Chamber
- Heat Exchanger
- Developments In The 90's
- Doménstic
- · NASA
- · Air Force (Lightcraft)
- Foreign
- References

What is Laser Propulsion?

- Laser Power Source (ground and/or space based) Propulsion System Using (typically) External
- Heats Propelland to Very High Temperatures
- **Provides Energy Source For Electrical Power** Generation
- Provides Direct Photon Force

"Laser propulsion is an idea that may produce a revolution in space technology."

JASON Laser Propulsion Study, Summer 77

Background

Why Laser Propulsion

- Decoupled Energy Source
- High Specific Impulse (Isp) Potential
- High Thrust Relative to Electric Concepts
- Avoids the Radiation and Mass Penalties Inherent With Nuclear Propulsion
- Technical Problems are not Fundamental
- Econonomic Justification Concluded in Separate Studies by AF, NASA, & DARPA

Mission Potential

- Low Cost Access to Space
- Orbit Raising
- Kinetic Kill Vehicles (KKV)

Problems

- Lacks Complete Demonstration After 31 Years From Conception
- Reduced Funding for Demonstration
- Low Interest

Performance Relationships* Laser Propulsion

Propulsion Relations

Rocket:

$$F = Thrust$$

= Weight Flowrate

g = Gravitational Acceleration

out and the this Specific Impulse (s)

$$I_{sp} = F/$$
 $P = gFI_{...}$

E = Total Energy in a Laser Pulse (MJ/pulse)

t = Pulse Length or Width (s)

 $f = \text{Pulse Frequency}(s^{-1})$

 η (CC or C_m) = I/E

 $F=\eta(E/t)=I/t$

Thrust per Pulse (N)

Average Integrated Thrust

 $F_{av} = f(Ft) = f(\eta E) = fI$ $F_{lbs} = F_N/4.45$

Conversion to Pounds, Thrust

Brief History

Beamed Energy Rockets

- Microwaves - Willinski (1959)

· Lasers – Light Sails – Forward (1962)

- Rockets - Geisler (1969), Kantrowitz (1972)

Propulsion Activities

1972 - Inhouse (Project Outgrowth Report) & Contracted Efforts - TRW, AFRPL

1972 - NASA Lewis Inhouse & Contracted Efforts - PSI, Lockheed, Rocketdyne-> NASA

1977 – NASA Marshall Inhouse & Contracted Efforts – PSI, U.S. Army Lockheed, BDM, UTSI, UAH

1977 - JPL - System Studies - Lockheed, Boeing

-> Micom,-

1977 – AVCO Everett Study

DARPA

AFOSR

1983 – Contracted Efforts – Penn State, PSI, UTSI, U'Illinois

1986 - LLNL Inhouse & Contracted Efforts - AVCO, Spectra Technologies, SDIO

NRL, PSI, RPI

Major Laser Propulsion Funding Agencies and Contractors The Early Years: 1972-1990

Aberdeen Proving Ground Harry Diamond Lab. Battelle Lab.							73/75			74 75	
Redstone Arsenal										11	
Tdf						84					
Ниghes Research Lab						75					
Photonic Associates					74/75						
sionilII to .U		84//88									
United Technology Research Ctr.	<i>6L/LL</i>	∞					73/74				
Tennessee Space Institute	7	85/91									
SRI International		∞					LL/9L				
Lawrence Livermore Natl. Lab.								74	75		87/90
Rocketdyne					75/77						~
WAT	75/76										
Lockheed Missiles & Space Co.	7			78	8L/9L						
Lincoln Lab.					(-		9/				
Mathematical Sciences NW Inc.					79		75				
AVCO Everett Research Lab. Inc.			73		92		4/78				
Physical Sciences Inc.	80/81	83/84		78/80	74/77		76/82 74/78				
	8	∞		7	7		76				
Contractors	AF Rocket Propulsion Lab.	AF Office of Scientific Research	SAMSO (Los Angeles AF Station)	NASA/MSFC	NASA/LEWIS	NASA/JPL	DARPA (ARPA)	US Atomic Energy Commission	US Energy Research & Dev.	Army	SDIO

Laser Propulsion Interest During the Early Years

Funded Programs

Laser Propulsion Concepts*

(ls = 700 to 1100 sec.)Laser Thermal (ls = 1000 to 1500 sec)Laser Plasma

Laser Electric
(Is = 1200 to 4000 sec. at low thrust)

*Taken from Mr. Jim Shoji, Rocketdyne, Boeing Co.

Laser Propulsion Concepts*

Laser Detonation (Isp: Essentially infinity in air)

Laser Sail (Isp: Essentially infinity)

*Taken from Mr. Jim Shoji, Rocketdyne, Boeing Co.

Laser Propulsion (Project Outgrowth) (Circa 1970)

Laser Propulsion (Project Outgrowth) (Circa 1970)

AVCO Liquid Propellant Rocket Using CW Laser (Circa 1973)

AVCO Laser Pulsejet (Circa 1973)

Toroidal Combustion Chamber, Plug Nozzle **AVCO Advanced Laser Rocket** (Circa 1973)

"Keefer" Laser Absorption Chamber

"Kare" Heat Exchanger Concept

(Circa 1992)

Heat Exchanger Structure Kare's Microchannel

University of Illinois Laser Propulsion Concept (Circa 1987)

Laser Sail Propulsion

Features

Large, lightweight structures

Very, very high power space-based laser

- Low thrust and low acceleration

- High spacecraft velocity potential (0.1 to 0.5c)

Performance Potential

- Specific Impulse: Infinite

Dependent on laser power, flux, sail area, and efficiency Thrust:

Technology Status

Concepts developed

Synergistic with solar sail technology

• Russian solar mirror ZNAMIA deployed in space (1993)

On-going NASA/JPL efforts

Other university/small group/industry activities

Issues

Very, very high power space-based laser

Fabrication and deployment of very large structures (lens and sail)

Verification of multi-function laser sail sections

Beam Man

Laser

Rectangular Sail

- Non-rotating
- Structurally supported
- · Control solar pressure vanes

Developments in the 90's

NASA/MSFC

- Financially Contributed to the Air Force program during FY 97 & 98.
- Initiated their own program in FY 99
- FY 99 Study Phase
- Initiated Testing in FY 2000
- · Concepts include parabolic pulsejet, Lighteraft, & "Phipps" laser concept.

Air Force

- Lighteraft Development Program Started FY 96
- The AFRL and NASA/MSFC have a Memorandum of Agreement (MOA) to work together on the Lightcraft.
- German parabolic pulsejet tests conducted in 1999.

Laser Propulsion At MSFC

Mr. Sandy Kirkindall NASA/MSFC, TD40 Bldg. #4666 Huntsville AL 35812

Phipps/NASA Design

- D/L=1 optimizes
 - Drag
- Center of thrust
- Jet/lens clearance
- Heat shield dumped at 120km
- "Venetian blinds"
- For orbit insertion
- For partial steering

Phipps/NASA Design (Cont)

- Fresnel lens concentrates light
- Seebeck generator provides 100W system
 - power and grade of dash ?

 Uprocessor controls actuators

NASA CFD Studies of Lighteraft Pulse Dynamics

10 usec

20 usec

30 usec

40 nee

60 usec

80 usec

122 usec

PRESSURE (ATM)

NASA CFD Studies of Lightcraft Pulse Dynamics

10 usec

20 usec

30 usec

40 usec

e0 usec

80 usec

122 usec

TEMPERATURE (K)

DEVELOPMENT PROGRAM LASER LIGHTCRAFT

Applied to Single-Stage-to-Orbit (SSTO) Space Transportation Concepts The "Rocket Equation"

LOW COST ACCESS TO SPACE

Unique Features

- Laser-Propelled Beam Rider
- Decoupled Energy Source (1 MW class infrared G/B laser)
- Single-Stage-to-Orbit (~2 kg initial weight; Mf=0.5)
- Very High Isp (Airbreathing to M=5 at 30 km; 1,000 to 3,000 s in space with H2)
- Combined-Cycle Pulsed Detonation Engine

- Multiple/Shared Functional Components
- One-Meter Diameter Parabolic Telescope (Resolution=8 to 15 cm from
- Simplicity, Reliability, Safety, Environmentally Clean
- High Launch Rate (All azimuth, On-demand)
- Less Than \$500 of Electrical Power For Launch to LEO

Program Alliances

The Lightcraft Concept

- Forebody Aeroshell (External Compression Surface)
- Shroud (Air Inlet & Impulsive Thrust Surface)
- Afterbody (Parabolic Mirror & Plug Nozzle)
- Tankage
- Liquid Propellant (LN2, NH3 or LH2)
- Helium Pressurant
- Nanosatellite (1 kg & 1 m Dia. Focus Telescope)
- Electronics in Forebody
- Reentry Capability
- Solar Powered in Orbit

APPLICATIONS

- Nanosatellite "low cost" launch on demand
- Air Force, NASA, BMDO, Communication Industry
- High Resolution Imaging, Surveillance, and Mapping (i.e., Earth Resources)
- Global Positioning and Tracking
- Threat Detection and Tracking
- Astronomical Telescope (j.e., Amateur & Professional)
- Communications and Relay (i.e., Cellular Phone)
- Tactical Laser Propulsion (i.e., Hypersonic KKV)

Lighteraft Development Objectives

- All Azimuth, Launch-on-demander and weed because the most a flower Air France. Broad Application Based Nano-/Microsatellites
- Air Force, NASA, BMDO, NRO, Communication Companies, Private Industry, Individuals
- Near-term (7 yrs.)
- Launch to LEO of 1 kg vehicles for less than \$500 of electrical power, and less than \$20K total coste
- Meet a variety of NASA/AF/Industry requirements for low cost access to space
- Far-term (10 to 12 yrs.)
- Launch 100 kg (220 lbs) AF/NASA vehicles to LEO for less than \$1.5M*
- Commercial laser launch services become viable contenders, as the lowest cost provider,

* NASA requirement for Bantam-class payloads by FY 2006.

Pulsed Laser Vulnerability Test System (PLVTS)

800 joules/pulse

 $- 10 \text{ Hz}_{3c-5e^{-3}}?$ - (30 : sec pulses)

Modified Performance

1998

400 joules/pulse

18 :sec pulses

1999

150 joules/pulse

Phase I Accomplishments

• Phase I - Completed Dec 98

- A 3-Year Program To Demonstrate Concept Feasibility
- Lighteraft Concept Feasibility Demonstrated By:
- · Impulse, thrust, and pressure measurements accomplished.
- Shadowgraph, and beam propagation (to ~90 m) studies accomplished
- Lighteraft optics/engine vehicle geometry optimized
- Pointing & tracking system demonstrated on horizontal wireguided flights to ~122 mag
- Out door vertical free-flights to ~29 m accomplished

Lighteraft Mounted to Ballistic Pendulum "Impulse Stand"

FOUR HUNDRED FOOT OUTDOOR WIRE TEST CONFIGURATION

29-Meter Outdoor Vertical Flight

Model #200 Lightcraft Series

Phase II Accomplishments

Phase II – Initiated Jan 99

A 5-Year Effort To Accomplish Vertical Launches to 30 km

With a 100 kW Laser Coco mus phrase go at the end of

Current Effort: Out Door Free Flight Tests To ~300 m.

Out door vertical free flights to ~40 m accomplished using $_{\wedge}$

ablative fuel in near-field beam

Lighteraft far-field beam performance measured with pendulum using

Flaboratory and FTT telescopes to ~533 m

First, short (<1 m), vertical free flights conducted with §

FTT telescope inside 500-meter building.

Continued Developments, Studies and Analyses

Characterize Model #200-3/4th with ceramic shroud ω_{ϵ}

Develop high temperature, lightweight ceramic optic with reflective

)< ⊱coatingર્

Continue flight dynamics and air inlet studies/designal

*Obtain funding for 100 kW class CO2 electric discharge laser

Impulse Test Stand

Used For Near Field Flights Beam Reducing Telescope

Field Test Telescope (FTT)

- A Laser Beam Handoff to This Telescope Should Allow Flights to Altitudes of ~300 m (1,000 ft).
- 50cm Diameter
- Cassegrainian
- Dynamic focusing

FTT Beam Burn Patterns

1,000 Ft

500 Ft

1,500 Ft

RP GAS LASER COSTS ($\eta = 10\%$)

remove costra space-

Introduction:

Rules of Thumb for a Laser Launch System

Payload to LEO: 1 kg/MW (within a factor of 2)

Time to orbit: 400 to 1000 seconds

Laser range required: 400 to 1500 km

Longer ranges require space-based laser or relay mirror

Electrical energy per kg to LEO:

150 - 300 kW-hr / laser efficiency

• Max. launch rate

To any orbit: 4 - 8 per hour, 100 - 200 per day $\sim 8 - 32$ per day To one plane at 28.5°:

To one plane at 90°:

 $\sim 2 - 8$ per day

Launch With Relay Satellite

Oirect Launch to Orbit (No Relay Satellite)

Laser Lighteraft Performance

DLR Institute of Technical Physics D-70569 Stuttgart, Germany Dr. Willy L. Bohn A Paper By

Schematic Of Dr. Bohn's Pendulum Experiment*

* Taken from paper by Dr. Willy Bohn, DLR Institute of Technical Physics

AVCO Pulsejet Test Thruster

(White Sands Missile Range, July 99)

AVCO Pulsejet Test Thruster

(White Sands Missile Range, July 99)

Mounted on Pendulum Impulse Test Stand Test of AVCO Pulsejet Thruster

Comparison Of Dr. Bohn's Tests With AVCO Pulsejet Data Obtained At WSMR, July 99*

* Taken from paper by Dr. Willy Bohn, DLR Institute of Technical Physics

Comparison Of The Coupling Coefficient Obtained By Different Authors*

Evolution Of Shock Waves And Plasma In The Time-Space Domain*

^{*} Taken from paper by Dr. Willy Bohn, DLR Institute of Technical Physics

Laser Propulsion Wrap-Up

- Many viable propulsion concepts possible using a laser source (mostly space propulsion)
- Laser propulsion system architecture cost dominated by laser source
- Promising near term concepts
- Laser pulsejets (Fe., Lightcraft) and laser sail

References

* italianced

* minimize use of abbreviat

in references.

Laser Sails:

Marx, G., "Interstellar Vehicles Propelled by Terrestrial Laser Beam," Nature, 2 July 66, pp. 22-

Norem, P.C., "Interstellar Travel, A Round Trip Propulsion System With Relativistic Velocity Capabilities," A69-42829, American Astronautical Society Joint National Meeting, Denver CO, 17-20 Jun 69.

Redding, J.L., "Interstellar Vehicle Propelled by Terrestrial Laser Beam," Nature, 11 Feb 67, pp. 588-589.

Willinski, M.I., "Beamed Electromagnetic Power as a Propulsion Energy Source," ARS J., Aug * Spell out hamesters, etc. which revised Journal? talisize of places, centers tory be abbrevioled formal? (exception can be abbrevioled) 59, pp. 601-603.

Laser Propulsion:

* spell out Conference Anderson, J.L., Rather, D.G. and Powell, J.R., "Beamed Energy for Fast Space Transport," AIAA 96-2785, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Lake Buena Vista FL, 1-3 Jul 96.

Arno, R.D., MacKay, J.S., and Nishioka, K., "Laser Energy Transfer - An Analytic Survey of High Power Applications," NASA, Advanced Concepts and Missions Div., OAST Moffett Field CA, 7th Intersociety Energy Conversion Conf., 1972.

Bennett, H.E., "High Energy Laser Mirrors and Windows - Semi-Annual Report No. 5," Michelson Lab., Navel Weapons Ctr., China Lake CA, Sep 74. Laboratory (Lub.) Center

Berggren, R.R. and Lenertz, G.E., "Feasibility of a 30-Meter Space Based Laser Transmitter," NASA CR-134903, Itek Corp, Lexington MA, For NASA/LeRC, Oct 75.

Billman, K.W. (Ed.), "Proceedings of the Second NASA Conference on Laser Energy Conversion," NASA SP-395, NASA Ames Research Ctr., Moffett Field CA, 27-28 Jan 75.

Billman, K.W. (Ed.), "Proceedings of the Laser-Energy Conversion Symposium," NASA TM X-62,269, Ames Research Center, Moffett Field CA, 18-19 Jan 73.

Birkan, M.A. (Ed.), "Proceedings - Workshop On Laser Propulsion," AFOSR-TR-88-1340, AFOSR/NA, Bolling AFB DC, 10 Feb 88.

Braun, W.G., "Technique for Measuring the Absorption Coefficient of a Plasma," The Review of Scientific Instruments, V. 36, No. 6, Jun 65, pp. 802-805.

Brown E.A. and Jones M.V., "High Energy Laser Technology Assessment," Volume I: The Technology Assessment - An Initial Study, Harry Diamond Lab., Adelphi MD, For Headquarters, Dept. of the Army, Washington DC, Jan 75.

Department (Dept.)

Caveny, L.H. (Ed.), "Orbit Raising and Maneuvering Propulsion: Research Status and Needs," Review Copies of Ch. 1, Progress in Astronautics and Aeronautics Series, AFOSR, Bolling AFB DC, 6 May 83.

Caveny, L.H. (Ed.), Orbit-Raising and Maneuvering Propulsion Research Status and Needs, Progress in Astronautics and Aeronautics, Vol. 89, American Institute of Aeronautics and Astronautics, Inc., New York NY, 1984.

Chapman, P.K. and Otis, J.H., "Laser Absorption Phenomena in Flowing Gas Devices - Final Report," AVCO Everett Research laboratory, Inc., Under Contract No. NAS3-18559, For NASA/LeRC, Jun 76.

Chodzko, R.A., Mason, S.B. and Cross, E.F., "Annular Converging Wave Cavity," SAMSO-TR-76-115, The Aerospace Corp., For Air Force Weapons Lab., 1 Jun 76.

Dyson, F.J. and Perkins, F.W., "Jason Laser Propulsion Study, Summer 1977," JSR-77-12, Stanford Research Institute, Menlo Park CA, For ARPA, Dec 77.

Feldman, A. et al., "Optical Materials Characterization," NBS TN-993, National Measurements Lab., NBS, Washington DC, Feb 79.

Ferriter, N.M. and Winslow, A.M., "Calculated Intensity Threshold for the Maintenance of Laser-Supported Detonation Waves With Various Electron Densities," TID-4500, UC-34a, Lawrence Tivemore Lab., Livermore CA, 10 Jun 74.

Ferriter, N.M., et al., "Analysis of Efficient Impulse Delivery and Plate Rupture by Laser-Supported Detonation Waves," UCRL-51836, Lawrence Livermore Lab., Livermore CA, 2 Jun 75.

Forward, R.L., "Advanced Propulsion Concepts Study - Comparative Study of Solar Electric and Laser Electric Propulsion," Hughes Research Lab., Malibu CA, For NASA/JPL, Jun 75.

Fowler, M.C., Newman, L.A. and Smith, D.C., "Beamed Energy Coupling Studies," AFRPL-TR-79-51, United Technologies Research Center, East Hartford CT, For AFRPL, Sep 79.

Fowler, M.C. et al., "Laser Supported Absorption Waves," N921716-9, United Aircraft Research Laboratories, East Hartford CT, For ARPA, Mar 74.

Fowler, M.C. et al., "Laser Supported Absorption Waves," N921716-7, United Aircraft Research Lab., East Hartford CT, Jan 74.

Libos.

Frisbee, R.H., Horvath, J.C. and Sercel, J.C., "Space-Based Laser Propulsion for Orbital Transfer," JPL D-1919, Jet Propulsion Lab., Pasadena CA, Dec 84.

Harris, E.L. and Glowacki, W.J., "Absorption of CO Laser Radiation by Water Vapor Near 5 μm," NOLTR 73-206, Naval Ordnance Lab., Silver Spring MD, 26 Nov 73.

Holmes, B.S. et al., "The Mechanical Loads From LSD Waves And Their Simulation, AFWL-TR-75-285, V. I (Analysis and Pressure Measurements), Air Force Weapons Laboratory, Kirtland AFB NM, For ARPA, Jul 76.

Howgate, D.W., Roberts, T.G. and Gerry, E.T., "New Laser Concepts - Executive summary Report," U.S. Army Missile Research and Development Command, Redstone Arsenal AL, Nov 77.

Huberman, M. et al., "Investigation of Beamed Energy concepts for Propulsion," AFRPL-TR-76-66, Vols. I & II, TRW Defense and Space Systems Gp., For AFRPL, Edwards AFB CA, Oct 76.

Jeng, San-Mou and Keefer, D., "A Theoretical Evaluation of Laser Sustained Plasma Thruster Performance," AIAA-87-2166, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conf., San Diego CA, 29 Jun-2 Jul 87.

Jeng, San-Mou and Keefer, D., "Influence of Laser Beam Geometry and Wavelength on Laser-Sustained Plasmas," AIAA-87-1409, AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conf., Honolulu HA, 8-10 Jun 87.

Jeng, San-Mou and Keefer, D., "Numerical Study of Laser-Sustained Hydrogen Plasmas in a Forced Convective Flow," J. Propulsion, Jun 89, pp. 255-262.

Jeng, San-Mou and Keefer, D., "A Theoretical Investigation of Laser-Sustained Plasma Thruster," AIAA-87-0383, AIAA 25th Aerospace Sciences Meeting, Reno NV, 12-15 Jan 87.

Jeng, San-Mou et al., "Numerical Study of Laser-Sustained Argon Plasmas in a Forced Convective Flow," AIAA-86-1078, AIAA/ASME 4th fluid Mechanics, Plasma dynamics and Lasers Conf., Atlanta GA, 12-14 May 86.

Jeng, San-Mou and Keefer, D., "Numerical Study of Laser-Sustained Hydrogen Plasmas in a Forced Convective Flow," AIAA-86-1524, AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Confy, Huntsville AL, 16-18 Jun 86.

Jones, W.S., Forsyth, J.B. and Skratt, J.P., "Laser Rocket System Analysis," NASA CR 159521, Lockheed Missiles & Space Co., For NASA/LeRC, 15 Mar 79.

Jones, W.S. et al., "Laser Power Conversion System Analysis," NASA CR 159523, Vols. I & II, Lockheed Missiles & Space Co, For NASA/LeRC, 15 Mar 79.

- Kantrowitz, A., "Propulsion to Orbit by Ground-Based Lasers," Astronautics & Aeronautics, May 72, pp. 74-76.
- Kare J.T., "Laser-Powered Heat Exchanger Rocket for Ground-To-Orbit Launch," UCRL-JC-110910, Lawrence Livermore National Laboratory, Livermore CA, 7 Jul 92.
- Kare J.T., "Development of Laser-Driven Heat Exchanger Rocket for Ground-to-Orbit Launch," UCRL-JC-111507, Lawrence Livermore National Laboratory, Livermore CA, 31 Aug 92.
- Kare J.T., "Laser-Powered Heat Exchanger Rocket for Ground-to-Orbit Launch," J. Propulsion & Power, V. 11, No. 3, May-Jun 95, pp. 535-543.
- Keefer, D. et al., "Laser Thermal Propulsion," Reprint from Orbit-Raising and Maneuvering Propulsion: Research Status and Needs, 84, pp. 129-148.
- Keefer, D.R., Henriksen, B.B. and Braerman, W.F., "Experimental Study of a Laser Sustained Air Plasma," BRL MR 2416, USA Ballistic Research Lab., Aberdeen Proving Ground MD, Oct 74.
- Keefer, D., Jeng, S-M, and Welle, R., "Laser Thermal Propulsion Using Laser Sustained Plasmas," IAF-86-17S, 37th Congress of the International Astronautical Federation, Innsbruck, Austria, 4-11 Oct 86.
- Keefer D.R., Smith, L.M. and Sudharsanan, S.I., "Abel Inversion Using Transform Techniques," ICALEO '86 Laser Applications Conf., Arlington VA, Nov 86.
- Keefer, D., Welle, R. and Peters, C., "Power Absorption in Laser-Sustained Argon Plasmas," AIAA J., V. 24, No. 10, Oct 86, pp. 1663-1669.
- Keefer, D. Welle, R. and Peters, C., "Power Absorption Processes in Laser-sustained Argon Plasmas," AIAA-85-1552, AIAA 18th fluid dynamics & Plasmadynamics & Laser conf., Cincinnati OH, 16-18 Jul 85.
- Keefer, D., Crowder, H. and Peters, C., "Laser Sustained Argon Plasmas in a Forced Convection Flow," AIAA-85-0388, AIAA 23rd Aerospace Sciences Meeting, Reno NV, 14-17 Jan 85.
- Keefer, D., "Picosecond Laser Breakdown Thresholds in Gases," AFOSR-86-0317, University of Tenn, Space Institute, Tullahoma TN, For AFOSR, 30 Sep 91.
- Keefer, D., Peters, C. and Crowder, H., "A Re-examination of the Laser-Supported Combustion Wave," AIAA J., V. 23, No. 8, Aug 85, pp. 1208-1212.
- Kemp, N.H. and Krech, R.H., "Laser-Heated Thruster Final Report," NASA CR-161666 (PSI TR-220), NASA/MSFC, Marshall Space Flight Center AL, Sep 80.

Kemp, N.H. and Rosen, D.I., "Laser Propulsion," AIAA-84-1445, AIAA/SAE/ASME 20th Joint Propulsion Conf., Cincinnati OH, 11-13 Jun 84.

Kemp, N.H. and Root, R.G., "Analytical Study of Laser Supported Combustion Waves in Hydrogen," NASA CR-135349 (PSI TR-97), NASA/LRC, Cleveland OH, Aug 77.

Kemp, N.H. et al., "Laser-Heated Rocket Studies," NASA CR-135127 (PSI TR-53), NASA/LRC, Cleveland OH, May 76.

Kemp, N.H. and Lewis, P.F., "Laser-Heated Thrusters - Interim Report," NASA CR-161665 (PSI TR-205), NASA/MSFC, Marshall Space Flight Center AL, Feb 80.

Klosterman, E.L. and Byron, S.R., "Experimental Study of Subsonic Laser Absorption Waves - Final Report," AFWL-TR-74-3, Mathematical Sciences Northwest, Inc., For ARPA, Mar 75.

Krier, H., et al., "Energy Conversion Measurements in Laser-Sustained Argon Plasmas for Application to Rocket Propulsion," Annual Technical Report Submitted to AFOSR, Dept. of Mechanical and Industrial Engr., U, of Illinois, Urbana-Champaign, Apr 88.

Marcus, S. et al., "Laser Heating of Metallic Surfaces," LTP-31, Lincoln Lab., For DARPA, 20 May 76.

Mazumder, J., Rockstroh, T.J., and Krier, H., "Spectroscopic Studies of Plasma During CW Laser Gas Heating in Flowing Argon," J. Appl. Phys. 62 (12), 15 Dec 87.

Mead, F.B., Jr. (Ed.), "Advanced Propulsion Concepts - Project Outgrowth," AFRPL-TR-72-31, Air Force Rocket Propulsion Lab., Edwards AFB CA, Jun 72.

Minovitch, M.A., "Reactorless Nuclear Propulsion - - The Laser Rocket," AIAA Paper No. 72-1095, AIAA/SAE 8th Joint Propulsion Specialist Conf., New Orleans LA, 29 Nov - 1 Dec 72.

Minovitch, M.A., "Performance Analysis of a Laser Propelled Interorbital Transfer Vehicle," NASA CR-134966, Phaser Telepropulsion, Inc., For NASA/LeRC, Feb 76.

Minovitch, M.A., "The Laser Rocket - A Rocket Engine Design Concept for Achieving a High Exhaust Thrust With High I_{sp}," TM 393-92, Jet Propulsion Lab., Pasadena CA, 18 Feb 72.

Minovitch, M.A., "Laser Rocket," Patent #3,825,211, 23 Jul 74.

Minovitch, M.A., "Reactorless Nuclear Propulsion - The Laser Rocket," AIAA Paper No. 72-1095, AIAA/SAE 8th Joint Propulsion specialist Conf., New Orleans LA, 29 Nov-1 Dec 72.

Minovitch, M.A., "An Orbiting High Power Laser Weapon System for Defense Against Hostile ICBM's," TR 201-2, Phaser Telepropulsion, Inc., Los Angeles CA, 13 Aug 73.

Minovitch, M.A., "Orbiting Space Vehicles That Dip Into the Outer Atmosphere of a Natural Celestial Body to Collect and Liquify Gas for Rocket Propellant, Life Support and Other Space Operations, TR 101-3, Phaser Telepropulsion, Inc., Los Angeles CA, 17 Dec 72.

Minovitch, M.A., "Thrusting Maneuvers for Telepropelled Reusable Orbiting Space Tugs Drawing Power From One Earth-Based Transmitting Station," TR 101-9, Phaser Telepropulsion, Inc., 22 Jun 73.

Myrabo, L. and Ing, D., The Future of Flight, Baen Enterprises, 8-10 W. 36th St., New York NY, 1985

Nebolsine, et al., "Pulsed Laser Propulsion - Final Report," PSI TR-108, Physical Sciences Inc., Woburn MA, Feb 78.

Pirri, A.N., Simons, G.A. and Nebolsine, P.E., "The fluid Mechanics of Pulsed Laser Propulsion - Final Report," PSI TR-60, Physical Sciences Inc., Woburn MA, Jul 76.

Pirri, A.N. and Monsler, M.J., "Propulsion by Absorption of Laser Radiation," AIAA Paper No. 73-624, AIAA 6th Fluid and Plasma Dynamics Conf., Palm Springs CA, 16-18 Jul 73.

Pirri, A.N. and Weiss, R.F., "Laser Propulsion," AIAA Paper No. 72-719, AIAA 5th Fluid and Plasma Dynamics Conf., Boston MA, 26-28 Jun 72.

"Preliminary Evaluation of Pulsed Weapons (PEPWEP): Appendices A, B, C, D, and E," Vol. II, Science Applications, Inc., Jun 75.

"Pulsed Laser Propulsion - A Program Status Presentation to DARPA," Physical Sciences Inc., 1 Aug 80.

Reilly, D.A. and Rostler, P.S., "Pre-Breakdown Laser Target Vaporization and Enhanced Thermal Coupling - Final Report," AVCO Everett Research laboratory, Inc., Under Contract No. N00014-73-C-0457, For ARPA, Aug 74.

Rice, D.K., "Absorption Measurements of Carbon Monoxide Laser Radiation by Water Vapor," NLSD 72-11R, Northrop Corp., Hawthorne CA, For ARPA, Jul 72.

Rockstroh, T.J., and Jyotirmoy, M., "Spectroscopic Studies of Plasma During CW Laser Materials Interaction," J. Appl. Phys. 61 (3), 1 Feb 87.

Rosen, D. et al., "Experimental and Theoretical Studies of Laser Propulsion Phenomenology - Interim Report," PSI TR-371, AFOSR, Bolling AFB, Washington DC, Mar 84.

Rosen, D.I., Kemp, N.H., and Miller, M., "Studies of a Repetitively-Pulsed Laser Powered Thruster," PSI TR-358, Physical Sciences Inc., Woburn MA, Jan 83.

Rosen D.I. et al., "Pulsed Laser Propulsion Studies," PSI TR-184, Physical Sciences Inc., Woburn MA, Oct 82€

Schriempf, J.T., "Response of Materials to Laser Radiation: A Short Course," NRL Report 7728, Naval Research Lab., Washington DC, 10 Jul 74.

Selph, C., "Overview of Laser Propulsion," Unpublished Paper, AFRPL, Edwards AFB CA, 19 Sep 86.

Shoji, J.M. and Larson, V.R., "Performance and Heat Transfer Characteristics of the Laser-Heated Rocket - A Future Space Transportation System," AIAA 76-1044, AIAA International Electric Propulsion Conf., Key Biscayne FL, 14-17 Nov 76.

Shoji, J.M., "Laser-Heated Rocket Thruster," NASA CR-135128, Rocketdyne Div. Rockwell International, For NASA/LeRC, May 77.

Smith, L.M. and Keefer, D.R., "The Fourier Optical Analysis of Aberrations in Focussed Laser Beams," Proceedings at SPIE's 30th Annual International Technical Symposium, San Diego CA, Aug. 86.

Taussig, R. et al., "Design Investigation of Solar Powered Lasers for Space Applications," MSNW 79-1087/1090-1, Mathematical Sciences Northwest, Inc., For NASA/LeRC, May 79.

Walters, C.T. and Barnes, R.H., "An Investigation of Mechanisms of Initiation of Laser-Supported Assoprtion (LSA) Waves," Batelle, Columbus Lab., Columbus OH, For DARPA, Jun

Walters, C.T., Barnes, R.H. and Beverly, R.E., III, "An Investigation of Initiation of Laser-Supported Absorption (LSA) Waves," Battelle, Columbus Lab., Columbus OH, Jan 75.

Welle, R.P. and Keefer, D.R., "Imaging of Continuum Emission for Diagnostics of Laser Sustained Plasmas," Proceedings of First International Laser Science Conf., Nov 85.

Welle, R.P., Keefer, D.R. and Peters, C., "Energy Conversion Efficiency in High-Flow Laser-Sustained Argon Plasmas," AIAA-86-1077, AIAA/ASME 4th Fluid Mechanics, Plasma Dynamics and Lasers Conference, Atlanta GA, 12-14 May 86.

Young, L.A., Woodroffe, J.A. and Bresssell, E.R., "Laser Effects Assessment Program," AVCO Everett Research laboratory, Inc., Under Contract No. DASG60-76-C-0059, For DARPA, Jan quotes are different and here was no a received 78.

"Laser Lightcraft":

Jones, R.A. et al., Experimental Investigation of an Axisymmetric Hypersonic Scramjet Inlet for Laser Propulsion & Power, V. 8, No. 6, 92, pp. 1232-1238.

Jones, R.A. et al., Experimental Investigation of a 3-D Scramjet Inlet for Laser Propulsion at Mach Numbers of 10 to 25 and Stagnation Temperatures of 800 to 4100° K, AIAA 29th Aerospace Sciences Meeting, Reno NV, 7-10 Jan 91.

Kennedy, W.C. et al., Acoustic Noise Generated by a Laser-Boosted Transatmospheric Spacecraft Caccepted for publication in J. Propulsion & Power.

Lyons, P.W. et al., Experimental Investigation of a Unique Airbreathing Pulsed Laser Propulsion Concept, AIAA Paper #91-1922, given at the AIAA/SAE/ASME 27th Joint Propulsion Conf., 24-26 Jun 91.

Mead, F.B., Jr., Myrabo, L.N. and Messitt, D.G., "Flight and Ground Tests of a Laser-Boosted Vehicle," AIAA 98-3735, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland OH, 13-15 Jul 98.

Messitt, D.G. et al., Computational vs. Experimental Performance of an Axisymmetric Hypersonic Inlet for Laser Propulsion, AIAA Paper #91-25447, AIAA/SAE/ASME 27th Joint Propulsion Conf., 24-26 Jun 91, Sacramento CA.

Minucci, M. and Myrabo, L.N., Phase Distortion in a Propulsive Laser Beam Due to Aero-Optical Phenomena, J. Propulsion and Power, V. 6, No. 4, Jul-Aug 90, pp. 416-425.

Moder, J.P. et al., "Laser-Energized MHD Generator for Hypersonic Electric Air-Turborockets," AIAA-87-1816, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego CA, 29 Jun-2 Jul 87.

Myrabo, L.N., "Advanced Beam-Energy and Field Propulsion Concepts," BDM/W-83-225-TR, The BDM Corp, McLean VA, For NASA/JPL, 31 May 83

Myrabo, L.N. et al., "Transatmospheric Laser Propulsion - The Lightcraft Technology Demonstrator," Rensselaer Polytechnic Institute, Troy NY, For Lawrence Livermore National Lab. and the SDIO Laser Propulsion Program, 30 Jun 89.

Myrabo, L.N. et al., Laser-Boosted Lightcraft Technology Demonstrator, Proc. of the First International Conference on Hypersonic Flight in the 21st Century, Grand Forks ND, 20-23 Sep 88; ISBN No. 0-9608700-106. University of North Dakota, Department of Space Studies, Jan 89, pp. 353-365.

Myrabo, L.N. et al., Transatmospheric Laser Propulsion, Final Technical Report, prepared under Contract No. 2073803 for Lawrence Livermore National Laboratory and the SDIO Laser Propulsion Program, 30 Jun 89.

Myrabo, L.N., Messitt, D.G. and Mead, F.B., Jr., "Ground and Flight Tests of a Laser Propelled Vehicle," AIAA 98-1001, 36th Aerospace Sciences Meeting & Exhibit, Reno NV, 12-15 Jan 98.

Myrabo, L.N. et al., "Monocle Shuttle: Strategic Applications of the RBR/FBR," BDM/W-82-671-TR, The BDM Corpx, McLean VA, For DARPA, Dec 82.

Myrabo, L.N., "Solar-Powered Global Air Transportation," AIAA 78-689, AIAA/DGLR 13th International Electric Propulsion Conference, San Diego CA, 25-27 Apr 78.

Nyberg, G.A. et al., "Performance Analysis of a Laser-Heated Single-Stage-to-Orbit Shuttlecraft," AIAA-87-1815, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego CA, 29 Jun-2 Jul 87.

Powers, M.V., Zaretzky, C. and Myrabo, L.N., "Analysis of Beamed-Energy Ramjet/Scramjet Performance," AIAA-86-1761, AIAA/SAE/ASME/ASEE 22nd Joint Propulsion Conference, Huntsville AL, 16-18 Jun 86.

Strayer, T.D. et al., "Investigation of Beamed-energy ERH Thruster Performance," AIAA-86-1760, AIAA/SAE/ASME/ASEE 22nd Joint Propulsion Conference, Huntsville AL, 16-18 Jun 86

Walton, D., List, G.F. and Myrabo, L.N., "Economic Analysis of a Beam-Powered Global Aerospace Transportation System," AIAA-89-2443, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference, Monterey CA, 10-12 Jul 89.

NASA Lightcraft Propulsion:

Phipps, C.R., "NASA Design Study: Optimized Parameters for Laser Space Propulsion," Photonic Associates, Santa Fe NM, For NASA/MSFC, 15 Dec 99.

Phipps, C.R. et al., "Enhanced Vacuum Laser-Impulse Coupling by Volume Absorption at Infrared Wavelengths," Laser and Particle Beams (1990), vol. 8,no. 1-2, pp. 281-298.

Phipps, C.R. and Michaelis, M.M., "LISP: Laser Impulse Space Propulsion," Laser and Particle Beams (1994), vol. 12, no. 1, pp. 23-54.