Using QAOA for Routing and Wavelength Assignment Optimisation in Optical Networks

Chayapon Thunsetkul Advisor: Dr. Alejandra Beghelli

September 9, 2025

Routing and Wavelength Assignment (RWA)

- In wavelength division multiplexing (WDM) network, a connection between a source and a destination node is established by a lightpath.
- A lightpath is a set of links associated with a unique wavelength.
- A lightpath must
 - 1. have all of its link using the same wavelength (wavelength continuity), and
 - not use the same wavelength as another lightpath sharing same link(s).
- ► The task of assigning routes and wavelengths optimally is called the Routing and wavelength assignment (RWA) problem[1].

Motivation

- ► The problem is NP-complete and exact solutions are intractable at large scales[1–3].
- Classical heuristics (e.g. shortest-path first-fit) provide good but not necessarily optimal solutions[1–7].
- Quantum and quantum-inspired methods, have been investigated as potential alternatives[8, 9].
- One of the main limitation of these quantum approaches is that hard constraint must be modelled as penalties in the cost function, yielding infeasible solution.

QAOA

Quantum Approximate Optimisation Algorithm

ightharpoonup Given a cost function f(x), define the problem Hamiltonian:

$$\hat{H}_P|\mathbf{x}\rangle = f(\mathbf{x})|\mathbf{x}\rangle.$$
 (1)

and another Hamiltonian called the *mixer Hamiltonian* usually taken to be the transverse-field Hamiltonian:

$$\hat{H}_m = -\sum_j \hat{X}_j,\tag{2}$$

Define two parameterised unitaries: the phase operator

$$U_P(\gamma) = e^{-i\gamma \hat{H}_P} \tag{3}$$

and the Mixing operator:

$$U_{M}(\beta) = e^{-i\beta \hat{H}_{M}} \tag{4}$$

▶ Initial state: equal superposition $|\psi_i\rangle = \frac{1}{\sqrt{2^n}} \sum_{\bm{x}} |\bm{x}\rangle$

QAOA

circuit

After *P* alternating layers, the final state is

$$|\beta, \gamma\rangle = \hat{U}_M(\beta_{P-1})\hat{U}_P(\gamma_{P-1})\cdots\hat{U}_M(\beta_0)\hat{U}_P(\gamma_0)|\psi_i\rangle, \qquad (5)$$

Figure: A P-layer QAOA circuit on n qubits. Each layer applies a problem unitary

Objective: find parameters (β, γ) minimising

$$\langle f \rangle = \langle \boldsymbol{\beta}, \boldsymbol{\gamma} | H_P | \boldsymbol{\beta}, \boldsymbol{\gamma} \rangle.$$

QAOA

Quantum Alternating Operator Ansatz

- Consider a problem where we only want to find a solution that belongs to a set of *feasible* solution which is a (proper) subset of the set of all solutions.
- Using the tranverse-field Hamiltonian does not preserve the feasible subspace.
- ► The extension of the original QAOA introduced in [10] allows the mixing Hamiltonian to be problem specific.
- ▶ Restricts dynamics to a feasible subspace ⇒ guarantees valid solutions.
- Ensures all sampled solutions respect hard constraints.

Formulation: Cost Function

► Binary decision variable:

$$x_{r,\lambda} = egin{cases} 1 & \text{if route } r \text{ is assigned with the wavelength } \lambda, \\ 0 & \text{otherwise} \end{cases}$$

Cost function to minimise:

$$f(\mathbf{x}) = f_{\text{collision}}(\mathbf{x}) + f_{\text{wavelength}}(\mathbf{x})$$

where

- $f_{\text{collision}}(\mathbf{x}) := \sum_{r,r' \in S} \sum_{\lambda \in \Lambda} x_{r,\lambda} x_{r',\lambda}$: penalises lightpath collisions.
- $f_{\text{wavelength}}(\mathbf{x}) := \sum_{r \in R} \sum_{\lambda \in \Lambda} h(\lambda) x_{r,\lambda}$: penalises higher-index wavelengths.

The problem Hamiltonian corresponding to the cost function is

$$\hat{H}_p = \frac{1}{4} \sum_{r,r' \in S} \sum_{\lambda \in \Lambda} (\mathbb{1} - \hat{Z}_{r,\lambda}) (\mathbb{1} - \hat{Z}_{r',\lambda}) + \frac{1}{2} \sum_{r \in R} \sum_{\lambda \in \Lambda} h(\lambda) (\mathbb{1} - \hat{Z}_{r,\lambda}).$$

(6)

Formulation: Qubit encoding

- ▶ The solution, **x**, is encoded as bitstring
- ► One-hot encoding: A valid bitstring will have a constraint that each sub-bitstring will have a Hamming weight of one.

Pair 1	Pair 2	Pair 3
Route 1 Route 2 Route 3	Route 1 Route 2 Route 3	Route 1 Route 2 Route 3
10 00 00	00 10 00	01 00 00
$\lambda_1 \ \lambda_2 \lambda_1 \ \lambda_2 \lambda_1 \ \lambda_2$	$\lambda_1 \ \lambda_2 \lambda_1 \ \lambda_2 \lambda_1 \ \lambda_2$	$\lambda_1 \ \lambda_2 \lambda_1 \ \lambda_2 \lambda_1 \ \lambda_2$

Figure: The bitstring representing a valid solution for an RWA instance where P = 3, N = 3, $\Lambda = 2$.

The mixer Hamiltonian that preserves the feasible solution subspace is

$$\hat{H}_{m} = \sum_{i=1}^{P} \sum_{j=1}^{N \times \Lambda} (\hat{X}_{i,j} \hat{X}_{i,j+1} + \hat{Y}_{i,j} \hat{Y}_{i,j+1}). \tag{7}$$

Formulation

Two-steps scheme

- ► This amount of qubit may be unpractical when the scheme is applied on a utility scale.
- ► The two-steps scheme is as follows:
 - 1. Reduce the RWA problem into RA problem by letting the number of available wavelength, $\Lambda = 1$.
 - 2. Use the formulation to obtain the route for each source-destination node pair.
 - Reintroduce the original number of available wavelength and let the route option be the ones obtained from the WA step.
- The two-step scheme reduces the number of qubits usage from $P \times N \times \Lambda$ to $\max(P \times N, P \times \Lambda)$.

Numerical Results

Classical simulation setup

- Number of requests: 2 to 10
- ▶ Number of alternate routes: 1 to 10
- ightharpoonup Number of wavelengths: 1 to |P|
- Circuit depths 1 to 4
- Two network topologies
- Result compared to the k shortest paths first-fit

(b)
$$|V| = 20$$
 nodes and $|E| = 42$ links. (Large)

Numerical Results: Performance

- ▶ Blocking ratio:
 - At circuit depth = 1: 20.7% vs. 6% (k-SPFF)
 - ► At circuit depth = 4: reduced to 18.0%
- Wavelength usage:
 - ► QAOA (depth 1): 82.4% vs. 86.9% (*k*-SPFF)
 - ► At depth 4: 79.6%

topology topology

(b) $N = 1, \Lambda = 3$, large topology

(c) $N = 1, \Lambda = 3$, large topology

Figure: The blocking ratio and number of wavelength used. -×-is circuit depth 1, -×-is 2, -×-is 3, -×-is 4, and -×-is k-SPFF.

Numerical Results

Effect of the modified cost function

Modification: set $f_{\text{wavelength}} = 0$.

Blocking ratio: \downarrow by \sim 3.25%, **Wavelength usage:** \uparrow by \sim 17% **Top rows:** before cost function modification, **bottom row:** after

(a) $N = 1, |\Lambda| = 2$, small topology

(b) $N = 1, |\Lambda| = 3$, small topology

Quality of Solutions: Distribution Analysis

- Many sampled solutions are low-quality ⇒ expected performance pulled down.
- Occasionally samples high-quality solutions (better than heuristic).
- ▶ For small instances (< 20 qubits), \sim 10 measurement shots are sufficient to reach > 95% confidence of finding a better solution.

Numerical Results: Two-steps scheme

- ▶ Joint formulation \Rightarrow up to 20% lower blocking
- ► Also uses fewer wavelengths than two-step scheme
- Confirms benefit of joint optimisation

Figure: $-\times$ -is the joint RWA formulation, and $-\times$ -is the two-steps formulation.

Conclusion

- I proposed QAOA formulation for the joint RWA problem.
- ► The encoding uses one-hot constraints and a tailored mixer to guarantee feasibility.
- ▶ The joint formulation outperforms the two-step scheme.
- ▶ At small scales (≤ 27 qubits), QAOA underperforms classical heuristics in blocking.
- Smarter cost-function shaping and adaptive mixers may improve performance.
- ► Larger quantum hardware (> 27 qubits) will be needed to test the formulation at meaningful scales.

- [1] A. Birman and A. Kershenbaum. "Routing and wavelength assignment methods in single-hop all-optical networks with blocking". In: *Proceedings of INFOCOM'95*. Vol. 2. 1995, 431–438 vol.2. DOI: 10.1109/INFCOM.1995.515906.
- [2] I. Chlamtac, A. Ganz, and G. Karmi. "Purely optical networks for terabit communication". In: IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies. 1989, 887–896 vol.3. DOI: 10.1109/INFCOM.1989.101539.
- [3] Krishna Bala, T.E. Stern, and Kavita Bala. "Algorithms for routing in a linear lightwave network". In: IEEE INFCOM
 '91. The conference on Computer Communications. Tenth
 Annual Joint Comference of the IEEE Computer and
 Communications Societies Proceedings. 1991, 1–9 vol.1.
 DOI: 10.1109/INFCOM.1991.147477.

- [4] S. Subramaniam and R.A. Barry. "Wavelength assignment in fixed routing WDM networks". In: Proceedings of ICC'97 -International Conference on Communications. Vol. 1. 1997, 406–410 vol.1. DOI: 10.1109/ICC.1997.605312.
- [5] Gibong Jeong and E. Ayanoglu. "Comparison of wavelength-interchanging and wavelength-selective cross-connects in multiwavelength all-optical networks". In: Proceedings of IEEE INFOCOM '96. Conference on Computer Communications. Vol. 1. 1996, 156–163 vol.1. DOI: 10.1109/INFCOM.1996.497889.
- [6] E. Karasan and E. Ayanoglu. "Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks". In: IEEE/ACM Transactions on Networking 6.2 (1998), pp. 186–196. DOI: 10.1109/90.664267.

- [7] R. Barry and S. Subramaniam. "The MAX SUM wavelength assignment algorithm for WDM ring networks". In: Proceedings of Optical Fiber Communication Conference (. 1997, pp. 121-122. DOI: 10.1109/0FC.1997.719747.
- [8] Oylum Seker, Merve Bodur, and Hamed Pouya. "Routing and wavelength assignment with protection: A quadratic unconstrained binary optimization approach enabled by Digital Annealer technology". In: IISE Transactions 56.2 (2024), pp. 156–171. DOI: 10.1080/24725854.2023.2193835. eprint: https://doi.org/10.1080/24725854.2023.2193835. URL:

https://doi.org/10.1080/24725854.2023.2193835.

- [9] Aleksey S. Boev et al. "Quantum-inspired optimization for wavelength assignment". In: Frontiers in Physics Volume 10 - 2022 (2023). ISSN: 2296-424X. DOI: 10.3389/fphy.2022.1092065. URL: https://www.frontiersin.org/journals/physics/ articles/10.3389/fphy.2022.1092065.
- [10] Stuart Hadfield et al. "From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz". In: Algorithms 12.2 (Feb. 2019), p. 34. ISSN: 1999-4893. DOI: 10.3390/a12020034. URL: http://dx.doi.org/10.3390/a12020034.

Appendix

Length of routes selected as alternate routes

Figure: The frequency of the length of route (number of links) in each network topology

Appendix

topology

Expected cost at each iteration of the optimisation process

Figure: The average cost of the solution at each iteration of QAOA.

topology

Appendix Runtime

Figure: Runtime of the simulation at different problem size (quantified by the number of bits needed for the formulation).