Introduction to Parallel Programming

- Language notation: message passing
- 5 parallel algorithms of increasing complexity:
 - ★ Matrix multiplication
 - ★ Successive overrelaxation
 - ★ All-pairs shortest paths
 - ★ Linear equations
 - ★ Search problem

Message Passing

- SEND(destination, message)
 - ★ blocking: wait until message has arrived
 - * nonblocking: continue immediately
- RECEIVE(source, message)
- RECEIVE-FROM-ANY(message)
 - ★ blocking: wait until message is available
 - * nonblocking: test if message is available

Parallel Matrix Multiplication

- Given two $N \times N$ matrices A and B
- Compute $C = A \times B$
- $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + ... + A_{iN}B_{Nj}$

Sequential Matrix Multiplication

```
for (i = 1; i <= N; i++)
  for (j = 1; j <= N; j++)
    C[i,j] = 0;
  for (k = 1; k <= N; k++)
    C[i,j] += A[i,k] * B[k,j];</pre>
```

- The order of the operations is overspecified
- Everything can be computed in parallel

Each processor computes 1 element of C

Requires N^2 processors

Need 1 row of A and 1 column of B as input

```
Master (processor 0):
   for (i = 1; i <= N; i++)
      for (j = 1; j \le N; j++)
         SEND(p++, A[i,*], B[*,j], i, j);
   for (x = 1; x \le N*N; x++)
       RECEIVE_FROM_ANY(&result, &i, &j);
       C[i,j] = result;
Slaves:
   int Aix[N], Bxj[N], Cij;
   RECEIVE(O, &Aix, &Bxj, &i, &j);
   Cij = 0;
   for (k = 1; k \le N; k++) Cij += Aix[k] * Bxj[k];
   SEND(0, Cij , i, j);
```

Each processor computes 1 row (N elements) of C

Requires N processors

Need entire B matrix and 1 row of A as input


```
Master (processor 0):
   for (i = 1; i <= N; i++)
      SEND(i, A[i,*], B[*,*], i);
   for (x = 1; x \le N; x++)
       RECEIVE_FROM_ANY(&result, &i);
       C[i,*] = result[*];
Slaves:
   int Aix[N], B[N,N], C[N];
   RECEIVE(0, &Aix, &B, &i);
   for (j = 1; j \le N; j++)
      C[j] = 0;
      for (k = 1; k \le N; k++) C[j] += Aix[k] * B[j,k];
   SEND(0, C[*], i);
```

Problem: need larger granularity

So far, each parallel task needs as much communication as computation

Assumption: $N \gg P$ (i.e. we solve a large problem)

Assign many rows to each processor

Each processor computes $\frac{N}{P}$ rows of C Need entire B matrix and $\frac{N}{P}$ rows of A as input

```
Master (processor 0):
   int result[N, N/nprocs];
   int inc = N / nprocs; /* number of rows per cpu */
   int lb = 1;
   for (i = 1; i <= nprocs; i++)
      SEND(i, A[lb .. lb+inc-1, *], B[*,*], lb, lb+inc-1);
      lb += inc;
   for (x = 1; x \le nprocs; x++)
       RECEIVE_FROM_ANY(&result, &lb);
       for (i = 1; i <= N/nprocs; i++)
          C[lb+i-1, *] = result[i, *];
```

Parallel Algorithm 3 (Cnt'd)

Slaves:

```
int A[N/nprocs, N], B[N,N], C[N/nprocs, N];
RECEIVE(0, &A, &B, &lb, &ub);
for (i = lb; i <= ub; i++)
    for (j = 1; j <= N; j++)
        C[i,j] = 0;
    for (k = 1; k <= N; k++)
        C[i,j] += A[i,k] * B[k,j];
SEND(0, C[*,*], lb);</pre>
```

Comparison

alg.	parallelism	communication	comput.	ratio
	(#jobs)	per job	per job	comp/comm
1.	N^2	N+N+1	N	O(1)
2.	N	$N + N^2 + N$	N^2	O(1)
3.	P	$\frac{N^2}{P} + N^2 + \frac{N^2}{P}$	$\frac{N^3}{P}$	$O(\frac{N}{P})$

If $N\gg P$, algorithm 3 will have low communication overhead

Its grain size is high

Discussion

- Matrix multiplication is trivial to parallelize
- Getting good performance is a problem
- Need right grain size
- Need large input problem

Successive Overrelaxation (SOR)

Iterative method for solving Laplace equations

Repeatedly updates elements of a grid

SOR example

X	X	x	x	x	X
X	•	•	•	•	X
X	•	•	•	•	X
X	•	•	•	•	X
X	•	•	•	•	X
X	•	•	•	•	X
X	•	•	•	•	X
X	•	•	•	•	X
X	X	x	x	x	X

SOR example

Parallelizing SOR

- Domain decomposition on the grid
- ullet Each processor owns N/P rows
- Need communication between neighbors to exchange elements at processor boundaries

SOR example partitioning

x	X	X	X	X	X
X	•	CP	V.	•	X
X	•	•	•	•	X
X	•	•	٠ <u>٠</u>	•	X
X	•	CR	12	•	X
X	•	•	•	•	х
X	•	•	·	•	X
X	•	CP	1 . 3	•	X
x	X	x	x	x	X

SOR example partitioning

Communication scheme

Each CPU communicates with left & right neighbor (if existing)

Parallel SOR

```
float G[lb-1:ub+1, 1:M], Gnew[lb-1:ub+1, 1:M];
for (step = 0; step < NSTEPS; step++)</pre>
   SEND(cpuid-1, G[lb]); /* send 1st row left */
   SEND(cpuid+1, G[ub]); /* send last row right */
   RECEIVE(cpuid-1, G[lb-1]); /* receive from left */
   RECEIVE(cpuid+1, G[ub+1]); /* receive from right */
   for (i = lb; i <= ub; i++) /* update my rows */
      for (j = 2; j < M; j++)
         Gnew[i,j] = f(G[i,j], G[i-1,j], G[i+1,j],
                      G[i,j-1], G[i,j+1]);
   G = Gnew;
```

Performance of SOR

Communication and computation during each iteration:

- Each processor sends/receives 2 messages with M reals
- Each processor computes N/P * M updates

The algorithm will have good performance if

- Problem size is large: $N \gg P$
- Message exchanges can be done in parallel

All-pairs Shorts Paths (ASP)

- Given a graph G with a distance table C:
 - $\star C[i,j] = length of direct path from node i to node j$
- Compute length of shortest path between any two nodes in G

Floyd's Sequential Algorithm

Basic step:


```
for (k = 1; k <= N; k++)
  for (i = 1; i <= N; i++)
    for (j = 1; j <= N; j++)
        C[i,j] = MIN(C[i,j], C[i,k] + C[k,j]</pre>
```

Parallelizing ASP

- Distribute rows of C among the P processors
- During iteration k, each processor executes

$$C[i,j] = MIN(C[i,j], C[i,k] + C[k,j]);$$

on its own rows i, so it needs these rows and row k

• Before iteration k, the processor owning row k sends it to all the others

```
int lb, ub; /* lower/upper bound for this CPU */
int rowK[N], C[lb:ub, N];  /* pivot row; matrix */
for (k = 1; k \le N; k++)
  if (k >= lb && k <= ub) /* do I have it? */
     rowK = C[k,*];
     for (p = 1; p <= nproc; p++) /* broadcast row */
        if (p != myprocid) SEND(p, rowK);
  else
     RECEIVE_FROM_ANY(&rowK); /* receive row */
  for (i = lb; i <= ub; i++) /* update my rows */
     for (j = 1; j \le N; j++)
        C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
```

```
int lb, ub; /* lower/upper bound for this CPU */
int rowK[N], C[lb:ub, N];  /* pivot row; matrix */
for (k = 1; k \le N; k++)
  if (k >= lb && k <= ub) /* do I have it? */
     rowK = C[k,*];
     for (p = 1; p <= nproc; p++) /* broadcast row */
        if (p != myprocid) SEND(p, rowK);
  else
     RECEIVE_FROM_ANY(&rowK); /* receive row */
  for (i = lb; i <= ub; i++) /* update my rows */
     for (j = 1; j \le N; j++)
        C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
```

Performance Analysis ASP

Per iteration:

- ullet 1 CPU sends P-1 messages with N integers
- Each CPU does $\frac{N}{P} \times N$ comparisons

Communication/computation ratio is small if $N \gg P$

... but, is the Algorithm Correct?

?

```
int lb, ub;
int rowK[N], C[lb:ub, N];
for (k = 1; k \le N; k++)
   if (k >= lb && k <= ub)
      rowK = C[k,*];
      for (p = 1; p <= nproc; p++)
         if (p != myprocid) SEND(p, rowK);
   else
      RECEIVE_FROM_ANY(&rowK);
   for (i = lb; i <= ub; i++)
      for (j = 1; j \le N; j++)
         C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
```

Non-FIFO Message Ordering

Row 2 may be received before row 1

FIFO Ordering

Row 5 may be received before row 4

Correctness

Problems:

- Asynchronous non-FIFO SEND
- Messages from different senders may overtake each other

Correctness

Problems:

- Asynchronous non-FIFO SEND
- Messages from different senders may overtake each other

Solutions:

Problems:

- Asynchronous non-FIFO SEND
- Messages from different senders may overtake each other

Solutions:

Synchronous SEND (less efficient)

Problems:

- Asynchronous non-FIFO SEND
- Messages from different senders may overtake each other

Solutions:

- Synchronous SEND (less efficient)
- Barrier at the end of outer loop (extra communication)

Problems:

- Asynchronous non-FIFO SEND
- Messages from different senders may overtake each other

Solutions:

- Synchronous SEND (less efficient)
- Barrier at the end of outer loop (extra communication)
- Order incoming messages (requires buffering)

Problems:

- Asynchronous non-FIFO SEND
- Messages from different senders may overtake each other

Solutions:

- Synchronous SEND (less efficient)
- Barrier at the end of outer loop (extra communication)
- Order incoming messages (requires buffering)
- RECEIVE(cpu, msg) (more complicated)

Linear equations

Linear equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots a_{1,n}x_n = b_1$$

. . .

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

- Matrix notation: Ax = b
- ullet Problem: compute x, given A and b
- Linear equations have many important applications
 Practical applications need huge sets of equations

Solving a linear equation

• Two phases:

```
Upper-triangularization \rightarrow Ux = y
Back-substitution \rightarrow x
```

- Most computation time is in upper-triangularization
- Upper-triangular matrix:

Sequential Gaussian elimination

```
for (k = 1; k \le N; k++)
   for (j = k+1; j \le N; j++)
      A[k,j] = A[k,j] / A[k,k]
   y[k] = b[k] / A[k,k]
   A[k,k] = 1
   for (i = k+1; i \le N; i++)
      for (j = k+1; j \le N; j++)
         A[i,j] = A[i,j] - A[i,k] * A[k,j]
      b[i] = b[i] - A[i,k] * y[k]
      A[i,k] = 0
```

- Converts Ax = b into $\overline{Ux = y}$
- ullet Sequential algorithm uses $rac{2}{3}N^3$ operations

Parallelizing Gaussian elimination

- Row-wise partitioning scheme
 - ★ Each CPU gets one row (striping)
 - ★ Execute one (outer-loop) iteration at a time
- Communication requirement:
 - \star During iteration k, CPUs $P_{k+1}...P_{n-1}$ need part of row k
 - \star This row is stored on CPU P_k
 - ★ → need partial broadcast (multicast)

Communication

Performance problems

- Communication overhead (multicast)
- Load imbalance
 - CPUs $P_0...P_k$ are idle during iteration k
- In general, number of CPUS is less than nChoice between block-striped and cyclic-striped distribution
- Block-striped distribution has high load-imbalance
- Cyclic-striped distribution has less load-imbalance

Block-striped distribution

Cyclic-striped distribution

A Search Problem

Given an array A[1..N] and an item x, check if x is present in A

```
int present = false;
for (i = 1; !present && i <= N; i++)
  if (A[i] == x) present = true;</pre>
```

Parallel Search on 2 CPUs

```
int lb, ub;
int A[lb:ub];
for (i = lb; i <= ub; i++)
  if (A[i] == x)
     print("Found item");
     SEND(1-cpuid); /* send other CPU empty message*/
     exit();
  /* check message from other CPU: */
  if (NONBLOCKING_RECEIVE(1-cpuid)) exit()
```

How much faster is the parallel program than the sequential program for N=100?

How much faster is the parallel program than the sequential program for N=100 ?

1. if x not present \Rightarrow factor 2

How much faster is the parallel program than the sequential program for N=100 ?

- 1. if x not present \Rightarrow factor 2
- 2. if x present in A[1 .. 50] \Rightarrow factor 1

How much faster is the parallel program than the sequential program for N=100 ?

- 1. if x not present \Rightarrow factor 2
- 2. if x present in A[1 .. 50] \Rightarrow factor 1
- 3. if $A[51] = x \Rightarrow factor 51$

How much faster is the parallel program than the sequential program for N=100 ?

- 1. if x not present \Rightarrow factor 2
- 2. if x present in A[1 .. 50] \Rightarrow factor 1
- 3. if $A[51] = x \Rightarrow factor 51$
- 4. if $A[75] = x \Rightarrow factor 3$

How much faster is the parallel program than the sequential program for N=100 ?

- 1. if x not present \Rightarrow factor 2
- 2. if x present in A[1 .. 50] \Rightarrow factor 1
- 3. if $A[51] = x \Rightarrow factor 51$
- 4. if $A[75] = x \Rightarrow factor 3$

In case 2 the parallel program does more work than the sequential program \Rightarrow search overhead

How much faster is the parallel program than the sequential program for N=100 ?

- 1. if x not present \Rightarrow factor 2
- 2. if x present in A[1 .. 50] \Rightarrow factor 1
- 3. if $A[51] = x \Rightarrow factor 51$
- 4. if $A[75] = x \Rightarrow factor 3$

In case 2 the parallel program does more work than the sequential program \Rightarrow search overhead

In cases 3 and 4 the parallel program does less work \Rightarrow negative search overhead

Several kinds of performance overhead

Several kinds of performance overhead

Communication overhead

Several kinds of performance overhead

- Communication overhead
- Load imbalance

Several kinds of performance overhead

- Communication overhead
- Load imbalance
- Search overhead

Several kinds of performance overhead

- Communication overhead
- Load imbalance
- Search overhead

Making algorithms correct is nontrivial

Several kinds of performance overhead

- Communication overhead
- Load imbalance
- Search overhead

Making algorithms correct is nontrivial

Message ordering

Designing Parallel Algorithms

Source: Designing and building parallel programs (lan Foster, 1995)

- Partitioning
- Communication
- Agglomeration
- Mapping

Figure 2.1 from Foster's book

Partitioning

- Domain decomposition
 - ★ Partition the data
 - ★ Partition computations on data (owner-computes rule)
- Functional decomposition
 - ⋆ Divide computations into subtasks
 - ★ E.g. search algorithms

Communication

- Analyze data-dependencies between partitions
- Use communication to transfer data
- Many forms of communication, e.g.
 - ★ Local communication with neighbors (SOR)
 - ★ Global communication with all processors (ASP)
 - ★ Synchronous (blocking) communication
 - * Asynchronous (nonblocking) communication

Agglomeration

Reduce communication overhead by

- increasing granularity
- improving locality

Mapping

- On which processor to execute each subtask?
- Put concurrent tasks on different CPUs
- Put frequently communicating tasks on same CPU?
- Avoid load imbalances

Summary

Hardware and software models

Example applications

- Matrix multiplication
- Successive overrelaxation
- All-pairs shortest paths
- Linear equations
- Search problem

Designing parallel algorithms