Course Code	21PYB102J	Course Name	SEMICONDUCTOR P.	HYSICS AND COMPUTATIONAL METHODS	Course Category	В	Basic Sciences	L	T	P	C
Pre-requis Courses	1N2l	Name	Co-requisite Courses	Nil	Progr		Nil		1	2	
Course Off	ering Departmen	nt Physics a	and Nanotechnology	Data Book / Codes/Standar	ds Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning Program Outcomes (PO)												
CLR-1: Introduce band gap and Fermi level in semiconductors and how to compute those properties		1	2	3	4	5	6	7	8	9	10	11	12
CLR-2: Explain the concept of carrier transport mechanism in p-n and metal semiconductor junction													
CLR-3: Provide an insight on semiconductor optical transitions and photovoltaic effect				int	earch			Sustainability					
CLR-4: Procure knowledge of electrical and optical measurements in semiconductor and to instigate the concepts of TCAD		_ ಕ್ಷ								Work		ec	
CLR-5: Develop necessary skills for low dimensional semiconductor material processing and characterization and to introduced the basic of machine learning in image processing	Blooms Level	Knowledge	SIS	velopment	esign, Res	Usage	ure	& Susta		Team W	ū	Finance	ming
CLR-6: Utilize the concepts in semiconductors physics and computational methods for the application in engineering and technology		ing K	Analysis	& Dev		Tool Usage	& Culture	Environment d		-&	nication	Mgt. &	g Lear
		Ingineering	Problem	ign &	lysis,	Modern	ety &	iron	S	ndividual	mu	ect]	Lon
Course Outcomes (CO): At the end of this course, learners will be able to:		Eng	Prob	Desi	Analy	Mod	Society	Env	Ethics	Indir	Con	Project	Life
CO-1: Understand and compute energy band in solids and electron occupation probability	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-2: Understand and analyze the working of optoelectronic devices	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-3: Apply the knowledge to the development of new and novel optoelectronic devices		3	-	-	3	-	-	-	-	-	-	-	-
CO-4: Understand the working mechanism of electrical and optical measurements and gain the fundamentals of TCAD	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-5: Acquire knowledge of the low dimensional semiconductor material fabrication and characterization and gain insights of the concepts of machine learning	4	3	-	3	-	-	-	-	-	-	-	-	-
CO-6: Apply the concepts of semiconductors physics and computational methods in real time applications	4	3	3	-	3	-	-	-	-	-	-	-	-

Unit-1: Introduction to Classical Free electron theory-Introduction to Quantum Free electron theory-Density of states-Concepts-Energy band in solids-Kronig-Penney model-Solving problems-E-k diagram-Direct and Indirect band gap-Concept of phonons-Concept of Brillouin Zone-Computational determination of Band Structure — Concepts, Eigen value equations-Solving problems-Classification of electronic materials-Fermi level-Probability of occupation-Numerical determination of probability of occupation and carrier concentration-Concept of Fermi surface of a metal-Computational determination of Fermi Surface of Cu as example-Solving problems.

Practical

- 1. Basics of experimentation
- 2. Determination of Hall coefficient of Semiconductor material
- 3. Determination of Band Gap of semiconductor-Post Office Box method

Unit-2: Intrinsic semiconductor-Dependence of Fermi level on carrier-concentration-and temperature in Intrinsic semiconductor-Extrinsic semiconductors-Dependence of Fermi level on carrier-concentration-and temperature in extrinsic semiconductors-Explanation for carrier generation-Explanation for recombination processes-Solving problem-Carrier transport - diffusion and drift current-Continuity equation-p-n junction-Biasing concept in p-n junction-Metal-semiconductor junction -Ohmic contact-Solving problem-Semiconductor materials of interest for optoelectronic devices-Photocurrent in a P-N junction diode- Light emitting diode- Classification of Light emitting diode-Optoelectronic integrated circuits-Organic light emitting diodes-Solving problem

Practicl

- 4. Determination of Band Gap of semiconductor-Four probe method
- 5. Study of I-V characteristics of a light dependent resistor (LDR)
- 6. Study of V-I and V-R characteristics, Efficiency of a solar cell

Unit-3: Concept of optical transitions in bulk semiconductor- Optical absorption process-Concept of recombination process-Optical recombination for spontaneous emission-Explanation for stimulated emission-Solving problem-Joint density of states in semiconductor-Density of states for photons-Explanation of transition rates-Numerical computation of optical loss-Finite element method to calculate Photon density of states-Solving problem-Basic concepts of Photovoltaic-Photovoltaic effect-Applications of Photovoltaic effect-Determination of efficiency of a PV cell-Computational approach to calculate optical excitations-Example: optical excitation in BN-Solving problem Practical

- 7. Characterization of pn junction diode
- 8. Repeat/Revision of experiments
- To verify Inverse square law of light using a photo cell.

Unit-4: Concept of electrical measurements-Two point probe technique-Four point probe technique-linear method-Four point probe technique-Vander Pauw method-Significance of carrier density-Significance of resistivity and Hall mobility-Solving problem-Hot-point probe measurement-Capacitance-voltage measurements-Extraction of parameters in a diode-I-V characteristics of a diode-Introduction of TCAD in basic level-Solving problem-Significance of band gap in semiconductors-Concept of absorption and transmission-Boltzmann Transport Equation-Scattering Mechanisms-Monte Carlo method- Concept only-Example only Monte Carlo Methods for Solution of BTE-Solving problem.

Practical

- 10. Determination of electron and hole mobility versus doping concentration using GNU Octave
- 11. Determination of Fermi function for different temperature using GNU Octave
- 12. Study of attenuation and propagation characteristic of optical fiber cable using laser source Characteristic of p-n junction diode under reverse bias

Unit-5: Density of states in 2D-Density of states in 1D and 0D-Introduction to low dimensional systems-Quantum well-Quantum wire and dots-Introduction to novel low dimensional systems-Solving problem-CNT- properties and synthesis-Applications of CNT-Fabrication technique-CVD-Fabrication technique-PVD-Characterizations techniques for low dimensional systems-Solving problem-Principle of electron microscopy

Scanning electron microscopy-Transmission electron microscopy-Atomic force microscope-Computational and machine learning approach for electron microscopy image processing – Concepts, overview-Example of Graphene-Solving problem

Practical

- 13. Plotting and interpretation of I-V characteristics of Diode GNU Octave
- 14. Determination of lattice parameters using powder XRD
- 15. Mini Project

		1 J. Singh, "Semiconductor Optoelectronics": Physics and Technology, McGraw-Hill Inc. 1995.	4. A. Yariv and P. Yeh, Photonics:" Optical Electronics in Modern Communications", Oxford
		2. B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics", John Wiley & Sons, Inc., 2007.	University Press, New York 2007.
			5. Computational Materials Science: An Introduction by June Gunn Lee, Chapter 7, Page 227-230 (Quantum
		3. S. M. Sze, "Semiconductor Devices" Physics and Technology, Wiley 2008.	Espresso)and Page 300-307 (VASP)
			6. Finite Element Method GouriDhatt, Emmanuel Lefrançois, Gilbert Touzot, Wiley Publication, ISBN: 978-1-848-21368-5

	Bloom's	Continuous Learning Assessment (50% weightage)									Final Examination (50% weightage)		
	Level of	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA –	4 (10%)	7			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	10%	10%	7%	7%	7%	7%	10%	10%	10%	10%		
Level 2	Understand	10%	10%	8%	8%	8%	8%	10%	10%	10%	10%		
Level 3	Apply	20%	20%	15%	15%	15%	15%	20%	20%	15%	10%		
Level 4	Analyze	10%	10%	20%	20%	20%	20%	10%	10%	15%	20%		
Level 5	Evaluate	-	-	-	-	-	-	-	-	-	-		
Level 6	Create	-	-	-	-	-	-	-	-	-	-		
	Total	100 %		100 %		100 %		100 %		100 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper as specified in regulation

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Dr. Vinay Gupta, National Physical Laboratory, guptavinay@nplindia.org	Prof.C.Vijayan, IITM, Chennai, cvijayan@ittm.ac.	Dr.C. Preferencial Kala, SRMIST							
	Prof.S.Balakumar, University of Madras, Chennai, balakumar@unom.ac	Dr.S. Saurah Ghosh S, SRMIST							