Want more revision exercises? Get MathsFit - New from projectmaths.

11	4a	Differentiate $\frac{x}{\sin x}$ with respect to x.		2
	Let $y = \frac{x}{\sin x}$.		State Mean: 1.65/2	
	Using the quotient rule, Let $u = x$, $u' = 1$			
Let $v = \sin$		$v = \sin x, \qquad v' = \cos x$		
	$\frac{dy}{dx} = \frac{v.u'-u.v'}{v^2}$ $= \frac{\sin x.1 - x.\cos x}{\sin^2 x}$			
		$= \frac{\sin x - x \cos x}{\sin^2 x}$		

^{*} These solutions have been provided by *projectmaths* and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

This question was done well, with most candidates recognising that they were required to use the quotient rule. Many were assisted by writing u, u', v and v'. A small number quoted the quotient rule incorrectly. Some also differentiated $\sin x$ incorrectly to arrive at $-\cos x$. Responses in which the product rule was used to differentiate $x(\sin x)^{-1}$ were rarely fully successful, the most common error being an incorrect differentiation of $(\sin x)^{-1}$.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/