

AIX-MARSEILLE UNIVERSITÉ

M3101- Systèmes d'exploitation

Calcul de surface d'un objet 3D maillé

Auteurs: Lucien Aubert Thibaut Jallois Enseignant: Romain Raffin

Table des matières

1	Intr	roduction	2	
2	Environnement d'expérimentation			
	2.1	Machine 1	2	
	2.2	Machine 2	2	
	2.3	Machine 3	2	
3	Alg	orithmique et implémentation	3	
	3.1	Algorithme séquentiel	3	
		3.1.1 Conception	3	
	3.2	Algorithmes parallèles	3	
		3.2.1 Threads		
		3.2.2 OpenMP		
4	Rés	sultats	4	
5	Con	nclusion	4	

1 Introduction

L'objectif consiste en l'optimisation, par parallèlisation, du calcul de la surface d'un objet 3D maillé (triangles) au format OFF[1] à l'aide de la formule de Héron[2].

Le programme implémente trois algorithmes

- Classique, séquentiel
- Avec pthread[3], parallélisé
- Avec OpenMP, parallélisé également

2 Environnement d'expérimentation

La phase de test s'est déroulée sur trois machines dont voici les configurations

2.1 Machine 1

Intel i7-3612QM 2.10GHz, 8 CPU, 4 cœurs, L1 64K, L2 256K, L3 6144K
12Go RAM DDR3 800MHz

2.2 Machine 2

AMD FX(tm)-8350 4.20GHz, 8 CPU, 4 cœurs, L1 64K, L2 2048K, L3 8192K 8Go RAM DDR3 2133MHz

2.3 Machine 3

Intel i5-4590 3.30GHz, 4 CPU, 4 cœurs, L1 32K, L2 256K, L3 6144K 8Go RAM DDR3 1600MHz

3 Algorithmique et implémentation

3.1 Algorithme séquentiel

De manière à pouvoir travailler sur les données contenues dans les fichier OFF on lit ce fichier et on place chaque sommet et chaque face dans deux std::deque.

On somme l'aire de chaque triangle du volume, calculée à l'aide de la formule de Héron, ce qui nous donne la surface totale du volume.

3.1.1 Conception

Dans la formule de Héron $S = \sqrt{p(p-a)(p-b)(p-c)}$ nous avons besoin des longueurs des côtés de chaque triangle. La méthode Point::distanceFrom(Point*) nous permet donc d'obtenir les termes a, b et c.

Ces termes sont également utilisés pour calculer $p = \frac{a+b+c}{2}$

3.2 Algorithmes parallèles

3.2.1 Threads

Le std::deque de faces est décomposé en n sous-ensembles correspondants au faces sur lesquelles chaque thread va travailler.

On lance les thread en leur donnant l'adresse de la fonction computeSurface(void*) puis on somme leur sortie en attendant la fin de leur exécution grâce à la fonction pthread_join(pthread_t, void**)

3.2.2 OpenMP

Il n'y a pas grand chose à faire pour utiliser OpenMP. L'ajout d'un #pragma suffit à paralléliser la boucle for qui somme les valeurs de chaque triangle.

4 Résultats

5 Conclusion

Références

- [1] Wikipedia. Spécification du format de fichier off. https://en.wikipedia.org/wiki/OFF_(file_format).
- [2] Wikipedia. Formule de héron. https://en.wikipedia.org/wiki/Heron%27s_formula.
- [3] Franck Hecht. Initiation à la programmation multitâche en c avec pthreads.

http://franckh.developpez.com/tutoriels/posix/pthreads/.