Data Insights to Microsoft Movies studio

~by Jackson Munene

Problem Statement

Microsoft

has decided to create a new **movie studio**, but they don't know anything about movie industries.

They need valuable insights from specific data from these three movie companies:

- Box Office Mojo
- The Numbers
- The Movies DB

GOALS

As a data scientist, here are some of the important milestones before getting to the insights

Understanding the Datasets

Cleaning the datasets

Finding patterns and visual representations of data

1) Box Office Mojo

This is how the first five records of the csv data from Box Office Mojo looks like:

	title	studio	$domestic_gross$	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010

There are only five features: Title, studio, domestic gross, foreign gross and year. This data defines the total amount of money a specific movie generated in the year of its release, both nationally and internationally.

.info()

There are a total of 3,387 records in the dataset, and 5 features. 3 of the features are in string data type, 1(year) is an integer and 1(domestic gross) is a floating value. Notice the inconsistency with the dataset datatype:

 Foreign gross is keyed in like a string. We need to change it to a floating value to perform calculations with it. This is how the high level information about the data from Box Office Mojo:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):
     Column
                     Non-Null Count
                                     Dtype
    title
                                     object
                     3387 non-null
     studio
                     3382 non-null
                                     object
     domestic gross
                     3359 non-null
                                     float64
     foreign gross
                     2037 non-null
                                     object
                     3387 non-null
                                     int64
    year
dtypes: float64(1), int64(1), object(3)
memory usage: 132.4+ KB
```

Statistical Measures

Notice the outliers, from min to the 25th percentile.

We change that by removing the outliers through getting data between 30% and 70% to look like as follows.

min 5300000.0 195000.0 25% 8500000.0 1100000.0 Here is min, max, mean, median, standard deviation, count and quantiles of both domestic and foreign gross

	foreign_gross	domestic_gross
count	2037.0	3359.0
mean	74872810.2	28745845.1
std	137410600.8	66982498.2
min	600.0	100.0
25%	3700000.0	120000.0
50%	18700000.0	1400000.0
75%	74900000.0	27900000.0
max	960500000.0	936700000.0

From:

Another way to visualize these outliers is through:

Box Plots

To:

Which studio has the highest domestic gross?

A bar graph representation for categorical feature(Studio) will be needed for this.

- 1st we'll group the domestic gross column by studio.
- Get the mean of the grouped data
- Sort the values in ascending order
- Then plot the bar graph.

We can conclude that after we removed the outliers, Vari. and MPI studios have the least while Affirm has the highest domestic Gross.

Which studio has the highest foreign gross?

The same will be done, but we only use Foreign Gross column in the data

- 1st we'll group the foreign gross column by studio.
- Get the mean of the grouped data
- Sort the values in ascending order
- Then plot the bar graph.

Here, the opposite is true from the observations such that **Affirm** generates the least while **MPI** is one of the highest **Foreign gross** generator.

Gross Relationship

As much as the studios which generate the most domestic gross perform so low in foreign gross, there is no concrete connection between **domestic** and **foreign gross**.

Their correlation is: -0.01509821

Domestic Gross growth

A bar graph representation for the average Domestic gross per year will be needed for this.

- 1st we'll group the **domestic gross** column by **year**.
- Get the mean of the grouped data
- Then plot the bar graph.

Notice a slight positive gradual growth over the years.

Average Foreign Gross by Year le7 2.5 2.0

Foreign Gross growth

The same is not true with foreign gross.

- 1st we'll group the Foreign gross by year.
- Get the mean of the grouped data
- Then plot the bar graph.

In the foreign gross, there is not so much improvements, only that in 2015, the gross went up.

Recommendations

- Microsoft should consider partnering with Affirm studio to generate high Domestic gross and also MPI and FUN studios for high foreign gross.
- Microsoft should also find a way to automate data entry to minimize mistakes like getting outliers because of wrong data entry.
- The stakeholders should concentrate on both domestic and foreign gross, because they are both independent.

2) The Numbers

Here is a slight peek into The Numbers csv file:

There are a lot of things that have to be changed like:

- Removing \$ and comma(,) signs from
 Production Budget, Domestic gross
 and worldwide gross.
- We will also need to add few more features like domestic profits, year and worldwide profits.

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Ware Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

					<u> </u>		
release_date	movie	production_budget	domestic_gross	worldwide_gross	domestic_profits	worldwide_profits	year
2009-12-18	Avatar	425000000.0	760507625.0	2.776345e+09	335507625.0	2.351345e+09	2009
2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000.0	241063875.0	1.045664e+09	-169536125.0	6.350639e+08	2011
2019-06-07	Dark Phoenix	350000000.0	42762350.0	1.497624e+08	-307237650.0	-2.002376e+08	2019
2015-05-01	Avengers: Age of Ultron	330600000.0	459005868.0	1.403014e+09	128405868.0	1.072414e+09	2015
2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000.0	620181382.0	1.316722e+09	303181382.0	9.997217e+08	2017
				1.1000110100			

.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):
                        Non-Null Count Dtype
                        5782 non-null
                                       int64
                        5782 non-null
    release date
                                       object
    movie
                        5782 non-null
                                        object
    production_budget 5782 non-null
                                        object
    domestic gross
                        5782 non-null
                                        object
    worldwide_gross
                       5782 non-null
                                        object
dtypes: int64(1), object(5)
memory usage: 271.2+ KB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):
    Column
                       Non-Null Count Dtype
                                       int64
                       5782 non-null
                                       datetime64[ns]
    release date
                       5782 non-null
                        5782 non-null
                                       object
    production_budget 5782 non-null
                                       float64
                        5782 non-null
    domestic gross
                                       float64
    worldwide gross
                       5782 non-null
                                       float64
dtypes: datetime64[ns](1), float64(3), int64(1), object(1)
memory usage: 271.2+ KB
```

The data has 5,782 rows and 6 columns which are all objects except from the Id.

There are a lot of things that have to be changed like:

- Changing data types of production budget, domestic gross, and worldwide gross to floating values.
- Release date should also be in datetime datatype.

MOVIE NIGHT

Statistical Measures

Before cleaning the dataset, notice the outliers from 75% percentile to max in all of the features.

We have to clean that by dropping the data so it looks as follows:

	production_budget	domestic_gross	worldwide_gross	domestic_profits	worldwide_profits
count	5782.0	5782.0	5.782000e+03	5782.0	5.782000e+03
mean	31587757.1	41873326.9	9.148746e+07	10285569.8	5.989970e+07
std	41812076.8	68240597.4	1.747200e+08	49921366.5	1.460889e+08
min	1100.0	0.0	0.000000e+00	-307237650.0	-2.002376e+08
25%	5000000.0	1429534.5	4.125415e+06	-9132757.0	-2.189071e+06
50%	17000000.0	17225945.0	2.798445e+07	-348775.5	8.550286e+06
75%	40000000.0	52348661.5	9.764584e+07	17781444.0	6.096850e+07
max	425000000.0	936662225.0	2.776345e+09	630662225.0	2.351345e+09

75%	25000000.0	27367976.5	39545462.2	9794648.8	22113796.0
max	35000000.0	42469946.0	76086711.0	33157856.0	62727492.0

Below is another way to visualize the outliers and what will happen to the data when those outliers are removed.

before

Box plots

after

Does Production budget affect Profits?

The higher the **production budget**, the higher the **worldwide profits**, but the same is not true with **domestic profits**.

The correlation between **production budget** and **worldwide profits** is **0.6087521**. While the correlation between the **product**

budget and domestic budget is 0.099742.

Recommendations

- Microsoft should prioritize increasing the cost of producing movies,
 as worldwide profits are highly dependent on this factor. Investing
 in high-quality productions can attract larger audiences globally,
 leading to greater financial returns.
- To avoid messy data and streamline operations, stakeholders should explore automation solutions for data entry and management processes. This will enhance efficiency and ensure data integrity across all stages of movie production and analysis.

3) The Movie DB

This is how the first five records of the csv data from The Movie DB looks like:

They have a lot more features than the other datasets, and they also have average vote counts of each movie and their popularity.

	Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count
0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186

.info()

In this high level overview of the data, we find that:

- We have 10 columns
- 26,517 records
- A mix of floating values and strings.
- No null values

The just need to change **release date** datatype to datetime.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26517 entries, 0 to 26516
Data columns (total 10 columns):
                       Non-Null Count Dtype
    Column
    Unnamed: 0
                       26517 non-null int64
                       26517 non-null object
    genre ids
                       26517 non-null int64
    id
    original language 26517 non-null object
    original title
                       26517 non-null object
    popularity
                       26517 non-null float64
                       26517 non-null object
    release_date
    title
                       26517 non-null object
    vote_average
                       26517 non-null float64
                       26517 non-null int64
    vote_count
dtypes: float64(2), int64(3), object(5)
memory usage: 2.0+ MB
```

Statistical Measures

Notice the outliers, from min to the 25th percentile, and 75th to max.

We change that by removing the outliers through getting data between:

- 0.05 and 0.65 quantiles for **popularity**
- 0.3 and 0.8 quantiles for Average
 votes
- 0.005 and 0.65 quantiles for vote
 count.

		popularity	vote_average	vote_count
	count	26517.000000	26517.000000	26517.000000
	mean	3.130912	5.991281	194.224837
	std	4.355229	1.852946	960.961095
	min	0.600000	0.000000	1.000000
	25%	0.600000	5.000000	2.000000
→	50%	1.374000	6.000000	5.000000
	75%	3.694000	7.000000	28.000000
	max	80.773000	/ 10.000000	22186.000000

min	0.600000	5.200000	1.000000
25%	0.600000	6.000000	1.000000
50%	0.711000	6.200000	3.000000
75%	1.257000	7.000000	5.000000
max	2.235000	7.300000	13.000000

before

Let us visualize the outliers with a

Box plots

after

Does Vote count affect popularity?

Vote count is positively correlated to popularity, but it is not a strong correlation.

Correlation = 0.549394219698477. ~

The movie DB released less movies from 1940 to 2005, but started releasing a lot of movies from 2005 onwards, and gained a lot of votes and popularity there after.

Recommendations

- Given the broader market appeal, Microsoft should focus on releasing more English-language movies compared to other languages. English-language films tend to have higher sales potential and wider international distribution.
- Volume Strategy for Popularity: Releasing a high number of movies can help Microsoft gain votes and popularity on platforms like The Movie DB. The number of movies released positively correlates with audience engagement metrics, such as votes and popularity, thus enhancing the studio's visibility and reputation.

