The model equations

 $March\ 23,\ 2011$

1 DSGE model

1.1 Parameters for the DSGE Model

β	Discount rate
σ	Intertemporal elasticity of substitution
h	Consumption habit parameter
χ	Relative utility weight of labor
φ	Inverse Frisch elasticity of labor supply
α	Capital share
δ	Depreciation rate
$\overline{\eta_i}$	Inverse elasticity of net investment to the price of capital
ζ	Elasticity of depreciation wrt. utilization
G_{ss}	Steady state government consumption
ϵ	Elasticity of substitution between goods
γ	Probability of price change
γ_P	Price indexation parameter
$ au_X$	Tax on retailers
$ ho_i$	Interest rate smoothing parameter
κ_{π}	Inflation coefficient in the monetary policy rule
κ_X	Markup coefficient in the monetary policy rule
ρ_{ξ}	Persistence of capital quality shock
σ_{ξ}	Std. dev. of capital quality shock
$ ho_a$	Persistence of TFP shock
σ_a	Std. dev. of TFP shock

2 Variables

Y_{mt}	Wholesale output
Y_t	Retail output
D_t	Price dispersion
K_t	Capital
L_t	Labor
I_t	Investment
In_t	Net Investment
C_t	Consumption
G_t	Government expenditure
Q_t	Market value of capital
δ_t	Capital depreciation rate
U_t	Capital utilization
$arrho_t$	Marginal utility of consumption
Λ_t	Stochastic discount rate
R_{kt}	Capital return
R_t	Gross real interest rate
P_{mt}	Price level of the wholesale good
X_t	Markup
$\Pi_t^* = P_t^* / P_{t-1}$	Optimal price normalized by the last period price level
F_t	Numerator of the optimal normalized price choice
Z_t	Denominator of the optimal normalized price choice
Π_t	Gross inflation rate
i_t	Net nominal interest rate
A_t	Technology level
$_{-}$	Capital quality

3 The model equations

Marginal utility of consumption

$$\varrho_t = \left((C_t - hC_{t-1})^{-1} - \beta h E_t (C_{t+1} - hC_t)^{-1} \right)$$
 (1)

Real stochastic discount factor

$$\Lambda_{t,t+1} = \frac{\varrho_{t+1}}{\varrho_t} \tag{2}$$

Euler equation

$$E_t \left\{ \beta \Lambda_{t,t+1} R_{t+1} \right\} = 1 \tag{3}$$

Arbitrage

$$E_t \beta \Lambda_{t,t+1} R_{kt+1} = E_t \beta \Lambda_{t,t+1} R_{t+1} \tag{4}$$

Labor market equation

$$P_{mt}(1-\alpha)\frac{Y_{mt}}{L_t} = \chi \varrho_t^{-1} L^{\varphi}$$
 (5)

Capital return

$$R_{kt+1} = \frac{\xi_{t+1} \left(P_{mt+1} \alpha \frac{Y_{mt+1}}{\xi_{t+1} K_{t+1}} + Q_{t+1} - \delta(U_{t+1}) \right)}{Q_t}$$
 (6)

Intermediate good production function

$$Y_{mt} = A_t \left(U_t \xi_t K_t \right)^{\alpha} L_t^{1-\alpha} \tag{7}$$

Optimal net investment decision

$$Q_{t} = 1 + \frac{\eta_{i}}{2} \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - 1 \right)^{2} + \eta_{i} \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - 1 \right) \frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - E_{t} \beta \Lambda_{t,t+1} \eta_{i} \left(\frac{I_{nt+1} + I_{ss}}{I_{nt} + I_{ss}} - 1 \right) \left(\frac{I_{nt+1} + I_{ss}}{I_{nt} + I_{ss}} \right)^{2}$$
(8)

Depreciation rate

$$\delta(U_t) = \delta_c + \frac{b}{1+\zeta} U_t^{1+\zeta} \tag{9}$$

Optimal capacity utilization

$$P_{mt}\alpha \frac{Y_{mt}}{U_t} = \delta'(U_t)\xi_t K_t = bU_t^{\zeta}\xi_t K_t \tag{10}$$

Net investment

$$I_{nt} = I_t - \delta(U_t)\xi_t K_t \tag{11}$$

Capital accumulation equation

$$K_{t+1} = \xi_t K_t + I_{nt} \tag{12}$$

Aggregate resource constraint

$$Y_t = C_t + I_t + G_t + \frac{\eta_i}{2} \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - 1 \right)^2 (I_{nt} + I_{ss})$$
(13)

Wholesale, retail output

$$Y_t = Y_{mt}D_t \tag{14}$$

Price dispersion

$$D_t = \gamma D_{t-1} \Pi_{t-1}^{-\gamma_P \varepsilon} \Pi_t^{\varepsilon} + (1 - \gamma) \left(\frac{1 - \gamma \Pi_{t-1}^{\gamma_P (1 - \gamma)} \Pi_t^{\gamma - 1}}{1 - \gamma} \right)^{-\frac{\varepsilon}{1 - \gamma}}$$

$$\tag{15}$$

Markup $(\Pi_t = P_t/P_{t-1})$

$$P_{mt} = \frac{1}{X_t},\tag{16}$$

Recursive formulation of optimal price choice $(\Pi_t^* = P_t^*/P_{t-1})$

$$F_t = Y_t P_{mt} + E_t \left[\beta \gamma \Lambda_{t,t+1} \frac{\Pi_t^{-(\gamma_P \varepsilon)}}{\Pi_{t+1}^{-\varepsilon}} F_{t+1} \right], \tag{17}$$

$$Z_t = Y_t + E_t \left[\beta \gamma \Lambda_{t,t+1} \frac{\prod_{t=0}^{\gamma_P(1-\varepsilon)} T_{t+1}}{\prod_{t=0}^{1-\varepsilon} T_{t+1}} Z_{t+1} \right].$$
 (18)

$$\Pi_t^* = \frac{1}{\tau_X} \frac{\varepsilon}{\varepsilon - 1} \frac{F_t}{Z_t} \Pi_t, \tag{19}$$

Inflation development

$$\Pi_t^{(1-\varepsilon)} = \gamma \Pi_{t-1}^{\gamma_P(1-\varepsilon)} + (1-\gamma) \Pi_t^{*1-\varepsilon}, \tag{20}$$

Fisher equation

$$i_t = \log R_{t+1} + E_t \pi_{t+1}, \tag{21}$$

Monetary policy rule

$$i_t = \rho_i i_{t-1} + (1 - \rho_i)(R + \kappa_\pi \pi_t + \kappa_X \log X_t) + e_{i,t}$$
(22)

Shocks

$$G_t = G_{ss} * e^{g_t} \tag{23}$$

$$A_t = e^{a_t} (24)$$

$$\xi_t = e^{\hat{\xi}_t} \tag{25}$$

$$a_t = \rho_a a_{t-1} + e_a \tag{26}$$

$$\hat{\xi}_t = \rho_{\xi} \hat{\xi}_{t-1} + e_{\xi} \tag{27}$$

$$g_t = \rho_g g_{t-1} + e_g \tag{28}$$

4 Financial Accelerator

4.1 Parameters for the Financial Accelerator Model

β	Discount rate
σ	Intertemporal elasticity of substitution
h	Consumption habit parameter
χ	Relative utility weight of labor
	Inverse Frisch elasticity of labor supply
$\frac{\varphi}{\lambda}$	Fraction of capital that can be diverted by the bank
ω	Proportional transfer to the entering local bankers
θ	Survival rate of bankers
α	Capital share
δ	Depreciation rate
η_i	Inverse elasticity of net investment to the price of capital
ζ	Elasticity of depreciation wrt. utilization
G_{ss}	Steady state government consumption
ϵ	Elasticity of substitution between goods
γ	Probability of price change
γ_P	Price indexation parameter
$ au_X$	Tax on retailers
$ ho_i$	Interest rate smoothing parameter
κ_{π}	Inflation coefficient in the monetary policy rule
κ_X	Markup coefficient in the monetary policy rule
ρ_{ξ}	Persistence of capital quality shock
σ_{ξ}	Std. dev. of capital quality shock
$ ho_a$	Persistence of TFP shock
σ_a	Std. dev. of TFP shock

5 Variables

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y_{mt}	Wholesale output
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y_t	Retail output
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_t	Price dispersion
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_t	Capital
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L_t	Labor
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I_t	Investment
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	In_t	Net Investment
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_t	Consumption
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G_t	Government expenditure
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_t	Market value of capital
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	δ_t	Capital depreciation rate
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U_t	Capital utilization
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$arrho_t$	Marginal utility of consumption
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Stochastic discount rate
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_t	Net wealth
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_{et}	Surviving bankers' net wealth
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_{nt}	New bankers' net wealth
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_{kt}	Capital return
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_t	Gross real interest rate
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v	Value of banks' capital
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	η_t	Value of bank's net wealth
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϕ_t	Leverage
P_{mt} Price level of the wholesale good X_t Markup $\Pi_t^* = P_t^*/P_{t-1}$ Optimal price normalized by the last period price level F_t Numerator of the optimal normalized price choice Z_t Denominator of the optimal normalized price choice Π_t Gross inflation rate i_t Net nominal interest rate A_t Technology level	$z_{t,t+1}$	Growth rate of banks' capital
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x_{t,t+1}$	Growth rate of banks' net wealth
$ \begin{aligned} \Pi_t^* &= P_t^*/P_{t-1} \\ F_t & \text{Optimal price normalized by the last period price level} \\ Z_t & \text{Denominator of the optimal normalized price choice} \\ \Pi_t & \text{Gross inflation rate} \\ i_t & \text{Net nominal interest rate} \\ \hline A_t & \text{Technology level} \end{aligned} $	P_{mt}	Price level of the wholesale good
F_t Numerator of the optimal normalized price choice Z_t Denominator of the optimal normalized price choice Π_t Gross inflation rate i_t Net nominal interest rate A_t Technology level	·	Markup
$egin{array}{lll} Z_t & { m Denominator\ of\ the\ optimal\ normalized\ price\ choice} \ & \Pi_t & { m Gross\ inflation\ rate} \ & i_t & { m Net\ nominal\ interest\ rate} \ & A_t & { m Technology\ level} \ & \end{array}$	$\Pi_t^* = P_t^* / P_{t-1}$	Optimal price normalized by the last period price level
$egin{array}{cccccccccccccccccccccccccccccccccccc$	F_t	Numerator of the optimal normalized price choice
$egin{array}{cccc} i_t & ext{Net nominal interest rate} \ \hline A_t & ext{Technology level} \end{array}$	Z_t	Denominator of the optimal normalized price choice
A_t Technology level	Π_t	Gross inflation rate
90	i_t	Net nominal interest rate
ξ_t Capital quality	A_t	Technology level
	ξ_t	Capital quality

6 The model equations

Marginal utility of consumption

$$\varrho_t = \left((C_t - hC_{t-1})^{-1} - \beta h E_t (C_{t+1} - hC_t)^{-1} \right)$$
(29)

Real stochastic discount factor

$$\Lambda_{t,t+1} = \frac{\varrho_{t+1}}{\varrho_t} \tag{30}$$

Euler equation

$$E_t \left\{ \beta \Lambda_{t,t+1} R_{t+1} \right\} = 1 \tag{31}$$

Labor market equation

$$P_{mt}(1-\alpha)\frac{Y_{mt}}{L_t} = \chi \varrho_t^{-1} L^{\varphi} \tag{32}$$

Capital return

$$R_{kt+1} = \frac{\xi_{t+1} \left(P_{mt+1} \alpha \frac{Y_{mt+1}}{\xi_{t+1} K_{t+1}} + Q_{t+1} - \delta(U_{t+1}) \right)}{Q_t}$$
(33)

Intermediate good production function

$$Y_{mt} = A_t \left(U_t \xi_t K_t \right)^{\alpha} L_t^{1-\alpha} \tag{34}$$

Optimal net investment decision

$$Q_{t} = 1 + \frac{\eta_{i}}{2} \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - 1 \right)^{2} + \eta_{i} \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - 1 \right) \frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - E_{t} \beta \Lambda_{t,t+1} \eta_{i} \left(\frac{I_{nt+1} + I_{ss}}{I_{nt} + I_{ss}} - 1 \right) \left(\frac{I_{nt+1} + I_{ss}}{I_{nt} + I_{ss}} \right)^{2}$$
(35)

Depreciation rate

$$\delta(U_t) = \delta_c + \frac{b}{1+\zeta} U_t^{1+\zeta} \tag{36}$$

Optimal capacity utilization

$$P_{mt}\alpha \frac{Y_{mt}}{U_t} = \delta'(U_t)\xi_t K_t = bU_t^{\zeta}\xi_t K_t \tag{37}$$

Net investment

$$I_{nt} = I_t - \delta(U_t)\xi_t K_t \tag{38}$$

Capital accumulation equation

$$K_{t+1} = \xi_t K_t + I_{nt} \tag{39}$$

Aggregate resource constraint

$$Y_t = C_t + I_t + G_t + \frac{\eta_i}{2} \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} - 1 \right)^2 (I_{nt} + I_{ss})$$
(40)

Value of firms' capital

$$v_t = E_t\{(1-\theta)\beta\Lambda_{t,t+1}(R_{kt+1} - R_{t+1}) + \beta\Lambda_{t,t+1}\theta x_{t,t+1}v_{t+1}\}$$
(41)

Value of firms' net wealth

$$\eta_t = \max E_t \{ (1 - \theta) + \beta \Lambda_{t,t+1} \theta z_{t,t+1} \eta_{t+1} \}$$
(42)

Optimal leverage

$$\phi_t = \frac{\eta_t}{\lambda - v_t} \tag{43}$$

Growth rate of individual firms' capital

$$z_{t,t+1} = (R_{kt+1} - R_{t+1})\phi_t + R_{t+1}$$
(44)

Growth rate of individual firms' net wealth

$$x_{t,t+1} = (\phi_{t+1}/\phi_t)z_{t,t+1} \tag{45}$$

Aggregate capital

$$Q_t K_{t+1} = \phi_t N_t \tag{46}$$

Aggregate net wealth

$$N_t = N_{et} + N_{nt} \tag{47}$$

Entrepreneur net wealth accumulation

$$N_{et} = \theta \left[(R_{kt} - R_t)\phi_{t-1} + R_t \right] N_{t-1} e^{e_{Ne_t}}$$
(48)

New entrepreneurs' net wealth

$$N_{nt} = (1 - \theta)\omega Q_t \xi_t K_t \tag{49}$$

Wholesale, retail output

$$Y_t = Y_{mt}D_t \tag{50}$$

Price dispersion

$$D_{t} = \gamma D_{t-1} \Pi_{t-1}^{-\gamma_{P}\varepsilon} \Pi_{t}^{\varepsilon} + (1 - \gamma) \left(\frac{1 - \gamma \Pi_{t-1}^{\gamma_{P}(1-\gamma)} \Pi_{t}^{\gamma-1}}{1 - \gamma} \right)^{-\frac{\varepsilon}{1-\gamma}}$$

$$(51)$$

Markup $(\Pi_t = P_t/P_{t-1})$

$$P_{mt} = \frac{1}{X_t},\tag{52}$$

Recursive formulation of optimal price choice $(\Pi_t^* = P_t^*/P_{t-1})$

$$F_{t} = Y_{t} P_{mt} + E_{t} \left[\beta \gamma \Lambda_{t,t+1} \frac{\Pi_{t}^{-(\gamma_{P}\varepsilon)}}{\Pi_{t+1}^{-\varepsilon}} F_{t+1} \right], \tag{53}$$

$$Z_{t} = Y_{t} + E_{t} \left[\beta \gamma \Lambda_{t,t+1} \frac{\prod_{t=1}^{\gamma_{P}(1-\varepsilon)}}{\prod_{t=1}^{(1-\varepsilon)}} Z_{t+1} \right].$$
 (54)

$$\Pi_t^* = \frac{1}{\tau_X} \frac{\varepsilon}{\varepsilon - 1} \frac{F_t}{Z_t} \Pi_t, \tag{55}$$

Inflation development

$$\Pi_t^{(1-\varepsilon)} = \gamma \Pi_{t-1}^{\gamma_P(1-\varepsilon)} + (1-\gamma) \Pi_t^{*1-\varepsilon}, \tag{56}$$

Fisher equation

$$i_t = \log R_{t+1} + E_t \pi_{t+1}, \tag{57}$$

Monetary policy rule

$$i_t = \rho_i i_{t-1} + (1 - \rho_i)(R + \kappa_\pi \pi_t + \kappa_X \log X_t) + e_{i,t}$$
(58)

 ${\rm Shocks}$

$$G_t = G_{ss} * e^{g_t} \tag{59}$$

$$A_t = e^{a_t} (60)$$

$$\xi_t = e^{\hat{\xi}_t} \tag{61}$$

$$a_t = \rho_a a_{t-1} + e_a \tag{62}$$

$$\hat{\xi}_t = \rho_{\xi} \hat{\xi}_{t-1} + e_{\xi} \tag{63}$$

$$g_t = \rho_g g_{t-1} + e_g \tag{64}$$