Asymptotic Notation

CSC165 Week 8 - Part 2

Upper, Lower, and Tight Bounds on a Function

$$\mathcal{O}(f) = \{g \mid g : \mathbb{N} \to \mathbb{R}^{\geq 0}, \ \exists c, n_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \leq c \cdot f(n)\}.$$

Definition 5.5. Let $f,g: \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is **Omega of** f if and only if there exist constants $c, n_0 \in \mathbb{R}^+$ such that for all $n \in \mathbb{N}$, if $n \geq n_0$, then $g(n) \geq c \cdot f(n)$. In this case, we can also write $g \in \Omega(f)$.

Definition 5.6. Let $f,g: \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is **Theta of** f if and only if g is both Big-O of f and Omega of f. In this case, we can write $g \in \Theta(f)$, and say that f is a **tight bound** on g.⁷

Example: $g \in \mathcal{O}(f) \Longrightarrow f+g \in \mathcal{O}(f)$

NTS:
$$g \in O(f)$$
 \Longrightarrow $f+g \in O(f)$
Proof that $f+g \in O(f)$: Assume that $g \in O(f)$
 $\exists c, n, \in \mathbb{R}^+$ $\forall n \in \mathbb{N}$, $n \ge n, n \Longrightarrow g \le cf$ by hypotherical $\Rightarrow g(n) \le cf(n)$
 $\Rightarrow g(n) \le cf(n)$
 $\Rightarrow g(n) + f(n) \le cf(n) + f(n)$
Since $c \in \mathbb{R}^+$ $\Rightarrow c+1 \in \mathbb{R}^+$. Let $m = c+1$.
 $\Rightarrow g + f \le mf$
 $\Rightarrow g + f \le mf$

Proof that f+g € SZ(f): WTS: Jc,n. ERt, thEN, n2n. > ftg cf $f(n) + g(n) \ge f(n)$ by definof f, g.

sum of two positive numbers f: N->R">0 g: N->R">0 $f(n) + g(n) \ge f(n)$ Let c=1 and no=1 $f(n) + g(n) \ge cf(n) + f(n)$: ftg & S2(f) We already know ftg & O(f): ftg & O(f)

Example: $\forall a \in \mathbb{R}$, af $\in \Theta(f)$

WT5:
$$\forall a \in \mathbb{R}^{30}$$
, $af \in O(f)$ where af is $a \cdot f(n)$

Proof of $af \in O(f)$: WT5 that $\exists c, n, \in \mathbb{R}^{4}$, $\forall n \in \mathbb{N}$
 $n \ni n_0 \implies af_{(n)} \in cf(n)$. Let $a \in \mathbb{R}$.

Since $a \in |a|$
 $af_{(n)} = |a|f_{(n)}$
 $af_{(n)} = af_{(n)}$ (Let $a \in \mathbb{R}$)

Let $c = |a|$. Then $a \in |a|$
 $af_{(n)} = cf_{(n)}$
 $af_{(n)} = cf_{(n)}$

.: af € O(f).

```
Proof that af \SZ(f):
 WTS \exists c, n, \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_o \Rightarrow \text{af} \geq cf.
 If a=0,
 If a>0, Let c=a. Then of=cf so af >cf
                a < 0 \le f(n) Can we show at z < f(n) af a < 0 \le f(n) \le f(n) > 0
If a < 0,
                 \alpha f(n) \leq f(n) 50 c=1 works. f(n) > 0
                 a < c \Rightarrow af(n) \leq cf(n) \sin ce f(n) \geq 0
                                                Only for O(f)
               not for 52(f)
```

Moral of the story:

- 1. "Ignore lower order terms"
- 2. "Ignore constant factors"

Runtime Example

Goal: To find a simple function f(n) such that the "number of steps" function is an element of $\Theta(f)$.

How do we define input size n?

How do we define input size?

"Standard size" = total number of bits required to write down the input

- we will consider integers to have fixed size, but this is not always true. The same is true for floating point numbers.
- size of a string = its length, since characters do have a fixed size
- size of a list = sum of the lengths of its elements
 - example: a list of integers would have size length(list) assuming fixed size for integers.
- EXCEPTION: simple algorithms with a single natural number as input have size = value of the number

What is a step?

1 step = any block of code whose runtime is independent of input size

Such code takes "constant time" because it does not change with the size of input.

Examples:

- arithmetic operations +, -, x, \
- comparisons == < >
- variable assignments y = x+1
- return statements return x+1

Which features have non-constant runtime?

- loops (to be discussed further)
- function call execution

Note: making the function call is constant, but execution may not be.

- recursion (CSC236)
- complex data structures (CSC148, CSC263)

The plan for the example

- 1. Look at some code
- 2. Consider each loop and count the number of steps for each iteration
- 3. The total of all such counts is the "number of steps" function. We will call it g(n).
- 4. Use Θ notation so that $g \in \Theta(f)$ for a simple function f
- 5. The simplified function f is the goal for the exercise.

```
0. def f(n : int) -> int # Assume n >= 0
1. r = 0
2. for i in range(10): # Loop 1
for j in range(n * n): # Loop 2
4. 	 r = r + j
5. for i in range(n // 2): # Loop 3
6. for j in range(i * i): # Loop 4
7.
   r = r - j
8. return r
```

for in range (10): #Loop I

for jin range (n*n): #Loop 2

$$\Gamma = \Gamma + j$$
Loop 2: iterations = n^2 ($j=0,1,...,n^2-1$)
• each iteration is 1 step
• total steps = $j+1+...+1=n^2$
 $j=0,1,...,1=0$
 $j=0,1,...,1=0$

for 1 in range (n//2): # Loop 3 for jin range (i*i): # Loop4 -> L=L-J す=011,1-12-1 · # iterations = i2 Loop 4: . 1 step per iteration · total # steps = [+1+...+] = i2 ·# iterations = L=J (1=0,1,..., 2=J-1) Loop 3: · i2 steps per iteration · total # steps = 02+12+2+...+(L25-1)2

< 6 > C[†]

 $\sum_{k=0}^{N} k^{2} = \frac{N(N+1)(2N+1)}{6}$ Let N = [=]-1 # of steps in total = (2n - 1)(2n - 1)(2n - 1)Lines "r=0" and "return r" count as 1 step. ... n3 is a tight bound for the "number of steps"

function for this code.