Introduction

- What Is Testing
- Types of Testing
- Test Quality
- Test Economics
- Issues in Testing
- Conclusion

Why So Many Tests?

- Design errors → Design Verification
 - Logic design errors, physical design errors
- Manufacturing Defects -> Explicit Testing
 - Mask problems, lithography problem
 - Particles or scratches
 - Bad manufacture recipe

Focus of class

- External or Environmental Disturbance → Implicit Testing
 - Electromagnetic interference
 - Alpha particles
 - Power supply disturbance
- Wear out → Reliability Testing
 - Electromigration
 - Corrosion

Because There Are Many Different Problems!

Classification of Explicit Testing

- According to purposes
 - Production test: for volume production
 - Characterization test: for prototype IC, silicon debug
 - Reliability test: for reliability defects
 - Diagnosis test: for identify defect location
- According to stages
 - Wafer test (aka. Wafer sort, wafer probe): on wafer
 - Package test (aka. Final test): after packaging
 - System test: in system
- According to test techniques
 - DC parametric test: VOH/VOL/VIH/VIL ...
 - AC parametric test: rise/fall time, operation frequency ...
 - Boolean test: apply test patterns at low speed for DC faults
 - Delay test: apply test patterns at fast speed for delay faults
 - Functional test: apply design verification patterns
 - IDDQ test: measure quiescent power supply current
 - Low voltage test: test at reduced power supply voltage

Production Tests

- Purposes:
 - 1. Enforce quality requirements before selling to customers
 - 2. Sort parts for different specifications
 - * e.g. different speeds of CPU
- Example: a typical production test flow
 - actual flow modified according to test cost and test quality requirements

Food for Thought, FFT

Q: If we already have wafer test, why package test again?

Production Test Floor

Automatic Test Equipment (ATE), Tester

Load Board

ATE and

circuit under test (CUT)

Handler

- Robotic arm (inside) for moving packaged IC
- <Video demo>

Advantest M4541A handler

Wafer Test Setup

Source: Verigy.com

Probe Card

- Test fixture to interface load board and die
- Signal integrity is a big concern
 - Many tiny needles contacting die, cannot probe at fast speed
 - Must carefully balance inductance and capacitance of each pin
 - Need regular cleaning after a numbers of touch downs
- Probe card wears out quickly so it should be replaced regularly

14

VLSI Test 1.2 © National Taiwan University

Wafer Map

- Why we call it wafer sort?
- Wafer map shows test results
 - Die are sorted into different Bins
- Example:
 - Bin #1: PASS ALL
 - BIN #2: FAIL FUNCTION test
 - BIN #3: FAIL IDDQ test
 - BIN #4: FAIL DC parametric test
- Wafer map very useful for
 - pass/fail decision
 - diagnosis
 - yield improvement

Yield=Bin#1/total = 78/130=60%

Video Clip

- You can see a typical production test environment
- youtube video
 - "DELTA Test solutions since 1976"
 - https://www.youtube.com/watch?v=yKl71IX8Zc0
- Terminology
 - Probe Station =Wafer prober
 - Component test = Package test
 - Electro Anti-static

Characterization Tests

- Test a small amount of prototype IC very thoroughly
 - Test cost and test time are not big concerns
- Purpose of characterization test
 - 1. Verify IC function is same as design (silicon debug)
 - 2. Confirm IC specifications under different test conditions
 - Specifications: speed, VOH/VOL, rise/fall time ...
 - Conditions: VDD, Temperature ...
 - 3. Developing test program for production test
 - * Determine Pass/Fail limits

Shmoo Plot

- Graphical display of CUT test results under different test conditions
- Example: clock period vs. VDD
 - Green = PASS; Red = FAIL

Why Shmoo?

- Funny shape resembles a cartoon character: shmoo
 - Youtube Video: 1979 NBC Cartoon

21

Reliability Tests

- Burn-in
 - Goal: screen out infant mortality (aka. Early-life failure)
 - Method: raised temperature and voltage for hours or days
 - * cook IC in oven!
 - Very costly. Only applied to expensive IC
- Accelerated life test
 - Goal: estimate life time of IC
 - Method: burn-in until IC are dead
 - Only applied to sampled IC

Burn-in board

Burn-in oven siliconfareast.com

Bathtub Curve

- IC's failure rate* resembles a bathtub
 - Infant mortality: fail early in life, due to reliability defects
 - Wear out: normal life time, due to aging

These Topics Are NOT in This Course

Explicit Testing ≠ Verification

Verification

- Purpose : check if design correctly implements specified behavior
- Done before manufacture to catch design errors (bugs)
- Approaches: simulation, formal verification, ...

Explicit testing

- Purpose: check if IC is functioning correct or defective
- Done after manufacture to catch defects
- Approaches: apply test patterns by tester, ...

Implicit Testing

- Purpose
 - Check IC output correctness during normal operation
- Also known As (aka):
 - Concurrent Error Detection (CED)
 - On-line testing
- Important for mission critical systems
 - Airplanes, satellites, mainframe computers
- Techniques
 - Circuit level techniques
 - Error Correction Code (ECC) protection of memory
 - System level techniques
 - * Watch dog timer

Summary

- Focus of this course: explicit testing
 - Off-line IC testing on a specialized tester
 - Explicit testing ≠ verification ≠ on-line testing
- Many different type of tests for different
 - Purposes
 - Stages
 - Techniques

