Clustering

- Clustering refers to a very broad set of techniques for finding subgroups, or clusters, in a data set.
- We seek a partition of the data into distinct groups so that the observations within each group are quite similar to each other,
- It make this concrete, we must define what it means for two or more observations to be *similar* or *different*.
- Indeed, this is often a domain-specific consideration that must be made based on knowledge of the data being studied.

PCA vs Clustering

- PCA looks for a low-dimensional representation of the observations that explains a good fraction of the variance.
- Clustering looks for homogeneous subgroups among the observations.

Clustering for Market Segmentation

- Suppose we have access to a large number of measurements (e.g. median household income, occupation, distance from nearest urban area, and so forth) for a large number of people.
- Our goal is to perform *market segmentation* by identifying subgroups of people who might be more receptive to a particular form of advertising, or more likely to purchase a particular product.
- The task of performing market segmentation amounts to clustering the people in the data set.

Two clustering methods

- In *K*-means clustering, we seek to partition the observations into a pre-specified number of clusters.
- In hierarchical clustering, we do not know in advance how many clusters we want; in fact, we end up with a tree-like visual representation of the observations, called a dendrogram, that allows us to view at once the clusterings obtained for each possible number of clusters, from 1 to n.

K-means clustering

A simulated data set with 150 observations in 2-dimensional space. Panels show the results of applying K-means clustering with different values of K, the number of clusters. The color of each observation indicates the cluster to which it was assigned using the K-means clustering algorithm. Note that there is no ordering of the clusters, so the cluster coloring is arbitrary. These cluster labels were not used in clustering; instead, they are the outputs of the clustering procedure.

Details of K-means clustering

Let C_1, \ldots, C_K denote sets containing the indices of the observations in each cluster. These sets satisfy two properties:

- 1. $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}$. In other words, each observation belongs to at least one of the K clusters.
- 2. $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$. In other words, the clusters are non-overlapping: no observation belongs to more than one cluster.

For instance, if the *i*th observation is in the *k*th cluster, then $i \in C_k$.

Details of K-means clustering: continued

- The idea behind K-means clustering is that a good clustering is one for which the within-cluster variation is as small as possible.
- The within-cluster variation for cluster C_k is a measure $WCV(C_k)$ of the amount by which the observations within a cluster differ from each other.
- Hence we want to solve the problem

$$\underset{C_1,\dots,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \text{WCV}(C_k) \right\}. \tag{2}$$

• In words, this formula says that we want to partition the observations into K clusters such that the total within-cluster variation, summed over all K clusters, is as small as possible.

How to define within-cluster variation?

• Typically we use Euclidean distance

$$WCV(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2,$$
(3)

where $|C_k|$ denotes the number of observations in the kth cluster.

• Combining (2) and (3) gives the optimization problem that defines K-means clustering,

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}. \tag{4}$$

K-Means Clustering Algorithm

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - 2.1 For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - 2.2 Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Properties of the Algorithm

• This algorithm is guaranteed to decrease the value of the objective (4) at each step. Why?

Properties of the Algorithm

• This algorithm is guaranteed to decrease the value of the objective (4) at each step. Why? Note that

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^p (x_{ij} - \bar{x}_{kj})^2,$$

where $\bar{x}_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{ij}$ is the mean for feature j in cluster C_k .

• however it is not guaranteed to give the global minimum. Why not?

Example

Details of Previous Figure

The progress of the K-means algorithm with K=3.

- Top left: The observations are shown.
- *Top center:* In Step 1 of the algorithm, each observation is randomly assigned to a cluster.
- Top right: In Step 2(a), the cluster centroids are computed. These are shown as large colored disks. Initially the centroids are almost completely overlapping because the initial cluster assignments were chosen at random.
- Bottom left: In Step 2(b), each observation is assigned to the nearest centroid.
- Bottom center: Step 2(a) is once again performed, leading to new cluster centroids.
- Bottom right: The results obtained after 10 iterations.

Example: different starting values

Details of Previous Figure

K-means clustering performed six times on the data from previous figure with K=3, each time with a different random assignment of the observations in Step 1 of the K-means algorithm.

Above each plot is the value of the objective (4).

Three different local optima were obtained, one of which resulted in a smaller value of the objective and provides better separation between the clusters.

Those labeled in red all achieved the same best solution, with an objective value of 235.8