Conjecture de Gallai de décomposition en chemins Le cas des graphes planaires

Alexandre Blanché, Marthe Bonamy, Nicolas Bonichon

LaBRI, Université de Bordeaux

Journées Graphes et Algorithmes 2020

Novembre 2020

Décomposition en chemins

Décomposition en chemins : une partition des arêtes en chemins

Décomposition en chemins

Décomposition en chemins : une partition des arêtes en chemins

Conjecture (Gallai, 1968)

Tout graphe connexe à n sommets admet une décomposition en au plus $\left\lceil \frac{n}{2} \right\rceil$ chemins.

Décomposition en chemins

Décomposition en chemins : une partition des arêtes en chemins

Conjecture (Gallai, 1968)

Tout graphe connexe à n sommets admet une décomposition en au plus $\left\lceil \frac{n}{2} \right\rceil$ chemins.

Conjecture (Hajós, 1968)

Tout graphe eulerien à n sommets admet une décomposition en au plus $\left\lfloor \frac{n}{2} \right\rfloor$ cycles.

Résultats généraux

Théorème (Lovász, 1968)

Tout graphe à n sommets peut être décomposé en au plus $\left\lfloor \frac{n}{2} \right\rfloor$ chemins et cycles.

Bornes générales

|impairs|, |pairs| : nombre de sommets de degré impair, pair

$$\bullet$$
 Lovász, 1968 : $\leq \frac{|\mathsf{impairs}|}{2} + |\mathsf{pairs}| - 1$

• Donald, 1980 :
$$\leq \frac{|\text{impairs}|}{2} + \left| \frac{3|\text{pairs}|}{4} \right|$$

• Dean, Kouider, 2000 :
$$\leq \frac{|\text{impairs}|}{2} + \left| \frac{2|\text{pairs}|}{3} \right|$$

Si un arbre est un contre-exemple minimum pour la conjecture :

• On sait s'occuper des feuilles ayant un parent commun :

• On sait s'occuper des feuilles seules :

Résultats sur des classes spécifiques

Classes de graphes sur lesquelles la conjecture est vérifiée

($G_{even} = graphe induit par les sommets de degré pair)$

- Lovász, 1968: $|G_{\mathsf{even}}| \leq 1$
- Favaron, Kouider, 1988: Chaque sommet est de degré 2 ou 4
- Pyber, 1996: Geven est une forêt
- Fan, 2005: Chaque bloc de G_{even} est sans triangle et de degré maximum ≤ 3
- Bonamy, Perrett, 2016: Degré maximum ≤ 5
- Botler, Sambinelli, 2017: Treewidth ≤ 3
- Botler, Jiménez, Sambinelli, 2018: Graphes planaires sans triangle

Résultats sur des classes spécifiques

Classes de graphes sur lesquelles la conjecture est vérifiée

($G_{even} = graphe induit par les sommets de degré pair)$

- Lovász, 1968: $|G_{\text{even}}| \leq 1$
- Favaron, Kouider, 1988: Chaque sommet est de degré 2 ou 4
- Pyber, 1996: Geven est une forêt
- Fan, 2005: Chaque bloc de G_{even} est sans triangle et de degré maximum ≤ 3
- Bonamy, Perrett, 2016: Degré maximum ≤ 5
- Botler, Sambinelli, 2017: Treewidth ≤ 3
- Botler, Jiménez, Sambinelli, 2018: Graphes planaires sans triangle

En rouge, les résultats qui prouvent en fait une borne $\lfloor \frac{n}{2} \rfloor$.

Conjecture forte

Obstructions naturelles à la borne $\left\lfloor \frac{n}{2} \right\rfloor$:

Semi-cliques impaires: graphes à 2k+1 sommets avec $> 2k^2$ arêtes, i.e. les graphes ayant $> \left|\frac{n}{2}\right|(n-1)$ arêtes

Conjecture forte

Obstructions naturelles à la borne $\left\lfloor \frac{n}{2} \right\rfloor$:

Semi-cliques impaires: graphes à 2k+1 sommets avec $> 2k^2$ arêtes, i.e. les graphes ayant $> \left\lfloor \frac{n}{2} \right\rfloor (n-1)$ arêtes

Conjecture forte de Gallai (Bonamy, Perrett, 2016)

Tout graphe connexe à n sommets est soit une semi-clique impaire, soit admet une décomposition en au plus $\left|\frac{n}{2}\right|$ chemins.

Conjecture forte

Obstructions naturelles à la borne $\left\lfloor \frac{n}{2} \right\rfloor$:

Semi-cliques impaires: graphes à 2k+1 sommets avec $> 2k^2$ arêtes, i.e. les graphes ayant $> \left\lfloor \frac{n}{2} \right\rfloor (n-1)$ arêtes

Conjecture forte de Gallai (Bonamy, Perrett, 2016)

Tout graphe connexe à n sommets est soit une semi-clique impaire, soit admet une décomposition en au plus $\left|\frac{n}{2}\right|$ chemins.

Utile pour traiter les graphes non-connexes

$$\left\lfloor \frac{n_1}{2} \right\rfloor + \left\lfloor \frac{n_2}{2} \right\rfloor + \dots + \left\lfloor \frac{n_k}{2} \right\rfloor \leq \left\lfloor \frac{n_1 + n_2 + \dots + n_k}{2} \right\rfloor$$

Graphes planaires

Un graphe est **planaire** s'il peut être plongé dans le plan, i.e. dessiné sans croisement d'arêtes.

Graphes planaires

Un graphe est **planaire** s'il peut être plongé dans le plan, i.e. dessiné sans croisement d'arêtes.

Théorème (B., Bonamy, Bonichon, 2020+)

La conjecture de Gallai est vraie sur les graphes planaires.

Résultat plus fort

Semi-cliques impaires planaires :

Théorème (B., Bonamy, Bonichon, 2020+)

Tout graphe planaire connexe à n sommets, sauf K_3 et K_5^- , a une décomposition en au plus $\left\lfloor \frac{n}{2} \right\rfloor$ chemins.

$G \equiv$ Contre-exemple minimum

G a n sommets, u_1, u_2 sont des sommets spéciaux, P est un chemin entre u_1, u_2 .

$G \equiv$ Contre-exemple minimum

G a n sommets, u_1, u_2 sont des sommets spéciaux, P est un chemin entre u_1, u_2 .

 $G-\{u_1,u_2\}-P$ a 6 composantes G_1,\ldots,G_6 , avec n_1,\ldots,n_6 sommets respectivement.

$G \equiv$ Contre-exemple minimum

G a n sommets, u_1, u_2 sont des sommets spéciaux, P est un chemin entre u_1, u_2 .

 $G-\{u_1,u_2\}-P$ a 6 composantes G_1,\ldots,G_6 , avec n_1,\ldots,n_6 sommets respectivement.

Supposons que chaque G_i a une décomposition en $\leq \lfloor \frac{n_i}{2} \rfloor$ chemins.

$G \equiv$ Contre-exemple minimum

G a n sommets, u_1, u_2 sont des sommets spéciaux, P est un chemin entre u_1, u_2 .

 $G-\{u_1,u_2\}-P$ a 6 composantes G_1,\ldots,G_6 , avec n_1,\ldots,n_6 sommets respectivement.

Supposons que chaque G_i a une décomposition en $\leq \left\lfloor \frac{n_i}{2} \right\rfloor$ chemins. On peut trouver une décomposition en chemins de G en $\leq 1 + \left\lfloor \frac{n_1}{2} \right\rfloor + \cdots + \left\lfloor \frac{n_6}{2} \right\rfloor \leq \left\lfloor \frac{n}{2} \right\rfloor$ chemins.

Aperçu de la preuve

- Prouver qu'un contre-exemple minimum ne contient pas certaines configurations (difficile)
- Montrer une contradiction avec la formule d'Euler ("facile")

2 types de configurations à éliminer: configurations C_I et C_{II}

$$C_{I} \qquad C_{II}$$

Configurations C_I

Configuration C_I : 2 sommets de degré au plus 4 Comme le graphe est connexe, ils sont associés à un plus court chemin.

Configurations C_l

Configuration C_l : 2 sommets de degré au plus 4 Comme le graphe est connexe, ils sont associés à un plus court chemin.

 Demi-règles : quand les sommets sont "loin" les uns des autres, à distance ≥ 3

Configurations C_l

Configuration C_I : 2 sommets de degré au plus 4 Comme le graphe est connexe, ils sont associés à un plus court chemin.

 Demi-règles: quand les sommets sont "loin" les uns des autres, à distance > 3

• **Règles de résolution :** quand les sommets sont à distance ≤ 2

Propriétés

Pour résoudre une configuration, 2 propriétés à vérifier :

- **Validité**: La règle définit une décomposition en chemins avec le bon nombre de chemins, ne crée pas de cycle.
- **Sûreté**: La règle ne génère pas de composante K_3 ou K_5^- .

Stratégie pour la sûreté

On s'occupe de chaque composante K_3 et K_5^- générée en la combinant avec un chemin de la décomposition.

Configurations C_{II}

Configuration C_{II} : 3 sommets de degré 5 ; 1 sommet de degré 4 ou 5 ("sommets spéciaux")

On suppose dorénavant que le graphe est presque 4-connexe :

- Pas de 3-cut séparant deux sommets spéciaux ;
- Pas de 3-cut ayant un sommet spécial et séparant deux de ses voisins.

Configurations C_{II}

Configuration C_{II} : 3 sommets de degré 5 ; 1 sommet de degré 4 ou 5 ("sommets spéciaux")

On suppose dorénavant que le graphe est presque 4-connexe :

- Pas de 3-cut séparant deux sommets spéciaux ;
- Pas de 3-cut ayant un sommet spécial et séparant deux de ses voisins.

Corollaire de (Yu, 1994)

Un graphe planaire presque 4-connexe admet une K_4 -, C_{4+}^1 - ou C_{4+}^2 -subdivision.

Subdivisions

- Décomposable en 2 chemins
- Un chemin termine sur chaque sommet spécial

Voisins restants

Motifs : traitent les 1 ou 2 voisins restants de chaque sommet spécial

$$C_{Ve}$$

$$C_{Ve}$$

$$C_{Vo}$$

$$C_{Vo}$$

$$C_{Vo}$$

$$C_{Vo}$$

$$C_{Vo}$$

$$C_{Vo}$$

$$C_{Vo}$$

Pré-traitement

Étape 1 :

Étape 2:

(8 règles)

Problèmes

2 types de problèmes peuvent survenir :

Problèmes distants

Problems

• Problèmes proches

(
$$\sim$$
 35 règles)

Conclusion

Preuve

- Elimination des configurations C_I
 - Demi-règles
 - Règles de résolution pour les cas proches
 - Sûreté : combiner les K_3, K_5^- avec un chemin
- Elimination des configurations C_{II}
 - K_{4} -, C_{4+}^{1} -, C_{4+}^{2} -subdivisions
 - Motifs pour chaque sommet spécial
 - Elimination des problèmes
 - Problèmes distants par routage
 - Problèmes proches par solutions ad hoc
- Contradiction en utilisant la formule d'Euler

Conclusion

Preuve

- Elimination des configurations C_I
 - Demi-règles
 - Règles de résolution pour les cas proches
 - Sûreté : combiner les K_3, K_5^- avec un chemin
- Elimination des configurations C_{II}
 - K_{4} -, C_{4+}^{1} -, C_{4+}^{2} -subdivisions
 - Motifs pour chaque sommet spécial
 - Elimination des problèmes
 - Problèmes distants par routage
 - Problèmes proches par solutions ad hoc
- Contradiction en utilisant la formule d'Euler

Merci de votre attention.

Demi-règles (exemples)

Règles de résolution (exemples)

Elimination des problèmes distants

Opération de routage

Assure que chaque problème distant est changé en motif \mathcal{C}_V (ou \mathcal{C}_{EXT})

