FSAIN

Outros modelos de Machine Learning I

João F. Serrajordia R. de Mello

Apresentação

João Fernando Serrajordia Rocha de Mello – (Juka)

Trajetória profissional

Modelagem de crédito em grandes bancos Telecom

Desenvolvimento de modelos / Validação de modelos

Docência em ciência de dados Consultoria em ciência de dados *Outsourcing* executivo

Acadêmico

BACHAREL EM ESTATÍSTICA

MESTRE EM ESTATÍSTICA

Você vai precisar de...

Preparativos

- Abrir o R
- Importar as bibliotecas
- Planilha eletrônica
- Algo para fazer suas anotações

Problemas de preditivos e de classificação

Qual a eficácia de uma vacina?

O cliente vai pagar o empréstimo?

Quanto de petróleo tem no poço?

O cliente vai comprar meu produto?

O que a pessoa está fazendo?

Quão ecológico esse veículo é?

CRISP-DM

Fonte: https://www.the-modeling-agency.com/crisp-dm.pdf

Como é isso?

Desenho de safra (ou coorte)

Exemplo de desenho amostral para modelo preditivo

Desenho do modelo

Classificação dos algoritmos

Supervisionados

- Regressão
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Redes Neurais
- Decision Trees

Não supervisionados

- K-Means
- Métodos hierárquicos
- Mistura Gaussiana
- DBScan
- Mini-Batch-K-Means

Estamos aqui!

Classificação dos algoritmos

Resposta contínua

- Regressão
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Redes Neurais
- Regression Trees

Resposta discreta

- Regressão logística
- Classification trees
- Redes Neurais
- GLM
- GLMM

Estamos aqui!

Classificação dos algoritmos

Métodos Machinelârnicos

- Árvores de decisão
- Bagging
- Boosting
- K-NN
- Redes Neurais
- Support Vector Machines

Métodos Machinelârnicoestatísticos

- Regressão
- GLM
- GLMM
- ANOVA

Estamos aqui!

Reflexões sobre a base de dados

População

- ~ 2.200 pessoas
- ~ 1.300 passageiros
- Mais de 1.500 mortos

Amostra

- 891 pessoas
- 549 não sobreviventes
- 342 sobreviventes

Objetivos do algoritmo

- Classificar da melhor forma possível a variável resposta
 - ... Através de segmentações
 - ... Usando as variáveis explicativas
- Obter insights
 - ... Das relações entre a variável resposta e as explicativas
 - ... Explorar interações

OMML1_script01-Primeiro_contato_com_arvores.R

Dos 891, podemos segmenta-los em:

577 homens (65%) dos quais 109 sobreviveram (19%) 468 não sobreviveram

314 mulheres (35%) das quais 233 sobreviveram (74%) 81 não sobreviveram

Dos 891, podemos segmenta-los em:

577 homens que por sua vez segmentamos em:

24 crianças (< 6,5 anos) das quais 16 sobreviveram (67%) 8 não sobreviveram

533 adultos (>=6,5 anos) dos quais 93 sobreviveram (17%) 553 não sobreviveram

E assim continuamos a "requebrar" a amostra até "não valer a pena" fazer mais quebras.

Definições de impureza

• Gini

• Entropia de Shannon

Como a árvore encontra a melhor quebra? Com uma métrica de 'impureza'

Índice de Gini

$$I_g(p) = 1 - \sum_{i=1}^{J} p_i^2$$

- Impureza máxima com distribuição uniforme
- Impureza mínima na concentração total

Entropia

$$H = -\sum_{i=1}^{J} p_i \log_2(p_i)$$

Ganho de informação:

$$GI(T,a) = H(T) - H(T|a)$$

- Impureza máxima com distribuição uniforme
- Impureza mínima na concentração total

Algoritmo básico

- 1. Para cada variável, buscar a melhor regra binária
- 2. Escolher aplicar melhor segmentação dentre todas as variáveis
- 3. Recursivamente, para cada folha, repetir os passos 1 e 2 até que uma regra de parada seja atingida

Implementação web interativa:

https://rawgit.com/longhowlam/titanicTree/master/tree.html

Hiperparâmetros

São parâmetros que controlam o algoritmo como:

- 1. Número mínimo de observações por folha
- 2. Profundidade máxima
- 3. CP Custo de complexidade

Custo de complexidade

Cross validation (validação cruzada)

A estratégia mais simples é dividir a base em treino e teste.

Desenvolvemos o modelo na base de treino e avaliamos na base de teste.

OMML1 _script02-Algoritmo_avaliacao_overfitting

A árvore como um classificador

A árvore como um classificador

Probabilidade de evento da folha F:

$$P(S|F) = \frac{N_f^s}{N_f}$$

P(S|F) - probabilidade de sucesso da folha F

 N_f - é o número de indivíduos na folha F $N_f^{\it S}$ - é o número de sobreviventes na folha F

A árvore como um classificador

Classificação:

Classificação padrão:

Sobrevivente: $P(S|F) \ge 50\% \implies C(F) = "Y"$

Não sobreviventes: $P(S|F) < 50\% \implies C(F) = "N"$

Valor	Valor Verdadeiro	
predito	0	1
0	484	96
1	65	246

Avaliação do modelo

• Acurácia:

Acertos sobre tentativas

Valor	Valor Verdadeiro		
predito	0	1	
0	484	96	
1	65	246	

No exemplo:

$$\frac{484 + 246}{891} = 82\%$$

Árvore como diagnóstico

Sensitividade:
$$\frac{TP}{FN+TP} = \frac{246}{246+96} = 72\%$$

Especificidade:		484	= 72%
	${TN+FP}$ -	- 484+65	_ / 2 70

Valor	Valor Verdadeiro		
predito	(0)	1	
0 3	484	96	
	65	246	

Valor	Valor Verdadeiro	
predito	0	1
0	TN	FN
1	FP	TP

Diagnóstico e pontos de corte

Corte	TP	FP	TI	N FN	
0% - 11,1%	3	42	549	0	0
11,1% - 11,5%	3	39	525	24	3
11,5% - 35,8%	2	89	142	407	53
35,8% - 58,9%	2	46	65	484	96
58,9% - 66,7%	1	77	17	532	165
66,7% - 94,7%	1	61	9	540	181
94,7% - 100%		0	0	549	342

Acurácia	Especificidade	1-Especificidade	Sensibilidade
38%	0%	100%	100%
41%	4%	96%	99%
78%	74%	26%	85%
82%	88%	12%	72%
80%	97%	3%	52%
79%	98%	2%	47%
62%	100%	0%	0%

Para cada ponto de corte, temos uma matriz de confusão. No caso, temos 8 possíveis matrizes com a árvore treinada.

Curva ROC

Corte	1-Especificidade	Sensibilidade
0% - 11,1%	100%	100%
11,1% - 11,5%	96%	99%
11,5% - 35,8%	26%	85%
35,8% - 58,9%	12%	72%
58,9% - 66,7%	3%	52%
66,7% - 94,7%	2%	47%
94,7% - 100%	0%	0%
	Luiz	Rodris

A curva ROC é um gráfico de dispersão de 1-Especificidade no eixo x por Sensibilidade no eixo y, obtidos para cada possível ponto de corte do classificador.

OMML1 _script02-Algoritmo_avaliacao_overfitting

Poda da árvore (Prunning)

Acurácia

Base de treino: 95% Base de validação: 40%

Base de treino: 70% Base de validação: 60% Base de treino: 65% Base de validação: 64%

Amostra de treino

Amostra de validação

Estratégias de cross validation

Escolher parâmetros do modelo com uma base de validação ainda pode propiciar overfitting.

Há diversas técnicas de validação cruzada para se evitar esse efeito. No momento vou mencionar uma técnica clássica: dividir a base em Treino, Validação e Teste

Amostra de treino

Amostra de validação

Amostra de teste

Remove da amostra de treino Classifica o elemento removido inicialmente Desenvolve o modelo com os demais

- Dividimos a base em k sub-amostras
- Para cada sub-amostra:
 - Removemos a sub-amostra como validação
 - Treinamos o modelo com as observações restantes
 - Utilizamos este modelo para classificar a sub-amostra removida
 - Avaliamos a métrica de desempenho do modelo
- Calculamos a média das métricas de desempenho do modelo

K-fold

Tipicamente, fazemos o mesmo para variações do modelo para otimizar hiperparâmetros.

Post-prunning com crossvalidation

size of tree

O R faz a poda da árvore realizando um k-fold para otimizar o CP (complexity path), um parâmetro que sumariza a complexidade da árvore. Isso é feito com um k-fold.

OMML1 _script02-Algoritmo_avaliacao_overfitting

Conclusão

- Robustas, interpretáveis, flexíveis
- Sem suposições probabilísticas
- Necessário *cross-validation*

Quanto mais aprendo, mais tenho certeza de que, o que sei, é apenas uma gota, diante do oceano do que ainda preciso aprender.

Jose Ap Barcelos

Algoritmos famosos

- CART
- CHAID
- ID3
- C4.5
- C5.0

Stack overflow interessante sobre isso:

https://stackoverflow.com/questions/9979461/different-decision-tree-algorithms-with-comparison-of-complexity-or-performance

