Question	Scheme	Marks
8(a)	y-5-x-1	
	$\frac{y-5}{5-9} = \frac{x-1}{1-9}$	M1A1
	$\Rightarrow x - 2y + 9 = 0$	A1
		[3]
(b)	Coordinates of point X	
	$\left(\frac{3\times9+1\times1}{3+1},\frac{3\times9+1\times5}{3+1}\right)=(7,8)$	B1B1
	1 1 1	D10
	The perpendicular gradient = $-\frac{1}{1} = -2$	B1ft
	$\overline{2}$	
	Equation of <i>l</i>	
	$y-8 = -2(x-7) \Rightarrow y = -2x + 22 *$	M1A1
		cso
		[5]
(c)	$y = -2(6) + 22 \Rightarrow p = 10$	B1 [1]
(d)	$\overrightarrow{BA} = \begin{pmatrix} 1-9 \\ 5-9 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \end{pmatrix} \Rightarrow \overrightarrow{CD} = \begin{pmatrix} 6-8 \\ 10-4 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$	M1
	(5-9) (-4) (10-4) (6)	
	and coordinates of C are $(6, 10)$	
	so coordinates of D are $(-2, 6)$	A1A1
	2, 0)	[3]
(e)	Length of AB (or CD) = $\sqrt{(9-5)^2 + (9-1)^2} = \sqrt{80}$	B1
	,	
	Length of $CX = \sqrt{(10-8)^2 + (7-6)^2} = \sqrt{5}$	B1
	Area of parallelogram $ABCD = \sqrt{5} \times \sqrt{80} = \sqrt{400} = 20 \text{ (units}^2\text{)}$	M1A1
		[4]
	Total 1	6 marks

Part	Mark	Notes
(a)	M1	For using a correct method and the given coordinates of A and B to form
		the equation of AB. Do not score this mark until they find the gradient
		and form the equation of the line using a correct formula.
		If they use $y = mx + c$ do not allow this mark until they find c and form
		a complete equation.
		$\left[m = \frac{1}{2}, c = \frac{9}{2} y = \frac{x}{2} + \frac{9}{2} \right]$
	A1	For the correct equation of AB in any form.
	A1	For the correct equation of AB in the required form.

(b)	B1	For either x or y correct coordinates of point X
(0)	21	NB This is an M mark in Epen
	B1	For both x and y correct coordinates of point X
		NB This is an A mark in Epen.
	B1ft	For writing down the inverse reciprocal of their gradient for AB
		Ft their gradient form part (a)
	M1	For forming an equation for <i>l</i> using their coordinates of <i>X</i> and their
		negative reciprocal gradient of AB
		$y-8 = -2(x-7) \Rightarrow y = -2x + 22$
	A1	For the correct equation of <i>l</i> as shown.
(c)	B1	For $y = 10$
(d)	M1	For a suitable method.
		Method 1 - Uses vectors:
		$\overrightarrow{BA} = \begin{pmatrix} 1-9 \\ 5-9 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \end{pmatrix} \Rightarrow \overrightarrow{CD} = \begin{pmatrix} 6+(-8) \\ 10+(-4) \end{pmatrix} \Rightarrow \begin{bmatrix} \begin{pmatrix} -2 \\ 6 \end{pmatrix} \end{bmatrix}$
		OR: $\overrightarrow{BC} = \begin{pmatrix} 6-9\\9-10 \end{pmatrix} = \begin{pmatrix} -3\\-1 \end{pmatrix} \Rightarrow \overrightarrow{AD} = \begin{pmatrix} 1-3\\5-(-1) \end{pmatrix} \Rightarrow \begin{bmatrix} -2\\6 \end{bmatrix}$
		Method 2 - Uses simultaneous equations:
		The equation of AD is $y = -\frac{x}{3} + \frac{16}{3}$ and of CD is $y = \frac{x}{2} + 7$
		$-\frac{x}{3} + \frac{16}{3} = \frac{x}{2} + 7 \Rightarrow x = -2 \text{ and } y = 6$
		Method 3 - Uses the gradient and length of AB or CD
		$AB = CD = 4\sqrt{5} = \sqrt{(6-x)^2 + (y-10)^2}$
		Gradient: $\frac{1}{2} = \frac{10 - y}{6 - x} \Rightarrow x = 2y - 14$
		z = 0 - x
		$(4\sqrt{5})^{2} = (6 - (2y - 14))x^{2} + (y - 10)^{2} \Rightarrow 5y^{2} - 100y + 420 = 0$
		$\Rightarrow y = 6,14 \text{ and } x = -2,14$
		Allow no more than one error in either method.
	A1	For either correct x or y coordinate of D
	111	[(-2,6)]
		NB this is an A mark in Epen
	A1	For both correct coordinates of D
		(-2,6)

()	D1	T d d C'd ADIGDI GV
(e)	B1	For the correct length of either AB [CD] or CX
		These are given coordinates there is no ft
	B1	For the correct lengths of both AB [CD] and CX
		Ft their C and their X
	M1	For using a correct method to calculate the area of a parallelogram.
		$b \times h = CX \times AB = \sqrt{5} \times \sqrt{80} = \sqrt{400} = 20$
		If their lengths are incorrect allow this mark provided their lengths are identified as base and perpendicular height.
		If they use AD as the base $\left[\sqrt{10}\right]$, the perpendicular height required is
		$2\sqrt{10}$ so base × height = $\sqrt{10} \times 2\sqrt{10} =$
	A1	For the correct area of 20 [units ²]
	ALT – U	Using determinants
	B1B1	For sight of the correct array which must use the coordinates of A, B, C and D ONLY. The coordinates (7, 8) seen in the array is B0B0
		$ \begin{pmatrix} 1 & 9 & '6' & '-2' & 1 \\ 5 & 9 & '10' & '6' & 5 \end{pmatrix} $
		Award both marks for fully correct. Award B1 if there are no more than 2 errors but with none missing. There must be 5 sets of coordinates in
		the array with first and last the same. The coordinates must go in
		order around the parallelogram clockwise or anticlockwise.
	M1	For the correct evaluation of their 2×5 array. Allow this even if they
		have (7, 8) included instead of (9, 9) [which is a common error]
		$ \left \frac{1}{2} \begin{pmatrix} 1 & 9 & 6 & -2 & 1 \\ 5 & 9 & 10 & 6 & 5 \end{pmatrix} \right = \frac{1}{2} \left \left[(9 + 90 + 36 - 10) - (45 + 54 - 20 + 6) \right] \right = \dots $
	A1	For the correct area of 20 [units ²]

Useful sketch

