Universidade do Minho

Ano Letivo: 2023/24

Turnos: PL3/PL7

# Bases de Dados

PLO6 - Modelação Lógica e Normalização

**Docente**: Diana Ferreira

Email: diana.ferreira@algoritmi.uminho.pt

Horário de Atendimento:

5° feira 16h-17h



#### Sumário

1 Regras de Derivação

3 Normalização

2 Modelo Relacional

4 Álgebra Relacional

#### Bibliografia:

- Connolly, T., Begg, C., Database Systems, A Practical Approach to Design, Implementation, and Management, Addison-Wesley, 4a Edição, 2004. (Chapter 17; Chapter 4/5; Chapter 14/15)
- Teorey, T., Database Modeling and Design: The Fundamental Principles, II Ediçao, Morgan Kaufmann, 1994.
- Belo, O., "Bases de Dados Relacionais: Implementação com MySQL", FCA Editora de Informática, 376p, Set 2021. ISBN: 978-972-722-921-5.





<u>Modelo ER – Combinação das Vistas</u>



Modelo ER - Com relacionamento recursivo + relacionamento ternário





#### Ciclo de vida de um SBD

Traduzir o modelo de dados conceptual num modelo de dados lógico e, em seguida, validar o modelo para verificar se este é estruturalmente correto e capaz de suportar as transações necessárias.



#### Ciclo de vida de um SBD: Modelação Lógica

Fase 2

Validar relações utilizando a normalização

Fase 4

Verificar restrições de integridade

Fase 6

Combinar modelos de dados lógicos no modelo global (opcional)



#### Fase 1

Derivar relações para o modelo de dados lógico

#### Fase 3

Validar relações em relação às transações do utilizador

#### Fase 5

Rever o modelo de dados lógico com o(s) utilizador(s)

#### Fase 7

Verificar se há crescimento futuro

#### Modelo Relacional

Modelo lógico para BDs relacionais, baseado no conceito de relação, também designado por tabela.

Modelação Física

O modelo relacional pode depois ser concretizado num SGBD usando a linguagem SQL.

Modelação Lógica

As entidades-tipo e relacionamentos do modelo ER são mapeados em relações/tabelas no modelo relacional.

Modelação Conceptual

#### Modelo Relacional

- É baseado no conceito de **relação**, onde uma relação é uma **tabela** de valores.
- Uma tabela de valores pode ser vista como um conjunto de linhas, registos ou tuplos.
- Cada tuplo é identificado por um conjunto de colunas, campos ou atributos.
- Uma base de dados é representada como um conjunto de relações.





- O relacionamento que uma entidade tem com outra entidade é representado pelo mecanismo de chave primária/chave estrangeira.
- Para decidir onde colocar o(s) atributo(s) de chave estrangeira, devemos primeiro identificar as entidades 'pai' e 'filho' envolvidas no relacionamento.
- A entidade **pai** refere-se à entidade que **envia uma cópia da sua chave primária** na relação que representa a entidade **filho**, para atuar como a **chave estrangeira**.



#### Derivar relações

O processo de derivação passa por descrever como as relações são derivadas para as seguintes estruturas que podem ocorrer num modelo de dados concetual:

- **Entidades Simples**
- Atributos multivalor
- **Entidades Fracas**
- Relacionamentos binários de um-para-muitos (1:N)
- Relacionamentos binários de muitos-para-muitos (N:M)
- Entidade Relacionamento
- Relacionamentos binários de um-para-um (1:1)
- Relacionamentos binários recursivos de um-para-um (1:1)
- Relacionamentos complexos
- Relacionamentos superclasse/subclasse



#### Entidades Simples

Para cada entidade do modelo de dados, crie **uma relação/tabela** que inclua todos os **atributos simples** dessa entidade. Os <u>atributos derivados</u> devem ser analisados e no caso dos <u>atributos compostos</u>, são apenas incluídos os atributos simples constituintes.



Paciente (nr\_sequencial, nome, sexo, dta\_nascimento, rua, localidade, cod\_postal, NIF, nr\_utente, estado\_civil)
Chave primária nr\_sequencial
Chave candidata NIF
Chave candidata nr\_utente
Derivado idade(dta\_atual – dta\_nascimento)

| Paciente       |
|----------------|
| nr_sequencial  |
| nome           |
| sexo           |
| dta_nascimento |
| rua            |
| localidade     |
| cod_postal     |
| NIF            |
| nr_utente      |
| estado_civil   |



#### Atributos multivalor

Para cada atributo **multivalor**, crie uma **nova relação** para representar o atributo **multi-valor** com relacionamento de **1:N** com a sua tabela de referência e inclua a **chave primária** da entidade na nova relação, para atuar como **chave estrangeira**.



Paciente (nr\_sequencial, nome, sexo, dta\_nascimento, rua, localidade, cod\_postal, NIF, nr\_utente, estado\_civil)

Chave primária nr\_sequencial

Chave candidata NIF

Chave candidata nr\_utente

**Derivado** idade(dta\_atual - dta\_nascimento)

Telefone (nr\_sequencial, telefone)
Chave primária nr\_sequencial, telefone
Chave estrangeira nr\_sequencial referencia
Paciente(nr\_sequencial)



#### Entidades Fracas

- Para cada entidade fraca do modelo de dados, crie uma relação que inclua todos os atributos simples dessa entidade.
- Se a entidade fraca não possuir atributos que possam constituir chaves candidatas, o conjunto de atributos que permitem identificar univocamente uma ocorrência da entidade fraca, é a **chave parcial** da entidade fraca;
- A chave primária de uma entidade fraca é sempre uma chave composta da chave primária da entidade identificadora e da sua chave parcial, portanto, a identificação da chave primária de uma entidade fraca não pode ser feita até que todos os relacionamentos com as entidades proprietárias tenham sido mapeados.



#### **→** <u>Derivar relações</u>

#### Entidades Fracas



Livro (id\_livro, título)
Chave primária id\_livro

Capítulo (id\_livro, codigo, título)
Chave primária id\_livro, codigo
Chave estrangeira id\_livro referencia Livro(id\_livro)



- Relacionamentos binários de um-para-muitos (1:N)
- Para cada relacionamento binário 1:N, a entidade do lado **'um**' do relacionamento é designada como a **entidade pai** e a entidade do lado **'muitos**' é designada como a **entidade filho**.
- Para representar esse relacionamento, cria-se uma **cópia** do(s) atributo(s) de **chave primária** da **entidade pai** na relação que representa a **entidade filho**, para atuar como **chave estrangeira**.



#### → <u>Derivar relações</u>

Relacionamentos binários de um-para-muitos (1:N)



Consulta (<u>nr\_episodio</u>, preço, hora\_ini, hora\_fim, cod\_procedimento)
Chave primária nr\_episodio
Chave Estrangeira cod\_procedimento referencia
Procedimento(cod\_procedimento)

Procedimento (cod\_procedimento, des\_procedimento, preço)
Chave primária cod\_procedimento



- Relacionamentos binários de muitos-para-muitos (N:M)
- Crie <u>uma relação</u> para representar o <u>relacionamento</u> e inclua quaisquer atributos que façam parte do relacionamento.
- Crie uma **cópia** do(s) atributo(s) de **chave primária** das **entidades** que participam no relacionamento na nova relação, para atuar como **chaves estrangeiras**. A **chave primária** da nova relação é sempre uma chave composta pelas chaves estrangeiras, possivelmente em combinação com outros atributos do relacionamento.





Relacionamentos binários de muitos-para-muitos (N:M)



Medicamento (<u>id\_med</u>, nome, descrição)
Chave primária id\_med

Consulta (<u>nr\_episodio</u>, preço, hora\_ini, hora\_fim)
Chave primária nr\_episodio

Prescrição (<u>id\_med, nr\_episodio</u>, unidade, quantidade, posologia, PVP, comparticipação, data\_val, data\_pres)
Chave primária id\_med, nr\_episodio
Chave Estrangeira id\_med referencia Medicamento(id\_med)
Chave Estrangeira nr\_episodio referencia Consulta(nr\_episodio)



#### Entidade Relacionamento

- Crie <u>uma relação</u> para representar a <u>entidade-relacionamento</u> como se fosse uma entidade independente e inclua todos os atributos que façam parte da entidade-relacionamento.
- Crie uma **cópia** do(s) atributo(s) de **chave primária** das **entidades** que participam na entidaderelacionamento na nova relação, para atuar como **chaves estrangeiras**. Caso a entidaderelacionamento **não** possua chave primária, essas chaves estrangeiras formarão a **chave primária**.





#### Entidade Relacionamento



Paciente (nr\_sequencial, nome, sexo, dta\_nascimento, rua, localidade, cod\_postal, NIF, nr\_utente, estado\_civil)

Chave primária nr\_sequencial

Chave candidata NIF
Chave candidata nr\_utente
Derivado idade(dta\_atual –
dta\_nascimento)

Funcionário (nr\_mecanografico, nome, dta\_ini\_servico)

Chave primária nr\_mecanografico

Consulta (nr\_episodio, nr\_sequencial, nr\_mecanografico, hora\_ini, hora\_fim, preco) Chave primária nr\_episodio

Chave Estrangeira nr\_sequencial referencia Paciente(nr\_sequencial)
Chave Estrangeira nr\_mecanografico referencia Funcionário(nr\_mecanografico)



- Relacionamentos binários de um-para-um (1:1)
- Nestes casos, a criação de relações é mais <u>complexa</u>, porque a **cardinalidade** <u>não</u> pode ser usada para identificar as entidades pai e filho num relacionamento.
- Em vez disso, as restrições de **participação** são usadas para decidir se é preferível combinar as entidades <u>numa só relação</u> ou se é mais adequado criar <u>duas relações</u> e colocar uma cópia da chave primária de uma relação na outra:
  - (a) participação obrigatória em ambos os lados do relacionamento 1:1;
  - (b) participação obrigatória num lado do relacionamento 1:1;
  - (c) participação opcional em ambos os lados do relacionamento 1:1.



- Relacionamentos binários de um-para-um (1:1)
- (a) participação obrigatória em ambos os lados do relacionamento 1:1;
- Combinar as entidades envolvidas **numa só relação** e escolher uma das chaves primárias das entidades originais para ser a chave primária da nova relação, enquanto outra (se existir) é usada como chave candidata.



Consulta (<u>nr\_episodio</u>, preço, hora\_ini, hora\_fim, dta\_faturacao, cod\_fatura)
Chave primária nr\_episodio
Chave candidata cod\_fatura



- Relacionamentos binários de um-para-um (1:1)
- (b) participação obrigatória num lado do relacionamento 1:1;
- A entidade com **participação opcional** é designada como **entidade-pai** e a entidade com **participação obrigatória** como **entidade-filho**.
- <u>Cópia</u> da <u>chave primária</u> da **entidade pai** colocada na relação que representa a **entidade filho**.





- Relacionamentos binários de um-para-um (1:1)
- (b) participação obrigatória num lado do relacionamento 1:1;
- Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho.



Consulta (<u>nr\_episodio</u>, preço, hora\_ini, hora\_fim)
Chave primária nr\_episodio

Prescricao (<u>cod\_pres</u>, quantidade, unidade, posologia, PVP, comparticipação, dta\_prescrição, dta\_validade, nr\_episodio)

Chave primária cod\_pres

Chave estrangeira nr\_episodio referencia Consulta(nr\_episodio)



- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho. A designação das entidades pai e filho é arbitrária, a menos que se possa descobrir mais sobre o relacionamento.



Suponha que a maioria dos carros, mas não todos, sejam usados pelos funcionários e que apenas uma minoria dos funcionários use carros. A entidade Carro, embora opcional, está mais próxima de ser obrigatória do que a entidade Funcionário. Portanto, neste caso deveríamos designar o **Funcionário** como **entidade-pai** e o **Carro** como **entidade-filho**.



- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho. A designação das entidades pai e filho é arbitrária, a menos que se possa descobrir mais sobre o relacionamento.

#### **EXEMPLO:**



Funcionário (<u>num\_mecanografico</u>, nome, funcao)
Chave primária num\_mecanografico

Carro (id\_carro, marca, modelo, matricula, cor, num\_mecanografico)

Chave primária id\_carro

Chave estrangeira num\_mecanografico referencia Funcionário(num\_mecanografico)



Os relacionamentos recursivos de 1:N e N:M seguem as regras de participação de um relacionamento binário de 1:N e N:M, respetivamente.

Relacionamentos binários recursivos de um-para-um (1:1)

Os relacionamentos recursivos de 1:1 seguem as regras:

- participação obrigatória de ambos os lados: relação única com uma cópia da chave primária a agir como chave estrangeira que deve ser renomeada para facilitar a interpretação e não pode ser nula (semelhante ao relacionamento recursivo 1:N).
- participação opcional de ambos os lados: criar uma nova relação para representar o relacionamento recursivo que teria apenas dois atributos a funcionar com chave primária composta pelas duas chaves primárias que devem ser renomeadas para facilitar a interpretação e que agem também como chaves estrangeiras (semelhante ao relacionamento recursivo M:N).
- participação obrigatória em apenas um lado: opção de seguir qualquer uma das duas abordagens anteriores.

#### **→** <u>Derivar relações</u>

Relacionamentos binários recursivos de um-para-um (1:1)



Estudante (nr\_aluno, nome, tutor)
Chave primária nr\_aluno
Chave estrangeira tutor referencia
Estudante(nr\_aluno)

ou

Estudante (<u>nr\_aluno</u>, nome) Tutor (<u>nr\_aluno</u>, <u>nr\_aluno\_tutor</u>) Chave primária nr\_aluno Chave primária nr\_aluno,

Chave primária nr\_aluno,
nr\_aluno\_tutor
Chave estrangeira nr\_aluno\_tutor
referencia Estudante(nr\_aluno)
Chave estrangeira nr\_aluno
referencia Estudante(nr\_aluno)



#### Relacionamentos complexos

- Para cada <u>relacionamento complexo</u>, criar **uma relação** para representar o **relacionamento** e incluir quaisquer atributos que façam parte do relacionamento.
- Colocamos uma **cópia** da(s) **chave(s) primária(s)** das entidades que participam no relacionamento complexo na nova relação, para atuar como **chaves estrangeiras**.
- A determinação da **chave primária** da nova relação depende da cardinalidade do relacionamento complexo.

- passa a ser composta pelas **chaves primárias** das entidades que participam no relacionamento complexo e que têm cardinalidade superior a 1.



#### **→** <u>Derivar relações</u>

Relacionamentos complexos N:M:P

A nova relação tem uma chave primária composta pelas chaves primárias das entidades que

participam no relacionamento complexo.

Procedimento (<u>id\_proc</u>, nome, preço)
Chave primária id\_dproc

**Equipamento** (<u>id\_eq</u>, nome, preço) **Chave primária** id\_eq

Consulta (<u>nr\_episodio</u>, hora\_ini, hora\_fim, dta\_agendamento)
Chave primária nr\_episodio



Chave estrangeira id\_eq referencia Equipamento(id\_eq)

Consulta

hora ini

hora fim

Examinação (nr\_episodio, id\_proc, id\_eq, obs, estado, hora\_ini, hora\_fim)
Chave primária nr\_episodio, id\_proc, id\_eq
Chave estrangeira nr\_episodio referencia Consulta(nr\_episodio)
Chave estrangeira id\_proc referencia Procedimento(id\_proc)

dta agendamento

#### → <u>Derivar relações</u>

Relacionamentos complexos 1:N:M

A nova relação tem uma chave primária composta pelas chaves primárias das entidades que

participam no relacionamento complexo com cardinalidade N.

Procedimento (<u>id\_proc</u>, nome, preço)
Chave primária id\_dproc

**Equipamento** (<u>id\_eq</u>, nome, preço) **Chave primária** id\_eq

Consulta (<u>nr\_episodio</u>, hora\_ini, hora\_fim, dta\_agendamento) Chave primária nr\_episodio



**Examinação** (<u>id\_proc, id\_eq</u>, nr\_episodio, obs, estado, hora\_ini, hora\_fim) **Chave primária** <u>id\_proc, id\_eq</u>

Chave estrangeira nr\_episodio referencia Consulta(nr\_episodio)

Chave estrangeira id\_proc referencia Procedimento(id\_proc)

Chave estrangeira id\_eq referencia Equipamento(id\_eq)

#### → <u>Derivar relações</u>

#### Relacionamentos complexos 1:1:N

A nova relação tem uma chave primária composta pelas **chave primária** da entidade que participa no relacionamento complexo com cardinalidade N e a chave primária de uma das outras duas entidades, definida de forma arbitrária. Para além disso, o outro par deve ser único.

Procedimento (<u>id\_proc</u>, nome, preço)
Chave primária id\_dproc

**Equipamento** (<u>id\_eq</u>, nome, preço) **Chave primária** id\_eq

Consulta (<u>nr\_episodio</u>, hora\_ini, hora\_fim, dta\_agendamento) Chave primária nr\_episodio



Examinação (id\_proc, id\_eq, nr\_episodio, obs, estado, hora\_ini, hora\_fim)
Chave primária id\_proc, id\_eq

Chave estrangeira nr\_episodio referencia Consulta(nr\_episodio)

Chave estrangeira id\_proc referencia Procedimento(id\_proc)

Chave estrangeira id\_eq referencia Equipamento(id\_eq)

#### → <u>Derivar relações</u>

#### Relacionamentos complexos 1:1:1

A nova relação tem uma chave primária composta pelas **chaves primárias** de duas entidades que participam no relacionamento complexo, definidas de forma arbitrária. Para além disso, o outro par deve ser único.

Procedimento (id\_proc, nome, preço)
Chave primária id\_dproc

**Equipamento** (id\_eq, nome, preço) **Chave primária** id\_eq

Consulta (nr\_episodio, hora\_ini, hora\_fim, dta\_agendamento)
Chave primária nr\_episodio



Examinação (<u>id\_proc, id\_eq</u>, nr\_episodio, obs, estado, hora\_ini, hora\_fim)
Chave primária <u>id\_proc, id\_eq</u>

Chave estrangeira nr\_episodio referencia Consulta(nr\_episodio)

Chave estrangeira id\_proc referencia Procedimento(id\_proc)

Chave estrangeira id\_eq referencia Equipamento(id\_eq)



- Relacionamentos superclasse/subclasse
- Identifique a **superclasse** como **entidade pai** e a **subclasse** como **entidade filho**.
- A representação mais adequada de um relacionamento deste tipo depende do número de:
  - restrições de disjunção e participação no relacionamento superclasse/subclasse;
  - se as subclasses estão envolvidas em relacionamentos distintos;
  - número de participantes no relacionamento superclasse/subclasse.

#### → <u>Derivar relações</u>

| Restrições de<br>Participação | Restrições de Disjunção | Relações Requeridas                                                                                                             |
|-------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Obrigatória                   | Não disjunto {And}      | Relação <b>única</b> com um <b>atributo</b> para cada subclasse (flag)                                                          |
| Opcional                      | Não disjunto {And}      | Duas relações: uma relação para a superclasse e uma relação para todas as subclasses com um atributo para cada subclasse (flag) |
| Obrigatória                   | Disjunto {Or}           | Muitas relações (uma relação para cada combinação superclasse/subclasse)                                                        |
| Opcional                      | Disjunto {Or}           | Muitas relações (uma relação para a superclasse e uma para cada subclasse)                                                      |



Relacionamentos superclasse/subclasse

Muitas relações (uma relação para a Disjunto {Or} Opcional superclasse e uma para cada subclasse) nr\_mec dta\_fim telefone Administrativo Médico estado\_licença grau exerce des especialidade Especialidade preço consulta

cod especialidade



Relacionamentos superclasse/subclasse

Funcionário (nr\_mecanografico, dta\_ini, dta\_fim, nome)
Chave primária nr\_mecanografico

**Médico** (nr\_mec, estado\_licença, especialidade)

Chave primária nr\_mec

Chave estrangeira nr\_mec referencia Funcionario(nr\_mec)

Chave estrangeira cod\_especialidade referencia Especialidade(cod\_especialidade)

Administrativo (nr\_mec, grau)

Chave primária nr\_mec

Chave estrangeira nr\_mec referencia Funcionario(nr\_mec)

Especialidade (cod\_especialidade, des\_especialidade, preço\_consulta)
Chave primária cod\_especialidade



#### MySQL Workbench

1) Após a instalação, o GUI vai abrir com a configuração ao MySQL server já efetuada (assinalado na figura)



NOTA: se a conexão não aparecer, é provável que falte ou tenha falhado alguma etapa do guia de instalação



Ir ao menu inicial e clicar no separador "Models" para criar um novo esquema.





O Workbench cria então um novo esquema com o nome 'mydb'. Para alterar o nome do esquema, basta clicar duas vezes em cima de 'mydb'





Depois de configurar o nome, clicar no botão 'Add Diagram'. Uma nova janela é criada chamada 'EER Diagram'.

MySQL Workbench





## FASE 4: Modelação Lógica - MySQL

Quando estamos a construir o modelo lógico de dados no MySQL, é importante ter em consideração os seguintes aspetos:

<u>Tipo de relacionamento</u>:



Relacionamentos identificadores (linha cheia) Quando a chave primária da entidade pai é incluída na chave primária da entidade filho.



- Chave estrangeira e chave primária.



Relacionamentos não identificadores (linha tracejada)

Quando a chave primária da entidade pai é incluída na entidade filho, mas não como parte da sua chave primária.

- Chave estrangeira NOT NULL participação obrigatória no modelo conceptual
- Chave estrangeira participação opcional no modelo conceptual

• <u>Direcção do relacionamento</u>:

Os relacionamentos devem começar na relação/tabela que deve alocar a chave estrangeira.

## FASE 4: Modelação Lógica - MySQL

Valores padrão/por defeito: Devem ser usados caso se queira considerar um valor por default.



- PK (Primary Key), NN (Not Null), UQ (Unique Index), B (Binary), UN (Unsigned), ZF (Zero Fill), AI (auto increment), G (generated)
  - PK deve ser usado para atributos que são chave primária;
  - NN deve ser usado em todos os atributos de chave primária e todos os atributos que não possam ser NULL;
  - UQ deve ser aplicado sempre que há chaves candidatas, faz com que não hajam valores duplicados na tabela;
  - UN define que não podem ser inseridos valores negativos nessa coluna.
  - ZF preenche o valor definido para o campo com zeros até a largura de exibição especificada na definição da coluna.
  - Al deve ser usado para gerar automaticamente quando um novo registo é inserido numa tabela.
  - G deve ser usado para gerar atributos a partir de outros usando uma expressão.

## FASE 4: Tipos de Dados no MySQL



#### Dados Alfanuméricos

https://dev.mysql.com/doc/refman/8.0/ en/data-types.html

VARCHAR (strings de tamanho variável) vs. CHAR (strings de tamanho fixo)

- O comprimento de dados do tipo CHAR e VARCHAR indica o nº máximo de caracteres que é possível armazenar;
- Os dados do tipo CHAR são <u>preenchidos</u> à direita com <u>espaços em branco</u> para o comprimento especificado.

| Valor  | CHA        | R(4)    | VARC   | <b>HAR(4)</b> |
|--------|------------|---------|--------|---------------|
| "      | <b>'</b> ' | 4 bytes | //     | 1 byte        |
| 'AB'   | 'AB'       | 4 bytes | 'AB'   | 3 bytes       |
| 'ABC'  | 'ABC_'     | 4 bytes | 'ABC'  | 4 bytes       |
| 'ABCD' | 'ABCD'     | 4 bytes | 'ABCD' | 5 bytes       |

O VARCHAR usa 1 ou 2 bytes de memória adicionais para tamanho ou para marcar o fim dos dados.

#### Para armazenar textos mais longos:

- TEXT
- TINYTEXT
- MEDIUMTEXT
- LONGTEXT

# FASE 4: Tipos de Dados no MySQL



#### Dados Alfanuméricos

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

- O tipo ENUM é um objeto de string cujo valor é seleccionado a partir de um conjunto de valores permitidos que são definidos explicitamente no momento de criação da coluna.

#### **EXEMPLO**:

prioridade ENUM('Não Urgente', 'Pouco Urgente', 'Urgente', 'Muito Urgente', 'Emergente') NOT NULL);

A coluna prioridade aceitará apenas a inserção de um dos cinco valores definidos. O MySQL mapeia cada membro de enumeração para um índice numérico. Neste caso, 'Não Urgente', 'Pouco Urgente', 'Urgente', 'Muito Urgente' e 'Emergente' são mapeados para 1, 2, 3, 4 e 5 respectivamente.

- O tipo **SET** é um objeto string que pode ter zero ou mais valores, cada um dos quais deve ser escolhido a partir de um conjunto de valores especificados quando a tabela é criada.

#### **EXEMPLO**:

tipo SET('A', 'B') NOT NULL);

A coluna tipo aceitará a inserção de ", 'A', 'B' ou 'A,B'. O MySQL armazena valores SET numericamente, com o bit de ordem inferior do valor armazenado correspondendo ao primeiro membro do conjunto.

#### Tipos de Dados no MySQL



Dados de Data/Hora

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

| Tipo de Dados | Notação             |
|---------------|---------------------|
| <u>DATE</u>   | YYYY-MM-DD          |
| <u>TIME</u>   | hh:mm:ss            |
| DATETIME*     | YYYY-MM-DD hh:mm:ss |
| TIMESTAMP**   | YYYY-MM-DD hh:mm:ss |
| YEAR          | YYYY                |

O intervalo suportado varia de '1000-01-01 00:00:00' a '9999-12-31 23:59:59'.

<sup>\*\*</sup> O intervalo suportado varia de '1970-01-01 00:00:01' a '2038-01-19 03:14:07'.

### Tipos de Dados no MySQL



#### Dados Numéricos

https://dev.mysql.com/doc/refman/8.0 /en/data-types.html

Fixed-Point Types (Exact Value) - DECIMAL

O tipo DECIMAL armazena valores de dados numéricos exatos. Este tipo de dados é usado quando é importante preservar a precisão exata, por exemplo, com dados monetários.

DECIMAL(n,m)

n – precisão - representa o número de dígitos significativos que são armazenados. m – escala - representa o número de dígitos que podem ser armazenados após o ponto decimal.

**Exemplo:** 105,98€ -> DECIMAL (5,2)



#### Ficha de Excercícios PLO5:

Questão 2

#### Ficha de Excercícios PLO6:

Questão 1

#### Restrições de Integridade

|               | Paciente                     |      |                |     |
|---------------|------------------------------|------|----------------|-----|
| nr_sequencial | nome                         | sexo | dta_nascimento | ••• |
| 323431        | Ana Luísa Dias Gomes         | F    | 20/12/1990     |     |
| 453347        | José da Costa Silva          | М    | 03/05/1975     |     |
| 212423        | Maria Leonor Ribeiro Barbosa | Fem  | 12/07/2000     |     |
|               | •••                          |      |                | ••• |

X Integridade Referencial

X Integridade de Domínio

|             |        |        |                        | Consulta               |           |          |        |
|-------------|--------|--------|------------------------|------------------------|-----------|----------|--------|
| nr_episodio | id_pac | id_med | hora_ini               | hora_fim               | id_agenda | cod_proc | id_sec |
| 12345678    | 212423 | 3456   | 2022-01-23<br>10:18:17 | 2022-01-23<br>10:38:27 | 123456789 | P22      | 1212   |
| 14451643    | 453347 | 3224   | 2022-01-25<br>08:35:23 | 2022-01-25<br>09:00:12 | 223212434 | P23      | 1598   |
| 14451643    | 212423 | 3371   | 2022-02-02<br>09:00:33 | 2022-02-02<br>09:15:20 | 345567811 | NULL     | 1479   |
| 13415324    | 123456 | 3834   | 2022-02-04<br>12:34:11 | 2022-02-04<br>13:00:00 | 433212456 | P22      | 1234   |
| NULL        | 323431 | NULL   | 2022-02-12<br>11:20:23 | 2022-02-12<br>11:52:33 | 387612392 | P24      | 1176   |
| •••         | •••    | •••    | •••                    |                        | •••       | •••      |        |

Integridade de Entidade

X Integridade de Entidade



?



A normalização de dados baseia-se na análise das **chaves primárias** e das **dependências funcionais** de todos os seus atributos.

É um processo **progressivo**, que assenta na execução de uma série de etapas, cada uma delas correspondendo a uma **forma normal** específica com critérios de validação cada vez mais fortes.

Através da sua aplicação, os atributos de um dado modelo de dados são organizados para assegurar a coesão dos tipos das entidades envolvidas, minimizando ou mesmo eliminando duplicação de dados, melhorando a eficiência de armazenamento, a integridade e a escalabilidade dos dados.

#### **Formas Normais**

O processo de normalização é **progressivo**, ou seja, cada um dos níveis superiores de normalização é um subconjunto do respetivo nível inferior.





#### Primeira Forma Normal – 1FN

#### Diz-se que uma relação está na 1FN se:

- 1. Possuir uma chave primária.
- 2. Todos os seus atributos forem <u>atómicos</u>. Não são permitidos atributos que implicitamente codificam subatributos (atributos compostos) ou atributos multivalor.
- 3. Não possuir grupos de dados repetitivos.

Na prática, podemos dizer que uma relação está na 1FN se as interseções entre colunas (atributos) e linhas (registos) possuírem um único valor – um valor atómico.



#### Primeira Forma Normal – 1FN

#### Aplicação da 1FN:

Passo 1: Uma das chaves candidatas é escolhida para chave primária.

<u>Passo 2:</u> Atributos multivalor são convertidos em novas relações com chave externa referindo a chave primária da tabela original.

Passo 3: Cada atributo composto é mapeado em vários sub-atributos atómicos.



Diz-se que uma relação está na segunda forma normal (2FN) se:

- 1. A relação estiver também na 1FN.
- 2. Todos os seus atributos <u>não-primos</u> forem **totalmente dependentes** da sua chave primária. Isto é, não podem existir **dependências parciais**. Diz-se que um atributo é <u>não-primo</u> quando este não faz parte de uma chave primária.



#### O que é uma dependência funcional?

As dependências funcionais determinam a forma como se pode interpretar e relacionar os dados e permitem especificar medidas formais sobre a correção dos esquemas relacionais.

Na prática, a dependência funcional **A1** → **A2** entre dois conjuntos de atributos de uma relação significa que:

- <u>para cada valor de A1</u>, existe <u>apenas um</u> valor possível para A2, por isso diz-se que A2 é funcionalmente de A1 ou que A1 determina funcionalmente A2;
- valores iguais para A1, determinam valores iguais para A2.



Aplicando a análise de dependências funcionais:

Alunos(id\_aluno, nome\_aluno, cod\_curso, nome\_curso)

Notas(id\_aluno, cod\_dis, nome\_dis, nota, cod\_prof, nome\_prof, dep\_prof)

Diagrama de Dependências

```
id_aluno → nome_aluno, cod_curso
cod_curso → nome_curso
{id_aluno, cod_dis} → nota
cod_disc → nome_dis, cod_prof
cod_prof → nome_prof, dep_prof
```

A tabela Alunos está na 2FN, mas a Notas não!



#### → Segunda Forma Normal – 2FN

Diagrama de Dependências

{id\_aluno, cod\_dis} → nota  $cod\_disc \rightarrow nome\_dis, cod\_prof$ cod\_prof → nome\_prof, dep\_prof

Notas(id\_aluno, cod\_dis, nome\_dis, nota, cod\_prof, nome\_prof, dep\_prof)

| <u>id_aluno</u> | <u>cod_dis</u> | nome_dis                | nota | cod_prof | nome_prof      | dep_prof         |
|-----------------|----------------|-------------------------|------|----------|----------------|------------------|
| 001             | D01            | Bases de Dados          | 16   | PO1      | Maria do Carmo | Dep. Informática |
| 001             | DO2            | Criptografia            | 12   | PO2      | Paulo Gomes    | Dep. Informática |
| 002             | D01            | Bases de Dados          | 17   | PO1      | Maria do Carmo | Dep. Informática |
| 002             | D03            | Lógica<br>Computacional | 14   | PO3      | Tiago Pinho    | Dep. Sistemas    |
|                 |                |                         | •••  |          |                |                  |





Disciplinas(cod\_dis, nome\_dis, cod\_prof, nome\_prof, dep\_prof)

| Notas           |
|-----------------|
| <u>id_aluno</u> |
| <u>cod_dis</u>  |
| nota            |

(001, 'D01', 16) (001,'D02', 12) (002,'D01', 17) (002,'D03', 14)

| Disciplinas |
|-------------|
| cod_dis     |
| nome_dis    |
| cod_prof    |
| nome_prof   |
| dep_prof    |



#### → Terceira Forma Normal – 3FN

#### Diz-se que uma relação está na 3FN se:

- 1. A relação estiver também na 1FN e na 2FN.
- 2. Todos os seus atributos que não sejam chaves primárias sejam mutuamente independentes, não havendo assim **dependências funcionais transitivas**. Por outras palavras, numa relação na 3FN, todos os atributos dependem única e exclusivamente da chave primária.

Na prática, isto significa que os atributos que não dependam da chave primária devem ser "eliminados" da relação, ou seja, devem ser transferidos para outra tabela.



#### → Terceira Forma Normal – 3FN

Na prática, a dependência funcional  $A1 \rightarrow A2$ ,  $A3 \in A3 \rightarrow A4$  entre os atributos de uma relação significa que:

Existe uma <u>dependência funcional transitiva</u> entre A1 e A4. Ou seja os atributos que não são chave primária, não são mutuamente independentes entre si.

Aplicando a análise de dependências funcionais ao caso de estudo anterior:

Diagrama de Dependências

Alunos(id\_aluno, nome\_aluno, cod\_curso, nome\_curso)

Notas(id\_aluno, cod\_dis, nota)

Disciplinas(cod\_dis, nome\_dis, cod\_prof, nome\_prof, dep\_prof)

A tabela Alunos e Disciplinas não estão na 3FN!

id\_aluno → nome\_aluno, cod\_curso cod\_curso → nome\_curso {id\_aluno, cod\_dis} → nota cod\_disc → nome\_dis, cod\_prof cod\_prof → nome\_prof, dep\_prof



#### → Terceira Forma Normal – 3FN

Alunos(id\_aluno, nome\_aluno, cod\_curso, nome\_curso)

|   | <u>id_aluno</u> | <u>nome_aluno</u> | cod_curso | nome_curso |
|---|-----------------|-------------------|-----------|------------|
|   | 001             | João Ferreira     | CO1       | MIEI       |
|   | 001             | João Ferreira     | CO1       | MIEI       |
| _ | 002             | Rita Abreu        | CO1       | MIEI       |
|   | 002             | Rita Abreu        | CO1       | MIEI       |
|   | •••             | ***               | •••       | •••        |

Diagrama de Dependências

id\_aluno → nome\_aluno, cod\_curso cod\_curso → nome\_curso





#### → Terceira Forma Normal – 3FN

Diagrama de Dependências

cod\_disc → nome\_dis, cod\_prof

cod\_prof → nome\_prof, dep\_prof

Disciplinas(cod\_dis, nome\_dis, cod\_prof, nome\_prof, dep\_prof)

| <u>cod_dis</u> | nome_dis                | cod_prof | nome_prof      | dep_prof         |
|----------------|-------------------------|----------|----------------|------------------|
| D01            | Bases de Dados          | PO1      | Maria do Carmo | Dep. Informática |
| D02            | Criptografia            | PO2      | Paulo Gomes    | Dep. Informática |
| D01            | Bases de Dados          | PO1      | Maria do Carmo | Dep. Informática |
| DO3            | Lógica<br>Computacional | PO3      | Tiago Pinho    | Dep. Sistemas    |

Dependência Transitiva



#### → Terceira Forma Normal – 3FN



Disciplinas **Disciplinas** 3FN **Professores** 

Alunos(id\_aluno, nome\_aluno, cod\_curso)

| Alunos          |
|-----------------|
| <u>id_aluno</u> |
| nome_aluno      |
| cod_curso       |

Disciplinas(cod\_dis, nome\_dis, cod\_prof)

| Disciplinas |
|-------------|
| cod_dis     |
| nome_dis    |
| cod_prof    |

Cursos(cod\_curso, nome\_curso)

| Cursos           |
|------------------|
| <u>cod_curso</u> |
| nome_curso       |

Professores(cod\_prof, nome\_prof, dep\_prof)

| Professores     |
|-----------------|
| <u>cod_prof</u> |
| nome_prof       |
| dep_prof        |



#### → Terceira Forma Normal – 3FN

Alunos(id\_aluno, nome\_aluno, cod\_curso)

| Alunos          |
|-----------------|
| <u>id_aluno</u> |
| nome_aluno      |
| cod_curso       |

| Disciplinas    |
|----------------|
| <u>cod_dis</u> |
| nome_dis       |
| cod_prof       |

Cursos(cod\_curso, nome\_curso)

| Cursos     |
|------------|
| cod_curso  |
| nome_curso |

Diagrama de Dependências

| id_aluno → nome_aluno, cod_curso |
|----------------------------------|
| cod_curso → nome_curso           |
| {id_aluno, cod_dis} → nota       |
| cod_disc → nome_dis, cod_prof    |
| cod_prof → nome_prof, dep_prof   |

| Disciplinas     |
|-----------------|
| <u>cod_prof</u> |
| nome_prof       |
| dep_prof        |

As relações encontram-se na 3FN!