

Publication Bias in Cochrane Meta-Analyses

Giuachin Kreiliger

Publication Bias

- Preference of journal editors to publish significant study results
- ightarrow non-significant results remain in file-drawer

Systematic Reviews

- Summarise all evidence with regard to treatment with meta-analysis
- Biased if non-significant results are not available and included

Funnel Plot

Look for funnel plot asymmetry:

Funnel Plot

Effects with large standard errors have larger effect sizes (because they are only published if significant)

Detect Publication Bias

- Small study effect tests (funnel plot asymmetry)
- Excess significance tests

Excess Significance Test

Calculate power of each study, given that true effect size is fixed effects meta-analysis estimate.

Calculate:

$$p = \sum_{i=0}^{n} \left(\binom{n}{i} p^{i} (1-p)^{n-i} \right)$$

O = observed no. of significant results, *E* expected based on power of studies.

Analysis

- Use meta-analyses from Cochrane.
- "The single most reliable source of evidence in clinical science

Analyse meta-analyses with publication bias tests.

The Cochrane Dataset

Inital dataset: 6,354 reviews, 70,662 studies, 744,720 results

exclusion of unsuitable meta-analyses

Analysis dataset: 738 reviews, 14,320 studies, 22,937 results

The Analysis dataset

Small Study Effect Tests

Weighted linear regression with std. error x_i and effect size y_i :

$$y_i = \beta_0 + \beta_1 x_i + \epsilon,$$
 $\epsilon \sim N(0, x_i \sigma^2)$

Test for $H0: \beta_1 = 0$, no funnel plot asymmetry

Adjustments for Binary Data

As recommended by Sterne et al. (2001)

- Log odds ratio and risk ratio θ and standard error se_{θ} are not independent
- Use score of binomial likelihood at log odds ratio $\theta_{H0}= \text{0 instead of log odds ratio and the inverse Fisher information instead of } \text{se}_{\theta}$

Small Study Effect Tests

Excess Significance Test

Excess Significance lest

References

Sterne, J. A. C., Egger, M., and Smith, G. D. (2001). Investigating and dealing with publication and other biases in meta-analysis. *BMJ*, 323(7304):101–105.