scientistmetrics

version 0.0.2

Duvérier DJIFACK ZEBAZE

Table des matières

1	powersetmodel function	1
	1.1 powersetmodel with linear regression	1
	1.1.1 Datasets	1

powersetmodel function

powersetmodel is a function that return all subsets models giving a set a variables as features. This first version is based under linear regression and logistic regression.

1.1 powersetmodel with linear regression

1.1.1 Datasets

Considering Medical insurance costs dataset. This datasets was inspired by the book Machine Learning with R by @ . The data contains medical information and costs billed by health insurance companies. It contains 1338 rows of data and the following columns : age, gender, BMI, children, smoker, region and insurance charges.

```
# Load dataset
import pandas as pd
insurance = pd.read_csv("./donnee/insurance.csv",sep=",")
print(insurance.info())
## <class 'pandas.core.frame.DataFrame'>
## RangeIndex: 1338 entries, 0 to 1337
## Data columns (total 7 columns):
        Column
                 Non-Null Count Dtype
##
## ---
## 0
                  1338 non-null
                                  int64
       age
##
                 1338 non-null
                                 object
   1
       sex
## 2
       bmi
                 1338 non-null
                                 float64
       children 1338 non-null
## 3
                                 int64
## 4
       smoker
                 1338 non-null
                                 object
##
   5
       region
                 1338 non-null
                                  object
       charges
                 1338 non-null
                                 float64
## dtypes: float64(2), int64(2), object(3)
## memory usage: 73.3+ KB
## None
```

1.1.1.1 Columns description

- age: age of primary beneficiary
- sex : insurance contractor gender, female, male
- bmi : Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg/m^2) using the ratio of height to weight, ideally 18.5 to 24.9
- children : Number of children covered by health insurance / Number of dependents
- smoker: Smoking
- region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.
- charges: Individual medical costs billed by health insurance

The dataset in available on https://github.com/stedy/Machine-Learning-with-R-datasets.

Now, let load the powersetmodel function

```
# Load function
# Powerset
from scientistmetrics import powersetmodel

Let explains « charges » using other features

# Powerset model
ols_res = powersetmodel(DTrain=insurance,target="charges")

Check the length of the « ols_res » variables.

# Len of element
len(ols_res)

## 2
```

The function return two éléments :

- The first element is a list a all subsets train models
- The second element is a dataframe of result.

Summary of first model.

```
2023-08-25 00:26 BIC:
## Date:
                                                    20208.5257
## No. Observations: 936 Log-Likelihood: -10097.
## Df Model: 1 F-statistic: 79.67
## Df Residuals: 934 Prob (F-statistic): 2.30e-18
## R-squared: 0.079 Scale: 1.3761e+08
## -----
               Coef. Std.Err. t P>|t| [0.025 0.975]
## -----
## Intercept 3793.3197 1145.6379 3.3111 0.0010 1544.9971 6041.6423
              246.3784 27.6026 8.9259 0.0000 192.2082 300.5486
## -----
## Omnibus: 283.356 Durbin-Watson: 1.994
## Prob(Omnibus): 0.000 Jarque-Bera (JB): 612.786
## Skew: 1.727 Prob(JB): 0.000
## Kurtosis:
                     4.944
                                 Condition No.:
                                                       124
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors
## is correctly specified.
## """
The second datasets
# Second elemnt
ols_metrics = ols_res[1]
print(ols_metrics.columns)
## Index(['predictor', 'count', 'aic', 'bic', 'rsquared', 'adj. rsquared',
         'expl. var. score', 'max error', 'mean abs. error', 'mean sq. error',
##
         'median abs. error', 'r2 score', 'mean abs. percentage error',
##
        'likelihood test ratio'],
##
        dtype='object')
print(ols_metrics)
##
                            predictor ... likelihood test ratio
## 0
                                 age ...
                                           1137.252767
## 1
                                                  1210.243862
                                 sex ...
## 2
                                 bmi ...
                                                  1175.417401
                             children ...
## 3
                                                  1208.071940
## 4
                                                  359.954462
                               smoker ...
## ..
                                                        . . .
                                                    7.099104
             smoker+bmi+sex+age+region ...
## 58
## 59
        smoker+children+sex+age+region ...
                                                    92.183682
## 60
         smoker+children+bmi+age+region ...
                                                     0.000239
                                                  257.160460
## 61
          smoker+children+bmi+sex+region ...
## 62 smoker+children+bmi+sex+age+region ...
                                                    0.000000
##
## [63 rows x 14 columns]
```