

Neural Networks for sentence classification

Ambrosini Luca

luca.ambrosini@supsi.ch

Nicolò Giancarlo

giani1@inf.upv.es

- Task
- Classification system:
 - Pre-processing
 - Text representation
 - Models
- Comparative study
- Results
- Conclusions

Task

- Classification Of Spanish Election Tweets
- 5 categories
 - Political issues
 - Policy issues
 - Personal issues
 - Campaign issues
 - Other issues

Dataset statistics

- 2242+250 labelled tweets
- Average sequence length:
 - 135 chars
 - 24 words
- Max sequence length:
 - 140 chars
 - 49 words

Metrics

$$F_{1-macro} = \frac{1}{|L|} \sum_{l \in L} F_1(y_l, \hat{y}_l)$$

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

First approaches

- Text representations:
 - Bag of words + TF-IDF
 - Bag of n-grams (bigrams, trigrams) + TF-IDF
- Classifiers:
 - Random Forest
 - Multi Layer Perceptron
 - Support Vector Machines

Pre-processing

- Stemming
- Stop words removal
- URLs
- Reserved words
- Emoji-Smiley
- Mentions
- Hashtags
- Numbers

I am @Ambros © #atoppe http://google.com

I am \$MENTION \$EMOJI \$HASHTAG

Word embeddings

- LSTM
- Bi-LSTM
- CNN
- FastText
- Kim

FastText

l love deep learning (l,love) (love,deep) (deep,learning)

Comparative study

- Pre-processing
- Transfer learning

• 10-fold cross-validations

Comparative study

- Pre-processing
- Transfer learning

• 10-fold cross-validations

Pre-processing

Pre-processing

Pre-processing

Comparative study

- Pre-processing
- Transfer learning

• 10-fold cross-validations

Transfer Learning

Overview

System	F _{1-macro}	
LSTM	0,556 (±0.012)	
Bi-LSTM	0,555 (±0.035)	
CNN	0,571 (±0.030)	
FastText	0,589 (±0.018)	
Kim	m 0,579 (±0.009)	

TASK RESULTS

Rank	ing	System	Е
Absolute	Team	System	F _{1-macro}
1	1	EliRF-UPV – run 1	0,6482
2	1	EliRF-UPV – run 4	0,6400
3	2	LuSer – run 1	0,6337
4	1	EliRF-UPV – run 3	0,6330
5	1	EliRF-UPV – run 2	0,6233
6	3	Puigcerver – run 1	0,6176
7	4	atoppe – run 3 (fastText)	0,6157
8	4	atoppe – run 2 (kim)	0,6065

Conclusions

- Pre-processing pipeline depends on model
- Transfer learning does work
- Simpler model performs better
- Word order seems not to be important

Thank you!

Questions?