Package 'autoScorecard'

June 13, 2023

Type Package
Title Fully Automatic Generation of Scorecards
Version 0.3.0
Maintainer Tai-Sen Zheng <jc3802201@gmail.com></jc3802201@gmail.com>
Description Provides an efficient suite of R tools for scorecard modeling, analysis, and visualization. Including equal frequency binning, equidistant binning, K-means binning, chisquare binning, decision tree binning, data screening, manual parameter modeling, fully automatic generation of scorecards, etc. This package is designed to make scorecard development easier and faster. References include: 1. http://shichen.name/posts/ >. 2. Dong-feng Li(Peking University),Class PPT. 3. https://zhuanlan.zhihu.com/p/389710022 >. 4. https://www.zhangshengrong.com/p/2810qR9JNw/ >.
License AGPL-3
Encoding UTF-8
Imports infotheo, ROCR, rpart, discretization, stats, graphics, grDevices, corrplot, ggplot2 RoxygenNote 7.2.3
Depends R (>= 2.10)
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Tai-Sen Zheng [aut, cre]
Repository CRAN
Date/Publication 2023-06-13 08:50:10 UTC
R topics documented:
auto_scorecard

auto_scorecard

	best_iv	4
	best_vs	4
	binning_eqfreq	5
	binning_eqwid	6
	binning_kmean	7
	bins_chim	7
	bins_tree	8
	bins_unsupervised	9
	comparison_two	10
	comparison_two_data	11
	data_detect	11
	filter_var	12
	get_IV	13
	noauto_scorecard	14
	noauto_scorecard2	15
	plot_board	16
	psi_cal	17
	rep_woe	18
Index		19

 $auto_scorecard$

Functions to Automatically Generate Scorecards

Description

Functions to Automatically Generate Scorecards

Usage

```
auto_scorecard(
  feature = accepts,
 key_var = "application_id",
 y_var = "bad_ind",
  sample_rate = 0.7,
 base0 = FALSE,
 points0 = 600,
 odds0 = 1/20,
  pdo = 50,
  k = 2,
 max_depth = 3,
  tree_p = 0.1,
 missing_rate = 0,
  single_var_rate = 1,
  iv_set = 0.02,
 char_to_number = TRUE,
  na.omit = TRUE
)
```

auto_scorecard 3

Arguments

feature A data.frame with independent variables and target variable.

key_var A name of index variable name.

y_var A name of target variable.

sample_rate Training set sampling percentage.

base0 Whether the scorecard base score is 0.

points0 Base point.

odds0 odds.

pdo Point-to Double Odds.

k Each scale doubles the probability of default several times.

max_depth Set the maximum depth of any node of the final tree, with the root node counted

as depth 0. Values greater than 30 rpart will give nonsense results on 32-bit

machines.

tree_p Meet the following conversion formula: minbucket = round(p*nrow(df)).Small-

est bucket(rpart):Minimum number of observations in any terminal <leaf> node.

missing_rate Data missing rate, variables smaller than this setting will be deleted.

single_var_rate

The maximum proportion of a single variable, the variable greater than the set-

ting will be deleted.

iv_set IV value minimum threshold, variable IV value less than the setting will be

deleted.

char_to_number Whether to convert character variables to numeric.

na.omit returns the object with incomplete cases removed.

Value

A list containing data, bins, scorecards and models.

```
accepts <- read.csv(system.file("extdata", "accepts.csv", package = "autoScorecard" ))
auto_scorecard1 <- auto_scorecard( feature = accepts[1:2000,], key_var= "application_id",
y_var = "bad_ind",sample_rate = 0.7, points0 = 600, odds0=1/20, pdo = 50, max_depth = 3,
tree_p = 0.1, missing_rate = 0, single_var_rate = 1, iv_set = 0.02,
char_to_number = TRUE , na.omit = TRUE)</pre>
```

4 best_vs

best_iv

Calculate the Best IV Value for the Binned Data

Description

Calculate the Best IV Value for the Binned Data

Usage

```
best_iv(df, variable, bin, method, label_iv)
```

Arguments

df A data.frame with independent variables and target variable.

variable Name of variable.
bin Name of bins.
method Name of method.
label_iv Name of IV.

Value

A data frame of best IV, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

Examples

```
accepts <- read.csv( system.file( "extdata" , "accepts.csv" , package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
f_1 <-bins_unsupervised( df = feature , id="application_id" , label="bad_ind" ,
methods = c("k_means", "equal_width","equal_freq" ) , bin_nums=10 )
best1 <- best_iv( df=f_1 ,bin=c('bins') , method = c('method') ,
variable= c( "variable" ) ,label_iv='miv' )</pre>
```

best_vs

The Combination of Two Bins Produces the Best Binning Result

Description

The Combination of Two Bins Produces the Best Binning Result

Usage

```
best_vs(df1, df2, variable = "variable", label_iv = "miv")
```

binning_eqfreq 5

Arguments

df1 A binned data.
df2 A binned data.

variable A name of X variable.

label_iv A name of target variable.

Value

A data frame of best IV.

Examples

```
accepts <- read.csv(system.file( "extdata", "accepts.csv", package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
all2 <- bins_tree(df = feature, key_var= "application_id", y_var= "bad_ind"
, max_depth = 3, p = 0.1 )
f_1 <-bins_unsupervised( df = feature , id="application_id" , label="bad_ind" ,
methods = c("k_means", "equal_width","equal_freq" ) , bin_nums=10 )
best1 <- best_iv( df=f_1 ,bin=c('bins') , method = c('method') ,
variable= c( "variable" ) ,label_iv='miv' )
vs1 <- best_vs( df1 = all2[,-c(3)], df2 = best1[,-c(1:2)], variable="variable" ,label_iv='miv' )</pre>
```

binning_eqfreq

Equal Frequency Binning

Description

Equal Frequency Binning

Usage

```
binning_eqfreq(df, feat, label, nbins = 3)
```

Arguments

df A data.frame with independent variables and target variable.

feat A name of dependent variable.

label A name of target variable.

nbins Number of bins,default:3.

Value

A data frame, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

6 binning_eqwid

Examples

```
accepts <- read.csv( system.file( "extdata", "accepts.csv", package ="autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
binning_eqfreq1 <- binning_eqfreq( df= feature, feat= 'tot_derog', label = 'bad_ind', nbins = 3)</pre>
```

binning_eqwid

Equal Width Binning

Description

Equal Width Binning

Usage

```
binning_eqwid(df, feat, label, nbins = 3)
```

Arguments

df A data.frame with independent variables and target variable.

feat A name of dependent variable.

label A name of target variable.

nbins Number of bins,default:3.

Value

A data frame, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

```
accepts <- read.csv( system.file( "extdata", "accepts.csv" , package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
binning_eqwid1 <- binning_eqwid( df = feature, feat = 'tot_derog', label = 'bad_ind', nbins = 3 )</pre>
```

binning_kmean 7

binning_kmean	The K-means Binning The k-means binning method first gives the center number, classifies the observation points using the Euclidean distance calculation and the distance from the center point, and then recalculates the center point until the center point no longer changes,
	and uses the classification result as the binning of the result.

Description

The K-means Binning The k-means binning method first gives the center number, classifies the observation points using the Euclidean distance calculation and the distance from the center point, and then recalculates the center point until the center point no longer changes, and uses the classification result as the binning of the result.

Usage

```
binning_kmean(df, feat, label, nbins = 3)
```

Arguments

df A	A data.frame with	independent	variables an	d target variable.
------	-------------------	-------------	--------------	--------------------

feat A name of index variable name.

label A name of target variable.

nbins Number of bins, default: 3.

Value

A data frame, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

Examples

```
accepts <- read.csv( system.file( "extdata" , "accepts.csv" , package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
ddd <- binning_kmean( df = feature, feat= 'loan_term', label = 'bad_ind', nbins = 3)</pre>
```

bins_chim Chi-Square Binning Chi-square binning, using the ChiMerge algorithm for bottom-up merging based on the chi-square test.

Description

Chi-Square Binning Chi-square binning, using the ChiMerge algorithm for bottom-up merging based on the chi-square test.

8 bins_tree

Usage

```
bins_chim(df, key_var, y_var, alpha)
```

Arguments

df A data.frame with independent variables and target variable.

key_var A name of index variable name.
y_var A name of target variable.

alpha Significance level(discretization);

Value

A data frame, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

Examples

```
accepts <- read.csv( system.file( "extdata", "accepts.csv" , package = "autoScorecard" ))
feature2 <- stats::na.omit( accepts[1:200,c(1,3,7:23)] )
all3 <- bins_chim( df = feature2 , key_var = "application_id", y_var = "bad_ind" , alpha=0.1 )</pre>
```

bins_tree Automatic Binning Based on Decision Tree Automatic Binning Based

on Decision Tree(rpart).

Description

Automatic Binning Based on Decision Tree Automatic Binning Based on Decision Tree(rpart).

Usage

```
bins_tree(df, key_var, y_var, max_depth = 3, p = 0.1)
```

Arguments

df A data.frame with independent variables and target variable.

key_var A name of index variable name.
y_var A name of target variable.

max_depth Set the maximum depth of any node of the final tree, with the root node counted

as depth 0. Values greater than 30 rpart will give nonsense results on 32-bit

machines.

p Meet the following conversion formula: minbucket = round(p*nrow(df)).Smallest

bucket(rpart):Minimum number of observations in any terminal <leaf> node.

bins_unsupervised 9

Value

A data frame, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

Examples

```
accepts <- read.csv(system.file( "extdata", "accepts.csv", package = "autoScorecard" )) feature <- stats::na.omit( accepts[,c(1,3,7:23)] ) all2 <- bins_tree(df = feature, key_var= "application_id", y_var= "bad_ind" , max_depth = 3, p = 0.1 )
```

bins_unsupervised

Unsupervised Automatic Binning Function By setting bin_nums, perform three unsupervised automatic binning

Description

Unsupervised Automatic Binning Function By setting bin_nums, perform three unsupervised automatic binning

Usage

```
bins_unsupervised(
   df,
   id,
   id,
   label,
   methods = c("k_means", "equal_width", "equal_freq"),
   bin_nums
)
```

Arguments

df A data.frame with independent variables and target variable.

id A name of index.

label A name of target variable.

methods Simultaneously calculate three kinds of unsupervised binning("k_means","equal_width","equal_freq"

), the parameters only determine the final output result.

bin_nums Number of bins.

Value

A data frame, including the contents of the bin, the upper bound of the bin, the lower bound of the bin, and all the contents returned by the get_IV function.

10 comparison_two

Examples

comparison_two

Compare the Distribution of the Two Variable Draw box plots, cdf plot , QQ plots and histograms for two data.

Description

Compare the Distribution of the Two Variable Draw box plots, cdf plot , QQ plots and histograms for two data.

Usage

```
comparison_two(var_A, var_B, name_A, name_B)
```

Arguments

var_A A variable.
var_B A variable.
name_A The name of data A.
name_B The name of data B.

Value

No return value, called for side effects

```
accepts <- read.csv(system.file("extdata", "accepts.csv", package = "autoScorecard" ))
comparison_two( var_A = accepts$purch_price ,var_B = accepts$tot_rev_line ,
name_A = 'purch_price' , name_B = "tot_rev_line" )</pre>
```

comparison_two_data 11

comparison_two_data

Compare the Distribution of the Two Data

Description

Compare the Distribution of the Two Data

Usage

```
comparison_two_data(df1, df2, key_var, y_var)
```

Arguments

df1 A data.

key_var A name of index variable name.

y_var A name of target variable.

Value

No return value, called for side effects

Examples

```
accepts <- read.csv( system.file( "extdata", "accepts.csv" , package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
d = sort( sample( nrow( feature ), nrow( feature )*0.7))
train <- feature[d,]
test <- feature[-d,]
comparison_two_data( df1 = train , df2 = test ,
key_var = c("application_id", "account_number"), y_var="bad_ind" )</pre>
```

data_detect

Data Description Function

Description

Data Description Function

Usage

```
data_detect(df, key_var, y_var)
```

12 filter_var

Arguments

df A data.

key_var A name of index variable name. y_var A name of target variable.

Value

A data frame of data description.

Examples

```
accepts <- read.csv(system.file("extdata", "accepts.csv", package = "autoScorecard" ))
aaa <- data_detect( df = accepts, key_var = c("application_id", "account_number") ,
    y_var = "bad_ind" )</pre>
```

filter_var

Data Filtering

Description

Data Filtering

Usage

```
filter_var(
   df,
   key_var,
   y_var,
   missing_rate,
   single_var_rate,
   iv_set,
   char_to_number = TRUE,
   na.omit = TRUE
```

Arguments

df A data.frame with independent variables and target variable.

key_var A name of index variable name.

y_var A name of target variable.

missing_rate Data missing rate, variables smaller than this setting will be deleted.

single_var_rate

The maximum proportion of a single variable, the variable greater than the set-

ting will be deleted.

iv_set IV value minimum threshold, variable IV value less than the setting will be

deleted.

get_IV 13

```
char_to_number Whether to convert character variables to numeric.

na.omit na.omit returns the object with incomplete cases removed.
```

Value

A data frame.

Examples

```
accepts <- read.csv( system.file( "extdata" , "accepts.csv",package = "autoScorecard" ))
fff1 <- filter_var( df = accepts, key_var = "application_id", y_var = "bad_ind", missing_rate = 0,
single_var_rate = 1, iv_set = 0.02 )</pre>
```

get_IV

Function to Calculate IV Value

Description

Function to Calculate IV Value

Usage

```
get_IV(df, feat, label, E = 0, woeInf.rep = 1e-04)
```

Arguments

df A data.frame with independent variables and target variable.

feat A name of dependent variable.

label A name of target variable.

E Constant, should be set to [0,1], used to prevent calculation overflow due to no

data in binning.

woeInf.rep Woe replaces the constant, and when woe is positive or negative infinity, it is

replaced by a constant.

Value

A data frame including counts, proportions, odds, woe, and IV values for each stratum.

```
accepts <- read.csv( system.file( "extdata", "accepts.csv", package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
iv1 = get_IV( df= feature ,feat ='tot_derog' , label ='bad_ind' )</pre>
```

14 noauto_scorecard

noauto_scorecard

Manually Input Parameters to Generate Scorecards

Description

Manually Input Parameters to Generate Scorecards

Usage

```
noauto_scorecard(
  bins_card,
  fit,
  bins_woe,
  points0 = 600,
  odds0 = 1/19,
  pdo = 50,
  k = 2
)
```

Arguments

```
bins_card Binning template.

fit See glm stats.

bins_woe A data frame of woe with independent variables and target variable.

points0 Base point.

odds0 odds.

pdo Point-to Double Odds.

k Each scale doubles the probability of default several times.
```

Value

A data frame with score ratings.

```
accepts <- read.csv( system.file( "extdata", "accepts.csv" , package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
d = sort( sample( nrow( feature ), nrow( feature )*0.7))
train <- feature[d,]
test <- feature[-d,]
treebins_train <- bins_tree( df = train, key_var = "application_id", y_var="bad_ind",
max_depth=3, p=0.1)
woe_train <- rep_woe( df= train , key_var = "application_id", y_var = "bad_ind" ,
tool = treebins_train ,var_label = "variable",col_woe = 'woe', lower = 'lower' , upper = 'upper')
woe_test <- rep_woe( df = test , key_var = "application_id", y_var= "bad_ind",
tool = treebins_train ,var_label = "variable",</pre>
```

noauto_scorecard2

```
col_woe = 'woe', lower = 'lower' ,upper = 'upper' )
lg <- stats::glm( bad_ind~. , family = stats::binomial( link = 'logit' ) , data = woe_train )
lg_both <- stats::step( lg , direction = "both")
Score1 <- noauto_scorecard( bins_card= woe_test , fit =lg_both , bins_woe = treebins_train ,
points0 = 600 , odds0 = 1/20 , pdo = 50 )</pre>
```

noauto_scorecard2

Manually Input Parameters to Generate Scorecards The basic score is dispersed into each feature score

Description

Manually Input Parameters to Generate Scorecards The basic score is dispersed into each feature score

Usage

```
noauto_scorecard2(
  bins_card,
  fit,
  bins_woe,
  points0 = 600,
  odds0 = 1/19,
  pdo = 50,
  k = 3
)
```

Arguments

bins_card Binning template.

fit See glm stats.

bins_woe Base point.

points0 odds.

odds0 Point-to Double Odds.

pdo A data frame of woe with independent variables and target variable.

k Each scale doubles the probability of default several times.

Value

A data frame with score ratings.

16 plot_board

Examples

```
accepts <- read.csv( system.file( "extdata", "accepts.csv" , package = "autoScorecard" ))</pre>
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )</pre>
d = sort( sample( nrow( feature ), nrow( feature )*0.7))
train <- feature[d.]
test <- feature[-d,]</pre>
treebins_train <- bins_tree( df = train, key_var = "application_id", y_var="bad_ind",</pre>
max_depth=3, p=0.1)
woe_train <- rep_woe( df= train , key_var = "application_id", y_var = "bad_ind" ,</pre>
tool = treebins_train ,var_label = "variable",col_woe = 'woe', lower = 'lower' , upper = 'upper')
woe_test <- rep_woe( df = test , key_var ="application_id", y_var= "bad_ind",</pre>
tool = treebins_train ,var_label= "variable",
    col_woe = 'woe', lower = 'lower' ,upper = 'upper' )
lg <- \ stats:: glm(\ bad\_ind^{\sim}.\ ,\ family = stats:: binomial(\ link = 'logit'\ )\ ,\ data = woe\_train\ )
lg_both <- stats::step( lg , direction = "both")</pre>
Score2 <- noauto_scorecard2( bins_card= woe_test , fit =lg_both , bins_woe = treebins_train ,</pre>
points0 = 600 , odds0 = 1/20 , pdo = 50 )
```

plot_board

Data Painter Function Draw K-S diagram, Lorenz diagram, lift diagram and AUC diagram.

Description

Data Painter Function Draw K-S diagram, Lorenz diagram, lift diagram and AUC diagram.

Usage

```
plot_board(label, pred)
```

Arguments

label A target variable.pred A predictor variable.

Value

No return value, called for side effects

```
accepts <- read.csv( system.file( "extdata", "accepts.csv" , package = "autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
d = sort( sample( nrow( feature ), nrow( feature )*0.7))
train <- feature[d,]
test <- feature[-d,]
treebins_train <- bins_tree( df = train, key_var = "application_id", y_var="bad_ind",
max_depth=3, p=0.1)
woe_train <- rep_woe( df= train , key_var = "application_id", y_var = "bad_ind" ,</pre>
```

psi_cal 17

```
tool = treebins_train ,var_label = "variable",col_woe = 'woe', lower = 'lower' , upper = 'upper')
woe_test <- rep_woe(    df = test , key_var = "application_id", y_var= "bad_ind",
tool = treebins_train ,var_label= "variable",
        col_woe = 'woe', lower = 'lower' ,upper = 'upper' )
lg<-stats::glm(bad_ind^.,family=stats::binomial(link='logit'),data= woe_train)
lg_both<-stats::step(lg,direction = "both")
logit<-stats::predict(lg_both,woe_test)
woe_test$lg_both_p<-exp(logit)/(1+exp(logit))
plot_board( label= woe_test$bad_ind, pred = woe_test$lg_both_p )</pre>
```

psi_cal

PSI Calculation Function

Description

PSI Calculation Function

Usage

```
psi_cal(df_train, df_test, feat, label, nbins = 10)
```

Arguments

df_train Train data.
df_test Test data.

feat A name of index variable name.

label A name of target variable.

nbins Number of bins.

Value

A data frame of PSI.

18 rep_woe

```
lg_both <- stats::step( lg , direction = "both")
Score_2 <- noauto_scorecard( bins_card= woe_test , fit =lg_both , bins_woe = treebins_train ,
points0 = 600 , odds0 = 1/20 , pdo = 50 )
Score_1<- noauto_scorecard( bins_card = woe_train, fit = lg_both, bins_woe = treebins_train,
points0 = 600 , odds0 = 1/20 , pdo = 50 )
psi_1<- psi_cal( df_train = Score_1$data_score , df_test = Score_2$data_score,
feat = 'Score', label = 'bad_ind' , nbins =10 )</pre>
```

rep_woe

Replace Feature Data by Binning Template

Description

Replace Feature Data by Binning Template

Usage

```
rep_woe(df, key_var, y_var, tool, var_label, col_woe, lower, upper)
```

Arguments

df A data.frame with independent variables and target variable.

key_var A name of index variable name. y_var A name of target variable.

tool Binning template.

var_label The name of the characteristic variable.

col_woe The name of the woe variable

The name of the binning lower bound.

upper The name of the binning upper bound.

Value

A data frame of woe

```
accepts <- read.csv( system.file( "extdata", "accepts.csv", package ="autoScorecard" ))
feature <- stats::na.omit( accepts[,c(1,3,7:23)] )
all2 <- bins_tree( df = feature, key_var = "application_id", y_var = "bad_ind",
max_depth = 3, p= 0.1)
re2 <- rep_woe( df= feature ,key_var = "application_id", y_var = "bad_ind",
tool = all2, var_label = "variable",col_woe ='woe', lower ='lower',upper ='upper')</pre>
```

Index

```
\verb"auto_scorecard", 2
best_iv, 4
best_vs, 4
binning_eqfreq, 5
binning_eqwid, 6
binning_kmean, 7
bins_chim, 7
bins_tree, 8
\verb|bins_unsupervised|, 9
\verb|comparison_two|, 10|\\
{\tt comparison\_two\_data}, 11
\texttt{data\_detect}, \textcolor{red}{11}
filter\_var, \textcolor{red}{12}
get_IV, 13
{\tt noauto\_scorecard}, \\ 14
noauto_scorecard2, 15
plot_board, 16
psi_cal, 17
rep_woe, 18
```