STAT 37797: Mathematics of Data Science

Basics of optimization theory

Cong Ma
University of Chicago, Autumn 2021

Unconstrained optimization

Consider an unconstrained optimization problem

$$\operatorname{minimize}_{\boldsymbol{x}} \qquad f(\boldsymbol{x})$$

- ullet For simplicity, we assume f(x) is twice differentiable
- ullet We assume the minimizer x_{opt} exists, i.e.,

$$oldsymbol{x}_{\mathsf{opt}}\coloneqq \operatorname*{arg\,min}_{oldsymbol{x}}f(oldsymbol{x})$$

(Local) strong convexity and smoothness

Definition 7.1

A twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be α -strongly convex in a set \mathcal{B} if for all $x \in \mathcal{B}$

$$\nabla^2 f(\boldsymbol{x}) \succeq \alpha \boldsymbol{I}_n.$$

Definition 7.2

A twice differentiable function $f:\mathbb{R}^n\mapsto\mathbb{R}$ is said to be β -smooth in a set \mathcal{B} if for all $x\in\mathcal{B}$

$$\|\nabla^2 f(\boldsymbol{x})\| \le \beta.$$

Gradient descent theory revisited

Gradient descent method with step size $\eta > 0$

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t)$$

Lemma 7.3

Suppose f is α -strongly convex and β -smooth in the local ball $\mathcal{B}_{\delta}(x_{\mathrm{opt}}) \coloneqq \{x \mid \|x - x_{\mathrm{opt}}\|_2 \le \delta\}$. Running gradient descent from $x^0 \in \mathcal{B}_{\delta}(x_{\mathrm{opt}})$ with $\eta = 1/\beta$ achieves linear convergence

$$\|\boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}}\|_2 \le \left(1 - \frac{\alpha}{\beta}\right)^t \|\boldsymbol{x}^0 - \boldsymbol{x}_{\mathsf{opt}}\|_2, \quad t = 0, 1, 2, \dots$$

Implications

- Condition number β/α determines rate of convergence
- Attains ε -accuracy (i.e., $\|x^t x_{\sf opt}\|_2 \le \varepsilon \|x_{\sf opt}\|_2$) within

$$O\left(\frac{\beta}{\alpha}\log\frac{1}{\varepsilon}\right)$$

iterations

ullet Needs initialization $oldsymbol{x}^0 \in \mathcal{B}_\delta(oldsymbol{x}_{\mathsf{opt}})$

Proof of Lemma 7.3

Since $\nabla f(\boldsymbol{x}_{\mathsf{opt}}) = \boldsymbol{0}$, we can rewrite GD as

$$egin{aligned} oldsymbol{x}^{t+1} - oldsymbol{x}_{\mathsf{opt}} &= oldsymbol{x}^t - \eta
abla f(oldsymbol{x}^t) - [oldsymbol{x}_{\mathsf{opt}} - \eta
abla f(oldsymbol{x}_{\mathsf{opt}})] \ &= \left[oldsymbol{I}_n - \eta \int_0^1
abla^2 f(oldsymbol{x}(au)) \mathsf{d} au
ight] (oldsymbol{x}^t - oldsymbol{x}_{\mathsf{opt}}), \end{aligned}$$

where $x(\tau) := x_{\sf opt} + \tau(x^t - x_{\sf opt})$. By local strong convexity and smoothness, one has

$$\alpha \mathbf{I}_n \preceq \nabla^2 f(\mathbf{x}(\tau)) \preceq \beta \mathbf{I}_n, \quad \text{for all } 0 \leq \tau \leq 1$$

Therefore $\eta = 1/\beta$ yields

$$\mathbf{0} \leq \mathbf{I}_n - \eta \int_0^1 \nabla^2 f(\mathbf{x}(\tau)) d\tau \leq (1 - \frac{\alpha}{\beta}) \mathbf{I}_n,$$

which further implies

$$\|oldsymbol{x}^{t+1} - oldsymbol{x}_{\mathsf{opt}}\|_2 \leq \left(1 - rac{lpha}{eta}
ight) \|oldsymbol{x}^t - oldsymbol{x}_{\mathsf{opt}}\|_2$$

Regularity condition

More generally, for update rule

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \boldsymbol{g}(\boldsymbol{x}^t),$$

where $g(\cdot): \mathbb{R}^n \mapsto \mathbb{R}^n$

Definition 7.4

 $\boldsymbol{g}(\cdot)$ is said to obey $\mathsf{RC}(\mu,\lambda,\delta)$ for some $\mu,\lambda,\delta>0$ if

$$2\langle oldsymbol{g}(oldsymbol{x}), oldsymbol{x} - oldsymbol{x}_{\mathsf{opt}}
angle \geq \mu \|oldsymbol{g}(oldsymbol{x})\|_2^2 + \lambda \left\|oldsymbol{x} - oldsymbol{x}_{\mathsf{opt}}
ight\|_2^2 \quad orall oldsymbol{x} \in \mathcal{B}_{\delta}(oldsymbol{x}_{\mathsf{opt}})$$

- ullet Negative search direction g is positively correlated with error $x-x_{ ext{opt}} \Longrightarrow$ one-step improvement
- $\mu\lambda \leq 1$ by Cauchy-Schwarz

RC = one-point strong convexity + smoothness

• One-point α -strong convexity:

$$f(\boldsymbol{x}_{\mathsf{opt}}) - f(\boldsymbol{x}) \ge \langle \nabla f(\boldsymbol{x}), \boldsymbol{x}_{\mathsf{opt}} - \boldsymbol{x} \rangle + \frac{\alpha}{2} \|\boldsymbol{x} - \boldsymbol{x}_{\mathsf{opt}}\|_2^2$$
 (7.1)

• β -smoothness:

$$f(\boldsymbol{x}_{\mathsf{opt}}) - f(\boldsymbol{x}) \leq f\left(\boldsymbol{x} - \frac{1}{\beta}\nabla f(\boldsymbol{x})\right) - f(\boldsymbol{x})$$

$$\leq \left\langle \nabla f(\boldsymbol{x}), -\frac{1}{\beta}\nabla f(\boldsymbol{x}) \right\rangle + \frac{\beta}{2} \left\| \frac{1}{\beta}\nabla f(\boldsymbol{x}) \right\|_{2}^{2}$$

$$= -\frac{1}{2\beta} \left\| \nabla f(\boldsymbol{x}) \right\|_{2}^{2} \tag{7.2}$$

RC = one-point strong convexity + smoothness

Combining (7.1) and (7.2) yields

$$\langle
abla f(m{x}), m{x} - m{x}_{\mathsf{opt}}
angle \geq rac{lpha}{2} \|m{x} - m{x}_{\mathsf{opt}}\|_2^2 + rac{1}{2eta} \|
abla f(m{x})\|_2^2$$
 — RC holds with $\mu = 1/eta$ and $\lambda = lpha$

Extension of convex functions

When $g(x) = \nabla f(x)$, f is not necessarily convex

$$f(x) = \begin{cases} x^2, & |x| \le 6, \\ x^2 + 1.5|x|(\cos(|x| - 6) - 1), & |x| > 6 \end{cases}$$

Convergence under RC

Lemma 7.5

Suppose $g(\cdot)$ obeys $\mathsf{RC}(\mu, \lambda, \delta)$. The update rule $(x^{t+1} = x^t - \eta g(x^t))$ with $\eta = \mu$ and $x^0 \in \mathcal{B}_{\delta}(x_{\mathsf{opt}})$ obeys

$$\| {oldsymbol x}^t - {oldsymbol x}_{\mathsf{opt}} \|_2^2 \leq (1 - {\mu \lambda})^t \, \| {oldsymbol x}^0 - {oldsymbol x}_{\mathsf{opt}} \|_2^2$$

- $g(\cdot)$: more general search directions \circ example: in vanilla GD, $g(x) = \nabla f(x)$
- The product $\mu\lambda$ determines the rate of convergence
- Attains ε -accuracy within $O(\frac{1}{\mu\lambda}\log\frac{1}{\varepsilon})$ iterations

Proof of Lemma 7.5

By definition, one has

$$\begin{split} \| \boldsymbol{x}^{t+1} - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 &= \| \boldsymbol{x}^t - \eta \boldsymbol{g}(\boldsymbol{x}^t) - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 \\ &= \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \eta^2 \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 - 2\eta \left\langle \boldsymbol{g}(\boldsymbol{x}^t), \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \right\rangle \\ &\leq \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \eta^2 \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 - \eta \left(\lambda \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \mu \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 \right) \\ &= (1 - \eta \lambda) \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \eta (\eta - \mu) \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 \\ &\leq (1 - \eta \mu) \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 \end{split}$$