Print

Incremental 40-mm-dia. Rotary Encoder

E6B2-CWZ6C 2000P/R 2M

Rotary Encoder, 2000 P/R, 5 to 24 VDC, NPN open collector, Cable length 2 m

Encoding method	coding method Incremental Shaft model	
Resolution	solution 2000 P/R	
Output phases	A, B and Z	
Control output	NPN open collector	
Connection method	Pre-wired models (Cable length: 2 m)	

Image

Ratings / Performance

As of March 13, 2024

_			
Categorise		Incremental Shaft model	
Diameter		40 mm dia.	
Power supply voltage		5 to 24 VDC (-5% to +15%) Ripple (p-p) 5% max.	
Current consumption		80 mA max.	
Resolution		2000 P/R	
Inrush current		Approx. 9 A (0.3 ms)	
Output phases		A, B and Z	
Control output	Output type	NPN open collector	
	Load power supply voltage	30 V max.DC	
	Sink current	35 mA max.	
	Residual voltage	0.4 V max. (at sink current 35 mA)	
Starting positional point		Equipped	
Max. response frequency		100 kHz	
Phase difference on output		90±45 ° between A and B (1/4 T ± 1/8 T)	
Rise and fall times of output		1 μs max. (Cable length: 2 m max., output voltage: 5 V, load resistance: 1 $k\Omega$)	
Starting torque		0.98 mN.m max.	
Moment of inertia		1 x 10 ⁻⁶ kg.m ² max.	
Shaft loading		Radial: 30 N Thrust: 20 N	
Max. permissible rotation		6000 r/min	

6/23/24, 14:18 1 of 4

Protective circuit	Output short-cut protection Power supply reverse polarity protection	
Ambient temperature	Operating: -10 to 70 °C (with no icing) Storage: -25 to 85 °C (with no icing)	
Ambient humidity	Operating: 35 to 85 % (with no condensation) Storage: 35 to 85 % (with no condensation)	
Insulation resistance	istance Between charged parts and the case: 20 MΩ or higher (500 VDC megger)	
Dielectric strength	Between charged parts and the case: 500 VAC 50/60 Hz 1 min	
Vibration resistance	Destruction: 10 to 500 Hz, 2-mm or 150 m/s ² double amplitude for 11 min 3 times each in X, Y, and Z directions	
Shock resistance	Destruction: 1000 m/s ² for 3 times each in X, Y, and Z directions	
Degree of protection	IEC: IP50	
Connection method	Pre-wired models (Cable length: 2 m)	
Material	Case: ABS Main Unit: Aluminum Shaft: SUS420J2	
Accessories	Instruction manual, Couplings, Hex-head spanner	

As of March 13, 2024

As of March 13, 2024

Dimensions

*E6B2-CWZ6C, E6B2-CWZ5B, E6B2-CWZ3E 5-dia. Shielded cable with 5 conductors (conductor cross section: 0.2mm², insulator diameter: 1.0mm) Standard (147)

E6B2-CWZ1X
5-dia. Shielded cable with 8 conductors
(conductor cross section: 0.2mm², insulator diameter: 1.0mm)
Standard length: 500mm

As of March 13, 2024

Output circuit diagram

As of March 13, 2024

2 of 4 6/23/24, 14:18

- *1.The shielded cable outer core is not connected to the inner area or the case.
 - 2. Normally, connect GND to 0V or to an external ground.

As of March 13, 2024

Connected specification chart

As of March 13, 2024

Color	Terminal
Brown	Vcc
Black	Phase A
White	Phase B
Orange	Phase Z
Blue	0V(COMMON)
Shield	GND

As of March 13, 2024

Timing chart

As of March 13, 2024

3 of 4 6/23/24, 14:18

Output phase	Direction of rotation	Output mode
Phase A Phase B Phase Z CCW as viewed from the end of the shaft Phase B Phase Z Phase B Pha	CW as viewed from the end of the shaft	Phase A ON Phase B ON 1/4T±1/8T(90°±45°) Phase Z ON Ph
	Phase A OFF T(360°) CCW Phase B OFF T(360°) CCW Phase Z OFF T(360°) CCW Phase Z OFF	

*CW direction: Phase A is $1/4\pm1/8T$ faster than phase B. CCW direction: Phase A is $1/4\pm1/8T$ slower than phase B.

As of March 13, 2024

6/23/24, 14:18 4 of 4