







## GRASP WITH PATH RELINKING FOR A PRODUCTION PLANNING PROBLEM

Master Thesis
Plamen Alexandrov, ISI Hagenberg '09



### **CONTENTS**

- Master's Project Info
- Production Planning
  - A Problem from Industry
  - A "Toy" Example
  - Objective
  - Modelling
- GRASP with Path Relinking
  - Solution Combination
  - Basic Structure
- Computational Comparison
- Achievements and Contributions
- Future Research Directions







### MASTER'S PROJECT INFO

- International School for Informatics (ISI Hagenberg)
- Johannes Kepler University
  - Academic Advisor:
     Prof. (FH) Priv.-Doz. DI Dr. Michael Affenzeller
- RISC Software GmbH Company
  - Industrial Advisors:
     DI Dr Peter Stadelmeyer, DI Roman Stainko
- Two ISI students:
  - Alexandra Jimborean implements Tabu search
  - Plamen Alexandrov implements GRASP







#### PRODUCTION PLANNING

- The purpose of production planning is:
  - To minimize production time and costs
  - To efficiently organize the use of resources
  - To maximize efficiency in the workplace
- It should be achieved under changing selling conditions.
- Optimal use of production capacities and resources is needed.
  - Solution: effective production planning.







## PRODUCTION PLANNING A PROBLEM FROM INDUSTRY



- 21 machines with different production capacities
- 5 days planning horizon
- 272 product types, called items
- Settings for producing a different product (3 hours)
- Customer demands as jobs in daily numbers
- Future demands for the following week
- Backlog costs for unmet demands
- No limiting storage costs







# PRODUCTION PLANNING A "TOY" EXAMPLE

#### • The first plan is worse:

|    | T1 | T2 | T3 | <b>T4</b> | <b>T5</b> | <b>T6</b> | <b>T7</b> | T8 | Т9 | T10 | T11 | T12 | T13 | T14 | T15 |
|----|----|----|----|-----------|-----------|-----------|-----------|----|----|-----|-----|-----|-----|-----|-----|
| M1 | 2  | 34 | 34 | 34        | 34        | 34        | 34        | 34 | 34 | 34  | 34  | 34  | 34  | 34  | 34  |
| M2 | 37 | 37 | 37 | 37        | 37        | 37        | 16        | 16 | 16 | 16  | 16  | 16  | 16  | 16  | 50  |
| M3 | 34 | 34 | 34 | 34        | 34        | 14        | 14        | 14 | 41 | 41  | 16  | 16  | 12  | 12  | 12  |
| M4 | 12 | 12 | 12 | 12        | 12        | 34        | 34        | 34 | 34 | 12  | 12  | 50  | 50  | 50  | 50  |
| M5 | 50 | 16 | 16 | 16        | 16        | 16        | 41        | 41 | 41 | 34  | 34  | 34  | 34  | 34  | 34  |
| M6 | 14 | 14 | 14 | 14        | 14        | 14        | 14        | 18 | 18 | 18  | 18  | 18  | 18  | 18  | 2   |

#### • Than the second:

|    | T1 | T2 | Т3 | T4 | T5 | T6 | <b>T7</b> | T8 | Т9 | T10 | T11 | T12 | T13 | T14 | T15 |
|----|----|----|----|----|----|----|-----------|----|----|-----|-----|-----|-----|-----|-----|
| M1 | 34 | 34 | 34 | 34 | 34 | 34 | 34        | 34 | 34 | 34  | 34  | 34  | 34  | 34  | 34  |
| M2 | 37 | 16 | 16 | 16 | 16 | 16 | 16        | 16 | 16 | 16  | 16  | 16  | 16  | 12  | 12  |
| M3 | 34 | 34 | 34 | 34 | 34 | 34 | 34        | 34 | 34 | 34  | 34  | 34  | 34  | 34  | 34  |
| M4 | 12 | 12 | 12 | 37 | 37 | 37 | 37        | 37 | 37 | 16  | 16  | 16  | 16  | 16  | 16  |
| M5 | 50 | 50 | 41 | 41 | 41 | 41 | 41        | 41 | 41 | 41  | 50  | 50  | 50  | 50  | 2   |
| M6 | 5  | 14 | 14 | 14 | 14 | 14 | 14        | 14 | 14 | 18  | 18  | 18  | 18  | 18  | 18  |







## PRODUCTION PLANNING OBJECTIVE

- The objective of our problem is to minimize setup costs and backlog costs.
- Moreover, if there is available capacity, future demands should be processed.
- Production schedules exceeding the maximum possible production of an item at the end should be penalized.







## PRODUCTION PLANNING MODELING

- Production processes are described by lotsizing and scheduling models
- We use a Discrete Lot Sizing and Scheduling Model
  - The problem is NP-hard!
  - If backloging is not allowed, even obtaining a feasible solution is NP-complete!
- Additional constraints reduce the problem size:
  - Maximum number of settings per period
  - Limitation of parallel production







### GRASP METAHEURISTIC

- Greedy Randomized Adaptive Search Procedure (GRASP)
- GRASP is a metaheuristic which combines:
  - A semi-greedy construction heuristic and
  - A local search improvement heuristic
- GRASP is a multi-start iterative strategy. At each iteration:
  - An initial solution is constructed by a semi-greedy construction procedure (one element at a time)
  - Local search applies iterative improvement of the initial solution until a local optimum is found







# GRASP WITH PATH RELINKING SOLUTION COMBINATION

- Uses adaptive memory during the search process: pool.
- Exploits this memory by combining solutions









## GRASP WITH PATH RELINKING BASIC STRUCTURE

- $\bullet$  P =  $\phi$ ; // an empty pool with fixed maximum pool size
- for i = 1 ... max\_iter do
  - X<sub>s</sub> = GreedyRandomizedConstruction(rand);
  - $X_1 = LocalSearch(X_s, rand); // with randomized nhood$
  - $\circ$  P $\rightarrow$ Accept(X<sub>I</sub>);
  - if i % relink\_interval == 0 then
    - $\rightarrow$   $X_e = P \rightarrow SelectEdge(X_I);$
    - >  $X_1 = P \rightarrow Relink(X_1, X_e);$
- repeat  $P = P \rightarrow RelinkAll()$ ; // post-optimization phase
- until No Further Improvement;
- return P → Best();







# COMPUTATIONAL COMPARISON (1 HOUR RUNTIME)

| Probl.        | Result | M1     | TP   | TS      | 5    | GRAS   | P- $MR$ | GRASP- $PAR$ |      |
|---------------|--------|--------|------|---------|------|--------|---------|--------------|------|
|               |        | Value  | Time | Value   | Time | Value  | Time    | Value        | Time |
| big1          | avg.   | 42.539 | 60   | 38.625  | 65   | 39.327 | 47      | 38.954       | 25   |
|               | best   |        |      |         |      | 38.591 | 47      | 36.625       | 10   |
| big2          | avg.   | 96.183 | 60   | 96.784  | 60   | 98.413 | 44      | 96.201       | 23   |
|               | best   |        |      |         |      | 95.386 | 42      | 92.47        | 14   |
| big3          | avg.   | 240.61 | 60   | 292.483 | 69   | 246.71 | 42      | 247.54       | 20   |
| 0193          | best   |        |      |         |      | 242.32 | 27      | 241.12       | 9    |
| toy1          | avg.   | 439.94 | 60   | 438.75  | 20   | 438.75 | 5.76    | 438.75       | 3.68 |
| $\iota o g 1$ | best   | 438.75 | 120  |         |      | 438.75 | 1       | 438.75       | 0.17 |
| toy2          | avg.   | 24.909 | 60   | 21.922  | 10   | 23.525 | 11      | 22.208       | 6.12 |
|               | best   |        |      |         |      | 21.922 | 13      | 21.14        | 1.3  |
| toy3          | avg.   | 37.139 | 60   | 37.119  | 10   | 29.679 | 13      | 29.822       | 7    |
|               | best   |        |      |         |      | 28.011 | 15      | 28.011       | 2    |







# ACHIEVEMENTS AND CONTRIBUTIONS

#### • Achievements:

- Sequential implementation of *GRASP* for the initial problem (in C++).
- Design and implementation of *Path Relinking*.
- Parallel implementation of the algorithm (in Open-MP).
- Comparison with other approaches: MIP and Tabu Search

#### • Contributions:

- Obtaining competitive results (even better, short runtime)
- Parametrization of simple heuristics
- Defining selection pressure for randomized local search
- Designing a new path exploration strategy







# FUTURE RESEARCH DIRECTIONS

- Self-adaptive Parameter Optimization
  - Randomization parameters of construction heuristic (Reactive GRASP)
  - Selection pressure (relinking suboptimal solutions)
  - Diversity in pool (regular relinking, mutation)
  - Improvement frequency (longer runtimes, diversity)
- Distributed Parallel Strategies
  - Independent strategies (TTT value)
  - Collaborative strategies (migration, diversity)
  - Effect of PRNGs (parallel schemes, Monte Carlo)



