

Artificial Intelligence and Expert Systems

Machine Learning (I)

Lecture 1

Dr. Esmaeil Najafi, Javad Khorramdel

K.N. Toosi University of Technology

Today's agenda

- Introduction to machine learning
- Simple linear regression
- Multiple linear regression
- Non-linear regression
- Evaluation approaches
- Evaluation metrics for regression
- Implementation of models in practice

Introduction to machine learning

Introduction to machine learning

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	malignan
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10		7	1	malignan
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	Н	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
1000015	6	1	1	1	7	1	3	1	1	?

How machine learning works?

How machine learning works?

Machine learning applications

Major machine learning techniques

- Regression/Estimation
 - Predicting continuous values
- Classification
 - Predicting the item class/category of a case
- Clustering
 - Finding the structure of the data, summarization
- Associations
 - Associating frequent co-occurring items/events

Major machine learning techniques

- Anomaly detection
 - Discovering abnormal and unusual cases
- Sequence mining
 - Predicting next events; click-steam (Markov Model, HMM)
- Dimension reduction
 - Reducing the size of data (PCA)
- Recommendation systems
 - Recommending items

Major machine learning techniques

- Which Machine Learning technique is proper for grouping of similar cases in a dataset, for example to find similar patients, or for customers segmentation in a bank?
 - a) Clustering
 - b) Classification
 - c) Regression
 - d) Recommender system

Machine Learning

Difference between artificial intelligence, machine learning and deep learning

- Artificial intelligence:
 - Computer vision
 - Language processing
 - Creativity
 - Etc.
- Machine learning:
 - Classification
 - Clustering
 - Neural network
 - Etc.
- Revolution in ML:
 - Deep learning

Python libraries for machine learning

More about scikits learn

- Free software machine learning library
- Classification, clustering and regression algorithm
- Works with NumPy and SciPy
- Great documentation
- Easy to implement

Supervised:

- We "teach the model" then with that knowledge, it can predict unknown or future instances.
- But how exactly do we teach a model?
 - We teach the model with a labeled dataset.

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	malignant
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10		7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	н	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign

Supervised:

- Classification:
 - Classification is the process of predicting discrete class labels or categories.

- Supervised:
 - Regression:
 - Regression is the process of predicting continuous values.

Unsupervised:

- The model works on its own to discover information that may not be visible to human eye.
- Has more difficult algorithms than supervised learning.
- Unsupervised learning techniques:
 - Dimension reduction
 - Density estimation
 - Market basket analysis
 - Clustering

- Unsupervised:
 - Clustering:
 - Clustering is grouping of data points that are somehow similar. Some applications are:
 - · Discovering structure
 - Summarization
 - Anomaly detection

- Supervised
 - Classification:
 - ✓ Classifies labeled data
 - Regression:
 - Predicts trend using previous <u>labeled</u> data
 - Has more evaluation methods than unsupervised methods
 - Controlled environment

- Unsupervised
 - Clustering:
 - ✓ Finds patterns and groupings from unlabeled data
 - Has fewer evaluation methods than supervised methods
 - Less controlled environment

BREAK TIME

What is regression?

Regression is the process of predicting a continuous value

What is a regression model?

What is a regression model?

- Simple regression:
 - Simple linear regression
 - Simple non-linear regression
- Multiple regression:
 - Multiple linear regression
 - Multiple non-linear regression

Predict CO2 emission vs EngineSize of all cars

Predict CO2 emission vs EngineSize and Cylinders of all cars

Simple linear regression

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

$$Y = w_1 X + w_0$$

Simple linear regression

x = 5.4 independent variable

y = 250 actual CO_2 emission

$$\hat{y} = w_1 x + w_0$$

 $\hat{y} = 340$ the predicted value for x_1

$$Error = y - \hat{y} = 250 - 340 = -90$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2$$

Simple linear regression

ENGIN	IESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS			
0	(2.0	4	8.5	196			
1	2.4	4	9.6	221			
2	1.5	4	5.9	136			
3	3.5	6	11.1	255			
4 X ₁ -	3.5	6	10.6	y 244			
5	3.5	6	10.0	230			
6	3.5	6	10.1	232			
7	3.7	6	11.1	255			
8	3.7	6	11.6	267			

$$\begin{bmatrix} x_1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = y_1$$

$$X = \begin{bmatrix} 2 & 1 \\ 2.4 & 1 \\ 1.5 & 1 \\ 3.5 & 1 \\ 3.5 & 1 \\ 3.5 & 1 \\ 3.5 & 1 \\ 3.7 & 1 \\ 3.7 & 1 \end{bmatrix} \qquad W = \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} \qquad Y = \begin{bmatrix} 196 \\ 221 \\ 136 \\ 255 \\ 244 \\ 230 \\ 232 \\ 255 \\ 267 \end{bmatrix}$$

$$X.W = Y \rightarrow (X^T X)W = X^T.Y \rightarrow W = (X^T X)^{-1}X^T Y$$

Multiple linear regression

Χ	Υ
	•

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

$$Y = w_0$$

+ w_1 . ENGINESIZE
+ w_2 . CYLINDERS
+ w_3 FUELCONSUMPTION_{COMB}

$$Y = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3$$

$$X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} \qquad Y = W^T X$$

Multiple linear regression

		Х		Υ	
	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS	
0	2.0	4	8.5	196	
1	2.4	4	9.6	221	
2	1.5	4	5.9	136	
3	3.5	6	11.1	255	
4	3.5	6	10.6	244	
5	3.5	6	10.0	230	
6	3.5	6	10.1	232	
7	3.7	6	11.1	255	
8	3.7	6	11.6	267	
9	2.4	4	9.2	?	

$$X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} \qquad Y = W^T X$$

$$X = \begin{bmatrix} 1 & 2 & 4 & 8.5 \\ 1 & 2.4 & 4 & 9.6 \\ 1 & 1.5 & 4 & 5.9 \\ 1 & 3.5 & 6 & 11.1 \\ 1 & 3.5 & 6 & 10.1 \\ 1 & 3.5 & 6 & 10.1 \\ 1 & 3.7 & 6 & 11.6 \end{bmatrix} \qquad W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} \qquad Y = \begin{bmatrix} 196 \\ 221 \\ 136 \\ 255 \\ 244 \\ 230 \\ 232 \\ 255 \end{bmatrix}$$

$$X.W = Y \rightarrow (X^T X)W = X^T.Y \rightarrow W = (X^T X)^{-1}X^T Y$$

Linear regression

- How to estimate W?
 - Ordinary least square
 - √ Linear algebra operation
 - √ Takes a long time for large dataset (10K+row)
- Optimization algorithms

	Year	Value
0	1960	5.918412e+10
1	1961	4.955705e+10
2	1962	4.668518e+10
3	1963	5.009730e+10
4	1964	5.906225e+10
5	1965	6.970915e+10
6	1966	7.587943e+10
7	1967	7.205703e+10
8	1968	6.999350e+10
9	1969	7.871882e+10

- What is polynomial regression?
 - Some data can be modeled by a polynomial regression
 - For example:

$$y = w_3 x^3 + w_2 x^2 + w_1 x^1 + w_0$$

 A polynomial regression model can be transformed into linear regression model.

$$x_1 = x, x_2 = x^2, x_3 = x^3$$
 $y = w_3x_3 + w_2x_2 + w_1x_1 + w_0$

- Which sentence is not true about polynomial regression?
 - polynomial regression fits a curve line to your data.
 - Quadratic and cubic regression lines are a type polynomial regression
 - A polynomial regression model cannot be expressed as linear regression
 - Polynomial regression models can fit using the method of least squares.

- What is non-linear regression?
 - To model non-linear relationship between the dependent variable and a set of independent variables.
 - \hat{y} must be a non-linear function of the parameter w, not necessarily feature x.

✓
$$y = w_0 + w_1^2 x$$

✓ $y = w_0 + w_1 w_2^x$
✓ $y = \log(w_0 + w_1 x + w_2 x^2)$
✓ $y = \frac{w_0}{1 + w_1^x}$

Linear vs non-linear regression

- How can I know if a problem is linear or non-linear in an easy way?
 - Inspect visually
 - Based on accuracy

- Train and test on a same dataset
 - High training accuracy
 - Low out of sample accuracy

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	Test 255
8	3.7	6	11.6	St 267
9	2.4	4	9.2	212

What is training & out of sample accuracy?

- Train accuracy
 - Training accuracy isn't a necessarily a good thing.
 - Result of over-fitting:
 - ✓ Over-fit: the model is overly trained to the dataset, which may capture noise and produce a non-generalized model
- Out of sample accuracy
 - It's important that our model has a high, out of sample accuracy.
 - But, how can we improve out of sample accuracy?

- Which of the sentences are not true?
 - Having a high training accuracy may result in an 'overfit' of the data.
 - Doing a train and test on the same dataset will cause very high out-of-sample accuracy.
 - If a model is overly trained to the dataset, it may capture noise and produce a non-generalized model.

- Train/test split
 - More exclusive
 - More accurate on out of sample accuracy
 - Highly dependent on which datasets the data is trained and tested

K-fold cross validation

Regression evaluation metrics

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

$$RAE = \frac{\sum_{j=1}^{n} |y_{j} - \hat{y}_{j}|}{\sum_{j=1}^{n} |y_{j} - \bar{y}|}$$

$$RSE = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{n} (y_j - \bar{y})^2}$$

$$R^2 = 1 - RSE$$

- Assignment 1 has been uploaded on the website and due date is 1 week.
 - http://www.courses.kntu.ac.ir

Contact us

- Najafi.e@kntu.ac.ir
- J.khorramdel96@gmail.com