Analisi Matematikoa

Segidak \mathbb{R} multzoan

Eragiketak. Indeterminazioak. Ebazpen-metodoak

December 5, 2016

Aurkibidea

3	Segidak $\mathbb R$ multzoan							
	3.3	3 Segiden arteko eragiketak eta limiteak. Indeterminazioak						
	3.4	Indeterminazioak ebazteko metodoak						
		3.4.1 Baliokidetasuna						
		3.4.2 Stolz-en irizpideak						
		3.4.3 e zenbakiaren erabilpena						
		3.4.4 Cauchy-ren segidak						
	3.5	Ariketak						

3. Gaia Segidak $\mathbb R$ multzoan

3.3 Segiden arteko eragiketak eta limiteak. Indeterminazioak

3.1. Definizioa. $\{a_n\}$ eta $\{b_n\}$ segidak emanik, honela definitzen dira bien arteko eragiketak: $\{a_n\} \to a$ eta $\{b_n\} \to b$ direla pentsatuko dugu:

 \bullet Batuketa/Kenketa:

$${a_n} \pm {b_n} = {a_n \pm b_n}.$$

+	$-\infty$	b	$+\infty$
$-\infty$	$-\infty$	$-\infty$?
a	$-\infty$	a+b	$+\infty$
$+\infty$?	$+\infty$	$+\infty$

_	$-\infty$	b	$+\infty$
$-\infty$?	$-\infty$	$-\infty$
a	$+\infty$	a-b	$-\infty$
$+\infty$	$+\infty$	$+\infty$?

• Biderketa: $\{a_n\} \times \{b_n\} = \{a_n \cdot b_n\}.$

x	$-\infty$	b < 0	b = 0	0 < b	$+\infty$
$-\infty$	$+\infty$	$+\infty$?	$-\infty$	$-\infty$
a < 0	$+\infty$	0 < ab	0	ab < 0	$-\infty$
a = 0	?	0	0	0	?
0 < a	$-\infty$	ab < 0	0	0 < ab	$+\infty$
$+\infty$	$-\infty$	$-\infty$?	$+\infty$	$+\infty$

• $Zatiketa: \{a_n\} \div \{b_n\} = \{\frac{a_n}{b_n}\}, b_n \neq 0.$

÷	$-\infty$	b < 0	b = 0	0 < b	$+\infty$
$-\infty$?	$+\infty$	$\pm \infty$	$-\infty$?
a < 0	0	0 < a/b	$\pm \infty$	a/b < 0	0
a = 0	0	0	?	0	0
0 < a	0	a/b < 0	$\pm \infty$	0 < a/b	0
$+\infty$?	$-\infty$	$\pm \infty$	$+\infty$?

• Logaritmoa: $\log_k \{a_n\} = \{\log_k a_n\}, k > 0, a_n > 0.$

$\log_k a_n$	a = 0	0 < a	$+\infty$
0 < k < 1	$+\infty$	$\log_k a$	$-\infty$
1 < k	$-\infty$	$\log_k a$	$+\infty$

• Esponentziala: $k^{a_n} = \{k^{a_n}\}, k > 0.$

k^{a_n}	$-\infty$	a	$+\infty$
0 < k < 1	$+\infty$	k^a	0
k = 1	1	1	1
1 < k	0	k^a	$+\infty$

• Berreketa: $\{a_n^{\{b_n\}}\}=\{a_n^{b_n}\}, a_n>0.$

$a_n^{b_n}$	$-\infty$	b < 0	b = 0	0 < b	$+\infty$
a = 0	$+\infty$	$+\infty$?	0	0
0 < a < 1	$+\infty$	a^b	1	a^b	0
a=1	?	1	1	1	?
1 < a	0	a^b	1	a^b	$+\infty$
$+\infty$	0	0	?	$+\infty$	$+\infty$

Propietatea Oro har, hau beteko da:

Segiden arteko eragiketen limitea=segideen limite
en arteko eragiketak ${\bf Indeterminazioak}$

1.
$$\infty - \infty$$

$$2. 0 \cdot \infty$$

3.
$$\frac{0}{0}$$

$$4. \ \ \frac{\infty}{\infty}$$

- $5. 1^{\infty}$
- 6.0^{0}
- 7. ∞^0

3.4 Indeterminazioak ebazteko metodoak

3.4.1 Baliokidetasuna

- **3.2. Definizioa.** $\{a_n\}$ eta $\{b_n\}$ segida baliokideak dira $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$ bada; kasu horretan, honela idatziko dugu: $\{a_n\} \sim \{b_n\}$.
- **3.3. Propietatea.** $\{a_n\}$ eta $\{b_n\}$ segida baliokideak badira, limite bera dute.

 $(\lim_{n\to\infty} a_n \neq \lim_{n\to\infty} b_n \Rightarrow \{a_n\}$ eta $\{b_n\}$ ez dira baliokideak).

3.4. Adibidea. $\left\{\frac{1}{n}\right\} \to 0$, $\left\{\frac{1}{n^2}\right\} \to 0$, baina $\lim_{n \to \infty} \frac{1/n}{1/n^2} = \lim_{n \to \infty} n = \infty \neq 1$, beraz, ez dira baliokideak.

3.5. Definizioa.

- 1. $\{a_n\}$ segida infinitesimala da $\lim_{n\to\infty} a_n = 0$ bada.
 - (a) $\{a_n\} \sim \{\sin a_n\} \sim \{\tan a_n\} \sim \{\arcsin a_n\} \sim \{\arctan a_n\}.$
 - (b) $\{1 \cos a_n\} \sim \{\frac{(a_n)^2}{2}\}.$
 - (c) $\{a_n\} \sim \{\ln(1+a_n)\}.$
 - (d) Aurreko baliokidetzan, $b_n = 1 + a_n$ eginez, hau idatz dezakegu: $\{b_n 1\} \sim \{\ln b_n\}$.
- 2. $\{a_n\}$ segida infinitua da $\lim_{n\to\infty} a_n = \infty$ bada.
 - (a) $\{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0\} \sim \{a_k n^k\}.$
 - (b) Stirling-en baliokidetza: $\{n\} \sim \{n^n e^{-n} \sqrt{2\pi n}\}.$

Infinituen ordenak Lau infinitu-mota bereiz ditzakegu, limitera hurbiltzeko abiaduraren arabera

 $\{(\ln a_n)^q\} <<< \{(a_n)^p\} <<< \{k^{a_n}\} <<< \{(a_n)^{ra_n}\}, q, p, r>0 \text{ et a } k>1 \text{ izanik.}$

Polinomioen arteko zatiduraren limitea

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{b_l n^l + b_{l-1} n^{l-1} + \dots + b_1 n + b_0} = \begin{cases} \infty & k > l \\ \frac{a_k}{b_l} & k = l \\ 0 & k < l \end{cases}$$

- **3.6.** Printzipioa. Segida baten gai orokorraren adierazpenean agertzen den biderkagai edo zatitzaile bat bere baliokide batez ordezka daiteke segidaren limitea aldatu gabe.
- **3.7. Adibidea.** $\frac{\sqrt[n]{10}-1}{\sqrt[n]{100}-1}$ segidaren limitea kalkulatuko dugu.

$$\sqrt[n]{10} = 10^{\frac{1}{n}} \to 1$$

$$\sqrt[n]{100} = 100^{\frac{1}{n}} \to 1; \ beraz, \ \lim_{n \to \infty} \frac{\sqrt[n]{10} - 1}{\sqrt[n]{100} - 1} = \frac{0}{0} \ indetermination \ da.$$

$$\{\sqrt[n]{10} - 1\} \sim \{\ln\sqrt[n]{10}\}$$

$$\{\sqrt[n]{100} - 1\} \sim \{\ln\sqrt[n]{100}\}$$

$$\lim_{n \to \infty} \frac{\sqrt[n]{10} - 1}{\sqrt[n]{100} - 1} = \lim_{n \to \infty} \frac{\ln \sqrt[n]{10}}{\ln \sqrt[n]{100}} = \lim_{n \to \infty} \frac{\frac{1}{n} \ln 10}{\frac{1}{n} \ln 100} = \lim_{n \to \infty} \frac{\ln 10}{\ln 10^2} = \frac{\ln 10}{2 \ln 10} = \frac{1}{2}.$$

3.4.2 Stolz-en irizpideak

- **3.8. Teorema.** $\{a_n\}$ eta $\{b_n\}$ segidek baldintza hauek betetzen badituzte:
 - 1. $\{b_n\}$ hertsiki monotonoa bada,
 - 2. $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ existitzen bada eta
 - 3. hauetako bat ere betetzen bada:
 - (a) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$,
 - $(b) \lim_{n \to \infty} b_n = +\infty,$
 - (c) $\lim_{n\to\infty} b_n = -\infty$,

Stolz-en irizpideak dio berdintza hau beteko dela:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}.$$

3.9. Adibidea. $\left\{\frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{\ln n}\right\}$ segidaren limitea kalkulatuko dugu.

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

 $b_n = \ln n \ hertsiki \ gorakorra \ eta \lim_{n \to \infty} b_n = \lim_{n \to \infty} \ln n = +\infty$

$$a_{n+1} = 1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}$$

3.5. Ariketak 5

$$a_{n+1} - a_n = \frac{1}{n+1}$$

$$b_{n+1} - b_n = \ln(n+1) - \ln n = \ln \frac{n+1}{n}$$

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{1/(n+1)}{\ln \frac{n+1}{n}} = \lim_{n \to \infty} \frac{1/(n+1)}{\frac{n+1}{n} - 1} = \lim_{n \to \infty} \frac{1/(n+1)}{1/n} \lim_{n \to \infty} \frac{n}{n+1} = 1.$$

$$Ondorioz, \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln n} = 1 \ da.$$

3.4.3 e zenbakiaren erabilpena

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n.$$

$$e^k = \lim_{n \to \infty} \left(1 + \frac{k}{n+l}\right)^{n+p}.$$

$$\lim_{n \to \infty} a_n = 0 \Rightarrow e = \lim_{n \to \infty} \left(1 + a_n\right)^{1/a_n}.$$

$$\lim_{n \to \infty} a_n = \pm \infty \Rightarrow e = \lim_{n \to \infty} \left(1 + \frac{1}{a_n}\right)^{a_n}.$$

3.4.4 Cauchy-ren segidak

3.10. Definizioa. $\{a_n\}$ Cauchy-ren segida da, ondorio baldintza betetzen badu: $\forall \varepsilon > 0$ $\exists n_0(\varepsilon) \in \mathbb{N}/\forall p, q \geq n_0(\varepsilon)$ $d(a_p, a_q) < \varepsilon$

3.11. Teorema. Cauchy-ren irizpidea segidetarako: \mathbb{R} multzoan, segida bat konbergentea da baldin eta soilik baldin Cauchy-ren segida bada.

3.5 Ariketak

5.Kalkula itzazu gai orokor hauek dituzten segiden limiteak:

 $9)(\frac{3+2n^2}{3n+n^2})^{\frac{n^3+2n}{n^2-5}} \to (\frac{\infty}{\infty})^{\frac{\infty}{\infty}}$ Segida honen limitea kalkulatzeko, bitan banatuko dugu segida, horrela bi $\frac{\infty}{\infty}$ motako indeterminazio izanik.

1.
$$\lim_{n \to \infty} \frac{3 + 2n^2}{3n + n^2} \to \frac{2}{1} = 2$$

2.
$$\lim_{n \to \infty} \frac{n^3 + 2n}{n^2 - 5} \to \frac{1}{0} = \infty$$

Ondorioz, osorik honela geratuko litzateke: $2^{\infty} = \infty$

$$\lim_{n \to \infty} n(1 - \frac{\ln n}{n}) \to \infty \times (1 - 0) = \infty$$

$$(35)\frac{1}{n^2}(\frac{2}{1}+\frac{3^2}{2}+\frac{4^3}{3^2}+\ldots+\frac{(n+1)^n}{n^{n-1}})$$

$$a_n = 1(2+3^2+4^3+\ldots+(n+1)^n)$$

$$b_n = n^2(1+2+3+\ldots+n^{n-1})$$

$$\exists ? \Rightarrow \lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

Stolz-en metodoa erabiliz:
$$\lim_{n \to \infty} \frac{(n+2)^{n+1}}{(n+1)^n (2n+1)} = \lim_{n \to \infty} \frac{n^{n+1}}{n^n \cdot 2n} = \lim_{n \to \infty} \frac{(n+1) \ln n}{n \ln n + \ln 2n} = \lim_{n \to \infty} (\frac{n+2}{2n+1}) (\frac{n+2}{n+1})^n = \lim_{n \to \infty} (\frac{n+2}{2n+1}) (1 + \frac{1}{n+1})^n = \frac{1}{2} \cdot e = \frac{e}{2}$$

6.Froga ezazu hurrengo segida errepikaria konbergentea dela eta kalkula ezazu bere limitea:

$$1)a_1 = 1$$
 eta $a_{n+1} = \sqrt{2a_n}$

$$\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots\}$$

$$\{2^{1/2},2^{1/2}\times 2^{1/4},2^{1/2}\times 2^{1/4}\times 2^{1/8},\ldots\}$$

$$\{2^{1/2}, 2^{\frac{1}{2} + \frac{1}{4}}, 2^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8}}, \ldots\}$$

$$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...,$$
hau da, $\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}+...$

$$S_n = \frac{a(1-r^n)}{1-r}$$

Aurretik ondorioztatu dugunez, r, arrazoia, hau da, errepikatzen den zatia, $\frac{1}{2}$ da.

$$\frac{1}{2} + \frac{1}{4} + \dots + (\frac{1}{2})^n = \frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} = 1 - \frac{1}{2^n}$$

$$a_n = 2^{1 - \frac{1}{2^n}}$$
 bada, $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (2^{1 - \frac{1}{2^n}}) = 2^{1 - 0} = 2$.