

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 07 SEP 2004

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 35 596.0

Anmeldetag: 04. August 2003

Anmelder/Inhaber: BASF Coatings AG, 48165 Münster/DE

Bezeichnung: Verfahren zur Charakterisierung von Oberflächenstrukturen und seine Verwendung bei der Modifizierung, Neuentwicklung und Herstellung von Werkstoffen

IPC: G 01 B 11/24

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. August 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Wehner

Verfahren zur Charakterisierung von Oberflächenstrukturen und seine Verwendung bei der Modifizierung, Neuentwicklung und Herstellung von Werkstoffen

5 Die vorliegende Erfindung betrifft ein neues Verfahren zur Charakterisierung von Oberflächenstrukturen, insbesondere von Oberflächenschäden. Außerdem betrifft die vorliegende Erfindung die Verwendung des neuen Verfahrens bei der Modifizierung, Neuentwicklung und Herstellung von Werkstoffen.

10 Die Oberflächenstrukturen von Gegenständen sind von grundlegender Bedeutung für die technischen Eigenschaften, den Gebrauchswert und die Lebensdauer der Gegenstände. Die genaue Kenntnis der Oberflächenstrukturen ist daher wesentlich für die Modifizierung.

15 Neuentwicklung und Herstellung von Werkstoffen.

Es ist außerdem eine alltägliche Erfahrung, dass die Oberfläche von Gegenständen jeglicher Art häufig durch mechanische und chemische Einwirkung oder die Einwirkung von energiereicher Strahlung geschädigt wird. Diese Oberflächenschäden können die Gegenstände sogar unbrauchbar machen, sodass der Anwender wirtschaftlich stark geschädigt werden kann.

20 Die Oberflächenschäden können je nach Einwirkung die Form von Verätzungen, Verbrennungen, Aufwerfungen, Aufrauungen, Kratzern, Riefen, Löchern, Schnitten, Rissen, Kratern und/oder großflächigen Abschälungen oder Abplatzungen haben. Die Oberflächenstörungen machen sich insbesondere bei glatten, glänzenden, geschliffenen, polierten, dekorativen, transparenten und/oder spiegelnden Oberflächen 25 visuell besonders störend bemerkbar. Die Oberflächenschäden können

aber auch schwerwiegende Folgeschäden, wie "Festfressen" von beweglichen Teilen von Maschinen, Korrosion von Werkstoffen oder Kurzschlüsse in elektronischen Bauteilen hervorrufen.

- 5 Die Hersteller und Anwender von Gegenständen aus organischen, anorganischen und/oder metallorganischen Werkstoffen, insbesondere von Gegenständen aus Gläsern, Metallen, thermoplastischen und duroplastischen Kunststoffen, Keramiken, Mineralien, Leder, Textilien, Hölzern, Papieren und/oder Verbunden dieser Materialien, die glatte, glänzende, geschliffene, polierte, dekorative, transparente und/oder spiegelnde Oberflächen aufweisen, sind daher bestrebt, diese Probleme zu minimieren oder möglichst ganz zu vermeiden, indem sie die Werkstoffe modifizieren oder ganz neu entwickeln, sodass sie durch mechanische Einwirkung nur noch geringfügig und idealer Weise gar nicht mehr geschädigt werden.

Dazu bedarf es aber eines Verfahrens zur objektiven Charakterisierung von Oberflächenstrukturen, insbesondere von Oberflächenschäden, beispielsweise von durch die mechanische und/oder chemische Einwirkung und/oder die Einwirkung von Strahlung und/oder Hitze hervorgerufenen Schadensbildern, mit dessen Hilfe der Erfolg von Maßnahmen zum Schutz von Oberflächen objektiv festgestellt werden kann, sodass die Modifizierung, die Neuentwicklung und/oder die Herstellung von Werkstoffen gezielt vorangetrieben werden können.

25 Häufig haben die Gegenstände einen hohen wirtschaftlichen Wert, sodass ein solches Verfahren zerstörungsfrei arbeiten muss. Auch kann es sich um sehr große Gegenstände handeln, die nicht oder nicht ohne weiteres einer Laboruntersuchung zugänglich sind; das Verfahren muss daher 30 auch unter Praxisbedingungen, sozusagen "vor Ort", durchführbar sein.

Ein solches Verfahren steht aber trotz eines langanhaltenden Bedarfs von Herstellern und Anwendern noch nicht zur Verfügung.

5 Beispielsweise hat schon so gut wie jeder Besitzer eines Automobils die unangenehme Erfahrung gemacht, dass es bei der Wäsche seines Automobils in einer Autowaschstraße zu einer Verkratzung der Automobildeckierung, d. h. der Bildung von Waschverkratzungen, kommt. Bei jeder Wäsche kommen neue Waschverkratzungen hinzu, sodass sich

10 die optische Qualität der Automobildeckierung im Laufe der Zeit stetig verschlechtert, was zu einem erheblichen Wertverlust des Automobils führt. Diese "echten" Waschkratzer können im Gegensatz zu den so genannten Pseudowashkratzern, d. h. Kratzer in den durch die Washstraßenreinigung erzeugten Rückständen, nicht mehr durch ein

15 nachträgliches Polieren entfernt werden. Außerdem stechen sie insbesondere im Sonnenlicht gerade bei dunklen Lackierungen optisch hervor.

Es besteht daher ein langanhaltender Bedarf sowohl bei der

20 Automobilindustrie als auch bei deren Kunden nach Automobildeckierungen, die nach der Wäsche in Autowaschstraßen bei ihrer visuellen Beurteilung im Sonnenlicht oder im Kunstlicht keine oder nur eine sehr geringe Bildung von Waschverkratzungen zeigen, sodass auch nach zahlreichen Wäschchen kein oder nur ein geringer Anstieg des

25 Verkratzungsgrades und damit keine oder nur eine geringe Verschlechterung der optischen Eigenschaften der Automobildeckierung visuell wahrgenommen wird.

Man versucht schon seit langem, dieses Problem durch die Entwicklung

30 von Beschichtungsstoffen zu lösen, die kratzfeste Beschichtungen liefern.

Dabei werden aus den Beschichtungsstoffen Beschichtungen hergestellt, deren Kratzfestigkeit mit Hilfe üblicher und bekannter Kratztests ermittelt wird. Beispiele solcher Kratztests sind der Rotahub-Kratztest, bei dem eine Beschichtung unter definiertem Andruck und Vorschub einer 5 rotierenden Scheibe mit einem Kratzmedium belastet wird, der Amtec-Test nach DIN 55668 in einer Laborwaschanlage mit Sandbeaufschlagung oder der Sandtest, bei dem die Beschichtung durch den Aufprall von Sandkörnern in einer Rüttelanlage belastet wird. Leider korrelieren die Ergebnisse dieser Tests nicht oder nur sehr schlecht mit der visuellen 10 Wahrnehmung von Waschverkratzungen auf fertigen Automobilen. Außerdem arbeiten diese Tests nicht zerstörungsfrei und können daher nicht bei einem fertigen Automobil eingesetzt werden. Es sich daher praktisch nicht möglich, mit Hilfe dieser Tests gezielt Beschichtungsstoffe zu entwickeln, die Beschichtungen liefern, die bei ihrer visuellen 15 Beurteilung im Sonnenlicht oder im Kunstlicht keine oder nur eine sehr geringe Bildung von Waschverkratzungen zeigen, sodass auch nach zahlreichen Wäschchen kein oder nur ein geringer Anstieg des Verkratzungsgrades und damit auch keine oder nur eine geringe Verschlechterung der optischen Eigenschaften der Automobilrückierung 20 visuell wahrgenommen wird.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein neues Verfahren zur objektiven Charakterisierung von Oberflächenstrukturen jeglicher Art - insbesondere von Oberflächenschäden, beispielsweise von 25 durch die mechanische und/oder chemische Einwirkung und/oder die Einwirkung von Strahlung und/oder Hitze hervorgerufenen Schadensbildern - zu finden, das die Nachteile bekannter Testverfahren nicht mehr länger aufweist, sondern das die objektive Charakterisierung von Oberflächenstrukturen jeglicher Art - insbesondere von 30 Oberflächenschäden, beispielsweise von durch die mechanische und/oder

chemische Einwirkung und/oder die Einwirkung von Strahlung und Hitze hervorgerufenen Schadensbildern, speziell in der Form von Verätzungen, Verbrennungen, Aufrauungen, Kratzern, Riefen, Löchern, Schnitten, Rissen, Kratern, Aufwerfungen und/oder großflächigen Abschälungen

5 und/oder Abplatzungen - an Gegenständen jeglicher Art aus organischen, anorganischen und/oder metallorganischen Werkstoffen - insbesondere von Gegenständen aus Gläsern, Metallen, thermoplastischen und duroplastischen Kunststoffen, Keramiken, Mineralien, Leder, Textilien, Hölzern, Papieren und/oder Verbunden dieser Materialien, speziell von

10 Gegenständen, die glatte, glänzende, geschliffene, polierte, dekorative, transparente und/oder spiegelnde Oberflächen aufweisen - ermöglicht, ohne dass dabei die Gegenstände weiter beschädigt oder gar völlig zerstört werden.

15 Das neue Verfahren soll nicht nur die objektive Charakterisierung von in der Praxis resultierenden Oberflächenschäden ermöglichen, sondern auch die durch Standardtests hervorgerufenen Oberflächenschäden, so dass eine objektive Korrelation zwischen den beiden Schadensarten hergestellt werden kann.

20 Das neue Verfahren soll daher nicht nur im Labor, sondern auch in der Praxis, sozusagen "vor Ort" durchgeführt werden können, sodass auch sehr große Gegenstände der Untersuchung zugänglich werden.

25 Das neue Verfahren soll es gestatten, den Erfolg von Maßnahmen zum Schutz von Oberflächen vor mechanischer und/oder chemischer Schädigung und/oder Schädigung durch Strahlung und/oder Hitze objektiv festzustellen, sodass die Modifizierung, die Neuentwicklung und/oder die Herstellung von Werkstoffen gezielt vorangetrieben werden können.

Dem gemäß wurde das neue Verfahren zur Charakterisierung von Oberflächenstrukturen gefunden, bei dem man

(I) mit Hilfe eines chemisch härtbaren Abdruckmaterials von mindestens einer Stelle

5 (I.1) der unbeschädigten Oberfläche eines Gegenstandes,

10 (I.2) einer durch mechanische und/oder chemische Einwirkung und/oder Einwirkung von Strahlung und/oder Hitze geschädigten Oberfläche eines Gegenstandes und/oder

15 (I.3) einer durch mechanische und/oder chemische Einwirkung und/oder Einwirkung von Strahlung und/oder Hitze geschädigten Oberfläche eines auf der Oberfläche eines Gegenstandes angebrachten Prüfkörpers

einen Abdruck nimmt,

20 (II) das Abdruckmaterial härtet und so ein Negativ vom Schadensbild erzeugt und

25 (III) den Flächenanteil (%) der Oberflächenstrukturen und/oder den Flächenanteil (%) der Oberflächenschäden im Schadensbild anhand von lichtmikroskopischen Aufnahmen des Negativs bildanalytisch bestimmt.

Im Folgenden wird das neue Verfahren zur Charakterisierung von Oberflächenstrukturen als »erfindungsgemäßes Verfahren« bezeichnet.

Außerdem wurde die neue Verwendung des erfindungsgemäßen Verfahrens bei der Modifizierung, der Neuentwicklung und/oder der Herstellung von Werkstoffen gefunden.

5 Im Folgenden wird die neue Verwendung des erfindungsgemäßen Verfahrens als »erfindungsgemäße Verwendung« bezeichnet.

10 Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden Erfindung zugrunde lag, mit Hilfe des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Verwendung gelöst werden konnte.

Vor allem war es überraschend, dass das erfindungsgemäße Verfahren die Nachteile bekannter Testverfahren nicht mehr länger aufwies, sondern

15 die objektive Charakterisierung von Oberflächenstrukturen jeglicher Art - insbesondere von Oberflächenschäden, beispielsweise von durch die mechanische und/oder chemische Einwirkung und/oder die Einwirkung Strahlung und/oder Hitze hervorgerufenen Schadensbildern, speziell in der Form von Verätzungen, Verbrennungen, Aufwerfungen, Aufrauungen,

20 Kratzern, Riefen, Löchern, Schnitten, Rissen, Kratern und/oder großflächigen Abschälungen und/oder Abplatzungen - an Gegenständen jeglicher Art aus organischen, anorganischen und/oder metallorganischen Werkstoffen - insbesondere von Gegenständen aus Gläsern, Metallen, thermoplastischen und duroplastischen Kunststoffen, Keramiken,

25 Mineralien, Leder, Textilien, Hölzern, Papieren und/oder Verbunden dieser Materialien, speziell von Gegenständen, die glatte, glänzende, geschliffene, polierte, dekorative, transparente und/oder spiegelnde Oberflächen aufweisen - ermöglichte, ohne dass dabei die Gegenstände weiter beschädigt oder gar völlig zerstört wurden.

Das erfindungsgemäße Verfahren ermöglichte nicht nur die objektive Charakterisierung von in der Praxis resultierenden Oberflächenschäden, sondern auch die durch Standardtests hervorgerufenen 5 Oberflächenschäden, so dass eine objektive Korrelation zwischen den beiden Schadensarten hergestellt werden konnte.

Das erfindungsgemäße Verfahren konnte daher nicht nur im Labor, sondern auch in der Praxis, sozusagen "vor Ort" durchgeführt werden, 10 sodass auch sehr große Gegenstände der Untersuchung zugänglich wurden.

Das erfindungsgemäße Verfahren gestattete es, den Erfolg von Maßnahmen zum Schutz von Oberflächen vor mechanische Schädigung 15 objektiv festzustellen, sodass die Modifizierung, die Neuentwicklung und/oder die Herstellung von Werkstoffen gezielt vorangetrieben werden konnten.

Das erfindungsgemäße Verfahren dient der Charakterisierung von 20 Oberflächenstrukturen von Gegenständen jeglicher Art - insbesondere von Gegenständen aus organischen, anorganischen und/oder metallorganischen Werkstoffen, insbesondere aus Gläsern, Metallen, thermoplastischen und duroplastischen Kunststoffen, Keramiken, Mineralien, Leder, Textilien, Hölzern, Papieren und/oder Verbunden dieser 25 Materialien, speziell von Gegenständen, die glatte, glänzende, geschliffene, polierte, dekorative, transparente und/oder spiegelnde Oberflächen aufweisen.

Insbesondere dient das erfindungsgemäße Verfahren der Charakterisierung von Oberflächenschäden in der Oberfläche dieser Gegenstände.

5 Beispiele von Gegenständen, die Untersuchungsobjekte für das erfindungsgemäße Verfahren sein können, sind

- optische Bauteile, wie Spiegel, Linsen, Prismen, Brillengläser, Fensterscheiben oder Windschutzscheiben,
- 10 - mechanische Bauteile, wie Gewinde, Schrauben, Muttern, Kolben, Wellen, Zahnräder oder Getriebe,
- elektronische Bauteile, wie Leiterplatten, Speicherchips, Spulen oder Sonnenkollektoren,
- 15 - Schmuckstücke, beispielsweise aus Edelmetallen und/oder Mineralien, wie Edelsteinen und Halbedelsteinen,
- 20 - Kunststofffolien- und –formteile sowie
 - mit schützenden und/oder dekorativen Beschichtungen, inklusive Lackierungen und Folien, beschichtete Gegenstände, wie Fortbewegungsmittel, inklusive Wasserfahrzeuge, Schienenfahrzeuge, Fluggeräte, Fahrräder, Motorräder, Personenkraftwagen, Lastkraftwagen und Omnibusse, oder Teile hiervon, Bauwerke, Möbel, Fenster, Türen, industrielle Kleinteile, Coils, Container, Emballagen, weiße Ware, Folien, optische Bauteile, elektrotechnische Bauteile, mechanische Bauteile oder Glashohlkörper und sonstige Gegenstände des täglichen Bedarfs.
- 25
- 30

31. Juli 2003

Die zu untersuchenden Gegenstände können auch Prüfkörper sein, die aus den vorstehend beschriebenen Werkstoffen bestehen und an Stelle von entsprechend aufgebauten größeren Gegenständen untersucht werden, um Rückschlüsse auf deren Eigenschaften zu ziehen. Die 5 Prüfkörper können daher die unterschiedlichsten Formen aufweisen, die von den zu untersuchenden größeren Gegenständen abhängig sind. Vorzugsweise sind die Prüfkörper Prüftafeln. Beispielsweise kann an Stelle einer lackierten Automobilkarosserie ein entsprechend lackierter Prüfkörper, insbesondere eine entsprechend lackierte Prüftafel, dem 10 erfindungsgemäßen Verfahren unterzogen werden.

Die Prüfkörper können aber auch auf den größeren Gegenständen selbst angebracht werden, damit das erfindungsgemäße Verfahren Ergebnisse liefert, die noch praxisgerechter sind, als die Untersuchungen an den 15 Prüfkörpern alleine. Beispielsweise können für die Durchführung des erfindungsgemäßen Verfahrens entsprechend lackierte Prüfkörper, insbesondere entsprechend lackierte Prüftafeln, an unterschiedlichen Stellen einer lackierten Automobilkarosserie angebracht werden, sodass ortsabhängige Effekte und Einflüsse untersucht werden können, wie 20 beispielsweise die örtlich unterschiedliche Belastung von lackierten Automobilkarosserien in Autowaschstraßen, insbesondere Bürstenwaschstraßen.

Die Oberflächenschäden können die unterschiedlichsten Ursachen haben.

25 Sie können durch mechanische Einwirkung, beispielsweise durch Kratzen, Schneiden, Schleifen, Reiben, Schälen, Beschießen und Besprühen sowie Kombinationen dieser Einwirkungen, hervorgerufen werden. Die Einwirkung kann durch massive oder feinteilige Gegenstände 30 unterschiedlichster Form und Härte, beispielsweise durch Werkzeuge,

inklusive Hämmer, Schraubenzieher, Bohrer oder Messer, durch Schlüssel, Geschosse, Reinigungsgeräte, inklusive Bürsten und Lappen, Reinigungsanlagen, inklusive Autowaschstraßen, insbesondere Bürstenwaschstraßen, Schleifgeräte, Schleifstoffe, Sande, Geröllmassen,
5 Stahlwolle oder Mineralwolle, erfolgen.

Die Oberflächenschäden können auch durch chemische, inklusive elektrochemische, Einwirkung, beispielsweise durch Wasser, Säuren, Basen, Salze, Reduktionsmittel, Oxdidationsmittel, organische Lösemittel
10 und andere Chemikalien sowie Plasmen und Feuer und durch Kombinationen dieser Einwirkungen hervorgerufen werden.

Des Weiteren können die Oberflächenschäden auch durch Strahlung, beispielsweise durch elektromagnetische Strahlung, wie Infrarot, nahe
15 Infrarot (NIR), sichtbares Licht, UV-Strahlung, Röntgenstrahlung oder Gammastrahlung, und Korpuskularstrahlung, wie Elektronenstrahlung, Alphastrahlung, Betastrahlung, Protonenstrahlung oder Neutronenstrahlung, hervorgerufen werden.

20 Nicht zuletzt können die Oberflächenschäden auch durch Hitze, die durch heiße Medien und/oder durch IR-Strahlung übertragen werden kann, hervorgerufen werden.

Bei dem erfindungsgemäßen Verfahren wird mit Hilfe eines chemisch
25 härtbaren Abdruckmaterials von mindestens einer Stelle

- der unbeschädigten Oberfläche eines Gegenstandes,

- einer durch mechanische und/oder chemische Einwirkung und/oder Einwirkung von Strahlung und/oder Hitze geschädigten Oberfläche eines Gegenstandes und/oder
- 5 - einer durch mechanische und/oder chemische Einwirkung und/oder Einwirkung von Strahlung und/oder Hitze geschädigten Oberfläche eines auf der Oberfläche eines Gegenstandes angebrachten Prüfkörpers
- 10 ein Abdruck genommen. Das Abdruckmaterial wird gehärtet und so ein Negativ vom Schadensbild der Lackverkratzungen erzeugt.

Vorzugsweise werden vor diesem Verfahrensschritt Verunreinigungen zumindest in dem oder den zu untersuchenden Bereichen der 15 Oberflächen schonend entfernt, damit sie nicht die Untersuchungen verfälschen.

Das im erfindungsgemäßen Verfahren verwendete chemisch härtbare Abdruckmaterial darf die zu untersuchenden Oberflächen nicht angreifen

- 20 und/oder sichtbare Markierungen hinterlassen. Vorzugsweise wird eine olefinisch ungesättigte Doppelbindungen, insbesondere Acrylatgruppen, enthaltende Masse, insbesondere eine Masse auf der Basis von Silicon, verwendet. Solche Abdruckmaterialien werden im Dentalbereich häufig verwendet, weil sie in kleinste Vertiefungen eindringen und daher kleinste 25 Details wiedergegeben können. Sie werden beispielsweise von der Firma Heraeus unter den Marken Provil Novo ® und Provil Novamedium ® vertrieben.

Vorzugsweise presst man das chemisch härtbare Abdruckmaterial in der 30 Form einer vorzugsweise kreisrunden Scheibe vorzugsweise eines

Durchmessers von 3 bis 4 cm mit Hilfe eines vorzugsweise kreisrunden Metallstempels, insbesondere eines Aluminiumstempels, auf die zu untersuchende Oberfläche auf. Die Andruckfläche des Metallstempels hat vorzugsweise einen vergleichbaren oder denselben Durchmesser wie die

5 Scheibe aus Abdruckmaterial. Vorzugsweise haftet der Metallstempel von selbst auf der Scheibe aus Abdruckmaterial. Man lässt das Abdruckmaterial unter dem Metallstempel aushärten, entfernt danach den Metallstempel von der Scheibe aus dem gehärteten Abdruckmaterial und nimmt die gehärtete Scheibe des Abdruckmaterials (Negativ) von der zu

10 untersuchenden Oberfläche ab.

Aus dem Negativ kann ein Positiv erzeugt werden, indem man das Negativ mit einem flüssigen Kunststoffmaterial in Berührung bringt und das flüssige Kunststoffmaterial in Kontakt mit dem Negativ verfestigt,

15 wonach man das resultierende Positiv vom Negativ entfernt.

Vorzugsweise wird dabei das Negativ mit dem Bild der Oberflächenstrukturen oder dem Schadensbild nach oben auf den Boden eines geeignet dimensionierten Gefäßes gelegt und mit dem flüssigen

20 Kunststoffmaterial überschichtet.

Als flüssige Kunststoffmaterialien können übliche und bekannte, physikalisch und/oder chemisch härtbare Beschichtungsstoffe verwendet werden, die durch physikalische und/oder chemische Härtung verfestigt

25 werden.

Vorzugsweise wird eine Lösung mindestens eines, insbesondere eines, Polymeren, bevorzugt eines thermoplastischen Polymeren, insbesondere Polystyrol, in einem, insbesondere einem, organischen Lösemittel, bevorzugt einem aromatischen Lösemittel, insbesondere Xylol, verwendet.

Dabei wird das flüssige Kunststoffmaterial verfestigt, indem man das organische Lösemittel verdampft.

Die resultierenden Positive sind hervorragend für Untersuchungen mit
5 AFM (atomic force microscopy) und REM (Rasterelektronenmikroskopie)
geeignet. Diese Untersuchungen können eine wertvolle Ergänzung des
erfindungsgemäßen Verfahrens darstellen.

Bei dem erfindungsgemäßen Verfahren können die Negative und die
10 Positive, insbesondere die Negative, direkt für die lichtmikroskopischen
Aufnahmen eingesetzt werden. Vorzugsweise werden sie aber zuvor mit
einem Edelmetall, vorzugsweise mit Gold oder Gold/Palladium,
insbesondere Gold, besputtert.

15 Für die lichtmikroskopischen Aufnahmen wird vorzugsweise eine
hochauflösende Digitalkamera verwendet. Ein Beispiel für eine solche
Digitalkamera ist »ColorView12« der Firma SIS (Soft Imaging System).

Die Digitalkamera wird an ein Lichtmikroskop adaptiert. Ein Beispiel für ein
20 geeignetes Lichtmikroskop ist das Olympus-Mikroskop BH 3-MJL.

Vorzugsweise wird eine Objektivvergrößerung von 5:1 bis 100:1,
bevorzugt 5:1 bis 50:1 und insbesondere 10:1 bis 20:1 verwendet.
25 Vorzugsweise werden Aufnahmen von mindestens zwei, bevorzugt
mindestens fünf, besonders bevorzugt mindestens acht und insbesondere
zehn Messfeldern gemacht.

Vorzugsweise hat ein Messfeld eine Fläche von $200 \times 100 \mu\text{m}^2$ bis $1.500 \times$
30 $1.000 \mu\text{m}^2$, insbesondere von $300 \times 200 \mu\text{m}^2$ bis $1.200 \times 950 \mu\text{m}^2$.

Zur Bildaufnahme, Bildanalyse und Bildarchivierung wird vorzugsweise ein Bildverarbeitungsprogramm, beispielsweise das Bildverarbeitungsprogramm Analysis ®, insbesondere Analysis ®-Pro-
5 Version, der Firma SIS verwendet.

Vorzugsweise werden bei der Bildaufnahme Farbaufnahmen, insbesondere 12 Bit-Farbaufnahmen, gemacht.

10 Die Bildanalyse umfasst vorzugsweise die folgenden Verfahrensschritte:

- (1) Herstellung des Originalbildes und Shading-Korrektur,
- (2) Herstellung eines Grünauszugs, insbesondere eines 8 Bit-
15 Grünauszugs,
- (3) Schwellwertsetzung, Herstellung eines Binärbildes und Bildfilterung,
- (4) Partikeltrennung sowie gegebenenfalls Erodieren und Dilatieren,
20
- (5) Detektion, d. h. die Unterscheidung von Oberflächenstrukturen oder Oberflächenschäden, wie beispielsweise Kratzer, von sonstigen Oberflächenstörungen, und Klassifizierung,
- (6) Übertragung in eine Excel-Tabelle,
25
- (8) Herstellung einer Statistik aus 5 bis 20, insbesondere 10, Messfeldern und

(9) Auswertung.

Vorzugsweise werden zur Detektion (5) der Oberflächenstrukturen oder Oberflächenschäden, beispielsweise von Kratzern, im Binärbild (3) die 5 folgenden Formparameter definiert:

- (a) Fläche eines Partikels (Oberflächenstruktur oder Oberflächenschaden, beispielsweise Kratzer) = (Anzahl der Pixel) x (Kalibrierungsfaktoren in X- und Y-Richtung),
- (b) Aspektratio = max. Höhen-Breiten-Verhältnisses eines einhüllenden Rechtecks des Partikels, und
- (c) Formfaktor = $4\pi a/U^2$, worin a = Fläche und U = Umfang.

Dem gemäß ist für runde Partikel der Formfaktor = 1; für alle anderen Partikel ist er < 1. Anhand der Formparameter können Objekte oder Partikel, die keine Oberflächenstrukturen oder keine Oberflächenschäden, beispielsweise keine Kratzer, sind, von der weiteren Auswertung 20 ausgeschlossen werden.

Anschließend können die als gültig erkannten Partikel klassifiziert werden, d. h., in entsprechende Größenklassen eingeteilt und in ihrer jeweiligen Häufigkeit festgestellt werden. Vorzugsweise werden die Partikel nach 25 ihrer Fläche oder nach ihrer Breite, insbesondere nach ihrer Breite, klassifiziert.

Vorzugsweise erfolgt die Klassifizierung der Partikel nach der Fläche in mindestens 10, insbesondere 20, Flächen-Klassen, z. B. im Falle von 30 Kratzern in Flächen-Klassen von 1 bis $200 \mu\text{m}^2$.

Vorzugsweise erfolgt die Klassifizierung der Partikel nach der Breite in mindestens 5, vorzugsweise 8 und insbesondere 10 Feret-min-Breiten-Klassen, beispielsweise im Falle von Kratzern in Feret-min-Breiten-5 Klassen bis 20 µm, wobei Feret-min definiert ist als der minimale Abstand paralleler Tangenten an gegenüberliegenden Partikelrändern.

An Stelle der Klassifizierung in Feret-min-Breiten-Klassen kann auch nach der mittleren Breite der Partikel klassifiziert werden, wobei die mittlere Breite als Quotient von Fläche und Feret-max (= Länge der Partikel) definiert ist.

Bei der Klassifizierung nach der Fläche bestimmt man den Oberflächenstrukturen- oder Oberflächenschaden-Flächenanteil (%), beispielsweise den Kratzer-Flächenanteil (%), jeder Flächen-Klasse sowie Gesamt-Oberflächenstrukturen- oder Gesamt-Oberflächenschaden-Flächenanteil (%), beispielsweise den Gesamt-Kratzer-Flächenanteil (%), aller Flächen-Klassen.

Bei der Klassifizierung nach der Breite bestimmt man den Oberflächenstrukturen- oder Oberflächenschaden-Flächenanteil (%), beispielsweise den Kratzer-Flächenanteil (%), jeder Breiten-Klasse sowie den Gesamt-Oberflächenstrukturen- oder Gesamt-Oberflächenschaden-Flächenanteil (%), beispielsweise den Gesamt-Kratzer-Flächenanteil (%), aller Breiten-Klassen.

Die Ergebnisse der in erfindungsgemäßer Verfahrensweise durchgeführten bildanalytischen Untersuchungen können dann mit den anwendungstechnischen Eigenschaften der untersuchten Oberflächen korreliert werden. Aus den Korrelationen können sehr gute wichtige

Rückschlüsse für die zielgerichtete Modifizierung, Neuentwicklung und/oder Herstellung der Werkstoffe, aus denen die betreffenden Oberflächen bzw. Gegenstände aufgebaut sind, gezogen werden.

- 5 Bei einer besonders vorteilhaften erfindungsgemäßen Verwendung wird z. B. die durch mehrfaches Waschen in einer Bürstenwaschstraße verkratzte Beschichtung einer Automobilkarosserie bei Sonnenlicht visuell beurteilt und benotet, vorzugsweise mit Noten von 1 (keine oder nur sehr wenige sichtbare Kratzer, sehr wenig zerkratzt) bis 6 (sehr viele sichtbare Kratzer, sehr stark zerkratzt), und es wird die jeweilige Benotung mit dem mit Hilfe des erfindungsgemäßen Verfahrens ermittelten Gesamt-Kratzer-Flächenanteil (%) sowie dem Kratzer-Flächenanteil (%) jeder Feret-min-Breiten-Klasse korreliert.
- 10
- 15 Überraschenderweise kann aus der Korrelation der Benotung der visuellen Wahrnehmung und dem Kratzer-Flächenanteil (%) jeder Feret-min-Breiten-Klasse der Schluss gezogen werden, dass im wesentlichen die Kratzer mit einer Breite von 2 bis 10 µm, insbesondere 4 bis 10 µm, und nicht die seltener auftretenden breiteren Kratzer und die häufiger auftretenden feineren Kratzer für die visuelle Wahrnehmung der Verkratzung ausschlaggebend sind.
- 20

Somit kann das erfindungsgemäße Verfahren beispielsweise hervorragend für die Entwicklung und die Auswahl von Beschichtungsstoffen für die Herstellung von Beschichtungen, insbesondere von farb- und/oder effektgebenden Mehrschichtlackierungen vom Typ Basislackierung/Klarlackierung, die auch nach mehrfachem Waschen der betreffenden Automobile in einer Autowaschstraße, insbesondere einer Bürstenwaschstraße, bei ihrer visuellen Beurteilung im

Sonnenlicht keinen oder nur einen sehr geringen Anstieg der Lackverkratzungen zeigen, verwendet werden.

5 Beispiel

Charakterisierung von in einer Bürstenwaschstraße erzeugten Verkratzungen in Klarlackierungen

10 Für das Beispiel wurde eine Serie 1 von Prüftafeln verwendet, die mit einer Klarlackierung beschichtet waren, die aus einem handelsüblichen Zweikomponenten-Klarlack hergestellt worden war. Außerdem wurde eine Serie 2 von Prüftafeln verwendet, die mit einer Klarlackierung beschichtet waren, die aus einem handelsüblichen, mit UV-Strahlung härtbaren

15 Klarlack hergestellt worden war.

Paare von Prüftafeln (eine Prüftafeln aus Serie 1 und eine aus Serie 2) wurden an unterschiedlichen Positionen auf einem PKW fixiert und bis zu 18 Wäschchen in einer Bürstenwaschstraße unterzogen. Anschließend

20 wurden die vorhandenen Rückstände der Waschstraßenreinigung mit mit Isopropanol getränktem, fusselfreiem Papier entfernt.

Der Grad der Verkratzung der Prüftafeln wurde von sechs Beobachtern visuell im Sonnenlicht beurteilt und benotet (Note 1: keine oder nur sehr wenige sichtbare Kratzer, sehr wenig zerkratzt; bis Note 6: sehr viele sichtbare Kratzer, sehr stark zerkratzt). Aus den sechs Noten wurde ein Mittelwert gebildet.

Anschließend presste man ein chemisch härtbares Abdruckmaterial

30 (Acrylatgruppen enthaltende Masse auf der Basis von Silicon, Provil Novo

® der Firma Heraeus) in der Form kreisrunder Scheiben eines Durchmessers von 3,5 cm mit Hilfe eines kreisrunden Aluminiumstempels auf die Prüftafeln auf. Die Andruckfläche des Aluminiumstempels hatte denselben Durchmesser wie die Scheiben aus Abdruckmaterial. Der 5 Aluminiumstempel haftete von selbst auf den Scheiben aus Abdruckmaterial. Man ließ das Abdruckmaterial unter dem Aluminiumstempel aushärten, entfernte danach den Aluminiumstempel von den Scheiben aus dem gehärteten Abdruckmaterial und nahm die gehärteten Scheiben des Abdruckmaterials (Negative) von den Prüftafeln 10 ab.

Die Negative wurden für die lichtmikroskopischen Aufnahmen mit Gold, besputtert.

15 Für die lichtmikroskopischen Aufnahmen wurde die hochauflösende Digitalkamera »ColorView12« der Firma SIS (Soft Imaging System) verwendet. Die Digitalkamera wurde an das Olympus-Mikroskop BH 3-MJL adaptiert. Es wurde eine Objektivvergrößerung von 10:1 verwendet. Von jedem Positiv wurden Aufnahmen von zehn Messfeldern gemacht. 20 Jedes Messfeld hatte eine Fläche von $1.149 \times 919 \mu\text{m}^2$. Zur Bildaufnahme, Bildanalyse und Bildarchivierung wurde Bildverarbeitungsprogramm Analysis ®-Pro-Version der Firma SIS verwendet. Im im Bei der Bildaufnahme wurden 12 Bit Farbaufnahmen, gemacht.

25

Die Bildanalyse umfasste die folgenden Verfahrensschritte:

(1) Herstellung des Originalbildes und Shading-Korrektur,

- (2) Herstellung eines Grünauszugs, insbesondere eines 8 Bit-Grünauszugs,
- 5 (3) Schwellwertsetzung auf 210, Herstellung eines Binärbildes und Bildfilterung,
- (4) Partikeltrennung sowie Erodieren und Dilatieren,
- 10 (5) Detektion, d. h. die Unterscheidung von Kratzern von sonstigen Oberflächenstörungen, und Klassifizierung in jeweils 10 Feret-min-Breiten-Klassen:
 - Klasse 1: 0 bis 2 µm
 - Klasse 2: 2 bis 4 µm
 - 15 Klasse 3: 3 bis 6 µm
 - Klasse 4: 6 bis 8 µm
 - Klasse 5: 8 bis 10 µm
 - Klasse 6: 10 bis 12 µm
 - Klasse 7: 12 bis 14 µm
 - 20 Klasse 8: 14 bis 16 µm
 - Klasse 9: 16 bis 18 µm
 - Klasse 10: 18 bis 20 µm
- 25 (6) Übertragung in eine Excel-Tabelle,
- (8) Herstellung einer Statistik aus jeweils 10 Messfeldern und
- 30 (9) Auswertung zur Bestimmung des Kratzer-Flächenanteils (%) jeder Breiten-Klasse sowie des Gesamt-Kratzer-Flächenanteils (%) aller Breiten-Klassen.

Zur Detektion (5) der Kratzer im Binärbild (3) wurden die folgenden Formparameter definiert werden:

5 (a) Fläche eines Partikels (Kratzer) = (Anzahl der Pixel) x
(Kalibrierungsfaktoren in X- und Y-Richtung),

(b) Aspektratio = max. Höhen-Breiten-Verhältnisses eines einhüllenden Rechtecks des Partikels, und

10 (c) Formffaktor = $4\pi a/U^2$, worin a = Fläche und U = Umfang.

Dem gemäß war für runde Partikel der Formfaktor = 1; für alle anderen Partikel war er < 1. Anhand der Formparameter konnten Objekte oder
15 Partikel, die keine Kratzer waren, von der weiteren Auswertung ausgeschlossen werden.

Die Tabelle 1 gibt eine Übersicht über die eingesetzten Prüftafeln, ihre Positionen auf der Automobilkarosserie, die Anzahl der Wäschchen, die
20 Benotung der visuellen Wahrnehmung und der Gesamt-Kratzer-Flächenanteil.

Tabelle 1: Eingesetzte Prüftafeln, ihre Positionen auf der Automobilkarosserie, Anzahl der Wäschchen, Benotung der visuellen Wahrnehmung und Gesamt-Kratzer-Flächenanteil

5

	Prüftafeln	Klarlak-	Anzahl	Position	Note	Gesamt-Kratzer-
		kierung	der			Flächenanteil (%)
Nr.	Wäschchen					
10	1	2K	1	HLO	2,6	0,56
	2	UV	1	HLO	1,3	0,1
	3	2K	3	HRO	1,9	0,12
15	4	UV	3	HRO	1,2	0,05
	5	2K	5	VL	2,8	0,22
	6	UV	5	VL	2,2	0,1
20	7	2K	8	VR	3,3	0,88
	8	UV	8	VR	1,0	0,13
	9	2K	12	HRU	2,0	0,16
	10	UV	12	HRU	1,4	0,16
25	11	2K	15	FS	5,4	3,44
	12	UV	15	FS	4,1	1,12
	13	2K	18	HLU	3,6	1,01
30	14	UV	18	HLU	1,4	0,25

15	2K	18	HS	5,5	5,89
16	UV	18	HS	4,9	4,22

5

2K aus Zweikomponenten-Klarlack hergestellte Klarlackierung;

UV aus mit UV-Strahlung härtbarem Klarlack hergestellte Klarlackierung;

10

HLO Tür hinten links oben;

HRO Tür hinten rechts oben;

15 VL Tür vorne links;

VR Tür vorne rechts;

HRU Tür hinten rechts unten;

20

HLU Tür hinten links unten;

FS Frontscheibe;

25 HS Heckscheibe

Die Ergebnisse liessen sich wie folgt zusammenfassen:

- Die aus dem UV-Klarlack hergestellten Klarlackierungen sind kratzfester als die aus dem Zweikomponenten-Klarlack

hergestellten Klarlackierungen; das Verfahren gestatten daher eine sehr gute Differenzierung zwischen Klarlackierungen, die aus unterschiedlichen Klarlacken hergestellt worden waren;

5 - bereits nach wenigen Wäschen waren deutliche Verkratzungen erkennbar; es waren daher nicht viele Wäschen notwendig, um eine sehr gute Differenzierung zu erzielen;

10 - zwischen den Positionen, an denen die Prüftafeln angebracht waren, bestanden hinsichtlich der Belastung durch die Waschbürsten erhebliche Unterschiede, so dass auch in räumlicher Hinsicht differenziert werden konnte;

15 - der Korrelationskoeffizient R^2 zwischen Gesamt-Kratzer-Flächenanteil und Note betrug ohne den besten und den schlechtesten Wert 0,8563, was die sehr gute Korrelation untermauerte.

Außerdem wurde der Korrelationskoeffizient R^2 für jede Feret-min-Breiten-
20 Klasse in Abhängigkeit von der Note ermittelt und in der Tabelle 2 zusammengestellt.

Tabelle 2: Korrelationskoeffizient R^2 für jede Feret-min-Breiten-Klasse in Abhängigkeit von der Note

Klasse	Korrelationskoeffizient R^2
5	Nr.

1	0,5691
10	2 0,6526
3	0,7689
4	0,7613
15	
5	0,7629
6	0,6809
20	7 0,6778
8	0,4898
9	0,2974
25	
10	0,3176

Die Werte der Tabelle 2 untermauerten, dass die visuelle Wahrnehmung des Verkratzungsgrades in der Hauptsache von den Kratzern einer Breite von 4 bis 10 µm geprägt wurde.

5

10

Patentansprüche

1. Verfahren zur Charakterisierung von Oberflächenstrukturen, bei dem man

5

(I) mit Hilfe eines chemisch härtbaren Abdruckmaterials von mindestens einer Stelle

10

(I.1) der unbeschädigten Oberfläche eines Gegenstandes,

(I.2) einer durch mechanische und/oder chemische Einwirkung und/oder Einwirkung von Strahlung und/oder Hitze geschädigten Oberfläche eines Gegenstandes und/oder

15

(I.3) einer durch mechanische und/oder chemische Einwirkung und/oder Einwirkung von Strahlung und/oder Hitze geschädigten Oberfläche eines auf der Oberfläche eines Gegenstandes angebrachten Prüfkörpers

20

einen Abdruck nimmt,

25

(II) das Abdruckmaterial härtet und so ein Negativ vom Schadensbild erzeugt und

30

(III) den Flächenanteil (%) der Oberflächenstrukturen und/oder den Flächenanteil (%) der Oberflächenschäden im Schadensbild anhand von lichtmikroskopischen Aufnahmen des Negativs bildanalytisch bestimmt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man vom Negativ ein Positiv erzeugt.
- 5 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man den Flächenanteil (%) der Oberflächenstrukturen und/oder den Flächenanteil (%) der Oberflächenschäden im Schadensbild anhand von lichtmikroskopischen Aufnahmen des Positivs bildanalytisch bestimmt.
- 10 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man die Oberflächenstrukturen oder das Schadensbild anhand des Positivs durch AFM (atomic force microscopy) und REM (Rasterelektronenmikroskopie) ergänzend charakterisiert.
- 15 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man als chemisch härtbares Abdruckmaterial eine olefinisch ungesättigte Doppelbindungen enthaltende Masse verwendet.
- 20 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man eine Masse auf Basis von Silicon verwendet.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man das chemisch härtbare Abdruckmaterial in der Form einer Scheibe mit Hilfe eines Metallstempels auf die Oberfläche des Gegenstandes oder des Prüfkörpers aufpresst, unter dem Metallstempel aushärten lässt, den Metallstempel von der gehärteten Scheibe des Abdruckmaterials entfernt und die

31. Juli 2003

gehärtete Scheibe des Abdruckmaterials (Negativ) von der Automobilkarosserie oder der Prüftafel abnimmt.

8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass man aus dem Negativ ein Positiv erzeugt, indem man das Negativ mit einem flüssigen Kunststoffmaterial in Berührung bringt, wonach man das flüssige Kunststoffmaterial in Kontakt mit dem Negativ verfestigt und das resultierende Positiv vom Negativ entfernt.
10
9. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 8, dadurch gekennzeichnet, dass man das Negativ und das Positiv für die lichtmikroskopischen Aufnahmen mit einem Edelmetall besputtert.
- 15 10. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 9, dadurch gekennzeichnet, dass man für die lichtmikroskopischen Aufnahmen eine hochauflösende Digitalkamera an ein Lichtmikroskop adaptiert.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man eine Objektivvergrößerung von 5:1 bis 100:1 verwendet.
20
12. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 11, dadurch gekennzeichnet, dass man Aufnahmen von mindestens zwei Messfeldern macht.
- 25 13. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 12, dadurch gekennzeichnet, dass das Messfeld bei $200 \times 100 \mu\text{m}^2$ bis $1.500 \times 1.000 \mu\text{m}^2$ liegt.

14. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 13, dadurch gekennzeichnet, dass man zur Bildaufnahme, Bildanalyse und Bildarchivierung ein Bildverarbeitungsprogramm verwendet.
- 5 15. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 14, dadurch gekennzeichnet, dass man bei der Bildaufnahme Farbaufnahmen macht.
- 10 16. Verfahren nach einem der Ansprüche 1 bis 3 und 5 bis 15, dadurch gekennzeichnet, dass die Bildanalyse die folgenden Verfahrensschritte umfasst:
 - (1) Herstellung des Originalbildes und Shading-Korrektur,
 - 15 (2) Herstellung eines Grünauzugs,
 - (3) Schwellwertsetzung, Herstellung eines Binärbildes und Bildfilterung,
 - 20 (4) Partikeltrennung sowie gegebenenfalls Erodieren und Dilatieren,
 - (5) Detektion und Klassifizierung,
 - 25 (6) Übertragung in eine Excel-Tabelle,
 - (8) Herstellung einer Statistik aus 5 bis 20 Messfeldern und
 - (9) Auswertung.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass zur Detektion (5) der Oberflächenstrukturen oder Oberflächenschäden im Binärbild (3) die folgenden Formparameter definiert werden:

5 (a) Fläche eines Partikels (Oberflächenstruktur oder Oberflächenschaden) = (Anzahl der Pixel) x (Kalibrierungsfaktoren in X- und Y-Richtung),

10 (b) Aspektratio = max. Höhen-Breiten-Verhältnisses eines einhüllenden Rechtecks des Partikels, und

 (c) Formfaktor = $4\pi a/U^2$, worin a = Fläche und U = Umfang.

18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass man die Oberflächenstrukturen oder Oberflächenschäden nach ihrer Fläche oder nach ihrer Breite klassifiziert.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Klassifizierung nach der Fläche in mindestens 10 Flächen-Klassen und nach der Breite in mindestens 5 Feret-min-Breiten-Klassen, wobei Feret-min definiert ist als der minimale Abstand paralleler Tangenten an gegenüberliegenden Partikelrändern, oder in mindestens 5 Klassen der mittleren Breite, wobei die mittlere Breite definiert ist als der Quotient von Fläche und Feret-max (= Länge des Partikels), erfolgt.

20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass man bei der Klassifizierung nach der Fläche den Oberflächenstrukturen- oder Oberflächenschaden-Flächenanteil (%) jeder Flächen-Klasse sowie den Gesamt-Oberflächenstrukturen-

oder Gesamt-Oberflächenschaden-Flächenanteil (%) aller Flächen-Klassen und bei der Klassifizierung nach der Breite den Oberflächenstrukturen- oder Oberflächenschaden-Flächenanteil (%) jeder Breiten-Klasse sowie den Gesamt-Oberflächenstrukturen- oder Oberflächenschaden- Flächenanteil (%) aller Breiten-Klassen bestimmt.

5

10

21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass man es bei der Modifizierung, Neuentwicklung und/oder Herstellung von Werkstoffen verwendet.

Zusammenfassung

Verfahren zur Charakterisierung von Oberflächenstrukturen, bei dem man

5 (I). mit Hilfe eines chemisch härtbaren Abdruckmaterials von
mindestens einer Stelle

(I.1) der unbeschädigten Oberfläche eines Gegenstandes,
10 (I.2) einer durch mechanische und/oder chemische Einwirkung
und/oder Einwirkung von Strahlung und/oder Hitze
geschädigten Oberfläche eines Gegenstandes und/oder
15 (I.3) einer durch mechanische und/oder chemische Einwirkung
und/oder Einwirkung von Strahlung und/oder Hitze
geschädigten Oberfläche eines auf der Oberfläche eines
Gegenstandes angebrachten Prüfkörpers

20 einen Abdruck nimmt,
(II) das Abdruckmaterial härtet und so ein Negativ vom Schadensbild
erzeugt und
25 (III) den Flächenanteil (%) der Oberflächenstrukturen und/oder den
Flächenanteil (%) der Oberflächenschäden im Schadensbild
anhand von lichtmikroskopischen Aufnahmen des Negativs
bildanalytisch bestimmt;

sowie die Verwendung des Verfahrens für die der Modifizierung,
30 Neuentwicklung und/oder Herstellung von Werkstoffen.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.