Javier Garcia-Bernardo

Assistant Professor, Department of Methodology & Statistics j.garciabernardo@uu.nl

"A computer program is said **to learn from experience** *E* with respect to some class of **tasks** *T* and **performance measure** *P* if its performance at task *T*, as measured by *P*, improves with experience *E*." (Samuel/Mitchell, 1959)

Experience: Data

Task: Goal

• Performance measure: Accuracy, R², etc

Supervised ML: Output is available. Performance = discrepancy between predicted output and real output

- Regression
- Classification

Unsupervised ML: No labels/output. Performance = reduction of some error

- Clustering (e.g. cluster points so they are as close as possible within clusters, as far as possible between clusters)
- Dimensionality reduction (e.g. combine variables to maximize the amount of variability explained)

• Typically focuses on large, **high-dimensional** datasets with interactions between features

Output-driven:

- Typically aims to solve a problem (rather than to test a hypothesis)
- Emphasizes predictive accuracy: Uses theory if it improves accuracy (to build new features)

Cannot and should not replace thinking about causation

Algorithm of the day: XGBoost

Army of weak learners → **Strong predictors** (~wisdom of crowds)

Boosting: Incrementally build trees to fix observations previously miscategorized

Decision tree

Ensemble (e.g. random forest)

Gradient Boosting

Guo et al, 2020

Some uses of ML in epidemiology

Missing data imputation

Prediction of outcomes with interpretability at the individual level (e.g., LIME, SHAP)

Theory building:

- ML can detect higher-order interactions and other complicated responses
- Run the ML model on the full data → Does it increase prediction compared to the traditional model?
 - You may be missing an important variable
 - Your model may be missing interactions
- Evaluate model using interpretability tools

Main issues in Machine Learning

Issue 1: Overfitting

- Lots of data and features → can be a recipe for disaster
- Evaluation of overfitting: cross-validation
- Prevention of overfitting: Regularization, weak learners, dropout, etc.

Issue 2: Interpretability of the model

- Complex models are more difficult to interpret
- New measures of interpretability

Issue 1: Overfitting

1: Evaluate overfitting using a validation dataset

Training dataset → Use to train different models **Validation dataset** → Evaluate out-of-sample

prediction error

(Test dataset) → Evaluate out-of-sample prediction

error of final model

1: Evaluate overfitting using a validation dataset

But with this:

- We reduce the training dataset (number of observations)
- We validate on a small dataset (maybe not representative)

1: Evaluate overfitting using cross-validation

Do you want to understand the error due to the splitting? → Run this procedure several times with random splittings

1: Hyperparameter tuning

Hyperparameter tuning using cross-validation → Balance between flexibility and overfitting:

- **Regularization** (e.g. sum of |coefs| < |)
- Ensembles:
 - Train trees with different data
 - Bootstrap
 - Subset of predictors
 - Use shallow trees
- Neural networks:
 - Train disabling neurons (dropout)
- Early stopping

Issue 2: Interpretability

2: Interpretability

Being Right for the Right Reasons

Choices:

- Global vs Local interpretability
- Model-dependent vs model-agnostic interpretability

2: Global interpretability

Goal: Understand what are the main features/interactions in the model

Example 1: Feature importance: Increase in model error when the information is removed

- No need to retrain the model
- Correlated variables are problematic

2: Global interpretability

Goal: Understand what are the main features/interactions in the model

Example 2: Partial dependencies plots (marginal effects)

2: Local interpretability

Goal: Inform the human about the factors determining the prediction

Many advances in the last decade (SHAP, LIME, Anchors, Counterfactuals)

Basic idea: Change the observations slightly to observe how the prediction will change

Two examples of women diagnosed with cervical cancer (Interpretable Machine Learning, C. Molnar 2022)

2: Local interpretability

Goal: Inform the human the reason of the prediction

Basic idea: Change the observations slightly to observe how the prediction will change

Scott M. Lundberg, Su-In Lee, 2017

Anchors // Ribeiro, Singh and Guestrin, 2018

https://silverpond.com.au/2018/04/17/an-ai-tells-us-what-it-knows-when-we-poke-it-in-the-eye/

2: Local -> Global interpretability

Goal: Understand what are the main features/interactions in the model

Basic idea: Average individual predictions

bikes number of Predicted 1 2000 Wind speed Humidity Temperature

Individual Conditional Expectation (ICE)

Partial Dependency Plot (PDP)

2: Local -> Global interpretability

Exercise (javier.science/ml_julius)

Synthetic data:

- X = 105 features (100 quantitative, 5 categorical)
- Y = Quantitative response (depending on interaction between 3 quantitative and 1 categorical)

Goal:

- Try two methods: LASSO regression and XGBoost
- Hyperparameter tuning using cross-validation
- Use feature importance to understand the results of XGBoost

Instructions: (in groups)

- Read the code line by line
- Run de code
- Adapt the code with other possible outputs in the data (e.g. increase number of features)

Some uses of ML in epidemiology

Missing data imputation

Prediction of outcomes with interpretability at the individual level (e.g., LIME, SHAP)

Theory building:

- ML can detect higher-order interactions and other complicated responses
- Run the ML model on the full data → Does it increase prediction compared to the traditional model?
 - You may be missing an important variable
 - Your model may be missing interactions
- Evaluate model using interpretability tools

Final remarks

Use the following questions when using ML in epidemiology:

- How much better is the fancy model? → Use cross-validation to evaluate. Don't use complicated methods if they are not better than simple methods.
- What can we learn about the world from the model? → Interpretability helps here
- Is our method able to generalize? → If we use our algorithm to predict new observations, make sure it keeps predicting well (i.e., do not blindly trust it)
- Is our algorithm fair? → http://aequitas.dssg.io/audit/_g5htt_b/compas_for_aequitas/

Thanks!