Job Search Model with Nonlinear Expectations

May 2, 2025

- 1. The job seeker uses power-transformed expectations
- 2. We assume that $w \in W = [w_1, w_2]$ and $0 < c < w_1 < w_2$
- 3. We construct an ADP (V, \mathbb{T}) by setting
 - 3.1 $V = [c, \overline{v}] \subset bmW$ where $\overline{v} \coloneqq \frac{c+w_2}{1-\beta}$
 - 3.2 $T_{\sigma} \in \mathbb{T}$ defined as

$$T_{\sigma}v = \sigma e + (1 - \sigma)(c + \beta Rv), \tag{1}$$

where

$$(Rv)(w) := \left(\int v^{\gamma}(w')P(w,dw')\right)^{1/\gamma} \qquad (w \in W, \gamma \neq 0),$$

and $e(w) \coloneqq \frac{w}{1-\beta}$ is the stopping reward.

Two facts regarding

$$(Rv)(w) := \left(\int v^{\gamma}(w')P(w, dw')\right)^{1/\gamma}$$

- 1. R is order-preserving on V and maps any constant function to itself
- 2. R is concave when $\gamma \leqslant 1$ and convex when $\gamma \geqslant 1$
 - 2.1 $R(\lambda v) = \lambda Rv$
 - 2.2 $\gamma \geqslant 1$: $R(v+w) \leqslant Rv + Rw$ (Minkowski inequality)
 - 2.3 $\gamma \le 1$: $R(v+w) \ge Rv + Rw$ (reverse Minkowski inequality)

To see the optimality and algorithmic results:

- 1. bmW is countably Dedekind complete Banach lattice
- 2. T_{σ} is an order preserving self-map on V, and

2.1
$$\exists \varepsilon > 0$$
: $T_{\sigma}c \ge \frac{c}{1-\beta} \wedge (c+\beta c) \ge c + \varepsilon(\overline{v}-c)$

2.2
$$\exists \varepsilon > 0$$
: $T_{\sigma} \overline{v} \leq \frac{w_{2}}{1-\beta} \bigvee (c+\beta \overline{v}) = (\overline{v} - \frac{c}{1-\beta}) \bigvee (\overline{v} - w_{2}) \leq \overline{v} - \varepsilon (\overline{v} - c)$

3. Regularity:

$$\sigma(w) := \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + (Rv)(w)\right\}$$

Figure 4.6: The reservation wage as a function of γ