

Boas práticas para desenvolvimento de aplicações SCADA

Ana Cristina Rodrigues acrodrigues29@hotmail.com São Paulo, outubro de 2017

Standards

Certification

Education & Training

Publishing

Conferences & Exhibits

Agenda

- Onde encontrar boas práticas?
- ISA 101 Criação de IHMs
- ISA 99 Segurança de Sistemas de Controle
- ISA 18.2 Gestão de Alarmes
- ISA 106 Automação de Procedimentos
- Próximos passos: ISA 112 Sistemas SCADA
- Conclusão

O que é uma Norma?

- Um conjunto de características, quantidades ou procedimentos que descrevem um produto, um serviço, uma interface ou um material.
- As normas oferecem inúmeros benefícios em automação e produção.
- Um conjunto de normas normalmente inclui: Normas, Recomendações Práticas e/ou Relatórios Técnicos.

Como as Normas são desenvolvidas?

- Desenvolvidas por Comitês de Normas
 - Verifique os termos de referência do comitê
 - Verifique a que órgão está vinculado
 - Alguns comitês de normas são melhores que outros
- O que caracteriza um "bom" comitê de normas
 - Abertura
 - Domínio no assunto
 - Equilíbrio
 - Consenso
 - Direito de Apelação

NECESSIDADE: Excelência Operacional

ISA

SOLUÇÃO: Normas Consensuais

Normas da ISA

- Abertas e consensuais
- Mais de 4.000 profissionais participando ao redor do mundo

Benefícios da Padronização

- Agilizar processos
- Aumentar a segurança, a confiabilidade
- Aumentar a eficiência, a produtividade

Credenciamento de Normas

- Normas credenciadas por institutos de normas nacionais ou internacionais é um bom sinal.
- Âmbito nacional:
 - EUA: American National Standards Institute (ANSI)
 - Brasil: Associação Brasileira de Normas Técnicas (ABNT)

- Âmbito internacional:
 - ISO: International Organization for Standardization
 - IEC: International Electrotechnical Commission

A ISA é credenciada no ANSI e associada à IEC

Portfólio de Normas da ISA

- São +160 documentos entre Normas (ISA), Recomendações Práticas (ISA-RP) e Relatórios Técnicos (ISA-TR) publicados pela ISA, que abrange todos os aspectos da automação e controle industrial:
 - ISA 5: Simbologia para Instrumentação
 - ISA 18.2: Gerenciamento de Alarmes
 - ISA 20: Formulários de Especificação de Instrumentação
 - ISA 75: Válvulas de Controle
 - ISA 84: Segurança Funcional
 - ISA 88: Sistemas de Controle de Bateladas
 - ISA 95: Integração de Sistemas de Controle-Corporativos
 - ISA 99: Segurança de Sistemas de Controle e Automação Industrial
 - ISA 100: Sistemas de Redes sem Fio para Automação
 - ISA 101: Interfaces Homem-Máquina
 - ISA 105: Comissionamento, Verificações de Loop, Testes FAT e SAT
 - ISA 106: Automação de Procedimentos em Operações de Processo Contínuo, etc.
- A lista completa de normas da ISA pode ser encontrada em:
 - https://www.isa.org/standards-and-publications/isa-standards

Normas da ISA credenciadas no ANSI e IEC

 ANSI: algumas normas desenvolvidas pela ISA foram registradas pela ANSI e são denominadas de ANSI/ISA, como por exemplo:

ISA 18.2	18.2 ANSI/ISA 18.2 - Management of Alarm Systems for the Process Industries			
ISA 99	ANSI/ISA 62443 - Control Systems Security			
ISA 101	ANSI/ISA-101.01 - Human Machine Interfaces for Process Automation Systems			

 IEC: algumas normas desenvolvidas pela ISA serviram de base de normas internacionais IEC ou ISA/IEC, utilizadas mundialmente, como por exemplo:

ISA 18.2	IEC 62682 - Management of Alarm Systems for the Process Industries
ISA 99	ISA/IEC-62443: Control Systems Security

Como acessar uma Norma da ISA

- Membros da ISA podem acessar online a maioria das normas técnicas (necessário login)
 - <u>www.isa.org</u> → Standards & Publications → View ISA Standards

Como participar dos Comitês de Normas da ISA

- Qualquer voluntário pode participar de um comitê de normas técnicas
 - www.isa.org → Standards & Publications → Standards Committees: Numerical Order
- Os comitês organizam encontros de 1-2 vezes por ano ou conforme a necessidade.
- Muitos encontros são através de teleconferências e web meetings.
- Composto por:
 - Information Member
 - Voting Member

 (membros que participam ativamente são pontuados e recebem direito a voto)

ISA 101 – INTERFACE HOMEM-MÁQUINA

Norma ISA 101

Documento da norma:

 ANSI/ISA-101.01-2015, Human Machine Interfaces for Process Automation Systems

Propósito da norma:

- Guia para projetar, construir, operar e manter uma IHM para se ter sistemas de controle de processo mais seguros, efetivos e eficientes, sob quaisquer condições de operação;
- Melhorar a habilidade de detectar e responder adequadamente a situações anormais.

ISA 101 – Escopo

- Gerenciamento de Sistemas IHM
- Ergonomia e fatores humanos
- Estrutura da IHM e estilos de tela
- Interação com o usuário
- Performance
- Treinamento de usuário

		-	7 –	ANSI/ISA-101.01-201
		Col	ntents	
Int	roduc	tion		
	Purp	ose		
	Orga	anization		
1	Sco	je		
	1.1	General Applicability		
	1.2	Exclusions		1
	1.3	Intended Audience		
2	Norr	native References		
	2.1	References		
3	Defi	nition of Terms and Acronyms		
	3.1	Definitions		
	3.2	Acronyms		
4	HMI	System Management		
	4.1	Introduction		1
	4.2	System Standards		2
	4.3	The Design Process		2
	4.4	The Implementation Stage of the HM	Lifecycle	2
	4.5	The Operate Stage of the HMI Lifecy	cle	3
	4.6	Continuous Work Processes		
5	Hum	an Factors Engineering & Ergonomics		3
	5.1	General Principles of HMI Design		3
	5.2	User Sensory Limits		3
	5.3	User Cognitive Limits		3
6	Disp	lay Styles and Overall HMI Structure		4
	6.1	Introduction		4
	6.2	Display Styles		4
	6.3	Display Hierarchy		4
7	Use	Interaction		4
	7.1	Introduction		4
	7.2	Software Methods for User Interactio	n	4
	7.3	Hardware Interfaces		5
8	Perf	ormance		5
	8.1	Introduction		5
	8.2	HMI Categories		5
	8.3	HMI Duty Factors		6
9	Train	ning		6
	9.1	User Training		6

Destaques da ISA 101

- Etapas de projeto: sala de operação (mobiliário, número de monitores, temperatura e luz ambiente), sistema IHM (seleção da plataforma, regras de segurança), requisitos funcional/usuário/tarefa e projeto gráfico. Atentar para a documentação do projeto.
- **Bibliotecas de objetos**: optar pelo uso de modelos prontos de telas, *pop-ups, faceplates*, objetos estáticos e dinâmicos: foram pensados para operações específicas com performance otimizada. Melhor ainda se tiver recurso de replicação global de mudanças
- Fatores humanos/ergonomia: densidade de informações, uso de cores, animação de objetos, alarmes sonoros etc.
- Uso de script ou lógica embarcada: reaproveitamento de códigos
- Padronização de cores: tons de cinza para objetos em geral, uso de cores como amarelo, vermelho, azul, verde somente para enfatizar situações.
- Tamanhos das formas: proporcionais às quantidades e/ou hierarquia do objeto.

Destaques da ISA 101

- Acessibilidade: indicador muda de formato para destacar mudança no processo, com grande contraste de cores.
- Hierarquia de telas: nível 1 para visão geral e resumo de alarmes, nível 2 para detalhamento, nível 3 para tarefas não rotineiras (configuração de parâmetros, rotinas complexas), nível 4 para diagnósticos
- Navegação de telas: métodos por hierarquia, relacional ou sequencial
- Indicadores numéricos: adotar um padrão para a entrada de dados e apresentação de números
- Animação de objetos: poderoso atrativo para os olhos como recurso de entretenimento, deve ser usado com critério ou até mesmo eliminado de telas de operação
- Posição: utilizar objetos planos, evitando o uso de telas tridimensionais por trazer uma sobrecarga cognitiva, com excesso de cores e visibilidade prejudicada
- Etc.

Alinhamento à ISA 101

1990

Hoje

Simplificação = Segurança

Hoje e futuro

ISA 101 – Apresentação de dados

TE1	25.1 ℃	TR1	16.0 ∘c	GD1	9.1	9C
TEZ	22.3 ∘c	TR2	13.2 ∘c	GD2	9.1	90
TE3	21.6 ℃	TR3	12.6 ∘c	GD3	9.0	90
TE4	22.4 °c	TR4	30.9 ∘c	GD4	-8.5	°C
TE5	22.3 ∘c	TR5	13,4 ∘c	GD5	8.9	°C
TE6	21.5 ∘c	TR6	12.5 ∘c	GD6	9.0	oC.
TE7	26.9 ∘c	TR7	16.8 ∞	GD7	10.1	°C

Representação analógica permite uma compreensão mais rápida.

ISA 101 – Uso de Cores

Dados mais importantes devem se destacar dos demais.

Representação de objetos em geral e status.

Indicação de Alarmes, Falhas, Bloqueios, Inibições, SetPoints, Intertravamentos

ISA 101 – Gradiente de Cores

Cuidado com Gradientes de Cores!

ISA 101 – Forma

Representar "Quantidade" por comprimento de linha

ISA 101 – Agrupamento de objetos

Representar "Agrupamento" por contornos e preenchimentos ao redor dos objetos de um mesmo grupo

Tela Temperaturas Mancal da Turbina 1 Sensor 1 41.9 °C Sensor 2 40.4 °C Sensor 3 42.3 °C Sensor 4 399°c Mancal da Turbina 2 Sensor 1 44.3 °C Sensor 2 45.7 °C Sensor 3 47.2 °C Sensor 4 46.9 °C

```
Tela Temperaturas
Mancal da Turbina 1
Sensor 1 41.9 °C
Sensor 2 40.4 °C
Sensor 3 42.3 °C
Sensor 4 39.9 °C
Mancal da Turbina 2
Sensor 1 44.3 °C
Sensor 2 45.7 °C
Sensor 3 47.2 °C
Sensor 4 46.9 °C
```


ISA 99 – SEGURANÇA CIBERNÉTICA

ISA 99 Security for Industrial Automation and Control Systems

Propósito da norma:

- Guia de segurança cibernética para sistemas industriais de automação e controle (IACS).
- IACS incluem sistemas usados em plantas de manufatura e processamento, utilidades, sistemas de distribuição, etc que utilizam dispositivos automáticos ou controlados remotamente.
- Segurança definida como meio para prevenir o acesso ilegal e não desejado à operação de um processo, a interferência intencional ou não intencional à operação, ou o acesso à informações confidenciais em IACS.

ISA 99 ou ISA/IEC 62443?

- Como essas normas se relacionam?
 - ISA/IEC 62443 é uma série de normas
 - Desenvolvida por 3 grupos:
 - ISA99 → ANSI/ISA 62443
 - IEC TC65 WG10 → Comitê Técnico 65, Grupo de Trabalho 10 (TC65 WG10): Security for industrial process measurement and control – network and system security
 - ISO/IEC JTC1/SC27 → ISO/IEC 2700x

ISA/IEC 62443 - Estrutura

* IACS: Industrial Automation and Control Systems

General

ISA-62443-1-1

Terminologia, conceitos e modelos

ISA-TR62443-1-2

Glossário de termos e abreviações

ISA-62443-1-3

Métricas de conformidade de segurança do sistema

ISA-TR62443-1-4

Ciclo de vida e caso de uso de segurança IACS*

Policies & procedures

ISA-62443-2-1

Requisitos para um sistema de gestão de segurança para IACS*

ISA-TR62443-2-2

Guia de implementação de sistema de gestão de segurança para IACS*

ISA-TR62443-2-3

Gerenciamento de patchs no ambiente IACS*

ISA-62443-2-4

Requisitos de instalação e manutenção para fornecedores IACS*

System

ISA-TR62443-3-1

Topologias de segurança para IACS*

ISA-62443-3-2

Níveis de segurança para zonas e conduites

ISA-62443-3-3

Requisitos de sistemas e níveis de segurança

Component

ISA-62443-4-1

Requisitos para desenvolvimento de produtos

ISA-62443-4-2

Requisitos para segurança técnica de componentes IACS*

Segurança em Sistemas IHM/SCADA

- Realizar uma análise de riscos de todo o sistema
- Confidencialidade (TI) ≠ Disponibilidade (TA/TO)
- Controle de acesso em sistemas SCADA
 - Roubo de identidades digitais: crackers de senhas, snifers, malwares, permanência de dados
 - Engenharia social: por e-mail, por help desk
 - Antivírus e políticas de atualização de patchs

Segurança em Sistemas IHM/SCADA

Políticas de controle de acesso:

- Segurança do SCADA integrada à segurança do sistema operacional
- Política de senhas e perguntas randômicas
- Duplo fator de autenticação: smartcards, tokens, biometria etc
- Desconexão automática de usuários inativos
- Auditoria de eventos através de trilhas de auditoria
- Verificação do usuário em operações críticas (assinatura eletrônica)
- Bloqueio de acesso do usuário ao sistema operacional
- Etc

ISA 18.2 – GESTÃO DE ALARMES

ISA 18.2 ou IEC 61512

ISA 18.2 – Gestão de Alarmes

Documentos da norma:

- ANSI/ISA-18.2-2016, Management of Alarm Systems for the Process Industries
- ISA-TR18.2.2-2016, Alarm Identification and Rationalization
- ISA-TR18.2.3-2015, Basic Alarm Design
- ISA-TR18.2.4-2012, Enhanced and Advanced Alarm Methods
- ISA-TR18.2.5-2012, Alarm System Monitoring, Assessment, and Auditing
- ISA-TR18.2.6-2012 Alarm Systems for Batch and Discrete Processes
- ISA-TR18.2.7-2017, Alarm Management When Utilizing Packaged Systems

Propósito da norma:

 Desenvolvimento, projeto, instalação e gerenciamento de sistemas de alarme para indústrias de processo. Gerenciamento de alarmes inclui múltiplos processos de trabalho dentro do ciclo de gerenciamento de alarmes.

ISA 18.2 – Escopo

- Modelos de sistemas de alarmes
- Filosofia de alarme
- Requisitos de um sistema de alarmes
- Identificação
- Racionalização
- Projeto detalhado de alarme básico
- Interface de IHM com sistemas de gestão de alarmes
- Métodos avançados de alarme
- Implementação, Operação, Manutenção, Monitoramento
- Controle de versão e auditoria

		CONTENTS	
nt	roduc	tion	11
1	Sco	pe	13
	1.1	General applicability	13
	1.2	Exclusions and inclusions	14
2	Norr	native references	15
3	Tern	ns, definitions, and acronyms	15
	3.1	Terms and definitions	15
	3.2	Abbreviations	25
4	Con	formance to this standard	25
	4.1	Conformance guidance	25
	4.2	Existing systems	
	4.3	Use of required functionalities	
	4.4	Responsibility	26
5	Alan	m system models	26
	5.1	Alarm systems	26
	5.2	Alarm management lifecycle	
	5.3	Alarm states	31
	5.4	Alarm response timeline	
	5.5	Feedback model of operator – process interaction	37
3	Alar	m philosophy	
	6.1	Purpose	38
	6.2	Alarm philosophy contents.	
	6.3	Alarm philosophy development and maintenance	
7		m system requirements specification	
	7.1	Purpose	
	7.2	Recommendations	·····
	7.3	Development	
	7.4	Systems evaluation	
	7.5	Packaged systems	
	7.6	Customization	
	7.7	Alarm system requirements testing	46
3	Iden	tification	
	8.1	Purpose	46
	8.2	Alarm identification methods	
	8.3	Identification training	
	8.4	Identification documentation	
,	Ratio	onalization	
	9.1	Purpose	
	9.1	Rationalization documentation	
	9.3	Alarm justification	
	9.3	Alarm setooint determination	
	9.5	Prioritization	

ISA 18.2 – O Ciclo de Vida do Gerenciamento de Alarmes

Métricas da Norma ISA 18.2

Alarm performance metrics based upon at least 30 days of data				
Metric	Target value			
Annunciated alarms per time	Target value: Very likely to be acceptable	Target value: Maximum manageable		
Annunciated alarms per day per operating position	~150 alarms per day	~300 alarms per day		
Annunciated alarms per hour per operating position	∼6 (average)	~12 (average)		
Annunciated alarms per 10 minutes per operating position	~1 (average)	~2 (average)		
Metric	Target value			
Percentage of hours containing more than 30 alarms	~<1%			
Percentage of 10-minute periods containing more than 10 alarms	~1<%			
Maximum number of alarms in a 10 minute period	≤10			
Percentage of time the alarm system is in a flood condition	~<1%			
Percentage contribution of the top 10 most frequent alarms to the overall alarm load	~<1% to 5% maximum, with action plans to address deficiencies.			
Quantity of chattering and fleeting alarms	Zero, with action plans to correct any that occur.			
Stale alarms Less than 5 present on any day, with action plans to address				

Taxas de Alarmes e Classificação

Quantidade de Alarmes/10 minutos	Classificação
Até 1	Muito provavelmente aceitável
Até 2	Gerenciável
De 2 a 5	Possivelmente sobre-demanda
De 5 a 10	Provável sobre-demanda
Acima de 10	Muito provavelmente inaceitável

O gráfico das taxas de Alarmes (**Alarm Rates**) na forma horária ou diária ajuda na visualização do desempenho.

ISA 18.2 – Análise e Gestão

- Análise dos alarmes mais frequentes
- Resolução de alarmes problemáticos
- Distribuição por prioridade
- Alarmes de diagnóstico com prioridade mínima
 - Devem ser eliminados em situação de enxurrada de alarmes
- Racionalização de alarmes
 - Diversas técnicas nos relatórios TR2, TR3 e TR4

ISA 106 – AUTOMAÇÃO DE PROCEDIMENTOS

ISA 106 – Automação de Procedimentos

Documentos da norma:

- ISA-TR106.00.01-2013, Procedure Automation for Continuous Process Operations - Models and Terminology
- ISA-TR106.00.02-2017, Procedure Automation for Continuous Process Operations - Work Processes

Propósito da norma:

 Oferecer um conjunto de boas práticas com relação à automação de procedimentos e estratégias para incorporar procedimentos automáticos nos sistemas de automação.

ISA 106 – Automação de Procedimentos

Garantir que sejam efetuadas as ações corretas no momento certo

- Modelos e terminologia
- Modularização de etapas de procedimentos
- Resolução de situações anormais
- Modelagem física, de procedimentos e de aplicações
- Implantação de lógicas para partidas, desligamentos, transições operacionais e outras situações críticas
- Recomendação de interface entre diferentes sistemas para cada procedimento
- Treinamento e certificação

	TABLE OF CONTENTS	
1	Scope	11
2	References	11
	2.1 Cited References	11
	2.2 Relevant References	12
	2.3 References of Interest	12
3	Definitions of Terms and Abbreviations	14
	3.1 Definitions of Terms	14
	3.2 Abbreviations	18
4	Historical Perspective	19
5	Value Proposition	20
6	Models	23
	6.1 Procedure Automation Models	23
	6.2 Physical Model	
	6.3 Procedure Requirements Model	26
	6.4 Procedure Implementation Model	29
	6.5 Model Summary	32
	6.6 Collapsibility	33
	6.7 Mapping Procedure Requirements to Implementation Modules	37
	6.8 Implementation Modules	39
	6.9 State-Based Control	46
	6.10 Mapping Implementation Modules to BPCS Components	52
	6.11 Alignment with Other Standards	54
	6.12 Model Level Names Used in Various Industries	58

Desafios e Oportunidades

Procedimentos não documentados podem ser executados de maneira diferente por diferentes pessoas. A automação dos procedimentos visa identificar as melhores práticas e padronizá-las para trazer consistência à operação

PRÓXIMOS PASSOS ISA 112 – SISTEMAS SCADA

ISA 112 – Sistemas SCADA

Propósito da norma:

- Guia de como projetar, implementar, operar e manter um sistema SCADA através de documentação das melhores práticas encontradas nas indústrias.
- O plano é desenvolver uma ou mais normas complementadas por relatórios técnicos específicos para alguns tipos de indústrias.

Faça parte do Comitê de desenvolvimento da Norma ISA 112!

Conclusão

- ✓ O uso das normas ISA101, ISA99, ISA18.2 e ISA 106 em projeto IHM/SCADA aproveita as boas práticas e a experiência de usuários e desenvolvedores de todo o mundo.
- ✓ Exija que seu desenvolvedor/integrador conheça e utilize as normas da ISA em seu próximo projeto!

Ana Cristina Rodrigues

Professora e Consultora de Automação acrodrigues29@hotmail.com São Paulo, outubro de 2017