Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 13 (Aug 23, 2019)

Introduction to Vector Spaces

Vector Space

Motivation: Think about the properties of usual vectors in 2-dimensional or 3-dimensional space.

Definition: A **vector space** consists of a non-empty set V of objects (called **vectors**) that can be added, that can be multiplied by an element of a field \mathbb{F} (called a **scalar** in this context), and for which certain axioms hold. If \mathbf{u} and \mathbf{v} are two vectors in V, their sum is expressed as $\mathbf{u} + \mathbf{v}$ and the scalar product of \mathbf{u} by an element a in \mathbb{F} is denoted as $a\mathbf{u}$. These operations are called **vector addition** and **scalar multiplication**, respectively, and the following axioms (there are total 10) are assumed to hold.

• Axioms for vector addition:

- ① If \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- ① An element $\mathbf{0}$ in V exists such that $\mathbf{u} + \mathbf{0} = \mathbf{u} = \mathbf{0} + \mathbf{u}$ for all $\mathbf{u} \in V$.
- For each $\mathbf{u} \in V$, an element $-\mathbf{u}$ in V exists such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0} = (-\mathbf{u}) + \mathbf{u}$.

Axioms for scalar multiplication:

- If **u** is in V, then a**u** is in V for all a in \mathbb{F} .
- $\mathbf{0}$ $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ for all \mathbf{u} and \mathbf{v} in V and all a in \mathbb{F} .
- $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ for all \mathbf{u} in V and all a and b in \mathbb{F} .
- $\bullet a(b\mathbf{u}) = (ab)\mathbf{u}$ for all \mathbf{u} in V and all a and b in \mathbb{F} .
- $oldsymbol{0}$ $1\mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V. Here 1 is the multiplicative identity of \mathbb{F} .

With these 10 properties, V is a vector space over \mathbb{F} , some times denoted by $V_{\mathbb{F}}$ or just by V if the field \mathbb{F} is clear from the context.

Most often, we will be dealing with the field $\mathbb R$ of real numbers throughout this course.

• Example 1: Let V consists of a single object, which we denote by 0 and define

$$\mathbf{0} + \mathbf{0} = \mathbf{0}$$
 and $a\mathbf{0} = \mathbf{0}$ for all $a \in \mathbb{F}$.

Then V is a vector space.

• **Example 2:** The space $V = \mathbb{R}^n$ of *n*-tuples (for any $n \ge 1$). There are often referred to as (column) vectors. The base field is $\mathbb{F} = \mathbb{R}$.

If
$$\mathbf{u} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$ are any two vectors in \mathbb{R}^n , then
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} X_1 + Y_1 \\ X_2 + Y_2 \\ \vdots \\ X_n + Y_n \end{bmatrix} \text{ and } \mathbf{a} \mathbf{u} = \begin{bmatrix} aX_1 \\ aX_2 \\ \vdots \\ aX_n \end{bmatrix} \text{ for any scalar } a \in \mathbb{R}.$$

Note: R^h is usually referred as **Euclidean space**.

• **Example 3:** The space $\mathbb{R}^{m \times n}$ of $m \times n$ matrices with real entries. Again, the base field is \mathbb{R} . $\mathbb{R}^{m \times n}$ is a vector space over \mathbb{R}

Remark: If we consider an image, it can be regarded as a rectangular array of numbers corresponding to the light intensity at each pixel. Usually, we restrict the values to be positive integers or even just 0-1. However, while doing the computations in image processing, we treat them as real numbers. So these vector spaces play a major role in image processing.

• **Example 4:** The space C[0,1] of continuous functions from the closed interval [0,1] on the real line to \mathbb{R} , i.e.

$$C[0,1] = \{f : f \text{ is a continuous function}, f : [0,1] \longrightarrow \mathbb{R}\}.$$

Remark: This space and related spaces play a major role in signals and systems, since an analogue signal is usually thought of as a continuous function of time. In other words, a signal is nothing but a "vector" in such a vector space.

Note: The above is an example of a "function" space.

• **Example 5:** The space \mathbb{R}^{∞} of real sequences is a vector space over \mathbb{R} , i.e.

$$\mathbb{R}^{\infty} = \{ \langle a_n \rangle : \langle a_n \rangle \text{ is a sequence with real number terms} \}.$$

- Of more interest than \mathbb{R}^{∞} itself, is c, the subset of convergent sequences. It is also a vector space.
- Note: the above are examples of "sequence" spaces. Sequence spaces also play a major role in the study of signals, specifically discrete or digital signals

• **Example 6:** The space $\mathbb{R}_n[t]$ of polynomials of degree $\leq n$ with real coefficients.

Note: The zero polynomial, which technically does not have any degree, is regarded as an element of $\mathbb{R}_n[t]$ for all n = 0, 1, 2, ...

- Example 7: The space $\mathbb{R}[t]$ of all polynomials with real coefficients. Note: These two examples are closely related to each other. We can see that $\mathbb{R}_n[t]$ is actually a subset of $\mathbb{R}[t]$ (for all n).
- Example 8: A set that is NOT a vector space Take $V = \mathbb{R}^2$, $\mathbb{F} = \mathbb{R}$. Define "vector addition" and "scalar multiplication" as follows: If $\mathbf{u} = (u_1, u_2)$, $\mathbf{v} = (v_1, v_2)$, then $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$ and $a\mathbf{u} = (au_1, 0)$ for $a \in \mathbb{R}$.

Since $1(-2,3) = (-2,0) \neq (-2,3)$, V is NOT vector space over \mathbb{F} . Note that except this property, the remaining 9 properties are satisfied.

- Example 9: Let $V=\mathbb{R}^+$, the set of all positive real numbers. For $u,v\in\mathbb{R}^+$ and $t\in\mathbb{R}$, define: u+v=uv [Vector addition is numerical multiplication] $tu=u^t$ [Scalar multiplication is numerical exponentiation] Then V is vector space over \mathbb{R} . Here $0=1,-u=\frac{1}{u}$.
- Example 10: $\mathbb{R}_{\mathbb{R}}, \mathbb{Q}_{\mathbb{Q}}, \mathbb{C}_{\mathbb{C}}$ are vector spaces. More generally, for any field \mathbb{F} , $\mathbb{F}_{\mathbb{F}}$ is a vector space.
- Example 11: $\mathbb{R}_{\mathbb{Q}}$ and $\mathbb{C}_{\mathbb{R}}$ are vector spaces.
- Example 12: If \mathbb{F} is a field, then for $n \geq 1$, \mathbb{F}^n is a vector space over \mathbb{F} . In this example, replace \mathbb{F} by \mathbb{Z}_p , \mathbb{R} , \mathbb{Q} and \mathbb{C} and then verify all the vector space properties.

Direct Consequence of the Vector Space Definition Properties

Proposition 7: Let V be a vector space. Then:

- The zero vector is unique.
- The additive inverse vector of any vector \mathbf{u} is unique; we use the notation $-\mathbf{u}$ for the inverse vector.
- **o** $0\mathbf{u} = \mathbf{0}$ for every vector \mathbf{u} .
- $\mathbf{0}$ $a\mathbf{0} = \mathbf{0}$ for every scalar a.

Proof: Left as an exercise.