Workshop 6

EMTH1019

1. If $\mathbf{a} = 2\mathbf{i} - \mathbf{j}$ and $\mathbf{b} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ find $\mathbf{a} \times \mathbf{b}$, then verify that $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{b} .

2. Find the area of the triangle PQR determined by the points P(1,-1,2), Q(2,0,-1) and R(0,2,1).

3. Find the area of the parallelogram formed by the two vectors \boldsymbol{u} and \boldsymbol{v} , if $||\boldsymbol{u}|| = 16$, $||\boldsymbol{v}|| = 4$ and the cosine of the angle between \boldsymbol{u} and \boldsymbol{v} is $\frac{1}{2}$.

4. Show that the vectors $\boldsymbol{a}=[1,2,-1],$ $\boldsymbol{b}=[-2,0,3]$ and $\boldsymbol{c}=[2,-4,-4]$ are coplanar.

5. Given the following matrices

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$

compute each of the following operations if it is defined. If an expression is undefined, explain why.

(i)
$$A + B$$
 (ii) $-4B$ (iii) AC (iv) CB (v) AB^T (vi) $C - 3I_2$ (vii) C^2

6. If a matrix A is 6 × 4 and the product AB is 6 × 8, what is the order (dimensions) of B?

7. How many rows does B have if BC is a 4×3 matrix?

8. Let $A=\begin{bmatrix}2&5\\-3&1\end{bmatrix}$ and $B=\begin{bmatrix}4&-5\\3&k\end{bmatrix}$. What value(s) of k, if any, will make AB=BA.

9. Verify that A and B are the inverse of one another, if $A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$

$$\left[\begin{array}{cc} -7 & -5 \\ 3 & 2 \end{array}\right].$$

10. Suppose that A and B are two square matrices such that AB = 0. Show that we must have B = 0 if A is invertible.