Spectre d'un signal échantillonné

On considère le signal $x(t) = e^{-\sigma|t|}\cos(2\pi f_0 t)$. On prendra $f_0 = 30Hz$. On rappelle que la Transformée de Fourier (TF) de x est

$$\hat{x}(f) = \frac{1}{2} \left(\frac{\sigma}{\sigma^2 + 4\pi^2 (f - f_0)^2} + \frac{\sigma}{\sigma^2 + 4\pi^2 (f + f_0)^2} \right).$$

- 1. Comment varie l'allure de $\hat{x}(f)$ lorsque σ augmente? Tracer sur un même graphique $\hat{x}(f)$ pour $\sigma = 5$ et $\sigma = 15$. Quelle propriété générale ces courbes illustrent-elles?

 Dans la suite, on prend $\sigma = 15$. On considère l'échantillonnage uniforme de x(t) à une période T_e . On note $x_n = x(nT_e)$
- 2. Existe-t-il des valeurs de T_e assurant la reconstruction parfaite de x(t) à partir de ses échantillons? Soit

$$\hat{\mathcal{X}}_e(f) = \frac{1}{T_e} \sum_{n=-\infty}^{+\infty} \hat{x} (f - \frac{n}{T_e}) \tag{1}$$

le spectre du signal échantillonné.

- 3. Pour les trois cas $\frac{1}{T_e^{(1)}} = 120$ Hz, $\frac{1}{T_e^{(2)}} = 70$ Hz et $\frac{1}{T_e^{(3)}} = 30$ Hz, représenter sur trois graphiques en regard (commande subplot) la fonction $\hat{\mathcal{X}}_e(f)$ dans la bande $[-\frac{1}{2T_e}, \frac{1}{2T_e}]$ (justifier grossièrement pourquoi ne prendre qu'une vingtaine de termes dans (1) constitue une approximation raisonnable). Conclure quant à la reconstruction de x(t) à partir des échantillons.
- 4. On s'intéresse au cas "limite" $\frac{1}{T_e^{(2)}} = 70$ Hz. Comparer $\hat{x}(f)$ et $T_e\hat{\mathcal{X}}_e(f)$. Avant l'opération d'échantillonnage, on suppose qu'on utilise un filtre anti-repliement idéal (passe-bas de fréquence de coupure $\frac{1}{2T_e}$). Comparer maintenant $\hat{x}(f)$ et $T_e\hat{\mathcal{X}}_e(f)$.