

FACULTÉ CHIMIE L1 UEF Maths2

Fiche de TD 2(2019/2020)

"Les équations différentielles."

Exercice 01

Résoudre les équations différentielles du 1er ordre à variables séparables suivantes :

1.
$$xy - y' = 0$$
; 2. $(1 + x^2)dy = ydx$; 3. $(x^2 + 1)y' + 2xy = 0$; 4. $(x^2 + 1)y' + 2xy = 0$

3.
$$(x^2 + 1)y' + 2xy = 0$$
;

$$(4). y' - ye^x = 0$$

Exercice 02

Résoudre les équations différentielles du 1er ordre suivantes :

1.
$$y' - y = e^x$$
 2. $y' + \frac{y}{x} = \ln(x)$; 3. $y' + 2y = 1$; 4. $y' - 2y = \cos(x) + 2\sin(x)$

$$3.y' + 2y = 1;$$

Exercice 03

Résoudre les équations différentielles suivantes :

1.
$$y' + 2y = xy^2$$
,

2.
$$y' + y = y^3 e^{3x}$$

1.
$$y' + 2y = xy^2$$
, 2. $y' + y = y^3 e^{3x}$; 3. $y' + \frac{1}{x}y = -y^2 \ln x$

Exercice 04 I)Résoudre les équations différentielles linéaires du 2ème ordre suivantes :

1.
$$y'' - y' - 2y = 0$$
.

2.
$$y'' + 2y' + y = 0$$

1.
$$y'' - y' - 2y = 0$$
, 2. $y'' + 2y' + y = 0$, 3. $y'' - y' + y = 0$, $(4)y'' + y = 0$,

$$\otimes$$
 $y'' + y - e^x$

$$-y = xe^x$$
, $6.y'' - y' - 2y = e^x$

5.
$$y'' + 2y' + y = xe^x$$
, $6y'' - y' - 2y = e^{2x}$ $7y'' + y = 2e^x + \cos(x)$, $8y'' + y = e^x$.

$$\&. y'' + y = e^x.$$

II)[Exercice supplémentaires] Donner l'expression des solutions particulières :

1.
$$y'' - y' - 2y = e^{2x}$$
; 2.y

1.
$$y'' - y' - 2y = e^{2x}$$
; $2 \cdot y'' - 2y' + y = xe^x$, $3 \cdot y'' + y = x^2 e^x \sin(x)$;

4.
$$y'' + 2y' + y = e^x + \sin(x);$$

4.
$$y'' + 2y' + y = e^x + \sin(x)$$
; $5y'' + 4y = (x^2 + 1)e^x + e^{2x}\cos(x)$.

_____ UTILE :

f(x)	Racines de l'équation	
	caractéristique (E_r)	Solution particulière
$P_n(x)e^{\alpha x}$	α n'est pas	
	une solution (E_r)	$y_p = \tilde{P}_n(x)e^{\alpha x}$
$P_n(x)e^{\alpha x}$	α est une solution	
	d'ordre ω (E_r)	$y_p = x^{\omega} \tilde{P}_n(x) e^{\alpha x}$
$e^{\alpha x}(P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x))$	$\alpha \pm i\beta$ n'est pas	
	une solution (E_r)	$y_p = e^{\alpha x} (\tilde{P}_k(x) \cos(\beta x))$
		$+ ilde{Q}_k(x)\sin(eta x))$
$e^{\alpha x}(P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x))$		
Avec $k \max n, m$	$\alpha \pm i\beta$ est une solution	
	d'ordre ω (E_r)	$y_p = x\omega e^{\alpha x} (\tilde{P}_k(x)\cos(\beta x))$
		$+ ilde{Q}_k(x)\sin(eta x))$

Avec $P_n(x)$, $\tilde{P}_n(x)$ sont polynôme de degré n et $Q_m(x)$, $\tilde{Q}_m(x)$ sont polynôme de degré m.

courage!

Dr. I.Medjadj