

Relational Algebra - 2

Cheng-En Chuang

(Slides Adopted from Jan Chomicki and Ning Deng)

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union U
- 5. Set Difference (-)
- 6. Cross Product(×)
- 7. Renaming(ρ)

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union ∪
- 5. Set Difference (-)
- 6. Cross Product(×)
- 7. Renaming(ρ)

Example Instances

Student

<pre>FirstName,</pre>	GPA,	SID
[James,	3.9,	1701]
[Jean,	3.9,	1702]
[John,	3.0,	1703]
[Mary,	4.0,	1801]
[Mike,	4.0,	1805]

MajorsIn

SID,	MID
[1701,	01]
[1701,	02]
[1805,	03]
[1801,	04]

Club

President,	Name
[James,	C1]
[Mary,	C2]
[Tom,	C3]

Major

MID,	Name
[01,	CS]
[02,	EE]
[03,	Math]
[04,	ME]

Projection π

- Pick columns $A_1, ..., A_k$ which are distinct attributes of relation R, from R
 - arity($A_{A_1,\ldots,A_k}(R)$) = k
 - A tuple $t \in \pi_{A_1,...,A_k}(R)$ iff for some $s \in R$
 - $t[A_1, ..., A_k] = s[A_1, ..., A_k]$
- Example
 - $\pi_{firstname,gpa}(Student)$
 - • How about $\pi_{gpa}(Student)$?

FirstName,	GPA
[James,	3.9]
[Jean,	3.9]
[John,	3.0]
[Mary,	4.0]
[Mike,	4.0]

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union ∪
- 5. Set Difference (-)
- 6. Cross Product(×)
- 7. Renaming(ρ)

Selection o

- Select tuples/rows that satisfy the selection condition c from relation R
 - c is a condition on attributes of R and c is built from
 - Comparisons between operands which can be constants or attribute names
 - Boolean operators: $\land (AND), \lor (OR), \neg (NOT)$
 - $arity(\sigma_c(R)) = arity(R)$
 - A tuple $t \in \sigma_c(R)$ if $f \in R$ and t satisfies c
- Example
 - $\sigma_{gpa < 3.5}(Student)$

•
$$\sigma_{gpa}$$
 < 3.5 $\left(\begin{smallmatrix} FirstName, & GPA, & SID \\ [James, & 3.9, & 1701] \\ [Jaen, & 3.9, & 1702] \\ [John, & 3.0, & 1703] \\ [Mary, & 4.0, & 1801] \\ Mike, & 4.0, & 1805] \end{smallmatrix} \right)$ = $\frac{FirstName, GPA, & SID}{[John, & 3.0, & 1703]}$

When does selection need to eliminate duplicates?

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union ∪
- 5. Set Difference (-)
- 6. Cross Product(×)
- 7. Renaming(ρ)

Composing σ and π

- $\pi_{firstname}(\sigma_{GPA>3.5}(Student))$
- $\pi_{firstname}(\sigma_{GPA>3.5}(\frac{r_{LigtName}, GPA, SLD}{r_{Loop}, r_{LigtName}, r_{Ligt}, r_{Ligt}, r_{Ligt}, r_{Ligt}, r_{Ligt}))$
- Then?
- The is the schema of result of this query?

```
FirstName
[James ]
[Jane ]
[Mary ]
[Mike ]
```


- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union ∪
- 5. Set Difference (-)
- 6. Cross Product(×)
- 7. Renaming(ρ)

Union U

- Takes two compatible relations
 - Returns all tuples in either relation
- Property
 - $arity(R_1 \cup R_2) = arity(R_1) = arity(R_2)$
 - $t \in R_1 \cup R_2 \ iff \ t \in R_1 \ or \ t \in R_2$
- Compatibility
 - $arity(R_1) = arity(R_2)$
 - The corresponding attribute domain in R_1 and R_1 or $t \in R_2$ are the same
 - Thus compatibility of two relations can be determined solely on their schemas
 - Can we do Student ∪ Club?
 - \bullet How about $\pi_{firstname}\left(\sigma_{gpa=4.0}(Student)\right) \cup \sigma_{gpa<3.5}(Student))$?
 - What is this query doing?

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union U
- 5. Set Difference (-)
- 6. Cross Product(×)
- 7. Renaming(ρ)

Set Difference (-)

- Takes two compatible relations
 - Compute all tuples that in the first relation
 - But not in the second relation
- Property
 - $arity(R_1 R_2) = arity(R_1) = arity(R_2)$
 - $t \in R_1 R_2$ iff $t \in R_1 \land t \notin R_2$
- Example
 - $\pi_{firstname}(Student) \pi_{president}(Club)$
 - What is this query doing?

Student				
FirstName,	GPA,	SID		
[James,	3.9,	1701]		
[Jean,	3.9,	1702]		
[John,	3.0,	1703]		
[Mary,	4.0,	1801]		
[Mike,	4.0,	1805]		

President,	Name
[James,	C1]
[Mary,	C2]
[Tom,	C3]

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union U
- 5. Set Difference (-)
- 6. Cross Product(x)
- 7. Renaming(ρ)

Cross Product(×)

- Takes two relations
 - Pair each tuple $t_1 \in R_1$ with each tuple $t_2 \in R_2$
- Property
 - Given $arity(R_1) = k_1$, $arity(R_2) = k_2$
 - $arity(R_1 \times R_2) = k_1 + k_2$
 - $t \in R_1 \times R_2$ if f:
 - The first k_1 components of t form a tuple in R_1
 - The next k_2 components of t form a tuple in R_2

Cross Product(×)

- Example
 - $Student \times MajorsIn$

Stud	ent			Majo	rsin	
FirstName, [James, [Jean, [John, [Mary, [Mike,	GPA, 3.9, 3.9, 3.0, 4.0,	SID 1701] 1702] 1703] 1801] 1805]	×	SID, [1701, [1701, [1805, [1801,	MID 01] 02] 03] 04]	

FirstName,	GPA,	(SID),	(SID),	MID
[James,	3.9,	1701,	1701,	01]
[James,	3.9,	1701,	1701,	02]
[James,	3.9,	1701,	1805,	03]
[James,	3.9,	1701,	1801,	04]
[Jean,	3.9,	1702,	1701,	01]
[Jean,	3.9,	1702,	1701,	02]
[Jean,	3.9,	1702,	1805,	03]
[Jean,	3.9,	1702,	1801,	04]
[John,	3.0,	1703,	1701,	01]
[John,	3.0,	1703,	1701,	02]
[John,	3.0,	1703,	1805,	03]
[John,	3.0,	1703,	1801,	04]
[Mary,	4.0,	1801,	1701,	01]
[Mary,	4.0,	1801,	1701,	02]
[Mary,	4.0,	1801,	1805,	03]
[Mary,	4.0,	1801,	1801,	04]

... ..

- 1. Projection π
- 2. Selection σ
- 3. Composability
- 4. Union ∪
- 5. Set Difference (-)
- 6. Cross Product(×)
- **7**. Renaming (ρ)

Renaming (ρ)

- Givens a set of new attribute names as indicated in the list of $B_1, ..., B_n$ to R
- Property
 - Let $A_1, ..., A_n$ be the attributes of R before renaming
 - $arity(\rho_{B_1,\dots,B_n}(R)) = arity(R) = n$
 - $t \in \rho_{B_1,\dots,B_n}(R)$ if f for some $s \in R$
 - $t[B_1, ..., B_n] = s[A_1, ..., A_n]$
- Example
 - $\rho_{FirstName,GPA,Sid,Miid,Mid}(Student \times MajorsIn)$

FirstName, GPA, Sid, Miid, Mid

• • •

. . .

Set- and Bag- RA

Which operators behaviors differently in Set- and Bag- RA?

Select (σ)	No
Projection (π)	Yes
Cross-product (\times)	No
Set-difference $(-)$	No
Union (∪)	Yes

Recommended Reading

Database Systems: The Complete Book

Chapter 2.4, 5.2