String Prefix Domain

1. Concrete Domain Definition

We define the concrete lattice and the concrete operators + (string concatenation) and \leq (lexicographic comparison).

1.1 Preliminary Definitions

Let $str \in String$, $str_1 \leq str_2$ mean that str_1 is a prefix of str_2 ; $str_1 < str_2$ mean that str_1 is a strict prefix of str_2 ; and $str_1 \oplus str_2$ mean the greatest common prefix of str_1 and str_2 . For single strings, \leq is standard lexicographic comparison and < is strict lexicographic comparison.

1.2 Concrete Lattice

The concrete lattice is the powerset lattice of strings where the partial order is subset inclusion, join is union, and meet is intersection: $\mathcal{L} = (\mathcal{P}(String), \subseteq, \cup, \cap)$.

1.3 Concrete Operators

- Concatenization. For $X, Y \in \mathcal{L}, X + Y = \{ x \cdot y \mid x \in X, y \in Y \}.$
- Lexicographic comparison. For $X, Y \in \mathcal{L}, X \leq Y = A \cup B$ where:

$$\bullet A = \begin{cases} \{ \text{true} \} & \text{if } \exists x \in X, y \in Y \text{ s.t. } x \leq y \\ \{ \} & \text{otherwise} \end{cases}$$

$$B = \begin{cases} \{ \text{false} \} & \text{if } \exists x \in X, y \in Y \text{ s.t. } y < x \\ \{ \} & \text{otherwise} \end{cases}$$

2. Abstract Domain Definition

We define the abstract lattice and the abstract operators + (string concatenation) and \le (lexicographic comparison). This is a simpler and more streamlined definition than the one in the paper draft.

2.1 Abstract Lattice

The abstract lattice is $\mathcal{L}^{\sharp} = (Pre, \sqsubseteq, \sqcup, \sqcap)$ where:

• $(str, b) \in Pre = String \times Boolean \cup \{\bot\}$

where b =true means str is an exact string and b =false means str is a prefix of an unknown string.

- \top = (ϵ, false)
- ⊥ means an uninitialized string value.

Think of an element (str, **true**) as representing the set containing a single string str, an element (str, **false**) as representing the set containing all strings beginning with str, and \bot as representing the empty set. Then the definition of \sqsubseteq below is just subset; the definition of \sqcup is almost set union (except the resulting set can contain infinite spurious strings), and the definition of \sqcap is set intersection.

- Dealing with \perp . Let *X* be any lattice element, then:
 - $\blacksquare \perp \sqsubseteq X$
 - $\blacksquare \perp \sqcup X = X \sqcup \bot = X$
 - $\blacksquare \perp \sqcap X = X \sqcap \perp = \perp$

- $(str_1, b_1) \sqsubseteq (str_2, b_2)$ iff
 - b_2 = false and $str_2 \leq str_1$
 - b_1 = true, b_2 = true and str_1 = str_2
- $(str_1, b_1) \sqcup (str_2, b_2) =$
 - (str_1, b_1) if $str_1 = str_2, b_1 = b_2 = true$
 - $(str_1 \oplus str_2, \mathbf{false})$ otherwise
- $(str_1, b_1) \sqcap (str_2, b_2) =$
 - (str_1, b_1) if $b_2 =$ false, $str_2 \le str_1$
 - (str_2, b_2) if $b_1 =$ false, $str_1 \le str_2$
 - ⊥ otherwise

2.2 Abstract Operators

- Concatenization. Let *X* be any element, then:
 - $\blacksquare \perp + X = X + \perp = \perp$
 - $(str_1, true) + (str_2, b_2) = (str_1 \cdot str_2, b_2)$
 - $(str_1, false) + (str_2, b_2) = (str_1, false)$
- Lexicographic comparison. Let *X* be any element, then:
 - $\blacksquare \perp \leq X = X \leq \perp = \{\}$

$$\bullet \ (str_1, \mathsf{true}) \leq (str_2, \mathsf{true}) = \begin{cases} \{\mathsf{true}\} & \text{if } str_1 \leq str_2 \\ \{\mathsf{false}\} & \text{otherwise} \end{cases}$$

$$\bullet (str_1, \mathbf{true}) \leq (str_2, \mathbf{false}) = \begin{cases} \{\mathbf{true}\} & \text{if } str_1 \leq str_2 \\ \{\mathbf{true}, \mathbf{false}\} & \text{if } str2 < str_1 \\ \{\mathbf{false}\} & \text{otherwise} \end{cases}$$

$$\bullet \ (str_1, \mathbf{false}) \leq (str_2, \mathbf{false}) = \begin{cases} \{\mathbf{true}\} & \text{if } str_1 < str_2 \\ \{\mathbf{true}, \mathbf{false}\} & \text{if } str_2 < str_1 \\ \{\mathbf{false}\} & \text{otherwise} \end{cases}$$

3. Soundness

We define the concretization function γ between $\mathcal L$ and $\mathcal L^\sharp$ and then prove that the abstract operators are sound.

3.1 Concretization

$$\gamma \in \mathcal{L}^{\sharp} \to \mathcal{L}$$

$$\gamma(\bot) = \{\}$$

$$\gamma((str, \mathsf{true})) = \{str\}$$

$$\gamma((str, \mathsf{false})) = \{str_i \mid str \le str_i\}$$

3.2 Proofs

1

Theorem 1 (soundness of +). For $p_1, p_2 \in Pre$, $\gamma(p_1) + \gamma(p_2) \subseteq \gamma(p_1 + p_2)$.

2013/1/16

Proof. Tables 1 and 2 represent a proof by cases. Each cell in Table 2 is a subset of the corresponding cell in Table 1. \Box

$p_1 \downarrow p_2 \rightarrow$	上	$(str_2, true)$	(str_2, \mathbf{false})
	{}	{}	{}
$(str_1, true)$ $(str_1, false)$	{}	$\{str_1 \cdot str_2\}$	$\{str_1 \cdot str_2 \cdot \Sigma^*\}$
$(str_1, false)$	{}	$\{str_1 \cdot \Sigma^*\}$	$\{str_1 \cdot \Sigma^*\}$

Table 1. Abstract operator cases; each cell is $\gamma(p_1 + p_2)$. We use $str \cdot \Sigma^*$ to represent the set of strings whose prefix is str.

$\gamma(p_1) \downarrow \gamma(p_2) \rightarrow$	{}	str_2	$str_2 \cdot \Sigma^*$
{}	{}	{}	{}
str_1	{}	$\{str_1 \cdot str_2\}$	$\{str_1 \cdot str_2 \cdot \Sigma^*\}$
$str_1 \cdot \Sigma^*$	{}	$\{str_1 \cdot \Sigma^*\}$	$\{str_1 \cdot \Sigma^*\}$

Table 2. Concrete operator cases; each cell is $\gamma(p_1) + \gamma(p_2)$. We use $str \cdot \Sigma^*$ to represent the set of strings whose prefix is str.

Theorem 2 (soundness of \leq). For $p_1, p_2 \in Pre$, $\gamma(p_1) \leq \gamma(p_2) \subseteq p_1 \leq p_2$.

Proof. Tables 3 and 4 represent a proof by cases. Each cell in Table 4 is a subset of the corresponding cell in Table 3. \Box

$p_1 \downarrow p_2 \rightarrow$		$(str_2, true)$		$(str_2, {\sf false})$	
	{}	{}		{}	
$(str_1, true)$	{}	$\begin{cases} \{ \textbf{true} \} & \text{if } str_1 \leq str_2 \\ \{ \textbf{false} \} & \text{otherwise} \end{cases}$		{true} {true, false} {false}	if $str_1 \le str_2$ if $str2 < str_1$ otherwise
$(str_1, {\sf false})$	{}	$\begin{cases} \{\text{true}\} \\ \{\text{true}, \text{false}\} \\ \{\text{false}\} \end{cases}$	if $str_1 < str_2$ if $str_1 = str_2$ otherwise	{\true} {\true, false} {\true, false}	if $str_1 < str_2$ if $str_2 < str_1$ otherwise

Table 3. Abstract operator cases; each cell is $p_1 \le p_2$.

$\gamma(p_1) \downarrow \gamma(p_2) \rightarrow$	{}	str_2		$str_2 \cdot \Sigma^*$	
{}	{}	{}		{	}
str_1	$\{\}$ $ \begin{cases} \{\text{true}\} \\ \{\text{false}\} \end{cases}$	((true) if s	$\int \{ true \}$ 11 $str_1 \leq str_2$	{true}	if $str_1 \le str_2$ if $str2 < str_1$
		(folse) oth		$\{true, false\}$	if $str2 < str_1$
		({laise} our		{false}	otherwise
$str_1 \cdot \Sigma^*$	$\{\} \begin{cases} \{\text{true}\} \\ \{\text{true}, \text{fal} \\ \{\text{false}\} \end{cases}$	({true} i	$f str_1 < str_2$	{true}	if $str_1 < str_2$
		{{true, false} i	$f str_1 = str_2$ {	{true, false}	if $str2 < str_1$
		{false}	otherwise	{false}	otherwise

Table 4. Concrete operator cases; each cell is $\gamma(p_1) \leq \gamma(p_2)$. We use $str \cdot \Sigma^*$ to represent the set of strings whose prefix is str.

2 2013/1/16