Mid-term exam

March 23rd

In-class exam
Closed book closed notes!

Text Retrieval and Mining

Query

- Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?
- One could grep all of Shakespeare's plays for Brutus and Caesar, then strip out those containing Calpurnia?
 - Slow (for large corpora)
 - <u>NOT</u> **Calpurnia** is non-trivial
 - Other operations (e.g., find the word *Romans* near *countrymen*) not feasible

Term-document Matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Brutus AND Caesar but NOT Calpurnia

1 if play contains word, 0 otherwise

Incidence vectors

- So we have a 0/1 vector for each term.
- To answer query: take the vectors for Brutus,
 Caesar and Calpurnia (complemented) →
 bitwise AND.
- 110100 *AND* 110111 *AND* 101111 = 100100.

Bigger corpora

- Consider n = 1M documents, each with about 1K terms.
- Avg 6 bytes/term incl spaces/punctuation
 - 6GB of data in the documents.
- Say there are m = 500K <u>distinct</u> terms among these.

Can't build the matrix

- 500K x 1M matrix has half-a-trillion 0's and 1's.
- But it has no more than one billion 1's.
 - matrix is extremely sparse.
- What's a better representation?
 - We only record the 1 positions.

Inverted index

- For each term T, we must store a list of all documents that contain T.
- Do we use an array or a linked list for this?

What happens if the word *Caesar* is added to document 14?

Inverted index

- Linked lists generally preferred to arrays
 - + Dynamic space allocation
 - + Insertion of terms into documents easy
 - Space overhead of pointers

Sorted by docID (more later on why).

Inverted index construction

The index we just built

- How do we process a query?
 - Later what kinds of queries can we process?

Query processing

Consider processing the query:

Brutus AND Caesar

- Locate *Brutus* in the Dictionary;
 - Retrieve its postings.
- Locate Caesar in the Dictionary;
 - Retrieve its postings.
- "Merge" the two postings:

The merge

 Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are x and y, the merge takes O(x+y) operations.

<u>Crucial</u>: postings sorted by docID.

More general merges

Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar

Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y)?

The merge (Brutus and Not Caesar)

 Walk through the two postings simultaneously, in time linear in the total number of postings entries

Clustering and classification

- Given a set of docs, group them into clusters based on their contents.
- Given a set of topics, plus a new doc D, decide which topic(s) D belongs to.

Scoring: density-based

- Thus far: terms in a doc
- Obvious next idea: if a document talks about a topic <u>more</u>, then it is a better match (more similar)
- This leads to the idea of <u>term weighting</u>.

Term weighting

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Bag of words model
 - Document is a vector in N^v: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Terminology

 In saying <u>term frequency</u> we mean the <u>number of occurrences</u> of a term in a document.

Term frequency tf

- Long docs are favored because they're more likely to contain query terms (with higher frequency as well.)
- Can fix this to some extent by normalizing for document length
- But is raw tf the right measure?

Weighted term frequency: tf

- What is the relative importance of
 - 0 vs. 1 occurrence of a term in a doc
 - 1 vs. 2 occurrences
 - 2 vs. 3 occurrences ...
- Unclear: while it seems that more is better, a lot isn't proportionally better than a few
 - Can just use raw tf
 - Another option commonly used in practice:

$$wf_{t,d} = 0$$
 if $tf_{t,d} = 0$, $1 + \log tf_{t,d}$ otherwise

Score computation

Score for a query q = sum tf over all terms t in q:

$$= \sum\nolimits_{t \in q} t f_{t,d}$$

- [Note: 0 if no query terms in document]
- Can use wf instead of tf in the above

An example...

- Consider the ides of march query.
 - Julius Caesar has 5 occurrences of ides
 - No other play has ides
 - march occurs in over a dozen
 - All the plays contain of
- By this density-based scoring measure, the topscoring play is likely to be the one with the most of's

Still doesn't consider term scarcity in collection (ides is rarer than of)

Weighting should depend on the term overall

- Which of these tells you more about a doc?
 - 10 occurrences of *hernia*?
 - 10 occurrences of *the*?
- Would like to attenuate the weight of a common term
 - But what is "common"?
- Suggest looking at collection frequency (cf)
 - The total number of occurrences of the term in the entire collection of documents

Document frequency

- But document frequency (df) may be better:
- df = number of docs in the corpus containing the term

Word	cf	df
try	10422	8760
insurance	10440	3997

- Document/collection frequency weighting is only possible in known (static) collection.
- So how do we make use of df?

tf x idf term weights

- tf x idf measure combines:
 - term frequency (tf)
 - or wf, measure of term density in a doc
 - inverse document frequency (idf)
 - measure of informativeness of a term: its rarity across the whole text corpus
 - could just be raw count of number of documents the term occurs in $(idf_i = 1/df_i)$
 - but by far the most commonly used version is:

$$idf_i = \log\left(\frac{n}{df_i}\right)$$

Summary: tf x idf (or tf.idf)

Assign a tf.idf weight to each term i in each document d

$$w_{i,d} = tf_{i,d} \times \log(n/df_i)$$

What is the wt of a term that occurs in all of the docs?

 $tf_{i,d}$ = frequency of term i in document j n = total number of documents df_i = the number of documents that contain term i

- Increases with the number of occurrences within a doc
- Increases with the rarity of the term across the whole corpus

Real-valued term-document matrices

- Function (scaling) of count of a word in a document:
 - Bag of words model
 - Each is a vector in R^v
 - Here <u>log-scaled</u> *tf.idf*

Note can be >1!

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Documents as vectors

- Each doc j can now be viewed as a vector of wf×idf values, one component for each term
- So we have a vector space
 - terms are axes (features)
 - docs live in this space
 - even with stemming, may have 20,000+ dimensions
- (The corpus of documents gives us a matrix, which we could also view as a vector space in which words live – transposable data)

Typical process of document clustering

- Tokenizing and stemming each document
- Build tf-idf matrix
- Calculating cosine distance between each pair of documents as a measure of similarity
- Clustering the documents using a clustering method (e.g., hierarchical clustering or k-means)
- Topic modeling using techniques such as Latent Dirichlet Allocation (LDA)
- http://brandonrose.org/clustering in Python
- Scikit Learn: http://scikit-learn.org/0.15/auto_examples/document_clustering.h
 tml

Scikit Learn example

- https://scikitlearn.org/stable/tutorial/text_analytics/working_wi th_text_data.html
- Word2Vec