Lecture: Prof. Dr. Christian Fries, Exercises: Dr. Andrea Mazzon, Tutorium: Roland Bachl

Sommersemester 2020

Solution to exercise 2

Let $f(\cdot)$ be a smooth payoff function, let Y represent an underlying process and consider a parameter θ on which f(Y) may depend.

The pathwise differentiation method approximates the derivative of the payoff $f(Y(\theta))$ at given time with respect to θ as

$$\frac{\partial}{\partial \theta} \mathbb{E}^{Q} \left[f(Y(\theta)) | \mathcal{F}_{t_0} \right] \approx \frac{1}{n} \sum_{i=1}^{n} f'(Y(\omega_i, \theta)) \cdot \frac{\partial Y(\omega_i, \theta)}{\partial \theta}, \tag{1}$$

with Q pricing measure, where we have stressed the dependence of the value of the underlying at given time on the θ and on the state of the world ω_i , $1 \le i \le n$.

In our exercise, we are considering an European call option with strike K > 0 written on an underlying following a Black-Scholes model. That is, $f(x) = (x - K)^+$, and Y has the following dynamics under the pricing measure Q:

$$dY_t = rY_t dt + \sigma Y_t dB_t, \quad t \ge 0, \tag{2}$$

where $B = (B_t)_{t \ge 0}$ is a Q-Brownian motion, $r \ge 0$ is the risk-free rate and $\sigma > 0$.

We consider the derivative with respect to the parameter σ , i.e., the *Vega* of the option. We know that the solution to (2) is given by

$$Y_t = y_0 e^{\left(r - \frac{\sigma^2}{2}\right)t + \sigma B_t}, \quad t \ge 0.$$

We then have $f'(x) = \mathbf{1}_{\{x>K\}}$ and

$$\frac{\partial Y_T}{\partial \sigma} = \frac{\partial}{\partial \sigma} y_0 e^{\left(r - \frac{\sigma^2}{2}\right)T + sB_T} = (-\sigma T + B_T)Y_T.$$

Thus, applying (3) we get

$$\frac{\partial}{\partial \sigma} \mathbb{E}^{Q} \left[(Y_T - K)^+ | \mathcal{F}_{t_0} \right] \approx \frac{1}{n} \sum_{i=1}^n (-\sigma T + B_T(\omega_i)) Y_T(\omega_i) \mathbf{1}_{\{Y_T(\omega_i) > K\}}.$$