Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 07 — Wiederholungsblatt Keine Abgabe. Lösungsskizze am 15.01.2021

Aufgabe 1. (Bewertung) Es sei R ein faktorieller Ring, Q sein Quotientenkörper und $\pi \in R$ ein Primelement. Wir definieren die Funktion $v_{\pi} \colon Q^{\times} \to \mathbb{Z}$ dadurch, dass $v_{\pi}(x)$ der Exponent von π in der (eindeutigen) Primfaktorzerlegung von $x \in Q^{\times}$ ist, und setzen $v_{\pi}(0) := \infty$. Zeigen Sie, dass v_{π} eine Bewertung von Q ist, d.h. dass für alle $a, b \in Q$ gilt:

- (a) $v_{\pi}(ab) = v_{\pi}(a) + v_{\pi}(b)$.
- (b) $v_{\pi}(a+b) \ge \min\{v_{\pi}(a), v_{\pi}(b)\}.$

Zeigen Sie außerdem:

(c) Falls $v_{\pi}(a) \neq v_{\pi}(b)$, so gilt Gleichheit in (b).

Aufgabe 2. (Irreduzible Polynome) Zeigen Sie, dass folgende Polynome irreduzibel sind:

- (a) $f = X^3 2X^2 + X + 42 \in \mathbb{Q}[X]$.
- (b) $f = X^4 Y^4 + Y^3X + Y^2X^2 + 25X 15 \in \mathbb{Q}[X, Y].$
- (c) $f = Y^2 X^3 \in \mathbb{C}[X, Y]$.

Aufgabe 3. (Körpererweiterungen)

- (a) Es sei K ein nicht-vollkommener Körper mit $\operatorname{char}(K) = p$ und L/K eine endliche Erweiterung. Kann es sein, dass der Separabilitätsgrad $[L:K]_s$ durch p teilbar ist?
- (b) Wir betrachten die Erweiterung $L = \mathbb{Q}(\{2^{\frac{1}{2^n}} \mid n \in \mathbb{N}\})$ über \mathbb{Q} . Ist die Erweiterung L/\mathbb{Q} algebraisch? Ist sie separabel? Ist sie endlich? Bestimmen Sie die normale Hülle von L über \mathbb{Q} .

Aufgabe 4. (Endliche Körper)

- (a) Es seien $\alpha, \beta \in \overline{\mathbb{F}}_2$ mit Minimalpolynomen $f(X) = X^3 + X^2 + 1$ bzw. $g(X) = X^3 + X + 1$ über \mathbb{F}_2 . Geben Sie einen expliziten Körperisomorphismus zwischen $\mathbb{F}_2(\alpha)$ und $\mathbb{F}_2(\beta)$ an.
- (b) Es sei p eine Primzahl, $q=p^d$ und γ ein Erzeuger der zyklischen Gruppe \mathbb{F}_q^{\times} . Zeigen Sie

$$\mathbb{F}_p(\gamma) = \mathbb{F}_q$$
.