Interpretable Machine Learning

Interaction

While feature dependencies concern data distribution, feature interactions occur in structure of model or DGP (e.g., functional relationship between X and f(X) or X and Y = f(X))
 Feature dependencies may lead to feature interactions in a model

- While feature dependencies concern data distribution, feature interactions occur in structure of model or DGP (e.g., functional relationship between X and f(X) or X and Y = f(X))
 → Feature dependencies may lead to feature interactions in a model
- Number of potential interactions in a model increases exponentially with number of features · Interactions are difficult to identify, especially if feature dependencies are also present

- While feature dependencies concern data distribution, feature interactions occur in structure of model or DGP (e.g., functional relationship between X and f̂(X) or X and Y = f(X))
 → Feature dependencies may lead to feature interactions in a model
- With interactions present, a feature's effect on the prediction depends on other features $\Rightarrow \hat{f}(\mathbf{x}) = x_1 x_2 \Rightarrow$ Effect of x_1 on \hat{f} depends on x_2 and vice versa

No interaction

Interactions: x_1 and x_3 , x_1 and x_2

No interactions: x_2 and x_3

Definition: A function $f(\mathbf{x})$ contains an interaction between x_i and x_k if a difference in $f(\mathbf{x})$ -values due to changes in x_i will also depend on x_k , i.e.:

$$\mathbb{E}\left[\frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_k}\right]^2 > 0$$

 \Rightarrow If x_i and x_k do not interact, $f(\mathbf{x})$ is a sum of two functions, each independent from x_i and x_k :

$$f(\mathbf{x}) = f_{-j}(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_p) + f_{-k}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_p)$$

Definition: A function $f(\mathbf{x})$ contains an interaction between x_j and x_k if a difference in $f(\mathbf{x})$ -values due to changes in x_j will also depend on x_k , i.e.:

$$\mathbb{E}\left[\frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_k}\right]^2 > 0$$

 \Rightarrow If x_j and x_k do not interact, $f(\mathbf{x})$ is a sum of two functions, each independent from x_j and x_k :

$$f(\mathbf{x}) = f_{-j}(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_p) + f_{-k}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_p)$$

Example $(f(\mathbf{x}) \text{ not separable})$:

$$f(\mathbf{x}) = x_1 + x_2 + x_1 \cdot x_2$$

$$\mathbb{E}\left[\frac{\partial^2(x_1+x_2+x_1\cdot x_2)}{\partial x_1\partial x_2}\right]^2 = \mathbb{E}\left[\frac{\partial(1+x_2)}{\partial x_2}\right]^2 = 1 > 0$$

 \Rightarrow interaction between x_1 and x_2

Definition: A function $f(\mathbf{x})$ contains an interaction between x_i and x_k if a difference in $f(\mathbf{x})$ -values due to changes in x_i will also depend on x_k , i.e.:

$$\mathbb{E}\left[\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_k}\right]^2 > 0$$

 \Rightarrow If x_i and x_k do not interact, $f(\mathbf{x})$ is a sum of two functions, each independent from x_i and x_k :

$$f(\mathbf{x}) = f_{-j}(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_p) + f_{-k}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_p)$$

Example ($f(\mathbf{x})$ not separable):

$$f(\mathbf{x}) = x_1 + x_2 + x_1 \cdot x_2$$

$$\mathbb{E}\left[\frac{\partial^2(x_1+x_2+x_1\cdot x_2)}{\partial x_1\partial x_2}\right]^2 = \mathbb{E}\left[\frac{\partial(1+x_2)}{\partial x_2}\right]^2 = 1 > 0$$

$$\Rightarrow$$
 interaction between x_1 and x_2

Example $(f(\mathbf{x}) \text{ separable})$:

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1 \cdot x_2)$$

= $x_1 + x_2 + \log(x_1) + \log(x_2)$
= $f_1(x_1) + f_2(x_2)$, with

 $f_1(x_1) = x_1 + \log(x_1)$ and $f_2(x_2) = x_2 + \log(x_2)$

The intersections also
$$\mathbb{E}\left[\partial^2 f(\mathbf{x})\right]^2$$

$$\Rightarrow$$
 no interactions, also $\mathbb{E}\left[\frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2}\right]^2 = 0$

Interaction:

- Effect of x₁ on f(x) varies for different x₂ values (and vice versa)
- ⇒ Different slopes

No interaction:

- Effect of x₁ on f(x) stays the same for different x₂ values (and vice versa)
- ⇒ Parallel lines at different horizontal (blue) or vertical (black) slices

