Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2. (Du skal altså *ikk*e levere inn selve eksamensoppgaven med oppgaveteksten.)

a) Oksidasjonstall

I hvilken av disse forbindelsene har karbon oksidasjonstallet +III?

- A. CO_2
- B. NaHCOO
- C. H_2CO_3
- D. Na₂C₂O₄

b) Buffer

Hvilken blanding av stoffer løst i vann kan gi en buffer?

- A. HCl og NaOH
- B. NaOH og NaCH₃COO
- C. NaCH₃COO og CH₃COOH
- D. CH₃COOH og HCI

c) Redoksreaksjon

Hvilken av reaksjonene under viser oksidasjon av kobber?

A.
$$2Cu_2O + O_2 \rightarrow 4CuO$$

B.
$$2CuCl_2 + 4KI \rightarrow 2CuI + I_2 + 4KCI$$

C.
$$Cu(OH)_2 + CO_2 \rightarrow CuCO_3 + H_2O$$

D.
$$CuSO_4 \cdot 5H_2O \rightarrow CuSO_4 + 5H_2O$$

d) <u>Uorganisk analyse</u>

Noen elever skal analysere et hvitt salt.

- Saltet løser seg lett i vann.
- Vannløsningen av saltet reagerer ikke med AgNO₃(aq).
- Vannløsningen gir en hvit utfelling med 0,1 mol/L H₂SO₄(aq).

Hvilket av disse saltene stemmer med opplysningene over?

- A. ZnCl₂
- B. $Pb(NO_3)_2$
- C. $Zn(NO_3)_2$
- D. PbCl₂

e) Polymerer

Polypropen er en addisjonspolymer. Figurene under viser utsnitt av fire ulike polymerer.

Struktur A

Struktur C

Struktur B

Struktur D

Hvilken av disse strukturene viser tre repeterende enheter av polymeren polypropen?

- A. Struktur A
- B. Struktur B
- C. Struktur C
- D. Struktur D

f) Aminosyrer

Figur 1 viser aminosyren asparaginsyre, 2-aminobutandisyre. Denne aminosyren har isoelektrisk punkt ved pH = 2,8.

Ved hvilken pH vil asparaginsyre, i stor grad, foreligge som vist i figuren?

Figur 1 Asparaginsyre

B. 2,8

C. 5,5

D. 13,9

g) Organiske reaksjoner

Glyserol, propan-1,2,3-triol, kan oksideres.

Hvor mange mulige oksidasjonsprodukter med kjemisk formel $C_3H_6O_3$ kan bli dannet ved oksidasjon av glyserol, medregnet stereoisomerer?

h) Redoksreaksjoner

Reaksjonen Mg + $Cl_2 \rightarrow MgCl_2$ er en redoksreaksjon.

Hvilken av halvreaksjonene A-D viser oksidasjonsreaksjonen?

A.
$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

B.
$$Cl_2 + 2e^- \rightarrow 2Cl^-$$

C.
$$Mg \rightarrow Mg^+ + e^-$$

D.
$$\mathrm{Cl_2}$$
 + $\mathrm{e^-}$ \rightarrow $\mathrm{Cl_2}^-$

i) Organiske påvisningsreaksjoner

En forbindelse gir positiv reaksjon med 2-4-dinitrofenylhydrazin, men ikke med kromsyrereagens.

Hvilken av disse forbindelsene er det?

Forbindelse A

Forbindelse C

Forbindelse B

Forbindelse D

- A. Forbindelse A
- B. Forbindelse B
- C. Forbindelse C
- D. Forbindelse D

j) Organiske reaksjoner og påvisningsreaksjoner

Hvilken av disse reaksjonene vil gi et produkt som reagerer med brom, Br₂?

- A. oksidasjon av etanol
- B. hydrolyse av etyletanat
- C. addisjon av vann til propen
- D. eliminasjon av vann fra propanol

k) Redoksreaksjoner

Hvilken av disse redoksreaksjonene vil være spontan?

A.
$$2CI^- + Br_2 \rightarrow CI_2 + 2Br^-$$

B.
$$MgCl_2 \rightarrow Mg + Cl_2$$

C.
$$Cl_2 + Cu \rightarrow CuCl_2$$

D.
$$2HCI \rightarrow H_2 + CI_2$$

I) <u>Biokjemi</u>

Figur 2 viser et tripeptid.

Hva er R-gruppen i den midterste aminosyren?

$$A. - H$$

B.
$$-CH_3$$

C.
$$-CH_3CH_2$$

D.
$$-CH(CH_3)_2$$

Figur 2 Et tripeptid

m) Redoksreaksjon

Du har en løsning som inneholder 0,1 mol brommolekyler, Br₂. Til denne løsningen tilsetter du 0,1 mol fast kaliumjodid, KI(s). Det skjer en redoksreaksjon.

Hva inneholder løsningen etter endt reaksjon? Se bort fra K+.

- A. Br- og I-
- B. Br- og I₂
- C. Br₂, Br⁻, I₂ og I⁻
- D. Br₂, Br⁻ og l₂

n) Organiske reaksjoner

Figuren viser en ester.

Hvilken av forbindelsene under vil være et av produktene ved hydrolyse av denne esteren?

- A. etanol
- B. but-1-en
- C. etansyre
- D. pent-3-ensyre

o) Destillasjon

Figur 3 viser et utvalg glassutstyr som brukes i et skolelaboratorium.

Figur 3

Hvilken av disse gjenstandene viser en Liebigkjøler til bruk ved destillasjon?

- A. gjenstand A
- B. gjenstand B
- C. gjenstand C
- D. gjenstand D

p) Analyse

Figur 4 viser ¹H-NMR-spekteret til en forbindelse med kjemisk formel C₃H₆O₂.

Figur 4

Hvilken av figurene under viser strukturen til denne forbindelsen?

q) Elektrokjemi

Totalreaksjonen for reaksjonen i et sink-luft-batteri kan skrives slik:

$$2Zn + O_2 \rightarrow 2ZnO$$

Halvreaksjonene, skrevet som reduksjoner, skrives slik:

$$ZnO + H_2O + 2e^- \rightarrow Zn + 2OH^-$$

og

$$0_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$

Hva er cellepotensialet i et sink-luft-batteri?

A. +0,76 V

B. +1,26 V

C. +1,66 V

D. +2,49 V

r) Elektrokjemi

Ved elektrolyse av en vannløsning kaliumjodid, KI, blir det dannet jod ved den ene elektroden. Halvreaksjonen for denne reaksjonen kan skrives slik:

$$2l^- \rightarrow l_2 + 2e^-$$

Hva er den andre halvreaksjonen?

- A. $K^+ + e^- \rightarrow K$
- B. $0_2 + 2H_2O + 4e^- \rightarrow 40H^-$
- C. $l_2 + 6H_2O \rightarrow 2IO_3^- + 12H^+ + 10e^-$
- D. $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

s) Analyse

Innholdet av Fe^{2+} -ioner i en løsning kan bestemmes ved titrering med en vannløsning av $CeCl_4$ med kjent konsentrasjon. I titreringskolben skjer det en redoksreaksjon når Ce^{4+} -ioner reagerer med Fe^{2+} -ioner.

Hva er oksidasjonstallet til jern etter endt reaksjon?

- A. 0
- B. +I
- C. +II
- D. +III

t) Analyse

Innholdet av Fe²⁺-ioner i en løsning kan bestemmes ved titrering med en vannløsning av CeCl₄ med kjent konsentrasjon. Reaktantene, Ce⁴⁺-ioner og Fe²⁺-ioner reagerer i forhold 1:1.

Hvordan skal konsentrasjonen av Fe²⁺, [Fe²⁺], i løsningen regnes ut?

A.
$$\lceil \text{Fe}^{2+} \rceil = \lceil \text{Ce}^{4+} \rceil \cdot V_{\text{Ce}^{4+}} \cdot V_{\text{Fe}^{2+}}$$

B.
$$[Fe^{2+}] = [Ce^{4+}] \cdot \frac{V_{Ce^{4+}}}{V_{Fe^{2+}}}$$

C.
$$[Fe^{2+}] = [Ce^{4+}] \cdot \frac{V_{Fe^{2+}}}{V_{Ce^{4+}}}$$

D.
$$[Fe^{2+}] = \frac{V_{Ce^{4+}} \cdot V_{Fe^{2+}}}{[Ce^{4+}]}$$

Oppgave 2

a)

1. Tegn strukturformelen til forbindelsen X og forklar hva slags reaksjon dette må være.

2. Figur 5 viser melkesyre. Melkesyren er monomeren i kondensasjonspolymeren polymelkesyre. Tegn en figur som viser polymelkesyre med tre repeterende enheter.

Figur 5 Melkesyre

3. Vannløselige aldehyder reagerer med Fehlings væske. Fehlings væske inneholder Cu²⁺-ioner. I denne reaksjonen blir det dannet et rødt bunnfall av Cu₂O. Reaksjonen skjer i basisk miljø og er en redoksreaksjon.

Figur 6 viser en oversikt over reaktanter og produkter i en slik reaksjon. Skriv den balanserte reaksjonslikningen for reaksjonen nedenfor. Sett ring rundt atomet som blir oksidert.

Figur 6

- b) Du har 1 liter ammonium/ammoniakk-buffer.
 - 1. Forklar hva som er basisk og hva som er sur komponent i denne bufferen.
 - 2. pH i bufferen er 9,00. Forklar hvilken av komponentene som har størst konsentrasjon.
 - 3. Til denne bufferen tilsetter du NaOH(s) og NH₄Cl(s). pH i løsningen etter tilsetningene er 9,00. Volumet etter tilsetningene er det samme, 1 liter. Forklar at bufferen har fått større kapasitet etter disse tilsetningene.
- c) Omkrystallisering blir brukt for å rense faste stoffer for forurensinger. Stoffene som skal omkrystalliseres, må ha forskjellig løselighet i varm og kald løsning. Forurensingene som skal fjernes, må enten være uløselige eller løselige ved alle temperaturer.

Bruk informasjonen i tabell 1 for å løse deloppgavene.

Tabell 1. Løselighet i vann ved ulike temperaturer

Forbindelse	Kjemisk formel	Løselighet i vann, g/L. Verdiene er anslag
Mangan(II)klorid	MnCl ₂	Kaldt vann:70
Mangan(n)kionu	IVIIICI ₂	Varmt vann: 120
Mangan(IV)oksid	MnO ₂	Uløselig
Donzocuro	C H COOH	Kaldt vann: 2
Benzosyre	C ₆ H ₅ COOH	Varmt vann: 70
Adipinsyre	HOOC(CH ₂) ₄ COOH	Kaldt vann: 1
Adipilisyre		Varmt vann: 160

- 1. Du har 1 L varm vannløsning med oppløst 50 g benzosyre. Hvor mange gram benzosyre kan maksimalt isoleres ved nedkjøling?
- 2. Du har litt adipinsyre som er forurenset av MnCl₂ og MnO₂. Bruk informasjonen i tabell 1 og forklar om omkrystallisering er en egnet metode for å rense adipinsyren.
- 3. Du har en blanding av benzosyre og adipinsyre. Bruk informasjonen i tabell 1 og forklar om det lar seg gjøre å skille disse stoffene ved omkrystallisering fra vann.

d) Hydrogen kan framstilles ved elektrolyse av en vannløsning av metanol. Figur 7 viser en enkel skisse av en slik elektrolyse.

Figur 7
Elektrolyse av metanol/vann

- 1. Skriv halvreaksjonen for det som skjer ved katoden.
- 2. Ved elektrolysen blir det dannet karbondioksid og hydrogen. Hva blir oksidert i denne reaksjonen?
- 3. Spenningen som må til for å produsere hydrogen fra metanol/vann-blandingen, er ca 0,4 V.

Vann kan spaltes ved elektrolyse av en løsning av Na₂SO₄. Forklar at framstilling av hydrogen fra en blanding av metanol og vann krever mindre spenning enn framstilling av hydrogen fra en saltløsning.

Del 2

Du skal svare på alle oppgavene: oppgave 3, oppgave 4 og oppgave 5.

Oppgave 3

Mynter inneholder for det meste kobber og nikkel. I tidsrommet 1942–1945 ble nikkel erstattet med sølv og mangan i noen amerikanske 5-centmynter. En av grunnene til at nikkel ble erstattet med sølv under andre verdenskrig, var at nikkel blant annet ble brukt i våpenindustrien.

- a) Nevn en årsak til at jern ikke blir benyttet som myntmetall, selv om jern er billigere enn kobber og nikkel.
- b) Ved fornikling legges et tynt lag med nikkel på et annet metall, for eksempel jern. Fornikling skal beskytte jern mot korrosjon fordi det danner en hard og bestandig overflate.
 - Forklar om nikkel gir korrosjonsbeskyttelse for jern dersom det går hull på nikkelbelegget.
- c) En elev hadde fått en gammel amerikansk 5-centmynt.
 - Mynten veide 5,000 g. Eleven løste opp mynten i konsentrert salpetersyre og fortynnet løsningen til 250,0 mL.
 - Forklar hvordan eleven kan bruke litt av denne løsningen til å finne ut om mynten inneholder sølv, eller om den inneholder en legering av nikkel og kobber.
- d) Eleven fant ut at mynten inneholdt bare nikkel og kobber. For å bestemme innholdet av kobber i mynten gjennomførte eleven en elektrogravimetrisk analyse med 50,00 mL av løsningen fra c). En elektrogravimetrisk analyse er en elektrolyse der kobber avsettes kvantitativt på elektroden. Løsningen inneholdt både Cu²+ og Ni²+.
 - Forklar hvorfor det er viktig at spenningen som blir benyttet i denne elektrolysen, ikke må være for høy eller for lav.
- e) Innholdet av nikkel i mynten er 73,80 %.
 - Beregn elektrisitetsmengden i Ah som gikk med til å avsette kobber på elektroden i elektrolysen beskrevet i d).

Oppgave 4

Fenylalanin er en livsnødvendig aminosyre. Den må tilføres gjennom maten. Første trinn i nedbrytingen av fenylalanin er omdanning til aminosyren tyrosin. Det aktive enzymet i denne nedbrytingen er enzymet fenylalanin hydroksylase (PAH).

Hos noen mennesker er PAH helt eller delvis inaktivt. Denne gruppen har derfor redusert evne til å bryte ned fenylalanin i kroppen. Sykdommen kalles fenylketonuri (PKU), eller Føllings sykdom. Mennesker med PKU omdanner fenylalanin til fenylpyrodruesyre, som skilles ut i urinen.

a) Figur 8 viser fenylalanin og fenylpyrodruesyre. Forklar hvordan du på skolelaboratoriet kan vise at en løsning inneholder fenylpyrodruesyre og ikke fenylalanin.

- b) Forklar at fenylalanin forekommer i to utgaver som er speilbildeisomere.
- c) Figur 9 viser strukturformelene til de to aminosyrene glutaminsyre og fenylalanin og karboksylsyren 3-hydroksypropansyre. Disse tre stoffene kan reagere med hverandre og danne nye produkter.

Skriv strukturformel til ett produkt som kan bli dannet når disse stoffene reagerer med hverandre i kondensasjonsreaksjoner.

Produktet skal inneholde en av hver av de tre utgangsstoffene.

Figur 9

d) Tabell 2 viser de to største toppene i massespekteret til fenylalanin.

Tabell 2.

Fragment nr.	m/z	Relativ forekomst
1	74	100 %
2	91	60 %

Tegn strukturformelen til fenylalanin. Bruk den til å forklare fragmenteringen av fenylalanin som gir opphav til disse to fragmentene.

e) Reaksjonsskjemaet i figur 10 viser omdanning av fenylalanin i cellene. I denne reaksjonen deltar også kofaktorene NAD+ (NAD), NADH + H+ (NAD-2H) og enzymene PAH og dihydrobiopterinreduktase. Forklar hva Y1, Y2, enzym A og enzym B må være.

Figur 10

Oppgave 5

Elever i Kjemi 2 analyserte innholdet av noen ioner i et mineralvann.

a) Kostholdeksperter anbefaler å begrense inntaket av natriumioner i kostholdet. Inntaket av salt, NaCl, bør derfor ikke overstige 6 gram per dag.

Innholdet av natriumioner i mineralvannet er, ifølge produsenten, 172 mg per liter.

Hvor stor andel av anbefalt maksimalt daglig inntak av NaCl får du i deg dersom du drikker 0.5 L av dette mineralvannet?

b) Ifølge produsenten inneholder mineralvannet kloridioner, sulfationer og hydrogenkarbonationer.

Til 10 mL av mineralvannet tilsatte en gruppe elever først noen dråper 2 mol/L HCl og deretter noen dråper BaCl₂(aq) i den samme løsningen.

Begge testene ga positivt resultat. Forklar hva elevene observerte, og hvilke to negative ioner elevene har påvist.

c) Mineralvannet inneholder både magnesiumioner og kalsiumioner. For å finne innholdet av kalsiumioner i mineralvannet gjennomførte elevene en titrering med EDTA ved høy pH. Da blir magnesiumioner fjernet fra løsningen som magnesiumhydroksid.

Til 25,00 mL av mineralvannet gikk det med 8,75 mL 0,0100 mol/L EDTA. Beregn konsentrasjonen av kalsiumioner, Ca²⁺, i mineralvannet i mg per liter.

d) Feil pH i titreringsløsningen kan være en feilkilde ved titreringen i 5c). Forklar hvordan pH i løsningen vil påvirke det beregnede resultatet for kalsiumioner dersom pH er altfor høy eller for lav.

(Oppgaven fortsetter på neste side.)

e) Elevene gjennomførte en kolorimetrisk analyse for å bestemme innholdet av kloridioner (Cl⁻) i mineralvannet.

Først laget de en standardkurve. Resultater fra målingene er vist i tabell 3. Fordi punktene ikke ligger på en rett linje, laget elevene tre ulike forslag til standardkurve. Disse kurvene er vist i figur 11 på neste side.

Hvilke punkter som er brukt til å lage de tre kurvene, er angitt i tabell 3.

Tabell 3 Målinger for standardkurve

Punkt	Konsentrasjon, mmol/L	Absorbans ved 480 nm	Rød kurve	Blå kurve	Grønn kurve
Α	0 (blank)	0,105	Α	Α	
В	0,125	0,132	В	В	
С	0,250	0,157	С	С	
D	0,500	0,141		D	D
Е	0,750	0,208		Е	Е
F	1,00	0,280		F	F
G	1,50	0,420		G	G
Н	2,50	0,712		Н	Н

Prøveløsningen ble laget på denne måten:

Elevene tok ut 50,00 mL av mineralvannet og overførte dette til en 250 mL målekolbe. De tilsatte fargestoff og fortynnet til merket med destillert vann. Denne løsningen er prøveløsningen. Absorbansen i prøven var 0,550.

Velg den standardkurven du mener er best, og beregn innholdet av kloridioner i mg per liter i mineralvannet. Begrunn valget av standardkurve.

Figur LL Elevenes forslag til standardkurve

Tabeller og formler i kjemi – REA3012 Kjemi 2

Dette vedlegget kan brukast under både del 1 og del 2 av eksamen. Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C I VANN

Halvreaksjon				E^{o} i V
oksidert form	+ <i>n</i> e ⁻	→	redusert form	
F ₂	+ 2e ⁻	\rightarrow	2F ⁻	2,87
$O_3(g) + 2H^+$	+ 2e ⁻	\rightarrow	O ₂ (g) +H ₂ O	2,08
$H_2O_2 + 2H^{+}$	+ 2e ⁻ + e ⁻	\rightarrow	2H ₂ O	1,78
$H_2O_2 + 2H^+$ Ce^{4+}	+ e ⁻	\rightarrow	Ce ³⁺	1,72
$PbO_2 + SO_4^{2-} + 4H^+$	+ 2e ⁻	\rightarrow	PbSO ₄ + 2H ₂ O	1,69
$MnO_4^- + 4H^+$	+ 3e ⁻	\rightarrow	MnO ₂ +2H ₂ O	1,68
2HCIO + 2H ⁺	+2e ⁻	\rightarrow	Cl ₂ + 2H ₂ O	1,63
MnO ₄ + 8H +	+ 5e ⁻	\rightarrow	Mn ²⁺ + 4H ₂ O	1,51
Au ³⁺	+ 3e ⁻	\rightarrow	Au	1,40
Cl ₂	+ 2e ⁻	\rightarrow	2Cl ⁻	1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	\rightarrow	2Cr ³⁺ + 7H ₂ O	1,36
O ₂ + 4H ⁺	+ 6e ⁻ + 4e ⁻	\rightarrow	2H ₂ O	1,23
$O_2 + 4H^{+}$ $MnO_2 + 4H^{+}$ $2IO_3^{-} + 12H^{+}$	+ 2e ⁻	\rightarrow	Mn ²⁺ + 2H ₂ O	1,22
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	\rightarrow	I ₂ + 6H ₂ O	1,20
Br ₂	+ 2e ⁻	\rightarrow	2 Br ⁻	1,09
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	\rightarrow	NO + 2H ₂ O	0,96
2Hg ²⁺ Cu ²⁺ + I ⁻	+ 2e ⁻ + e ⁻	\rightarrow	Hg ₂ ²⁺	0,92
Cu ²⁺ + I ⁻	+ e ⁻	\rightarrow	Cul(s)	0,86
Hg ²⁺	+ 2e ⁻	\rightarrow	Hg	0,85
CIO + H ₂ O	+ 2e ⁻	\rightarrow	Cl + 2OH	0,84
CIO ⁻ + H ₂ O Hg ₂ ²⁺	+ 2e ⁻	\rightarrow	2Hg	0,80
Ag ⁺	+ e ⁻	\rightarrow		0,80
Ag ⁺ Fe ³⁺	+ e ⁻	\rightarrow	Ag Fe ²⁺	0,77
O ₂ + 2H ⁺	+ 2e ⁻	\rightarrow	H ₂ O ₂	0,70
I ₂	+ 2e ⁻	\rightarrow	21	0,54
Cu [†]	+ e ⁻	\rightarrow	Cu	0,52
O ₂ + 2H ₂ O	+ 4e ⁻	\rightarrow	40H ⁻	0,40
O ₂ + 2H ₂ O Cu ²⁺	+ 2e ⁻	\rightarrow	Cu	0,34
$Ag_2O + H_2O$ $SO_4^{2-} + 4H^+$ Cu^{2+} Sn^{4+}	+ 2e ⁻ + 2e ⁻	\rightarrow	2Ag + 2OH	0,34
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻ + e ⁻	\rightarrow	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	\rightarrow	Cu ⁺	0,16
Sn ⁴⁺	+ 2e ⁻	\rightarrow	Sn ²⁺	0,15
$S + 2H^{\dagger}$	+ 2e ⁻ + 2e ⁻	\rightarrow	H ₂ S	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	\rightarrow	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	\rightarrow	H ₂	0,00
Fe ³⁺ Pb ²⁺	+ 3e ⁻	\rightarrow	Fe	-0,04
Pb ²⁺	+ 2e ⁻	\rightarrow	Pb	-0,13
Ni ²⁺	+ 2e ⁻	\rightarrow	Ni	-0,26
PbSO ₄	+ 2e ⁻	\rightarrow	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	\rightarrow	Cd	-0,40
Cd ²⁺ Sn ²⁺ Cr ³⁺	+ 2e ⁻	\rightarrow	Sn	-0,14
Cr ³⁺	+ e ⁻	\rightarrow	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	\rightarrow	Fe	-0,45

oksidert form	+ <i>n</i> e ⁻	→	redusert form	E^{o} i V
			1 _2-	
S	+ 2e ⁻	\rightarrow	S ²⁻	-0,48
2CO ₂ + 2H ⁺ Zn ²⁺	+ 2e ⁻	\rightarrow	$H_2C_2O_4$	-0,49
Zn ²⁺	+ 2e ⁻	\rightarrow	Zn	-0,76
2H ₂ O Mn ²⁺	+ 2e ⁻	\rightarrow	H ₂ + 20H ⁻	-0,83
Mn ²⁺	+ 2e ⁻	\rightarrow	Mn	-1,19
$ZnO + H_2O$	+ 2e ⁻	\rightarrow	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	\rightarrow	Al	-1,66
Mg ²⁺	+ 2e ⁻	\rightarrow	Mg	-2,37
Na [⁺]	+ e ⁻	\rightarrow	Na	-2,71
Mg ²⁺ Na ⁺ Ca ²⁺	+ 2e ⁻	\rightarrow	Ca	-2,87
K ⁺	+ e ⁻	\rightarrow	K	-2,93
Li ⁺	+ e ⁻	\rightarrow	Li	-3,04

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	$\textbf{Massetetthet} \ \frac{g}{mL}$	Konsentrasjon $\frac{\text{mol}}{\text{L}}$
Saltsyre	HCl	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H ₂ O	100	1,00	55,56

ROMERTALL 1-10

	1	2	3	4	5	6	7	8	9	10
ĺ	_	Η	III	IV	V	VI	VII	VIII	IX	Х

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ forekomst (%) i jordskorpen
Hydrogen	¹ H	99,985
	² H	0,015
Karbon	¹² C	98,89
	¹³ C	1,11
Nitrogen	¹⁴ N	99,634
	¹⁵ N	0,366
Oksygen	¹⁶ O	99,762
	¹⁷ O	0,038
	¹⁸ O	0,200
Silisium	²⁸ Si	92,23
	²⁹ Si	4,67
	³⁰ Si	3,10
Svovel	³² S	95,02
	³³ S	0,75
	³⁴ S	4,21
	³⁶ S	0,02
Klor	³⁵ Cl	75,77
	³⁷ Cl	24,23
Brom	⁷⁹ Br	50,69
	⁸¹ Br	49,31

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	K a	p <i>K</i> _a
Acetylsalisylsyre	C ₉ H ₈ O ₄	3,3 · 10 ⁻⁴	3,5
Ammonium	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	C ₆ H ₈ O ₆	7,9 · 10 ⁻⁵	4,04
Hydrogenaskorbat	C ₆ H ₇ O ₆	1,6 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,4 · 10 ⁻⁵	4,2
Benzylsyre, (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	5,2 · 10 ⁻⁵	4,3
Borsyre	B(OH) ₃	5,8 · 10 ⁻¹⁰	9,3
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,8
Eplesyre, malinsyre	C ₄ H ₆ O ₅	4,0 · 10 ⁻⁴	3,4
Hydrogenmalat	C ₄ H ₅ O ₅	7,9 · 10 ⁻⁶	5,1
Etansyre (Eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	10,0
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfat	H ₂ PO ₄	6,2 · 10 ⁻⁸	7,2
Hydrogenfosfat	HPO ₄ ²⁻	$4.8 \cdot 10^{-13}$	12,3
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfitt	H ₂ PO ₃	2,0 · 10 ⁻⁷	6,7
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,3 · 10 ⁻³	2,9
Hydrogenftalat	C ₆ H ₄ (COOH)COO ⁻	4,0 · 10 ⁻⁶	5,4
Hydrogensulfid	H ₂ S	7,9 · 10 ⁻⁸	7,1
Hydrogensulfidion	HS ⁻	1,0 · 10 ⁻¹⁹	19
Hydrogensulfat	HSO ₄	1,0 · 10 ⁻²	2,0

Navn	Formel	K _a	p <i>K</i> a
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,2
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,2
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,6
Karbonsyre	H ₂ CO ₃	4,0 · 10 ⁻⁷	6,4
Hydrogenkarbonat	HCO ₃	4,7 · 10 ⁻¹¹	10,3
Klorsyrling	HCIO ₂	1,3 · 10 ⁻²	1,9
Kromsyre	H ₂ CrO ₄	2,0 · 10 ⁻¹	0,7
Hydrogenkromat	HCrO ₄	3,2 · 10 ⁻⁷	6,5
Maleinsyre, cis-butendisyre	C ₄ H ₄ O ₄	1,2·10 ⁻²	1,9
Hydrogenmaleat	C ₄ H ₃ O ₄	5,9 · 10 ⁻⁷	6,2
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,9
Metansyre (mausyre)	HCHO ₂	1,5 · 10 ⁻⁴	3,8
Oksalsyre	$H_2C_2O_4$	5,6 · 10 ⁻²	1,3
Hydrogenoksalat	HC ₂ O ₄	1,5 · 10 ⁻⁴	3,8
Propansyre	HC ₃ H ₅ O ₂	1,3 · 10 ⁻⁵	4,9
Salisylsyre	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	3,0
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,3
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,9
Hydrogensulfitt	HSO ₃	6,3 · 10 ⁻⁸	7,2
Sitronsyre	$H_3C_6H_5O_7$	7,4 · 10 ⁻⁴	3,1
Dihydrogensitrat	$H_2C_6H_5O_7^-$	1,7 · 10 ⁻⁵	4,8
Hydrogensitrat	HC ₆ H ₅ O ₇ ²⁻	4,1 · 10 ⁻⁷	6,4
Vinsyre (2,3-dihydroksybutandisyre, tartarsyre)	(CH(OH)COOH) ₂	6,8 · 10 ⁻⁴	3,2
Hydrogentartrat	HOOC(CH(OH)) ₂ COO	1,2 · 10 ⁻⁵	4,9
Hypoklorsyre (underklorsyrling)	HOCI	4,0 · 10 ⁻⁸	7,4
Urea	CH ₄ N ₂ O	0,8 · 10 ⁻¹	0,1

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	K _b	p <i>K</i> _b
Acetat	CH₃COO¯	5,0 · 10 ⁻¹⁰	9,3
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,7
Metylamin	CH ₃ NH ₂	5,0 · 10 ⁻⁴	3,3
Dimetylamin	(CH ₃) ₂ NH	5,0 · 10 ⁻⁴	3,3
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,2
Etylamin	CH ₃ CH ₂ NH ₂	4,6 · 10 ⁻⁴	3,4
Dietylamin	(C ₂ H ₅) ₂ NH	6,3 · 10 ⁻⁴	3,2
Trietylamin	$(C_2H_5)_3N$	5,0 · 10 ⁻⁴	3,3
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,9 · 10 ⁻¹⁰	9,1
Pyridin	C ₅ H ₅ N	1,6 · 10 ⁻⁹	8,8
Hydrogenkarbonat	HCO ₃	2,0 · 10 ⁻⁸	7,7
Karbonat	CO ₃ ²⁻	2,0 · 10 ⁻⁴	3,7

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH-omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rød	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	Cl	CO ₃ ²⁻	CrO ₄ ²⁻	I ⁻	O ²⁻	OH ⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	U	U	U	U	U	Uk	U	Т
Al ³⁺	R	R	Uk	Uk	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	Т	U
Ca ²⁺	L	L	U	Т	L	Т	U	Т	Т
Cu ²⁺	L	L	Uk	U	Uk	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	Uk	U	Uk	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	Uk	U	Uk	U
Hg ²⁺	Т	L	Uk	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	Т	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	Uk	R	U	U	U	R
Sn ⁴⁺	R	R	Uk	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann. T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

Uk = Ukjent forbindelse, R = reagerer med vann.

LØSELIGHETSPRODUKT, K_{sp} , FOR SALT I VANN VED 25 $^{\circ}\text{C}$

Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰
Bly (II) bromid	PbBr ₂	6,60 · 10 ⁻⁶
Bly (II) hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰
Bly (II) jodid	PbI ₂	9,80 · 10 ⁻⁹
Bly (II) karbonat	PbCO ₃	7,40 · 10 ⁻¹⁴
Bly (II) klorid	PbCl ₂	1,70 · 10 ⁻⁵
Bly (II) oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹
Bly (II) sulfat	PbSO ₄	2,53 · 10 ⁻⁸
Bly (II) sulfid	PbS	3 · 10 ⁻²⁸
Jern (II) fluorid	FeF ₂	2,36 · 10 ⁻⁶
Jern (II) hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷
Jern (II) karbonat	FeCO ₃	3,13 · 10 ⁻¹¹
Jern (II) sulfid	FeS	8 · 10 ⁻¹⁹
Jern (III) fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶
Jern (III) hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶
Kalsiumkarbonat	CaCO ₃	3,36 · 10 ⁻⁹
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵
Kobolt(II) hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵
Kopper(I) bromid	CuBr	6,27 · 10 ⁻⁹
Kopper(I) klorid	CuCl	1,72 · 10 ⁻⁷
Kopper(I) oksid	Cu ₂ O	2 · 10 ⁻¹⁵
Kopper(I) jodid	Cul	1,27 · 10 ⁻¹²
Kopper(II) fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷
Kopper(II) oxalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰
Kopper(II) sulfid	CuS	$8 \cdot 10^{-37}$
Kvikksølv (I) bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Kvikksølv (I) jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Kvikksølv (I) karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Kvikksølv (I) klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Kvikksølv (II) bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Kvikksølv (II) jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴
Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Mangan(II) karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Mangan(II) oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷

Navn	Kjemisk formel	K _{sp}
Nikkel(II) fosfat	Ni ₃ (PO ₄) ₂	$4,74 \cdot 10^{-32}$
Nikkel(II) hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Nikkel(II) karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Nikkel(II) sulfid	NiS	2 · 10 ⁻¹⁹
Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Sinksulfid	ZnS	2 · 10 ⁻²⁴
Sølv (I) acetat	AgCH₃COO	1,94 · 10 ⁻³
Sølv (I) bromid	AgBr	5,35 · 10 ⁻¹³
Sølv (I) jodid	AgI	8,52 · 10 ⁻¹⁷
Sølv (I) karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Sølv (I) klorid	AgCl	1,77 · 10 ⁻¹⁰
Sølv (I) kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Sølv (I) sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹
Tinn(II) hydroksid	Sn(OH)₂	5,45 · 10 ⁻²⁷

$\alpha\text{-}AMINOSYRER$

Vanlig navn	Forkortelse	Strukturformel	pH isoelektrisk punkt
Alanin	Ala	H ₂ N—CH—COOH CH ₃	6,0
Arginin	Arg	H ₂ N—CH—COOH CH ₂ -CH ₂ -CH ₂ -NH—C—NH ₂ NH	10,8
Asparagin	Asn	H ₂ N—CH—COOH CH ₂ -C—NH ₂ O	5,4
Asparaginsyre	Asp	H ₂ N—CH—COOH I CH ₂ -COOH	2,8
Cystein	Cys	H ₂ N—CH—COOH CH ₂ -SH	5,1
Fenylalanin	Phe	H ₂ N—CH—COOH CH ₂	5,5
Glutamin	Gln	H ₂ N—CH—COOH CH ₂ -CH ₂ -C—NH ₂ O	5,7

Vanlig navn	Forkortelse	Strukturformel	pH isoelektrisk punkt
Glutaminsyre	Glu	H ₂ N—CH—COOH CH ₂ -CH ₂ -COOH	3,2
Glysin	Gly	H₂N—CH—COOH H	6,0
Histidin	His	H ₂ N—CH—COOH CH ₂ N	7,6
Isoleucin	lle	H ₂ N—CH—COOH H ₃ C—CH—CH ₂ -CH ₃	6.0
Leucin	Leu	H ₂ N—CH—COOH CH ₂ H ₃ C—CH—CH ₃	6,0
Lysin	Lys	H ₂ N—CH—COOH CH ₂ -CH ₂ -CH ₂ -CH ₂ -NH ₂	9,7
Metionin	Met	H ₂ N—CH—COOH CH ₂ -CH ₂ -S—CH ₃	5,7
Prolin	Pro	COOH	6,3

Vanlig navn	Forkortelse	Strukturformel	pH isoelektrisk punkt
Serin	Ser	H ₂ N—CH—COOH CH ₂ -OH	5,7
Treonin	Thr	H ₂ N—CH—COOH H₃C—CH-OH	5,6
Tryptofan	Тгр	H ₂ N—CH—COOH CH ₂	5,9
Tyrosin	Tyr	H ₂ N—CH—COOH CH ₂	5,7
Valin	Val	H₂N—CH—COOH H₃C—CH—CH₃	6,0

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, **HAL=** halogen (Cl, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Type proton	Kjemisk skift, ppm
-C H ₃	0,9 – 1,0
-CH ₂ -R	1,3 – 1,4
-CHR ₂	1,4 – 1,6
–C≡C– H	1,8 – 3,1
-CH ₂ - HAL	3,5 – 4,4
R-O-CH ₂ -	3,3 – 3,7
R-O-H	0,5 – 6,0
-CH=CH ₂	4,5 – 6,0
0 RO C C H ₂ —	2,0 – 2,5
0 R ^C \O-C H ₂ -	3,8 – 4,1
0 	2,2 – 2,7
O C O- H	9,0 – 13,0
O R/C\H	9,4 – 10,0
0 = C O-R	Ca. 8

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

HYDROKARBONER, METTEDE (alkaner)					
Navn	Formel	Smp	Кр	Diverse	
Metan	CH ₄	-182	-161		
Etan	C ₂ H ₆	-183	-89		
Propan	C₃H ₈	-188	-42		
Butan	C ₄ H ₁₀	-138	-0,5		
Pentan	C ₅ H ₁₂	-130	36		
Heksan	C ₆ H ₁₄	-95	69		
Heptan	C ₇ H ₁₆	-91	98		
Oktan	C ₈ H ₁₈	-57	126		
Nonan	C ₉ H ₂₀	-53	151		
Dekan	C ₁₀ H ₂₂	-30	174		
Syklopropan	C ₃ H ₆	-128	-33		
Syklobutan	C ₄ H ₈	-91	13		
Syklopentan	C ₅ H ₁₀	-93	49		
Sykloheksan	C ₆ H ₁₂	7	81		
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan	
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan	
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan	
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan	
3-Metylpentan	C ₆ H ₁₄	-163	63		
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan	
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58		
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan	
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110		
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115		
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114		

Navn	Formel	Smp	Кр	Diverse
HYDR	OKARBONER			
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C ₃ H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
cis-But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
cis-Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
cis-Heks-3-en	C ₆ H ₁₂	-138	66	
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C ₇ H ₁₄	-119	94	
cis-Hept-2-en	C ₇ H ₁₄		98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
<i>cis</i> -Hept-3-en	C ₇ H ₁₄	-137	96	
trans-Hept-3-en	C ₇ H ₁₄	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
Penta-1,2-dien	C ₅ H ₈	-137	45	
trans-Penta-1,3-dien	C ₅ H ₈	-87	42	
cis-Penta-1,3-dien	C ₅ H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀		76	
cis-Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
HYDR	OKARBONER	R, UMETTED	E, alkyner	
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C ₅ H ₈	-90	40	
Pent-2-yn	C ₅ H ₈	-109	56	
Heks-1-yn	C ₆ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
	ROMATISKE I	HYDROKARB	ONER	
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₂ H ₁₀	25	265	2
Trifenylmetan	C ₁₃ H ₁₆	94	360	Tritan
Tracityanictual	19 119 116	J -1	300	TITCOTT

Navn	Formel	Smp	Кр	Diverse
1,2-Difenyletan	C ₁₄ H ₁₄	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₄ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	PAH
	ALK	OHOLER		
Metanol	CH₃OH	-98	65	Tresprit
Etanol	C ₂ H ₆ O	-114	78	
Propan-1-ol	C ₃ H ₈ O	-124	97	<i>n</i> -propanol
Propan-2-ol	C ₃ H ₈ O	-88	82	Isopropanol
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	<i>n</i> -Pentanol, amylalkohol
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol
Heksan-2-ol	C ₆ H ₁₄ O		140	
Heksan-3-ol	C ₆ H ₁₄ O		135	
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, n-heptanol
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, <i>n</i> -oktanol
Sykloheksanol	C ₆ H ₁₂ O	26	161	
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten
				triglyserid
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol
	KARBONYL	FORBINDEL	SER	
Metanal	CH ₂ O	-92	-19	Formaldehyd
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd
2-Metylpropanal	C ₄ H ₈ O	-65	65	
Butanal	C ₄ H ₈ O	-97	75	
3-Hydroksybutanal	C ₄ H ₈ O ₂		83	
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd
Heptanal	C ₇ H ₁₄ O	-43	153	
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd
Propanon	C₃H ₆ O	-95	56	Aceton
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon
4-Metyl-pentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon

Navn	Formel	Smp	Кр	Diverse
trans-Fenylpropenal	C ₉ H ₈ O	-8	246	<i>trans</i> -Kanelaldehyd
	ORGAN	ISKE SYRER		
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, $pK_a = 3,75$
Etansyre	$C_2H_4O_2$	17	118	Eddiksyre, p $K_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, $pK_a = 4.87$
2-Metyl-propansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, $pK_a = 3,86$
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved
				oppvarming,
				pK _a = 4,51
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p $K_a = 4.83$
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre , $pK_a = 4,77$
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, $pK_a = 4.83$
Hexansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, p $K_a = 4.88$
Propensyre	$C_3H_4O_2$	12	139	$pK_a = 4,25$
cis-But-2-ensyre	C ₄ H ₆ O ₂	15	169	<i>cis</i> -Krotonsyre, p K_a = 4,69
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	<i>trans</i> -Krotonsyre, $pK_a = 4,69$
But-3-ensyre	C ₄ H ₆ O ₂	-35	169	pK _a = 4,34
Etandisyre	$C_2H_2O_4$			Oksalsyre, p $K_{a1} = 1,25$, p $K_{a2} =$
,				3,81
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, $pK_{a1} = 4,32$, $pK_{a2} = 5,42$
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, p K_{a1} = 4,41, p K_{a2} = 5,41
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, $pK_a = 4,44$
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		$pK_a = 3,88$
Benzosyre	$C_7H_6O_2$	122	250	jerra oyee
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31
· · · · · · · · · · · · · · · · · · ·		STERE		
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl-trans-cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin

Navn	Formel	Smp	Кр	Diverse
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og
				ananas
Pentyletanat	$C_7H_{14}O_2$	-71	149	Amylacetat, lukter banan og
				eple
Pentylpentanat	$C_{10}H_{20}O_2$	-79	204	Lukter eple
ORGAN	ISKE FORBIN	DELSER MEI	D NITROGEN	
Metylamin	CH₅N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	$pK_b = 3,27$
Trimetylamin	C ₃ H ₉ N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	$C_4H_{11}N$	-28	312	$pK_b = 3,16$
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid
Fenylamin	C_6H_7N	-6	184	Anilin
1,4-diaminbutan	$C_4H_{12}N_2$	27	158-160	Engelsknavn: putrescine
1,6-Diaminheksan	$C_6H_{16}N_2$	9	178-180	Engelsknavn: cadaverine
ORGAN	IISKE FORBIN	IDELSER ME	D HALOGEN	
Klormetan	CH₃Cl	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt
				som løsemiddel
Triklormetan	CHCl₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
Kloretansyre	C ₂ H ₃ ClO ₂	63	189	Kloreddiksyre, p K_a = 2,87
Dikloretansyre	$C_2H_2Cl_2O_2$	9,5	194	Dikloreddiksyre, p K_a = 1,35
Trikloretansyre	C ₂ HCl ₃ O ₂	57	196	Trikloretansyre, $pK_a = 0.66$
Kloreten	C ₂ H ₃ Cl	-154	-14	Vinylklorid,monomeren i polymeren PVC

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	HCI	H ₂ SO ₄	NH ₃	KI	KSCN	K₃Fe(CN) ₆	K₄Fe(CN) ₆	K₂CrO₄	Na₂S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Lakserødt
Fe ²⁺			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe ³⁺			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Gulhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gulhvitt kan forekomme	Hvitt	Hvitt	
Ca ²⁺									Gulehvitt kan forekomme	Hvitt	Hvitt	

Grunnstoffenes periodesystem med elektronfordeling

Gruppe 1	Gruppe 2				Forklariı	20						Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,01					Ato	mnummer	35 79,9	Fargekoder	Ikke-r	metall							2
H 1					А	tommasse Symbol	Br		Halvn	netall							4,0 He
Hydrogen					Eletro	nfordeling Navn	2, 8, 18, 7		Me	tall							Helium
3	4				() betyr m		Brom	Aggregat-	Fast s	toff B		5	6	7	8	9	10
6,94 Li	9,01 Be				til den mes isotopen * Lantanoi			tilstand ved 25°C og 1 atm	Væske			10,8 B	12,0 C	14,0 N	16,0 O	19,0 F	20,2 Ne
2, 1 Lithium	2, 2 Berylliu m				** Aktinoid				Gas	s N		2, 3 Bor	2,4 Karbon	2, 5 Nitrogen	2, 6 Oksygen	2, 7 Fluor	2, 8 Neon
11 22,99	12 24,3											13 27,0	14 28,1	15 31,0	16 32,1	17 35,5	18 39,9
Na 2, 8, 1 Natrium	Mg 2, 8, 2 Magnesi	3	4	5	6	7	8	9	10	11	12	2, 8, 3 Aluminiu	Si 2, 8, 4 Silisium	2, 8, 5 Fosfor	\$ 2, 8, 6 Svovel	2, 8, 7 Klor	Ar 2, 8, 8
19	um 20	21	22	23	24	25	26	27	28	29	30	m 31	32	33	34	35	Argon 36
39,1 K	40,1 Ca	45 Sc	47,9 Ti	50,9 V	52,0 Cr	54,9 Mn	55,8 Fe	58,9 Co	58,7 Ni	63,5 Cu	65,4 Zn	69,7 Ga	72,6 Ge	74,9 As	79,0 Se	79,9 Br	83,8 Kr
2, 8, 8, 1 Kalium	2, 8, 8, 2 Kalsium	2, 8, 9, 2 Scandiu	2, 8, 10, 2 Titan	2, 8, 11, 2 Vanadiu	2, 8, 12, 1 Krom	2, 8, 13, 2 Manga	2, 8, 14, 2 Jern	2, 8, 15, 2 Kobolt	2, 8, 16, 2 Nikkel	2, 8, 18, 1 Kobber	2, 8, 18, 2 Sink	2, 8, 18, 3 Gallium	2, 8, 18, 4 Germani	2, 8, 18, 5 Arsen	2, 8, 18, 6 Selen	2, 8, 18, 7 Brom	2, 8, 18, 8 Krypton
37	38	m 39	40	m 41	42	43	44	45	46	47	48	49	um 50	51	52	53	54
85,5 Rb	87,6 Sr	88,9 Y	91,2 Zr	92,9 Nb	95,9 Mo	(99) Tc	102,9 Ru	102,9 Rh	106,4 Pd	107,9 Ag	112,4 Cd	114,8 I n	118,7 Sn	121,8 Sb	127,6 Te	126,9	131,3 Xe
2, 8, 18, 8, 1 Rubidium	2, 8, 18, 8, 2 Strontiu	2, 8, 18, 9, 2 Yttrium	2, 8, 18, 10, 2 Zirkoniu	2, 8. 18, 12, 1 Niob	2, 8, 18, 13, 1 Molybde	2, 8, 18, 14, 1 Techne	2, 8, 18, 15, 1 Rutheniu	2, 8, 18, 16, 1 Rhodiu	2, 8, 18, 17, 1 Palladiu	2, 8, 18, 18, 1 Sølv	2, 8, 18, 18, 2 Kadmiu	2, 8, 18, 18, 3 Indium	2, 8, 18, 4 Tinn	2, 8, 18, 18, 5 Antimon	2, 8, 18, 18, 6 Tellur	2, 8, 18, 18, 7 Jod	2, 8, 18, 18, 8 Xenon
55	m 56	57	m 72	73	n 74	tium 75	m 76	m 77	m 78	79	m 80	81	82	83	84	85	86
132,9 Cs	137,3 Ba	138,9 La	178,5 Hf	180,9 Ta	183,9 W	186,2 Re	190,2 Os	192,2 Ir	195,1 Pt	197,0 Au	200,6	204,4 TI	207,2 Pb	209,0 Bi	(210) Po	(210) At	(222) Rn
2, 8, 18, 18, 8, 1 Cesium	2, 8, 18, 18, 8, 2	2, 8, 18, 18, 9, 2	2, 8, 18, 32, 10, 2	2, 8, 18, 32, 11, 2	2, 8, 18, 32, 12, 2	2, 8, 18, 32, 13, 2	2, 8, 18, 32, 14, 2	2, 8, 18, 32, 17, 0	2, 8, 18, 32, 17, 1	2, 8, 18, 32, 18, 1	Hg 2, 8, 18, 32, 18, 2	2, 8, 18, 32, 18, 3	2, 8, 18, 32, 18, 4	2, 8, 18, 32, 18, 5	2, 8, 18, 32, 18, 6	2, 8, 18, 32, 18, 7	2, 8, 18, 32, 18, 8
ocsiani	Barium	Lantan*	Hafnium	Tantal	Wolfram	Rheniu m	Osmium	Iridium	Platina	Gull	Kvikksøl v	Thallium	Bly	Vismut	Poloniu m	Astat	Radon
87 (223)	88 (226)	89 (227)	104 (261)	105 (262)	106 (263)	107 (262)	108 (265)	109 (266)									
Fr 2, 8, 18, 32, 18,	Rd 2, 8, 18, 32,	Ac 2, 8, 18, 32,	Rf 2, 8, 18, 32,	Db 2, 8, 18, 32,	Sb 2, 8, 18, 32,	Bh 2, 8, 18,	Hs 2, 8, 18, 32,	Mt 2, 8, 18, 32,									
8, 1 Francium	18, 8, 2 Radium	18, 9, 2 Actinium	32, 10, 2 Rutherfor dium	32, 11, 2 Dubniu m	32, 12, 3 Seaborg ium	32, 32, 13, 2 Bohriu	32, 14, 2 Hassium	32, 15, 2 Meitneri um									
				1111	Idili	m		um									
		*	57 138,9	58 140,1	59 140,9	60 144,2	61 (147)	62 150,5	63 152	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
			La 2, 8, 18, 18,	Ce	Pr 2, 8, 18, 21,	Nd 2, 8, 18,	Pm 2, 8, 18, 23,	Sm 2, 8, 18, 24,	Eu 2, 8, 18, 25,	Gd 2, 8, 18, 25,	Tb 2, 8, 18, 27,	Dy 2, 8, 18, 28,	Ho 2, 8, 18, 29,	Er 2, 8, 18, 30,	Tm 2, 8, 18, 31,	Yb 2, 8, 18, 32,	Lu 2, 8, 18, 32,
			9, 2 Lantan	8, 2 Cerium	8, 2 Praseod	22, 8, 2 Neody	8, 2 Promethi	8, 2 Samariu	8, 2 Europiu	9, 2 Gadolini	8, 2 Terbium	8, 2 Dysprosi	8, 2 Holmiu	8, 2 Erbium	8, 2 Thulium	8, 2 Ytterbiu	8, 2 Lutetiu
		**	89	90	91	92	93 (227)	94 (242)	95 (242)	96	97	98 (240)	99 (25.4)	100	101	m 102	103
			(227) Ac	232,0 Th	231,0 Pa	238,0 U	(237) Np	(242) Pu	(243) Am	(247) Cm	(247) Bk	(249) Cf	(254) Es	(253) Fm	(256) Md	(254) No	(257) Lr
			2, 8, 18, 32, 18, 9, 2 Actinium	2, 8, 18, 32, 18, 10, 2 Thorium	2, 8, 18, 32, 20, 9, 2 Protactini	2, 8, 18, 32, 21, 9, 2	2, 8, 18, 32, 22, 9, 2 Neptuniu	2, 8, 18, 32, 24, 8, 2 Plutoniu	2, 8, 18, 32, 25, 8, 2 Americu	2, 8, 18, 32, 25, 9, 2 Curium	2, 8, 18, 32, 26, 9, 2 Berkeliu	2, 8, 18, 32, 28, 8, 2 Californi	2, 8, 18, 32, 29, 8, 2 Einsteini	2, 8, 18, 32, 30, 8, 2 Fermiu	2, 8, 18, 32, 31, 8, 2 Mendelevi	2, 8, 18, 32, 32, 8, 2 Nobeliu	2, 8, 18, 32, 32, 9, 2 Lawrenc
			Actinium	monun	um	Uran	m	m	m	Surium	m	um	um	m	um	m	ium

Grunnstoffenes periodesystem med elektronegativitetsverdier

1	Gruppe 1	Gruppe 2			Forklaring								Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
Name	1,01 H 2,1					Atommasse Symbol	95,9 Mo 1,8											He
Li Di Be 1.0		4	İ			Navn	Molybden						5	1 6	1 7	Ω	0	
11 12 13 13 14 15 16 17 18 18 19 19 19 19 19 19	6,94 Li	9,01 Be											10,8 B	С	14,0 N	16,0 O	19,0 F	^{20,2} Ne
22-99 24-3 Mg O.9	Lithium	m														Oksygen	Fluor	Neon
Natrium Magnes	22,99	24,3											27,0	28,1	31,0	32,1	35,5	39,9
19		1,2 Magnesi	3	4	5	6	7	8	9	10	11	12	Aluminiu					Argon
0,8 1,0 1,3 1,5 1,6 1,6 1,6 1,6 1,8 1,9 1,9 1,9 1,6 1,6 1,6 1,8 2,0 2,4 2,8 87,8 88,9 89,9 1,2 92,9 95,9 96,9 102,9 10		20	21 45	22 47,9	23 50,9	24 52,0	25 54,9	26 55,8	27 58,9	28 58,7	29 63,5	30 65,4	31	32 72,6	33 74,9	34 79,0	35 79,9	36 83,8
Railum Kalsium Kalsi						-		_										Kr
85.5 Rb Sr Rb Sr V Zr Nb Mo Tc Ru Ru Ru Ru Ru Ru Ru R	Kalium	Kalsium	Scandiu m	Titan	Vanadiu m				Kobolt	Nikkel	Kobber	Sink	Gallium	Germani um		Selen	Brom	Krypton
0.8 1.0 1.2 2.1 2.4 2.4 2.7 2.4 2.5 2.2	37 85,5	87,6	88,9	91,2		42 95,9	43 (99)	44 102,9	102,9	46 106,4	47 107,9	112,4	49 114,8	50 118,7	121,8	52 127,6	53 126,9	54 131,3
Rubidium Strontu Min					_		_	_		_				_		_		Xe
139.9 137.3 138.9 138.5 138.5 138.5 138.9 138.5 138.9 138.5 138.9 138.5 138.		Strontiu		Zirkoniu		Molybde	Techneti	Rutheni	Rhodiu m	Palladiu		Kadmiu						Xenon
O,7 Cesium Barium 1,0 - 1,3 1,5 1,7 Tantal Wolfram Rheniu m Platina Osmium m Platina O	55 132,9	56 137,3	57 138,9	72 178,5		74 183,9	75 186,2		77 192,2	78 195,1			81 204,4	82 207,2	83 209,0			
Cesium Barium 1,2		_								_				_		_		Rn
C223 Fr			1,2				Rheniu					Kvikksøl				Poloniu		Radon
No.																		
Francium Radium Actinium Radium Actinium Radium Actinium Radium Actinium Radium				Rf	Db	Sb	Bh	Hs	Mt									
138,9			Actinium				Bohrium	Hassium										
**			*		58		60 144.2	61	62	63	64 157 3	65 158 9	66	67 164 9	68 167 3	69		71 175.0
** 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 (257) AC Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 1,1 1,3 1,1 1,3 1,3 1,3 1,3 1,3 1,3 1,3				_					Sm									
**						Praseod		Prometh	Samariu	Europiu	Gadolini		Dysprosi	Holmiu			Ytterbiu	Lutetiu
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 1,1 1,3 1,4 1,4 1,4 1,3 1,1 1,3<			**			91	92 238,0	93		95	96		98	99	100 (253)		102	103
Actinium Thorium Protactini Uran Neptuni Plutoniu Americu Curium Berkelium Californiu Einsteiniu Fermiu Mendelevi Nobeliu Lawrenciu				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
						Protactini		Neptuni	Plutoniu	Americu			Californiu	Einsteiniu	Fermiu	Mendelevi	Nobeliu	Lawrenciu

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH ₃ COO ⁻	jodat	IO ₃
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	CIO ₃
arsenitt	AsO ₃ ³⁻	kloritt	ClO ₂
borat	BO ₃ ³⁻	nitrat	NO ₃
bromat	BrO ₃	nitritt	NO ₂
fosfat	PO ₄ ³⁻	perklorat	CIO ₄
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO	sulfitt	SO ₃ ²⁻

Kjelder:

- Dei fleste opplysningane er henta frå CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGÅVE (2008–2009), ISBN 9781420066791
- Tabeller og formler i kjemi, Gyldendal, ISBN 82-05-25901-1
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.9.2013)
- Stabilitetskonstantar: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (SIST BESØKT 3.12.2013), http://www.cem.msu.edu/~cem333/EDTATable.htm (sist besøkt 3.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er henta frå Kjemi 3KJ, Studiehefte (Brandt mfl), Aschehough (2003), side 203
- Opplysningar i periodesystemet: http://en.wikipedia.org/wiki/Chemical_element (sist besøkt 3.12.2013)

Kilder:

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGAVE (2008–2009), ISBN 9781420066791
- Tabeller og formler i kjemi, Gyldendal, ISBN 82-05-25901-1
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.9.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (SIST BESØKT 3.12.2013), http://www.cem.msu.edu/~cem333/EDTATable.htm (sist besøkt 3.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er hentet fra Kjemi 3KJ, Studiehefte (Brandt mfl), Aschehough (2003), side 203
- Opplysninger i periodesystemet: http://en.wikipedia.org/wiki/Chemical_element (sist besøkt 3.12.2013)