STAT 500

Two-Sample Inference Model Assumptions and Diagnostics

Two-Sample Inference

Model Assumptions

$$-Y_{11},Y_{12},\ldots,Y_{1n_1}$$
 are i.i.d. $N(\mu_1,\sigma_1^2)$

$$Y_{21},Y_{22},\ldots,Y_{2n_2}$$
 are i.i.d. $N(\mu_2,\sigma_2^2)$

- Y_{1j} and Y_{2j^\prime} are independent for all j and j^\prime

$$-\ \sigma_1^2 = \sigma_2^2 = \sigma^2$$

Two-Sample Inference

- Summarize assumptions as:
 - Independence assumption
 - * Each sample is i.i.d. (random sample)
 - * Samples are independent
 - Homogeneous variance assumption

$$* \sigma_1^2 = \sigma_2^2 = \sigma^2$$

- Normal Distribution assumption
 - * Distribution of variable in each population is normal

Two-Sample Inference

With assumptions, we have that

$$T = rac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

- Result used to obtain
 - p-value for Hypothesis Test
 - Confidence Level for Confidence Interval

Model Assumptions

Those model assumptions may not exactly match with reality

- "No model is correct, but some are useful"
 George Box
- Expect some assumptions not to hold

Consequences of Violations of Assumptions

- If model assumptions are violated,
 - T will not have a $t_{n_1+n_2-2}$ distribution
 - Means that
 - * p-value for hypothesis test will be wrong
 - * Confidence Level for confidence interval will be wrong

Robustness of Two-Sample Inference

- How far off will true p-value and true Confidence Level be if model assumptions are violated?
 - Not far off we can still use two-sample inference procedure.
 - Far off we cannot use two-sample inference procedure.
- Research studies have established when violations of model assumptions will result in large differences between true pvalues and confidence intervals compared to values obtained from two-sample inference procedure.

Model Diagnostics

Analysis of Assumptions

- Graphical and other evaluations of assumptions
- Understand robustness of methods
- If necessary, fix the problem
 - Transform or modify the data
 - Change the model
 - Use other statistical procedures

Model Diagnostics: Independence Assumption

- Study should be designed to achieve independent responses
- Independence may not hold if some sample members are related
 - students in same class
 - genetic relationships
 - soil samples taken close together
- Check by plotting observations versus relevant variables like time or location
- Look for possible clusters in which sample members may not respond independently

Model Diagnostics: Independence Assumption

- Two-Sample Inference Procedure is not robust to violating this assumption. Effects of correlated responses (random errors) include
 - Standard error formulas are incorrect $Var(\overline{Y}_1 \overline{Y}_2) \neq \sigma^2(1/n_1 + 1/n_2)$
 - t procedures are in serious trouble
 - Confidence intervals will not have correct coverage probabilities
- Remedies Use another statistical procedure
 - If clustering reanalyze using appropriate methods
 - If time effects use time-series models
 - If location effects use spatial models

Model Diagnostics: Homogeneous Variances

- Graphical Methods
- Ratio of sample standard deviations
- Folded F-test for equality of variances
- Brown-Forsythe test

Graphical Methods

- Construct residual plots, histograms, or boxplots of values for each sample
- Look for
 - Outliers in each sample
 - Differences in IQR, Range
 - Differences in shape of sample distributions

Ratio of Sample Standard Deviations

$$rac{max\{S_1,\;S_2\}}{min\{S_1,\;S_2\}}$$

- Between 1 and 2 little impact
- Between 2 and 3 potential impact
- Greater than 3 likely impact

Folded F-test

- Test for equality of variances
- ullet Reject $H_o:\sigma_1^2=\sigma_2^2$ if

$$F_{max} = rac{max\{S_1^2, \; S_2^2\}}{min\{S_1^2, \; S_2^2\}} \geq F_{(a,b),1-lpha/2}$$

where

$$a = n_1 - 1, b = n_2 - 1 ext{ if } S_1^2 > S_2^2$$
 $a = n_2 - 1, b = n_1 - 1 ext{ if } S_2^2 > S_1^2$

- Very sensitive to normal distribution assumption
- Not recommended as the only check

Model Diagnostics Homogeneous Variances

Output from TTEST procedure in SAS for the creative writing data

```
/* Use the TTEST procedure to perform t-tests on
the creative writing dataset */

title"Model Based t-tests";
proc ttest data=set1;
  class trt;
  var y;
  format trt trt.;
run;
```

trt	N	Mean	Std Dev	Std Err	Minimum	Maximum
intrinsic	24	19.8875	4.4418	0.9067	12.0000	29.7000
extrinsic	23	15.7391	5.2526	1.0952	5.0000	24.0000
Diff (1-2)		4.1484	4.8551	1.4167		

trt	Method	Mean	95% CL Mean		Std Dev 95% (CL Std ev
intrinsic		19.8875	18.0119	21.7631	4.4418	3.4522	6.2308
extrinsic		15.7391	13.4677	18.0105	5.2526	4.0623	7.4343
Diff (1-2)	Pooled	4.1484	1.2950	7.0018	4.8551	4.0270	6.1152
Diff (1-2)	Satterthwaite	4.1484	1.2812	7.0156			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	45	2.93	0.0053
Satterthwaite	Unequal	43.117	2.92	0.0056

Equality of Variances						
Method Num DF Den DF F Value Pr >						
Folded F	22	23	1.40	0.4304		

Brown-Forsythe Test

- ullet Conduct a two sample t-test on the absolute deviations from the sample medians to assess homogeneous variability
- Available with the HOVTEST= option in the SAS GLM procedure
- Sleuth, Section 4.5.3 refers it to Levene's test
- Levene (1960) used absolute deviations from sample means

Brown-Forsythe Test

- ullet Compute $Z_{1j}=|Y_{1j}-{\sf median_1}|$ for $j=1,...,n_1$ and $Z_{2j}=|Y_{2j}-{\sf median_2}|$ for $j=1,...,n_2$
- Compute

$$ar{Z}_1 = rac{1}{n_1} \sum_{j=1}^{n_1} Z_{1j}$$
 and $S^2_{Z_1} = rac{1}{n_1-1} \sum_{j=1}^{n_1} (Z_{1j} - ar{Z}_1)^2$

and

$$ar{Z}_2 = rac{1}{n_1} \sum_{j=1}^{n_2} Z_{2j}$$
 and $S^2_{Z_2} = rac{1}{n_2-1} \sum_{j=1}^{n_2} (Z_{2j} - ar{Z}_2)^2$

Brown-Forsythe Test

$$ullet$$
 Compute S_Z^2 pooled $= rac{(n_1-1)S_{Z_1}^2+(n_2-1)S_{Z_2}^2}{n_1+n_2-2}$

ullet Reject $H_0:\sigma_1^2=\sigma_2^2$ if

$$\left|rac{ar{Z}_1-ar{Z}_2}{S_Z \; ext{pooled} \sqrt{rac{1}{n_1}+rac{1}{n_2}}}
ight|>t_{(n_1+n_2-2),1-lpha/2}$$

• Same as

$$\left|rac{ar{Z}_1-ar{Z}_2}{S_{Z ext{ pooled}}\sqrt{rac{1}{n_1}+rac{1}{n_2}}
ight|^2>F_{(1,n_1+n_2-2),1-lpha}$$

/* Use the GLM procedure to perform the Brown-Forsythe
 test for homogeneous variances */

 proc glm data=set1 alpha=.05 ;
 class trt;
 model y = trt;
 means trt / hovtest=bf;
 format trt trt.;
 run;

Brown and Forsythe's Test for Homogeneity of y Variance ANOVA of Absolute Deviations from Group Medians							
Source Sum of Mean Squares Square F Value							
trt	1	3.8953	3.8953	0.36	0.5543		
Error	45	493.7	10.9720				

Consequences of Unequal Variances

Need to estimate quantity

$$Var(\overline{Y}_1-\overline{Y}_2)=rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}$$

Unbiased estimator is

$$rac{S_1^2}{n_1} + rac{S_2^2}{n_2}$$

• Two-Sample Inference procedure estimates this quantity as

$$S_p^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)$$

Consequences of Unequal Variances

If $n_1 = n_2 = n$, two estimates are equal (df are different).

$$S_p^2 = \frac{(n-1)S_1^2 + (n-1)S_2^2}{2n-2} = \frac{S_1^2 + S_2^2}{2}$$

$$S_p^2 \left(\frac{1}{n} + \frac{1}{n}\right) = \left(\frac{S_1^2 + S_2^2}{2}\right) \left(\frac{2}{n}\right)$$

$$= \frac{S_1^2 + S_2^2}{2}$$

Consequences of Unequal Variances

- Minor if sample sizes are equal, especially when df is large.
- Minor if the ratio of variances is within a factor of 4 (or 10).
- ullet The worst case is when $n1\ll n2$ and $\sigma_1^2>\sigma_2^2$, i.e., the group with the smaller sample size has the larger variance.
 - Empirical type I error rate is not controlled at the nominal rate.
 - While controlling $\alpha=5\%$, the test may actually achieve 10% or 20% type I error rate.

Remedy: Approximate T-test

Use separate sample variances for the two samples. Then

$$T^* = rac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}}}$$

has an approximate t-distribution with

$$u = rac{\left(rac{S_1^2}{n_1} + rac{S_2^2}{n_2}
ight)^2}{rac{1}{n_1 - 1} \left(rac{S_1^2}{n_1}
ight)^2 + rac{1}{n_2 - 1} \left(rac{S_2^2}{n_2}
ight)^2}$$

degrees of freedom. This is the Cochran-Satterthwaite approximation, and $\min(n_1-1,n_2-1) \leq
u \leq n_1+n_2-2$

Remedy: Approximate T-test

- Welch test (*Sleuth* Section 4.3.2)
- Very similar results to two-sample inference when samples sizes are nearly equal
- Better performance with unequal sample sizes AND unequal variances

trt	N	Mean	Std Dev	Std Err	Minimum	Maximum
intrinsic	24	19.8875	4.4418	0.9067	12.0000	29.7000
extrinsic	23	15.7391	5.2526	1.0952	5.0000	24.0000
Diff (1-2)		4.1484	4.8551	1.4167		

trt	Method	Mean	95% CL Mean		Std Dev	95% (D	CL Std ev
intrinsic		19.8875	18.0119	21.7631	4.4418	3.4522	6.2308
extrinsic		15.7391	13.4677	18.0105	5.2526	4.0623	7.4343
Diff (1-2)	Pooled	4.1484	1.2950	7.0018	4.8551	4.0270	6.1152
Diff (1-2)	Satterthwaite	4.1484	1.2812	7.0156			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	45	2.93	0.0053
Satterthwaite	Unequal	43.117	2.92	0.0056

Equality of Variances						
Method Num DF Den DF F Value Pr > I						
Folded F	22	23	1.40	0.4304		

- ullet Replace Y_{ij} with $X_{ij}=h(Y_{ij})$
- ullet Perform inference on X_{ij} 's \Rightarrow e.g., compare $ar{X}_1$ with $ar{X}_2$
- ullet Back transform estimates to get conclusions on the $oldsymbol{Y}$ scale
 - only approximate conclusions about population means on the $oldsymbol{Y}$ scale
- ullet How can $X_{ij}=h(Y_{ij})$ affect heterogeneity?
 - Consider h(Y) = log(Y).

- ullet The logarithm function has a steep slope for small Y values, almost flat for large Y values.
- Small values are 'stretched' ⇒ larger variance
- Large values are 'shrunk' ⇒ smaller variance

- Choosing the transformation
 - Trial and error: try $\log(Y)$ or \sqrt{Y}
 - Rules of thumb:
 - ullet data are all positive use $\log(Y)$
 - ullet data are proportions use $arcsin(\sqrt{Y})$
 - ullet data are counts use \sqrt{Y}
 - transformation based on science (sqrt of area, cube root of volume)
 - Adjust for a variance-mean relationship; common for variance to increase with the mean

• If Var(Y) = g(E(Y)), then a variance stabilizing transformation can be obtained from

$$h(y) \propto \int rac{1}{\sqrt{g(x)}} \; dx$$

- Some Examples/Rules of Thumb
 - ullet if var ∞ mean, then g(x)=x and $h(y)=\sqrt{y}$
 - ullet if var ∞ mean 2 , then $g(x)=x^2$ and h(y)=log(y)
 - ullet if var ∞ mean(1-mean), then g(x)=x(1-x) and $h(y)=\sin^{-1}(\sqrt{y})$

Power transformation

$$X = \left\{ egin{array}{ll} Y^{\lambda} & (\lambda
eq 0) \ \ln Y & (\lambda = 0) \end{array}
ight.$$

- ullet estimate λ using maximum likelihood or use the variance mean relationship
- Using variance-mean relationship
 - works for 2 groups or many groups (ANOVA)
 - Compute \overline{Y} and S_Y for each group
 - Regress $\log(S_Y)$ on $\log \overline{Y}$ and estimate the slope (eta)
 - Use transformation Y^λ with $\lambda=1-eta$

Power Transformation

- When does this work?
 - Population standard deviation is proportional to a power of the population mean:

$$\sigma = \sqrt{Var(Y)} = \kappa \mu^{eta}$$

or

$$Var(Y) = \sigma^2 = \left[\kappa \mu^eta
ight]^2 = f(\mu)$$

— Use the delta method to obtain the transformation:

$$X = g(Y) = Y^{\lambda}$$

Power Transformation

Consider the Taylor series expansion

$$X = g(Y) \approx g(\mu) + (Y - \mu)g'(\mu)$$

Then an approximation for Var(g(Y)) is

$$Var(g(Y)) \approx [g'(\mu)]^2 Var(Y)$$

This is called the delta method

Power Transformation

ullet For $X=g(Y)=Y^{\lambda}$ we have

$$rac{dX}{dY} = g'(Y) = \lambda Y^{\lambda-1}$$

From the delta method

$$egin{array}{lll} Var(X) &pprox & \left(\lambda\mu^{(\lambda-1)}
ight)^2 imes \left(\kappa\mu^{eta}
ight)^2 \\ &= & \kappa^2\,\lambda^2\,\mu^{2(\lambda-1+eta)} \end{array}$$

- ullet when $\lambda=1-eta$ then $\lambda-1+eta=0$ and $Var(X)pprox k^2\,\lambda^2$ is approximately constant
- ullet Analyze the transformed data: e.g., $X_{11}=log(Y_{11}),\ X_{12}=log(Y_{12}),\ ...,\ X_{2,n_2}=log(Y_{2,n_2})$

Power Transformations

- What if $\beta=0.12?$ Usually round to a "reasonable" value, i.e., use $\beta\approx 0$ and $\lambda=1.$
- ullet Caution: Some researchers estimate the slope from the regression of $\log(Var(Y))$ on $\log(\overline{Y})$. Then use the transformation $Z=Y^\lambda$ with $\lambda=1-\beta/2$.
- Issues / concerns
 - Interpretation of results can be more difficult (e.g., the expectation of $\log(\mathsf{Y})$ is not the logarithm of E(Y))

Model Diagnostics: Normality Assumption

- Graphical Methods
- Numerical Summaries
- Tests for Normality

Graphical Methods

- Histogram of values from each sample
- Normal probability plot of values from each sample
 - Compare cumulative distribution function(CDF) of residuals to CDF for normal distribution
 - Most commonly done using quantiles: plot empirical quantiles (residuals) against expected quantiles from normal distribution

Normal Probability Plots

- ullet Order observations (residuals) from smallest to largest (say $X_{(1)},\ldots,X_{(n)})$
- ullet Compute expected quantiles $(q_{(1)},\ldots,q_{(n)})$ from a standard normal distribution.
 - Expected quantiles can be calculated with tables.
 - General approximation: $q_i = \Phi^{-1}\left(rac{i}{n+1}
 ight)$
 - Blom approximation $q_i = \Phi^{-1}\left(\frac{i-.375}{n+.25}\right)$
 - For i=5, n=9, $q_5=\Phi^{-1}\left(\frac{5}{10}\right)=0$
- ullet Scatterplot of $X_{(i)}$ vs q_i should be close to a straight line with slope σ
- Curved patterns indicate non-normal distributions (or outliers)

The TTEST Procedure

Variable: y

Numerical Summaries

- For any normal distribution
 - skewness = $E(Y \mu)^3/\sigma^3 = 0$
 - Skewness measures the asymmetry
 - kurtosis = $E(Y-\mu)^4/\sigma^4=3$
 - excess kurtosis = kurtosis 3 (estimated by the UNIVARI-ATE procedure in SAS)
 - The sample kurtosis measures the heaviness of the tails of the data distribution.
 - positive value: long-tail; negative value: short-tail

Tests for Normality

- Many proposed tests for normality
- Tests based on empirical cdf's: Kolmogorov-Smirnov, Anderson-Darling, etc.
- Tests based on skewness or kurtosis
- Chi-square goodness-of-fit tests
- Tests based on normal probability plots: Shapiro-Wilk, correlation tests
- Normality is almost always rejected for large sample sizes.

Consequence of Non-Normality

- Large samples very little (Central Limit Theorem)
- Small samples
 - Sample distributions have same shape and equal sample sizes - very little impact
 - Sample distributions have same shape and different sample sizes - potential impact if distributions are skewed
 - Sample distributions have different shapes likely impact

Remedy: Non-normality

- Transformation (especially for skewness)
- Discussed earlier (under remedies for unequal variances)
- Detect and eliminate outliers
- Non-parametric tests

Model Diagnostics: Outliers

Outlier: one (or a few) very unusual observation(s).

- Always an issue if outliers are from a non-target population
- Goal: make inferences for the target population
 Data: from a mix of the target population and an outlier population
- Detect and eliminate outliers
- Reduce the effects of outliers by using "robust" procedures

Model Diagnostics: Outliers

- Analyze data with and without suspected outliers to see if inferences change
- Remove data only if one can argue that observations are from a different population. Remove any other observations from that different population.
- Acknowledge deletion of outliers in final report