$$\star$$
Spé - St
 Joseph/ICAM Toulouse \star -

2019-2020 -

mercredi 8 janvier 2020 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

Pour tout entier naturel n, on pose :

$$I_n = \int_0^{+\infty} e^{-x} \sin^n(x) dx$$

- **1. a.** Montrer que, pour tout entier naturel n, l'intégrale I_n est convergente.
 - **b.** Calculer I_0 .
 - c. Déterminer une primitive sur \mathbb{R} de la fonction $x \mapsto e^{-x} \cos(x)$. On pourra utiliser la fonction à valeurs complexes $x \mapsto e^{-x} e^{ix}$.
 - **d.** Pour tout entier naturel $n \ge 2$, montrer, à l'aide de deux intégrations par parties successives, la relation :

$$I_n = \frac{n(n-1)}{n^2 + 1} I_{n-2}$$

- e. En déduire, pour tout entier naturel n, l'expression de I_{2n} en fonction de n et du produit $\prod_{k=0}^{n} (4k^2+1)$.
- **2. a.** Pour tout entier naturel non nul n, on pose :

$$u_n = \ln\left(\frac{2n(2n-1)}{4n^2+1}\right)$$

Étudier la nature de la série $\sum u_n$.

- **b.** Pour tout entier naturel non nul n, comparer $\ln(I_{2n})$ et $\sum_{k=1}^{n} u_k$.
- **c.** Déterminer alors la limite de la suite (I_{2n}) .

T.S.V.P.

EXERCICE 2

1. On considère la suite (u_n) définie pour $n \ge 1$ par :

$$u_n = \frac{n^n \sqrt{n}}{e^n n!}$$

- **a.** Exprimer, pour tout entier $n \ge 1$, $\frac{u_{n+1}}{u_n}$ en fonction de n.
- **b.** Rappeler le développement limité en 0 à l'ordre 3 de $\ln(1+x)$, et en déduire un équivalent de $\ln\left(\frac{u_{n+1}}{u_n}\right)$ lorsque n tend vers $+\infty$.
- **c.** La série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right)$ est-elle convergente?
- **d.** En déduire que la suite (u_n) est convergente. Dans ce qui suit, on désigne par l, la limite de (u_n) .
- e. Donner, en fonction de l et n, un équivalent de n! lorsque n tend vers $+\infty$.
- 2. On considère l'équation différentielle :

$$16(x^2 - x)y'' + (16x - 8)y' - y = 0 (E)$$

Soit la série entière à coefficients réels $\sum a_n x^n$ de rayon de convergence R > 0, de somme

$$a(x) = \sum_{n=0}^{+\infty} a_n x^n$$

On suppose que a est solution de (E) sur]-R,R[, et n'est pas identiquement nulle.

a. Montrer que pour tout $n \ge 1$,

$$a_n = \frac{(4n-3)(4n-5)}{8n(2n-1)} \ a_{n-1}$$

- **b.** Déterminer le rayon de convergence de la série entière $\sum a_n x^n$.
- **c.** On suppose dans ce qui suit, que $a_0 = 1$. Exprimer, pour tout entier naturel $n \ge 1$, a_n en fonction de n.
- **d.** Déterminer un équivalent de a_n lorsque n tend vers $+\infty$.

Fin de l'énoncé d'analyse