

# United States Patent [19]

### Peterson

**Patent Number:** [11]

5,845,227

**Date of Patent:** 

Dec. 1, 1998

| [54] | METHOD AND APPARATUS FOR          |
|------|-----------------------------------|
|      | PROVIDING SHORTEST ELAPSED TIME   |
|      | ROUTE AND TRACKING INFORMATION TO |
|      | USERS                             |

Thomas D. Peterson, 1218 Rimer Dr., [76] Inventor: Moraga, Calif. 94556

[21] Appl. No.: 599,309

[22] Filed: Feb. 9, 1996

## Related U.S. Application Data

Continuation-in-part of Ser. No. 436,892, May 8, 1995, Pat. No. 5,523,950, which is a continuation of Ser. No. 32,830, Mar. 10, 1993, abandoned, which is a continuation of Ser. No. 649,599, Fcb. 1, 1991, abandoned.

Int. Cl.<sup>6</sup> ...... G06F 165/00

[52] U.S. Cl. ...... 701/209; 701/213; 701/117; 340/905; 340/989

Field of Search ...... 701/117, 119, 701/200, 202, 208, 209, 210, 213; 340/905, 988, 989, 990, 993, 995

### [56] References Cited

### U.S. PATENT DOCUMENTS

4,812,843 3/1989 Champion, III et al. ..... 701/117

| 4,954,958 | 9/1990  | Savage et al  | 701/202 |
|-----------|---------|---------------|---------|
| 5,172,321 | 12/1992 | Ghaem et al   | 701/202 |
| 5,272,638 | 12/1993 | Martin et al  | 701/202 |
| 5,297,049 | 3/1994  | Gurmu et al   | 701/117 |
| 5,369,588 | 11/1994 | Hayami et al  | 701/209 |
| 5,428,544 | 6/1995  | Shyu          | 701/117 |
| 5,428,545 | 6/1995  | Maegawa et al | 701/210 |
| 5,523,950 | 6/1996  | Peterson      | 701/117 |
| 5,559,707 | 9/1996  | DeLorme et al | 701/200 |
| 5.610.821 | 3/1997  | Gazis et al   | 701/202 |

Primary Examiner—Gary Chin Attorney, Agent, or Firm-K. S. Comaby

### **ABSTRACT**

A method and apparatus for determining and communicating shortest elapsed time route information to users wherein information of desired origin and destination combinations is received from the users in a central processor or computer, instant rates of travel on multiple route segments interconnecting various possible origins and destinations being monitored and transferred to the central processor which then calculates the route segment or segment combination providing shortest elapsed time routes for each origindestination combination and transmitting that information to the respective user. Communication between the central processor and the users is preferably by telephone and more preferably by cellular telephone.

### 15 Claims, 9 Drawing Sheets



d transmit to the users the shortest elapsed time <u>route</u> information for the actual time when the individual vehicle will be traveling between its origin-destination combination.

Brief Summary Text - BSTX (27):

Thus, the present invention provides a method and apparatus for providing

individual vehicles or drivers with necessary information for determining the

most rapid <u>route</u> between a selected origin-destination combination. The

invention relies upon sensors (sensors would include tag readers and

differential video imagery) or probes (which would include velocities, or

changing position data feed back from vehicles from which elapsed times can be

calculated. Further example is the <a href="hand off from cell to cell in a cellular">hand off from cell to cell in a cellular</a>

phone system) along the various **route** segments in order to transmit

instantaneous rate information for those segments to a central computer. The

central computer receives the information from all of the sensors and probes

along the various  $\underline{\textbf{route}}$  segments and applies that information to input

equations or algorithms for determining the actual elapsed time, under present

conditions, between points defining each route segment.

Typically, those

points are selected as principal arterial highway intersections, nodes and the

like. Algorithms are then applied within the central computer for comparing

actual elapsed times for the various **route** segments and aggregating that

information in order to determine the shortest elapsed time route between any

point of origin and destination.

Brief Summary Text - BSTX (28):

As noted above, the central computer is also equipped to continuously