

Q1) The joint probability function of two discrete random variables X and Y is given by

f(x,y) = cxy for x = 1, 2, 3 and y = 1, 2, 3 and equals zero otherwise. Find:

a) The constant c.

$$\sum_{i=1}^{3} \sum_{j=1}^{3} f(x_i, y_j) = 1$$

$$c + 2c + 3c + 2c + 4c + 6c + 3c + 6c + 4c = 1 \implies c = 1/36$$

b)
$$P(X = 2, Y = 3)$$

= $f(2,3) = 6c = 6/36 = 1/6$
c) $P(1 \le X \le 2, Y \le 2)$
 $x = 1,2; y = 1,2$

 $6c+12c+18c = 1 \rightarrow c = 1/36$

	1	2	3	$f_Y(y)$
x				
y				
1	1c	2c	3c	6c
2	2c	4c	6c	12c
3	3c	6c	9c	18c
$f_X(x)$	6c	12c	18c	1 = total
				wal

$$P(1 \le X \le 2, Y \le 2) = P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 2, Y = 1) + P(X = 2, Y = 2)$$

= $f(1,1) + f(1,2) + f(2,1) + f(2,2) = 1c + 2c + 2c + 4c = 9c = 9/36$

d)
$$(X \ge 2)$$

$$x = 2,3$$

$$(X \ge 2) = P(X = 2) + P(X = 3) = f_X(2) + f_X(3) = 12c + 18c = 30c = 30/36$$

e)
$$P(Y<2)$$

$$y = 1$$

$$P(Y<2) = P(Y = 1) = f_Y(1) = 6c = 6/36 = 1/6$$

$$f) \quad P(X=1)$$

$$= f_X(1) = 6c = 6/36 = 1/6$$

g)
$$P(Y = 3)$$

$$= f_Y(3) = 18c = 18/36$$

Q2)For the random variables of Problem 1, find the marginal probability function of X and Y.

Determine ether X and Y are independent.

Marginal dis.of X:

X	$X_1=1$	$X_2 = 2$	$X_3 = 3$	Total
$F_x(x)$	6/36	12/36	18/36	1
=P(X=x)				

Marginal dis.of Y:

Y	$Y_1=1$	$Y_2 = 2$	$Y_3 = 3$	Total
$F_{y}(y)$	6/36	12/36	18/36	1
=P(Y=x)				

Remark:

Are X and Y independent?

If
$$f(x,y) = f_x(x) f_y(y)$$

For all x=1,2,3 y=1,2,3, Then x and y are independent.

But if there some values of x and y which make that If $f(x,y) \neq f_x(x)$ $f_y(y)$

then x and y are not independent.

In this example we have:

$$f(1,1) = f_x(1)f_y(1)$$

$$f(1,2) = f_x(1)f_y(2)$$

•

 $f(3,3) = f_x(3)f_y(3)$

So as If $f(x,y) = f_x(x) f_y(y)$ for all x and y, then x and y are independent.

Q3)
$$f(x,y) = c(x^2, y^2)$$
, $0 \le x \le 1$, $0 \le y \le 1$

a)
$$\int_0^1 \int_0^1 c(x^2, y^2) dx dy = 1$$
 $\rightarrow c \int_0^1 \left[\int_0^1 (x^2, y^2) dx \right] dy = 1$

→ c
$$\left[\frac{1}{3}y + \frac{y^3}{3}\right]_0^1 = 1$$
 → c $\left[\frac{1}{3} + \frac{1}{3}\right] = 1$ → c $= \frac{3}{2}$

b)
$$P(X < \frac{1}{2}, Y > \frac{1}{2})$$

$$= \frac{3}{2} \int_{\frac{1}{2}}^{1} \left[\int_{0}^{\frac{1}{2}} (x^{2}, y^{2}) dx \right] dy = \frac{3}{2} \int_{\frac{1}{2}}^{1} \left[\frac{x^{3}}{3} + xy^{2} \right]_{0}^{\frac{1}{2}} dy$$

$$= \frac{3}{2} \int_{\frac{1}{2}}^{1} \left(\frac{1}{24} + \frac{1}{2} y^2 \right) dy = \frac{3}{2} \left[\frac{y}{24} + \frac{y^3}{6} \right]_{\frac{1}{2}}^{1} = \frac{3}{2} \left[\left(\frac{1}{24} + \frac{1}{6} \right) - \left(\frac{1}{48} + \frac{1}{48} \right) \right] = \frac{1}{4}$$

e) Whether X and Y are independent

 $f(x,y) \neq g(x) \ h(y)$

X and Y are not independent

Q4)For the random variables of Problem 3, find the marginal probability function of X and Y

Marginal dis. of X:

$$f_x(x) = \int_0^1 f(x, y) dy$$

$$= 3/2 \int_0^1 (x^2, y^2) dy = 3/2 \left[x^2 y + \frac{y^3}{3} \right]_0^1$$

$$= 3/2 \left[x^2 + 1/3 \right] = 3/2 x^2 + 1/2$$
then

$$f_x(x) = 3/2 x^2 + 1/2$$
, $0 < x < 1$

Marginal dis. of Y:

$$f_y(y) = \int_0^1 f(x, y) dx$$

$$= 3/2 \int_0^1 (x^2, y^2) dx = 3/2 \left[y^2 x + \frac{x^3}{3} \right]_0^1$$

$$= 3/2 \left[y^2 + 1/3 \right] = 3/2 y^2 + 1/2$$
then

$$f_y(y) = 3/2 y^2 + 1/2$$
, $0 < y < 1$

Q5) For the distribution of problem 1, find the conditional probability function of X given Y, Y given X.

Dis. of X|Y:
$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$$
, $x = 1,2,3$

1) if Y=1:
$$f_{X|Y=1}(x) = \frac{f(x,1)}{f_Y(1)} = \frac{f(x,1)}{6/36} \longrightarrow$$

x	1	2	3	total
$f_{x y=1}(x)$	$\frac{f(1,1)}{6/36} = 1/6$	$\frac{f(2,1)}{6/36} = 1/3$	$\frac{f(3,1)}{6/36} = 1/2$	1

2) if Y=2:
$$f_{X|Y=2}(x) = \frac{f(x,2)}{f_{Y}(2)} = \frac{f(x,2)}{12/36} \longrightarrow$$

x	1	2	3	total
$f_{x y=2}(x)$	$\frac{f(1,2)}{12/36} = 2/12$	$\frac{f(2,2)}{12/36} = 4/12$	$\frac{f(3,2)}{12/36} = 6/12$	1

3)if Y=3:
$$f_{X|Y=3}(x) = \frac{f(x,3)}{f_{Y}(3)} = \frac{f(x,3)}{18/36} \longrightarrow$$

x	1	2	3	total
$f_{x Y=3}(x)$	$\frac{f(1,3)}{18/36} = 3/18$	$\frac{f(2,3)}{18/36} = 6/18$	$\frac{f(3,3)}{18/36} = 9/18$	1

Dis. of Y | X :
$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_{y}(x)}$$
, $y = 1,2,3$

1) if X=1:
$$f_{Y|X=1}(y) = \frac{f(1,y)}{f_X(1)} = \frac{f(1,y)}{6/36} \longrightarrow$$

у	1	2	3	total
$f_{Y X=1}(y)$	$\frac{f(1,1)}{6/36} = 1/6$	$\frac{f(1,2)}{6/36} = 2/6$	$\frac{f(1,3)}{6/36} = 3/6$	1

2) if X=2:
$$f_{Y|X=2}(y) = \frac{f(2,y)}{f_y(2)} = \frac{f(2,y)}{12/36} \longrightarrow$$

у	1	2	3	total
$f_{\text{VIY=2}}(y)$	$\frac{f(2,1)}{12/36} = 2/12$	$\frac{f(2,2)}{12/36} = 4/12$	$\frac{f(2,3)}{12/36} = 6/12$	1

3) if X=3:
$$f_{Y|X=3}(y) = \frac{f(3,y)}{f_y(3)} = \frac{f(3,y)}{18/36} \longrightarrow$$

У	1	2	3	total
$f_{Y X=3}(y)$	$\frac{f(3,1)}{18/36} = 3/18$	$\frac{f(3,2)}{18/36} = 6/18$	$\frac{f(3,3)}{18/36} = 9/18$	1

Q6) Let $f(x, y) = \{ x + y \ 0 \le x \le 1, 0 \le y \le 1 \}$ Find the conditional probability function of X given Y, Y given X.

$$f(x,y) = x + y$$

Marginal of x,y

$$f(x) = \int_0^1 (x+y)dy = xy + \frac{y^2}{2} = x + \frac{1}{2}$$
$$f(y) = y + \frac{1}{2}$$

Conditional

$$f(x/y) = \frac{f(x,y)}{f(y)} = \frac{x+y}{y+\frac{1}{2}} = \frac{2(x+y)}{2y+1}$$
$$f(y/x) = \frac{f(x,y)}{f(x)} = \frac{x+y}{x+\frac{1}{2}} = \frac{2(x+y)}{2x+1}$$

Q7) For the distribution of Problem 3, find the conditional probability function of X given Y, Y given X.

conditional dis of x|y:

$$f_{x|y=y}(x) = \frac{f(x,y)}{f_y(y)} = \frac{x+y}{y+\frac{1}{2}} = \frac{\frac{3}{2}(x^2+y^2)}{\frac{3}{2}y^2+\frac{1}{2}} = \frac{x^2+y^2}{y^2+\frac{1}{3}}$$

For 0<x<1 where 0<y<1 fixed value

conditional dis of y|x:

$$f_{y|x=x}(y) = \frac{f(x,y)}{f_x(x)} = \frac{x+y}{y+\frac{1}{2}} = \frac{\frac{3}{2}(x^2+y^2)}{\frac{3}{2}x^2+\frac{1}{2}} = \frac{x^2+y^2}{x^2+\frac{1}{3}}$$

For o<y<1 where 0<x<1 fixed value

8) Let $f(x, y) = \{ e - (x+y) | x \ge 0, y \ge 0 \text{ be the joint density function of X and Y. Find the conditional probability function of X given Y, Y given X.$

$$f(x,y) = e^{-(x,y)}$$

$$f(x) = \int_0^\infty e^{-x} e^{-y} dy = e^{-y} (-e^{-y}) = e^{-x} [1 - 0] = e^{-x}$$

$$f(y) = \int_0^\infty e^{-x} e^{-y} dx = e^{-y}$$

Conditional x|y

$$f(x/y) = \frac{f(x,y)}{f(y)} = \frac{e^{-(x+y)}}{e^{-y}} = e^{-x}$$

Conditional y|x

$$f(y/x) = \frac{f(x,y)}{f(x)} = \frac{e^{(x+y)}}{e^{-x}} = e^{-y}$$

Q9) Let X and Y be random variables having joint density function

$$f(x, y) = c(2x + y) 0 < x < 1,0 < y < 2$$
 Find:

- a. The constant c.
- **b.** P(X > 1/2, Y < 3/2).
- c .The (marginal) density function of X.
- d. The (marginal) density function of Y.

a.
$$c \int_0^2 \int_0^1 (2x + y) dx dy = 1$$

$$c \int_0^2 \left[\frac{2x^3}{3} + xy\right] \Big|_0^1 dy = 1 \implies c \int_0^2 \left[\frac{2}{3} + y\right] dy = 1$$

⇒
$$c \left[\frac{2}{3}y + \frac{y^2}{2}\right]|_0^2 = 1$$
 ⇒ $c \left[\frac{4}{3} + 2\right] = 1$ ⇒ $c \frac{10}{6} = 1$ ⇒ $c = \frac{6}{10}$

b.
$$f_{X(x)=\frac{6}{10}\int_0^2 (2x+y) dy}$$

$$\frac{6}{10} (2xy + \frac{y^2}{2})|_0^2 = \frac{6}{10} [4x + 2] = \frac{6}{10} [4x + 2] = \frac{12}{5}x + \frac{6}{5} \qquad 0 < x < 1$$

c.
$$p(x > \frac{1}{2} \cdot y < \frac{3}{2})$$

$$\frac{6}{10} \int_0^{\frac{3}{2}} \int_{\frac{1}{2}}^{1} (2x + y) \, dx \, dy = \frac{6}{10} \int_0^{3/2} \left[\frac{2x^3}{3} + xy \right] \left[\frac{1}{2} dy = \frac{6}{10} \int_0^{3/2} \left[\left(\frac{2}{3} + y \right) - \left(\frac{1}{12} + \frac{1}{2} y \right) \right] dy$$

$$= \frac{6}{10} \int_0^{3/2} \left[\frac{2}{3} + y - \frac{1}{12} - \frac{1}{2} y \right] dy = \frac{6}{10} \int_0^{3/2} \left[\frac{1}{2} y - \frac{7}{12} \right] dy$$

$$= \frac{6}{10} \left[\frac{1}{4} y^2 - \frac{7}{12} y \right] \Big|_0^{3/2} = \frac{6}{10} \left[\frac{13}{48} \right] = \frac{13}{80}$$

d.
$$f_{y(y)} = \frac{6}{10} \int_0^1 (2x + y) dx$$

$$= \frac{6}{10} \left[\frac{2}{3} + y \right] = \frac{2}{5} + \frac{6}{10} y \qquad 0 < y < 2$$

Q10) The joint probability function for the random variables X and Y is given in following table, then find:

A)The marginal probability functions of X and Y.

$f(x) = \begin{bmatrix} y \\ x \end{bmatrix}$	1	0	1	2	f(x)
0		1/18	1/9	1/6	1/3
1		1/9	1/18	1/9	5/18
2		1/6	1/6	1/18	7/18
f(y	y)	1/3	1/3	1/3	1
X f(x)	(1/3	5/18	2 7/18	

f(y)=

Y	0	1	2
f(y)	1/3	1/3	1/3

B)p($1 \le x < 3, y \ge 1$)

$$f(1,1)+f(1,2)+f(2,2)+f(2,1)=1/18+1/6+1/18+1/9=0.389$$

c)Determine whether X and Y are independent.
$$f(1.1) = f_x(1)f_y(1)$$

$$\frac{1}{18} = \frac{1}{3} \times \frac{5}{18}$$

$$\frac{1}{18} \neq \frac{5}{54}$$

X and y not independent

Q11) Let X and Y be random variables having joint density function

$$f(x,y) = \begin{cases} x + y & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Find: a. Var(X). b. Var(Y). c. σX . d. σY . e. σXY . f. p

solution (11):

$$f(x,y)=x+y$$

$$f(x) = \int_0^1 x + y \, dy = xy + (\frac{y^2}{2})|_0^1 = [x + \frac{1}{2}], 0 < x < 1$$

and the same

$$f(y) = \int_0^1 (x + y) dx = [y + \frac{1}{2}], 0 < y < 1$$

a,b

$$E(x) = \int_0^1 x \cdot f(x) dx = \int_0^1 x \cdot (x + \frac{1}{2}) dx = \int_0^1 x^2 + (\frac{x}{2}) dx$$

$$=(\frac{x^3}{3})+(\frac{x^4}{4})|_0^1=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$$

And the same

$$E(y) = \int_0^1 y \cdot f(y) dy = \frac{7}{12}$$

$$E(x^2) = \int_0^1 x^2 \cdot f(x) dx = \int_0^1 x^2 (x + \frac{1}{2}) dx = \int_0^1 x^3 + (\frac{x^2}{2}) dx$$

$$=(\frac{x^4}{4})+(\frac{x^3}{6})|_0^1=\frac{1}{4}+\frac{1}{16}=\frac{10}{24}=\frac{5}{12}$$

And the same

$$E(y^2) = \int_0^1 y^2 \cdot f(y) dy = \frac{5}{12}$$

$$V(x) = E(x^2) - [E(x)]^2 = \frac{5}{12} - (\frac{7}{12})^2 = \frac{11}{144}$$

$$V(y) = E(y^2) - [E(y)]^2 = \frac{5}{12} - (\frac{7}{12})^2 = \frac{11}{144}$$

$$\mathbf{C.}\sigma_{x} = \sqrt{var(x)} = \sqrt{\frac{11}{144}} = 0.2764$$

$$\mathbf{d.}\sigma_{y} = \sqrt{var(y)} = \sqrt{\frac{11}{144}} = 0.2764$$

$$\mathbf{e.}\mathbf{cov}(\mathbf{x},\mathbf{y}) = \mathbf{E}(\mathbf{XY}) - \mathbf{E}(\mathbf{X})\mathbf{E}(\mathbf{Y})$$

$$E(XY) = \int_0^1 \int_0^1 XY(x+y) dx dy = \int_0^1 \int_0^1 x^2 y + xy^2 dx dy$$

$$= \int_0^1 \left(\frac{x^3}{3}\right) y + \left(\frac{x^2}{2}\right) y^2 \mid_0^1 dy$$

$$= \int_0^1 \frac{1}{3} y + \frac{1}{2} y \, dy = \frac{y^2}{6} + y^3 / 6|_0^1 = \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$$

$$Cov(x,y) = E(X,Y) - E(X).E(Y) = \frac{1}{3} - \frac{7}{12}.\frac{7}{12} = \frac{1}{3} - \frac{49}{144} = \frac{-1}{144}$$

$$\mathbf{f.} = \operatorname{cov}(\mathbf{x}, \mathbf{y}) / \sqrt{var(\mathbf{x}).var(\mathbf{y})} = \frac{\frac{-1}{144}}{\sqrt{\frac{11}{144}.\frac{11}{144}}}$$

$$=\frac{\frac{-1}{144}}{\frac{11}{144}}=\frac{-1}{11}=-0.091$$

Relation weak negative

Q12) Work Problem 11 if the joint density function is $f(x,y) = e^{-(x+y)} x \ge 0$, $y \ge 0$ Find:

- a) Var(X).
- b) Var(Y).
- c) σX .
- d) σY .
- e) σXY .
- f) ρ .

$$f_{X}(x) = \int_{0}^{\infty} e^{-(x+y)} dy = -e^{-(x+y)} |_{0}^{\infty} = e^{-x}$$

$$f_y(y) = \int_0^\infty e^{-(x+y)} dx = -e^{-(x+y)} |_0^\infty = e^{-y}$$

$$|_{\mathbf{a})} \quad E(X) = \int_0^\infty x e^{-x} \ dx$$

$$u=x$$
 $dv=e^{-x}$

$$du=dx$$
 $v=-e^{-x}$

$$I = -xe^{-x} \mid_0^{\infty} + \int_0^{\infty} e^{-x} dx = -e^{-(x)} \mid_0^{\infty} = 1$$

$$E(x^2) = \int_0^\infty x^2 e^{-x} dx$$

$$u=x^2$$
 $dv=e^{-x}$

$$du = 2x dx v = -e^{-x}$$

$$I = -x^{2}e^{-x}|_{0}^{\infty} + 2\int_{0}^{\infty} xe^{-x} dx = 2(1) = 2$$

$$V(x) = E(x^2) - (E(x))^2 = 2-(1)^2 = 1$$

b)
$$E(y) = \int_0^\infty y e^{-y} dy = 1$$
 (was solved)

$$E(y^2) = \int_0^\infty y^2 e^{-y} = 2$$
 (was solved)

$$V(y) = E(y^2) - (E(y))^2 = 2-(1)^2 = 1$$

c)
$$\sigma X = \sqrt{V(x)} = 1$$

d)
$$\sigma Y = \sqrt{V(y)} = 1$$

e) Con
$$(x,y) = E(xy) - E(x) E(y)$$

$$E(xy) = \int_0^\infty \int_0^\infty xy \ e^{-(x+y)} \ dx \ dy = \int_0^\infty \ y [\int_0^\infty x \ e^{-(x+y)} \ dx] \ dy$$

$$u=x$$
 $dv=e^{-(x+y)}$

du=dx
$$v=-e^{-(x+y)}$$

$$I = \int_{0}^{\infty} y[-xe^{-(x+y)}]_{0}^{\infty} + \int_{0}^{\infty} e^{-(x+y)} dx dy = \int_{0}^{\infty} y e^{-(y)} dy$$

$$u=y$$
 $dv=e^{-y}$

$$du = dx$$
 $v = -e^{-y}$

$$=-ye^{-(y)}|_0^\infty+\int_0^\infty e^{-(y)}\,dy=1$$

Con
$$(x,y) = E(xy) - E(x) E(y) = 1 - (1)(1) = 0$$

$$\rho = \frac{\text{Con}(x,y)}{\sqrt{V(x)V(y)}} = \frac{0}{\sqrt{(1)(1)}} = 0$$

Q13) Find a. The covariance. b. The correlation coefficient of two random variables \boldsymbol{X} and \boldsymbol{Y} . If

$$E(x)=2$$
 , $E(y)=3$, $E(xy)=10$, $E(x^2)=10$, $E(y^2)=16$

solution (13):

a.
$$Var(x) = E(x^2) - [E(x)]^2$$

$$= 10-2^2 = 10$$

$$Var(x) = E(y^2) - [E(y)]^2$$

$$= 16-3^2 = 7$$

$$Cov(x,y) = E(xy) - E(x)E(y)$$

$$4 = 10 - [2 \times 3]$$

b.
$$f = \frac{\text{Cov}(x,y)}{\sqrt{var(x)var(y)}} = \frac{4}{\sqrt{6\times7}} = \frac{4}{\sqrt{42}} = 0.6172$$

Q14) The correlation coefficient of two random variables X and Y is -1/4 while their variances are 3 and 5. Find the covariance .

Answer:

Var(x)=3 Var(y)=5
$$\rho X,Y = -\frac{1}{4} \quad Cov(X,Y) = ??$$

$$\rho X,Y = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$$

$$-\frac{1}{4} = \frac{\text{Cov}(X,Y)}{\sqrt{3*5}}$$
 $-\frac{1}{4}\sqrt{15} = Co(X,Y)$ $Cov(X,Y) = -0.9682$

Q15) be the joint density function of X and Y. Find the conditional probability function of X given Y, Y given X.

$$f(x,y) = \begin{cases} \frac{xy}{36} & x = 1,2,3 \\ 0 & otherwise \end{cases}$$

f(x	(,y)		y	
		1	2	3
	1	36/1	1/18	1/12
X	2	18/1	9/1	6/1
	3	12/1	6/1	4/1

у	1	2	3
$f_y(y)$	6/1	3/1	2/1

X	1	2	3
$f_x(x)$	6/1	3/1	2/1

x given y:

$$f_{x|y}(x|y) = f_{1|1}(1|1) = \frac{f(x,y)}{f(y)} = \frac{f(1,1)}{f(1)} = \frac{1/36}{1/6} = \frac{1}{6}$$

$$f_{x|y}\left(x|y\right) = f_{2|1}\left(2|1\right.) = \frac{f(x,y)}{f(y)} = \frac{f(2,1)}{f(1)} = \frac{1/18}{1/6} = \frac{1}{3}$$

$$f_{x|y}(x|y) = f_{3|1}(3|1) = \frac{f(x,y)}{f(y)} = \frac{f(3,1)}{f(1)} = \frac{1/12}{1/6} = \frac{1}{2}$$

$$f_{x|y}(x|y) = f_{1|2}(1|2) = \frac{f(x,y)}{f(y)} = \frac{f(1,2)}{f(2)} = \frac{1/18}{1/3} = \frac{1}{6}$$

$$f_{x|y}\left(x|y\right) = f_{2|2}\left(2|2\right) = \frac{f(x,y)}{f(y)} = \frac{f(2,2)}{f(2)} = \frac{1/9}{1/3} = \frac{1}{3}$$

$$f_{x|y}\left(x|y\right) = f_{3|2}\left(3|2\right.) = \frac{f(x,y)}{f(y)} = \frac{f(3,2)}{f(2)} = \frac{1/6}{1/3} = \frac{1}{2}$$

$$f_{x|y}(x|y) = f_{1|3}(1|3) = \frac{f(x,y)}{f(y)} = \frac{f(1,3)}{f(3)} = \frac{1/12}{1/2} = \frac{1}{6}$$

$$f_{x|y}(x|y) = f_{2|3}(2|3) = \frac{f(x,y)}{f(y)} = \frac{f(2,3)}{f(3)} = \frac{1/6}{1/2} = \frac{1}{3}$$

$$f_{x|y}\left(x|y\right) = f_{3|3}\left(3|3\right.) = \frac{f(x,y)}{f(y)} = \frac{f(3,3)}{f(3)} = \frac{1/4}{1/2} = \frac{1}{2}$$

	X	1		2	3	
$f_{x 2}$	(x 2)	6/1	1	3/1	2/1	
	$f_{x y}(x y)$)		y		
			1	2	3	
	1		6/1	1/6	1/0	6
X	2	2	3/1	3/1	3/1	1
	3	3	2/1	2/1	2/1	1

X	1	2	3
$f_{x 1}(x 1)$	6/1	3/1	2/1

X	1	2	3
$f_{x 3}(x 3)$	6/1	3/1	2/1

y given x:

$$\begin{split} & - \quad f_{y|x}\left(y|x\right) = f_{1|1}\left(1|1\right) = \frac{f(x,y)}{f(x)} = \frac{f(1,1)}{f(1)} = \frac{1/36}{1/6} = \frac{1}{6} \\ & - \quad f_{y|x}\left(y|x\right) = f_{2|1}\left(2|1\right) = \frac{f(x,y)}{f(x)} = \frac{f(2,1)}{f(1)} = \frac{1/18}{1/6} = \frac{1}{3} \end{split}$$

-
$$f_{y|x}(y|x) = f_{2|1}(2|1) = \frac{f(x,y)}{f(x)} = \frac{f(2,1)}{f(1)} = \frac{1/18}{1/6} = \frac{1}{3}$$

-
$$f_{y|x}(y|x) = f_{3|1}(3|1) = \frac{f(x,y)}{f(x)} = \frac{f(3,1)}{f(1)} = \frac{1/12}{1/6} = \frac{1}{2}$$

-
$$f_{y|x}(y|x) = f_{1|2}(1|2) = \frac{f(x,y)}{f(x)} = \frac{f(1,2)}{f(2)} = \frac{1/18}{1/3} = \frac{1}{6}$$

-
$$f_{y|x}(y|x) = f_{2|2}(2|2) = \frac{f(x,y)}{f(x)} = \frac{f(2,2)}{f(2)} = \frac{1/9}{1/3} = \frac{1}{3}$$

-
$$f_{y|x}(y|x) = f_{3|2}(3|2) = \frac{f(x,y)}{f(x)} = \frac{f(3,2)}{f(2)} = \frac{1/6}{1/3} = \frac{1}{2}$$

-
$$f_{y|x}(y|x) = f_{1|3}(1|3) = \frac{f(x,y)}{f(x)} = \frac{f(1,3)}{f(3)} = \frac{1/12}{1/2} = \frac{1}{6}$$

-
$$f_{y|x}(y|x) = f_{2|3}(2|3) = \frac{f(x,y)}{f(x)} = \frac{f(2,3)}{f(3)} = \frac{1/6}{1/2} = \frac{1}{3}$$

$$- \quad f_{y|x}\left(y|x\right) = f_{3|3}\left(3|3\right.) = \frac{f(x,y)}{f(x)} = \frac{f(3,3)}{f(3)} = \frac{1/4}{1/2} = \frac{1}{2}$$

f	y x(x y)	y		
		1 2 3		
	1	6/1	1/3	2/1
X	2	6/1	3/1	2/1
	3	6/1	3/1	2/1

Y	1	2	3
$f_{y 1}(y 1)$	6/1	3/1	2/1

Y	1	2	3
$f_{y 2}(y 2)$	6/1	3/1	2/1

Y	1	2	3
$f_{y 3}(y 3)$	6/1	3/1	2/1

Q16) The joint probability function of two discrete random variables X and Y is given by (x, y) = c(2x + y), where x and y can assume all integers such

that $0 \le x \le 2$, $0 \le y \le 3$ and f(x, y) = 0 otherwise. Find:

a. The value of the constant c.

b.
$$(X = 2, Y = 1)$$
.

c.
$$(X \ge 1, Y \le 2)$$

solution (16):

$$f(x)=c(2x+y)$$
 $0 \le X \le 2 \ 0 \le y \le 3$

a. the value of the constant c

$$\sum_{y=0}^{3} \sum_{x=0}^{2} c(2X + Y) = 1$$

$$f(0,0)+f(0,1)+f(0,2)+f(0,3)+f(1,0)+f(1,1)+f(1,2)+f(1,3)+$$

$$f(2,0)+f(2,1)+f(2,2)+f(2,3)=1$$

C+2C+3C+2C+3C+4C+5C+4C+5C+6C+7C=1

$$42C=1$$
 $C=\frac{1}{42}$

b.
$$p(X=2,Y=1)=f(2,1)=\frac{1}{42}(2(2)+1)=\frac{5}{42}$$

c.
$$p(X \ge 1, Y \le 2)$$

$$= f(1,0) + f(1,1) + f(1,2) + f(2,0) + f(2,1) + f(2,2)$$

$$=\frac{4}{7}$$

Q17) For the Problem 16, find:

- a. E(X) . b E(Y).
- c. E(XY). d. E(X2).
- e. E(Y2). f. Var(X).
- g. Var(Y). h. Cov(X,Y). i. ρ .

Y \ x	0	1	2	
0	0	1/21	2/21	1/7
1	1/12	1/14	5/42	3/14
2	1/21	2/21	1/7	2/7
3	1/14	5/42	1/6	5/14
	1/7	1/3	11/21	1

х	0	1	2	
f(x)	0.14285	0.33333	0.5238	
Xf(x)	0	0.3333	1.04761	E(x)=1.38
X ² f(x)	0	0.3333	2.09523	E(x ²)= 2.428

$$Var(x) = E(x^2) - [E(x)]^2 = 2.428 - (1.38)^2 = 0.5236$$

Υ	0	1	2	3
F(y)	0.14285	0.21428	0.285714	0.35714
y f(y)	0	0.21428	0.571428	1.0714
y ² f(y)	0	0.21428	1.142857	3.21428

$$E(y) = 1.857$$

$$E(y^2) = 4.571412$$

$$(1)(0)\frac{1}{21} + (2)(0)\frac{2}{21} + (1)(0)\frac{1}{42} + (1)(1)\frac{1}{14} + (1)(2)\frac{5}{42} + (2)(0)\frac{1}{21} + (2)(1)\frac{2}{21} + (2)(2)\frac{1}{7} + (3)(0)\frac{1}{14} + (3)(1)\frac{5}{42} + (2)(3)\frac{1}{6} = E(x,y) = \frac{17}{7} = 2.428$$

$$Cov(x,y) = E(x,y) - E(x).E(y) = 2.428 - (1.38 \times 1.857) = -0.13466$$

$$P_{xiy} = \frac{Cov(x,y)}{\sqrt{v(x).v(y)}} = \frac{-0.13466}{\sqrt{1.122968 \times 0.5236}} = -0.1756$$

Q18) The joint density function of X and Y is given by $(x, y) = \begin{cases} 8xy & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$

Find:

- a. The marginal density of X.
- b. The marginal density of Y.
- c. The conditional density of X.
- d. The conditional density of Y.

a. Answer:

$$f_x(x) = \int_0^x f(x, y) dy = 8x \int_0^x y \, dy$$
$$= 8x \frac{y^2}{2} \Big|_0^x = 4x [x^2]$$

$$=4x^3$$
 for $0 < x < 1$

b. Answer:

$$f_{y}(y) = \int_{y}^{1} f(x, y) dx = 8y \int_{y}^{1} x dx$$

$$= 8y \frac{x^{2}}{2} \Big|_{y}^{1} = 4y [1 - y^{2}] = 4y - 4y^{3}$$

$$= 4y (y - y^{3}) \quad \text{for } 0 < y < 1$$

c. Answer:

$$f_{x/y=y}(x) = \frac{f(x,y)}{fy(y)} = \frac{8xy}{4(y-y^3)} = \frac{2xy}{y(1-y^2)} = \frac{2x}{1-y^2}$$

for y < x < 1 where 0 < y < 1 fined value

d. Answer:

$$f_{y/x=x}(y) = \frac{f(x,y)}{f_{x}(x)} = \frac{8xy}{4x^3} = \frac{2y}{x^2}$$

for 0 < y < x where 0 < x < 1 fined value

Q19) Find the conditional expectation of X given Y and Y given X in Problem 18

$$E(X|Y=y) = \int_{y}^{1} x \ f_{x|y=y}(x) \ dx = \frac{2}{1-y^{2}} \int_{y}^{1} x^{2} \ dx = \frac{2}{1-y^{2}} \frac{x^{3}}{3} \Big|_{y}^{1} = \frac{2}{3} \frac{1}{1-y^{2}} (1-y^{3}) = \frac{2}{3} \frac{(1-y^{2})}{(1-y^{2})}$$

$$E(Y|X=x) = \int_0^y y \, f_{Y|X=x}(y) \, dy = \frac{2}{x^2} \int_0^x y^2 \, dy = \frac{2}{x^2} \frac{y^3}{3} \Big|_0^x = \frac{2}{3} \frac{1}{x^2} (x^3) = \frac{2}{3} x$$

Q20) Find the conditional variance of Y given X for Problem 18.

$$Var(Y|X) = E(Y^{2}|X) = E(Y|X)^{2}$$

$$E(Y^{2}|X) = \int_{0}^{x} y^{2} f_{Y|X=x}(y) dy = \frac{2}{x^{2}} \int_{0}^{x} y^{3} dy = \frac{2}{x^{2}} \frac{y^{4}}{4} \Big|_{0}^{x} = \frac{2}{4} \frac{1}{x^{2}} [x^{4}] = \frac{1}{2} x^{2}$$

$$Var(Y|X) = \frac{1}{2} x^{2} - \left[\frac{2}{3} x\right]^{2} = \left[\frac{1}{2} - \frac{2^{2}}{3^{2}}\right] x^{2} = \frac{1}{18} x^{2}$$