2016年3月

CTR预估模型

- LR: google、腾讯、百度
- Mixed-LR:阿里巴巴
- GBDT-LR: facebook
- FFM: criteo比赛第一
- GBDT-FFM: avazu比赛第一
- FM/FFM尝试中:百度、新美大、新浪

Ad_type

LR模型

Country

Day

Clicked?

特征交叉项的稀疏性,参数个数:1+n+n(n-1)/2

n

1 0 1	USA China China	26/11/15 1/7/14 19/2/15	Movie Game Game	$y(\mathbf{x}) =$	4	$\sum_{i=1}^{n} w_i x_i$	$+\sum_{i=1}^{n}\sum_{j=i}^{n}$	$\sum_{i+1} w_{ij} x_i x_j$
Clicked?	Country=	USA Coun	try=China	Day=26/11/15	Day=1/7/14	Day=19/2/15	Ad_type=Movie	Ad_type=Game
1	1	0		1	0	0	1	0
0	0	1		0	1	0	0	1

问题1:扶翼投放日志中,有女性看尿布的广告,男性看啤酒的广告,是否可以 预估男性看尿布广告点击率?

FM模型

缓解稀疏性:交叉特征参数 -> 单特征参数

参数个数:1+n+nk

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

问题1:扶翼投放日志中,有女<mark>性看尿布的广告,男性看啤酒</mark>的广告,是否可以 预估男性看尿布广告点击率?

问题2:FM的k取多少合适?

FFM模型

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_{i,f_j}, \mathbf{v}_{j,f_i} \rangle x_i x_j$$

User	Movie	Genre	Price
YuChin	3ldiots	Comedy, Drama	\$9.99

Field name	Field index	Feature name	Feature index
User	1	User=YuChin	1
Movie	2	Movie=3ldiots	2
Genre	3	Genre=Comedy	3
Price	4	Genre=Drama	4
		Price	5

FFM模型

不增加稀疏性, 降低复杂性: 单特征参数 -> 单特征分域参数 参数个数: 1 + n + nfk

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i,f_j}, \mathbf{v}_{j,f_i} \rangle x_i x_j$$

$$\langle \mathbf{v}_{1,2}, \mathbf{v}_{2,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{v}_{1,3}, \mathbf{v}_{3,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{v}_{1,3}, \mathbf{v}_{4,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{v}_{1,4}, \mathbf{v}_{5,1} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{v}_{2,3}, \mathbf{v}_{3,2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{v}_{2,3}, \mathbf{v}_{4,2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{v}_{2,4}, \mathbf{v}_{5,2} \rangle \cdot 1 \cdot 9.99$$
 问题3:FFM的参数个数增加了吗?
$$+ \langle \mathbf{v}_{3,3}, \mathbf{v}_{4,3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{v}_{3,4}, \mathbf{v}_{5,3} \rangle \cdot 1 \cdot 9.99$$

FFM实现

https://github.com/guestwalk/libffm

- 1.随机梯度下降
- 2.自适应学习率AdaGrad
- 3.样本特征梯度分步计算和更新
- 4.OpenMP多线程扫描样本更新
- 5.SSE指令加速向量计算
- 6.内存紧凑减少换页
- 7.样本归一化

```
model = init(tr.n, tr.m, pa)
R_{tr} = 1, R_{va} = 1
if pa.norm then
   R_{tr} = \mathbf{norm}(tr), R_{va} = \mathbf{norm}(va)
end if
for it = 1, \dots, pa.itr do
   if pa.rand then
      tr.X = \mathbf{shuffle}(tr.X)
   end if
   for i = 1, \dots, tr.l do
      \phi = \mathbf{calc}\Phi(tr.X[i], R_{tr}[i], model)
      e\phi = \exp\{-tr \cdot Y[i] * \phi\}
      L_{tr} = L_{tr} + \log\{1 + e\phi\}
      q_{\Phi} = -tr \cdot Y[i] * e\phi/(1 + e\phi)
      model = \mathbf{update}(tr.X[i], R_{tr}[i], model, q_{\Phi})
   end for
   for i = 1, \dots, va.l do
      \phi = \mathbf{calc}\Phi(va.X[i], R_{va}[i], model)
      L_{va} = L_{va} + \log\{1 + \exp\{-va.Y[i] * \phi\}\}\
   end for
```

end for

FFM衍生品

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i,f_j}, \mathbf{v}_{j,f_i} \rangle x_i x_j$$

- 1.FFM-ftrl
- 2.FFM-no-self-field-cross
- 3.FFM-no-1-order-bias
- 4.FFM-no-bias
- 5.FFM-only-cross-with-ad
- 6.FFM-hierarchy-ad

- 7.FFM-I1, I2, I1-v, I2-v
- 8.FFM k=1, 4, 8, 16
- 9.FFM norm-vs-nonorm
- +.FFM init params

FFM: ada-grad vs ftrl

	FFM-adag	FFM-ftrl	FM	LR
L2-v	敏感	不敏感		
训练时间	140	160	100	20
Logloss/AUC	好	较好	中	非常一般
收敛速度(迭 代次数)	慢	中	类FFM	快

FFM: ada-grad vs ftrl

FM/FFM	Logloss/AUC	真实环境准确率
All bias	好	中
No 1-order bias	中	好
No bias	差	差

FFM: structure variety

	standard	No-self-field- cross	Only-cross- with-ad	Cross-with- hierarchy-ad
Logloss/AUC	好	好	中	比中略好一点
训练时间	160+	160	100	110
收敛速度	慢	慢	快	最快
模型大小	1G	400M-800M	100M	100M

FFM: K, norm, init, field

	K 1->4->8->16	Norm 0 -> 1	Init 常数->随机	Field 独立->共享
Logloss/AUC	差->好->差	差 -> 好	中 -> 随机	好->差
训练时间	递增			
过拟合	越来越易过拟合	易 -> 略不易	略不易 -> 易	略不易->易

Init:不同的随机初始点对最终结果非常大

FXX、FXXH: ABTesting

K=4, norm=1, L1=L2=L1v=0, L2v=0.0002, eta=0.2, init=常数/sqrt(K)

FXX: only-cross-with-ad

FXXH: only-cross-with-ad, and with ad hierarchy

http://10.210.228.84/dashboard/bucket_info.php

FXX训练流程

Gitlab: http://10.210.228.76/hero/sinaad_algo_ea_new_ctr_pipeline

- 1. 生成每日样本
- 2. 生成分广告位训练数据、测试数据、编码词典
- 3. MR streaming训练分广告位模型:
 - 1. 编码生成规范格式<label field:index:value ...>
 - 2. 训练模型
 - 3. 测试AUC
 - 4. FFM模型文件到线上格式转换

注意:需要测试数据用于做验证集,和训练数据无交集,为什么?

F4M工具包

Gitlab: http://10.210.228.76/hero/f4m

```
./fm -flagfile=params.conf -train=train.txt -test=test.txt --model=m.txt -method=fxx -iterations=10 --negsampling=0.2
```

Params.conf:

--alpha=0.1

-beta=1

--alpha_fm=0.2

--l2_fm=0.0002

--init_dev=0.1 -nbit=16

-11011-10

-kdim=4
-mfield=18

--ad_fields=14,15,16,17

-stop_threshold=0.005

F4M工具包

Gitlab: http://10.210.228.76/hero/f4m

./fm –flagfile=params.conf –test=test.txt –predict=pred.txt --model=m.txt –method=fxx –mode=1

cat pred.txt | ./fm -method=auc

```
Use FFM (ada-grad) learner.

===========>>

test from 56239.test.

set output predict file: c

feature hash space: 65536

=========>>

test samples = 2128558

logloss = 2.7133

elapsed time = 12.9s
```

```
Calculate AUC.

pv count: 2128558

click count: 25448

auc: 0.5798

logloss: 0.06718
```


F4M工具包

flags	含义	举例
mode	训练 or 测试	0(0)
train	训练数据路径	Train.txt, 可以是/dev/stdin
cache	训练数据缓存路径	train=/dev/stdin 时可用
test	测试集 or 验证集	Test.txt
predict	测试结果输出路径	Pred.txt, mode=0时可用
model	训练模型 保存 or 加载 路径	Model.txt
iterations	迭代次数	10(1)
method	模型选择	Ir, fma, fmf, ffma, ffmf, fxx, fxxh, auc
ad_fields	标出哪些域是广告特征域	"14,15,16,17", fxx或fxxh时可用, 层次从高到低

F4M工具包

flags	含义	举例
l1	一次项一阶正则系数	0.1(0)
12	一次项二阶正则系数	1.0(0, 无)
I1_fm	二次项一阶正则系数	0(0)
I2_fm	二次项二阶正则系数	0.00002(0)
alpha	ftrl bias项学习率	0.1(0.1)
beta	用于ftrl bias项学习	1.0(1.0)
alpha_fm	ftrl, ada-grad 二次项 学习率	0.2(0.1)
beta_fm	用于ftrl 二次项学习	1.0(1.0)
Init_dev	初始化随机标准差	0.1(0.1)

flags	含义	举例
nbit	特征空间2^nbit	16(0)
kdim	分解隐向量长度	4(4)
mfield	Ffm域个数	18(0)
normalization	是否样本归一化	1(1)
auto_stop	提前停止	1(1)
stop_threshold	提前停止阈值	0.005(0.01)
negsampling	负样本采样	0.5(1.0)
drop_rate	Dropout特征比例	0.0(0.0)
low_freq_filter	低频特征过滤	5(0)

提问环节

预祝各位带动新浪点击率再创新高!