Week 7: The VC Dimension

Table of Contents

- 1. <u>Definition of VC Dimension</u>
- 2. VC Dimension and Learning
 - Generalizing PLA beyond 2D
- 3. Degrees of Freedom
- 4. Interpreting VC Diemsion

Definition of VC Dimension

- 1. Recap on growth function
 - When there exists break point k for an hypothesis set \mathcal{H} , growth function $m_{\mathcal{H}}(N)$ is bounded by:

$$m_{\mathcal{H}}(N) \le B(N,k) = \sum_{i=0}^{k-1} \binom{N}{i}$$

• Highest term from the combinatorics is Nk - 1

	B(N, k)	1	2	<i>k</i> 3	4	5		<i>N</i> ^{k-1}	1	2	<i>k</i> 3	4	5
	1	1	2	2	2	2	1	1	1	1	1	1	1
	2	1	3	4	4	4	1	2	1	2	4	8	16
	3	1	4	7	8	8		3	1	3	9	27	81
N	4	1	5	11	15	16	1	4	1	4	16	64	256
	5	1	6	16	26	31		5	1	5	25	125	625
	6	1	7	22	42	57	١	6	1	6	36	216	1296

• From the tables above, we can see that **provably and loosely**, for $N \ge 2, k \ge 3$

$$m_{\mathcal{H}}(N) \le B(N, k) = \sum_{i=0}^{k-1} \binom{N}{i} \le N^{k-1}$$

• Plug the inequality above into Vapnik-Chervonenkis (VC) Bound gives:

For any
$$g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$$
 and 'statistical' large \mathcal{D} , for $N \geq 2, k \geq 3$
$$\mathbb{P}_{\mathcal{D}}\Big[\big|E_{\text{in}}(g) - E_{\text{out}}(g)\big| > \epsilon\Big]$$

$$\leq \mathbb{P}_{\mathcal{D}}\Big[\exists h \in \mathcal{H} \text{ s.t. } \big|E_{\text{in}}(h) - E_{\text{out}}(h)\big| > \epsilon\Big]$$

$$\leq 4m_{\mathcal{H}}(2N) \exp\Big(-\frac{1}{8}\epsilon^2N\Big)$$
 if $k \in \mathbb{R}$ exists
$$\leq 4(2N)^{k-1} \exp\Big(-\frac{1}{8}\epsilon^2N\Big)$$

- In other words, learning is possible when:
 - The hypothesis set \mathcal{H} has a break point k by which growth function $m_{\mathcal{H}}(N)$ is bounded
 - Sample size *N* is large enough to generalize $E_{out} \approx E_{in}$
 - Learning algorithm A is capable of picking an *optimal* hypothesis g with small E_{in}

2. VC Dimension

- The formal name of **maximum non-** break point
- In the context of 2D perceptron, VC dimension of \mathcal{H} , denoted $d_{VC}(\mathcal{H})$ is the **largest** N for which $m_{\mathcal{H}}(N) = 2^N$
 - In other words, dvc is the **most** number of inputs that can be shattered by any hypothesis $h \in \mathcal{H}$
 - $d_{VC} = \min(k) 1$
- 3. Implications of VC dimension
 - $N \le d_{VC}$ \Rightarrow \mathcal{H} can shatter **some** N inputs
 - Note that **the reverse is not true**. Having a set of N inputs that cannot be shattered by \mathcal{H} does not imply anything between $d_{VC}(\mathcal{H})$ and N (based on that information alone)
 - \mathcal{H} might be able to shatter different input set from the same population, which would mean $d_{VC} \geq N$
 - Also possible that no input set of N from the population can be shattered by \mathcal{H} , in which case $d_{VC} < N$
 - $k > d_{VC}$ \Rightarrow k is a break point for \mathcal{H}
 - Combining with growth function above, if $N \ge 2$, $d_{vc} \ge 2$, $m_{\mathcal{H}}(N) \le N^{d_{vc}}$

$$d_{VC} = 1$$

positive intervals:

$$d_{VC} = 2$$

$$d_{\text{VC}}=\infty$$

$$m_{\mathcal{H}}(N) = N + 1$$

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

$$m_{\mathcal{H}}(N)=2^N$$

$$d_{VC} = 3$$

$$m_{\mathcal{H}}(N) \leq N^3$$
 for $N \geq 2$

VC dimension and learning

- 1. The **worst case** generalization $E_{out}(g) \approx E_{in}(g)$ guaranteed by VC dimension is
 - \circ Independent of learning algorithm ${\mathcal A}$
 - \circ Independent of input distribution P
 - \circ Independent of target function f
 - Available so long as sample size is large enough and break point exists

Generalizing PLA beyond 2D

- 1. VC dimension of n-D perceptron**: $d_{vc} = d + 1$
- 2. Proof Part 1: $d_{vc} \ge d + 1$
 - Recall that $d_{vc} \ge d + 1$ as long as there is **at least one** set of d + 1 inputs that can be shattered.
 - $\circ~$ Given a set of trivial, intervible~inputs~X

$$X = \begin{bmatrix} & -\mathbf{x}_{1}^{T} - \\ & -\mathbf{x}_{2}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \text{ invertible}$$

• Since the input matrix X is **invertible**, a weight vector w can be found such that:

Given
$$y = \begin{bmatrix} y1 \\ \cdot \\ \cdot \\ \cdot \\ y_{d+1} \end{bmatrix}$$

- $sign(\mathbf{X}w) = y \iff in \text{ special case } (\mathbf{X}w) = y \iff w = \mathbf{X}^{-1}y$
- 3. Proof Part 2: $d_{vc} \leq d+1$
 - Recall that $d_{vc} \le d+1$ is guaranteed only when we can proof that it is impossible to shatter **any** set of d+2 inputs
 - Starting from a special case in 2D

- Given that there's now **more rows than columns** in the input matrix (d-dimension, 1 constant, d+2 data points), there must be some kind of **linear dependency** among the points
 - For the input set above, there exists linear dependency:

$$w^T x_4 = w^T x_2 + w^T x_4 - w^T x_1$$

• If we map each of the points by their (x, y) into four quarnts in 2D, as shown below. We can see that the weight vector w must be **positive** for x_2, x_3 , and **negative** for x_1 (or vice versa, so long as we treat all points with at least one non-zero axis to be the same sign).

• The linear dependency above **mandates** that the weight(sign) for x_4 can **only be positive**

$$\mathbf{w}^{T}\mathbf{x}_{4} = \underbrace{\mathbf{w}^{T}\mathbf{x}_{2}}_{\circ} + \underbrace{\mathbf{w}^{T}\mathbf{x}_{3}}_{\circ} - \underbrace{\mathbf{w}^{T}\mathbf{x}_{1}}_{\times} > 0$$

- Linear dependency restricts dichotomy
- Generalizing the special case to n-dimensional
 - Same linear dependency exists among points in d-D, when there are d-dimensions, 1 constant, and n + 2 points in the input set

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_1^T - \\ & -\mathbf{x}_2^T - \\ & \vdots \\ & -\mathbf{x}_{d+1}^T - \\ & -\mathbf{x}_{d+2}^T - \end{bmatrix} \quad \text{more rows than columns:} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_{d+1} \mathbf{x}_{d+1} \\ & \mathbf{x}_{d+2} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots +$$

- Similar to the previous case, it is possible to represent x_{n+1} (and one step further, the product $w^T x_{n+1}$) as a **sum** of products between all the other points and their respective weight (some positive, some negative, some can be zero)
- The linear dependency again mandates that $w^T x_{d+2}$ can only be positive (or negative if we view the signs another way), making some dichotomies impossible. The input set therefore cannot be shattered

$$\mathbf{w}^{T}\mathbf{x}_{d+2} = \mathbf{a}_{1} \underbrace{\mathbf{w}^{T}\mathbf{x}_{1}}_{\circ} + \mathbf{a}_{2} \underbrace{\mathbf{w}^{T}\mathbf{x}_{2}}_{\times} + \dots + \mathbf{a}_{d+1} \underbrace{\mathbf{w}^{T}\mathbf{x}_{d+1}}_{\times}$$

$$> 0 \text{(contradition!)}$$

- Since such linear depedency can be found for **any** input set of d+2 points in d-dimension, $d_{vc} \le d+1$
- 4. Combining the two-part proofs above result in the generalizable conclusion $d_{vc} = d + 1$ for d-dimensional perceptron

Degrees of Freedom

- 1. Hypothesis parameters $w = (w_0, w_1, \dots, w_d)$ creates degrees of freedom
 - Different sets of *w* results in different hypotheses
- 2. Degrees of freedom:
 - **Analog** degress of freedom: Measured by hypothesis quantity $M = |\mathcal{H}|$
 - Shear number of possible hypothesis in a set, by introducing different sets of parameters
 - Depending on the hypothesis set, many hypothesis might belong to the same dichotomy
 - **Effective 'binary'** degrees of freedom: Measured by VC dimension $d_{vc} = d + 1$

- Number of parameters that could affect the number of dichotomies produced
 - Soem parameters are present and tunable, but do not lead to different dichotomies regardless of value chosen
- $d_{vc}(\mathcal{H})$ is the *powerfulnness* of hypothesis set \mathcal{H}
- $d_{vc} \approx \#$ free parameters (not always)

- 3. VC dimension and objectives of learning
 - Recall the objectives of learning are:
 - i. Make $E_{out}(g)$ close enough to $E_{in}(g)$ such that the learned model remains effective on unseen data
 - ii. Make $E_{in}(g)$ small enough such that the model is a good estimation of the target function
 - Recall that finite bin Hoeffding's Inequalit guarantees that the probability of encountering a bad sample, for which E_{in} and E_{out} are very different, is bounded by $4 \cdot (2N)^{d_{vc}} \cdot exp(...)$
 - Small VC dimension
 - Small chance of encountering bad sample. Good for learning objective 1
 - Small degree of freedom (choice), might not be possible to learn a good model from training set. Bad of objective 2.
 - Large VC dimension
 - Large chance of encountering bad sample. Bad for learning objective 2
 - Large degree of freedom, have many candidate models to choose from. Good for objective 2.
 - Important to choose the right d_{vc} to balance the tradeoff between learning objectives

Interpreting VC Dimension

1. Model complexity Per finite bin Hoeffding's with VC dimension, for any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and **statistically large** \mathcal{D} , if $d_{vc} \geq 2$

$$\mathbb{P}[BAD] = \mathbb{P}_D[E_{in}(h) - E_{out}(h)| > \epsilon] \le 4(2N)^{d_{vc}} exp(-\frac{1}{8} \epsilon^2 N)$$

set
$$\delta = 4(2N)^{d_{vc}} exp(-\frac{1}{8} e^2 N)$$

then $\epsilon = \sqrt{\frac{8}{N} ln(\frac{4(2N)^{d_{vc}}}{\delta})}$

Generalization error, $|E_{in}(g) - E_{out}(g)|$ thus satisfies

$$E_{in}(g) - \sqrt{\frac{8}{N} \ln(\frac{4(2N)^{d_{vc}}}{\delta})} \le E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} \ln(\frac{4(2N)^{d_{vc}}}{\delta})}$$

The **upper bound** here is of our main interest, as it determines how well would a model learned from input data would perform when used on other sample drawn from the same underlying distribution.

Penalty for model complexity is often denoted as:

$$\Omega(N, \mathcal{H}, \delta) = \sqrt{\frac{8}{N} ln(\frac{4(2N)^{d_{vc}}}{\delta})}$$

With a high probability:

$$E_{out}(g) \leq E_{in}(g) + \Omega(N, \mathcal{H}, \delta)$$

 \Rightarrow Complex model can potentially lead to large difference between E_{in} and E_{out}

⇒ "Overfitted"

- 2. Sample complexity
- The loose nature of VC bound often lead to dramatic difference between theoretical sample complexity and the practical value, given a error tolerance

given specs
$$\epsilon = 0.1$$
, $\delta = 0.1$, $d_{\text{VC}} = 3$, want $4(2N)^{d_{\text{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right) \leq \delta$ $\frac{N}{100} \frac{\text{bound}}{2.82 \times 10^7}$ sample complexity: $10,000 \quad 1.19 \times 10^8 \quad \text{need } N \approx 10,000 d_{\text{VC}}$ in theory $100,000 \quad 1.65 \times 10^{-38} \quad 29,300 \quad 9.99 \times 10^{-2}$

- Practical rule of thumb: $N \approx 10 d_{vc}$ is **often enough**
- 3. Looseness of VC Bound
- The significant difference bewteen theoretical and practical model complexity illustrates the looseness of VC Bound. This looseness is the result of following factors combined:
 - a. Using Hoeffding's Inequality for **unknown** E_{out}
 - This allows VC Bound to be valid for any target distribution
 - b. Using growth function $m_{\mathcal{H}}$ intead of a specific sample $|\mathcal{H}(x_1,\ldots,x_N)|$
 - This allows use of any sample from the population
 - c. Using the **upper bound** of growth function $N^{d_{vc}}$, instead of growth function $m_{\mathcal{H}}(N)$ of a specific hypothesis set \mathcal{H}
 - This allows use of **any hypothesis set** \mathcal{H} with the same (readily specified) d_{vc}
 - d. Using union bound on worst cases
 - ullet This allows VC Bound to be valid regardless of choice made by learning algorithm ${\cal A}$
- Despite its looseness, it's hard to find stricter bound with the same guarantees.
- Futhermore, VC Bound holds *similar looseness for all models*, so it can still be used to compare model performance for the purpose of model selection