Business Understanding

Companies lose millions due to customer churn. Understanding why customers leave can help businesses take action to retain them, such as offering promotions or improving service quality.

Problem statement

How can the company predict customer churn using historical data, and what factors contribute most to customer churn?

Objectives

- 1.Build a classification model to predict churn based on customer data. 2.Compare multiple models.
- 3. Provide recommendations for reducing churn.

Research Questions

- 1. What factors influence customer churn the most?
- 2. How accurately can we predict churn using available data?
- 3. Which classification model performs best for this problem?

Data Understanding

```
#load the data
import kagglehub
# Download latest version
path = kagglehub.dataset_download("becksddf/churn-in-telecoms-dataset")
print("Path to dataset files:", path)
 Downloading from <a href="https://www.kaggle.com/api/v1/datasets/download/becksddf/churn-in-telecoms-dataset?dataset_version_number=1....">https://www.kaggle.com/api/v1/datasets/download/becksddf/churn-in-telecoms-dataset?dataset_version_number=1...</a>
                     116k/116k [00:00<00:00, 37.8MB/s]Extracting files...
      Path to dataset files: /root/.cache/kagglehub/datasets/becksddf/churn-in-telecoms-dataset/versions/1
import zipfile
import pandas as pd
import os
#Extracting the ZIP file
with zipfile.ZipFile("/content/archive.zip", "r") as zip_ref:
    zip_ref.extractall("/content")
files = os.listdir("/content")
print("Extracted files:", files)
csv_file = "bigml_59c28831336c6604c800002a.csv"
df = pd.read_csv(f"/content/{csv_file}")
#first few rows
df.head()
```

Extracted files: ['.config', 'archive.zip', 'bigml_59c28831336c6604c800002a.csv', 'sample_data']

	state	account length		phone number	international plan	voice mail plan	number vmail messages	total day minutes	total day calls	total day charge	•••	total eve calls	total eve charge	total night minutes	total night calls	total night charge	tot in minut
0	KS	128	415	382- 4657	no	yes	25	265.1	110	45.07		99	16.78	244.7	91	11.01	10
1	ОН	107	415	371- 7191	no	yes	26	161.6	123	27.47		103	16.62	254.4	103	11.45	1:
2	NJ	137	415	358- 1921	no	no	0	243.4	114	41.38		110	10.30	162.6	104	7.32	1:
3	ОН	84	408	375- 9999	yes	no	0	299.4	71	50.90		88	5.26	196.9	89	8.86	(
4	OK	75	415	330- 6626	yes	no	0	166.7	113	28.34		122	12.61	186.9	121	8.41	10

5 rows × 21 columns

1

#structure

#structure
df.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3333 entries, 0 to 3332
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	state	3333 non-null	object				
1	account length	3333 non-null	int64				
2	area code	3333 non-null	int64				
3	phone number	3333 non-null	object				
4	international plan	3333 non-null	object				
5	voice mail plan	3333 non-null	object				
6	number vmail messages	3333 non-null	int64				
7	total day minutes	3333 non-null	float64				
8	total day calls	3333 non-null	int64				
9	total day charge	3333 non-null	float64				
10	total eve minutes	3333 non-null	float64				
11	total eve calls	3333 non-null	int64				
12	total eve charge	3333 non-null	float64				
13	total night minutes	3333 non-null	float64				
14	total night calls	3333 non-null	int64				
15	total night charge	3333 non-null	float64				
16	total intl minutes	3333 non-null	float64				
17	total intl calls	3333 non-null	int64				
18	total intl charge	3333 non-null	float64				
19	customer service calls	3333 non-null	int64				
20	churn	3333 non-null	bool				
dtyp	es: bool(1), float64(8),	int64(8), object(4)					
memo	ry usage: 524.2+ KB						

#missin values
df.isnull().sum()

#class distribution
df['churn'].value_counts(normalize=True)

✓ EDA

#summary
df.describe()

	account length	area code	number vmail messages	total day minutes	total day calls	total day charge	total eve minutes	total eve calls	total eve charge	total night minutes	
count	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3330
mean	101.064806	437.182418	8.099010	179.775098	100.435644	30.562307	200.980348	100.114311	17.083540	200.872037	100
std	39.822106	42.371290	13.688365	54.467389	20.069084	9.259435	50.713844	19.922625	4.310668	50.573847	19
min	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	23.200000	33
25%	74.000000	408.000000	0.000000	143.700000	87.000000	24.430000	166.600000	87.000000	14.160000	167.000000	87
50%	101.000000	415.000000	0.000000	179.400000	101.000000	30.500000	201.400000	100.000000	17.120000	201.200000	100
75%	127.000000	510.000000	20.000000	216.400000	114.000000	36.790000	235.300000	114.000000	20.000000	235.300000	113
max	243.000000	510.000000	51.000000	350.800000	165.000000	59.640000	363.700000	170.000000	30.910000	395.000000	17
4											

```
#import libraries
import matplotlib.pyplot as plt
import seaborn as sns

#Plot categorical feature distributions
categorical_cols = ['international plan', 'voice mail plan', 'churn']

for col in categorical_cols:
    plt.figure(figsize=(8, 6))
    sns.countplot(x=col, data=df)
    plt.title(f'{col.capitalize()} Distribution')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.show()
```


1000

#Plot distributions of numerical features
df.hist(figsize=(15,10), bins=30, edgecolor='black')
plt.suptitle("Feature Distributions", fontsize=16)
plt.show()

Feature Distributions


```
#churn vs numerical features
plt.figure(figsize=(8, 5))
sns.boxplot(x='churn', y='total day minutes', data=df)
plt.title('Churn vs Total Day Minutes')
plt.xlabel('Churn')
plt.ylabel('Total Day Minutes')
plt.show()
```


Customers who churn tend to have higher total day minutes than those who stay.

Preprocessing

Correlation analysis

```
import matplotlib.pyplot as plt
import seaborn as sns

#Select only numeric columns
numeric_df = df.select_dtypes(include=['number', 'bool'])

plt.figure(figsize=(12,6))
sns.heatmap(numeric_df.corr(), annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Heatmap")
plt.show()
```


Customers with higher total day minutes are slightly more likely to churn.

Higher customer service calls correlate with higher churn.

```
#Dropping highly correlated features
df.drop(columns=['total day charge', 'total eve charge', 'total night charge', 'total intl charge'], inplace=True)
df.shape

(3333, 17)
```

Encoding

```
#Converting categorical variables to numeric
encoder = LabelEncoder()
df['international plan'] = encoder.fit_transform(df['international plan'])
df['voice mail plan'] = encoder.fit_transform(df['voice mail plan'])
df['churn'] = df['churn'].astype(int)

#Dropping non-useful categorical features
df.drop(columns=['state', 'phone number'], inplace=True)

df.head()
```

₹		account length		international plan	voice mail plan	number vmail messages	total day minutes	day	total eve minutes	total eve calls	night	_	total intl minutes	total intl calls	customer service calls	churn	11.
	0	128	415	0	1	25	265.1	110	197.4	99	244.7	91	10.0	3	1	0	
	1	107	415	0	1	26	161.6	123	195.5	103	254.4	103	13.7	3	1	0	
	2	137	415	0	0	0	243.4	114	121.2	110	162.6	104	12.2	5	0	0	
	3	84	408	1	0	0	299.4	71	61.9	88	196.9	89	6.6	7	2	0	
	4	75	415	1	n	0	166 7	113	148 3	122	186 9	121	10 1	3	3	n	>

Next steps: (Generate code with df

View recommended plots

New interactive sheet

Scaling

```
#standardizing
from sklearn.preprocessing import StandardScaler
#selecting numeric columns an removing target variable
features = df.drop(columns=['churn'])
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
#Converting back to DataFrame
df_scaled = pd.DataFrame(scaled_features, columns=features.columns)
df_scaled['churn'] = df['churn']
df_scaled.head()
```

₹	account lengtl		international plan	voice mail plan	number vmail messages	total day minutes	total day calls	total eve minutes	total eve calls	total night minutes	total night calls	total intl minutes	tota int call
	0.676489	-0.523603	-0.327580	1.617086	1.234883	1.566767	0.476643	-0.070610	-0.055940	0.866743	-0.465494	-0.085008	-0.60119
	1 0.149065	-0.523603	-0.327580	1.617086	1.307948	-0.333738	1.124503	-0.108080	0.144867	1.058571	0.147825	1.240482	-0.60119
	2 0.902529	-0.523603	-0.327580	-0.618396	-0.591760	1.168304	0.675985	-1.573383	0.496279	-0.756869	0.198935	0.703121	0.21153
	3 -0.428590	-0.688834	3.052685	-0.618396	-0.591760	2.196596	-1.466936	-2.742865	-0.608159	-0.078551	-0.567714	-1.303026	1.02426
	4 -0.654629	-0.523603	3.052685	-0.618396	-0.591760	-0.240090	0.626149	-1.038932	1.098699	-0.276311	1.067803	-0.049184	-0.60119

Next steps: (Generate code with df_scaled

View recommended plots

New interactive sheet

Variance Inflation factor

```
import pandas as pd
from statsmodels.stats.outliers_influence import variance_inflation_factor
def calculate_vif(df):
    vif_data = pd.DataFrame()
    vif_data["Feature"] = df.columns
    vif_data["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.shape[1])]
    return vif_data
# Selecting only numeric features (excluding target variable)
numeric_columns = df.select_dtypes(include=['number']).columns
X = df[numeric_columns].drop(columns=['churn'], errors='ignore')
# Computing VIF
vif_df = calculate_vif(X)
# Displaying VIF values
print(vif_df)
₹
                        Feature
                                 7.298476
```

```
account length
    area code 60.999598
```

```
2
             international plan
                                 1,116556
                voice mail plan 16.449088
     3
          number vmail messages 16.060222
             total day minutes 11.469569 total day calls 23.588677
     5
     6
     7
              total eve minutes 15.606325
     8
                total eve calls 23.725547
     9
            total night minutes 15.756057
              total night calls 24.623674
     10
     11
             total intl minutes 13.664469
              total intl calls 4.272018
     12
     13 customer service calls 2.404659
#droping high vif features
#Droping features with high multicollinearity
df.drop(columns=['area code', 'voice mail plan', 'number vmail messages',
                 'total day minutes', 'total eve minutes', 'total night minutes',
                 'total intl minutes', 'total day calls', 'total eve calls', 'total night calls'], inplace=True)
#Recalculating VIF
X_new = df.select_dtypes(include=['number']).drop(columns=['churn'], errors='ignore')
vif_df_new = calculate_vif(X_new)
#Displaying updated VIF values
print(vif_df_new)
<del>_</del>_
                       Feature
                account length 3.623377
            international plan 1.102547
     2
              total intl calls 3.185682
       customer service calls 2.110999
   Train_test split
from sklearn.model_selection import train_test_split
#Defining feature columns (excluding the target variable)
sel_columns = ['account length', 'international plan', 'customer service calls', 'total intl calls']
X = df[sel_columns] # Select features
#Defining target variable
y = df['churn'] # Target variable (churn: 1 = left, 0 = stayed)
#Spliting into training (80%) and testing (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#Displaying test labels
y_test.head()
→▼
            churn
      438
               0
      2674
               0
      1345
      1957
                0
     2148
                0
```

Modeling

Baseline model logistic

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
#Initializing the logistic regression model
```

```
log_model = LogisticRegression(random_state=42)
#Training the model on the training data
log_model.fit(X_train, y_train)
#Making predictions on the test data
y_pred = log_model.predict(X_test)
#Evaluating the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Baseline Logistic Regression Accuracy: {accuracy:.4f}")
#Displaying classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
#Displaying confusion matrix
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
→ Baseline Logistic Regression Accuracy: 0.8486
     Classification Report:
                   precision
                                recall f1-score
                                                   support
                0
                                            0.92
                        0.86
                                  0.98
                                                        566
                1
                        0.50
                                  0.11
                                            0.18
                                                       101
                                            0.85
                                                        667
        accuracy
                        0.68
                                  0.54
                                            0.55
        macro avg
                                                       667
     weighted avg
                        0.81
                                  0.85
                                            0.80
                                                       667
     Confusion Matrix:
     [[555 11]
     [ 90 11]]
#training all models
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
#Defining models in a dictionary
models = {
    "Logistic Regression": LogisticRegression(random_state=42),
    "Decision Tree": DecisionTreeClassifier(max_depth=5, random_state=42),
    "Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
   "K-Nearest Neighbors": KNeighborsClassifier(n_neighbors=5),
    "Naive Bayes": GaussianNB(),
    "Support Vector Machine": SVC(kernel='linear', random_state=42)
#Training and evaluating each model
for name, model in models.items():
   print(f"\n♦ Training & Evaluating: {name} ♦")
   #Training model
   model.fit(X_train, y_train)
   #Making predictions
   y_pred = model.predict(X_test)
   #Evaluating performance
   accuracy = accuracy_score(y_test, y_pred)
   print(f" ✓ Accuracy: {accuracy:.4f}")
   #Displaying classification report
   print("\nClassification Report:")
   print(classification_report(y_test, y_pred))
   #Displaying confusion matrix
   print("\nConfusion Matrix:")
   print(confusion_matrix(y_test, y_pred))
```

```
print("="*50)
₹
               0
                      0.85
                                0.99
                                          0.92
                                                     566
                      0.42
                                0.05
                                          0.09
                                                     101
                                          0.85
                                                     667
        accuracy
       macro avg
                      0.64
                                0.52
                                          0.50
                                                     667
                       0.79
                                          0.79
                                                     667
    weighted avg
                                0.85
    Confusion Matrix:
    [[559 7]
     [ 96 5]]
    ♦ Training & Evaluating: Naive Bayes ♦
    ✓ Accuracy: 0.8336
    Classification Report:
                              recall f1-score
                 precision
                                                 support
                                0.92
                                          0.90
               0
                       0.88
                                                     566
                      0.43
                                0.33
                                          0.37
                                                     101
               1
                                          0.83
                                                     667
        accuracy
       macro avg
                      0.66
                                0.63
                                          0.64
                                                     667
    weighted avg
                      0.82
                                0.83
                                          0.82
                                                     667
    Confusion Matrix:
    [[523 43]
     [ 68 33]]
    🔷 Training & Evaluating: Support Vector Machine 🔷
    ✓ Accuracy: 0.8486
    Classification Report:
                 precision
                              recall f1-score
                                                 support
               0
                       0.85
                                1.00
                                          0.92
                                                     566
               1
                       0.00
                                0.00
                                          0.00
                                                     101
                                          0.85
                                                     667
        accuracy
       macro avg
                      0.42
                                0.50
                                          0.46
                                                     667
                       0.72
                                0.85
                                          0.78
    weighted avg
                                                     667
    Confusion Matrix:
    [[566 0]
     [101 0]]
    /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and
      _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
    /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and
      _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
    /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and
      _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
```

Confusion matrix subplots

```
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix

#Defining models
models = {
    "Logistic Regression": LogisticRegression(random_state=42),
    "Decision Tree": DecisionTreeClassifier(max_depth=5, random_state=42),
    "Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
    "K-Nearest Neighbors": KNeighborsClassifier(n_neighbors=5),
    "Naive Bayes": GaussianNB(),
    "Support Vector Machine": SVC(kernel='linear', random_state=42)
}

#Training models and get confusion matrices
```

```
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
axes = axes.flatten()

for i, (name, model) in enumerate(models.items()):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    cm = confusion_matrix(y_test, y_pred)

#Plotting confusion matrix
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=axes[i])
    axes[i].set_title(f"{name}")
    axes[i].set_xlabel("Predicted Label")
    axes[i].set_ylabel("True Label")

plt.tight_layout()
plt.show()
```


Model accuracy comparison

```
import numpy as np

#Defining models again
models = {
    "Logistic Regression": LogisticRegression(random_state=42),
    "Decision Tree": DecisionTreeClassifier(max_depth=5, random_state=42),
    "Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
    "K-Nearest Neighbors": KNeighborsClassifier(n_neighbors=5),
    "Naive Bayes": GaussianNB(),
    "Support Vector Machine": SVC(kernel='linear', random_state=42)
}

#Storing accuracy scores
```

```
model_names = []
accuracy_scores = []
for name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    model_names.append(name)
    accuracy_scores.append(accuracy)
#Plotting accuracy comparison
plt.figure(figsize=(10, 5))
sns.barplot(x=model_names, y=accuracy_scores, palette="viridis")
plt.xticks(rotation=45)
plt.xlabel("Model")
plt.ylabel("Accuracy Score")
plt.title("Model Accuracy Comparison")
plt.show()
```

<ipython-input-21-67a6ee230649>:27: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.barplot(x=model_names, y=accuracy_scores, palette="viridis")

