Linear Programming Approximations

1 Generalization of Maximum Coverage Approximation

We will see that the same approximation we used last lecture to solve maximum coverage leads to a $(1 - \frac{1}{e})$ approximation for any non-negative monotone submodular function.

MAXIMUM COVERAGE: Given a universe U where each element has a value v(u), subsets $S_1, \ldots, S_m \subseteq U$, and an integer k, find a $T \subseteq \{1, \ldots, m\}$ with $|T| \leq k$ maximizing $\sum_{u \in \bigcup_{j \in T} s_j} v(u)$.

Let function $f: 2^U \to \mathbb{R}$; in other words, $f: T \to \sum_{u \in \bigcup_{j \in T} s_j} v(u)$. Assume $f(T) \ge 0 \ \forall T$.

Monotonicity: $f(S) \ge f(T)$ when $S \supseteq T$.

Submodularity (diminishing returns): If $S \supseteq T$, then $f(T \cup \{x\}) - f(T) \ge f(S \cup \{x\}) - f(S) \ \forall x$. More elegantly, $f(S \cap T) + f(S \cup T) \le f(S) + f(T)$.

Recall key insight 2 from last lecture: by adding the best set S_j for $j \in T^*$ to T_t , we increase the value by at least $\frac{1}{t}(OPT - V_t)$ because $|T^*| \leq k$.

Lemma 1. If f is non-negative, submodular, and monotone, then this insight holds.

Proof. Let $S = T^* \setminus T_t$; $S = \{u_1, \ldots, u_r\}$ with $r \leq k$. Define $S_j := \{u_1, \ldots, u_j\}$ and recall $f(T) = \sum_{u \in \bigcup_{j \in T} S_j} v(u)$. We are interested in:

$$f(T^* \cup T_t) - f(T_t)$$

$$= f(S \cup T_t) - f(T_t)$$

We use a telescoping sum:

$$= \sum_{i=0}^{r-1} f(S_{j+1} \cup T_t) - f(S_j \cup T_t)$$

$$= \sum_{i=0}^{r-1} f(S_j \cup T_t \cup \{u_{j+1}\}) - f(S_j \cup T_t)$$

Applying submodularity:

$$\leq \sum_{j=0}^{r-1} f(T_t \cup \{u_{j+1}\}) - f(T_t)$$

We use this fact to prove the previous insight:

$$\max_{j=1...r} f(T_t \cup \{u_j\}) - f(T_t) \ge \frac{1}{r} \sum_{j=1}^r f(T_t \cup \{u_j\}) - f(T_t)$$

$$\ge \frac{1}{r} (f(T^* \cup T_t) - f(T_t))$$

And because $r \leq k$:

$$\geq \frac{1}{k}(f(T^* \cup T_t) - f(T_t))$$

Theorem 2. Let f be a non-negative, monotone, submodular function. Then, the greedy algorithm which for k iterations always adds the element giving largest increase in f is a $1 - \frac{1}{e}$ approximation (Nemhauser, Halsey, Fisher).

In the greedy algorithms unit, we proved that if f is **modular** (i.e., linear), maximizing f(S) subject to S being an independent set in a given matroid is solved optimally by the greedy algorithm. The implications of Theorem 2 are that if f is non-negative, monotone, and submodular, the greedy algorithm is a $1 - \frac{1}{e}$ approximation on the k-uniform matroid (where any set of $\leq k$ elements is independent).

Theorem 3. The greedy algorithm for a non-negative, monotone, submodular function on an arbitrary matroid is a $\frac{1}{2}$ -approximation (Nemhauser).

Theorem 4. There is a "continuous-greedy" (think gradient descent) algorithm which achieves a $1 - \frac{1}{e}$ approximation for any non-negative, monotone, submodular function on any matroid (Vondrak).

2 Intro to Linear Programming Approximations

Many optimization problems can be encoded naturally as integer linear programs (ILPs). Solving ILPs is **NP**-hard because many problems are naturally encoded. The generic technique for achieving bounds on OPT:

- 1. Create the ILP encoding the problem.
- 2. "Relax" the ILP to an LP by removing integrality constraints.
- 3. Now the LP can be solved in polynomial time to give a fractional solution \vec{x} .
- 4. Round \vec{x} to an integer solution \hat{x} and ensure it is a valid solution (use \vec{x} as guidance for computing \hat{x}).
- 5. Prove \hat{x} is not too much worse than \vec{x} .

Important bounds:

$$OPT_{LP} \leq OPT_{ILP}$$
 for minimization

$$OPT_{LP} \geq OPT_{ILP}$$
 for maximization

Corollaries:

If $cost(\hat{x}) \leq \alpha * cost(\vec{x})$, then \hat{x} is an α -approximation for minimization.

If $cost(\hat{x}) \ge \alpha * cost(\vec{x})$, then \hat{x} is an α -approximation for maximization.

The **integrality gap** of an LP is, over all instances:

$$\min \frac{OPT_{ILP}}{OPT_{LP}}$$
 for minimization

$$\max \frac{OPT_{ILP}}{OPT_{LP}}$$
 for maximization

If analysis only uses LP bound, it can prove no better approximation guarantees than the integrality gap.

3 Weighted Vertex Cover

3.1 Building an LP

WEIGHTED VERTEX COVER: Given a graph $\mathcal{G} = (V, E)$ with vertex costs c_v , find a vertex cover S of minimum total cost $\sum_{u \in S} c_v$.

We write an ILP encoding the problem:

Maximize

$$\sum_{v} c_v x_v$$

subject to

$$\begin{cases} x_u + x_v \ge 1 & \forall e = (u, v) \\ x_v \ge 0 & \forall v \\ x_v \in \{0, 1\} & \forall v \end{cases}$$

We relax the ILP to an LP by removing the $x_v \in \{0,1\}$ constraint. Solving this LP gives a fractional solution \vec{x} .

3.2 Rounding Algorithm

We include in S all nodes v with $x_v \ge \frac{1}{2}$.

- (1). This is a vertex cover: because of the first constraint, at least one endpoint of e has $x_v \ge \frac{1}{2} \ \forall e$. Such a v is in S.
- (2). Cost analysis:

$$cost(\hat{x}) = \sum_{v \in S} c_v = \sum_{v: x_v \ge \frac{1}{2}} c_v$$

$$\leq \sum_{v:x_v > \frac{1}{2}} (2x_v)c_v$$

$$\leq \sum_{v} (2x_v)c_v$$

$$= 2 * cost(\vec{x})$$

So this is a 2-approximation.

3.3 Integrality Gap

The worst case scenario is a complete graph with all $c_v=1$. Then, $LP-OPT \leq \frac{n}{2}$ and ILP-OPT=n-1. This ratio is about 2, so we know that the rounding can't be better than a 2-approximation.