华中科技大学物理学院 2011~2012 学年第1学期

《大学物理(二)》课程考试试卷(A卷)

(闭卷)

考试日期: 2011.12.25.上午

考试时间: 150 分钟

		Ξ					统分	教师
题号		1	2	3	4	总分	签名	签名
得分								

得 分	
评卷人	

一. 选择题(单选题,每题3分,共30分)

 $\overline{1.--\overline{2}}$ 一理想气体的压强为 p,质量密度为 p,则其方均根速率为

(A)
$$\sqrt{\frac{p}{3\rho}}$$
 (B) $\sqrt{\frac{3p}{\rho}}$ (C) $\sqrt{\frac{p}{2\rho}}$ (D) $\sqrt{\frac{2p}{\rho}}$

(B)
$$\sqrt{\frac{3p}{\rho}}$$

(C)
$$\sqrt{\frac{p}{2\rho}}$$

(D)
$$\sqrt{\frac{2p}{\rho}}$$

2. 根据热力学第二定律,以下说法正确的是

- (A) 不可能从单一热源吸热使之全部变为有用的功
- (B) 任何热机的效率都总是小于卡诺热机的效率
- (C) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能 量不能变为有规则运动的能量
- (D) 在孤立系统内,一切实际过程都向着热力学概率增大的方向进行

3. 对如图所示的平面简谐波 t 时刻的波形曲 线,下列各结论哪个是正确的?

(B) B 处质元回到平衡位置的过程中,它把自己

的能量传给相邻的质元, 其能量逐渐减小

- (C) C 处质元振动动能减小,则 D 处质元振动动能一定增大
- (D) D 处质元 t 时刻波的能量是 $10 \, \text{J}$,则此时刻该处质元振动动能一定是 $5 \, \text{J}$
- 4. 如图所示,两列波长为 λ 的相干波在P点相遇。 波在 S_1 点振动的初相是 φ_1 , S_1 到 P 点的距离是 r_1 ; 波 在 S_2 点的初相是 φ_1 , S_2 到 P 点的距离是 r_2 , 以 k 代表 零或正、负整数,则 P 点是干涉极大的条件为:

1

(A)
$$r_2 - r_1 = k\lambda$$

(B)
$$\varphi_2 - \varphi_1 = 2k\pi$$

(C)
$$\varphi_2 - \varphi_1 + 2\pi \frac{(r_2 - r_1)}{\lambda} = 2k\pi$$

(D)
$$\varphi_2 - \varphi_1 + 2\pi \frac{(r_1 - r_2)}{\lambda} = 2k\pi$$

5. 在电磁波的发射和接收课堂演示实验中, 当实验仪器正常工作时, 对如图 (1)、(2)、(3)所示的三种操作方式,接在铜环中的小灯泡最亮的是

- (A) (1)
- (B) (2)
- (C) (3)
- (D) 不能判定

1

6. 在迈克耳孙干涉仪的一臂中引入 5 cm 长的玻璃管,并充以一个大气压的空 气,用波长 500 nm 的光照射,如将玻璃管逐渐抽成真空,观察到有 60 条干涉 条纹的移动,则空气的折射率为

- (A) 1.0001 (B) 1.0002 (C) 1.0003
- (D) 1.0004

1

7. 一宇航员	上声称,他恰能分辨在位	他下面 160 km 的	的地面上两个发	射波长为550
nm 的点光源,	设宇航员的瞳孔直径	为 5 mm,则此	两点光源的间距	
(A) 10.5	5 m (B) 21.5	m (C)	31.0 m	(D) 42.0 m
	ī检偏演示实验中,用 ὰ偏器的出射方向观察			偏器,转动检
(A) 1	(B) 2	(C) 3	(D) 4	
				[]
	烦效应实验中,若散射 \mathbb{E}_k 之比 $rac{\mathcal{E}}{E_k}$		光波长的 1.2 倍	,则散射光光
(A) 2	(B) 3	(C) 4	(D) 5	; []
10.p 型半- 构中处于 (A)满带	导体中杂质原子所形 守中	成的局部能级((B)导带),在能带结
	F中,但接近满带顶 ──	(D)禁带	寺中,但 接 近导	帯底 []
得 分 评卷人 1. 分子数为	二 二. 填空题(⁴ 」 n N 的理想气体, 在温	每题 3 分,共 30 上度 <i>T</i> ₁ 和温度 <i>f</i>		
$T_2(T_2 \neq T_1)$ 时的 线在 $v > 0$ 区间2 面积为 S ,则在	速率分布曲线如图所 交点的速率为 v_0 。若 两种温度下气体分子	示,设两曲 阴影部分的 运动速率小	S	
·	和氢的温度相同,		这两种气 体	的内能之比

为_____。

三. 计算题 (每题 10 分, 共 40 分)

得 分	
评卷人	

1. 一定量的刚性双原子分子理想气体经历如图所示循环过程,已知 $V_b=2V_a$, $V_c=4V_a$,

 $T_a = 400 \, \text{K}, \, 菜$:

- (1) c 态的温度;
- (2) 循环的效率。

得 分	
评卷人	

2. 如图所示,在x轴的原点 O 处有一振动方程为 $y = A\cos \omega t$ 的平面波波源,产生的波沿 x 轴负方向传播。MN 为波密介质反射面,距波源 $\frac{5}{4}\lambda$ 。求:

- (1) 在 MN-yO 区间叠加波的波函数;
- (2) 最靠近o点因干涉而静止的点的位置。

得 分 评卷人

- 3. 一東具有两种波长 λ_1 和 λ_2 的平行光垂直照射到一衍射光栅上,测得波长 λ_1 的第三级主极大和 λ_2 的第四级主极大衍射角均为 30° 。已知 $\lambda_1=560\,\mathrm{nm}$,试求:
 - (1) 波长 \(\lambda_2\);
- (2) 若光栅常数 d 与缝宽 a 的比值 $\frac{d}{a} = 5$,则对 λ_2 的光,屏上可能看到的全部 主极大的级次。

得 分 评卷人

- 4. 已知粒子在一维无限深方势阱中运动,其波函数为 $\psi(x) = A \sin \frac{2\pi x}{a}, \quad 0 \le x \le a$
- 求: (1) 归一化常数 A;
 - (2) 在何处找到粒子的概率最大。