Import required libraries, fetch data from database into pandas.DataFrame and format data type for PCA

```
In [18]: import numpy as np
         import sqlite3
         import matplotlib.pylab as plt
         import datetime as DT
         import seaborn as sns
         np.set_printoptions(precision=5)
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         #### import the PCA library from scikit learn library
         from sklearn.decomposition import PCA
         from mpl_toolkits.mplot3d import Axes3D # didn't get to use this
         %matplotlib inline
         # Normalizing (scaling) the data is VERY important - indeed can be important to many machine
         # learning algorithms. Take the original features and scale them so that they all have zero
         # mean and unit variance
         from sklearn import preprocessing
         ## pandas actually has a command to read_sql or read_sql_query and return a pandas.DataFrame
         ## coerce_float=True argument to force float data type
         ## Need to FIRST connect to the database by creating a connection object called conn.
         conn = sqlite3.connect('database.sqlite')
         # create a cursor object using the conn object method
         # The cursor object has methods for accessing the data
         # c = conn.cursor() # this is not needed for the pd.read_sql IO tool
         # Get the database table list from information in the sqlite_master table
         # Follow convention to type SQL commands in all caps
         # preview all tables in the database
         print ('=====')
         print ('Tables in the database')
         # Set the execute SQL command, Fetch and print all table names and info, and
         # return a pandas DataFrame
         df_tables = pd.read_sql("""SELECT * FROM sqlite_master WHERE type='table';""", conn)
         print('df_tables shape: ', df_tables.shape)
         print(df_tables)
         print ('=====')
         print('Player_Attributes table:')
         print(df_tables.sql[1]) # get sql that CREATE the Player_Atrribtues table
         print ('=====')
         print('Player table:')
         print(df_tables.sql[2]) # get sql that CREATE the Player table
         print ('=====')
         print ('Player table')
         df_Player = pd.read_sql("""SELECT * FROM Player """, conn)
         print('df_Player.shape:', df_Player.shape)
         print(df_Player.columns)
         print(df_Player.head())
         print ('=====')
         print ('Player_Attributes table')
         df_Player_Attributes = pd.read_sql("""SELECT * FROM Player_Attributes""", conn)
         print('df_Player_Attributes.shape:', df_Player_Attributes.shape)
         print(df_Player_Attributes.columns)
         print(df_Player_Attributes.head())
         print ('=====')
         # acquire data from database using pd.read_sql_query(sql, , ,)
         # build SQL to SELECT all columns from both Player and Player_Attributes tables
         # for rows reocrds w/ matching player_fifa_api_id
         sql="SELECT * FROM Player INNER JOIN Player_Attributes ON Player.player_fifa_api_id=Player_A
         ttributes.player_fifa_api_id;"
         df_all_col=pd.read_sql_query(sql, conn, coerce_float=True, params=None, parse_dates=['birthd
         ay','date'], chunksize=None)
         # calculate age of player at the time attributes were collected
         df_all_col['age'] = (df_all_col.date - df_all_col.birthday).astype('timedelta64[Y]')
         #Tally total score per player attribute category
         df_all_col['total_attack'] = df_all_col.crossing + df_all_col.finishing + df_all_col.heading
         accuracy + \
```

```
_____
Tables in the database
df_tables shape: (8, 5)
   type name
                                       tbl_name rootpage \
          sqlite_sequence
                               sqlite_sequence 4
0 table
1 table Player_Attributes Player_Attributes
2 table
             Player
                                  Player
3 table
                       Match
                                           Match
                                                          18
                                         League
4 table
                     League
                                                          24
5 table
                     Country
                                         Country
                                                          26
6 table
                       Team
                                            Team
7 table Team_Attributes Team_Attributes
              CREATE TABLE sqlite_sequence(name, seq)
1 CREATE TABLE "Player_Attributes" (\n\t`id`\tIN...
2 CREATE TABLE `Player` (\n\t`id`\tINTEGER PRIMA...
3 CREATE TABLE `Match` (\n\t`id`\tINTEGER PRIMAR...
4 CREATE TABLE `League` (\n\t`id`\tINTEGER PRIMA...
  CREATE TABLE `Country` (\n\t`id`\tINTEGER PRIM...
6 CREATE TABLE "Team" (\n\t`id`\tINTEGER PRIMARY...
7 CREATE TABLE `Team_Attributes` (\n\t`id`\tINTE...
Player_Attributes table:
CREATE TABLE "Player_Attributes" (
        `id` INTEGER PRIMARY KEY AUTOINCREMENT,
        `player_fifa_api_id` INTEGER,
        `player_api_id` INTEGER,
        `date` TEXT,
        `overall_rating` INTEGER,
         `potential` INTEGER,
         `preferred_foot` TEXT,
         `attacking_work_rate`
                                  TEXT.
         `defensive_work_rate` TEXT,
         `crossing` INTEGER, 
`finishing` INTEGER,
         `heading_accuracy` INTEGER,
        `short_passing` INTEGER,
`volleys` INTEGER,
`dribbling` INTEGER,
        `curve` INTEGER,
        `free_kick_accuracy` INTEGER,
        `long_passing` INTEGER,
`ball_control` INTEGER,
        `acceleration` INTEGER,
         `sprint_speed` INTEGER,
        `agility` INTEGER,
`reactions` INTEGER,
`balance` INTEGER,
        balance INTEGER,
shot_power INTEGER,
jumping INTEGER,
stamina INTEGER,
strength INTEGER,
long_shots INTEGER,
aggression INTEGER,
        `interceptions` INTEGER,
         `positioning` INTEGER,
        `vision` INTEGER,
`penalties` INTEGER,
`marking` INTEGER,
         `standing_tackle` INTEGER,
         `sliding_tackle`
                                 INTEGER,
         `gk_diving` INTEGER,
`gk_handling` INTEGER,
`gk_kicking` INTEGER,
         `gk_positioning` INTEGER,
         `gk_reflexes` INTEGER,
        FOREIGN KEY(`player_fifa_api_id`) REFERENCES `Player`(`player_fifa_api_id`),
        FOREIGN KEY(`player_api_id`) REFERENCES `Player`(`player_api_id`)
)
```

data cleaning

```
In [19]: df_all_col.replace(r'\s+', np.nan, regex=True, inplace = True)
         df_all_col.dropna(axis=0, how='any', inplace=True) #drop row (sample) with any NA entry
         df_all_col.sort_values('player_name',axis=0, inplace=True)
         df_all_col.drop_duplicates(inplace=True)
         df_all_col.to_csv('df_all_col.csv')
         print ('df_all_col.shape: ', df_all_col.shape)
         print(df_all_col.shape)
         print(df_all_col.info())
         print(df_all_col.head())
         print(df_all_col.tail())
         print(df_all_col['defensive_work_rate'][0:60]) # need more data cleaning for col before plot
         print ('=====')
         df_unscaled_data = df_all_col[numeric_col]
         print('df_unscaled_data.columns:', df_unscaled_data.columns)
         print('df_unscaled_data.shape:', df_unscaled_data.shape)
         print('df_unscaled_data.info: ', df_unscaled_data.info())
```

```
df_all_col.shape: (10898, 57)
  (10898, 57)
   <class 'pandas.core.frame.DataFrame'>
  Int64Index: 10898 entries, 1045 to 183615
  Data columns (total 57 columns):
                                                                        10898 non-null int64
player_api_id 10898 non-null int64
player_name 10898 non-null object
player_fifa_api_id 10898 non-null int64
birthday 10898 non-null datetime64[ns]
height 10898 non-null float64
                                                                   10898 non-null float64
  height
  weight
                                                                    10898 non-null int64
id 10898 non-null int64 player_fifa_api_id 10898 non-null int64 player_api_id 10898 non-null int64 date
player_api_id

date

overall_rating
potential
preferred_foot
attacking_work_rate
defensive_work_rate
crossing
finishing
heading_accuracy
short_passing
volleys
dribbling
curve
free_kick_accuracy
long_passing
ball_control
acceleration
sprint_speed
agility
reactions

player_api_id
10898 non-null int64
10898 non-null float64
10898 non-null object
10898 non-null object
10898 non-null float64
 agıı.,
reactions
                                                      10898 non-null float64
10898 non-null float64
balance 10898 non-null float64
shot_power 10898 non-null float64
jumping 10898 non-null float64
stamina 10898 non-null float64
strength 10898 non-null float64
long_shots 10898 non-null float64
aggression 10898 non-null float64
interceptions 10898 non-null float64
positioning 10898 non-null float64
vision 10898 non-null float64
penalties 10898 non-null float64
marking 10898 non-null float64
standing_tackle 10898 non-null float64
standing_tackle 10898 non-null float64
sliding_tackle 10898 non-null float64
gk_diving 10898 non-null float64
gk_handling 10898 non-null float64
gk_reflexes 10898 non-null float64
gk_reflexes 10898 non-null float64
age 10898 non-null float64
total_attack 10898 non-null float64
age 10898 non-null float64
total_attack 10898 non-null float64
total_skill 10898 non-null float64
total_movement 10898 non-null float64
total_power 10898 non-null float64
total_mentality 10898 non-null float64
total_defending 10898 non-null float64
total_goalkeeping 10898 non-null float64
dtypog: datestime64[rg](2) float64(44) int644
  dtypes: datetime64[ns](2), float64(44), int64(7), object(4)
  memory usage: 4.8+ MB
  None
                    id player_api_id player_name player_fifa_api_id birthday height \
  1045 67
                                                                                                                     17880 1978-12-22
                                                                                                                                                                                                                   177.8
                                   40938 Abel
  1046 67
                                                                                                                                                          17880 1978-12-22 177.8
                                                       40938
                                                                                                Abel
                                                    40938 Abel
40938 Abel
  1047 67
                                                                                                                                                        17880 1978-12-22 177.8
  1048 67
                                                                                                                                                         17880 1978-12-22 177.8
```

Preprocess data and conduct PCA - principal component analysis

```
In [9]: scaled_data = preprocessing.scale(df_unscaled_data) #center and scale the data
        print('scaled data:')
        print (scaled_data) # preview scaled data
         # create a PCA object.
         # sklean uses this PCA object that can be trained using one dataset and applied to another d
        ataset
        pca = PCA()
        print(type(pca))
        # do PCA math, calculate loading scores and the variation each PCA accounts for
        pca.fit(scaled_data)
        # generate coordinates for a PCA graph based on the loading scores and the scaled data
        pca_data = pca.transform(scaled_data)
        scaled data:
        \hbox{\tt [[ 1.20435 -0.50782 -0.12955 \dots -0.64338 -0.19821 -0.36672]}
          [ \ 1.20435 \ -0.50782 \ -0.12955 \ \dots \ \ 2.36822 \ \ 0.20348 \ \ 0.18149 ]
         [ 0.98217 -0.50782 -0.12955 ... 2.36822 0.20348 0.18149]
         [-1.68402 -0.88666 -1.24685 \dots -0.64338 -0.31297 -0.47637]
         [-1.68402 - 0.88666 - 1.24685 \dots -0.64338 - 0.31297 - 0.47637]
         [-3.2393 \quad -0.88666 \quad -1.24685 \quad \dots \quad -0.64338 \quad -0.31297 \quad -0.47637]]
         <class 'sklearn.decomposition.pca.PCA'>
```

Present Explained Variance, Scree Plot and Principal Components Scatter Matrix

7 of 75

```
In [11]: # pca.explained_variance_ratio_ is <class 'numpy.ndarray'>.
         # It calculates the percentage of variance that each principal component accounts for
        per_var = np.round(pca.explained_variance_ratio_*100, decimals =1)
        print('=======')
        print('percent of explained variance: ')
        print(per_var)
        PC_labels = ['PC'+ str(x) for x in range(1,len(per_var)+1)] # labels for the Scree Plot: PC1
         , PC2 ...
        print('')
        print('=======')
         # create Scree Plot
        plt.figure(figsize=(18, 6))
        plt.bar(x=range(1, len(per_var)+1), height=per_var, tick_label=PC_labels)
        plt.ylabel('Percentage of Explained Variance', fontsize='14')
        plt.xlabel('Principal Component', fontsize='14')
        plt.title('Scree Plot', fontsize='18')
        plt.show()
        plt.close()
         # put pca_data with DataFrame with PC_labels
        pca_df = pd.DataFrame(pca_data, index=None, columns=PC_labels)
        print(pca_df.head()) # preview transformed and scaled
        print('======')
        print('Principal Components Scatter Matrix')
        df_pc_matrix = pca_df[['PC' + str(x) for x in range(1,21)]] # scatter matrix for PC1, PC2, ...
         , PC15
        pd.plotting.scatter_matrix(df_pc_matrix, alpha=0.1, figsize=(14, 14), diagonal='kde',range_p
         adding =0.1)
        plt.tight_layout()
        plt.show()
        plt.close()
```

```
percent of explained variance:
[43.9 15.7 8.9 6.8 3.9 3. 2.2 1.7 1.3 1.1 1. 1. 0.9 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1]
```



```
PC1
                     PC2
                                 PC3
                                            PC4
                                                        PC5
                                                                    PC6
                                                                                 PC7 \
0 \;\; -2.640114 \;\; 1.968095 \;\; 0.650296 \;\; -1.085030 \;\; 0.432893 \;\; -0.997913 \;\; -0.036752
1 \ -1.974144 \ 1.547071 \ 1.945571 \ -1.698880 \ 0.785256 \ -0.431110 \ 2.178955
2 -1.998243 1.632706 1.964671 -1.818000 0.655679 -0.269227 2.168876
3 \;\; -1.777293 \quad 1.508709 \quad 1.666837 \;\; -1.760435 \quad 0.469343 \;\; -0.019567 \quad 2.297794
4 \ -2.056297 \quad 0.869395 \quad 0.466741 \ -1.179464 \quad 0.879790 \ -0.124301 \quad 2.485314
         PC8
                     PC9
                               PC10
                                                       PC29
                                                                   PC30
                                                                                PC31 \
                                       . . .
0 \ -0.345769 \ -0.212905 \ 0.717640 \ \dots \ -0.243024 \ -0.082784 \ -0.287740
PC32
                    PC33
                                PC34
                                           PC35
                                                       PC36
                                                                   PC37
0 \; -0.044248 \; -0.119196 \; -0.127400 \; -0.024028 \; \; 0.054763 \; \; 0.303422 \; \; 0.202196
1 \;\; -0.096422 \;\; -0.082920 \quad 0.120610 \quad 0.091425 \;\; -0.042255 \quad 0.005217 \;\; -0.040199
2 \; -0.022378 \; -0.068867 \quad 0.080547 \quad 0.128276 \quad 0.035120 \quad 0.007889 \; -0.050469
3 \quad 0.044900 \quad -0.031943 \quad 0.052600 \quad 0.120342 \quad 0.048383 \quad 0.012409 \quad -0.034910
4 \quad 0.045786 \quad -0.056746 \quad 0.502708 \quad 0.322174 \quad -0.167724 \quad -0.178028 \quad -0.046963
```

[5 rows x 38 columns]

Principal Components Scatter Matrix

Take a Look at the Loading Scores of PC1, PC2 and PC3 to determine which feature has the largest influence in each principal component

```
In [12]: loading_scores_PC1 = pd.Series(pca.components_[0],index=numeric_col)
         loading_scores_PC1_sorted = loading_scores_PC1.abs().sort_values(ascending=False)
         print('Sorted PC1 Loading Scores (abs)')
         print('PC1 sorted components: ', loading_scores_PC1_sorted.index)
         print(loading_scores_PC1_sorted)
         print('=====')
         loading_scores_PC2 = pd.Series(pca.components_[1],index=numeric_col)
         loading_scores_PC2_sorted = loading_scores_PC2.abs().sort_values(ascending=False)
         print('Sorted PC2 Loading Scores (abs)')
         print('PC2 sorted components: ', loading_scores_PC2_sorted.index)
         print(loading_scores_PC2_sorted)
         print('=====')
         loading_scores_PC3 = pd.Series(pca.components_[2],index=numeric_col)
         loading_scores_PC3_sorted = loading_scores_PC3.abs().sort_values(ascending=False)
         print('Sorted PC3 Loading Scores (abs)')
         print('PC3 sorted components: ', loading_scores_PC3_sorted.index)
         print(loading_scores_PC3_sorted)
```

```
Sorted PC1 Loading Scores (abs)
PC1 sorted components: Index(['ball_control', 'dribbling', 'short_passing', 'crossing', '
curve',
             'long_shots', 'positioning', 'shot_power', 'vision', 'gk_diving',
             'free_kick_accuracy', 'gk_reflexes', 'gk_handling', 'gk_positioning',
             'volleys', 'finishing', 'acceleration', 'penalties', 'sprint_speed',
             'long_passing', 'agility', 'stamina', 'balance', 'height',
             'heading_accuracy', 'weight', 'gk_kicking', 'reactions', 'aggression',
             'overall_rating', 'potential', 'interceptions', 'standing_tackle',
             'sliding_tackle', 'marking', 'strength', 'age', 'jumping'],
          dtype='object')
ball_control 0.233895
dribbling 0.226609
short_passing 0.220168
crossing 0.213529
crossing

      curve
      0.211442

      long_shots
      0.211257

      positioning
      0.204851

      shot_power
      0.199655

      vision
      0.197614

      gk_diving
      0.196600

      free_kick_accuracy
      0.196366

      gk_reflexes
      0.195234

      gk_handling
      0.195011

      gk_positioning
      0.193662

      volleys
      0.193077

      finishing
      0.191773

      acceleration
      0.185480

      penalties
      0.183370

      sprint speed
      0.182038

curve
                                  0.211442
penalties 0.183370
sprint_speed 0.182038
long_passing 0.177636
agility 0.168734
stamina 0.158548
balance 0.153811
height 0.134852
heading_accuracy 0.132158
weight 0.125473
gk_kicking 0.121982
reactions 0.105162
aggression 0.087644
overall_rating 0.083033
potential 0.080174
interceptions 0.071469
standing_tackle 0.065230
sliding_tackle 0.052163
marking
                                   0.052163
                                   0.028138
strength
age
                                    0.005573
 jumping
                                    0.001561
dtype: float64
Sorted PC2 Loading Scores (abs)
PC2 sorted components: Index(['marking', 'standing_tackle', 'sliding_tackle', 'intercepti
ons',
             'aggression', 'strength', 'heading_accuracy', 'agility', 'height',
             'weight', 'finishing', 'stamina', 'volleys', 'balance',
             'gk_positioning', 'gk_handling', 'acceleration', 'gk_reflexes',
            'positioning', 'gk_diving', 'jumping', 'dribbling', 'age', 'curve',
            'gk_kicking', 'sprint_speed', 'long_passing', 'penalties', 'long_shots',
            'vision', 'short_passing', 'free_kick_accuracy', 'overall_rating',
            'shot_power', 'crossing', 'reactions', 'potential', 'ball_control'],
          dtype='object')
                       0.360160
marking
marking
standing_tackle
sliding_tackle
interceptions
aggression
                                   0.357693
                                    0.351805
                                    0.323485
                                   0.310414
                                   0.269961
strength
heading_accuracy 0.231016
accility 0.172402
```

Present graphs pertinent to the first three principal componets:

Note: When plotting PC1 versus PC2 AND PC1 versus PC3, two clusters are displayed.

Next, we will visualize further in PC1, PC2 and PC3.

```
In [13]: # draw PCA 2D plot: PC1 Vs PC2 and PC1 Vs PC3
         def color_plot (i):
             plt.figure(figsize=(10, 5))
             plt.subplot(1,2,1)
             plt.scatter(pca_df.PC1, pca_df.PC2, c=scaled_data[:,i], alpha=0.1)
             plt.title("PCA Graph: PC1 Versus PC2 - color by " + numeric_col[i], fontsize='12')
             plt.xlabel('PC1 - {0}%'.format(per_var[0]), fontsize='12')
             plt.ylabel('PC2 - {0}%'.format(per_var[1]), fontsize='12')
             plt.tight_layout()
             plt.subplot(1,2,2)
             plt.scatter(pca_df.PC1, pca_df.PC3, c=scaled_data[:,i], alpha=0.1)
             plt.title("PCA Graph: PC1 Versus PC3 - color by " + numeric_col[i], fontsize='12')
             \verb|plt.xlabel('PC1 - {0}%'.format(per_var[0]), fontsize='12')| \\
             plt.ylabel('PC3 - {0}%'.format(per_var[2]), fontsize='12')
             plt.tight_layout()
             plt.show()
             plt.close()
         for j in range(0,38):
             color_plot (j)
```



```
In [17]: #'attacking_work_rate', 'defensive_work_rate']
         #plt.title('players with gk_diving > 40',loc='center')
         def plot (df_all, df_sub, hue_col):
             # first plot
            scatter=True, fit_reg=False, units=None, order=1, legend=True)
            plt.title('all players')
            plt.xlim(0,100)
            plt.ylim(0,100)
            plt.show()
            plt.close()
             # second plot: goalkeepers only
            vis2=sns.lmplot(x='ball_control', y='marking', hue=hue_col, sharex=False, data=df_sub,
         scatter=True, fit_reg=False, units=None, order=1, legend=True)
            plt.title('players with gk_diving > 40 (goalkeepers)')
            plt.xlim(0.100)
            plt.ylim(0,100)
            plt.show()
            plt.close()
         print('gk_diving > 40 (goalkeepers)')
         df_goalkeepers=df_all_col.loc[df_all_col['gk_diving']>40]
         #print(df_goalkeepers.head())
         plot(df_all_col, df_goalkeepers, None)
         # color by lefty and righty
         plot(df_all_col, df_goalkeepers, 'preferred_foot')
         # plot lefty only
         print('plot preferred left foot')
         df1=df_all_col.loc[df_all_col['preferred_foot']=='left']
         df2=df_goalkeepers.loc[df_goalkeepers['preferred_foot']=='left']
         plot(df1,df2,None)
         # color by 'attaching_work_rate'
         df3=df_all_col[df_all_col['attacking_work_rate'].isin (['low','medium','high'])]
         df4=df_goalkeepers[df_goalkeepers['attacking_work_rate'].isin (['low','medium','high'])]
         plot(df3, df4, 'attacking_work_rate')
         #plot jointplot with goal keeper attributes:
         #'gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'
         def joint_plot (df, title) :
            vis=sns.jointplot(x='ball_control',y='gk_diving', data=df, xlim=(0,100), ylim=(0,100), s
         tat_func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_handling', data=df, xlim=(0,100), ylim=(0,100),
         stat func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_kicking', data=df, xlim=(0,100), ylim=(0,100),
         stat func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_positioning', data=df, xlim=(0,100), ylim=(0,10
         0), stat_func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
            vis=sns.jointplot(x='ball_control',y='gk_reflexes', data=df, xlim=(0,100), ylim=(0,100),
         stat func=None)
            plt.title(title, loc='left')
            plt.show()
            plt.close()
             vis=sns.jointplot(x='marking',y='gk_diving', data=df, xlim=(0,100), ylim=(0,100), stat_f
         unc=None)
```


plot preferred left foot


```
In [42]: import seaborn as sns
         df1=df_all_col[df_all_col['defensive_work_rate'].isin (['low','medium','high'])]
         df2=df_all_col[df_all_col['defensive_work_rate'].isin (['high'])]
         df3=df_all_col[df_all_col['defensive_work_rate'].isin (['medium'])]
         df4=df_all_col[df_all_col['defensive_work_rate'].isin (['low'])]
         def lmplot (df):
             vis=sns.lmplot(x='marking', y='overall_rating', hue='defensive_work_rate', sharex=False
         , data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
             vis=sns.lmplot(x='standing_tackle', y='overall_rating', hue='defensive_work_rate', shar
         ex=False, data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
             vis=sns.lmplot(x='sliding_tackle', y='overall_rating', hue='defensive_work_rate', share
         x=False, data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
             vis=sns.lmplot(x='interceptions', y='overall_rating', hue='defensive_work_rate', sharex
         =False, data=df, \
                            scatter=True, fit_reg=False, units=None, order=1, legend=True)
             plt.title('Colored By Defensive Work Rate')
             plt.show()
             plt.close()
         lmplot(df1) #color by 'defensive_work_rate'].isin (['low','medium','high'])
         lmplot(df2) #color by 'defensive_work_rate'].isin (['high'])
         lmplot(df3) #color by 'defensive_work_rate'].isin (['medium'])
         lmplot(df4) #color by 'defensive_work_rate'].isin (['low'])
```



```
In [4]: df_totals=df_all_col[numeric_few_col]
    pd.plotting.scatter_matrix(df_totals, alpha=0.1, figsize=(16, 16), diagonal='kde',range_padd
    ing =0.01)
    plt.tight_layout()
    plt.show()
    plt.close()

    total_cols = numeric_few_col + ['player_fifa_api_id', 'player_name']
    df_t=df_all_col[total_cols]
    df_t.to_csv('player_total_score_per_attributes_category.csv')
    print(df_t.shape)
    print (df_t.head())
```


50 of 75

(1089	8, 15)								
	age	height	weight	overall	l_rating	potential	total_att	ack	\
1045	31.0	177.8	165		73.0	75.0	31	1.0	
1046	31.0	177.8	165		72.0	75.0	30	7.0	
1047	30.0	177.8	165		73.0	75.0	30	5.0	
1048	28.0	177.8	165		73.0	75.0	29	8.0	
1049	28.0	177.8	165		70.0	72.0	28	8.0	
	total	_skill	total_mo	vement	total_po	wer total_	_mentality	\	
1045		319.0		375.0	35	5.0	351.0		
1046		318.0		375.0	35	5.0	372.0		
1047		316.0		377.0	35	7.0	372.0		
1048		311.0		372.0	35	5.0	370.0		
1049		335.0		366.0	34	6.0	356.0		
	total	_defend	ing tota	l_goalke	eeping p	layer_fifa_	_api_id \		
1045		21	9.0		42.0		17880		
1046		21	6.0		143.0		17880		
1047		22	1.0		143.0		17880		
1048		22	1.0		141.0		17880		
1049		21	2.0		102.0		17880		
	playe	r_fifa_a	api_id pl	.ayer_nar	ne				
1045			17880	Abe	el				
1046			17880	Abe	el				
1047			17880	Abe	el				
1048			17880	Abe	el				
1049			17880	Abe	el				

```
In [16]: # Total Goalkeeping
         vis=sns.lmplot(x='total_goalkeeping', y='overall_rating', hue = None, sharex=False, data=df
         _totals, \
                        scatter=True, fit_reg=False, units=None, order=1, legend=True)
         plt.title('Total Goalkeeping Versus Overall Rating')
         plt.show()
         plt.close()
         df_totals_qk = df_totals[df_totals['total_qoalkeeping'] > 250]
         corr_gk=df_totals_gk[['total_goalkeeping','overall_rating']].corr()
         print ('A Closer Look at the Goalkeeper Subgroup on the Far Right')
         print(' total_goalkeeping > 250 ')
         print(' ')
         print('Strong Positive Linear Correlation: ')
         print(corr_gk)
         vis=sns.lmplot(x='total_goalkeeping', y='overall_rating', hue = None, sharex=False, data=df
         _totals_gk, \
                         scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.title('Goalkeeper Subgroup: Total Goalkeeping Versus Overall Rating')
         plt.show()
         plt.close()
         # Total Mentality
         vis=sns.lmplot(x='total_mentality', y='overall_rating', hue = None, sharex=False, data=df_t
                        scatter=True, fit_reg=False, units=None, order=1, legend=True)
         plt.title('Total Mentality Versus Overall Rating')
         plt.show()
         plt.close()
         df_totals_non_gk = df_totals[df_totals['total_goalkeeping'] < 250]</pre>
         corr_mentality=df_totals_non_gk[['total_mentality','overall_rating']].corr()
         print ('A Closer Look at the Non_goalkeeper Subgroup on the Far Right')
         print(' total_goalkeeping < 250')</pre>
         print(' ')
         print ('Moderate Positive Linear Correlation: ')
         print(corr_mentality)
         vis=sns.lmplot(x='total_mentality', y='overall_rating', hue = None, sharex=False, data=df_t
         otals_non_gk, \
                        scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.title('Non_Goalkeeper Subgroup: Total Mentality Versus Overall Rating')
         plt.show()
         plt.close()
         # Total Atack
         vis=sns.lmplot(x='total_attack', y='overall_rating', hue = None, sharex=False, data=df_tota
                        scatter=True, fit_reg=False, units=None, order=1, legend=True)
         plt.title('Total Attack Versus Overall Rating')
         plt.show()
         plt.close()
         df_totals_non_gk = df_totals[df_totals['total_goalkeeping'] < 250]</pre>
         corr_attack=df_totals_non_gk[['total_attack','overall_rating']].corr()
         print ('A Closer Look at the Non_goalkeeper Subgroup on the Far Right')
         print(' total_goalkeeping < 250')</pre>
         print(' ')
         print ('Moderate Positive Linear Correlation: ')
         print(corr_attack)
         vis=sns.lmplot(x='total_attack', y='overall_rating', hue = None, sharex=False, data=df_tota
         ls_non_gk, \
                         scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.title('Non_Goalkeeper Subgroup: Total Attack Versus Overall Rating')
         plt.show()
         plt.close()
```


A Closer Look at the Goalkeeper Subgroup on the Far Right total_goalkeeping > 250

Strong Positive Linear Correlation:

	total_goalkeeping	overall_rating
total_goalkeeping	1.000000	0.978269
overall rating	0.978269	1.000000

Goalkeeper Subgroup: Total Goalkeeping Versus Overall Rating

A Closer Look at the Non_goalkeeper Subgroup on the Far Right total_goalkeeping < $250\,$

Moderate Positive Linear Correlation:

	total_mentality	overall_rating
total_mentality	1.00000	0.67607
overall_rating	0.67607	1.00000

Non_Goalkeeper Subgroup: Total Mentality Versus Overall Rating

A Closer Look at the Non_goalkeeper Subgroup on the Far Right total_goalkeeping < 250

Moderate Positive Linear Correlation:

total_attack overall_rating total_attack 1.000000 0.628757 overall_rating 0.628757 1.000000

Non_Goalkeeper Subgroup: Total Attack Versus Overall Rating

Interpret correlation coefficient

Exactly -1. A perfect downhill (negative) linear relationship

- -0.70. A strong downhill (negative) linear relationship
- -0.50. A moderate downhill (negative) relationship
- -0.30. A weak downhill (negative) linear relationship
- 0. No linear relationship

```
In [21]: # save correlation coefficient for dataset to csv

df_corr = df_unscaled_data.corr()

df_corr.to_csv('df_corr.csv')

df_gk=df_unscaled_data.loc[df_unscaled_data['gk_diving']>40]

df_gk_corr = df_gk.corr()

df_gk_corr.to_csv('df_gk_corr.csv')

df_non_gk=df_unscaled_data.loc[df_unscaled_data['gk_diving']<40]

df_non_gk_corr = df_non_gk.corr()

df_non_gk_corr.to_csv('df_non_gk_corr.csv')</pre>
```

```
In [31]: print('Unscaled Data Scatter Matrix 1')
         print('PC1 sorted components: ', loading_scores_PC1_sorted.index[0:19])
          #col_of_interest = ['ball_control', 'dribbling', 'short_passing', 'crossing', 'curve', 'long_
          shots', 'positioning', 'shot_power', 'vision', 'gk_diving','free_kick_accuracy', 'gk_reflexe
          s', 'gk_handling']
          col_of_interest = loading_scores_PC1_sorted.index[0:19]
         df_col_of_interest= df_unscaled_data[col_of_interest] # scatter matrix for columns of intere
          st.
         pd.plotting.scatter_matrix(df_col_of_interest, alpha=0.1, figsize=(16, 16), diagonal='kde',r
         ange_padding =0.01)
         plt.tight_layout()
         plt.show()
         plt.close()
         Unscaled Data Scatter Matrix 1
         PC1 sorted components: Index(['ball_control', 'dribbling', 'short_passing', 'crossing', '
         curve',
                 'long_shots', 'positioning', 'shot_power', 'vision', 'gk_diving',
                 'free_kick_accuracy', 'gk_reflexes', 'gk_handling', 'gk_positioning',
                 'volleys', 'finishing', 'acceleration', 'penalties', 'sprint_speed'],
                dtype='object')
          .
                                                                        .
           20
                                                         .
                                                                        .
           9
                       \Lambda
                                                         1
                                                                   1
                                                                        .
                                                                             6
           類
                           Λ
                                                         .
                                                                        ١.
                                                                             ,
                                                         .
                                                                   .
                                                                        .
                                                                             A 25
                                Λ
                                                                        ١.
                                                                             ١,
                                     \mathbb{A}
                                                         .
                                                                   .
           3
                                          \Lambda
                                                                        F
                                                                             F
                                                         F
                                                                   F
                                               Л
                                                         l e
                                                                   •
                                                                        ø
                                                                             4
          Mislon
Mislon
                                                                        1
                                                                             4
                                                    Л
                                                         I
                                                                   .
          Ä
                                                         •
                                                                        •
                                                                             .
           20 10
                                                              \Lambda
                                                         1.5
                                                                   1
                                                                        14
                                                                             1
                                                         .
                                                              All I
                                                                   . "
                                                                             , "
           18
                                                         •
                                                                   . "
                                                                        ."
                                          2
                                                         . "
                                                              72
                                                                   . .
                                                                        ."
                                                                             -
           2
           到
                                                                   .
                                                                             .
                                                                                  \wedge
           發
                                                                        ,
                                                                             .
                                                                                      \wedge
                                                         ١,
                                                                                           \Lambda
           發 #
                                                         1
                                                                   0
                                                                        J.
                                                                             ı
           B 100
                                                         \mathbf{I}
                                                                        F
                                                                             I
                                                                   18
                                                                                                \Lambda
```

```
In [39]: print('Unscaled Data Scatter Matrix 2')
           print('PC1 sorted components: ', loading_scores_PC1_sorted.index[19:38])
           #col_of_interest = ['ball_control', 'dribbling', 'short_passing', 'crossing', 'curve', 'long_
           shots', 'positioning', 'shot_power', 'vision', 'gk_diving','free_kick_accuracy', 'gk_reflexe
           s', 'gk_handling']
           col_of_interest = loading_scores_PC1_sorted.index[19:38]
           df_col_of_interest= df_unscaled_data[col_of_interest] # scatter matrix for columns of intere
           pd.plotting.scatter_matrix(df_col_of_interest, alpha=0.1, figsize=(16, 16), diagonal='kde',r
           ange_padding =0.01)
           plt.tight_layout()
           plt.show()
           plt.close()
           Unscaled Data Scatter Matrix 2
           PC1 sorted components: Index(['long_passing', 'agility', 'stamina', 'balance', 'height',
                    'heading_accuracy', 'weight', 'gk_kicking', 'reactions', 'aggression', 'overall_rating', 'potential', 'interceptions', 'standing_tackle',
                    'sliding_tackle', 'marking', 'strength', 'age', 'jumping'],
                  dtype='object')
            흥 翔 🔙
                                                  \wedge
            kicki
Per kicki
                                                        0 PS -
                                                        \Lambda
                                                                                                W
                                                                                                      \mathcal{M}
                                                                                                           Λ
            mpin
125
                                                                                                                       \Lambda
             NAME NAME 
long_passing agility
                                                  88
                                                      9090 KSRC KSRC SLIC SLIC 9090 KSRC
gk_kicking reactions aggressionoverall_rating potential interceptiogranding_tacks
```

```
In [36]: # create distribution plot for all features
         final_col = ['player_fifa_api_id','preferred_foot','attacking_work_rate', 'defensive_work_ra
         te'] + numeric_col
         print(final_col)
         df_final=df_all_col[final_col]
         df_final=def_all_col['player_fifa_api_id', 'preferred_foot', 'attacking_work_rate', 'defensi
         ve_work_rate', 'age', \
                               'height', 'weight', 'overall_rating', 'potential', 'crossing', 'finishi
         ng', 'heading_accuracy', \
                               'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_accuracy',
         'long_passing', \
                               'ball_control', 'acceleration', 'sprint_speed', 'agility', 'reactions',
         'balance', 'shot_power', \
                               'jumping', 'stamina', 'strength', 'long_shots', 'aggression', 'intercep
         tions', 'positioning', \
                               'vision', 'penalties', 'marking', 'standing_tackle', 'sliding_tackle',
         'gk_diving', 'gk_handling', \
                               'gk_kicking', 'gk_positioning', 'gk_reflexes']
         print(df_final.head())
         print(len(final_col))
         df_final.to_csv("df_final.csv")
         # distplot for goalkeeping attributes
         fig = plt.figure(figsize=(24,18))
         ax1 = fig.add_subplot(321)
         ax2 = fig.add_subplot(322)
         ax3 = fig.add_subplot(323)
         ax4 = fig.add_subplot(324)
         ax5 = fig.add_subplot(325)
         vis1=sns.distplot (df_all_col['gk_diving'], bins=30, ax=ax1)
         vis2=sns.distplot (df_all_col['gk_handling'], bins=30, ax=ax2)
         vis3=sns.distplot (df_all_col['gk_kicking'], bins=30, ax=ax3)
         vis4=sns.distplot (df_all_col['gk_positioning'], bins=30, ax=ax4)
         vis5=sns.distplot (df_all_col['gk_reflexes'], bins=30, ax=ax5)
         plt.show()
         plt.close()
         # distplot for defending attributes
         fig = plt.figure(figsize=(18,5))
         ax6 = fig.add_subplot(131)
         ax7 = fig.add_subplot(132)
         ax8 = fig.add_subplot(133)
         vis6=sns.distplot (df_all_col['marking'], bins=30, ax=ax6)
         vis7=sns.distplot (df_all_col['standing_tackle'], bins=30, ax=ax7)
         vis8=sns.distplot (df_all_col['sliding_tackle'], bins=30, ax=ax8)
         plt.show()
         plt.close()
         # distplot
         for i in range (4,42) :
             sns.distplot (df_all_col[final_col[i]], bins=30)
             plt.title('Distribution Plot')
             plt.show()
             plt.close()
```

```
['player_fifa_api_id', 'preferred_foot', 'attacking_work_rate', 'defensive_work_rate', 'ag
e', 'height', 'weight', 'overall_rating', 'potential', 'crossing', 'finishing', 'heading_a
ccuracy', 'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_accuracy', 'long_pa
ssing', 'ball_control', 'acceleration', 'sprint_speed', 'agility', 'reactions', 'balance',
'shot_power', 'jumping', 'stamina', 'strength', 'long_shots', 'aggression', 'interceptions
', 'positioning', 'vision', 'penalties', 'marking', 'standing_tackle', 'sliding_tackle', 'gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes']
     player_fifa_api_id player_fifa_api_id preferred_foot \
                 17880
                                    17880
                                                 right
1046
                 17880
                                    17880
                                                  right
                                                 right
1047
                 17880
                                   17880
                                                 riaht
1048
                 17880
                                   17880
                 17880
                                    17880
                                                 right
   attacking_work_rate defensive_work_rate age height weight \
         None o 31.0 177.8 165
1045
                                                          165
1046
                  None
                                        0 31.0 177.8
                                       o 30.0 177.8 165
o 28.0 177.8 165
o 28.0 177.8 165
1047
                 None
1048
                  None
1049
                  None
     overall_rating potential ... vision penalties marking \
73.0 75.0 ... 75.0 66.0 73.0 
72.0 75.0 ... 75.0 75.0 72.0
              75.0 75.0
1045
1046
              73.0
                        75.0
                                            75.0
                                                       75.0
                                                               74.0
1047
                                 . . .
                        75.0
                                            75.0
1048
              73.0
                                 . . .
                                                       76.0
                                                               74.0
              70.0
                        72.0
1049
                                 . . .
                                            75.0
                                                     83.0 70.0
     standing_tackle sliding_tackle gk_diving gk_handling gk_kicking \
1045
     74.0 72.0 7.0 5.0 7.0
               72.0
                              72.0
1046
                                         9.0
                                                                 74.0
                                                     20.0
                                                   20.0
                              72.0 9.0
72.0 9.0
72.0 9.0
1047
               75.0
                                                                74.0
                                                    20.0
1048
               75.0
                                                                 72.0
1049
               70.0
                                                                 63.0
     gk_positioning gk_reflexes
       13.0
                     10.0
1045
1046
               20.0
                           20.0
1047
              20.0
                          20.0
1048
              20.0
                          20.0
1049
               8.0
                          12.0
```

[5 rows x 43 columns]

70 of 75


```
In [40]: print('A Closer Look at Overall Rating Versus Reactions Attributes')
         print(' ')
         corr1=df_all_col[['reactions','overall_rating']].corr()
         print(corr1)
         vis1=sns.lmplot( x='reactions', y='overall_rating', hue=None, sharex=False, data=df_all_col,
         scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         df11=df_all_col[df_all_col['attacking_work_rate'].isin (['low','medium','high'])]
         corr11=df11[['reactions','overall_rating']].corr()
         print(corr11)
         visl1=sns.lmplot( x='reactions', y='overall_rating', hue='attacking_work_rate', sharex=False
         , data=df11, scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         df12=df_all_col[df_all_col['defensive_work_rate'].isin (['low','medium','high'])]
         corr12=df12[['reactions','overall_rating']].corr()
         print(corr12)
         vis12=sns.lmplot( x='reactions', y='overall_rating', hue='defensive_work_rate', sharex=False
         , data=df12, scatter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         df13=df_all_col[df_all_col['gk_diving'] > 40]
         corr13=df13[['reactions','overall_rating']].corr()
         print('gk_diving > 40 ')
         print(corr13)
         vis13=sns.lmplot( x='reactions', y='overall_rating', hue=None, sharex=False, data=df13, scat
         ter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         plt.close()
         df14=df_all_col[df_all_col['gk_diving'] < 41]</pre>
         corr14=df14[['reactions','overall_rating']].corr()
         print('gk_diving < 41')</pre>
         print(corr14)
         vis14=sns.lmplot( x='reactions', y='overall_rating', hue=None, sharex=False, data=df14, scat
         ter=True, fit_reg=True, units=None, order=1, legend=True)
         plt.show()
         plt.close()
```

A Closer Look at Overall Rating Versus Reactions Attributes

reactions overall_rating	reactions 1.00000 0.72483	overall_rat 0.72 1.00	2483
90 -		1.4	\$
80 -			
overall rating			
60 -			
50 -		•	
20 30 4	0 50 60 reactions	70 80	90
reactions overall_rating	reactions 1.00000 0.72456	overall_rat 0.72 1.00	2456
90 -		2.4	<u>i</u>
80 -			
g 70 -			
overall_rating			attacking_work_rate medium high low
50 -	•	*	
40 -			
20 30 4	0 50 60 reactions	70 80	90
reactions overall_rating	reactions 1.000000 0.725001	overall_rat 0.725 1.000	5001

 $gk_diving > 40$

reactions overall_rating reactions 1.00000 0.56092 overall_rating 0.56092 1.00000

gk_diving < 41

reactions overall_rating reactions 1.000000 0.759507 overall_rating 0.759507 1.000000

75 of 75