Probe testing and improvement of high-precision thermal measurement of Microwave Cyclotron Resonance

Jie Zhang 7/12/13

Jason's masters

Cyclotron resonance on 2DEG

Microwave frequency = Cyclotron frequency

- ⇒ Sample absorbs energy
- ⇒ Temperature increases
- Thermal measurement with high precision

Thermometer CX-BT-1030

Typical value:

305K: 46.6 Ohm

77K: 1210hm

4.2K: 6950hm

0.3K: 14KiloOhm

 Experiment done in vacuum with little exchange gas and sapphire crystal as heat conductor

Typical Cernox™ Resistance

Geometrical resonance (coupling between CR & PR)

1. Plasmon resonance

$$\omega_0^2 = \frac{N_s e^2}{2m^* \varepsilon_{eff} r}$$

- $N_s = 2.5 \times 10^{11} cm^{-2}$
- $m^* = 0.067 m_e$
- $\varepsilon_{eff} = \frac{1+12}{2} = 6.5$
- r radius~ μm
- 2. Cyclotron resonance

$$\omega_c = \frac{eB}{m^*}$$

3. Coupled

$$\omega_{\pm} = \frac{\omega_c}{2} \pm \sqrt{\omega_0^2 + (\frac{\omega_c}{2})^2}$$

10:18 PM 4/17/2013 (C:Exp_dataKris2013-04-17\spl33.365.dat)

Adapted from "Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/A1GaAs heterostructures"

Fitting & improvement

- Boundary Plasmon Resonance (~GHz)
 can be quenched by irregular shaped samples;
- Frequency range (26-40GHz)
 can be extended by replacing waveguide with
 coaxial cable (down to DC)
 and adding frequency multiplier (up to 100GHz);
- Standing wave in waveguide can be eliminated by shifting the frequency;
- Precision can be increased extensively by differential measurement (symmetric geometry) and amplitude modulation lock-in technique;
- Decrease Noise with 300mK temperature
 In He3 cryostat;

Probe detail

Adapted from PhD thesis of Kris Stone

Figure D.5: Stycast 2850FT with graphite sample holder and insert brass inserts. Dimensions in inches.

Probe Schematics

Figure D.1: Pictures of the probe stages: 4K, 1K, and the sample holder.

Shubnikov-de Haas oscillations and microwave induced Shubnikov-de Haas oscillations

Microwave level varied

Fix temperature @0.6K & vary Frequency

- Problem
- -6dbm=0.2519mW
- -11.7dbm=0.0676mW

Improvement

- 1. Use copper cover on thermometer to avoid being exposed in microwave;
- 2. Replace stainless steel by alloy (good electrical conductivity and bad thermal conductivity) to shorten the penetration depth in Coaxial cable;

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$

n pedance, ohms	50+/-1			
Frequency Range GHz	DC-61			
Velocity of Propagation %	70			
Capacitance. pF/ft. (pF/meter)	29 (95.2)			
Typical Insertion Loss, dB/ft. (dB/meter)	Frequency	Insertion Loss	Power	
and Average Pow er Handling, Watts CW at 20 degrees Celsius and Sea level	0.5 GHz 1.0 GHz 5.0 GHz 10.0 GHz 20.0 GHz	0.14 (0.45) 0.20 (0.64) 0.46 (1.51) 0.67 (2.21) 1.00 (3.29)	169.5 118.7 50.9 34.9 23.7	
Corona Extinction Voltage, VRMS @ 60 Hz	1500			
Voltage Withstand, VRMS @ 60 Hz	5000			
ENVIRONMENTA	L CHARACTERIS	TICS		
Outer Conductor Integrity Temperature, Deg Celsius	150			
Maximum Operating Temperature, Deg Celsius	125			
MA	TERIALS			
Outer Conductor	90%Tin/10%Le	90%Tin/10%Lead Plated Copper		
Dielectric	PTFE			
Center Conductor	SPCW			
C	JTAWAY			

Work done in June

Adding another four coaxial wire for differential use;

Contact: Jie Zhang

- 100 times thermal shocks on the thermometer to make the behavior stable;
- Vacuum can made of 1266 epoxy (pumped to remove the bubble) in He3;

Amplitude modulation figured out and combined with differential method

- Apply amplitude modulation on microwave;
- 1V ~ 70% depth;
- $R = R_0 + \Delta R \sin \omega t$;
- $U = IR = I(R_0 + \Delta R sin\omega t);$
- Multiplication circuit within lock-in amplifier which extract reference frequency component $I\Delta R$

as long as integral time constant is set to be much larger than $\frac{-}{\omega}$ and current I is DC within approximation;

- Differential circuit $R = R_0 + \Delta R'$ $U = IR = I(R_0 + \Delta R');$
- Two methods combined:

$$f(t) = A(B) \sin \omega_1 t \sin \omega_2 t$$
, $\omega_1 \gg \omega_2$
differential: filter background noise;
AM: filter the asymmetry left in geometry;

Precision increased by 300 times with microwave level -15dbm ~ 10-100uW;

The first fail 06/25

- Heat flow coming from room temperature due to the fact that the probe was 0.7 inch too long, solved by removing the copper connector;
- Vacuum degree of the vacuum can was not good since too much mixture of soap and glycerol was glued to seal;
- Heat conduction from the sapphire crystal to the copper pillar was too good, solved by converting to the thin Manganin wire;
- R(T) was recorded;

Starting to see cyclotron resonance 06/29

• Response of thermometer as magnetic field is swept;

40GHZ 0dbm

0.62

0.60

-0.2 -0.1

0.1

B(T)

 Amplitude modulated only signal (the other thermometer was messed up) with microwave level down to -20dbm:

40GHz -5dbm

0.26

0.25

Attempt to see plasma coupling 06/30

 Background due to the thermometer influenced by magnetic field was too significant for single channel measurement;

13800 - 13800

Sample quality was not good and resulted in multiple peaks and shifting;

Attempt to see plasma coupling (continued)

 Visibility of the resonance peak was unstable (even after re-illumination) and frequency dependent;

Attempt to see spin resonance with DPPH 07/02

• **DPPH** is a common abbreviation for an organic chemical compound. It is a dark-colored crystalline powder composed of stable free-radical molecules. DPPH has two major applications, both in laboratory research: one is a monitor of chemical reactions involving radicals, most notably it is a common antioxidant assay, and another is a standard of the position and intensity of electron paramagnetic resonance signals.

Typical value:

g = 2.0036

28GHz/Tesla

1.5-4.7 Gauss line width

Possible reason: not enough DPPH powder; influence of GE vanish

0.2

350 400 450 500 550 600

Wavelength (nm)

Attempt to see spin resonance with GaAs (electrical) 07/05

- ESR peak can only be resolved in quantum hall region;
- Fail to recover the ESR peak;

 R_{xx} w/o microwave R_{xx} with microwave δR_{xx}

Fig. 1. Longitudinal resistance (ρ_{xx}) vs. magnetic field without microwave radiation (lower curve) and its change ($\Delta \rho_{xx}$) with microwave radiation (upper curve).

Fig. 2. ESR peaks observed in the $\Delta \rho_{xx}$ curves for various microwave frequencies.

Adapted from "Electron spin resonance and nuclear spin pumping in 2DEG quantum Hall system"

Future work

- Improve the setup with the other thermometer;
- Calibration;
- Try on graphene and carbon nanotube;