1)

a. Time series plot

b. This time series plot exhibits a seasonal pattern with an upward trend.

c. Autocorrelation Function

Autocorrelations				
Lag	ACF	T	LBQ	
1	0.224179	2.33	5.58	
2	0.011058	0.11	5.59	
3	0.092695	0.92	6.57	
4	0.185805	1.83	10.51	
5	0.099326	0.95	11.65	
6	0.067212	0.64	12.17	
7	0.086796	0.82	13.06	
8	0.152932	1.43	15.84	
9	0.044287	0.41	16.07	
10	-0.067845	-0.62	16.63	
11	0.121508	1.11	18.44	
12	0.831281	7.52	103.95	
24	0.682681	4.21	178.58	
36	0.543957	2.88	233.68	
48	0.421836	2.05	279.19	
60	0.324552	1.50	323.46	

ACF cuts off at lag 1 in non-seasonal area and ACF cuts off at lag 4 in seasonal area. Therefore, this series is non-stationary.

d. ACF Cuts off at non-seasonal lag 1 and ACF cuts off at seasonal lag 4. In seasonal area it is a slowly dies down pattern.

Therefore, this series is non-stationary.

We have to do a seasonal difference to convert this series into stationary.

e. Seasonal Difference

Autocorrelations					
Lag	ACF	T	LBQ		
1	0.225433	2.21	5.03		
2	0.342243	3.19	16.76		
3	0.379609	3.22	31.33		
4	0.289741	2.23	39.92		
5	0.344255	2.52	52.17		
6	0.316794	2.18	62.66		
7	0.168239	1.10	65.65		
8	0.239054	1.55	71.76		
9	0.370205	2.34	86.58		
10	0.123834	0.74	88.26		
11	0.318828	1.90	99.51		
12	0.078582	0.45	100.20		
24	0.080351	0.39	166.11		
36	-0.087838	-0.42	179.81		
48	-0.247308	-1.11	238.40		
60	-0.099170	-0.42	306.83		

There is a slowly dies down pattern in non-seasonal area.

Therefore, this series is non-stationary.

We have to do a trend difference to convert this series into stationary series.

Trend Difference

Autocorrelations

Lag	ACF	T	LBQ
1	-0.701880	-6.80	47.80
2	0.205454	1.41	51.94
3	0.048109	0.32	52.17
4	-0.103466	-0.70	53.24
5	0.061590	0.41	53.63
6	0.047930	0.32	53.87
7	-0.076535	-0.51	54.47
8	-0.076962	-0.51	55.09
9	0.274547	1.82	63.10
10	-0.372630	-2.39	78.01
11	0.380738	2.31	93.77
12	-0.298435	-1.71	103.58
24	0.051828	0.27	134.20
36	-0.173278	-0.79	206.99
48	-0.064183	-0.27	258.31
60	0.106454	0.44	303.06

ACF cuts off at non-seasonal lag 1 and other significant values in non-seasonal area, we can consider these values as spike values.

Therefore, this series is stationary.

f.

	Partial Autocorrelations		
Lag	PACF	T	
1	-0.701880	-6.80	
2	-0.566028	-5.49	
3	-0.357727	-3.47	
4	-0.315445	-3.06	
5	-0.323551	-3.14	
6	-0.109703	-1.06	
7	0.124568	1.21	
8	-0.186622	-1.81	
9	0.075105	0.73	
10	-0.185933	-1.80	
11	0.097970	0.95	
12	0.019924	0.19	
24	0.120823	1.17	
36	0.079547	0.77	
48	0.023461	0.23	
60	-0.022646	-0.22	

PACF cuts of at non-seasonal lag 5.

g. Tentative model

 $\begin{array}{ll} p = \text{ cuts off lag value in PACF in non-seasonal} &= 0 \\ d = \text{ no. of trend differences} &= 1 \\ q = \text{ cuts off lag value in ACF in non-seasonal} &= 1 \\ P = \text{ cuts off lag value in PACF in seasonal} &= 0 \\ D = \text{ no. of seasonal differences} &= 1 \\ Q = \text{ cuts off lag value in ACF in seasonal} &= 0 \\ S = \text{ seasonal length} &= 12 \end{array}$

Tentative model SARIMA $(0,1,1)(0,1,0)_{12}$

h. Final Estimates of Parameters

Type	Coef	SE CoeF	T-Value	P-Value
MA 1	0.9207	0.0398	23.14	0.000
Constant	4.74	2.40	1.98	0.051

Significance of the parameters,

 H_0 : all coefficient = 0 H_1 : all coefficient $\neq 0$

p- values < 0.05

Therefore, null hypothesis is rejected.

Therefore, we do not have to revised the model.

i. Randomness of the residuals

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi- Square	22.09	36.67	71.39	100.47
DF	10	22	34	46
P- Value	0.015	0.026	0.000	0.000

j. .

k. Normality of the residuals

1. Final model for the dataset. SARIMA $(0,1,1)(0,1,0)_{12}$