Problem Statement

we have to perform the models. And predict the which model is best fit and best accuracy for flightprice dataset

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```

In [2]:

train_df=pd.read_csv(r"C:\Users\shaha\OneDrive\Desktop\Excel\Copy of Data_Train.csv")
train_df

Out[2]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Dura
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR ? DEL	22:20	01:10 22 Mar	2h
1	Air India	1/05/2019	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h
2	Jet Airways	9/06/2019	Delhi	Cochin	DEL ? LKO ? BOM ? COK	09:25	04:25 10 Jun	
3	IndiGo	12/05/2019	Kolkata	Banglore	CCU ? NAG ? BLR	18:05	23:30	5h
4	IndiGo	01/03/2019	Banglore	New Delhi	BLR ? NAG ? DEL	16:50	21:35	4h
10678	Air Asia	9/04/2019	Kolkata	Banglore	CCU ? BLR	19:55	22:25	2h
10679	Air India	27/04/2019	Kolkata	Banglore	CCU ? BLR	20:45	23:20	2h
10680	Jet Airways	27/04/2019	Banglore	Delhi	BLR ? DEL	08:20	11:20	
10681	Vistara	01/03/2019	Banglore	New Delhi	BLR ? DEL	11:30	14:10	2h
10682	Air India	9/05/2019	Delhi	Cochin	DEL ? GOI ? BOM ? COK	10:55	19:15	8h
10600		1 001,1000						

10683 rows × 11 columns

In [3]:

 $test_df=pd.read_csv(r"C:\Users\shaha\0neDrive\Desktop\202U1A0597\Test_set.csv")\\ test_df$

Out[3]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Durat
0	Jet Airways	6/06/2019	Delhi	Cochin	DEL ? BOM ? COK	17:30	04:25 07 Jun	10h 5
1	IndiGo	12/05/2019	Kolkata	Banglore	CCU ? MAA ? BLR	06:20	10:20	
2	Jet Airways	21/05/2019	Delhi	Cochin	DEL ? BOM ? COK	19:15	19:00 22 May	23h 4
3	Multiple carriers	21/05/2019	Delhi	Cochin	DEL ? BOM ? COK	08:00	21:00	
4	Air Asia	24/06/2019	Banglore	Delhi	BLR ? DEL	23:55	02:45 25 Jun	2h 5
2666	Air India	6/06/2019	Kolkata	Banglore	CCU ? DEL ? BLR	20:30	20:25 07 Jun	23h 5
2667	IndiGo	27/03/2019	Kolkata	Banglore	CCU ? BLR	14:20	16:55	2h 3
2668	Jet Airways	6/03/2019	Delhi	Cochin	DEL ? BOM ? COK	21:50	04:25 07 Mar	6h 3
2669	Air India	6/03/2019	Delhi	Cochin	DEL ? BOM ? COK	04:00	19:15	15h 1
2670	Multiple carriers	15/06/2019	Delhi	Cochin	DEL ? BOM ? COK	04:55	19:15	14h 2
2671 r	rows x 10) columns						

2671 rows × 10 columns

◆

In [4]:

train_df.head()

Out[4]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR ? DEL	22:20	01:10 22 Mar	2h 50m
1	Air India	1/05/2019	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 25m
2	Jet Airways	9/06/2019	Delhi	Cochin	DEL ? LKO ? BOM ? COK	09:25	04:25 10 Jun	19h
3	IndiGo	12/05/2019	Kolkata	Banglore	CCU ? NAG ? BLR	18:05	23:30	5h 25m
4	IndiGo	01/03/2019	Banglore	New Delhi	BLR ? NAG ? DEL	16:50	21:35	4h 45m
4								•

In [5]:

train_df.tail()

Out[5]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Dura
10678	Air Asia	9/04/2019	Kolkata	Banglore	CCU ? BLR	19:55	22:25	2h
10679	Air India	27/04/2019	Kolkata	Banglore	CCU ? BLR	20:45	23:20	2h
10680	Jet Airways	27/04/2019	Banglore	Delhi	BLR ? DEL	08:20	11:20	
10681	Vistara	01/03/2019	Banglore	New Delhi	BLR ? DEL	11:30	14:10	2h
10682	Air India	9/05/2019	Delhi	Cochin	DEL ? GOI ? BOM ? COK	10:55	19:15	8h
4								•

In [6]:

test_df.head()

Out[6]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration
0	Jet Airways	6/06/2019	Delhi	Cochin	DEL ? BOM ? COK	17:30	04:25 07 Jun	10h 55m
1	IndiGo	12/05/2019	Kolkata	Banglore	CCU ? MAA ? BLR	06:20	10:20	4h
2	Jet Airways	21/05/2019	Delhi	Cochin	DEL ? BOM ? COK	19:15	19:00 22 May	23h 45m
3	Multiple carriers	21/05/2019	Delhi	Cochin	DEL ? BOM ? COK	08:00	21:00	13h
4	Air Asia	24/06/2019	Banglore	Delhi	BLR ? DEL	23:55	02:45 25 Jun	2h 50m
4								•

In [7]:

test_df.tail()

Out[7]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratic
2666	Air India	6/06/2019	Kolkata	Banglore	CCU ? DEL ? BLR	20:30	20:25 07 Jun	23h 55
2667	IndiGo	27/03/2019	Kolkata	Banglore	CCU ? BLR	14:20	16:55	2h 35
2668	Jet Airways	6/03/2019	Delhi	Cochin	DEL ? BOM ? COK	21:50	04:25 07 Mar	6h 35
2669	Air India	6/03/2019	Delhi	Cochin	DEL ? BOM ? COK	04:00	19:15	15h 15
2670	Multiple carriers	15/06/2019	Delhi	Cochin	DEL ? BOM ? COK	04:55	19:15	14h 20
4								•

In [8]:

train_df.shape

Out[8]:

(10683, 11)

In [9]:

test_df.shape

Out[9]:

(2671, 10)

In [10]:

train_df.describe()

Out[10]:

	Price
count	10683.000000
mean	9087.064121
std	4611.359167
min	1759.000000
25%	5277.000000
50%	8372.000000
75%	12373.000000
max	79512.000000

In [11]:

test_df.describe()

Out[11]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Dura
count	2671	2671	2671	2671	2671	2671	2671	2
unique	11	44	5	6	100	199	704	
top	Jet Airways	9/05/2019	Delhi	Cochin	DEL ? BOM ? COK	10:00	19:00	2h
freq	897	144	1145	1145	624	62	113	
4								•

In [12]:

```
train_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Airline	10683 non-null	object
1	Date_of_Journey	10683 non-null	object
2	Source	10683 non-null	object
3	Destination	10683 non-null	object
4	Route	10682 non-null	object
5	Dep_Time	10683 non-null	object
6	Arrival_Time	10683 non-null	object
7	Duration	10683 non-null	object
8	Total_Stops	10682 non-null	object
9	Additional_Info	10683 non-null	object
10	Price	10683 non-null	int64

dtypes: int64(1), object(10)
memory usage: 918.2+ KB

In [13]:

test_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2671 entries, 0 to 2670
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Airline	2671 non-null	object
1	Date_of_Journey	2671 non-null	object
2	Source	2671 non-null	object
3	Destination	2671 non-null	object
4	Route	2671 non-null	object
5	Dep_Time	2671 non-null	object
6	Arrival_Time	2671 non-null	object
7	Duration	2671 non-null	object
8	Total_Stops	2671 non-null	object
9	Additional_Info	2671 non-null	object

dtypes: object(10)
memory usage: 208.8+ KB

In [14]:

```
train_df.isnull().sum()
```

Out[14]:

Airline 0 Date_of_Journey 0 Source 0 Destination 0 Route 1 0 Dep_Time Arrival_Time 0 Duration 0 Total_Stops 1 Additional_Info 0 Price 0 dtype: int64

In [15]:

```
test_df.isnull().sum()
```

Out[15]:

Airline 0 Date_of_Journey 0 Source 0 Destination 0 Route 0 Dep_Time 0 Arrival_Time 0 Duration 0 Total_Stops 0 Additional_Info 0 dtype: int64

Removing null values in Train dataset

In [16]:

```
train_df.dropna(inplace=True)
```

In [17]:

```
train_df.isnull().sum()
```

Out[17]:

Airline 0 Date_of_Journey 0 Source 0 Destination 0 Route 0 Dep_Time 0 Arrival_Time 0 Duration 0 Total_Stops 0 Additional_Info 0 Price 0 dtype: int64

In [18]:

```
sns.pairplot(train_df)
```

Out[18]:

<seaborn.axisgrid.PairGrid at 0x125ee37afe0>

Converting string into numerical values

In [19]:

```
train_df['Airline'].value_counts()
```

Out[19]:

Airline	
Jet Airways	3849
IndiGo	2053
Air India	1751
Multiple carriers	1196
SpiceJet	818
Vistara	479
Air Asia	319
GoAir	194
Multiple carriers Premium economy	13
Jet Airways Business	6
Vistara Premium economy	3
Trujet	1
Name: count, dtype: int64	

In [20]:

Out[20]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Durat
0	1	24/03/2019	Banglore	New Delhi	BLR ? DEL	22:20	01:10 22 Mar	2h ŧ
1	2	1/05/2019	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 2
2	0	9/06/2019	Delhi	Cochin	DEL ? LKO ? BOM ? COK	09:25	04:25 10 Jun	
3	1	12/05/2019	Kolkata	Banglore	CCU ? NAG ? BLR	18:05	23:30	5h 2
4	1	01/03/2019	Banglore	New Delhi	BLR ? NAG ? DEL	16:50	21:35	4h 4
10678	6	9/04/2019	Kolkata	Banglore	CCU ? BLR	19:55	22:25	2h 3
10679	2	27/04/2019	Kolkata	Banglore	CCU ? BLR	20:45	23:20	2h 3
10680	0	27/04/2019	Banglore	Delhi	BLR ? DEL	08:20	11:20	
10681	5	01/03/2019	Banglore	New Delhi	BLR ? DEL	11:30	14:10	2h 4
10682	2	9/05/2019	Delhi	Cochin	DEL ? GOI ? BOM ? COK	10:55	19:15	8h 2
	_							

10682 rows × 11 columns

localhost:8889/notebooks/FlightPricePrediction.ipynb

In [21]:

```
train_df['Source'].value_counts()
```

Out[21]:

Source

Delhi 4536 Kolkata 2871 Banglore 2197 Mumbai 697 Chennai 381

Name: count, dtype: int64

In [22]:

```
S={"Source":{"Delhi":1,"Kolkata":2,"Banglore":3,"Mumbai":4,"Chennai":5}}
train_df=train_df.replace(S)
train_df
```

Out[22]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratio
0	1	24/03/2019	3	New Delhi	BLR ? DEL	22:20	01:10 22 Mar	2h 50
1	2	1/05/2019	2	Banglore	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 25
2	0	9/06/2019	1	Cochin	DEL ? LKO ? BOM ? COK	09:25	04:25 10 Jun	1!
3	1	12/05/2019	2	Banglore	CCU ? NAG ? BLR	18:05	23:30	5h 25
4	1	01/03/2019	3	New Delhi	BLR ? NAG ? DEL	16:50	21:35	4h 45
10678	6	9/04/2019	2	Banglore	CCU ? BLR	19:55	22:25	2h 30
10679	2	27/04/2019	2	Banglore	CCU ? BLR	20:45	23:20	2h 35
10680	0	27/04/2019	3	Delhi	BLR ? DEL	08:20	11:20	;
10681	5	01/03/2019	3	New Delhi	BLR ? DEL	11:30	14:10	2h 40
10682	2	9/05/2019	1	Cochin	DEL ? GOI ? BOM ? COK	10:55	19:15	8h 20

10682 rows × 11 columns

In [23]:

```
train_df['Destination'].value_counts()
```

Out[23]:

Destination

Cochin 4536 Banglore 2871 Delhi 1265 New Delhi 932 Hyderabad 697 Kolkata 381

Name: count, dtype: int64

In [24]:

D={"Destination":{"Cochin":1,"Banglore":2,"Delhi":3,"New Delhi":4,"Hyderabad":5,"Kolkata
train_df=train_df.replace(D)
train_df

Out[24]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratio
0	1	24/03/2019	3	4	BLR ? DEL	22:20	01:10 22 Mar	2h 50
1	2	1/05/2019	2	2	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 25
2	0	9/06/2019	1	1	DEL ? LKO ? BOM ? COK	09:25	04:25 10 Jun	1!
3	1	12/05/2019	2	2	CCU ? NAG ? BLR	18:05	23:30	5h 25
4	1	01/03/2019	3	4	BLR ? NAG ? DEL	16:50	21:35	4h 45
10678	6	9/04/2019	2	2	CCU ? BLR	19:55	22:25	2h 30
10679	2	27/04/2019	2	2	CCU ? BLR	20:45	23:20	2h 35
10680	0	27/04/2019	3	3	BLR ? DEL	08:20	11:20	;
10681	5	01/03/2019	3	4	BLR ? DEL	11:30	14:10	2h 40
10682	2	9/05/2019	1	1	DEL ? GOI ? BOM ? COK	10:55	19:15	8h 2C

10682 rows × 11 columns

In [25]:

```
train_df['Total_Stops'].value_counts()
```

Out[25]:

Total_Stops
1 stop 5625
non-stop 3491
2 stops 1520
3 stops 45
4 stops 1

Name: count, dtype: int64

In [26]:

```
T={"Total_Stops":{"1 stop":1,"non-stop":0,"2 stops":2,"3 stops":3,"4 stops":4}}
train_df=train_df.replace(T)
train_df
```

Out[26]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratio
0	1	24/03/2019	3	4	BLR ? DEL	22:20	01:10 22 Mar	2h 50
1	2	1/05/2019	2	2	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 25
2	0	9/06/2019	1	1	DEL ? LKO ? BOM ? COK	09:25	04:25 10 Jun	1!
3	1	12/05/2019	2	2	CCU ? NAG ? BLR	18:05	23:30	5h 2ŧ
4	1	01/03/2019	3	4	BLR ? NAG ? DEL	16:50	21:35	4h 45
10678	6	9/04/2019	2	2	CCU ? BLR	19:55	22:25	2h 30
10679	2	27/04/2019	2	2	CCU ? BLR	20:45	23:20	2h 35
10680	0	27/04/2019	3	3	BLR ? DEL	08:20	11:20	;
10681	5	01/03/2019	3	4	BLR ? DEL	11:30	14:10	2h 40
10682	2	9/05/2019	1	1	DEL ? GOI ? BOM ? COK	10:55	19:15	8h 20

10682 rows × 11 columns

In [27]:

sns.displot(train_df['Price'])

Out[27]:

<seaborn.axisgrid.FacetGrid at 0x125ee379120>

In [28]:

```
sns.displot(train_df['Source'])
```

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x125f1858a90>

Linear Regression

In [29]:

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

In [30]:

```
x=train_df[['Airline','Source','Destination','Total_Stops']]
y=train_df['Price']
```

In [31]:

```
sns.heatmap(x.corr())
```

Out[31]:

<Axes: >

In [32]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)
```

In [33]:

```
regr = LinearRegression()
regr.fit(x_train,y_train)
print(regr.intercept_)
coeff_train_df=pd.DataFrame(regr.coef_,x.columns,columns=['coefficient'])
coeff_train_df
```

7980.6911780504215

Out[33]:

	coefficient
Airline	-418.483922
Source	-3275.073380
Destination	2505.480291
Total_Stops	3541.798053

In [34]:

```
score=regr.score(x_test,y_test)
print(score)
```

0.41083048909283437

In [35]:

```
predictions=regr.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[35]:

<matplotlib.collections.PathCollection at 0x125f1b75c90>

In [36]:

```
x=np.array(train_df['Price']).reshape(-1,1)
y=np.array(train_df['Total_Stops']).reshape(-1,1)
```

In [37]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(x_train,y_train)
regr.fit(x_test,y_test)
```

Out[37]:

```
LinearRegression
LinearRegression()
```

In [38]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='g')
plt.plot(x_test,y_pred,color='b')
plt.show()
```


Logistic Regression

In [39]:

```
from sklearn.linear_model import LogisticRegression
x=np.array(train_df['Price']).reshape(-1,1)
y=np.array(train_df['Destination']).reshape(-1,1)
train_df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)
lr=LogisticRegression(max_iter=100000)
import warnings
warnings.simplefilter(action='ignore')
```

In [40]:

```
lr.fit(x_train,y_train)
```

Out[40]:

```
LogisticRegression
LogisticRegression(max_iter=100000)
```

In [41]:

```
score=lr.score(x_test,y_test)
print(score)
```

0.431201248049922

In [42]:

```
sns.regplot(x=x,y=y,data=train_df,logistic=True,ci=None)
```

Out[42]:

<Axes: >

Decision Tree

In [43]:

```
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[43]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

```
In [44]:
```

```
score=clf.score(x_test,y_test)
print(score)
```

0.921996879875195

Random Forest

In [45]:

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[45]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [52]:

```
rf=RandomForestClassifier()
```

In [53]:

In [54]:

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring='accuracy')
grid_search.fit(x_train,y_train)
```

Out[54]:

```
► GridSearchCV

► estimator: RandomForestClassifier

► RandomForestClassifier
```

In [55]:

```
grid_search.best_score_
```

Out[55]:

0.8217206355693483

In [56]:

```
rf_best=grid_search.best_estimator_
print(rf_best)
```

RandomForestClassifier(max_depth=20, min_samples_leaf=5, n_estimators=30)

In [66]:

```
from sklearn.tree import plot_tree
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5],filled=True);
```


In [67]:

```
score=rfc.score(x_test,y_test)
print(score)
```

0.9213728549141965

Conclusion

From The Given Flight Price Dataset,we have performed on different models like Linear Regression,Logistic Regression,Random Forest,Decision Tree.By observing the score or model prediction in this models, In Decision Tree model got the best score and best accuracy.

In []: