1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт компьютерных наук Кафедра автоматизированных систем управления

Индивидуальное домашнее задание по дисциплине «Архитектура программных систем»

Студент АС-21-1		Болдырев М.Р.
	(подпись, дата)	
Руководитель		
Кандидат технических наук		Алексеев В.А.
	(полпись, лата)	

Липецк 2025 г.

Цель работы

Изучить подходы к документированию архитектуры программных систем, получить навыки документирования архитектуры на примере учебного проекта.

Задание

Сформулировать техническое задание на разработку программной системы, разработать документ «Архитектура программной системы» с использованием диаграмм UML, ER.

1. Техническое задание на программную систему

С каждым годом спрос на ІТ-специалистов стремительно растет: по данным Global Knowledge, к 2025 году мировой дефицит квалифицированных кадров в сфере программирования превысит 85 млн человек. Университеты цифровые активно внедряют инструменты ДЛЯ повышения образования, однако многие процессы — распределение курсов, проверка прогресса — остаются рутинными и затратными. заданий, контроль Онлайн-платформы становятся элементом обучения, ключевым НО существующие решения часто не учитывают специфику академических программ вузов и ограничены в возможностях персонализации.

Платформа CodeSphere обучение призвана автоматизировать программированию в университетах, обеспечивая гибкое управление курсами, мгновенную проверку кода и объективную оценку успеваемости. Система позволяет оптимизировать взаимодействие студентов преподавателей: вместо рутинной работы с документами и отчетами, преподаватели могут сосредоточиться на создании контента И индивидуальной поддержке учащихся, а студенты — на практическом освоении языков программирования в интерактивной среде.

Диаграмма вариантов использования представлена на рисунке 1.

Рисунок 1 - Диаграмма вариантов использования

2. Архитектура системы

2.1. Введение

ИС «Веб-система для поддержки проведения курсов по обучению программированию CodeSphere» реализуется виде веб-приложения. Приложение будет написано с использованием фреймворка Vue Js и языком программирования Javascript.

Логика серверной части системы будет реализована с использованием с языка программирования PHP.

В качестве СУБД выбрана PostgreSQL.

2.2. Логическое представление

Исходя из планируемого функционала рассмотрим логическое представление системы в виде системы меню пользователя.

Рисунок 2 - Логическое представление

2.3. Представление разработки

Программная система CodeSphere включает Frontend-часть, состоящую из слоя пользовательского интерфейса (UI). В качестве Backend используется сервер на РНР, отвечающий за образовательную логику: автоматическую проверку заданий, генерацию сертификатов, анализ прогресса студентов с применением ML-алгоритмов. PostgreSQL реализует функции СУБД для хранения данных курсов, пользователей, прогресса обучения, а также интегрирован сервисом авторизации. Взаимодействие компонентов c организовано через REST API: фронтенд отправляет запросы к бэкенду, который обрабатывает данные, взаимодействует с внешними АРІ (например, JDoodle Данная ДЛЯ выполнения кода) И возвращает результаты. декомпозиция системы на независимо разрабатываемые компоненты и взаимодействие этих компонентов представлено на рисунке 3.

Рисунок 3 - Независимо разрабатываемые компоненты и их взаимодействие

2.4. Представление развертывания

Рисунок 4 - Диаграмма развертывания

На рисунке 4 изображена диаграмма развертывания, которая предполагает, что Backend, Frontend, Apache и PostgreSQL будут располагаться на независимых серверах с целью повышения отказоустойчивости системы, а также модуль выполнения кода будет работать путем обращения к API JDoodle.

2.5. Представление данных

Рисунок 5 - Концептуальная модель базы данных

2.6. Ключевые сценарии

В таблице 1 представлены ключевые сценарии использования программной системы.

Таблица 1 - Ключевые сценарии

Действие	Логика обработки
Прохождение интерактивного задания по программированию	 Студент выбирает курс, урок и задание в личном кабинете. Приложение загружает описание задания, редактор кода и примеры тестов из базы данных PostgreSQL. Студент пишет код решения и нажимает кнопку «Отправить». Васкепо отправляет код через API JDoodle на выполнение, сравнивает результат с эталонными тестами. Система сохраняет результат проверки в PostgreSQL, обновляет прогресс студента. Студент видит оценку (успешно/ошибка)
Автоматическая генерация сертификата	 Студент завершает последний урок курса, выполнив все обязательные задания. Система проверяет прогресс студента в PostgreSQL (пройдено ≥ 90% материалов). Васкепо генерирует PDF-сертификат с данными студента, названием курса и подписью преподавателя. Сертификат сохраняется в личном кабинете студента. Студент может скачать сертификат или поделиться им в социальных сетях.
Анализ прогресса обучения (алгоритмы ML)	 Преподаватель открывает раздел «Аналитика» курса, выбирает параметры (группа, период, темы). Система запрашивает данные из PostgreSQL: результаты тестов, активность студентов, время выполнения заданий. Васкепо применяет МL-модель для

	выявления слабых мест студентов, формирования heatmap ошибок Преподаватель получает визуализацию: графики прогресса, рекомендации по адаптации курса, список студентов для индивидуальной работы.
Интерактивная обратная связь	 Студент оставляет комментарий к уроку через форму «Задать вопрос». Система сохраняет запрос в PostgreSQL и присваивает ему статус «Ожидает ответа». Преподаватель получает уведомление, просматривает вопрос, публикует ответ или прикрепляет дополнительные материалы. Студент видит ответ в личном кабинете и может продолжить обсуждение.
Регистрация студентов через куратора вуза	 Куратор вуза загружает файл с данными студентов (ФИО, email, специальность, ВУЗ) в систему. Васкепо валидирует данные, генерирует уникальные логины/пароли, сохраняет их в PostgreSQL. Система отправляет приветственные письма студентам с инструкцией по активации аккаунта. Студент подтверждает email, получает доступ к курсам, назначенным вузом.