作业 2

2023年3月18日

1. M 是一个非空集合,设 $I = \{(a,b) \mid a,b \in M\}$. 证明,M 的一个关系 决定了 I 的一个子集,I 的一个子集决定了 M 的一个关系,不同的关系决定了 I 的不同子集.

证明. 设 $I' \subseteq I$. 设 $aRb \implies (a,b) \in I'$, $a\bar{R}b \implies (a,b) \notin I'$. 那么对于任意 $a,b \in M$, 要么 aRb, 要么 $a\bar{R}b$, 因为 (a,b) 要么 $(a,b) \in I'$, 要么 $(a,b) \notin I'$. 这就是说, I' 确实定义了一个关系 R.

给定一个 I' 我们能够确定一个 R. $(a,b) \in I' \implies aRb, (a,b) \notin I' \implies a\bar{R}b.$ 这就确定了一个关系 R, 因为 (a,b) 要么 $(a,b) \in I'$, 要么 $(a,b) \notin I'$.

设有两个关系 $R_1 \neq R_2$. 那么存在 $(a,b) \in I$, 使得 $aR_1b, a\bar{R}_2b$ 成立, 或者 $a\bar{R}_1b, aR_2b$ 成立. 那么 R_1, R_2 分别确定的 I'_1, I'_2 一定不同因为 (a,b) 不会同时属于或者不属于 I'_1, I'_2

2. 设 $G = \{(a,b) \mid a,b \in \mathbb{R}, a \neq 0\}$, 且 \circ 的定义为 $(a,b) \circ (c,d) = (ac,ad+b)$ 证明 (G,\circ) 是一个群. 如果是其是群, 其是否为交换群?

证明.

$$(a,b) \circ ((c,d) \circ (e,f)) = (a,b) \circ (ce,cf+d)$$
$$= (ace,a(cf+d)+b)$$
$$= (ace,acf+ad+b)$$

而

$$((a,b) \circ (c,d)) \circ (e,f) = (ac,ad+b) \circ (e,f)$$
$$= (ace,acf+ad+b)$$

可以知道

$$((a,b)\circ(c,d))\circ(e,f)=(a,b)\circ((c,d)\circ(e,f))$$

即,。满足结合律,G 是半群,只需验证其具有左幺元和左逆元.明显,(1,0) 是左幺元.

$$\left(\frac{1}{c}, -\frac{d}{c}\right)(c, d) = \left(\frac{1}{c} \cdot c, \frac{1}{c} \cdot d + \left(-\frac{d}{c}\right)\right) = (1, 0)$$

故 $\left(\frac{1}{c}, -\frac{d}{c}\right)$ 是 (c, d) 的左逆元, 故 G 是群.

3. 证明群 $G + a, a^{-1}, cac^{-1}$ 的阶相等.

证明. 设 a 的阶为 n, $a^n = 1$ 因为

$$(a^{-1})^n a^n = (a^{-1})^{n-1} a^{-1} a a^{n-1}$$
$$= (a^{-1})^{n-1} 1 a^{n-1}$$
$$= \dots$$
$$= 1$$

故 $(a^{-1})^n = (a^n)^{-1} = 1^{-1} = 1, a^{-1}$ 的阶为 n.

$$(ca^{-1}c^{-1})^n = ca^{-1}c^{-1}ca^{-1}c^{-1}(ca^{-1}c^{-1})^{n-2}$$

$$= c(a^{-1})^2c^{-1}(ca^{-1}c^{-1})^{n-2}$$

$$= \dots$$

$$= c(a^{-1})^nc^{-1}$$

$$= c1c^{-1}$$

$$= 1$$

那么 $ca^{-1}c^{-1}$ 也是 n 阶的.

4. 设 a 是群 G 中的一个 n 阶群元, 证明

$$a^s = a^t \iff n \mid (s - t)$$

证明. "⇒": $a^s = a^t$ 可以推出 $a^{s-t} = 1$, 其中 a^{s-t} 定义为 $a^s(a^t)^{-1}$. 因为 a^{-1} 也是 n 阶元, 因此 s-t 大于零或者小于零的时候, 下面结论均成立: 根据 阶的定义, s-t 一定被 n 整除.

" \Leftarrow ": $n \mid (s-t)$,那么设 $s = k_1 n + c, t = k_2 n + c$,其中 $k_1, k_2, c \in \mathbb{Z}$,则

$$a^{s} = a^{k_{1}n+c} = a^{k_{1}n}a^{c} = a^{c} = a^{k_{2}n}a^{c} = a^{k_{2}n+c} = a^{t}$$