

HackOrbit2025

"Al for Safer Roads: Enhancing Human & Autonomous Traffic Awareness"

"Build an AI-powered system that not only recognizes traffic signs in real time, but also detects damaged and assists visually impaired or autonomous agents in navigating with awareness and context."

PROPOSED SOLUTION

- Real-Time Traffic Sign Detection & Classification
- Damage & Obstruction Detection
- Accessibility Support for Visually Impaired
- Context Awareness & Navigation Assistance
- Provide Output with 99.9% accuracy
- Robustness Testing

FLOWCHART / DIAGRAM

FLOWCHART / DIAGRAM

- Input Take input from the user in the form of image or video.
- Feature Extraction- After input it process image and Extract Feature.
- Color Segmentation In this step Color segmentation is done RGB to Grayscale image
- Sign Detection According to the used deep learning model we detect the which Traffic Sign is
- Provide Output It provide the output in the form of valid, invalid and damaged
- End user Output This is the final Output which is showed for user

Real-Time Sign Detection & Classification

Accurately detects and classifies various traffic signs from live camera input using advanced object detection models.

Damaged and Obstructed Sign Detection

Goes beyond standard detection by identifying broken, faded, tampered, or blocked traffic signs.

Context-Aware Navigation Assistance

Provides intelligent feedback based on GPS and camera feed — warns about missing or misplaced signs.

Audio Feedback for Visually Impaired Users

Converts detected signs into natural language and delivers spoken instructions in real time.

Model Robustness Under Real-World Conditions

Tests model performance on challenging conditions like rain, fog, blur, low light, and occlusion using synthetic augmentations.

Human + Machine Assistive Fusion

Combines traditional CV with assistive tech (TTS, audio cues) and autonomous navigation suppor

Model Accuracy in Edge Cases

Detection accuracy may drop significantly under poor lighting, heavy occlusion, extreme weather, of low-resolution input.

Dependence on Internet for LLM/TTS APIs

Real-time voice explanations and contextual reasoning may rely on internet connectivity unless offline models are integrated.

Hardware Limitations on Edge Devices

Running real-time object detection and audio feedback on low-end mobile or embedded devices can cause performance bottlenecks.

Multilingual or Uncommon Signs Handling

System may struggle with regional, hand-made, or non-standard traffic signs unless fine-tuned on diverse datasets.

Accessibility Delay in Noisy Environments

For visually impaired users, audio cues may be hard to hear in noisy or outdoor settings without proper haptics or alternative feedback.

Team - CoDev

Name of team members and their contact details

Prabhanshukamal Ahirwar (Mobile No. 9691848220) Vandana Arya (Mobile No. 8462025711) Vishakha Ahirwar (Mobile No. 8878058440)

#