כלל לייבניץ - נגזרת מתחת לסימן האינטגרל

 $x\in [a,b]$ לכל $F\left(x
ight)=\int_{c}^{d}f(x,t)\mathrm{dt}$ ונגדיר ונגדיר במלבן $\left[a,b
ight] imes\left[c,d
ight]$ מוגדרת במלבן משפט: תהא

- [a,b] ביפה במלבן (כפונקציה של שני משתנים) אז אז רציפה ב במלבן .1
 - רציפות במלבן אז $f, \frac{\partial f}{\partial x}$ קיימת ה $\frac{\partial f}{\partial x}$ גם בנוסף גם .2

$$\frac{\partial F}{\partial x}(x) = \frac{\partial}{\partial x} \int_{c}^{d} f(x, t) dt = \int_{c}^{d} \left[\frac{\partial}{\partial x} f(x, t) \right] dt$$

כלומר, מותר להחליף סדר גזירה ואינטגרציה.

$$G'(x) = \overbrace{f(x, d(x))d'(x) - f(x, c(x))c'(x)}^{fundamental\ theorem} + \overbrace{\int_{c(x)}^{d(x)} \left[\frac{\partial f}{\partial x}(x, t)\right] dt}^{part\ 2}$$

תרגיל 1:

F'(y) את חשבו את $F(y) = \int_1^2 \sin(ye^x) dx$ תהא

פתרון:

. נסמן ליבניץ. \mathbb{R}^2 ולכן ניתן להשתמש בכלל ליבניץ. הפונקציות $f, rac{\partial f}{\partial y}(x,y) = \cos(ye^x)e^x$ ואז ולכן ניתן להשתמש בכלל ליבניץ.

$$F'(y) = \frac{\partial}{\partial y} \left(\int_1^2 \sin(ye^x) d\mathbf{x} \right) = \int_1^2 \left(\frac{\partial}{\partial y} \sin(ye^x) \right) d\mathbf{x} = \int_1^2 \cos(ye^x) e^x d\mathbf{x}$$

אם $\frac{dt}{dx}=ye^x$ וואז $t=ye^x$ אז נסמן אז $t=ye^x$ אם הם $y\neq 0$ אם הילים ש

$$\int_{1}^{2} \cos(ye^{x})e^{x} dx = \frac{1}{y} \int_{1}^{2} \cos(ye^{x})ye^{x} dx = \frac{1}{y} \int_{ye^{1}}^{ye^{2}} \cos(t) dt = \frac{\sin(ye^{2}) - \sin(ye^{1})}{y}$$

הציפה אנחנו יודעים אנחנו יודעים .y=0 אנחנו ישירות עבור $y\neq 0$ אפשר ברור עבור עבור F'(y) רציפה הפונקציה רציפה $\cos(ye^x)e^x$ והפונקציה $F'(y)=\int_1^2\cos(ye^x)e^x$ המתאים.

:2 תרגיל

- y>0 כאשר $\int_0^1 x^y \mathrm{d} \mathrm{x}$ 1. חשבו את
- .2 מספרים טבעיים. $m\geq 1, n\geq 0$ כאשר כא $\int_0^1 x^m \ln^n(x) \mathrm{d} x$ את .2

פתרון:

$$\int_0^1 x^y dx = \frac{x^{y+1}}{y+1} \mid_{x=0}^1 = \frac{1}{y+1}$$
 .1

2. בשביל החלק השני, ננסה להשתמש בכלל לייבניץ. נשים לב תחילה ש $x^y=e^{\ln(x)y}$ היא פונקציה רציפה במלבן 2. בשביל החלק השני, ננסה להשתמש בכלל לייבניץ. נשים לב תחילה ש $\frac{\partial}{\partial y}(x^y)=\ln(x)x^y$ הנגזרת b>a>0 לכל ליבניץ נקבל b>a>0 לכל ליבניץ נקבל שאם אם $f(y)=\int_0^1 x^y \mathrm{d}x$

$$F'(y) = \int_0^1 \frac{\partial}{\partial y} (x^y) dx = \int_0^1 \ln(x) x^y dx$$
$$.F'(y) = \left(\frac{1}{1+y}\right)' = -\frac{1}{(1+y)^2}$$

נמשיך לגזור את שני הצדדים באינדוקציה (הוכיחו שהתנאי של כלל ליבניץ ממשיך להתקיים) ונקבל ש

$$\frac{\partial^{(m)}}{\partial y^{(m)}}(x^y) = \ln^m(x)x^y ; \left(\frac{1}{1+y}\right)^{(m)} = (-1)^m \frac{m!}{(1+y)^{m+1}}$$
$$(-1)^m \frac{m!}{(1+y)^{m+1}} = F^{(m)}(y) = \int_0^1 \frac{\partial^{(m)}}{\partial y^{(m)}}(x^y) dx = \int_0^1 \ln^m(x)x^y dx$$

 $(-1)^m \frac{m!}{(1+n)^{m+1}} = \int_0^1 \ln^m(x) x^n \mathrm{d}x$ בפרט, ע"י הצבה y=n נקבל ש

תרגיל 3:

 $\int_0^1 rac{t^2-1}{\ln(t)} \mathrm{d} t$ חשבו את

x>0 לכל $F(x)=\int_0^1 rac{t^x-1}{\ln(t)}\mathrm{d}t$ לכל ששווה ל

פתרון:

הרעיון: נגזור תחילה את F(x) לפי x ונקווה לקבל פונקציה שקל למצוא את הפונקציה הקדומה שלה. הרעיון: נגזור תחילה שאף על פי ש $\frac{t^x-1}{\ln(t)}$ אינה מוגדרת בt=0,1, כן יש לה גבולות שם ולכן נגדיר

$$f(x,t) = \begin{cases} 0 & t = 0\\ \frac{t^x - 1}{\ln(t)} = \frac{e^{\ln(t)x} - e^0}{\ln(t)x - 0}x & 0 < t < 1\\ x & t = 1 \end{cases}$$

אם הכל עובד כמו שצריך אז לכל x>0 נקבל ש

$$F'(x) = \int_0^1 \frac{\partial f}{\partial x}(x, t) dt = \int_0^1 t^x dt = \frac{t^{x+1}}{x+1} \Big|_0^1 = \frac{1}{x+1}$$

ולכן מקבלים ש $F(0)=\ln(1+\alpha)+C$ אם היה מותר לנו להציב x=0 אז נקבל ש $F(x)=\ln(1+\alpha)+C$ אם היה מותר לנו להציב x=0 אז נקבל שx=0 מוכל בפנים שלו, אבל הפונקציה x=0 לאיבניץ בx=0 צריך רציפות במלבן שx=0 מוכל בפנים שלו, אבל הפונקציה x=0 לאיבנים שם כי לכל x=0 שלילי נקבל שx=0 ביים x=0 ווער במלבו שx=0 שלילי נקבל שx=0 שלילי נקבל שלילי שלילי שלילי נקבל שלילי שלילי

נבדוק את התנאים למשפט. יהיו $a,b] \times [0,1]$ ונסתכל על המלבן ווסתכל a < b רציפה במלבן, רציפה ונדוק את התנאים למשפט. יהיו $a,b] \times [0,1]$ ונסתכל על המלבן ווסתכל על המלבן ווסתכל על המלבן. t=0,1

- $(t^x-1)\cdot rac{1}{\ln(t)}$ אז רציפה באפס, אז רציפות שליקה יש נקודת אי רציפות וול (כמו תרגיל קודם) ול נמו תרגיל $rac{1}{\ln(t)}$ יש נקודת אי רציפות סליקה באפס, אז t^x רציפה ב $(x_0,0)$ לכל $(x_0,0)$ כמכפלה של רציפות.

$$g(t) = g(1) + g'(1)(t-1) + \frac{g'(c_{t,x})}{2!}(t-1)^{2}$$

$$= 1 + x(t-1) + \frac{x(x-1)c_{t,x}^{x-2}}{2!}(t-1)^{2} \qquad c_{t} \in [t,1]$$

 $(x,t)\in[a,b]\times\left[rac{1}{2},1
ight]$ לכל $\left|\frac{x(x-1)c_{t,x}^{x-2}}{2!}
ight|< M$ כך ש M כך ש M כך שליים לב שקיים קבוע $\ln(t)$ באותה ערה, הפיתוח של $\ln(t)$ כל $t^x-1=x(t-1)+\eta_1(t,x)(t-1)^2$ באותה בורה, הפיתוח של $\ln(t)$ באותה $\ln(t)$ אם נבחר $\ln(t)$ באותה $\ln(t)$ אם נבחר $\ln(t)$ באותה $\ln(t)$ באותה ערה בחר $\ln(t)$ באותה ערה מספיק. סה"כ מקבלים

$$\frac{t^{x}-1}{\ln(t)} = \frac{x(t-1) + \eta_{1}(t,x) \cdot (t-1)^{2}}{(t-1) + \eta_{2}(t,x) \cdot (t-1)^{2}} = \frac{x + \eta_{1}(t,x) \cdot (t-1)}{1 + \eta_{2}(t,x) \cdot (t-1)}$$

 $(x,t) o (x_0,1)$ מאחר ו x_0 כאשר הוא x מלא תלות בx, אז קל לראות שהגבול הוא η_1,η_2 ומאחר ו

0 < a' < b' קיבלנו שהתנאים של המשפט נכונים ולכך $F(x) = \ln(1+x) + C$ ב $F(x) = \ln(1+x) + C$ נשים לב שאם ניקח קיימת $x_0 \in [a,b] \cap [a',b']$ ב $F(x) = \ln(1+x) + C'$ אז נקבל ש $F(x) = \ln(1+x) + C'$ ב $F(x) = \ln(1+x) + C'$ מכאן נקבל ש $F(x) = \ln(1+x) + C'$ ב $F(x) = \ln(1+x) + C'$ מכאן נקבל ש $F(x) = \ln(1+x) + C'$ ב $F(x) = \ln(1+x) + C'$ נותרה הבעיה של הצבה $F(x) = \ln(1+x) + C'$ ב שיטות:

1. לפי הגדרה (0,0) שכולל את (0,0) במלבן f(x,t) רציפה במלבן f(x,t) כאשר במלבן f(x,t) לכן הסיבה היא שבעוד f(x,t) לכן הפונקציה בער הונקציה $(x,t) \to (0,0)$, היא כן חסומה שם ולכן $(x,t) \to (0,0)$ כאשר בעיפה על יש אי רציפות ב $(x,t) \to (0,0)$, היא כן חסומה שם ולכן $(x,t) \to (0,0)$ כאשר לבער הפונקציה בער היא כן היא כן חסומה שם ולכן $(x,t) \to (0,0)$ בעיפה ב $(x,t) \to (0,0)$ ונקבל ש

$$F(0) = \lim_{x \to 0} F(x) = \lim_{x \to 0} (\ln(1+x) + C) = \ln(1) + C = C$$

$$F(0) = \int_0^1 \frac{t^0 - 1}{\ln(t)} dt = \int_0^1 0 dt = 0$$

.C=0 ולכן נקבל שבאמת

- בצורה שונה. $\lim_{x \to 0} F(x) = 0$ את בצורה שונה. 2
 - $\left. \left| F\left(x\right) \right|
 ightarrow 0$ ש מספיק להראות א
- $\left. \cdot \middle| \int_0^1 rac{t^x-1}{\ln(t)} \mathrm{d} t \right| \leq \int_0^1 \left| rac{t^x-1}{\ln(t)} \middle| \mathrm{d} t o 0 \;$ ם מספיק להראות ש
- $t^x-1\sim x(t-1)$ לפונקציה יותר פשוטה כדי שנקבל חסם טוב. אנחנו כבר יודעים ש t^x-1 לפונקציה יותר פשוטה כדי שנקבל חסם טוב. אנחנו בריכים חסם טוב עבור וואנחנו בריכים חסם טוב עבור $t\sim 1$ ואנחנו בריכים חסם טוב עבור וואנחנו בריכים חסם טוב עבור וואנחנו במשתנה אחד וקל לבדוק ש t^x-1 מאחר ווואנחנו במשתנה אחד וקל לבדוק ש $t^x-1=e^{\ln(t)x}-1$ מאחר ווואנחנו במשתנה אחד וקל לבדוק ש $t^x-1=e^{\ln(t)x}-1$ מאחר ווואנחנו ביינוסף ביינוס ביינו

$$\int_{0}^{1} \left| \frac{t^{x} - 1}{\ln(t)} \right| dt = \int_{0}^{1} \frac{\left| e^{\ln(t)x} - 1 \right|}{\left| \ln(t) \right|} dt \le \int_{0}^{1} \frac{\left| \ln(t)x \right|}{\left| \ln(t) \right|} dt = \int_{0}^{1} x dt = x$$

 $\underset{x\rightarrow0}{\lim}F(x)=0$ ש נקבל נפרט ולכן $\left|F\left(x\right)\right|\leq x$ סה"כ קיבלנו ש