California State University Sacramento - Math 101

Quiz #7

Name: _____

- 1) Let $S = \{1, 2, 3, 4\}$ and $T = \{(x, y, z) : x, y, z \in S, x < z, y < z\}$. Determine |T|.
- 2) (a) Find the number of permutations of the 6 letters a, a, a, b, b, c.
- (b) Find the number of permutations of the multi-set $\{r_1 \cdot a_1, r_2 \cdot a_2, \dots, r_n \cdot a_n\}$.
- 3) Let $M = \{\infty \cdot a_1, \infty \cdot a_2, \dots, \infty \cdot a_n\}$. Let H_r^n be the number of r-element multi-subsets of M. Give a formula for H_r^n .
- 4) Show, using algebra, that for $n \geq r \geq 1$,

$$\binom{n}{r} = \frac{n-r+1}{r} \binom{n}{r-1}.$$

- **5)** Let $A = \{a, b, c\}$ and $B = \{u, v, x, y, z\}$.
- (a) Find the number of ordered pairs of the form (α, β) where $\alpha \in A$ and $\beta \in B$.
- (b) Find the number of ordered pairs of the form (A', B') where A' is a subset of A with two elements, and B' is a subset of B with three elements.
- (c) Find the number of 3-combinations of $A \cup B$.
- 6) Consider the matching shown below.

- (a) Find the number of ways to choose three edges from the matching.
- (b) Find the number of ways to choose exactly one endpoint (vertex) from every edge. For example, $\{a_1, b_2, b_3, a_4, b_5\}$ contains only one vertex from each edge.
- (c) Find the number of ordered pairs of the form (α, β) where α is an edge and β is a set of size 4 containing exactly one vertex from the four edges not equal to α . For example, $(\{a_5, b_5\}, \{a_4, b_3, b_2, a_1\})$.
- (d) Find the number of subsets of size 5 from $\{a_1, \ldots, a_5, b_1, \ldots, b_5\}$ that contain exactly one edge.
- (e) Find the number of subsets of size 5 from $\{a_1, \ldots, a_5, b_1, \ldots, b_5\}$ that do not contain any of the edges.
- (f) Find the number of subsets of size 5 from $\{a_1, \ldots, a_5, b_1, \ldots, b_5\}$ that contain exactly two edges.