Décisions en temps réel

- En général, des décisions imparfaites doivent être prises en temps réel :
 - supposons qu'on a 60 secs pour réagir et que l'algorithme explore
 10⁴ nœuds/sec
 - cela donne 6*10⁵ nœuds à explorer par coup
- Approche standard :
 - couper la recherche :
 - » par exemple, limiter la profondeur de l'arbre
 - » voir le livre pour d'autres idées
 - fonction d'évaluation heuristique
 - » estimation de l'utilité qui aurait été obtenue en faisait une recherche complète
 - » on peut voir ça comme une estimation de la « chance » qu'une configuration mènera à une victoire

Exemple de fonction d'évaluation heuristique

 Pour le jeu d'échec, une fonction d'évaluation typique est une somme pondérée de features (caractéristiques) estimant la qualité de la configuration :

EVAL
$$(n) = w_1 f_1(n) + w_2 f_2(n) + ... + w_d f_d(n)$$

- Par exemple :
 - \diamond $w_1 = 9, f_1(n) = (number of white queens) (number of black queens)$
 - etc.

Exemple de fonction d'évaluation

Pour le tic-tac-toe, supposons que Max joue avec les X

EVAL(n) = (nb. de rangées, colonnes et diagonales disponibles pour Max) – (nb. de rangées, colonnes et diagonales disponibles pour Min)

$$EVAL(n) = 6 - 4 = 2$$

$$Eval(n) = 4 - 3 = 1$$

Généralisation aux actions aléatoires

- Par exemple, des jeux où on lance un dé pour déterminer la prochaine action
- **Solution :** on ajoute des nœuds chance, en plus des nœuds Max et Min
 - ces nouveaux nœuds calculs l'utilité moyenne pondérée de l'utilité de ses enfants (c.-à-d. l'utilité espérée)

Généralisation aux actions aléatoires

UTILITÉ(n) $\max_{n' \text{ successeur de } n} \min_{m \in \mathbb{N}} \max_{n' \in \mathbb{N}} \sum_{i=1}^{n} \min_{m \in \mathbb{N}} \max_{i \in \mathbb{N}} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$ MINIMAX-ESPÉRÉE(n) = $\min_{n' \text{ successeur de } n} \text{ minimax-espérée}(n')$ $\sum_{n' \text{ successeur de } n} P(n') * \text{ minimax-espérée}(n')$ Si n est nœud chance

Si *n* est un terminal Si *n* est un nœud Max Si *n* est un nœud Min

Hugo Larochelle et Froduald Kabanza