Project_3

April 23, 2020

1 Project 3

1.1 A

```
[77]: import pandas as pd
      import numpy as np
      import subprocess as sp
      sp.call('clear', shell = True)
      df = pd.DataFrame(np.array([[0.5,-1],[3.0,-1],[4.5,1],[4.6,1],[4.9,1],[5.
       \rightarrow 2, -1], [5.3, -1],
                         [5.5,1],[7.0,-1],[9.5,-1]]), columns = ['x','y'])
      #Standard Manhattan distance
      df['Distance'] = np.abs(df.iloc[:,0] - 5.0)
      df = df.sort_values(by = ['Distance']).reset_index()
      del(df['index'])
      neighbors = [1,3,5,9]
      labels = ["1-nn", "3-nn", "5-nn", "9-nn"]
      answers = []
      for neighbor in neighbors:
          sign = 0
          for i in range(neighbor):
              sign += df.loc[i,'y']
          if sign <0:</pre>
              answers.append(-1)
          else:
              answers.append(1)
      answers = pd.DataFrame(answers, index = labels, columns = ['Classification'])
      #Repeated with the Distance Weighting approach
      df['Weighted Distance'] = 1/np.square(np.abs(df.iloc[:,0] - 5.0))
      weighted_answers = []
      for neighbor in neighbors:
```

```
sign = 0
for i in range(neighbor):
    sign += df.loc[i,'y'] * df.loc[i,'Weighted Distance']
if sign < 0:
    weighted_answers.append(-1)
else:
    weighted_answers.append(1)
answers['Weighted Classification'] = np.asarray(weighted_answers)
display(df)
display(answers)</pre>
```

```
y Distance Weighted Distance
0 4.9 1.0
               0.1
                        100.000000
1 5.2 -1.0
               0.2
                         25.000000
              0.3
2 5.3 -1.0
                        11.111111
3 4.6 1.0
               0.4
                          6.250000
4 4.5 1.0
             0.5
                         4.000000
                         4.000000
5 5.5 1.0
             0.5
6 3.0 -1.0
             2.0
                         0.250000
              2.0
7 7.0 -1.0
                         0.250000
8 0.5 -1.0
              4.5
                         0.049383
9 9.5 -1.0
              4.5
                         0.049383
```

	Classification	Weighted	Classification
1-nn	1		1
3-nn	-1		1
5-nn	1		1
9-nn	-1		1

1.2 B

```
import pandas as pd
import numpy as np
import subprocess as sp
from pprint import pprint

sp.call('clear', shell = True)
#Functions for calculating variables in the program
#Calculate the updated probabilities each epoch
def probability_next(error,probability,classified):
    if classified == False:
        probability_next = probability/(2 * (error + epsilon))
    else:
        probability_next = probability/(2 * (1 - error + epsilon))
    return probability_next
#Calculate the weight for each individual model
```

```
def calculate_weight(error):
    #When error = 0, alpha is approximately 18, which is very large. And it_{\sqcup}
→ should be larger than the other weights, since that specific
    #model was perfect. However, I wrote this if statement when I thought an
→alpha as large as 18 might be skewing the results. I didn't
    #see any significant change in the final results, so I commented it out.
    #if error == 0:
        alpha = 2
        return alpha
    alpha = 0.5 * np.log((1 - error + epsilon)/(error + epsilon))
    return alpha
#Calculate the error each epoch
def calculate_error(probabilities):
    error = np.sum(probabilities)
    return error
#Calculate the entropy
def calculate_entropy(df):
    Class = df.keys()[-1]
    entropy = 0
    targets = df[Class].unique()
    for target in targets:
        probability = df[Class].value_counts()[target]/len(df[Class])
        entropy += -1 * probability*np.log2(probability)
    return entropy
```

```
#Below are functions I reused from Project 2. Each of them has been updated in
     #some way.
     #Finding the optimal splitting point for each level of the decision tree
     def choose_node(df,information_gain,splits):
         #Check if all instances have the same class. If they do, take the average
         #as the splitting point.
         uniques = df['Class'].nunique()
         if uniques == 1:
            split = df['x'].mean()
         else:
            for index in df.index:
                #Create a list of splits between the instances
                split = df.loc[index,'x'] + 0.01
                splits.append(split)
                #Dataframes to represent the child nodes created by each split
                child_1 = pd.DataFrame(df[df['x'] <= split])</pre>
                child_2 = pd.DataFrame(df[df['x'] > split])
                #Calculate entropy and save information gain to a list
```

```
weighted_average = (len(child_1)/len(df)) *__
 →calculate_entropy(child_1) + (len(child_2)/len(df)) * calculate_entropy(df)
            information_gain.append(1 - weighted_average)
        #Choose the splitting condition with the lowest entropy.
        split = splits[np.argmax(np.asarray(information gain))]
    return split
#Create a child node for each level of the decision tree.
def build_subtree(df,split,child):
    if child == 0:
        return df[df['x'] <= split].reset_index(drop = True)</pre>
    else:
        return df[df['x'] > split].reset_index(drop = True)
#Main function for building the decision tree
def build_decision_tree(df,tree = None):
    #Calculate the optimal splitting condition
    split = choose_node(df,information_gain = [],splits = [])
    children = [0,1]
    #Create the framework for a new subtree
    if tree is None:
        tree = {}
        tree[split] = {}
    #This checks if the current training set has the same instance for every
    #row. This only happens about 0.1% of the time, but causes problems once
    #the tree gets passed to the predict function.
    if df['x'].nunique() == 1:
        tree[split][children[0]] = df['Class'].max()
        tree[split][children[1]] = df['Class'].max()
        return tree
    #Decide what to construct for each of the node's children, a leaf or a
    #subtree
    for child in children:
        subtree = build_subtree(df,split,child)
        class_values,counts = np.unique(subtree['Class'],return_counts = True)
        if len(counts) == 1:
            tree[split][child] = class_values[0]
        else:
            tree[split][child ] = build_decision_tree(subtree)
    return tree
#Predict and instance's class using the constructed tree
def predict(inst,tree):
    for nodes in tree.keys():
```

```
#Determine which child node to select
    if inst['x'] <= nodes:</pre>
        value = 0
    else:
        value = 1
    #Take the value of whatever is on the current child node, whether it's
    #a leaf or subtree
    tree = tree[nodes][value]
    prediction = 0
    #Check if you've reached a leaf node or another subtree
    if type(tree) is dict:
        prediction = predict(inst, tree)
    else:
        prediction = tree
        break;
return prediction
```

In the choose_node function, my solution for all instances having the same class is different from the books. Rather than choosing the maximum or minimum split, I took the mean. That's because, later on in the build_decision_tree function, I split the list into two new dataframes, one containing values smaller than the split and one containing values larger. If I choose an extremum, I'll end up passing an empty dataframe back to the choose_node which then crashes at split = splits[np.argmax(np.asarray(information_gain))].

I chose 10 epochs. There's no trend in error as we add more since the datasets are independent of each other. Also, performing 20 and 100 epochs produced the same results.

```
[81]: #Here starts the main part for the program while epoch < epochs:
```

```
#Sample for new training data with the current set of probabilities
new_data_train = data_train.iloc[:,0:2].sample(
   n = len(data_train),
   replace = True,
    weights = data_train['Probabilities']).sort_values(
        by = ['x']).reset_index()
del new_data_train['index']
#Construct decision tree and save it to a dictionary
boosting_ensemble[epoch + 1] = {}
tree = build decision tree(new data train)
boosting_ensemble[epoch + 1] = tree
#Run the decision tree on the original data set and label each instance
#as to whether it was classified or not
data_train['Correctly Classified'] = np.zeros(shape = len(data_train))
#Run each instance through the prediction function
for index in data_train.index:
   predicted_class = predict(data_train.loc[index,:],tree)
    if data_train.loc[index,'Class'] == predicted_class:
        data_train.loc[index,'Correctly Classified'] = 1
    else:
        data_train.loc[index,'Correctly Classified'] = 0
#Calculate the error and break the loop if the model's error satisfies
#the stopping condition
error = calculate_error(
   data_train['Probabilities'][data_train['Correctly Classified'] == 0])
if error >= 0.5:
    print("Boosting Round ", epoch + 1, ". Error, ", error)
   break
#Calculate the weight for this model
model_weights.append(calculate_weight(error))
#Print original probabilities
print("\nBoosting Round ", epoch +1, "\nProbabilities:\n")
display(data_train[['x', 'Probabilities']])
#Update the probabilities
for index in data train.index:
    #Case where the instance was classified
    if data_train.loc[index,'Correctly Classified'] == 1:
        data_train.loc[index,'Probabilities'] = probability_next(
            error = error,
            probability = data_train.loc[index,'Probabilities'],
            classified = True)
```

```
#Case where the instance was misclassified
else:
    data_train.loc[index,'Probabilities'] = probability_next(
        error = error,
        probability = data_train.loc[index,'Probabilities'],
        classified = False)

#Printing the results
print("Training Data Set:\n")
display(new_data_train[['x']])
print("\nDecision Tree: ")
pprint(boosting_ensemble[epoch + 1], width = 1)
print("\nError: ", error)
print("Model Weight: ", model_weights[-1])
epoch += 1
```

Boosting Round 1 Probabilities:

	x	Probabilities
0	0.5	0.1
1	3.0	0.1
2	4.5	0.1
3	4.6	0.1
4	4.9	0.1
5	5.2	0.1
6	5.3	0.1
7	5.5	0.1
8	7.0	0.1
9	9.5	0.1

Training Data Set:

x 0 0.5 1 0.5 2 3.0 3 4.5 4 4.6 5 4.6 6 5.2 7 5.5 8 5.5

9 9.5

Error: 0.2

Model Weight: 0.693147180559945

Boosting Round 2 Probabilities:

	x	Probabilities
0	0.5	0.0625
1	3.0	0.0625
2	4.5	0.0625
3	4.6	0.0625
4	4.9	0.2500
5	5.2	0.0625
6	5.3	0.2500
7	5.5	0.0625
8	7.0	0.0625
9	9.5	0.0625

Training Data Set:

x
0 3.0
1 4.5
2 4.6
3 4.9
4 4.9
5 4.9
6 5.2
7 5.2
8 5.3
9 5.3

Decision Tree:

```
{4.91: {0: {3.01: {0: -1.0, 1: 1.0}}, 1: -1.0}}
```

Error: 0.0624999999999986

Model Weight: 1.3540251005511035

Boosting Round 3 Probabilities:

	х	Probabilities
0	0.5	0.033333
1	3.0	0.033333
2	4.5	0.033333
3	4.6	0.033333
4	4.9	0.133333
5	5.2	0.033333
6	5.3	0.133333
7	5.5	0.500000
8	7.0	0.033333
9	9.5	0.033333

Training Data Set:

x
0 3.0
1 4.5
2 4.9
3 5.3
4 5.3
5 5.3
6 5.5
7 5.5
8 7.0
9 9.5

Decision Tree:

{3.01: {0: -1.0, 1: {4.91: {0: 1.0, 1: {5.31: {0: -1.0, 1: {5.51: {0: 1.0, 1: -1.0}}}}}}

Error: 0.0

Model Weight: 18.021826694558577

Boosting Round 4 Probabilities:

```
x Probabilities
0 0.5
            0.016667
1 3.0
            0.016667
2 4.5
            0.016667
3 4.6
            0.016667
4 4.9
            0.066667
5 5.2
            0.016667
6 5.3
            0.066667
7 5.5
            0.250000
8 7.0
            0.016667
9 9.5
            0.016667
Training Data Set:
    Х
0 0.5
1 3.0
2 4.9
3 4.9
4 5.3
5 5.3
6 5.5
7 5.5
8 5.5
9 9.5
Decision Tree:
{3.01: {0: -1.0,
       1: {4.91: {0: 1.0,
                  1: {5.31: {0: -1.0,
                             1: {5.51: {0: 1.0,
                                       1: -1.0}}}}}}
Error: 0.0
Model Weight: 18.021826694558577
Boosting Round 5
Probabilities:
    x Probabilities
0 0.5
            0.008333
1 3.0
            0.008333
            0.008333
2 4.5
3 4.6
            0.008333
```

4 4.9

0.033333

```
      5
      5.2
      0.008333

      6
      5.3
      0.033333

      7
      5.5
      0.125000

      8
      7.0
      0.008333

      9
      9.5
      0.008333
```

Training Data Set:

x 0 3.0 1 4.9 2 4.9 3 4.9 4 4.9 5 5.2 6 5.3 7 5.5 8 5.5 9 7.0

Decision Tree:

```
{4.91: {0: {3.01: {0: -1.0,
1: 1.0}},
1: {5.31: {0: -1.0,
1: {5.51: {0: 1.0,
1: -1.0}}}}
```

Error: 0.0

Model Weight: 18.021826694558577

Boosting Round 6 Probabilities:

x	Probabilities
0.5	0.004167
3.0	0.004167
4.5	0.004167
4.6	0.004167
4.9	0.016667
5.2	0.004167
5.3	0.016667
5.5	0.062500
7.0	0.004167
9.5	0.004167
	0.5 3.0 4.5 4.6 4.9 5.2 5.3 5.5 7.0

Training Data Set:

```
x
0 0.5
1 4.9
2 5.2
3 5.3
4 5.3
5 5.5
6 5.5
7 5.5
8 5.5
9 5.5
```

Decision Tree:

```
{5.31: {0: {0.51: {0: -1.0,
1: {4.91: {0: 1.0,
1: -1.0}}}},
1: 1.0}}
```

Error: 0.01249999999999987

Model Weight: 2.1847239262335028

Boosting Round 7 Probabilities:

	x	Probabilities
0	0.5	0.002110
1	3.0	0.166667
2	4.5	0.002110
3	4.6	0.002110
4	4.9	0.008439
5	5.2	0.002110
6	5.3	0.008439
7	5.5	0.031646
8	7.0	0.166667
9	9.5	0.166667

Training Data Set:

x 0 3.0 1 3.0 2 3.0

```
3 3.0
```

4 4.6

5 5.3

6 7.0

7 7.0

8 9.5

9 9.5

Decision Tree:

{3.01: {0: -1.0,

1: -1.0}}}

Error: 0.040084388185653845

Model Weight: 1.5879292198922543

Boosting Round 8

Probabilities:

x Probabilities

0	0.5	0.001099

1 3.0 0.086813

2 4.5 0.001099

3 4.6 0.001099

4 4.9 0.105263

5 5.2 0.001099

6 5.3 0.004396

7 5.5 0.394737

8 7.0 0.086813

9 9.5 0.086813

Training Data Set:

X

0 3.0

1 3.0

2 3.0

3 3.0

4 5.5

5 5.5

6 5.5

7 5.5

8 7.0

9 9.5

Decision Tree:

 ${3.01: \{0: -1.0,}$

1: {5.51: {0: 1.0, 1: -1.0}}}

Error: 0.005494505494505481 Model Weight: 2.599248515632894

Boosting Round 9 Probabilities:

	x	Probabilities
0	0.5	0.000552
1	3.0	0.043646
2	4.5	0.000552
3	4.6	0.000552
4	4.9	0.052922
5	5.2	0.100000
6	5.3	0.400000
7	5.5	0.198459
8	7.0	0.043646
9	9.5	0.043646

Training Data Set:

x

0 3.0

1 3.0

2 5.2

3 5.3

4 5.3

5 5.3

6 5.3

7 5.5

8 5.5

9 5.5

Decision Tree:

{5.31: {0: -1.0,

1: 1.0}}

Error: 0.14132015120674435

Model Weight: 0.9021841289217212

```
Boosting Round 10 Probabilities:
```

```
x Probabilities
0 0.5
            0.000322
1 3.0
            0.025415
2 4.5
            0.001955
3 4.6
            0.001955
4 4.9
            0.187243
5 5.2
            0.058229
6 5.3
            0.232916
            0.115560
7 5.5
8 7.0
            0.154424
9 9.5
            0.154424
```

Training Data Set:

```
x
0 3.0
1 4.9
2 4.9
3 4.9
4 5.2
5 5.3
6 5.3
7 5.5
8 7.0
9 9.5
```

Decision Tree:

```
{3.01: {0: -1.0,

1: {4.91: {0: 1.0,

1: {5.31: {0: -1.0,

1: {5.51: {0: 1.0,

1: -1.0}}}}}}
```

Error: 0.0

Model Weight: 18.021826694558577

1.2.1 Running the Final Ensemble Model on the Training Set

```
[82]: ensemble_results = pd.DataFrame(np.zeros(shape = len(data_train)), columns = 

→['0'])
for tree in boosting_ensemble.keys():
```

```
ensemble_results[tree] = np.zeros(shape = len(data_train))
    for index in data_train.index:
        ensemble_results.loc[index,tree] = model_weights[tree - 1] * predict(
        data_train.loc[index,:],
        boosting_ensemble[tree])
del ensemble_results['0']
ensemble_results['Ensemble Results'] = np.zeros(shape = len(ensemble_results))
for index in ensemble results.index:
    ensemble_results.loc[index,'Ensemble Results'] = ensemble_results.
 →loc[index,:].sum()
    if ensemble_results.loc[index,'Ensemble Results'] > 0:
        ensemble_results.loc[index,'Ensemble Results'] = 1
    else:
        ensemble_results.loc[index,'Ensemble Results'] = -1
ensemble_results['True Class'] = data_train['Class']
ensemble_error = np.sum(ensemble_results['Ensemble Results'] -__
 →ensemble_results['True Class'])/(len(ensemble_results))
display(ensemble_results)
print("Ensemble Model Error on Original Training Set:", ensemble_error)
                                                                         7 \
          1
0 - 0.693147 - 1.354025 - 18.021827 - 18.021827 - 18.021827 - 2.184724 - 1.587929
1 - 0.693147 - 1.354025 - 18.021827 - 18.021827 - 18.021827 2.184724 - 1.587929
2 0.693147 1.354025 18.021827 18.021827 18.021827 2.184724 1.587929
3 0.693147 1.354025 18.021827 18.021827 18.021827 2.184724 1.587929
4 -0.693147 1.354025 18.021827 18.021827 18.021827 2.184724 -1.587929
5 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 -2.184724 -1.587929
6 0.693147 -1.354025 -18.021827 -18.021827 -18.021827 -2.184724 -1.587929
7 0.693147 -1.354025 18.021827 18.021827 18.021827 2.184724 -1.587929
8 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 2.184724 -1.587929
9 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 2.184724 -1.587929
         8
                              10 Ensemble Results True Class
0 -2.599249 -0.902184 -18.021827
                                              -1.0
                                                          -1.0
1 -2.599249 -0.902184 -18.021827
                                              -1.0
                                                          -1.0
2 2.599249 -0.902184 18.021827
                                                          1.0
                                              1.0
                                                           1.0
3 2.599249 -0.902184 18.021827
                                               1.0
4 2.599249 -0.902184 18.021827
                                              1.0
                                                          1.0
5 2.599249 -0.902184 -18.021827
                                             -1.0
                                                          -1.0
6 2.599249 -0.902184 -18.021827
                                             -1.0
                                                          -1.0
7 2.599249 0.902184 18.021827
                                              1.0
                                                          1.0
8 -2.599249 0.902184 -18.021827
                                             -1.0
                                                          -1.0
9 -2.599249 0.902184 -18.021827
                                             -1.0
                                                         -1.0
```

Ensemble Model Error on Original Training Set: 0.0

1.2.2 Results on the Test Data Set

```
[83]: data val = pd.DataFrame(
         np.arange(1,11,1),
         columns = ['x'])
     for tree in boosting_ensemble.keys():
         data_val[tree] = np.zeros(shape = len(data_val))
         for index in data_val.index:
             data_val.loc[index,tree] = model_weights[tree - 1] * predict(
                 data_val.loc[index,:],
                 boosting_ensemble[tree])
     data_val = data_val.set_index('x')
     data_val['Class'] = np.zeros(shape = len(data_val))
     for index in data_val.index:
         if data val.loc[index,:].sum() > 0:
             data_val.loc[index,'Class'] = 1
         else:
             data_val.loc[index,'Class'] = -1
     display(data_val)
               1
                                   3
                                             4
                                                        5
                                                                  6
                                                                           7 \
     Х
       -0.693147 -1.354025 -18.021827 -18.021827 -18.021827
                                                           2.184724 -1.587929
     1
     2 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827
                                                           2.184724 -1.587929
     3 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827
                                                           2.184724 -1.587929
       0.693147 1.354025 18.021827 18.021827 18.021827
                                                           2.184724 1.587929
     5 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 -2.184724 -1.587929
     7 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 2.184724 -1.587929
     8 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 2.184724 -1.587929
     9 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 2.184724 -1.587929
     10 -0.693147 -1.354025 -18.021827 -18.021827 -18.021827 2.184724 -1.587929
               8
                                  10 Class
     X
                                       -1.0
     1 -2.599249 -0.902184 -18.021827
     2 -2.599249 -0.902184 -18.021827
                                       -1.0
                                       -1.0
     3 -2.599249 -0.902184 -18.021827
     4
       2.599249 -0.902184 18.021827
                                       1.0
                                       -1.0
     5
        2.599249 -0.902184 -18.021827
                                       -1.0
     6 -2.599249 0.902184 -18.021827
                                       -1.0
     7 -2.599249 0.902184 -18.021827
     8 -2.599249 0.902184 -18.021827
                                       -1.0
     9 -2.599249 0.902184 -18.021827
                                       -1.0
     10 -2.599249 0.902184 -18.021827
                                       -1.0
```

Overall, good results. In the original data set, all the classes of "1" are concentrated around 4. One could argue that 6 was misclassified, since its closest value in the training set, 5.5, had a class of 1. However,...

In the code above, I create a new split by adding x = 0.01 to whatever the current instance is. In order for 6 to be picked up as having a class of "1" I would have to set x = 0.51. I tried this at the end of the project and found the change caused my build_decision_tree function to enter an infinite loop. I was doing more harm then good at that point so I quit and kept the version of the code that worked. Rather than creating special conditions to capture an odd classification, I think it's better to treat [5.5, 1] as an outlier and claim that 6 should have class "-1."

[]: