START OF QUIZ Student ID: 95507984,Li,Qihan

Topic: Lecture 6 Source: Lecture 6

In some ways, we could consider Beta distributions themselves to be an embedding of a topic. Explain, and explain how we might be able to leverage that. (2)

Topic: Lecture 5 Source: Lecture 5

Why can we represent a rank-m matrix as the sum of m rank-1 matrices *or* the product of an n x m matrix and an m x n matrix (ie, what is matrix multiplication doing that we can take advantage of?)? Explain. (2)

Topic: Lecture 6 Source: Lecture 6

Why don't we just use k-means to cluster document-vectors (sparse or dense)? (1)

Topic: Lecture 7 Source: Lecture 7

Define P@R. (1)

Topic: Lecture 8 Source: Lecture 8

Why don't we use a higher-order language model to perform IR? (1)

Topic: Lecture 7 Source: Lecture 7

Explain why boolean filtering is usually insufficient for retrieval, and why we normally need some way of scoring the documents. (2)

Topic: Lecture 8 Source: Lecture 8

What do we mean by interpolation? (1)

Topic: Lecture 5 Source: Lecture 5

What advantages do sparse vectors have over dense ones? (1)

Topic: Long

Source: Lecture 6

Imagine that we have a Beta distribution for each document, and a Theta distribution for each document. We are at the Maximization state of EM write a short function that calculates the probability of a document, given these distributions. Pay special attention to edge cases and special considerations... (3)

END OF QUIZ