Irreducibility

(i) For primitive polynomials, irreducibility in Z[x] = irred. in Q[x]

(2) Irred. in Z[X].

 $f(x) \in \mathbb{Z}[x]$ leading term not div by Pf(x) primitive & $f(x) \in \mathbb{Z}/p\mathbb{Z}[x]$ irreducible

=) f(x) is irreducible.

Pf: Say $f(x) = g(x) \cdot h(x)$ reduce mod p $\overline{f(x)} = \overline{g(x)} \cdot \overline{h(x)}$ trivial mod p $\overline{f(x)} = g(x) \cdot \overline{h(x)}$ original also trivial.

Cos (20°) satisfies EX: $cos(60^\circ) = 4 cos(20)^3 - 3 cos(20)$ $\frac{1}{3} = 4 \times^3 - 3 \times 4 \times^3 - 3 \times - \frac{1}{2} = 0$ $8x^{3} - 6x - 1 = 0$ mod 5 3x3-x-1 irreducible? (=) no nots? 0,1,2,3,4 None is a not

Warning: There are $f(x) \in \mathbb{Z}[x]$ which are reducible mod every p but irreducible in Z[X] 1

Thm (Eisenstein): Let $f(x) \in \mathbb{Z}[x]$ be such that a prime p does not divide the leading coeff of f, divides every other coeff, but p^2 does not divide the constant term., then f(x) is irreducible in $\mathbb{Z}[x]$.

EX: $X^{3}-5$ irreducible in $\mathbb{Z}[X]$ $\mathbb{Q}[X]$

Pf: Say $f(x) = g(x) \cdot h(x)$. & f(x) leading term not div by p.

Let's prove the constant term all oother div by p. $g(x) = g(x) \cdot h(x)$. & g(x) = g(x) with g(x) = g(x) and g(x) = $T(x) = g(x) \cdot h(x) \quad \text{in} \quad \mathbb{Z}/p_{\mathbb{Z}}[x]$ $C. \times^{n} \Rightarrow \overline{g(x)} = const. \times^{n} 0 \le m \le n$ $\overline{h(x)} = const. \times^{n-m}$ m=0 =) deg h(x) = n = deg f(x) = deg f(x)=) dg h(x) = n so g(x) is a constant. =) g(x). h(x) is a trivial factorisation. not possible. So m>0. similarly n-m>0

 $f(x) = g(x) \cdot h(x)$ $const \cdot x^{m} const \cdot x^{n-m}$ =) const. terms of g(x) & h(x) div by P. =) const. term of f(x) div. by p^2 factorisation. Constrains

Example
$$f(x) = x^{P-1} + x^{P^2} + \dots + x + 1 \in \mathbb{Q}(x)$$

$$= \frac{x^{P-1}}{x-1}$$

$$= \frac{x^{P-1}}{x-1}$$

$$= \frac{(x+1)^{P-1}}{x}$$

$$= (x^{P} + (P)x^{P-1} + (P)x^{P-2} + \dots + (P)x^{P}$$

$$= x^{P-1} + (P)x^{P-1} + (P)x^{P-2} + \dots + (P)x^{P-2}$$

$$= x^{P-1} + (P)x^{P-2} + \dots + (P)x^{P-2}$$

des 4 poly in Z[x] primitive. (Linear) x (cubic).

mod 5

(quadratic) x (qvadratic)