159 Formes linéaires et dualité en dimension finie. Exemples et applications.

Soit E un espace vectoriel sur un corps commutatif \mathbb{K} de dimension finie n.

I - Dual d'un espace vectoriel

1. Formes linéaires, espace dual

Définition 1. Une **forme linéaire** sur E est une application linéaire de E dans \mathbb{K} . L'espace $\mathcal{L}(E,\mathbb{K})$ formé par l'ensemble des formes linéaires sur E est appelé **dual** de E et est noté E^* .

[ROM21] p. 441

Exemple 2. — Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. Alors pour tout $j \in [1, n]$, la projection

$$p_j: \sum_{i=1}^n x_i e_i \mapsto x_j$$

est une forme linéaire.

— Toute combinaison linéaire de formes linéaires est une forme linéaire.

Remarque 3. Une forme linéaire non nulle sur *E* est surjective.

Définition 4. On appelle **hyperplan** de *E*, le noyau d'une forme linéaire non nulle sur *E*.

Proposition 5. (i) Un hyperplan de *E* est un sous-espace de *E* supplémentaire d'une droite.

(ii) Deux formes linéaires non nulles définissent le même hyperplan si et seulement si elles sont liées.

2. Bases duales

Définition 6. En reprenant les notations de la Exemple 2, les projections p_i sont les **formes linéaires coordonnées**. On note $\forall i \in [1, n]$, $p_i = e_i^*$. La famille $\mathscr{B}^* = (e_1, \dots, e_n)$ est appelée **base duale** de \mathscr{B} .

[**GOU21**] p. 133

Remarque 7. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Pour tout $i, j \in [1, n]$, on a

$$e_i^*(e_j) = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Théorème 8. Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. Alors, la base duale \mathscr{B}^* est une base de E^* .

Corollaire 9. (i) E^* est un espace vectoriel de dimension n.

(ii) Pour tout $\varphi \in E^*$, on a $\varphi = \sum_{n=1}^n \varphi(e_i) e_i^*$.

Corollaire 10. Tout hyperplan de E est de dimension n-1.

[**ROM21**] p. 446

Exemple 11. Soit $U \subseteq \mathbb{R}^n$ un ouvert. Soit $f: U \to \mathbb{R}$ différentiable en $a \in U$. Alors,

[**GOU20**] p. 325

$$\mathrm{d}f_a = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) e_i^*$$

où $(e_i^*)_{i\in \llbracket 1,n\rrbracket}$ est la base duale de la base canonique $(e_i)_{i\in \llbracket 1,n\rrbracket}$ de $\mathbb{R}^n.$

3. Bidual

Définition 12. On appelle **bidual** de E le dual E^* . On le note E^{**} .

[**GOU21**] p. 133

Exemple 13. Pour $x \in E$, l'application $\operatorname{ev}_x : \varphi \mapsto \varphi(x)$ est un élément de E^{**} .

Théorème 14. $x \mapsto \operatorname{ev}_x$ est un isomorphisme entre les espaces E et E^{**} .

Remarque 15. Cet isomorphisme est canonique : il ne dépend pas du choix d'une base de *E*.

Corollaire 16. Soit $(f_1, ..., f_n)$ une base de E^* . Il existe une unique base $(e_1, ..., e_n)$ de E telle que, pour tout $i \in [1, n]$, $e_i^* = f_i$.

Définition 17. En reprenant les notations précédentes, $(e_1, ..., e_n)$ est appelée **base antéduale** de $(f_1, ..., f_n)$.

Exemple 18. On suppose n = 3. Soient (e_1, e_2, e_3) une base de E et

$$f_1^* = 2e_1^* + e_2^* + e_3^*, f_2^* = -e_1^* + 2e_3^*, f_3^* = e_1^* + 3e_2^*$$

Alors, (f_1^*, f_2^*, f_3^*) est une base de E^* , dont une base antéduale est (f_1, f_2, f_3) où

$$f_1 = \frac{1}{13}(6e_1 - 2e_2 + 3e_3), f_2 = \frac{1}{13}(-3e_1 - e_2 + 5e_3), f_3 = \frac{1}{13}(-2e_1 + 5e_2 - e_3)$$

II - Orthogonalité au sens de la dualité

1. Orthogonal d'une partie, d'une famille

Définition 19. On dit qu'une forme linéaire $\varphi \in E^*$ et un vecteur $x \in E$ sont orthogonaux si $\varphi(x) = 0$.

[ROM21] p. 446

Définition 20. — L'orthogonal dans E^* d'une partie non vide X de E est l'ensemble

$$X^{\perp} = \{ \varphi \in E^* \mid \forall x \in X, \, \varphi(x) = 0 \}$$

— L'orthogonal dans E d'une partie non vide Y de E^* est l'ensemble

$$Y^{\circ} = \{x \in E \mid \forall \varphi \in Y, \varphi(x) = 0\}$$

Théorème 21. Soient A, B des parties non vides de E et U, V des parties non vides de E^* .

- (i) Si $A \subseteq B$, alors $B^{\perp} \subseteq A^{\perp}$.
- (ii) Si $U \subseteq V$, alors $V^{\circ} \subseteq U^{\circ}$.
- (iii) $A \subseteq (A^{\perp})^{\circ}$.
- (iv) $U \subseteq (U^{\circ})^{\perp}$.
- (v) $A^{\perp} = \operatorname{Vect}(A)^{\perp}$.
- (vi) $U^{\circ} = \text{Vect}(U)^{\circ}$.
- (vii) $\{0\}^{\perp} = E^*$, $E^{\perp} = \{0\}$, $\{0\}^{\circ} = E$ et , $(E^*)^{\circ} = \{0\}$.

Corollaire 22. (i) Pour tout sous-espace vectoriel *F* de *E*, on a

$$\dim(F) + \dim(F^{\perp}) = n$$

(ii) Pour tout sous-espace vectoriel $G de E^*$, on a

$$\dim(G) + \dim(F^{\circ}) = n$$

- (iii) Pour tout sous-espace vectoriel F de E, et pour tout sous-espace vectoriel G de E^* , on a $F = (F^{\perp})^{\circ}$ et $G = (G^{\circ})^{\perp}$.
- (iv) Pour toute partie X de E, on a $(X^{\perp})^{\circ} = \text{Vect}(X)$.
- (v) Pour tous sous-espaces vectoriels F_1 et F_2 de E, on a :

$$(F_1 + F_2)^{\perp} = F_1^{\perp} \cap F_2^{\perp} \text{ et } (F_1 \cap F_2)^{\perp} = F_1^{\perp} + F_2^{\perp}$$

(vi) Pour tous sous-espaces vectoriels G_1 et G_2 de E^* , on a :

$$(G_1 + G_2)^{\circ} = G_1^{\circ} \cap G_2^{\circ} \text{ et } (G_1 \cap G_2)^{\circ} = G_1^{\circ} + G_2^{\circ}$$

Corollaire 23. Si $(\varphi_i)_{i \in [\![1,p]\!]}$ est une famille de formes linéaires sur E de rang r, le sous-espace vectoriel $F = \bigcap_{i=1}^p \operatorname{Ker}(\varphi_i)$ de E est alors de dimension n-r. Réciproquement, si F est un sous-espace vectoriel de E de dimension m, il existe alors une famille de formes linéaires $(\varphi_i)_{i \in [\![1,p]\!]}$ de rang r = n-m telle que $F = \bigcap_{i=1}^p \operatorname{Ker}(\varphi_i)$.

2. Application transposée

Définition 24. Soient E et F deux espaces vectoriels sur \mathbb{K} . Soit $u \in \mathcal{L}(E,F)$. La **transposée** de $u \in \mathcal{L}(E,F)$ est l'application

$${}^{t}u: \begin{array}{ccc} F^{*} & \to & E^{*} \\ \varphi & \mapsto & \varphi \circ u \end{array}$$

Proposition 25. $u \mapsto {}^t u$ est linéaire, injective de $\mathcal{L}(E,F)$ dans $\mathcal{L}(F^*,E^*)$.

Théorème 26. Soient E, F et G trois espaces vectoriels sur \mathbb{K} . Soient $u \in \mathcal{L}(E,F)$ et $u \in \mathcal{L}(F,G)$. On a :

- (i) ${}^t v \circ u = {}^t u \circ {}^t v$.
- (ii) Pour F = E, ${}^t \operatorname{id}_E = \operatorname{id}_{E^*}$.
- (iii) Si u est un isomorphisme de E sur F, alors tu est un isomorphisme de F^* sur E^* et $(^tu)^{-1} = {}^t(u^{-1})$.
- (iv) $\operatorname{Ker}(^t u) = (\operatorname{Im}(u))^{\perp}$.
- (v) u est surjective si et seulement si u est injective.
- (vi) $\operatorname{Im}(^t u) = (\operatorname{Ker}(u))^{\perp}$.

p. 452

[DEV]

- (vii) u est injective si et seulement si tu est surjective.
- (viii) Si E et F sont de dimension finie, alors u et tu ont même rang.
 - (ix) Si $A \in \mathcal{M}_n(\mathbb{K})$ est la matrice de u dans des bases \mathcal{B} et \mathcal{B}' , alors tA est la matrice de tu dans les bases \mathcal{B}'^* et \mathcal{B}^* .

Corollaire 27. Soient \mathscr{B} et \mathscr{B}' deux bases de E et P la matrice de passage de \mathscr{B} à \mathscr{B}' . Alors, la matrice de passage de \mathscr{B}^* à \mathscr{B}'^* est

$$t_{P}$$

Proposition 28. Soit $u \in \mathcal{L}(E)$. Alors un sous-espace vectoriel de E est stable par u si et seulement si son orthogonal l'est.

Application 29 (Trigonalisation simultanée). Soit $(u_i)_{i \in I}$ une famille d'endomorphismes de E diagonalisables qui commutent deux-à-deux. Alors, il existe une base commune de trigonalisation.

3. Lien avec l'orthogonalité au sens euclidien

Théorème 30 (de représentation de Riesz). Soit $\langle .,. \rangle$ un produit scalaire sur E.

$$\forall \varphi \in E^*, \exists! a \in E \text{ tel que } \forall x \in E, \varphi(x) = \langle x, a \rangle$$

Ainsi, si E est muni d'un produit scalaire $\langle .,. \rangle$, on retrouve la notion classique d'orthogonalité euclidienne avec $\varphi : x \mapsto \langle x, a \rangle$.

Exemple 31. L'application

$$\mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})^*$$

 $A \mapsto (X \mapsto \operatorname{trace}(AX))$

est un isomorphisme.

p. 176

[GOU21]

p. 136

[ROM21] p. 718

p. 446

[**GOU21**] p. 138

III - Applications

1. Formule de Taylor

On suppose K de caractéristique nulle.

[**ROM21**] p. 442

Application 32 (Formule de Taylor). Pour tout $j \in [0, n]$, on définit :

$$e_j: \begin{array}{ccc} \mathbb{K}_n[X] & \to & \mathbb{K} \\ P & \mapsto & \frac{P^{(j)}(0)}{j!} \end{array}$$

Alors, $(e_i)_{i\in \llbracket 0,n\rrbracket}$ est une base de $K_n[X]^*$, dont la base antéduale est $(X^i)_{i\in \llbracket 0,n\rrbracket}$.

Corollaire 33. On suppose $P \neq 0$. Alors $a \in \mathbb{K}$ est racine d'ordre h de P si et seulement si

[**GOU21**] p. 64

$$\forall i \in [1, h-1], P^{(i)}(a) = 0$$
 et $F^{(h)}(a) \neq 0$

Exemple 34. Le polynôme $P_n = \sum_{i=0}^n \frac{1}{i!} X^i$ n'a que des racines simples dans \mathbb{C} .

Remarque 35. C'est encore vrai en caractéristique non nulle pour h = 1.

2. Invariants de similitude

Soient E un espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

[**ROM21**] p. 397

Définition 36. On dit que u est **cyclique** s'il existe $x \in E$ tel que $\{P(u)(x) \mid P \in \mathbb{K}[X]\} = E$.

Proposition 37. u est cyclique si et seulement si $deg(\pi_u) = n$.

Définition 38. Soit $P = X^p + a_{p-1}X^{p-1} + \cdots + a_0 \in \mathbb{K}[X]$. On appelle **matrice compagnon** de P la matrice

$$\mathscr{C}(P) = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \ddots & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{p-2} \\ 0 & \dots & 0 & 1 & -a_{p-1} \end{pmatrix}$$

Proposition 39. u est cyclique si et seulement s'il existe une base \mathscr{B} de E telle que $\mathrm{Mat}(u,\mathscr{B})=\mathscr{C}(\pi_u).$

Théorème 40. Il existe F_1, \ldots, F_r des sous-espaces vectoriels de E tous stables par u tels que :

- $E = F_1 \oplus \cdots \oplus F_r$.
- $u_i = u_{|F_i}$ est cyclique pour tout i.
- Si $P_i = \pi_{u_i}$, on a $P_{i+1} \mid P_i$ pour tout i.

La famille de polynômes P_1, \dots, P_r ne dépend que de u et non du choix de la décomposition. On l'appelle **suite des invariants de similitude** de u.

Théorème 41 (Réduction de Frobenius). Si P_1, \ldots, P_r désigne la suite des invariants de u, alors il existe une base \mathcal{B} de E telle que :

$$\operatorname{Mat}(u, \mathcal{B}) = \begin{pmatrix} \mathcal{C}(P_1) & & \\ & \ddots & \\ & & \mathcal{C}(P_r) \end{pmatrix}$$

On a d'ailleurs $P_1 = \pi_u$ et $P_1 \dots P_r = \chi_u$.

Corollaire 42. Deux endomorphismes de *E* sont semblables si et seulement s'ils ont la même suite d'invariants de similitude.

Application 43. Pour n = 2 ou 3, deux matrices sont semblables si et seulement si elles ont mêmes polynômes minimal et caractéristique.

Application 44. Soit \mathbb{L} une extension de \mathbb{K} . Alors, si $A, B \in \mathcal{M}_n(\mathbb{K})$ sont semblables dans $\mathcal{M}_n(\mathbb{L})$, elles le sont aussi dans $\mathcal{M}_n(\mathbb{K})$.

3. Classification des formes quadratiques

Soit q une forme quadratique sur E.

[DEV]

Lemme 45. Il existe une base q-orthogonale (ie. si φ est la forme polaire de q, une base B où $\forall e, e' \in B$, $\varphi(e, e') = 0$ si $e \neq e'$).

Théorème 46 (Loi d'inertie de Sylvester).

$$\exists p, q \in \mathbb{N} \text{ et } \exists f_1, \dots, f_{p+q} \in E^* \text{ tels que } q = \sum_{i=1}^p |f_i|^2 - \sum_{i=p+1}^{p+q} |f_i|^2$$

où les formes linéaires f_i sont linéairement indépendantes et où $p+q \le n$. De plus, ces entiers ne dépendent que de q et pas de la décomposition choisie.

p. 243

Le couple (p,q) est la **signature** de q et le rang q est égal à p+q.

Exemple 47. La signature de la forme quadratique $q:(x,y,z)\mapsto x^2-2y^2+xz+yz$ est (2,1), donc son rang est 3.

Bibliographie

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.