Machine Learning, 2024 Spring Solution for Assignment 1

March 30, 2024

Exercise 1.8

If $\mu=0.9$, what is the probability that a sample of 10 marbles will have $\nu\leq 0.1$ [Hints: 1. Use binomial distribution. 2. The answer is a very small number.][10pt]

By the problem, $\nu \le 0.1 \Leftrightarrow$ a sample of 10 marbles will have at most 1 red marble, then we have

$$P(\nu \le 0.1) = P(1 \text{ red marble}) + P(0 \text{ red marble})$$
$$= (1 - 0.9)^{10} + C_{10}^{1} \times 0.9 \times (1 - 0.9)^{9}$$
$$= 9.1 \times 10^{-9}$$

Exercise 1.9

If $\mu=0.9$, use the Hoeffding Inequality to bound the probability that a sample of 10 marbles will have $\nu\leq0.1$ and compare the answer to the previous exercise.[10pt] In this problem,

$$P[|\mu - \nu| \ge 0.8] \le 2e^{-2*0.8^2*10} \approx 5.52*10^{-6}$$

 $9.1 \times 10^{-9} < 5.52 * 10^{-6}$, which satisfies Hoeffding Inequality.

Problem 1.10

Assume that $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N, \mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M}\}$ and $\mathcal{Y} = \{-1, +1\}$ with an unknown target function $f : \mathcal{X} \to \mathcal{Y}$. The training data set \mathcal{D} is $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$. Define the off-training-set error of a hypothesis h with respect to f by

$$E_{\text{off}}(h, f) = \frac{1}{M} \sum_{m=1}^{M} [h(\mathbf{x}_{N+m}) \neq f(\mathbf{x}_{N+m})].$$

(a) Say $f(\mathbf{x}) = +1$ for all \mathbf{x} and

$$h(\mathbf{x}) = \begin{cases} +1, & \text{for } \mathbf{x} = \mathbf{x}_k \text{ and } k \text{ is odd and } 1 \le k \le M + N \\ -1, & \text{otherwise} \end{cases}$$

What is $E_{\text{off}}(h, f)$? [10pt]

- (b) We say that a target function f can 'generate' \mathcal{D} in a noiseless setting if $y_n = f(\mathbf{x}_n)$ for all $(\mathbf{x}_n, y_n) \in \mathcal{D}$. For a fixed \mathcal{D} of size N, how many possible $f : \mathcal{X} \to \mathcal{Y}$ can generate \mathcal{D} in a noiseless setting? [10pt]
- (c) For a given hypothesis h and an integer k between 0 and M, how many of those f in (b) satisfy $E_{\text{off}}(h,f)=\frac{k}{M}$? [10pt]
- (d) For a given hypothesis h, if all those f that generate \mathcal{D} in a noiseless setting are equally likely in probability, what is the expected off-trainingset error $\mathbb{E}_f \left[E_{\text{off}} \left(h, f \right) \right]$? [10pt]
- (e) A deterministic algorithm A is defined as a procedure that takes \mathcal{D} as an input, and outputs a hypothesis $h = A(\mathcal{D})$. Argue that for any two deterministic algorithms A_1 and A_2 , [10pt]

$$\mathbb{E}_f \left[E_{\text{off}} \left(A_1(\mathcal{D}), f \right) \right] = \mathbb{E}_f \left[E_{\text{off}} \left(A_2(\mathcal{D}), f \right) \right]$$

Solution

(a) From the problem, we can get

$$\boldsymbol{E}_{\text{off}}(h, f) = \frac{1}{M} \sum_{m=1}^{M} \llbracket h\left(\mathbf{x}_{N+m}\right) = -1 \rrbracket$$
$$= \frac{1}{M} \left(\left[\frac{N+M}{2} \right] - \left[\frac{N}{2} \right] \right)$$

- (b) In a noiseless setting, there is no error on the training set \mathcal{D} , and the values on $\{x_{N+1}, \dots, x_{N+M}\}$ are arbitrary, with two values at each point, so there are a total of 2^M species that can be fitted to f
- (c) There are M points in total, and there are k points that can be different from the objective function, so there are C_M^k kinds of f
- (d) Each noiseless f on the training set has the same probability, so these f should have the same probability of being wrong at each point on the test set, so

$$\mathbb{E}_{f} [E_{\text{off}} (h, f)] = \sum_{k=0}^{M} \frac{k}{M} \frac{C_{M}^{k}}{2^{M}}$$

$$= \frac{\sum_{k=0}^{M} k C_{M}^{k}}{M 2^{M}}$$

$$= \frac{\sum_{k=1}^{M} M C_{M-1}^{k-1}}{M 2^{M}}$$

$$= \frac{2^{M-1}}{2^{M}}$$

$$= \frac{1}{2}$$

(e) From (d), we can get that the expected off-training-set error only depends M, not on the specific form of the algorithm. So, for any two deterministic algorithms A_1 and A_2 , $\mathbb{E}_f \left[E_{\text{off}} \left(A_1(\mathcal{D}), f \right) \right] = \mathbb{E}_f \left[E_{\text{off}} \left(A_2(\mathcal{D}), f \right) \right]$

0.1 **Problem 1.12**

This problem investigates how changing the error measure can change the result of the learning process. You have N data points $y_1 \le \cdots \le y_N$ and wish to estimate a 'representative' value.

(a) If your algorithm is to find the hypothesis h that minimizes the in-sample sum of squared deviations,

$$E_{\text{in}}(h) = \sum_{n=1}^{N} (h - y_n)^2$$

then show that your estimate will be the in-sample mean, [10pt]

$$h_{\text{mean}} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

(b) If your algorithm is to find the hypothesis h that minimizes the in-sample sum of absolute deviations, [10pt]

$$E_{\text{in}}(h) = \sum_{n=1}^{N} |h - y_n|$$

then show that your estimate will be the in-sample median $h_{\rm med}$, which is any value for which half the data points are at most $h_{\rm med}$ and half the data points are at least $h_{\rm med}$.

- (c) Suppose y_N is perturbed to $y_N + \epsilon$, where $\epsilon \to \infty$. So, the single data point y_N becomes an outlier. What happens to your two estimators h_{mean} and h_{med} ? [10pt] Solution
 - (a) The derivation of $E_{\rm in}$ with respect to h yields

$$E'_{\text{in}}(h) = 2\sum_{n=1}^{N} (h - y_n)$$

 $E''_{\text{in}}(h) = 2N > 0$

So E_{in} takes a minimum value at $E'_{\text{in}}(h) = 0$, and we can get

$$h = h_{\text{mean}} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

(b)Before we give the solution, we prove a general conclusion:

Suppose that the probability density function of the random variable x is f(x). When $F(a) = \int_{-\infty}^{+\infty} |x-a| f(x) dx$ takes a minimum value, a needs to satisfy $\int_{-\infty}^{a} f(x) dx = \frac{1}{2}$.

Prove: The derivation of $F(a) = \int_{-\infty}^{a} (a-x)f(x)dx + \int_{a}^{\infty} (x-a)f(x)dx$ with respect to a yields

$$F'(a) = \int_{-\infty}^{a} f(x)dx - \int_{a}^{\infty} f(x)dx$$
$$F''(a) = 2f(a) > 0$$

F(a) takes a minimum value when F'(a)=0, which means that $\int_{-\infty}^a f(x)dx=\int_a^\infty f(x)dx=\frac{1}{2}$. Therefore, F(a) takes a minimum value at $a=x_{\rm med}$.

Construct a distribution $P(y=y_i)=\frac{1}{N}(i=1,2\dots N)$, and we can get

$$F(h) = \frac{1}{N} E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} |h - y_n|$$

From the general conclusion, we can know that F(h) takes a minimum value at $h=y_{\rm med}$ (c)When y_N is perturbed to $y_N+\epsilon$, where $\epsilon\to\infty$, $h_{\rm mean}=\frac{1}{N}\sum_{n=1}^N y_n\to\infty$, while $h_{\rm med}$ doesn't change because only the relative order of y_N changes.