Hypothesis tests for more than two means

	5	3	2		7			8
6		1	5					2
2			တ	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	တ	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

The big picture of hypothesis testing

There is only one <u>hypothesis test!</u>!

Just follow the 5 hypothesis tests steps!

Five steps of hypothesis testing

- 1. State H₀ and H_A
 - Assume Gorgias (H₀) was right
 - $\alpha = .05$ of the time he will be right, but we will say he is wrong

- 3. Create a distribution of what statistics would look like if Gorgias is right
 - Create the **null distribution** (that is consistent with H₀)
- 4. Get the probability we would get a statistic more than the observed statistic from the null distribution
 - p-value

• Assess whether the results are statistically significant

Comparing more than two means

A group of Hope College students wanted to see if there was an association between a student's major and the time it takes to complete a small Sudoku-like puzzle

	5	3	2		7			8
6		1	5					2
2			တ	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	9	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

Comparing more than two means

A group of Hope College students wanted to see if there was an association between a student's major and the time it takes to complete a small Sudoku-like puzzle

They grouped majors into four categories

- Applied science (as)
- Natural science (ns)
- Social science (ss)
- Arts/humanities (ah)

What is a good first thing to do to analyze the data?

Step 0: Plot of completion time by major

What should we do next?

Sudoku by field

1. State the null and alternative hypotheses!

 H_0 : $\mu_{as} = \mu_{ns} = \mu_{ss} = \mu_{ah}$

 $\mathbf{H_A}$: $\mu_i \neq \mu_j$ for one pair of fields of study

What should we do next?

Thoughts on the statistic of interest?

Comparing multiple means

There are many possible statistics we could use. A few choices are:

1. Group range statistic:

 $\max \overline{x} - \min \overline{x}$

2. Mean absolute difference (MAD):

$$(|\overline{x}_{as} - \overline{x}_{ns}| + |\overline{x}_{as} - \overline{x}_{ss}| + |\overline{x}_{as} - \overline{x}_{ah}| + |\overline{x}_{ns} - \overline{x}_{ss}| + |\overline{x}_{ns} - \overline{x}_{ah}| + |\overline{x}_{ss} - \overline{x}_{ah}|)/6$$

3. F statistic:

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

Using the MAD statistic

Mean absolute difference (MAD):

$$(|\overline{x}_{as} - \overline{x}_{ns}| + |\overline{x}_{as} - \overline{x}_{ss}| + |\overline{x}_{as} - \overline{x}_{ah}| + |\overline{x}_{ns} - \overline{x}_{ss}| + |\overline{x}_{ns} - \overline{x}_{ah}| + |\overline{x}_{ss} - \overline{x}_{ah}|)/6$$

Observed statistic value = 13.92

How can we create the null distribution?

3. Create the null distribution!

Compute statistics from shuffled groups

Null distribution

Null Distribution

P-value

Null Distribution

Conclusions?

Let's use R to compare levels of mercury in fish

