RCOM Network

up201606673-André Esteves

18 January 2019

1 Network

Network label - camada responsável pela transferência de pacotes

1.1 Overview

- Camada de Network (Network layer)
 - Transporta os pacotes(datagrams)
 - "from sending host to receiving host"
 - funções localizadas em todos os hosts e routers
- Transmissor(Sender):
 - Encapsula a informação em pacotes
 - Cria os pacotes
- Receptor(Receiver):
 - Recebe os pacotes
 - Envia a informação para o transport layer

• Router:

- Recebe os pacotes pela linha de input
- Examina o cabeçalho dos pacotes
- Reencaminha os pacotes para o sítio certo
- Tem de saber o caminho mais curto para determinar o caminho

1.2 Funções principais da camada de rede

- Forwarding
 - router trata de enviar o pacote desde a porta de entrada(input) até à porta de saída(outpu)
- Routing
 - determina a rota definida pelos packets
 - algoritmos, caminho mais curto

1.3 Rede de datagramas

- Serviço não orientado à ligação
- Não há o conceito de circuito
- Os pacotes são redirecionados de acordo com a fonte e o destino
- Pacotes com o mesmo par fonte-destino podem seguir caminhos diferentes

Descri	u 011011 114	aress na	gc	oucput Link	Incertac
11001000	00010111 thre	00010000 ough	0000000	0	
11001000	00010111	00010111	11111111		
11001000	00010111	00011000 ough	00000000	1	
11001000	00010111	_	11111111		
11001000	00010111 thre	00011001 ough	00000000	2	
11001000	00010111	00011111	11111111		
otherwise				3	

2³² possible entries in IPv4

1.4 Circuitos Virtuais

- Serviço orientado à ligação
- Fases:
 - 1. Estabelecer o circuito
 - 2. Transferência de dados
 - 3. Terminação do circuito
- Cada pacote carrega um identificador do circuito virtual
- Caminho da fonte ao destino -¿ sequência de identificadores virtuais, um para cada ligação
- Estado de cada circuito mantido pelo router, que pode alocar recursos (bandwidth, buffers) por circuito virtual

1.4.1 Forwarding Table

Contém prefixos e a respetiva porta de saída ¡Endereço/Mask, port¿,

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
•••			

Routers maintain connection state information!

1.4.2 Ex: Maior correspondência de prefixo

Prefix Match	Link Interface
11001000 00010111 00	0010 0
11001000 00010111 00	0011000 1
11001000 00010111 00	0011 2
otherwise	3

Examples. Which Interface?

DA: 11001000 00010111 00010110 10100001 → 0

DA: $11001000 00010111 00011000 10101010 \rightarrow 1,2 \rightarrow 1$

longest prefix

1.5 Circuitos Virtuais versus Rede de Datagramas

Issue	Datagram subnet	Virtual-circuit subnet	
Circuit setup	Not needed	Required	
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number	
State information	Routers do not hold state information about connections	Each VC requires router table space per connection	
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it	
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated	
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC	
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC	

1.6 Arquitetura do router

- Funções principais:
 - Correr algoritmos de roteamento e protocolos (RIP, OSPF, BGP)
 - Reencaminhar pacotes

- Componentes principais:
 - Input Port
 - * Physical Layer (bit-level)
 - * Data Link Layer (e.g., Ethernet)
 - * Queuing (se os pacotes chegarem rápido demais)
 - \ast Lookup + Forwarding (faz algum reencaminhamento imediatamente)

- Output Port

- * Buffering (quando é excedida a velocidade de saída)
- * Queuing (com disciplina de agendamento)(Queuing perda e espera devido ao overflow do buffer da porta de input)
- * Data Link Layer (protocol, desencaplsulação)
- * Physical Layer (linha de terminação)

- Switching Fabric

- * Controla o reencaminhamento (fisicamente ou através dum CPU)
- $\ast\,$ Switching Via Memória do Computador
 - · Router de primeira geração
 - \cdot Em computadores tradicionais, switching é controlado pelo CPU
 - · Cada pacote é copiado para a memória do sistema e transferida duas vezes pelo bus

- * Switching via a Bus
 - \cdot Os pacotes sao processados por um bus partilhado

- \cdot A transferência dos pacotes desde a linha de input e output é realizada de foram direta
- \cdot A taxa da conecção do bus é limitada pela bus bandwidth

- $\ast\,$ Switching via a Crossbar
 - · 2N buses
 - · Possibilita transferências simultaneas de pacotes
 - $\cdot\,$ a cross bar pode conter buffers in termos
 - \cdot Ultrapassa os limites da bus bandwidth

1.7 Protocolo Internet

1. Camada de rede Internet

2. Formato datagrama IP

3. Internet Checksum

Internet Checksum

- The Internet (not layer 2) uses a checksum
 - » easily implementable in software
 - » 1's complement sum of 16 bit words
 - » Performance: d=2

- One's complement sum
 - » Mod-2 addition with carry-out
 - » Carry-out in the most-significant-bit is added to the least-significant bit
 - » Get one's complement of "one's complement sum"

1.7.1 Cada pacote contém:

- Versão do protocolo IP
- Tamanho do Header
- Tipo de serviço
- Tamanho da informação
- Identificador + Flags + Offset de Fragmento (Permite fragmentar mensagens em vários pacotes)
- Time To Live (para os pacotes não ficarem indefinidamente perdidos na rede)
- Upper Layer Protocol
- Checksum do Header
- IP de Origem
- IP de Destino
- Opções (opcional)
- Informação (Normalmente pacote TCP ou UDP)

1.7.2 Fragmentação IP e Reassembly

- Identificador ¡- Identifica o pacote
- fragflag ;- 1 se houver mais informação, 0 se for o último fragmento
- Offset j- Offset do fragmento em bytes / 8

IP Fragmentation and Reassembly

1.7.3 Endereço IP

Endereço IP - é formado por um identificador de 32-bit para uma interface host/router Interface possuem:

- conecção entre host/router e link físico(physical link)
- routers com multiplas interfaces
- endereços IP associados com as interfaces

1.7.4 Subnets

- Parte mais significativa do IP: Subnet parte
- Parte menos significativa: host(interface) parte
- Subnet é um set de interfaces
- cada um tem a subnet parte do IP igual para comunicação
- Cada computador consegue aceder a outro sem intervenção do router

Network consisting of 3 subnets

CIDR - Classless InterDomain Routing

- a porção de bits do endereço subnet tem tamanho arbitrário
- \bullet formato -; a.b.c.d/x, em que x é o número de bits na porção do endereço subnet

200.23.16.0/23

1.7.5 Endereços especiais

- \bullet 0.0.0.0 este host
- 127.0.0.0 loopback
- \bullet 255.255.255.255 broadcast
- x.x.255.255 broadcast na subnet x.x.0.0/16
- x.x.0.0 subnet x.x.0.0/16

De Notar: - Uma subrede xx.xx.xx.0/24 suporta 255 endereços, no entanto, dois já estão reservados (xx.xx.xx.0 e xx.xx.xx.255), logo só suporta 253 máquinas.

Forming Sub-Networks (importante)

Criar table em R1 (importante)

função IP forwarding (importante)

• Forwarding table has entries in format

```
<networkAddress/mask, port>
```

- Forwarding function
 - » When a datagram arrives with destination address A, then
 - For each entry of the forwarding table

```
\bullet val= A & mask* (e.g., mask=8, mask*=255.0.0.0)
```

- ♦ if (val == networkAddress & mask*)
 - add corresponding output port to the set of candidate ports
- Select the port with the largest mask → most specific route
- » Example
 - frdTbl={<128.32.1.5/16,1>, <128.32.225.0/18,3>, <128.0.0.0/8,5>}
 - Datagram with destination address A=128.32.195.1
 - Set of candidate output ports $\rightarrow \{1, 3, 5\}$.
 - Selected port → 3 ← largest mask, 18 bits

1.8 Address Resolution Protocol APR

Demultiplexing

- Ethernet header (type)
 - » IP 0x0800
 - » ARP 0x0806
 - » RARP 0x8035
 - » IPX-0x8037
 - » IPv6 0x86DD
 - » MPLS 0x8847
- IP header (protocol)
 - » ICMP 1
 - » IGMP 2
 - » TCP 6
 - » UDP − 17
- TCP/UDP header (port)
 - » FTP − 21
 - » Telnet 23
 - » HTTP 80
 - » SMTP 25

- Uma interface de rede tem 1 endereço MAC e 1 (ou mais) endereços IP
- \bullet ARP protocolo usado para obeter o endereço MAC associado a um endereço IP dado
- \bullet RARP reverso de ARP protocolo usado para obter o endereço IP associado ao endereço MAC

1.9 Obter endereço IP

• Parte do endereço da subnet é definido pelo ISP

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0 Organization 1					200.23.16.0/23 200.23.18.0/23
					200.23.18.0/23
 Organization 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

- endereçamento hierárquico permite eficiência da informação do router
- O ISP depois trata internamente das suas subredes
- O ISP obtém endereços pela ICANN
- ICANN: Internet Corporation for Assigned Names and Numbers
 - aloca endereços

- controla o Domain Name Service (DNS)
- associa os nomes do domínio
- resolve conflitos
- o host obtém endereços IP de forma hard-coded pelo sistema admin num ficheiro ou pelo DHCP
- DHCP: Dynamic Host Configuration Protocol
 - Dinamicamente recebe endereços do servidor
 - "plug-and-play"
 - permite descobrir e obter endereços da rede do servidor
 - reusa os endereços
 - Overview:
 - * O host faz broadcast de "DHCP discover" (msg)
 - * O servidor DHCP oferece um endereço, enviando em broadcast "DHCP offer" (msg)
 - * O host pede esse endereço enviando em broadcast "DHCP request" (msg)
 - * Se tudo estiver em ordem, o DHCP responde em broadcast com um "DHCP ACK" (msg)
 - $\ast\,$ Todas as mensagens entre o host e o DHCP possuem um id de transação

1.10 NAT - Network Address Translation

- Permite que cada computador tenha um IP interno numa rede, sendo o IP externo diferente
- Para isso, possui uma hash table a que associa um IP interno e uma porta a um número, que será a porta de saída
- Caso um cliente se queira ligar a um servidor dentro de uma rede com NAT, é necessário configurar o port forwarding

1.10.1 NAT Transversal

- Client wants to connect to server with address 10.0.0.1
- » but server address 10.0.0.1 is private
 - » only one externally visible NATed address: 138.76.29.7
- Possible solution Port forwarding
 - » statically configure NAT

to forward incoming connection requests at given port to server

» e.g., (138.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000

1.11 ICMP - Internet Message Control Protocol

- Usado pelo router ou host para mandar mensagens de erro ou de controlo (como o ping)

1.11.1 IP datagramas info:

Carried in IP datagrams

1.11.2 Tracerout and ICMP

- Permite fazer traceroute enviando mensagens com TTL=1,2,3... e esperando respostas de erro "TTL expired" até receber um "Host unreachable"
- Source sends series of UDP segments to destination
 - » first segment has TTL =1
 - » second segment has TTL=2, ...
 - » unlikely port number
- When nth datagram arrives

to nth router

- » router discards datagram
- » sends to source: ICMP TTL expired
- » message includes router name & IP address

traceroute to slip (140.252.13.65), 30 hops max. 40 byte packets 1 bsdi (140.252.13.35) 20 ms 10 ms 10 ms 2 slip (140.252.13.65) 120 ms 120 ms 120 ms ### slip traceroute svr4 traceroute to svr4 (140.252.13.34), 30 hops max, 40 byte packets 1 bsdi (140.252.13.66) 110 ms 110 ms 110 ms 2 svr4 (140.252.13.34) 110 ms 120 ms 110 ms #### slip SLIP bsdi | 140.252.129 | sun | svr4 | svr4

et 140.252.13

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times for each TTL
- Stop criterion
 - » UDP segment eventually arrives at destination host
 - » Destination returns ICMP "dest port unreachable" packet
 - » source stops

1.11.3 ICMP Redirect

- ICMP Redirect Permite informar outros hosts do caminho mais rápido para determinado destino
- General routing principle of the TCP/IP architecture
 - » routers have extensive knowledge of routes
 - » hosts have minimal routing information → learn routes also from ICMP redirects
- ICMP redirect message
 - » Sent by router R1 to source host A
 - when R1 receives a packet from A with destination = B, and R1
 - finds that the next hop is R2 and
 - ◆ A is on-link with R2
 - » R1 sends ICMP redirect to A saying next hop for destination B is R2
 - » A updates its forwarding table with a host route

ICMP Redirect Format

ICMP Redirect Example


```
dest IP addr
                  srce IP addr
                                 prot
                                        data part
1: 193.154.29.9
                  193.154.156.24 udp
                                        xxxxxx
2: 193.154.29.9
                  193.154.156.24 udp
                                        xxxxxx
3: 193.154.156.24 193.154.156.1 icmp
                                        type=redir code=host cksum
                                        193.154.156.100
                                        xxxxxxx (28 bytes of 1)
4: 193.154.29.9
                  193.154.156.24 udp
```

After 4

.0.0.1	UH	100
.154.156.100	UGH	eth0
.154.156.24	U	eth0
.154.156.24	U	eth0
.154.156.1	UG	eth0
	.154.156.100 .154.156.24 .154.156.24 .154.156.1	.154.156.100 UGH .154.156.24 U

Flags:
U - route Up
G - route to a Gateway (next hop router)

1.12IPv6

- IPv4
 - espaço reduzido de endereçamento (32 bits)
 - uso não continuo
 - o uso de algumas soluções como private networks (NAT) e classless networks (CDIR) superava os problemas acima
- IETF developed new IP version: IPv6
 - Uso dos mesmos princípios do IPv4
 - muitas melhorias
 - Header foi redefinido

1.12.1 IPv6 - Melhorias

- Endereços 128 bits (16 octets, 8 shorts). No classes
- Melhor QoS suporte (native flow level)
- funções nativas de segurança (autenticação, data encriptação)
- Autoconfiguração (Plug-n-play)
- Routing
- Multicast

1.12.2 Representação dos endereços

• 8 x 16 bit, hexadecimal, separados por:

47CD: 1234: 3200: 0000: 0000: 4325: B792: 0428

• formato comprimido:

FF01:0:0:0:0:0:0:43 -; FF01::43

• compatibilidade com IPv4:

0:0:0:0:0:0:13.1.68.3 or ::13.1.68.3

• Loopback endereço:

::1

• Prefixo de rede "/", igual ao IPv4:

FEDC:BA98:7600::/40 -; network prefix = 40 bits

1.12.3 Endereços Reservados

Allocation	Prefix (binary)	Fraction of Address Space	
	(Dinaly)		
Unassigned	0000 0000	1/256	
Unassigned	0000 0001	1/256	
Reserved for NSAP Allocation	0000 001	1/128	
Unassigned	0000 01	1/64	
Unassigned	0000 1	1/32	
Unassigned	0001	1/16	
Global Unicast	001	1/8	
Unassigned	010	1/8	
Unassigned	011	1/8	
Unassigned	100	1/8	
Unassigned	101	1/8	
Unassigned	110	1/8	
Unassigned	1110	1/16	
Unassigned	1111 0	1/32	
Unassigned	1111 10	1/64	
Unassigned	1111 110	1/128	
Unassigned	1111 1110 0	1/512	
Link-Local Unicast Addresses	1111 1110 10	1/1024	
Site-Local Unicast Addresses	1111 1110 11	1/1024	
Multicast Addresses	1111 1111	1/256	

1.12.4 Tipo de Endereços

- Link-Local
 - Usado para a comunicação entre hosts na mesma LAN/link
 - Endereço criado pelo endereço MAC
 - Routers nao enviam pacotes tendo endereços de destino Link-Local
- Global Unicast

- Endereços globais
- -Endereços: prefixo de rede+identificador do computador
- $-\,$ Prefixos estruturados: Agregação de rede; menos entradas nas router forwarding tables

• Anycast

- Endereços de grupo
- Um pacote é recebido por um e um só membro do grupo

• Multicast

- Endereços de grupo
- Um pacote pode ser recebido por vários membros do grupo

1.12.5 Formato dos Endereços

n bits				Global Unicast Address
001 global rout prefix	subnet ID	interface ID	1	(2000:1/3/
				Link-Local Unicast address
1111111010 0	1	interface ID	1	(fe80::/10)
+			+	
10 bits 54 h	hite I	64 bite		Site-Local Unicast address
+			-	(fec0::/10) (not used)
1111111011 subne			+	
		128-n bits		Anycast address
subne		00000000000		
8 4 4	112 b			
			+	Multicast address
11111111 flgs scop			+	Scope - link, site, global, (ff::/8)

1.12.6 Headers IPv4 e IPv6

1.12.7 IPv6 Header

- $\bullet\,$ Flow label identifica o fluxo do pacote
 - QoS, ressalva de recursos
 - Pacotes recebem o mesmo serviço
- Payload lenght Header não incluído
- Next header identifica o próximo header/extensão
- Options incluída nas extensões dos headers

1.12.8 Extension Headers

- Hop-by-Hop: inspeciona todos os nodes atravessados pelo pacote
- Destination: informação do node de destino
- Routing: Lista dos nodes para serem visitados pelo pacote
- Fragmentation: feito pelo source, deve encontrar MPU
- Authentication: autenticação (assinatura) do header do pacote
- ESP: encriptação da informação(data)

1.12.9 Exemplo da Rede do Laboratório

1.12.10 Protocol Neighbor Discovery (ND)

IPv6 node usa ND para:

- Encontrar outros nodes no mesmo link/LAN
- Encontrar o node do endereço MAC (ND substitui ARP)
- Encontrar routers na sua rede
- Manter/Segurar a informação sobre os nodes vizinhos

ND similar às funções IPv4:

- ARP IPv4
- ICMP Router Discovery
- ICMP Redirect

1.12.11 ND Mensagens

- $\bullet\,$ ICMP mensagens (over IP), Uso de endereços Link Local
- Neighbor Solicitation: Enviado pelo host para obter o endereço MAC de um vizinho/para verificar a sua presença

- Neighbor Advertisement: resposta ao pedido
- Router Advertisement: Informação sobre o prefixo da rede, periodica ou abaixo do pedido. Enviado pelo router para o endereço IP do Link Local multicast
- Router Solicitation: Hosts solicitam do router uma mensagem Router Advertisment
- Redirect: Usado pelo router para informar o host acerca da melhor rota para o destino