

Webinar

Correcting Partial Verification Bias in Diagnostic Accuracy Studies Using R

Wan Nor Arifin

PhD Candidate, School of Computer Sciences, Universiti Sains Malaysia.

Organized by

Epidemiological and Statistical Modelling Team, USM

- Diagnostic test
 - Discriminate diseased vs non-diseased^{O'Sullivan} et al. (2018)
 - Extremely important role in medical care^{Kosinski & Barnhart (2003)}
 - Objective assessment^{Gotzche (2007)}
- Requires evaluation^{Linnet et al. (2012)} → Diagnostic accuracy study.

- Diagnostic accuracy study: New test vs Gold StandardHall et al. (2019), O'Sullivan et al. (2018)
 - Covid-19: RT-Ag vs RT-PCR
 - HIV: HIV Rapid Test vs ELISA
 - Breast CA: Mammogram vs Histology

- Accuracy measures for binary test:
 - Sensitivity (True Positive Rate)
 - Specificity (True Negative Rate)
 - Positive Predictive Value (PPV)
 - Negative Predictive Value (NPV)

	Disease Status			
Test Result	D+	D-		
T+	TP	FP	PPV= TP/(TP+FP)	Positive Predictive Value
T-	FN	TN	NPV= TN/(FN+TN)	Negative Predictive Value
	Sn= TP/(TP+FN)	Sp= TN/(TN+FP)		_
	Sensitivity	Specificity	-	

- Estimates, esp. Sensitivity and Specificity are often biased.
- Sampling bias in diagnostic accuracy study → Verification bias (VB)^{O'Sullivan et al. (2018)}

- Patients are selectively chosen for verification by gold standard.
- Test positive more likely selected + other clinical criteria^{O'Sullivan} et al. (2018)
- Reasons Naaktgeboren et al (2016):
 - Study design: Efficiency, technical, ethical.
 - Clinical practice: Clinical likelihood.
 - Infeasibility: Invasive procedures, postmortem diagnosis.
- Partial and Differential Vbde Groot et al. (2011a)

	Disease Status				
Test Result	D+	D-	D?		
T+	TP	FP	?		
T-	FN	TN	?		

Specificity?

Sensitivity?

Positive
Predictive
Value?
Negative
Predictive
Value?

www.usm.my **Differential Verification Test Result Disease Status**

	Disease Status (Gold)		Disease Status (Alternative)			
Test Result	D1+	D1-	D2+	D2-		
T+	TP	FP	TP?	FP?	Positive Predictive Value?	
T-	FN	TN	FN?	TN?	Negative Predictive Value?	
Sensitivity? Specificity?						

- VBs → Inaccurate estimates of accuracy measures^{Naaktkeboren} et al. (2016), Hall et al. (2019)
- Impact on the clinical practice
 - Invalid diagnostic tests^{Chikere} et al. (2019)
 - Clinical errorsHall et al. (2019)
- Cannot eliminate verification bias in medical data → Relies on methods to correct VBO'Sullivan (2018)

Literature Review

www.usm.my

Existing Correction Methods

Differential Verification Bias

Bayesian Approach Lu et al. (2010)

Bayesian Latent Class Approach de Groot et al. (2011c)

Begg & Greenes' Begg & Greenes (1983)

Mean Score Imputation Alonzo & Pepe (2005)

Inverse Probability Weighting Alonzo & Pepe (2005)

Semi-parametric Efficient Estimator Alonzo & Pepe (2005)

Multiple Imputation Harel & Zhou (2006)

Propensity Score Stratification He & McDermott (2012)

MNAR

Zhou's Begg & Greenes' Extension Zhou (1993)

Logistic Regression Kosinski & Barnhart (2003a)

Global Sensitivity Analysis Kosinski & Barnhart (2003b)

Neural Networks Ünal & Burgut (2014)

Log-Linear Regression Rochani et al. (2015)

Bayesian Appoaches Martinez et al. (2006), Buzoianu & Kadane (2008), Pennello (2011), Hajivandi et al. (2018)

www.usm.my

Thank You

References

www.usm.my

- Alonzo, T. A., & Pepe, M. S. (2005). Assessing accuracy of a continuous screening test in the presence of verification bias. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 54(1), 173–190.
- Begg, C. B., & Greenes, R. A. (1983). Assessment of diagnostic tests when disease verification is subject to selection bias. *Biometrics*, 39(1), 207-215.
- Buzoianu, M., & Kadane, J. B. (2008). Adjusting for verification bias in diagnostic test evaluation: a Bayesian approach. *Statistics in Medicine*, 27(13), 2453-2473.
- Cecil, M. P., Kosinski, A. S., Jones, M. T., Taylor, A., Alazraki, N. P., Pettigrew, R. I., & Weintraub, W. S. (1996). The importance of work-up (verification) bias correction in assessing the accuracy of spect thallium-201 testing for the diagnosis of coronary artery disease. *Journal of clinical epidemiology*, 49(7), 735–742.
- Chikere, C. M. U., Wilson, K., Graziadio, S., Vale, L., & Allen, A. J. (2019). Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard—An update. *PloS one*, 14(10), e0223832.
- de Groot, J. A., Bossuyt, P. M., Reitsma, J. B., Rutjes, A. W., Dendukuri, N., Janssen, K. J., & Moons, K. G. (2011a). Verification problems in diagnostic accuracy studies: consequences and solutions. Bmj, 343, d4770.
- de Groot, J. A., Dendukuri, N., Janssen, K. J., Reitsma, J. B., Bossuyt, P. M., & Moons, K. G. (2011c). Adjusting for differential-verification bias in diagnostic-accuracy studies: a bayesian approach. Epidemiology, 234–241.

References

www.usm.my

- Gotzsche, P.C. (2007). Rational diagnosis and treatment: Evidence based clinical decision making (4th ed.). West Sussex, UK: John Wiley & Sons Ltd.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. USA: MIT Press.
- Hajivandi, A., Shirazi, H. R. G., Saadat, S. H., & Chehrazi, M. (2018). A bayesian analysis with informative prior on disease prevalence for predicting missing values due to verification bias. *Open Access Macedonian Journal of Medical Sciences*, 6(7), 1225.
- Harel, O., & Zhou, X. H. (2006). Multiple imputation for correcting verification bias. *Statistics in Medicine*, 25(22), 3769-3786.
- He, H., & McDermott, M. P. (2012). A robust method using propensity score stratification for correcting verification bias for binary tests. *Biostatistics*, 13(1), 32-47.
- Kosinski, A. S., & Barnhart, H. X. (2003a). Accounting for nonignorable verification bias in assessment of diagnostic tests. *Biometrics*, *59*(1), 163-171.
- Kosinski, A. S., & Barnhart, H. X. (2003b). A global sensitivity analysis of performance of a medical diagnostic test when verification bias is present. *Statistics in Medicine*, 22(17), 2711-2721.
- Lu, Y., Dendukuri, N., Schiller, I., & Joseph, L. (2010). A bayesian approach to simultaneously adjusting for verification and reference standard bias in diagnostic test studies. *Statistics in medicine*, 29(24), 2532–2543.
- Martinez, E. Z., Achcar, J. A., & Louzada-Neto, F. (2006). Estimators of sensitivity and specificity in the presence of verification bias: A bayesian approach. *Computational statistics & data analysis*, 51(2), 601–611.

References

www.usm.my

- Naaktgeboren, C. A., de Groot, J. A., Rutjes, A. W., Bossuyt, P. M., Reitsma, J. B., & Moons, K. G. (2016). Anticipating missing reference standard data when planning diagnostic accuracy studies. *BMJ*, 352, i402.
- Pennello, G. A. (2011). Bayesian analysis of diagnostic test accuracy when disease state is unverified for some subjects. Journal of biopharmaceutical statistics, 21(5), 954–970.
- O'Sullivan, J. W., Banerjee, A., Heneghan, C., & Pluddemann, A. (2018). Verification bias. *BMJ Evidence-based Medicine*, 23(2), 54-55.
- Rochani, H., Samawi, H. M., Vogel, R. L., & Yin, J. (2015). Correction of verication bias using log-linear models for a single binaryscale diagnostic tests. *Journal of Biometrics and Biostatistics*, 6(5), 266.
- Ünal, İ., & Burgut, H. R. (2014). Verification bias on sensitivity and specificity measurements in diagnostic medicine: a comparison of some approaches used for correction. *Journal of Applied Statistics*, 41(5), 1091–1104.
- Zhou, X.-H. (1993). Maximum likelihood estimators of sensitivity and specificity corrected for verification bias. *Communications in Statistics-Theory and Methods*, 22(11), 3177–3198.

Thank You