Examenul național de bacalaureat 2024 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3} \cdot (2 - \sqrt{3}) - 2\sqrt{3} + 4 = 2\sqrt{3} - \sqrt{3} \cdot \sqrt{3} - 2\sqrt{3} + 4 =$	2p
	=-3+4=1	3 p
2.	f(a) = 5a - 4, pentru orice număr real a	2p
	5a-4=a, de unde obținem $a=1$	3 p
3.	$x^{2} + 4x + 5 = 1$, de unde obținem $x^{2} + 4x + 4 = 0$	3 p
	x = -2, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2 p
	Numerele n , din mulțimea A , pentru care numărul n^2 aparține mulțimii A sunt 0 , 1 , 2 și 3 , deci sunt 4 cazuri favorabile, de unde obținem $p = \frac{4}{10} = \frac{2}{5}$	3p
5.	Punctul $M(5,0)$ este mijlocul segmentului AB , de unde obținem $OM = 5$	3p
	$OA = \sqrt{3^2 + 4^2} = 5$, deci $OA = OM$	2p
6.		2p
	$MC = \sqrt{AM^2 + AC^2} = 5$, deci $P_{\Delta AMC} = AM + AC + MC = 12$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$2 \circ 2 = 2 \cdot 2 \cdot 2 - 5(2+2) + 15 =$	3 p
	=8-20+15=3	2p
2.	$x \circ 3 = 2 \cdot x \cdot 3 - 5(x + 3) + 15 = 6x - 5x - 15 + 15 = x$, pentru orice număr real x	2p
	$3 \circ x = 2 \cdot 3 \cdot x - 5(3 + x) + 15 = 6x - 15 - 5x + 15 = x$, pentru orice număr real x , deci $e = 3$ este elementul neutru al legii de compoziție " \circ "	3p
3.	$x \circ 4 = 3x - 5$, pentru orice număr real x	2p
	$3x-5 \le 1$, de unde obţinem $x \le 2$, deci $x \in (-\infty,2]$	3 p
4.	$x \circ y = 2xy - 5x - 5y + \frac{25}{2} + \frac{5}{2} = 2x\left(y - \frac{5}{2}\right) - 5\left(y - \frac{5}{2}\right) + \frac{5}{2} =$	3p
	$= 2\left(x - \frac{5}{2}\right)\left(y - \frac{5}{2}\right) + \frac{5}{2}, \text{ pentru orice numere reale } x \text{ și } y$	2p
5.	$x \circ x = 2\left(x - \frac{5}{2}\right)^2 + \frac{5}{2}$, pentru orice număr real x	2p
	$2\left(x-\frac{5}{2}\right)^2 + \frac{5}{2} = x$, de unde obținem $2\left(x-\frac{5}{2}\right)^2 - \left(x-\frac{5}{2}\right) = 0$, deci $x = \frac{5}{2}$ sau $x = 3$	3 p

6.	$n \circ \frac{1}{n} = 17 - 5n - \frac{5}{n}$, pentru orice număr natural nenul <i>n</i>	2p
	Cum $n \circ \frac{1}{n}$ și n sunt numere naturale, obținem $n = 1$, care convine și $n = 5$, care nu convine	3 p

SUBIECTUL al III-lea (30 de puncte)

	•	•
1.	$A(2) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 1 =$	3p
	=2-0=2	2p
2.	$= 2 - 0 = 2$ $2A(3) - A(5) = \begin{pmatrix} 2 & 4 \\ 0 & 6 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ 0 & 5 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
3.	$\det(A(a+1)) = a+1$, pentru orice număr real a	3 p
	$a+1=2a^2$, de unde obținem $a=-\frac{1}{2}$ sau $a=1$	2p
4.	$A(a) \cdot A(b) = \begin{pmatrix} 1 & a-1 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & b-1 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & b-1+(a-1)b \\ 0 & ab \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & ab - 1 \\ 0 & ab \end{pmatrix} = A(ab), \text{ pentru orice numere reale } a \text{ și } b$	2p
5.	$B = A(2) \cdot A(3) = A(6)$	2 p
	$A(6) \cdot A\left(\frac{1}{6}\right) = A\left(\frac{1}{6}\right) \cdot A(6) = A(1) = I_2$, de unde obținem că inversa matricei B este matricea	
	$A\left(\frac{1}{6}\right) = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}$	3p
6.	$\det(bA(a)) = ab^2$, pentru orice numere naturale a și b	2p
	$ab^2 = 4$ și, cum a și b sunt numere naturale, obținem perechile $(1,2)$ și $(4,1)$	3 p