Twins Studies

- Monozygotic (MZ; "identical")
 - Fertilization of a single egg by a single sperm
 - Share 100% of their genetic material.
- Dizygotic (DZ, "fraternal" or "non-identical")
 - Result from the independent fertilization of two eggs by two sperm
 - Share on average 50% of their genes (just like full siblings).

A Natural Experiment

- Twins reared apart
 - They did not experience the same environment
 - Gives a much stronger test of genetic and non-shared environmental contributions
 - But separated MZs are rare

Fig. 2 Average reared-apart and reared-together monozygotic (MZ) twin correlations in four domains of psychological functioning. Adapted from Bouchard et al. (1990)

Variance Components

- Heritability (narrow-sense, *A* or *a*²; broadsense, *H* or *h*²): phenotypic variance in a sample that can be attributed to genotypic variance.
- Shared or common environment (C or c^2): experiences that makes individuals more similar to one another, regardless of genetic similarity
- Non-shared or Unique environment and Error (E or e²): What is left over

IDENTICAL TWINS

- MONOZYGOTIC:
- Have IDENTICAL genes
 (A)
- Come from the same family (C)
- Have unique experiences during life (E)

FRATERNAL TWINS

- DIZYGOTIC: Have DIFFERENT genes (A)
- Come from the same family (C)
- Have unique experiences during life (E)

Falconer's model

Assumes all genetic effects are additive $(h^2 = a^2)$

$$r_{MZ} = a^2 + c^2$$

 $r_{DZ} = 0.5a^2 + c^2$
 $1.0 = a^2 + c^2 + e^2$

Falconer estimates

$$a^2 = 2(r_{MZ} - r_{DZ})$$

$$c^2 = 2r_{DZ} - r_{MZ}$$

$$e^2 = 1 - r_{MZ}$$

Polderman et al. 2015, Nature Genetics

Path diagram for the effects of genes and environment on phenotype Genotype

Path Analysis

- Derive predictions for the variances and covariances of the variables under the specified model
 - Present relationships between variables using diagrams
 - The relationships can also be represented as structural equations and covariance matrices
 - Structural equation modelling (SEM)
 represents a unified platform for path analytic
 and variance components models

Path Diagram

Maximum Likelihood Estimation

- Likelihood: probability that an observation (data point) is predicted by specified model
- For MLE, determine most likely values of population parameter value (e.g, μ, σ, β) given observed sample value
 - define model
 - define probability of observing a given event conditional on a particular set of parameters
 - choose a set of parameters which are most likely to have produced observed results

Classical Twin Study Assumptions

- Equal means/variances in Twin 1 and Twin 2
- Equal means/variances in MZ and DZ twins

- Random Mating
- Equal Environments of MZ and DZ pairs
- No GE Correlation
- No G x E
 Interaction
- No Sex Limitation

Path Diagram Conventions

Observed Variable

Latent Variable

Causal Path

Covariance Path

Model for an MZ PAIR

Note: a, c and e are the same cross twins

Model for a DZ PAIR

Note: a, c and e are also the same cross groups

$$V_P = a^2 + c^2 + e^2$$

What about "dominance" * effects?

$$V_P = a^2 + d^2 + c^2 + e^2$$

* Dominance defined statistically as individuals being more similar on the basis of genetic overlap alone than would be predicted by a linear model – i.e., **any** non-linear genotype "dosage" effects

Twin Correlations → Sources of Variance

rMZ > rDZ

rMZ = 2 rDZ only A (no C,D)

rMZ = rDZ only C (no A,D)

rMZ < 2 rDZ A & C

rMZ > 2 rDZ A & D

ACE or ADE

$$Cov(mz) = a^{2} + c^{2} \text{ or } a^{2} + d^{2}$$

$$Cov(dz) = \frac{1}{2} a^{2} + c^{2} \text{ or } \frac{1}{2} a^{2} + \frac{1}{4} d^{2}$$

$$V_{P} = a^{2} + c^{2} + e^{2} \text{ or } a^{2} + d^{2} + e^{2}$$

3 unknown parameters (a, c, e or a, d, e), and only 3 distinctive predicted statistics:

Cov MZ, Cov DZ, Vp) this model is **just identified**

Can use the same approach for other relationships

Contributions of V_A and V_D to covariances between relatives (ignoring

	environment) Contribution to Covariance		
Relationship	V _A	V _D	
Total variance	1	1	
Sibling (DZ twin)	1/2	1/4	
MZ twin	1	1	
Half-sibling	1/4	0	
First cousin	1/8	0	
Parent-offspring	1/2	0	
Avuncular	1/4	0	
Grand-parent	1/8	0	
Unrelated	0 *	0*	

Heritability among unrelateds

Heritability among unrelateds

- Estimate of V_A captured by genotyped & imputed variants
 - Upper bound of how much V_A GWAS can detect
- By not using relatives who also share environmental effects:
 - Does not rely on assumption that r(MZ) > r(DZ) for purely genetic reasons

Trait or Disease	h ² Pedigree Studies	h ² GWAS Hits ^a	h² AII GWAS SNPs ^b
Type 1 diabetes	0.9^{98}	0.6 ^{99 ,c}	0.3^{12}
Type 2 diabetes	0.3-0.6 ¹⁰⁰	$0.05 \text{-} 0.10^{34}$	
Obesity (BMI)	0.4-0.6 ^{101,102}	$0.01 \text{-} 0.02^{36}$	0.214
Crohn's disease	0.6-0.8 ¹⁰³	0.1^{11}	0.4^{12}
Ulcerative colitis	0.5 ¹⁰³	0.05^{12}	
Multiple sclerosis	0.3-0.8 ¹⁰⁴	0.145	
Ankylosing spondylitis	>0.90105	0.2^{106}	
Rheumatoid arthritis	0.6^{107}		
Schizophrenia	0.7-0.8 ¹⁰⁸	0.01 ⁷⁹	0.3 ¹⁰⁹
Bipolar disorder	0.6-0.7 ¹⁰⁸	0.02^{79}	0.4^{12}
Breast cancer	0.3 ¹¹⁰	0.08^{111}	
Von Willebrand factor	0.66-0.75 ^{112,113}	0.13^{114}	0.25 ¹⁴
Height	0.8 ^{115,116}	0.1^{13}	0.5 ^{13,14}
Bone mineral density	0.6-0.8 ¹¹⁷	0.05^{118}	
QT interval	0.37-0.60 ^{119,120}	0.07^{121}	0.2 ¹⁴
HDL cholesterol	0.5 ¹²²	0.1 ⁵⁷	
Platelet count	0.8^{123}	0.05-0.158	

Variance
explained
by common
SNPs
for complex
traits