```
mix_dataset <- data.frame(
id=c(10,20,30,40,50),
gender=c('male', 'female', 'female', 'male', 'female'),
some_date=c('01/11/2012', '04/12/2012', '28/02/2013', '17/06/2014', '08/03/2015'),
value=c(12.34, 32.2, 24.3, 83.1, 8.32),
outcome=c(1,1,0,0,0))

write.csv(mix_dataset, 'mix_dataset.csv', row.names=FALSE)
library(readr)
mix_dataset <- read_csv('mix_dataset.csv')
mix_dataset$some_date <- as.Date(mix_dataset$some_date, format="%d/%m/%Y")
str(mix_dataset$some_date)
```

```
Fix_Date_Features <- function(data_set) {</pre>
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (feature_name in text_features) {
  feature_vector <- as.character(data_set[,feature_name])</pre>
  # assuming date pattern: '01/11/2012'
  date_pattern <- '[0-9][0-9]/[0-9][0-9][0-9][0-9][0-9]
  if (max(nchar(feature_vector)) == 10) {
   if (sum(grepl(date_pattern, feature_vector)) > 0) {
    print(paste('Casting feature to date:',feature_name))
    data_set[,feature_name] <- as.Date(feature_vector, format="%d/%m/%Y")
 return (data_set)
```

path_and_file_name <- 'mix_dataset.csv'</pre>

```
# quick peek at top lines
print(readLines(path_and_file_name, n=5))
mix_dataset <- read.csv(path_and_file_name, stringsAsFactor=FALSE)</pre>
mix_dataset1 <- print(head(Fix_Date_Features(mix_dataset)))
write.csv(mix_dataset1, 'mix_dataset1.csv', row.names=FALSE)
# Text
# load the data set in case you haven't already done so
Titanic_dataset <- read.table('http://math.ucdenver.edu/RTutorial/titanic.txt', sep='\t', header=TRUE, stringsAsFactors = FALSE)
head(Titanic_dataset)
```

```
Titanic_dataset_temp <- Titanic_dataset
Titanic_dataset_temp$Word_Count <- sapply(strsplit(Titanic_dataset_temp$Name, " "), length)
print(head(Titanic_dataset_temp$Word_Count))
Titanic_dataset_temp <- Titanic_dataset
Titanic_dataset_temp$Character_Count <- nchar(as.character(Titanic_dataset_temp$Name))
print(head(Titanic_dataset_temp$Character_Count))
Titanic_dataset_temp <- Titanic_dataset
Titanic_dataset_temp$First_Word <- sapply(strsplit(as.character(Titanic_dataset_temp$Name), " "), `[`, 1)
print(head(Titanic_dataset_temp$First_Word))
Get_Free_Text_Measures <- function(data_set, minimum_unique_threshold=0.9, features_to_ignore=c()) {</pre>
 # look for text entries that are mostly unique
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (f_name in setdiff(text_features, features_to_ignore)) {
 f_vector <- as.character(data_set[,f_name])</pre>
```

```
# treat as raw text if data over minimum_precent_unique unique
  if (length(unique(as.character(f_vector))) > (nrow(data_set) * minimum_unique_threshold)) {
   data_set[,pasteO(f_name, '_word_count')] <- sapply(strsplit(f_vector, " "), length)</pre>
   data_set[,pasteO(f_name, '_character_count')] <- nchar(as.character(f_vector))</pre>
   data_set[,pasteO(f_name, '_first_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`, 1)</pre>
   # remove orginal field
   data_set[,f_name] <- NULL
 return(data_set)
Titanic_dataset_temp <- Get_Free_Text_Measures(data_set = Titanic_dataset, features_to_ignore = c())
str(Titanic_dataset_temp)
```

```
# Factor 1
survey <- data.frame(satisfaction=c('very unhappy','unhappy','neutral','happy','very happy'))</pre>
print(survey)
survey$satisfaction <- as.factor(survey$satisfaction)</pre>
survey$satisfaction_Level <- as.numeric(survey$satisfaction)</pre>
print(survey$satisfaction_Level)
survey$satisfaction <- as.factor(survey$satisfaction)</pre>
levels(survey$satisfaction) <- list('very unhappy'=1,'unhappy'=2,'neutral'=3,'happy'=4,'very happy'=5)
survey$satisfaction_Level <- as.numeric(survey$satisfaction)</pre>
print(survey$satisfaction_Level)
Titanic_dataset <- read.table('http://math.ucdenver.edu/RTutorial/titanic.txt', sep='\t', header=TRUE)
head(Titanic_dataset)
```

```
dim(Titanic_dataset)
unique(Titanic_dataset$Sex)
unique(Titanic_dataset$PClass)
Titanic_dataset_temp <- Titanic_dataset
Titanic_dataset_temp$Sex_Female <- ifelse(Titanic_dataset_temp$Sex=='female', 1, 0)
Titanic_dataset_temp$Sex_Male <- ifelse(Titanic_dataset_temp$Sex=='male', 1, 0)
head(Titanic_dataset_temp)
Titanic_dataset_temp <- Titanic_dataset
for (newcol in unique(Titanic_dataset_temp$PClass)) {
 feature_name <- 'PClass'
 Titanic_dataset_temp[,paste0(feature_name,"_",newcol)] <- ifelse(Titanic_dataset_temp[,feature_name]==newcol,1,0)
```

```
head(Titanic_dataset_temp)
```

```
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE) {
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (feature_name in setdiff(text_features, features_to_ignore)) {
 feature_vector <- as.character(data_set[,feature_name])</pre>
  # check that data has more than one level
  if (length(unique(feature_vector)) == 1)
   next
  # We set any non-data to text
  feature_vector[is.na(feature_vector)] <- 'NA'</pre>
  feature_vector[is.infinite(feature_vector)] <- 'INF'</pre>
  feature_vector[is.nan(feature_vector)] <- 'NAN'
  # loop through each level of a feature and create a new column
 first_level=TRUE
  for (newcol in unique(feature_vector)) {
   if (first_level && leave_out_one_level) {
```

```
# avoid dummy trap and skip first level
    first_level=FALSE
   } else {
    data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)
  # remove original feature
  data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
 return (data_set)
Titanic_dataset_temp <- Binarize_Features(data_set = Titanic_dataset, features_to_ignore = c('Name'))
str(Titanic_dataset_temp)
# CARET ON_LINE BOOK http://topepo.github.io/caret/index.html
```

```
# FACTOR 2
```

Load the functions

```
Fix_Date_Features <- function(data_set) {

text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))

for (feature_name in text_features) {

feature_vector <- as.character(data_set[,feature_name])

# assuming date pattern: '01/11/2012'

date_pattern <- '[0-9][0-9]/[0-9]/[0-9][0-9][0-9][0-9]'

if (max(nchar(feature_vector)) == 10) {

if (sum(grepl(date_pattern, feature_vector)) > 0) {

print(paste('Casting feature to date:',feature_name))

data_set[,feature_name] <- as.Date(feature_vector, format="%d/%m/%Y")

}
```

```
return (data_set)
Get_Free_Text_Measures <- function(data_set, minimum_unique_threshold=0.9, features_to_ignore=c()) {</pre>
 # look for text entries that are mostly unique
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (f_name in setdiff(text_features, features_to_ignore)) {
 f_vector <- as.character(data_set[,f_name])</pre>
  # treat as raw text if data over minimum_precent_unique unique
  if (length(unique(as.character(f_vector))) > (nrow(data_set) * minimum_unique_threshold)) {
   data_set[,pasteO(f_name, '_word_count')] <- sapply(strsplit(f_vector, " "), length)</pre>
   data_set[,paste0(f_name, '_character_count')] <- nchar(as.character(f_vector))</pre>
   data_set[,paste0(f_name, '_first_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`, 1)
   # remove orginal field
   data_set[,f_name] <- NULL
```

```
return(data_set)
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE) {
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (feature_name in setdiff(text_features, features_to_ignore)) {
 feature_vector <- as.character(data_set[,feature_name])</pre>
  # check that data has more than one level
  if (length(unique(feature_vector)) == 1)
   next
  # We set any non-data to text
  feature_vector[is.na(feature_vector)] <- 'NA'</pre>
  feature_vector[is.infinite(feature_vector)] <- 'INF'</pre>
  feature_vector[is.nan(feature_vector)] <- 'NAN'
  # loop through each level of a feature and create a new column
 first_level=TRUE
  for (newcol in unique(feature_vector)) {
   if (first_level && leave_out_one_level) {
```

```
# avoid dummy trap and skip first level
    first_level=FALSE
   } else {
    data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)
  # remove original feature
  data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
 return (data_set)
Titanic_dataset <- read.table('http://math.ucdenver.edu/RTutorial/titanic.txt', sep='\t', header=TRUE, stringsAsFactors = FALSE)
Titanic_dataset_temp <- Titanic_dataset
# fix date field if any
Titanic_dataset_temp <- Fix_Date_Features(data_set = Titanic_dataset_temp)
# extra quantative value out of text entires
```

```
Titanic_dataset_temp <- Get_Free_Text_Measures(data_set = Titanic_dataset_temp)
# binarize categories
Titanic_dataset_temp <- Binarize_Features(data_set = Titanic_dataset_temp, features_to_ignore = c(), leave_out_one_level = TRUE)
Titanic_dataset <- read.table('http://math.ucdenver.edu/RTutorial/titanic.txt', sep='\t', header=TRUE, stringsAsFactors = FALSE)
Titanic_dataset_temp <- Titanic_dataset
# fix date field if any
Titanic_dataset_temp <- Fix_Date_Features(data_set = Titanic_dataset_temp)
# extra quantative value out of text entires
Titanic_dataset_temp <- Get_Free_Text_Measures(data_set = Titanic_dataset_temp)
# get the Name_first_word feature
temp_vect <- Titanic_dataset_temp$Name_first_word</pre>
# only give us the top 20 most popular categories
popularity_count <- 20
# install.packages('dplyr')
```

```
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
temp_vect <- data.frame(table(temp_vect)) %>% arrange(desc(Freq)) %>% head(popularity_count)
Titanic_dataset_temp$Name_first_word <- ifelse(Titanic_dataset_temp$Name_first_word %in% temp_vect$temp_vect,
                        Titanic_dataset_temp$Name_first_word, 'Other')
print(head(Titanic_dataset_temp$Name_first_word,40))
```

```
# binarize categories
Titanic_dataset_temp <- Binarize_Features(data_set = Titanic_dataset_temp, features_to_ignore = c(), leave_out_one_level = TRUE)
head(Titanic_dataset_temp, 2)
## Age Survived Name_word_count Name_character_count PClass_2nd PClass_3rd
## 1 29 1 4 28 0 0
## 2 2 0 4 27 0 0
## Sex_male Name_first_word_Brown, Name_first_word_Carlsson,
##1000
## 2 0 0 0
## Name_first_word_Carter, Name_first_word_Fortune, Name_first_word_Van
##1000
## 2 0 0 0
## Name_first_word_Williams, Name_first_word_Davies, Name_first_word_Kelly,
```

```
##1000
## 2 0 0 0
## Name_first_word_Andersson, Name_first_word_Asplund,
##100
## 2 0 0
## Name_first_word_Ford, Name_first_word_Goodwin,
##100
## 2 0 0
## Name_first_word_Johansson, Name_first_word_Johnson,
##100
## 2 0 0
## Name_first_word_Kink, Name_first_word_Lefebre, Name_first_word_Panula,
##1000
## 2 0 0 0
## Name_first_word_Rice, Name_first_word_Sage, Name_first_word_Skoog,
##1000
## 2 0 0 0
```

```
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE, max_level_count=20) {
require(dplyr)
text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
for (feature_name in setdiff(text_features, features_to_ignore)) {
 feature_vector <- as.character(data_set[,feature_name])</pre>
 # check that data has more than one level
  if (length(unique(feature_vector)) == 1)
   next
  # We set any non-data to text
 feature_vector[is.na(feature_vector)] <- 'NA'
 feature_vector[is.infinite(feature_vector)] <- 'INF'
 feature_vector[is.nan(feature_vector)] <- 'NAN'
 # only give us the top x most popular categories
  temp_vect <- data.frame(table(feature_vector)) %>% arrange(desc(Freq)) %>% head(max_level_count)
 feature_vector <- ifelse(feature_vector %in% temp_vect$feature_vector, feature_vector, 'Other')
  # loop through each level of a feature and create a new column
 first_level=TRUE
 for (newcol in unique(feature_vector)) {
   if (leave_out_one_level & first_level) {
   # avoid dummy trap and skip first level
```

```
first_level=FALSE
    next
   data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)
  # remove original feature
  data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
 return (data_set)
Titanic_dataset <- read.table('http://math.ucdenver.edu/RTutorial/titanic.txt', sep='\t', header=TRUE, stringsAsFactors = FALSE)
Titanic_dataset_temp <- Titanic_dataset
# fix date field if any
Titanic_dataset_temp <- Fix_Date_Features(data_set = Titanic_dataset_temp)
# extra quantative value out of text entires
Titanic_dataset_temp <- Get_Free_Text_Measures(data_set = Titanic_dataset_temp)
# binarize categories
Titanic_dataset_temp <- Binarize_Features(data_set = Titanic_dataset_temp, features_to_ignore = c(), leave_out_one_level = TRUE, max_level_count = 10)
```

IMPUTING MISSING DATA

```
mix_dataset <- data.frame(
id=c(1,NA,3,4,5),
mood=c(0,20,20,Inf,50),
value=c(12.34, 32.2, NaN, 83.1, 8.32),
outcome=c(1,1,0,0,0))
head(mix_dataset)
```

id mood value outcome

1 1 0 12.34 1

2 NA 20 32.20 1

3 3 20 NaN 0

4 4 Inf 83.10 0

5 5 50 8.32 0

mix_dataset_temp <- mix_dataset

where are the NAs?

is.na(mix_dataset_temp)

id mood value outcome

[1,] FALSE FALSE FALSE

[2,] TRUE FALSE FALSE FALSE

[3,] FALSE FALSE TRUE FALSE

[4,] FALSE FALSE FALSE FALSE

[5,] FALSE FALSE FALSE

impute column:

mix_dataset_temp\$id[is.na(mix_dataset_temp\$id)] <- 0
mix_dataset_temp</pre>

id mood value outcome

1 1 0 12.34 1

2 0 20 32.20 1

3 3 20 NaN 0

4 4 Inf 83.10 0

5 5 50 8.32 0

impute with mean

mix_dataset_temp\$value[is.nan(mix_dataset_temp\$value)] <- mean(mix_dataset_temp\$value, na.rm = TRUE)
mix_dataset_temp</pre>

id mood value outcome

1 1 0 12.34 1

```
## 2 0 20 32.20 1
## 3 3 20 33.99 0
## 4 4 Inf 83.10 0
## 5 5 50 8.32 0
Impute_Features <- function(data_set, features_to_ignore=c(),</pre>
               use_mean_instead_of_0=TRUE,
               mark_NAs=FALSE,
               remove_zero_variance=FALSE) {
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
  print(feature_name)
  # remove any fields with zero variance
  if (remove_zero_variance) {
   if (length(unique(data_set[, feature_name]))==1) {
    data_set[, feature_name] <- NULL
    next
  if (mark_NAs) {
```

```
# note each field that contains missing or bad data
  if (any(is.na(data_set[,feature_name]))) {
   # create binary column before imputing
   newName <- paste0(feature_name, '_NA')</pre>
   data_set[,newName] <- as.integer(ifelse(is.na(data_set[,feature_name]),1,0)) }</pre>
  if (any(is.infinite(data_set[,feature_name]))) {
   newName <- pasteO(feature_name, '_inf')</pre>
   data_set[,newName] <- as.integer(ifelse(is.infinite(data_set[,</pre>
                                     feature_name]),1,0)) }
 if (use_mean_instead_of_0) {
  data_set[is.infinite(data_set[,feature_name]),feature_name] <- NA
  data_set[is.na(data_set[,feature_name]),feature_name] <- mean(data_set[,feature_name], na.rm=TRUE)
 } else {
  data_set[is.na(data_set[,feature_name]),feature_name] <- 0</pre>
  data_set[is.infinite(data_set[,feature_name]),feature_name] <- 0
return(data_set)
```


1 1.00 0.0 12.34 1 0 0 0 ## 2 3.25 20.0 32.20 1 1 0 0 ## 3 3.00 20.0 33.99 0 0 0 1 ## 4 4.00 22.5 83.10 0 0 1 0 ## 5 5.00 50.0 8.32 0 0 0 0 ###3 # PIPELINE CHECK Get_Free_Text_Measures <- function(data_set, minimum_unique_threshold=0.9, features_to_ignore=c()) {</pre> # look for text entries that are mostly unique text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)])) for (f_name in setdiff(text_features, features_to_ignore)) { f_vector <- as.character(data_set[,f_name])</pre>

```
# treat as raw text if data over minimum_precent_unique unique
  if (length(unique(as.character(f_vector))) > (nrow(data_set) * minimum_unique_threshold)) {
   data_set[,pasteO(f_name, '_word_count')] <- sapply(strsplit(f_vector, " "), length)</pre>
   data_set[,pasteO(f_name, '_character_count')] <- nchar(as.character(f_vector))</pre>
   data_set[,paste0(f_name, '_first_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`, 1)
   # remove orginal field
   data_set[,f_name] <- NULL
 return(data_set)
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE, max_level_count=20) {
 require(dplyr)
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (feature_name in setdiff(text_features, features_to_ignore)) {
  feature_vector <- as.character(data_set[,feature_name])</pre>
  # check that data has more than one level
  if (length(unique(feature_vector)) == 1)
```

```
next
# We set any non-data to text
feature_vector[is.na(feature_vector)] <- 'NA'</pre>
feature_vector[is.infinite(feature_vector)] <- 'INF'</pre>
feature_vector[is.nan(feature_vector)] <- 'NAN'
# only give us the top x most popular categories
temp_vect <- data.frame(table(feature_vector)) %>% arrange(desc(Freq)) %>% head(max_level_count)
feature_vector <- ifelse(feature_vector, 'Other')
# loop through each level of a feature and create a new column
first_level=TRUE
for (newcol in unique(feature_vector)) {
if (leave_out_one_level & first_level) {
 # avoid dummy trap and skip first level
 first_level=FALSE
  next
 data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)
# remove original feature
data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
```

```
return (data_set)
Impute_Features <- function(data_set, features_to_ignore=c(),</pre>
               use_mean_instead_of_0=TRUE,
               mark_NAs=FALSE,
               remove_zero_variance=FALSE) {
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
  print(feature_name)
  # remove any fields with zero variance
  if (remove_zero_variance) {
   if (length(unique(data_set[, feature_name]))==1) {
    data_set[, feature_name] <- NULL
    next
  if (mark_NAs) {
   # note each field that contains missing or bad data
```

```
if (any(is.na(data_set[,feature_name]))) {
   # create binary column before imputing
   newName <- paste0(feature_name, '_NA')</pre>
   data_set[,newName] <- as.integer(ifelse(is.na(data_set[,feature_name]),1,0)) }</pre>
  if (any(is.infinite(data_set[,feature_name]))) {
   newName <- pasteO(feature_name, '_inf')</pre>
   data_set[,newName] <- as.integer(ifelse(is.infinite(data_set[, feature_name]),1,0)) }</pre>
 if (use_mean_instead_of_0) {
  data_set[is.infinite(data_set[,feature_name]),feature_name] <- NA
  data_set[is.na(data_set[,feature_name]),feature_name] <- mean(data_set[,feature_name], na.rm=TRUE)
 } else {
  data_set[is.na(data_set[,feature_name]),feature_name] <- 0
  data_set[is.infinite(data_set[,feature_name]),feature_name] <- 0
return(data_set)
```

```
mix_dataset <- data.frame(
 ids=c(1,NA,3,4,5),
 some_dates = c('01/11/2012','04/12/2012','28/02/2013','17/06/2014','08/03/2015'),
 mood=c(0,20,20,Inf,50),
 some_real_numbers = c(12.34, 32.2, NaN, 83.1, 8.32),
 some_text = c('sentence one','sentence two', 'mixing it up', 'sentence four', 'sentence five'))
head(mix_dataset)
## ids some_dates mood some_real_numbers some_text
## 1 1 01/11/2012 0 12.34 sentence one
## 2 NA 04/12/2012 20 32.20 sentence two
## 3 3 28/02/2013 20 NaN mixing it up
## 4 4 17/06/2014 Inf 83.10 sentence four
```

```
## 5 5 08/03/2015 50 8.32 sentence five
library(readr)
write_csv(mix_dataset, 'mix_dataset.csv')
# take a peek at the data
readLines('mix_dataset.csv', n=3)
## [1] "ids,some_dates,mood,some_real_numbers,some_text"
## [2] "1,01/11/2012,0,12.34,sentence one"
## [3] "NA,04/12/2012,20,32.2,sentence two"
# pick your reader
library(data.table)
mix_dataset <- fread('mix_dataset.csv', data.table = FALSE)
str(mix_dataset)
```

```
# format date field to be R compliant
mix_dataset$some_dates <- as.Date(mix_dataset$some_dates, format="%d/%m/%Y")
str(mix_dataset$some_dates)
## Date[1:5], format: "2012-11-01" "2012-12-04" "2013-02-28" "2014-06-17" ...
class(mix_dataset)
# extra quantative value out of text entires
mix_dataset <- Get_Free_Text_Measures(data_set = mix_dataset)</pre>
head(mix_dataset,2)
## ids some_dates mood some_real_numbers some_text_word_count
```

```
## 1 1 2012-11-01 0 12.34 2
## 2 NA 2012-12-04 20 32.20 2
## some_text_character_count some_text_first_word
## 1 12 sentence
## 2 12 sentence
# binarize categories
mix_dataset <- Binarize_Features(data_set = mix_dataset, features_to_ignore = c(), leave_out_one_level = TRUE)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:data.table':
##
## between, last
##
## The following objects are masked from 'package:stats':
##
```

```
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
head(mix_dataset, 2)
## ids some_dates mood some_real_numbers some_text_word_count
## 1 1 2012-11-01 0 12.34 2
## 2 NA 2012-12-04 20 32.20 2
## some_text_character_count some_text_first_word_mixing
## 1 12 0
## 2 12 0
# impute missing data using 0
```

```
mix_dataset <- Impute_Features(mix_dataset, use_mean_instead_of_0 = FALSE, features_to_ignore = c('some_dates'))
## [1] "ids"
## [1] "mood"
## [1] "some_real_numbers"
## [1] "some_text_word_count"
## [1] "some_text_character_count"
## [1] "some_text_first_word_mixing"
mix_dataset
## ids some_dates mood some_real_numbers some_text_word_count
## 1 1 2012-11-01 0 12.34 2
## 2 0 2012-12-04 20 32.20 2
## 3 3 2013-02-28 20 0.00 3
## 4 4 2014-06-17 0 83.10 2
## 5 5 2015-03-08 50 8.32 2
## some_text_character_count some_text_first_word_mixing
```

```
## 1 12 0
## 2 12 0
## 3 12 1
## 4 13 0
## 5 13 0
mix_dataset <- Impute_Features(mix_dataset, use_mean_instead_of_0 = TRUE, features_to_ignore = c('some_dates'))
mix_dataset
# NEARZEROVARIANCE
library(caret)
mix_dataset <- data.frame(
  id=sample(1:100, 100, replace = F),
  value=runif(100,1.0, 55.5),
  no_varaiance=rep(1,100)
```

```
summary(mix_dataset)
# id
         value
                  no_varaiance
# Min. : 1.00 Min. : 1.168 Min. :1
# 1st Qu.: 25.75 1st Qu.: 9.995 1st Qu.:1
# Median: 50.50 Median: 27.633 Median: 1
# Mean : 50.50 Mean : 26.988 Mean : 1
# 3rd Qu.: 75.25 3rd Qu.:42.664 3rd Qu.:1
# Max. :100.00 Max. :55.036 Max. :1
nearZeroVar(mix_dataset, saveMetrics = TRUE)
# freqRatio percentUnique zeroVar nzv
# id
            1
                  100 FALSE FALSE
# value
             1
                    100 FALSE FALSE
# no_varaiance
                 0
                         1 TRUE TRUE
```

mix_dataset\$little_varaiance <- c(rep(1,98), 2, 3)

summary(mix_dataset)

id value no_varaiance little_varaiance

Min. : 1.00 Min. : 1.168 Min. :1 Min. :1.00

1st Qu.: 25.75 1st Qu.: 9.995 1st Qu.:1 1st Qu.:1.00

Median: 50.50 Median: 27.633 Median: 1 Median: 1.00

Mean : 50.50 Mean : 26.988 Mean : 1 Mean : 1.03

3rd Qu.: 75.25 3rd Qu.:42.664 3rd Qu.:1 3rd Qu.:1.00

Max. :100.00 Max. :55.036 Max. :1 Max. :3.00

nearZeroVar(mix_dataset, saveMetrics = TRUE)

freqRatio percentUnique zeroVar nzv

#id 1 100 FALSE FALSE

value 1 100 FALSE FALSE

no_varaiance 0 1 TRUE TRUE
little_varaiance 98 3 FALSE TRUE

nzv <- nearZeroVar(mix_dataset, saveMetrics = TRUE)
nzv\$percentUnique</pre>

#[1]100100 1 3

ENGINEERING DATES - GETTING ADDITIONAL FEATURES OUT OF DATES.

print(as.numeric(as.Date('1970-01-01')))

[1] 0

```
Feature_Engineer_Dates <- function(data_set, remove_original_date=TRUE) {
require(lubridate)
data_set <- data.frame(data_set)</pre>
date_features <- names(data_set[sapply(data_set, is.Date)])</pre>
for (feature_name in date_features) {
  data_set[,paste0(feature_name,'_DateInt')] <- as.numeric(data_set[,feature_name])</pre>
  data set[,paste0(feature name,' Month')] <- as.integer(format(data set[, feature name], "%m"))
  data_set[,pasteO(feature_name,'_ShortYear')] <- as.integer(format(data_set[,feature_name], "%y"))</pre>
  data_set[,paste0(feature_name,'_LongYear')] <- as.integer(format(data_set[,feature_name], "%Y"))
  data_set[,paste0(feature_name,'_Day')] <- as.integer(format(data_set[,feature_name], "%d"))
  # week day number requires first pulling the weekday label, creating the 7 week day levels, and casting to integer
  data set[,paste0(feature name,' WeekDayNumber')] <- as.factor(weekdays(data set[,feature name]))
  levels(data_set[,paste0(feature_name,'_WeekDayNumber')]) <- list(Monday=1, Tuesday=2, Wednesday=3, Thursday=4, Friday=5, Saturday=6, Sunday=7)
  data_set[,paste0(feature_name,'_WeekDayNumber')] <- as.integer(data_set[,paste0(feature_name,'_WeekDayNumber')])
```

```
data_set[,paste0(feature_name,'_IsWeekend')] <- as.numeric(grepl("Saturday|Sunday", weekdays(data_set[,feature_name])))
  data_set[,pasteO(feature_name,'_YearDayCount')] <- yday(data_set[,feature_name])</pre>
  data_set[,paste0(feature_name,'_Quarter')] <- lubridate::quarter(data_set[,feature_name], with_year = FALSE)</pre>
  data_set[,paste0(feature_name,'_Quarter')] <- lubridate::quarter(data_set[,feature_name], with_year = TRUE)</pre>
  if (remove_original_date)
   data_set[, feature_name] <- NULL
 return(data_set)
mix_dataset <- data.frame(
 id=c(10,20,30,40,50),
 gender=c('male','female','female','female'),
 some_date=c('2012-01-12','2012-01-12','2012-12-01','2012-05-30','2013-12-12'),
 value=c(12.34, 32.2, 24.3, 83.1, 8.32),
 outcome=c(1,1,0,0,0))
```

```
library(readr)
write_csv(mix_dataset, 'mix_dataset.csv')
mix_dataset <- read_csv('mix_dataset.csv')
mix_dataset <- Feature_Engineer_Dates(mix_dataset)
## Loading required package: lubridate
head(mix_dataset)
## id gender value outcome some_date_DateInt some_date_Month
## 1 10 male 12.34 1 15351 1
## 2 20 female 32.20 1 15351 1
## 3 30 female 24.30 0 15675 12
## 4 40 male 83.10 0 15490 5
## 5 50 female 8.32 0 16051 12
## some_date_ShortYear some_date_LongYear some_date_Day
## 1 12 2012 12
```

2 12 2012 12 ## 3 12 2012 1 ## 4 12 2012 30 ## 5 13 2013 12 ## some_date_WeekDayNumber some_date_IsWeekend some_date_YearDayCount ## 1 4 0 12 ## 2 4 0 12 ## 3 6 1 336 ## 4 3 0 151 ## 5 4 0 346 ## some_date_Quarter ## 1 2012.1 ## 2 2012.1 ## 3 2012.4 ## 4 2012.2 ## 5 2013.4


```
id=c(1,2,3,4,5),
 mood=c(0,20,20,40,50),
 value=c(12.34, 32.2, 24.3, 83.1, 8.32),
 outcome=c(1,1,0,0,0))
library(readr)
write_csv(mix_dataset, 'mix_dataset.csv')
mix_dataset <- read_csv('mix_dataset.csv')
Feature_Engineer_Integers <- function(data_set, features_to_ignore=c()) {</pre>
 require(infotheo)
 data_set <- data.frame(data_set)</pre>
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
  if (class(data_set[,feature_name])=='numeric' | class(data_set[,feature_name])=='integer') {
   feature_vector <- data_set[,feature_name]</pre>
   if (all((feature_vector - round(feature_vector)) == 0)) {
```

```
# make sure we have more than 2 values excluding NAs
   if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 2) {
    print(feature_name)
    data_set[,paste0(feature_name,'_IsZero')] <- ifelse(data_set[,feature_name]==0,1,0)
    data_set[,paste0(feature_name,'_IsPositive')] <- ifelse(data_set[,feature_name]>=0,1,0)
    # separate data into two bins
    data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=2)
    data_set[,paste0(feature_name,'_2Bins')] <- data_discretized$X</pre>
    if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 4) {
     # try 4 bins
     data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=4)
     data_set[,paste0(feature_name,'_4Bins')] <- data_dis</pre>
     cretized$X
return (data_set)
```

```
mix_dataset <- read_csv('mix_dataset.csv')</pre>
Feature_Engineer_Integers(mix_dataset, features_to_ignore=c('id'))
## Loading required package: infotheo
## [1] "mood"
## id mood value outcome mood_IsZero mood_IsPositive mood_2Bins
## 1 1 0 12.34 1 1 1 1
## 2 2 20 32.20 1 0 1 1
## 3 3 20 24.30 0 0 1 1
## 4 4 40 83.10 0 0 1 2
## 5 5 50 8.32 0 0 1 2
```

NUMBERS

```
Feature_Engineer_Numbers <- function(data_set, features_to_ignore=c()) {
 require(infotheo)
 data_set <- data.frame(data_set)</pre>
 date_features <- setdiff(names(data_set[sapply(data_set, is.numeric)]), features_to_ignore)</pre>
 for (feature_name in date_features) {
  feature_vector <- data_set[,feature_name]</pre>
  if (is.integer(feature_vector) | is.numeric(feature_vector)) {
   if (any((feature_vector - round(feature_vector)) != 0)) {
    # make sure we have more than 2 values excluding NAs
    if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 2) {
     print(feature_name)
     # polynomial transformation
     poly_vector <- poly(x=feature_vector, degree = 2)</pre>
     data_set[,paste0(feature_name, "_poly1")] <- poly_vector
     [,1]
     data_set[,paste0(feature_name, "_poly2")] <- poly_vector
```

```
[,2]
    # log transform
    data_set[,paste0(feature_name, "_log")] <- log(x = feature_vector)</pre>
    # exponential transform
    data_set[,paste0(feature_name, "_exp")] <- exp(x = feature_vector)</pre>
    # rounding
    data_set[,pasteO(feature_name, "_rnd")] <- round(x = feature_vector, digits = 0)</pre>
    # binning into 2 bins
    data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=2)
    data_set[,paste0(feature_name,'_2Bins')] <- data_discretized$X
return(data_set)
```

mix_dataset <- data.frame(

```
id=sample(1:100, 100, replace=F),
 value=runif(100, 1.0, 55.5)
write_csv(mix_dataset, 'mix_dataset.csv')
mix_dataset <- read_csv('mix_dataset.csv')</pre>
head(Feature_Engineer_Numbers(mix_dataset, features_to_ignore=c()))
## [1] "value"
## id value value_poly1 value_poly2 value_log value_exp value_rnd
## 1 87 19.974386 -0.043198041 -0.07035281 2.9944507 4.728959e+08 20
## 2 98 51.824357 0.184762399 0.19461439 3.9478603 3.213900e+22 52
## 3 25 18.063778 -0.056872870 -0.05327673 2.8939087 6.998408e+07 18
## 4 4 2.469639 -0.168485118 0.22562557 0.9040719 1.181818e+01 2
## 5 53 31.098497 0.036420785 -0.09565801 3.4371595 3.205574e+13 31
## 6 51 26.661576 0.004664319 -0.10073098 3.2832234 3.792934e+11 27
```

value_2Bins
1 1
2 2
3 1
4 1
5 2
6 2
#######################################
PIPELINE CHECK
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE, max_level_count=20) {
require(dplyr)

```
text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
for (feature_name in setdiff(text_features, features_to_ignore)) {
 feature_vector <- as.character(data_set[,feature_name])</pre>
 # check that data has more than one level
 if (length(unique(feature_vector)) == 1)
  next
 # We set any non-data to text
 feature_vector[is.na(feature_vector)] <- 'NA'</pre>
 feature_vector[is.infinite(feature_vector)] <- 'INF'</pre>
 feature_vector[is.nan(feature_vector)] <- 'NAN'
 # only give us the top x most popular categories
 temp_vect <- data.frame(table(feature_vector)) %>% arrange(desc(Freq)) %>% head(max_level_count)
 feature_vector <- ifelse(feature_vector %in% temp_vect$feature_vector, feature_vector, 'Other')</pre>
 # loop through each level of a feature and create a new column
 first_level=TRUE
 for (newcol in unique(feature_vector)) {
  if (leave_out_one_level & first_level) {
   # avoid dummy trap and skip first level
   first_level=FALSE
   next
```

```
data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)</pre>
  # remove original feature
  data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
 return (data_set)
Get_Free_Text_Measures <- function(data_set, minimum_unique_threshold=0.9, features_to_ignore=c()) {
 # look for text entries that are mostly unique
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (f_name in setdiff(text_features, features_to_ignore)) {
 f_vector <- as.character(data_set[,f_name])</pre>
  # treat as raw text if data over minimum_precent_unique unique
  if (length(unique(as.character(f_vector))) > (nrow(data_set) * minimum_unique_threshold)) {
   data_set[,pasteO(f_name, '_word_count')] <- sapply(strsplit(f_vector, " "), length)</pre>
   data_set[,pasteO(f_name, '_character_count')] <- nchar(as.character(f_vector))</pre>
```

```
data_set[,paste0(f_name, '_first_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`, 1)
   # remove orginal field
   data_set[,f_name] <- NULL
 return(data_set)
Impute_Features <- function(data_set, features_to_ignore=c(),</pre>
               use_mean_instead_of_0=TRUE,
               mark_NAs=FALSE,
               remove_zero_variance=FALSE) {
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
  print(feature_name)
  # remove any fields with zero variance
  if (remove_zero_variance) {
   if (length(unique(data_set[, feature_name]))==1) {
    data_set[, feature_name] <- NULL
```

```
next
if (mark_NAs) {
 # note each field that contains missing or bad data
 if (any(is.na(data_set[,feature_name]))) {
  # create binary column before imputing
  newName <- paste0(feature_name, '_NA')</pre>
  data_set[,newName] <- as.integer(ifelse(is.na(data_set[,feature_name]),1,0)) }</pre>
 if (any(is.infinite(data_set[,feature_name]))) {
  newName <- pasteO(feature_name, '_inf')</pre>
  data_set[,newName] <- as.integer(ifelse(is.infinite(data_set[,feature_name]),1,0)) }</pre>
if (use_mean_instead_of_0) {
 data_set[is.infinite(data_set[,feature_name]),feature_name] <- NA
 data_set[is.na(data_set[,feature_name]),feature_name] <- mean(data_set[,feature_name], na.rm=TRUE)
} else {
 data_set[is.na(data_set[,feature_name]),feature_name] <- 0
 data_set[is.infinite(data_set[,feature_name]),feature_name] <- 0
```

```
return(data_set)
Feature_Engineer_Dates <- function(data_set, remove_original_date=TRUE) {
require(lubridate)
data_set <- data.frame(data_set)</pre>
date_features <- names(data_set[sapply(data_set, is.Date)])</pre>
for (feature_name in date_features) {
  data_set[,paste0(feature_name,'_DateInt')] <- as.numeric(data_set[,feature_name])</pre>
  data set[,paste0(feature name,' Month')] <- as.integer(format(data set[,feature name], "%m"))
  data_set[,pasteO(feature_name,'_ShortYear')] <- as.integer(format(data_set[,feature_name], "%y"))</pre>
  data_set[,paste0(feature_name,'_LongYear')] <- as.integer(format(data_set[,feature_name], "%Y"))
  data_set[,paste0(feature_name,'_Day')] <- as.integer(format(data_set[,feature_name], "%d"))
  # week day number requires first pulling the weekday label, creating the 7 week day levels, and casting to integer
  data set[,paste0(feature name,' WeekDayNumber')] <- as.factor(weekdays(data set[,feature name]))
  levels(data_set[,paste0(feature_name,'_WeekDayNumber')]) <- list(Monday=1, Tuesday=2, Wednesday=3, Thursday=4, Friday=5, Saturday=6, Sunday=7)
  data set[,paste0(feature name,' WeekDayNumber')] <- as.integer(data set[,paste0(feature name,' WeekDayNumber')])
```

```
data_set[,paste0(feature_name,'_IsWeekend')] <- as.numeric(grepl("Saturday|Sunday", weekdays(data_set[,feature_name])))
  data_set[,pasteO(feature_name,'_YearDayCount')] <- yday(data_set[,feature_name])</pre>
  data_set[,paste0(feature_name,'_Quarter')] <- lubridate::quarter(data_set[,feature_name], with_year = FALSE)
  data_set[,pasteO(feature_name,'_Quarter')] <- lubridate::quarter(data_set[,feature_name], with_year = TRUE)</pre>
  if (remove_original_date)
   data set[, feature name] <- NULL
 return(data_set)
Feature_Engineer_Integers <- function(data_set, features_to_ignore=c()) {
 require(infotheo)
 data_set <- data.frame(data_set)</pre>
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
  if (class(data_set[,feature_name])=='numeric' | class(data_set[,feature_name])=='integer') {
   feature_vector <- data_set[,feature_name]</pre>
   if (all((feature_vector - round(feature_vector)) == 0)) {
    # make sure we have more than 2 values excluding NAs
```

```
if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 2) {
    print(feature_name)
    data_set[,paste0(feature_name,'_IsZero')] <- ifelse(data_set[,feature_name]==0,1,0)
    data_set[,paste0(feature_name,'_IsPositive')] <- ifelse(data_set[,feature_name]>=0,1,0)
    # separate data into two bins
    data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=2)</pre>
    data_set[,pasteO(feature_name,'_2Bins')] <- data_discretized$X</pre>
    if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 4) {
     # try 4 bins
     data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=4)
     data_set[,paste0(feature_name,'_4Bins')] <- data_discretized$X</pre>
return (data_set)
```

```
Feature_Engineer_Numbers <- function(data_set, features_to_ignore=c()) {
 require(infotheo)
 data_set <- data.frame(data_set)</pre>
 date_features <- setdiff(names(data_set[sapply(data_set, is.numeric)]), features_to_ignore)
 for (feature_name in date_features) {
  feature_vector <- data_set[,feature_name]</pre>
  if (is.integer(feature_vector) | is.numeric(feature_vector)) {
   if (any((feature_vector - round(feature_vector)) != 0)) {
    # make sure we have more than 2 values excluding NAs
    if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 2) {
     print(feature_name)
     # polynomial transformation
     poly_vector <- poly(x=feature_vector, degree = 2)</pre>
     data_set[,paste0(feature_name, "_poly1")] <- poly_vector</pre>
     [,1]
     data_set[,paste0(feature_name, "_poly2")] <- poly_vector</pre>
     [,2]
     # log transform
     data_set[,pasteO(feature_name, "_log")] <- log(x = feature_vector)</pre>
     # exponential transform
```

```
data_set[,paste0(feature_name, "_exp")] <- exp(x = feature_vector)</pre>
     # rounding
     data_set[,pasteO(feature_name, "_rnd")] <- round(x = feature_vector, digits = 0)</pre>
     # binning into 2 bins
     data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=2)
     data_set[,paste0(feature_name,'_2Bins')] <- data_discreti</pre>
     zed$X
 return(data_set)
mix_dataset <- data.frame(
 id=c(1,2,3,4,5),
 gender=c('male','female','female','male','female'),
 some_date=c('2012-01-01','2013-01-01','2014-01-01','2015-01-01','2016-01-01'),
```

```
mood=c(0,20,20,NA,50),
 value=c(12.34, 32.2, 24.3, 83.1, 8.32),
 outcome=c(1,1,0,0,0))
library(readr)
write_csv(mix_dataset, 'mix_dataset.csv')
mix_dataset <- as.data.frame(read_csv('mix_dataset.csv'))</pre>
# automated pipeline
mix_dataset <- Get_Free_Text_Measures(data_set = mix_dataset)</pre>
mix_dataset <- Binarize_Features(data_set = mix_dataset, leave_out_one_level = FALSE)
## Loading required package: dplyr
##
```

```
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
mix_dataset <- Impute_Features(data_set = mix_dataset)
## [1] "id"
## [1] "some_date"
## [1] "mood"
## [1] "value"
## [1] "outcome"
## [1] "gender_male"
```

```
## [1] "gender_female"
mix_dataset <- Feature_Engineer_Dates(data_set = mix_dataset)
## Loading required package: lubridate
mix_dataset <- Feature_Engineer_Integers(data_set = mix_dataset)</pre>
## Loading required package: infotheo
## [1] "id"
## [1] "some_date_DateInt"
## [1] "some_date_ShortYear"
## [1] "some_date_LongYear"
## [1] "some_date_WeekDayNumber"
mix_dataset <- Feature_Engineer_Numbers(data_set = mix_dataset)
```

```
## [1] "mood"
## [1] "value"
## [1] "some_date_Quarter"
head(mix_dataset,2)
## id mood value outcome gender_male gender_female some_date_DateInt
## 1 1 0 12.34 1 1 0 15340
## 2 2 20 32.20 1 0 1 15706
## some_date_Month some_date_ShortYear some_date_LongYear some_date_Day
## 1 1 12 2012 1
## 2 1 13 2013 1
## some_date_WeekDayNumber some_date_IsWeekend some_date_YearDayCount
##1711
## 2 2 0 1
## some_date_Quarter id_IsZero id_IsPositive id_2Bins id_4Bins
```

```
## 1 2012.1 0 1 1 1
## 2 2013.1 0 1 1 1
## some_date_DateInt_IsZero some_date_DateInt_IsPositive
##101
## 2 0 1
## some_date_DateInt_2Bins some_date_DateInt_4Bins
##111
## 2 1 1
## some_date_ShortYear_IsZero some_date_ShortYear_IsPositive
##101
## 2 0 1
## some_date_ShortYear_2Bins some_date_ShortYear_4Bins
##111
## 2 1 1
## some_date_LongYear_IsZero some_date_LongYear_IsPositive
##101
## 2 0 1
## some_date_LongYear_2Bins some_date_LongYear_4Bins
##111
## 2 1 1
```

```
## some_date_WeekDayNumber_IsZero some_date_WeekDayNumber_IsPositive
## 1 0 1
## 2 0 1
## some_date_WeekDayNumber_2Bins some_date_WeekDayNumber_4Bins mood_poly1
## 1 2 4 -0.630126
## 2 1 1 -0.070014
## mood_poly2 mood_log mood_exp mood_rnd mood_2Bins value_poly1
## 1 0.6323510 -Inf 1 0 1 -0.327724828
## 2 -0.3495951 2.995732 485165195 20 1 0.002460596
## value_poly2 value_log value_exp value_rnd value_2Bins
## 1 0.2483090 2.512846 2.286620e+05 12 1
## 2 -0.6629308 3.471966 9.644558e+13 32 2
## some_date_Quarter_poly1 some_date_Quarter_poly2 some_date_Quarter_log
## 1 -0.6324555 0.5345225 7.606934
## 2 -0.3162278 -0.2672612 7.607431
## some_date_Quarter_exp some_date_Quarter_rnd some_date_Quarter_2Bins
## 1 Inf 2012 1
## 2 Inf 2013 1
```

summary(mix_dataset)

```
## id mood value outcome gender_male
## Min. :1 Min. : 0.0 Min. : 8.32 Min. :0.0 Min. :0.0
## 1st Qu.:2 1st Qu.:20.0 1st Qu.:12.34 1st Qu.:0.0 1st Qu.:0.0
## Median :3 Median :20.0 Median :24.30 Median :0.0 Median :0.0
## Mean :3 Mean :22.5 Mean :32.05 Mean :0.4 Mean :0.4
## 3rd Qu.:4 3rd Qu.:22.5 3rd Qu.:32.20 3rd Qu.:1.0 3rd Qu.:1.0
## Max. :5 Max. :50.0 Max. :83.10 Max. :1.0 Max. :1.0
## gender_female some_date_DateInt some_date_Month some_date_ShortYear
## Min. :0.0 Min. :15340 Min. :1 Min. :12
## 1st Qu.:0.0 1st Qu.:15706 1st Qu.:1 1st Qu.:13
## Median :1.0 Median :16071 Median :1 Median :14
## Mean :0.6 Mean :16071 Mean :1 Mean :14
## 3rd Qu.:1.0 3rd Qu.:16436 3rd Qu.:1 3rd Qu.:15
## Max. :1.0 Max. :16801 Max. :1 Max. :16
## some_date_LongYear some_date_Day some_date_WeekDayNumber
```

Min. :2012 Min. :1 Min. :2.0

1st Qu.:2013 1st Qu.:1 1st Qu.:3.0

Median :2014 Median :1 Median :4.0

Mean :2014 Mean :1 Mean :4.2

3rd Qu.:2015 3rd Qu.:1 3rd Qu.:5.0

Max. :2016 Max. :1 Max. :7.0

some_date_IsWeekend some_date_YearDayCount some_date_Quarter id_IsZero

Min. :0.0 Min. :1 Min. :2012 Min. :0

1st Qu.:0.0 1st Qu.:1 1st Qu.:2013 1st Qu.:0

Median: 0.0 Median: 1 Median: 2014 Median: 0

Mean: 0.2 Mean: 1 Mean: 2014 Mean: 0

3rd Qu.:0.0 3rd Qu.:1 3rd Qu.:2015 3rd Qu.:0

Max. :1.0 Max. :1 Max. :2016 Max. :0

id_IsPositive id_2Bins id_4Bins some_date_DateInt_IsZero

Min. :1 Min. :1.0 Min. :1.0 Min. :0

1st Qu.:1 1st Qu.:1.0 1st Qu.:1.0 1st Qu.:0

Median: 1 Median: 1.0 Median: 3.0 Median: 0

Mean :1 Mean :1.4 Mean :2.6 Mean :0

3rd Qu.:1 3rd Qu.:2.0 3rd Qu.:4.0 3rd Qu.:0

Max. :1 Max. :2.0 Max. :4.0 Max. :0

```
## some_date_DateInt_IsPositive some_date_DateInt_2Bins
## Min. :1 Min. :1.0
## 1st Qu.:1 1st Qu.:1.0
## Median :1 Median :1.0
## Mean :1 Mean :1.4
## 3rd Qu.:1 3rd Qu.:2.0
## Max. :1 Max. :2.0
## some_date_DateInt_4Bins some_date_ShortYear_IsZero
## Min. :1.0 Min. :0
## 1st Qu.:1.0 1st Qu.:0
## Median :3.0 Median :0
## Mean :2.6 Mean :0
## 3rd Qu.:4.0 3rd Qu.:0
## Max. :4.0 Max. :0
## some_date_ShortYear_IsPositive some_date_ShortYear_2Bins
## Min. :1 Min. :1.0
## 1st Qu.:1 1st Qu.:1.0
## Median :1 Median :1.0
## Mean :1 Mean :1.4
## 3rd Qu.:1 3rd Qu.:2.0
```

Max. :1 Max. :2.0 ## some_date_ShortYear_4Bins some_date_LongYear_IsZero ## Min. :1.0 Min. :0 ## 1st Qu.:1.0 1st Qu.:0 ## Median :3.0 Median :0 ## Mean :2.6 Mean :0 ## 3rd Qu.:4.0 3rd Qu.:0 ## Max. :4.0 Max. :0 ## some_date_LongYear_IsPositive some_date_LongYear_2Bins ## Min. :1 Min. :1.0 ## 1st Qu.:1 1st Qu.:1.0 ## Median :1 Median :1.0 ## Mean :1 Mean :1.4 ## 3rd Qu.:1 3rd Qu.:2.0 ## Max. :1 Max. :2.0 ## some_date_LongYear_4Bins some_date_WeekDayNumber_IsZero ## Min. :1.0 Min. :0 ## 1st Qu.:1.0 1st Qu.:0 ## Median :3.0 Median :0 ## Mean :2.6 Mean :0

3rd Qu.:4.0 3rd Qu.:0

Max. :4.0 Max. :0

some_date_WeekDayNumber_IsPositive some_date_WeekDayNumber_2Bins

Min. :1 Min. :1.0

1st Qu.:1 1st Qu.:1.0

Median :1 Median :1.0

Mean :1 Mean :1.4

3rd Qu.:1 3rd Qu.:2.0

Max. :1 Max. :2.0

some_date_WeekDayNumber_4Bins mood_poly1 mood_poly2

Min. :1.0 Min. :-0.63013 Min. :-0.3870

1st Qu.:1.0 1st Qu.:-0.07001 1st Qu.:-0.3496

Median :3.0 Median :-0.07001 Median :-0.3496

Mean : 2.6 Mean : 0.00000 Mean : 0.0000

3rd Qu.:4.0 3rd Qu.: 0.00000 3rd Qu.: 0.4538

Max. :4.0 Max. : 0.77015 Max. : 0.6324

mood_log mood_exp mood_rnd mood_2Bins

Min. :-Inf Min. :1.000e+00 Min. : 0.0 Min. :1.0

1st Qu.: 3 1st Qu.:4.852e+08 1st Qu.:20.0 1st Qu.:1.0

Median: 3 Median: 4.852e+08 Median: 20.0 Median: 1.0

Mean :-Inf Mean :1.037e+21 Mean :22.4 Mean :1.4

3rd Qu.: 3 3rd Qu.:5.911e+09 3rd Qu.:22.0 3rd Qu.:2.0

Max. : 4 Max. :5.185e+21 Max. :50.0 Max. :2.0

value_poly1 value_poly2 value_log value_exp

Min. :-0.394560 Min. :-0.6629 Min. :2.119 Min. :4.105e+03

1st Qu.:-0.327725 1st Qu.:-0.3865 1st Qu.:2.513 1st Qu.:2.287e+05

Median :-0.128882 Median : 0.2483 Median :3.190 Median :3.576e+10

Mean: 0.000000 Mean: 0.0000 Mean: 3.143 Mean: 2.460e+35

3rd Qu.: 0.002461 3rd Qu.: 0.2809 3rd Qu.:3.472 3rd Qu.:9.645e+13

Max.: 0.848706 Max.: 0.5202 Max.: 4.420 Max.: 1.230e+36

value_rnd value_2Bins some_date_Quarter_poly1

Min.: 8.0 Min.: 1.0 Min.: -0.6325

1st Qu.:12.0 1st Qu.:1.0 1st Qu.:-0.3162

Median :24.0 Median :1.0 Median : 0.0000

Mean :31.8 Mean :1.4 Mean : 0.0000

3rd Qu.:32.0 3rd Qu.:2.0 3rd Qu.: 0.3162

Max. :83.0 Max. :2.0 Max. : 0.6325

some_date_Quarter_poly2 some_date_Quarter_log some_date_Quarter_exp

Min. :-0.5345 Min. :7.607 Min. :Inf

1st Qu.:-0.2673 1st Qu.:7.607 1st Qu.:Inf

Median :-0.2673 Median :7.608 Median :Inf

Mean: 0.0000 Mean: 7.608 Mean: Inf

3rd Qu.: 0.5345 3rd Qu.:7.608 3rd Qu.:Inf

Max.: 0.5345 Max.: 7.609 Max.: Inf

some_date_Quarter_rnd some_date_Quarter_2Bins

Min. :2012 Min. :1.0

1st Qu.:2013 1st Qu.:1.0

Median :2014 Median :1.0

Mean :2014 Mean :1.4

3rd Qu.:2015 3rd Qu.:2.0

Max. :2016 Max. :2.0

CORRELATION

```
print(cor(1:5,1:5))
## [1] 1
print(cor(1:5,seq(100,500,100)))
## [1] 1
print(cor(1:5,5:1))
## [1] -1
print(cor(1:5,c(1,2,3,4,4)))
## [1] 0.9701425
# install.packages('dplyr')
```

```
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# install.packages('reshape2')
library(reshape2)
data_set <- mtcars
d_cor <- as.matrix(cor(data_set))</pre>
```

d_cor

mpg cyl disp hp drat wt

mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594 ## cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958 ## disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799 ## hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479 ## drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406 ## wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000 ## gsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159 ## vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157 ## am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953 ## gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870 ## carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059 ## gsec vs am gear carb ## mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507 ## cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829 ## disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686 ## hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247 ## drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980

```
## wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
## qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
## vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
## am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
## gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
## carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
d_cor_melt <- arrange(melt(d_cor), -(value))</pre>
# clean up
pair_wise_correlation_matrix <- filter(d_cor_melt, Var1 != Var2)</pre>
pair_wise_correlation_matrix <- filter(pair_wise_correlation_matrix, is.na(value)==FALSE)</pre>
# remove pair dups
dim(pair_wise_correlation_matrix)
## [1] 110 3
```

```
pair_wise_correlation_matrix <- pair_wise_correlation_matrix[seq(1, nrow(pair_wise_correlation_matrix), by=2),]</pre>
dim(pair_wise_correlation_matrix)
## [1] 55 3
plot(pair_wise_correlation_matrix$value)
Get_Fast_Correlations <- function(data_set, features_to_ignore=c(), size_cap=5000) {</pre>
 require(dplyr)
 require(reshape2)
 data_set <- data_set[,setdiff(names(data_set), features_to_ignore)]</pre>
 if (size_cap > nrow(data_set)) {
  data_set = data_set[sample(nrow(data_set), size_cap),]
 } else {
  data_set = data_set[sample(nrow(data_set), nrow(data_set)),]
 d_cor <- as.matrix(cor(data_set))</pre>
 d_cor_melt <- arrange(melt(d_cor), -(value))</pre>
```

```
# clean up
 pair_wise_correlation_matrix <- filter(d_cor_melt, Var1 != Var2)</pre>
 pair_wise_correlation_matrix <- filter(pair_wise_correlation_matrix, is.na(value)==FALSE)</pre>
 # remove pair dups
 dim(pair_wise_correlation_matrix)
 pair_wise_correlation_matrix <- pair_wise_correlation_matrix[seq(1, nrow(pair_wise_correlation_matrix), by=2),
 dim(pair_wise_correlation_matrix)
 plot(pair_wise_correlation_matrix$value)
 return(pair_wise_correlation_matrix)
# install.packages('psych')
library(psych)
data_set <- mtcars
featurenames_copy <- names(data_set)
```

strip var names to index for pair wise identification
names(data_set) <- seq(1:ncol(data_set))
cor_data_df <- corr.test(data_set)</pre>

apply var names to correlation matrix over index
rownames(cor_data_df\$r) <- featurenames_copy
colnames(cor_data_df\$r) <- featurenames_copy</pre>

names(cor_data_df)

[1] "r" "n" "t" "p" "se" "adjust" "sym" "ci" ## [9] "Call"

matrix of correlations

cor_data_df\$r

mpg cyl disp hp drat wt

mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594 ## cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958 ## disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799 ## hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479 ## drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406 ## wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000 ## qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159 ## vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157 ## am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953 ## gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870 ## carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059 ## qsec vs am gear carb ## mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507 ## cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829 ## disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686 ## hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247

drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980 ## wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594 ## qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923 ## vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714 ## am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435 ## gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284 ## carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000 cor.plot(cor_data_df\$r) #install.packages('corrplot') library(corrplot) corrplot.mixed(cor_data_df\$r, lower="circle", upper="color", tl.pos="lt", diag="n", order="hclust", hclust.method="complete") Get_Top_Relationships <- function(data_set, correlation_abs_threshold=0.8,pvalue_threshold=0.01) { require(psych)

```
require(dplyr)
   feature_names <- names(data_set)</pre>
   # strip var names to index for pair-wise identification
   names(data_set) <- seq(1:ncol(data_set))</pre>
   # calculate correlation and significance numbers
   cor_data_df <- corr.test(data_set)</pre>
   # apply var names to correlation matrix over index
   rownames(cor_data_df$r) <- feature_names</pre>
   colnames(cor_data_df$r) <- feature_names</pre>
   # top cor and sig
   relationships_set <- cor_data_df$ci[,c('r','p')]
   # apply var names to data over index pairs
   relationships_set$feature_1 <- feature_names[as.numeric(sapply(strsplit(rownames(relationships_set), "-"), `[`, 1))]
   relationships set$feature 2 <- feature names[as.numeric(sapply(strsplit(rownames(relationships set), "-"), `[`, 2))]
   relationships_set <- select(relationships_set, feature_1, feature_2, r, p) %>% rename(correlaton=r, pvalue=p)
   # return only the most insteresting relationships
   return(filter(relationships_set, abs(correlation) > correlation_abs_threshold | pvalue < pvalue_threshold) %>% arrange(pvalue))
dim(Get Top Relationships(mtcars))
```

[1] 39 4

head(Get_Top_Relationships(mtcars))

feature_1 feature_2 correlaton pvalue

1 cyl disp 0.9020329 1.803002e-12

2 disp wt 0.8879799 1.222311e-11

3 mpg wt -0.8676594 1.293958e-10

4 mpg cyl -0.8521620 6.112688e-10

5 mpg disp -0.8475514 9.380328e-10

6 cyl hp 0.8324475 3.477861e-09


```
## [1] 0.9784574
sum( (mtcars$wt > (wt_mean + (wt_sd))) | (mtcars$wt < (wt_mean - (wt_sd))))</pre>
## [1] 9
mtcars$wt[(mtcars$wt > (wt_mean + (wt_sd))) | (mtcars$wt < (wt_mean - (wt_sd)))]
## [1] 5.250 5.424 5.345 2.200 1.615 1.835 1.935 2.140 1.513
Identify_Outliers <- function(data_set, features_to_ignore=c(),</pre>
                outlier_sd_threshold = 2,
                remove_outlying_features = FALSE) {
 # get standard deviation for each feature
```

```
require(dplyr)
outliers <- c()
for (feature_name in setdiff(names(data_set),features_to_ignore)) {
feature_mean <- mean(data_set[,feature_name], na.rm = TRUE)</pre>
feature_sd <- sd(data_set[,feature_name], na.rm = TRUE)
 outlier_count <- sum(
 data_set[,feature_name] > (feature_mean + (feature_sd * outlier_sd_threshold))
  data_set[,feature_name] < (feature_mean - (feature_sd * outlier_sd_threshold))
if (outlier_count > 0) {
 outliers <- rbind(outliers, c(feature_name, outlier_count))</pre>
 if (remove_outlying_features)
  data_set[, feature_name] <- NULL
outliers <- data.frame(outliers) %>% rename(feature_name=X1, outlier_count=X2) %>%
mutate(outlier_count=as.numeric(as.character(outlier_count))) %>% arrange(desc(outlier_count))
if (remove_outlying_features) {
return(data_set)
```

```
} else {
  return(outliers)
head(Identify_Outliers(mtcars, remove_outlying_features=FALSE))
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
```

intersect, setdiff, setequal, union
feature_name outlier_count
1 wt 3
2 mpg 2
3 hp 1
4 drat 1
5 qsec 1
6 carb 1
plot(sort(mtcars\$wt))

```
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE) {
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (feature_name in setdiff(text_features, features_to_ignore)) {
  feature_vector <- as.character(data_set[,feature_name])</pre>
  # check that data has more than one level
  if (length(unique(feature_vector)) == 1)
   next
  # We set any non-data to text
  feature_vector[is.na(feature_vector)] <- 'NA'</pre>
  feature_vector[is.infinite(feature_vector)] <- 'INF'</pre>
  feature_vector[is.nan(feature_vector)] <- 'NAN'
  # loop through each level of a feature and create a new column
  first_level=TRUE
  for (newcol in unique(feature_vector)) {
```

functions ------

if (first_level && leave_out_one_level) {

```
# avoid dummy trap and skip first level
    first_level=FALSE
   } else {
    data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)
  # remove original feature
  data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
 return (data_set)
Impute_Features <- function(data_set, features_to_ignore=c(),</pre>
               use_mean_instead_of_0=TRUE,
               mark_NAs=FALSE,
               remove_zero_variance=FALSE) {
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
```

```
print(feature_name)
# remove any fields with zero variance
if (remove_zero_variance) {
 if (length(unique(data_set[, feature_name]))==1) {
  data_set[, feature_name] <- NULL
  next
if (mark_NAs) {
 # note each field that contains missing or bad data
 if (any(is.na(data_set[,feature_name]))) {
  # create binary column before imputing
  newName <- paste0(feature_name, '_NA')</pre>
  data_set[,newName] <- as.integer(ifelse(is.na(data_set[,feature_name]),1,0)) }</pre>
 if (any(is.infinite(data_set[,feature_name]))) {
  newName <- pasteO(feature_name, '_inf')</pre>
  data_set[,newName] <- as.integer(ifelse(is.infinite(data_set[,feature_name]),1,0)) }</pre>
if (use_mean_instead_of_0) {
 data_set[is.infinite(data_set[,feature_name]),feature_name] <- NA
```

```
data_set[is.na(data_set[,feature_name]),feature_name] <- mean(dataset[,feature_name], na.rm=TRUE)
  } else {
   data_set[is.na(data_set[,feature_name]),feature_name] <- 0
   data_set[is.infinite(data_set[,feature_name]),feature_name] <- 0</pre>
 return(data_set)
Get_Free_Text_Measures <- function(data_set, minimum_unique_threshold=0.9, features_to_ignore=c()) {
 # look for text entries that are mostly unique
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (f_name in setdiff(text_features, features_to_ignore)) {
 f_vector <- as.character(data_set[,f_name])</pre>
  # treat as raw text if data over minimum_precent_unique unique
  if (length(unique(as.character(f_vector))) > (nrow(data_set) * minimum_unique_threshold)) {
   data_set[,pasteO(f_name, '_word_count')] <- sapply(strsplit(f_vector, " "), length)</pre>
   data_set[,pasteO(f_name, '_character_count')] <- nchar(as.character(f_vector))</pre>
```

```
data_set[,paste0(f_name, '_first_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`, 1)
   data_set[,paste0(f_name, '_second_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`, 2)
  # remove orginal field
   data_set[,f_name] <- NULL
 return(data_set)
#END FUNCTION -----
#Let's load the Titanic data set again. Take a quick peek at it before loading it in memory with readLines:
 # data -----
# using dataset from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/)
readLines('http://math.ucdenver.edu/RTutorial/titanic.txt', n=5)
## [1] "Name\tPClass\tAge\tSex\tSurvived"
## [2] "\"Allen, Miss Elisabeth Walton\"\t1st\t29\tfemale\t1"
```

```
## [3] "\"Allison, Miss Helen Loraine\"\t1st\t2\tfemale\t0"
## [4] "\"Allison, Mr Hudson Joshua Creighton\"\t1st\t30\tmale\t0"
## [5] "\"Allison, Mrs Hudson JC (Bessie Waldo Daniels)\"\t1st\t25\tfemale\t0"
# With readLines, we now know that the file has a header row and 5 columns separated by tabs.
titanicDF <- read.csv('http://math.ucdenver.edu/RTutorial/titanic.txt', sep='\t',header = TRUE)
head(titanicDF)
## Name PClass Age Sex
## 1 Allen, Miss Elisabeth Walton 1st 29.00 female
## 2 Allison, Miss Helen Loraine 1st 2.00 female
## 3 Allison, Mr Hudson Joshua Creighton 1st 30.00 male
## 4 Allison, Mrs Hudson JC (Bessie Waldo Daniels) 1st 25.00 female
## 5 Allison, Master Hudson Trevor 1st 0.92 male
## 6 Anderson, Mr Harry 1st 47.00 male
## Survived
## 1 1
## 2 0
## 3 0
## 4 0
## 5 1
```

```
titanicDF <- Get_Free_Text_Measures(titanicDF)</pre>
titanicDF$Name_first_word <- NULL
titanicDF <- Binarize_Features(titanicDF, leave_out_one_level = TRUE)</pre>
titanicDF <- Impute_Features(titanicDF, use_mean_instead_of_0 = FALSE)</pre>
## [1] "Age"
## [1] "Survived"
## [1] "Name_word_count"
## [1] "Name_character_count"
## [1] "Name_second_word_Mr"
## [1] "Name_second_word_Mrs"
## [1] "Name_second_word_Master"
## [1] "Name_second_word_Colonel"
```

- ## [1] "Name_second_word_Dr"
- ## [1] "Name_second_word_Major"
- ## [1] "Name_second_word_(Bowerman),"
- ## [1] "Name_second_word_Captain"
- ## [1] "Name_second_word_Villiers,"
- ## [1] "Name_second_word_Gordon,"
- ## [1] "Name_second_word_y"
- ## [1] "Name_second_word_Jonkheer"
- ## [1] "Name_second_word_(Russell),"
- ## [1] "Name_second_word_the"
- ## [1] "Name_second_word_Col"
- ## [1] "Name_second_word_Derhoef,"
- ## [1] "Name_second_word_Ms"
- ## [1] "Name_second_word_(Icabod),"
- ## [1] "Name_second_word_Mlle"
- ## [1] "Name_second_word_Rev"
- ## [1] "Name_second_word_Brito,"
- ## [1] "Name_second_word_Carlo,"
- ## [1] "Name_second_word_(?Douton),"
- ## [1] "Name_second_word_(Nasrallah),"

- ## [1] "Name_second_word_(Schmidt),"
- ## [1] "Name_second_word_(Kalil),"
- ## [1] "Name_second_word_Ernst"
- ## [1] "Name_second_word_(Kareem),"
- ## [1] "Name_second_word_Messemaeker,"
- ## [1] "Name_second_word_Mulder,"
- ## [1] "Name_second_word_Thomas"
- ## [1] "Name_second_word_Hilda"
- ## [1] "Name_second_word_Delia"
- ## [1] "Name_second_word_Jenny"
- ## [1] "Name_second_word_Oscar"
- ## [1] "Name_second_word_Nils"
- ## [1] "Name_second_word_Eino"
- ## [1] "Name_second_word_(Borak),"
- ## [1] "Name_second_word_Albert"
- ## [1] "Name_second_word_W"
- ## [1] "Name_second_word_Sander"
- ## [1] "Name_second_word_Richard"
- ## [1] "Name_second_word_Mansouer"
- ## [1] "Name_second_word_Nikolai"

```
## [1] "Name_second_word_(Joseph),"
## [1] "Name_second_word_(Trembisky),"
## [1] "Name_second_word_Khalil"
## [1] "Name_second_word_Simon"
## [1] "Name_second_word_William"
## [1] "Name_second_word_(Sitik),"
## [1] "Name_second_word_(Thomas),"
## [1] "Name_second_word_Billiard,"
## [1] "Name_second_word_der"
## [1] "Name_second_word_de"
## [1] "Name_second_word_Impe,"
## [1] "Name_second_word_Leo"
## [1] "PClass_2nd"
## [1] "PClass_3rd"
## [1] "Sex_male"
```

split data set

set.seed(1234)

```
random_splits <- runif(nrow(titanicDF))</pre>
train_data <- titanicDF[random_splits < .5,]</pre>
tune_data <- titanicDF[random_splits >= .5 & random_splits < .8,]
test_data <- titanicDF[random_splits >= .8,]
# install.packages('randomForest')
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1234)
outcome_name <- 'Survived'
feature_names <- setdiff(names(train_data), outcome_name)</pre>
```

```
# print(setdiff(names(train_data), outcome_name))
tnRF <- tuneRF(x=tune_data[,feature_names],</pre>
       y = as.factor(tune_data[,outcome_name]),
        mtryStart = 3, stepFactor = 0.5)
## mtry = 3 OOB error = 26.25%
## Searching left ...
## mtry = 6 OOB error = 19.25%
## 0.2666667 0.05
## mtry = 12 OOB error = 19.25%
## 0 0.05
## Searching right ...
## mtry = 1 OOB error = 33.75%
## -0.7532468 0.05
best_mtry <- tnRF[tnRF[, 2] == min(tnRF[, 2]), 1][[1]]
print(best_mtry)
```

```
rf_model <- randomForest(x=train_data[,feature_names],</pre>
            y=as.factor(train_data[,outcome_name]),
            importance=TRUE, ntree=100, mtry = best_mtry)
print(importance(rf_model, type=1)[importance(rf_model, type=1)!=0,])
## Age Name_word_count Name_character_count
## 4.472367 4.586581 3.786784
## Name_second_word_Mr Name_second_word_Mrs Name_second_word_Master
## 6.880982 6.093252 1.222808
## Name_second_word_Dr Name_second_word_y Name_second_word_Ms
## 2.447301 2.817508 1.202244
## Name_second_word_Mlle Name_second_word_Rev PClass_2nd
## -1.145309 4.133762 3.677996
## PClass_3rd Sex_male
## 8.137837 7.619451
#Let's test the model on our test_data and use the pROC library to get an AUC score:
```

```
predictions <- predict(rf_model, newdata=test_data[,feature_names], type="prob")</pre>
# install.packages('pROC')
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
##
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
print(roc(response = test_data[,outcome_name], predictor = predictions[,2]))
##
## Call:
## roc.default(response = test_data[, outcome_name], predictor = predictions[,2])
```

```
##
## Data: predictions[, 2] in 174 controls (test_data[, outcome_name] 0) < 92 cases (test_data[, outcome_name] 1)
## Area under the curve: 0.8815
#install.packages('dplyr')
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
   filter, lag
## The following objects are masked from 'package:base':
##
   intersect, setdiff, setequal, union
```

```
#install.packages('caret')
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
names(getModelInfo())
## [1] "ada"
                     "AdaBag"
                                     "AdaBoost.M1"
                                      "ANFIS"
## [4] "adaboost"
                       "amdai"
## [7] "avNNet"
                       "awnb"
                                      "awtan"
## [10] "bag"
                     "bagEarth"
                                      "bagEarthGCV"
                       "bagFDAGCV"
## [13] "bagFDA"
                                          "bam"
## [16] "bartMachine"
                          "bayesglm"
                                          "bdk"
## [19] "binda"
                      "blackboost"
                                       "blasso"
## [22] "blassoAveraged" "Boruta"
                                          "bridge"
## [25] "brnn"
                      "BstLm"
                                     "bstSm"
## [28] "bstTree"
                       "C5.0"
                                     "C5.0Cost"
                        "C5.0Tree"
                                        "cforest"
## [31] "C5.0Rules"
## [34] "chaid"
                      "CSimca"
                                      "ctree"
## [37] "ctree2"
                      "cubist"
                                     "dda"
                                        "dnn"
## [40] "deepboost"
                        "DENFIS"
## [43] "dwdLinear"
                        "dwdPoly"
                                         "dwdRadial"
```

"enet" ## [46] "earth" "elm" ## [49] "enpls.fs" "enpls" "evtree" ## [52] "extraTrees" "fda" "FH.GBML" "foba" "FRBCS.CHI" ## [55] "FIR.DM" ## [58] "FRBCS.W" "FS.HGD" "gam" ## [61] "gamboost" "gamLoess" "gamSpline" ## [64] "gaussprLinear" "gaussprPoly" "gaussprRadial" ## [67] "gbm_h2o" "gbm" "gcvEarth" ## [70] "GFS.FR.MOGUL" "GFS.GCCL" "GFS.LT.RS" ## [73] "GFS.THRIFT" "glm.nb" "glm" ## [76] "glmboost" "glmnet_h2o" "glmnet" ## [79] "glmStepAIC" "gpls" "hda" ## [82] "hdda" "hdrda" "HYFIS" ## [85] "icr" "J48" "JRip" ## [88] "kernelpls" "kknn" "knn" "krlsRadial" ## [91] "krlsPoly" "lars" ## [94] "lars2" "lasso" "lda" ## [97] "lda2" "leapBackward" "leapForward"

"Linda"

"LMT"

[100] "leapSeq"

[103] "ImStepAIC"

"lm"

"loclda"

```
## [106] "logicBag"
                        "LogitBoost"
                                        "logreg"
## [109] "IssvmLinear"
                         "IssvmPoly"
                                          "IssvmRadial"
## [112] "lvq"
                     "M5"
                                   "M5Rules"
## [115] "manb"
                                      "Mlda"
                       "mda"
## [118] "mlp"
                      "mlpML"
                                      "mlpSGD"
## [121] "mlpWeightDecay" "mlpWeightDecayML" "multinom"
                     "nbDiscrete"
## [124] "nb"
                                      "nbSearch"
## [127] "neuralnet"
                        "nnet"
                                       "nnls"
## [130] "nodeHarvest"
                          "oblique.tree"
                                           "OneR"
## [133] "ordinalNet"
                         "ORFlog"
                                        "ORFpls"
## [136] "ORFridge"
                        "ORFsvm"
                                         "ownn"
## [139] "pam"
                       "parRF"
                                     "PART"
## [142] "partDSA"
                        "pcaNNet"
                                         "pcr"
## [145] "pda"
                      "pda2"
                                     "penalized"
## [148] "PenalizedLDA"
                          "plr"
                                       "pls"
## [151] "plsRglm"
                        "polr"
                                     "ppr"
## [154] "protoclass"
                        "pythonKnnReg"
                                            "qda"
## [157] "QdaCov"
                        "qrf"
                                     "qrnn"
                                          "rbf"
## [160] "randomGLM"
                           "ranger"
## [163] "rbfDDA"
                        "Rborist"
                                       "rda"
```

```
"rf"
                                   "rFerns"
## [166] "relaxo"
                       "rfRules"
                                      "ridge"
## [169] "RFlda"
## [172] "rlda"
                      "rlm"
                                    "rmda"
## [175] "rocc"
                      "rotationForest"
                                        "rotationForestCp"
## [178] "rpart"
                      "rpart1SE"
                                      "rpart2"
## [181] "rpartCost"
                        "rpartScore"
                                         "rglasso"
## [184] "rqnc"
                      "RRF"
                                    "RRFglobal"
## [187] "rrlda"
                      "RSimca"
                                      "rvmLinear"
## [190] "rvmPoly"
                        "rvmRadial"
                                         "SBC"
## [193] "sda"
                      "sddaLDA"
                                       "sddaQDA"
## [196] "sdwd"
                       "simpls"
                                      "SLAVE"
## [199] "slda"
                      "smda"
                                     "snn"
## [202] "sparseLDA"
                         "spikeslab"
                                         "spls"
## [205] "stepLDA"
                        "stepQDA"
                                         "superpc"
## [208] "svmBoundrangeString" "svmExpoString"
                                                  "svmLinear"
## [211] "svmLinear2"
                          "svmLinear3"
                                           "svmLinearWeights"
## [214] "svmLinearWeights2" "svmPoly"
                                              "svmRadial"
## [217] "svmRadialCost" "svmRadialSigma"
                                               "svmRadialWeights"
## [220] "svmSpectrumString" "tan"
                                           "tanSearch"
## [223] "treebag"
                        "vbmpRadial"
                                          "vglmAdjCat"
```

```
## [226] "vglmContRatio"
                            "vglmCumulative"
                                                 "widekernelpls"
## [229] "WM"
                        "wsrf"
                                       "xgbLinear"
## [232] "xgbTree"
                         "xyf"
 require(RCurl)
## Loading required package: RCurl
## Loading required package: bitops
binData <- getBinaryURL("https://archive.ics.uci.edu/ml/machine-learning-databases/00296/dataset_diabetes.zip",
             ssl.verifypeer=FALSE)
conObj <- file("dataset_diabetes.zip", open = "wb")</pre>
writeBin(binData, conObj)
# don't forget to close it
close(conObj)
# open diabetes file
files <- unzip("dataset_diabetes.zip")
readLines(files[1], n=5)
```

[1]

"encounter_id,patient_nbr,race,gender,age,weight,admission_type_id,discharge_disposition_id,admission_source_id,time_in_hospital,payer_code,medical _specialty,num_lab_procedures,num_procedures,num_medications,number_outpatient,number_emergency,number_inpatient,diag_1,diag_2,diag_3,num ber_diagnoses,max_glu_serum,A1Cresult,metformin,repaglinide,nateglinide,chlorpropamide,glimepiride,acetohexamide,glipizide,glyburide,tolbutamide,pi oglitazone,rosiglitazone,acarbose,miglitol,troglitazone,tolazamide,examide,citoglipton,insulin,glyburide-metformin,glipizide-metformin,glimepiride-pioglitazone,metformin-rosiglitazone,metformin-pioglitazone,change,diabetesMed,readmitted"

[2] "2278392,8222157,Caucasian,Female,[0-10),?,6,25,1,1,?,Pediatrics-

[3] "149190,55629189,Caucasian,Female,[10-

[4] "64410,86047875,AfricanAmerican,Female,[20-

[5] "500364,82442376,Caucasian,Male,[30-

#install.packages('readr')
library(readr)
diabetes <- data.frame(read_csv(files[1], na = '?'))
Parsed with column specification:
cols(</pre>

```
## .default = col_character(),
## encounter_id = col_integer(),
## patient_nbr = col_integer(),
## admission_type_id = col_integer(),
## discharge_disposition_id = col_integer(),
## admission_source_id = col_integer(),
## time_in_hospital = col_integer(),
## num_lab_procedures = col_integer(),
## num_procedures = col_integer(),
## num_medications = col_integer(),
## number_outpatient = col_integer(),
## number_emergency = col_integer(),
## number_inpatient = col_integer(),
## number_diagnoses = col_integer()
##)
## See spec(...) for full column specifications.
dim(diabetes)
## [1] 101766 50
head(diabetes)
## encounter_id patient_nbr
                                  race gender age weight
```

## 1	2278392	8222157	157 Caucasian Female [0-10) <na></na>								
## 2	149190	55629189 Caucasian Female [10-20) <na></na>									
## 3	64410	86047875 AfricanAmerican Female [20-30) <na></na>									
## 4	500364	82442376	Caucasian Male [30-40) <na></na>								
## 5	16680	42519267	Caucasian Male [40-50) <na></na>								
## 6	35754	82637451	Caucasian Male [50-60) <na></na>								
## admission_type_id discharge_disposition_id admission_source_id											
## 1	6	25	5 1								
## 2	1	1	7								
## 3	1	1	7								
## 4	1	1	7								
## 5	1	1	7								
## 6	2	1	2								
## time_in_hospital payer_code medical_specialty num_lab_procedures											
## 1	1	<na> Pedia</na>	trics-Endocrinology 41								
## 2	3	<na></na>	<na> 59</na>								
## 3	2	<na></na>	<na> 11</na>								
## 4	2	<na></na>	<na> 44</na>								
## 5	1	<na></na>	<na> 51</na>								
## 6	3	<na></na>	<na> 31</na>								

## num_procedures num_medications number_outpatient number_emergency									
## 1	0	1	0	0					
## 2	0	18	0	0)				
## 3	5	13	2	0)				
## 4	1	16	0	0)				
## 5	0	8	0	0	0				
## 6	6	16	0	0)				
## nu	umber_in	patient dia	g_1 diag_	_2 diag_3	numbe	er_diagnoses	max_glu_serum		
## 1	0 2	250.83 <n< td=""><td>A> <na></na></td><td>></td><td>1</td><td>None</td><td></td><td></td></n<>	A> <na></na>	>	1	None			
## 2	0	276 250.0	1 255	9	N	one			
## 3	1	648 250	V27	6	No	ne			
## 4	0	8 250.43	403	7	Noi	ne			
## 5	0	197 157	250	5	Noi	ne			
## 6	0	414 411	250	9	Noi	ne			
## A1Cresult metformin repaglinide nateglinide chlorpropamide glimepiride									
## 1	None	No	No N	lo	No	No			
## 2	None	No	No N	lo	No	No			
## 3	None	No	No N	lo	No	No			
## 4	None	No	No N	lo	No	No			
## 5	None	No	No N	lo	No	No			

## 6	None	No	No	No)	No	No		
## acetohexamide glipizide glyburide tolbutamide pioglitazone rosiglitazone									
## 1	No	No	No	No		No	No		
## 2	No	No	No	No	No		No		
## 3	No	Steady	No	N	No		No		
## 4	No	No	No	No		No	No		
## 5	No	Steady	No	N	No		No		
## 6	No	No	No	No)	No	No		
## ac	arbose ı	miglitol tr	oglitazo	ne to	lazan	nide exa	ımide cito	oglipton ins	ulin
## 1	No	No	No	No	No	No	No		
## 2	No	No	No	No	No	No	Up		
## 3	No	No	No	No	No	No	No		
## 4	No	No	No	No	No	No	Up		
## 5	No	No	No	No	No	No	Steady		
## 6	No	No	No	No	No	No	Steady		
## glyburide.metformin glipizide.metformin glimepiride.pioglitazone									
## 1		No	No			No			
## 2	No		No			No			
## 3		No	No			No			
## 4		No	No			No			

## 5	1	No	No	No		No		
## 6	1	No	No)		No		
## me	etformin	.rosigli	tazone i	metfo	rmin.p	oioglitazon	e change diabete	sMed
## 1		No		No	No	No		
## 2		No		No	Ch	Yes		
## 3		No		No	No	Yes		
## 4		No		No	Ch	Yes		
## 5		No		No	Ch	Yes		
## 6		No		No	No	Yes		
## rea	admitted	t						
## 1	NO							
## 2	>30							
## 3	NO							
## 4	NO							

NO

>30

5

6

```
# drop useless variables
diabetes <- subset(diabetes, select=-c(encounter_id, patient_nbr, examide, citoglipton))
# fix our outcome variable to those readmitted under 30 days
diabetes$readmitted <- ifelse(diabetes$readmitted == "<30",'yes','no')
 # see what type of classes we have
charcolumns <- names(diabetes[sapply(diabetes, is.character)])</pre>
non_numeric_data_dim <- c()
for (colname in charcolumns)
 non_numeric_data_dim <- rbind(non_numeric_data_dim, c(colname, length(unique(diabetes[,colname]))))
non_numeric_data_dim <- data.frame(non_numeric_data_dim) %>%
 mutate(feature_name=as.character(X1), unique_counts=as.numeric(as.character(X2))) %>%
 select(feature_name, unique_counts) %>%
 arrange(desc(unique_counts))
head(non_numeric_data_dim, 10)
```

```
##
      feature_name unique_counts
## 1
                    790
         diag_3
## 2
         diag_2
                    749
## 3
                    717
         diag_1
                         73
## 4 medical_specialty
## 5
        payer_code
                       18
## 6
           age
                    10
## 7
         weight
                     10
## 8
          race
                    6
## 9
      max_glu_serum
                          4
         A1Cresult
## 10
                       4
```

```
Binarize_Features <- function(data_set, features_to_ignore=c(), leave_out_one_level=FALSE, max_level_count=20) {
    require(dplyr)
    text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
    for (feature_name in setdiff(text_features, features_to_ignore)) {
        feature_vector <- as.character(data_set[,feature_name])
```

```
# check that data has more than one level
if (length(unique(feature_vector)) == 1)
 next
# We set any non-data to text
feature_vector[is.na(feature_vector)] <- 'NA'</pre>
feature_vector[is.infinite(feature_vector)] <- 'INF'</pre>
feature_vector[is.nan(feature_vector)] <- 'NAN'
# only give us the top x most popular categories
temp_vect <- data.frame(table(feature_vector)) %>% arrange(desc(Freq)) %>% head(max_level_count)
feature_vector <- ifelse(feature_vector %in% temp_vect$feature_vector, feature_vector, 'Other')
# loop through each level of a feature and create a new column
first_level=TRUE
for (newcol in unique(feature_vector)) {
 if (leave_out_one_level & first_level) {
  # avoid dummy trap and skip first level
  first_level=FALSE
  next
```

```
data_set[,paste0(feature_name,"_",newcol)] <- ifelse(feature_vector==newcol,1,0)
  # remove original feature
  data_set <- data_set[,setdiff(names(data_set),feature_name)]</pre>
 return (data_set)
diabetes <- Binarize_Features(data_set = diabetes, leave_out_one_level = TRUE,
               max_level_count = 20, features_to_ignore = 'readmitted')
summary(diabetes)
## admission_type_id discharge_disposition_id admission_source_id
## Min. :1.000 Min. : 1.000
                                   Min. : 1.000
## 1st Qu.:1.000 1st Qu.: 1.000
                                     1st Qu.: 1.000
## Median: 1.000 Median: 1.000
                                       Median: 7.000
## Mean :2.024 Mean : 3.716
                                      Mean : 5.754
## 3rd Qu.:3.000 3rd Qu.: 4.000
                                      3rd Qu.: 7.000
```

Max. :8.000 Max. :28.000 Max. :25.000

time_in_hospital num_lab_procedures num_procedures num_medications

Min. : 1.000 Min. : 1.0 Min. :0.00 Min. : 1.00

1st Qu.: 2.000 1st Qu.: 31.0 1st Qu.:0.00 1st Qu.:10.00

Median: 4.000 Median: 44.0 Median: 1.00 Median: 15.00

Mean : 4.396 Mean : 43.1 Mean :1.34 Mean :16.02

3rd Qu.: 6.000 3rd Qu.: 57.0 3rd Qu.:2.00 3rd Qu.:20.00

Max. :14.000 Max. :132.0 Max. :6.00 Max. :81.00

number_outpatient number_emergency number_inpatient number_diagnoses

Min.: 0.0000 Min.: 0.0000 Min.: 0.0000 Min.: 1.000

1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 6.000

Median: 0.0000 Median: 0.0000 Median: 0.0000 Median: 8.000

Mean : 0.3694 Mean : 0.1978 Mean : 0.6356 Mean : 7.423

3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 1.0000 3rd Qu.: 9.000

Max. :42.0000 Max. :76.0000 Max. :21.0000 Max. :16.000

readmitted race_AfricanAmerican race_NA

Length:101766 Min. :0.0000 Min. :0.00000

Class :character 1st Qu.:0.0000 1st Qu.:0.00000

Mode :character Median :0.0000 Median :0.00000

Mean :0.1888 Mean :0.02234

3rd Qu.:0.0000 3rd Qu.:0.00000

Max. :1.0000 Max. :1.00000

race_Other race_Asian race_Hispanic gender_Male

Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000

Median :0.0000 Median :0.00000 Median :0.0000 Median :0.0000

Mean :0.0148 Mean :0.006299 Mean :0.02002 Mean :0.4624

3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000

gender_Unknown/Invalid age_[10-20) age_[20-30)

Min. :0.00e+00 Min. :0.00000 Min. :0.00000

Median :0.00e+00 Median :0.00000 Median :0.00000

Mean :2.95e-05 Mean :0.00679 Mean :0.01628

3rd Qu.:0.00e+00 3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00e+00 Max. :1.00000 Max. :1.00000

age_[30-40) age_[40-50) age_[50-60) age_[60-70)

Min. :0.00000 Min. :0.00000 Min. :0.0000 Min. :0.0000

1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000

Median :0.00000 Median :0.0000 Median :0.0000 Median :0.0000

- ## Mean :0.03709 Mean :0.09517 Mean :0.1696 Mean :0.2209
- ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000
- ## Max. :1.00000 Max. :1.00000 Max. :1.0000 Max. :1.0000
- ## age [70-80) age [80-90) age [90-100) weight [75-100)
- ## Min. :0.0000 Min. :0.000 Min. :0.00000 Min. :0.00000
- ## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.00000
- ## Median:0.0000 Median:0.000 Median:0.00000 Median:0.00000
- ## Mean :0.2562 Mean :0.169 Mean :0.02745 Mean :0.01313
- ## 3rd Qu.:1.0000 3rd Qu.:0.000 3rd Qu.:0.00000 3rd Qu.:0.00000
- ## Max. :1.0000 Max. :1.000 Max. :1.00000 Max. :1.00000
- ## weight_[50-75) weight_[0-25) weight_[100-125)
- ## Min. :0.000000 Min. :0.000000 Min. :0.000000
- ## 1st Qu.:0.000000 1st Qu.:0.0000000 1st Qu.:0.000000
- ## Median: 0.000000 Median: 0.000000 Median: 0.000000
- ## Mean :0.008814 Mean :0.0004717 Mean :0.006142
- ## 3rd Qu.:0.000000 3rd Qu.:0.0000000 3rd Qu.:0.000000
- ## Max. :1.000000 Max. :1.000000 Max. :1.000000
- ## weight_[25-50) weight_[125-150) weight_[175-200)
- ## Min. :0.0000000 Min. :0.000000 Min. :0.0000000
- ## 1st Qu.:0.0000000 1st Qu.:0.000000 1st Qu.:0.0000000

- ## Median: 0.0000000 Median: 0.000000 Median: 0.0000000
- ## Mean :0.0009532 Mean :0.001425 Mean :0.0001081
- ## 3rd Qu.:0.0000000 3rd Qu.:0.000000 3rd Qu.:0.0000000
- ## Max. :1.0000000 Max. :1.000000 Max. :1.0000000
- ## weight_[150-175) weight_>200 payer_code_MC payer_code_MD
- ## Min. :0.0000000 Min. :0.00e+00 Min. :0.0000 Min. :0.00000
- ## 1st Qu.:0.0000000 1st Qu.:0.00e+00 1st Qu.:0.0000 1st Qu.:0.00000
- ## Median :0.0000000 Median :0.00e+00 Median :0.0000 Median :0.00000
- ## Mean :0.0003439 Mean :2.95e-05 Mean :0.3188 Mean :0.03471
- ## 3rd Qu.:0.0000000 3rd Qu.:0.00e+00 3rd Qu.:1.0000 3rd Qu.:0.00000
- ## Max. :1.0000000 Max. :1.00e+00 Max. :1.0000 Max. :1.00000
- ## payer code HM payer code UN payer code BC payer code SP
- ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.0000
- ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
- ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.0000
- ## Mean :0.06165 Mean :0.02406 Mean :0.04574 Mean :0.0492
- ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
- ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.0000
- ## payer_code_CP payer_code_SI payer_code_DM
- ## Min. :0.00000 Min. :0.000000 Min. :0.000000

1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.000000 ## Median:0.00000 Median:0.000000 Median:0.000000 ## Mean :0.02489 Mean :0.0005405 Mean :0.005395 ## 3rd Qu.:0.00000 3rd Qu.:0.0000000 3rd Qu.:0.000000 ## Max. :1.00000 Max. :1.000000 Max. :1.000000 ## payer code CM payer code CH payer code PO ## Min. :0.00000 Min. :0.000000 Min. :0.000000 ## 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.000000 ## Median :0.00000 Median :0.000000 Median :0.000000 ## Mean :0.01903 Mean :0.001435 Mean :0.005817 ## 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.000000 ## Max. :1.00000 Max. :1.000000 Max. :1.000000 ## payer_code_WC payer_code_OT payer code OG ## Min. :0.000000 Min. :0.000000 Min. :0.00000 ## 1st Qu.:0.000000 1st Qu.:0.0000000 1st Qu.:0.00000 ## Median: 0.000000 Median: 0.000000 Median: 0.00000 ## Mean :0.001327 Mean :0.0009335 Mean :0.01015 ## 3rd Qu.:0.000000 3rd Qu.:0.0000000 3rd Qu.:0.00000 ## Max. :1.000000 Max. :1.000000 Max. :1.00000 ## payer code MP payer code FR medical specialty NA ## Min. :0.0000000 Min. :0.0e+00 Min. :0.0000

1st Qu.:0.0000000 1st Qu.:0.0e+00 1st Qu.:0.0000

Median:0.0000000 Median:0.0e+00 Median:0.0000

Mean :0.0007763 Mean :9.8e-06 Mean :0.4908

3rd Qu.:0.0000000 3rd Qu.:0.0e+00 3rd Qu.:1.0000

Max. :1.0000000 Max. :1.0e+00 Max. :1.0000

medical_specialty_InternalMedicine

Min. :0.0000

1st Qu.:0.0000

Median: 0.0000

Mean :0.1438

3rd Qu.:0.0000

Max. :1.0000

medical_specialty_Family/GeneralPractice medical_specialty_Cardiology

Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000

Median :0.00000 Median :0.00000

Mean :0.07311 Mean :0.05259

3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000

medical_specialty_Surgery-General medical_specialty_Orthopedics

Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000

Median :0.00000 Median :0.00000

Mean :0.03045 Mean :0.01376

3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000

medical_specialty_Gastroenterology

Min. :0.000000

1st Qu.:0.000000

Median:0.000000

Mean :0.005542

3rd Qu.:0.000000

Max. :1.000000

medical_specialty_Surgery-Cardiovascular/Thoracic

Min. :0.000000

1st Qu.:0.000000

Median:0.000000

Mean :0.006407

3rd Qu.:0.000000

Max. :1.000000

medical_specialty_Nephrology medical_specialty_Orthopedics-Reconstructive

Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000

Median :0.00000 Median :0.00000

Mean :0.01585 Mean :0.01212

3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000

medical_specialty_Psychiatry medical_specialty_Emergency/Trauma

Min. :0.000000 Min. :0.00000

1st Qu.:0.000000 1st Qu.:0.00000

Median :0.000000 Median :0.00000

Mean :0.008392 Mean :0.07434

3rd Qu.:0.000000 3rd Qu.:0.00000

Max. :1.000000 Max. :1.00000

medical_specialty_Pulmonology medical_specialty_Surgery-Neuro

Min. :0.000000 Min. :0.000000

1st Qu.:0.000000 1st Qu.:0.000000

Median :0.000000 Median :0.000000

Mean :0.008559 Mean :0.004599

3rd Qu.:0.000000 3rd Qu.:0.000000

Max. :1.000000 Max. :1.000000

medical_specialty_ObstetricsandGynecology medical_specialty_Urology

Min. :0.000000 Min. :0.000000

1st Qu.:0.000000 1st Qu.:0.000000

Median :0.000000 Median :0.000000

Mean :0.006594 Mean :0.006731

3rd Qu.:0.000000 3rd Qu.:0.000000

Max. :1.000000 Max. :1.000000

medical_specialty_Oncology

Min. :0.00000

1st Qu.:0.00000

Median:0.00000

Mean :0.00342

3rd Qu.:0.00000

Max. :1.00000

medical_specialty_PhysicalMedicineandRehabilitation

Min. :0.000000

1st Qu.:0.000000

Median :0.000000

Mean :0.003842

3rd Qu.:0.000000

Max. :1.000000

medical_specialty_Surgery-Vascular medical_specialty_Radiologist

Min. :0.000000 Min. :0.0000

1st Qu.:0.000000 1st Qu.:0.0000

Median :0.000000 Median :0.0000

Mean :0.005237 Mean :0.0112

3rd Qu.:0.000000 3rd Qu.:0.0000

Max. :1.000000 Max. :1.0000

diag_1_276 diag_1_414 diag_1_428 diag_1_434

Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000

Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000

Mean :0.01856 Mean :0.06467 Mean :0.06743 Mean :0.01993

3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000 Max. :1.00000

diag_1_518 diag_1_410 diag_1_682 diag_1_V57

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000

Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.01096 Mean :0.03551 Mean :0.02007 Mean :0.01186 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag_1_786 diag_1_427 diag_1_996 diag_1_584 ## Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.03946 Mean :0.02718 Mean :0.01933 Mean :0.01494 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag 1 486 diag 1 250.6 diag 1 715 diag_1_38 ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.03447 Mean :0.01162 Mean :0.02114 Mean :0.01659 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag_1_599 diag_1_250.8 diag_1_491 diag_1_780 ## Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.01567 Mean :0.02236 Mean :0.01651 Mean :0.01984 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag 2 250.01 diag 2 250 diag 2 411 diag 2 427 ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.01497 Mean :0.05966 Mean :0.02521 Mean :0.04949 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag_2_403 diag_2_425 diag_2_401 diag 2 496 ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.02774 Mean :0.01409 Mean :0.03671 Mean :0.03248 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 diag_2_276 ## diag 2 428 diag 2 585 diag 2 250.02

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median:0.00000 Median:0.00000 Median:0.00000 Median:0.00000 ## Mean :0.06546 Mean :0.01839 Mean :0.02038 Mean :0.06635 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag_2_599 diag_2_491 diag_2_707 diag_2_414 ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.03231 Mean :0.01518 Mean :0.01964 Mean :0.02604 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000 ## diag_2_285 diag_2_780 diag_2_584 diag_2_682 ## Min. :0.00000 Min. :0.00000 Min. :0.0000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 ## Median :0.00000 Median :0.00000 Median :0.0000 Median :0.00000 ## Mean :0.01494 Mean :0.01465 Mean :0.0162 Mean :0.01408 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000 ## Max. :1.00000 Max. :1.00000 Max. :1.0000 Max. :1.00000

diag_3_Other diag_3_403 diag_3_250 diag_3_V45 ## Min. :0.000 Min. :0.00000 Min. :0.0000 Min. :0.00000 ## 1st Qu.:0.000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 ## Median: 0.000 Median: 0.0000 Median: 0.0000 Median: 0.0000 ## Mean :0.416 Mean :0.02316 Mean :0.1135 Mean :0.01365 ## 3rd Qu.:1.000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 ## Max. :1.000 Max. :1.00000 Max. :1.0000 Max. :1.00000 diag_3_427 ## diag_3_250.6 diag_3_414 diag_3_428 ## Min. :0.00000 Min. :0.0000 Min. :0.000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.000 1st Qu.:0.00000 ## Median:0.00000 Median:0.0000 Median:0.000 Median:0.00000 ## Mean :0.01061 Mean :0.03886 Mean :0.036 Mean :0.04498 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.000 3rd Qu.:0.0000 ## Max. :1.00000 Max. :1.00000 Max. :1.000 Max. :1.00000 ## diag 3 276 diag 3 401 diag 3 585 diag 3 250.02 ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000 ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 ## Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000 ## Mean :0.05085 Mean :0.08145 Mean :0.01957 Mean :0.01345 ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000

diag_3_707 diag_3_496 diag_3_599 diag_3_424

Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000

Median:0.00000 Median:0.0000 Median:0.00000 Median:0.00000

Mean :0.01336 Mean :0.0256 Mean :0.01907 Mean :0.01045

3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.00000

diag_3_425 diag_3_272 diag_3_780 diag_3_285

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000

Median: 0.00000 Median: 0.00000 Median: 0.00000 Median: 0.00000

Mean :0.01116 Mean :0.01935 Mean :0.01311 Mean :0.01179

3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000

max_glu_serum_>300 max_glu_serum_Norm max_glu_serum_>200

Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000

Median: 0.00000 Median: 0.00000 Median: 0.00000

Mean :0.01242 Mean :0.02552 Mean :0.01459

- ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
- ## Max. :1.00000 Max. :1.00000 Max. :1.00000
- ## A1Cresult_>7 A1Cresult_>8 A1Cresult_Norm metformin_Steady
- ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.0000
- ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000
- ## Median:0.00000 Median:0.00000 Median:0.00000 Median:0.0000
- ## Mean :0.03746 Mean :0.08073 Mean :0.04903 Mean :0.1803
- ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000
- ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.0000
- ## metformin_Up metformin_Down repaglinide_Up repaglinide_Steady
- ## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.0000
- ## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.0000
- ## Median:0.00000 Median:0.00000 Median:0.000000 Median:0.0000
- ## Mean :0.01048 Mean :0.00565 Mean :0.001081 Mean :0.0136
- ## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.0000
- ## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.0000
- ## repaglinide_Down nateglinide_Steady nateglinide_Down
- ## Min. :0.0000000 Min. :0.000000 Min. :0.0000000
- ## 1st Qu.:0.0000000 1st Qu.:0.000000 1st Qu.:0.0000000
- ## Median: 0.0000000 Median: 0.000000 Median: 0.0000000

Mean :0.0004422 Mean :0.006564 Mean :0.0001081

3rd Qu.:0.0000000 3rd Qu.:0.000000 3rd Qu.:0.0000000

Max. :1.0000000 Max. :1.000000 Max. :1.0000000

nateglinide_Up chlorpropamide_Steady chlorpropamide_Down

Min. :0.0000000 Min. :0.0000000 Min. :0.0e+00

1st Qu.:0.0000000 1st Qu.:0.0000000 1st Qu.:0.0e+00

Median:0.0000000 Median:0.0000000 Median:0.0e+00

Mean :0.0002358 Mean :0.0007763 Mean :9.8e-06

3rd Qu.:0.0000000 3rd Qu.:0.0000000 3rd Qu.:0.0e+00

Max. :1.0000000 Max. :1.0000000 Max. :1.0e+00

chlorpropamide_Up glimepiride_Steady glimepiride_Down

Min. :0.0e+00 Min. :0.00000 Min. :0.000000

1st Qu.:0.0e+00 1st Qu.:0.00000 1st Qu.:0.000000

Median :0.0e+00 Median :0.00000 Median :0.000000

Mean :5.9e-05 Mean :0.04589 Mean :0.001906

3rd Qu.:0.0e+00 3rd Qu.:0.00000 3rd Qu.:0.000000

Max. :1.0e+00 Max. :1.00000 Max. :1.000000

glimepiride_Up acetohexamide_Steady glipizide_Steady

Min. :0.000000 Min. :0.0e+00 Min. :0.0000

1st Qu.:0.000000 1st Qu.:0.0e+00 1st Qu.:0.0000

Median :0.000000 Median :0.0e+00 Median :0.0000 ## Mean :0.003213 Mean :9.8e-06 Mean :0.1116 ## 3rd Qu.:0.000000 3rd Qu.:0.0e+00 3rd Qu.:0.0000 ## Max. :1.000000 Max. :1.0e+00 Max. :1.0000 ## glipizide_Up glipizide_Down glyburide_Steady ## Min. :0.000000 Min. :0.000000 Min. :0.00000 ## 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000 ## Median :0.000000 Median :0.000000 Median :0.00000 ## Mean :0.007566 Mean :0.005503 Mean :0.09113 ## 3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000 ## Max. :1.000000 Max. :1.000000 Max. :1.00000 glyburide_Down tolbutamide Steady ## glyburide Up ## Min. :0.000000 Min. :0.000000 Min. :0.000000 ## 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.000000 ## Median:0.000000 Median:0.000000 Median:0.000000 ## Mean :0.007979 Mean :0.005542 Mean :0.000226 ## 3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.000000 ## Max. :1.000000 Max. :1.000000 Max. :1.000000 ## pioglitazone_Steady pioglitazone_Up _pioglitazone_Down ## Min. :0.00000 Min. :0.00000 Min. :0.000000

1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.000000 ## Median :0.00000 Median: 0.000000 Median: 0.000000 Mean :0.002299 Mean :0.001159 ## Mean :0.06855 ## 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.000000 ## Max. :1.00000 Max. :1.000000 Max. :1.000000 ## rosiglitazone Steady rosiglitazone Up rosiglitazone Down Min. :0.000000 Min. :0.0000000 ## Min. :0.00000 1st Qu.:0.000000 1st Qu.:0.0000000 ## 1st Qu.:0.00000 Median: 0.000000 Median: 0.0000000 ## Median :0.00000 ## Mean :0.05994 Mean :0.001749 Mean :0.0008549 ## 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.0000000 ## Max. :1.00000 Max. :1.000000 Max. :1.0000000 acarbose_Up ## acarbose Steady acarbose Down ## Min. :0.000000 Min. :0.00e+00 Min. :0.00e+00 ## 1st Qu.:0.000000 1st Qu.:0.00e+00 1st Qu.:0.00e+00 ## Median:0.000000 Median:0.00e+00 Median:0.00e+00 ## Mean :0.002899 Mean :9.83e-05 Mean :2.95e-05 ## 3rd Qu.:0.000000 3rd Qu.:0.00e+00 3rd Qu.:0.00e+00 ## Max. :1.000000 Max. :1.00e+00 Max. :1.00e+00 ## miglitol Steady miglitol Down miglitol Up

Min. :0.0000000 Min. :0.00e+00 Min. :0.00e+00

1st Qu.:0.0000000 1st Qu.:0.00e+00 1st Qu.:0.00e+00

Median :0.0000000 Median :0.00e+00 Median :0.00e+00

Mean :0.0003046 Mean :4.91e-05 Mean :1.97e-05

3rd Qu.:0.0000000 3rd Qu.:0.00e+00 3rd Qu.:0.00e+00

Max. :1.0000000 Max. :1.00e+00 Max. :1.00e+00

troglitazone_Steady tolazamide_Steady tolazamide_Up

Min. :0.00e+00 Min. :0.0000000 Min. :0.0e+00

1st Qu.:0.00e+00 1st Qu.:0.0000000 Median :0.0e+00

Median :0.00e+00 Median :0.0000000 Median :0.0e+00

Mean :2.95e-05 Mean :0.0003734 Mean :9.8e-06

3rd Qu.:0.00e+00 3rd Qu.:0.0000000 3rd Qu.:0.0e+00

Max. :1.00e+00 Max. :1.0000000 Max. :1.0e+00

insulin_Up insulin_Steady insulin_Down

Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000 Median :0.0000

Mean :0.1112 Mean :0.3031 Mean :0.1201

3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:0.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000

glyburide.metformin_Steady glyburide.metformin_Down

Min. :0.0000 Min. :0.0e+00

1st Qu.:0.0000 1st Qu.:0.0e+00

Median :0.0000 Median :0.0e+00

Mean :0.0068 Mean :5.9e-05

3rd Qu.:0.0000 3rd Qu.:0.0e+00

Max. :1.0000 Max. :1.0e+00

glyburide.metformin_Up glipizide.metformin_Steady

Min. :0.00e+00 Min. :0.0000000

1st Qu.:0.00e+00 1st Qu.:0.0000000

Median :0.00e+00 Median :0.0000000

Mean :7.86e-05 Mean :0.0001277

3rd Qu.:0.00e+00 3rd Qu.:0.0000000

Max. :1.00e+00 Max. :1.0000000

glimepiride.pioglitazone_Steady metformin.rosiglitazone_Steady

Min. :0.0e+00 Min. :0.00e+00

1st Qu.:0.0e+00 1st Qu.:0.00e+00

Median :0.0e+00 Median :0.00e+00

Mean :9.8e-06 Mean :1.97e-05

3rd Qu.:0.0e+00 3rd Qu.:0.00e+00

```
## Max. :1.0e+00
                          Max. :1.00e+00
## metformin.pioglitazone_Steady change_Ch diabetesMed_Yes
## Min. :0.0e+00
                         Min. :0.000 Min. :0.00
## 1st Qu.:0.0e+00
                          1st Qu.:0.000 1st Qu.:1.00
## Median :0.0e+00
                          Median: 0.000 Median: 1.00
## Mean :9.8e-06
                         Mean :0.462 Mean :0.77
## 3rd Qu.:0.0e+00
                          3rd Qu.:1.000 3rd Qu.:1.00
## Max. :1.0e+00
                         Max. :1.000 Max. :1.00
Feature_Engineer_Integers <- function(data_set, features_to_ignore=c()) {
  require(infotheo)
  data_set <- data.frame(data_set)</pre>
  for (feature_name in setdiff(names(data_set), features_to_ignore)) {
   if (class(data_set[,feature_name])=='numeric' | class(data_set[,feature_name])=='integer') {
    feature_vector <- data_set[,feature_name]</pre>
    if (all((feature_vector - round(feature_vector)) == 0)) {
```

```
# make sure we have more than 2 values excluding NAs
   if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 2) {
    print(feature_name)
    data_set[,paste0(feature_name,'_IsZero')] <- ifelse(data_set[,feature_name]==0,1,0)
    data_set[,paste0(feature_name,'_IsPositive')] <- ifelse(data_set[,feature_name]>=0,1,0)
    # separate data into two bins
    data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=2)
    data_set[,paste0(feature_name,'_2Bins')] <- data_discretized$X</pre>
    if (length(unique(data_set[,feature_name][!is.na(data_set[,feature_name])])) > 4) {
     # try 4 bins
     data_discretized <- discretize(data_set[,feature_name], disc='equalfreq', nbins=4)
     data_set[,pasteO(feature_name,'_4Bins')] <- data_discretized$X</pre>
return (data_set)
```

```
diabetes <- Feature_Engineer_Integers(data_set=diabetes, features_to_ignore=c('admission_type_id',
                                         'discharge_disposition_id',
                                         'admission_source_id'))
## Loading required package: infotheo
## [1] "time_in_hospital"
## [1] "num_lab_procedures"
## [1] "num_procedures"
## [1] "num_medications"
## [1] "number_outpatient"
## [1] "number_emergency"
## [1] "number_inpatient"
## [1] "number_diagnoses"
nzv <- nearZeroVar(diabetes, saveMetrics = TRUE)</pre>
length(rownames(nzv[nzv$nzv==FALSE,]))
## [1] 66
diabetes <- diabetes[,rownames(nzv[nzv$nzv==FALSE,])]</pre>
dim(diabetes)
```

```
## [1] 101766 66
```

Now, let's use caret to model this data set using GBM. Here we will split the data into two portions: a training and a testing portion. We'll use the built-in createDataPartition from caret to split the data set in two. By using the same seed you will always get the same split in subsequent runs:

```
# prep our variables
outcome_name <- 'readmitted'
# cleanup all feature names - replace periods with underscores
predictor_names <- setdiff(names(diabetes), outcome_name)</pre>
set.seed(1234)
splitIndex <- createDataPartition(diabetes[,outcome_name], p = .75, list = FALSE, times = 1)
train_data <- diabetes[ splitIndex,]</pre>
test_data <- diabetes[-splitIndex,]</pre>
objControl <- trainControl(method='cv', number=2, returnResamp='none',
```

```
summaryFunction = twoClassSummary, classProbs = TRUE)
```

```
# make outcome variable a factor (required for caret's GBM model)
gbm_caret_model <- train(train_data[,predictor_names], as.factor(train_data[,outcome_name]),
              method='gbm',
              trControl=objControl,
              metric = "ROC",
              preProc = c("center", "scale"))
## Loading required package: gbm
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
    cluster
```

```
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.3
## Loading required package: plyr
## -----
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -----
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
## Iter TrainDeviance ValidDeviance StepSize Improve
    1
         0.6964
                     nan 0.1000 0.0017
##
         0.6938
                          0.1000 0.0013
##
    2
                     nan
##
    3
         0.6917
                     nan 0.1000 0.0010
         0.6901
                          0.1000 0.0008
##
                     nan
```

##	5	0.6883	nan	0.1000	0.0008
##	6	0.6868	nan	0.1000	0.0006
##	7	0.6859	nan	0.1000	0.0005
##	8	0.6850	nan	0.1000	0.0004
##	9	0.6843	nan	0.1000	0.0003
##	10	0.6835	nan	0.1000	0.0004
##	20	0.6784	nan	0.1000	0.0002
##	40	0.6739	nan	0.1000	0.0000
##	60	0.6717	nan	0.1000	0.0000
##	80	0.6703	nan	0.1000	-0.0000
##	100	0.6691	nan	0.1000	0.0000
##	120	0.6681	nan	0.1000	-0.0000
##	140	0.6673	nan	0.1000	-0.0000
##	150	0.6669	nan	0.1000	0.0000
##					
##	ter Tr	ainDeviance	ValidDe	eviance S	StepSize Improve
##	1	0.6955	nan	0.1000	0.0021
##	2	0.6923	nan	0.1000	0.0015
##	3	0.6893	nan	0.1000	0.0014
##	4	0.6871	nan	0.1000	0.0011

##	5	0.6852	nan	0.1000	0.0009
##	6	0.6834	nan	0.1000	0.0009
##	7	0.6821	nan	0.1000	0.0006
##	8	0.6807	nan	0.1000	0.0006
##	9	0.6799	nan	0.1000	0.0004
##	10	0.6791	nan	0.1000	0.0004
##	20	0.6742	nan	0.1000	0.0001
##	40	0.6697	nan	0.1000	-0.0000
##	60	0.6662	nan	0.1000	0.0000
##	80	0.6638	nan	0.1000	-0.0000
##	100	0.6621	nan	0.1000	-0.0000
##	120	0.6610	nan	0.1000	-0.0000
##	140	0.6600	nan	0.1000	-0.0000
##	150	0.6596	nan	0.1000	-0.0000
##					
## I	ter Tr	ainDeviance	ValidDe	eviance S	StepSize Improve
##	1	0.6944	nan	0.1000	0.0023
##	2	0.6906	nan	0.1000	0.0018
##	3	0.6877	nan	0.1000	0.0013
##	4	0.6853	nan	0.1000	0.0012

##	5	0.6833	nan	0.1000	0.0010
##	6	0.6814	nan	0.1000	0.0009
##	7	0.6799	nan	0.1000	0.0007
##	8	0.6790	nan	0.1000	0.0004
##	9	0.6780	nan	0.1000	0.0004
##	10	0.6773	nan	0.1000	0.0003
##	20	0.6715	nan	0.1000	0.0002
##	40	0.6657	nan	0.1000	0.0000
##	60	0.6626	nan	0.1000	0.0000
##	80	0.6603	nan	0.1000	-0.0000
##	100	0.6580	nan	0.1000	-0.0000
##	120	0.6565	nan	0.1000	-0.0000
##	140	0.6552	nan	0.1000	-0.0000
##	150	0.6544	nan	0.1000	-0.0001
##					
##	ter Tr	ainDeviance	ValidDe	eviance S	StepSize Improve
##	1	0.6960	nan	0.1000	0.0019
##	2	0.6932	nan	0.1000	0.0015
##	3	0.6907	nan	0.1000	0.0013
##	4	0.6886	nan	0.1000	0.0010

##	5	0.6870	nan	0.1000	0.0008
##	6	0.6854	nan	0.1000	0.0008
##	7	0.6841	nan	0.1000	0.0006
##	8	0.6828	nan	0.1000	0.0006
##	9	0.6819	nan	0.1000	0.0004
##	10	0.6811	nan	0.1000	0.0003
##	20	0.6747	nan	0.1000	0.0002
##	40	0.6697	nan	0.1000	0.0001
##	60	0.6677	nan	0.1000	0.0000
##	80	0.6660	nan	0.1000	0.0000
##	100	0.6651	nan	0.1000	-0.0000
##	120	0.6640	nan	0.1000	-0.0000
##	140	0.6632	nan	0.1000	0.0000
##	150	0.6629	nan	0.1000	-0.0000
##					
## I	ter Tr	ainDeviance	ValidDe	eviance S	StepSize Improve
##	1	0.6948	nan	0.1000	0.0023
##	2	0.6906	nan	0.1000	0.0021
##	3	0.6874	nan	0.1000	0.0016
##	4	0.6847	nan	0.1000	0.0011

##	5	0.6827	nan	0.1000	0.0010
##	6	0.6809	nan	0.1000	0.0009
##	7	0.6793	nan	0.1000	0.0007
##	8	0.6778	nan	0.1000	0.0007
##	9	0.6765	nan	0.1000	0.0006
##	10	0.6755	nan	0.1000	0.0005
##	20	0.6698	nan	0.1000	0.0002
##	40	0.6648	nan	0.1000	0.0000
##	60	0.6621	nan	0.1000	0.0000
##	80	0.6606	nan	0.1000	-0.0000
##	100	0.6586	nan	0.1000	-0.0000
##	120	0.6571	nan	0.1000	0.0000
##	140	0.6561	nan	0.1000	-0.0000
##	150	0.6554	nan	0.1000	-0.0000
##					
## I	ter Tr	ainDeviance	ValidDe	eviance S	StepSize Improve
##	1	0.6939	nan	0.1000	0.0029
##	2	0.6893	nan	0.1000	0.0023
##	3	0.6859	nan	0.1000	0.0017
##	4	0.6830	nan	0.1000	0.0014

##	5	0.6803	nan	0.1000	0.0013
##	6	0.6783	nan	0.1000	0.0009
##	7	0.6765	nan	0.1000	0.0009
##	8	0.6753	nan	0.1000	0.0006
##	9	0.6740	nan	0.1000	0.0006
##	10	0.6729	nan	0.1000	0.0005
##	20	0.6672	nan	0.1000	0.0001
##	40	0.6618	nan	0.1000	0.0000
##	60	0.6582	nan	0.1000	0.0000
##	80	0.6555	nan	0.1000	0.0000
##	100	0.6531	nan	0.1000	0.0000
##	120	0.6511	nan	0.1000	0.0000
##	140	0.6499	nan	0.1000	-0.0000
##	150	0.6493	nan	0.1000	-0.0000
##					
##	ter Tr	ainDeviance	ValidDe	eviance S	StepSize Improve
##	1	0.6942	nan	0.1000	0.0027
##	2	0.6903	nan	0.1000	0.0020
##	3	0.6871	nan	0.1000	0.0015
##	4	0.6843	nan	0.1000	0.0013

##	5	0.6818	nan	0.1000	0.0011
##	6	0.6800	nan	0.1000	0.0009
##	7	0.6785	nan	0.1000	0.0007
##	8	0.6771	nan	0.1000	0.0006
##	9	0.6759	nan	0.1000	0.0005
##	10	0.6751	nan	0.1000	0.0003
##	20	0.6696	nan	0.1000	0.0001
##	40	0.6647	nan	0.1000	0.0001
##	60	0.6614	nan	0.1000	0.0000
##	80	0.6597	nan	0.1000	0.0000
##	100	0.6582	nan	0.1000	-0.0000
##	120	0.6572	nan	0.1000	0.0000
##	140	0.6559	nan	0.1000	-0.0000
##	150	0.6555	nan	0.1000	-0.0000

summary(gbm_caret_model)

var

number_inpatient number_inpatient ## discharge_disposition_id discharge_disposition_id ## number_inpatient_IsZero number_inpatient_IsZero ## num_medications num_medications ## number_emergency number_emergency ## time_in_hospital time_in_hospital ## num_lab_procedures num_lab_procedures ## number_diagnoses number_diagnoses ## diag_1_428 diag_1_428 ## diabetesMed_Yes diabetesMed_Yes ## insulin_Down insulin_Down ## num_procedures num_procedures ## number_emergency_IsZero number_emergency_IsZero ## number_diagnoses_2Bins number_diagnoses_2Bins ## admission_type_id admission_type_id ## diag_3_401 diag_3_401 ## number_diagnoses_4Bins number_diagnoses_4Bins ## payer_code_MC payer_code_MC ## change_Ch change_Ch ## age_.50.60. age_.50.60.

time_in_hospital_2Bins time_in_hospital_2Bins

admission_source_id admission_source_id

gender_Male gender_Male

number_outpatient number_outpatient

metformin_Steady metformin_Steady

medical_specialty_NA medical_specialty_NA

payer_code_HM payer_code_HM

race_AfricanAmerican race_AfricanAmerican

time_in_hospital_4Bins time_in_hospital_4Bins

num_medications_2Bins num_medications_2Bins

diag_2_428 diag_2_428

medical_specialty_Family.GeneralPractice medical_specialty_Family.GeneralPractice

diag_3_250 diag_3_250

medical_specialty_Emergency.Trauma medical_specialty_Emergency.Trauma

A1Cresult_.8 A1Cresult_.8

diag_3_Other diag_3_Other

num_procedures_lsZero num_procedures_lsZero

age_.80.90. age_.80.90.

age_.70.80. age_.70.80.

diag_2_250 diag_2_250

## medical_specialty_Cardiology	medical_specialty_Cardiology
## diag_2_276	diag_2_276
## rosiglitazone_Steady	rosiglitazone_Steady
## glipizide_Steady	glipizide_Steady
## insulin_Steady	insulin_Steady
## medical_specialty_InternalMedicine	medical_specialty_InternalMedicine
## glyburide_Steady	glyburide_Steady
## num_lab_procedures_4Bins	num_lab_procedures_4Bins
## number_outpatient_IsZero	number_outpatient_IsZero
## num_medications_4Bins	num_medications_4Bins
## age60.70.	age60.70.
## age40.50.	age40.50.
## diag_3_276	diag_3_276
## diag_1_414	diag_1_414
## pioglitazone_Steady	pioglitazone_Steady
## insulin_Up	insulin_Up
## num_lab_procedures_2Bins	num_lab_procedures_2Bins
## num_procedures_2Bins	num_procedures_2Bins
## num_procedures_4Bins	num_procedures_4Bins
## number_outpatient_2Bins	number_outpatient_2Bins

number_outpatient_4Bins number_outpatient_4Bins

number_emergency_2Bins number_emergency_2Bins

number_emergency_4Bins number_emergency_4Bins

number_inpatient_2Bins number_inpatient_2Bins

number_inpatient_4Bins number_inpatient_4Bins

rel.inf

number_inpatient 40.87029566

discharge_disposition_id 25.78755007

number_inpatient_IsZero 7.08713378

num_medications 3.34553353

number_emergency 3.27630233

time_in_hospital 2.39670481

num_lab_procedures 2.02396561

number_diagnoses 1.60928573

diag_1_428 0.81986351

diabetesMed_Yes 0.80382936

insulin_Down 0.75637593

num_procedures 0.74798614

number_emergency_lsZero 0.64643401

number_diagnoses_2Bins 0.59160864

## admission_type_id	0.58099922
----------------------	------------

diag_3_401 0.53642310

number_diagnoses_4Bins 0.53503844

payer_code_MC 0.53396743

change_Ch 0.50894603

age .50.60. 0.42698394

time_in_hospital_2Bins 0.40122918

admission_source_id 0.35695272

gender_Male 0.35524920

number_outpatient 0.35469761

metformin_Steady 0.31412816

medical_specialty_NA 0.29430156

payer_code_HM 0.28613605

race_AfricanAmerican 0.27946576

time_in_hospital_4Bins 0.25046225

num_medications_2Bins 0.23805674

diag_2_428 0.22904435

medical_specialty_Family.GeneralPractice 0.22881666

diag_3_250 0.22192417

medical_specialty_Emergency.Trauma 0.22007722

## A1Cresult8	0.21118887

diag_3_Other 0.18957520

num_procedures_IsZero 0.17662963

age_.80.90. 0.17179113

age_.70.80. 0.15863568

diag_2_250 0.14562289

medical_specialty_Cardiology 0.13563927

diag_2_276 0.13314114

rosiglitazone_Steady 0.12594872

glipizide_Steady 0.10558765

insulin_Steady 0.08551410

medical_specialty_InternalMedicine 0.08011728

glyburide_Steady 0.07735456

num_lab_procedures_4Bins 0.07439326

number_outpatient_IsZero 0.05008065

num_medications_4Bins 0.04929032

age_.60.70. 0.04295513

age_.40.50. 0.04024712

diag_3_276 0.03051853

diag_1_414 0.00000000

## pioglitazone_Steady	0.00000000
## insulin_Up	0.00000000
## num_lab_procedures_2Bin	o.00000000
## num_procedures_2Bins	0.00000000
## num_procedures_4Bins	0.00000000
## number_outpatient_2Bins	0.00000000
## number_outpatient_4Bins	0.00000000
## number_emergency_2Bins	0.00000000
## number_emergency_4Bins	0.00000000
## number_inpatient_2Bins	0.00000000
## number_inpatient_4Bins	0.00000000

print(gbm_caret_model)

Stochastic Gradient Boosting

##

76325 samples

```
## 65 predictor
    2 classes: 'no', 'yes'
##
## Pre-processing: centered (65), scaled (65)
## Resampling: Cross-Validated (2 fold)
## Summary of sample sizes: 38162, 38163
## Resampling results across tuning parameters:
##
## interaction.depth n.trees ROC
                                          Spec
                                  Sens
## 1
              50 0.6481373 0.9994986 0.003052360
## 1
             100
                   0.6554346 0.9990266 0.006339516
## 1
                  0.6596561 0.9986874 0.008217892
             150
## 2
                  0.6568785 0.9992036 0.005165532
## 2
             100
                  0.6659640 0.9986579 0.008570087
## 2
             150 0.6676805 0.9984072 0.010565861
## 3
                  0.6622102 0.9988792 0.007278704
## 3
             100
                  0.6683780 0.9983630 0.010565861
## 3
                   0.6694874 0.9986285 0.011035454
             150
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
```

```
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150,
## interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
predictions <- predict(object=gbm_caret_model, test_data[,predictor_names], type='raw')</pre>
head(predictions)
## [1] no no no no no no
## Levels: no yes
print(postResample(pred=predictions, obs=as.factor(test_data[,outcome_name])))
## Accuracy
                Kappa
## 0.888015408 0.009486957
```

```
prop.table(table(as.factor(diabetes[,outcome_name])))
##
      no
           yes
##
## 0.8884008 0.1115992
# probabilites
predictions <- predict(object=gbm_caret_model, test_data[,predictor_names], type='prob')</pre>
head(predictions)
       no
             yes
##
## 1 0.9472629 0.05273706
## 2 0.9408044 0.05919557
## 3 0.9217157 0.07828429
## 4 0.9120175 0.08798251
## 5 0.8374687 0.16253128
## 6 0.9286577 0.07134228
```

```
# install.packages('pROC')
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
auc <- roc(ifelse(test_data[,outcome_name]=="yes",1,0), predictions[[2]])
print(auc$auc)
## Area under the curve: 0.6616</pre>
```

k-MEANS CLUSTERING

```
Get_Free_Text_Measures <- function(data_set, minimum_unique_threshold=0.9, features_to_ignore=c()) {
 # look for text entries that are mostly unique
 text_features <- c(names(data_set[sapply(data_set, is.character)]), names(data_set[sapply(data_set, is.factor)]))
 for (f name in setdiff(text features, features to ignore)) {
 f_vector <- as.character(data_set[,f_name])</pre>
  # treat as raw text if data over minimum_precent_unique unique
  if (length(unique(as.character(f_vector))) > (nrow(data_set) * minimum_unique_threshold)) {
   data_set[,pasteO(f_name, '_word_count')] <- sapply(strsplit(f_vector, " "), length)</pre>
   data_set[,pasteO(f_name, '_character_count')] <- nchar(as.character(f_vector))</pre>
   data_set[,paste0(f_name, '_first_word')] <- sapply(strsplit(as.character(f_vector), " "), `[`,
                                1)
   # remove orginal field
   data set[,f name] <- NULL
 return(data_set)
```

```
# Impute_Features
Impute_Features <- function(data_set, features_to_ignore=c(),</pre>
               use_mean_instead_of_0=TRUE,
               mark_NAs=FALSE,
               remove_zero_variance=FALSE) {
 for (feature_name in setdiff(names(data_set), features_to_ignore)) {
  print(feature_name)
  # remove any fields with zero variance
  if (remove_zero_variance) {
   if (length(unique(data_set[, feature_name]))==1) {
    data_set[, feature_name] <- NULL
    next
  if (mark_NAs) {
   # note each field that contains missing or bad data
   if (any(is.na(data_set[,feature_name]))) {
```

```
# create binary column before imputing
   newName <- paste0(feature_name, '_NA')</pre>
   data_set[,newName] <- as.integer(ifelse(is.na(data_set[,feature_name]),1,0)) }</pre>
  if (any(is.infinite(data_set[,feature_name]))) {
   newName <- pasteO(feature_name, '_inf')</pre>
   data_set[,newName] <- as.integer(ifelse(is.infinite(data_set[,feature_name]),1,0)) }</pre>
 if (use_mean_instead_of_0) {
  data_set[is.infinite(data_set[,feature_name]),feature_name] <- NA</pre>
  data_set[is.na(data_set[,feature_name]),feature_name] <- mean(data_set[,feature_name], na.rm=TRUE)
 } else {
  data_set[is.na(data_set[,feature_name]),feature_name] <- 0
  data_set[is.infinite(data_set[,feature_name]),feature_name] <- 0
return(data_set)
```

```
AutoMpg_data <- read.csv("http://mlr.cs.umass.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data", na.strings = '?', header=FALSE, sep="",
as.is=TRUE, col.names = c("mpg", "cylinders", "displacement", "horsepower",
                                             "weight", "acceleration", "model", "origin", "car_name"), stringsAsFactors = FALSE)
AutoMpg data <- Get Free Text Measures(data set = AutoMpg data, minimum unique threshold=0.5)
AutoMpg data <- Impute Features(data set = AutoMpg data, use mean instead of 0 = FALSE)
## [1] "mpg"
## [1] "cylinders"
## [1] "displacement"
## [1] "horsepower"
## [1] "weight"
## [1] "acceleration"
## [1] "model"
## [1] "origin"
## [1] "car_name_word_count"
```

[1] "car_name_character_count"

[1] "car name first word"

str(AutoMpg_data)

```
## 'data.frame': 398 obs. of 11 variables:

## $ mpg : num 18 15 18 16 17 15 14 14 14 15 ...

## $ cylinders : num 8 8 8 8 8 8 8 8 8 ...

## $ displacement : num 307 350 318 304 302 429 454 440 455 390 ...

## $ horsepower : num 130 165 150 150 140 198 220 215 225 190 ...

## $ weight : num 3504 3693 3436 3433 3449 ...

## $ acceleration : num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...

## $ model : num 70 70 70 70 70 70 70 70 70 70 70 ...

## $ origin : num 1 1 1 1 1 1 1 1 1 1 1 ...

## $ car_name_word_count : num 3 3 2 3 2 3 2 3 2 3 ...

## $ car_name_first_word : chr "chevrolet" "buick" "plymouth" "amc" ...
```

```
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
set.seed(1234)
```

```
km1 = kmeans(x = select(AutoMpg_data, weight, acceleration), centers = 3)
# Plot results
plot(select(AutoMpg_data, weight, acceleration),
  col =km1$cluster, main="K-Means result with 3 clusters",
  pch=20, cex=2)
# find each cluster's centroids
points(km1$centers, pch=6, col='blue', cex=6)
points(km1$centers, pch=6, col='blue', cex=4)
points(km1$centers, pch=6, col='blue', cex=2)
unique(AutoMpg_data$car_name_first_word)
## [1] "chevrolet" "buick" "plymouth" "amc"
## [5] "ford" "pontiac" "dodge" "toyota"
## [9] "datsun" "volkswagen" "peugeot" "audi"
## [13] "saab" "bmw" "chevy" "hi"
```

```
## [17] "mercury" "opel" "fiat" "oldsmobile"
## [21] "chrysler" "mazda" "volvo" "renault"
## [25] "toyouta" "maxda" "honda" "subaru"
## [29] "chevroelt" "capri" "vw" "mercedes-benz"
## [33] "cadillac" "mercedes" "vokswagen" "triumph"
## [37] "nissan"
brand_set <- select(AutoMpg_data, weight, acceleration, car_name_first_word) %>%
 group_by(car_name_first_word) %>% summarize_each(funs(mean)) %>% data.frame
row.names(brand_set) <- brand_set$car_name_first_word
brand_set <- dplyr::select(brand_set, -car_name_first_word)</pre>
set.seed(1234)
km1 = kmeans(x = brand_set, centers = 3)
# Plot results
plot(brand_set,
  col =km1$cluster, main="K-Means result with 3 clusters",
  pch=20, cex=2)
```

```
# install.packages('factoextra')
library(factoextra)
## Warning: package 'factoextra' was built under R version 3.2.5
## Loading required package: ggplot2
set.seed(1234)
km1 = kmeans(x = brand_set, centers = 3)
print(km1)
```

K-means clustering with 3 clusters of sizes 4, 14, 19 ## ## Cluster means: ## weight acceleration ## 1 4170.250 16.26250 ## 2 3377.402 16.06959 ## 3 2250.898 15.68187 ## ## Clustering vector: ## amc audi bmw buick cadillac ## 2 3 3 2 1 ## capri chevroelt chevrolet chevy chrysler ##31221 ## datsun dodge fiat ford hi ##32321 ## honda maxda mazda mercedes mercedes-benz ## 3 3 3 2 2 ## mercury nissan oldsmobile opel peugeot ## 2 3 2 3 2 ## plymouth pontiac renault saab subaru

```
## 2 2 3 3 3
## toyota toyouta triumph vokswagen volkswagen
##33333
## volvo vw
## 2 3
##
## Within cluster sum of squares by cluster:
## [1] 457857.8 676136.5 885185.0
## (between_SS / total_SS = 89.7 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
set.seed(1234)
fviz_nbclust(brand_set, kmeans, method = "wss")
```

Page	178	of	178	į
------	-----	----	-----	---