ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę MMA-R1 1P-092 **EGZAMIN MATURALNY MAJ ROK 2009** Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera (zadania 1 – 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Obok każdego zadania podana jest maksymalna liczba punktów, która możesz uzyskać za jego poprawne rozwiazanie. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla Za rozwiazanie i linijki oraz kalkulatora. wszystkich zadań 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. można otrzymać Nie wpisuj żadnych znaków w części przeznaczonej dla łacznie egzaminatora. 50 punktów Życzymy powodzenia! Wypełnia zdający przed rozpoczęciem pracy

PESEL ZDAJĄCEGO

KOD

ZDAJĄCEGO

Zadanie 1. (4 pkt)

Funkcja liniowa f określona jest wzorem f(x) = ax + b dla $x \in R$.

- a) Dla a = 2008 i b = 2009 zbadaj, czy do wykresu tej funkcji należy punkt $P = (2009, 2009^2)$.
- b) Narysuj w układzie współrzędnych zbiór

$$A = \left\{ (x, y) : x \in \langle -1, 3 \rangle \quad \text{i} \quad y = -\frac{1}{2}x + b \quad \text{i} \quad b \in \langle -2, 1 \rangle \right\}.$$

	Nr czynności	1.1.	1.2.	1.3.	1.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 2. (4 pkt)

Przy dzieleniu wielomianu W(x) przez dwumian (x-1) otrzymujemy iloraz $Q(x) = 8x^2 + 4x - 14$ oraz resztę R(x) = -5. Oblicz pierwiastki wielomianu W(x).

Wypełnia	Nr czynności	2.1.	2.2.	2.3.	2.4.
	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 3. (4 pkt)

Na rysunku przedstawiony jest wykres funkcji wykładniczej $f(x) = a^x$ dla $x \in R$.

- a) Oblicz a.
- b) Narysuj wykres funkcji g(x) = |f(x)-2| i podaj wszystkie wartości parametru $m \in R$, dla których równanie g(x) = m ma dokładnie jedno rozwiązanie.

	Nr czynności	3.1.	3.2.	3.3.	3.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 4. *(5 pkt)*

W skarbcu królewskim było k monet. Pierwszego dnia rano skarbnik dorzucił 25 monet, a każdego następnego ranka dorzucał o 2 monety więcej niż dnia poprzedniego. Jednocześnie ze skarbca król zabierał w południe każdego dnia 50 monet. Oblicz najmniejszą liczbę k, dla której w każdym dniu w skarbcu była co najmniej jedna moneta, a następnie dla tej wartości k oblicz, w którym dniu w skarbcu była najmniejsza liczba monet.

	Nr czynności	4.1.	4.2.	4.3.	4.4.	4.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 5. (3 pkt)

Wykaż, że jeżeli $A = 3^{4\sqrt{2}+2}$ i $B = 3^{2\sqrt{2}+3}$, to $B = 9\sqrt{A}$.

	Nr czynności	5.1.	5.2.	5.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 6. (5 pkt)

Wyznacz dziedzinę funkcji $f(x) = \log_{2\cos x}(9 - x^2)$ i zapisz ją w postaci sumy przedziałów liczbowych.

	Nr czynności	6.1.	6.2.	6.3.	6.4.	6.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 7. (6 pkt)

Ciąg (x-3, x+3, 6x+2,...) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich. Oblicz iloraz tego ciągu i uzasadnij, że $\frac{S_{19}}{S_{20}} < \frac{1}{4}$, gdzie S_n oznacza sumę n początkowych wyrazów tego ciągu.

	Nr czynności	7.1.	7.2.	7.3.	7.4.	7.5.	7.6.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt						

Zadanie 8. (4 pkt)

Dwa okręgi o środkach A i B są styczne zewnętrznie i każdy z nich jest jednocześnie styczny do ramion tego samego kąta prostego (patrz rysunek). Udowodnij, że stosunek promienia większego z tych okręgów do promienia mniejszego jest równy $3+2\sqrt{2}$.

	Nr czynności	8.1.	8.2.	8.3.	8.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 9. (5 pkt)

W układzie współrzędnych narysuj okrąg o równaniu $(x+2)^2 + (y-3)^2 = 4$ oraz zaznacz punkt A = (0,-1). Prosta o równaniu x = 0 jest jedną ze stycznych do tego okręgu przechodzących przez punkt A. Wyznacz równanie drugiej stycznej do tego okręgu, przechodzącej przez punkt A.

	Nr czynności	9.1.	9.2.	9.3.	9.4.	9.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 10. (4 pkt)

W urnie znajdują się jedynie kule białe i czarne. Kul białych jest trzy razy więcej niż czarnych. Oblicz, ile jest kul w urnie, jeśli przy jednoczesnym losowaniu dwóch kul prawdopodobieństwo otrzymania kul o różnych kolorach jest większe od $\frac{9}{22}$.

	Nr czynności	10.1.	10.2.	10.3.	10.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 11. *(6 pkt)*

Dany jest ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość *a* i krawędź boczna jest od niej dwa razy dłuższa. Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa. Narysuj przekrój ostrosłupa płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej i oblicz pole tego przekroju.

	Nr czynności	11.1.	11.2.	11.3.	11.4.	11.5.	11.6.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt						

BRUDNOPIS