Задание 3

Подсчёт количества промахов в кэш для операции матричного умножения в зависимости от порядка итерирования.

11.10.2022

Крайний срок сдачи задания: 25.10.2022

Задание

Задача: При помощи PAPI снять значения аппаратных счетчиков промахов L1/L2 кэшей при выполнении оперции умножения квадратных матриц. Сравнить полученные значения с теоретическими (из лекции) для каждого порядка итерирования.

Отчет должен содержать таблицу с полученными показаниями промахов кэша а также с теоретической оценкой количества промахов для кэша L1.

Для исследования размер матрицы выбрать равным: 1000×1000 (требуется одна таблица).

Таблица имеет следующий вид:

	L1 cache misses	L2 cache misses	L1 Theor	$\frac{L1Theor}{L1misses}$
ijk				
ikj				

В качестве показателя «L1 cache misses» рекумендуется использовать PAPI-событие: PAPI_L1_DCM (Level 1 data cache misses). Допускается также использовать PAPI_L1_TCM (Level 1 total cache misses) в случае, если первый вариант не поддерживается системой. Аналогично для показателя промахов в кэш L2.

Если ваша система не поддерживает ни один из перечисленных счётчиков, то исследование проводится на системе Polus, где поддерживаются события: PAPI_L1_DCM, PAPI_L2_DCM.

В столбец «L1 Theor» необходимо внести теоретическую оценку количества промахов в кэш L1 для данного режима итерирования при заданном размере матрицы. В последний столбец вносится отношение теоретического показателя и показателя счётчика из эксперимента (из первого столбца).

Формат файла-матрицы: 1 Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
int32_t	n >0	Число строк/столбцов матрицы
n × n элементов типа int32_t	произвольные	Массив элементов матирцы

Элементы матрицы хранятся построчно. Матрица квадратная.

Режимы: 0 - ijk, 1 - ikj, 2 - kij, 3 - jik, 4 - jki, 5 - kji.

Пример запуска:

```
$ ./run a b c 0
PAPI_L1_DCM = 1461146212
PAPI_L2_DCM = 213086787
$
```

Требования к решению

Код должен компилироваться gcc (g++) v10.2.1 с опциями компиляции -Wall -Werror.

Требование к отчёту

Отчёт должен содержать:

- Краткая постановка решаемой задачи;
- Описание вычислительной системы, на которой проводилось исследование количества промахов в кэш матричного умножения: название процессора, размер кэша $\rm L1/L2$;
- Полученные результаты: таблица с показателями количества промахов в кэш и теоретическими данными для каждого из шести режимов итерирования.

 $^{^1\}Phi$ ормат матрицы аналогичен формату из задания 2. И вообще, за основу программы, разрабатываемой в рамках данного задания, можно брать программу, разработанную в ходе решения задания 2