

RAMS AND (CYBER) SECURITY IN MODEL-BASED FRAMEWORK

System requirements and compliance team Morayo ADEDJOUMA

CONTEXTE ET OBJECTIFS

Complexité croissante et contraintes commerciales pour les CPS

Fonctionnel, fiabilité, sûreté, coût développement et production...

NORMES

Équipes d'ingénieurs de sûreté

Équipes d'ingénieurs logiciels

Un processus d'ingénierie basé sur les modèles

Séparations des préoccupations modèles modèles Point de vue du pour les PNC nécaniciens Point de vue des modèles mécaniciens pour le PNC système Point de vue des Approche basée modèle modesigners
pour les designers Approche générative Conception, développement, validation Multiples modèles d'un Propriétés fonctionnelles et non fonctionnelles même système

Principes et concepts de l'IDM

Caractéristiques de la sûreté de fonctionnement

SdF: « la propriété qui permet aux utilisateurs du système de placer une confiance justifiée dans le service qu'il leur délivre » **[JC Laprie]**

Aspects: Évaluer la sûreté

- o Disposer des performances fonctionnelles
- o Ne pas engendrer de risques majeurs

Paramètres

- o FMDS: Fiabilité, Maintenabilité, Disponibilité, Sécurité-innocuité (safety)
- o Testabilité, sécurité-immunité (security), confidentialité, intégrité, privacy

Entraves

Moyens

- o Prévention des fautes o Tolérance aux fautes
- o Élimination des fautes oPrévision des fautes

Caractéristiques de la sûreté de fonctionnement

SdF: « la propriété qui permet aux utilisateurs du système de placer une confiance justifiée dans le service qu'il leur délivre » **[JC Laprie]**

Caractéristiques de la sûreté de fonctionnement

SdF: « la propriété qui permet aux utilisateurs du système de placer une confiance justifiée dans le service qu'il leur délivre » [JC Laprie]

MÉTHODES ET STANDARDS POUR LA SDF

Méthodes

- o Quantitative ou qualitative
- o Inductive ou déductive
- o Statique ou dynamique

CURRENT PRACTICE

System Engineering

- Large usage of Model-Based approaches and techniques
- Complete description of the system architecture

CLASSICAL RAMS & (CYBER)SECURITY ANALYSIS

- Performed mostly manually
- Time consuming, costly, high probability of errors
- No strong links between system engineering and safety/security analysis

Design Engineer

- Evolution des systèmes et des normes
 - Complexité accrue des systèmes
 - → Evolution des méthodes de conception (MBSE)
 - → Contraintes de coûts et délais très fortes
 - Augmentation de la complexité des activités des ingénieurs Safety
 - → Analyses de risques, limites de complexité atteintes sans soutien outillé
 - → Argumentation de la justification longue et difficile à établir sans aide outillée
 - → Comment réduire et capitaliser l'effort de conception sûre et de justification
 - Domaines soumis à certification plus nombreux (automobile, santé, robotique,)
 - → Industriels mal armés pour établir des dossiers de sécurité
 - → Méthodes non instrumentées (à base de tableurs) et difficiles à mettre en œuvre
 - → Méthodes formelles développées par les grands acteurs industriels historiques des systèmes critiques mal adaptées pour un usage direct par les nouveaux acteurs industriels

list

ceatech

CONTEXTE ET ENJEUX

Environnement de conception

Quels Liens? Quelles garanties Environment d'analyse de sécurité

Environnement Intégré

- Communication facilitée
- Garantie de cohérence des modèles
- Réduction des coûts de devpt.
- Gestion de systèmes plus complexes

OUR METHODOLOGY

DESIGN MODEL

System architecture and behavior

RAMS MODEL VIEW

Dedicated Profile application SECI

SECURITY MODEL VIEW

Robot

Limit malicious risks!

Own dedicated models BUT consistent & aligned with system architecture models

SYSTEM LIFE-CYCLE METHODOLOGY

NORMS

SECURITY RAMS

DEVELOPMENT

Security

ISO27001/ISO27005

Generic standard on security

(EBIOS methodology)

ED 202-203/ D0-356

Aerospace security practice ISO 15408

SI security requirements

Safety

IEC 61508

Generic standard on functional safety

ISO/DIS 13482

Safety standard for personal care robots

ISO 26262

Road vehicles – Functional safety

ARP 4754/4761

Aeropspace Recommed Practice

OUR TOOL FOR CYBERSECURITY: ARES

6. Risks Assessment: likelihood of threat scenarios vs. Severity of attacks

	 likelihood 	o severity	o Risk
	· iikeiiriood	sevency	o Risk
Risk_SniffingandInjection	Certain	Very Important	Unbearable
Risk_ThreatScenario1	Certain	Very Important	Unbearable
Risk_ThreatScenario2	Possible	Very Important	Important
Risk_ThreatScenario3	Negligible	Very Important	Significant
Risk ThreatScenario4	Possible	Very Important	Important

79 €	biosmodel.di 🏻				
		0	likelihood	o severity	o Risk
	Risk_IntegrityWDATA		Certain	Important	Important
	Risk_ConfidentialityWDATA		Certain	Very Important	Unbearable
	Risk_IntegrityKEY		Certain	Important	Important
	Risk_ConfidentialityKEY		Certain	Very Important	Unbearable

5. Attack trees analysis

1. Context analysis and parameters configuration

	 Minimal 	 Negligible 	 Possible 	o Certain	 Imminent
Critical	Important	Important	Unbearable	Unbearable	Unbearable
Very Important	Significant	Significant	Important	Unbearable	Unbearable
■ Important	Significant	Significant	Significant	Important	Important
Limited	Negligible	Negligible	Significant	Significant	Significant
 Negligible 	Negligible	Negligible	Negligible	Negligible	Negligible

4. Threat scenarios and threats propagation modeling

«PrimaryAsset☑ ☐ WDATA

2. Primary assets identification, Feared Events modeling

3. Supporting assets identification, their vulnerabilities and existing countermeasures

OUR TOOL FOR RAMS: SOPHIA

Requirement classification, Report generation, Import/Export to RegIF

Build accident scenarios

Preliminary Hazard Analysis

Requirement Engineering

System Hazard Analysis

Analyze functional causes of accidents

Property Verification

The state of the s

Verification of safety properties, Reachability analysis

Fault Tree Analysis

Failure Mode & Effects Analysis

FME(C)A tables, Report generation

SOME APPLICATION DOMAINS

Projects

Principal Partners

MOSARIS

Energy, Smart Grids

Robotics

SESAM-Grids

COMAU

P-RC2

Manufacturing

Projects

Transportation

Automotive

Railways

Ceatech list

ROMEO2

