Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	ρ	matricol	ล:
Cognonic,	1101110	\mathbf{c}	manico	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Siano A, B, C lettere proposizionali e P una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

A	В	\mathbf{C}	Р
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{F}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}
\mathbf{V}	${f F}$	${f F}$	\mathbf{F}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{V}

- ¬P non è una tautologia.
- \square P \models A $\vee \neg$ B
- \square B \vee C $\models \neg$ P
- \square P è insoddisfacibile.
- (b) Siano Q e R formule proposizionali. Quali delle seguenti affermazioni sono corrette?

2 punti

- \square Q $\not\equiv$ R se e solo se $\models \neg(Q \rightarrow R)$
- \blacksquare Se R è insoddisfacibile, allora \neg R è soddisfacibile.
- $\blacksquare \neg R \lor (Q \to R)$ è una tautologia.
- $\blacksquare R \to Q \equiv \neg R \vee \neg \neg Q$

2 punti (c) Sia A un insieme non vuoto e sia $L = \{R\}$ un linguaggio del prim'ordine con R simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle A, R \rangle$, l'affermazione: "R è riflessiva"? $\square \ \forall x (R(x,x) \to x = x)$ $\square \ \forall x (R \rightarrow x = x)$ $\blacksquare \ \forall x (R(x,x))$ $\square \ \forall x (R(x) = x)$ (d) Dati due insiemi C e D, indichiamo con C^D l'insieme delle funzioni da 2 punti D in C. Sia A un insieme non vuoto di cardinalità finita. Stabilire quali delle seguenti affermazioni sono corrette. \blacksquare \mathbb{N}^A è un insieme infinito numerabile. \Box $A^{\mathbb{N}}$ è necessariamente più che numerabile. \Box A^A è un insieme infinito. \Box A^A è certamente in biezione con $\mathcal{P}(A)$. (e) Sia $L = \{S\}$ un linguaggio del prim'ordine con S simbolo di relazione 2 punti binario. Quali delle seguenti affermazioni sono formalizzate dalla formula $\forall x \exists y \, S(y,x)$ relativamente alla struttura $\langle \mathbb{Q}, \langle \rangle$? ■ "Dato un numero razionale, ce n'è sempre uno più piccolo." \Box "C'è un numero razionale più piccolo di x." □ "C'è un numero razionale più piccolo di tutti." ■ "Ci sono numeri razionali arbitrariamente piccoli." (f) Sia $f: \mathbb{N} \to \mathbb{N}$ definita da $f(x) = \frac{2x+10}{2} - x$ per ogni $x \in \mathbb{N}$. Stabilire quali 2 punti delle seguenti affermazioni sono corrette. \Box f è iniettiva. $\blacksquare f(x) = 5 \text{ per ogni } x \in \mathbb{N}.$ \Box f è suriettiva. \Box f(x) = 3 per qualche $x \in \mathbb{N}$. (g) Siano B, C sottoinsiemi di A e sia $f: A \to A$. Stabilire quali delle seguenti 2 punti affermazioni sono corrette. \blacksquare $B \subseteq f^{-1}[f[B]].$ \square Se $f[B] \subseteq f[C]$ allora si deve avere che $B \supseteq C$. \square Se $B \neq C$ allora certamente accade che $f[B] \neq f[C]$.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{R, f, c\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario R, un simbolo di funzione binario f e un simbolo di costante c. Sia ϕ la formula

$$(\neg \exists y (f(y,y) = x) \to R(f(z,c),x)).$$

Consideriamo la *L*-struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists y (f(y,y) = x)[x/n,y/m]$ se e solo se n è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[x/1, y/0, z/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[x/2, y/1, z/0]$?
- 5. È vero che $\mathcal{N} \models \varphi[x/5, y/1, z/5]$?
- 6. È vero che $\mathcal{N} \models \forall x \, \varphi[x/0, y/0, z/0]$?
- 7. È vero che $\mathcal{N} \models \forall x \, \varphi[x/0, y/0, z/5]$?
- 8. È vero che $\mathcal{N} \models \exists z \forall x \, \varphi$?
- 9. È vero che $\mathcal{N} \models \forall z \forall x \, \boldsymbol{\varphi}$?

Giustificare le proprie risposte.

Soluzione:

- 1. Non è un enunciato. Le occorrenze libere di variabili sono tutte le occorrenze di x, z. Concludiamo che in tutti i punti dell'esercizio è irrilevante controllare l'assegnamento della variabile y.
- 2. Si è vero poiché la formula in questione asserisce che il numero assegnato a x è ottenuto sommando con se stesso un qualche numero naturale y.
- 3. L'interpretazione di φ in \mathcal{N} è: "se x è dispari allora si ha che $z+1 \leq x$ ". Se a z viene assegnato 0 e a x viene assegnato 1, allora si ha che l'interpretazione di φ è vera in \mathcal{N} : infatti, l'implicazione è vera dato che lo è la sua conclusione (che interpretata nella struttura con l'assegnazione data diventa $0+1 \leq 1$).
- 4. L'interpretazione di φ in \mathcal{N} è: "se x è dispari allora si ha che $z+1 \leq x$ ". Se ad x assegniamo 2 la premessa dell'implicazione è falsa e quindi l'implicazione è vera.
- 5. L'interpretazione di φ in \mathcal{N} è: "se x è dispari allora si ha che $z+1 \leq x$ ". Se a x viene assegnato 5 e anche a z viene assegnato 5, la premessa dell'implicazione risulta vera (in quanto 5 è effettivamente dispari), ma la sua conclusione è falsa dato che 5+1=6>5. Quindi l'implicazione è falsa.
- 6. L'interpretazione di φ in \mathcal{N} è: "per ogni numero naturale x, se x è dispari allora $z+1 \leq x$ ". Se a z viene assegnato 0, l'affermazione risulta vera perché qualunque numero naturale dispari è certamente maggiore o uguale di 0+1, ovvero di 1.

- 7. Se invece assegniamo a z il numero 5, allora l'interpretazione della formula diventa "ogni numero dispari è maggiore o uguale a 5+1". Questo è falso perché prendendo x=3 si ha che x è un numero dispari (premessa dell'implicazione vera) ma 3<6 (conclusione dell'implicazione falsa).
- 8. Per quanto visto ai punti precedenti, l'assegnamento che dà a z il valore 0 mostra la verità in \mathcal{N} dell'enunciato $\exists z \forall x \, \varphi$.
- 9. Per quanto visto ai punti precedenti, se prendiamo x=3 e z=5 si ha che l'implicazione φ risulta falsa: questo mostra la falsità in \mathcal{N} dell'enunciato $\forall z \forall x \varphi$.

Esercizio 3 9 punti

Sia A un insieme non vuoto, siano B,C sottoinsiemi di A e sia $f\colon A\to A$ una funzione. Formalizzare relativamente alla struttura $\langle A,B,C,f\rangle$ mediante il linguaggio $L=\{B,C,f\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. f è iniettiva
- 2. $f \circ f$ è una funzione costante
- 3. $f[B] \subseteq C$
- 4. $\operatorname{rng}(f) = C$.

Soluzione: 1. f è iniettiva: $\forall x \forall y (\neg(x=y) \rightarrow \neg(f(x)=f(y))))$

- 2. $f \circ f$ è una funzione costante: $\exists y \forall x (f(f(x)) = y)$
- 3. $f[B] \subseteq C: \forall x(B(x) \to C(f(x)))$
- 4. $\operatorname{rng}(f) = C: \forall y (C(y) \to \exists x (f(x) = y)) \land \forall x C(f(x))$