Mathematical Logic

Notes and Exercises

Sudip Sinha

October 06, 2019

Contents

Bibliography				11
3	Sudip Sinha	PHIL 4010: Prelim	2019-10-08	5
2	Sudip Sinha	PHIL 4010: HW2	2019-09-24	2
1	Sudip Sinha	PHIL 4010: HW1	2019-09-10	1

1 Sudip Sinha

PHIL 4010: HW1

2019-09-10

Exercise 1.1 (Notes, 1.8) For any sets A and B, we have $A \cap B \subseteq A$.

Solution. Let $x \in A \cap B$ be arbitrary. This means $x \in A$ and $x \in B$. Therefore $x \in A$. Since every element in $A \cap B$ is also an element of A, we have $A \cap B \subseteq A$.

Exercise 1.2 (Notes, 1.10) For any set A, we have $A \cap \emptyset = \emptyset$.

- Solution. (\subseteq) Let $x \in A \cap \emptyset$ be arbitrary. This means $x \in A$ and $x \in \emptyset$. But there does not exist $x \in \emptyset$. Therefore, the statement is vacuously true.
- (\supseteq) Now, let $x \in \emptyset$ be arbitrary. Again, since there does not exist $x \in \emptyset$, the statement vacuously true.

Exercise 1.3 (Notes, 1.13) For any sets A and B, if $A \subseteq B$, then $A \cup B = B$.

- Solution. (\subseteq) Let $x \in A \cup B$ be arbitrary. This means $x \in A$ or $x \in B$. If $x \in A$, then by the condition $A \subseteq B$, we obtain $x \in B$. Therefore, in either case, $x \in B$.
- (⊇) Let $x \in B$ be arbitrary. Therefore, $x \in A$ or $x \in B$. Hence $x \in A \cup B$. \Box

2 Sudip Sinha

PHIL 4010: HW2

2019-09-24

Note: We shall say that a truth assignment v satisfies Σ iff it satisfies every member of Σ .

Exercise 2.1 (Enderton, 1.2.1) *Show that neither of the following two formulas tautologically implies the other:*

$$\alpha = (A \leftrightarrow (B \leftrightarrow C))$$

$$\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$

Solution. We have to show that $\alpha \not\models \beta$ and $\beta \not\models \alpha$.

 $(\alpha \not\models \beta)$ For this, it suffices to produce a truth assignment v such that $\bar{v}(\alpha) = \top$ and $\bar{v}(\beta) = \bot$.

Consider v such that $v(A) = v(B) = \bot$ and $v(C) = \top$. Under \bar{v} , we get exactly what is required as is shown in the computations below. (Here the truth assignments by \bar{v} is denoted under each symbol.)

$$\alpha = (A \leftrightarrow (B \leftrightarrow C))$$

$$\top \quad \bot \quad \top \quad \bot \quad \top$$

$$\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$

$$\bot \quad \bot \quad \bot \quad \bot \quad \bot \quad \bot \quad \bot$$

 $(\beta \not\models \alpha)$ Again, it suffices to produce v such that $\bar{v}(\beta) = \top$ and $\bar{v}(\alpha) = \bot$. Consider v such that $v(A) = v(B) = v(C) = \bot$. Under \bar{v} , we get exactly what is required as is shown in the computations below.

$$\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$

$$\top = \qquad \qquad \top \quad \top \bot \quad \top \quad \top \bot \quad \top \perp$$

$$\alpha = (A \leftrightarrow (B \leftrightarrow C))$$

$$\bot = \bot \bot \bot \top \bot$$

Exercise 2.2 (Enderton, 1.2.4(a)) *Show that* $\Sigma \cup \{\alpha\} \models \beta \text{ iff } \Sigma \models (\alpha \rightarrow \beta).$

Solution. We show each direction separately. (\Longrightarrow) We suppose $\Sigma \cup \{\alpha\} \models \beta$. Let v be an arbitrary truth assignment that satisfies Σ . We have to show that v satisfies $(\alpha \to \beta)$. We have two cases. i. $\bar{v}(\alpha) = T$: In this case, from the supposition, we get $\bar{v}(\beta) = T$. So $\bar{v}(\alpha \to \beta) = T$. ii. $\bar{v}(\alpha) = \bot$: In this case, $\bar{v}(\alpha \to \beta) = T$ since the antecedent is \bot .

(\Leftarrow) We suppose $\Sigma \models (\alpha \rightarrow \beta)$. Let v be an arbitrary truth assignment that satisfies $\Sigma \cup \{\alpha\}$. We have to show that v satisfies β . Since v satisfies $\Sigma \cup \{\alpha\}$, it satisfies Σ . Therefore, by our supposition, v satisfies $(\alpha \rightarrow \beta)$. Now, since v satisfies α , it can only be that v satisfies β , since the only other way the material implication can be satisfied is when v does not satisfies α . This proves our claim.

Exercise 2.3 (Enderton, 1.2.5) *Prove or refute each of the following assertions:*

a. If either $\Sigma \models \alpha$ or $\Sigma \models \beta$, then $\Sigma \models (\alpha \lor \beta)$.

Since v was arbitrary, we have $\Sigma \models (\alpha \rightarrow \beta)$.

Solution. (T) There are two cases: $\Sigma \models \alpha$ and $\Sigma \models \beta$. Without loss of generality, we can assume that $\Sigma \models \alpha$, as the argument for other case is exactly the same. This means any arbitrary truth assignment v satisfying Σ also satisfies α . This implies $\bar{v}(\alpha \lor \beta) = \top$ by the definition of extension of \bar{v} for \vee .

b. If $\Sigma \models (\alpha \lor \beta)$, then either $\Sigma \models \alpha$ or $\Sigma \models \beta$.

Solution. (\bot) We give a counterexample. Let α be a sentence symbol and $\Sigma = \emptyset$. Then it is always true that $\models (\alpha \lor (\neg \alpha))$. But it does not follow that $\models \alpha$ or $\models (\neg \alpha)$.

For an explicit example, consider two truth assignments v_1 and v_2 , such that $v_1(\alpha) = \top$ and $v_2(\alpha) = \bot$. In this case, $\models \alpha$ is not true since v_2 does not satisfy α , and $\models (\neg \alpha)$ is not true since v_1 does not satisfy $(\neg \alpha)$.

Exercise 2.4 (Enderton, 1.2.6)

a. Show that if v_1 and v_2 are truth assignments which agree on all the sentence symbols in the wff α , then $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$.

Solution. Let G be the set of sentence symbols used in α , and let $B = \{\phi \text{ wff} : \bar{v}_1(\phi) = \bar{v}_2(\phi)\}$. All we need to show is that $\alpha \in B$. Firstly, $G \subseteq B$ since v_1 and v_2 agree on the sentence symbols used in α . Secondly, let $\phi, \psi \in B$ (arbitrary), so v_1 and v_2 agree on ϕ and ψ . Let $\Box \in \{\land, \lor, \to, \leftrightarrow\}$. Since conditions 1–5 on page 20–21 are the same for \bar{v}_1 and \bar{v}_2 , we have $\bar{v}_1(\neg \phi) = \bar{v}_2(\neg \phi)$ and $\bar{v}_1(\phi \Box \psi) = \bar{v}_2(\phi \Box \psi)$. Hence $(\neg \phi), (\phi \Box \psi) \in B$, that is, B is closed with respect to the formula building operations. Therefore, by the induction principle, B is the set of all wffs generated by the formula building operations. So $\alpha \in B$, and we are done. \Box

b. Let S be a set of sentence symbols that includes those in Σ and τ (and possibly more). Show that $\Sigma \models \tau$ iff every truth assignment for S which satisfies every member of Σ also satisfies τ .

Solution. In this part, we use v to denote truth assignments and "v on a set" means v is defined on that set. Let G be the set of sentence symbols used in Σ and τ . Clearly, $G \subseteq S$.

We show each direction separately.

 (\Longrightarrow) From the definition of tautological implication,

$$\Sigma \models \tau$$
 $\iff (\forall v \text{ on } G)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau))$
 $\implies (\forall v \text{ on } S)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau)) [Part (a)]$

(\Leftarrow) Since Σ and τ does not depend on any element of $S \setminus G$, restricting the definition of v from S to G will not change anything on Σ and τ . Therefore,

$$(\forall v \text{ on } S)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau))$$

$$\Longrightarrow (\forall v \text{ on } G)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau))$$

$$\Longleftrightarrow \Sigma \models \tau$$

3 Sudip Sinha PHIL 4010: Prelim 2019

2019-10-08

Exercise 3.1 (Set Theory) *Prove the following. 10 points each.*

Note: Let A and B are sets. In order to prove A = B, it is enough to show $A \subseteq B$ and $A \supseteq B$. In each of the following problems, we show each inclusion separately. Moreover, to show $A \subseteq B$, it suffices to show that for x arbitrary, $x \in A \Longrightarrow x \in B$.

i. If $A \subseteq B$, then $A \cap B = A$.

Solution.

- (\subseteq) Let x be arbitrary. Then $x \in A \cap B \iff x \in A \text{ and } x \in B \implies x \in A$.
- (⊇) Let $x \in A$ be arbitrary. Then by the hypothesis $x \in B$ since $A \subseteq B$. Therefore, $x \in A$ and $x \in B$, and thus $x \in A \cap B$.

ii. If $A \cap B = \emptyset$, then $A \setminus B = A$.

Solution.

- (\subseteq) Let $x \in A \setminus B$ be arbitrary. Then $x \in A$ and $x \notin B$. It is enough to show that $x \in A$ implies $x \notin B$. But must be true since if $x \in A$ and $x \in B$, then $x \in A \cap B = \emptyset$, which is absurd.
- (2) Let $x \in A$ be arbitrary. Now, either $x \in B$ or $x \notin B$. If $x \in B$, then $x \in A \cap B$ since $x \in A$ by hypothesis. But this is an impossibility since $A \cap B = \emptyset$. Therefore, it must be that $x \notin B$. So $x \in A \setminus B$.

 $iii. \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Solution.

- (\subseteq) Let $x \in A \cap (B \cup C)$ be arbitrary. Then $x \in A$ and $x \in B \cup C$. Note that $x \in B \cup C$ means $x \in B$ or $x \in C$. Now, either $x \in B$ or $x \notin B$, so have two cases.
 - $(x \in B)$ In this case, $x \in A$ and $x \in B$, so $x \in A \cap B$. Therefore $x \in A \cap B$ or $x \in A \cap C$. Hence $x \in (A \cap B) \cup (A \cap C)$.
 - $(x \notin B)$ Since $x \in B$ or $x \in C$, and $x \notin B$, it is necessary that $x \in C$. Therefore we get the exact same result by interchanging the roles of B and C in the previous case.

- (2) Let $x \in (A \cap B) \cup (A \cap C)$ be arbitrary. This means $x \in A \cap B$ or $x \in A \cap C$. As above, we have two cases, either $x \in A \cap B$ or $x \notin A \cap B$.
 - $(x \in A \cap B)$ In this case, $x \in A$ and $x \in B$. Now, so $x \in B$ implies $x \in B$ or $x \in C$, that is, $x \in B \cup C$. Therefore $x \in A \cap (B \cup C)$.
 - $(x \notin A \cap B)$ Again, since $x \in A \cap B$ or $x \notin A \cap B$, and $x \notin A \cap B$, it is necessary that $x \in A \cap C$. Therefore we get the exact same result by interchanging the roles of B and C in the previous case.

Exercise 3.2 (Construction) 10 points each.

- $i. \quad \textit{Write down a construction sequence for } ((\neg((\neg A_1) \lor A_4)) \land ((A_1 \to A_3) \leftrightarrow A_7)).$ $\quad \boxed{Solution. \quad \langle A_1, A_3, A_4, A_7, (\neg A_1), ((\neg A_1) \lor A_4), (\neg((\neg A_1) \lor A_4)), (A_1 \to A_3), ((A_1 \to A_3) \leftrightarrow A_7), ((\neg((\neg A_1) \lor A_4)) \land ((A_1 \to A_3) \leftrightarrow A_7))\rangle. \quad \Box}$
- ii. Write down a construction tree for $(((\neg(\neg A_2)) \land A_5) \rightarrow ((A_5 \lor (\neg A_2)) \rightarrow A_5))$.

Exercise 3.3 (Truth Assignments)

i. Let S be the set of all sentence symbols, and assume that $v: S \to \{F, T\}$ is a truth assignment. Show there is at most one extension v meeting conditions 0–5 on pp. 20–21. (Hint: Show that if v_1 and v_2 are such extensions, then $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$ for every wff α . Use the induction principle.) 20 points.

Solution. We show this via induction on the complexity of any arbitrary wff α .

- (Base case) Assume α be a sentence symbol. Then $\bar{v}_1(\alpha) = v(\alpha) = \bar{v}_2(\alpha)$ since \bar{v}_1 and \bar{v}_2 are both extensions of v.
- (Induction step) We assume that the result holds for all wffs less complex than α (induction hypothesis). Now, we show that the result holds under all the formula building operations.
 - (\neg) Assume $\alpha = (\neg \beta)$ for some wff β . Then

$$\bar{v}_1(\alpha) = \top$$

$$\iff \bar{v}_1(\neg \beta) = \top \qquad [\text{Def of } \alpha]$$

$$\iff \bar{v}_1(\beta) = \bot \qquad [\text{Def of } \bar{v} \text{ under } \neg]$$

$$\iff \bar{v}_2(\beta) = \bot \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}_2(\neg \beta) = \top \qquad [\text{Def of } \bar{v} \text{ under } \neg]$$

$$\iff \bar{v}_2(\alpha) = \top \qquad [\text{Def of } \alpha]$$

(\wedge) Assume $\alpha = (\beta \wedge \gamma)$ for some wffs β, γ . Then

$$\bar{v}_1(\alpha) = \top$$

$$\iff \bar{v}_1(\beta \wedge \gamma) = \top \qquad [\text{Def of } \alpha]$$

$$\iff \bar{v}_1(\beta) = \top \text{ and } \bar{v}_1(\gamma) = \top \qquad [\text{Def of } \bar{v} \text{ under } \wedge]$$

$$\iff \bar{v}_2(\beta) = \top \text{ and } \bar{v}_2(\gamma) = \top \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}_2(\beta \wedge \gamma) = \top \qquad [\text{Def of } \bar{v} \text{ under } \wedge]$$

$$\iff \bar{v}_2(\alpha) = \top \qquad [\text{Def of } \alpha]$$

(\vee) Assume $\alpha = (\beta \vee \gamma)$ for some wffs β , γ . Then

$$\begin{split} \bar{v}_1(\alpha) &= \top \\ \iff \bar{v}_1(\beta \vee \gamma) &= \top \\ \iff \bar{v}_1(\beta) &= \top \text{ or } \bar{v}_1(\gamma) &= \top \\ \iff \bar{v}_2(\beta) &= \top \text{ or } \bar{v}_2(\gamma) &= \top \\ \iff \bar{v}_2(\beta \vee \gamma) &= \top \\ \iff \bar{v}_2(\alpha) &= \top \end{split} \qquad \begin{aligned} & [\text{Def of } \bar{v} \text{ under } \vee] \\ \iff \bar{v}_2(\alpha) &= \top \end{aligned} \qquad [\text{Def of } \bar{v} \text{ under } \vee] \\ \iff \bar{v}_2(\alpha) &= \top \end{aligned} \qquad [\text{Def of } \bar{v} \text{ under } \vee] \end{split}$$

$$(\rightarrow)$$
 Assume $\alpha = (\beta \rightarrow \gamma)$ for some wffs β, γ . Then

$$\bar{v}_{1}(\alpha) = \top$$

$$\iff \bar{v}_{1}(\beta \to \gamma) = \top \qquad [\text{Def of } \alpha]$$

$$\iff \bar{v}_{1}(\beta) = \bot \text{ or } \bar{v}_{1}(\gamma) = \top \qquad [\text{Def of } \bar{v} \text{ under } \to]$$

$$\iff \bar{v}_{2}(\beta) = \bot \text{ or } \bar{v}_{2}(\gamma) = \top \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}_{2}(\beta \to \gamma) = \top \qquad [\text{Def of } \bar{v} \text{ under } \to]$$

$$\iff \bar{v}_{2}(\alpha) = \top \qquad [\text{Def of } \alpha]$$

 (\leftrightarrow) Assume $\alpha = (\beta \leftrightarrow \gamma)$ for some wffs β, γ . Then

$$\begin{split} \bar{v}_1(\alpha) &= \mathsf{T} \\ \iff \bar{v}_1(\beta \leftrightarrow \gamma) &= \mathsf{T} \qquad \text{[Def of α]} \\ \iff & \bar{v}_1(\beta) = \bar{v}_1(\gamma) \qquad \text{[Def of \bar{v} under \leftrightarrow]} \\ \iff & \bar{v}_2(\beta) = \bar{v}_2(\gamma) \qquad \text{[Induction hypothesis]} \\ \iff & \bar{v}_2(\beta \leftrightarrow \gamma) = \mathsf{T} \qquad \text{[Def of \bar{v} under \leftrightarrow]} \\ \iff & \bar{v}_2(\alpha) = \mathsf{T} \qquad \text{[Def of α]} \end{split}$$

Therefore, the induction step holds under all the formula building operations. By the method of induction, $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$ for every wff α , which proves the uniqueness of the extension.

ii. Show that for a set of wffs Σ and a wff α : $\Sigma \cup \{\neg\neg\alpha\}$ is satisfiable $\iff \Sigma \cup \{\alpha\}$ is satisfiable. 10 points.

Solution. First, note that for any wff α and truth assignment v,

$$\bar{v}(\alpha) = \top \quad \Longleftrightarrow \quad \bar{v}(\neg \alpha) = \bot \quad \Longleftrightarrow \quad \bar{v}(\neg \neg \alpha) = \top.$$

Therefore, we have the following (v always represents a truth assignment):

 $\Sigma \cup \{\alpha\}$ is satisfiable.

- \Leftrightarrow $\exists v \text{ such that } v \text{ satisfies } \Sigma \text{ and } \bar{v}(\alpha) = \top.$
- \iff $\exists v \text{ such that } v \text{ satisfies } \Sigma \text{ and } \bar{v}(\neg \alpha) = \bot.$
- \Leftrightarrow $\exists v \text{ such that } v \text{ satisfies } \Sigma \text{ and } \bar{v}(\neg \neg \alpha) = \top.$
- \iff $\Sigma \cup \{\neg \neg \alpha\}$ is satisfiable.

Exercise 3.4 (Compactness) Recall the Compactness Theorem: A set of wffs is satisfiable iff it is finitely satisfiable.

Recall Corollary 17A: If $\Sigma \models \tau$ *, then* $\Sigma_0 \models \tau$ *for some finite* $\Sigma_0 \subseteq \Sigma$ *.*

Prove that they are equivalent, i.e., prove that the Compactness Theorem holds iff Corollary 17A holds.

(*Hint: Use the fact that* $\Gamma \models \sigma$ *iff* $\Gamma \cup \{\neg \sigma\}$ *is unsatisfiable and 3.3.ii above.*) 20 *points.*

Exercise 3.5 (Substitution) Let $\alpha_1, \alpha_2, ...$ be a sequence of wffs. For each wff ϕ and $n \in \mathbb{N}$, let ϕ^* be the result of replacing the sentence symbol A_n in ϕ by the wff α_n . Suppose that v is a truth assignment for the set of all sentence symbols and that u is a truth assignment defined by $u(A_n) = \bar{v}(\alpha_n)$. Show that $\bar{u}(\phi) = \bar{v}(\phi^*)$.

(Hint: Use the induction principle.) 20 points

Solution. We show this via induction on the complexity of any arbitrary wff ϕ .

- (Base case) Assume $\phi = A_n$ for some $n \in \mathbb{N}$, so $\phi^* = \alpha_n$. Now $\bar{u}(\phi) = \bar{u}(A_n) = u(A_n) = \bar{v}(\alpha_n) = \bar{v}(\phi^*)$, so the result holds when ϕ is a sentence symbol.
- (Induction step) We assume that the result holds for all wffs less complex than ϕ (induction hypothesis). Now, we show that the result holds under all the formula building operations.
 - (¬) Assume $\phi = (\neg \psi)$ for some wff ψ , so $\phi^* = (\neg \psi^*)$. Then

$$\bar{u}(\phi) = T$$
 $\iff \bar{u}(\neg \psi) = T \qquad [\text{Def of } \phi]$
 $\iff \bar{u}(\psi) = \bot \qquad [\text{Def of } \bar{u} \text{ under } \neg]$
 $\iff \bar{v}(\psi^*) = \bot \qquad [\text{Induction hypothesis}]$
 $\iff \bar{v}(\neg \psi^*) = T \qquad [\text{Def of } \bar{v} \text{ under } \neg]$
 $\iff \bar{v}(\phi^*) = T \qquad [\text{Def of } \phi^*]$

(\wedge) Assume $\phi = (\psi \wedge \theta)$ for some wffs ψ , θ , so $\phi^* = (\psi^* \wedge \theta^*)$. Then

$$\bar{u}(\phi) = \top$$

$$\iff \bar{u}(\psi \land \theta) = \top \qquad [\text{Def of } \phi]$$

$$\iff \bar{u}(\psi) = \top \text{ and } \bar{u}(\theta) = \top \qquad [\text{Def of } \bar{u} \text{ under } \land]$$

$$\iff \bar{v}(\psi^*) = \top \text{ and } \bar{v}(\theta^*) = \top \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}(\psi^* \land \theta^*) = \top \qquad [\text{Def of } \bar{v} \text{ under } \land]$$

$$\iff \bar{v}(\phi^*) = \top \qquad [\text{Def of } \phi^*]$$

(\vee) Assume $\phi = (\psi \vee \theta)$ for some wffs ψ , θ , so $\phi^* = (\psi^* \vee \theta^*)$. Then

$$\bar{u}(\phi) = \top$$

$$\iff \bar{u}(\psi \lor \theta) = \top \qquad [\text{Def of } \phi]$$

$$\iff \bar{u}(\psi) = \top \text{ or } \bar{u}(\theta) = \top \qquad [\text{Def of } \bar{u} \text{ under } \lor]$$

$$\iff \bar{v}(\psi^*) = \top \text{ or } \bar{v}(\theta^*) = \top \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}(\psi^* \lor \theta^*) = \top \qquad [\text{Def of } \bar{v} \text{ under } \lor]$$

$$\iff \bar{v}(\phi^*) = \top \qquad [\text{Def of } \phi^*]$$

 (\rightarrow) Assume $\phi = (\psi \rightarrow \theta)$ for some wffs ψ , θ , so $\phi^* = (\psi^* \rightarrow \theta^*)$. Then

$$\bar{u}(\phi) = \top$$

$$\iff \bar{u}(\psi \to \theta) = \top \qquad [\text{Def of } \phi]$$

$$\iff \bar{u}(\psi) = \bot \text{ or } \bar{u}(\theta) = \top \qquad [\text{Def of } \bar{u} \text{ under } \to]$$

$$\iff \bar{v}(\psi^*) = \bot \text{ or } \bar{v}(\theta^*) = \top \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}(\psi^* \to \theta^*) = \top \qquad [\text{Def of } \bar{v} \text{ under } \to]$$

$$\iff \bar{v}(\phi^*) = \top \qquad [\text{Def of } \phi^*]$$

 (\leftrightarrow) Assume $\phi = (\psi \leftrightarrow \theta)$ for some wffs ψ , θ , so $\phi^* = (\psi^* \leftrightarrow \theta^*)$. Then

$$\bar{u}(\phi) = \top$$

$$\iff \bar{u}(\psi \leftrightarrow \theta) = \top \qquad [\text{Def of } \phi]$$

$$\iff \bar{u}(\psi) = \bar{u}(\theta) \qquad [\text{Def of } \bar{u} \text{ under } \leftrightarrow]$$

$$\iff \bar{v}(\psi^*) = \bar{v}(\theta^*) \qquad [\text{Induction hypothesis}]$$

$$\iff \bar{v}(\psi^* \leftrightarrow \theta^*) = \top \qquad [\text{Def of } \bar{v} \text{ under } \leftrightarrow]$$

$$\iff \bar{v}(\phi^*) = \top \qquad [\text{Def of } \phi^*]$$

Therefore, the induction step holds under all the formula building operations. By the method of induction, $\bar{u}(\phi) = \bar{v}(\phi)$ for every wff ϕ .

BIBLIOGRAPHY