MPI* Info

TD Bin Packing

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Donner une solution optimale pour BINPACKING sur l'instance suivante : C = 10 et X = 2, 5, 4, 7, 1, 3, 8.

Corrigé : Il vient k = 3 avec

$$B_0 = \{2, 8\}$$

$$B_1 = \{5, 4, 1\}$$

$$B_2 = \{7, 3\}$$

1 Caractère NP-complet

Définir le problème de décision BPD associé au problème d'optimisation BINPACKING.

Corrigé:

BPD

Entrée : $C \in \mathbb{N}$, $X = x_0, ..., x_{n-1}, k \in \mathbb{N}$

Sortie: true ssi il existe une partition de X en $B_0 \sqcup ... \sqcup B_{p-1}$ tq $\forall i, \sum_{x \in B_i} x \leq C$ et $p \leq k$

On considère le problème suivant :

PARTITION

• **Instance**: n entiers naturels $x_0, ..., x_{n-1}$.

• **Question :** Existe-t-il $I \subseteq [0, n-1]$ tel que $\sum_{i \in I} x_i = \sum_{i \notin I} x_i$?

Montrer que Partition est NP-complet.

Corrigé:

D'une part,

— On définit
$$v: X = \{x_0; x_{n-1}\}, \langle I \rangle \mapsto \mathbf{true} \Leftrightarrow \sum_{i \in I} x_i = \sum_{i \notin I} x_i$$

Le problème de décision associé à v est dans P

 $-- \mid < I > \mid$ est polynomiale en #X

— Il vient

$$X \in \text{PARTITION} \Leftrightarrow \text{il existe } I \subset [|0; n-1|] \text{ tq. } \sum_{i \in I} x_i = \sum_{i \notin I} x_i$$

$$\Leftrightarrow \exists < I > \in \Sigma^* \text{ tq. } v(X, < I >) = \mathbf{true}$$

d'où PARTITION $\in NP$

D'autre part, considérons la transformation suivante :

$$\varphi: x_0; ...; x_{n-1}, s \longrightarrow x_0; ...; x_{n-1}, 2s, \sum_{i=1}^{n-1} x_i$$

• \Rightarrow : Supposons que il existe $B \subset \{x_0; ...; x_{n-1}\}$ tq. $\sum_{x \in R} x = s$.

Notons
$$S = \sum_{i=0}^{n-1} x_i$$
. Ainsi,

$$S + \sum_{x \in B} x = s + S$$

et

$$\sum_{x \notin B} x = \sum_{i=0}^{n-1} x_i - \sum_{x \in B} x$$
$$= S - s$$

En ajoutant 2s des deux côtés, il vient

$$2s + \sum_{x \notin B} x = S + s$$

D'où

$$S + \sum_{x \in B} x = 2s + \sum_{x \notin B} x$$

Ainsi, on prend

$$I = \{i \in [|0; n-1|] \mid x_i \in B\} \cup \{n+1\}$$
$$I^c = \{i \in [|0; n-1|] \mid x_i \notin B\} \cup \{n\}$$

Remarque : Ici, n et n+1 sont les indices de 2s et S lorsqu'ils sont considérés par le problème PARTITION.

- \leq : Supposons qu'il existe $I \subset [|0; n+1|]$ tq. $\sum_{i \in I} x_i = \sum_{i \notin I} x_i$ (avec $x_n = 2s, x_{n+1} = S$). Notons $I' = I \cap [|0; n-1|]$.
 - ∘ $\underline{1 \text{er cas}}$: $n, n+1 \in I$. Alors

$$S + 2s + \sum_{i \in I'} x_i = \sum_{i \notin I'} x_i$$

or
$$2s + \sum_{i \in I'} x_i > 0$$
 et $\sum_{i \notin I'} x_i \le S$.

ABS

o <u>2ème cas</u>: *n*, *n* + 1 ∉ *I*

→ idem

∘ <u>3ème cas :</u> $n \in I$, $n + 1 \notin I$ (l'autre cas est analogue). Ainsi,

$$S + \sum_{i \in I'} x_i = 2s + \sum_{i \notin I'} x_i$$

$$\text{d'où } S + \sum_{i \in I'} x_i = 2s + \sum_{i=0}^{n-1} x_i - \sum_{i \in I'} x_i$$

$$\text{d'où } S + 2 \sum_{i \in I'} x_i = 2s + S$$

Finalement,

$$\sum_{i \in I'} x_i = s$$

On prend donc $B = I' \subset [|0; n+1|]$.

D'où le résultat voulu.

D'où SubsetSum \leq_p PARTITION

Ainsi, PARTITION $\in NP$ et SubsetSum \leq_p PARTITION (avec SubsetSum NP-complet) ce qui permet de conclure.

4 En déduire que BPD est NP-complet.

Corrigé :

D'une part,

- On définit $v: C, X, < B_0, ..., B_{p-1} >, k \mapsto \mathbf{true} \Leftrightarrow \forall i, \sum_{x \in B_i} \text{ et } p \leq k$
- $| \langle B_0, ..., B_{p-1} \rangle |$ est polynomiale en #X
- Il vient

$$X, k \in BPD \Leftrightarrow \dots$$

 $\Leftrightarrow \exists P = < B_0, \dots, B_{p-1} > \in \Sigma^* \text{ tq. } \nu(C, X, P, k) = \textbf{true}$

D'autre part, considérons la construction suivante

$$\psi: x_0, ..., x_{n-1} \longrightarrow X = x_0, ..., x_{n-1}, C = \lfloor \frac{\sum_{i=0}^{n-1} x_i}{2} \rfloor, k = 2$$

• \Rightarrow : supposons qu'il existe $I\subset [|0;n-1|]$ tq $\sum_{i\in I}x_i=\sum_{i\notin I}x_i$. Alors, il est immédiat que

$$\sum_{i \in I} x_i = \lfloor \frac{\sum_{i=0}^{n-1} x_i}{2} \rfloor$$

$$\sum_{i \in I} x_i = \lfloor \frac{\sum_{i=0}^{n-1} x_i}{2} \rfloor$$

d'où
$$\sum_{i \in I} x_i \le \lfloor \frac{\sum_{i=0}^{n-1} x_i}{2} \rfloor$$

De même pour I^c . On a bien notre partition :

$$B_0 = \{x_i \mid i \in I\}$$

$$B_1 = \{x_i \mid i \not I\}$$

 \rightarrow OK

- $\underline{\Leftarrow}$: Supposons qu'il existe une partition de X en $B_0 \sqcup B_{p-1}$ tq. $\forall i, \sum_{x \in B_i} x \leq C$ et $p \leq 2$.
 - <u>ler cas</u>: p = 1, impossible (car on ne respecterait pas notre inégalité avec la partie entière).
 - 2ème cas : p = 2. On a

$$\begin{cases} \sum_{x \in B_0} x + \sum_{x \in B_1} x &= \sum_{i=0}^{n-1} x_i \\ \sum_{x \in B_0} x &\leq \lfloor \frac{\sum_{i=0}^{n-1} x_i}{2} \rfloor \implies \sum_{x \in B_0} x = \sum_{x \in B_1} x \\ \sum_{x \in B_1} x &\leq \lfloor \frac{\sum_{i=0}^{n-1} x_i}{2} \rfloor \end{cases}$$

 \rightarrow OK

Donc PARTITION \leq_p BPD

On a ainsi BPD $\in NP$ et PARTITION \leq_p BPD (avec PARTITION NP-complet) ce qui permet de conclure.

2 Stratégie gloutonnes

3 Analyse de *next-fit*

5 Montrer pour $i \in [0, m-2], v_i + v_{i+1} > C$.

Corrigé:

Supposons que $v_i + v_{i+1} \le C$

Alors d'après le principe de la méthode *next-fit*, tous les objets de la boîte B_{i+1} sont en réalité dans la boîte b_i . Ce qui est donc absurde.

6 En déduire que *next-fit* fournit une 2-approximation pour BINPACKING.

Corrigé:

On a

$$V = \sum_{i=0, i \text{pair}}^{m-2} v_i + v_{i+1} > \frac{(m-1)}{2}C$$

or,

$$V = \sum_{i=0}^{m^*-1} v_i \le \sum_{i=0}^{m^*-1} C = m^* C \tag{1}$$

Or d'après la 5

$$\sum_{i=0,i \text{pair}}^{m-2} v_i + v_{i+1} = 2V - v_0 - v_{m-1} > (m-1)C$$

et étant donné que v_0 , $v_{m-1} > 0$. on a bien

$$2V > (m-1)C$$

Ainsi (1) nous permet de conclure :

$$2m^*C \ge 2V > (m-1)C$$

i.e $2m^* > m-1$
i.e $m^* \ge \frac{m}{2}$

D'où le résultat voulu

4 Analyse de first-fit-decreasing

Cas x > C/2

7 Montrer que $m \le \frac{3}{2}m^*$

Corrigé:

On déduit plusieurs choses du fait que $x > \frac{C}{2}$, notons k_0 l'indice de x dans les $(x_k)_{0 \le k \le n-1}$:

- 1. Tous les poids d'indice $k < k_0$ dans rangés **individuellement** dans les boîtes d'indice i < j parce qu'ils sont examinés avant x vu que la liste est triée par ordre décroissant.
- 2. On utilise donc **au moins** j + 1 boîtes (car j + 1 poids $> \frac{C}{2}$)

On en déduit que toute solution au problème, en particulier la solution optimale, utilisera au moins j+1 boîtes. Or, par propriété de la partie entière :

$$j = \lfloor \frac{2m}{3} \rfloor \le \frac{2m}{3} \le j + 1$$

Ainsi,

$$m^* \geq j+1 \geq \frac{2}{3} m$$
 d'où $m^* \geq \frac{2}{3} m$

D'où le résultat recherché

Cas $x \le C/2$ Plusieurs remarques :

- 1. Tous les éléments y contenus dans les boîtes qui vont de B_j à B_{m-1} vérifient que $y \le x \le \frac{C}{2}$. Donc chaque boîte de B_j à B_{m-2} contiendra au moins deux éléments.
- 2. Ces éléments y vérifient aussi que y > v car sinon l'algo aurait choisi de les mettre dans une des boîtes B_0, \dots, B_{j-1} .

8 Montrer que
$$\sum_{l=j}^{m-1} v_l > v + 2v(m-j-1)$$
.

Corrigé: En reprenant ces deux remarques:

$$\begin{split} \sum_{l=j}^{m-1} v_i &= \sum_{l=j}^{m-2} v_i + v_{m-1} \\ &> \sum_{l=j}^{m-2} 2v + v_{m-1} \\ &> v + 2v(m-j-1) \end{split}$$

9 Conclure.

Corrigé: Ainsi,

$$Cm^* \leq \sum_{i=0}^{m-1} v_i$$

$$\leq \sum_{l=0}^{j-1} v_i + \sum_{l=j}^{m-1} v_i$$

$$> \sum_{l=0}^{j-1} \underbrace{v_i}_{\leq C-v} + v + 2v(m-j-1)$$

$$> j(C-v) + v + 2v(m-j-1)$$

$$> v(2m-2-2j+1-j) + jC$$

$$> jC + v(2m-3j-1)$$

On a $2m-3j \ge 0$ (définition de la partie entière).

Sans le "-1", on aurait:

$$Cm^* > jC \implies m^* > j$$

$$\implies m^* \ge j + 1 \ge \frac{2m}{3}$$

ce qui nous donnerait le résultat voulu.

On est alors obligés de faire une distinction de cas :

• 1er cas: $m \not\equiv 0$ [3] donc $j < \frac{2m}{3}$, ce qui implique que $2m - 3j - 1 \ge 0$. Alors.

$$Cm^* > jC \implies m^* > j$$

 $\implies m^* \ge j + 1 \ge \frac{2m}{3}$
 $\implies m \le \frac{3}{2}m^*$

• **2ème cas :** $m \equiv 0$ [3] alors $j = \frac{2m}{3}$, donc

$$Cm^* > jC - v \implies m^* > j - \frac{v}{C}$$

$$\implies 0 \le \frac{v}{c} < 1$$

$$\implies m^* > j - 1$$

$$\implies m^* \ge j = \frac{2m}{3}$$

$$\implies m \le \frac{3}{2}m^*$$

5 Difficulté de l'approximation

10 Soit $\varepsilon > 0$. Par réduction de Partition, montrer que s'il existe un algorithme fournissant en temps polynomial une $(\frac{3}{2} - \varepsilon)$ -approximation pour BINPACKING, alors P = NP.

Corrigé : Supposons qu'il existe un tel algorithme \mathcal{A} fournissant en temps polynomial une $(\frac{3}{2} - \varepsilon)$ -approximation pour BINPACKING.

Déduisons-en un algo polynomial qui résout PARTITION.

Soit $(x_0, ..., x_{n-1})$ une entrée pour Partition, on construit l'entrée $(2x_0, ..., 2x_{n-1})$ et $C = \sum_{i=0}^{n-1} x_i$ pour \mathcal{A} .

- Si A renvoie 2 boites, alors on renvoie vrai.
- Sinon, on renvoie faux.

➤ Il faut montrer que :

- 1. si $(x_0, ..., x_{n-1})$ est une instance positive, alors \mathcal{A} appliqué à $(2x_0, ..., 2x_{n-1})$ et $C = \sum_{i=0}^{n-1} x_i$ va renvoyer 2.
- 2. sinon, il renverra une valeur > 2.

DÉMONSTRATION.

- Dans le cas m* = 2, A renvoie un entier entre 2 et (³/₂ − ε)2 < 3, ce qui fait bien 2.
 Dans ce cas, toute solution optimale utilise au moins 3 boites et donc A renverra une valeur ≥ 3.

Bientôt Décembre !