

Realistic practice tests tailored to your course. Try Practice Tests

Math / Statistics

APMA 3120 MIDTERM

teave the first rating

Textbook solutions

Students also studied

Study guides

Statistical Techniques in Business and Economics

15th Edition • ISBN: 9780073401805 (4 more) Douglas A. Lind, Samuel A. Wathen, William G. Marchal

4 1,236 solutions

Terms in this set (19)

standardize RV X	(x-μ)/σ
C.I normal dist and known sigma	$[x\pm(z_{-}\alpha/2)(\sigma/\sqrt{n})$
C.I non-normal and unknown sigma; large sample	$[x\pm(z_{\alpha}/2)(s/\sqrt{n})]$
C.I normal and unknown sigma; small sample	$[x\pm(t_{\alpha}/2)(s/\sqrt{n})]$
Type I Error	Null correct but we reject
Type II Error	Null false but we fail to reject
Hypothesis Test for M (1 sample) - Normal and sigma known	$z=(x-\mu)/(\sigma/\sqrt{n})$
Hypothesis Test for M (1 sample) - Non-normal, sigma unknown, large sample (n>=30)	$z=(x-\mu)/(s/\sqrt{n})$
Hypothesis Test for M (1 sample) - normal, sigma unknown, small sample (n<30)	$t=(x-\mu)/(s/\sqrt{n}); df=n-1$
Power of Test	1-β(μ')
Hypothesis Test for proportion (1 sample)	$z=(p^-p0)/\sqrt{[(p0*(1-p0)]/N]}$; check >= 10

$X^2=[(N-1)^*s^2]/(\sigma 0)^2$; df=n-1
$z=(x_1-x_2-\Delta)/\sqrt{\{[(\sigma 1)^2/n1]+[(\sigma 2)^2/n2]\}}$
$z=(x_1-x_2-\Delta)/\sqrt{\{[(s_1)^2/n_1]+[(s_2)^2/n_2]\}}$
$t = (x_1 - x_2 - \Delta) / \sqrt{\{[(sp)^2/n1] + [(sp)^2/n2]\}}; \ df = n1 + n2 - 2; \ sp^2 = [(n1-1)s1^2 + (n2-1)s2^2] / (n1+n2-2)$
$t=(x_1-x_2-\Delta)/\sqrt{[(s_1)^2/n_1]+[(s_2)^2/n_2]}; \ df=ugly \#$
$t=(D-\Delta)/(sd/\sqrt{n}); df=n-1$
$ z = (p1^-p2^-)/\sqrt{\{[(p\sim)(1-p\sim)]/n1 + [(p\sim)(1-p\sim)]/n2]\}}; \ p\sim = (x1+x2)/(n1+n2); \ check >= 10 $
F=s1^2/s2^2; v1=n1-1; v2=n2-1