# **Formula Sheet**

## **Grade 9 Academic**

| $C_{\Delta}$ | llin |
|--------------|------|
| CO           | ши   |

| Geometric Shape | Perimeter            | Area   |
|-----------------|----------------------|--------|
| Rectangle l     | P = l + l + w + w or | A = lw |
| + w             | P = 2(l + w)         |        |

### Elaine Thomas

| 1 | h  | $f_c$ |
|---|----|-------|
|   | h_ | _/    |
| b |    |       |

Parallelogram



## Marcus Courage



Triangle 
$$P = a +$$



$$A = \frac{bh}{2}$$

$$A = \frac{1}{2}bh$$

## Harshan Kyle



#### P = a + b + c + d

| A = | $\frac{(a+b)h}{2}$ |
|-----|--------------------|
|     |                    |

$$A = \frac{1}{2}(a+b)h$$

 $A = \pi r^2$ 

#### Mr. Gordon



$$C = \pi d$$

$$C = 2\pi r$$

|                 | Geometric Figure          | Surface Area                                                                                                                                                                   | Volume                                                                                                                      |
|-----------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Danie           | Cylinder                  | $A_{\mathrm{base}} = \pi r^{2}$ $A_{\mathrm{lateral\ surface}} = 2\pi r h$ $A_{\mathrm{total}} = 2A_{\mathrm{base}} + A_{\mathrm{lateral\ surface}}$ $= 2\pi r^{2} + 2\pi r h$ | $V = (A_{\mathrm{base}})(\mathrm{height})$ $V = \pi r^2 h$                                                                  |
| Hannı<br>Kaan   | Sphere                    | $A = 4\pi r^2$                                                                                                                                                                 | $V = \frac{4\pi r^3}{3} \qquad \text{or} \qquad V = \frac{4}{3}\pi r^3$                                                     |
| Kevin           | Cone                      | $A_{\mathrm{base}} = \pi r^{2}$ $A_{\mathrm{lateral\ surface}} = \pi r s$ $A_{\mathrm{total}} = A_{\mathrm{base}} + A_{\mathrm{lateral\ surface}}$ $= \pi r^{2} + \pi r s$     | $V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{\pi r^2 h}{3} \qquad \text{or} \qquad V = \frac{1}{3}\pi r^2 h$ |
| Ainsle<br>Ethan |                           | $A_{\text{base}} = b^2$ $A_{\text{triangle}} = \frac{bs}{2}$ $A_{\text{total}} = A_{\text{base}} + 4A_{\text{triangle}}$ $= b^2 + 2bs$                                         | $V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{b^2 h}{3} \qquad \text{or} \qquad V = \frac{1}{3}b^2 h$         |
| Micha           | Rectangular prism el h l  | A = 2(wh + lw + lh)                                                                                                                                                            | $V = (A_{\text{base}})(\text{height})$ $V = lwh$                                                                            |
| Isla<br>Josep   | Triangular prism  a  c  h | $A_{\text{base}} = \frac{bl}{2}$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = 2A_{\text{base}} + A_{\text{rectangles}}$ $= bl + ah + bh + ch$                    | $V = (A_{\text{base}}) \text{(height)}$ $V = \frac{blh}{2} \qquad \text{or} \qquad V = \frac{1}{2}blh$                      |