

用户手册

SRV02 旋转伺服基本单元

目录

1		间介		1
2		SRV02 组	<u></u>	3
	2.2	1 SRV(02 组件命名	3
	2.2	2 关键	生组件说明	2
			直流电机	
			旋转电位器	
		2.1.3.	编码器	5
3		SRV02 系	· 统规格	7
4		SRV02 的]设置和配置	9
			2配置	
		4.1.1.	简介	9
		4.1.2.	配置转换	9
	4.2	2 负载	福置	10
		4.2.1.	说明	10
		4.2.2.	安装负载	11
5		接线		12
	5.2	1. 电缆		12
	5.2	2. 典型	上连接	13
6		测试和故	坟 障排除	16
	6.1	1. 电机		16
		6.1.1.	测试	16
		6.1.2.	故障排除	16
	6.2	2. 电位	[器	16
		6.2.1.	测试	16
		6.2.2.	故障排除	17
	6.3	3. 转速	i计	17
		6.3.1.	测试	17
		6.3.2.	故障排除	17
	6.4	4. 编码	5器	18
		6.4.1.	测试	18
		6.4.2.	故障排除	18
7		技术支持	-	19

1 简介

Quanser 公司 SRV02 旋转伺服基本单元(以下简称 SRV02),如图 1.1 所示,其框架内配备一个直流电动机,该电机轴端直接安装了一个内部齿轮箱,同时驱动外部齿轮,再带动外部负载进行运动。该 SRV02 配备了三个传感器:电位器、编码器和测速器。电位器与编码器传感器测量加载齿轮的角位置,测速计可以用来测量转速。

图 1.1:Quanser SRV02 系统

注意:本设备设计用于教育和研究目的,不供公众使用。用户有责任确保设备只能由技术合格的人员使用。

SRV02 旋转伺服基本单元可以单独使用来进行多个实验,也可以作为一些附加模块的基础组件使用。表 1.1 列出了这些模块和其可以提供的相应实验。

系统名称	实验内容	简介
SRV02	SRV02QUARCIntegration	Describs how to use
SRV02	Modeling	Model the speed of the SRV02 using a first-order transfer function.
SRV02	Position Control	Regulate position of the SRV02 load gear to adesired angle using PII
SRV02	Speed Control	Control the angular rate of the SRV02 load gears using a PI and a lead compensator
Ball and beam	Balance Control	Model the system and develop a cascade PD controller to stabilize the ball to a position along the beam.
Flexible Joint	Vibration Control	Derive the plant dynamics and design a controller that compensates for the flexibilities in the joint while regulating the position of the arm tip to desired location.
Flexible Link	Vibration Control	Model the plant and identify the natural frequency of the beam. Then, develop a system that controls the tip of beam to a desired position.
Single Pendulum	Self-Erecting Single Inverted Pendulum Control	Design a nonlinear energy-based swing-up controller and a linear balance compensator to swing-up the pendulum from the resting downward position to the upright vertical position.
Double Pendulum	Double-Inverted Pen- Dulum Balance Control	Model the system and then design a controller that bal-ances the pendulum while the servo is tracking a reference position.
Gyroscope	Heading Control	Design a feedback loop that can maintains the position of the SRV02 load gear, i.e. the heading, while the rotary base underneath is manually perturbed.
1-DOFTorsion	Vibration Control	Control the position of the output shaft to desired setpoint by rejecting the vibrations introduced by the torsional mem-ber.
2DOFTorsion	Vibration Control	Control the position of the output shaft to desired setpoint by rejecting the vibrations introduced by both torsional members.
2DOFRobot	2D Task-Based Position Control	Control the position of the end-effector given a desired pla-nar (x,y) position. This involves servo position control as well as developing the forward and inverse kinematics of the plant.
2DOFPendulum	2DOF Gantry Control	Control the position of the pendulum tip to a desired (x,y) position while dampening the motions of the pendulum.
2DOFPendulum	2DOF Inverted Pendulum Balance Control	Develop a balance controller that keeps the 2 DOF pendu-lum in the upright vertical position.
2DBallBalancer	Ball Position Control	Control the position of a ball that is free to move on a swivel-ing 2 DOF plate. The plate angles are controlled by at-tached servo uni and the ball position is measured us-ing an overhead digital camer with image processing soft-ware.

表 1.1:基于 SRV02 的实验

2 SRV02 组件

2.1 SRV02 组件命名

SRV02可安装通过安装不同的外部齿轮组合从而变换为"高速比"版和"低速比"版,如图 2.1a、b 所示,图 2.1a 展示的是 SRV02 在低速比的齿轮配置,图 2.1b 展示的是 SRV02 高速比的齿轮配置。关于这些不同的齿轮设置将在第 4.1 节中进一步说明。

SRV02 的组件说明如表 2.1 所示。

图 2.1 SRV02 组件

序号	组件名	序号	组件名
1	面板	12	编码器
2	底板	13	轴承座
3	支撑柱	14	直流电动机
4	减速电机轴齿轮:72齿("低速比"版)	15	减速箱
5	负载轴齿轮:72齿("低速比"版)	16	直流电动机电气接口
6	旋转电位器双层齿轮	17	编码器接口
7	齿隙消除装置弹簧	18	旋转电位器接口
8	负载轴 (输出轴)	19	杆负载
9	减速电机轴齿轮:24 齿("高速比"版)	20	盘状负载
10	负载轴齿轮:120齿("高速比"版)	21	负载安装螺栓
11	旋转电位器	22	组合负载

表 2.1:SRV02 组件

2.2 关键组件说明

2.1.1. 直流电机

SRV02采用高效率、低电感的无芯有刷直流电机,型号为 Faulhaber 2338S006,如图 2.1c 中 14 所示。它比常规的直流电动机可以得到更快的响应。电机的完整的规格表请参考其数据 手册。。

- ▶ 注意: 高频信号施加到电机上, 最终会损坏齿轮箱电机和电机刷。高频噪音最有可能的 来源是微分环节反馈。如果微分增益设置太高,噪音信号电压将被施加到电机。为了保 护您的电机,您应该限制信号带宽(尤其是微分反馈)到50(Hz)。
- ▶ 注意: 输入±15V, 峰值 3A, 连续 1A。
- ▶ 注意:有裸露在外的运动部件。

2.1.2. 旋转电位器

所有的 SRV02 模型都配备了 Vishay Spectrol model138 型旋转电位器,如图 2.1c 中编号#11 所示。这是一个没有物理限位的单圈 10KΩ 传感器,并具有 352 度的电气范围。在整个 352 度范围内,传感器总的输出范围为±5V。与相对测量方式(如增量编码器)不同,电位计提供了绝对位置测量。完整电位器规格请参考其数据手册。

图 2.2:SRV02 电位计接线

如图 2.2,通过两个 7.15kΩ 的偏置电阻,电位器被连接到±12V 的 DC 电源上。在正常操作下,端子 1 应该测得-5V,端子 3 应该测得 5V。实际位置信号可在端子 2 测得。

2.1.3. 编码器

所有 SRV02 型号都安装了一个光学编码器,用于测量负载轴的角度位置。如图 2.1c 所示,标签为#12。使用的编码器是一个 US Digital E2 单端光学轴编码器,提供了正交模式(每转 1024 线)下的高分辨率(每转 4096 计数)。E2 光学轴角编码器的完整规格表请参考其数据手册。

注意,增量编码器测量轴的相对角度(与测量绝对角度的电位计相反)。

图 2.3:SRV02 编码器接线

编码器产生的位置信号可以使用标准的 5-pin DIN 电缆直接连接到数据采集设备。编码器 和 SRV02 组件 17上的#17上的 5-pin DIN 接口的内部接线如图 2.3 所示。

▶ 注意:请确保将编码器直接连接到数据采集设备,而不是功率放大器。

3 SRV02 系统规格

表 3.1 列出并描述了与 SRV02 有关的主要参数。其中一些是用在数学模型中的。表 3.2 给出了齿轮的更详细的信息,SRV02 各种传感器的校准增益总结于表 3.3 中。

符号	描述	数值	公差范围
$V_{ m nom}$	电机标称输入电压	6.0V	
R_m	电机电枢电阻	2.6Ω	±12%
L_m	电机电枢电感	0.18mH	
k_t	电机电流转矩常熟	$7.68 \times 10^{-3} \text{N-m/A}$	±12%
k_m	电机反电势系数	7.68×10 ⁻³ V/(rad/s)	±12%
K_g	"高速比"版减速比	70	
	"低速比"版减速比	14	
η_m	电机效率	0.69	±5%
η_g	减速箱效率	0.90	±10%
$J_{m,rotor}$	转子转动惯量	$3.90 \times 10^{-7} \text{kg-m}^2$	±10%
J_{tach}	转速计转动惯量	$7.06 \times 10^{-8} \text{kg-m}^2$	±10%
7	"高速比"无外部负载时等效转动惯量	$2.087 \times 10^{-3} \text{kg-m}^2$	
J_{eq}	"低速比"无外部负载时等效转动惯量	$9.7585 \times 10^{-5} \text{kg-m}^2$	
D	"高速比"等效粘性阻尼系数	0.015N.m/(rad/s)	
B_{eq}	"低速比"等效粘性阻尼系数	1.50×10 ⁻⁴ N.m/(rad/s)	
m_b	杆负载质量	0.038kg	
L_b	杆负载长度	0.1525m	
m_d	圆盘负载质量	0.04kg	
r_d	圆盘负载半径	0.025m	
$m_{ m max}$	负载最大质量	5kg	
f_{max}	电机输入电压最高频率	50Hz	
I_{max}	电机输入最大电流	1A	
ω_{max}	电机最高转速	628.3rad/s	

表3.1: SRV02 主要参数

符号	描述	数值
K_{gi}	内部变速箱减速比	14
$K_{ m ge,low}$	外部齿轮减速比("低速比"版)	1
$K_{\mathrm{ge,high}}$	外部齿轮减速比("高速比"版)	5
m ₂₄	24 齿齿轮质量	0.005kg
m ₇₂	72 齿齿轮质量	0.030kg
m ₁₂₀	120 齿齿轮质量	0.083kg
r ₂₄	24 齿齿轮半径	6.35×10−3m
r_{72}	72 齿齿轮半径	0.019m
r ₁₂₀	120 齿齿轮半径	0.032m

表 3.2:SRV02 齿轮规格

符号	描述	数值	公差范围
K_{pot}	旋转电位器灵敏度	35.2deg/V	±2%
K_{enc}	编码器分辨率	4096counts/rev	
K_{tach}	转速计灵敏度	1.50V/k _{RPM}	±2%

表 3.3:SRV02 传感器规格

4 SRV02 的设置和配置

4.1 齿轮配置

4.1.1. 简介

SRV02可以设置在"高速比"配置或"低速比"配置,如下图 4.1a 和图 4.1b。"高速比"配置可附加额外的模块,组成杆球控制系统、柔性杆系统等。

图 4.1:SRV02 齿轮配置

4.1.2. 配置转换

可按照以下步骤在"高速比"和"低速比"之间进行转换:

- 1. 使用提供的六角扳手,松开三个齿轮轴上的螺钉;
- 2. 拆下齿轮轴:
- 3. 按照以下所述,安装新齿轮到位:
- ➤ "低速比"配置如图 4.1a 所示: 将 72 齿的齿轮(如图 2.1a 中的 5), 安装到负载轴 (如图 2.1a 中的 8), 并将 72 齿的齿轮(图 2.1a 中的 4), 安装在减速电机轴上。

"高速比"配置如图 4.1b 所示:将 120 齿的齿轮(如图 2.1b 中的 10)、72 齿的齿 轮 (如图 2.1b 中 8), 安装到负载轴上; 将 24 齿的齿轮 (图 2.1b 中的 9), 安装 在减速电机轴上。

注意: 电位器齿轮,如图 2.1b 中组件 6,是双层消除间隙齿轮,安装时需要特别注意。为了 正确插入,需相对旋转两片齿轮,使弹簧预加载,达到消除齿轮啮合间隙的目的。预加载齿轮时, 不要完全伸展弹簧, 否则将损坏弹簧。

- 4. 确保三个齿轮所有的齿啮合到一起。注意,在"高速比"的设置中,顶部72齿负 荷齿轮需要与与电位器齿轮(图 2.1b 中的 6) 啮合。
- 5. 用提供的内六角扳手拧紧每片齿轮的固定螺丝。

4.2 负载配置

4.2.1. 说明

SRV02 提供多种外部载荷: 杆状、盘状、组合负载。这些都可以连接到 SRV02 负载齿轮轴 上,来改变输出端的转动惯量。SRV02 连接棒状负载末端,如图 4.2a 所示。棒的中间以及末端 都可以用于连接。在图 4.2b 中展示了 SRV02 与盘状负载的连接,也可以由杆状和盘状负载组合 安装在负载齿轮轴上,如图 4.2c。

图 4.2 SRV02 负载配置

4.2.2. 安装负载

按照以下步骤来连接杆型或盘型负载到负载齿轮:

- 1. 将杆负载(如图 2.1e 的组件 19)中心孔或末端中心孔或者盘负载(如图 2.1e 的组件 20)中心孔安装至 SRV02 输出轴上的负载中心轴(如图 2.1b 的组件#8)上。
- 2. 将负载轴齿轮螺纹孔对齐杆中心孔两个邻近的安装孔。
- 3. 使用提供的两个 8-32 螺丝(如图 2.1e 中的 21),固定惯性负载到输出齿轮上。如图 4.2a 和图 4.2b 所示,SRV02 分别与棒型负载和盘型负载相连。在开始运行之前,确保所有的螺丝都正确拧紧。
 - 注意: 在任何时候, 负载重量都不能超过5公斤。

5 接线

以下是本实验中使用的硬件组件列表:

1.功率放大器: QuanserVoltPAQ-X1, 或等效产品。

2.数据采集板: QuanserQ1-cRIO, Q2-USB, Q8-USB, QPID/QPIDe, NIDAQ, 或等效产品。

3.旋转伺服设备: Quanser SRV02 或配套产品。

有关这些组件的更多信息,请参见相应的文档。

SRV02 附带的电缆在第 5.1 节中进行描述,如何连接这些部件将在第 5.2 节中给出。

▶ 注意: 当使用 Quanser 的 VoltPAQ-X1 功率放大器时,确保设置放大器的增益为 1!

5.1. 电缆列表

用于连接 Quanser 的 SRV02 系统和电源放大器以及数据采集设备的电缆在表 5.1 中给出。根据实验需求,可能会使用到其中的部分电缆,而并非全部。

电缆	类型	描述
E many	2x RCA—2x RCA	该电缆用于连接从采集卡到功率放大器模 拟量输出。
(a)RCA 电缆		
	4-芯 DIN —6 芯 DIN	该电缆将经过功率模块放大后输出连接到
		SRV02 直流电机。
(b)电机驱动电缆		

(c)编码器电缆	5 芯-DIN—5 芯 DIN	该电缆在编码器接口和数据采集板之间传输编码器信号,即: +5 VDC 电源、地、通道 A和通道 B。
(d)模拟量电缆	6 芯 mini-DIN—6 芯 mini-DIN	该电缆将诸如来自操纵杆、执行机构传感器的信号传送到功率放大器,从而使这些信号可以被控制器监控和/或使用,该电缆还可将功率放大器±12VDC电源输出,以便为传感器和/或信号调节电路供电。
(e)5 芯 DIN 至 4xRCA 电缆	5 芯 DIN—4xRCA	该电缆将放大器汇聚的模拟信号传输至数 据采集卡上。

表 5.1: SRV02 连接功率放大器及 DAQ 设备的电缆

5.2. 典型连接

本节介绍了 SRV02 设备和数据采集板及功率放大器连接的一些典型方法。仅连接了编码器和转速表传感器(即未使用电位计)。连接方法详细地在以下步骤描述,总结在表 5.2 中,并如图 5.1 所示。

注意:图 5.1 所示的接线图使用的是通用数据采集板。相同的连接可以应用于具有 1x 模拟输入,1x 模拟输出和 1x 编码器输入的任何数据采集系统(例如,单个Q1-cRIO 模块)。

编号	从…	至 …	所传输信号
1	DAQ:AnalogOutput#0 接口	功率放大器 AmplifierCommand 接口	输出至功率放大器的控制信号
2	功率放大器:ToLoad 接口	SRV02 <i>Motor</i> 接口	驱动 SRV02 直流电机的电压
3	DAQ:EncoderInput#0 接口	SRV02 <i>Encoder</i> 接口	负载轴编码器信号
4	功率放大器 To ADC 接口	DAQ:White(S2) to Analog Input #0	将 Sensor 1 连接到 Analog Input #0 接口

5

Table5.2:SRV02 连线

Rotary Servo Base Unit

图 5.1: SRV02—DAQ 数据采集设备——功率放大器之间的连线

按照这些步骤来连接 SRV02 系统:

- 1. 确保您的数据采集设备已正确安装,并且是可使用的。例如,如果使用 Quanser 的 Q2-USB 见其数据手册。
- 2. 确保进行任何连接前切断电源,包括关闭 PC 和放大器。
- 3. 运用 2x RCA—2x RCA 电缆,连接接线端子板上的 Analog Output Channel#0 和放大器上的 Amplifier Command 连接器,即同时使用两个白色或两个红色 RCA 连接器,如图 5.1

中的电缆#1。

- 4. 使用 4 芯 stereo-DIN—6 芯 stereo-DIN 电缆,连接放大器上的 ToLoad 和 SRV02 上的 Motor 连接器。见图 5.1 中的连接#2。
- 5. 使用 5 芯 stereo-DIN—5 芯 stereo-DIN 电缆,连接 SRV02 panel 上的 Encoder 连接器和数据采集 DAQ 设备上的 Encoder Input#0,如图 5.1 中连接 3 所示。
- ▶ ·注意:任何编码器应采用标准的 5-pin-DIN 电缆,直接连接到数据采集终端板(或同等设备)。请勿把编码器电缆连接到放大器上!
- 6. 使用 5 芯 DIN—4xRCA 电缆,连接放大器上的 ToADC 插座和接线端子板上的 Analog Input#0-1,如图 5.1 所示。电缆的 RCA—端标记为: 黄色 S1,白色 S2,红色 S3,和黑色 S4。黄色 S1 连接 AnalogInputChannel#0,白色 S2 连接到 AnalogInputChannel#1。
- 7. 使用 6-pin-mini-DINto6-pin-mini-DIN 电缆,连接 SRV02 上的 Potentiomenter 连接器和功率放大器上的 S1&S2 插座。连接方式如图 5.1 中标记为#5。该电缆传输了旋转电位器(S1)测量值与转速计(S2)测量值信号。

6 测试和故障排除

本节介绍了一些功能测试,以确定 SRV02 系统是否运行正常。假设: SRV02 连接都按照 第5节中描述的内容连接。要进行这些试验,如果用户可以使用软件,可用如QUARC或 LabVIEW 读取传感器的测量值和提供给电机的电压。另外,这些测试可以与信号发生器和示波 器一起讲行。

6.1. 电机

6.1.1. 测试

通过这个以下操作确保 SRV02 电机工作正常:

- 1. 例如,使用 QUARC 软件,将电压施加到接线端子板上的 analog output channel#0。
- 2. 电动机齿轮,如图 2.1a 中组件#4,当施加一个正电压时,应逆时针旋转;当施加一个负 电压时,应顺时针旋转。注意: 电机轴和负载轴旋转方向相反。

6.1.2. 故障排除

如果电机不对电压信号有正确的响应,那么进行以下步骤:

- 检查功率放大器是否正常工作。例如当使用在 Quanser 的 VoltPAO 的装置、绿色 LED 灯是否 亮着?
- 检查数据采集板是否正常工作,例如,确保已正确连接、保险丝没有烧毁。
- 确保电压确实达到电机端子(使用电压表或示波器)。
- 如果电机端子接收信号,并且电机仍然不转动时,电机可能被损坏,需要修复。请与 Quanser 公 司联系以得到技术支持。

6.2. 电位器

6.2.1. 测试

通过以下步骤,测试 SRV02 电位器:

- 1. 使用程序,如 QUARC,测量模拟输入通道#0。
- 2. 当电位器齿轮(图 2.1b,组件#6)逆时针旋转时,电位器应输出一个正电压。测量值应正向增加到 5V,直到达到不连续时,在这一点上信号突然改变为-5V 然后开始再次增加。

6.2.2. 故障排除

如果电位器不能正确测量,按照下面的步骤排除故障:

- 检查功率放大器的功能。例如当使用 Quanser 的 VoltPAQ 装置时,绿色 LED 灯是否点亮?应想到,模拟传感器信号,先经过了放大器,再经过数据采集器(使用Q3ControlPAQ 时除外)。因此,放大器需要打开以读取电位器信号。
- 检查数据采集板的功能,例如,确保已正确连接,保险丝没有烧毁。
- 测量电位器两端的电压。确保电位器 6-pin-mini-DIN 接口供应±12V 电压,电位器接口如第 2.2.2 节中描述的,±5V 电压供电。当旋转电位器轴时,如果触点上的电压不变,则你的电位器需要进行更换。请参阅第 7 节,获得与 Quanser 公司联系信息来得到技术支持。

6.3. 转速计

6.3.1. 测试

通过执行以下操作来测试 SRV02 转速计:

- 1. 提供 2.0V 信号到模拟输出通道 # 0 以驱动电机。
- 2. 测量模拟输入通道 # 2 读取转速表示数。当施加 2.0V 电压到电机,转速表测量值应约为 3.0V。

6.3.2. 故障排除

如果接收不到来自转速表的信号,进行以下步骤:

检查功率放大器的功能。例如当使用 Quanser 的 VoltPAQ 装置时,绿色 LED 灯是否点亮?回想一下,模拟传感器信号,先经过了放大器,再经过数据采集器(除时使用

Q3ControlPAQ

时)。因此,放大器需要打开以读取转速计的信号。

- 检查数据采集板的功能,例如,确保已正确连接,保险丝没有烧毁。
- 测量转速表两端的电压。当来回移动负载齿轮时,测量的电压是否变化?如果没有 变化,那么需要更换转速表。请参阅第7节,获得与Quanser公司联系的信息来得 到技术支持。

6.4. 编码器

6.4.1. 测试

按照以下步骤来测试 SRV02 编码器:

- 1. 使用软件 QUARC, 测量编码器输入信道 #0。
- 2. 旋转 SRV02 负载齿轮,如图 2.1b 中组件#5,旋转一周时编码器在正交模式下应测 量 4096 计数。

注意:一些数据采集系统不在正交情况下测量,在这种情况下,会得到预期计数的四分之一, 即 1024 个计数。此外,一些数据采集系统在正交下测量,但以 0.25 为递增单位(相对于具有整 数的计数)。确保了解所使用的数据采集系统。Quanser 的 DAO 的计数器在正交下测量,因此 每旋转一周会得到编码器线数 4 倍的总值,例如 1024 线编码器会测得每转 4096 整数计数。

6.4.2. 故障排除

如果编码器不能正确测量,则进行以下步骤:

- 检查数据采集板的功能,例如,确保已正确连接,保险丝没有烧毁。
- 同时检查编码器的A和B通道能正确生成和输送数据到数据采集设备。使用示波 器,应该会有两个方波信号 A 和 B,相位差为 90 度。如果没有满足,则编码器可 能会被损坏并需要更换。请参阅第7节,获得与 Quanser 公司联系的信息来得到技 术支持。

7 技术支持

要获得 Quanser 的支持,访问 http://www.quanser.com/,点击"技术支持"链接。填写表格描述所需的的所有软件和硬件信息,以及遇到的问题。另外,确保您的 e-mail 地址和电话号码填写正确。

提交表格, 技术支持人员将与您联系。

Solutions for teaching and research. MadeinCanada.