Cuadrados Mínimos

Clase 8 - 29 de mayo

Métodos Numéricos 1er Cuatrimestre 2024

Daniel Grimaldi

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^m$ y $b \in \mathbb{R}^n$.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^m$ y $b \in \mathbb{R}^n$.

Si hay solución: ¡Eso ya lo vimos!

- Descomposiciones LU, $U\Sigma V^t$.
- Propiedades varias.
- Métodos Iterativos.

Si no hay solución:

Problema

Resolver $Ax = b \text{ con } A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^m$ y $b \in \mathbb{R}^n$.

Si hay solución: ¡Eso ya lo vimos!

- Descomposiciones LU, $U\Sigma V^t$.
- Propiedades varias.
- Métodos Iterativos.

Si no hay solución:

Los datos son de mala calidad. Volvé a tomarlos.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^m$ y $b \in \mathbb{R}^n$.

Si hay solución: ¡Eso ya lo vimos!

- Descomposiciones LU, $U\Sigma V^t$.
- Propiedades varias.
- Métodos Iterativos.

Si no hay solución:

- Los datos son de mala calidad. Volvé a tomarlos.
- A datos aproximados, resultados aproximados.

Problema de Cuadrados Mínimos

Problema de Cuadrados Mínimos

Problema de Cuadrados Mínimos

- Se busca minimizar $||Ax b||_2$.
- $y = Ax \in S = Im(A)$, reescribo $||y b||_2$.

Problema de Cuadrados Mínimos

- Se busca minimizar $||Ax b||_2$.
- $y = Ax \in S = Im(A)$, reescribo $||y b||_2$.
- Al estar en $\|\cdot\|_2$, podemos usar **ortogonalidad**:
 - $Im(A)^{\perp} = Nu(A^t)$.
 - $S \bigoplus S^{\perp} = \mathbb{R}^n$.
 - $b \in \mathbb{R}^n$ se puede descomponer en s + t.
 - ¡Listo! y = s y y b = t.
- Lo calculamos mediante $A^tAx = A^tb$.

Problema de Cuadrados Mínimos

Encontrar un x tal que $Ax \sim b$ donde el error cometido sea el menor posible en términos cuadráticos ($\|\cdot\|_2$).

- Se busca minimizar $||Ax b||_2$.
- $y = Ax \in S = Im(A)$, reescribo $||y b||_2$.
- Al estar en $\|\cdot\|_2$, podemos usar **ortogonalidad**:
 - $Im(A)^{\perp} = Nu(A^t)$.
 - $S \bigoplus S^{\perp} = \mathbb{R}^n$.
 - $b \in \mathbb{R}^n$ se puede descomponer en s + t.
 - ¡Listo! y = s y y b = t.
- Lo calculamos mediante $A^tAx = A^tb$.

Más información: Ejercicios 1 a 6.

Primeras preguntas usuales y cuentas típicas

- Si el problema original tiene solución, ¿coinciden?
- ¿Siempre hay solución? ¿Cuándo es única?
- ¿La norma tiene que ser sí o sí la cuadrática?
- ¿De dónde salen los datos de A y b?

Primeras preguntas usuales y cuentas típicas

- Si el problema original tiene solución, ¿coinciden?
- ¿Siempre hay solución? ¿Cuándo es única?
- ¿La norma tiene que ser sí o sí la cuadrática?
- ¿De dónde salen los datos de A y b?

Tenemos datos $\{(\alpha_0, \beta_0), \dots, (\alpha_n, \beta_n)\}$ y creemos que se distribuyen aproximadamente a una función f que es una combinación lineal de otras más "elementales", y que a su vez puede estar compuesta con otra más.

Por ejemplo:

- Polinomios son combinaciones lineales de funciones de la forma t^k .
- Funciones de ondas son combinaciones lineales de cos(nt) y sen(nt).
- Funciones que toman vectores y devuelven un número (nadie dijo que los α s debían ser números).
- ma^t es una función lineal compuesta por e^t .

Tiempo de cuentas

Si tenemos:
$$\{(\alpha_0, \beta_0), \dots, (\alpha_n, \beta_n)\}$$

Caso Polinomio Si $f(t) = x_0 t^0 + x_1 t^1 + \dots + x_m t^m$:

Tiempo de cuentas

Si tenemos: $\{(\alpha_0, \beta_0), \ldots, (\alpha_n, \beta_n)\}$

Caso Polinomio Si $f(t) = x_0t^0 + x_1t^1 + \cdots + x_mt^m$:

$$\begin{bmatrix} \alpha_0^0 & \alpha_0^1 & \dots & \alpha_0^m \\ \alpha_1^0 & \alpha_1^1 & \dots & \alpha_1^m \\ \dots & \dots & \dots & \dots \\ \alpha_n^0 & \alpha_n^1 & \dots & \alpha_n^m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_n \end{bmatrix}$$

Caso Exponencial Si $f(t) = e^{x_0 + tx_1}$ (ma^t con $m = e^{x_0}$, $a = e^{x_1}$):

Tiempo de cuentas

Si tenemos: $\{(\alpha_0, \beta_0), \ldots, (\alpha_n, \beta_n)\}$

Caso Polinomio Si $f(t) = x_0t^0 + x_1t^1 + \cdots + x_mt^m$:

$$\begin{bmatrix} \alpha_0^0 & \alpha_0^1 & \dots & \alpha_0^m \\ \alpha_1^0 & \alpha_1^1 & \dots & \alpha_1^m \\ \dots & \dots & \dots & \dots \\ \alpha_n^0 & \alpha_n^1 & \dots & \alpha_n^m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_n \end{bmatrix}$$

Caso Exponencial Si $f(t) = e^{x_0 + tx_1}$ (ma^t con $m = e^{x_0}$, $a = e^{x_1}$):

$$\begin{bmatrix} \alpha_0^0 & \alpha_0^1 \\ \alpha_1^0 & \alpha_1^1 \\ \dots & \dots \\ \alpha_n^0 & \alpha_n^1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \begin{bmatrix} \ln(\beta_0) \\ \ln(\beta_1) \\ \dots \\ \ln(\beta_n) \end{bmatrix}$$

Más ejemplos: Ejercicios 7 a 14.

Usando lo visto anteriormente

Recordar:

- Propiedades de la norma 2.
- Proyecciones Ortogonales.
- Propiedades de las matrices de la forma A^tA.
- Descomposición SVD.

Más información: Ejercicios 15 a 18.

- Realizar inducciones a partir de datos.
- Recuperar una función discretizada.
- Generar funciones que toleran mejor que extrapolar el error de medición.

- Realizar inducciones a partir de datos.
- Recuperar una función discretizada.
- Generar funciones que toleran mejor que extrapolar el error de medición.
- Ejemplo concreto: Aprendizaje Automático Supervisado.

Más información en Aprendizaje Automático (Materia Optativa).

Otro aviso extra materia:

Miren los cursos de la Escuela de Ciencias Informáticas.

- Realizar inducciones a partir de datos.
- Recuperar una función discretizada.
- Generar funciones que toleran mejor que extrapolar el error de medición.
- Ejemplo concreto: Aprendizaje Automático Supervisado.

Más información en Aprendizaje Automático (Materia Optativa).

Otro aviso extra materia:

Miren los cursos de la Escuela de Ciencias Informáticas.

FIN DE LAS CLASES PRÁCTICAS