1

Assignment 1

AI24BTECH11031 - Shivram S

MATCH THE FOLLOWING

1) $z \neq 0$ is a complex number (1992 - 2 marks)

Column I

Column II

(A) Re
$$z = 0$$

$$Re z^2 = 0$$

(B) Arg
$$z = \frac{\pi}{4}$$

(p) Re
$$z^2 = 0$$

(q) Im $z^2 = 0$

(q)
$$\text{Im } z^2 = 0$$

(r) $\text{Re } z^2 = \text{Im } z^2$

2) Match the statements in **Column I** with those in Column II (2010)

[Note: here z is a set of points taking values in the complex plane and Im z and Re z denote, respectively, the imaginary part and the real part of z. 1

Column I

- (A) The set of points z satisfying |z-i|z|| = |z+i|z||is in or equals
- (B) The set of points z satisfying |z+4|+|z-4| =10 is in or equals
- (C) If |w| = 2, then the set of points $z = w \frac{1}{w}$ is in or equals
- (D) If |w| = 1, then the set of points $z = w \frac{1}{w}$ is in or equals

Column II

- (p) an ellipse with eccentricity $\frac{4}{5}$
- (q) the set of points z satisfying Im z = 0
- (r) the set of points z satisfying $|\text{Im } z| \leq 1$
- (s) the set of points z satisfying |Re z| < 2
- (t) the set of points z satisfying $|z| \le 3$
- 3) Let $z_k = \cos\left(\frac{2k\pi}{10}\right) + i\sin\left(\frac{2k\pi}{10}\right)$; $k = 1, 2, \dots, 9$.

 (*JEE Adv.* 2014)

List I

- P. For each z_k there exists a z_i such that $z_k \cdot z_i =$
- Q. There exists a $k \in \{1, 2, ..., 9\}$ such that z_1 . $z = z_k$ has no solution in the set of complex
- R. $\frac{|1-z_1||1-z_2|...|1-z_9|}{10}$ equals S. $1 \sum_{k=1}^{9} \cos\left(\frac{2k\pi}{10}\right)$ equals

List II

- 1. True
- 2. False
- 3. 1
- 4. 2

	P	Q	R	S		P	Q	R	\mathbf{S}
(a)	1	2	4	3	(b)	2	1	3	4
(c)	1	2	3	4	(d)	2	1	4	3

COMPREHENSION BASED QUESTIONS

Passage-2

Let $S = S_1 \cap S_2 \cap S_3$ where

$$S_1 = \{ z \in \mathbb{C} : |z| < 4 \}$$

$$S_2 = \left\{ z \in \mathbb{C} : \operatorname{Im} \left[\frac{z - 1 + \sqrt{3}i}{1 - \sqrt{3}i} \right] > 0 \right\}$$

and
$$S_3 = \{z \in \mathbb{C} : \text{Re } z > 0\}$$

- 4) Area of S =
- (*JEE Adv.* 2013)
- (a) $\frac{10\pi}{3}$ (b) $\frac{20\pi}{3}$ (c) $\frac{16\pi}{3}$ (d) $\frac{32\pi}{3}$
- 5) $\min_{z \in S} |1 3i z| =$ (*JEE Adv.* 2013)
 - (a) $\frac{2-\sqrt{3}}{2}$ (b) $\frac{2+\sqrt{3}}{2}$ (b) $\frac{3-\sqrt{3}}{2}$ (d) $\frac{3+\sqrt{3}}{2}$

INTEGER VALUE CORRECT TYPE

- 1) If z is any complex number satisfying |z-3-2i| < 2, then the minimum value of |2z - 6 + 5i| is
- 2) Let $\omega = e^{\frac{i\pi}{3}}$, and a, b, c, x, y, z be non-zero complex numbers such that: (2011)

$$a+b+c = x$$

$$a+b\omega+c\omega^2 = y$$

$$a+b\omega^2+c\omega = z$$

Then the value of $\frac{|x|^2+|y|^2+|z|^2}{|a|^2+|b|^2+|c|^2}$ is

- 3) For any integer k, let $a_k = \cos(\frac{k\pi}{7}) + i\sin(\frac{k\pi}{7})$, where $i = \sqrt{-1}$. The value of the expression $\frac{\sum_{k=1}^{12} |a_{k+1} a_k|}{\sum_{k=1}^{3} |a_{4k-1} a_{4k-2}|}$ is (*JEE Adv.* 2015)
- 4) Let $\omega \neq 1$ be a cube root of unity. Then the minimum of the set $\{|a+b\omega+c\omega^2|^2:a,b,c \text{ distinct non-zero integers}\}$ equals _____. (*JEE Adv.* 2019)