Algebra a diskrétna matematika Prehľad z 10. týždňa Algebraické štruktúry - Úvod

Binárna relácia

Nech M je neprázdna množina a nech $M \times M$ je **kartézsky súčin** množiny M samej so sebou, t.j. $M \times M = \{(x, y); x, y \in M\}.$

Pod **binárnou reláciou** na množine M rozumieme ľubovoľnú podmnožinu súčinu $M \times M$. Formálne, \mathcal{R} je binárna relácia na M, ak $\mathcal{R} \subseteq M \times M$. Vzťah medzi x a y v relácii \mathcal{R} zapisujeme $(x,y) \in \mathcal{R}$ alebo $x\mathcal{R}y$.

Ak M má veľkosť n, body v relácii môžeme znázorniť vyznačením zodpovedajúcich bodov na mriežke $n \times n$ alebo pomocou orientovaného grafu s n vrcholmi, v ktorom je dvojica bodov $x\mathcal{R}y$ reprezetovaná šípkou z x do y. Reláciu na n prvkovej množine $M = \{x_1, x_2, \ldots, x_n\}$ je tiež možné popísať pomocou matice susednosti A relácie \mathcal{R} , pričom $A_{n \times n} = (a_{ij})$, kde $a_{ij} = 1$, ak $x_i \mathcal{R} x_j$, inak $a_{ij} = 0$.

Príklad 1: Ilustrácia binárnych relácií na daných množinách.

- a) $M = \{0, 1, 2\}, \mathcal{R} = \{(0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2)\}.$
- b) $M = \{a, b, c, d, e\}, \mathcal{R} = \{(a, b), (a, c), (b, b), (c, d), (e, b), (e, e)\}$
- c) $M = \mathbb{Z}, \ \mathcal{R} = \{(z, z+9); z \in \mathbb{Z}\}.$
- d) \mathcal{R} na \mathbb{R} : $x\mathcal{R}y \Leftrightarrow y = x^3 x$

Poznámka: Funkcia je špeciálnym typom relácie.

Vlastnosti binárnej relácie

Hovoríme, že relácia \mathcal{R} je na množine M

- (R) reflexívna, ak pre každé $x \in M$ platí $x \mathcal{R} x$
- (S) symetrická, ak $x\mathcal{R}y$ implikuje $y\mathcal{R}x$ pre každé $x,y\in M$
- (A) antisymetrická, ak $x\mathcal{R}y$ a $y\mathcal{R}x$ implikuje x=y pre každé $x,y\in M$
- (T) tranzitívna, ak $x\mathcal{R}y$ a $y\mathcal{R}z$ implikuje $x\mathcal{R}z$ pre každé $x,y,z\in M$

Príklad 2: Overte vlastnosti relácií na daných množinách

- a) $M = \{0, 1, 2\}, \mathcal{R} = \{(0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2)\}$
- b) \mathcal{R} na \mathbb{R} : $x\mathcal{R}y \Leftrightarrow |x-y| \geq 6$
- c) \mathcal{R} na \mathbb{Z} : $x\mathcal{R}y \Leftrightarrow x \leq y$
- d) M je množina všetkých priamok v rovine a \mathcal{R} je relácia rovnobežnosti priamok, t. j. $\forall p, q \in M; p\mathcal{R}q \Leftrightarrow p \mid\mid q$

Odpoved':

- a) (R), (A), (T)
- b) (S)
- c) (R), (A), (T)
- d) (R), (S), (T)

Čiastočne usporiadaná množina (poset)

Binárna relácia $\mathcal{R} \subseteq M \times M$ sa nazýva **čiastočným usporiadaním** na M, ak je na M reflexívna, antisymetrická a tranzitívna.

Ak \mathcal{R} je čiastočné usporiadanie na M, tak namiesto $x\mathcal{R}y$ používame označenie $x \leq_{\mathcal{R}} y$ alebo sa index \mathcal{R} vynecháva.

Často sa jednoducho píše $x \leq y$.

Vlastnosti z definície čiastočného usporiadania potom majú tvar

- (R) $x \le x$ (reflexívnosť)
- (A) ak $x \leq y$ a $y \leq x$, tak x = y (antisymetria)
- (T) ak $x \le y$ a $y \le z$, tak $x \le z$ (tranzitívnosť)

pre každé $x, y, z \in M$.

Dvojicu (M, \leq) , kde \leq je binárna relácia čiastočného usporiadania, nazývame **čiastočne usporiadaná množina**.

<u>Príklad 3</u>: Nech S je neprázdna množina a nech M je ľubovoľná množina podmnožín množiny S. Nech \leq je binárna relácia inklúzie, t.j. ak $X,Y\in M$, tak $X\leq Y$, ak X je podmnožinou množiny Y. Potom (M,\leq) je čiastočne usporiadaná množina.

<u>Príklad 4</u>: Nech M je ľubovoľná neprázdna podmnožina množiny $\mathbb N$ a nech pre každé $x,y\in M$ symbol $x\leq y$ označuje fakt, že číslo x je deliteľom čísla y. Potom (M,\leq) je opäť čiastočne usporiadaná množina.

Ak (M, \leq) je čiastočne usporiadaná množina, tak dva rôzne prvky $x, y \in M$ sú **porovnateľné**, ak buď $x \leq y$, alebo $y \leq x$.

(Oba vzťahy nemôžu platiť súčasne pre $x \neq y$.)

Budeme písať x < y, ak $x \le y$ a $x \ne y$.

- Prvok $a \in M$ sa nazýva **najmenší**, ak $a \leq x$ pre každé $x \in M$.
- Prvok $b \in M$ sa nazýva **najväčší**, ak $x \leq b$ pre $každ\acute{e} \ x \in M$.
- Prvok $a \in M$ je **minimálny**, ak neexistuje žiadne $x \in M$, že x < a.
- Prvok $b \in M$ je **maximálny**, ak neexistuje žiadne $x \in M$, že b < x.

Ak v (M, \leq) existuje najmenší (najväčší) prvok, tak tento je určený jed-noznačne.

Najmenší (najväčší) prvok v (M, \leq) je zároveň minimálnym (maximálnym) prvkom; vo všeobecnosti to neplatí obrátene.

Ak (M, \leq) obsahuje viac ako jeden minimálny (maximálny) prvok, tak žiadne dva minimálne (maximálne) prvky nemôžu byť porovnateľné.

<u>Príklad 5</u>: Pre čiastočne usporiadanú množinu $(\{1,2,\ldots,10\},|)$, kde $x\mid y$ označuje fakt, že x delí y, nájdite všetky minimálne a maximálne prvky, najmenší a najväčší prvok.

<u>Odpoveď</u>: Najmenší a zároveň minimálny prvok je 1, maximálne prvky sú 6, 7, 8, 9, 10 a najväčší prvok neexistuje.

Čiastočne usporiadané množiny znázorňuje pomocou Hasseho diagramu.

V Hasseho diagrame čiastočne usporiadanej množiny (M, \leq) :

- sa nevyskytujú slučky,
- spojnica je medzi x,y iba ak x je bezpropstredným predchodcom prvku y, t.j. x < y a neexistuje žiadne $z \in M$, že x < z < y,
- ak x < y, tak x sa umiestňuje pod y.

Z Hasseho diagramu je možné jednoznačne zrekonštruovať reláciu \leq čiastočného uporiadania na množine M.

Zväzy

Nech (M, \leq) je čiastočne usporiadaná množina a nech $x, y \in M$.

- Prvok $z \in M$ je **dolným ohraničením** prvkov x a y, ak $z \le x$ a $z \le y$.
- Prvok $c \in M$ je **najväčším dolným ohraničením** prvkov x a y, ak $c \le x$, $c \le y$, a ak $z \le c$ pre každé dolné ohraničenie z prvkov x, y.

Označenie: $c = \inf(x, y)$, alebo $c = x \wedge y$, priesek x a y.

- Prvok $z \in M$ je **horným ohraničením** prvkov x a y, ak $x \le z$ a $y \le z$.
- Prvok $d \in M$ je **najmenším horným ohraničením** prvkov x a y, ak $x \leq d$, $y \leq d$, a ak $d \leq z$ pre každé horné ohraničenie z prvkov x, y.

Označenie: $d = \sup(x, y)$, alebo $d = x \vee y$, spojenie prvkov x a y.

Ciastočne usporiadaná množina (M, \leq) sa nazýva **zväz**, ak pre každé $x, y \in M$ existuje ich priesek $x \wedge y$ a aj ich spojenie $x \vee y$.

<u>Príklad 6</u>: Nech $M = \{0, 1, 2\} \times \{0, 1\}$ a relácia usporiadania \leq je daná predpisom $(a, b) \leq (c, d) \Leftrightarrow a \leq c$ a $b \leq d$. Dvojica (M, \leq) tvorí zväz.

<u>Príklad 7</u>: Nech $(\mathbb{N}, |)$ je čiastočne usporiadaná množina, kde \mathbb{N} je množina prirodzených čísiel a $x \mid y$ označuje fakt, že x delí y. Potom $x \wedge y$ je najväčší spoločný deliteľ a $x \vee y$ je najmenší spoločný násobok čísiel x a y; čiastočne usporiadaná množina $(\mathbb{N}, |)$ je tiež zväz.

<u>Príklad 8</u>: Nech S je neprázdna množina a nech 2^S označuje množinu $v\check{s}etk\acute{y}ch$ podmnožín množiny S. V čiastočne usporiadanej množine $(2^S,\subseteq)$ je priesek dvoch prvkov rovný prieniku a spojenie je rovné zjednoteniu príslušných množín a teda $(2^S,\subseteq)$ je zväz.

Takéto zväzy sa nazývajú boolovské.

Čiastočne usporiadaná množina (M, \leq) sa nazýva **ret'azec**, ak pre každé $x, y \in M$ platí, že $x \leq y$ alebo $y \leq x$; skrátene, ak každé dva prvky v M sú porovnateľné.

Príslušné čiastočné usporiadanie \leq sa nazýva aj **lineárne**.

Tvrdenie 1: Každý reťazec je zväz.

Príklad 9: Dané čiastočne usporiadané množiny sú reťazce.

- a) $(\{1, 2, 3, 4, 5, 6\}, \leq)$
- b) $M = \{1, 2, 3, 4\}, \mathcal{R} = \{(2, 3), (2, 1), (1, 4), (1, 3), (2, 4), (4, 3)\}$

Binárna operácia a algebraická štruktúra

Binárna operácia je "dvojčlenná" operácia, ktorá každej usporiadanej dvojici prvkov z nejakej množiny priraďuje jediný tretí prvok z tej istej množiny; t. j. binárna operácia φ na množine M je zobrazenie $\varphi: M \times M \to M$.

Z faktu, že φ je zobrazenie vyplýva, že

- každá binárna operácia je uzavretá; t. j. $\forall x, y \in M : \varphi(x, y) \in M$,
- výsledok operácie je definovaný pre $ka\check{z}d\acute{u}$ usporiadanú dvojicu z $M \times M$, t. j. $\forall x, y \in M \ \exists z \in M : \varphi(x, y) = z$.

Známe príklady:

Císelné operácie: sčítanie, odčítanie, násobenie, max, min.

Množinové operácie: prienik, zjednotenie, rozdiel.

<u>Označenie</u>: Ak sa nejedná o známe operácie, najčastejšie používané označenie binárnej operácie je $*, \circ, \oplus$ alebo \otimes ; píšeme $x * y, x \circ y$ atd'.

Vlastnosti binárnych operácií

Nech * je binárna operácia na množine M. Hovoríme, že operácia * je

- komutatívna, ak $\forall x, y \in M : x * y = y * x$
- asociatívna, ak $\forall x, y, z \in M : (x * y) * z = x * (y * z)$

Nech $*, \circ$ sú dve binárne operácie na M. Hovoríme, že

• operácia * je **zľava distributívna** vzhľadom na operáciu \circ , ak $\forall x, y, z \in M : x * (y \circ z) = (x * y) \circ (x * z),$

- operácia * je **sprava distributívna** vzhľadom na operáciu o, ak $\forall x, y, z \in M : (x \circ y) * z = (x * y) \circ (x * z),$
- * je **distributívna** vzhľadom na operáciu operácia \circ . ak je vzhľadom na o distributívna zľava aj sprava.

Neprázdna množina M spolu s jednou alebo viacerými binárnymi operáciami tvorí algebraickú štruktúru.

Rozoznávame veľa rôznych algebraických štruktúr podľa toho, aké vlastnosti spĺňajú ich binárne operácie.

Zväz ako algebraická štruktúra

V každom zväze (M, \leq) pre všetky $x, y, z \in M$ platia nasledujúce vzťahy:

$$(1) x \wedge x = x x \vee x = x$$

$$(2) x \wedge y = y \wedge x x \vee y = y \vee x$$

$$(3) (x \wedge y) \wedge z = x \wedge (y \wedge z) (x \vee y) \vee z = x \vee (y \vee z)$$

$$(4) (x \wedge y) \vee y = y (x \vee y) \wedge y = y$$

$$(1) \quad x \wedge x = x \qquad x \vee x = x$$

$$(2) \quad x \wedge y = y \wedge x \qquad x \vee y = y \vee x$$

$$(3) \quad (x \wedge y) \wedge z = x \wedge (y \wedge z) \qquad (x \vee y) \vee z = x \vee (y \vee z)$$

$$(4) \quad (x \wedge y) \vee y = y \qquad (x \vee y) \wedge y = y$$

$$(5) \quad x \leq y \Leftrightarrow x \wedge y = x \qquad x \leq y \Leftrightarrow x \vee y = y$$

Dá sa ukázať, že na zväz (M, \leq) je ekvivalentne možné hľadieť aj ako na algebraickú štruktúru (M, \wedge, \vee) s dvoma binárnymi operáciami \wedge a \vee : $M \times M \to M$, ktoré majú vlastnosti (1) – (4).

Príslušné čiastočné usporiadanie je potom definované vzťahom (5).

Načrtneme fakt, že ak (M, \wedge, \vee) je algebraická štruktúra splňajúca (1) – (4), tak predpisom (5) je naozaj definované čiastočné usporiadanie.

- Na odvodenie (R) treba ukázať, že $x \leq x$, čiže treba overiť, že $x \wedge x = x$, ale to je vzťah (1).
- Na odvodenie (A) predpokladajme, že $x \leq y$ a $y \leq x$, teda $x \wedge y = x$ a $y \wedge x = y$; potom ale z (2) máme x = y, čím dostávame (A).
- Na odvodenie (T) predpokladajme, že $x \leq y$ a $y \leq z$, teda $x \wedge y = x$ a $y \wedge z = y$. Z vlastnosti (3) máme $x \wedge z = (x \wedge y) \wedge z = x \wedge (y \wedge z) =$ $x \wedge y = x$, ale $x \wedge z = x$ znamená, že $x \leq z$, z čoho vyplýva (T).

Ďalšie vlastnosti zväzu

Z faktu, že (M, \leq) je zväz, je možné odvodiť mnoho ďalších nerovností a vlastností. Uvedieme tu tri dôležité príklady:

Vo zväze (M, \leq) pre všetky $x, y, z, w \in M$ platí

- (I) $x \le y$ a $z \le w$ implikuje $x \wedge z \le y \wedge w$ a $x \vee z \le y \vee w$ (izotónnosť)
- (D) $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z), \quad (x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$ (distributívne nerovnosti)
- (M) $x \le z$ implikuje $x \lor (y \land z) \le (x \lor y) \land z$ (modulárna nerovnosť)

Odvodenie distributívnosti:

Na ukážku overíme prvú distributívnu nerovnosť.

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$

Keďže $y \wedge z \leq y$, tak z (I) máme $x \vee (y \wedge z) \leq x \vee y$.

Rovnako, z faktu, že $y \wedge z \leq z$, pomocou (I) dostávame $x \vee (y \wedge z) \leq x \vee z$. To znamená, že prvok $x \vee (y \wedge z)$ je dolným ohraničením pre oba prvky $x \vee y$ aj $x \vee z$.

Z definície prieseku vyplýva, že $x\vee (y\wedge z)$ je aj dolným ohraničením pre priesek týchto dvoch prvkov, a teda $x\vee (y\wedge z)\leq (x\vee y)\wedge (x\vee z)$.

Modulárny a distributívny zväz

Zväz (M, \leq) sa nazýva **distributívny**, ak platia rovnosti v (D), a **modulárny**, ak platí rovnosť v (M).

<u>Príklad 10</u>: Zväzy $(2^S,\subseteq)$ a (N,|) sú distributívne aj modulárne.

<u>Príklad 11</u>: Každý reťazec je distributívny a modulárny zväz.

Vlastnosť distributívnosti je silnejšia ako vlastnosť modulárnosti.

Tvrdenie 3: Každý distributívny zväz je modulárny.

Zväz (M', \wedge', \vee') je **podzväzom** zväzu (M, \wedge, \vee) , ak $M' \subseteq M$ a ak pre všetky $x, y \in M'$ platí $x \wedge' y = x \wedge y$ a $x \vee' y = x \vee y$.

Príklad 12: Najmenší nemodulárny zväz je "pentagon".

Príklad 13: Najmenší modulárny nedistributívny zväz je "diamant".

Tvrdenie 3: Zväz je modulárny práve vtedy, keď neobsahuje podzväz izomorfný s pentagonom.

Tvrdenie 4: Modulárny zväz je distributívny práve vtedy, keď neobsahuje podzväz izomorfný s diamantom.

<u>Príklad 14:</u> Nech M je množina podmnožín \mathbb{R}^3 pozostavajúca z

- (a) počiatku súradnicovej sústavy,
- (b) všetkých priamok v \mathbb{R}^3 prechádzajúcich počiatkom,
- (c) všetkých rovín v \mathbb{R}^3 prechádzajúcich počiatkom,
- (d) samotného \mathbb{R}^3 .

Nech $x \wedge y$ a $x \vee y$ označujú prienik dvoch prvkov z M a najmenší prvok $z \in M$ obsahujúci x a y.

Potom (M, \wedge, \vee)) je modulárny zväz, ktorý nie je distributívny.

Tento fakt môžme ilustrovať na nasledujúcich podmnožinách množiny M:

X - os x

Y – rovina yz

Z – rovina určená osou ya bodom (1,0,1)

Teraz $Y \wedge Z$ je os y a $X \vee (Y \wedge Z)$ je teda rovina xy, zatial' čo prvky $X \vee Y$ a $X \vee Z$ sú rovné \mathbb{R}^3 , a teda $(X \vee Y) \wedge (X \vee Z) = \mathbb{R}^3$.