Guia Foca GNU/Linux Capítulo 1 - Introdução

Bem vindo ao guia *Foca GNU/Linux*. O nome *FOCA* significa *FO*nte de Consulta e Aprendizado. Este guia é dividido em 3 níveis de aprendizado e versão que esta lendo agora contém:

- Iniciante
- Intermediário

Entre o conteúdo do quia, você encontrará:

- Textos explicativos falando sobre o sistema Linux, seus comandos, como manusear arquivos, diretórios, etc.
- Explicações iniciais sobre as partes básicas do computador e periféricos
- Comandos e Programas equivalentes entre o DOS/Windows e o GNU/Linux
- Todos os materiais contidos na versão iniciante são ideais para quem está tendo o primeiro contato com computadores e/ou com o Linux. A linguagem usada é simples com o objetivo de explicar claramente o funcionamento de cada comando e evitando, sempre que possível, termos técnicos
- Explicações necessárias para conhecer, operar, configurar, desenvolver, personalizar seu sistema Linux.
- Uma lista de aplicativos clientes para serem usados em seu sistema GNU/Linux, com suas características,
 equipamento mínimo requerido e espaço em disco recomendado para instalação.
- Particionamento de disco
- Criação de partições e arquivos contendo o sistema de arquivos *ext2*, *ext3*, *reiserfs* ou *xfs* (para gravação de arquivos e diretórios) e swap (memória virtual) e as vantagens/desvantagens de se utilizar um arquivo ou partição para armazenamento de dados.
- Compilação de programas/kernel, com explicações sobre cada uma das opções ajudando-o a decidir sobre a inclusão ou não.
- Manipulação de módulos do kernel
- Explicações sobre hardwares (Interrupções, DMA, Jumpers, Jumperless, Plug-and-Play) e como configura-los no Linux, valores padrões e resolução de conflitos entre hardwares.
- Dicas de como avaliar e comprar bons hardwares para que seu computador tenha o melhor desempenho
 (também válido para DOS, Windows e outras plataformas). Desta maneira você saberá porque alguns
 dispositivos de boa qualidade, como placas de rede, custam até 3 vezes mais caro que outras e o que a placa
 traz de especial para ter este diferencial.

- Como modificar facilmente o idioma usado em seu sistema (localização) para o modo texto e modo gráfico.
- Utilização de compactadores de arquivos
- Mais opções para os comandos existentes na versão *Iniciante* do guia e novos comandos.
- Conhecer os arquivos de configuração e arquivos básicos de segurança, entendendo para que eles servem e como usa-los.
- Dicas de como saber escolher bons periféricos para uso no GNU/Linux e outros sistemas operacionais
- Manutenção básica do computador (verificação do disco, desfragmentação) e manutenção automática feita através dos programas de e scripts configurados.
- Introdução a rede no Linux (com a configuração de dispositivos de rede, etc.).
- Configurações básicas de segurança de Rede
- Gerenciadores de inicialização (boot), o que são e como funcionam e como criar um arquivo de inicialização para inicializar o GNU/Linux pelo disco rígido ou mais de um Sistema Operacional.
- Criação de Memória virtual no disco rígido e em arquivo.
- Os materiais contidos na versão intermediário são ideais para quem já tem um conhecimento básico do sistema GNU/Linux mas que deseja se aprofundar neste sistema conhecendo os arquivos necessários para o funcionamento do GNU/Linux, como modifica-los e como estas modificações afetam o funcionamento do sistema.

Para melhor organização, dividi o guia em 3 versões: *Iniciante, Intermediário* e *Avançado*. Sendo que a versão *Iniciante* é voltada para o utilizador que não tem nenhuma experiência no GNU/Linux. A última versão deste quia pode ser encontrada em: Página Oficial do guia Foca GNU/Linux.

Caso tiver alguma sugestão, correção, crítica para a melhoria deste guia, envie um e-mail para gleydson@guiafoca.org.

O *Foca GNU/Linux* é atualizado freqüentemente, por este motivo recomendo que preencha a ficha do aviso de atualizações na página web em <u>Página Oficial do guia Foca GNU/Linux</u> no fim da página principal. Após preencher a ficha do aviso de atualizações, você receberá um e-mail sobre o lançamento de novas versões do guia e o que foi modificado, desta forma você poderá decidir em copia-la caso a nova versão contenha modificações que considera importantes.

Venho recebendo muitos elegios de pessoas do Brasil (e de paises de fora também) elogiando o trabalho e a qualidade da documentação. Agradeço a todos pelo apoio, tenham certeza que este trabalho é desenvolvido pensando em repassar um pouco do conhecimento que adquiri ao começar o uso do Linux.

Também venho recebendo muitos e-mails de pessoas que passaram na prova LPI nível 1 e 2 após estudar usando o guia Foca GNU/Linux. Fico bastante feliz por saber disso, pois nunca tive a intenção de tornar o guia uma referência livre para estudo da LPI e hoje é usado para estudo desta difícil certificação que aborda comandos, serviços, configurações, segurança, empacotamento, criptografia, etc.

1.1 Antes de começar

Os capítulos *Introdução* e *básico* contém explicações teóricas sobre o computador, GNU/Linux, etc., você pode pular este capítulos caso já conheça estas explicações ou se desejar partir para a prática e quiser vê-los mais tarde, se lhe interessar.

Se você já é um utilizador do DOS e Windows, recomendo ler <u>Para quem esta migrando (ou pensando em migrar) do DOS/Windows para o Linux, Capítulo 4</u>. Lá você vai encontrar comparações de comandos e programas DOS/Windows e GNU/Linux.

Para quem está começando, muita teoria pode atrapalhar o aprendizado, é mais produtivo ver na prática o que o computador faz e depois porque ele faz isto. Mesmo assim, recomendo ler estes capítulos pois seu conteúdo pode ser útil...

Coloquei abaixo algumas dicas para um bom começo:

- Recomendo que faça a leitura deste guia e pratique imediatamente o que aprendeu. Isto facilita o
 entendimento do programa/comando/configuração.
- É preciso ter interesse em aprender, se você tiver vontade em aprender algo, você terá menos dificuldade do que em algo que não gosta e está se obrigando a aprender.
- Decorar não adianta, pelo contrário, só atrapalha no aprendizado. Você precisa entender o que o comando faz, deste modo você estará estimulando e desenvolvendo sua interpretação, e entenderá melhor o assunto (talvez até me de uma força para melhorar o quia ;-)
- Curiosidade também é importante. Você talvez possa estar procurando um comando que mostre os arquivos que contém um certo texto, e isto fará você chegar até o comando grep, depois você conhecerá suas opções, etc.
- Não desanime vendo outras pessoas que sabem mais que você, lembre-se que ninguém nasce sabendo :-). Uma pessoa pode ter mais experiência em um assunto no sistema como compilação de programas, configuração, etc., e você pode ter mais interesse em redes.
- Ninguém pode saber tudo da noite para o dia, não procure saber tudo sobre o sistema de uma só vez senão
 não entenderá NADA. Caso tenha dúvidas sobre o sistema, procure ler novamente a seção do guia, e caso ainda
 não tenha entendido procure ajuda nas página de manual (veja <u>Páginas de Manual, Seção 31.1</u>), ou nas listas de
 discussão (veja <u>Listas de discussão</u>, <u>Seção 31.12.2</u>) ou me envie uma mensagem gleydson@guiafoca.org.
- Certamente você buscará documentos na Internet que falem sobre algum assunto que este guia ainda não explica. Muito cuidado! O GNU/Linux é um sistema que cresce muito rapidamente, a cada semana uma nova versão é lançada, novos recursos são adicionados, seria maravilhoso se a documentação fosse atualizada com a mesma freqüência.
 - Infelizmente a atualização da documentação não segue o mesmo ritmo (principalmente aqui no Brasil). É comum você encontrar na Internet documentos da época quando o kernel estava na versão 2.0.20, 2.2.30, 2.4.8,

etc. Estes documentos são úteis para pessoas que por algum motivo necessitam operar com versões antigas do Kernel Linux, mas pode trazer problemas ou causar má impressão do GNU/Linux em outras pessoas.

Por exemplo, você pode esbarrar pela Internet com um documento que diz que o Kernel não tem suporte aos "nomes extensos" da VFAT (Windows 95), isto é verdade para kernels anteriores ao 2.0.31, mas as versões mais novas que a 2.0.31 reconhecem sem problemas os nomes extensos da partição Windows VFAT.

Uma pessoa desavisada pode ter receio de instalar o GNU/Linux em uma mesma máquina com Windows por causa de um documento como este. Para evitar problemas deste tipo, verifique a data de atualização do documento, se verificar que o documento está obsoleto, contacte o autor original e peça para que ele retire aquela seção na próxima versão que será lançada.

O GNU/Linux é considerado um sistema mais difícil do que os outros, mas isto é porque ele requer que a
pessoa realmente aprenda e conheça computadores e seus periféricos antes de fazer qualquer coisa
(principalmente se você é um técnico em manutenção, redes, instalações, etc., e deseja oferecer suporte
profissional a este sistema).

Você conhecerá mais sobre computadores, redes, hardware, software, discos, saberá avaliar os problemas e a buscar a melhor solução, enfim as possibilidades de crescimento neste sistema operacional depende do conhecimento, interesse e capacidade de cada um.

- A interface gráfica existe, mas os melhores recursos e flexibilidade estão na linha de comando. Você pode ter certeza que o aprendizado no GNU/Linuxajudará a ter sucesso e menos dificuldade em usar qualquer outro sistema operacional.
- Peça ajuda a outros utilizadores do GNU/Linux quando estiver em dúvida ou não souber fazer alguma coisa no sistema. Você pode entrar em contato diretamente com outros utilizadores ou através de listas de discussão (veja <u>Listas de discussão</u>, <u>Seção 31.12.2</u>).

Boa Sorte e bem vindo ao GNU/Linux! qleydson (gleydson@guiafoca.org).

1.2 Pré-requisitos para a utilização deste guia

É assumido que você já tenha seu GNU/Linux instalado e funcionando. É assumido que você tenha entendido a função de boa parte dos comandos que consta na versão iniciante do Foca Linux, arquivos e permissões de acesso. Em resumo, que saiba decidir quando e qual(is) comando(s) deve usar em cada situação.

Caso não entenda as explicações da versão INTERMEDIÁRIO, recomendo que faça a leitura da versão INICIANTE do Foca Linux que pode ser encontrada emhttp://www.guiafoca.org.

Este guia não cobre a instalação do sistema. Para detalhes sobre instalação, consulte a documentação que acompanha sua distribuição GNU/Linux.

1.3 Sistema Operacional

O *Sistema Operacional* é o conjunto de programas que fazem a interface do utilizador e seus programas com o computador. Ele é responsável pelo gerenciamento de recursos e periféricos (como memória, discos, arquivos, impressoras, CD-ROMs, etc.), interpretação de mensagens e a execução de programas.

No Linux o Kernel mais o conjunto de ferramentas GNU compõem o Sistema Operacional. O kernel (que é a base principal de um sistema operacional), poderá ser construído de acordo com a configuração do seu computador e dos periféricos que possui.

1.4 O Linux

O Linux é um sistema operacional criado em 1991 por *Linus Torvalds* na universidade de Helsinki na Finlândia. É um sistema Operacional de código aberto distribuído gratuitamente pela Internet. Seu código fonte é liberado como *Free Software* (software livre), sob licença GPL, o aviso de copyright do kernel feito por Linus descreve detalhadamente isto e mesmo ele não pode fechar o sistema para que seja usado apenas comercialmente.

Isto quer dizer que você não precisa pagar nada para usar o Linux, e não é crime fazer cópias para instalar em outros computadores, nós inclusive incentivamos você a fazer isto. Ser um sistema de código aberto pode explicar a performance, estabilidade e velocidade em que novos recursos são adicionados ao sistema.

Para rodar o Linux você precisa, no mínimo, de um computador 386 SX com 2 MB de memória (para um kernel até a série 2.2.x) ou 4MB (para kernels 2.4 e 2.6) e 100MB disponíveis em seu disco rígido para uma instalação básica e funcional.

O sistema segue o padrão *POSIX* que é o mesmo usado por sistemas *UNIX* e suas variantes. Assim, aprendendo o Linux você não encontrará muita dificuldade em operar um sistema do tipo UNIX, FreeBSD, HPUX, SunOS, etc., bastando apenas aprender alguns detalhes encontrados em cada sistema.

O código fonte aberto permite que qualquer pessoa veja como o sistema funciona (útil para aprendizado), corrija alguma problema ou faça alguma sugestão sobre sua melhoria, esse é um dos motivos de seu rápido crescimento, do aumento da compatibilidade de periféricos (como novas placas sendo suportadas logo após seu lançamento) e de sua estabilidade.

Outro ponto em que ele se destaca é o suporte que oferece a placas, CD-Roms e outros tipos de dispositivos de última geração e mais antigos (a maioria deles já ultrapassados e sendo completamente suportados pelo sistema operacional). Este é um ponto forte para empresas que desejam manter seus micros em funcionamento e pretendem investir em avanços tecnológicos com as máquinas que possui.

Hoje o Linux é desenvolvido por milhares de pessoas espalhadas pelo mundo, cada uma fazendo sua contribuição ou mantendo alguma parte do kernel gratuitamente. *Linus Torvalds* ainda trabalha em seu desenvolvimento e na coordenação dos grupos de trabalho do kernel.

O suporte ao sistema também se destaca como sendo o mais eficiente e rápido do que qualquer programa comercial disponível no mercado. Existem centenas de consultores especializados espalhados ao redor do mundo. Você pode se inscrever em uma lista de discussão e relatar sua dúvida ou alguma falha, e sua mensagem será vista por centenas de utilizadores na Internet e algum irá te ajudar ou avisará as pessoas responsáveis sobre a falha encontrada para devida correção. Para detalhes, veja <u>Listas de discussão</u>, <u>Seção 31.12.2</u>.

1.4.1 Algumas Características do Linux

 É livre e desenvolvido voluntariamente por programadores experientes, hackers, e contribuidores espalhados ao redor do mundo que tem como objetivo a contribuição para a melhoria e crescimento deste sistema operacional.

Muitos deles estavam cansados do excesso de propaganda (Marketing) e baixa qualidade de sistemas comerciais existentes

- Também recebe apoio de grandes empresas como IBM, Sun, HP, etc. para seu desenvolvimento
- Convivem sem nenhum tipo de conflito com outros sistemas operacionais (com o DOS, Windows, OS/2) no mesmo computador.
- Multitarefa real
- Multiutilizador
- Suporte a nomes extensos de arquivos e diretórios (255 caracteres)
- Conectividade com outros tipos de plataformas como Apple, Sun, Macintosh, Sparc, Alpha, PowerPc, ARM, Unix, Windows, DOS, etc.
- Utiliza permissões de acesso a arquivos, diretórios e programas em execução na memória RAM.
- Proteção entre processos executados na memória RAM
- Suporte a mais de 63 terminais virtuais (consoles)
- Modularização O Linux somente carrega para a memória o que é usado durante o processamento, liberando totalmente a memória assim que o programa/dispositivo é finalizado
- Devido a modularização, os drivers dos periféricos e recursos do sistema podem ser carregados e removidos completamente da memória RAM a qualquer momento. Os drivers (módulos) ocupam pouco espaço quando carregados na memória RAM (cerca de 6Kb para a Placa de rede NE 2000, por exemplo)
- Não há a necessidade de se reiniciar o sistema após a modificar a configuração de qualquer periférico ou parâmetros de rede. Somente é necessário reiniciar o sistema no caso de uma instalação interna de um novo periférico, falha em algum hardware (queima do processador, placa mãe, etc.).
- Não precisa de um processador potente para funcionar. O sistema roda bem em computadores 386Sx 25 com 4MB de memória RAM (sem rodar o sistema gráfico X, que é recomendado 32MB de RAM). Já pensou no seu desempenho em um Pentium, Xeon, ou Athlon?;-)
- Suporte nativo a múltiplas CPUs, assim processadores como Dual Core Athlon Duo, Quad Core tem seu poder de processamento integralmente aproveitado.

- Suporte nativo a dispositivos SATA, PATA, Fiber Channel
- Suporte nativo a virtualização, onde o Linux se destaca como plataforma preferida para execução de outros sistemas operacionais.
- O crescimento e novas versões do sistema não provocam lentidão, pelo contrário, a cada nova versão os desenvolvedores procuram buscar maior compatibilidade, acrescentar recursos úteis e melhor desempenho do sistema (como o que aconteceu na passagem do kernel 2.0.x para 2.2.x, da 2.2.x para a 2.4.x).
- Não é requerido pagamento de licença para usa-lo. O GNU/Linux é licenciado de acordo com os termos da GPL.
- Acessa corretamente discos formatados pelo DOS, Windows, Novell, OS/2, NTFS, SunOS, Amiga,
 Atari, Mac, etc.
- O LINUX NÃO É VULNERÁVEL A VÍRUS! Devido a separação de privilégios entre processos e respeitadas as
 recomendações padrão de política de segurança e uso de contas privilegiadas (como a de root, como veremos
 adiante), programas como vírus tornam-se inúteis pois tem sua ação limitada pelas restrições de acesso do
 sistema de arquivos e execução.
 - Qualquer programa (nocivo ou não) poderá alterar partes do sistema que possui permissões (será abordado como alterar permissões e tornar seu sistema mais restrito no decorrer do guia). Frequentemente são criados exploits que tentam se aproveitar de falhas existentes em sistemas desatualizados e usa-las para danificar o sistema. *Erroneamente* este tipo de ataque é classificado como vírus por pessoas mal informadas e são resolvidas com sistemas bem mantidos. Em geral, usando uma boa distribuição que tenha um bom sistema de atualização, 99.9% dos problemas com exploits são resolvidos.
- Rede TCP/IP mais rápida que no Windows e tem sua pilha constantemente melhorada. O GNU/Linux tem suporte nativo a redes TCP/IP e não depende de uma camada intermediária como o WinSock. Em acessos via modem a Internet, a velocidade de transmissão é 10% maior.
 Jogadores do Quake ou qualquer outro tipo de jogo via Internet preferem o GNU/Linux por causa da maior
 - Jogadores do Quake ou qualquer outro tipo de jogo via Internet preferem o GNU/Linux por causa da maior velocidade do Jogo em rede. É fácil rodar um servidor Quake em seu computador e assim jogar contra vários adversários via Internet.
- Roda aplicações DOS através do DOSEMU, QEMU, BOCHS. Para se ter uma idéia, é possível dar o boot em um sistema DOS qualquer dentro dele e ao mesmo tempo usar a multitarefa deste sistema.
- Roda aplicações Windows através do WINE.
- Suporte a dispositivos infravermelho.
- Suporte a rede via rádio amador.
- Suporte a dispositivos Plug-and-Play.
- Suporte a dispositivos USB.
- Suporte nativo a cartões de memória
- Suporte nativo a dispositivos I2C

- Integração com gerenciamento de energia ACPI e APM
- Suporte a Fireware.
- Dispositivos Wireless.
- Vários tipos de firewalls de alta qualidade e com grande poder de segurança de graça.
- Roteamento estático e dinâmico de pacotes.
- Ponte entre Redes, proxy arp
- Proxy Tradicional e Transparente.
- Possui recursos para atender a mais de um endereço IP na mesma placa de rede, sendo muito útil para situações de manutenção em servidores de redes ou para a emulação de "mais computadores" virtualmente.
 - O servidor WEB e FTP podem estar localizados no mesmo computador, mas o utilizador que se conecta tem a impressão que a rede possui servidores diferentes.
- Os sistemas de arquivos usados pelo GNU/Linux (Ext3, Ext3, reiserfs, xfs, jfs) organiza os arquivos de forma inteligente evitando a fragmentação e fazendo-o um poderoso sistema para aplicações multi-usuárias exigentes e gravações intensivas.
- Permite a montagem de um servidor de publicação Web, E-mail, News, etc. com um baixo custo e alta performance. O melhor servidor Web do mercado, oApache, é distribuído gratuitamente junto com a maioria das distribuições Linux. O mesmo acontece com o Sendmail.
- Por ser um sistema operacional de código aberto, você pode ver o que o código fonte (instruções digitadadas pelo programador) faz e adapta-lo as suas necessidades ou de sua empresa. Esta característica é uma segurança a mais para empresas sérias e outros que não querem ter seus dados roubados (você não sabe o que um sistema sem código fonte faz na realidade enquanto esta processando o programa).
- Suporte a diversos dispositivos e periféricos disponíveis no mercado, tanto os novos como obsoletos.
- Pode ser executado em 16 arquiteturas diferentes (Intel, Macintosh, Alpha, Arm, etc.) e diversas outras subarquiteturas.
- Empresas especializadas e consultores especializados no suporte ao sistema espalhados por todo o mundo.
- Entre muitas outras características que você descobrirá durante o uso do sistema.

TODOS OS ÍTENS DESCRITOS ACIMA SÃO VERDADEIROS E TESTADOS PARA QUE TIVESSE PLENA CERTEZA DE SEU FUNCIONAMENTO.

1.5 Distribuições do Linux

Só o kernel GNU/Linux não é suficiente para se ter uma sistema funcional, mas é o principal.

Existem grupos de pessoas, empresas e organizações que decidem "distribuir" o Linux junto com outros programas essenciais (como por exemplo editores gráficos, planilhas, bancos de dados, ambientes de programação, formatação de documentos, firewalls, etc).

Este é o significado básico de *distribuição*. Cada distribuição tem sua característica própria, como o sistema de instalação, o objetivo, a localização de programas, nomes de arquivos de configuração, etc. A escolha de uma distribuição é pessoal e depende das necessidades de cada um.

Algumas distribuições bastante conhecidas são: *Slackware, Debian, Red Hat, Conectiva, Suse, Monkey,* todas usando o SO Linux como kernel principal (aDebian é uma distribuição independente de kernel e pode ser executada sob outros kernels, como o GNU hurd).

A escolha de sua distribuição deve ser feita com muita atenção, não adianta muita coisa perguntar em canais de IRC sobre qual é a melhor distribuição, ser levado pelas propagandas, pelo vizinho, etc. O melhor caminho para a escolha da distribuição, acredito eu, seria perguntar as características de cada uma e porque essa pessoa gosta dela ao invés de perguntar qual é a melhor, porque quem lhe responder isto estará usando uma distribuição que se encaixa de acordo com suas necessidade e esta mesma distribuição pode não ser a melhor para lhe atender.

Segue abaixo as características de algumas distribuições seguidas do site principal e endereço ftp:

Debian

http://www.debian.org/ - Distribuição desenvolvida e atualizada através do esforço de voluntários espalhados ao redor do mundo, seguindo o estilo de desenvolvimento GNU/Linux. Por este motivo, foi adotada como a distribuição oficial do projeto *GNU*. Possui suporte a língua Portuguesa, é a única que tem suporte a 14 arquiteturas diferentes (i386, Alpha, Sparc, PowerPc, Macintosh, Arm, etc.) e aproximadamente 15 sub-arquiteturas. A instalação da distribuição pode ser feita tanto através de Disquetes, CD-ROM, Tftp, Ftp, NFS ou através da combinação de vários destes em cada etapa de instalação.

Acompanha mais de 18730 programas distribuídos em forma de pacotes divididos em 10 CDs binários e 8 de código fonte, cada um destes programas são mantidos e testados pela pessoa responsável por seu empacotamento. Os pacotes são divididos em diretórios de acordo com sua categoria e gerenciados através de um avançado sistema de gerenciamento de pacotes (o dpkg) facilitando a instalação e atualização de pacotes. Possui tanto ferramentas para administração de redes e servidores quanto para desktops, estações multimídia, jogos, desenvolvimento, web, etc.

A atualização da distribuição ou de pacotes individuais pode ser feita facilmente através de 2 comandos, não requerendo adquirir um novo CD para usar a última versão da distribuição. É a única distribuição não comercial onde todos podem contribuir com seu conhecimento para o seu desenvolvimento. Para gerenciar os voluntários, conta com centenas de listas de discussão envolvendo determinados desenvolvedores das mais diversas partes do mundo.

São feitos extensivos testes antes do lançamento de cada versão para atingir um alto grau de confiabilidade. As falhas encontradas nos pacotes podem ser relatados através de um *sistema de tratamento de falhas* que encaminha a falha encontrada diretamente ao responsável para avaliação e correção. Qualquer um pode receber a lista de falhas ou sugestões sobre a distribuição cadastrando-se

em uma das lista de discussão que tratam especificamente da solução de falhas encontradas na distribuição (disponível na página principal da distribuição).

Os pacotes podem ser instalados através de Tarefas contendo seleções de pacotes de acordo com a utilização do computador (servidor Web, desenvolvimento, TeX, jogos, desktop, etc.), *Perfis* contendo seleções de pacotes de acordo com o tipo de utilizador (programador, operador, etc.), ou através de uma seleção individual de pacotes, garantindo que somente os pacotes selecionados serão instalados fazendo uma instalação enxuta.

Existe um time de desenvolvedores com a tarefa específica de monitorar atualizações de segurança em serviços (apache, sendmail, e todos os outros 8000 pacotes)que possam compromenter o servidor, deixando-o vulnerável a ataques. Assim que uma falha é descoberta, é enviado uma alerta (DSA - Debian Security Alert) e disponibilizada uma atualização para correção das diversas versões da Debian. Isto é geralmente feito em menos de 48 horas desde a descoberta da falha até a divulgação da correção. Como quase todas as falhas são descobertas nos programas, este método também pode ser usado por administradores de outras distribuições para manterem seu sistema seguro e atualizado.

O suporte ao utilizador e desenvolvimento da distribuição são feitos através de listas de discussões e canais IRC. Existem uma lista de consultores habilitados a dar suporte e assistência a sistemas Debian ao redor do mundo na área consultores do site principal da distribuição.

ftp://ftp.debian.org/ - Endereço Ftp para download.

Slackware

http://www.slackware.com/ - Distribuição desenvolvida por Patrick Volkerding, desenvolvida para alcançar facilidade de uso e estabilidade como prioridades principais. Foi a primeira distribuição a ser lançada no mundo e costuma trazer o que há de mais novo enquanto mantém uma certa tradição, provendo simplicidade, facilidade de uso e com isso flexibilidade e poder.

Desde a primeira versão lançada em Abril de 1993, o Projeto Slackware Linux tem buscado produzir a distribuição Linux mais UNIX-like, ou seja, mais parecida com UNIX. O Slackware segue os padrões Linux como o Linux File System Standard, que é um padrão de organização de diretórios e arquivos para as distribuições.

Enquanto as pessoas diziam que a Red Hat era a melhor distribuição para o utilizador iniciante, o Slackware é o melhor para o utilizador mais "velho", ou seja programadores, administradores, etc. <a href="ftp://ftp.slackwarebrasil.org/linux/slackwarebr

SuSE

http://www.suse.com/ - Distribuição comercial Alemã com a coordenação sendo feita através dos processos administrativos dos desenvolvedores e de seu braço norte-americano. O foco da Suse é o utilizador com conhecimento técnico no Linux (programador, administrador de rede, etc.) e não o utilizador iniciante no Linux (até a versão 6.2).

A distribuição possui suporte ao idioma e teclado Português, mas não inclui (até a versão 6.2) a documentação em Português. Eis a lista de idiomas suportados pela distribuição: English, Deutsch, Français, Italiano, Espanholñ, Português, Português Brasileiro, Polski, Cesky, Romanian, Slovensky, Indonésia.

Possui suporte as arquiteturas Intel x86 e Alpha. Sua instalação pode ser feita via CD-ROM ou CD-DVD (é a primeira distribuição com instalação através de DVD).

Uma média de 1500 programas acompanham a versão 6.3 distribuídos em 6 CD-ROMs. O sistema de gerenciamento de pacotes é o RPM padronizado. A seleção de pacotes durante a instalação pode ser feita através da seleção do perfil de máquina (developer, estação kde, gráficos, estação gnome, servidor de rede, etc.) ou através da seleção individual de pacotes.

A atualização da distribuição pode ser feita através do CD-ROM de uma nova versão ou baixando pacotes de ftp://ftp.suse.com/. Utilizadores registrados ganham direito a suporte de instalação via e-mail. A base de dados de suporte também é excelente e está disponível na web para qualquer utilizador independente de registro.

ftp://ftp.suse.com/ - Ftp da distribuição SuSE.

Red Hat Enterprise Linux

http://www.redhat.com/ - Distribuição comercial suportada pela Red Hat e voltada a servidores de grandes e medias empresas. Também conta com uma certificação chamada RHCE específica desta distro.

Ela não está disponível para download, apenas vendida a custos a partir de 179 dólares (a versão workstation) até 1499 dólares (advanced server).

Fedora

http://fedora.redhat.com/ - O Fedora Linux é a distribuição de desenvolvimento aberto patrocinada pela RedHat e pela comunidade, originada em 2002 e baseada em versão da antiga linha de produtos RedHat Linux, a distribuição mais utilizada do mundo. Esta distribuição não é suportada pela Red Hat como distribuição oficial (ela suporta apenas a linha Red Hat Enterprise Linux), devendo obter suporte através da comunidade ou outros meios.

A distribuição Fedora dá prioridade ao uso do computador como estação de trabalho. Além de contar com uma ampla gama de ferramentas de escritório possui funções de servidor e aplicativos para produtividade e desenvolvimento de softwares. Considerado um dos sistemas mais fáceis de instalar e utilizar, inclui tradução para portugês do Brasil e suporte às plataformas Intel e 64 bits.

Por basear-se no RedHat. o Fedora conta com um o up2date, um software para manter o sistema atualizado e utiliza pacotes de programas no formato RPM, um dos mais comuns. Por outro lado, não possui suporte a MP3, Video Players ou NTFS (Discos do Windows) em virtude de problemas legais sendo necessário o download de alguns plugins para a utilização destas funções.

O Fedora não é distribuido oficialmente através de mídias ou CDs, se você quiser obte-lo terá de procurar distribuidores independentes ou fazer o download dos 4 CDs através do site oficial.

http://download.fedora.redhat.com/pub/fedora/linux/core/2/i386/iso/ - Download da distribuição Fedora.

Mandrake

http://www.mandrakelinux.com/ - Uma distribuição francesa que se instala praticamente sozinha. Boa auto-detecção de periféricos, inclusive web-cams.

ftp://mandrake.mirrors.pair.com/Mandrakelinux/official/iso/move/2.0/i586/ - Download da distribuição.

http://guiadohardware.net/kurumin/index.php/ - Uma distribuição baseada em Debian que roda diretamente a partir do CD, sendo ideal para quem deseja testar uma distribuição Linux. Caso gosto, pode ser instalada diretamente no disco rígido. Distribuida a partir do CD, é maravilhosa e suporta boa quantidade de hardwares disponíveis. A versão instalada possui suporte a maioria dos winmodens mais encontrados no Brasil.

http://fisica.ufpr.br/kurumin/ - Download da distribuição.

Para contato com os grupos de utilizadores que utilizam estas distribuições, veja <u>Listas de discussão, Seção</u> 31.12.2.

1.6 Software Livre

(tradução do texto Linux e o Sistema GNU de Richard Stallman obtido no site do CIPSGA: http://www.cipsga.org.br/). O projeto *GNU*começou em 1983 com o objetivo de desenvolver um sistema operacional Unix-like totalmente livre. Livre se refere à liberdade, e não ao preço; significa que você está livre para executar, distribuir, estudar, mudar e melhorar o software.

Um sistema Unix-like consiste de muitos programas diferentes. Nós achamos alguns componentes já disponíveis como softwares livres -- por exemplo, X Window e TeX. Obtemos outros componentes ajudando a convencer seus desenvolvedores a tornarem eles livres -- por exemplo, o Berkeley network utilities. Outros componentes nós escrevemos especificamente para o GNU -- por exemplo, GNU Emacs, o compilador GNU C, o GNU C library, Bash eghostscript. Os componentes desta última categoria são "software GNU". O sistema GNU consiste de todas as três categorias reunidas.

O projeto GNU não é somente desenvolvimento e distribuição de alguns softwares livres úteis. O coração do projeto GNU é uma idéia: que software deve ser*livre*, e que a liberdade do utilizador vale a pena ser defendida. Se as pessoas têm liberdade mas não a apreciam conscientemente, não irão mantê-la por muito tempo. Se queremos que a liberdade dure, precisamos chamar a atenção das pessoas para a liberdade que elas têm em programas livres.

O método do projeto GNU é que programas livres e a idéia da liberdade dos utilizadores ajudam-se mutuamente. Nós desenvolvemos software GNU, e conforme as pessoas encontrem programas GNU ou o sistema GNU e comecem a usá-los, elas também pensam sobre a filosofia GNU. O software mostra que a idéia funciona na prática. Algumas destas pessoas acabam concordando com a idéia, e então escrevem mais programas livres. Então, o software carrega a idéia, dissemina a idéia e cresce da idéia.

Em 1992, nós encontramos ou criamos todos os componentes principais do sistema exceto o kernel, que nós estávamos escrevendo. (Este kernel consiste do microkernel Mach mais o GNU HURD. Atualmente ele está funcionando, mas não está preparado para os utilizadores. Uma versão alfa deverá estar pronta em breve.)

Então o kernel do Linux tornou-se disponível. Linux é um kernel livre escrito por Linus Torvalds compatível com o Unix. Ele não foi escrito para o projeto GNU, mas o Linux e o quase completo sistema GNU fizeram uma combinação útil. Esta combinação disponibilizou todos os principais componentes de um sistema operacional compatível com o Unix, e, com algum trabalho, as pessoas o tornaram um sistema funcional. Foi um sistema GNU variante, baseado no kernel do Linux.

Ironicamente, a popularidade destes sistemas desmerece nosso método de comunicar a idéia GNU para as pessoas que usam GNU. Estes sistemas são praticamente iguais ao sistema GNU -- a principal diferença é a escolha do kernel. Porém as pessoas normalmente os chamam de "sistemas Linux (Linux systems)". A primeira impressão que se tem é a de que um "sistema Linux" soa como algo completamente diferente de "sistema GNU", e é isto que a maioria dos utilizadores pensam que acontece.

A maioria das introduções para o "sistema Linux" reconhece o papel desempenhado pelos componentes de software GNU. Mas elas não dizem que o sistema como um todo é uma variante do sistema GNU que o projeto GNU vem compondo por uma década. Elas não dizem que o objetivo de um sistema Unix-like livre como este veio do projeto GNU. Daí a maioria dos utilizadores não saber estas coisas.

Como os seres humanos tendem a corrigir as suas primeiras impressões menos do que as informações subseqüentes tentam dizer-lhes, estes utilizadores que depois aprendem sobre a relação entre estes sistemas e o projeto GNU ainda geralmente o subestima.

Isto faz com que muitos utilizadores se identifiquem como uma comunidade separada de "utilizadores de Linux", distinta da comunidade de utilizadores GNU. Eles usam todos os softwares GNU; de fato, eles usam quase todo o sistema GNU; mas eles não pensam neles como utilizadores GNU, e freqüentemente não pensam que a filosofia GNU está relacionada a eles.

Isto leva a outros problemas também -- mesmo dificultando cooperação com a manutenção de programas. Normalmente quando utilizadores mudam um programa GNU para fazer ele funcionar melhor em um sistema específico, eles mandam a mudança para o mantenedor do programa; então eles trabalham com o mantenedor explicando a mudança, perguntando por ela, e às vezes reescrevendo-a para manter a coerência e mantenebilidade do pacote, para ter o patch instalado.

Mas as pessoas que pensam nelas como "utilizadores Linux" tendem a lançar uma versão "Linux-only" do programa GNU, e consideram o trabalho terminado. Nós queremos cada e todos os programas GNU que funcionem "out of the box" em sistemas baseados em Linux; mas se os utilizadores não ajudarem, este objetivo se torna muito mais difícil de atingir.

Como deve o projeto GNU lidar com este problema? O que nós devemos fazer agora para disseminar a idéia de que a liberdade para os utilizadores de computador é importante?

Nós devemos continuar a falar sobre a liberdade de compartilhar e modificar software -- e ensinar outros utilizadores o valor destas liberdades. Se nós nos beneficiamos por ter um sistema operacional livre, faz sentido para nós pensar em preservar estas liberdades por um longo tempo. Se nós nos beneficiamos por ter uma variedade de software livres, faz sentido pensar sobre encorajar outras pessoas a escrever mais software livre, em vez de software proprietário.

Nós não devemos aceitar a idéia de duas comunidades separadas para GNU e Linux. Ao contrário, devemos disseminar o entendimento de que "sistemas Linux" são variantes do sistema GNU, e que os utilizadores destes sistemas são tanto utilizadores GNU como utilizadores Linux (utilizadores do kernel do Linux). Utilizadores que têm conhecimento disto irão naturalmente dar uma olhada na filosofia GNU que fez estes sistemas existirem.

Eu escrevi este artigo como um meio de fazer isto. Outra maneira é usar os termos "sistema GNU baseado em Linux (Linux-based GNU system)" ou "sistema GNU/Linux (GNU/Linux system)", em vez de "sistema Linux", quando você escreve sobre ou menciona este sistema.

1.7 Processamento de Dados

Processamento de Dados é o envio de dados ao computador que serão processados e terão um resultado de saída útil.

Veja também Dispositivos de Entrada e Saída, Seção 1.14.

1.8 O Computador

É uma máquina eletrônica que processa e armazena os dados e pode executar diversos programas para realizar uma série de tarefas e assim atender a necessidade do seu utilizador. O computador não é uma máquina inteligente, ele apenas executa as instruções dos programas que foram escritos pelo programador.

1.9 Conhecendo o Computador

Esta explica para que serve cada botão do painel do computador e monitor de vídeo. Se você já sabe para que cada um serve, recomendo pular esta parte, é o BE-A-BA. :-)

Todo computador possuem funções que são usados em outros tipos e modelos. Você pode ter um modelo de computador e um amigo seu outro tipo e mesmo tendo aparência diferente, terão as mesmas funções.

1.9.1 Tipos de Gabinete

Quanto ao tipo, o gabinete pode ser Desktop, Mini-torre e Torre.

Desktop

É usado na posição *Horizontal* (como o vídeo cassete). Sua característica é que ocupa pouco espaço em uma mesa, pois pode ser colocado sob o monitor. A desvantagem é que normalmente possui pouco espaço para a colocação de novas placas e periféricos. Outra desvantagem é a dificuldade na manutenção deste tipo de equipamento (hardware).

Mini-Torre

É usado na posição *Vertical* (torre). É o modelo mais usado. Sua característica é o espaço interno para expansão e manipulação de periféricos. A desvantagem é o espaço ocupado em sua mesa :-).

Torre

Possui as mesmas características do *Mini-torre*, mas tem uma altura maior e mais espaço para colocação de novos periféricos. Muito usado em servidores de rede e placas que requerem uma melhor refrigeração.

1.9.2 Painel Frontal

O painel frontal do computador tem os botões que usamos para ligar, desligar, e acompanhar o funcionamento do computador. Abaixo o significado de cada um:

Botão POWER

Liga/Desliga o computador.

Botão TURBO

Se ligado, coloca a placa mãe em operação na velocidade máxima (o padrão). Desligado, faz o computador funcionar mais lentamente (depende de cada placa mãe). Deixe sempre o *TURBO* ligado para seu computador trabalhar na velocidade máxima de processamento.

Botão RESET

Reinicia o computador. Quando o computador é reiniciado, uma nova partida é feita (é como se nós ligássemos novamente o computador). Este botão é um dos mais usados por utilizadores Windows dentre os botões localizados no painel do microcomputador. No GNU/Linux é raramente usado (com menos freqüência que a tecla SCROLL LOCK).

É recomendado se pressionar as teclas <CTRL> <ALT> para reiniciar o computador e o botão *RESET* somente em último caso, pois o <CTRL> <ALT> avisa ao Linux que o utilizador pediu para o sistema ser reiniciado assim ele poderá salvar os arquivos, fechar programas e tomar outras providências antes de resetar o computador.

KEYLOCK

Permite ligar/desligar o teclado. É acionado por uma chave e somente na posição "Cadeado Aberto" permite a pessoa usar o teclado (usar o computador). Alguns computadores não possuem KEYLOCK.

LED POWER

Led (normalmente verde) no painel do computador que quando aceso, indica que o computador está ligado. O led é um diodo emissor de luz (light emission diode) que emite luz fria.

LED TURBO

Led (normalmente amarelo) no painel do computador. Quando esta aceso, indica que a chave turbo está ligada e o computador funcionando a toda velocidade.

Raramente as placas mãe Pentium e acima usam a chave turbo. Mesmo que exista no gabinete do micro, encontra-se desligada.

LED HDD

Led (normalmente vermelho) no painel do computador. Acende quando o disco rígido (ou discos) do computador esta sendo usado.

1.9.3 Monitor de Vídeo

O monitor de vídeo se divide em dois tipos:

- Monocromático Mostra tons de cinza
- Policromático A conhecida tela colorida

Quando ao padrão do monitor, existem diversos:

CGA - Color Graphics Adapter

Capacidade de mostrar 4 cores simultâneas em modo gráfico. Uma das primeiras usadas em computadores PCs, com baixa qualidade de imagem, poucos programas funcionavam em telas CGA, quase todos em modo texto. Ficou muito conhecida como "tela verde" embora existem modelos CGA preto e branco.

Hércules

Semelhante ao CGA. Pode mostrar 2 cores simultâneas em modo gráfico. A diferença é que apresenta uma melhor qualidade para a exibição de gráficos mas por outro lado, uma grande variedade de programas para monitores CGA não funcionam com monitores Hércules por causa de seu modo de vídeo. Também é conhecido por sua imagem amarela.

Dependendo da placa de vídeo, você pode configurar um monitor Hércules monocromático para trabalhar como *CGA*.

EGA - Enhanced Graphics Adapter

Capacidade de mostrar 16 cores simultâneas em modo gráfico. Razoável melhora da qualidade gráfica, mais programas rodavam neste tipo de tela. Ficou mais conhecida após o lançamento dos computadores 286, mas no Brasil ficou pouco conhecida pois logo em seguida foi lançada o padrão VGA.

VGA - Video Graphics Array

Capacidade de mostrar 256 cores simultâneas. Boa qualidade gráfica, este modelo se mostrava capaz de rodar tanto programas texto como gráficos com ótima qualidade de imagem. Se tornou o padrão mínimo para rodar programas em modo gráfico.

1.10 Placa Mãe

É a placa principal do sistema onde estão localizados o Processador, Memória RAM, Memória Cache, BIOS, CMOS, RTC, etc. A placa mãe possui encaixes onde são inseridas placas de extensão (para aumentar as funções do computador). Estes encaixes são chamados de "SLOTS".

1.10.1 Alguns componentes da placa mãe

Abaixo a descrição de alguns tipos de componentes eletrônicos que estão presentes na placa mãe. Não se preocupe se não entender o que eles significam agora:

- RAM Memória de Acesso Aleatório (Randomic Access Memory). É uma memória de armazenamento temporário dos programas e depende de uma fonte de energia para o armazenamento dos programas. É uma memória eletrônica muito rápida assim os programas de computador são executados nesta memória. Seu tamanho é medido em Kilobytes ou Megabytes.
 - Os chips de memória *RAM* podem ser independentes (usando circuitos integrados encaixados em soquetes na placa mãe) ou agrupados placas de 30 pinos, 72 pinos e 168 pinos.
 - Quanto maior o tamanho da memória, mais espaço o programa terá ao ser executado. O tamanho de memória RAM pedido por cada programa varia, ognu/Linux precisa de no mínimo 2 MB de memória RAM para ser executado pelo processador.
- PROCESSADOR É a parte do computador responsável pelo processamentos das instruções matemáticas/lógicas e programas carregados na memória *RAM*.
- CO-PROCESSADOR Ajuda o Processador principal a processar as instruções matemáticas. É normalmente embutido no Processador principal em computadores a partir do 486 DX2-66.
- CACHE Memória de Armazenamento Auxiliar do Processador. Possui alta velocidade de funcionamento, normalmente a mesma que o processador. Serve para aumentar o desempenho de processamento. A memória Cache pode ser embutida na placa mãe ou encaixada externamente através de módulos L2.
- BIOS É a memória ROM que contém as instruções básicas para a inicialização do computador, reconhecimento e ativação dos periféricos conectados a placa mãe. As BIOS mais modernas (a partir do 286) também trazem um programa que é usado para configurar o computador modificando os valores localizados na CMOS.
 - As placas controladoras SCSI possuem sua própria *BIOS* que identificam automaticamente os periféricos conectados a ela. Os seguintes tipos de chips podem ser usados para gravar a *BIOS*:
- ROM Memória Somente para Leitura (Read Only Memory). Somente pode ser lida. É programada de fábrica através de programação elétrica ou química.
- PROM Memória Somente para Leitura Programável (Programable Read Only Memory) idêntica a ROM mas que pode ser programada apenas uma vez por máquinas "Programadoras PROM". É também chamada de MASK ROM.
- EPROM Memória semelhante a PROM, mas seu conteúdo pode ser apagado através raios ultra-violeta.
- EEPROM Memória semelhante a *PROM*, mas seu conteúdo pode ser apagado e regravado. Também é chamada de *Flash*.
- CMOS É uma memória temporária alimentada por uma Bateria onde são lidas/armazenadas as configurações do computador feitas pelo programa residente na BIOS.

1.11 Memória do Computador

A memória é a parte do computador que permitem o armazenamento de dados. A memória é dividida em dois tipos: Principal e Auxiliar. Normalmente quando alguém fala em "memória de computador" está se referindo a memória "Principal". Veja abaixo as descrições de *Memória Principal* e *Auxiliar*.

1.11.1 Memória Principal

É um tipo de memória eletrônica que depende de uma fonte de energia para manter os dados armazenados e perde os dados quando a fonte de energia é desligada. A memória *RAM* do computador (Randomic Access Memory - Memória de Acesso aleatório) é o principal exemplo de memória de armazenamento Principal. Os dados são armazenados em circuitos integrados ("chips") e enquanto você está usando seu computador, a *RAM* armazena e executa seus programas. Os programas são executados na memória *RAM* porque a memória eletrônica é muito rápida. As memórias EDO, DIMM, DDR, DDR2 são exemplos de memória*RAM*. Se desligarmos o computador ou ocorrer uma queda de energia, você perderá os programas que estiverem em execução ou o trabalho que estiver fazendo. Por esse motivo é necessário o uso de uma memória auxiliar (veja Memória Auxiliar, Secão 1.11.2).

1.11.2 Memória Auxiliar

São dispositivos que não dependem de uma fonte de energia para manter os dados armazenados, os dados não são perdidos quando a fonte de energia é desligada. As *Memórias Auxiliares* são muito mais lentas que as *Memórias Principais* porque utilizam mecanismos mecânicos e elétricos (motores e eletroímãs) para funcionar e fazer a leitura/gravação dos dados.

Um exemplo de dispositivos de armazenamento auxiliar são os pen drives, disquetes, cartões SD, discos rígidos, unidades de fita, Zip Drives, CD-ROM, etc.

A *Memória Auxiliar* resolve o problema da perda de dados causado pela *Memória Principal* quando o computador é desligado, desta forma podemos ler nossos arquivos e programas da *memória Auxiliar* e copia-los para a *Memória Principal* (memória RAM) para que possam ser novamente usados.

Um exemplo simples é de quando estiver editando um texto e precisar salva-lo, o que você faz é simplesmente salvar os dados da memória *RAM* que estão sendo editados para o disco rígido, desta forma você estará quardando seu documento na *Memória Auxiliar*.

Este tipo de memória é mais lento que a memória principal, é por este motivo que os programas somente são carregados e executados na *Memória Principal*.

1.12 Discos

Os discos são memórias de armazenamento Auxiliares. Entre os vários tipos de discos existentes, posso citar os Flexíveis, Rígidos e CDs. Veja as explicações sobre cada um deles abaixo.

1.12.1 Discos Flexíveis

São discos usados para armazenar e transportar pequenas quantidades de dados. Este tipo de disco é normalmente encontrado no tamanho 3 1/2 (1.44MB) polegadas e 5 1/4 polegadas (360Kb ou 1.2MB). Hoje os discos de 3 1/2 são os mais utilizados por terem uma melhor proteção por causa de sua capa plástica rígida, maior capacidade e o menor tamanho o que facilita seu transporte.

Os disquetes são inseridos em um compartimento chamado de "Unidade de Disquetes" ou "Drive" que faz a leitura/gravação do disquete.

Sua característica é a baixa capacidade de armazenamento e baixa velocidade no acesso aos dados mas podem ser usados para transportar os dados de um computador a outro com grande facilidade. Os disquetes de computador comuns são discos flexíveis.

1.12.2 Disco Rígido

É um disco localizado dentro do computador. É fabricado com discos de metal recompostos por material magnético onde os dados são gravados através de cabeças e revestido externamente por uma proteção metálica que é preso ao gabinete do computador por parafusos. Também é chamado de HD (Hard Disk) ou Winchester. É nele que normalmente gravamos e executamos nossos programas mais usados.

A característica deste tipo de disco é a alta capacidade de armazenamento de dados e alta velocidade no acesso aos dados.

1.12.3 CD

É um tipo de disco que permite o armazenamento de dados através de um *compact disc* e os dados são lidos através de uma lente ótica. A Unidade de CD é localizada no gabinete do computador e pode ler CDs de músicas, arquivos, interativos, etc. Existem diversos tipos de CDs no mercado, entre eles:

- CD-R CD gravável, pode ser gravado apenas uma vez. Possui sua capacidade de armazenamento entre 600MB e 740MB dependendo do formato de gravação usado. Usa um formato lido por todas as unidades de CD-ROM disponíveis no mercado.
- CD-RW CD regravável, pode ser gravado várias vezes, ter seus arquivos apagados, etc. Seu uso é semelhante ao de um disquete de alta capacidade. Possui capacidade de armazenamento de normalmente 640MB mas isto depende do fabricante. Usa um formato que é lido apenas por unidades leitoras e gravadoras multiseção.
- DVD-ROM CD ROM de alta capacidade de armazenamento. Pode armazenar mais de 17GB de arquivos ou programas. É um tipo de CD muito novo no mercado e ainda em desenvolvimento. É lido somente por unidades próprias para este tipo de disco.

1.13 Cuidados Básicos com o Computador e Disquetes

Abaixo uma lista de cuidados básicos para garantir uma melhor conservação e funcionamento de seu computador e disquetes.

- Não deixe seu computador em locais expostos a umidade ou sol. O mesmo se aplica a discos magnéticos, como os disquetes.
- Limpe o Gabinete e o Monitor com um pano levemente umedecido em água com sabão neutro ou solução de limpeza apropriada para micros. Não use Álcool, querosene, acetona ou qualquer outro tipo de produto abrasivo. O uso de um destes podem estragar o gabinete de seu computador e se um destes produtos atingir a parte interna pode causar problemas nas placas ou até um incêndio!
- Não retire o Pino central da tomada do computador, ele não veio sobrando e tem utilidade! Este pino é ligado a
 carcaça do computador (chassis) e deve ser ligado ao terra de sua rede elétrica. As descargas elétricas vindas da
 fonte e componentes do micro são feitas no chassis e se este pino for retirado você poderá tomar choques ao
 tocar em alguma parte metálica do micro e queimar componentes sensíveis como o disco rígido, placa mãe, etc.

Se estiver em dúvida consulte um eletricista.

- Não instale seu computador muito perto de campos magnéticos com televisores, aparelhos de som, motores, etc. Estes aparelhos geram ruídos elétricos e/ou magnéticos que podem prejudicar o bom funcionamento de seu micro. OBS: As caixas de som de kits multimídia possuem os ímãs revestidos de metais em seus autofalantes para não causar nenhuma interferência ao computador.
- Não use a bandeja da unidade de CD-ROM como porta copos!
- Não coloque objetos dentro da unidade de disquetes.
- Antes de desligar seu computador, utilize o comando "shutdown -h now" para finalizar os programas, salvar os dados, desmontar os sistemas de arquivos em seu sistema GNU/Linux. Para detalhes veja Desligando o computador, Seção 1.16.

1.14 Dispositivos de Entrada e Saída

- Entrada Permite a comunicação do utilizador com o computador. São dispositivos que enviam dados ao computador para processamento. Exemplos: Teclado, mouse, caneta ótica, scanner.
 - O dispositivo de entrada padrão (stdin) em sistemas GNU/Linux é o teclado.
- Saída Permite a comunicação do computador com o utilizador. São dispositivos que permitem o utilizador visualizar o resultado do processamento enviado ao computador. Exemplos: Monitor, Impressora, Plotter.
 O dispositivo de saída padrão (stdout) em sistemas GNU/Linux é o Monitor.

1.15 Ligando o computador

Para ligar o computador pressione o botão POWER ou I/O localizado em seu painel frontal do micro.

Imediatamente entrará em funcionamento um programa residente na memória *ROM* (Read Only Memory - memória somente para leitura) da placa mãe que fará os testes iniciais para verificar se os principais dispositivos estão funcionando em seu computador (memória RAM, discos, processador, portas de impressora, memória cache, etc).

Quando o ROM termina os testes básicos, ele inicia a procura do setor de boot nos discos do computador que será carregado na memória RAM do computador. Após carregar o setor de boot, o sistema operacional será iniciado (veja <u>Sistema Operacional, Seção 1.3</u>). O setor de boot contém a porção principal usada para iniciar o sistema operacional.

No GNU/Linux, o setor de boot normalmente é criado por um gerenciador de inicialização (um programa que permite escolher qual sistema operacional será iniciado). Deste modo podemos usar mais de um sistema operacional no mesmo computador (como o DOS e Linux). O gerenciador de inicialização mais usado em sistemas GNU/Linux na plataforma Intel X86 é o LILO.

Caso o ROM não encontre o sistema operacional em nenhum dos discos, ele pedirá que seja inserido um disquete contendo o Sistema Operacional para partida.

1.16 Desligando o computador

Para desligar o computador primeiro digite (como root): "shutdown -h now", "halt" ou "poweroff", o GNU/Linux finalizará os programas e gravará os dados em seu disco rígido, quando for mostrada a mensagem "power down", pressione o botão *POWER* em seu gabinete para desligar a alimentação de energia do computador.

NUNCA desligue diretamente o computador sem usar o comando shutdown, halt ou poweroff, pois podem ocorrer perda de dados ou falhas no sistema de arquivos de seu disco rígido devido a programas abertos e dados ainda não gravados no disco.

Salve seus trabalhos para não correr o risco de perde-los durante o desligamento do computador.

1.17 Reiniciando o computador

Reiniciar quer dizer iniciar novamente o sistema. Não é recomendável desligar e ligar constantemente o computador pelo botão ON/OFF, por este motivo existe recursos para reiniciar o sistema sem desligar o computador. No GNU/Linux você pode usar o comando reboot, shutdown -r now e também pressionar simultaneamente as teclas <CTRL> <ALT> para reiniciar de uma forma segura.

Observações:

- Salve seus trabalhos para não correr o risco de perde-los durante a reinicialização do sistema.
- O botão reset do painel frontal do computador também reinicia o computador, mas de uma maneira mais forte pois está ligado diretamente aos circuitos da placa mãe e o sistema será reiniciado imediatamente, não tendo nenhuma chance de finalizar corretamente os programas, gravar os dados da memória no disco e desmontar os sistemas de arquivos. O uso indevido da tecla reset pode causar corrompimentos em seus arquivos e perdas.

Prefira o método de reinicialização explicado acima e use o botão reset somente em último caso.	