Math 650 Fall 2011 Homework #3

Due Oct. 10, Mon. in class

P.1 Consider the equality constrained optimization problem on \mathbb{R}^n :

$$\min -\sum_{i=1}^{n} x_i^3, \quad \text{subject to } \sum_{i=1}^{n} x_i^2 = 1,$$

where $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$.

- (1) Show that the optimization problem has a global minimizer.
- (2) Show that each local minimizer must satisfy the KKT conditions.
- (3) Determine a global minimizer (using the 1st and 2nd order optimality conditions).
- (4) Use (3) to show the following inequality:

$$\sum_{i=1}^{n} |x_i|^3 \le \left(\sum_{i=1}^{n} x_i^2\right)^{3/2}, \quad \forall \ x \in \mathbb{R}^n.$$

- P.2 Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function on \mathbb{R}^n . Suppose f is homogeneous of degree $\nu \geq 1$, namely, for any real number α , $f(\alpha x) = \alpha^{\nu} f(x), \forall x \in \mathbb{R}^n$. Show that for a given vector norm $\|\cdot\|$ on \mathbb{R}^n , there exist $\alpha, \beta \in \mathbb{R}$ such that $\beta \|x\|^{\nu} \leq f(x) \leq \alpha \|x\|^{\nu}, \forall x \in \mathbb{R}^n$. Further, if the degree ν is odd and f is not identically zero on \mathbb{R}^n , then $\alpha > 0$.
- P.3 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(x_1, x_2) = x_1^2 + x_2^4 + c_1x_1 + c_2x_2$, where c_1, c_2 are some constants.
 - (1) Show that f is coercive on \mathbb{R}^2 .
 - (2) Show that f has a global minimizer on \mathbb{R}^2 , and find global minimizer(s) (using the 1st and 2nd order optimality conditions).
- P.4 Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be real-valued functions. Prove the following statements:
 - (1) If f is lower semicontinuous (lsc) at $x^* \in \mathbb{R}^n$, then -f is upper semicontinuous (usc) at x^* .
 - (2) If f is both lsc and usc at $x^* \in \mathbb{R}^n$, then f is continuous at x^* .
 - (3) Let (x_k) be a sequence in \mathbb{R}^n . Then

$$\liminf f(x_k) + \liminf g(x_k) \le \liminf (f(x_k) + g(x_k)). \tag{1}$$

Give an example where the strict inequality holds. Further, use the inequality (1) to show that the sum of two lsc functions remains lsc.

P.5 Let $f_{\alpha}: \mathbb{R}^n \to \mathbb{R}$ be an indexed function that is lower semicontinuous on \mathbb{R}^n , where $\alpha \in I$. Let $f(x) := \sup_{\alpha \in I} f_{\alpha}(x)$ for each $x \in \mathbb{R}^n$. Show that f is lsc on \mathbb{R}^n . (*Hint*: use the epigraph argument.)