Wydział:	Dzień:Poniedziałek 14-17		Zespół:
Fizyki	Data: 20.03.2017		8
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

Ćwiczenie 45: Stany wzbudzenia atomów rtęci i neonu Badanie efektu Franca-Hertza

1 Wstęp teoretyczny

Poziomy energetyczne elektronów w atomie są skwantowane, czyli mogą przyjmować tylko określone, dyskretne wartości. Zmiana poziomu energetycznego z niższego na wyższy (wzbudzony) może zajść tylko wtedy, gdy elektron otrzyma ilość energii równą różnicy między tymi poziomami. James Franc i Gustaw Hertz w swoim doświadczeniu z 1913 roku potwierdzili ten fakt, czym pomogli ugruntować kwantową teorię atomu. W swoim eksperymencie badali przewodzenie prądu przez elektrony w lampach wypełnionych gazowym neonem albo oparami rtęci. Zmiana prądu anodowego związana ze zwiększaniem energii dostarczanej do elektronów nie zachodzi w takim przypadku monotonicznie, ale rośnie i maleje w równych przedziałach czasu. Dzieje się tak, gdyż atomy mogą pochłaniać energie rozpędzonych elektronów dopiero, gdy osiągnie ona konkretną wartość odpowiadającą różnicy między dwoma poziomami energetycznymi.

2 Opis układu i metody pomiarowej

W skład układu pomiarowego dla lampy rtęciowej wchodzą:

- lampa rtęciowa
- piec do ogrzania rtęci
- termopara z woltomierzem mierząca temperaturę rtęci
- wentylator
- zasilacz umożliwiający regulację napięcia żarzenia, napięcia hamowania i napięcia przyspieszającego
- 4 woltomierze mierzące powyższe napięcia i napięcie anodowe

Układ pomiarowy dla neonu jest podobny, jednak nie zawiera pieca, termopary ani wentylatora, gdyż neon w temperaturze pokojowej jest w stanie gazowym. Zawiera zaś niewystępującą w zestawie rtęci siatkę pozwalającą na ukierunkowanie strumienia elektronów.

W dowiadczeniu najpierw podgrzano rtęć do postaci gazowej. Następnie ustalono, stałe przez całe doświadczenie, napięcie żarzenia i napięcie hamowania. Mierzone było napięcie anodowe (będące wprost

proporcjonalne do prądu anodowego) w zależności o zmienianego przez eksperymentatora napięcia przyspieszającego w zakresie od 0 do 30 voltów. Doświadczenie dla neonu przebiegało analogicznie. Jedynymi różnicami był brak początkowego podgrzewania i zakres napięcia przyspieszającego od 0 do 70 voltów.

3 Wyniki pomiarów

3.1 Rtęć

U[V] $Ua[mV]$	0 0.20 3.12			3 .60 4.5 .01 2.8		6.60	7 7.60 4.11	8 8.20 3.69			11 1: 0.6 11.0 0.6 12.1)
U[V] Ua[mV]	14 11.60 13.18	15 12.50 6.42	16 13.10 4.59	17 13.30 4.31	18 13.50 4.65	19 14.20 5.69	20 15.20 11.26	21 15.7 16.6	22 16.2 19.7	23 16.40 19.89	24 16.60 18.22	25 17.60 7.65
$egin{aligned} & U[V] \\ & Ua[mV] \end{aligned}$	27 18.30 5.17	28 18.90 5.87	29 20.00 12.68	30 20.50 18.78	31 20.80 23.37	32 21.10 26.53	33 21.40 27.97	34 21.7 26.7	35 22.70 12.85	36 23.2 9.5	37 23.50 8.41	38 23.90 9.06
U[V] Ua[mV]	40 25.10 19.38	41 26.10 32.45	42 26.40 34.67	43 26.80 34.68	44 27.20 31.35	45 28.20 19.44	46 28.60 17.12	47 29.20 16.76	29.50	30.50	30.90	
3.2 Ne	on											
U[V] Ua[mV]	0 0.00 0.86			3 .50 5.1 .85 1.0		7.40	7 8.80 2.13	8 9.70 2.33	9 10.60 2.55	10 11.30 2.63	11 12.40 2.84	
$egin{aligned} & U[V] \ & Ua[mV] \end{aligned}$	13 14.90 3.23	14 15.80 3.41	15 16.80 3.51	16 18.10 3.12	17 20.30 1.67	18 20.90 1.57	19 21.50 1.42	20 22.00 1.23	22.70	23.70	25.00	
$\begin{array}{c} U[V] \\ Ua[mV] \end{array}$	25 26.00 7.76	26 28.00 10.03	27 28.50 10.44	28 29.1 10.8	29 30.00 11.07	30 31.10 11.78	31 32.60 12.37	32 33.70 12.69	33 34.50 11.42	34 36.60 5.56	35 37.50 3.34	
$\begin{array}{c} U[V] \\ Ua[mV] \end{array}$	37 39.50 2.04	38 40.6 4.9	39 42.30 10.09	40 43.30 12.71	41 44.30 14.85	42 45.30 16.33	43 46.50 17.88	44 47.00 18.27	45 47.50 18.77	46 48.00 19.27	47 49.00 19.96	
U[V] Ua[mV]	49 50.00 20.52	50 51.00 20.49	51 51.50 19.58	52 54.00 11.11	53 56.00 5.55	54 56.50 5.53	55 57.00 6.43	56 57.50 7.48	60.00	63.00	64.10	

	61	62	63	64	65	66
U[V]	66.00	66.60	67.10	67.60	68.10	68.60
Ua[mV]	28.18	29.21	29.76	30.31	30.14	29.61

4 Analiza wyników

Uzyskane wyniki napięcia anodowego przeskalowano przez czynnik : $10^8 \frac{V}{A}$ w celu uzyskania prądu anodowego. Następnie otrzymane wyniki wraz z niepewnościami przedstawiono na wykresie, z którego odczytano kolejne ekstrema.

Minin	num	Maksimum			
U[V]	I[nA]	U[V]	I[nA]		
4.5	28.5	6.6	42.6		
8.2	36.9	11.3	137.7		
14.3	43.1	16.4	198.9		
18.3	51.7	21.4	279.7		
23.5	84.1	26.4	346.8		
29.2	167.6				

Minim	num	Maksimum			
U[V]	I[nA]	U[V]	I[nA]		
22.0	12.3	16.8	35.8		
38.5	20.2	33.7	126.9		
56.5	55.3	50.0	205.2		
		67.6	303.1		

Z uzyskanych wynikow można wyliczyć różnicę napięć miedzy kolejnymi maksimami/minimami i, przemnażając ją przez $e=1.602*10^{-19}C$, energię wzbudzenia.

	R	tęc	Neon		
	Z minimow	Z maksimow	Z minimow	Z maksimow	
rożnica napiec[V]	4.94(6)	5.05(7)	17.25(30)	16.93(23)	
energia wzbudzenia[eV]	4.94(6)	5.05(7)	17.25(30)	16.93(23)	

5 Analiza niepewności

Niepewności pomiarów zostały wyliczone ze wzoru:

$$\Delta U = U * klasa + 1 * rozdzielczosc \tag{1}$$

,
gdzie klasa używanego woltomierza wynosi 0.01, zaś za rozdzielczość przyjęto najm
niejsze możliwe wskazanie woltomierza w danym ustawieniu.

W celu otrzymania niepewności prądu anodowego przeskalowano niepewność odpowiadającego mu napięcia anodowego przez ten sam czynnik skalujący co wcześniej same napięcia. Wreszcie, niepewności różnic napięć wyliczono metodą propagacji niepewności:

$$\Delta U_{midzy} = \sqrt{\Delta U_n^2 + \Delta U_1^2} \frac{1}{n-1} \tag{2}$$

6 Wnioski

Otrzymane wyniki dla maksimów i minimów są zgodne w dwóch przedziałach niepewności. Wartosci dla rtęci są także zgodne z wynikami uzyskanymi przez Franca i Hertza w 1913r: 4.9V. Wyniki dla neonu są nieco poniżej tablicowego 18.7V, jednak ogólny kształt wykresu został zachowany. W obu przypadkach wartości wyliczone z minimów są bliższe tablicowym.