Predicting Stock Movement of Hang Seng's Components

Presentation by

Lakshmi Prabha S.,

NYCDSA boot camp student.

Stock market index:

- A stock market index (or just an 'index') is a number that measures the relative value of a group of <u>stocks</u>.
- As the stocks in this group change value, the index also changes value.
- If an index goes up by 1% then that means the total value of the securities which make up the index have gone up by 1% in value.

Hong Kong's Hang Seng Index and Components

- 0. AACTechnologies Holdings Inc. (2018.HK)
- 1. AIA Group Limited (1299.HK)
- 2. BOC Hong Kong (Holdings) Limited (2388.HK)
- 3. China Life Insurance Company Limited (2628.HK)
- 4. China Mengniu Dairy Company Limited (2319.HK)
- 5. China Mobile Limited (0941.HK)
- 6. China Petroleum & Chemical Corporation (0386.HK)

- 7. China Resources Land Limited (1109.HK)
- 8. China Resources Power Holdings Company Limited (0836.HK)
- 9. CITIC Limited (0267.HK)
- 10. CK Infrastructure Holdings Limited (1038.HK)
- 11. CLP Holdings Limited (0002.HK)
- 12. CNOOC Limited (0883.HK)
- 13. Galaxy Entertainment Group Limited (0027.HK)
- 14. Hang Lung Properties Limited (0101.HK)

- 15. Henderson Land Development Company Limited (0012.HK)
- 16. Hengan International Group Company Limited (1044.HK)
- 17. Industrial and Commercial Bank of China Limited (1398.HK)
- 18. Lenovo Group Limited (0992.HK)
- 19. New World Development Company Limited (0017.HK)
- 20. Ping An Insurance (Group) Company of China, Ltd. (2318.HK)
- 21. Power Assets Holdings Limited (0006.HK)

- **22.** Sands China Ltd. (1928.HK)
- 23. Sino Land Company Limited (0083.HK)
- 24. Sun Hung Kai Properties Limited (0016.HK)
- 25. Tencent Holdings Limited (0700.HK)
- 26. The Bank of East Asia, Limited (0023.HK)
- 27. The Hong Kong and China Gas Company Limited (0003.HK)
- 28. WH Group Limited (0288.HK)
- 29. Wharf Real Estate Investment Company Limited (1997.HK)

Literature Review

Year pub.	Index	Exp Year	Market moves	Techniques	Predictors	Mean acc.%	Out- performer
2009	Hang seng index	2001- 2006	Smooth - very few shocks	Supervised ML techniques	OHLC for major indices, currency	84	SVM
2014	Indian BSE (4 comp)	2003- 2012	With Shocks	Supervised ML and DL	Technical Indicators	90	RFC

3/23/2018

Literature Review

Year pub	Index	Exp Year	Market moves	Techniques	Predictors	Mean acc. %	Out- performer
2016	Thailand's SET50 index	2009- 2014	With Shocks	ANN + GA	Technical Indicators	62-68	ANN + GA
2016	Norway Index	2011- 2015	Very few Shocks	Sup. ML and DL	One Technical Indicator	60 - 62	Many

3/23/2018

Questions:

 How to train each model to extract its best for Hang Seng's components?

(or)

- In what way a model has to be trained to make it perform well for Hang Seng's components.
- Which stocks will influence the movement of a particular stock component?

- Predict major components of Hang Seng index
- Stock prediction was made into a two-class prediction problem.
- This was done by breaking the problem down to whether or not a stock would rise.
- Experimental Period: 11th march 2013 to 8th March
 2018

Performance Evaluation Metric

- Mean Accuracy of all the components
- Accuracy is the percentage of correctly classified samples.
- Mean ROC-AUC Score of all the components
- ROC-AUC score is the area under the curve plotted between true positives and false positives.

Experimental Setup I - Considering Raw Prices

Predictors:

- Open, High, Low, Close values and Volume traded for
 - each of the 30 components
 - Hang-seng Index
 - Major world stock indices
- Span: 1 day (previous) Predictors: 290
- Span: 5 days Predictors:1040

Missing values imputed with 0

Target

=[1 if next day's close > current day's close, else -1]
Train and test sets: using train_test_split

Preliminary Tests

- set the time line for the prediction, meaning how many days of data that were used to predict forward.
 - Span considered: 1 day, 5 days, 10 days

Experimental Setup II – Considering Technical Indicator:

Percentage Change for OHLC values (old-new/old) *100

Predictors:

- Volume traded and % change of OHLC, for
 - each of the 30 components
 - Hang-seng Index
 - Major indices
 - Currency
- Span: 1 day (previous) Predictors: 290
- Span: 5 days Predictors: 1040
- Span: 10 days Predictors: 1810

Missing vales imputed with 'ffill' and 0

Target = [1 if %Change in Close > 0.5, else 0]

Train and test sets: using train_test_split

Preliminary Tests

- set the time line for the prediction, meaning how many days of data that were used to predict forward.
 - Span considered: 1 day, 5 days, 10 days
- set the threshold for the two classes, meaning how much a stock needs to increase in value before it is considered a positive.
 - Thresholds considered: 0.5%, 0.1% and 0%

Experimental Setup III – Considering Technical Indicator:

Percentage Change for OHLC values

Train set: 11th March 2013 – 26th May 2016

Test Set: 27th May 2016 - 7th March 2018

• Setup III

Classifier	Mean Accuracy % (1-)	Mean ROC_AUC (1-)
Logistic Regression	59.18	0.53
SVC	66.35	0.53
Random Forest	63.59	0.5
Gradient Boosting	67.01	0.52

Setup II

Classifier	Mean Accuracy % (1-)	Mean ROC_AUC (1-)
Logistic Regression	62.55	0.56
SVC	68.84	0.58
Random Forest	66.52	0.56
Gradient Boosting	69.94	0.59

Setup I

Classifier	Mean Accuracy % (1-)	Mean Accuracy % (5-)	
Logistic Regression	62.26	63.2	
SVC	63.3	63.63	
Random Forest	63.28	63.42	
Gradient Boosting	63.31	62.7	
Simple ANN	62.06	-	/23/2018

Preliminary Tests-Best Setup

Classifier	Stock price Threshold	Span	Mean Accuracy % Exp 3
Gradient Boosting	(0.5)	(1-)	67.009655
Logistic Regression	(0.5)	(1-)	59.181034
Random Forest	(0.5)	(5-) (1-)	63.980000 63.59
SVM	(0.5)	(5-) (1-)	66.494828 66.35

Setup III

Selected Stock price threshold: 0.5%

Selected Span: (1-), 1 day

Attempts to Improve Accuracy

Train set: 11th March 2013 – 6th March 2017 Test Set: 7th March 2017 – 7th March 2018 (smooth)

Classifier	Mean Accuracy % (1-) Smooth Test	Mean Accuracy % (1-) Shock Test
Logistic Regression	60.40	59.18
SVC	67.71	66.35
Random Forest	64.99	63.59
Gradient Boosting	67.44	67.01

Feature Engineering

- I
 - Fit the entire data with Random Forest Classifier
 - Extract 20 best features
 - Fit the reduced model with LR, SVC, RFC and GBC
- II
 - Fit the entire data with Gradient Boosting Classifier
 - Extract 20 best features
 - Fit the reduced model with LR, SVC, RFC and GBC

Results - Feature Engineering

Classifier	Mean Accuracy % (1-) Without Feature Eng	Mean Accuracy % (1-) With Feature Eng - RFC	Mean Accuracy % (1-) With Feature Eng - GBC
Logistic Regression	60.40	66.64	66.52
SVC	67.71	67.71	67.91
Random Forest	64.99	65.13	66.01
Gradient Boosting	67.44	66.15	67.24

• As SVC outperformed all other models, our journey continues with the other three models to extract their best.

One Model - Feature Engineering

- Fit the entire data with GBC
- Extract 10, 20, 50, 100, 150, 200 and 250 best features
- Fit the reduced models with GBC.
- Each component has specific requirements.

Hyper Parameter Tuning using Spark

Mean ROC-AUC Scores

• 1 day span and 0.5% threshold

Classifier	Python (before tuning)	Pyspark (before tuning)	Pyspark Tuned
Logistic Regression	0.56	0.574	0.61
Random Forest	0.56	0.6296	_

Bullish and Bearish Stocks - Clustering Techniques

- Bullish upward trend
- Bearish downward trend
- Normal mixture of positive and negative values
- $n_{clusters} = 3$
- kMeans Algorithm
- But the clusters are not properly grouped around 0.
- May be the reason for the best stock price threshold to be 0.5% in preliminary tests.

Observations: The results might indicate that

- different machine learning algorithms will perform differently on different stock markets.
- the model which gets trained in smooth period and predicts well in shock period may be considered for future predictions.
- the stock movement of a stock (say A) is not only dependent on its own OHLC values, but also on other stocks.
- it would be better for a trader to watch all the prices (previous day), which are influencing the stock price at hand, before trading.

Future Directions:

- Use other technical indicators mentioned in the literature and analyze the possibility of improving the accuracy.
- Extend this study to other major indices.

References:

- https://www.hindawi.com/journals/cin/2016/3045254/
- https://www.duo.uio.no/handle/10852/51275
- https://www.sciencedirect.com/science/article/pii/S0957 417414004473
- http://ccsenet.org/journal/index.php/mas/article/view/ 4586

