2. SMT Solving: Eager vs Lazy Approaches

Prof. Roberto Amadini

Department of Computer Science and Engineering, University of Bologna, Italy

Combinatorial Decision Making and Optimization

2nd cycle degree programme in Artificial Intelligence University of Bologna, Academic Year 2023/24

SMT solving

- SMT is an extension of SAT
- Unsurprisingly, SMT solving relies on SAT solving
 - ullet SMT solving \equiv finding (if any) a ${\cal T}$ -model satisfying a ${\cal T}$ -formula arphi
- How to encode SMT formulas to corresponding SAT formulas?
 - Eager approaches
 - Lazy approaches
 - Hybrid approaches

Eager approaches

- Eager approaches translate upfront SMT formulas to equisatisfiable SAT formulas
 - φ, φ' are equisatisfiable iff φ has a model $\mathcal{M} \iff \varphi'$ has a model \mathcal{M}'
 - all theory information is used from the beginning
- Eager encodings are naturally theory-specific
- Pros:
 - No need of theory solvers
 - once SMT formula encoded, we can use best available SAT solver(s)
- Cons:
 - Complex, ad hoc encodings needed for all the theories we use
 - Resulting SAT formula can be huge

Eager approaches

- E.g., consider a EUF formula φ . Instead of looking for a \mathcal{T}_{EUF} -model, we encode it into an equisatisfiable SAT formula φ^p :
- First step: replace function/predicate with constant equalities
- E.g., suppose we have terms f(a), f(b), f(c):
- Ackermann approach: replace f(a), f(b), f(c) with new constants A, B, C and add $a = b \rightarrow A = B, a = c \rightarrow A = C, b = c \rightarrow B = C$
- Bryant approach:
 - replace f(a) by A
 - replace f(b) by ite(a = b, A, B)
 - replace f(c) by ite(a = c, A, ite(b = c, B, C))

- E.g., suppose we have p(x, y, y) and p(x, z, t). We add P_1, P_2 and:
- Ackermann: replace p(x, y, y), p(x, z, t) with P_1, P_2 and add formula $(x = x \land y = z \land y = t) \rightarrow P_1 = P_2$
 - i.e., $y \neq z \lor y \neq t \lor P_1 = P_2$
- Bryant: replace p(x, y, y) with P_1 and p(x, z, t) with $ite(x = x \land y = z \land y = t, P_1, P_2)$

SAT Encodings

- ullet Second step: remove equalities to reduce φ in propositional logic
- Small-domain encoding: if φ has n distinct uninterpreted constants $\{c_1, \ldots, c_n\}$, a model $\mathcal{M} = \langle M, (\cdot)^{\mathcal{M}} \rangle$ for φ has size $|M| \leq n$
 - we don't have functions/predicates anymore, only equalities
- Each $c_i^{\mathcal{M}}$ can be interpreted in $\{1, \ldots, n\}$:
 - We only care if $c_i = c_j$ or $c_i \neq c_j$, we don't care about $|c_i c_j|$
 - Each $c_i^{\mathcal{M}}$ takes $O(\log n)$ bits \to overall $O(n \log n)$ space complexity
 - a = b encoded to SAT using the bits for a and b
- Direct encoding (a.k.a. per-constraint encoding):
 - Replace each a = b with a propositional symbol $P_{a,b}$
 - Add transitivity constraints of the form $(P_{a,b} \wedge P_{b,c}) \rightarrow P_{a,c}$

Which encoding?

- Small-domain and direct encoding are different ways of translating SMT→ SAT. Which one should be used?
- No general answer: it depends on the problem structure
 - Algorithm selection (AS) problem
- Direct encoding may generate larger problems solved quickly
 - Also depending on the underlying SAT solver(s)
- AS techniques enable to choose/combine different encodings
 - The first ML-based approach dates back to 2005 (it used SVMs): Sanjit A. Seshia. Adaptive Eager Boolean Encoding for Arithmetic Reasoning in Verification. PhD thesis, Carnegie Mellon University

Lazy approaches

- Lazy approach: instead of compiling SMT problems to SAT, we integrate SAT solvers with theory-specific decision procedures
- Most SMT solvers are nowadays lazy: SAT solvers + theory-specific solvers (*T*-solvers)
 - ullet Theory information used lazily, when checking \mathcal{T} -consistency of the Boolean abstraction for the input \mathcal{T} -formula
- ullet A ${\mathcal T}$ -solver takes in input a conjunction of ${\mathcal T}$ -literals φ and decides whether φ is satisfiable
 - ullet i.e., wheter it exists a $\mathcal{T} ext{-model }\mathcal{M}$ s.t. $arphi^{\mathcal{M}}=\mathit{true}$
- Pros: more modular and flexible, no blow-up of SAT clauses
- Cons: search is SAT-driven rather than \mathcal{T} -driven

$$\underbrace{g(a) = c}_{\ell_1} \ \land \ \underbrace{\left(f(g(a)) \neq f(c)\right)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3} \ \land \ \underbrace{c \neq d}_{\neg \ell_4} \ \text{Boolean ABSTEACTION}$$

- φ abstracted into SAT formula $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$ in CNF
 - \bullet Also written $\Phi = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4\}$

$$\underbrace{g(a) = c}_{\ell_1} \ \land \ \underbrace{\left(f(g(a)) \neq f(c)\right)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3} \ \land \ \underbrace{c \neq d}_{\neg \ell_4}$$

- φ abstracted into SAT formula $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$ in CNF
 - Also written $\Phi = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver sends Φ to SAT solver, returning model $\mathcal{M} = \{\ell_1, \neg \ell_2, \neg \ell_4\}$

$$\underbrace{g(a) = c}_{\ell_1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \vee \underbrace{g(a) = d}_{\ell_3}) \wedge \underbrace{c \neq d}_{\neg \ell_4}$$

- φ abstracted into SAT formula $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$ in CNF
 - Also written $\Phi = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver sends Φ to SAT solver, returning model $\mathcal{M} = \{\ell_1, \neg \ell_2, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver says \mathcal{M} is \mathcal{T} -inconsistent and sends back to SAT solver formula $\Phi' = \Phi \cup \neg \mathcal{M} = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4, \neg \ell_1 \lor \ell_2 \lor \ell_4\}$

$$\underbrace{g(a) = c}_{\ell_1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \vee \underbrace{g(a) = d}_{\ell_3}) \wedge \underbrace{c \neq d}_{\neg \ell_4}$$

- φ abstracted into SAT formula $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$ in CNF
 - Also written $\Phi = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver sends Φ to SAT solver, returning model $\mathcal{M} = \{\ell_1, \neg \ell_2, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver says \mathcal{M} is \mathcal{T} -inconsistent and sends back to SAT solver formula $\Phi' = \Phi \cup \neg \mathcal{M} = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4, \neg \ell_1 \lor \ell_2 \lor \ell_4\}$
- SAT solver returns model $\mathcal{M}' = \{\ell_1, \ell_2, \ell_3, \neg \ell_4\}$

$$\underbrace{g(a) = c}_{\ell_1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \vee \underbrace{g(a) = d}_{\ell_3}) \wedge \underbrace{c \neq d}_{\neg \ell_4}$$

- φ abstracted into SAT formula $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$ in CNF
 - Also written $\Phi = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver sends Φ to SAT solver, returning model $\mathcal{M} = \{\ell_1, \neg \ell_2, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver says \mathcal{M} is \mathcal{T} -inconsistent and sends back to SAT solver formula $\Phi' = \Phi \cup \neg \mathcal{M} = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4, \neg \ell_1 \lor \ell_2 \lor \ell_4\}$
- ullet SAT solver returns model $\mathcal{M}' = \{\ell_1, \ell_2, \ell_3, \lnot \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver says \mathcal{M}' is \mathcal{T} -inconsistent and sends back $\Phi'' = \Phi' \cup \neg \mathcal{M}' = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4, \neg \ell_1 \lor \ell_2 \lor \ell_4, \neg \ell_1 \lor \neg \ell_2 \lor \neg \ell_3 \lor \ell_4\}$

$$\underbrace{g(a) = c}_{\ell_1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \vee \underbrace{g(a) = d}_{\ell_3}) \wedge \underbrace{c \neq d}_{\neg \ell_4}$$

- φ abstracted into SAT formula $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$ in CNF
 - Also written $\Phi = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver sends Φ to SAT solver, returning model $\mathcal{M} = \{\ell_1, \neg \ell_2, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver says \mathcal{M} is \mathcal{T} -inconsistent and sends back to SAT solver formula $\Phi' = \Phi \cup \neg \mathcal{M} = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4, \neg \ell_1 \lor \ell_2 \lor \ell_4\}$
- SAT solver returns model $\mathcal{M}' = \{\ell_1, \ell_2, \ell_3, \neg \ell_4\}$
- $\mathcal{T}_{\mathcal{E}}$ -solver says \mathcal{M}' is \mathcal{T} -inconsistent and sends back $\Phi'' = \Phi' \cup \neg \mathcal{M}' = \{\ell_1, \neg \ell_2 \lor \ell_3, \neg \ell_4, \neg \ell_1 \lor \ell_2 \lor \ell_4, \neg \ell_1 \lor \neg \ell_2 \lor \neg \ell_3 \lor \ell_4\}$
- SAT solver detects Φ'' unsatisfiable

$$\Phi'' \equiv \ell_1 \wedge \left(\neg \ell_2 \vee \ell_3 \right) \vee \neg \ell_4 \vee \left(\neg \ell_1 \vee \ell_2 \vee \ell_4 \right) \vee \left(\neg \ell_1 \vee \neg \ell_2 \vee \neg \ell_3 \vee \ell_4 \right)$$

ℓ_1	ℓ_2	ℓ_3	ℓ_4	Φ"
true	true	true	true	false
true	true	true	false	false
true	true	false	true	false
true	true	false	false	false
true	false	true	true	false
true	false	true	false	false
true	false	false	true	false
true	false	false	false	false
false	true	true	true	false
false	true	true	false	false
false	true	false	true	false
false	true	false	false	false
false	false	true	true	false
false	false	true	false	false
false	false	false	true	false
false	false	false	false	false

Basic idea

```
Require: \varphi is a qff in the signature \Sigma of T
Ensure: output is sat if \varphi is T-satisfiable, and unsat otherwise
  F := \varphi^a abstract the formula
  loop
     A := \operatorname{get\_model}(F) try to get a solution (SAT)
     if A = none then
        return unsat CONJUNCTION OF CITCHES OF A
     else
        \mu := \operatorname{check\_sat}_T(\widehat{A^c})
        if \mu = \text{sat then}
           return sat
        else
           F:=F\wedge \neg \mu^a fix the boolean abstraction withe negation of
```

Fig. 1 A basic SMT solver based on the lazy approach. The function get_model implements the SAT engine. It takes a propositional formula F and returns either none, if F is unsatisfiable, or a satisfiable conjunction A of propositional literals such that $A \models F$. The function check_sat_T implements the theory solver. It takes a conjunction ψ of Σ -literals and returns either sat or a T-unsatisfiable conjunction μ of literals from ψ .

Figure from: Barrett, Clark, and Cesare Tinelli. "Satisfiability modulo theories." Handbook of model checking. Springer, Cham, 2018. 305-343.

Lazy approaches

Lazy approaches can implement several performance optimizations:

- T-consistency can be checked dynamically on partial assignments
 - instead of always considering the full propositional model
- Given \mathcal{T} -inconsistent assignment μ identify a smaller, \mathcal{T} -inconsistent $\eta \subseteq \mu$ and return $\neg \eta$
 - instead of always returning $\neg \mu$
- \bullet Upon $\mathcal{T}\text{-inconsistency,}$ backjump to a $\mathcal{T}\text{-consistent}$ point in the computation
 - instead of systematic chronological backtracking

Lazy approaches

- Lazy approaches have important benefits w.r.t. eager approaches:
- Everyone does what is good at:
 - SAT solvers take care of Boolean information
 - SAT clauses (in CNF) of the Boolean abstraction
 - Theory solvers take care of theory information
 - only conjunctions of literals, corresponding to (partial) assignments
- Modular approach:
 - SAT/SMT solvers communicate via simple APIs
 - SAT solvers can be embedded in lazy SMT solvers with little effort
 - ullet Adding a new theory ${\mathcal T}$ only requires plugging in a new ${\mathcal T}$ -solver

$\mathsf{CDCL}(\mathcal{T})$

- ullet In a nutshell, $\mathsf{CDCL}(\mathcal{T}) \simeq \mathsf{CDCL} + \mathcal{T}\text{-solver}$
 - ullet CDCL approach to SAT solving is extended to enumerate truth values whose \mathcal{T} -satisfiability is checked by a \mathcal{T} -solver
- T-solver:
 - Checks consistency of conjunctions of literals
 - ullet Possibly performs deductions of unassigned literals (${\mathcal T}$ -propagation)
 - Produces explanations of inconsistent assignments
 - Should be incremental and backtrackable

Abstract framework

- Let's see how the above example is decided via an abstract framework based on state transitions of the form $\mu \parallel \varphi \implies \mu' \parallel \varphi'$ s.t.
 - φ, φ' are \mathcal{T} -formulas
 - μ, μ' are (partial) Boolean assignments to atoms of φ, φ' resp.
 - $\mu \parallel \varphi$ and $\mu' \parallel \varphi'$ are called states
 - Each transition $\mu \parallel \varphi \implies \mu' \parallel \varphi'$ is defined by transition rules
 - A sequence of transitions is called derivation
- If from initial state $\emptyset \parallel \varphi$ we soundly derive a final state $\mu \parallel \varphi$ where μ is a complete assignment of φ , then φ is \mathcal{T} -consistent $(\mu \models_{\mathcal{T}} \varphi)$

Why an abstract framework?

- Skip over implementation details and unimportant control aspects
- Reason formally about solvers for SAT and SMT
- Model advanced features such as non-chronological backtracking, lemma learning, theory propagation, ...
- Describe different strategies and prove their correctness
- Compare different systems at a higher level

• Consider again EUF formula φ :

$$\underbrace{g(a) = c}_{\ell_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3}) \land \underbrace{c \neq d}_{\neg \ell_4}$$

• Initial state: $\emptyset \parallel \varphi$

$$\underbrace{g(a) = c}_{\ell_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3}) \land \underbrace{c \neq d}_{\neg \ell_4}$$

- Initial state: $\emptyset \parallel \varphi$
- $\bullet \ \, \text{Unit propagate rule:} \quad \emptyset \parallel \varphi \implies \{\ell_1\} \parallel \varphi$

$$\underbrace{g(a) = c}_{\ell_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3}) \land \underbrace{c \neq d}_{\neg \ell_4}$$

- Initial state: $\emptyset \parallel \varphi$
- Unit propagate rule: $\emptyset \parallel \varphi \implies \{\ell_1\} \parallel \varphi$
- ullet Unit propagate rule: $\{\ell_1\} \parallel arphi \implies \{\ell_1, \lnot \ell_4\} \parallel arphi$

$$\underbrace{g(a) = c}_{\ell_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3}) \land \underbrace{c \neq d}_{\neg \ell_4}$$

- $\bullet \ \ \, \text{Initial state:} \quad \emptyset \parallel \varphi$
- Unit propagate rule: $\emptyset \parallel \varphi \implies \{\ell_1\} \parallel \varphi$
- $\bullet \ \ \mathsf{Unit} \ \mathsf{propagate} \ \mathsf{rule} : \quad \{\ell_1\} \parallel \varphi \implies \{\ell_1, \neg \ell_4\} \parallel \varphi$
- $\bullet \ \, \mathcal{T}\text{-propagate rule:} \quad \{\ell_1, \neg \ell_4\} \parallel \varphi \implies \{\ell_1, \neg \ell_4, \underline{\ell_2}\} \parallel \varphi$

$$\underbrace{g(a) = c}_{\ell_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3}) \land \underbrace{c \neq d}_{\neg \ell_4}$$

- Initial state: $\emptyset \parallel \varphi$
- Unit propagate rule: $\emptyset \parallel \varphi \implies \{\ell_1\} \parallel \varphi$
- $\bullet \ \ \mathsf{Unit} \ \mathsf{propagate} \ \mathsf{rule} : \quad \{\ell_1\} \parallel \varphi \implies \{\ell_1, \neg \ell_4\} \parallel \varphi$
- $\bullet \ \, \mathcal{T}\text{-propagate rule:} \quad \{\ell_1, \neg \ell_4\} \parallel \varphi \implies \{\ell_1, \neg \ell_4, \ell_2\} \parallel \varphi$
- $\bullet \ \, \mathcal{T}\text{-propagate rule:} \quad \left\{\ell_1, \neg \ell_4, \ell_2\right\} \parallel \varphi \implies \left\{\ell_1, \neg \ell_4, \ell_2, \neg \ell_3\right\} \parallel \varphi$

$$\underbrace{g(a) = c}_{\ell_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg \ell_2} \lor \underbrace{g(a) = d}_{\ell_3}) \land \underbrace{c \neq d}_{\neg \ell_4}$$

- Initial state: $\emptyset \parallel \varphi$
- Unit propagate rule: $\emptyset \parallel \varphi \implies \{\ell_1\} \parallel \varphi$
- ullet Unit propagate rule: $\{\ell_1\} \parallel arphi \implies \{\ell_1, \lnot \ell_4\} \parallel arphi$
- ullet \mathcal{T} -propagate rule: $\{\ell_1, \neg \ell_4\} \parallel arphi \implies \{\ell_1, \neg \ell_4, \ell_2\} \parallel arphi$
- $\bullet \ \, \mathcal{T}\text{-propagate rule:} \quad \left\{\ell_1, \neg \ell_4, \ell_2\right\} \parallel \varphi \implies \left\{\ell_1, \neg \ell_4, \ell_2, \neg \ell_3\right\} \parallel \varphi$
- Fail rule: $\{\ell_1, \neg \ell_4, \ell_2, \neg \ell_3\} \parallel \varphi \implies Fail$
 - ullet We are at decision level 0 (no literal decided), so arphi unsatisfiable

\mathcal{T} -propagation

- T-propagation makes lazy approaches "less lazy": theory information can guide the search via deductions or T-consequences
- General rule:
 - if $\mu \models_{\mathcal{T}} \ell$, and
 - ℓ or $\neg \ell$ occurs in φ , and
 - neither ℓ nor $\neg \ell$ occur in μ , then:

$$\mu \parallel \varphi \implies \mu \cup \{\ell\} \parallel \varphi$$

- E.g., if $\mathcal{T} = \mathcal{T}_{\mathcal{Z}}$ and $a < b, b < c \in \mu$ then $\mu \models_{\mathcal{T}} (a < c)$
- If neither a < c nor $\neg(a < c) \equiv a \ge c$ occur in μ , and φ contains a < c or $a \ge c$, then we can add a < c to μ

$\mathsf{CDCL}(\mathcal{T})$ algorithm

```
1: function \mathcal{T}-CDCL(\varphi: \mathcal{T}-formula, \mu: \mathcal{T}-assignment)
          if preProcess(\varphi, \mu) = Conflict then return \bot \triangleright Pre-processing
 2:
          \varphi^p \leftarrow \mathcal{T}2\mathcal{B}(\varphi); \quad \mu^p \leftarrow \mathcal{T}2\mathcal{B}(\mu)
                                                                         3:
          level \leftarrow 0
                                                                                 Decision level 0
 4:
          while true do
 5:
               status \leftarrow propagate(\varphi^p, \mu^p, \ell)
                                                                          \triangleright Unit/\mathcal{T}-propagation
 6:
               if status = SAT then return B2T(\mu^p)
 7:
                                                                                      \triangleright \varphi satisfiable
               else if status = UNSAT then
 8:
                    level \leftarrow analyzeConflict(\varphi^p, \mu^p)
 9:
                                                                                if |eve| < 0 then return
                                                                                  \triangleright \varphi unsatisfiable
10:
                    backjump(level, \varphi^p, \mu^p)
11:
12.
               else
13:
                    \ell \leftarrow decideNextLit(\varphi^p, \mu^p)
                                                                     \triangleright Next literal \ell to split on
                    level \leftarrow level + 1
14:
          end while
15:
```

$\mathsf{CDCL}(\mathcal{T})$ algorithm

- ullet preProcess: possibly simplifies/updates arphi and μ
 - ullet Boolean pre-processing + ${\cal T}$ -specific rewriting

• e.g.,
$$x < 5 \land x < 8 \implies x < 5$$
, $x = y \land f(x) \neq f(y) \implies \bot$

- ullet $\mathcal{T}2\mathcal{B}$ maps a \mathcal{T} -formula to its Boolean abstraction $(\mathcal{B}2\mathcal{T}=\mathcal{T}2\mathcal{B}^{-1})$
 - e.g., $\mathcal{T}2\mathcal{B}(A \lor x + 3 < y \lor y \le 0) = A \lor B_1 \lor B_2$
- propagate: iteratively applies unit propagation, \mathcal{T} -consistency checks and \mathcal{T} -propagation. It updates φ^p , μ^p and returns either:
 - SAT: if $\mu^p \models_p \varphi^p$ and $\mu \models_{\mathcal{T}} \varphi$
 - UNSAT: if $\mu^p \wedge \varphi^p \models_p \bot$ or $\mu \wedge \varphi \models_{\mathcal{T}} \bot$
 - UNKNOWN: if no more literals can be deduced (fixpoint)
- decideNextLit: select the next literal to split on according to given heuristics as in standard DPLL (but T-information possibly exploited)

$\mathsf{CDCL}(\mathcal{T})$ algorithm

- analyzeConflict performs conflict analysis if UNSAT is returned
- If conflict detected by Boolean propagation $(\mu^p \land \varphi^p \models_p \bot)$ a Boolean conflict set η^p is produced (see CDCL)
- If conflict detected by \mathcal{T} -propagation $(\mu \land \varphi \models_{\mathcal{T}} \bot)$ a theory conflict set η is produced and abstracted to η^p
- Then, φ^p updated with $\neg \eta^p \wedge \varphi^p$ and a decision level is returned:
 - If level < 0, no more decisions are possible: φ unsatisfiable
 - Otherwise, backjump to specified level
 - "standard" DPLL does chronological backtracking: back to last level

$\mathsf{CDCL}(\mathcal{T})$ conflict example

- Let $(h(a) = h(c) \lor p) \land (a = b \lor \neg p \lor a = d) \land (a \neq d \lor a = b)$ be part of a formula φ and decision $c = b \in \mu$. Consider the following:
- Decide $h(a) \neq h(c)$
- UnitPropagate p due to clause $h(a) = h(c) \vee p$
- \mathcal{T} -propagate $a \neq b$ because $\{c = b, h(a) \neq h(c)\} \models_{\mathcal{T}} a \neq b$
 - If a = b, then c = b would imply h(a) = h(c)
- UnitPropagate a = d due to clause $a = b \lor \neg p \lor a = d$
- Conflict: $a \neq d$ and a = d

Conflict analysis

- As done in SAT, to derive an explanation from a conflict an implication graph is built
- Nodes: either decisions, derived literals or conflicts
- Edges: if $\{v_1, \ldots, v_k\} \models w$ (via unit/theory propagation) then edges $v_1 \to w, \ldots, v_k \to w$ belong to the graph
 - Note: nodes v_1, \ldots, v_k might be at different decision levels
- Every cut of the graph separating sources (decisions) from the sink (the conflict) is a valid conflict clause

Implication graph

- How to cut? Typically, 1UIP clause is chosen
- UIP (Unique Implication Point) = node traversed by all paths from current decision node to conflict. 1UIP = "closest" UIP to conflict

$\mathsf{CDCL}(\mathcal{T})$ conflict example

- Here, the 1UIP is $h(a) \neq h(c)$
- Conflict set is $\eta = \{h(a) \neq h(c), c = b\}$, so $h(a) = h(c) \lor c \neq b$ is added to φ and we backjump to highest point where one literal of η is not assigned

Digression: CP with LCG

DECISION FXPLANATIONS Lazy Clause Generation Ex. $x_2 \le x_5 \quad x_2 \le x_5$ alldiff alldiff sum≤9 alldiff $x_1 = 1$ DL@1 $x_2 \ge 2$ $x_2 = 2$ $x_2 \le 2$ MUST BE X $x_3 \neq 1$ $x_3 \ge 2$ $x_3 \neq 2$ ×₃≥3 *x*₃≤3 $x_3 = 3$ fail × x₄≥3 $x_4 \neq 1$ x₄≤3 x₄≠2 $X_4 \ge 2$ $x_4 = 3$ **DL**@2 $x_5 \ge 2$ $x_5 = 2$ *x*₅≤2

Suppose $x_1, \ldots, x_4 \in \{1..4\}$. 1UIP for level 2 is $[x_2 = 2]$. Conflict set is $\eta = \{[x_2 \ge 2], [x_3 \ge 2], [x_4 \ge 2], [x_2 = 2]\}$. Backjump to DL@1

Example from a talk by Prof. Peter J. Stuckey.

Digression: CP with LCG

Backjumping

- Backtrack to second last level in nogood
- Nogood will propagate
- Note stronger domain than usual backtracking

•
$$D(x_2) = \{3..4\}$$

$$\{x_2 \ge 2, x_3 \ge 2, x_4 \ge 2, x_2 = 2\} \rightarrow false$$

Example from a talk by Prof. Peter J. Stuckey.

- Exercise: simulate the execution of \mathcal{T} -CDCL (φ, \emptyset) with $\varphi \equiv g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
 - What is φ^p in this case?
 - How many backjumps?
 - Draw the implication graph

- Exercise: simulate the execution of \mathcal{T} -CDCL (φ, \emptyset) with $\varphi \equiv g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
 - What is φ^p in this case? $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$
 - How many backjumps?
 - Draw the implication graph

- Exercise: simulate the execution of \mathcal{T} -CDCL (φ, \emptyset) with $\varphi \equiv g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
 - What is φ^p in this case? $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$
 - How many backjumps? 0
 - Draw the implication graph

- Exercise: simulate the execution of \mathcal{T} -CDCL (φ, \emptyset) with $\varphi \equiv g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
 - What is φ^p in this case? $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$
 - How many backjumps? 0
 - Draw the implication graph

- Exercise: simulate the execution of \mathcal{T} -CDCL (φ, \emptyset) with $\varphi \equiv g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
 - What is φ^p in this case? $\ell_1 \wedge (\neg \ell_2 \vee \ell_3) \wedge \neg \ell_4$
 - How many backjumps? 0
 - Draw the implication graph

$$\varphi \stackrel{\text{def}}{=} \qquad \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \qquad \qquad \varphi^{\text{Bool}}$$

$$c_{1}: (2x_{2} - x_{3} > 2) \vee P_{1} \qquad A_{1} \vee P_{1}$$

$$c_{2}: \neg P_{2} \vee (x_{1} - x_{5} \leq 1) \qquad \neg P_{2} \vee A_{2}$$

$$c_{3}: \neg (3x_{1} - 2x_{2} \leq 3) \vee \neg P_{2} \qquad \neg A_{3} \vee \neg P_{2}$$

$$c_{4}: \neg (3x_{1} - x_{3} \leq 6) \vee \neg P_{1} \qquad \neg A_{4} \vee \neg P_{1}$$

$$c_{5}: P_{1} \vee (3x_{1} - 2x_{2} \leq 3) \qquad P_{1} \vee A_{3}$$

$$c_{6}: (x_{2} - x_{4} \leq 6) \vee \neg P_{1} \qquad A_{5} \vee \neg P_{1}$$

$$c_{7}: P_{1} \vee (x_{3} = 3x_{5} + 4) \vee \neg P_{2} \qquad P_{1} \vee A_{6} \vee \neg P_{2}$$

$$c_{8}: P_{2} \vee (2x_{2} - 3x_{1} \geq 5) \vee \qquad P_{2} \vee A_{7} \vee A_{8}$$

$$(x_{3} + x_{5} - 4x_{1} \geq 0)$$

$$M = [\neg A_{4}, \neg A_{1}, P_{1}, A_{5}, A_{6}]$$

Example from CAV Verification Mentoring Workshop 2017 talk by Alberto Griggio (FBK, Trento). Light blue nodes = decisions, dark blue nodes = entailed literals

$$\varphi \stackrel{\text{def}}{=} \qquad \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \qquad \qquad \neg A_{4}$$

$$c_{1} : (2x_{2} - x_{3} > 2) \vee P_{1} \qquad A_{1} \vee P_{1}$$

$$c_{2} : \neg P_{2} \vee (x_{1} - x_{5} \leq 1) \qquad \neg P_{2} \vee A_{2}$$

$$c_{3} : \neg (3x_{1} - 2x_{2} \leq 3) \vee \neg P_{2} \qquad \neg A_{3} \vee \neg P_{2}$$

$$c_{4} : \neg (3x_{1} - x_{3} \leq 6) \vee \neg P_{1} \qquad \neg A_{4} \vee \neg P_{1}$$

$$c_{5} : P_{1} \vee (3x_{1} - 2x_{2} \leq 3) \qquad P_{1} \vee A_{3}$$

$$c_{6} : (x_{2} - x_{4} \leq 6) \vee \neg P_{1} \qquad A_{5} \vee \neg P_{1}$$

$$c_{7} : P_{1} \vee (x_{3} = 3x_{5} + 4) \vee \neg P_{2} \qquad P_{1} \vee A_{6} \vee \neg P_{2}$$

$$c_{8} : P_{2} \vee (2x_{2} - 3x_{1} \geq 5) \vee \qquad P_{2} \vee A_{7} \vee A_{8}$$

$$(x_{3} + x_{5} - 4x_{1} \geq 0)$$

$$M = (\neg A_{4}, \neg A_{1}, P_{1}, A_{5}, A_{6})$$

$$\neg (3x_{1} - 3x_{5} \leq 10)$$

 $\neg (x_1 - x_5 < 1) \equiv \neg A_2$

 $M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2]$

$$\varphi \stackrel{\text{def}}{=} \varphi^{\text{Bool}} \stackrel{\text{def}}{=} c_1 : (2x_2 - x_3 > 2) \vee P_1 \qquad A_1 \vee P_1$$

$$c_2 : \neg P_2 \vee (x_1 - x_5 \le 1) \qquad \neg P_2 \vee A_2$$

$$c_3 : \neg (3x_1 - 2x_2 \le 3) \vee \neg P_2 \qquad \neg A_3 \vee \neg P_2$$

$$c_4 : \neg (3x_1 - x_3 \le 6) \vee \neg P_1 \qquad \neg A_4 \vee \neg P_1$$

$$c_5 : P_1 \vee (3x_1 - 2x_2 \le 3) \qquad P_1 \vee A_3$$

$$c_6 : (x_2 - x_4 \le 6) \vee \neg P_1 \qquad A_5 \vee \neg P_1$$

$$c_7 : P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \qquad P_1 \vee A_6 \vee \neg P_2$$

$$c_8 : P_2 \vee (2x_2 - 3x_1 \ge 5) \vee \qquad P_2 \vee A_7 \vee A_8$$

$$(x_3 + x_5 - 4x_1 \ge 0)$$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2]$$

$$\varphi \stackrel{\text{def}}{=} \qquad \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \qquad \neg A_{4}$$

$$c_{1} : (2x_{2} - x_{3} > 2) \vee P_{1} \qquad A_{1} \vee P_{1}$$

$$c_{2} : \neg P_{2} \vee (x_{1} - x_{5} \leq 1) \qquad \neg P_{2} \vee A_{2}$$

$$c_{3} : \neg (3x_{1} - 2x_{2} \leq 3) \vee \neg P_{2} \qquad \neg A_{3} \vee \neg P_{2}$$

$$c_{4} : \neg (3x_{1} - x_{3} \leq 6) \vee \neg P_{1} \qquad \neg A_{4} \vee \neg P_{1}$$

$$c_{5} : P_{1} \vee (3x_{1} - 2x_{2} \leq 3) \qquad P_{1} \vee A_{3}$$

$$c_{6} : (x_{2} - x_{4} \leq 6) \vee \neg P_{1} \qquad A_{5} \vee \neg P_{1}$$

$$c_{7} : P_{1} \vee (x_{3} = 3x_{5} + 4) \vee \neg P_{2} \qquad P_{1} \vee A_{6} \vee \neg P_{2}$$

$$c_{8} : P_{2} \vee (2x_{2} - 3x_{1} \geq 5) \vee \qquad P_{2} \vee A_{7} \vee A_{8}$$

$$(x_{3} + x_{5} - 4x_{1} \geq 0)$$

$$M = [\neg A_{4}, \neg A_{1}, P_{1}, A_{5}, A_{6}, \neg A_{2}, \neg P_{2}, A_{8}]$$

$$\neg (3x_{1} - x_{3} \leq 6) \qquad \neg (x_{1} - x_{5} \leq 1)$$

$$\neg (-x_{3} + 3x_{5} \leq 3) \qquad (x_{3} + x_{5} - 4x_{1} \geq 0)$$

Exercise: write the implication graph, the 1UIP and the conflict set

Exercise: 1UIP = A_8 , conflict set $\eta = \{A_8, A_6, \neg A_4\}$. Backjump to DL 3 and add $\neg A_8 \lor \neg A_6 \lor A_4$. This unit propagates $\neg A_8$...

SMT-LIB Encoding

```
(declare-const x1 Int)
(declare-const x2 Int)
(declare-const x3 Int)
(declare-const x4 Int)
(declare-const x5 Int)
(declare-const P1 Bool)
(declare-const P2 Bool)
: (2x2 - x3 > 2) \setminus P1
(assert (or (> (- (* 2 x2) x3) 2) P1))
P2 \ \ x1 - x5 <= 1
(assert (or (not P2) (\leq (- x1 x5) 1)))
(check-sat)
(get-model)
```

SMT-LIB Encoding

```
(declare-const x1 Int)
 (declare-const x2 Int)
(declare-const x3 Int)
(declare-const x4 Int)
(declare-const x5 Int)
(declare-const P1 Bool)
(declare-const P2 Bool)
; (2x2 - x3 > 2) \ \ P1
(assert (or (> (- (* 2 x2) x3) 2) P1))
 : ^{P2} \ \ x1 - x5 <= 1
 (assert (or (not P2) (<= (-x1 x5) 1)))
 (check-sat)
 (get-model)
```

Is this satisfiable?

SMT-LIB Encoding

```
sat
                                            c_1: (2x_2-x_3>2)\vee P_1
   (define-fun x3 () Int
                                            c_2: \neg P_2 \lor (x_1 - x_5 < 1)
      (-3)
   (define-fun P2 () Bool
                                            c_3: \neg (3x_1 - 2x_2 < 3) \lor \neg P_2
                                            c_4: \neg (3x_1 - x_3 < 6) \lor \neg P_1
     true)
                                            c_5: P_1 \vee (3x_1 - 2x_2 \leq 3)
   (define-fun x2 () Int
                                            c_6: (x_2-x_4<6) \vee \neg P_1
     0)
                                            c_7: P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2
   (define-fun x1 () Int
                                            c_8: P_2 \vee (2x_2 - 3x_1 > 5) \vee
     2)
                                                 (x_3 + x_5 - 4x_1 > 0)
   (define-fun x5 () Int
     1)
   (define-fun x4 () Int
     0)
   (define-fun P1 () Bool
     true)
```

CDCL(T) vs CDCL

- Summarizing, the main extensions of CDCL(\mathcal{T}) w.r.t. CDCL are:
- *T*-propagation
 - in addition to Boolean propagation
- T-conflicts or mixed T-conflicts
 - in addition to Boolean conflicts
- Cheap operations computed first: if T-solving is computationally expensive, calls to T-solver can be delayed

Take-home messages

- SMT solving is strongly coupled to SAT solving
- Two orthogonal approaches: eager vs lazy encoding of SMT→SAT
- Eager approach: translates upfront a SMT formula to equisatisfiable SAT formula (a.k.a. "bit-blasting")
 - No need of theory solvers, we can use best available SAT solver(s)
 - Complex, ad hoc encodings needed for all the theories we use
 - Examples: small-domain encoding, direct encoding

Take-home messages

- Lazy approach: combine SAT solvers + \mathcal{T} -solvers
 - T-information used lazily over Boolean abstractions
 - Everyone (SAT and SMT solvers) does what she is good at
 - Modular and flexible
 - Typically, but not necessarily, more efficient than eager approach
 - Bit-blasting commonly used for bit-vectors
- CDCL(\mathcal{T}): well-established lazy approach. Extends CDCL with:
 - theory propagation
 - theory conflicts
 - ullet sometimes called DPLL($\mathcal T$)

Resources

- Handbook of Satisfiability Chapter 12 "Satisfiability Modulo Theories" by C. Barrett, R. Sebastiani, S.A. Seshia, C. Tinelli
 - Search "Satisfiability Modulo Theories EECS at UC Berkeley"
- Barrett, Clark, and Cesare Tinelli. "Satisfiability modulo theories."
 Handbook of model checking. Springer, Cham, 2018. 305-343.
- SAT/SMT schools
 - https://sat-smt.in/
- ...