Johns Hopkins Engineering

Immunoengineering

Immunoengineering: Modeling

HIV Drug Modeling

HIV Life Cycle

Anti-retroviral therapy (ART)

- Lifelong therapy, prevents infection of new target cells
- cART (combination ART) = combinations of many drugs against HIV
- Many combinations have not been tested
- Models of ART may quickly screen a large number/combination of drugs

cART Efficacy

- Dependent on 5 factors
 - Pharmacokinetics (concentration/time drug is in body)
 - Pharmacodynamics (antiviral activity at specific concentration)
 - Additive, multiplicative, synergistic, or antagonistic interactions between drugs
 - Patient adherence (major factor = pill burden/side effects)
 - Genetic barrier to evolution of drug resistance

Dose-response relationships are important when viral replication rate is very high

$$\frac{f_a}{f_u} = \left(\frac{D}{IC_{50}}\right)^m$$

f_a fraction of infection events affected by drug

 f_u fraction of infection events not affected by drug

D drug concentration

drug concentration that achieves half maximal efficacy of that drug

m analogous to Hill coefficient

Dose response curves vary across ART drugs

- Slope of protease inhibitors and NNRTIs inflect upwards – nonconstant m
- Higher
 effectiveness at
 higher
 concentrations ->
 cooperativity

Cooperativity model: Critical subset model

- Model explains how cooperativity is generated for anti-retroviral drugs with only one binding site on the target enzyme
 - Multiple copies of enzyme needed and enzyme critical to multiple parts of HIV life cycle
 - Pool of enzymes acts as a single "multivalent target"

Models describe drug interactions for cART

- Two theories to predict efficacy of drug combinations
 - Loewe additivity: drugs have shared MOA, compete for same binding site
 - Bliss independence: drugs function independently, have distinct targets; greater combined efficacy

Predictions of interaction between drugs

