Lockless Stochastic Gradient Descent. /SEOUL AI/

- 1. SDG and, more generally, the problem class considered
- 2. Lockless...
- 3. (Selected elements of) Convergence proof
- 4. A practical, code, mini, example in C++
- 5. Going further...

The problem class considered

$$\min_{w} rac{1}{n} \sum_{i=1}^{n} f_i(w)$$

n is 'large'

Assumptions on f_i . f_i is convex, L-smooth: $\exists L, \ \|\nabla f_i(a) - \nabla f_i(b)\| \leq L\|a-b\|$ f_i is μ -strongly convex: $\exists \mu, \ \|\nabla f_i(a) - \nabla f_i(b)\| \geq \mu \|a-b\|$

Lockless...

Several threads access a same state u.

- Atomic read u_m .
- Compute update u_{m+1} .
- Write update atomically. This update might be overwritten.
- Parallel batches interpersed by 'synchronized' common blocks.

Later summarized by a diagonal matrix \boldsymbol{B} that holds 0 on data overwritten, and 1 otherwise.

Convergence proof

- 1. Algorithm: AsySVRG
 - Convergence speed $O(1/\tilde{T}), \tilde{T}$ a measure of total work, as opposed to $O(1/\sqrt{\tilde{T}})$ for Hogwild!
 - Key difference lies in using the full gradient.
- 2. Key convergence analysis steps

Algorithm: AsySVRG ZHAO & LI 2016

```
Initialization: pthreads, initialize w_0, \eta;
for t = 0, 1, 2, \dots, T - 1 do
  u_0 = w_t;
   All threads compute the full gradient

abla f(u_0) = rac{1}{n} \Sigma_{i=1}^n 
abla f_i(u_0) \ in \ parallel;
  u=w_t;
   For each thread, do:
   for j = 0 to M - 1 do
     atomically: \hat{u} = u
     pickup i \ randomly \ in \ \{1, \ldots, n\}
     \hat{v} = 
abla f_i(\hat{u}) - 
abla f_i(u_0) + 
abla f(u_0)
     atomically: u \leftarrow u - n\hat{v}
  end for
  atomically: w_{t+1} = u
end for
```

CONVERGENCE

Let us write an equivalent write sequence $\{u_{t,m}\}$ for the t^{th} outer loop.

$$u_{t,0}=w_t \ u_{t,m+1}=u_{t,m}-\eta B_{t,m}\hat{v}_{t,m}$$
 with $\hat{v}_{t,m}=
abla f_{i_{t,m}}(\hat{u}_{t,m})-
abla f_{i_{t,m}}(u_{t,0})+
abla f(u_{t,0})$

 $B_{t,m}$ diagonal with entries 0 or 1.

CONVERGENCE [2]

 $\hat{u}_{t,m}$ is read by the thread that computes $\hat{v}_{t,m}$. It is represented as:

$$\hat{u}_{t,m} = u_{t,a(m)} - \eta \sum_{j=a(m)}^{m-1} P_{m,j-a(m)}^{(t)} \hat{v}_{t,j}$$

With matrix $P_{m,j-a(m)}^{(t)}$ diagonal with entries 0 or 1. a(m) a timing such as $0 \leq m-a(m) \leq au$.

KEY LEMMA

Let
$$p_i(x) =
abla f_i(x) -
abla f_i(u_{t,0}) +
abla f(u_{t,0})$$
 And $q(x) = rac{1}{n} \sum_{i=1}^n \|p_i(x)\|^2$

In AsySVRG, we have

$$E[q(\hat{u}_{t,m})] <
ho E[q(\hat{u}_{t,m+1})]$$

if we choose ρ and η so that (constraint on learning rate)

$$rac{1}{1 - \eta - rac{9\eta(au + 1)L^2(
ho^{ au + 1} - 1)}{
ho - 1}} \leq
ho$$

INTRODUCING r>0

```
 \begin{split} & \|\nabla f_{i}(x)\|^{2} - \|\nabla f_{i}(y)\|^{2} \\ & \leq & 2\nabla f_{i}(x)^{T} \left(\nabla f_{i}(x) - \nabla f_{i}(y)\right) \\ & \qquad \qquad \left(compare \ \nabla f_{i}(x)^{2} \ and \ \nabla f_{i}(x)^{2} + (\nabla f_{i}(x) - \nabla f_{i}(y))^{2}\right) \\ & \leq & \frac{1}{r} \|\nabla f_{i}(x)\|^{2} + r \|\nabla f_{i}(x) - \nabla f_{i}(y)\|^{2} \\ & \leq & \frac{1}{r} \|\nabla f_{i}(x)\|^{2} + rL^{2} \|x - y\|^{2} \end{split}
```

NEXT STEP...

$$\|\nabla f_i(\hat{w}_t)\|^2 - \|\nabla f_i(\hat{w}_{t+1})\|^2$$

$$\leq \frac{1}{r} \|\nabla f_i(\hat{w}_t)\|^2 + rL^2 \|\hat{w}_t - \hat{w}_{t+1}\|^2$$

USING THE DEFINITION OF \hat{w}_t

$$\|\hat{w}_t - \hat{w}_{t+1}\| \leq 3\eta \sum\limits_{j=t- au}^t \lVert
abla f_{i_j} \hat{w}_j \lVert$$

f only

$$\|
abla f_i(\hat{w}_t)\|^2 - \|
abla f_i(\hat{w}_{t+1})\|^2$$

$$\leq rac{1}{r} \|
abla f_i(\hat{w}_t)\|^2 + 9r(au+1) L^2 \eta^2 \sum_{j=t- au}^t \|
abla f_{i_j}(\hat{w}_j)\|^2$$

FIX i, AVERAGE OVER (RANDOM INDEX) i_j

$$\|
abla f_i(\hat{w}_t)\|^2 - \|
abla f_i(\hat{w}_{t+1})\|^2$$

$$\leq rac{1}{r} \|
abla f_i(\hat{w}_t) \|^2 + 9 r (au + 1) L^2 \eta^2 \sum_{j=t- au}^t q(\hat{w}_j)$$

SUM UP FROM 1 TO n

$$Eq(\hat{w}_t) - Eq(\hat{w}_{t+1})$$

$$\leq rac{1}{r} Eq(\hat{w}_t) + 9r(au+1) L^2 \eta^2 \sum_{j=t- au}^t q(\hat{w}_j)$$

USE INDUCTION, TAKE
$$r=rac{1}{\eta}$$
 , introduce ho

$$Eq(\hat{w}_t) \leq rac{1}{1 - \eta - rac{9\eta(au + 1)L^2(
ho^{ au + 1} - 1)}{
ho - 1}} Eq(\hat{w}_j) \leq
ho Eq^{-1}$$

Dummy problem considered

$$egin{align} argmin \sum_{i} (a_{i}.\,x-b_{i})^{2} \ a_{i}[j] &= rac{i+j}{(j_{max}+1).(i_{max}+1)} \ b_{i} &= 1+i*0.01 \end{array}$$

Recipe... Data structure used.

```
struct LocklessSGD {
std::atomic < double * > last_state;
std::atomic < int > version;
  struct Thread {
   unsigned vect size;
   double* vect;
   double* read;
   LocklessSGD* root;
```

Recipe... Read vector 'atomic but can fail', one possible implementation.

```
inline void AtomicButCanFailRead(double **v) {
  auto ve = root->version.load();
  double *tgt = root->last_state.load();
  for (unsigned i = 0; i < vect_size; ++i) { read[i] = tgt[i]; }
  if (ve == root->version.load()) {
    if (tgt == root->last_state.load()) {
      auto t = *v;
      *v = read;
      read = t;
    }
}
```

(n.b. real atomic would require anti ABA pattern)

Recipe... Add vector 'atomic but can fail', one possible implementation.

```
inline void AtomicButCanFailAdd(const double * v, double lr) {
  auto ve = root->version.load();
  double *tgt = root->last state.load();
  for (unsigned i = 0; i < \text{vect size}; ++i) {
   vect[i] = tqt[i] + v[i] * lr;
  if (ve == root->version.load()) {
    if (std::atomic compare exchange strong(& root->last state,
                                             & tat, vect)) {
      vect = tqt;
      ++root->version; //atomic
```

Recipe... CPU affinity

```
inline void SetAffinityMask(int core) {
    HANDLE process;
    DWORD_PTR processAffinityMask;
    for (int i = 0; i< ncores; i++) processAffinityMask |= 1 <<
        process = GetCurrentProcess();
    SetProcessAffinityMask(process, processAffinityMask);
    HANDLE thread = GetCurrentThread();
    DWORD_PTR threadAffinityMask = 1 << (2 * core);
    SetThreadAffinityMask(thread, threadAffinityMask);
}</pre>
```

3 variants considered.

- 1. Vector of atomic doubles
- 2. Vector of non-atomic doubles
- 3. 'Atomic can fail' global gradient update: 'my trick'

Some results.
/DUMMY EXAMPLE/
Dimension = 1000, sum of 1000 terms,
'by 100 outer loops (syn'd),
'by group of 10',
600,000 iterations...
AMD Ryzen 1700 (8 cores, 16 threads)
'my trick'

#threads	time	loss	'efficiency'	n.b.
1	18.2261s	1.70219e-13	1	
2	9.8457s	1.35281e-25	0.925586	
8	3.61774s	2.70749e-16	0.629746	goes much higher with long running batches
16	4.69994s	8.25322e-05	0.242371	Hyperthreading!

Some results.
/DUMMY EXAMPLE/
Dimension = 1000, sum of 1000 terms,
'by 100 outer loops (syn'd),
'by group of 10',
600,000 iterations...
AMD Ryzen 1700 (8 cores, 16 threads)

'real async: element by element'

	#threads	time	loss	'efficiency'	n.b.
	1	24.9629s	1.70219e-13	1	
	2	13.2756s	5.99513e-25	0.940182	
	8	12.2971s	2.70749e-16	0.253748	too many memory barriers
•	16	5.06642s	2.45501e-09	0.307946	Hyperthreading!

More Examples /DUMMY EXAMPLE/ Dimension = 1000, sum of 100 terms, 'by 100 outer loops (syn'd), 'by group of 1000', 600,000 iterations... AMD Ryzen 1700 (8 cores, 16 threads) 'no sync: element by element, non-atomic'

#threads	time	loss	'efficiency'	n.b.
1	199.26s	1.60923e-27	1	
2	101.867s	1.08698e-05	0.978042	bad convergence!
8	35.2271s	6.05344e-14	0.707056	
16	28.7725	2.87305e-06	0.432836	

More Examples /DUMMY EXAMPLE/ Dimension = 1000, sum of 100 terms, 'by 100 outer loops (syn'd), 'by group of 1000', 600,000 iterations... AMD Ryzen 1700 (8 cores, 16 threads) 'no sync: element by element, /atomic/'

#threads	time	loss	'efficiency'	n.b.
1	198.817s	1.60923e-27	1	
2	101.867s	0.000106731	0.967493	bad convergence!
8	26.6244s	5.8378e-14	0.933434	surprisingly: faster than non- atomic
16	23.0428s	2.83166e-06	0.539262	

More Examples /DUMMY EXAMPLE/ Dimension = 1000, sum of 100 terms, 'by 100 outer loops (syn'd), 'by group of 1000', 600,000 iterations... AMD Ryzen 1700 (8 cores, 16 threads) 'my trick'

#threads	time	loss	'efficiency'	n.b.
1	198.483s	1.60923e-27	1	
2	102.069s	2.45525e-20	0.972301	good convergence!
8	27.4468s	5.8378e-14	0.903945	
16	23.0428s	3.80972e-06	0.51793	

Technical conclusion.

- Impact of the size of the gradient vector (of course!) and update method: what about recursive schemes / localised sub-vector updates?
- 'Real' async not always ideal: need to auto-tune key parameters - otherwise fragile convergence, fragile performances
- Learning rate is critical: ... need to auto-tune key parameters
- Batch size...

Possible next steps.

 Zhang 2017: YellowFin tuner, async creates momentum, thus a need to auto-tune learning rate /AND/ momentum while controling the amount of asynchronicity.

Possibly the subject of a future presentation ...

'1bit' updates a la CNTK

• ...

Stay tuned!