# Introduction CS 118 Computer Network Fundamentals Peter Reiher

### Purpose of the class

- To familiarize you with the basic concepts of computer networking
- Computer networks are increasingly key to most systems
- All educated computer scientists should have a good understanding of how they work

# Pre-requisite

- CS 111 Operating System Principles
  - Which itself has CS 31, 32, and 35 as prerequisites
- So you're expected to be able to program
- And to have a reasonable understanding about how computer software systems work

CS 118 Winter 2016

#### **Textbooks**

- Shannon/Weaver,

  The Mathematical Theory of Communication
  (any edition)
- Peterson/Davie,
   Computer Networks: A systems approach
   (any edition)\*
  - \*readings are cited from the Sixth Edition; students are responsible for location of corresponding material if using other editions

CS 118 Winter 2016

# Assignments

- Programming projects
  - Two
  - On a schedule set by the TA
  - All work is to be completed INDIVIDUALLY.

CS 118 Winter 2016

# Grading

- 30% projects
  - 15% each for 2 assignments
- 30% midterm
  - Feb. 4, in class
- 40% final exam
  - March 14, 8-11 AM
- Projects due as announced
  - Due at the start of class on date indicated
  - TA will set policy for late submissions

#### Office Hours

- TTh 2-3 PM
- In 3532F Boelter Hall
- Other times possible by arrangment

CS 118 Winter 2016 Lecture 1 - Page 7

#### The TA

- Seungbae Kim
  - ksb2043@gmail.com
- He will handle all issues related to the projects
- Also will hold weekly recitation sections and office hours
  - Times to be announced

CS 118 Winter 2016

# A bit about style

- A bit more "abstract" than typical
  - This is an education, not merely training
  - It's for your entire life, not just your first job
- You're expected to \*apply\* what you learn
  - Repeating what you learn will not be enough
  - Just attending class will not be enough
- You will be challenged
- I am here to help
  - Specific questions will always be answered

CS 118 Winter 2016

# Mastering the material

- There's a lot of stuff
  - What should you focus on?
- Things to keep in mind:
  - Understanding
  - Recognizing
  - NOT memorizing
- Focus on the subject
  - Side-discussions are intended to illuminate, not dump extra stuff on you





CS 118 Winter 2016

# A Roadmap



Introduction and history

Performance and efficiency

### Overview

Definitions

What about the layers we've heard about?

• The first-principles approach

A little history

CS 118 Winter 2016

### Why are we here?

- Computer networking
  - Really: networked computer communication
  - Information exchange between computers
- The challenge:
  - What is information?
  - What is communication?
  - What is networking?
  - How are these related?

### What is communication?

- Methods for exchanging information between:
  - a fixed set of
  - directly-connected parties
  - using a single, shared set of pre-agreed rules



# So then what's a protocol?

A single, shared set of pre-agreed rules

- *E.g.*:
  - I call you
  - The phone rings
  - You pickup and say "Hello"
  - We start talking



#### Protocol variations

- What word (for the telephone)?
  - Bell originally proposed "Ahoy!"
- Who talks first when I call you?
  - Typically:
    - You pickup and **you** say "Hello"

[callee first]

- Alternate:
  - You pickup and **I** say "Hello"

[caller first]

- Either one works
  - Only if both sides agree in advance

There is a lot of complexity in just two-party communication.

# What is networking?

- Methods to enable communication between:
  - varying sets of
  - indirectly connected parties
  - that don't share a single set of rules



- Networking:
  - how we get from "nothing" to being able to communicate

# Let's compare...

#### **Communication**

- Methods for exchanging information between:
  - a *fixed* set of
  - <u>directly-connected</u> parties
  - using a <u>single</u>, <u>shared set</u> of pre-agreed rules (a protocol)
- How you exchange info when you know who you're talking to and how

#### **Networking**

- Methods to enable communication between:
  - *varying* sets of
  - *indirectly connected* parties
  - that <u>don't share a single set</u>
     of rules
- How you figure out who you're talking to and how

# Summary definitions

#### Communication

 Methods for exchanging information between a fixed set of directly-connected parties using a single protocol

#### Networking

 Methods to enable communication between varying sets of indirectly connected parties that don't share a single protocol

#### Protocol

 A set of rules, agreed in advance, that enable communication

# Where are the layers we've heard about?

International Standards Organization (ISO)

- Open Systems Interconnect (OSI)
- Seven layers based on function/capability
- Developed as a reference model
- Implemented but not really used
- Internet
  - Four layers
  - More or less . . .





# Slapping Names on Layers Isn't Useful

- The name doesn't really tell you anything
  - Calling it "transport" doesn't mean much
- What's important is what happens in the network
- There can be many ways of mapping desired functionality into elements of the system

CS 118
Winter 2016 Page 22

# Names – What's valuable about them

- They allow us to specify things
- To make sure the right actions happen to the right things
- In networks, to get messages to the right recipients
- In network layers, to ensure that we understand what layer we're dealing with

CS 118 Winter 2016

# Names – What's unimportant about them

- The actual name is meaningless
- Meaning is achieved by binding it to something
- The same thing can have several different names
- The same name can be applied to several different things
  - Depending on context
  - Changing over time

### The important lesson about names

- Don't obsess about the name itself
- Concentrate on how the name relates to reality

CS 118 Winter 2016

# These Layers Aren't the Truth, Anyway

- It's not 1984 anymore
  - Both models describe early networking
- Layers aren't defined by function
  - Most layers do most functions now
- There are too many exceptions
  - In-between layers
  - Virtual layers (tunnels)

CS 118 Winter 2016

# Let's go back to the beginning...

Two fundamental ideas of CS:

Abstraction

• Recursion

CS 118 Winter 2016

#### Abstraction

- Represent something complex...
  - with something simpler...
  - that is easier to understand
  - AND
  - that can be used to predict the behavior of the complex

#### A MODEL

#### Recursion

- The converse of induction
  - decompose a large problem into the combination of its components
  - declare a value for the minimal atomic component



# The goal of our approach

- To describe networked computer communication from first principles of:
  - Abstraction
  - Recursion
- We'll still have layers
  - Just recursive ones

# If layers aren't fixed things?

- Then what are they?
  - A layer is the largest set that can communicate
  - -i.e., a layer is the largest group that is:
  - directly connected
  - shares a single, common protocol

# A Roadmap Through the Course

- Bits
  - A very fine place to start...
- Communication
  - Two-party bit sharing
- Networking
  - Multiparty bit sharing

# Course roadmap

- Communication
  - Two-party shared state
  - Channels
  - Protocols

# Course roadmap





- Two-party shared state
- Channels
- Protocols

#### Networking

- Multiparty complications
- Layers
- Naming
- Recursion/forwarding

# Course roadmap

- Communication
- Two-party shared state
- Channels
- Protocols

- Networking
  - Multiparty complications
  - Layers
  - Naming
  - Recursion/forwarding



- Examples & mechanisms
  - Communication
  - Networking

# A little history too

• ~5000 years of networking to consider!

CS 118 Winter 2016

### Couriers

- Human-based
  - More reliable
- Slow
  - Walking, horse galloping
- Limited range
  - Tens of miles
  - Relay only where pre-deployed
- Vulnerable
  - Loss, corruption, interference
- Costly



# Carrier pigeons

- Unidirectional messaging
  - From release to "home"
- Hard to "reset"
  - Bring the pigeon back



- Messages go only where pigeons are "homed"
- Unpredictable
  - High loss rate!



### Beacons

- Limited BW
  - One signal
  - Slow to reset
- Long distance
  - Relays over hundreds of miles
- Costly
  - Requires resident attendant
- First optical comms!
  - Works at night
  - Better than daytime
  - Worked for Paul Revere





# Heliograph

- More optical comms
  - Sunlight
- Unreliable
  - Hard to aim
- Limited use
  - Sunny days only
  - Low bitrate



# Flags

- Still in current use
  - Maritime communications
  - Public communications
    - E.g., swim safety



## Origins

• Couriers Spoken/written (30,000 BC)

• Pigeons 2900 BC, Egypt

• Beacons 1200 BC, Troy

• Heliographs 400 BC, Greece

• Flags 400 BC, Greece

CS 118 Winter 2016 Lecture 1 Page 42

### Hooke

- Yes, the microscope guy
  - -1680's
  - "On Showing a Way How to Communicate One's Mind at a Distance"
  - Telescope + semaphores





# French Telegraph

- Semaphore telegraph
  - 1790s, Claude Chappe
  - Letters, numbers
  - Time sync
  - Contention (message collision)
  - Priority
  - Flow control
  - Error recovery



## Emergence of electricity

- Electromagnets invented 1820 (Sturgeon)
  - Electrical relays 1835
- Cooke/Wheatstone 1837
  - Multiple needles
  - 13 miles near London
- Morse 1837
  - Single relay
  - Killed the Pony Express (courier) by 1861

CS 118 Winter 2016 Lecture 1 Page 45

### Cooke/Wheatstone



CS 118 Winter 2016 Lecture 1 Page 46

#### Morse

MORSE CODE

- Symbols == letters
- Time encoding
  - Dot
  - -3 dots = dash
  - Intra-symbol
    - dot delay
  - Inter-symbol
    - dash delay
  - Inter-word
    - seven dot delay



## Telephone

- First patented by Alexander Graham Bell
  - In 1876



- Carried actual voice over electromagnetic media
- In wide use by early 20<sup>th</sup> century
- Still in wide use today

### Radio

- Transmission of signals without wires
  - Originally encoding sound
  - Eventually encoding many forms of data
- Theoretical possibility shown by Maxwell (1864)
- Patent of practical device by Marconi (1896)

CS 118
Winter 2016
Page 49

## Computer networking

- Small, special purpose computer networks in 1950s, 1960s
- Packet switching developed in 1960s
- ARPANET went online in 1969
- Internet replaced the ARPANET in 1981
  - And became commercial in 1989
- World Wide Web introduced in 1991
  - Not a new hardware technique
  - But a revolution in what networks could do

### Characterizing Networks

- Some characterizations are based on purpose
  - "It's a network for voice"
- Others are numerical
  - "It can transmit 10 Mbytes per second"
  - Numerical characterizations tend to be more useful
- What will we measure for networks?
- Values to characterize work and power
  - Time
  - Number & size of messages

# Communications is all about time...

- Time for information transfer
  - Info at A -> info at B
- Time for a transformation
  - $-Info \rightarrow f(info)$
- Time for a transaction

I at A ->
I at B ->
f(I) at B ->
f(I) at A

request starts at A request arrives at B response created at B response moves to A

# Communications/Network Measures

- Frequency
  - Bandwidth
  - Processing
- Speed
  - Propagation speed
- Delay
  - Propagation latency
  - Access delay
- Loss rate

## Rate vs. Frequency

- Rate
  - Events per unit time
- Frequency
  - Time between events
  - Sometimes: time to complete (TTC) a given event how often it gets sent out
- Not always related!
  - Rate = 1/TTC \* #servers
  - E.g., you can cook pies at a rate faster than 1 pie per hour, but each pie will still take 1 hour to cook (i.e., pie baking frequency doesn't change)

throughput: rate; latency: freq

# The importance of being quick

- Latency is the <u>fundamental metric</u> of computing and communication
  - Performance is measured as the latency required to perform a task
  - Everything else is a means to that end
  - Exceptions aren't computing or communication (e.g., I/O capabilities such as screen size, pixel depth, digitizer resolution)

# What is latency?

• Latency is...

| (focus)       | The time between:                                                  |
|---------------|--------------------------------------------------------------------|
| Generic       | two events                                                         |
| Interaction   | asking question and receiving an answer                            |
| Communication | creating information at a source and receiving it at a destination |

CS 118 Winter 2016 Lecture 1 Page 56

# Defining latency

- Latency is:
  - The <u>time</u> between <u>creating information</u> at a source and <u>receiving</u> it at a destination
- Latency is:
  - A cumulative effect
  - A property of two events and a message in a system (sender/receiver/path)

CS 118 Winter 2016 Lecture 1 Page 57

# Latency isn't a single value

- The cumulative <u>system</u> impact on a <u>message</u>
  - Fixed, per-message costs
    - Header processing
    - Message house-keeping
    - Propagation delay
  - Proportional, per-bit costs
    - Message composition/interpretation
    - Transmission delay
  - Unpredictable aggregate effect
    - Not strictly additive
    - Some latencies overlap (pipeline), others don't

Message size matters

### Five Root Causes

of Latency

- 1. Generation creation of data
- 2. Transmission sending
- 3. Processing translating data
- 4. Multiplexing sharing resource with others
- 5. Grouping delay of packets

More than propagation + transmit + queue!

### Cost #1: Generation

• Delay between occurrence of a physical event and the availability of information



CS 118 Winter 2016 Lecture 1 Page 60

### Cost #2: Transmission

• The delay in transferring information from one location to another



CS 118 Winter 2016 Lecture 1 - Page 61

# The speed of light – or less

• Constant in each medium:

| Vacuum                                     | c (3E8 m/s) | SPEED       |
|--------------------------------------------|-------------|-------------|
| Air (RF)                                   | 0.9997 c    | LIMIT       |
| Open-ladder wire                           | 0.95 c      | 2<br>C<br>Q |
| Twin-axial wire                            | 0.8 c       | JEO         |
| Coax wire Twisted –pair wire Optical fiber | 0.66 c      |             |

# Cost #3: Processing

• The delay due to the computational translation or frequency of information





Lecture 1 Page 63

# Cost #4: Multiplexing

• The delay incurred as the result of sharing a resource



CS 118 Winter 2016 Lecture 1 Page 64

# Cost #5: Grouping

• The delay incurred to reduce the amount of control information and overhead



Lecture 1 - Page 65

### Summary

- Definitions
  - Communication, networking, and protocol
- Names are just names
  - You do need to know them
  - But their meaning is just as important
- Networking didn't start with the Internet
  - There's a lot of history that's still useful
- Important characterization of network performance are time related
  - Especially latency