CS698U: Topics in Computer Vision

Jan—May 2017

Lecture 3

Gaurav Sharma
Indian Institute of Technology Kanpur

www.grvsharma.com

State-of-the-art CNNs in Computer Vision

Image Classification

- Close look at LeNet5 and the four popular/successful CNN architectures for image classification today
 - AlexNet
 - VGG16 & VGG19
 - GoogLeNet
 - ResNet

Krizhevsky et al., Imagenet classification with deep convolutional neural networks, NIPS 2012 Simonyan and Zisserman, Very deep convolutional networks for large-scale image recognition, ICLR 2015 Szegedy et al., Going deeper with convolutions, CVPR 2015 He et al., Deep residual learning for image recognition, CVPR 2016

LeNet-5

Subsampling: 2x2 window — averaging followed by multiplication by trainable coeff. and addition with a trainable bias

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998a.

Handwritten Digit Classification

```
3681796691
6757863485
2179712845
4819018894
7618641560
7592658197
222234480
0 2 3 8 0 7 3 8 5 7
0146460243
7128169861
```


Misclassifications

Quantitative Results (Error Rate)

Qualitative Results

AlexNet

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

VGG Nets

- Main difference cf. AlexNet
- Use very small convolutional kernels of 3x3
- Increase the depth of the network

Tested multiple architectures

Small convolution kernels

Receptive fields

Receptive Field	Conv. layers
3x3	conv3
5x5	conv3+conv3
7x7	conv3+conv3+conv3

Why not conv7 instead of 3 conv3 layers?

Small convolution kernels

- Nonlinearities
 - Three nonlinear transformations between three conv3 layers
 - Cf. one for conv7
- #Parameters (assuming C channels)
 - $3 \times (3C)^2 = 27C^2$ for three conv3
 - $(7C)^2 = 49C^2$ for conv7 (81% more)

Architectures Tested

	ConvNet Configuration					
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	i	nput (224×2	24 RGB image	e)		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
		max	pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
		max	pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	

Common

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Number of Parameters

Table 2: Number of parameters (in millions).

	_		•		
Network	A,A-LRN	В	С	D	Е
Number of parameters	133	133	134	138	144
Layers	11	13	16	16	19

For comparison AlexNet has 8 layers and 60 million parameters

Evaluations

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)	smallest in	nage side	top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Generalization

Features from networks trained on ImageNet, tested on standard benchmarks

Method	VOC-2007	VOC-2012	Caltech-101	Caltech-256
Method	(mean AP)	(mean AP)	(mean class recall)	(mean class recall)
Zeiler & Fergus (Zeiler & Fergus, 2013)	-	79.0	86.5 ± 0.5	74.2 ± 0.3
Chatfield et al., (Chatfield et al., 2014)	82.4	83.2	88.4 ± 0.6	77.6 ± 0.1
He et al. (He et al., 2014)	82.4	-	$\textbf{93.4} \pm \textbf{0.5}$	-
Wei et al. (Wei et al., 2014)	81.5 (85.2*)	81.7 (90.3 *)	_	-
VGG Net-D (16 layers)	89.3	89.0	91.8 ± 1.0	85.0 ± 0.2
VGG Net-E (19 layers)	89.3	89.0	92.3 ± 0.5	85.1 ± 0.3
VGG Net-D & Net-E	89.7	89.3	92.7 ± 0.5	$\textbf{86.2} \pm \textbf{0.3}$

GoogLeNet

- 22 Layer deep CNN
- 12x less parameters cf. AlexNet
- 1.5 billion multiply-adds at inference time
- 'Inception module'

Inception Module

(a) Inception module, naïve version

Inception Module

(b) Inception module with dimension reductions

GoogLeNet

type	patch size/	output	depth	#1×1	#3×3	#3×3	#5×5	#5×5	pool	params	ops
- 3P-	stride	size	шорон	11-27/2	reduce	11-07-10	reduce	11-07-0	proj	Paramo	ОР
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56\times56\times192$	2		64	192				112K	360M
max pool	3×3/2	$28\times28\times192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Intermediate Supervision

Performances

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance

Average over 7 independently trained GoogLeNets

ResNet (MSR)

- 152 Layer network
- Cf. VGG nets
 - 8x deeper
 - Lower complexity

Deeper nets are hard to train

Training error increases as well — not overfitting!

Deeper nets shouldn't be bad

- Given a shallow net with certain performance
- Make a deep net by adding identity layers

- In the worst case
 - Performances of shallow and deep nets same

Residual Learning

- Learn residual mapping
- If identity was optimal
 - F(x) should be zero
 - ... easier to learn

Shortcut connections

Intuition/justification

- Degradation suggests problems approximating identity mappings with multiple non-linear layers
- Preconditioning in case optimal mappings are close to 1

Architecture

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112			7×7 , 64, stride 2	2		
				3×3 max pool, stric	ie 2		
conv2_x	56×56	[2 × 2 64]	Γ 2∨2 64]	[1×1, 64]	[1×1, 64]	[1×1, 64]	
CONVZ_X	30×30	$\begin{bmatrix} 3\times3,64\\ 3\times3,64 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 04 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	3×3, 64 ×3	3×3, 64 ×3	3×3, 64 ×3	
			[3×3, 64]	[[1×1, 256]	[1×1, 256]	[1×1, 256]	
		[2 × 2 129]	[2v2 129]	[1×1, 128]	[1×1, 128]	[1×1, 128]	
conv3_x	28×28	$\begin{vmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{vmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4$	3×3, 128 ×4	3×3, 128 ×4	3×3, 128 ×8	
		$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	[3×3, 126]	[1×1, 512]	1×1, 512	[1×1, 512]	
				Г 1∨1 256 Т	[1×1, 256]	[1×1, 256]	
conv4_x	14×14	$\begin{bmatrix} 3\times3, 256 \\ 3\times3, 256 \end{bmatrix} \times 2$	$\begin{vmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{vmatrix} \times 6$	3×3, 256 ×6	3×3, 256 ×23	3×3, 256 ×36	
		-	-	[[1 × 1, 1024]	L 1×1, 1024	L 1×1, 1024	
		[242 512]	[242 512]	[1×1, 512]	[1×1, 512]	[1×1, 512]	
conv5_x	7×7	$\begin{vmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{vmatrix} \times 2$	$\begin{bmatrix} 3\times3, 512 \\ 3\times3, 512 \end{bmatrix} \times 3$	3×3, 512 ×3	3×3, 512 ×3	3×3, 512 ×3	
		[3×3, 312]	[3×3, 312]	[1×1, 2048]	[1×1, 2048]	[1×1, 2048]	
	1×1		$ \begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 2 \begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1,512\\ 3\times3,512\\ 1\times1,2048 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1,512\\ 3\times3,512\\ 1\times1,2048 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1,512\\ 3\times3,512\\ 1\times1,2048 \end{bmatrix} \times 3 $ average pool, 1000-d fc, softmax				
FLO)Ps	1.8×10 ⁹	3.6×10 ⁹	3.8×10^9	7.6×10 ⁹	11.3×10 ⁹	

Training and Validation

- Plain (left) vs. ResNet (right)
- Thin (train) and thick (val)

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

10 crop testing

Comparisons

top-1 err.	top-5 err.
28.07	9.33
_	9.15
24.27	7.38
28.54	10.02
25.03	7.76
24.52	7.46
24.19	7.40
22.85	6.71
21.75	6.05
21.43	5.71
	28.07 - 24.27 28.54 25.03 24.52 24.19 22.85 21.75

10 crop testing

Comparisons — Ensemble

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Are ResNets really deep?

Exp Ensembles of Shallow Nets

- Interpret them as ensembles of relatively shallow networks
 - ResNet 110 = ensembles of 10-34 layer nets

- Network params: width, depth and
 - Multiplicity: size of the implicit ensemble

Veit et al., Residual Networks are Exponential Ensembles of Relatively Shallow Networks, NIPS 2016

Recursive expansion

Basic residual block

$$y_{i+1} \equiv f_{i+1}(y_i) + y_i$$

Expansion

$$y_3 = y_2 + f_3(y_2)$$

$$= [y_1 + f_2(y_1)] + f_3(y_1 + f_2(y_1))$$

$$= [y_0 + f_1(y_0) + f_2(y_0 + f_1(y_0))] + f_3(y_0 + f_1(y_0) + f_2(y_0 + f_1(y_0)))$$

Unraveled view

Exponential Multiplicity

- For each residual unit, either
 - information flows through it
 - or not goes through the skip connection
- For N residual units, # paths = 2^N
- Hypothesis: ResNets = Exponential ensemble of shallow nets

Validation of Hypothesis

- Lesion studies
- Deleting layers at test time
- Deleting multiple residual modules at test time
- Reordering modules at test time

Deleting a Layer

Equivalent to zeroing out half of the paths

Deleting a Layer/Module resp.

Deleting a Module

Deleting many Layers

Reordering Layers

Properties: Path lengths

Properties: Gradient flow

Properties: Gradient/Path

Deleting Modules

Depth of ResNet

- Paths that contribute gradients are small
 - cf. full depth of the network
- Not just "going deeper"
- Multiplicity is an important factor
 - (expressibility in terms of # paths)