Umsatzvorhersage einer Bäckereifiliale

Vorhersage zukünftiger Umsätze für sechs Bäckereiproduktkateg orien anhand historischer Daten von 2013 bis 2018. Team 08

Teammitglieder:

- Dirk Brockhausen:
Datensatzaufbereitung,
Baseline-Modell,
Modellentwicklung,
Visualisierung,
Ergebniszusammenstel
lung

- Miriam Berger:

Datensatzaufbereitung, Baseline-Modell, Team-Koordination, Dokumentation

Stand: (16.01.2025)

Variablen

Die durch die Competition Data vorgegebenen Variablen sind:

- Warengruppe
- Bewölkung
- Temperatur
- Windgeschwindigkeit
- Wettercode
- Kieler Woche

Die Zielvariable ist:

- Umsatz

Neue Variablen nach Kategorien

Zeitliche Faktoren:

- Silvester, Sommer, Wochenenden, Oster-Samstag, Wochentag, Tag vor Feiertagen

Temperaturmerkmale:

- Gefühlte Temperatur, Temperaturkategorien (warm, kalt, mild)

Schulferien & Events:

- Schulferien, Feiertage

Wettermerkmale:

- Jahreszeiten, Niederschlagsereignisse (Schnee, Nebel)

Balkendiagramme für drei selbst erstellte Variablen

Durchschnittlicher Gesamtumsatz an speziellen Events mit Konfidenzintervallen

Optimierung des linearen Modells

Training Metrics:

RMSE: 72.50, MAE: 49.90, R²: 0.759, Adjusted R²: 0.758

Validation Metrics:

RMSE: 69.73, MAE: 51.43, R²: 0.713, Adjusted R²: 0.708

Model Equation:

Sales = β_0 +

Very High Importance Features

 β_1 (is_silvester) + β_2 (is_summer) + β_3 (temp_base_warm) + β_4 (is_weekend) + β_5 (is_good_weather) + β_6 (product_group) + Σ_i β_i (school_holiday_state_i) +

High Importance Features

 $\begin{array}{l} \beta_7(\text{day_of_week}) + \beta_8(\text{temperature}) + \\ \beta_9(\text{feels_like_temp}) + \\ \beta_{10}(\text{cloud_cover}) + \beta_{11}(\text{year}) + \beta_{12}(\text{quarter}) + \end{array}$

Moderate Importance Features

 $\begin{array}{l} \beta_{13}(\text{is_winter}) + \beta_{14}(\text{temp_base_cold}) + \\ \beta_{15}(\text{temp_base_mild}) + \\ \beta_{16}(\text{is_day_before_holiday}) + \\ \beta_{17}(\text{is_easter_saturday}) + \\ \beta_{18}(\text{is_month_end}) + \beta_{19}(\text{is_kieler_woche}) + \end{array}$

Lower Importance Features

 β_{20} (is_spring) + β_{21} (is_fall) + β_{22} (is_public_holiday) + β_{23} (is_windjammer) + Σ_i β_i (weather_condition_i)

Missing Value Imputation (Neural Network v14)

Verschiedene Imputationsmethoden nach Datentyp

Numerische Variablen

Verwendung des Mittelwerts für Wetterdaten

Mean Imputation für Temperatur

Kategorische Variablen

Logischer Defaultwert für fehlende Werte

Konstante Imputation

Fehlender Wettercode mit -1 aufgefüllt

Binäre Imputation

Fehlende Events (Kieler Woche, Ferien, etc.) mit 0 aufgefüllt, was kein "Event" bedeutet.

Optimization of the Neural Network

Source code for defining the neural network:

def create_neural_network(input_shape):

model = keras.Sequential([

layers.InputLayer(input_shape=(input_shape,)),

layers.BatchNormalization(),

layers.Dense(128, activation='relu'),

layers.Dropout(0.3),

layers.Dense(64, activation='relu'),

layers.Dropout(0.3),

layers.Dense(32, activation='relu'),

layers.Dense(1)

Visualization of loss functions for training and validation datasets

MAPEs

MAPEs für Validierungsdatensatz und Warengruppen

MAPE by Product Group

Worst Fails

Probleme:

- Zu viele Variablen
- -> Reduktion von 66 auf 23 (10 Basis-Variablen + 7 Wochentagsvariablen + 6 Warengruppen-Variablen)
- Unzureichende KI-Entwicklungsumgebungen (Cursor und Windsurf)

Vielen Dank!

Vielen Dank für eure Aufmerksamkeit

Habt ihr Fragen?