實習六

電壓調節電路

◆ 實習目的

- 1. 藉由實習過程,以瞭解使用曾那二極體來設計電壓調節器 (穩壓器)。
- 2. 藉由實習過程,以瞭解使用曾那二極體來設計雙向截波電路。

相 關 知 識

- ◆ 當曾那二極體工作於崩潰區時,兩端電壓幾乎可以維持定值,所以在電子電路中常常使用來設計電壓調節器(穩壓器),而使用曾那二極體所設計電壓調節電路,如左下圖所示。,當曾那二極體接受逆向偏壓超過 V_Z (V_S > V_Z)時,曾那二極體可視為 V_Z 與 R_Z 串聯之等效電路,如右下圖所示。
- ◆ 觀察右圖可知,無論 V_S 如何變化 (但必須滿足 V_S > V_Z 之條件),則曾 那二極體可使 R_L 兩端之電壓維持 V_Z,即 V_L = V_Z。根據 KVL 可得 I_Z 為

$$I_{Z} = I - I_{L} = \frac{V_{S} - V_{Z}}{R + R_{Z}} - \frac{V_{L}}{R_{L}} \rightarrow I_{Z} = \frac{V_{S} - V_{Z}}{R} - \frac{V_{Z}}{R_{L}} (R_{Z} \rightarrow 0)$$

◆ 使用曾那二極體來設計電壓調節器時,不但要滿足 $V_S > V_Z$ 之條件,亦必須保證 I_Z 滿足下列條件:

$$I_{ZK} < I_Z < I_{ZM}$$

- ◆ 在設計電壓調節電路時,必須考慮最差之情況下,仍能發揮電壓調節之功能,即討論使用曾那二極體設計之電壓調節電路時,輸入電壓(V_S)、負載電阻(R_L)與限流電阻(R)等3個參數間相互關係,可同時滿足V_S > V_Z與 I_{ZK} < I_Z < I_{ZM} 等兩個條件,即分別討論這3個參數間相互變動關係如下:
 - 1. 當限流電阻 (R) 與負載電阻 (R_L) 皆固定之條件下,輸入電壓 (V_S) 可容許之最大變動範圍,使電壓調節電路,依然可維持正常操作。
 - 2. 當輸入電壓 (V_S) 與限流電阻 (R) 皆固定之條件下,負載電阻 (R_L) 可容許之變化範圍,使電壓調節電路,依然可維持正常操作。
 - 3. 當輸入電壓 (V_S) 與負載電阻 (R_L) 皆固定之條件下,限流電阻 (R) 可容許之變化範圍,使電壓調節電路,依然可維持正常操作。

輸入電壓(火。)可容許最大變動範圍之電壓調節電路的設計

- ◆ 當限流電阻 (R) 與負載電阻 (R_L) 皆固定之條件下,輸入電壓 (V_S) 可容許之最大變動範圍 (V_{S(max)} ~ V_{S(min)}),使曾那二極體之電壓與電流,可同時滿足 V_S > V_Z 與 I_{ZK} < I_Z < I_{ZM},以維持穩壓電路正常操作之條件如下:
 - 1. 當 $V_S = V_{S \, ({
 m min})}$ 時,可得流過曾那二極體之最小電流 I_{ZK} 為

$$I_{ZK} = \frac{V_{S\,(\mathrm{min})} - V_Z}{R} - \frac{V_Z}{R_L}$$

利用上式,可得為維持右圍之穩壓電路正常操作之

$$V_{S(\min)}$$
 為

$$V_{S(\min)} = I_{ZK} \cdot R + \frac{R \cdot V_Z}{R_I} + V_Z$$

2. 當 $V_S = V_{S(max)}$ 時,可得流過曾那二極體之最大電流 I_{ZM} 為

$$I_{ZM} = \frac{V_{S(\text{max})} - V_Z}{R} - \frac{V_Z}{R_I}$$

利用上式,可得為維持上圖之穩壓電路正常操作之最

大輔入電壓 $V_{S(max)}$ 為

$$V_{S(\text{max})} = I_{ZM} \cdot R + \frac{R \cdot V_Z}{R_L} + V_Z$$

 ◆ 由上面之討論可知,當限流電阻(R)與負載電阻(R_L)固定之條件下,則上圖之輸入電壓(V_S)可容許之 最大變動範圖為

$$\left(I_{ZK} \cdot R + \frac{R \cdot V_Z}{R_L} + V_Z\right) < V_S < \left(I_{ZM} \cdot R + \frac{R \cdot V_Z}{R_L} + V_Z\right)$$

負載電阻(R_L)可容許最大變動範圍之電壓調節電路的設計

- ◆ 當輸入電壓 (V_S) 與限流電阻 (R) 皆固定之條件下,則允許負載電阻 (R_L) 之最大變動範圍 $(R_{L(\min)} \sim R_{L(\max)})$,使流過曾那二極體之電流 I_Z ,可滿足 $I_{ZK} < I_Z < I_{ZM}$,以維持下圖之穩壓電路正常操作的條件如下:
 - 1. 當 $R_L = R_{L(\min)}$ 時,可得流過曾那二極體之最小電流 I_{ZK} 為

$$I_{ZK} = \frac{V_S - V_Z}{R} - \frac{V_Z}{R_{L(\min)}}$$

求解上式可得,為維持右圖之穩壓電路正常操作之

最小負載電阻 $R_{L(min)}$ 為

$$R_{L\,(\mathrm{min})} = \frac{V_Z}{\frac{V_S - V_Z}{R} - I_{ZK}}$$

3. 當 $R_L = R_{L(\text{max})}$ 時,可得流過曾那二極體之最大電流 I_{ZM} 為

$$I_{ZM} = \frac{V_S - V_Z}{R} - \frac{V_Z}{R_{L(\text{max})}}$$

求解上式可得,為維持右**圖之穩壓電路正常操作的**最

大負載電阻 $R_{L(max)}$ 為

$$R_{L(\text{max})} = \frac{V_Z}{\frac{V_S - V_Z}{R} - I_{ZM}}$$

◆ 由上面之討論可知,當輸入電壓 (V_S) 與限流電阻 (R) 皆固定之條件下,則上圖之負載電阻 (R_L) 可容許之最大變動範圖為

$$\frac{V_Z}{\frac{V_S - V_Z}{R} - I_{ZK}} < R_L < \frac{V_Z}{\frac{V_S - V_Z}{R} - I_{ZM}}$$

限流電阻 (R) 可容許最大變動範圍之電壓調節電路的設計

- ◆ 當輸入電壓 (V_S) 與負載電阻 (R_L) 皆固定之條件下,則允許限流電阻 (R) 之最大變動範圍 $(R_{(min)} \sim R_{(max)})$,使流過曾那二極體之電流 I_Z ,可滿足 $I_{ZK} < I_Z < I_{ZM}$,以維持下國之穩壓電路正常操作的條件如下:
 - 2. 當 $R = R_{\text{(max)}}$ 時,可得流過曾那二極體之最小電流 I_{ZK} 為

$$I_{ZK} = \frac{V_S - V_Z}{R_{(\text{max})}} - \frac{V_Z}{R_L}$$

求解上式可得,為維持右圖之穩壓電路正常操作之

最大限流電阻 R_(max) 為

$$R_{\text{(max)}} = \frac{V_S - V_Z}{I_{ZK} + \frac{V_Z}{R_L}}$$

4. 當 $R=R_{(min)}$ 時,可得流過曾那二極體之最大電流 I_{ZM} 為

$$I_{ZM} = \frac{V_S - V_Z}{R_{(\min)}} - \frac{V_Z}{R_L}$$

求解上式可得,為維持右圍之穩壓電路正常操作的最

小限流電阻 $R_{(min)}$ 為

$$R_{\text{(min)}} = \frac{V_S - V_Z}{I_{ZM} + \frac{V_Z}{R_L}}$$

 ◆ 由上面之討論可知,當輸入電壓(V_S)與負載電阻(R_L)皆固定之條件下,則上圖之限流電阻(R)可容 許之最大變動範圖為

$$\frac{V_S - V_Z}{I_{ZM} + \frac{V_Z}{R_L}} < R < \frac{V_S - V_Z}{I_{ZK} + \frac{V_Z}{R_L}}$$

利用曾那二極體設計之雙向截波電路

- ◆ 當曾那二極體工作於崩潰區 (當外加之逆向偏壓超過 Vz)時,則二極體兩端電壓幾乎可以維持定值,因此經適當之設計,亦可使用曾那二極體來設計截波電路。
- ◆ 若將兩個曾那二極體背對背連接起來,即可得同時對正、負半週作截波之截波電路,如左下圖所示, 而利用曾那二極體之特性 (注意:輸入電壓 v_i(t)之峰值,必須大於 V_Z + V_D),即可得到輸入 - 輸出 電壓波形,如下圖所示。

實習步驟與結果

(一)輸入電壓 (V_S) 可容許最大變動範圍之電壓調節電路

表 6-1 輸入電壓 (V_S) 變動之電壓調節電路的相關電壓與電流値 $(V_Z = 5.1 V)$

$V_S(V)$	3	5	6	8	10	12	15	18	20	25
$I_Z(mA)$	0	0	0.05	1.9	3.9	5.72	8.7	11.85	13.75	18.73
$V_Z(V)$	2.54	4.2	5.1	5.15	5.18	5.2	5.23	5.26	5.27	5.3
$I_L(mA)$	0.5	0.83	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.1

表 6-2 輸入電壓 (V_S) 變動之電壓調節電路的相關電壓與電流値 $(V_Z=6.8\ V)$

$V_S(V)$	3	5	6	8	10	12	15	18	20	25
$I_Z(mA)$	0	0	0	0.18	2	4.02	6.98	10	12.09	16.95
$V_Z(V)$	2.51	4.16	5.06	6.6	6.67	6.68	6.7	6.72	6.73	6.75
$I_L(mA)$	0.5	0.83	1.01	1.31	1.33	1.34	1.35	1.36	1.37	1.39

(二)負載電阻 (R_L) 可容許最大變動範圍之電壓調節電路

表 6-3 負載電阻 (R_L) 變動之電壓調節電路的相關電壓與電流值 $(V_Z=5.1 \ V)$

$R_L(\Omega)$	100	200	500	1K	2K	5K	10K	20K	50K	100K
$I_Z(mA)$	0	0	0	0.53	3.7	4.09	4.43	4.64	4.72	4.78
$V_Z(V)$	0.8	2	3.41	5.13	5.18	5.19	5.19	5.2	5.2	5.2
$I_L(mA)$	9.38	8.17	6.71	4.41	1.15	0.75	0.4	0.18	0.1	0.04

表 6-4 負載電阻 (R_L) 變動之電壓調節電路的相關電壓與電流値 $(V_Z=6.8\ V)$

$R_L(\Omega)$	100	200	500	1K	2K	5K	10K	20K	50K	100K
$I_Z(mA)$	0	0	0	0	0.75	2.21	2.95	3.08	3.21	3.29
$V_Z(V)$	0.9	2.02	3.71	5.21	6.65	6.68	6.68	6.68	6.68	6.68
$I_L(mA)$	9.28	8.12	6.40	4.89	2.67	1.15	0.39	0.25	0.13	0.05

(三)限流電阻(R)可容許最大變動範圍之電壓調節電路

表 6-5 限流電阻 (R) 變動之電壓調節電路的相關電壓與電流値 $(V_Z = 5.1 V)$

$R(\Omega)$	300	500	700	1K	2K	5K	8K	10K	15K	20K
$I_Z(mA)$	17.56	6.13	5.81	3.33	0.51	0.01	0	0	0	0
$V_Z(V)$	5.29	5.21	5.21	5.18	5.14	5	3.87	3.39	2.55	2.02
$I_L(mA)$	1.09	1.04	1.04	1.03	1.02	0.99	0.76	0.67	0.5	0.4

表 6-6 限流電阻 (R) 變動之電壓調節電路的相關電壓與電流値 ($V_Z = 6.8 \ V$)

$R(\Omega)$	300	500	700	1K	2K	5K	8K	10K	15K	20K
$I_Z(mA)$	9.3	5.72	3.45	1.98	0.39	0	0	0	0	0
$V_Z(V)$	6.72	6.7	6.68	6.67	6.64	5.06	3.88	3.4	2.54	2.03
$I_L(mA)$	1.35	1.33	1.32	1.32	1.31	1.00	0.76	0.67	0.5	0.4

(四)曾那二極體雙向截波電路

表 6-7 雙向截波電路之 $v_i(t)$ 與 $v_o(t)$ 波形與 $v_i(t) - v_o(t)$ 轉換特性曲線 $V_Z = 5.1 \text{ V}$

表 6-8 雙向截波電路之 $v_i(t)$ 與 $v_o(t)$ 波形與 $v_i(t) - v_o(t)$ 轉換特性曲線 $V_z = 6.8 \text{ V}$

