+ Code (+ Text)

import pandas as pd

df = pd.read_csv("HR-Employee-Attrition.csv")

df.head()

→		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

df.describe

Data Cleaning

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26), object(9)		

dtypes: int64(26), object memory usage: 402.1+ KB

1

0

dtype: int64

1233

237

Department-Wise Attrition

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(8,4))
sns.countplot(data=df, x='Department', hue='Attrition')
plt.title("Attrition by Department")
plt.xticks(rotation=15)
plt.show()
```


#Sales and Research&Development departments have the highest attrition, with Sales having a higher relative attrition rate

Monthly Income vs Attrition

```
sns.boxplot(data=df, x='Attrition', y='MonthlyIncome')
plt.title("Monthly Income vs Attrition")
plt.show()
```


#People who earn less salary are more likely to leave the company

Job Satisfaction vs Attrition

sns.countplot(data=df, x='JobSatisfaction', hue='Attrition')
plt.title("Job Satisfaction vs Attrition")
plt.show()

#Employees with low job satisfaction (levels 1 and 2) are more likely to resign. #Employees with high job satisfaction (levels 3 and 4) usually stay.

Years at Company vs Attrition

sns.boxplot(data=df, x='Attrition', y='YearsAtCompany')
plt.title("Years at Company vs Attrition")
plt.show()

#Employees are more likely to leave the company within their first few years.

OverTime vs Attrition

sns.countplot(data=df, x='OverTime', hue='Attrition')
plt.title("OverTime vs Attrition")
plt.show()

#Employees who work overtime are much more likely to resign and Employees who don't work overtime usually stay.

Promotions vs Attrition

sns.boxplot(data=df, x='Attrition', y='YearsSinceLastPromotion')
plt.title("Years Since Last Promotion vs Attrition")
plt.show()

#The boxplot shows that many employees who left had not received a promotion in recent years. While the difference is not huge, timely ;

Gender vs Attrition

```
sns.countplot(data=df, x='Gender', hue='Attrition')
plt.title("Gender-wise Attrition")
plt.show()
```


 $\ensuremath{\texttt{\#}}\xspace \ensuremath{\texttt{More}}\xspace$ men left the company than women.

MODELLING

```
{\it from sklearn.preprocessing import LabelEncoder}
```

```
le = LabelEncoder()
for column in df.select_dtypes(include='object').columns:
    df[column] = le.fit_transform(df[column])

X = df.drop('Attrition', axis=1)
y = df['Attrition']
```

Logistic Regression Model

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
```

```
6/30/25, 4:36 PM
                                                                      Untitled18.ipynb - Colab
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
    model = LogisticRegression(max_iter=1000)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print("Accuracy:", accuracy_score(y_test, y_pred))
    Accuracy: 0.8775510204081632
         Confusion Matrix:
          [[252 3]
          [ 33 6]]
         /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status-
         STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
    ** Use SHAP for Explainability**
    import shap
    explainer = shap.Explainer(model, X_test)
    shap_values = explainer(X_test)
    shap.summary_plot(shap_values, X_test)
    ₹
                                                                                                     High
                 YearsInCurrentRole
                   YearsAtCompany
            YearsWithCurrManager
```

