

ÁLGEBRA RELACIONAL

1. FACULDADE

Considere a seguinte base de dados das classificações obtidas nas várias provas realizadas pelos alunos nas cadeiras de um ou mais cursos, com as tabelas e instâncias de seguida apresentadas:

ALUNC)
<u>nr</u>	Nome
100	João
110	Manuel
120	Rui
130	Abel
140	Fernando
150	Ismael

PROF	
<u>sigla</u>	Nome
ECO	Eugénio
FNF	Fernando
JLS	João

CADEIR	A		
<u>cod</u>	Design	curso	regente
TS1	Teoria dos Sistemas 1	IS	FNF
BD	Bases de Dados	IS	ECO
EIA	Estruturas de Informação e Algoritmos	IS	ECO
EP	Electrónica de Potência	AC	JLS
ΙE	Instalações Eléctricas	AC	JLS

FROVA				
<u>nr</u>	<u>cod</u>	<u>data</u>	nota	
100	TS1	92-02-11	8	
100	TS1	93-02-02	11	
100	BD	93-02-04	17	
100	EIA	92-01-29	16	
100	EIA	93-02-02	13	
110	EP	92-01-30	12	
110	IE	92-02-05	10	
110	IE	93-02-01	14	
120	TS1	93-01-31	15	
120	EP	93-02-04	13	
130	BD	93-02-04	12	
130	EIA	93-02-02	7	
130	TS1	92-02-11	8	
140	TS1	93-01-31	10	
140	TS1	92-02-11	13	
140	EIA	93-02-02	11	
150	TS1	92-02-11	10	
150	EP	93-02-02	11	
150	BD	93-02-04	17	
150	EIA	92-01-29	16	
150	IE	93-02-02	13	

A chave da tabela PROVA é constituída pelos atributos nr, cod e data, permitindo guardar o resultado de mais do que uma prova por cadeira. Admita que todos os alunos inscritos a uma cadeira fizeram pelo menos uma prova a essa cadeira. Especifique em álgebra relacional a resposta às perguntas indicadas abaixo.

- 1. Quais os números dos alunos? Π_{nr} (Aluno)
- 2. Qual o código e designação das cadeiras do curso 'AC'? $\Pi_{cod, design}$ ($\sigma_{curso='AC'}$ Cadeira)
- 3. Existem nomes comuns a alunos e profs? Quais? $\Pi_{\text{nome}}(Aluno) \cap \Pi_{\text{nome}}(Prof)$
- 4. Quais os nomes específicos dos alunos, i.e., que nenhum professor tem? $\Pi_{nome}(Aluno)$ $\Pi_{nome}(Prof)$
- 5. Quais os nomes das pessoas relacionadas com a faculdade? $\Pi_{nome} (Aluno) \cup \Pi_{nome} (Prof)$
- 6. Quais os nomes dos alunos que fizeram alguma prova de 'ts1'? Π_{nome} (Aluno $\bowtie \sigma_{cod='TS1'}$ Prova)
- 7. Quais os nomes dos alunos com inscrição no curso 'IS'? $\Pi_{\text{nome}}\left(\sigma_{\text{curso}='\text{IS'}}\left(\text{Aluno} \bowtie \Pi_{\text{curso}, \text{nr}}\left(\text{Cadeira} \bowtie \text{Prova}\right)\right)\right)$
- 8. Qual a relação dos nomes dos alunos que concluíram o curso 'IS'.
 A (códigos das cadeiras do curso de IS) = Π_{cod} (σ_{curso='IS'} Cadeira)
 B (nomes e disciplinas com notas positivas) = Π_{nome, cod} ((σ_{nota≥10} (Prova ⋈ A)) ⋈ Aluno)

Resposta: B/A


```
RELAX:
```

 $A = \pi_{cod} (\sigma_{curso='IS'} Cadeira)$

 $B = \pi_{Nome,cod} ((\sigma_{nota \ge 10} (Prova \bowtie A)) \bowtie Aluno)$

B÷A

9. Qual a nota máxima existente nas provas?

 $\Pi_{max(nota)}(Prova)$

RELAX: γ_{max(nota)->max} (Prova)

10. Qual a nota média nas provas de BD?

 $\Pi_{avg(nota)}(\sigma_{cod='BD'} Prova)$

RELAX: $\gamma_{avg(nota)->avg}$ ($\sigma_{cod='BD'}$ Prova)

11. Qual o número de alunos?

 $\Pi_{cnt(*)}$ (Aluno)

RELAX: γ_{count(*)->cnt} (Aluno)

12. Qual o número de cadeiras de cada curso?

 $\Pi_{\text{curso; cnt(*)}}$ (Cadeira)

RELAX: γ_{curso;count(*)->cnt} (Cadeira)

13. Qual o número de provas de cada aluno?

 $\Pi_{\text{nr, cnt(*)}}$ (Prova)

RELAX: $\gamma_{\text{nr;count(*)->cnt}}$ (Prova)

14. Qual a média do número de provas por aluno?

 $\Pi_{\text{avg(contagem)}} \left(\rho_{nr,contagem} \left(\Pi_{\text{nr,cnt(*)}} \left(\text{Prova} \right) \right) \right)$

RELAX: $\gamma_{avg(contagem)->avg} (\gamma_{nr;count(*)->contagem} (Prova))$

15. Qual o nome e respetiva média atual (cadeiras feitas, em qualquer curso) de cada aluno?

 $\Pi_{\text{nome,media}}(\rho_{nr,media}(\Pi_{\text{nr,avg(nota)}}(\rho_{nr,cod,nota}(\Pi_{\text{nr,cod,max(nota)}}(\sigma_{\text{nota}\geq 10}\text{Prova}))))$ \bowtie Aluno)

RELAX: $\pi_{\text{Nome, media}}((\gamma_{\text{nr; AVG(maxnota)}\rightarrow \text{media}}(\gamma_{\text{nr, cod; MAX(nota)}\rightarrow \text{maxnota}}(\sigma_{\text{nota} \geq 10} \text{ Prova)})) \bowtie Aluno)$

16. Qual a nota máxima de cada cadeira e qual o aluno que a obteve?

 $\Pi_{\text{nome,maxnota}}(\Pi_{\text{nr,cod,maxnota}}((\rho_{cod,maxnota}(\Pi_{\text{cod, max(nota)}}Prova)) \bowtie Prova) \bowtie Aluno)$

RELAX: $\pi_{\text{Nome, maxnota}}$ ($\pi_{\text{nr, cod, maxnota}}$ (($\gamma_{\text{cod; MAX(nota)} \rightarrow \text{maxnota}}$ (Prova)) \bowtie Prova) \bowtie Aluno)

17. Obtenha a relação ordenada por curso dos nomes dos alunos formados.

A (nota final dos alunos às disciplinas) = $\Pi_{nr, cod, max(nota)}$ ($\sigma_{nota \ge 10}$ Prova)

B (número de aluno, curso e número de disciplinas feitas) = $\rho_{nr,curso,numDisc}(\Pi_{nr,curso,CNT(*)}$ (A \bowtie Cadeira))

C (número de disciplinas existentes por curso) = $\rho_{curso,numDisc}(\Pi_{curso,CNT(*)}Cadeira)$

 $B/(\sigma_{curso='AC'}C)$ -> alunos que finalizaram o curso de AC

 $B/(\sigma_{curso='IS'}C)$ -> alunos que finalizaram o curso de IS

Resposta = B/($\sigma_{curso='AC'}C$) \cup B/($\sigma_{curso='IS'}C$)

RELAX:

A = $\gamma_{nr,cod;max(nota)->maxnota}$ (σ_{nota≥10} Prova)

 $B = \gamma_{nr,curso;count(*)->cnt} (A \bowtie Cadeira)$

 $C = \gamma_{curso;count(*)->cnt}$ Cadeira

$$D = B/(\sigma_{curso='AC'} C)$$

$$E = B/(\sigma_{curso='IS'} C)$$

 $\mathbf{D} \cup \mathbf{E}$

[Baseado num exercício de Gabriel David]