Evolutionary Computation

Program – GA in Numerical Optimization

Mar 26, 2019

Objectives

Practice and get familiar with the most widely used evolutionary algorithm — genetic algorithm (GA). In this assignment you need to make use of the taught subject matters about GA's representation, crossover, mutation, and survivor to solve the given problem.

Problem Description

Write efficient programs to implement GAs to find the minimal solution of the Schwefel function (SCH):

$$f_{\text{SCH}}(\vec{x}) = 418.98291N - \sum_{i=1}^{N} x_i \sin\left(\sqrt{|x_i|}\right),$$

where $-512 \le x_i \le 511$ and N = 10. This function is a continuous, multimodal, non-convex, deceptive, and N-dimensional function with a global minimum of 0. The landscape of a 2-dimensional SCH function is plotted below.

Figure 1: Fitness landscape of SCH

Requirements

You MUST

1. Implement binary GA and real-valued GA with different operators to solve the SCH:

	Binary GA	Real-valued GA
Representation	$c_i \in 2^{10}$	$c_i \in \mathbb{R}$
Population	Generational (size 100)	
Parent selection	Tournament Selection $(n=2)$	
Crossover $(p_c = 0.9)$	Uniform	
	2-point	Whole Arithmetic
Mutation $(p_c = 1/\ell)$	Bit-flip	Uniform
Survivor Selection	$\mu + \lambda$	
Termination	500 generations	

^{*}code efficiency is a key factor for evaluation of this assignment.

2. Plot the anytime behavior (averaged over 30 trials) of the above GAs, e.g.,

- 3. **Compare** convergence speed and solution quality between different representations and operators; **give reasons** why some combination performs better (or worse).
- 4. Try other setting for p_c , p_m , n and discuss their effects on covergence speed and solution quality.
- 5. Deal with the large-scale problem: N = 100.

Submission

- Due date: 2019/04/12
- Source code (C/C++ or Java) + Report (PDF file, no longer than six A4 pages)
- Zip (or rar) to a file named "(Student ID)_SCH.zip", and upload to iLMS system