External

Registers

PMICFILTR_ELO, Performance Monitors Instruction Counter Filter Register

The PMICFILTR EL0 characteristics are:

Purpose

Configures the Instruction Counter.

Configuration

AArch64 System register PMICFILTR_EL0 bits [63:0] are architecturally mapped to External register PMU.PMICFILTR_EL0[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented. Otherwise, direct accesses to PMICFILTR EL0 are undefined.

Attributes

PMICFILTR EL0 is a 64-bit register.

Field descriptions

6362	61	60	59	58	57	565	5 5	4 5	3 52	51504948	347464544434241403938373635343332
	RE	S 0		SYNC						F	RES0
PU	NSK	NSU	NSH	М	RES0	SH	T RI	_K <mark>RL</mark>	URLI	H RESO	evtCount
3130	29	28	27	26	25	242	23 2	2 2	1 20	19181716	5151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, res0.

SYNC, bit [58] When FEAT SEBEP is implemented:

Synchronous mode. Controls whether a PMU exception generated by the counter is synchronous or asynchronous.

SYNC	Meaning
0b0	Asynchronous PMU exception is enabled.
0b1	Synchronous PMU exception is enabled.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [57:32]

Reserved, res0.

P, bit [31]

EL1 filtering. Controls counting instructions in EL1.

P	Meaning
0b0	This field has no effect on filtering of instructions.
0b1	Instructions in EL1 are not counted.

If Secure and Non-secure states are implemented, then counting instructions in Non-secure EL1 is further controlled by PMICFILTR EL0.NSK.

If FEAT_RME is implemented, then counting instructions in Realm EL1 is further controlled by PMICFILTR EL0.RLK.

If EL3 is implemented, then counting instructions in EL3 is further controlled by PMICFILTR EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

U, bit [30]

EL0 filtering. Controls counting instructions in EL0.

U	Meaning
0b0	This field has no effect on filtering
	of instructions.
0b1	Instructions in EL0 are not
	counted.

If Secure and Non-secure states are implemented, then counting instructions in Non-secure EL0 is further controlled by PMICFILTR_EL0.NSU.

If FEAT_RME is implemented, then counting instructions in Realm EL0 is further controlled by PMICFILTR_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

NSK, bit [29] When EL3 is implemented:

Non-secure EL1 filtering. Controls counting instructions in Non-secure EL1. If PMICFILTR_EL0.NSK is not equal to PMICFILTR_EL0.P, then instructions in Non-secure EL1 are not counted. Otherwise, PMICFILTR_EL0.NSK has no effect on filtering of instructions in Non-secure EL1.

NSK	Meaning
0b0	When $PMICFILTR_EL0.P == 0$,
	this field has no effect on filtering
	of instructions.
	When $PMICFILTR_EL0.P == 1$,
	instructions in Non-secure EL1
	are not counted.
0b1	When PMICFILTR EL0.P $== 0$,
	instructions in Non-secure EL1
	are not counted.
	When $PMICFILTR_EL0.P == 1$,
	this field has no effect on filtering
	of instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSU, bit [28] When EL3 is implemented:

Non-secure EL0 filtering. Controls counting instructions in Non-secure EL0. If PMICFILTR_EL0.NSU is not equal to PMICFILTR_EL0.U, then instructions in Non-secure EL0 are not counted. Otherwise, PMICFILTR_EL0.NSU has no effect on filtering of instructions in Non-secure EL0.

NSU Meaning	
-------------	--

0b0	When $PMICFILTR_EL0.U == 0$,
	this field has no effect on filtering
	of instructions.
	When $PMICFILTR_EL0.U == 1$,
	instructions in Non-secure EL0
	are not counted.
0b1	When $PMICFILTR_EL0.U == 0$,
	instructions in Non-secure EL0
	are not counted.
	When $PMICFILTR_EL0.U == 1$,
	this field has no effect on filtering
	of instructions.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSH, bit [27] When EL2 is implemented:

EL2 filtering. Controls counting instructions in EL2.

NSH	Meaning
0b0	Instructions in EL2 are not
	counted.
0b1	This field has no effect on filtering of instructions.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting instructions in Secure EL2 is further controlled by PMICFILTR EL0.SH.

If FEAT_RME is implemented, then counting instructions in Realm EL2 is further controlled by PMICFILTR_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

M, bit [26] When EL3 is implemented:

EL3 filtering. Controls counting instructions in EL3. If PMICFILTR_EL0.M is not equal to PMICFILTR_EL0.P, then instructions in EL3 are not counted. Otherwise, PMICFILTR_EL0.M has no effect on filtering of instructions in EL3.

M	Meaning
0b0	When $PMICFILTR_EL0.P == 0$, this
	field has no effect on filtering of
	instructions.
	When $PMICFILTR_EL0.P == 1$,
	instructions in $EL\overline{3}$ are not
	counted.
0b1	When PMICFILTR EL0.P $== 0$,
	instructions in EL3 are not
	counted.
	When $PMICFILTR_EL0.P == 1$, this
	field has no effect on filtering of
	instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [25]

Reserved, res0.

SH, bit [24]

When EL3 is implemented and FEAT SEL2 is implemented:

Secure EL2 filtering. Controls counting instructions in Secure EL2. If PMICFILTR_EL0.SH is equal to PMICFILTR_EL0.NSH, then instructions in Secure EL2 are not counted. Otherwise, PMICFILTR_EL0.SH has no effect on filtering of instructions in Secure EL2.

SH	Meaning	
----	---------	--

0d0	When PMICFILTR_EL0.NSH == 0, instructions in Secure EL2 are not counted.
	When PMICFILTR EL0.NSH $== 1$,
	·
	this field has no effect on filtering
	of instructions.
0b1	When PMICFILTR EL0.NSH $== 0$,
	this field has no effect on filtering
	of instructions.
	When PMICFILTR EL0.NSH $== 1$,
	instructions in Secure EL2 are not
	counted.
	counted.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

T, bit [23] When FEAT_TME is implemented:

Non-transactional state filtering. Controls counting instructions in Non-transactional state.

T	Meaning
0b0	This field has no effect on filtering
	of instructions.
0b1	Instructions in Non-transactional
	state are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

RLK, bit [22] When FEAT RME is implemented:

Realm EL1 filtering. Controls counting instructions in Realm EL1. If PMICFILTR_EL0.RLK is not equal to PMICFILTR_EL0.P, then instructions in Realm EL1 are not counted. Otherwise, PMICFILTR_EL0.RLK has no effect on filtering of instructions in Realm EL1.

RLK	Meaning	
0d0	When $PMICFILTR_EL0.P == 0$,	
	this field has no effect on filtering	
	of instructions.	
	When $PMICFILTR_EL0.P == 1$,	
	instructions in Realm EL1 are not	
	counted.	
0b1	When PMICFILTR EL0.P $== 0$,	
	instructions in Realm EL1 are not	
	counted.	
	When $PMICFILTR_EL0.P == 1$,	
	this field has no effect on filtering	
	of instructions.	

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

RLU, bit [21] When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting instructions in Realm EL0. If PMICFILTR_EL0.RLU is not equal to PMICFILTR_EL0.U, then instructions in Realm EL0 are not counted. Otherwise, PMICFILTR_EL0.RLU has no effect on filtering of instructions in Realm EL0.

RLU	Meaning	
0b0	When $PMICFILTR_EL0.U == 0$,	
	this field has no effect on filtering	
	of instructions.	
	When $PMICFILTR_EL0.U == 1$,	
	instructions in Realm EL0 are not counted.	

0b1	When PMICFILTR_EL0.U == 0, instructions in Realm EL0 are not
	counted.
	When PMICFILTR EL0.U $== 1$,
	this field has no effect on filtering
	of instructions.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

RLH, bit [20] When FEAT RME is implemented:

Realm EL2 filtering. Controls counting instructions in Realm EL2. If PMICFILTR_EL0.RLH is equal to PMICFILTR_EL0.NSH, then instructions in Realm EL2 are not counted. Otherwise, PMICFILTR_EL0.RLH has no effect on filtering of instructions in Realm EL2.

RLH	Meaning		
0b0	When PMICFILTR_EL0.NSH ==		
	0, instructions in Realm EL2 are		
	not counted.		
	When $PMICFILTR_EL0.NSH ==$		
	1, this field has no effect on		
	filtering of instructions.		
0b1	When PMICFILTR EL0.NSH ==		
	0, this field has no effect on		
	filtering of instructions.		
	When $PMICFILTR_EL0.NSH ==$		
	1, instructions in Realm EL2 are		
	not counted.		

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [19:16]

Reserved, res0.

evtCount, bits [15:0]

Event to count.

Reads as 0x0008.

Access to this field is **RO**.

Accessing PMICFILTR_EL0

PMICFILTR_EL0 reads-as-zero and ignores writes if all of the following are true:

- PSTATE.EL == EL0.
- PMUACR EL1.F0 == 0.

PMICFILTR EL0 ignores writes if all of the following are true:

- PSTATE.EL == EL0.
- PMUSERENR ELO.IR == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMICFILTR_EL0

op0	op1	CRn	CRm	op2
0b11	0b011	0b1001	0b0110	0b000

```
if PSTATE.EL == ELO then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.EnPM2 == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
&& IsFeatureImplemented(FEAT_FGT2) && HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
&& IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nPMICFILTR_EL0 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

```
elsif EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PMICFILTR ELO;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.EnPM2 == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT2) && HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT2) &&
HDFGRTR2 EL2.nPMICFILTR EL0 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PMICFILTR\_ELO;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.EnPM2 == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
```

MSR PMICFILTR EL0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b011	0b1001	0b0110	0b000

```
if PSTATE.EL == ELO then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.EnPM2 == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
&& IsFeatureImplemented(FEAT_FGT2) && HaveEL(EL3) &&
SCR\_EL3.FGTEn2 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
&& IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nPMICFILTR_EL0 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
    AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMICFILTR\_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.EnPM2 == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
```

```
UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT2) && HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT2) &&
HDFGWTR2_EL2.nPMICFILTR_EL0 == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
    AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMICFILTR ELO = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.EnPM2 == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMICFILTR\_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PMICFILTR\_EL0 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers