Churn Prediction Model Report

Introduction

This report documents the process of building a churn prediction model using the Random Forest algorithm. The goal is to predict customer churn based on a given dataset. The process involves preprocessing the data, handling outliers, splitting the data, standardizing features, training the model using GridSearchCV for hyperparameter tuning, and evaluating the model's performance.

Code Overview

1. Data Preprocessing and Outlier Handling -

- The dataset is loaded using pandas. Numerical features are identified, and Z -scores are calculated to detect outliers.
- Outliers are identified using a specified Z-score threshold. Outliers are handled by capping their values to the 95th percentile.

2. Data Splitting –

• The preprocessed data is split into training and testing sets using train_test_split.

3. Feature Standardization -

• Numerical features in the training and testing sets are standardized using StandardScaler.

4. Categorical Feature Encoding -

- Categorical features are identified.
- The ColumnTransformer is used to apply scaling and one-hot encoding to different subsets of features.

5. Model Training and Hyperparameter Tuning -

- A Random Forest Classifier is initialized. A parameter grid is defined for hyperparameter tuning using GridSearchCV. GridSearchCV is used to find the best hyperparameters using cross-validation.
- The best model is selected from GridSearchCV results.

6. Model Evaluation –

- The best model is used to predict outcomes on the test set. Accuracy is calculated using accuracy_score.
- The confusion matrix is calculated using confusion matrix.
- The classification report, including precision, recall, F1-score, and support, is generated using classification_report.

Note: I am familiar with the various model deployment techniques but not yet used and being very less time for the assignment submission deadline I was not able to utilize time and deploy my model as I am a working professional.