Геометрия напоследок

- 1. В треугольнике ABC высоты AA_1 , BB_1 и CC_1 пересекаются в точке H. Докажите, что середины отрезков BB_1 и CC_1 , точки H и A_1 лежат на одной окружности.
- **2.** Окружность Конвея. Дан треугольник ABC. Точки A_1 и A_2 лежат на лучах BA и CA за точкой A так, что $AA_1 = AA_2 = BC$. Аналогично определяются точки B_1 , B_2 , C_1 , C_2 . Докажите, что точки A_1 , A_2 , B_1 , B_2 , C_1 , C_2 лежат на одной окружности. Какая точка является центром окружности?
- **3.** (a) Через точку Лемуана L треугольника провели три отрезка, антипараллельных его сторонам. Докажите, что концы этих отрезков лежат на одной окружности.
 - (**б**) Через точку Лемуана треугольника провели три отрезка, параллельных его сторонам. Докажите, что концы этих отрезков лежат на одной окружности.
 - (в) Докажите, что центр окружности из предыдущего пункта это середина отрезка OL, где O центр (ABC).
- **4.** (а) Окружность Тэйлора. Из оснований высот треугольника ABC опущены перпендикуляры на прямые, содержащие две другие стороны. Докажите, что 6 полученных точек лежат на одной окружности.
 - (б) Докажите, что центр окружности Тэйлора является серединой отрезка, соединяющего центр (ABC) с ортоцентром ортотреугольника.
- **5.** Точка H ортоцентр треугольника ABC. Внутри треугольника выбрана точка P. Прямые AP, BP, CP пересекают окружность (ABC) в точках A_1 , B_1 , C_1 соответственно. Докажите, что окружность, проходящая через точки, симметричные A_1 , B_1 , C_1 относительно
 - (а) соответствующих сторон треугольника;
 - (б) середин соответствующих сторон треугольника, проходит через ортоцентр треугольника ABC.