Exercise 1 30%

FEM for Two-Point Boundary Value Problems Using Finite Differences

Let I = (0,1) and consider the ODE

$$-(k(x)u'(x))' + u(x) = f(x), \qquad x \in I, \qquad u(0) = u(1) = 1,$$

where k(x) = 1 + x and

$$f(x) = \begin{cases} x^2 \sin(\pi x) & 0 < x < 1/2 \\ \sqrt{x} & 1/2 < x < 1. \end{cases}$$

- 1. Write a second order finite difference scheme to approximate the solution of the above ODE. To check your implementation, pick randomly a non trivial u satisfying the boundary condition and compute the corresponding f. Then verify that you observe the asymptotic rate predicted by the theory.
 - HINT: You do not need to define a lifting of the boundary conditions but observe that non vanishing boundary conditions only affect your right hand side.
- 2. Compute an approximation of the solution corresponding to $f(x) = \sin(4\pi x)$ (using sufficiently enough break points).
- 3. Same questions with the boundary conditions u(0) = 0 and u'(1) = 0.

Exercise 2 70%

FEM for Two-Point Boundary Value Problems Using Linear Elements

Write a program for solving two-point boundary value problems for second order ordinary differential equations by Ritz-Galerkin method using linear finite elements. Submit a report with graphs of the results, table with the error in discrete L^2 - and maximum-norms, and comments.

Specifications

- 1. Use double precision. For solving the corresponding system of linear equations use the program from LAPACK that you discussed on your lab (or any other program you have).
- 2. Use 25, 50, 100, 200 linear finite elements. Plot the solution. In a table give the error in L^2 , H^1 , L^{∞} and make also plots of the error norms versus the mesh size.

Computational examples - solve the following problems:

1. The deflection of a uniformly loaded, long rectangular plate under axial tension force and fixed ends, for small deflections, is governed by the second order differential equation. Let S represent the axial force and q the intensity of the uniform load. The deflection W along the elemental length is given by:

$$W''(x) - \frac{S}{D}W(x) = -\frac{qx}{2D}(l-x), \quad 0 < x < l, \quad W(0) = W(l) = 0, \tag{1}$$

where l is the length of the plate, and D is the flexural rigidity of the plate. Take $q=200\ lb/in^2,\ S=100\ lb/in$, $D=8.8\ 10^7\ lb\ in$, and $l=50\ in$. Consider also the cases $S=1000\ lb/in$ and $S=10000\ lb/in$. The exact solution is given by: $a=\frac{Sl^2}{D},\ b=\frac{ql^4}{2D},\ t=x/l$ and

 $W(t) = \frac{b}{a} \left(-t^2 + t - \frac{2}{a} + \frac{2}{a \sinh(\sqrt{a}t)} \left[\sinh(\sqrt{a}t) + \sinh(\sqrt{a}(1-t)) \right] \right).$

2. Consider the problem (1) when the r.h.s. $\frac{qx}{2D}(l-x)$ is replaced by the constant $\frac{q}{2D}$. The exact solution for $Q = \frac{ql^2}{2D}$ is:

$$W(t) = \frac{Q}{a} \left(1 - \frac{1}{\sinh \sqrt{a}} \left(\sinh(\sqrt{a}t) + \sinh(\sqrt{a}(1-t)) \right) \right).$$

3. Consider the problem (1) in the case when the right end of the plate is free, i.e. instead of the boundary condition W(l) = 0 now we have the condition W'(l) = 0. The exact solution in this case is:

$$W(t) = \frac{b}{a} \left(-t^2 + t - \frac{2}{a} + \frac{1}{a \cosh(\sqrt{a})} \left[\sqrt{a} \sinh(\sqrt{a}t) + 2 \cosh(\sqrt{a}(1-t)) \right] \right).$$

If the r.h.s. $\frac{qx}{2D}(l-x)$ is replaced by the constant $\frac{q}{2D}$ then the exact solution is (with $Q=\frac{ql^2}{2D}$):

$$W(t) = \frac{Q}{a} \left(1 + \frac{\sinh \sqrt{a}}{\cosh \sqrt{a}} \sinh(\sqrt{a}t) - \cosh(\sqrt{a}t) \right).$$

4. A thin rod made of three different materials with insulated lateral surface has ends kept at temperature 0 and $\frac{4}{\pi} + \frac{3}{2}$ degrees respectively. The steady state distribution of the temperature u(x) is a solution to the problem: -(ku')' = 0, $x \in (0,1)$, u(0) = 0, $u(1) = \frac{4}{\pi} + \frac{3}{2}$, where k(x) = 1 for $x \in (0, \pi/6)$; k(x) = 2, for $x \in (\pi/6, \pi/4)$, and k(x) = 3 for $x \in (\pi/4, 1)$. The exact solution u(x) is a piece-wise linear function defined as $\frac{12}{\pi}x$, $\frac{6}{\pi}x + 1$, and $\frac{4}{\pi}x + \frac{3}{2}$ in the corresponding intervals of definition of k(x).