Übungsblatt LA 7

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

- > Sie kennen die Begriffe Spur, Determinante, Leibnizsche Formel, Regel von Sarrus, Gramsche Matrix und deren wichtigste Eigenschaften.
- ➤ Sie kennen die Formel zur Berechnung von Massen (Länge, Fläche, Volumen ...) und können sie anwenden.
- Sie können die Eigenschaften einer Matrix anhand ihrer Spur und Determinante beurteilen.
- Sie können die Determinante quadratischer Matrizen in 2D und 3D berechnen.
- Sie können die Determinanten einer quadratischen Matrix mit Hilfe des Gaußschen Verfahrens berechnen.

1. Aussagen über die Spur

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Spur ist für jede Matrix definiert.		Χ
b) Ob eine Matrix regulär oder singulär ist, lässt sich nicht alleine	Χ	
anhand der Spur beurteilen.		
c) Für alle orthogonalen Matrizen gilt: $tr(A^T \cdot A) = n$.	Χ	
d) Für alle quadratischen nxn Matrizen gilt: $tr(A \cdot B - B \cdot A) = 0$.	Х	
e) Für alle quadratischen nxn Matrizen gilt:		Χ
$tr(A \cdot B) = tr(A) \cdot tr(B).$		
f) Die Matrix A ist schiefsymmetrisch, wenn gilt: $tr(A) = 0$.		Χ

2. Spur und Determinante der Standardmatrizen in 2D

Bestimmen Sie für die Standardmatrizen \mathbb{E} , \mathbb{I} , P, Z_{λ} , P_{x} , P_{y} , S_{x} und S_{y} jeweils die Spur und die Determinante.

Die Matrizen \mathbb{E} , \mathbb{I} , P beschreiben Drehungen, die Matrizen sind somit orthogonal. Es gilt folglich: $det(\mathbb{E}) = det(\mathbb{I}) = det(P) = 1$.

Die Matrizen P_x , P_y beschreiben Projektionen. Sie sind deshalb singulär und somit gilt: $det(P_x) = det(P_y) = 0$.

Die Matrizen S_x und S_y beschreiben Spiegelungen. Da Spiegelungen nicht orientierungstreu sind, gilt: $det(S_x) = det(S_y) = -1$.

Die Matrix Z_{λ} beschreibt eine Streckung um den Faktor λ . Dabei vergrössern sich die Flächen um den Faktor λ^2 und es folgt: $det(Z_{\lambda}) = \lambda^2$.

$$\underline{\operatorname{tr}(1)} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 1 + 1 = \underline{2}$$

$$\underline{\det(1)} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 1 \cdot 1 - 0 \cdot 0 = 1 - 0 = \underline{1}$$

$$\underline{\operatorname{tr}(\underline{6})} = \operatorname{tr}\left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right) = 0 + 0 = \underline{0}$$

$$\underline{\det(\underline{6})} = \det\left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right) = 0 \cdot 0 - 1 \cdot (-1) = 0 + 1 = \underline{1}$$

$$\underline{\operatorname{tr}(P)} = \operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right) = -1 + (-1) = \underline{-2}$$

$$\underline{\det(P)} = \det\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right) = (-1) \cdot (-1) - 0 \cdot 0 = 1 - 0 = \underline{1}$$

$$\underline{\operatorname{tr}(Z_{\lambda})} = \operatorname{tr}\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \lambda + \lambda = \underline{2\lambda}$$

$$\underline{\det(Z_{\lambda})} = \det\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \lambda \cdot \lambda - 0 \cdot 0 = \lambda^{2} - 0 = \underline{\lambda^{2}}$$

$$\underline{\operatorname{tr}(P_{x})} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = 1 + 0 = \underline{1}$$

$$\underline{\det(P_{x})} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 + 1 = \underline{1}$$

$$\underline{\det(P_{y})} = \det\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 + 1 = \underline{1}$$

$$\underline{\det(P_{y})} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 \cdot 1 - 0 \cdot 0 = 0 - 0 = \underline{0}$$

$$\underline{\operatorname{tr}(S_{x})} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 + (-1) = \underline{0}$$

$$\underline{\det(S_{x})} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 \cdot (-1) - 0 \cdot 0 = -1 - 0 = \underline{-1}$$

$$\underline{\operatorname{tr}(S_{y})} = \operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\right) = -1 + 1 = \underline{0}$$

$$\underline{\det(S_{y})} = \det\left(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\right) = (-1) \cdot 1 - 0 \cdot 0 = -1 - 0 = \underline{-1}.$$

3. Spur und Determinante berechnen

Berechnen Sie jeweils die Spur und die Determinante.

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

d)
$$\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \\ 6 & -3 & 12 \end{pmatrix}$$
 e) $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{pmatrix}$

g)
$$\begin{pmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & 2 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

f) $\begin{pmatrix} 1 & \sqrt{3} & 8 & -\sqrt{2} \\ -13 & 3 & \sqrt{2} & 0 \\ \sqrt{17} & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}$
h) $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{pmatrix}$

$$\underline{\operatorname{tr}(A)} = 2 + 5 = \underline{7}.$$

$$\frac{\det(A)}{h} = 2 \cdot 5 - 4 \cdot 3 = 10 - 12 = \underline{-2}$$

$$tr(A) = 2 + 6 = 8$$

Da bei der Matrix A die 2. Spalte ein Vielfaches der Ersten ist, verschwindet die Determinante: det(A) = 0.

c)

$$\underline{\operatorname{tr}(A)} = (-1) + 2 + (-1) = \underline{0}.$$

$$\underline{\det(A)} = (-1) \cdot 2 \cdot (-1) + 1 \cdot 3 \cdot 0 + 0 \cdot 2 \cdot 0 - 1 \cdot 2 \cdot 0 - 0 \cdot 3 \cdot (-1) - (-1) \cdot 2 \cdot 0$$

$$= 2 + 0 + 0 - 0 - 0 - 0 = \underline{2}.$$

d)

$$tr(A) = -2 - 2 + 12 = 8$$

Die zweite Zeile von A ist ein Vielfaches der ersten Zeile. Deswegen verschwindet die Determinante: det(A) = 0.

$$\begin{array}{l} \mathbf{e}) \\ \underline{\mathbf{tr}(A)} = 1 + (-2) + 3 + (-2) = \underline{0}. \\ \\ \underline{\mathbf{det}(A)} = \begin{vmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 2 & 1 & 6 & 3 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} \cdot 2 = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 2 & 0 & -4 \\ 3 & 0 & 3 & 6 & -2 \end{vmatrix} \cdot 2 \cdot (-1) = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 6 & 7 \end{vmatrix} \cdot 2 \cdot (-1) \\ = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 0 & [6] & 7 \\ 0 & 0 & 0 & [2] \end{vmatrix} \cdot 2 \cdot (-1) \cdot (-1) = 1 \cdot 1 \cdot 6 \cdot 2 \cdot 2 \cdot (-1) \cdot (-1) = 2\underline{4}. \\ \\ \underline{\mathbf{f}} \\ \underline{\mathbf{f}$$

$$= \begin{vmatrix} \begin{bmatrix} 2 \end{bmatrix} & -3 & 5 & 1 & 4 \\ 0 & [1] & -1 & 0 & 3 \\ 0 & 0 & [2] & 4 & -7 \\ 0 & 0 & 0 & [1] & 0 \\ 1 & 0 & 0 & 0 & 1 & -6 \end{vmatrix} \cdot (-1) = \begin{vmatrix} \begin{bmatrix} 2 \end{bmatrix} & -3 & 5 & 1 & 4 \\ 0 & [1] & -1 & 0 & 3 \\ 0 & 0 & [2] & 4 & -7 \\ 0 & 0 & 0 & [1] & 0 \\ 0 & 0 & 0 & 0 & [-6] \end{vmatrix} \cdot (-1)$$

$$= 2 \cdot 1 \cdot 2 \cdot 1 \cdot (-6) \cdot (-1) = \underline{24}.$$

$$\textbf{h})$$

$$\underline{\det(A)} = \begin{vmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{vmatrix} \cdot (-1)^2$$

$$= \begin{vmatrix} \begin{bmatrix} 1 \end{bmatrix} & 1 & 0 & 0 & 0 \\ 0 & [-2] & 0 & 0 & 0 \\ 0 & 0 & [1] & 1 & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{vmatrix} \cdot 1 = \begin{vmatrix} \begin{bmatrix} 1 \end{bmatrix} & 1 & 0 & 0 & 0 \\ 0 & [-2] & 0 & 0 & 0 \\ 0 & 0 & [1] & 1 & 0 \\ 0 & 0 & 0 & 0 & [2] & 0 \\ 0 & 0 & 0 & 0 & [\sqrt{2}] \end{vmatrix}$$

$$= 1 \cdot (-2) \cdot 1 \cdot 2 \cdot \sqrt{2} = -4\sqrt{2}.$$

4. Spur und Determinante mit Python/Numpy bestimmmen

Berechnen Sie jeweils Spur und Determinante der Matrizen aus Aufgabe 3 mit Python/Numpy.

```
a)
# Initialisieren
import numpy as np;
# Parameter
A=np.array([[2,3],[4,5]]);
# Berechnungen
spur=np.trace(A);
determinante=np.linalg.det(A);
# Ausgabe
print('Spur =',spur);
print('Determinante =',round(determinante,3));
```

Berechnung für b) – h) analog.

5. Aussagen über die Determinante

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Determinante ist nur für quadratische Matrizen definiert.	X	
b) Ob eine quadratische Matrix regulär oder singulär ist, lässt sich		Χ
nicht nur anhand der Determinante beurteilen.		
c) Für eine quadratische nxn Matrix A und eine orthogonale nxn	X	
Matrix Q gilt: $det(QA) = det(A)$.		
d) Für quadratische <i>nxn</i> Matrizen <i>A</i> und <i>B</i> gilt:		X
det(A+B) = det(A) + det(B).		
e) Gilt $A = A^{-1}$, dann folgt: $det(A) \in \{-1, 1\}$.	Χ	
f) A sei eine schiefsymmetrische nxn Matrix. Für ungerade n gilt:	Х	
det(A) = 0.		

6. Aussagen über 2 Matrizen in 2D

Gegeben sind die beiden Matrizen

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 und $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Matrix A ist orthogonal.	Χ	
b) Die Matrix <i>B</i> beschreibt eine Spiegelung an einer Geraden.		Χ
c) Es gilt: $det(B) = tr(A) + tr(B)$.	Χ	
d) Es gibt ein $n \in \mathbb{N}$, so dass $B^n = 0$.	Χ	
e) Die Matrizen A und B kommutieren nicht, d. h. es gilt $A \cdot B \neq B \cdot A$.	X	
f) Es gilt $B = B^{-1}$.		Χ

7. Aussagen über 2 Matrizen in 3D

Gegeben sind die beiden Matrizen

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \text{ und } B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Matrix A ist singulär.	Χ	
b) Die Matrix A^{102} ist symmetrisch.	Χ	
c) Es gilt: $det(B) = det(A)$.		Χ
d) Es gilt: $det(A) = tr(A)$.	Χ	
e) Es gilt: $A \cdot B = B \cdot A$.		Χ

6

8. Determinante mit Parameter

Für welche reellen Parameter λ verschwinden die Determinanten?

a)
$$\begin{vmatrix} 1-\lambda & 2\\ 1 & -2-\lambda \end{vmatrix}$$

b)
$$\begin{vmatrix} 1 - \lambda & 2 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix}$$

a)

Determinante bestimmen:

$$(1 - \lambda)(-2 - \lambda) - 2 = \lambda^2 + \lambda - 4 = 0$$

Mitternachtsformel verwenden, dies ergibt: $\lambda_1 = 1,562$ und $\lambda_2 = -2,562$

b)

Determinante bestimmen (da es sich um eine obere Dreiecksmatrix handelt, braucht man nur die Elemente der Hauptdiagonalen multiplizieren):

$$(1 - \lambda)(3 - \lambda)(2 - \lambda) = 0$$

Dies ergibt: $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 2$