Seminar 8: exercises on protein binding and energetics

A reminder from last year chemistry...

$$aA + bB \rightleftharpoons cC + dD$$

The equilibrium constant

$$K = \frac{[\mathbf{C}]^c[\mathbf{D}]^d}{[\mathbf{A}]^a[\mathbf{B}]^b}$$

A reminder from last year chemistry...

$$aA + bB \Longrightarrow cC + dD$$

The equilibrium constant

$$K = \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$$

$$\Delta G = \Delta G^{\circ} + R \cdot T \cdot ln(Q)$$

$$At$$
equilibrium:
$$0 = \Delta G^{\circ} + R \cdot T \cdot ln(K)$$

$$\Delta G^{\circ} = -R \cdot T \cdot ln(K)$$

A reminder from last year chemistry...

$$aA + bB \Longrightarrow cC + dD$$

The equilibrium constant

$$K = \frac{[\mathbf{C}]^c[\mathbf{D}]^d}{[\mathbf{A}]^a[\mathbf{B}]^b}$$

$$\Delta G = \Delta G^{\circ} + R \cdot T \cdot ln(Q)$$

$$At equilibrium:$$

$$0 = \Delta G^{\circ} + R \cdot T \cdot ln(K)$$

$$\Delta G^{\circ} = -R \cdot T \cdot ln(K)$$

The dissociation constant represents the concentration of protein and ligand at which 50% of the proteins are involved in a complex

$$A + B \longrightarrow AB$$

$$K_{D} = \underbrace{[A][B]}_{[AB]} \longrightarrow \text{Reactants}$$
Products

The dissociation constant represents the concentration of protein and ligand at which 50% of the proteins are involved in a complex

For PPIs, the equilibrium constant is the inverse of the dissociation constant, their logarythm has opposite sign

Equilibium constant

Dissociation constant

$$\mathbf{K} = \frac{[AB]^{ab}}{[A]^a \cdot [B]^b}$$

$$\mathbf{K}_{\mathsf{D}} = \frac{[A][B]}{[AB]}$$

For interactions between proteins: $ln(K) = ln(K_D) \cdot (-1)$

We can relate the equilibrium constant to the disociation constant from protein-protein interactions

$$\Delta G = -R \cdot T \cdot \ln(K)$$

$$\ln(K) = \ln(K_D) \cdot (-1)$$

$$\Delta G = R \cdot T \cdot \ln(K_D)$$

We can relate the equilibrium constant to the disociation constant from protein-protein interactions

$$\Delta G = -R \cdot T \cdot ln(K)$$

$$ln(K) = ln(K_D) \cdot (-1)$$

$$\Delta G = R \cdot T \cdot ln(K_D)$$

$$\text{We can use this formula for mutations in protein-protein interactions}$$

$$\Delta \Delta G = R \cdot T \cdot ln(K_D^{\text{mut}}) - R \cdot T \cdot ln(K_D^{\text{wt}})$$

Also, remember that the ΔG of a protein-protein interaction can be decomposed into different terms

$$\Delta G = \Delta G_{electrostatics} + \Delta G_{VanDerWaals} + \Delta G_{Solvation}$$

Also, remember that the ΔG of a protein-protein interaction can be decomposed into different terms

$$\Delta G = \Delta G_{\text{electrostatics}} + \Delta G_{\text{VanDerWaals}} + \Delta G_{\text{Solvation}}$$

$$\Delta G_{\text{interaction}}$$

Also, remember that the ΔG of a protein-protein intermediate be decommon be d

Now try to solve exercise 1 from the protein-protein interactions section

In protein-protein or in protein-drug interactions we usually distinguish between receptor (R) and ligand (L)

Protein-protein interactions:

Receptor ------ Bigger protein

Ligand → Smaller protein

Protein-drug interactions:

Receptor —— Protein

Ligand → Drug

We no longer use A and B to represent the binding process, now we use:

The saturation degree (Y) measures the percentage of receptor molecules that are involved in the interaction with a ligand

We can calculate the saturation degree from the value of the K_D and the concentration of ligand (L)

The saturation degree (Y) measures the percentage of receptor molecules that are involved in the interaction with a ligand

We can calculate the saturation degree from the value of the K_D and the concentration of ligand (L)

K_D equals the concentration of ligand at which the saturation degree (Y) is 0.5

The saturation degree (Y) measures the percentage of receptor molecules that are involved in the interaction with a ligand

We can calculate the saturation degree from the value of the K_D and the concentration of ligand (L)

When $L < K_D$; Y < 0.5

When $L = K_D$; Y = 0.5

When $L > K_D$; Y > 0.5

If we introduce mutations in this system what will change? The K_D or L?

$$Y = \frac{L}{K_D + L}$$

$$K_D \qquad \qquad L \text{ (S)}$$

When $L = K_D$; Y = 0.5

When $L > K_D$; Y > 0.5

With that in mind, try to solve exercise 2 from the protein-protein interactions section

$$Y = \frac{L}{K_D + L}$$

When $L = K_D$; Y = 0.5

When $L > K_D$; Y > 0.5

The inhibition constant (K_i) indicates the affinity between a protein (R) and a drug (L)

It is calculated exactly as the dissociation constant (K_D), the only difference is that it is used to describe protein-drug interactions.

$$R + L \longrightarrow RL$$

$$\mathbf{K_{i}} = \frac{[R][L]}{[RL]}$$

When 50% of the protein is binding the ligand

The inhibition constant (K_i) indicates the affinity between a protein (R) and a drug (L)

Imagine that we keep the concentration of protein constant and we measure the K_i of two drugs, estimate the affinity of the drugs for

The drug with higher K_i

The drug with lower K_i

The inhibition constant (K_i) indicates the affinity between a protein (R) and a drug (L)

Imagine that we keep the concentration of protein constant and we measure the K_i of two drugs, estimate the affinity of the drugs for

The drug with higher K_i

The drug with lower K_i

Tip: since the concentration of protein is constant, the K_i is going to be proportional to the concentration of drug.

The inhibition constant (K_i) indicates the affinity between a protein (R) and a drug (L)

Imagine that we keep the concentration of protein constant and we measure the K_i of two drugs, estimate the affinity of the drugs for

The drug with higher K_i

The drug with lower K_i

Lower affinity

You need a higher amount of drug to achieve the 50% of binding

Higher affinity

You need a lower amount of drug to achieve the 50% of binding

With that in mind, try to solve exercise 1 from the protein-drug interactions section

achieve the 50% of binding

rou need a lower amount of drug to achieve the 50% of binding