Abstract of the Disclosure

There is provided a spectacle lens having an outer surface and an inner surface, one of the outer and inner surfaces being configured to be a rotationally-asymmetrical aspherical surface. When a curvature at a coordinate (h,θ) of the outer surface is represented by $C_1(h,\theta)$, a curvature at a coordinate (h,θ) of the inner surface is represented by $C_2(h,\theta)$, and a difference between curvatures of the outer surface and the inner surface at the coordinate (h,θ) is represented by $C_{2-1}(h,\theta)=C_2(h,\theta)-C_1(h,\theta)$, if $C_{2-1}(0,\theta)>0$, within the ranges of $10\text{mm}\leq h[\text{mm}]\leq 20\text{mm}$ and $30^\circ\leq\theta[^\circ]\leq 150^\circ$ the spectacle lens satisfying a condition (1):

 $C_{2-1}(h,\theta+180)-C_{2-1}(h,\theta)\ >\ 0 \qquad \cdots \cdots (1)\,,$ and if $C_{2-1}(0,\theta)<0$, the spectacle lens satisfying a condition (2):

$$C_{2-1}(h, \theta+180)-C_{2-1}(h, \theta) < 0$$
(2)