GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN EE/EC/IT/CM

LEVEL NAME : BASIC SCIENCE COURSES

COURSE CODE : MH203E

COURSE TITLE : APPLIED MATHEMATICS

PREREQUISITE : MH201E

TEACHING SCHEME: TH:04; TU: 01; PR: 00(CLOCK HRs.)

TOTAL CREDITS : 05 (1 TH/TU CREDIT = 1 CLOCK HR, 1PR CREDIT = 2 CLOCK HRs)

TH. TEE EXAM. : 03 HRs

PR. TEE EXAM : NIL

PT. EXAM : 01 HR

***** RATIONALE:

Mathematics is the backbone of Technical courses, Understanding of engineering concepts require logical approach and thinking. The course is extension of Engineering Mathematics of first semester and stepping into the prerequisites to learn Calculus and Numerical method. Applied Mathematics lay down the foundation to understand and express principles and laws involved in other Technological subjects.

COURSE OUTCOMES:

After completing this course students will be able to-

- 1. Applymathematical term, concept, principles and different methods for studying engineering subjects.
- 2. Apply mathematical methods to solve technical problems.
- 3. Execute management plans with precision.
- 4. Use mathematical techniques necessary for daily practical problems.
- 5. Apply concept of extrema in finding maximum profit of production and minimum cost or material needed for production of an article.
- 6. Apply various numerical method to solve algebraic and simultaneous equations.

***** COURSE DETAILS:

A.THEORY:

Units	Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs
1. Functions and Limits	 Identify various types of functions. Define odd and even function. Find value of any given function. Find limits for all different functions. 	 1.1 Definition of function, value of a function. 1.2 Types of functions. 1.3 Concept of limit. 1.4 Algebra of limits. 1.5 Limits of algebraic functions. 1.6 Limits of trigonometric functions. 1.7 Limits of exponential & logarithmic functions. 	10
2. Derivatives and Applications of derivative	 State limit definition of derivative. Perform all algebraic operations on derivatives. Find slope, Equation of tangent and normal line of the given curve. Solve examples of maxima and minima. 	 2.1 Definition of derivative, Notations. 2.2 Derivative of standard functions. 2.3 Rules for differentiation (without proof) 2.4 Derivative of composite functions. 2.5 Derivative of inverse trigonometric functions. 2.6 Derivative of implicit functions. 2.7 Logarithmic differentiation. 2.8 Derivative of parametric functions. 2.9 Second order differentiation. 2.10 Applications: Equation of tangent and normal; Maxima and minima. 	16
3. Integration, Definite integration and Applications	 State Integration byparts theorem. Integrate functionusing different method. Solve examples of definite integral using properties. Determine Meanand R.M.S. values. 	 3.1 Definition of integration as antiderivative. 3.2 Integration of standard functions. 3.3 Rules for integration. 3.4 Integration by substitution. 3.5 Integration of rational functions. 3.6 Integration by trigonometric transformation. 3.7 Integration by parts. 3.8 Integration by partial fraction. 3.9 Definition of definite integral. 3.10 Properties of definite integral. 3.11 Applications: Mean and R.M.S. values. 	16
4. Differential equations	 State order and degree of D.E. Solve differential equations of first order and first degree. Solve different engineering problems 	 4.1 Definition of differential equation. 4.2 Order and degree of differential equation. 4.3 Methods of solving differential equations of first order and first degree. 4.4 Variable separable method, reducible to variable separable. 4.5 Homogenous differential equation, 	08

	using differential	exact differential equation.		
	equations.	4.6 Linear and Bernoulli equations.		
5. Numerical	1. Identify the interval	5.1 Solution of algebraic equation.	14	
methods	of root of algebraic	5.1.1 Bisection method.		
	equation.	5.1.2 Regula-Falsi method.		
	2. Find the approximate	5.1.3 Newton-Raphson method.		
	root of algebraic	5.2 Solution of		
	equation.	Simultaneousequations containing 3		
	3. Solve the system of	unknowns.		
	simultaneousequation	5.2.1 Gauss elimination method.		
	s containing 3	5.2.2 Iterative methods: Gauss-Seidal&		
	unknowns.	Jacobi's method.		
		Total Hrs.	64	

BLIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practic	Specific Learning Outcomes (Psychomotor	Units	Hrs.
al	Domain)		
1	Find value of any given function.	Functions and	01
2	Find limits algebraic functions.	Limits	01
3	Find limits trigonometric, exponential functions.		01
4	Solve examples on derivative using algebraic	Derivatives and	01
	operations.	Applications of	
5	Find dy/dx of implicit functions.	derivative	01
6	Find dy/dx of parametric functions and inverse trigonometric functions.		01
7	Find equation of tangent and normal and solve maxima and minima problems.		01
8	Solve examples using rules of integration and substitution method	Integration, Definite integration	01
9	Solve examples using integration by parts and partial method	and Applications	01
10	Solve examples using integration by parts and partial fraction method.		01
11	Evaluate definite integral using properties.		01
12	Find area using integration		01
13	Solve D.E. using variable separable method and	Differential	01
	reducible to variable separable.	equations	
14	Solve homogenous, linear and Bernoulli D.E.		01
15	Find the approximate root of algebraic equation.	Numerical methods	01
16	Solve the system of simultaneous equations		01
		Total Hrs.	16

SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from C	Levels from Cognition Process Dimension						
No.		R	U	A	-				
01	Functions and Limits	04(00)	08(08)	00(00)	12(08)				
02	Derivatives and Applications of derivative	04(00)	08(04)	06(06)	18(10)				
03	Integration, Definite integration and Applications	02(00)	08(08)	06(00)	16(08)				
04	Differential equations	00(04)	08(00)	00(00)	08(04)				
05	Numerical methods	04(00)	12(04)	00(06)	16(10)				
	Total	14(04)	44(24)	12 (12)	70 (40)				

A – Analyze / Apply U – Understand R-Remember

***** QUESTION PAPER PROFILE FOR THEORY PAPER:

Q.		Bit 1	1		Bit 2	2		Bit 3	3		Bit 4	1	البرا	Bit 5	;		Bit 6	5	ontion
No	T	L	M	T	L	M	Т	L	M	Т	L	M	Т	L	M	T	L	M	option
01	1	R	2	1	R	2	2	R	2	2	R	2	3	R	2	4	R	2	E 17
01	4	R	2																5/ <mark>7</mark>
02	1	U	4	1	U	4	2	U	4	1	U	4	1	U	4				3/5
03	2	U	4	3	U	4	3	U	4	2	U	4	3	U	4				3/5
04	4	U	4	4	U	4	5	R	4	3	U	4	5	U	4				3/5
05	2	A	6	3	A	6	2	A	6										2/3
06	5	U	6	5	U	6	5	A	6										2/3

T= Unit/Topic Number L= Level of Question M = Marks

A-Analyze/ Apply R-Remember U-Understand

***** ASSESSMENT AND EVALUATION SCHEME:

		What		Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3, 4,5,6
Direct Assessment Theory	Conti Assess	Assignments	Stud	Continuous	10		Assignment Book / Sheet	1, 2, 3, 4,5,6
Direct Asse	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3, 4,5,6
				Total	100	40		
	Skill Assessment		Continuous					
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Continuous				
sessmer	(Cor			TOTAL				
Direct As	TEE (Term End Examination)		Students	End Of the Course				
ssessment	Student Feedback on course End Of Course		Ct. 1	After First Progressive Test	Stud	Student Feedback Form		122456
Indirect A			Students	End Of The Course	Questionnaires			1, 2, 3, 4,5,6

SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
	NIL	

***** MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

Course Outcomes		Program Outcomes (POs)									PSOs	
(COs)	1	2	3	4	5	6	7	8	9	10	1	2
1	3	3	2	-	-	-	2	3	-	3	-	-
2	3	3	2	3	-	-	2	3	-	3	-	-
3	3	3	2	3	-	-	2	3	-	3	-	-
4	3	3	2	3	1	1	2	3	-	3	-	-
5	3	3	2	E	10	13	2	3	-	3	-	-
6	3	3	2	3	-	4	2	3	-	3	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

* REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
1.	Engineering Mathematics-1	P N Wartikar, Pune VidyarthiGrihaPrakashan	4567155742
2.	Calculus of one variable	IA Maron, Publisher: Arihant, 5 th edition 2015	9352030559
3.	Engineering Mathematics	S.S .Shastry, Prentice Hall Of India, 4 th edition 2008	9788120336162
4.	Engineering Mathematics	D.T.Gaikawad, S Chand Publication, 1 st edition 2010	8121933560
5.	Higher Engineering Mathematics	B S Grewal, Publisher: S Chand, 43 rd edition 2014	9788174091955

E-REFERENCES:

- http://www-math.mit.edu/~djk/calculus_beginners/, assessed on 3rdMarch, 2016
- https://en.wikibooks.org/wiki/Calculus, assessed on 3rdMarch, 2016

\$ LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry
1.	Mr. M. Sayyed	I/C HOD, MathsDeptt.	Govt. Polytechnic Nagpur
2.	Mr. T. Khobragade	Lecturer	Govt. Polytechnic Nagpur
3.	Mr. R. Dewalkar	Lecturer	Govt. Polytechnic Nagpur
4.	Dr. K. C. Deshmukh	Professor	R. T. M. Nagpur University
5.	Dr. P. B. Bahatkar	Professor	Y. C. C. E. Nagpur
6	Mr. Nasir Khan	Lecturer	Anjuman Polytechnic Nagpur

(Member Secretary PBOS)

(Chairman PBOS)

