Aufgabe 1 (4 Punkte). Beweisen Sie Theorem 3.3.

Hinweis: Verwenden Sie Lemma 3.5.

Das Theorem 3.3. sagt aus, die folgenden Aussagen sind äquivalent

- (i) es gilt $NA(\mathcal{P})$;
- (ii) für alle $P \in \mathcal{P}$ gibt es ein $Q \in \mathcal{Q}$, sodass $P \ll Q$.

Das wird in [BN15, Seite 15] bewiesen. Es gelte zunächst NA(\mathcal{P}). Sei $P \in \mathcal{P}$ gegeben. Mit der zweiten Aussage aus dem Fundamentallemma gilt $0 \in \text{ri}\{E_R[\Delta S]: R \in \mathfrak{P}(\Omega), P \ll R \ll \mathcal{P}, E_R[|\Delta S|] < \infty\} \subseteq \mathbb{R}^d$. Es gibt also ein $Q \in \mathfrak{P}(\Omega)$ mit $Q \ll \mathcal{P}$, sodass $E_Q[\Delta S] = 0$, also mit der Definition von \mathcal{Q} , ein $Q \in \mathcal{Q}$, aber auch $P \ll Q$. Hier ist noch nicht so ganz klar, ob es sein kann, dass $0 \in \text{ri}\{E_R[\Delta S]\}$, aber nicht $0 \in \{E_R[\Delta S]\}$.

Es gebe nun anders herum für alle $P \in \mathcal{P}$ ein $Q \in \mathcal{Q}$, sodass $P \ll Q$. Sei $H \in \mathbb{R}^d$ so, dass $H\Delta S \geq 0$ \mathcal{P} -quasi sicher. Angenommen, es gibt nun ein $P \in \mathcal{P}$, sodass $P\{H\Delta S > 0\} > 0$. Dann gibt es nach Annahme auch ein Martingalmaß Q, sodass $P \ll Q \ll \mathcal{P}$. Damit gilt aber auch $Q\{H\Delta S > 0\} > 0$. Dies steht aber im Widerspruch zu $E_Q[H\Delta S] = 0$.

Literatur

[BN15] BOUCHARD, Bruno; NUTZ, Marcel: Arbitrage and duality in non-dominated discrete-time models. In: The Annals of Applied Probability 25 (2015), April, Nr. 2. http://dx.doi.org/10.1214/14-aap1011. - DOI 10.1214/14-aap1011. - ISSN 1050-5164