Topología David Cardozo

Nombre del curso: Topología Código del curso: MATE3420

UNIDAD ACADÉMICA: Departamento de Matemáticas

PERIODO ACADÉMICO: 201510 HORARIO: Lu y Mi, 2:00 a 3:50

Nombre profesor(a) principal: Ramiro de la Vega

HORARIO Y LUGAR DE ATENCIÓN: Ma y Ju 17:00 a 18:00, Oficina H-208

1. Organización del Curso

■ Topología, Munkres

• Fundamentals of General Topology, Ponomarev et al.

• Counterexamples in Topology, Seebach, Jr.

Evaluación del curso:

■ 2 Exámenes parciales (30 % cada uno)

■ Examen final: 20 %

■ Tareas 20 %

Favor de referenciar ideas externas.

2. Introducción

Comenzemos entonces con una revisión de los conceptos de topología aprendidos en análisis.

Definición 1. Espacio Métrico Sea X un conjunto y d una métrica que cumple con las siguientes condiciones:

- $d(x,y) \ge 0 \quad y \text{ es } d(x,y) = 0 \leftrightarrow x = y$
- ullet d(x,y)=d(y,x) Condición de simetría.
- $d(x,y) \leq d(x,z) + d(z,y)$ Designal dad triangular.

También recordemos la noción de un conjunto abierto.

Definición 2. Conjunto Abierto Sea $A \subseteq X$, A es abierto si:

$$\forall a \in A \exists \epsilon > 0 \ tal \ que \ d(a, x) < \epsilon \implies x \in A$$

Otro concepto util, pero al cual trataremos de evitar es el de bolas abiertas.

Definición 3. Bolas Abiertas denotamos al conjunto de puntos que estan a lo sumo a un epsilon de distancia, via:

$$B_{\epsilon}(a) = \{x \in X | d(x, a) < \epsilon\}$$

Observera que todos los puntos son interiores (¡Probar!)

Junto con estos conceptos

Recordemos entonces la definicion de espacio topologico.

Definición 4. Dados X conjunto $y \tau \subset P(X)$ es un espacio topologico:

- $X,\emptyset \in \tau$
- $\quad \blacksquare \ A \subset \tau \implies \cup A \in \tau$
- $A \subset \tau \tau \ y \ A$ es finito, implica que la intersecion finita esta en τ

Ejemplo 1. Si (X, d) es espacio métrico y $\tau = \{A \subseteq X | A \text{ es abierto}\}$, entonce (X, τ) es espacio topologico

Ejemplo 2. Dado X, $\tau_i = \{\emptyset, X\}$ es la topologia indiscreta trivial, o $\tau_d = P(X)$ es la topologia discreta.

Ejemplo 3. Σ es una teoría (Axiomas) de primer orden en el lenguaje L (un ejemplo un simbolo de operacion binaria). Sea $X=\{T|T$ teoría maximal consistente tal que $\Sigma\subset T\}$. Sea ϕ una sentencia (como soy abeliano), se armá un tipico abierto $[\phi]=\{T\in X|\phi\in T\}$, observemos que $X-[\phi]=\{T\in X|\phi\not\in T\}=[NO|\phi]$ -Espacio de Stone-

Ejemplo 4. Sea un campo K, y sea $X = k^n$, veamos la topología de Zariski, los cerrados son $S \subseteq K[x_1, ..., x_n]$. los cerrados de s $C_s = \vec{x}$ in $K^n | f(\vec{x}) = 0 \forall f \in S$. Todos los subconjuntos son compactos,

Ejemplo 5. Sea $X = \{f : R \to R\}$, un tipico abierto $a \in R$, $U \subseteq R$ abierto en la topología usual. Y armé el siquiente conjunto:

$$Y_{a,U} = \{ f \in X : f(a) \in U \}$$

Teoria de convergencia puntal.

Veamos que aunque la union de topologias no es topologia, dos topologias sobre un conjunto, se puede comparar. tambien decimos $\tau_1 \subset \tau_2$ decimos τ_1 es mas gruesa y la otra es fina. Interseccion arbitrarias de topologias, es topologia (Probar!). Podemos coger sea X conjunto y $A \subset P(X)$:

$$\bigcap \{\tau \subset P(x) | \tau \text{es topología y } A \subset \tau \}$$

esta es la menor topologia que contiene a A (la mas gruesa?).

Ejemplo 6. ver notas

Definición 5. Un punto aislado es cual el singleton de ese punto es abierto

3. Como construir un a topologia

Definición 6. X conjunto, $B \subseteq P(x)$, B es **base para una topologí**a sobre X si

$$\left\{\bigcup A|A\subseteq B\right\}$$

es topología

Esto no puede que no sea topologia, por dos razones os la union no es todo X, y que las interseciones finitas no son .ªbiertas.ºbservar $B \subseteq \{\bigcup A | A \subseteq B\}$.

Definición 7. Definicion del libro X conjunto, $B \subseteq P(X)$ es una base . . . si:

$$\forall x \in X \exists b \in Bx \in b. (\cup B = x)$$

$$\forall b_1, b_2 \in B \forall x \in b_1 \cap b_2 \exists b \in B \text{ such that } x \in b \subseteq b_1 \cap b_2$$

Teorema 1. Las dos definiciones son equivalentes

Demostración. $6 \implies 7 \ b_1, b_2 \in B, \ x \in b_1 cap b_2$ (ver dibujos), como b_1, b_2 esta en τ la interseccion esta en τ (puede que no este en B), pero la interseccion (terminar)

$$7 \Longrightarrow 6$$

¿Que quiere decir que un conjunto sea la union de un conjunto?

Teorema 2. Sea

$$B = \{B_{\epsilon}(x) = x \in X, \epsilon > 0\}$$

, probar que es una **topologia base**

Las bolas en un espacio metricos es una base topologica.

Definición 8. Dado (X, τ) un espacio toplogico:

 $\blacksquare \ B \subseteq \tau \ \textit{es base para} \ \tau \ \textit{si} \ \forall U \in \tau \forall x \in U \exists b \in B \ \textit{t.q} \ x \in B \subseteq U$

Truco si estoy muy de buenas y B es cerrado por intersecion condicion 2 es automaticamente ganada.

Definición 9. Un $S \subseteq P(X)$ es subbase $si \bigcup S = X$

Teorema 3. Si S es subbase entonces $B = \{ \bigcap A | A \subseteq S \text{ finitas } \}$ es base para una topologia.

agregar intersecciones finitas y uniones arbitarias. subbase genera topologia : coja un abierto y cheque que cualquier punto esta en la intersecion finita de alguno en la subbase.

4. Orden lineal

Definición 10. (X,<) es in orden lineal si:

- $x < y^y < z \implies x < z$
- x ≮ x
- $\blacksquare \ \forall x, yx < y \ o \ y < x \ o \ x = y$

Dado (X, <) definimos la topología del orden sobre X como la generada por:

$$\{(-\infty, x) : x \in X\} \cup \{(x, \infty) : x \in X\}$$

(Es una subase, (y tal ves podría ser una base, pero muy raramente)). Observar que interseccion finitas de estas cosas es un intervalo.

Ejemplo 7. $\mathbb{R}_{<}$ la topolgía del orden coincide con la topologia usual (metrica) $\mathbb{R}_{met} = \mathbb{R}$.

Ejemplo 8. Un par ordenado en el libro esta denotado $x \times y$, acá los pares ordenados $\langle x, y \rangle < \langle x', y' \rangle$ si x < x' o x = x y y < y'. Tenemos $\mathbb{R}^2_{lex} \neq \mathbb{R}^2_{me} = \mathbb{R}^2$

Queremos comparar cual toplogia es mas fina. es decir $\mathfrak{B}_{Usual} \subseteq \tau_{lex}$ Es mas fina que la usual, esta mas cerca a la topología discreta.

Ejemplo 9. Tomme:

$$X = \left\{ \frac{1}{n} : n \in \mathbb{Z}^+ \right\} \cap \{5\}$$

con el orden usual. Observar que el = 5 no esta aislado.

Ejemplo 10. La doble flecha de Alexandrob.

Definición 11. Un orden lineal (X,<) es un buen orden si: $\forall A \subseteq X \neq si$ $A \neq \emptyset$ entonces A tiene mínimo, es decir, existe un $m \in A$ tal que para todo $a \in A$, $m \leq a$

Observar que los reales no son un buen orden.

Ejemplo 11. (\mathbb{N} ,<) es un buen orden, aqui la topologia es la de singleton abiertos. Tambien puede utilizar $\mathbb{N}+1$ que se ve como una linea y un punto. (observar que aqui en este espacio topologico $n \to \omega$)

Ejemplo 12. $\mathbb{N} + \mathbb{N}$. Esto puede verse como la suma de dos lineas de puntos que representan a \mathbb{N} . O formalemente: $(\{0,1\} \times \mathbb{N}, <_{Lex})$. (Observar aca que en comparación a $\mathbb{N} + 1$ es que este es compacto, es homeomorfo a $\frac{1}{n}$) El otro ejemplo interesante sería: $\mathbb{N} \times \mathbb{N}$ con el orden lexicografico. Este no es compacto. Mientras que $\mathbb{N} \times \mathbb{N} + 1$ es compacto.

En los buenos ordenes no hay succesiones infinitas de decrecientes.

Ejemplo 13. Ver hojas para pintar todos los ordinales ver wikipedia los Ordinales.

Para la casa: Si se tienen dos buenos ordenes, hay una tricotomia: O son isomorfos, o uno es un segmento inicial uno del otro. Entonces cualquier buen orden tiene a los naturales como segmentos inicial.

Ahora vamos a buscar buenos ordenes no enumerables. La construción es un poco díficil. Sea:

$$s_{\Omega} = \omega_1$$

Es un buen orden tal que:

- es no enumerable
- $\forall a \in S_{\Omega}[0 = \min, a)$ es enumberable.
- Sea $A \subseteq S_{\Omega}$ A enumerable \implies A es acotado.

Las funciones constantes son trivialmente continuas.

Definición 12. Sean X, Y espacios topologicos, es continua si $\forall U \subseteq Y$ abierto, $f^{-1}(U)$ es abierto en X.

La preimagen siempre preserva operaciones conjutistas. Basta checkar preimagenes de basicos sean abiertos, o incluso preimagenes de subbasicos sean abiertos. Fijar que la continuidad depende de las topologias.

Observar que: si meto mas abiertos en X no daño la continuidad de la funcion. La topologia de X mas fina no daña el checking de continuidad. Si miro en Y, si ellla tiene la topologia trivial cualquier funcion que llegue a Y es continua. Por otro lado si Y tiene la discreta es bien dificil. Si X tiene la discreta, entonces cualquier funcion que salga de X es continua.

5. Topología Inicial

Suponga X es un conjunto, y tengo una familia $(\{Y\}_{i \in I}, \tau_i)$ que son espacios topológicos y por cada i tengo: $f_i: X \to Y_i$ función. La topologia incial inducia en X es la menor toplogia en X para que todas las funciones f_i sean continuas.

Esta topología es generada por estos conjuntos:

$$\{f_i^{-1}(u) : u \in \tau_i, i \in I\}$$

Ejemplo 1: La Topología producto Sean X,Y espacios topologicos, vamos a tomar de ahora en adelante la convencion τ_x,τ_y para respectivas topologias.

Formen el producto cartesiano $X \times Y$ y las funciones especiales son:

$$\pi_1: X \times Y \to X$$
$$\pi_2: X \times Y \to X$$

y esas dos las queremos continuas.

Entonces la topología generada por:

$$\left\{\pi_1^{-1} : u \in \tau_x\right\} \cup \left\{\pi_2^{-1} : v \in \tau_y\right\}$$

Por lo menos tenemos que eso es una subbase. Rescritura:

$$\{U \times Y : u \in \tau_x\} \cup \{X \times V : V \in \tau_y\}$$

La interseccion es asociativa y es conmutativa. Observar que no es topologia pues union de cajas no es caja, pero es una base. Pero basta meter los basicos(garantizar que las bases vayan a abiertos):

Ejemplos del Ejemplo 1 Típico: $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ Parentesis Sean τ_1 y τ_2 y tengo sus bases \mathfrak{B}_1 y \mathfrak{B}_2 , observar que las condiciones simetricas $\mathfrak{B}_1 \subseteq \tau_2 \Longrightarrow T_1 \subseteq \tau_2$. Coja un elemento de la base 1 e intercalar uno de la base 2. Y para probar lo otro, intercale.

En el plano, vemos que metemos cajas en discos, y discos entre cajas.

Otro ejemplo: $\mathfrak{N} \times \mathfrak{N}$ Base para topologia de \mathfrak{N} es la discreta (cualquier base debe tener los singleton) y en $\mathfrak{N} \times \mathfrak{N} = \mathfrak{N}$ y es de dimension cero, pues tiene una base de clopens, tambien tiene singleton del producto cartesiano. Ojo $\mathfrak{N} = \mathbb{N}$

Otro ejemplo Tomar $(\mathbb{R}_{discreta} \times \mathbb{R}_{usual}) = \mathbb{R}^2_{lex}$ Observar que entonces la topologia lexica no es tan exotica, viene de dos espacios metrizables.

Ejercicio Realizar y obtener una funcion de distancia para \mathbb{R}_{lex}

Ejemplo 2 (X, τ) es un espacio topológico, Y subconjunto de X, la funcion iteresante a observar es: inclusion:

$$i: Y \to x$$

 $y \rightarrowtail y$

el conjunto a observar (la topologia generada por):

$$\left\{i^{-1}(u):u\in\tau\right\}$$

observar que esto es igual

$$u \cap Y : u \in \tau$$

Tenemos por lo menos que esto es una subbase y mirar que:

$$(U \cap Y) \cap (C \cap Y)$$

esta colecion es cerrada bajo intersecciones finitas. Que tal uniones:

$$(U\cap Y)\cup (V\cap Y)$$
$$(U\cup V)\cap Y$$

es decir que:

$$\bigcup_{i\in I}(u_i\cap Y)=\left(\bigcup_{i\in I}\cap Y\right)$$

Y vemos que esto ya es una topología porque ya hemos descritos todos los abierto.

Y si volvemos a la definicion original:

$$\left\{i^{-1}(u): u \in \tau\right\}$$

y vemos que como preimagen respeta interseccion, de una observamos que es una topologia. Concluimos que:

$$\{U\cap Y:U\in\tau\}$$

es la topología de subespacio en Y Ejemplo \mathbb{R} con $\mathbb{I}=$ irracionales, (intersecte los irracionales con los reales) son los abiertos.ahora mira que los imaginarios son cero dimensional. Observar que $(p,q)\cap\mathbb{I}$ es una base de clopens. en terminologia los imaginarios son homemorfeos a los imaginarios cruz imaginarios. Otro ejemplo: \mathbb{R}^2_{lex} VER NOTAS, estamos considerando subconjunto y miramos las topologias dadas como subconjunto, o con la topologia del orden del suborden.

Sean X,Y espacios topologicos, $X\times Y$ con la topologia del producto, y ahora tome $A\times B\subseteq X\times Y$ (No todos los subconjuntos de $X\times Y$ se puede escribir como cajas). Existen dos topologias que en buenas noticias son equivalentes. $\tau_{\text{subespacio del producto}}$ y $\tau_{\text{qproducto del subespacio}}$. Por doble inclusión podemos ver: Tome: $U\in \tau_x$ y $V\in \tau_y$ y vea que $w=(A\times B)\cap (U\times V)$ y ahi observamos una de la inclusiones.

Para la segunda obsersevemos que:

$$U \in \tau_x \quad U \cap A \quad V \in \tau_y \quad U \cap B$$

y vemos entonces $(U\cap A)\times (V\cap B)$ y vemos entonces como esas dos son equivalentes.

Línea de Sorgenfrey \mathbb{R}_l , que es considerada por la topologia [a,b) **Ejercicio** Mostrar como relazionar la linea de Alexandrov.

Conjuntos Cerrados

Definición 13. Dados (X,τ) espacios topologicos y $A\subseteq X$, A es cerrado si $X\backslash A$ es abierto.

Las leyes de Morgan nos dicen como se comportan los cerrados.Union finita de cerrados es cerrados.

Teorema 4. $Y \subseteq X$, $A \subseteq Y$, A es cerrado en $Y \iff \exists C \subseteq X$ cerrado en X, tal que $A = C \cap Y$

En la topología discrea todos son abierto y todos son cerrados.

Definición 14. $f: X \to Y$ es una función continua, si: $f^{-1}(U)$ es abierto en X, $\forall U$ abierto en Y

Teorema 5. • Toda función constante es continua.

- Composición de continuas es continua.
- $A \subseteq X$, $i_{A \subseteq X} : A \to X$ es continua.
- $f: X \to Y$ es continua $y \ A \subseteq X$ implica $f \upharpoonright_a : A \to Y$ es continua. y esta es porque es la composicion de dos continuas: $f \upharpoonright_A = f \circ i_{A \subseteq X}$
- el codominio no importa, porque cada funcion la podemos mirar así: $f: X \to f(X)$, las funciones son independientes de los codominios. La específicación que algo sea sobreyectiva, es artificial.

.

Definición a trozos: Suponga que quiero definir una función $f: X \to Y$ donde $X = \bigcap_{\alpha \in I} A_{\alpha}$ y defino ahora $f_{\alpha}: A_{\alpha} \to Y$ y los definimos como $f(x) = f_{\alpha}(x)$ si $x \in A_{\alpha}$. pero para que tenga sentido: $f_{\alpha} \mid (A_{\alpha} \cap A_{\beta}) = f_{\beta} \mid (A_{\alpha} \cap A_{b}eta)$ ¿Que condiciones necesito para que tal f sea continua? En ese contexto:

Caso 1 fes continua, si todos los A_{α} 's son abiertos. Formulacion local de continuidad

Demostración: Sea $U \subseteq Y$ abierto y voy a calcular $f^{-1}(U) = \{x \in X | f(x) \in U\}$ pero esto es igual a $\bigcup_{\alpha \in I} \{x \in A_{\alpha} | f(x) \in U\}$, pero ademas esta es la union: $\bigcup_{\alpha \in I} \{x \in A_{\alpha} | f_{\alpha}(x) \in U\}$, pero tambien es igual a: $\bigcup_{\alpha \in I} f_{\alpha}^{-1}(u)$, observar que esto requiere que los A_{α} deben ser abiertos.

Caso 2 f es continua si el conjunto de indicies es finiito y los A_{α} 's son cerrados. **Demostración** Sea C es cerrados, para checkar so es continua, C es cerrado luego:

$$f^{-1}(C) = \bigcup_{\alpha \in I} f_\alpha^{-1}(C)$$

Lema de pegamiento.

para probar que algo es continua checkear.

Teorema 6. para $F: X \to Y$ las siguientes afirmaciones son equivalentes:

f es continua.

$$\forall A \subseteq X, f(\bar{A}) \subseteq f(\bar{A}).$$

 $b \ cerrado \ en \ Y \implies f^{-1}(B) \ cerrado \ en \ X.$

 $\forall x \forall V \ vecindad \ de \ f(x) \ \exists U \ vecindad \ de \ x \ f(U) \subseteq V$

3 implica 2 Sea $A \subseteq X$, $\subseteq f^{-1}(f(A))$ es cerrado en X. Mirar:

$$A \subseteq F^{-1}f(A) \subseteq f^{-1}(\bar{f(A)})$$

. y vemos que:

$$\bar{A} \subseteq f^{-1}(\bar{f(A)})$$

y cojamos f a ambos lados:

$$f(\bar{A}) \subseteq ff^{-1}(\bar{f(A)}) \subseteq \bar{f(A)}$$

2 implica 1 Veamos que $f(\bar{A}) \subseteq f(\bar{A})$, entonces tambien tenemos que:

$$f(A) \cap U = \emptyset$$

у

$$\bar{f(A)}\cap U=\varnothing$$

implica $f(\bar{A}) \cap U = \emptyset$ ¡Probar en casa!.

1 implica 4 Observemos que 4 menciona que para todo tiene una semajanza con la definicion de continuidad de analísis. Sea $x \in X$ y sea V vecindad de f(x), cojamos la preimagen de V, es decir tome $U = f^{-1}(V)$ lo cual implica que $f(u) = ff^{-1}(v) \subset V$.

4 implica 3 Sea V cerrado en Y, miro la preimagen de V, es decir $f^{-1}(V)$, ahora toca porbar que el complemento de $f^{-1}(B)$ es abierto.

Definición 15. $f:X\to Y$ es homeomorfismo, es como el isomorfismo de topología:

- lacksquare f is biyectiva.
- $u \subseteq X$ es abierto en $X \iff f(u)$ es abierto en Y

2 se puede escribir como f es continua y f^{-1} es continua.

Espacios Métricos [Metrizables]

Recordar en \mathbb{R}^n si $x \in \mathbb{R}$, $\vec{x} = (x_1, \dots x_n)$ con la metrica de $d_e(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$ esta es la euclidiana, mientras que la romboide tengo:

$$d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

junto con otra metrica:

$$d(\vec{x}, \vec{y}) = \max\{|x_i - y_i| : i \in \{1, ..., n\}\}\$$

Propiedad no topologica: Ser acotado. No es una propiedad topologica. Sea (X, d) un espacio metrico, tenemos que podemos acotar:

$$\vec{d}(x,y) = \min \left\{ d(x,y), 1 \right\}$$

tambien podemos considerar la siguiente metrica:

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

Hacer el ejercicio. Propiedad de separabilidad, y ser espacio completo, no son propiedades topologicas. Dar cuenta que $\mathbb R$ con la metríca, es $d(x,y) = |\arctan(x) - \arctan(y)|$ Observar que $\mathbb R$ con la topologia usual y $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ son homemorfos.

$$\mathbb{R} \stackrel{\arctan(x)}{\to} (-\pi/2, \pi/2)$$
$$(-\pi/2, \pi/2) \stackrel{\tan(x)}{\to} \mathbb{R}$$

Sea $\mathbb{P}=\mathbb{R}\backslash\mathbb{Q}$, mirar que estos que no son completos. $\mathbb{P}\equiv\omega^{\omega}$ Observar que:

$$d(x,y) = \sup \left\{ \frac{\bar{d}(x_i, y_i)}{i} : i \in W \right\}$$

Ver Munkres, para hacer la tarea.

Un gran teorema, es que $f_n \stackrel{\text{unif}}{\to} f$ si y solo si $d(f_n, f) \stackrel{n \to \infty}{\to} 0$ con la defincion de metrica arriba.

Recordemos que en \mathbb{R}^ω ya hemos estudiado tres tipos de topologias en este conjunto:

$$\tau_{\mathrm{prod}} \subseteq \tau_{\mathrm{unif}} \subseteq \tau_{\mathrm{cajas}}$$

Teorema X metrizable, $A\subseteq X,\ p\in X,\ p\in \bar{A}\iff \exists (a_n)\subseteq A\quad a_n\to p$ **Definicion** X es Frechet-Uryson si $\forall A\subseteq X\forall p\in X,\ p\in A\iff \exists (a_n)\subseteq A\quad a_n\to p$

y tenemos metrizable \implies primero contable \implies Frechet-Uryson

Espacio de Arens y Espacio de Arens-Fohrs

hypervinculo

Tengo un espacio topologico X y una relación de \sim , queremos ver la topología que puede tener $x \stackrel{\rho}{\to} \frac{X}{\sim}$ y defino $U \subseteq \frac{X}{\sim}$ U es abierto si y solo si $f^{-1}(U)$ es abieto en X. entonces $\tau = \{U \subseteq \frac{X}{\sim} | \rho^{-1}(U) \text{abierto en } X\}$.

Ejemplos Estudiar funciones cocientes.

Definición 16. $g: X \to Y$ es una aplicación cociente, si $g^{-1}(U)$ es abierto en X si y solo si U abierto en Y

Arete Hawaiano Es un subespacio de \mathbb{R}^2

Como se debe trabjar desde afuera con los abiertos, **Recordar que es la definicion de un conjunto saturado**.

Conexidad

Definición 17. $Clopen(X) = \{A \subseteq X | A \text{ es abierto y cerrado}\}$

Definición X es conexo si Clopen $(X) = \{\emptyset, X\}$

(Si se puedo partir) es disconexo, y si puedo partirlo es conexo.

Definición $(\Omega, <)$ un orden lineal es un **continuo lineal** si:

- $\forall x < y \exists z \text{s.t} x < z < y$
- \blacksquare Todo $A \subseteq L$ no vacío ,y acotado tiene supremo

Ejemplo \mathbb{R} , [0,1], (a,∞) , (a,b], $(I\times I)_{lex}$

Su topologia viene de un orden que contiene estas dos propiedades.

Teorema X continuo lineal $\implies X$

Demostración Por contradicción, suponga que no,...

Es por eso que esto falla en en $s\Omega$ Hausdorff y zero dimencional.

Cero dimensional: 2^{ω} no conexo, ω^{ω} , s_{Ω} , $\mathbb{R}^2_{\text{lex}}$

Teorema Sea X cualquier y $a_{\alpha} \subseteq X$ conexo, para $j \in J$ y $\cap_{\alpha \in J} A_{\alpha}$ implicas $\bigcup_{\alpha J}$ es conexo.

Observación Si $U\in \mathrm{Clopen}(X)$ y $A\subseteq X$ conexo. entonces $A\subseteq U$ ó $A\subseteq X-U$

Una alternativa:

Teorema Sea X cualquiera, t.q $A_{\alpha} \cap A_{\alpha} \neq \emptyset \implies Y = \bigcup_{\alpha \in I} A_{\alpha}$.

Teorema X, Y conexo $\implies X \times Y$ conexo.

Con esto concluimos \mathbb{R}^n es conexo, facil.

Teorema Imagen continua de conexo es conexo.

Demostración Suponga $f: X \to Y$ sobre, Y, X conexo

Por lo tanto S^1 es conexo (es decir el circulo), el arete tambien es conexo.

La doble flecha de es no conexo, arens lo mismo, arens-fort tampoco. $\mathbb{R}\ell$ no es.

Teorema Suponga X es cualquiera, $A\subseteq X$ conexo y $A\subseteq B$ $B\subseteq \bar{A},$ entonces B es conexo

Observar $\mathbb{R}^{\omega} \supseteq \mathbb{R}^n \times \{0\}^{\omega \setminus \{0,1,\dots,n\}}$, tenemos entonces:

$$\mathbb{R}^{\omega} = \bigcup \mathbb{R}^n \stackrel{conexo}{\subseteq} \mathbb{R}^{\omega}$$

Ahora \mathbb{R}^{ω} cajitas no es conexo, lo mismo $\mathbb{R}^{\omega}_{\text{unif}}$ de parcial:

$$\mathbb{R}^{\infty} \subseteq A = \{x \in \mathbb{R}^{\omega} | x \text{ es acotado } \} \subseteq \mathbb{R}^{\omega}$$

es A abierto?

en la toplogia producto los abiertos son gigantes en R^{ω}

Definición X es conexo por camino si $\forall x, y \in X \exists f : [0,1] \to X$ continua tal que f(0) = x y f(1) = y.

Conexo por caminos \implies conexo. Pero observar que conexo \implies conexo por caminos. El ejemplo siempre es **el seno del topologico**

Existe tambien la noción de **arcoconexo** si X es arconexo por camino si $\forall x,y \in X \exists f: [0,1] \to X$ continua tal que f(0)=x y f(1)=y y f es homeomorfismo sobre su imagen.

En un espacio de Hausdorff X es arcoconexo lo mismo que conexo por caminos.

Definición X un espacio toplologico. \sim_c , \sim_{cc} , definimos dos relaciones de equivalencia $x\sim_c y$ si $\exists A \subseteq X$ y $x,y\in A$. $x\sim_{cc}$ si $\exists f$ camino que me une x a y

Las clases de equivalencia para la primera. Condicio de canlla contable.

Definición $B_c = \{U \subseteq X | U \text{ abierto y conexo}\}$ y $B_c c = \{U \subseteq x | U \text{ abierto y conexo por caminos}\}$. Observar $B_c \subseteq \tau$ y $B_c c \subseteq B_c$

X es localmente conexo si B_c es base para τ

X es localmente conexo por continuos si $B_c c$ es base para τ

Localmente conexo no implica localmente conexo por caminos

 $\verb|https://simomaths.wordpress.com/2013/03/10/topology-locally-connected-and-locally-path-connected-a$

Definición 18. X es localemente compacto si $\forall x \in X \exists K \subset X$ compacto tal que $x \in \text{int } K$

Teorema Si X es T_2 entonces LSASE:

 $T_0\supset T_{1/2}\supset T_1\supset T_2\supset T_{21/2}\supset \text{Completamente Hausdorff}\supset T_3\supset T_{31/2}\supset T_4$

Observación X es $T_3 \iff \forall U \forall p \in U \exists V \text{ t.q } p \in V \subset \overline{V} \subset U$

Para Munkres hacer el ejericio 1, el ejercicio 2, hacer el ejercicio 6.

Teorema T_3 es hereditaria y productiva.

 T_4 hereditario es T_5

Line de sorgrenfey es t_5

Probar que el espacio de la pendiente irracional no es regular. Probar Lindelöf, T_3 es T_4

Condiciones que implican que un espacio sea \mathcal{T}_4

X es T_4 si:

- 1. Compacto $+T_2$
- 2. Si el espacio es metrizable
- 3. T_3 + Lindelöf
- 4. Orden Lineal

La linea de Sorgrenfey no es un orden lineal.

Dos ordenes lineas, densos enumerables, no hay maximos ni minimos, son isomorfos.

Lema de Urysohn

Sea X un espacio T_4 y sean $A,B\subseteq X$ cerrados y disyuntos, entonces existe $f:X\to [0,1]$ continua tal que:

$$f^{-1}(0) \supset A, f^{-1} \subset B$$