	<pre>Question 1 data = scipy.io.loadmat('mnist.mat') trainX = data['trainX'] trainY = data['trainY'] testX = data['testX'] testY = data['testY']</pre>
:	<pre>i = 1 img = trainX[i,:].reshape(28, 28) plt.gray() plt.imshow(img) <matplotlib.image.axesimage 0x1c5a5081548="" at=""> 0</matplotlib.image.axesimage></pre>
	5 - 10 - 15 - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17
	Question 2 a) idx4 = (trainY == 4) idx9 = (trainY == 9) idx = idx4 + idx9 idx = idx.reshape(-1)
	A = trainX[idx] b = trainY.reshape(-1)[idx] A = A.astype(int) b = b.astype(int) Question 2 b) idx4_b = (b == 4)
	<pre>idx9_b = (b == 9) b[idx4_b] = 1 b[idx9_b] = -1</pre> Question 2 c) Amean = A.mean(axis = 0) A = A - Amean
,	Astd = A.std(axis = 0) $ \text{A = A / ((Astd > 1).astype(int)*Astd} + (\text{Astd} <= 1).astype(int)*np.ones(A.shape[1])) $ We know that for normalizing a vector like x , we have: $ x_n = \frac{x-\mu}{\sigma}, $ where μ is the mean of x and σ is the standard deviation of x . Here, for each vector, if the corresponding standard deviation is less than the
	we substitute that by 1. Note that if we first remove the variance, the mean of new data will turn into $\frac{\mu}{\sigma}$ and to remove the meant a case, we need to use $\frac{\mu}{\sigma}$ instead of μ . Question 3 a) $x_{1s} = \text{np.linalg.lstsq(A, b, rcond=None)}[0]$ $loss = \text{mean_squared_error(A@x_ls, b)*A.shape}[0]$ $print('loss_xls = ', loss)$
	Question 3 b) To build a classifier, here with 2 classes, we need a function, say f , such that if $x \in Class(A)$, then return a value around a_1 , or $f(x) \approx a_1$ and if $x \in Class(B)$, then return a value around a_2 or $f(x) \approx a_2$, where a_1 and a_2 are two different value. Then w
	assume that if $f(x_0)>\frac{a_1+a_2}{2}$, then $x_0\in Class(A)$ and if $f(x_0)<\frac{a_1+a_2}{2}$, then $x_0\in Class(B)$. Here let's assume $f(x)=s$ where W is the weights vector, and is returned by the least squares problem.
	<pre>Question 3 c) idx4_test = (testY == 4) idx9_test = (testY == 9) idx_test = idx4_test + idx9_test idx_test = idx_test.reshape(-1) Atest = testX[idx_test] btest = testY.reshape(-1)[idx_test] Atest = Atest.astype(int)</pre>
	<pre>btest = btest.astype(int) idx4_b_test = (btest == 4) idx9_b_test = (btest == 9) btest[idx4_b_test] = 1 btest[idx9_b_test] = -1 Atest = Atest - Amean Atest = Atest / ((Astd > 1).astype(int)*Astd + (Astd <= 1).astype(int)*np.ones(A.shape[1]))</pre>
1	Since we want to use our trained model, and it is trained with the normalized data, we need to test it on a data from same distribute this, we assume that all data come from same distribution and normalize the test data with the same statistics of train data. We need to preprocess the testing data in exactly the same way we preprocessed the training data (e.g. remove the same amount and variance) so that we could apply the model that is trained with training data to test data. The training data here (i.e. A) has alrepreprocessed (normalized) after we calculate the constants. Hence, if we re-compute Amean and Astd using the code we used be would get different answers for the constants, which would not meet our goal to properly preprocess the testing data. Therefore, we that all data come from same distribution and normalize the test data with the same constants that we calculated before.
	Question 4 a) i) As a summary, since $\log(x)$ is a strictly increasing function, we have: $argmax(f(x)) = argmax(\log(f(x))$
1	To prove this, suppose $a_1=argmax(f(x))$ and $a_2=argmax(\log(f(x)))$, where $a_1\neq a_2$. Since $\log(x)$ is a strictly increasing function, we can say that $\log(f(a_1))>\log(f(a_2))$ where is a contradiction with $a_2=argmax(\log(f(x)))$. Question 4 a)
	$f(x)=\log\bigl(\Pi_{i=1}^m\sigma(a_i^Tx)^{b_i}(1-\sigma(a_i^Tx))^{1-b_i}\bigr)=\sum_{i=1}^m\log(\sigma(a_i^Tx)^{b_i}(1-\sigma(a_i^Tx))^{1-b_i})$ This tells us: $f(x)=\sum_{i=1}^mb_i\log(\sigma(a_i^Tx))+(1-b_i)\log(1-\sigma(a_i^Tx))$ For the gradient we have:
	For the gradient we have: $\frac{\partial}{\partial x_j} = a_j \sum_{i=1}^m \frac{b_i e^{-a_i^T x}}{(1+e^{-a_i^T x})^2} \times (1+e^{-a_i^T x})^2 + (1-b_i)(\frac{-e^{-a_i x}(1+e^{-a_i x})+e^{-2a_i^T x}}{(1+a^{-a_i^T x})^2}) \times \frac{1+e^{-a_i^T}}{e^{-a_i^T x}}$ $\Longrightarrow \frac{\partial}{\partial x_j} = \sum_{i=1}^m (b_i - \sigma(a_i^T x))x_j$ So, we can say the gradient is:
	$ abla f(x) = egin{bmatrix} \sum_{i=1}^m (b_i - \sigma(a_i^T x)) a_i^{(1)} \ & \cdot \ & \cdot \ & \ddots \ &$
	$H_{ii}=\sum_{i=1}^m(b_i-\sigma(a_i^Tx))+a_ix_i\sum_{i=1}^m(1-\sigma(a_i^Tx))$ And for H_{ij} where $i eq j$, we have: $H_{ij}=a_jx_i\sum_{i=1}^m(1-\sigma(a_i^Tx))$
	We can show that: $\nabla_x^2 L = A^T W A,$ where: $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m},$
	and, $A=egin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\ dots&\ddots&dots&dots\ a_{m1}&a_{m2}&\dots&a_{mn} \end{bmatrix}\in\mathbb{R}^{m imes n}.$
	We can also solve the problem using this approach $ \text{Part 0: Some calculation and simplification for sigmond function } \sigma(a_i^Tx) $ Let $\sigma(a_i^Tx) = \sigma_i$, and some important calculation of $\sigma(a_i^Tx) = \sigma_i = \frac{1}{1+e^{-a_i^Tx}}$: $ \sigma_i = \frac{1}{1+e^{-a_i^Tx}} = \frac{e^{a_i^Tx}}{1+e^{a_i^Tx}} $
	$1-\sigma_i = 1 - rac{e^{a_i^Tx}}{1+e^{a_i^Tx}} = rac{1}{1+e^{a_i^Tx}} \ \log \sigma_i = \log rac{e^{a_i^Tx}}{1+e^{a_i^Tx}} = \log(e^{a_i^Tx}) - \log(1+e^{a_i^Tx}) = a_i^Tx - \log(1+e^{a_i^Tx}) \ \log(1-\sigma_i) = \log rac{1}{1+e^{a_i^Tx}} = 0 - \log(1+e^{a_i^Tx}) = -\log(1+e^{a_i^Tx})$
	Part 1: simplify log likelihood $f(x)$ $f(x) = \log\left(\Pi_{i=1}^{\infty}\sigma_i^{b_i}(1-\sigma_i)^{1-b_i}\right)$ $= \sum_{i=1}^m b_i \log(\sigma_i) + (1-b_i)\log(1-\sigma_i))$ $= \sum_{i=1}^m b_i (a_i^T x - \log(1+e^{a_i^T x})) + (1-b_i)(-\log(1+e^{a_i^T x}))$
	$egin{aligned} &= \sum_{i=1}^m b_i (a_i^T x - \log(1 + e^{a_i^T x})) + (1 - b_i) (-\log(1 + e^{a_i^T x})) \ &= \sum_{i=1}^m b_i a_i^T x - b_i \log(1 + e^{a_i^T x}) - \log(1 + e^{a_i^T x}) + b_i \log(1 + e^{a_i^T x}) \ &= \sum_{i=1}^m a_i^T x b_i - \log(1 + e^{a_i^T x}) \ &= \sum_{i=1}^m a_i^T x b_i + \log(rac{1}{1 + e^{a_i^T x}}) \end{aligned}$
	$\sum_{i=1}^{m} a_i^T x b_i + \log(1-\sigma_i)$ = $\sum_{i=1}^{m} a_i^T x b_i + \log(1-\sigma_i)$ Part 2: the loss function $L(x)$ $L(x) = -f(x)$
	$egin{align} &= \sum_{i=1}^m -a_i^T x b_i + \log(1 + e^{a_i^T x}) \ &= \sum_{i=1}^m -a_i^T x b_i - \log(1 - \sigma_i) \ &= -(Ax)^T b - \sum_{i=1}^m \log(1 - \sigma_i) \ \end{gathered}$
	Part 3: the gradient $orall L(x)$ $rac{d}{dx_j}L=rac{d}{dx_j}\sum_{i=1}^m-a_i^Txb_i+\log(1+e^{a_i^Tx})$ $=\sum_{i=1}^m-a_{ij}b_i+rac{a_{ij}\cdot e^{a_i^Tx}}{1+e^{a_i^Tx}}$ $=\sum_{i=1}^m a_{ij}(-e^{a_i^Tx}-b_i)$
	$=\sum_{i=1}^m a_{ij}(rac{e^{a_i^Tx}}{1+e^{a_i^Tx}}-b_i)$ $=\sum_{i=1}^m a_{ij}(\sigma_i-b_i)$ Hence: $orall_x L=A^T(\sigma(Ax)-b)$ where $x\in\mathbb{R}^{n imes 1}$, $b\in\mathbb{R}^{m imes 1}$, and
,	where $x \in \mathbb{R}^{n imes 1}$, $b \in \mathbb{R}^{m imes 1}$, and $A = egin{bmatrix} a_1 \ dots \ a_m \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ dots & \ddots & dots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m imes n}$ $\sigma(Ax) = egin{bmatrix} \sigma_1 \ dots \ \sigma_m \end{bmatrix} = egin{bmatrix} \sigma(a_1^T x) \ dots \ \sigma(a_m^T x) \end{bmatrix} \in \mathbb{R}^{m imes 1}$
	Part 4: the hessian $ abla^2 L(x)$ $rac{d^2}{dx_j dx_k} L = rac{d}{dx_k} \sum_{i=1}^m a_{ij} (\sigma_i - b_i)$ $= \sum_{i=1}^m a_{ij} rac{d}{dx_k} (\sigma_i - b_i)$
	$egin{align} &= \sum_{i=1}^m a_{ij} rac{d}{dx_k}(\sigma_i) \ &= \sum_{i=1}^m a_{ij} rac{d}{dx_k} (rac{1}{1 + e^{-a_i^T x}}) \ &= \sum_{i=1}^m a_{ij} \cdot (-1) \cdot rac{1}{(1 + e^{-a_i^T x})^2} \cdot e^{-a_i^T x} \cdot -a_{ik} \ \end{array}$
	$=\sum_{i=1}^m a_{ij}a_{ik}\cdot\sigma_i\cdotrac{e^{-a_i^Tx}}{(1+e^{-a_i^Tx})}$ $=\sum_{i=1}^m a_{ij}\cdot\sigma_i\cdot(1-\sigma_i)\cdot a_{ik}$ Hence: $ abla^2_xL=A^TWA$
	where W is a diagonal matrix
	where W is a diagonal matrix $W=\begin{bmatrix}\sigma_1(1-\sigma_1)&0&\dots&0\\0&\sigma_2(1-\sigma_2)&\dots&0\\\vdots&\ddots&\vdots&\vdots\\0&0&\dots&\sigma_m(1-\sigma_m)\end{bmatrix}\in\mathbb{R}^{m\times m}$ Part 5: check for convexity
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m\times m}$ Part 5: check for convexity $ \vdots \text{ For } \sigma_i = \sigma(a_i^Tx) = \sigma(s) = \frac{1}{1+e^{-s}}, 1+e^{-s} > 0 \text{ for any } s \in \mathbb{R} $ $ \vdots \text{ With similar reasonings, } 1-\sigma_i = \frac{e^{-s}}{1+e^{-s}} > 0 $ $ \vdots \text{ With similar reasonings of } W \vdots \sigma_i(1-\sigma_i) \text{ are all real positive numbers } $ $ \vdots \text{ The diagonal terms of } W \vdots \sqrt{\sigma_i(1-\sigma_i)} \text{ are also all real positive numbers } $ $ \vdots \text{ For the hessian of our loss function: } $ $ \nabla_x^2 L = A^T W A $ $ = A^T W \frac{1}{2} W^{\frac{1}{2}} A $ $ = (W^{\frac{1}{2}}A)^T W^{\frac{1}{2}} A $ $ = \ W^{\frac{1}{2}}A\ _2^2 $ $ \geq 0 $
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $ \vdots \text{ For } \sigma_i = \sigma(a_i^T x) = \sigma(s) = \frac{1}{1+e^{-t}}, 1+e^{-s} > 0 \text{ for any } s \in \mathbb{R} $ $ \vdots \sigma_i > 0 $ $ \vdots \text{ With similar reasonings, } 1-\sigma_i = \frac{e^{-s}}{1-e^{-s}} > 0 $ $ \vdots \text{ With similar reasonings, } 1-\sigma_i = \frac{e^{-s}}{1-e^{-s}} > 0 $ $ \vdots \text{ The diagonal terms of } W^{\frac{1}{2}}: \sqrt{\sigma_i(1-\sigma_i)} \text{ are also all real positive numbers } $ $ \vdots \text{ The diagonal terms of } W^{\frac{1}{2}}: \sqrt{\sigma_i(1-\sigma_i)} \text{ are also all real positive numbers } $ $ \vdots \text{ For the hessian of our loss function: } $
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $ \begin{bmatrix} \nabla \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $ \begin{bmatrix} \nabla \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $ \begin{bmatrix} \nabla \sigma_1(1-\sigma_1) & 0 & \dots & \sigma_m(1-\sigma_m) \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $ \begin{bmatrix} \nabla \sigma_1(1-\sigma_1) & 0 & \text{or any } s \in \mathbb{R} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 6: check for convexity $ \begin{bmatrix} \nabla \sigma_1(1-\sigma_1) & \text{or any } s \in \mathbb{R} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ The diagonal terms of W : $\int_{\mathbb{R}^{m \times m}} \frac{\sigma_1(1-\sigma_1)}{\sigma_1(1-\sigma_1)} \text{ are also all real positive numbers}$ $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} M^{\frac{1}{2}} \\ & -A^T W^{\frac{1}{2}} M^{\frac{1}{2}} A \\ & = [W^{\frac{1}{2}} A]_2^2 \\ & \geq 0 \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} M^{\frac{1}{2}} A \\ & = [W^{\frac{1}{2}} A]_2^2 \\ & \geq 0 \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} M^{\frac{1}{2}} A \\ & = [W^{\frac{1}{2}} A]_2^2 \\ & \geq 0 \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} M^{\frac{1}{2}} A \\ & = [W^{\frac{1}{2}} A]_2^2 \\ & \geq 0 \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} M^{\frac{1}{2}} A \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} & A \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} & A \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} & A \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A^T W^{\frac{1}{2}} & A \\ & -A^T W^{\frac{1}{2}} & A \end{bmatrix} $ The Hessian $\nabla^2 L$ is positive semidefinite $ \begin{bmatrix} \nabla^2 L & A \\ & -A^T W^{\frac{1}{2}}$
	where W is a diagonal matrix $W = \begin{cases} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{cases} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $V = \sigma_0 = \sigma(a_1^T x) = \sigma(s) = \frac{1}{1(s^T)}, 1 + e^{-s} > 0 \text{ for any } s \in \mathbb{R}$ $V_s = \sigma_0 = \sigma(a_1^T x) = \sigma(s) = \frac{1}{1(s^T)}, 1 + e^{-s} > 0 \text{ for any } s \in \mathbb{R}$ $V_s = \sigma_0 = \sigma(a_1^T x) = \sigma(s) = \frac{1}{1(s^T)}, 1 + e^{-s} > 0 \text{ for any } s \in \mathbb{R}$ $V_s = \sigma_0 = \sigma(a_1^T x) = \sigma(s) = \frac{1}{1(s^T)}, 1 + e^{-s} > 0 \text{ for any } s \in \mathbb{R}$ $V_s = \sigma_0 = \sigma(s) = \sigma(s) = \frac{1}{1(s^T)}, 1 + e^{-s} > 0 \text{ for any } s \in \mathbb{R}$ $V_s = \sigma_0 = \sigma(s) = \sigma(s) = \sigma(s) = \frac{1}{1(s^T)}, 1 + e^{-s} > 0 \text{ for any } s \in \mathbb{R}$ $V_s = \sigma(s) =$
	where W is a diagonal matrix $W = \begin{cases} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m\times m}$ $W = \begin{cases} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m\times m}$ $W = \begin{cases} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m\times m}$ $W = \sigma_1 = \sigma_1(1-\sigma_1) \text{ for any } s \in \mathbb{R}$ $\sigma_1 > 0$ $The diagonal terms of W^2: \sqrt{\sigma_1(1-\sigma_1)} are alreal positive numbers. For the bassian of our loss function: v_1^2L = A^TWA \\ = A^TW^2 W^{\frac{1}{2}}A \\ = \ W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 = W^{\frac{1}{2}}A\ _2^2 Question 4 b) ii) = \log_1 \sin_1(1) + \log_2(3 + \cos_2(1)) + \log_2(3 + \cos$
	where W is a diagonal matrix $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_m(1-\sigma_m) & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_m(1-\sigma_m) \end{bmatrix} \in \mathbb{R}^{m \times m}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \vdots \\ 0 & 0 & \dots & \vdots \\ 0 & 0 & \dots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ 0 & $
	Part 5: check for convexity $W = \begin{bmatrix} \sigma_1(1-\sigma_2) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{m \times m}$ Part 5: check for convexity $ 2 \cdot f \circ \sigma_n = \sigma(a_n^1 x) = \sigma(a) = \frac{1}{16\pi^2}, 1 - \sigma^{-1} > 0 \text{ for any } s \in \mathbb{R} $ $ (\sigma_1 > 0) = 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (\text{With similar reasonings. } 1 - \sigma_1 = \frac{1}{16\pi^2} > 0 $ $ (With similar reasoni$
	where W is a disposal rules: $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_2(1-\sigma_2) & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_n(1-\sigma_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$ $V = \begin{bmatrix} \sigma_1(1-\sigma_1) & $
	Where W is a disgraph metric $W = \begin{bmatrix} \sigma_1(1-\sigma_1) & 0 & \dots & 0 \\ 0 & \sigma_1(1-\sigma_2) & \dots & 0 \\ 0 & \sigma_1(1-\sigma_3) & \dots & 0 \end{bmatrix}$ $\in \mathbb{R}^{n\times n}$. For $\sigma_1 = \sigma_0^2 s_1^2 = \sigma(s) = \frac{1}{1-2}, 1+e^{-s} > 0$ for any $s \in \mathbb{R}$. $\sigma_2 > 0$ The disgraph tense of $W : \sigma_1(1-\sigma_2)$ are site of real positive numbers. The disgraph tense of $W : \sigma_1(1-\sigma_2)$ are site of real positive numbers. The disgraph tense of $W : \sigma_1(1-\sigma_2)$ are site of real positive numbers. The disgraph tense of $W : \sigma_1(1-\sigma_2)$ are site of real positive numbers. The disgraph tense of $W : \sigma_1(1-\sigma_2)$ are site of real positive numbers. The Hassian $\Psi^T_i L$ is positive serviciating. The Hassian $\Psi^T_i L$ is posit
	For its check for convexity $W = \begin{pmatrix} a_1(1-\alpha_1) & 0 & \cdots & 0 \\ 0 & a_1(1-\alpha_2) & \cdots & 0 \\ 0 & 0 & \cdots & a_n(1-\alpha_n) \end{pmatrix} \in \mathbb{R}^{n+n}$ where $A_n = a_n(1-\alpha_n) + a_n(1-\alpha_n)$
	For it is necessity in the second ((C_1, a_1, b_2, b_3)) and (C_1, a_2, b_3) and (C_1, a_3, b_4) and (C_1, a_4, b_4) and $($
	### Part S: Check for convexity Part S: Check for convexity for conve
	Part 5: check for convexity If \(\begin{align*}{ccc} \begin{align*}{cccc} \begin{align*}{ccccc} \begin{align*}{ccccc} \begin{align*}{ccccc} \begin{align*}{ccccc} \begin{align*}{ccccc} \begin{align*}{cccccc} \begin{align*}{ccccccc} \begin{align*}{cccccccc} \begin{align*}{ccccccc} \begin{align*}{cccccccccccccccccccccccccccccccccccc
	Part 5: check for convenity
	Part 5: Objects for convexity
	Part 8: check for convexity $V = \begin{cases} $
	Compared to the compared to
	The first check for convoiding to the convoiding
	For St clavel, for convexity First St clavel, for convexity
	The second process of
	First School for conventy
	Fig. 1. See Section 1
	Part 5: Create Annual Community First St. Create A
	Port St. clinicis for convexity
	Fig. 1
	For Schools for community For Schools for Commu
	Fig. 2. Company of the company of th
	Face School for company and the company of the comp
	Fig. 1. the bit of convey live and the convey
	Fig. 1. State of the control of the

Mohammad Amin Roohi 42015453