SBML Model Report

Model name: "Aubert2002 - Coupling between Brain electrical activity, Metabolism and Hemodynamics"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Felix Winter¹ and Audald Lloret i Villas² at April nineth 2014 at 4:25 p.m. and last time modified at May twelveth 2015 at 11:18 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	4
species types	0	species	20
events	3	constraints	0
reactions	18	function definitions	13
global parameters	69	unit definitions	2
rules	21	initial assignments	7

Model Notes

Aubert2002 - Coupling between Brainelectrical activity, Metabolism and HemodynamicsFelix Winter encoded this model in SBMLas part of his work at ASD GmbH

¹University of Rostock, winter@kapora.de

²EMBL-EBI, lloret@ebi.ac.uk

This model is described in the article: A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Aubert A, Costalat R. Neuroimage 2002 Nov; 17(3): 1162-1181

Abstract:

In order to improve the interpretation of functional neuroimaging data, we implemented a mathematical model of the coupling between membrane ionic currents, energy metabolism (i.e., ATP regeneration via phosphocreatine buffer effect, glycolysis, and mitochondrial respiration), blood-brain barrier exchanges, and hemodynamics. Various hypotheses were tested for the variation of the cerebral metabolic rate of oxygen (CMRO(2)): (H1) the CMRO(2) remains at its baseline level; (H2) the CMRO(2) is enhanced as soon as the cerebral blood flow (CBF) increases; (H3) the CMRO(2) increase depends on intracellular oxygen and pyruvate concentrations, and intracellular ATP/ADP ratio; (H4) in addition to hypothesis H3, the CMRO(2) progressively increases, due to the action of a second messenger. A good agreement with experimental data from magnetic resonance imaging and spectroscopy (MRI and MRS) was obtained when we simulated sustained and repetitive activation protocols using hypotheses (H3) or (H4), rather than hypotheses (H1) or (H2). Furthermore, by studying the effect of the variation of some physiologically important parameters on the time course of the modeled blood-oxygenationlevel-dependent (BOLD) signal, we were able to formulate hypotheses about the physiological or biochemical significance of functional magnetic resonance data, especially the poststimulus undershoot and the baseline drift.

This model is hosted on BioModels Database and identified by: BIOMD0000000570.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition mmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains four compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_1	Tissue		3	1	litre	$ \overline{\checkmark} $	
compartment_2	Arteries		3	1	litre	$\overline{\mathbf{Z}}$	
compartment_3	Capillaries		3	1	litre	$\overline{\mathbf{Z}}$	
${\tt compartment_4}$	Venous balloon		3	0.0237	ml		

3.1 Compartment compartment_1

This is a three dimensional compartment with a constant size of one ml.

Name Tissue

3.2 Compartment compartment_2

This is a three dimensional compartment with a constant size of one ml.

Name Arteries

3.3 Compartment compartment_3

This is a three dimensional compartment with a constant size of one ml.

Name Capillaries

$\textbf{3.4 Compartment} \texttt{compartment}_4$

This is a three dimensional compartment with a not constant size of 0.0237 ml.

Name Venous balloon

4 Species

This model contains 20 species. The boundary condition of seven of these species is set to true so that these species' amount cannot be changed by any reaction. Section 11 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
		•			Condi-
					tion
species_1	Na+	compartment_1	mmol		\Box
species_2	ATP	${\tt compartment_1}$	mmol		
species_3	ADP	${\tt compartment_1}$	mmol		
${\tt species_4}$	GLC	${\tt compartment_1}$	mmol		
species_5	GAP	${\tt compartment_1}$	mmol		
species_6	NAD+	${\tt compartment_1}$	mmol		
species_7	NADH	${\tt compartment_1}$	mmol		\Box
species_8	PYR	${\tt compartment_1}$	mmol		
species_9	PEP	${\tt compartment_1}$	mmol		
species_10	LAC	${\tt compartment_1}$	mmol		
species_11	PCr	${\tt compartment_1}$	mmol		
species_12	Cr	${\tt compartment_1}$	mmol		
species_13	O2	${\tt compartment_1}$	mmol		\Box
species_14	O2	compartment_2	mmol	\square	
species_15	GLC	compartment_2	mmol	\square	
species_16	LAC	${\tt compartment_2}$	mmol	\square	
species_17	GLC	compartment_3	mmol		
species_18	LAC	compartment_3	mmol		\Box
species_19	O2	compartment_3	mmol		\Box
dHb	dHb	compartment_3	mmol		\Box

5 Parameters

This model contains 69 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
parameter_1	S/V		90000.000		\checkmark
parameter_2	gNa		0.004		$\overline{\mathbf{Z}}$
$parameter_3$	F		96500.000		$ \overline{\mathbf{Z}} $
$parameter_4$	RT/F		26.730		$ \overline{\mathbf{Z}} $
$parameter_5$	Vm		-70.000		
$parameter_6$	Na_extracellular		150.000		
$parameter_{-}7$	ATP		2.200		
$parameter_8$	k_pump		2.9 · 1	10^{-7}	
$parameter_9$	Km_pump		0.500		
$parameter_10$	ADP		0.012		
$parameter_11$	qAK		0.920		
$parameter_12$	A		2.212		
$parameter_13$	AMP	7.0	3149141540894 · 1	10^{-5}	
$parameter_{-}14$	Tmax,GLC		0.048		
$parameter_{-}15$	Kt,GLC		9.000		
$parameter_16$	kHK-PFK		0.120		
$parameter_17$	KI,ATP		1.000		
$parameter_18$	nH		4.000		
$parameter_19$	Kg		0.050		\square
$parameter_20$	kPGK		42.600		
$parameter_21$	N		0.212		\square
$parameter_22$	NAD+		0.186		
$parameter_23$	kPK		86.700		\square
$parameter_24$	k+LDH		2000.000		
$parameter_25$	k-LDH		44.800		
$parameter_26$	Tmax,LAC		0.006		
$parameter_27$	Kt,LAC		0.500		
$parameter_28$	vATPase		0.149		
$parameter_29$	k+CK		3666.000		
$parameter_30$	k-CK		20.000		
$parameter_31$	C		10.000		
$parameter_32$	PS/V		1.600		
$parameter_33$	KO2		0.036		
${\tt parameter_34}$	Hb*OP		8.600		
$parameter_35$	nh		2.730		
parameter_36	F0		0.012		
$parameter_37$	F_in		0.012		

Id	Name	SBO Value	Unit	Constant
parameter_38	V_cap	0.006		\overline{Z}
parameter_47	v_Mito	0.019		$\overline{\mathbb{Z}}$
dAMP_dATP	dAMP/dATP	-0.012		
v_Mito_H3	v_Mito_H3	0.019		
$V_{\mathtt{max_Mito}}$	V_max_Mito	0.052		
${\tt Km_Mito}$	Km,Mito	0.050		$\overline{\mathbb{Z}}$
$\mathtt{KI_Mito}$	KI,Mito	183.300		$\overline{\mathbf{Z}}$
$n_{\sf Mito}$	n_Mito	0.100		$\overline{\mathbf{Z}}$
K_02 Mito	K_O2_Mito	0.001		$\overline{\mathbf{Z}}$
is_maximum	is_maximum	0.000		
is_rising	is_rising	1.000		\Box
is_falling	is_falling	0.000		\Box
slope_up	slope_up	0.000		
alpha_F_in	alpha_F_in	0.500		
maximum	maximum	0.006		
$t_{-}on$	t_on	5.000		
t_{-} end	t_end	360.000		\mathbf{Z}
${\tt slope_down}$	slope_down	0.438		
F_{-} out	F_out	0.012		
v_stim-	v_stim_constant	0.230		
$_\mathtt{constant}$				
rCBF	rCBF	1.000		
rCMRO2	rCMRO2	0.000		
rVv	rVv	1.000		
02c_bar	O2c_bar	5.680		
ratioO2c_bar	ratioO2c_bar	1.000		
Compartment-	Initial for Venous	0.024		
_7	balloon			
ModelValue-	Initial for F0	0.012		
_35				
ModelValue-	Initial for O2c_bar	5.680		\square
_60				
ModelValue-	Initial for alpha_F-	0.500		\checkmark
_50	_in			
ModelValue-	Initial for maxi-	0.006		
_51	mum			
ModelValue-	Initial for t_end	360.000		
_53				
ModelValue-	Initial for t_on	5.000		
_52				

6 Initialassignments

This is an overview of seven initial assignments.

6.1 Initialassignment Compartment_7

Derived unit ml

Math vol (compartment_4)

6.2 Initialassignment ModelValue_35

Derived unit contains undeclared units

Math parameter_36

6.3 Initialassignment ModelValue_60

Derived unit contains undeclared units

Math O2c_bar

6.4 Initialassignment ModelValue_50

Derived unit contains undeclared units

Math alpha_F_in

6.5 Initialassignment ModelValue_51

Derived unit contains undeclared units

Math maximum

6.6 Initialassignment ModelValue_53

Derived unit contains undeclared units

Math t_end

6.7 Initialassignment ModelValue_52

Derived unit contains undeclared units

Math t_on

7 Function definitions

This is an overview of 13 function definitions.

7.1 Function definition Constant_flux__irreversible

Name Constant flux (irreversible)

Argument v

Mathematical Expression

$$v$$
 (1)

7.2 Function definition v_pump

Name v_pump

Arguments S_V, k_pump, ATP, NA, Km_pump

Mathematical Expression

$$\frac{S_{-}V \cdot k_{-}pump \cdot ATP \cdot NA}{1 + \frac{ATP}{Km_{-}pump}}$$
 (2)

7.3 Function definition function_1

Name v_Leak-Na

Arguments S_V, gNA, F, RT_F, Na_e, Na, Vm

Mathematical Expression

$$S_{-}V \cdot \frac{gNA}{F} \cdot \left(RT_{-}F \cdot \left(\frac{Na_{-}e}{Na}\right) - Vm\right)$$
 (3)

7.4 Function definition v_GLC_m

Name v_GLC_m

Arguments Tmax, GLC_c, Kt_GLC, GLC_i

Mathematical Expression

$$Tmax \cdot \left(\frac{GLC_c}{GLC_c + Kt_GLC} - \frac{GLC_i}{GLC_i + Kt_GLC}\right)$$
(4)

7.5 Function definition function_2

Name v_HK-PFK

Arguments ATP, GLC_i, Kg, KI_ATP, nH, kHK_PFK

Mathematical Expression

$$\frac{\text{kHK_PFK} \cdot \text{ATP} \cdot \frac{\text{GLC.i}}{\text{GLC.i+Kg}}}{1 + \left(\frac{\text{ATP}}{\text{KLATP}}\right)^{\text{nH}}}$$
 (5)

7.6 Function definition v_PGK

Name v_PGK

Arguments kPGK, GAP, ADP, NAD, NADH

Mathematical Expression

$$kPGK \cdot GAP \cdot ADP \cdot \frac{NAD}{NADH} \tag{6}$$

7.7 Function definition v_LAC_m

Name v_LAC_m

Arguments Tmax, LAC_i, Kt_LAC, LAC_c

Mathematical Expression

$$Tmax \cdot \left(\frac{LAC_i}{LAC_i + Kt_LAC} - \frac{LAC_c}{LAC_c + Kt_LAC}\right)$$
 (7)

7.8 Function definition v_02_m

Name v_O2_m

Arguments PS_V, KO2, HbOP, O2_c, nh, O2_i

Mathematical Expression

$$PS_{-}V \cdot \left(KO2 \cdot \left(\frac{HbOP}{O2_c} - 1\right)^{\frac{1}{nh}} - O2_i\right)$$
 (8)

7.9 Function definition v_02_c

Name v_O2_c

Arguments F_in, V_cap, O2_a, O2_c

Mathematical Expression

$$\frac{2 \cdot F_{in}}{V_{cap}} \cdot (O2_a - O2_c) \tag{9}$$

7.10 Function definition v_GLC_c

Name v_GLC_c

Arguments F_in, V_cap, GLC_a, GLC_c

Mathematical Expression

$$\frac{2 \cdot F_{in}}{V_{cap}} \cdot (GLC_{a} - GLC_{c}) \tag{10}$$

7.11 Function definition v_LAC_c

Name v_LAC_c

Arguments F_in, V_cap, LAC_a, LAC_c

Mathematical Expression

$$\frac{2 \cdot F_{.in}}{V_{.cap}} \cdot (LAC_{.a} - LAC_{.c}) \tag{11}$$

7.12 Function definition v_dHb_in

Name v_dHb_in

Arguments F_in, O2_a, O2_c

Mathematical Expression

$$F_{in} \cdot 2 \cdot (O2_a - O2_c) \tag{12}$$

7.13 Function definition v_dHb_out

Name v_dHb_out

Arguments F_out, dHb, V_v

Mathematical Expression

$$\frac{F_out \cdot dHb}{V_v} \tag{13}$$

8 Rules

This is an overview of 21 rules.

8.1 Rule species_2

Rule species_2 is an assignment rule for species species_2:

$$[species_2] = parameter_7 \cdot vol(compartment_1)$$
 (14)

8.2 Rule species_12

Rule species_12 is an assignment rule for species species_12:

$$[species_12] = \left(parameter_31 - \frac{species_11}{vol(compartment_1)}\right) \cdot vol(compartment_1)$$
 (15)

8.3 Rule parameter_10

Rule parameter_10 is an assignment rule for parameter parameter_10:

$$parameter_{10} = \frac{parameter_{7}}{2} \cdot \left(parameter_{11} + \left(parameter_{11}^{2} + 4 \cdot parameter_{11} \cdot \left(\frac{parameter_{12}}{parameter_{7}} - 1 \right) \right)^{0.5} \right)$$

$$(16)$$

8.4 Rule species_3

Rule species_3 is an assignment rule for species species_3:

$$[species_3] = parameter_10 \cdot vol(compartment_1)$$
 (17)

8.5 Rule parameter_13

Rule parameter_13 is an assignment rule for parameter parameter_13:

$$parameter_13 = parameter_12 - parameter_7 - parameter_10$$
 (18)

8.6 Rule parameter_22

Rule parameter_22 is an assignment rule for parameter parameter_22:

$$parameter_2 = parameter_2 1 - \frac{species_7}{vol(compartment_1)}$$
 (19)

8.7 Rule species_6

Rule species_6 is an assignment rule for species species_6:

$$[\text{species_6}] = \text{parameter_22} \cdot \text{vol}(\text{compartment_1})$$
 (20)

8.8 Rule dAMP_dATP

Rule dAMP_dATP is an assignment rule for parameter dAMP_dATP:

$$dAMP_dATP = 1 + \frac{parameter_11}{2} - \frac{1}{2}$$

$$\cdot \left(parameter_11^2 + 4 \cdot parameter_11 \cdot \left(\frac{parameter_12}{parameter_7} - 1 \right) \right)^{\frac{1}{2}}$$

$$+ \frac{parameter_11 \cdot parameter_12}{parameter_7 \cdot \left(parameter_11^2 + 4 \cdot parameter_11 \cdot \left(\frac{parameter_12}{parameter_7} - 1 \right) \right)^{\frac{1}{2}}}$$

$$(21)$$

8.9 Rule v_Mito_H3

Rule v_Mito_H3 is an assignment rule for parameter v_Mito_H3:

$$v_Mito_H3 = V_max_Mito \cdot \frac{\frac{species_8}{vol(compartment_1)}}{Km_Mito + \frac{species_8}{vol(compartment_1)}} \cdot \frac{1}{1 + \left(\frac{parameter_7}{parameter_10\cdot KI_Mito}\right)^{n_Mito}} \cdot \frac{\frac{species_8}{vol(compartment_1)}}{K_O2_Mito + \frac{species_13}{vol(compartment_1)}}$$

$$(22)$$

8.10 Rule maximum

Rule maximum is an assignment rule for parameter maximum:

$$maximum = ModelValue_35 \cdot ModelValue_50$$
 (23)

8.11 Rule slope_up

Rule slope_up is an assignment rule for parameter slope_up:

$$slope_up = \frac{ModelValue_51}{ModelValue_52} \cdot time$$
 (24)

8.12 Rule slope_down

Rule slope_down is an assignment rule for parameter slope_down:

$$slope_down = \frac{maximum \cdot (t_on + t_end - time)}{t_on}$$
 (25)

8.13 Rule parameter_37

Rule parameter_37 is an assignment rule for parameter parameter_37:

8.14 Rule F_out

Rule F_out is an assignment rule for parameter F_out:

F_out
$$= \frac{\text{parameter_36} \cdot \left(\left(\frac{\text{vol(compartment_4)}}{\text{Compartment_7}} \right)^2 + \left(\frac{\text{vol(compartment_4)}}{\text{Compartment_7}} \right)^{0.5} \cdot 35 \cdot \frac{1}{\text{Compartment_7}} \cdot \text{parameter_37} \right)}{1 + \text{parameter_36} \cdot \left(\frac{\text{vol(compartment_4)}}{\text{Compartment_7}} \right)^{0.5} \cdot 35 \cdot \frac{1}{\text{Compartment_7}}$$

8.15 Rule rCBF

Rule rCBF is an assignment rule for parameter rCBF:

$$rCBF = \frac{parameter_37}{ModelValue_35}$$
 (28)

8.16 Rule rCMR02

Rule rCMR02 is an assignment rule for parameter rCMR02:

$$rCMRO2 = \frac{mitochondrial_respiration}{0.0192}$$
 (29)

8.17 Rule r V v

Rule rVv is an assignment rule for parameter rVv:

$$rVv = \frac{vol(compartment_4)}{Compartment_7}$$
 (30)

8.18 Rule 02c_bar

Rule O2c_bar is an assignment rule for parameter O2c_bar:

$$O2c_bar = 2 \cdot \frac{species_19}{vol(compartment_3)} - \frac{species_14}{vol(compartment_2)}$$
(31)

8.19 Rule ratio02c_bar

Rule ratioO2c_bar is an assignment rule for parameter ratioO2c_bar:

$$ratioO2c_bar = \frac{O2c_bar}{ModelValue_60}$$
 (32)

8.20 Rule compartment_4

Rule compartment_4 is a rate rule for compartment compartment_4:

$$\frac{d}{dt} \text{vol} (\text{compartment_4}) = \text{parameter_37} - \text{F_out}$$
 (33)

8.21 Rule parameter_7

Rule parameter_7 is a rate rule for parameter parameter_7:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{parameter}_7 = (2 \cdot \mathrm{reaction}_4 + \mathrm{reaction}_5 + \mathrm{reaction}_6 - \mathrm{reaction}_2 + 15$$

$$\cdot \mathrm{mitochondrial_respiration} + \mathrm{reaction}_9 - \mathrm{ATPases}) \cdot (1 - \mathrm{dAMP_dATP})^1$$
(34)

9 Events

This is an overview of three events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

9.1 Event from increase to stable

Name from increase to stable

Trigger condition

$$time = ModelValue_52$$
 (35)

Assignments

$$is_maximum = 1$$
 (36)

$$is_rising = 0$$
 (37)

9.2 Event from_stable_to_decrease__end_of_stimulation

Name from stable to decrease (end of stimulation)

Trigger condition

$$time = ModelValue_53$$
 (38)

Assignments

$$is_maximum = 0$$
 (39)

is_falling
$$=1$$
 (40)

$$v_{stim_constant} = 0$$
 (41)

9.3 Event from_decrease_to_at_rest

Name from decrease to at_rest

$$time = ModelValue_53 + ModelValue_52$$
 (42)

Assignment

$$is_falling = 0$$
 (43)

10 Reactions

This model contains 18 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

		Table 3. Overview	of all feactions
No	Id	Name	Reaction Equation SBO
1	reaction_1	Sodium leak	$\emptyset \xrightarrow{\text{species}_1} \text{species}_1$
2	${\tt reaction_2}$	Na/K - pump	$3 \text{ species}_1 + \text{species}_2 \xrightarrow{\text{species}_2, \text{ species}_1} \text{ species}_3$
3	reaction_3	Blood-brain transport of glucose	$100 \text{ species}_17 \xrightarrow{\text{species}_4} \text{species}_4$
4	reaction_4	Hexokinase-phosphofructokinase system	species_4+species_2 species_4 2 species_5+ species_3
5	reaction_5	Phosphoglycerate kinase	species_5 + species_6 species_5, species_3, species_6, species_7 species_9 species_7
6	reaction_6	Pyruvate kinase	species_3 + species_9 $\xrightarrow{\text{species}_3, \text{ species}_9}$ species_2 + species_8
7	reaction_7	Lactate dehydrogenase	species_8 + species_7
8	reaction_8	Blood-brain transport of lactate	species_10 $\xrightarrow{\text{species}_10, \text{ species}_18}$ 100 species_18
9	reaction_9	Creatine Kinase	species_11+species_3 species_12, species_12, species_12+ species_2 species_12+
10	reaction_10	Blood-brain transport of oxygen	100 species_19 $\xrightarrow{\text{species}_19, \text{ species}_13}$ species_13
11	reaction_11	Blood flow contribution to O2 variation	species_14 species_19 species_19
12	reaction_12	Blood flow contribution to GLC_c variation	species_15 $\xrightarrow{\text{species}_15, \text{ species}_17}$ species_17

N⁰	Id	Name	Reaction Equation	SBO
13	reaction_13	Blood flow contribution to LAC_c variation	species_16 species_18, species_18 species_18	
14	mitochondrial- _respiration	mitochondrial respiration	species_8 + species_7 + 3 species_13 \longrightarrow species_2	
15	ATPases	ATPases	species_2 $\longrightarrow \emptyset$	
16	Nainflow- _after- _stimulation	Na+ inflow after stimulation	$\emptyset \longrightarrow \operatorname{species}_{-1}$	
17	inflow_of_dHb	inflow of dHb	Ø species_14, species_19, species_14, species_19 dHb)
18	outflow_of_dHb	outflow of dHb	$dHb \xrightarrow{dHb} \emptyset$	

10.1 Reaction reaction_1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Sodium leak

Reaction equation

$$\emptyset \xrightarrow{\text{species}_1} \text{species}_1 \tag{44}$$

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
species_1	Na+	

Product

Table 7: Properties of each product.

Id	Name	SBO
species_1	Na+	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol} (\text{compartment}_1) \cdot \text{function}_1 \left(\text{parameter}_1, \text{parameter}_2, \text{parameter}_3, \right)$$

$$parameter_4, parameter_6, \frac{\text{species}_1}{\text{vol} (\text{compartment}_1)}, parameter_5 \right)$$
(45)

$$function_{-}1\left(S_{-}V,gNA,F,RT_{-}F,Na_{-}e,Na,Vm\right) = S_{-}V \cdot \frac{gNA}{F} \cdot \left(RT_{-}F \cdot \left(\frac{Na_{-}e}{Na}\right) - Vm\right) \quad (46)$$

$$function_1\left(S_V,gNA,F,RT_F,Na_e,Na,Vm\right) = S_V \cdot \frac{gNA}{F} \cdot \left(RT_F \cdot \left(\frac{Na_e}{Na}\right) - Vm\right) \quad (47)$$

10.2 Reaction reaction_2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Na/K - pump

Reaction equation

$$3 \text{ species}_1 + \text{species}_2 \xrightarrow{\text{species}_2, \text{ species}_3} \text{ species}_3$$
 (48)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
species_1 species_2		

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
species_2 species_1		

Product

Table 10: Properties of each product.

Id	Name	SBO
species_3	ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot v_{\text{-pump}}\left(\text{parameter}_{-1}, \text{parameter}_{-8}, \frac{\text{species}_{-2}}{\text{vol}\left(\text{compartment}_{-1}\right)}, \frac{\text{species}_{-2}}{\text{vol}\left(\text{compartment}_{-1}\right)}, \frac{\text{species}_{-2}}{\text{vol}\left(\text{compartment}_{-1}\right)}\right)$$

$$(49)$$

$$v_pump\left(S_V,k_pump,ATP,NA,Km_pump\right) = \frac{S_V \cdot k_pump \cdot ATP \cdot NA}{1 + \frac{ATP}{Km_pump}} \tag{50}$$

$$v_pump\left(S_V,k_pump,ATP,NA,Km_pump\right) = \frac{S_V\cdot k_pump\cdot ATP\cdot NA}{1+\frac{ATP}{Km_pump}} \tag{51}$$

Produced by SBML2LATEX

10.3 Reaction reaction_3

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Blood-brain transport of glucose

Reaction equation

$$100 \, \text{species}_17 \xrightarrow{\text{species}_17, \, \text{species}_4} \text{species}_4 \tag{52}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
species_17	GLC	

Modifiers

Table 12: Properties of each modifier.

Id	Name	SBO
species_17 species_4	GLC GLC	

Product

Table 13: Properties of each product.

Id	Name	SBO
species_4	GLC	

Kinetic Law

$$v_3 = v_GLC_m \left(parameter_14, \frac{species_17}{vol(compartment_3)}, parameter_15, \frac{species_4}{vol(compartment_1)} \right)$$
(53)

$$v_GLC_m (Tmax, GLC_c, Kt_GLC, GLC_i)$$

$$= Tmax \cdot \left(\frac{GLC_c}{GLC_c + Kt_GLC} - \frac{GLC_i}{GLC_i + Kt_GLC}\right)$$
(54)

10.4 Reaction reaction_4

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Name Hexokinase-phosphofructokinase system

Reaction equation

species_4 + species_2
$$\xrightarrow{\text{species}_2, \text{ species}_4}$$
 2 species_5 + species_3 (55)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
species_4 species_2		

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
species_2	ATP	
$\mathtt{species}_{\scriptscriptstyle{-}}4$	GLC	

Products

Table 16: Properties of each product.

Id	Name	SBO
species_5	GAP	
species_3	ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{function_2} \left(\frac{\text{species_2}}{\text{vol} \left(\text{compartment_1} \right)}, \frac{\text{species_4}}{\text{vol} \left(\text{compartment_1} \right)}, \right)$$

$$parameter_19, parameter_17, parameter_18, parameter_16 \right)$$
(56)

$$function_2\left(ATP,GLC_i,Kg,KI_ATP,nH,kHK_PFK\right) = \frac{kHK_PFK \cdot ATP \cdot \frac{GLC_i}{GLC_i+Kg}}{1 + \left(\frac{ATP}{KLATP}\right)^{nH}} \quad (57)$$

$$function_2\left(ATP,GLC_i,Kg,KI_ATP,nH,kHK_PFK\right) = \frac{kHK_PFK \cdot ATP \cdot \frac{GLC_i}{GLC_i+Kg}}{1 + \left(\frac{ATP}{KI_ATP}\right)^{nH}} \quad (58)$$

10.5 Reaction reaction_5

This is an irreversible reaction of two reactants forming two products influenced by five modifiers.

Name Phosphoglycerate kinase

Reaction equation

$$species_5 + species_6 \xrightarrow{species_3, species_5, species_3, species_6, species_7} species_7 + species_9$$
(59)

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
species_5		
species_6	NADT	

Modifiers

Table 18: Properties of each modifier.

Id	Name	SBO
species_3	ADP	
${\tt species_5}$	GAP	
species_3	ADP	
species_6	NAD+	
species_7	NADH	

Products

Table 19: Properties of each product.

Id	Name	SBO
species_7 species_9	NADH PEP	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{v_PGK} \left(\text{parameter_20}, \frac{\text{species_5}}{\text{vol} \left(\text{compartment_1} \right)}, \frac{\text{species_3}}{\text{vol} \left(\text{compartment_1} \right)}, \frac{\text{species_6}}{\text{vol} \left(\text{compartment_1} \right)}, \frac{\text{species_7}}{\text{vol} \left(\text{compartment_1} \right)} \right)$$

$$(60)$$

$$v_PGK(kPGK,GAP,ADP,NAD,NADH) = kPGK \cdot GAP \cdot ADP \cdot \frac{NAD}{NADH}$$
 (61)

$$v_PGK(kPGK,GAP,ADP,NAD,NADH) = kPGK \cdot GAP \cdot ADP \cdot \frac{NAD}{NADH}$$
 (62)

10.6 Reaction reaction_6

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Name Pyruvate kinase

Reaction equation

species_3 + species_9
$$\xrightarrow{\text{species}_3, \text{ species}_9}$$
 species_2 + species_8 (63)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
species_3 species_9	ADP PEP	

Modifiers

Table 21: Properties of each modifier.

Id	Name	SBO
species_3 species_9	ADP PEP	

Products

Table 22: Properties of each product.

Id	Name	SBO
species_2	ATP	
species_8	PYR	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{parameter}_2 \cdot \text{species}_3 \cdot \frac{\text{species}_9}{\text{vol}(\text{compartment}_1)}$$
 (64)

10.7 Reaction reaction_7

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name Lactate dehydrogenase

Reaction equation

$$species_8 + species_7 \xrightarrow{species_8, species_7, species_10, species_6} species_10 + species_6 \quad (65)$$

Reactants

Table 23: Properties of each reactant.

Id	Name	SBO
species_8 species_7	PYR NADH	

Modifiers

Table 24: Properties of each modifier.

Id	Name	SBO
species_8	PYR	
species_7	NADH	
species_10	LAC	
${\tt species_6}$	NAD+	

Products

Table 25: Properties of each product.

Id	Name	SBO
species_10	LAC	
species_6	NAD+	

Kinetic Law

Derived unit contains undeclared units

$$v_{7} = \text{vol} \left(\text{compartment}_1 \right) \cdot \left(\text{parameter}_24 \cdot \frac{\text{species}_8}{\text{vol} \left(\text{compartment}_1 \right)} \cdot \frac{\text{species}_7}{\text{vol} \left(\text{compartment}_1 \right)} - \text{parameter}_25 \cdot \frac{\text{species}_10}{\text{vol} \left(\text{compartment}_1 \right)} \cdot \frac{\text{species}_6}{\text{vol} \left(\text{compartment}_1 \right)} \right)$$

$$(66)$$

10.8 Reaction reaction_8

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Blood-brain transport of lactate

Reaction equation

species_10
$$\xrightarrow{\text{species}_10, \text{ species}_18}$$
 100 species_18 (67)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
species_10	LAC	

Modifiers

Table 27: Properties of each modifier.

Id	Name	SBO
species_10		
species_18	LAC	

Product

Table 28: Properties of each product.

Id	Name	SBO
species_18	LAC	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = v_LAC_m \left(parameter_26, \frac{species_10}{vol (compartment_1)}, parameter_27, \frac{species_18}{vol (compartment_3)} \right)$$
(68)

$$v_LAC_m\left(Tmax, LAC_i, Kt_LAC, LAC_c\right) = Tmax \cdot \left(\frac{LAC_i}{LAC_i + Kt_LAC} - \frac{LAC_c}{LAC_c + Kt_LAC}\right) \tag{69}$$

10.9 Reaction reaction_9

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name Creatine Kinase

Reaction equation

Reactants

Table 29: Properties of each reactant.

Id	Name	SBO
species_11 species_3	PCr ADP	

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
species_11	PCr	
species_3	ADP	
species_12	Cr	
species_2	ATP	

Products

Table 31: Properties of each product.

Id	Name	SBO
species_12 species_2	Cr ATP	

Kinetic Law

$$v_9 = \text{vol} \left(\text{compartment_1} \right) \cdot \left(\text{parameter_29} \cdot \frac{\text{species_11}}{\text{vol} \left(\text{compartment_1} \right)} \cdot \frac{\text{species_3}}{\text{vol} \left(\text{compartment_1} \right)} - \text{parameter_30} \cdot \frac{\text{species_12}}{\text{vol} \left(\text{compartment_1} \right)} \cdot \frac{\text{species_2}}{\text{vol} \left(\text{compartment_1} \right)} \right)$$

$$(71)$$

10.10 Reaction reaction_10

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Blood-brain transport of oxygen

Reaction equation

$$100 \, \text{species}_19 \xrightarrow{\text{species}_19, \, \text{species}_13} \text{species}_13$$
 (72)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
species_19	O2	

Modifiers

Table 33: Properties of each modifier.

Id	Name	SBO
species_19 species_13		

Product

Table 34: Properties of each product.

Id	Name	SBO
species_13	O2	

Kinetic Law

$$v_{10} = v_{-}O2_{m}$$
 (parameter_32, parameter_33, parameter_34, $\frac{\text{species}_19}{\text{vol}(\text{compartment}_3)}$, parameter_35, $\frac{\text{species}_13}{\text{vol}(\text{compartment}_1)}$) (73)

$$v_{-}O2_{-}m\left(PS_{-}V,KO2,HbOP,O2_{-}c,nh,O2_{-}i\right) = PS_{-}V \cdot \left(KO2 \cdot \left(\frac{HbOP}{O2_{-}c} - 1\right)^{\frac{1}{nh}} - O2_{-}i\right) \quad (74)$$

10.11 Reaction reaction_11

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Blood flow contribution to O2 variation

Reaction equation

$$species_{14} \xrightarrow{species_{14}, species_{19}} species_{19}$$
 (75)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
species_14	O2	

Modifiers

Table 36: Properties of each modifier.

Id	Name	SBO
species_14	O2	
species_19	O2	

Product

Table 37: Properties of each product.

Id	Name	SBO
species_19	O2	

Kinetic Law

$$v_{11} = v_{-}O2_{-}c \left(parameter_{-}37, parameter_{-}38, \frac{species_{-}14}{vol (compartment_{-}2)}, \frac{species_{-}19}{vol (compartment_{-}3)} \right)$$
(76)

$$v_{O2_c}(F_{in}, V_{cap}, O2_a, O2_c) = \frac{2 \cdot F_{in}}{V_{cap}} \cdot (O2_a - O2_c)$$
 (77)

10.12 Reaction reaction_12

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Blood flow contribution to GLC_c variation

Reaction equation

species_15
$$\xrightarrow{\text{species}_15, \text{ species}_17}$$
 species_17 (78)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
species_15	GLC	

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
species_15 species_17		

Product

Table 40: Properties of each product.

Id	Name	SBO
species_17	GLC	

Kinetic Law

$$v_{12} = v_{-}GLC_{-}c \left(parameter_{-}37, parameter_{-}38, \frac{species_{-}15}{vol (compartment_{-}2)}, \frac{species_{-}17}{vol (compartment_{-}3)} \right)$$
(79)

$$v_GLC_c\left(F_in,V_cap,GLC_a,GLC_c\right) = \frac{2\cdot F_in}{V_cap}\cdot \left(GLC_a - GLC_c\right) \tag{80}$$

10.13 Reaction reaction_13

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Blood flow contribution to LAC_c variation

Reaction equation

species_16
$$\xrightarrow{\text{species}_16, \text{ species}_18}$$
 species_18 (81)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
species_16	LAC	

Modifiers

Table 42: Properties of each modifier.

Id	Name	SBO
species_16	LAC	
species_18	LAC	

Product

Table 43: Properties of each product.

Id	Name	SBO
species_18	LAC	

Kinetic Law

$$v_{13} = v_LAC_c \left(parameter_37, parameter_38, \frac{species_16}{vol (compartment_2)}, \frac{species_18}{vol (compartment_3)} \right)$$
(82)

$$v_LAC_c\left(F_in,V_cap,LAC_a,LAC_c\right) = \frac{2\cdot F_in}{V_cap}\cdot \left(LAC_a - LAC_c\right) \tag{83}$$

10.14 Reaction mitochondrial_respiration

This is an irreversible reaction of three reactants forming one product.

Name mitochondrial respiration

Reaction equation

$$species_8 + species_7 + 3 species_13 \longrightarrow species_2$$
 (84)

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
species_8	PYR	
species_7	NADH	
species_13	O2	

Product

Table 45: Properties of each product.

Id	Name	SBO
species_2	ATP	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{Constant_flux_irreversible} \left(\text{v_Mito_H3} \right)$$
 (85)

Constant_flux_irreversible
$$(v) = v$$
 (86)

$$Constant_flux_irreversible(v) = v$$
 (87)

10.15 Reaction ATPases

This is an irreversible reaction of one reactant forming no product.

Name ATPases

Reaction equation

$$species_2 \longrightarrow \emptyset \tag{88}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
species_2	ATP	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{compartment_1}\right) \cdot \text{Constant_flux_irreversible}\left(v\right)$$
 (89)

$$Constant_flux_irreversible(v) = v$$
 (90)

$$Constant_flux_irreversible(v) = v$$
 (91)

Table 47: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V	V	0.149	

10.16 Reaction Na_inflow_after_stimulation

This is an irreversible reaction of no reactant forming one product.

Name Na+ inflow after stimulation

Reaction equation

$$\emptyset \longrightarrow \text{species}_1$$
 (92)

Product

Table 48: Properties of each product.

Id	Name	SBO
species_1	Na+	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{compartment_1}) \cdot \text{Constant_flux_irreversible}(\text{v_stim_constant})$$
 (93)

Constant_flux_irreversible
$$(v) = v$$
 (94)

Constant_flux_irreversible
$$(v) = v$$
 (95)

10.17 Reaction inflow_of_dHb

This is an irreversible reaction of no reactant forming one product influenced by four modifiers.

Name inflow of dHb

Reaction equation

$$\emptyset \xrightarrow{\text{species}_14, \text{species}_19, \text{species}_14, \text{species}_19} dHb$$
 (96)

Modifiers

Table 49: Properties of each modifier.

Id	Name	SBO
species_14	O2	
species_19	O2	
species_14	O2	
species_19	O2	

Product

Table 50: Properties of each product.

Id	Name	SBO
dHb	dHb	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = vol\left(compartment_3\right) \cdot v_dHb_in\left(parameter_37, \frac{species_14}{vol\left(compartment_2\right)}, \frac{species_19}{vol\left(compartment_3\right)}\right)$$

$$v_dHb_in(F_in, O2_a, O2_c) = F_in \cdot 2 \cdot (O2_a - O2_c)$$
 (98)

$$v_dHb_in(F_in,O2_a,O2_c) = F_in \cdot 2 \cdot (O2_a - O2_c)$$
 (99)

10.18 Reaction outflow_of_dHb

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name outflow of dHb

Reaction equation

$$dHb \xrightarrow{dHb} \emptyset \tag{100}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
dHb	dHb	

Modifier

Table 52: Properties of each modifier.

Kinetic Law

$$v_{18} = \text{vol} \left(\text{compartment_3} \right) \cdot \text{v_dHb_out} \left(\text{F_out}, \frac{\text{dHb}}{\text{vol} \left(\text{compartment_3} \right)}, \text{vol} \left(\text{compartment_4} \right) \right)$$

$$(101)$$

$$v_dHb_out(F_out,dHb,V_v) = \frac{F_out \cdot dHb}{V_v}$$
 (102)

$$v_dHb_out(F_out, dHb, V_v) = \frac{F_out \cdot dHb}{V_v}$$
 (103)

11 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

11.1 Species species_1

Name Na+

Initial amount 15 mmol

This species takes part in five reactions (as a reactant in reaction_2 and as a product in reaction_1, Na_inflow_after_stimulation and as a modifier in reaction_1, reaction_2).

$$\frac{d}{dt} \text{species}_{-1} = |v_1| + |v_{16}| - 3|v_2| \tag{104}$$

11.2 Species species_2

Name ATP

Initial amount 2.2 mmol

Involved in rule species_2

This species takes part in nine reactions (as a reactant in reaction_2, reaction_4, ATPases and as a product in reaction_6, reaction_9, mitochondrial_respiration and as a modifier in reaction_2, reaction_4, reaction_9). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

11.3 Species species_3

Name ADP

Initial amount 0.0119296850858459 mmol

Involved in rule species_3

This species takes part in eight reactions (as a reactant in reaction_6, reaction_9 and as a product in reaction_2, reaction_4 and as a modifier in reaction_5, reaction_5, reaction_6, reaction_9). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

11.4 Species species_4

Name GLC

Initial amount 1.2 mmol

This species takes part in four reactions (as a reactant in reaction_4 and as a product in reaction_3 and as a modifier in reaction_3, reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{4} = |v_{3}| - |v_{4}| \tag{105}$$

11.5 Species species_5

Name GAP

Initial amount 0.0057 mmol

This species takes part in three reactions (as a reactant in reaction_5 and as a product in reaction_4 and as a modifier in reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{species} _{5} = 2 v_{4} - v_{5} \tag{106}$$

11.6 Species species_6

Name NAD+

Initial amount 0.186 mmol

Involved in rule species_6

This species takes part in four reactions (as a reactant in reaction_5 and as a product in reaction_7 and as a modifier in reaction_5, reaction_7). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

11.7 Species species_7

Name NADH

Initial amount 0.026 mmol

This species takes part in five reactions (as a reactant in reaction_7, mitochondrial_respiration and as a product in reaction_5 and as a modifier in reaction_5, reaction_7).

$$\frac{d}{dt} \text{species}_{7} = |v_{5}| - |v_{7}| - |v_{14}| \tag{107}$$

11.8 Species species_8

Name PYR

Initial amount 0.16 mmol

This species takes part in four reactions (as a reactant in reaction_7, mitochondrial_respiration and as a product in reaction_6 and as a modifier in reaction_7).

$$\frac{d}{dt} \text{species}_{8} = |v_{6}| - |v_{7}| - |v_{14}| \tag{108}$$

11.9 Species species_9

Name PEP

Initial amount 0.02 mmol

This species takes part in three reactions (as a reactant in reaction_6 and as a product in reaction_5 and as a modifier in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{9} = |v_{5}| - |v_{6}| \tag{109}$$

11.10 Species species_10

Name LAC

Initial amount 1 mmol

This species takes part in four reactions (as a reactant in reaction_8 and as a product in reaction_7 and as a modifier in reaction_7, reaction_8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}10 = |v_7| - |v_8| \tag{110}$$

11.11 Species species_11

Name PCr

Initial amount 5 mmol

This species takes part in two reactions (as a reactant in reaction_9 and as a modifier in reaction_9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}11 = -v_9 \tag{111}$$

11.12 Species species_12

Name Cr

Initial amount 5 mmol

Involved in rule species_12

This species takes part in two reactions (as a product in reaction_9 and as a modifier in reaction_9). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

11.13 Species species_13

Name O2

Initial amount 0.0262 mmol

This species takes part in three reactions (as a reactant in mitochondrial_respiration and as a product in reaction_10 and as a modifier in reaction_10).

$$\frac{d}{dt} \text{species}_{-13} = v_{10} - 3 v_{14} \tag{112}$$

11.14 Species species_14

Name O2

Initial amount 8.34 mmol

This species takes part in four reactions (as a reactant in reaction_11 and as a modifier in reaction_11, inflow_of_dHb, inflow_of_dHb), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}14 = 0 \tag{113}$$

11.15 Species species_15

Name GLC

Initial amount 4.8 mmol

This species takes part in two reactions (as a reactant in reaction_12 and as a modifier in reaction_12), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}15 = 0 \tag{114}$$

11.16 Species species_16

Name LAC

Initial amount 0.313 mmol

This species takes part in two reactions (as a reactant in reaction_13 and as a modifier in reaction_13), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}16 = 0 \tag{115}$$

11.17 Species species_17

Name GLC

Initial amount 4.56 mmol

This species takes part in four reactions (as a reactant in reaction_3 and as a product in reaction_12 and as a modifier in reaction_3, reaction_12).

$$\frac{d}{dt} \text{species}_{17} = |v_{12}| - 100 |v_{3}| \tag{116}$$

11.18 Species species_18

Name LAC

Initial amount 0.35 mmol

This species takes part in four reactions (as a product in reaction_8, reaction_13 and as a modifier in reaction_8, reaction_13).

$$\frac{d}{dt} \text{species}_{18} = 100 \ v_8 + v_{13} \tag{117}$$

11.19 Species species_19

Name O2

Initial amount 7.01 mmol

This species takes part in six reactions (as a reactant in reaction_10 and as a product in reaction_11 and as a modifier in reaction_10, reaction_11, inflow_of_dHb, inflow_of_dHb).

$$\frac{d}{dt} \text{species}_{-19} = |v_{11}| - 100 |v_{10}| \tag{118}$$

11.20 Species dHb

Name dHb

Initial amount 0.0630000000000001 mmol

This species takes part in three reactions (as a reactant in outflow_of_dHb and as a product in inflow_of_dHb and as a modifier in outflow_of_dHb).

$$\frac{d}{dt}dHb = v_{17} - v_{18} \tag{119}$$

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany