# Reducing Complexity in Linear Data



Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

Principal Components Analysis (PCA)

Factor Analysis with Singular Value Decomposition (SVD)

Linear Discriminants Analysis (LDA)









## Principal Components Analysis

### Choosing PCA and Factor Analysis

#### Use Case

Large number of X-variables

Most of which are meaningful

Highly correlated to each other

Linearly related to each other

For use in regression

#### **Possible Solution**

Principal Components Analysis (PCA) or Factor Analysis

#### Data in One Dimension



Unidimensional data points can be represented using a line, such as a number line

#### Data in Two Dimensions



It's often more insightful to view data in relation to some other, related data

## A Question of Dimensionality



Pop quiz: Do we really need two dimensions to represent this data?

### Bad Choice of Dimensions



If we choose our axes (dimensions) poorly then we do need two dimensions

### Good Choice of Dimensions



If we choose our axes (dimensions) well then one dimension is sufficient



Objective: Find the "best" directions to represent this data



Start by "projecting" the data onto a line in some direction



Start by "projecting" the data onto a line in some direction



The greater the distances between these projections, the "better" the direction

## Bad Projection



A projection where the distances are minimized is a bad one - information is lost

### Good Projection



A projection where the distances are maximized is a good one - information is preserved



The direction along which this variance is maximized is the first principal component of the original data



Find the next best direction, the second principal component, which must be at right angles to the first



Find the next best direction, the second principal component, which must be at right angles to the first

### Principal Components at Right Angles



Directions at right angles help express the most variation with the smallest number of directions



The variances are clearly smaller along this second principal component than along the first



In general, there are as many principal components as there are dimensions in the original data



Re-orient the data along these new axes

### Dimensionality Reduction



If the variance along the second principal component is small enough, we can just ignore it and use just 1 dimension to represent the data

### PCA's Forte



Many, highly correlated X variables



Unequal explained variance ratios

## PCA's Weak Spots



Few, uncorrelated X variables



Almost equal explained variance ratios

### Demo

Implement PCA for dimensionality reduction in linear regression

## Factor Analysis

PCA is one specific implementation of Factor Analysis; a common alternative is to use a procedure named SVD

# SVD Factor Analysis

Apply Singular Value Decomposition (SVD) to reexpress highly correlated X-variables in terms of new, unrelated components.

### Correlated Random Variables



Highly correlated variables are not suitable for use in regression

#### Correlated Random Variables

$$[ X_1 X_2 X_3 \dots X_k ] \uparrow^{n \text{ rows}}$$

k columns

SVD, like PCA is used when the elements  $X_i$  of this matrix are highly correlated with each other

### Factor Analysis



# Factor Analysis



These vectors F<sub>i</sub> are the factor representations of the original vectors X<sub>i</sub>

### Correlated Random Variables



Highly correlated variables are not suitable for use in regression

### Uncorrelated Fi



Factors generated by SVD, like those from PCA, are perfectly uncorrelated to each other

### Demo

Implement Factor Analysis for dimensionality reduction in classification

# Linear Discriminant Analysis

# Choosing PCA and Factor Analysis

#### Use Case

Large number of X-variables

Most of which are meaningful

Highly correlated to each other

Linearly related to each other

For use in classification

#### **Possible Solution**

Linear Discriminant Analysis (LDA) or Dictionary Learning

LDA is similar to PCA, but chooses axis to maximize distance between points of different categories

# PCA vs. LDA



# Choosing Axes



# Choosing Axes



## Demo

Implement Linear Discriminant Analysis (LDA)

## Summary

Principal Components Analysis (PCA)

Factor Analysis with Singular Value Decomposition (SVD)

Linear Discriminants Analysis (LDA)