Grandezze di stato : Le grandezze di stato sono quelle grandezze la cui variazione non dipende dal cammino percorso, ma solamente dallo stato di equilibrio termodinamica di partenza e di arrivo.

- 1. P Pressione
- 2. V Volume
- 3. T Temperatura
- 4. U Energia interna
- 5. S Entropia

Scale delle temperature :

- 1. $T_F = 1.8 T_C + 32.0$
- 2. $T_K = T_C + 273.15$
- 3. $\Delta T_F = \Delta T_C \ 1.8$
- 4. $\Delta T_K = \Delta T_C$

Espansione termica:

- 1. $\Delta L = L_o \alpha \Delta T$ espansione lineare
- 2. $\Delta S = S_o 2\alpha \Delta T$ espansione superficiale
- 3. $\Delta V = V_o 3\alpha \Delta T$ espansione volumica
- 4. α coefficiente di espansione lineare (K^{-1})

Equazione di stato dei gas ideali:

- 1. PV = nRT
- 2. R = 8.31 J moli⁻¹ K⁻¹ = 0.082 atm litri moli⁻¹
- 3. n = m/M = num. moli; m = massa; M = Peso molecolare

Calore scambiato:

- 1. $Q = mc\Delta T c$ è il calore specifico (J kg⁻¹ K⁻¹)
- 2. 1 cal = 4.186 J
- 3. C = mc capacità termica
- 4. $|Q| = m\lambda$; λ è il calore latente di trasformazione (J kg⁻¹)
- 5. Q > 0 calore assorbito
- 6. Q < 0 calore ceduto

Temperatura di equilibrio di una miscela :

1.
$$T_{eq} = \frac{c_1 m_1 T_1 + c_2 m_2 T_2}{c_1 m_1 + c_2 m_2}$$

Prima legge della termodinamica:

- 1. $\Delta U=Q-L;\ Q$ è l'energia scambiata sottoforma di calore e L il lavoro meccanico compiuto dal gas
- 2. $L = P\Delta V$ a pressione costante
- 3. $L = \sum_{i} P_{i} \Delta V_{i}$ a pressione variabile
- 4. L > 0 lavoro relativo ad un'espansione
- 5. L < 0 lavoro relativo ad una compressione

Trasformazioni termodinamiche di gas ideali :

- 1. $Q = nc_x \Delta T$ calore scambiato da un gas ideale; c_x dipende dal tipo di trasformazione effettuata
- 2. c_p calore specifico a pressione costante
- 3. c_v calore specifico a volume costante
- 4. $c_p = c_v + R$
- 5. $c_v = \frac{3}{2}R$; $c_p = \frac{5}{2}R$ gas ideale monoatomico
- 6. $c_v = \frac{5}{2}R$; $c_p = \frac{7}{2}R$ gas ideale biatomico
- 7. $c_v = \frac{7}{2}R$; $c_p = \frac{9}{2}R$ gas ideale triatomico
- 8. $P_1V_1 = P_2V_2$ trasformazione isoterma
- 9. $P_1V_1^{\gamma} = P_2V_2^{\gamma}$ trasformazione adiabatica
- 10. $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ trasformazione adiabatica
- 11. $\gamma = \frac{c_p}{c_v}$

Trasformazione	Q	L	ΔU
Isocora	$n c_v \Delta T$	0	$n c_v \Delta T$
Isobara	$n c_p \Delta T$	$P \Delta V$	$n c_v \Delta T$
Isoterma	$n R T ln(\frac{V_f}{V_i})$	$n R T ln(\frac{V_f}{V_i})$	0
Adiabatica	0	- $n c_v \Delta T$	$n c_v \Delta T$

Entropia:

- 1. $\Delta S = \frac{Q}{T}$ a temperatura costante
- 2. $\Delta S = \sum_{i} \frac{Q_i}{T_i}$ a temperatura non costante
- 3. $Q = T\Delta S$ calore scambiato a temperatura costante

Trasformazione	ΔS	
Isocora	$n c_v ln(\frac{T_f}{T_i})$	
Isobara	$n c_p ln(\frac{T_f^r}{T_i})$	
Isoterma	$n R ln(\frac{V_f^i}{V_i})$	
Adiabatica	0	

Trasformazioni cicliche:

- 1. $Q_{ass} = L + |Q_{ced}|$ bilancio energetico di una macchina termica
- 2. $\eta = \frac{L}{Q_{ass}} = 1 \frac{|Q_{ced}|}{Q_{ass}}$ rendimento di una macchina termica
- 3. $\eta_i = 1 \frac{T_f}{T_c}$ rendimento di una macchina termica ideale di Carnot
- 4. $Q_{ass} + |L| = |Q_{ced}|$ bilancio energetico di una macchina frigorifera/pompa di calore
- 5. $CdP_{mf}=\frac{Q_{ass}}{|L|}=\frac{|Q_{ced}|}{|L|}-1$ coefficiente di prestazione di una macchina frigorifera
- 6. $CdP_{pc}=\frac{|Q_{ced}|}{|L|}=CdP_{mf}+1$ coefficiente di prestazione di una pompa di calore
- 7. $CdP_{mfi}=\frac{1}{\frac{T_c}{T_f}-1}$ coefficiente di prestazione di una macchina frigorifera ideale di Carnot
- 8. $CdP_{pci} = \frac{1}{1 \frac{T_f}{T_c}} = CdP_{mfi} + 1$ coefficiente di prestazione di una pompa di calore ideale di Carnot