Paper Review:

Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity

Ming-Han Li(黎明翰)

Choice under Risk: Preliminaries

• Risk averse: People will prefer certainty over uncertainty.

Example: people will prefer a choice with 2500 payoff without uncertainty over a choice with (expected) 2500 payoff with uncertainty.

- Expected Utility Model(EU): $\Sigma p_i u(x_i)$
- Expected Utility with Probability Weighting Model(EUP):

 $\Sigma f(p_i)u(x_i)$, where f is the probability weighting function.

Note: f will overweight small probability and underweight large probability.

Choice under Risk: Preliminaries

• Regularized Regression: Regression Model (OLS) with penalty for model complexity.

Goal: Minimize
$$||y - X\beta||_2 + \lambda ||\beta||_p$$
, where $||\beta||_p$ is be defined as $(\Sigma |\beta_i|^p)^{(1/p)}$

- Note: 1. λ can be seen as a shadow price for buying model complexity
 - 2. In this paper, when p = 1, we call the model "Lasso"; when p = 2, we then call the model "Ridge".
 - 3. When $\lambda = 0$, then we go back to OLS case.

Choice under Risk: Experimental Design

Participant will:

- Facing with choices about lotteries. In the lotteries, an urn containing 100 balls, some are red, some are blue and some are green, each with associated monetary prize.
- Give willingness to pay (WTP) to play lotteries.
- Facing 10 randomly generated lotteries.

In Experiments:

 $\{p_{red}, p_{blue}, p_{green}, money_{red}, money_{blue}\}$ will be generated randomly with $money_{green} = 0$.

Choice under Risk: Results

Fig. 2. ML methods outperform standard expected utility, but not expected utility with probability weighting. The representative agent assumption, where all individuals are assumed to have the same utility function, is highly restrictive.

Choice under Risk: Opening the Black Box

Choice under Ambiguity: Preliminaries

• Ambiguity averse: People will prefer a (risky) choice with specific distribution over a (risky) choice with unknown distribution.

Example: People will prefer an urn with 50 red balls and 50 black balls over an urn with x red balls and 100-x black balls.

- Maximin models : $U(X,Y,z) = (I \gamma(X+Y))P(X,Y)z^{\alpha}$
- Second order expected utility(SOEU):

$$U(X,Y,z) = \int (g(w)z^{\alpha})^{\gamma} dp(X,Y)$$

Choice under Ambiguity: Experimental Design

Participant will:

• Give WTP to play lotteries.

Table 2	biguous lottery presentation in experiment.							
3	Red	Blue	Unknown					
# Balls	At least 20	At least 31	49					
Prize	\$10	\$0	??					

In Experiments:

• $\{X_{red}, Y_{blue}, prize\}$ will be generated randomly.

Choice under Ambiguity: Results

Fig. 5. ML methods outperform economic models in choice under ambiguity. This suggests that building a 'plug and play' ambiguity aversion model is a fruitful direction for both theorists and experimentalists alike.

Choice under Ambiguity: Opening the black box

- Ample roo
- Favorable i unfavorable

Fig. 6. Implied ambiguity penalty curves from predicted by the ridge model.

Paper Review:

What can the demand analyst learn from machine learning?

Ming-Han Li(黎明翰)

Preliminarias

• Rank I Give:

≤ ...

• Compl

• Restric

• Arrow Low

• Decisi

• Neural ...

Experimental Design

Participants will:

- Being given two equiprobable states denoted by s = 1, 2 and two associate arrow securities.
- Being given a budget line randomly.
- Being asked to allocate token between two arrow securities on the randomly selected budget line.
- Facing 50 independent decision problems.

Results

Table 1: The completeness and restrictiveness of RDU and ML models $\,$

	Average	RDU's win rate against ML	RDU's win rate against ML by rationality quartiles				Absolute completeness difference between RDU and ML by rationality quartiles				
Panel A: RDU and ML model classes	completeness		1st	2nd	3rd	4th	1st	2nd	3rd	4th	Restrictiveness
RDU	89.8% [89.1%, 90.5%]		-	12	<u> </u>	-	9	-	-	-	23.4%
Regularized Regressions	82.6% [81.7%, 83.5%]	82.6%	55.4%	84.9%	93.8%	96.6%	0.9%	5.6%	7.5%	14.8%	27.4%
Tree-based Models	89.5% [88.8%, 90.2%]	68.6%	60.8%	67.4%	71.7%	74.7%	1.4%	0.7%	0.8%	1.0%	14.8%
Neural networks	79.7% [78.4%, 80.8%]	91.2%	79.6%	90.0%	95.8%	99.6%	5.7%	9.0%	9.2%	16.8%	20.4%
Panel B: Regularized regressions											
LASSO	78.0% [76.9%, 79.0%]	88.6%	71.3%	91.2%	93.8%	98.3%	5.0%	9.2%	11.8%	21.6%	29.3%
LASSO+	78.3% [77.2%, 79.3%]	87.3%	65.8%	91.2%	94.2%	98.3%	3.4%	9.1%	11.9%	21.7%	27.1%
Ridge	82.1% [81.2%, 82.9%]	88.0%	67.9%	88.3%	96.3%	99.6%	1.6%	6.1%	8.1%	15.2%	27. <mark>1</mark> %
Panel C: Tree-based models											
Mean	86.9% [86.1%, 87.7%]	84.4%	77.1%	88.3%	85.8%	86.5%	2.7%	3.7%	2.7%	2.5%	17.4%
Linear	83.6% [82.5%, 84.6%]	86.5%	80.8%	85.8%	87.1%	92.4%	10.1%	5.7%	4.4%	4.5%	7.6%
SVR	86.0% [85.2%, 86.8%]	88.5%	80.0%	90.4%	87.5%	96.2%	3.6%	3.9%	3.3%	4.4%	15.1%
RF	88.4% [87.7%, 89.1%]	79.8%	69.6%	78.7%	80.4%	90.7%	0.3%	1.6%	1.6%	2.1%	16.8%

Results

Table 2: The completeness and $\overline{\text{restric}}$ tiveness of EUT and RDU

	Average completeness	EUT win rate	EUT's win rate against RDU by rationality quartiles			Absolute completeness difference between EUT and RDU by rationality quartiles					
Panel A: EUT and RDU			1st	2nd	3rd	4th	1st	2nd	3rd	4th	Restrictiveness
EUT	89.8% [89.1%, 90.5%]	7=	÷	3	(Se)	8	=	-		-	26.2%
RDU	89.8% [89.1%, 90.5%]	57.0%	67.5%	66.1%	51.3%	43.0%	0.5%	0.2%	-0.4%	-0.3%	23.4%
Panel B: CRRA Only											
EUT CRRA	89.4% [88.7%, 90.1%]		5	(*)	855	8	5.	-	8	8	25.3%
RDU CRRA	89.4% [88.7%, 90.1%]	51.4%	65.4%	59.0%	43.3%	37.6%	0.6%	0.2%	-0.5%	-0.3%	23.1%
Panel C: CARA Only											
EUT CARA	89.1% [88.3%, 89.8%]	15	ā	878	250	(7)	5	17	5.	5	27.4%
RDU CARA	89.1% [88.3%, 89.8%]	56.1%	64.6%	64.9%	55.0%	39.7%	0.4%	0.1%	-0.3%	-0.2%	23.9%

Results

Figure 2: Scatterplot of completeness of RDU and the most complete machine learning model by rationality quartile.