Pr	Preface				
1	Intr	Introduction			
2	Python programming for physicists				
	2.1 Getting started				
	2.2	Basic	c programming	12	
		2.2.1	Variables and assignments	12	
		2.2.2	Variable types	14	
		2.2.3	Output and input statements	18	
		2.2.4	Arithmetic	23	
		2.2.5	Functions, packages, and modules	31	
		2.2.6	Built-in functions	35	
		2.2.7	Comment statements	37	
	2.3	Con	trolling programs with "if" and "while"	39	
		2.3.1	The if statement	39	
		2.3.2	The while statement	42	
		2.3.3	Break and continue	43	
	2.4 Lists and arrays			46	
		2.4.1	Lists	47	
		2.4.2	Arrays	53	
		2.4.3	Reading an array from a file	57	
		2.4.4	Arithmetic with arrays	58	
		2.4.5	Slicing	66	
	2.5	"For	e" loops	67	
	2.6		r-defined functions	75	
	2.7		d programming style	84	
3	Gra	phics a	nd visualization	88	
	3.1	Gran	nhs	88	

	3.2	Scatt	er plots	99	
	3.3	Dens	sity plots	102	
	3.4	3D g	raphics	111	
	3.5	Anin	nation	117	
4	Accı	aracy a	nd speed	126	
	4.1	Varia	ables and ranges	126	
	4.2	Nun	nerical error	128	
	4.3	Prog	ram speed	134	
5	Inte	grals aı	nd derivatives	140	
	5.1	Func	lamental methods for evaluating integrals	140	
		5.1.1	The trapezoidal rule	141	
		5.1.2	Simpson's rule	144	
	5.2	Erro	rs on integrals	149	
		5.2.1	Practical estimation of errors	153	
	5.3	Cho	osing the number of steps	155	
	5.4	Rom	berg integration	159	
	5.5	High	ner-order integration methods	163	
	5.6	Gaus	ssian quadrature	165	
		5.6.1	Nonuniform sample points	165	
		5.6.2	Sample points for Gaussian quadrature	168	
		5.6.3	Errors on Gaussian quadrature	175	
	5.7	Cho	osing an integration method	177	
	5.8	Integrals over infinite ranges			
	5.9	· · · · · · · · · · · · · · · · · · ·			
	5.10		vatives	188	
		5.10.1	Forward and backward differences	188	
		5.10.2	Errors	189	
			Central differences	191	
			Higher-order approximations for derivatives	194	
		5.10.5	Second derivatives	197	
		5.10.6	Partial derivatives	198	
			Derivatives of noisy data	199	
	5.11		polation	202	
6	Solu	Solution of linear and nonlinear equations 21			
	6.1	Simu	ıltaneous linear equations	214	
		6.1.1	Gaussian elimination	215	

		6.1.2	Backsubstitution	217
		6.1.3	Pivoting	221
		6.1.4	LU decomposition	222
		6.1.5	Calculating the inverse of a matrix	231
		6.1.6	Tridiagonal and banded matrices	232
	6.2	Eige	nvalues and eigenvectors	241
	6.3	Non	linear equations	250
		6.3.1	The relaxation method	250
		6.3.2	Rate of convergence of the relaxation method	255
		6.3.3	Relaxation method for two or more variables	261
		6.3.4	Binary search	263
		6.3.5	Newton's method	268
		6.3.6	The secant method	273
		6.3.7	Newton's method for two or more variables	275
	6.4	Max	ima and minima of functions	278
		6.4.1	Golden ratio search	279
		6.4.2	The Gauss–Newton method and gradient descent	286
7	Fourier transforms			289
	7.1		rier series	289
	7.2	The	discrete Fourier transform	292
		7.2.1	Positions of the sample points	297
		7.2.2	Two-dimensional Fourier transforms	299
		7.2.3	Physical interpretation of the Fourier transform	300
	7.3	Disc	Discrete cosine and sine transforms	
		7.3.1	Technological applications of cosine transforms	308
	7.4	Fast	Fourier transforms	310
		7.4.1	Formulas for the FFT	313
		7.4.2	Standard functions for fast Fourier transforms	315
		7.4.3	Fast cosine and sine transforms	318
8	Ordinary differential equations			
-	8.1	•	t-order differential equations with one variable	327 327
		8.1.1	Euler's method	328
		8.1.2	The Runge–Kutta method	331
		8.1.3	The fourth-order Runge–Kutta method	336
		8.1.4	Solutions over infinite ranges	340
	8.2		erential equations with more than one variable	343

		_			
	8.3		nd-order differential equations	347	
	8.4		ing the step size	355	
	8.5		r methods for differential equations	364	
		8.5.1	The leapfrog method	364	
		8.5.2	Time reversal and energy conservation	367	
		8.5.3	The Verlet method	371	
		8.5.4	The modified midpoint method	374	
		8.5.5	The Bulirsch–Stoer method	377	
		8.5.6	Interval size for the Bulirsch–Stoer method	387	
	8.6	Bour	ndary value problems	388	
		8.6.1	The shooting method	388	
		8.6.2	The relaxation method	392	
		8.6.3	Eigenvalue problems	392	
9	Part	ial diff	erential equations	404	
	9.1	Bour	ndary value problems and the relaxation method	406	
	9.2	Faste	er methods for boundary value problems	414	
		9.2.1	Overrelaxation	414	
		9.2.2	The Gauss–Seidel method	415	
	9.3	Initia	al value problems	418	
		9.3.1	The FTCS method	419	
		9.3.2	Numerical stability	425	
		9.3.3	The implicit and Crank–Nicolson methods	432	
		9.3.4	Spectral methods	435	
10	Random processes and Monte Carlo methods 44				
	10.1	Ranc	lom numbers	444	
		10.1.1	Random number generators	445	
		10.1.2	Random number seeds	449	
		10.1.3	Random numbers and secret codes	450	
		10.1.4	Probabilities and biased coins	453	
		10.1.5	Nonuniform random numbers	457	
		10.1.6	Gaussian random numbers	460	
	10.2	Mon	te Carlo integration	464	
		10.2.1	The mean value method	468	
		10.2.2	Integrals in many dimensions	470	
		10.2.3	Importance sampling	472	
	10.3		te Carlo simulation	476	

		10.3.1 Importance sampling and statistical mechanics	476
		10.3.2 The Markov chain method	479
	10.4	Simulated annealing	490
11	Usin	g what you have learned	502
Аp	pend	lices:	
	A	Installing Python	508
	В	Differences between Python versions	510
	C	Gaussian quadrature	514
	D	Convergence of Markov chain Monte Carlo calculations	520
	E	Useful programs	523
Ind	lex		532