

上次课程内容

- 纹理映射
- 重心坐标
- 纹理映射过程中可能出现的问题
- > 纹理过小(双线性插值)
- > 纹理过大(范围查询: Mipmap)

本次课程内容

- 纹理的应用
- 几何概述
- ▶ 几何无处不在
- ▶ 几何的多种表示形式
- 实验3发布
- 实验1-3报告要求发布
- 实验2提交截止

纹理的应用

纹理的应用

- 在现代GPU中, 纹理=内存+范围查询
- > 将数据带入片元 (fragment) 计算的通用方法
- 纹理的应用
- > 环境光照
- ▶ 存储微观几何形状
- > 过程纹理
- > 实体造型
- ▶ 体绘制

环境贴图(Environment Map)

Light from the environment

Rendering with the environment

环境光照 (Environmental Lighting)

球形环境贴图(Spherical Environment Map)

球形贴图的问题

Prone to distortion (top and bottom parts)!

立方体贴图 (Cube Map)

• 三维空间中的表面上的一点总可以对应于二维图像(纹理)上的一点

立方体贴图

Much less distortion!

Need dir->face computation

纹理可以影响着色

Q: 纹理只能表示颜色信息吗?

- ▶ 如果用来存储高度/法线信息会怎样?
- ▶ 凹凸/法线贴图
- ▶ 伪造详细的几何形状

Relative height to the underlying surface

凹凸贴图 (Bump Mapping)

- 添加表面细节但不改变任何几何信息(并不会增加三角形的数目)
- > 在每个像素上扰动表面法线(仅用于着色计算)
- ▶ 利用纹理定义每个纹素上的"高度偏移"
- ▶ 如何改变法向量?

如何计算扰动后的法向量(2D)?

- 原始表面法线n(p) = (0,1)
- P点处的导数: dp = c * [h(p+1) h(p)]
- 扰动后的法向量: n(p) = (-dp, 1). normalized()

如何计算扰动的法向量(3D)?

- 原始表面法线n(p) = (0,0,1)
- P点处的偏导数:
- > dp/du = c1 * [h(u+1) h(u)]
- > dp/dv = c2 * [h(v+1) h(v)]
- 扰动后的法向量: $n(p) = \left(-\frac{dp}{du}, -\frac{dp}{dv}, 1\right)$. normalized()

凹凸贴图

Q: 凹凸贴图有什么问题吗?

- ▶ 在模型边缘不能很好的模拟凹凸效果
- ▶ 阴影效果还是由真实的几何信息计算得出

Q:有没有比凹凸贴图更好的方法?

位移贴图 (Displacement Mapping)

- 与凹凸贴图相比,使用的是同样的纹理
- 区别在于位移贴图真正的移动了三角形的顶点

凹凸贴图

位移贴图

位移贴图

Q:应用位移贴图存在什么新的问题吗?

- > 对三角形数目的要求
- > 可以利用动态曲面细分来解决

基于噪声的三维过程纹理、实体造型

带有预计算的着色

Simple shading

Ambient occlusion texture map

With ambient occlusion

三维纹理、体绘制(Volume Rendering)

中国海洋大学

几何的表示形式

- 隐式 (Implicit)
- > 代数曲面
- > 水平集
- ▶ 距离函数
- >
- 显式(Explicit)
- > 点云
- > 多边形网格
- ➤ 细分、NURBS
- >

几何的隐式表示

- 定义几何体上的点满足的关系,并不给出实际的点
- \triangleright 例如单位球的隐式表示:三维空间中的点满足 $x^2 + y^2 + z^2 = 1$
- 一般形式为: f(x,y,z) = 0

隐式曲面: 采样困难

 $f(x, y, z) = (2 - \sqrt{x^2 + y^2})^2 + z^2 - 1$

Q:哪些点在f(x,y,z)=0上?

隐式曲面: 内/外测试简单

几何的显式表示

• 直接给出几何体上的所有点,或者通过参数映射给出

$$f: \mathbb{R}^2 \to \mathbb{R}^3; (u, v) \mapsto (x, y, z)$$

显式曲面: 采样简单

 $f(u,v) = ((2+\cos u)\cos v, (2+\cos u)\sin v, \sin u)^{\uparrow y}$

Q:哪些点在f(x,y,z)=0上?

显式曲面: 内/外测试困难

几何的表示形式

- 隐式 (Implicit)
- > 代数曲面
- > 水平集
- ▶ 距离函数
- 显式(Explicit)
- > 点云
- > 多边形网格
- ➤ 细分、NURBS

没有最好的几何表示形式, 由任务驱动 选择适合的表示形式!

• 代数曲面 (Algebraic Surfaces): 把表面表示成x、y、z多项式的零集

Q: 更复杂的几何体如何表示?

• 代数曲面 (Algebraic Surfaces): 把表面表示成x、y、z多项式的零集

Q: 更复杂的几何体如何表示?

• 构造实体几何(Constructive Solid Geometry): 通过布尔运算组合隐式 几何

Boolean expressions:

- 距离函数(Distance Functions): 给出从任何地方到物体的最小距离 (可以是有向距离)
- 使用距离函数逐渐将曲面融合在一起

• 例如:利用距离函数混合(线性插值)移动边界

• 距离函数的应用: https://iquilezles.org/www/articles/raymarchingdf/raymarchingdf.htm

- 水平集(Level Set):对于复杂形状,将逼近函数的值存储在格子中
- 通过插值得到曲面

	55	45	35	30	25	
	30	25	20	10	10	$f(\mathbf{x}) = 0$
	20	15	10	.10	.15	
	05	.10	.05	.25	.35	
_	.15	.20	.25	.55	.60	

• 水平集的应用:三维空间中水平集编码医疗数据(例如恒定组织密度)

• 水平集的应用:水平集编码气液距离进行物理模拟

- 分形(Fractals): 在所有尺度上展现自相似性
- 自然现象的"语言"
- 形状很难控制!

