45 minut

15 bodů

Úloha 1. (9 bodů) Při testování byl akumulátor opakovaně nabíjen a vybíjen, a přitom se v každém cyklu při plném nabití změřilo elektrické napětí *U* na vstupu akumulátoru (hodnoty napětí jsou uvedeny v tabulce).

Měření probíhalo digitálním voltmetrem s výrobcem udanou ("mezní", " 3σ ") chybou: $\Delta = \pm (0.5 \% + 3 \text{ dgt})$.

Zpracujte toto měření elektrického napětí. Výsledek vyjádřete se standardní odchylkou (" σ ", $P \sim 68$ %) a správně zapište.

měření	<i>U</i> (V)	$U - \overline{U}(V)$
1	12.019	0.0247
2	12.093	0.0987
3	11.986	-0.0083
4	12.000	0.0057
5	12.078	0.0837
6	12.046	0.0517
7	12.028	0.0337
8	11.953	-0.0413
9	11.913	-0.0813
10	12.009	0.0147
11	12.049	0.0547
12	12.063	0.0687
13	12.002	0.0077
14	11.909	-0.0853
15	11.925	-0.0693
16	12.080	0.0857
17	11.924	-0.0703
18	11.912	-0.0823
19	11.995	0.0007
20	11.902	-0.0923
	<u> </u>	
$\overline{U} =$	11.9943	V
$\sum_{i=1}^{20} (U_i - \bar{U})^2 =$	0.077228	V ²

Řešení:

Jedná se o zpracování přímo měřené veličiny, takže spočítáme odhad standardní odchylky:

$$s_U = \sqrt{\frac{1}{19} \sum (U_i - \overline{U})^2} = 0.06375 \text{ V}.$$

S využitím 3σ kritéria zjistíme, že pravděpodobně žádné hrubé chyby ve vzorku nejsou:

$$3\sigma = k_{19}^{3\sigma} s_U = 3.45 \times 0.06375 \, \text{V} \sim 0.22 \, \text{V} < |U_i - \overline{U}| \quad \forall i$$

Spočítáme tedy standardní odchylku aritmetického průměru, interval rozšíříme podle studentova rozdělení a sloučíme se standardní chybou měřidla do kombinované nejistoty měření napětí:

$$s_{\bar{U}} = \frac{1}{\sqrt{19}} s_U = 0.0142 \text{V}, \qquad u_U = \sqrt{(k_{18}^{1\sigma} s_{\bar{U}})^2 + \frac{\Delta^2}{3}} = \sqrt{0.0142^2 + \frac{(0.05997 + 0.003)^2}{3}} = 0.03921 \text{ V}$$

Zaokrouhlíme a zapíšeme výsledek: U = 11.99(4) V nebo $U = (11.99 \pm 0.04) \text{ V}$

Úloha 2. (6 bodů) V dalším testování byl studován vnitřní odpor nabitého akumulátoru. Měřili jsme proto elektrické napětí a proud a získali výsledky:

$$U = (12.19 \pm 0.07) V$$
,

$$I = (296.2 \pm 1.2) \text{ mA}.$$

(Udané nejistoty *U* a *I* jsou standardní odchylky.)

Spočítejte elektrický odpor R a jeho standardní nejistotu.

Řešení:

Využijeme zákona přenosu chyb, takže $\bar{R}=\frac{\bar{\upsilon}}{\bar{\imath}}=41.15463~\Omega.$

A toho, že funkce R(U, I) je ve tvaru podílu, takže můžeme pro relativní nejistoty psát:

$$\eta_R^2 = \eta_U^2 + \eta_I^2 = 4.93885 \times 10^{-5}$$

a tedy $u_R=\eta_R \overline{R}=0.289222~\Omega$

Zaokrouhlíme a zapíšeme výsledek: $R=41.2(3)~\Omega$ nebo $R=(41.2\pm0.3)~\Omega$