

MẠNG NORON NHÂN TẠO và GIẢI THUẬT DI TRUYỀN

Neural Network & Genetic Algorithm

Biên soạn: ThS.Phạm Đình Tài pdtaii@ntt.edu.vn 0985.73.39.39

CHƯƠNG 2

Mô hình neuron và Các kiến trúc mạng

MỤC TIÊU

- Mô hình toán học cơ bản của một neuron
- ✓ Giải thích tại sao các neuron nhân tạo có thể kết nối với nhau để tạo ra mạng neuron nhân tạo
- Minh họa thao tác cơ bản của mạng thông qua ví dụ

NỘI DUNG TRÌNH BÀY

- ✓ Mô hình neuron
- ✓ Neuron một đầu vào
- ✓ Neuron nhiều đầu vào
- ✓ Các lớp neurons
- ✓ Mang đa lớp
- ✓ Một số ví dụ

MÔ HÌNH NEURON

- Mô hình đề xuất năm 1943 bởi McCulloch-Pitts
- Neuron sinh học có các đặc điểm sau
 - Có một hoặc nhiều tín hiệu đầu vào
 - Mức độ phụ thuộc vào các tín hiệu đầu vào khác nhau
 - Khi tổng kích thích đầu vào vượt quá một ngưỡng neuron sẽ tạo ra một xung tín hiệu

đầu ra

McCulloch-Pitts

CÁC THÀNH PHẦN CƠ BẢN

Mô hình mạng neuron gồm 3 thành phần

- Hệ thống ghép nối thần kinh (synapse)
- Bộ cộng
- Hàm kích hoạt

1. Các thành phần cơ bản

- Neuron một đầu vào
- Đầu vào là một số p
- Trọng số w
- Bias b
 - b và w là các tham số có thể thay đổi theo một luật học để quan hệ giữa đầu vào và đầu ra đạt được một mục đích nào đó
- Hàm truyền đạt f
 - Được lựa chọn bởi người thiết kế mạng

Figure 2.1 Single-Input Neuron

$$a = f(wp + b)$$

- Các neuron sử dụng hàm ngưỡng còn được gọi là neuron McCulloch-Pitts do các tác giả này đưa ra vào năm 1943
- Hàm ngưỡng
 - Dơn giản
 - Không tồn tại đạo hàm tại u = 1 nên không thể sử dụng một số phương pháp dựa trên Gradient. (Gradient là một vector trong khi đạo hàm là giá trị vô hướng)

2. Hàm truyền đạt

- Có thể là hàm tuyến tính hoặc phi tuyến
- Được lựa chọn để thỏa mãn một số đặc tính của bài toán
- Một số dạng hàm truyền đạt

(http://matrix.etseq.urv.es/manuals/matlab/t oolbox/nnet/tabls12a.html)

Hard Limit Transfer Function

Linear Transfer Function

a = hardlim(wp + b)

Single-Input hardlim Neuron

a = purelin(wp + b)

Single-Input purelin Neuron

2. Hàm truyền đạt

Log-Sigmoid Transfer Function

Single-Input logsig Neuron

- Hàm logsig hoặc sigmoid là hàm truyền đạt được sử dụng nhiều nhất.
- Hàm có dạng đồng biến, có thể coi là trung gian giữa hàm tuyến tính và hàm ngưỡng
 - > A: hệ số dốc
 - Khi a => vô cùng, f(u) tiến đến hàm ngưỡng
- Có ưu điểm so với hàm ngưỡng là tồn tại đạo hàm

$$logsig_a(u) = \frac{1}{1 + e^{-au}}$$

2. Hàm truyền đạt

■ Ví dụ **sigmoid** $a = \frac{1}{n-n}$.

Name	Input/Output Relation	Icon	MATLAB
Hard Limit	$a = 0 n < 0$ $a = 1 n \ge 0$		hardlim
Symmetrical Hard Limit	$a = -1 \qquad n < 0$ $a = +1 \qquad n \ge 0$	于	hardlims

Saturating Linear	$a = 0 n < 0$ $a = n 0 \le n \le 1$ $a = 1 n > 1$		satlin
Symmetric Saturating Linear	a = -1 $n < -1a = n -1 \le n \le 1a = 1$ $n > 1$	\neq	satlins
Log-Sigmoid	$a = \frac{1}{1 + e^{-n}}$		logsig

Hyperbolic Tangent Sigmoid	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	F	tansig
Positive Linear	$a = 0 n < 0$ $a = n 0 \le n$		poslin
Competitive	a = 1 neuron with max $na = 0$ all other neurons	C	compet

NEURON NHIỀU ĐẦU VÀO

1. Mô hình chung

- Thông thường một neuron có nhiều hơn một đầu vào
- Một neuron có R đầu vào được biểu diễn như sau
 - * Kích thích: $p_1, p_2, ..., p_R$
 - Các trọng số: w_{1,1},w_{1,2},...,w_{1,R}
 - Bias: b
 - Đầu vào của neuron

$$\begin{split} n &= w_{1,\,1} p_1 + w_{1,\,2} p_2 + \dots + w_{1,\,R} p_R + b \;. \\ n &= \mathbf{W} \mathbf{p} + b \end{split}$$

NEURON NHIỀU ĐẦU VÀO

2. Cách biểu diễn gọn

Abreviated Notation

1. Lớp các neuron

2. Các ký pháp viết gọn

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,R} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,R} \\ \vdots & \vdots & & \vdots \\ w_{S,1} & w_{S,2} & \cdots & w_{S,R} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_R \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_S \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_S \end{bmatrix}$$

3. Mang neuron đa lớp

3. Mạng neuron đa lớp - biểu diễn gọn

Ví dụ 1:

- Mạng neuron có đầu vào là 2.0, trọng số là 2.3 và bias là -3
 - Tính đầu vào của hàm truyền đạt ?
 - > Tính đầu ra của neuron?

Trả lời

Đầu vào của hàm truyền đạt

$$n = wp + b = (2.3)(2) + (-3) = 1.6$$

Đầu ra: không xác định vì không định nghĩa hàm truyền đạt

Ví du 2:

- Mạng neuron có đầu vào là 2.0, trọng số là 2.3 và bias là -3
 - Tính đầu vào của hàm truyền đạt?
 - > Tính đầu ra của neuron với các hàm truyền đạt
- Trả lời

For the hard limit transfer function:

$$a = hardlim(1.6) = 1.0$$

. For the linear transfer function:

$$a = purelin(1.6) = 1.6$$

i. For the log-sigmoid transfer function:

$$a = logsig(1.6) = \frac{1}{1 + e^{-1.6}} = 0.8320$$

Ví dụ 3:

- Cho Neuron hai đầu vào b = 1.2; w = [3 2]; p= [5, 6]^T
- Tính đầu ra của neuron với các hàm truyền đạt sau?

■ Trả lời
$$n = \mathbf{Wp} + b = \begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} -5 \\ 6 \end{bmatrix} + (1.2) = -1.8$$
.

i.
$$a = hardlims(-1.8) = -1$$

ii.
$$a = satlin(-1.8) = 0$$

iii.
$$a = tansig(-1.8) = -0.9468$$

Ví dụ 4:

- Một mạng neuron có 6 đầu vào, 2 đầu ra
- Đầu ra nằm trong khoảng [0, 1] và là các biến liên tục
- Hãy xác định kiến trúc mạng
 - Bao nhiêu neuron?
 - Số chiều của ma trận trọng số?
 - Kiểu hàm truyền đạt?
 - > Bias?

Trả lời:

- Hai neuron: mỗi neuron cho một đầu ra
- Ma trận trọng số có hai hàng tương ứng với hai neuron, 6 cột tương ứng với 6 đầu vào
- Hàm truyền đạt là hàm liên tục, nên phù hợp nhất là logsig
- Không đủ thông tin để xác định bias

Thank you!

https://www.youtube.com/watch?v=giid0-Oj FY Video tham khảo