Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation

Sunghwan Hong^{1,*}, Seokju Cho^{1,*}, Jisu Nam¹, Stephen Lin², Seungryong Kim¹ (* Equal Contribution)

¹Korea University, Seoul, Korea ²Microsoft Research Asia, Beijing, China

This paper presents a novel cost aggregation network, called **Volumetric Aggregation with Transformers (VAT)**, for few-shot segmentation.

- The use of transformers can benefit correlation map aggregation through self-attention over a global receptive field.
- However, the tokenization of a correlation map for transformer processing can be detrimental, because the discontinuity at token boundaries reduces the local context available near the token edges and decreases inductive bias.
- To address this problem, we propose a 4D Convolutional Swin Transformer, where a high-dimensional Swin Transformer is preceded by a series of small-kernel convolutions that impart local context to all pixels and introduce convolutional inductive bias.
- We additionally boost aggregation performance by **applying transformers within a pyramidal structure**, where aggregation at a coarser level guides aggregation at a finer level.
- Noise in the transformer output is then filtered in the subsequent decoder with the help of the query's appearance embedding.

With this model, a new state-of-the-art is set for all the standard benchmarks in few-shot segmentation. It is shown that VAT attains state-of-the-art performance for semantic correspondence as well, where cost aggregation also plays a central role.

Fig. 1: Our VAT reformulates few-shot segmentation as semantic correspondence. VAT sets a new state-of-the-art in few-shot segmentation, and attains state-of-the-art performance for semantic correspondence as well.

Fig. 2: Overall network architecture. Our network consists of feature extraction and cost computation, a pyramidal transformer encoder, and an affinity-aware transformer decoder.

Fig. 3: Illustration of shifted 4D windows in VTM. It computes self-attention within the partitioned windows and considers inter-window interactions by shifting the windows.

Fig. 4: Overview of 4D Convolutional Swin Transformer. We replace the VEM with VCM and the output undergoes VTM for cost aggregation.

Backbone network	Methods	$ 5^0$	5^1	5^2	$\frac{1-\mathrm{sh}}{5^3}$		FB-IoU	mBA	5^{0}	5^1	5^2	$\frac{5-\text{sl}}{5^3}$		FB-IoU		# learnable params
ResNet50	HSNet	64.3	70.7	60.3	60.5	64.0	<u>76.7</u>	53.9	70.3	73.2	<u>67.4</u>	67.1	69.5	80.6	<u>54.5</u>	2.6M
	CyCTR	<u>65.7</u>	71.0	59.5	59.7	64.0	-	-	<u>69.3</u>	<u>73.5</u>	63.8	63.5	67.5	-	-	-
	VAT (ours)	67.6	72.0	62.3	60.1	65.5	77.8	54.4	72.4	73.6	68.6	65.7	70.1	80.9	54.8	3.2M
	HSNet	67.3	72.3	62.0	63.1	66.2	77.6	53.9	71.8	74.4	67.0	68.3	70.4	80.6	54.4	2.6M
ResNet101	CyCTR	<u>67.2</u>	71.1	57.6	59.0	63.7	73.0	-	<u>71.0</u>	75.0	58.5	65.0	67.4	75.4	-	-
	VAT (ours)	70.0	72.5	64.8	64.2	67.9	79.6	54.7	75.0	75.2	68.4	69.5	72.0	83.2	54.8	3.3M

Table 1: Performance comparison on PASCAL-5ⁱ.

Backbone	Methods	1-shot							5-shot							
feature	Methods	20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU	mBA	20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU	mBA	
	HSNet	36.3	43.1	38.7	38.7	39.2	68.2	<u>53.0</u>	43.3	51.3	48.2	45.0	46.9	70.7	53.8	
ResNet50	CyCTR	38.9	43.0	<u>39.6</u>	39.8	40.3	-	-	41.1	48.9	45.2	47.0	45.6	77	17	
	VAT (ours)	39.0	43.8	42.6	<u>39.7</u>	41.3	68.8	54.2	44.1	<u>51.1</u>	50.2	<u>46.1</u>	47.9	72.4	54.9	

Table 2: Performance comparison on COCO-20i.

		Data Aug.	Cost Aggregation		SPai	r-71k		PF-PASCAL				PF-WILLOW		
Methods	F.T. Feat.			P	CK @	Ω $lpha_{ m bb}$	ox	$\mathrm{PCK} \ @ \ \alpha_{\mathrm{img}}$				PCK @ α_{bbox}		
				0.03	0.05	0.1	0.15	0.03	0.05	0.1	0.15	0.05	0.1	0.15
CATs	✓	×	Transformer	10.2	21.6	43.5	55.0	41.6	67.5	89.1	94.9	46.6	75.6	87.5
	/	✓	Transformer	13.8	27.7	49.9	61.7	49.9	75.4	92.6	96.4	<u>50.3</u>	79.2	90.3
VAT	✓	×	Transformer	14.9	28.3	48.4	59.1	54.6	72.9	91.1	95.6	46.0	78.8	91.3
	✓	✓	Transformer	19.6	35.0	55.5	65.1	62.7	78.2	92.3	96.2	52.8	81.6	91.4

Table 3: Quantitative results on SPair-71k, PF-PASCAL and PF-WILLOW.

