INDEX

	PAGE
ADAMS, C. R. On the linear ordinary q-difference equation	195
ADAMS, C. R. Note on the existence of analytic solutions of non-homo-	
geneous linear q-difference equations, ordinary and partial	626
ALBERT, A. A. On the structure of normal division algebras	322
ALBERT, A. A. Normal division algebras in $4p^2$ units, p an odd prime.	583
ALBERT, A. A. The structure of any algebra which is a direct product	
of rational generalized quaternion division algebras	
ALEXANDROFF, P. Untersuchungen über Gestalt und Lage abgeschlossener	
Mengen beliebiger Dimension	101
ALTSHILLER-COURT, N. On five mutually orthogonal spheres	
ARCHIBALD, R. G. The impossibility of a separation of types of linear odd	
	12
ARWIN, A. On cubic fields	
Bell, E. T. An interpretation of certain decomposable algebraic forms	
as functions of divisors	429
Browne, E. T. On the signature of a quadratic form	
Burington, R. S., and H. K. Holt. Canonical forms of plane cubic curves	
under euclidean transformations	52
Craig, C. C. The frequency function of y/x	
EISENHART, L. P. Contact transformations	
EISENHART, L. P. Dynamical trajectories and geodesics	
GARVER, R. Quartic equations with certain groups	
GARVER, R. On the Brioschi normal quintic	
HICKEY, D.M. The equilibrium point of Green's function for an annular region	
HILLE, E. Note on the preceding paper by Mr. Peek	
HOLLCROFT, T. R. Multiple lines with fixed coincident tangent planes .	
Holt, H. K. and R. S. Burington. Canonical forms of plane cubic curves	
under euclidean transformations	
Jeffery, R. L. The sequence of functions which define a definite integral	02
containing a parameter	211
KNEBELMAN, M. S. Tensors with invariant components	
LANE, E. P. On the fundamental transformation of surface	
LATIMER, C. G. On forms which repeat under multiplication	
LEHMER, D. H. On the multiple solutions of the Pell equation	
McFarlan, L. H. A parametric problem of the calculus of variations and	
its treatment as a problem of Lagrange	25
MACKIE, E. L. The Jacobi condition for a problem of Mayer with variable	202
end-points	393
MITRA, S. C. On certain hitherto unsolved cases of the complex multi-	=0
plication of elliptic functions	73

PAG	E
MOORE, T. W. Extended results in elimination	2
MOORE, W. L. On the geometry of the Weddle surface 49	2
PEEK, R. L. Solution to a problem in diffusion employing a non-orthogonal	
sine series	5
PIEDVACHE, R. Sur la forme quadratique fondamentale d'un espace de	
Riemann en coordonnées normales	2
PIEDVACHE, R. Sur le développement de Clebsch-Gordan 28	1
PIERPONT, J. On the complex roots of a transcendental equation occurring	
in the electron theory	1
Poritsky, H. On certain oscillation theorems	
SHEFFER, I. M. Systems of line we differential equations of infinite order,	
with constant coefficients	0
SHEFFER, I. M. Linear diff cential equations of infinite order, with poly-	
nomial coefficients of degree one	5
SLOTNICK, M. M. Semi-parallel transformations of lines of curvature 180	
SRIVASTAVA, P. L. On a class of Taylor's series	
SRIVASTAVA, P. L. On a class of integral functions	
THOMAS, J. M. Riquier's existence theorems	
TRJITZINSKY, W. J. On quasi-analytic functions	
VANDIVER, H. S. On a theorem of Kummer's concerning power characters	
of units in a cyclotomic field	
VANDIVER, H. S. On the first case of Fermat's last theorem 555	
VANDIVER, H. S. An algorithm for transforming Kummer criteria in con-	
nection with Fermat's last theorem	9
WARD, M. Certain expansions involving doubly infinite series 578	
WEYL, H. Der Zusammenhang zwischen der symmetrischen und der	
linearen Gruppe)
WHYBURN, W. M. On the fundamental existence theorems for differential	
systems	L
WILLIAMS, K. P. A generalization of the Cauchy-Riemann equations 200	
WILSON, N. R. On finding ideals	
Wong, B. C. A certain point-to-line transformation in space of four	
dimensions	7

ERRATA

VOLUME 29, PAGE 76. Omit the Corollary.

ON CUBIC FIELDS*.

By A. ARWIN.

I have in this short sketch set myself the task of investigating two problems. The first of these concerns the "außerwesentlichen" primefactors for any given cubic and also higher irrationality. They are, as is known[†], characterized by the fact that with a given equation F(x) = 0

(1)
$$F(x) \equiv \prod (x) + p \cdot M(x)$$

where $\prod(x)$ is the product of all irreducible factors of F(x) (mod. p) and for some rational b

$$\prod(b) \equiv 0$$
, $\prod'(b) \equiv 0$, $M(b) \equiv 0 \pmod{p}$.

The general method for determining the ideal primefactors fails for such primes. We shall see how, by modification, it can be used in this case also. The other task is to find any systematic way to decide when two ideals are equivalent, and to construct units. This is done by the construction of chains. It will be seen that each equivalence from the chain gives rise to an equivalence of ideals. The converse theorem is not necessarily true. It is indeed connected with some difficulty to give a method of forming periodic developments with higher irrationalities than quadratic, and therefore it will be necessary to leave the domain K(1), where only the quadratic irrationnalities are periodic. It is however possible to form a continued set of inequalities of approximation in three dimensions and construct chains with coefficients from the cubic field $K(\omega)$ itself, which really are periodic or have, as we shall say, periodic convergence.

As to the former problem we start from the fundamental equation

(2)
$$F(x) = x^3 + A_1 x^2 + A_2 x + A_3 = 0,$$

and have to treat the cases when $F(x) \equiv 0 \pmod{p}$ has a double or a triple root. In the first case

$$F(x) \equiv (x-a)(x-b)^2 + p^i \cdot M(x),$$

^{*} Received March 19, 1928.

[†] Bachmann, P.: Allgemeine Arithmetik der Zahlenkörper, p. 277.