

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics

Lecture 20: Quiz II

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Quiz II

ECE 470 Introduction to Robotics

Question 1 (a)

Dynamics

i) Show that the total kinematic energy can be expressed as

$$K = \frac{1}{2}m_1\dot{q}_1^2 + \frac{1}{2}m_2\dot{q}_1^2 + \frac{1}{2}m_2\dot{q}_2^2$$

- ii) Obtain an expression for the total potential energy V
- iii) Write down the Lagrangian L
- iv) Obtain the expressions for $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i}$ and $\frac{\partial L}{\partial q_i}$ with i=1,2
- v) Assume motion q_1 and q_2 are driven by two actuators attached to m_1 and m_2 with force output f_1 and f_2 respectively, write down the expression of $(f_1, f_2)^T$ describing the dynamics of the robot.

Question 1 (a)

Dynamics

Consider the cartesian positioning robot with lump mass m_1 and m_2 positioned by a vertical and horizontal axis of control. Masses m_1 and m_2 move vertically in q_1 direction, together with l_2 . Mass m_2 also moves in q_2 direction horizontally along l_2 . You may ignore any drag or frictional force.

$$K = \frac{1}{2}m_1\dot{q}_1^2 + \frac{1}{2}m_2\dot{q}_1^2 + \frac{1}{2}m_2\dot{q}_2^2$$

- ii) Obtain an expression for the total potential energy V
- iii) Write down the Lagrangian L
- iv) Obtain the expressions for $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i}$ and $\frac{\partial L}{\partial q_i}$ with i=1,2
- v) Assume motion q_1 and q_2 are driven by two actuators attached to m_1 and m_2 with force output f_1 and f_2 respectively, write down the expression of $(f_1, f_2)^T$ describing the dynamics of the robot.

Question 1(b)

b) A DC motor, with rotor inertia I_m and viscous coefficient b_m , outputting a motor torque τ_m can transmit the required force for motion q_2 through the rack-and-pinion mechanism as shown.

i) Show that the dynamic equation with the motor parameters incorporated can be written as

ii) Fill in the missing expression (a)-(e) in the control block diagram in consideration of the motor dynamics as well.

(5 Points)

ZJU-UIUC INSTITUTE

Zhejiang University/University of Illinois at Urbana-Champaign Institute 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院

ZJU-UIUC INSTITUTE

Question 2

a) Sketch and explain a set of possible joint trajectories for q_1 and q_2 to trace a circular path with its center at coordinate (c, d) in frame {B} and a radius r=1.

Quick Recap

Quick Recap

- Last week
 - The overview of Robot Planning
 - Path
 - Trajectory
 - Motion
 - Trajectory Generation
 - Joint-Space Scheme
 - Cartesian-Space Scheme
 - Issues and Challenges in Motion Planning This Lecture

O John Sprice

7 Corteston

Impt Take Away: Types of Planning

A robot is tasked to bring a cup from A to B. **Path Planning** Not to spill the water, place the cup on the saucers on a conveyer belt moving with angular with velocity ω while working with **Trajectory Planning** other robots that replace and clean missing or dirty in the same operation space. What kind of planning is required? **Motion Planning** ω Base {0}

b) For Joint q_1 , determine the parameters of a 2-segment cubic trajectory where $y_0 = 0.2 \, m$ is the initial position, $y_v = 0.5 \, m$ is the via point and $y_g = 1.1 \, m$ is the goal point. Assume that each segment spans a duration of 3 seconds and the velocity at the via point is 0.25 m/sec. (8 Points)

20

50 11 (

b) For Joint q_1 , determine the parameters of a 2-segment cubic trajectory where $y_0 = 0.2 \, m$ is the initial position, $y_v = 0.5 \, m$ is the via point and $y_g = 1.1 \, m$ is the goal point. Assume that each segment spans a duration of 3 seconds and the velocity at the via point is 0.25 m/sec. (8 Points)

Smooth and continuous

$$\frac{\theta(t)}{\dot{\theta}(t)} = \alpha_0 + \alpha_1 t + \alpha_2 t + \alpha_3 t$$

$$\ddot{\theta}(t) = \alpha_0 + \alpha_1 t + \alpha_2 t + \alpha_3 t$$

1 st segment:	2 nd segment
$\theta_0 = y_0 =$	$\varphi_0 = y_v =$
$\dot{ heta}_0 = \dot{y}_0 =$	$\dot{\varphi}_0 = \dot{y}_v =$
$\theta_f = y_v =$	$\varphi_f = y_f =$
$\dot{ heta_f} = \dot{y}_v =$	$\dot{\varphi}_f = \dot{y}_f =$
t_f =	t_f =

b) For Joint q_1 , determine the parameters of a 2-segment cubic trajectory where $y_0 = 0.2 \, m$ is the initial position, $y_v = 0.5 \, m$ is the via point and $y_g = 1.1 \, m$ is the goal point. Assume that each segment spans a duration of 3 seconds and the velocity at the via point is 0.25 m/sec. (8 Points)

Smooth and continuous

$$\theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3,$$

$$\dot{\theta}(t) = a_1 + 2a_2t + 3a_3t^2,$$

$$\ddot{\theta}(t) = 2a_2 + 6a_3t.$$

$$\frac{1^{\text{st segment:}}}{\theta_0 = y_0 = 0.2}$$

$$\frac{\dot{\theta}_0 = \dot{y}_0 = 0}{\theta_f = y_v = 0.5}$$

$$\frac{\dot{\theta}_f}{\dot{\theta}_f} = \dot{y}_v = 0.25$$

$$t_f = 3$$

$$\frac{2^{\text{nd}} \text{ segment:}}{\varphi_0} = y_v = 0.5$$

$$\dot{\varphi}_0 = \dot{y}_v = 0.25$$

$$\varphi_f = y_f = 1.1$$

$$\dot{\varphi}_f = \dot{y}_f = 0$$

$$t_f = 3$$

Joint Scheme: Polynomial Function

Cubic Function

$$\theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

$$\dot{\theta}(t) = a_1 + 2a_2t + 3a_3t^2$$

$$\ddot{\theta}(t) = 2a_2 + 6a_3t$$

Boundary conditions

$$\theta_0 = \theta(0) = a_0$$

$$\theta_f = \theta(t_f) = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3$$

$$\dot{\theta}_0 = a_1$$

$$\dot{\theta}_f = a_1 + 2a_2 t_f + 3a_3 t_f^2$$

Parameter

$$a_0 = \theta_0$$

$$a_1 = \dot{\theta}_0$$

$$a_2 = \frac{3}{t^2_f} (\theta_f - \theta_0) - \frac{2}{t_f} \dot{\theta}_0 - \frac{1}{t_f} \dot{\theta}_f$$

$$a_3 = -\frac{2}{t^3_f} (\theta_f - \theta_0) + \frac{1}{t^2_f} (\dot{\theta}_f / \dot{\theta}_0)$$

Parameter

$$a_{0} = \theta_{0}$$

$$a_{1} = \dot{\theta}_{0}$$

$$a_{2} = \frac{3}{t^{2}_{f}} (\theta_{f} - \theta_{0}) - \frac{2}{t_{f}} \dot{\theta}_{0} - \frac{1}{t_{f}} \dot{\theta}_{f}$$

$$a_{3} = -\frac{2}{t^{3}_{f}} (\theta_{f} - \theta_{0}) + \frac{1}{t^{2}_{f}} (\dot{\theta}_{f} + \dot{\theta}_{0})$$

c) For Joint q_2 , sketch the joint trajectory (i.e. displacement O. Hover time) given that it starts from an initial position of 0.1 m according to the velocity profile as shown. (4 Points)

- d) A student wanted to program the planar robot to write on the blackboard and realized that the writing chalk needs to be in contact with the blackboard surface at a force $F_{\underline{desired}}$ to write. He fixed the arm on a rotating $\underline{Joint}\ \underline{q_0}$ to control the contact force with the joint torque τ_0 while controlling the $\underline{position}\ with \underline{Joint}\ \underline{q_1}\ \underline{and}\ \underline{q_2}$ as shown.
 - i. Express the torque τ_0 of Joint q_0 in term of the Joint variables and $\underline{F}_{desired}$. (1 Points)
 - ii. If Joint q_0 can produce a maximum torque of 3 Nm, what is the writing space if $F_{desired} = 1.5N$ using the student's control approach? You may assume NO joint displacement limits (i.e. q_0 , q_1 , q_2 can take values from $-\infty$ to ∞). (2 Points)
 - iii. If the robot is programmed to write "ECE 470" on the blackboard as shown, explain if there might be any problem and suggest solution to overcome it. (2 Points)

Considering the joint variables $(q_0, q_1, q_2)^T$) as the generalized coordinates, the generalized forces can be denoted by $(\tau_0, f_1, f_2)^T$. Using the result in **Question 1** (v), obtain the expression for (f_1, f_2) now that it is attached to the rotational base. (You need not obtain τ_0 .)

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics

Lecture 21: Robot Vision

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Wechat ID: Liangjing_Yang

Schedule Check

Learning Roadmap (学习蓝图)

- O. Overview
- I. Spatial Transformation 空间坐标与转换
- II. Kinematics 运动学
- III. Jacobian/ Static Forces 雅可比/静力
- IV. Dynamics 动力学
- V. Control 控制理论
- VI. Planning 路径规划

VII.Robot Vision (Perception) 机器人视觉 (感知)

Wk 1-4

Revision/ Quiz on Wk 5

Essentials

Wk 6-9

Applied

Revision/ Quiz on Wk 10

应用

Wk 11-14

Reading/Exam Wk 15

Our Learning Roadmap

Schedule Check on our Learning Roadmap

- Overview
 - Science & Engineering in Robotics
- Spatial Representation & Transformation
 - Coordinate Systems; Pose Representations; Homogeneous Transformations
- Kinematics
 - Multi-body frame assignment; D-H Convention; Joint-space; Work-space; Forward/Inverse Kinematics
- Velocity Kinematics and Static Forces
 - Translational/Rotational Velocity; Joint torque; Generalized Force Coordinates; Jacobian; Singularity
- IV. Dynamics
 - Acceleration of Body; Newton-Euler Equations of Motion; Lagrangian Formulation
- V. Control
 - Closed-Loop Control and Feedback, Control of 2nd order system, Independent Joint Control, Force Control
- Planning
 - Joint-Based Scheme; Cartesian-Based Scheme; Collision Free Path Planning
- VII. Robot Vision (Perception)

Image Formation; Image Processing; Visual Tracking & Pose Estimation; Vision-based Control & Image-guided robotics

Reading Wk/ Exam on Week 15-16

Fundamentals

Week 1-4

Revision/ Quiz on Week 5

Essentials

Week 6-9

Revision/ Quiz on Week 10

Week 11-14

Robot Vision: Closing the final loop

- Model kinematics and dynamics of the robotic system
- Design control for appropriate input to achieve desired outcome
- Planning system to send the <u>command</u> to **control** system
- Perceive and interact with environment to achieve goal

Vision as Perception

• What is really happing when we see and interpret?

Introduction to Robot Vision

"Teaching the Robot to make sense of what they see"

What is Vision?

Teaching robot to see; Is it simple?
What is really happing when we see and interpret?

http://brainden.com/optical-illusions.htm

What is Vision?

- Is seeing perceiving?
- What is really happing when we see and interpret?

What is Vision?

- Vision is the ability to recognize images and process them (seeing & perceiving)
 - Recognize colors, brightness, texture, geometry
 - Human vision range (visible light range): Blue (λ =400 nm) Red (λ =700 nm)
 - Many animals can not see visible light

What is Robot Vision?

- Computer Vision is the science of imparting sense of vision to machines
 - Feed images to a computer and process them
 - Machines with vision Better Control
- Computer vision system consists of
 - Image Acquisition system Camera
 - Processing unit Computer / Processor
 - Actuation system Control action (optional)
- Applications of computer vision
 - Telecommunications, Robotics, Remote Sensing, Diagnostics, Material Science, Defense & Security, Entertainment, etc..

Computer Vision Applications: Industrial Robotics

Fanuc America Corporation http://robot.fanucamerica.com/products/robots/automotive-robots.aspx

https://www.youtube.com/watch?v=Fnlzl6sBOsA#t=37

Computer Vision Applications: Diagnostics & Medical Imaging

Other Diagnostic Techniques:

Ultra sound scan

CT Scan

Endoscopy

Ref: Image from dreamstime.com

Ref:

http://www.ucdmc.ucdavis.edu/surgicalservices/images/body/robotic_photoBanner.jpg

Computer Vision Applications: Biomechanics

medicine

Overview of Robot Vision

ECE 470 Introduction to Robotics

Overview

- O. Introduction to Robot Vision
 - What is Robot Vision?
- I. Image Formation
 - The science behind computer/machine vision
- II. Image Processing
 - Common techniques to manipulate, enhance & analyse images
- III. Robot Vision Applications
 - 3D Vision Photogrammetry, Vision-based techniques in robotics- visual servo, pose estimation, localization, mapping, navigation

Image Formation

ECE 470 Introduction to Robotics

Image Formation

- Camera Model
 - How is image formed?
- Imaging System
 - How is it acquired?
- Digital Image Representation
 - How is it represented in computer?

Pin-hole Camera Model

• describes the relationship between points and their projections on an

image plane via a small opening

- Convex Focusing Lens with Pin-hole Effect
 - same image formation geometry but light passing not restrict

- Central Projection Camera Model
 - A simplified model for camera geometry

Central Projection Camera Model

A simplified model for camera geometry

- Camera Matrix, P
 - Relates world with image coord. System
 - 2 Components:
 - Extrinsic Matrix
 - Intrinsic Matrix

Camera Matrix, P

For a given set of points

 $^{W}\tilde{X}$ in 3D,

the projected set of points can be expressed as $s\tilde{u} = P^W \tilde{X}$.

where
$$P = K^{C} [R | t]_{W}$$
,
 $K = \text{intrinsic matrix}$
 $[R | t] = \text{extrinsic matrix}$

Camera Working Principle

From panasonic.com

Cameras

Key Factors:

- Resolution
- Zoom
- Shutter Speed (SS)
- Aperture
- Frames Rate (FPS)
- Memory (Frame Buffer)
- File Transfer Mode

Different Types of Cameras & Features:

http://www.adept.net.au/cameras/stdMono.shtml

Cameras - Resolution

Resolution

- No of pixels on the sensor
- Each pixel has single intensity value for each color (RGB or Gray)
- High no. of pixels indicate greater level of details in the image captured - fineness

Original Image

Detail showing pixels

	3MP	4MP	5MP
Largest Image (typical)	2048 x 1536	2272 x 1712	2592 x 1944

MP= Mega Pixels

Cameras – Frame Rate (FPS) Time

- Number of frames per sec (FPS) of the camera determine the capability of motion capture (Video)
- 24 FPS is human perception of continuous motion
- Need high speed cameras to record slow motion

Concept Check

Knowing the typical <u>frequency</u> and <u>amplitude</u> range of the motion determine the appropriate <u>acquisition</u> rate and <u>resolution</u>

Y. Nakamura et al., "Heartbeat synchronization for robotic cardiac surgery," in *Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on*, 2001, pp. 2014-2019 vol.2

Computer Vision System Components

Imaging System

Ref: Gonzalez, Woods, "Digital Image Processing", Prentice Hall, 2008.

Can Computer See?

• For computer an *image is a matrix of numbers representing the intensity at that region*

(pixel)

• Computer can handle digital images only.

Image

$$I(i,j) = X$$
$$0 \le X \le 255$$

→ Black, X=0

White, X=255

Some

Ref: António R. C. Paiva, 2010

Image Representation

Computer Interpretation of Images

Matlab Commands:

```
img_gray=rgb2gray(img1);
imshow(img_gray)
imsub_gray=img_gray(70:80,345:355,:) - for printing intensity matrix
```