Course Distribution

Particulate solid handling and their properties

Resource

> Books

> Relevant journal papers mentioned in the individual topics

Introduction

- The separation of a suspension into a supernatant clear liquid and rather dense slurry containing a higher concentration of solid is called sedimentation
- Commercial sedimentation is conducted in a continuous process in "thickeners" or large tanks which receive a suspension or dilute slurry and permit the overflow of supernatant liquid and produce a sludge at the bottom of the tank

A general conception of the operation may be gained from simple batch sedimentation

ा TECHNOLOGO (1984) के प्राथम (1984) के प्राप्त (1984) के प्राप

Batch sedimentation

Fig. 1 Typical slurry-settling tests: A, clear liquid; B, slurry at original concentration; C, transition zone; D, thickened slurry in compression zone; E, coarse sand.

The boundary between C and D is usually obscure and is marked by vertical channels through which water is escaping from the lower layer which is under compression.

A-B interface

C-D interface

100

Time, MINUTES

Fig. 3 Progress of settling with time. Upper curve, boundary between layers A and B. Lower curve, upper boundary of layer D (see Fig. 14-20).

Fig. 2 Relation between concentration and depth in slurry-settling tests. Curves 1, 2, and 3 are at successive times.

Continuous thickener

Design of continuous thickener

Solid material balance

$$Fc_F = L_u c_u \qquad(1)$$

C_F, C_u are concentrations of solids (kg. of solids per m³ of slurry) in feed slurry and underflow sludge

Liquid balance

$$F\left[1-\frac{c_F}{\rho_s}\right]-L_u\left[1-\frac{c_u}{\rho_s}\right]=V_o \qquad(2)$$

$$\rho_s = \text{density of solids, kg/m}^3$$

Dividing both side by the cross sectional area A of the tank, we get

$$\frac{Fc_F}{A} = \frac{\left(\frac{V_o}{A}\right)}{\left[\left(\frac{1}{c_F}\right) - \left(\frac{1}{c_u}\right)\right]} = \frac{v}{\left(\frac{1}{c_F}\right) - \left(\frac{1}{c_u}\right)} \qquad \dots (3)$$

When the thickener is operated at maximum capacity the lowest settling rate (*v*, terminal velocity of the particle) must be equal to or grater then V/A (the upward velocity of the liquid) otherwise some solids will leave the overflow.

- As the overflow does not contain any solid particles, the upward velocity of liquid must be less than or equal to the settling velocity of particle v.
- ➤ Equation 3 is only valid for the perfectly mixed vessels in which the concentration inside the vessel can be taken to that in the outlet stream.
- > Not precisely true since the sedimentation is a slow and time dependent process.
- The equation can be rewrite considering a *capacity-limiting layer* (which is the concentration layer requiring maximum area to pass a unit quantity of solids).
- \triangleright If such a layer exists and if C_i is the concentration of solids in that layer.

$$\frac{Lc_L}{A} = \frac{v}{\left(\frac{1}{c_L}\right) - \left(\frac{1}{c_u}\right)} \qquad \dots (4)$$

Kynch Theory

Assumptions

- > Solid particles are all small with respect to the container, and of the same size, shape and density
- > Incompressible
- ➤ No mass transfer between components
- > Settling velocity is a function of the local concentration only
- One-dimensional the concentration of particles is constant at any cross-section of the vessel

- ➤ The concentration of solids in the zone C must range between that of the initial slurry concentration of zone B and that of the final slurry in zone D.
- ➤ If the solid handling capacity is lowest at some intermediate concentration, a zone of such concentration mush start building up, since the rate at which solids enter this zone will be less than the rate at which they will leave this zone.

➤ Consider the test at the instant of time when the layer corresponding to the limiting settling rate has reached the interface between the clear supernatant liquid and the pulp (Figure 1 e).

- > All the solids in the initial pulp must have passed through the layer as the layer was propagated upward from the bottom of the column.
- \succ If concentration of this layer is c_L and the time instant at which the layer reaches the interface is θ_L then

$$c_L A(v_L + \overline{v}_L)\theta_L = c_0 A z_0 \quad \dots (7)$$

Where v_L is the settling velocity of the particle in a zone having particle concentration c_L \overline{v}_L is the upward propagation velocity of the zone having particle concentration c_L

$$\overline{v}_L = \frac{z_L}{\theta_L}$$

Where z_L is the height of the interface at time θ_L

Substituting

$$c_{L} = \frac{c_{0}z_{0}}{z_{L} + v_{L}\theta_{L}} \qquad(8)$$

The value of the settling velocity v_L is the slope of the tangent to curve A at $\theta = \theta_L$

Terminal velocity v_L of the particles at the zone of solid concentration c_L at time θ_0 is the slope of the tangent to curve A

$$\mathbf{v}_L = \tan \alpha = \frac{z_i - z_L}{0 - \theta_L}$$

$$z_i = z_L + \theta_L \, \mathbf{v}_L \qquad \dots (9)$$

Gives,

$$c_L z_i = c_0 z_o \qquad \qquad c_L = \frac{c_0 z_o}{z_i} \qquad \qquad \dots (10)$$

Given: Batch settling data; Height of A-B interface (z) with time, Initial concentration (c_E) and height of the liquid air interface (z_0) , Feed flow rate (F, volume/time)/ Underflow rate (L_u)

Step 1 : Find the rate of interface $(v)_t = dz/dt$) from the batch settling data (z vs t) at different time

Step 2: Find the corresponding c₁ using equation (10)

$$c_L \mid_t = \frac{c_0 z_o}{z_i \mid_t}$$

z_i can be obtained by taking a slope at any time t as shown in the graph

$$\begin{aligned} \textbf{Step 3}: \text{Find} & \left| \frac{Lc_L}{A} \right|_{c_L} \text{using } \mathbf{v}|_{\mathbf{t}} \text{ and } C_L \mid_t \text{ information from equation 4} \\ & \left| \frac{Lc_L}{A} \right|_{c_L} = \frac{\mathbf{v}\mid_t}{\left(\frac{1}{c_L\mid_t}\right) - \left(\frac{1}{c_u}\right)} \end{aligned}$$

$$\left| \frac{Lc_L}{A} \right|_{c_L} = \frac{v|_t}{\left(\frac{1}{c_L|_t}\right) - \left(\frac{1}{c_u}\right)}$$

c,, can be obtained using equation 1 as

$$c_u = Fc_F/L_u$$

Step 4 : Plot
$$\left| \frac{Lc_L}{A} \right|_{c_L}$$
 with v information from equation 4

- \triangleright It can be seen that (Lc₁/A) decreases with increase in v reaching a minimum value and then increases.
- \triangleright From the minimum value of (Lc₁/A), **A** is computed.

Note:

- \succ For actual industrial design the computed thickener area (A) is multiplied by two safety factors (SF₁ and SF₂).
- > SF₁ takes care of the variation in feed characteristic (temperature, pH, particle size, solid concentration etc.) and magnitude varies form 1.10-1.25.
- \triangleright SF₂ takes care of the turbulence at the feed inlet and magnitude varies form 1.10-1.5.

Estimating Height (Depth) of the Compression Layer

The height, *H*, of the layer would depend on the total volume of the solids and liquid in the compression zone and inversely as the area of the vessel. That is

$$H_c = \frac{V_c}{A}$$

where V_C = the total volume of the liquid and the solids in the compression layer.

So,
$$V_C$$
= total volume of (solid + liquid) in the compression layer.
= V_S + V_I

$$V_{s} = V_{s} + V_{L}$$

$$= \frac{Q_{V(F)}C_{F}t_{D}}{\rho_{S}} + \frac{Q_{V(F)}C_{F}t_{D}}{\rho_{L}} \left(\frac{\rho_{c} - C_{c}}{C_{c}}\right)$$

where,
$$C = \frac{\text{mass of solid}}{\text{total volume}}$$
 $e.g.$ $C_c = \frac{\text{mass of solid}}{\text{volume of compression zone}}$

 ρ_s , ρ_l and ρ_c are the densities of solid, liquid and sludge in the compression zone.

 Q_V is the volume flow rate and td is the residence time of particle in compression zone .

$$H_c = \frac{Q_{V(F)}C_F t_D}{A\rho_S} \left(1 + \frac{\rho_S}{\rho_L} \left(\frac{\rho_c - C_c}{C_c} \right) \right)$$

Problem 1

The data given below were obtained from single batch sedimentation test on an ore slurry. The true density of the solids in the slurry was 2.5 gm / cc and the density of the liquid was 110 g / cc. Determine the area required for a thickener to handle 100 metric tons of solids per day from a feed concentration of 64.5 g / liter to an underflow concentration of 485 g / liter. Data from batch sedimentation

Concentration in gm of solid per liter of	Settling rate cm / hr		
slurry			
64.5	139.9		
70.9	103.9		
94.3	71.9		
111.7	49.4		
139.9	27.1		
173.9	16.5		
222.0	10.0		
331.0	6.4		

Ans: 46.58 m²

Problem 2

A slurry containing 5 kg of water/kg of solids is to be thickened to a sludge containing 1.5 kg of water/kg of solids in a continuous operation. Laboratory tests using five different concentrations of the slurry yielded the following data:

Concentration (kg water/kg solid)	5.0	4.2	3.7	3.1	2.5
Rate of sedimentation (mm/s)	0.20	0.12	0.094	0.070	0.050

Calculate the minimum area of a thickener required to effect the separation of a flow of 1.33 kg/s of solids.

Ans: 31.12 m²

Gravity Thickener