

Welcome to Week 7 Workshop

"Hold on. When we learned Roman numerals, X was 10. Now it's 6. What's going on around here?!"

Housekeeping

- The mark and feedback on Assignment 1 (SQL) is available on Wattle.
 - Refer to the sample solutions along with the common issues.
 - Test your queries on moviedb2021 instead of moviedb.

Housekeeping

- The mark and feedback on Assignment 1 (SQL) is available on Wattle.
 - Refer to the sample solutions along with the common issues.
 - Test your queries on moviedb2021 instead of moviedb.

- The specification of Assignment 2 (Database Theory) will be available on Sep 28. The submission via Wattle is due 23:59 Oct 12 (Tuesday, Week 10)
 - Individual, no group work!
 - Do not post any idea/partial solution/result on Wattle.

SQL ⇒ **Relational Algebra**

Database users

SQL queries

```
SELECT ...
FROM ...
WHERE ...
```


$SQL \Rightarrow Relational Algebra$

Database users		Database systems
SQL queries	į	RA queries
SELECT FROM WHERE	$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	σ , π , ρ \cup , \cap , $-$ \times , \bowtie ,

Make SQL queries easy-to-use ...

Make SQL queries easy-to-use ...

Declarative vs Procedural		
Make me a cake	Mix 2 cup flour, 1/2 cup butter, and 2 eggs until well blended. Divide the dough into a 12x2-in. log. Preheat oven to 350° and bake 30-35 minutes.	

Make SQL queries easy-to-use ...

Declarative	Declarative vs Procedural		
Make me a cake	Mix 2 cup flour, 1/2 cup butter, and 2 eggs until well blended. Divide the dough into a 12x2-in. log. Preheat oven to 350° and bake 30-35 minutes.		

RA bridges the gap between the declarative nature of SQL and the procedure nature of a computer system.

Make SQL queries easy-to-use ...

Declarative	vs Procedural
Make me a cake	Mix 2 cup flour, 1/2 cup butter, and 2 eggs until well blended. Divide the dough into a 12x2-in. log. Preheat oven to 350° and bake 30-35 minutes.

RA bridges the gap between the declarative nature of SQL and the procedure nature of a computer system.

- Expressive: Each SQL query can be represented by a RA query.
- **Procedural:** Each RA query consists of step-by-step operations.

Make SQL queries run fast ...

Make SQL queries run fast ...

RA enables many different ways to implement a SQL query.

Make SQL queries run fast ...

RA enables many different ways to implement a SQL query.

Arithmetic v.s. Algebra

What is the difference between "2+8=8+2" and "a+b=b+a"?

Arithmetic v.s. Algebra

What is the difference between "2+8=8+2" and "a+b=b+a"?

- Arithmetic: "2+8=8+2" is a specific fact.
- Algebra: "a+b=b+a" is a general pattern.

Arithmetic v.s. Algebra

What is the difference between "2+8=8+2" and "a+b=b+a"?

- Arithmetic: "2+8=8+2" is a specific fact.
- Algebra: "a+b=b+a" is a general pattern.

What is an "Algebra"?

- Mathematical system consisting of:
 - Operands variables or values from which new values can be constructed.
 - Operators symbols denoting procedures that construct new values from given values.

What is an "Algebra"?

- Mathematical system consisting of:
 - Operands variables or values from which new values can be constructed.
 - Operators symbols denoting procedures that construct new values from given values.
- Elementary algebra consisting of:
 - Operands variables X, Y, Z, etc.
 - Operators +, -, ×, /

What is an "Algebra"?

- Mathematical system consisting of:
 - Operands variables or values from which new values can be constructed.
 - Operators symbols denoting procedures that construct new values from given values.
- Elementary algebra consisting of:
 - Operands variables X, Y, Z, etc.
 - Operators +, -, ×, /
- Relational algebra consisting of:
 - Operands relations R_1 , R_2 , R_3 , etc.
 - Operators $\{\sigma, \pi, \cup, \cap, \bowtie, \dots\}$

Relational Operators 1

http://merrigrove.blogspot.com.au/2011/12/another-introduction-to-algebraic-data.html (with some changes)

Summary of Relational Operators

Operator	Notation	Meaning
Selection	$\sigma_{arphi}(extbf{ extit{R}})$	choose rows
Projection	$\pi_{A_1,,A_n}(R)$	choose columns
Union Intersection Difference	$R_1 \cup R_2$ $R_1 \cap R_2$ $R_1 - R_2$	set operations
Cartesian product Join Natural-join	$R_1 \times R_2$ $R_1 \bowtie_{\varphi} R_2$ $R_1 \bowtie R_2$	combine tables
Renaming	$ \rho_{R'(A_1,,A_n)}(R) \rho_{R'}(R) \rho_{(A_1,,A_n)}(R) $	rename relation and attributes

Selection Example

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the items with price less than 9 CHF?

Selection Example

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the items with price less than 9 CHF? $\sigma_{\varphi}(R), \varphi = Price < 9, R=Sell \Rightarrow \sigma_{Price} < 9(Sell).$

Selection Example

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the items with price less than 9 CHF? $\sigma_{\varphi}(R)$, $\varphi = Price < 9$, R=SELL $\Rightarrow \sigma_{Price < 9}$ (SELL).

Shop	Item	Price
Coop	Ham	8
Migros	Cheese	8

Projection Example

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

What if we only want to know all the available shops and items?

Projection Example

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items? $\pi_{A_1,...,A_n}(R), \{A_1,...,A_n\} = \{Shop, Item\}, R=SELL \Rightarrow \pi_{Shop, Item}(SELL).$

Projection Example

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items? $\pi_{A_1,...,A_n}(R)$, $\{A_1,...,A_n\} = \{Shop, Item\}$, $R=SELL \Rightarrow \pi_{Shop,Item}(SELL)$.

Shop	Item
Coop	Cheese
Migros	Cabbage
Coop	Ham
Migros	Cheese

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHF?

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHF?

 $\pi_{Shop,Item}(\sigma_{Price} < 9(SELL))$

Consider the relation SELL:

Shop	Item Price	
Coop	Cheese 10	
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHF?

 $\pi_{Shop,Item}(\sigma_{Price < 9}(SELL))$

Shop	Item	Price
Coop	Ham	8
Migros	Cheese	8

Shop	Item
Coop	Ham
Migros	Cheese

Consider the relation Sell:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHF?

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHF?

What about $\sigma_{Price < 9}(\pi_{Shop, Item}(SELL))$?

Consider the relation SELL:

Shop	Item	Price
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHF?

What about $\sigma_{Price < 9}(\pi_{Shop, Item}(SELL))$?

Shop	Item
Coop	Cheese
Migros	Cabbage
Coop	Ham
Migros	Cheese

Consider the relation SELL:

Shop	Item Price	
Coop	Cheese	10
Migros	Cabbage	10
Coop	Ham	8
Migros	Cheese	8

• What if we only want to know all the available shops and items with the price less than 9 CHE?

What about $\sigma_{Price < 9}(\pi_{Shop, Item}(SELL))$?

Shop	Item
Coop	Cheese
Migros	Cabbage
Coop	Ham
Migros	Cheese

Error!
No price attribute available.

Selection and Projection – Properties

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R))$$

Selection and Projection – Properties

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

Selection and Projection – Properties

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

Projections are not commutative

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R)) = \pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

Projections are not commutative

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R))=\pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

Pairs of selection and projection are not commutative

$$\pi_{A_1,...,A_n}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{A_1,...,A_n}(R))$$
 does not hold in general

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R))=\pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

- Pairs of selection and projection are not commutative $\pi_{A_1,...,A_n}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{A_1,...,A_n}(R))$ does not hold in general
- Selections will always keep the same number of columns?

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R)) = \pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

- Pairs of selection and projection are not commutative $\pi_{A_1,...,A_n}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{A_1,...,A_n}(R))$ does not hold in general
- Selections will always keep the same number of columns? Yes.

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R)) = \pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

- Pairs of selection and projection are not commutative $\pi_{A_1,...,A_n}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{A_1,...,A_n}(R))$ does not hold in general
- Selections will always keep the same number of columns? Yes.
- Projections will always keep the same number of rows?

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R)) = \pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

- Pairs of selection and projection are not commutative $\pi_{A_1,...,A_n}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{A_1,...,A_n}(R))$ does not hold in general
- Selections will always keep the same number of columns? Yes.
- Projections will always keep the same number of rows? No (may introduce duplicates and have to be eliminated).

Selections are commutative

$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R).$$

$$\pi_{B_1,\ldots,B_m}(\pi_{A_1,\ldots,A_n}(R)) = \pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(R))$$
 does not hold in general

- Pairs of selection and projection are not commutative $\pi_{A_1,...,A_n}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{A_1,...,A_n}(R))$ does not hold in general
- Selections will always keep the same number of columns? Yes.
- Projections will always keep the same number of rows? No (may introduce duplicates and have to be eliminated).

- Relations are sets (of tuples/rows), we have standard operations on sets.
 - Union, denoted as R₁ ∪ R₂, results in a relation that includes all tuples either in R₁ or in R₂. Duplicate tuples are eliminated.
 - Intersection, denoted as R₁ ∩ R₂, results in a relation that includes all tuples that are in both R₁ and R₂.
 - Difference, denoted as $R_1 R_2$, results in a relation that includes all tuples that are in R_1 but not in R_2 .

- Relations are sets (of tuples/rows), we have standard operations on sets.
 - Union, denoted as R₁ ∪ R₂, results in a relation that includes all tuples either in R₁ or in R₂. Duplicate tuples are eliminated.
 - Intersection, denoted as R₁ ∩ R₂, results in a relation that includes all tuples that are in both R₁ and R₂.
 - Difference, denoted as $R_1 R_2$, results in a relation that includes all tuples that are in R_1 but not in R_2 .
- Type compatibility: R_1 and R_2 must have the same type, i.e.,
 - the same number of attributes, and
 - the same domains for the attributes (the order is important).

STUDY		
StudentID	Hours	
111	COMP2400	120
222	COMP2400	115
333	STAT2001	120
111	BUSN2011	110
111	ECON2102	120
333	BUSN2011	130

What is the result for

$$\pi_{\textit{StudentID}}(\sigma_{\textit{CourseNo}='\textit{COMP2400'}}(\mathsf{STUDY})) \cap \pi_{\textit{StudentID}}(\sigma_{\textit{CourseNo}='\textit{ECON2102'}}(\mathsf{STUDY}))?$$

$$R_1 = \pi_{StudentID}(\sigma_{CourseNo='COMP2400'}(STUDY))$$

$$R_2 = \pi_{StudentID}(\sigma_{CourseNo='ECON2102'}(STUDY))$$

STUDY			
StudentID	StudentID CourseNo		
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

What is the result for

 $\pi_{\textit{StudentID}}(\sigma_{\textit{CourseNo}='\textit{COMP2400'}}(\mathsf{STUDY})) \cap \pi_{\textit{StudentID}}(\sigma_{\textit{CourseNo}='\textit{ECON2102'}}(\mathsf{STUDY}))?$

$$R_1 = \pi_{StudentID}(\sigma_{CourseNo='COMP2400'}(STUDY))$$

StudentID 111 222

R_2	=	$\pi_{\mathit{StudentID}}$	$(\sigma_{ extit{CourseNo}=' extit{ECON}2102'}(STUDY))$
-------	---	----------------------------	---

STUDY			
StudentID	StudentID CourseNo		
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

What is the result for

 $\pi_{StudentID}(\sigma_{CourseNo='COMP2400'}(STUDY)) \cap \pi_{StudentID}(\sigma_{CourseNo='ECON2102'}(STUDY))$?

$$R_1 = \pi_{StudentID}(\sigma_{CourseNo='COMP2400'}(STUDY))$$

 $R_1 \cap R_2$

StudentID 111

$$R_2 = \pi_{StudentID}(\sigma_{CourseNo='ECON2102'}(STUDY))$$

STUDY			
StudentID	StudentID CourseNo		
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

What is the result for

 $\pi_{StudentID}(\sigma_{CourseNo='COMP2400'}(STUDY) \cap \sigma_{CourseNo='ECON2102'}(STUDY))$?

STUDY			
StudentID	StudentID CourseNo		
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

What is the result for

$$\pi_{StudentID}(\sigma_{CourseNo='COMP2400'}(STUDY) \cap \sigma_{CourseNo='ECON2102'}(STUDY))$$
?

$$R_1 = \sigma_{\textit{CourseNo}='\textit{COMP2400'}}(STUDY)$$

$$\pi_{StudentID}(R_1 \cap R_2)$$

$$R_2 = \sigma_{CourseNo='ECON2102'}(STUDY)$$

STUDY			
StudentID CourseNo Ho			
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

What is the result for

$$\pi_{\textit{StudentID}}(\sigma_{\textit{CourseNo}='\textit{COMP2400'}}(\mathsf{STUDY}) \cap \sigma_{\textit{CourseNo}='\textit{ECON2102'}}(\mathsf{STUDY}))?$$

$$R_1 = \sigma_{CourseNo='COMP2400'}(STUDY)$$

$$\pi_{StudentID}(R_1 \cap R_2)$$

EMPTY!

$$R_2 = \sigma_{\textit{CourseNo}='\textit{ECON}2102'}(\mathsf{STUDY})$$

Cartesian Product, Join and Natural Join

 Cartesian product R₁ × R₂ combines tuples from two relations in a combinatorial fashion.

Cartesian Product, Join and Natural Join

- Cartesian product R₁ × R₂ combines tuples from two relations in a combinatorial fashion.
- Join R₁ ⋈_φ R₂ is introduced as the combination of Cartesian product and selection. That is,

$$R_1 \bowtie_{\varphi} R_2 = \sigma_{\varphi}(R_1 \times R_2).$$

Cartesian Product, Join and Natural Join

- Cartesian product R₁ × R₂ combines tuples from two relations in a combinatorial fashion.
- Join R₁ ⋈_φ R₂ is introduced as the combination of Cartesian product and selection. That is,

$$R_1 \bowtie_{\varphi} R_2 = \sigma_{\varphi}(R_1 \times R_2).$$

- Natural Join $R_1 \bowtie R_2$
 - Implicitly apply the join condition on equality comparisons of attributes that have the same name in both relations.
 - Project out one copy of the attributes that have the same name in both relations.

Cartesian Product – Example

Course		
No	Cname	Unit
COMP2400 Relational Databases		6
BUSN2011 Management Accounting		6
ECON2102	Macroeconomics	6

Enrol			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

What is the result for Course × Enrol?

Cartesian Product – Example

Course		
No	Cname	Unit
COMP2400 Relational Databases		6
BUSN2011 Management Accounting		6
ECON2102	6	

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

What is the result for Course × Enrol?

Course \times Enrol will have 9 (=3 \times 3) tuples and 7 (=3+4) attributes.

Course		
No Cname Unit		
COMP2400 Relational Databases		6
BUSN2011	6	
ECON2102	Macroeconomics	6

Enrol					
StudentID	StudentID CourseNo Semester Status				
Studentib		Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		
	00Wii 2400	2010 02	aotive		

• What is the result for Course ⋈_{No=CourseNo} ENROL?

Course		
No	Cname	Unit
COMP2400	00 Relational Databases 6	
BUSN2011	Management Accounting 6	
ECON2102	Macroeconomics	6

Enrol				
StudentID CourseNo Semester Status				
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

• What is the result for Course ⋈_{No=CourseNo} Enrol?

No	Cname	Unit	StudentID	CourseNo	Semester	Status
COMP2400	Relational Databases	6	222	COMP2400	2016 S1	active
COMP2400	Relational Databases	6	111	COMP2400	2016 S2	active
BUSN2011	Management Accounting	6	111	BUSN2011	2016 S1	active

Course		
No	Cname	Unit
COMP2400 Relational Databases 6		6
BUSN2011	Management Accounting	6
ECON2102 Macroeconomics 6		

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

• What is the result for $\pi_{No,Cname}$ (Course $\bowtie_{No=CourseNo}$ Enrol)?

Course		
No	Cname	Unit
COMP2400 Relational Databases 6		6
BUSN2011	Management Accounting	6
ECON2102 Macroeconomics 6		

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

• What is the result for $\pi_{No,Cname}$ (Course $\bowtie_{No=CourseNo}$ Enrol)?

No	Cname
COMP2400	Relational Databases
BUSN2011	Management Accounting

Natural Join - Example

Course		
No	Cname	Unit
COMP2400 Relational Databases		6
BUSN2011	Management Accounting 6	
ECON2102	Macroeconomics	6

ENROL				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

What is the result for Course ⋈ Enrol?

Natural Join – Example

Course		
No	Cname	Unit
COMP2400 Relational Databases 6		6
BUSN2011	Management Accounting 6	
ECON2102	Macroeconomics	6

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

• What is the result for Course ⋈ Enrol?

If there are no matching attributes in two tables for NATURAL JOIN, Course \bowtie Enrol will become Course \times Enrol which outputs 9 (=3×3) tuples and 7 (=3+4) attributes.

Natural Join - Example

Course				
CourseNo	Cname	Unit		
COMP2400	6			
BUSN2011	Management Accounting	6		
ECON2102	6			

Enrol				
StudentID	Status			
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

● What is the result for Course ⋈ Enrol?

Natural Join - Example

Course				
CourseNo	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		
ECON2102	6			

ENROL				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

● What is the result for Course ⋈ Enrol?

CourseNo	Cname	Unit	StudentID	Semester	Status
COMP2400	Relational Databases	6	222	2016 S1	active
COMP2400	Relational Databases	6	111	2016 S2	active
BUSN2011	Management Accounting	6	111	2016 S1	active

Natural Join – Example

Course				
CourseNo	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		
ECON2102	Macroeconomics	6		

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

• What is the result for $\sigma_{StudentID=111}$ (COURSE \bowtie ENROL)?

Natural Join - Example

Course				
CourseNo	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		
ECON2102	Macroeconomics	6		

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

• What is the result for $\sigma_{StudentID=111}$ (Course \bowtie Enrol)?

	CourseNo	Cname	Unit	StudentID	Semester	Status
	COMP2400	Relational Databases	6	111	2016 S2	active
ı	BUSN2011	Management Accounting	6	111	2016 S1	active

Natural Join - Example

Course				
CourseNo	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		
ECON2102	Macroeconomics	6		

ENROL					
StudentID	CourseNo	Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

What is the result for Course ⋈ Course?

Natural Join – Example

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6
ECON2102	Macroeconomics	6

ENROL					
StudentID	CourseNo	Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

What is the result for Course ⋈ Course?

Course			
CourseNo	Cname	Unit	
COMP2400	Relational Databases	6	
BUSN2011	Management Accounting	6	
ECON2102	Macroeconomics	6	

List the email of students who have enrolled in courses and the CourseNo
of these courses.

- List the email of students who have enrolled in courses and the CourseNo of these courses.
 - \bullet $\pi_{Email,CourseNo}(\sigma_{Student.StudentID=Enrol.StudentID}(STUDENT \times ENROL))$

 List the email of students who have enrolled in courses and the CourseNo of these courses.

 $\pi_{\textit{Email},\textit{CourseNo}}(\mathsf{STUDENT} \bowtie_{\textit{Student}.\textit{StudentID}=\textit{Enrol}.\textit{StudentID}} \mathsf{Enrol})$

- List the email of students who have enrolled in courses and the CourseNo
 of these courses.
 - \bullet $\pi_{Email,CourseNo}(\sigma_{Student.StudentID=Enrol.StudentID}(STUDENT \times ENROL))$
 - $abla \pi_{Email,CourseNo}(STUDENT \bowtie_{Student.StudentID=Enrol.StudentID} ENROL)$

- List the email of students who have enrolled in courses and the CourseNo
 of these courses.
 - \bullet $\pi_{Email,CourseNo}(\sigma_{Student.StudentID=Enrol.StudentID}(STUDENT \times ENROL))$
 - 2 $\pi_{Email,CourseNo}(STUDENT \bowtie_{Student.StudentID=Enrol.StudentID} ENROL)$
 - - Φ (π_{Email}, CourseNo</sub>(STUDENT)) ⋈ ENROL

Join – More Examples

- List the email of students who have enrolled in courses and the CourseNo
 of these courses.
 - \bullet $\pi_{Email,CourseNo}(\sigma_{Student.StudentID=Enrol.StudentID}(STUDENT \times ENROL))$

 - Φ (π_{Email,CourseNo}(STUDENT)) ⋈ ENROL Incorrect!
 - \bullet $\pi_{\textit{Email}}(\mathsf{STUDENT}) \bowtie \pi_{\textit{CourseNo}}(\mathsf{ENROL})$

Join – More Examples

- List the email of students who have enrolled in courses and the CourseNo of these courses.

 - **4** $(π_{Email,CourseNo}(STUDENT))$ ⋈ ENROL **Incorrect!**

 Renaming is used to rename either the relation name or the attribute names, or both.

- Renaming is used to rename either the relation name or the attribute names, or both.
- Renaming is denoted as
 - $\rho_{R'(A_1,...,A_n)}(R)$: renaming the relation name to R' and the attribute names to $A_1,...,A_n$,

- Renaming is used to rename either the relation name or the attribute names, or both.
- Renaming is denoted as
 - $\rho_{R'(A_1,...,A_n)}(R)$: renaming the relation name to R' and the attribute names to $A_1,...,A_n$,
 - $\rho_{R'}(R)$: renaming the relation name to R' and keeping the attribute names unchanged, or

- Renaming is used to rename either the relation name or the attribute names, or both.
- Renaming is denoted as
 - $\rho_{R'(A_1,...,A_n)}(R)$: renaming the relation name to R' and the attribute names to $A_1,...,A_n$,
 - $\rho_{R'}(R)$: renaming the relation name to R' and keeping the attribute names unchanged, or
 - $\rho_{(A_1,...,A_n)}(R)$: renaming the attribute names to $A_1,...,A_n$ and keeping the relation name unchanged.

- Renaming is used to rename either the relation name or the attribute names, or both.
- Renaming is denoted as
 - $\rho_{R'(A_1,...,A_n)}(R)$: renaming the relation name to R' and the attribute names to $A_1,...,A_n$,
 - $\rho_{R'}(R)$: renaming the relation name to R' and keeping the attribute names unchanged, or
 - $\rho_{(A_1,\ldots,A_n)}(R)$: renaming the attribute names to A_1,\ldots,A_n and keeping the relation name unchanged.
- Renaming is useful for giving names to the relations that hold the intermediate results.

Given the following relation schema:

• Find pairs of students who have the same birthday. Show their names.

STUDENT					
StudentID Name DoB					
457	18-Oct-1993				
458	Mike	16-May-1990			
459	Peter	18-Oct-1993			

What about the following choices?

Given the following relation schema:

• Find pairs of students who have the same birthday. Show their names.

STUDENT					
StudentID Name DoB					
457	18-Oct-1993				
458	Mike	16-May-1990			
459 Peter 18-Oct-1993					

What about the following choices?

 \bullet $\pi_{Name,Name}(\sigma_{DoB=DoB}(STUDENT \times STUDENT))$

 $2 \pi_{Name,Name}(STUDENT \bowtie_{DoB=DoB} STUDENT)$

• (1): $\pi_{Name,Name}(\sigma_{DoB=DoB}(STUDENT \times STUDENT))$.

STUDENT						
StudentID	Name	DoB				
457	Lisa	18-Oct-1993				
458	Mike	16-May-1990				
459	Peter	18-Oct-1993				

• (1): $\pi_{Name,Name}(\sigma_{DoB=DoB}(STUDENT \times STUDENT))$.

	STUDENT						
Stud	entID	Name	DoB				
45	57	Lisa	18-Oct-1993				
45	58	Mike	16-May-1990				
45	59	Peter	18-Oct-1993				

STUDENT × STUDENT							
StudentID	Name	DoB	StudentID	Name	DoB		
457	457 Lisa 18-Oct-1993			Lisa	18-Oct-1993		
457	Lisa	18-Oct-1993	458	Mike	16-May-1990		
457	457 Lisa 18-Oct-1993		458	Peter	18-Oct-1993		
458	Mike	Mike 16-May-1990		Lisa	18-Oct-1993		
458	458 Mike 16-May-1990		458	Mike	16-May-1990		
458	Mike	16-May-1990	458 Peter	Peter	18-Oct-1993		
458	Peter	18-Oct-1993	457	Lisa	18-Oct-1993		
458	458 Peter 18-Oct-1993		458	Mike	16-May-1990		
458	Peter	18-Oct-1993	458	Peter	18-Oct-1993		

• (1): $\pi_{Name,Name}(\sigma_{DoB=DoB}(STUDENT \times STUDENT))$.

	STUDEN	Т
StudentID	DoB	
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

STUDENT × STUDENT								
StudentID Name DoB StudentID Name DoB								
457	Lisa	18-Oct-1993	457	Lisa	18-Oct-1993			
457	Lisa	18-Oct-1993	458	Mike	16-May-1990			
457	Lisa	18-Oct-1993	458	Peter	18-Oct-1993			
458	Mike	16-May-1990	457	Lisa	18-Oct-1993			
458	Mike	16-May-1990	458	Mike	16-May-1990			
458	458 Mike 16-May-1990		458	Peter	18-Oct-1993			
458 Peter 18-Oct-1993		18-Oct-1993	457	Lisa	18-Oct-1993			
458	Peter	18-Oct-1993	458	Mike	16-May-1990			
458	Peter	18-Oct-1993	458	Peter	18-Oct-1993			

Incorrect!

• (2): $\pi_{Name,Name}(STUDENT \bowtie_{DoB=DoB} STUDENT)$

STUDENT						
StudentID Name DoB						
457	Lisa	18-Oct-1993				
458	Mike	16-May-1990				
459	Peter	18-Oct-1993				

• (2): $\pi_{Name,Name}(STUDENT \bowtie_{DoB=DoB} STUDENT)$

STUDENT						
StudentID Name DoB						
457	Lisa	18-Oct-1993				
458	Mike	16-May-1990				
459	Peter	18-Oct-1993				

STUDENT ⋈ _{DoB=DoB} STUDENT?						
StudentID	Name	DoB	StudentID	Name	DoB	

• (2): $\pi_{Name,Name}(STUDENT \bowtie_{DoB=DoB} STUDENT)$

STUDENT						
StudentID Name DoB						
457	Lisa	18-Oct-1993				
458	Mike	16-May-1990				
459	Peter	18-Oct-1993				

STUDENT $\bowtie_{DoB=DoB}$ STUDENT?						
StudentID Name DoB StudentID Name DoB						

Incorrect!

• (3): $\pi_{Name,Name}(STUDENT \bowtie STUDENT)$

STUDENT		
StudentID	Name	DoB
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

• (3): $\pi_{Name,Name}(STUDENT \bowtie STUDENT)$

	STUDENT		
	StudentID Name DoB		
	457	Lisa	18-Oct-1993
	458	Mike	16-May-1990
4	459	Peter	18-Oct-1993

(STUDENT ⋈ STUDENT)		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

• (3): $\pi_{Name,Name}(STUDENT \bowtie STUDENT)$

STUDENT			
StudentID Name DoB			
457	Lisa	18-Oct-1993	
458	Mike	16-May-1990	
459	Peter	18-Oct-1993	

(STUDENT ⋈ STUDENT)		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

Incorrect!

• Given the following relation schema:

• Find pairs of students who have the same birthday. Show their names.

STUDENT		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

What about the following choices?

• Given the following relation schema:

STUDENT		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

- What about the following choices?
 - $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.DoB=R_2.DoB}(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT)))$

• Given the following relation schema:

STUDENT		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

- What about the following choices?
 - $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.DoB=R_2.DoB}(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT)))$ Almost correct!

• Given the following relation schema:

STUDENT		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

- What about the following choices?
 - $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.DoB=R_2.DoB}(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT)))$ Almost correct!
 - $\pi_{Name,Name'}(STUDENT \bowtie \rho_{S(StudentID',Name',DoB)}(STUDENT))$

• Given the following relation schema:

STUDENT		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

- What about the following choices?
 - $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.DoB=R_2.DoB}(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT)))$ Almost correct!
 - π_{Name,Name'} (STUDENT ⋈ ρ_{S(StudentID',Name',DoB)} (STUDENT))
 Almost correct!

• Find pairs of students who have the same birthday. Show their names.

(1).
$$\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.StudentID} < R_2.StudentID(\sigma_{R_1.DoB} = R_2.DoB(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT)))$$

If evaluating our queries over the following relation, what will be the result?

STUDENT		
StudentID Name DoB		
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

• (1): $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.StudentID} < R_2.StudentID(\sigma_{R_1.DoB} = R_2.DoB(\rho_{R_1}(STUDENT)))$.

STUDENT		
StudentID	Name	DoB
457	Lisa	18-Oct-1993
458	Mike	16-May-1990
459	Peter	18-Oct-1993

• (1): $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.StudentID} < R_2.StudentID(\sigma_{R_1.DoB} = R_2.DoB(\rho_{R_1}(STUDENT)))$.

STUDENT				
StudentID	Name	DoB		
457	Lisa	18-Oct-1993		
458	Mike	16-May-1990		
459	Peter	18-Oct-1993		

$ ho_{R_1}(STUDENT) imes ho_{R_2}(STUDENT)$						
R ₁ .StudentID	R ₁ .Name	R ₁ .DoB	R ₂ .StudentID	R ₂ .Name	R ₂ .DoB	
457	Lisa	18-Oct-1993	457	Lisa	18-Oct-1993	
457	Lisa	18-Oct-1993	458	Mike	16-May-1990	
457	Lisa	18-Oct-1993	458	Peter	18-Oct-1993	
458	Mike	16-May-1990	457	Lisa	18-Oct-1993	
458	Mike	16-May-1990	458	Mike	16-May-1990	
458	Mike	16-May-1990	458	Peter	18-Oct-1993	
458	Peter	18-Oct-1993	457	Lisa	18-Oct-1993	
458	Peter	18-Oct-1993	458	Mike	16-May-1990	
458	Peter	18-Oct-1993	458	Peter	18-Oct-1993	

• (1): $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.StudentID < R_2.StudentID}(\sigma_{R_1.DoB=R_2.DoB}(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT))).$

STUDENT				
StudentID	Name	DoB		
457	Lisa	18-Oct-1993		
458	Mike	16-May-1990		
459	Peter	18-Oct-1993		

$R' = \sigma_{R_1.DoB=R_2.DoB}(ho_{R_1}(STUDENT) imes ho_{R_2}(STUDENT))$						
R ₁ .StudentID	R ₁ .Name	R ₁ .DoB	R ₂ .StudentID	R ₂ .Name	R ₂ .DoB	
457	Lisa	18-Oct-1993	457	Lisa	18-Oct-1993	
457	Lisa	18-Oct-1993	459	Peter	18-Oct-1993	
458	Mike	16-May-1990	458	Mike	16-May-1990	
459	Peter	18-Oct-1993	457	Lisa	18-Oct-1993	
459	Peter	18-Oct-1993	459	Peter	18-Oct-1993	

• (1): $\pi_{R_1.Name,R_2.Name}(\sigma_{R_1.StudentID} < R_2.StudentID(\sigma_{R_1.DoB} = R_2.DoB(\rho_{R_1}(STUDENT) \times \rho_{R_2}(STUDENT))).$

STUDENT				
StudentID	Name	DoB		
457	Lisa	18-Oct-1993		
458	Mike	16-May-1990		
459	Peter	18-Oct-1993		

$R' = \sigma_{R_1.DoB=R_2.DoB}(ho_{R_1}(STUDENT) imes ho_{R_2}(STUDENT))$						
R ₁ .StudentID	R ₁ .Name	R 1.DoB	R ₂ .StudentID	R_2 .Name	R ₂ .DoB	
457	Lisa	18-Oct-1993	457	Lisa	18-Oct-1993	
457	Lisa	18-Oct-1993	459	Peter	18-Oct-1993	
458	Mike	16-May-1990	458	Mike	16-May-1990	
459	Peter	18-Oct-1993	457	Lisa	18-Oct-1993	
459	Peter	18-Oct-1993	459	Peter	18-Oct-1993	

π_{R_1} . Name , R_2 . Name $(\sigma_{R_1}$. StudentID $<$ R_2 . StudentID (R')				
R ₁ .Name	R ₂ .Name			
Lisa	Peter			

• (2): $\pi_{Name,Name'}(\sigma_{StudentlD} < StudentlD')(STUDENT) \bowtie \rho_{S(StudentlD',Name',DoB)}(STUDENT)).$

STUDENT						
StudentID	Name	DoB				
457	Lisa	18-Oct-1993				
458	Mike	16-May-1990				
459	Peter	18-Oct-1993				

• (2): $\pi_{Name,Name'}(\sigma_{StudentlD} < StudentlD')$ STUDENT $\bowtie \rho_{S(StudentlD',Name',DoB)}(STUDENT)).$

STUDENT					
StudentID	Name	DoB			
457	Lisa	18-Oct-1993			
458	Mike	16-May-1990			
459	Peter	18-Oct-1993			

$R' = STUDENT \bowtie \rho_{S(StudentlD', Name', DoB)}(STUDENT)$					
StudentID	Name	DoB	StudentID'	Name'	
457	Lisa	18-Oct-1993	459	Peter	
459	Peter	18-Oct-1993	457	Lisa	
459	Peter	18-Oct-1993	459	Peter	
457	Lisa	18-Oct-1993	457	Lisa	
458	Mike	16-May-1990	458	Mike	

• (2): $\pi_{Name,Name'}(\sigma_{StudentlD} < StudentlD')($ STUDENT $\bowtie \rho_{S(StudentlD',Name',DoB)}(STUDENT)).$

STUDENT					
StudentID	Name	DoB			
457	Lisa	18-Oct-1993			
458	Mike	16-May-1990			
459	Peter	18-Oct-1993			

$R' = STUDENT \bowtie \rho_{S(Student D',Name',DoB)}(STUDENT)$						
StudentID	Name	DoB	StudentID'	Name'		
457	Lisa	18-Oct-1993	459	Peter		
459	Peter	18-Oct-1993	457	Lisa		
459	Peter	18-Oct-1993	459	Peter		
457	Lisa	18-Oct-1993	457	Lisa		
458	Mike	16-May-1990	458	Mike		

π Name,Name' $(\sigma$ StudentID < StudentID' (R'))		
Name		Name'
Lisa		Peter

Which awards are there in USA? List these award names.

Which awards are there in USA? List these award names.

Which relation schema(s) will be used?

• AWARD(award_name, institution, country) primary key : {award_name}

Which awards are there in USA? List these award names.

Which relation schema(s) will be used?

• AWARD(award_name, institution, country) primary key : {award_name}

 $\pi_{\text{award_name}}(\sigma_{country='USA'}(\text{AWARD}))$

Find the titles of the comedy movies (i.e. the major genre of the movie is comedy) which were produced in 1994.

Find the titles of the comedy movies (i.e. the major genre of the movie is comedy) which were produced in 1994.

Which relation schema(s) will be used?

• MOVIE(title, production_year, country, run_time, major_genre) primary key : {title, production_year}

Find the titles of the comedy movies (i.e. the major genre of the movie is comedy) which were produced in 1994.

Which relation schema(s) will be used?

MOVIE(title, production_year, country, run_time, major_genre)
 primary key : {title, production_year}

 $\pi_{\text{title}}(\sigma_{\text{(production_vear}=1994)} \land (\text{major_genre}='comedy') (\text{MOVIE}))$

Find the titles of the comedy movies (i.e. the major genre of the movie is comedy) which were produced in 1994.

Which relation schema(s) will be used?

MOVIE(title, production_year, country, run_time, major_genre)
 primary key : {title, production_year}

```
\pi_{\text{title}}(\sigma_{(production\_year=1994) \land (major\_genre='comedy')}(\text{MOVIE}))
```

Is the following RA also correct?

```
\pi_{\text{title}}(\sigma_{production\_year=1994}(\text{MOVIE})) \cap \pi_{\text{title}}(\sigma_{major\_genre='comedy'}(\text{MOVIE}))
```


Find the titles of the comedy movies (i.e. the major genre of the movie is comedy) which were produced in 1994.

Which relation schema(s) will be used?

MOVIE(title, production_year, country, run_time, major_genre)
 primary key : {title, production_year}

```
\pi_{\text{title}}(\sigma_{(production\_year=1994) \land (major\_genre='comedy')}(\text{MOVIE}))
```

Is the following RA also correct?

```
\pi_{	ext{title}}(\sigma_{	ext{production\_year}=1994}(	ext{MOVIE})) \cap \pi_{	ext{title}}(\sigma_{	ext{major\_genre}='comedy'}(	ext{MOVIE}))
```

It is not correct. Consider two movies, Robot (1994, action), Robot (2001, comedy).

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which relation schema(s) will be used?

- MOVIE(title, production_year, country, run_time, major_genre)
 primary key : {title, production_year}
- PERSON(id, first_name, last_name, year_born)
 primary key : {id}
- Role(id, title, production_year, description, credits)
 primary key: {title, production_year, description}
 foreign keys: [title, production_year] ⊆ Movie[title, production_year]
 [id] ⊆ Person[id]

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which of the following RAs are correct?

- $\pi_{\text{ROLE.id}}$, first_name, last_name $(\sigma_{(production_year=1995)\land (\text{ROLE.}id=\text{PERSON.}id)}(\text{ROLE} \times \text{PERSON}))$
- π_{ROLE.id}, first_name, last_name(σ_{production_year}=1995(ROLE ⋈_{ROLE.id}=PERSON.id PERSON))
- π id, first_name, last_name $(\sigma_{production_year=1995}(ROLE \bowtie PERSON))$
- π_{id} , first_name, last_name ($\sigma_{production_year=1995}$ (MOVIE \bowtie ROLE \bowtie PERSON)) All the above RAs are correct. The last RA is also correct although the natural join of MOVIE is not needed.

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π_{id} , first_name, last_name ($\sigma_{(production_year=1995)} \land (ROLE.id=PERSON.id)$ (ROLE \times PERSON))

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π id, first_name, last_name (σ (production_year=1995) \wedge (ROLE.id=PERSON.id) (ROLE \times PERSON))

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π id, first_name, last_name (σ (production_year=1995) \wedge (ROLE.id=PERSON.id) (ROLE \times PERSON))

We need to specify id (from ROLE or PERSON) under π

• π id, first_name, last_name ($\sigma_{production_year=1995}$ (ROLE $\bowtie_{ROLE.id=PERSON.id}$ PERSON))

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π id, first_name, last_name (σ (production_year=1995) \wedge (ROLE.id=PERSON.id) (ROLE \times PERSON))

We need to specify id (from ROLE or PERSON) under π

• π_{id} , first_name, last_name($\sigma_{production_year=1995}$ (ROLE $\bowtie_{\text{ROLE}.id=\text{PERSON}.id}$ PERSON)) We need to specify id (from ROLE or PERSON) under π

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π id, first_name, last_name (σ (production_year=1995) \wedge (ROLE.id=PERSON.id) (ROLE \times PERSON))

- π_{id} , first_name, last_name($\sigma_{production_year=1995}$ (ROLE $\bowtie_{\text{ROLE}.id=PERSON.id}$ PERSON)) We need to specify id (from ROLE or PERSON) under π
- π id, first_name, last_name $(\sigma_{production_year=1995}(ROLE \bowtie PERSON))$

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π id, first_name, last_name (σ (production_year=1995) \wedge (ROLE.id=PERSON.id) (ROLE \times PERSON))

- π_{id} , first_name, last_name($\sigma_{production_year=1995}$ (ROLE $\bowtie_{\text{ROLE}.id=\text{PERSON}.id}$ PERSON)) We need to specify id (from ROLE or PERSON) under π
- π_{id} , first_name, last_name ($\sigma_{production_year=1995}$ (ROLE \bowtie PERSON))
 There is no need to specify id under π

List the ids, first names, and last names of the persons who played at least one role in the movies produced in 1995.

Which about the following RAs?

• π id, first_name, last_name (σ (production_year=1995) \wedge (ROLE.id=PERSON.id) (ROLE \times PERSON))

- π_{id} , first_name, last_name($\sigma_{production_year=1995}$ (ROLE $\bowtie_{\text{ROLE}.id=\text{PERSON}.id}$ PERSON)) We need to specify id (from ROLE or PERSON) under π
- π id, first_name, last_name ($\sigma_{production_year=1995}$ (ROLE \bowtie PERSON))
 There is no need to specify id under π
- Note the difference between Cartesian Product, Inner Join and Natural Join.

List the ids of the directors who have directed at least one movie written by themselves.

List the ids of the directors who have directed at least one movie written by themselves.

Which relation schema(s) will be used?

- MOVIE(title, production_year, country, run_time, major_genre)
 primary key : {title, production_year}
- DIRECTOR(id, title, production_year) primary key : {title, production_year} foreign keys : [title, production_year] ⊆ MOVIE[title, production_year] [id] ⊂ PERSON[id]
- WRITER(id, title, production_year, credits) primary key : {id, title, production_year} foreign keys : [title, production_year] ⊆ MOVIE[title, production_year] [id] ⊆ PERSON[id]

List the ids of the directors who have directed at least one movie written by themselves.

Which of the following RAs are correct?

- π_{DIRECTOR.id}(σ(DIRECTOR.id=WRITER.id) ∧ (DIRECTOR.title=WRITER.title) ∧
 (DIRECTOR.production_year=WRITER.production_year)(DIRECTOR × WRITER))
- π_{DIRECTOR.id}(DIRECTOR ⋈_{(DIRECTOR.id}=writer.id)∧(DIRECTOR.title=writer.title)∧

 (DIRECTOR.production_year=writer.production_year) WRITER)
- $\pi_{id}(DIRECTOR \bowtie WRITER)$

All the above RAs are correct.

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{(DIRECTOR.}id}=\text{writer.}id)\land(\text{DIRECTOR.}ittle=\text{writer.}title)}$ (DIRECTOR × WRITER))

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\text{DIRECTOR.id}}(\sigma_{(\text{DIRECTOR.}id=\text{writer.}id)} \land (\text{DIRECTOR.}ittle=\text{writer.}title)$ (DIRECTOR × WRITER))

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\mathsf{DIRECTOR.id}}(\sigma_{(\mathsf{DIRECTOR.}id} = \mathsf{writer.}id) \land (\mathsf{DIRECTOR.}itle = \mathsf{writer.}title)$ (DIRECTOR × WRITER))

We need to compare *production_year*

• $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{DIRECTOR.}id=\text{WRITER.}id}(\text{DIRECTOR} \times \text{WRITER}))$

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\text{DIRECTOR.id}}(\sigma_{(\text{DIRECTOR.}id=\text{writer.}id)} \land (\text{DIRECTOR.}ittle=\text{writer.}title)$ (DIRECTOR × WRITER))

We need to compare *production_year*

• $\pi_{\mathsf{DIRECTOR.id}}(\sigma_{\mathsf{DIRECTOR.}id=\mathsf{WRITER.}id}(\mathsf{DIRECTOR} \times \mathsf{WRITER}))$ This query lists ids of the directors who have written at least one movie.

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{(DIRECTOR.}id}=\text{writer.}id)\land(\text{DIRECTOR.}ittle=\text{writer.}title)$ (DIRECTOR × WRITER))

- $\pi_{\mathsf{DIRECTOR.id}}(\sigma_{\mathsf{DIRECTOR.}id=\mathsf{WRITER.}id}(\mathsf{DIRECTOR} \times \mathsf{WRITER}))$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(DIRECTOR) \cap \pi_{id}(WRITER)$

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{(DIRECTOR.}id}=\text{writer.}id)\land(\text{DIRECTOR.}title=\text{writer.}title)$ (DIRECTOR × WRITER))

- $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{DIRECTOR.}id=\text{WRITER.}id}(\text{DIRECTOR} \times \text{WRITER}))$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(DIRECTOR) \cap \pi_{id}(WRITER)$ This query lists ids of the directors who have written at least one movie.

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\text{DIRECTOR.id}}(\sigma_{(\text{DIRECTOR.}id=\text{writer.}id)} \land (\text{DIRECTOR.}ittle=\text{writer.}title)$ (DIRECTOR × WRITER))

- $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{DIRECTOR.}id=\text{WRITER.}id}(\text{DIRECTOR} \times \text{WRITER}))$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(DIRECTOR) \cap \pi_{id}(WRITER)$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(\pi_{id,title,production_year}(DIRECTOR) \cap \pi_{id,title,production_year}(WRITER))$

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\mathsf{DIRECTOR.id}}(\sigma_{(\mathsf{DIRECTOR.}id} = \mathsf{writer.}id) \land (\mathsf{DIRECTOR.}it!le = \mathsf{writer.}tit!le)$ (DIRECTOR × WRITER))

- $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{DIRECTOR.}id=\text{WRITER.}id}(\text{DIRECTOR} \times \text{WRITER}))$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(DIRECTOR) \cap \pi_{id}(WRITER)$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(\pi_{id,title,production_year}(DIRECTOR) \cap \pi_{id,title,production_year}(WRITER))$ Correct.

List the ids of the directors who have directed at least one movie written by themselves.

Which about the following RAs?

• $\pi_{\mathsf{DIRECTOR.id}}(\sigma_{(\mathsf{DIRECTOR.}id} = \mathsf{writer.}id) \land (\mathsf{DIRECTOR.}it!le = \mathsf{writer.}tit!le)$ (DIRECTOR × WRITER))

- $\pi_{\text{DIRECTOR.id}}(\sigma_{\text{DIRECTOR.}id=\text{WRITER.}id}(\text{DIRECTOR} \times \text{WRITER}))$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(DIRECTOR) \cap \pi_{id}(WRITER)$ This query lists ids of the directors who have written at least one movie.
- $\pi_{id}(\pi_{id,title,production_year}(DIRECTOR) \cap \pi_{id,title,production_year}(WRITER))$ Correct.

List the ids of the directors who have never played any roles in the movies directed by themselves.

List ids of all directors.

List the ids of the directors who have never played any roles in the movies directed by themselves.

List ids of all directors.

$$D_1 = \pi_{id}(DIRECTOR)$$

List the ids of the directors who have never played any roles in the movies directed by themselves.

List ids of all directors.

$$D_1 = \pi_{id}(DIRECTOR)$$

 List ids of director who have played at least one role in the movies directed by themselves.

List the ids of the directors who have never played any roles in the movies directed by themselves.

List ids of all directors.

$$D_1 = \pi_{id}(DIRECTOR)$$

 List ids of director who have played at least one role in the movies directed by themselves.

$$D_2 = \pi_{id}(DIRECTOR \bowtie ROLE)$$

List the ids of the directors who have never played any roles in the movies directed by themselves.

List ids of all directors.

$$D_1 = \pi_{id}(DIRECTOR)$$

 List ids of director who have played at least one role in the movies directed by themselves.

$$D_2 = \pi_{id}(DIRECTOR \bowtie ROLE)$$

 List the ids of the directors who have never played any roles in the movies directed by themselves.

List the ids of the directors who have never played any roles in the movies directed by themselves.

List ids of all directors.

$$D_1 = \pi_{id}(DIRECTOR)$$

 List ids of director who have played at least one role in the movies directed by themselves.

$$D_2 = \pi_{id}(DIRECTOR \bowtie ROLE)$$

 List the ids of the directors who have never played any roles in the movies directed by themselves.

Result =
$$D_1 - D_2$$
.

• Relational algebra is a query language with **RA operators**:

• Relational algebra is a query language with **RA operators**:

```
\sigma selection \pi projection \rho renaming \uparrow
```

operator

• Relational algebra is a query language with **RA operators**:

• Relational algebra is a query language with **RA operators**:

 σ selection π projection ρ renaming \uparrow Unary operator

U union
∩ intersection
− difference

↑
Binary

Binary operator (Type compatible)

 \times cartesian product \bowtie natural Join \bowtie_{ϕ} Inner Join \Uparrow Binary

operator

(credit cookie) History of Algebra

http://historyofpythagoreantheorem.weebly.com/algebra.html

(credit cookie) History of Algebra

http://historyofpythagoreantheorem.weebly.com/algebra.html

(credit cookie) Diophantus of Alexandria

'Here lies Diophantus', the wonder behold.

Through art algebraic, the stone tells how old:
'God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his father's life chill fate took him.
After consoling his fate by the science of numbers for four years, he ended his life'.

(credit cookie) Diophantus of Alexandria

'Here lies Diophantus', the wonder behold.

Through art algebraic, the stone tells how old:
'God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his father's life chill fate took him.
After consoling his fate by the science of numbers for four years, he ended his life'.

$$x = x/6 + x/12 + x/7 + 5 + x/2 + 4$$

(credit cookie) Diophantus of Alexandria

'Here lies Diophantus', the wonder behold.

Through art algebraic, the stone tells how old:
'God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his father's life chill fate took him.
After consoling his fate by the science of numbers for four years, he ended his life'.

$$x = x/6 + x/12 + x/7 + 5 + x/2 + 4 \Rightarrow x = 84$$

(credit cookie) Arithmetica and Margin-writing by Fermat

(credit cookie) Arithmetica and Margin-writing by Fermat

"If an integer n is greater than 2, then $a^n + b^n = c^n$ has no solutions in non-zero integers a, b, and c. I have a truly marvelous proof of this proposition which this margin is too narrow to contain."

—Pierre de Fermat (1607-1665)

(credit cookie) Arithmetica and Margin-writing by Fermat

"If an integer n is greater than 2, then $a^n + b^n = c^n$ has no solutions in non-zero integers a, b, and c. I have a truly marvelous proof of this proposition which this margin is too narrow to contain."

-Pierre de Fermat (1607-1665)

Fermat's Last Theorem was proved by Andrew Wiles in 1994.