Lecture 7: Cellular Network

Hung-Yu Wei National Taiwan University

Announcement

- 11/30 midterm
- 11/23, 11/16 project proposal presentation
 - 2~3 people
 - 12 minutes
- 11/16, 11/9
 - Transport layer
 - Case study: multimedia over wireless
- Email me your group members by next
 Friday
 - hywei@cc.ee.ntu.edu.tw

Cellular Basics

Terminologies: BS & MS

- Base station (BS)
 - Access point (AP)
- Mobile station (MS)
 - SS (Subscriber station)
 - MT (mobile terminal)
 - MN (mobile node)
- Downlink
 - Forward link
 - BS→MS
- Uplink
 - Reverse link
 - MS→BS

Terminologies: cell and sector

- · Cell
 - Coverage area of a BS
- Sector
 - Partial area of a cell that is served by a directional antenna

Terminology: handoff

Handoff

- MS changes serving BS due to movement or radio channel variation

16 and 26 cellular systems

- 1st generation
 - AMPS
 - · Analog
 - Analog FM modulation
 - FDMA
- 2nd generation
 - DAMPS(IS-54)
 - · U.S.
 - Digital PSK modulation
 - FDM/TDMA
 - GSM
 - · Europe, Asia
 - Digital PSK modulation
 - FDM/TDMA
 - IS-95 CDMA
 - U.S.
 - Digital PSK modulation
 - FDM/CDMA

Basic Cellular Concept

· "Cell"

- Typically, cells are hexagonal
- In practice, it depends on available cell sites and radio propagation conditions

Spectrum reuse

- Reuse the same EM spectrum in other geographical location
- Frequency reuse factor

Frequency Reuse

- · Cluster
 - A group of cells
- Frequency reuse factor
 - (Total # of channels in a cluster) / (Total # of channels in a cell)

TDMA/FDMA Spatial Reuse

A frequency reuse example

Example

- Frequency reuse factor = 7

- Cluster size = 7

· Question

- What are other possible frequency reuse patterns?

Cluster

- The hexagon is an ideal choice for macrocellular coverage areas, because it closely approximates a circle and offers a wide range of tessellating reuse cluster sizes.
- · A cluster of size N can be constructed if,
 - $-N = i^2 + ij + j^2$.
 - i,j are positive integer
- · Allowable cluster sizes are
 - N = 1,3,4,7,9,12,...

Determine frequency reuse pattern

- · Co-channel interference [CCI]
 - one of the major factors that limits cellular system capacity
 - CCI arises when the same carrier frequency is used in different cells.
- · Determine frequency reuse factor
 - Propagation model
 - Sensitivity to CCI

Reuse distance

- Notations
 - D: Reuse distance
 - · Distance to cell using the same frequency
 - r : Cell radius
 - N: Frequency reuse factor
- Relationship between D and r
 - $-D/r=(3N)^0.5$
 - $-N = i^2 + ij + j^2$
- Proof?

$$D^{2} = (L \cdot i)^{2} + (L \cdot j)^{2} - 2(L \cdot i)(L \cdot j)\cos(2\pi/3)$$

$$D^{2} = L^{2} \cdot i^{2} + L^{2} \cdot j^{2} - 2L^{2} \cdot i \cdot j \cdot (-0.5)$$

$$D^2 = L^2(i^2 + j^2 + ij)$$

$$D/r = \sqrt{3(i^2 + j^2 + ij)} = \sqrt{3N}$$

Compute D based on "law of cosine"

Cell splitting

- · Smaller cells have greater system capacity
 - Better spatial reuse
- As traffic load grows, larger cells could split into smaller cells

Sectors

- · Use directional antenna reduces CCI
 - Why? Think about it!
- 1 base station could apply several directional antennas to form several sectors
- 3-sector cell

Forward link and reverse link

- Forward link
 - Also called downlink
 - $BS \rightarrow MS$
- Reverse link
 - Also called uplink
 - MS→BS
- How forward link and reverse link are separated?
 - FDD (more often)
 - Frequency Division Duplex
 - TDD
 - Time Division Duplex
 - · Why is it more difficult to engineer a TDD system?

More about cellular

Cell size & FRF

- Cell size should be proportional to 1/(subscriber density)
- · Co-channel interference is proportional to
 - -1/D
 - r
 - 1/N^0.5
 - Path-loss model
- · Total system capacity is proportional to
 - 1/N
 - · N: Frequency reuse factor

Example: N=7

- Frequency reuse factor N=7
 - $-N = i^2 + ij + j^2$
 - -(i,j)=(1,2) or (2,1)
- · Other commonly used patterns
 - -N=3
 - (1,1)
 - N=4
 - · (2,0); (0,2)
- N=1 is possible
 - CDMA

Compute total system capacity

- Example 11-1
 - Total coverage area = $100 \text{ mile}^2 = 262.4 \text{ km}^2$
 - Total 1000 duplex channels
 - Cell radius = 1km
 - N=4 or N=7
- What's the total system capacity for N=4 and N=7?

Compute total system capacity

- # of cells = 262.4/2.6=100 cells
- # of usable duplex channels/cell
 - S=(# of channels)/(reuse factor)
 - $-S_4=1000/4=250$
 - $-S_7=1000/7=142$
- Total system capacity (# of users could be accommodated simultaneously)
 - C=5*(# of cells)
 - C₄=250*100=25000
 - C₇=142*100=14200

Evolving deployment

Early stage

- Intermediate stage
- Late stage

- Multiple stages of deployment
- ·Deployment evolves with subscriber growth

Practical deployment issues

- Location to setup antenna
 - Antenna towers are expensive
 - Local people do not like BSs
 - Antenna/BS does not look like antenna/BS
- Antenna
 - Omni-directional
 - Directional antenna

Wireless QoS

- Quality of Service (QoS)
 - Achieving satisfactory wireless QoS is an important design objective
- Quality measures
 - Channel availability (wireless network is available when users need it)
 - Blocking probability
 - Dropping probability
 - Coverage: probability of receiving adequate signal level at different locations
 - Transmission quality: fidelity/quality of received signals
 - BER
 - FFR
- Application-dependent
 - Voice
 - Data
 - Multimedia

Wireless Qo5

- Admission control
 - Blocking
 - Poor reception quality
- · Co-channels
 - Frequency reuse factor
 - Cell planning
 - Frequency planning

Worst-Case CCI on the Forward Channel

 Co channel interference [CCI] is one of the prime limitations on system capacity. We use the propagation model to calculate CCI.

 There are six first-tier, co-channel BSs, two each at (approximate) distances of D-R, D, and R+D and the worst case (average) Carrier-to-(Co-Channel) Interference [CCI] is

$$\Lambda = \frac{1}{2} \frac{R^{-\beta}}{(D-R)^{-\beta} + D^{-\beta} + (D+R)^{-\beta}}$$

Worst case CCI on the forward channel

Overlay

- · Dual-mode or dual-frequency phones
 - Overlay different wireless access technologies
 - · Different technologies
 - Same technology operating in different bands
- Increase system capacity
 - Reduce blocking
- · Example:
 - GSM 900/1800
 - TDMA+CDMA

Overlaid cells

Basic Cellular Network Architecture

- Home/ Gateway MSC: receives incoming calls for mobiles
 - if using a home MSC, it is permanently assigned
- Serving MSC: is assigned based on location of MS
- HLR: permanent repository for service profiles, pointer to VLR
- VLR: temporary repository for profile information and pointer to serving MSC

Handoff

- Handoff threshold: typically, -90~-100 dBm (1~10uW)
- · Need to prevent from "ping-pong" effect

Handoff Management

- the new BS before the link between the old BS and the MS becomes unusable
- There are three primary issues that need to be considered for handoff management
 - Handoff detection
 - Channel assignment
 - Radio link transfer

Cell Crossing Rate: Fluid Flow Mobility Model [for Handoffs]

- Model Assumptions
 - Mobile nodes move at constant rate v
 - Mobile nodes move in random direction, which is uniformly-distributed over [0,2 π]
 - Mobile nodes are uniformly-distributed in the cells.
- The cell crossing rate is given by

$$r_C = \frac{\rho v l}{\pi}$$

 r_C : cell boundary cross rate (1/sec)

 ρ : active mobile node density $(1/m^2)$

v: mobile velocity (m/\sec)

l: cell perimeter (m)

Handoff Modes

Handoff algorithms can be characterized into forward and backward types

Backward handoff

- Initiate the handoff process through the serving BS
- Access to the new channel is not made until the control entity of the new channel has confirmed the allocation of resources.
- Advantage: signaling information is through an existing radio link
 - The establishment of a new signaling channel is not required during the initial stages of the handoff process.
- Disadvantage: may fail in conditions where the link quality with the serving BS is rapidly deteriorating.
- Used in GSM and most TDMA systems.

Forward handoff

- initiate the handoff process via a channel to the target BS without relying on the "old" channel during the initial phase of the handoff.
- Advantage is a faster handoff
- Disadvantage is a reduction in handoff reliability
- Used in DFCT
- Handoffs can also be either hard or soft handoffs

Link Quality Monitoring

- To initiate a handoff, two issues must be considered
 - Who initiates the handoff process?
 - How is the need for the handoff detected?
- Various parameters for link quality evaluation
 - Bit error rate [BER]
 - Carrier-to-interference ratio [CIR]
 - Distance
 - Traffic load
 - Signal strength
- Temporal averaging of the received carrier plus interference [C+I]
 - Advantages
 - Simplicity
 - Good performance in macrocellular systems.
 - Disadvantages
 - Efficient systems are interference [CCI] limited(a good C+I does r necessarily imply a large C/I)

3 Types of Handoff Algorithms

Network Controlled Handoff [NCHO]:

- Link quality is only monitored by the serving BS and the surrounding BSs.
- The handoff decision is made under the centralized control of a mobile telephone switch

Mobile Assisted Handoff [MAHO]: Network Control with MS assisting

- Both the serving BS and MS measure link quality
- Link quality measurements of the alternate BSs are only obtained by the MSs
- The MS periodically relays the link quality measurements back to the serving
 BS

Mobile Controlled Handoff [MCHO]:

- link quality is measured by both BS and the MS.
- Like MAHO, the measurements of link quality for alternate BSs are done at the MS, and both inter and intracell handoffs are supported
- Unlike MAHO, the link measurements at the serving BS are relayed to the MS, and the handoff decision is made by the MS.

Link Quality Measurement and Handoff Initiation

- When a new call arrives, the MS must be connected to a suitable BS.
- Also, when a MS traverses a cell boundary → intercell handoff
 - Sometimes an intracell handoff is desirable when the link with the serving
 BSs is affected by excessive interference
- The handoff process consists of two stages
 - Link quality evaluation and handoff initiation
 - Allocation of radio and network resources
- Cellular systems with smaller cell sizes require faster and more reliable link quality evaluation and handoff algorithms
 - The handoff rate increases with only the square root of the call density in macrocells, but linearly with the call density in microcells.
 - Since the MS has a certain probability of handoff failure, handoff
 algorithms must become more robust and reliable as the cell size decreases

Handoff Failures

- In the link transfer procedure, there are several reasons why handoff failures occur:
 - No channel is available on the selected BS
 - Handoff is denied by the network for reasons such as lack of resources [e.g., the MS has exceeded some limit on the number of handoffs that my be attempted in a period of time].
 - It takes the network too long to set up the handoff after it has been initiated.
 - The target links fails in some way during the execution of the handoff
- The effect of network response time on the call completion probability can be significant; especially in the following cases
 - small offered load
 - mobile residence time distribution at a cell has a small variance

Channel Assignment

Goals:

- Service quality
- Implementation complexity of the channel assignment algorithm
- Number of database lookups
- Spectrum utilization
- Handoff requests and initial access attempts compete for radio resources.
 - At a busy BS, call attempts that fail because there are no available channels are called blocked calls.
 - Handoff requests for existing calls that must turned down because there are no available channels are called *forced terminations*.
 - In general, forced terminations are less desirable than blocked call
- Successful handoff access is intimately tied to the radio technology of the channel assignment algorithm
 - The nonprioritized scheme
 - The reserved channel scheme
 - The queueing priority scheme
 - The subrating scheme

Handoff Procedure

Call Delivery

Call Delivery

- · The other user call the mobile
 - Find out where is the mobile
 - Establish the call

Registration (Network)

Registration

- · Mobile register from the new location
 - Mobile moves to a new place
 - Register the new location
 - Update new foreign network
 - Update home network
 - · Update (remove old info) old foreign network

GSM Registration (Air Interface)

GSM Location Area(LA)Registration

GSM Call Termination (call termination = call delivery)

Call termination

- 2 sets of procedure
 - Different initiators
 - BS pages MS
 - MS request channel first

