SCHEMATIC ALGORITHM TRANSFORMATION

Alessandro Coglio

Kestrel Institute

© 2020

Generic Schema old specification: S(f) = 3

old specification: $S(f) \triangleq \Phi(f)$, $S \subseteq U^n \rightarrow U^m$

schematic algorithm $\begin{cases} A(f_1,...,f_p) \triangleq ..., A \in (\mathcal{U}^{n_2},\mathcal{U}^{m_1}) \times ... \times (\mathcal{U}^{n_p},\mathcal{U}^{m_p}) \to \mathcal{U}^{m_p} \to \mathcal{U}^{m_p} - \text{algorithm function} \end{cases}$ 2^{n_1} order each of these may actually depend on a strict subset of $\{f_1,...,f_p\}$

condition: MTC) $\Phi(f)$ matches $\Psi(f)$, i.e. \exists substitution σ . $\Phi(f) = \sigma(\Psi(f))$

 $\left\{ \begin{array}{l} S_{1}(f_{1},...,f_{p}) \stackrel{\triangle}{=} \sigma(Y_{1}(f_{1},...,f_{p})) \\ \vdots \\ S_{q}(f_{1},...,f_{p}) \stackrel{\triangle}{=} \sigma(Y_{q}(f_{1},...,f_{p})) \\ \end{array} \right\} \text{ these may be easier to solve when }$ $1 \text{ new specifications} \left\{ \begin{array}{l} S_{1}(f_{1},...,f_{p}) \stackrel{\triangle}{=} \sigma(Y_{q}(f_{1},...,f_{p})) \\ S_{q}(f_{1},...,f_{p}) \stackrel{\triangle}{=} \left(f_{1},...,f_{p}\right) \\ S_{1}(f_{1},...,f_{p}) \stackrel{\triangle}{=} \left(f_{1},...,f_{p}\right) \\ \end{array} \right\}$

 $\begin{array}{c}
(SS') \vdash S'(f,f_1,...,f_p) \Rightarrow S(f) \\
S'(f,f_1,...,f_p) \xrightarrow{SS'} f = A(f_1,...,f_p) \\
S_2(f_1,...,f_p) \xrightarrow{SS_3} \sigma(\sqrt[3]{1}(f_1,...,f_p)) \xrightarrow{COR} \sigma(\Psi(A(f_1,...,f_p)))
\end{array}$ $\begin{array}{c}
(SS') \vdash S'(f,f_1,...,f_p) \Rightarrow S(f) \\
S_2(f_1,...,f_p) \xrightarrow{SS_3} \sigma(\sqrt[3]{1}(f_1,...,f_p)) \xrightarrow{COR} \sigma(\Psi(A(f_1,...,f_p)))
\end{array}$

 $\hat{f}_{1},...,\hat{f}_{p}$ solutions for $S_{1},...,S_{q}$ => $A(\hat{f}_{1},...,\hat{f}_{p})$ solution for S - final solution from sub-solutions $+ S_{1}(\hat{f}_{1},...,\hat{f}_{p})_{\wedge \dots \wedge} S_{q}(\hat{f}_{1},...,\hat{f}_{p})$ + $S(A(\hat{f}_{1},...,\hat{f}_{p})$

see Specifications & Refinements notes for background on 5 and its forms

Divide & Conquer List 0-1 Schema $A(g,h)(x,\overline{z}) \triangleq \inf_{z \in \mathbb{Z}} \operatorname{atom}(x) \text{ then } g(x,\overline{z}) \text{ else } h(\operatorname{car}(x),\overline{z}, A(g,h)(\operatorname{cdr}(x),\overline{z})) \qquad z=z_1,...,z_p \quad p>0$ $\mu_A(x,\overline{z}) \triangleq \operatorname{len}(x) \qquad \forall_A \triangleq \forall \qquad \text{Then } + \neg \operatorname{atom}(x) \Rightarrow \operatorname{len}(\operatorname{cdr}(x)) \leftarrow \operatorname{len}(x)$ $\overline{z} \in \mathbb{Z} = \operatorname{atom}(x) \Rightarrow p(x,\overline{x},g(x,\overline{z}))$

ZERO $\forall \times, \times, Z$. atom $(\times) \Rightarrow \rho(\times, \times, g(\times, Z))$ ONE $\forall \times, \times, y, Z$. cons $\rho(x) \wedge \rho(\operatorname{cdr}(x), \times, y) \Rightarrow \rho(\times, \times, h(\operatorname{cor}(x), Z, y))$ (ALL) $\forall \times, \times, Z$. $\rho(\times, \times, A(g,h)(\times, Z))$

 $(OR) \vdash (ZERO) \land (ONE) \Rightarrow ALL$ $atom(x) \xrightarrow{\mathcal{E}_{A}} A(g_{1}h)(x,\overline{z}) = g(x,\overline{z}) \Rightarrow \rho(x,\overline{x},A(g_{1}h)(x,\overline{z}))$ $induct A \qquad (Consp(x)) \xrightarrow{\mathcal{E}_{A}} A(g_{1}h)(x,\overline{z}) = h(car(x),\overline{z},A(g_{1}h)(cdr(x),\overline{z})) \Rightarrow \rho(x,\overline{x},A(g_{1}h)(x,\overline{z}))$ $(OFD) \qquad (OFD) \qquad (ONE) \Rightarrow A(g_{1}h)(x,\overline{z}) = g(x,\overline{z}) \Rightarrow \rho(x,\overline{x},A(g_{1}h)(cdr(x),\overline{z})) \Rightarrow \rho($

applicable to specification form $\mathbb{R}f\alpha$ $S(f) = (\forall x, \overline{x}, R(x, \overline{x}, f(x, \overline{\alpha}(\overline{x})))]$ $\overline{Z} := \overline{\alpha}(\overline{x})$ $P := \mathbb{R}$ $\begin{cases} \overline{ZERO} A & \forall x, \overline{x}, \text{ atom}(x) \Rightarrow R(x, \overline{x}, g(x, \overline{\alpha}(\overline{x}))) \\ \forall x, \overline{x}, y, \text{ consp}(x), R(\text{cdr}(x), \overline{x}, y) \Rightarrow R(x, \overline{x}, h(\text{car}(x), \overline{\alpha}(\overline{x}), y)) \end{cases}$ $\Rightarrow f = A(g, h)$ $Alla & \forall x, \overline{x}, R(x, \overline{x}, A(g, h)(x, \overline{\alpha}(\overline{x}))) \end{cases}$