جلسه دوم: معرفی زبان وسیستم اصل موضوعی

Language of SA and it's Axiomatic System

گزاره چیست؟ آیا دو عبارت زیر، دو گزاره متفاوت را بیان می کنند؟

«برف سید است»

«Snow is white»

ادات یا عملگرهای منطقی-connectives

نماد	نام	در زبان طبیعی
^	Conjunction عطف	و
V	Disjunction فصل	ـــيــــــــــــــــــــــــــــــــــ
~	Negation نقض	چنین نیست که
D	Conditional شرط	اگر…آنگاه…
	Biconditional دو شرطی	اگر و تنها اگر

عطف – conjunction

$$\frac{P}{1}$$
 مروز هوا ابرى است و من خوشحالم.

 $P \wedge R$

 $S \wedge T$. حسین و حسن خوابیدند = حسین خوابید و حسن خوابید.

3. با اینکه تابستان است اما هوا گرم نیست.

 $V \wedge U$

4. سعید و زینب ازدواج کردند.

66666

66666

5. سعید مرد و او را قبر کردند.

فصل – Disjunction

 $P \vee R$

 $S \vee T$

1. مجموعه a يا عضو x است يا عضو y.

2. امروز یا شنبه است یا یکشنبه.

نقض – Negation

1. حسن به مدرسه نمی رود .

2. اینطور نیست که او آدم بدی باشد.

3. امروز یا شنبه است یا یکشنبه.

~5

 $(S \land \sim T) \lor (T \land \sim S)$

شرط – Conditional

$$\sim S\supset U$$
 وج نباشد آنگاه m فرد است. m زوج نباشد آنگاه

 $P \supset R$

«تنها اگر»، «مگر اینکه»–only if , unless

$$P \supset R$$
 $P \supset R$ $P \supset R$

در واقع توجه به درس، شرط لازم ولی نه کافی برای پاس شدن است

دوشرطی –Biconditional

 $P \equiv R$. سعید مجرد است اگر و تنها اگر ازدواج نکرده باشد. 1

 $S \equiv U$ زوج است اگر و تنها اگر m بر ۲ تقسیم پذیر m = 0 باشد.

برخی عملگر های دیگر

Sheffer Stroke , NAND: $P|R =_{df} \sim (P \land R)$

NOR: $P \oplus R =_{df} \sim (P \vee R)$

"Pinout," or "connection" diagram for the 4011 quad NAND gate

توجه: با عملگر شفر میتوان تمام عملگرهای منطقی دیگر را تعریف

سوال: أيا كلماتي مانند «سپس» يا «قبل از» مي توانند عملگر منطقي محسوب شوند؟

تمایز بین «نحو» و «معناشناسی»

Logic

تمایز بین «نحو» و «معناشناسی»

Logic

$$Lang = \{A_0, A_1, A_2...\} \cup \{\sim, \supset\} \cup \{(\ ,\)\}$$

علائم نشانه گذاری ادات منطقی جمله نشانه ها

قرارداد: گاه به جای A_0,A_1,A_2 از نمادهای P,Q,R...P',Q',R استفاده می کنیم

$$Lang^* = String = \{x_0x_1 x_2...x_n \mid x_i \in Lang\}$$

 $0 \le i \le n$ که او n جز N هستند و

مجموعه String برابر با تمامی جایگشت های متناهی از نماد های String است. برخی از اعضای مجموعه String:

$$A_0$$
, $A_{12}A_0$ (, ((((\wedge , $(A_5 \supset A_5)$, $\sim \sim \wedge$

$$Wff = \begin{cases} 1: \varphi \in String, \varphi = A_n & \forall n \in \mathbb{N} \\ 2: \varphi, \psi \in Wff \Rightarrow (\varphi \supset \psi) \in Wff \\ 3: \varphi \in Wff \Rightarrow \neg \varphi \in Wff \end{cases}$$

مجموعه بالا را مجموعه خوش ساخت مینامیم، φ,ψ فرا متغییر در فرا زبان هستند. به وضوح $Wff \subset String$ است. برخی از اعضای $Wff \subset String$:

$$A_0$$
, $\sim A_1$ $(A_5 \supset \sim A_5)$, $(A_1 \supset A_2) \supset \sim A_2$

قرارداد: گاه برای فرمول های مولکولی پرانتز خارجی را نمیگذاریم، و در عباراتی که پرانتز تو در تو تکرار شده است به جای آن براکت «{}» استفاده میکنیم.

تعریف:

$$(\varphi \vee \psi) =_{df} (\sim \varphi \supset \psi)$$

$$(\varphi \wedge \psi) =_{df} \sim (\varphi \supset \sim \psi)$$

$$(\varphi \equiv \psi) =_{df} \sim ((\varphi \supset \sim \psi) \supset \sim (\varphi \supset \sim \psi))$$

مانند عملگر شفر با عملگرهای ~ و ⊂ نیز بقیه عملگرها را میتوان تعریف کرد.

 S_A اصل موضوعی

سیستم اصل موضوعی (Axiomatic) چیست؟

مجموعه ای از گزاره های پایه یا اصل(Axiom)، که خود بدیهی محسوب می شوند و اثباتی ندارند، ولی به وسیله آنها و قواعدی می توان جملات جدید استنتاج کرد.

S_A اصل موضوعی

نمونه از سیستم اصل موضوعی، اصول موضوعه حساب پئانو:

اصل مقدار اولیه: یک شی خاص وجود دارد که 0 نام دارد، و 0 یک عدد طبیعی است.

اصل تالی: برای هر عدد طبیعی n دقیقاً یک عدد طبیعی وجود دارد که آن را تالی می گویند، S(n).

اصل مقدم: 0 تالی هیچ عددی نیست، و همه اعداد به جز 0 تالی عددی هستند که آن را مقدم آن عدد مینامیم. مثلاً وقتی دو عدد a و b داشته باشیم، اگر b تالی a باشد آنگاه a مقدم b است.

اصل یکتایی: هیچ دو عدد طبیعی تالی مشترکی ندارند.

اصول تساوی: اعداد می توانند برای تساوی مقایسه شوند. این عمل سه قاعده دارد: تساوی بازتابی است، یعنی هر عدد با خودش مساوی است؛ تساوی تقارنی است، یعنی اگر عدد a مساوی با a باشد آنگاه a b تساوی متعدی است، یعنی اگر a a a b b آنگاه a.

اصل استقرا: برای یک جمله مانند P ، P برای تمام اعداد صادق است اگر

سيسته

S_A اصل موضوعی

Axioms
$$\begin{cases} A1: \varphi \supset (\psi \supset \varphi) \\ A2: ((\varphi \supset (\psi \supset \theta)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \theta)) \\ A3: ((\sim \varphi \supset \sim \psi) \supset (\psi \supset \varphi)) \end{cases}$$

Rule(s)
$$\begin{cases} (\varphi \supset \psi) & \text{MP (Modus Ponens)} \\ \frac{\varphi}{\because \psi} & \text{a.s.} \end{cases}$$

عبارات ϕ و ψ و θ مربوط به فرازبان هستند و میتوانند نماینده هر جمله خوش ساخت باشند.

S_A اصل موضوعی S_A :

برهان (Proof):

Wff به عنوان مقدمات زیرمجموعه ای از Wff باشد، آنگاه دنباله (یا رشته) متناهی از اعضای Wff را برهان می نامیم آگر هر فرمول از رشته: Axioms باشد.

اشد، یعنی عضو Σ باشد. Σ

٣-يا از تعاريف فرمول هاى قبل بدست آمده باشد.

٤-يا به وسيله قاعده MP از فرمول هاى قبل بدست أمده باشد.

 $\Sigma \vdash \varphi$

اگر φ آخرین فرمول از دنباله باشد، آنگاه می نویسیم : یعنی « φ از Σ اثبات پذیر است»

S_A اصل موضوعی

قضیه(Theorem):

اگر φ بدون هیچ مقدمه ای اثبات پذیر باشد، آنگاه φ را یک قضیه می نامیم. یا به عبار تی اگر داشته باشیم $\Sigma = \emptyset$ و $\Sigma \vdash \varphi$.

 $\vdash \varphi$ انگاه مینویسیم:

A1:
$$\varphi \supset (\psi \supset \varphi)$$

A2: $((\varphi \supset (\psi \supset \theta)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \theta))$
A3: $((\sim \varphi \supset \sim \psi) \supset (\psi \supset \varphi))$

S_A اصل موضوعی

آیا $P \supset P$ یک قضیه است؟

$$1 P \supset [(P \supset P) \supset P]$$

$$2\{P\supset [(P\supset P)\supset P]\}\supset \{[P\supset (P\supset P)]\supset (P\supset P)\}$$

$$3[P \supset (P \supset P)] \supset (P \supset P)$$

$$4P\supset (P\supset P)$$

$$5P \supset P$$

A1,
$$\varphi$$
=P, ψ =(P \supset P)

A2,
$$\varphi$$
=P, ψ =(P \supset P), θ =P

A1,
$$\varphi$$
=P, ψ =P