

Criptografía y Seguridad

Criptografía: Cifrado asimétrico y Firma digital

- Un criptosistema CCA-Secure permite enviar información manteniendo:
 - Confidencialidad
 - Integridad

 Pero requiere que ambas partes conozcan una misma clave

- Las claves no pueden transmitirse por un canal inseguro.
- ¿Como se comparten las claves?
- Dos puntos → Uso de canal seguro
- Multiples puntos →
 - Una clave por cada combinación
 - Cada parte debe administrar n-1 claves
 - ¿Si hay n puntos cuantas claves se necesitan?
 - Un punto unico de confianza
 - También referido como Trusted third party

- KDC Key Distribution Centers
 - Son entidades que centralizan intercambio de claves
 - Comparten una clave con cada entidad que participa (ka, kb, kc, ...)
 - Si A quiere comunicarse con C, envía un pedido al KDC
 - El KDC crea una nueva clave k_s , clave de sesión, y se la envía a A y C, cifrandola con k_a y k_c respectivamente
- Permiten tener n claves para n entidades
- Pero es un único punto de falla

KDC – Key Distribution Centers

Criptografía asimétrica

• "We stand today on the brink of a revolution in cryptography", Diffie-Hellman (1976).

Criptografía asimétrica

- Se basa en la asimetría de ciertos problemas
 - Por ejemplo, es fácil cerrar un candado
 - Pero se necesita una llave para abrirlo
- ¿Se puede crear un criptosistema donde existan dos contraseñas?
 - Una para cifrar, la otra para descifrar.
 - Incluso si un atacante posee la clave para cifrar, no puede recuperar el mensaje
 - Se puede publicar dicha clave a proposito !!!
 - También llamada criptografía de clave pública

Criptografía asimétrica

- Intercambio de claves (nuevo!)
 - Permite a dos partes generar una clave compartida en linea
- Cifrado asimétrico
 - Similar al cifrado simétrico
- Firma digital
 - Similar al MAC

Algebra, topología, aritmetica, ...

- Grupo algebraico: G,+ (conjunto y operación)
 - Clausura
 - Asociatividad
 - Neutro
 - Inverso
- Subgrupo (G, G', +)
 - (G,+) es un grupo, (G', +) es un grupo
 - G contiene a G' y G' ≠Ø
- Grupo abeliano: G, +
 - (G, +) es un grupo algebraico
 - Conmutatividad

- Grupos finitos cíclicos
 - $G = (\{g^n \mid n \in Z\}, +)$
 - (^ es aplicación sucesiva de +)
 - Todos los grupos de tamaño n son isomorfos
 - Grupo canónico $Z_n = (\{ 1, 2, 3, ..., n-1 \}, +)$
 - g^n = e (neutro)
 - Generador: g / g es primo relativo a n
 - Hay Φ(n) generadores
 - Ord(g) = # elementos del subgrupo ciclico
 - g es elemento primitivo si ord(g) = n

- Anillo: G, +, * (conjunto y dos operaciones)
 - (G, +) es un grupo abeliano
 - Clausura de *
 - Asociatividad de *
 - * distributiva sobre +
- Cuerpo o campo: G, +, *
 - (G, +, *) es un anillo
 - Conmutatividad de *
 - Neutro de *
 - Inverso de * en { G neutro. de + }

- Campo de Galois (campo finito)
 - (G, +, *)
 - |G| = n
 - Todos los campos de tamaño k son isomorfos
 - Todo campo finito tiene tamaño pⁿ con p primo y n entero
 - Campo canónico:
 - $z_p = \{ k \mid k \in \{Z_p 0\} \land (k:p) = 1 \}, +, *), p primo$
 - Tamaño: p 1

Repaso de aritmética

- Artitmetica modular
 - $a = b \mod n \iff a b = k * n$
 - Se reduce al grupo canónico: 0 <= a < n
- Ejemplo:
 - $2+8 \mod 5 = 0$
 - 4 * 3 mod 7 = 5
- Si n es primo, tenemos un campo finito (Zp)
- Si n no es primo, tenemos un anillo
 - Si consideramos solo k / (k:n) = 1, tenemos un grupo multiplicativo (Z*n,*)

Repaso de aritmética

- Aritmética modular
 - Si (k : n) = 1 \rightarrow 3 k⁻¹ / k * k⁻¹ = 1 mod n
 - $a^{\Phi(n)} = 1 \mod n$ ($\Phi(n)$ es el tamaño de Z^*_n)
 - Si p es primo, a^{p-1} = 1 mod p
- Calculo de Φ(n)
 - $\Phi(n*m) = \Phi(n) * \Phi(m)$, si (n : m) = 1
 - $\Phi(p^a) = p^k p^{k-1} = p^{k-1} * (p 1)$, si p es primo

Intercambio de claves

- Es un protocolo $\Pi(n)$, ejecutado por dos partes:
 - Π : (n) \rightarrow Tran, k_a , k_b
 - No tiene entrada (salvo el parámetro de seguridad)
 - La salida del protocolo es
 - Un conjunto de mensajes intercambiados
 - Una clave ka conocida solo por una de las partes
 - Una clave k_b conocida solo por la otra parte
- Condición fundamental:
 - $k_a = k_b$

Seguridad frente a ataques pasivos

- Key-Exchange experiment: KE_{A,Π}
- Dado un adversario A, y una primitiva de intercambio de claves Π:
 - 1)Se ejecuta Π , sea $k = k_a = k_b$
 - 2)Se genera b $\leftarrow \{0, 1\}$
 - 3)Si b = 0 => k' $\leftarrow \{0, 1\}^n$ Si b = 1 => k' = k
 - 4)A obtiene Trans y k', y emite $b' = \{ 0, 1 \}$
- $KE_{A,\Pi} = 1 \text{ si b} = b' \text{ (A gana)}$

Si
$$Pr[KE_{A,\Pi}=1] < 0.5 + \epsilon => \Pi$$
 es seguro.

Intercambio Diffie-Hellman

- 1)A define G, q, g, donde G es un grupo, q el tamaño y g un generador.
- 2)A elije $x \leftarrow Z_q y$ calcula $h_1 = g^x$

$$Zq = \{ 0, 1, ..., q-1 \}$$

- 3)A envía a B: (G, q, g, h1)
- 4)B elije y \leftarrow Z_q y calcula h₂ = g^y
- 5)B envía a A: (h2)
- 6) A calcula $k_a = h_2^x$
- 7)B calcula $k_b = h_1^y$

Si A y B se conocen de antemano, pueden tener predefinidos (G, q, g)

La seguridad de DH

- Primero, dado g^x y g^y, no debería ser posible obtener x o y.
 - Esto se conoce como el problema del logaritmo discreto, y no tiene solución eficiente
- Condición necesaria pero no suficiente.
- Se necesita la conjetura de decisión DH:
 - Dados g, g^x y g^y, un adversario no puede distinguir g^{xy} de un valor aleatorio
 - Nota: ¡La formulación se realizó muchos años después de la publicación del algoritmo!
 - Hoy se sabe que es un problema NP-Hard

Diffie Hellman en la prática

- La versión original requiere un canal de transmisión autentificado
 - O sea, un atacante que pueda modificar mensajes rompe la seguridad de DH
- Se complementa con firmas digitales

Criptosistema asimétrico

- Es una terna de algoritmos
 - Gen: () → pk, sk (public key, secret key)
 - Enc (cifrado): Enc_{pk}(m)
 - Dec (descifrado): Dec_{sk}(c)
- Propiedades
 - Para todo m y k válidos: Dec_{sk}(Enc_{pk}(m))=m

Prueba de indistinguibilidad

- Eavesdropping Indistinguishability test: Eav_{A,Π}
- Dado un adversario A, y un Criptosistema Π:
 - Se genera una clave: (pk, sk) ← K
 - 1)A recibe pk y emite mo y m1
 - 2)Se genera b $\leftarrow \{0, 1\}$
 - 3)Se calcula $c \leftarrow Enc_{pk}(m_b)$ y se le envía a A
 - 4)A emite $b' = \{ 0, 1 \}$
- $Eav_{A,\Pi} = 1 \text{ si b} = b' \text{ (A gana)}$
 - Si Pr[Eav_{A, Π}=1] < 0.5 + ϵ => Π es indisting.

Consecuencias

- Un atacante que conoce pk
 - Pude cifrar cualquier mensaje
 - O sea, tiene acceso a la función de cifrado
- Para un criptosistema asimétrico:
 - Si Π es indistingible para un adversario pasivo
 => Π es CPA-Secure
- Recordar que:
 - CPA-Secure REQUIERE cifrado no determinístico

"Textbook" RSA

- Generación de claves
 - Elegir p,q ← Números primos. n = p*q.
 - e \leftarrow (0, $\Phi(n)$) | mcd(**e**, $\Phi(n)$) = 1
 - Calcular \mathbf{d} / $\mathbf{e}^*\mathbf{d} \equiv 1 \mod \Phi(\mathbf{n})$
 - Pk = (n, e), sk = (n, d)
- $Enc_{pk}(p) \equiv p^e \mod n$
- $Dec_{sk}(c) = c^d \mod n$

Problemas

- Tal cual está formulado, el cifrado es determinístico ¿Que problemas trae?
- Si e y m son pequeños: m^e < n, y entonces se puede calcular el logaritmo
 - Durante mucho tiempo se utilizo e=3 para ahorrar tiempo
- Módulos repetidos
 - Si dos pares de claves comparten el mismo n, es posible recuperar n (y luego la clave privada)

Ejemplo RSA

- Parámetros muy pequeños a modo ilustrativo:
 - p=2.357, q=2.551, n=p*q=6.012.707
 - $\Phi(n) = (p-1)*(q-1) = 6.007.800$
 - e=3.674.911 (elegida al azar)
 - Usando euclides extendido: d=422.191
- Cifrado de m=5.234.673
 - $e(m) = 5.234.673^{3.674.911} \mod 6.012.707 = 3.650.502$
- Descifrado de m'= 3.650.502
 - $d(m')= 3.650.502^{422.191} \mod 6.012.707 = 5.234.673$

PKCS 1 v1.5

- RSA Labs Public Key Cryptography Standard
- Define una versión con padding aleatorio de RSA:
 - Sea k la longitud de n en bytes
 - Solo se permiten cifrar mensajes de hasta n-11 bytes. Sea D la longitud de m en bytes
 - m' = 00000000 || 00000010 || r || 00000000 || m
 - Donde r = k D 3 bytes aleatorios != 0
 - La condición es para evitar ambigüedades
- Se cree que es CPA Secure
 - Pero se encontraron ataques que muestran que no es CCA-Secure

Tamaño de claves

n = p * q (rsa-2048)

El gamal (basado en DH)

- Generación de claves
 - Seleccionar G, q, g (campo G de tamaño q)
 - $x \leftarrow Z_q$, $h = g^x$
 - pk = (G, q, g, h), sk = (G, q, g, x)
- Enc_{pk}(m): $y \leftarrow Z_q$, salida: $c=(c_1, c_2)=(g^y, h^y*m)$
- $Dec_{sk}(c) = c_2/c_1^x$

- Resultados conocidos:
 - Si la prueba de decisión DH es dificil en G, El gamal es CPA-Secure

Diferencias con RSA

- El Gamal es probabilístico
- Permite reutilizar los parámetros G, q, g
- No está limitado a campos numéricos
 - Permite usar anillos de polinomios
 - Tienen 2ⁿ elementos → Fácil mapear mensajes
 - Permite usar curvas elipticas
 - El problema de decisión DH es más complejo

Ejemplo El Gamal

- (con parámetros muy pequeños)
 - $G = Z_q^*, q = 2.357, g = 2$
 - $x = 1.751 -->g^x \mod q = 2^{1.751} \mod 2.357 = 1185$
- Cifrado de m=2.035
 - Seleccionar y= 1.520 (aleatorio)
 - $e(m) = (2^{1.520} \mod 2.357, 2.035 * 1.185^{1.520} \mod 2.357)$
 - e(m) = (1.430, 697)
- Descifrado de m'=(1.430, 697)
 - $d(m') = 1.430^{-1.751} * 697 \mod 2.357 = 2.035$

Cifrado asimétrico en números

- El nivel de seguridad es relativo a los tamaños de los conjuntos involucrados
 - En RSA: n=p*q
 - En El Gamal: n=q
- Cuando se utilizan campos numéricos, n >= 1024 bits
 - En la actualidad se recomiendan 1536 o 2048 bits
- Para campos de otro tipo, los números pueden variar
 - Por ejemplo, sobre curvas elípticas, n >= 320 bits

Firmas digitales

- Similares a los MACs
 - Su objetivo es la integridad
- Pero tienen ciertas ventajas:
 - Publicamente verificables
 - Es transferible: Puede enviarse simultaneamente a varios destinatarios o reenviarse y sigue siendo verificable
 - Proveen no repudio: Quien firma no puede negar haberlo hecho
 - Propiedad muy importante cuando está reglamentada juridicamente

Firma digital

- Es una terna de algoritmos
 - Gen: (n) \rightarrow k = (sk, pk)
 - Sign (firma): s ← Sign_{sk}(m)
 - Vrfy (verificación): b = Vrfy_{pk}(m, s)
- Propiedades
 - Para todo m y k válidos: $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$

Seguridad de una firma digital

- Sig-forge_{A,Π}
- Dado un nivel de seguridad n, un adversario A, y una firma digital Π(n):
 - 1)Se genera una clave $k=(sk, pk) \leftarrow K$
 - 2) A obtiene $f(x) = Sign_{sk}(x) y pk$
 - 3)A realiza las evaluaciones que quiera de f(x) (Llamese Q al conjunto de las evaluaciones)
 - 4)A emite (m, s)
- Sig-forge_{A,Π} = 1 si Vrfy_{pk}(m, s) = 1 y m no pertenece a Q

RSA-Signature

 Identico a RSA-Encryption, pero invirtiendo los papeles de las claves:

- Generación de claves
 - Elegir p,q ← Números primos. n = p*q.
 - $d \leftarrow (0, \Phi(n)) \mid mcd(e, \Phi(n)) = 1$
 - Calcular \mathbf{d} / $\mathbf{e}^*\mathbf{d} \equiv 1 \mod \Phi(\mathbf{n})$
 - pk = (n, e), sk = (n, d)
- Sign_{sk}(m) \equiv m^d mod n
- $Vrfy_{pk}(m, s) = \ge m = s^e \mod n$?

Este esquema, aunque común en la literatura, es inseguro

Problemas de RSA-Signature

- Considerar el adversario A:
 - s ← S (selecciona una firma al azar)
 - Calcula m = s^e mod n
 - Emite (m, s)
- ¡Consigue pasar exitosamente la prueba de falsificación!
- Otro ataque:
 - $s_1 = f(m_1), s_2 = f(m_2)$
 - Emite (m₁*m₂, s₁*s₂)
 - Ejercicio: Verificar que la salida pasa la verificación

Hashed RSA

- Busca solucionar los problemas anteriores:
- Introduce una función de hash libre de colisiones
 - Sign_{sk}(m) \equiv H(m)^d mod n
 - $Vrfy_{pk}(m, s) = H(m) = s^e mod n?$

 Pero no posee una prueba de seguridad a menos que se asuma un modelo ideal de H

Digital Signature Standard

- Generación de claves
 - Seleccionar H(x): SHA1 o SHA2
 - Tamaño de claves: (L, N): (1024, 160), (2048, 224), (2048, 256) o (3072, 256).
 - q ← primo de tamaño N (bits)
 - p \leftarrow primo de tamaño P / (p 1) = 0 mod q
 - g ← generador de orden q mod p
 - $g^{(p-1)/q} \neq 1$
 - Seleccionar p, q, g $(G=Z^*_p)$
 - $x \leftarrow Z_q$, $y = g^x \mod p$
 - pk = (p, q, g, y), sk = (p, q, g, x)

Digital Signature Standard

- Sign_{sk}(m): $k \leftarrow Z_q$, $r = (g^k \mod p) \mod q$
 - $s = [H(m) + x*r) * k^{-1} \mod q$
 - $Sign_{sk}(m) = (r, s)$
- $Vrfy_{pk}(m, (r, s)): v1= [H(m) * s^{-1}] mod q$
 - v2 = r*s-1 mod q
 - $\xi r = g^{u1*}y^{u2} \mod p \mod q$?

Lectura Recomendada

Capítulos 9-12

Introduction to Modern Cryptography Katz & Lindell