Mid-Term Sample Questions

■ Question

[CO3] [15 marks]

Apply Nodal/Mesh analysis to answer the following questions:

- (a) [12 marks] Find all the node voltages/mesh currents in the circuit.
- (b) [3 marks] Find v_x , the voltage across the $2i_x$ dependent current source.

■ Question

[CO3] [16 marks]

Apply Nodal/Mesh analysis to answer the following questions:

- (a) [12 marks] Find all the node voltages/mesh currents in the circuit.
- (b) [4 marks] Determine the power associated with the 5 V source in the circuit (with appropriate \pm sign and unit). Also, specify whether the power is being supplied/consumed.

\blacksquare Question [CO3] [12 marks]

(a) You break open your phone charger and find the following circuit. The greyed-out part doesn't contain anything interesting, but the left part of the circuit catches your eye.

- (i) [2 marks] Determine I V characteristics of the left part of the circuit. i.e. Write an equation that will always hold irrespective of what is inside the greyed-out box. Hint: The equation cannot have any variables other than V and/or I. Everything else should just be a number.
- (ii) [2 marks] Based on your answer in (i), plot the I-V characteristics of the subcircuit in the following grid.
- (b) [2 marks] You notice that the left part of the circuit can actually be replaced with one single equivalent circuit element. Redraw the reduced equivalent circuit.
- (c) [6 marks] Determine the equivalent resistance between terminals a-b for the following circuit.

\blacksquare Question [CO1, CO3] [20 marks]

(a) In order to test the I-V characteristics of a two-terminal linear circuit (inside the gray box), the following circuit was constructed.

- (i) [1 mark] Determine the relationship between I and V, where V is the applied voltage difference across the test circuit that is varied and I is the current through it. In the following box write I in terms of V.
- (ii) [2 marks] Based on your answer in (i), plot the I − V characteristics of the test circuit in the following grid.
- (c) [15 marks] Determine the current I as shown in the circuit below using Source Transformation.

(b) [2 marks] Which one is the correct Source Transformation of the following circuitry?

Cross-out or fill-in the checkbox (\Box) at the top-left corner of the correct answer.

$[CO2,\ CO4]\ [20\ marks]$

Apply Nodal/Mesh analysis to answer the following questions:

- (a) [1 mark] Which analysis method should be more advantageous in solving the above circuit?
- (b) [15 marks] Find all the node voltages/mesh currents in the circuit.
- (c) [2 marks] Find V_y , the voltage across the 5 A current source.
- (d) [2 marks] How much **power** is the 5 A current source consuming/supplying to the circuit? Also mention whether the source is supplying or consuming power.

[CO2, CO4] [16 marks]

Apply Nodal/Mesh analysis to answer the following questions:

- (a) [1 mark] Which analysis method should be more advantageous in solving the above circuit?
- (b) [14 marks] Find all the node voltages/mesh currents in the circuit.
- (c) [1 mark] Find I_x , the amount of current through the $6\,\mathrm{k}\Omega$ resistor.

\blacksquare Question [CO1] [10 marks]

Determine the equivalent resistance between terminals a and b.

\blacksquare Question [CO1] [10 marks]

Determine V_a , V_b , V_c , and V_d using Voltage Division Rule only. Don't calculate currents or use Ohm's Law.

\blacksquare Question [CO1] [10 marks]

For the circuit shown below, R_{ID} is the sum of first and last digit of your student ID, in Ohm (Ω) units.

- (a) [4 marks] Determine the values of I_x and V_x .
- (b) [6 marks] Determine the value of k. [Hint: KCL can be applied to any surface or box made up by enclosing several nodes or circuit components.]

\blacksquare Question [C

[CO3] [10 marks]

Determine the values of R_a , R_b , and R_c if the branch currents are 3 A, 2 A, and 7 A as shown in the following circuit.

■ Question

[CO3] [10 marks]

Determine the values of R_1 and R_2 for the circuit shown below.

\blacksquare Question [CO1] [10 marks]

- (a) [5 marks] From the Circuit 1, derive a relation between I and V. You are not allowed to use any technique other than KCL, Ohm's Law, and Voltage Divider Rule to derive.
- (b) [1 mark] Draw the I-V curve derived in (a). A template has been given in the next page.
- (c) [2 marks] For the Circuit 2, determine V' and R' so that it produces the same I-V curve as in (a).
- (d) [2 marks] Now, for the Circuit 3, determine of $I^{"}$ and $R^{"}$ so that it produces the same I-V curve as in (a). What is your conclusion from (a), (c), and (d)?

Circuit 1

The following are equations obtained by applying KVL to a linear circuit consisting of 3 meshes, where I_1 , I_2 , and I_1 are mesh currents. Draw a circuit diagram which validates the equations.

$$15I_1 - 10I_2 = -10 \tag{1}$$

$$10I_1 - 22I_2 + 10I_3 = 0 (2)$$

$$10I_2 - 15I_3 = 12 (3)$$

\blacksquare Question [CO3] [10 marks]

The variable V_{DC} source has been adjusted in the following circuit so that the current i is zero. Determine the value of V_{DC} .

\blacksquare Question [CO2] [10 marks]

Apply Source Transformation to reduce the following circuit to a single loop. Then determine V_x .

\blacksquare Question [CO1, CO3] [5 marks]

(a) [2 marks] [CO1] How many nodes are there in the following circuit? Mark all the nodes in the circuit diagram.

\blacksquare Question [CO3] [10 marks]

Use Nodal Analysis in the following circuit to determine all the node voltages.

- (b) [CO3] Use the plot in the left for question (i) and the right for question (ii).
 - (i) [1 mark] Draw an approximate I-V characteristic of a -2 V voltage source. Label the axes appropriately.
 - (ii) [2 marks] Determine the value of resistance (with appropriate unit) from the I-V characteristic shown below.

\blacksquare Question [CO1] [5 marks]

Put a checkmark (✓) in the box to indicate your answer. Each question has only one possible answer.

Consider the following diagram for questions (a) and (b).

- (a) [1 mark] What is the work done on/by the system shown above?
 - \square -0.9 J \square -90 mJ \square 90 mJ \square 0.09 mJ
- (b) [$\frac{1}{2}$ mark] The work has been done \blacksquare on the system \square by the system
- (c) [1 mark] Select whether or not the connections shown below are "Legal" or "Illegal".

Consider the following circuit for questions (d) and (e).

- (d) [2 marks] What is the power of the voltage source (with appropriate \pm sign and unit)?
- (e) $[\frac{1}{2}]$ Based on your answer in (d), is the voltage source supplying/consuming power?

$lacktriangleq ext{Question} ext{ [CO1] [4 marks]}$

For the circuit shown below,

(a) Determine V_{ac} and V_{bc} .

[CO3] [6 marks]

From the following portion of a circuit shown below,

Р

■ Question

[CO3] [22 marks]

For the circuit shown below,

(b) [2 marks] Determine R_{bc} . (c) [2 marks] Determine R_{ca} .

- (a) [14 marks] Apply Nodal/Mesh Analysis to identify the values of the node voltages/mesh currents. (Equations must be highlighted using boxes).
- (b) [4 marks] Determine the voltage V_y.
- (c) [4 marks] Determine the current Iz.

[CO3] [10 marks]

Apply Source Transformation to reduce the following circuit to a single loop. Then determine I_y .

