

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER 1 EXAMINATIONS 2011/2012

STAT 30090

Models - Stochastic Models

Professor Michael Tretyakov
Dr. Patrick Murphy
Professor Nial Friel*

Time Allowed: 2 hours

Instructions for Candidates

Attempt all questions. The number of marks for each question is given. The total number of marks is given.

Instructions for Invigilators

Candidates will require:

New Cambridge Statistical Tables

Calculators are permitted.

Graph paper is not required.

1.	. (a) Define each of the following	
	(i) A stationary stochastic process.	[3]
	(ii) A martingale.	[3]
	(iii) A white noise process.	[2]
	(iv) A simple random walk.	[2]
	(b) Prove that the expected value of an increment for a marti	ngale is zero. [5]
		Total: [15]
2.	. Suppose that the number of calls arriving to a telesales call of a Poisson process with intensity $\lambda=6$ calls per hour. Each c purchase with probability 0.4.	
	(i) Find the probability that exactly 7 calls arrive in the first ho	ur and a half. [2]
	(ii) Suppose that 10 calls arrived in the first two hours. What bility that 4 of them arrived in the first 30 minutes?	is the proba- [3]
	(iii) What is the expected time until the first purchase?	[2]
	(iv) Suppose now that 5 calls arrived in the first hour. What is that 3 of them made a purchase?	ne probability [3]
		Total: [10]

3. Let X_n be a Markov chain with states $\{1, 2, 3\}$ and transition matrix:

$$P = \left[\begin{array}{ccc} 0 & ? & 0.4 \\ 0.8 & ? & 0.2 \\ ? & 0.5 & 0 \end{array} \right]$$

(i) Fill in the missing entries of the matrix.

- [2]
- (ii) Which states of the chain are recurrent? What is their period? [3]
- (iii) Does this chain have a stationary distribution? Explain the reason and find the stationary distribution (if it exists). [5]

Total: [10]

4. The size of a population can be described as a birth-and-death process, where the death rate is proportional to the size of the population, with proportionality constant $\mu > 0$. The birth rate is a constant value $\lambda > 0$.

Justify the exsistence of a stationary distribution.

(You may find it useful to note that $\sum_{n=1}^{\infty} x^n n! = \infty$ for all x > 0.)

Calculate the expected size of the population after a long time. Total: [10]

5. It is known that a cell produces 0 or 1 offspring with probabilities 0.4 and 0.2 respectively. In addition, a cell can also produce 2 or 3 offspring. It is also known that a population of cells beginning from a single cell dies out with probability 0.9. What is the probability that a cell produces 3 offspring? (You may assumes that cells produce offspring independently of one another.)

Total: [10]

6. A continuous-time Markov chain X_t with state space $\{1, 2, 3\}$ has the infinitesimal generator:

$$A = \left[\begin{array}{rrr} -6 & ? & 2 \\ 5 & ? & 3 \\ 3 & 2 & ? \end{array} \right]$$

- (i) Fill in the missing entries of the matrix. [2]
- (ii) Suppose that the chain starts in state 1. What is the expected amount of time that the chain spends in state 1 until the chain moves to state 3 for the first time? [5]
- (iii) Find the stationary distribution of the Markov chain. [3]
 - **Total:** [10]

- 7. Let W_t be the standard Brownian motion.
 - (i) Give the definition of a (standard) Brownian motion W_t . [3]
 - (ii) Calculate the variance of $4W_3 2W_2$. [3]
 - (iii) Calculate the probabilty that W_t exceeds 1 for some t in the interval [0,2].

Total: [10]