Exercícios

Você deve justificar as suas respostas de forma clara e precisa.

1. Mostre como o algoritmo de Kosaraju-Sharir funciona sobre o grafo mostrado na Figura 1 (seja detalhista). Considere os vértices em ordem alfabética e que as listas de adjacências também estejam em ordem alfabética.

Figura 1: Grafo dirigido

- 2. Assuma que G é um grafo dirigido e G^{rev} é uma cópia de G com o sentido de toda aresta invertido. Como são os componentes fortemente conectados relacionados? (Escolha todas as alternativas corretas e justifique a(s) sua(s) escolha(s)).
 - (a) Em geral, eles não estão relacionados.
 - (b) Todo componente fortemente conectado de G também é um componente fortemente conectado de G^{rev} , e vice-versa.
 - (c) As ordenações topológicas dos componentes fortemente conectados de G e G^{rev} são idênticas.
- 3. Considere o seguinte problema:

Problema Dois Conjuntos no Plano

Entrada: Um conjunto de N pontos no plano, a distância entre os pontos é a distância Euclidiana..

Saída: Dois conjuntos de pontos A e B, tal que $A \cup B = N$, $A \cap B = \emptyset$, e cada ponto de A está tão perto ou mais perto de algum outro ponto de A que de qualquer ponto de B, e vice-versa.

- (a) Projete um algoritmo eficiente, em pseudocódigo, que resolva o problema DOIS CONJUNTOS NO PLANO.
- (b) Implemente o seu algoritmo em Sage. A entrada será uma lista de pontos L, e a saída será os pontos particionados em dois conjuntos A e B. Por exemplo,

$$L = (0,0), (3,2), (1,2.5), (2,2), (5,1), (1,1)$$
$$A = \{(0,0), (3,2), (1,2.5), (2,2), (1,1)\}$$
$$B = \{(5,1)\}$$

4. Considere duas listas:

A - lista de disciplinas. Todo estudante deve cursar todas as disciplinas em A.

B - um lista de pré-requisitos, B contem tuplas (a,b). onde a e b pertencem a lista A, indicando que a disciplina a deve ser cursada antes da disciplina b. As dependências de pré-requisitos é acíclica.

- (a) Projete um algoritmo, que execute em tempo O(V+E), para determinar uma sequência de disciplinas para cada um dos seguintes dois tipos de alunos:
 - i. Um estudante relaxado que quer fazer somente uma disciplina por semestre.
 - ii. Um estudante dedicado que quer fazer todas as disciplinas da lista A no menor número de semestres possíveis. O estudante está disposto a fazer qualquer número de disciplinas em um semestre.

Exemplo:

$$A = \{'Alg', 'Eng', 'ED1', 'ED2', 'Cal', 'Fis1', 'Fis2'\}$$

$$B = \{('Alg', 'ED2'), ('ED1', 'ED2'), ('Cal', 'ED1'), ('Fis1', 'Fis2')\}$$

estudante	Relaxado
Semestre 1	Eng
Semestre 2	Cal
Semestre 3	Alg
Semestre 4	ED1
Semestre 5	ED2
Semestre 6	Fis1
Semestre 7	Fis2

estudante	Dedicado
Semestre 1	Eng, Cal, Fis1, Alg
Semestre 2	ED1, Fis2
Semestre 3	ED2

(b) Implemente o seu algoritmo em Sage. A entrada será uma lista de disciplinas e uma lista de pré-requisitos, e a saída é o que deve ser feito por cada tipo de aluno. Conforme mostrado acima.