BIEE 2ND YEAR 2ND SEM. EXAM.-2018

ELECTRONIC CIRCUITS I

Time: Three hours Full Marks: 100

Set I

Answer any five questions from set 1

Marks 4x5

- 1 a. Show the static and dynamic characteristic of a diode.
- b. Draw the transfer characteristic of a diode negative clipper circuit.
- c. What should be the regulation value of a perfect rectifier? Justify.
- d. Explain the role of a diode in a rectifier circuit.
- e. Draw and explain the clamper circuit where the output voltage is clamped to 0 $\rm V.$
- f. What does a diode clipper circuit do? Draw the diagram of a diode clipper that limits the positive peak of the input voltage.
- g. Which factors influence the position of the operating point of the transistor amplifier?

Set II

Answer any three questions from set 2

Marks 10x3

- 2. Draw the load line for a CE BJT circuit and state its importance in transistor biasing? When is the load line nearly horizontal and nearly vertical?
 2+4+4
- Show why the source follower FET circuit is so called? Draw a voltage divider bias source follower circuit. For a voltage divider FET circuit, R1=2.1 MΩ, R2=270 kΩ, RD=2.4 kΩ,RS=1.5 kΩand VDD=16 V, find IDQ and VDQ.
- 4. On which factors is the collector current dependent? How do variations in these factors affect the performance of a transistor amplifier? Explain thermal runaway.

 2+4+4
- 5. Draw the collector to base bias circuit. Why is this circuit considered better than a fixed bias circuit? Find the Q point for this circuit when β =99, V_{BE} =0.7 V, R_L =2 k Ω and R_B =100k Ω . 2+4+4
- 6. Justify the role of the emitter resistance in a voltage divider bias circuit. In a voltage divider circuit, R_2 =5.6 k Ω , R_C =3.3 k Ω , R_E =1.2 k Ω , R_L =2 k Ω , V_C =15 V, V_C =8 V. Find V_E , V_B , I_C and R_1 .

Set III

Answer any three questions from set 3

Marks 10x3

- 7. Illustrate the working of a current mirror circuit as a constant current source with suitable diagram. Calculate the mirrored current I in a current mirror circuit where V_{CC} =12 V, V_{BE} =0.7 V and R_X =1.1k Ω
- 8. State the usefulness of a darlington amplifier. For a darlington amplifier circuit, let V_{CC} =18 V, R_C =75 Ω , R_B =2M Ω , β_1 =140, β_2 =180. Calculate I_{B1} , I_C (common) and V_O .
- 9. Draw a series and a shunt voltage regulator circuit. Which device in the circuit acts as the control element and why? The transistor shunt voltage shown in the figure below has a regulated output voltage of 10V, when input varies from 20 volts to 30 volts. The relevant parameters for zener diode and the transistor are: $V_z = 9.5$ volts, $V_{BE} = 0.3$ volts, and $\beta = 99$. Neglect the current through R_B . Calculate the maximum power dissipated through zener diode (P_z) and the transistor (P_T) . 4+2+4

- 10. Show the dc and ac equivalent circuits of a cascode amplifier. For a cascode amplifier circuit connected to a 15 V supply R_1 =76 k Ω , R_2 =28 k Ω , R_3 =37 k Ω , R_C =5 k Ω , R_E =3 k Ω and R_L =5 k Ω , calculate the small signal voltage gain when β =150 for both transistors and V_{BE} =0.7 V.
- 11. What is the difference in operation between the dual input balanced output differential amplifier and the singleinput balanced output differential amplifier? 6 For β =100 for both transistors, V_{BE} =0.715 V, V_{CC} =10 V, V_{EE} =-10V, R_{C} =2.2 k Ω , R_{E} =4.7k Ω , R_{in1} = R_{in2} =50 Ω , find I_{CQ} and V_{CEQ} .

Set IV

Answer any two questions from set 4

Marks 10x2

- 12. What are the dependent and independent variables in a common emitter transistor amplifier circuit?

 Derive expressions for the voltage gain of a transistor amplifier including and excluding the source

 resistance. Explain the presence of the negative sign in the expressions for the current and voltage gains.

 2+6+2
- 13. Show the hybrid parameter circuit for a voltage divider transistor circuit. How would the circuit change if the emitter resistance is omitted? A CE amplifier uses a transistor with $h_{ie}=1k\Omega$, $h_{fe}=100$, $h_{re}=5x10^{-4}$ and $h_{oe}=25x10^{-6}/\Omega$. The load resistance is $5k\Omega$. Find the current amplification and the overall voltage and power gains for a source resistance of $1k\Omega$.
- 14. Show the hybrid equivalent circuit for a emitter follower transistor circuit with R_S (source res) and R_L (load at output). Give the r_e model for this circuit. 4 For a CE amplifier, h_{ie} =1100 Ω , h_{re} =2.5x10⁻⁴, h_{fe} =50, h_{oe} =24 μ A/V, 1/ h_{oe} =40K. If R_L =10K and R_S =1K, find A_f , 6