

# **Cambridge IGCSE**<sup>™</sup>

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

CHEMISTRY 0620/43

Paper 4 Theory (Extended)

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

#### **INFORMATION**

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [ ].
- The Periodic Table is printed in the question paper.

| Nar | me the process used to:                                                             |       |
|-----|-------------------------------------------------------------------------------------|-------|
| (a) | produce ammonia from nitrogen                                                       |       |
|     |                                                                                     | [1]   |
| (b) | produce lead from molten lead(II) bromide                                           |       |
|     |                                                                                     | [1]   |
| (c) | separate an insoluble solid from a mixture of an insoluble solid and a solution     |       |
|     |                                                                                     | [1]   |
| (d) | produce ethanol from ethene                                                         |       |
|     |                                                                                     | [1]   |
| (e) | identify the components of a mixture of soluble coloured substances                 |       |
|     |                                                                                     | [1]   |
| (f) | separate a mixture of several liquids with different boiling points                 |       |
|     |                                                                                     | [1]   |
| (g) | determine the volume of an acid required to neutralise a given volume of an alkali. |       |
|     |                                                                                     | [1]   |
|     | [Tota                                                                               | l: 7] |

## 2 Complete Table 2.1.

Table 2.1

| atom or ion                           | number of protons | number of electrons | number of neutrons |
|---------------------------------------|-------------------|---------------------|--------------------|
| <sup>63</sup> Cu                      | 29                |                     |                    |
| <sup>37</sup> C <i>l</i> <sup>-</sup> |                   |                     | 20                 |
|                                       | 30                | 28                  | 34                 |

[5]

- 3 This question is about elements and compounds.
  - (a) Some properties of graphite, oxygen and carbon monoxide are shown in Table 3.1.

Table 3.1

|                 | melting point<br>/°C | boiling point | conduction of electricity when solid |
|-----------------|----------------------|---------------|--------------------------------------|
| graphite        | 3652                 | 4827          | good                                 |
| oxygen          | -218                 | -183          | poor                                 |
| carbon monoxide | -199                 | -191          | poor                                 |

| (i) | Explain why graphite conducts electricity when solid. |
|-----|-------------------------------------------------------|
|     |                                                       |
|     |                                                       |
|     | [´                                                    |

(ii) Complete the dot-and-cross diagram in Fig. 3.1 of a molecule of oxygen.

Show outer shell electrons only.



Fig. 3.1

(iii) Deduce the physical state of carbon monoxide at -195°C. Use the data in Table 3.1 to explain your answer.

| physical state |     |
|----------------|-----|
| explanation    |     |
|                |     |
|                | [2] |

[2]

|     | (iv) | Explain in terms of structure and bonding why graphite has a much higher than carbon monoxide. | melting p | oint |
|-----|------|------------------------------------------------------------------------------------------------|-----------|------|
|     |      |                                                                                                |           |      |
|     |      |                                                                                                |           |      |
|     |      |                                                                                                |           |      |
|     |      |                                                                                                |           | [3]  |
| (b) | Pot  | assium reacts with chlorine to form potassium chloride.                                        |           |      |
|     | Wri  | te a symbol equation for this reaction.                                                        |           |      |
|     |      |                                                                                                |           | [2]  |
| (c) | A d  | ilute aqueous solution of potassium chloride undergoes electrolysis.                           |           |      |
|     | Oxy  | gen is produced at the anode.                                                                  |           |      |
|     | (i)  | State what is meant by the term electrolysis.                                                  |           |      |
|     |      |                                                                                                |           |      |
|     |      |                                                                                                |           |      |
|     |      |                                                                                                |           | [2]  |
|     | (ii) | Write an ionic half-equation for the production of oxygen at the anode.                        |           |      |
|     |      |                                                                                                |           | [2]  |
|     |      |                                                                                                | [Total:   | 141  |

**4** Dinitrogen tetroxide, N<sub>2</sub>O<sub>4</sub>, decomposes into nitrogen dioxide, NO<sub>2</sub>. The reaction is reversible.

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$  colourless gas brown gas

Fig. 4.1 shows a gas syringe containing a mixture of dinitrogen tetroxide and nitrogen dioxide. The gas syringe is sealed. The mixture reaches equilibrium and the colour of the mixture of gases is a pale brown.



| • | the rate of the forward reaction and the rate of the reverse reaction |
|---|-----------------------------------------------------------------------|
| • | the concentration of reactants and products.                          |
|   | [2                                                                    |

(b) The pressure of the mixture is increased. All other conditions stay the same.
The mixture immediately turns darker brown before the position of equilibrium changes.
Explain in terms of particles why the mixture immediately turns darker brown.

(c) The temperature of the mixture is increased. All other conditions stay the same.

The mixture turns darker brown.

State what can be deduced about the forward reaction from this information.

.....[1

(d) Sulfur is converted into sulfuric acid,  $\rm H_2SO_4$ , by a series of reactions.

Sulfur dioxide,  $SO_2$ , and oxygen,  $O_2$ , react to form sulfur trioxide,  $SO_3$ . The reversible reaction reaches equilibrium.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

(i) Complete Table 4.1 using only the words, increases, decreases or no change.

Table 4.1

|                       | effect on the rate of the forward reaction | effect on the equilibrium yield of SO <sub>3</sub> (g) |
|-----------------------|--------------------------------------------|--------------------------------------------------------|
| add a catalyst        |                                            |                                                        |
| increase the pressure |                                            |                                                        |

| [4] |
|-----|
|-----|

| (ii) | Deduce the oxidation number of sulfur in: |          |
|------|-------------------------------------------|----------|
|      | S                                         |          |
|      | SO <sub>3</sub>                           | <b>.</b> |
|      |                                           | [2]      |

[Total: 10]

| <b>(a)</b> Ba | rium sulfate, BaSO <sub>4</sub> , is an insoluble salt and is made by precipitation.                         |
|---------------|--------------------------------------------------------------------------------------------------------------|
| (i)           | Name <b>two</b> aqueous solutions that produce a precipitate of barium sulfate when they are mixed.          |
|               | 1                                                                                                            |
|               | 2[2]                                                                                                         |
| (ii)          | Describe how to produce a pure sample of barium sulfate from the mixture of aqueous solutions in (a)(i).     |
|               | [2]                                                                                                          |
| (iii)         | Write an ionic equation for the precipitation reaction which produces barium sulfate. Include state symbols. |
|               | [3]                                                                                                          |
| <b>(b)</b> So | luble salts are made from dilute acids.                                                                      |
| Na            | me the dilute acid and one other substance that react together to make $copper(\Pi)$ sulfate.                |
| dilu          | ıte acid                                                                                                     |
| oth           | er substance[2]                                                                                              |
| (c) Nit       | rates decompose when they are heated.                                                                        |
| Wh            | nen hydrated copper(II) nitrate is heated, oxygen gas is produced.                                           |
| (i)           | Describe a test for oxygen.                                                                                  |
|               | test                                                                                                         |
|               | observations[1]                                                                                              |
| (ii)          | Complete the equation for the decomposition of hydrated copper(II) nitrate.                                  |
|               | $2Cu(NO_3)_2 \cdot 3H_2O \rightarrowCuO +NO_2 + O_2 +H_2O$ [2]                                               |

|  | ( | $(\mathbf{d})$ | Hydrated | zinc sulfate | gives | off water | when | it is | heated. |
|--|---|----------------|----------|--------------|-------|-----------|------|-------|---------|
|--|---|----------------|----------|--------------|-------|-----------|------|-------|---------|

$$ZnSO_4 \cdot xH_2O(s) \rightarrow ZnSO_4(s) + xH_2O(g)$$

| A student does an experiment | o determine the | e value of <b>x</b> in ZnSO <sub>4</sub> | • <b>x</b> H <sub>2</sub> O. |
|------------------------------|-----------------|------------------------------------------|------------------------------|
|------------------------------|-----------------|------------------------------------------|------------------------------|

- **step 1** The student weighs a sample of hydrated zinc sulfate.
- **step 2** The student heats the sample of hydrated zinc sulfate.
- **step 3** The student weighs the solid after heating.
- step 4 The student repeats step 2 and step 3 until the mass of solid after heating is constant.
- (i) State why the student does step 4.

(ii) In an experiment,  $0.574\,\mathrm{g}$  of  $\mathrm{ZnSO_4} \cdot \mathbf{xH_2O}$  is heated until the mass is constant.

The mass of ZnSO<sub>4</sub> that remains is 0.322 g.

$$[M_r: ZnSO_4, 161; H_2O, 18]$$

Determine the value of **x** using the following steps.

Calculate the number of moles of ZnSO<sub>4</sub> remaining.

|  |  |  |  | mο |
|--|--|--|--|----|

Calculate the mass of H<sub>2</sub>O given off.

.....g

Calculate the number of moles of H<sub>2</sub>O given off.

..... mol

Determine the value of x.

[Total: 17]

- 6 This question is about iron.
  - (a) Fig. 6.1 shows a blast furnace used to extract iron from its ore.



Fig. 6.1

| (1)   | Name the main ore of iron used in the blast furnace.                                                          |     |
|-------|---------------------------------------------------------------------------------------------------------------|-----|
|       | [                                                                                                             | [1] |
| (ii)  | Name the substance that enters the blast furnace at <b>A</b> .                                                |     |
|       | [                                                                                                             | 1]  |
| (iii) | Name the reducing agent in the extraction of iron in the blast furnace.                                       |     |
|       | [                                                                                                             | 1]  |
| (iv)  | Explain why limestone is added to the blast furnace. Give details of the chemical reaction that are involved. | าร  |
|       |                                                                                                               |     |
|       |                                                                                                               |     |
|       |                                                                                                               |     |
|       |                                                                                                               |     |

- (b) The list shows the properties of some elements.
  - act as catalysts
  - have low densities
  - have low melting points
  - form acidic or basic oxides
  - form coloured compounds
  - form positive or negative ions

Iron is a transition metal. Sodium is a Group I metal.

State which property from the list:

| (i)   | is true for sodium but <b>not</b> iron                      |     |
|-------|-------------------------------------------------------------|-----|
|       |                                                             | [1] |
| (ii)  | is true for iron but <b>not</b> sodium                      |     |
|       |                                                             | [1] |
| (iii) | is true for both sodium and iron                            |     |
|       |                                                             | [1] |
| (iv)  | is <b>not</b> true for sodium and <b>not</b> true for iron. |     |
|       |                                                             | [1] |

(c) Steel consists mainly of iron.

Iron rusts when it reacts with water and oxygen.

Fig. 6.2 shows magnesium blocks attached to the bottom of a steel boat. The magnesium does **not** completely cover the steel.

The magnesium blocks provide sacrificial protection for the steel.



Fig. 6.2

| (i)  | Explain, in terms of electrons, why magnesium is used for sacrificial protection. |
|------|-----------------------------------------------------------------------------------|
|      |                                                                                   |
|      | [2]                                                                               |
| (ii) | Name a metal that cannot provide sacrificial protection for steel.                |
|      | [1]                                                                               |
|      | [Total: 13]                                                                       |

| 7 Many organic compounds contain carbon and hydronic compounds contain carbon and hydronic carbon ca | irogen | onlv. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|

| (a)         | (i) | An organic com    | pound A has   | the following   | composition by | / mass. |
|-------------|-----|-------------------|---------------|-----------------|----------------|---------|
| <b>\u</b> / | 111 | 7 til Olganio com | poullu A lius | ti ic ionowning | oon position b | y iiia  |

C, 83.33%; H, 16.67%

Calculate the empirical formula of compound A.

empirical formula = ......[3]

(ii) Compound **B** has the empirical formula  $C_2H_5$  and a relative molecular mass of 58.

Determine the molecular formula of compound B.

molecular formula = ..... [2]

- **(b)** Fig. 7.1 shows a section of a polymer formed from an alkene.
  - (i) Identify the functional group in alkenes that reacts when alkenes form polymers.

[1]

(ii) A section of a polymer is shown in Fig. 7.1.

Fig. 7.1

• Draw the displayed formula of the monomer that forms this polymer.

Name the monomer used to form this polymer.

[3]

| (c) | Alke | enes are produced by cracking alkanes.                                                                                   |      |
|-----|------|--------------------------------------------------------------------------------------------------------------------------|------|
|     | Wh   | en $C_{12}H_{26}$ is cracked, the products are ethene and an alkane which form in a 2 : 1 mole ra                        | tio. |
|     | Wri  | te a symbol equation for this reaction.                                                                                  |      |
|     |      | $C_{12}H_{26} \rightarrow \dots + \dots$                                                                                 | [2]  |
| (d) | (i)  | State the general formula for alcohols.                                                                                  |      |
|     |      |                                                                                                                          | [1]  |
|     | (ii) | Draw the displayed formula of <b>one</b> alcohol with the molecular formula $\rm C_3H_8O$ . Name alcohol you have drawn. | the  |
|     |      |                                                                                                                          |      |
|     |      |                                                                                                                          |      |
|     |      | name of alcohol                                                                                                          |      |
|     |      |                                                                                                                          | [2]  |
|     |      | [Total:                                                                                                                  | 14]  |

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

|       |                | 2<br>He | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ar | argon<br>40      | 36 | 궃  | krypton<br>84   | 54 | Xe       | xenon<br>131     | 98    | 牊           | radon           | 118    | o<br>O    | oganesson<br>–     |
|-------|----------------|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------|
|       | $\blacksquare$ |         |               | 6             | ш            | fluorine<br>19               | 17 | Cl | chlorine<br>35.5 | 35 | Ŗ  | bromine<br>80   | 53 | Н        | iodine<br>127    | 85    | ¥           | astatine<br>-   | 117    | <u>R</u>  | tennessine<br>-    |
|       | >              |         |               | 8             | 0            | oxygen<br>16                 | 16 | ഗ  | sulfur<br>32     | 34 | Se | selenium<br>79  | 52 | <u>e</u> | tellurium<br>128 | 84    | Ъ           | polonium<br>–   | 116    | ^         | livermorium<br>-   |
|       | >              |         |               | 7             | z            | nitrogen<br>14               | 15 | ₾  | phosphorus<br>31 | 33 | As | arsenic<br>75   | 51 | Sp       | antimony<br>122  | 83    | <u>B</u>    | bismuth<br>209  | 115    | Mc        | moscovium<br>-     |
|       | ≥              |         |               | 9             | ပ            | carbon<br>12                 | 14 | S  | silicon<br>28    | 32 | Ge | germanium<br>73 | 20 | Sn       | tin<br>119       | 82    | Pp          | lead<br>207     | 114    | F1        | flerovium<br>-     |
|       | ≡              |         |               | 2             | В            | boron<br>11                  | 13 | Ρl | aluminium<br>27  | 31 | Ga | gallium<br>70   | 49 | In       | indium<br>115    | 81    | <i>1</i> 1  | thallium<br>204 | 113    | R         | nihonium<br>–      |
|       |                |         |               |               |              |                              |    |    |                  | 30 | Zu | zinc<br>65      | 48 | g        | cadmium<br>112   | 80    | Нg          | mercury<br>201  | 112    | ပ်        | copernicium<br>-   |
|       |                |         |               |               |              |                              |    |    |                  | 59 | J. | copper<br>64    | 47 | Ag       | silver<br>108    | 79    | Αn          | gold<br>197     | 111    | Rg        | roentgenium<br>-   |
| Group | -              |         |               |               |              |                              |    |    |                  | 28 | Z  | nickel<br>59    | 46 | Pd       | palladium<br>106 | 78    | చ           | platinum<br>195 | 110    | Ds        | darmstadtium<br>-  |
| ڻ     |                |         |               | 1             |              |                              |    |    |                  | 27 | ပိ | cobalt<br>59    | 45 | 格        | rhodium<br>103   | 77    | ı           | iridium<br>192  | 109    | Ĭ         | meitnerium<br>-    |
|       |                | - I     | hydrogen<br>1 |               |              |                              |    |    |                  | 26 | Pe | iron<br>56      | 44 | Ru       | ruthenium<br>101 | 92    | Os          | osmium<br>190   | 108    | Hs        | hassium            |
|       |                |         |               |               |              |                              | 1  |    |                  | 25 | Mn | manganese<br>55 | 43 | ည        | technetium<br>-  | 75    | Re          | rhenium<br>186  | 107    | Bh        | bohrium<br>—       |
|       |                |         |               | _             | loq          | ass                          |    |    |                  | 24 | ပ် | chromium<br>52  | 42 | Mo       | molybdenum<br>96 | 74    | ≥           | tungsten<br>184 | 106    | Sg        | seaborgium<br>-    |
|       |                |         | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |    |                  | 23 | >  | vanadium<br>51  | 41 | q        | niobium<br>93    | 73    | <u>n</u>    | tantalum<br>181 | 105    |           |                    |
|       |                |         |               |               | atc          | <u>a</u>                     |    |    |                  | 22 | F  | titanium<br>48  | 40 | Zr       | zirconium<br>91  | 72    | 士           | hafnium<br>178  | 104    | 꿆         | rutherfordium<br>- |
|       |                |         |               |               |              |                              | I  |    |                  | 21 | Sc | scandium<br>45  | 39 | >        | yttrium<br>89    | 57–71 | lanthanoids |                 | 89–103 | actinoids |                    |
|       | =              |         |               | 4             | Be           | beryllium<br>9               | 12 | Mg | magnesium<br>24  | 20 | Ca | calcium<br>40   | 88 | ഗ്       | strontium<br>88  | 26    | Ba          | barium<br>137   | 88     | Ra        | radium             |
|       | _              |         |               | 8             | =            | lithium<br>7                 | 1  | Na | sodium<br>23     | 19 | ×  | potassium<br>39 | 37 | В        | rubidium<br>85   | 55    | CS          | caesium<br>133  | 87     | ᅩ         | francium           |

| 7.1 | Γn | lutetium     | 175 | 103 | ۲         | lawrencium   | ı   |
|-----|----|--------------|-----|-----|-----------|--------------|-----|
|     | ХÞ |              |     |     |           | _            |     |
| 69  | H  | thulium      | 169 | 101 | Md        | mendelevium  | ı   |
| 89  | ш  | erbinm       | 167 | 100 | Fm        | ferminm      | 1   |
| 29  | 웃  | holmium      | 165 | 66  | Es        | einsteinium  | 1   |
| 99  | ۵  | dysprosium   | 163 | 86  | ర్        | californium  | ı   |
| 65  | q  | terbium      | 159 | 97  | BK        | berkelium    | ı   |
| 64  | В  | gadolinium   | 157 | 96  | Cm        | curium       | ı   |
| 63  | En | europium     | 152 | 92  | Am        | americium    | ı   |
| 62  | Sm | samarium     | 150 | 94  | Pu        | plutonium    | ı   |
| 61  | Pm | promethium   | ı   | 93  | d<br>N    | neptunium    | ı   |
| 09  | pN | neodymium    | 144 | 92  | $\supset$ | uranium      | 238 |
| 59  | Ā  | praseodymium | 141 | 91  | Ра        | protactinium | 231 |
| 58  | Ce | cerium       | 140 | 06  | Ч         | thorium      | 232 |
| 22  | Га | lanthanum    | 139 | 68  | Ac        | actinium     | ı   |

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).