1. Problem 13.1

The following output was obtained from a computer program that performed a two-factor ANOVA on a factorial experiment.

Source	SS	DF	MS	F	P
A	0.322	1			
В	80.554		40.2771		
Interaction					
Error	108.327	12			
Total	231.551	17			

a. Fill in the blanks in the ANOVA table. You can use bounds on the P-values.

- b. How many levels were used for factor B?
- c. How many replicates of the experiment were per-
- d. What conclusions would you draw about this experiment?

Source	SS	DF	MS	\mathbf{F}	P	
A	0.322	1	0.322	.035	2 (0.	75,0.90) 00!
В	80.554	2	40.2771	4.462	Co.07	25,0.05) 415!
Interaction	42.348					O, O.25) no.
Error	108.327	12	9.027	_		no formula:

= 231.551-108.327-80.554-0.322=42.348

$$DF_{B} = b - 1 \rightarrow MS_{B} = \frac{SS_{B}}{DF_{B}}$$
 $DF_{B} = \frac{SS_{B}}{NS_{B}} = \frac{80.SS_{4}}{40.279} \approx 2 \rightarrow b - 1 = 2 \quad b = 3$

$$DF_{AB} = \binom{a-1}{b-1} = DF_{A} \cdot DF_{B} = 1 \cdot 2 = 2$$

$$MS_{A} = \frac{SS_{A}}{DF_{A}} = \frac{0.322}{1} = 0.322 \qquad MS_{E} = \frac{SS_{E}}{DF_{E}} = \frac{109.527}{12} = 9.027$$

$$MS_{AB} = \frac{SS_{AB}}{DF_{AB}} = \frac{42.348}{2} = 21.174$$

a)

Total

$$F_{0_A} = \frac{MS_A}{MS_E} = \frac{0.322}{4.027} = 0.0357$$
 $F_{0_A} = \frac{1}{100} = 0.0357$
 $F_{0_A} = \frac{1}{100} = 0.0357$

$$F_{08} = \frac{Ms_{B}}{Ms_{E}} = \frac{40.2771}{9.027} = 4.462$$

$$F_{0.49,1,12} = \frac{F_{0.00,12,1}}{F_{0.25,17,1}} = .0165$$

$$F_{0.85,1,12} = \frac{F_{0.25,17,1}}{F_{0.25,17,1}} = 0.106$$

3 luck

c) Repliets:
$$n - 1 = 6$$

DF = $ab(n-1)$
 $n=7$
 $a=7$
 $a=7$
 $a=7$
 $a=7$

$$12 = (1)(2)(n-1)$$

d) We conclude that method 13 his a south impact on the rise 1to. Thre is is enough endere to sy their an :territion between A and B, or their nethod A is significent.

2. Problem 13.2

An article in *Industrial Quality Control* (1956, pp. 5–8) describes an experiment to investigate the effect of glass type and phosphor type on the brightness of a television tube. The response measured is the current necessary (in microamps) to obtain a specified brightness level. The data are shown in Table 13E.1. Analyze the data and draw conclusions.

Table 13E.1 Data for Exercise 13.2

	Phosphor Type				
Glass Type	1	2	3		
1	280	300	290		
	290	310	285		
	285	295	290		
2	230	260	220		
	235	240	225		
	240	235	230		

Decementer of Interest. Man effects and intractions of method of phosphor type and gliss type.

2) Ho:
$$T_1 = T_2 = 0$$

 $\beta_1 = \beta_2 = \beta_3 = 0$
 $(T_1, = (T_1)_{12}$

 $(TP|_{11} = (TP)_{12} = (TP)_{13} = (TP)_{21} = (TP)_{2\overline{2}} (TP)_{2\overline{2}}$ 3) Ha: $T_i \neq 0$ for $x_i \in [1,2]$ $B_i \neq 0 \quad \text{for } x_j \in [1,3]$ $(TP)_{i,j} \neq 0 \quad \text{for } x_j \in [1,3]$

6) Colonte tons

$$y_{ij}$$
 $y_{i1} = 280 + 290 + 285 = 855$
 $y_{12} = 300 + 310 + 295 = 905$
 $y_{13} = 290 + 285 + 240 = 865$
 $y_{21} = 230 + 235 + 240 = 705$
 $y_{22} = 260 + 240 + 235 = 735$
 $y_{23} = 270 + 275 + 230 = 675$

$$y_{1..} = y_{11..} + y_{12..} + y_{12..}$$

$$= 855 + 905 + 865 = 7675$$

$$\overline{y}_{1..} = \frac{y_{1..}}{y_{11..}} = \frac{7625}{9} = 791.67$$

$$y_{2..} = y_{21..} + y_{12..} + y_{22..}$$

$$= 705 + 735 + 675 = 7115$$

$$\overline{y}_{2..} = \frac{y_{1..}}{y_{11..}} = \frac{2115}{9} = 735$$

$$y_{11..} = \frac{y_{11..}}{y_{11..}} = \frac{y_{11..}}{y_{11..}} = 735$$

$$\overline{y}_{21..} = \frac{y_{11..}}{y_{21..}} = 4710$$

$$\overline{y}_{21..} = \frac{y_{11..}}{y_{21..}} = 4710$$

$$\overline{y}_{21..} = \frac{y_{11..}}{y_{21..}} = 763.33$$

$$\frac{y}{3} = \frac{855}{3} = 285$$

$$\frac{y}{11} = \frac{905}{3} = 301.67$$

$$\frac{y}{12} = \frac{3}{3} = 286.33$$

$$\frac{y}{13} = \frac{265}{3} = 288.33$$

$$\frac{y}{13} = \frac{235}{3} = 245$$

$$\frac{y}{13} = \frac{235}{3} = 245$$

$$\frac{y}{13} = \frac{675}{3} = 275$$

$$y_{010} = y_{110} + y_{210}$$

$$= 855,708 = 1560$$

$$y_{010} = \frac{y_{010}}{6} = \frac{1560}{6} = 260$$

$$y_{020} = y_{120} + y_{220}$$

$$= 9051 + 35 = 1640$$

$$y_{020} = \frac{y_{020}}{60} = \frac{1640}{6} = 273,33$$

$$y_{030} = y_{130} + y_{230}$$

$$= 865 + 675 = 1540$$

$$y_{030} = \frac{y_{030}}{90} = \frac{1540}{6} = 256.67$$

$$SS_A = b_A \stackrel{?}{\sim} (5...-5...)^2 = 3(3)[(241.67-263.83)^2 + (235-263.83)^2] = 14450$$

 $SS_B = a_A \stackrel{?}{\sim} (5...-5...)^2 = 2(3)[(260-263.83)^2 + (273.33-263.83)^2 + (756.67-263.83)^2]$
 $= 933.83$

$$SS_{AB} = N \sum_{i,j}^{2} (\bar{y}_{i,j,0} - \bar{y}_{i,0} - \bar{y}_{i,0} + \bar{y}_{i,0})^{2}$$

$$= 3[(28S - 241.67 - 260 + 263.33)^{2} + (all calls)] = 20400$$

$$SS_{E} = \sum_{i,j}^{2} \sum_{k}^{2} (y_{i,j,k} - \bar{y}_{i,j,0})^{2} = (280 - 285)^{2} + (240 - 236)^{2} + ... + (230 - 225)^{2}$$

$$= 663.33$$

Degrees of Fredom Man
DF₄ =
$$\alpha - 1 = 1$$
 MS,
DF₈ = $b - 1 = 2$ MS,
DF_{4B} = $(c - 1)(b - 1) = 2$ MS,
DF_E = $ab(n - 1) = 12$ MS,
DF_T = $ab_{n} - 1 = 17$

Man
$$S_{1}$$
 and E_{1} S_{2} S_{3} S_{4} S_{5} S_{5

4) Test Ships be

S) Rejection Cotors

7) Conclusions (assuming assumptions are villed)

we conclude that 61.55 type and phosphor methods have a Significat impaction the brighties of atelevision tibe. The snot erous endence to say threis on interaction between glass and phosphor tope.

8) Main effect and interaction plots/celections Use chelitus from puros

مريز و مرد
$g_{11} = \frac{33}{3} = 285$
$\bar{y}_{12} = \frac{405}{3} = 301.67$
J13. = 863 - 288,33
Ju. = 708 = 235
J ₂₂ = 7 35 = 245
$\bar{y}_{23} = \frac{675}{3} = 225$

(;)	4	6(,ss)	(1,55 Z	
Phaphar Ts	ا عج	285	235	
Phosphor To		301.67	245	
Phasphar Tsi		288.83	275	
(::)		TI	PTZ	PT3
[(css	285		301.67	288.33
61,552	235		74S	225

Glass Type

100

9) Cheoking Assumptions

Residule . Eije = yije - gij.

Resululs us. Ra Order

Produis us. Pun order shows no obvious paterno con claim that errors are independently distributed.

Using Pac, Like from bone

Don't feel grat about equilibrate here

Thre seems to be a functishipe in both plots indity various is not equil accross feithe leads, and thus date transformations mis need to be done.

Fither whe plot seems reasonably settled so the equal where assumption my not be entroly invited.

