Exploring neural network models for Named Entity Recognition task

Sonam De

CS 562

Overview

- Identification of proper names in texts, and the classification of these names into a set of predefined categories.
- Subtask of Information extraction and can be called as Entity identification, entity chunking

I hear Berlin is wonderful in the winter

- Identify the boundaries of the NE and identify its types
- Categories can be:
- Person
 - E.g., David Beckham
- Organization
 - E.g., Google, Mastercard, University of Oxford
- Time
 - E.g., 2006, 16:34, 2am
- Location
 - E.g., Portland, Pasco

Applications:

- Classifying content of articles
- Customer Support

Related work

- HMMs (Karplus et al., 1999; Bystroff et al., 2002)
- Maximum entropy Markov models (MEMMs)
 (McCallum et al., 2000) Label Bias Problem
- Conditional Random Fields (CRF) (Lafferty et al., 2001) p(Y|X)
 - global per sequence normalisation
- LSTM-CRF (Graves et al., 2013)
- Bidirectional LSTM-CRF Models for Sequence Tagging (Huang et al., 2015) – CoNLL – 2003

Bidirectional LSTM-CRF Models for Sequence Tagging (Zhiheng Huang , Wei Xu, Kai Yu)

Dataset

GMB (Groningen Meaning Bank) corpus: https://gmb.let.rug.nl/data.php

Public domain English texts.

Tagged with **BIO** scheme-**B- denotes the beginning and I- inside of an entity**. The words which are not of interest are labelled with O. 66641 words

The classes in the dataset are:

geo = Geographical Entity		Index	Sentence #	Word	POS	Tag
org = Organization	0	0.0	1.0	Thousands	NNS	0
per = Person gpe = Geopolitical Entity	1	1.0	1.0	of	IN	0
tim = Time indicator		2.0	1.0	demonstrators	NNS	0
art = Artifact	3	3.0	1.0	have	VBP	0
eve = Event	4	4.0	1.0	marched	VBN	0
nat = Natural Phenomenon						

Exploratory data analysis

- Highly imbalanced data
- Most words are not named entities (i.e. in class 'O')
- Risk of a strong bias towards class 'O'

Model I Random forest classifier - Experiment set ups

- Sklearn RandomForestClassifier
- Estimator = 50
- Cross validation 5 fold
- Evaluated model after trained on all the classes

Result (including all the classes) - Classification report

! 	precision	recall	f1-score	support;
i !				į
B-art	0.00	0.00	0.00	14
B-eve	0.00	0.00	0.00	8¦
B-geo	0.22	0.78	0.35	385
B-gpe	0.24	0.06	0.10	241
B-nat	0.00	0.00	0.00	7
B-org	0.62	0.15	0.24	232
B-per	1.00	0.14	0.25	207
B-tim	0.26	0.32	0.29	229
I-art	0.00	0.00	0.00	5
I-eve	0.00	0.00	0.00	3
I-geo	0.00	0.00	0.00	76
I-gpe	0.00	0.00	0.00	8¦
I-nat	0.00	0.00	0.00	4
I-org	0.35	0.04	0.07	185
I-per	0.44	0.02	0.03	253
I-tim	0.57	0.06	0.10	71
0	0.97	0.98	0.98	11305¦
:				į
accuracy			0.87	13233
macro avg	0.28	0.15	0.14	13233
weighted avg	0.89	0.87	0.86	13233

- Result shows very high accuracy of 87
- f1 -score for class 'O' is very high 97
- For all other classes f1-score and recall value are too low

Result (excluding class 'O')

	precision	recall	f1-score	support	
B-art	0.00	0.00	0.00	14	•
B-eve	0.00	0.00	0.00	8	_
B-geo	0.22	0.78	0.35	385	
B-gpe	0.24	0.06	0.10	241	
B-nat	0.00	0.00	0.00	7	•
B-org	0.62	0.15	0.24	232	
B-per	1.00	0.14	0.25	207	
B-tim	0.26	0.32	0.29	229	
I-art	0.00	0.00	0.00	5	
I-eve	0.00	0.00	0.00	3	
I-geo	0.00	0.00	0.00	76	
I-gpe	0.00	0.00	0.00	8	
I-nat	0.00	0.00	0.00	4	
I-org	0.35	0.04	0.07	185	
I-per	0.44	0.02	0.03	253	
I-tim	0.57	0.06	0.10	71	
				 - -	
micro avg	0.26	0.24	0.25	1928	
macro avg	0.23	0.10	0.09	1928	
weighted avg	0.40	0.24	0.19	1928	

- Micro avg 25
- F1 score for most of the classes are either 0 or below 50
- Precision and recall for most of the classes are either 0 or below 50

SMOTE - Oversampling algorithm (Synthetic Minority Oversampling Technique)

https://www.kaggle.com/residentmario/oversampling-with-smote-and-adasyn

Nitesh Chawla, et al. in their 2002 paper named for the technique titled "SMOTE: Synthetic Minority Over-sampling Technique."

Result - oversampling the minor class

	precision	recall	f1-score	support
<u>i</u>				! :
B-art	0.00	0.00	0.00	12
B-eve	0.01	0.25	0.02	8
B-geo	0.07	0.00	0.00	431
B-gpe	0.32	0.09	0.13	247
B-nat	0.01	0.17	0.02	6
B-org	0.38	0.11	0.17	250
B-per	1.00	0.13	0.23	211
B-tim	0.23	0.25	0.24	226
I-art	0.00	0.00	0.00	5
: I-eve	0.00	0.00	0.00	8
I-geo	0.00	0.00	0.00	80
I-gpe	0.01	0.57	0.01	7 :
I-nat	0.00	0.00	0.00	2 :
I-org	0.18	0.07	0.10	167
: I-per	0.50	0.00	0.01	259
I-tim	0.04	0.53	0.07	66
. 0	0.99	0.87	0.93	11248
				!
accuracy			0.75	13233
macro avg	0.22	0.18	0.11	13233
weighted avg	0.89	0.75	0.80	13233

- No improvement on the metrics
- Overall accuracy dropped by 20
- Most of the classes still shows 0 value for precision, f1 and recall

Model II CRF - A sequence modelling algorithm

- An undirected graphical model
- Conditional probability p(Y|X)
- Discriminative model

Bidirectional LSTM-CRF Models for Sequence Tagging (Zhiheng Huang, Wei Xu, Kai Yu)

Results - Conditional Random Forest

All class

class 'O' removed

	precision	recall	f1-score	support	[precision	recall	f1-score	support
0	0.99	0.99	0.99	11612	B-art	0.40	0.25	0.31	8:
B-art	0.40	0.25	0.31	8	I-art	0.00	0.00	0.00	3 !
I-art	0.00	0.00	0.00	3:	B-eve	0.25	0.20	0.22	5
B-eve	0.25	0.20	0.22	5	I-eve	0.50	0.17	0.25	6
I-eve	0.50	0.17	0.25	6	B-geo	0.69	0.84	0.76	414
B-geo	0.69	0.84	0.76	414	i I-geo	0.62	0.52	0.76	81
I-geo	0.62	0.52	0.56	81	B-gpe	0.82	0.77	0.79	258
B-gpe	0.82	0.77	0.79	258		0.67	0.33	0.79	6
I-gpe	0.67	0.33	0.44	6	I-gpe				7 !
B-nat	1.00	0.14	0.25	7	B-nat	1.00	0.14	0.25	/
I-nat	1.00	0.20	0.33	5!	I-nat	1.00	0.20	0.33	5
B-org	0.70	0.54	0.61	281	B-org	0.70	0.54	0.61	281
I-org	0.71	0.64	0.67	204	I-org	0.71	0.64	0.67	204
B-per	0.76	0.80	0.78	236	B-per	0.76	0.80	0.78	236
I-per	0.78	0.89	0.83	267	I-per	0.78	0.89	0.83	267
B-tim	0.90	0.84	0.87	240	B-tim	0.90	0.84	0.87	240
I-tim	0.83	0.66	0.74	86	I-tim	0.83	0.66	0.74	86
1 : 1					į				! :
accuracy			0.95	13719	micro avg	0.75	0.74	0.75	2107
macro avg	0.68	0.52	0.55	13719	macro avg	0.66	0.49	0.53	2107
weighted avg	0.95	0.95	0.95	13719	weighted avg	0.75	0.74	0.74	2107

Top likely transition

	VP	CIIV	cty ti	ui i		
Тор	lik	ely	trans	itic	ons:	į
D 00	20		T 000		602220	!

-> I-per

-> I-art

-> I-art

-> I-geo

-> I-eve

-> I-gpe

-> I-eve

-> I-nat

-> B-per

-> B-tim

-> B-tim

-> B-org

-> 0

I-per

B-art

I-art

I-geo

B-eve

B-gpe

0

I-gpe

I-eve

B-nat

B-geo

0

0

0

I-tim -> I-tim

4.891806

4.760881

4.305233

4.233342

4.155746

3.678515

3.535741

3.036805

2.489609

1.692267

1.602308

1.439387

1.423159

-> I-gpe 3.384389

B-geo -> I-per

B-tim -> B-tim

B-org -> B-org

I-org -> I-per

B-geo -> B-org

B-geo -> B-per

B-tim -> B-gpe

I-per

B-gpe

B-per

0

0

0

-> I-art

-> B-per

-> I-per

-> B-gpe

-> B-per

-> I-tim

-> I-org

-> I-geo

0

-1.019925

-1.087746

-1.135647

-1.141812

-1.177864

-1.254548

-1.443963

-1.697911

-1.900895

-2.016075

-2.364394

-2.425464

-2.549516

-2.973031

-3.157237

-3.281237

Model III - BiLSTM with CRF layer:

- Input word vectors
- Access of past and future input features
- Emission score from Bi-LSTM
- Transition score from CRF

Constraints:

- The label of the first word in a sentence should start with "B-" or "O", not "I-"
- "B-label1 I-label2 I-label3 I-...", in this pattern, label1, label2, label3 ... should be the same named entity label. For example, "B-Person I-Person" is valid, but "B-Person I-Organization" is invalid.
- "O I-label" is invalid. The first label of one named entity should start with "B-" not "I-", in other words, the valid pattern should be "O B-label"

Accuracy and Loss plot

Training details:

Batch size=256

Learning rate=0.0005

dropout=0.5

Adam optimizer word_embedding_size = 150

20 Epochs

Results

B-art	0.00	0.00	0.00	98
B-eve	0.00	0.00	0.00	64
B-geo	0.84	0.88	0.86	7375
B-gpe	0.95	0.92	0.93	3314
B-nat	0.00	0.00	0.00	55
B-org	0.80	0.69	0.74	4026
B-per	0.82	0.79	0.80	3278
B-tim	0.89	0.88	0.88	3977
I-art	0.00	0.00	0.00	69
I-eve	0.00	0.00	0.00	42
I-geo	0.81	0.76	0.79	1510
I-gpe	0.00	0.00	0.00	33
I-nat	0.00	0.00	0.00	20
I-org	0.82	0.75	0.78	3267
I-per	0.85	0.80	0.82	3410
I-tim	0.80	0.71	0.75	1233
0	1.00	1.00	1.00	953269
accuracy			0.99	985040
macro avg	0.50	0.48	0.49	985040
weighted avg	0.99	0.99	0.99	985040

Word		True	Pred				
Iran	:	B-geo	B-geo				
says	:	0	0				
the	:	0	0				
F-4	:	B-org	B-geo				
Phantom	:	I-org	0				
jet	:	0	0				
crashed	:	0	0				
at	:	0	0				
12.45	:	B-tim	B-geo				
p.m.	:	I-tim	0				
local	:	0	0				
time	:	B-tim	0				
(:	0	0				
915	:	0	B-tim				
UTC	:	0	I-tim				
)	:	0	0				
Monday	:	B-tim	B-tim				
in	:	0	0				
waters	:	0	0				
near	:	0	0				
the	:	0	0				
Iranian	:	B-gpe	B-gpe				
port	:	0	0				
city	:	0	0				
of	:	0	0				
Konarak	:	B-geo	0				
•	:	0	0				

Conclusions

- Random Forest Classifier did not perform well in tagging and classifying may be due to biases of one class
- RFC are not effective when the class is Imbalanced and accuracy dropped to 32 from 87 when excluding the biased class.
- Oversampling using SMOTE did not give any significant improvement
- CRF shows an accuracy of 95 with all classes and 75 (excluding 'O')
- CRF performs better than traditional Random forest classifier
- Neural networks Bi-LSTM-CRF out-performs as compared two other two models.
- F1 score for most of the classes are above 75 and overall accuracy is 99.

References

- [1] Named-entity recognition, https://en.wikipedia.org/wiki/Named-entity recognition
- [2] Named Entity Recognition (NER),https://medium.com/@kaushik.sairam/named-entity-recognition-ner-on-gron Ingen-meaning-bank-gmb-corpus-fba8914be26
- [3] Groningen Meaning Bank data, https://gmb.let.rug.nl/data.php
- [4] [Zhiheng Huang, Wei Xu, and Kai Yu] Bidirectional LSTM-CRF Models for Sequence Tagging. 2015.
- [5] [Lample, Guillaume and Ballesteros, Miguel and Subramanian, Sandeep and Kawakami, Kazuya and Dyer, Chris] Neural Architectures for Named Entity Recognition. 2016
- [6] Annotated Corpus for Named Entity Recognition, https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus?select=ner dataset.csv
- [7] NER using Random Forest and CRF,https://www.kaggle.com/shoumikgoswami/ Ner-using-random-forest-and-crf

Questions?