

Scarmed with Cam

Scarined With Carl

	Page
_	Brute force approach can be the linear
	bearing but this abbroach has time
	complexity of O(n) but can we do in
	O(logn).
_	
	3 4 5 6 7, 11 2
	Sorted Sorted
	↓
	Here our code
	can get stuck 4 hence
	We can explicitly
	handle there 2 cases.
	Algorithm or numbers
_	
)	Start = 0
	end = Size - 1 = 7 - 1 = 6
	mid = 0+6 = 3
	5 .17 6
	arr [mid] = 6
\dashv	
-	Suppose that our mid comes at 4th
\dashv	index, then are [mid] = 7 farer [mid+1]=1
+	1 de
+	if (aur [mid] > aur [mid+1]) {
-	return mid
\parallel	7 9
4	if (aur [mid-1] > aur [mid]) {
\parallel	return mid-1)
\parallel	
\parallel	These are the 2 cases which we are explicitly
\parallel	handling:
\parallel	Also we have to make sure mid+1 & mid-1
	is a valid index.

14.	189 Date Page
	our Polt in
	Now only 2 conditions are left i.e.to Search in right part or left part. We know that pivot is the maximum elament. Compare with starting element
	Elemera Com
	if (aur [S] >= aur [mid]) { e=mid-li // Left part
	3 (mid)){
2.0	else if (aux [S] < aux Right part 2
, le ·	i all will and
	Code
-	int pivot Element (vector < int) aur) {-
	int s = 0;
	int $e = aux \cdot Size() - 1;$ int mid = $S + (e-S)/2;$
1 - / 1	while (s < e) { representation of the service of t
	if (mid+1 < avr size() && avr [mid]
	(LI+ bims struction) / >avr [mid+1]
	3 prolid index
	if (mid-1>=0 4& ovr (mid-1) > ovr (mid)
	the transfer of the second of
	return mid-1)
1	if (arr [S] >= arr [mid]) {
1 / 1	e=mid-li
	Scarnieu with C

Scarnieu with Eam

	Page
	else if (our [s] < our [mid]) {
1	S=mid i //As in while we
	have med see
	mid = S + (e-s)/2;
	S. S
	return ; -> For single element in avoidy & not gone in while loop.
	1 Anot gone in while loop.
03	Search in rotated sorted array.
X	p pivot p pivot +1
	1/b → 4 5 6 0 1 2 3
	Sorted Sorted
	2 toll - Circumstance Control of
	3
	<u> </u>
1	Suppose that we need to find 2 in the
	array with the help of binary search.
	ingo a provide a company of the marine
	Algorithm
m - 3	Les out that a desire
1)	Find fivot element which is 6 here Now
	compare key = 2 which we need to
	compare with pivot
2 < 6, hence we need to	
	sorted array - 2
	4 5 6, 0 1 2 3
	array - 2
	Scallica Willi C

	ande of pivot
21	We can reuse the code of pivot element & then decide in which away we need to search the element & once we get to know the away, then simply apply the binary search.
	element & then decide it element & once
	we need to search the element of then sinus
	we need to know the asuray & mercisimal
	abbly the binary search.
	apply the pro-
	Code
	int search (vector < int>4 nums; int t){
	int pivot = pivot Element (nums);
	if (target >= nums [0] && target <= - nums (pivot]) {
	nums (prvoca) (
	// Search in left array
	// Search in left away int ans = binary Search (nums, target, 0, pivot);
	pivot))
	return ans
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
>	// Valid index
	if (pivot +1 < nums·size() & & target
	>= nums [pivot+1] &&
	target < = nums [nums·size()
- Ji	1. Stand of all double which is 6 here.
	int ans = binary Search (nums, target, pivot+1, nums. size()-1)
	Int ans = binary Search (nums, target,
	pivot+1, nums size()-1)
	- 100
	return ans
	J 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	return -1;
	5
'	Scarineu With C

	The question now comes to our mind
	that what is rotation in the array.
	is couldn't the world.
	0 1 2 3 4 5 6 → sorted
	1st rotation average
	6012345
	and rotation
	5 6 0 1 2 3 4
	3rd rotation
	4 5 6 0 1 2 3
	We can do further rotations on the
	array.
, No	He + Other way is that we can apply binary
	search on both arrays & the one who is
	returning index = - 1 will be the
	answer.
Q.	3 Square root of a number using binary
	Search
Hely.	i/þ → 12
	0/b → 3 (only integer part)
	Square root of a number a will lie
	within 0 to n. This is known as the
	Search Shace
	R = 10
Sear	ch 0 1 2 3 4 5 6 7 8 9 10
Spa	ce s ? mid
and the same of	

	(188) Date Page
I)	start = 0 end = size-1 = 10 mid = 5
	ar [mid] - 5 5*5 = 25 25 > target = 10 So we need to search in left part.
<u>a)</u>	Start = 0 end = 4 mid = 2
	arr [mid] = 2. 2x2 = 4 4 < target = 10 Store the answer and then search in
	the right part of array.
1,110	$\begin{array}{l} \text{Start} = 3 \\ \text{end} = 4 \\ \text{mid} = 3 + 4 = 3 \\ \text{a} \end{array}$
	$3 \times 3 = 9$
	9<10 Store answer 4 search in right part
4) 5	start = 4 & Both becomes equal-
П	

Scarnied with Cam

	Page
	Code
	int square Root (int n) {
	Int ans = -1
	int s = o i
	int e = n;
	int mid = s + (e-s)/2; int target = n; while (s < = e) {
	int twiget = n,
	vvnile (S< = e) {
	if (mid * mid = = target) {
	retwin mid i
	3
	if (mid* mid > target) {
	e=mid-li
	else {
	ans = mid;
	S = mid + lj
	J - C - (e - C) /) i
	mid = S + (e-S)/2i
	return ans
	3
	3 (4 + J - 1 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 1 + 2 + 1 + 1
Not	e -> We are storing the ans = mid because it might happen that if we go to right & we won't get the answer, then we get the ans = -1 only which is
	I it might happen that if we go to
	right & we won't get the answer, then
-	We get the ans = -1 only which is
- 15	wrong answer.
	Now we need to find the decimal part
15	Now we need to sind the decimal part.
	Julii Ca Willi Ca

Scarineu with CaM

	C/A	SSMAL
(19)	Date Page	- WE
1	ruge	

	Page
	ans = 3
	3·1
	3.2 73.1 * 3.1 > 10
	3.3
	3.4
	: 1210000 4 1 1 1 1 1 1 1 1 1 1
	in and state of the state of th
	3.9 () () ()
	ans = 3.1
	3.11
	3.12 $3.12 \times 3.12 < = 10$ $ -$
	U.S.I.I.I.
	$\frac{3.16 \times 3.16}{3.17 \times 3.17}$ ans = $\frac{3.16}{3.17}$
	2.19
	5.13
	Additional code
	double ans = square Root (10);
	int precision = 3;
double	step = 0.1)
	140.1
	for (int i=0) (< precision ; i++){
الالمال	
	for (double ans j j * j <= n ; j = j + step-
1 1 1	
	ans = j
	G . Parlon . Com
	Step = Step/10;
4	cout << ans << endl;
-1	Scarney with

Scarnieu with Cam

QY	Binary Search in 2D matrisc	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	aur [] [] frow fool Index Index row Index formulae col Index fid/cols { Formulae col Index fid/cols } element = aur [now Index][col Index];	
	if (element = = target) return true; if (element > target) e = mid-1; left else S = mid+1; Right part part	
	bool binary Search (int arr [][S], intr, int c, int t) {	
	int s = 0; $int e = % * (-1)$	

ocanneu wiiii caM

int mid = S + (e-s)/2; while (s<=e) introw Index = mid/cols; int colIndex = mid % cols; int element = are [90w Index][collidex] if (element = = t) { return true; if (element < t) { s=mid + 13 // Left part else e=mid-1j // Right part return false

Scanned with Cam