Cálculo Introducción a las matemáticas formales

Darvid

Axiomas de campo

Existe un conjunto llamado conjunto de los números reales, denotado por \mathbb{R} . A los elementos de este conjunto los llamaremos números reales. Este conjunto está dotado con dos operaciones binarias: + (suma) y · (multiplicación).

Axiomas de la suma

La suma satisface las siguientes propiedades:

- **1.** Cerradura (de la suma): Si $x, y \in \mathbb{R}$, entonces $x + y \in \mathbb{R}$.
- **2.** Conmutatividad (de la suma): Si $x, y \in \mathbb{R}$, entonces x + y = y + x.
- **3.** Asociatividad (de la suma): Si $x, y, z \in \mathbb{R}$, entonces (x+y) + z = x + (y+z).
- **4.** Neutro aditivo (o cero): $\exists 0 \in \mathbb{R}$ tal que si $x \in \mathbb{R}$, entonces x + 0 = x.
- **5.** Inverso aditivo: Si $x \in \mathbb{R}$, entonces $\exists (-x) \in \mathbb{R}$ tal que x + (-x) = 0.

Necesidad de justificar

Proposición: Si a, b y c son números reales tales que a+c=b+c, entonces a=b. El siguiente es un esbozo de la prueba propuesta por un estudiante:

$$a + c = b + c$$
$$a = b + c - c$$
$$a = b$$

Aunque el resultado anterior no es incorrecto, debemos justificar cada igualdad a partir de las propiedades conocidas con el fin de preservar rigurosiad, al menos en la primera parte de este curso. Esto ayudará a que el lector se famirialice con el uso de las propiedades básicas de los números reales, antes de proceder a realizar pruebas más elaboradas.

Lista de Ejercicios 1

Sean a, b, y c números reales, demuestre lo siguiente:

a) Si a + b = a, entonces b = 0. (Unicidad del neutro aditivo).

Demostración:

$$b=b+0$$
 Neutro aditivo
 $=b+(a+(-a))$ Inverso aditivo
 $=(b+a)+(-a)$ Asociatividad
 $=(a+b)+(-a)$ Conmutatividad
 $=a+(-a)$ Hipótesis
 $=0$ Neutro aditivo

b) Si a + b = 0, entonces b = -a. (Unicidad del inverso aditivo).

Demostración:

b = b + 0	Neutro aditivo
= b + (a + (-a))	Inverso aditivo
= (b+a) + (-a)	Asociatividad
= (a+b) + (-a)	Conmutatividad
= 0 + (-a)	Hipótesis
= (-a) + 0	Conmutatividad
=-a	Neutro aditivo

Nota: Demostrar proposiciones para números reales arbitrarios (cualesquiera elementos de \mathbb{R}), nos permite reutilizar las *formas* como esquema para otras pruebas. Por ejemplo, la *forma* de la unicidad del inverso aditivo, $x + y = 0 \Longrightarrow y = -x$, nos permite sustituir x y y por cuales quiera números reales, como en el ejemplo que sigue:

Corolario: -(-a) = a. (Inverso aditivo del inverso aditivo).

Demostración:

$$0 = a + (-a)$$
 Inverso aditivo
= $(-a) + a$ Conmutatividad

Por la unicidad del inverso aditivo sigue que a = -(-a).

Nota: En esta demostración, al emplear la *forma* de la unicidad del inverso aditivo, $x+y=0 \Longrightarrow y=-x$, hemos tomado x=(-a) y y=a.

c) -0 = 0. (Cero es igual a su inverso aditivo).

Demostración:

$$0 = 0 + (-0)$$
 Inverso aditivo
 $= (-0) + 0$ Conmutatividad
 $= -0$ Neutro aditivo

d) Si $a \neq 0$, entonces $-a \neq 0$.

Demostración: Si -a = 0, se verifica que

$$a=a+0$$
 Neutro aditivo
$$=a+(-a)$$
 Hipótesis
$$=0$$
 Inverso aditivo

Por contraposición, si $a \neq 0$, entonces $-a \neq 0$.

e) -(a+b) = (-a) + (-b). (Distribución del signo).

Demostración:

$$0 = 0 + 0$$

$$= (a + (-a)) + (b + (-b))$$

$$= a + ((-a) + (b + (-b)))$$
Asociatividad
$$= a + (((-a) + b) + (-b))$$

$$= a + ((b + (-a)) + (-b))$$
Conmutatividad
$$= a + (b + ((-a) + (-b)))$$
Asociatividad
$$= (a + b) + ((-a) + (-b))$$
Asociatividad
Asociatividad

Por la unicidad del inverso aditivo, (-a) + (-b) = -(a+b).

Nota: En esta demostración, al emplear la *forma* de la unicidad del inverso aditivo, $x+y=0 \Longrightarrow y=-x$, hemos tomado x=(a+b) y y=(-a)+(-b).

Corolario:
$$-(a + (-b)) = b + (-a)$$
.

Demostración:

$$-(a+(-b)) = (-a) + (-(-b))$$
 Distribución del signo
$$= (-a) + b$$
 Inverso aditivo del inverso aditivo
$$= b + (-a)$$
 Conmutatividad

Nota: En esta demostración, al emplear la forma de la distribución del signo, -(x + y) = (-x) + (-y), hemos tomado x = a y y = (-b).

f) Si a + c = b + c, entonces a = b. (Ley de cancelación de la suma).

Demostración:

a = a + 0	Neutro aditivo
= a + (c + (-c))	Inverso aditivo
= (a+c) + (-c)	Asociatividad
= (b+c) + (-c)	Hipótesis
$= b + \left(c + (-c)\right)$	Asociatividad
=b+0	Inverso aditivo
= b	Neutro aditivo \Box

Observación: En el segundo paso de la demostración, podíamos sustituir 0 por a + (-a) o por b + (-b) (o por cualquier suma igual a 0). sin embargo, no en todos los casos resultaría útil. Observamos pues que para demostrar proposiciones matemáticas no basta con conocer las propiedades que satisfacen los *objetos* (en este caso números reales) con los que trabajamos; también requerimos intuir su uso apropiado. La experiencia indica que esta intuición se adquiere con la práctica. El lector debería verificar qué ocurre si sustituimos 0 por a + (-a) o b + (-b) en el segundo paso de esta prueba.

Nota: Si el contexto es claro, enunciaremos esta proposición como ley de cancelación.

Axiomas de la multiplicación

La multiplicación \cdot satisface las siguientes propiedades:

- **6.** Cerradura (de la multiplicación): Si $x, y \in \mathbb{R}$, entonces $x \cdot y \in \mathbb{R}$.
- 7. Conmutatividad (de la multiplicación): Si $x, y \in \mathbb{R}$, entonces $x \cdot y = y \cdot x$.
- **8.** Asociatividad (de la multiplicación): Si $x, y, z \in \mathbb{R}$, entonces $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- **9.** Neutro multiplicativo (o uno): $\exists 1 \in \mathbb{R} \text{ y } 1 \neq 0 \text{ tal que si } x \in \mathbb{R}, \text{ entonces } x \cdot 1 = x.$
- **10.** Inverso multiplicativo: Si $x \in \mathbb{R}$ y $x \neq 0$, entonces $\exists x^{-1} \in \mathbb{R}$ tal que $x \cdot x^{-1} = 1$.

Lista de Ejercicios 2

Sean a, b, y c números reales, demuestre lo siguiente:

a) Si $a \neq 0$ y $a \cdot b = a$, entonces b = 1. (Unicidad del neutro multiplicativo).

Demostración:

$$b = b \cdot 1$$
 Neutro multiplicativo
 $= b \cdot (a \cdot a^{-1})$ Inverso multiplicativo
 $= (b \cdot a) \cdot a^{-1}$ Asociatividad
 $= (a \cdot b) \cdot a^{-1}$ Conmutatividad
 $= a \cdot a^{-1}$ Hipótesis
 $= 1$ Inverso multiplicativo

Nota: La prueba requiere que $a \neq 0$, pues de otro modo (si a = 0), no podemos garantizar que b = 1. Veremos la prueba de este hecho más adelante.

b) Si $a \neq 0$ y $a \cdot b = 1$, entonces $b = a^{-1}$. (Unicidad del inverso multiplicativo).

Demostración:

$$\begin{array}{ll} b=b\cdot 1 & \text{Neutro multiplicativo} \\ =b\cdot (a\cdot a^{-1}) & \text{Inverso multiplicativo} \\ =(b\cdot a)\cdot a^{-1} & \text{Asociatividad} \\ =a^{-1}\cdot (a\cdot b) & \text{Conmutatividad} \\ =a^{-1}\cdot 1 & \text{Hipótesis} \\ =a^{-1} & \text{Neutro multiplicativo} \end{array}$$

Nota: La prueba requiere que $a \neq 0$, pues de otro modo no podemos garantizar la existencia de su inverso multiplicativo.

c) $1 = 1^{-1}$. (Uno es inverso multiplicativo).

Demostración:

$$1=1\cdot 1^{-1}$$
 Inverso multiplicativo
$$=1^{-1}\cdot 1$$
 Conmutatividad
$$=1^{-1}$$
 Neutro multiplicativo \square

Nota: Por el axioma del neutro multiplicativo sabemos que $1 \neq 0$, por lo que existe su inverso multiplicativo.

d) Si $c \neq 0$ y $a \cdot c = b \cdot c$, entonces a = b. (Ley de cancelación de la multiplicación).

Demostración:

$$a=a\cdot 1$$
 Neutro multiplicativo
$$=a\cdot \left(c\cdot c^{-1}\right) \qquad \text{Inverso multiplicativo} \\ =\left(a\cdot c\right)\cdot c^{-1} \qquad \text{Asociatividad} \\ =\left(b\cdot c\right)\cdot c^{-1} \qquad \text{Hipótesis} \\ =b\cdot \left(c\cdot c^{-1}\right) \qquad \text{Asociatividad} \\ =b\cdot 1 \qquad \text{Inverso multiplicativo} \\ =b \qquad \text{Neutro multiplicativo}$$

Observación: La prueba requiere que $c \neq 0$, pues de otro modo no podemos garantizar la existencia de su inverso multiplicativo.

Nota: Si el contexto es claro, enunciaremos esta proposición como ley de cancelación.

Propiedad distributiva

Introducimos la propiedad que nos permite relacionar las operaciones de suma + y multiplicación ·

11. Distribución (de la multiplicación sobre la suma): Si $x, y, z \in \mathbb{R}$, entonces $x \cdot (y+z) = x \cdot y + x \cdot z$.

Ejemplo de argumento circular

Proposición: $b \cdot 0 = 0$. El siguiente es un esbozo de la prueba propuesta por un estudiante:

$$b \cdot 0 = b \cdot (a + (-a))$$
 Inverso aditivo
 $= b \cdot a + b \cdot (-a)$ Distribución
 $= a \cdot b + (-a) \cdot b$ Conmutatividad
 $= 0$ \therefore ?

Pero se requiere probar que $a \cdot b + (-a) \cdot b = 0$. Observemos ahora el siguiente esbozo para esta prueba:

$$a \cdot b + (-a) \cdot b = b \cdot a + b \cdot (-a)$$
 Conmutatividad
 $= b \cdot (a + (-a))$ Distribución
 $= b \cdot 0$ Inverso aditivo
 $= 0$ \vdots ?

No obstante, se ha propuesto un **argumento circular**, por lo que no es posible verificar ninguna de las proposiciones anteriores. Requerimos pues, depender únicamente de axiomas o proposiciones previamente probadas para continuar.

Lista de Ejercicios 3 (LE3)

Sean a y b números reales, demuestre lo siguiente:

a) $a \cdot 0 = 0$. (Multiplicación por 0).

Demostración:

$$a \cdot 0 = a \cdot 0 + 0$$
 Neutro aditivo
 $= a \cdot 0 + (a + (-a))$ Inverso aditivo
 $= a \cdot 0 + (a \cdot 1 + (-a))$ Neutro multiplicativo
 $= (a \cdot 0 + a \cdot 1) + (-a)$ Asociatividad
 $= (a \cdot (0+1)) + (-a)$ Distribución
 $= a \cdot 1 + (-a)$ Neutro aditivo
 $= a + (-a)$ Neutro multiplicativo
 $= 0$ Inverso aditivo

Corolario: Si $a \neq 0$, entonces $a^{-1} \neq 0$. (Cero no es inverso multiplicativo).

Demostración: Sea $a \neq 0$. Si $a^{-1} = 0$, se verifica que

$$1 = a \cdot a^{-1}$$
 Inverso multiplicativo
$$= a \cdot 0$$
 Hipótesis
$$= 0$$
 Multiplicación por 0

Pero esto contradice la propiedad del neutro multiplicativo. Por tanto, si $a \neq 0$, entonces $a^{-1} \neq 0$.

Nota: El axioma del neutro multiplicativo no implica directamente que 0 no pueda ser inverso multiplicativo de algún número real, únicamente indica que si $x \in \mathbb{R}$ y $x \neq 0$, entonces $\exists x^{-1}$. El axioma tampoco especifica que para 0 el inverso multiplicativo no existe, sin embargo, si suponemos su existencia, es decir, si $\exists 0^{-1} \in \mathbb{R}$ tal que $0 \cdot 0^{-1} = 1$, tenemos por la multiplicación por 0 que 0 = 1, lo que es una contradicción.

b) Si $a \cdot b = 0$, entonces a = 0 o b = 0 (disyunción).

Demostración: Demostraremos primero que si $a \neq 0$ y $b \neq 0$, entonces $a \cdot b \neq 0$. Sea $a \neq 0$ y $b \neq 0$. Notemos que

$$a = a \cdot 1$$
 Neutro multiplicativo
 $= a \cdot (b \cdot b^{-1})$ Inverso multiplicativo
 $= (a \cdot b) \cdot b^{-1}$ Asociatividad

Por hipótesis $a \neq 0$, por lo que $0 \neq (a \cdot b) \cdot b^{-1}$. Además, $b^{-1} \neq 0$, pues cero no es inverso multiplicativo. Si $a \cdot b = 0$, por la multiplicación por cero, $(a \cdot b) \cdot b^{-1} = 0$, lo que es una contradicción. Por tanto, si $a \neq 0$ y $b \neq 0$, entonces $a \cdot b \neq 0$. Finalmente, por contraposición, si $a \cdot b = 0$, entonces a = 0 o b = 0. \square

c) Si $a \neq 0$ y $b \neq 0$, entonces $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$. (Multiplicación de inversos multiplicativos).

Demostración:

$$\begin{split} 1 &= b \cdot b^{-1} & \text{Inverso multiplicativo} \\ &= (b \cdot 1) \cdot b^{-1} & \text{Neutro multiplicativo} \\ &= \left(b \cdot (a \cdot a^{-1})\right) \cdot b^{-1} & \text{Inverso multiplicativo} \\ &= (b \cdot a) \cdot \left(a^{-1} \cdot b^{-1}\right) & \text{Asociatividad} \\ &= (a \cdot b) \cdot \left(a^{-1} \cdot b^{-1}\right) & \text{Conmutatividad} \end{split}$$

Por la unicidad del inverso multiplicativo $a^{-1} \cdot b^{-1} = (a \cdot b)^{-1}$.

Nota: En esta demostración está implícito que $\exists (a \cdot b)^{-1} \in \mathbb{R}$, lo cual es válido pues hemos probado que si $a \neq 0$ y $b \neq 0$, entonces $a \cdot b \neq 0$, por lo que existe su inverso multiplicativo.

d) Si $a \neq 0$, entonces $(a^{-1})^{-1} = a$.

Demostración:

$$1 = a \cdot a^{-1}$$
 Inverso multiplicativo
$$= a^{-1} \cdot a$$
 Conmutatividad

Por la unicidad del inverso multiplicativo sigue que $a = (a^{-1})^{-1}$.

Nota: En esta demostración está implícito que $\exists (a^{-1})^{-1} \in \mathbb{R}$, lo cual es válido pues cero no es inverso multiplicativo, es decir, tenemos $a^{-1} \neq 0$, por lo que existe su inverso multiplicativo.

Al emplear la forma de la unicidad del inverso multiplicativo, $x \neq 0 \land x \cdot y = 1 \Longrightarrow y = x^{-1}$, hemos tomado $x = a^{-1}$ y y = a.

e) $(-1) = (-1)^{-1}$. (Menos uno es inverso multiplicativo).

Demostración: Primero probaremos la existencia de $(-1)^{-1}$.

Si -1 = 0, tenemos que 1+(-1) = 1+0, y por neutro aditivo 1+(-1) = 1, pero el inverso aditivo satisface que 1+(-1) = 1, de donde sigue que 1 = 0, lo que contradice la propiedad del neutro multiplicativo. Por tanto, $-1 \neq 0$, por lo que $\exists (-1)^{-1} \in \mathbb{R}$. Luego,

$$0 = 1 + (-1)$$
 Inverso aditivo

$$= (-1) \cdot (-1)^{-1} + (-1)$$
 Inverso multiplicativo

$$= (-1) \cdot (-1)^{-1} + (-1) \cdot 1$$
 Neutro multiplicativo

$$= (-1) \cdot \left((-1)^{-1} + 1 \right)$$
 Distribución

Como $-1 \neq 0$, sigue que $(-1)^{-1} + 1 = 0$, y por conmutatividad $1 + (-1)^{-1} = 0$. Finalmente, por unicidad del inverso aditivo, $(-1)^{-1} = -1$.

Nota: En esta demostración, al emplear la forma de la unicidad del inverso aditivo, $x+y=0 \Longrightarrow y=-x$, hemos tomado x=1 y $y=(-1)^{-1}$.

f) $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$. (Multiplicación por inverso aditivo).

Demostración:

$$0 = b \cdot 0$$
 Multiplicación por 0 $0 = a \cdot 0$ Multiplicación por 0 $0 = b \cdot (a + (-a))$ Inverso aditivo $0 = a \cdot (b + (-b))$ Inverso aditivo $0 = a \cdot (b + (-b))$ Inverso aditivo $0 = a \cdot (b + (-b))$ Distribución $0 = a \cdot (b + (-a))$ Distribución $0 = a \cdot (b + (-b))$ Distribución

Por unicidad del inverso aditivo, se verifica que $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.

Nota: En esta demostración, al emplear la *forma* de la unicidad del inverso aditivo, $x+y=0 \Longrightarrow y=-x$, hemos tomado, $x=a\cdot b$ y $y=(-a)\cdot b$, por una parte y $y=a\cdot (-b)$, por la otra.

Corolario:

i)
$$(-a) \cdot (-b) = a \cdot b$$
.

Demostración:

$$(-a) \cdot (-b) = a \cdot (-(-b))$$
 Multiplicación por inverso aditivo
= $a \cdot b$ Inverso aditivo \Box

Nota: Al emplear la forma de la multiplicación por inverso aditivo, $(-x) \cdot y = x \cdot (-y)$, hemos tomado x = a y y = (-b).

ii) $-(a^{-1}) = (-a)^{-1} = (-1) \cdot a^{-1}$. (Inverso aditivo del inverso multiplicativo).

Demostración:

$$(-1) \cdot a^{-1} = -(1 \cdot a^{-1})$$
 Multiplicación por inverso aditivo
$$= -(a^{-1})$$
 Neutro multiplicativo

Similarmente,

$$-(a^{-1}) = \left(-(a^{-1})\right) \cdot 1$$
 Neutro multiplicativo
$$= -\left(\left(a^{-1}\right) \cdot 1\right)$$
 Multiplicación por inverso aditivo
$$= -\left(a^{-1}\right)$$
 Neutro multiplicativo \square

Nota: Al emplear la forma de la multiplicación por inverso aditivo, $(-x) \cdot y = -(x \cdot y)$, hemos tomado x = 1 y $y = a^{-1}$, por una parte, y $x = (a^{-1})$ y y = 1, por la otra.

Notación

- Si x y y son números reales, representaremos con el símbolo x-y a la suma x+(-y).
- Si $x, y \in \mathbb{R}$ y $y \neq 0$, representaremos con el símbolo $\frac{x}{y}$ al número $x \cdot y^{-1}$. Es inmediato que si $w \neq 0$, entonces $\frac{w}{w} = w \cdot w^{-1} = 1$.
- Si x y y son números reales, representaremos con el símbolo xy a la multiplicación $x \cdot y$.

Lista de ejercicios 4 (LE4)

Sean a, b, c y d números reales, demuestre lo siguiente:

a)
$$\frac{a}{b} = a \cdot \frac{1}{b}$$
, si $b \neq 0$.

Demostración:

$$\begin{aligned} \frac{a}{b} &= a \cdot b^{-1} & \text{Notaci\'on} \\ &= (a \cdot 1) \cdot b^{-1} & \text{Neutro multiplicativo} \\ &= a \cdot \left(1 \cdot b^{-1}\right) & \text{Asociatividad} \\ &= a \cdot \frac{1}{b} & \text{Notaci\'on} \end{aligned}$$

b)
$$a \cdot \frac{c}{b} = \frac{ac}{b}$$
, si $b \neq 0$.

Demostración:

$$a \cdot \frac{c}{b} = a \cdot (c \cdot b^{-1})$$
 Notación
$$= (ac) \cdot b^{-1}$$
 Asociatividad
$$= \frac{ac}{b}$$
 Notación

c) $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$, si $b, d \neq 0$. (Multiplicación de fracciones).

Demostración:

$$\frac{a}{b} \cdot \frac{c}{d} = (a \cdot b^{-1}) \cdot (c \cdot d^{-1}) \qquad \text{Notación}$$

$$= a \cdot \left(b^{-1} \cdot (c \cdot d^{-1})\right) \qquad \text{Asociatividad}$$

$$= a \cdot \left(\left(b^{-1} \cdot c\right) \cdot d^{-1}\right) \qquad \text{Asociatividad}$$

$$= a \cdot \left(\left(c \cdot b^{-1}\right) \cdot d^{-1}\right) \qquad \text{Conmutatividad}$$

$$= a \cdot \left(c \cdot \left(b^{-1} \cdot d^{-1}\right)\right) \qquad \text{Conmutatividad}$$

$$= a \cdot \left(c \cdot \left(b \cdot d\right)^{-1}\right) \qquad \text{Multiplicación de inversos multiplicativos}$$

$$= (a \cdot c) \cdot (b \cdot d)^{-1} \qquad \text{Asociatividad}$$

$$= \frac{ac}{bd} \qquad \text{Notación}$$

d) $\frac{a}{b} = \frac{ac}{bc}$, si $b, c \neq 0$. (Cancelación de factores en común).

Demostración:

$$\begin{array}{ll} \frac{a}{b} = \frac{a}{b} \cdot 1 & \text{Neutro multiplicativo} \\ = \frac{a}{b} \cdot \left(c \cdot c^{-1} \right) & \text{Inverso multiplicativo} \\ = \frac{a}{b} \cdot \frac{c}{c} & \text{Notación} \\ = \frac{ac}{b \cdot c} & \text{Multiplicación de fracciones} \end{array}$$

e) $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$, si $b, c, d \neq 0$. (Regla del sandwich).

Demostración:

$$\frac{a}{\frac{b}{c}} = \frac{(a \cdot b^{-1})}{(c \cdot d^{-1})}$$
Notación
$$= (a \cdot b^{-1}) \cdot (c \cdot d^{-1})^{-1}$$
Notación
$$= (a \cdot b^{-1}) \cdot (c^{-1} \cdot (d^{-1})^{-1})$$
Multiplicación de inversos multiplicativos
$$= (a \cdot b^{-1}) \cdot (c^{-1} \cdot d)$$
Unicidad del inverso multiplicativo
$$= (a \cdot b^{-1}) \cdot (d \cdot c^{-1})$$
Conmutatividad
$$= \frac{a}{b} \cdot \frac{d}{c}$$
Notación
$$= \frac{ad}{c}$$
Multiplicación de fracciones

Corolario: $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \text{ si } a, b \neq 0.$

Demostración:

$$\left(\frac{a}{b}\right)^{-1} = \frac{1}{\frac{a}{b}}$$
 Notación
$$= \frac{1}{\frac{a}{b}}$$
 Uno es inverso multiplicativo
$$= \frac{\frac{1}{a}}{\frac{a}{b}}$$
 Notación
$$= \frac{1 \cdot b}{1 \cdot a}$$
 Teorema
$$= \frac{b}{a}$$
 Neutro multiplicativo

f) $\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}$, si $c \neq 0$. (Suma de fracciones con denominador conmún).

Demostración:

$$\frac{a}{c} \pm \frac{b}{c} = (a \cdot c^{-1}) \pm (b \cdot c^{-1})$$

$$= (c^{-1} \cdot a) \pm (c^{-1} \cdot b)$$

$$= c^{-1} \cdot (a \pm b)$$

$$= (a \pm b) \cdot c^{-1}$$

$$= \frac{a \pm b}{c}$$
Notación

Notación

g) $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$, si $b, d \neq 0$. (Suma de fracciones).

Demostración:

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{cb}{db}$$
 Cancelación de factores en común
$$= \frac{ad}{bd} \pm \frac{cb}{bd}$$
 Conmutatividad
$$= \frac{ad \pm cb}{bd}$$
 Suma de fracciones con denominador común

h)
$$\frac{a}{-b} = -\frac{a}{b} = \frac{-a}{b}$$
, si $b \neq 0$.

Demostración:

$$\frac{-a}{b} = (-a) \cdot b^{-1} \quad \text{Notación} \qquad \qquad \frac{a}{-b} = a \cdot (-b)^{-1} \quad \text{Notación}$$

$$= -(ab^{-1}) \quad \text{Multiplicación por inverso aditivo} \qquad = -(ab^{-1}) \quad \text{Multiplicación por inverso aditivo}$$

$$= -\frac{a}{b} \qquad \text{Notación} \qquad \qquad = -\frac{a}{b} \qquad \text{Notación} \qquad \square$$

Nota: En esta prueba está implícito que $\exists (-b)^{-1} \in \mathbb{R}$, lo cual es válido, pues $b \neq 0$, por lo que $-b \neq 0$.

Una nota sobre notación

Las siguientes son todas las formas en que podríamos sumar/multiplicar tres números reales a, b y c.

i.
$$(a + / \cdot b) + / \cdot c$$
 iv. $(a + / \cdot c) + / \cdot b$ **vii.** $c + / \cdot (b + / \cdot a)$ **x.** $b + / \cdot (c + / \cdot a)$

ii.
$$a + / \cdot (b + / \cdot c)$$
 v. $(c + / \cdot a) + / \cdot b$ **viii.** $(c + / \cdot b) + / \cdot a$ **xi.** $b + / \cdot (a + / \cdot c)$

iii.
$$a + / \cdot (c + / \cdot b)$$
 vi. $c + / \cdot (a + / \cdot b)$ ix. $(b + / \cdot c) + / \cdot a$ xii. $(b + / \cdot a) + / \cdot c$

Podemos probar igualdad de todas ellas a partir de las propiedades de la suma/multiplicación:

$(a +/\cdot b) +/\cdot c = a +/\cdot (b +/\cdot c)$	Asociatividad	Formas (i) y (ii)
$=a +/\cdot (c +/\cdot b)$	Conmutatividad	Forma (iii)
$=(a +/\cdot c) +/\cdot b$	Asociatividad	Forma (iv)
$=(c +/\cdot a) +/\cdot b$	Conmutatividad	Forma (v)
$= c + / \cdot (a + / \cdot b)$	Asociatividad	Forma (vi)
$= c + /\cdot (b + /\cdot a)$	Conmutatividad	Forma (vii)
$=(c +/\cdot b) +/\cdot a$	Asociatividad	Forma (viii)
$=(b +/\cdot c) +/\cdot a$	Conmutatividad	Forma (ix)
=b +/· $(c$ +/· $a)$	Asociatividad	Forma (x)
$=b +/\cdot (a +/\cdot c)$	Conmutatividad	Forma (xi)
$= (b + / \cdot a) + / \cdot c$	Asociatividad	Forma (xii)

A partir de esta igualdad (y otras probadas anteriormente) introducimos la siguiente notación:

- Si x, y y z son números reales, representaremos con el símbolo x + y + z a la suma de estos.
- \bullet Si x, y y z son números reales, representaremos con el símbolo xyz a la multiplicación de estos.
- Si x y y son números reales, representaremos con el símbolo -xy a cualquiera de $(-x) \cdot y$, $-(x \cdot y)$ o $x \cdot (-y)$.

Podemos usar esta notación sin ambigüedad ya que hemos probado que $(-x)\cdot y = -(x\cdot y) = x\cdot (-y)$.

• Si $x \in \mathbb{R}$, representaremos con el símbolo $-x^{-1}$ al inverso multiplicativo de -x o al inverso aditivo de x^{-1} .

Podemos usar esta notación sin ambigüedad ya que hemos probado que $-(x^{-1}) = (-x)^{-1}$.

• Al número 1+1 lo denotaremos con el símbolo 2. Al número 2+1 lo denotaremos con el símbolo $3\dots$

Nota: El uso de notación es opcional y en ocasiones prescindimos de ella.

Un campo finito

Si $a, b \in \mathbb{R}$ son tales que a - b = b - a, entonces a = b. El siguiente es un esbozo de la prueba:

$$2a = a + a$$
 Notación
 $= a + a + b - b$ Inverso aditivo
 $= a - b + a + b$ Conmutatividad
 $= b - a + a + b$ Hipótesis
 $= b + b$ Inverso aditivo
 $= 2b$ Notación

A pesar de que se verifica la igualdad 2a = 2b, aún necesitamos justificar que a = b. Podríamos apelar a la ley de cancelación de la multiplicación, pero para su uso requerimos que $2 \neq 0$, el cual es un hecho que hasta ahora no ha sido demostrado. No obstante, los axiomas que hemos listado y los resultados que hemos obtenido de ellos no son suficientes para probar este hecho, el lector debería indagar en las implicaciones de definir que 2 = 0 y decidir si este hecho es contradictorio. Para clarificar este punto, consideremos el siguiente conjunto:

Sea Ω un conjunto dotado con las operaciones suma + y multipllicación · que satisfacen las siguientes propiedades:

- 1. Cerradura (de la suma): Si $x, y \in \Omega$, entonces $x + y \in \Omega$.
- **2.** Conmutatividad (de la suma): Si $x, y \in \Omega$, entonces x + y = y + x.
- **3.** Asociatividad (de la suma): Si $x, y, z \in \Omega$, entonces x + (y + z) = (x + y) + z.
- **4.** Neutro aditivo: $\exists 0 \in \Omega$ tal que si $x \in \Omega$, entonces x + 0 = x.
- **5.** Inverso aditivo: para cada $x \in \Omega$, $\exists (-x) \in \Omega$ tal que x + (-x) = 0.
- **6.** Cerradura (de la multiplicación): Si $x, y \in \Omega$, entonces $x \cdot y \in \Omega$.
- 7. Conmutatividad (de la multiplicación): Si $x, y \in \Omega$, entonces $x \cdot y = y \cdot x$.
- **8.** Asociatividad (de la multiplicación): Si $x, y, z \in \Omega$, entonces $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
- **9.** Neutro multiplicativo: $\exists 1 \in \Omega$ tal que si $x \in \Omega$, entonces $x \cdot 1 = x$.
- **10.** Inverso multiplicativo: si $x \in \Omega$ tal que $x \neq 0$, entonces $\exists x^{-1}$ tal que $x \cdot x^{-1} = 1$.
- 11. Distribución (de la multiplicación sobre la suma): Si $x, y, z \in \mathbb{R}$, entonces $x \cdot (y+z) = x \cdot y + x \cdot z$.

¿Qué elementos pertenecen a Ω ?

Sabemos que 0 y 1 son elementos de Ω , en virtud de los axiomas (4) y (9). Asimismo, el axioma (5) garantiza la existencia de -1 y -0. De la misma manera, por el axioma (10) podemos afirmar que 1^{-1} es un miembro de Ω . Sin embargo, los axiomas de conmutatividad (2) y (7), de asociatividad (3) y (8), y el axioma de distribución (11), no son axiomas de existencia y para su uso requerimos elementos de Ω , es decir, no podemos *conocer* elementos adicionales de Ω apartir de estos.

Con estas consideraciones, sabemos que $\{0,1,-0,-1,1^{-1}\}\subseteq\Omega$. Sin embargo, hemos probado que 0=-0 y $1=1^{-1}$, por lo que hasta ahora, solo podemos afirmar que 0,1,-1 son miembros de Ω .

Por otra parte, por el axioma de cerradura de la multiplicación (6), se verifica lo siguiente:

- i) $0 \cdot 0 \in \Omega$, pero como $0 \cdot 0 = 0$, no encontramos un miembro distinto a los conocidos.
- ii) $0 \cdot 1 \in \Omega$, pero como $0 \cdot 1 = 0$, no encontramos un miembro distinto a los conocidos.
- iii) $0 \cdot (-1) \in \Omega$, pero como $0 \cdot (-1) = 0$, no encontramos un miembro distinto a los conocidos.

- iv) $1 \cdot (-1) \in \Omega$, pero como $1 \cdot (-1) = -1$, no encontramos un miembro distinto a los conocidos.
- v) $1 \cdot 1 \in \Omega$, pero como $1 \cdot 1 = 1$, no encontramos un miembro distinto a los conocidos.

Finalmente, por el axioma de cerradura (1) se verifica lo siguiente:

- i) $0+0\in\Omega$, pero como 0+0=0, no encontramos un miembro distinto a los conocidos.
- ii) $0+1 \in \Omega$, pero como 0+1=1, no encontramos un miembro distinto a los conocidos.
- iii) $0 + (-1) \in \Omega$, pero como 0 + (-1) = -1, no encontramos un miembro distinto a los conocidos.
- iv) $1+(-1)\in\Omega$, pero como 1+(-1)=0, no encontramos un miembro distinto a los conocidos.
- v) $1+1\in\Omega$, el cual es un elemento del que no podemos afirmar sea distinto a los conocidos.

Si definimos que bajo Ω , 2=0, es decir, que 1+1=0, entonces 1+1 no sería un miembro distinto a los conocidos. Además, por unicidad del inverso aditivo, si 1+1=0, sigue que 1=-1. De este modo, Ω cumpliría con todos los axiomas de campo consistentemente y su extensión sería $\Omega := \{0,1\}$.

Por lo anterior, para expandir el conjunto de los números reales, requerimos establecer propiedades adicionales.