Battle stats formula

1 Gym gain formula

From Vladar [1996140]. This formule gives the stat gains as a function of the current stat, the energy spent on train and a other parameters.

In this formula and for the rest we will need:

- 2 variables and there increment
 - Energy E and dE
 - Stat S and dS
- 6 known coefficients
 - -a = 0.0000003480061091
 - -b = 250
 - -c = 0.000003091619094
 - -d = 0.0000682775184551527
 - -e = -0.0301431777
 - $-S_{\text{cap}} = 50000000$ (known as the stat cap)
- 3 states variables
 - Happy level \mathcal{H}
 - Gym coefficient \mathcal{G}
 - Gym gain bonus \mathcal{B}

The Valdar formula eq.(1) gives the stat gains dS as a function of the current stat S and the energy spent dE. It is usually written:

$$dS = \left[(a\ln(\mathcal{H} + b) + c)\bar{S} + d(\mathcal{H} + b) + e \right] (1 + \mathcal{B})\mathcal{G}dE \tag{1}$$

with $\bar{S} = \min(S_{\text{cap}}, S)$

By introducing 2 new parameters α and β that depends only on the 5 coefficients a, b, c, d, e and the state variables $\mathcal{H}, \mathcal{B}, \mathcal{G}$, eq.(1) can be written as follow:

$$\frac{dS}{dE} = \alpha \bar{S} + \beta \quad \Leftrightarrow \quad \frac{dS}{dE} - \alpha \bar{S} = \beta \tag{2}$$

with

$$\begin{cases} \alpha = (a \ln(\mathcal{H} + b) + c)(1 + \mathcal{B})\mathcal{G} \\ \beta = (d(\mathcal{H} + b) + e)(1 + \mathcal{B})\mathcal{G} \end{cases}$$
(3)

2 Battle stats formula: S(E)

Assumption: \mathcal{H} , \mathcal{G} and \mathcal{B} remain constant (which is not realistic for a long term prediction at early stages).

From eq.(2) it can clearly be seen that the S(E) is driven by a simple ODE. Because of the piece wise definition of the equation the two cases $S < S_{\text{cap}}$ (before cap) and $S > S_{\text{cap}}$ (after cap) have to be treated separatly.

2.1 Before cap

With $S < S_{\text{cap}}$ eq.(2) can be written:

$$\frac{dS}{dE} - \alpha S = \beta \tag{4}$$

Which leads to the solution:

$$\forall k \in \mathbb{R}, \quad S(E) = ke^{\alpha E} - \frac{\beta}{\alpha} \tag{5}$$

With the initial condition S(0) = 0 we have

$$S(E) = \frac{\beta}{\alpha} \left(e^{\alpha E} - 1 \right) \tag{6}$$

It can be interesting to compute $E = E_{\text{cap}}$ such that $S(E_{\text{cap}}) = S_{\text{cap}}$ which can be done by inverting eq.(6). It gives:

$$E_{\rm cap} = \frac{1}{\alpha} \ln \left(\frac{\alpha S_{\rm cap}}{\beta} + 1 \right) \tag{7}$$

2.2 After cap

With $S < S_{\text{cap}}$ eq.(2) can be written:

$$\frac{dS}{dE} = \alpha S_{\text{cap}} + \beta \tag{8}$$

which directly yields

$$\forall k \in \mathbb{R}, \quad S(E) = (\alpha S_{\text{cap}} + \beta)E + k$$
 (9)

With the condition $S(E_{\text{cap}}) = S_{\text{cap}}$ we have:

$$S = (\alpha S_{\text{cap}} + \beta)E + S_{\text{cap}} - (\alpha S_{\text{cap}} + \beta)E_{\text{cap}}$$

= $(\alpha S_{\text{cap}} + \beta)(E - E_{\text{cap}}) + S_{\text{cap}}$ (10)

Figure 1: Battle stats as a function of energy for $\mathcal{H}=5000,\,\mathcal{G}=7.3$ and $\mathcal{B}=15\%$