Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences

Shishir Reddy Vutukur, Junwen Huang, Rasmus Laurvig Haugaard, Benjamin Busam, Tolga Birdal

Introduction-Pose Distribution

Pose Estimation

Pose Distribution Estimation

Current Approaches

- Normalizing Flow¹, Implicit-PDF², Spyropose³ learn pose distributions for symmetric objects using a single GT pose label
- Training Data:

Given training data

Desired training data

Can we improve the results further in presence if a CAD model is given?

[1] Yulin Liu, Haoran Liu, Yingda Yin, Yang Wang, Baoquan Chen, He Wang. "Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling.", CVPR. 2023 [2] Kieran Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, Ameesh Makadia. "Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold." ICML. 2021.

[3] Rasmus Laurvig Haugaard, Frederik Hagelskjær, Thorbjørn Mosekjær Iversen. "SpyroPose: SE(3) Pyramids for Object Pose Distribution Estimation ." ICCVW, 2023.

Core Idea

CAD +SurfEMB¹

- Convert GT pose label to a complete pose distribution for distribution supervision
- Access to Distribution:
 - Better sampling -> learn sharper distribution
 - All symmetry configurations are learned with a single pose sample

GT Pose Label

Pose Distribution label

Product of Experts

Reformulate the problem

$$p(\mathbf{R}|\mathbf{I}) \propto p(\mathbf{X}'|\mathbf{I})$$

- We employ two experts based on the CAD prior
 - Signed Distance Function(SDF)
 - SurfEmb(SE)

$$p(\mathbf{X}' \mid \mathbf{I}) = \hat{p}_{SDF}(\mathbf{X}' \mid \mathbf{I})\hat{p}_{SE}(\mathbf{X}' \mid \mathbf{I})$$

 ${f R}$: Rotation ${f I}$: Image ${f X}'$: Pointcloud rotated with ${f R}$

Pipeline

Quantitative Results

• Symsol-I Objects: Textureless symmetric objects

	Deng	Gil.	Prok.	IPDF	SP	NF	NF	NF	NF	Ours	Ours
Models	1	1	1	1	5	1	1	1	1	1	1
Iterations	100k	100k	100k	100k	100k	100k	900k	100k	900k	100k	100k
Images	45k	45k	45k	45k	45k	10k	10k	45k	45k	10k	45k
cone	2.45	6.13	-1.05	6.74	9.91	8.45	8.94	8.42	10.05	9.66	10.10
cube	-2.15	0.00	1.79	7.10	10.92	5.02	9.01	7.13	11.64	11.29	12.24
cyl	1.34	3.17	1.01	6.55	8.75	8.04	6.41	7.83	9.54	9.32	9.40
icosa	-0.16	0.00	-0.10	3.57	7.52	-2.14	-6.03	2.03	8.26	7.99	9.54
tet	2.56	0.00	0.43	7.99	10.98	5.91	10.79	8.98	12.43	11.39	11.96
avg	0.81	1.86	0.42	6.39	9.62	5.06	5.82	6.88	10.38	9.69	10.64

Quantitative Results

• Symsol-II Objects: Symmetric objects with a marker

									Ours-10k	
SphX	3.41	5.61	-1.90	9.59	11.36	7.67	7.62	12.37	6.32	10.93
cylO	5.28	7.17	6.45	9.20	11.61	9.11	6.99	12.92	11.57	12.18
tetX	5.90	5.19	3.77	10.78	11.70	6.48	3.52	13.53	11.53	12.38
LL	4.86	5.99	2.77	9.86	11.56	7.76	6.04	12.94	9.80	11.83

Qualitative Results

Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences

Shishir Reddy Vutukur, Junwen Huang, Rasmus Laurvig Haugaard, Benjamin Busam, Tolga Birdal

