Institut national des sciences appliquées de Rouen

PROJET MMSN GM3 - VAGUE 3 - SUJET 4

Etude des erreurs sur la méthode du Gradient Conjugué

Auteurs:
Thibaut André-Gallis
thibaut.andregallis@insa-rouen.fr
Kévin Gatel
kevin.gatel@insa-rouen.fr

Enseignants:
Bernard Gleyse
bernard.gleyse@insa-rouen.fr

Table des matières

In	troduction	2
1	Présentation du problème	3
2	Vecteur résidu r 2.1 Etape 0 2.2 Etape 1 2.3 Etape 2 2.4 Etape 3 2.5 Etape 4	4 4 4
3	Vecteur solution x 3.1 Etape 1 3.2 Etape 2 3.3 Etape 3 3.4 Etape 4	5 5
4	Analyse numérique du problème	6
$\mathbf{C}_{\mathbf{c}}$	Conclusion	

Introduction

1. Présentation du problème

L'objectif est donc d'étudier les erreurs que fait la machine en utilisant l'arithmétique flottante plutôt que l'ensemble théorique des réels.

Ces erreurs seront étudiées sur la solution du problème linéaire Ax = b avec la méthode du gradient conjugué. En choisissant la matrice A de dimension 4 définie comme ci-dessous :

$$\begin{pmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{pmatrix}$$

FIGURE 1.1 – Matrice de Hilbert de dimension 4

Le nombre d'étape pour trouver la solution sera en théorie inférieur ou égale à 4 (assuré par la méthode du gradient conjugué).

En notant $K_2(A)$ le conditionnement 2 de A tel que : ¹

$$K_2(a) = 1.5514 * 10^4$$

On a l'inégalité du conditionnement pour majorer l'erreur :

$$\frac{||\Delta x||_2}{||x||_2} \le K_2(A) \frac{||\Delta b||_2}{||b||_2}$$

Le test d'arrêt est de la forme

$$tol^2 * (b,b) > (r,r)$$

avec (\bullet, \bullet) le produit scalaire usuel et $tol = 10^{-10}$.

Enfin, le vecteur b est choisi comme ci-dessous :

$$b_i = \sum_{k=1}^4 A_{ik}$$

de manière à avoir

$$x^T = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

^{1.} conditionnement obtenu sur Matlab

2. Vecteur résidu r

- 2.1 Etape 0
- 2.2 Etape 1
- 2.3 Etape 2
- 2.4 Etape 3
- 2.5 Etape 4

3. Vecteur solution x

- 3.1 Etape 1
- 3.2 Etape 2
- 3.3 Etape 3
- 3.4 Etape 4

4. Analyse numérique du problème

Analysons maintenant le problème numériquement. On sait que la solution théorique est

$$x^T = (1 1 1 1 1)$$

Comparons maintenant ce résultat avec celui qu'on a obtenu numériquement au bout de la 4^{eme} étape :

```
\hat{x}^T = \begin{pmatrix} 0.9999999987685677105 & 0.99999999992953791939 & 0.9999999994982825546 & 0.999999999960549057491 \end{pmatrix}
```

On peut maintenant obtenir l'erreur absolue pour chaque composante afin d'obtenir le vecteur absolu : 1

```
\varepsilon_{abs} = \left(\begin{array}{ccc} 1.2314322895*10^{-9} & 7.046208061*10^{-10} & 5.017174454*10^{-10} & 3.9450942509*10^{-10} \end{array}\right)
```

On remarque que l'on obtient le même vecteur pour le vecteur erreur relative puisqu'on divise toutes les composantes par 1 :

```
\varepsilon_{rel} = \left(\begin{array}{ccc} 1.2314322895*10^{-9} & 7.046208061*10^{-10} & 5.017174454*10^{-10} & 3.9450942509*10^{-10} \end{array}\right)
```

On observe des erreurs beaucoup plus élevées que celles obtenues localement. En effet pour une étude local on obtenait des erreurs d'ordre de grandeur d'environ 10^{-17} alors qu'ici il est d'environ 10^{-10} . Une différence de 10^7 qui n'est pas négligeable.

Cependant, on peut souligner l'efficacité de la méthode car en seulement 4 itérations l'erreur de la solution obtenue par rapport à celle théorique est de seulement 10^{-9} . Si l'on veut obtenir plus de précision il suffit de diminuer la tolérance et d'observer davantage d'étapes.

 $^{1. \ {\}it calcul effectu\'e sur} \ wolframalpha.com$

Conclusion

Annexe