Model learning to identify systemic regulators of the peripheral circadian clock

Julien Martinelli

May 17th, 2021

The circadian timing system

- ullet A master clock acting as an autonomous pprox 24 h-oscillator synchronised by external cues
- This master clock **entrains** the peripheral clocks in the cells *via* physiological signals
- The peripheral clock induces oscillations in key intracellular processes

The circadian timing system

- ullet A master clock acting as an autonomous pprox 24 h-oscillator synchronised by external cues
- ullet This master clock **entrains** the peripheral clocks in the cells via physiological signals
- The peripheral clock induces oscillations in key intracellular processes

The circadian timing system

- ullet A master clock acting as an autonomous pprox 24 h-oscillator synchronised by external cues
- This master clock **entrains** the peripheral clocks in the cells *via* physiological signals
- The peripheral clock induces oscillations in key intracellular processes

Clock-induced oscillations in intracellular processes are individual

Repercussions e.g. cancer chronotherapy at the individual level

 \rightarrow Precision medicine, but with what data?

Clock-induced oscillations in intracellular processes are individual

Repercussions e.g. cancer chronotherapy at the individual level

→ Precision medicine, but with what data?

Infer the links between measurable variables and the peripheral clock

Clock-induced oscillations in intracellular processes are individual

Repercussions e.g. cancer chronotherapy at the individual level

\rightarrow Precision medicine, but with what data?

Infer the links between measurable variables and the peripheral clock

Focus on mice: data available both at the systemic and cellular level

Mouse class systemic regulators data

Gaussian process regression smoothing

Mouse class gene expression data (liver)

RT-qPCR acquired data. Gaussian process regression smoothing

A new model of the cellular circadian clock

Ordinary differential equations

$$n_{vars} = 18$$

$$n_{params} = 58$$

A new model of the cellular circadian clock

Hypothesis: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

Hypothesis: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

Hypothesis: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

Learn f using the samples $\left\{\left(\bar{\mathbf{z}}(t_i),y(t_i)\right)$, $i=\{1,\dots,N-1\}\right\}$

Hypothesis: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

Hypothesis: Multiplicative control of systemic regulators ${\bf z}$ on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

 \rightarrow We consider linear models to learn f

2-term linear models ranking (lower is better)

Classwise weights analysis for best 2-term models

Want to know more? Paper to appear in *Bioinformatics* (ECCB21 Proceedings)

Julien Martinelli, Sandrine Dulong, Xiao-Mei Li, Michèle Teboul, Sylvain Soliman, Francis Lévi, François Fages, and Annabelle Ballesta. *Model learning to identify systemic regulators of the peripheral circadian clock*. working paper or preprint. Mar. 2021. url: https://hal.inria.fr/hal-03183579.