date: 2025-01-30

TFE4188 - Lecture 3

Reference and bias

Goal for today

Understand why we need reference and bias circuits

Introduction to circuit architectures

Bandgap voltage reference

A voltage complementary to temperature (CTAT)

$$I_D = I_S \left(e^{rac{V_{BE}}{V_T}} - 1
ight) + I_B pprox I_S e^{rac{V_{BE}}{V_T}}$$

$$V_T=rac{kT}{q}$$

$$V_{BE} = rac{kT}{q} ext{ln} \, rac{I_C}{I_S}$$

$$I_S = qAn_i^2\left[rac{D_n}{L_nN_A} + rac{D_p}{L_pN_D}
ight]$$

Some algebra (see Diodes)

$$V_{BE} = rac{kT}{q}(\ell-3\ln T) + V_G$$

$$\ell = \ln I_C - \ln q A - \ln \left[rac{D_n}{L_n N_A} + rac{D_p}{L_p N_D}
ight] - 2 \ln 2 - rac{3}{2} \ln m_n^* - rac{3}{2} \ln m_p^* - 3 \ln rac{2\pi k}{h^2}$$

A current proportional to temperature (PTAT)

$$V_{D1} - V_{D2} = V_T \ln rac{I_D}{I_{S1}} - V_T \ln rac{I_D}{I_{S2}} = V_T \ln rac{I_{S2}}{I_{S1}} = V_T \ln N$$

How to combine a CTAT with a PTAT?

$$V_{BG} = V_{G0} + (m-1)rac{kT}{q} {
m ln}\, rac{T_0}{T} + T \left[rac{k}{q} {
m ln}\, rac{J_2}{J_1} rac{2R2}{R1} - rac{V_{G0} - V_{be0}}{T_0}
ight]$$

Low voltage bandgap

20

$$I_{PMOS} = rac{V_D}{R_2} + rac{\Delta V_D}{R_1}$$

Sometimes we just need a current

Voltage to current conversion

GM Cell

$$V_o = V_{GS1} - V_{GS2} = V_{eff1} + V_{tn} - V_{eff2} - V_{tn} = V_{eff1} - V_{eff2}$$

$$rac{1}{2} \mu_n C_{ox} rac{W_1}{L_1} V_{eff1}^2 = rac{1}{2} \mu_n C_{ox} 4 rac{W_1}{L_1} V_{eff2}^2$$

$$V_{eff1}=2V_{eff2}$$

$$g_m = rac{2I_d}{V_{eff}}$$

$$I=rac{V_{eff1}}{2Z}$$

$$Z\Rightarrowrac{1}{g_m}$$

Want to learn more?

A simple three-terminal IC bandgap reference

A CMOS bandgap reference circuit with sub-1-V operation

A sub-1-V 15-ppm//spl deg/C CMOS bandgap voltage reference without requiring low threshold voltage device

The Bandgap Reference

The Design of a Low-Voltage Bandgap Reference

Thanks!