(Quasi-)Newton methods

Alexandre Gramfort alexandre.gramfort@inria.fr

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Table of Contents

Newton

- Newton

Outline

So far you have seen:

- gradient descent
- proximal gradient descent
- accelerated gradient descent
- (proximal) coordinate descent
- conjugate gradient

Now

- Newton methods
- Quasi-Newton methods
- Methods dedicated to non-linear least squares

Quasi-Newton and in particular L-BFGS are still heavily used to tackle smooth potentially large scale optim problems in machine learning (e.g. ℓ_2 logistic regression, conditional random fields)

Newton method

It is used to find the zeros of a differentiable non-linear function g:

Find x such that
$$g(x) = 0$$
, where $g : \mathbb{R}^n \to \mathbb{R}^n$.

Given a starting point x_0 , Newton method consists in iterating:

$$x_{k+1} = x_k - g'(x_k)^{-1}g(x_k)$$

where g'(x) is the derivative (Jacobian) of g at point x.

We have that:

- $g'(x_k)$ is matrix in $\mathbb{R}^{n \times n}$
- each iteration requires to solve a linear system.

Newton method in 1d

Newton method?

Applying this method to the optimization problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$

consists in setting $g(x) = \nabla f(x)$, i.e., looking for stationary points. The iterations read:

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$
.

Newton method is particularly interesting as its convergence is quadratic locally around x^* , i.e.:

$$||x_{k+1} - x^*|| \le \gamma ||x_k - x^*||^2, \gamma > 0$$
.

Convergence of Newton method

Theorem (Convergence of Newton method)

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ assumed twice differentiable \mathcal{C}^2 , and $x^* \in \mathbb{R}^n$ an isolated zero of $g(g(x^*) = 0)$. Assuming that $g'(x^*)$ is invertible, there exists a closed ball \mathcal{B} centered on x^* , such that for every $x_0 \in \mathcal{B}$, the sequence x_k obtained with Newton algorithm stays in \mathcal{B} and converges towards x^* . Furthermore, there is a constant $\gamma > 0$, such that $\|x_{k+1} - x^*\| \le \gamma \|x_k - x^*\|^2$.

Remark: Convergence of Newton is local. The method may diverge if the initial point is too far from x^* or if the Hessian is not positive definite. That is why Newton should be coupled with a line search strategy.

 \rightarrow See proof in lecture notes.

Newton on quadratic function

Exercise

Show that for a quadratic function

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c, x \in \mathbb{R}^{n}$$

with A symmetric positive definite, Newton method converges in one iteration independently of the choice of x_0 .

Remark: Newton is therefore not affected by the conditioning of the problem (not like Gradient descent).

- 2 Variable metric

Variable metric

The idea behind variable metric methods consists in using iterations of the form

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

where $g_k = \nabla f(x_k)$, B_k is a positive definite matrix and $\rho_k \ge 0$ is a step size.

- \rightarrow If $B_k = I_n$, it corresponds to gradient descent.
- \rightarrow Setting $B_k = B$ is the fixed metric case.

Fixed metric case

When minimizing

$$\min_{x\in\mathbb{R}^n}f(x)$$

one can set x = Cy with C invertible (change of variable). Let us denote $\tilde{f}(y) = f(Cy)$. This leads to:

$$\nabla \tilde{f}(y) = C^{\top} \nabla f(Cy) .$$

Gradient descent applied to $\tilde{f}(y)$ reads:

$$y_{k+1} = y_k - \rho_k C^{\top} \nabla f(Cy_k)$$

which means using $B = CC^{\top}$ as it is equivalent to:

$$x_{k+1} = x_k - \rho_k CC^{\top} \nabla f(x_k)$$
.

Question: How would you choose C for quadratic problem?

Quadratic case

Theorem (Preconditioned gradient descent)

Let f(x) a positive definite quadratic form with Hessian A, and B a positive definite matrix. The preconditioned gradient algorithm:

$$\begin{cases} x_0 = fixed, \\ x_{k+1} = x_k - \rho_k Bg_k, \ \rho_k \ optimal \end{cases}$$

has a linear convergence: $||x_{k+1} - x^*|| \le \gamma ||x_k - x^*||$ where:

$$\gamma = \frac{\chi(BA) - 1}{\chi(BA) + 1} < 1 .$$

 $\chi(M) = \lambda_1/\lambda_n$ is the Euclidian conditioning *i.e.*, ratio of largest and lowest eigenvalues (≥ 1).

Quadratic case

So we have a linear convergence:

$$||x_{k+1} - x^*|| \le \gamma ||x_k - x^*||$$

where:

$$\gamma = \frac{\chi(BA) - 1}{\chi(BA) + 1} < 1 .$$

Remark

The lower the conditioning of BA, the faster is the algorithm. One cannot set $B = A^{-1}$ as it would imply having already solved the problem, but this however suggests to use B so that is approximate A^{-1} . This is the idea behind quasi-Newton methods.

Table of Contents

- Quasi-Newton

Quasi-Newton

A quasi-Newton method reads

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

or

$$\begin{cases} d_k = -H_k^{-1} g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

where B_k (resp. H_k) is a matrix which aims to approximate the inverse of the Hessian (resp. the Hessian) of f at x_k .

Question: How to achieve this?

Quasi-Newton

One can start with $B_0 = I_n$. how to update B_k at every iteration?

Idea: apply a Taylor expansion on the gradient, notice that at point x_k , the gradient and the Hessian are such that:

$$g_{k+1} = g_k + \nabla^2 f(x_k)(x_{k+1} - x_k) + \epsilon(x_{k+1} - x_k)$$
.

If one assumes that the approximation is good enough one has:

$$g_{k+1}-g_k\approx \nabla^2 f(x_k)(x_{k+1}-x_k) ,$$

which leads to the quasi-Newton relation, a.k.a, the secant condition.

Quasi-Newton relation (or secant condition)

Definition (Quasi-Newton relation)

Two matrices B_{k+1} and H_{k+1} verify the quasi-Newton relation (or secant condition) if:

$$H_{k+1}(x_{k+1}-x_k)=\nabla f(x_{k+1})-\nabla f(x_k)$$

or

$$x_{k+1} - x_k = B_{k+1}(\nabla f(x_{k+1}) - \nabla f(x_k))$$

Problem: How to update B_k keeping it positive definite?

Update formula of Hessian

The update strategy at iteration

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

is to correct B_k with a symmetric matrix Δ_k :

$$B_{k+1} = B_k + \Delta_k$$

such that quasi-Newton relation holds:

$$x_{k+1} - x_k = B_{k+1}(g_{k+1} - g_k)$$

with B_{k+1} positive definite, assuming B_k is positive definite.

Idea: Use rank 1 or 2 matrices for Δ_k

Broyden formula (known as SR1)

Broyden formula is a rank 1 correction: $B_{k+1} = B_k + vv^{\top}$. The matrix B_{k+1} , with $v \in \mathbb{R}^n$, should verify the quasi-Newton relation:

$$B_{k+1}y_k=s_k\,,$$

where $y_k = g_{k+1} - g_k$ and $s_k = x_{k+1} - x_k$. It follows that:

$$B_k y_k + v v^{\top} y_k = s_k$$

$$\Rightarrow (y_k^{\top} v)^2 = (s_k - B_k y_k)^{\top} y_k$$

Using the equality $vv^{\top} = \frac{vv^{\top}y_k(vv^{\top}y_k)^{\top}}{(v^{\top}y_k)^2}$, one can write after replacing $vv^{\top}y_k$ by $s_k - B_k y_k$, and $(v^{\top}y_k)^2$ by $y_k^{\top}(s_k - B_k y_k)$, the correction formula

$$B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^{\top}}{(s_k - B_k y_k)^{\top} y_k}$$
,

also known as Broyden formula.

Broyden formula

Theorem

Let f a quadratic form positive definite. Let us consider the method that, starting for x_0 , iterates:

$$x_{k+1} = x_k + s_k ,$$

where the vectors s_k are linearly independent. Then the sequence of matrices starting by B_0 and defined as:

$$B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^{\top}}{(s_k - B_k y_k)^{\top} y_k}$$
,

where $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$, converges in less than n iterations towards A^{-1} , the inverse of the Hessian of f.

 \rightarrow Cf. proof in lecture notes

Remark: No guarantee that the matrices B_k are positive definite, even if the function f is quadratic and $B_0 = I_n$.

Davidon, Fletcher and Powell formula

Using a rank 2 correction, it reads:

$$B_{k+1} = B_k + \alpha u u^\top + \beta v v^\top .$$

Imposing the quasi-Newton relation (secant condition):

$$B_{k+1}y_k = s_k$$

$$\Rightarrow B_k y_k + \alpha(u^\top y_k) u + \beta(v^\top y_k) v = s_k$$

$$\Rightarrow \alpha(u^\top y_k) u + \beta(v^\top y_k) v = s_k - B_k y_k$$

This equation has not a unique solution. The choice for u and v by DFP is:

$$u = s_k$$
 and $v = B_k y_k$

Davidon, Fletcher and Powell formula

Solving for α and β the equation:

$$\alpha(\mathbf{s}_k^{\top} \mathbf{y}_k) \mathbf{s}_k + \beta(\mathbf{y}_k^{\top} \mathbf{B}_k \mathbf{y}_k) \mathbf{B}_k \mathbf{y}_k = \mathbf{s}_k - \mathbf{B}_k \mathbf{y}_k$$

we obtain

$$\alpha = \frac{1}{s_k^\top y_k}$$
 and $\beta = -\frac{1}{y_k^\top B_k y_k}$

Davidon, Fletcher and Powell formula

The DFP formula is a rank 2 correction. It reads:

$$B_{k+1} = B_k + \frac{s_k s_k^{\top}}{s_k^{\top} y_k} - \frac{B_k y_k y_k^{\top} B_k}{y_k^{\top} B_k y_k} . \tag{1}$$

Theorem

Let us consider the update

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k B_k g_k, \ \rho_k \ optimal \end{cases}$$

where B_0 is positive definite and provided as well as x_0 . Then the matrices B_k defined as in (1) are positive definite for all k > 0.

→ Cf. proof in lecture notes

Davidon-Fletcher-Powell algorithm

```
Require: \varepsilon > 0 (tolerance), K (maximum number of iterations)
 1: x_0 \in \mathbb{R}^n, B_0 > 0 (for example I_n)
 2: for k = 0 to K do
 3: if ||g_k|| < \varepsilon then
           break
 4:
 5: end if
 6: d_k = -B_k \nabla f(x_k)
 7: x_{k+1} = x_k + \rho_k d_k (Compute optimal step size \rho_k)
 8: s_k = \rho_k d_k
 9: y_k = g_{k+1} - g_k
10: B_{k+1} = B_k + \frac{s_k s_k^\top}{s_k^\top v_k} - \frac{B_k y_k y_k^\top B_k}{v_k^\top B_k v_k}
11: end for
12: return x_{k+1}
```

Davidon-Fletcher-Powell algorithm

This algorithm has a remarkable property when the function f is quadratic.

$\mathsf{Theorem}$

When f is a quadratic form, the algorithm of Davidon-Fletcher-Powell generates a sequence of directions s_0, \ldots, s_k which verify:

$$s_i A^{\top} s_j = 0, \quad 0 \le i < j \le k,$$

$$B_{k+1} A s_i = s_i, \quad 0 \le i \le k.$$
(2)

Remark: This theorem says that in the quadratic case, the algorithm is like a conjugate gradient method, which therefore converges in at most n iterations.

Remark: This required to have an optimal step size.

Davidon-Fletcher-Powell algorithm

One can also notice that for k = n - 1

$$B_n A s_i = s_i, i = 0, \ldots, n-1,$$

and since all s_i are linearly independent it implies $B_n = A^{-1}$.

Remark: One can show that in the general case (non-quadratic), if the direction d_k is reinitialized to $-g_k$ periodically, this algorithm converges to a local minimum \hat{x} of f and that:

$$\lim_{k\to\infty} B_k = \nabla^2 f(\hat{x})^{-1} .$$

This implies that close to the optimum, the method behaves like a Newton method. This justifies the use of $\rho_k=1$ when using approximate line search.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

- The BFGS formula is derived from the formula of DFP by swapping the roles of s_k and y_k .
- The formula obtained allows to maintain an approximation H_k of the Hessian which satisfies the same properties: $H_{k+1} > 0$ if $H_k > 0$ and satisfying the quasi-Newton relation:

$$y_k = H_k s_k$$
.

• The BFGS formula therefore reads:

$$H_{k+1} = H_k + \frac{y_k y_k^{\top}}{y_k^{\top} s_k} - \frac{H_k s_k s_k^{\top} H_k}{s_k^{\top} H_k s_k}$$
.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

```
1: x_0 \in \mathbb{R}^n, H_0 > 0 (for example I_n)
2: for k=0 to K do
3: if ||g_k|| < \varepsilon then
          break
4:
5:
    end if
6: d_k = -H_k^{-1} \nabla f(x_k)
7: x_{k+1} = x_k + \rho_k d_k (optimal step size \rho_k with line-search)
8: s_k = \rho_k d_k
9: y_k = g_{k+1} - g_k
     H_{k+1} = H_k + \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{H_k s_k s_k^\top H_k}{s_k^\top H_k s_k}
```

Require: $\varepsilon > 0$ (tolerance), K (maximum number of iterations)

11: end for

10:

12: **return** X_{k+1}

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

- Direction d_k is obtained by solving a linear system.
- In practice update of H_k is done on Cholesky factorization of $H_k = C_k C_k^{\top}$
- So the complexity of BFGS is the same as DFP.
- Cholesky factorization allows to check that H_k stays numerically positive definite

The BFGS algorithm has the same property as the DFP method:

- in the quadratic case it produces conjugate directions
- it converges in less than n iterations and $H_n = A$
- Usually combined with Wolfe and Powell's or Goldstein's rule.

but:

 much less sensitive than DFP to the use of approximate step size (to combine with Wolfe and Powell's or Goldstein's rule).

Remark: BFGS is in scipy see scipy .optimize .fmin_bfgs.

Limited-memory BFGS (L-BFGS) algorithm

- L-BFGS is a variant of BFGS that limits memory usage. It was originally proposed by Liu and Nocedal in 1989:
- Does not store matrix of the size of the Hessian, $n \times n$ which can be prohibitive in applications such as computer vision or machine learning where n can be millions.
- L-BFGS stores only a few vectors that are used to approximate the matrix H_k^{-1}
- So the memory usage is linear in the dimension of the problem.

[Liu, D. C.; Nocedal, J. (1989). "On the Limited Memory Method for Large Scale Optimization". Mathematical Programming B. 45 (3): 503528.]

- L-BFGS is an algorithm of the quasi-Newton family with $d_k = -B_k \nabla f(x_k)$.
- Difference is in the computation of the product between B_k and $\nabla f(x_k)$.
- Idea is to keep in memory the last low rank corrections, more specifically the last m values of $s_k = x_{k+1} x_k$ and $y_k = g_{k+1} g_k$.

Limited-memory BFGS (L-BFGS) algorithm

Let $\mu_k = \frac{1}{y_k^\top s_k}$, the algorithm to obtain d_k reads:

Require: m (memory size)

1:
$$q = g_k$$

2: **for**
$$i = k - 1$$
 to $k - m$ **do**

3:
$$\alpha_i = \mu_i \mathbf{s}_i^{\top} \mathbf{q}$$

4:
$$q = q - \alpha_i y_i$$

6:
$$z = B_k^0 q$$

7: **for**
$$i = k - m$$
 to $k - 1$ **do**

8:
$$\beta = \mu_i y_i^{\top} z$$

9:
$$z = z + s_i(\alpha_i - \beta)$$

10: end for

11:
$$d_k = -z$$

where B_k^0 is positive definite matrix, e.g., a diagonal matrix, so that initially setting z is fast.

- Like BFGS, L-BFGS does not need exact line search to converge.
- L-BFGS is for smooth unconstrained problem but can be extended to handle simple box constraints (a.k.a. bound constraints): $l_i \le x_i \le u_i$ where l_i and u_i are per-variable constant lower and upper bounds. This algorithm called L-BFGS-B is due to Byrd et al. (1995).
- L-BFGS-B in scipy as scipy .optimize . fmin_l_bfgs_b .

[Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. (1995). "A Limited Memory Algorithm for Bound Constrained Optimization". SIAM J. Sci. Comput. 16 (5): 11901208. doi:10.1137/0916069.]

→ Can you solve a Lasso with L-BFGS-B?

Table of Contents

- 4 Non-linear least-squares

non-linear least-squares

The function to minimize reads:

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2$$
.

Newton method can be applied to the minimization of f. The gradient and the Hessian matrix read in this particular case:

$$\nabla f(x) = \sum_{i=1}^{m} f_i(x) \nabla f_i(x) ,$$

and

$$\nabla^{2} f(x) = \sum_{i=1}^{m} \nabla f_{i}(x) \nabla f_{i}(x)^{\top} + \sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x) .$$

Gauss-Newton method

Close to the optimum, the $f_i(x)$ are small so the second term can be ignored. The Hessian reads:

$$H(x) \approx \sum_{i=1}^{m} \nabla f_i(x) \nabla f_i(x)^{\top}$$
.

This matrix is always positive. Furthermore when m is much larger than n, this matrix is often positive definite.

The Gauss-Newton method uses this approximation of H(x) in a Newton-like solver:

$$\begin{cases} x_0 = \text{fixed}, \\ H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\ x_{k+1} = x_k - H_k^{-1} \nabla f(x_k) \end{cases}.$$

Gauss-Newton method

To guarantee the convergence of the Gauss-Newton method, it can be combined with a line search procedure:

$$\begin{cases} x_0 = \text{fixed}, \\ H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\ x_{k+1} = x_k - \frac{\rho_k}{\rho_k} H_k^{-1} \nabla f(x_k) \end{cases}.$$

Levenberg-Marquardt method

- Levenberg-Marquardt method is a variant of Gauss-Newton that enforces that the Hessian approximation H_k is positive definite.
- The idea is simply to replace H_k by $H_k + \lambda I_n$.

$$\begin{cases} x_0 = \text{fixed}, \\ H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\ d_k = -(H_k + \lambda I_n)^{-1} \nabla f(x_k) \\ x_{k+1} = x_k + \rho_k d_k \end{cases}$$

- If λ is large, method is equivalent to a gradient method.
- The Levenberg-Marquardt method in scipy as scipy . optimize . leastsq .

References

• Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapters 6 and 8.