1. Vector

$$ec{u}.ec{v} = u_1 * v_1 + u_2 * v_2 = |ec{u}||ec{v}|cos(heta)$$

$$|\vec{u}|^2 = \vec{u}.\,\vec{u}$$

Linear combination

$$a_1\overrightarrow{v_1}+\ldots+a_m\overrightarrow{v_m}$$

Span

$$span(v_1,\ldots,v_m)=\{a_1\overrightarrow{v_1}+\ldots+a_m\overrightarrow{v_m}|a_1,\ldots,a_m\in\mathbb{R}\}$$

Linear independent

A list (v_1,\ldots,v_m) is linear independent if the only choice of $a_1,\ldots,a_m\in\mathbb{R}$ that makes $a_1\overrightarrow{v_1}+\ldots+a_m\overrightarrow{v_m}=0$ is $a_1=\ldots=a_m=0$

Basic of V:

a list of vectors in V that

- linear independent
- span V

every $\vec{v} \in V$ can be written **uniquely** in form of a linear combination of the basic

Dim = len(basic)

Matrix

• Inverse matrix $A^{-1}A = I$

A is invertible if

- \circ $det(A) \neq 0$
- or we can not find a vector $x \neq 0$ that: Ax = 0 proof: Ax = 0 <=> $A^{-1}Ax = 0$ <=> x = 0
- Singular matrix = matrix that is not invertible <=> det(A)=0
- Eigenvalue λ and eigenvector \vec{x} of a matrix A:

$$Ax = \lambda x$$

How to find λ and \vec{x} of A:

$$Ax = \lambda x$$

$$\langle = \rangle (A - \lambda I)x = 0$$

$$<=>(A-\lambda I)$$
 is singular

$$<=> det(A-\lambda I)=0$$

find λ then find x