HAI507I Calcul formel et scientifique

Pascal Giorgi, Bruno Grenet

Calcul formel in a nuttshell

Définition

Domaine frontière mathématiques/informatique qui s'intéresse au calcul sur des objets mathématiques ayant une représentation fini et exacte

Le calcul formel comprend:

- Arithmétique: nombre entiers, rationnel
- Calcul algébrique: matrices, polynôme, series, groupes
- Calcul symbolique: intégration
- ⇒ Application: cryptographie, codage, robotique

Calcul scientifique in a nuttshell

Définition

Domaine frontière mathématiques/informatique qui s'intéresse à la résolution de calcul mathématique complexe par des approximations numériques (souvent en nombres flottants).

Le calcul scientifique comprend

- modélisation
- calcul numérique
- analyse numérique
- ⇒ Application: simulation numérique de phénomène physique (météo, économie, astrophysique)

Calcul scientifique in a nuttshell

Définition

Domaine frontière mathématiques/informatique qui s'intéresse à la résolution de calcul mathématique complexe par des approximations numériques (souvent en nombres flottants).

Le calcul scientifique dans ce cours

calcul numérique (uniquement certains aspects)

Les problèmes sont souvent identiques:

- résolution d'équations linéaires (ou non)
- résolution d'inégalités linéaires (ou non)
- résolution d'équations différentielles
- intégration de fonctions

$$\alpha x + \beta y = \gamma$$

$$\alpha x + \beta y < \gamma$$

$$\alpha f + \beta x f' = 0$$

$$F(x) = \int f(x) dx$$

Les problèmes sont souvent identiques:

- résolution d'équations linéaires (ou non)
- résolution d'inégalités linéaires (ou non)
- résolution d'équations différentielles
- intégration de fonctions

$$\alpha x + \beta y = \gamma$$
$$\alpha x + \beta y < \gamma$$
$$\alpha f + \beta x f' = 0$$
$$F(x) = \int f(x) dx$$

Les différences résident dans:

- les méthodes de calcul employées pour résoudre
- la représentation des données et des résultats

Les problèmes sont souvent identiques:

- résolution d'équations linéaires (ou non)
- résolution d'inégalités linéaires (ou non)
- résolution d'équations différentielles
- intégration de fonctions

$$\alpha x + \beta y = \gamma$$
$$\alpha x + \beta y < \gamma$$
$$\alpha f + \beta x f' = 0$$

$$F(x) = \int f(x) dx$$

Les différences résident dans:

- les méthodes de calcul employées pour résoudre
- la représentation des données et des résultats

calcul numérique ⇒ résultat rapidement mais approché (voire faux) calcul formel ⇒ résultat exact mais plus lent (voire inatteignable)

Les données de base en calcul numériques

Des nombres réels ou complexes approchés par une représentation en virgule flottante

- \blacksquare approximation de 2.3e-6
- \blacksquare approximation de 3.14149I+0.003

Les données de base en calcul formel

- des symboles : X, Y, γ, π
- des nombres exacts : $17, \frac{3}{4}, \sqrt{2}$
- des fonctions: $sin(X) + cos(X), X^{\sqrt{2}}, X^2 \times cos(\epsilon + 1)$

Les problèmes s'expriment en fonction de ces données:

La précision des calculs numérique dépend de la répresentation des nombres flottants

Représentation des nombres flottants

$$\alpha = (-1)^s \times \frac{m}{2^e}, \qquad m, e \in \mathbb{N}; \quad s = \{0, 1\}$$

 \Rightarrow la précision est le nombre de bits utilisés pour stocker m

La précision des calculs numérique dépend de la répresentation des nombres flottants

Représentation des nombres flottants

$$\alpha = (-1)^s \times \frac{m}{2^e}, \qquad m, e \in \mathbb{N}; \quad s = \{0, 1\}$$

 \Rightarrow la précision est le nombre de bits utilisés pour stocker m

■ par défaut, sage utilise un précision de 53 bits (16 chiffres décimaux) ⇒ les double en C

La précision des calculs numérique dépend de la répresentation des nombres flottants

Représentation des nombres flottants

$$\alpha = (-1)^s \times \frac{m}{2^e}, \qquad m, e \in \mathbb{N}; \quad s = \{0, 1\}$$

- ⇒ la précision est le nombre de bits utilisés pour stocker *m*
 - par défaut, sage utilise un précision de 53 bits (16 chiffres décimaux) ⇒ les double en C
 - possibilité de changer la précision à k bits pour n'importe quel valeur de k $\hookrightarrow k <= 53$ rapide car processeur, k > 53 plus lent car logiciel (dépend de la valeur)

La précision des calculs numérique dépend de la répresentation des nombres flottants

Représentation des nombres flottants

$$\alpha = (-1)^s \times \frac{m}{2^e}, \qquad m, e \in \mathbb{N}; \quad s = \{0, 1\}$$

- \Rightarrow la précision est le nombre de bits utilisés pour stocker m
 - par défaut, sage utilise un précision de 53 bits (16 chiffres décimaux) ⇒ les double en C
 - possibilité de changer la précision à k bits pour n'importe quel valeur de k $\hookrightarrow k <= 53$ rapide car processeur, k > 53 plus lent car logiciel (dépend de la valeur)
 - la précision et l'ordre des op. influent fortement sur la qualité numérique du résultat

La précision des calculs numérique dépend de la répresentation des nombres flottants

Représentation des nombres flottants

$$\alpha = (-1)^s \times \frac{m}{2^e}, \qquad m, e \in \mathbb{N}; \quad s = \{0, 1\}$$

- \Rightarrow la précision est le nombre de bits utilisés pour stocker m
 - par défaut, sage utilise un précision de 53 bits (16 chiffres décimaux) ⇒ les double en C
 - possibilité de changer la précision à k bits pour n'importe quel valeur de k $\hookrightarrow k <= 53$ rapide car processeur, k > 53 plus lent car logiciel (dépend de la valeur)
 - la précision et l'ordre des op. influent fortement sur la qualité numérique du résultat
- ⇒ Les calcul numériques se placent toujours dans une précision fixée à priori.
- \hookrightarrow lien vers la feuille de calcul Sage

Calcul formel: grossissement des données manipulées

Il n'y a pas de notion de précision de calcul car les résultats sont exacts !!!

⇒ le nombre de bits de calcul ou de symboles est donc illimité¹

Le calcul formel s'adapte automatiquement aux données qui sont manipulés.

⇒ cela explique sa lenteur comparé au calcul numérique qui fixe une taille a priori

¹techniquement faux car limité par la mémoire des ordinateurs

Calcul formel: grossissement des données manipulées

Il n'y a pas de notion de précision de calcul car les résultats sont exacts !!!

⇒ le nombre de bits de calcul ou de symboles est donc illimité¹

Le calcul formel s'adapte automatiquement aux données qui sont manipulés.

⇒ cela explique sa lenteur comparé au calcul numérique qui fixe une taille a priori

Faux-semblants

■ les résultats sont polynomial en la taille de l'entrée

$$(X^n-1)\times \frac{1}{X-1} \Rightarrow 1+X+X^2+\cdots+X^n \Rightarrow$$
 exponentiellement plus grand

¹techniquement faux car limité par la mémoire des ordinateurs

Calcul formel: grossissement des données manipulées

Il n'y a pas de notion de précision de calcul car les résultats sont exacts !!!

⇒ le nombre de bits de calcul ou de symboles est donc illimité¹

Le calcul formel s'adapte automatiquement aux données qui sont manipulés.

⇒ cela explique sa lenteur comparé au calcul numérique qui fixe une taille a priori

Faux-semblants

■ les résultats sont polynomial en la taille de l'entrée

$$(X^n-1) imes rac{1}{X-1} \Rightarrow 1 + X + X^2 + \cdots + X^n \Rightarrow$$
 exponentiellement plus grand

■ les tailles des données intermédiaires sont bornées par celles de l'entrée et de la sortie

$$\det \begin{pmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{pmatrix}^{40} = 1$$

 $\cos(x)^{40} - 780\cos(x)^{38}\sin(x)^2 + 91390\cos(x)^{36}\sin(x)^4 - 3838380\cos(x)^{34}\sin(x)^6 + 76904685\cos(x)^{32}\sin(x)^8 - 847660528\cos(x)^{30}\sin(x)^{10} + 5586853480\cos(x)^{28}\sin(x)^{12} - 23206929840\cos(x)^{26}\sin(x)^{14} + 62852101650\cos(x)^{24}\sin(x)^{16} - 113380261800\cos(x)^{22}\sin(x)^{18} + 13784652820\cos(x)^{20}\sin(x)^{20} - 113380261800\cos(x)^{18}\sin(x)^{22} + 62852101650\cos(x)^{16}\sin(x)^{24} - 23206929840\cos(x)^{14}\sin(x)^{26} + 5586853480\cos(x)^{12}\sin(x)^{28} - 847660528\cos(x)^{10}\sin(x)^{30} + 76904685\cos(x)^{8}\sin(x)^{32} - 3838380\cos(x)^{6}\sin(x)^{34} + 91390\cos(x)^{4}\sin(x)^{36} - 780\cos(x)^{2}\sin(x)^{38} + \sin(x)^{40}$

¹techniquement faux car limité par la mémoire des ordinateurs

Calcul formel: manipulation symbolique ou algébrique

Quand on évalue dans sage

- $2^{10} 1024$, on obtient $0 \Rightarrow \text{calcul algébrique sur } \mathbb{Z}$
- $(x+1)^2 x^3 2x 1$, on obtient $(x+1)^2 x^3 2x 1 \Rightarrow$ calcul symbolique
- $\cos^2(x) + \sin^2(x) 1$, on obtient $\cos^2(x) + \sin^2(x) 1 \Rightarrow$ calcul symbolique

algébrique \Rightarrow application de règles de calcul symbolique \Rightarrow application de ré-écritures d'expression

Manipulation d'expressions symboliques

Les expressions sont représentées par des arbres:

Manipulation d'expressions symboliques

Les expressions sont représentées par des arbres:

Tester $(a+b)^2 - a^2 + 2ab - b^2 == 0$ revient à identifier l'arbre vide \Rightarrow pas facile car pas de représentation canonique en général

Simplication d'expressions symboliques

Il faut aider sage pour faciliter la simplification d'une expression exp

- exp.expand() \Rightarrow distribut les produits: $(a+b) \times c \rightarrow a \times c + b \times c$
- \blacksquare exp.collect(var) \Rightarrow regroupe les produits avec var: $a \times c + b \times c \rightarrow (a+b) \times c$
- exp.simplify_XXX() \Rightarrow applique des règles de simplifications associées à XXX \hookrightarrow XXX={factorial, log, rational, trig, ...}
- \blacksquare exp.simplify_full() \Rightarrow essaie plusieurs règles dans un certain ordre

 \hookrightarrow lien vers la feuille de calcul Sage

Calcul formel: impact des domaines de calcul infinis

Manipulation de données potentiellement très grandes

- calcul avec des symboles: polynômes (PolynomialRing), autres (Symbolic Ring)

 → augmentation du nombre de symboles/coefficients
- calcul avec des nombres: rationnels (RationalField), entiers (IntegerRing)

 → augmentation de la taille en bit

$$\frac{4}{3} + \frac{27}{67} - \frac{7}{69} - \frac{96}{55} + \frac{47}{26} - \frac{98}{17} - \frac{5}{87} - \frac{10}{7} - 14 + \frac{66}{83} - \frac{17}{77} + \frac{59}{84} - \frac{18}{49} + \frac{56}{61} - \frac{5}{7} + \frac{27}{49} + \frac{19}{27} - \frac{95}{54} - 9 + \frac{17}{25} = -\frac{661359387761750569}{24256722079289700} + \frac{11}{25} - \frac{11}{$$

Calcul formel: impact des domaines de calcul infinis

Manipulation de données potentiellement très grandes

- calcul avec des symboles: polynômes (PolynomialRing), autres (Symbolic Ring)
 - \hookrightarrow augmentation du nombre de symboles/coefficients

$$\frac{4}{3} + \frac{27}{67} - \frac{7}{69} - \frac{96}{55} + \frac{47}{26} - \frac{98}{17} - \frac{5}{87} - \frac{10}{7} - 14 + \frac{66}{83} - \frac{17}{77} + \frac{59}{84} - \frac{18}{49} + \frac{56}{61} - \frac{5}{7} + \frac{27}{49} + \frac{19}{27} - \frac{95}{54} - 9 + \frac{17}{25} = -\frac{661359387761750569}{24256722079289700} + \frac{11}{25} - \frac{11}{$$

⇒ Le temps de calcul est sensible aux valeurs données en entrée

Calcul formel: impact des domaines de calcul infinis

Manipulation de données potentiellement très grandes

- calcul avec des symboles: polynômes (PolynomialRing), autres (Symbolic Ring)

 → augmentation du nombre de symboles/coefficients
- calcul avec des nombres: rationnels (RationalField), entiers (IntegerRing)

 → augmentation de la taille en bit

$$\frac{4}{3} + \frac{27}{67} - \frac{7}{69} - \frac{96}{55} + \frac{47}{26} - \frac{98}{17} - \frac{5}{87} - \frac{10}{7} - 14 + \frac{66}{83} - \frac{17}{77} + \frac{59}{84} - \frac{18}{49} + \frac{56}{61} - \frac{5}{7} + \frac{27}{49} + \frac{19}{27} - \frac{95}{54} - 9 + \frac{17}{25} = -\frac{661359387761750569}{24256722079289700}$$

⇒ Le temps de calcul est sensible aux valeurs données en entrée

Le problème n'a pas toujours de solution

- Il faut faire un peu de math pour savoir dans quoi vie la solution (si elle existe)
- $\Rightarrow X^2 + 1 \in \mathbb{Z}[X]$ n'a que des solutions dans \mathbb{C}
- $\Rightarrow X^3 + 1 \in \mathbb{Z}[X]$ a des solutions dans \mathbb{Z} et dans \mathbb{C}

Calcul formel: les domaines de calcul finis

Les données ont une taille bornées a priori

- \blacksquare entiers modulaires $\mathbb{Z}/(N\mathbb{Z})$: Integers(N) ou Zmod(N)
- polynôme modulaires $R[X]/\langle P \rangle$: PolynomialQuotientRing(R,P):
- \blacksquare corps finis à $q = p^n$ éléments : GF(q)
- ⇒ Le temps de calcul sera peu sensible aux valeurs d'entrée

Calcul formel: les domaines de calcul finis

Les données ont une taille bornées a priori

- \blacksquare entiers modulaires $\mathbb{Z}/(N\mathbb{Z})$: Integers(N) ou Zmod(N)
- polynôme modulaires $R[X]/\langle P \rangle$: PolynomialQuotientRing(R,P):
- corps finis à $q = p^n$ éléments : GF(q)
- ⇒ Le temps de calcul sera peu sensible aux valeurs d'entrée
- \Rightarrow par contre il est proportionnel à la taille de N, P ou q

Calcul formel: les domaines de calcul finis

Les données ont une taille bornées a priori

- \blacksquare entiers modulaires $\mathbb{Z}/(N\mathbb{Z})$: Integers(N) ou Zmod(N)
- polynôme modulaires $R[X]/\langle P \rangle$: PolynomialQuotientRing(R,P):
- \blacksquare corps finis à $q = p^n$ éléments : GF(q)
- ⇒ Le temps de calcul sera peu sensible aux valeurs d'entrée
- \Rightarrow par contre il est proportionnel à la taille de N, P ou q

Exemples:

- lacksquare nombre de bits bornés: 12+13=10 dans $\mathbb{Z}/(15\mathbb{Z})$
 - \Rightarrow Integers(15) ou Zmod(15)
- nombre de coefficients bornés: (x+1)(x+2) = 3x+1 dans $\mathbb{Z}[x]/(x^2+1)$
 - ⇒ PolynomialQuotientRing(ZZ[x],x^2+1)

La notion de matrices et de vecteurs

Tout simplement un tableau à deux dimensions !!!

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad v = [v_1, v_2, v_3]$$

Les coefficients vivent dans un même domaine de calcul par ex, a_{11} , a_{12} , a_{21} , a_{22} sont des entiers et v_1 , v_2 , v_3 des rationnels

En fait, les matrices et les vecteurs sont un peu comme les nombres ils vivent dans un domaine: par ex. $A \in \mathbb{Z}^{2 \times 2}$ et $v \in \mathbb{Q}^3$ ou $v \in \mathbb{Q}^{3 \times 1}$ ou $v \in \mathbb{Q}^{1 \times 3}$

 \Rightarrow On parle d'espace de matrices de dimension $m \times n$ à coefficient dans D:

 ${\tt MatrixSpace(D,m,n)}$ en sage

 \hookrightarrow lien vers la feuille de calcul Sage

Encore beaucoup à apprendre !!!

pas d'inquiétude, les TP seront orientés pour vous guider dans

- l'apprentissage du calcul formel et scientifique
- la compréhension et l'utilisation des notions d'algèbre de base
- le développement de solutions et d'algorithmes utilisant le calcul formel/numérique

Fin