الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2010

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب(ة): آداب وفلسفة، لغات أجنبية

المدة: ساعتان ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (06 نقاط)

b = 1431 و a = 2010 و طبیعیان حیث: a = 2010

1. أ- عين باقى القسمة الإقليدية لكل من العددين a و b على a

-4 على -4 على -4 على -4 على -4 على -4 على -4

 $a^3 + b^3 \equiv 0$ [7] آ و $a^3 \equiv 6$ و استنج أن $a^3 \equiv 1$ و $a^3 \equiv 1$

. $n + 2010^3 = 1431[7]$: أوجد الأعداد الطبيعية n التي تحقق

ثمّ استنتج قيم n الأصغر من أو تساوي 16.

التمرين الثاني: (05 نقاط)

- $u_{15}=46$ و $u_{10}=31$ و الحدين: $\mathbb N$ و المعرفة على $u_{15}=46$ و المعرفة على $u_{10}=31$
 - u_0 عين أساسها و حدّها الأول u_0
 - u_n بدلالة u -2
 - (u_n) جد من حدود المنتالية (u_n).
 - $S = u_0 + u_1 + \ldots + u_{2009} : S = 100 4$
 - . $v_n = 2 \times 8^n$: بعتبر المنتالية (v_n) المعرفة على (II
- u_0 متتالية هندسية يطلب تعيين أساسها وحدها الأول u_0
 - $S' = v_0 + v_1 + ... + v_n : S' = v_0 + v_1 + ... + v_n : -2$

التمرين الثالث: (09 نقاط)

 $f(x) = 2x^3 - 9x^2 + 12x - 5$: \mathbb{R} بلدالة العددية المعرفة على \mathbb{R} بلدالة الدالة العددية المعرفة على المستوي المنسوب إلى المعلم المتعامد والمتجانس $(C_f(\vec{i},\vec{j}))$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس

- $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ أحسب 1.
- 2. أدرس اتجاه تغيرات الدالة ٢ ثم شكّل جدول تغيراتها.
- $\cdot (C_f)$ هي نقطة انعطاف للمنحنى $I(\frac{3}{2}\;;\;-\frac{1}{2})$ هي أن النقطة $I(\frac{3}{2}\;;\;-\frac{1}{2})$
 - A . أكتب معادلة المماس Δ للمنحنى A في النقطة A
- $f(x) = (x-1)^2(2x-5)$: x عدد حقیقی عدد عقی آنه من أجل كل عدد حقیقی ثم استنتج نقط تقاطع C_f مع حامل محور الفواصل.
 - 6. أرسم (Δ) و (C_f) .

الموضوع الثاتي

التمرين الأول: (06 نقاط)

في كل من الأسئلة الآتية، اختر الإجابة الصحيحة من بين الإجابات الثلاث المقترحة، مع التعليل.

- 1. باقى القسمة الإقليدية للعدد (203-) على 5 هو: أ) 3 ب) 2
- 2. x عدد صحيح. إذا كان باقي القسمة الإقليدية للعدد x على 7 هو 5 ، فإن باقي القسمة الإقليدية للعدد 2x+5 على 7 هو: أ) 0
 - 3. $g(x)=x^3+3x+4$ كما يلي: $g(x)=x^3+3x+4$ وَ $g(x)=x^3+3x+4$ البياني في مستو منسوب إلى معلم.
- \mathbb{R} الدالة g: أ) متزايدة تماما على \mathbb{R} ب) متناقصة تماما على \mathbb{R} ج) ليست رتيبة على \mathbb{R} (0;0) (\mathbf{c} (0;4) (\mathbf{c} (-1;0) (\mathbf{c} (0;0) ج) يقبل نقطة لتعطاف إحداثياها: أ) (\mathbf{c} (-1;0) (\mathbf{c} (0;4) ج) \mathbf{c} (\mathbf{c} (2;0) ج) الدالة \mathbf{c} (\mathbf{c}

التمرين الثاني: (07 نقاط)

[-2;2] دالة عددية معرفة على المجال f

و (\mathcal{C}_f) تمثيلها البياني في مستو منسوب إلى معلم متعامد متحانس.

انظر الشكل وأجب عن الأسئلة التالية:

- 1. 1 2x (1) f'(-1) = f'(-1) (1) f'(-1) = 1 (2) f'(-1) = 1 (1) f'(-1) = 1 (1)
- $f\left(\sqrt{3}\right)$ و $f\left(\frac{3}{2}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$
- 6. A هي النقطة من المنحنى (e_f) التي إحداثياها (0;-2) ، وبغرض أنّ (e_f) ؛ اشرح كيف يمكن رسم مماس المنحنى (e_f) في النقطة A ثمّ ارسمه بعد نقل الشكل.

التمرين الثالث: (07 نقاط)

 u_0 متتالية هندسية معرفة على مجموعة الأعداد الطبيعية \mathbb{N} ، أساسها q وحدّها الأول u_n حيث: $u_1=6$ وحدّها الأول $u_1=6$

1. أ - أحسب الأساس والحدّ الأول للمتتالية (u_n) .

 $u_n = 3 \times 2^n$: هي (u_n) هي الحذ العام المنتالية الحذ العام المنتالية الحذ العام الحذ العام العنالية الحذ العام العنالية الع

 (u_n) علماً أنّ $2^8 = 256$ ؛ بين أنّ العدد 768 هو حدّ من حدود المتتالية (u_n) .

 $S = u_0 + u_1 + ... + u_7$: $S = u_0 + u_1 + ... + u_7$

 $v_{n+1} = 2 \ v_n - 1 : n$ منتالیة عددیة معرفة بــ: $v_0 = 4$ ومن أجل كل عدد طبیعي $v_0 = 4 : v_0 = 1 : 0$ منتالیة عددیة معرفة بــ: $v_0 = 4 : v_0 = 1 : 0$ منتالیة عددیة معرفة بــ: $v_0 = 4 : v_0 = 1 : 0$ منتالیة عددیة معرفة بــ: $v_0 = 4 : v_0 = 1 : 0$ منتالیة عددیة معرفة بــ: $v_0 = 4 : v_0 = 1 : 0$

 $v_n = 3 \times 2^n + 1$: n عدد طبیعی $n = 3 \times 2^n + 1$: $n = 3 \times 2^n +$

الجمهورية الجزائوية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب(ة): آداب وفلسفة، لغات أجنبية

دورة: جوان 2010

المدة: ساعتان ونصف

(خاص بالمكفوفين)

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (06 نقاط)

a = 2010 أو d عددان طبيعيان حيث: a = 2010 و 1431

.7 أ- عين باقى القسمة الإقليدية لكل من العددين a و b على a

-7 على -7 على

(7 يوافق 6 بترديد 7) وَ (7] = 6 يوافق 6 بترديد 7) عوافق 6 بترديد 7 عقق أنّ (7] = 6واستنتج أن a^3+b^3 مضاعف لـ 7.

2) أوجد الأعداد الطبيعية n التي تحقق: [7]1431 [7] [7] التي تحقق: [7] التي تحقق: [7]ثمّ استنتج قيم n الأصغر من أو تساوي 16.

التمرين الثاني: (05 نقاط)

- $u_{15} = 46$ و $u_{10} = 31$ و $u_{15} = 46$ و $u_{15} = 46$ و $u_{15} = 46$ و $u_{15} = 46$
 - u_0 عين أساسها و حدها الأول -1
 - n اکتب u بدلالة -2
 - (u_{\perp}) -3 حدّ من حدود المنتالية (u_{\perp}) .
 - $S = u_0 + u_1 + ... + u_{2009} : S = u_0 + u_1 + ... + u_{2009} = -4$
 - . $\nu_n = 2 \times 8^n$ بـ: \mathbb{N} بـنعتبر المتتالية (ν_n) المعرفة على (\mathbb{N}
- u_0 متتالية هندسية يطلب تعيين أساسها وحدها الأول u_0
 - $S' = v_0 + v_1 + ... + v_n : S' = n$ lary -2

التمرين الثالث: (09 نقاط)

 $f(x) = 2x^3 - 9x^2 + 12x - 5$ بالدالة العددية المعرفة على \mathbb{R} بست : (C_f) بالدالة العددية المعرفة على (C_f) الدالة البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f) .

- $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$.1
- 2. أدرس اتجاه تغيرات الدالة f ثم حدد القيم الحدية لها.
- $\cdot(C_f)$ هي نقطة انعطاف المنحنى $I(\frac{3}{2}\,\,;\,\,-\frac{1}{2})$ هي نقطة انعطاف المنحنى 3.
 - I اكتب معادلة المماس (Δ) للمنحنى (C_f) في النقطة.
- $f(x) = (x-1)^2(2x-5)$: x عدد حقیقی عدد دقیقی آنه من أجل كل عدد حقیقی ثم استنتج نقط تقاطع (C_f) مع حامل محور الفواصل.
 - . f(x) أدرس حسب قيم العدد الحقيقي x إشارة x

الموضوع الثاتي

التمرين الأول: (06 نقاط)

في كل من الأسئلة الآتية، اختر الإجابة الصحيحة من بين الإجابات الثلاث المقترحة، مع التعليل.

- 1) باقى القسمة الإقليدية للعدد (203) على 5 هو: أ) 3 (باقى القسمة الإقليدية للعدد (203) على 5 هو:
- x عدد صحيح. إذا كان باقي القسمة الإقليدية للعدد x على x هو x ، فإنّ باقي القسمة الإقليدية x على x على x على x هو: x العدد x على x هو: x العدد x على x هو: x القسمة الإقليدية للعدد x على x هو: x العدد x العدد x على x هو: x العدد x
 - $g(x)=x^3+3x+4$ و آ الدالة العددية المعرفة على \mathbb{R} كما يلي: $g(x)=x^3+3x+4$ و $g(x)=x^3+3x+4$ مستو المعرفة على $g(x)=x^3+3x+4$ منسوب إلى معلم.
- \mathbb{R} الدالة g: أ) متزايدة تماما على \mathbb{R} ب) متناقصة تماما على \mathbb{R} ج) ليست رتيبة على \mathbb{R} (0;0) ج) يقبل نقطة انعطاف إحداثياها: أ) (1;0) ب) حج) \mathbb{C}_{g} (2

التمرين الثاني: (07 نقاط)

 $f(x) = -x^3 + 3x - 2$: $f(x) = -x^3 + 3x - 2$: $f(x) = -x^3 + 3x - 2$

- و $(_{\mathcal{C}_{f}})$ تمثيلها البياني في معلم متعامد متجانس.
- . f عيّن صورتي العددين (2) و (-1) بواسطة الدالة (1)
- f'(-1) و f'(1) و f'(x) و f'(x) و f'(x) و f'(x) و f'(x)
 - -2; 2] على المجال f على المجال -2; 2
 - $f\left(\sqrt{3}\right)$ و $f\left(\frac{3}{2}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$ و $f\left(\sqrt{3}\right)$
- f(x) < 0 ثم حل في المجال [-2; 2] المتر اجحة $f(x) = -(x-1)^2(x+2)$ المتر اجحة (3
 - . $A\left(0;-2
 ight)$ في النقطة و $\left(\mathcal{C}_{f}
 ight)$ في النقطة (4

التمرين الثالث: (07 نقاط)

- (u_n) متتالية هندسية معرفة على مجموعة الأعداد الطبيعية \mathbb{N} ، أساسها p وحدّها الأوّل u_n حيث: $u_1=6$
 - (u_n) أ أحسب الأساس والحد الأول للمتتالية (u_n).
 - $u_n = 3 \times 2^n$ هي: $u_n = 3 \times 2^n$ هي: $u_n = 3 \times 2^n$ هي: $u_n = 3 \times 2^n$

- (u_n) أ علماً أنّ $2^8 = 256$ ؛ بيّن أنّ العدد 768 هو حدّ من حدود المنتالية (2 $S = u_0 + u_1 + ... + u_7$.
- - $v_n = 3 \times 2^n + 1$: n عدد طبیعی $s' = 3 \times 2^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد طبیعی $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$ عدد المجموع $s' = 3 \times 3^n + 1$

الإجابة النموذجية وسلم التنقيط لموضوع مقترح لدورةجوان 2010 اختبار مادة: ...الرياضيات... الشعبة : ... آ وفلسفة + ل.أ المدة:02 سا و 30 د....

الإجابة النموذجية وسلم التتقيط

العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	الموضوع الأوّل	الموضوع
06	0,75 0,75 1 3×0,5 1	التمرين الأولى: (60 نقاط) 1. أ-باقي قسمة a على 7 هو 3 باقي قسمة a على 7 هو 3 ب-باقي قسمة $a^3 + b^3 = 0$ ومنه: $a^3 + b^3$	القسمة الإقليدية والموافقات
05	0,5+1 0,5 0,5 0,75 0,5 0,5	$u_0=1$ ، $r=3$ $-1.I$ $u_n=1+3n$ -2 $u_{2009}=6028$ -3 $u_{2009}=6028$ -3 $S=1005\times6029=6059145$ -4 $S=1005\times6029=6059145$	المتتلات
09	2×0,5 1+1 2×0,25 0,5	$\lim_{x \to \infty} f(x) = \infty$ ، $\lim_{x \to \infty} f(x) = +\infty$.1 $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = +\infty$.1 $\lim_{x \to \infty} f(x) = 6(x^2 - 3x + 2)$.2 $\lim_{x \to \infty} f(x) = 6(x^2 - 3x + 2)$.2 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x$	الدوال العددية

الإجابة النموذجية وسلم التنقيط لموضوع مقترح لدورةجوان 2010 اختبار مادة: ...الرياضيات... الشعبة : ... آ وفلسفة + ل.أ المدة:02 سا و 30 د....

العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	تابع للموضوع الأوّل	الموضوع
	1	$f(x) = (x-1)^2(2x-5)$ 5. النحقق: $f(x) = (x-1)^2(2x-5)$	
	0,5	$(C_f) \cap (xx') = \{A(1; 0), B(\frac{5}{2}; 0)\}$	
	1+ 0,5	(C_f) و (Δ) ه (Δ) ه (Δ) و رسم (Δ)	
		سلم خاص بالمكفوفين:	50 100 100 100 100 100 100 100 100 100 1
		0.75 $x > \frac{3}{2}$ إذا وفقط إذا كان $f(x) > 0$	
		0.75 $x \neq 1$ و $x < \frac{5}{2}$ ابذا وفقط ابذا کان $(x \neq 1)$ و $(x \neq 1)$	
		الموضوع الثابي	
		التمرين الأول: (06 نقاط)	
	4.05	الرقم: رقم الإجابة: التبرير:	1
06	1+0,5 1+0,5	$0 \le 2 < 5$ $0 = 2[5]$ (2) (2) (2)	اختيار من
	1+0,5	$2x + 5 = 1[7] \qquad (2$	
100	1+0,5	$g'(x) = 3x^2 + 3 > 0$ (1 .1 (3) g(0) = 4	
	110,0	التمرين الثاني: (07 نقاط)	
	1+1	$f'(1) = 0 \text{if } f'(-1) = 0 \cdot 1$	
	0,5+0,5	f(-1) = -4 و $f(-2) = 0$	
	1	جـ - جدول التغيّرات	
	3×0,5	([1;2] و $\sqrt{3} > f(\sqrt{3}) < f(\frac{3}{2})$ و $\sqrt{3} > \frac{3}{2} > 1$.2	
	1+0,5	3. الشرح والرسم.	
07		ملم خاص بالمكفوفين:	II .
		1 $f(-1) = -4$ $f(-2) = 0$.1	العددية
		1.5 $f'(-1)$ ، $f'(1)$ ، $f'(x)$ 1.5 f f f f f f	
		1,5 $f\left(\sqrt{3}\right) < f\left(\frac{3}{2}\right)$ - \Rightarrow	
		3. النحقق + الحل	
		$0.5 \dots f'(0) = 3.4$	1,000

الإجابة النموذجية وسلم التنقيط لموضوع مقترح لدورةجوان 2010 اختبار مادة: ...الرياضيات... الشعبة : ... آ وفلسفة + ل.أ المدة:02 سا و 30 د....

العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	تابع للموضوع الثاني	الموضوع
		التمرين الثالث: (07 نقاط)	المتعاليات
	0,5+0,75	1. أ - حساب الأساس والحد الأول للمتتالية (u_n) : $r=2$ ، $r=2$	
07	0,5	$u_n = 3 \times 2^n - 4$	
	1	$u_8 = 768$ ومنه $n = 8$ -1.2	
	1	$S = 3(2^8 - 1) = 765 = 4$	
	3×0,25	$v_3 = 25 \cdot v_2 = 13 \cdot v_1 = 7 - 1.3$	
	1,5	پ - البرهان بالتراجع	
	1	S' = S + 8 = 773	

103