

1. LDR - Light Dependent Resistor

LDR (*Light Dependent Resistor*), Resistor Dependente de Luz ou Fotoresistência, figura 01, é um componente eletrônico passivo do tipo resistor variável, mais especificamente, é um resistor cuja resistência varia conforme a intensidade da luz (iluminamento) que incide sobre ele, à medida que a intensidade da luz aumenta, a sua resistência diminui.

O LDR é construído a partir de material semicondutor com elevada resistência elétrica. Quando a luz que incide sobre o semicondutor tem uma frequência suficiente, os fótons que incidem sobre o semicondutor libertam elétrons para a banda condutora que irão melhorar a sua condutividade e assim diminuir a resistência.

Alguns LDRs são projetados para responder em luz infravermelha (ou ainda em luz ultravioleta).

Figura 01 - LDR (Light Dependent Resistor)

1.1 Tipos de fotocondutores

- **Intrínseco**: utiliza um material fotocondutivo que envolve a excitação de portadores de carga da banda de valência para a banda de condução;
- Extrínseco: utiliza um material que envolve a excitação de portadores de carga entre uma impureza e a banda de valência e de condução. São mais empregados para operação no espectro do infravermelho.

A resistência decai conforme a quantidade de luz incidente sobre o LDR aumenta, figura 02. A quantidade de luz é medida em *Lux*, que mede o fluxo luminoso por unidade de área (iluminância); equivale a um lúmen por metro quadrado.

"Lux (lx) é a unidade SI de medida de iluminamento, que mede a incidência perpendicular de 1 lúmen em uma superfície de 1 metro quadrado."

Figura 02 – Intensidade x resistência

A tabela 01, mostra alguns valores típicos de iluminância em *Lux* para diversas fontes luminosas comuns:

Fonte de Luz	lluminância em Lux
Lua cheia	0,27 a 1,0
Lâmpada incandescente de 60 W a 1 m	50
Lâmpada fluorescente	500
Luz do Sol direta	32000 - 100.000
Pôr-do-sol	400

Tabela 01 - Iluminância

1.2 Tempo de Recuperaçãoⁱⁱ

A resistência do LDR não varia instantaneamente quando suas condições luminosas variam. Existe uma latência (tempo) que decorre até que a resistência atinja um valor estável. Expressamos esse tempo de recuperação em $K\Omega/s$, sendo um valor típico cerca de $200K\Omega/s$ na passagem de um ambiente claro para um escuro, e muito mais rápido no sentido inverso - em torno de apenas 10m na transição do escuro para o iluminado. Esse é um fator importante que deve ser levado em consideração ao criar projetos que utilizem LDRs para, por exemplo, acionar dispositivos de acordo com o nível de iluminação ambiente.

1.3 Tamanho do LDR

Os LDRs possuem diferentes medidas (ver fabricantes), os mais comuns são de 5mm, figura 03, e 10mm.

Figura 03 - LDR 5mm

1.4 Shield LDR

Assim como os demais componentes o LRD pode ser encontrado na versão de shelds, figura 04.

Figura 04 - Shield LDR

Fonte: https://www.gbkrobotics.com.br/

Algumas versões podem apresentar um potenciômetro para regular o ajuste de sensibilidade,

figura 05.

Figura 05 – Shields – LDR com potenciômetro

 $\stackrel{i}{\underline{\ \ }} \underline{\ \ } \underline{\ \ \ } \underline{\ \ } \underline{\ \ \ } \underline{\ \ \ } \underline{\ \ \ \ } \underline{\ \ \ } \underline{\ \ \ \ \ } \underline{\ \ \ }$

ii http://www.bosontreinamentos.com.br/eletronica/curso-de-eletronica/curso-de-eletronica-o-que-e-um-ldr-light-dependent-resistor/