

Continuous Assessment Test -II

Programme Name & Branch: B. Tech.

Exam Duration: 90 mins

Slot: C2+TC2+TCC2

Semester: Winter 2019-20

Maximum Marks: 50

Course Code & Title: MAT3004 Applied Linear Algebra

Exam Mode: Closed book

Answer any five questions 5 x 10 = 50 Marks

Find a basis for the subspaces V + W and $V \cap W$ of \mathbb{R}^4 where the subspaces V and W are spanned by the set of vectors $\{v_1 = (1,1,0,0), v_2 = (1,0,1,0)\}$ and $\{w_1 = (0,1,0,1), w_2 = (0,0,1,1)\}$ respectively. Is $V + W = V \oplus W$? (10)

2. a) Check the identity: rank (A) + nullity of A = total number of columns of A for the

matrix
$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & -1 & 3 \\ 7 & -8 & 3 \\ 5 & -7 & 0 \end{bmatrix}$$
 (5)

b) Can the matrix $B = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$ have a left or right inverse? If so, find it. (5)

3. a) Find the equation of a circle that passes through the points (0, 0), (-1, -3) and (-3, -3).

b) Is the mapping $T: P_1(\mathbb{R}) \to P_2(\mathbb{R})$ defined by $T(at+b) = at^2 + (a-b)t$

(5)

(5)

linear? 4. a) Find the matrix of reflection about the line $y = \sqrt{3} x$.

b) Find the basis change matrix $[id]_{\alpha}^{\beta}$ if $\alpha = \{(1,0), (0,1)\}$ and $\beta = \{(5,1), (1,2)\}$. (5) (5)

5. Let S and T be linear transformations from \mathbb{R}^3 to \mathbb{R}^3 defined as follows:

$$S(x,y,z) = (3x + 5y + z, -2x + y - z, x - z)$$
 and

$$T(x, y, z) = (x - y, y - z, z - x)$$
. Find the associated matrices

T(x,y,z)=(x-y,y-z), and $[T^{-1}]_{\alpha}$ if T^{-1} exists where α is the standard basis $[S]_{\alpha}$, $[T]_{\alpha}$, $[S+T]_{\alpha}$, $[S\circ T]_{\alpha}$ and $[T^{-1}]_{\alpha}$ exists where α is the standard basis

of \mathbb{R}^3 .

(10)

(6. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation T(x, y, z) = (2x - y + z, x + y - 2z). (10)Let $\alpha = \{v_1 = (1,1,1), v_2 = (1,2,1), v_3 = (0,1,-1)\}$ and

Let $\alpha = \{v_1 = (1,1,1), v_2 = (2,1)\}$ be ordered bases of \mathbb{R}^3 and \mathbb{R}^2 respectively. Find the associated matrix $[T]_{\sigma}^{\beta}$. (10)

0 4142