

CONTROLADOR DE TEMPERATURA HEATER

GL-P1HDE002 – PAINEL DE CONTROLE GL-M1HDE003 – MÓDULO DE AQUECIMENTO GL-M1HDE005 – MÓDULO I/O UNIFICADO

CLIENTE: DENSO DO BRASIL

Dezembro 2018 Revisão 02P

Software versão GL-P1HDE002: 1.9 Software versão GL-M1HDE003: 1.3 Software versão GL-M1HDE005: 1.3

SUMÁRIO

1)	INTRODUÇÃO	3
٠		4
	OPERAÇÃO DO SISTEMA2.1) Painel de Controle	
	<i>'</i>	
	2.2) Sensores	
	2.3) Display Numérico	
	2.4) Setpoint	
4	2.5) Ventilação	
	2.5.1) Ventilação Manual	
_	2.5.2) Ventilação Automática	
4	2.6) Ar-Condicionado	
	2.6.1) Válvula de By Pass	
_	2.6.2) Congelamento da Serpentina	
	2.7) Aquecimento	
	2.8) Reheat	
2	2.9) Renovação de Ar	9
3)	PARÂMETROS DO SISTEMA	9
	3.1) Parâmetros de Ajuste	
۵۱	VISUALIZAÇÃO DE DADOS AUXILIARES	12
	4.1) Dados Auxiliares	
	4.2) Horímetros do Sistema	
	1.2) 110111101100 00 010101101111111111111	
5)	MODO DE TESTE	13
6)	FALHAS	14
٠,		
7)	OPERABILIDADE	15
٥١	REGISTRO DE ALTERAÇÕES	46
o)	REGISTRO DE ALTERAÇÕES	10

1) INTRODUÇÃO

O controlador eletrônico de ar-condicionado **GL-P1HDE002**, **GL-M1HDE003** e **GL-M1HDE005** são equipamentos microprocessados, utilizados em ônibus. Recebe informações de temperatura e habilitação do sistema.

Compõe-se de três partes básicas: o painel de controle, instalado no painel do ônibus; o módulo de aquecimento, onde atua sobre a válvula de água quente e a bomba da água; e o módulo de ar-condicionado com saídas para evaporador, condensador, válvula by pass, clutch e renovação de ar.

2) OPERAÇÃO DO SISTEMA

2.1) Painel de Controle

O painel de controle **GL-P1HDE002**, instalado no painel do motorista é composto de um teclado para programação operacional do sistema de heater, e de um display numérico para visualização de parâmetros e status de operação.

O acesso ao modo de programação dos parâmetros será feito através de senha informada neste manual.

2.2) Sensores

Os sensores de temperatura do sistema medem a temperatura de retorno (-20°C à 60°C), temperatura da serpentina (-20°C à 60°C), temperatura do duto (-30°C à 80°C) e temperatura externa (-30°C à 80°C).

2.3) Display Numérico

O display indica inicialmente a versão de software do **GL-P1HDE002** e após a temperatura de retorno no display.

2.4) Setpoint

2.5) Ventilação

2.5.1) Ventilação Manual

Com o controle desligado, ao ser pressionada a tecla , os evaporadores serão acionados com a velocidade selecionada. O 1° toque seleciona a velocidade baixa, o 2° toque seleciona a velocidade alta e o 3° toque desliga a função.

2.5.2) Ventilação Automática

A ventilação automática é controlada pela função ar-condicionado, aquecimento ou reheat, ao ser ativada através das teclas ou ou respectivamente. Ao ser acionada a função ou, o evaporador liga na velocidade automática. Ao ser acionada a função ou evaporador liga na velocidade baixa e para a função ou, o evaporador liga na velocidade alta. Abaixo segue gráfico de controle quando em ventilação automática:

2.6) Ar-Condicionado

Ao ser pressionada a tecla , o sistema de ar-condicionado é acionado com o evaporador em velocidade automática. O acionamento do compressor dependerá do setpoint e do parâmetro dH. A ventilação manual poderá ser acessada através da tecla controlador possui histerese de tempo fixa em 30s para religar o compressor.

O led da função ar-condicionado possui três estados:

- Led apagado: função ar-condicionado desligada e compressor desligado;
- Led piscando: função ar-condicionado ligada e compressor desligado;
- Led ligado: função ar-condicionado ligada e compressor ligado.

Se a função ar-condicionado for acionada e o compressor não ligar por um período de 10 minutos, o sistema ligará o compressor por 1s.

Sempre que o painel receber o sinal de D+, o acionamento da ciclagem será feito conforme o gráfico a seguir:

Além disso, sempre que a tecla for pressionada e houver condição para que o compressor ligue, o acionamento será feito conforme o gráfico a seguir:

2.6.1) Válvula de By Pass

Ao ligar a função ar-condicionado, a válvula de by pass atua para aliviar o compressor durante 1min. Atua conforme a tabela a seguir:

Temperatura de Retorno	Setpoint	Compressor	Válvula de By Pass
20°C	19°C	On	Off
19,5°C	19°C	On	Off
19°C	19°C	On	Off
18,5°C	19°C	On	On
18°C	19°C	Off	Off

Obs.: No modo ventilação manual, a válvula de by pass não atua

2.6.2) Congelamento da Serpentina

Temperatura da Serpentina	Condensador	Compressor	Válvula de By Pass
<=3°C	Low/High	On	On
<=1°C	Off	Off	Off
>=6°C	Low/High	On	Off

2.7) Aquecimento

Ao ser pressionada a tecla , o sistema de aquecimento é acionado. Este sistema funcionará com PID duplo. Esta função está ativa sempre que a temperatura externa estiver abaixo do parâmetro **t**E caso a temperatura estiver acima do valor programado será acionado a ventilação.

A ventilação sempre está em velocidade baixa e a renovação sempre está aberta mas pode ser fechada manualmente por um tempo de 1 minuto após isso ela volta a abrir.

Caso a temperatura esteja dentro da área roxa do gráfico o compressor será acionado e também a válvula de alivio do compressor. Esta função garante um reheat automático afim de evitar que os vidros do ônibus fiquem embaçados. Esta função está ativa se o parâmetro **tC** estiver em **1**, caso contrário o compressor não será acionado e neste caso só estará em funcionamento a calefação.

Obs.: mesmo com o parâmetro tC em 1 existem situações em que o compressor não irá ligar:

- Falha de pressostato;
- Temperatura externa muito baixa (abaixo do parâmetro CC);
- Congelamento da serpentina.

O parâmetro **tA** limita a temperatura máxima em que o duto pode chegar assim como parâmetro **tb** limita a temperatura mínima do duto no modo calefação.

Para a válvula de água quente deve-se configurar o parâmetro **Pb**, em que é configurado o tempo de ciclo da válvula pulsante de água quente.

Por exemplo: se o valor for programado em 10 segundos e o valor do PID1 for 70 o período em que a válvula ficará aberta será de 7 segundos e 3 segundos fechada.

2.8) Reheat

Ao ser pressionada a tecla , o sistema ativa a função reheat manual pelo tempo programado no parâmetro **tr**. Será acionada a função reheat manual onde o compressor e aquecimento serão acionados. A ventilação será acionada na velocidade máxima. O parâmetro **hr** habilita o reheat manual.

Obs.: o aquecimento somente será acionado se a temperatura externa estiver abaixo do parâmetro **tE** ou ainda a temperatura interna estiver 1,5°C acima do setpoint e nesta situação o compressor estará aliviado.

2.9) Renovação de Ar

Ao ser pressionada a tecla , o sistema de renovação de ar é acionado abrindo o damper. Ao ser pressionada novamente a tecla, o sistema de renovação de ar entrará em modo automático. No 3° toque, o damper será fechado.

Quando a renovação de ar estiver no modo automático, o damper funcionará conforme o gráfico a seguir:

Quando a temperatura estiver fora da faixa de ciclagem, o damper só poderá ser aberto no modo manual.

3) PARÂMETROS DO SISTEMA

- Insira a senha 51 por intermédio das teclas ou ou
- Confirme a senha com a tecla
- O primeiro parâmetro a ser mostrado será **P8**;
- Para alterar, espere o valor ser mostrado, mantenha a tecla pressionada e ajuste o valor através das teclas ou ;
- Para sair percorra os parâmetros até o fim da lista.

Parâmetro	Descrição	Def.	Mín.	Máx.
P8	Máxima temperatura de setpoint		22°C	32°C
P9	Mínima temperatura de setpoint		10°C	20°C
dH	Histerese de temperatura para acionar a refrigeração	0°C	0°C	3°C
dn	Tempo de renovação de ar aberta em modo automático	2min	0min	99min
dF	Tempo de renovação de ar fechada em modo automático	10min	1min	99min
dd	Temperatura acima do setpoint para renovação de ar em modo automático	3°C	0°C	5°C
Pd	Habilita renovação de ar (Desabilita = 0 ; Habilita = 1)	1	0	1
tr	Tempo em que o reheat fica ativo	3min	1min	10min
Hr	Habilita a função reheat (Desabilita = 0 ; Habilita = 1)	1	0	1
tA	Temperatura máxima que o duto pode chegar em modo aquecimento 50°C 20°C		20°C	60°C
tb	tb Temperatura mínima que o duto pode chegar em modo aquecimento		10°C	20°C
tE	tE Temperatura externa em que o aquecimento está habilitado		0°C	30°C
Pb	Tempo de ciclo pulsante da válvula de água quente	10s	2s	60s
tC	Tipo de calefação (Sem reheat automático = 0 ; 1 Com reheat automático = 1)		0	1
CC	Temperatura externa de corte do compressor	-10°C	-19°C	15°C
P1	Constante proporcional do PID1	10	0	99
I 1	Constante integral do PID1 (1/1000)	12	0	99
d1	Constante derivativa do PID1	0	0	99
A1	Tempo de amostragem do PID1		1s	99s
P2	P2 Constante proporcional do PID2		0	99
l 2	Constante integral do PID2 (1/1000)		0	99
d2	Constante derivativa do PID2		0	99
A2	Tempo de amostragem do PID2		1s	99s
P 3	Constante proporcional do PID3 (compressor ligado com tC = 1)		0	99

13	Constante integral do PID3 (1/1000) (compressor ligado com tC = 1)		0	99
d3	d3 Constante derivativa do PID3 (compressor ligado com tC = 1)		0	99
А3	A3 Tempo de amostragem do PID3 (compressor ligado com tC = 1)		1s	99s
P4	Constante proporcional do PID4 19 0 (modo reheat manual)		0	99
14	Constante integral do PID4 (1/1000) (modo reheat manual)		0	99
d4	d4 Constante derivativa do PID4 (modo reheat manual)		0	99
A4	Tempo de amostragem do PID4 1s 1s		1s	99s
rH Valor somado ao setpoint para controle do congelamento da serpentina		3°C	1°C	6°C
Pr	Auto Start Up (Desabilita = 0 ; Habilita = 1)		0	1

3.1) Parâmetros de Ajuste

Parâmetros utilizados para ajuste do PID1.

Insira a senha 78 por intermédio das teclas ou ou;

Confirme a senha com a tecla

O primeiro parâmetro a ser mostrado será Pi;

• Para alterar, espere o valor ser mostrado, mantenha a tecla pressionada e ajuste o valor através das teclas ou ;

Para sair percorra os parâmetros até o fim da lista.

Parâmetro	Descrição	Def.	Mín.	Máx.
Pi	Desacopla PID2 do PID1 e o setpoint de controle passa a ser o parâmetro de referência do PID1 (modo de ajuste do PID1) (Desabilita = 0 ; Habilita = 1) Quando habilitado, as constantes do PID1 são P1, I1, D1 e A1	0	0	1

РС	Ativa compressor durante ajuste do PID1 (Pi = 1) no modo reheat automático. Quando habilitado, as constantes do PID1 são P3, I3, D3 e A3		0	1
PE	Ativa compressor e ventilação máxima no modo reheat manual durante o ajuste do PID1 (Pi = 1) Quando habilitado, as constantes do PID1 são P4, I4, D4 e A4	0	0	1

Obs.: os parâmetros Pi, PC e PE não são gravados por motivo de segurança. Ao se reiniciar o produto, eles vêm com seus valores default, no caso, desabilitados.

4) VISUALIZAÇÃO DE DADOS AUXILIARES

Use esta opção para visualizar dados auxiliares e horímetros do sistema.

4.1) Dados Auxiliares

- A primeira visualização a ser mostrada será **r0**;
- Aguarde alguns e será mostrado o valor da variável;
- Para sair percorra as visualizações até o fim da lista.

Dado Auxiliar	Descrição	
r0	Versão do painel GL-P1HDE002	
r1	Versão do módulo GL-M1HDE005	
r2	Versão do módulo GL-M1HDE003	
r3	Temperatura da serpentina	
r4	Temperatura externa	
r5	Temperatura de duto	
r6	Valor em % da válvula de água quente	
r7	Valor do setpoint do duto	

4.2) Horímetros do Sistema

- Para acessar os horímetros, pressione as teclas + +;
- O primeiro horímetro a ser mostrado será C0;
- Aguarde alguns e será mostrado o valor da variável;

Para sair percorra os horímetros até o fim da lista.

Horímetro	Descrição	
C0	Horímetro do compressor – Parte alta (00 xx xx)	
C1	Horímetro do compressor – Parte média (xx 00 xx)	
C2	Horímetro do compressor – Parte baixa (xx xx 00)	
t0	Horímetro do evaporador velocidade alta – Parte alta (00 xx xx)	
t1	Horímetro do evaporador velocidade alta – Parte média (xx 00 xx)	
t2	Horímetro do evaporador velocidade alta – Parte baixa (xx xx 00)	
E0	Horímetro do evaporador velocidade baixa – Parte alta (00 xx xx)	
E1	Horímetro do evaporador velocidade baixa – Parte média (xx 00 xx	
E2	E2 Horímetro do evaporador velocidade baixa – Parte baixa (xx xx	
d0	Horímetro do condensador velocidade alta – Parte alta (00 xx xx	
d1	Horímetro do condensador velocidade alta – Parte média (xx 00 xx)	
d2	Horímetro do condensador velocidade alta – Parte baixa (xx xx 00)	
b0	Horímetro da bomba d'água – Parte alta (00 xx xx)	
b1	Horímetro da bomba d'água – Parte média (xx 00 xx)	
b2	Horímetro da bomba d'água – Parte baixa (xx xx 00)	
A0	Horímetro da válvula de água quente – Parte alta (00 xx xx)	
A1	Horímetro da válvula de água quente – Parte média (xx 00 xx)	
A2	Horímetro da válvula de água quente – Parte baixa (xx xx 00)	

5) MODO DE TESTE

Use esse modo para testar as entradas e saídas, onde é possível alterar o estado das mesmas.

• Para acessar o modo de teste, pressione as teclas + + + + ;

- Confirme a senha com a tecla
- Escolha entre entradas (i) e saídas (o);
- Após pressione a tecla
- Para alterar o estado de uma saída, pressione a tecla

Indicação	Descrição	
Led Vent LO piscando	Indica entrada sem sinal / saída desligada	
Led Vent LO ligado	Indica entrada com sinal / saída ligada	

Teste das entradas

Entradas	Descrição
i0	Pressostato do condensador
i1	Pressostato de alta
i2	Pressostato de baixa
i3	Temperatura da serpentina
i4	Temperatura externa
i5	Temperatura do duto

Teste das saídas

Saídas	Descrição
о0	Evaporador baixo
01	Evaporador alto
o2	Condensador baixo
о3	Condensador alto
04	Compressor
о5	Renovação de ar
06	Válvula by pass
о7	Bomba d'água
08	Válvula de água quente
о9	Alivio do compressor

6) FALHAS

Falha	Descrição da falha	Ação do controlador
FA	Falha de alternador	Desliga todas saídas
FC	Falha de comunicação	Após 10s de falha de comunicação, liga função A/C

C1	Falha de pressão alta	Desliga compressor até que a falha seja reestabelecida
C3	Falha de pressão baixa	Desliga compressor após 1min. até que a falha seja reestabelecida
C5	Falha do sensor de retorno	Controle assume a temperatura de 22°C
C7	Falha do sensor de serpentina	Controle assume a temperatura de 22°C
C8	Falha do sensor externo	Controle assume a temperatura de 22°C
С9	Falha do sensor de duto	Desabilita módulo de aquecimento GL-M1HDE003. Sistema opera como função A/C, caso esteja ativa a função aquecimento ou reheat

7) OPERABILIDADE

- Este controlador deve operar numa faixa de temperatura de -40°C a +85°C.
- Quanto à tensão de alimentação:
 - Este controlador opera com tensão nominal de 12VDC e 24VDC.
 - Em regime contínuo, deve operar com tensão de 10 a 32VDC, com integridade de todas as funções.
 - O circuito de controle deve suportar -12VDC e -24VDC (inversão de polaridade) indefinidamente, sem sofrer nenhum dano.

8) REGISTRO DE ALTERAÇÕES

Revisão	Data Data	Autor	Descrição
01	13/06/2018	FK	Arquivo Original.
02	12/12/2018	FK	Alterada descrição no item 2.5.2;
			Alterada descrição no item 2.9;
			Adicionado parâmetro Pr;
			Adicionado horímetro do condensador.

A EMPRESA

A Globus é uma empresa de desenvolvimento, fabricação e comercialização de equipamentos de controle eletrônico. Possui duas divisões:

- Automotiva: Produtos Q.E.M customizados.
- Sistemas de automação: equipamentos para automação de sistema de refrigeração e arcondicionado.

MISSÃO

Facilitar a vida das pessoas e empresas, proporcionando economia, conforto e praticidade através de soluções tecnológicas.

VISÃO

Ser referência em soluções tecnológicas nos mercados em que atua até 2021.

QUALIDADE

A empresa está certificada desde dezembro de 2000 no sistema da qualidade segundo a norma ISO 9001 de para processo DESENVOLVIMENTO, INDUSTRIALIZAÇÃO E ASSISTÊNCIA TÉCNICA DE PRODUTOS PARA ELETRONICOS APLICAÇÃO AUTOMOTIVA E SISTEMAS DE AUTOMAÇÃO.

POLÍTICA DE QUALIDADE

Desenvolver, industrializar e dar suporte técnico a produtos eletrônicos para aplicação automotiva e sistemas de automação, atendendo aos requisitos dos clientes e demais partes interessadas, de acordo com o direcionamento estratégico da organização, através da melhoria contínua dos processos e do Sistema de Gestão da Qualidade.

PESQUISA E DESENVOLVIMENTO

A nossa Engenharia está preparada para analisar, sugerir, especificar e implementar soluções completas em sistemas de controle de temperatura e umidade. Com uma equipe técnica altamente capacitada e experiente identificaremos o melhor produto para a sua aplicação. Através do nosso know-how podemos projetar equipamentos dentro de suas necessidades e especificações. Temos como grande diferencial a versatilidade, flexibilidade e agilidade no desenvolvimento de novos projetos e produtos, aliados a um alto padrão de tecnologia e qualidade. Traga suas ideias para nossa Engenharia, nós certamente teremos a solução na medida certa.

