Aplikacja systemu pomiarowego do analizy składu spalin opartego o sieć ELAN

Mgr inż. Damian Karbowiak Mgr inż. Grzegorz Powała

Politechnika Śląska

Kraków, 21 maja 2014

Istota pomiarów

Opisać dlaczego i po co takie pomiary

Historia

22 luty 2013
 Kontakt mailowy ze strony mgr inż. Tomasz Kress

- <u>28 luty 2013</u> Pierwsze spotkanie w celu omówienia problemu i zadania
- 21 marzec 2013
 Wypożyczenie Ultramatu 23 i rozpoczęcie współpracy oraz realizacji projektu
- <u>kwiecień czerwiec 2013</u> Realizacja projektu
- wrzesień 2013
 Finalizacja pierwszej części i podstawowej wersji projektu
- 23 październik 2013
 Prezentacja na zebraniu Instytutu Maszyn i Urządzeń Energetycznych
- <u>25 listopad 2013</u>
 <u>Pierwsze testy w warunkach przemysłowych Elektrownia Ostrołęka</u>

Gas Analyzer - geneza

- Realizacja pomiarów przemysłowych
- Wykorzystywanie kilku analizatorów firmy SIEMENS
- Zapisywanie pomiarów w tabelce na kartce
- Ograniczona częstotliwość pomiarów

Przykładowy wynik pomiarów

Przykładowa kartka z pomiarem

Gas Analyzer - realizacja

- Wykorzystanie protokołu komunikacyjnego ELAN
- Możliwość podłączenia do 12 analizatorów firmy SIEMENS:
 - ULTRAMAT 6
 - OXYMAT 6 / OXYMAT 61
 - CALOMAT 6
 - ULTRAMAT 23
- Automatyczny odczyt stanu urządzeń
- Możliwość archiwizacji pomiarów z dowolnym interwałem czasowym, z rozdzielczością co sekundę
- Automatyczne wykrywanie urządzeń i wielkości mierzonych
- Konfigurowalna precyzja pomiarów (wyświetlanie i raporty)
- Generowanie raportów do PDF oraz XLS
- Niskie koszty uruchomienia

Struktura sytemu pomiarowego

Struktura aplikacji

ELAN Network zasada działania buforów

- t₀ nadejście pomiaru z urządzenia 1
- t₁ nadejście pomiaru z urządzenia 3
- t₂ nadejście pomiaru z urządzenia 1
- t₃ nadejście pomiaru z urządzenia 2
- t₄ nadejście pomiaru z urządzenia 3
- t_5 Migawka, czyli zapis wszystkich buforów do bazy
- t₆ nadejście pomiaru z urządzenia 2

Podgląd sieci

Podgląd urządzenia

Przykładowy raport PDF

Przykładowy raport XLS

Współpraca

- Wydział Automatyki, Elektroniki i Informatyki
 - Instytut Informatyki
 - Koło Naukowe Przemysłowych Zastosowań Informatyki "Industrum" mgr inż. Damian Karbowiak mgr inż. Grzegorz Powała
- Wydział Inżynierii Środowiska i Energetyki
 - Instytut Maszyn i Urządzeń Energetycznych
 - Zakład Kotłów i Wytwornic Pary mgr inż. Tomasz Kress

Testy praktyczne

- Elektrociepłownia Marcel Sp. z o.o.; Radlin marzec 2014
- Zespół Elektrociepłowni Wrocławskich KOGENERACJA S.A.;
 Wrocław marzec 2014
- ENERGA Elektrownie Ostrołęka S.A., Ostrołęka grudzień 2013
- Laboratorium Procesów Kotłowych ZKiWP Instytutu Maszyn i Urządzeń Energetycznych Politechnika Śląska; Gliwice na co dzień

Wnioski

- Brak determinizmu (CSMA\CD)
- Wystarczające (statystycznie) parametry czasowe
- Niski koszt rozwiązania
- Przenośność i łatwość rozbudowy aplikacji
- Zaobserwowane nieścisłości w działaniu analizatorów (dodatkowe informacje dostarczane przez interfejs diagnostyczny)

Podsumowanie oraz pytania

Dziękujemy za uwagę.

Czas na pytania.

mgr inż. Damian Karbowiak – Damian.Karbowiak@polsl.pl mgr inż. Grzegorz Powała – Grzegorz.Powala@polsl.pl

