Sown U(t) = Ve - hput. = first principle. 25 Jan Vm sin wt f -> 50 tz (molin) f = 60 Mz (U.S.) W= 211f = 211 v = Vm, cos (5/2+10) = Vm, sin (5t + 40 + 10) [V2 = Vm, sn (5t-30). > V, is leading V2 by (90+10+30) = 130 360 - 160 = 230 → V, is laggy V2 bg 235

•

Further counting 5 into cos [6] - A cos (w++ 0) = A cosut cost 48in w+ 8in 0 $\cos\theta$ & $\sin\theta$ Company [5] \Rightarrow $\tan\theta$ $=\frac{\omega L}{R}$ with [6] From [5] cost & sin & \Rightarrow $\theta = +an \frac{\omega}{\rho}$ Using (A 6000)2 + (A 8000)2 = A2 => 16 (RVm)² + (w LVm)²) = using [5] $\frac{\sqrt{m^2} \cdot 1}{\sqrt{R^2 + \omega^2 l^2}} \Rightarrow A = \sqrt{\frac{2}{R^2 + \omega^2 l^2}}$ $\Rightarrow i(t) = \frac{V_m}{\int_{\mathbb{R}^2 + \omega^2 L^2}} cos(\omega t + \theta)$ 0 = tan wh

Finel Therein voltage and resistance (30mH -> ZL 1255 = 20 0 Vm B \$ 100 $\hat{v}_{l}(t) = \frac{V_{m}}{\sqrt{R^{2} + \omega^{2} L^{2}}} \quad cos(\omega t + \phi)$ 3 30mh Vm 100 x.10

$$i_{L}(\xi) = \frac{\frac{100}{125} \times 10}{\int_{0}^{2} \frac{100}{125} \times 10} \quad \text{(a)} \quad \frac{1}{2} \int_{0}^{2} \frac{100}{125} \times 10} \quad \text{(b)} \quad \frac{1}{2} \int_{0}^{2} \frac{100}{125} \times 10} \int_{0}^{2} \frac{100}{125} \times 10^{2} \times 10^$$

Complex forcing funtion Vm us(wt+0) = Vm /0 sinusoidal fruton wit jut e = cos vot +j sin vot Vm wo(wt+0) = Re [Vme]wt+0] = Re (Vm LO) > 2 part stimulus: Re, 2m. Losot j sin wt By principle of superposition [L,R,C,Vs, Is - linear] In output will also be a sum of Re& Im-Input > Vm (rosust +j sinust) - jut. Owput > Im (coo(wt + \$\phi) + j sin(wt + \$\phi)] = Enginery sources crust 3m response.] Real sources crust Re Reponse.

Vm $los(wt+\theta)$ Step! Vm $e^{ij(\omega t+\theta)}$ Step: $Im = i(\omega t+\theta)$ $Im \Rightarrow Amplitude$ $fm = i(\omega t+\theta)$ $Im \Rightarrow Amplitude$

$$2 \times 10^{-2}$$

$$3 \times 10^{-2}$$

$$4 \times 10^{-2}$$

$$5 \times 10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{$$

Vm =
$$\frac{3(1-j SRC)}{1+(FRC)^2} = \frac{3}{4m!} (-10) = -84^\circ$$

Amplifie = $\frac{3}{(1+10^2)} = 0.3$ (ppox)

Solution > $V_C = 0.3 + tan! (-10) = 0.3 + t$

In General form Uminat PL VI Vminat = Rit Ldi Complex enp. source. Vm c^j vt = Vm 20° (w) Step 1 Respone will be i = In e Stop2 write KVL (or KCL) => differential quition Sups Substitue solution i(t) = Im e (t) Stip 4 Solve tre Diff. egn with Im e (titte) Sty S Ri + L dî = Un ejust justip) LAS = R Ime + L(jw) Ime Vm = RIme + j LWIme = (R+jwL) Imejp Ime = Vm] -> May & phase.

R+jwL] -> May & phase.

Im= Vm +mi-wL

R²+w²L² Step 6 Express Ine in terms of Vm (R, co, L Solution: In e' = Ime (soto) = In (w) = \frac{Vm}{R^2+will}

Phase Im Lo phasov REL: 0 = tro[- w] = RLC: \$ = tan (wRC). = let i= Im e V_ = L dí $V_L = I_m(j\omega)Le^{j(\omega t+\phi)}$ VL = Vm e = jwLIme j(w+++) > vivm ejoi = jwliIme Amp of voltage arross and = just for a count In eigh $\frac{V}{I} = .j\omega L = hpedra$ = jwLI

Capacitor

$$\dot{V}_{c} = C \frac{dU_{c}}{dt}$$

$$\dot{V}_{c} = V_{m} e^{j(\omega t + \Phi)}$$

$$\dot{V}_{c} = CV_{m} j\omega e$$

$$\dot{V}_{c} = CV_{m} j\omega e$$

$$\dot{V}_{c} = CV_{m} j\omega e$$

$$\dot{V}_{m} = \int_{c}^{c} \omega C V_{m} e$$

$$\dot{V}_{m}$$

Russian no Up 1 Ia > no ly : 'R'

•

it
$$V_{R}(t) = Rilt$$
 $V_{R}(t) = Rilt$ $V_{R}(t$

Figure Domin.

$$V = RI$$
 $V = II$
 $V = IV$
 $V = IV$