Machine Learning

Computer Engineering

Fabio Vandin

October 2nd, 2023

A Formal Model (Statistical Learning)

We have a learner (us, or the machine) has access to:

- **1** Domain set \mathcal{X} : set of all possible objects to make predictions about
- domain point $\mathbb{R} \in \mathcal{X} = instance$, usually represented by a vector of features

 • \mathcal{X} is the instance space

 2 Label set \mathcal{Y} : set of possible labels. $\mathcal{X} \in \mathcal{X}$ $\mathcal{X} \in \mathcal{X}$
- - often two labels, e.g $\{-1, +1\}$ or $\{0, 1\}$
- 3 Training data $S = ((x_1, y_1), \dots, (x_m, y_m))$: finite sequence of labeled domain points, i.e. pairs in $\mathcal{X} \times \mathcal{Y}$ 7= } FUN, NOT FLY

= \17,-17

- this is the learner's input
- S: training example or training set

A Formal Model

- **4 Learner's output** h: prediction rule $h: \mathcal{X} \to \mathcal{Y}$
 - also called predictor, hypothesis, or classifier
 - A(S): prediction rule produced by learning algorithm A when training set S is given to it
 - sometimes f used instead of h

A Formal Model

- **4 Learner's output** h: prediction rule $h: \mathcal{X} \to \mathcal{Y}$
 - also called predictor, hypothesis, or classifier
 - A(S): prediction rule produced by learning algorithm A when training set S is given to it
 - sometimes f used instead of h
- ⑤ Data-generation model: instances are generated by some probability distribution and labeled according to a function
 - D: probability distribution over X (NOT KNOWN TO THE LEARNER!)
 - labeling function f: X → y (NOT KNOWN TO THE LEARNER!)
 - label y_i of instance x_i : $y_i = f(x_i)$, for all i = 1, ..., m
 - each point in training set S: first sample x_i according to \mathcal{D} , then label it as $y_i = f(x_i)$
- 6 Measures of success: error of a classifier = probability it does not predict the correct label on a random data point generate by distribution
 ₱