

Capítulo 19

Camada de Rede: Endereçamento Lógico

19-1 ENDEREÇOS IPv4

Um endereço IPv4 é um endereço com 32 bits que identifica de fouma única e universal a conexão de um dispositivo (pou exemplo, um computadou ou roteadou) com a Internet.

Tópicos décutidos nessa seção:

Espaço de Endereço

Notações

Endereçamento com classes

Endereçamento sem classes

NAT – Tradução de Endereço de Rede

Nota

Um endereço IPv4 tem 32 bits de tamamho.

Nota

O endereço IPv4 é único e universal.

O espaço de endereços do IPv4 é 2³² ou 4.294.967.296.

Figura 19.1 Notação de ponto decimal e notação binária de um endereço IPv4

Alterar os endereços IPv4 abaixo da notação binária para a notação de ponto decimal.

- a. 10000001 00001011 00001011 11101111
- **b.** 11000001 10000011 00011011 11111111

Solução

Substitui-se cada grupo de 8 bits pelo seu número decimal equivalente e acrescenta-se os pontos para separação.

- a. 129.11.11.239
- **b.** 193.131.27.255

Alterar os endereços IPv4 abaixo da notação de ponto decimal para a notação binária.

- a. 111.56.45.78
- **b.** 221.34.7.82

Solução

Substitui-se cada número decimal pelo seu binário equivalente e retira-se os pontos para separação.

- a. 01101111 00111000 00101101 01001110
- **b.** 11011101 00100010 00000111 01010010

Encontre o erro, se houver, nos endereçosIPv4 abaixo.

- a. 111.56.045.78
- b. 221.34.7.8.20
- c. 75.45.301.14
- d. 11100010.23.14.67

Solução

- a. Não há o algarismo zero antes do decimal (045).
- b. Não pode haver mais do que 4 grupos de números.
- c. Cada número deve ser no menou ou igual a 255.
- d. Não é permitido misturar a notação binária com a notação decimal.

•

Nota

No endereçamento com classes, o espaço endereço é dividido em 5 classes:

A, B, C, D e E.

Figura 19.2 Classes de endereços na notação binária e na notação decimal

	Primeiro byte	Segundo byte	Terceiro byte	Quarto byte
Classe A	0			
Classe B	10			
Classe C	110			
Classe D	1110			
Classe E	1111			

a. Notação binária

	Primeiro byte	Terceiro byte	Quarto byte
Classe A	0-127		
Classe B	128-191		
Classe C	192-223		
Classe D	224-239		
Classe E	240-255		

b. Notação decimal pontuada

Qual a classe de cada um dos endereços abaixo?

- *a.* <u>0</u>00000001 00001011 00001011 11101111
- **b.** <u>110</u>000001 100000011 00011011 111111111
- **c.** <u>14</u>.23.120.8
- **d. 252**.5.15.111

Solução

- a. O primeiro bit é 0. O endereço é classe A.
- b. Os primeiros 2 bits são 1; o terceiro bit é 0. É um endereço classe C.
- c. O primeiro byte é 14. O endereço é classe A.
- d. O primeiro byte é 252. O endereço é classe E.

Tabela 19.1 Numero de blocos e tamanho do bloco no endereçamento classes IPv4

Classe	Número de Blocos	Tamanho do Bloco	Aplicação
A	128	16.777.216	Unicast
В	16.384	65.536	Unicast
C	2.097.152	256	Unicast
D	1	268.435.456	Multicast
Е	1	268.435.456	Reservado

Nota

No endereçamento com classes, uma grande parte dos endereços disponíveis são desperdiçados.

Tabela 19.2 Máscaras default para endereçamento com classes

Classe	Binária	Decimal Pontuada	CIDR
Α	1111111 00000000 00000000 00000000	255.0.0.0	/8
В	1111111 1111111 00000000 00000000	255.255.0.0	/16
C	1111111 1111111 1111111 00000000	255.255.255.0	/24

-

Nota

O endereçamento com classes, se tounou em muitos casos obsoleto, sendo substituído pelo endereçamento Classless.

A Figura 19.3 mostra um bloco de endereços, na notação binária e de ponto decimal, concedido a uma pequena empresa que precisa de 16 endereços.

Podemos ver que as condições que são aplicadas a este bloco.

- Os endereços são contíguos.
- O número de endereços é uma potência de $2 (16 = 2^4)$
- O primeiro endereço é divisível pou 16
- O primeiro endereço, quando convertida para um número decimal, é 3.440.387.360, que quando dividido pou 16 resulta em 215.024.210.

Figura 19.3 Um bloco de 16 endereços concedido a uma pequena organização

-

Nota

No endereçamento IPv4, um bloco de endereços pode ser definido com x.y.z.t /n

Onde: x.y.z.t define o endereço e /n define a máscara.

-

Nota

O primeiro endereço no bloco pode ser encontrado preenchendo os (32 - n) bits à direita com zeros, onde n é o tamanho da máscara

Ex: 0010<u>0000</u>

Um bloco de endereços é concedido a uma pequena organização. Sabe-se que um dos endereços é 205.16.37.39/28. Qual é o primeiro endereço do bloco?

Solução

A representação binária do endereço é:

11001101 00010000 00100101 00100111

Se o n^o de bits mais à direita for (32-28) = 4, então:

11001101 00010000 00100101 0010<u>0000</u>

ou

205.16.37.32.

Esse é o bloco mostrado naFigura 19.3.

-

Nota

O último endereço do bloco pode ser encontrado preenchendo os (32 - n) bits à direita com 1, onde n é o tamanho da máscara

Ex: 0010<u>1111</u>.

Encontre o último endereço do bloco do Exemplo 19.6.

Solução

A representação binária do endereço é:

11001101 00010000 00100101 00100111

Preenchendo os (32 – 28) = 4 bits a direita com 1, tem-se: 11001101 00010000 00100101 00101111

ou

205.16.37.47

Esse é o bloco mostrado na Figura 19.3.

Nota

O número endereços em um bloco pode ser encontrado através da fórmula 2^{32-n} .

Encontre o nº de endereços no Exemplo 19.6.

Solução

O valor de n é 28, o que significa que o n de endereços é 2 $^{32-28}$ ou 16.

Outra forma de encontrar o primeiro endereço, o último endereço, e o número de endereços é através da representação da máscara na forma binária como um nº de 32 bits binária (ou 8 digitos hexadecimal). No exemplo 19.5 a notação /28 pode ser represenada como

11111111 11111111 11111111 11110000

(28 bits 1 e 4 bits 0).

Encontre

- a. O primeiro endereço
- b. O último endereço
- c. O nº de endereços.

Exemplo 19.9 (continuação)

Solução

a. O primeiro endereço pode ser encontrado através da operação AND entre o endereço e a máscara. A operação AND é feita bit a bit. O resultado da operação AND entre 2 bits é 1 se ambos forem iguais a 1; caso contrário, o resultado é 0.

Endereço: 11001101 00010000 00100101 00100111

Máscara: 11111111 11111111 111110000

Primeiro endereço: 11001101 00010000 00100101 00100000

Exemplo 19.9 (continuação)

b. O último endereço pode ser encontrado através da operação OR entre o endereço e a e o complemento da máscara. A operação OR é feita bit a bit. O resultado da operação OR entre 2 bits é 0 se ambos bits são 0; Caso contrário, o resultado é 1. O complemento de um nº é encontrado através da troca entre cada bit 0 por 1 e cada bit 1 por 0.

Endereço: 11001101 00010000 00100101 00100111 Complemento da máscara: 00000000 00000000 00000000 00001111 Último endereço: 11001101 00010000 00100101 00101111

Exemplo 19.9 (continuação)

c. O nº de endereços pode ser encontrado através do complemento da máscara, convertida para decimal e somando 1 ao valor.

Complemento da máscara: 000000000 00000000 00000000 0000111

Número de endereços: 15 + 1 = 16

Figura 19.4 Uma configuração de rede para o bloco 205.16.37.32/28

-

Nota

O primeiro endereço em um bloco não é designado a nenhum dispositivo; ele é usado como o endereço da rede que identifica a organização para o resto do mundo.

Figura 19.5 2 níveis de hierarquia no endereço telefônico

Figura 19.6 2 níveis de hierarquia no endereço IPv4

-

Nota

Cada endereço em 1 bloco pode ser considerado como uma estrutura hierárquica de 2 níveis: os *n* bits mais à esquerda (prefixo) definem a rede; Os 32 – n bits mais à direita definem o host.

Figura 19.7 Configuração e endereços em uma subrede

Para o restante da Internet

Figura 19.8 3 níveis de hierarquia no endereço IPv4

Endereços Especiais

- Endereço de Broadcast
 - Todos os bits da parte do host =1
- Endereço de Rede
 - Todos os bits da parte do host =0
- Endereço de loopback (localhost)
 - *127.0.0.1*
 - Esse endereço é usado somente para testes
 - Refere-se a máquina local

Endereços a Serem Evitados em Subredes

- Um nó com endereço com todos os bits=1 (broadcast)
- Um nó com endereço com todos bits=0 (endereço de rede)
- Um endereço de subrede com todos os bits=1 (todas subredes)
- Um endereço de subrede com todos os bits=0 (confuso)

Exemplo 19.10

- Um ISP recebe um bloco de endereços começando com 190.100.0.0/16 (65.536 endereços). O ISP necessita distribuir esses endereços a 3 grupooss de usuários da seguinte forma:
- a. O primeiro grupo tem 64 usuários; cada 1 necessita de 256 endereços.
- b. O segundo grupo tem 128 usuários; cada 1 necessita de 128 endereços.
- c. O terceiro grupo tem 128 usuários; cada 1 necessita de 64 endereços.

Atribua as faixas de endereços e encontre o nº de endereços que ainda ficarão disponíveis após a alocação.

Exemplo 19.10 (continuação)

Solução

A Figura 19.9 mostra a situação.

Grupo 1

Para esse grupo, cada usuário necessita de 256 endereços. Isso significa que 8 (\log_2 256) bits são necessários para definir cada host. O tamanho do prefixo é 32 - 8 = 24. Os endereços são:

1.º Cliente:	190.100.0.0/24	190.100.0.255/24
2.º Cliente:	190.100.1.0/24	190.100.1.255/24
• • •		
64.° Cliente:	190.100.63.0/24	190.100.63.255/24
$Total = 64 \times 256 = 16.$	384	

-

Exemplo 19.10 (continuação)

Grupo 2

Para esse grupo, cada usuário necessita de 128 endereços. Isso significa que 7 (\log_2 128) bits são necessários para definir cada host. O tamanho do prefixo é 32-7=25. Os endereços são:

1.° Cliente:	190.100.64.0/25	190.100.64.127/25
2.º Cliente:	190.100.64.128/25	190.100.64.255/25
128º Cliente:	190.100.127.128/25	190.100.127.255/25
$Total = 128 \times 128 = 1$	6.384	

4

Exemplo 19.10 (continuação)

Grupo 3

Para esse grupo, cada usuário necessita de 64 endereços. Isso significa que 6 ($\log_2 64$) bits são necessários para cada host. O tamanho do prefixo é 32 – 6 = 26. Os endereços são:

1.° Cliente: 190.100.128.0/26 190.100.128.63/26

2.° Cliente: 190.100.128.64/26 190.100.128.127/26

...

128.° Cliente: 190.100.159.192/26 190.100.159.255/26

Total = 128 × 64 = 8.192

 N^o de endereços designados pelo ISP: 65.536 N^o de endereços alocados pelo ISP: 40.960 N^o de endereços disponíveis: 24.576

Figura 19.9 Um exemplo de alocação de endereço e distribuição pelo ISP

Tabela 19.3 Endereços para redes privadas

Intervalo			Total
10.0.0.0	a	10.255.255.255	2^{24}
172.16.0.0	a	172.31.255.255	2 ²⁰
192.168.0.0	a	192.168.255.255	216

Figura 19.10 Uma implementação do NAT

Figura 19.11 Endereços no NAT

Figura 19.12 Tradução de endereços no NAT

Tabela 19.4 Tabela de tradução com 5 colunas

Endereço Privado	Porta Privada	Endereço Externo	Porta Externa	Protocolo de Transporte
172.18.3.1	1400	25.8.3.2	80	TCP
172.18.3.2	1401	25.8.3.2	80	TCP

Figura 19.13 Um ISP e NAT

19-2 ENDEREÇOSIPv6

Apesar de todas as soluções, a escasses de endereços é ainda um grande problema para a Internet. Esse e outros problemas no próprio protocolo IP foi a motivação para o IPv6.

Tópicos discutidos nessa seção:

Estrutura Espaço de endereços

Nota

Um endereço IPv6 tem 128 bits de tamanho.

Figura 19.14 Endereço IPv6 na notação binária e na notação hexadecimal com:

Figura 19.15 Endereços IPv6 abreviados

Exemplo 19.11

Expandir o endereço 0:15::1:12:1213 para o seu tamanho original.

Solução

Primeiro temos que alinhar o lado esquerdo do duplo : para a esquerda do padrão original e o lado direito do duplo : para a direita do padrão original para encontrar o nº de bits 0 que irão substituir o duplo : .

```
      xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx

      0: 15:
      : 1: 12:1213
```

Isso significa que o endereço original é

0000:0015:0000:0000:0000:0001:0012:1213

Tabela 19.5 Prefixos de tipo para endereços IPv6

Tipo de Prefixo	Tipo	Fração
0000 0000	Reservado	1/256
0000 0001	Não atribuído	1/256
0000 001	Endereços NSAP	1/128
0000 010	Endereços IPX	1/128
110 0000	Não atribuído	1/128
0000 1	Não atribuído	1/32
0001	Reservado	1/16
001	Reservado	1/8
010	Endereços unicast baseados em provedor	1/8

Tabela 19.5 Prefixos de tipo para endereços IPv6 (continuação)

Tipo de Prefixo	Tipo	Fração
011	Não atribuído	1/8
100	Endereços unicast baseados geograficamente	1/8
101	Não atribuído	1/8
110	Não atribuído	1/8
1110	Não atribuído	1/16
1111 0	Não atribuído	1/32
1111 10	Não atribuído	1/64
1111 110	Não atribuído	1/128
1111 1110 0	Não atribuído	1/512
1111 1110 10	Endereços locais de links	1/1024
1111 1110 11	Endereços locais de sites	1/1024
1111 1111	Endereços multicast	1/256

Figura 19.16 Prefixos para endereço de provedores unicast

Prefixos para endereço de provedores unicast

Os campos para endereços baseados em provedores são os seguintes:

- Identificador de tipo. Esse campo de 3 bits define o endereço como um endereço baseado em provedor.
- Identificador de registro. Este campo de 5 bits indica a agência que registrou o endereço. Atualmente, foram definidos três centros de registro. Internic (código 11000) é o centro para a América do Norte; Ripnic (código 01000) é o centro para registro na Europa; e Apnic (código 10100) destinado a países da Ásia e do Pacífico.

Prefixos para endereço de provedores unicast

- Identificador do provedor. Esse campo de comprimento variável identifica o provedor de acesso à Internet (como um ISP). Recomenda-se um comprimento de 16 bits para esse campo.
- Identificador do assinante. Quando uma organização entra na Internet por meio de um provedor, lhe é atribuída uma identificação de assinante. Recomenda-se um comprimento de 24 bits para esse campo.
- Identificador da sub-rede. Cada assinante pode ter várias sub-redes diferentes e cada sub-rede pode ter um identificador. O identificador da sub-rede define uma sub-rede específica dentro do território do assinante. Recomenda-se um comprimento de 32 bits para esse campo.
- Identificador do nó. O último campo define a identidade do nó conectado a uma sub-rede. Recomenda-se um comprimento de 48 bits para esse campo para torná-lo compatível com o endereço de link (físico) de 48 bits usado pela Ethernet. No futuro, esse endereço de link provavelmente será o mesmo que o endereço físico do nó.

Figura 19.17 Endereços Multicast no IPv6

Figura 19.18 Endereços reservados no IPv6

Figura 19.19 Endereços Locais no IPv6

