CY104S1 (MCQ)_END SEM EXAM-2021

* Required

MCQ_CY104S1_END SEM EXAM-2021

There are 20 MCQ type questions each carries one mark and only one correct answer.

- 3. Among these the best choice as a green chemistry solvent is____ * (1 Point)
 - C6H6
 - CH3OH
 - C6H5N
 - Both CH3OH and C6H4N
- 4. What is the dimensionality Buckminsterfullerene as a nanomaterial? * (1 Point)
 - 3D
 - 2D
 - () OD
 - 1D
- 5. When a brass rod of diameter 6 mm is subjected to a tension and the diameter changes. Calculate Poisson ratio for brass, Y for the brass is given as below: * (1 Point)

tension = $5 \times 10^3 N$, Diameter Changes = $3.6 \times 10^{-4} cm$, $Y = 9 \times 10^{10} N/m^2$.

- 1.31
- 0.61

		0.31
	\bigcirc	None of the above
6.		ong which coating technique is non-metallic/organic coating *
		paints
	\bigcirc	Galvanising
	\bigcirc	Electroplating
	\bigcirc	Metal Cladding
7.		ong these which metal form volatile oxide films on the surface *Point)
	\bigcirc	Fe
		Мо
	\bigcirc	Pt
	\bigcirc	Cu
8.		gon is used for removal of * Point)
	\bigcirc	calcium carbonate
		calcium sulphate
	\bigcirc	magnesium carbonate
	\bigcirc	none of these

9. Temporary hardness of water may be removed by adding ^ (1 Point)			
	Calcium chloride		
	Calcium carbonate		
	calcium hydroxide		
	osodium bicarbonate		
10. 0.45 gm of CaCO3 was dissolved in HCI and the solution made up to 50 distilled water. 50 ml of the solution required 50 ml of EDTA solution for 50 ml of hard water sample required 18 mi of EDTA and after boiling an required 10 ml of EDTA solution. Calculate temporary hardness of water (1 Point)			
	144 ppm		
	○ 324 ppm		
	○ 240 ppm		
11	. Zeolite used in zeolite softening process for the treatment of hard water gets exhausted after certain time of usage but can be regenerated by flushing it with * (1 Point)		
	10% sodium chloride solution		
	10% magnesium sulfate solution		
	10% magnesium chloride solution		
	10% calcium chloride solution		

	12. A galvanic cell consisting of Cu versus H2 electrode was used to determine the of an unknown solution which was placed in H2 electrode compartment. Concentration of Cu2+ was 1M and emf of the cell at 25°C was found to be 0.4% Calculate the pH of this unknown solution. Given, reduction potential of copper electrode is 0.34V. * (1 Point)		
	<u> </u>		
	2.136		
	<u>2.635</u>		
13.	The range of visible light found in the electromagnetic spectrum is * (1 Point)		
	○ 1nm -200 nm		
	300 nm- 800 nm		
	○ 800 nm -1000nm		
	None of above		
14.	The 0.02 M colour solution gives the absorption value of 0.3 with using 1 cm of cell path length. If the concentration of solution is increased by 0.06 M, the value of % transmission will be, * (1 Point)		
	O 10%		
	12.5%		
	O 20 %		
	<u></u>		

5. The resistance of a 0.01 N solution of an electrolyte was found to 210 ohm at 298 K using a conductivity cell with a cell constant of 0.88 cm–1. The specific conductance and equivalent conductance of solution are * (1 Point)			
$\bigcirc 2.19 \times 10^{-5} mho. cm^{-1} and 219 mho. cm^2. eq^{-1}$			
$\bigcirc 2.19 \times 10^{-3} mho. cm^{-1} and 219 mho. cm^{2}. eq^{-1}$			
$\bigcirc 4.19 \times 10^{-5} mho. cm^{-1} and 419 mho. cm^2. eq^{-1}$			
\bullet 4.19 × 10 ⁻³ mho. cm ⁻¹ and 419 mho. cm ² . eq ⁻¹			
16. Which polymerization technique will give the high purity of products? * (1 Point)			
Bulk			
Solution			
Suspension			
Emulsion			
17. The water used as a solvent in the following types of polymerization technique * (1 Point)			
Solution			
Suspension			
Bulk			
○ None of above			
18. The dye Malachite green is an example ofdye * (1 Point)			
Anthraquinone			

Triarylmethane		
○ Azo		
○ Indigo		
19. Which chemical nature of Penicillin structure mainly helps to inhibit the bacterial cell wall synthesis? * (1 Point)		
Electrophilic		
○ Nucleophilic		
○ Neutral		
None of the above		
20. Which enzyme responsible for the cross-linking of bacterial cell wall synthesi (1 Point)		
Oxygenase		
Lipase		
Transpeptidase		
None of these		
21. Deficiency of Iron causes which disease * (1 Point)		
Scurvy		
Osteoporosis		
Anemia		
None of the above		

22. Volatile drug may be best administered by: * (1 Point)			
Oral route			
Inhalation			
Sublingual route			
Rectal route			
Back	Submit		

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies | Terms of use