Ejercicio. (11.8) Sea A un anillo, $X = \operatorname{Spec}(A)$ su espectro, $U \subseteq X$ un abierto y $X_g := X - \mathbb{V}(g)$ el abierto básico asociado a $g \in A$. Ahora, si $g \notin \mathfrak{q}$ entonces bajo el morfismo natural $A \to A_{\mathfrak{q}}$, la imagen de g es una unidad entonces la propiedad universal de la localización nos garantiza la existencia de un único morfismo $\rho_{g\mathfrak{q}}: A_g \to A_{\mathfrak{q}}$. Definimos:

$$\mathcal{O}_U := \{ \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in U} \mid \forall \mathfrak{p} \in U, \exists g \not \in \mathfrak{p} \text{ y } f \in A_g \text{ tal que } \forall \mathfrak{q} \in X_g, f_{\mathfrak{q}} = \rho_{g\mathfrak{q}}(f) \} \subseteq \prod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$$

1. Si A es un dominio entero, entonces

$$\mathcal{O}_U \cong \bigcap_{\mathfrak{p} \in U} A_{\mathfrak{p}} \subseteq K(A)$$

donde K(A) es su campo de fracciones.

2. Sea $V \subseteq U$ un abierto de U. Demuestra que la proyección:

$$\prod_{\mathfrak{p}\in U}A_{\mathfrak{p}}\to\prod_{\mathfrak{p}\in V}A_{\mathfrak{p}}$$

induce un morfismo $\rho_{UV}: \mathcal{O}_U \to \mathcal{O}_V$.

- 3. Demuestra que $\{\mathcal{O}_U\}$ junto con las restricciones ρ_{UV} forman una gavilla sobre X.
- 4. Demuestra que $\mathcal{O}_X \cong A$.

Proof. (1) Recordemos que si $f \in \cap A_{\mathfrak{p}} \subseteq K(A)$, es decir que f = a/b con $b \neq 0$ entonces para cada $\mathfrak{p} \in U$ tenemos la inclusión $\iota_{\mathfrak{p}} : \cap A_{\mathfrak{p}} \to A_{\mathfrak{p}}$. Notemos que, como elemento de $A_{\mathfrak{p}}$, f no necesariamente preserva su representación f = a/b, pero sigue siendo el mismo elemento porque $\iota_{\mathfrak{p}}$ es una inclusión, es decir, si $\iota_{\mathfrak{p}}(f) = c/d$, entonces c/d = a/b lo cual implica que ad - bc = 0 porque A es un dominio entero.

Con esto definimos

$$\varphi:\bigcap_{\mathfrak{p}\in U}A_{\mathfrak{p}}\to\mathcal{O}_{U},\quad \varphi(f)=\left\{\iota_{\mathfrak{p}}(f)\right\}_{\mathfrak{p}\in U}\in\prod_{\mathfrak{p}\in U}A_{\mathfrak{p}}$$

Para probar que φ es un isomorfismo, debemos probar tres cosas:

Primero probamos que está bien definida esta función. Por la propiedad universal del producto, sabemos que efectivamente $\varphi(f) \in \prod A_{\mathfrak{p}}$. Para ver que $\varphi(f) \in \mathcal{O}_U$ fijemos un primo $\mathfrak{p} \in U$ y escribimos $f = \iota_{\mathfrak{p}}(f) = a/g$, como elemento de K(A), con $g \notin \mathfrak{p}$. Ahora sea $\mathfrak{q} \in X_g$ arbitraria. Como hemos mencionado, existe un único morfismo $\rho_{g\mathfrak{q}}: A_g \to A_{\mathfrak{q}}$ que es inyectivo gracias a que A es dominio. Por lo tanto podemos pensar que $\rho_{g\mathfrak{q}}$ es la inclusión $A_g \subseteq A_{\mathfrak{q}}$ dentro de K(A) y así tenemos que:

$$\rho_{g\mathfrak{q}}(f) = f = \iota_{\mathfrak{q}}(f)$$

donde cada parte de la igualdad lo vemos como un elemento de $A_{\mathfrak{q}}$. Hemos probado que para todo $\mathfrak{p} \in U$, existe una $g \notin \mathfrak{p}$ (i.e. el denominador de f en $A_{\mathfrak{p}}$) tal que para toda $\mathfrak{q} \in X_g$ se tiene que $f_{\mathfrak{q}} := \iota_{\mathfrak{q}}(f) = \rho_{g\mathfrak{q}}(f)$ (aquí estamos pensando en f = a/g como elemento de A_g).

Probar que φ es inyectiva es fácil, pues si $\varphi(f) = \{\iota_{\mathfrak{p}}(f)\}_{\mathfrak{p}\in U} = \{0\}_{\mathfrak{p}\in U}$ entonces para cada $\mathfrak{p}\in U$ tenemos que f=0 como elemento de $A_{\mathfrak{p}}$, es decir que existe un $v_{\mathfrak{p}}\notin \mathfrak{p}$ tal que $fv_{\mathfrak{p}}=(av_{\mathfrak{p}})/b=0$ como fracción de K(A). Como A es un dominio entero concluimos que necesariamente a=0 y así f=0.

Ahora probamos que φ es sobreyectiva. Sea $\{f_{\mathfrak{p}}\}\in \mathcal{O}_U$. Para toda $\mathfrak{p}\in U$ existen $a=a(\mathfrak{p})\in A$, $g=g(\mathfrak{p})\not\in \mathfrak{p}$ y $f=f(\mathfrak{p})\in A_{g(\mathfrak{p})}$ tales que $f_{\mathfrak{q}}=\rho_{g\mathfrak{q}}(f)$ para toda $\mathfrak{q}\in X_g$. Por lo tanto tenemos que $\{X_{g(\mathfrak{p})}\}_{\mathfrak{p}\in U}$ forma una cubierta abierta de U de la cual extraemos una cubierta finita: X_{g_1},\ldots,X_{g_n} .

(2) Como \mathcal{O}_U es un subanillo de $\prod A_{\mathfrak{p}}$, basta probar que la proyección $\pi : \prod_U A_{\mathfrak{p}} \to \prod_V A_{\mathfrak{p}}$, restringido a \mathcal{O}_U , tiene como contradominio a \mathcal{O}_V . Para esto sea $s = \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in U}$, entonces

$$s \xrightarrow{\pi} \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in V}.$$

Para probar que $\pi(s) \in \mathcal{O}_V$, damos $\mathfrak{p} \in V$ arbitrario. Como $V \subseteq U$ y como $\{f_{\mathfrak{p}}\}_{\mathfrak{p} \in U} \in \mathcal{O}_U$, entonces existe una $g = g(\mathfrak{p}) \notin \mathfrak{p}$ y una $f \in A_g$ tal que $\rho_{g\mathfrak{q}}(f) = f_{\mathfrak{q}}$ para toda $\mathfrak{q} \in U$. Observemos que si nos restringimos a V, la misma g y la misma f funcionan:

$$\exists g \not\in \mathfrak{p} \text{ y } f \in A_g \text{ tal que } \rho_{g\mathfrak{q}} = f_{\mathfrak{q}} \ \forall \mathfrak{q} \in V.$$

Por lo tanto $\pi(s) = \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in V} \in \mathcal{O}_V$.

(3) Para probar que $\{\mathcal{O}_U\}_{U\subseteq X}$ junto con las ρ_{UV} forman una gavilla. El hecho que sea pregavilla se sigue inmediatamente de que los morfismos ρ_{UV} son restricciones de las proyecciones canónicas:

$$\rho_{UV} = \pi_{UV} \mid_{\mathcal{O}_U} \quad \text{donde} \quad \pi_{UV} : \prod_{\mathfrak{p} \in U} A_{\mathfrak{p}} \to \prod_{\mathfrak{p} \in V} A_{\mathfrak{p}}$$

Estas proyecciones cumplen trivialmente las propiedades funtoriales de ser pregavilla.

Ahora probamos las dos características de ser gavilla:

Sea $U \subseteq X$ un abierto con una cubierta abierta $U = \cup U_{\lambda}$. Tomemos $s = \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in U}$ una sección de \mathcal{O}_U tal que $\rho_{\lambda}(s) = \rho_{UU_{\lambda}}(s) = \{0\}_{\mathfrak{p} \in U_{\lambda}}$ para toda λ . Entonces para toda $\mathfrak{p} \in U$, existe una λ tal que $\mathfrak{p} \in U_{\lambda}$ y así, la coordenada $f_{\mathfrak{p}}$ de s, bajo ρ_{λ} se hace 0. Pero ρ_{λ} es una proyección canónica, por lo tanto necesariamente $f_{\mathfrak{p}} = 0$. Como esto es para toda $\mathfrak{p} \in U$, tenemos que $s = \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in U} = \{0\} = 0$.

Ahora sea $s_{\lambda} = \{f_{\mathfrak{p}}^{\lambda}\}_{\mathfrak{p} \in U_{\lambda}} \in \mathcal{O}_{U_{\lambda}}$ una familia de secciones tales que:

$$\rho_{U_{\lambda}U_{\lambda}\cap U_{\mu}}(s_{\lambda}) = \rho_{U_{\mu}U_{\lambda}\cap U_{\mu}}(s_{\mu})$$

para toda λ, μ . Definimos $s = \{f_{\mathfrak{p}}\}_{\mathfrak{p} \in U}$ tal que $f_{\mathfrak{p}} = s_{\lambda}(\mathfrak{p}) = f_{\mathfrak{p}}^{\lambda}$ si $\mathfrak{p} \in U_{\lambda}$. Esta definición para $f_{\mathfrak{p}}$ está bien definido porque si $\mathfrak{p} \in U_{\lambda} \cap U_{\mu}$, entonces la ecuación anterior nos dice que la coordenada referente a \mathfrak{p} de s_{λ} y de s_{μ} coinciden, i.e. $s_{\lambda}(\mathfrak{p}) = s_{\mu}(\mathfrak{p})$. Esto sucede para cada λ, μ y cada $\mathfrak{p} \in U_{\lambda} \cap U_{\mu}$. Por lo tanto está bien definido s y por definición $\rho_{UU_{\lambda}}(s) = s_{\lambda}$ para cada λ .

(4) Sea $f \in A$, sabemos que para cada $\mathfrak{p} \in X$, hay un morfismo canónico de localización $l_{\mathfrak{p}} : A \to A_{\mathfrak{p}}$ que hace: $l_{\mathfrak{p}}(f) = f/1 \in A_{\mathfrak{p}}$. Con esto definimos:

$$\psi: A \to \mathcal{O}_X \quad \psi(f) = \{l_{\mathfrak{p}}(f)\}_{\mathfrak{p} \in X} = \{f/1\}_{\mathfrak{p} \in X}$$

Como cada $l_{\mathfrak{p}}$ es una función bien definida, la propiedad universal del producto nos garantiza que ψ está bien definida. Para ver que el contradominio es efectivamente \mathcal{O}_X , fijamos una $\mathfrak{p} \in X$. Sabemos que $1 \notin \mathfrak{p}$ y que $f \in A_1 = A$. Por último sea $\mathfrak{q} \in X$ (claramente $1 \notin \mathfrak{q}$). En la definición de $\rho_{g\mathfrak{q}}$ estamos tomando g = 1, entonces $\rho_{1\mathfrak{q}}$ coincide con la localización canónica: $l_{\mathfrak{q}} = \rho_{1\mathfrak{q}}$ entonces trivialmente tenemos que $f_{\mathfrak{q}} := l_{\mathfrak{q}}(f) = \rho_{1\mathfrak{q}}(f)$ y así $\psi(f) \in \mathcal{O}_X$.

Para la inyectividad supongamos que $\psi(f) = \{0\}_{\mathfrak{p} \in X}$, es decir que $l_{\mathfrak{p}}(f) = f/1 = 0$ en cada $A_{\mathfrak{p}}$. Por lo tanto para toda $\mathfrak{p} \in X$, existe una $v = v(\mathfrak{p}) \notin \mathfrak{p}$ tal que vf = 0 en A, es decir que $(0:f) \cap \mathfrak{p}^c \neq \emptyset$ o equivalentemente $(0:f) \not\subseteq \mathfrak{p}$ para toda $\mathfrak{p} \in X$. Por lo tanto $\mathbb{V}((0:f)) = \emptyset$ lo cual sucede si y sólo si $1 \in (0:f)$. De esto se sigue inmediatamente que $f = 1 \cdot f = 0$ y que ψ es inyectiva.

Probamos la sobreyectividad: sea $s=\{f_{\mathfrak{p}}\}_{\mathfrak{p}\in X}$ una sección en \mathcal{O}_X . Para cada $\mathfrak{p}\in X$, sabemos que existe un abierto básico X_{g_i} alrededor de \mathfrak{p} junto con una fracción $a_i/g_i^{n_i}\in A_{g_i}$ tal que para toda $\mathfrak{q}\in X_{g_i}$, $f_{\mathfrak{q}}=\rho_{g_i\mathfrak{q}}(a_i/g_i^{n_i})=a_i/g_i^{n_i}$. Esta última igualdad se da porque, como $g_i\not\in\mathfrak{q}$, g_i es unidad de $A_{\mathfrak{q}}$ y así $(a_i/g_i^{n_i})/1=a_i/g_i^{n_i}$ en $A_{\mathfrak{q}}$. Como $X_{g_i}=X_{g_i^{n_i}}$, podemos reescribir esta fracción de tal manera que el exponente $n_i=1$ ya que en $A_{\mathfrak{q}}$, g_i es una unidad. Con todo esto decimos que s está representado por a_i/g_i en el abierto X_{g_i} .

Hacemos una última observación: en las intersecciones $X_{g_i} \cap X_{g_k} = X_{g_ig_k}$, ambas fracciones a_i/g_i y a_k/g_k representan a s, entonces existe una potencia n_{ij} tal que $(g_ig_k)^{n_{ij}}(a_ig_k - a_kg_i) = 0$. Si tomamos $N = \max n_{ij}$, entonces

$$(g_i g_k)^N (a_i g_k - a_k g_i) = 0 \implies (g_k)^{N+1} (a_i g_i^N) - (g_i)^{N+1} (a_k g_k^N) = 0.$$
(1)

Por lo tanto si ahora sustituimos la representación de s en X_{q_i} por:

$$\frac{a_i}{g_i} \to \frac{a_i g_i^N}{g_i^{N+1}}$$

la representación a_i/g_i no cambia pero la ecuación 2 nos dice que ahora

$$(g_k)^{N+1}(a_i g_i^N) - (g_i)^{N+1}(a_k g_k^N) = 0 \quad \to \quad g_k a_i - g_i a_k = 0$$
 (2)

Claramente $\{X_{g_i}\}$ es una cubierta abierta de X, pero como X es cuasi-compacto (por el teorema de la partición de la unidad), sin pérdida de generalidad podemos asumir que la cubierta es finita, i.e. $X = X_{g_1} \cup \cdots \cup X_{g_n}$, y además:

$$1 = \mu_1 g_1 + \dots + \mu_n g_n$$
 para algunas $\mu_1, \dots, \mu_n \in A$.

Definimos $a = \mu_1 a_1 + \cdots + \mu_n a_n$ y observemos que:

$$g_i a = \sum_{k=1}^n \mu_k g_i a_k = \sum_{k=1}^n \mu_k g_k a_i = a_i$$

donde hemos usado que $g_k a_i = g_i a_k$ (la ecuación 3). Esta última igualdad nos dice que en A_{g_i} , tenemos: $a/1 = a_i/g_i$. Por lo tanto $l_{g_i}(a) = a_i/g_i$ y así tenemos que $\psi(a) = s$ sobre todas las $X'_{g_i}s$, i.e. sobre X.

3