IS62LV1024L IS62LV1024LL

128K x 8 LOW POWER and LOW Vcc CMOS STATIC RAM

FEATURES

- · Access times of 45, 55, and 70 ns
- · Low active power: 60 mW (typical)
- Low standby power: 15 μW (typical) CMOS standby
- · Low data retention voltage: 2V (min.)
- Available in Low Power (-L) and Ultra Low Power (-LL)
- Output Enable (OE) and two Chip Enable (CE1 and CE2) inputs for ease in applications
- · TTL compatible inputs and outputs
- · Single 2.7V to 3.6V power supply

DESCRIPTION

The ICSI IS62LV1024L and IS62LV1024LL are low power and low Vcc,131,072-word by 8-bit CMOS static RAMs. They are fabricated using ICSIs high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.

When $\overline{\text{CE1}}$ is HIGH or CE2 is LOW (deselected), the device assumes a standby mode at which the power dissipation can be reduced by using CMOS input levels.

Easy memory expansion is provided by using two Chip Enable inputs, $\overline{\text{CE1}}$ and CE2. The active LOW Write Enable ($\overline{\text{WE}}$) controls both writing and reading of the memory.

The IS62LV1024L and IS62LV1024LL are available in 32-pin 8*20mm TSOP-1, 8*13.4mm TSOP-1, 450mil SOP and 48-pin 6*8mm TF-BGA.

FUNCTIONAL BLOCK DIAGRAM

ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

PIN CONFIGURATION 32-Pin SOP

PIN CONFIGURATION 32-Pin 8x20mm TSOP-1 and 8x13.4mm TSOP-1

48-Pin 6x8mm TF-BGA

PIN DESCRIPTIONS

A0-A16	Address Inputs
CE1	Chip Enable 1 Input
CE2	Chip Enable 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
NC	No Connection
Vcc	Power
GND	Ground

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	2.7V to 3.6V
Industrial	-40°C to +85°C	2.7V to 3.6V

TRUTH TABLE

Mode	WE	CE1	CE2	ŌĒ	I/O Operation	Vcc Current
Not Selected	Χ	Н	Х	Χ	High-Z	ISB1, ISB2
(Power-down)	Χ	Χ	L	Χ	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	High-Z	Icc
Read	Н	L	Н	L	D оит	Icc
Write	L	L	Н	Χ	Din	Icc

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to Vcc + 0.5	V
Vcc	Vcc related to GND	-0.3 to +4.6	V
TBIAS	Temperature Under Bias	-40 to +85	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	0.7	W

Notes:

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Output Capacitance	Vout = 0V	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -1.0 mA	2.2	_	V
Vol	Output LOW Voltage	Vcc = Min., loL = 2.1 mA	_	0.4	V
VIH	Input HIGH Voltage		2.2	Vcc + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.4	V
ILI	Input Leakage	GND ≤ Vin ≤ Vcc	–1	1	μΑ
ILO	Output Leakage	GND ≤ Vout ≤ Vcc	-1	1	μΑ

Notes

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{2.} Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 3.0V$.

IS62LV1024L POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		-45l Min.	₋ ns Max.		L ns Max.		L ns Max.	Unit
Icc	Vcc Dynamic Operating Supply Current	Vcc = Max., \overline{CE} = VIL lout = 0 mA, f = fmax	Com.		40 45		35 40		30 35	mA
ISB1	TTL Standby Current (TTL Inputs)	· · · · · · · · · · · · · · · · · · ·	Com. Ind.	_ _	0.3 0.4	_	0.3 0.4	_	0.3 0.4	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:control_control} \begin{split} & \frac{\text{Vcc} = \text{Max., f} = 0}{\text{CE1}} \geq \text{Vcc} - 0.2\text{V,} \\ & \text{CE2} \leq 0.2\text{V,} \\ & \text{or Vin} \geq \text{Vcc} - 0.2\text{V, Vin} \leq 0.2\text{V,} \end{split}$	Com. Ind.	-	50 75	_	50 75	_	50 75	μΑ

Note:

IS62LV1024LL POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions		-45 Min.	LL ns Max.		L ns Max.		L ns Max.	Unit
Icc	Vcc Dynamic Operating Supply Current	$Vcc = Max., \overline{CE} = VIL$ $Iout = 0 mA, f = fmax$	Com. Ind.	_ _	40 45	_	35 40	_	30 35	mA
ISB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} & \text{Vcc} = \text{Max.}, \\ & \text{Vin} = \text{ViH or ViL, } \overline{\text{CE1}} \geq \text{ViH} \\ & \text{or CE2} \leq \text{ViL, f} = 0 \end{aligned}$	Com. Ind.	_ _	0.2 0.3		0.2 0.3		0.2 0.3	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:control_control_control} \begin{split} & \frac{\text{Vcc} = \text{Max., f} = 0}{\text{CE1}} \geq \text{Vcc} - 0.2\text{V,} \\ & \text{CE2} \leq 0.2\text{V,} \\ & \text{or Vin} \geq \text{Vcc} - 0.2\text{V, Vin} \leq 0.2\text{V,} \end{split}$	Com. Ind. 0.2V		5 10	-	5 10	-	5 10	μΑ

Note:

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

		-	45	-5	55		70	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	45	_	55	_	70	_	ns
t AA	Address Access Time	_	45	_	55	_	70	ns
tона	Output Hold Time	10	-	10	_	10	_	ns
tACE1	CE1 Access Time	_	45	_	55	_	70	ns
tACE2	CE2 Access Time	_	45	_	55	_	70	ns
t DOE	OE Access Time	_	20	_	25	_	35	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	5	_	5	_	ns
thzoe ⁽²⁾	OE to High-Z Output	0	15	0	20	0	25	ns
tLZCE1(2)	CE1 to Low-Z Output	5	_	7	_	10	_	ns
tLZCE2 ⁽²⁾	CE2 to Low-Z Output	5	-	7	_	10	_	ns
thzce ⁽²⁾	CE1 or CE2 to High-Z Output	0	15	0	20	0	25	ns

Notes

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0.4V to 2.2V
Input Rise and Fall Times	5 ns
Input and Output Timing	1.5V
and Reference Level	
Output Load	See Figures 1

AC TEST LOADS

Figure 1.

Figure 2.

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0.4V to 2.2V and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

READ CYCLE NO. 1(1,2)

READ CYCLE NO. 2(1,3)

- Notes:
 1. WE is HIGH for a Read Cycle.
- The device is continuously selected. OE, CE1 = VIL, CE2 = VIH.
 Address is valid prior to or coincident with CE1 LOW and CE2 HIGH transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range, Standard and Low Power)

		-4	45	-5	5	-7	70	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	45	_	55	_	70	_	ns
tsce1	CE1 to Write End	35	_	50	_	60	_	ns
tsce2	CE2 to Write End	35	_	50	_	60	_	ns
taw	Address Setup Time to Write End	35	_	50	-	60	_	ns
tha	Address Hold from Write End	0	_	0	-	0	_	ns
tsa	Address Setup Time	0	_	0	-	0	_	ns
tpwE ⁽⁴⁾	WE Pulse Width	35	_	40	-	55	_	ns
tsp	Data Setup to Write End	25	_	25	_	30	_	ns
t HD	Data Hold from Write End	0	_	0	_	0	_	ns
thzwe ⁽²⁾	WE LOW to High-Z Output	_	15	_	20	0	25	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	5	-	5	-	5	_	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0.4V to 2.2V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 4. Tested with OE HIGH.

AC WAVEFORMS WRITE CYCLE NO. 1 (**WE** Controlled)^(1,2)

WRITE CYCLE NO. 2 (CE1, CE2 Controlled)(1,2)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{CE1}$ LOW, CE2 HIGH and \overline{WE} LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write. 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Max.	Unit	
VDR	Vcc for Data Retention	See Data Retention Waveform		2.0	3.6	V	
Idr	Data Retention Current	$Vcc = 2.0V, \overline{CE1} \ge Vcc - 0.2V$	Com. (-L)	_	30	μΑ	
			Com. (-LL)	_	5	μA	
			Ind. (-L)	_	50	μA	
			Ind. (-LL)	_	10	μΑ	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	ns	
t RDR	Recovery Time	See Data Retention Waveform		trc	_	ns	

DATA RETENTION WAVEFORM (CE1 Controlled)

DATA RETENTION WAVEFORM (CE2 Controlled)

IS62LV1024L
ORDERING INFORMATION
Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
45	IS62LV1024L-45Q	450mil SOP
	IS62LV1024L-45T	8*20mm TSOP-1
	IS62LV1024L-45H	8*13.4mm TSOP-1
	IS62LV1024L-45B	6*8mm TF-BGA
55	IS62LV1024L-55Q	450mil SOP
	IS62LV1024L-55T	8*20mm TSOP-1
	IS62LV1024L-55H	8*13.4mm TSOP-1
	IS62LV1024L-55B	6*8mm TF-BGA
70	IS62LV1024L-70Q	450mil SOP
	IS62LV1024L-70T	8*20mm TSOP-1
	IS62LV1024L-70H	8*13.4mm TSOP-1
	IS62LV1024L-70B	6*8mm TF-BGA

IS62LV1024L
ORDERING INFORMATION
Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
45	IS62LV1024L-45QI	450mil SOP
	IS62LV1024L-45TI	8*20mm TSOP-1
	IS62LV1024L-45HI	8*13.4mm TSOP-1
	IS62LV1024L-45BI	6*8mm TF-BGA
55	IS62LV1024L-55QI	450mil SOP
	IS62LV1024L-55TI	8*20mm TSOP-1
	IS62LV1024L-55HI	8*13.4mm TSOP-1
	IS62LV1024L-55BI	6*8mm TF-BGA
70	IS62LV1024L-70QI	450mil SOP
	IS62LV1024L-70TI	8*20mm TSOP-1
	IS62LV1024L-70HI	8*13.4mm TSOP-1
	IS62LV1024L-70BI	6*8mm TF-BGA

IS62LV1024LL

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns	Order Part No.	Package
45	IS62LV1024LL-45Q IS62LV1024LL-45T IS62LV1024LL-45H IS62LV1024LL-45B	450mil SOP 8*20mm TSOP-1 8*13.4mm TSOP-1 6*8mm TF-BGA
55	IS62LV1024LL-55Q IS62LV1024LL-55T IS62LV1024LL-55H IS62LV1024LL-55B	450mil SOP 8*20mm TSOP-1 8*13.4mm TSOP-1 6*8mm TF-BGA
70	IS62LV1024LL-70Q IS62LV1024LL-70T IS62LV1024LL-70H IS62LV1024LL-70B	450mil SOP 8*20mm TSOP-1 8*13.4mm TSOP-1 6*8mm TF-BGA

IS62LV1024LL

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed (n	s) Order Part No.	Package
45	IS62LV1024LL-45QI	450mil SOP
	IS62LV1024LL-45TI	8*20mm TSOP-1
	IS62LV1024LL-45HI	8*13.4mm TSOP-1
	IS62LV1024LL-45BI	6*8mm TF-BGA
55	IS62LV1024LL-55QI	450mil SOP
	IS62LV1024LL-55TI	8*20mm TSOP-1
	IS62LV1024LL-55HI	8*13.4mm TSOP-1
	IS62LV1024LL-55BI	6*8mm TF-BGA
70	IS62LV1024LL-70QI	450mil SOP
	IS62LV1024LL-70TI	8*20mm TSOP-1
	IS62LV1024LL-70HI	8*13.4mm TSOP-1
	IS62LV1024LL-70BI	6*8mm TF-BGA

Integrated Circuit Solution Inc.

HEADQUARTER:

NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK,

HSIN-CHU, TAIWAN, R.O.C.

TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C.

TEL: 886-2-26962140 FAX: 886-2-26962252

http://www.icsi.com.tw

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.