3.5.3 (a) Show that a closed interval [a, b] is a G_{δ} set. Suppose $r \in (0, 1)$. We claim that $[a, b] = \bigcap_{n=1}^{\infty} (a - r^n, b + r^n)$.

- We want to show that $[a,b] \subseteq \bigcap_{n=1}^{\infty} (a-r^n,b+r^n)$. Since for all $n \in \mathbb{N}, [a,b] \subseteq (a-r^n,b+r^n)$, then by the definition of set intersection, $[a,b] \subseteq \bigcap_{n=1}^{\infty} (a-r^n,b+r^n)$.
- We want to show that $\bigcap_{n=1}^{\infty}(a-r^n,b+r^n)\subseteq [a,b]$. Suppose $x\in\bigcap_{n=1}^{\infty}(a-r^n,b+r^n)$. We must show that $a\leq x\leq b$. First to show that $a\leq x$. We know that for all $n\in\mathbb{N}, a-r^n< x$, therefore x is an upper bound on $\{a-r^n:n\in\mathbb{N}\}$. Therefore all we need to prove is that $a\in\bigcap_{n=1}^{\infty}(a-r^n,b+r^n)$. Since a is the limit point of the sequence $(a-r^n)_{n=1}^{\infty}$, then there is no set $(a-r^n,b+r^n)$ which excludes it. Therefore $a\in\bigcap_{n=1}^{\infty}(a-r^n,b+r^n)$. Thus, since x is an upper bound on $(a-r^n)_{n=1}^{\infty}$, and our set contains a, then $a\leq x$. Next we must show that $x\leq b$. We know that for all $n\in\mathbb{N}, x< b+r^n$. Thus x is a lower bound on $(b+r^n)$. Therefore, similar to above, $x\leq b$. Therefore $a\leq x\leq b$. Thus $x\in[a,b]$
- (b) Show that the half open interval (a, b] is both G_{δ} and F_{σ} set
 - Show that (a, b] is a G_{δ} set We claim that $\bigcap_{n=1}^{\infty} (a, b + r^n) = (a, b]$. As shown in the proof above, for the closed end point, the set above converges, and for the open right endpoint, it is trivial.
 - Show that (a, b] is a F_{σ} set We claim that $\bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b] = (a, b]$.
 - We must show that $\bigcup_{n=1}^{\infty} [a \frac{1}{n}, b] \subseteq (a, b]$. Suppose $x \in \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b]$ We must show that $a < x \le b$. Since $x \le b$ is trivial, we must show that a < x. Since x is in the union, there must be a smallest $n_0 \in \mathbb{N}$ in which $x \in [a + \frac{1}{n_0}, b]$. Therefore $a < a + \frac{1}{n_0} \le x$.
 - We must show that $(a,b] \subseteq \bigcup_{n=1}^{\infty} [a-\frac{1}{n},b]$. Since $\{b\}$ is trivially in both, we must show that $(a,b) \subseteq \bigcup_{n=1}^{\infty} [a-\frac{1}{n},b]$. Suppose $x \in (a,b)$. Therefore there exists $\epsilon > 0$ such that $V_{\epsilon}(x) \subset (a,b)$. Since the neighborhood is contained within (a,b) then $a < x \epsilon$. Therefore $0 < x \epsilon a$. Thus by the archimedean principle there exists $n' \in \mathbb{N}$ such that $\frac{1}{n'} < x \epsilon a$. Therefore $a + \frac{1}{n'} < x \epsilon$, and therefore $V_{\epsilon}(x) \subset [a + \frac{1}{n'}, b] \subseteq \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b]$. Thus $(a,b] \subseteq \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b]$

Making (a, b] a F_{σ} set.

- (c) Show that \mathbb{Q} is a F_{σ} set. Since \mathbb{Q} is countable, then there exists a bijection between \mathbb{N} and \mathbb{Q} . Therefore let $f: \mathbb{N} \to \mathbb{Q}$ be a bijection. Then we claim that $\bigcup_{n=1}^{\infty} [f(n), f(n)]$ is \mathbb{Q} . Since we're guaranteed to uniquely attain every rational number, then we have exactly \mathbb{Q} . Since we have a countable union of closed intervals, then we have satisfied the definition of F_{σ}
 - Show that the set of irrationals forms a G_{δ} set.

Let
$$L_n = \bigcup_{x \in \mathbb{Z}} \left(\frac{x}{n}, \frac{x+1}{n} \right)$$
. We claim that $\mathbb{R} \setminus \mathbb{Q} = \bigcap_{n=1}^{\infty} L_n$.

- Suppose $x \in \mathbb{R} \setminus \mathbb{Q}$. We must show that $x \in \bigcap_{n=1}^{\infty} L_n$. Suppose for contradiction that $x \notin \bigcap_{n=1}^{\infty} L_n$. Therefore by the definition of set compliment and DeMorgan's law, $x \in \bigcup_{n=1}^{\infty} L_n^c$. Since x is in the union, there must exists $n_0 \in \mathbb{N}$ where $x \in L_{n_0}^c$. Therefore $x \in \{\frac{y}{n_0} : y \in \mathbb{Z}\}$. Thus there exists a $y_0 \in \mathbb{Z}$ such that $x = \frac{y_0}{n_0}$. This contradicts x being irrational. Therefore x is in the intersection.
- Suppose $x \in \bigcap_{n=1}^{\infty} L_n$. Then we must show that $x \in \mathbb{R} \setminus \mathbb{Q}$. Suppose for contradiction that $x \in \mathbb{Q}$. Then there exists $a, b \in \mathbb{Z}$ such that $x = \frac{a}{b}$. However, since x is in the intersection of L_n 's, then $x \in L_b$. This is a contradiction as L_b excludes all rational numbers with a denominator of b. Thus x is irrational.

Therefore $\mathbb{R}\backslash\mathbb{Q}=\bigcap_{n=1}^{\infty}L_n$, thus making the irrationals G_{δ} .