

Hi3518EV20X/Hi3516CV200_ISP_3A

开发指南

文档版本 00B05

发布日期 2016-05-13

i

版权所有 © 深圳市海思半导体有限公司 2016。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何 形式传播。

商标声明

(上) AISILICON 、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做 任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指 导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

i

概述

本文档描述 Hi3518EV20X/Hi3516CV200 的功能、如何使用与开发。3A 功能包括 AE、AWB、AF。

□ 说明

本文以 Hi3518EV200 描述为例,未有特殊说明,Hi3518EV201、Hi3516CV200 与 Hi3518EV200 一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3518EV200_ISP_3A	-
Hi3518EV201_ISP_3A	-
Hi3516CV200_ISP_3A	-

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明	
介 危险	表示有高度潜在危险,如果不能避免,会导致人员死亡或严重伤害。	
警告	表示有中度或低度潜在危险,如果不能避免,可能导致人 员轻微或中等伤害。	
注意	表示有潜在风险,如果忽视这些文本,可能导致设备损坏、数据丢失、设备性能降低或不可预知的结果。	
◎── 窍门	表示能帮助您解决某个问题或节省您的时间。	
□ 说明	表示是正文的附加信息,是对正文的强调和补充。	

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明	
2016-05-13	00B05	3.2 小节,表 3-4 涉及修改	
		3.3 小节,表 3-7、图 3-3 涉及修改	
2015-12-18	00B04	2.2.2 小节,修改表 2-5	
2015-09-20	00B03	第 3 次临时版本发布,表 2-5 有修改。	
2015-08-20	00B02	第2次临时版本发布。	
		表 2-2 有更改	
2015-05-27	00B01	第1次临时版本发布。	

目录

前	介言	i
1	概述	1
	1.1 概述	
	1.2 功能描述	1
	1.2.1 设计思路	1
	1.2.2 文件组织	2
	1.2.3 开发模式	2
	1.2.4 内部流程	3
2	使用者指南	5
	2.1 软件流程	
	2.2 Sensor 对接	9
	2.2.1 Sensor 注册 ISP 库	
	2.2.2 Sensor 注册 3A 算法库	17
3	开发者指南	23
	3.1 概述	23
	3.2 AE 算法注册 ISP 库	23
	3.3 AWB 算法注册 ISP 库	28
	3.4 AF 算法注册 ISP 库	34
4	. 附录	37
	4.1 注册函数的关系	37
	4.2 扩展性的设计考虑	37
	4.3 3A 架构的设计思路	38
	4.4. 从郊客左哭的说明	29

插图目录

图 1-1 ISP firmware 设计思路	
图 1-2 ISP firmware 文件组织	
图 1-3 ISP firmware 内部流程	
图 1-4 ISP firmware 软件结构	
图 2-1 ISP firmware 使用流程	
图 2-2 Sensor 适配示意图	9
图 2-3 Sensor 向 ISP 库注册的回调函数	9
图 2-4 Sensor 向 AE 库注册的回调函数	17
图 2-5 Sensor 向 AWB 库注册的回调函数	21
图 3-1 AE 算法向 ISP 库注册的回调函数	23
图 3-2 AWB 算法向 ISP 库注册的回调函数	28
图 3-3 统计信息参数示意图	32
图 3_4 Δ F 管注向 ISP 库注册的同调函数	34

表格目录

表 2-1 Sensor 向 ISP 库注册的回调函数	10
表 2-2 ISP_CMOS_DEFAULT_S 的成员变量	11
表 2-3 ISP_SNS_REGS_INFO_S 的成员变量	16
表 2-4 Sensor 向 AE 库注册的回调函数	18
表 2-5 AE_SENSOR_DEFAULT_S 的成员变量	19
表 2-6 Sensor 向 AWB 库注册的回调函数	21
表 2-7 AWB_SENSOR_DEFAULT_S 的成员变量	22
表 3-1 AE 算法向 ISP 库注册的回调函数	24
表 3-2 初始化参数 ISP_AE_PARAM_S 的成员变量	25
表 3-3 统计信息 ISP_AE_INFO_S 的成员变量	25
表 3-4 运算结果 ISP_AE_RESULT_S 的成员变量	27
表 3-5 AWB 算法向 ISP 库注册的回调函数	28
表 3-6 初始化参数 ISP_AWB_PARAM_S 的成员变量	29
表 3-7 统计信息 ISP_AWB_INFO_S 的成员变量	29
表 3-8 运算结果 ISP_AWB_RESULT_S 的成员变量	31
表 3-9 AF 算法向 ISP 库注册的回调函数	35
表 3-10 初始化参数 ISP_AF_PARAM_S 的成员变量	35
表 3-11 统计信息 ISP_AF_INFO_S 的成员变量	35
表 3-12 运算结果 ISP AF RESULT S 的成员变量	36

1 概述

1.1 概述

Hi3518EV200_ISP_3A 版本依赖于相应的 SDK 大版本,通过一系列数字图像处理算法完成对数字图像的效果处理。主要包含 Firmware 框架及海思 3A 库,Firmware 提供算法的基本框架,处理统计信息,驱动数字图像处理算法,并包含坏点校正、去噪、色彩增强、镜头阴影校正等处理。3A 库以注册的方式,添加到 Firmware 中,完成曝光、白平衡、色彩还原等处理。

1.2 功能描述

1.2.1 设计思路

ISP 的 Firmware 包含三部分,一部分是 ISP 控制单元和基础算法单元,即 ISP 库,一部分是 AE/AWB/AF 算法库,一部分是 sensor 库。Firmware 设计的基本思想是单独提供 3A 算法库,由 ISP 控制单元调度基础算法单元和 3A 算法库,同时 sensor 库分别向 ISP 库和 3A 算法库注册函数回调,以实现差异化的 sensor 适配。ISP firmware 设计思路如图 1-1 所示。

图1-1 ISP firmware 设计思路

不同的 sensor 都向 ISP 库和 3A 算法库注册控制函数,这些函数都以回调函数的形式存在。ISP 控制单元调度基础算法单元和 3A 算法库时,将通过这些回调函数获取初始化参数,并控制 sensor,如调节曝光时间、模拟增益、数字增益,控制 lens 步进聚焦或旋转光圈等。

1.2.2 文件组织

ISP Firmware 的文件组织结构如图 1-2 所示,ISP 库和 3A 库、sensor 库、iniparser 库、defog 库分别独立。Firmware 中的 drv 生成的驱动程序向用户态上报 ISP 中断,并以该中断驱动 Firmware 的 ISP 控制单元运转。ISP 控制单元从驱动程序中获取统计信息,并调度基础算法单元和 3A 算法库,最后通过驱动程序配置寄存器。

Src 文件夹中包含 ISP 控制单元和基础算法单元,编译后生成 libisp.a,即 ISP 库。3a 文件夹中包含 AE/AWB/AF 算法库,用户也可以基于统一的接口界面开发自己的 3a 算法。Sensor 文件夹中包含了各个 sensor 的驱动程序,该部分代码开源。hi_cmoscfg 文件夹中包含解析 ini 文件所需的公共程序,该部分代码开源。iniparser 文件夹包含 ini 解析函数库,也可用于其它应用开发。defog 文件对应去雾算法程序,该部分代码不开源。

图1-2 ISP firmware 文件组织

1.2.3 开发模式

SDK 中给出的形式支持用户的多种开发模式,用户可以使用海思的 3A 算法库,也可以根据 ISP 库提供的 3A 算法注册接口,实现自己的 3A 算法库开发,或者可以部分使用海思 3A 算法库,部分实现自己的 3A 算法库,例如 AE 使用 lib_hiae.a,AWB 使用自己的 3A 算法库。SDK 提供了灵活多变的支持方式。

1.2.3.1 使用海思 3A 算法库

用户需要根据 ISP 基础算法单元和海思 3A 算法库给出的 sensor 适配接口去适配不同的 sensor。Sensor 文件夹中包含两个主要文件:

• sensor_cmos.c

该文件中主要实现 ISP 需要的回调函数,这些回调函数中包含了 sensor 的适配算法,不同的 sensor 可能有所不同。

sensor_ctrl.c

sensor 的底层控制驱动,主要实现 sensor 的读写和初始化动作。用户可以根据 sensor 的 datasheet 进行这两个文件的开发,必要的时候可以向 sensor 厂家寻求支持。

1.2.3.2 开发 3A 算法库

用户需要根据 ISP 基础算法单元给出的 sensor 适配接口去适配不同的 sensor,用户开发的 3A 算法库需要自定义数据接口和回调函数去适配和控制不同的 sensor。用户自行开发 3A 算法后,可以调用 mpi_isp.h 中的接口,不能调用 mpi_ae.h 和 mpi_awb.h 中的接口。

□ 说明

高级用户可以基于 Firmware 提供的统计信息进行自己的算法库开发,当然这需要对统计信息比较熟悉,同时具有算法开发能力。

1.2.4 内部流程

Firmware 内部流程,如图 1-3 所示。首先完成 Firmware 控制单元的初始化、基础算法单元的初始化、3A 算法库的初始化,包括调用 sensor 的回调获取 sensor 差异化的初始化参数。当初始化完成之后,Firmware 由中断驱动,每帧从内核态获取统计信息,并驱动基础算法单元和 3A 算法库完成计算,并反馈计算结果,配置 ISP 寄存器和 sensor 寄存器。

同时用户可以通过 ISP 的 MPI, 控制和改变 Firmware 中包含的基础算法单元的内部数据和状态,定制自己的图像质量效果。如果用户使用海思提供的 3A 算法库,可以通过 3A 算法库的 MPI, 改变 3A 算法库的内部数据和状态,调节曝光、白平衡和色彩还原。

图1-3 ISP firmware 内部流程

Firmware 的软件结构如图 1-4 所示。

图1-4 ISP firmware 软件结构

2 使用者指南

2.1 软件流程

ISP 作为图像前处理部分,需要和视频采集单元(VIU)协同工作。ISP 初始化和基本配置完成后,需要 VIU 进行接口时序匹配。一是为了匹配不同 sensor 的输入时序,二是为 ISP 配置正确的输入时序。待时序配置完成后,ISP 就可以启动 Run 来进行动态图像质量调节。此时输出的图像被 VIU 采集,进而送去显示或编码。软件使用流程如图 2-1 所示。

PQ Tools 工具主要完成在 PC 端进行动态图像质量调节,可以调节多个影响图像质量的 因子,如去噪强度、色彩转换矩阵、饱和度等。

图2-1 ISP firmware 使用流程

如果用户调试好图像效果后,可以使用 PQ Tools 工具提供的配置文件保存功能进行配置参数保存。在下次启动时系统可以使用 PQ Tools 工具提供的配置文件加载功能加载已经调节好的图像参数。

代码示例:

HI_S32 s32Ret;
ALG_LIB_S stLib;
ISP_PUB_ATTR_S stPubAttr;
pthread_t isp_pid;
/* 注册sensor库 */
s32Ret = sensor_register_callback();

```
if (HI_SUCCESS != s32Ret)
   printf("register sensor failed!\n");
   return s32Ret;
/* 注册海思AE算法库 */
stLib.s32Id = 0;
strcpy(stLib.acLibName, HI_AE_LIB_NAME);
s32Ret = HI_MPI_AE_Register(&stLib);
if (HI_SUCCESS != s32Ret)
   printf("register ae lib failed!\n");
   return s32Ret;
}
/* 注册海思AWB算法库 */
stLib.s32Id = 0;
strcpy(stLib.acLibName, HI_AWB_LIB_NAME);
s32Ret = HI_MPI_AWB_Register(&stLib);
if (HI_SUCCESS != s32Ret)
   printf("register awb lib failed!\n");
   return s32Ret;
}
/* 注册海思AF算法库 */
stLib.s32Id = 0;
strcpy(stLib.acLibName, HI_AF_LIB_NAME);
s32Ret = HI_MPI_AF_Register(&stLib);
if (HI_SUCCESS != s32Ret)
   printf("register af lib failed!\n");
   return s32Ret;
/* 初始化ISP外部寄存器 */
s32Ret = HI_MPI_ISP_MemInit(IspDev);
if (s32Ret != HI_SUCCESS)
   printf("%s: HI_MPI_ISP_Init failed!\n", __FUNCTION__);
   return s32Ret;
}
```

```
/* 配置ISP宽动态模式 */
ISP_WDR_MODE_S stWdrMode;
stWdrMode.enWDRMode = enWDRMode;
s32Ret = HI_MPI_ISP_SetWDRMode(0, &stWdrMode);
if (HI_SUCCESS != s32Ret)
   printf("start ISP WDR failed!\n");
   return s32Ret;
}
/* 配置图像公共属性 */
s32Ret = HI_MPI_ISP_SetPubAttr(IspDev, &stPubAttr);
if (s32Ret != HI_SUCCESS)
   printf("%s: HI_MPI_ISP_SetPubAttr failed with %#x!\n", __FUNCTION___,
   s32Ret);
   return s32Ret;
/* 初始化ISP Firmware */
s32Ret = HI_MPI_ISP_Init();
if (HI_SUCCESS != s32Ret)
   printf("isp init failed!\n");
   return s32Ret;
}
/* HI_MPI_ISP_Run单独启动线程运行 */
if (0 != pthread_create(&isp_pid, 0, ISP_Run, NULL))
   printf("create isp running thread failed!\n");
   return HI_FAILURE;
}
/* 启动VI/VO等业务 */
••••
/* 停止VI/VO等业务 */
s32Ret = HI_MPI_ISP_Exit();
if (HI_SUCCESS != s32Ret)
   printf("isp exit failed!\n");
```



```
return s32Ret;
}

pthread_join(isp_pid, 0);
return HI_SUCCESS;
```

AE 库有用到标准 C 库的数学库,请使用者在 Makefile 中增加 -lm 编译条件。

2.2 Sensor 对接

Sensor 库主要是为了提供差异化的 sensor 适配,里面的内容可以分为两部分: Sensor 向 ISP 库注册的差异化适配,这些差异化适配主要由 Firmware 中的基础算法单元决定; Sensor 向海思 3A 库注册的差异化适配。Sensor 的适配包括算法的初始化默认值,及 sensor 控制接口,sensor 的适配是通过接口回调的形式注册给 ISP 库和 3A 算法库。图 2-2 表示了 Sensor 与 ISP 库和 3A 算法库之间的关系。

图2-2 Sensor 适配示意图

2.2.1 Sensor 注册 ISP 库

Sensor 注册 ISP 库调用 HI_MPI_ISP_SensorRegCallBack,如图 2-3 所示,详细说明参见《HiISP 开发参考》。

图2-3 Sensor 向 ISP 库注册的回调函数

【举例】

ISP_SENSOR_REGISTER_S stIspRegister;
ISP_SENSOR_EXP_FUNC_S *pstSensorExpFunc = &stIspRegister.stSnsExp;
memset(pstSensorExpFunc, 0, sizeof(ISP_SENSOR_EXP_FUNC_S));

```
pstSensorExpFunc->pfn_cmos_sensor_init = sensor_init;
   pstSensorExpFunc->pfn_cmos_sensor_exit = sensor_exit;
   pstSensorExpFunc->pfn_cmos_sensor_global_init = sensor_global_init;
   pstSensorExpFunc->pfn_cmos_set_image_mode = cmos_set_image_mode;
   pstSensorExpFunc->pfn_cmos_set_wdr_mode = cmos_set_wdr_mode;
   pstSensorExpFunc->pfn_cmos_get_isp_default = cmos_get_isp_default;
   pstSensorExpFunc->pfn_cmos_get_isp_black_level =
   cmos_get_isp_black_level;
   pstSensorExpFunc->pfn_cmos_set_pixel_detect = cmos_set_pixel_detect;
   pstSensorExpFunc->pfn_cmos_qet_sns_req_info = cmos_qet_sns_reqs_info;
   ISP_DEV IspDev = 0;
   HI_S32 s32Ret;
   s32Ret = HI_MPI_ISP_SensorRegCallBack(IspDev, IMX178_ID,
&stIspRegister);
   if (s32Ret)
      printf("sensor register callback function failed!\n");
      return s32Ret;
```

需要在 xxx_cmos.c 中实现以下回调函数:

表2-1 Sensor 向 ISP 库注册的回调函数

成员名称	描述
pfn_cmos_sensor_init	初始化 sensor 的回调函数指针。
pfn_cmos_sensor_exit	退出 sensor 的回调函数指针。
pfn_cmos_sensor_global_init	初始化全局变量的回调函数指针。
pfn_cmos_set_image_mode	设置图像模式的回调函数指针。
pfn_cmos_set_wdr_mode	设置wdr模式和线性模式切换的回调函数指针。
pfn_cmos_get_isp_default	获取 ISP 基础算法的初始值的回调函数指针。
pfn_cmos_get_isp_black_level	获取 sensor 的黑电平值的回调函数指针。
pfn_cmos_set_pixel_detect	设置坏点校正开关的回调函数指针。
pfn_cmos_get_sns_reg_info	设置 sensor 曝光与增益延时的回调函数指针。

□ 说明

如果回调函数暂不实现,可以实现空函数,或者将回调函数指针置为 NULL 即可。

一般情况下, cmos sensor 曝光时间相关寄存器从配置到生效的时间延迟最大。若能够在消隐区 完成对 sensor 的配置,sensor 曝光时间通常会在配置后的第 2 帧生效,增益会在配置后的第 1 帧 生效。pfn_cmos_get_sns_reg_info 用于保证 AE 计算出来的每帧 sensor 曝光时间和增益配置同步 以避免闪烁现象。pfn cmos get sns reg info 调用参数 ISP SNS REGS INFO S 支持 I2C 和 SPI 接口,成员变量具体含义请参考表 2-3,其中 u8Cfg2ValidDelayMax 可用于保证 ISP 寄存器与 sensor 寄存器同步生效,如 ISPDgain 和曝光比。举例来说,若 sensor 曝光时间在配置后的第 2 帧生效,增益在配置后的第 1 帧生效,那么 u8Cfg2ValidDelayMax 需设置为 2,表示所有 sensor 寄存器从配置到生效延迟的帧数最大值为 2,曝光时间的 u8DelayFrmNum 需设置为 0 表示曝光 时间不需延迟配置,增益的 u8DelayFrmNum 需设置为 1 表示增益需延迟 1 帧配置,如此正好保 证配置下去后 AE 计算出来的结果是同时生效的;若 sensor 曝光时间和增益都在配置后的第 2 帧 生效,则u8Cfg2ValidDelayMax需设置为2,曝光时间和增益的u8DelayFrmNum都需设置为0。 除了曝光时间和增益外,可以通过增加变量个数,同步配置 sensor 每帧最大曝光时间 VMAX (以曝光行数为单位)或每行最大曝光时间 HMAX(以每行曝光对应的时钟个数为单位),如此 在切换帧率时就不会出现闪烁现象,VMAX 或 HMAX 的 u8DelayFrmNum 一般与曝光时间的 u8DelayFrmNum 相同。对于不同 sensor,具体的参数配置需参考 sensor datasheet。在检验曝光时 间与增益是否同步时,可以打开抗闪,如果不同步在抗闪时间改变时容易出现画面闪烁。

表2-2 ISP CMOS DEFAULT S 的成员变量

成员名称	子成员名称	描述
stNoiseTbl	u8SensorIndex	Sensor 类型标记。
	stNrCaliPara	2DNR 校正相关的参数,由校正工具计算得到。
	stIsoParaTable[HI_ISP_NR_ ISO_LEVEL_MAX]	2DNR 与 ISO 联动的参数。
stDemosaic	bEnable	该模块是否使能,取值范围为[0,1]。
	u8VhSlope	垂直、水平边缘混合阈值的斜率,调低 此参数会提高解析度,加大噪声。 取值范围: [0x0, 0xFF]。一般小于 64。
	u8VhLimit	垂直、水平弱边缘基限值,调高此参数 会降低弱边缘锐度,减少噪声。 取值范围: [0x0, 0xFF]。一般大于 16 且小于 64。
	u8VhOffset	垂直、水平弱边缘偏差值,调高此参数 会降低弱边缘锐度,减少噪声。 取值范围: [0x0, 0xFF]。
	u8UuSlope	全部边缘混合阈值的斜率,调高此参数 会提高解析度、锐度,加大噪声。 取值范围: [0x0, 0x3FF]。
	bFcrEnable	高频去伪彩使能,取值范围为[0,1]。

成员名称	子成员名称	描述
	u8FcrStrength	去伪彩强度值。值越大,去伪彩强度越强。 取值范围: [0,0xFF]。
stGammafe	au16Gammafe0	GammaFe 表 0,用于减小查找表插值时 出现的误差,与 au16Gammafe1 共同完 成图像压缩的功能,由校正工具生成取 值范围为[0, 0xFFFF]。
	au16Gammafe1	GammaFe 表 1,与 au16Gammafe0 共同 完成图像压缩的功能,由校正工具生 成,取值范围为[0, 0xFFFF]。
	bValid	该结构体的数据是否有效,取值范围为 [0,1]。如果使用默认 gammafe 曲线,可以配置为无效。
stGamma	au16Gamma	Gamma 表,取值范围为[0, 0xFFFF]。
	bValid	该结构体的数据是否有效,取值范围为 [0,1]。如果使用默认 gamma 曲线,可 以配置为无效
stRgbSharpen	abEnPixSel [ISP_AUTO_ISO_STENGT H_NUM]	低照度环境下,图像锐化后的 shoot 的 严格控制。正常照度噪声小时,建议设 为 0;低照度噪声大时,建议设为 1。 该数组的 16 个值分别对应 sensor 在不 同的增益情况下不同的设置值。
	au8MaxSharpAmt1 [ISP_AUTO_ISO_STENGT H_NUM]	无方向的锐化,设置图像纹理的锐度,通常情况建议在相同增益情形下设置的u8SharpenD的值小于u8SharpenUd的值,该数组的16个值分别对应的sensor在不同的增益情况下不同的设置值。
	au8MaxEdgeAmt [ISP_AUTO_ISO_STENGT H_NUM]	有方向的锐化,设置图像边缘和小细节的锐度,该数组的 16 个值分别对应sensor 在不同的增益情况下不同的设置值。
	au8SharpThd2 [ISP_AUTO_ISO_STENGT H_NUM]	图像纹理上噪声的控制阈值。该数组的 16 个值分别对应 sensor 在不同的增益 情况下不同的设置值。
	au8EdgeThd2 [ISP_AUTO_ISO_STENGT H_NUM]	图像边缘上噪声的控制阈值。该数组的 16 个值分别对应 sensor 在不同的增益 情况下不同的设置值。
	au8OvershootAmt[ISP_AU	设置图像的 overshoot 的强度,该数组

成员名称	子成员名称	描述
	TO_ISO_STENGTH_NUM]	的 16 个值分别对应 sensor 在不同的增益情况下不同的设置值
	au8UndershootAmt[ISP_AU TO_ISO_STENGTH_NUM]	设置图像的 undershoot 强度,该数组的 16 个值分别对应 sensor 在不同的增益 情况下不同的设置值。
stUvnr	UVNR_lutSigma [ISP_AUTO_ISO_STENGT H_NUM]	设置图像的色度降噪的细调参数,该数组的 16 个值分别对应 sensor 在不同的增益情况下不同的设置值。
	Coring_lutLimit [ISP_AUTO_ISO_STENGT H_NUM]	设置图像在整体偏色情况下的偏色微调强度,该数组的 16 个值分别对应sensor 在不同的增益情况下不同的设置值。取值范围: [0x0, 0x2]
	UVNR_blendRatio [ISP_AUTO_ISO_STENGT H_NUM]	设置图像的色度降噪的粗调参数,该数组的 16 个值分别对应的 sensor 在不同的增益情况下不同的设置值。
stDpc	au16Slope[ISP_AUTO_ISO _STENGTH_NUM]	DPC 动态坏点处理强度,取值越大, DPC 处理强度越强,图像越绿,取值范 围: [0x0, 0x3]
	au16BlendRatio[ISP_AUTO _ISO_STENGTH_NUM]	坏点校正过程所需的融合比率,取值范 围: [0x0, 0x100]
stLsc	au32R_Gain[HI_ISP_LSC_ GRID_POINTS]	用来储存 LSC 所用 R 通道标定数据。 该通道增益共标定 289 个,从 0 到 288 分别表示画面从左至右、从上至下的网 格交点处的 R 分量阴影矫正增益数据 值。
	au32Gr_Gain[HI_ISP_LSC_ GRID_POINTS]	用来储存 LSC 所用 Gr 通道标定数据。 该通道增益共标定 289 个,从 0 到 288 分别表示画面从左至右、从上至下的网 格交点处的 Gr 分量阴影矫正增益数据 值。
	au32Gb_Gain[HI_ISP_LSC _GRID_POINTS]	用来储存 LSC 所用 Gb 通道标定数据。 该通道增益共标定 289 个,从 0 到 288 分别表示画面从左至右、从上至下的网 格交点处的 Gb 分量阴影矫正增益数据 值。
	au32B_Gain[HI_ISP_LSC_ GRID_POINTS]	用来储存 LSC 所用 B 通道标定数据。 该通道增益共标定 289 个,从 0 到 288 分别表示画面从左至右、从上至下的网 格交点处的 B 分量阴影矫正增益数据 值。

成员名称	子成员名称	描述
stRgbir	stRgbirAttr. bEnable	RGBIR 模块使能,取值范围: [0,1] 0: 禁止; 1: 使能。
	stRgbirAttr. bBlcOffEn	RGBIR 模块减黑电平操作使能,取值 范围: [0, 1]
	stRgbirAttr. enIrPosType	Sensor IR 分量位置,取值范围: [ISP_IRPOS_TYPE_GR, ISP_IRPOS_TYPE_GB]
	stRgbirAttr.u16BlackLevel	Sensor 黑电平,取值范围: [0, 0xFFF]
	stRgbirAttr. u16OverExpThresh	过曝值门限,取值范围: [0,0xFFF]
	stRgbirCtrl. bIrOutEn	IR 图像输出使能,取值范围: [0,1] 0: 禁止:
		1: 使能。
	stRgbirCtrl. bIrFilterEn	IR 通道 G 插值滤波使能,取值范围: [0,1] 0: 禁止;
		1: 使能。
	stRgbirCtrl. bRemovelEn	去除红外使能,取值范围: [0,1]
		0: 禁止; 1: 使能。
	stRgbirCtrl. enCompType	增益补偿类型,取值范围: [OP_TYPE_AUTO, OP_TYPE_MANUAL]
	stRgbirCtrl. u16ManuGain	手动增益补偿增益大小,取值范围: [0x100, 0x3ff] 其中 2bit 整数,8bit 小数
	as16ScaleCoef[15]	颜色矫正矩阵参数(矫正获取),取值 范围: [-0x200, 0x1FF]有符号数,8bit 精度。
stSensorMax Resolution	u32MaxHeight	Sensor 支持的最大高度,防止分辨率切换时配置超过 sensor 支持的高度。
	u32MaxWidth	Sensor 支持的最大宽度,防止分辨率切换时配置超过 sensor 支持的宽度。
stDrc	bEnable	DRC 动态范围压缩使能
	u8SpatialVar	控制空域滤波次数,值越大,图像越平

成员名称	子成员名称	描述
		滑。
	u8RangeVar	控制时域滤波次数,值越小,图像局部 对比度越大。
	u8Asymmetry	用来生成局部 tone mapping 曲线,值越小,暗区拉伸越大。
	u8SecondPole	用来生成局部 tone mapping 曲线,值越大,整体亮度拉伸越大。
	u8Stretch	用来生成局部 tone mapping 曲线,值越小,曲线峰值越往左偏移,暗区拉伸越大。
	u8LocalMixingBrigtht	用来控制大于某个阈值的亮区细节的增益,值越大,增益越大。
	u8LocalMixingDark	用来控制小于某个阈值的暗区细节的增益,值越大,增益越大。
	u8LocalMixingThres	用来区分亮区和暗区的阈值。
	u16DarkGainLmtY	用来限制暗区亮度的增益,值越大,暗 区的亮度越小。
	u16DarkGainLmtC	用来限制暗区色度的增益,值越大,暗 区的色度越小,趋于灰色。
	u16BrightGainLmt	用来限制亮区的亮度,值越大,越亮。
stGe	bEnable	使能 Crosstalk 功能。
	u8Slope	设置 Crosstalk 斜率值。值越大,表示整体处理强度随 Gr 与 Gb 之间的差值变化越剧烈。
		取值范围: [0,0xE]。
	u8Sensitivity	设置 Crosstalk 敏感度值。取值范围: [0, 0xE]。默认值 7。值越大,表示在边沿上的处理强度随 Gr 与 Gb 之间的差值变化越剧烈。
	u16Threshold	设置 Crosstalk 门限值。值越大,表示整体处理的强度越大。 取值范围: [0, 0x3FFF]。
	u16SensiThreshold	设置 Crosstalk 敏感度门限值。值越大,表示在更强的边沿上也会有绿平衡处理。取值范围: [0,0x3FFF]。默认值4096。

成员名称	子成员名称	描述
	au16Strength[ISP_AUTO_I SO_STENGTH_NUM]	设置 Noise Profile 校正强度值。该数组的 16 个值分别对应的 sensor 在不同的增益情况下不同的设置值。
stCompander	u32BitDepthIn	输入比特位宽。
	u32BitDepthOut	输出比特位宽。
	u32X0	拐点坐标 X0。
	u32Y0	拐点坐标 Y0。
	u32X1	拐点坐标 X1。
	u32Y1	拐点坐标 Y1。
	u32X2	拐点坐标 X2。
	u32Y2	拐点坐标 Y2。
	u32X3	拐点坐标 X3。
	u32Y3	拐点坐标 Y3。
	u32Xmax	拐点坐标 X 最大值。
	u32Ymax	拐点坐标 Y 最大值。

表2-3 ISP_SNS_REGS_INFO_S 的成员变量

成员名称	子成员名称	描述
enSnsType	ISP_SNS_I2C_TYPE	Sensor 与 ISP 使用 I2C 接口通信。
	ISP_SNS_SSP_TYPE	Sensor 与 ISP 使用 SSP 接口通信。
u32RegNum	-	曝光结果写到 sensor 时需要配置的寄存器个数,不支持动态修改。
u8Cfg2ValidDelayMax	-	所有 Sensor 寄存器从配置到生效延迟的帧数的最大值,单位为帧,用于保证 sensor 寄存器和 ISP 寄存器的同步。一般情况下,cmos sensor 的曝光时间寄存器的延迟最大,为 1~2帧,因此配置一般为 1 或 2。
astI2cData	bUpdate	HI_TRUE:数据会配置 sensor 寄存器; HI_FALSE:数据不会配置 sensor 寄存器。
	u8DelayFrmNum	sensor 寄存器延迟配置的帧数。此变量的目的是保证曝光时间和增益同时

成员名称	子成员名称	描述
		生效。
	u8DevAddr	Sensor 设备地址。
	u32RegAddr	Sensor 寄存器地址。
	u32AddrByteNum	Sensor 寄存器地址位宽。
	u32Data	Sensor 寄存器数据。
	u32DataByteNum	Sensor 寄存器数据位宽。
astSspData	bUpdate	HI_TRUE: 数据会配置 sensor 寄存器; HI_FALSE: 数据不会配置 sensor 寄存器。
	u8DelayFrmNum	sensor 寄存器延迟配置的帧数。此变量的目的是保证曝光时间和增益同时生效。
	u32DevAddr	Sensor 设备地址。
	u32DevAddrByteNum	Sensor 设备地址位宽。
	u32RegAddr	Sensor 寄存器地址。
	u32AddrByteNum	Sensor 寄存器地址位宽。
	u32Data	Sensor 寄存器数据。
	u32DataByteNum	Sensor 寄存器数据位宽。

2.2.2 Sensor 注册 3A 算法库

2.2.2.1 Sensor 注册 AE 算法库

Sensor 注册 AE 算法库调用 HI_MPI_AE_SensorRegCallBack,如图 2-4 所示,详细说明 参见《HiISP 开发参考》。

图2-4 Sensor 向 AE 库注册的回调函数

【举例】

```
ALG_LIB_S stLib;
   AE_SENSOR_REGISTER_S stAeRegister;
   AE_SENSOR_EXP_FUNC_S *pstExpFuncs = &stAeRegister.stSnsExp;
   pstExpFuncs->pfn_cmos_get_ae_default = cmos_get_ae_default;
   pstExpFuncs->pfn_cmos_fps_set
                                        = cmos_fps_set;
   pstExpFuncs->pfn_cmos_slow_framerate_set= cmos_slow_framerate_set;
   pstExpFuncs->pfn_cmos_inttime_update = cmos_inttime_update;
   pstExpFuncs->pfn_cmos_gains_update = cmos_gains_update;
   pstExpFuncs->pfn_cmos_again_calc_table = cmos_again_calc_table;
   pstExpFuncs->pfn_cmos_dgain_calc_table = cmos_dgain_calc_table;
   pstExpFuncs->pfn_cmos_get_inttime_max = cmos_get_inttime_max;
    ISP_DEV IspDev = 0;
   stLib.s32Id = 0;
    strncpy(stLib.acLibName, HI_AE_LIB_NAME, sizeof(HI_AE_LIB_NAME));
    s32Ret = HI_MPI_AE_SensorRegCallBack(IspDev, &stLib, IMX178_ID,
&stAeRegister);
    if (s32Ret)
   printf("sensor register callback function to ae lib failed!\n");
   return s32Ret;
 }
```

需要在 xxx_cmos.c 中实现以下回调函数:

表2-4 Sensor 向 AE 库注册的回调函数

成员名称	描述	
pfn_cmos_get_ae_default	获取 AE 算法库的初始值的回调函数指针。	
pfn_cmos_fps_set	设置 sensor 的帧率的回调函数指针。	
pfn_cmos_slow_framerate_set	降低 sensor 的帧率的回调函数指针。	
pfn_cmos_inttime_update	设置 sensor 的曝光时间的回调函数指针。	
pfn_cmos_gains_update	设置 sensor 的模拟增益和数字增益的回调函数指针。	
pfn_cmos_again_calc_table	查表方式计算 AE 模拟增益的回调函数指针。	
pfn_cmos_dgain_calc_table	查表方式计算 AE 数字增益的回调函数指针。	
pfn_cmos_get_inttime_max	2To1_LINE 或 2To1_FRAME WDR 模式计算短曝光帧的最大曝光时间的回调函数指针。	

□ 说明

如果回调函数暂不实现,可以实现空函数,或者将回调函数指针置为 NULL 即可。

多帧合成 WDR 模式,需要调用 pfn_cmos_get_inttime_max 计算短曝光帧的最大曝光时间,AE 算法根据短曝光帧的限制和曝光比计算得到长、短帧的曝光时间和增益,其余流程与线性模式一致。为了保证多帧合成 WDR 模式在正常场景的效果,海思 AE 算法可以根据直方图统计信息计算实现自动曝光比,在正常场景时设置长、短帧曝光比为 1:1,如此 WDR 融合时只采用一帧数据,可以避免正常场景出现运动拖尾,同时也可减弱正常室内场景的工频闪现象。

表2-5 AE_SENSOR_DEFAULT_S 的成员变量

成员名称	描述	
au8HistThresh	五段直方图的分割门限值数组,取值范围为[0,255]。推荐使用默认值,线性模式为{0xd,0x28,0x60,0x80},BUILT_INWDR模式为{0x20,0x40,0x60,0x80},帧合成WDR模式为{0xc,0x18,0x60,0x80}。(Hi3518EV200不支持)。	
u8AeCompensation	AE 亮度目标值,取值范围为[0,255],建议用 0x38~0x40。	
u32LinesPer500ms	每 500ms 的总行数。	
u32FlickerFreq	抗闪频率,数值为当前电源频率的 256 倍。	
f32Fps	基准帧率。	
u32InitExposure	默认初始曝光量,等于曝光时间(行数)*系统增益(6bit 小数精度)。AE 算法采用该值作为初始 5 帧的曝光量,可用于运动 DV 加速启动。	
u32FullLinesStd	基准帧率时1帧的有效行数。	
u32FullLinesMax	sensor 降帧后 1 帧所能达到的最大行数,一般设为 sensor 所支持的最大行数。	
u32FullLines	当前实际生效的1帧的有效行数。	
u32MaxIntTime	最大曝光时间,以行为单位。	
u32MinIntTime	最小曝光时间,以行为单位。	
u32MaxIntTimeTarget	最大曝光时间目标值,以行为单位。	
u32MinIntTimeTarget	最小曝光时间目标值,以行为单位。	
stIntTimeAccu	曝光时间精度。	
u32MaxAgain	最大 sensor 模拟增益,以倍为单位。	
u32MinAgain	最小 sensor 模拟增益,以倍为单位。	
u32MaxAgainTarget	最大 sensor 模拟增益目标值,以倍为单位。	
u32MinAgainTarget 最小 sensor 模拟增益目标值,以倍为单位。		

成员名称	描述
stAgainAccu	sensor 模拟增益精度。
u32MaxDgain	最大 sensor 数字增益,以倍为单位。
u32MinDgain	最小 sensor 数字增益,以倍为单位。
u32MaxDgainTarget	最大 sensor 数字增益目标值,以倍为单位。
u32MinDgainTarget	最小 sensor 数字增益目标值,以倍为单位。
stDgainAccu	sensor 数字增益精度。
u32MaxISPDgainTarget	最大 ISP 数字增益目标值,以倍为单位。
u32MinISPDgainTarget	最小 ISP 数字增益目标值,以倍为单位。
u32ISPDgainShift	ISP 数字增益精度。
stAERouteAttr	AE 默认分配路线。
bAERouteExValid	AE 扩展分配路线是否生效开关,该值为 HI_TRUE 时使用扩展分配路线,否则使用普通 AE 分配路线。
stAERouteAttrEx	AE 默认扩展分配路线,合理配置可用于优化 WDR 模式图像效果。
u16ManRatioEnable 两帧合成 WDR 手动曝光比使能,该值为 HI_TRUE 光比固定,不会根据场景自动更新。(Hi3518EV200	
u32Ratio	两帧合成 WDR 默认曝光比。当 u16ManRatioEnable 为HI_TRUE 时,采用 u32Ratio 作为默认曝光比。6bit 小数精度。(Hi3518EV200 不支持)取值范围: [0x40, 0xFFF]。
enIrisType	默认镜头类型,DC-Iris 或 P-Iris。默认镜头类型与实际对接镜头类型不一致时,AI 算法无法正常工作。
stPirisAttr	P-Iris 参数,与具体镜头相关。只有默认镜头类型是 P-Iris 时,才需要用该结构体参数。
enMaxIrisFNO	P-Iris 可用的最大 F 值,与具体使用镜头相关,使用 P-Iris 时必须设置,用于限制实际生效的 enMaxIrisFNOTarget 和 enMinIrisFNOTarget,避免光圈目标值落到不合理的范围导致 AE 分配异常。 取值范围为[ISP_IRIS_F_NO_32_0, ISP_IRIS_F_NO_1_0]。
P-Iris 可用的最小 F 值,与具体使用镜头相关,使用时必须设置,用于限制实际生效的 enMaxIrisFNOT enMinIrisFNOTarget,避免光圈目标值落到不合理的致 AE 分配异常。 取值范围为[ISP_IRIS_F_NO_32_0, enMaxIrisFNO]。	

成员名称	描述
u8AERunInterval	默认 AE 算法运行间隔,以帧为单位。若不设置,则默认 AE 每帧执行一次。
	取值范围: (0x0, 0xFF]。

2.2.2.2 Sensor 注册 AWB 算法库

Sensor 注册 AWB 算法库调用 HI_MPI_AWB_SensorRegCallBack,如图 2-5 所示,详细说明参见《HiISP 开发参考》。

图2-5 Sensor 向 AWB 库注册的回调函数

【举例】

```
ALG_LIB_S stLib;
AWB_SENSOR_REGISTER_S stAwbRegister;
AWB_SENSOR_EXP_FUNC_S *pstExpFuncs = &stAwbRegister.stSnsExp;
memset(pstExpFuncs, 0, sizeof(AWB_SENSOR_EXP_FUNC_S));
pstExpFuncs->pfn_cmos_get_awb_default = cmos_get_awb_default;

ISP_DEV IspDev = 0;
stLib.s32Id = 0;
strncpy(stLib.acLibName, HI_AWB_LIB_NAME, sizeof(HI_AWB_LIB_NAME));
s32Ret = HI_MPI_AWB_SensorRegCallBack(IspDev, &stLib, IMX178_ID, &stAwbRegister);
if (s32Ret)
{
   printf("sensor register callback function to awb lib failed!\n");
   return s32Ret;
}
```

需要在 xxx_cmos.c 中实现以下回调函数:

表2-6 Sensor 向 AWB 库注册的回调函数

成员名称	描述
pfn_cmos_get_awb_default	获取 AWB 算法库的初始值的回调函数指针。

□ 说明

如果回调函数暂不实现,可以实现空函数,或者将回调函数指针置为 NULL 即可。

表2-7 AWB_SENSOR_DEFAULT_S 的成员变量

成员名称	子成员名称	描述
u16WbRefTemp	-	静态白平衡校正色温,取值范围为[0, 0xFFFF]。
au16GainOffset	-	静态白平衡的 R、Gr、Gb、B 颜色通道的增益,取值范围为[0,0xFFFF]。
as32WbPara	-	校正工具给出的白平衡参数,取值范围为 [0, 0xFFFFFFFF]。
stAgcTbl	bValid	该结构体的数据是否有效,取值范围为[0, 1]。
	au8Saturation	根据增益动态调节饱和度的插值数组,取 值范围为[0, 255]。
stCcm	u16HighColorTemp	高色温,取值范围为[0,0xFFFF]。
	au16HighCCM	高色温颜色还原矩阵,取值范围为[0, 0xFFFF]。
	u16MidColorTemp	中色温,取值范围为[0,0xFFFF]。
	au16MidCCM	中色温颜色还原矩阵,取值范围为[0, 0xFFFF]。
	u16LowColorTemp	低色温,取值范围为[0,0xFFFF]。
	au16LowCCM	低色温颜色还原矩阵,取值范围为[0, 0xFFFF]。

2.2.2.3 Sensor 注册 AF 算法库

Sensor 注册 AF 算法库调用 HI_MPI_AF_SensorRegCallBack, AF 库暂未实现。

3 开发者指南

3.1 概述

用户可以基于 Firmware 框架开发定制 3A 库,并注册到 Firmware 中,Firmware 将会在中断的驱动下,获取每帧的统计信息,运行算法库,配置 ISP 寄存器。

Sensor 注册到 ISP 库,以实现差异化适配 Firmware 中的基础算法单元的部分,仍需要参考使用者指南部分的内容实现,以保证 Firmware 中的坏点校正、去噪、色彩增强、镜头阴影校正等处理算法正常运行。Sensor 注册到 3A 算法库的部分,请用户根据自己开发定制的 3A 库,自行定义数据结构,实现 Sensor 曝光控制等。

如果用户只是使用海思 3A 算法库,并不自己开发 3A 算法库,可以忽略此章节内容。

3.2 AE 算法注册 ISP 库

AE 算法注册 ISP 库调用 HI_MPI_ISP_AeLibRegCallBack,如图 3-1 所示,详细说明参见《HiISP 开发参考》。

图3-1 AE 算法向 ISP 库注册的回调函数

海思 AE 算法实现了一个 HI_MPI_AE_Register 的注册函数,在这个函数中调用 ISP 提供的 HI_MPI_ISP_AeLibRegCallBack 回调接口,用户调用注册函数以实现向 ISP 注册 AE 算法,示例如下:

【举例】

/* 实现注册函数 */

ISP_AE_REGISTER_S stRegister;

```
HI_S32 s32Ret = HI_SUCCESS;

AE_CHECK_POINTER(pstAeLib);
AE_CHECK_HANDLE_ID(pstAeLib->s32Id);
AE_CHECK_LIB_NAME(pstAeLib->acLibName);

/* 调用钩子函数 */
stRegister.stAeExpFunc.pfn_ae_init = AeInit;
stRegister.stAeExpFunc.pfn_ae_run = AeRun;
stRegister.stAeExpFunc.pfn_ae_ctrl = AeCtrl;
stRegister.stAeExpFunc.pfn_ae_exit = AeExit;
s32Ret = HI_MPI_ISP_AeLibRegCallBack(pstAeLib, &stRegister);
if (HI_SUCCESS != s32Ret)
{
    printf("Hi_ae register failed!\n");
}
```

用户需要在自开发定制的 AE 库中实现以下回调函数:

表3-1 AE 算法向 ISP 库注册的回调函数

成员名称	描述
pfn_ae_init	初始化 AE 的回调函数指针。
pfn_ae_run	运行 AE 的回调函数指针。
pfn_ae_ctrl	控制 AE 内部状态的回调函数指针。
pfn_ae_exit	销毁 AE 的回调函数指针。

□ 说明

调用 HI_MPI_ISP_Init 时将调用 pfn_ae_init 回调函数,以初始化 AE 算法库。

调用 HI_MPI_ISP_Run 时将调用 pfn_ae_run 回调函数,以运行 AE 算法库,计算得到 sensor 的曝光时间和增益、ISP 的数字增益。

pfn_ae_ctrl 回调函数的目的是改变算法库内部状态。运行时 Firmware 会隐式调用 pfn_ae_ctrl 回调函数,通知 AE 算法库切换 WDR 和线性模式、设置 FPS。

```
当前 Firmware 定义的 ctrl 命令有:
typedef enum hiISP_CTRL_CMD_E
{
    ISP_WDR_MODE_SET = 8000,
    ISP_AE_FPS_BASE_SET,
    ISP_AWB_ISO_SET, /* set iso, change saturation when iso change */
    ...
    ISP_CTRL_CMD_BUTT,
} ISP_CTRL_CMD_E;
```

调用 HI_MPI_ISP_Exit 时将调用 pfn_ae_exit 回调函数,以销毁 AE 算法库。

表3-2 初始化参数 ISP_AE_PARAM_S 的成员变量

成员名称	描述
SensorId	向 ISP 注册的 sensor 的 id,用以检查向 ISP 注册的 sensor 和向 AE 注册的 sensor 是否一致。
u8WDRMode 宽动态模式,ISP 向 AE 提供宽动态模式信息。	
f32Fps	帧率,ISP 向 AE 提供帧率信息。

表3-3 统计信息 ISP_AE_INFO_S 的成员变量

成员名称	子成员名称	描述
u32FrameCnt	-	帧的累加计数,取值范围为[0, 0xFFFFFFFF]。
pstAeStat1	au8MeteringHistThresh	五段直方图的分割门限值数组,取值 范围为[0, 255]。 Hi3518EV200 不支持。
	au16MeteringHist	五段直方图的统计信息数组,取值范围为[0, 0xFFFF],au16MeteringHist[0]表示第一段,au16MeteringHist[1]表示第二段,au16MeteringHist[2]表示第四段,au16MeteringHist[3]表示第五段。其中第三段统计信息值为 0xFFFF-(au16MeteringHist[0]+au16MeteringHist[1]+au16MeteringHist[2]+auMeteringHist[3])。 Hi3518EV200 不支持。
pstAeStat2	au8MeteringHistThresh	五段直方图的分割门限值数组。 取值范围为[0, 255]。 Hi3518EV200 不支持。
	au16MeteringMemArrary	五段直方图的分区间的统计信息数组。 取值范围为[0,0xFFFF]。 Hi3518EV200 不支持。
pstAeStat3	au32HistogramMemArray	256 段直方图的统计信息数组。 取值范围为[0, 0xFFFFFFF]。
	u32PixelCount	不计权重的 256 段直方图统计像素总数。
	u32PixelWeight	考虑权重的 256 段直方图统计像素总

成员名称	子成员名称	描述
		数。
pstAeStat4	u16GlobalAvgR	全局 R 分量平均值。 取值范围为[0, 0xFF]。
	u16GlobalAvgGr	全局 Gr 分量平均值。 取值范围为[0, 0xFF]。
	u16GlobalAvgGb	全局 Gb 分量平均值。 取值范围为[0, 0xFF]。
	u16GlobalAvgB	全局 B 分量平均值。 取值范围为[0, 0xFF]。
pstAeStat5	au16ZoneAvg	分区间 R、Gr、Gb、B 分量平均值。 取值范围为[0, 0xFF]。

□ 说明

pstAeStat1 和 pstAeStat2 分别表示根据直方图分割门限得到的归一化全局和分区间 5 段直方图统计信息,取值范围[0, 0xFFFF]。以全局 5 段直方图为例,如图像中的所有像素都大于最大门限值,那么第 5 段直方图数据即为 0xFFFF,其他 4 段直方图数据为 0。全局 5 段直方图会受分区间权重影响,与该模块在 ISP pipeline 的位置无关。Hi3518EV200 不支持全局和分区间 5 段直方图统计。

pstAeStat3 表示全局 256 段直方图统计信息。该统计信息是取输入数据流中的高 8bit 数据统计得到的,每个 bin 中数据表示该灰度值对应的像素个数。256 个 bin 的数据之和即为参与统计的像素点个数,由寄存器 0x205a2014 决定,如下所示。一旦寄存器 0x205a2014 的值是确定的,那么256 个 bin 的数据之和也是确定的。目前,海思 AE 算法默认只用了 Gr 通道的统计信息,在大面积红色时,会采用 R 和 Gb 通道的统计信息,在大面积红色时,会采用 B 和 Gr 通道的统计信息。全局 256 段直方图会受到分区间权重的影响。

Addr	Mode	31~8	7	6	5	4	3	2	1	0	Default	
0x2014	R/W		Offset y		Skip y		Offset x		Skip x		0x000000 00	

Skip x[2:0] Histogram decimation in horizontal direction: 0=every 2nd pixel; 1=every 3rd pixel;

2=every 4th pixel; 3=every 5th pixel; 4=every 8th pixel; 5+=every 9th pixel;

Offset x 0=start from the first column; 1=start from second column;

Skip y[2:0] Histogram decimation in vertical direction: 0=every pixel; 1=every 2nd pixel;

2=every 3rd pixel; 3=every 4th pixel; 4=every 5th pixel; 5=every 8th pixel;

6+=every 9th pixel;

Offset y 0=start from the first row; 1=start from second row;

pstAeStat4 表示全局 R/Gr/Gb/B 4 分量取高 8bit 统计得到的均值,取值范围 $[0\,,0x]$ 。全局 4 分量平均值会受分区间权重影响。

pstAeStat5 表示 15*17 区间每个区间 R/Gr/Gb/B 4 分量取高 8bit 统计得到的均值,取值范围[0,0xFF]。

AE 统计模块可将输入数据开方后再进行统计,通过配置寄存器 0x205a2040 第 8bit 值可选择对输入数据开方与否。所谓数据开方,指的是对输入数据归一化至 1 后做开方处理。以 256 段直方图统计为例,若输入数据为 12bit,某个像素值为 2048,若数据开方关闭,直接取高 8bit 数据进行统计,为灰度值 128 对应的 bin 像素个数加 1;若数据开方使能,像素值 2048 归一化至 1 后为 0.5,0.5 开方为 0.707,用 8bit 表示 0.707为 181,此时在直方图上表现为灰度值 181 对应的bin 像素个数加 1。由此可见,像素值较小的数据开方处理后像素值明显变大,相当于统计信息通过压缩亮区的统计精度来提升了暗区的统计精度。建议在 WDR 模式下数据开方使能,线性模式下数据开方关闭。此外,AE 统计模块在 ISP pipeline 的位置可以变化,具体可参考《HiISP 开发参考》。

表3-4 运算结果 ISP_AE_RESULT_S 的成员变量

成员名称	子成员名称	描述
au32IntTime	-	AE 计算得出的曝光时间,以曝光行为单位。线性模式和 sensor built-in WDR 模式下,只有au32IntTime[0]有效,au32IntTime[1:3]建议配置等于au32IntTime[0]; N 帧合成 WDR 模式下,au32IntTime[0:(N-1)]有效,配置值由小到大,依次表示最短到最长的曝光时间,au32IntTime[(N-1):3]建议配置等于au32IntTime[(N-1)]。多帧 WDR 模式下,此变量用于计算长短帧曝光比,必须配置;其他模式可以配置为0。
u32IspDgain	-	ISP 的数字增益。使用 ISP 数字增益时必须配置; 不使用时配置为 0x100。
u32Iso	-	AE 计算得出的总增益值,ISO 表示系统增益,以常数 100 乘以倍数为单位,例如系统中 sensor 的增益为 2 倍,ISP 的增益为 1 倍,那么整个系统的ISO 值计算方式为: 2*1*100=200,即系统 ISO 为200,本文档中涉及到的 ISO 都是采用这种计算方法。此变量影响 ISP 的去噪,sharpen 等自适应效果,必须配置。
u8AERunInterval	-	AE 算法运行的间隔,取值范围为[1,255],取值为 1 时表示每帧都运行 AE 算法,取值为 2 时表示每 2 帧运行 1 次 AE 算法,依此类推。建议该值设置 不要大于 2,否则 AE 调节速度会受到影响。WDR 模式时,该值建议设置为 1,这样 AE 收敛会更加 平滑。此变量决定 AE 计算结果配置到 sensor 和 ISP 寄存器的间隔帧数,必须配置。
bPirisValid	-	Piris 是否有效的标志,取值为 HI_TRUE 时在内核 态回调 Piris 驱动配置步进电机的位置,取值为 HI_FALSE 时不回调。使用海思 AE 算法和海思 Piris 驱动对接 Piris 镜头时,该值须置为

成员名称	子成员名称	描述
		HI_TRUE,对接非 Piris 镜头时该值须置为HI_FALSE。
s32PirisPos	-	Piris 步进电机的位置,取值范围与具体 Piris 镜头相关。使用海思 Piris 驱动对接 Piris 镜头时,该值必须配置。
u32PirisGain	-	Piris 光圈等效增益,取值范围与具体 Piris 镜头相关。可用于计算 Piris 工作时的等效曝光量,供其他模块参考。取值范围为[0, 1024]。对接非 Piris 镜头时建议将该值配置为 512。
enFSWDRMode	-	WDR 合成模式, 0 表示普通多帧合成 WDR 模式, 1 表示长帧模式。 Hi3518EV200 不支持。
stStatAttr	bChange	该结构体中的值是否需要配置寄存器。
	au8Metering HistThresh	五段直方图的分割门限值数组,取值范围为[0,255]。 Hi3518EV200 不支持。
	au8WeightT able	15x17 个区间的 AE 权重表,取值范围为[0, 255]。

3.3 AWB 算法注册 ISP 库

AWB 算法注册 ISP 库调用 HI_MPI_ISP_AwbLibRegCallBack,如图 3-2 所示,详细说明参见《HiISP 开发参考》。

图3-2 AWB 算法向 ISP 库注册的回调函数

海思 AWB 算法实现了一个 HI_MPI_AWB_Register 的注册函数,在这个函数中调用 ISP 提供的 HI_MPI_ISP_AwbLibRegCallBack 回调接口,用户调用注册函数以实现向 ISP 注册 AWB 算法,示例和 AE 算法库注册类似。

用户需要在自开发定制的 AWB 库中实现以下回调函数:

表3-5 AWB 算法向 ISP 库注册的回调函数

成员名称	描述
pfn_awb_init	初始化 AWB 的回调函数指针。
pfn_awb_run	运行 AWB 的回调函数指针。
pfn_awb_ctrl	控制 AWB 内部状态的回调函数指针。
pfn_awb_exit	销毁 AWB 的回调函数指针。

□ 说明

调用 HI_MPI_ISP_Init 时将调用 pfn_awb_init 回调函数,以初始化 AWB 算法库。

调用 HI_MPI_ISP_Run 时将调用 pfn_awb_run 回调函数,以运行 AWB 算法库,计算得到白平衡增益、色彩校正矩阵。

pfn_awb_ctrl 回调函数的目的是改变算法库内部状态。运行时 Firmware 会隐式调用 pfn_awb_ctrl 回调函数,通知 AWB 算法库切换 WDR 和线性模式、设置 ISO。设置 ISO 的目的是为了实现 ISO 与饱和度的联动,增益大时色度噪声也会比较大,所以需要调节饱和度。

当前 Firmware 定义的 ctrl 命令有:

```
typedef enum hiISP_CTRL_CMD_E
{
    ISP_WDR_MODE_SET = 8000,
    ISP_AE_FPS_BASE_SET,
    ISP_AWB_ISO_SET, /* set iso, change saturation when iso change */
    ISP_CTRL_CMD_BUTT,
} ISP_CTRL_CMD_E;
```

调用 HI_MPI_ISP_Exit 时将调用 pfn_awb_exit 回调函数,以销毁 AWB 算法库。

表3-6 初始化参数 ISP_AWB_PARAM_S 的成员变量

成员名称	描述
SensorId	向 ISP 注册的 sensor 的 id,用以检查向 ISP 注册的 sensor 和向 AWB 注册的 sensor 是否一致。
u8WDRMode	宽动态模式,ISP 向 AWB 提供宽动态模式信息。
s32Rsv	保留参数。

表3-7 统计信息 ISP_AWB_INFO_S 的成员变量

成员名称	子成员名称	描述
u32FrameCnt	-	帧的累加计数,取值范围为[0, 0xFFFFFFFF]。

成员名称	子成员名称	描述
pstAwbStat1	u16MeteringAwbRg	RGB 域统计信息中白点 G/R 比值的平均值,取值范围为[0, 0xFFFF]。 Hi3518EV200 不支持。
	u16MeteringAwbBg	RGB 域统计信息中白点 G/B 比值的平均 值,取值范围为[0, 0xFFFF]。 Hi3518EV200 不支持。
	u32MeteringAwbSum	RGB 域统计信息中白点个数,取值范围 为[0, 0xFFFFFFFF]。 Hi3518EV200 不支持。
pstAwbStat2	au16MeteringMemArrayRg	RGB 域分区间的统计信息中白点 G/R 比值的平均值,取值范围为[0, 0xFFFF]。 Hi3518EV200 不支持。
	au16MeteringMemArrayBg	RGB 域分区间的统计信息中白点 G/B 比值的平均值,取值范围为[0,0xFFFF]。 Hi3518EV200 不支持。
	au16MeteringMemArraySu m	RGB 域分区间的统计信息中白点个数, 取值范围为[0,0xFFFFFFF]。 Hi3518EV200 不支持。
pstAwbStat3	u16MeteringAwbAvgR	Bayer 域全局统计信息中白点的 R 分量平均值,已减掉黑电平。取值范围为[0,0xFFFF],4bit小数精度。
	u16MeteringAwbAvgG	Bayer 域全局统计信息中白点的 G 分量平均值,已减掉黑电平。取值范围为[0,0xFFFF],4bit小数精度。
	u16MeteringAwbAvgB	Bayer 域全局统计信息中白点的 B 分量平均值,已减掉黑电平。取值范围为[0,0xFFFF],4bit小数精度。
	u16MeteringAwbCountAll	Bayer 域全局统计信息中白点的个数。已做归一化,取值范围为[0, 0xFFFF]。
	u16MeteringAwbCountMin	Bayer 域全局统计信息中小于 u16MeteringBlackLevelAwb 的像素个 数。已做归一化,取值范围为[0, 0xFFFF]。
	u16MeteringAwbCountMa x	Bayer 域全局统计信息中大于 u16MeteringWhiteLevelAwb 的像素个 数。已做归一化,取值范围为[0, 0xFFFF]。
pstAwbStat4	au16MeteringMemArrayAv	Bayer 域分区间统计信息中白点的 R 分量

成员名称	子成员名称	描述
	gR	平均值,已减掉黑电平。取值范围为[0, 0xFFFF], 4bit 小数精度。
	au16MeteringMemArrayAv gG	Bayer 域分区间统计信息中白点的 G 分量平均值,已减掉黑电平。取值范围为[0,0xFFFF],4bit小数精度。
	au16MeteringMemArrayAv gB	Bayer 域分区间统计信息中白点的 B 分量平均值,已减掉黑电平。取值范围为[0,0xFFFF],4bit 小数精度。
	au16MeteringMemArrayCo untAll	Bayer 域分区间统计信息中白点的个数。 已做归一化,取值范围为[0, 0xFFFF]。
	au16MeteringMemArrayCo untMin	Bayer 域分区间统计信息中小于 u16MeteringBlackLevelAwb 的像素个 数。已做归一化,取值范围为[0, 0xFFFF]。
	au16MeteringMemArrayCo untMax	Bayer 域分区间统计信息中大于 u16MeteringWhiteLevelAwb 的像素个 数。已做归一化,取值范围为[0, 0xFFFF]。

表3-8 运算结果 ISP_AWB_RESULT_S 的成员变量

成员名称	子成员名称	描述
au32WhiteBalanceGain	-	白平衡算法得出的 R、Gr、Gb、B 颜色通道的增益,16bit 精度表示。
au16ColorMatrix	-	色彩还原矩阵,8bit 精度表示。
stStatAttr	bChange	该结构体中的值是否需要配置 寄存器。Hi3518EV200 不支 持。
	u16MeteringWhiteLevelAwb	RGB 域统计白点信息时,找 白点的亮度上限。取值范围 [0x0, 0x3FF],默认值 0x3ac。Hi3518EV200 不支 持。
	u16MeteringBlackLevelAwb	RGB 域统计白点信息时,找 白点的亮度下限。取值范围 [0x0,0x3FF],默认值 0x40。

成员名称	子成员名称	描述
		Hi3518EV200 不支持。
	u16MeteringCrRefMaxAwb	RGB 域统计白点信息时,色 差 R/G 的最大值,8bit 精度, 默认值 0x200。 Hi3518EV200 不支持。
	u16MeteringCbRefMaxAwb	RGB 域统计白点信息时,色 差 B/G 的最大值,8bit 精度,默认值 0x200。 Hi3518EV200 不支持。
	u16MeteringCrRefMinAwb	RGB 域统计白点信息时,色 差 R/G 的最小值,8bit 精度,默认值 0x80。 Hi3518EV200 不支持。
	u16MeteringCbRefMinAwb	RGB 域统计白点信息时,色 差 B/G 的最小值,8bit 精度, 默认值 0x80。 Hi3518EV200 不支持。
	u16MeteringCrRefHighAwb	RGB 域统计白点信息时,六 边形白点区域限制 CbMax 对 应的 Cr 值,8bit 精度,默认 值 0x200。
		Hi3518EV200 不支持。
	u16MeteringCrRefLowAwb	RGB 域统计白点信息时,六 边形白点区域限制 CbMin 对 应的 Cr 值,8bit 精度,默认 值 0x80。 Hi3518EV200 不支持。
	u16MeteringCbRefHighAwb	RGB 域统计白点信息时,六 边形白点区域限制 CrMax 对 应的 Cb 值,8bit 精度,默认 值 0x200。 Hi3518EV200 不支持。
	u16MeteringCbRefLowAwb	RGB 域统计白点信息时,六 边形白点区域限制 CrMin 对 应的 Cb 值,8bit 精度,默认 值 0x80。
		Hi3518EV200 不支持。
stRawStatAttr	bChange	该结构体中的值是否需要配置 寄存器。

成员名称	子成员名称	描述
	bAboveWhiteLevelClip	大于亮度上限的点是否参与白点统计。Hi3518EV200 不支持。
	bBelowBlackLevelClip	小于亮度下限的点是否参与白点统计。Hi3518EV200不支持。
	u16MeteringWhiteLevelAwb	Bayer 域统计白点信息时,找 白点的亮度上限。取值范围 [0x0,0xFFF],默认值 0xFFF。
	u16MeteringBlackLevelAwb	Bayer 域统计白点信息时,找 白点的亮度下限。取值范围 [0x0,0xFFF],默认值 0x0。
	u16MeteringCrRefMaxAwb	Bayer 域统计白点信息时,色 差 R/G 的最大值, 8bit 精度, 默认值 0x180。
	u16MeteringCbRefMaxAwb	Bayer 域统计白点信息时,色 差 B/G 的最大值, 8bit 精度, 默认值 0x180。
	u16MeteringCrRefMinAwb	Bayer 域统计白点信息时,色 差 R/G 的最小值, 8bit 精度, 默认值 0x40。
	u16MeteringCbRefMinAwb	Bayer 域统计白点信息时,色 差 B/G 的最小值,8bit 精度, 默认值 0x40。
	u16MeteringCrRefHighAwb	Bayer 域统计白点信息时,六 边形白点区域限制 CbMax 对 应的 Cr 值,8bit 精度,默认 值 0x180。Hi3518EV200 未支 持。
	u16MeteringCrRefLowAwb	Bayer 域统计白点信息时,六 边形白点区域限制 CbMin 对 应的 Cr 值,8bit 精度,默认 值 0x40。 Hi3518EV200 未支持。
	u16MeteringCbRefHighAwb	Bayer 域统计白点信息时,六 边形白点区域限制 CrMax 对 应的 Cb 值,8bit 精度,默认 值 0x180。Hi3518EV200 未支 持。

成员名称	子成员名称	描述
	u16MeteringCbRefLowAwb	Bayer 域统计白点信息时,六 边形白点区域限制 CrMin 对 应的 Cb 值,8bit 精度,默认 值 0x40。 Hi3518EV200 未支持。

□ 说明

- Bayer 域 WB 统计信息在 WB 增益前。RGB 域 WB 统计信息在 WB 增益后,利用 RGB 域统计信息实现 AWB 算法,AWB 是个反馈系统,RGB 域统计结果受 WB 增益影响。
- 无论是线性模式或 WDR 模式,Hi3518EV200 Bayer 域统计输出是线性的,不需要做特殊处理。
- 统计信息异常:为了避免统计信息异常对算法的影响,建议白点个数满足一定条件的统计信息参与计算。
- AWB 参数生效时间点:下一帧生效。
- 建议 AWB 统计参数根据 sensor 的光谱特性和产品支持的色温范围做调整,以达到更好的效果。

图3-3 统计信息参数示意图

3.4 AF 算法注册 ISP 库

AF 算法注册 ISP 库调用 HI_MPI_ISP_AfLibRegCallBack,如图 3-4 所示,详细说明参见《HiISP 开发参考》。

图3-4 AF 算法向 ISP 库注册的回调函数

海思 AF 算法没有实现具体算法,只实现了一个注册框架,示例和 AE 算法库注册类似。

用户需要在自开发定制的 AF 库中实现以下回调函数:

表3-9 AF 算法向 ISP 库注册的回调函数

成员名称	描述
pfn_af_init	初始化 AF 的回调函数指针。
pfn_af_run	运行 AF 的回调函数指针。
pfn_af_ctrl	控制 AF 内部状态的回调函数指针。
pfn_af_exit	销毁 AF 的回调函数指针。

□ 说明

调用 HI_MPI_ISP_Init 时将调用 pfn_af_init 回调函数,以初始化 AF 算法库。

调用 HI_MPI_ISP_Run 时将调用 pfn_af_run 回调函数,以运行 AF 算法库,运用 AF 统计信息,驱动马达进行自动对焦。pfn_af_ctrl 回调函数的目的是改变算法库内部状态。

调用 HI_MPI_ISP_Exit 时将调用 pfn_af_exit 回调函数,以销毁 AF 算法库。

表3-10 初始化参数 ISP_AF_PARAM_S 的成员变量

成员名称	描述
SensorId	向 ISP 注册的 sensor 的 id,用以检查向 ISP 注册的 sensor 和向 AF 注册的 sensor 是否一致。
s32Rsv	保留参数。

表3-11 统计信息 ISP_AF_INFO_S 的成员变量

成员名称	子成员名称	描述
u32FrameCnt	-	帧的累加计数,取值范围为[0, 0xFFFFFFFF]。
stAfStat	stZoneMetrics. u16v1	分区间统计的 AF 垂直方向奇数列 FIR 滤波器的统计值。
	stZoneMetrics. u16h1	分区间统计的 AF 水平方向奇数行 IIR 滤波器的统计值。
	stZoneMetrics. u16v2	分区间统计的 AF 垂直方向偶数列 FIR 滤波器的统计值。
	stZoneMetrics. u16h2	分区间统计的 AF 水平方向偶数行 IIR 滤波器的统计值。
	stZoneMetrics. u16y	分区间统计的 AF 亮度统计值,区块中每个像素点的亮度累加值。

表3-12 运算结果 ISP_AF_RESULT_S 的成员变量

成员名称	描述
s32Rsv	保留参数。
stStatAttr	AF 统计信息属性结构体

4 附录

4.1 注册函数的关系

HI_MPI_ISP_AeLibRegCallBack、HI_MPI_ISP_AwbLibRegCallBack、HI_MPI_ISP_AfLibRegCallBack 这三个接口是 ISP firmware 库提供的钩子函数,用于开发 3A 算法库时实现注册动作。例如海思提供的 3A 算法库的 HI_MPI_AE_Register、HI_MPI_AF_Register 接口,在实现时调用了相应的钩子函数,所以调用 HI_MPI_AE_Register 能实现 AE 算法库向 ISP firmware 库注册。

同样的,海思 3A 算法库同样也提供了钩子函数,用于 Sensor 库实现向 3A 算法库注册的动作。例如 HI_MPI_AE_SensorRegCallBack、HI_MPI_AWB_SensorRegCallBack、HI_MPI_AF_SensorRegCallBack,在 xxx_cmos.c 中可以看到调用了这些钩子函数的函数 sensor_register_callback。用户在开发 3A 算法库时,也可以通过提供钩子函数的方式,实现 Sensor 库向 3A 算法库的注册。

当然,ISP firmware 库也提供了钩子函数,用于 Sensor 库实现向 ISP firmware 库注册的 动作。例如 HI_MPI_ISP_SensorRegCallBack,在 xxx_cmos.c 中可以看到调用了该钩子函数的函数 sensor_register_callback。

所以,当用户调用 HI_MPI_AE_Register、HI_MPI_AWB_Register、HI_MPI_AF_Register 和 sensor_register_callback 就完成了 3A 算法库向 ISP firmware 库注册、Sensor 库向 3A 算法库和 ISP firmware 库注册。

□ 说明

用户开发 3A 算法库时,请自行实现 HI_MPI_AXX_Register 接口。同时也请自行实现 HI_MPI_AXX_SensorRegCallBack 钩子函数,并在 sensor_register_callback 中增加调用该钩子函数的代码,相关代码可以参考 ISP firmware 库的开源代码。

4.2 扩展性的设计考虑

在代码中有 ISP_DEV、ALG_LIB_S、SENSOR_ID 这样一些概念,这些概念是出于架构扩展性的考虑。

ISP_DEV 主要考虑的是支持多个 ISP 单元的情形。无论是多个 ISP 硬件单元,或是一个 ISP 硬件单元分时复用,从软件意义上讲,需要预留出扩展性。目前 ISP_DEV 只需设置为 0 即可。

ALG_LIB_S 主要考虑的是支持多个算法库,并动态切换的情形。例如用户实现了一套 AE 算法代码,但注册两个库,分别用于正常场景和抓拍场景,那么这时候需要用结构 体中的 s32Handle 来进行区分。例如用户实现了一套 AWB 算法代码,同时又想在某些 场景下使用海思 AWB 算法库,那么这时候可以用结构体中的 acLibName 进行区分。 当用户注册多个 AE 库,或 AWB 库时,ISP firmware 将会全部对它们进行初始化,但 是在运行时,仅会调用有效的库,设置有效库的接口是 HI_MPI_ISP_SetBindAttr,通过此接口可以快速切换运算的库。

SENSOR_ID 仅起一个校验作用,确认注册给 ISP firmware 库和 3A 算法库的是同一款 sensor。

这些概念仅是设计时预留的冗余,如果完全不需要这些概念,可以在开发时去掉这些概念。

4.3 3A 架构的设计思路

设计思路基本是这样,ISP firmware 初始化并销毁各个算法单元;在运行时,提供前一帧的统计信息,并根据返回值配置寄存器,其他内容,均由用户开发。所以当用户替换自己的 3A 算法后,当前的 AE/AWB/AF 的 MPI 不可复用,cmos.c 中的 AE/AWB/AF 相关的内容不可复用,对于 AE 的权重配置、五段直方图 Thresh 配置和 AWB 的找白点配置的内容不可复用,这几个配置理论上是由 3A 算法配置,而不是从 ISP firmware 获取,ISP firmware 中仅有简单的初始化值。

3A 算法并不需要显式地去配置 ISP 寄存器,只需将需要配置的 ISP 寄存器值写到 ISP_AE_RESULT_S、ISP_AWB_RESULT_S、ISP_AF_RESULT_S 结构体中即可;也不需要显式地去读取 ISP 寄存器,只需从 ISP_AE_INFO_S、ISP_AWB_INFO_S、ISP_AF_INFO_S 结构体中读取即可。

4.4 外部寄存器的说明

在 IPC 的应用中,通常除了业务主程序进程外,板端还会有另外的进程去支持 PC 端的工具来调节图像质量。ISP 的各个算法的许多状态、参数均驻留于全局变量中,不足以支持多进程的访问,所以引入外部寄存器的概念,用以支持多进程的业务场景。用户通过 PC 端工具与板端进程通信,调用海思提供的 MPI,实际是改变外部寄存器中的内容,从而改变业务主程序中的 ISP 的各个算法的状态和参数。

外部寄存器还能与实际的硬件寄存器通过统一的接口读写,形式上与实际的硬件寄存器 无差别。

外部寄存器封装的接口为 VReg_Init、VReg_Exit、IORD_32DIRECT、IORD_16DIRECT、IORD_8DIRECT、IOWR_32DIRECT、IOWR_16DIRECT、IOWR_8DIRECT,地址设定如下:

0x0~0xFFFF 对应 ISP 的硬件寄存器,例如 IORD_32DIRECT(0x0008)读取 0x205A0008 硬件寄存器的值。

0x10000~0x1FFFF 对应 ISP firmware 的外部寄存器,例如 IOWR_16DIRECT(0x10020)。

0x20000~0x2FFFF 对应 AE 的外部寄存器,其中分成了 16 份,海思 AE 用了 0x20000~0x21FFF。0x30000~0x3FFFF 对应 AWB 的外部寄存器,0x40000~0x4FFFF 对应 AF 的外部寄存器,同样的也分成了 16 份。

用户如果使用外部寄存器的话,有这些已封装好的接口可以使用,当然用户也可以有 其他方案实现多进程的支持。外部寄存器的地址空间是自定义的,只要不冲突即可。 详细请参考开源代码,接口定义在 hi_vreg.h 文件中。