Lecture 7 - Linear Prediction Rules

DSC 40A, Spring 2023

Announcements

- ► Homework 2 is due **tomorrow at 11:59pm**.
 - LaTeX template provided if you want to type your answers.
 - Please come to office hours!
- Review Homework 1 solutions on Campuswire.
- Discussion section is on Wednesday.

Agenda

- Recap of convexity.
- Prediction rules.
- Minimizing mean squared error, again.

Recap: convexity

Convexity: Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of a, b and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb)$$

This means that for **every** a, b in the domain of f, the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.

Second derivative test for convexity

- If f(x) is a function of a single variable and is twice differentiable, then:
- ► f(x) is convex if and only if $\frac{d^2f}{dx^2}(x) \ge 0$ for all x.
- Example: $f(x) = x^4$ is convex.

Convexity and gradient descent

- ► **Theorem**: if *R*(*h*) is convex and differentiable then gradient descent converges to a global minimum of *R* provided that the step size is small enough.
 - If a function is convex and has a local minimum, that local minimum must be a global minimum.
 - In other words, gradient descent won't get stuck/terminate in local minimums that aren't global minimums.
- minimums.

 For nonconvex functions, gradient descent can still be useful, but it's not guaranteed to converge to a global minimum

Convexity of empirical risk

If L(h, y) is a convex function (when y is fixed) then

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

is convex.

- More generally, sums of convex functions are convex.
- What does this mean?
 - If a loss function is convex, then the corresponding empirical risk will also be convex.

Convexity of loss functions

- Is $L_{sq}(h, y) = (y h)^2$ convex? Yes or No.
- Is $L_{abs}(h, y) = |y h|$ convex? (Yes) or No.
- ► Is $L_{ucsd}(h, y)$ convex? **Yes** o No.

Convexity of R_{ucsd}

- A function can be convex in a region.
- If σ is large, $R_{ucsd}(h)$ is convex in a big region around data.
 - A large σ led to a very smooth, parabolic-looking empirical risk function with a single local minimum (which was a global minimum).
- If σ is small, $R_{ucsd}(h)$ is convex in only small regions.
 - A small σ led to a very bumpy empirical risk function with many local minimums.

of Yingsdury

Discussion Question

Recall the emplrical risk for absolute loss,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Is $R_{abs}(h)$ convex? Is gradient descent guaranteed to find a global minimum, given an appropriate step size?

a) YES convex, YES guaranteedb) YES convex, NOT guaranteed

NOT convex, NOT guaranteed a) NOT convex, NOT guaranteed

differentiable

Prediction rules

How do we predict someone's salary?

After collecting salary data, we...

- 1. Choose a loss function.
- 2. Find the best prediction by minimizing the average loss across the entire data set (empirical risk).
- So far, we've been predicting future salaries without using any information about the individual (e.g. GPA, years of experience, number of LinkedIn connections).
- ► **New focus:** How do we incorporate this information into our prediction-making process?

Features

A **feature** is an attribute – a piece of information.

weird one

- Numerical: age (height) years of experience
- Categorical: college, city, education level
- Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame or table.

Years Experience Age **FormalEducation** Salary 0 28.39 Master's degree (MA, MS, M, Eng., MBA, etc.) 120000.0 1 Some college/university study without earning ... 120000.0 2 4.05 31.04 Bachelor's degree (BA, BS, B.Eng., etc.) 70000.0 3 Bachelor's degree (BA, BS, B.Eng., etc.) 185000.0 4 33.45 Master's degree (MA, MS, M.Eng., MBA, etc.) 125000.0

Variables

The features, x, that we base our predictions on are called predictor variables,

The quantity, y, that we're trying to predict based on these features is called the response variable.

► We'll start by predicting <u>salary</u> based on years of experience.

Prediction rules

- We believe that salary is a function of experience.
- In other words, we think that there is a function *H* such that:

- H is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

Possible prediction rules

$$H_1$$
(years of experience) = \$50,000 + \$2,000 × (years of experience)
 H_2 (years of experience) = \$60,000 × 1.05^(years of experience)
 H_3 (years of experience) = \$100,000 - \$5,000 × (years of experience)

- These are all valid prediction rules.
- Some are better than others.

Comparing predictions

- ► How do we know which prediction rule is best: H_1 , H_2 , H_3 ?
- We gather data from n people. Let x_i be experience, y_i be salary:

See which rule works better on data.

Example

generally

Quantifying the quality of a prediction rule H

- ► Our prediction for person *i*'s salary is $H(x_i)$.

 As before, we'll use a **loss function** to quantify the quality
- As before, we'll use a **loss function** to quantify the quality of our predictions.

 Absolute loss: $|y_i H(x_i)|$.

 Actual

 Squared loss: $(y_i H(x_i))^2$.
- ▶ We'll focus on squared loss, since it's differentiable.
- Using squared loss, the empirical risk (mean squared error) of the prediction rule H is:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

Mean squared error actual 100K 90 K BOK 70K 60K

Hi=generally small-area squares
Hi=large squares

Finding the best prediction rule

- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
- ▶ That is, H* should be the function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

Discussion Question

Given the data below, is there a prediction rule *H* which has **zero** mean squared error?

a) Yes

b) No

Problem

- We can make mean squared error very small, even zero!
- But the function will be weird.

This is called **overfitting**.

Remember our real goal: make good predictions on data

we haven't seen.

Solution

Don't allow H to be just any function.

Finding the best linear prediction rule

- **Goal:** out of all **linear** functions \mathbb{R} → \mathbb{R} , find the function H^* with the smallest mean squared error.
 - Linear functions are of the form $H(x) = w_0 + w_1 x$.
 - They are defined by a slope (w_1) and intercept (w_0) .
- That is, H* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- ► This problem is called linear regression.
 - with a single predictor variable, x.

Vs. my Hiple

Minimizing mean squared error for the linear

prediction rule

Minimizing the mean squared error

► The MSE is a function R_{sq} of a function H.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- Now R_{sq} is a function of w_0 and w_1 .
- ▶ We call w_0 and w_1 parameters.
 - Parameters define our prediction rule.

Updated goal

Find the slope w_1^* and intercept w_0^* that minimize the MSE, $R_{sq}(W_0, W_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$
Strategy: multivariable calculus.

Recall: the gradient

reg. math notation

If f(x,y) is a function of two variables, the gradient of f at the point (x_0, y_0) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} > \delta y_0 k_0$$

- Key Fact #1: The derivative is to the tangent line as the gradient is to the tangent plane.
- **Key Fact #2**: The gradient points in the direction of the biggest increase.
- **Key Fact #3**: The gradient is zero at critical points.

Minimizing multivariable functions

- From calculus, to optimize a multivariable differentiable function:
 - Calculate the gradient vector, or vector of partial derivatives.
 - 2. Set the gradient equal to to 0 (that is, the zero vector).
 - 3. Solve the resulting system of equations.

Example

Discussion Question

Find the point at which the function

$$f(x,y) = x^2 + y^2 - 2x - 4y$$

is minimized.

$$\frac{\partial f}{\partial x} = 2x - 2 = 0 \quad \text{gradient} = \begin{bmatrix} 2x - 2 \\ 2y - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\frac{\partial f}{\partial y} = 2y - 4 = 0 \quad 2x - 2 = 0 \quad 2y - 4 = 0$$

$$\frac{\partial f}{\partial y} = 2y - 4 = 0 \quad 2x - 2 = 0 \quad 2y - 4 = 0$$

Summary

Summary, next time

- We introduced the linear prediction rule, $H(x) = w_0 + w_1 x$.
- ➤ To determine the best linear prediction rule, we'll use the squared loss and choose the one that minimizes the empirical risk, or mean squared error:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- ► **Next time**: We'll use calculus to minimize the mean squared error and find the best linear prediction rule.
 - Spoiler alert: it's the regression line, as we saw in DSC 10.