

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 7: Greedy Algorithms

CSCI 3070U: Design and Analysis of Algorithms

Learning Outcomes

- Greedy Algorithm Strategy
- Case Studies:
 - Counting Coins
 - Fractional Knapsack
 - Huffman Code

Greedy Algorithm Foundations

- What are the ideas of greedy approach?
 - When we have a choice to make, make the one that looks best *right now*. Make a *locally optimal choice* in hope of getting a *globally optimal solution*.

- Do greedy algorithms <u>always</u> result in optimal solutions?
 - Answer: NO!

Greedy Algorithm Foundations

- Why greedy Approaches?
 - Sometimes they are optimum
 - If they do not, the solutions are usually near-optimal (approximation)
- So, what is their advantage?
 - They are often tractable/doable solution

Greedy Algorithm Example

- Let's say I have an amount of change to give a customer (e.g. \$3.79)
 - How do I figure out the optimal coin arrangement?
 - i.e. least number of coins

- One Solution: Starting with the largest coin and working toward the smallest
 - Use as many (including zero) of that coin is possible
 - Continue until the remainder is \$0.00

Example: Counting Coins: \$3.79

- How many \$2 coins? One
 - Remainder: \$1.79
- How many \$1 coins? One
 - Remainder: \$0.79
- How many \$0.25 coins? Three
 - Remainder: \$0.04
- How many \$0.01 coins? Four
 - Remainder: \$0.00

When greedy algorithms are globally optimal?

- Greedy algorithms find optimal solutions for problems that have optimal substructure
 - When globally optimal solutions can be created by combining locally optimal solutions
 - The greedy selection is a part of the optimal solution
- Example:
 - Counting coins
 - For example if you have \$8, the greedy algorithm chooses \$2 coin as the solution and resulting the problem of \$6. The optimal problem says that we can the solution is a \$2 coin + solution of problem of \$6.

Case Study: Knapsack Algorithm (recap)

• Problem:

- We have a knapsack with capacity W, and a number of item, where each item has a weight, and a value
- Objective is to select the items with maximum total value and putting them in knapsack

Variations:

- 0/1: At most one of each item weight/value can be included
- Fractional: We can divide items and take a part of them, for part of the value

0/1 - Knapsack problem (recap)

- Brute Force Algorithm:
 - Try all combinations of the n items
 - Find the maximum value of the combinations
 - Number of combinations?

 $\Theta(2^n)$

- Obviously, this is no good!
- Solution:
 - Dynamic Programming (optimal)
 - Branch and Bound (optimal)
 - Greedy (not optimal)

Fractional vs. 0/1 Knapsack

item 1: 60/10 = 6

item 2: 100/20 = 5

item 3: 120/30 = 4

For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

Fractional Knapsack

- Solution:
 - Greedy algorithm (optimal)
- General scheme:
 - Calculate the value per unit of weight
 - We'll call this the unit value
 - Choose the items in order of their unit value, if we have room for them

- Compression has a goal of reducing the required number of bits to store/transmit a sequence of symbols
- Huffman codes compress data very effectively.

• Suppose we have a 100,000-character data file that we wish to store compactly. We observe that the characters in the file occur with the frequencies given:

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

 How to assign a unique binary string to each character to minimize the total file length?

 How to assign a unique binary string to each character to minimize the total file length?

• Fixed-length code: we need 3 bits to represent 6 characters

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101

This method requires 300,000 bits to code the entire file

 How to assign a unique binary string to each character to minimize the total file length?

 variable-length code can do considerably better than a fixed-length code, by giving frequent characters short codewords and infrequent characters long code- words.

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

$$(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000$$
 bits

What property such variable length codes should have?

No codeword is a prefix of some other codeword

- How to produce such variable codes (optimum codes)?
 - Huffman's algorithm is an efficient algorithm for finding prefix codes
 - Huffman's algorithm makes use of a priority queue

Huffman Code: Example

(a) **f**:5 **e**:9 **c**:12 **b**:13 **d**:16 **a**:45

Huffman Code: Example

Huffman Code: Example

Huffman's Algorithm

Time Complexity:

```
O(n \log n)
Huffman(C)
1 n = |C|
                                        O(n)
Q = C
3 for i = 1 to n - 1
       allocate a new node z.
                                        O(\log n)
       z.left = x = EXTRACT-MIN(Q)
       z.right = y = EXTRACT-MIN(Q) O(\log n)
6
       z.freq = x.freq + y.freq
       INSERT(Q, z)
                                        O(\log n)
   return EXTRACT-MIN(Q) // return the root of the tree
                                                          O(\log n)
```


Wrap-up

- We learned
 - Foundation of greedy algorithm
 - How greedy approach can provide optimum solution in certain cases:
 - Counting Coins
 - Fractional Knapsack
 - Huffman Codes

