[공통실험] 멀티미터와 오실로스코프 사용법

학과: 학번: 이름:

실험일: 실험조: 제출일:

1. 멀티미터 사용법

* $R_1=1~{\rm k}\Omega,~R_2=2.2~{\rm k}\Omega$ 로 설정하며, 원호 안의 숫자는 전류계의 위치를 의미한다.

A. 직렬회로

직렬 회로에서의 전체 저항

$$R_{\rm total} = R_1 + R_2$$

측정	전압 (V) 전류 (전류 (mA) 실측저항 (Ω)		전체 전류 (mA)				
	U(D)	17(D)	$I(R_1)$	$I(R_2)$	P	D	측정값	이론값	오차
횟수	$V(R_1)$	$V(R_2)$	(1)	(2)	$I\iota_1$	$R_1 \mid R_2 \mid$	(1)	(=공급전압/전체저항)	(%)
1									
2									
3									

** $V(R_1)$: R_1 양단에 걸리는 전압, $I(R_1)$: R_1 을 통과하는 전류

B. 병렬회로

측정	전압	· (V)	전류	(mA)	실측자	付항 (Ω)	전체 전류 (mA)		
	17(D)	17(D)	$I(R_1)$	$I(R_2)$	D	D	측정값	이론값	오차
횟수	$V(R_1)$	$V(R_2)$	(1)	(2)	R_1	R_2	(③)	(=공급전압/전체저항)	(%)
1									
2									
3									

** $V(R_1)$: R_1 양단에 걸리는 전압, $I(R_1)$: R_1 을 통과하는 전류

- 2. 오실로스코프 사용법 (피크 대 피크 값(Vp-p), 주기(T), 주파수(f) 측정)
 - ※ 주파수에 대한 오차를 계산
 - A. 사인 정현파(100Hz)

Time/div	Volt/div	

Vp-p	측정	측정	함수발생기	오차
(V)	주기 (s)	주파수 (Hz)	주파수 (Hz)	(%)

B. 사인 정현파(10kHz)

	Time/div	Volt/div	
L			

Vp-p	측정 측정		함수발생기	오차
(V)	주기 (s)	주파수 (Hz)	주파수 (Hz)	(%)

C. 사각파 (square wave) (1kHz)

Time/div	Volt/div	
----------	----------	--

	Vp-p	측정	측정	함수발생기	오차
	(V)	주기 (s)	주파수 (Hz)	주파수 (Hz)	(%)
ĺ					

[실험 2] RC 회로의 충전과 방전 실험

학과:학번:이름:실험일:실험조:제출일:

1. 저항(R)이 변할 때

실험 횟수	저항(Ω)	시간 상수 τ (s) (측정)	시간 상수 τ (s) (이론)	오차(%)
1	1 kΩ			
2	2 kΩ			
3	10 kΩ			

2. 전기용량(C)이 변할 때

실험 횟수	전기 용량(瓜)	시간 상수 τ (s) (측정)	시간 상수 $ au$ (s) (이론)	오차(%)
1	10 µF			
2	100 µF			
3	330 µF			

[실험 3] 빛의 반사와 굴절 실험

학과:학번:이름:실험일:실험조:제출일:

1. 반사의 법칙 $\theta_1 = \theta_2$

입사각(°)	1회	2회	3회	· 평균반사각(°)	
	반사각(°)	반사각(°)	반사각(°)		
20					
30					
40					
50					
60					

2. 굴절의 법칙

스넬의 법칙
$n_1 \sin \theta_1 = n_2 \sin \theta_2$

굴절률					
n_{2} , 이론값					

입사각(°)	1회	2회	3회	평균굴절각(°)	굴절률	
θ_1	굴절각(°)	굴절각(°)	굴절각(°)	θ_2	n_2 , 측정값	
20						오차(%)
30						
40						
50						
		평 균				

공기의 굴절률 (n_1) = 1.0

유리의 굴절률 (n_2) = 1.46

3. 전반사 (유리 -> 공기, 조건: 굴절률이 큰 매질에서 굴절률이 작은 매질로)

전반사 임계각
$\therefore \theta_c = \arcsin(\frac{n_2}{n_1})$

임계각(°)	
$ heta_c$, 이론값	

	1회	2회	3회	임계각(°) $ heta_c$ 측정값 평균	오차(%)
임계각(°)				6 th	

 $\therefore \sin \theta_1 = \frac{n_2}{n_1}$

이때 $\theta_2=90\,^\circ$

 $\therefore \theta_1 = \theta_c = \arcsin(\frac{n_2}{n_1})$

※전반사 임계각 유도

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

유리의 굴절률 (n_1) = 1.46

공기의 굴절률 (n_2) = 1.0

[실험 4] 편광 및 브루스터 각 측정 실험

학과: 학번: 이름:

실험일: 실험조: 제출일:

1. 코사인제곱 규칙(말루스 법칙)

2.	브루	·스I	터	긱
----	----	-----	---	---

편광판의 각도(°)	편광된 빛의 세기(%)
	- 건강선 롯의 세기(M)
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	
110	
120	
130	
140	
150	
160	
170	
180	
190	
200	
210	
220	
230	
240	
250	
260	
270	
280	
290	
300	
310	
320	
330	
340	
350	

브루스터 각				
$\theta_{\rm B} = \arctan \frac{n_2}{n_1}$				

브루스터 각(°)
$$\theta_{\mathrm{B}}$$
, 이론값

입사각(°)	빛의 세기(%)
35°	
45°	
55°	
65°	
75°	
85°	
브루스터 각(°)	
$ heta_{ m B}$, 측정값	
오차(%)	

※브루스터 각 유도
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
이 때 $\theta_1 + \theta_2 = 90^\circ$

$$\therefore n_1 \sin \theta_1 = n_2 \sin (90^\circ - \theta_1)$$

$$n_1 \sin \theta_1 = n_2 \cos \theta_1$$

$$\frac{\sin \theta_1}{\cos \theta_1} = \tan \theta_1 = \frac{n_2}{n_1}$$

$$\therefore \theta_1 = \theta_B = \arctan(\frac{n_2}{n_1})$$

공기의 굴절률 (n_1) = 1.0 유리의 굴절률 (n_2) = 1.46

[실험 5] 휘트스톤브릿지 실험

학과:학번:이름:실험일:실험조:제출일:

검류계가 0인 지점에서의 미지저항과 표준저항 관계식 $R_x = \frac{b}{a} R_s$

미지	시청 청소	а	b	표준저항	미지저항 $R_x(\Omega)$	미지저항 $R_x(\Omega)$	오차
저항	실험 횟수	(cm)	(cm)	$R_{s}\left(\Omega\right)$	(측정값)	(이론값)	(%)
	1						
1번	2						
172	3						
	평균						
	1						
5번	2			1k (2번)			
기만	3						
	평균						
	1						
6번	2						
) 	3						
	평균						

[실험 6] RLC 회로 실험

학과:학번:이름:실험일:실험조:제출일:

1. 실험 결과

a. 저항형 회로 (저항: 100 Ω)

	저항형 회로					
R W	전압(V)	$V = V_{\rm M} \sin(\omega t)$				
		전류(A)	$I = I_{\rm M} \sin(\omega t)$			
		전류의 최대값(A)	$I_{\rm M} = \frac{V_{\rm M}}{R}$			
		각 주파수(rad)	$\omega = 2\pi f$			

주파수	전압(V) 최댓값(V)	전류(I) 최댓값(A)	저항(Ω)(측정)	저항(Ω)(이론)	오차(%)	전류-전압 위상차(rad)
100Hz						
200Hz						
300Hz						
평균						

b. 용량형 회로 (축전기 용량: 330 μ)

용량형 회로					
	전압(V)	$V = \frac{Q}{C} = V_{\rm M} \sin(\omega t)$			
	전류(A)	$I = I_{\rm M} \sin\left(\omega t + \frac{\pi}{2}\right)$			
	전류의 최대값(A)	$I_{\mathbf{M}} = \frac{V_{\mathbf{M}}}{X_{C}}$			
C	용량형 들이저항(Ω)	$X_C = \frac{1}{\omega C}$			

주파수	전압(V) 최댓값(V)	전류(I) 최댓값(A)	$X_c(\Omega)$ (측정)	$X_c(\Omega)$ (이론)	오차(%)	전류-전압 위상차(rad)
50Hz						
100Hz						
150Hz						
평균						

c. 유도형 회로 (코일 인덕턴스: 8.2mH)

유도형 회로					
		전압(V)	$V = L \frac{\mathrm{d}I}{\mathrm{d}t} = V_{\mathrm{M}} \sin(\omega t)$		
T		전류(A)	$I = \frac{V_{\rm M}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$		
	3,	전류의 최대값(A)	$I_{\rm M} = \frac{V_{\rm M}}{X_L}$		
L		유도형 들이저항(Ω)	$X_L = \omega L$		

주파수	전압(V) 최댓값(V)	전류(I) 최댓값(A)	$X_L(\Omega)$ (측정)	$X_L(\Omega)(이론)$	오차(%)	전류-전압 위상차(rad)
200Hz						
300Hz						
400Hz						
평균						

d. RLC 회로

유도형 회로					
		전압(V)	$V_M = I_M \sqrt{R^2 + (X_L - X_C)^2}$		
000	3,	전류의 최대값(A)	$I_M = \frac{V_M}{Z}$		
Î	3 -	임피던스(Ω)	$Z = \sqrt{R^2 + (X_L - X_C)^2}$		
C		공진 주파수(Hz)	$f = \frac{1}{2\pi\sqrt{LC}}$		

주파수	전압(V) 최댓값(V)	전류(I) 최댓값(A)	$Z(\Omega)$ (측정)	Z(Ω)(이론)	오차(%)
공진주파수(Hz)					
공진주파수×10 (Hz)					
공진주파수/10 (Hz)					
공진주파수 (Hz)					
공진주파수에서 위상차 (rad)					

[실험 7] 빛의 간섭과 회절 실험

학과:학번:이름:실험일:실험조:제출일:

1. 단일슬릿(회절)

이론식	$a\frac{y_n}{n} = n\lambda$
단일슬릿(회절)	$D \stackrel{a}{\longrightarrow} D$

레이저의 파장 (nm) λ	650 nm					
디스크의 슬릿폭 (mm) a, 이론값			0.04	mm		
슬릿부터	1					
스크린까지의 거리 (mm)	2					
	3					
(D)	평균					
		0차 극대	1차 극소		1차 극대	2차 극소
회절무늬 사이의 거리	1			1		
	2			2		
(y _n)	3			3		
	평균			평균		
계산된 슬릿 폭 (mm) a, 측정값			오ㅊ	ŀ		

2. 이중슬릿(회절, 간섭)

이론식 단일슬릿(회절)	$a\frac{y_{n1}}{D}$	$-=n\lambda$	이론식 이중슬릿(간섭)	$d\frac{y_{n2}}{D} = n\lambda$
레이저의 파 λ	장 (nm)		650 nm	

λ	030 11111					
디스크의 슬릿폭 (mm) a, 이론값	0.04 mm					
디스크의 슬릿 간격 (mm) d , 이론값			0.25	mm		
슬릿부터	1					
스크린까지의 거리	2					
	3					
(<i>D</i>)	평균					
		0차 극대	1차 극소		1차 극대	2차 극소
회절무늬 사이의 거리	1			1		
	2			2		
(y_{n1})	3			3		
	평균			평균		
		1차 극대	2차 극대		2차 극대	3차 극대
간섭무늬 사이의 거리	1			1		
	2			2		
(y_{n2})	3			3		
	평균			평균		
계산된 슬릿 폭 a, 측정값			오차			
계산된 슬릿 간격 d , 측정값			오차			

[실험 8] 마이켈슨 간섭계 실험

학과:학번:이름:실험일:실험조:제출일:

1. 지레비 계산

레이저파장 (nm) λ	633
이론식	$2d = n\lambda$

마이크로미터가 이동한 거리 (mm)	간섭무늬가 이동한 개수 n	지레비
0.05		1:
0.1		1:
0.15		1:
평 균		

※지레비= 마이크로미터가 이동한 거리 : 실제거울이 이동한 거리

2. 레이저 파장 계산

이론식 $2d = n\lambda$

마이크로미터가 이동한 거리 (mm)	간섭무늬가 이동한 개수 n	레이저파장 (nm)
0.05		
0.1		
0.15		
평 균		

[실험 9] 페러데이의 유도법칙 실험

학과: 학번: 이름: 실험일: 실험조: 제출일:

Induction Wand (EM-8099) - 코일 감긴 횟수: 200회, 코일 치수 : 3.1 cm (= $2\,r_{
m out}$), 1.9 cm (= $2\,r_{
m in}$)

면적(A)
$$[m^2] = \pi \left(\frac{r_{\mathrm{out}} + r_{\mathrm{in}}}{2}\right)^2 = \pi r_{\mathrm{avg}}^2 = 4.908 \times 10^{-4}$$

1. 유도기전력

	측정 값			이론 값
측정횟수	자기장 세기 변화(ΔB) [T]	시간 차(Δt) [s]	평균 전압 [V]	유도기전력 (ε) [V]
1				
2				
3				
평균				
자기장 단위 : 1 G = 10 ⁻⁴ T		오차 (%)		

패러데이 법칙	
$\varepsilon = -NA \frac{\Delta B}{\Delta t}$	

2. 에너지보존

* 코일은 43°에서 시작하며, 두 실험 모두에서 동일한 각도에서 측정한다.

가. 마찰에 의한 에너지 손실 (저항기 연결 X)

히스	초기각도	초기 에너지	나중각도	나중 에너지	마찰에 의한 에너지 손실 (mJ)
횟 수	(°)	(mJ)	(°)	(mJ)	(=초기 에너지-나중 에너지)-①
1					
2					
3					

나. 저항기에 의한 에너지 손실 (저항기 연결 ${ m O}$, 저항=4.7 Ω)

횟 수	초기각도 (°)	초기 에너지 (mJ)	나중각도 (°)	나중 에너지 (mJ)	총 손실된 에너지 (mJ)-②	저항기에 의해 방산된 에너지 (mJ) (③=②-①)
1						
2						
3						

[실험 10] 오실로스코프의 작동원리 실험

학과:학번:이름:실험일:실험조:제출일:

실험 1. 전자빔의 전기적 편향

톱니 발생기에 의한 전기적 편향을 관찰한 후 조교에게 설명을 듣는다.

실험 2. 전자빔의 자기적 편향

자기장의 방향에 따른 편향 방향을 그리시오.(B 방향, I방향, F방향 표시)

실험 3. 시간에 따른 AC 전압의 추적

	톱니발생기의	톱니발생기의
	두 번째 최소 주파수	두 번째 최대 주파수
사인무늬 1개	Hz	Hz
사인무늬 2개	Hz	Hz
측정톱니주파수	Hz	Hz

오실로스코프 실험장치

2015/08/07 K6.2.20

입력:

- 1. 양극 전압
- 2. 음극 전압
- 3. 웨넬트 (포커싱) 전압
- 4. 히터 전압 (0)
- 5. 히터 전압(+)
- 6. 접지 단자
- 7. 편향판(좌)
- 8. 편향판(우)

출력:

- 9. 톱니파 제너레이터(-)
- 10. 톱니파 제너레이터(+)
- 11. 편향 코일
- 12. 원형 자석
- 13. 브라운 관
- 14. 금속 링
- 15. 톱니파 주파수 조동 조그
- 16. 톱니파 주파수 미동 조그

그림 4

아전 지시사항

오실로스코프 실험장치는 전압으로 가동되며, 이중 일부는 60V 이상에서 가동된다.

- 연결을 하기 전에는 항상 전원을 꺼야 한다.
- 안전한 리드선을 사용한다.

유리관이 비어 있기 때문에, 내파 위험성이 있다.

• 관을 날카로운 곳에 부딪히거나 기계적 스트레스를 받지 않게 한다.

학교나 훈련 기관에서 이 장치는 훈련된 직원의 감독하에 책임 있게 운영되어야 한다.

설명

- 오실로스코프 실험장치는 TV나 전통적인 오실로스코프에서와 같이 전자 및 자기장에 의한 전자 빔의 편향을 예시해주는데 사용될 수 있다. 기본적으로 오실로스코프 실험장치는 4mm 플러그에 의해 전압이 공급되는 브라운관으로 구성되어 있으며, 편향 코일이 부착되어 있는 링으로 둘러싸여 있다.
- 브라운관은 비어 있는 유리관으로, 이 브라운관의 목에는 가열된 음극과 양극이 가운데 구멍이 뚫려 있는 디스크 모양으로, 약 0.5cm의 간격으로 분리되어 있다. 가열 음극에서 방출되는 전자들은 양극을 향해 가속되어 방출된다. 이 중 일부는 구멍을 통과해 형광 스크린(규산 아연 도금)을 때리는

빔을 형성하고, 따라서 녹색 형광 점으로 보이게 된다. 빔은 부분적으로는 음극을 둘러싸고 있는 웨넬트 전극에 의해 초점이 맞춰지며, 이 실린더의 포텐셜은 음극 포텐셜과 관련해 음성이며, 다른 일부는 튜브 내부에서 빔을 볼 수 있게 만들어주는 Hg 0.01mm가 관에 채워지면서 가스가 수축하면서 초점이 맞추어지게 된다.

• 또한 관에는 2개의 서로 반대편에 빔에 수평 방향으로 놓여 있는 편향판이 있는데, 이 편향판은 통합적인 톱니 제너레이터나 외부 전원 공급원에 연결될 수 있다. 제너레이터는 양극 포텐셜 대비주파수 3.5~650Hz와 진폭 100V의 톱니 전압 파장을 공급한다.

튜브:

- 17. 편향판
- 18. 양극
- 19. 웨넬트 전극
- 20. 음극
- 21. 히터
- 22. 형광 스크린

그림 5

튜브 사양

• 양극 전압: 250 V DC

● 양극 전류: 1 mA max.

● 히터 전압: 6...8 V AC/DC

● 웨넬트 전압: -50...0 V DC

● 편향판 크기: 12 x 20 mm²

● 편향판의 거리: 14 mm

• 편향 코일: 300 + 300 turns

Ri = 4.2Ω

L = 6 mH

● 톱니 전압: Vpp = 100 V

f = 3.5..650 Hz

실험 방법

- 1. 오실로스코프 실험장치에 전류를 공급하기 위해 전원 공급장치의 전압을 다음과 같이 설정한다.
 - 250 V DC
 - 0~50 V DC. 조절
 - 6~8 V DC, 조절
- 2. 전원 공급장치의 전원을 끄고. 오실로스코프 실험장치에 전원 공급 장치를 연결한다.
- 3. 전압을 조정해 한계를 초과하지 않게하고, 전원을 켠다.
- 4. 10~30초 후에 녹색 반점이 형광 스크린에 나타나는데, 이는 전자 빔이 스크린을 때리는 장소를 의미한다. 교육적 목적이 강한 실험이므로 빔의 2차 가속 및 초점을 위한 추가 장비 없이 제작이 되어서 일반적인 아날로그 오실로스코프에서 볼 수 있는 선명도로 초점을 맞추는게 쉽지는 않을 것이다.
- 5. 점이 최소 크기에 도달할 때까지 웨넬트 전압을 조정한다. 전자 빔은 관 안의 빨강색을 띤 실모양으로 보이게 되며, 어두운 방에서만 보이는데, 그 이유는 강도가 낮기 때문이다.
- 6. 선관 안에 있는 편향판을 사용해, 전자 빔을 최대 100V까지의 전압을 사용해 수평으로 편향시킬 수 있다. 대부분의 용도에 있어, 톱니 제너레이터를 사용해 이 전압을 공급한다. 이 경우, 빔은 좌측에서 우측으로 이동하며, 다시 빠르게 제자리로 돌아온다. 이는 조정할 수 있는 고정 주파수에서 반복된다. 이를 사용해 교체되어 나타나는 자기장과 같이 주기적으로 수직 편향을 보여줄 수 있다.
- 7. 코일을 선관의 목을 둘러싸고 있는 자기 링에 부착한다. 인접한 소켓 사이에는 300번의 회전이 있어, 2개의 외부 소켓에 연결을 하면, 전류가 모두 600회 흐르게 된다. 전자 빔은 오른쪽으로 자기장과 빔 방향에 수직으로 편향된다. 코일을 안으로 향하게 장착하면, 몇 밀리암페어의 작은 전류도 볼 수 있게 된다.
- 8. 나사로 조정할 수 있는 관 받침대 중간에 자석을 부착하면, 빔을 편향 장치를 껐을 때 스크린의 특정 지점을 때릴 수 있게 조정할 수 있다.
- 9. 톱니 제너레이터의 출력은 선관 후면의 마운트 아래에 위치해 있으며, 각각 -Ux 및 +Ux, 로 표시되어 있다. 톱니 전압(또한 램프라고도 부름)은 시간에 걸쳐 주기적으로 변화하는 전압으로서, 첫 수치부터 직선적으로 증가 또는 감소한 뒤 단번에 출발점으로 되돌아온다.

주의: 톱니 전압은 +250V의 양극 포텐셜에 상대적이다.

상부의 손잡이를 사용해 제너레이터를 켜고, 주파수를 거칠게 조정한다. 미세 조정은 하부의 손잡이로 한다.

실험 1. 전자빔의 전기적 편향

그림 6

- 그림 3과 같이 실험을 준비한다.
- 오실로스코프 실험장치로 공급되는 전원을 끈다.
- 톱니 제너레이터의 출력에 편향판을 연결한다.
- 전자 빔을 조정해 전자 빔이 형광 스크린의 좌측을 향하게 한다(모서리에서 1cm 정도 떨어진 곳)
- 톱니 주파수를 최소 수준으로 거칠게 조정한다(좌측에서 두 번째 위치)
- 전원 공급장치의 전원을 켠다.
- 10-30초 후에, 형광 반점이 스크린 상에 나타난다. 이 반점은 주기적으로 좌측에서 우측으로 이동하게 된다.
- 필요한 경우, 미세 조정 조그를 사용해 주파수를 줄여 점의 이동을 분명하게 추적할 수 있게 한다.

실험2. 전자빔의 자기적 편향

그림 7

- 그림 4와 같이 실험을 준비한다.
- 코일을 금속 링에 부착한다.
- 코일 입력을 DC 전원 공급장치에 연결한다.
- 전자 빔을 조정해서 전자빔이 형광 스크린 중앙을 때리게 한다.
- DC 전원을 켜고, 코일로 가는 전류를 조정한다.
- 빔은 빔과 자기장 둘의 방향과 수직으로 편향된다.
- 코일의 극성과 얼라인먼트, 전류가 통과하는 턴의 수를 바꾸고, 그 효과를 관찰한다.

PART3. 시간에 따른 AC 전압의 추적

그림 8

- 필요한 추가 장비 : 함수 발생기
- 그림 5와 같이 실험을 준비한다.
- 주파수를 줄이지 말고, 중간 수준으로 거친 조정을 한다. 주파수 계수기가 있는 멀티 미터가 있는 경우, 이 멀티 미터를 전원을 켜기 전에 편향판에 수평이 되게 톱니 제너레이터의 출력에 연결한다(주의: 톱니 전압 출력을 건드리면 위험함).
- 코일을 금속 링에 부착한다.
- 코일 입력을 함수 발생기(가능한 경우 증폭)에 연결한다.
- 함수 발생기 상의 주파수를 30-100Hz로 선택한다.
- 좌에서 우로 이동하는 동안 빔은 수직으로 편향된다.
- 필요한 경우, 출력 전압을 높여 더 큰 편향을 얻는다.
- 빠른 반복으로 인해 AC 전압의 파형을 보는 것이 어려운데, 그 이유는 기록은 일반적으로 이 기간 중(동일 단계) 동일 지점에서 시작되지 않아 복수의 상 이동 이미지가 겹쳐지기 때문이다. 이 문제는 톱니 주파수가 함수 발생기의 입력 신호 주파수와 동일한 경우에는 발생하지 않는다.
- 미세 조정으로, 분명한 진동 기간을 보여주는 정지 이미지가 나타나는 주파수를 검색한다.
- 다른 어떤 톱니 주파수에서 정지 이미지가 나타나는가?