

Description

These N-Channel enhancement mode power field effect transistors are using **shielded gate trench** DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $40V,80A,R_{DS(on).max}=2.8m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 40V \\ R_{DS(on).max} @\ V_{GS} {=} 10V & 2.8 m\Omega \\ I_D & 80A \end{array}$

Pin Configuration

TO-252

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	40	V
Continuous drain current (Tc = 25°C)		80	A
(T _C = 100°C)	ID	80	A
Pulsed drain current ¹⁾	I _{DM}	320	A
Gate-Source voltage	V _{GSS}	±18	V
Avalanche energy ²⁾	E _{AS}	306	mJ
Power Dissipation	P _D	96	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	ReJC	1.3	°C/W
Thermal Resistance, Junction-to-Ambient ³⁾	R _{0JA}	60	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Reel	
VST04N028-T2	TO-252	VST04N028-T2	2500	

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0		2.1	V
Drain-source leakage current		V _{DS} =40 V, V _{GS} =0 V, T _J = 25°C			1	μA
	I _{DSS}	V _{DS} =40 V, V _{GS} =0 V, T _J = 150°C			10	mA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =18 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-18 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =60 A,T _J = 25°C		2	2.8	mΩ
Forward transconductance	g fs	V _{DS} =20 V , I _D =30A		50		S
Dynamic characteristics						
Input capacitance	C _{iss}			3260		pF
Output capacitance	Coss	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$		1224		
Reverse transfer capacitance	C _{rss}	- f = 1MHz		113		
Turn-on delay time	t _{d(on)}			10.8		- ns
Rise time	t _r			22.8		
Turn-off delay time	t _{d(off)}	$ V_{DD} = 20V, V_{GS} = 15V, I_D = 50 A$		143.8		
Fall time	t _f			72.2		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.4		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}			10		
Gate to drain charge	Q _{gd}	V _{DS} =32 V, I _D =60A,		17.6		nC
Gate charge total	Qg	V _{GS} = 10 V		69.7		
Gate plateau voltage	V _{plateau}			3		V
Output Charge	Q _{oss}	V _{DS} =32 V,V _{GS} = 0V		58		nC
Drain-Source diode characteris	stics and Maxi	mum Ratings				
Continuous Source Current	Is				80	А
Pulsed Source Current ⁴⁾	I _{SM}				320	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =40A, T _J =25℃			1.2	V
Reverse Recovery Time	t _{rr}	I _S =50A, di/dt=100A/us,		44.4		ns
Reverse Recovery Charge	Q _{rr}			56.8		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD}=24V, V_{GS}=10V, L=0.5mH, I_{AS}=35A, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C.
- 3: The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.
- 4. Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. On-Resistance Variation vs.Drain Current

Figure 5.Breakdown Voltage vs.Temperature

Figure 2. Transfer Characteristics

Figure 4. Threshold Voltage vs. Temperature

Figure 6.On-Resistance vs.Temperature

Figure 7.Rds(on) vs. Gate Voltage

Figure 9. Capacitance Characteristics

Figure 11. Drain Current Derating

Figure 8.Body-Diode Characteristics

Figure 10. Gate Charge Characteristics

Figure 12. Power Dissipation vs. Temperature

Figure 13: Safe Operating Area

Figure 14. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

