Algoritmos de Inteligência Artificial

Inteligência Artificial

CRISP-DM

Fonte: IBM

CRISP-DM

Bases de Dados

Aprendizado de Máquina

Definição:

Aprendizado de Máquina é a área da Ciência da Computação que foca em desenvolver métodos (algoritmos) capazes de aprender <u>automaticamente</u> a partir de experiência (dados), melhorando seus desempenhos.

- Diferentes abordagens:
 - Aprendizado supervisionado;
 - Aprendizado não supervisionado;
 - Aprendizado semi-supervisionado.

Algoritmos

- Árvores de Decisão;
- XGBoost;
- k-NN;
- Redes Neurais Artificiais.

Árvores de Decisão

- Análise hierárquica das features;
- Limiares são otimizados.

Árvores de Decisão

Altura

- Análise hierárquica das features;
- Limiares são otimizados.

Peso

% Massa magra

Jogador de basquete

Pessoa comum

Árvores de Decisão

Altura > **1,8 m**

- Análise hierárquica das features;
- Limiares são otimizados.

Peso

% Massa magra

Jogador de basquete

Pessoa comum

- k-Nearest Neighbors (k-NN):
 - Definição do valor de k;
 - Seleção das k amostras mais próximas (de acordo com alguma métrica de distância);
 - Classificação da amostra desconhecida como sendo da classe predominante entre as amostras vizinhas mais próximas.

- Cérebro humano:
 - 80 bilhões de neurônios;
 - Trilhões de conexões sinápticas.
- Neurônio: unidade elementar das redes neurais.

- Primeiro modelo matemático McCuloch e Pitts (1943):
 - Entradas;
 - Função de ativação (limiar de ativação);
 - Saída.

MLP

Deep Learning

• Redes neurais artificiais profundas (muitas camadas escondidas);

- Múltiplos níveis de características (diferentes representações dos dados originais);
- Mais camadas características de mais alto nível (abstratas):
 - Robustez (ruído, transformações, etc.);
 - Vetores de características compactos (características relevantes).

- Por que só agora?
 - Aumento do poder computacional (GPU);
 - Abundância de dados (quebra de plateaus);
 - Melhorias teóricas (funções de ativação, algoritmos de treinamento, etc.).

Desafio ImageNet

- Modelos discriminativos e generativos;
- Generativos:
 - Foco em aprender a distribuição das amostras de treinamento;
 - Eliminação de ruído, reconstrução de sinal, inicialização de outros modelos, etc.
- Discriminativos:
 - Foco na classificação;
 - Saídas são probabilidades (pertencimento a classes).

- Convolutional Neural Networks (CNN) modelos discriminativos;
- Convolução (k=3x3; stride=1):

- Convolutional Neural Networks (CNN) modelos discriminativos;
- Convolução (k=3x3; stride=1):

Convolutional Neural Networks (CNN) – modelos discriminativos;

Convolutional Neural Networks (CNN) – modelos discriminativos;

- Convolutional Neural Networks (CNN) modelos discriminativos;
- Convolução (k=3x3; stride=1):

Convolutional Neural Networks (CNN) – modelos discriminativos;

Convolutional Neural Networks (CNN) – modelos discriminativos;

- Pooling (k=2x2; stride=1):
 - MAX pooling;
 - AVG pooling.

- Pooling (k=2x2; stride=1):
 - MAX pooling;
 - AVG pooling.

- Pooling (k=2x2; stride=1):
 - MAX pooling;
 - AVG pooling.

Feature Map (FM)

- Pooling (k=2x2; stride=1):
 - MAX pooling;
 - AVG pooling.

- Pooling (k=2x2; stride=1):
 - MAX pooling;
 - AVG pooling.

- Kernels 2D bons para lidar com imagens;
- Robustez a translação, escala, ruído, etc.;
- Convolução:
 - Pesos dos kernels conexões entre neurônios (compartilhados pelos neurônios de um FM);

Pesos são aprendidos via backpropagation.

150

200

200

200

200

390.0

Aplicações

- Visão Computacional;
- Optical Character Recognition (OCR);
- Processamento de Linguagens Naturais;
- Análise de movimentos/emoções;
- Carros/drones autônomos;
- Medicina;
- Humanos Digitais;
- Muitas outras.

Image Credit: Nvidia

Gerador Automático de Texto

https://textsynth.com/playground.html

Dicas

- Faces sintéticas (<u>www.thispersondoesnotexist.com</u>);
- Checar pesos e feature maps (http://scs.ryerson.ca/~aharley/vis/conv/);
- Treinamento interativo de rede neural convencional (https://playground.tensorflow.org/);
- Acompanhar acurácia e loss treinamento e teste (validação);
- Usar modelos default (GoogleNet, MobileNet, Inception-v3, ResNet);
- Usar normalização, ReLU e Adam;
- Coursera Especialização em Deep Learning (Andrew Ng –
 Deeplearning.ai).

Dicas

Tensorflow

- Desenvolvido pelo Google;
- Python principal linguagem;
- Muitas bibliotecas disponíveis (Keras).

