Corrections

Below I present a list of corrections on publications where I am involved in. Occasionally, I credit the person who brought this to my attention, but more frequently I may have forgotten the messenger. Comments and further corrections are welcome.

Ormel et al. (2007)

Figure 2: The values for the enlargement factor ψ given here are erroneous.

Ormel et al. (2009)

Equation A1: There should not be a factor of π in this equation.

Ormel & Klahr (2010)

Equation 25: The factor 2 in front of the integral should be removed.

s. above eq.37: The numerical factor should be $1.5 \times 10^{-2} M_{\oplus} \, \mathrm{yr}^{-1}$, a factor of 10 smaller

than stated.

Equation 37: The multiplication operator (\times) should instead be a division / (Large pebble scaleheight decreases the efficiencies).

• python scripts calculating pebble accretion rate efficiencies are available on github

• Willy Kley had pointed out some of these mistakes to me.

Ormel & Kobayashi (2012)

Table 4: The third condition should read $\tau_{\rm fr} \geq \max[\tau^*, \zeta_w]$ and the definition of τ^*

as stated in the table note should read $\tau^* = \min(12/\zeta_w^3, 2)$.

Equation C4: This is now superseded by Okuzumi & Ormel (2013) where $\gamma_t = 5 \times 1/3$

 $10^{-3}\alpha_{\rm ss}^{1/2}$ has been employed. This affects the expressions below.

Schoonenberg & Ormel (2017)

Equation 10: The factor 4 should be removed from this equation. The integral over the velocity distribution amounts to

$$\int_0^\infty v P_N \left(v \left| \frac{kT}{\mu_Z} \right. \right) = \frac{1}{4} v_{\rm th,Z}. \tag{1}$$

where P_N is the normal distribution. Multiplied by $4\pi\sigma$, this gives the rate expression (the factor 4 drops out).

- Note that this expression assumes the ballistic approach limit. At high densities, the rate expression is dictated by the diffusion limit.
- This expression may also be erroneous in some of the cited references above Equation 10.

Thanks to Til Birnstiel for pointing out this mistake.

Equation 34: This should be $\dot{M}_{\rm ice}$ instead of $\dot{M}_{\rm gas}$.

Ormel et al. (2015)

Sect. 2.1 2nd par: The expression for the Coriolis force should read $F_{cor} = -2\Omega \times v$, including the minus sign.

Visser & Ormel (2016)

Equation 21: There should be a minus sign within the argument of the exponent.

> Comment: in later works (Liu & Ormel 2018; Ormel & Liu 2018), the exponential factor is denoted f_{set} (or rather f_{set}^2 as we are talking about a 3D problem here) and is written as

$$f_{\rm set}^2 = \exp\left[-\left(\frac{\Delta v}{v_*}\right)^2\right] \tag{2}$$

with $v_* = (q_p/\tau_s)^{1/3} v_K$ where $q_p = m_p/m_\star$ the dimensionless planet mass, au_s the Stokes number, and $v_{
m K}$ the local Keplerian velocity. This expression follows from (but it is not identical to) eq.26 in VO16 if we take the settling expressions listed in Table 4 and $St = St_*$:

$$f_{\text{set-VO16}} = \exp \left[-2.26(St/2\Theta)^{0.61} \right]$$
 (3)
 $= \exp \left[-2.26((\Delta v)^3 t_{\text{stop}}/4Gm_p)^{0.61} \right]$ (4)
 $= \exp \left[-0.97(\Delta v/v_*)^{1.83} \right]$ (5)

$$= \exp\left[-2.26((\Delta v)^3 t_{\text{stop}}/4Gm_p)^{0.61}\right] \tag{4}$$

$$= \exp\left[-0.97(\Delta v/v_*)^{1.83}\right] \tag{5}$$

The numerical factors in Eq. (5) are arguably more precise as they have been directly fitted.

Equation 25: The numerical prefactor should read 450 km.

Ormel & Liu (2018)

Equation 41: The modulation with $f_{\rm set}$ factor has already been applied above. So Equa-

tion 41 just reads: $\varepsilon = \varepsilon_{\rm set} + \varepsilon_{\rm bal}$.

Ormel & Liu (2018)

Table 1: Sign error in the latent heat of silicates, $u_{\rm evap}$, which should read 1.5 \times

 $10^{11} \,\mathrm{erg}\,\mathrm{g}^{-1}$.

Huang & Ormel (2023)

Equation 7: The definition of γ_I is at odds with the literature, where the non-dimensional

torque is usuall defined as $\gamma = \Gamma/m_p(r\Omega)^2$ with m_p the planet mass, r the semi-major axis and Ω the Keplerian orbital frequency. Therefore, the definition of γ_I in the line below Eq.7 is wrong. It should be inversed. This mistake has affected Figure 8 and 9 and the conclusion (ii) about the C_e

parameter. An errata is under way.

References

Huang, S. & Ormel, C. W. 2023, MNRAS, 522, 828

Liu, B. & Ormel, C. W. 2018, A&A, 615, A138

Okuzumi, S. & Ormel, C. W. 2013, ApJ, 771, 43

Ormel, C. W. & Klahr, H. H. 2010, A&A, 520, A43

Ormel, C. W. & Kobayashi, H. 2012, ApJ, 747, 115

Ormel, C. W., Kuiper, R., & Shi, J.-M. 2015, MNRAS, 446, 1026

Ormel, C. W. & Liu, B. 2018, A&A, 615, A178

Ormel, C. W., Paszun, D., Dominik, C., & Tielens, A. G. G. M. 2009, A&A, 502, 845

Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, A&A, 461, 215

Schoonenberg, D. & Ormel, C. W. 2017, A&A, 602, A21

Visser, R. G. & Ormel, C. W. 2016, A&A, 586, A66