Programming in R and Python

Lecture 10: Linear algebra in Python

Adam Gudyś
Silesian University of Technology
2020

Linear algebra libraries

BLAS (Basic Linear Algebra Subprograms):

 low-level operations (vector-vector, vector-matrix, matrixmatrix),

LAPACK (Linear Algebra Package):

- high-level operations (eigendecomposition; SVD; LU, QR, Cholesky factorizations, etc.).
- Originally implemented in FORTRAN (that time faster than C),
- R built in the core; Python NumPy + SciPy packages,
- Possibility to use different implementations:
 Intel Math Kernel Library, cuBLAS, OpenBLAS, etc.

Python – installing packages

pip - recommended Python package manager, automatically installed with Python $2 \ge 2.7.9$ and Python $3 \ge 3.4$.

Where to find it?

- Linux: /usr/bin/ (added to PATH by default),
- Windows: <PythonDir>/scripts/

Pip package manager

Operation	Command		
Install latest version	pip install <name></name>		
Install specified version	<pre>pip install <name>=<version></version></name></pre>		
Install from sources	pip install <src></src>		
Upgrade	pip install -upgrade <name></name>		
Uninstall	pip uninstall <name></name>		

Example:

```
pip install numpy
pip install scipy
```

Code...

Memory organization

32GB

4x32KB

4x256KB

6MB

Experiment

Matrix multiplication: $C_{M\times N}=A_{M\times K}*B_{K\times N}$

code written in C, matrices stored as 1D arrays of

double.

```
for (int i = 0; i < M; ++i)
  for (int j = 0; j < N; ++j)
    for (int k = 0; k < K; ++k)
        C[i*N+j] += A[i*K+k] + B[k*N+j];</pre>
```

Experimental setting:

- Matrices were assumed to be square: M = N = K.
- Different orderings of M, N, K loops were analyzed:
 - each time, same number of operations performed!

Results

Execution times for different loop orderings (milliseconds).

size	100	200	400	800
M, N, K	0.9	8.8	75.8	1437.7
M, K, N	0.7	5.4	45.6	406.5
N, M, K	0.9	8.1	73.3	730.5
N, M, K	0.7	8.3	172.7	8366.2
K, M, N	0.7	6.0	45.7	442.8
K, N, M	1.0	10.0	171.2	8203.0

i7-4700MQ double precision performance: ~65 GFLOPS

Thank you for your attention!