Curs 1

Diferențe finite. Diferențe divizate

Dacā E este o mulțime nevidă atunci

$$B(E) = \{F : E \to \mathbb{R} : f \text{ este marginita}\}\$$

este un spațiu vectorial normal în raport cu adunarea și înmulțirea cu scalari a funcțiilor. Mai mult, este spațiu normat în raport cu norma

$$||f|| = \sup_{x \in E} |f(x)|.$$

Fie acum $a,b \in \mathbb{R}, a < b$. Notăm cu C[a,b] mulțimea funcțiilor reale continue definite pe [a,b]. Atunci $(C[a,b],+,\cdot,\|\cdot\|)$ este spațiu Banach în raport cu norma uniformă (numită și Cebîșev)

$$||f|| = \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} . |f(x)|.$$

Apoi, pentru $n \in \mathbb{N}^*$ notăm cu $C^n[a,b]$ clasa funcțiilor reale de n ori derivabile pe [a,b] și cu derivata de ordinul n continuă.

Pentru un interval $I \subseteq \mathbb{R}$, C > 0 și $\alpha \in (0,1]$ noăm cu $Lip_{C,\alpha}(I)$ clasa funcțiilor α -Lipschitz de constantă C pe I. Asta înseamnă că

$$|f(x) - f(y)| \le C |x - y|^{\alpha}, \ (\forall) x, y \in I.$$

Pentru $\alpha=1$ spunem simplu funcție Lipschitz (de constantă C) și notăm cu $Lip_C(I)$ această clasă.

Dacă I=[a,b] atunci $Lip_{C,\alpha}([a,b])\subseteq C[a,b],\ (\forall)\ \alpha\in(0,1].$ Apoi, se demonstrează ușor că $C^1[a,b]\subseteq Lip_{\|f'\|}([a,b]).$

Pentru $p \geq 1$ considerăm mulțimea $L_p[a,b]$ conținând funcțiile p-integrabile. Funcția $f:[a,b] \to \mathbb{R}$ este p-integrabilă dacă există în \mathbb{R} integrala Lebesgue $\int_a^b |f(x)|^p dx. \left(L_p[a,b],+,\cdot,\|\cdot\|_p\right)$ este spațiu Banach în raport cu norma

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}} dx.$$

Diferențe finite

Pentru $x \in \mathbb{R}, h \in \mathbb{R}^*$ și $r \geq 1$ natural, considerăm mulțimea

$$M_x := \left\{ x + kh : k = \overline{0, r} \right\}$$

și funcția $f: E \to \mathbb{R}$ astfel încât $M_x \subseteq E$.

Diferența finită de ordinul 1 cu pasul h a funcției f pe punctul x este

$$\Delta_h f(x) = f(x+h) - f(x).$$

Uneori, se poate folosi și un indice superior pentru a sublinia faptul că diferența finită este de ordinul 1 și atunci notăm $\Delta_h^1 f(x)$.

Diferența finită de ordinul k ($2 \le k \le r$) cu pasul h a funcției f pe punctul x este

$$\Delta_h^k f(x) = \Delta_h \left(\Delta_h^{k-1} f \right)(x). \tag{1}$$

Propoziţia 1.

(i) Pentru $p,k\in\mathbb{N},\,1\leq p+k\leq r,$ avem

$$\Delta_h^p \left(\Delta_h^k f \right)(x) = \Delta_h^k \left(\Delta_h^p f \right)(x) = \Delta_h^{k+p} f(x).$$

(ii) Pentru $k \in \mathbb{N}^*$, $1 \le k \le r$, avem

$$\Delta_{h}^{k} f(x) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} f(x + (k-i)h)
= \sum_{i=0}^{k} (-1)^{k-j} f(x+jh).$$
(2)

Ambele proprietăți se demonstrează ușor prin inducție matematică.

Diferențe divizate

Definiția 2. Fie $I \subseteq \mathbb{R}$, $p \in \mathbb{N}$, $x_0, x_1, ..., x_n \in I$, distincte două câte două (numite noduri distincte în continuare) și $f: I \to \mathbb{R}$. Diferența divizată de ordinul p a funcției f pe nodurile $x_0, x_1, ..., x_n$, se definește astfel:

pentru
$$p = 0$$
, $[x_0; f] := f(x_0)$;
pentru $p = 1$, $[x_0, x_1; f] := f(x_1) - f(x_0)$;
pentru $p = 2$,

$$[x_0,x_1,...,x_p;f]:=\frac{[x_1,...,x_p;f]-[x_0,x_1,...,x_{p-1};f]}{x_p-x_0}.$$

Propoziția 2.

(i) Avem

$$[x_0, x_1, ..., x_p; f] = \sum_{i=0}^{p} \frac{f(x_i)}{u'(x_i)},$$

unde

$$u(x) = (x - x_0)(x - x_1) \cdots (x - x_n), x \in \mathbb{R}.$$

(ii) Avem

$$[x_0, x_1, ..., x_p; f] = \frac{W(x_0, x_1, ..., x_p; f)}{V(x_0, x_1, ..., x_p; f)},$$

unde $V\left(x_0,x_1,...,x_p;f\right)$ este determinantul Vandermonde corespunzător numerelor $x_0,..,x_p$ și $W\left(x_0,x_1,...,x_p;f\right)$ se obține din $V\left(x_0,x_1,...,x_p;f\right)$ înlocuind în $V\left(x_0,x_1,...,x_p;f\right)$ elementele ultimei coloane cu valorile $f\left(x_0\right),f\left(x_1\right),...,f\left(x_p\right)$.

(iii) Dacă $f \in C^p([a,b])$ atunci există ξ cuprins între nodul cel mai mic și nodul cel mai mare astfel încât

$$[x_0, x_1, ..., x_p; f] = \frac{f^{(p)}(\xi)}{p!}.$$

(iv)
$$\Delta_h^p f(x) = p! h^p [x, x+h, ..., x+ph; f].$$

Din proprietatea (i) rezultă ușor că $[x_0, x_1, ..., x_p; f]$ nu depinde de ordinea nodurilor iar din (iii) rezultă imediat că $[x_0, x_1, ..., x_p; f]$ este o valoare constantă indiferent de noduri dacă $f \in \mathbb{R}_n[x]$.

Definiția 3. (T. Popoviciu) Fie $I \subseteq \mathbb{R}$ un interval, $p \in \mathbb{N}^*$ și $f : I \to \mathbb{R}$. Spunem că f este convexă (concavă) de ordinul p dacă

$$[x_0, x_1, ..., x_p, x_{p+1}; f] \ge 0 \ (\le 0), \ (\forall) \ x_0, ..., x_{p+1} \in I.$$

Pentru p=0 obţinem funcţiile crescătoare (descrescătoare) pe I iar pentru p=1 obţinem funcţiile convexe (concave) pe I.

Temă

- 1. Pentru x=1, h=1 ş i $f(x)=x^2$ să se calculeze $\Delta_h^3 f(x)$ aplicănd iterativ formula (1) iar apoi prin aplicarea directă a formulei (2). Încercați apoi să scrieți un program în care datele de intrare să fie x,h și k iar data de ieșire (afișare) să fie $\Delta_h^3 f(x)$ unde $f(x)=x^2$. Puteți încerca și cu alte funcții dar să țineți cont de faptul că trebuie ca domeniul lor de definiție să conțină toate valorille în care calculați valorile funcției.
- 2. Aplicănd Definiția 2 calculați $\left[1, \frac{3}{2}, 2, 3; f\right]$ pentru $f(x) = \frac{1}{x}$. Indicație: Scrieți un program care să aplice iterativ Definiția 2.
- 3. Fie $a_0,a_1,a_2\in[0,1]$. Să se demonstreze că $\left[a_0,a_1,a_2;x^3\right]\leq 3$ (deci, $f(x)=x^3$ pentru această diferență divizată).
- 4. Fie $I \subseteq \mathbb{R}$ un interval și $f: I \to \mathbb{R}$. Demonstrați că f este convexă pe I dacă și numai dacă $[x_0, x_1, x_2; f] \ge 0$, pentru orice noduri distincte x_0, x_1, x_2 din I.

Indicație: Vă reaminstesc că f este convexă dacă

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \ (\forall) \ x, y \in I, \alpha \in [0, 1].$$

Secretul este să alegeți nodurile x_0, x_1, x_2 , astfel încât din calculul diferenței divizate să ajungem la relația de mai sus.

Curs 2 Interpolare polinomială

Polinomul de interpolare Lagrange

Fie numerele reale $x_0, x_1, ..., x_n$, distincte două câte două și să le asociem numerele reale $y_0, y_1, ..., y_n$. Căutăm un polinom P de gradul n astfel încât $P(x_i) = y_i, i = \overline{0, n}$.

Se observă ușor că un astfel de polinom este

$$P(x) = \sum_{i=0}^{n} \left(\frac{\prod_{j=0, j \neq i}^{n} (x - x_j)}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)} \right) \cdot y_i.$$

Dacă există $f:[a,b] \to \mathbb{R}$, astfel încât $f(x_i) = y_i$, $i = \overline{0,n}$, atunci notăm $P = L_n(f,x_0,...,x_n)$ sau, cînd nu este pericol de confuzie $P = L_n(f)$ și numim acest polinom ca fiind polinomul de intrpolare Lagrange a funcției f pe nodurile $x_0,...,x_n$. Astfel, avem

$$L_n f(x) = \sum_{i=0}^n \frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)} \cdot f(x_i),$$

$$(\forall) x \in [a,b].$$

Dacă notăm $u(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$ și $u_i(x)=\frac{u(x)}{x-x_i},\ i=\overline{0,n},$ obținem

$$L_n f(x) = \sum_{i=0}^n \frac{u_i(x)}{u_i(x_i)} \cdot f(x_i), \ (\forall) \ x \in [a, b].$$

De exemplu, dacă $x_0 = -1$, $x_1 = 1$, $x_2 = 2$ şi $f(x_0) = y_0 = 2$, $f(x_1) = y_1 = 0$, $f(x_2) = y_2 = 1$, avem

$$u(x) = (x+1)(x-1)(x-2),$$

$$u_0(x) = (x-1)(x-2),$$

$$u_1(x) = (x+1)(x-2)$$

$$u_2(x) = (x+1)(x-1).$$

Astfel

$$L_2 f(x) = \frac{u_0(x)}{u_0(x_0)} \cdot y_0 + \frac{u_1(x)}{u_1(x_1)} \cdot y_1 + \frac{u(x)}{u_2(x_2)} \cdot y_2$$

$$= \frac{(x-1)(x-2)}{6} \cdot 2 - \frac{(x+1)(x-2)}{2} \cdot 0 + \frac{(x+1)(x-1)}{3} \cdot 1$$

$$= \frac{2x^2}{3} - x + \frac{1}{3}.$$

Polinomul lui Lagrange se poate scrie și cu ajutorul diferențelor divizate. Considerând nodurile distincte $x_0, ..., x_n$, pentru $i, i + k \in \{0, ..., n\}$ notăm

$$[x_i, x_{i+1}, ..., x_{i+k}; f] = D^k f(x_i).$$

Atunci, are loc formula

$$L_n f(x) = f(x_0) + D^1 f(x_0) (x - x_0) + D^2 f(x_0) (x - a_0) (x - x_1) + \dots + D^n f(x_0) (x - x_0) (x - x_1) \dots (x - x_{n-1}).$$

Formula de mai sus se numește formula lui Newton pentru polinomul de interpolare Lagrange. De obicei în acest caz polinomul Lagrange se notează $N_n f(x)$.

Estimarea erorii în interpolarea Lagrange

Desigur putem scrie

$$f(x) = L_n f(x) + R_n f(x), x \in [a, b].$$

iar expresia $R_n f(x)$ se numește restul în formula de interpolare Lagrange pentru $x \in [a, b]$.

Teorema 1. Dacă $f \in C^{n+1}[a,b]$ și $x \in [a,b]$ atunci există $\eta \in (a,b)$ astfel încât

$$|R_n f(x)| = \frac{|u(x)|}{(n+1)!} \cdot \left| f^{(n+1)}(\eta) \right|. \tag{3}$$

Polinomul Cebîşev de speţa întâi

Pornind de la estimarea din relația (3), în cazul particular a=-1, b=1 se pune problema să determinăm nodurile $x_1, ..., x_n$, astfel încât $||u|| \leq ||v||$ pentru orice polinom

$$v(x) = (x - t_1)(x - t_2) \cdots (x - t_n),$$

 $t_1, ..., t_n \in [-1, 1],$

unde

$$u(x) = (x - x_1)(x - x_2) \cdot \cdot \cdot (x - x_n).$$

Cebîşev a demonstrat că aceste noduri sunt

$$x_i = \cos\left(\frac{(2i-1)\pi}{2n}\right), i = \overline{1,n}.$$

Se observă imediat că $T_n(x_i) = 0$, $i = \overline{1, n}$, unde

$$T_n(x) = \cos(n \arccos x), n \in \mathbb{N}^*, x \in [-1, 1].$$

Folosind substituția $x = \cos \theta$, obținem $\theta = \arccos x$ și apoi $T_n(x) = \cos (n\theta)$. Tinând cont de binecunoscutele formule

$$\cos((n+1)\theta) = \cos n\theta \cos \theta - \sin n\theta \sin \theta,$$

$$\cos((n-1)\theta) = \cos n\theta \cos \theta + \sin n\theta \sin \theta,$$

prin însumare obținem

$$\cos((n+1)\theta) + \cos((n-1)\theta) = 2\cos n\theta\cos\theta$$

ceea ce implică faptul că

$$T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x), \ (\forall) \ n \in \mathbb{N}^*, x \in [-1, 1],$$

și apoi

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), (\forall) n \in \mathbb{N}^*, x \in [-1, 1],$$

unde
$$T_0(x) = 1$$
, $(\forall) x \in [-1, 1]$.

Aplicând această relație de recurență pentru n=2,3,..., obținem

$$T_2(x) = 2x^2 - 1,$$

 $T_3(x) = 4x^3 - 3x,$
 $T_4(x) = 8x^4 - 8x^2 + 1.$

Luînd

$$\overline{T_n} = \frac{1}{2^{n-1}} T_n$$

se obține polinomul căutat șsi numit polinomul lui Cebîșev de speța întâi. În plus, se verifică ușor că

$$\left\| \overline{T_n} \right\| = \frac{1}{2^{n-1}}$$

iar de aici, folosind acest rezultat în (3), rezultă că

$$|R_n f(x)| \le \frac{1}{2^n} \cdot \frac{1}{(n+1)!} \cdot \left\| f^{(n+1)} \right\|.$$

Polinomul de interpolare Hermite

Fie nodurile distincte $x_0 < x_1 < \cdots < x_m$ pentru care se cunosc valorile $f(x_0), f'(x_0), \dots, f^{(r_0)}(x_0)$

$$f(x_0), f'(x_0), ..., f^{(r_1)}(x_0)$$

 $f(x_1), f'(x_1), ..., f^{(r_1)}(x_1)$

.

$$f(x_m), f'(x_m), ..., f^{(r_m)}(x_1)$$

$$n+1 = \sum_{i=0}^{m} (r_i + 1).$$

Căutăm un polinom $H_n f: [x_0, x_m] \to \mathbb{R}$, de grad n astfel încât

$$H_n^{(j)}f(x_k) = f^{(j)}(x_k), (\forall) j = \overline{0, r_k}, k = \overline{0, m}.$$

Considerăm

$$u(x) = (x - x_0)^{r_0 + 1} (x - x_1)^{r_1 + 1} \cdots (x - x_m)^{r_m + 1},$$

$$u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}, k = \overline{0, m}.$$

Polinomul

$$H_n f(x) = \sum_{k=0}^{m} \left[u_k(x) \cdot \left(\sum_{j=0}^{r_k} \frac{(x - x_k)^j}{j!} \cdot \left(\frac{f(t)}{u_k(t)} \right)_{|t = x_k}^{(j)} \right) \right]$$

este polnomul căutat și se numește polinomul de interpolare Hermite.

Notăm restul cu $R_n f(x)$, ceea ce înseamnă că $f(x) = H_n f(x) + R_n f(x)$, $(\forall) x \in [a, b]$. Mai mult, avem

$$|R_n f(x)| \le \frac{|u(x)|}{(n+1)!} \cdot ||f^{(n+1)}||, \ \ (\forall) \ x \in [a,b].$$

Cazuri particulare

Dacă m=0 și $r_0=n$ se obține polinomul lui Taylor în jurul lui x_0 (dacă $x_0=0$ se numește polinomul Maclaurin) notat $T_nf(x)$, unde

$$T_n f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{(x - x_0)^2}{2!} \cdot f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} \cdot f^{(n)}(x_0).$$

Dacă $r_0=\cdots=r_m=1,\ n=2m+1$ se obține polinomul de interpolare hermite pe nodurile duble $x_0,...,x_m,$ și anume

$$H_{2m+1}f(x) = \sum_{k=0}^{m} \left(u_k(x) \cdot \frac{f(x_k)}{u_k(x_k)} + (x - x_k) \left(\frac{f(t)}{u_k(t)} \right)_{|t=x_k|}' \right).$$

Seminar 2

Funcții spline

Fie diviziunea Δ a intervalului $[a, b], \Delta = (x_0, ..., x_n)$, unde

$$a = x_0 < x_1 < \dots < x_n = b.$$

și fie valorile reale $y_0, y_1, ..., y_n$.

Definiția 1. Pentru $k\in\mathbb{N}^*$ funcția $S:[a,b]\to\mathbb{R}$ este funcție spline polinomială de grad k dacă

- i) $S \in C^{k-1}[a, b];$
- ii) $S|_{[x_{i-1},x_i]} = S_i$ este polinom de grad cel mult k, i = 1,...,n.
- iii) $S(x_i) = y_i, i = 0, ..., n.$

Dacă $f \in C[a, b]$ astfel încât $f(x_i) = y_i$, $i = \overline{0, n}$ atunci S se numește spline de interpolare a funcției f pe diviziunea Δ .

Cazuri particulare

Dacă k=1 și grad $S_i \leq 1, i=1,...,n$, se obține interpolarea spline poligonală pe porțiuni. În acest caz, dacă $f \in C^2[a,b]$, avem

$$|S(x) - f(x)| \le \left| \frac{(x - x_{i-1})(x - x_i)}{2} \right| ||f''||, \ (\forall) \ x \in [x_{i-1}, x_i], \ i = \overline{1, n}.$$

De aici rezultă ușor că

$$|S(x) - f(x)| \le \frac{h^2}{8} \cdot ||f''||, (\forall) x \in [a, b],$$

unde

$$h = \|\Delta\| = \max\left\{x_i - x_{i-1} : i = \overline{1, n}\right\}.$$

Pentru k=3 și $S \in C^2[a,b]$ se obține interpolarea spline cubică.

În final, prezentăm un rezultat interesant de interplare al lui Passaw.

Teorema 2 (Passaw). Fie diviziunea Δ a intervalului $[a,b], \Delta = (x_0,...,x_n),$ unde

$$a = x_0 < x_1 < \dots < x_n = b.$$

și fie valorile reale $y_0, y_1, ..., y_n$. Atunci pentru orice $l \in \mathbb{N}$ există o funcție $S: [a, b] \to \mathbb{R}$ cu proprietățile:

- i) $S \in C^{l}[a, b];$
- ii) $S|_{[x_{i-1},x_i]} = S_i$ este polinom de grad cel mult m, unde $m \geq 2l+1$, i=1,...,n;
 - iii) $S(x_i) = y_i, i = 0, ..., n;$
- iv) Pentru orice $i \in \{0,...,n-1\}$, dacă $y_i \leq y_{i+1}$ atunci S este crescătoare pe $[x_i,x_{i+1}]$ iar dacă $y_i \geq y_{i+1}$ atunci S este descrescătoare pe $[x_i,x_{i+1}]$.

Temă

1. Folosind formula lui Newton să se se determine polinomul lui Lagrange asociat funcției f pe nodurile $x_0 = -1$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, știind că $f(x_0) = 2$, $f(x_1) = -1$, $f(x_2) = 1$, $f(x_3) = 2$.

- 2. Folosind polinomul Maclaurin asociat funcției $f(x) = e^x$ calculați $\int_0^1 e^{x^2} dx$ cu două zecimale exacte.
- 3. Cu ce eroare se poate calcula $\sqrt{115}$ cu ajutorul formulei de interpolare Lagrange considerând funcția $f(x) = \sqrt{x}$ și nodurile de interpolare $x_0 = 100, x_1 = 121, x_2 = 144.$
- 4. Considerând funcția f și nodurile $x_0,x_1,...,x_n$ să se demonstreze că polinomul de interpolare Lagrange verifică relația de recurență

$$(x_n - x_0) L_n(f, x_0, ..., x_n)(x)$$

$$= (x - x_0) L_n(f, x_1, ..., x_n)(x) - (x - x_n) L_n(f, x_0, ..., x_{n-1})(x).$$