

Natural, Mathematical & Physical Sciences 7/2/2022

Dr Francesco Ciriello

Department of Engineering

4CCE1MCP: Design, Making a Connection

Week 25

Hardware interfacing in Simulink

Housekeeping

Confluence Pages

- <u>User limits</u> and charge fees

Individual Coursework

Live Demo on how to get started

Office Hours

Office location is 1.24 Strand building

Design, Build & Test Group Project

- Next week, we will hold a live session on the group design project
- You can any question live on delivery

Bill estimate

USD 0.00 (tax inclusive)

View full estimate

Before the session

Confluence Pages – User double-counting issue

From you team website, for example https://francescociriellokcl.atlassian.net/wiki/

Individual Coursework

I have completed the tutorials, but how do I get started on the individual coursework?

Office Hours

Module Teaching Support

Dr Francesco Ciriello

Email: francesco.ciriello@kcl.ac.uk

Office Hours: Monday 11:00-12:00 (on campus), Room 1.24 Strand Building

Wednesday 10:00-11:00 (virtual), MS

Teams link

Office Hours

Module Teaching Support

Dr Francesco Ciriello

Email: francesco.ciriello@kcl.ac.uk

Office Hours: Monday 11:00-12:00 (on campus), Room 1.24 Strand Building

Wednesday 10:00-11:00 (virtual), MS Teams link

Office 1.24 S1.29 Department of Informatics LIFTS 999

Message me in MS Teams if you get lost or cannot access the area

Ground Floor

Learning Outcomes

- Describe the electromechanical components available for the group project and practice how to interface with them via Simulink and / or Arduino IDE
- Troubleshoot common hardware connectivity problems
- Characterise the behaviour of a component from acquired data.
- Control a component in open-loop
- Explain what is meant by rate control and critique time resolution trade-offs for embedded system design

Agenda

Descriptions of Available Hardware Components

- Arduino board
- Motor carrier, DC motor, Servo
- Battery
- Communication module

Simulink for embedded systems

- Installation
- Troubleshooting resets and bootloader mode
- Deployment External mode vs Build, Load and Run
- Arduino Support Package driver blocks
- PWM for DC motor
- PWM for Servomotor
- Rate control

Components

Arduino Motor Carrier

Power Supply

Brushed DC motors

Servomotor

Arduino MKR WiFi 1010 Board

Arduino Nano 33 IoT Board

Part Name Arduino Nano 33 IoT with headers

Code: ABX00032

Part Doc https://store.arduino.cc/products/ardui

no-nano-33-iot-with-headers

Coding in Arduino https://docs.arduino.cc/hardware/nano

<u>-33-iot</u>

Coding in Simulink https://uk.mathworks.com/help/suppor

tpkg/arduino/setup-and-

configuration.html

Intended Use Ground control transmitter. Connect to

potentiometers to make an RC joystick.

Arduino MKR Motor Carrier

Warning: We have modified the motor carriers so that you can connect them to a power supply or battery using a single plug DC connector. Please do not tamper with these connectors.

Part Name

Arduino MKR Motor Carrier

Code: ASX00003

Part Doc

https://store.arduino.cc/products/ardui

no-mkr-motor-carrier

Coding in Arduino

https://docs.arduino.cc/hardware/mkr-

motor-carrier

Coding in Simulink

https://uk.mathworks.com/help/suppor

tpkg/arduino/arduino-motor-

carrier.html

Intended Use

Arduino MKR board slots into the

carrier, which acts as voltage divider and H-bridge between the board and

motor circuits.

Arduino MKR Motor Carrier

PWM

DC motor

General Specifications

Output Speed	9869rpm
Maximum Output Torque	78.4gcm
Applications	Vacuum cleaners, Air Compressors, Hair Dryers, Power Tools

Electrical Specifications

Supply Voltage	4.5V – 15V	
Power Rating	7.98W	
Current Rating	990mA	
Stall Current	Stall Current RE-385 at 12v = 5.55A	

Mechanical Specifications

Shaft Diameter	2.31mm
Core Construction	Iron Core
Dimensions	27.7mm (Dia.) x 38mm
Length	38mm
Width	27.7mm
Weight	66g

Geared DC Motor

Geared DC Motor

SPECIFICATION

Rated Voltage: 6.0 V

Motor Speed: 15000 RPM Gear Reduction Ratio: 100:1 Reducer Length: 9.0 mm

No-Load Speed: 155 rpm@6v

No-Load Current: 60 mA
Rated Torque: 0.7 kg.cm
Rated Speed: 90 rpm@6V
Current Rating: 170 mA
Instant Torque: 1.5 kg.cm

Hall Feedback Resolution: 1400

Weight: 18g DOCUMENTS

Motor Interface

Motor Dimension

SHIPPING LIST

Micro Metal Gearmotor 100:1 w/Encoder x1

6-pin connection cable x1

2-pin 1.5 mm JST connector x1

4-pin 1.5 mm JST connector x1

Rotary Encoder

Servomotor

Servo Motor: 1

Servo Write

angle in degrees

Servomotor

Mechanical Specification

Size : 23.2mm, 12.5mm & 22mm

Weight : 9g ±0.2

Gear type : Plastic Gear (Nylon & POM)

Limit angle : 360°

Bearing : No Ball bearings

Horn gear spline : 20T (4.8mm)
Horn type : Plastic, POM

Case : Nylon & Fiberglass

Connector wire : 200mm ±5 mm

Motor : Metal brush motor

Splash water resistance : No

Electrical Specification (Function of the Performance)

Operating Voltage Range	4.8V	6V
Idle current(at stopped)	5mA	6mA
No load speed	110RPM	130RPM
Running current(at no load)	100 mA	120 mA
Peak stall torque	1.3kg.cm	1.5kg.cm
	18.09oz.in	18.09oz.in
Stall current	550mA	650mA

Battery

Polarity warning

Warning: Ensure you use the correct polarity when you place battery in holder during the lab sessions

Simulink to Arduino Setup

Demonstration: Support Package, Configuration and Drivers

Guided setup

Drivers – Confirm setup completed successfully

If board names are displayed in Device Manager then setup is correct

×

RST Button and Bootloader mode

- Run the board in bootloader mode whenever upload persistently fail
- 2. Upload an empty sketch from Arduino IDE

- 1. Press RST once for reset
- 2. Press RST twice for bootloader mode

Simulink Support Package for Arduino Library

Driver blocks

DC Motor

Servomotor

Standalone vs External Mode

In Standalone mode, upload Simulink model to Arduino to run in a loop

Standalone vs External Mode

In **External mode**, upload Simulink model to Arduino to run in a loop and maintain a **live serial connection** to read board data from Simulink

Useful for **Desktop Prototyping**

Hardware Settings

Hardware Tab and Hardware Configuration Options

Demonstration: Simulink Hardware Implementation Menu

Rate Control

- Continuous vs discrete time
- Variable vs fixed step solvers
- Managing global sample time in Simulink
- Using sample times in blocks
- Information overlays in Simulink to analyse multi-rate models

Sample Time

Sample Time

Continuous vs Discrete

Global Sample Time

By default model will execute with global sample time

e.g. run in a loop every 0.1 s

Microcontrollers run at fixed time steps

Rate Control

Rate transition block can be used to control the execution rate of a Simulink model

Multi-rate Systems

Demonstration: Fixed rate systems

Communication

Both Arduino boards have the same BLE & WiFi radio module

Communication

Ship Transmitter

Ship Receiver

Arduino Nano 33 IoT

IPv4 Addresses

Private IP Addresses identify devices in a local network

Public IP Addresses identify devices over the internet

Use the following commands in a terminal to find your **Private IP Address:**

- Windows: ipconfig
- Mac: ipconfig getifaddr en0
- Linux: ifconfig

```
Command Prompt
                                                                        C:\Users\cirie>ipconfig
                                                 ipconfig
Windows IP Configuration
Wireless LAN adapter Local Area Connection* 3:
  Media State . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Local Area Connection* 4:
  Media State . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix . : lan
  IPv6 Address. . . . . . . . . . . fdaa:bb:c:ddee:0:bdf7:a809:fa85:240c
  Temporary IPv6 Address. . . . . : fdaa:bbcc:ddee:0:35:7de2:62f2:cce9
  IPv4 Address. . . . . . . . . . . . . 192.168.1.61
  Default Gateway . . . . . . . : 192.168.1.1
Ethernet adapter Bluetooth Network Connection:
  Media State . . . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
C:\Users\cirie>_
```

Ports

Messages are passed between **Devices** through **Ports**

Ports provide a useful way to organise your communication

Example default ports

- SSH uses Port 22
- HTTP uses Port 80
- HTTPS uses Port 443

Communication PC

UDP Send
UDP Send

UDP Receive

51

Communication Arduino

Lab Preview

In the fourth and final lab, you will use Simulink to program components connected to an Arduino.

Lab Preview

This is a special lab in which you are expect to work with your team

Subteam 1: Motor control

Members: Control Engineer (leads), Propulsion Engineer, Ship Builder, Project Manager

Subteam 2: Communication

Members: Communication Engineer (leads), Robotic Engineer, Ship Designer, System Architect, Quality Control Engineer

Lab Preview

Please bring your First Year at Home Kit

No Connection

3.3V Output @5omA

7-12V Input / Output

Analog Pin o (Ao) Analog Pin 1 (A1)

Analog Pin 2 (A2)

Analog Pin 3 (A3)

I2C SDA / Analog Pin 4 (A4)

I2C SCL / Analog Pin 5 (A5)

5V Input / Output

IOREF 5V

RESET

Reset Button

(12C) SDA – Serial Data
Analog Reference Voltage
Ground
(13) Digital Pin 13 / (SPI) SCK/ On Board LED
(12) Digital Pin 12 / (SPI) MISO
(11) Digital Pin 11 / (SPI) MOSI
(10) Digital Pin 10 / (SPI) SS

(9) Digital Pin 9 / PWM (8) Digital Pin 8

(7) Digital Pin 7

(6) Digital Pin 6 / PWM

(I2C) SCL - Serial Clock

(5) Digital Pin 5 / PWM (4) Digital Pin 4

(3) Digital Pin 3 / PWM / EXT Int 1

(2) Digital Pin 2 / Ext Int o

(1) Serial Port TXD / Digital Pin 1

(o) Serial Port RXD / Digital Pin o

