Useful Conversion Factors

David Hoffman

May 22, 2011

1 Energy Conversion Factors

$$\begin{array}{c} 0.04336~{\rm eV} \\ 0.00159~{\rm h} \\ 1~{\rm kcal/mol} = & 349.75~{\rm cm^{-1}} \\ 6.948 \times 10^{-14}~{\rm erg} \\ 4.184~{\rm kJ/mol} \end{array}$$

$$1~{\rm eV} = \frac{23.06~{\rm kcal/mol}}{0.03675~{\rm h}} \\ 1.602 \times 10^{-12}~{\rm erg}$$

$$627.51 \text{ kcal/mol}$$

$$27.212 \text{ eV}$$

$$1 \text{ h} = 219,474.6 \text{ cm}^{-1}$$

$$4.36 \times 10^{-11} \text{ erg}$$

$$2 \text{ Ry}$$

$$1~{\rm erg} = \frac{1.439 \times 10^{13}~{\rm kcal/mol}}{ \begin{array}{c} 6.2415 \times 10^{11}~{\rm eV} \\ 2.2937 \times 10^{10}~{\rm h} \\ 5.034 \times 10^{15}~{\rm cm^{-1}} \end{array} }$$

2 Colors of Light

Table 1: Visible light

Color	nm	eV	cm^{-1}
Red	700	1.77	14,300
Orange	620	2.00	16,100
Yellow	580	2.14	17,300
Green	530	2.34	18,900
Blue	470	2.64	21,300
Violet	420	2.95	23,800

Table 2: All light

Color	nm	eV	cm^{-1}
Radio	$3 \times 10^{12} - 3 \times 10^8$	$4 \times 10^{-10} - 4 \times 10^{-6}$	$3 \times 10^{-6} - 3 \times 10^{-2}$
Microwaves	$3 \times 10^8 - 3 \times 10^6$	$4 \times 10^{-6} - 4 \times 10^{-4}$	3×10^{-2} - 3
Far IR	3×10^6 - 3×10^4	$4 \times 10^{-4} - 4 \times 10^{-2}$	3 - 300
Near IR	3×10^4 - 700	4×10^{-2} - 2	300 - 15,000
Visible	700 - 420	2 - 3	15,000 - 24,000
Near UV	420 - 300	3 - 4	24,000 - 30,000
Vac UV	300 - 3	4 - 400	$30,000 - 3 \times 10^6$
X-rays	3 - 0.003	$400 - 4 \times 10^5$	$3 \times 10^6 - 3 \times 10^9$

3 Free Energies

$$\Delta(G) = RT \ln(K)$$

$$\Delta(G_1) - \Delta(G_2) = RT \ln\left(\frac{K_1}{K_2}\right)$$

$$\Delta\Delta(G) = 1 \text{ kcal/mol} \iff \frac{K_1}{K_2} = 5.4$$

$$\frac{K_1}{K_2} = 10^1 \iff \Delta\Delta G = 1.36$$

$$\frac{K_1}{K_2} = 10^2 \iff \Delta \Delta G = 2.76$$

$$\frac{K_1}{K_2} = 10^4 \iff \Delta \Delta G = 5.53$$

$$\frac{K_1}{K_2} = 10^6 \iff \Delta \Delta G = 8.29$$

$$\Delta G = 1.36 (pK_{a1} - pK_{a2})$$

4 Atomic Units

Bohr radius, a_0	0.52918 Å
1 au	$1.5569 \times 10^6 \text{ dyn/cm}$
au, m_e amu, $m(^{12}C)/12$	$9.1095 \times 10^{-31} \text{ kg}$ $5.5 \times 10^{-4} \text{ amu}$ $1.66 \times 10^{-27} \text{ kg}$ 1822 au
au	$2.4189 \times 10^{-17} \text{ s}$
au	2.54 D $8.478 \times 10^{-30} \text{ C-m}$
	$\begin{array}{c} 1 \text{ au} \\ & \text{au, m}_e \\ & \text{amu, m}(^{12}\text{C})/12 \\ & \text{au} \end{array}$

5 Miscellaneous

5.1 Force Constants

$$1 \, dyn/cm = 1.44 \times 10^{-3} \frac{kcal/mol}{\mathring{A}^2}$$
$$1 \, Mdyn/cm = 1440 \frac{kcal/mol}{\mathring{A}^2}$$

5.2 Thermal

$$k_BT(298~{\rm K})=9.4366\times 10^{-4}~{\rm h}$$

$$RT(298~{\rm K})=2.4789~{\rm kJ/mol}=0.5925~{\rm kcal/mol}$$

$$e^2=14.3998~{\rm eV-\AA}=332.059~{\rm (kcal/mol)-\AA}$$