CS 303 Logic & Digital System Design

Ömer Ceylan

Chapter 5 Synchronous Sequential Logic Part I

Sequential Logic

- Digital circuits we have learned, so far, have been combinational
 - no memory,
 - outputs are entirely defined by the "current" inputs
- However, many digital systems encountered everyday life are sequential (i.e., they have memory)
 - the memory elements remember past inputs
 - outputs of sequential circuits are not only dependent on the current input but also the state of the memory elements.

Sequential Circuits Model

Current state is a function of past inputs and initial state

Classification 1/2

Two types of sequential circuits

1. Synchronous

- Signals affect the memory elements at discrete instants of time.
- Discrete instants of time requires synchronization.
- Synchronization is usually achieved through the use of a common clock.
- A "clock generator" is a device that generates a <u>periodic train of pulses</u>.

Classification 2/2

1. Synchronous

- The state of the memory elements are updated with the arrival of each pulse
- This type of logical circuit is also known as <u>clocked sequential</u> circuits.

2. Asynchronous

- No clock
- Behavior of an asynchronous sequential circuits depends upon the input signals at any instant of time and the order in which the inputs change.
- Memory elements in asynchronous circuits are regarded as timedelay elements

- Clocked Sequential Circuits

 Memory elements are flip-flops which are logic devices, each of which is capable of storing one bit of information.

Clocked Sequential Circuits

- The outputs of a clocked sequential circuit can come from the combinational circuit, from the outputs of the flip-flops or both.
- The state of the flip-flops can change only during a clock pulse transition
 - i.e., either low-to-high or high-to-low
 - clock edge
- When the clock maintains its value, the flip-flop output does not change
- The transition from one state to the next occurs at the clock edge.

- The most basic types of memory elements are not flipflops, but latches.
- A latch is a memory device that can maintain a binary state indefinitely.
- Latches are, in fact, asynchronous devices and they usually do not require a clock to operate.
- Therefore, they are not directly used in clocked synchronous sequential circuits.
- They rather be used to construct flip-flops.

SR-Latches with NAND Gates

made of cross-coupled NAND (NOR) gates

 1
 1
 0
 1

 0
 1
 1
 0

 1
 1
 1
 0

 0
 0
 1
 1

 $Q_2 = Q_1$

After S = 0, R = 1

Undefined

Undefined State of SR-Latch

- S = R = 0 may result in an undefined state
 - the next state is <u>unpredictable</u> when both S and R goes to 1 at the same time after the undefined state.
 - It may <u>oscillate</u>
 - Or the outcome state depend on which of S and R goes to 1 first.

made of cross-coupled NOR (or NAND) gates

Undefined State of SR-Latch

- S = R = 1 may result in an undefined state
 - the next state is <u>unpredictable</u> when both S and R goes to 0 at the same time after the undefined state.
 - It may <u>oscillate</u>
 - Or the outcome state depend on which of S and R goes to 0 first.

SR-Latch with Control Input

Control inputs allow the changes at S and R to change the state of the latch.

- SR latches are seldom used in practice because the indeterminate state may cause instability
- Remedy: D-latches

This circuit guarantees that the inputs to the S'R'-latch is always complement of each other when C = 1.

С	D	Next state of Q
0	X	No change
1	0	Q = 0; reset state
1	1	Q = 1; set state

■ We say that the D input is sampled when C = 1

D-latch

D-Latch as a Storage Unit

- D-latches can be used as temporary storage
 - The input of D-latch is transferred to the Q output when C = 1
 - When C = 0 the binary information is retained.
- We call latches <u>level-sensitive</u> devices.
 - So long as C remains at logic-1 level, any change in data input will change the state and the output of the latch.
 - Level sensitive latches cannot be used as the state elements in clocked sequential circuits
- Memory devices that are sensitive to the rising or falling edge of control input is called flip-flops.

Need for Flip-Flops 1/2

Outputs may keep changing so long as C = 1

- Another issue (related to the first one)
 - The states of the memory elements must change synchronously
 - memory elements should respond to the changes in input at certain points in time.
 - This is the very characteristics of synchronous circuits.
 - To this end, we use flip-flops that change states during a signal transition of control input (clock)

Edge-Triggered D Flip-Flop

An edge-triggered D flip-flop can be constructed using two D

Positive Edge-Triggered D Flip-Flop

Symbols for D Flip-Flops

Positive edge-triggered D Flip-Flop

Negative edge-triggered D Flip-Flop

Setup & Hold Times 1/2

- Timing parameters are associated with the operation of flipflops
- Recall Q gets the value of D in clock transition

Setup & Hold Times 2/2

- Setup time, t_s
 - The change in the input D must be made before the clock transition.
 - Input D must maintain this new value for a certain minimum amount time.
 - If a change occurs at D less than t_s second before the clock transition, then the output may not acquire this new value.
 - It may even demonstrate unstable behavior.
- Hold time, t_h,
 - Similarly, the value at D must be maintained for a minimum amount of time (i.e. t_h) after the clock transition.

Propagation Time

- Even if setup and hold times are achieved, it takes some time the circuit to propagate the input value to the output.
- This is because of the fact that flip-flops are made of logic gates that have certain propagation times.

Positive edge-triggered D Flip-Flop

Characteristic equation

•
$$Q(t+1) = D$$

Characteristic Table

Other Flip-Flops

- D flip-flop is the most common
 - since it requires the fewest number of gates to construct.
- Two other widely used flip-flops
 - JK flip-flops
 - T flip-flops
- JK flip-flops
 - Three FF operations
 - 1. Set
 - 2. Reset
 - 3. Complement

J	K	Q(t+1)	next state
0	0	Q(t)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Characteristic Table

- Characteristic equation
 - Q(t+1) = JQ'(t) + K'Q(t)

T (Toggle) Flip-Flop

Complementing flip-flop

Т	Q(t+1)	next state
0	Q(t)	no change
1	Q'(t)	Complement

Characteristic Table

Characteristic equation

$$- Q(t+1) = T \oplus Q$$

Characteristic Equations

- The logical properties of a flip-flop can be expressed algebraically using characteristic equations
- D flip-flop
 - Q(t+1) = D
- JK flip-flop
 - Q(t+1) = JQ' + K'Q
- T flip-flop
 - Q(t+1) = T ⊕ Q

Asynchronous Inputs of Flip-Flops

- They are used to force the flip-flop to a particular state independent of the clock
 - "Preset" (direct set) set FF state to 1
 - "Clear" (direct reset) set FF state to 0
- They are especially useful at startup.
 - In digital circuits when the power is turned on, the state of flip-flops are unknown.
 - Asynchronous inputs are used to bring all flip-flops to a known "starting" state prior to clock operation.

Asynchronous Inputs

Analysis of Clocked Sequential Circuits

Goal:

- to determine the behavior of clocked sequential circuits
- "Behavior" is determined from
 - Inputs
 - Outputs
 - State of the flip-flops
- We have to obtain
 - Boolean expressions for output and next state
 - output & state equations
 - (state) table
 - (state) diagram

State Equations

- Also known as "transition equations"
 - specify the next state as a function of the present state and inputs

Output and State Equations

■ $A(t+1) = x(A \oplus B)$

Flip Flop Input Equations

- Flip-Flop input equations
- Same as the state equations in D flip-flops

Example: State (Transition) Table

$$A(t+1) = x(A \oplus B)$$

$$B(t+1) = xB'$$

$$y = xAB$$

Present state		input	Next state		output
Α	В	X	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

A sequential circuit with m FFs and n inputs needs 2^{m+n} rows in the transition table

Example: State Diagram

Present state		input	Next state		output
A	В	X	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is this circuit doing?

State diagram provides the same information as state table

Another Example: State Diagram

$$A(t+1) = Ax + Bx$$

$$B(t+1) = xA'$$

$$y = (A+B)x'$$

Present state		input	Next state		output
A	В	X	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

What is this circuit doing?

Analysis with JK Flip-Flops

- For a D flip-flop, the state equation is the same as the flipflop input equation
 - Q(t+1) = D
- For JK flip-flops, situation is different
 - Goal is to find state equations
 - Method
 - 1. Determine flip-flop input equations
 - 2. Use the corresponding flip-flop characteristic table or characteristic equations to determine the next state values in the state table

Example: Analysis with JK FFs

Flip-flop input equations

■
$$J_A = xB$$
 and $K_A = x' + B$

■
$$J_B = x$$
 and $K_B = 1$

Example: Analysis with JK FFs

- $J_A = Bx$ and $K_A = x' + B$
- $J_B = x$ and $K_B = 1$

present State		input	next state		FF inputs			
А	В	х	Α	В	J _A	K_A	J_B	K_B
0	0	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	0	0	1	0	1
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	1	0	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	1	0	1
1	1	1	0	0	1	1	1	1

Example: Analysis with JK FFs

- Input equations
 - $J_A = Bx$ and $K_A = x' + B$
 - $J_B = x$ and $K_B = 1$
- Characteristic equations
 - $A(t+1) = J_A A' + K'_A A$
 - $B(t+1) = J_BB' + K'_BB$
- State equations

$$A(t+1) = J_AA' + K'_AA$$

$$= xBA' + (x'+B)'A$$

$$= xBA' + xAB' = x(A \oplus B)$$

■ B(t+1) =
$$J_BB' + K'_BB$$

= xB'

State Diagram

$$A(t+1) = x(A \oplus B)$$

$$B(t+1) = xB'$$

$$Y = xAB$$

Present state		input	Next state		output
Α	В	X	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

Analysis with T Flip-Flops

- Method is the same
- Example

$$T_A = xB$$

 $T_B = x$

Example: Analysis with T Flip-Flops

- Input equations
 - $T_A = xB$
 - $T_B = X$
- Characteristic equation
 - $A(t+1) = T_A \oplus A$
 - $B(t+1) = T_B \oplus B$
- Output equations
 - $y_1 = A$
 - $y_0 = B$
- State equations
 - $A(t+1) = xB \oplus A$
 - $B(t+1) = x \oplus B$

State Table & Diagram

- $A(t+1) = xB \oplus A$
- $B(t+1) = x \oplus B$
- $y_1 = A; y_0 = B$

Present state		input	Next state		output	
Α	В	X	АВ		y ₁	y ₀
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	0
1	1	0	1	1	1	1
1	1	1	0	0	1	1

Mealy and Moore Models

- There are two models for sequential circuits
 - Mealy
 - Moore
- They differ in the way the outputs are generated
 - Mealy:
 - output is a function of both present states and inputs
 - Moore
 - output is a function of present state only

Example: Mealy and Moore Machines

- External inputs, x and y, can be asynchronous
- Thus, Mealy outputs may have momentary (sometimes incorrect) values
- Inputs must be synchronized with clocks
- Outputs must be sampled only during clock edges

Timing Diagram

Example: Moore Machines

- Outputs are already synchronized with clock.
- They change synchronously with the clock edge.