

June 2015

1N/FDLL 914/A/B / 916/A/B / 4148 / 4448 Small Signal Diode

DO-35
Cathode is denoted with a black band

THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

SOD80

SOD-80 COLOR BAND MARKING

DEVICE 1ST BAND

FDLL914 BLACK
FDLL914B BLACK
FDLL4148 BLACK
FDLL4148 BLACK
FDLL4448 BLACK

-1st band denotes cathode terminal and has wider width

Ordering Information

Part Number	Marking	Package	Packing Method
1N914	914	DO-204AH (DO-35)	Bulk
1N914_T50A	914	DO-204AH (DO-35)	Ammo
1N914TR	914	DO-204AH (DO-35)	Tape and Reel
1N914ATR	914A	DO-204AH (DO-35)	Tape and Reel
1N914B	914B	DO-204AH (DO-35)	Bulk
1N914BTR	914B	DO-204AH (DO-35)	Tape and Reel
1N916	916	DO-204AH (DO-35)	Bulk
1N916A	916A	DO-204AH (DO-35)	Bulk
1N916B	916B	DO-204AH (DO-35)	Bulk
1N4148	4148	DO-204AH (DO-35)	Bulk
1N4148TA	4148	DO-204AH (DO-35)	Ammo
1N4148_T26A	4148	DO-204AH (DO-35)	Ammo
1N4148_T50A	4148	DO-204AH (DO-35)	Ammo
1N4148TR	4148	DO-204AH (DO-35)	Tape and Reel
1N4148_T50R	4148	DO-204AH (DO-35)	Tape and Reel
1N4448	4448	DO-204AH (DO-35)	Bulk
1N4448TR	4448	DO-204AH (DO-35)	Tape and Reel
FDLL914	Black	SOD-80	Tape and Reel
FDLL914A	Black	SOD-80	Tape and Reel
FDLL914B	Black	SOD-80	Tape and Reel
FDLL4148	Black	SOD-80	Tape and Reel
FDLL4148_D87Z	Black	SOD-80	Tape and Reel
FDLL4448	Black	SOD-80	Tape and Reel
FDLL4448_D87Z	Black	SOD-80	Tape and Reel

Absolute Maximum Ratings(1)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter		Value	Unit
V _{RRM}	Maximum Repetitive Reverse Voltage		100	V
Io	Average Rectified Forward Current		200	mA
I _F	DC Forward Current		300	mA
I _f	Recurrent Peak Forward Current		400	mA
1	Non-repetitive Peak Forward Surge Current	Pulse Width = 1.0 s	1.0	Α
IFSM	Non-repetitive Feak Forward Surge Current	Pulse Width = 1.0 μs	4.0	Α
T _{STG}	Storage Temperature Range		-65 to +200	°C
TJ	Operating Junction Temperature Range		-55 to +175	°C

Note:

1. These ratings are limiting values above which the serviceability of the diode may be impaired.

Thermal Characteristics

Symbol	Parameter	Max.	Unit
Symbol	raiailietei	1N/FDLL 914/A/B / 916/A/B / 4148 / 4448	Oilit
P _D	Power Dissipation	500	mW
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	300	°C/W

Electrical Characteristics(2)

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Para	ameter	Conditions	Min.	Max.	Unit
W	Breakdown Voltage		I _R = 100 μA	100		V
V_{R}	Breakdown voltage	5	I _R = 5.0 μA	75		V
		914B / 4448	I _F = 5.0 mA	0.62	0.72	V
	916B	I _F = 5.0 mA	0.63	0.73	V	
V	Forward Voltage	914 / 916 / 4148	I _F = 10 mA		1.0	V
V _F	Forward Voltage	914A / 916A	I _F = 20 mA		1.0	V
		916B	I _F = 20 mA	,	1.0	V
		914B / 4448	I _F = 100 mA		1.0	V
			V _R = 20 V		0.025	μΑ
I_R	Reverse Leakage		V _R = 20 V, T _A = 150°C		50	μΑ
			V _R = 75 V		5.0	μΑ
C	Total Canacitance	916/916A/916B/4448	V _R = 0, f = 1.0 MHz		2.0	pF
C _T	Total Capacitance	914/914A/914B/4148	V _R = 0, f = 1.0 MHz		4.0	pF
t _{rr}	Reverse Recovery	Time	$I_F = 10 \text{ mA}, V_R = 6.0 \text{ V } (600 \text{ mA})$ $I_{rr} = 1.0 \text{ mA}, R_L = 100 \Omega$		4.0	ns

Note:

2. Non-recurrent square wave P_W = 8.3 ms.

Typical Performance Characteristics

Figure 1. Reverse Voltage vs. Reverse Current B_V - 1.0 to 100 μA

Figure 2. Reverse Current vs. Reverse Voltage I_R - 10 to 100 V

Figure 3. Forward Voltage vs. Forward Current V_F - 1 to 100 μA

Figure 4. Forward Voltage vs. Forward Current V_F - 0.1 to 10 mA

Figure 5. Forward Voltage vs. Forward Current V_F - 10 to 800 mA

Figure 6. Forward Voltage vs. Ambient Temperature V_F - 0.01 - 20 mA (- 40 to +65°C)

Typical Performance Characteristics (Continued)

Figure 7. Total Capacitance

Figure 9. Average Rectified Current ($I_{F(AV)}$) vs. Ambient Temperature (T_A)

Figure 8. Reverse Recovery Time vs. Reverse Recovery Current

Figure 10. Power Derating Curve

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE:
 JEDEC DO-204, VARIATION AH.
 B) HERMETICALLY SEALED GLASS PACKAGE.
 C) PACKAGE WEIGHT IS 0.137 GRAM.
 D) ALL DIMENSIONS ARE IN MILLIMETERS.
 E) DRAWING FILE NAME:DO35AREV02

Figure 11. AXIAL LEADED, GLASS, JEDEC DO204, VARIATION AH, DO-204AH (DO-35)

 $\emptyset_{1.53}^{1.91}$

Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE: JEDEC DO-213, VARIATION AC.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C CORNER RADIUS IS OPTIONAL.
- D) LAND PATTERN RECOMMENDATION PER IPC DIOMELF3414N
- E) DRAWING FILE NAME: SOD80A REV3

Figure 12. 2-TERMINAL, SOD-80, JEDEC DO-213AC, MINI-MELF

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET® Awinda® AX-CAP®* Global Power Resource SM GreenBridge™

BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ GTO™ $CROSSVOLT^{\text{\tiny TM}}$ IntelliMAX™ CTL™ ISOPI ANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder **DEUXPEED**®

and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ ESBC™ MicroPak™

MicroPak2™ MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT® FAST® MTx® MVN® FastvCore™ mWSaver® FETBench™ OptoHiT™

OPTOPLANAR®

Power Supply WebDesigner™

PowerTrench[©] PowerXS™

Programmable Active Droop™

QFĔT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

TinyBoost[®] TinyBuck® TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinvWire™ TranSiC™

SYSTEM GENERAL®*

TriFault Detect™ TRUECURRENT®* μSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ VoltagePlus™ XSTM Xsens™

仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOLOGIC®

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE DSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev 174

2N3904

MMBT3904

PZT3904

NPN General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier. Sourced from Process 23.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- NOTES:

 1) These ratings are based on a maximum junction temperature of 150 degrees C.

 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

8.0

5.0

pF

dB

(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
			•		
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 30 \text{ V}, V_{EB} = 0$		50	nA
I _{CEX}	Collector Cutoff Current	$V_{CF} = 30 \text{ V}, V_{FB} = 0$		50	nA
	RACTERISTICS*	Io = 0.1 mA Vor = 1.0 V	40	Ι	
ON CHAF	RACTERISTICS*				
ON CHAF	RACTERISTICS* DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$	40		
		$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	70		
		$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	70 100	300	
		$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$	70 100 60	300	
h _{FE}	DC Current Gain	$\begin{split} I_C &= 1.0 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \\ I_C &= 10 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \\ I_C &= 50 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \end{split}$	70 100		
h _{FE}		$\begin{split} I_C &= 1.0 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 10 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 50 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA, } I_B = 1.0 \text{ mA} \end{split}$	70 100 60	0.2	V
N _{FE}	DC Current Gain Collector-Emitter Saturation Voltage	$\begin{split} I_C &= 1.0 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 10 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 50 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA, } I_B = 1.0 \text{ mA} \\ I_C &= 50 \text{ mA, } I_B = 5.0 \text{ mA} \end{split}$	70 100 60 30	0.2 0.3	V
1 _{FE}	DC Current Gain	$\begin{split} I_C &= 1.0 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 10 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 50 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA, } V_{CE} = 1.0 \text{ V} \\ I_C &= 100 \text{ mA, } I_B = 1.0 \text{ mA} \end{split}$	70 100 60	0.2	

SWITCHING CHARACTERISTICS (except MMPQ3904)

Noise Figure (except MMPQ3904)

t _d	Delay Time	$V_{CC} = 3.0 \text{ V}, V_{BE} = 0.5 \text{ V},$	35	ns
t _r	Rise Time	$I_C = 10 \text{ mA}, I_{B1} = 1.0 \text{ mA}$	35	ns
t _s	Storage Time	$V_{CC} = 3.0 \text{ V}, I_{C} = 10 \text{mA}$	200	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$	50	ns

 $V_{EB} = 0.5 \text{ V}, I_{C} = 0,$

 $I_C = 100 \mu A, V_{CE} = 5.0 V,$

 $R_s = 1.0 k\Omega$, f=10 Hz to 15.7 kHz

f = 1.0 MHz

Input Capacitance

Spice Model

C_{ibo}

NF

 $NPN \ (Is=6.734f \ Xti=3 \ Eg=1.11 \ Vaf=74.03 \ Bf=416.4 \ Ne=1.259 \ Is=6.734 \ Ikf=66.78m \ Xtb=1.5 \ Br=.7371 \ Nc=2 \ Isc=0 \ Ikr=0 \ Rc=1 \ Cjc=3.638p \ Mjc=.3085 \ Vjc=.75 \ Fc=.5 \ Cje=4.493p \ Mje=.2593 \ Vje=.75 \ Tr=239.5n \ Tf=301.2p \ Itf=.4 \ Vtf=4 \ Vtf=4 \ Xtf=2 \ Rb=10)$

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

(continued)

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Characteristic Max		Units
		2N3904	*PZT3904			
P_D	Total Device Dissipation	625	1,000	mW		
	Derate above 25°C	5.0	8.0	mW/°C		
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	125	°C/W		

Symbol	Characteristic	M	Max	
		**MMBT3904	MMPQ3904	
P_D	Total Device Dissipation	350	1,000	mW
	Derate above 25°C	2.8	8.0	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357		°C/W
	Effective 4 Die		125	°C/W
	Each Die		240	°C/W

^{*}Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

Typical Characteristics

^{**}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

(continued)

Typical Characteristics (continued)

Capacitance vs Reverse Bias Voltage

Noise Figure vs Frequency

Noise Figure vs Source Resistance

Current Gain and Phase Angle vs Frequency

Power Dissipation vs Ambient Temperature

(continued)

Typical Characteristics (continued)

Rise Time vs Collector Current

Storage Time vs Collector Current

Fall Time vs Collector Current

(continued)

Test Circuits

FIGURE 1: Delay and Rise Time Equivalent Test Circuit

FIGURE 2: Storage and Fall Time Equivalent Test Circuit

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM COOIFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \text{FACT Quiet Series}^{\text{TM}} & \text{Quiet Series}^{\text{TM}} \\ \text{FAST}^{\text{®}} & \text{SuperSOT}^{\text{TM}}\text{-3} \\ \text{FASTr}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-6} \\ \text{GTO}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-8} \\ \text{HiSeC}^{\text{TM}} & \text{TinyLogic}^{\text{TM}} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

2N3906

MMBT3906

PZT3906

PNP General Purpose Amplifier

This device is designed for general purpose amplifier and switching applications at collector currents of 10 μA to 100 mA.

Absolute Maximum Ratings*

T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- 1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
 3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics T_A = 25°C unless otherwise noted

Symbol	Characteristic		Max		Units
		2N3906	*MMBT3906	**PZT3906	
P _D	Total Device Dissipation	625	350	1,000	mW
	Derate above 25°C	5.0	2.8	8.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3			°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

^{**}Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

(continued)

	Electrical Characteristics	T _a = 25°C unless otherwise noted
--	-----------------------------------	--

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHAF	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 30 \text{ V}, V_{BE} = 3.0 \text{ V}$		50	nA
I _{CEX}	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, V_{BE} = 3.0 \text{ V}$		50	nA
			l .		

ON CHARACTERISTICS

h _{FE}	DC Current Gain *	$I_{\rm C} = 0.1 \text{ mA}, V_{\rm CE} = 1.0 \text{ V}$	60		
		$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80		
		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100	300	
		$I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$	60		
		$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$		0.25	V
		$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$	0.65	0.85	V
, ,		$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.95	V

SMALL SIGNAL CHARACTERISTICS

f⊤	Current Gain - Bandwidth Product	I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz	250		MHz
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 100 kHz		4.5	pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 100 kHz		10.0	pF
NF	Noise Figure	$I_C = 100 \mu A$, $V_{CE} = 5.0 V$, $R_S = 1.0 k \Omega$ $f = 10 Hz$ to 15.7 kHz		4.0	dB

SWITCHING CHARACTERISTICS

t _d	Delay Time	$V_{CC} = 3.0 \text{ V}, V_{BE} = 0.5 \text{ V},$	35	ns
t _r	Rise Time	$I_C = 10 \text{ mA}, I_{B1} = 1.0 \text{ mA}$	35	ns
ts	Storage Time	$V_{CC} = 3.0 \text{ V}, I_{C} = 10\text{mA}$	225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$	75	ns

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

NOTE: All voltages (V) and currents (A) are negative polarity for PNP transistors.

Spice Model

PNP (Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 Bf=180.7 Ne=1.5 Ise=0 Ikf=80m Xtb=1.5 Br=4.977 Nc=2 Isc=0 Ikr=0 Rc=2.5 Cjc=9.728p Mjc=.5776 Vjc=.75 Fc=.5 Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n Tf=179.3p Itf=.4 Vtf=4 Xtf=6 Rb=10)

(continued)

Typical Characteristics

Common-Base Open Circuit

Input and Output Capacitance

(continued)

Typical Characteristics (continued)

(continued)

Typical Characteristics (continued)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PIHER

PT-10

10 mm Carbon Potentiometer

FEATURES

- Carbon resistive element
- Dust proof enclosure
- Polvester substrate
- Also upon request:
 - · Wiper positioned at 50% or fully clockwise.
 - Supplied in magazines for automatic insertion.
 - · Long life model for low cost control potentiometer applications
 - Self extinguishable plastic UL 94V-0
 - · Cut track option
 - Special tapers
 - · Mechanical detents
 - · Low & extra low torque versions

MECHANICAL SPECIFICATIONS

 $235^{\circ} \pm 5^{\circ}$ – Mechanical rotation angle: - Electrical rotation angle: 220° ± 20° - Torque: 0.4 to 2 Ncm. (0.6 to 2.7 in-oz) - Stop torque: > 5 Ncm. (>7 in-oz)

ELECTRICAL SPECIFICATIONS

Range of values (*)

 $100\Omega \le Rn \le 5 M \text{ (Decad. } 1.0 - 2.0 - 2.2 - 2.5 - 4.7 - 5.0)$

- Tolerance (*): $100\Omega \le Rn \le 1M \Omega = \pm 20\%$ $1M\Omega$ < Rn $\leq 5M\Omega$ $\pm 30\%$

- Max. Voltage: 200 VDC (lin) 100 VDC (no lin)
- Nominal Power 50°C (122°F) (see power rating curve) 0.15 W (lin) 0.07 W (no lin)
- Taper (*) (Log. & Alog. only Rn > 1K) Lin; Log; Alog.
- Residual resistance: $\leq 5.10^{-3}$ Rn (2 Ω min.)
- Equivalent Noise Resistance: $\leq 3\%$ Rn (3 Ω min.)
- Operating temperature**: -25°C + 70°C (-13°F + 158°F)

(*) Others upon request ** Up to 85°C depending on application

HOW TO ORDER

- (1) "Z" adjustment only available on "H" versions
- (2)Terminals styles: "P" & "J" are crimped terminals
- Example: Code: (3)10 100 Ω
 - Numb of zeros First two digits of the value.
- (4) Non standard tolerance, upon request. Example: +7% Code: (5)
 - Life Standard 500 cycles Long life 10000 cycles
- (6) Magazines: not available with the H10, V05 and V13 models, nor with adjustment types X, W, Y, Z.
- Non flammable: housing, rotor and shaft. (7)

NOTE: The information contained here in may be changed without prior notice.

- (8) Colour shaft/rotor: Potentiometer without shaft: only rotor · Potentiometer with shaft: only shaft Cream colour only available in standard plastic.
- Low Torque: 0.25 to 1 Ncm (per pot.) Extra Low Torque: 0.1 to 0.4 Ncm (per pot.)

No detent option available for low and extra low torque models

ISO 14001

negative tolerance

positive tolerance

NOTES:

HOW TO ORDER CUSTOM DRAWING

STANDARD OPTIONS

PT-10 LH 01 + DRAWING NUMBER (Max. 16 characters)

This way of ordering should be used for options which are not included in the "How to order" standard and optional extras.

Mechanical Life
Cut track
Detents 500 cycles No None Packing Bulk No White Non flammable Rotor colour Shaft colour Natural Wiper position Initial Standard Torque

With shaft

X = Adjustable from collector side

W = Adjustable from terminal side

6.2 3.45

Y = Adjustable from terminal side

Z = Adjustable from collector side

3.5

1+0.1

h = vertical mount - horizontal adjust

NOTE = Please note relative terminal positions when ordering non linear tapers.

5

V (5)

TAPERS

POWER RATING CURVE

NOTE = Please note relative terminal positions when ordering non linear tapers.

TESTS TYPICAL VARIATIONS

ELECTRICAL LIFE

MECHANICAL LIFE (CYCLES)

TEMPERATURE COEFFICIENT

THERMAL CYCLING

DAMP HEAT

VIBRATION (for each plane X,Y,Z)

1.000 h. @ 50°C; 0.15 W 500 @ 10 CPM ...15 CPM -25°C; +70°C 16 h. @ 85°C; 2h. @ -25°C 500 h. @ 40°C @ 95% HR 2 h. @ 10 Hz. ... 55 Hz. ±5 %

±3 % (Rn < 1 M Ω)

±300 ppm (Rn <100 K)

±2.5 %

±5 %

±2 %

NOTE: Out of range values may not comply these results.

PACKAGING

BOXES

207.20				
Model	Units			
Without shaft	500 (40 x 85 x 185 mm.)			
With thumbwheel	400 (40 x 85 x 185 mm.)			
With shaft	200 (40 x 85 x 185 mm.)			

Magazines for PT-10 h 2.5; h 5

Also crimped term. h 2.5 P

AUTOMATIC INSERTION

Magazines	Units per magazine
PT-10H & PT-10V	50 Pieces

Magazines for PT-10 V

Also crimped term. VP

THUMBWHEELS

NA555, NE555, SA555, SE555

SLFS022I - SEPTEMBER 1973 - REVISED SEPTEMBER 2014

xx555 Precision Timers

Features

- Timing From Microseconds to Hours
- Astable or Monostable Operation
- Adjustable Duty Cycle
- TTL-Compatible Output Can Sink or Source Up to 200 mA
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

Applications

- **Fingerprint Biometrics**
- Iris Biometrics
- **RFID Reader**

3 Description

These devices are precision timing circuits capable of producing accurate time delays or oscillation. In the time-delay or mono-stable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the a-stable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor.

The threshold and trigger levels normally are twothirds and one-third, respectively, of V_{CC}. These levels can be altered by use of the control-voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set, and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flipflop is reset and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset, and the output goes low. When the output is low, a low-impedance path is provided between discharge (DISCH) and ground.

The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of 5 V to 15 V. With a 5-V supply, output levels are compatible with TTL inputs.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	PDIP (8)	9.81 mm × 6.35 mm
xx555	SOP (8)	6.20 mm × 5.30 mm
XXOOO	TSSOP (8)	3.00 mm × 4.40 mm
	SOIC (8)	4.90 mm × 3.91 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

Table of Contents

1	Features 1		8.1 Overview	9
2	Applications 1		8.2 Functional Block Diagram	9
3	Description 1		8.3 Feature Description	9
4	Simplified Schematic		8.4 Device Functional Modes	12
5	Revision History2	9	Applications and Implementation	13
6	Pin Configuration and Functions		9.1 Application Information	13
-	•		9.2 Typical Applications	13
7	Specifications	10	Power Supply Recommendations	18
	7.1 Absolute Maximum Ratings	11	Device and Documentation Support	19
	7.3 Recommended Operating Conditions		11.1 Related Links	19
	7.4 Electrical Characteristics		11.2 Trademarks	19
	7.5 Operating Characteristics		11.3 Electrostatic Discharge Caution	19
	7.6 Typical Characteristics		11.4 Glossary	19
8	Detailed Description 9	12	Mechanical, Packaging, and Orderable Information	19

5 Revision History

CI	hanges from Revision H (June 2010) to Revision I	Page
	Updated document to new TI enhanced data sheet format	
•	Deleted Ordering Information table.	1
•	Added Military Disclaimer to Features list.	1
•	Added Applications.	1
	Added Device Information table.	
•	Moved T _{stg} to Handling Ratings table	4
	Added DISCH switch on-state voltage parameter	
•	Added Device and Documentation Support section	19
•	Added ESD warning.	19
•	Added Mechanical, Packaging, and Orderable Information section	19

6 Pin Configuration and Functions

NA555...D OR P PACKAGE NE555...D, P, PS, OR PW PACKAGE SA555...D OR P PACKAGE SE555...D, JG, OR P PACKAGE (TOP VIEW)

NC - No internal connection

Pin Functions

	PIN							
NAME	D, P, PS, PW, JG	FK	1/0	DESCRIPTION				
	N	0.						
CONT	5	12	I/O	Controls comparator thresholds, Outputs 2/3 VCC, allows bypass capacitor connection				
DISCH	7	17	0	Open collector output to discharge timing capacitor				
GND	1	2	-	Ground				
NC		1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	-	No internal connection				
OUT	3	7	0	High current timer output signal				
RESET	4	10	I	Active low reset input forces output and discharge low.				
THRES	6	15	I	End of timing input. THRES > CONT sets output low and discharge low				
TRIG	2	5	I	Start of timing input. TRIG < ½ CONT sets output high and discharge open				
V _{CC}	8	20	-	Input supply voltage, 4.5 V to 16 V. (SE555 maximum is 18 V)				

Copyright © 1973–2014, Texas Instruments Incorporated Submit Documenta

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN MAX	UNIT		
V _{CC}	Supply voltage (2)		18	V		
VI	Input voltage	CONT, RESET, THRES, TRIG	V _{CC}	V		
lo	Output current	•	±225	mA		
		D package	97			
θ_{JA}	Package thermal impedance (3)(4)	P package	85	°C/W		
		PS package	95			
		PW package	149			
0	Dealers thermal impedance (5) (6)	FK package	5.61	°C/W		
θ_{JC}	Package thermal impedance (5) (6)	JG package	14.5	·C/VV		
TJ	Operating virtual junction temperature		150	°C		
	Case temperature for 60 s	FK package	260	°C		
	Lead temperature 1,6 mm (1/16 in) from case for 60 s	JG package	300	°C		

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

7.2 Handling Ratings

PARAMETER	DEFINITION	MIN	MAX	UNIT
T _{stg}	Storage temperature range	- 65	150	°C

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V	Cupply voltage	NA555, NE555, SA555	4.5	16	V	
V _{CC}	Supply voltage	SE555	4.5	18	V	
VI	Input voltage		V_{CC}	٧		
Io	Output current			±200	mA	
		NA555	-40	105		
_	Operating free-air temperature	NE555	0	70	°C	
T _A		SA555	-40	85		
		SE555	- 55	125		

Submit Documentation Feedback

⁽³⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A) / \theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

⁽⁵⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) - T_C) / \theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

⁽⁶⁾ The package thermal impedance is calculated in accordance with MIL-STD-883.

7.4 Electrical Characteristics

 V_{CC} = 5 V to 15 V, T_A = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SE555		NA555 NE555 SA555			UNIT	
				TYP	MAX	MIN	TYP	MAX	
TUDEO colleges level	V _{CC} = 15 V		9.4	10	10.6	8.8	10	11.2	.,
THRES voltage level	V _{CC} = 5 V		2.7	3.3	4	2.4	3.3	4.2	V
THRES current ⁽¹⁾				30	250		30	250	nA
	\/ 45\/		4.8	5	5.2	4.5	5	5.6	V
TDIC veltage level	V _{CC} = 15 V	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	3		6				
TRIG voltage level	V		1.45	1.67	1.9	1.1	1.67	2.2	
	$V_{CC} = 5 V$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			1.9				
TRIG current	TRIG at 0 V			0.5	0.9		0.5	2	μΑ
DECET voltage level			0.3	0.7	1	0.3	0.7	1	.,
RESET voltage level	$T_A = -55$ °C to 125°C				1.1				V
DEOET	RESET at V _{CC}			0.1	0.4		0.1	0.4	^
RESET current	RESET at 0 V			-0.4	-1		-0.4	-1.5	mA
DISCH switch off-state current				20	100		20	100	nA
DISCH switch on-state voltage	V _{CC} = 5 V, I _O = 8 mA						0.15	0.4	V
	V _{CC} = 15 V		9.6	10	10.4	9	10	11	V
CONT voltage		$T_A = -55$ °C to 125°C	9.6		10.4				
(open circuit)	V _{CC} = 5 V		2.9	3.3	3.8	2.6	3.3	4	
		$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	2.9		3.8				
	V 45 V 1 40 A			0.1	0.15		0.1	0.25	- -
	$V_{CC} = 15 \text{ V}, I_{OL} = 10 \text{ mA}$	$T_A = -55$ °C to 125°C			0.2				
	\\ 45\\ I 50 \			0.4	0.5		0.4	0.75	
	$V_{CC} = 15 \text{ V}, I_{OL} = 50 \text{ mA}$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			1				
	\\ 45\\ I 400 m \			2	2.2		2	2.5	
Low-level output voltage	$V_{CC} = 15 \text{ V}, I_{OL} = 100 \text{ mA}$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			2.7				V
	V _{CC} = 15 V, I _{OL} = 200 mA			2.5			2.5		
	$V_{CC} = 5 \text{ V}, I_{OL} = 3.5 \text{ mA}$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			0.35				
	V 5.V.I 5 A			0.1	0.2		0.1	0.35	
	$V_{CC} = 5 \text{ V}, I_{OL} = 5 \text{ mA}$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			0.8				
	$V_{CC} = 5 \text{ V}, I_{OL} = 8 \text{ mA}$			0.15	0.25		0.15	0.4	
			13	13.3		12.75	13.3		
	$V_{CC} = 15 \text{ V}, I_{OH} = -100 \text{ mA}$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	12						
High-level output voltage	$V_{CC} = 15 \text{ V}, I_{OH} = -200 \text{ mA}$	•		12.5			12.5		V
			3	3.3		2.75	3.3		
	$V_{CC} = 5 \text{ V}, I_{OH} = -100 \text{ mA}$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	2						
	Outrot Inv. N. J.	V _{CC} = 15 V		10	12		10	15	
0	Output low, No load	V _{CC} = 5 V		3	5		3	6	;
Supply current		V _{CC} = 15 V		9	10		9	13	mA
	Output high, No load	V _{CC} = 5 V		2	4		2	5	

⁽¹⁾ This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 12. For example, when V_{CC} = 5 V, the maximum value is $R = R_A + R_B \approx 3.4$ M Ω , and for V_{CC} = 15 V, the maximum value is 10 M Ω .

Copyright © 1973–2014, Texas Instruments Incorporated

Submit Documentation Feedback

7.5 Operating Characteristics

 V_{CC} = 5 V to 15 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾	SE555			NA555 NE555 SA555			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX		
Initial error of timing	Each timer, monostable (3)	T _A = 25°C		0.5	1.5 ⁽⁴⁾		1	3	0/	
interval ⁽²⁾	Each timer, astable (5)			1.5			2.25		%	
Temperature coefficient of	Each timer, monostable (3)	$T_A = MIN \text{ to } MAX$		30	100 ⁽⁴⁾		50		ppm/	
timing interval	Each timer, astable (5)			90			150		, _c C	
Supply-voltage sensitivity of	Each timer, monostable (3)	T _A = 25°C		0.05	0.2 ⁽⁴⁾		0.1	0.5	0/ 0/	
timing interval	Each timer, astable (5)			0.15			0.3		%/V	
Output-pulse rise time		C _L = 15 pF, T _A = 25°C		100	200(4)		100	300	ns	
Output-pulse fall time		C _L = 15 pF, T _A = 25°C		100	200(4)		100	300	ns	

- (1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- (2) Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.
- (3) Values specified are for a device in a monostable circuit similar to Figure 9, with the following component values: $R_A = 2 k\Omega$ to 100 $k\Omega$, $C = 0.1 \mu F$.
- (4) On products compliant to MIL-PRF-38535, this parameter is not production tested.
- (5) Values specified are for a device in an astable circuit similar to Figure 12, with the following component values: R_A = 1 kΩ to 100 kΩ, C = 0.1 μF.

Submit Documentation Feedback

7.6 Typical Characteristics

Data for temperatures below -40°C and above 105°C are applicable for SE555 circuits only.

Typical Characteristics (continued)

Data for temperatures below -40°C and above 105°C are applicable for SE555 circuits only.

Detailed Description

Overview

The xx555 timer is a popular and easy to use for general purpose timing applications from 10 µs to hours or from < 1mHz to 100 kHz. In the time-delay or mono-stable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the a-stable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor. Maximum output sink and discharge sink current is greater for higher VCC and less for lower VCC.

8.2 Functional Block Diagram

- Pin numbers shown are for the D, JG, P, PS, and PW packages.
- RESET can override TRIG, which can override THRES.

8.3 Feature Description

8.3.1 Mono-stable Operation

For mono-stable operation, any of these timers can be connected as shown in Figure 9. If the output is low, application of a negative-going pulse to the trigger (TRIG) sets the flip-flop ($\overline{\mathbb{Q}}$ goes low), drives the output high, and turns off Q1. Capacitor C then is charged through RA until the voltage across the capacitor reaches the threshold voltage of the threshold (THRES) input. If TRIG has returned to a high level, the output of the threshold comparator resets the flip-flop ($\overline{\mathbb{Q}}$ goes high), drives the output low, and discharges C through Q1.

Copyright © 1973-2014, Texas Instruments Incorporated

Feature Description (continued)

Pin numbers shown are for the D, JG, P, PS, and PW packages.

Figure 9. Circuit for Monostable Operation

Monostable operation is initiated when TRIG voltage falls below the trigger threshold. Once initiated, the sequence ends only if TRIG is high for at least 10 μ s before the end of the timing interval. When the trigger is grounded, the comparator storage time can be as long as 10 μ s, which limits the minimum monostable pulse width to 10 μ s. Because of the threshold level and saturation voltage of Q1, the output pulse duration is approximately $t_w = 1.1 R_A C$. Figure 11 is a plot of the time constant for various values of R_A and R_A and R_A and levels and charge rates both are directly proportional to the supply voltage, R_A and R_A independent of the supply voltage, so long as the supply voltage is constant during the time interval.

Applying a negative-going trigger pulse simultaneously to RESET and TRIG during the timing interval discharges C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. To prevent false triggering, when RESET is not used, it should be connected to V_{CC} .

Figure 10. Typical Monostable Waveforms

Figure 11. Output Pulse Duration vs Capacitance

Feature Description (continued)

8.3.2 A-stable Operation

As shown in Figure 12, adding a second resistor, R_B , to the circuit of Figure 9 and connecting the trigger input to the threshold input causes the timer to self-trigger and run as a multi-vibrator. The capacitor C charges through R_A and R_B and then discharges through R_B only. Therefore, the duty cycle is controlled by the values of R_A and R_B .

This astable connection results in capacitor C charging and discharging between the threshold-voltage level ($\approx 0.67 \times V_{CC}$) and the trigger-voltage level ($\approx 0.33 \times V_{CC}$). As in the mono-stable circuit, charge and discharge times (and, therefore, the frequency and duty cycle) are independent of the supply voltage.

Figure 13. Typical Astable Waveforms

Figure 12. Circuit for Astable Operation

Figure 12 shows typical waveforms generated during a stable operation. The output high-level duration t_L and low-level duration t_L can be calculated as follows:

$$t_{H} = 0.693 (R_{A} + R_{B})C$$
 (1)

$$t_{L} = 0.693 \left(R_{B} \right) C \tag{2}$$

Other useful relationships are shown below:

period =
$$t_H + t_L = 0.693 (R_A + 2R_B)C$$
 (3)

frequency
$$\approx \frac{1.44}{(R_A + 2R_B)C}$$
 (4)

Output driver duty cycle =
$$\frac{t_L}{t_H + t_L} = \frac{R_B}{R_A + 2R_B}$$
 (5)

Output waveform duty cycle =
$$\frac{t_H}{t_H + t_L} = 1 - \frac{R_B}{R_A + 2R_B}$$
 (6)

Low-to-high ratio =
$$\frac{t_L}{t_H} = \frac{R_B}{R_A + R_B}$$
 (7)

Feature Description (continued)

Figure 14. Free-Running Frequency

8.3.3 Frequency Divider

By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency divider. Figure 15 shows a divide-by-three circuit that makes use of the fact that re-triggering cannot occur during the timing cycle.

Figure 15. Divide-by-Three Circuit Waveforms

8.4 Device Functional Modes

Table 1. Function Table

RESET	TRIGGER VOLTAGE ⁽¹⁾	THRESHOLD VOLTAGE ⁽¹⁾	OUTPUT	DISCHARGE SWITCH	
Low	Irrelevant	Irrelevant	Low	On	
High	<1/3 V _{CC}	Irrelevant	High	Off	
High	>1/3 V _{CC}	>2/3 V _{CC}	Low	On	
High	>1/3 V _{CC}	<2/3 V _{CC}	As previously established		

(1) Voltage levels shown are nominal.

Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The xx555 timer devices use resistor and capacitor charging delay to provide a programmable time delay or operating frequency. This section presents a simplified discussion of the design process.

9.2 Typical Applications

9.2.1 Missing-Pulse Detector

The circuit shown in Figure 16 can be used to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is re-triggered continuously by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output pulse as shown in Figure 17.

Pin numbers shown are shown for the D, JG, P, PS, and PW packages.

Figure 16. Circuit for Missing-Pulse Detector

9.2.1.1 Design Requirements

Input fault (missing pulses) must be input high. Input stuck low will not be detected because timing capacitor "C" will remain discharged.

9.2.1.2 Detailed Design Procedure

Choose R_A and C so that $R_A \times C > [maximum normal input high time]$. R_I improves V_{OH} , but it is not required for TTL compatibility.

Copyright © 1973-2014, Texas Instruments Incorporated Submit Documentation Feedback

9.2.1.3 Application Curves

9.2.2 Pulse-Width Modulation

The operation of the timer can be modified by modulating the internal threshold and trigger voltages, which is accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the threshold voltage. Figure 19 shows the resulting output pulse-width modulation. While a sine-wave modulation signal is shown, any wave shape could be used.

Pin numbers shown are for the D, JG, P, PS, and PW packages.

NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

Figure 18. Circuit for Pulse-Width Modulation

9.2.2.1 Design Requirements

Clock input must have V_{OL} and V_{OH} levels that are less than and greater than 1/3 VCC. Modulation input can vary from ground to VCC. The application must be tolerant of a nonlinear transfer function; the relationship between modulation input and pulse width is not linear because the capacitor charge is based RC on an negative exponential curve.

9.2.2.2 Detailed Design Procedure

Choose R_A and C so that $R_A \times C = 1/4$ [clock input period]. R_L improves V_{OH} , but it is not required for TTL compatibility.

9.2.2.3 Application Curves

9.2.3 Pulse-Position Modulation

As shown in Figure 20, any of these timers can be used as a pulse-position modulator. This application modulates the threshold voltage and, thereby, the time delay, of a free-running oscillator. Figure 21 shows a triangular-wave modulation signal for such a circuit; however, any wave shape could be used.

Copyright © 1973–2014, Texas Instruments Incorporated

Pin numbers shown are for the D, JG, P, PS, and PW packages.

NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

Figure 20. Circuit for Pulse-Position Modulation

9.2.3.1 Design Requirements

Both DC and AC coupled modulation input will change the upper and lower voltage thresholds for the timing capacitor. Both frequency and duty cycle will vary with the modulation voltage.

9.2.3.2 Detailed Design Procedure

The nominal output frequency and duty cycle can be determined using formulas in A-stable Operation section. R_L improves V_{OH}, but it is not required for TTL compatibility.

9.2.3.3 Application Curves

9.2.4 Sequential Timer

Many applications, such as computers, require signals for initializing conditions during start-up. Other applications, such as test equipment, require activation of test signals in sequence. These timing circuits can be connected to provide such sequential control. The timers can be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22 shows a sequencer circuit with possible applications in many systems, and Figure 23 shows the output waveforms.

Pin numbers shown are for the D, JG, P, PS, and PW packages. NOTE A: S closes momentarily at t=0.

Figure 22. Sequential Timer Circuit

9.2.4.1 Design Requirements

The sequential timer application chains together multiple mono-stable timers. The joining components are the 33-k Ω resistors and 0.001- μ F capacitors. The output high to low edge passes a 10- μ s start pulse to the next monostable.

9.2.4.2 Detailed Design Procedure

The timing resistors and capacitors can be chosen using this formula. $t_w = 1.1 \times R \times C$.

9.2.4.3 Application Curves

10 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 4.5 V and 16 V. (18 V for SE555). A bypass capacitor is highly recommended from VCC to ground pin; ceramic 0.1 μ F capacitor is sufficient.

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
NA555	Click here	Click here	Click here	Click here	Click here
NE555	Click here	Click here	Click here	Click here	Click here
SA555	Click here	Click here	Click here	Click here	Click here
SE555	Click here	Click here	Click here	Click here	Click here

11.2 Trademarks

All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Copyright © 1973-2014, Texas Instruments Incorporated

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

- Dual Versions of the Popular '90A, 'LS90 and '93A, 'LS93
- '390, 'LS390 . . . Individual Clocks for A and B Flip-Flops Provide Dual ÷ 2 and ÷ 5 Counters
- '393, 'LS393... Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Typical Maximum Count Frequency . . . 35 MHz
- Buffered Outputs Reduce Possibility of Collector Commutation

description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual four-bit counters in a single package. The '390 and 'LS390 incorporate dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The '393 and 'LS393 each comprise two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The '390, 'LS390, '393, and 'LS393 have parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

Series 54 and Series 54LS circuits are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74 and Series 74LS circuits are characterized for operation from 0°C to 70°C.

SN54390, SN54LS390 . . . J OR W PACKAGE SN74390 . . . N PACKAGE SN74LS390 . . . D OR N PACKAGE

SN54LS390 . . . FK PACKAGE (TOP VIEW)

SN54393, SN54LS393 . . . J OR W PACKAGE SN74393 . . . N PACKAGE SN74LS393 . . . D OR N PACKAGE

SN54LS393 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

'390, 'LS390
BCD COUNT SEQUENCE
(EACH COUNTER)
(See Note A)

COUNT		συτ	PUT	
COONT	σ_{D}	σc	σ_{B}	QA
0	L	L.	L	L
1	L	L	L	н
2	L	L	Н	ᆸ
3	L	L	Н	н
4	L	Н	L	ᅵ
5	L	Н	L	н
6	L	Н	Н	ᅵᅵ
7	L	Н	Н	н
8	н	L	L	L
9	Н	L	L	Н

FUNCTION TABLES
'390, 'LS390
BI-QUINARY (5-2)
(EACH COUNTER)
(See Note B)

0011117		OUT	PUT	
COUNT	QΑ	α_{D}	αc	Q_{B}
0	L	L	L	L
1	L	L	L	н
2	L	L	Н	ᆫ
3	L	L	Н	н
4	L	Н	L	L
5	н	L	L	L
6	н	L	L	н
7	н	L	Н	ᅵ
8	н	L	Н	н
9	н	Н	L	L

'393, 'LS393 COUNT SEQUENCE (EACH COUNTER)

COUNT		OUT	PUT		
CODIVI	a_{D}	αc	Q_{B}	QA	
0	L	L	L	L	
1	L	L	L	н	
2	L	L	Н	L	
3	L	L	Н	н	
4	L	Н	L	L	
5	L	Н	L	н	
6	L	н	Н	L	
7	L	Н	Н	-н	
8	н	L	L	ᅵᅵ	
9	н	L	L	н	
10	н	L	н	L	
11	н	L	Н	н	
12	ннь	H L	H L	L	L
13	н	Н	L	н	
14	н	Н	Н	L	
15	н	Н	Н	н	

NOTES: A. Output QA is connected to input B for BCD count,

- B. Output QD is connected to input A for bi-quinary
 - count.
- C. H = high level, L = low level.

logic diagrams (positive logic)

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

'390, '393

'LS390, 'LS393

SDLS107 – OCTOBER 1976 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage	
Operating free-air temperature range: SN54390, SN54393	
	0°C to 70°C
	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		- 1	SN5439 SN5439		ı	SN7439 SN7439		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			·	-800		_	-800	μΑ
Low-level output current, IOL				16			16	mA
Count from tone f	A input	0		25	0		25	MHz
Count frequency, f _{count}	B input	0		20	0		20	IVIDZ
	A input high or low	20			20			
Pulse width, t _W	B input high or low	25			25			ns
	Clear high	20			20]
Clear inactive-state setup time, t _{su}	•	25↓			25↓			ns
Operating free-air temperature, TA		-55		125	0		70	°C

 $[\]downarrow$ The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	D		7507.00M	NTIONO!		′390			′393		
	PARAMETER		TEST CONE	NI IONS.	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		VCC = MIN, I	≖ –12 mA			-1.5			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I _C		2.4	3.4		2.4	3.4		V
VOL	Low-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I _C	***		0.2	0.4		0.2	0.4	V
11	Input current at maximum input voltage		V _{CC} = MAX, V	j = 5.5 V			1			1	mA
		Clear	,				40			40	
ин	High-level input current	Input A	V _{CC} = MAX, V	j = 2.4 V			80			80	μΑ
		Input B					120				
		Clear					1			-1	
HL	Low-level input current	Input A	V _{CC} = MAX, V	j = 0.4 V			-3.2			-3.2	mA
		Input B					-4.8				
100	Short-circuit output current §		V-0 = MAY	SN54'	-20		57	-20		-57	mA
los	Short-circuit output current's		V _{CC} = MAX	SN74'	-18		-57	-18		-57	IIIA
Icc	Supply current		V _{CC} = MAX, Se	ee Note 2		42	69		38	64	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time.

The QA outputs of the '390 are tested at IOL = 16 mA plus the limit value for IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

242445752	FROM	то	TEST CONDITIONS		'390			′393		UNIT
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	Olvii
	Α	QA		25	35		25	35		MHz
fmax	В	QB		20	30					101112
tPLH	А	0.	1		12	20		12	20	ns
tPHL		α_{A}			13	20		13	20	1113
t _{PLH}		Q _C of '390	Cլ=15 pF,		37	60		40	60	ns
tPHL.	Α	Q _D of '393	R _L = 400 Ω,		39	60		40	60	1 "
tPLH		0	See Note 3		13	21				ns
tPHL	В	QΒ	and		14	21				115
tpLH	В	0 -	Figure 1		24	39				ns
^t PHL	В	αc			26	39				113
^t PLH	В	0-	1		13	21				ns
^t PHL	B B	a_{D}]		14	21				113
tPHL	Clear	Any			24	39		24	39	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

PARAMETER MEASUREMENT INFORMATION

NOTE A: Input pulses are supplied by a generator having the following characteristics t_r < 5 ns, t_f < 5 ns, PRR = 1 MHz, duty cycle = 50%, Z_{out} ≈ 50 ohms.

FIGURE 1

Texas INSTRUMENTS

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)									 ٠.							. 7 V
Clear input voltage																
Any A or B clock input voltage									 							5.5 V
Operating free-air temperature range:	SN54	LS39	0, S	N54	LS39	3							-5	5°C	to	125°C
	SN74	LS39	0, S	N74	LS39	3								0°0	C to	70°C
Storage temperature range									 				-6	5°C	to	150°C
NOTE 1: Voltage values are with respect to netw																

recommended operating conditions

		_	N54LS			N74LS3 N74LS3		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-400			-400	μΑ
Low-level output current, IOL				4			8	mA
0	A input	0		25	0		25	MHz
Count frequency, f _{count}	B input	0		12.5	0		12.5	IVIFIZ
	A input high or low	20			20			
Pulse width, tw	B input high or low	40			40			ns
	Clear high	20			20			l
Clear inactive-state setup time, t _{su}		25‡			25↓			ns
Operating free-air temperature, TA		55		125	0		70	°C

The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

							SN54L	S'		SN74L	s′	UNIT
	PARAMETER		TES	T CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	CIVIT
VIH	High-level input voltage					2			2			V
VIL	Low-level input voltage							0.7			0.8	V
VIK	Input clamp voltage		VCC = MIN,	I _I = -18 mA				-1.5			-1.5	V
Vон	High-level output voltage	1	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA		2.5	3.4		2.7	3.4		V
.,			V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage		V _{IL} = 0.8 V,		IOL = 8 mA¶					0.35	0.5	
	Input ourroat at	Clear			V ₁ = 7 V			0.1			0.1	
Ц	Input current at maximum input voltage	Input A	V _{CC} = MAX		V ₁ = 5.5 V			0.2			0.2	mA
	maximum input vortage	Input B			V1 - 3.5 V			0.4			0.4	
		Clear						0.02	ļ		0.02	1
ΉΗ	High-level input current	Input A	$V_{CC} = MAX$,	$V_1 = 2.7 V$				0.1			0.1	mA
		Input B						0.2			0.2	
		Clear						-0.4			-0.4	1
1 ₁ L	Low-level input current	Input A	VCC = MAX,	V1 = 0.4 V				-1.6			-1.6	4
		Input B						-2.4			-2.4	<u> </u>
IOS	Short-circuit output curi	rent§	V _{CC} = MAX			-20		-100	-20		-100	
Lan	Supply ourrent		VCC = MAX,		'LS390		15	26		15		-l mA
Icc	Supply current		See Note 2		'LS393		15	26		15	26	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

¹ The QA outputs of the LS390 are tested at IOL = MAX plus the limit value for IIL for the clock B input. This permits driving the clock B input while maintaining full fan-out capability.

SN54390, SN54LS390, SN54393, SN54LS393 SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

DADAMETED	FROM	то	TEST CONDITIONS		'LS390			'LS393		
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	Α	QA		25	35		25	35		MHz
f _{max}	В	ΩB		12.5	20					IVITIZ
^t PLH	A	0.			12	20		12	20	ns
^t PHL	1_^_	QA			13	20		13	20	''s
t₽LH	Α	QC of 'LS390	C _L = 15 pF,		37	60		40	60	
^t PHL	1^	Q _D of 'LS393	$R_L = 2 k\Omega$,		39	60		40	60	ns
^t PLH	В	0-5	See Note 4 and Figure 2		13	21				ns
^t PHL	1	QΒ			14	21				ns
^t PLH	В	0.0			24	39				
tPHL.		σc			26	39				ns
^t PLH	В	0-			13	21				
^t PHL		σD			14	21				ns
^t PHL.	Clear	Any			24	39		24	39	ns

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

PARAMETER MEASUREMENT INFORMATION

NOTE A: Input pulses are supplied by a generator having the following characteristics t₁< 15 ns, t₁< 6 ns, PRR = 1 MHz, duty cycle = 50 %, $Z_{out} \approx 50$ ohms.

FIGURE 2

'46A, '47A, 'LS47 feature

- Open-Collector Outputs
 Drive Indicators Directly
- Lamp-Test Provision
- Leading/Trailing Zero Suppression

'48, 'LS48 feature

- Internal Pull-Ups Eliminate Need for External Resistors
- Lamp-Test Provision
- Leading/Trailing Zero Suppression

'LS49 feature

- Open-Collector Outputs
- Blanking Input

SN5446A, SN5447A, SN54LS47, SN5448, SN54LS48 . . . J PACKAGE SN7446A, SN7447A, SN7448 . . . N PACKAGE SN74LS47, SN74LS48 . . . D OR N PACKAGE (TOP VIEW)

SN54LS49 . . . J OR W PACKAGE SN74LS49 . . . D OR N PACKAGE (TOP VIEW)

SN54LS47, SN54LS48 . . . FK PACKAGE (TOP VIEW)

SN54LS49 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

All Circuit Types Feature Lamp Intensity Modulation Capability

		DRIVER O	UTPUTS		TYPICAL	
TYPE	ACTIVE	OUTPUT	SINK	MAX	POWER	PACKAGES
	LEVEL	CONFIGURATION	CURRENT	VOLTAGE	DISSIPATION	
SN5446A	low	open-collector	40 mA	30 V	320 mW	J, W
SN5447A	low	open-collector	40 mA	15 V	320 mW	J, W
SN5448	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J,W
SN54LS47	low	open-collector	12 mA	15 V	35 mW	J, W
SN54LS48	high	2-kΩ pull-up	2 mA	5.5 V	125 mW	J, W
SN54LS49	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN7446A	low	open-collector	40 mA	30 V	320 mW	J, N
SN7447A	low	open-collector	40 mA	15 V	320 mW	J, N
SN7448	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J, N
SN74LS47	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS48	high	2-kΩ pull-up	6 mA	5.5 V	125 mW	J, N
SN74LS49	high	open-collector	8 mA	5.5 V	40 mW	J, N

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

description

The '46A, '47A, and 'LS47 feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. The '48, 'LS48, and 'LS49 feature active-high outputs for driving lamp buffers or common-cathode LEDs. All of the circuits except 'LS49 have full ripple-blanking input/output controls and a lamp test input. The 'LS49 circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

The '46A, '47A, '48, 'LS47, and 'LS48 circuits incorporate automatic leading and/or trailing-edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types (including the '49 and 'LS49) contain an overriding blanking input (BI), which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL logic outputs.

The SN54246/SN74246 and '247 and the SN54LS247/SN74LS247 and 'LS248 compose the \Box and the \Box with tails and were designed to offer the designer a choice between two indicator fonts.

'46A, '47A, 'LS47 FUNCTION TABLE (T1)

						,	47 FORCTION								
DECIMAL OR			INP	JTS			BI/RBO†			0	UTPUI	s			NOTE
FUNCTION	LT	RBI	D	С	В	Α		а	b	U	d	e	f	g	
0	Н	н	L.	L	L	L	Н	ON	ON	ON	ON	ON	ON	OFF	
1	н	х	L	L	L	Н	н	OFF	ON	ON	OFF	OFF	OFF	OFF	
2	н	x	L	L	Н	L	н	ON	ON	OFF	ON	ON	OFF	ON	
3	н	Х	L	L	Н	Н	н	ON	ON	ON	ON	OFF	OFF	ON	
4	Н	Х	L	н	L	L	Н	OFF	ON	ON	OFF	OFF	ON	ON	
5	н	х	L	Н	L	Н	н	ON	OFF	ON	ON	OFF	ON	ON	
6	н	х	L	Н	Н	Ĺ	н	OFF	OFF	ON	ON	ON	ON	ON	
7	н	x	L	Н	Н	н	н	ON	ON	ON	OFF	OFF	OFF	OFF	1
8	Н	Х	Н	L	L	L	н	ON	ON	ON	ON	ON	ON	ON	'
9	н	X	н	L	L	н	н	ON	ON	ON	OFF	OFF	ON	ON	
10	н	X	Н	L	Н	L	H	OFF	OFF	OFF	ON	ON	OFF	ON	
11	н	X	н	L	н	Н	н	OFF	OFF	ON	ON	OFF	OFF	ON	
12	Н	Х	Н	Н	L	L	н	OFF	ON	OFF	OFF	OFF	ON	ON	
13	н	X	н	н	L	Н	н	ON	OFF	OFF	ON	OFF	ON	ON	
14	н	X	н	Н	н	L	н	OFF	OFF	OFF	ON	ON	ON	ON	ĺ
15	н	X	Н	н	Н	Н	н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
81	х	Х	Х	Х	Х	X	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
RBI	н	L	L	L	L	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	X	×	X	Х	Х	н	ON	ON	ON	ON	ON	ON	ON	4

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.

- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any other input
- 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).
- 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

¹BI/RBO is wire AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

'48, 'LS48 FUNCTION TABLE (T2)

DECIMAL OR			INPL	JTS			BI/RBO†			οι	JTPU	rs			NOTE
FUNCTION	LT	RBI	D	С	В	Α		а	b	c	d	e	f	g	
0	Н	Н	L	L	L,	L	Н	Н	Н	Н	Н	Н	Н	ㄴ	
1	Н	Х	L	L	L	Н	Н	L	Н	Н	L	L	L	니	
2	н	X	L	L	Н	L	Н	Н	Н	L	Н	Н	L	н	
3	Н	Х	L	L	H	Н	Н	Н	<u>H</u>	<u>H</u>	Н	<u>L</u>	L	Н	
4	Н	Х	L	Н	L	L	Н	L	Н	Н	L	L	Н	Н	
5	н	х	L	Н	L	Н	н	н	L	Н	Н	L	Н	Н	
6	н	Х	L	Н	Н	L	H	L	L	Н	Н	Н	Н	Н	
7	н	X	L	Н	H	H	Н	Н	Н	Н	L	L	L	L	1
8	Н	Х	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	'
9	Н '	X	Н	L	L	Н	Н	н	Н	Н	L	L	Н	Н	
10	Н	x	Н	L	Н	L	Н	L	L	L	Н	Н	L	Н	
11	н	х	Н	L	Н	H	H	L	L.	Н	Н	L	L	H	
12	Н	Х	Н	Н	L	L	Н	L	Н	L	L	L	Н	Н	\
13	н	×	н	Н	L	Н	н	Н	L	L	Н	L	Н	Н	
14	н	x	Н	Н	Н	L	н	L	L	L	Н	Н	Н	Н	
15	Н	x	H.	Н	Н	Η	н	L	L	L	L	L	L	L	
ВІ	Х	X	Х	X	Х	Х	L	L	L	L	L	L	L	L	2
RBI	н	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	X	Х	X	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	4

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high, if blanking of a decimal zero is not desired.

- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
- 3. When ripple-blanking input (帝語) and inputs A, B, C, and D are at a low level with the lamp-test input high, all segment outputs go low and the ripple-blanking output (帝語) goes to a low level (response condition).
- 4. When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are high.

tBI/RBO is wire-AND logic serving as blanking input (\overline{BI}) and/or ripple-blanking output (\overline{RBO}).

'LS49 FUNCTION TABLE (T3)

DECIMAL OR		11	IPUT	S				OL	JTPU	TS			NOTE
FUNCTION	D	С	В	Α	BI	а	b	С	d	е	f	g	
0	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	
1	L	L	L.	Н	Н	L	Н	Н	L	L	L	L	
2	L	L	Н	L	Н	н	Н	L	Н	Н	L	Н	
3	L	L	Н	H	Н	Н	Н	Н	H	L	L	<u>H</u>	
4	L	Н	L	L	Н	L	Н	Н	L	L	Н	Н	
5	L	Н	Ł	Н	Н	н	L	Н	Н	L	Н	Н	
6	L	Н	Н	L	н	L	L	Н	Н	Н	Н	Н	
7	L	Н	H	Н	H	Н	Н	Н	L	L	L	L	1 1
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	,
9	Н	L	L	Н	Н	н	Н	Н	L	L	Н	Н	
10	Н	L	Н	L	Н	L	L	L	Н	Н	L	Н	
11	н	L	Н	Н	H	L	L	H	Н	L	L	Н	
12	Н	Н	L	L	Н	L	Н	L	L	L	Н	Н	
13	н	Н	L	Н	Н	Н	L	L	Н	L	Н	Н	
14	н	Н	Н	L	Н	L	L	L	Н	Н	Н	Н	
15] H	Н	Н	Н	Н	L_	L	L	L	L	L	L	
BI	Х	X	×	Х	L	L	L	L	L	L	L	L	2

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.

2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.

logic diagrams (positive logic)

Pin numbers shown are for D, J, N, and W packages.

logic diagrams (continued)

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

'46A, '47A, '48

'46A, '47A, '48

'46A, '47A

'48

schematics of inputs and outputs

'LS47, 'LS48, 'LS49

EQUIVALENT OF EACH INPUT EXCEPT BI/RBO

VCC

INPUT

Req

INPUT

LT and RBI ('LS47, 'LS48): Req = 20 kΩ NOM
BI ('LS49): Req = 20 kΩ NOM
A, B, C, and D: Req = 25 kΩ NOM

'LS47, 'LS48, 'LS49

'LS47

'LS48

'LS49

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																				7 V
Input voltage																				5.5 V
Current forced into any output in the	of	fsta	ate																	1 mA
Operating free-air temperature range:	SN	154	46/	۸, S	NE	644	7A									_!	55°	,C	to	125°C
	SN	174	46/	۸, S	N7	44	7A										()°C	C t	o 70°C
Storage temperature range																				

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		5	N5446	Α		N5447	Α		N7446	Α	5	N7447	Α	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	ONT
Supply voltage, V _{CC}		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
Off-state output voltage, VO(off)	a thru g			30			15			30			15	٧
On-state output current, IO(on)	a thru g			40			40			40			40	mA
High-level output current, IOH	BI/RBO			-200			-200			-200			-200	μΑ
Low-level output current, IOL	BI/RBO			8			8			8			8	mA
Operating free-air temperature, T	4	-55		125	-55		125	0		70	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDIT	TIONST	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		VCC = MIN, II =	-12 mA			-1.5	V
VOH	High-level output voltage	BÎ/RBŌ	V _{CC} = MIN, V _{IH} V _{IL} = 0.8 V, I _{OH}		2.4	3.7		V
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _I V _I L = 0.8 V, I _{OL}	ı		0.27	0.4	٧
IO(off)	Off-state output current	a thru g	V _{CC} = MAX, V _I V _I L = 0.8 V, V _O				250	μА
V _{O(on)}	On-state output voltage	a thru g	V _{CC} = MIN, V _I V _I L = 0.8 V, I _O (0.3	0.4	V
ų .	Input current at maximum input voltage	Any input except BI/RBO	VCC = MAX, VI	= 5.5 V			1	mA
¹ін	High-level input current	Any input except BI/RBO	VCC = MAX, VI	= 2.4 V			40	μА
I _I L	Low-level input current	Any input except BI/RBO	V _{CC} = MAX, V _I	= 0.4 V			-1.6	mA
		BI/RBO					-4	
los	Short-circuit output current	BI/RBO	V _{CC} = MAX				-4	mA
Icc	Supply current		V _{CC} = MAX, See Note 2	SN54' SN74'		64 64	85 103	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	ns
ton	Turn-on time from A input	$C_{L} = 15 pF$, $R_{L} = 120 \Omega$,			100] ""
toff	Turn-off time from RBI input	See Note 3			100	ns
ton	Turn-on time from RBI input				100] '''

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

SDLS111 - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																•	•	•	•	•	•		•	/ V	
Input voltage																								5.5 V	
Operating free-air temperature range:	SN5448										_										-5	5°C	to	125°C	
Operating nee-an temperature range.	SN7448	•	•	•	•	•	•	•	•	•	-	•	•	•	•	·	·					0°0	C to	70°C	
																					_6	5°C	to	150°C	
Storage temperature range					-													•	•		-0	~ ~	·	.00 0	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN544	В		SN7448	8	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	OIVIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
	a thru g			-400			-400	μА
High-level output current, IOH	BI/RBO			-200			200	μΑ
	a thru g			6.4			6.4	mA
Low-level output current, IOL	BI/RBO			8			8	"I"A
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN, II	= -12 mA			-1.5	V
Voн	High-level output voltage	a thru g	V _{CC} = MIN, V V _{II} = 0.8 V, I _C		2.4	3.7		V
10	Output current	a thru g	V _{CC} = MIN, V	O = 0.85 V,	-1.3	-2		mA
VOL	Low-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I _C			0.27	0.4	٧
Ц	Input current at maximum input voltage	Any input except BI/RBO	V _{CC} = MAX, V	₁ = 5.5 V			1	mA
ЧН	High-level input current	Any input except BI/RBO	V _{CC} = MAX, V	= 2.4 V			40	μА
IIL	Low-level input current	Any input except BI/RBO BI/RBO	V _{CC} = MAX, V	' _I = 0.4 V			-1.6 -4	mA
los	Short-circuit output current	BI/RBO	V _{CC} = MAX				-4	mA
Icc	Supply current		V _{CC} = MAX, See Note 2	SN5448 SN7448		53 53	76 90	-l mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25 °C

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
[†] PHL Propagation delay time, high-to-low-level output from A input			100	ns
tpLH Propagation delay time, low-to-high-level output from A input	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$		100	113
tpHL Propagation delay time, high-to-low-level output from RBI input	See Note 3		100	ns
[†] PLH Propagation delay time, low-to-high-level output from RBI input			100	

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ AII typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)					 									7 V
Input voltage														
Peak output current (t _W ≤ 1 ms, duty cycle ≤ 10%	5)				 								2	00 mA
Current forced into any output in the off state .					 									1 mA
Operating free-air temperature range: SN54LS47					 						-5	5°C	to	125°C
SN74LS47					 							o°	C t	o 70°C
Storage temperature range											6	5°C	` +o	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54LS4	17	S	N74LS4	17	
		MIN	NOM	MAX	MIN	NOM	MAX	TINU
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)	a thru g		***	15			15	V
On-state output current, IO(on)	a thru g			12			24	mA
High-level output current, IOH	BI/RBO			-50			-50	μА
Low-level output current, IOL	BI/RBO			1.6			3.2	mA
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST 001	IDITIONS†	S	N54LS4	17	S	N74LS4	47	
	PARAMETER		IEST CON	DITIONS.	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	٧
VIK	Input clamp voltage		V _{CC} = MIN,	I ₁ = -18 mA			-1.5			-1.5	٧
v _{OH}	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -50 μA	2.4	4.2		2.4	4.2		V
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 1.6 mA		0.25	0.4		0.25	0.4	V
	25tt love, output voltage	5,,,,,,,	VIL = VIL max	I _{OL} = 3.2 mA					0.35	0.5	
IO(off)	Off-state output current	a thru g	V _{CC} = MAX, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{O(off)} = 15 V			250			250	μА
V _{O(on)}	On-state output voltage	a thru q	V _{CC} = MIN, V _{IH} = 2 V,	l _{O(on)} = 12 mA		0.25	0.4		0.25	0.4	v
0 (011)			V _{IL} = V _{IL} max	1 _{O(on)} = 24 mA					0.35	0.5	
l _k	Input current at maximur	n input voltage	V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mA
IJН	High-level input current		V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
I _I L	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 0.4 V			-0.4			-0.4	mA
		BI/RBO					-1.2			-1.2	
los	Short-circuit output current	BI/RBO	V _{CC} = MAX		-0.3		-2	-0.3		-2	mA
1cc	Supply current		V _{CC} = MAX,	See Note 2		7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25 °C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	
ton	Turn-on time from A input	$C_L = 15 \text{ pF}, R_L = 665 \Omega,$			100	ns
toff	Turn-off time from RBI input, outputs (a-f) only	See Note 3			100	
ton	Turn-on time from RBI input, outputs (a-f) only				100	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

SDLS111 - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .																			7 V	
Input voltage						_	_	_			_									7 V	•
Operating free-air temperature ra	ange:	SN	541	_S4	8													55°	C to	125°C	,
		SN	741	_\$4	8													U	Ut	o /U C	,
Storage temperature range													 •	•			-6	35°	C to	150°C	,

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		s	N54LS4	18	S	N74LS4	18	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	OWIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
	a thru g			-100			-100	μА
High-level output current, IOH	BI/RBO			-50			-50	μ^
	a thru g			2			6	mA
Low-level output current, IOL	BĪ/RBO			1.6			3.2	IIIA
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS4	18	S	N74LS4	18	UNIT
	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	וואט
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	٧
VIK	Input clamp voltage		V _{CC} = MIN,	l ₁ = -18 mA			-1.5			-1.5	٧
V _{OH}	High-level output voltage	a thru g and BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX	2.4	4.2		2.4	4.2		V
I _O	Output current	a thru g	V _{CC} = MIN, Input conditions	$V_O = 0.85 V$, as for V_{OH}	-1.3	-2		-1.3	-2		mA
		o thru o	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 2 mA		0.25	0.4		0.25	0.4	V
v	1 and an analysis relation	a thru g	VIH = Z V,	IOL = 6 mA					0.35	0.5	1 -
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN,	I _{OL} = 1.6 mA		0.25	0.4		0.25	0.4	V
		BI/RBO	V _{IH} = 2 V, V _{IL} = V _{IL} max	I _{OL} = 3.2 mA					0.35	0.5	
11	Input current at maximum input voltage	Any input except BI/BRO	V _{CC} = MAX,	V ₁ = 7 V			0.1			0.1	mA
ΊΗ	High-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
I _{IL}	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 0.4 V			-0.4			-0.4	mA
	·	BI/RBO	1				-1.2			-1.2]
los	Short-circuit output current	BI/RBŌ	V _{CC} = MAX		-0.3		-2	-0.3		-2	mA
1cc	Supply current	-	V _{CC} = MAX,	See Note 2		25	38		25	38	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$C_L = 15 \text{ pF}, R_L = 4 \text{ k}\Omega,$			100	ns
	Propagation delay time, low-to-high-level output from A input	See Note 3			100	113
	Propagation delay time, high-to-low-level output (a-f only) from RBI input	$C_L = 15 \text{ pF}, R_L = 6 \text{ k}\Omega,$			100	ns
	Propagation delay time, low-to-high-level output (a-f only) from RBI input	See Note 3			100	

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A 25^{\circ}$ C.

NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)														 					7 V
Input voltage					_									 					7 V
Current forced into any output in the off state .	•	•	•	•	•	•	 •	•										1	mΑ
Current forced into any output in the off state .	•	•	•	•	•		 •	•	•	•	•	•	•	•	•		٠.	-55°C to 1′	25°C
Operating free-air temperature range: SN54LS49	•	•	٠	•	•		 •	٠	•	•	•	•	•	•	•	•		-00°C 4- 1	20°C
SN74LS49	•	•	•	•	•		 •	•	•	•	•	•		•	•		•	. 0 0 10 /	70 C
Storage temperature range							 -	•		-						,		-65°C to 15	30 C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		N54LS	19	S	N74LS4	19	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH			5.5			5.5	٧
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COA	NDITIONS†	S	N54LS	19	S	N74LS4	19	
	TANAMETER	TEST CON	ADITIONS,	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage		J-2			0.7			0.8	V
VIK	Input clamp voltage	VCC = MIN,	I _I = -18 mA			-1.5			-1.5	V
Іон	High-level output current	V _{CC} = MIN, V _I = V _I max,	V _{IH} = 2 V, V _{OH} = 5.5 V			250			250	μА
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
		VIL = VIL max	1 _{OL} = 8 mA					0.35	0.5	ľ
П	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V			0.1			0.1	mA
ΙΗ	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
IIL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
¹cc	Supply current	V _{CC} = MAX,	See Note 2		8	15		8	15	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$C_L = 15 \text{ pF}, R_L = 4 \text{ k}\Omega,$			100	
[†] PLH	Propagation delay time, low-to-high-level output from A input	See Note 3			100	ns
tPHL	Propagation delay time, high-to-low-level output (a-f only) from RBI input	$C_L = 15 pF$, $R_L = 6 k\Omega$,			100	
tPLH	Propagation delay time, low-to-high-level output (a-f only) from $\overline{\text{RBI}}$ input	See Note 3			100	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

TO-92 MELODY TRANSISTOR TYPE

電晶體包裝音樂 IC

TAIPEI: TEL: 886-2-22783733

FAX: 886-2- 22783633 TEL: 852- 27569109 FAX: 852- 27566961

MELODY

M66T.

EFEATURES 功能敘述

Operating mode:

Continuous mode : Normal.

OSH mode : Optional.

P/N	SONG LIST
M66T32	CUCKOO WALTZ
M66T19	FOR ALICE
M66T08	HAPPY BIRTHDAY
M66T05	SWEET HOME
M66T68	SMALL WORLD
M66T11	LOVE ME TENDER
M66T26	ROCK-A-BY BABY
M66T18	WEDDING MARCH
M66T01	XMAS 3 SONGS

APPLICATION 產品應用

Telephone system, Musical instruments etc..

ELECTRICAL CHARACTERISTICS 電氣規格

($@V_{DD}=3V$ unless otherwise specified)

Characteristics	Sym.	Min.	Тур.	Max.	Unit	REMARKS
工作電壓 Operating Voltage	V_{DD}		3	3.5	V	
工作電流 Operating Current	I_{OP}		0.1	0.5	mA	No load
推動電流 BZ Driving Current	I_{O}	1			mA	@ V _{DS} =1V
振盪頻率 Oscillator Frequency	F _{osc}		100		KHz	±30% TOL.
工作溫度 Operating Temperature	Temp.	0	25	60		

APPLICATION DIAGRAM 參考電路圖

^{*}All specs and applications shown above subject to change without prior notice.

(以上電路及規格僅供參考,本公司得逕行修正)

1/1 2003-11-25

TAIWAN OASIS LED DATA SHEET

PART NO.: TOL-30aUReDAa-U4M

DESCRIPTION

SOURCE MATERIAL	AlGaInP
COLOR	Ultra Red
LENS	Red Diffused
ABSOLUTE MAXIMUM RATING (Ta=25°C)	
PULSE CURRENT (1/10 DUTY, CYCLE 0.1mS PULSE WIDTH)	100mA
REVERSE VOLTAGE	5.0V
CONTINUOUS FORWARD CURRENT	25mA
RECOMMEND OPERATING CURRENT	- 15mA
OPERATING TEMPERATURE	-25°C TO 85°C
STORAGE TEMPERATURE	-30°C TO 100°C
LEAD SOLDERING TEMPERATURE	260°C FOR 3 SECONDS
	(2mm from body)

CHARACTERISTICS (Ta=25°C)

PARAMETER	CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNITS
POWER DISSIPATION		Pd			90	mW
DOMINANT WAVELENGTH	If=20mA	λd		630		nm
SPECTRUM HALF WIDTH	If=20mA	Δλ		15		nm
FORWARD VOLTAGE	If=20mA	VF		2.0	2.3	V
REVERSE CURRENT	VR = 5 V	IR			100	μА
LUMINOUS INTENSITY	If=20mA	Iv	75	150		mcd
FULL VIEWING ANGLE	If=20mA	201/2		50		deg.

INTERNAL CIRCUIT DIAGRAM

DATE	2002/3/20'	SCALE	2.5:1	TOLERANCE	±0.25 ANGLE ±5°	DRAWN	DQH	CHECKED	
UNIT	M/M	SHEET NO.	1/1	DRAWING NO.	S-30aUReDAa-U4M-A	CUSTOMER		APPROVED	

TAIWAN OASIS LED DATA SHEET

PART NO.: TOL-30aUGbCAa-U4M

DESCRIPTION

SOURCE MATERIAL	- AlGaInP
COLOR	
LENS	-Water Clear
ABSOLUTE MAXIMUM RATING (Ta=25°C)	
PULSE CURRENT (1/10 DUTY, CYCLE 0.1mS PULSE WIDTH) —-—	- 100mA
REVERSE VOLTAGE —-——-—-	- 5.0V
CONTINUOUS FORWARD CURRENT	- 25mA
RECOMMEND OPERATING CURRENT	- 15mA
OPERATING TEMPERATURE	-25°C TO 85°C
STORAGE TEMPERATURE	30°C TO 100°C

CHARACTERISTICS (Ta=25°C)

LEAD SOLDERING TEMPERATURE — - — - -

PARAMETER	CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNITS
POWER DISSIPATION		Pd			90	m₩
DOMINANT WAVELENGTH	If=20mA	λ_d		574		nm
SPECTRUM HALF WIDTH	If=20mA	$\triangle \lambda$		15		nm
FORWARD VOLTAGE	If=20mA	VF		2.0	2.3	V
REVERSE CURRENT	VR=5V	Ir			100	μA
LUMINOUS INTENSITY	If=20mA	Ιv	560	1000		med
FULL VIEWING ANGLE	If=20mA	201/2		18		deg.

PACKAGE DIMENSIONS & INTERNAL CIRCUIT DIAGRAM

260°C FOR 3 SECONDS

(2mm from body)

DATE	2002/9/4	SCALE	2.5:1	TOLERANCE	±0.25 Angle ±5°	DRAWN	Daisy	CHECKED	
UNIT	M/M	SHEET NO.	1/1	DRAWING NO.	S-30aUGbCÅa-U4M-Å	CUSTOMER		APPROVED	

TAIWAN OASIS LED DATA SHEET (FOR INFRARED)

PART NO.: TOIR-50b94bCEa

ABSOLUTE MAXIMUM RATINGS AT TA=25°C

PARAMETER	SYMBOL	DATA	UNIT	
Forward Current	Ifm	100	mA	
Peak Forward Current (duty=1:100, f=100KHZ)	IFP	1000	mÅ	
Reverse Voltage	VR	6	V	
Power Disspation	Ръ	150	m₩	
Operating Temperature Range		-25 to +85	°C	
Storage Temperature Range		-30 to +85 °C		
Lead Sold Temperature (1/10 Inch Below Seating Plane)		260°C for 3 sec.		

ELECTRICAL/OPTICAL CHARACTERISTICS AT TA=25°C

PARAMETER	SYMBOL	DATA	UNIT	TEST CONDITION		
Radiated Output Power	Ро (тур.)	12.0	mW	Distance: 10cm IF=50mA Detector Area: 1cm ²		
П		TYP: 1.25		I -20m A		
Forward Voltage	VF	MAX: 1.45	V	$I_F = 20 \text{mA}$		
Wavelength	λр	940	nm	$I_F = 20 \text{mA}$		
Spectrum Width of Half Value	$\triangle \lambda$	50	nm	$I_F = 20 \text{mA}$		
Reverse Current	Ιr	10	uА	$V_R = 5V$		
Full Viewing Angle	$2x\frac{1}{2}\theta$	25	o	I _F =20mA		
Lens		Water Clear				
Radiation Material		GaAs/GaAs				

PACKAGE DIMENSIONS & INTERNAL CIRCUIT DIAGRAM

1.00±0.1

DATE	01/10/01	SCALE	2.5:1	TOLERANCE	±0.25 Angle ±6°	DRAWN	华明亮	CHECKED	
UNIT	M/M	SHEET NO.	1/2	DRAWING NO.	S-60b94bCEa-A	CUSTOMER		APPROVED	

Silicon PIN Photodiode

Silizium-PIN-Fotodiode

Version 1.1

SFH 213, SFH 213 FA

SFH 213

SFH 213 FA

Features:

- Wavelength range (S_{10%}) 400 nm to 1100 nm (SFH 213) and 750 nm to 1100 nm (SFH 213 FA)
- Short switching time (typ. 5 ns)
- 5 mm LED plastic package

Applications

- · High speed photointerrupters
- Industrial electronics
- · For control and drive circuits

Besondere Merkmale:

- Wellenlängenbereich (S_{10%}) 400nm bis 1100nm (SFH 213) und 750 nm bis 1100 nm (SFH 213 FA)
- Kurze Schaltzeit (typ. 5 ns)
- 5 mm-Plastikbauform im LED-Gehäuse

Anwendungen

- Schnelle Lichtschranken
- Industrieelektronik
- Messen / Steuern / Regeln

Ordering Information Bestellinformation

Туре:	Photocurrent	Ordering Code
Тур:	Fotostrom	Bestellnummer
	$V_R = 5 \text{ V, Std. Light A, E}_V = 1000 \text{ Ix (SFH 213)}$ $V_R = 5 \text{ V, } \lambda = 870 \text{ nm, E}_e = 1 \text{ mW/cm}^2 \text{ (SFH 213 FA)}$	
	I _P [μΑ]	
SFH 213	135 (≥ 100)	Q62702P0930
SFH 213 FA	90 (≥ 65)	Q62702P1671

Maximum Ratings ($T_A = 25$ °C) Grenzwerte

Parameter	Symbol	Values		Unit
Bezeichnung	Symbol	Werte		Einheit
		SFH 213	SFH 213 FA	
Operating and storage temperature range Betriebs- und Lagertemperatur	T _{op} ; T _{stg}	-40	. 100	°C
Reverse voltage Sperrspannung	V _R	20		V
Reverse voltage Sperrspannung (t < 2 min)	V _R	50		V
Total power dissipation Verlustleistung	P _{tot}	150		mW

Characteristics $(T_A = 25 \text{ °C})$ Kennwerte

Parameter	Symbol	Values		Unit
Bezeichnung	Symbol	Werte		Einheit
		SFH 213	SFH 213 FA	
Photocurrent Fotostrom ($E_v = 1000 \text{ lx}$, Std. Light A, $V_R = 5 \text{ V}$, T = 2856 K)	I _P	135 (≥ 100)		μΑ
Photocurrent Fotostrom ($V_R = 5 \text{ V}, \lambda = 870 \text{ nm}, E_e = 1 \text{ mW/cm}^2$)	I _P		90 (≥ 65)	μΑ
Wavelength of max. sensitivity Wellenlänge der max. Fotoempfindlichkeit	λ _{S max}	850	900	nm
Spectral range of sensitivity Spektraler Bereich der Fotoempfindlichkeit	λ _{10%}	400 1100	750 1100	nm
Radiant sensitive area Bestrahlungsempfindliche Fläche	А	1.00		mm ²
Dimensions of radiant sensitive area Abmessung der bestrahlungsempfindlichen Fläche	LxW	1 x 1		mm x mm
Half angle Halbwinkel	φ	± 10		٥

Parameter Bezeichnung	Symbol Symbol		ues erte	Unit Einheit
		SFH 213	SFH 213 FA	
Dark current Dunkelstrom (V _R = 20 V)	Ounkelstrom		≤ 5)	nA
Spectral sensitivity of the chip Spektrale Fotoempfindlichkeit des Chips $(\lambda = 870 \text{ nm})$	S _{\(\lambda\) typ}	0.	65	A/W
Quantum yield of the chip Quantenausbeute des Chips $(\lambda = 870 \text{ nm})$	η	0.	93	Electro ns /Photon
Open-circuit voltage Leerlaufspannung ($E_v = 1000 lx$, Std. Light A)	Vo	430 (≥ 350)		mV
Open-circuit voltage Leerlaufspannung ($E_e = 0.5 \text{ mW/cm}^2$, $\lambda = 870 \text{ nm}$)	Vo		380 (≥ 300)	mV
Short-circuit current Kurzschlussstrom ($E_v = 1000 \text{ lx}$, Std. Light A)	I _{sc}	125		μΑ
Short-circuit current Kurzschlussstrom ($E_e = 0.5 \text{ mW/cm}^2$, $\lambda = 870 \text{ nm}$)	I _{sc}		42	μΑ
Rise and fall time Anstiegs- und Abfallzeit $(V_R = 20 \text{ V}, R_L = 50 \Omega, \lambda = 850 \text{ nm})$	t _r , t _r	0.005		μs
Forward voltage Durchlassspannung $(I_F = 100 \text{ mA}, E = 0)$	V _F	1.3		V
Capacitance Kapazität $(V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0)$	C ₀	11		pF
Temperature coefficient of V _O Temperaturkoeffizient von V _O	TC _v	-2	2.6	mV/K
Temperature coefficient of I _{SC} Temperaturkoeffizient von I _{SC} (Std. Light A)	TCı	0.18		% / K

Parameter	Symbol	ol Values		Unit
Bezeichnung	Symbol	We	erte	Einheit
		SFH 213	SFH 213 FA	
Temperature coefficient of I_{SC} Temperaturkoeffizient von I_{SC} ($\lambda = 870 \text{ nm}$)	TC ₁		0.1	% / K
Noise equivalent power Rauschäquivalente Strahlungsleistung $(V_R = 20 \text{ V}, \lambda = 870 \text{ nm})$	NEP	0.028		pW / Hz ^½
Detection limit Nachweisgrenze $(V_R = 20 \text{ V}, \lambda = 870 \text{ nm})$	D,	3.6e12		cm x Hz½ / W

Relative Spectral Sensitivity Relative spektrale Empfindlichkeit SFH 213 $S_{\rm rel}=f(\lambda)$

Relative Spectral Sensitivity Relative spektrale Empfindlichkeit SFH 213 FA $S_{rel} = f(\lambda)$

Photocurrent / Open-Circuit Voltage Fotostrom / Leerlaufspannung SFH 213 I_P (V_R = 5 V) / V_O = f(E_V)

Total Power Dissipation Verlustleistung

$$P_{tot} = f(T_A)$$

Photocurrent / Open-Circuit Voltage Fotostrom / Leerlaufspannung SFH 213 FA I_P ($V_B = 5$ V) / $V_O = f(E_e)$

Dark Current Dunkelstrom

$$I_R = f(V_R), E = 0$$

Capacitance Kapazität

 $C = f(V_B), f = 1 \text{ MHz}, E = 0$

Dark Current Dunkelstrom

 $I_{R} = f(T_{A}), V_{R} = 20 \text{ V}, E = 0$

Directional Characteristics Winkeldiagramm

 $S_{rel} = f(\phi)$

Package Outline Maßzeichnung

Dimensions in mm (inch). / Maße in mm (inch).

Package 5mm Radial (T 1 ¾), Epoxy

Gehäuse 5mm Radial (T 1 ¾), Harz

Recommended Solder Pad Empfohlenes Lötpaddesign

TTW Soldering / Wellenlöten (TTW)

Dimensions in mm (inch). / Maße in mm (inch).

TTW Soldering Wellenlöten (TTW)

IEC-61760-1 TTW / IEC-61760-1 TTW

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb. Falls Sie dieses Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein sollten, wenden Sie sich bitte an das nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein!

Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen** nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für
- (a) die Implantierung in den menschlichen Körper oder
- (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

TAIWAN OASIS LED DATA SHEET

PART NO.: TOPS-050aTB2

ABSOLUTE MAXIMUM RATING (Ta = 25°C)

Parameter	Symbol	Data	Unit	Test Condition
Collector-Emitter Breakdown Voltage	BVceo	30	V	Ic=100uA Ib=0
Emitter-Collector Breakdown Voltage	BVeco	5	V	Ie=100uA Ib=0
Collector Dark Current	Id	0.1	uA	Vce=10v H=0mW/cm²
Collector Light Current	IL	4.0	mA	Vce=10v 2856k 1000lx
Collect Power Dissipation	Pem	140	mW	
Rise/Fall Time	Tr/Tf	5	uS	R=50 Vce=10v Ic=1mA
Life Time	Н	100'000	Hrs	Vce=10v
Peak collection Wavelength	Р	900	nm	
Spectral Range		750~1050	nm	
Operating Temperature Rang		−25 °C	to	70 °C
Storage Tenperature Ra	−30 °C	to	100° C	
Lens Color			Black	

PACKAGE DIMENSIONS:

INTERNAL CIRCUIT DIAGRAM:

DATE	11/07/00	SCALE	2.5:1	TOLERANCE	±0,25 Angle ±5°	DRAWN	华明亮	CHECKED	
UNIT	M/M	SHEET NO.	1/1	DRAWING NO.	S-050aTB 2-A	CUSTOMER		APPROVED	

Photo Conductive Cell, CdS, LDR

1-07-04-11

Model No. : KE-10715

General Description:

By using the sintering film fabrication method, the manufacturing process of the photo conductive layer can offer high sensitivity and easy fabrication of large sensitive areas, a large mass production effect, and relatively superior production profitability

Features:

- Low Cost
- > Exceptional temperature stability
- > Fast response time
- > Excellent chopping capability

Applications:

- Automatic dimmer
- Automatic flasher
- Optical relay

Outline Dimensional Drawing

Electrical Characteristics

(Ta=25°C)
(Iu-25 C)

Electrical Characteristics				(18	(=25°C)
Descriptions	Symbol	Min.	Тур.	Max.	Unit
Photo Resistance at 10 Lux (Light Source: 2856K)	Rı	10		15	kΩ
Dark Resistance After 10 sec. Removal of 10 Lux	RD	0.5			МΩ
Gamma Value at 10 ~ 100 Lux	γ 100 10		0.7		
Maximum Power Dissipation	P_{D}			35	mW
Maximum Breakdown Voltage	V _{MAX}			100	V_{DC}
Peak Spectral Response	λр	550		650	nm
Rise Response Time at 1 fc	tr		35		ms
Fall Response Time at 1 fc	tf		5		ms
Ambient Temperature	TA		-30 ~ +60		°C

^{*} Pre-measurement condition: Exposed in 500 Lux for more than 3 hours.

 γ value: Standard gradient rate of resistance ranged by 10 ~ 100 Lux (± 0.1 unless otherwise stated)

$$\gamma \ _{a}^{b} \ = \left| \begin{array}{c} Log(R_b) - Log(R_a) \\ \hline Log(E_b) - Log(E_a) \end{array} \right| \ \ \begin{array}{c} \text{Where:} \quad R_x : \text{Photo resistance as lighting } x \\ \hline E_x : \text{Illumination as lighting } x \end{array}$$

POWER RELAY 2 POLES—5 A LOW PROFILE TYPE FTR-F1 SERIES

■ FEATURES

- Low profile power relay (height 16.5 mm) employing unique construction
 - DPST/DPDT 5 A, TV-3 rating available
- Higher isolation by employing reinforced insulation construction

Insulation distance: 8 mm (between coil and contact)
Dielectric strength: 5 kV (between coil and contact)
Surge strength: 10 kV (between coil and contact)

- Plastic sealed relay
- Pin configuration compatible to VB/FBR620
- UL, CSA, VDE, SEMKO, BSI recognized
- Conforms to FIMKO, IMQ, DEMKO (under approval)
- Environmentally friendly cadmium free contact type is available

■ ORDERING INFORMATION

[Example] $\frac{\text{FTR-F1}}{\text{(a)}} \frac{A}{\text{(b)}} \frac{A}{\text{(c)}} \frac{005}{\text{(d)}} \frac{V}{\text{(e)}} \frac{-**}{\text{(f)}}$

(a)	Series Name	FTR-F1: FTR-F1 Series			
(b)	Contact Arrangement	A : 2 form A (DPST-NO) C : 2 form C (DPDT)			
(c)	Coil Type	A : Standard type (0.53 W) D : High sensitive type (0.4W)			
(d)	Nominal Voltage	005 : 5 VDC 012: 12 VDC 006 : 6 VDC 024: 24 VDC 009 : 9 VDC 048: 48 VDC			
(e)	Contact Material/TV Type	V : Gold plate silver alloy (standard type) T : Gold plate silver alloy (TV-3 rating type, only standard make type)			
(f)	Custom Designation	To be assigned custom specification			

Ordering Code: Actual Marking: FTR-F1AA005V F1AA005V

■ SAFETY STANDARD AND FILE NUMBERS

UL508, 873 (File No. E63614)

C 22.2 No. 14 (File No. LR40304-30/ LR107822)

VDE 0435, 0631, 0700, 0860 (File No. 11039-4940-1019)

	Туре	Nominal voltage	Contact rating
TV-Rating	FTR-F1AA()T	5 to 48 VDC	TV-3 120 VAC 1/6 HP 125 VAC 1/4 HP 250 VAC 5 A 24 VDC/250 VAC resistive Pilot duty R 300
Standard/ sensitive	FTR-F1CA()V	5 to 48 VDC	Same as above without TV-3 2A 250VAC inductive (PF=0.4)

■ SPECIFICATIONS

	Item		Standard Type	Sensitive Type	TV-3 Rating Type			
Contact	Arrangemer	nt	2 form A (DPST-NO), 2 form	n C (DPDT)	2 form A (DPST-NO)			
	Material		Gold plate silver alloy					
	Style		Single					
	Resistance	(initial)	Maximum100 m Ω (at 1 A	A 6 VDC)				
	Rating (resi	stive)	5 A 250 VAC/24 VDC					
	Maximum C	arrying Current	7 A					
	Maximum S	witching Rating	1,250 VA/120 W					
	Maximum S	witching Voltage	400 VAC 300 VDC					
	Maximum S	witching Current	5 A					
	Minimum Sv	witching Load*1	10 mA 5 VDC					
	Maximum Ir	rush Current	— 51 A 120 VAC (at					
Coil	Nominal Po	wer (at 20°C)	0.53 W	0.4 W	0.53 W			
	Operate Po	wer (at 20°C)	0.26 W	0.225W	0.26W			
	Operating T	emperature	-40°C to +75°C (no frost) (refer to the CHARACTERISTIC DATA)					
Time Value	Operate (at	nominal voltage)	Maximum 15 ms					
	Release (at	nominal voltage)	Maximum 5 ms					
Insulation	Resistance	(at 500 VDC)	Minimum 1,000 $M\Omega$					
		etween open contacts	1,000 VAC 1 minute (3,0	00 VAC between adjac	cent contacts)			
	Strength b	etween coil and contacts	5,000 VAC 1 minute					
	Surge Stren	gth	10,000 V (at 1.2 \times 50 μs)				
Life	Mechanical		2×10^7 operations minim	num				
	Electrical	Contact Rating	1×10^5 operations minim	num				
		Lamp Load	_		2.5 x 10 ⁴ ops. minimum			
Other	Vibration	Misoperation	10 to 55 Hz (double amplitude of 1.65 mm)					
	Resistance	Endurance	10 to 55 Hz (double amp	litude of 3.3 mm)				
	Shock	Misoperation	100 m/s ² (11 ±1 ms)					
	Resistance	Endurance	1,000 m/s 2 (6 ±1 ms)					
	Weight		Approximately 12 g					

Minimum switching loads mentioned above are reference values. Please perform the confirmation test with the actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.

■ COIL DATA CHART

MOI	DEL	Nominal Coil resistance		Must operate	Must release
Standard Type	TV-3 Rating Type	voltage	(±10%)	voltage	voltage
FTR-F1 (C, A) A005 V	FTR-F1AA005 T	5 VDC	47 Ω	3.5 VDC	0.5 VDC
FTR-F1 (C, A) A006 V	FTR-F1AA006 T	6 VDC	68 Ω	4.2 VDC	0.6 VDC
FTR-F1 (C, A) A009 V	FTR-F1AA009 T	9 VDC	155 Ω	6.3 VDC	0.9 VDC
FTR-F1 (C, A) A012 V	FTR-F1AA012 T	12 VDC	270 Ω	8.4 VDC	1.2 VDC
FTR-F1 (C, A) A024 V	FTR-F1AA024 T	24 VDC	1,100 Ω	16.8 VDC	2.4 VDC
FTR-F1 (C, A) A048 V	FTR-F1AA048 T	48 VDC	4,400 Ω	33.6 VDC	4.8 VDC

Note: All values in the table are measured at 20°C.

Sensitive Type

MODEL	Nominal	Coil resistance	Must operate	Must release	
Standard Type	voltage	(±10%)	voltage	voltage	
FTR-F1 (C, A) D005 V	5 VDC	62 Ω	3.75 VDC	0.5 VDC	
FTR-F1 (C, A) D006 V	6 VDC	90 Ω	4.5 VDC	0.6 VDC	
FTR-F1 (C, A) D009 V	9 VDC	202 Ω	6.75 VDC	0.9 VDC	
FTR-F1 (C, A) D012 V	12 VDC	360 Ω	9.0 VDC	1.2 VDC	
FTR-F1 (C, A) D024 V	24 VDC	1,440 Ω	18.0 VDC	2.4 VDC	
FTR-F1 (C, A) D048 V	48 VDC	5,760 Ω	36.0 VDC	4.8 VDC	

3

■ CHARACTERISTIC DATA

■ REFERENCE DATA

Distribution of operate and release voltage

Distribution of operate and release time

Distribution of contact resistance

■ DIMENSIONS

Dimensions

FTR-F1A type

Schematics (BOTTOM VIEW)

PC board mounting hole layout (BOTTOM VIEW)

FTR-F1C type

Unit: mm

Fujitsu Takamisawa International Headquarter Offices

www.fujitsu.takamisawa.com

Japan

Fujitsu Takamisawa Component Limited Global Marketing and Sales Gotanda-Chuo Building 3-5, Higashigotanda 2-chome, Shinagawa-ku Tokyo 141, Japan Tel: (81-3) 5449-7010 Fax: (81-3) 5449-2626

North and South America

Fujitsu Takamisawa America, Inc. 250 E. Caribbean Drive Sunnyvale, CA 94089 U.S.A. Tel: (1-408) 745-4900 Fax: (1-408) 745-4970 Europe

Fujitsu Takamisawa Europe B.V. Diamantlaan 25 2132 WV Hoofddorp Netherlands Tel: (31-23) 5560910 Fax: (31-23) 5560950

Asia Pacific

Fujitsu Takamisawa Asia Pacific Pte. Ltd. 102E Pasir Panjang Road #04-01 Citilink Warehouse Complex Singapore 118529

Tel: (65) 375-8560 Fax: (65) 273-3021

TOD-2281BG-4G

Dual Digit Display LED

Part Number	(Chip	Face	Segment Color	
Part Number	Material	Source Color	Color		
TOD-2281BG-4G	GaP	Green	Gray	Green	

Features

- (0.28") 7.00mm digit height
- · Common anode
- I.C. compatible
- Low power requirement
- · RoHS compliant

Applications

- Audio equipment
- · Instrument panels
- Digital read out display

Package Dimensions & Internal Circuit Diagram

Notes:

- 1. All dimensions are in millimeters, tolerance: ±0.25; Angle: ±0.1° unless otherwise noted.
- 2. Specifications are subject to change without notice.

Taiwan Oasis Technology Co., Ltd.

www.oasistek.com.tw

REV.: A-1 Prepared by F.H.Wu (21458) Released Date: 2015/5/18 Doc No : GD1505029 Page 1/2

Absolute Maximum Rating @ Ta=25°C

Parameter	Maximum Rating	Unit
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width) Per Dice	80	mA
Power Dissipation Per Dice	75	mW
Continuous Forward Current Per Dice	20	mA
Recommend Operating Current Per Dice	12	mA
Reverse Voltage Per Dice	5	V
Operating Temperature Range	-25°C to +85°C	
Storage Temperature Range	-30°C to +85°C	
Lead-Free Solder Temperature(1/16 Inch Below Seating Plane)	260°C for 3 Sec	

Electrical / Optical Characteristic @ Ta=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Grade
Luminous Intensity Per Segment	lv		4113		ucd	I _F =1mA	
Dominant Wavelength	$\lambda_{\sf d}$		570		nm	I _F =20mA	
Spectral Line Half-Width	Δλ		30		nm	I _F =20mA	
Forward Voltage Per Dice	V_{F}	1.9	2.2	2.5	V	I _F =20mA	
Reverse Current Per Dice	I _R			20	μA	V _R =5V	
Luminous Intensity Matching Rate	lv-m			1.5:1		I _F =20mA	

The DISPLAYS should be kept at 30°C or less and 60%RH or less. The DISPLAYS should be used within one year.

Taiwan Oasis Technology Co., Ltd.

www.oasistek.com.tw

REV.: A-1 Prepared by F.H.Wu (21458) Released Date: 2015/5/18 Doc No : GD1505029 Page 2/2

SPECIFICATIONS

MODEL NO. OBO-1206C-A2

PART NAME

Magnetic Transducer

SHEET 2 OF 4

MODEL NO: OBO-1206C-A2

Features: Conformity RoHS Directive (2002/95/EC) Requests.

Wave Solder and Wash Allowed

1. General Specifications:

Items	Specification
*Sound Pressure Level	85 dB min./10cm/DC 6.0V
Rated Voltage	DC 6.0V
*Resonant Frequency	2300 ± 300 Hz
**Rated Current	30 mA max./DC 6.0V
Operating Voltage	DC 3 to 8V
Housing Material	NORYL
Pin Material	Red Copper
Operating Temp. Range	-20°C to +70°C
Storage Temp Range	-30°C to +80°C
Weight	2.0 gms

2. Mechanical Layout and Dimensions:

% Value applying rated voltage.(DC)

2.1 Shape & Dimensions

Unit: mm Tolerance: ±0.5

SPECIFICATIONS

MODEL NO. OBO-1206C-A2

PART NAME

Magnetic Transducer

SHEET 3 OF 4

2.2 Meaning of Stamp Mark

801 : Production Period

8 : Year 2008 (last 1 figures of the year)

01 : Week (01~55)

3. Soldering Condition: *2

3.1 Wave Soldering

Peak temperature	Dipping time	Soldering
+ 260°C	5 seconds	1 time

3.2 Hand Soldering

Iron Tip Temperature	Soldering time
+ 380°C Max.	Duration 3 seconds Max.

SPECIFICATIONS

MODEL NO. OBO-1206C-A2

PART NAME

Magnetic Transducer

SHEET 4 OF 4

4. Packing Information: -30.0 Green-RoHS 20.0 Black-RoHS Tape (30*20 mm)-TRAY 100 PCS/TRAY (240*160mm) CARTON-RoHS Tape RoHS Tape 3000 PCS/CARTON (505*260*280mm) 1000 PCS/10 TRAY

泉州强盛电子有限公司

QUANZHOU QIANGSHENG ELECTRONIC CO., LTD

TEL:+86-0595-28290669 FAX:22356508 Email: fiona@aecspeaker.cn

Http://www.laba.co ADD:中国福建省泉州市浔美工业区海西电子信息产业育成基地

11	ttp://www.laba.co ADD:中国備建有汞州巾浔夫工业区海四电十信总产业育成基地	
型号 Model	QP50CP08-66-R	
尺寸 Dimension	Outer Diameter50mm Baffle Opening13.3mm Height Refer to drawing in details;	
阻抗 Nominal Impedance	8 Ohm±15% At1000 HZ	
额定功率 Power Rating	1.0 watt Maximum 1.5 Watt	
最低共振频率 Lowest Resonant Frequency	$630\pm20\%$ HZ.	
灵敏度 Output Sound Pressure Level(S.P.L)	93 \pm 3db/1 Watt.1Meter.Average at800, 1000, 1200, 1500HZ.	
频率范围 Frequency Range	FO-5KHZ, Average SPL±10db	
失真率 Distortion	3%Maximum At1000HZ 1.0 W	
极性 Polarity	Diaphragm shall move forward when Apply a Postive DC current the "+" or"Marked" Terminal	
寿命测试 Load Test	Bt Audio Singnal Generator At 2.83 Volts.total 48 hours and 20~20KHZ Resonant Frequency	
异音测试 Abnormal Sound Test	Must be Normally tested Bt 2.83 Volts Sinwave	
工作温度 Operation Temperature	- 20℃ ~ + 50℃	
储藏温度 Storage Temperature	- 40°C ~ + 60°C	

