QUESITI SULLA NOZIONE DI LIMITATEZZA

 $\mathbf{Q1}$ Sia X un sottoinsieme di \mathbf{R} . Dire quali delle affermazioni seguenti **implicano** che X è un sottoinsieme limitato superiormente

- (1) esiste $k \in \mathbf{R}$ tale che x < k per ogni $x \in X$
- (2) esiste $k \in \mathbf{R}$ tale che, per ogni $x \in X$, x < k
- (3) per ogni $x \in X$ esiste $k \in \mathbf{R}$ tale che x < k
- (4) per ogni k > 0 e per ogni $x \in X$ risulta x < k
- (5) esiste k < 0 tale che x < k per ogni $x \in X$
- (6) esiste $k \in \mathbf{R}$ tale che $x \leq k$ per ogni $x \in X$
- (7) esiste $k \in \mathbf{R}$ tale che x < k 2 per ogni $x \in X$
- (8) esiste k > 0 tale che x < k per ogni $x \in X$
- (9) esiste k < 0 tale che x < k per ogni $x \in X$
- (10) esiste $k \in \mathbf{R}$ tale che $x < k^2$ per ogni $x \in X$
- (11) esiste $k \in \mathbf{R}$ tale che $x < k^3$ per ogni $x \in X$
- (12) esiste $k \in \mathbf{R}$ tale che $x^2 < k$ per ogni $x \in \mathbf{R}$
- (13) esiste k < 0 tale che $x < k^2$ per ogni $x \in X$
- (14) esiste k > 1000 tale che $x \le k$ per ogni $x \in X$
- (15) esiste $k \in \mathbb{N}$ tale che $x \leq k$ per ogni $x \in X$
- (16) esiste $k \in \mathbf{Z}$ tale che |x| < k per ogni $x \in X$
- (17) esiste $k \in \mathbb{N}$, multiplo di 10, tale che $x \leq k$ per ogni $x \in X$
- (18) esiste $k \in \mathbf{Q}$ tale che $x^3 \le k$ per ogni $x \in X$.
- (19) per ogni $k \in \mathbf{R}$ e per ogni $x \in X$ risulta $x < k^2$
- (20) esiste k > 0 tale che x < 1/k per ogni $x \in X$
- (21) per ogni $k \in \mathbf{R}$ e per ogni $x \in X$ risulta x < k
- $\mathbf{Q2}$ Dire quali delle affermazioni precedenti sono **equivalenti** al fatto che X è limitato superiormente.
- $\mathbf{Q3}$ Dire quali delle precedenti affermazioni sono **equivalenti** al fatto che X è limitato
- **Q4** Se vale l'affermazione (4) possiamo dire che 0 è un maggiorante di X?
- **Q5** Esiste $X \subset \mathbf{R}$ per cui l'affermazione (3) è falsa?
- **Q6** C'è un solo sottoinsieme $X \subset \mathbf{R}$ per cui l'affermazione (21) è vera. Qual è?
- **Q7** Se vale l'affermazione (19), 0 potrebbe essere il massimo di X? Potrebbe essere l'estremo superiore di X?
- **Q8** L'affermazione (19) è equivalente a dire che x < 0 per ogni $x \in X$?

SOLUZIONI

- Q1: 1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
- Q2: 1,2,6,7,8,10,11,13,14,15,17,18,20
- Q3: 12,16
- **Q4**: Sì perché (4) equivale a dire che $x \leq 0$ per ogni $x \in X$.
- **Q5**: No; l'affermzione (3) è vera per ogni X.

Q6: L'insieme vuoto.

Q7: 0 potrebbe essere l'estremo superiore (ad es. $X = (-\infty, 0)$), ma non il massimo perchè non è vero che $0 < k^2$ per ogni $k \in \mathbf{R}$ (prendere k = 0).

Q8 Sì.