# Bayesian multimodeling: model complexity

2024

### Model structure selection challenge

Data likelihood does not change with removing redundant parameters.



Deep learning models have implicitly redundant complexity.

### Model complexity: application

| Model                      | image size       | # parameters | Mult-Adds        | Top 1 Acc. (%) | <b>Top 5 Acc.</b> (%) |
|----------------------------|------------------|--------------|------------------|----------------|-----------------------|
| Inception V2 [29]          | 224×224          | 11.2 M       | 1.94 B           | 74.8           | 92.2                  |
| NASNet-A (5 @ 1538)        | 299×299          | 10.9 M       | 2.35 B           | 78.6           | 94.2                  |
| Inception V3 [59]          | 299×299          | 23.8 M       | 5.72 B           | 78.0           | 93.9                  |
| Xception [9]               | $299 \times 299$ | 22.8 M       | $8.38\mathrm{B}$ | 79.0           | 94.5                  |
| Inception ResNet V2 [57]   | $299 \times 299$ | 55.8 M       | 13.2 B           | 80.4           | 95.3                  |
| NASNet-A (7 @ 1920)        | 299×299          | 22.6 M       | 4.93 B           | 80.8           | 95.3                  |
| ResNeXt-101 (64 x 4d) [67] | 320×320          | 83.6 M       | 31.5 B           | 80.9           | 95.6                  |
| PolyNet [68]               | $331 \times 331$ | 92 M         | 34.7 B           | 81.3           | 95.8                  |
| DPN-131 [8]                | $320 \times 320$ | 79.5 M       | $32.0\mathrm{B}$ | 81.5           | 95.8                  |
| SENet [25]                 | $320 \times 320$ | 145.8 M      | 42.3 B           | 82.7           | 96.2                  |
| NASNet-A (6 @ 4032)        | $331 \times 331$ | 88.9 M       | 23.8 B           | 82.7           | 96.2                  |

Zoph et al., 2017. Model parameter number differ twice, the performance is similar.

#### Robustness



https://github.com/JavierAntoran/Bayesian-Neural-Networks

#### Robustness



https://github.com/JavierAntoran/Bayesian-Neural-Networks

### Naive model complexity

 $C(\mathbf{f})$  is a number of parameters in the model.

### Naive model complexity

 $C(\mathbf{f})$  is a number of parameters in the model.

- Actually, a generalization of feature selection.
- Not differentiable.
- Does not respect the model structure.

### Geometric model complexity



### Complexity as a regularizer

Complexity doesn't come alone: usually it's a regularizer for a main term.

- L2-regularization:  $||\mathbf{W}||^2 + \log p(\mathbf{y}|\mathbf{X}, \mathbf{W})$ .
- Evidence:  $\int_{\mathbf{W}} p(\mathbf{W}) \log p(\mathbf{y}|\mathbf{X}, \mathbf{W}) d\mathbf{W}$ .

**Corollary:** complexity is seamless without main term, it's just a penalty for unnecessary/uninformative parameters/structure/models.

#### Occam's razor



• William of Ockham: «Plurality must never be posited without necessity».

#### Occam's razor



- William of Ockham: «Plurality must never be posited without necessity».
- Modern interpretation: entities should not be multiplied beyond necessity.
- Paul Dirac: «A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data.»
- Albert Einstein: «Everything Should Be Made as Simple as Possible, But Not Simpler»

### When Occam's razor does not neccesserally work

Occam's razor is an empirical rule for sorting hypothesis during research. It can be wrong:

Ernst Mach: molecules are a fictitious construct, as they are not observable.

### Minimum description length

#### Task

Given a string: 001011001011001011... 001011, wheere the pattern 001011 repeats 100500 times.

How can we describe this string?

```
s == "001011...001011001011001011")
s == (".join('001011' for _ in range(100500))
```

### Kolmogorov complexity

#### Definition

Given a computable partially defined mapping from a set of binary words into itself:

$$T: \{0,1\}^* \to \{0,1\}^*.$$

Kolmogorov complexity of the binary string x is a minimal descriptiong length w.r.t. T:

$$K_T(x) = \min_{f \in \{0,1\}^*} \{|f| : T(f) = x\},$$

### Kolmogorov complexity

Generally, Kolmogorov complexity is incomputable.

#### Definition

Given a computable partially defined mapping from a set of binary words into itself:

$$T: \{0,1\}^* \to \{0,1\}^*.$$

Kolmogorov complexity of the binary string x is a minimal descriptiong length w.r.t. T:

$$K_T(x) = \min_{f \in \{0,1\}^*} \{|f| : T(f) = x\},$$

### Discrete distribution entropy

#### Definition

Given a discrete variable x with probability p and values  $x_1, \ldots, x_n$ . An entropy of x is:

$$H(x) = -\sum_{i=1}^{n} p(x = x_i) \log p(x = x_i).$$

### Discrete distribution entropy

#### Definition

Given a discrete variable x with probability p and values  $x_1, \ldots, x_n$ . An entropy of x is:

$$H(x) = -\sum_{i=1}^{n} p(x = x_i) \log p(x = x_i).$$

- interpretation: measure of disorder in the distribution;
- maximal at uniform distribution;
- ullet minimal at a disribution with concentration only at one event  $(x_i=1,x_j=0,i
  eq j)$ .

### Discrete distribution entropy

#### Definition

Given a discrete variable x with probability p and values  $x_1, \ldots, x_n$ . An entropy of x is:

$$H(x) = -\sum_{i=1}^{n} p(x = x_i) \log p(x = x_i).$$

- interpretation: measure of disorder in the distribution;
- maximal at uniform distribution;
- ullet minimal at a disribution with concentration only at one event  $(x_i=1,x_j=0,i
  eq j)$ .
- relation to Kolmogorov complexity:

$$K(x) \leq H(x) + O(\log n)$$

for binary string with length n.

### Minimum description length principle

$$MDL(\mathbf{f},\mathfrak{D}) = L(\mathbf{f}) + L(\mathfrak{D}|\mathbf{f}),$$

where f is a model,  $\mathfrak D$  is a dataset, L is a description length in bits.

$$MDL(\mathbf{f}, \mathfrak{D}) \sim L(\mathbf{f}) + L(\mathbf{w}^*|\mathbf{f}) + L(\mathfrak{D}|\mathbf{w}^*, \mathbf{f}),$$

**w**\* — optimal parameters.

| $f_1$          | $L(\mathbf{f_1})$ | $L(w_1^* f_1)$                   | $L(\mathbf{D} \mathbf{w}_1^*,\mathbf{f}_1)$   |  |  |
|----------------|-------------------|----------------------------------|-----------------------------------------------|--|--|
| $\mathbf{f}_2$ | $L(\mathbf{f}_2)$ | $L(\mathbf{w}_2^* \mathbf{f}_2)$ | $L(\mathbf{p} \mathbf{w}_2^*,\mathbf{f}_2)$   |  |  |
| $f_3$          | $L(\mathbf{f}_3)$ | $L(\mathbf{w}_3^*)$              | $L(\overline{D} \mathbf{w}_3^*,\mathbf{f}_3)$ |  |  |

#### MDL: example

#### Задача

Given a string: 001011001011001011... 001011, wheere the pattern 001011 repeats 100500 times.

How can we describe this string?

```
• s == "001011...001011001011001011")

• s == (''.join('001011' for _ in range(100500))

• import re; re.match('(001011){100500}')

• L(\mathbf{f}_1) = 0, L(\mathfrak{D}|\mathbf{f}_1) = 100505;

• L(\mathbf{f}_2) = 0, L(\mathfrak{D}|\mathbf{f}_2) = 45;

• L(\mathbf{f}_3) \gg 0, L(\mathfrak{D}|\mathbf{f}_3) = 38;
```

### MDL and Kolmogorov complexity

Kolmogorov complexity is a minimum descriptiong length for the dataset, described by a given programming language.

#### Invariance theorem

Given any description language L, the optimal description language is at least as efficient as L, with some constant overhead.

#### Difference from MDL:

- Incomputable.
- Code length depends on the language. For small sample size the invariance theorem can give poor results.

### **Probability coding**



### MDL + probability

Model selection problem can be viewed as a problem of information transmission, from encoder to decoder.

Given a dataset  $\mathbf{X}, x \in \mathbf{X}$ .

- Encoder encodes information about the dataset **X** with some code **f** and transmits it to the decoder.
- Decoder decodes the information f(X) and restores the data X (with loss).
- ullet Problem is to find optimal coding method for  ${f x}$
- Code length:  $-\log p(x)$

Quality criterion is Regret:

$$R(x) = -\log P(x) + \min_{\mathbf{f} \in \mathfrak{F}} (\log P(x|\mathbf{f})).$$

It shows the difference between the length of the real code  $\log P(x)$  for x and the best code from the set of codes  $\mathfrak{F}$ .

Regret for datasets with parameterized distribution:

$$R(\mathbf{X}) = \max_{\mathbf{x} \in \mathbf{X}} (-\log P(\mathbf{x}) + \min_{\mathbf{w}} (\log P(\mathbf{x}|\mathbf{w})).$$

#### MDL and Evidence

#### Statement

Let the likelihood function  $p(\mathbf{X}|\mathbf{w},\mathbf{f})$  be from an exponential family of distributions:

$$p(x|\mathbf{w},\mathbf{f}) = h(x)g(\eta)\exp(\eta \cdot \mathbf{T}(x)),$$

where  $h, g, \mathbf{T}$  are some functions,  $\eta$  is a distribution parameter.

Let prior be Jeffreys prior:

$$p(\mathbf{w}|\mathbf{f}) = \frac{\sqrt{I(w)}}{\int_{w} \sqrt{I(w)}},$$

Then regret and evidence differ only by some constant when  $n \to \infty$ :

$$\lim_{n\to\infty} \left( R(\mathbf{X}) - \int_{\mathbf{w}} p(\mathbf{X}|\mathbf{w},\mathbf{f}) p(\mathbf{w}|\mathbf{f}) d\mathbf{w} \right) = \mathsf{Const.}$$

#### MDL vs. Evidence

| Evidence                        | MDL                          |  |
|---------------------------------|------------------------------|--|
| Uses prior knowledge            | Independent from prior       |  |
| Uses data generation hypothesis | Minimizes description length |  |

### Recap: Likelihood maximization

Likelihood maximization is a KL divergence mimimization:

$$\max_{w} L(\mathbf{X}, w) \iff \min KL(p^*(\mathbf{X}) | p(\mathbf{X}|w)).$$

#### Proof sketch

$$\begin{split} \mathsf{K} L\left(p^*\left(\mathbf{X}\right)|p\left(\mathbf{X}|w\right)\right) &= \mathsf{E}_{\mathsf{X} \sim p^*\left(\mathbf{X}\right)} \log \left(\frac{p^*\left(\mathbf{X}\right)}{p\left(\mathbf{X}|w\right)}\right) = \\ &= \mathsf{Const} - \mathsf{E}_{\mathsf{X} \sim p^*\left(\mathbf{X}\right)} \log p\left(\mathbf{X}|w\right) \approx^{\mathsf{Law} \ \mathsf{of} \ \mathsf{large} \ \mathsf{numbers}} \\ &\approx \mathsf{Const} - L(\mathbf{X}, w). \end{split}$$

### Akaike information criterion (AIC)

#### Main idea

- Function to consider:  $KL(p(\mathbf{X})|p(\mathbf{X}|\mathbf{w}))$ .
- Removing parts not depending on the model parameters  $\mathbf{w}$ , we get: E log  $p(\mathbf{X}|\mathbf{w})$ .
- A naive estimation E log  $p(\mathbf{X}|\mathbf{w}) \approx \log p(\mathbf{X}|\mathbf{w})$  is biased, make an adjustement:

$$AIC = -2 \log p(\mathbf{X}|\mathbf{w}) + 2|\mathbf{w}|.$$

### Bayesian information criterion (BIC)

#### Main idea

- Consider evidence with flat prior:  $p(\mathbf{w}) \propto \text{Const.}$
- Use Laplace approximation:  $\log p(\mathbf{X}) \approx \log p(\mathbf{X}|\hat{\mathbf{w}}) + n \log |\mathbf{w}| + Const.$
- If  $n >> |\mathbf{w}|$ , ignore const term:

$$BIC = \log p(\mathbf{X}|\mathbf{w}) - \frac{1}{2}n\log |\mathbf{w}|.$$

#### AIC vs BIC

- BIC > AIC when n > 8
- ullet Model selection with BIC leads to consistent estimation: when n grows, a probability of correct model selection converges to 1
- AIC minimzation asymptotically gives the model with maximal likelihood
- Heuristic: models, which criteria values differ by 1 or 2 from best values are distinguishable.
- Both criteria work poorly for large models.

## Cross-validation as a model selection method Pros

- Easy to implement
- Straightforward implementation is simple for understanding. No approximations, no tricks.

#### Cons

- Either we lose data part, or we run performance.
- No explicit analysis of the extremum region.



#### Evidence vs Cross-validation

Evidence:

$$\log p(\mathbf{X}|\mathbf{f}) = \log p(\mathbf{x}_1|\mathbf{f}) + \log p(\mathbf{x}_2|\mathbf{x}_1,\mathbf{f}) + \cdots + \log p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{f}).$$

Leave-one-out:

$$LOU = Elog p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{f}).$$

Cross-validation uses average value of the last term  $p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{f})$ . Evidence considers full description length.

#### References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- MacKay D. J. C., Mac Kay D. J. C. Information theory, inference and learning algorithms. Cambridge university press, 2003.
- Vladislavleva, E. J., Smits, G. F., & Den Hertog, D. (2008). Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation, 13(2), 333-349.
- MacKay D. J. C., Mac Kay D. J. C. Information theory, inference and learning algorithms. Cambridge university press, 2003.
- Grunwald P. A tutorial introduction to the minimum description length principle //arXiv preprint math/0406077. – 2004.
- Успенский В., Шень А., Верещагин Н. Колмогоровская сложность и алгоритмическая случайность.
   Litres, 2017
- Grunwald P., Vitányi P. Shannon information and Kolmogorov complexity //arXiv preprint cs/0410002. 2004.
- Vereshchagin N. K., Vitányi P. M. B. Kolmogorov's structure functions and model selection //IEEE Transactions on Information Theory. – 2004. – T. 50. – №. 12. – C. 3265-3290.
- Штарьков Ю. М. Универсальное последовательное кодирование отдельных сообщений //Проблемы передачи информации. – 1987. – Т. 23. – №. 3. – С. 3-17.
- When Occam's razor does not work:
   https://hsm.stackexchange.com/questions/26/was-occam-s-razor-ever-wrong