

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内容

背景知识

Kripke 结

CTL 的语法和语

μ-演

CTL 和 μ-演算道

CTL 遗忘理论

μ-演算遗忘理论

系统中的

简介

最弱充分多

知识更新

CTL 遗忘计算方

基于遗忘的反应式系统最弱充分条件研究

二〇二二年六月

姓名:	冯仁艳
Pulm	T 131.4/1

联合导师: Erman Acar¹

学科专业: 软件工程

研究方向: 软件工程技术与人工智能

目录

- ① 研究背景和意义
- ② 国内外研究现状
- ③ 研究内容
- 4 背景知识
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 6 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - μ-演算遗忘理论
 - 6 遗忘理论在反应式系统中的应用
 - 简介
 - 最弱充分条件
 - 知识更新
- CTL 遗忘计算方法
 - 简介
- CTL 遗忘计算方
- 基于模型的有界 CTL 遗忘计算

↓ ■ **∮ ∮ ∮**

研究背景和意义——系统正确对国防、太空勘测和交通运输至关重要

图 1: 系统故障引起的系列灾难现场

表 1: 由系统故障引起的重大事件概览

时间	事故原因	损失
1991 年	美国爱国者导弹系统舍入错误	28 名士兵死亡、100 人受伤等
1996 年	阿丽亚娜 5 火箭代码重用	火箭与其它卫星毁灭
1999 年	火星探测器用错度量单位	探测器坠毁并造成了 3.27 亿美元的损失
2011 年	温州 7.23 动车 <u>信号设备</u> 在设计	动车脱节脱轨、多人失去生命
	上存在严重的缺陷	

研究背景和意义:形式化验证为系统的正确提供了有力依据

自动定理证明(Automated theorem proving) 令 φ_{imp} 和 φ_{spec} 分别表示系统模型 消解 (Resolution) 和规范对应的时序逻辑公式: • $\phi_{imp} \rightarrow \phi_{spec}$,或 • $\phi_{imp} \leftrightarrow \phi_{spec}$ Hoare三元组:{P} S {Q} → 最弱前件 (WP) 演算[1] 程序终止、

模型检测(Model Checking)

- $\mathcal{M} \models^? \phi_{spec}$.
- 反应式系统 (reactive system): 是 指与环境有着持续不断交互的系统。
- 如何计算反应式系统的 WP?

CTL 遗忘计算

研究背景和意义: 简单的例子

例 1 (汽车制造企业模型)

一个汽车制造企业能够生产两种汽车: 小轿车 (se) 和跑车 (sp)。每隔一段时间,该企业都会做一个生产决策 (d), 即: 合理的生产计划。刚开始的时候,该企业做出了具有三个选择(s)的方案:

- (1) 先生产足够的 se, 然后在再生产 sp:
- (2) 先生产足够的 sp, 然后再生产 se;
- (3) 同时生产 se 和 sp。

这一过程可以由图 2中的 Kripke 结构 (带标签的状态转换图) $\mathcal{M} = (S,R,L)$ 形式化地展现出来,其中:

- V= {d, s, se, sp} 为该工厂所需要考虑的原子命 题集:
- S = {s₀, s₁, s₂, s₃, s₄} 为状态空间;
- $R = \{(s_0, s_1), (s_1, s_2), (s_1, s_3), (s_1, s_4), (s_2, s_0),$ $(s_3, s_0), (s_4, s_0)$ } 为状态转换关系集;
- L:S→2^V 为标签函数,具体地: L(s₀) = {d}、 $L(s_1) = \{s\}, L(s_2) = \{se\}, L(s_3) = \{sp\}$ 和 $L(s_4) = \{se, sp\}$

图 2: 汽车制造企业模型

假定,由于经济危机或者战略调整,导致该企业不能再生产跑车。这意味着所有规范和 Kripke 结构都不再需 要考虑 sp 的, 因此应该"移除"。

研究背景和意义:知识表示与推理(KR)中的SNC和WSC

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现

vert also I cales

36 W 6020

13.240,000

CTI ON SECTION

μ-演

TL 和 μ-演算退 : 理论

CTL 遗忘理论 μ-演算遗忘理论

遗忘理论在反应式 系统中的应用

最弱充分条件

知识更新

最强必要条件(SNC)和最弱充分条件(WSC)

SNC 和 WSC 分别用于描述给定理论下的最一般的结果(consequence)和最一般的诱因(abduction)[8]。满足下面两个条件的 φ 称为 q 在理论 Σ 下的 SNC:

- (1) $\Sigma \models q \rightarrow \varphi$;
- (2) 对任意 φ' 且 $\Sigma \models q \rightarrow \varphi'$, 有 $\Sigma \models \varphi \rightarrow \varphi'$ 。

满足下面两个条件的 ψ 称为 q 在理论 Σ 下的 (WSC):

- (1) $\Sigma \models \psi \rightarrow q$;
- (2) 对任意 ψ' 且 $\Sigma \models \psi' \rightarrow q$,有 $\Sigma \models \psi' \rightarrow \psi$ 。

| 遗忘理论(Forgetting)

遗忘是一种从理论中抽取知识的技术 [9],被用于规划[5,7] 和知识更新 中 [13]。非形式化地,对于逻辑语言 L 中的任意公式和原子集合,如果从该公式中遗忘掉该原子集合后得到的结果仍然在 L 中,则称遗忘存在,同时也称该公式和原子集合的遗忘存在。

研究背景和意义: 知识表示与推理(KR)中的 SNC 和 WSC

最强必要条件(SNC)和最弱充分条件(WSC)

SNC 和 WSC 分别用于描述给定理论下的最一般的结果(consequence)和最一般的诱因 (abduction) [8]。满足下面两个条件的 φ 称为 q 在理论 Σ 下的 SNC:

- (1) $\Sigma \models q \rightarrow \varphi$:
- (2) 对任意 φ' 且 $\Sigma \models q \rightarrow \varphi'$,有 $\Sigma \models \varphi \rightarrow \varphi'$ 。

满足下面两个条件的 ψ 称为 q 在理论 Σ 下的 (WSC):

- (1) $\Sigma \models \psi \rightarrow q$:
- (2) 对任意 ψ' 且 $\Sigma \models \psi' \rightarrow q$,有 $\Sigma \models \psi' \rightarrow \psi$ 。
 - CTL (Computation tree logic): 计算树逻辑, 是一种分支时序逻辑
 - 其模型检测 (MC) 问题能在多项时间内完成:
 - 能很好的表达系统要求的安全属性(Safety properties)、活性属性 (Liveness properties)、持续属性(Persistence properties)和公平属性 (Fairness properties).
 - μ-演算(μ-calculus): 是其他形式体系的机械基础
 - LTL、CTL、L_w 等时态逻辑都能用 μ-演算表示;
 - S1S 表达能力严格不如 μ-演算;
 - μ-演算与 S2S 有相同的表达能力;

研究背景和意义: 知识表示与推理(KR)中的 SNC 和 WSC

最强必要条件(SNC)和最弱充分条件(WSC)

SNC 和 WSC 分别用于描述给定理论下的最一般的结果(consequence)和最一般的诱因 (abduction) [8]。满足下面两个条件的 φ 称为 q 在理论 Σ 下的 SNC:

- (1) $\Sigma \models q \rightarrow \varphi$;
- (2) 对任意 φ' 且 $\Sigma \models q \rightarrow \varphi'$,有 $\Sigma \models \varphi \rightarrow \varphi'$ 。

满足下面两个条件的 ψ 称为 q 在理论 Σ 下的 (WSC):

- (1) $\Sigma \models \psi \rightarrow q$;
- (2) 对任意 ψ' 且 $\Sigma \models \psi' \rightarrow q$,有 $\Sigma \models \psi' \rightarrow \psi$ 。

形成时序逻辑系统遗忘理论的框架(verification),架起形式化验证和知识表示与推理 (KR) 的桥梁。

目录

- 母
 - ② 国内外研究现状
 - 3 研究内容
 - 4 背景知识
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 6 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - μ-演算遗忘理论
 - 6 遗忘理论在反应式系统中的应用
 - 简介
 - 最弱充分条件
 - 知识更新
 - CTL 遗忘计算方法
 - 简介
- 上 計算方
 - 基于模型的有界 CTL 遗忘计算 (□)(■)(毫)(毫)(毫) 毫 2000

基于遗忘的反应 式系统最弱充分

研究背景和音。

国中化四参加4

TIT sile also sile

-10: Hill Jun 3

CTL 的语法和

.. 302 802

_

忘理论

CTL 遗忘理论

遗忘理论在反应。

简介

最弱充分:

知识更新

TL 遗忘计算方

国内外研究现状

目录

- 研究内容
- - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - · μ-演算遗忘理论
- - 简介
 - 最弱充分条件
 - 知识更新
- - 简介
- - · 基于模型的有界 CTL 遗忘计算 990

研究内容

- CTL 和 μ-演算的遗忘理论
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
- 计算 CTL 遗忘的计算方法

图 3: 文章组织结构示意图

目录

- ① 研
 - ② 国内外研究现状
- ③ 研究内邻
- 4 背景知识
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 6 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - μ-演算遗忘理论
- 6 遗忘理论在反应式系统中的应用
 - 简介
 - 最弱充分条件
 - 知识更新
- 7 CTL 遗忘计算方法
 - 简介
- TL 遗忘计算方

Kripke 结构

A: 原子命题的集合

Ind: 索引的集合

定义 2 (初始 Ind-Kripke 结构)

一个初始 Ind-Kripke 结构是一个五元组 $\mathcal{M} = (S, R, L, [_], s_0)$, 其中:

- S 是状态的非空集合, so 是 ℳ 的初始状态 (参见下文);
- R⊆S×S 是状态转换函数,且对任意 s∈S,存在 d∈S 使得 (s,d)∈R;
- L:S→2^A 是一个标签函数:
- [_]: $\operatorname{Ind} \to 2^{S \times S}$ 是一个函数,其使得对任意 $\operatorname{ind} \in \operatorname{Ind}$,若 $s \in S$,则存在唯一一个 $s \in S$ 使得 $(s,s') \in [ind] \cap R$ 。

相关概念

- 初始 Kripke 结构 ℳ = (S, R, L, s₀): 从初始 Ind-Kripke 结构 ℳ 中去掉 [_] 元素得到;
- Ind-Kripke 结构 *M* = (S, R, L, [_]): 从初始 Ind-Kripke 结构 *M* 中去掉初始状态 s₀ 得 到:
- Kripke 结构 M = (S,R,L): 从初始 Ind-Kripke 结构 M 中同时去掉 [_] 和 so 得到。

Kripke 结构

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现制

研究内突

315 EL trn (Γ

CTI MUNICERIO

.. 302.907

CTL 和 μ-演算员 它理论

CTL 遗忘理论

μ-演界遮志埋化

永红中臣

最弱充分多

ti 识更新

CTL 遗忘计算フ

A:原子命题的集合

Ind: 索引的集合

| 定义 2 (初始 Ind-Kripke 结构)

一个初始 Ind-Kripke 结构是一个五元组 $\mathcal{M} = (S, R, L, [_], s_0)$, 其中:

- S 是状态的非空集合, s_0 是 M 的初始状态 (参见下文);
- $R \subseteq S \times S$ 是状态转换函数,且对任意 $s \in S$,存在 $s' \in S$ 使得 $(s,s') \in R$;
- L:S→2[∞] 是一个标签函数;
- [_]: $\operatorname{Ind} \to 2^{S \times S}$ 是一个函数,其使得对任意 $\operatorname{ind} \in \operatorname{Ind}$,若 $s \in S$,则存在唯一一个 $s \in S$ 使得 $(s,s') \in [\operatorname{ind}] \cap R$ 。

相关概念

令 $\mathcal{M} = (S, R, L)$ 为 Kripke 结构, $\mathcal{M}' = (S, R, L, [_])$ 为 Ind-Kripke 结构:

- 路径: M 上的<u>路径</u>是 M 上的状态构成的无限序列 $\pi = (s_0, s_1, s_2, ...)$,且满足对任意 $j \ge 0$, $(s_j, s_{j+1}) \in R$;
- $s' \in \pi$: 表示 s' 是路径 π 上的一个状态; π_s : 表示以 s 为起点的 \mathcal{M} 上的一条路径;
- 初始状态: 如果对任意 $s' \in S$,都存在路径 π_s 使得 $s' \in \pi_s$,那么称 s 为<u>初始状态</u>;
- 索引路径: M' 上的一条<u>索引路径</u> $\mathbf{r}_s^{(ind)}$ ($ind \in \text{Ind}$) 是一条路径 ($s_0(=s), s_1, s_2, ...$), 且对任意 $j \geq 0$,有 ($s_i, s_{i+1} \in [ind]$ 。

Kripke 结构

②: 原子命题的集合Ind: 索引的集合

定义 2 (初始 Ind-Kripke 结构)

一个初始 Ind-Kripke 结构是一个五元组 $\mathcal{M} = (S, R, L, [_], s_0)$, 其中:

- S 是状态的非空集合, s₀ 是 ℳ 的初始状态 (参见下文);
- $R \subseteq S \times S$ 是状态转换函数,且对任意 $s \in S$,存在 $s' \in S$ 使得 $(s,s') \in R$;
- 1 · S → 2st 是一个标签函数。
- [_]: $\operatorname{Ind} \to 2^{S \times S}$ 是一个函数,其使得对任意 $\operatorname{ind} \in \operatorname{Ind}$,若 $s \in S$,则存在唯一一个 $s \in S$ 使得 $(s,s') \in [ind] \cap R$ 。

相关概念

- (Ind-) 结构: 初始 (Ind-)Kripke 结构 *ℳ* 和是 *ℳ* 中的状态 *s* 构成的二元组 $\mathcal{K} = (\mathcal{M}, s);$
- • 初始 (Ind-) 结构: (Ind-) 结构 ℋ = (ℳ,s) 中 s 为初始状态的情形。

CTL 的语法

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内突

背景知识

Kripke 结构

CTL 的语法和语:

μ-演算

CTL 和 μ-演算)

CTL 遗忘理论
μ-演算遗忘理论

遗忘理论在反应式 系统中的应用

最弱充分条

知识更新

CTL 的语言符号

● 原子命题集 Ø; 可数无限索引集合 Ind; 命题常量 start;

● 常量符号: ⊤和 ⊥,分别表示"真"和"假";

● 联结符号: ∨和 ¬,分别表示"析取"和"否定";

● 时序操作符: X、F、G、U 和 W, 分别表示"下一个状态"、"将来某一个状态"、"将来 所有状态"、"直到"和"除非";

● 标点符号: "("和")"。

定义 3 (带索引的 CTL)

带索引的 CTL 公式的存在范式 (existential normal form, ENF)可以用巴科斯范式递归定义如下:

 $\phi ::= \mathsf{start} \mid \bot \mid \rho \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EX}\phi \mid \mathsf{EG}\phi \mid \mathsf{E}(\phi \ \mathsf{U} \ \phi) \mid \mathsf{E}_{(\mathit{ind})} \mathsf{X}\phi \mid \mathsf{E}_{(\mathit{ind})} \mathsf{G}\phi \mid \mathsf{E}_{(\mathit{ind})}(\phi \ \mathsf{U}\phi)$

其中, $p \in \mathcal{A}$, $ind \in Ind$ 。

没有索引和 start 的公式称为 CTL 公式。

CTL 的语法

定义 3 (带索引的 CTL)

带索引的 CTL 公式的存在范式 (existential normal form, ENF)可以用巴科斯范式递归定义如 下:

 $\phi ::= \mathbf{start} \mid \bot \mid \rho \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EX}\phi \mid \mathsf{EG}\phi \mid \mathsf{E}(\phi \cup \phi) \mid \mathsf{E}_{\langle ind \rangle} \mathsf{X}\phi \mid \mathsf{E}_{\langle ind \rangle} \mathsf{G}\phi \mid \mathsf{E}_{\langle ind \rangle} (\phi \cup \phi)$

其中, $p \in \mathcal{A}$, $ind \in Ind$ 。

没有索引和 start 的公式称为 CTL 公式。

CTL 中其它形式的公式可以通过如下定义(使用上述定义中的形式)得到:

 $\phi
ightarrow \psi \stackrel{\mathit{def}}{=} \neg \phi \lor \psi$

 $\varphi \wedge \psi \stackrel{\text{def}}{=} \neg (\neg \varphi \vee \neg \psi)$

 $A(\varphi \cup \psi) \stackrel{def}{=} \neg E(\neg \psi \cup (\neg \varphi \land \neg \psi)) \land \neg EG \neg \psi$

 $A(\varphi W \psi) \stackrel{def}{=} \neg E((\varphi \wedge \neg \psi) U(\neg \varphi \wedge \neg \psi))$

 $E(\varphi W \psi) \stackrel{def}{=} \neg A((\varphi \wedge \neg \psi)U(\neg \varphi \wedge \neg \psi))$

 $AF\phi \stackrel{def}{=} A(\top U\psi)$

 $EF\varphi \stackrel{def}{=} E(\top U \psi)$

 $AX\phi \stackrel{def}{=} \neg EX \neg \phi$ $AG\boldsymbol{\varphi} \stackrel{def}{=} \neg EF \neg \boldsymbol{\varphi}$

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

CTL 的语法

定义 3 (带索引的 CTL)

带索引的 CTL 公式的存在范式 (existential normal form, ENF)可以用巴科斯范式递归定义如 下:

 $\phi ::= \mathsf{start} \mid \bot \mid \rho \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EX}\phi \mid \mathsf{EG}\phi \mid \mathsf{E}(\phi \cup \phi) \mid \mathsf{E}_{(ind)} \mathsf{X}\phi \mid \mathsf{E}_{(ind)} \mathsf{G}\phi \mid \mathsf{E}_{(ind)}(\phi \cup \phi)$

其中, $p \in \mathcal{A}$, $ind \in Ind$ 。

没有索引和 start 的公式称为 CTL 公式。

符号优先级

带索引的 CTL 中各类符号的优先级如下,且从左到右优先级逐渐降低:

 $\neg, \text{EX}, \text{EF}, \text{EG}, \text{AX}, \text{AF}, \text{AG}, \text{E}_{(\textit{ind})} \text{X}, \text{E}_{(\textit{ind})} \text{F}, \text{E}_{(\textit{ind})} \text{G}, \land, \lor, \text{EU}, \text{AU}, \text{EW}, \text{AW}, \text{E}_{(\textit{ind})} \text{U}, \text{E}_{(\textit{ind})} \text{W}, \rightarrow .$

此外,给定一个不包含" \rightarrow "的公式 ϕ 和原子命题 p,

- 若 φ 中所有p的出现都为正出现(或负出现),则称 φ 关于p是正的(或负的)。

CTL 的语义

定义 4 (带索引的 CTL 的语义)

给定公式 φ , 初始 Ind-Kripke 结构 $\mathcal{M} = (S, R, L, [_], s_0)$ 和状态 $s \in S$ 。 (\mathcal{M}, s) 与 φ 之间的可 满足关系 $(\mathcal{M}, s) \models \varphi$ 定义如下:

CTL 的语义

记号

令 φ 、 φ_1 和 φ_2 为公式,这里列出文中出现的一些记号及其含义。

- 模型: 满足公式 φ 的初始 Ind-结构称为 φ 的一个模型;
- Mod(φ): 公式 φ 的所有模型构成的集合;
- 可满足: 如果 Mod(φ) ≠ 0, 则称 φ 是可满足的;
- 逻辑蕴涵: 若 $Mod(\varphi_1) \subseteq Mod(\varphi_2)$,则称 φ_1 逻辑地蕴涵 φ_2 ,记为 $\varphi_1 \models \varphi_2$;
- 逻辑等值: 当 $\varphi_1 \models \varphi_2$ 且 $\varphi_2 \models \varphi_1$ 时,即 $Mod(\varphi_1) = Mod(\varphi_2)$,则称 φ_1 和 φ_2 为逻辑等值公式 (简称为等值公式), 记作 $\varphi_1 \equiv \varphi_2$;
- Var(φ): 出现在 φ 中的原子命题集;
- ↓□ 和 △□ 分别表示有限集 □ 中公式的析取和合取;
- V-无关(V-irrelevant): 给定公式 φ 和原子命题集 V, 如果存在一个公式 ψ 使得 $Var(\psi) \cap V = \emptyset$ 且 $\varphi \equiv \psi$, 那么说 φ 与 V 中的原子命题无关,简称为V-无关 (V-irrelevant),写作 $IR(\varphi, V)$ 。
- 文字(literal)、子句(clause)、析取范式等跟经典命题情形中的定义一样。

CTL 的标准形式

SNFg 子句

具有下面几种形式的公式称为 CTL 全局子句分离范式(separated normal form with global clauses for CTL,SNFg 子句) [12, 11]:

> $AG(\mathbf{start} \to \bigvee_{i=1}^k m_i)$ (初始句,initial clause) $AG(\top \rightarrow \bigvee_{i=1}^{k} m_i)$ (全局子句,global clause) $AG(\bigwedge_{i=1}^{n} I_i \to AX \bigvee_{i=1}^{k} m_i)$ (A-步子句, A-step clause) $AG(\bigwedge_{i=1}^n I_i \to E_{(ind)} X \bigvee_{j=1}^k m_j)$ (E-步子句,E-step clause) (A-某时子句,A-sometime clause) $AG(\bigwedge_{i=1}^{n} I_i \to AFI)$ $AG(\bigwedge_{i=1}^{n} I_i \to E_{(ind)}FI)$ (E-某时子句,E-sometime clause)

其中 k 和 n 都是大于 0 的常量, I_i $(1 \le i \le n)$ 、 m_i $(1 \le j \le k)$ 和 I 都是文字且 $ind \in Ind$ 。

CTL 的标准形式

转换规则

一个 CTL 公式 φ 可以通过下表中的规则转换为一个 SNF_{CTL}^g 子句集,记为 T_{φ} 。

表 2: 转换规则

$$\begin{aligned} & \operatorname{Trans}(1) \frac{q \to E T \phi}{q \to E(\eta_1 \cup \phi_2)}; & \operatorname{Trans}(2) \frac{q \to E(\phi_1 \cup \phi_2)}{q \to E(\eta_1 \cup \phi_2)}; & \operatorname{Trans}(3) \frac{q \to \phi_1 \wedge \phi_2}{q \to \rho_1 \cdot q \to \phi_2}; \\ & \operatorname{Trans}(4) \frac{q \to \phi_1 \vee \phi_2}{q \to \rho_1 \vee \rho_2} (\underline{\text{ml}} \times \underline{\phi} \times \underline{\mathbb{R}} \pm \overline{\mathbb{H}}); & \operatorname{Trans}(5) \frac{q \to D}{T \to -q \vee D}; & \underline{Trans}(5) \frac{q \to D}{T \to -q \vee D}; & \underline{Trans}(5) \frac{q \to D}{T \to -q \vee D}; & \underline{Trans}(6) \frac{q \to Q \times \rho}{q \to Q \times \rho_1 \to \rho}; & \underline{Trans}(7) \frac{q \to Q \times \rho}{q \to Q \times \rho_1 \to \rho}; & \underline{Trans}(8) \frac{q \to Q(\rho_1 \cup \rho_2)}{q \to Q(\rho_1 \cup \rho_2)} (\underline{\text{ml}} \times \underline{\phi} \times \underline{\mathbb{R}} \pm \overline{\mathbb{X}} \pm \overline{\mathbb{X}}); & \underline{Trans}(9) \frac{q \to Q(\rho_1 \cup \rho_2)}{q \to Q(\rho_1 \cup \rho_1)} (\underline{\text{ml}} \times \underline{\phi} \times \underline{\mathbb{X}} \pm \overline{\mathbb{X}} \pm \overline{\mathbb{X}}); & \underline{Trans}(9) \frac{q \to Q(\rho_1 \cup \rho_2)}{q \to Q(\rho_1 \cup \rho_1)} (\underline{\text{ml}} \times \underline{\phi} \times \underline{\mathbb{X}} \pm \overline{\mathbb{X}} \pm \overline{\mathbb{X}}); & \underline{Trans}(10) \frac{q \to Q(\rho_1 \cup \rho_1)}{q \to \rho_1 \to \rho_2} (\underline{\mathbb{X}} \times \underline{\mathbb{X}} + \overline{\mathbb{X}} + \overline{\mathbb$$

其中, $T \in \{X,G,F\}$, ind 是规则中引入的新索引且 $Q \in \{A,E(ind)\}$; q 是一个原子命题, I 是一 个文字, D 是文字的析取(即子句), p 是新的原子命题; φ , φ_1 , 和 φ_2 都是 CTL 公式。

CTL 的标准形式

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现

merchant about

背景知证

Kripke 结构

CTL 的语法和语

μ-演第

CTL 和 μ-演算 忘理论

CTL 遗忘理论

遗忘理论在反应式 系统中的应用

最弱充分条件

知识更新

转换步骤

给定一个 CTL 公式 φ ,将其转换为一个 SNF $_{CTL}^g$ 字句集合的主要步骤如下:

- (1) 将公式 CTL 转换为其 NNF ^a 形式, 记为 nnf(φ);
- (2) 使用等值公式化简 $nnf(\varphi)$, 得到 $simp(nnf(\varphi))$;
- (3) 使用转换规则将 {AG(start → z), AG(z → simp(nnf(φ)))} 化简为 SNF^g_{CTL} 子句集 T_φ, 其中 T_φ 由如下导出(derivation)序列生成:

$$\mathcal{T}_0 = \{ \mathrm{AG}(\mathsf{start} \to p), \mathrm{AG}(p \to \mathsf{simp}(\mathsf{nnf}(\phi))) \}, \mathcal{T}_1, \dots, \mathcal{T}_n = \mathcal{T}_\phi$$

使得

- *p* 是一个新的原子命题,即: *p* ∉ {start} ∪ *Var*(φ);
- $T_{t+1} = (T_t \{\psi\}) \cup R_t \ (t \ge 0)$,其中 ψ 为 T_t 中的非 SNF $_{CTL}^g$ 子句,且 R_t 是使用一条匹配的归则作用到 ψ 上得到的结果集;
- T_n 中的每个公式都是 SNF_{CTL}^g 子句形式。

 $^{^{}a}$ 对于给定的公式 φ ,其否定范式(negation normal form, NNF)是将否定联结词 "¬"的 出现通过上述定义变化到只出现在原子命题之前的形式。

例子

例 4

令 $\varphi = \neg AFp \land AF(p \land \top)$, 下面给出将 φ 转换为 SNF_{CTL}^g 子句集的详细步骤。

- (1) 将公式 φ 转换为其 NNF 形式: EG¬p∧AF(p∧⊤);
- (2) 化简 (1) 中的公式为: EG¬p∧AFp;
- (3) 使用转换规则转换 {AG(start → z), AG(z → (EG¬p ∧ AFp))}, 详细步骤如下:

1. start $\rightarrow z$

2. $z \rightarrow \text{EG} \neg p \land \text{AF} p$

3. $z \rightarrow EG \neg p$

(2, Trans(3)) (2, Trans(3))

4. $z \rightarrow AFp$ 5. $z \rightarrow E_{\langle 1 \rangle} G \neg p$

(3, Trans(1))

6. $z \rightarrow x$

(5, Trans(10))

7. x → ¬I

(5, Trans(10))

8. $x \to E_{\langle 1 \rangle} Gx$

(5, Trans(10))

9. $\top \rightarrow \neg z \lor x$

(6, Trans(5))

10. $\top \rightarrow \neg x \lor \neg p$

(7, Trans(5))

因此,得到的 φ 对应的 SNF_{CTL}^g 子句集为:

1. start $\rightarrow z$

2. $z \rightarrow AFp$

3. $x \to E_{\langle 1 \rangle} Gx$

4. $\top \rightarrow \neg z \lor x$

5. $\top \rightarrow \neg x \lor \neg p$.

μ-演算的语法

不动点符号: u 和 v, 分别表示"最小不动点"和"最大不动点"。 Ψ : 变元符号的可数集。

各类符号之间的优先级如下(从左到右优先级逐渐变低):

EXAX A V и ν.

定义 5 (μ-演算公式)

μ-演算公式(简称为 μ-公式或公式)递归定义如下:

$$\varphi ::= \rho \mid X \mid \neg \varphi \mid \varphi \lor \varphi \mid AX\varphi \mid \nu X.\varphi$$

其中 $p \in \mathcal{A}$ 且 $X \in \mathcal{V}$ 。

约定

- 公式 $vX.\phi$ 中的 X 总是正出现在 ϕ 中, 即: ϕ 中 X 的每一次出现之前都有偶数个否定 符号"¬"。
- 称出现在 μX .φ 和 νX .φ 中的变元 X 是受约束的 (bound),且受约束的变元称 为约束变元,不受约束的变元称为自由变元;
- 文字 (literal): 原子命题和变元符号及其各自的否定:
- 这里所谈到的公式指的是取名恰当的(well-named)、受保护(guarded)的 μ-公式。

μ-演算的语法

不动点符号: μ 和 ν, 分别表示"最小不动点"和"最大不动点"。 ψ: 变元符号的可数集。

各类符号之间的优先级如下(从左到右优先级逐渐变低):

EX AXν.

定义 $5(\mu$ -演算公式)

μ-演算公式(简称为 μ-公式或公式)递归定义如下:

$$\varphi ::= \rho \mid X \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{AX}\varphi \mid \nu X.\varphi$$

其中 $p \in \mathcal{A}$ 且 $X \in \mathcal{V}$ 。

注意

在 μ -演算公式的定义中,通常考虑动作集 Act 和一组与 $a \in Act$ 相关的模态词 "(a)" [6, 3, 21。为了方便,这里考虑公式里只有一个动作的情形,但是这里的结论可以扩展到一般的情形。 此时,模态词中的动作 a 可以省略,且公式 $\text{EX}\phi$ (或 $\text{AX}\phi$)与公式 (A) ϕ (或 $\text{[a]}\phi$)[2]相同。

μ-演算的语义

定义 6

给定 μ -演算公式 φ 、Kripke 结构 $\mathcal{M} = (S, R, L, r)$ 和一个从 \mathcal{V} 中的变量到 \mathcal{M} 中状态的赋值函 数 $v: \mathcal{V} \to 2^{S}$ 。公式在 \mathcal{M} 和 v 上的解释是 S 的一个子集 $\|\varphi\|_{v}^{\mathcal{M}}$ (如果在上下文中 \mathcal{M} 是明确 的,则可以省去上标):

$$\begin{split} &\|\rho\|_{v}^{\mathscr{M}} = \{s \mid p \in L(s)\}, \\ &\|X\|_{v}^{\mathscr{M}} = v(X), \\ &\|\phi_{1} \lor \phi_{2}\|_{v}^{\mathscr{M}} = \|\phi_{1}\|_{v}^{\mathscr{M}} \cup \|\phi_{2}\|_{v}^{\mathscr{M}}, \\ &\|AX\phi\|_{v}^{\mathscr{M}} = \{s \mid \forall s'.(s,s') \in R \Rightarrow s' \in \|\phi\|_{v}^{\mathscr{M}}\}, \\ &\|vX.\phi\|_{v}^{\mathscr{M}} = \bigcup J\{S' \subseteq S \mid S' \subseteq \|\phi\|_{dX=S'1}^{\mathscr{M}}\}. \end{split}$$

其中,v[X:=S'] 是一个赋值函数,它除了 v[X:=S'](X)=S' 之外,和 v 完全相同。

注意: 虽然这里的 Kripke 结构不要求其二元关系是完全的, 但是这里的情况更加一般化, 其结论也能推广到二元关系是完全的情形。

μ-演算的语义

定义 6

给定 μ -演算公式 φ 、Kripke 结构 $\mathcal{M}=(S,R,L,r)$ 和一个从 \mathcal{V} 中的变量到 \mathcal{M} 中状态的赋值函数 $\mathbf{v}:\mathcal{V}\to 2^S$ 。公式在 \mathcal{M} 和 \mathbf{v} 上的解释是 S 的一个子集 $\|\varphi\|_{\mathbf{v}}^{\mathcal{M}}$ (如果在上下文中 \mathcal{M} 是明确的,则可以省去上标):

$$\|p\|_{v}^{\mathscr{M}} = \{s \mid p \in L(s)\},$$
$$\|X\|_{v}^{\mathscr{M}} = v(X),$$

 $\begin{aligned} \|\varphi_1 \vee \varphi_2\|_{\mathcal{V}}^{\mathscr{M}} &= \|\varphi_1\|_{\mathcal{V}}^{\mathscr{M}} \cup \|\varphi_2\|_{\mathcal{V}}^{\mathscr{M}}, \\ \|AX\varphi\|_{\mathcal{V}}^{\mathscr{M}} &= \{s \mid \forall s'.(s,s') \in R \Rightarrow s' \in \|\varphi\|_{\mathcal{V}}^{\mathscr{M}}\}, \end{aligned}$

 $\|vX.\varphi\|_{v}^{\mathscr{M}} = \bigcup \{S' \subseteq S \mid S' \subseteq \|\varphi\|_{v[X:=S']}^{\mathscr{M}}\}.$

其中,v[X:=S'] 是一个赋值函数,它除了 v[X:=S'](X)=S' 之外,和 v 完全相同。

记号和约定

- 赋值:由 ℳ、其赋值函数 v 和 ℳ 上的状态 s 构成的三元组 (ℳ,s,v) 称为为赋值 (当 s 为 ℳ 的根时,(ℳ,s,v) 简写为 (ℳ,v),也称其为一个赋值);
- 若 $s \in \|\varphi\|_{v}$, 则称 s "满足" φ , 记为 $(\mathcal{M}, s, v) \models \varphi$;
- $Mod(\varphi)$: φ 的模型的集合,即 $Mod(\varphi) = \{(\mathcal{M}, v) | (\mathcal{M}, r, v) \models \varphi\}$ (当 φ 为 μ -句子时, 也可简写为 $Mod(\varphi) = \{\mathcal{M} | (\mathcal{M}, r, v) \models \varphi\}$);
- 当公式 φ 为 μ-句子时,可以将赋值函数 ν 省略。

研究背景和音 >>

国内外研究现状

研究内容

背景知1

CTI 的语法和语

.. 30/97

CTL 和 μ-淮

CIL 適応理化
μ-演算遗忘理论

简介

最弱充分条件 知识更新

CTL 遗忘计算:

u-公式的析取范式

μ-演算的覆盖 -语法

在覆盖 -语法语法中,用覆盖操作(cover operator)集替换上述 μ -公式的定义中的 EX,且满 足

- Cover(0) 是公式;
- 对任意 $n \ge 1$,若 $\varphi_1, \ldots, \varphi_n$ 是公式,则 $Cover(\varphi_1, \ldots, \varphi_n)$ 是公式。

定义 7

对于给定的初始结构 $\mathcal{M} = (S, R, L, r)$ 和赋值函数 v:

- $(M,r,v) \models Cover(\emptyset)$ 当且仅当 r 没有任何的后继状态;
- $(\mathcal{M}, s, v) \models Cover(\varphi_1, ..., \varphi_n)$ 当且仅当
 - 对任意 i=1,...,n,存在 $(s,t) \in R$ 使得 $(\mathcal{M},t,v) \models \varphi_i$;
 - 对任意 $(s,t) \in R$,存在 $i \in \{1,...,n\}$ 使得 $(\mathcal{M},t,v) \models \varphi_i$ 。

μ-公式的析取范式

研究背景和意义

a J D

国内外研究现状

研究内

背景知识

Kripke s

CTL 的语法和语

μ-演3

CTL 和 μ-演算道 忘理论

CTL 遗忘理论

μ-演算遗忘理论

糸统中|

最弱充分多

知识更新

CTL 遗忘计算方

μ-演算的覆盖 -语法

在覆盖 -语法语法中,用<u>覆盖操作</u>(cover operator)集替换上述 μ -公式的定义中的 EX ,且满足

- Cover(∅) 是公式;
- 对任意 $n \ge 1$,若 $\varphi_1, \ldots, \varphi_n$ 是公式,则 $Cover(\varphi_1, \ldots, \varphi_n)$ 是公式。

等价关系

覆盖 -语法与上述 μ-演算的语法是等价的 [4], 且 *Cover* 公式与 EX 公式之间可以通过下面的等式转换:

 $Cover(\varphi_1,\ldots,\varphi_n) \Leftrightarrow \text{EX}\varphi_1 \wedge \cdots \wedge \text{EX}\varphi_n \wedge \text{AX}(\varphi \vee \cdots \vee \varphi_n),$

反之,

 $\text{EX} \varphi \Leftrightarrow \textit{Cover}(\varphi, \top).$

μ -公式的析取范式

基丁题志的及应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究由突

36 JE 4m 3

_

CTI 的语法和语

μ-演第

忘理论

CTL 遗忘理论

連亡理込たらは

遗忘理论在反应式 系统中的应用

最弱充分多

知识更新

μ-演算的覆盖 -语法

在覆盖 -语法语法中,用<u>覆盖操作</u>(cover operator)集替换上述 μ -公式的定义中的 EX,且满足

- Cover(∅) 是公式;
- 对任意 $n \ge 1$,若 $\varphi_1, ..., \varphi_n$ 是公式,则 $Cover(\varphi_1, ..., \varphi_n)$ 是公式。

定义 7 (析取 μ-公式 [4])

析取 μ-公式集 \mathscr{F}_d 是包含 \top 、 \bot 和不矛盾的文字的合取且封闭于下面几条规则的最小集合:

- (1) 析取式 (disjunctions): 若 $\alpha, \beta \in \mathscr{F}_d$, 则 $\alpha \lor \beta \in \mathscr{F}_d$;
- (2) 特殊合取式(special conjunctions): 若 $\varphi_1, \ldots, \varphi_n \in \mathscr{F}_d$ 且 δ 为不矛盾的文字的合取,则 $\delta \wedge Cover(\varphi_1, \ldots, \varphi_n) \in \mathscr{F}_d$;
- (3) 不动点操作 (fixpoint operators): 若 φ∈ ℱ_d, 且对任意公式 ψ, φ 不含有形如 X∧ψ 的子公式, 则 μX.φ 和 νX.φ 都在 ℱ_d 中。

目录

- 于遗忘的反应 系统最弱充分
 - ② 国内外研究现状
 - ③ 研究内容
 - 4 背景知识
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 5 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论μ-演算遗忘理论
 - 遗忘理论在反应式系统中的应用
 - 简介
 - 最弱充分条件
 - 知识更新
 - CTL 遗忘计算方法
 - 简介
 - 方计算方 -

CTL 和 *μ* 遗忘理论——_{总体框架}

式系统最弱充分 条件研究 研究背景和意义 国内外研究现状

研究内容

背景知识

HARAHV

CTI 的语法和i

μ-演算

CTL 和 μ-演算点 忘理论

-C-----

u-演算遗忘理·

遗忘理论在反应式

简介 最弱充分

最弱充分条

CTI 遗忘计算方

图 4: CTL 和 μ 遗忘理论

CTL 遗忘理论-

定义 8 (V-互模拟)

给定原子命题集 $V \subset \mathcal{A}$ 、索引集合 $I \subset Ind$ 和初始 Ind-结构 $\mathcal{M}_i = (S_i, R_i, L_i, [\]_i, s_0^i)$ (i = 1, 2)。 $\mathcal{B}_V\subseteq S_1\times S_2$ 为二元关系,对任意 $s_1\in S_1$ 和 $s_2\in S_2$,若 $(s_1,s_2)\in \mathcal{B}_V$,则:

- (i) $L_1(s_1) V = L_2(s_2) V$;
- (ii) $\forall r_1 \in S_1$, 若 $(s_1, r_1) \in R_1$, 则 $\exists r_2 \in S_2$ 使得 $(s_2, r_2) \in R_2$ 和 $(r_1, r_2) \in \mathcal{B}_V$;
- (iii) $\forall r_2 \in S_2$,若 $(s_2, r_2) \in R_2$,则 $\exists r_1 \in S_1$ 使得 $(s_1, r_1) \in R_1$ 和 $(r_1, r_2) \in \mathcal{B}_{V^\circ}$

那么,称 \mathcal{B}_V 是 \mathcal{M}_1 和 \mathcal{M}_2 之间的一个 V-互模拟关系。

- 结构互模拟: 若 M₁ 和 M₂ 之间存在一个 V-互 模拟关系 \mathcal{B}_V 使得 $(s_1, s_2) \in \mathcal{B}_V$, 则称两个 Ind-结构 $\mathcal{K}_1 = (M_1, s_1)$ 和 $\mathcal{K}_2 = (M_2, s_2)$ 是 V-互模拟的,记为 \mathcal{X}_1 ↔ $_{V}$ \mathcal{X}_{5} ;
- 路径互模拟: 令 i∈ {1,2}, π_i = (s_{i1}, s_{i2},...) 为 M_i 上的路径, 若对任意 i > 1 都有 $\mathcal{K}_{1,i} \leftrightarrow_V \mathcal{K}_{2,i}$, 则称这两条路径是 V-互模拟的, 记为 $\pi_1 \leftrightarrow_V \pi_2$, 其中 $\mathcal{K}_{i,i} = (\mathcal{M}_i, s_{i,i})$ 。

CTL 遗忘理论——互模拟

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

TTT she . I . she

.....

H M AH K

renpite sures

TL 的语法和语

μ-演第

TL 和 μ-演算遗 :理论

CTL 遗忘理论

μ-演算遗忘理ί

遗忘理论在反应。

简介

最弱充分条

知识更新

TL 遗忘计算方

定义 8 (V-互模拟)

给定原子命题集 $V\subseteq\mathscr{A}$ 、索引集合 $I\subseteq\operatorname{Ind}$ 和初始 Ind -结构 $\mathscr{M}_i=(S_i,R_i,L_i,\bigsqcup_i,s_0^i)$ (i=1,2)。 $\mathscr{B}_V\subseteq S_1\times S_2$ 为二元关系,对任意 $s_1\in S_1$ 和 $s_2\in S_2$,若 $(s_1,s_2)\in\mathscr{B}_V$,则:

- (i) $L_1(s_1) V = L_2(s_2) V$;
- (ii) $\forall r_1 \in S_1$,若 $(s_1, r_1) \in R_1$,则 $\exists r_2 \in S_2$ 使得 $(s_2, r_2) \in R_2$ 和 $(r_1, r_2) \in \mathcal{B}_V$;
- (iii) $\forall r_2 \in S_2$,若 $(s_2, r_2) \in R_2$,则 $\exists r_1 \in S_1$ 使得 $(s_1, r_1) \in R_1$ 和 $(r_1, r_2) \in \mathcal{B}_{V^{\circ}}$

那么,称 \mathcal{B}_V 是 \mathcal{M}_1 和 \mathcal{M}_2 之间的一个 V-互模拟关系。

定理 9 (互模拟不变性)

令 $V\subseteq\mathscr{A}$ 是原子命題集, \mathscr{K}_i (i=1,2) 是两个具有 V-互模拟关系的 Ind-结构,即: $\mathscr{K}_1 \leftrightarrow_V \mathscr{K}_2$ 。若 Φ 是一个 CTL 公式且 IR(Φ , V),则有 $\mathscr{K}_1 \models \Phi$ 当且仅当 $\mathscr{K}_2 \models \Phi$ 。

CTL 遗忘理论——互模拟等

明九日泉和忠义

国内外研究现状

研究内容

背景知识

....

CTI ON SECTION

μ-演第

CTL 和 μ-演算员 忘理论

CTI 28字: 303人

u-滴箪渍充理i

μ-194 9F-X2-C-X2-V

系统中

简介

最弱充分条

CTI 港亡计質方

定义 10 (互模拟等价,bisimilar equivalence)

给定原子命题集 $V\subseteq \mathscr{A}$, 公式 φ 和 ψ 。若对任意 $\mathscr{K}\models\varphi$,都存在一个 $\mathscr{K}'\models\psi$,使得 $\mathscr{K}\leftrightarrow_{V}\mathscr{K}'$; 且对任意 $\mathscr{K}'\models\psi$,都存在一个 $\mathscr{K}\models\varphi$,使得 $\mathscr{K}\leftrightarrow_{V}\mathscr{K}'$,则称公式 φ 和 ψ 是V 互模拟等价的(bisimilar equivalence),记为 $\varphi\equiv_{V}\psi$ 。

引理 11

对任意 $V \subseteq \mathcal{A}$, \leftrightarrow_V 和 \equiv_V 为等价关系。

命题 1

令 ϕ 为一个 CTL 公式。则 $\phi \equiv_U T_{\phi}$,其中 $T_{\phi} = \mathrm{SNF}^{\mathsf{g}}_{\mathrm{CTL}}(\phi)$ 和 $U = \mathsf{Var}(T_{\phi}) - \mathsf{Var}(\phi)$ 。

CTL 遗忘理论——定义

定义 12 (遗忘,forgetting)

令 V 是 \varnothing 的子集, Φ 是公式。如果公式 ψ 满足下面条件:

- ψ 与 V 中的原子命题无关(即: IR(ψ, V));
- $Mod(\psi) = \{ \mathcal{K} \mid \mathcal{K} \in \mathcal{K} \mid \mathcal{K} \in Mod(\phi) \notin \mathcal{K}' \leftrightarrow_V \mathcal{K} \}$ 。

那么, 称 ψ 为从 Φ 中遗忘 V 后得到的结果, 记为 $F_{crr.}(\phi, V)$ 。

遗忘理论公设

给定 CTL 公式 φ 、 $\varphi' = F_{CTL}(\varphi, V)$ 、原子命题集 $V \subseteq \mathscr{A}$ 和 $\varphi' = F_{CTL}(\varphi, V)$,CTL 下遗忘理 论公设如下:

- (W) 削弱: φ ⊨ φ′;
- (PP) 正支持: 对任意与 V 无关的公式 η , 若 $\varphi \models \eta$ 则 $\varphi' \models \eta$;
- (NP) 负支持: 对任意与 V 无关的公式 η , 若 $\varphi \not\models \eta$ 则 $\varphi' \not\models \eta$;
- (IR) 无关性: $IR(\varphi', V)$ 。

CTL 遗忘理论——相关性质

定理 13 (表达性定理,Representation Theorem)

给定 CTL 公式 φ 和 φ' , $V \subseteq \mathscr{A}$ 为原子命题集。下面的陈述是等价的:

- (i) $\varphi' \equiv F_{CTL}(\varphi, V)$,
- (ii) $\varphi' \equiv \{ \phi \mid \varphi \models \phi \neq \pi IR(\phi, V) \},$
- (iii) 若 φ 、 φ' 和 V与 (i) 和 (ii) 中提到的符号相同,则公设 (W)、(PP)、(NP) 和 (IR) 成 立。

CTL 遗忘理论——相关性质

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内容

背景知识

....

CTL 的语法和语

μ-190

CTL 和 μ-演算》 忘理论

CTL 遗忘理论

μ-演算遗忘理

遗忘理论在反应s 系统中的应用

最弱充分多

An all miles

知识更新

例 13

令 p 和 x 为两个不同的原子命题, $\varphi(p,x)$ ³为下面公式合取 [10]:

$$\mathrm{AG}\big(\neg x \wedge \neg \mathrm{AG} p \to \neg \mathrm{AX} \neg x\big), \qquad \mathrm{AG}\big(\neg \mathrm{AX} \neg x \to \mathrm{AX} x\big),$$

$$\mathrm{AG}\big(\mathrm{AX} x \to \neg x \wedge \neg \mathrm{AG} p\big), \qquad \mathrm{AG}\big(x \to \neg \mathrm{AG} p\big), \qquad \mathrm{AG}\big(\mathrm{AFAG} p\big).$$

Maksimova 证明了 $\varphi(p,x) \land \varphi(p,y) \models x \leftrightarrow y$,且不存在 CTL 公式 ψ 使得 $Var(\psi) = \{p\}$ 且 $\varphi(p,x) \models x \leftrightarrow \psi$,即 CTL 不具有 Beth 性质。

 $^{a}\varphi(p,x)$ 表示具有原子命题集 $Var(\varphi) = \{p,x\}$ 的公式。

命题 2

 $F_{CTL}(x \land \varphi(p,x), \{x\})$ 在 CTL 中是不可表示的。

定理 14

给定一个命题公式 φ 和原子命题集 $V \subseteq \mathscr{A}$,则下面逻辑等式成立。

$$F_{CTL}(\varphi, V) \equiv Forget(\varphi, V).$$

CTL 遗忘理论——相关性质

引理 13

给定两个公式 φ 和 α , 原子命题 $q \notin (Var(\varphi) \cup Var(\alpha))$, 则:

$$F_{CTL}(\varphi \wedge (q \leftrightarrow \alpha), q) \equiv \varphi.$$

命题 2 (分解性,Decomposition)

对于给定的公式 φ , 原子命题集 V, 和原子命题 $p(p \notin V)$, 下面的结论成立:

- $F_{\text{CTL}}(\varphi, \{p\} \cup V) \equiv F_{\text{CTL}}(F_{\text{CTL}}(\varphi, p), V);$
- $F_{CTL}(\varphi, V_1 \cup V_2) \equiv F_{CTL}(F_{CTL}(\varphi, V_1), V_2)$.

命题 3 (同质性)

令 \mathcal{T} ∈ {X,F,G}、 \mathcal{P} ∈ {A,E}, ϕ 为 CTL 公式, 且 P ⊆ \mathscr{A} 为原子命题集,则:

$$F_{CTL}(\mathscr{PT}\phi, P) \equiv \mathscr{PT}F_{CTL}(\phi, P).$$

μ-演算遗忘理论——变元 -命题 -互模拟

式系统最弱充分 条件研究

国内外研究现

研究内:

背景知证

_

CTI 的影響和

μ-澳羽

CTL 和 *μ-*演算遗 忘理论

CTL 遗忘理论

μ-演算遗忘理记

遗忘理论在反应式 系统中的应用

前介

最弱充分》

a识更新

CTL 遗忘计算

定义 14 (V-互模拟)

给定原子命题集 $V\subseteq \mathscr{A}$ 和两个 Kripke 结构 \mathscr{M}_1 和 \mathscr{M}_2 。若 $\mathscr{B}\subseteq S_1\times S_2$ 满足下面几个条件:

- \bullet $r_1 \mathcal{B} r_2$,
- 对任意 $s \in S_1$ 和 $t \in S_2$,若 $s\mathcal{B}t$,则对任意 $p \in \mathcal{A} V$,有 $p \in L_1(s)$ 当且仅当 $p \in L_2(t)$,
- 若 (s,s') ∈ R₁ 和 sℬt,则存在一个 t',使得 s'ℬt' 和 (t,t') ∈ R₂,且
- 若 $s\mathcal{B}t$ 和 $(t,t') \in R_2$,则存在一个 s',使得 $(s,s') \in R_1$ 和 $t'\mathcal{B}s'$ 。

则称 \mathcal{B} 是 \mathcal{M}_1 和 \mathcal{M}_2 的 V-互模拟关系。

 $\mathcal{M}_1 \leftrightarrow_V \mathcal{M}_2$ 、 $(\mathcal{M}_1, r_1) \leftrightarrow_V (\mathcal{M}_2, r_2)$: 如果 \mathcal{M}_1 和 \mathcal{M}_2 之间存在一个 V-互模拟关系。

例 14 (不变性反例)

令 $\varphi = AX \neg X \lor AXX$, (\mathcal{M}, v) 和 (\mathcal{M}', v') 为赋值,其中 $\mathcal{M} = (S, r, R, L)$ 、 $\mathcal{M}' = (S', r', R', L')$ 且

$$S = \{r, r_1\}, R = \{(r, r_1)\}, L(r) = L(r_1) = \emptyset, v(X) = \{r_1\},$$

$$S' = \{r', r'_1, r'_2\}, R' = \{(r', r'_1), (r', r'_2)\}, L(r') = L(r'_1) = L(r'_2) = \emptyset, \forall (X) = \{r'_1\}.$$

$$\mathcal{B} = \{(r,r'), (r_1,r_1'), (r_1,r_2')\}$$
 是 \mathcal{M} 和 \mathcal{M}' 之间的一个 \emptyset -互模拟。

但是, $(\mathcal{M}, v) \models \varphi$ 而 $(\mathcal{M}', v) \not\models \varphi$ 。

μ-演算遗忘理论——变元-命题-互模拟

定义 14 (变元 -命题 -互模拟)

给定 $V \subseteq \mathcal{A}$ 、 $\mathcal{V}_1 \subseteq \mathcal{V}$ 、 $\mathcal{M}_i = (S_i, r_i, R_i, L_i)$ 为 Kripke 结构、 $s_i \in S_i$ 且 $v_i : \mathcal{V} \to 2^{S_i}$,其中 $i \in \{1,2\}$ 。若关系 $\mathcal{B} \subseteq S_1 \times S_2$ 满足:

- 38 是 M₁ 和 M₂ 之间的 V-互模拟, 且
- 对任意 $(t_1,t_2) \in \mathcal{B}$ 和 $X \in \mathcal{V} \mathcal{V}_1$, $t_2 \in v_2(X)$ 当且仅当 $t_1 \in v_1(X)$ 。

则称 \mathcal{B} 是 $(\mathcal{M}_1, s_1, v_1)$ 和 $(\mathcal{M}_2, s_2, v_2)$ 之间的一个 (\mathcal{Y}_1, V) -互模拟。

- $(\mathcal{M}, s, v) \leftrightarrow_{(\mathcal{V}_1, V)} (\mathcal{M}', s', v)$: 若 (\mathcal{M}, s, v) 和 (\mathcal{M}', s', v) 之间存在一个 (\mathcal{V}_1, V) -互模拟关 系 \mathcal{B} , 则称 (\mathcal{M}, s, v) 和 (\mathcal{M}', s', v') 是 (\mathcal{Y}_1, V) -互模拟的;
- 若 s = r 且 s' = r',则 $(\mathcal{M}, s, v) \leftrightarrow_{(\mathcal{V}_1, V)} (\mathcal{M}', s', v')$ 简写为 $(\mathcal{M}, v) \leftrightarrow_{(\mathcal{V}_1, V)} (\mathcal{M}', v')$;
- (水1, V) 是一个等价关系。

μ-演算遗忘理论——变元 -命题 -互模拟

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现制

研究内容

背景知道

CTL 的语法和语

μ-演第

CTL 和 μ-演算员 亡理込

CTL 遗忘理论

μ-演算遗忘理ὶ

遗忘理论在反应: 系统中的应用

简介 最弱充分条件

最弱充分条件 知识更新

例子

令 \mathcal{M} 和 \mathcal{M}' 为图中的 Kripke 结构, $v: \mathcal{V} \to 2^5$ 和 $v': \mathcal{V} \to 2^5$ 为将 \mathcal{V} 中的变元分别赋值到 \mathcal{M} 和 \mathcal{M}' 的状态集上的赋值函数。可以检查下面的结论成立:

- 若对任意 $X \in \mathcal{V}$, $v(X) = \{s_0, s_1, s_2\}$ 且 $v'(X) = \{t_0, t_1\}$, 则 $(\mathcal{M}, v) \leftrightarrow_{\{ch\}} (\mathcal{M}', v')$;
- ◆ 若对任意 $X \in \mathcal{V} \{X_1\}$, $v(X_1) = \{s_0\}$ 、 $v(X_1) = \{t_1\}$ 、 $v(X) = \{s_0, s_1, s_2\}$ 且 $v(X) = \{t_0, t_1\}$, 则 (\mathcal{M}, v) $\mathcal{H}_{\{ch\}}$ (\mathcal{M}', v); 这是因为 $(s_0, t_0) \in \mathcal{B}$ 且 $s_0 \in v(X_1)$,但是 $t_0 \notin v(X_1)$ 。

命题 4 (不变性)

令 ϕ 为 μ -公式、 $\mathcal{V}_1 \subseteq \mathcal{V}$ 且 $V \subseteq \mathcal{U}$ 。 若 $(\mathcal{M},s,v) \leftrightarrow_{\langle \mathcal{V}_1,V \rangle} (\mathcal{M}',s',v')$ 且 $\mathrm{IR}(\phi,V \cup \mathcal{V}_1)$,则 $(\mathcal{M},s,v) \models \phi$ 当且仅当 $(\mathcal{M}',s',v') \models \phi$ 。

μ-演算遗忘理论——定义及相关性质

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意〉

国内外研究现

研究内容

36 N. An 2

H JK AH

CIL 的语法和语

μ-演3

CTL 和 μ-演算) 忘理论

CTL 遗忘理论

μ-演算遗忘理计

遗忘理论在反应式系统中的应用

简介

最弱充分条

知识更新

CTL 遗忘计算

定义 14 (μ-演算遗忘)

令 $V\subseteq \mathscr{A}$ 和 φ 为 μ -公式。若 $Var(\psi)\cap V=\emptyset$ 且下面等式成立,则称 ψ 是从 φ 中遗忘 V 后得到的结果:

 $\textit{Mod}(\psi) = \{(\mathscr{M}, v) \mid \exists (\mathscr{M}', v') \in \textit{Mod}(\phi) \ \bot (\mathscr{M}', v') \leftrightarrow_{V} (\mathscr{M}, v)\}_{\circ}$

μ -演算遗忘理论——定义及相关性质

表达性定理、分解性、同质性等。

定理 14 (存在性)

与 CTL 共同性质

给定原子命题 $q \in \mathcal{A}$ 和 μ -句子 φ , 则存在一个 μ -句子 ψ 使得 $Var(\psi) \cap \{q\} = \emptyset$ 且 $\psi \equiv F_{\mu}(\varphi, \{q\}).$

命题 5 (同质性)

给定原子命题集 $V \subseteq \mathcal{A}$ 和 μ -公式 φ , 则:

- (i) $F_{\mu}(AX\varphi, V) \equiv AXF_{\mu}(\varphi, V)$;
- (ii) $F_{\mu}(EX\varphi, V) \equiv EXF_{\mu}(\varphi, V)$;
- (iii) 如果 $vX.\varphi$ 为 μ -句子, $F_{\mu}(vX.\varphi, V) \equiv vX.F_{\mu}(\varphi, V)$;
- (iv) 如果 $\mu X.\phi$ 为 μ -句子, $F_{\mu}(\mu X.\phi, V) \equiv \mu X.F_{\mu}(\phi, V)$ 。

μ-演算遗忘理论——不含不动点算子的子类

研究背景和音》

国内外研究现料

217417

背景知识

....

CTL 的语法和

μ-演領

CTL 和 μ-演算

心理化

u-油質溃充理:

μ-侧外远芯注讯

系统中

最弱充分:

口识更新

CTL 遗忘计算

x-类

不含有不定点操作的 μ -公式集,记为**x-类**。通过等值式: $AX\phi_1 \wedge AX\phi_2 \equiv AX(\phi_1 \wedge \phi_2)$ 和 $EX\phi_1 \vee EX\phi_2 \equiv EX(\phi_1 \vee \phi_2)$,可以将 x-类中的任意公式转换为具有下面形式的公式的析取:

 $\varphi_0 \wedge \operatorname{AX} \varphi_1 \wedge \operatorname{EX} \varphi_2 \wedge \cdots \wedge \operatorname{EX} \varphi_n$,

(1)

其中 φ_0 是不含有时序算子的 x-类中的公式, φ_i $(1 \le i \le n)$ 为 x-类中的公式,且任意 φ_i $(0 \le i \le n)$ 都有可能缺失。

命题 6

若 $V\subseteq\mathscr{A}$ 为原子命题集、 φ 为 X-类中的公式,则存在 X-类中的公式 ψ 使得 $\psi\equiv\mathrm{F}_{\mu}(\varphi,V)$ 。

μ-演算遗忘理论——不含不动点算子的子类

基丁题志的及应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现制

研究内容

背景知证

_

CTI 的语注和

... 3427.60

, ...

忘理论

CTL 遗忘理论

μ-演界理志理1

系统中的

10171

And STATE OF

CTI 海亡は

例 15

令 $\varphi_1 = X \land p$ 、 $\varphi_2 = AX(c \land EXd) \land AXe$ 、 $\varphi_3 = EX \lnot d \land (EX \lnot p \lor EXp)$ 、 $\varphi = \varphi_1 \land \varphi_2 \land \varphi_3$ 且 $V = \{e,d\}$, 其中 $X \in \mathscr{V}$ 且 p,c,d,e 为原 子命题。

此外,公式 φ 可如下转换为具有形式 (1) 的公式的析取:

如下计算公式 φ 的度:

$$\begin{aligned} \textit{degree}(\phi) &= \max\{\textit{degree}(\phi_1), \textit{degree}(\phi_2 \land \phi_3)\} \\ &= \max\{0, \max\{\textit{degree}(\phi_2), \textit{degree}(\phi_3)\} \\ &= 2, \end{aligned}$$

$$degree(\phi_1) = 0,$$

 $degree(\phi_2) = \max\{degree(AX(c \land EXd)), degree(AXe)\}$

$$= \max\{\max\{0,1\}+1,1\}$$

$$\begin{split} \textit{degree}(\phi_3) &= \mathsf{max}\{\textit{degree}(\mathtt{EX} \neg \textit{d}), \textit{degree}(\mathtt{EX} \neg \textit{p} \lor \mathtt{EX} \textit{p})\} \\ &= \mathsf{max}\{1, \mathsf{max}\{1, 1\}\} \end{split}$$

$$= 1.$$

$$\varphi = \varphi_1 \land \varphi_2 \land \varphi_3$$

$$\equiv X \land p \land AX(c \land e \land EXd) \land EX \neg d \land (EX \neg p \lor EXp)$$

$$\equiv (X \land p \land AX(c \land e \land EXd) \land EX \neg d \land EX \neg p) \lor$$

$$(X \land p \land AX(c \land e \land EXd) \land EX \neg d \land EXp).$$

则从
$$\varphi$$
 中遗忘 V 的结果为:

$$\begin{split} & \mathrm{F}_{\mu}(X \wedge \rho \wedge \mathrm{AX}(c \wedge e \wedge \mathrm{EX}d) \wedge \mathrm{EX} \neg d \wedge \mathrm{EX}\rho, V) \\ & \equiv (X \wedge \rho \wedge \mathrm{AXF}_{\mu}(c \wedge e \wedge \mathrm{EX}d, V) \wedge \\ & \mathrm{EXF}_{\mu}(\neg d \wedge c \wedge e \wedge \mathrm{EX}d, V) \wedge \mathrm{EXF}_{\mu}(\neg \rho \wedge c \wedge e \wedge \mathrm{EX}d, V)) \vee \end{split}$$

 $F_{\mu}(\varphi, V) \equiv F_{\mu}(X \land p \land AX(c \land e \land EXd) \land EX \neg d \land EX \neg p, V) \lor$

$$\begin{split} & (X \wedge p \wedge \mathrm{AXF}_{\mu}(c \wedge e \wedge \mathrm{EX}d, V) \wedge \\ & \mathrm{EXF}_{\mu}(\neg d \wedge c \wedge e \wedge \mathrm{EX}d, V) \wedge \mathrm{EXF}_{\mu}(p \wedge c \wedge e \wedge \mathrm{EX}d, V)) \end{split}$$

$$\equiv (X \land p \land \text{AXC} \land \text{EXC} \land \text{EX}(\neg p \land c)) \lor (X \land p \land \text{AXC} \land \text{EXC} \land \text{EX}(p \land c))$$

 $\equiv X \wedge p \wedge AXc \wedge EXc \wedge (EX(\neg p \wedge c) \vee EX(p \wedge c)).$

990

μ-演算遗忘理论——_{复杂性结果}

基于遗忘的反应 式系统最弱充分 条件研究

研究育景和意〉

国内外研究现

研究内容

背景知识

Kripke 结构

CTL 的语法和词

NA 600

_

忘理论

CIL现态理化

μ-演算遗忘理证

遗忘理论在

简介

最购充分分

1识更新

TL 遗忘计算方

命题 7 (模型检测)

给定一个有限的 Kripke 结构 \mathcal{M} 、一个 μ -句子 φ 和原子命题集 $V \subseteq \mathcal{M}$ 。有:

- (i) 判定 $\mathcal{M} \models^? F_\mu(\varphi, V)$ 在 EXPTIME 中;
- (ii) 若 φ 是一个析取 μ -公式,则判定 $\mathcal{M} \models^{?} F_{\mu}(\varphi, V)$ 在 NP∩co-NP 中。

定理 16 (Entailment)

给定 μ -句子 φ 和 ψ , V 为原子命题集, 则:

- (i) 判定 $F_{\mu}(\varphi, V) \models^? \psi$ 是 EXPTIME-完全的,
- (ii) 判定 ψ |= [?] F_μ(φ, V) 在 EXPTIME 里,
- (iii) 判定 $F_{\mu}(\varphi, V) \models^{?} F_{\mu}(\psi, V)$ 在 EXPTIME 里。

目录

- 于遗忘的反应 系统最弱充分
 - 2 国内外研究现状
 - ③ 研究
 - 4 背景知识
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 6 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - μ-演算遗忘理论
 - 6 遗忘理论在反应式系统中的应用
 - 简介
 - 最弱充分条件
 - 知识更新
 - CTL 遗忘计算方法
 - 简介
- CTL 遗忘计算方
- 基于模型的有界 CTL 遗忘计算 (□ ▶ 4 毫 ▶ 4 毫 ▶ 4 毫 ▶ 2 か へ ◎

简介

- 反应式系统被表示成 Kripke 结构;
- 初始 Kripke 结构的特征公式看作 CTL 公式;

图 5: 进程的三种基本状态及其转换

基于遗忘的反应式系统最弱充分

研究背景和意义

国内外研究现料

.

月 泉 和 に

CTI 的语注和i

.. oar tetr

μ-澳界

CTL 和 μ-演算過 忘理论

CTL 遗忘理论

μ-演算遗忘理论

系统中!

最弱充分:

4010事業

CTL 遗忘计算:

定义 17 (充分和必要条件)

给定两个公式 φ 和 ψ , $V \subseteq Var(\varphi)$, $q \in Var(\varphi) - V$ 和 $Var(\psi) \subseteq V$ 。

- 若 $\varphi \models q \rightarrow \psi$,则称 ψ 是 q 在 V 和 φ 上的<u>必要条件(necessary condition,NC)</u>;
- 若 $\varphi \models \psi \rightarrow q$,则称 $\psi \in q$ 在 V 和 φ 上的充分条件(sufficient condition,SC);
- 若 ψ 是 q 在 V 和 φ 上的必要条件,且对于任意 q 在 V 和 φ 上的必要条件 ψ' ,都有 $\varphi \models \psi \rightarrow \psi'$,则称 ψ 是 q 在 V 和 φ 上的最强必要条件(strongest necessary condition,SNC):
- 若 ψ 是 q 在 V 和 φ 上的充分条件,且对于任意 q 在 V 和 φ 上的充分条件 ψ' ,都有 φ \models ψ' \rightarrow ψ ,则称 ψ 是 q 在 V 和 φ 上的最弱充分条件(weakest sufficient condition,WSC)。

最弱充分条件——相关性质

研究背景和意义

国内外研究现象

TIT she also she

ale til kn Yr

日泉州は

....

CIL HIBITATO

P 10001

CTL 和 μ-演算選 忘理论

11. 海管清定理论

遗忘理论在反应式 系统中的应用

简介

最弱充分条

知识更新

CTL 遗忘计算

命题 8 (对偶性)

令 V、 q、 φ 和 ψ 为定义17出现的符号。则 ψ 是 q 在 V 和 φ 上的 SNC (WSC) 当且仅当 $\neg \psi$ 是 $\neg q$ 在 V 和 φ 上的 WSC (SNC)。

命题 9

给定公式 Γ 和 α , $V\subseteq Var(\alpha)\cup Var(\Gamma)$, q 是不出现在 Γ 和 α 中的原子命題。 ϕ 是集合 V 上的公式,则 ϕ 是 α 在 V 和 Γ 上的 SNC (WSC) 当且仅当 ϕ 是 q 在 V 和 Γ' 上的 SNC (WSC), 其中 $\Gamma' = \Gamma \cup \{q \leftrightarrow \alpha\}$ 。

最弱充分条件——相关性质

赤针研光

国内外研究现状

研究内:

背景知证

13.240....

μ-)项:

CTL 和 μ-演算選 忘理论

CTL 遗忘理论

建产用以无

系统中的

间介

最弱充分多

知识更新

CTL 遗忘计算

定理 18

给定公式 φ 、原子命题集 $V \subseteq Var(\varphi)$ 和原子命题 $q \in Var(\varphi) - V$ 。

- (i) F_{CTL}(φ∧q, (Var(φ)∪{q}) V) 是 q 在 V 和 φ 上的 SNC;
- (ii) $\neg F_{CTL}(\phi \land \neg q, (Var(\phi) \cup \{q\}) V)$ 是 q 在 V 和 ϕ 上的 WSC。

例 19 (例 1的延续)

令 $\mathscr{A} = \{d, se, sp, s\}$ 和 $V = \{d, se\}$,求 s 在 V 和初始结构 $\mathscr{K} = (\mathscr{M}, s_0)$ 上的 WSC,其中 \mathscr{M} 为例 1中初始状态为 s_0 的汽车制造企业模型结构。

由上面的定理可知,s 在 V 和初始结构 $\mathcal{K} = (\mathcal{M}, s_0)$ 上的 WSC 为 ¬ $F_{CTL}(\mathscr{F}_{\mathscr{A}}(\mathcal{K}) \land \neg s, \{s\} \cup \{sp\})$ 。

由于涉及到后文中遗忘的计算方法,本例的详细计算过程放到后面。

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现制

研究内容

背景知1

Kripke sara

TL 的语法和语

μ-演3

CTL 和 μ-演算员忘理论

CTL 遗忘理论

遗忘理论在反应式系统中的应用

简介

400-00-70-70-70

知识更新

CTL 遗忘计算:

约定

- 本小节假设所有初始结构都是有限的,即:状态来源于有限状态空间且 ⋈ 为有限原子命 题集;
- 任意 \mathscr{A} 上的有限初始结构 \mathscr{M} (为了简化符号,本节用初始 Kripke 结构 \mathscr{M} 代替初始结构 (\mathscr{M},s_0)) 都能用一个 CTL 公式——特征公式 $\mathscr{F}_{\mathscr{A}}(\mathscr{M})$ 来表示;
- 给定公式 φ 和 ψ , $V_{min} \subseteq \mathscr{A}$ 为使得 $F_{CTL}(\varphi, V_{min}) \wedge \psi$ 可满足的极小子集。
- 记

$$\bigcup_{V_{min}\subseteq\mathscr{A}} \mathit{Mod}(\mathrm{F}_{\scriptscriptstyle\mathrm{CTL}}(\mathscr{F}_{\mathscr{A}}(\mathscr{M}),V_{min})\wedge\psi)$$

为所有 $F_{CTL}(\mathscr{F}_{\mathscr{A}}(\mathscr{M}), V_{min}) \wedge \psi$ 的模型集合的并集。

定义 20

给定公式 Γ 和 φ 。知识更新操作 ◇CTL 定义如下:

$$\mathit{Mod}(\Gamma \diamond_{\mathrm{CTL}} \varphi) = \bigcup_{\mathscr{M} \in \mathit{Mod}(\Gamma)} \bigcup_{V_{\mathit{min}} \subseteq \mathscr{A}} \mathit{Mod}(\mathrm{F}_{\scriptscriptstyle{\mathrm{CTL}}}(\mathscr{F}_{\mathscr{A}}(\mathscr{M}), V_{\mathit{min}}) \wedge \varphi),$$

其中, $\mathscr{F}_{\mathscr{A}}(\mathscr{M})$ 是 \mathscr{M} 在 \mathscr{A} 上的特征公式, $V_{min}\subseteq\mathscr{A}$ 是使得 $F_{CTL}(\mathscr{F}_{\mathscr{A}}(\mathscr{M}),V_{min})$ 可满足的极小子集。

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内容

背景知识

Kripke 缉

CTL 的语法和语

μ-演第

CTL 和 μ-演算

忘理论

ル海質療な神ど

μ-mπ×2.6×±16

系统甲

10171

知识更新

CTL 遗忘计算方

定义 21

给定三个有限初始结构 M、 M_1 和 M_2 , M_1 比 M_2 更接近 M (记为 $M_1 \leq_M M_2$),当且仅当对任意 $V_2 \subseteq M$,若 $M_2 \leftrightarrow_{V_2} M$,则存在 $V_1 \subseteq V_2$ 使得 $M_1 \leftrightarrow_{V_1} M$ 。 $M_1 <_M M_2$ 当且仅当 $M_1 \leq_M M_2$ 且 $M_2 \not\leq_M M_1$ 。

例 22

令 $\mathcal{M} = (S, R, L, r)$ 、 $\mathcal{M}_1 = (S_1, R_1, L_1, r_1)$ 、 $\mathcal{M}_2 = (S_2, R_2, L_2, r_2)$ 为三个初始结构(如图 6),其中 $S = S_1 = S_2 = \{s_0, s_1\}$, $r = r_1 = r_2 = s_0$, $R = R_1 = R_2 = \{(s_0, s_1), (s_1, s_1)\}$, $L(s_0) = \{ch, j\}$, $L_1(s_0) = L_2(s_0) = \{ch\}$, $L(s_1) = L_1(s_1) = \emptyset$, $L_2(s_1) = \{j\}$ 。

可以检查 $M \leftrightarrow_{\{j\}} M_1$, $M \leftrightarrow_{\{j,ch\}} M_2$, $\{j\} \subseteq \{j,ch\}$, 且对任意原子命题集 $V \subset \{j\}$ (或 $V \subset \{j,ch\}$), 有 $M \nleftrightarrow_V M_1$ (或 $M \nleftrightarrow_V M_2$)。因此, $M_1 \subseteq_{\mathcal{M}} M_2$ 。

图 6: 初始结构间的 < //>// 关系。

研究背景和意义

国内外研究现状

研究内容

非暴和田

HARMU

CTI (himitian

CIC HIMILATORI.

μ-演③

CTL 和 μ-演算遗 忘理论

CTL 遗忘理论

遗忘理论在反应式 系统中的应用

简介

400007077

知识更新

CTL 遗忘计算

定义 21

给定三个有限初始结构 M、 M_1 和 M_2 , M_1 比 M_2 更接近 M (记为 $M_1 \leq_M M_2$),当且仅当对任意 $V_2 \subseteq M$,若 $M_2 \leftrightarrow_{V_2} M$,则存在 $V_1 \subseteq V_2$ 使得 $M_1 \leftrightarrow_{V_1} M$ 。 $M_1 <_M M_2$ 当且仅当 $M_1 \leq_M M_2$ 且 $M_2 \not\leq_M M_1$ 。

定义 22

给定公式 Γ 和 φ 。知识更新操作 \diamond_{CTL} 定义如下:

$$\mathit{Mod}(\Gamma \diamond \phi) = \bigcup_{l \in \mathit{Mod}(\Gamma)} \mathit{Min}(\mathit{Mod}(\phi), \leq_{\mathscr{M}}).$$

研究背景和意义

国内外研究现制

研究内容

背景知识

Matalia 6

CTL 的语法和语:

μ-演

μ-演

CTL 和 μ-演算遗 忘理论

CTL 遗忘理论

遗忘理论在反应: 系统中的应用

简介

取物兆尔

知识更新

CTL 遗忘计算

定理 23

给定 μ-句子 Γ 和 φ, 则:

 $Mod(\Gamma \diamond_{\operatorname{CTL}} \varphi) = \bigcup_{\mathscr{M} \in Mod(\Gamma)} Min(Mod(\varphi), \leq_{\mathscr{M}}).$

定理 24

知识更新操作 ◇CTL 满足 Katsuno 和 Mendelzon 提出的基本条件 (U1)-(U8)。

知识更新——例子

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现象

研究内容

背唇知言

em wasta

CIL HINDIZANI

μ-演》

CTL 和 *μ-*演算』 忘理论

CTL 遗忘理论

μ-演算遗忘理

遗忘理论在反应: 系统中的应用

知识重新

知识更新

CTL 遗忘计算方

例 25

令 $\mathscr{A} = \{ch, j\}$ 、 $\varphi = vX. j \land ch \land \text{EXEX}X$ 、 $\psi = vX. \neg j \land ch \land \text{EXEX}X$ 且 Kripke 结构的状态空间为 $\{s_0, s_1\}$,则用 ψ 更新 φ 计算如下:

数状态不再为真、ch 保持为真且 ψ 和 ϕ 都不知道模型偶数状态的信息,因而用 ψ 更新 ϕ 得到的结果为 ψ 自身。

$$Mod(\varphi) = \{((1), r = s_0, L(s_0) = \{ch, j\}, L(s_1) = \{ch, j\}),\$$

$$((2),r=s_1,L(s_1)=\{ch,j\},L(s_0)=\{ch,j\}),$$

$$((3), r = s_0, L(s_0) = \{ch, j\}, L(s_1) = \mathscr{C}),$$

$$((4),r=s_1,L(s_1)=\{ch,j\},L(s_0)=\mathcal{C}),$$

$$((5),r=s_0,L(s_0)=\{ch,j\},L(s_1)=\mathcal{C}),$$

$$((6), r = s_1, L(s_1) = \{ch, j\}, L(s_0) = \mathcal{C}), \dots\}$$

$$Mod(\psi) = \{((1), r = s_0, L(s_0) = \{ch\}, L(s_1) = \{ch\}),\$$

$$((2), r = s_1, L(s_1) = \{ch\}, L(s_0) = \{ch\}),$$

$$((3), r = s_0, L(s_0) = \{ch\}, L(s_1) = \mathcal{C}),$$

$$((4),r=s_1,L(s_1)=\{ch\},L(s_0)=\mathcal{C}),$$

$$((5), r = s_0, L(s_0) = \{ch\}, L(s_1) = \mathcal{C}),$$

$$((6), r = s_1, L(s_1) = \{ch\}, L(s_0) = \mathcal{C}), \dots\}$$

其中, 四元组 $((i), r = s_k, L(s_0) = V_1, L(s_1) = V_1)$ 表示 Kripke 结 构 (S, r, R, L), 其中 $S = \{s_0, s_1\}$, $r = s_k$ $(r \in \{0, 1\})$ 、转換关系如 圏 6中的 (i) $(i \in \{1, 2, 3, 4, 5, 6\})$ 、 s_0 n s_1 分別被 $V_1 \subseteq \{ch, f\}$ 和 $V_2 \subseteq \{ch, f\}$ 标证且 $\mathscr{C} \in \{0, f\}, \{ch\}, \{ch\}\}$.

图 6: 状态空间为 {s₀,s₁} 的六个 Kripke 结构示意图^a

"这里只列出部分转换关系,其余转换关系 可以容易地枚举出来。

目录

- 下遗忘的反应 系统最弱充分
 - ② 国内外研究现状
 - ③ 研究内容
 - 4 背景知识
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 5 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - μ-演算遗忘理论
 - 6 遗忘理论在反应式系统中的应用

990

- 简介
- 最弱充分条件
- 知识更新
- 7 CTL 遗忘计算方法
 - 简介
 - 基于模型的有界 CTL 遗忘计算

CTL 遗忘计算:

简介

- 基于模型的计算方法:
- 基于归结的计算方法(CTL-forget 算法);
- 基于 Prolog 的 CTL-forget 算法实现。

基于模型的计算方法总体框架

CTL 遗忘理说 μ-演算遗忘理

遗忘理说

简介

最弱充分条

知识更新

基于模型的有界CTL计算方法

图 7: 基于模型的有界 CTL 遗忘方法

基于模型的有界 CTL 遗忘计算——描述初始结构: 有界 V-互模拟

表于 题 忌 的 及 应 式 系 统 最 弱 充 分 条 件 研 究

研究背景和意义

国内外研究现制

研究内容

背景知

CTI 的语法和语

μ-演第

CTL 和 μ-演算遗 忘理论

u-縮額濟定理论

简介

知识更新

CTL 遗忘计算方

\mathscr{B}_n^V

令 $V \subseteq \mathcal{A}$ 是原子命题集, $i \in \{1,2\}$, $\mathcal{M}_i = (S_i, R_i, L_i, s_0^i)$ 是初始 Kripke 结构, $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ 是结构。 \mathcal{B}_0^N 递归定义如下:

- $\Xi L_1(s_1) V = L_2(s_2)$, $\emptyset (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_0^V$;
- 对任意 $n \ge 0$,若满足下面几个条件,则 $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_{n+1}^V$ 成立:
 - $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_0^V$;
 - 对任意 $(s_1,s_1') \in R_1$,存在 $(s_2,s_2') \in R_2$,使得 $(\mathcal{K}_1',\mathcal{K}_2') \in \mathcal{B}_n^V$;
 - 对任意 $(s_2,s_2') \in R_2$,存在 $(s_1,s_1') \in R_1$,使得 $(\mathcal{K}_1',\mathcal{K}_2') \in \mathcal{B}_n^V$ 。

其中 $\mathcal{K}'_i = (\mathcal{M}_i, s'_i)$ 。

定义 26 (有界 V-互模拟)

令 V 是 \varnothing 的一个子集, i ∈ {1,2}, \mathscr{K}_1 和 \mathscr{K}_2 是结构。

- \mathscr{K}_1 和 \mathscr{K}_2 是有界 V-互模拟的,当且仅当对所有 $n \geq 0$,都有 $(\mathscr{K}_1, \mathscr{K}_2) \in \mathscr{B}_n$ 。若 \mathscr{K}_1 和 \mathscr{K}_2 是有界 V-互模拟的,则记为 \mathscr{K}_1 $\overset{\triangle}{\mapsto}_V \mathscr{K}_2$ 。
- 对 \mathcal{M}_i 上的路径 $\pi_i = (s_{i,1}, s_{i,2}, \dots)$,若对于任意 $j \in \mathbb{N}_{\geq 1}^a$,都有 $\mathcal{K}_{1,j} \overset{\beta}{\mapsto}_V \mathcal{K}_{2,j}$,则 $\pi_1 \overset{\beta}{\mapsto}_V \pi_2$ 。其中 $\mathcal{K}_{i,i} = (\mathcal{M}_i, s_{i,i})$ 。

³N 为整数集, N>1 是大于等于 1 的整数集。

¥

基于模型的有界 CTL 遗忘计算——描述初始结构: 有界 V-互模拟

\mathscr{B}_{n}^{V}

令 $V \subseteq \mathcal{A}$ 是原子命题集, $i \in \{1,2\}$, $\mathcal{M}_i = (S_i, R_i, L_i, s_i')$ 是初始 Kripke 结构, $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ 是 结构。 \mathcal{B}_{n}^{V} 递归定义如下:

- 若 $L_1(s_1) V = L_2(s_2)$, 则 $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_0^V$;
- 对任意 n≥0,若满足下面几个条件,则(ℋ₁,ℋ₂)∈ ℬ^V_{n+1} 成立:
 - $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_0^V$;
 - 对任意 $(s_1,s_1') \in R_1$,存在 $(s_2,s_2') \in R_2$,使得 $(\mathcal{K}_1',\mathcal{K}_2') \in \mathcal{B}_n^V$;
 - 对任意 $(s_2, s_2) \in R_2$,存在 $(s_1, s_1) \in R_1$,使得 $(\mathcal{K}'_1, \mathcal{K}'_2) \in \mathcal{B}^V_n$ 。

其中 $\mathcal{K}_i' = (\mathcal{M}_i, s_i')$ 。

定理 26

令 $V \subseteq \mathcal{A}$ 和 $\mathcal{X}_i = (\mathcal{M}_i, s_i)$ $(i \in \{1, 2\})$ 。若 $\mathcal{M}_i = (S_i, R_i, L_i, s_0^i)$ 是有限的初始 Kripke 结构,则 s_1 和 s_2 是有界 V-互模拟的, 当且仅当 $s_1 \leftrightarrow_V s_2$ 。

基于模型的有界 CTL 遗忘计算——描述初始结构: 计算树互模拟

计算树

给定一个初始 Kripke 结构 $\mathcal{M} = (S, R, L, s_0)$ 和一个状态 $s \in S$, \mathcal{M} 上以 s 为根节点、深度为 n $(n \ge 0)$ 的计算树 $\operatorname{Tr}_n^{\mathcal{M}}(s)$ 递归定义如下 [1]:

- Tr₀^M(s) 是只有一个节点 s (其标签为 L(s)) 的树。
- $\operatorname{Tr}_{s+1}^{\mathcal{M}}(s)$ 是以 s 为根节点(标签为 L(s))的树,并且若 $(s,s') \in R$,则 s 有一棵子树 $\operatorname{Tr}_{n}^{\mathscr{M}}(s')$

计算树互模拟

给定原子命题集 $V \subseteq \mathscr{A}$ 和初始 Kripke 结构 \mathscr{M}_i (i=1,2)。如果下面条件同时满足:

- \bullet $L_1(s_1) V = L_2(s_2) V$
- 对 $\operatorname{Tr}_n(s_1)$ 的任意子树 $\operatorname{Tr}_{n-1}(s_1')$,都存在 $\operatorname{Tr}_n(s_2)$ 的子树 $\operatorname{Tr}_{n-1}(s_2')$,使得 $\operatorname{Tr}_{n-1}(s_1') \leftrightarrow_V \operatorname{Tr}_{n-1}(s_2'), \exists$
- 对任意 $\operatorname{Tr}_n(s_2)$ 的子树 $\operatorname{Tr}_{n-1}(s_2)$,都存在 $\operatorname{Tr}_n(s_1)$ 的子树 $\operatorname{Tr}_{n-1}(s_1')$,使得 $\operatorname{Tr}_{n-1}(s_1') \leftrightarrow_V \operatorname{Tr}_{n-1}(s_2');$

则称 \mathcal{M}_1 的计算树 $\mathrm{Tr}_n(s_1)$ 和 \mathcal{M}_2 的计算树 $\mathrm{Tr}_n(s_2)$ 是 V-互模拟的 (记为 $(\mathcal{M}_1, \operatorname{Tr}_n(s_1)) \leftrightarrow_V (\mathcal{M}_2, \operatorname{Tr}_n(s_2))$,简写为 $\operatorname{Tr}_n(s_1) \leftrightarrow_V \operatorname{Tr}_n(s_2)$)。

基于模型的有界 CTL 遗忘计算——描述初始结构: 计算树互模拟

计算树

给定一个初始 Kripke 结构 $\mathcal{M} = (S, R, L, s_0)$ 和一个状态 $s \in S$, \mathcal{M} 上以 s 为根节点、深度为 n $(n \ge 0)$ 的计算树 $\operatorname{Tr}_n^{\mathscr{M}}(s)$ 递归定义如下 [1]:

- Tr₀^ℳ(s) 是只有一个节点 s (其标签为 L(s)) 的树。
- $\operatorname{Tr}_{n+1}^{\mathcal{M}}(s)$ 是以 s 为根节点(标签为 L(s))的树,并且若 $(s,s') \in R$,则 s 有一棵子树 $\operatorname{Tr}_{n}^{\mathscr{M}}(s')$

命题 8

给定原子命题集 $V \subseteq A$ 、初始 Kripke 结构 M 和两个状态 $s, s' \in S$ 。若 $s \nleftrightarrow_V s'$,则存在一个 最小整数 k, 使得 $\operatorname{Tr}_k(s)$ 和 $\operatorname{Tr}_k(s')$ 不是 V-互模拟的。

基于模型的有界 CTL 遗忘计算——描述初始结构: 计算树的特征公式

至了 题志的及应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内容

非黑细

....

CTL 的语法和语

μ-演第

CTL 和 μ-演算

忘理论

u-演算遗忘理论

遗忘理论征

介

最弱充分条

口识更新

定义 27

给定原子命题集 $V\subseteq \mathcal{U}$ 、初始 Kripke 结构 $\mathcal{M}=(S,R,L,s_0)$ 和状态 $s\in S$ 。定义在 V 上的计算 树 $\mathrm{Tr}_n(s)$ 的特征公式(记为 $\mathscr{P}_V(\mathrm{Tr}_n(s)),\ n\geq 0$)递归定义如下:

$$\mathscr{F}_V(\operatorname{Tr}_0(s)) = \bigwedge_{p \in V \cap L(s)} p \wedge \bigwedge_{q \in V - L(s)} \neg q,$$

$$\mathscr{F}_{\mathcal{V}}(\mathrm{Tr}_{k+1}(s)) = \bigwedge_{(s,s') \in \mathcal{R}} \mathrm{EX} \mathscr{F}_{\mathcal{V}}(\mathrm{Tr}_{k}(s')) \wedge \mathrm{AX} \bigg(\bigvee_{(s,s') \in \mathcal{R}} \mathscr{F}_{\mathcal{V}}(\mathrm{Tr}_{k}(s')) \bigg) \wedge \mathscr{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \quad (k \geq 0) \circ \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) = \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) = \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) = \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) = \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) = \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) = \mathbb{F}_{\mathcal{V}}(\mathrm{Tr}_{0}(s)) \wedge \mathbb{F}_{\mathcal{V}}(\mathrm{Tr$$

含义

由定义27可知, 计算树的特征公式从三个方面展示了计算树的信息:

- (1) 只考虑 V 中的原子命题;
- (2) 突出了树节点的内容,即:对于任意原子命题 $p \in V$,若 p 在节点的标签中,则其正出现在特征公式中,否则负出现在特征公式中:
- (3) 公式中的时序算子表示了状态之间的转换关系。

研究背景和意义

国内外研究现

研究内容

非暴和it

HARM

ener distribution

u-演3

CTL 和 μ-演算员 忘理论

忘理论

μ-演算遗忘理说

遗忘理论在反应式 系统中的应用

简介

最弱充分统

知识更新

CTL 遗忘计算

引理 27

答定原子命題集 $V \subseteq \mathscr{A}$ 、初始 Kripke 结构 $\mathscr{M} = (S,R,L,s_0)$ 和 $\mathscr{M}' = (S',R',L',s_0')$ 、 $s \in S$ 、 $s' \in S'$ 且 $n \geq 0$ 。若 $\mathrm{Tr}_n(s) \leftrightarrow_{\nabla} \mathrm{Tr}_n(s')$,則 $\mathscr{F}_V(\mathrm{Tr}_n(s)) \equiv \mathscr{F}_V(\mathrm{Tr}_n(s'))$ 。

引理 28

 $\Leftrightarrow V \subseteq \mathscr{A} \, , \, \, \mathscr{M} = (S,R,L,s_0) \, , \, \, \mathscr{M}' = (S',R',L',s_0') \, , \, \, s \in S, \, \, s' \in S' \, \, \, \mathbb{L} \, \, \, n \geq 0, \, \, \, \mathbb{M} \colon$

- (i) $(\mathcal{M}, s) \models \mathscr{F}_V(\operatorname{Tr}_n(s));$
- (ii) 若 $(\mathcal{M},s) \models \mathscr{F}_{V}(\operatorname{Tr}_{n}(s'))$, 则 $\operatorname{Tr}_{n}(s) \leftrightarrow_{\overline{V}} \operatorname{Tr}_{n}(s')$ 。

基于模型的有界 CTL 遗忘计算——描述初始结构: 特征公式

研究背景和意义

国内外研究现

研究内容

北里加江

13 23 27 10 8

and Alberta Toron

.

CTL 和 μ-演算遗 忘理论

CTL 遗忘理论

μ-演算還忘理论

遗忘理论在反 系统中的应用

简介

#X-9476713

知识更新

CTL 遗忘计算

V-可区分

若初始 Kripke 结构 \mathcal{M} 的两个状态 s 和 s' 不是 \overline{V} -互模拟的(即: $s \leftrightarrow_{\overline{V}} s'$),则称 s 和 s' 是 \underline{V} -可区分的。用 $\mathrm{dis}_V(\mathcal{M},s,s',k)$ 表示状态 s 和 s' 在命题??中所说的最小数 k 下是 V-可区分的。

特征数

 \mathcal{M} 关于原子命题集 V 的<u>特征数</u>,记为 $ch(\mathcal{M},V)$ 定义如下:

$$\mathit{ch}(\mathscr{M}, V) = \left\{ egin{array}{ll} \max\{k \,|\, s, s' \in S \; \mathrm{Hdis}_V(\mathscr{M}, s, s', k)\}, & \mathscr{M} \; \not \to \; V ext{-} 可区分的; \\ \min\{k \,|\, \mathscr{B}_k = \mathscr{B}_{k+1}, k \geq 0\}, & \mathrm{TM}. \end{array} \right.$$

基于模型的有界 CTL 遗忘计算——描述初始结构: 特征公式

研究背景和意义

国内外研究现状

研究内:

背景知识

Kripke ###

TL 的语法和语。

μ-ινι:

忘理论

CTL 遗忘理论

μ-演算遗忘理论

系统中

見耐水ム

可识更新

CTL 遗忘计算

定义 29 (特征公式)

给定原子命题集 $V\subseteq \mathscr{M}$ 和初始结构 $\mathscr{K}=(\mathscr{M},s_0)$,其中 $c=ch(\mathscr{M},V)$ 。对任意 \mathscr{M} 上的状态 $s'\in S$,记 $T(s')=\mathscr{F}_V(\mathrm{Tr}_c(s'))$ 。 \mathscr{K} 关于 V 的<u>特征公式</u> $\mathscr{F}_V(\mathscr{K})$ 定义为:

$$T(s_0) \ \wedge \bigwedge_{s \in S} \operatorname{AG} \left(T(s) \to \bigwedge_{(s,s') \in R} \operatorname{EX} T(s') \wedge \operatorname{AX} \left(\bigvee_{(s,s') \in R} T(s') \right) \right).$$

定理 30

令 $V \subseteq \mathcal{A}$ 、 $\mathcal{M} = (S, R, L, s_0)$ 且 $\mathcal{M}' = (S', R', L', s'_0)$, 则:

- (i) $(\mathcal{M}', s_0') \models \mathcal{F}_V(\mathcal{M}, s_0)$ 当且仅当 $(\mathcal{M}, s_0) \leftrightarrow_{\overline{V}} (\mathcal{M}', s_0')$;
- (ii) 若 $s_0 \leftrightarrow_{\overline{V}} s_0'$ 则 $\mathscr{F}_V(\mathscr{M}, s_0) \equiv \mathscr{F}_V(\mathscr{M}', s_0')$ 。

基于模型的有界 CTL 遗忘计算——描述初始结构: 特征公式

例 29

考虑右下图中左边的初始结构 $\mathcal{K}_0 = (\mathcal{M}, s_0)$ 。左边的为 \mathcal{M} 上的四棵计算树: 从左到右表示以 s_0 为根、深度分别为 0.1.2 和 3的计算树 (为简化图, 计算树的标签没有给出, 但是每个树节点的标签可从 \mathscr{X}_{3} 找到)。令 $V = \{d\}$, 则 $\overline{V} = \{s.se\}$ 。 因为 $L(s_1) - \overline{V} = L(s_2) - \overline{V}$, 所以有 $\operatorname{Tr}_0(s_1) \leftrightarrow_{\overline{V}} \operatorname{Tr}_0(s_2)$ 。由于存在 $(s_1, s_2) \in R$,使得对任意 $(s_2, s') \in R$,都有 $L(s_2) - \overline{V} \neq L(s') - \overline{V}$,所以, $\mathrm{Tr}_1(s_1) \leftrightarrow_{\overline{V}} \mathrm{Tr}_1(s_2)$ 。由此可知, s_1 和 s_2 是 V-可区分的,且 $\mathrm{dis}_V(\mathcal{M}, s_1, s_2, 1)$ 。 同理可得: $\operatorname{dis}_{V}(\mathcal{M}, s_{0}, s_{1}, 0)$ 、 $\operatorname{dis}_{V}(\mathcal{M}, s_{1}, s_{3}', 1)$ 、 $\operatorname{dis}_{V}(\mathcal{M}, s_{0}, s_{2}, 0)$ 和 $\operatorname{dis}_{V}(\mathcal{M}, s_{0}, s_{3}', 0)$ 。此外, $s_{2} \leftrightarrow_{\mathcal{V}} s_{3}'$ 。因此,可以计 算 /// 关于 V 的特征数为:

$$\mathit{ch}(\mathscr{M}, \mathit{V}) = \max\{k \,|\, \mathit{s}, \mathit{s'} \in \mathit{S} \,\, \underline{\exists} \, \mathrm{dis}_{\,\mathit{V}}(\mathscr{M}, \mathit{s}, \mathit{s'}, \mathit{k})\} = 1.$$

 $\operatorname{Tr}_2(s_0) \operatorname{Tr}_3(s_0)$

所以,可以由以下步骤计算 光,关于 V 的特征公式:

 $\mathscr{F}_V(\operatorname{Tr}_0(s_0)) = d$ $\mathscr{F}_V(\operatorname{Tr}_0(s_1)) = \neg d$

 $\mathscr{F}_{V}(\operatorname{Tr}_{0}(s_{2})) = \neg d, \quad \mathscr{F}_{V}(\operatorname{Tr}_{0}(s_{2}^{\prime})) = \neg d,$

 $\mathscr{F}_{V}(\operatorname{Tr}_{1}(s_{0})) = \operatorname{EX} \neg d \wedge \operatorname{AX} \neg d \wedge d \equiv \operatorname{AX} \neg d \wedge d$

 $\mathscr{F}_{V}(\operatorname{Tr}_{1}(s_{1})) = \operatorname{EX} \neg d \wedge \operatorname{EX} \neg d \wedge \operatorname{AX}(\neg d \vee \neg d) \wedge \neg d \equiv \operatorname{AX} \neg d \wedge \neg d,$

 $\mathscr{F}_V(\operatorname{Tr}_1(s_2)) = \operatorname{EX} d \wedge \operatorname{AX} d \wedge \neg d \equiv \operatorname{AX} d \wedge \neg d$

 $\mathscr{F}_V(\operatorname{Tr}_1(s_2')) \equiv \mathscr{F}_V(\operatorname{Tr}_1(s_2)),$ $\mathscr{F}_V(\mathscr{M}, s_0) \equiv AX \neg d \wedge d \wedge$

 $AG(AX \neg d \land d \rightarrow AX(AX \neg d \land \neg d)) \land$

 $AG(AX \neg d \land \neg d \rightarrow AX(AXd \land \neg d)) \land$

 $AG(AXd \land \neg d \rightarrow AX(AX \neg d \land d)).$

图 8: 初始结构 光 及其计算树示意图

遗忘封闭性及复杂性

引理 30

给定 CTL 公式 φ, 下面等式成立:

$$arphi \equiv igvee_{(\mathscr{M}, s_0) \in \mathsf{Mod}(arphi)} \mathscr{F}_{\mathscr{A}}(\mathscr{M}, s_0).$$

遗忘封闭性

从 φ 中遗忘 V 中的元素得到的结果为:

$$\bigvee_{\mathscr{K} \in \{\mathscr{K}' \mid \exists \mathscr{K}'' \in \mathsf{Mod}(\phi), \ \mathscr{K}'' \leftrightarrow_{V} \mathscr{K}'\}} \mathscr{F}_{\overline{V}}(\mathscr{K}).$$

遗忘封闭性及复杂性

CTL_{AF}:表示 CTL 公式只包含时序算子 AF 的子类。

命题 9 (模型检测)

给定一个结构 (\mathcal{M} , s_0)、原子命题集 $V\subseteq\mathcal{M}$ 和公式 $\varphi\in\mathrm{CTL}_{\mathrm{AF}}$, 判定 (\mathcal{M} , s_0) 是否为 $\mathrm{F}_{\mathrm{CTL}}(\varphi,V)$ 的模型是 NP-完全的。

定理 30 (Entailment)

令 φ 和 ψ 为 CTL_{AF} 中的两个公式, V 为原子命题集。则:

- (i) 判定 $F_{CTL}(\varphi, V)$ |= $^{?}$ ψ $^{?}$ $^{?}$ $^{?}$ $^{?}$ $^{?}$ $^{?}$ $^{?}$ εο-NP-完全的,
- (ii) 判定 $\psi \models$ F_{CTL}(φ , V) 是 Π_2^P -完全的,
- (iii) 判定 $F_{CTL}(\varphi, V) \models^{?} F_{CTL}(\psi, V)$ 是 Π_{2}^{P} -完全的。

推论 31

令 φ 和 ψ 为 CTL_{AF} 中的两个公式, V 原子公式集。则

- (i) 判定 $\psi \equiv {}^{?} F_{CIL}(\varphi, V)$ 是 Π_{2}^{P} -完全的,
- (ii) 判定 $F_{CTL}(\varphi, V) \equiv \varphi$ 是 co-NP-完全的,
- (iii) 判定 $F_{CTL}(\varphi, V) \equiv^{?} F_{CTL}(\psi, V)$ 是 Π_2^P -完全的。

研究背景和意义

国内外研究现状

研究内容

H JK AH U

Cripke and

11-海軍

CTL 和 μ-演算遗 忘理论

μ-演算遗忘理论

遗忘理论在反应: 系统中的应用

最弱充分条

可识更新

CTL 遗忘计算: 法

基于模型的遗忘算法

研究背景和音》

国内外研究现状

研光内?

背景知

Kripke 结

CTL 的语法和语

μ-演第

CIL 和 μ-碘
忘理论

CTL 遗忘理论 μ-演算遗忘理论

系统中的

最弱充分多

1识更新

CTL 遗忘计算方

```
算法 5.1 基于模型的CTL遗忘过程
```

Input: CTL公式φ和原子命题集V

Output: $F_{CTL}(\varphi, V)$

 $\psi \leftarrow \bot$ for each \mathscr{A} 和 \mathscr{S} 上的 初始 结构 \mathscr{K} do

if $\mathscr{K} \not\models \varphi$ then continue

foreach 满足 $\mathcal{K} \leftrightarrow_{\mathcal{V}} \mathcal{K}'$ 的初始结构 \mathcal{K}' do

 $\psi \leftarrow \psi \lor \mathscr{F}_{\overline{V}}(\mathscr{K}')$

end

end

return ψ

命题 10

令 φ 为 CTL 公式, $V\subseteq \mathscr{A}$ 为原子命题集,状态空间大小为 $|\mathscr{S}|=m$, $|\mathscr{A}|=n$,|V|=x。使用算法 5.1 计算从 φ 中遺忘 V 中原子的空间复杂度为 $O((n-x)m^{2(m+2)}2^{nm}\log m)$,且时间复杂性至少与空间复杂性相同。

基于归结的算法 CTL-forget——总体框架

基于 短忘的 反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内多

非思加

K-i-li-

CTL 的语法和语

μ-演3

CTL 和 μ-演算: 忘理论

CTL 遗忘理论

遗忘理论在反应。

简介

最弱充分多

知识更新

图 9: 基于归结的遗忘的主要流程图

- 如何表示 CTL 公式和带索引的 CTL 公式之间的关系?
- 如何"移除"无关的原子命题(包括需要遗忘的原子命题和转换过程中引入的新的原子命题),以及如何"消除"索引?

基于归结的算法 CTL-forget——ctl 归结 UF

表 2: RCT 归结系统

$$\begin{aligned} &(\mathsf{SRES1}) \frac{P \to \mathsf{AX}(C \lor I), Q \to \mathsf{AX}(D \lor \neg I)}{P \land Q \to \mathsf{AX}(C \lor D)}; & (\mathsf{SRES2}) \frac{P \to \mathsf{E}_{(ind)} \mathsf{X}(C \lor I), Q \to \mathsf{AX}(D \lor \neg I)}{P \land Q \to \mathsf{E}_{(ind)} \mathsf{X}(C \lor D)}; \\ &(\mathsf{SRES3}) \frac{P \to \mathsf{E}_{(ind)} \mathsf{X}(C \lor I), Q \to \mathsf{E}_{(ind)} \mathsf{X}(D \lor \neg I)}{P \land Q \to \mathsf{E}_{(ind)} \mathsf{X}(C \lor D)}; & (\mathsf{SRES4}) \frac{\mathsf{start} \to C \lor I, \mathsf{start} \to D \lor \neg I}{\mathsf{start} \to C \lor D}; \\ &(\mathsf{SRES5}) \frac{T \to C \lor I, \mathsf{start} \to D \lor \neg I}{\mathsf{start} \to C \lor D}; & (\mathsf{SRES6}) \frac{T \to C \lor I, Q \to \mathsf{AX}(D \lor \neg I)}{Q \to \mathsf{AX}(C \lor D)}; \\ &(\mathsf{SRES7}) \frac{T \to C \lor I, Q \to \mathsf{E}_{(ind)} \mathsf{X}(D \lor \neg I)}{Q \to \mathsf{E}_{(ind)} \mathsf{X}(C \lor D)}; & (\mathsf{SRES8}) \frac{T \to C \lor I, T \to D \lor \neg I}{T \to C \lor D}; \\ &(\mathsf{RW1}) \frac{\bigwedge_{i=1}^n m_i \to \mathsf{AX} \bot}{T \to \bigvee_{i=1}^n \neg m}; & (\mathsf{RW2}) \frac{\bigwedge_{i=1}^n m_i \to \mathsf{E}_{(ind)} \mathsf{X} \bot}{T \to \bigvee_{i=1}^n \neg m}; \\ &(\mathsf{ERES1}) \frac{\Lambda \to \mathsf{EXEGI}, Q \to \mathsf{AF} \neg I}{Q \to \mathsf{A}_1 \cap \mathsf{AW} \neg I)}; & (\mathsf{ERES2}) \frac{\Lambda \to \mathsf{E}_{(ind)} \mathsf{X} \bot}{Q \to \mathsf{E}_{(ind)} (\neg \mathsf{AW} \neg I)}. \end{aligned}$$

其中 P 和 Q 是文字的合取, C 和 D 是文字的析取, I 是一个文字, 称每条规则横线下面的公 式为横线上面的公式关于文字 I 的归结结果。此外, $\Lambda = \bigvee_{i=1}^{n} \bigwedge_{i=1}^{m_i} P_i$ 、 P_i 是文字的析取,其中 1 < i < n 和 1 < i < m。

基于归结的算法 CTL-forget——ctl 归结 UF

基于 短 忘 的 反 应 式 系 统 最 弱 充 分 条 件 研 究

研究背景和意义

国内外研究现状

研究内

背景知识

Kripke 🛭

CTL 的语法和语

μ-演第

CTL 和 μ-演算i

CTL 遗忘理论

μ-演算遗忘理论

简介

最弱充分统

a识更新

CTL 遗忘计算

记号

• 令 T为 $SNF_{cr.}^g$ 子句集,p 为原子命题。T 在 p 上的 \overline{RT} (记为 UF(T,p)) 是集合 T 和如下集合的并集:

 $\{\alpha \mid \alpha \in T \text{ 中的公式关于文字 } I \in \{p, \neg p\} \text{ 的归结结果}\}.$

- $\bullet \ \operatorname{uf}(\textit{T},\emptyset) = \textit{T} \ \bot \ \operatorname{uf}(\textit{T},\{\textit{p}\} \cup \textit{V}) = \operatorname{uf}(\operatorname{uf}(\textit{T},\textit{p}),\textit{V});$
- $ERes(\varphi, V) = \{\alpha \in UF(T_{\varphi}, V) \mid Var(\alpha) \cap V = \emptyset\}.$

命题 11

令 φ 为一个 CTL 公式, $V \subseteq \mathcal{A}$ 为原子命题集。则 $T_{\varphi} \equiv_{U} \underline{ERes}(\varphi, V)$,其中 $U = Var(\mathrm{UF}(T_{\varphi}, V)) - (Var(\varphi) - V)$ 。

基于归结的算法 CTL-forget——CTL 归结 UF

例 32 (例??的延续)

令 $V = \{p,r\}$,则 $UF(T_{\emptyset}, V \cup \{x,y,z\})$ 除了例??中的子句,还包含如下子句:

(1) start $\rightarrow r$

(15) $y \rightarrow AX(q \lor f \lor m)$

(3) $\top \rightarrow \neg z \lor y \lor f \lor m$ (3,4,SRES8)

(4.5.SRES8)

(1, 2, SRES5)

(2) start $\rightarrow x \lor y$ (4) $y \rightarrow AX(f \lor m \lor y)$ (6) $\top \rightarrow \neg z \lor x \lor q$

(1,4,SRES5) (3,8,SRES6)

(5) $\top \rightarrow \neg z \lor x \lor p$ (7) $y \rightarrow AX(x \lor p)$ (5,8,SRES6)

(8) $y \rightarrow AX(x \lor q)$

(4.6. SRES8)

(9) start $\rightarrow f \lor m \lor y$ (3,(2),SRES5) (11) start $\rightarrow x \lor q$ (6,(2),SRES5) (10) start $\rightarrow x \lor p$ (12) $\top \rightarrow p \lor \neg z \lor f \lor m$ (6,8,SRES6) (5,(2), SRES5)

(13) $\top \rightarrow q \lor \neg z \lor f \lor m$ (6, (3), SRES8) (6, (4), SRES6) (14) $y \rightarrow AX(p \lor f \lor m)$

(5,(3), SRES8) (5, (4), SRES6)

(17) start $\rightarrow f \lor m \lor q$ (6, (9), SRES5) (16) start $\rightarrow f \lor m \lor p$

(5, (9), SRES5)

在从 $UF(T_{\phi}, V \cup \{x, y, z\})$ 中移除包含 V 中元素的子句后,得到 $ERes(\phi, V)$,其包含如下子句:

 $\operatorname{start} \to z$, $\operatorname{start} \to f \lor m \lor q$, $\operatorname{start} \to x \lor v$, $\operatorname{start} \to q \lor x$, $\operatorname{start} \to f \lor m \lor v$.

 $\top \to f \lor m \lor \neg x$, $\top \to q \lor f \lor m \lor \neg z$, $\top \to f \lor m \lor \neg z \lor y$,

 $\top \rightarrow q \lor x \lor \neg z$, $\top \rightarrow x \lor y \lor \neg z$, $\top \rightarrow q \lor \neg y$, $z \rightarrow AFX$,

 $y \to AX(q \lor f \lor m), \quad y \to AX(x \lor q), \quad y \to AX(x \lor y), \quad y \to AX(f \lor m \lor y).$

可以看出,尽管 $ERes(\varphi,V)$ 中不包含具有索引的公式,但有的子句包含出现在 T_{φ} 中的新原子命题。

基于 题 思 的 反 应 式 系 统 最 弱 充 分 条 件 研 究

研究背景和意义

国内外研究现:

研究内

背景知

Kripke £

CTL 的语法和i

μ-演3

CTL 和 μ-演算:

忘理论

μ-演算遗忘理计

系统中的

最弱充分:

知识更新

两个主要过程

- 消除索引;
- 移除新引入的原子命题。

引理 33

如果 $j \in \mathcal{I}$, ψ_i, φ_i $(1 \le i \le n)$ 为 CTL 公式, 那么:

$$\text{(i)} \ \ \{\psi_i \to \mathop{\mathrm{E}}_{\langle j \rangle} \mathop{\mathrm{X}} \phi_i \ | \ 1 \le i \le n\} \equiv \{(\bigwedge_{i \in \mathcal{S}} \psi_i) \to \mathop{\mathrm{E}}_{\langle j \rangle} \mathop{\mathrm{X}} (\bigwedge_{i \in \mathcal{S}} \phi_i) \ | \ \mathcal{S} \subseteq \{1, \dots, n\}\},$$

(ii)
$$\{\psi_i \to \mathbb{E}_{(\hat{I})} \times \varphi_i \mid 1 \le i \le n\} \equiv_{\emptyset} \{(\bigwedge_{i \in S} \psi_i) \to \mathbb{E} \times (\bigwedge_{i \in S} \varphi_i) \mid S \subseteq \{1, \dots, n\}\},$$

(iii)
$$\{(\psi_1 \to \operatorname{E}_{(\hat{D})}\operatorname{F} \varphi_1), (\psi_2 \to \operatorname{E}_{(\hat{D})}\operatorname{X} \varphi_2)\} \equiv_{\emptyset}$$

$$(\psi_1 \to \phi_1 \lor \text{exef}\, \phi_1) \land (\psi_2 \to \text{ex}\phi_2) \land (\psi_1 \land \psi_2 \to ((\phi_1 \land \text{ex}\phi_2) \lor \text{ex}(\phi_2 \land \text{ef}\phi_1))).$$


```
算法 5.2 RM-index(\Sigma)
```

Input: 有限SNFg 子句集Σ

Output: CTL公式集

foreach Σ 中拥有相同索引 $\langle i \rangle$ 的E-子句构成的极大子集 Δ do

if 存在索引为(i)的E-某时子句 $\alpha \in \Sigma$ then

foreach $\beta \in rei(\Delta)$ **do** $\Sigma \leftarrow \Sigma \cup rfi(\alpha, \beta)$ $\Sigma \leftarrow \Sigma - \{\alpha\}$ end

 $\Sigma \leftarrow \Sigma - \Delta \cup rxi(\Delta)$

end

return Σ

其中, $rei(\{\alpha_i | 1 \le i \le n\})$ 、 $rxi(\{\alpha_i | 1 \le i \le n\})$ 、 $rfi(\{\beta_1, \alpha_2\})$ 分别表示引理 33 中 (i)、(ii)、 (iii) 等号 \equiv_* (* \in { 空字符串, \emptyset }) 的右边, $\alpha_i = \psi_i \to \mathbb{E}_{(\Lambda} \mathbf{X} \varphi_i \ (1 \le i \le n)$ 且 $\beta_1 = \psi_1 \rightarrow E_{(i)} F \varphi_1$.

推论 33

如果 φ 为一个 CTL 公式、 $U=Var(T_{\varphi})-Var(\varphi)$, $V\subseteq \mathscr{A}$ 为原子命题集、

 $\Sigma = ERes(UF(\varphi, V \cup U), V)$, 那么 RM-index(Σ) $\equiv_{\emptyset} \Sigma$.

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内:

非暴和证

13 23 (7) (1)

and Allerta form

CTC HIMILATINA

μ-演第

CTL 和 μ-演算遗 忘理论

忘理论

μ-演算遗忘理ὶ

系统中

最弱充分多

知识更新

CTL 遗忘计算方

引理 33 (一般化的 Ackermann 引理, Generalised Ackermann's Lemma)

令 x 为一个原子命题、 $\Delta = \{AG(T \rightarrow \neg x \lor C_1), ...,$

 $\mathrm{AG}(op o op x \lor C_n), \mathrm{AG}(x op B_1), \ldots, \mathrm{AG}(x op B_m)\}$ 为只包含一个 x 的 CTL 公式集 $(n, m \ge 1)$ 、

 Γ 为 x 正出现在其中的有限个 CTL 公式集。下面式子成立:

$$\Gamma \cup \Delta \equiv_{\{x\}} \Gamma \left[x / \bigwedge \left(\{ C_i \mid 1 \le i \le n \} \cup \{ B_i \mid 1 \le i \le m \} \right) \right]. \tag{2}$$

式系统最弱充分 条件研究

研究背景和意义

国内外研究现

研究内容

背景知识

Kripke \$

TL 的语法和语

μ-演第

CTL 和 μ-演算 忘理论

CTL 遗忘理论

μ-演算遗忘理论

遗忘理论在反应: 系统中的应用

最弱充分多

可识更新

CTI 港方计符方

例 33 (例??的延续)

首先考虑原子命题 x、 $\Delta = \{ T \to f \lor m \lor \neg x \}$ 和 $\Gamma = \underline{ERes}(\varphi, V) - \Delta$ 。 Γ 中包含 x 的公式关于 x 都为正的,因此 $\Gamma[x/(f \lor m)]$ 包含如下公式:

 $\mathbf{start} \to \mathbf{z}, \quad \mathbf{start} \to \mathbf{f} \lor \mathbf{m} \lor \mathbf{q}, \quad \mathbf{start} \to \mathbf{f} \lor \mathbf{m} \lor \mathbf{y},$

 $\top \to q \lor f \lor m \lor \neg z, \quad \top \to f \lor m \lor y \lor \neg z, \quad \top \to q \lor \neg y, \quad z \to \mathrm{AF} \big(f \lor m \big),$

 $y \to \mathrm{AX}\big(q \vee f \vee m\big), \quad y \to \mathrm{AX}\big(f \vee m \vee y\big).$

第二步考虑原子命题 z、 $\Delta' = \{ \top \rightarrow q \lor f \lor m \lor \neg z, \top \rightarrow f \lor m \lor y \lor \neg z, z \rightarrow AF(f \lor m) \}$ 和 $\Gamma' = \Gamma[x/(f \lor m)] - \Delta'$,其中 z 正出现在 Γ' 中。因此,

 $\Gamma'' = \Gamma'[z/(q \lor f \lor m) \land (f \lor m \lor y) \land AF(f \lor m)]$ 包含如下公式:

 $\mathsf{start} \to \big(\mathit{q} \lor \mathit{f} \lor \mathit{m} \big) \land \big(\mathit{f} \lor \mathit{m} \lor \mathit{y} \big) \land \mathsf{AF} \big(\mathit{f} \lor \mathit{m} \big), \quad \mathsf{start} \to \mathit{f} \lor \mathit{m} \lor \mathit{q}, \quad \mathsf{start} \to \mathit{f} \lor \mathit{m} \lor \mathit{y},$

 $\top \to q \vee \neg y, \quad y \to \mathrm{AX}\big(q \vee f \vee m\big), \quad y \to \mathrm{AX}\big(f \vee m \vee y\big).$

不难证明 $ERes(\varphi, V) \equiv_{\{x,z\}} \Gamma''$ 。因为 Γ'' 包含一个公式,其关于 y 既不是正的也不是负的。因此,这里不能对 Γ'' 和 v 使用上述过程。

基于归结的算法 CTL-forget 及其复杂性

```
算法 5.3 CTL-forget(\varphi, V)
Input: CTL公式φ和原子命题集V
Output: 公式集
if \varphi \equiv \bot then return \bot;
                                                       // 若公式不可满足,则遗忘结果为丄
if V = Var(\varphi) then return \top;
                                                        // 若遗忘所有原子命题,则结果为T
                                                                        // 将φ转换为SNF8 子句
T_{\varphi} \leftarrow \text{SNF}_{\text{CTI}}^{g}(\varphi);
\Sigma \leftarrow \text{UF}(T_{\varphi}, V \cup U), \quad \not\exists : \neg U = Var(T_{\varphi}) - Var(\varphi);
                                                                      // 移除包含V中元素的子句
\Sigma \leftarrow ERes(\Sigma, V);
\Sigma \leftarrow RM\text{-index}(\Sigma);
                                                                                    // 从Σ移除索引
\Sigma \leftarrow \text{GAL}(\Sigma, Var(\Sigma) - Var(\varphi));
                                                                     // 移除留存的新的原子命题
用AG\phi替换Σ中的初始子句 "AG(start \rightarrow \phi)";
                                                                                     // 去除start
```

定理 34 (可靠性)

return Σ

```
若 φ 为一个 CTL 公式、V⊂ Ϥ、Σ =CTL-forget(φ, V) 且 U = Var(Σ) – Var(φ),则:
```

- (i) $\Sigma \equiv_{V \cup U} \varphi$,
- (ii) 若 $U = \emptyset$, 则 $\Sigma \equiv F_{CTL}(\varphi, V)$ 。

命题 11

给定 CTL 公式 φ 和原子命题集 $V \subseteq \mathscr{A}$ 。算法 5.3 的时间和空间复杂性为 $O((m+1)2^{4(n+n')})$, 其中 $n = |Var(\varphi)|$ 、n' = |V| 为新引入的原子命题的个数、m 为引入的索引个数。

基于归结的算法 CTL-forget 及其复杂性

研究背景和意义

国内外研究现状

TIT also also also

als all ten ar

CTL 的语法和语:

μ-演第

CTL ₹

忘理论

μ-演算遗忘理论

系统中的

简介

最弱充分分

知识更新

CTL 遗忘计算方

例 34 (例??的延续)

容易看出 CTL-forget(φ , {p, r}) 包含下面的公式

 $(q \lor f \lor m) \land (f \lor m \lor y) \land AF(f \lor m), \quad AG(\top \to q \lor \neg y),$

 $AG(y \to AX(q \lor f \lor m)), AG(y \to AX(f \lor m \lor y)).$

命题 11 (遗忘存在的子类)

给定 CTL 公式 φ , 若 φ 满足下面约束: (1) φ 中不包括操作符 $Pt\mathscr{T}$ (其中 $Pt\in\{A,E\}$ 且 $\mathscr{T}\in\{U,G\}$); (2) 对于任意原子命题 $p\in V$, 若 p 和 $\neg p$ 出现在同一时序算子的范围内。那

基于归结的算法 CTL-forget 实现

系统描述

- 输入输出:基于 Prolog 的 CTL-forget 算法实现系统以 CTL 公式和原子命题集为输 入, CTL 公式为输出:
- 系统识别的 CTL 公式的符号与第??章中 CTL 的语言符号对应关系如下:
 - x_i 和其余小写字母开头的字符串构成原子命题集,其中 i > 0 为自然数, 且 x; 和 z 被设定为只能是在如下描述的转换过程中引入的原子命题;
 - "false" 和 "true" 分别与常量符号 "_" 和 "T" 对应:
 - "start"与命题常量 "start"对应:
 - "&"、"\/"、"-"和"->"分别与联结符号"∧"、"∨"、"¬"和 "→"对应:
 - "~"和 "^"分别与路径量词 "A"和 "E"对应;
 - "@"、"*"、"?"和 "\$"分别与时序操作符 "G"、"x"、"F"和 "U" 对应。

例 35

字符串 ($\sim*((-y1)/-y2)/-y4)&(-y1)/y2//y4)&(y1)/y2/-y3)&(y1)/y3//-y3)$ y4)&(-y1\/y2\/-y3))) 为 CTL 公式。

基于归结的算法 CTL-forget 实现

至于 题 志 的 及 应 式 系 统 最 弱 充 分 条 件 研 究

研究育京和思〉

国内外研究现:

研究内

背景知识

Kripke 🕸

TL 的语法和语

μ-演第

CTL 和 μ-演算道

CTL 遗忘理论

μ-演算遗忘理论

系统中的

最弱充分

印识更新

CTL 遗忘计算

系统主要模块

此系统主要包括五个模块。:

- 转换模块 (transCTL2SNF/6):
- 归结模块 (两个过程: step_resolution/3 和 temp_resolution/8)
- "移除"原子命题模块(removeAtom/3)
- "移除"索引 (pro6/3)
- "移除"新引入的原子命题(ackerM/3)

[&]quot;https://github.com/fengrenyan/forgetting-in-CTL/tree/main/Appendix

基于归结的算法 CTL-forget 实验——实验 1: 计算遗忘

(1) 标准数据集来源于 CTL-RP: https://sourceforge.net/projects/ctlrp/

表 5.1: 计算CTL-forget(φ ,V)所使用的CPU时间(单位: 秒(s))

φ $ V $	1	2	3	4
s001	0.0505	0.1053	0.2259	0.3680
s002	0.3645	1.0416	5.6372	10.0184
s003	97.5341	71.5396	190.1157	423.5793
s004	77.5086	77.4246	101.1284	118.7461
s001-3	681.2883	613.1859	1617.047	2356.949

(2) 计算 CTL-forget(φ , V) 使用的时间和在"移除原子命题"步骤后 SNF_{CTL}^g 子句的个 数, 其中 $\varphi = \varphi_1 \wedge AX\varphi_2 \wedge EX\varphi_3$, $\varphi_i = 12$ (i = 1, 2, 3)。

(a) 计算遗忘需要的 CUP 时间

(b) SNFg 子句的个数

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内:

背景知识

Krinke

CTL 的语法和语。

μ-演

TL 和 μ-演算: 短理论

CTL 遗忘理论

遗忘理论在反应s 系统中的应用

最弱充分条件

CTL 遗忘计算:

基于归结的算法 CTL-forget 实验——实验 2: 计算 SNC

计算 q 在 V 和 $\varphi \land q$ 上的 SNC $(F_{CTL}(\varphi \land q, Var(\varphi) - V \cup \{q\}))$,其中 $V \subseteq Var(\varphi)$ 、 $q \in Var(\varphi \land q) - V_\circ$

(1) 随机 3-CNF, |\alpha| = 50, 每组 20 个公式。

(d) |V| = 25 时所使用 CPU 时间箱线图

图 10: 计算 3-CNF 公式 SNC 的 CPU 时间

总结:基于归结的算法大多数情况下能计算出 SNC (WSC),且当需要遗忘的原子个数很少或 公式长度较小时计算效率较高。

基于遗忘的反应 式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

....

月京知!

CTL 的语法和语

μ-演第

CTL 和 μ-演算: 忘理论

CTL 遗忘理论

μ-演算遗忘理论

最弱充分条件 知识更新

CTL 遗忘计算7

基于归结的算法 CTL-forget 实验——实验 2: 计算 SNC

计算 q 在 V 和 $\varphi \land q$ 上的 SNC $(F_{CTL}(\varphi \land q, Var(\varphi) - V \cup \{q\}))$,其中 $V \subseteq Var(\varphi)$ 、 $q \in Var(\varphi \land q) - V_\circ$

(2) CTL 公式 $\varphi = \varphi_1 \land AX \varphi_2 \land EX \varphi_3$, $\varphi_i = 12$ (i = 1, 2, 3) 为 $|\mathscr{A}| = 50$ 上的 3-CNF 且 $|\varphi_1| = |\varphi_2| = |\varphi_3|$,每组 40 个公式。

(b) SNFg 子句的个数

图 10: 计算 CTLSNC 的平均时间和存在 SNC 的公式占比

总结:基于归结的算法大多数情况下能计算出 SNC (WSC),且当需要遗忘的原子个数很少或公式长度较小时计算效率较高。

目录

- **①** 有
 - 2 国内外研究现状
 - ③ 研究
 - 4 背景知识
 - 以: 1 /4
 - Kripke 结构
 - CTL 的语法和语义
 - μ-演算
 - 6 CTL 和 μ-演算遗忘理论
 - CTL 遗忘理论
 - μ-演算遗忘理论
 - ◎ 遗忘理论在反应式系统中的应用
 - 简介
 - 最弱充分条件
 - 知识更新
 - CTL 遗忘计算方法
 - 简介
- CTL 遗忘计算方
 - 基于模型的有界 CTL 遗忘计算 (□ ▶ 4 毫 ▶ 4 毫 ▶ 4 毫 ▶ 2 か へ ◎

国内外研究现状

研究内?

背景知识

Kripke 絹

TL 的语法和语

μ-演領

CTL 和 μ-演算: 亡理论

CTL 遗忘理论

μ-演算遗忘理;

遗忘理论在反应式

简介

最弱充分:

An i D an isi

CTL 遗忘计算

• CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论: 基本性质 (表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新:两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法
 - 基于模型的计算方法:有界互模拟、特征值、特征公式、封闭性、复杂性和管法等
 - 基于消解(resolution)的计算方法: 算法及其可靠性、遗忘存在的子类
 - 。实现与实验分析

TIT of the PL In As. (

国内外研究现

ale till ka tr

HAKAHU

....

TL 的语法和语》

μ-演3

CTL 和 μ-演算退

CTL 遗忘理论

μ-演算遗忘理ί

遗忘理论在反应式

简介

最弱充分

知识更新

CTL 遗忘计算

- CTL 和 μ-演算的遗忘理论
 - CTL 的遗忘理论: 基本性质 (表达性理论、代数属性和封闭性等)
 - μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
- 计算 CTL 遗忘的算法
 - 基于模型的计算方法:有界互模拟、特征值、特征公式、封闭性、复杂性和算法等
 - 基于消解(resolution)的计算方法:算法及其可靠性、遗忘存在的子类
 - 实现与实验分析

加尔非里和辛(

国内外研究现:

TTT abs . I . abs

the list down her

日从州

Klipke stills

CTL 的语法和语:

μ-演第

CTL 和 μ-演算测 亡理込

忘理论

μ-演算遗忘理;

遗忘理论在反应式

简介

最弱充分

知识更新

CTL 遗忘计算

- CTL 和 μ-演算的遗忘理论
 - CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
 - μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC; 定义、基本性质和基于遗忘的计算方法等定义知识更新; 两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法
 - 基于模型的计算方法:有界互模拟、特征值、特征公式、封闭性、复杂性和算法等
 - 基于消解(resolution)的计算方法:算法及其可靠性、遗忘存在的子类实现与实验分析

- CTL 和 μ-演算的遗忘理论
 - CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
 - μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
- 计算 CTL 遗忘的算法

• CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新: 两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法

• CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新: 两种知识更新定义和基本性质

• 计算 CTL 遗忘的算法

CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论: 基本性质 (表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新: 两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法
 - 基干模型的计算方法: 有界互模拟、特征值、特征公式、封闭性、复杂

国由从研究和生

研光内4

背景知识

Kripke 箱桐

TL 的语法和语

μ-演第

CTL 和 μ-演算点 忘理论

CTL 遗忘理论

μ-演算遗忘理论

短忘理论在反! 系统中的应用

最弱充分多

最弱充分条 知识更新 • CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新: 两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法
 - 基于模型的计算方法:有界互模拟、特征值、特征公式、封闭性、复杂性和算法等
 - 基于消解(resolution)的计算方法: 算法及其可靠性、遗忘存在的子类
 - 实现与实验分析

CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新: 两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法
 - 基于模型的计算方法:有界互模拟、特征值、特征公式、封闭性、复杂 性和算法等
 - 基于消解 (resolution) 的计算方法: 算法及其可靠性、遗忘存在的子类
 - 实现与实验分析

CTL 和 μ-演算的遗忘理论

- CTL 的遗忘理论:基本性质(表达性理论、代数属性和封闭性等)
- μ-演算的遗忘理论:基本性质、复杂性和互模拟不变性等
- 遗忘理论在反应式系统的形式化验证和知识更新中的应用
 - 计算 WSC 和 SNC: 定义、基本性质和基于遗忘的计算方法等
 - 定义知识更新: 两种知识更新定义和基本性质
- 计算 CTL 遗忘的算法
 - 基于模型的计算方法:有界互模拟、特征值、特征公式、封闭性、复杂 性和算法等
 - 基于消解 (resolution) 的计算方法: 算法及其可靠性、遗忘存在的子类
 - 实现与实验分析

● CTL 和 -演算的遗忘

• 遗忘结果总是存在的子类;

• 遗忘相关问题复杂性分析;

CTL 和 μ-演算遗忘之间的关系。

● "CTL 和-演算公式的遗忘结果是否分别是 CTL 和-演算可表示" 这一问题的可判定性研究

● 遗忘与 WSC (SNC) 之间的相互关系与应用

式系统最弱充分 条件研究

研究背景和意义

国内外研究现状

研究内容

背景知识

Krinke [£]

CTL 的语法和语

μ-演算

CTL 和 μ-演算: 忘理论

こ11 地心性化

μ-演算遗忘理说

遗忘理论在反 系统中的应用

简介

最弱充分

知识更新

CTL 遗忘计算

作者在攻读博士学位期间参与项目及成果

- 发表了一篇 CCF B 类会议
- 两篇 SCI 论文在审
- 参加国家自然科学基金 3 项

加索非里和奇?

国内外研究现状

EII 85 ch 93

背景知识

Kripke 结构

CTL 的语法和

μ-演第

CTL 和 μ-演算 忘理论

心理论

μ-演算遗忘理论

遗忘理论在反应式

简介

最弱充分条件

CTI 遗忘计算

敬请各位老师批评指正 谢谢!

条件研究

研究背景和意义

国内外研究现状

研究内容

背景知识

Kripke 结构

_

忘理论

CTL 遗忘理论μ-演算遗忘理论

遗忘理论在反应式 系统中的应用

简介 最弱充分条件 [1] Michael C. Browne, Edmund M. Clarke, and Orna Grümberg. "Characterizing finite Kripke structures in propositional temporal logic". In: <a href="https://doi.org/10.1007/jhear.2017/jhe

[2] Giovanna D'Agostino and Marco Hollenberg. "Logical Questions Concerning The μ-Calculus: Interpolation, Lyndon and Los-Tarski".
 In: The Journal of Symbolic Logic 65.1 (2000), pp. 310–332. DOI: 10.2307/2586539. URL: https://doi.org/10.2307/2586539.

[3] Giovanna D'Agostino and Marco Hollenberg. "Uniform interpolation, automata and the modal μ-calculus". In: Logic Group Preprint Series 165 (1996).

[4] Giovanna D'Agostino and Giacomo Lenzi. "On modal μ-calculus with explicit interpolants". In: Journal of Applied Logic 4.3 (2006), pp. 256-278. DOI: 10.1016/j.jal.2005.06.008. URL: https://doi.org/10.1016/j.jal.2005.06.008.

- [5] Patrick Doherty, Witold Lukaszewicz, and Andrzej Szalas. "Computing Strongest Necessary and Weakest Sufficient Conditions of First-Order Formulas". In: Proceedings of IJCAI'01. Ed. by Bernhard Nebel. Morgan Kaufmann, 2001, pp. 145–154. ISBN: 1-55860-777-3
- [6] Dexter Kozen. "Results on the Propositional μ -Calculus". In: Theoretical Computer Science 27 (1983), pp. 333–354. DOI: 10.1016/0304-3975(82)90125-6. URL: https://doi.org/10.1016/0304-3975(82)90125-6.

研究背景和音》

国内外研究现状

_

_

Kripke 结构

CTL 的语法和语。

μ-ім м

CIL 和 μ-演昇度 忘理论

CTL 遗忘理论 μ-演算遗忘理论

遗忘理论在反应式 系统中的应用

最弱充分条件

[7] Fangzhen Lin. "Compiling causal theories to successor state axioms and STRIPS-like systems". In: <u>Journal of Artificial Intelligence Research</u> 19 (2003), pp. 279–314.

[8] Fangzhen Lin. "On strongest necessary and weakest sufficient conditions". In: <u>Artificial Intelligence</u> 128.1-2 (2001), pp. 143–159. DOI: 10.1016/S0004-3702(01)00070-4. URL: https://doi.org/10.1016/S0004-3702(01)00070-4.

[9] Fangzhen Lin and Ray Reiter. "Forget It!" In: In Proceedings of the AAAI Fall Symposium on Relevance. New Orleans, US, 1994, pp. 154–159.

[10] Larisa Maksimova. "Temporal logics of "the next" do not have the beth property". In: <u>Journal of Applied Non-Classical Logics</u> 1 (1991), pp. 73–76.

研究背景和音》

国内外研究现状

研究内

非暴和证

Kripke 结构

TL 的语法和语义

μ-演第

TL 和 μ-演算遗 :理论

CTL 遗忘理论

系统中的应

最弱充分条件 EI 识更新 [11] Lan Zhang, Ullrich Hustadt, and Clare Dixon. "A resolution calculus for the branching-time temporal logic CTL". In: <u>ACM Transactions on Computational Logic (TOCL)</u> 15.1 (2014), pp. 1–38.

- [12] Lan Zhang, Ullrich Hustadt, and Clare Dixon.
 First-order Resolution for CTL. Tech. rep. Technical Report
 ULCS-08-010, Department of Computer Science, University of
 Liverpool, 2008.
- [13] Yan Zhang and Yi Zhou. "Knowledge forgetting: Properties and applications". In: <u>Artificial Intelligence</u> 173.16-17 (2009), pp. 1525–1537.