Effect of Democratization on Deforestation

Students: Albert Yao and Takeo Tokunari

Distribution of Democracy Index

Democracy Index (0: Least democratic

1. Effect of democratization on deforestation (all countries)

Change in forest area in 2010 – 2015 (All countries with data)

Democracization's Effect on Deforestation, 2015

	Model 1
Intercept	-0.014
	(0.012)
Democracy Index in 2015	0.002
	(0.002)
Num.Obs.	159
R2	0.007
R2 Adj.	0.001
* p < 0.1. ** p < 0.05. **	* n <

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Change in forest area in 2010 – 2015 (Countries with forest land over 1 mill

2. Effect of democratization on deforestation (countries with forest)

Democracization's Effect on Deforestation, 2015

Countries with forest land over one million hectares

	Model 1
Intercept	-0.029***
	(0.010)
Democracy Index in 2015	0.004**
	(0.002)
Num.Obs.	115
R2	0.044
R2 Adj.	0.036

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Agricultural Land Growth and Deforestation, 2015

3. Agricultural land growth (countries with forest)

Change in agricultural land in 2011 – 2015

	Model 1
Intercept	-0.006*
	(0.004)
Change in agricultural land	-0.021
	(0.087)
Num.Obs.	108
R2	0.001
R2 Adj.	-0.009
* p < 0.1, ** p < 0.05, ***	p < 0.01

4. GDP per capita growth (countries with forest)

	Model 1
Intercept	-0.012***
GDP per capita in 2015	(0.004) $0.000***$ (0.000)
Num.Obs.	108
R2	0.064
R2 Adj.	0.056
* p < 0.1, ** p < 0.05, *	*** p < 0.01

GDP Per Capita and Deforestation, 2015

GDP per capita in 2015 (All countries with data)

5. GDP per capita (countries with forest and with less than US\$20,000 GDP per capita)

```
gdp_less_20000 <- read_csv("WB_GDPperCapita_Cleaned.csv",
    col_types = cols(GDPcap_2015 = col_double())) %>%
    filter(GDPcap_2015 < 20000) %>%
    select('Country Name', 'Country Code', 'GDPcap_2015') %>%
    rename("Country" = "Country Name") %>%
    right_join(for_big)
```

```
## Joining, by = "Country"
```

```
gdp_less_20000_lm <- lm(change2015_big ~ GDPcap_2015, data = gdp_less_20000)
coefs <- c(
   "(Intercept)" = "Intercept",
   "GDPcap_2015" = "GDP per capita in 2015"
)
modelsummary::modelsummary(gdp_less_20000_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars</pre>
```

	Model 1
Intercept	-0.027***
	(0.006)
GDP per capita in 2015	0.000***
	(0.000)
Num.Obs.	94
R2	0.195
R2 Adj.	0.186
* p < 0.1, ** p < 0.05, *	*** p < 0.01

```
gdp_less_20000 %>%
    ggplot(aes(x = GDPcap_2015, y = change2015_big, label = Country)) +
    geom_point() +
    geom_text(vjust = 0, nudge_y = 0.005, size = 3) +
    geom_smooth(method = "lm", se = FALSE) +
    labs(
        title = "GDP Per Capita and Deforestation, 2015",
        x = "GDP Per Capita",
        y = "Change in Forest Area from 2010 to 2015"
) +
    theme_bw()
## 'geom_smooth()' using formula 'y ~ x'
```

- ## Warning: Removed 30 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 30 rows containing missing values (geom_point).
- ## Warning: Removed 30 rows containing missing values (geom_text).

GDP Per Capita and Deforestation, 2015


```
gdp_less_20000_hist <- gdp_less_20000 %>%
    ggplot(aes(x = GDPcap_2015)) +
    geom_histogram(binwidth = 1000) +
    labs(title = "GDP per capita in 2015 \n (Countries with less than $20,000 per capita)", x = "GDP per theme_bw()
gdp_less_20000_hist
```

Warning: Removed 30 rows containing non-finite values (stat_bin).

GDP per capita in 2015 (Countries with less than \$20,000 per capita)

GDP Growth Per Capita and Deforestation, 2015

6. GDP growth per capita (countries with forest)

GDP growth per capita in 2015

	Model 1
Intercept	-0.008*
CDD 11 11 11 10 11 1	(0.004)
GDP growth per capita in 2015	0.001 (0.001)
N 01	
Num.Obs.	107
R2	0.009
R2 Adj.	-0.001

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Poverty Ratio and Deforestation, 2011–2015 average (All countries with data)

7. Poverty ratio (countries with forest)

Average poverty ratio in 2011 – 2015 (All countries with data)

	Model 1
Intercept	0.006
	(0.004) -0.001***
Poverty ratio (2011-2015 average)	
	(0.000)
Num.Obs.	85
R2	0.209
R2 Adj.	0.200

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Poverty Ratio and Deforestation, (Countries with poverty ratio of 5

8. Poverty ratio (countries with forest and poverty ratio of 5% or higher)

Average poverty ratio in 2011 – 2015 (Countries with poverty ratio of 5% or higher))

	Model 1
Intercept	-0.012
Poverty ratio (2011-2015 average)	(0.009) $0.000*$ (0.000)
Num.Obs.	35
R2	0.080
R2 Adj.	0.052

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Gini Index and Deforestation, 2015

9. Gini Index (countries with forest)

	Model 1
Intercept	0.059***
	(0.022)
Gini Index in 2015	-0.001**
	(0.001)
Num.Obs.	52
R2	0.125
R2 Adj.	0.108
* p < 0.1, ** p < 0	.05, *** p <
0.01	

10. Does Gini Index explain the difference in the effect of democratization on deforestation?

Model 1: average treatment effect of Gini Index as a binary variable $\,$

 ${\it Model 2: multivariable linear regression}$

	Model 1
(Intercept)	0.246**
	(0.099)
Democracy.Index.in.2015	-0.028*
	(0.014)
Gini.Index.in.2015	-0.007**
	(0.003)
Democracy.Index.in.2015 \times Gini.Index.in.2015	0.001**
	(0.000)
Num.Obs.	52
R2	0.215
R2 Adj.	0.166

Model 3: multivariable linear regression for all variables at once

Code

```
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(readxl)
library(knitr)
library(modelsummary)
di <- read_excel("Democracy-Index-2019.xlsx") %>%
  rename("Country" = '2019') %>%
  rename("2019" = '...4') %>%
  select(c("Country", "2019", "2015", "2010"))
di_hist <- di %>%
  ggplot(aes(x = '2015')) +
  geom_histogram(binwidth = 0.5) +
  labs(title = "Distribution of Democracy Index", x = "Democracy Index (0: Least democratic, 10: Most d
  theme bw()
di_hist
forest <- read_excel("Forest Area.xlsx", sheet = 2) %>%
  select(c("Country and Area",
           "Forest Area, 2010",
           "Forest Area, 2015",
           "Forest Area, 2020")) %>%
  rename("Country" = "Country and Area")
for_change <- forest %>%
  group_by(Country) %>%
  summarize(change2015 = ('Forest Area, 2015' - 'Forest Area, 2010')/'Forest Area, 2010',
            change2020 = ('Forest Area, 2020' - 'Forest Area, 2015')/'Forest Area, 2015')
for_change_hist <- for_change %>%
  ggplot(aes(x = change2015)) +
```

```
geom_histogram(binwidth = 0.01) +
  labs(title = "Change in forest area in 2010 - 2015 \n (All countries with data)", x = "Change in fore
  theme_bw()
for_change_hist
di forest <- di %>%
  right_join(for_change)
df2015 <- di_forest %>%
  select(Country, '2015', change2015)
df2015_{lm} \leftarrow lm(change2015 \sim '2015', data = df2015)
df2015 %>%
  ggplot(aes(x = '2015', y = change2015, label = Country)) +
  geom_text(vjust = 0, nudge_y = 0.02, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_x_continuous(breaks = c(0:10), labels = c(0:10), limits = c(0, 10)) +
   title = "Democracization's Effect on Deforestation, 2015",
   x = "Democracy Index",
   y = "Change in Forest Area from 2010 to 2015"
  ) +
 theme_bw()
coefs <- c(
  "(Intercept)" = "Intercept",
  "'2015'" = "Democracy Index in 2015"
modelsummary::modelsummary(df2015_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
for_big <- forest %>%
  filter('Forest Area, 2010' >= 1000) %>%
  group_by(Country) %>%
  summarize(change2015_big = ('Forest Area, 2015' - 'Forest Area, 2010')/'Forest Area, 2010')
di_forest_big <- di %>%
  right_join(for_big)
di_for_big_hist <- di_forest_big %>%
  ggplot(aes(x = change2015_big)) +
  geom_histogram(binwidth = 0.01) +
  labs(title = "Change in forest area in 2010 - 2015 \n (Countries with forest land over 1 million hect
  theme_bw()
di_for_big_hist
df2015_big <- di_forest_big %>%
  select(Country, '2015', change2015_big)
df2015_big_lm <- lm(change2015_big ~ '2015', data = df2015_big)
df2015_big %>%
  ggplot(aes(x = '2015', y = change2015_big, label = Country)) +
```

```
geom_point() +
  geom_text(vjust = 0, nudge_y = 0.01, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_x_continuous(breaks = c(0:10), labels = c(0:10), limits = c(0, 10)) +
  labs(
   title = "Democracization's Effect on Deforestation, 2015",
   subtitle = "Countries with forest land over one million hectares",
   x = "Democracy Index",
   y = "Change in Forest Area from 2010 to 2015"
 theme bw()
coefs <- c(
  "(Intercept)" = "Intercept",
 "'2015'" = "Democracy Index in 2015"
modelsummary::modelsummary(df2015_big_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TR
agri <- read_csv("WB_Agri_Land_Cleaned.csv") %>%
  group_by('Country Name') %>%
  summarize(agri_change = (Agri_2015 - Agri_2011)/Agri_2011) %>%
 rename("Country" = 'Country Name') %>%
 right join(for big)
agri_lm <- lm(change2015_big ~ agri_change, data = agri)
agri %>%
 ggplot(aes(x = agri_change, y = change2015_big, label = Country)) +
  geom_point() +
  geom_text(vjust = 0, nudge_y = 0.005, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
 labs(
   title = "Agricultural Land Growth and Deforestation, 2015",
   x = "Agricultural Land Growth",
   y = "Change in Forest Area from 2010 to 2015"
  ) +
 theme_bw()
agri_hist <- agri %>%
  ggplot(aes(x = agri_change)) +
  geom_histogram(binwidth = 0.01) +
 labs(title = "Change in agricultural land in 2011 - 2015", x = "Change in agricultural land", y = "Co
 theme bw()
agri_hist
coefs <- c(
  "(Intercept)" = "Intercept",
  "agri_change" = "Change in agricultural land"
modelsummary::modelsummary(agri_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
```

```
gdp <- read_csv("WB_GDPperCapita_Cleaned.csv",</pre>
    col_types = cols(GDPcap_2015 = col_double())) %>%
   filter(GDPcap_2015 < 20000) %>%
   select('Country Name', 'Country Code', 'GDPcap 2015') %>%
   rename("Country" = "Country Name") %>%
   right_join(for_big) %>%
   filter(!is.na(GDPcap_2015))
gdp_lm <- lm(change2015_big ~ GDPcap_2015, data = gdp)
coefs <- c(
 "(Intercept)" = "Intercept",
  "GDPcap_2015" = "GDP per capita in 2015"
modelsummary::modelsummary(gdp_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
gdp %>%
  ggplot(aes(x = GDPcap_2015, y = change2015_big, label = Country)) +
  geom_point() +
  geom_text(vjust = 0, nudge_y = 0.005, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
  labs(
   title = "GDP Per Capita and Deforestation, 2015",
   x = "GDP Per Capita",
   y = "Change in Forest Area from 2010 to 2015"
 theme_bw()
gdp_hist <- gdp %>%
  ggplot(aes(x = GDPcap_2015)) +
  geom_histogram(binwidth = 1000) +
 labs(title = "GDP per capita in 2015 \n (All countries with data)", x = "GDP per capita in 2015", y =
  theme_bw()
gdp_hist
gdp_less_20000 <- read_csv("WB_GDPperCapita_Cleaned.csv",</pre>
    col_types = cols(GDPcap_2015 = col_double())) %>%
   filter(GDPcap 2015 < 20000) %>%
   select('Country Name', 'Country Code', 'GDPcap_2015') %>%
   rename("Country" = "Country Name") %>%
   right_join(for_big)
gdp_less_20000_lm <- lm(change2015_big ~ GDPcap_2015, data = gdp_less_20000)</pre>
coefs <- c(
  "(Intercept)" = "Intercept",
  "GDPcap_2015" = "GDP per capita in 2015"
modelsummary::modelsummary(gdp_less_20000_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars
gdp_less_20000 %>%
 ggplot(aes(x = GDPcap_2015, y = change2015_big, label = Country)) +
  geom_point() +
  geom_text(vjust = 0, nudge_y = 0.005, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
```

```
labs(
   title = "GDP Per Capita and Deforestation, 2015",
   x = "GDP Per Capita",
   y = "Change in Forest Area from 2010 to 2015"
 ) +
 theme bw()
gdp_less_20000_hist <- gdp_less_20000 %>%
  ggplot(aes(x = GDPcap_2015)) +
  geom_histogram(binwidth = 1000) +
 labs(title = "GDP per capita in 2015 \n (Countries with less than $20,000 per capita)", x = "GDP per
 theme_bw()
gdp_less_20000_hist
gdp_growth <- read_csv("WB_GDP_Growth_per_Capita_Cleaned.csv") %>%
  select('Country Name', 'Country Code', 'GrowthCap_2015') %>%
  rename("Country" = "Country Name") %>%
 right_join(for_big) %>%
  filter(Country != "Sierra Leone")
gdp_growth_lm <- lm(change2015_big ~ GrowthCap_2015, data = gdp_growth)</pre>
gdp_growth %>%
  ggplot(aes(x = GrowthCap_2015, y = change2015_big, label = Country)) +
  geom point() +
  geom_text(vjust = 0, nudge_y = 0.005, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
 labs(
   title = "GDP Growth Per Capita and Deforestation, 2015",
   x = "GDP Growth Per Capita",
   y = "Change in Forest Area from 2010 to 2015"
  ) +
  theme_bw()
gdp_growth_hist <- gdp_growth %>%
  ggplot(aes(x = GrowthCap_2015)) +
  geom_histogram() +
 labs(title = "GDP growth per capita in 2015", x = "GDP growth per capita in 2015", y = "Count") +
  theme bw()
gdp_growth_hist
coefs <- c(
  "(Intercept)" = "Intercept",
  "GrowthCap_2015" = "GDP growth per capita in 2015"
modelsummary::modelsummary(gdp_growth_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TR
pov_ratio <- read_csv("World_Bank_Poor_Ratio_Cleaned.csv") %>%
# filter('Average_2011-2015' > 5) %>%
 rename("Country" = 'Country Name') %>%
 select(Country, 'Average_2011-2015') %>%
 right_join(for_big)
```

```
pov_ratio %>%
  ggplot(aes(x = 'Average_2011-2015', y = change2015_big, label = Country)) +
  geom point() +
  geom text(vjust = 0, nudge y = 0.01, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
   title = "Poverty Ratio and Deforestation, 2011-2015 average \n (All countries with data)",
   x = "Poverty Ratio",
    y = "Change in Forest Area from 2010 to 2015"
  theme_bw()
pov_ratio_hist <- pov_ratio %>%
  ggplot(aes(x = 'Average_2011-2015')) +
  geom_histogram() +
  labs(title = "Average poverty ratio in 2011 - 2015 \n (All countries with data)", x = "Average povert
  theme_bw()
pov_ratio_hist
pov_lm <- lm(change2015_big ~ 'Average_2011-2015', data = pov_ratio)</pre>
coefs <- c(
  "(Intercept)" = "Intercept",
  "'Average 2011-2015'" = "Poverty ratio (2011-2015 average)"
modelsummary::modelsummary(pov_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
pov_ratio_5 <- read_csv("World_Bank_Poor_Ratio_Cleaned.csv") %>%
  filter('Average_2011-2015' > 5) %>%
  rename("Country" = 'Country Name') %>%
  select(Country, 'Average_2011-2015') %>%
  right_join(for_big)
pov_ratio_5 %>%
  ggplot(aes(x = 'Average_2011-2015', y = change2015_big, label = Country)) +
  geom_text(vjust = 0, nudge_y = 0.01, size = 3) +
  geom smooth(method = "lm", se = FALSE) +
  labs(
   title = "Poverty Ratio and Deforestation, 2011-2015 average \n (Countries with poverty ratio of 5%
   x = "Poverty Ratio",
   y = "Change in Forest Area from 2010 to 2015"
  ) +
  theme bw()
pov_ratio_5_hist <- pov_ratio_5 %>%
  ggplot(aes(x = 'Average_2011-2015')) +
  geom_histogram() +
  labs(title = "Average poverty ratio in 2011 - 2015 \n (Countries with poverty ratio of 5% or higher))
 theme_bw()
pov_ratio_5_hist
pov_lm_5 <- lm(change2015_big ~ 'Average_2011-2015', data = pov_ratio_5)</pre>
```

```
coefs <- c(
  "(Intercept)" = "Intercept",
  "'Average_2011-2015'" = "Poverty ratio (2011-2015 average)"
modelsummary::modelsummary(pov_lm_5, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
gini <- read csv("WB Gini Cleaned.csv") %>%
  select('Country Name', 'Country Code', Gini_2015) %>%
  slice(1:169) %>%
  rename("Country" = "Country Name") %>%
  right_join(for_big)
gini_lm <- lm(change2015_big ~ Gini_2015, data = gini)
gini %>%
  ggplot(aes(x = Gini_2015, y = change2015_big, label = Country)) +
  geom_point() +
  geom_text(vjust = 0, nudge_y = 0.005, size = 3) +
  geom_smooth(method = "lm", se = FALSE) +
  labs(
   title = "Gini Index and Deforestation, 2015",
   x = "Gini Index",
    y = "Change in Forest Area from 2010 to 2015"
  theme_bw()
gini_hist <- gini %>%
  ggplot(aes(x = Gini_2015)) +
  geom_histogram() +
  labs(title = "Gini Index in 2015", x = "Gini Index in 2015", y = "Count") +
  theme_bw()
gini_hist
coefs <- c(</pre>
  "(Intercept)" = "Intercept",
  "Gini_2015" = "Gini Index in 2015"
modelsummary::modelsummary(gini_lm, coef_map = coefs, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
gini_avg <- read_csv("WB_Gini_Cleaned_1.csv") %>%
  select('Country Name', 'Country Code', 'Gini_2011-2015') %>%
  slice(1:169) %>%
  filter(!is.na('Gini_2011-2015'))
gini_avg_best <- gini_avg %>%
  arrange('Gini_2011-2015') %>%
  slice(1:30) %>%
  mutate(gap = 1)
gini_avg_worst <- gini_avg %>%
  arrange(desc('Gini_2011-2015')) %>%
```

```
slice(1:30) %>%
  mutate(gap = 0)
gini_bw <- gini_avg_best %>%
  rbind(gini_avg_worst) %>%
  rename("Country" = "Country Name") %>%
 right_join(for_big) %>%
  filter(!is.na(change2015_big)) %>%
  filter(!is.na(gap)) %>%
  group_by(gap) %>%
  summarize(
   for_mean = mean(change2015_big),
   for se = sd(change2015 big)/sqrt(n())
  ) %>%
  pivot_wider(names_from = gap, values_from = c(for_mean, for_se)) %>%
  mutate(
   for_diff = for_mean_1 - for_mean_0,
   for_diff_se = sqrt(for_se_1 ^ 2 + for_se_0 ^ 2),
   ci_lower = for_diff - 1.96 * for_diff_se,
   ci_upper = for_diff + 1.96 * for_diff_se
for_diff_z <- (gini_bw$for_diff - 0)/gini_bw$for_diff_se</pre>
for_diff_p <- 2 * pnorm(abs(for_diff_z))</pre>
gini_bw_boxplot <- gini_avg_best %>%
 rbind(gini_avg_worst) %>%
  rename("Country" = "Country Name") %>%
  right_join(for_big) %>%
 filter(!is.na(change2015_big)) %>%
  filter(!is.na(gap)) %>%
  mutate(gap = as.factor(gap)) %>%
  group_by(gap) %>%
  ggplot(aes(y = change2015_big, col = gap)) +
  geom_boxplot()
gini_bw_boxplot
all_data <- di_forest %>%
 left_join(gini) %>%
  left_join(gdp_growth) %>%
 left_join(gdp) %>%
  left_join(pov_ratio) %>%
  filter(!is.na(Gini_2015)) %>%
  filter(!is.na(GrowthCap_2015)) %>%
 filter(!is.na(GDPcap_2015)) %>%
 filter(!is.na('Average_2011-2015')) %>%
  rename("Democracy.Index.in.2015" = '2015') %>%
 rename("Gini.Index.in.2015" = 'Gini_2015') %>%
  select(!'2019')
all_lm <- lm(change2015 ~ Democracy.Index.in.2015 + Gini.Index.in.2015 + Gini.Index.in.2015 * Democracy
# I do not seem to understand how to show the interaction term
```

```
coefs <- c(
  "(Intercept)" = "Intercept",
  "'2015'" = "Democracy Index in 2015",
  "Gini 2015" = "Gini Index in 2015",
  "'2015' × Gini_2015" = "test"
\#modelsummary::modelsummary(all\_lm, coef\_map = coefs, gof\_omit = "AIC/BIC/Log.Lik./F", stars = TRUE)
modelsummary::modelsummary(all_lm, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
#Didn't work. I gave up!
#real_all_data <- di_forest %>%
# left_join(gini) %>%
# left_join(gdp_growth) %>%
# left_join(gdp) %>%
# left_join(pov_ratio) %>%
# left_join(agri) %>%
# filter(!is.na(Gini_2015)) %>%
# filter(!is.na(GrowthCap_2015)) %>%
# filter(!is.na(GDPcap_2015)) %>%
# filter(!is.na('Average_2011-2015')) %>%
# filter(!is.na(agri_change)) %>%
# rename("Democracy.Index.in.2015" = '2015') %>%
# rename("Gini.Index.in.2015" = 'Gini 2015') %>%
# rename("GDP.Growth.per.Capita.in.2015" = 'gdp_growth') %>%
# rename("GDP.per.Capita.in.2015" = 'gdp') %>%
# rename("Poverty.Ratio.in.2015" = 'pov_ratio') %>%
# rename("Agricultural.Land.Growth.in.2015" = '2015') %>%
# select(!'2019')
#real_all_lm <- lm(change2015 ~ Democracy.Index.in.2015 +</pre>
                     Gini.Index.in.2015 +
#
                     qdp_qrowth[,1] +
                    \#GDP.per.Capita.in.2015 +
                    #Agricultural.Land.Growth.in.2015 +
                    #Poverty.Ratio.in.2015 +
                     Gini.Index.in.2015 * Democracy.Index.in.2015, data = real_all_data)
# I do not seem to understand how to show the interaction term
coefs <- c(
  "(Intercept)" = "Intercept",
  "'2015'" = "Democracy Index in 2015",
 "Gini_2015" = "Gini Index in 2015",
  "'2015' × Gini 2015" = "test"
#modelsummary::modelsummary(all_lm, coef_map = coefs, gof_omit = "AIC/BIC/Log.Lik./F", stars = TRUE)
#modelsummary::modelsummary(real_all_lm, gof_omit = "AIC|BIC|Log.Lik.|F", stars = TRUE)
```