Prediction: Where to Go Next? Future Research Directions

Karlsruhe School of Optics & Photonics

Eike Rehder¹ (eike.rehder@daimler.com)
¹Mercedes Benz AG,
work done at KIT, Germany

Public Benchmark?

Algorithms?

Icons from https://www.flaticon.com/authors/monkik

We Need a Public Benchmark!

Public Benchmarks have driven the community [1,2,3,4,5]

Given the data and infrastructure, a prediction benchmark is easy to build!

But:

- Data?
- GDPR?
- Metrics?

The one who builds it gets to decide!

We Need Unified Metrics!

Some metrics evaluated for a toy prediction

Example Predictions

Metric	Pred. A	Pred. B
Pred. Prob.	5.8%	0.0%
Log. Pred. Prob.	-2.9	-12.7
Dist.	2.9m	1.9m
AuROC	0.1%	1.2%
AuPR	1.0%	0.2%

Design of metrics put the focus on different traits. What do you want to measure?

We Need Good Algorithms!

Some example prediction algorithms...

... and evaluations**

*evaluation work in progress
**preliminary results, data [9]

References

[1] Everingham, Mark, et al. "The Pascal Visual Object Classes (VOC) Challenge."

International Journal of Computer Vision 88.2 (2010)

[2] Deng, Jia, et al. "Imagenet: A Large-Scale Hierarchical Image Database."

IEEE Conference on Computer Vision and Pattern Recognition. (2009)

[3] Geiger, Andreas, et al. "Vision Meets Robotics: The KITTI Dataset."

The International Journal of Robotics Research 32.11 (2013)

[4] Cordts, Marius, et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding."

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2016)

[5] Lin, Tsung-Yi, et al. "Microsoft coco: Common Objects in Context."

European Conference on Computer Vision. (2014)

[6] Schneider, Nicolas, and Dariu M. Gavrila. "Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study."

German Conference on Pattern Recognition. (2013)

[7] Hoermann, Stefan, et al. "Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling."

International Conference on Robotics and Automation. (2018)

[8] Kitani, Kris M., et al. "Activity Forecasting."

European Conference on Computer Vision. (2012)

[9] Rehder, Eike, et al. "Pedestrian Prediction by Planning Using Deep Neural Networks."

International Conference on Robotics and Automation. (2018)

