Exercise 10.1

We will do three transformations to G to show that it has K_5 as a minor. This is the original graph:

1. Contract $\{a, d\}$

2. Contract $\{c, e\}$

3. Contract $\{f, e\}$

When we rearrange the nodes we can clearly see that it's a K_5 graph. Thus G is not planar.

Exercise 10.2

- (a) The syntactic interpretation is correct. Semantically what the natural language means to say is: Eat now or (eat later then food cold). Which would be: Eat Now \vee (eat later \rightarrow food cold).
- (b) The syntactic interpretation is incorrect. What it expresses is Swimming $\to \neg$ Storm. That is also the semantic meaning.

Exercise 10.3

- (a) $\mathcal{I} = \{X \mapsto 0, Y \mapsto 1, Z \mapsto 0\}.$
- (b) 1) $\mathcal{I} \models Y$
 - $2) \ \mathcal{I} \not\models Z$
 - 3) $\mathcal{I} \models \neg Z$
 - 4) $\mathcal{I} \models Y \land \neg Z$
 - 5) $\mathcal{I} \models \psi \lor (Y \land \neg Z)$ for all formulas ψ .
 - 6) $\mathcal{I} \not\models Y$
 - 7) $\mathcal{I} \models \neg Y$

- 8) $\mathcal{I} \models \neg Y \lor \psi$ for all formulas ψ .
- 9) From 5) and 8) we get $\mathcal{I} \models (\psi \lor (Y \land \neg Z)) \land (\neg Y \lor \psi)$ for all formulas ψ . In particular $(X \lor (Y \land \neg Z)) \land (\neg Y \lor \neg X)$.
- (c) $\mathcal{I} = \{X \mapsto 0, Y \mapsto 0, Z \mapsto 0\}.$

Exercise 10.4

(a) We will analyze the statement $\phi = (((Y \land Z) \to X) \lor \neg(X \lor \neg Z))$ over $\{X, Y, Z\}$. Satisfiability: Let $\mathcal{I} = \{X \mapsto 0, Y \mapsto 1, Z \mapsto 1\}$. We have $\mathcal{I} \models X$ and $\mathcal{I} \not\models Z$. From the

definition of negation we have that $\mathcal{I} \models \neg Z$. Therefore, with the definition of disjuntion, we get $\mathcal{I} \not\models (X \vee \neg Z)$. With the definition of negation we have $\mathcal{I} \models \neg (X \vee \neg Z)$. With the definition of disjuntion we have $\mathcal{I} \models \psi \vee \neg (X \vee \neg Z)$ for all formulas ψ , in particular

 $\mathcal{I} \models (((Y \land Z) \to X) \lor \neg (X \lor \neg Z))$. Therefore ϕ is satisfiable. **Falsifiability**: The statement ϕ is by the definition of disjunt

Falsifiability: The statement ϕ is by the definition of disjuntion and negation false, iff both $((Y \land Z) \to X)$ and $\neg(X \lor \neg Z)$ are false. The formula $((Y \land Z) \to X)$ is only false, if $\mathcal{I} = \{X \mapsto 0, Y \mapsto 1, Z \mapsto 1\}$. But under this interpretation, the formula $\neg(X \lor \neg Z)$ is true. Therefore ϕ can never be false.

Validness The formula ϕ is valid, since it can never be false.

Unsatisfiability The formula is not unsatisfiable because it's satisfiable.

(b) $\phi = (A \land \neg A) \land (B \land \neg B)$