Дискретная математика 1 семестр ПИ, Π екции

Собрано 15 ноября 2021 г. в 10:58

Содержание

1.	Основы комбинаторики	1
	1.1. Множества	1
	1.2. Мощность множества	
	1.3. Комбинаторика	
2 .	Перестановки	3
	2.1. Лексикографический порядок перестановок	3
3.	Числа Стирлинга	4
	3.1. Числа Стирлинга	4
	3.2. Числа Белла	
4.	Теория вероятности	6
	4.1. Основы теории вероятности	6
	4.2. Условная вероятность	9
	4.3. Независимость событий	9
	4.4. Формула полной вероятности	10
	4.5. Испытания Бернулли	11
	4.6. Предельные случаи испытаний Бернулли	12
	4.7. Случайные величины	14
	4.8. Дисперсия	15
	4.9. Производящие функции	15
	4.10. Характеристические функции	16
	4.11. Нормальное распределение	16

Раздел #1: Основы комбинаторики

1.1. Множества

Def. 1.1.1. *Множество - совокупность объектов.*

Def. 1.1.2. Покрытием множества A называется множество $B = \{B_1, B_2, ..., B_k\} : \bigcup_i B_i \supset A$

Def. 1.1.3. Разбиением множества A называется $\pi(X) = \{X_i\}$:

$$X_i \neq \varnothing, \bigcup_i X_i = A, \forall i \neq j \to X_i \cap X_j = \varnothing$$

Def. 1.1.4. Пусть B, C – разбиения A. B называется измельчением C, если B – разбиение A и $\forall i \; \exists j : B_i \subset C_j$

1.2. Мощность множества

- 1. $|\emptyset| = 0$
- 2. $X = \{x_1, x_2, ..., x_n\} \Rightarrow |X| = n$
- 3. \mathbb{N} счётное. \mathbb{Z} тоже счётное:

$$f(x) = \begin{cases} 1, x = 0 \\ 2x, x > 0 \\ 2|x| + 1, x < 0 \end{cases}$$

- 4. [0,1]. Пусть существует $q:\mathbb{N} \to [0,1]$
 - 1. $0, a_1 a_2 ... a_k ...$
 - 2. $0, b_1b_2...b_k...$
 - 3. $0, c_1 c_2 ... c_k ...$

Рассмотрим $\alpha=0,\alpha_1\alpha_2\alpha_3...\alpha_k...,\alpha_1\neq a_1,\alpha_2\neq b_2,\alpha_3\neq c_3$ и т.д. Таким образом, всегда найдётся не пронумерованное число.

|[0,1]| — континуум

Def. 1.2.1. Множество всех подмножеств A обозначается 2^A

Утверждение 1.2.2. $|2^A| = 2^{|A|}$

Доказательство. База: $A=\varnothing, |A|=0, 2^A=\{\varnothing\} \Rightarrow |2^A|=2^{|A|}=1$

Индукционное предположение: Пусть $\forall A: |A| \leqslant k \to |2^A| = 2^{|A|}$

Индукционный переход:

Рассмотрим $A: |A| = k+1, B_1 \in 2^{A \setminus \{x_{k+1}\}}, B = \{x_{k+1}\} \cup B_1$ $2^A = 2^{A \setminus \{x_{k+1}\}} \cup \{B\}$

$$\begin{cases} |2^{A \setminus \{x_{k+1}\}}| = 2^k \\ |\{B\}| = 2^k \end{cases} \Rightarrow 2^A = 2^k + 2^k = 2^{k+1} = 2^{|A|}$$

1.3. Комбинаторика

1. $A, B : A \cap B = \emptyset$

$$|A \cup B| = |A| + |B|$$

2. $A_1, ..., A_n, \forall i, j \rightarrow (i \neq j \Rightarrow A_i \cap A_j = \varnothing)$

$$|\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i|$$

3. $A, B, A \cap B \neq \emptyset$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

4. $A_1, ..., A_n$

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i| - \sum_{i,j=1}^{n} |A_i \cap A_j| + \sum_{i,j,k=1}^{n} |A_i \cap A_j \cap A_k - \dots + (-1)^{n+1} |\bigcap_{i=1}^{n} A_i|$$

5. A, B

$$|A \times B| = |A| \cdot |B|$$

6. $A_1, ..., A_n$

$$|A_1 \times A_2 \times ... \times A_n| = \prod_{i=1}^n |A_i|$$

1. Перестановки: $\langle a_1...a_n \rangle = \overline{\langle a_1...a_n \rangle, a_n}$. Тогда

$$|\langle 1:n\rangle| = |\langle 1:n-1\rangle \times (1:n)| = |\langle 1:n-1\rangle| \cdot n = 1 \cdot 2 \cdot \dots \cdot n = n!$$

2. Размещения. $n \cdot (n-1) \cdot ... \cdot (n-k+1)$

$$A_n^k = \frac{n!}{(n-k)!}$$

3. Сочетания.

$$A_n^k = C_n^k \cdot k! \Leftrightarrow C_n^k = \frac{n!}{k!(n-k)!}$$

4. Сочетания с повторениями. Выставим все k выбранных объектов в ряд и поставим между ними n-1 перегородку: до первой перегородки будут элементы 1-го типа, от первой до второй перегородки - 2-го типа и т.д. Таким образом, всего n+k-1 место. Нам нужно выбрать n-1 перегородку из этих n+k-1 мест

$$\overline{C}_{n}^{k} = C_{n+k-1}^{n-1} = C_{n+k-1}^{k}$$

Def. 1.3.1. Пусть дан выпуклый п-угольник. Найти количество способов разбить его на треугольники с непересекающимися сторонами

$$C_0 = 1, C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-i-1}$$
 — Числа Каталана

Раздел #2: Перестановки

2.1. Лексикографический порядок перестановок

Def. 2.1.1. Пусть есть две перестановки $X = \{x_1, x_2, ..., x_n\}, Y = \{y_1, y_2, ..., y_n\}$. Тогда

$$X < Y \Leftrightarrow \exists k : x_i = y_i \ \forall i = 1, ..., k \land x_{k+1} < y_{k+1}$$

Алгоритм 2.1.2 (Поиск следующей перестановки). Найдем наибольший убывающий суффикс. Пусть $k: a_{k+1} > a_{k+2} > ... > a_n$. Тогда выберем из этого суффикса $a_i: a_i > a_k$ и a_i минимально. После этого отсортируем получившийся суффикс. Получим перестановку:

$$\langle a_1, a_2, ..., a_i, \text{sort}[a_k, a_k + 1, ..., a_n] \rangle$$

Она и будет лексикографический следующей.

Раздел #3: Числа Стирлинга

3.1. Числа Стирлинга

Def. 3.1.1. Пусть $A = \{a_1, ..., a_n\}$. Рассмотрим разбиение этого множества мощности k, $m.e.\ X = \{X_1, ..., X_k\}$:

$$\forall i, j \to X_i \supset A, X_i \cap X_j = \varnothing, \bigcup_i X_i = A$$

Тогда числами Стирлинга – количество таких разбиений.

1.
$$k=2 \Rightarrow S(n,2) = \frac{\sum_{i=1}^{n-1} C_n^i}{2} = \frac{2^{n-2}}{2} = 2^{n-1} - 1$$

- 2. Общий случай.
 - ullet Если $\{a_n\}$ элемент разбиения, то таких разбиений S(n-1,k-1)
 - $\exists i: a_n \in X_i, |X_i| > 1$. Тогда нужно найти количество разбиений $A \setminus \{a_n\}$ на k множеств, а потом вставить a_n в одно из этих множеств. Количество способов:

$$S(n-1,k) \cdot k$$

Тогда рекуррентная формула:

$$S(n,k) = S(n-1,k-1) + S(n-1,k) \cdot k$$

Базовые значения:

$$S(n,0) = 0$$
 $S(0,0) = 0$
 $S(k,n) = 0, k > n$ $S(n,2) = 2^{n-1} - 1$
 $S(n,n-1) = C_n^2$

3.2. Числа Белла

Def. 3.2.1. Числа Белла – количество разбиений множества.

$$B(n) = \sum_{i=1}^{n} S(n, i)$$

Теорема 3.2.2 (Формула чисел Белла). Рассмотрим произвольное разбиение множества A. $\exists i: a_{n+1} \in X_i, |X_i| = j$.

 $|A\setminus X_i|=n+1-j$. Тогда количество способов выбрать X_i равно $C_n^{j-1}=C_n^{n+1-j}$ Количество разбиений $A\setminus X_i$, в свою очередь, равно B(n+1-j). Тогда

$$B(n+1) = \sum_{j=1}^{n+1} C_n^{n+1-j} \cdot B(n+1-j) = \sum_{k=0}^{n} C_n^k B(k)$$

Теорема 3.2.3 (Формула чисел Стирлинга).

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j \cdot C_k^j (k-j)^n$$

Доказательство. Пусть $L = \{ \rho \subseteq A \times \{1, ..., k\} | \rho$ – сюръекция $\}$. Заметим, это множество равномощно множеству упорядоченных разбиений мощности k.

 $\{a_1,...,a_n\} \to \{1,...,k\}$. Элементы разбиения имеют следующий вид: $X_i = \{a_k | \rho(a_k) = i\}$. Т.к. отображение сюръективно, то X_i непусты.

$$S(n,k) = \frac{|L|}{k!}$$

Чтобы посчитать мощность L, из общего количества отображения вычтем количество несюръективных отображений. Пусть $P_i = \{ \rho \subset A \times \{1,...,n\} | \forall a \in A \to \rho(a) \neq i \}$. Тогда количество несюръективных отображений равно:

$$|\bigcup_{i=1}^{k} P_{i}| = \sum_{j=1}^{k} (-1)^{j+1} \sum_{1 \leq i_{1} \leq i_{3} \leq \dots \leq i_{j} \leq k} |P_{i_{1}} \cap P_{i_{2}} \cap \dots \cap P_{i_{j}}|$$

 $|P_{i_1}\cap P_{i_2}\cap...P_{i_j}|$ – количество отображений из A в $\{1,...,k\}\setminus\{i_1,...,i_j\}$

$$|P_{i_1} \cap \dots \cap P_{i_j}| = (k-j)^n$$

$$\sum_{i_1 \le i_2 \le \dots \le i_j} |P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_j}| = C_k^j (k - j)^n$$

Тогда

$$|L| = k^n - \sum_{j=1}^k (-1)^{j+1} C_k^j (k-j)^n = k^n + \sum_{j=1}^k (-1)^j C_k^j (k-j)^n = \sum_{j=0}^k (-1)^j C_k^j (k-j)^n$$

Тогда искомая формула чисел Стирлинга:

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} C_{k}^{j} (k-j)^{n}$$

Раздел #4: Теория вероятности

4.1. Основы теории вероятности

Def. 4.1.1. $\Omega = \{a_1, a_2, ..., a_n\}$ – множество всех взаимо-исключающих исходов эксперимента (пространство элементарных событий)

 $X \subseteq \Omega$ – событие

Def. 4.1.2. Дано $\Omega, \mathscr{A} \subset 2^{\Omega}$. Тогда \mathscr{A} называется алгеброй, если

- 1. $\Omega \in \mathscr{A}$
- 2. $A \in \mathcal{A}, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- 3. $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$

Утверждение 4.1.3. Если \mathscr{A} – алгебра, то

- 1. $\varnothing \in \mathscr{A}$
- 2. $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$
- 4. $A_i \in \mathcal{A} \Rightarrow \bigcup A_i \in \mathcal{A}, \bigcap A_i \in \mathcal{A}$

Доказательство. 1. $\Omega \in \mathscr{A} \Rightarrow \overline{\Omega} \in \mathscr{A} \Rightarrow \overline{\Omega} = \varnothing \Rightarrow \varnothing \in \mathscr{A}$

- 2. $\overline{A\cap B}=\overline{A}\cup\overline{B}\in\mathscr{A}$. Тогда $\overline{\overline{A\cap B}}=A\cap B\in\mathscr{A}$
- 3. $A \setminus B = A \cap \overline{B} \in \mathscr{A}$
- 4. Доказывается по индукции.

Def. 4.1.4. $\mathscr A$ называется σ -алгеброй, если

- 1. $\Omega \in \mathcal{A}$
- 2. $A_i \in \mathcal{A}, i = 1, \dots \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- 3. $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$

Def. 4.1.5. Пусть есть пространство Ω , определенная на нём $\mathscr{A} - \sigma$ -алгебра $u \ f : \mathscr{A} \to \mathbb{R} - \phi$ ункция над множеством. Тогда вероятностью называется функция из $\mathscr{A} \ \varepsilon \ \mathbb{R}$ такая, что

- 1. $P(A) \geqslant 0 \ \forall A \in \mathscr{A}$
- 2. $P(\Omega) = 1$
- 3. $A_1, A_2, \dots : A_i \cap A_j = \emptyset \ \forall i, j \Rightarrow P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Перечисленные выше свойства называются аксиомами теории вероятности (Ω, \mathscr{A}, P) – вероятностное пространство.

Свойства вероятности:

1. $P(\Omega) = 1$

2.
$$P(\emptyset) = 0$$

3. Если $A_1, A_2 \in \mathscr{A}, A_1 \cap A_2 = \varnothing$, то

$$P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

4. Если $A_1,...,A_n\in\mathscr{A},A_i\cap A_j=\varnothing$ $\forall i,j,$ то

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

 $5. P(\overline{A}) = 1 - P(A)$

Доказательство.

$$P(\overline{A} \cup A) = P(\Omega) = P(A) + P(\overline{A})$$

6. Если $A, B \in \mathscr{A}$, то

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Доказательство.

$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

$$P(A \cup B) = P(A \setminus B) + P(B \setminus A) + P(A \cap B) = P((A \setminus B) \cup (A \cap B)) + P((B \setminus A) \cup (A \cap B)) - P(A \cap B) =$$
$$= P(A) + P(B) - P(A \cap B)$$

7. $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i,j=1}^{n} (A_i \cap A_j) + \dots$

8. $A_1 \subset A_2 \subset ... \subset A_n \subset ...$

$$\lim_{n \to \infty} P(A_n) = P(\bigcup_{i=1}^{\infty} A_i)$$

Доказательство. $A_{k-1} \subset A_k$. Рассмотрим $A_k \setminus A_{k-1}$. Пусть $A_0 = \emptyset$.

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{k=1}^{\infty} P(A_k \setminus A_{k-1}) = \lim_{n \to \infty} \sum_{k=1}^{n} P(A_k \setminus A_{k-1}) \lim_{n \to \infty} \sum_{k=1}^{n} P(A_k) - P(A_{k-1}) = \lim_{n \to \infty} P(A_n) - P(\emptyset) = \lim_{n \to \infty} P(A_n)$$

9. $A_1 \supset A_2 \supset ... \supset A_n \supset$ Тогда

$$\lim_{n \to \infty} P(A_n) = P(\bigcap_{i=1}^{\infty} A_i)$$

Пример 4.1.6. Два человека приходят на место в промежуток от 12 до 13ч и ждут 10 минут прежде чем уйти. Найти вероятность того, что они встретятся.

Решение 1. Пусть t_1 – время, когда приходит первый, t_2 – время, когда приходит второй.

$$|t_1 - t_2 \leqslant \frac{1}{6} \Leftrightarrow \begin{cases} t_2 \geqslant t_1 - \frac{1}{6} \\ t_2 \leqslant t_1 + \frac{1}{6} \end{cases}$$

Тогда вероятность – площадь заштрихованной фигуры:

$$S = 1 - 2 \cdot \frac{\frac{5}{6} \cdot \frac{5}{6}}{2} = 1 - \frac{25}{36} = \frac{11}{36}$$

Пример 4.1.7. На [0,1] выбираются два числа x,y. Найти вероятность того, что их произведение меньше $\frac{1}{2}$

Решение 2.

$$f(x) = \begin{cases} 1, x \leqslant \frac{1}{2}, \\ \frac{1}{2x}, x > \frac{1}{2} \end{cases}$$

Тогда искомая вероятность:

$$P(x \cdot y < \frac{1}{2}) = \int_0^1 f(x)dx = \int_0^{\frac{1}{2}} f(x)dx + \int_{\frac{1}{2}}^1 f(x)dx = \frac{1}{2} + \int_{\frac{1}{2}}^1 \frac{1}{2x}dx = \frac{1}{2} + \frac{\ln 2}{2}$$

4.2. Условная вероятность

Def. 4.2.1. Вероятность события A при условии, что выполняется событие B равна

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Пример 4.2.2. Есть урна, в которой лежит m белых и n черных шаров. Вытащим из неё два шара. Какова вероятность того, что они оба белые?

Решение 3.

$$P$$
(первый – белый) = $\frac{m}{m+n}$, P (второй – белый|первый – белый) = $\frac{m-1}{m+n-1}$ P (оба белые) = $\frac{m-1}{m+n-1} \cdot \frac{m}{m+n}$

Свойства условной вероятности:

- 1. $P(\Omega|B) = 1$
- 2. $P(\varnothing|B)0$
- 3. $0 \le P(A|B) \le 1$
- 4. $A \subset C \Rightarrow P(A|B) \leqslant P(C|B)$
- 5. $P(\overline{A}|B) = 1 P(A|B)$
- 6. $P(A \cup C|B) = P(A|B) + P(C|B) P(A \cap C|B)$
- 7. $P(A \cap B) = P(A|B) \cdot P(B)$

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_2 \cap A_1) \cdot ... \cdot P(A_n | \bigcap_{i=1}^{n-1} A_i)$$

$$P((A_1 \cap ... \cap A_{n-1}) \cap A_n) = P(A_n | A_1 \cap ... \cap A_{n-1}) \cdot P(A_1 \cap ... \cap A_{n-1})$$

Пример 4.2.3. Бросаем 3 кубика. Найти вероятность того, что хотя бы на одном из них выпадет 1 при условии, что на всех выпали разные значения.

Решение 4.

$$P(A|B) = 1 - P(\overline{A}|B) = 1 - \frac{P(\overline{A} \cap B)}{P(B)} = 1 - \frac{1}{2} = \frac{1}{2}$$

4.3. Независимость событий

Def. 4.3.1. A независимо от $B(P(B) \neq \emptyset)$, если P(A|B) = P(A)

Утверждение 4.3.2. Если A независимо от $B \Rightarrow B$ независимо от A.

Доказательство.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B) \cdot P(B)}{P(A) \cdot P(B)} = P(A|B) \cdot \frac{P(B)}{P(A)} = P(B)$$

Def. 4.3.3. A, B – независимые, если

$$P(A \cap B) = P(A) \cap P(B)$$

Def. 4.3.4. $A_1, ..., A_n$ – независимы в совокупности, если

$$P(\bigcap_{i=1}^{n}) = \prod_{i=1}^{n} P(A_i)$$

Def. 4.3.5. $A_1,..,A_n$ – попарно-независимы, если

$$\forall i, j \to P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$$

Замечание 4.3.6. Если $A_1, ..., A_n$ попарно-независимы, то они необязательно независимы в совокупности.

4.4. Формула полной вероятности

Def. 4.4.1. Пусть $H_1, ..., H_n$ – разбиение Ω . Тогда $H_1 \cup ... \cup H_n = \Omega$ называется полной группой событий.

Теорема 4.4.2. $H_1,...,H_n$ – полная группа событий и $P(H_i)>0 \ \forall i=1,...,n.$ Тогда

$$\forall A \to P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)$$

Доказательство.

$$A = A \cap \Omega = A \cap (H_1 \cup ... \cup H_n) = (A \cap H_1) \cup (A \cap H_2) \cup ... \cup (A \cap H_n)$$

$$P((A \cap H_1) \cup ... \cup (A \cap H_n)) = \sum_{i=1}^n P(A \cap H_i) = \sum_{i=1}^n P(A|H_i) \cdot P(H_i)$$

Теорема 4.4.3 (Формула Байеса). Пусть $H_1, H_2, ..., H_n$ – полная группа событий. A – событие (считаем произошедшим). Тогда

$$P(H_k|A) = \frac{P(H_k) \cdot P(A|H_k)}{\sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)}$$

Доказательство.

$$P(H_k|A) = \frac{P(H_k \cap A)}{P(A)} = \frac{P(H_k) \cdot P(A|H_k)}{\sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)}$$

4.5. Испытания Бернулли

Def. 4.5.1. Обозначим $P_n(m)$ – вероятность получить m успехов за n испытаний.

Теорема 4.5.2 (Теорема Бернулли). Рассмотрим упорядоченный набор: $\underbrace{SSS...S}_{n}\underbrace{FFF...F}_{n-m}$, где

S обозначает успех, а F — неудачу. В силу независимости испытаний, вероятность получить конкретный упорядоченный набор равна $p^m(1-p)^{n-m}$. Таких наборов, очевидно, C_n^m

Теорема 4.5.3. $0 \leqslant m_1 \leqslant m_2 \leqslant n$. $P_n(m_1, m_2)$ – успех наступил от m_1 до m_2 раз.

$$P_n(m_1, m_2) = \sum_{i=m_1}^{m_2} C_n^k p^k (1-p)^{n-k}$$

Def. 4.5.4. Наивероятнейшее число событий – число событий в испытаниях Бернулли с наибольшей вероятностью.

Теорема 4.5.5. Наивероятнейшее число успехов в n испытаниях заключено между числами np-(1-p) и np+p

Доказательство. Рассмотрим следующее соотношение:

$$\frac{P_n(m)}{P_n(m-1)} = \frac{C_n^m p^m (1-p)^{n-m}}{C_n^{m-1} p^{m-1} (1-p)^{n-m+1}} = \frac{p}{1-p} \cdot \frac{n!(m-1)!(n-m+1)!}{n!m!(n-m)!} = \frac{p}{1-p} \cdot \frac{n-m+1}{m}$$

Отсюда очевидно, что

$$P_n(m) > P_n(m-1), m < (n+1)p$$

 $P_n(m) = P_n(m-1), m = (n+1)p$
 $P_n(m) < P_n(m-1), m > (n+1)p$

Значит, при m < (n+1)p $P_n(m)$ возрастает, при m > (n+1)p – убывает. Тогда несложно найти m такое, чтобы $P_n(m)$ было наибольшим:

$$\begin{cases} P_n(m) > P_n(m-1) \\ P_n(m+1) < P_n(m) \end{cases} \Leftrightarrow \begin{cases} m < (n+1)p \\ m+1 > (n+1)p \end{cases} \Leftrightarrow np+p-1 < m < np+p$$

4.6. Предельные случаи испытаний Бернулли

Рассмотрим ситуацию, когда вероятность какого-то события уменьшается пропорционально n, т.е. $p \sim \frac{1}{n}$

Теорема 4.6.1 (Теорема Пуассона). Пусть $np \to \lambda$.

$$\forall m, \forall \lambda \lim_{n \to \infty} P_n(m) = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

Доказательство.

$$P_{n}(m) = C_{n}^{m} p^{m} \cdot (1-p)^{n-m} = \frac{n!}{m!(n-m)!} \cdot \left(\frac{\lambda}{n}\right)^{m} \left(1 - \frac{\lambda}{n}\right)^{n-m} =$$

$$= \frac{n(n-1)...(n-m)+1}{m!} \cdot \left(1 - \frac{\lambda}{n}\right)^{n-m} \cdot \left(\frac{\lambda}{n}\right)^{m} =$$

$$= \frac{\lambda^{m}}{m!} \left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) ... \left(1 - \frac{m-1}{n}\right) \left(1 - \frac{\lambda}{n}\right)^{-m} \Rightarrow$$

$$\Rightarrow \lim_{n \to \infty} P_{n}(m) = \lim_{n \to \infty} \frac{\lambda^{m}}{m!} \left(1 - \frac{\lambda}{n}\right)^{n} = \frac{\lambda^{m}}{m!} \cdot e^{-\lambda}$$

Теорема 4.6.2 (Локальная теорема Муавра-Лапласа). Пусть $x_n = \frac{m-np}{\sqrt{np(1-p)}}$. Предположим, что x_n ограничена при $n \to \infty$. Тогда

$$\sqrt{np(1-p)} \cdot P_n(m) \sim \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x_n^2}{2}}$$

Доказательство. Вспомним, что $k! \sim \sqrt{2\pi k} \left(\frac{k}{e}\right)^k$. $n-m=n(1-p)-x_n\sqrt{np(1-p)}$. Тогда

$$\begin{split} &\sqrt{np(1-p)}P_n(m) = \sqrt{np(1-p)}C_n^m p^m (1-p)^{n-m} = \frac{\sqrt{np(1-p)} \cdot n!}{m!(n-m)!} \cdot p^m \cdot (1-p)^{n-m} \\ &\approx \frac{\sqrt{np(1-p)} \cdot \sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi m} \cdot \left(\frac{m}{e}\right)^m \cdot \sqrt{2\pi (n-m)} \cdot \left(\frac{n-m}{e}\right)^{n-m}} \cdot p^m \cdot (1-p)^{n-m} \\ &= \frac{\sqrt{np(1-p)} \cdot \sqrt{n} \cdot n^n}{\sqrt{2\pi} \cdot \sqrt{m} \cdot m^m \cdot (n-m)^{n-m}} \cdot p^m (1-p)^{n-m} = \frac{1}{\sqrt{2\pi}} \left(\frac{np}{m}\right)^m \cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m} \sqrt{\frac{np}{m}} \cdot \sqrt{\frac{n(1-p)}{n-m}} \\ &= \frac{1}{\sqrt{2\pi}} \cdot \sqrt{m} \cdot m^m \cdot (n-m)^{n-m}} \cdot p^m (1-p)^{n-m} = \frac{1}{\sqrt{2\pi}} \left(\frac{np}{m}\right)^m \cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m} \sqrt{\frac{np}{m}} \cdot \sqrt{\frac{n(1-p)}{n-m}} \\ &= \frac{1}{\sqrt{2\pi}} \cdot \sqrt{m} \cdot m^m \cdot (n-m)^{n-m}} \cdot p^m (1-p)^{n-m} = \frac{1}{\sqrt{2\pi}} \left(\frac{np}{m}\right)^m \cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m} \sqrt{\frac{np}{m}} \cdot \sqrt{\frac{n(1-p)}{n-m}} \\ &= \frac{1}{\sqrt{2\pi}} \cdot \sqrt{m} \cdot m^m \cdot (n-m)^{n-m}} \cdot p^m (1-p)^{n-m} = \frac{1}{\sqrt{2\pi}} \left(\frac{np}{m}\right)^m \cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m} \cdot \sqrt{\frac{np}{m}} \cdot \sqrt{$$

$$m = np + x_n \sqrt{np(1-p)}$$

$$\frac{m}{np} = 1 + \frac{x_n \sqrt{1-p}}{\sqrt{np}} \xrightarrow[n \to \infty]{} 1$$

$$\frac{n-m}{n(1-p)} = 1 - \frac{x_n \sqrt{p}}{\sqrt{n(1-p)}} \xrightarrow[n \to \infty]{} 1$$

Пусть, для удобства, $\exp(x) = e^x$. Тогда

$$\sqrt{np(1-p)}P_n(m) \approx \frac{1}{\sqrt{2\pi}} \cdot \left(1 + \frac{x_n\sqrt{1-p}}{\sqrt{np}}\right)^{-m} \left(1 - \frac{x_n\sqrt{p}}{\sqrt{n(1-p)}}\right)^{-(n-m)} =$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-m \cdot \ln\left(1 + \frac{x_n\sqrt{1-p}}{\sqrt{np}}\right) - (n-m) \cdot \ln\left(1 - \frac{x_n\sqrt{p}}{\sqrt{n(1-p)}}\right)\right)$$

Как мы знаем (откуда?)

$$\ln(1+y) \xrightarrow{y\to 0} y - \frac{y^2}{2}(1+O(1))$$

Следовательно $\sqrt{np(1-p)}P_n(m) =$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-m\left(\frac{x_n\sqrt{1-p}}{\sqrt{np}} - \frac{x_n^2}{2np}\right)(1+O(1)) - (n-m)\left(-\frac{x_n\sqrt{p}}{\sqrt{n(1-p)}} - \frac{x_n^2p}{2n(1-p)}\right)(1+O(1))\right)$$

$$x_n \left(\frac{(n-m)\sqrt{p}}{\sqrt{n(1-p)}} - \frac{m\sqrt{1-p}}{\sqrt{np}} \right) =$$

$$= \frac{x_n}{\sqrt{np(1-p)}} \left(np(1-p) - x_n \sqrt{np(1-p)}p - n(1-p) \cdot p - x_n \sqrt{np(1-p)}(1-p) \right) =$$

$$= -x_n^2 (p + (1-p)) = -x_n^2$$

Таким образом:

$$\sqrt{np(1-p)}P_n(m) \approx \frac{1}{\sqrt{2\pi}}e^{\left(-x_n^2 + \frac{x_n^2}{2}\right)(1+O(1))} \approx \frac{1}{\sqrt{2\pi}}e^{-\frac{x_n^2}{2}}$$

Теорема 4.6.3 (Интегральная теорема Муавра-Лапласа). $a_n = \frac{m_1 - np}{\sqrt{npq}}, b_n = \frac{m_2 - np}{\sqrt{npq}}, q = 1 - p.$ Пусть $m_1 \to \infty, n \to \infty, a_n, b_n$ — ограничены. Тогда

$$\lim_{n \to \infty} \left| P_n(m_1, m_2) - \frac{1}{2\pi} \int_{a_n}^{b_n} e^{-\frac{x^2}{2}} dx \right| = 0$$

Def. 4.6.4. $\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} - \phi y н \kappa u u s \Gamma a y c c a.$ $\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_0^x e^{-\frac{z^2}{2}} dz - \phi y + \kappa u u s \Lambda a n \lambda a c a.$

Следствие 4.6.5. По локальной теореме Муавра-Лапласа:

$$P_n(m) \sim \frac{\varphi(x)}{\sqrt{npq}}$$

По интегральной теореме Муавра-Лапласа:

$$P_n(m_1, m_2) \sim \frac{1}{2} (\Phi(b_n) - \Phi(a_n))$$

4.7. Случайные величины

Пусть $\Omega = \{\omega_1, \omega_2, ..., \omega_k, ...\}$

Def. 4.7.1. Функция, заданная на Ω – случайная величина.

$$x = X(\Omega)$$

Def. 4.7.2. Соответствие, которое каждому x_i сопоставляет вероятность p_i – распределение (закон распределения)

3амечание 4.7.3. Если X – дискретная случайная величина, то Y=g(X) – тоже дискретная случайная величина и

$$y_i = g(x_i), p_i = P(X = x_i)$$

Def. 4.7.4. Определим случайную величину в более общим случае. Пусть у нас есть (Ω, \mathscr{A}, P) . Тогда случайная величина это

$$X = X(\omega), \omega \in \Omega : \{X < x\} = \{\omega : X(\omega) < x\} \in \mathscr{A} \ \forall x$$

Def. 4.7.5. $F(x) = P(X < x), x \in (-\infty, +\infty)$ – функция распределения случайной величины.

Свойства:

- 1. $F(x_1) \leqslant F(x_2)$ если $x_1 < x_2$
- 2. $F(-\infty) = 0, F(+\infty) = 1$
- 3. $P(a \le X < b) = F(b) F(a)$

Def. 4.7.6. Пусть P(y) – неотрицательная функция. Если $F(x) = \int_{-\infty}^{x} f(y) dy$, то P(y) – плотность распределения. В частности, P(x) = F'(x)

Def. 4.7.7. Есть $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$, где P(A, B) – вероятность одновременного наступления событий A и B, то X, Y – независимые случайные величины.

Def. 4.7.8. Пусть X – дискретная случайная величина. Тогда матожиданием называется

$$\mathbb{E}(X) = \sum_{i=1}^{n} x_i p_i$$

 $a \ \mathbb{E}(|X|) = \sum_{i=1}^n |x_i| p_i$ – абсолютный момент.

Свойства:

- 1. $\mathbb{E}(aX + b) = a\mathbb{E}(x) + b$
- $2. \ \mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$
- 3. Если X, Y независимые случайные величины, то $\mathbb{E}(XY) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

4.8. Дисперсия

Def. 4.8.1. $\mathbb{D}(X) = \sum_{i=1}^{n} (X_i - \mathbb{E}(X))^2 - \partial ucnepcus.$

Замечание 4.8.2. $\mathbb{D}(X) = \mathbb{E}(X - \mathbb{E}(X))^2 p_i$

Свойства дисперсии:

1.
$$\mathbb{D}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Доказательство.
$$\mathbb{D}(X) = \sum_{i=1}^{n} (X_i - \mathbb{E}(X))^2 p_i = \sum_{i=1}^{n} X_i^2 p_i - \sum_{i=1}^{n} 2X_i \mathbb{E}(X) p_i + \sum_{i=1}^{n} (\mathbb{E}(X))^2 p_i = \mathbb{E}(X^2) - 2(\mathbb{E}(X))^2 + (\mathbb{E}(X))^2 \cdot 1 = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

- 2. $\mathbb{D}(aX + b) = a^2 \cdot \mathbb{D}(X)$
- 3. $\mathbb{D}(X+Y) = \mathbb{D}(X) + \mathbb{D}(Y)$

Доказательство.
$$\mathbb{D}(X+Y) = \mathbb{E}((X+Y)^2) - (\mathbb{E}(X+Y))^2 = \mathbb{E}(X^2) + 2\mathbb{E}(XY) + \mathbb{E}(Y^2) - (\mathbb{E}(X))^2 - 2\mathbb{E}(X)\mathbb{E}(Y) - (\mathbb{E}(Y))^2.$$

Def. 4.8.3. $m_k = \mathbb{E}(X^k) - k$ -й момент.

 $\mathbb{E}(|X|^k)$ – k-й абсолютный момент.

 $M_k = \mathbb{E}(X - \mathbb{E}(X))^k$ – центральный момент.

Def. 4.8.4.
$$cov(X, Y) = \mathbb{E}(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))$$

 $cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Замечание 4.8.5.
$$cov(X + Z, Y) + cov(X, Y) + cov(Z, Y)$$

 $cov(X, Y + Z) = cov(X, Y) + cov(X, Z)$

Def. 4.8.6. Коэффициент корелляции случайных величин X и Y

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{D}(X) \cdot \mathbb{D}(Y)}}$$

Свойства:

1.
$$\rho(aX + b, cY + d) = \operatorname{sign}(ac)\rho(X, Y)$$

4.9. Производящие функции

Def. 4.9.1. Пусть X – случайная величина, принимающая значения Z_+ с вероятностями p_0, p_1, \dots

Рассмотрим функцию $\psi(z)=\sum_{k=1}^{\infty}z^kp_k=\mathbb{E}(z^X), |z|\leqslant 1, z\in\mathbb{C}.$ Заметим, что

1.
$$|\psi(z)| = |\sum_{k=1}^{\infty} z^k p_k| \leqslant \sum_{k=1}^{\infty} |z^k| p_k \leqslant \sum_{k=1}^{\infty} p_k = 1$$

2.
$$p_n = \frac{1}{n!} \cdot \frac{d^n}{dz^n} \psi(z)|_{z=0}$$

3.
$$\frac{d^n}{dz^n}\psi(z)|_{z=1} = \mathbb{E}(X(X-1)...(X-n+1))$$

Доказательство.
$$\frac{d^n}{dz^n}\psi(z)=\sum_{k=n}^{\infty}k(k-1)...(k-n+1)\cdot z^{k-n}p_k$$
 $\mathbb{D}(X)=\mathbb{E}(X^2)-(\mathbb{E}(X))^2=\mathbb{E}(X(X-1))+\mathbb{E}(X)-(\mathbb{E}(X))^2.$ Заметим, что $\mathbb{E}(X)=\psi'(z),\mathbb{E}(X(X-1))=\psi''(z)$

Пример 4.9.2.
$$\psi = \frac{1}{4}(1+z)^2 = \frac{1}{4} + \frac{1}{2}z + \frac{1}{4}z^2$$

4.10. Характеристические функции

Def. 4.10.1. $\varphi(t) = \mathbb{E}(e^{itX})$. Для дискретной случайной величины:

$$\varphi(t) = \sum_{k=0}^{\infty} e^{itX} p_k$$

Свойства:

- 1. $\varphi_{aX+b}(t) = e^{itb} \cdot \varphi_X(at)$
- 2. $\varphi_{X+Y}(t) = \varphi_X(t) \cdot \varphi_Y(t)$
- 3. $\mathbb{E}(X^k) = (-i)^k \frac{d^k}{dt^k} \cdot \varphi(t)|_{t=0}$

4.11. Нормальное распределение

$$P(X) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(X-a)^2}{\sigma^2}\right)$$

Def. 4.11.1. $N(a, \sigma^2)$ – нормальное распредение. N(0, 1) – стандартное нормальное распределение.

$$\varphi(t) = \exp\left(-ita - \frac{\sigma^2 t^2}{2}\right), \mathbb{E}(X) = a, \mathbb{D}(X) = \sigma^2$$

Замечание 4.11.2. $P(|X-a| < 3\sigma) = \Phi(3) \sim 0.997$

 $\underline{\mathbf{Lm}}$ 4.11.3. Пусть X – неотрицательная случайная величина. Тогда

$$\forall \varepsilon > 0 \ P(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(X)}{\varepsilon}$$

Доказательство. $1_{[0,\varepsilon)}(X) + 1_{[\varepsilon,+\infty)}(X) = 1$, где $1_{[a,b)}(x) = \begin{cases} 1, x \in [a,b) \\ 0, x \notin [a,b) \end{cases}$ $X \cdot 1_{[\varepsilon,+\infty)} \geqslant \varepsilon \cdot 1_{[\varepsilon,+\infty)}(X)$

$$\mathbb{E}(X \cdot 1_{[\varepsilon, +infty)}(X)) \geqslant \varepsilon \mathbb{E}(1_{[\varepsilon, +\infty)}(X))$$

$$\begin{split} \mathbb{E}(X) &= \mathbb{E}(X(1_{[0,\varepsilon)}(X) + 1_{[\varepsilon,+\infty)}(X)) = \mathbb{E}(X \cdot 1_{[0,\varepsilon)}(X)) + \mathbb{E}(X \cdot 1_{[\varepsilon,+\infty)}(X)) \geqslant \\ &\geqslant \mathbb{E}(X \cdot 1_{[\varepsilon,+\infty)}(X)) \geqslant \varepsilon \mathbb{E}(1_{[\varepsilon,+\infty)}(X)) = \varepsilon P(X \geqslant \varepsilon) \end{split}$$

Теорема 4.11.4 (Неравенство Чебышева). $\forall Y$ – случайная величина с конечным вторым моментом. Тогда

$$\forall \delta \ P(|Y - EY| \geqslant \delta) \leqslant \frac{DY}{\delta^2}$$

Доказательство. Рассмотрим $X = |Y - EY|^2, \varepsilon = \delta^2$

$$P(|Y - EY| \ge \delta) = P(|Y - EY|^2 \ge \delta^2) \le \frac{\mathbb{E}(Y - EY)^2}{\delta^2} = \frac{DY}{\delta^2}$$

Замечание 4.11.5. $P(|\sum_{i=0}^{n} K_i - \sum_{i=0}^{n} \mathbb{E} X_i| \geqslant \delta) \leqslant \frac{1}{\delta} \sum_{i=0}^{n} \mathbb{D} X_i$

Def. 4.11.6. Пусть $X_1, X_2, ..., X_n, ...$ – последовательность случайных величин. Тогда $X_n \xrightarrow{n \to a} X$ если $\mathbb{E}(X_n - X)^2 \to 0$ – сходимость среднеквадратичная.

Def. 4.11.7. $X_n \xrightarrow{P} X$, если $P(|X_n - X| \ge \mathbb{E}) \to 0$ – сходимость по вероятности.

Def. 4.11.8. $X_n \xrightarrow[noчmu\ nasepnoe]{} X$, если $P(\omega : X_n(\omega) \to X(\omega)) = 1 - сходимость "почти наверное".$

Теорема 4.11.9 (Закон Больших Чисел). $X_1, ... X_n, ... -$ последовательность одинаково распределенных независимых случайных величин. Пусть $m = EX_i, DX_i < +\infty$. Тогда

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow[n \to \infty]{} m$$

Доказательство. Среднекватратичная сходимость: $\mathbb{E}[\overline{Y}] = \mathbb{E}[(1 \sum_{i=1}^{n} Y_i)] = 1 \sum_{i=1}^{n} \mathbb{E}[Y_i]$

 $\mathbb{E}\overline{X}_n = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n EX_i = \frac{1}{n}\cdot m\cdot n = m$

$$\mathbb{E}(\overline{X}_n - m)^2 = \mathbb{D}(\overline{X}_n) = \mathbb{D}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\mathbb{D}(\sum_{i=1}^n X_i) = \frac{1}{n^2} \cdot \sum_{i=1}^n \mathbb{D}X_i = \frac{1}{n} \cdot \mathbb{D}(X_i) \to 0$$

Сходимость по вероятности:

$$P(|\overline{X}_n - m)| \geqslant m) = P\left(\left|\sum_{i=1}^n X_i - \sum_{i=1}^n EX_i\right| \geqslant n\varepsilon\right) \leqslant \frac{\sum_{i=1}^n \mathbb{D}X_i}{n^2\varepsilon^2} = \frac{\mathbb{D}X_i}{n\varepsilon^2} \to 0$$

Теорема 4.11.10 (Центральная предельная теорема). $\{X_i\}$ — независимые одинаково распределенные случайные величины, $\mathbb{E} X_i = a, \mathbb{D} X_i, \sigma^2$. Пусть $S_n = \sum_{i=1}^n X_i, F_n(x) = P\left(\frac{S_n - na}{\sigma\sqrt{n}} < x\right), N(X)$ — стандартное нормальное распределение. Тогда

$$\sup |F_n(x) - N(X)| \xrightarrow[n \to \infty]{} 0$$

T.e. $S_n \to N(na, n\sigma^2)$