-Implementation of interactive digital tools for Astronomy education

Agustín Vallejo-Villegas¹, Pablo A. Cuartas²

- ¹ ²Universidad de Antioquia, Colombia
- ¹ <u>agustin.vallejo@udea.edu.co</u>
- ² pablo.cuartas@udea.edu.co

Software **Development:**

Deployment:

All done using free, easy-to-learn, well documented software.

SIMULATIONS:

- **Basic Astronomy**
 - Telescopes
 - Solar System Models
 - **Eclipses and Tides**
- Stellar Evolution
- Light & Spectra
- Orbital Mechanics

ACTIVITIES GUIDELINE:

- 1. Identify students' preconceptions.
- 2. Let them explore the simulation on their own, guiding them to specific phenomena.
- 3. Ask them to formulate hypotheses and measure out data.
- 4. **Discuss** afterwards.

ORGANISERS:

MAIN TAKEAWAYS:

- Choose clear learning goals to build upon.
- Focus on a specific phenomena and think about the ways it can be shown, understood, and misunderstood.
- Buttons help guide the user.
- Aesthetics will sometimes be better than realism. It's the teacher's task to land the concept.
- Use the simulations to tackle the biggest misconceptions.

GALLERY:

