1

Focus Questions - Acids & Bases 1.

- 1. Write ionic equations for the following reactions, and give your observations:
 - a) zinc is added to a 4 mol L⁻¹ solution and heated gently
 - b) a dilute solution of sulfuric acid solution is added to solid potassium sulfide
 - c) sulfur dioxide gas is bubbled into a solution of sodium hydroxide
 - d) a solution of sodium hydroxide is added to aluminium hydroxide
 - e) acetic acid is added to copper carbonate
 - f) an excess of sodium hydroxide solution is added to a solution of nickel chloride
 - g) 1 L of 1 mol L⁻¹ phosphoric acid is added to 1 L of 2 mol L⁻¹ sodium hydroxide
- 2. Identify each reactant as a Bronsted-Lowry acid or a Bronsted-Lowry base in the following reactions:
 - a) $HCOOH(aq) + HS^{-}(aq) \rightarrow HCOO(aq) + H_2S(g)$
 - b) $C_6H_5OH(aq) + CN^-(aq) \rightarrow C_6H_5O^-(aq) + HCN(aq)$
 - c) $2Na(s) + 2H_2O(l) \rightarrow 2Na^+(aq) + 2OH^-(aq) + H_2(g)$
- 3. Identify the following statements as true or false:
- a) If 1 mol $L^{\text{-}1}$ HCN has a smaller pH than 1 mol $L^{\text{-}1}$ HF, it follows that HCN must be a weaker acid that HF
 - b) 0.1 mol L⁻¹ Ca(OH)₂ solution has a larger pH than 0.1 mol L⁻¹ KOH solution.
 - c) 0.1 mol L⁻¹ HNO₂ solution has a smaller pH than 0.1 mol L⁻¹ HNO₃ solution.
- d) The concentration of H_3O^+ in 0.1 mol L^{-1} NaHSO₄ is greater than the concentration of H_3O^+ in NaHCO₃.
- e) If HF is a stronger acid than HNO_2 , then it follows that $0.1 \text{ mol } L^{-1} \text{ NaF}$ solution would have a larger pH than $0.1 \text{ mol } L^{-1} \text{ NaNO}_2$ solution.
 - f) Cl_2O , Al_2O_3 and P_4O_{10} are examples of acidic oxides.
- g) Na_2O and CaO will react with an acid because they are basic oxides, but Al_2O_3 will not react with an acid because it is an amphoteric oxide.
 - h) 1.0 mol L⁻¹ NH₃ is a better conductor of electricity than 1.0 mol L⁻¹ NH₄Cl.
 - i) 0.1 mol L⁻¹ H₂SO₄ will have the same pH as 0.1 mol L⁻¹ HCl.
- 4. The self ionization reaction of water is an endothermic process. Would the pH of boiling pure water be greater than, less than or equal to 7?

5. resulting	0.0 mL of 0.400 mol L ⁻¹ H ₂ SO ₄ is reacted with 30.0 mL of 0.750 mol L ⁻¹ KOH. Calculate the pH of the solution.
6. solution	5.0 mL of a solution of HNO ₃ has a pH of 2. If 0.0380 g of NaOH is added to the HNO ₃ solution and t made up to 100 mL, what will be the pH of the resulting solution?
7.	ach of the following salts are added to water. Answer the following questions for each salt: what is the equation for the dissociation reaction
) what is the equation for the hydrolysis reaction (that occurs after dissociation) i) will the resulting solution have a pH greater than, equal to or less than 7?
	a) NaHCO ₃
	b) NH NO.
	b) NH ₄ NO ₃
	c) MgF ₂

ANSWERS

the

- 1. a) $Zn(s) + 2OH(aq) + 2H_2O(l) \rightarrow Zn(OH)_4^2(aq) + H_2(g)$ silver solid dissolves to form colourless, odourless gas and colourless solution
 - b) $2H^+(aq) + K_2S(s) \rightarrow 2K^+(aq) + H_2S(g)$ white solid dissolves to form colourless evil-smelling gas and colourless solution
 - c) $SO_2(g) + 2OH(aq) \rightarrow SO_3^{2-}(aq) + H_2O(l)$ colourless solution forms, pungent small of gas disappears
 - d) $OH^{-}(aq) + Al(OH)_{3}(s) \rightarrow Al(OH)_{4}^{-}(aq)$ white solid dissolves to form colourless solution
 - e) $2CH_3COOH(aq) + CuCO_3(s) \rightarrow CO_2(g) + H_2O(l) + Cu^{2+}(aq) + 2 CH_3COO^{-}(aq)$ green solid dissolves to form colourless, odourless gas and blue solution, vinegar smell disappears
 - f) $2OH^{-}(aq) + Ni^{2+}(aq) \rightarrow Ni(OH)_{2}(s)$ green precipitate forms $(Ni(OH)_{2} \text{ is not amphoteric, so cannot react to form a complex ion)}$
 - g) $H_3PO_4(aq) + 2OH^*(aq) \rightarrow 2H_2O(l) + HPO_4^*(aq)$ no observable change (The acid and hydroxide are mixed in a 1:2 mole ratio, so only 2 of possible 3 hydrogen ions are removed from the triprotic acid)
- 2. a) HCOOH(aq) acid HS⁻(aq) base
 - b) $C_6H_5OH(aq)$ acid $CN^-(aq)$ base
 - c) not an acid/base reaction
- 3. a) smaller pH means larger conc of H^+ , so HCN must be stronger FALSE
 - b) Ca(OH)₂ has a larger conc of OH⁻, or a smaller conc of H⁺ i.e. it will have a larger pH TRUE
 - c) HNO₂ is the weaker acid, so has smaller conc of H⁺ i.e. larger pH FALSE
- d) HSO_4^- is a weak acid, so will produce H^+ when added to water, but HCO_3^- is a weak base so will form OH^- , TRUE
 - e) F will be a weaker base than NO₂, soNO₂ will have greater conc of OH i.e. larger pH FALSE
 - f) Cl_2O and P_4O_{10} are non-metal oxides, so are acidic, but Al_2O_3 is amphoteric FALSE
- g) Na_2O and CaO will react with an acid, but so will Al_2O_3 because amphoteric oxides react with both acids and bases FALSE
 - h) NH_3 is a weak molecular gas and so will form few ions when dissolved in water, but NH_4Cl is an ionic substances and so completely dissociates and forms many ions when dissolved in water FALSE
- i) H_2SO_4 loses its 'first H+' completely and 'partially' loses its second one i.e. H_2SO_4 will produce a greater conc of H+ i.e. smaller pH FALSE
- 4. $2H_2O \rightarrow H_3^+(aq) + OH^-(aq)$ is endothermic i.e. ΔH is positive When temp increases the value of the ionization constant increases i.e. equilibrium shifts towards products, so conc of H^+ will increase i.e. pH will be less than 7.

5. moles $H_2SO_4 = 0.400 \times 0.0200 = 0.00800$

moles of $H^+ = 2 \times 0.00800 = 0.0160$

moles KOH = $0.750 \times 0.0300 = 0.0225 = \text{moles OH}^{-}$

$$H^+ + OH^- \rightarrow H_2O$$

0.0160 moles of H⁺ will react with 0.0160 moles of OH⁻

i.e. after this reaction, will be left with 0.0225 - 0.0160 = 0.0065 moles of OH in a volume of 0.0500 L

conc of OH^{-} in final solution = $0.0065/0.0500 = 0.130 \text{ mol } L^{-1}$

 $[H^+]$ in final solution = $1 \times 10^{-14}/0.130 = 7.692 \times 10^{-14} \text{ mol L}^{-1}$

$$pH = -log[H^+] = 13.1$$

6. pH of 2 means $[H^+] = 1 \times 10^{-2} \text{ mol L}^{-1}$

i.e. in 25.0 mL of this solution moles $H^+ = c \times V = 0.01 \times 0.0250 = 0.000250$ moles of H^+

moles NaOH = $0.0380/39.998 = 0.000950 = moles of OH^{-}$

$$H^+ + OH \rightarrow H_2O$$

0.000250 moles of H⁺ will react with 0.000250 moles of OH⁻

i.e. after this reaction, will be left with 0.000950 - 0.000250 = 0.000700 moles of OH in a volume of 0.100

L

conc of OH^{-} in final solution = $0.0007/0.100 = 0.00700 \text{ mol } L^{-1}$

 $[H^{+}]$ in final solution = $1 \times 10^{-14}/0.007 = 1.429 \times 10^{-12} \text{ mol L}^{-1}$

$$pH = -log[H^+] = 11.8$$

- 7. a) i) $NaHCO_3 \rightarrow Na^+ + HCO_3^$
 - ii) $HCO_3^- + H_2O \rightarrow H_2CO_3 + OH$ Na^+ do not significantly hydrolyse
 - iii) because OH⁻ ions have been formed, [OH] will be greater than [H₃O⁺] i.e. **pH greater than 7**
 - b) i) $NH_4NO_3 \rightarrow NH_4^+ + NO_3^$
 - ii) $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ NO_3^- do not significantly hydrolyse
 - iii) because H_3O^{+-} ions have been formed, $[H_3O^+]$ will be greater than $[OH^-]$ i.e. **pH less than 7**
 - c) i) $MgF_2 \rightarrow Mg^{2+} + 2F^{-}$
 - ii) $F + H_2O \rightarrow HF + OH^ Mg^{2+}$ ions do not significantly hydrolyse
 - iii) because OH⁻ ions have been formed, [OH] will be greater than [H₃O⁺] i.e. **pH greater than 7**