Vortrag 14 – Die Dedekindsche Zetafunktion

Primzahlen der Form x^2+ny^2

Seminar im WS 2021/2022

Vinzenz Baumann

Zusammenfassung

Wir führen die Dedekindsche Zetafunktion ζ_K eines Zahlkörpers K (als Eulerprodukt) ein, zeigen, dass sie eine holomorphe Funktion auf $\{s \in \mathbb{C} : \operatorname{Re}(s) > 1\}$ definiert, und leiten ihre Dirichletreihenentwicklung her. Anschließend beweisen wir, dass ζ_K im Falle eines quadratischen Zahlkörpers K als Produkt der Riemannschen Zetafunktion ζ mit einer gewissen L-Funktion geschrieben werden kann. Ist K imaginär quadratisch, so erhalten wir auf diese Weise eine handliche Formel für die Anzahl der Darstellungen einer natürlichen Zahl $n \in \mathbb{N}$ als n = f(x,y), wobei f eine reduzierte quadratische Form $f \in \mathbb{Z}[X,Y]$ mit Diskriminante Δ_K ist.

Definition 1.1 (Riemannsche Zetafunktion). Die *Riemannsche Zetafunktion* ist definiert als

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{n} \frac{1}{1 - p^{(-s)}}$$

mit

$$\zeta: \{s \in \mathbb{C} : \operatorname{Re}(s) > 1\} \to \mathbb{C}$$

Dabei ist $\prod_{p} \frac{1}{1-p^{(s)}}$ die Definition als Eulerprodukt über Primzahlen und $\sum_{n=1}^{\infty} \frac{1}{n^s}$ die Definition als Dirichletreihe.

Definition 1.2 (Zahlkörper). Ein Rationalit "atsbereich" oder (algebraischer) Zahlk" k" "orper" ist eine endliche K" ein Zahlk" "orper" eine Zahlk" "orper" man nennt einen Zahlk" "orper" "orper" wenn er die Dimension 2 hat.

Definition 1.3 (Ganzheitsring). Sei K ein Zahlkörper. Dann definiert $O_K := K \cap \mathbb{A}$ den Ganzheitsring, wobei \mathbb{A} als Ring der ganz algebraischen Zahlen definiert ist.

Definition 1.4 (Absolutnorm eines Ideals). Sei K ein Zahlkörper mit Ganzheitsring O_K und \mathfrak{a} ein Ideal in O_K , welches ungleich dem Nullideal ist. So ist die Absolutnorm definiert durch

$$N(\mathfrak{a}) := [O_K : \mathfrak{a}] = |O_K/\mathfrak{a}|$$

Bemerkung. (1) Nach Konvention ist die Norm des Nullideals 0. (2) Ist \mathfrak{a} ein Hauptideal (a), dann ist

$$N(\mathfrak{a}) = |N_{K|\mathbb{Q}}(a)|$$

(3) Die Norm ist multiplikativ. Es ist $N(\mathfrak{a} \cdot \mathfrak{b}) = N(\mathfrak{a}) \cdot N(\mathfrak{b})$

Definition 1.5 (Dedekindsche Zetafunktion). Sei K ein Zahlkörper. Wir definieren die *Dedekindsche Zetafunktion* ζ_K zum Zahlkörper K durch

$$\zeta_{K(s)} := \prod_{\mathfrak{p}} \frac{1}{1 - N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)}}$$

wobei sich das Produkt über alle Primideale $\langle 0 \rangle \subseteq \mathfrak{p} \subseteq O_K$ erstreckt. Wir definieren $N_{K|\mathbb{Q}}(\mathfrak{p}) := |O_K|$ und auch $N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)} := \exp(-\log(N_{K|\mathbb{Q}}(\mathfrak{p})) \cdot s)$

Satz 1.1. Für Zahlkörper $K = \mathbb{Q}$ stimmt die Dedekindsche Zetafunktion mit der Riemanschen Zetafunktion überein.

Beweis. Es ist $O_K=\mathbb{Z}$, also sind die Primideale $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K$ gerade jene Haupideale $\langle p \rangle \subseteq \mathbb{Z}$, die von Primzahlen p erzeugt werden. Führen wir diesen Gedanken weiter so gilt $N_{\mathbb{Q}|\mathbb{Q}}(\langle p \rangle) = |\mathbb{Z}/\langle p \rangle| = p$, also erhalten wir

$$\zeta_{\mathbb{Q}}(s) = \prod_{p} \frac{1}{1 - p^{(-s)}} = \zeta(s)$$

Definition 1.6 (Unendliches Produkt). Sei $(a_{\nu}) \subset \mathbb{C}$. Das unendliche Produkt $\prod_{\nu=1}^{\infty} (a_{\nu})$ existiert, falls gilt:

(1) Entweder sind alle $a_{\nu} \neq 0$, es existiert der Grenzwert $a := \lim_{\nu = 1}^{n} (a_{\nu})$ und es ist $a \neq 0$

(2) Oder es gibt ein ν_0 , so dass $a \neq 0$ für alle $\nu \geq \nu_0$ ist, und es existiert $a^* := \prod_{\nu=\nu_0}^{\infty}$ im obigen Sinne. Dann setzen wir $a := a^* \cdot \prod_{\nu=1}^{\nu_0-1} a_{\nu}$.

Bemerkung (Konvergenz von unendlichen Produkten). Das unendliche Produkt $\prod_{\nu=1}^{\infty}(a_{\nu})$ existiere. Dann gilt:

(1) $\prod_{\nu=1}^{\infty}a_{\nu}=0$ genau dann, wenn mindestens ein a_{ν} gleich Null ist.

(2) Die Folge (a_{ν}) ist "1-Folge", das heißt es ist $\lim_{\nu \to \infty} a_{\nu} = 1$.

Bemerkung (Konstruktion des Logarithmus im Komplexen). Durch die Einschränkung der Exponentialfunktion auf den Streifen $S = \{z \in \mathbb{C} : \text{Im}(z) \in (-\pi,\pi)\}$ wird sie injektiv und der Satz der Umkehrfunktion ist anwendbar. Daraus folgt:

$$Log(z) := log(r) + \phi$$

mit r=|z| mit $arg(z)=\phi.$ Hierbei bezeichnet log den reellen und Log den komplexen Logarithmus.

Bemerkung (Cauchy-Riemann-Differentialgleichug in Polarkoordinaten (CRDFG)). Durch die Darstellung einer komplexen Zahl als $z=r\cdot e^{i\phi}$ folgt eine besondere Form der CRDFG. Es ist:

$$(1)\frac{\delta u}{\delta r} = \frac{1}{r}\frac{\delta v}{\delta \phi}$$

und

$$(2)\frac{\delta v}{\delta r} = -\frac{1}{r}\frac{\delta u}{\delta \phi}$$

 $\min f := u + iv$.

Folgerung (Log ist holomorph). Mit obiger Gleichung folgt mit $Log(r \cdot e^{i\phi}) := log(r) + i\phi$, dass

$$\frac{\delta u}{\delta r} = \frac{1}{r} = \frac{1}{r} \frac{\delta v}{\delta \phi}$$

und

$$\frac{\delta v}{\delta r} = 0 = -\frac{1}{r} \frac{\delta u}{\delta \phi}$$

 $mit f = log(r) + i\phi = u + iv.$

Bemerkung (Potenzreihe des Logarithmus auf $\mathbb{C} \setminus \{0\}$). Mit

$$Log(z) := log|z| + i \cdot arg(z)$$

folgt:

$$Log(z) = \sum_{n=1}^{\infty} \infty \frac{(-1)^{(n-1)}}{n} (z-1)^n$$

als Potenzreihe mit Konvergenzradius 1 für alle $z \in \mathbb{C}$ und $z \neq 0$.

Definition 1.7 (Normale Konvergenz). Eine Reihe von Funktionen $f_1 + f_2 + f_3 + \dots + f_n : D \to \mathbb{C}$ für $D \subset \mathbb{C}$ und $n \in \mathbb{N}_0$ heißt normal konvergent in D, falls es zu jedem Punkt $a \in D$ eine Umgebung U und eine Folge $(M_n)_{n \geq 0}$ nicht negativer reeller Zahlen gibt, so dass gilt

$$|f_n(z)| \leq M_n$$

für alle $z \in U \cap D$, für alle $n \in \mathbb{N}_0$ und $\sum_{n=0}^{\infty} M_n$ konvergent.

Bemerkung (Identitätssatz). Seien f und g holomorphe Funktionen auf einer Umgebung U von z_0 und sei z_0 ein Häufungspunkt der Koinzidenzmenge $\{z \in U | f(z) = g(z)\}$, dann existiert eine Umgebung V von z_0 mit f(z) = g(z) auf ganz V.

Lemma 1.2. Sei $\sum_{n=1}^{\infty} f_n$ eine normal konvergente Reihe von holomorphen Funktionen $f_n: D \to \mathbb{C}$ auf einem Gebiet $D \subseteq \mathbb{C}$. Dann existiert für jeden Punkt $z \in \mathbb{C}$ eine offene Umgebung $z \in U \subseteq \mathbb{C}$ so wie eine natürliche Zahl $N \in \mathbb{N}$, sodass $|f_n(z)| \leq \frac{1}{2}$ für alle $z \in U$ und alle $n \geq N$ gilt. In diesem Fall ist durch

$$F_N(z) := \sum_{n=N}^{\infty} \text{Log}(1 + f_n(z))$$

eine holomorphe Funktion $F_N: U \to \mathbb{C}$ definiert. Weiter gilt

$$\lim_{m \to \infty} \prod_{n=1}^{m} (1 + f_n(z)) = \prod_{n=1}^{N-1} (1 + f_n(z)) \cdot e^{F_N(z)}$$

für alle $z \in U$. Insbesondere stellt das unendliche Produkt

$$\prod_{n=1}^{\infty} (1 + f_n(z)) := \lim_{m \to \infty} \prod_{n=1}^{m} (1 + f_n(z))$$

eine holomorphe Funktion auf D dar.

Beweis. Für den Beweis benötigen wir zunächst zwei Hilfslemmata.

Hilfslemma 1. Aus $|f_n(z)| \leq \frac{1}{2}$ folgt $f_n(z) \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$.

$$|(f_n(z))|^2 = \sqrt{f_n(z) \cdot \iota(f_n(z))}^2 = \sqrt{f_n(z)}^2 \cdot \sqrt{\iota(f_n(z))}^2 = f_n(z) \cdot \iota(f_n(z))$$

und wegen der Positiven Definitheit des Betrags gilt bereits, das jeweils beide Ausdrücke größer oder gleich Null sind. Die Null wird aber durch die Addition mit der 1 ausgeschlossen. So folgt $1+(f_n(z)\in\mathbb{C}\setminus\mathbb{R}_{\leq 0}$

Insbesondere:

Es ist $\text{Log}(1 + f_n(z))$ für alle $z \in U$ und $n \geq N$ definiert, da aus der obiger Betrachtung hervorgeht, dass $1 + f_n(z)$ auf der Einschränkung, auf der Log definiert ist, operiert.

Hilfslemma 2. Abschätzung $|Log(1+z)| \le 2|z|$ für alle $z \in \mathbb{C}$ $mit|z| \le \frac{1}{2}$

Beweis.

$$|\operatorname{Log}(1+z)| = |\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{z^n}{n}| \le |z| \sum_{n=0}^{\infty} \frac{|z|^n}{n+1}$$

$$< |z| \cdot (\frac{1}{1} + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 2^2} + \dots + \frac{1}{(n+1) \cdot 2^{(n)}}) = 2 \cdot |z|$$

wobei bei dem letzten Gleichheitszeichen der Wert der geometrischen Reihe benutzt wurde. Nämlich

$$\sum_{n=0}^{\infty} \frac{1}{(n+1) \cdot 2^{(n)}} < \sum_{n=0}^{\infty} \frac{1}{2^{(n)}} = \sum_{n=0}^{\infty} (\frac{1}{2})^n = \frac{1}{1 - (\frac{1}{2})} = 2$$

Beweis zu Lemma 1.2. Aus Hilfslemma 1 folgt $(1+f_n(z)) \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Zeige weiter $F_N(z) := \sum_{n=N}^{\infty} \operatorname{Log}(1+f_n(z))$ ist normal konvergent auf U. Dies folgt daraus, dass $|Log(1+z)| \leq 2|z|$ für $z \in \mathbb{C}$ mit $|z| \leq \frac{1}{2}$ nach Hilfslemma 2 und der Tatsache, dass mit der Abschätzung von $|Log(1+z)| \leq 2|z|$ mit $|f_n(z)| \leq \frac{1}{2} |F_N(z)|$ genau der Definition der normalen Konvergenz entspricht. Insbesondere stellen F_N und e^{F_N} holomorphe Funktionen dar, da Holomorphie unter Bildung von Summen, Produkten und Verkettungen erhalten bleibt. Für beliebige $z \in \mathbb{C}$ und $m \leq N$ gilt, dass

$$\begin{split} \prod_{n=1}^{m} (1+f_n(z)) &= \prod_{n=1}^{N-1} (1+f_n(z)) \cdot \prod_{n=N}^{m} (1+f_n(z)) = \prod_{n=1}^{N-1} (1+f_n(z)) \cdot \prod_{n=N}^{m} (e^{Log(1+f_n(z))}) \\ &= \prod_{n=1}^{N-1} (1+f_n(z)) \cdot \prod_{n=N}^{m} (e^{\sum_{n=N}^{m} Log(1+f_n(z))}) \end{split}$$

wobei hier benutzt wurde, dass e^{F_n} auf der bereits oben angesprochenen Einschränkung konform mit dem komplexen Logarithmus agiert. Mit der Stetigkeit der Exponentialfunktion folgt

$$\lim_{m \to \infty} \prod_{n=1}^{m} (1 + f_n(z)) = \prod_{n=1}^{N-1} (1 + f_n(z)) \cdot e^{F_N(z)}$$

für alle $z \in U$ gilt. Durch die Holomorphie von $(1+f_n)$ für $1 \le n \le N-1$ und e^{F_n} und dem Umstand, dass endliche Produkte holomorpher Funktionen wiederum holomorph sind, stellt

$$\prod_{n=1}^{\infty} (1 + f_n(z))$$

als unendliches Produkt eine holomorphe Funktion - nicht nur für alle z_0 auf U, sondern aufgrund der Offenheit der Umgebung U auf ganz D - dar.

Proposition 1.3. Sei K ein Zahlkörper. Dann konvergiert das unendliche Produkt

$$\zeta_{K(s)} = \prod_{\mathfrak{p}} \frac{1}{1 - N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)}}$$

für $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1$. Des weiteren stellt $\zeta_K(s) \colon \{s \in \mathbb{C} \colon \operatorname{Re}(s) > 1\} \to \mathbb{C}$ eine holomorphe Funktion dar.

Beweis. Der Ausdruck

$$\zeta *_{K(s)} = \prod_{\mathfrak{p}} 1 - N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)}$$

für $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1$ konvergiert, beziehungsweise ist auf diesem Gebiet holomorph. Zunächst ist es wichtig zu sehen, dass keiner der Faktoren $1 - N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)}$ eine Nullstelle in der Menge $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1$ besitzt. Dies folgt schnell über:

Angenommen $1 - N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)}$ hat eine Nullstelle in der Menge $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1$, so folgt $1 = N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)}$. Das bedeutet nach der Norm $|O_K/\mathfrak{p}| = 1$, d. h. $\mathfrak{p} = O_K$. Dann ist aber \mathfrak{p} nicht echt in O_K und daher kein Primideal.

Trifft die Behauptung auf $\zeta *_K$ zu, so gilt zusätzlich $\zeta *_K \neq 0$ für alle $s \in \mathbb{C}$ mit $\mathrm{Re}(s) > 1$. Denn wäre $\zeta *_K = 0$, so wäre nach oben stehendem Satz mindestens ein Faktor gleich Null. Dies haben wir aber eben ausgeschlossen. So ist auch $\zeta *_K^{-1}$ holomorph auf diesem Gebiet.

Es genügt nun zu zeigen, dass $\zeta *_K^{-1} = \zeta_K.$ Es ist

$$\zeta *_K^{-1} = (\prod_{\mathfrak{p}} (1 - N_{N|\mathbb{Q}}(\mathfrak{p})^{(-s)}))^{-1}$$

$$= \prod_{\mathfrak{p}} (1 - N_{N|\mathbb{Q}}(\mathfrak{p})^{(-s)})^{-1} = \prod_{\mathfrak{p}} \frac{1}{1 - N_{N|\mathbb{Q}}(\mathfrak{p})^{(-s)}} = \zeta_{K}$$

Damit folgt ζ_K ist holomorph auf $\{s\in\mathbb{C}\colon \mathrm{Re}(s)>1\}$. Der Nachweis der normalen Konvergenz der Funktionenreihe

$$\sum_{\mathfrak{p}} N_{N|\mathbb{Q}}(\mathfrak{p})^{-s}$$

auf $\{s \in \mathbb{C} : Re(s) > 1\}$ folgt aus

$$\sum_{\mathfrak{p}} |e^{Log(N_{K|\mathbb{Q}}(\mathfrak{p})^{(-s)})}| = \sum_{\mathfrak{p}} |e^{-s \cdot Log(N_{K|\mathbb{Q}}(\mathfrak{p}))}|$$

und unter der Verwendung von Folgendem:

Es ist mit z = x + iy

$$|e^z| = e^x$$

da

$$|e^{z}| = |e^{x+iy}| = |e^{x} \cdot e^{iy}| = |e^{x}| \cdot |e^{iy}| = e^{x} \cdot |e^{iy}| = e^{x} \cdot |\cos(y) + i \cdot \sin(y)|$$
$$= e^{x} \cdot \sqrt{\cos^{2}(x) + \sin^{2}(x)} = e^{x} \cdot 1$$

und mithilfe der folgenden Betrachtung:

Jedes Primideal $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K$ in $\mathfrak{p} \in O_K$ enthält eine Primzahl p und \mathfrak{p} tritt in diesem Fall in der Primidealzerlegung (siehe Vortrag 5) des Hauptideals $\langle p \rangle = p \cdot O_K$ auf. Weiter gibt es zu jeder Primzahl p nur endlich viele Primideale $\mathfrak{p} \subset O_K$, die p enthalten. Präziser gilt: Für fast alle Primzahlen gibt es höchstens $[K \colon \mathbb{Q}]$ verschiedene Primideale $\mathfrak{p} \subset O_K$, die p enthalten. So folgt:

$$\sum_{\mathfrak{p}, p \in \mathfrak{p}, p > C} (N_{K|\mathbb{Q}}(\mathfrak{p}))^{-\operatorname{Re}(s)} \le [K \colon \mathbb{Q}] \cdot \sum_{p > C} p^{-\operatorname{Re}(s)}$$

Den letzten Ausdruck kann man mithilfe der Geometrischen Reihe abschätzen.

Definition 1.8 (Dirichletreihe). Eine *(formale) Dirichletreihe* ist eine Reihe der Form

$$\mathbb{D}(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

wobei a_n eine beliebige Folge komplexer Zahlen beschreibt.

Proposition 1.4. Sei K ein Zahlkörper. Dann gilt für alle $s \in \mathbb{C}$ mit Re(s) > 1, dass

$$\zeta_K(s) = \sum_{\mathfrak{J}} \frac{1}{(N_{K|\mathbb{Q}}(\mathfrak{J}))^s} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

wobei sich die Summation in $\sum_{\mathfrak{J}}$ über alle Ideale $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K$ erstreckt und a_n für $n \in \mathbb{N}$ die Anzahl der Ideale $\mathfrak{J} \subseteq O_K$ mit $N_{K|\mathbb{Q}}(\mathfrak{J}) = n$ bezeichnet. Insbesondere gilt:

$$\zeta_{K(s)} = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Beweis. Zur Vereinfachung, führt man eine beliebige Nummerierung auf der Menge aller Primideale $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K$ ein. Diese hat die Form

$$\{\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K\} = \{\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3, \ldots\}$$

Die Abzählbarkeit dieser Menge folgt aus:

Jedes Primideal $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K$ in O_K enthält eine Primideale, die in O_K sind und p enthalten, sind genau die Primideale, die in der Faktorisierung des Hauptideals pO_K auftreten (nach Vortrag 5). In der Faktorisierung von pO_K treten aber nur endlich viele Primideale auf, das heißt zu jeder Primzahl p gibt es nur endlich viele Primideale, die p enthalten. Somit besteht die Menge der Primzahlen, die p enthalten, aus einer abzählbaren Vereinigung von abzählbaren Mengen - nämlich die Vereinigung über alle Primzahlen und die Vereinigung aller Primideale, die p enthalten. Abzählbare Vereinigungen abzählbarer Mengen sind wiederum abzählbare Mengen.

Sei weiter $s \in \mathbb{C}$ mit Re(s) > 1 beliebig, dann ist mit $N_{K|\mathbb{Q}} \geq 2$ für jedes $m \in \mathbb{N}$, siehe Beweis Proposition 1.3. So folgt:

$$\prod_{m=1}^{n} \frac{1}{1 - N_{K|\mathbb{Q}}(\mathfrak{p}_m)^{(-s)}} = \prod_{m=1}^{n} \sum_{k=0}^{\infty} (N_{K|\mathbb{Q}}(\mathfrak{p}_m))^{-k \cdot (s)} = \prod_{m=1}^{n} \sum_{k=0}^{\infty} (N_{K|\mathbb{Q}}(\mathfrak{p}_m^k))^{(-s)}$$

Daraus resultiert mit Anwendung der Geometrischen Reihe auf $(N_{K|\mathbb{Q}}(\mathfrak{p}_m^k))^{(-s)} < 1$, dass das Produkt absolut konvergiert, da es Produkt absolut konvergenter Reihen ist. Mithilfe des Umordnungssatzes für absolut konvergente Reihen und der Mulitplikativität der Norm spricht dann:

$$\prod_{m=1}^{n} \sum_{k=0}^{\infty} (N_{K|\mathbb{Q}}(\mathfrak{p}_{m}^{k}))^{(-s)} = 1 + \sum_{j=1}^{n} \sum_{k=0}^{n} N_{K|\mathbb{Q}}(\mathfrak{p}_{m_{1}}^{\alpha_{1}})^{(-s)} \cdots N_{K|\mathbb{Q}}(\mathfrak{p}_{m_{j}}^{\alpha_{j}})^{(-s)}$$

$$=1+\sum_{j=1}^n\sum_{m_1}N_{K|\mathbb{Q}}(\mathfrak{p}_{m_1}^{\alpha_1}\cdots\mathfrak{p}_{m_j}^{\alpha_j})^{(-s)}$$

wobei sich die unbeschriftete Summe über alle Teilmengen $\{m_1, ..., m_j\} \subseteq \{1, ..., n\}$ und alle $(\alpha_1, ..., \alpha_j)$ erstreckt. Mit $n \to \infty$ folgt mit der vorherigen Proposition, dass

$$1 + \sum_{j=1}^{\infty} \sum N_{K|\mathbb{Q}} (\mathfrak{p}_{m_1}^{\alpha_1} \cdots \mathfrak{p}_{m_j}^{\alpha_j})^{(-s)}$$

Aufgrund der eindeutigen Primidealzerlegung in O_K und dass $\mathbb{N}_K(O_K)^{-s} = 1$ tritt jedes Ideal $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq O_K$ genau einmal als $\mathfrak{p}_{m_1}^{\alpha_1} \cdots \mathfrak{p}_{m_j}^{\alpha_j}$ genau einmal auf. Wieder aufgrund der Umordnung folgt daraus

$$\zeta_K(s) = \sum_{\mathfrak{J}} \frac{1}{(N_{K|\mathbb{Q}}(\mathfrak{J}))^s} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

und im Falle $K = \mathbb{Q}$ gibt es für jede natürliche Zahl genau ein Ideal mit Norm n, nämlich $\langle n \rangle = n \mathbb{Z} \subseteq \mathbb{Z}$, daher gilt $a_n = 1$ für alle $n \in \mathbb{N}$. So folgt insbesondere:

$$\zeta_{K(s)} = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Bemerkung. Der aus Vortrag 8 existierende Gruppenhomomorphismus ist als Funktion aufgefasst $\chi_k \colon \mathbb{N} \to \{-1,0,1\}$, wobei man für $n \in \mathbb{N}$ schreibt, dass

$$\chi_K = \begin{cases} 0 \ falls \ \operatorname{ggT}(n, \Delta_K) > 1, \\ \chi_K(\bar{n}) \ falls \ \operatorname{ggT}(n, \Delta_K) = 1 \end{cases}$$

Theorem 1.5. Sei $K = \mathbb{Q}(\sqrt{d})$ ein quadratischer Zahlkörper. Dann definiert das Eulerprodukt

$$L(s, \chi_K) := \prod_p \frac{1}{1 - \chi_K(p)p^{(-s)}}$$

eine holomorphe Funktion $L(s,\chi_K)$: $\{s \in \mathbb{C} : \operatorname{Re}(s) > 1\} \to \mathbb{C}$ und es gilt

$$\zeta_K(s) = \zeta(s) \cdot L(s, \chi_K)$$

für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1$. Man nennt $L(\cdot, \chi_k)$ die L-Funktion zum Gruppenhomomorphismus χ_K .

Beweis. Wenn

$$\prod_{\mathfrak{p},p\in\mathfrak{p}}\frac{1}{(1-N_{K|\mathbb{Q}}(\mathfrak{p}))^{(-s)}}=\frac{1}{1-p^{-s}}\cdot\frac{1}{1-\chi_{k}(p)p^{-s}}$$

für jede Primzahl p gilt, dann folgt daraus, dass

$$L(s, \chi_K) = \zeta_K(s) \cdot \zeta(s)^{-1}$$

für alle $s \in \mathbb{C}$ mit Re(s) > 1 gilt, da $\zeta(s) \neq 0$. Dadurch ist

$$L(\cdot, \chi_K) = \zeta_K \cdot \zeta^{-1} \colon \{ s \in \mathbb{C} \colon \operatorname{Re}(s) > 1 \} \to \mathbb{C}$$

eine holomorphe Funktion.

Fall 1. $O_K = \mathbb{Z}[\sqrt{-d}]$

Betrachte also $d \equiv 2,3 \pmod{4}$ Die Primideale $\mathfrak{p} \subseteq O_K$, die p enthalten, entsprechen genau den Primidealen im Ring

$$O_K/\langle p \rangle \cong \mathbb{Z}[X]/\langle X^2 - d, p \rangle \cong (\mathbb{Z}/p\mathbb{Z})[X]/\langle X^2 - \bar{d} \rangle$$

Dies folgt aus Vortrag 3, Beweis Proposition 1, aus dem Isomorphiesatz.

Fall 1.1. Angenommen $p \mid \Delta_K$. Das bedeutet im Fall $d \equiv 2, 3 \pmod{4}$, dass entweder p = 2 oder $p \mid d$. Im ersten Fall ist $X^2 - \bar{d} = (X - \bar{d})^2 \in (\mathbb{Z}/2\mathbb{Z})[X]$. Im zweiten Fall ist $X^2 - \bar{d} = X^2 \in (\mathbb{Z}/p\mathbb{Z})[X]$, also hat das Polynom $X^2 - \bar{d} \in (\mathbb{Z}/p\mathbb{Z})$ auf jeden Fall eine doppelte Nullstelle in $\mathbb{Z}/p\mathbb{Z}$. Vermöge der Isomorphismus von oben bedeutet das einerseits, dass $\langle p \rangle \subseteq O_K$ kein Primideal ist und andererseits, dass es ein eindeutiges Primideal $\mathfrak{p} \subseteq O_K$ mit $p \in \mathfrak{p}$ gibt. Dies folgt daraus, dass eine Primzahl genau dann prim in O_K ist, wenn das Polynom keine Nullstellen in $(\mathbb{Z}/p\mathbb{Z})[X]$ hat. Des Weiteren ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper. Das einzige maximale und damit prime Ideal ist das Nullideal, welches p enthält.

In Anbetracht der eindeutigen Primfaktorzerlegung kann das nur bedeuten, dass $\langle p \rangle = \mathfrak{p}^k$ für ein $k \geq 2$ gilt. Da aber $p^2 = N_{K|\mathbb{Q}}(\langle p \rangle) = N_{K|\mathbb{Q}}(\mathfrak{p}^k) = N_{K|\mathbb{Q}}(\mathfrak{p})^k$ gilt, folgt aus der eindeutigen Primzfaktorzerlegung in \mathbb{Z} , dass k=2 und $N_{K|\mathbb{Q}}(\mathfrak{p}) = p$. So gilt für die linke Seite $\frac{1}{1-p^{-s}}$ und die rechte Seite

$$\frac{1}{1 - p^{-s}} \cdot \frac{1}{1 - 0 \cdot p^{-s}} = \frac{1}{1 - p^{-s}}$$

also die Gleichheit beider Seiten.

Fall 1.2. Angenommen $p \nmid \Delta_K$ und $\chi(\bar{p}) = (\frac{\Delta_K}{p}) = 1$. Da $\Delta_K = 4d$, folgt daraus, dass

$$(\frac{d}{p}) = (\frac{2}{p})^2 \cdot (\frac{d}{p}) = (\frac{4d}{p}) = (\frac{\Delta_K}{p}) = 1$$

Dann liefert die Definition des Legendre Symbols, dass $\bar{d} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ ein Quadrat ist, sagen wir $\bar{d} = \bar{y}^2$ für ein $y \in \mathbb{Z}, p \nmid y$. Das ergibt, dass

$$X^2 - \bar{d} = (X - \bar{y})(X + \bar{y})$$

in $(\mathbb{Z}/p\mathbb{Z})[X]$ gilt, also dass $X^2 - \bar{d}$ zwei verschiedene Nullstellen in $\mathbb{Z}/p\mathbb{Z}$ hat. Das bedeutet, dass es genau zwei verschiedene Primideale in O_K gibt, die p enthalten, und wie in Fall 1.1, dass diese Norm p haben. Somit ist die linke Seite gegeben durch $(\frac{1}{1-p^{-s}})^2$, die rechte Seite durch

$$\frac{1}{1-p^{-s}} \cdot \frac{1}{1-1 \cdot p^{-s}} = (\frac{1}{1-p^{-s}})^2$$

und damit wiederum gleich.

Fall 1.3. Angenommen $p \nmid \Delta_K$ und $\chi(\bar{p}) = (\frac{\Delta_K}{p}) = -1$. Wie in Fall 1.2 folgt $(\frac{d}{p}) = -1$, also dass $\bar{d} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ kein Quadrat ist. Das bedeutet aber, dass

das Polynom $X^2 - \bar{d} \in (\mathbb{Z}/p\mathbb{Z})[X]$ keine Nullstelle in $\mathbb{Z}/p\mathbb{Z}$ besitzt. Bei einem Polynom von Grad 2 ist das wiederum äquivalent dazu, dass es keine Nullstellen in $\mathbb{Z}/p\mathbb{Z}$ besitzt. Damit ist das Polynom irreduzibel. Daraus folgt aber $(\mathbb{Z}/p\mathbb{Z})[X]/\langle X^2 - \bar{d} \rangle$ ist ein Körper. Also trifft wegen des Isomorphismus Selbiges auf $O_K/\langle p \rangle$ zu. Das macht das von p erzeugte Ideal in O_K zu einem maximalen und insbesondere zu einem Primideal. Somit haben wir wieder für die linke Seite $\frac{1}{1-(p^2)}^{-s} = \frac{1}{1-(p)}^{-2s}$ und die rechte Seite stimmt damit überein durch

$$\frac{1}{1 - (p^{-s})} \cdot \frac{1}{(1 - (-1)1p^{-s})} = \frac{1}{(1 - p^{-s}(1 + p^{-s}))} = \frac{1}{1 - p^{-2s}}$$

Fall 2. $O_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ Betrachte also $d \equiv 1 \pmod{4}$

Fall 2.1. Angenommen $p \mid \Delta_K$. Im Falle $d \equiv 1 \pmod{4}$ bedeutet das $p \mid d$ da $\Delta_K = d$. Das folgt aus dem Bilden der Diskriminante aus dem Polynom $4 \cdot (X^2 - X + \frac{1-d}{4})$. So folgt direkt $2(X-1)^2 - d$ hat zwei Nullstellen in $\mathbb{Z} \setminus p \mathbb{Z}[X]$ und wie in Fall 1.1 folgt Gleichheit der beiden Seiten.

Fall 2.2. Angenommen $p \nmid \Delta_K$ und $\chi_K(\bar{p}) = (\frac{\Delta_K}{p}) = 1$. So folgt direkt $(\frac{d}{p}) = 1$ mit Definition des Legendre Symbol, dass $\bar{d} \in (\mathbb{Z} \setminus p\mathbb{Z})^{\times}$ ein Quadrat ist und somit hat $(2x-1)^2 - d$ zwei Nullstellen in $\mathbb{Z} \setminus p\mathbb{Z}$. Der Rest folgt analog dem Beweis von Fall 1.2.

Fall 2.3 Angenommen $p \nmid \Delta_K$ und $\chi_K(\bar{p}) = (\frac{\Delta_K}{p}) = -1$. So ist \bar{d} wie in Fall 1.3 kein Quadrat und hat in $\mathbb{Z} \setminus p \mathbb{Z}$ keine Nullstellen. Der Beweis schließt analog wie in Fall 1.3.

Theorem 1.6. Sei K ein imaginär quadratischer Zahlkörper. Für jede natürliche Zahl $n \in \mathbb{N}$ bezeichnen wir mit $r_k(n)$ die Anzahl der Paare $(x,y) \in \mathbb{Z}^2$, sodass n = f(x,y) für eine reduzierte quadratische Form $f \in \mathbb{Z}[X,Y]$ mit Diskriminante Δ_K gilt. Dann ist

$$r_k(b) = {}^{(1)} |O_K^{\times}| \cdot a_n = {}^{(2)} |O_K^{\times}| \cdot \sum_{d|n} \chi_K(n)$$

wobei $(a_n)_{n\in\mathbb{N}}$ die Folge der Koeffizienten der Dirichletreihe zu ζ_K ist, und

$$|O_K^{\times}| = \begin{cases} 4, falls \ d = -1\\ 6, falls \ d = -3\\ 2, sonst \end{cases}$$

gilt.

Beweis. Die Aussage über $|O_K^{\times}|$ wurde in Vortrag 3 bewiesen. Somit verbleibt es die Gleichheitszeichen (1) und (2) zu zeigen. Beginne mit (2). Es ist

$$L(s, \chi_K) = \sum_{n=1}^{\infty} \frac{\chi_K(n)}{n^s}$$

für alle $s \in \mathbb{C}$ mit Re(s) > 1. Dies folgt aus dem folgenden Hilfslemma 3.

Hilfslemma 3. Sei f eine multiplikative Funktion, sodass die $\sum f_n(n)$ absolut konvergiert. So kann der Wert der Reihe als ein absolut konvergentes Produkt ausgedrückt werden. Im Spezialfall der strikten Multiplikativität von f erhält man $\sum_{n=1}^{\infty} f_n = \prod_{\mathbf{p}}$.

Beweis. Sei

$$P(x) = \prod_{p \le x} \{1 + f(p) + f(p^2) + \ldots\}$$

welches sich über alle Primzahlen p erstreckt. Da es ein Produkt einer endlichen Anzahl von absolut konvergenter Reihen ist, ist es erlaubt die Reihen zu multiplizieren und gegebenenfalls umzuordnen ohne den Wert zu verändern. Hierbei wählt man die Form

$$f(p_1^{a_1}) \cdot f(p_2^{a_2}) \cdot f(p_3^{a_3}) \cdot \ldots \cdot f(p_r^{a_r}) = f(p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \cdot \ldots \cdot p_r^{a_r})$$

Dies folgt aus der Multiplikativität von f. Benutzt man nun die Eindeutigkeit der Primzahlzerlegung/Primidealzerlegung, so folgt, dass $P(x) = \sum_{n \in A} f(n)$ wobei A aus allen n besteht mit Primfaktoren, welche kleiner oder gleich x sind. Daraus folgt

$$\sum_{n=1}^{\infty} f(n) - P(x) = \sum_{n \in B} f(n)$$

wobei B die Menge derjenigen n ist, die mindestens einen Primfaktor strikt größer x besitzen. Hieraus resultiert

$$|\sum_{n=1}^{\infty} f(n) - P(x)| \le \sum_{n \in B} |f(n)| \le \sum_{n > x} |f(n)|$$

Läuft jetzt $x \to \infty$, so geht der ganz rechte Ausdruck gegen Null, da $\sum |f(n)|$ konvergent ist. So konvergiert P(x) gegen $\sum f(n)$ für $x \to \infty$. Hier ist es noch wichtig zu sehen, dass das unendliche Produkt der Form $\prod 1 + a_n$ absolut konvergiert, wenn $\sum a_n$ absolut konvergiert. In diesem Fall folgt:

$$\sum_{p \leq x} |f(p) + f(p^2) + \ldots| \leq \sum_{p \leq x} (|f(p)| + |f(p^2)| + \ldots)) \leq \sum_{n=2}^{\infty} |f(n)|$$

Da alle Partialsummen beschränkt sind, folgt, dass $\sum_{p} |f(p)+f(p^2)+...|$ konvergiert und daraus folgt die absolute Konvergenz des oben genannten unendlichen Produktes.

Im strikt multiplikativem Fall folgt sogar $f(p^n) = f(p)^n$ und jede Reihe im unendlichen Produkt (von oben) ist eine konvergente geometrische Reihe mit dem Wert $(1 - f(p))^{-1}$.

In diesem Fall erhält man

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} \frac{1}{1 - f(p)p^{-1}}$$

für $\sum f(n)n^{-1}$ absolut konvergent. Nun setze $f(n)=\chi_K(n)$ und man erhält

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p \frac{1}{1-\chi(p)p^{-1}}$$

und damit die Behauptung.

Dafür ist die Beobachtung notwendig, dass $\chi_K : \to \{-1, 0, 1\}$ strikt multiplikativ ist. Das heißt es gilt $\chi(mn) = \chi(m) \cdot \chi(n)$ für beliebige $m, n \in \mathbb{N}$.

Die Fallunterscheidung nach o.B.d.A. $\operatorname{ggT}(n, \Delta_K) > 1$ hat direkt zur Folge, dass $\operatorname{ggT}(nm, \Delta_K) > 1$ und daraus resultiert $\chi_K(nm) = 0 = 0 \cdot \chi(m) = \chi(m) \cdot \chi(n)$. Nun bleibt $\operatorname{ggT}(n, \Delta_K) = 1$ so wie $\operatorname{ggT}(m, \Delta_K) = 1$. So folgt nach der Definition der Abbildung für beliebige natürliche Zahlen als Gruppenhomomorphismus

$$\chi(mn) = \chi(\bar{n}) \cdot \chi(\bar{m}) = \chi(m) \cdot \chi(n)$$

Fortsetzung Beweis zu Theorem 1.6. Das führt zur Behauptung

 $\zeta(s) \cdot L(s, \chi_K) = \sum_{n=1}^{\infty} \left(\sum_{d|n} \chi_K(d)\right) \frac{1}{n^s}$

für alle $s \in \mathbb{C}$ mit Re(s) > 1, wobei die Summe $\sum_{d|n}$ über alle positiven Teiler $d \in \mathbb{N}$ von n durchläuft, da die beiden Dirichletreihen

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}$$

und

$$L(s, \chi_K) = \sum_{d=1}^{\infty} \frac{\chi_K(d)}{d^s}$$

für alle $s\in\mathbb{C}$ mit $\mathrm{Re}(s)>1$ absolut konvergieren. Dies folgt für beide direkt nach Anwendung der Geometrischen Reihe.

So konvergiert auch das Produkt aus beiden mit der Form

$$\zeta(s) \cdot L(s, \chi_K) = \sum_{m=1}^{\infty} \sum_{d=1}^{\infty} \frac{\chi_K(d)}{(md)^s}$$

absolut. Dadurch ist die Umordnung der Summation beliebig veränderbar zu

$$\zeta(s) \cdot L(s, \chi_K) = \sum_{m=1}^{\infty} \sum_{d=1}^{\infty} \frac{\chi_K(d)}{(md)^s} = \sum_{n=1}^{\infty} (\sum_{d|n} \chi_K(d)) \frac{1}{n^s}$$

Im letzten Schritt nutzt es, dass $n\cdot m=n$ wiederum in $\mathbb N$ durch ein beliebiges $n\in\mathbb N$ dargestellt werden kann.

Um nun auch (1) zu beweisen, muss zunächst folgendes Lemma betrachtet werden

Motivation. Die Identität $\zeta_K(s) = \zeta(s) \cdot L(s, \chi_K)$ aus vorigem Theorem liefert nun eine also eine Identität von absolut konvergenten Dirichletreihen für $s \in \mathbb{C}$ mit Re(s) > 1

$$\sum_{n=1}^{\infty}\frac{a_n}{n^s}=\sum_{n=1}^{\infty}(\sum_{d|n}\chi_K(d))\frac{1}{n^s}$$

wobei $a_n = \sum_{d|n} \chi_K(d)$ für beliebige $n \in \mathbb{N}$ aus dem nächsten Lemma folgt.

Lemma 1.7. Sei $N \in \mathbb{N}_0$ und $f : \{s \in \mathbb{C} : \operatorname{Re}(s) > N\} \to \mathbb{C}$ eine holomorphe Funktion. Falls für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > N$ durch eine absolut konvergente Dirchletreihe

$$f(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$$

gegeben ist, dann ist die Koeffizientenfolge $(b_n)_{n\in\mathbb{N}}$ eindeutig durch f festgelegt. Dies ist äquivalent zur Einzigartigkeit der Darstellung von f als absolut konvergente Dirichletreihe, sofern die Darstellung überhaupt existiert.

Beweis. Es bietet sich ein induktives Vorgehen an. Zunächst steht die Behauptung

$$b_1 = \lim_{k \to \infty} f(k)$$

also, dass b_1 Grenzwert der Folge

$$(f(N+1), f(N+2), f(N+3),)$$

ist. Denn dadurch ist b_1 eindeutig durch f festgelegt. Dies gilt, da

$$f(s) = b_1 + \sum_{n=1}^{\infty} \frac{b_n}{n^s} \to^{s \to \infty} b_1 + 0 = b_1$$

Dadurch ist $b_1, ..., b_m$ für ein $m \in \mathbb{N}$ eindeutig durch f festgelegt. Ersetze f(s) durch $f(s) - \sum_{n=1}^m \frac{b_n}{n^s}$. Daraus folgt die Annahme, dass $b_1 = = b_m = 0$ gilt. Mit selbigem Argument wie oben folgt

$$b_{m+1} = \lim_{k \to \infty} (m+1)^k f(k)$$

also ist auch b_{m+1} eindeutig durch f festgelegt.

Damit ist erreicht, was in der Motivation gefordert war.

Fortsetzung Beweis zu Theorem 1.6. Nun folgt der Beweis zur Rechtfertigung des ersten Gleichheitszeichen des Theorems 1.6. Zuallererst ist

$$\zeta_K(s) = \sum_{C \in Cl_K} \sum_{\mathfrak{J} \in C} \frac{1}{N_{K|\mathbb{Q}}(\mathfrak{J})^s}$$

wobei sich die Summe $\sum_{\mathfrak{J}\in C}$ über alle Ideale $\langle 0 \rangle \subsetneq \mathfrak{J} \subseteq O_K$ aus der Idealklasse $C \in Cl_K$ erstreckt. Das erste Summenzeichen ist nach Vortrag 7 bereits eine endliche Summe. Man fixiere ein beliebiges Ideals $\langle 0 \rangle \subsetneq \mathfrak{L} \subseteq O_K$ mit

13

 $\mathfrak{L}\in C^{-1},$ wobei C^{-1} die inverse Idealklasse zu C in Cl_K bezeichnet. Die Behauptung liegt nahe, dass

$$\{Ideale\ \langle 0 \rangle \subsetneq \mathfrak{J} \subseteq O_K\ mit\ \mathfrak{J} \in \mathbb{C}\} \to (\mathfrak{L} \backslash \{0\})/O_K^\times = \{\beta \cdot O_K^\times \colon \beta \in \mathfrak{L} \backslash \{0\}\}$$

gegeben durch

$$\mathfrak{J} \mapsto \ \textit{Erzeuger des Haupdideals} \ \mathfrak{J} \cdot \mathfrak{L} \cdot O_K^{\times}$$

eine wohldefinierte Bijektion darstellt.

Zunächst die Wohldefiniertheit: Es ist $\mathfrak{J} \cdot \mathfrak{L} \subseteq O_K$ ein Hauptideal mit Namen $\langle \alpha \rangle = \mathfrak{J} \cdot \mathfrak{L}$, weil $\mathfrak{J} \cdot \mathfrak{L} \in C \cdot C^{-1} = P_K$, wobei $P_K \in Cl_K$ die Klasse aller gebrochenen Hauptideale, also das neutrale Element bezeichnet. Darüber hinaus ist $\alpha \in \langle \alpha \rangle = \mathfrak{J} \cdot \mathfrak{L} \subseteq \mathfrak{L}$. Es folgt leicht, dass genau dann $\langle \alpha \rangle = \langle \beta \rangle$ für beliebige $\beta \in \mathfrak{L}$, wenn α und β assoziiert sind. Denn sei $\alpha = \beta \cdot y$ mit $y \in O_K^{\times}$, so folgt $\alpha \mid \beta$ und damit unmittelbar $\beta \in \langle \alpha \rangle$ und $\langle \beta \rangle \subseteq \langle \alpha \rangle$. Dasselbe gilt für $y := y^{-1}$, da y eine Einheit ist. Also analog für die Vertauschung von α und β . Die Rückrichtung nutzt, dass O_K ein Hauptidealring ist. Sei weiter $\langle \alpha \rangle = \langle \beta \rangle$. Nach Wahl der Darstellungen für $\beta = \alpha \cdot c$ und $\alpha = \beta \cdot d$ folgt $\alpha = c \cdot d \cdot \alpha$ und daraus unmittelbar 1 - cd = 0. Da O_K auch noch Integritätsring und somit nullteilerfrei ist, folgt $\alpha = 0$ ($\beta = 0$) oder 1 - cd = 0. Dies spricht dafür, dass $b, c \in O_K^{\times}$ also Einheiten sind. So sind α und β assoziiert. So ist obige Abbildung wohldefiniert und injektiv.

Beweis der Surjektivität: Sei dazu $\beta \in \mathfrak{L} \setminus 0$ und $\langle 0 \rangle \subsetneq \mathfrak{J} \subseteq O_K$ mit $\mathfrak{J} \in C$ beliebig und weiter $\mathfrak{J} \cdot \mathfrak{L} = \langle \alpha \rangle$ für ein $\alpha \in \mathfrak{L}$. Dann gilt $\frac{\beta}{\alpha} \cdot \mathfrak{J} \in C$ und $\frac{\beta}{\alpha} \cdot \mathfrak{J} \cdot \mathfrak{L} = \langle \beta \rangle$. Diese Darstellung ist richtig, da für $\frac{\beta}{\alpha} \cdot \mathfrak{J} \subseteq K$ tatsächlich gilt $\frac{\beta}{\alpha} \cdot \mathfrak{J} \subseteq O_K$. Dies folgt daraus, dass $\beta \in \mathfrak{L}$ und damit $\langle \beta \rangle \subseteq \mathfrak{L}$. Das wiederum hat zur Folge, dass $\mathfrak{L} \mid \langle \beta \rangle$ ist. Dies bedeutet, dass ein Ideal $\mathfrak{L}' \subseteq O_K$ mit $\mathfrak{L} \cdot \mathfrak{L}' = \langle \beta \rangle$. Durch Einsetzen in $\frac{\beta}{\alpha} \cdot \mathfrak{J} \cdot \mathfrak{L} = \langle \beta \rangle$ ist $\frac{\beta}{\alpha} \cdot \mathfrak{J} \cdot \mathfrak{L} = \mathfrak{L} \cdot \mathfrak{L}'$ und nach Multiplikation mit \mathfrak{L}^{-1} folgt $\frac{\beta}{\alpha} \cdot \mathfrak{L}' \subseteq O_K$. Daraus folgt die Surjektivität.

Die Eigenschaften der Norm

$$N(\alpha) = N_{K|\mathbb{Q}}(\langle \alpha \rangle) = N_{K|\mathbb{Q}}(\mathfrak{J} \cdot \mathfrak{L}) = N_{K|\mathbb{Q}}(\mathfrak{J}) \cdot N_{K|\mathbb{Q}}(\mathfrak{L})$$

ermöglichen, die Bijektion umzuschreiben. Aus Vortrag 5 ist bekannt, dass stets $\gamma,\delta\in\mathfrak{L}$ mit

$$\mathfrak{L} = \mathbb{Z}\,\gamma + \mathbb{Z}\,\delta = \{x\gamma + y\delta \colon x, y \in \mathbb{Z}\}$$

gefunden werden können. Weiter ist aus Vortrag 7 gegeben, dass

$$f := \frac{N(\gamma X + \delta Y)}{N_{K|\mathbb{Q}}(\mathfrak{L})} = \frac{(\gamma X + \delta Y) \cdot \iota((\gamma) X + \iota(\delta) Y)}{N_{K|\mathbb{Q}}(\mathfrak{L})} \in \mathbb{Z}[X, Y]$$

eine primitive, positiv definite quadratische Form mit Diskriminante Δ_K ist, die unter der Bijektion $C(\Delta_K) \to Cl_K$ auf C^{-1} (die Klasse von \mathfrak{L} in Cl_K) abgebildet wird. Hieraus folgt, dass

$$\sum_{\mathfrak{J} \in C} \frac{1}{N_{K|\mathbb{Q}}(\mathfrak{J})^s} = \frac{1}{|O_K^{\times}|} \sum_{(x,y) \in \mathbb{Z}^2 \backslash \{(0,0)\}} \frac{1}{f(x,y)^s}$$

wobei sich dies durch das Ersetzen von f durch eine reduzierte quadratische Form, die eigentlich äquivalent zu f ist, nicht ändert. Das folgt aus der Bemerkung nach Cox [5][S. 23], dass äquivalente Formen dieselben Ganzzahlen repräsentieren.

Seien also $f_1,...,f_k \in \mathbb{Z}[X,Y]$ reduzierte quadratische Formen, die die Äquivalenzklassen aus $C(\Delta_K)$ repräsentieren. Dann erhalten wir aufgrund absoluter Konvergenz, dass

$$\zeta_K(s) = \sum_{j=1}^k \frac{1}{|O_K^{\times}|} \sum_{(x,y) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{f_j(x,y)^s} = \frac{1}{|O_K^{\times}|} \sum_{n=1}^{\infty} \frac{r_K(n)}{n^s}$$

Das Gleichheitszeichen folgt dann analog mit dem vorherigen Lemma.

Literatur

- [1] J. Neukirch: Algebraische Zahlentheorie. Springer, 1. Auflage (1992)
- [2] F. Modler, M. Kreh: Tutorium Algebra. Springer, 3. Auflage (2013)
- [3] D. A. Marcus: Number Fields. Springer, 2. Auflage (2018)
- [4] E. Freitag, R. Busam: Funktionentheorie 1. Springer, 4. Auflage (2006)
- [5] D. A. Cox: Primes of the Form $x^2 + ny^2$. Wiley, 2. Auflage (2013)
- [6] C. Baxa: Vorlesungsskript Zahlentheorie. Universität Wien