Séries entières

$$\alpha 7 - MP^*$$

1 Généralités

On appelle série entière toute série dont le terme général est de la forme $a_n x^n$ où $x \in \mathbb{C}$ et $(a_n) \in \mathbb{C}^{\mathbb{N}}$. Le domaine de convergence d'une telle série est $\mathcal{D} = \{x \in \mathbb{C}/\{a_n x^n\} \text{ converge}\}$. La fonction-somme de la série est $S: \mathcal{D} \longrightarrow \mathbb{C}$. $x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$

1.1 Structure du domaine de convergence

On note D(a,b) la boule ouverte de centre $a \in \mathbb{C}$ et de rayon $b \in \mathbb{R}^+: D(a,b) = \{z \in \mathbb{C}/|z-a| < b\}$, et $D'(a,b) = \{z \in \mathbb{C}/|z-a| \leq b\}$.

Lemme d'Abel : soit $\{a_nx^n\}$ une série entière, $x \in \mathbb{K}$ où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On suppose que pour r > 0, a_nr^n est bornée. Alors $\forall z \in \mathrm{D}(0,r)$, la série $\{a_nz^n\}$ est convergente (même absolument convergente). En particulier, $\mathrm{D}(0,r) \subset \mathcal{D}$. Corollaire : $\{a_nz^n\}$ une série entière, alors :

- 1. Soit $\exists R > 0/D(0,R) \subset \mathcal{D} \subset D'(0,R)$; R est alors unique, on l'appelle rayon de convergence de la série entière.
- 2. Soit $\mathcal{D} = \mathbb{K}$ et par extension on dit que $R = +\infty$
- 3. Soit $\mathcal{D} = \{0\}$ et dans ce cas R = 0.

1.2 Utilisation de la règle de d'Alembert

Si
$$\left| \frac{a_{n+1}}{a_n} \right| \longrightarrow \lambda \in [0, +\infty[\text{ quand } n \longrightarrow +\infty, \text{ alors } R = \frac{1}{\lambda}]$$

1.3 Combinaisons linéaires de séries entières

Soit $\{a_nx^n\}$ de rayon de convergence R, $\{b_nx^n\}$ de rayon de convergence R'. Soit $\{c_nx^n\}$ de rayon de convergence R'', où $c_n = \alpha a_n + \beta b_n$. On a toujours $R'' \geqslant \min(R, R')$. Si de plus $R \neq R'$ et $\alpha \beta \neq 0$, alors $R'' = \min(R, R')$.

1.4 Produit de Cauchy de deux séries entières

Soit $\{a_nx^n\}$ et $\{b_nx^n\}$ deux séries entières. Leur produit de Cauchy $\{c_nx^n\}$ reste une série entière. De plus, $c_n = \sum_{k=0}^n a_k b_{n-k}$ et $R'' \geqslant \min(R, R')$.

2 Propriétés de la fonction-somme

On appelle $F: \mathcal{D} \longrightarrow \mathbb{C}$ la fonction-somme de la série entière $\{a_nx^n\}$ de rayon de convergence R. $x \longmapsto \sum_{n=0}^{+\infty} a_nx^n$

2.1 Continuité de la série lorsque $\mathbb{K} = \mathbb{C}$

Si $R \in [0, +\infty]$, alors F est continue sur le disque ouvert D(0, R).

2.2 Classe infinie dans le cas réel

 $\mathbb{K} = \mathbb{R}, \{a_n x^n\}$ de rayon de convergence R > 0; alors F est \mathcal{C}^{∞} sur] - R, R[; plus précisément, on obtient les $F^{(k)}$ en dérivant formellement les expressions $\sum a_n x^n$.

2.3 Primitivation dans le cas réel

 $\mathbb{K} = \mathbb{R}, \{a_n x^n\}$ de rayon de convergence R > 0. La fonction $x \in]-R, R[\longmapsto \int_0^x F(t) dt$ est bien définie et de classe \mathcal{C}^{∞} . On l'obtient par primitivation formelle de $\sum a_n x^n$.

2.4 Identification de séries entières

Soit deux séries $\{a_nx^n\}$ et $\{b_nx^n\}$ de rayons de convergence respectifs R_a et R_b tous deux non nuls. S'il existe h>0 tel que

- 1. $]-h,h[\subset]-R_a,R_a[\cap]-R_b,R_b[$
- 2. $\forall x \in [-h, h], \sum a_n x^n = \sum b_n x^n$

Alors $\forall n \in \mathbb{N}, a_n = b_n$.

B Développement en série entière

3.1 Définitions

Lorsque $\mathbb{K} = \mathbb{R}$, une fonction f est dite développable en série entière sur l'intervalle]-a,a[(a>0) si il existe une série entière $\{a_nx^n\}$ de rayon de convergence $R\geqslant a$ telle que $\forall x\in]-a,a[$, $f(x)=\sum\limits_{k=0}^{+\infty}a_nx^n.$ Lorsque $\mathbb{K}=\mathbb{C}$, on définit de même f développable en série entière.

3.2 Condition nécéssaire d'existence d'un développement en série entière

Soit une fonction f définie au voisinage de 0 à valeurs dans \mathbb{C} . Pour que f soit développable en série entière, il faut qu'elle soit \mathcal{C}^{∞} au voisinage de 0.

3.3 Développement en série entière de fonctions rationnelles

 $\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C}$. Toute fonction de la forme $x \mapsto \frac{P(x)}{Q(x)}$, avec $P,Q \in \mathbb{C}[X]$ et $Q(0) \neq 0$, est développable en série entière. Plus précisément, si (ξ_k) est la liste des zéros de Q dans \mathbb{C} , f est développable en série entière sur $\mathbb{D}(0,a)$ où $a = \min |\xi_k| > 0$. Voir fiche sur les développements en série entière classiques.

3.4 Utilisation d'une équation différentielle

- 1. Soit une équation différentielle linéaire de la forme a(x)y'+b(x)y+c(x)=0 où $a,b,c:I\overset{C^0}{\longrightarrow}\mathbb{C}$, I intervalle de \mathbb{R} non trivial. Si a ne s'annulle pas sur I, soit φ_1 et φ_2 deux solutions de cette équation différentielle. Si $\exists x_0\in I/\varphi_1(x_0)=\varphi_2(x_0)$ alors $\varphi_1=\varphi_2$.
- 2. Soit une équation différentielle linéaire de la forme a(x)y'' + b(x)y' + c(x)y + d(x) = 0 où $a, b, c, d : I \xrightarrow{C^0} \mathbb{C}$ et a ne s'annulle pas sur I. Soit φ_1 et φ_2 deux solutions de cette équation différentielle définies sur I; si $\exists x_0 \in I / \begin{pmatrix} \varphi_1(x_0) \\ \varphi_1'(x_0) \end{pmatrix} = \begin{pmatrix} \varphi_2(x_0) \\ \varphi_2'(x_0) \end{pmatrix}$ alors $\varphi_1 = \varphi_2$.

On obtient ainsi des conditions sur les solutions de l'équation différentielle et parfois des séries entières solution.

Développements en série entière classiques

$$\alpha 7bis - MP^*$$

1 Fonctions exponentielles et trigonométriques

$$\forall x \in \mathbb{C}, e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$\forall x \in \mathbb{C}, \operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

$$\forall x \in \mathbb{C}, \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$\forall x \in] -1, 1[, \operatorname{argth}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$$

$$\forall x \in \mathbb{R}, \sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\forall x \in \mathbb{R}, \cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\forall x \in] -1, 1[, \operatorname{arctan}(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)}$$

2 Fonctions rationnelles, puissance et logarithme

$$\forall x \in]-1, 1[, \ln(1+x) = \sum_{n=0}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$$

$$\forall x \in]-1, 1[, -\ln(1-x) = \sum_{n=0}^{+\infty} \frac{x^n}{n}$$

$$\forall x \in]-1, 1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

$$\forall x \in]-1, 1[, \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$$

$$\forall x \in]-1, 1[, \forall \alpha \in \mathbb{R} \backslash \mathbb{Z}, (1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n$$