

Outline

- Components of microcomputer system
- Executing an instruction
- I/O devices
- Programming languages

Components of a Microcomputer System

- Memory
 - Information processed by the computer is stored in its memory
- The CPU
 - In a microcomputer the CPU is a single chip processor known as microprocessor
- I/O Ports
 - System board or mother board contains expansion slots which are connectors for additional circuits boards called add in boards. I/O circuits are usually on these boards

- A memory circuit element can store one bit of data
- Organized into groups that can store eight bits of data
- String of eight bits called a byte
- Each memory byte is identified by address
- The first memory byte has address o
- The data stored in a memory byte called its contents or values
- The address of a memory byte is fixed and different from any other addresses whereas contents are not fixed
- The contents of memory byte are always eight bits but address depends on the processor. For example some assign 20 bits address whereas some assign 24 bit address

- Bit Position
 - The positions are numbered from right to left starting with o
 - Low byte comes from memory byte with lower address and high byte comes from memory byte with higher address

- Operations
 - Processor can perform two operations on memory: read(fetch) and write(store)
 - In read processor gets a copy of data and the contents of that location is unchanged whereas in write the data becomes the new content of the location

- RAM and ROM
 - Two kinds of memory circuits: RAM(Random Access Memory) and ROM(Read Only Memory)
 - RAM locations can be read and write but ROM locations only can be read
 - Program instructions and data normally loaded into RAM
 - System programs are stored in ROM
 - RAM memory lost when the power is off but ROM circuits retain their values when the power is off

Buses

- Processor communicates with memory and I/O devices by using signals that travel along a set of wires called buses
- Three kinds of buses: address bus, data bus and control bus

Memory Devices

- Random-Access Memory (RAM)
 - DRAM = Dynamic RAM
 - 1-Transistor cell + trench capacitor
 - · Dense but slow, must be refreshed
 - Typical choice for main memory
 - SRAM: Static RAM
 - 6-Transistor cell, faster but less dense than DRAM
 - Typical choice for cache memory
- Read-Only-Memory(ROM)
 - Many types: ROM, EPROM, EEPROM, and FLASH memory can be erased electrically in blocks
- Cache
 - A very fast type of RAM that is used to store information that is most frequently or recently used by the computer
 - Recent computers have 2-levels of cache; the first level is faster but smaller in size (usually called internal cache), and the second level is slower but larger in size (external cache).

- Suppose a processor uses 20 bits for an address. How many memory bytes can be accessed?
- The number of memory bytes will be $2^{20} = 1,048,576 = 1MB$

CPU

- It controls computer by executing programs stored in the memory
- The instructions performed by a CPU is known as instruction set
- Instruction set for each CPU is unique
- 8086 microprocessor has two main components: Execution Unit and Bus Interface Unit
- EU and BIU is connected by an internal bus
- When EU is executing an instruction the BIU fetches up to six bytes
 of the next instruction and places them in the instruction queue
 known as instruction prefetch

CPU

- Execution Unit
 - Used to execute instructions
 - Contains a circuit called Arithmetic and Logic Unit(ALU)
 - The data for the operations are stored in circuits called registers
 - Eight registers for storing data: AX, BX, CX, DX, SI, DI, BP and SP
 - It also contains FLAGS register whose individual bits reflect the result of a computation
- Bus Interface Unit
 - Facilitates communication between the EU and the memory or I/O circuits
 - Transmits addresses, data and control signals on the buses
 - Registers are CS, DS, ES, SS and IP holding address of memory locations
 - IP contains the address of the next instruction to be executed by the EU

I/O Ports

- I/O devices are connected to the computer through I/O circuits
- Each of these circuits contains several registers known as I/O ports
- I/O ports have addresses and connected to the bus system
- These addresses are known as I/O addresses and can only be used in input or output instructions
- Data to be input from an I/O device are sent to a port where they can be read by the CPU
- On output CPU writes data to an I/O port
- Two types of I/O ports: Serial and Parallel

I/O Ports

- Serial port
 - Transfers one bit at a time
 - Used for slower transfer such as keyboard
- Parallel port
 - Transfers 8 or 16 bits at a time
 - Requires more wiring connections
 - Used for faster data transfer such as disk drives

I/O Devices

- Magnetic Disk
 - Magnetic disks are used for permanent storage of programs and data
 - The device that reads and writes data on a disk is called disk drive
 - Floppy Disk
 - Light weight and portable
 - Easy to put away for safekeeping and use it on different computers.
 - Amount of data depends on type, ranging from 36oKB-1.44MB (1KB)
 - Hard Disk
 - Enclosed in a hermetically sealed container that is non removable from computer called a fixed disk.
 - Can store more data than floppy disk. Typically 20, 40 to over 100MB.
 - A program can access information in a hard disk much faster than a floppy disk.

I/O Devices

- Keyboard
 - Allows the user to enter information in a computer.
 - It has keys of typewriters and a number of control and function keys
 - Has own microprocessor that sends coded signal to computer when a key is pressed or released
 - No direct contact between keyboard and display
- Display Monitor
 - Standard output device of the computer
 - Displayed information on the screen is generated by video adapter
 - Most adapters can generate both text characters and graphics images.
 - Some even display in color

I/O Devices

- Printers
 - Printers are slower than monitors but provide more permanent output
 - Printer outputs are known as hardcopies
 - Daisey wheel
 - The output is similar to that of a typewriter
 - Dot matrix
 - Prints characters composed of dots
 - Some can generate near-letter-quality printing
 - Print characters with different fonts as well as graphics
 - Laser printers
 - Print characters composed of dots
 - The resolution is high (300 dots per inch)
 - It is expensive

Instruction Execution

- Machine instructions have two parts: Opcode and Operands
- Opcode field which stands for operation code and it specifies the particular operation that is to be performed. Each operation has its unique opcode.
- Operands fields which specify where to get the source and destination operands for the operation specified by the opcode. The source/destination of operands can be a constant, the memory or one of the general-purpose registers.
- The steps of executing an instruction(the fetch-execution cycle) are:
 - Fetch
 - 1. Fetch an instruction from memory
 - 2. Decode the instruction to determine the operation
 - 3. Fetch data from memory if necessary
 - Execution
 - 1. Perform the operation on the data
 - 2. Store the result in memory if needed

Programming Languages

- Machine language
 - A CPU can only execute machine language instructions
 - Instructions consist of binary code: 1s and os
- Assembly language
 - A programming language that uses symbolic names to represent operations, registers and memory locations.
 - Readability of instructions is better than machine language
 - One-to-one correspondence with machine language instructions to machine code
 - Assemblers translates assembly code to machine code
- High Level Language
 - Compilers translate high-level programs to machine code directly or indirectly via an assembler

Compiler and Assembler

Advantages of High-Level Languages and Assembly Language

- High Level Language
 - Program development is faster as it is closer to natural language
 - Program maintenance is easier
 - Programs are portable as it can be used with little or no modifications on different machines
- Assembly Language
 - Assembly Language is close to machine language
 - It helps one to understand how the computer thinks

Mapping Between Assembly Language and High Level Language

- Translating High Level Language programs to machine language programs is not a one-to-one mapping
- A High Level Language instruction (usually called a statement) will be translated to one or more machine language instructions

Instruction Class	С	Assembly Language
Data Movement	A=5	MOV A,5
Arithmetic or Logic	B=A+5	MOV AX,A ADD AX,5 MOV B,AX
Data Movement	goto LBL	JMP LBL

Why Learn Assembly Language?

- Accessibility to system hardware
 - Assembly Language is useful for implementing system software
 - Also useful for small embedded system applications
- Space and Time efficiency
 - Understanding sources of program inefficiency
 - Tuning program performance
 - Writing compact code
- Writing assembly programs gives the computer designer the needed deep understanding of the instruction set and how to design one
- To be able to write compilers for High Level Languages, we need to be expert with the machine language. Assembly programming provides this experience