Pedestrian Detection

Vinay P. Namboodiri

• Slide credits to Navneet Dalal

Feature selection

 For a 24x24 detection region, the number of possible rectangle features is ~160,000!

Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

$$sum = A - B - C + D$$

 Only 3 additions are required for any size of rectangle!

Example

Last Class

Example of a Good Classifier

Round 1 of 3

 h_1 $\epsilon_1 = 0.300$ $\alpha_1 = 0.424$

 D_2

Round 2 of 3

 $\varepsilon_{2} = 0.196$

 h_2

 α_2 =0.704

 D_2

Round 3 of 3

 h_3

STOP

$$\varepsilon_{3} = 0.344$$

$$\alpha_2$$
=0.323

Final Hypothesis

AdaBoost

Given: m examples $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$

For t = 1 to T

The goodness of h_t is calculated over D_t and the bad guesses.

- 1. Train learner h_t with min error $\varepsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i]$
- 2. Compute the hypothesis weight $\alpha_t = \frac{1}{2} \ln \left(\frac{1}{2} \right)$
- 3. For each example i = 1 to m

 $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$ The weight <u>Ada</u>pts. The bigger ε_t becomes the smaller α_t becomes.

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

Boost example if incorrectly predicted.

Output

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Z_t is a normalization factor.

Linear combination of models.

Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window

Attentional cascade

 Chain classifiers that are progressively more complex and have lower false positive rates:

Receiver operating characteristic

Output of Face Detector on Test Images Last Class

Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

Finding People in Images

This Class

Method by Dalal and Triggs, CVPR 2005

Goals & Applications

Goal: Detect and localise people in images and videos

Applications:

Images, films & multi-media analysis

Pedestrian detection for smart cars

Visual surveillance, behavior analysis

Difficulties

Wide variety of articulated poses
Variable appearance and clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Videos sequences involves motion of the subject, the camera and the objects in the background

Main assumption: upright fully visible people

Overview of Methodology

Detection Phase

Scan image(s) at all scales and locations **Extract features over** windows Run linear SVM classifier on all **locations Fuse multiple** detections in 3-D position & scale space Object detections with bounding boxes

Focus on building robust feature sets (static & motion)

Finding People in Images

Existing Person Detectors/Feature Sets

Current Approaches

Haar wavelets + SVM:

Papageorgiou & Poggio, 2000; Mohan et al 2000

Rectangular differential features + adaBoost:

Viola & Jones, 2001

Edge templates + nearest neighbour:

Gavrila & Philomen, 1999

Model based methods

Felzenszwalb & Huttenlocher, 2000; Ioffe & Forsyth, 1999

Other works

Leibe et al, 2005; Mikolajczyk et al, 2004

Orientation histograms

Freeman et al, 1996; Lowe, 1999 (SIFT); Belongie et al, 2002 (Shape contexts)

Static Feature Extraction

Overview of Learning Phase

Learning phase

Input: Annotations on training images

Create fixed-resolution normalised training image data set

Encode images into feature spaces

Learn binary classifier

Retraining reduces false positives by an order of magnitude!

HOG Descriptors

Parameters

Gradient scale

Orientation bins

Percentage of block overlap

Schemes

RGB or Lab, colour/gray-space Block normalisation

or

L1-norm,

$$v \leftarrow v / \sqrt{\|v\|_2^2 + \varepsilon}$$

$$v \leftarrow \sqrt{v/(\|v\|_1 + \varepsilon)}$$

Evaluation Data Sets

MIT pedestrian database	INRIA person database					
.⊑ 507 positive windows Negative data unavailable	1208 positive windows 1218 negative images					
200 positive windows Negative data unavailable	566 positive windows 453 negative images					
Overall 709 annotations+ reflections	Overall 1774 annotations+ reflections					

Overall Performance

MIT pedestrian database

INRIA person database

R/C-HOG give near perfect separation on MIT database Have 1-2 order lower false positives than other descriptors

Performance on INRIA Database

Effect of Parameters

Gradient smoothing, σ

Reducing gradient scale from 3 to 0 decreases false positives by 10 times

Orientation bins, β

Increasing orientation bins from 4 to 9 decreases false positives by 10 times

Normalisation Method & Block Overlap

Normalisation method

Strong local normalisation is essential

Block overlap

Overlapping blocks improve performance, but descriptor size increases

Effect of Block and Cell Size

Trade off between need for local spatial invariance and need for finer spatial resolution

Descriptor Cues

Input example

Average gradients

Weighted pos wts

Weighted neg wts

Outside-in weights

Most important cues are head, shoulder, leg silhouettes Vertical gradients inside a person are counted as negative Overlapping blocks just outside the contour are most important

Multi-Scale Object Localisation

Multi-scale dense scan of detection window

Final detections

Threshold

$$\mathbf{H}_i = [\exp(s_i)\boldsymbol{\sigma}_x, \exp(s_i)\boldsymbol{\sigma}_y, \boldsymbol{\sigma}_s]$$

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_{i} \exp\left(-\left\| (\mathbf{x} - \mathbf{x}_{i}) / \mathbf{H}_{i}^{-1} \right\|^{2} / 2\right)$$

Apply robust mode detection, like mean shift

Effect of Spatial Smoothing

Spatial smoothing aspect ratio as per window shape, smallest sigma approx. equal to stride/cell size Relatively independent of scale smoothing, sigma equal to 0.4 to 0.7 octaves gives good results

Effect of Other Parameters

Different mappings

Hard clipping of SVM scores gives the best results than simple probabilistic mapping of these scores

Effect of scale-ratio

Fine scale sampling helps improve recall

Results Using Static HOG

No temporal smoothing of detections

Conclusions for Static Case

Fine grained features improve performance

Rectify fine gradients then pool spatially

- No gradient smoothing, [1 0 -1] derivative mask
- Orientation voting into fine bins
- Spatial voting into coarser bins

Use gradient magnitude (no thresholding)

Strong local normalization

Use overlapping blocks

Robust non-maximum suppression

Fine scale sampling, hard clipping & anisotropic kernel

Human detection rate of 90% at 10⁻⁴ false positives per window Slower than integral images of Viola & Jones, 2001

Applications to Other Classes

Parameter Settings

Most HOG parameters are stable across different classes

Parameters that change

Gamma compression

Normalisation methods

Signed/un-signed gradients

Results from Pascal VOC 2006

	Person	Car	Motorbike	Bicycle	Bus	Sheep	Horse	Cow	Cat	Dog
Cam bridge	0.030	0.254	0.178	0.249	0.138	0.131	0.091	0.149	0.151	0.118
ENSMP	_	0.398	-	-	-	-	-	0.159	-	-
HOG	0.164	0.444	0.390	0.414	0.117	0.251	-	0.212	-	-
Laptev= HOG+ Ada- boost	0.114	-	0.318	0.440	-	-	0.140	0.224	-	-
TUD	0.074	-	0.153	-	-	-	-	-	-	-
TKK	0.039	0.222	0.265	0.303	0.169	0.227	0.137	0.252	0.160	0.113

HOG outperformed other methods for 4 out of 10 classes
Its adaBoost variant outperformed other methods for 2 out of 10 classes

Thank You

Multi-Scale Object Localisation

Multi-scale dense scan of detection window

Final detections

Threshold

$$\mathbf{H}_i = [\exp(s_i)\boldsymbol{\sigma}_x, \exp(s_i)\boldsymbol{\sigma}_y, \boldsymbol{\sigma}_s]$$

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_{i} \exp\left(-\left\| (\mathbf{x} - \mathbf{x}_{i}) / \mathbf{H}_{i}^{-1} \right\|^{2} / 2\right)$$

Apply robust mode detection, like mean shift