MIPS Reference Data

(1)

0	Ne	ler	ence Data	4	
CORE INSTRUCTI	ON SE	Т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT	01 = 11 11 11 (11 11 11 11 18)	(1)	(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]		0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
e e	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		$0 / 24_{hex}$
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	Ι	$R[rt]=\{16^{\circ}b0,M[R[rs]\\+SignExtImm](15:0)\}$	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	$R[rd] = R[rt] \gg shamt$		0 / 02 _{hex}
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}

- (1) May cause overflow exception
- (2) SignExtImm = { 16{immediate[15]}, immediate }
- (3) $ZeroExtImm = \{ 16\{1b'0\}, immediate \}$

R R[rd] = R[rs] - R[rt]

- (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 }
- (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

subu

Subtract Unsigned

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 (
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		(
J	opcode			address		
	31 26	25				(

ARITHMETIC CORE INSTRUCTION SET

		O	/ FMT /FT
	FOR	-	/ FUNCT
NAME, MNEMONIC	MAT	OPERATION	(Hex)
Branch On FP True bclt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False bc1		if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divi		Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	
FP Add Single add.	s FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double		{F[ft],F[ft+1]}	
FP Compare Single c.x.s	* FR	([-] . [.])	11/10//y
FP Compare Double	* FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
	(on ic	$\{F[ft],F[ft+1]\}\)?1:0$ ==, <, or <=) (y is 32, 3c, or 3e)	•
		F[fd] = F[fs] / F[ft]	11/10//3
FP Divide		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} /$	
Double div.	d FR	{F[ft],F[ft+1]}	11/11//3
FP Multiply Single mul.	s FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double mu1.	ı rĸ	$\{F[ft],F[ft+1]\}$	11/11//2
FP Subtract Single sub.	s FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double		${F[ft],F[ft+1]}$	
Load FP Single lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	I	$F[rt]=M[R[rs]+SignExtImm]; \qquad (2)$	35//
Double Many France III	D	F[rt+1]=M[R[rs]+SignExtImm+4]	0 / / /10
Move From Hi mfhi Move From Lo mflo		R[rd] = Hi	0 ///10 0 ///12
Move From Control mfc		R[rd] = Lo R[rd] = CR[rs]	10 /0//0
Multiply mult	_	R[ta] - CR[ts] $\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned mult		$\{Hi,Lo\} = R[rs] * R[rt]$ $\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith. sra	_	R[rd] = R[rt] >>> shamt	0///3
Store FP Single swc1		M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP		M[R[rs]+SignExtImm] = F[rt]; (2)	
Double sdc1	. I	M[R[rs]+SignExtImm] = F[rt], (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
		[14[15] DIBIDATIBILATI	

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct	
	31 26	25 21	20 16	15 11	10 6	5 0	
FI	opcode	fmt	ft		immediate	;	
	31 26	25 21	20 16	15		0	

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than		if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

0 / 23_{hex}

OPCODES,	BASE CONV	/ERSION, ASCII	SYMBOLS
MIPS (1)	MIPS (2) MII	20	Heya- ASCII

	(1) MIPS		Deci- deci Cher				ASCII		Hexa-	ASCII
1		funct	D:		Deci-	deci-	Char-	Deci-	deci-	
opcode	funct		BI	nary	mal	deci-	Chai-	mal		Char-
(31:26)	(5:0)	(5:0)		0000		mal	acter		mal	acter
(1)	sll	add.f		0000	0	0	NUL	64	40	<u>@</u>
		sub.f		0001	1	1	SOH	65	41	A
j	srl	$\operatorname{mul} f$		0010	2	2	STX	66	42	В
jal	sra	div.f		0011	3	3	ETX	67	43	С
beq	sllv	sqrt.f		0100	4	4	EOT	68	44	D
bne		abs.f		0101	5	5	ENQ	69	45	E
blez	srlv	mov.f		0110	6	6	ACK	70	46	F
bgtz	srav	neg.f		0111	7	7	BEL	71	47	G
addi	jr			1000	8	8	BS	72	48	Н
addiu	jalr			1001	9	9	HT	73	49	I
slti	movz			1010	10	a	LF	74	4a	J
sltiu	movn			1011	11	b	VT	75	4b	K
andi	syscall	round.w.f		1100	12	c	FF	76	4c	L
ori	break	trunc.w.f		1101	13	d	CR	77	4d	M
xori		ceil.w f		1110	14	e	SO	78	4e	N
lui	sync	floor.w.f		1111	15	f	SI	79	4f	0
	mfhi			0000	16	10	DLE	80	50	P
(2)	mthi			0001	17	11	DC1	81	51	Q
	mflo	movz.f		0010	18	12	DC2	82	52	R
	mtlo	movn.f		0011	19	13	DC3	83	53	S
				0100	20	14	DC4	84	54	T
				0101	21	15	NAK	85	55	U
				0110	22	16	SYN	86	56	V
				0111	23	17	ETB	87	57	W
	mult			1000	24	18	CAN	88	58	X
	multu			1001	25	19	EM	89	59	Y
	div			1010	26	1a	SUB	90	5a	Z
	divu			1011	27	1b	ESC	91	5b	[
				1100	28	1c	FS	92	5c	\
				1101	29	1d	GS	93	5d	Ì
				1110	30	1e	RS	94	5e	^
				1111	31	1f	US	95	5f	
lb	add	cvt.s.f		0000	32	20	Space	96	60	
lh	addu	cvt.d f		0001	33	21	!	97	61	a
lwl	sub			0010	34	22		98 99	62	b
lw	subu			0011	35	23	#		63	С
lbu	and	$\operatorname{cvt.w.}\!f$		0100	36	24 25	\$ %	100	64	d
lhu	or			0101 0110	37 38	26		101	65 66	e f
lwr	xor			0110	39	27	&	102		
-1-	nor			1000	40	28		103	67	g h
sb				1000	41	29	(104	69	
sh	slt			1010	42	29 2a	*	105	6a	i
swl				1010	43	2b	+	107	6b	j k
SW	sltu			1100	44	2c		107	6c	1
				1100	45	2d	,	108	6d	m
swr				1110	46	2e		110	6e	n
cache				1111	47	2f	,	111	6f	0
11	tge	c.f.f		0000	48	30	0	112	70	p
lwc1	tgeu	c.un.f		0000	49	31	1	113	71	q
lwc2	tlt	c.eq.f		0010	50	32	2	114	72	r
pref	tltu	c.ueq.f		0011	51	33	3	115	73	s
1	teq	c.olt.f		0100	52	34	4	116	74	t
ldc1		c.ult.f		0101	53	35	5	117	75	u
ldc2	tne	c.ole.f		0110	54	36	6	118	76	v
		c.ule.f		0111	55	37	7	119	77	w
sc		c.sf.f		1000	56	38	8	120	78	X
swc1		c.ngle. f		1001	57	39	9	121	79	У
swc2		c.seq.f	11	1010	58	3a	:	122	7a	z
		c.ngl f		1011	59	3b	;	123	7b	{
		c.lt.f		1100	60	3c	<	124	7c	i
sdc1		c.nge f		1101	61	3d	=	125	7d	}
sdc2		c.le. f		1110	62	3e	>	126	7e	~
		c.ngt f	11	1111	63	3f	?	127	7f	DEL

(1) opcode(31:26) == 0(2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single);

if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

IEEE Single Precision and

(3)

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127,

Double Precision Bias = 1023.

Exponent Fraction Object 0 ± 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 MAX **≠**0 NaN S.P. MAX = 255, D.P. MAX = 2047

IEEE 754 Symbols

Double Precision Formats: Exponent Fraction 31 23 22 S Exponent Fraction 63 62

DATA ALIGNMENT

Double Word								
Word				Word				
Halfv	Halfword Halfword		Hal	fword	Half	word		
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
0	1	2	3	4	5	6	7	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

B	Interrupt Mask		Exception Code	
31	15	8	6	2
	Pending Interrupt		M	E I L E
	15	8	4	1 0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

=/	CEPTIC	JN CC	DES			
	Number	Name	Cause of Exception	Number	Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
	4	AdEL	Address Error Exception	10	RI	Reserved Instruction
	+	Auel	(load or instruction fetch)	10	KI	Exception
	5	AdES	Address Error Exception	11	CpU	Coprocessor
	,		(store)	11	СрС	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0		Instruction Fetch	12	Ov	Exception
	7	DBE	Bus Error on	13	Tr	Trap
		DBE	Load or Store	13	11	пар
	8	Sys	Syscall Exception	1.5	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication: 2^x for Memory)

TIET IXEO (10 101 DISK, COMMUNICATION, E 101 MICHOLY)									
		PRE-		PRE-		PRE-		PRE-	
	SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX	
	$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-	
	$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10 ⁻⁶	micro-	10-18	atto-	
	$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10-21	zepto-	
	$10^{12}, 2^{40}$	Tera-	10 ²⁴ , 2 ⁸⁰	Yotta-	10-12	pico-	10-24	yocto-	

The symbol for each prefix is just its first letter, except μ is used for micro.