M1.1. 1 punkt Niech B będzie liczbą naturalną większą od 1. Wykazać, że każda niezerowa liczba rzeczywista x ma jednoznaczne przedstawienie w postaci znormalizowanej $x = smB^c$, gdzie s jest znakiem liczby x, c – liczbą całkowitą (cechq), a m – liczbą z przedziału [1, B), zwaną mantysq.

1. istnienie
$$x \in \mathbb{R} \setminus \{0\}$$
 $S = sgn(x)$ $C = L \log_{\mathbb{R}}(I \times I) \rfloor$ $m = \frac{x}{sB^{c}}$
 $S \in \{-1,1\}$ $C \in \mathbb{Z}$ $M = \frac{x}{sB^{c}}$
 $\frac{x}{sB^{c}} = \frac{sgn(x) \cdot |x|}{sB^{c}} = \frac{|x|}{B^{c}}$
 $C \le \log_{\mathbb{R}}|x| < c+1$
 C

a)
$$S_1 = S_2$$

gdyby nie, to b.s.o $S_1 m_1 B^{C_1} < 0$, $S_2 m_2 B^{C_2} > 0$
 $S_1 m_1 B^{C_1} \neq S_2 m_2 B^{C_2} \neq S_3 m_1 B^{C_1} \neq S_2 m_2 B^{C_2} \neq S_3 m_1 B^{C_1} \neq S_3 m_2 B^{C_2} \neq S_3 m_2 B^{C_2} \neq S_3 m_3 B^{C_3} \neq$

b)
$$C_{n} = C_{2}$$

nie wprost $C_{n} \neq C_{2}$ $b \leq 0$ $C_{1} < C_{2} \Rightarrow C_{1} + 1 \leq C_{2}$
 $B^{C_{1}} \leq m_{1}B^{C_{1}} < B^{C_{1}+1} \leq m_{2}B^{C_{2}}$
 $C_{2}y(i) m_{1}B^{C_{1}} < m_{2}B^{C_{2}} \neq 0$

c)
$$m_1 = m_2$$

trywialnie z a) i b)