Game Theory

Manik Bhandari

Department of Computational Data Science Indian Institute of Science Bangalore, India mbbhandarimanik2@gmail.com

Abstract

Notes of Theory of Deep Learning mainly from lectures at IISC.

1 Introduction

Define error of a classifier (aka *true error*) as probability of it making a mistake given a random data point.

$$L_{D,f}(h) = \Pr_{x \sim D}[h(x) \neq f(x)] = D(\{x : h(x) \neq f(x)\})$$

where D is the distribution from where a data point x is drawn, f is a known *correct* function which always gives the correct labels to a data point. By this definition D(A) is the probability of observing a random point x from A.

Define training error or emperical risk as

$$L_S(h) = \frac{|i \in [m] : h(x_i) \neq y_i|}{m}$$

where S is the training set (it is actually a sequence since points can repeat and classifiers often take into account their order) of the form $\{(x_i,y_i)\}$. If you naively minimize this emperical risk then you are likely to overfit. To avoid it, you use some prior knowledge about the kind of classifier that can possibly fit to the data and restrict your hypothesis search space to those types of classifiers.

This kind of restriction induces a bias in the model (aka inductive bias). In this setting, define

$$h_S = ERM_h(S) \in \underset{h \in \mathcal{H}}{argmin} L_S(h).$$

This is a tradeoff – choosing a restricted H can add too much bias but choosing a large H may lead to overfitting.

Finite hypothesis class If we restrict H to have an upper bound on its size then ERM_h will not overfit if we have *large* training data (how large will depend on size of H).

Realizability Assumption There exists $h^* \in \mathcal{H}$ such that $L_{D,f}(h^*) = 0$ i.e. it never makes a mistake which means that $L_S(h^*) = 0$. Since this is the least possible error, this means that for every ERM hypothesis $L_S(h_S) = 0$. We are however interested in true error of h_S i.e. $L_{D,f}(h_S)$.

iid assumption Assume that elements of S are identically and independently distributed according to D denoted by $S \sim D^m$.