

Recalibration of the Shear Stress Transport Model to Improve Calculation of Shock Separated Flows

Nicholas J. Georgiadis and Dennis A. Yoder NASA Glenn Research Center

6th Annual Shock Wave/Boundary Layer Interaction (SWBLI)
Technical Interchange Meeting
April 2013

Motivation

- Shock-Wave / Turbulent Boundary Layer Interactions (SWTBLIs) are pervasive to all supersonic vehicles – external aerodynamics, inlets, isolators, etc.
- Accurate prediction of SWTBLIs with CFD remains elusive.
- Results from the 2010 AIAA SWTBLI workshop indicated deficiencies in RANS turbulence models for shock-separated flows.
- Some promise using LES/DNS, but these methods are not yet ready for engineering applications.

UFAST SWBLI Test Case

2010 AIAA SWTBLI Workshop

- Mach 2.25 flow approaching SWTBLI region.
- Several RANS and LES (including hybrid RANS-LES) solutions submitted;
 most widely used RANS turbulence models were SST and SA.

Motivation

- 2010 AIAA SWTBLI workshop results: Most popular turbulence models utilized were Menter SST and Spalart-Allmaras.
- SST and BSL produce results on either side of experimental data for this case (UFAST) and most other SWTBLI cases we have examined.

0280

300

UFAST Mach 2.25 SWTBLI Test Case:

Menter BSL k-ω

320

x (mm) 340

360

Presentation Outline

- Motivation
- Comparison of BSL and SST Models
- Investigation of Shear Stress Limiter
- Incompressible / Low-Speed Test Cases*:
 - 1. Flat Plate zero pressure gradient boundary layer.
 - 2. Driver Axisymmetric Diffuser adverse pressure gradient with separation.
 - 3. Backward Facing Step
- SWTBLI Cases:
 - 1. UFAST Mach 2.25
 - 2. Schulein Mach 5
 - 3. HIFiRE Scramjet Flow Paths Mach 5.8 and 8.0 flight conditions
- Conclusions

^{*} Grids and boundary conditions for incompressible test cases are taken from the Turbulence Model Benchmarking Working Group (TMBWG) website: turbmodels.larc.nasa.gov.

Menter SST and BSL Models

- Baseline (BSL) model combined:
 - 1. Wilcox 1988 k-ω model inner model.
 - 2. Jones Launder k- ϵ model transformed to k- ω equation form outer model.
 - F₁ function transitions from inner model to outer model at approximately 2/3 boundary layer thickness.
- Shear Stress Transport (SST) model is an extension of BSL model:
 - 1. Diffusion coefficient, σ_k , changed from 0.5 to 0.85 for inner model.
 - 2. Limiter placed on turbulent shear stress to not exceed 0.31 x turbulent kinetic energy (TKE). The motivation is to account for "transport of shear stress."
- The limiter originates from the observation of Bradshaw and others that -u'v' does not exceed 30% x TKE
- "Townsend structure parameter" = a₁ = -u'v' / k
- SST model setting a_1 = 0.31 works well for low speed cases including mild adverse pressure gradient flows....optimal for higher speed?

Menter Two-Equation k-ω Baseline (BSL) Model

$$\begin{split} \frac{D(\rho k)}{Dt} &= \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right] \\ \frac{D(\rho \omega)}{Dt} &= \frac{\gamma}{\upsilon_T} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + (1 - F_1) 2 \rho \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} \\ \mu_t &= \frac{\rho k}{\omega} \end{split}$$

$$CD_{kw} = \max(2\rho \sigma_{\omega 2} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}; 1 \times 10^{-20})$$

$$F_1 = \tanh\left[(\arg_1)^4 \right]$$

$$\arg_1 = \min\left[\max\left(\frac{k^{1/2}}{\beta^* \omega y}; \frac{500\upsilon}{\omega y^2} \right); \frac{4\rho \sigma_{\omega 2} k}{CD_{k\omega} y^2} \right]$$

$$\gamma = \frac{\beta}{\beta^*} - \frac{\sigma_\omega \kappa^2}{\sqrt{\beta^*}} \end{split}$$

Constants:
$$\sigma_{kl} = 0.5$$
, $\sigma_{\omega l} = 0.5$, $\beta_{l} = 0.075$
 $\sigma_{k2} = 1.00$, $\sigma_{\omega l} = 0.856$, $\beta_{l} = 0.0828$
 $a_{l} = 0.31$, $\kappa = 0.41$, $\beta^{*} = 0.09$

Menter Two-Equation k-ω "Shear Stress Transport" (SST) Model

$$\begin{split} \frac{D(\rho k)}{Dt} &= \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right] \\ \frac{D(\rho \omega)}{Dt} &= \frac{\gamma}{\upsilon_T} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + (1 - F_1) 2 \rho \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} \\ \mu_t &= \min \left(\frac{\rho k}{\omega}; \frac{a_1 \rho k}{\Omega F_2} \right) \end{split} \qquad \begin{aligned} & CD_{kw} &= \max(2\rho \sigma_{\omega 2} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}; 1 \times 10^{-20}) \\ & F_1 &= \tanh \left[(\arg_1)^4 \right] \end{split} \qquad F_2 &= \tanh \left[(\arg_2)^2 \right] \\ & \arg_1 &= \min \left[\max \left(\frac{k^{1/2}}{\beta^* \omega y}; \frac{500\upsilon}{\omega y^2} \right); \frac{4\rho \sigma_{\omega 2} k}{CD_{k\omega}} \right] \end{aligned} \qquad \arg_2 &= \min \left(2 \frac{k^{1/2}}{\beta^* \omega y}; \frac{500\upsilon}{\omega y^2} \right) \\ & \gamma = \frac{\beta}{\beta^*} - \frac{\sigma_\omega \kappa^2}{\sqrt{\beta^*}} \end{split}$$

Constants:
$$\sigma_{kl} = 0.85$$
, $\sigma_{\omega l} = 0.5$, $\beta_{l} = 0.075$
 $\sigma_{k2} = 1.00$, $\sigma_{\omega l} = 0.856$, $\beta_{l} = 0.0828$
 $a_{l} = 0.31$, $\kappa = 0.41$, $\beta^{*} = 0.09$

Investigation of Shear Stress Limiter

- The original SST model has become one of the most widely RANS used turbulence models.
- Shear stress limiter sets $a_1 = 0.31 = -u'v'/k$, using observations of Bradshaw, Townsend, and others -- for zero pressure gradient and mild adverse gradient flows.
- This limiter is only active in inner $\frac{3}{4}$ of boundary layer via F_2 function.
- Experimental data (UFAST, Smits et al, others) shows -u'v'/k exceeds 0.31 in SWTBLI flows.
- Others (Wilcox, Tan and Jin, Edwards) have investigated values for a₁ greater than 0.31.
- This work:
 - 1. Investigate a range of a₁ from 0.31 to 0.40. (larger values for a₁ are very similar to BSL)
 - 2. Examine details of experimental turbulent measurements alongside computations to determine appropriate value(s) for a₁ in SWTBLI flows.

Mach 0.2 Boundary Layer – Zero Pressure Gradient

Grid, BC's from TMBWG website.

Wall Skin Friction:

Mean velocity ($Re_x = 4.3e6$):

Mach 0.2 Boundary Layer – Zero Pressure Gradient

Eddy Viscosity ($Re_x = 4.2e6$):

Shear Stress ($Re_x = 4.2e6$):

Driver Axisymmetric Diffuser

- Grid, BC's from TMBWG website.
- Original flow case was axisymmetric diffusing geometry within rectangular wind tunnel. Menter (AIAA J. 1994) defined an axisymmetric streamline to simplify calculations.

Wall Skin Friction:

Wall Static Pressure:

Driver Diffuser – Turbulent Shear Stress

Driver Diffuser – Structure Parameter = -u'v'/k

Driver Diffuser – Turbulent Kinetic Energy

UFAST SWBLI Test Case

2010 AIAA SWTBLI Workshop

- Mach 2.25 flow approaching SWTBLI region.
- Several RANS and LES (including hybrid RANS-LES) solutions submitted;
 most widely used RANS turbulence models were SST and SA.

Structure Parameter – UFAST Experimental Data

 Turbulent shear stress exceeds 0.35 x TKE at beginning of interaction region and in region where boundary layer reattaches.

Structure parameter:

Structure Parameter – UFAST Experimental Data

UFAST Velocity Contours

Experiment

Menter SST k-ω

Menter BSL k-ω

UFAST Velocity Contours

0280 x (mm) 340 320 300

Menter BSL k-ω

Menter SST k- ω , a_1 = 0.355

UFAST Velocity Profiles

UFAST Velocity Profiles

Mach 5 SWTBLI - Schulein

Only wall shear stress data available for this case.

Hypersonic International Flight Research (HIFiRE) Direct-Connect Rig (HDCR) – Mach 5.8 Flight Case

Hypersonic International Flight Research (HIFiRE) Direct-Connect Rig (HDCR) – Mach 8.0 Flight Case

Conclusions

- BSL and SST models provide solutions on either side of experimental data for Shock-Wave / Turbulent Boundary Layer Interactions (SWTBLIs).
- This work investigated alternative values for the shear stress limiter constant, a₁, which is set to 0.31 in the original SST model.
- Incompressible models were investigated: For the Driver axisymmetric diffuser problem, SST provides best C_p results; but perhaps fortuitous – considering turbulence measurements.
- For SWTBLI problems, increasing a₁ results in less limiting of turbulent shear stress....smaller separations.
- Experimental data indicates values for $a_1 = -u'v' / k$ larger than 0.31 are warranted in agreement with computational results.
- $a_1 = 0.355$ is recommended value for SWTBLI problems.