End-to-End Natural Language Understanding Pipeline for Bangla Conversational Agents

Fahim Shahriar Khan', Mueeze Al Mushabbir', Mohammad Sabik Irbaz², MD Abdullah Al Nasim²

Department of Computer Science and Engineering, Islamic University of Technology¹, Machine Learning Team, Pioneer Alpha Ltd.² khanfahimshahriar0@gmail.com, almushabbir@iut-dhaka.edu, sabikirbaz@iut-dhaka.edu, nasim.abdullah@ieee.org

Paper ID: 341

20th IEEE International Conference on Machine Learning and Applications, 2021

Introduction

- Conversational AI Agents aim to provide virtual assistant like services in the form of a dialog system using natural languages.
- Existing chatbot systems usually do not have enough support for low-resource languages, like Bangla.
- We aim to build an end-to-end (from creating a dataset to evaluating components and pipelines) Bangla Chatbot to be used as a virtual assistant in the business environments.

Example

Motivation

Support for existing dialog systems in low-resources languages like Bangla, or Bangla Transliteration is scarce.

 \oplus

With the increasing

providing solutions.

Comparative analysis among various components and pipelines with proper reasoning are difficult to figure out.

Problem Statement

Using low-resource, scarce and skewed Bangla dataset for intent recognition and entity extraction, we need to build an end-to-end NLU pipeline for chatbots which can receive messages and send responses seamlessly as a Business Assistant.

Research Challenges

Dealing with Bangla Transliteration in English

[describe transliteration]

Skewed Low-Resource Data

Available datasets for languages like Bangla are low-resource, low-quality skewed datasets

Technical Analysis of Components and Pipelines

Understanding the technical properties of each component and pipeline, and their comparative performances with proper reasonings are difficult to figure out.

Related works

DIET Classifier

- Dual Intent Entity Transformer (DIET)
- Multi-task transformer architecture
- used for both <u>Intent Classification</u>
 and <u>Entity Extraction</u>
- Provides Modularity
 - used with various pre-trained embeddings like BERT, GloVe, etc.
- Comparable Performance against large-scale pre-trained language models
 - Faster and Better than BERT

Machine Learning Life Cycle

Dataset Preparation

Dataset overview

- Rasa open source architecture expects the dataset to be partitioned into a 3 separate yml files.
 - o nlu.yml
 - o domain.yml
 - o stories.yml
- Our chatbot needs to deal with FAQs in Bangla and Bangla Transliterations in English.
- FAQs were collected from our client's interaction history with customers from different social media platforms.
- They were annotated by 20 employees of our client.

Parts of the Dataset

1. nlu.yml

- The FAQs gathered from our client is labelled into intents and entities.
- In our custom dataset there are 45 intents and 9 entities.
- Intents are classes to which each FAQ belongs to and entities are subjects in them.
- There are a total of 250+ samples.
- This file is used to train the NLU module which is responsible for intent classification and entity extraction.

```
- intent: type_of_services
24 -
         examples:
           - আপনারা কী টাইপ [সার্ভিস](entity service) দিয়ে থাকেন
           - আপনাদের কি কি [প্রোড়াক্ট ](entity_service) আছে?
- আপনাদের কি কি [সার্ভিস](entity_service) আছে?
- আপনারা কি [সার্ভিস](entity_service) নিয়ে কাজু করেন?
27
28
           - আমাকে আপনাদের সেবা(entity service) সম্পর্কে বলন।
29
           - আপনাদের দেওয়া (সেবা1(entity service) সম্পর্কে জানতে
                नारे?
31
      - intent: type of work
32 -
         examples:
33 -
           - ভাই, আপনাদের কাজ কি?
34
           - আপনারা কি নিয়ে কাজ করছেন?
           - আপনাদের প্ল্যাটফর্ম থেকে কি সুবিধা পেতে পারি?
           - আপনারা কি কি জিনিস নিয়ে কাঁজ করেন?
37
           - কি কি জিনিস নিয়ে কাজ কুরেনু আপনারা?
           - ভাই, আপনাদের প্লাটফর্মে কি কি কাজ হয়?
           - কোন কোন বিষয়ে আপনারা সাহায্য করতে পারেন?
           - আপনাদের প্লাটফর্মে কি কি কাজ হয় জানতে চাই
41
42
      - intent: need_help
43 -
         examples:
           - আপনাদের সম্পর্কে কিছু প্রশ্ন ছিল?
           - আমাকে একটু সাহায্য করবেন?
           - একটা প্রশ্ন করি?
           - আমার একটি হেল্প দরকার
           - আমার কয়েকটি প্রশ্ন আছে
           - আমাকে একটি সাহায্য করা যাবে কি??
           - আপনাদের প্রোডাব্ট ব্যবহারে সাহায্যের প্রয়োজন।
```

Parts of the Dataset(cont.)

2. domain.yml

- This file contains all the corresponding responses of each FAQ.
- The responses are classified into 117 different response types.
- There are over 150+ responses arranged in our custom dataset.
- This file also requires all the intents and entities in the nlu.yml file grouped together.
- This file is used to train the Core module used for dialogue management.

```
182 - responses:
183
       utter greet:
184
       - text: "হ্যালো"
       - text: "ওরে"
185
186
187
       utter_goodbye:
       - text: "বিদায়"
188
189
       - text: "শুভ বিদায়"
190
191
       utter type of services:
       - text: "আমরা মূলত xyz বিষয়ে সার্ভিস দিয়ে থাকি। আমাদের
192
           সার্ভিস নিয়ে আরো বিস্তারিত জানতে আমাদের ওয়েবসাইট
       - text: "স্যার/ম্যাম আমাদের x সংখ্যক ক্যাটাগরিতে x সংখ্যক
193
           প্রোডাক্ট/সার্ভিস আছে। এগুলো সম্পর্কে বিস্তারিত জানতে
           আমাদের ওয়েবসাইট ভিজিট করুন কিংবা চাইলে আমাদের
           কাস্টমার কেয়ার প্রতিনিধির সাথেও কথা বলতে পারেন।"
194
195
       utter need help:
       - text: "জ্বী স্যার/ম্যাডাম বলুন আমরা কীভাবে আপনাকে হেল্ল
196
           করতে পারি?"
       - text: "জী বলন"
197
       - text: "আমরা আছি আপনাদের সেবায়"
198
       - text: "জী স্যার/ম্যাডাম অবশ্যই"
199
       - text: "জ্বী। আমাকে প্রশ্ন করুন, আমি সবসময় চেষ্টা করব
200
           আপনার প্রয়োজনীয় উত্তর দিয়ে আপনাকে"
       - text: "জী । নির্দ্বিধায় বলে ফেলুন। "
201
       - text: "জ্বী স্যার/ম্যাডাম বলুন আমরা কীভাবে আপনাকে হেল্ল
202
           করতে পারি?"
       - text: "জ্বী স্যার/ম্যাডাম বলুন আমরা কি ইনফো দিয়ে
203
           আপনাকে হেলু করতে পারি>"
```

Parts of the Dataset(cont.)

3. stories.yml

- This file contains 139 stories each mimicking a conversation.
- Each story consists of an intent defined in the nlu.yml followed by a response defined in the domain.yml.
- The intent in the story represents a class of query that may come from a user.
- Each action defines the response our chatbot should give to that input intent.
- This file is also used to train the Core module used for dialogue management

```
- story: 17.4 website
430 -
431 -
432
           - intent: website
           - action: utter website
433
           - intent: goodbye
           - action: utter goodbye
435
436
437 -
       - story: 18.3 mail address
438 -
         steps:
           - intent: mail address
439
           - action: utter mail address
449
441
       - story: 18.4 mail_address
442 -
443 -
         steps:
444
           - intent: greet
           - action: utter greet
445
           - intent: mail address
           - action: utter mail address
447
448
       - story: 19.3 year of starting
449 -
450 -
         steps:
451
           - intent: year of starting
           - action: utter year of starting
452
453
       - story: 19.4 year of starting
454 -
455 -
         steps:
456
           - intent: greet
           - action: utter greet
457
           - intent: year of starting
458
           - action: utter year of starting
459
```

Machine Learning Modeling

Rasa is made up of two separate decoupled units

- NLU module: is used to classify the <u>intent</u> of a given sentence and extract the <u>entities</u>
- Core module: is responsible for the dialogue management of the system

So how does the entire model work?

- From the input sentence the intents and entities are identified
- The intent and entities along with the previous state are used to update the current state of the conversation
- Policies use the output of the tracker to select an appropriate response from the domain file

Fig no: How an output message is generated from an input message

The NLU module

- It is formed of a pipeline consisting of a series of steps executed consecutively
- The input text is tokenized
- Sparse featurizers like Lexical Syntactic Featurizer, Count Vector Featurizer extract sparse features
- Using these features the intent and entity predictions are made using the DIETClassifer
- The DIETClassifer takes in the features as input and outputs the intents and entities

```
language: bn
    ## Pipline 1 = vanilla pipeline
     pipeline:

    name: WhitespaceTokenizer

       - name: RegexFeaturizer
       - name: LexicalSyntacticFeaturizer
       - name: CountVectorsFeaturizer

    name: CountVectorsFeaturizer

10
         analyzer: char wb
11
         min ngram: 1
         max ngram: 4
       - name: DIETClassifier
13 -
         epochs: 200
14
15
```


Fig no: How an NLU model works

How can we customize the NLU module?

- We can add language specific tokenizers for Bangla.
- We can leverage pre-trained dense features on Bangla corpus.
- Concatenating pre-trained dense features along with sparse features highly improves performance.
- FastText and Spacy both provide pre-trained dense features for Bangla.
- BERT provides a language agnostic pre-trained dense feature as well.

Different customized NLU pipeline

```
94
      pipeline:

    name: WhitespaceTokenizer

    name: CountVectorsFeaturizer

96
97 -

    name: CountVectorsFeaturizer

98
        analyzer: char wb
99
        min ngram: 1
100
        max_ngram: 4
      - name: ftfeat.FastTextFeaturizer
101 -
102
        cache dir: 'F:/Bot/fastText'
        file: 'cc.bn.300.bin'
103

    name: DIETClassifier

104 -
105
        epochs: 100
106
```

```
pipeline:

    name: custom tokenizer.BanglaTokenizer

       - name: RegexFeaturizer

    name: LexicalSyntacticFeaturizer

    name: CountVectorsFeaturizer

    name: CountVectorsFeaturizer

          analyzer: char wb
10
11
         min ngram: 1
12
         max_ngram: 4
       - name: DIETClassifier
13 -
         epochs: 200
14
15
```

Fig no: pipeline with dense bangla fastText features

Fig no: pipeline with custom bangla tokenizer

Different customized NLU pipeline(contd.)

```
pipeline:
73 - name: SpacyNLP
      model: "bn core news sm"
74
75

    name: SpacyTokenizer

    name: SpacyEntityExtractor

76
77 - name: SpacyFeaturizer
     pooling: mean
78
79 - name: CountVectorsFeaturizer
      analyzer: char_wb
80
      min ngram: 1
81
82
      max ngram: 4
   - name: DIETClassifier
83 -
84
      epochs: 100
85 - name: FallbackClassifier
      threshold: 0.2
86
87
      ambiguity threshold: 0.1
88
```

```
Fig no: pipeline with dense bangla spacy features
```

```
54 - pipeline:
       - name: "LanguageModelTokenizer"
55
56 -
       - name: LanguageModelFeaturizer
         model_name: "bert"
57
         model_weights: "rasa/LaBSE"
         cache dir: null
59
       - name: RegexFeaturizer
       - name: LexicalSyntacticFeaturizer
61
       - name: CountVectorsFeaturizer
62 -
63
         analyzer: char wb
         min ngram: 1
         max ngram: 4
       - name: DIETClassifier
66 -
         epochs: 500
      - name: FallbackClassifier
68 -
        threshold: 0.3
69
        ambiguity threshold: 0.1
70
71
```

Fig no: pipeline with dense language agnostic Bert features

The Core module

- It includes a tracker and some Policies.
- The tracker keeps track of the conversation state and updates it.
- Policies are of two types: 1) ML based 2) Rule based
- The policies we used for response selection are
 - TED Policy: Transformer based policy to predict the next action to an input text
 - Memoization Policy: A rule-based policy that checks if the current conversation matches our defined stories and responds accordingly
 - Rule Policy: Used to implement fallback response when a out of scope input is fed to the model

Ablation Study

Pipeline P1

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score	
P1	75.47	63.65	75.47	67.75	١

Pipeline P2

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82

Pipeline P3

→ Add

→ Replace

→ Delete

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82
P3	77.36	66.45	77.36	70.48

Pipeline P4

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82
P3	77.36	66.45	77.36	70.48
P4	73.58	62.74	73.58	66.49

Pipeline P5

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82
P3	77.36	66.45	77.36	70.48
P4	73.58	62.74	73.58	66.49
P5	79.25	71.38	79.25	73.46

Pipeline P6

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82
P3	77.36	66.45	77.36	70.48
P4	73.58	62.74	73.58	66.49
P5	79.25	71.38	79.25	73.46
P6	81.13	73.27	81.13	75.32

Pipeline P7

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82
P3	77.36	66.45	77.36	70.48
P4	73.58	62.74	73.58	66.49
P5	79.25	71.38	79.25	73.46
P6	81.13	73.27	81.13	75.32
P7	79.25	75.16	79.25	75.47

Pipeline P8

→ Add

→ Replace

NLU Pipeline	Accuracy	Precision	Recall	F1-Score
P1	75.47	63.65	75.47	67.75
P2	77.36	68.24	77.36	70.82
P3	77.36	66.45	77.36	70.48
P4	73.58	62.74	73.58	66.49
P5	79.25	71.38	79.25	73.46
P6	81.13	73.27	81.13	75.32
P7	79.25	75.16	79.25	75.47
P8	83.02	80.82	83.02	80

Experimental Setup

- We split the data into 80-20 train/test split
- THE NLU MODULE
 - Learning rate: 0.5
 - Optimizer: Adam
 - Epochs: 500
 - Minimum ngram for Count Vector Featurizer(sparse featurizer): 1
 - Maximum ngram for Count Vector Featurizer(sparse featurizer): 4
 - Fallback Classifier threshold: 0.3
- THE CORE MODULE
 - Max history: 5
 - o **Epochs: 200**

Conclusion and Future Work

- Extend and improve the quality of our dataset.
- Use state of the art custom components like language specific dense featurizers for example: BERT embeddings trained on Bangla corpus.
- Change the model in a way as to handle conversations in several languages.

End-to-End Interaction

References

