

Predictive Maintenance with ST sensors

STMicroelectronics

Noor AIZAD MEMS Marketing manager

From condition monitoring to predictive maintenance

A solid path, step by step

Condition Based Monitoring

Predictive Maintenance

Sensors for Predictive Maintenance

Example of condition monitoring

Any parameter deviation is an indicator of potential failure

ST key sensor components for predictive maintenance

Industrial sensors for vibration analysis sensors and defects over bandwidth

High-performance analog microphone up to 80kHz

Key Features

- High Acoustic Overload Point of 130 dBSPL
- Nominal sensitivity -38dBV ±1dB @ 94 dBSPL
- 64 dB SNR
- Up to 80kHz of ultrasound frequency response
- -40 to 85 deg temperature range

Package: RHLGA metal cap 3.6 x 2.6 x 1mm

"Acoustic sound within the human hearing range. **Most background noise** in plants and other industrial facilities, including turbines, motors, and compressors, falls within this frequency range " * "Acoustic sound beyond the human hearing range. Very few background noise will occur on this area. Leaking gas produces acoustical sound within this range" *) Reference *AZOsensors.com

IMP23ABSU

Ultrasound microphone for air and gas leakages

- N2 or air leaks are common on tools with large number of pneumatic valves
- chemical industries where the presence of chemical fumes can impact the well-functioning of valves. Monitoring the condition of every valve is very challenging.
- Gas leak detectors with ultra-sound microphones are a "non-intrusive" monitoring method

Pneumatic valves rack

IIS3DWB Ultra wide bandwidth vibration sensor

Key Features

- 3-axis accelerometer/vibration sensor
- ±2/±4/±8/±16g full scale
- Bandwidth 6.3 kHz (-3dB)
- 26.7kHz ODR SPI interface
- 3kbyte of FIFO
- Noise density 75 μ g/ \sqrt{Hz} (60 single-axis mode)
- Operating temperature -40 to 105 degrees

Package: 2.5x3x0.83 mm

ISM330DHCX 6-axis IMU with Machine Learning Core

Best-in-class accuracy 6-axis IMU with Machine Learning Core

- High accuracy, stability and linearity over temperature and time
 - Axel Noise Density 60 μg/√Hz (typ) ODR up to 6.6kHz
 - Gyro Offset vs T ±0.005 dps/°C (typ)
 - Gyro Bias Instability 3°/hr (typ)
 - Rate Noise Density 5 mdps/√Hz (typ)

- Programmable Machine Learning Core & Finite State Machines to integrate Al
- 9 kB Embedded FIFO
- Sensor Hub
- Configurability
 - Angular rate range: from ±125dps up to ±4000 dps
 - Axel Full Scale: from ±2g up to ±16g
 - Low power and high-performance modes
- Extended operating temperature range from -40 to +105 °C

ST sensors with Machine Learning Core (MLC)

Typical sensor data transfer for main CPU

Machine Learning Core

MLC is an in-sensor classification engine based on Decision Tree logic

Main processor

MLC is able to increase accuracy with a better context detectability, offloading the main processor while the built-in sensors identify motion data

Moving from cloud to edge computing for easier data handling

CLOUD

High power consumption & heavy files sent to the cloud

Time-sensitive applications are limited by remote data cloud

- Mission-critical functions
- Bandwidth limitations
- Privacy and security concerns
- Power consumption

EDGE

Low power consumption. Optimized data sent to the cloud

Time-sensitive applications are locally processed

Market needs:

Sensors with local processing (Artificial Intelligence) for real-time elaboration and best power efficiency

Sensors with Machine Learning Core & Finite State Machine

LSM6DSOX
 6-axis IMU for battery powered IOT

LSM6DSRX
 6-axis IMU for VR and trajectory tracking

ISM330DHCX
 6-axis IMU for Industry 4.0

 ASM330LHHX 6-axis IMU for Vehicles

IIS2ICLX
 2-axis Inclinometer and structures monitoring

IOT / Wearable
Movement tracking & Shock

GNSS, Telematics, VR/AR, Robot Rotation / Movement

Predictive maintenance & Monitoring Vibration / Tilt

Infrastructure & Landslide monitoring Mechanical movement / Tilt

Smart Wake-up for SHM

Machine learning core classifies the traffic load and wakes up 2nd level processing only when relevant conditions are met

Battery powered, wireless sensor node

Cloud

Edge-of-the-Edge computing

Edge computing

STWIN introduction

Wireless connectivity is a game changer Here's why

STWIN1B: SensorTile Wireless Industrial Node

- Hardware Board
- Battery + plastic case for field testing
- STLink-V3MINI + cable for programming

STWIN1B is available under the sales code: STEVAL-STWINKT1B

Application software

A broad ecosystem of SW tools

Datalogging

FP-SNS-DATALOG1

Anomaly detection

NANOEDGE AI STUDIO

FP-AI-NANOEDG1

Condition Monitoring

FP-IND-PREDMNT1

Focus on microphones

X-CUBE-MEMSMIC1

www.st.com/stwin

STEVAL-STWINKT1B Block diagram

I/O protection

Summary

Predictive Maintenance to Anomaly detection

1

New industry 4.0 way of monitoring assets remotely with industrial sensors emerging

2

3

New **STWIN1B** development kit available with plenty pre-made SW packages for high speed datalogging and anomaly detection

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

