<u>Warmup</u> he	ow many topologies or	\varnothing ?	[one]
------------------	-----------------------	-----------------	-------

Q is Ø connected? [yes!]

Q is R $^{\omega}$ connected in the box topology? [no]

say that (x_i) in R^ω is bounded iff there is a fixed C > 0 s.t. $|x_i| < C$ for all i

 $U = \{(x_i)_i \text{ is bounded}\}$

 $V = \{(x_i)_i \text{ is not bounded}\}$

disjoint, nonempty, and satisfy $R^{\omega} = U \operatorname{cup} V$

to prove that U is open:

Lem if $(x_i)_i$ in U, then for any fixed $\delta > 0$, we have prod_i $(x_i - \delta, x_i + \delta)$ sub U

Pf pick $(y_i)_i$ in prod_i $(x_i - \delta, x_i + \delta)$ pick C s.t. $|x_i| < C$ for all i

then $|y_i| < |x_i + \delta| \le |x_i| + \delta < C + \delta$ for all i so $(y_i)_i$ in U

a similar proof shows that V is open, so:

Thm R^{ω} is disconnected in the box top

Q for integer n, is R^n connected in the box = product = analytic topology? [yes!]

E	a	C	<u>ts</u>

- top on R^n = product top arising from analytic R^{n - 1} and R [more general: Munkres 118, #4]
- 2) R is connected
- 3) if X, Y are connected, then $X \times Y$ is too

Thm R^n is connected

if n = 0, then $R^n = \{0\}$, so true suppose n > 0 and induct:

by 1), enough to show R^{n - 1} × R connected in product top by 2), enough to show analytic R^{n - 1} and R

by 2), enough to show analytic R^{n - 1} and R are connected

by 3), R is connected by inductive hypothesis, R^{n - 1} is connected

Q examples of connected subspaces of R?[∅, singleton sets, intervals]how about connected subspaces of Q?

 $\begin{array}{ll} \underline{\text{Thm}} & \text{the only connected subsets of Q} \\ & \text{are } \varnothing \text{ and singleton sets} \end{array}$

Pf suppose A sub Q contains distinct a, b pick irrational α s.t. a < α < b

then take U = A cap $(-\infty, \alpha)$ and V = A cap (α, ∞) then U, V are disjoint, nonempty, open sets of As.t. A = U cup V

<u>Df</u>	a top space is totally disconnected iff
	its only connected subspaces are \varnothing
	and singletons

so Q is totally disconnected, but <u>not</u> discrete, in the subspace top it inherits from analytic R

[we'll use the same proof strategy to show:]

 $\begin{array}{ccc} \underline{Thm} \ (\text{Intermediate Value Thm}) & \text{suppose} \\ & & \text{X connected,} \\ & & \text{f: X to R cts,} \\ & & \text{x, y in X} \end{array}$

if $f(x) \le \alpha \le f(y)$, then there is z in X s.t. $f(z) = \alpha$

Pf if no such z, then $U = f^{-1}((-\infty, \alpha)) \text{ and } V = f^{-1}((\alpha, \infty))$ would be a separation of X

Moral to study general top spaces, helpful to compare them to R via cts functions

Df a path in X from x to y is a cts map $\gamma : [0, 1]$ to X s.t. $\gamma(0) = x$ and $\gamma(1) = y$, where we give [0, 1] the analytic top

[sometimes replace [0, 1] with [a, b], where a < b]

Df X is path-connected iff, for all x, y in X, there is a path from x to y