SI251 - Convex Optimization Quiz

September 5, 2022

1. (15 pt) Given a function

$$f(x) = \frac{x_1 + x_2}{3 + x_1^2 + x_2^2 + x_1 x_2},\tag{1}$$

determine the minimal point x.

2. (15 pt) In order to minimize f(x) where $x \in \mathbb{R}$, we takes the following iteration:

$$x_{k+1} = x_k + \alpha_k p_k, \tag{2}$$

where $p_k = H_k \nabla f(x_k)$ and $\alpha_k \to 0^+$. What kind of H_k can guarantee that p_k is a descent direction?

- 3. (20 pt) Given a detailed proof of the following statements:
 - For matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times n}$, prove that $\mathbf{rank}(A+B) \leq \mathbf{rank}(A) + \mathbf{rank}(B)$;
 - For matrices $A \in \mathbb{R}^{s \times n}$, $B \in \mathbb{R}^{n \times m}$, prove that $\mathbf{rank}(A) + \mathbf{rank}(B) n \leq \mathbf{rank}(AB)$.
- 4. (20 pt) Kullback-Leibler (KL) divergence can be expressed as

$$kl(x,y) = f(x) - f(y) - \nabla f(y)^T (x - y), \tag{3}$$

where $f(y) = \sum_{i=1}^{n} y_i \log y_i$ is the negative entropy of y.

Please prove: $kl(x,y) \ge 0$ for all $x, y \in \mathbb{R}^n_{++}$, also show that kl(x,y) = 0 iff x = y.

- 5. (30 pt) Determine whether the following statements are true or false, and explain the reason for your judgement.
 - Suppose A and B is $m \times n$ and $n \times m$ matrix respectively $(n \ge m)$. Then the non-zero eigenvalues of BA and AB are identical, and $|I_m AB| = |I_n BA|$.
 - If A is symmetric and has r non-zero eigenvalues, then rank(A) = r.
 - Give two matrices with the same shape, suppose $A \succ 0$ (positive definite) and $B \succeq 0$ (positive semidefinite), then

$$|A+B| \ge |A|,\tag{4}$$

with equality iff $B = \mathbf{0}$.