MAT232 - Lecture 4

Polar Coordinates and Curves

AlexanderTheMango

Prepared for January 16, 2025

Contents

Polar Coordinates - Key Theorems	1
Converting Points between Coordinate Systems	1
Uniqueness of Polar Coordinates	_1
Symmetry of Polar Curves	-

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Polar Coordinates - Key Theorems

Converting Points between Coordinate Systems

Theorem

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, θ) , the following conversion formulas hold true:

$$x = r \cos \theta$$
 and $y = r \sin \theta$,

$$r^2 = x^2 + y^2$$
 and $\tan \theta = \frac{y}{x}$.

These formulas can be used to convert between rectangular and polar coordinates.

Uniqueness of Polar Coordinates

Proposition

Every point in the plane has an infinite number of representations in polar coordinates. Specifically, the polar coordinates (r, θ) of a point are not unique.

Remark

For example, the polar coordinates $(2, \pi/3)$ and $(2, 7\pi/3)$ both represent the same point in the rectangular coordinate system. Additionally, the value of r can be negative. Therefore, the point with polar coordinates $(-2, 4\pi/3)$ represents the same rectangular point as $(2, \pi/3)$.

Symmetry of Polar Curves

Theorem

Polar curves can exhibit symmetry similar to those in rectangular coordinates. The key symmetries to identify are:

- Symmetry with respect to the polar axis: A curve is symmetric with respect to the polar axis if replacing θ with $-\theta$ in its equation yields the same curve.
- Symmetry with respect to the line $\theta = \frac{\pi}{2}$: A curve is symmetric with respect to the line $\theta = \frac{\pi}{2}$ if replacing θ with $\pi \theta$ yields the same curve.
- Symmetry with respect to the pole (origin): A curve is symmetric with respect to the pole if replacing r with -r yields the same curve.

Recall the content from last lecture...

Note

Converting from cartesian coordinates (x, y) to polar coordinates r, θ .

$$x^2 + y^2 = r^2$$

$$\arctan\left(\frac{y}{x}\right) = \theta$$

Converting from polar coordinates (r, θ) to cartesian coordinates (x, y)

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Remember how to between degrees and radians:

- Degrees to radians: [fill this in]
- Radians to degrees: [fill this in]

New

Concept

Note the convention for r in a polar-coordinate point:

PC is represented as (r, θ) .

$$(-r,\theta) = (r,\theta + 180^{\circ})$$

Example of Plot Points

Example

Plot points: $(3, -45^{\circ}), (3, 225^{\circ}), (4, 330^{\circ}), (1, -45^{\circ})$ self-note: finish this part up self-note: add drawing from prof from camera roll here

Example of Converting from Polar Coordinates to Cartesian Coordinates

Example

Find the **rectangular coordinates** of the point p whose polar coordinates are 6, $\frac{\pi}{3}$.

Solution

$$x = r\cos\theta = c\cos\left(\frac{\pi}{3}\right) = 6\left(\frac{1}{2}\right) = 3$$

$$y = r \sin \theta = 6 \sin \left(\frac{\pi}{3}\right) = 6\left(\frac{\sqrt{3}}{2}\right) = 3\sqrt{3}$$
$$\frac{\pi}{3} = 60^{\circ}$$

Therefore, the cartesian coordinate is $x, y = (3, 3\sqrt{3})$.

Converting from Cartesian Coordinates to Polar Coordinates

Example

Find the polar coordinate of the point p whose rectangular coordinates are $-2, 2\sqrt{3}$.

Solution

Recall that (the circle equation):

$$x^2 + y^2 = r^2$$

It follows that:

$$(-2)^2 + (2\sqrt{3})^2 = r^2$$

$$4 + 4 \cdot 3 = r^2$$

$$16 = r^2$$

$$\pm\sqrt{16} = r$$

$$r = \pm 4$$

Note that the radius is positive. Thus:

$$r=4.$$

Recall that:

$$\tan(\theta) = \frac{y}{x}$$

$$\tan(\theta) = \frac{2\sqrt{3}}{-2}$$

$$\tan(\theta) = -\sqrt{3}$$

Note

Note that:

$$\arctan\left(\frac{y}{x}\right) = \theta, \quad \frac{\pi}{2} < \theta < \frac{\pi}{2}$$

Tip

Manually determining θ from $\tan(\theta) = \sqrt{3}$.

Note the special angles (in radians):

- 0
- $\bullet \quad \frac{\pi}{6}$
- $\bullet \quad \frac{\pi}{4}$
- \bullet $\frac{\pi}{3}$

University of Toronto Mississauga $\bullet \frac{\pi}{2}$

Check: At $\theta = \frac{\pi}{6}$,

$$LHS = \frac{\sin\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)}$$

January 21, 2025

Tip

When practicing for this course, you are encouraged to leverage any available graphing websites and/or software.

Ideally, you want to know how to draw lines and circles.

Polar Curves

Example

Consider $r = f(\theta)$.

Sketch the following functions:

- (a) r = 1
- (b) $\theta = \frac{\pi}{4}$
- (c) $r = \theta$, $\theta \geqslant 0$
- (d) $r = \sin(\theta)$
- (e) $r = \cos(2\theta)$

(a)

Solution

Here, r = 1 and θ is an arbitrary angle.

Converting from a polar-coordinate curve to a cartesian-coordinate equation:

$$x^2 + y^2 = r^2 = 1^2 = 1$$

Clearly, we are working with the unit cirle.

self-note: actually show the illustration as andie drew on the lecture notes

(b)

Solution

[fill this in]

(c)
$$r = \theta$$
, $\theta \geqslant 0$

Solution

As $r \to \infty$, θ increases.

$$r = f(\theta)$$

$$\pi \doteq 3.14$$

Check out the illustration: [add-illustration-here]

Now, converting from polar coordinates to cartesian coordinates:

$$x^2 + y^2 = r^2$$

$$\sqrt{x^2 + y^2} = r$$

[and also add the other equation]

(d)
$$r = \sin \theta$$

Solution

Just use the table to directly plot the points for the graph!

add-illustration-here We now need an equation that will help us get rid of $r = \sin \theta$. Consider the possibilities:

- $x = r \cos \theta$
- $y = r \sin \theta$
- $\frac{y}{r} = \sin \theta$

$$r = \sin \theta$$

$$r = \frac{y}{r}$$

$$r^2 = y$$

$$x^2 + y^2 = r^2 \text{ So},$$

$$x^2 + y^2 = y.$$

Proposition

Recall how to complete the square from Grade 10 math: self-note: add that here to reference

Proceed to complete the square:

$$x^2 + y^2 - y + \frac{1}{4} = \frac{1}{4}$$

step no. 1:
$$-\frac{1}{2}$$

step no. 1: $-\frac{1}{2}$ step no. 2: $(-\frac{1}{2})^2 = \frac{1}{4}$. Recall that:

$$(y+a)^2 = (y+a)(y+a)$$

$$= y^2 + 2ay + a^2$$

This would represent the $y^2 - y + \frac{1}{4}$ part.

Note that the $(y-a)^2$ represents the $-\frac{1}{2}$ result:

$$x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$$

Centre: $(0, \frac{1}{2})$

Uni**Rerslity**s:of Torfonto Mississauga

January 21, 2025

Exercise

Try:

 $r=\cos\theta$

under the same context as denoted for the above questions.

The Derivative of a Polar Curve

Tangents to Polar Curves

Definition

Not ϵ

Recall that polar curves are defined by:

$$r = f(\theta)$$

$$x = r\cos\theta = f(\theta)\cos\theta$$

$$y = r\sin\theta = f(\theta)\sin\theta$$

Intuition

The goal is to have everything on x depend on **one** parameter.

Do the exact same thing on y.

So,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d}}.$$

We want require $\frac{dx}{d\theta} \neq 0$.

So...

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$=\frac{\frac{df(\theta)}{d\theta}\sin\theta+\cos\theta f(\theta)}{\frac{df(\theta)}{d\theta}\cos\theta-\sin\theta f(\theta)}$$

So,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

(subbed r in for $f(\theta)$). Conclusion:

- Horizontal Tangents: $\frac{dy}{d\theta} = 0$, $\frac{dx}{d\theta} \neq 0$
- Vertical Tangents: $\frac{dx}{d\theta} = 0$, $\frac{dy}{d\theta} \neq 0$
- Singular Points (discard; we will not be doing further analysis for this case in MAT232): $\frac{dy}{d\theta} = \frac{dx}{d\theta} = 0$

Examples

Example

Find the **vertical tangent** angles of the polar curve $r = 1 - \cos \theta$, $0 \le \theta \le \pi$.

Solution

Recall that $\frac{dr}{d\theta} = \sin \theta$.

Obtain the first derivative:

$$\frac{dy}{dx} = \dots$$

self-note: prof is going way too fast; finish the notes according to your camera roll later! the good thing is that you didn't actually miss any sections! fulfilling incomplete sections is just a matter of reviewing and comparing to the pictures taken of the prof's projected live notes!

Answer

The vertical tangents are located at $x = \{\frac{\pi}{3}, \pi\}$.

Figure 1: Sample image illustrating the concept.

Next Week: Vector Week

Theorem

• Circle: $x^2 + y^2 = r^2$.

• Generic form for a circle centered at (h,k): $(x-h)^2 + (y-k)^2 = r^2$

Figure 2: Graphical representation of the theorem.

Example

Sketch $x^2 + y^2 - 2x = 10$.

Solution

Recall how to complete the square:

$$x^2 - 2x + 1 + y^2 = 10 + 1$$

 $\frac{\text{Step } \#1:}{\text{Step } \#2:} \ -\frac{2}{2} = -1;$ $\frac{\text{Step } \#2:}{(-1)^2 = 1} \ \text{self-note: complete this below}$

Additional Notes

Always check the domain of the parameter t when solving problems involving parametric equations.