

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/31, C07K 14/315, 16/12, C12Q 1/68		A2	(11) International Publication Number: WO 98/18931 (43) International Publication Date: 7 May 1998 (07.05.98)
(21) International Application Number: PCT/US97/19588 (22) International Filing Date: 30 October 1997 (30.10.97)		(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).	
(30) Priority Data: 60/029,960 31 October 1996 (31.10.96) US		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
<p>(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).</p> <p>(72) Inventors; and (75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).</p>			

(54) Title: *STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES*

(57) Abstract

The present invention provides polynucleotide sequences of the genome of *Streptococcus pneumoniae*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Streptococcus pneumoniae Polynucleotides and Sequences

FIELD OF THE INVENTION

5 The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation,
10 polypeptide production, assays and pharmaceutical development, among others.

BACKGROUND OF THE INVENTION

15 *Streptococcus pneumoniae* has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same
20 capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., *et al.*, *J. Exp. Med.*, 79:137-157 (1944)).

25 In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., *et al.*, *Rev. Infect. Dis.* 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2
30 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., et al., *J. Med. Microbiol.* 28:237-248 (1989)).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., *J. Immunol.* 142:2464-2468 (1989)). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., *Rev. Infect. Dis.* 13(Suppl. 6):S509-517 (1991)).

Various proteins have been suggested to be involved in the pathogenicity of *S. pneumoniae*, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., *Rev. Inf. Dis.* 3:521-534 (1981)). *S. pneumoniae* also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et. al., reported that peptide permeases can modulate

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., *et al.*, *Micro. Rev.* 59:591-603 (1995). A better understanding 5 of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded 10 DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current 15 versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. pneumoniae*, infection involves the programmed expression of *S. pneumoniae* genes, and that characterizing the genes and their patterns of expression would add 20 dramatically to our understanding of the organism and its host interactions. Knowledge of *S. pneumoniae* genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. pneumoniae* would provide 25 reagents for, among other things, detecting, characterizing and controlling *S. pneumoniae* infections. There is a need to characterize the genome of *S. pneumoniae* and for polynucleotides of this organism.

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the
5 *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative
10 fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at
15 least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the
20 present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

25 The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the
30 *Streptococcus pneumoniae* genome having particular structural or functional attributes. Such fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression
35 modulating fragments or EMFs, and fragments which can be used to diagnose the

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the *Streptococcus pneumoniae* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a prokaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both 5 monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples 10 derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which 15 contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and 20 (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to 25 a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of 30 great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the *Streptococcus pneumoniae* genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage *et al.*, *Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences*, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based *Streptococcus pneumoniae* relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

20 As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled 25 in the art to clone and sequence all "representative fragments" of interest, including fragments encoding a large variety of *Streptococcus pneumoniae* proteins.

30

35 While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the
5 skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide
10 sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential
15 error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of *Streptococcus pneumoniae* strains that can be used to prepare *S. pneumoniae* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the *S. pneumoniae* strain that provided the DNA of the present Sequence Listing, Strain
20 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of *S. pneumoniae* genomic DNA, derived from the same strain, also has been deposited in the ATCC. The *S. pneumoniae* strain was deposited on October 10, 1996, and was given Deposit No.
25 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb
30
35

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

5 The nucleotide sequences of the genomes from different strains of *Streptococcus pneumoniae* differ somewhat. However, the nucleotide sequences of the genomes of all *Streptococcus pneumoniae* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be
10 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

15 Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide
20 sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative
25 fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; i.e.,
30 a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (e.g., a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using
35

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (*e.g.*, text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

5 The examples which follow demonstrate how software which implements the BLAST (Altschul *et al.*, *J. Mol. Biol.* 215:403-410 (1990)) and BLAZE (Brutlag *et al.*, *Comp. Chem.* 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the *Streptococcus pneumoniae* genome which contain homology to ORFs or proteins from both
10 *Streptococcus pneumoniae* and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the *Streptococcus pneumoniae* genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

15 The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

20 As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

25 As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

30 As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

35 As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

5 *Streptococcus pneumoniae* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), is used to identify open reading frames within the *Streptococcus pneumoniae* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

10 Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 15 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, *etc.* A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, *etc.*) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the 20 data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

25 A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, *etc.*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the 5 *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a 10 sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment 15 of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

20 A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, *Streptococcus pneumoniae* DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be 25 used to generate a *Streptococcus pneumoniae* library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from 30 the lambda DNA library or *Streptococcus pneumoniae* genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of 35 the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2, and 3 list ORFs in the *Streptococcus pneumoniae* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last 5 nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an 10 ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often 15 removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-terminal fusion proteins which may be beneficial in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given 20 polypeptide. Thus, the invention further includes polynucleotides comprising a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides 25 at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

5 Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a
an amino acid sequence at least about 95%, preferably at least 97% and even more
preferably 99% identical to the amino acid sequence of a polypeptide encoded by an
ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-
terminal methionine.

10 The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (*e.g.*, at positions 1, 3
and 5) are said to have a percent identity of 70%. However, the same two
15 polypeptides would be deemed to have a percent similarity of 80% if, for example
at position 5, the amino acids moieties, although not identical, were "similar" (*i.e.*,
possessed similar biochemical characteristics). Many programs for analysis of
nucleotide or amino acid sequence similarity, such as *fasta* and *BLAST* specifically
list percent identity of a matching region as an output parameter. Thus, for
instance, Tables 1 and 2 herein enumerate the percent identity of the highest
scoring segment pair in each ORF and its listed relative. Further details
concerning the algorithms and criteria used for homology searches are provided
below and are described in the pertinent literature highlighted by the citations
20 provided below.

25 It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae*
genome other than those listed in Tables 1-3, such as ORFs which are overlapping
or encoded by the opposite strand of an identified ORF in addition to those
ascertainable using the computer-based systems of the present invention.

30 As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are
5 fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Streptococcus pneumoniae* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200
10 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Streptococcus pneumoniae* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a
15 target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or
20 a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is
25 cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host is examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

30 As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Streptococcus pneumoniae* origin isolated by using part or all of the fragments in question as a probe or primer.

Preferred DFs of the present invention comprise at least about 17, preferably at least about 20, and more preferably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the *Streptococcus pneumoniae* genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly *Streptococcus pneumoniae*. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for *Streptococcus pneumoniae*. Also particularly preferred are ORFs that can be used to distinguish between strains of *Streptococcus pneumoniae*, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of 5 RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region 10 of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee *et al.*, *Nucl. Acids Res.* 6:3073 (1979); Cooney *et al.*, *Science* 241:456 15 (1988); and Dervan *et al.*, *Science* 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, *J. Neurochem.* 56:560 (1991) and *Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression*, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising 20 one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the 25 present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of 30 skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). 35 Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

- Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers.
- 5 Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- 10 The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or
- 15 a prokaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation,

20 which are described in, for instance, Davis, L. *et al.*, BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (*e.g.*, an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small 5 peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in 10 the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion- 15 exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or 20 protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

25 Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the 30 polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (*e.g.*, microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (*e.g.*, yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, *e.g.*, *E. coli*, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, *e.g.*, the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, *e.g.*, stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available from Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (*e.g.*, temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of *Streptococcus pneumoniae*, of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of *Streptococcus pneumoniae* is defined as a homolog of a fragment of the *Streptococcus pneumoniae* fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the *Streptococcus pneumoniae* genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, 5 *PCR Protocols*, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-10 65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

15 When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50- 65°C in 5X SSPC and 50% formamide, and washing at 50- 65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 20 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

25 Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

30 **ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION**

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and 35 industrial purposes consistent with the type of putative identification of the

polypeptide. Such identifications permit one skilled in the art to use the *Streptococcus pneumoniae* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative 5 of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESSES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of 10 exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic 15 reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, 20 enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can 25 be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

30 Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of 35 the proteolytic enzymes used in the food industry is provided in Rombouts *et al.*,

Symbiosis 21:79 (1986) and Voragen *et al.* in *Biocatalysts In Agricultural Biotechnology*, Whitaker *et al.*, Eds., *American Chemical Society Symposium Series* 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Streptococcus pneumoniae*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* 6(A), Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir *et al.*, *Biotechnology Letters* 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis *et al.*, beginning on page 357 in *GENE MANIPULATIONS AND FUNGI*; Bennett *et al.*, Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu *et al.*, *Biochem. et Biophysica. Acta.* 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger *et al.*, *Biotechnology, The Textbook of Industrial Microbiology*, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose-produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, *Starch* 40:307 (1988).

5 Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

10 Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae *et al.*, *Philosophical Transactions of the Chiral Society of London* 310:227 (1985) and Poserke, *Journal of the American Oil Chemist Society* 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of 15 lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

20 The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies *et al.*, *Recent Advances in the Generation of Chiral Intermediates Using Enzymes*, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of 25 interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

30 When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud *et al.*, *Chemistry in Britain* (1987), p. 127.

5 Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo-selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

10 Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

15 As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well 20 fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

25 In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., *Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology*, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth *et al.*, *J. Immunol. Methods* 35: 1-30 21 (1980), Kohler and Milstein, *Nature* 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, *Immunology Today* 4:72 (1983), pgs. 77-96 of Cole *et al.*, in *Monoclonal Antibodies And Cancer Therapy*, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene 30 polypeptide. Methods for immunization are well known in the art. Such methods 35

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

5 The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

10 For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

15 Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz *et al.*, *Exp. Cell Res.* 175:109-124 (1988)).

20 Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., *Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology*, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

25 Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

30 The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, *etc.*), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, *etc.*) fluorescent labels (such as FITC or rhodamine, *etc.*), paramagnetic atoms, *etc.* Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger *et al.*, *J. Histochem. Cytochem.* 18:315 (1970); Bayer, E. A. *et al.*, *Meth. Enzym.* 62:308

(1979); Engval, E. *et al.*, *Immunol.* 109:129 (1972); Goding, J. W., *J. Immunol. Meth.* 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* assays to identify cells or tissues in which a fragment of the 5 *Streptococcus pneumoniae* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for 10 coupling antibodies to such solid supports are well known in the art (Weir, D. M. *et al.*, "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. *et al.*, *Meth. Enzym.* 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the 15 present invention can be used for *in vitro*, *in vivo*, and *in situ* assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, 20 using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. 25 Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays 30 can be found in Chard, T., *An Introduction to Radioimmunoassay and Related Techniques*, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. *et al.*, *Techniques in Immunocytochemistry*, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., *Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and*

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

- In general, such methods comprise steps of:
- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus pneumoniae* genome; and
 - 10 (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

15 For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby *et al.*, "Application of Synthetic Peptides: Antisense Peptides," in *Synthetic Peptides, A User's Guide*, W. H. Freeman, NY (1992), pp. 289-307, and Kaspaczak *et al.*, *Biochemistry* 28:9230-8 (1989), or pharmaceutical agents, or the like.

30 In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulphydryl or polymeric derivatives which have base attachment capacity.

5 Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee *et al.*, *Nucl. Acids Res.* 6:3073 (1979); Cooney *et al.*, *Science* 241:456 (1988); and Dervan *et al.*, *Science* 251:1360 (1991)) or to the mRNA itself (antisense - Okano, *J. Neurochem.* 56:560 (1991);
10 *Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression*, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the
15 sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of *Streptococcus pneumoniae* or a related organism, *in vivo* or *in vitro*," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, *etc.*

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, *etc.* The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, *etc.* Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (*e.g.*, inhalation, 5 intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be 10 by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, *etc.* In general, it is desirable to provide the recipient with a dosage of 15 agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be 20 administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

25 The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a 30 "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, *e.g.*, human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-

microcapsules and poly(methylmethacrylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES
5 (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or
10 sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

15 **6. Shot-Gun Approach to Megabase DNA Sequencing**

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing
20 protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present
25 disclosure.

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

30 **1. Shotgun Sequencing Probability Analysis**

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, *Genomics* 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L , in
35 nucleotides, is not sequenced after a certain amount, n , in nucleotides, of random
0

sequence has been determined can be calculated by the equation $P^0 = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P^0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same 5 as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to 10 .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, $g = L/n$. Thus, 5X coverage 15 leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* 2: 231 (1988).

20 2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

25 *Streptococcus pneumoniae* DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100 µl aliquot of the resuspended DNA is digested 30 with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 µl BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 µl TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted 35 and the resulting solution is extracted with phenol to separate the agarose from the

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 μ l) contains 2 μ g of DNA fragments, 2 μ g pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 μ l TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 μ l TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 μ l) containing the v+I linears, 500 μ M each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 μ l TE. The final ligation to produce circles is carried out in a 50 μ l reaction containing 5 μ l of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies* 3 (1):5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 μ l aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 μ l aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g 5 tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl² (1 M), and 1 ml MgSO₄ /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot 10 of transformation.²

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

15 3. Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams *et al.*, *Science* 252:1651 (1991); Adams *et al.*, *Nature* 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final 20 DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniae* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-25 12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 µl) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. 30 The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 µl. One µl of fragments is used with 1 µl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended 35 protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5×10^3 pfu/ μ l. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5×10^4 pfu are plated on
5 the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1×10^9 pfu/ml.

Liquid lysates (100 μ l) are prepared from randomly selected plaques (from
10 the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams *et al.*, *Nature* 368:474 (1994)). Dye
15 terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library.
20 Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The
25 average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards *et al.*, Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the
30 templates are sequenced from both ends. Random reverse sequencing reactions are
35

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed 10 specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear 15 amplification (*i.e.*, one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; *i.e.*, DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a 20 second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently 25 supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dye-primers and dye-terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

30 Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram 35 (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on
5 the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

10 **INFORMATICS**

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage *et al.*, *Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences*, IEEE Computer Society Press, Washington D. C., 585 (1993))
15 The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373
20 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of
30 the genome. In order to obtain the speed necessary to assemble more than 10^4 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR
35 Assembler extends the current contig by attempting to add the best matching

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., *Methods in Enzymology* 164:765 (1988)). The contig is extended by the fragment only if strict criteria for
5 the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are
10 likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that
15 sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOS:1-391.

20 **3. Identifying Genes**

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank
25 (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases.
30 ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a *Streptococcus pneumoniae* Protein

Substantially pure protein or polypeptide is isolated from the transfected or
5 transformed cells using any one of the methods known in the art. The protein can
also be produced in a recombinant prokaryotic expression system, such as *E. coli*,
or can be chemically synthesized. Concentration of protein in the final preparation
is adjusted, for example, by concentration on an Amicon filter device, to the level
of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can
10 then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and
isolated as described can be prepared from murine hybridomas according to the
15 classical method of Kohler, G. and Milstein, C., *Nature* 256:495 (1975) or
modifications of the methods thereof. Briefly, a mouse is repetitively inoculated
with a few micrograms of the selected protein over a period of a few weeks. The
mouse is then sacrificed, and the antibody producing cells of the spleen isolated.
The spleen cells are fused by means of polyethylene glycol with mouse myeloma
20 cells, and the excess unfused cells destroyed by growth of the system on selective
media comprising aminopterin (HAT media). The successfully fused cells are
diluted and aliquots of the dilution placed in wells of a microtiter plate where
growth of the culture is continued. Antibody-producing clones are identified by
detection of antibody in the supernatant fluid of the wells by immunoassay
25 procedures, such as ELISA, as originally described by Engvall, E., *Meth. Enzymol.* 70:419 (1980), and modified methods thereof. Selected positive clones
can be expanded and their monoclonal antibody product harvested for use. Detailed
procedures for monoclonal antibody production are described in Davis, L. *et al.*,
Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

5 Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer
10 antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. *et al.*, *J. Clin. Endocrinol. Metab.* 33:988-991 (1971).

15 Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. *et al.*, Chap. 19 in: *Handbook of Experimental Immunology*, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M).
20 Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: *Manual of Clinical Immunology*, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

25 Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or
30 as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are 5 preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Streptococcus pneumoniae* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. 15 Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If 20 desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the *Streptococcus pneumoniae* genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly

5 A addition sequence from pSG5 (Stratagene) using BglII and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The

10 vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The *Streptococcus pneumoniae* DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the *Streptococcus pneumoniae* DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding

15 *Streptococcus pneumoniae* DNA 3' primer, taking care to ensure that the *Streptococcus pneumoniae* DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BglIII, purified and ligated to pXT1, now containing a poly A addition sequence

20 and digested BglII.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri).

25 The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice

30 to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

Alternatively and if antibody production is not possible, the *Streptococcus pneumoniae* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Streptococcus pneumoniae* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

TABLE 1 *S. pneumoniae* - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent HSP ident	HSP nt length	ORF nt length
1	1	437	1003	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide (msta) and homoserine kinase homolog (thrB) genes, complete cds	92	200	567
2	5	6169	5720	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450	450
2	6	6592	6167	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	98	426	426
3	11	9770	9147	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	94	624	624
3	12	10489	9671	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	91	819	819
3	13	11546	112019	gb U43326	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	99	474	474
3	14	12017	11375	gb U43326	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	99	1359	1359
3	15	13421	14338	gb U43326	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	99	918	918
3	16	14329	15171	gb U43326	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	99	843	843
3	17	15132	17282	gb U43326	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	99	2151	2151
3	18	17267	18397	gb U43326	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	99	1069	1131
4	1	46	1188	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	99	1143	1143
4	2	1198	2529	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	99	876	1332
5	7	11297	11473	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msta) and homoserine kinase homolog (thrB) genes, complete cds	82	175	177
6	7	7125	7364	emb Z77726 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (11372 bp)	93	238	240
6	8	7322	7570	emb Z77725 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1381 (966 bp)	95	160	249
6	9	7533	7985	emb Z77725 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1381 (966 bp)	99	453	453
6	123	20197	19733	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	96	465	465
7	10	8305	7682	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	95	624	624

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent HSP nt ident	HSP nt length	ORF nt length
7	11	9024	8206	emb 283335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	95	819	819
10	13	9304	8078	9b L29323	Streptococcus pneumoniae methyl transferase (mtr) gene cluster, complete cds	93	513	1227
11	2	548	919	emb 279621 SOOR	<i>S. pneumoniae</i> yorf [A, B, C, D, E], ftsL, pbpx and regR genes	99	316	372
11	3	892	1980	emb 279621 SOOR	<i>S. pneumoniae</i> yorf [A, B, C, D, E], ftsL, pbpx and regR genes	99	1089	1089
11	5	3040	3477	emb 279621 SOOR	<i>S. pneumoniae</i> yorf [A, B, C, D, E], ftsL, pbpx and regR genes	99	259	438
11	6	3480	3247	emb 279621 SOOR	<i>S. pneumoniae</i> yorf [A, B, C, D, E], ftsL, pbpx and regR genes	99	234	234
11	7	3601	4557	emb 279621 SOOR	<i>S. pneumoniae</i> yorf [A, B, C, D, E], ftsL, pbpx and regR genes	98	957	957
11	8	4506	4886	emb 279621 SOOR	<i>S. pneumoniae</i> yorf [A, B, C, D, E], ftsL, pbpx and regR genes	99	381	381
11	9	4884	7142	emb X16367 SPPB	Streptococcus pneumoniae pbpx gene for penicillin binding protein 2X	99	2259	2259
11	10	7132	8124	emb X16367 SPPB	Streptococcus pneumoniae pbpx gene for penicillin binding protein 2X	98	70	993
13	1	53	1126	9b M31296	<i>S. pneumoniae</i> recP gene, complete cds	99	437	1074
14	3	1837	2148	emb 283335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	87	96	312
14	4	2518	2108	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	98	411	411
15	9	8942	8511	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFHIJKLMNOP) genes, complete cds, and alia gene, partial cds	89	340	432
17	7	3910	3458	emb Z77726 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (1372 bp)	98	453	453
17	8	4304	3873	emb Z77727 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (823 bp)	96	382	432
19	1	41	529	emb X94909 SPIG	<i>S. pneumoniae</i> iga gene	75	368	489
19	2	554	757	gb L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	99	167	204
19	3	946	1827	gb L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	94	100	882
20	1	937	182	gb U33315	Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes	99	756	756
20	2	2271	931	gb U33315	Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes	98	1341	1341

TABLE 1 S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent HSP nt ident	HSP nt length	ORF nt length
20	3	3175	2684	gb U76218	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	99	492	492
20	4	3322	4527	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (spftra), SPSPoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	99	1206	1206
20	5	4573	5343	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (spftra), SPSPoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	99	771	771
20	6	5532	6917	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (spftra), SPSPoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	99	1386	1386
20	7	6995	8212	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (spftra), SPSPoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	99	1218	1218
20	8	8214	8471	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (spftra), SPSPoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	99	258	258
20	9	8534	9670	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (spftra), SPSPoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	99	134	1137
22	14	11887	12267	emb Z77726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	99	226	381
22	15	12708	12256	emb Z77727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	453
22	16	13165	12662	emb Z77726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	98	504	504
22	23	18398	18910	emb Z86112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence IS1515	95	463	513
22	24	18829	19299	emb Z86112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence IS1515	99	443	471
23	5	5624	4203	emb X52474 SPPL	S.pneumoniae poly gene for pneumolysin	99	1422	1422
23	6	6063	5629	gb B17717	S.pneumoniae pneumolysin gene, complete cds	98	197	435
26	1	5500	2	emb X94309 SPIG	S.pneumoniae iga gene	87	3487	5499
26	2	5823	5584	gb U47687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete cds	99	151	240
26	3	6878	5685	gb U47687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete cds	100	50	1194

TABLE I

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent	RSP nt ident	ORF nt length
26	8	14498	14854	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alia gene	99	338	357
26	9	14763	14924	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alia gene	100	94	162
26	10	14922	15173	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	242	252
28	1	80	505	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alia gene	99	426	426
28	2	503	952	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	99	426	426
28	3	780	1298	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	450	450
34	1	207	1523	gb L08611	Streptococcus pneumoniae maltose/maltodextrin uptake (malX) and two maltodextrin permease (malC and malD) genes, complete cds	96	181	519
34	2	1477	2367	gb L08611	Streptococcus pneumoniae maltose/maltodextrin uptake (malX) and two maltodextrin permease (malC and malD) genes, complete cds	99	1317	1317
34	3	2593	3420	gb L21856	Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds	96	795	891
34	4	2790	2647	gb L21856	Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds	98	137	144
34	5	3418	4416	gb L21856	Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds	96	999	999
34	9	7764	7507	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (mtrA) and homoserine kinase homolog (thrB) genes, complete cds	93	201	258
34	16	10562	10257	emb x63602 SPBO	<i>S. pneumoniae</i> mmsA-Box	92	238	306
35	4	1176	1439	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alia gene	87	248	264
35	5	1458	1961	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19FABCDEFGHIJKLMNOP) genes, complete cds, and alia gene, partial cds	98	264	504
35	17	16172	15477	emb x85787 SPCP	<i>S. pneumoniae</i> dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, tasa genes	97	696	696
35	18	16951	16170	emb Z83335 SPZ8	<i>S. pneumoniae</i> dexB, cap1A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and alia gene	86	792	792
35	19	17620	16871	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19FABCDEFGHIJKLMNOP) genes, complete cds, and alia gene, partial cds	83	750	750

TABLE I

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent ISP nt ident	ISP nt length	ORF nt length
35	20	19061	17604	emb X85787 SPCP	<i>S. pneumoniae</i> dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G,	94	1458	1458
				gb U40786	<i>Streptococcus pneumoniae</i> surface antigen A variant precursor (psaA) and 18 kDa protein genes, complete cds, and ORF1 gene, partial cds	99	609	609
36	20	19934	18966	gb US3509	<i>Streptococcus pneumoniae</i> surface adhesin A precursor (psaA) gene, complete cds	99	969	969
37	1	2743	179	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	99	2365	2565
37	2	2985	2824	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	100	162	162
37	3	5034	3070	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	99	1965	1965
37	4	5134	5790	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	99	657	657
37	5	6171	5833	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	96	339	339
38	19	12969	13268	gb M28679	<i>S. pneumoniae</i> promoter region DNA	100	64	300
39	2	1256	2137	gb U41735	<i>Streptococcus pneumoniae</i> peptide methionine sulfoxide reductase (msra) and homoserine kinase homolog (thrB) genes, complete cds	99	882	882
39	3	2405	3370	gb U41735	<i>Streptococcus pneumoniae</i> peptide methionine sulfoxide reductase (msra) and homoserine kinase homolog (thrB) genes, complete cds	99	966	966
40	9	5233	7208	gb M29686	<i>S. pneumoniae</i> mismatch repair (hexB) gene, complete cds	99	1027	1035
41	1	3	1037	emb 217307 SPRE	<i>S. pneumoniae</i> recA gene encoding RecA	99	1956	1956
41	2	1328	2713	emb Z34303 SPCI	<i>Streptococcus pneumoniae</i> cin operon encoding the cinA, recA, dinF, lytA genes, and downstream sequences	99	1386	1386
41	3	3083	4045	gb M13812	<i>S. pneumoniae</i> autolysin (lytA) gene, complete cds	99	963	963
41	4	3272	3096	gb M13812	<i>S. pneumoniae</i> autolysin (lytA) gene, complete cds	100	177	177
41	5	3603	3880	gb M13812	<i>S. pneumoniae</i> autolysin (lytA) gene, complete cds	100	258	258
41	6	4755	5162	gb L36660	<i>Streptococcus pneumoniae</i> ORF, complete cds	98	408	408
41	7	5270	5716	gb L36660	<i>Streptococcus pneumoniae</i> ORF, complete cds	98	447	447
41	8	6112	6918	gb L36660	<i>Streptococcus pneumoniae</i> ORF, complete cds	98	431	807
41	9	6916	7119	gb L36660	<i>Streptococcus pneumoniae</i> ORF, complete cds	100	204	204
41	10	7082	7660	gb L36660	<i>Streptococcus pneumoniae</i> ORF, complete cds	97	81	300
41	11	7680	7979	gb L36660	<i>Streptococcus pneumoniae</i> ORF, complete cds	97	353	453
41	12	9169	8717	emb 277727 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (823 bp)			

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start ID	Stop (nt)	match accession	match gene name	HSP nt ident	HSP nt length	percent
41	13	9533	9132	[emb]Z77725 SPIS	<i>S.pneumoniae</i> DNA for insertion sequence IS1381 (966 bp)	95	160	402
41	14	9669	9475	[emb]Z82001 SPZ8	<i>S.pneumoniae</i> pcpA gene and open reading frames	100	189	195
44	5	7190	7555	[emb]Z82001 SPZ8	<i>S.pneumoniae</i> pcpA gene and open reading frames	99	366	366
44	6	8059	7607	[emb]Z77726 SPIS	<i>S.pneumoniae</i> DNA for insertion sequence IS1318 (1132 bp)	97	453	453
44	7	8423	8022	[emb]Z77725 SPIS	<i>S.pneumoniae</i> DNA for insertion sequence IS1381 (966 bp)	95	160	402
44	8	8559	8365	[emb]Z82001 SPZ8	<i>S.pneumoniae</i> pcpA gene and open reading frames	100	189	195
48	9	6480	4687	[gb]L39074	Streptococcus pneumoniae pyruvate oxidase (spxB) gene, complete cds	99	1794	1794
49	2	231	2603	[gb]L20561	Streptococcus pneumoniae Exp7 gene, partial cds	100	216	2373
53	6	2407	2156	[gb]U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	242	252
53	7	2566	2405	[emb]Z83335 SPZ8	<i>S.pneumoniae</i> dexB, capI[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	100	94	162
53	8	2831	2475	[emb]Z83335 SPZ8	<i>S.pneumoniae</i> dexB, capI[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	99	338	357
54	13	12409	11105	[emb]Z83335 SPZ8	<i>S.pneumoniae</i> dexB, capI[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alIA gene	67	591	1305
55	22	19488	119949	[emb]Z84379 HSZ8	<i>S.pneumoniae</i> dfr gene (isolate 92)	99	540	540
61	11	11864	9900	[emb]Z16082 PNAL	Streptococcus pneumoniae alB gene	98	1965	1965
63	1	3	239	[gb]M18729	<i>S.pneumoniae</i> mismatch repair protein (hexA) gene, complete cds	100	237	237
63	2	233	2611	[gb]M18729	<i>S.pneumoniae</i> mismatch repair protein (hexA) gene, complete cds	99	2330	2379
63	3	2557	2823	[gb]M18729	<i>S.pneumoniae</i> mismatch repair protein (hexA) gene, complete cds	99	266	267
63	4	2958	4664	[gb]M18729	<i>S.pneumoniae</i> mismatch repair protein (hexA) gene, complete cds	95	69	1707
67	6	3770	3399	[gb]L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	96	372	372
67	7	7161	4171	[gb]L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	99	2938	2991
70	1	1	702	[gb]M14340	<i>S.pneumoniae</i> DpnII gene region encoding dpmC and dpmD, complete cds	100	693	702
70	2	678	1160	[gb]M14340	<i>S.pneumoniae</i> DpnII gene region encoding dpmC and dpmD, complete cds	100	483	483
70	3	2490	1210	[gb]M14339	<i>S.pneumoniae</i> DpnII gene region encoding dpmM, dpmA, dpmB, complete cds	98	462	1281
70	7	4230	4424	[gb]J04234	<i>S.pneumoniae</i> exodeoxyribonuclease (exoA) gene, complete cds	99	147	195
70	8	5197	4316	[gb]J04234	<i>S.pneumoniae</i> exodeoxyribonuclease (exoA) gene, complete cds	99	881	882

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent HSP ident	HSP nt length	ORF nt length
70	13	8108	9874	[gb L20562]	Streptococcus pneumoniae Exp8 gene, partial cds	93	234	1767
71	122	27964	28341	[emb X63602 SPBO]	S.pneumoniae mutsA-Box	93	233	378
72	5	4607	1552	[emb 226850 SPAT]	S.pneumoniae (M22) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	97	102	1056
73	1	471	133	[emb X63602 SPBO]	S.pneumoniae mutsA-Box	91	193	339
73	3	3658	977	[gb J04479]	S.pneumoniae DNA polymerase I (polA) gene, complete cds	99	2652	2682
73	8	4864	5379	[gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	98	318	516
77	3	2622	1999	[emb 283335 SPZ8]	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rihamnose biosynthesis genes and alia gene	95	624	624
77	4	3341	2523	[emb 283335 SPZ8]	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rihamnose biosynthesis genes and alia gene	91	819	819
78	1	341	3	[emb X77249 SPR6]	S.pneumoniae (R6) ciar/ciaH genes	99	339	339
78	2	1095	325	[emb X77249 SPR6]	S.pneumoniae (R6) ciar/ciaH genes	99	771	771
82	10	11436	10816	[gb U90721	Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	97	621	621
82	11	12402	11434	[gb U93576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	98	953	969
82	12	12381	12704	[gb U93576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	100	51	324
83	8	3212	3550	[emb 277727 SPIS]	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	290	339
83	10	4662	6851	[gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	99	2190	2190
83	11	6849	8213	[gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	99	1365	1365
83	12	8236	9090	[gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	99	855	855
83	13	9283	13017	[gb L15190	Streptococcus pneumoniae SAICAR synthetase (purC) gene, complete cds	100	107	3735
83	23	22147	23313	[gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	98	218	1167
83	24	23268	23450	[gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	98	172	183
83	25	27527	23505	[gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	99	3826	4023

TABLE I

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent ident	HSP nt length	ORF nt length
83	26	28472	27771	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (stcH) gene, complete cds	99	416	702
84	4	4554	6173	emb Z83335 SPZ8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	98	697	1620
87	6	5951	5316	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	439	636
88	5	2957	3511	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	555	555
88	6	3466	4269	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	804	804
89	13	9878	10093	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	211	216
89	14	10062	10412	emb Z83335 SPZ8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	97	335	351
93	10	5103	4941	emb X63602 SPBO	S.pneumoniae mmsA-Box	89	237	363
97	4	1708	1520	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (mraA) and homoserine kinase homolog (thrB) genes, complete cds	91	140	189
99	1	89	700	emb Z83335 SPZ8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	93	592	612
99	2	1773	775	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	99	998	999
99	3	2794	1712	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	99	1083	1083
99	4	3732	2788	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	945	945
99	5	5249	3714	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
99	6	7262	5277	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	99	1986	1986
101	1	216	1538	emb X54225 SPEN	S.pneumoniae epua and endA genes for 7 kDa protein and membrane endonuclease	99	146	1323
101	2	1492	1719	emb X54225 SPEN	S.pneumoniae epua and endA genes for 7 kDa protein and membrane endonuclease	99	228	228
101	3	1694	1855	emb X54225 SPEN	S.pneumoniae epua and endA genes for 7 kDa protein and membrane endonuclease	100	162	162
103	7	5556	5041	emb Z5914 SPZ9	S.pneumoniae sodA gene	100	396	516
104	2	1347	1556	emb Z77727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	83	206	210

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	HSP nt percent ident	HSP nt length	ORF nt length
105	5	5381	5028	[emb 267739 SPPA	[<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	98	353	354
105	6	6089	5379	[emb 267739 SPPA	[<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	98	84	711
107	4	2785	1880	[emb X16022 SPPE	[<i>S. pneumoniae</i> penA gene	98	72	906
107	5	2913	4988	[emb X16022 SPPE	[<i>S. pneumoniae</i> penA gene	99	1692	2076
107	6	4981	5595	[emb X13136 SPPE	Streptococcus pneumoniae penA gene for penicillin binding protein 2B lacking N-term. (penicillin resistant strain)	91	107	615
108	9	9068	8718	[emb 267739 SPPA	[<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	95	342	351
108	12	11308	10922	[emb 267739 SPPA	[<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	99	199	387
109	3	2768	2241	[emb 277725 SPS1	[<i>S. pneumoniae</i> DNA for insertion sequence IS1381 (966 bp)	96	61	528
109	4	2688	2855	[emb 277726 SPS1	[<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (1372 bp)	96	148	168
109	5	2862	3269	[emb 277727 SPS1	[<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (823 bp)	97	353	408
109	6	5320	3584	[gb M18729	[<i>S. pneumoniae</i> mismatch repair protein (hexA) gene, complete cds	100	371	1737
113	1	431	3	[gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	95	429	429
113	10	9788	8532	[emb X99400 SPDA	[<i>S. pneumoniae</i> dacA gene and ORF	99	1257	1257
113	11	9870	10985	[emb X99400 SPDA	[<i>S. pneumoniae</i> dacA gene and ORF	99	1116	1116
114	3	2530	2030	[gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	95	481	501
115	11	11303	10932	[gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	372	372
117	1	897	3302	[emb X72967 SPWA	[<i>S. pneumoniae</i> nanaA gene	99	2402	2406
117	2	3277	3831	[emb X72967 SPWA	[<i>S. pneumoniae</i> nanaA gene	99	237	555
117	3	4327	3899	[gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, partial cds	98	429	429
121	2	1369	1941	[gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds	99	202	573
121	3	2412	4253	[gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, partial cds	99	1842	1842
122	8	5066	5587	[gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	64	451	522

TABLE I

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent HSP nt ident	HSP nt length	ORF nt length
125	1	1811	189	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	92	99	1623
128	15	12496	11204	emb 283335 SPZ8	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-β-rhamnose biosynthesis genes and alia gene	91	705	1293
134	1	1	492	emb Y10818 SPX1	<i>S.pneumoniae</i> spsA gene	99	203	492
134	2	556	2652	gb AF019304	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	685	2097
134	3	1160	837	emb Y10818 SPX1	<i>S.pneumoniae</i> spsA gene	86	324	324
134	4	3932	2882	gb AF019304	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	98	215	1071
134	8	7992	9848	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	99	285	1857
134	9	9846	10622	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	99	570	777
134	10	10805	11122	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	100	318	318
137	13	7970	8443	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19FABCDEFGHJKLMNO) genes, complete cds, and alia gene, partial cds	90	420	474
137	14	8590	8775	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-β-rhamnose biosynthesis genes and alia gene	94	174	186
137	15	8773	8967	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-β-rhamnose biosynthesis genes and alia gene	98	195	195
137	16	9223	9687	emb Z77726 SPIS	<i>S.pneumoniae</i> DNA for insertion sequence IS1318 (11372 bp)	96	446	465
137	17	9641	10051	emb Z77727 SPIS	<i>S.pneumoniae</i> DNA for insertion sequence IS1318 (823 bp)	96	293	411
139	10	12398	12702	emb X63602 SPBO	<i>S.pneumoniae</i> mnsA-Box	90	234	297
141	8	7805	8938	emb Z49988 SPMM	Streptococcus pneumoniae mnsA gene	99	338	1134
141	9	8936	10972	emb Z49988 SPMM	Streptococcus pneumoniae mnsA gene	98	2037	2037
141	10	11472	12467	emb Z49988 SPMM	Streptococcus pneumoniae mnsA gene	100	76	996
142	2	257	814	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	98	174	558
142	3	787	957	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	142	171
142	4	980	3022	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	95	197	2043

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	Percent HSP nt ident	HSP nt length	ORF nt length
142	5	3020	3595	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	153	576
145	1	1	219	emb Z35135 SPAL	<i>S. pneumoniae</i> alia gene for amA-like gene A	97	185	219
145	2	171	1994	gb L20556	Streptococcus pneumoniae pPA gene, partial cds	99	1811	1824
145	3	2287	7599	emb Z47210 SPDE	<i>S. pneumoniae</i> dexB, capJA, capJB and capJC genes and orfs	99	1052	5313
145	4	9934	7766	gb M80527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete cds	99	2169	2169
145	5	10488	9922	gb M80527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete cds	99	512	567
146	1	159	4	emb Z82002 SP228	<i>S. pneumoniae</i> pcP8 and pcC genes	98	156	156
146	2	344	90	emb Z82002 SP228	<i>S. pneumoniae</i> pcP8 and pcC genes	98	255	255
146	16	11725	10794	emb Z82002 SP228	<i>S. pneumoniae</i> pcP8 and pcC genes	85	276	1002
147	11	10678	10202	emb Z21702 SPUN	<i>S. pneumoniae</i> ung gene and mutX genes encoding uracil-DNA glycosylase and 8-oxodGTP nucleoside triphosphatase	98	477	477
147	12	11338	10676	emb Z21702 SPUN	<i>S. pneumoniae</i> ung gene and mutX genes encoding uracil-DNA glycosylase and 8-oxodGTP nucleoside triphosphatase	99	663	663
148	12	9009	8815	gb 041735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msra) and homoserine kinase homolog (thrB) genes, complete cds	90	180	195
156	4	1154	1402	emb X63602 SPBO	<i>S. pneumoniae</i> mmsA-Box	94	185	249
159	13	9048	8521	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	98	526	528
160	1	1	147	emb Z226851 SPAT	<i>S. pneumoniae</i> (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	100	142	147
160	2	179	898	emb Z226851 SPAT	<i>S. pneumoniae</i> (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	99	720	720
160	3	906	1406	emb Z226850 SPAT	<i>S. pneumoniae</i> (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	95	501	501
160	4	1373	1942	emb Z226850 SPAT	<i>S. pneumoniae</i> (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	87	306	570
161	1	1	984	emb X77249 SPR6	<i>S. pneumoniae</i> (R6) ciaR/ciaH genes	99	984	984
161	7	6910	7497	emb X83917 SPGY	<i>S. pneumoniae</i> orf1gyrB and gyrB gene encoding DNA gyrase B subunit	99	437	588
161	8	7443	9386	emb X83917 SPGY	<i>S. pneumoniae</i> orf1gyrB and gyrB gene encoding DNA gyrase B subunit	98	1912	1944
163	1	2	2155	gb L20559	Streptococcus pneumoniae Exp5 gene, partial cds	98	327	2154

TABLE I

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent	ISP nt ident	ORF nt length
165	1	32	1618	gb J01796	<i>S. pneumoniae</i> malX and malM genes encoding membrane protein and amylose, complete cds, and malP gene encoding phosphorylase	99	1587	1587
165	2	1608	3902	gb J01796	<i>S. pneumoniae</i> malX and malM genes encoding membrane protein and amylose, complete cds, and malP gene encoding phosphorylase	100	280	2295
166	1	378	4	emb Y11463 SPDN	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	100	375	375
166	2	1507	320	emb Y11463 SPDN	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	99	1188	1188
166	3	3240	1432	emb Y11463 SPDN	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	99	563	1809
167	1	1077	328	emb Z71552 SPAD	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	94	155	750
167	2	1844	999	emb Z71552 SPAD	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	98	405	846
167	3	2714	1842	emb Z71552 SPAD	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	97	604	873
167	4	3399	2641	emb Z71552 SPAD	<i>Streptococcus pneumoniae</i> dnaG, rpoD, cpoA genes and ORF3 and ORF5	99	703	759
168	1	1	2259	gb L20558	<i>Streptococcus pneumoniae</i> Exp4 gene, partial cds	99	282	2259
170	10	7338	7685	emb Z77726 SPIS	<i>S. pneumoniae</i> DNA for insertion sequence IS1318 (1372 bp)	95	315	348
172	6	2462	4981	gb U47625	<i>Streptococcus pneumoniae</i> formate acetyltransferase (exp72) gene, partial cds	97	365	2520
175	1	373	20	gb M36180	<i>Streptococcus pneumoniae</i> transposase, (conA and comB) and SAICAR synthetase (purC) genes, complete cds	89	353	354
175	4	1843	3621	emb Z47210 SPDE	<i>S. pneumoniae</i> dexB, cap3A, cap3B and cap3C genes and orfs	95	89	1779
176	5	3984	2980	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	100	573	1005
178	1	3	425	emb Z67739 SPPA	<i>S. pneumoniae</i> parC, parE and transposase genes and unknown orf	95	423	423
179	1	426	70	emb Z83335 SPZ28	<i>S. pneumoniae</i> dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	99	338	357
180	3	3024	1855	emb Y95718 SPCY	<i>S. pneumoniae</i> gyrA gene	99	381	1230
186	1	714	4	emb Z79691 SOOR	<i>S. pneumoniae</i> Yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	59	711
186	2	2234	608	emb Z79691 SOOR	<i>S. pneumoniae</i> Yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	315	1647
186	3	707	880	emb Z79691 SOOR	<i>S. pneumoniae</i> Yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	174	174
189	1	2	259	gb U72720	<i>Streptococcus pneumoniae</i> heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaj) gene, partial cds	99	258	258
189	2	600	385	gb U72720	<i>Streptococcus pneumoniae</i> heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaj) gene, partial cds	98	204	216

TABLE I

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	percent ident	HSP nt length	ORF nt length
189	3	1018	851	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds	99	168	168
189	4	1012	2154	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, partial cds and DnaJ (dnaj) gene, partial cds	99	1062	1143
191	9	7829	7524	emb X63662 SPBO	<i>S.pneumoniae</i> mmsA-Box	95	234	306
194	1	1	729	gb M36180	Streptococcus pneumoniae ttransposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	91	728	729
199	2	1117	881	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	96	211	237
199	4	1499	1762	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	89	248	264
199	5	1781	2284	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	98	504	504
203	1	1977	337	gb L20563	Streptococcus pneumoniae Exp9 gene, partial cds	99	342	1641
204	1	1145	3	gb L36131	Streptococcus pneumoniae exp10 gene, complete cds, recA gene, 5' end	99	1143	1143
208	1	59	2296	gb U89711	Streptococcus pneumoniae pneumococcal surface protein A PspA (psp) gene, complete cds	90	471	2238
213	3	2455	2123	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	96	332	333
216	1	368	12	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	99	338	357
216	3	2650	2327	gb M28678	<i>S.pneumoniae</i> promoter sequence DNA	98	86	324
222	1	417	4	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	94	414	414
227	3	5266	4238	emb A000336 SP	Streptococcus pneumoniae ldh gene	99	1029	1029
239	1	1	804	gb M31296	<i>S.pneumoniae</i> rcp gene, complete cds	95	484	804
247	3	1625	1807	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	178	183
249	3	921	1364	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	94	443	444
253	1	362	3	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	99	360	360
253	5	1238	2050	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1A, B, C, D, E, F, G, H, I, J, KI genes, dtTDP-rhamnose biosynthesis genes and alia gene	95	420	813

TABLE 1 S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	Percent HSP nt ident	ORF nt length
253	6	2069	2572	emb Z83335 SPZ8	S.pneumoniae ddxB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	97	504
255	1	3	800	emb Z82002 SPZ8	S.pneumoniae ddxB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	97	504
255	2	798	1841	emb Z82002 SPZ8	S.pneumoniae pcPB and pcPC genes	97	531
255	3	2493	1969	emb Z67739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	97	672
257	2	985	770	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	96	117
257	3	1245	907	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	339
267	2	495	1208	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	95	84
267	3	1291	2277	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	97	755
267	4	2261	3601	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	98	1341
267	5	3561	4136	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	99	576
267	6	4164	4949	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	99	748
267	7	5544	5140	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	100	186
268	4	1793	1990	emb X63602 SPBO	S.pneumoniae mutS-Box	89	194
271	1	562	104	gb M29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	93	160
291	1	75	524	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450
291	2	1001	525	emb Z83335 SPZ8	S.pneumoniae ddxB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	87	205
291	3	807	559	emb Z83335 SPZ8	S.pneumoniae ddxB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dtDP-rhamnose biosynthesis genes and alia gene	90	170
291	4	1374	1099	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	85	264

TABLE 1
S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	Percent HSP ident	HSP nt length	ORF nt length
293	1	3	1673	emb Z67740 SPGY	<i>S.pneumoniae</i> gyrb gene and unknown orf	98	553	1671
296	1	1434	151	emb Z47210 SPDE	<i>S.pneumoniae</i> dexB, capA, cap3B and cap3C genes and orfs	99	430	1284
317	1	157	510	emb Z67739 SPPA	<i>S.pneumoniae</i> parC, parE and transposase genes and unknown orf	89	353	354
325	2	1237	485	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and alia gene	91	299	753
326	1	1	462	emb Z82001 SP28	<i>S.pneumoniae</i> fcpA gene and open reading frames	100	233	462
327	1	603	64	emb Z83333 SP28	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, qTDP-rhamnose biosynthesis genes and alia gene	94	89	540
334	1	153	545	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msra) and homoserine kinase homolog (thrB) genes, complete cds	87	91	393
336	1	308	93	emb Z26850 SPAT	<i>S.pneumoniae</i> (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	97	102	216
360	1	1	519	emb Z67739 SPPA	<i>S.pneumoniae</i> parC, parE and transposase genes and unknown orf	95	435	519
360	4	1598	1960	emb Z83335 SPZ8	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and alia gene	94	353	363
362	1	673	2	emb Z83335 SP28	<i>S.pneumoniae</i> dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and alia gene	95	63	672
362	2	1168	728	gb U04047	Streptococcus pneumoniae ss2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	441	441
384	1	347	111	emb X85787 SPCP	<i>S.pneumoniae</i> dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, tataA genes	94	54	237

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
228	2	1760	1942	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	100	100	183
319	1	2	205	gi 984927	neomycin phosphotransferase [Cloning vector pBL99]	100	100	204
260	1	2	1138	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	99	98	1137
25	2	486	1394	gi 1574495	hypothetical [Haemophilus influenzae]	98	96	909
94	2	685	1002	gi 310627	phosphoenolpyruvate:sugar phosphotransferase system HPr [Streptococcus mutans]	98	93	318
312	1	190	2	gi 347999	ATP-dependent protease proteolytic subunit [Streptococcus salivarius]	98	95	189
329	1	1	807	gi 924848	inosine monophosphate dehydrogenase [Streptococcus pyogenes]	98	94	807
336	2	290	589	gi 987050	lacZ gene product [unidentified cloning vector]	98	98	300
181	9	5948	7366	gi 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	97	94	1419
312	2	1044	361	gi 347998	uracil phosphoribosyltransferase [Streptococcus salivarius]	97	88	684
32	8	6575	7486	sp P37214 ERA_S	GTP-BINDING PROTEIN ERA HOMOLOG.	96	91	912
94	3	951	2741	gi 153615	phosphoenolpyruvate:sugar phosphotransferase system enzyme I [Streptococcus salivarius]	96	92	1791
127	1	1	168	gi 581299	initiation factor IF-1 [Lactococcus lactis]	96	89	168
128	14	10438	11154	gi 1276871	DedD [Streptococcus thermophilus]	96	93	717
181	4	1362	1598	gi 46606	lacD polypeptide (AA 1-326) [Staphylococcus aureus]	96	80	237
218	1	1	834	gi 1743856	intragenic coaggregation-relevant adhesin [Streptococcus gordonii]	96	93	834
319	2	115	441	gi 208225	heat-shock protein 82/neomycin phosphotransferase fusion protein (hsp82-neo)	96	96	327
54	12	8622	10967	gi PID d100972	Pyruvate formate-lyase [Streptococcus mutans]	95	89	2346
181	2	606	1289	gi 169396	lacD [Lactococcus lactis]	95	89	684
46	3	3410	3045	gi 1850606	Y1XM [Streptococcus mutans]	94	86	366
89	10	7972	7337	gi 703442	thymidine kinase [Streptococcus gordonii]	94	86	636
148	9	6431	7354	gi 995767	UDP-glucose pyrophosphorylase [Streptococcus pyogenes]	94	85	924
160	7	4430	5848	gi 153573	H+ ATPase [Enterococcus faecalis]	94	87	1419
2	3	4598	3513	gi 153763	plasmid receptor [Streptococcus pyogenes]	93	86	1086
12	8	7877	6204	gi 1103865	fornyl-tetrahydrofolate synthetase [Streptococcus mutans]	93	84	1674

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
65	11	4734	5120	gi 40150	[L14 protein (AA 1-122) [Bacillus subtilis]	93	87	387
68	1	53	1297	gi 47341	[antitumor protein [Streptococcus pyogenes]	93	87	1245
80	1	3	299	gnl PID d101166	[ribosomal protein S7 [Bacillus subtilis]	93	84	297
127	3	695	1093	gi 142462	[ribosomal protein S11 [Bacillus subtilis]	93	86	399
160	5	1924	3462	gi 1773264	[ATPase, alpha subunit [Streptococcus mutans]	93	85	1539
211	5	3757	3047	gi 535273	[aminopeptidase C [Streptococcus thermophilus]	93	82	711
262	1	16	564	gi 149394	[lacB [Lactococcus lactis]	93	90	549
365	1	197	3	gi 295259	[tryptophan synthase beta subunit [Synechocystis sp.]	93	91	195
25	3	1392	1976	gi 1574496	[hypothetical [Haemophilus influenzae]	92	80	585
36	21	20781	19327	gi 310832	[hydrophobic membrane protein [Streptococcus gordonii]	92	86	855
181	3	1265	1534	gi 149396	[lacD [Lactococcus lactis]	92	83	270
181	7	3662	4060	gi 149410	[enzyme III [Lactococcus lactis]	92	83	399
32	4	5631	3937	gnl PID e234090	[fibronectin-binding protein-like protein A [Streptococcus gordonii]	91	85	1695
46	2	3054	1462	gi 1850607	[signal recognition particle Ffh [Streptococcus mutans]	91	84	1593
65	10	4442	4726	pir S1786 S178	[ribosomal protein S17 - Bacillus stearothermophilus	91	80	285
77	2	260	1900	gi 287871	[groEL gene product [Lactococcus lactis]	91	82	1641
84	1	2	2056	gi 871784	[Clp-like ATP-dependent protease binding subunit [Bos taurus]	91	79	2055
99	8	10750	9272	gi 153740	[sucrose phosphorylase [Streptococcus mutans]	91	84	1479
99	9	11947	11072	gi 153739	[membrane protein [Streptococcus mutans]	91	78	876
127	5	2065	2469	pir S07223 RSBS	[ribosomal protein L17 - Bacillus stearothermophilus	91	78	405
132	6	9539	9390	gi 143065	[hubst [Bacillus stearothermophilus]	91	89	150
137	8	4765	6153	gnl PID d100347	[Na ⁺ -ATPase beta subunit [Enterococcus hirae]	91	79	1521
151	7	11119	9734	gi 1815634	[glutamine synthetase type 1 [Streptococcus agalactiae]	91	85	1167
201	2	1798	278	gi 2208998	[dextran glucosidase DexS [Streptococcus suis]	91	71	288
222	2	673	1839	gi 153741	[ATP-binding protein [Streptococcus mutans]	90	77	405
293	5	4113	4400	gi 1196921	[unknown protein [Insertion sequence IS861]	91	71	288
32	7	6166	6570	pir A36933 A369	[diacylglycerol kinase homolog - Streptococcus mutans	90	77	405

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
33	2	841	527	[gi 1196521]	unknown protein [Insertion sequence IS861]	90	70	315
48	27	20508	19757	[gnl PID e2274705]	lactate oxidase [Streptococcus iniae]	90	80	1152
55	21	19777	18515	[gnl PID e2221213]	CipX protein [Bacillus subtilis]	90	75	1263
56	2	717	977	[gi 1710133]	flagellar filament cap [Borrelia burgdorferi]	90	50	261
65	1	1	606	[gi 1163303]	L3 [Bacillus subtilis]	90	75	606
114	1	2	988	[gi 153562]	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) [Streptococcus mutans]	90	80	987
120	1	1345	827	[gi 407880]	[ORF] [Streptococcus equisimilis]	90	75	519
159	12	7690	8298	[gi 143012]	GMP synthetase [Bacillus subtilis]	90	84	609
166	4	4076	3282	[gi 1661179]	high affinity branched chain amino acid transport protein [Streptococcus mutans]	90	78	795
183	1	28	1395	[gi 308858]	ATP:pyruvate 2-O-phosphotransferase [Lactococcus lactis]	90	76	1368
191	3	2891	1662	[gi 149521]	tryptophan synthase beta subunit [Lactococcus lactis]	90	78	1230
198	2	1551	436	[gi 233342]	[AF014460] CcpA [Streptococcus mutans]	90	76	1116
305	1	37	783	[gi 1573551]	asparagine synthetase A (asnA) [Haemophilus influenzae]	90	80	747
8	3	2285	3343	[gi 149434]	putative [Lactococcus lactis]	89	78	1059
46	8	7577	7362	[pir A4543 A454]	ribosomal protein L19 - Bacillus stearothermophilus	89	76	216
49	9	8363	10342	[gi 152792]	rcp peptide [Streptococcus pneumoniae]	89	83	1980
51	14	18410	19447	[gi 308857]	ATP:D-fructose 6-phosphate 1-phototransferase [Lactococcus lactis]	89	81	1038
57	11	9686	10669	[gnl PID d100932]	H2O-forming NADH Oxidase [Streptococcus mutans]	89	77	984
65	5	2418	2786	[gi 1165307]	S19 [Bacillus subtilis]	89	81	369
65	8	3806	4225	[sp P14577 RL16_]	50S RIBOSOMAL PROTEIN L16.	89	82	420
65	18	8219	8719	[gi 143417]	ribosomal protein S5 [Bacillus stearothermophilus]	89	76	501
73	9	6337	5315	[gi 522204]	prs [Listeria monocytogenes]	89	70	1023
76	3	3360	1465	[gnl PID e200671]	lepA gene product [Bacillus subtilis]	89	82	1896
99	10	12818	11919	[gi 153738]	membrane protein [Streptococcus mutans]	89	76	2253
120	2	3552	1300	[gi 407881]	stringent response-like protein [Streptococcus equisimilis]	89	79	122
122	5	4512	2791	[gnl PID e280490]	unknown [Streptococcus pneumoniae]	89	81	1722

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
176	1	669	4	[gi 41394	5'-oxoprolyl-peptidase [Streptococcus pyogenes]	89	78	666
177	6	3050	3934	[gi 912423	putative [Lactococcus lactis]	89	71	885
181	8	4033	5751	[gi 149411	enzyme III [Lactococcus lactis]	89	80	1719
211	4	3149	2793	[gi 535273	aminopeptidase C [Streptococcus thermophilus]	89	83	357
361	1	431	838	[gi 1196922	unknown protein [Insertion sequence IS861]	89	70	408
34	17	11839	10535	[sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINE-TRNA LIGASE) (HISRS).	88	78	1305
38	3	1646	2623	[gi 2058544	putative ABC transporter subunit ComY [Streptococcus gordonii]	88	78	978
54	1	3	227	[gnl PID d101320 YggJ	[Bacillus subtilis]	88	66	225
57	2	611	1468	[gnl PID e134943	putative reductase 1 [Saccharomyces cerevisiae]	88	75	858
65	13	5497	6069	[pir A29102 R3BS	ribosomal protein L5 - Bacillus stearothermophilus	88	75	573
65	20	9030	9500	[gi 2078381	ribosomal protein L15 [Staphylococcus aureus]	88	83	471
78	3	3636	1108	[gnl PID d100781 lysY	lysY-aminopeptidase [Lactococcus lactis]	88	80	2329
106	12	12985	12054	[gi 2407215 AF017421]	putative heat shock protein HtpX [Streptococcus gordonii]	88	72	912
107	2	219	962	[gnl PID e339862	putative acylneuraminate lyase [Clostridium tertium]	88	75	744
111	8	14073	10420	[gi 402363	RNA polymerase beta-subunit [Bacillus subtilis]	88	74	3654
126	9	13096	12062	[gnl PID e3111468	unknown [Bacillus subtilis]	88	74	1035
140	17	19143	18874	[gi 1573659	H. influenzae predicted coding region HI0659 [Haemophilus influenzae]	88	61	270
144	1	394	555	[gnl PID e274705	lactate oxidase [Streptococcus iniae]	88	75	162
148	4	2723	3493	[gi 1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	88	68	771
160	8	5853	6278	[gi 1773267	ATPase, epsilon subunit [Streptococcus mutans]	88	65	426
177	4	1770	2885	[gi 149426	putative [Lactococcus lactis]	88	72	1116
211	6	4140	3613	[gi 535273	aminopeptidase C [Streptococcus thermophilus]	88	74	528
231	4	580	957	[gi 40186	homologous to E.coli ribosomal protein L27 [Bacillus subtilis]	88	78	378
260	5	2387	2998	[gi 1196922	unknown protein [Insertion sequence IS861]	88	69	612
291	6	2017	3375	[gnl PID d100571	adenylosuccinate synthetase [Bacillus subtilis]	88	75	1359
319	4	658	317	[gi 603578	serine/threonine kinase [Phytophthora capsici]	88	88	342
40	5	4353	4514	[gi 153672	lactose repressor [Streptococcus mutans]	87	56	162

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
49	10	10560	10929	gi 1196321	unknown protein [Insertion sequence IS861]	87	72	270
65	7	3140	3808	gi 1165309	s3 [Bacillus subtilis]	87	73	669
65	15	6523	7039	gi 1044978	ribosomal protein S8 [Bacillus subtilis]	87	73	417
75	8	5411	6675	gi 1877422	galactokinase [Streptococcus mutans]	87	78	1215
80	2	703	2805	gnl PID d101166	elongation factor G [Bacillus subtilis]	87	76	2103
82	1	541	248	gi 1196321	unknown protein [Insertion sequence IS861]	87	69	294
140	123	25033	23697	gnl PID e254999	phenylalanine-tRNA synthetase beta subunit [Bacillus subtilis]	87	74	1137
214	14	10441	8516	gi 2281305	glucose inhibited division protein homolog Gida [Lactococcus lactis]	87	75	1926
220	2	2742	874	gnl PID e324358	product highly similar to elongation factor EF-G [Bacillus subtilis]	87	73	1869
260	4	2096	2389	gi 1196921	unknown protein [Insertion sequence IS861]	87	72	294
323	1	27	650	gi 897795	30S ribosomal protein (Pediococcus acidilactici)	87	73	624
357	1	154	570	gi 1044978	ribosomal protein S8 [Bacillus subtilis]	87	73	417
49	11	10927	11445	gi 1196922	unknown protein [Insertion sequence IS861]	86	63	519
59	12	7461	9224	gi 951051	relaxase [Streptococcus pneumoniae]	86	68	1764
65	4	1553	2401	pir A02759 RSBS	ribosomal protein L2 - Bacillus stearothermophilus	86	77	849
65	23	10957	11610	gi 44074	adanylate kinase [Lactococcus lactis]	86	76	654
82	4	4374	4856	gi 153745	mannitol-specific enzyme III [Streptococcus mutans]	86	72	483
102	4	4270	4986	gnl PID e264705	[NRP decarboxylase [Lactococcus lactis]	86	76	717
106	6	7824	6880	gnl PID e37598	aspartate transcarbamoylase [Lactobacillus leichmannii]	86	68	945
107	1	1	273	gnl PID e339862	[putative acylneuraminate lyase [Clostridium tertium]	86	71	273
111	7	10432	6710	gnl PID e228283	[DNA-dependent RNA polymerase [Streptococcus pyogenes]	86	80	3723
131	9	5704	4892	gi 1661193	polipoprotein diacylglycerol transferase [Streptococcus mutans]	86	71	813
134	7	6430	7980	gi 238863?	glycerol kinase [Enterococcus faecalis]	86	73	1551
146	11	7473	6583	gi 1591731	malvalonate kinase [Methanococcus jannaschii]	86	72	891
153	2	595	2010	gi 2160707	dipeptidase [Lactococcus lactis]	86	78	1416
154	1	2	1435	gi 1857246	6-phosphogluconate dehydrogenase [Lactococcus lactis]	86	74	1434

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
161	5	5055	6284	[gi 47529]	Unknown [Streptococcus salivarius]	86	66	1260
184	1	2	1483	[gi 642667]	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase [Streptococcus mutans]	86	73	1482
210	8	3659	6571	[gi 153661]	translational initiation factor IF2 [Enterococcus faecium]	86	76	2913
250	1	2	187	[gi 1573551]	asparagine synthetase A (asnA) [Haemophilus influenzae]	86	68	186
36	4	2644	3909	[gi 2149309]	cell division protein [Enterococcus faecalis]	85	73	1266
38	4	2475	3587	[gi 2058345]	putative ABC transporter subunit ComYB [Streptococcus gordonii]	85	72	1113
38	5	3577	3915	[gi 2058346]	ComYC [Streptococcus gordonii]	85	80	339
57	5	2797	3789	[gnl PID d101316]	[YqE] [Bacillus subtilis]	85	72	993
82	5	4915	6054	[gi 153746]	mannitol-phosphate dehydrogenase [Streptococcus mutans]	85	68	1140
83	15	14690	15793	[gi 143371]	phosphoribosyl aminimidazole synthetase (PUR-M) [Bacillus subtilis]	85	69	1104
87	2	1417	2388	[gi 1184967]	[SCR] [Streptococcus mutans]	85	69	972
108	1	3	2666	[gi 153566]	[ORF_19K protein] (Enterococcus faecalis)	85	67	489
127	2	312	692	[gi 1044989]	ribosomal protein S13 [Bacillus subtilis]	85	72	381
128	3	1534	2409	[gi 1685110]	tetrahydrofolate dehydrogenase/cyclohydrolase [Streptococcus thermophilus]	85	71	876
137	7	2962	4767	[gnl PID d100347]	[Na+-ATPase alpha subunit] [Enterococcus hirae]	85	74	1806
170	2	2622	709	[gnl PID d102006]	(AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. [Bacillus subtilis]	85	70	1914
187	5	3760	4386	[gi 727436]	putative 20-kDa protein [Lactococcus lactis]	85	65	627
233	2	728	1873	[gi 1163116]	[ORF-5] [Streptococcus pneumoniae]	85	67	1146
234	3	962	1255	[gi 2293155]	[AF008220] YtIA [Bacillus subtilis]	85	61	294
240	1	309	1931	[gi 143597]	[CTP synthetase] [Bacillus subtilis]	85	70	1623
6	1	199	1521	[gi 508979]	GTP-binding protein [Bacillus subtilis]	84	72	1323
10	4	4375	3443	[gnl PID e339862]	putative acylieraminate lyase [Clostridium tertium]	84	70	933
14	1	63	2093	[gi 520753]	DNA topoisomerase I [Bacillus subtilis]	84	69	2031
19	4	1793	2593	[gi 2352484]	[AF005098] RNaseH II [Lactococcus lactis]	84	68	801
20	17	17720	19687	[gnl PID d100584]	cell division protein [Bacillus subtilis]	84	71	1968
22	28	21723	20884	[gi 239163]	alanine dehydrogenase [Bacillus subtilis]	84	68	840

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
30	10	7730	6792	[gnl PID d100296]	[Streptococcus mutans] fructokinase	84	75	939
33	9	5650	5300	[gi 147194]	[Escherichia coli] phnA protein	84	71	351
36	22	21551	20772	[gi 310631]	[Streptococcus gordonii] ATP binding protein	84	72	780
48	4	2837	2505	[gi 882609]	[Escherichia coli] 6-phospho-beta-glucosidase	84	69	333
58	1	41	1516	[gi 450849]	[Streptococcus bovis] amylase	84	73	1476
59	10	6715	7116	[gi 951053]	[Streptococcus pneumoniae] ORF10, putative	84	74	402
62	1	21	644	[gi 803487]	[Lactococcus lactis] ORF211; putative	84	66	624
65	17	7779	8207	[gi 1044980]	[Bacillus subtilis] ribosomal protein L18	84	73	429
65	21	9507	10397	[gi 44073]	[Lactococcus lactis] SecY protein	84	68	891
106	4	5474	2262	[gnl PID el199387]	[Lactobacillus plantarum] carbamoyl-phosphate synthase	84	73	3213
159	1	147	4	[gi 806487]	[Lactococcus lactis] ORF211; putative	84	63	144
163	4	4630	5910	[gi 2293164]	[Bacillus subtilis] (AF008220) SM synthase	84	69	1221
192	1	46	1308	[gi 495046]	[Lactococcus lactis] tripeptidase	84	73	1263
348	1	671	6	[gi 1787733]	(AE000245) F346; 79 pct identical to ADH1_ZYMO SW: P20168 but has 10 additional N-ter residues [Escherichia coli]	84	71	666
3	4	1572	3575	[gi 143766]	(EC 6.1.1.3) [Bacillus subtilis] (thrSv)	83	65	2004
9	6	3893	3417	[gnl PID d100576]	[Bacillus subtilis] single strand DNA binding protein	83	68	477
17	15	7426	8457	[gi 320738]	[Bacillus subtilis] comA protein [Streptococcus pneumoniae]	83	66	1032
20	12	13860	14144	[gnl PID d100583]	[Haemophilus influenzae] unknown [Bacillus subtilis]	83	61	285
23	4	3358	2806	[gi 1788294]	(AE000290) Q238; This 238 aa orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 aa protein YBC_ECOLI SW: P4237 [Escherichia coli]	83	74	753
28	6	3304	3005	[gi 11573659]	[Haemophilus influenzae] predicted coding region HI0659 [Haemophilus influenzae]	83	57	300
35	7	5108	3867	[gi 311707]	[Escherichia coli] hypothetical nucleotide binding protein [Acholeplasma laidlawii]	83	63	1242
55	19	17932	17528	[gi 537085]	[Escherichia coli] ORF_f11	83	59	405
55	20	18539	17919	[gi 496558]	[Bacillus subtilis] orfX	83	69	621
65	6	2795	3142	[gi 1165308]	[Bacillus subtilis] L22	83	64	348
68	6	6877	6683	[gi 1213494]	[Streptococcus pneumoniae] immunoglobulin A1 protease	83	54	195

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
87	15 15112	14771	gnl PID e323522	putative rpoZ protein [Bacillus subtilis]		83	54	342
96	12 8963	9631	gi 47394	5'-oxoprolyl-peptidase [Streptococcus pyogenes]		83	73	669
98	1 3	263	gi 1183885	glutamine-binding subunit [Bacillus subtilis]		83	55	261
120	4 7170	5233	gi 310630	zinc metalloprotease [Streptococcus gordonii]		83	72	1938
127	7 2998	4347	gi 1500567	H. jannaschii predicted coding region MJ1565 [Methanococcus jannaschii]		83	72	1350
137	1 3	440	gi 472918	v-type Na-ATPase [Enterococcus hirae]		83	60	438
160	6 3466	4356	gi 1773265	ATPase, gamma subunit [Streptococcus mutans]		83	67	891
214	4 2278	2964	gi 663279	transposase [Streptococcus pneumoniae]		83	72	687
226	3 2367	2020	gi 142154	thioredoxin [Synechococcus PCC6301]		83	58	348
303	1 3	1049	gi 40046	phosphoglucose isomerase A [AA 1-449] [Bacillus stearothermophilus]		83	67	1047
303	2 1155	1931	gi 289282	glutamyl-tRNA synthetase [Bacillus subtilis]		83	67	777
6	17 15370	14318	gi 633147	ribose-phosphate pyrophosphokinase [Bacillus caldolyticus]		82	64	1053
7	1 299	96	gi 143648	ribosomal protein L28 [Bacillus subtilis]		82	69	204
9	3 1479	1020	gi 385178	unknown [Bacillus subtilis]		82	46	390
9	7 4213	3899	gnl PID d100576	ribosomal protein S6 [Bacillus subtilis]		82	60	315
12	6 4698	3942	gnl PID d100571	unknown [Bacillus subtilis]		82	68	747
22	17 13222	14837	gi 520754	putative [Bacillus subtilis]		82	69	1416
22	18 14887	15638	gnl PID d101929	uridine monophosphate kinase [Synechocystis sp.]		82	62	762
33	16 11471	10641	gnl PID d101190	ORF4 [Streptococcus mutans]		82	68	831
35	9 7400	6255	gi 1881543	UDP-N-acetylglucosamine-2-epimerase [Streptococcus pneumoniae]		82	68	1146
40	10 8003	7533	gi 1172519	riboflavin synthase beta subunit [Actinobacillus pleuropneumoniae]		82	61	933
48	32 23159	23437	gi 1930092	outer membrane protein [Campylobacter jejuni]		82	66	2889
52	14 13833	14765	gi 142221	deoxyribodipyrimidine photolyase [Bacillus subtilis]		82	61	279
60	4 4737	1849	gnl PID d102221	[AB01610] uvrA [Deinococcus radiodurans]		82	68	471
62	4 2131	1457	gi 2246749	[AF009622] thioredoxin reductase [Listeria monocytogenes]		82	63	675
71	11 16586	17518				82	60	933
73	13 9222	7837	gnl PID d100586	unknown [Bacillus subtilis]		82	65	1386

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
74	1	1	3771	[gnl PID d101199]	alkaline amylpullulanase [Bacillus sp.]	82	68	3771
83	9	3696	3983	[gnl PID e305362]	unnamed protein product [Streptococcus thermophilus]	82	52	288
86	11	10776	9394	[gi 683583]	5-enolpyruvylshikimate-3-phosphate synthase [Lactococcus lactis]	82	67	1383
89	12	8295	9752	[gi 40025]	homologous to E.coli 5OK [Bacillus subtilis]	82	66	1458
115	9	10347	8812	[gnl PID d102090]	[AB003927] phospho-beta-galactosidase 1 [Lactobacillus gasseri]	82	74	1536
118	1	1	1332	[gnl PID d100379]	seryl-tRNA synthetase [Bacillus subtilis]	82	71	1332
151	3	4657	6246	[pir S06093 S060]	type I site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain S - Cytrobacter freundii	82	66	1590
173	6	4183	3503	[gi 2313836]	(AE000584) conserved hypothetical protein [Helicobacter pylori]	82	68	681
177	12	5481	7442	[gnl PID d10199]	[AB001341] NrrB [Escherichia coli]	82	58	1962
193	2	178	576	[pir S08564 R3BS]	ribosomal protein S9 - Bacillus stearothermophilus	82	70	399
245	2	258	845	[gi 146402]	[EcoI type I restriction-modification enzyme S subunit [Escherichia coli]]	82	68	588
9	5	3400	3146	[gnl PID d100576]	ribosomal protein S18 [Bacillus subtilis]	81	66	255
16	7	7484	8413	[gi 1100074]	tryptophanyl-tRNA synthetase [Clostridium longisporum]	81	70	930
20	11	10308	13820	[gnl PID d100563]	transcription-repair coupling factor [Bacillus subtilis]	81	63	3513
38	2	1232	1606	[gi 2058543]	[putative DNA binding protein [Streptococcus gordonii]]	81	63	375
45	2	3063	1751	[gi 460259]	enolase [Bacillus subtilis]	81	67	1311
46	1	2	1267	[gi 431231]	[uracil permease [Bacillus coidolyticus]]	81	61	1266
48	3	2453	1440	[gnl PID d100453]	Mannosephosphate Isomerase [Streptococcus mutans]	81	70	1014
54	2	1106	336	[gi 154752]	transport protein [Agrobacterium tumefaciens]	81	64	771
65	12	10306	10821	[gi 44073]	SectY protein [Lactococcus lactis]	81	66	516
89	4	3874	2603	[gi 556886]	serine hydroxymethyltransferase [Bacillus subtilis]	81	69	1272
99	16	19126	18929	[gi 2313526]	(AE000557) H. pylori predicted coding region HP0411 [Helicobacter pylori]	81	75	198
106	7	8373	7822	[gnl PID e199284]	pyrR [Lactobacillus plantarum]	81	61	552
108	6	5054	6877	[gi 1469929]	group B oligopeptidase PepB [Streptococcus agalactiae]	81	66	1824
113	15	15859	18283	[pir S09411 S094]	spottie protein - Bacillus subtilis	81	65	2385
128	5	3359	3634	[gi 1685111]	[orf1091 [Streptococcus thermophilus]]	81	69	276

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
151	1	830	3211	gi 304896	EcoE type I restriction-modification enzyme R subunit [Escherichia coli]	81	59	2382
159	11	6722	7837	gi 1223288	[GRP synthetase [Bacillus subtilis]]	81	69	1116
170	1	739	458	gnl PID d102006	FUNCTION UNKNOWN [Bacillus subtilis]	81	55	282
191	2	1759	893	gi 149522	tryptophan synthase alpha subunit [Lactococcus lactis]	81	65	867
214	3	2290	1994	gi 157587	reverse transcriptase endonuclease [Drosophila virilis]	81	43	297
217	4	4415	4008	gi 466473	cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	81	59	408
262	2	569	868	gi 153675	tagatose 6-P kinase [Streptococcus mutans]	81	68	300
299	1	663	4	gnl PID e301154	[STYSKI methylase [Salmonella enterica]]	81	60	660
366	2	376	83	gi 149521	tryptophan synthase beta subunit [Lactococcus lactis]	81	65	294
12	10	8766	9242	gi 1216490	DNA/pantothenate metabolism Flavoprotein [Streptococcus mutans]	80	64	477
17	11	6050	5748	gnl PID e305362	unnamed protein product [Streptococcus thermophilus]	80	67	303
17	16	8455	9066	gi 703126	leucocin A translocator [Leuconostoc gelidum]	80	59	612
18	3	2440	1613	gi 1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	80	58	828
27	3	4248	1579	gi 452309	[valyl-tRNA synthetase [Bacillus subtilis]]	80	69	2670
28	7	3671	3288	gi 1573660	H. influenzae predicted coding region HI0660 [Haemophilus influenzae]	80	63	384
32	2	902	1933	gnl PID e264499	dihydroorotate dehydrogenase B [Lactococcus lactis]	80	66	1032
39	1	1	1266	gnl PID e234078	hom [Lactococcus lactis]	80	63	1266
52	5	4363	3593	gi 1183884	ATP-binding subunit [Bacillus subtilis]	80	57	771
54	5	4550	4744	gi 2198820	(AF004225) Cux/CDP (1B1); Cux/CDP homeoprotein [Mus musculus]	80	60	195
59	11	7109	7486	gi 921052	[ORF9, putative [Streptococcus pneumoniae]]	80	68	378
65	3	1230	1550	pir A02815 RBS	ribosomal protein L23 - Bacillus stearothermophilus	80	66	804
65	12	5174	5503	pir A02819 RBS	ribosomal protein L24 - Bacillus stearothermophilus	80	65	1791
66	9	9884	10687	gi 2313836	(AE00584) conserved hypothetical protein [Helicobacter pylori]	80	70	330
82	2	648	2438	gi 622991	mannitol transport protein [Bacillus stearothermophilus]	80	46	321
85	1	950	630	gi 528995	polyketide synthase [Bacillus subtilis]	80	63	1092
89	8	6870	5779	gi 853776	peptide chain release factor 1 [Bacillus subtilis]	80	60	1281
93	12	8718	7438	gnl PID d101959	hypothetical protein [Synechocystis sp.]	80	-	-

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
106	5	6854	5751	gnl PID e199366	glutaminase of carbamoyl-phosphate synthase [Lactobacillus plantarum]	80	65	1104
109	2	2160	1450	gi 40056	phoP gene product [Bacillus subtilis]	80	59	711
124	9	4246	3953	gnl PID d102254	30S ribosomal protein S16 [Bacillus subtilis]	80	65	294
128	8	5148	6428	gi 2281398	phosphopentomutase [Lactococcus lactis cremoris]	80	66	1281
137	19	12655	11376	gi 159109	[NADP-dependent glutamate dehydrogenase [Giardia intestinalis]	80	68	1290
140	19	19639	19457	gi 517210	putative transposase [Streptococcus pyogenes]	80	70	243
158	2	2474	984	gi 1877423	galactose-1-P-uridylyl transferase [Streptococcus mutans]	80	65	1491
171	10	7474	7728	gi 397800	cyclophilin C-associated protein [Mus musculus]	80	60	255
181	1	2	619	gi 149395	[Lacc [Lactococcus lactis]	80	66	618
313	1	27	539	gi 143467	ribosomal protein S4 [Bacillus subtilis]	80	70	513
329	2	1652	858	gi 533080	[RecF protein [Streptococcus pyogenes]	80	63	795
371	1	2	958	gi 442350	CtpC adenosine triphosphatase [Bacillus subtilis]	80	58	957
8	7	4312	5580	gi 149435	putative [Lactococcus lactis]	79	64	1269
23	1	1175	135	gi 1542975	[AbcB [Thermoaerobacterium thermosulfurigenes]	79	61	1041
33	14	9244	8201	gnl PID e253891	[UDPG-glucose 4-epimerase [Bacillus subtilis]	79	62	1044
36	3	1242	2633	gnl PID e324218	[ftsA [Enterococcus hirae]	79	58	1392
38	13	7155	8378	gi 405134	[acetate kinase [Bacillus subtilis]	79	58	1224
55	7	9011	8229	gi 1146234	[dihydrodipicolinate reductase [Bacillus subtilis]	79	56	783
65	19	8661	8915	gi 2078380	[ribosomal protein L30 [Staphylococcus aureus]	79	68	255
69	4	3678	2128	gnl PID e311452	[unknown [Bacillus subtilis]	79	64	1551
69	9	7881	7279	gi 677850	[hypothetical protein [Staphylococcus aureus]	79	59	603
72	10	8491	9783	gnl PID d101091	[hypothetical protein [Synechocystis sp.]	79	62	1293
80	3	2906	7300	gi 143342	[polymerase III [Bacillus subtilis]	79	65	4395
82	14	13326	15689	gnl PID e255093	[hypothetical protein [Bacillus subtilis]	79	65	2364
86	13	12233	11118	gi 683582	[prophenate dehydrogenase [Lactococcus lactis]	79	58	1116
92	3	940	1734	gi 537286	[triosephosphate isomerase [Lactococcus lactis]	79	65	795
98	6	4023	4742	gnl PID d100262	[Lys protein [Salmonella typhimurium]	79	63	720

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
99	12	16315	14150	[gi]153736	a-galactosidase [Streptococcus mutans]	79	64	2166
107	7	5684	6406	[gi]460080	D-alanine:D-alanine ligase-related protein [Enterococcus faecalis]	79	58	723
113	9	6858	8303	[gi]466882	[ppsl; B1496_C2_189] [Mycobacterium leprae]	79	64	1446
151	10	13424	12213	[gi]450686	[3-phosphoglycerate kinase [Thermotoga maritima]	79	60	1212
162	2	1158	3017	[gi]506700	[CapD [Staphylococcus aureus]	79	67	1860
177	5	2876	3052	[gi]912423	[putative [Lactococcus lactis]	79	61	177
177	8	4198	4563	[gi]149429	[putative [Lactococcus lactis]	79	61	366
187	3	2728	2907	[gnl PID d102002	[AB001488] FUNCTION UNKNOWN. [Bacillus subtilis]	79	53	180
189	7	3589	4350	[gnl PID e83449	[putative ATP-binding protein of ABC-type [Bacillus subtilis]	79	61	762
191	5	4249	3449	[gi]149519	indoleglycerol phosphate synthase [Lactococcus lactis]	79	66	801
211	3	1805	2737	[gi]147404	[mannose permease subunit II-M-Man [Escherichia coli]	79	57	933
212	3	3863	3621	[gnl PID e209004	glutaredoxin-like protein [Lactococcus lactis]	79	58	243
215	1	987	715	[gi]2293242	[AF008220] arginine succinate synthase [Bacillus subtilis]	79	64	273
323	2	530	781	[gi]897795	[30S ribosomal protein [Pediococcus acidilactici]	79	67	252
380	1	694	2	[gi]1184680	[polyribotide phosphorylase [Bacillus subtilis]	79	64	693
384	2	655	239	[gi]143328	[phoP protein (put.) ; putative [Bacillus subtilis]	79	59	417
6	3	2820	4091	[gi]853767	[UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]	78	62	1272
8	1	50	1786	[gi]149432	[putative [Lactococcus lactis]	78	63	1737
9	1	351	124	[gi]897793	[y98 gene product [Pediococcus acidilactici]	78	59	228
15	8	7364	8314	[gnl PID d100585	cysteine synthetase A [Bacillus subtilis]	78	59	951
22	122	17388	18416	[gnl PID d101315	[YqfE [Bacillus subtilis]	78	60	1029
22	27	20971	20612	[gi]299163	alanine dehydrogenase [Bacillus subtilis]	78	58	573
20	16	17165	17713	[gi]49105	[hypoxanthine phosphoribosyltransferase [Lactococcus lactis]	78	59	360
34	8	7407	7105	[gi]41015	[aspartate-tRNA ligase [Escherichia coli]	78	55	303
35	8	6257	5196	[gi]1657644	[CapBE [Staphylococcus aureus]	78	60	1062

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
40	11	9287	8001	gi 1173518	GTP cyclohydrolase II / 3,4-dihydroxy-2-butanone-4-phosphate synthase (Actinobacillus pleuropneumoniae)	78	58	1287
48	31	22422	23183	gi 2314330	(AB000623) glutamine ABC transporter, ATP-binding protein (glnQ)	78	58	762
52	2	2101	1430	gi 1183887	integral membrane protein [Bacillus subtilis]	78	54	672
55	14	13605	12712	gi 1 PID d102026	[AB002150] YbbP [Bacillus subtilis]	78	58	894
55	17	16837	15612	gi 1 PID e313027	hypothetical protein [Bacillus subtilis]	78	51	1026
71	14	19756	19598	gi 179764	calcium channel alpha-1D subunit [Homo sapiens]	78	57	159
74	11	15031	14018	gi 1573279	Holliday junction DNA helicase (rvB) [Haemophilus influenzae]	78	57	1014
75	9	6623	7972	gi 1877423	galactose-1-P-uridyl transferase [Streptococcus mutans]	78	62	1350
81	12	12125	13906	gi 1573607	L-fucose isomerase (fucI) [Haemophilus influenzae]	78	66	1782
82	3	2423	4417	gi 153744	ORF X; putative [Streptococcus mutans]	78	64	1995
83	18	16926	18500	gi 143373	phosphoribosyl aminoimidazole carboxy formyl formyltransferase/inosine monophosphate cyclohydrolase (PUR-H(J)) [Bacillus subtilis]	78	63	1575
83	20	20212	20775	gi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) [Bacillus subtilis]	78	64	564
92	2	165	878	gi 1 PID d101190	[ORF2 [Streptococcus mutans]]	78	62	714
98	8	5863	6909	gi 1 2331287	[AF013188] release factor 2 [Bacillus subtilis]	78	63	1047
113	3	1071	2741	gi 580514	dnaZx [Bacillus subtilis]	78	64	1671
127	4	1133	2071	gi 142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	78	59	939
132	1	2782	497	gi 1561763	paluulanase [Bacteroides thetaiotomicron]	78	58	2286
135	4	2698	3537	gi 1788036	[AE000269] NH3-dependent NAD synthetase (Escherichia coli)	78	66	840
140	124	28853	2523	gi 1100077	phospho-beta-glucosidase [Clostridium longisporum]	78	64	1431
150	5	4690	4514	gi 149464	amino peptidase [Lactococcus lactis]	78	42	177
152	1	1	795	gi 635915	NADH dehydrogenase subunit [Thunbergia alata]	78	43	795
162	4	4997	4110	gi 1 PID e323528	[putative YhaP protein [Bacillus subtilis]]	78	64	888
181	10	8651	7947	gi 149402	lactose repressor (lacR; alt.) [Lactococcus lactis]	78	48	705
200	4	3627	4958	gi 1 PID d100172	invertase [Zymomonas mobilis]	78	61	1332
203	3	3230	3015	gi 1174237	CyCK [Pseudomonas fluorescens]	78	57	216

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
210	9	6789	7172	gi 580902	ORF6 gene product [Bacillus subtilis]	78	42	384
214	6	3810	2797	gnl PID d102049	P. haemolytica o-sialoglycoprotein endopeptidase; P36175 (660) transmembrane [Bacillus subtilis]	78	60	1014
214	13	6322	8163	gi 1377831	unknown [Bacillus subtilis]	78	62	1842
217	1	9	2717	gi 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	78	64	2709
222	3	2316	3098	gi 1573047	spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]	78	65	783
268	1	742	8	gi 517210	putative transposase [Streptococcus pyogenes]	78	65	735
276	1	223	753	gnl PID d100306	ribosomal protein L1 [Bacillus subtilis]	78	65	531
312	3	1567	1079	gi 289261	comE ORF2 [Bacillus subtilis]	78	54	489
339	1	117	794	gi 1916729	cadd [Staphylococcus aureus]	78	53	678
342	2	762	265	gi 1842439	phosphatidylglycerophosphate synthase [Bacillus subtilis]	78	59	498
383	1	737	3	gi 1184680	polynucleotide phosphorylase [Bacillus subtilis]	78	64	735
7	15	11923	11018	gi 1393855	carboxyltransferase beta subunit [Synechococcus PCC7942]	77	63	906
8	2	1698	2255	gi 149433	putative [Lactococcus lactis]	77	59	558
17	14	6948	7550	gi 520238	comA protein [Streptococcus pneumoniae]	77	60	603
30	12	9761	8967	gi 1000451	TreP [Bacillus subtilis]	77	43	795
36	14	11421	12131	gi 1573766	phosphoglyceromutase (gpmA) [Haemophilus influenzae]	77	64	711
55	3	3836	4096	gi 1708640	YeaB [Bacillus subtilis]	77	55	261
61	8	8377	8054	gi 1890649	multidrug resistance protein LntA [Lactococcus lactis]	77	51	324
65	2	607	1254	gi 40103	ribosomal protein L4 [Bacillus stearothermophilus]	77	63	648
68	8	7509	7240	gi 47551	MRP [Streptococcus suis]	77	60	558
83	14	13104	14552	gi 1590947	amidophosphoribosyltransferase [Methanococcus jannaschii]	77	56	1449
94	4	3006	5444	gnl PID e31493	unknown [Bacillus subtilis]	77	57	2439
96	11	8518	8880	gi 551879	ORF 1 [Lactococcus lactis]	77	62	363
99	11	14082	12799	gi 153737	sugar-binding protein [Streptococcus mutans]	77	61	1284

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
106	2	361	1176	[gi 148321]	Lied protein [Haemophilus influenzae]	77	51	816
108	4	3152	4030	[gi 1574730]	telurite resistance protein (tehB) [Haemophilus influenzae]	77	58	879
118	4	3520	3131	[gi 1573900]	D-alanine permease (daaA) [Haemophilus influenzae]	77	57	390
124	4	1796	1071	[gi 1573162]	tRNA (guanine-N1)-methyltransferase (trmD) [Haemophilus influenzae]	77	58	726
126	4	5909	4614	[gnl PID d101163]	[srb] [Bacillus subtilis]	77	62	1296
128	2	630	1373	[gnl PID d101328]	[Yqiz] [Bacillus subtilis]	77	58	744
130	1	1	1287	[gnl PID e325013]	[hypothetical] protein [Bacillus subtilis]	77	61	1287
139	5	4388	3639	[gi 2293302]	[IAF008220] YtqA [Bacillus subtilis]	77	59	750
140	11	10931	9582	[gi 289284]	cysteinyl-tRNA synthetase [Bacillus subtilis]	77	64	1350
140	18	19451	19263	[gi 5121210]	putative transposase [Streptococcus pyogenes]	77	66	189
141	2	976	1683	[gnl PID e157887]	[URFS] [aa 1-573] [Drosophila yakuba]	77	50	708
141	4	2735	5293	[gi 556258]	[secA] [Listeria monocytogenes]	77	59	2559
144	2	671	2173	[gnl PID d100585]	[lysyl-tRNA thynthetase] [Bacillus subtilis]	77	61	1503
163	5	6412	7398	[gi 511015]	lithydroorotate dehydrogenase A [Lactococcus lactis]	77	62	987
164	10	7841	7074	[gnl PID d100964]	homologue of iron dicitrato transport ATP-binding protein FecE of <i>E. coli</i>	77	52	768
191	8	7257	5791	[gi 149516]	anthranilate synthase alpha subunit [Lactococcus lactis]	77	57	1467
198	1	5377	5177	[gi 1573856]	hypothetical [Haemophilus influenzae]	77	66	201
213	1	202	462	[gi 1743860]	BrcA2 [Mus musculus]	77	50	261
250	2	231	509	[gnl PID e334776]	[YlbH] protein [Bacillus subtilis]	77	60	279
289	3	1737	1276	[gnl PID d100947]	Ribosomal Protein L10 [Bacillus subtilis]	77	62	462
292	2	1399	668	[gi 143004]	transfer RNA-Gln synthetase [Bacillus stearothermophilus]	77	58	732
7	3	2734	1166	[gnl PID d101824]	peptide-chain release factor 3 [Synechocystis sp.]	76	53	1569
7	23	18474	18235	[gi 455157]	acyl carrier protein [Crytomonas Phi]	76	57	240
9	8	5706	4342	[gi 1146247]	asparaginyl-tRNA synthetase [Bacillus subtilis]	76	61	1365
10	5	4531	4385	[gnl PID e144935]	hypothetical protein [Clostridium perfringens]	76	53	147
18	2	1615	842	[gi 1591672]	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	76	56	774

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
22	37	27796	28173	gnl PID e13389	translation initiation factor IF3 (AA 1-172) [Bacillus stearothermophilus]	76	64	378
35	6	3889	2682	gi 1773346	Cap5G [Staphylococcus aureus]	76	61	1188
48	28	21113	21787	gi 2314328	[AE000623] glutamine ABC transporter, permease protein (glnP) [Helicobacter pylori]	76	52	675
52	12	12881	13786	gi 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	76	58	906
55	10	11521	10571	gnl PID e283110	femD [Staphylococcus aureus]	76	61	951
57	8	7824	6559	gi 290561	o188 [Escherichia coli]	76	47	1266
62	5	2406	2095	gnl PID e313024	hypothetical protein [Bacillus subtilis]	76	59	312
65	9	4223	4441	gi 40148	L29 protein (AA 1-66) [Bacillus subtilis]	76	58	219
68	2	1328	2371	gnl PID e284233	anabolic ornithine carbamoyltransferase [Lactobacillus plantarum]	76	61	1044
69	8	7297	6005	gnl PID d101420	Pyrimidine nucleoside phosphorylase [Bacillus stearothermophilus]	76	61	1293
73	12	7839	7267	gnl PID e243629	unknown [Mycobacterium tuberculosis]	76	53	573
74	5	8433	7039	gnl PID d102048	C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]	76	60	1395
80	5	7643	7936	gi 2314030	[AE000599] conserved hypothetical protein [Helicobacter pylori]	76	61	294
82	15	16019	16996	gi 1573900	D-alanine permease (daaA) [Haemophilus influenzae]	76	56	978
83	19	18616	19884	gi 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus subtilis]	76	60	1269
86	14	13409	12231	gi 143806	AzCF [Bacillus subtilis]	76	58	1179
87	1	1	3	gi 153804	sucrose-6-phosphate hydrolase [Streptococcus mutans]	76	59	1440
87	16	15754	15110	gnl PID e323500	putative Gmk protein [Bacillus subtilis]	76	56	645
93	4	1769	1539	gi 1574820	1,4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzae]	76	46	231
94	1	51	365	gi 143313	[6.0 kd ORF [Plasmid ColE1]]	76	73	315
116	2	2151	1678	gi 155841	pneumococcal surface protein A [Streptococcus pneumoniae]	76	59	474
123	6	3442	5895	gi 1314297	CLPC ATPase [Listeria monocytogenes]	76	59	2454
126	2	2156	2932	gnl PID d101328	Rqiz [Bacillus subtilis]	76	61	777
128	10	6973	7797	gi 944944	purine nucleoside phosphorylase [Bacillus subtilis]	76	60	825
131	11	6186	5812	gi 1674310	[AE000058] Mycoplasma pneumoniae, MG085 homolog, from <i>M. genitalium</i> [Mycoplasma pneumoniae]	76	47	375

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
139	4	3641	3192	gi 2223302	(AF008220) YcgA [Bacillus subtilis]	76	53	450
140	14	14872	12536	gi 1184680	polynucleotide phosphorylase [Bacillus subtilis]	76	62	2337
143	2	2583	3905	gi 143795	transfer RNA-Tyr synthetase [Bacillus subtilis]	76	61	1323
170	6	5095	6114	gnl PID d10059	lycgQ [Bacillus subtilis]	76	44	1020
180	2	1927	557	gi 40019	ORF 821 (aa 1-821) [Bacillus subtilis]	76	53	1371
191	7	5835	5228	gi 551880	anthranilate synthase beta subunit [Lactococcus lactis]	76	61	588
195	3	3829	2444	gi 2149905	D-glutamic acid adding enzyme [Enterococcus faecalis]	76	60	1386
200	3	194	3629	gi 431272	lysine protein [Bacillus subtilis]	76	58	1716
201	1	431	207	gi 2208938	dextran glucosidase DexS [Streptococcus suis]	76	57	225
214	2	1283	2380	gi 663278	transposase [Streptococcus pneumoniae]	76	55	1098
225	3	2338	3411	gi 1552775	ATP-binding protein [Escherichia coli]	76	56	1074
233	1	2	724	gi 1163115	neuramnidase B [Streptococcus pneumoniae]	76	60	723
347	1	523	38	gi 537033	ORF f356 [Escherichia coli]	76	60	486
356	2	842	165	gi 2149905	D-glutamic acid adding enzyme [Enterococcus faecalis]	76	61	678
366	3	734	348	gi 149520	phosphoribosyl anthranilate isomerase [Lactococcus lactis]	76	69	387
5	8	12559	11484	gi 1574293	fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	75	61	1116
6	13	12553	11894	gnl PID d102050	YdiH [Bacillus subtilis]	75	51	660
9	10	7282	6062	gi 142538	aspartate aminotransferase [Bacillus sp.]	75	55	1221
10	12	8080	7940	gi 149433	SCRE1 methylease [Lactococcus lactis]	75	56	141
18	5	4266	3301	gnl PID d101319	YqgH [Bacillus subtilis]	75	52	966
22	4	1838	2728	gi 1373157	orfX; hypothetical protein; Method: conceptual translation supplied by author [Bacillus subtilis]	75	62	891
30	11	9015	7828	gi 153801	enzyme scr-II [Streptococcus mutans]	75	64	1188
31	5	2362	2030	gi 2293211	(AF008220) putative thioredoxin [Bacillus subtilis]	75	53	333
32	9	7484	8159	gnl PID d100560	formamidopyrimidine-DNA glycosylase [Streptococcus mutans]	75	61	876
33	4	1735	1448	gi 1413976	lipA-52r gene product [Bacillus subtilis]	75	53	288
33	10	6470	5769	gi 533105	unknown [Bacillus subtilis]	75	56	702

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
33	12 6878	7183	pir A00205 FCBL	ferredoxin [4Fe-4S] ~ Clostridium thermacetum		75	56	306
36	1 181	2	gi 2088739	(AF003141) strong similarity to the FABP/P2/CRBP/CRABP family of transporters [Caenorhabditis elegans]		75	43	180
38	22 14510	15319	gi 1574058	hypothetical [Haemophilus influenzae]		75	56	870
48	33 23398	24066	gi 1930092	outer membrane protein [Campylobacter jejuni]		75	56	669
51	1 2	319	gi 43985	nifS-like gene [Lactobacillus delbrueckii]		75	55	318
51	10 8318	11683	gi 537192	CG Site No. 620; alternate gene names hs, hsp, hsr, rmx; apparent frameshift in GenBank Accession Number X06545 [Escherichia coli]		75	50	3366
54	18 19536	20759	gi 666059	orf2 gene product [Lactobacillus leichmannii]		75	58	1194
57	9 8448	7822	gi 290561	o188 [Escherichia coli]		75	50	627
65	14 6072	6356	gi 606241	30S ribosomal subunit protein S14 [Escherichia coli]		75	64	285
70	4 3071	2472	gi 1256617	adenine phosphoribosyltransferase [Bacillus subtilis]		75	57	600
71	24 30399	29604	gi 1574390	C4-dicarboxylate transport protein [Haemophilus influenzae]		75	57	996
73	2 910	455	gnl PID e245656	yneT [Bacillus subtilis]		75	57	456
79	1 1810	491	gi 1146219	28.2% of identity to the Escherichia coli GTP-binding protein Era; putative (Bacillus subtilis)		75	59	1320
82	6 6360	6536	gi 1655715	BzTD [Rhodobacter capsulatus]		75	55	177
83	6 1938	2975	gnl PID e323529	[putative PslX protein [Bacillus subtilis]		75	56	1038
93	11 7368	5317	gi 39989	methionyl-tRNA synthetase [Bacillus stearothermophilus]		75	57	2052
93	13 9409	8699	gi 1591493	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]		75	54	711
95	1 1795	47	gnl PID e323510	yloV protein [Bacillus subtilis]		75	54	225
103	2 362	1186	gnl PID e266928	[unknown [Mycobacterium tuberculosis]		75	55	1749
104	1 691	915	gi 460026	[repressor protein [Streptococcus pneumoniae]		75	52	606
113	5 2951	3883	gnl PID d101119	ABC transporter subunit [Synechocystis sp.]		75	55	933
121	1 320	1390	gi 2145131	[repressor of class I heat shock gene expression HrcA [Streptococcus mutans]		75	58	1071
127	6 2614	3000	gi 1500451	[M. jannaschii predicted coding region MJ1558 [Methanococcus jannaschii]		75	44	387
137	18 10082	10687	gi 393116	[P-glycoprotein 5 [Entamoeba histolytica]		75	52	840
149	11 8499	9338	gnl PID d00582	[unknown [Bacillus subtilis]		75	55	840

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
151	6	9100	7673	gi 40467	HsdS polypeptide, part of CtrA family [Citrobacter freundii]	75	57	1428
158	1	986	3	gnl PID e25391	UDP-glucose 4-epimerase [Bacillus subtilis]	75	63	984
172	8	5653	6774	gi 142978	glycerol dehydrogenase [Bacillus stearothermophilus]	75	56	1122
172	9	7139	9730	gnl PID e268456	[un]known [Mycobacterium tuberculosis]	75	58	2592
173	1	261	79	gnl PID e236469	C10C5.6 [Caenorhabditis elegans]	75	50	183
185	3	3066	2014	gi 1574806	spermidine/putrescine transport ATP-binding protein (putA) [Haemophilus influenzae]	75	56	1053
191	6	5235	4213	gi 149518	phosphoribosyl anthranilate transferase [Lactococcus lactis]	75	61	1023
226	2	1774	1181	gi 2314588	(AB000642) conserved hypothetical protein [Helicobacter pylori]	75	65	594
231	1	1	153	gi 40173	homolog of E. coli ribosomal protein L21 [Bacillus subtilis]	75	57	153
234	1	2	418	gi 2293259	(AF008220) YtgI [Bacillus subtilis]	75	59	417
279	1	552	151	gi 1119198	[un]known protein [Bacillus subtilis]	75	50	402
291	7	3558	3827	gi 40011	ORF17 (AA 1-161) [Bacillus subtilis]	75	48	270
375	2	137	628	gi 410137	ORFX13 [Bacillus subtilis]	75	58	492
6	20	16721	17560	gi 2293323	(AF008220) YtdI [Bacillus subtilis]	74	53	840
7	6	4682	6052	gi 1354211	PER112-like protein [Bacillus subtilis]	74	60	1371
18	4	3341	2427	gnl PID d101319	YggI [Bacillus subtilis]	74	54	915
21	6	5885	4800	gi 1072381	glutamyl-aminopeptidase [Lactococcus lactis]	74	59	1086
24	2	739	548	gi 2314762	(AB000655) ABC transporter, permease protein (YaeE) [Helicobacter pylori]	74	46	192
25	1	2	367	gnl PID d100932	H2O-forming NADH Oxidase [Streptococcus mutans]	74	63	366
38	18	11432	12964	gi 537034	ORF_0488 [Escherichia coli]	74	57	1533
48	10	8924	6669	gi 1513069	P-type adenosine triphosphatase [Listeria monocytogenes]	74	53	2256
55	11	11964	11401	gnl PID e283110	FemD [Staphylococcus aureus]	74	64	564
61	2	1782	427	gi 2293216	(AF008220) putative UDP-N-acetylmuramate-alanine ligase [Bacillus subtilis]	74	55	1356
76	10	9414	8065	gnl PID d101325	Yqib [Bacillus subtilis]	74	54	1350
83	2	666	926	lpn C33496 C334	hsc homolog - Bacillus subtilis	74	55	261
86	9	8985	8080	gi 683585	phenylate dehydratase [Lactococcus lactis]	74	55	906

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
102	5	5005	5652	gi 143394	[OMP-PRPP transferase [Bacillus subtilis]]	74	57	648
103	5	4364	3267	[gnl PID e323524]	[Y10N protein [Bacillus subtilis]]	74	62	1098
108	7	6864	7592	[gnl PID e257631]	[methyltransferase [Lactococcus lactis]]	74	56	729
131	2	478	146	[gnl PID d101320]	[Yggz [Bacillus subtilis]]	74	45	333
133	2	1380	919	[gnl PID e313025]	[hypothetical protein [Bacillus subtilis]]	74	60	462
137	9	6167	6787	[gnl PID d100479]	[Na+ -ATPase subunit D [Enterococcus hirae]]	74	53	621
149	4	3008	3883	[gnl PID d100581]	[high level kanamycin resistance [Bacillus subtilis]]	74	55	876
157	2	243	824	[gi 15733373]	[methylated-DNA-protein-cysteine methyltransferase (dat1) [Haemophilus influenzae]]	74	48	582
164	6	3515	4249	[gi 410131]	[ORFX7 [Bacillus subtilis]]	74	48	735
167	7	5446	5201	[gi 413927]	[ipa-3r gene product [Bacillus subtilis]]	74	55	246
171	1	1	1818	[gnl PID d102251]	[beta-galactosidase [Bacillus circulans]]	74	62	1818
172	4	1064	2382	[gi 466474]	[cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]]	74	50	1329
185	1	326	3	[gi 1573646]	[Mg(2+) transport ATPase protein C (mgcC) (SP-P22037) [Haemophilus influenzae]]	74	68	324
188	2	1069	2018	[gi 1573008]	[ATP dependent translocator homolog (msba) [Haemophilus influenzae]]	74	44	930
189	11	6491	7174	[gi 1661199]	[sakacin A production response regulator [Streptococcus mutans]]	74	60	684
210	1	520	1287	[gi 2293207]	[AF008220] YtmQ [Bacillus subtilis]	74	60	768
261	1	836	192	[gi 666983]	[putative ATP binding subunit [Bacillus subtilis]]	74	55	645
263	3	1619	3655	[gi 663222]	[Similarity with <i>S. cerevisiae</i> hypothetical 137.7 kd protein in subtelomeric Y repeat region [Saccharomyces cerevisiae]]	74	42	2037
265	2	844	1227	[gi 49272]	[Asparaginase [Bacillus licheniformis]]	74	64	384
368	1	1	942	[gi 603988]	[unknown [Saccharomyces cerevisiae]]	74	39	942
7	16	13357	11921	[gnl PID d101324]	[Yqnx [Bacillus subtilis]]	73	57	1437
17	10	5706	5449	[gnl PID e305362]	[unnamed protein product [Streptococcus thermophilus]]	73	47	258
31	2	522	244	[gnl PID d100576]	[single strand DNA binding protein [Bacillus subtilis]]	73	55	279
32	6	5667	6194	[gnl PID d101315]	[YqfG [Bacillus subtilis]]	73	58	528
34	15	10281	9790	[gnl PID d102151]	[AB001684] ORF42c [Chlorella vulgaris]	73	46	492

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
40	12	9876	9226	gi 1173517	riboflavin synthase alpha subunit [Actinobacillus pleuropneumoniae]	73	55	651
55	2	3592	839	gnl PID d101887	cation-transporting ATPase Pacl [Synechocystis sp.]	73	60	2754
55	18	17494	16586	gnl PID e265580	unknown [Mycobacterium tuberculosis]	73	52	909
65	16	7213	7767	gi 143419	ribosomal protein L6 [Bacillus stearothermophilus]	73	60	555
66	3	3300	3659	gnl PID e263883	LacF [Lactobacillus casei]	73	52	360
70	10	5557	5733	gi 857631	envelope protein [Human immunodeficiency virus type 1]	73	60	177
71	4	6133	8262	gnl PID e222063	ss-1,4-galactosyltransferase [Streptococcus pneumoniae]	73	45	2130
72	1	3	851	gi 2293177	[AFO08220] transporter [Bacillus subtilis]	73	50	849
76	7	7019	6195	gnl PID d101325	YqfF [Bacillus subtilis]	73	66	825
76	12	10009	9533	gi 1573086	uridine kinase (uridine monophosphokinase) (udk) [Haemophilus influenzae]	73	54	477
80	7	8113	9372	gi 1377823	aminopeptidase [Bacillus subtilis]	73	60	1260
97	5	3389	1668	gnl PID d101954	dihydroxyacid dehydratase [Synechocystis sp.]	73	54	1722
98	9	6912	7619	gnl PID e314991	[FtsE] [Mycobacterium tuberculosis]	73	54	708
108	11	10928	10440	gi 388109	regulatory protein [Enterococcus faecalis]	73	54	489
128	6	3632	4222	gi 1685111	[Streptococcus thermophilus]	73	63	591
138	2	1575	394	gi 147326	transport protein [Escherichia coli]	73	60	1182
140	13	12538	11903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	73	55	636
162	5	5701	4991	gnl PID e323511	[putative YhaQ protein [Bacillus subtilis]	73	50	711
164	4	2323	2790	gi 1592076	[hypothetical] protein [SP;P25768] [Methanococcus jannaschii]	73	52	468
164	8	4815	5546	gi 410137	[ORX13] [Bacillus subtilis]	73	56	732
170	5	4394	5302	gnl PID d100959	homologue of unidentified protein of E. coli [Bacillus subtilis]	73	46	909
178	7	3893	4855	gi 46242	[nodulation protein B, 5' end [Rhizobium loti]	73	55	1206
204	6	5096	4278	gnl PID e244719	PICR protein [Bacillus thuringiensis]	73	41	819
213	2	832	2037	gi 1565296	ribosomal protein S1 homolog; sequence specific DNA-binding protein [Leuconostoc lactis]	73	61	204
231	2	84	287	gi 40173	homolog of E. coli ribosomal protein L21 [Bacillus subtilis]	73	51	504
237	1	2	505	gi 1773151	adenine phosphoribosyltransferase [Escherichia coli]	73	51	504

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
269	1	2	691	[gnl PID d101328]	[YqIX [Bacillus subtilis]]	73	36	690
289	2	1272	832	[pir A02771 R7MC]	[ribosomal protein L7/L12 - Micrococcus luteus]	73	66	441
343	1	14	484	[gil 1788125]	(AB000276) hypothetical 30.4 kd protein in manZ-cspC intergenic region	73	47	471
356	1	222	4	[gil 2149305]	[D-glutamic acid adding enzyme (Enterococcus faecalis)]	73	50	219
7	5	3165	4691	[gnl PID d101833]	[amidase [Synechocystis sp.]	72	52	1527
7	9	7195	7647	[gil 146976]	[musb [Escherichia coli]]	72	54	453
7	17	13743	13300	[gnl PID e289141]	similar to hydroxymyristoyl-(acyl carrier protein) dehydratase [Bacillus subtilis]	72	59	444
22	19	15637	16224	[gnl PID d101929]	[ribosome releasing factor [Synechocystis sp.]	72	51	588
33	17	12111	11425	[gnl PID d101190]	[ORF3 [Streptococcus mutans]]	72	55	687
34	7	7147	5627	[gil 396501]	[aspartyl-tRNA synthetase [Thermus thermophilus]]	72	52	1521
38	23	15372	16085	[pir H64108 H641]	L-ribulose-phosphate 4-epimerase (araD) homolog - Haemophilus influenzae (strain Rd KW20)	72	54	714
39	5	5094	6905	[gnl PID e234877]	unknown [Mycobacterium tuberculosis]	72	56	1812
40	6	4469	4636	[gil 153672]	[lactose repressor [Streptococcus mutans]]	72	58	168
48	2	1459	1253	[gil 310380]	[inhibin beta-A-subunit [Ovis aries]]	72	33	207
48	29	21729	22424	[gil 2314329]	(AB000623) glutamine ABC transporter, permease protein (glnP) [Helicobacter pylori]	72	49	696
50	5	4529	3288	[gil 1750108]	[Ynba [Bacillus subtilis]]	72	54	1242
51	3	1044	2282	[gil 2293230]	(AF008220) Ytbt [Bacillus subtilis]	72	54	1239
52	13	113681	113938	[gil 142321]	[deoxyribodipyrimidine photolyase [Bacillus subtilis]]	72	45	258
55	1	841	35	[gil 882518]	ORF_0304; GTG start [Escherichia coli]	72	59	807
75	5	2832	3191	[gnl PID e209886]	mercuric resistance operon regulatory protein [Bacillus subtilis]	72	44	360
76	6	6229	5771	[gil 142450]	[abrc protein [Bacillus subtilis]]	72	53	459
79	5	5065	4592	[gil 2293279]	(AF008220) YtcG [Bacillus subtilis]	72	46	474
87	14	14726	12309	[gnl PID e323502]	putative PriA protein [Bacillus subtilis]	72	52	2418
91	1	444	662	[gil 500691]	[MY01 gene product [Saccharomyces cerevisiae]]	72	50	219
91	7	4516	4764	[gil 829615]	skeletal muscle sodium channel alpha-subunit [Equus caballus]	72	38	249

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins & similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
95	2	2004	1717	gnl PID e323527	putative Asp23 protein [Bacillus subtilis]	72	40	288
109	1	1432	118	gi 143331	alkaline phosphatase regulatory protein [Bacillus subtilis]	72	52	1335
126	1	3	2192	gnl PID d101831	glutamine-binding periplasmic protein [Synechocystis sp.]	72	46	2190
130	3	1735	2478	gi 2415336	(AF015775) carboxypeptidase [Bacillus subtilis]	72	53	744
137	6	2555	2929	gi 472922	v-type Na-ATPase [Enterococcus hirae]	72	46	345
140	10	9601	9203	gi 9224	[URF 4] [Synechococcus sp.]	72	48	399
146	5	1906	1247	gnl PID e324945	hypothetical protein [Bacillus subtilis]	72	45	660
147	2	2084	1033	gnl PID e325016	hypothetical protein [Bacillus subtilis]	72	56	1002
147	5	6156	5146	gi 472327	[TPP-dependent acetoate dehydrogenase beta-subunit [Clostridium magnum]	72	56	1011
148	8	5381	6433	gi 974332	[NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]]	72	54	1053
148	14	10256	9675	gnl PID d101319	[Yggn [Bacillus subtilis]]	72	50	582
159	8	4005	4949	gi 178870	(AB000330) o463; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4*, PBP_BACSU SW: P32959 (451 aa) [Escherichia coli]	72	43	945
172	10	9907	10620	gi 763387	[unknown [Saccharomyces cerevisiae]]	72	55	714
220	3	2862	3602	gi 1574175	[hypothetical [Haemophilus influenzae]]	72	50	741
267	1	3	449	gi 290513	f470 [Escherichia coli]	72	48	447
281	2	899	540	gnl PID d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	72	45	360
290	1	1018	14	gi 474195	This ORF is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplasma-like organism]	72	54	1005
300	1	63	587	gi 746399	transcription elongation factor [Escherichia coli]	72	50	525
316	1	1326	4	gi 158127	protein kinase C [Drosophila melanogaster]	72	40	1323
342	1	227	3	gnl PID d101164	[unknown [Bacillus subtilis]]	72	54	225
354	1	1	1005	gnl PID d102048	C. thermocellum beta-glucosidase; B26208 (985) [Bacillus subtilis]	72	52	1005
6	10	8134	10467	gnl PID e264229	[unknown [Mycobacterium tuberculosis]]	71	57	2334
7	20	16231	15164	gi 18046	[3-oxoacyl-fatty-carrier protein] reductase [Cuphea lanceolata]	71	52	768
15	1	1297	2	gnl PID d100571	replicative DNA helicase [Bacillus subtilis]	71	51	1296
15	4	4435	3869	gi 499384	[ori189 [Bacillus subtilis]]	71	47	567

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
18	6	5120	4218	gnl PID d101318	Yqgg [Bacillus subtilis]	71	51	903
29	1	1	540	gi 1773142	similar to the 20.2kd protein in TETB-EXO A region of B. subtilis	71	56	540
38	20	13327	13830	gi 537036	ORF_0158 [Escherichia coli]	71	48	504
51	12	15015	12676	gi 149528	dipeptidyl peptidase IV [Lactococcus lactis]	71	55	2340
55	23	21040	20585	gi 2343285	(AF015453) surface located protein [Lactobacillus rhamnosus]	71	58	456
60	2	705	265	gnl PID d101320	Yqgz [Bacillus subtilis]	71	44	441
71	18	24679	26226	gi 580920	rodd (gtaA) polypeptide (AA 1-673) [Bacillus subtilis]	71	44	1548
71	25	30587	30360	gi 606028	ORF_0414; Genplot suggests frameshift near start but none found [Escherichia coli]	71	50	228
72	6	5239	6729	gi 580835	lysine decarboxylase [Bacillus subtilis]	71	48	1491
72	14	11991	12878	gi 624085	similar to rat beta-alanine synthetase encoded by GenBank Accession Number S27881; contains ATP/GTP binding motif [Paramectum bursaria Chlorella virus 1]	71	54	888
73	11	7269	7033	gi 1906394	PNL [Rattus norvegicus]	71	42	237
74	6	10285	8517	gi 1573133	prolyl-tRNA synthetase (proS) [Haemophilus influenzae]	71	52	1869
81	9	5772	6578	gi 147404	mannose permease subunit II-M-Man [Escherichia coli]	71	45	807
86	5	4602	3604	gnl PID e322063	ss-1,4-galactosyltransferase [Streptococcus pneumoniae]	71	53	999
105	4	3619	4707	gi 2323341	(AF014460) PeoQ [Streptococcus mutans]	71	58	1089
106	13	13557	12935	gi 1519287	LemA [Listeria monocytogenes]	71	48	603
114	2	1029	1979	gi 310303	msoA [Rhizobium meliloti]	71	55	951
122	2	564	1205	gi 1649037	glutamine transport ATP-binding protein GLNQ [Salmonella typhimurium]	71	50	642
132	5	9018	7063	gnl PID d102049	H. influenzae hypothetical ABC transporter; P44608 (974) [Bacillus subtilis]	71	51	1956
140	1	1141	227	gi 1673788	(AB000015) Mycoplasma pneumoniae, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P13243, from B. subtilis [Mycoplasma pneumoniae]	71	49	915
140	5	5635	4973	gnl PID d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of S. pneumoniae hygroscopicus [Bacillus subtilis]	71	48	663
141	7	7369	7845	gnl PID d102005	(AB001488) FUNCTION UNKNOWN SIMILAR PRODUCT IN E. COLI AND MYCOPLASMA PNEUMONIAE. [Bacillus subtilis]	71	51	477

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
193	1	1	165	gi 46912	ribosomal protein L13 [Staphylococcus carnosus]	71	59	165
194	3	2205	1594	gi 535351	CcdY [Bacillus subtilis]	71	52	612
199	3	1510	1319	gi 2182574	(AE000090) YpeE [Rhizobium sp. NGR234]	71	45	192
208	2	2616	3752	gi 1787378	(AE000213) hypothetical protein in purB' region [Escherichia coli]	71	57	1137
209	2	2022	1141	gi 41432	fepC gene product [Escherichia coli]	71	46	882
210	5	1911	3071	gi 49316	ORF2 gene product [Bacillus subtilis]	71	45	1161
210	6	3069	3386	gi 580900	ORF3 gene product [Bacillus subtilis]	71	48	318
212	2	3561	1381	gi 557567	ribonucleotide reductase R1 subunit [Mycobacterium tuberculosis]	71	53	2181
233	3	2003	2920	gnl PID d101320	yqr [Bacillus subtilis]	71	50	918
244	1	13	1053	gnl PID d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of <i>B. subtilis</i>	71	55	1041
251	2	1098	1874	gi 755601	unknown [Bacillus subtilis]	71	46	867
282	2	906	712	gi 135384	unknown [Rhodobacter capsulatus]	71	46	195
312	4	2137	1565	gnl PID d102245	(AB005554) yxbF [Bacillus subtilis]	71	34	573
338	1	3	683	gi 159105	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	71	48	681
346	1	3	164	gi 159124	hypothetical protein (SP:P42297) [Methanococcus jannaschii]	71	36	162
374	1	619	2	gi 397526	clumping factor [Staphylococcus aureus]	71	23	618
377	1	688	2	gi 397526	clumping factor [Staphylococcus aureus]	71	23	687
3	8	7419	6938	gnl PID e269486	Unknown [Bacillus subtilis]	70	42	462
3	10	8395	9075	gnl PID e255543	putative iron dependant repressor [Staphylococcus epidermidis]	70	46	681
7	14	11024	10254	gnl PID d10090	undefined open reading frame [Bacillus stearothermophilus]	70	55	771
7	18	14213	13719	gnl PID d101090	biotin carboxyl carrier protein of acetyl-CoA carboxylase [Synechocystis sp.]	70	56	495
9	2	1057	287	gnl PID d100581	Unknown [Bacillus subtilis]	70	52	771
12	4	2510	1789	gnl PID d101195	yycJ [Bacillus subtilis]	70	52	822
21	2	2586	1846	gi 2293447	(A000830) ATPase [Bacillus subtilis]	70	54	741
22	13	10955	11512	gi 1163295	ydr540cp [Saccharomyces cerevisiae]	70	50	558
30	6	4315	3980	gi 39478	ATP binding protein of transport ATPases [Bacillus firmus]	70	51	336

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
31	1	370	113	[gi 662792]	single-stranded DNA binding protein [unidentified eubacterium]	70	36	258
33	[15]	10539	9521	[gi 1161219]	homologous to D-amino acid dehydrogenase enzyme [Pseudomonas aeruginosa]	70	50	1119
38	6	3812	4312	[gi 205847]	[ComY] [Streptococcus gordoniil]	70	48	501
38	[25]	17986	18477	[gi 537033]	[ORF_f356] [Escherichia coli]	70	58	492
40	[13]	11054	9846	[gi 1175516]	riboflavin-specific deaminase [Actinobacillus pleuropneumoniae]	70	52	1209
42	2	722	1954	[gi 1146183]	putative [Bacillus subtilis]	70	51	1233
43	3	2373	1612	[gi 1591493]	[glutamine transport ATP-binding protein Q] [Methanococcus jannaschii]	70	48	762
45	8	9197	8049	[gi] [PID d102036]	subunit of ADP-glucose pyrophosphorylase [Bacillus stearothermophilus]	70	54	1149
59	2	567	956	[gi] [PID d100302]	[neopullulanase] [Bacillus sp.]	70	42	390
60	3	1874	795	[gi] [PID e276466]	aminopeptidase P [Lactococcus lactis]	70	48	1080
61	4	5553	2437	[gi] [PID e275074]	[SNF] [Bacillus cereus]	70	51	3117
61	7	7914	6802	[gi 1573037]	cystathione gamma-synthase [metB] [Haemophilus influenzae]	70	52	1113
63	7	5372	7222	[gi] [PID d100974]	unknown [Bacillus subtilis]	70	54	1851
68	7	7126	6962	[gi 1263014]	emm18_1 gene product [Streptococcus pyogenes]	70	37	165
72	[12]	10081	10911	[gi 2313093]	[AE000524] carboxynorspermidine decarboxylase [nspC] [Helicobacter pylori]	70	56	831
75	10	7888	8124	[gi 1877423]	[galactose-1-P-uridylyl transferase] [Streptococcus mutans]	70	59	237
79	3	3424	2525	[gi 39881]	[ORF_311] [AA 1-311] [Bacillus subtilis]	70	47	900
87	10	9369	7324	[gi] [PID e2323506]	[putative Pkn2 protein] [Bacillus subtilis]	70	52	2046
96	[14]	10640	11788	[gi 1573209]	[tRNA-guanine transglycosylase (tgt)] [Haemophilus influenzae]	70	52	1149
113	2	574	1086	[gi 433630]	[A180] [Saccharomyces cerevisiae]	70	59	513
123	5	2901	3461	[gi] [PID d100585]	unknown [Bacillus subtilis]	70	45	561
125	5	4593	4282	[gi] [PID e276474]	[capacitative calcium entry channel 1] [Bos taurus]	70	35	312
129	5	4500	3454	[gi] [PID d01314]	[YqET] [Bacillus subtilis]	70	47	1047
133	3	2608	1394	[gi 2293312]	[AF008220] YtpP [Bacillus subtilis]	70	50	1215
135	1	420	662	[gi] [PID e265530]	[yorfE] [Streptococcus pneumoniae]	70	47	243
137	3	438	932	[gi 472919]	v-type Na-ATPase [Enterococcus hirae]	70	57	495
138	1	440	3	[gi 147336]	transmembrane protein [Escherichia coli]	70	42	438

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
140	16	18796	16364	gi 976441	[N5-methyltetrahydrofolate homocysteine methyltransferase [Saccharomyces cerevisiae]]	70	53	2433
167	10	8263	6635	gi 149535	[D-alanine activating enzyme [Lactobacillus casei]]	70	52	1569
204	4	3226	2747	gnl PID d102049	[E. coli hypothetical protein; P21805 (267) [Bacillus subtilis]]	70	51	480
207	3	2627	2869	gnl PID e309213	[racGAP [Dictyostelium discoideum]]	70	45	243
282	3	1136	882	gi 1353874	[unknown [Rhodobacter capsulatus]]	70	50	255
6	21	17554	18453	gnl PID e233879	[hypothetical protein [Bacillus subtilis]]	69	44	900
6	22	18482	19471	gi 580883	[ipa-88d gene product [Bacillus subtilis]]	69	53	990
22	6	4682	5824	gi 2203379	[A0006720] Proj [Bacillus subtilis]	69	48	1143
22	9	7992	8651	gnl PID d100580	[unknown [Bacillus subtilis]]	69	51	660
22	12	9871	10767	gnl PID d100581	[unknown [Bacillus subtilis]]	69	51	897
27	7	5857	5348	gnl PID d102012	[A0001488] FUNCTION UNKNOWN. [Bacillus subtilis]	69	28	510
36	10	7294	10116	gi 437916	[isoleucyl-tRNA synthetase [Staphylococcus aureus]]	69	53	2823
38	1	2	1090	gi 141900	[alcohol dehydrogenase (EC 1.1.1.1) [Alcaligenes eutrophus]]	69	48	1089
40	14	11333	11944	gi 1573280	[Holliday junction DNA helicase (ruvA) [Haemophilus influenzae]]	69	44	612
40	15	11942	12517	gi 1573653	[DNA-3'-methyladenine glycosidase I (tagI) [Haemophilus influenzae]]	69	50	576
45	6	6947	5490	gi 580887	[starch (bacterial glycogen) synthase [Bacillus subtilis]]	69	47	1458
48	34	124932	124153	gnl PID e233870	[hypothetical protein [Bacillus subtilis]]	69	36	780
49	6	6183	6521	gi 396297	[similar to phosphotransferase system enzyme II [Escherichia coli]]	69	50	339
49	8	7586	8338	gi 396420	[similar to Alcaligenes eutrophus pHG1 D-ribulose-5-phosphate 3 epimerase [Escherichia coli]]	69	49	753
55	6	8262	7033	gi 1146238	[poly(A) polymerase [Bacillus subtilis]]	69	50	1230
59	3	954	2333	gnl PID e13038	[hypothetical protein [Bacillus subtilis]]	69	54	1380
62	3	1170	1418	gnl PID d01915	[hypothetical protein [Synechocystis sp.]	69	49	249
63	8	7298	7762	gi 293017	[ORF3 (put.) putative [Lactococcus lactis]]	69	42	465
66	4	3657	5081	gi 153755	[phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]]	69	49	1425
66	5	5126	6829	gi 433809	[enzyme II [Streptococcus mutans]]	69	46	1704
71	6	10017	10664	gnl PID e322063	[ss-1,4-galactosyltransferase [Streptococcus pneumoniae]]	69	39	648

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
71	21	27730	27966	gnl PID d100649	DE-cadherin [Drosophila melanogaster]	69	30	237
77	1	1	237	gi 283870	groES gene product [Lactococcus lactis]	69	44	237
81	5	3622	4101	gi 1573605	fucose operon protein (fucU) [Haemophilus influenzae]	69	52	480
83	1	40	714	pir c3346 C34	hisc homolog - Bacillus subtilis	69	46	675
83	16	15742	16335	gi 143372	phosphoribosyl glycaminamide formyltransferase (PUR-N) [Bacillus subtilis]	69	46	594
85	2	1212	916	gi 194097	IFN-response element binding factor 1 [Mus musculus]	69	48	297
91	5	3678	4274	gi 1574712	anaerobic ribonucleoside-triphosphate reductase activating protein (rrdG) [Haemophilus influenzae]	69	44	597
98	5	3247	4032	gnl PID d100262	LivF protein [Salmonella typhimurium]	69	51	786
108	5	4085	5056	gnl PID e257629	transcription factor [Lactococcus lactis]	69	49	972
126	3	3078	4568	gnl PID d101329	YqjJ [Bacillus subtilis]	69	49	1491
131	6	4121	2889	gnl PID d101314	YqeR [Bacillus subtilis]	69	47	1233
136	2	1505	2299	gnl PID d100581	unknown [Bacillus subtilis]	69	47	795
149	5	3852	4763	gnl PID e323252	Yloc protein [Bacillus subtilis]	69	50	912
149	12	9336	10655	gi 151571	Homology with <i>E. coli</i> and <i>P. aeruginosa</i> lysA gene; product of unknown function; putative (<i>Pseudomonas</i> <i>Stringae</i>)	69	52	1320
153	4	3191	3829	gi 1710373	BrrQ [Bacillus subtilis]	69	44	639
169	3	849	2324	gnl PID d100582	temperature sensitive cell division [Bacillus subtilis]	69	49	1476
180	1	566	3	gi 488339	alpha-amylase (unidentified cloning vector)	69	50	564
212	1	1196	231	gi 1395209	ribonucleotide reductase R2-2 small subunit [Mycobacterium tuberculosis]	69	53	966
226	1	2	661	pir JQ2285 JQ22	nodulin-26 - soybean	69	41	660
233	5	3249	4766	gi 472918	v-type Na-ATPase (Enterococcus hirae)	69	56	1518
235	3	660	1766	gi 146945	methylase [Haemophilus influenzae]	69	55	282
243	2	865	2361	gnl PID d100225	ORF5 (Barley yellow dwarf virus)	69	43	1107
251	3	2899	1967	gi 2289231	macrolide-efflux protein [Streptococcus agalactiae]	69	69	1497
310	1	1	282	gnl PID e22442	peptide deformylase [Clostridium beijerinckii]	69	51	933
369	1	868	2	gi 397526	clumping factor [Staphylococcus aureus]	69	22	867
370	1	749	3	gi 397526	clumping factor [Staphylococcus aureus]	69	21	747

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
379	1	44	280	[gnl PID d100649]	[DE-cadherin [Drosophila melanogaster]]	69	30	237
388	1	260	72	[gi 1787524]	(AE000225) hypothetical 32.7 kD protein in trpL-btrU intergenic region	69	44	189
1	2	2006	3040	[gnl PID d101809]	ABC transporter [Synechocystis sp.]	68	43	1035
12	5	3958	2600	[gi 2182992]	histidine kinase [Lactococcus lactis cremoris]	68	45	1359
15	2	1790	1311	[pir S16974 R5BS]	ribosomal protein L9 - Bacillus stearothermophilus	68	56	480
16	6	7353	5701	[gi 1787041]	(AE000184) 0530; This 530 aa orf is 33 pct identical (14 gnts) to 525 residues of an approx. 640 aa protein YHES_HAEIN SW: P44808 [Escherichia coli]	68	45	1653
17	12	6479	6805	[gi 553165]	acetylcholinesterase [Homo sapiens]	68	68	327
20	13	14128	14305	[gi 142700]	P competence protein (ttg start codon) (put.); putative [Bacillus subtilis]	68	40	378
22	32	24612	25397	[gi 289262]	[cone] ORF3 [Bacillus subtilis]	68	36	786
30	7	4548	4288	[gi 311388]	[ORF1] [azotobacter caulinodans]	68	46	261
36	5	3911	4585	[gi 1573041]	hypothetical [Haemophilus influenzae]	68	54	675
46	6	5219	6040	[gi 1790131]	(AE000446) hypothetical 29.7 kD protein in ipaA-gyrB intergenic region	68	47	822
54	10	6235	7086	[gi 882579]	[CG Site No. 29739 [Escherichia coli]]	68	55	852
55	5	7069	5165	[gnl PID d101914]	ABC transporter [Synechocystis sp.]	68	45	1905
71	3	6134	5613	[gi 1573353]	outer membrane integrity protein (tolA) [Haemophilus influenzae]	68	50	522
71	10	15342	11613	[gi 580866]	ipa-12d gene product [Bacillus subtilis]	68	31	1272
71	12	17560	18792	[gi 44073]	SecY protein [Lactococcus lactis]	68	35	1233
71	17	22295	24703	[gi 1723349]	involved in protein export [Bacillus subtilis]	68	50	2409
73	16	10208	9729	[gi 1353537]	dutPase [Bacteriophage r1t]	68	51	480
86	18	17198	16011	[gi 413943]	ipa-19d gene product [Bacillus subtilis]	68	53	1188
87	17	17491	15866	[gi 156209]	ORF 1 [Mycoplasma mycoicida]	68	43	1626
89	6	5139	4354	[gi 1498824]	M. jannaschii predicted coding region MJ0062 [Methanococcus jannaschii]	68	40	786
89	11	8021	8242	[gi 150974]	4-oxalocrotonate tautomerase [Pseudomonas putida]	68	43	222
97	8	6755	5394	[gi 2367358]	(AE000491) hypothetical 32.9 kD protein in aidB-rpsF intergenic region	68	41	1362

TABLE 2 *S. pneumoniae* - Putative coding regions of novel proteins' similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
98	3	1418	2308	[gnl PID d100261	[Liva protein [Salmonella typhimurium]	68	40	891
99	13	16414	17280	[gi 455563	regulatory protein [Streptococcus mutans]	68	50	867
115	3	5054	3693	[gi 466474	[cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	68	44	1362
124	7	3394	3221	[gnl PID d100702	[cut14 protein [Schizosaccharomyces pombe]	68	56	174
125	2	2923	1922	[gi 450566	[transmembrane protein [Bacillus subtilis]	68	50	1002
132	2	4858	2888	[gnl PID d101732	[DNA ligase [Synechocystis sp.]	68	52	1971
140	7	7765	7580	[gi 1209711	[unknown [Saccharomyces cerevisiae]	68	47	186
150	1	539	3	[gi 402490	[ADP-ribosylarginine hydrolase [Mus musculus]	68	59	537
164	1	58	867	[gnl PID e255114	[glutamate racemase [Bacillus subtilis]	68	49	810
164	2	819	1835	[gnl PID e255117	[hypothetical protein [Bacillus subtilis]	68	50	1017
169	7	3966	4104	[pir B54545 B545	[hypothetical protein - Lactococcus lactis subsp. lactis plasmid pSL2	68	40	159
170	4	4247	4396	[gi 304146	[spore coat protein [Bacillus subtilis]	68	52	150
171	8	6002	7054	[gi 38722	[precursor (aa -20 to 38) [Acinetobacter calcoaceticus]	68	54	1053
198	3	2473	1871	[gnl PID e313075	[hypothetical protein [Bacillus subtilis]	68	46	603
211	2	969	1802	[gi 1439328	[EIIC-man [lactobacillus curvatus]	68	45	834
214	8	4926	4231	[gnl PID d102049	[H. influenzae hypothetical protein, P43990 (182) [Bacillus subtilis]	68	50	696
217	6	4955	5170	[gnl PID e326966	[similar to <i>B. vulgaris</i> CMS-associated mitochondrial ... (reverse transcriptase) [Arabidopsis thaliana]	68	36	216
218	7	3930	4745	[gi 2293198	[AF008220] 'YtgP [Bacillus subtilis]	68	38	816
220	6	4628	4338	[gnl PID e325791	[AJ000005] orf1 [Bacillus megarterium]	68	51	291
236	1	746	108	[gi 410137	[ORFx13 [Bacillus subtilis]	68	46	639
237	2	675	1451	[gi 396348	[homoserine transsuccinylase [Escherichia coli]	68	49	777
250	4	771	1229	[gi 310859	[ORF2 [Synechococcus sp.]	68	44	363
254	1	517	155	[gi 1787105	(AE000189) 0648 was 0669; This 669 aa orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 aa protein YBA_HAEIN SW: P45247 [Escherichia coli]	68	47	774
337	1	1	774	[gnl PID e261990	[putative orf [Bacillus subtilis]	68	61	651
345	1	3	653	[gi 149513	[thymidylyate synthase (EC 2.1.1.45) [Lactococcus lactis]	+	+	+

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
386	2	417	4	gi 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	68	51	414
2	4	5722	4697	gi 1592111	M. jannaschii predicted coding region MJ1507 [Methanococcus jannaschii]	67	26	1026
3	6	5397	4591	gi 2293175	(AF008220) signal transduction regulator [Bacillus subtilis]	67	44	807
5	2	2301	574	gi 2313385	(AE000547) para-aminobenzoate synthetase (pabb) [Helicobacter pylori]	67	48	1728
6	19	16063	16758	gi 1413931	lipA-7d gene product [Bacillus subtilis]	67	41	696
22	8	7094	7897	gi 1928962	pyrrole-5-carboxylate reductase [Actinidia deliciosa]	67	51	804
29	10	8335	9072	gi 468745	gtcr gene product [Bacillus brevis]	67	41	738
31	3	1379	585	gi 2425123	(AF019986) PksB [Dictyostelium discoideum]	67	49	795
32	11	8849	10150	gi 42029	ORF1 gene product [Escherichia coli]	67	47	1302
36	16	14330	15546	gi 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	67	43	717
38	9	4958	5332	gnl PID e214803	T22B3.3 [Caenorhabditis elegans]	67	47	435
38	21	13775	14512	gi 537077	ORF_o216 [Escherichia coli]	67	52	738
45	9	1028	9181	gi 551710	branching enzyme (g1gb) [EC 2.4.1.18] [Bacillus stearothermophilus]	67	51	1248
48	23	18344	17514	gi 413949	ipa-25d gene product [Bacillus subtilis]	67	50	831
50	2	1773	952	gnl PID d101330	YqiQ [Bacillus subtilis]	67	55	822
53	1	431	3	gi 1574291	fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	67	40	429
55	13	112740	11946	gnl PID e252990	ORF YD1037c [Saccharomyces cerevisiae]	67	51	795
61	9	9210	8329	gnl PID e264711	ATP-binding cassette transporter A [Staphylococcus aureus]	67	50	882
71	2	5514	6117	gi 1197667	vitellogenin [Anolis pulchellus]	67	36	504
81	7	4489	4983	gi 1142714	phosphoenolpyruvate:mannoose phosphotransferase element IIB [Lactobacillus curvatus]	67	42	495
83	7	2957	3214	gi 1276746	[Acyl] carrier protein [Porphyra purpurea]	67	37	258
86	8	8140	6809	gi 1147744	PSR [Enterococcus hirae]	67	45	1332
97	3	986	1366	gnl PID d102235	(AB000631) unnamed protein product [Streptococcus mutans]	67	43	381
102	1	601	1413	gi 682765	[mcB] gene product [Escherichia coli]	67	36	813
106	3	1109	1987	gi 148921	LicD protein [Haemophilus influenzae]	67	43	879
115	4	5982	5656	gi 1895750	putative cellobiose phosphotransferase enzyme III [Bacillus subtilis]	67	44	327

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
115	7	8421	8077	gi 466473	cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	67	51	345
127	13	8127	7021	gi 147326	transport protein [Escherichia coli]	67	45	1107
136	3	2215	2859	gnl PID d100581	unknown [Bacillus subtilis]	67	49	645
140	21	23317	20906	gnl PID d101912	phenylalanyl-tRNA synthetase [Synechocystis sp.]	67	43	2412
146	6	2894	1893	gi 2182994	histidine kinase [Lactococcus lactis cremoris]	67	44	1002
151	8	11476	11117	gnl PID d100085	ORF129 [Bacillus cereus]	67	48	360
160	10	7453	6846	gi 228137	OrfB; similar to a Streptococcus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) [Lactococcus 1]	67	46	1194
163	3	3099	4505	gnl PID d101317	YqR [Bacillus subtilis]	67	47	1407
167	8	6704	5454	gi 1161933	DIB [Lactobacillus casei]	67	45	1251
169	4	2322	2879	gnl PID d101331	YqG [Bacillus subtilis]	67	41	558
171	11	7656	8384	gi 153841	pneumococcal surface protein A [Streptococcus pneumoniae]	67	50	729
188	3	1930	3723	gi 1542975	AbcB [Thermoanaerobacterium thermosulfurigenes]	67	46	1794
189	6	3599	3141	gnl PID e325178	Hypothetical protein [Bacillus subtilis]	67	52	459
205	3	1663	2211	gi 606073	ORF_0169 [Escherichia coli]	67	47	549
207	4	2896	3456	gi 2273374	DExR/Iron regulated lipoprotein precursor [Corynebacterium diphtheriae]	67	49	561
217	3	4086	3703	gi 895750	putative cellobiose phosphotransferase enzyme III [Bacillus subtilis]	67	42	384
246	2	291	662	gi 1842438	Unknown [Bacillus subtilis]	67	43	372
252	1	2	745	gi 2351768	PSPA [Streptococcus pneumoniae]	67	41	744
265	3	1134	1811	gi 2313847	(AE000585) L-asparaginase II (ansB) [Helicobacter pylori]	67	42	678
295	1	1	375	gi 2273374	DExR/Iron regulated lipoprotein precursor [Corynebacterium diphtheriae]	67	43	375
1	7	4898	5146	gnl PID e225179	Unknown [Mycobacterium tuberculosis]	66	56	249
3	1	389	3	gnl PID e239548	Unknown [Bacillus subtilis]	66	48	387
3	20	19267	20805	gi 39936	TIGC [Bacillus subtilis]	66	50	1539
4	3	2545	2718	gi 1787564	(AE000228) phage shock protein C [Escherichia coli]	66	36	174
5	9	13197	12592	gi 1574291	Fimbrial transcription regulation repressor [p1B] [Haemophilus influenzae]	66	46	606

TABLE 2 *S. pneumoniae* - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
9	4	2872	1451	[gnl PID e266928]	unknown [Mycobacterium tuberculosis]	66	43	1422
12	2	1469	1200	[gi 520407]	orf2: GTG start codon [Bacillus thuringiensis]	66	42	270
15	12	10979	9897	[gi 2314738]	[AE000653] translation elongation factor EF-Ts (tsf) [Helicobacter pylori]	66	49	1083
16	2	1312	734	[gnl PID d102245]	[AB00554] yxbF [Bacillus subtilis]	66	35	579
22	3	1372	1851	[gi 1480916]	signal peptidase type II [Lactococcus lactis]	66	38	480
22	7	5828	7096	[gnl PID e206261]	gamma-glutamyl phosphate reductase [Streptococcus thermophilus]	66	51	1269
22	20	16194	17138	[gnl PID e281914]	[YitL] [Bacillus subtilis]	66	50	945
30	2	530	976	[gi 2314379]	[AE000627] ABC transporter, ATP-binding protein [yhcG] [Helicobacter pylori]	66	40	447
32	1	199	984	[gi 312444]	[ORF2] [Bacillus caldolyticus]	66	49	786
33	13	8352	7234	[gi 1387979]	44% identity over 302 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices [Bacillus subtilis]	66	44	1119
34	6	5658	4708	[gnl PID e250724]	orf2 [Lactobacillus sake]	66	39	951
34	14	9792	9574	[gi 1520997]	M_jannaschii predicted coding region MJ0272 [Methanococcus jannaschii]	66	48	219
35	16	15163	14501	[gi 1773352]	CapsM [Staphylococcus aureus]	66	46	663
36	9	6173	6976	[gi 1518680]	minicell-associated protein DivIVA [Bacillus subtilis]	66	35	804
36	11	10396	10824	[bbs 1553344]	insulin activator factor, INSAF [human, Pancreatic insulinoma, Peptide Partial, 744 aa [Homo sapiens]	66	43	429
48	1	28	1419	[gnl PID e25204]	hypothetical protein [Bacillus subtilis]	66	50	1392
48	7	3810	4112	[gi 2192574]	[AE000090] Y48E [Rhizobium sp. NGR234]	66	40	303
52	4	3595	2789	[gi 388565]	major cell-binding factor [Campylobacter jejuni]	66	52	807
54	3	2662	1076	[gnl PID d01831]	glutamine-binding periplasmic protein [Synechocystis sp.]	66	43	1587
61	10	9740	9183	[gnl PID e154144]	mdr gene product [Staphylococcus aureus]	66	44	558
72	13	10893	11993	[gi 2313129]	[AE000526] H_pylori predicted coding region HP0049 [Helicobacter pylori]	66	44	1101
74	9	13267	12476	[gi 1573941]	hypothetical [Haemophilus influenzae]	66	43	792
75	1	2	868	[gi 1574631]	nicotinamide mononucleotide transporter (pnuC) [Haemophilus influenzae]	66	48	867
75	7	5303	4275	[gi 41312]	put. EBG repressor protein [Escherichia coli]	66	40	1029

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
82	7	6813	8123	gnl PID e255128	trigger factor [Bacillus subtilis]	66	53	1311
83	3	905	1219	pir C33496 C334	hisc homolog - Bacillus subtilis	66	44	315
86	10	9407	8925	gi 683584	shikimate kinase [Lactococcus lactis]	66	41	483
88	10	7001	6060	gi 2098719	putative fimbrial-associated protein [Actinomyces naeslundii]	66	52	942
89	1	951	4	gi 410118	ORF X19 [Bacillus subtilis]	66	41	948
93	7	3661	2711	gi 1787336	(AE000260) E298; This 298 aa orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 aa protein YCSN_BACSU SW: R12972 (Escherichia coli)	66	49	951
104	3	1805	3049	gi 1469784	putative cell division protein ftsW [Enterococcus hirae]	66	48	1245
106	14	13376	14233	gi 40027	homologous to E.coli gldB [Bacillus subtilis]	66	52	678
107	3	965	1864	gi 144858	ORF A [Clostridium perfringens]	66	49	900
112	7	5718	6593	gi 609332	DprA [Haemophilus influenzae]	66	43	876
115	1	3	302	gi 727367	Hyrp [Saccharomyces cerevisiae]	66	56	300
122	1	3	566	gnl PID d101328	Yqiy [Bacillus subtilis]	66	36	564
126	8	11759	11046	gnl PID d101163	ORF1 [Bacillus subtilis]	66	48	714
128	11	8201	8431	gi 726288	growth associated protein GRP-43 [Xenopus laevis]	66	41	231
131	8	4894	4508	gi 486661	TMan related protein [Saccharomyces cerevisiae]	66	39	387
140	3	3236	2574	gi 40056	phoP gene product [Bacillus subtilis]	66	36	663
140	15	16318	15434	gi 1658189	5,10-methylenetetrahydrofolate reductase [Erwinia carotovora]	66	48	885
146	12	7926	7636	gnl PID d101140	transposase [Synochocystis sp.]	66	42	291
147	6	7137	6154	gi 472326	TPP-dependent acetoin dehydrogenase alpha-subunit [Clostridium magnum]	66	48	984
149	6	4435	5430	gnl PID d101887	pentose-5-phosphate-3-epimerase [Synochocystis sp.]	66	46	996
149	13	10754	11375	gi 42371	pyruvate formate-lyase activating enzyme (AA 1-246) [Escherichia coli]	66	42	822
186	4	2578	2270	gnl PID d101199	ORF11 [Enterococcus faecalis]	66	41	309
207	2	2340	2597	gnl PID e321893	envlope glycoprotein gp160 [Human immunodeficiency virus type 1]	66	46	258
210	7	3358	3678	gi 49318	ORF4 gene product [Bacillus subtilis]	66	46	321
217	8	5143	5355	gi 49538	thrombin receptor [Cricetulus longicaudatus]	66	38	213
220	4	3875	3642	gi 466648	alternate name ORF of L23635 [Escherichia coli]	66	33	234

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
223	1	1070	138	[gnl PID e247187]	zinc finger protein [Bacteriophage phigle]	66	45	933
224	2	1864	2640	[gi 1176399]	putative ABC transporter subunit [Staphylococcus epidermidis]	66	41	777
243	1	3	872	[obj AB00617_2]	(AB00617) YcdH [Bacillus subtilis]	66	45	870
268	2	891	568	[gi 517210]	putative transposase [Streptococcus pyogenes]	66	60	324
322	1	2	643	[gi 1499836]	Zn protease [Methanococcus jannaschii]	66	40	642
5	10	13909	13178	[gi 1574292]	hypothetical [Haemophilus influenzae]	65	34	732
6	11	10465	11190	[gi 142854]	homologous to E. coli radC gene product and to unidentified protein from <i>Staphylococcus aureus</i> [Bacillus subtilis]	65	48	726
7	2	647	405	[pir C64146 C641]	hypothetical protein HI0259 - Haemophilus influenzae (strain Rd KW20)	65	42	243
7	7	6246	6821	[gnl PID d01123]	Yqhu [Bacillus subtilis]	65	50	576
10	2	1873	1397	[gi 1163111]	ORF-1 [Streptococcus pneumoniae]	65	54	477
16	3	1428	2222	[gnl PID e325010]	hypothetical protein [Bacillus subtilis]	65	45	795
21	4	3815	3357	[gnl PID e314910]	hypothetical protein [Staphylococcus sciuri]	65	40	459
22	34	25776	26384	[gi 1123030]	CpxA [Actinobacillus pleurupneumoniae]	65	42	609
43	2	1638	290	[gi 1044826]	F14E5.1 [Caenorhabditis elegans]	65	38	1359
48	13	10062	110856	[gi 1573390]	hypothetical [Haemophilus influenzae]	65	45	795
48	22	17521	16883	[gi 1573391]	hypothetical [Haemophilus influenzae]	65	37	639
48	25	19027	18533	[gnl PID e264484]	YCR020c, len:215 [Saccharomyces cerevisiae]	65	38	495
49	3	3856	5334	[gi 1480429]	putative transcriptional regulator [Bacillus stearothermophilus]	65	32	1479
50	6	5337	4519	[gi 171963]	tRNA isopentenyl transferase [Saccharomyces cerevisiae]	65	42	819
52	15	14728	15588	[gi 1499745]	M. jannaschii predicted coding region M0912 [Methanococcus jannaschii]	65	46	861
59	7	3953	4745	[gi 496514]	orf zeta [Streptococcus pyogenes]	65	42	783
68	3	2500	3483	[gi 887824]	[ORF_0310] [Escherichia coli]	65	46	984
69	3	2171	1077	[gnl PID e311453]	unknown [Bacillus subtilis]	65	42	1095
69	7	6029	5325	[gi 809660]	deoxyribose-phosphate aldolase [Bacillus subtilis]	65	55	705
71	5	8536	9783	[gi 1573224]	glycosyl transferase IgTC (GP:U4551_4) [Haemophilus influenzae]	65	42	1248
72	8	7664	8527	[gnl PID e267589]	Unknown, highly similar to several spermidine synthases [Bacillus subtilis]	65	39	864

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
76	5 5773	4097	[gnl PID d101723	DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). [Escherichia coli]	65	44	1677	
76	9 8059	7875	[gi 1574276	exodeoxyribonuclease, small subunit (xse) [Haemophilus influenzae]	65	38	225	
84	2 2810	2352	[gi 2313188	(AE000532) conserved hypothetical protein [Helicobacter pylori]	65	41	519	
86	15 14495	113407	[gnl PID d101880	3-dehydroquinate synthase [Symchocystis sp.]	65	44	1089	
87	3 3706	2423	[gi 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii]	65	51	1284	
88	3 2425	2736	[gi 1098510	unknown [Lactococcus lactis]	65	30	312	
89	2 1627	1007	[gnl PID d102008	(AB001488) SIMILAR TO ORF14 OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916.	65	41	621	
111	6 6635	6186	[gnl PID e246063	[Bacillus subtilis] NM22/nucleoside diphosphate kinase [Xenopus laevis]	65	50	450	
116	1 3	1016	[gnl PID d101125	Quoedosine biosynthesis protein QueA [Synechocystis sp. I]	65	44	1014	
123	1 69	389	[gi 498839	ORF2 [Clostridium perfringens]	65	36	321	
123	7 6522	7190	[gi 1575577	DNA-binding response regulator [Thermotoga maritima]	65	39	669	
125	3 3821	2859	[gnl PID e257609	sugar-binding transport protein [Anaerocellum thermophilum]	65	47	963	
137	12 8015	7818	[gi 2182574	(AE000090) Y4pE [Rhizobium sp. NGR224]	65	41	198	
147	4 5021	3885	[gi 472329	dihydrolipopamide acetyltransferase [Clostridium magnum]	65	47	1137	
148	2 1053	1931	[gnl PID d101319	Yqgh [Bacillus subtilis]	65	42	879	
151	2 3212	4687	[gi 304897	ECO type I restriction modification enzyme M subunit [Escherichia coli]	65	50	1476	
156	2 730	437	[gi 310893	membrane protein [Theileria parva]	65	47	294	
164	7 4256	4837	[gi 410132	ORF88 [Bacillus subtilis]	65	48	582	
169	6 3192	3914	[gi 1552737	similar to purine nucleoside phosphorylase (deoD) [Escherichia coli]	65	41	723	
176	4 2951	2220	[gnl PID e39500	oligo peptide binding lipoprotein [Streptococcus pneumoniae]	65	43	732	
195	4 4556	3900	[gi 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	65	40	657	
196	1 160	1572	[gnl PID d102004	(AB001488) PROBABLE UDP-N-ACETYLUMURIDYL-D-GLUTANYL-2-, 6-	65	51	1413	
				DIAMINOLICASE (EC 6.3.2.15). [Bacillus subtilis]				
204	2 2246	1215	[gi 143156	membrane bound protein [Bacillus subtilis]	65	37	1032	
210	4 1544	1891	[gi 49315	ORF1 gene product [Bacillus subtilis]	65	48	348	
242	2 1625	723	[gi 1787540	(AE000226) f249; This 249 aa orf is 32 pct identical (8 gags) to 244 residues of an approx. 272 aa protein AGAR_ECOLI SW: P42902 [Escherichia coli]	65	42	903	

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
284	1	1	900	[gi 559861]	[clym [Plasmid PAD1]]	65	36	900
304	1	2	574	[gnl PID e290934]	[unknown [Mycobacterium tuberculosis]]	65	52	573
315	1	2	1483	[gi 790694]	[mannuronan C-5-epimerase [Azotobacter vinelandii]]	65	57	1482
320	1	3	569	[gnl PID d102048]	[K. aerogenes histidine utilization repressor, PI2380 (199), DNA binding [Bacillus subtilis]]	65	46	567
358	1	1	309	[gnl PID e223508]	[YLOS protein [Bacillus subtilis]]	65	55	309
2	7	7571	6696	[gi 1498753]	[nicotinate-nucleotide pyrophosphorylase [Rhodospirillum rubrum]]	64	47	876
6	6	5924	6802	[gnl PID d10111]	[methionine aminopeptidase [Synechocystis sp.]	64	52	879
8	4	3417	3686	[gi 1045935]	[DNA helicase II [Mycoplasma genitalium]]	64	58	270
11	4	3249	2689	[gnl PID e265529]	[orfB [Streptococcus pneumoniae]]	64	46	561
15	7	6504	7145	[gi 1762328]	[ycr59e/YigZ homolog [Bacillus subtilis]]	64	45	642
22	11	9548	9895	[gnl PID d100581]	[unknown [Bacillus subtilis]]	64	38	348
22	130	22503	23174	[gi 289260]	[come ORF1 [Bacillus subtilis]]	64	44	672
26	7	14375	14199	[gi 409286]	[bmru [Bacillus subtilis]]	64	30	177
27	2	1510	1334	[gi 40795]	[pdeI methylase [Desulfovibrio vulgaris]]	64	51	177
29	2	614	297	[gi 2326168]	[type VII collagen [Mus musculus]]	64	50	318
35	2	368	721	[pir JCL151 JC11]	[hypothetical 20.3K protein (insertion sequence IS1111) - Agrobacterium tumefaciens (strain P022) plasmid Ti]	64	50	354
40	1	3	449	[gi 46970]	[epid gene product [Staphylococcus epidermidis]]	64	41	447
40	7	4683	4976	[gnl PID e325792]	[AJ000005] glucose kinase [Bacillus megaterium]	64	45	294
45	7	18066	6920	[gnl PID d102036]	[subunit of ADP-glucose Pyrophosphorylase [Bacillus stearothermophilus]]	64	40	1149
51	2	301	1059	[gi 43985]	[nifS-like gene [Lactobacillus delbrueckii]]	64	54	759
51	13	15251	18397	[gi 22933250]	[AF008220] DNA-polymerase III alpha-chain [Bacillus subtilis]	64	46	3147
53	3	1157	555	[gi 1574232]	[hypothetical [Haemophilus influenzae]]	64	47	603
58	2	4236	1606	[gi 1573826]	[alanyl-tRNA synthetase (alas) [Haemophilus influenzae]]	64	51	2631
66	1	3	1259	[gi 895749]	[putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis]]	64	42	1257
68	5	5213	6556	[gi 436965]	[ImaiA gene products [Bacillus stearothermophilus]]	64	47	1344
69	6	5356	4949	[gnl PID d101316]	[cdd [Bacillus subtilis]]	64	52	408

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
74	4	6948	5038	gi 728480	L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus subtilis]	64	50	1911
75	3	1283	1465	bbs 133379	TLS-PHOP-fusion protein(ChOP-C/EBP transcription factor, TLS-nuclear RNA-binding protein) [human, myxoid liposarcoma cells, Peptide Mutant, 462aa] [Homo sapiens]	64	57	183
81	13	14016	14231	gi 143175	methanol dehydrogenase alpha-10 subunit [Bacillus sp.]	64	35	216
83	22	21851	22090	gnl PID d101315	Yqfa [Bacillus subtilis]	64	44	240
87	11	10046	9300	gnl PID e323505	putative Ptcl protein [Bacillus subtilis]	64	43	747
98	7	5032	5706	gnl PID e233880	hypothetical protein [Bacillus subtilis]	64	38	675
105	1	2	1276	gi 1657503	similar to S. aureus mercury(II) reductase [Escherichia coli]	64	45	1275
113	7	5136	6410	gnl PID d101119	NifS [Synechocystis sp.]	64	50	1275
119	1	2	1297	gnl PID e320320	hypothetical protein [Natronobacterium pharaonis]	64	37	1296
123	3	1125	2156	gnl PID e253284	ORF YDL244w [Saccharomyces cerevisiae]	64	40	1032
124	5	2331	1780	gnl PID d101884	hypothetical protein [Synechocystis sp.]	64	50	552
129	4	3467	2709	gnl PID d101314	Yqeu [Bacillus subtilis]	64	52	759
131	1	152	3	gi 1377841	unknown [Bacillus subtilis]	64	42	150
137	11	7196	7549	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain P02) plasmid Ti	64	50	354
139	3	3226	2651	gi 2293301	(AF008220) YtQB (Bacillus subtilis)	64	44	576
146	10	6730	5648	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	64	45	1083
147	1	2	1018	gnl PID e137033	unknown gene product [Lactobacillus leichmannii]	64	46	1017
148	11	8420	8783	gi 2130630	(AF004430) dynamin-like protein [Homo sapiens]	64	28	354
156	7	4313	3612	gnl PID d102050	transmembrane [Bacillus subtilis]	64	31	702
157	4	1299	2114	gnl PID d100892	homologous to Gln transport system permease proteins [Bacillus subtilis]	64	43	816
162	6	5880	6362	gi 517204	ORF1, putative 42 kDa protein [Streptococcus pyogenes]	64	58	483
164	13	9707	8769	gnl PID d100964	homologue of ferric angiobactin transporter system permease protein FadE of V. anguillarum [Bacillus subtilis]	64	40	939
175	5	3906	4538	gi 534045	antiterminator [Bacillus subtilis]	64	39	693
189	10	6154	6507	gi 581307	response regulator [Lactobacillus plantarum]	64	33	354
191	4	3519	2863	gi 149520	phosphoribosyl anthranilate isomerase [Lactococcus lactis]	64	46	657

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins' similar to known proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
202	1	76	1140	[gnl PID e293806	[<i>O-acetylhomoserine sulfhydrylase [Leptospira meyeri]</i>	64	47	1065
224	1	234	1571	[gi 1573393	[<i>collagenase [prtC] [Haemophilus influenzae]</i>	64	42	1338
231	3	291	647	[gi 40174	[<i>ORF X [Bacillus subtilis]</i>	64	43	357
253	3	709	1089	[pir JC151 JC11	[<i>Hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain R22) plasmid Ti</i>	64	50	381
265	1	820	2	[gi 1377832	[<i>unknown [Bacillus subtilis]</i>	64	31	819
297	1	1	660	[gi 1520871	[<i>collagenase [Methanococcus jannaschii]</i>	64	48	660
328	1	263	21	[gi 992651	[<i>Gin4p [Saccharomyces cerevisiae]</i>	64	41	243
5	4	8730	8098	[gi 556885	[<i>Unknown [Bacillus subtilis]</i>	63	48	633
10	6	5178	4483	[gi 1573101	[<i>hypothetical [Haemophilus influenzae]</i>	63	40	696
12	11	9324	9902	[gi 805536	[<i>membrane protein [Bacillus acidopullulyticus]</i>	63	42	579
15	10	8897	9187	[gi 722339	[<i>unknown [Acetobacter xylinum]</i>	63	40	291
17	2	1031	309	[gnl PID e217602	[<i>PlnU [Lactobacillus plantarum]</i>	63	32	723
18	8	7778	6975	[gi 1377843	[<i>unknown [Bacillus subtilis]</i>	63	45	804
26	4	9780	7078	[gi 142440	[<i>ATP-dependent nuclelease [Bacillus subtilis]</i>	63	46	2703
29	5	3488	4192	[gi 1377829	[<i>unknown [Bacillus subtilis]</i>	63	35	705
34	11	8830	7988	[gnl PID d101198	[<i>ORF8 [Enterococcus faecalis]</i>	63	45	843
35	3	1187	876	[gi 722339	[<i>unknown [Acetobacter xylinum]</i>	63	39	312
48	15	12509	11691	[gi 1573389	[<i>hypothetical [Haemophilus influenzae]</i>	63	41	819
51	11	12719	12189	[gi 142450	[<i>ahrC protein [Bacillus subtilis]</i>	63	35	531
55	4	3979	5022	[gi 1708640	[<i>YeaB [Bacillus subtilis]</i>	63	41	1044
55	15	13669	14670	[gnl PID e311502	[<i>thioredoxin reductase [Bacillus subtilis]</i>	63	44	1002
68	10	9242	8919	[sp P27686 YAY_	[<i>HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382).</i>	63	40	324
86	7	6554	5685	[gi 1574382	[<i>lic-1 operon protein (licD) [Haemophilus influenzae]</i>	63	41	870
88	8	6085	5180	[gi 2098719	[<i>putative fimbrial-associated protein [Actinomyces naeslundii]</i>	63	43	906
96	8	5858	6484	[gi 1052803	[<i>orfgyrb gene product [Streptococcus pneumoniae]</i>	63	38	627
100	1	240	1940	[gi 7171	[<i>fucosidase [Dictyostelium discoideum]</i>	63	36	1701

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
104	4	3063	5765	[gi 144985	phosphoenolpyruvate carboxylase [Corynebacterium glutamicum]	63	46	2703
106	8	9189	8554	[gi 533099	endonuclease III [Bacillus subtilis]	63	45	636
122	6	4704	4886	[gi PID d101139	transposase [Synochocystis sp.]	63	39	183
128	7	4517	5203	[gi PID d101434	orf2 [Methanobacterium thermoautotrophicum]	63	50	687
137	4	963	1547	[gi 472920	v-type Na-ATPase [Enterococcus hirae]	63	27	585
142	7	4100	4585	[gi PID e313025	hypothetical protein [Bacillus subtilis]	63	44	486
159	5	1741	2571	[gi 178043	(AF000184) f271; This 271 aa orf is 24 pct identical (16 gabs) to 265 residues of an approx. 272 aa protein YIDA_ECOLI SW: P09997 [Escherichia coli]	63	39	831
171	12	8803	14406	[gi PID e324918	[IgA1 protease [Streptococcus sanguis]]	63	48	5604
177	1	3	347	[gi 1773150	hypothetical 11.8kd protein [Escherichia coli]	63	34	345
178	2	423	917	[gi 722339	unknown [Acetobacter xylinum]	63	41	495
178	3	794	1012	[gi 1591582	cobalamin biosynthesis protein N [Methanococcus jannaschii]	63	36	219
195	1	1377	175	[gi PID e324217	fesQ [Enterococcus hirae]	63	33	1203
234	5	1739	1527	[gi 1591582	cobalamin biosynthesis protein N [Methanococcus jannaschii]	63	36	213
249	1	81	257	[gi 1000453	TfrR [Bacillus subtilis]	63	41	177
283	1	127	1347	[gi 396486	ORF8 [Bacillus subtilis]	63	44	1221
293	3	2804	3466	[gi 722339	unknown [Acetobacter xylinum]	63	37	663
311	1	905	486	[gi 1877424	UDP-galactose 4-epimerase [Streptococcus mutans]	63	46	420
324	1	2	556	[gi 147741	histidine periplasmic binding protein P29 [Campylobacter jejuni]	63	36	555
365	1	219	13	[gi 2252843	(AF013293) No definition line found [Arabidopsis thaliana]	63	33	207
382	1	88	378	[gi 722339	unknown [Acetobacter xylinum]	63	40	291
385	3	364	158	[gi 2252843	(AF013293) No definition line found [Arabidopsis thaliana]	62	35	858
2	1	2495	288	[gi PID e325007	penicillin-binding protein [Bacillus subtilis]	62	37	1128
3	23	21374	24231	[gi PID e24993	hypothetical protein [Bacillus subtilis]	62	32	414
6	16	14320	13193	[gi PID e319614	nifs-like protein [Mycobacterium leprae]	62	43	1260
7	8	6819	7232	[gi PID d101324	[YgbY [Bacillus subtilis]	62	+	+
7	19	15466	14207	[gi PID d101804	beta ketoacyl-acyl carrier protein synthase [Synochocystis sp.]	62	+	+

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start ID	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
7	21	17155	16229	gnl PID e323514	putative FabD protein [Bacillus subtilis]	62	46	927
7	24	19526	18519	gi 1276434	[beta-ketoacyl]-ACP synthase III [Cuphea wrightii]	62	37	1008
12	7	5904	4702	gi 1573768	A/G-specific adenine glycosylase (mutY) [Haemophilus influenzae]	62	43	1203
12	9	8032	8793	gi 1591587	pantothenate metabolism flavoprotein [Methanococcus jannaschii]	62	33	762
15	11	9678	9328	pir JC151 JC11	hypothetical 20.3K protein [insertion sequence IS1111] - Agrobacterium tumefaciens (strain P02) plasmid Ti	62	43	351
17	4	2609	2442	gi 1591081	M. jannaschii predicted coding region MJ0374 [Methanococcus jannaschii]	62	43	168
17	5	3033	2835	gi 149570	role in the expression of lactacin F, part of the lacF operon [Lactobacillus sp.]	62	44	219
22	10	8627	9538	gnl PID d100580	similar to B. subtilis DnaH [Bacillus subtilis] (AE000627) ABC transporter, ATP-binding protein (yhcG) [Helicobacter pylori]	62	43	912
30	3	865	2043	gi 2314379	ipa-52r gene product [Bacillus subtilis]	62	44	1179
33	5	2225	1636	gi 413976	ipa-52r gene product [Bacillus subtilis]	62	44	600
38	11	5889	6123	gi 148231	o251 [Escherichia coli]	62	34	435
40	17	14272	13328	gnl PID d101904	hypothetical protein [Synechocystis sp.]	62	43	945
42	1	3	311	gi 146182	putative [Bacillus subtilis]	62	41	309
44	2	1267	4005	gi 1786952	(AE000176) o877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli]	62	43	2739
48	12	9732	9304	gi 662920	repressor protein [Enterococcus hirae]	62	32	429
51	8	5664	7181	gnl PID e301153	sty/SKI methylase [Salmonella enterica]	62	44	1518
52	3	2791	2099	gi 1183886	integral membrane protein [Bacillus subtilis]	62	41	693
55	16	15702	14704	gnl PID e313028	hypothetical protein [Bacillus subtilis]	62	40	999
59	6	3418	3984	gi 2065483	unknown [Lactococcus lactis lactic]	62	32	567
63	5	4997	4809	gi 149771	plin gene inverting protein [PiVML] [Moraxella lacunata]	62	28	189
70	14	10002	10739	gi 992977	bpg gene product [Bordetella pertussis]	62	45	738
71	13	18790	20382	gi 1280135	coded for by C. elegans cDNA cm01e2; similar to meiobiose carrier protein (thiomethylgalactoside permease II) [Caenorhabditis elegans]	62	62	1593
71	128	32217	32768	gnl PID d101312	yqeG [Bacillus subtilis]	62	35	552
74	7	11666	10383	gi 1552753	hypothetical [Escherichia coli]	62	38	1284

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)	
80	8	9370	9609	[gnl PID d102002	[FUNCTION UNKNOWN. [Bacillus subtilis]	62	46	240	
97	10	9068	7041	[gi 882463	[protein-N(pi)-phosphohistidine-sugar phosphotransferase [Escherichia coli]	62	42	208	
98	4	2306	3268	[gnl PID d101496	[BraE (integral membrane protein) [Pseudomonas aeruginosa]	62	42	963	
102	3	2823	3539	[gnl PID e313010	[hypothetical protein [Bacillus subtilis]	62	24	717	
103	3	2795	1242	[gnl PID d102019	[H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	62	41	1554	
111	2	2035	3462	[gi 581297	[NisP [Lactococcus lactis]	62	44	1428	
112	4	3154	4080	[gi 1574379	[lic-1 operon protein (licA) [Haemophilus influenzae]	62	39	927	
112	6	4939	5649	[gi 1574381	[lic-1 operon protein (licC) [Haemophilus influenzae]	62	39	711	
124	3	1137	721	[gi 1573024	[anaerobic ribonucleoside-triphosphate reductase (nrdd) [Haemophilus influenzae]	62	45	417	
124	6	3162	2329	[gi 609076	[leucyl aminopeptidase [Lactobacillus delbrueckii]	62	40	834	
126	7	11073	7516	[gnl PID d101163	[ORF4 [Bacillus subtilis]	62	38	3558	
129	1	6	4983	[4540	[pir [S41509] S415	[zinc finger protein EF6 - Chilo iridescent virus	62	48	444
131	7	4510	4103	[gi 1857245	[Unknown [Lactococcus lactis]	62	42	408	
149	2	1923	2579	[gi 1592142	[ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	62	41	657	
149	7	5360	6055	[gnl PID e323508	[YloS protein [Bacillus subtilis]	62	40	696	
156	1	450	238	[gnl PID e254644	[membrane protein [Streptococcus pneumoniae]	62	40	213	
156	6	3606	2935	[gnl PID d102050	[transmembrane [Bacillus subtilis]	62	37	672	
171	2	1779	2291	[gi 43941	[EIIIB Sor PTS [Klebsiella pneumoniae]	62	35	513	
172	2	385	723	[gi 895750	[putative cellobiose phosphotransferase enzyme III [Bacillus subtilis]	62	39	339	
173	3	2599	893	[gi 1591732	[cobalt transport ATP-binding protein O [Methanococcus jannaschii]	62	42	1107	
179	2	492	1754	[gi 1574071	[H. influenzae predicted coding region H1038 [Haemophilus influenzae]	62	38	1663	
181	6	2856	3707	[gi 1777435	[LactT [Lactobacillus casei]]	62	42	852	
185	2	2074	311	[gi 2182397	[AE000073] Y4fn [Rhizobium sp. NGR234]	62	41	1764	
200	2	1061	1984	[gi 450566	[transmembrane protein [Bacillus subtilis]	62	37	924	
202	3	2583	3473	[gi 42219	[P35 gene product (AA 1 - 314) [Escherichia coli]	62	41	891	
210	3	1374	1565	[gi 49315	[ORF1 gene product [Bacillus subtilis]	62	45	192	

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
211	1	3	971	gi 147402	mannose permease subunit III-Man [Escherichia coli]	62	43	969
223	2	1495	1034	gnl PID d10190	ORF2 [Streptococcus mutans]	62	41	462
228	1	34	909	gi 530063	glycerol uptake facilitator [Streptococcus pneumoniae]	62	44	876
234	2	90	917	gi 2293259	(AF008220) Ytqi [Bacillus subtilis]	62	38	828
282	5	1765	1487	gnl PID e276475	galactokinase [Arabidopsis thaliana]	62	33	279
375	1	1	159	gi 1674231	(AE000052) Mycoplasma pneumoniae, hypothetical protein homolog; similar to Swiss-Prot Accession Number P35155, from B. subtilis [Mycoplasma pneumoniae]	62	40	159
385	5	584	357	gi 1573353	outer membrane integrity protein (cola) [Haemophilus influenzae]	62	47	228
3	19	18550	19269	gi 606162	ORF_F229 [Escherichia coli]	61	41	720
7	4	2725	3225	gi 2114425	similar to Synechocystis sp. hypothetical protein, encoded by GenBank Accession Number D64006 [Bacillus subtilis]	61	42	501
17	6	3326	3054	gi 149569	lactacin F [Lactobacillus sp.]	61	43	273
44	3	4061	4957	gnl PID d101068	xyllose repressor [Synechocystis sp.]	61	38	897
54	11	8388	7234	gnl PID d101329	YQH [Bacillus subtilis]	61	42	1155
57	6	3974	6037	gnl PID d101316	YQK [Bacillus subtilis]	61	42	2064
58	5	7356	6565	sp P45169 POTC_	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTEIN POTC.	61	34	792
67	1	3	692	gi 537108	ORF_E224 [Escherichia coli]	61	46	690
68	9	8816	7890	gi 19501	pPN212 gene product (AA 1-184) [Lupinus polyphyllus]	61	41	927
70	15	10737	12008	gi 992976	bpfF gene product [Bordetella pertussis]	61	44	1272
72	11	9759	10202	gnl PID d101833	carboxyornithospermidine decarboxylase [Synecchocystis sp.]	61	36	444
76	8	7881	7003	gnl PID d100305	farnesyl diphosphate synthase [Bacillus stearothermophilus]	61	45	879
87	4	4914	3697	gi 5289391	unknown [Bacillus subtilis]	61	42	1218
87	13	112311	113361	gi 1789683	(AE000407) methionyl-tRNA formyltransferase [Escherichia coli]	61	44	951
91	2	731	2989	gi 537080	ribonucleoside triphosphate reductase [Escherichia coli]	61	45	2259
105	3	2711	3499	gnl PID d101851	hypothetical protein [Synecchocystis sp.]	61	44	789
115	6	7968	6478	gi 895747	putative cel operon regulator [Bacillus subtilis]	61	36	1491
123	8	7181	8518	gi 1209527	protein histidine kinase [Enterococcus faecalis]	61	40	1338

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
126	6	7525	6725	gi 1787043	(AE000184) f271; This 271 aa orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 aa protein YIDA_ECOLI SW: P09997 [Escherichia coli]	61	38	801
128	1	1	639	9nl PID d101128	[Yqiy [Bacillus subtilis]]	61	41	639
139	7	4794	5054	gi 1022726	[unknown [Staphylococcus haemolyticus]]	61	41	261
139	9	12632	5913	9nl PID e270014	[beta-galactosidase [Thermoanaerobacter ethanolicus]]	61	41	6720
143	1	2532	42	gi 320541	[penicillin-binding proteins 1A and 1B [Bacillus subtilis]]	61	42	2511
148	16	12125	11424	gi 1552743	[tetrahydropicolinate N-succinyltransferase [Escherichia coli]]	61	42	702
162	3	4112	3456	9nl PID d101829	[phosphoglycolate phosphatase [Synechocystis sp.]	61	30	657
172	3	727	1077	9nl PID d102048	[B. subtilis, cellulose phototransferase system, celA; P46318 (220) [Bacillus subtilis]]	61	44	351
177	3	1101	1772	9nl PID d100574	[unknown [Bacillus subtilis]]	61	43	672
202	2	1278	2585	9gi 1045831	[hypothetical protein (GB:L18965_6) [Mycoplasma genitalium]]	61	36	1308
224	3	2782	3144	9gi 1591144	[M. jannaschii predicted coding region M20440 [Methanococcus jannaschii]]	61	30	363
225	4	3395	3766	9gi 1552774	[hypothetical [Escherichia coli]]	61	40	372
249	2	212	802	9gi 1000053	[TrR [Bacillus subtilis]]	61	42	591
254	2	843	484	9nl PID d100417	[ORF120 [Escherichia coli]]	61	36	360
257	1	3	350	9nl PID e255315	[unknown [Mycobacterium tuberculosis]]	61	42	348
293	4	3971	3657	pirJC1151 JCI1	[hypothetical 20.3K protein (insertion sequence IS1111) - Agrobacterium tumefaciens (strain P022) plasmid Ti]	61	45	315
301	1	949	17	gi 2291209	(AF016424) contains similarity to acyltransferases [Caenorhabditis elegans]	61	33	933
373	1	1066	287	gi 393396	[Af292 membrane associated protein [Trypanosoma brucei subgroup]]	61	38	780
3	24	24473	24955	gi 537093	[ORF_0153b [Escherichia coli]]	60	27	483
6	5	4636	5739	gi 2293258	(AF008220) Yto1 [Bacillus subtilis]	60	35	1104
6	12	11936	11187	gi 1293017	[ORF3 (put.); putative [Lactococcus lactis]]	60	44	750
17	13	6708	6484	gi 149569	[lactacin F [Lactobacillus sp.]]	60	32	225
18	7	6977	5670	gi 1788140	(AE000278) o481; This 481 aa orf is 35 pct identical (19 gaps) to 309 residues of an approx. 856 aa protein NOL1_HUMAN SW: P46087 [Escherichia coli]	60	43	1308
20	15	15878	17167	9nl PID d100584	[Unknown [Bacillus subtilis]]	60	44	1290

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
22	1	1	243	[gnl PID d102050	[Bacillus subtilis]	60	36	243
32	10	8296	8964	[gi 2223275	[AF008220] YtaG [Bacillus subtilis]	60	37	669
38	15	8837	9697	[gi 40023	[B. subtilis genes rpmH, rnpA, 50kd, gida and gida [Bacillus subtilis]	60	35	861
43	6	8610	5944	[gi 171787	[protein kinase 1 [Saccharomyces cerevisiae]	60	36	2667
44	1	1	1269	[gnl PID e235823	[Schizosaccharomyces pombe]	60	44	1269
45	10	11138	10368	[gi 397488	[1,4-alpha-glucan branching enzyme [Bacillus subtilis]	60	43	771
48	19	15766	14378	[gnl PID e205173	[orf1 [Lactobacillus helveticus]	60	39	1389
48	21	16727	16951	[AB002668] unnamed protein product [Haemophilus actinomycetemcomitans]		60	32	225
50	1	2	898	[gnl PID e246537	[ORF286 protein [Pseudomonas stutzerii]	60	31	897
62	2	638	1177	[gnl PID d100587	[unknown [Bacillus subtilis]	60	42	540
68	4	3590	5203	[gi 1573583	[H. influenzae Predicted coding region HI0594 [Haemophilus influenzae]	60	36	1614
70	11	5781	6182	[gnl PID d102014	[AB001488] SIMILAR TO YDFFR GENE PRODUCT OF THIS ENTRY (YDFFR_BACSU) [Bacillus subtilis]	60	33	402
70	12	6343	8133	[gnl PID e324970	[hypothetical protein [Bacillus subtilis]	60	38	1791
71	8	11701	14157	[gi 580866	[ipa-l2d gene product [Bacillus subtilis]	60	33	2457
74	8	12509	11664	[gnl PID d101832	[phosphatidate cytidylyltransferase [Synchocystis sp.]	60	45	846
76	4	4116	3367	[gi 2352096	[orf; similar to serine/threonine protein phosphatase [Fervidobacterium islandicum]	60	39	750
80	4	7372	7665	[gi 1786420	[AE000131] f86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38382 [Escherichia coli]	60	30	294
81	6	4073	4522	[gi 147402	[mannose permease subunit III-Man [Escherichia coli]	60	35	450
86	1	940	155	[gi 143177	[putative [Bacillus subtilis]	60	26	786
92	1	1	192	[gi 396348	[homoserine transsuccinylase [Escherichia coli]	60	45	192
93	14	10619	9384	[gi 1788389	[AE000297] o44; This 464 aa orf is 33 pct identical (9 gaps) to 331 residues of an approx. 416 aa protein MRC_NEIGO SW: P4305 [Escherichia coli]	60	27	1236
94	5	5548	8121	[gnl PID e329895	[AJ000496] cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]	60	50	2574
97	7	5396	4533	[gi 1591396	[Methanococcus jannaschii] transketolase'	60	43	864
102	2	2081	2833	[gnl PID e320929	[hypothetical protein [Mycobacterium tuberculosis]	60	43	753

TABLE 2

S. pneumoniae – Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
106	9	9773	9183	gnl PID e334782	[Y1BN protein [Bacillus subtilis]	60	31	591
113	8	6361	6837	gi 466875	[nifU; Bl496_Cl_157 [Mycobacterium leprae]	60	43	477
115	2	2755	524	gnl PID e328143	[AJ000332] Glucosidase II [Homo sapiens]	60	32	2232
122	7	4763	5068	gnl PID d101876	[transposase [Synechocystis sp.]	60	39	306
127	8	4510	5283	gi 1777938	[Pgpm [Treponema pallidum]]	60	38	774
138	4	3082	2672	gnl PID e325196	[hypothetical protein [Bacillus subtilis]	60	36	411
139	1	177	4	gnl PID d100680	[ORF [Thermus thermophilus]]	60	39	174
139	11	14520	13009	gi 537145	[ORF_f37 [Escherichia coli]]	60	30	1512
140	2	2592	1249	gi 1209527	[protein histidine kinase [Enterococcus faecalis]]	60	37	1344
141	1	210	1049	gi 463181	[ES ORF from bp 3842 to 4081; putative [Human papillomavirus type 33]]	60	34	840
141	5	5368	6405	gi 145362	[tyrosine-sensitive DAHP synthase (aroF) [Escherichia coli]]	60	41	1038
142	6	3558	4049	gi 600711	[putative [Bacillus subtilis]]	60	37	492
148	10	7742	8713	gnl PID e31302	[hypothetical protein [Bacillus subtilis]]	60	27	972
153	5	3667	4278	gi 2293322	[AF008220] branch-chain amino acid transporter [Bacillus subtilis]	60	42	612
155	1	1413	748	gi 2104504	[putative UDP-glucose dehydrogenase [Escherichia coli]]	60	40	666
158	3	3116	2472	gnl PID d100872	[a negative regulator of pho regulon [Pseudomonas aeruginosa]]	60	37	645
159	3	778	1386	gnl PID e308090	[product highly similar to Bacillus anthracis CapA protein [Bacillus subtilis]]	60	48	609
163	7	8049	8468	gnl PID d101313	[YqEN [Bacillus subtilis]]	60	38	420
170	3	4130	2688	gi 1574179	[H. influenzae predicted coding region HI1244 [Haemophilus influenzae]]	60	39	1443
171	7	4717	5901	gi 606076	[ORF_0384 [Escherichia coli]]	60	44	1185
183	3	2440	2135	gi 1877427	[repressor [Streptococcus pyogenes phage T12]]	60	38	306
191	10	9444	8428	gi 415664	[catabolite control protein [Bacillus megaterium]]	60	42	1017
200	1	139	1083	gi 438462	[transmembrane protein [Bacillus subtilis]]	60	37	945
201	3	3895	1928	gi 475112	[enzyme IIabc [Pediococcus pentosaceus]]	60	39	1968
214	15	10930	10439	gi 1573407	[hypothetical [Haemophilus influenzae]]	60	39	492
218	4	2145	2363	gi 608520	[myosin heavy chain kinase A [Dictyostelium discoideum]]	60	31	219

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
226	4	2518	2351	gi 437705	hyaluronidase [Streptococcus pneumoniae]	60	53	168
242	1	725	3	gi 43938	Sor regulator [Klebsiella pneumoniae]	60	41	723
245	1	1	288	gi 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	60	56	288
251	1	905	45	gi 671632	unknown [Staphylococcus aureus]	60	36	861
259	1	969	82	gi 153794	rgg [Streptococcus gordoni]I	60	32	888
260	2	1492	1662	hp1r S31840 S318	probable transposase - Bacillus stearothermophilus	60	26	171
274	1	836	96	gi 152173	N-Methylameline chlorohydrolase [Methanococcus jannaschii]	60	40	741
308	1	463	2	gi 1787397	AF000214 o157 [Escherichia coli]	60	43	462
318	1	3	308	gnl PID el137594	xerC recombinase [Lactobacillus leichmannii]	60	42	306
344	1	73	522	gi 502672	repressor protein [Bacteriophage Tuc2009]	60	32	450
5	1	576	4	gi 2233147	AF008220 YxxM [Bacillus subtilis]	59	31	573
7	122	18140	17142	gnl PID e280724	unknown [Mycobacterium tuberculosis]	59	39	999
10	1	1413	4	gi 1533880	sialidase L [Macrobdella decora]	59	41	1410
15	6	6463	5156	gi 580841	F1 [Bacillus subtilis]	59	35	1308
22	2	479	1393	gi 142469	als operon regulatory protein [Bacillus subtilis]	59	34	915
22	5	2698	4614	gnl PID e280623	PCPA [Streptococcus pneumoniae]	59	44	1917
30	1	208	558	gnl PID e2313868	hypothetical protein [Bacillus subtilis]	59	37	351
30	4	3678	2455	gnl PID e202290	unknown [Lactobacillus sake]	59	33	1224
35	13	12201	11071	gnl PID e238664	hypothetical protein [Bacillus subtilis]	59	35	1131
35	14	13288	12182	gi 1657647	Cap8H [Staphylococcus aureus]	59	39	1107
36	18	18076	17897	gi 1500535	M. jannaschii predicted coding region MJ1635 [Methanococcus jannaschii]	59	33	180
38	12	6172	7137	gi 2293239	AF008220 YxxK [Bacillus subtilis]	59	34	966
42	3	1952	3361	gi 1684845	pinin (Canis familiaris)	59	40	1410
50	3	2678	1728	gnl PID d10129	Yqjk [Bacillus subtilis]	59	41	951
56	5	1870	2388	gnl PID el137594	xerC recombinase [Lactobacillus leichmannii]	59	36	642
61	6	6812	5628	gnl PID e311516	aminotransferase [Bacillus subtilis]	59	40	1185
67	5	2382	3023	gi 1146190	2-keto-3-deoxy-6-phosphogluconate aldolase [Bacillus subtilis]	59	36	642

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
69	10	8567	8899	gi 1573628	anthohenate kinase (coaA) [Haemophilus influenzae]	59	38	333
87	12	11383	10055	gnl PID e323304	putative Fmu protein [Bacillus subtilis]	59	44	1329
113	14	13927	15894	gi 1673731	(AE00010) Mycoplasma pneumoniae, fructose-Permease IIBC component; similar to Swiss-Prot Accession Number P20966, from <i>E. coli</i> [Mycoplasma pneumoniae]	59	43	1968
115	8	8766	8521	gi 1590886	M. jannaschii predicted coding region M0110 [Methanococcus jannaschii]	59	38	246
119	2	1966	1526	gnl PID e209005	homologous to ORF2 in nrdEF operons of <i>E.coli</i> and <i>S. typhimurium</i> [Lactococcus lactis]	59	43	441
128	17	13438	13178	gnl PID e279532	unknown [Mycobacterium tuberculosis]	59	38	261
140	22	23903	23388	gi 482922	protein with homology to palI repressor of <i>B. subtilis</i> [Lactobacillus delbrueckii]	59	40	516
148	13	9697	9014	gnl PID d102005	(AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN <i>H. INFLUENZAE</i> AND SYNECHOCYSTIS. [Bacillus subtilis]	59	32	684
149	10	7213	8244	gi 710422	cmp-binding-factor 1 [Staphylococcus aureus]	59	40	1032
164	9	6993	6013	gnl PID d100965	ferric anguibactin-binding protein precursor Fabb of <i>V. anguillarum</i> [Bacillus subtilis]	59	41	981
164	12	8836	7823	gnl PID d100964	homologue of ferric anguibactin transport system permease protein Facc of <i>V. anguillarum</i> [Bacillus subtilis]	59	35	1014
177	2	401	1072	gi 289759	coded for by <i>C. elegans</i> cDNA CE2G3 (GenBank: Z14728); putative [Caenorhabditis elegans]	59	40	672
177	7	3841	4200	gi 2313445	(AE000551) <i>H. pylori</i> predicted coding region HP0342 [Helicobacter pylori]	59	38	360
183	4	2768	2508	gi 509672	repressor protein [Bacteriophage Tuc2009]	59	50	261
186	6	3398	2820	gi 606080	ORF_0290; Geneplot suggests frameshift linking to o267, not found [Escherichia coli]	59	38	579
190	3	3120	1711	gi 1613768	histidine protein kinase [Streptococcus pneumoniae]	59	32	1410
194	2	1621	1019	gnl PID d100579	unknown [Bacillus subtilis]	59	40	603
198	7	5205	4306	gnl PID e313073	hypothetical protein [Bacillus subtilis]	59	38	900
220	5	4362	3938	gnl PID d101322	Yqhl [Bacillus subtilis]	59	46	405
242	3	1573	2367	gi 1787045	(AE00184) f308; This 308 aa orf is 35 pct identical (35 gaps) to 305 residues of an approx. 296 aa protein PFLC_ECOLI_SW. P32675 [Escherichia coli]	59	42	795
247	2	1154	1480	gi 40073	ORF107 [Bacillus subtilis]	59	39	327

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
256	1	868	2	9nl PID d101924	hemolysin [Synechocystis sp.]	59	39	867
258	1	65	820	9l 2246532	ORF 73, contains large complex repeat CR 73 [Kaposi's sarcoma-associated herpesvirus]	59	20	756
270	1	386	1126	9nl PID d102092	[Bacillus subtilis]	59	40	741
281	1	552	166	9l 1666062	[Lactococcus lactis]	59	31	387
309	1	3	479	9l 405879	[Escherichia coli]	59	38	477
363	1	2	1894	9l 915208	[gastric mucin (Sus scrofa)]	59	31	1893
387	2	425	84	9l 160671	[Plasmodium falciparum]	59	44	342
5	6	11223	10465	9nl PID d10812	[LumQ [Synechocystis sp.]	58	29	759
29	4	2098	3513	9nl PID d100479	[Na+ -ATPase subunit J (Enterococcus hirae]	58	39	1416
30	5	4058	3651	9l 39478	[ATP binding protein of transport ATPases [Bacillus firmus]	58	34	408
33	6	2983	2210	9nl PID d101164	[unknown [Bacillus subtilis]]	58	45	774
36	8	5316	6179	9l 1518679	[orf [Bacillus subtilis]]	58	32	864
43	5	5926	3971	9l 1788150	[AE00278] protease II [Escherichia coli]	58	37	1956
46	5	3704	5221	9nl PID e267329	[Unknown [Bacillus subtilis]]	58	42	1518
48	14	11722	11066	9nl PID d101771	[thiamin biosynthetic bifunctional enzyme [Synechocystis sp.]	58	34	657
52	1	1229	3	9nl PID d101291	[reductase [Pseudomonas aeruginosa]]	58	35	1227
53	2	702	412	9l 2313357	[AE00545] cytochrome c biogenesis protein (ccba) [Helicobacter pylori]	58	25	291
58	4	6586	5498	9l 147329	[transport protein [Escherichia coli]]	58	41	1089
69	5	4934	3807	9nl PID e3111492	[unknown [Bacillus subtilis]]	58	41	1128
71	27	31357	32277	9l 2408014	[hypothetical protein [Schizosaccharomyces pombe]]	58	33	921
72	4	3586	2882	9l 18694	[nodulin-21 (AA 1-201; Glycine max]]	58	34	705
74	3	4937	4230	9l 2293252	[AF008220] Ytmo [Bacillus subtilis]	58	33	708
79	4	4594	3422	9l 1217989	[Orf3 [Streptococcus pneumoniae]]	58	44	1173
82	8	10585	8171	9l 882711	[exonuclease V alpha-subunit [Escherichia coli]]	58	38	2415
86	17	116017	115337	9l 47642	[5-dehydroquinate hydrolase (3-dehydroquinase) (Salmonella typhi)]	58	32	681
97	2	931	560	9l 153794	[egg [Streptococcus gordoni]]	58	32	372

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
108	2	358	2724	gi 537020	vacB gene product [Escherichia coli]	58	37	2367
111	5	4593	5240	gi 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	58	36	648
120	3	4421	5110	gnl PID d101320	yggX [Bacillus subtilis]	58	47	690
128	16	13131	12673	gi 652919	ORF U [Enterococcus hirae]	58	42	459
132	3	6174	4939	gi 1800301	macrolide-efflux determinant [Streptococcus pneumoniae]	58	35	1236
133	1	111	890	gnl PID e269488	Unknown [Bacillus subtilis]	58	36	780
160	11	8615	9865	gi 473901	ORF1 [Lactococcus lactis]	58	39	1251
161	6	6268	6849	gnl PID d101024	DJ-1 protein [Homo sapiens]	58	32	582
169	1	214	2	gnl PID d100447	translation elongation factor-3 [Chlorella virus]	58	31	213
187	1	487	2	gi 475114	regulatory protein [Pediococcus pentosaceus]	58	38	486
187	6	4384	4620	gi 167475	desiccation-related protein [Craterostigma plantagineum]	58	55	237
190	2	1464	1640	gnl PID e246727	competence pheromone [Streptococcus giardini]	58	38	177
192	2	2012	1344	gnl PID d100556	rat GCP360 [Rattus rattus]	58	44	669
206	1	1222	1696	gnl PID e202579	product similar to WrBA [Lactobacillus sake]	58	35	597
216	2	2333	555	gnl PID e325036	hypothetical protein [Bacillus subtilis]	58	33	1779
217	5	5250	4321	gi 466474	cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	58	38	930
217	7	5636	5106	gnl PID d102048	B. subtilis cellobiose phosphotransferase system celB; P46317 (998)	58	44	531
232	1	2	811	gi 1573777	cell division ATP-binding protein (ftsE) [Haemophilus influenzae]	58	39	810
264	1	2	715	gi 973330	NATA [Bacillus subtilis]	58	32	714
280	1	33	767	gi 1786187	(AE000111) hypothetical 29.6 kd protein in thrC-talB intergenic region	58	31	735
306	1	845	3	gnl PID e334780	ytbl protein [Bacillus subtilis]	58	47	843
360	3	1556	1052	sp P46351 Y2CD-	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE 1 5' REGION.	58	32	465
363	5	2160	1867	gi 160671	s antigen precursor [Plasmodium falciparum]	58	51	294
372	1	806	3	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	58	37	804
382	2	749	519	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1111) - Agrobacterium tumefaciens (strain P022) plasmid Ti	58	41	231

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
3	9	8409	7471	[gi 1499745]	[M. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii]]	57	38	939
10	10	7674	7507	[gi 1737169]	[M. jannaschii homologue to SKP1 [Arabidopsis thaliana]]	57	30	168
11	1	2	412	[gi PID dl00139]	[ORF [Acetobacter pasteurianus]]	57	42	411
31	4	2032	1388	[gi 2293213]	[AF008220] YCP1 [Bacillus subtilis]	57	37	645
33	11	6931	6449	[gi PID e324949]	[hypothetical protein [Bacillus subtilis]]	57	36	483
45	5	5446	5060	[gi 1592204]	[phosphoserine phosphatase [Methanococcus jannaschii]]	57	44	387
49	7	6523	7632	[gi 155369]	[PTS enzyme-II fructose [Xanthomonas campestris]]	57	35	1110
52	6	4520	6850	[gi 1574144]	[single-stranded-DNA-specific exonuclease (recJ) [Haemophilus influenzae]]	57	35	2331
53	5	2079	1795	[gi 1843580]	[replicase-associated polyprotein [oat blue dwarf virus]]	57	46	285
63	6	5312	4995	[gi 2182608]	[AE000094] YarJ [Rhizobium sp . NGR234]	57	39	318
72	15	13883	13059	[gi PID dl00892]	[homologous to SwissProt:YIDA_ECOLI hypothetical protein [Bacillus subtilis]]	57	40	825
79	2	2561	1815	[gi PID dl00965]	[homologue of NADPH-Flavin oxidoreductase Frp of V. harveyi [Bacillus subtilis]]	57	44	747
82	9	9596	9763	[gi 1206045]	[short region of similarity to glycerophosphoryl diester phosphodiesterases [Caenorhabditis elegans]]	57	35	168
86	16	15371	14493	[gi 1787983]	[AE000264] Q288; 92 pct identical (11 gaps) to 222 residues of fragment YDIB_ECOLI SW; P28244 (223 aa) [Escherichia coli]	57	34	879
93	3	1695	1177	[gi 1500003]	[mutator mutT protein [Methanococcus jannaschii]]	57	33	519
96	6	3026	4519	[gi 559882]	[threonine synthase [Arabidopsis thaliana]]	57	43	1494
99	14	17211	18212	[gi 773349]	[BirA protein [Bacillus subtilis]]	57	44	1002
112	8	7448	7903	[gi 1591393]	[M. jannaschii predicted coding region MJ0678 [Methanococcus jannaschii]]	57	30	456
113	16	18627	18328	[pir A45605 A456]	[mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciparum]	57	22	300
123	2	343	1110	[pir F64149 F641]	[hypothetical protein H10355 - Haemophilus influenzae (strain Rd KW20)]	57	38	768
123	4	2108	2884	[gi PID dl02148]	[AB001684] sulfate transport system permease protein [Chlorella vulgaris]	57	39	777
127	10	6477	5587	[gi 1573082]	[nitrogenase C (nifC) [Haemophilus influenzae]]	57	35	891
128	13	9251	9790	[gi 153692]	[pneumolysin [Streptococcus pneumoniae]]	57	38	540
131	4	2139	1363	[gi 42081]	[nagD gene product (AA 1-250) [Escherichia coli]]	57	36	777

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
136	1	214	1221	bbs 148453	SpaA-endocarditis immunodominant antigen [Streptococcus sobrinus, MUCOB 263, Peptide, 1566 aa]	57	44	1008
140	125	28701	26851	gi 505576	beta-glucoside permease [Bacillus subtilis]	57	38	1851
141	6	6395	7438	gi 995560	Unknown [Schizosaccharomyces pombe]	57	41	1044
144	3	3231	2785	gnl PID d100139	ORF [Acetobacter pasteurianus]	57	42	447
155	4	5454	4564	gi 600431	glycosyl transferase [Erwinia amylovora]	57	34	891
159	9	4877	5854	gi 290509	[d307] [Escherichia coli]	57	35	978
167	11	9710	9249	gnl PID d100139	ORF [Acetobacter pasteurianus]	57	42	462
171	6	4023	4436	gi 147402	mannose permease subunit III-Man [Escherichia coli]	57	29	414
178	4	2170	1076	gnl PID d102004	(AB001488) ATP-DEPENDENT RNA HELICASE DEAD HOMOLOG. [Bacillus subtilis]	57	39	1095
190	1	145	1455	gi 149420	export/processing protein [Lactococcus lactis]	57	30	1311
198	1	298	95	gi 522268	[unidentified ORF222] [Bacteriophage b1L67]	57	36	204
203	2	3195	2110	gnl PID le2B915	[orf c01003] [Sulfolobus solfataricus]	57	41	1086
205	1	40	507	gi 1439527	[ETTA-man] [Lactobacillus curvatus]	57	28	468
214	7	4243	3797	gnl PID d102049	[H. influenzae, ribosomal] protein alanine acetyltransferase; P4305 (189)	57	48	447
268	3	1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein [Lactobacillus curvatus]	57	36	492
351	1	324	34	gnl PID e275871	[T01F6.b] [Caenorhabditis elegans]	57	31	291
386	1	226	2	gi 160671	[s antigen precursor] [Plasmodium falciparum]	57	45	225
5	5	10486	8777	gi 405857	[yeu] [Escherichia coli]	56	33	1710
8	5	3674	3910	gi 1467199	[pksc; L518_F1_2] [Mycobacterium leprae]	56	39	237
10	3	3442	1874	gnl PID d101907	sodium-coupled permease [Synechocystis sp.]	56	36	1569
21	1	1880	333	gi 2313949	[AE000593] osmoprotection protein (proW) [Helicobacter pylori]	56	33	1548
22	129	21968	22456	gnl PID d102001	(AB001488) PROBABLE ACETYLTRANSFERASE. [Bacillus subtilis]	56	37	489
27	1	1361	3	gi 215132	[eas9 (525)] [Bacteriophage lambda]	56	30	1359
28	9	4667	4278	gi 1592090	DNA repair protein RAD2 [Methanococcus jannaschii]	56	29	390
33	1	3	386	gnl PID d100139	ORF [Acetobacter pasteurianus]	56	41	384

TABLE 2

S. pneumoniae – Putative coding regions of novel proteins' Similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
36	7	5122	5397	pir PQ0053 PQ00	hypothetical protein (proc 3' region) - <i>Pseudomonas aeruginosa</i> (strain PA0)	56	28	276
40	4	3137	4318	gi 1800301	macrolide-efflux determinant [Streptococcus pneumoniae] (fragment)	56	27	1182
40	16	12511	13191	gnl PID e217602	Plnu [Lactobacillus plantarum]	56	38	681
48	117	13775	13023	gi 143729	transcription activator [Bacillus subtilis]	56	35	753
75	4	1674	2594	gnl PID d102036	membrane protein [Bacillus stearothermophilus]	56	25	921
85	3	1842	1459	gnl PID d100139	ORF [Acetobacter pasteurianus]	56	41	384
89	7	5815	4940	gi 853777	product similar to <i>E.coli</i> PRFA2 protein [Bacillus subtilis]	56	42	876
105	2	1360	2718	gnl PID d101913	hypothetical protein [Synchocystis sp.]	56	37	1359
112	3	2151	3194	gi 537201	[ORE_0345] [Escherichia coli]	56	31	1044
113	4	2754	2963	gnl PID d100340	ORF [Plum pox virus]	56	28	210
122	3	1203	2054	gi 16493035	high-affinity periplasmic glutamine binding protein [Salmonella typhimurium]	56	30	852
124	8	3939	3694	gnl PID e248893	unknown [Mycobacterium tuberculosis]	56	27	246
125	4	4403	4107	gnl PID d102447	human non-muscle myosin heavy chain [Homo sapiens]	56	32	297
127	111	6608	6405	gi 12182397	[AE000073] Y4N [Rhizobium sp. NGR234]	56	35	204
134	5	4769	3849	gnl PID d101870	hypothetical protein [Synchocystis sp.]	56	39	921
137	10	6814	7245	gi 1592011	sulfate permease (cysA) [Methanococcus jannaschii]	56	34	432
142	8	5019	4582	pir A47071 A470	orf1 immediately 5' of nifS - <i>Bacillus subtilis</i>	56	29	438
146	8	4676	3660	gnl PID d101911	hypothetical protein [Synchocystis sp.]	56	32	1017
148	3	1906	2739	gnl PID d101099	phosphate transport system permease protein Pta [Synchocystis sp.]	56	36	834
150	4	4449	2743	gnl PID e304628	probably site-specific recombinase of the resolvase family of enzymes [Bacteriophage TP21]	56	27	1707
172	1	2	208	gi 1787791	(AE000249) f317: This 317 aa orf is 27 pct identical (16 gaps) to 301 residues of an approx. 320 aa protein YXXC_BACSU SW: P39140 [Escherichia coli]	56	34	207
172	7	4979	5668	gi 396293	similar to <i>Bacillus subtilis</i> hypoth. 20 kDa protein, in tsr 3' region [Escherichia coli]	56	40	690
186	7	3732	3367	gi 1732200	PTS permease for mannose subunit IIPman [Vibrio furnissii]	56	36	366
187	2	2402	819	pir S57904 S579	virR9 protein - <i>Streptococcus pyogenes</i> (strain CS101, serotype M49)	56	35	1584

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
204	3	2772	2239	gi 606376	[ORF_0162 [Escherichia coli]]	56	35	534
206	2	3342	1633	gi 559861	[cltM (Plasmid pAD1)]	56	38	1710
219	3	1689	1096	gi 1146197	[putative [Bacillus subtilis]]	56	27	594
230	2	409	1485	pir c0328 C603	[hypothetical protein 2 (sr 5' region) - <i>Streptococcus mutans</i> (strain OMZ175, serotype f)]	56	40	1077
233	4	2930	3268	gi 1041785	[rhopty protein [Plasmodium yoelii]]	56	24	339
273	1	1543	2724	gi 143089	[iep protein [Bacillus subtilis]]	56	32	1182
353	1	1	516	gnl PID e325000	[hypothetical protein [Bacillus subtilis]]	56	41	516
359	1	87	641	gi 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli]	56	46	555
363	7	4482	4198	gi 1573353	[outer membrane integrity protein (toIA) [Haemophilus influenzae]]	56	38	285
376	1	2	508	gnl PID e325031	[hypothetical protein [Bacillus subtilis]]	56	33	507
18	1	836	177	gnl PID d100872	[a negative regulator of pho regulon [Pseudomonas aeruginosa]]	55	31	660
28	4	1824	1618	gnl PID e316518	[STAT protein [Dictyostelium discoideum]]	55	40	207
29	6	4496	5041	gi 1088261	[unknown protein [Anabaena sp.]]	55	31	546
38	16	9695	10702	gi 580905	[B. subtilis genes rpmH, rpmA, 50kd, gfdA and gfdB [Bacillus subtilis]]	55	31	1008
49	5	5727	6182	gi 1786951	(AE000176) heat-responsive regulatory protein [Escherichia coli]	55	29	456
51	4	2381	3241	gnl PID d101293	[Ybba [Bacillus subtilis]]	55	42	861
52	9	9640	10866	gi 153016	[ORF 419 protein [Staphylococcus aureus]]	55	23	1227
53	4	1813	1349	gi 896042	[ospF [Borrelia burgdorferi]]	55	30	465
60	5	4794	5756	gi 1499876	[magnesium and cobalt transport protein [Methanococcus jannaschii]]	55	38	963
71	9	14176	15408	gi 1857120	[glycosyl transferase [Neisseria meningitidis]]	55	41	1233
75	6	3189	4229	gnl PID e209850	[NAD alcohol dehydrogenase [Bacillus subtilis]]	55	44	1041
108	10	10488	9820	gnl PID e324297	[hypothetical protein [Bacillus subtilis]]	55	36	669
113	12	12273	13037	gnl PID e311496	[unknown [Bacillus subtilis]]	55	34	765
113	13	13007	13945	gi 1573423	[1-phosphofructokinase (fruk) [Haemophilus influenzae]]	55	39	939
126	5	6764	5907	gi 1790131	(AE000446) hypothetical 29.7 kd protein in ipbA-gyrB intergenic region [Escherichia coli]	55	37	858

TABLE 2
S. pneumoniae – Putative coding regions of novel proteins~similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
129	3	2719	902	[gnl PID d101425]	Pz-peptidase [Bacillus licheniformis]	55	35	1818
138	3	2593	1610	[gi 142833]	ORF2 [Bacillus subtilis]	55	37	984
140	6	6916	5633	[gnl PID d100964]	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtilis]	55	26	1284
147	3	3854	2136	[gi 472330]	dihydrolipoamide dehydrogenase [Clostridium magnum]	55	39	1719
147	10	10204	8921	[gnl PID e73078]	dihydroorotate [Lactobacillus leichmannii]	55	38	1284
148	5	1430	4119	[gi 290572]	peripheral membrane protein U [Escherichia coli]	55	29	690
148	6	4171	4650	[gi 695769]	transposase [Xanthobacter autotrophicus]	55	37	480
149	14	12564	11650	[gnl PID d101329]	[YqjG] [Bacillus subtilis]	55	32	915
156	3	1113	550	[gi 2314496]	(AE000634) conserved hypothetical integral membrane protein [Helicobacter pylori]	55	34	564
159	10	6625	5897	[gi 290533]	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins [Escherichia coli]	55	29	729
164	3	1784	2332	[gnl PID e253118]	hypothetical protein [Bacillus subtilis]	55	37	549
164	5	2772	3521	[gi 40348]	[put. resolvase Tnp I (AA 1 – 284)] [Bacillus thuringiensis]	55	35	750
164	11	7428	7216	[gnl PID e219407]	[unknown] [Mycobacterium tuberculosis]	55	38	213
167	5	3860	3345	[gi 535052]	[involved in protein secretion] [Bacillus subtilis]	55	28	516
186	5	2880	2563	[gi 606080]	[ORE_0280: Geneplot suggests frameshift linking to o267, not found] [Escherichia coli]	55	35	318
189	8	4311	5396	[gnl PID e13450]	hypothetical EcS8 protein [Bacillus subtilis]	55	32	1086
192	5	3270	3079	[gi 1196504]	vitellogenin convertase [Hedes aegypti]	55	38	192
195	2	2454	1384	[gi 1574693]	transferase, peptidoglycan synthesis (mung) [Haemophilus influenzae]	55	33	1071
198	4	3013	2471	[gnl PID e313074]	hypothetical protein [Bacillus subtilis]	55	29	543
214	1	373	744	[gnl PID d101741]	[transposase] [Symnechocystis sp.]	55	33	372
219	2	1115	456	[gi 288301]	ORF2 gene product [Bacillus megaterium]	55	40	828
263	7	3742	3443	[gi 18137]	[ORF (18 kDa)] [Vibrio cholerae]	55	31	402
297	2	1229	1696	[gi 150848]	[cgcr-4 product] [Chlamydomonas reinhardtii]	55	48	300
		1	2	[gi 289]	[unknown] [Bacillus subtilis]	55	39	468

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins-similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
309	2	218	982	[gi 1574491]	hypothetical [Haemophilus influenzae]	55	35	765
328	2	646	224	[gi 571500]	prohibitin [Saccharomyces cerevisiae]	55	27	423
330	1	1340	474	[gi 396397]	soxs [Escherichia coli]	55	29	867
364	3	2538	1546	[gi 393394]	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	55	36	993
368	3	941	105	[gi 160671]	S antigen precursor [Plasmodium falciparum]	55	40	837
3	5	4604	3624	[gi 2293176]	(AF008220) signal transduction protein kinase [Bacillus subtilis]	54	26	981
9	11	7746	7246	[gi 114645]	putative [Bacillus subtilis]	54	38	501
38	24	16213	17937	[gi 1480429]	putative transcriptional regulator [Bacillus stearothermophilus]	54	27	1725
40	8	5076	4882	[gi 39989]	methionyl-tRNA synthetase [Bacillus stearothermophilus]	54	35	195
43	4	3980	2367	[gnl PID el44611]	ABC transporter [Lactobacillus helveticus]	54	25	1614
52	10	10844	12103	[gi 1762862]	Fema [Staphylococcus simulans]	54	29	1260
57	1	1	3	[gi 558177]	endo-1,4-beta-xylanase [Cellulomonas fimi]	54	36	510
58	3	4749	4246	[gnl PID d101237]	hypothetical [Bacillus subtilis]	54	31	504
71	7	10684	11703	[gi 510255]	orf3 [Escherichia coli]	54	31	1020
71	120	127546	27737	[gi 1202543]	serotonin receptor [Rattus norvegicus]	54	31	192
72	2	844	1098	[gi 148613]	srnB gene product [Plasmid F]	54	37	255
72	7	7438	6695	[gi 1196496]	recombinase [Moraxella bovis]	54	38	744
74	10	14043	13465	[gi 1200342]	ORF 3 gene product [Bradyrhizobium japonicum]	54	32	579
74	12	16483	15995	[gi 12317798]	maturase-related protein [Pseudomonas alcaligenes]	54	30	489
86	3	2877	2155	[gi 46988]	orf9.6 possibly encodes the O unit polymerase [Salmonella enterica]	54	34	723
89	5	4433	3921	[gi 147211]	phoO protein [Escherichia coli]	54	41	513
90	1	3	464	[gi 2317798]	maturase-related protein [Pseudomonas alcaligenes]	54	30	462
96	10	8058	8510	[gnl PID d102015]	(AB001488) SIMILAR TO SALMONELLA TYPHIMURIUM SLT V GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. [Bacillus subtilis]	54	32	453
97	6	4662	3604	[gi 1591394]	'transketolase' [Methanococcus jannaschii]	54	30	1039
106	11	10406	12010	[gi 605286]	ORF_0637 [Escherichia coli]	54	32	1605
147	8	8663	7404	[gnl PID d101615]	ORF_ID:0319#7; similar to [SwissProt Accession Number P37340] [Escherichia coli]	54	35	1260

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
171	4	2477	3223	[gnl PID d100518]	[<i>lactobacillus curvatus</i>] [ETIC-man (motor protein [<i>Homo sapiens</i>])]	54	36	747
174	2	2068	1787	[gnl PID d100518]	[<i>Mycobacterium tuberculosis</i>] [motor protein [<i>Homo sapiens</i>]]	54	35	282
188	1	526	1188	[gnl PID e250352]	[<i>Mycobacterium tuberculosis</i>] [unknown]	54	31	663
198	5	3582	2884	[gnl PID e313074]	[<i>Bacillus subtilis</i>] [hypothetical protein [<i>Bacillus subtilis</i>]]	54	33	699
207	1	1	1641	[gnl PID d101813]	[<i>Synechocystis sp.</i>] [hypothetical protein [<i>Synechocystis sp.</i>]]	54	24	1641
210	1	2	655	[gi 2293206]	[AF008220] Ytgp [Bacillus subtilis]	54	29	654
225	2	966	2357	[gnl PID e330194]	[<i>Caenorhabditis elegans</i>] [R11H6.1 (Caenorhabditis elegans)]	54	39	1392
241	1	1681	347	[gnl PID d101813]	[<i>Synechocystis sp.</i>] [hypothetical protein [<i>Synechocystis sp.</i>]]	54	26	1335
263	2	907	1395	[gnl PID d101886]	[<i>S. antigen precursor (Plasmodium falciparum)</i>] [transposase [<i>Synechocystis sp.</i>]]	54	30	489
263	6	3450	2977	[gi 160671]	[<i>Plasmodium falciparum</i>] [S antigen precursor (<i>Plasmodium falciparum</i>)]	54	47	474
277	3	2517	1363	[gi 1196926]	[<i>Streptococcus mutans</i>] [unknown protein (<i>Streptococcus mutans</i>)]	54	30	1155
307	1	828	4	[gi 2293198]	[AF008220] Ytgp [Bacillus subtilis]	54	28	825
325	1	19	768	[gi 2182507]	[AE000083] Y41H [Rhizobium sp. NGR34]	54	37	750
332	2	898	590	[gi 1591815]	[<i>ADP-ribosylglycohydrolase (draG) (Methanococcus jannaschii)</i>]	54	32	309
385	4	240	479	[gi 530878]	amino acid feature: N-glycosylation sites, aa 41 .. 43, 46 .. 48, 51 .. 53, 72 .. 74, 107 .. 109, 128 .. 130, 132 .. 134, 158 .. 160, 163 .. 165; amino acid feature: Rod protein domain, aa 169 .. 340; amino acid feature: globular protein domain	54	49	240
7	25	19702	19493	[gnl PID e255111]	[<i>Bacillus subtilis</i>] [hypothetical protein [<i>Bacillus subtilis</i>]]	53	32	210
23	3	2497	2033	[gnl PID d102015]	[AB001488] SIMILAR TO <i>SALMONELLA TYPIMORIUM SLYY</i> GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. [<i>Bacillus subtilis</i>]	53	25	465
29	11	9042	10121	[gi 143331]	[<i>Bacillus subtilis</i>] [alkaline phosphatase regulatory protein [<i>Bacillus subtilis</i>]]	53	31	1080
33	3	1479	1009	[pir S1055 S106]	[<i>Pyrococcus woesei</i> (fragment)]	53	33	471
36	6	4583	5134	[gnl PID e316029]	[<i>Mycobacterium tuberculosis</i>] [alkaline phosphatase regulatory protein [<i>Bacillus subtilis</i>]]	53	30	552
38	14	8521	8898	[gi 580904]	[homologous to <i>E. coli</i> rrpA (<i>Bacillus subtilis</i>)]	53	30	378
52	7	7007	8686	[gi 1377831]	[<i>Bacillus subtilis</i>] [unknown [<i>Bacillus subtilis</i>]]	53	29	1680
54	17	17555	19564	[gi 666069]	[<i>Lactobacillus leichmannii</i>] [orf2 gene product [<i>Lactobacillus leichmannii</i>]]	53	36	2010
56	1	1	681	[gi 1592266]	[restriction modification system S subunit [<i>Methanococcus jannaschii</i>]]	53	32	681

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins-similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
57	10	9431	8487	gi 1788543	[AE000310] F381; Residues 1-121 are 100 pct identical to YOJL_ECOLI SH: P33944 (122 aa) and aa 152-351 are 100 pct identical to YOJK_ECOLI SW: P33943 [Escherichia coli]	53	31	945
61	1	429	4	gnl PID e236467	[Caenorhabditis elegans]	53	33	426
71	1	5772	4	gi 393394	[Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	53	33	5769
72	3	894	2840	gi 2293178	[AF008220] YscD [Bacillus subtilis]	53	27	1947
73	14	9793	9212	gi 1778556	[putative cobalamin synthesis protein [Escherichia coli]	53	32	582
88	7	5217	4342	gi 2098719	[putative fimbrial-associated protein [Actinomycetes naeslundii]	53	38	876
93	5	2395	1688	gi 563366	[gluconate oxidoreductase [Gluconobacter oxydans]	53	33	708
96	9	6632	7762	gi 517204	[ORF], putative 42 kDa protein [Streptococcus pyogenes]	53	42	1131
108	8	7629	8600	gi 149581	[maturation protein [Lactobacillus paracasei]]	53	32	972
128	1	6412	6972	gnl PID e317237	[unknown [Mycobacterium tuberculosis]]	53	36	561
128	12	8429	9253	gi 211070	[pentraxin fusion protein [Xenopus laevis]]	53	31	825
148	1	3	950	lpn A61607 A616	[probable hemolysin precursor - Streptococcus agalactiae (strain 74-160)]	53	36	948
163	2	2162	3022	gi 1755150	[nocturnin [Xenopus laevis]]	53	30	861
171	3	2304	2624	gi 1732200	[PTS permease for mannose subunit IIIPMan [Vibrio furnissii]]	53	32	321
182	5	3785	3051	gnl PID d100572	[unknown [Bacillus subtilis]]	53	35	735
209	3	2948	1935	gi 1778505	[ferric enterobactin transport protein [Escherichia coli]]	53	28	1014
218	5	3884	2406	gi 40162	[marE gene product [Bacillus subtilis]]	53	34	1479
250	3	473	790	gnl PID e324776	[YibH protein [Bacillus subtilis]]	53	30	318
275	1	1	1611	gnl PID d101314	[YqEW [Bacillus subtilis]]	53	35	1611
332	1	544	2	gi 409286	[bmtU [Bacillus subtilis]]	53	31	543
2	2	2543	3445	gnl PID e223879	[hypothetical protein [Bacillus subtilis]]	52	39	903
3	22	122402	123376	gi 38969	[lacF gene product [Agrobacterium radiobacter]]	52	35	252
5	3	8094	2356	gnl PID e324915	[IgA1 protease [Streptococcus sanguis]]	52	36	975
22	26	19961	20212	gi 152901	[ORF 3 [Spirochaeta aurantia]]	52	32	5739
22	31	23140	24666	gi 289262	[comE ORF3 [Bacillus subtilis]]	52	32	1527
27	6	5397	4801	gi 39573	[P20 (AA 1-178) [Bacillus licheniformis]]	52	35	597

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
35	10	8604	7357	gi 508241	putative O antigen transporter [Escherichia coli]	52	27	1248
45	4	4801	3662	gnl PID d102243	(AB00554) homologs are found in E. coli and H. influenzae; see SWISS_PROT ACC #: P42100 [Bacillus subtilis]	52	36	1140
48	18	11385	13726	gnl PID e205174	orf2 [Lactobacillus helveticus]	52	25	660
49	4	5321	5755	gi 2317740	[AF013987] nitrogen regulatory IIA protein [Vibrio cholerae]	52	19	435
54	4	2773	4668	gi 1500472	M. jannaschii predicted coding region MJ1577 [Methanococcus jannaschii]	52	36	1896
54	6	5250	4969	gi 12182453	[AB000079] Y410 [Rhizobium sp. NG1234]	52	40	282
66	6	8400	6955	gi 43140	TrkG protein [Escherichia coli]	52	30	1446
71	26	10659	131312	gnl PID e314993	unknown [Mycobacterium tuberculosis]	52	23	654
75	2	1673	1035	gnl PID d102271	[AB001683] FafA [Streptomyces sp.]	52	27	639
81	3	1439	2893	gnl PID e311458	rhamnulose kinase [Bacillus subtilis]	52	32	1455
81	8	4987	5781	gi 147403	mannose permease subunit II-P-Man [Escherichia coli]	52	37	795
83	21	20687	21853	gi 143365	phosphoribosyl aminoimidazole carboxylase II (PURK; ttg start codon) (Bacillus subtilis)	52	37	1167
86	6	5785	4592	gi 1276879	EpsF [Streptococcus thermophilus]	52	26	1194
86	20	19390	17861	gi 453844	ORF 3 [Schistosoma mansoni]	52	26	1530
96	13	10540	9659	gi 288299	ORF1 gene product [Bacillus megaterium]	52	33	882
111	1	2	2026	gi 148309	cytolysin B transport protein [Enterococcus faecalis]	52	27	2025
112	2	1457	2167	gi 471234	orf1 [Haemophilus influenzae]	52	33	711
118	3	2931	2365	bbs 151233	Mip=24 kDa macrophage infectivity potentiator protein [Legionella pneumophila] pneumophila, Philadelphia-1, Peptide, 184 aa] [Legionella pneumophila]	52	33	567
122	9	5646	5951	gi 8224	myosin heavy chain [Drosophila melanogaster]	52	36	306
122	11	6159	6374	gi 434025	dihydrofolate acetyltransferase [Pelobacter carbinolicus]	52	52	216
134	6	4880	6313	gi 153733	M protein trans-acting positive regulator [Streptococcus pyogenes]	52	43	1434
135	3	1238	2716	gnl PID e245024	unknown [Mycobacterium tuberculosis]	52	35	1479
141	3	1681	2319	gnl PID d100573	unknown (Bacillus subtilis)	52	32	639
161	4	2562	5024	gi 1146243	22.4% identity with Escherichia coli DNA-damage inducible protein ...; putative [Bacillus subtilis]	52	36	2463
173	2	968	183	gi 1215693	putative orf; GPF9_orf434 [Mycoplasma pneumoniae]	52	30	786

TABLE 2 *S. pneumoniae* - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
198	6	4400	3567	[gnl PID e333010	[hypothetical protein [Bacillus subtilis]	52	26	834
210	12	8844	9107	[gi 497647	[DNA gyrase subunit B [Mycoplasma genitalium]	52	38	264
214	10	5264	5431	[gi 550697	[envelope protein [Human immunodeficiency virus type 1]	52	36	168
225	1	15	884	[gi 1552773	[hypothetical [Escherichia coli]	52	34	870
230	1	39	362	[gnl PID d100582	[unknown [Bacillus subtilis]	52	28	324
287	1	871	2	[gnl PID e335028	[protease/peptidase [Mycobacterium leprae]	52	29	870
363	2	1305	4	[gi 393394	[Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	52	32	1302
23	2	2048	1173	[gnl PID e254973	[unknown [Mycobacterium tuberculosis]	51	30	876
29	3	742	1521	[gi 923900	[5'-methylthioadenosine phosphorylase [Sulfolobus solfataricus]	51	31	780
45	1	410	1597	[gi 1877429	[integrase [Streptococcus pyogenes phage T2]	51	32	1188
48	26	19227	18946	[gi 2314455	[AE000633] transcriptional regulator [tenA] [Helicobacter pylori]	51	33	282
73	5	4276	4016	[gi 47177	[alpha-D-1,4-glucosidase [Staphylococcus xylosus]	51	31	261
81	11	8935	12057	[gi 311070	[pentraxin fusion protein [Xenopus laevis]	51	31	3123
83	5	1195	1986	[gnl PID d103116	[Yqfi [Bacillus subtilis]	51	33	792
98	10	7531	8538	[gi 41500	[ORF 3 (AA 1-152); 38 kD (put. ftsX) [Escherichia coli]	51	28	1008
113	6	3908	5173	[gi 466882	[ppsl: B1496_C2_189 [Mycobacterium leprae]	51	27	1266
124	1	326	57	[gi 2191168	[AF007270] contains similarity to myosin heavy chain [Arabidopsis thaliana]	51	32	270
129	10	7286	6816	[gi 1046241	[orf14 [Bacteriophage HP1]	51	30	471
143	3	4963	3983	[gi 1254935	[probable copper-transporting atpase [Escherichia coli]	51	26	981
148	15	11359	10226	[gi 2293256	[AF008220] putative hippurate hydrolase [Bacillus subtilis]	51	36	1134
149	8	6003	7313	[gi 1633572	[Kaposi's sarcoma-associated herpes-like virus]	51	21	1311
151	9	12092	11550	[gnl PID e281380	[hypothetical 40.7 kd protein [Bacillus subtilis]	51	34	543
159	6	2555	3208	[gi 146944	[CMP-N-acetylneuraminic acid synthetase [Escherichia coli]	51	36	654
174	1	1797	4	[gi 1773166	[probable copper-transporting atpase [Escherichia coli]	51	28	1794
265	4	2231	1773	[gnl PID e256400	[anti-P.falciparum antigenic polypeptide [Saimiri sciureus]	51	18	459
277	2	643	1311	[gi S32915 S329	[pild protein - Neisseria gonorrhoeae	51	33	669

TABLE 2

S. pneumoniae – Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
350	1	890	3	[gi 290509]	[o307] [Escherichia coli]	51	30	888
363	4	1228	4455	[gi 1707247]	partial CDS [Caenorhabditis elegans]	51	23	3258
367	1	1701	4	[gi 393394]	[Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	51	32	1698
15	5	5174	4497	[gnl PID e58151]	[F3 [Bacillus subtilis]]	50	38	678
16	4	2220	2582	[gnl PID e323010]	[hypothetical protein [Bacillus subtilis]]	50	29	363
19	5	2591	4159	[gi 1552733]	similar to voltage-gated chloride channel protein [Escherichia coli]	50	30	1569
25	4	2701	1997	[gi 887849]	[ORE_f219 [Escherichia coli]]	50	27	705
35	1	211	417	[gnl PID e235697]	[unknown [Saccharomyces cerevisiae]]	50	33	207
39	4	3416	5152	[gnl PID d100974]	[unknown [Bacillus subtilis]]	50	27	1737
51	7	4000	5181	[gi 1592027]	[carbamoyl-phosphate synthase, pyrimidine-specific, large subunit [Methanococcus jannaschii]]	50	27	1182
51	9	7179	8303	[gi 1591847]	[type I restriction-modification enzyme, S subunit [Methanococcus jannaschii]]	50	28	1125
52	8	8740	9534	[gi 144297]	[acyl esterase (XynC) [Caldicellum saccharolyticum]]	50	34	795
52	16	16591	15770	[gi 2108229]	[basic surface protein [Lactobacillus fermentum]]	50	34	822
57	7	6031	6336	[gi 2272264]	[60S ribosomal protein L7B [Schizosaccharomyces pombe]]	50	40	306
71	23	29348	28383	[gnl PID d101328]	[YqjA [Bacillus subtilis]]	50	30	966
86	12	11155	10769	[gnl PID e324964]	[hypothetical protein [Bacillus subtilis]]	50	24	387
93	2	1205	330	[gi 1066016]	similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P2538 [Pyrococcus furiosus]	50	24	876
96	5	1673	2959	[gnl PID e32433]	[gamma-glutamylcysteine synthetase [Brassica juncea]]	50	29	1287
98	2	218	1171	[gi 151110]	[leucine-, isoleucine-, and valine-binding protein [Pseudomonas aeruginosa]]	50	30	954
103	4	3303	2785	[gi 154330]	[O-antigen ligase [Salmonella typhimurium]]	50	31	519
115	5	6480	5980	[gi 895747]	[putative cel operon regulator [Bacillus subtilis]]	50	26	501
129	111	7559	7305	[gi 1216475]	[skeletal muscle ryanodine receptor [Homo sapiens]]	50	32	255
129	113	8192	7965	[gi 152271]	[319-kDa protein [Rhizobium meliloti]]	50	30	228
151	5	7634	6819	[gi 40348]	[put. resolvase Tnp I (AA 1 - 284) [Bacillus thuringiensis]]	50	35	816
153	1	1	597	[gnl PID d102015]	[AB001488] SIMILAR TO NITROREDUCTASE. [Bacillus subtilis]	50	29	597

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
155	5	5986	5432	gi 1276880	EpaG [Streptococcus thermophilus]	50	28	555
160	9	7390	6323	gi 1786983	[AB00179] o331; 92 pct identical to the 333 aa hypothetical protein YBHE_ECOLI SW: PS2697; 26 pct identical (79aa) to 167 residues of the 373 aa protein MLE_TRICU SW: P46057; SW: PS2637 [Escherichia coli]	50	30	1068
163	6	7396	8091	gnl PID d101313	[Ygen] [Bacillus subtilis]	50	22	696
167	6	5232	3940	gi 413926	ipa-2r gene product [Bacillus subtilis]	50	27	1293
169	2	807	130	gnl PID e204540	[Bacteriophage Bastille]	50	35	678
171	5	3168	4025	gi 606080	[ORF_o290; Genolot suggests frameshift linking to o267, not found [Escherichia coli]]	50	27	858
210	11	8151	8414	gi 330038	[HRV 2 polyprotein [Human rhinovirus]	50	25	264
364	1	1538	135	gi 393396	[Tb-292 membrane associated protein [Trypanosoma brucei subgroup]	50	31	1404
10	7	5911	5090	gi 144859	[ORF_B [Clostridium perfringens]	49	24	822
26	5	10754	9768	gi 142440	[ATP-dependent nuclelease [Bacillus subtilis]	49	31	987
66	7	9777	8398	gi 414170	[trkA gene product [Methanoscarcina mazeii]	49	26	1380
77	6	5364	4648	gnl PID e285322	[RecX protein [Mycobacterium smegmatis]	49	28	717
82	13	12689	13249	gnl PID e255091	[hypothetical protein [Bacillus subtilis]	49	20	561
93	9	4866	4531	gi 40067	[X gene product [Bacillus sphaericus]	49	26	336
112	5	4019	4948	gi 1574380	[lic-1 operon protein (licB) [Haemophilus influenzae]	49	27	930
129	7	6058	4949	gnl PID e267587	[Unknown [Bacillus subtilis]	49	35	1110
135	5	3875	4438	gi 39573	[P20 (AA 1-178) [Bacillus licheniformis]	49	25	564
154	2	1423	1953	gnl PID d10102	[regulatory components of sensory transduction system [Synchocystis sp.]	49	29	531
156	5	2878	1637	gnl PID d101732	[hypothetical protein [Synchocystis sp.]	49	25	1242
173	5	3500	2940	gi 490324	[LORF X gene product [unidentified]	49	30	561
182	1	1057	2	gi 331002	[first methionine codon in the ECLF1 ORF [Saimiriine herpesvirus 2]	49	25	1056
192	6	5352	3667	gi 2394472	[AF024499] contains similarity to homeobox domains [Caenorhabditis elegans]	49	23	1686
253	4	1129	1350	gi 531116	[SIR4 protein [Saccharomyces cerevisiae]	49	23	222
277	1	600	136	gi 396844	[ORF (18 kDa) [Vibrio cholerae]	49	32	465
327	3	1435	887	gi 733524	[phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostelium discoideum]	49	24	549

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
365	3	1436	132	gi 393394	rb-291 membrane associated protein [Trypanosoma brucei subgroup]	49	31	1305
33	7	4461	3277	gi 145644	codes for a protein of unknown function [Escherichia coli]	48	26	1185
40	2	652	1776	gnl PID e20649	ornithine decarboxylase [Nicotiana tabacum]	48	29	1125
67	4	1377	2384	gi 1772652	2-keto-3-deoxygluconate kinase [Haloflexax alicantae]	48	30	1008
74	2	4269	3871	gi 2182678	[AE000101] Y4VJ [Rhizobium sp. NGR234]	48	27	399
81	2	1326	541	gi 153672	lactose repressor [Streptococcus mutans]	48	33	786
81	4	2981	3646	gi 146042	fuculose-1-phosphate aldolase (fucA) [Escherichia coli]	48	30	666
97	1	602	51	gi 153794	rgg [Streptococcus gordoni]	48	29	552
110	1	1	3132	gi 1381114	prtB gene product [Lactobacillus delbrueckii]	48	23	3132
131	5	2914	2147	gnl PID e183811	Acyl-ACP thioesterase [Brassica napus]	48	27	768
133	4	3494	2628	gnl PID e261988	putative ORF [Bacillus subtilis]	48	27	867
139	6	4231	4599	gi 1049388	ZK470_1 gene product [Caenorhabditis elegans]	48	23	369
139	8	5036	5665	gi 1022725	unknown [Staphylococcus haemolyticus]	48	29	630
140	12	11936	11007	gnl PID d102049	H. influenzae ribosomal protein alanine acetyltransferase; P44305 (189) [Bacillus subtilis]	48	27	930
146	9	5670	4654	gi 1591731	malvalonate kinase [Methanococcus jannaschii]	48	24	1017
161	3	1280	2374	gnl PID d101578	collagenase precursor (EC 3.4.-.-) [Escherichia coli]	48	24	1095
172	11	10581	11048	gnl PID d101132	hypothetical protein [Synechocystis sp.]	48	27	468
182	4	2930	2586	gi 40067	X gene product [Bacillus sphaericus]	48	37	345
210	15	10786	11196	sp P13940 LE29_-	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	48	30	411
214	12	6231	6482	gi 40389	non-toxic components [Clostridium botulinum]	48	26	252
221	1	704	3	gi 1573364	H. influenzae predicted coding region H10392 [Haemophilus influenzae]	48	27	702
227	2	647	3928	gi 1673693	(AE000005) Mycoplasma pneumoniae, C09_ort718 Protein [Mycoplasma pneumoniae]	48	30	3282
253	2	480	758	gnl PID e236697	unknown [Saccharomyces cerevisiae]	48	31	279
363	3	1874	1122	gi 18137	cgr-4 product [Chlamydomonas reinhardtii]	48	40	753
389	1	505	2	gi 18137	cgr-4 product [Chlamydomonas reinhardtii]	48	38	504
3	21	20879	22258	gnl PID e264778	putative maltose-binding protein [Streptomyces coelicolor]	47	33	1380

TABLE 2 *S. pneumoniae* – Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
6	4	4089	4658	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	47	23	570
15	3	3736	1760	gnl PID d10572	unknown [Bacillus subtilis]	47	25	1977
35	15	14516	13263	gi 1773351	CapsL [Staphylococcus aureus]	47	20	1254
51	6	3547	4002	pir A37024 A370	32K antigen precursor - Mycobacterium tuberculosis	47	38	456
55	8	10154	9273	gi 39848	U3 [Bacillus subtilis]	47	26	882
92	4	1753	3276	gnl PID e280611	[PCPC] Streptococcus pneumoniae	47	35	1324
127	9	5589	5386	gi 1786458	(AE000134) F120; This 120 aa orf is 76 pct identical (0 gaps) to 42 residues of an approx. 48 aa protein Y127_HAEIN SW: P43949 [Escherichia coli]	47	32	204
130	2	1232	1759	gnl PID e266555	unknown [Mycobacterium tuberculosis]	47	23	528
140	4	4951	3542	gnl PID d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtilis]	47	24	1410
151	4	6814	6200	gi 1522674	[M. jannaschii] predicted coding region MJCL41 [Methanococcus jannaschii]	47	27	615
157	3	803	1174	gnl PID d101320	Yqzg [Bacillus subtilis]	47	25	372
178	5	3267	2155	gi 2367190	(AE000390) o334; sequence change joins ORFs YgjR & YgjS from earlier version (YgjR_ECOLI SW: P42599 and YgjS_ECOLI SW: P42600) [Escherichia coli]	47	30	1113
273	1	2	1549	gnl PID e254973	autolysin sensor kinase [Bacillus subtilis]	47	32	1548
300	2	880	644	gi 1835755	zinc finger protein Png-1 [Mus musculus]	47	22	237
54	14	14182	12638	pir IS4369 S436	rofa protein - Streptococcus pyogenes	46	24	1345
88	1	2	1018	gnl PID e223891	xylose repressor [Aerococcus thermophilum]	46	27	1017
96	7	4553	5860	gnl PID d101652	ORF ID:O34745; similar to [SwissProt Accession Number P45272] [Escherichia coli]	46	23	1308
112	1	1127	3	gi 2209215	(AF004325) putative oligosaccharide repeat unit transporter [Streptococcus pneumoniae]	46	24	1125
122	13	7308	7982	gi 1054776	hr44 gene product [Homo sapiens]	46	34	675
127	14	9198	8125	gi 1469286	afua gene product [Actinobacillus pleuropneumoniae]	46	28	1074
132	4	7093	6197	gi 153794	rgg [Streptococcus gordonii]	46	26	897
140	8	8220	7723	gi 1235795	pullulanase [Thermoaerobacterium thermosulfurigenes]	46	21	498
140	9	9205	8315	gi 407878	leucine rich protein [Streptococcus equisimilis]	46	27	891

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start ID	Stop ID	match accession	match gene name	% sim	% ident	length (nt)
162	1	1	1125	gi 1143209	[ORF7; Method: conceptual translation supplied by author [Shigella sonnei]]	46	25	1125
199	1	1	585	gi 1947171	[gi 100299] No definition line found [Caenorhabditis elegans]	46	28	585
223	3	1971	1477	sp P02562 WYSS_	[MYOSIN HEAVY CHAIN, SKELETAL MUSCLE (FRAGMENTS)]	46	27	495
232	2	760	1608	gi 1016112	[ycf38 gene product [Cyanophora paradoxa]	46	28	849
292	1	687	220	gi 167374	[AE000011] Mycoplasma pneumoniae, Cytidine deaminase; similar to GenBank Accession Number C53312, from M. Pirum [Mycoplasma pneumoniae]	46	29	468
30	8	5843	6472	gi 1788049	[AE000270] o235; This 235 aa orf is 29 pct identical (10 gaps) to 198 residues of an approx. 216 aa protein YTXB_BACSU SW: P06568 [Escherichia coli]	45	24	630
48	6	3461	3868	gi 722339	[unknown [Acetobacter xylinum]	45	29	408
60	1	307	2	gi 1699079	coded for by C. elegans cDNA yk41h4.3; coded for by C. elegans cDNA yk14g10.5; coded for by C. elegans cDNA yk153g5.5; coded for by C. elegans cDNA yk59a10.5; coded for by C. elegans cDNA yk41h4.5; coded for by C. elegans cDNA cm20g10; coded	45	36	306
72	16	14371	14874	gi 11321900	[NADH dehydrogenase (ubiquinone) [Artemia franciscana]]	45	25	504
99	7	9158	7941	gi 152192	mutation causes a succinoglycan-minus phenotype; ExQ is a transmembrane protein; third gene of the exoYFQ operon; putative [Rhizobium meliloti]	45	28	1218
127	12	7046	6606	bbs 153689	[HitB=iron utilization protein [Haemophilus influenzae, type b, DL42, NTHI TN106, Peptide, 506 aa] [Haemophilus influenzae]	45	24	441
137	5	1561	2619	gi 472221	[v-type Na+ATPase [Enterococcus hirae]]	45	33	1059
209	1	774	364	gi 304141	[restriction endonuclease beta subunit [Bacillus coagulans]]	45	28	411
314	1	604	2	gi 1480457	[latex allergen [Hevea brasiliensis]]	45	31	603
20	18	19782	20288	gi 433942	[lactococcus lactis]	44	26	507
87	8	7030	6452	gi 537207	[ORF_E277 [Escherichia coli]]	44	26	579
166	5	4909	4037	gnl PID e3028082	[membrane transport protein [Bacillus subtilis]]	44	25	873
247	1	818	75	gnl PID d100718	[ORF1 (Bacillus sp.)]	44	20	744
32	3	1885	3876	gi 2351768	[PsPA [Streptococcus pneumoniae]]	43	24	1992
36	17	15467	18256	gi 1045739	[M. genitalium predicted coding region MG054 [Mycoplasma genitalium]]	43	26	2790
54	15	14656	17343	gi 520541	[penicillin-binding proteins 1A and 1B [Bacillus subtilis]]	43	27	2688
67	2	696	1352	gi 536934	[yjCA gene product [Escherichia coli]]	43	29	657
139	2	2416	338	gi 396400	[similar to eukaryotic Na+/H+ exchangers [Escherichia coli]]	43	24	2079

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start ID	Stop (nt)	match accession	match gene name	% sim	% ident	length (nt)
298	1	3	809	gi 413972	ipa-48r gene product [Bacillus subtilis]	43	24	807
387	1	47	427	gi 2315652	[AF016669] No definition line found [Caenorhabditis elegans]	43	30	381
185	4	4221	3127	gi 2182399	[AE00073] Y4fP [Rhizobium sp. NGR244]	41	25	1095
340	1	582	70	gnl PID le218681	CDP-diacylglycerol synthetase [Arabidopsis thaliana]	41	20	513
363	6	4205	1914	gi 1256742	R27-2 protein [Trypanosoma cruzi]	41	27	2292
368	2	2	943	gi 21783	[LRR] glutinin (AA 1-356) [Triticum aestivum]	41	34	942
155	3	4489	2861	gi 42023	member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein [Escherichia coli]	40	18	1629
365	2	95	1438	gi 1633572	Herpesvirus saimiri ORF13 homolog [Kaposi's sarcoma-associated herpes-like virus]	40	21	1344
1	3	2979	3860	gnl PID d101908	hypothetical protein [Synchocystis sp.]	39	26	882
1	5	3814	4647	gnl PID d101961	hypothetical protein [Synchocystis sp.]	39	19	834
26	6	14035	110724	gi 142439	ATP-dependent nuclease [Bacillus subtilis]	38	20	3312
47	1	3	4916	gi 632349	[NF-180 [Petromyzon marinus]	36	23	4914

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
1	4	3428	3009
1	6	4611	4964
3	2	818	994
3	3	1182	1574
3	7	5382	6497
3	25	125046	125396
3	26	125625	126317
6	2	1519	1689
6	14	12875	12618
6	15	13215	12841
6	18	15977	15390
7	12	9955	9419
7	13	10161	9910
8	6	3915	4280
9	9	6024	5704
10	8	6909	6298
10	9	7136	6888
10	11	7968	7672
12	1	1140	4
12	3	1779	1456
14	2	1913	1434
16	1	1	243
16	5	5675	3087
17	1	324	34
17	3	1451	1050
17	9	4830	4465
20	14	14544	15833

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
21	3	3359	2589
21	5	4802	4482
22	21	17099	17362
22	25	19467	19382
22	33	25540	25764
22	35	26388	26218
22	36	26382	27572
23	7	6655	6032
23	8	7132	6653
24	1	36	518
25	5	3009	2641
27	4	4819	4223
27	5	4789	4956
28	5	3017	1797
28	8	4272	3850
28	10	5028	4597
28	11	5746	5072
29	7	5596	4919
29	8	5039	5518
29	9	5595	8207
30	9	6511	6263
31	6	2664	2344
32	5	5203	5538
33	8	5327	4668
34	10	8024	7740
34	12	9360	8641
34	13	9667	9377

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)
34	18	13104	111902
35	11	9688	8588
35	12	11073	9670
36	2	334	1041
36	12	11120	10893
36	13	10993	11388
36	15	12172	14595
38	7	4269	4577
38	8	4480	5001
38	10	5517	5711
38	17	10732	11376
40	3	1728	3143
43	1	172	5
43	7	8884	8732
43	8	9568	9071
44	4	4831	6831
45	3	3204	3665
46	4	3875	3468
46	7	6074	7081
48	5	3196	3582
48	8	4579	4229
48	11	9323	8922
48	16	13042	12494
48	20	16342	15764
48	24	17971	18351
48	30	21979	21776
49	1	209	3

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start ID (nt)	Stop ID (nt)
50	4	3307	2672
51	5	3239	3598
52	11	12146	12883
54	7	5588	5187
54	8	6013	5459
54	9	6004	6210
54	16	17685	17506
55	9	110515	10123
55	12	11947	12141
56	3	935	1387
56	4	1496	1939
57	3	1624	2130
57	4	2100	2301
58	6	7541	7335
59	1	2	430
59	4	2416	2736
59	5	2734	3063
59	8	4743	5349
59	9	5459	5929
60	6	5741	6451
61	3	2395	1772
61	5	3316	3176
64	1	2722	2
66	2	1180	3147
66	8	9082	9495
67	3	1343	1182
69	2	1165	980

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
70	5	4059	3922
70	6	4215	4057
70	9	5268	5504
71	15	120351	121901
71	16	121859	122338
71	19	126204	127556
72	9	8458	8081
73	4	3815	4216
73	6	4214	4582
73	7	4369	4773
73	10	7183	6428
73	15	9462	9668
76	1	524	195
76	2	867	535
76	11	8502	9210
80	6	7924	8109
81	1	244	2
81	10	6631	8931
83	4	1872	1150
83	17	16810	16460
84	3	4464	2929
86	2	2147	1092
86	4	3606	2875
86	19	116767	17114
87	5	5326	5000
87	7	6459	6001
87	9	7224	7006

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
87	18	17930	17670
87	19	18275	17928
88	2	1619	1840
88	4	2711	2878
88	9	6252	6016
89	3	2634	1621
89	9	7371	6868
90	2	899	2395
90	3	1143	952
91	3	2959	3141
91	4	3170	3691
91	6	4253	4573
93	1	391	2
93	6	2648	2379
93	8	4533	3712
96	1	3	182
96	2	904	632
96	3	1407	1147
96	4	1250	1420
97	9	7043	6753
99	15	18522	18692
99	17	19717	19541
100	2	4094	1980
103	1	48	299
103	6	4924	4373
104	5	6142	6735
105	7	6098	6517

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
106	1	1	363
106	10	9832	10212
108	1	2	268
111	3	3417	3788
111	4	3809	4606
115	10	10854	10438
116	3	2873	2121
118	2	2274	1357
122	4	2698	2333
122	10	5858	6199
122	12	6301	7416
124	2	346	630
128	4	2544	3368
129	1	689	102
129	2	1011	724
129	8	6454	6056
129	9	6540	6277
129	12	7809	7821
131	3	1433	756
131	10	5912	5673
134	11	11638	11209
135	2	625	1140
136	4	2913	3030
137	2	325	134
139	12	14027	14521
139	13	14840	14532
139	14	15363	14875

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start ID (nt)	Stop ID (nt)
140	20	19822	20838
142	1	1	285
146	3	760	479
146	4	1149	778
146	7	3604	2885
146	13	8223	9401
146	14	9399	10676
146	15	10052	9750
147	7	7488	7276
147	9	8913	8647
149	3	2557	2880
148	7	5298	4765
149	1	2	1936
150	2	1355	579
150	3	2556	1909
153	3	2061	2642
154	3	1953	1741
155	2	2181	1411
156	8	4550	4311
157	1	37	294
159	2	631	780
159	4	1384	1722
159	7	3271	4017
161	2	1332	1018
165	3	5535	4945
166	6	5406	4972

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
	ID	(Int)	(nt)
167	9	6075	6395
169	5	2828	3205
170	7	6485	6243
170	8	6964	6362
170	9	7303	6952
170	11	8790	7906
171	9	7150	7476
172	5	2298	1948
173	4	2913	2677
175	2	659	835
175	3	893	1789
176	2	1487	546
176	3	2200	1466
177	9	4686	4925
177	10	4923	5177
177	11	5111	5347
177	13	7396	8703
178	6	3452	3724
181	5	1853	2473
182	2	2112	1102
182	3	2617	2006
183	2	2126	2320
185	5	4683	4219
185	6	4846	4634
187	4	2940	3557
188	4	3686	4363
188	5	4183	4821

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
188	6	5882	6493
189	5	3143	2844
189	9	5956	5564
191	1	618	4
191	11	10357	10001
192	3	2861	2268
192	4	3081	2878
192	7	6800	5331
193	3	997	839
194	4	2315	2127
195	5	6249	4543
195	6	6620	6231
196	2	1553	1849
197	1	1	861
198	9	6844	6644
200	5	5329	5769
200	6	5993	6595
204	5	3914	3276
205	2	447	1709
209	4	2038	2460
209	5	2458	2682
210	10	7370	8230
210	13	9029	10441
210	14	10439	10705
214	5	2581	2330
214	9	5065	5277
214	11	5996	5754

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)
217	2	541	194
218	2	914	1432
218	3	1430	1972
218	6	3639	3821
219	1	458	39
220	1	869	600
223	4	2617	1964
227	1	1	510
234	4	1539	1312
234	6	2116	1838
235	1	52	312
235	2	310	687
238	1	660	64
246	1	1	270
248	1	3	362
248	2	443	1222
254	3	2789	792
258	2	1179	1616
260	3	1770	2123
263	1	653	177
263	4	2244	1900
263	5	3569	2973
266	1	1	342
266	2	177	1022
270	2	1124	1681
272	1	857	186
275	2	1684	2295

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

contig	ORF ID	Start (nt)	Stop (nt)
278	1	2	406
282	1	714	391
282	4	1463	1134
287	2	1119	826
288	1	540	4
289	1	684	4
291	5	1589	1898
293	2	2539	2925
294	1	21	608
296	2	494	700
296	3	670	843
302	1	261	530
309	3	559	350
310	2	249	1889
316	2	2087	1818
317	2	1048	584
318	2	313	777
319	3	477	133
327	2	912	607
331	1	1	549
333	1	2	535
333	2	465	82
333	3	127	342
341	1	1	705
345	2	895	701
346	2	750	199
349	1	1	198

TABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)
350	2	81	413
355	1	44	973
358	2	636	448
360	2	948	628
364	2	1639	1265
378	1	345	1004
379	2	683	510
381	1	109	693
385	1	150	4
385	2	269	30

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch
Gil H. Choi
Patrick S. Dillon
Craig A. Rosen
Steven C. Barash
Michael R. Fannon
Brian A. Dougherty

(ii) TITLE OF INVENTION: *Streptococcus pneumoniae Polynucleotides and Sequences*

(iii) NUMBER OF SEQUENCES: **391**

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Human Genome Sciences, Inc.
(B) STREET: 9410 Key West Avenue
(C) CITY: Rockville
(D) STATE: Maryland
(E) COUNTRY: USA
(F) ZIP: 20850

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
(B) COMPUTER: HP Vectra 486/33
(C) OPERATING SYSTEM: MSDOS version 6.2
(D) SOFTWARE: ASCII Text

(vi) CURRENT APPLICATION DATA:

149

(A) APPLICATION NUMBER:

(B) FILING DATE:

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER:

(B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Brookes, A. Anders

(B) REGISTRATION NUMBER: 36,373

(C) REFERENCE/DOCKET NUMBER: PB340P1

(vi) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (301) 309-8504

(B) TELEFAX: (301) 309-8512

150

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5625 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA CCAGCTACAG CTAAAGGAAC TTACGTAACA AACTTGACTA TCACAAC TAC	60
TCAAGGTGTT GGTATCAAAG TTGACGTAAA CTCAC TTTAA TCAGTAGTTA AAGTAATGTA	120
AAAAAGTTGA AGACGCTATG TCTCAACTTT TTTTGATGTA CGACGGGCAT GTTGTATAGT	180
AGATGTGTAC TATTCTAGTT TCAATCTACT ATAGTAGCTC AGAACAGTCGGT ACTTAAACGT	240
GCTATATCAA AACCAGTCCT TGAAAACGT GGACTGGTTT CGTGT TGGGA TTATTACCTT	300
GAACGACATG CGTTAAAAGT TAGTTGAAACC GCCGTATGCC GAACGGACGT ACGGTGGTGT	360
GAGAGGGGCT AGAGATTATC CCCTACTCGA TTTGAAATC TACTGGAATG AATCTGGAAT	420
ACTCCATCGA GCTTTCTAAT ACTCTTCGAA AATCTCTTCA AACCA CGTCA ACGTGCCTT	480
GCCGTGCGTA TGGTTACTGA CTTCGTCAGT TCTATCCACA ACCTCAAAAC AGTGT TGGGA	540
GCTGACTACG TCAGTTCCAT CTACAACCTC AAAACAGTGT TTTGAGCAAC CTGCGGCTAG	600
TTTCCTAGTT TGCTCTTGG TTTTCATTGA GTATAACACA TTGTTAGAAG TTGGTTAAA	660
TTTCCTAATC AGTTTGTCA CATTACCTT CGATATATTA TATCCCCTAG TTAAGGTTGG	720
TCATACAGAT GATTATAGTC ATGGAGCCGT AAAACTTAGT GTTCTTTAG TTGACAAAGA	780
TGCCATGAAA AAAATATTTG TAACTGTAAT AGGATATTTT GAAATAAAATA TAGATGAAAA	840
TATCACCGAT ATTCTATACG TAAATGGTAC TGCTATTCTT TATCTTTATT TACGTTCAAT	900
TGTTTCAATA GTTTCGGCAA TTGATAGCAG TGAAGCAATG TTGCTACCTA TCATTAATGT	960
TTTAGAGTTA CTAGATAAAAT CTCAACCTTT TGAAGAAGAA TAATTATTA GCTCACTAAA	1020
TTGAGGGTAA GGAAAAGTAA AAGCAGTAAG AAAATGTCT TGCATTATAC AGCAACCTT	1080
TGGGAATGAG TGGATGGATT GAATAAAATT TGATTAAGAG TGGATGATTT ATCTGTAGAT	1140
TATTATTGGA CAGTTAGTCT TGAAGTAGTC TAAGAATTAG GTTATAATCA GTAGAACCT	1200
TGCTAATAAT GAGGAGGTTA GTTTATGTAT AGTAGACTGA ATCTAAAATA GTACGAAACA	1260
ATTGCTAAAA CATTTATAGA AATTAATTTT ACTTTCCCAA TCGATTTGTT CTCATCTTAT	1320
TTCAATCCGC TATATATTAT GGTATCGAAT CTTCATCAGA ATGATAAAAT TAATCAATTG	1380
ATATCTGATT ACAAACAGAA TATGAAAGCT TTTTATATCA CTATTGAAAA ATTTATACGA	1440

151

GATGATGAAA	GCCTTAAGTG	TTATTTTATA	AAGGTTATT	CAAGTCGTT	CAAGGTAACA	1500
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAA	1560
AAATTTATG	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCT	ACATGTACGA	1620
AAGAGGTGGT	CGAGTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	1680
ACTTCTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	1740
ATATTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAACACC	GCCCTCTGGT	1800
GAGAAGATGA	GTAGGTTGGT	AATTTAAACT	ATTAACAGA	ATTTTGATT	AAAAGTATTA	1860
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCCAA	CGCTTGCATT	TCGTTTTTA	1920
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	1980
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCCT	ACGATAGGGA	2040
GATAGATATG	GCAATGATAG	AAGTGGAAACA	TCTTCAGAAA	ATTTTGTA	AGACTGTTAA	2100
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCTAT	CCTGAAAAGC	AGACCTTTGA	2160
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	2220
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTGA	AACCAACATC	2280
TGGTTTTGTC	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	2340
TATTGGCGTA	GTCTTGGAC	AACGCCACCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	2400
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCTATA	ACCGTATGGA	2460
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	2520
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	2580
TTTTTTAGAT	GAGCCGACCA	TTGGTTGG	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	2640
AATTACTCAG	ATCAATCAAG	AGGAAGAAC	TACCATTCTT	TTGACCACTC	ACGATTGAG	2700
TGATATTGAG	CAACTTTGTG	ATCGGTTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTGAA	2760
TGGAACGGTG	AGCCAACCTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAAC	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTTGA	2880
TAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
TATCAAGCAA	ACCCTGTCTG	ATTTGAAAT	CCCGGATTG	AAGATGGTGG	ATACGGATAT	3000
TGAGGATATT	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAA	TTGTGGAGAC	3060
GTTATAAAC	CTTTATCAAT	GCAGGGGTT	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
TTCTCTATCG	GATTGGCGAT	GTCATGGGGG	CTTTTGTGGC	CTTTTATCTC	TGGAAGGCTG	3180

152

TCTTTGATTTC	TTCGCAAGAG	TCTTTGATTC	AGGGCTTCAG	TATGGCGGAT	ATCACCCCTCT	3240
ACATCATCAT	GAGTTTGTG	ACCAATCTTC	TGACTAGATC	CGATTCGTCC	TTTATGATTG	3300
GGGAGGAGGT	CAAGGATGGC	TCCATTATCA	TGCCTTGTT	GCGACCAGTG	CATTTGCGG	3360
CCTCCTATCT	TTTCACCGAG	CTTGGTTCCA	AGTGGTTGAT	TTTTATCAGC	GTTGGCCTTC	3420
CATTTTAAG	TGTCATTGTC	TTGATGAAAAA	TCATATCGGG	TCAAGGTATT	GTAGAGGTGC	3480
TAGGATTAAC	TGTCATTAT	CTTTTAGCT	TAACGCTCGC	CTATCTGATT	AACTTTTCT	3540
TTAATATTTG	CTTTGGATT	TCAGCCTTG	TGTTTAAAAAA	TCTTTGGGT	TCCAACCTAC	3600
TTAAGACTTC	CATACTGGCT	TTTATGTCGG	GGAGTTTGAT	TCCCTTGGCA	TTTTTCCAA	3660
AGGTTGTTTC	AGATATTCTC	TCCTTTTG	CTTTTCATC	CTTGATTAT	ACTCCAGTTA	3720
TGATCATTGT	TGGAAAATAC	GATGCCAGTC	AGATTCTTC	GGCACTCCTT	TTGCAGTTCT	3780
TCTGGCTCTT	AGTGTGTTG	GGATTGTCTC	AGTTAATTG	GAAACGGGTC	CAGTCCTTTA	3840
TCACCATTCA	AGGAGGTTAG	TATGAAAAAA	TATCAACGAA	TGCATCTGAT	TTTATCAGA	3900
CAATACATCA	AACAAATCAT	GGAATATAAG	GTAGATTTG	TGGTTGGTGT	CTTGGGAGTC	3960
TTTCTGACTC	AAGGCTTGAA	TCTCTGTT	CTCAATGTCA	TCTTCAACA	TATTCCATT	4020
CTAGAAGGCT	GGACCTTTCA	AGAGATAGCT	TTCATTTATG	GATTTCCCTT	GATTCCAAG	4080
GGAATGGACC	ATCTCTTTT	TGACAATCTC	TGGGCACTAG	GGCAACGCCT	AGTCCGAAA	4140
GGGGAGTTG	ACAAGTATCT	GACTCGTCCC	ATCAATCCTC	TCTTCACAT	CCTAGTTGAA	4200
ACCTTCAGA	TTGATGCCTT	GGGTGAACTC	TTAGTCGGT	GTATTTATT	GGGAACAACA	4260
GTGACCAGCA	TTGTTGGAC	TCTTCAAAA	TTCCCTGCTTT	TCCTAGTTG	TATTCC	4320
GCGACCTTGA	TTTATACTTC	TCTTAAATC	GCAACAGCCA	GTATCGCCTT	TTGGACTAAG	4380
CAGTCAGGCC	CCATGATTTA	CATCTCTAT	ATGTTCAATG	ACTTTGCTAA	GTATCCGATT	4440
TCTATTTACA	ATTCTCTTCT	TCGTTGGTT	ATTAGCTTTA	TCGTGCCTT	CGCCTTACA	4500
GCCTACTATC	CAGCTAGCTA	TTTCTTACAG	GAAAAGGATG	TGTTCTTTAA	CGTAGGAGGT	4560
TTGATGTTGA	TTTCTCTGGT	TTTCTTGT	ATTTCCTTA	AACTTGGGA	TAAGGGCTTA	4620
GATTCCCTAGC	AAAGTGGGG	TTCGTAAAG	CTAAAGTAAG	ACTAAAATCA	AGAAAGAAC	4680
TTATGATGTT	TGTAATTGAA	GAAGTCAAGG	ATGAAAATCA	AAAAAAAGGCA	GTTGTCGCTG	4740
AGGTTTGAA	GGATTTGCCA	GAATGGTTG	GAATCCCAGA	AAGCACACAA	GCCTATATAG	4800
AAGGAACCAC	GACACTGCAA	GTTCGGACCG	CCTATCAGGA	GAGTGATTG	ACTAGATTG	4860
TAAGCTTATC	CTATTCGAGT	GAAGATTGTG	CAGAGATTGA	TTGTCTCGC	GTAAAAAAGC	4920
TTATCAAGGT	AGAAAAATTG	GGAGCCAATT	GCTTGCTACT	TTAGAGAGTG	AAGCTCGTAA	4980

153

AAAAGTTGGT TATCTGCAGG TCAAAACAGT GGCAGAAGGT TCTAATAAAG ATTATGATCG	5040
AACAAATGAC TTTTATCGAG GTCTTGGCTT TAAAAAGTTA GAGATTTTC CTCAACTATG	5100
GAATCCGCAA AATCCTGTGTC AGATTTGAT TAAAAAGCTT GAATAATATT ACTTGACATC	5160
TATTCTCAGA GTGCTATACT GTAAGTGTAA TCGCCGATTT AGCTTAGTTG GTAGAGCAAG	5220
GCACTCGTAA AGCCTAGGTT ATAGGTAGAT AAACGACTGA GGATTTGAAA AAATAGATAG	5280
GTAGAAGATA ACCGTTAACG CTTACTCTTA GCGGTTATTT ATATTGTTA ATAGCGCTAA	5340
TATTTTATCA ATTATGCCCTG TTTTCGTGTT TCTGGTAGTT GTTCAAGTTT ATTGCTACTA	5400
TTTTTGATGG TATGAATGTG CTTATAATGT ATCCCGGTTA ACGAAAGTTT TGGACTTATA	5460
CTCTTCGAAA ATCTCTCAA ACCACGTCAA CGTCGCCTTG CCGTGCCTAT GGTTATGACT	5520
TCGTCAGTTC TATCCACAAC CTCAAAACAG TGTTTTGAGT GACTACGTCA GTTCCATCTA	5580
CAACCTCAAAC ACACGTGTTT GCCCAATCTG CGGCTAGTTT CCTAG	5625

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7571 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCTCCAGCT TTCCTTGCAGA GTTGGCCATG TTGTGTCTTT AAGAAGTCTA AAAATATCTC	60
CAATAAAACG CATCGCTCTC TCCTATCTCG TTTCTCTGTG TGTAGTGTAC TTGCCACAAT	120
GCTTACAAAA TTTATTTACT TCTAGTCGTG TAGGCTTGAG GTTTCGCTG ATCTTGATTG	180
AATAGTTCT CGAACACCAA ACCGCACAAG CTAGGCTTGC TTTTTTTAGT GCCATAACGC	240
CTCCCATCTTA TCCATTATAA CAAGAAAGCT AGGCTTGAC AAGCATCTTA GCGAAATAGA	300
TTGACTATCG AATCCCATAAT TGTTTGAGCC TTTTCCTTAA TCTTCGCATC TGAGATAGCC	360
CGGCTAGCCT CATCTACTAG ACTTTGCGCA CGCCCTCGAA TATCAGACAA ATTATCATCT	420
GTCTGGCTAT TATCATTGGT TTGTACTTGT CTTTTGTAT TGGCTGGTGC AATTCCATT	480
TGCTTATAAG CATTTCACAC CGTAAAGGTA CTTCCGGCG TATAAGGTA AATGGTATTG	540
GCAATGTTTC TAAAGACATG AGCTGCACCG TTTGAAGTAG AGCCAGCTAG ATAGGGTTT	600
TCATCAGTGG TCGGAAAGCC AAGCCAGTGG CTAATCACTA CATCCGGAGT ATAACCAATT	660
ACCCACTGGT CACTTGTGTA CTCCGGATTG AAAACTGCTT CAGTTGTTCC AGTTTCCCT	720

154

GCCATGACAT	AGTCTGCAGG	CGATGAACTA	ATACCGGTAC	CGTTGGTGAA	AGTCACCAAC	780
ATCATACTGG	TCATCTTGTC	AGCTACAGAC	TTATCAATCA	CCCGTTTTG	TGAATTNTTA	840
TGACTCGCAA	TAACTTGTCC	ACTAGCATT	TCAATTCTAC	TAATAAAATG	AGCTTCAGGC	900
ATTAAACCTT	CATTTGCCAA	GGCGCGTAT	GCTTGAGCCA	TTTGAAGAGG	GTTGGTTCA	960
ACACCGCTTC	CCAAGGGCAGC	ACCAAGAACCA	CGGTCGACCT	TTTCCATGTT	GAGTCCGAAT	1020
TTTTCGCTG	CCTCAAAAGC	CTTGTGACCA	CCCAAATCAT	TAACAGTGGC	AACAGCAGGT	1080
AGATTAAGCG	ATTCTGCCAA	GGCTTGATAC	ATAGGAACCT	CTCGACTCGT	TTTGATCCCT	1140
GCATAGTTAT	CAACCTTATA	GCTGTACATAC	TGCATGGTAT	GGTTATCCAA	CTGCTTATTTC	1200
AAAGCCCAGC	TTGCTTCAAC	TGCTGGCGTA	TAACAACTA	AAGGCTTAAT	TGTAGAACCA	1260
GGACTACGCT	TTGATTGGGT	TGCATAGTTG	AAATTCCGGA	ATCCAGTTTT	ATCATTGTCA	1320
GCAACTTGAC	CGACAACCTCC	ACGAACCTCCC	CCTGTTTCG	GTTCGAGGGC	TACACTTCCT	1380
GATTGAGCAA	ACGTTCCATC	CTCTGCCCTC	GGAAATAGCG	ATGTGTTTC	ATAAACAAATC	1440
TGCATATTTG	CTTGGTAGTT	TTGGTCCAGC	TCTGTGAAA	TGCGGTAGCC	ATTATTGACA	1500
ATCTCTTCCT	CTGTTAGATT	ATACCTGGAA	ACAGCTTCAT	TAACCACCGC	ATCAAAATAA	1560
GAGGGGTAAC	GGTAATCTGA	GATTTTCCT	TCATACTTAT	CGTGCAATTG	CGAAGTCATA	1620
TCAACTTCAG	CAGCTTTGGT	TTCTGGTTT	TTATCAATAT	ATCCTGCTGC	AACCATATTC	1680
TGCAAGACAG	TATCGCGCCG	ATTAGTAGAA	TCTTCTACGG	AATTCAAGGG	ATTATACAGT	1740
TCCGGCCCT	TGAGCATCCC	TGCCAGAGTC	GCAGCTTGAT	CCAGACTCAC	TTCTGATGCA	1800
GAAACTCCAA	AGTATTCTT	ACTCGCATCT	TCTACACCCC	ACACACCATT	TCCAAAATAA	1860
GCGTTGTTAA	GGTACATGGT	TAGAATTTCG	TCCTTACTAT	ATTTTTGCT	TAATTCTAAG	1920
GCAAGGAAAA	ATTCTTCGC	TTTCTCTCA	ACAGTTTGAT	CCTGCGATAA	ATAGGCAGTT	1980
TTAGGCCAGCT	GTTGGGTAAT	GGTAGAGCCA	CCACCTGAAC	GTCCAGCAGT	GACAATAGCC	2040
AAGAAAAAAC	GGCCATAGTT	AATCCCGTCA	TTTTTATAGA	AAGAACGGTC	TTCTGTCGCA	2100
ATAACAGCAT	TCTGCAAGTT	TTTACTGATG	TCAGTCAGCT	CAACATAGGT	TCCCTTTGA	2160
CCAGACAAGG	CACCAGCCTC	TTTTCTTCA	CGGTCAAAAA	TAAGAGTCGG	AGTTTTCAAG	2220
GCATTTGCA	AATCATTGAC	ATTGGTCGAC	TTGGCTACAG	CAAACAAATA	GATTCCAAC	2280
AGCAAGCCTG	CACTCAAACC	TAGTATAAGG	ATAATCTTG	TTAGATGATA	ACGACGCCAG	2340
AATTTTCGAA	TCGGACCTAC	TTGGGCTAAT	TTTTTCGAT	CACTACGAGA	GCGACGTAAG	2400
ATAGTAGAAT	CAGAGTCCTC	TAGTTCACTT	TTTCTTTTT	TAAGAAAGAGA	AAGAAATTTC	2460
TCAAATAATT	TATCTAATTT	CATGCGTTA	TTTATCATC	TTCATCATAG	GAAGACAAGA	2520

155

ATTTAGCTAT	TTCCTATCCA	AATAAGGGCTT	TTTTGTTAC	AATATCTGTA	TGCAATTAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTTT	GAGAATCAAG	AAACATATTT	TGATAAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTGGCCAGT	TGACTTTGA	2760
CGAGGAAGAT	TATTCCAAA	AGACGATCCC	TTGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAAC	GAAATTGCC	TTCTTAACCA	TGTCAGTACC	TATGTTGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTGCCA	AAAATCCTT	3000
TATCCTGCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GAATTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGGCGAAC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCCTTCAA	ATACATTTGA	3420
AAAAGAATT	AAAAGAATG	GATGATCGTG	TCATCCATT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTCTA	TCAACTCAAG	AATTATTTAG	CAATTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTCGTTGT	CGTACCATGA	TACAACTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTGAG	TTGCGTCAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTG	3720
TTTGAAGCTG	CTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTGTGCGAGA	TCCGTCAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTG	CAGCACCAAGT	TGAGTTAGGA	3900
ACGATGTTG	CAGCACCAAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATT	GGTCACCAAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AAACACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTAG	CTCCACCTT	AAGGTGTTT	4200
TCAGCTGCTT	CTTTCTTAGC	AAAGAAACCA	GTAGCTTCAA	GAACGATTTC	TACACCGTCA	4260

156

GTAGCCCAGT CGATTTGTT C TGGATCACGT TCAGCAGAAA CTTTGATGAA TTTACCGTTA	4320
ACTTCAAATC CACCTTCTTT AACTCAACA GTACCGTCGA AACGACCTTG AGTTGTGTCG	4380
TATTTCAACA AGTGTGCAAG CATAACTGGA TCTGTAAGGT CGTTGATGCG TGTAACCTCA	4440
ACACCTTCTA CGTTTGGAT ACGACGGAAA GCAAGACGAC CGATACGTCC GAAACCGTTA	4500
ATACCAAATT TAACTACCAT TAGTGATTTC CTCCATTATGA AAATCATGAA ATTTTATTG	4560
TGAAAAGAGT AACTTGAATC ACTACAAATC ACCTTCAAC AAACCTATTA TACAACTATT	4620
TGAGTTGAAT TGCAAGTATG GCCATTGTTT TTCTATGTTA GTTTCTTTT AAGACTGTAA	4680
ACCAAGGAAT CCCTTACTAT TCATAGCATA ACGATTCTAT AGGATCCATT TTACTAATCT	4740
TACGCGCCGG GAAGTAGGCT GAGACATAAC CAAGTAATAG AGCGAAAAGT AGAGTTCTA	4800
AAACAGATAA AAGATTTAAT TTAAAAACCT TAGTGATGGA TGGGTAAAAG TGACTTACAA	4860
TCGCATTCCG CAAACTTCCC ACCCTTGTG CAACCAAAAA TGCCAGCAGC AAGGCGATGC	4920
CTACAATCCA GATAGCCTCG TAAATAAAAA TTCCCTTGAC ATCACGATTC TGATAACCAA	4980
CTGCTTCAT GACACCTATT TCCTTGGAAC GTTGATGAT ATTGATGTAA ATAATGATAC	5040
CAATCATAAC CGCTGCTACC ACAATAGCTT GTGATGAAAG CACAATCAAT AATCCCTGAA	5100
TAACACGAAT AAAGGTAATC ACAATATCAA GAACTCTCTG TTGAGAAAGC ACAGTATACT	5160
TCTTATTTTT CTGTAATTCT TCTGTTACTA CTTTTGTCGTG TGATGGATCT TTGAGTTCCA	5220
AGATAAAATA AGATACAGCT TTCGTAAATC CAGCCTCTTT CAAAATCGTT TCCATTGAT	5280
GAGACAGCAT GAAACTGTTG CTGTCCTCCA TGTCATCTTC ATCATTGATT ACACGTACAA	5340
TCTTCGTTTG AAATTGAGCA ATCTTACTAG TTTCGGCAGC ACTTTCTACA ATGCTGGCTG	5400
AGACTGATTT GCCAATAAGA TCATTAGCTG TCAAATTTTT TCCTGTCGTG TCATTCCAAT	5460
TTTTTAGTAA ACTGCTTGGGA ATCGTTAAC CCGTTCATT TGTATCAGTA TAGAGGGATC	5520
CAGCCAACAC TTTGTCCGTC TCATTATTAC TAACAGAGAT ACTTGTATCA TCATAAAGAC	5580
TCACTACTTG AGCATAAGAA GGCATCGTT GACTCAGATC CATTCTTGC CCATCTATAG	5640
TAATATTTGA CATGTTCATC CCAAAAGGAC TCTCCAATA TTTAATAGCT TCTTCCCAA	5700
CTGTATCCGT GATATATAGT CAATTGAAAC AAGAGCAGGA TAAAAAAGCC TCGTAAAAGG	5760
TATTGCAACT TGGTAATACC TTTTGAGGT GCTTTTGAT ATGAGCCCAT GTTTCTCAA	5820
TAGGATTGTA CTCAGGGCAG TAGGGAGGAA GAGGTAAAAG TTTATGCCCA AACTCTCGC	5880
ATAAAAGTTC TAGCTTCCCC ATTCTATGGA ATCTTACATT ATCCATAATA ATAACCGATG	5940
GTTGTTTAA TGTTGGTAAG AGAAAATTCT GAAACCAAGC TTCAAAAAG TCGCTCGTCA	6000
TCGTCTCTTC GTAAGTCATT GGAGCGATTA ATTCAACCATT TGTTAGACCT GCAACCAAAG	6060

157

AAATCCTCTG ATATCTTCTT CCAGATACTT TGCCCTTTAT TAATTGACCT TTTAATGAGC	6120
GACCATAATTC TCGATAAAAA TAAGTATCGA ATCCTGTTTC GTCAATCTAA ACAGGTGCTA	6180
GGTGCTTTAA ACTATTTAAA TTCTTAAGAA ATAAGGCTAC TTTTTCTGGG TCTTGGTCAT	6240
AGTAGGTGTG GTTCTTTTT CGAGTGTAGC CCATAGCTTT GAGCGTATAG TGGATGGTAG	6300
TTGGATGACA GCCAAATTCA GAAGCTATTT CAGTCAAATA AGCGTCTGGA TTGTCAGTAA	6360
GATAGTTTT AAGTCTATCT CTATCAACCT TTCTGGTTT TATTCTTTT ACTTGGTGGT	6420
TTAGCTCTCC TGTTTCTCT TTTAGCTTTA ACCAGCCATA AATGGTATTA CGTGAGATTT	6480
GGAAAACGTG TGATGCTTCT GTTATACTAC CTGTTCGCTC ACAATAAGAG AGAACTTTTT	6540
TACGAAAATC TATTGAATAT GCCATAAAAA GATTATACCA CATTGTGTAC TATTTTGGT	6600
TCATTTACT ATATTTGAAG AGGCCCTTAA ACTATCTGAC ATAAAACCTG TTCTAGAGGA	6660
AAGACATCCT TTAAAAACTT AGTTTATTTT ACAACTTAGA CATCAAGGTA GGTTAACCCC	6720
TTCATGGAAA AATCAAGACT CTTAGCACTA TGGGTTAAC TACCACTGGA GACGTAATCA	6780
ATCGCTAAAC CACGAAAACG GCTAATAGTG GTCATATCAA TATTTCCAGA ACATTCAATC	6840
CGAGAACGTC CTGCAATTAG GGTAATGGCC TGTTCAATCT GTTCCAATGA CATATTATCC	6900
AACATGATAA TATCAGCACCG CGCCGCCGCA GCTTCTTCGG CAGCAGCAAG GCTTTCCACT	6960
TCCACCTCGA CCATTTTCAC AAAAGGGGCA TAGGCACGCG CTTGAGGAAT TGCCTTTGA	7020
ACACTACCTA CTGCCGCAAT GTGATTGTCT TTTAGCAGGA TAGCATCTGA TAAATTAAAG	7080
CGATGATTAT AGCCACCGCC AACTCTCACG GCATATTCT CAAAAAGACG TAAATTAGGA	7140
GTAGTTTTC GAGTATCAA TACCTTAATG CAATCATCGC CTAAGGCTTC TACATAAGCA	7200
GCTGTCATCG AAGCAATCCC TGATAAATGT TGTAAAAAAT TCAAGGCAAC GCGTTCACAT	7260
GTAAAGAGAC TTCTCACCGA GCCTATGATT TCTAAAACCA AATGCCACT AGTCAAACGA	7320
TCCCCATCCT TAAATTGATG AGGATTCTGG AAGGTCACCT CGGCATCAA TAGGGTAAAA	7380
ACCCTTGAA AAACGGTTAG CCCCGCTAAA ACACCAGCTT CCTTGGCAA AAGCGACACC	7440
TTGGCTTGGC CATGATGATC AAAAATGGCA TTGGTACTGT AATCTTCGGA ATGAACATCT	7500
TCTCGCAAGG CTGCTTCAA TGTATCATCT ATTTGAAAAG GGGTAAATC AGTTGAAATG	7560
ATTGACATCA C	7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26385 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TTTGCTAGTG	GCTTAAATTC	TTCAGGAAAA	TCAGGCGTAT	CTAAAAGTCG	TGTCGTTTT	60
GTTCATCTA	TATAAAGACT	TCCTGCTCCC	CCTACAACTA	GAAAACGTGT	CTGTGTTCCA	120
GCAAGAAGCT	GATTAAATAG	TTCGATTGAT	TTGCTGTGGA	GCGGTAGCGT	ATCTGGTGT	180
TAAGCACCAA	ACGCTGAAAT	AACAGCATCA	AATCCAGTAA	GATCATCTT	TGTCAACTCA	240
AATAAAATCTT	TTTTAATAAT	AGACTCAGCT	TGACTTTTGT	TTTCAGAACG	AACAATAGCC	300
GTТАCTTCAT	GTCCTCGTTT	GACTGCTTCT	TCAACAATTG	CTTTCCCCGC	TTGTCCATT	360
GCTGCAATAA	CTGCTAGTTT	CATTTTTAT	ACCTCTCTTG	TTGTAATTAT	TTTAGTTACA	420
GAAATTGTGA	CACTCTTAAT	AATCAATGTC	AATAGTCTTG	CTTAATTATT	ATCAAAATAT	480
TTCTACCAAG	AAAACTAACC	ATGATTCTAG	TGAAAAAAA	TCTTCTTTGT	CAACAAATTT	540
ACTTTCTTGT	TTTAAACATG	CTATAATAAT	CATAGCAAGA	GATCTAAGTT	GTCTGTTTT	600
TTAAACGAG	GTGATTATCA	TGCGTAGATT	CTATTCCCAT	CTCCCCCTACT	ATCTGGTCAT	660
ATTATTCTTT	TATTGGCCAC	TTTATGAGTT	GTTCTTACTA	GTTGTTCTG	ACCCCCTTAC	720
ACTCAAGGGA	CTCTATATAA	ACAATCTCT	CTTCTTTACA	CCTCTGGTAA	TCTTGATTGT	780
ATCGTTACTC	TATAGCTACC	GTTCCTCGTTT	CTCACTTTGA	TGGTTAGTTG	GTAACGGACT	840
GCTCTTTAC	TTTACTATCA	TAACCTTGG	TGAGTTTATA	CTAATTTACT	TGCTAATCTA	900
TGAAACAGTT	GCTCTGGTCG	GCATGGATTC	TGGTATTAGC	ATCAAGCATA	TTCTACAAAA	960
AATGAAAAAC	AAAAAACTTT	CACAAAATCC	TTGAAAAATC	TCACAATCAT	GCTATAATAA	1020
TCCATAGAGA	CAAGTCACTT	AGTCCTTTC	TACTAGAGAG	TGCGTGGTTG	CTGGAAACGC	1080
ATAGGAAGTC	TAAACTGATA	CTACTCTTGA	GTTTTTTATG	AAAACATAAA	ACGGTGGCCA	1140
CGTTAGAGCC	GATCAGAGGT	GTCCCTCTCT	TTTGAGGTAC	ATAAATGAAG	GTGGAACCAC	1200
GTTGCGACGT	CCTTCGAGG	ATGTCGCATT	TTTTTATTAG	GATACTAATT	ATGGAGTTGC	1260
AAGAATTAGT	GGAGCGCAGT	TGGGCAATCC	GACAAGCTTA	TCACGAACTG	GAAGTTAAC	1320
ATCATGATTC	CAAGTGGACG	GTAGAAGAAG	ACCTCTGGC	TTTATCTAAT	GATATTGGAA	1380
ATTCCAACG	ACTGGTGATG	ACAAAGCAAG	GACGCTACTA	TGATGAAACA	CCCTACACAC	1440
TGGAACAAAA	ACTTTCAAGA	AATATCTGGT	GGCTATTAGA	ACTTTCTCAA	CGTTGGATA	1500
TAGACATTCT	GACGGAAATG	GAAAACCTCC	TCTCTGATAA	AGAAAAGCAA	TTGAACGTTA	1560
GGACTTGGAA	GTAGTCTGCT	GATAAAAAT	CAATGCTTAG	AAACTATGAA	ATAATAAAAA	1620

159

AGGAGAACAT	CATGATTAAC	ATTACTTCC	CAGATGGCGC	TGTCGTGAA	TTCGAATCTG	1680	
GCGTAACAAC	TTTGAAATT	GCCCAATCTA	TCAGCAATT	CCTAGCTAAA	AAAGCCTTGG	1740	
CTGGTAAATT	CAACGGAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800	
TCGAAATTGT	GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCAC	TCAGCAGCTC	1860	
ACTTGTTCGC	CCAAGCAGCT	CGTCGTCTT	TCCCAGACAT	TCAC	TTGGGA	1920	
CCATCGAAGA	TGGTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980	
ACCTTCCTCG	TATCGAAGAA	GAAATGAAA	AAATCGTCAA	AGAAAAC	TCATCTATT	2040	
GTAAGAAGT	GACTAAAGAC	GAGGCACGTG	AAATCTCAA	AAATGAC	CCT TACAAGTTGG	2100	
AATTGATTGA	AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160	
ATGTAGACCT	CTGCCGTGGA	CCTCACGTT	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220	
TTCTCCATGT	AGCTGGTGCG	TACTGGCGTG	GAAACACGCGA	CAACGCTATG	ATGCAACGTA	2280	
TCTACGGTAC	AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTAC	CTCAA ATGCGTGAAG	2340	
AAGCTAAGGA	ACGTGAC	ACAC	CGTAAAC	CTG GTAAAGAGCT	TGAC	CTT ATGATTCAC	2400
AAGAAGTGGG	ACAAGGTTG	CCATTCTGGT	TGCCAATGG	TGCGACTATC	CGTCGTGAAT	2460	
TGGAACGCTA	CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520	
CACTTGCTTC	TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCAT	TAC CAAGACA	2580	
TGTTCCCAAC	CATGGACATG	GGTGACGGGG	AAGAATTG	CTTCTGCTCA	ATGAACTGTC	2640	
CGCACCA	CCAA	GGT	GGTAAAC	AAACACC	ATG CCGTA	2700	
TCGCTGAAAT	CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCA	GGCCTCAAC	2760	
GTGTACGTGA	AATGTC	ACTC	ACCGACGGTC	ACCTATT	CGT TACTCCAGAA	2820	
AAGAATTCCA	ACGTGCC	TT CAGTGATTA	TCGATGTTA	TGAAGACTTC	AACTTGACTG	2880	
ACTACCGCTT	CCGCCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940	
ATGAGATGTG	GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGCGTGG	3000	
ACTACTTTGA	AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060	
AAACTGCC	TGGAAAAGAA	GAAACCTTT	CTACTATCCA	ACTTGATT	TC TTGATGCCAG	3120	
AACGCTTCGA	CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180	
ACCGTGGGGT	TATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240	
GGGCCTTCCC	AACATGGCTG	GCACCA	CACCA	AGTAACC	CATCCCAGTA	3300	
AACACGTGGA	CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360	

160

ACGTAGATGA GCGCAATGAA AAAATGCAGT TCAAGATCCG TGCTTCACAA ACCAGCAAGA	3420
TTCCTTACCA ATTAATTGTT GGAGACAAAG AAATGGAAGA CGAAACAGTC AACGTTCGTC	3480
GCTACGGCCA AAAAGAAACA CAAACTGTCT CAGTTGATAA TTTTGTTCAA GCTATCCTAG	3540
CTGATATCGC CAACAAATCA CGCGTTGAGA ATAAGAGTC TAGCATAAAA GCCTCCAATC	3600
TGGAGGCTTT TTCTCATCTA TTTTACTCA AGGACTAAGT TCACTTGAGC AAACTGAATC	3660
CGCACTGTGCG TTCCTTTCC GACCTCAGAC TCGATACGAA TCTGGTGCCTC CAGTTCTTCA	3720
GAAATTTCT TAGATAGATA AAGGCCAAGT CCAGAGGACT GCTGGGTCAA ACGGCCATTG	3780
TATCCTGAAA AGCCACGTTCA AAATACTCGG AGGACATCAC TGTTTTTAT CCCGATTCCC	3840
GTATCTTGAA TACAAAGCTC TTGGTCATCC ATATAAATCT CCAGACCACC TTCTGGTG	3900
TACTTGAGAC TGTTTGAGAT GATTGCTCA ATAACCACTA GCAGCCACTT TTTATCCGTC	3960
ACGATTCTT TATCAAGGTC ATGTAGATTG ACATTTAACG CTTTTGAAT AAAGAAAAGA	4020
GCATATTAC GAATTATTC CTTGACCAAG TCCTCAATTT GAACCTGCTT TAAGACCAA	4080
TCATCATGGA AACTTTCTAA ACGCAGGTAC TGTAACACTA GGTTGGTATA GGAGTCGATT	4140
TTGAAAATTCT CCTGTTCTAG CTGCTGCTTC AGTTGGCGGT CGACCACTTC TGCAACTAAG	4200
AGTTGACTGG CTGCAATGGG GGTCTTTATC TGATGGACCC ACAAGGTATA GTAATCCAGC	4260
AAATCCGTCA GTTTTCTTTC TGCTTTGAC CTCTGCTGAT AGAGTTCCAT CTCACCGCCT	4320
TCTAATTTT CTGCTAAAGC TATTTCACAA GGAGACTTGG CTTCCCTCTC TCCATAGAGA	4380
AGTTCCCTGGC GATAGACCTG CGTTCCACC AATATGTCCC AAGTAAAAAA TAATATGGTT	4440
ACAAAGCAAC ACAAGAAGAA AAAGTAGAGG AAGTAAATTC CTAGACTGGC AAATAAAAC	4500
TGAAAGAGTA AGACAAGAAA TGCCAAAGAA AGCAGATAGA TAAAAAGACG ACTACGGGAG	4560
CGCAGATAGG CTAGAAAAAA TTGTTCCAA TCAAGCATGC TTCAATCCGT ACCCTATTCC	4620
TTCTTGTC TCGATAAACCTC CTACCAATCC CTGCTCCTCC AACTTTTAC GCAAACGAGC	4680
CACATTGACA GAGAGGGTAT TATCATCAAT GAAAAAGTCA CTGTTCCAAA GTTCCCGCAT	4740
CAGGTCGTCA CGTGCTACGA TGTTGCCTGC ATGCTAAAT AACACGCGTA AAATCTGGAA	4800
TTCATTCTTG GTCAAATTCA AGACTTGCCC TTGATAATGT AAATCCATGG ATTTGGTATT	4860
GAGGATAACA CCAGCATATT CCAGCAAACT CTCATCACGC CCAAACTCAT AGGAACGACG	4920
CAACAAGCCC TGAACCTTAG CTAAAAGAAC CTGCTGGTCA AAAGGCTTGG TCACAAAGTC	4980
ATCCGCCCTTCC ATATTGATTG CCATGACAAT ATCCATAGCC TGGTCTCTCG AAGAAAGAAA	5040
CATGATAGGT ACCTTGAAAGA TCTTGCGGAT TTCTGACAC CAGTGATAAC CATTAACAA	5100
GGGCAACCCA ATATCCATGA GGACCAAGATG AGGTTCCGAC TGAACAAATA GACTCAAAC	5160

161

TTCCATAAAG TCTTCTACCA GGACCACCTTC AAATCCCCAT TCAGAGAGCA TTTTCCAAT	5220
CTGTTGACGA ATGACCTGAT CATCTTCTAT TAATAAAATC TTGTGCATGC GCTTCTCCTT	5280
TTCCATTATT ATAACAGATT TTTCCATGCT AGATGGTCTG AAAACTGAATT TGAAATAGCC	5340
TGTTTTAGC CAGTACAAAC AGGCTATGCT ACTAGCTAAT TTGAGGGAAA TTTGCTAAGA	5400
TAAATAAAAA GAAAGGAGCT CTTATGCCA ATATTTTG A CTATCTGAA GATGTCGCAT	5460
ATGATTCTTA TTACGACCTT CCCTGAAATG AGTTAGACAT TCTAACCTTA ATAGAAATCA	5520
CCTACCTCTC CTTTGATAAT CTGGTCTCCA CACTTCCTCA ACGTCTTTA GATCTAGCAC	5580
CTCAGGTTCC AAGAGATCCC ACCATGCTTA CTAGCAAAAA TCGCCTCAA TTATTAGATG	5640
AATTGGCTCA ACACAAGCGC TTCAGAAATT GCAAACTCTC CCATTTATC AACGACATCG	5700
ACCCCTGAACG GCAAAAGCAA TTTGCGGCTA TGACTTATCG TGTCAGCCTC GATACCTATC	5760
TGATTGTCTT TCGTGGGACA GATGACAGTA TCATTGGCTG GAAGGAAGAT TTCCACCTGA	5820
CCTATATGAA GGAAATTCCCT GCTCAAAAGC ACGCCCTTCG CTATTTAAAG AACTTTTTG	5880
CCCATCATCC TAAGCAAAAG GTTATTCTAG CTGGGCATTC CAAGGGAGGA AATCTCGCTA	5940
TCTATGCTGC TAGCCAAATT GAGCAAAGTT TGCAAAATCA GATCACAGCA GTTTATACAT	6000
TTGATGCACC TGGTCTCCAT CAAGAATTGA CACAGACTGC GGGTTATCAA AGGATAATGG	6060
ATAGAAGCAA GATATTCACTT CCACAAGGTT CCATTATCGG TATGATGCTG GAAATCCCTG	6120
CTCACCAAAAT CATCGTTCAAG AGTACTGCC TGGGTGGCAT CGCCCGAC GATACCTTTA	6180
GTTGGCAGAT TGAGGACAAG CACTTCGTCC AACTGGATAA GACCAACAGT GATAGCCAGC	6240
AAAGTAGACAC AACCTTTAAA GAATGGGTGG CCACAGTCCC TGACGAAGAA CTTCAGCTCT	6300
ACTTCGACCT CTTCTTTGGC ACTATTCTTG ATGCTGGTAT TAGCTCTATC AATGACTTGG	6360
CTTCCTTAAA GGCCTTGAA TACATTCACTC ATCTCTTGT CCAAGCTCAA TCCCTCACTC	6420
CAGAAGAAAG AGAAACCTTG GGTGCCCTTA CCCAGTTATT GATTGATACT CGTTACCAGG	6480
CATGGAAAAAA TAGATAATAC TCTTGAAAAT TAAATGTATA CAAAACAAAA GACCTAGAAT	6540
ACATACTTTC ATGTGCATTC TAAGTCTTTT TAAATAGAAT CTAATAGTCA ATAAAAATCA	6600
AAGAGCATTG AGAGATAATG GGGCTTGGAA CGTCCCTCTC GCTTCAACAA AATGACCCCA	6660
TTATAGATTTA AAAAGATGCC ACTTAGAAAA AGCAAAAAAG GAAGTAAGAC AAAGGCAAAT	6720
ATATAAAAAG CTAACTGAAC ATTCTCGTAT CCATTTTAT AAAAAGGTA GGATAGATAA	6780
AAATAACTTG AAATGAGGGAA TAATAAAAAT AATACTGGAT TCCACAAACT TCTATTATCC	6840
TTCCAAAATG AACTATAAA GGCTAATACA ATTCCCTATAA CGAGATACAT TTCTTACTCC	6900

162

TTTAATAGCT ACATTTTATC ATAATTATCC AAAGAAAAAA GAGGGCATTT ATCCCCTTTA	6960
ATCCTTCATC TGACTCTCTG CATCGGCCAC GACTTTTCT AGACTGGTTT GACCAAGTTC	7020
TGCCTCCATA GTCAACTGAA TTCTCTCCAA TTTTGATCC AAAACATCAT GAATATGAGC	7080
TCCTACAGGG CAATTGGAT TCGGATTGTC ATGGAAACTG AAGAGTTGAC CTGTCTTACC	7140
AAGACATTG ACCGCCTGAT AAACATCTAA AAGACTAATA TCCTTAAGGT CCTTGACAAT	7200
CTCTGTTCCG CCCGTTCCAC GCGCTACTGA AATCAGCTCT GCCTTCTTCA ACTGGGACAA	7260
GATCTTCTG ATAATGACAG GATTGACCCC GACACTAGCA GCCAGAAAAT CACTGGTCAC	7320
CTTGCTTTCC TTCCCCTCGA GGGCAATGAT TATCAGCATA TGAGTCGCAA TGGTAAATCT	7380
ACTTGGAAATT TGCATCCCTCT TCTCCTTTT ACGAGGCTAC CCTGCCTCTA CTCTTCTTTT	7440
TCTATTATTA TACCCTTTT AGTTGTAATG TCAATCGTTA CCACCTTCA ACCAGTCGTC	7500
TAACCTCCGA TCGCAGCCCT CTTCTGAGC CAATTCTCTC AAAAATTCCCT GATGATGAGT	7560
ATGGTGGATC CCATTGACCA GACTTTCTA GTAAACCTCA AAATAGGGAA GTCTCAGGTC	7620
TTTAGCCAGC TGCAATTCACT CGTGTACATC GTAGTCTACC CGTCGGAAGT CCATATCTAC	7680
CAGGCCCTTG TCATCAAACCT CCAAAATCAT ATACTGGGCC CGCAAGTCCT TCCGTAGCTG	7740
AGCGTCCAAA AAGAAAGGTT GGCCAATCGA ACCCGGATTG ACAATCAATT GCCCACCAGT	7800
CCCGTAACGA AGCAACTGCT GGTGAATATG TCCATAAACAC GCAATATCAC AGGGAGGATG	7860
AGTCACCAAG CGGTCAAACCT CCTCTTGTGTT GCCAGTATGA ATCAACTCTC GCCCCCAGTT	7920
CTTATCAGGC AGATGATGGC TAATTCCCAC CGTCAAATCC CCAAACGTAC GATGAATTG	7980
AAGAGGTTGA TTGTGGAGCA CTTCAATTTC TTCTAGGGAA ATTTCTCTA AAACATACTG	8040
GCACTGGCCG AAGAGATAGC GTTGACTGGG GCGAGTACTG TCCAATTCCCT TACGGACACC	8100
ATGCCAAAGA CTGTCTTCCC AGTTCCCAA AACTCTAGCC GTAATCGTA GTTGATCCAA	8160
CAAGTCCAAA ATCCTTCTAC GCCCTGTCCC TGGCATGAGA ATATCTCCCA AAAGCCAGTA	8220
TTCATCCACT CCTATCTGCC GAGCATCTGC CAAACAGCC TCCAAGGCGG TGGTATTTC	8280
ATGAATATCT GAAAAGAGAG CTATTTCTGT CATATCCATC TCCTCGTTT TTCTCTTGCA	8340
ATAAGTATAA CATAAAAAGT CACAGCTAGA GAAATCTAGC TTTTTTGAT ATACTAGATA	8400
AAGATATTAG ACAAGAGGAA ACGAATGACC CCAAACAAAG AAGACTATCT AAAATGTATT	8460
TATGAAATTG GCATAGACCT GCATAAGATT ACCAACAGG AAATTGCGGC TCGCATGCAA	8520
GTCTCTCCCC CTGCCGTAAC TGAAATGATC AACGAATGA AAAGTAAAAA TCTCATCCTA	8580
AAGGACAAGG AATGTGGCTA TCTACTGACT GACCTCGGTC TCAAACCTGGT CTCTGAGCTC	8640
TATCGTAAGC ACCGCTTGAT TGAAGTTTT CTAGTCATC ATTTAGACTA TACAAGTGAC	8700

CAGATTCAACG	AGGAAGCTGA	GGTCTTGAA	CACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC	TGCTAGGTTT	CCCTAAAACC	TGCCCCCACG	GGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC	TCGTTGAAAT	CAATAACCTC	CCACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA	CTCGGGTGCA	CGATAGTTT	GACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG	GTGACCAGCT	CCAAGTCAAG	CAGTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA	ACGACGAGGA	TTTACAAGTG	AATATGGACA	TTGAAAACA	ACTCTATGTC	9060
GAGAAAATCA	ACTAATTCT	CAAGTCCCCT	ACCAACCCCTG	AAAGTTTAT	TTTGGCTCTT	9120
TGTCAACTGT	AGTGGGTTGA	AGTCAGCTAA	GCTCGAGAAA	GGACAAAATT	TGTCCCTTCT	9180
TTTTTGATAT	TCAGAGCGAT	AAAAATCCGT	TTTTGAAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC	GCTTGATAAG	TTTGATGAGA	TTATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT	GAAGGGCGTT	GACAATCTT	TCTTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA	TAGGATGAAC	CTGCTTCTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTCTCC	9420
GGTTTCTTAT	TCTGAAAGTG	AAACAGCAAG	AGTTGATAGA	GCTGATAGTG	GTGTTCAAG	9480
TCTTGTGAAT	AGCTCAAAAG	CTTGTCTAAA	ATCTCTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT	AAAATCGCTT	ATCACTCAGT	TTACGGCTAT	CCTGTTGTAT	GAGTTCCAG	9600
TAGCGCTTGA	TAGCCTGTGA	TTCATGGGAT	TTTCGATCCA	ATTGGTTCAT	ATTGAAACA	9660
CGCACACGAC	TCATAGCACG	GCTAAGATGT	TGTACAATGT	GAAAGCGATC	CAACACGATT	9720
TTAGCATTG	GGAGTGAAC	AGTCTGGAG	ACTGTTTCAG	CCTGAGCCTA	CAAATTGAA	9780
AGCGAAGCTG	TTTAGCCAAG	TCATAGTAAG	GACTAACAT	ATCCATCGTA	ATGATTTCA	9840
CTTGACAACG	AACGGCTCTA	TCGTAGCGAA	GAAAGTGATT	TCGGATGACA	GCTTGTGTT	9900
TGCCCTCAAG	AACAGTGATA	ATATTAAGAT	TATCAAATC	TTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT	GAAGGCATAC	TCATCCAAG	ACATAATCTT	TGGAAGCCGA	AAAAAATCAT	10020
GCTCAAAGTG	AAAGTCATTG	AGCTTGCAGA	TGACAGTTGA	AGTTGAAATG	GCCAGCTGAT	10080
GGGCAATATC	AGTCATAGAA	ATTTTTCAA	TTAACTTTG	AGCAATYTTT	TGGTTGATGA	10140
TACGAGGGAT	TTGGTGATTT	TTCTTTACCA	GGGGAGTCTC	AGCAACCATC	ATTTTTGAAC	10200
AGTGATAGCA	CTTGAAACGA	CGCTTTCTAA	GGAGAAATTCT	AGAAGGCATA	CCAGTCGTT	10260
CAAGATAAGG	AATTTAGAA	GGTTTTGAA	AGTCATATTT	CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA	TGGGGCGTCG	TAGTCCAGTT	TGGCGATGAT	TTCTTGTGT	GTATCCTTAT	10380
TGATGATGTC	TAAAATCTGG	ATATTAGGGT	CTTTAATGTC	TAGTAATT	GTGATAAAAT	10440

164

GTAATTGTTTC	CATATGATTC	TTTCTAATGA	GTTGTTTGTC	CGCTTTTCAT	TATAGGTCA	10500
ATGGGACTTT	TTTTCTACAA	AAAAATAGGC	TCCATAATAT	CTATAGTGG	TTTACCCACT	10560
ACAAATATTA	TAGAACCGTA	AAAATAGAAG	GAGATAGCAG	GTTTCAAGC	CTGCTATCTT	10620
TTTTTGATGA	CATTCAGGCT	GATACGAAAT	CATAAGAGGT	CTGAAACTAC	TTTCAGAGTA	10680
GTCTGTTCTA	AAAAATATAG	TAGATTGAAA	TAAGATGTGA	ACAACCTAT	CAGGAAAGTC	10740
AAATTAAATT	ATAGAATTAT	TTTAGCAGTC	AAGGTGTA	GTTATAGATT	CAATATATTA	10800
TATGACTATT	AACCTTGTCT	TCTCCTAAAA	TTGACTTTCT	TGTTTCTTA	TCTTGTCCAC	10860
TCGAAACAAAG	TATTGTAAGA	ATTTGATTAT	TTTGAAAGT	ACTTTTAATA	TACTTGATAT	10920
AGTTAAAAAA	GATTGAAAC	AAATTCCAA	ATTAGAAAAA	GACTTGAAAT	ACTAAAAAAA	10980
AAAAAGTATA	CTCTAATTGA	AAACGGTAAC	AAAACAAATT	TAGAGAATGA	AATATAGAGT	11040
ATTTCTCTCT	AAAAAGTTTT	TGGTGAACG	AGATGTAGAA	AGGAGATT	GCCAAAGAGT	11100
CTATTAGTGC	TAGAATAATA	GATTAGAATT	ATTTTAGAAA	AACGAAGTGA	GCAGCTTATA	11160
AATTCAAGTC	CCCAAATAGA	TTCATACTAG	TATCTTTGC	AAAAAATAAA	GGCGCACTTC	11220
CITCATGAAT	ATCAATTCA	TCTATAAGGA	AGCTAGCTAA	TTGAACAAAC	TTATTATT	11280
TGTTTGTCCG	TAGAAAAATC	AGACCTCCTT	GTGAAGATTG	AGGAGATACT	TAATGAAAAT	11340
CAAAGAAGAA	ACTAGCAAGC	TAGTAGCAGA	TTGCCAAAA	CACCGCTTTG	AGGTTGTAGA	11400
TAAGACTGAC	CTATATAATC	CAAGGTGAAG	CGACTGTGGT	TTGAAGAGAT	TTCAAAAGAG	11460
TATAGGCTAG	AGAGTAGTGT	TTTTATGTCC	TTCTAGTAGA	AAATGCTAGA	CAGAAGAATG	11520
GGGAACCTGG	ATAGGAAAAA	TAGATTGAGA	AAGGAGGTTA	GAAGAGATGA	TTATTACAAA	11580
AATTAGCCGT	TTAGGAACCTT	ATGTGGGAGT	AAATCCACAT	TTTGCAACAT	TAATAGATTT	11640
TCTAGAAAAA	ACAGGACTAG	AAAATTAAC	AGAAGGTTCG	ATTGCTATCG	ATGGTAATCG	11700
ATTGTTGGG	AATTGCTTTA	CTTATCTAGC	AGATGGTC	GCAGGGCTT	TCTTGAAAC	11760
CCACCAAAAA	TATTTGGATA	TTCATTTAGT	TTTGGAAAAC	GAAGAAGCCA	TGGCTGTTAC	11820
ATCGCCGGAA	AATGTAAGCG	TTACCCAAGA	ATATGATGAA	GAGAAAGATA	TTGAATTATA	11880
CACAGGGAAA	GTGGAACAGT	TGGTCATTT	GAGAGCTGGC	GAATGCCTCA	TCACCTTTCC	11940
AGAAGATT	CATCAACCCA	AGGTTCGTAT	AAATGATGAA	CCTGTGAAA	AAGTTGTCTT	12000
TAAAGTTGCG	ATTTCTTAAT	GTAGAAAGAG	AAAACGATG	AAAAAAATGA	GAAAGTTTTT	12060
ATGTCTAGCT	GGAATTGCGC	TAGCGGCTGT	TGCCTTGGTA	GCTTGTTCAG	AAAAAAAAGA	12120
AGCTACAACT	AGTACTGAAAC	CACCAACAGA	ATTATCTGGT	GAGATTACAA	TGTGGCACTC	12180
CTTTACTCAA	GGACCCCGTT	TAGAAAGTAT	TCAAAATCA	GCAGATGCTT	TCATGCAAA	12240

165

GCATCCAAA ACGAAAATCA AGATTGAAAC ATTTCTTGG AATGACTTCT ATACTAAATG	12300
GAECTACAGGT TTAGCAAATG GAAATGTGCC AGATATCAGT ACAGCTCTTC CTAACCAAGT	12360
AATGGAAATG GTCAACTCAG ATGCTTTGGT TCCGCTAAAT GATTCTATCA AGCGTATTGG	12420
ACAAGATAAA TTTAACGAAA CTGCCTTAAA TGAAGCAAAA ATCGGAGATG ATTACTACTC	12480
TGTTCCCTTT TATTCACATG CACAAGTCAT GTGGGTTAGA ACAGATTGT TAAAAGAAC	12540
TAATATTGAG GTTCCTAAAA CTTGGGATCA ACTCTATGAA GCTTCTAAAA AATTGAAAGA	12600
AGCTGGAGTT TATGGCTTGT CTGTTCCGTT TGGAACAAAT GACTTAATGG CAACACGTTT	12660
CTTGAACTTC TACGTACGTA rTGGTGGAGG AAGCCTCTTA ACAAAAGATC TTAAAGCAGA	12720
CTTGACAAGC CAACTTGCTC AAGATGGTAT TAAATACTGG GTTAAATTGT ATAAAGAAAT	12780
CTCACCTCAA GATTCTTGA ACTTTAATGT CCTTCAACAA GCTACCTTGT TCTATCAAGG	12840
AAAAACAGCA TTTGACTTTA ACTCTGGCTT CCATATCGGA GGAATTAAATG CCAACAGTCC	12900
TCAATTGATT GATTCGATTG ATGCTTATCC TATTCCAAAA ATCAAAGAGT CTGATAAAAGA	12960
CCAAGGAATT GAAACCTCAA ACATCCAAT GGTTGTTGG AAAAATTCAA AACATCCAGA	13020
AGTTGCTAAA GCATTCTTAG AAGCACTTTA TAATGAAGAA GACTACGTTA AATTCCCTGA	13080
TTCAACTCCA GTAGGTATGT TGCCAACTAT TAAGGGGATT AGCGATTCTG CAGCCTATAA	13140
AGAAAATGAA ACTCGTAAGA AATTAAACA TGCTGAAGAA GTAATTACTG AAGCTGTTAA	13200
AAAAGGTACT GCTATTGGTT ATGAAAATGG GCCAAGTGTAA CAAGCTGGTA TGTTGACTAA	13260
CCAACACATT ATTGAACAAA TGTTCCAAGA TATCATTACA AATGGAACAG ATCCTATGAA	13320
AGCAGCAAAA GAAGCAGAAA ACAATTAAA TGATTTATTT GAGGCTGTT AGTAGATGTA	13380
AAAGACTAGA AAATAGGTGG GATAGTGAGC TGAAAGCTC TAGCCCAATC TTGTAAAAGA	13440
AGGGAGAAGG AGAATGGTT AAGAACGTAA TTTAACTCGC TGGATATTG TTTTGCCAGC	13500
TATGATTATC GTAGGATTAC TCTTGTGTTA TCCGTTTTTC TCGAGTATTT TTTATAGCTT	13560
TACCAATAAG CATTGATTA TGCTTAATTA TAAATTGTT GGTTGGCTA ACTATAAAC	13620
TGTGCTATCA GATCCCAACT TCTTAAATGC GTTCTTTAAT TCAATTAAAGT GGACCGTTTT	13680
CTCATTAGTT GGTCAAGTT TAGTAGGGTT TGTATTGGCT TTAGCTCTTC ACAGAGTACG	13740
CCACCTCAAG AAATTATATA GGACATTATT GATTGTTCCCT TGGGCATTTC CTACCACGT	13800
TATTGCCCTTC TCTTGGCAGT GGATTCTAAA CGGGGTTTAT GGCTACTTAC CTAATCTAAT	13860
CGTAAAATTA GGTTAATGG AACATACACC TGCATTTTG ACAGATAGTA CATGGCATT	13920
CCTATGTTTG GTGTTATCA ACATTTGGTT TGGAGCACCA ATGATTATGG TTAATGTGCT	13980

166

TTCAGCTTG CAAACAGTAC CAGAAGAACCA	ATTTGAGGCT GCTAAGATAG ATGGTGCTTC	14040
AAGTTGGCAG GTGTTCAAGT TTATCGTCTT	TCCACATATT AAAGTGGTG TAGGACTTCT	14100
AGTTGTTTG AGAACTGTAT GGATCTTAA	TAACTTGAC ATTATCTACC TCATTACTGG	14160
TGGTGGACCA GCCAATGCTA CAACGACGCT	TCCAATTGTT GCTTACAACC TGGGCTGGGG	14220
AACTAAATTG TTGGGTCGTG CTTCAGCAGT	TACAGTACTG CTCTTATCT TCTTGGTGGC	14280
GATTTGCTTT ATCTACTTTG CTATCATCAG	TAAGTGGAA AAGGAGGGTA GAAAATAATG	14340
AAGAAGAAAT CCAGTATTAA TTTAGATATT	CTCTCACATG TACTTTAGT TGGTGCAGACC	14400
ATCGTTGCAG TTTTCCCATT GGTATGGATT	ATCATATCTT CTGTCAAAGG GAAAGGGAA	14460
TTAACCTCAGT ATCCAACACG ATTTGCGCT	GAACAGTTA CATTAGATTA TTTCACTCAT	14520
GTTATCAACG ATTTGCACTT CATTGATAAC	ATTGAAACA GTTTAATCAT TGCCTTGGCT	14580
ACAACCCCTTA TTGCGATTAT TATTCTGCT	ATGGCAGCCT ATGGTATTGT TCGATTCTTT	14640
CCTAAATTGG GAGCAATCAT GTCGAGACTA	CTCGTCATTA CCTACATTG CCCACCAATT	14700
TTGTTAGCAA TTCCCTATTG AATTGCCATT	GCTAAAGTTG GGTTAACAAA TAGTTTATTT	14760
GGCTTGATGA TGTTTATCT ATCTTTAGT	GTTCATATG CAGTTGGCT CTTAGTTGGA	14820
TTTTTCCAAA CAGTTCCAAT TGGAATTGAA	GAAGCGGCTA GAATTGATGG TGCAAATAAA	14880
TTTGTACGT TTTATAAAGT TGTGCTACCG	ATTGTAGCAC CAGGTATTGT AGCAACAGCT	14940
ATTTATACAT TTATCAATGC TTGGAATGAA	TTCTGTATG CCTGATTGATTT GATTAACAAT	15000
ACAGGAAAGA TGACAGTAGC AGTAGCCCTT	CGTTCACTTA ATGGTCAGA AATACTAGAC	15060
TGGGGAGATA TGATGGCAGC GTCTGTTATT	GTAGTTCTTC CATCAATTAT TTTCTTCTCT	15120
ATCATCCAAA ATAAGATTGC AAGTGGATTA	TCAGAAGGAT CTGTGAAGTA GACGAAAGAA	15180
GGAAAAAAAT GAATAAAAGA GGTCTTATT	CAAAACTAGG AATTTCGTT GTAGGCATTA	15240
GTCTTTAAT GGGAGTCCCC ACTTGATTTC	ATGCGAATGA ATTAAACTAT GGTCAACTGT	15300
CCATATCTCC TATTTTCAA GGAGGTTCAT	ATCAACTGAA CAATAAGAGT ATAGATATCA	15360
GCTCTTGTGTT ATTAGATAAA TTGCTGGAG	AGAGTCAGAC ACTAGTAATG AAATTTAAAG	15420
CAGATAAACCAAACTCTCTT CAAGCTTGT	TTGGCCTATC TAATAGTAAA GCAGGCTTA	15480
AAAATAATTA CTTTCAATT TTCATGAGAG	ATTCTGGTGA GATAGGTGTA GAAATAAGAG	15540
ACGCCCAAAAGGAATAAT TATTTATTTT	CCAGACCAGC TTCATTATGG GGAAACATA	15600
AAGGACAGGC AGTTGAAAT ACACCTAGTAT	TTGTATCTGA TTCTAAAGAT AAAACATACA	15660
CAATGTATGT TAATGGATA GAAGTGGTCT	CTGAAACAGT TGATACATTT TTGCCAATT	15720
CAAATATAAA TGGTATAGAT AAGGCAACAC	TAGGAGCTGT TAATCGTGAA GGTAAGGAAC	15780

167

ATTACCTCGC AAAAGGAAGT ATTGATGAAA TCAGTCTATT TAACAAAGCA ATTAGTGATC	15840
AGGAAGTTTC AACTATTCCC TTGTCAAATC CATTTCAGTT AATTTTCCAA TCAGGAGATT	15900
CTACTCAAGC TAACTATTTT AGAATACCGA CACTATATAAC ATTAAGTAGT GGAAGAGTTC	15960
TATCAAGTAT TGATGCACGT TATGGTGGGA CTCATGATTC TAAAAGTAAG ATTAATATTG	16020
CCACTTCCTTA TAGTGATGAT AATGGGAAAA CGTGGAGTGA GCCAATTGTT GCTATGAAGT	16080
TTAATGACTA TGAGGAGCAG TTAGTTACT GGCCACGAGA TAATAAATTA AAGAATAGTC	16140
AAATTAGTGG AAGTGCTTCA TTCATAGATT CATCCATTGT TGAAGATAAA AAATCTGGGA	16200
AAACGATATT ACTAGCTGAT GTTATGCCTG CGGGTATTGG AAATAATAAT GCAAATAAAG	16260
CCGACTCAGG TTTTAAAGAA ATAATGGTC ATTATTATT AAAACTAAAG AAGAATGGAG	16320
ATAACGATTT CCGTTATACA GTTAGAGAAA ATGGTGTGTT TTATAATGAA ACAACTAATA	16380
AACCTACAAA TTATACTATA AATGATAAGT ATGAAGTTT GGAGGGAGGA AAGTCTTTAA	16440
CAGTCGAACA ATATTGGTT GATTTGATA GTGGCTCTT AAGAGAAAGG CATAATGGAA	16500
AACAGGTTCC TATGAATGTT TTCTACAAAG ATTCGTTATT TAAAGTGAAT CCTACTAATT	16560
ATATAGCAAT GACAACTAGT CAGAACATAGAG GAGAGAGTTG GGAACAATT AAGTTGTTGC	16620
CTCCGTTCTT AGGAGAAAAA CATAATGGAA CTTACTTATG TCCCCGACAA GGTTTAGCAT	16680
TAAAATCAAG TAACAGATTG ATTTTGCAA CATATACTAG TGGAGAACTA ACCTATCTCA	16740
TTTCTGATGA TAGTGGTCAA ACATGGAAGA AACCTCAGC TTCAATTCCG TTTAAAATG	16800
CAACAGCAGA AGCACAAATG GTTGAACACTGA GAGATGGTGT GATTAGAACAA TTCTTTAGAA	16860
CCACTACAGG TAAGATAGCT TATATGACTA GTAGAGATTC TGGAGAAACA TGGTCGAAAG	16920
TTTCGTATAT TGATGGAATC CAACAAACTT CATATGGCAC ACAAGTATCT GCAATTAAAT	16980
ACTCTCAATT AATTGATGGA AAAGAACAG TCATTTGAG TACACCAAAT TCTAGAAGTG	17040
GCCGCAAGGG AGGCCAATTA GTTGTGGTT TAGTCAATAA AGAAGATGAT AGTATTGATT	17100
GGAAATACCA CTATGATATT GATTGCTT CGTATGGTTA TGCCTATTCT GCGATTACAG	17160
AATTGCCAAA TCATCACATA GGTGTACTGT TTGAAAAATA TGATTGTTGG TCGAGAAATG	17220
AATTGCATT AAGCAATGTA GTTCAGTATA TAGATTTGGA ATTAATGAT TTAACAAAAT	17280
AAAGGAGAAA AACATGGTTA AATACGGTGT TGTTGGAACA GGGTATTTG GAGCTGAATT	17340
GGCTCGCTAC ATGCAAAAGA ATGATGGAGC AGAGATTACT CTTCTCTATG ATCCAGATAA	17400
TGCAGAGGCG ATTGCAGAAG AATTGGGAGC AAAAGTAGCA AGTTCCCTAG ATGAGTTGGT	17460
TTCTAGCGAT GAAGTAGATT GTGTTATCGT CGCAACTCCA AATAATCTTC ATAAGGAACC	17520

168

GGTTATTAAG GCTGCACAGC ATGGTAAAAA TGTTTTCTGT GAAAAACCAA TTGCGCTTTC	17580
TTATCAAGAT TGTCGCGAGA TGGTAGATGC GTGTAAAGAA ACAATGTAACCTTTATGGC	17640
AGGACATATT ATGAATTCTTCT TTAATGGTGT TCATCATGCA AAAGAACTCA TTAATCAAGG	17700
AGTTATCGGA GACGTTCTAT ATTGTCATAC AGCTCGTAAT GGTTGGGAAG ACAACAACC	17760
GTCAGTATCA TGGAAAAAAA TTCGTGAAAA ATCAGGTGGT CACTTGTATC ACCACATCCA	17820
TGAATTGGAT TGCGTTCAAT TCCTTATGGG GGGCATGCCT GAAAATGTAACCATGACAGG	17880
TGGAAATGTG GCCCATGAAG GTGAACATTT CGGTGATGAA GATGATATGA TTTTTGTCAA	17940
TATGGAATT TCTAATAAGC GTTTGCCTT GTTAAATGG GGTCAGCTT ATCGTTGGG	18000
TGAACATTAT GTCTTAATCC AAGGAAGCAA AGGTGCCATC CGCTTAGACT TATTCAACTG	18060
TAAAGGAACT CTTAAGCTAG ATGGCAAGA AAGCTATTTC TTGATTCAAG AATCGCAAGA	18120
AGAAGATGAT GATCGGACTC GTATCTATCA TAGTACAGAG ATGGATGGAG CAATTGCTTA	18180
TGGTAAACCA GGTAAACGTA CTCCATTATG GCTATCATCT GTCATTGATA AAGAAATGCG	18240
CTATCTGCAT GAGATTATGG AAGGAGCTCC AGTATCAGAA GAATTTGCAA AACTTTGAC	18300
AGGTGAAGCT GCCCTAGAAG CAATTGCTAC TGCAGATGCT TGTACCCAGT CTATGTTGA	18360
AGATCGAAA GTAAAATTGT CAGAAATTGT AAAATAAATT TTGGTATTCT CCTATTATA	18420
GGTCGACTTG CTCCTCTGAA AGTACTTTA GAGGAGCTGT TTGACTTGC TAGTTTTGA	18480
AACTGAAATC TATTATACTA CAAACTATTG AAAGCGTTT AATTTTAAGG TATAATAATC	18540
TCATAGAAAAT AAAGAAAAGG AGGAAAGAGG ATGCCACAGA TTAGCAAAGA AGCCTTGATT	18600
GAGCAAATCA AAGATGGAAT CATCGTTCT TGTCAAGGCTC TTCCCTCATGA ACCGCTTAT	18660
ACAGAACCGG GAGGGGTGAT TCCCTTGCTG GTCAAAGCGG CTGAGCAAGG TGGAGCAGTC	18720
GGTATCCGAG CAAACAGTGT TCGCGATATC AAGGAAATTAA AGGAAGTCAC TAAACTCCA	18780
ATCATTGGGA TTATCAAACG TGATTATCCA CCTCAGGAAC CCTTCATCAC GGCTACTATG	18840
AAAGAAGTTG ATGAATTGGC AGAACTGGAC ATCGAGGTGA TTGCTCTGGA TTGTACCAAG	18900
CCTAATCAGC TTTTGATGGC TGATACTAGT ATCTTCGAAG AAGGGCTAGC AGCTGTAGAA	19020
GCAGGAATTG ACTTTGTCGG AACAAACCTTA TCAGGCTACA CATCCTACAG TCCAAAAGTA	19080
GACGGTCCAG ATTTTGAATT GATTAAGAAA CTCTGTGATG CTGGTGTAGA TGTCATTGCA	19140
GAAGGAAAAA TTCATACACC AGAACAAAGCC AAACAAATCC TTGAATATGG AGTGCAGGC	19200
ATCGTTGTTG GTGGCGCCAT TACTAGACCA AAAGAGATTA CAGAACGCTT CGTTGCTAGT	19260
CTTAAATAAG ATGTGAGGGG GAGTTTATG TTTAAAGTTT TACAAAAAGT TGGAAAAGCT	19320

169

TTTATGTTAC CTATAGCTAT ACTTCCTGCA GCAGGTCTAC	19380
CTTTCAAACC CAACCACGAT AGCAACTTAT CCAATACTAG ACAATAGTAT	19440
ATATTCCAAG TAATGAGCTC TGCAAGGAGAG GTTGTATTCA GTAATTGTC ACTACTTCTC	19500
TGTGTGGGAT TATGTATTGG CTTAGCGAAA CGAGATAAAG GAACCGCTGC GTTAGCAGGA	19560
GTAACGGTT ACTTAGTTAT GACTGCAACG ATCAAAGCTT TGGTAAAAC TTTTATGGCA	19620
GAAGGATCTG CAATTGATAC TGGAGTTATT GGAGCATTAG TTGTCGGAAT AGTTGCCGTA	19680
TATTTGCACA ACCGATATAA CAATATTCAA TTACCTTCCG CTTTAGGATT CTTTGGAGGT	19740
TCACGCTTCG TTCCTATTGT TACATCGTTC TCTTCTATCT TGATTGGCTT TGTCTTCTTT	19800
GTTATTTGGC CACCTTCCA ACAACTTCTT GTTTCTACAG GTGGATATAT TTCTCAGGCG	19860
GGTCCAATTG GAACTTTCT ATATGGATTT TTAATGAGAC TTTCTGGAGC AGTAGGCTTA	19920
CATCATATAA TTTACCCAT GTTTGGTAT ACTGAACTTG GTGGTGTGA AACTGTTGCA	19980
GGACAAACAG TGGTTGGAGC TCAAAAAATA TTTTTGCTC AATTAGCCGA TTTGGCCAT	20040
TCTGGATTAT TTACAGAAGG AACAAAGGTTT TTGCAAGGTC GTTTCTCAAC AATGATGTT	20100
GGTTTACCGG CTGCCTGTT AGCGATGTAC CATAGTGTTC CTAAAAATCG TCGTAAAAAA	20160
TACGCGGGTT TGTTTTTGG AGTTGCTTTA ACATCTTTA TTACCGGTAT TACAGAACCA	20220
ATTGAATTAA TGTCTCTATT CGTCAGTCCG GTTCTATATG TTGTCACGC ATTCTTGAT	20280
GGTGTAGCT TCTTTATTGC AGACGTCTTA AATATTCAA TAGGAAACAC ATTTTCAGGA	20340
GGTGTAAATCG ATTTCACTTT ATTTGGAATT TTGCAAGGGGA ACGCTAAGAC GAATTGGGTT	20400
CTTCAGATTTC CATTGGACT TATTTGGAGT GTTTGTATT ATATTATTT TAGATGGTTC	20460
ATTACTCAAT TCAACGTTCT AACGCCAGGG CGAGGAGAAG AAGTAGATTC TAAAGAAATT	20520
TCTGAATCCG CAGATTCAAC TTCAAATACT GCAGATTATT TAAACAGGA TAGCCTACAA	20580
ATTATCAGAG CCTTGGGTGG ATCAAATAAT ATAGAAGATG TAGATGCTTG TGTGACACGT	20640
TTACGTGTAG CTGTAAAAGA AGTTAATCAA GTTGATAAAG CACTTTAAA ACAAATTGGT	20700
GCAGTTGATG TCTTAGAAGT GAAGGGTGGC ATTCAAGCAA TCTATGGAGC AAAAGCAATC	20760
TTATATAAAA ATAGTATTAA TGAAATTAA GTTGTAGATG ATTAAGTACT TACTGACTTA	20820
ATAAAAAAACA GAGGAGAGTG ATGGATGAGT AGGATGAAAT GAAATCGCAT ACAAGAAATA	20880
AAGAACTCAT TATCCAAGTT GGATACGCTT ATTACATAGG AGAATACAAA TGAAATTAG	20940
AAAATTAGCT TGTACAGTAC TTGGGGTGC TGCAGTTCTT GGTCTTGCTG CTTGTGGCAA	21000
TTCTGGCGGA AGTAAAGATG CTGCCAAATC AGGTGGTGAC GGTGCCAAA CAGAAATCAC	21060

170

TTGGTGGGCA TTCCCAGTAT TTACCCAAGA AAAAACTGGT GACGGTGTG GAACTTATGA	21120
AAAATCAATC ATCGAACGCT TTGAAAAAGC AAACCCAGAT ATAAAAGTGA AATTGGAAAC	21180
CATCGACTTC AAGTCAGGTC CTGAAAAAAT CACAACAGCC ATCGAACGAG GAACAGCTCC	21240
AGACGTACTC TTTGATGCAC CAGGACGTAT CATCCAATAC GGTAACAAAGC GTAAATTGGC	21300
TGAGTTGAAT GACCTCTTCA CAGATGAATT TGTTAAAGAT GTCAACAAATG AAAACATCGT	21360
ACAAGCAAGT AAAGCTGGAG ACAAGGCTTA TATGTATCCG ATTAGTTCTG CCCCCATTCTA	21420
CATGGCAATG AACAAAGAAAA TGTTAGAAGA TGCTGGAGTA GCACAAACCTTG TAAAAGAAGG	21480
TTGGACAACT GATGATTTG AAAAAGTATT GAAAGCACTT AAAGACAAGG GTTACACACC	21540
AGGTTCATTG TTCAGTTCTG GTCAAGGGGG AGACCAAGGA ACACGTGCC TTATCTCTAA	21600
CCTTTATAGC GGTCTGTAA CAGATGAAAA AGTTAGCAAA TATACAACCTG ATGATCCTAA	21660
ATTCGTCAAA GGTCTTGAAA AAGCAACTAG CTGGATTAAA GACAATTGTA TCAATAATGG	21720
TTCACAATTG GACGGTGGGG CAGATATCCA AAACTTGCC AACGGTCAA CATCTTACAC	21780
AATCCTTGG GCACCAGCTC AAAATGGTAT CCAAGCTAAA CTTTTAGAAG CAAGTAAGGT	21840
AGAACTGGTA GAACTACCAT TCCCACAGA CGAAGGTAAG CCAGCTCTG AGTACCTTGT	21900
AAACGGGTTT GCAGTATTCA ACAATAAAGA CGACAAGAAA GTCGCTGCAT CTAAGAAATT	21960
CATCCAGTTT ATCGCAGATG ACAAGGAGTG GGGACCTAAA GACGTAGTTC GTACAGGTGC	22020
TTTCCCAGTC CGTACTTCAT TTGGAAAACT TTATGAAGAC AAACGCATGG AAACAATCAG	22080
CGGCTGGACT CAATACTACT CACCATACTA CAACACTATT GATGGATTG CTGAAATGAG	22140
AACACTTTGG TTCCCAATGT TGCAATCTGT ATCAAATGGT GACGAAAAAC CAGCAGATGC	22200
TTTGAAAGCC TTCACTGAAA AAGCGAACGA ACAATCAAA AAAGCTATGA ACAATAGTC	22260
CTTAGTTATT CTATAAAAAG TAGTTTTTA AAGAACCTAA GAGTGTATAC CCCCTTTCC	22320
CTCTACACAG ATAGTGTAAAG AAAAGGGGGC TTTTGTAA AATGTAAGAA ACTGTCACGA	22380
AATTAAAATG AAGTTCTTAC ATAAGCGAAT CATAAAAAT TTCATTTGA TTTTAAAACA	22440
GTTCAAGAAA GTCAAAAAAT TATTCTATTG GAAAGAGAGG TGCCGACTGT GAAAGTCAT	22500
AAAATCCGTA TGCGGGAAAC AGTGATTTCC TACGCTTCC TAGCACCAGT ATTATTCTTC	22560
TTTGTCTAC TGTGTGTTGGC TCCGATGGTG ATGGGCTTCA TTACAAGTTT CTTTAACCTAC	22620
TCAATGACTA AATTGAGTT TGTAGGCTTG GATAACTATA TCCGTATGTT TAAAGATCCT	22680
GTCTTTACAA AATCTCTGAT TAACACAGTT ATTTGGTTA TTGGATCTGT ACCAGTTGTT	22740
GTTCTATTCT CACTCTTGT AGCATCTCAG ACCTATCATC AAAATGTCAT TGCCAGATCC	22800
TTCTACCGTT TCGTCTCTT CCTTCCTGTT GTAACGGGTA GTGTTGCCGT GACAGTTGTT	22860

171

TGGAAATGGA	TTTATGACCC	ACTATCAGGG	ATTCTAACT	TTGTCCTTAA	GTCCAGCCAC	22920	
ATCATCAGCC	AAAACATTT	TTGGTTGGGA	GATAAAA	GGGCATTGAT	GGCGATTATG	22980	
ATTATTCTCT	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040	
AATATTGACA	ATTCACGTGGT	TGAAGCGGCG	CGTGTGATG	GTGCAACTGA	GTTTCAAGTT	23100	
TTTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCATCACA	23160	
ACAATTAAC	CATTCCAGTG	TTTCGCCTTG	ATTCA	TGACATCTGG	TGGTCCAAAC	23220	
TACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAA	AGG	CCTTCCAATT	GACAGAA	23280
GGCTATGCCA	ACACAATTGG	TGCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTGTT	23340	
CAATTTAAAG	TACTTGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400	
ACAGAAAAAA	AACCATAAC	AGCCTTACT	GTTATTCAA	CAATCATTT	GCTCTGTTG	23460	
ACTGTGCTGT	TCATCTTCC	ATTCA	TTGACAG	GGGCATTCAA	ATCACAA	23520	
GATACAATTG	TTATTCCCTCC	TCAGTGGTTC	CCTAA	ATGC	AAACCTCCAA	23580	
CAACTCATGG	TGCAGAACCC	TGCC	TTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
GTAACCATGT	TCTTAGTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700	
CGTTTCTATG	GTCAACGCAT	TCTATTGCT	ATCTTATCG	CTGCTATGGC	GCTTCCAAA	23760	
CAAGTTGTCC	TTGTACCAT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATA	ACTCTC	23820
TGGGCAGTTA	TCTTGCCTT	GATTGGATGG	CCATT	CGGTG	TCTCCTCAT	GAAACAGTTC	23880
AGTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAA	TCGACGTTG	TGGTGAGATT	23940	
CGTACCTCT	GGAGTGTAGC	CTTCCC	GATT	GGCAG	CCTTGCAATC	24000	
TTTACCTCA	TCAAA	TACTTG	GAATGACTAC	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
AACAATTG	CCATCTCACT	TGGG	TTGCG	ACCATGCAGG	CTGAA	ATGGC AACCAACTAT	24120
GGTTTGATTA	TGGCAGGAGC	TGCC	CTTGCT	GCTGTTCCAA	TCGTCACAGT	CTTCCTAGTC	24180
TTCCAAAAAT	CCTTCACACA	GGGT	TATTACT	ATGGGAGCGG	TCAAAGGATA	ATACTCTGCG	24240
AAAATCTCTT	CAAAC	TACGT	CAGCTTCACC	TTGCC	TAACT	TAAGTATTGC CTGCGGTTAG	24300
CTTCCTAGTT	TGTTCTTCAA	TTTCATTGA	GTATAGGAAA	ATCAATCTAT	CAAGATA	CAG	24360
AAGTATATT	TATAGATTTA	GAGAATATAG	AGGTTATAAG	TGTCTACAAA	ATGGAGGGTA	24420	
TGCAGTTACT	TTATGAAGTT	TTGTCAGACA	CTTATAAA	TAAGAATGGT	TTTAGTTAAC	24480	
TATCAGAAAC	GAAGGAAAGA	GTATGATT	TTGACGATTG	AAAAACATCA	CCTTTACAA	24540	
AGGGATT	CCTAATTAG	ACAAGGCTAT	CGACTATCTC	TACCAACATC	GTAAGGATT	24600	

172

TTTCGAATTA GGAAAGTATG ATATTGATGG AGATAAAGTC TTTCTAGTTG TTCAGGAAAA	24660
TGTCCTCAAT CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA	24720
TTTGCTGGTA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT	24780
AGCATTGCAC GAAGCGAGTG ACATGGCTT TGTTCATGT CATGAAACACT ACCCACTCTT	24840
GTTGGGTTAT CACAATTTG CGATTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA	24900
TGCAGGCATG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTGATTG ATTAAAATA	24960
GGATGAATTG TTTTTTGTA AAGCTTGAT AATACTCTAC CATGAAATTG ATCTTTGTGA	25020
GGTAGAGAAA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG CTGCAAGAGC	25080
TAGTTCTTA GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT	25140
TGTGAATGCA TTGATTGGTA GATACATAAA ATAGGTAATCT TATGCGGCTA AGTATGGTAT	25200
TAGTATGGCA CGCTCGATCT TAAGTAGGGT AGCTGCAACT GCAGCAGCAA GAGTAGGATT	25260
ACTGACCAAG ATTTCTGGAT GGATTTACG AGTAGCTGTG AATGTAGCTG ATGTATATGG	25320
TAATTTGCC AACAAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG	25380
TCCGTATAAAC TTTTAAATG CGAGAATGAA ACCACTTTGT ATTTTTTAT TGAATATGTT	25440
AGCTTGGACA GTGCTTGCAA TGATAATTG TGAGGGCTA GATGGATTG ATAGGCATAC	25500
TTGGAGTACT ATTTTAATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA	25560
AAATAGAAAA AAGTCCAAA GAAAAAATAG ATTTGTTCAT GGTAGGGACT TATGAAAGCT	25620
TTACTGACAA AAAAGAAAAC AGTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA	25680
AAAAGGAGTA AGCCTTATCA AGGCAGCATT TGATACAGAT AACTTCTCA TGCGTTTAG	25740
TGAGAAGGTC TTGGACATCG TGACAGCCAA TCTTCTTTT GTCGTCTCTT GTTACCCAT	25800
CGTGACGATT GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTCGAAG TTAAGAAGAG	25860
CAGACGGGTG CCTGTTTTA AAATCTATCT AAGATCTTTC AAGCAAAATC TGAAACTAGG	25920
TCTTCAGCTG GGTAAATGG AGTTAGGAAT TGTGTTCTT ACCCTTCAG ATCTCTATCT	25980
TTTCTGGGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA GCCATTTGTT TAGGTATTCT	26040
GATTTTCTT ACTATCGTGA TGCTGGCTAG TTACCCATAC GCGGCACGTT ATGACCTATC	26100
TTGGAAAGAA ATTCTTCAAA AAGGATTGAT GTTGGCTAGT TTTAACCTTC CTTGGTTCTT	26160
CCTCATGTTA GCCATTCTTG TCCTCATTGT GATGGTTCTT TATCTGTCCG CCTTCAGTCT	26220
ACTCTTAGGT GGCTCAGTCT TCCTACTTTT TGGGTTGGA CTATTGGTCT TTATCCAGAC	26280
TGGATTGATG GAGAAAATTT TCGCAAAATA CCAATAGGAG CTTTATTCT GAAACTACTT	26340
TCAAAGGCTC CAAACGCTAT TCTATAAGCG AGAAACTAAA ATCGG	26385

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2716 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA TTGCCCTAGG CATTAAAGTAA ACATATAAAA GCATGTGAGA GACTGTTGGA	60
AAAGCGAGGA AATTTCCCT CTTCCTCT AGTCTCTCCT TTCTTTGCT GATTTTATTTC	120
AAAGAAAATG ATATAATAGT AGTTATGGAG AAAAGAAAT TACGCATCAA TATGTTGAGT	180
TCAAGTGAGA AAGTAGCCAGG ACAGGGAGTT TCAGGTGCTT ACCGTGAATT AGTTCGTCTT	240
CTTCACCGTG CTGCCAAGGA CCAATTGATT GTTACAGAAA ATCTTCCAAT CGAGGCAGAT	300
GTGACTCACT TTCATACGAT TGATTTCCC TATTATTTAT CAACCTTCCA AAAGAAACGC	360
TCAGGGAGAA AGATTGGCTA TGTGCATTTC TTGCCAGCTA CACTTGAGGG AAGTTTGAAA	420
ATTCCATTTT TCTTAAAGGG AATTGTGAAA CGCTATGTAT TTTCTTTTA CAACCGGATG	480
GAGCACTTGG TTGTGGTCAA TCCTATGTTT ATTGAGGATT TGGTAGCAGC TGGTATTCCA	540
CGTAAAAAG TGACCTATAT TCCTAACCTT GTCAACAAGG AAAATGGCA TCCTCTACCA	600
CAAGAAGAGG TAGTCAGACT GCGCACAGAT CTTGGTCTTA GTGACAATCA GTTTATCGTA	660
GTAGGTGCTG GGCAAGTTCA GAAACGTAAA GGGATTGATG ACTTTATCCG TCTGGCTGAG	720
GAATTGCCTC AGATTACCTT TATCTGGCT GGTGGCTTCT CTTTGGTGG TATGACAGAT	780
GGTTATGAAC ACTATAAGAA AATTATGGAA AATCCCCCTA AAAATTTGAT TTTTCCAGGC	840
ATTGTATCGC CAGAGCGGAT GCGCGAATTG TATGCTCTAG CGGATCTTTT CTTGTTGCCT	900
AGTTACAATG AGCTCTTCC TATGACTATT TTAGAAGCTG CGAGTTGTGA GGCTCCATT	960
ATGTTGCGTG ATTTAGATCT CTATAAGGTG ATTTGGAGG GAAATTATCG GGCACAGCG	1020
GGTAGAGAAG AGATGAAAGA GGCTATTTG GAATATCAAG CAAATCCTGC TGTCTTAAAA	1080
GATCTCAAAG AAAAGGCTAA GAATATTCC AGAGAGTATT CTGAAGAGCA TCTGTTACAA	1140
ATCTGGTTGG ACTTTATGA GAAACAAGCC GCTTTAGGGA GAAAGTAAAA AGTGAGGTAA	1200
TCTATGCGAA TTGGTTATT TACAGATACC TATTTCCCTC AGGTTCTGG TGTTGCGACC	1260
AGTATTGCAA CCTTGAAAAG AGAACTTGAA AACGAGGGAC ATGCTGTTT TATCTTACG	1320
ACGACAGATA AGGATGTCAA TCGCTACGAA GATTGGCAA TTATCCGCAT TCCAAGTGT	1380

174	
CCTTTCTTTG CTTTTAAGGA TCGTCGCTT GCCTACCGAG GTTTTAGCAA GGCACTTGAA	1440
ATTGCTAAC AGTATCAGCT AGATATTATC CATACTCAGA CAGAATTTC TCTTGGCCTG	1500
TTGGGGATTG GGATTGCGCG TGAATTGAAA ATTCCAGTCA TCCATACCTA TCACACCCAG	1560
TATGAAGACT ATGTCCATTA TATTGCTAAG GGGATGTTGA TCCGGCCGAG TATGGTCAAG	1620
TATCTGGTTA GAGGTTTCCT GCATGATGTG GATGGGGTTA TTTGCCCTAG TGAGATTGTC	1680
CGTGACTTGC TATCTGATTA TAAGCTCAAG GTTGAAAAC GGGTCATTCC TACTGGGATT	1740
GAATTAGCCA AGTTTGAGCG TCCGGAAATC AAGCAGGAAA ATTTGAAAGA ACTGCGTAGT	1800
AAACTAGGGA TTCAAGATGG TGAAAAGACG TTGCTTAGTC TTTCGAGAAT CTCCTATGAA	1860
AAAAATATTC AAGCAGTTTT AGCAGCCTT GCTGATGTTG TGAAAGAGGA AGACAAGGTT	1920
AAACTGGTAG TAGCTGGGGA TGGCCCTTAT CTGAATGACC TCAAAGAGCA AGCCCAGAAC	1980
CTAGAGATTC AAGACTCAGT CATCTTACA GGGATGATTG CTCCTAGTGA GACGGCTCTT	2040
TACTATAAAG CGGCGGATTG CTTCATTTCG GCATCGACAA GCGAAACGCA AGGTTTGACC	2100
TACTTGGAAA GCTTAGCCAG TGGAACACCT GTCATTGCTC ACGGAAATCC TTATTTGAAC	2160
AACCTCATCA GTGATAAAAT GTTTGGAACC TTGTAATATG GAGAACATGA TTTGGCTGGT	2220
GCTATTTGG AAGCCCTGAT TGCAACACCA GACATGAACG AGCATACCTT ATCAGAGAAA	2280
TTGTATGAGA TTTCAGCTGA GAACTTGGG AAACGAGTGC ATGAGTTTA TCTGGATGCC	2340
ATTATTTCAA ATAACCTCCA GAAAGATTTG GCTAAAGATG ATACGGTCAG TCAGCGTATC	2400
TTTAAGACAG TTTGTATCT TCAGCAACAG GTGGTTGCTG TACCTGTAAA AGGATCTAGA	2460
CGCATGTTGA AGGCTTCAAA AACACAGTTG ATCAGTATGA GAGACTATTG GAAAGACCAT	2520
GAAGAATAGA AAGAGGAACA GCTATGAAA AAACAATTAA TGAGAACCGG TCGTGATAAA	2580
AAGATTGCCG GTGTTGTGC TGGGGTGGCC CATTATCTGG ATATGGATCC GACTATCGTT	2640
CAAGTCATTT GGGGTGTCT TACTTGCTGT TACGGAGCTG GAATTGTAGC TTACATTATT	2700
TTATGGATTAGCGA	2716

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13926 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

60

175

TGTTAACAGT	CTATGGAGAG	CTTTCATAGA	ACTAAGATT	CGTTTATCTT	TGCTGCCACA	120
AATTAGTAAG	GTTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTCAA	180
CTCCTCAGAA	ACTCCGACCA	TAAGAGTC	TT GTCTGCTCCC	TGTTTTCAA	ATACTCTTT	240
GGGAAGTAGT	TTAAAAATCA	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTAAAG	300
CGGGCATCCT	GACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
TGTCAGGGCA	GCACCTAAGG	ACAATCCAAT	CAAACACAAA	GGTTCTGTCT	CTTGAGCTAG	420
GTGCTGATAA	ACTCGCTCTT	TAGCTTGTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
GATAGCCTCA	GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTCCAAG	ACTCTGCTGA	540
CTGCCCTAAC	CCATGCACAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	TTAATTCA	600
CAAGCCTCTC	ACTGCATTAC	AGCGTAAAT	AGCTTCTGCT	TGGGTTAAAT	CTGCCAAGGT	660
CAAGACTTTC	TCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAA	TTCTGGCAA	720
GATTCCAAGT	CGGATAGGCG	GTGTGTAGAG	TTTCCAGCG	ATTTTCAGAA	CCAAATTCC	780
TATAGAGGTT	TCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTCTCTT	GTTCTCCTAG	840
GCTCAAATGC	GGTCGGTGAG	TGGTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
CTGAAGACAG	ACTTGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAAATA	CTTGACGATT	960
GACTTCTATC	TCTCCAGATT	TGCTAAGGCT	GATTGCAAG	CGGTAACTTC	GATTAGCTTC	1020
ACAATCCTGA	CACTCTTCCT	CAATCTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	1080
AAAATAACGA	CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
TTGGCTGATT	TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
TGCCTTTGAA	TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCAAG	TAATCCCTCC	1260
GCCAACTCCA	TAAATGGCTT	GACCTTGTG	AAATTGAATG	GTACGAATGG	CCACATTAAA	1320
AATCCGTCGT	CCATTGGAA	GCAAGAGACC	AATCGTCCA	CAGTAGACTC	CACGCCGTTG	1380
AGGCTCCAAG	TCCTTGATAA	TCTCCATTGT	CGCAATTTC	GGTGCACCCG	TTATGGAACC	1440
ACAAGGAAAG	AGTGAGCGGA	AGATTCAAC	AAGGTCCACA	TCCTCTCGCA	ACTGACTCTT	1500
GATGGTCGAA	GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
GTGCTCGCTC	CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT	1620
CATATTTCA	GAGCGATT	TTGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
TTGGTCAGTT	ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTGTC	ACTCGCGATC	1740
ATTTTGCTCA	AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

176

ATAGGCATTG TAGCCCGCCT CCTGCTCTAC CACCATACGA TTGTAGATGG CAAAAGGATT	1860
GGCATTAAAC TTTGCTTAA GTTGGACGGT GTAGTTGACC TGATAGGTAT CTCCCTGCCG	1920
TAAATGATGG TGAATTGGG CAATGGCCTT TTCATAGTCT GCTGCAGACG TTACTTCCTG	1980
CCAATTTGAG GGCAAATCAA TATCCTCATA AGTCAGAGGA ATAGGGGAAG TTTCTACGAT	2040
ATCATGAACA GTAAAGTAAA GCAGGTACTC TCCCAGTAGG GGATCCTTGT GAACTGCTAA	2100
TTTTCCCTCA AAAGCAGGTG CAGCCTCGTA GCTGACATAC CCCACCACAT AATAACCTTG	2160
CTCTTGGTAG CTTTCCACTT GTGCCAGCAA ATCTGCCACT TCTTCTACAT TTCTCGTTT	2220
CAACTCTTAA ATAGGCTGGG TAAAGGTATA TCTCTCCCC AAAGTCTAA AATCAATCAC	2280
TGTTTTCTA TGCAACCTT AAGTATAGCA TAAAATAAGA AAACCTCAT CCGCAAAGCA	2340
GATGAGAGAT TTCAATTATT TAAAGATTGA AGTTTTAAAG CTATTGTTT GTGAAGAAC	2400
TTTCTTATAA ACAGCTCTT TTAATTAAAC TGTATTATTC ATAGATACTG TTTTATTACC	2460
GTTCGTTCT TGTTAAGAG TTTCGGCATH TTTTTAAACA GCTTCTTAA ACAATGTCAG	2520
TAAATCATCG TATGATGAAA CGGAAGAACC ATTTACTTCG AATGTTGTTA ATCCTTCGT	2580
TGCTTTATCT TTAACCTCTT TGAAGTAAGC TTTTTAAAT TCTTCATAG TATTAATGT	2640
ATTGTTAGAT ATTTCTTGA TAATATATTC ATCACTTAGA ACAGACTCAC CATCTGTTT	2700
AGATTGTTGT TTATATTTAT TTGAAGCATA ACCTAAGAAC CCATTTCGT ATCCGTAGTA	2760
ACCCCATATA CTAAAGCAT TATGTTGAA TGAAACAGCT CCAGGAGCAC CTTTACTAGT	2820
ATTACCTCCG TAGATACCGG TCATCATTCT AACACCTACA TAAGGTGATT GATCGTTATA	2880
GCTAATTGCT TCGGGTTAT AGATACCATT ACCTGGATTG CGATTAGTCA TTAATTGTTG	2940
ATCAACTAAA TCATTAACAG ATTGAATATT TAATTCAATT TTCTCTCTT GACTTAGATT	3000
TCGAATTATA TCCCATTGAT TTAATTATT GTTATCACGG TATTCTCTAT CTATTTTTT	3060
GAACCATGCA CTATTTAAAT CTTTATTTG TTGAGAAATC ACAGATTCAG CCTCAATTTC	3120
ATCAAGAACG GTTAAAGTGT CATTATAACC CTTCATATAT CTATTAATAT CTTCTCGTGT	3180
TTTTAGAGTT TTTGGATCTG TAATATACCA CTGATTCCC TCATTTTGC GTTTAAATAC	3240
CATATTAATA CCTAAAGAAC CAAACTCATC AAATCCACTA CCAGTAACAG GAGTTGTTAG	3300
CATACCCCTGA GCATATGCTT CAGCATCAGT ACCTTCACGG TGTCCAAAGC CACCTAAGTA	3360
AATCGCACGG TCGTTGACGT GTGTGTTTC ATGTGTGTAAC ACTGAAATAC CGTATTCAACC	3420
AACCATTCT AAATGAACAT ATTTTACATC AGTTCTAATA TCATCAGAGT TAGGATATAT	3480
AGCAGCATAA GCTCCTGTT CATTATAATT ATAATACCTTA TCCATAGGAC CAAAGAATTC	3540
TCTAAGAGGA GTATATACTT TGTCGGTATT ATAGCGGCCA TATTTTCAA CCCATCCACC	3600

177

AGGAGCGTTA	TAACCTCCC	AAATAGGAAT	AACAGCATCT	CTTAGTAGTC	GTTGTTAAC	3660
GTTATCAGAC	GCTAGACGAT	ACCAAGAAATC	ATAATAGTTT	CTATAACCAC	CTGCAGCTTT	3720
GTTAACGATA	TCTTTAATAT	CTTCTAACGAA	TTTTTACCT	AATCGCTCTG	CACTACCAAA	3780
GGCAATTGCA	TTATAATTG	AAATTAATAA	AAGATGTGCT	TTATCAATAT	TCAGTAGTGG	3840
GAGTATAGTA	TTTCTAACGGT	GACTTCGTTT	TAAATTATCG	AATGCACGAT	GTTTAGAATT	3900
TTTAATTCT	TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGCTT	CTGTAGCATC	3960
AATAAACCAA	TCGTTCATAT	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	AATTTAAAAA	4020
TGCATCTAAA	TTACCTGATT	TAGTATATT	AGCCAATACT	TGACCGAATG	CGTCAATGT	4080
ACGTGAACCT	TTAATGTTGT	TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	CTAATACGCT	4140
AACTTTTCA	CCATAGAAAT	CTGGTTTGAA	TAGCATTAAT	TCTTTAATAT	TAACATCACC	4200
AAATTTAACT	CCATAGAAC	GATTTAGTA	AGTTAACCT	AGTAATAAAG	CTGCTTGTT	4260
TTTCTCGACT	TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTT	4320
TTCGTTTGAA	ACTAATTG	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	4380
TTCTTCTAAA	TATAATCTT	TGATTGCATT	AACTCTATAG	TCACCTAAC	GATTTAGATG	4440
CTGATACATC	GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTAA	TATCATTAAC	4500
AAGAGTAGTG	TTATCTTTT	GAACGATATT	AGGTGTATAT	TTAATTCTTA	AGTCAGTTAT	4560
AGTATATTCT	TTTACATTAC	TTAACACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	4620
TGTACCGTCC	GCATAGTGAA	CAATAATT	ATTAGCTTCA	TCTAGTTTG	TGATAAACTC	4680
ATTGTTGTT	ATCGCGGAA	CAGAAAGAAC	TTCTTAGTA	TTTAGATGGT	GTTCTTTATT	4740
TAATTTATTA	CCTTGATATA	CAATATAATC	TTTATTGTTAG	AATGGTATTA	ATTTTCAAG	4800
ATTTTATAG	GCTTGGTTAT	ATTCAAGCGT	ATAATCTTGA	ATACTAGAAC	AGGCTTTTC	4860
TTCATTAAGT	TTTGCAAGAG	GAGATAGATC	ACTTTCTAA	TTATCAGCAG	TAATATTGAA	4920
AGTAGTAAC	TTAGCATCAG	CTTGTCTTT	AGTTAATTAA	GTAAATGTTT	TAGATTCCT	4980
AAATGATCTA	TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTA	TATGAGCACT	5040
AGCATAATCA	GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	5100
AGCATAGCTG	ACAGAATTAC	TTACCGTACC	TACAGGCCAA	GTCTTACTTG	CTATTGCTCC	5160
AACTTCTACT	GGATTTGAAA	CATCTATT	ACCTTTACA	ACCGACTCAG	TTAGGAGAGC	5220
TTTGTACCA	ATAAGATGGT	CTAGAGTTAA	TCCATAATCT	ACTTTAGGAA	CTAACAAAGCT	5280
GGCGCGTGT	TTGTTTCCTG	TAATAGTAGC	ATCAACATAT	GCTTTCTAA	CAATTCCCTCT	5340

178

ATAGTTTGT	A CCTGCAATT	C CCCCTGTATG	AGAGCCATT	TT CCAC	TTGTAG	AGTGTAGTT	5400
GCCAAAGAAA	GCAACATT	TT CAATACGAGT	TCCATCATTC	ATATTATT	CAAATCCAGC	5460	
AACATTATTA	CGACCTGAAA	GTGTGCCTGT	AATTTGACA	TTTGTAA	AA CTGAAGAAC	5520	
TTTCATAGTA	TTGGCTAATG	ATGCAATATT	ATCTTGACCA	GAACGTT	CTA TCTACATT	5580	
TTCAAAATT	TCACATT	TTA CGTTGCGTT	TGTTATCACA	TTAAATAATG	GATGTTCAA	5640	
TTTCAGTAATA	GCAAATTGTT	TTCCCTCAGA	ACTTAAAGT	TTTCCTGTGA	ATTCTTTAGT	5700	
GATATATGAT	TTTCCATTAG	GAACAACATT	TCTAGCGCTC	ATTGATTGTC	CCAGACGATA	5760	
TTCTTTGAA	GGATCGTTT	GAATAGCTTC	CACTAATTCT	TTGAAATTAT	AATATACATT	5820	
ATCTTCGTGG	ACTTTAGGTT	TTTCATATA	GTGAACGTAT	TCTTCTCAA	ATTTATTATC	5880	
AGCAGTTCTA	GAGACTAAAT	TGTCTGCGAT	TGCTGTA	ACT TTATACAG	GTGTTCCGTT	5940	
AACCGTAGTT	TCTTCTATAT	TTTTAACAGC	TAGTAATGTA	TTTCTGAT	TATTTGAAGT	6000	
TATTTTTAAA	TAATAATTGC	TCTTATCATC	AGGAATAGTT	GTTATCAGTG	ATTCAATTAGT	6060	
TTCTTTCCA	TTTCGTATT	TGATTAATC	TGTACGTTA	ATATTTTAA	GCTCAACTTT	6120	
TTTAAGATCT	AATTGAATAT	TTTGATTTC	TAGAGTTCA	TTTCTTCAC	CGTTACCTCT	6180	
GTCGTAATC	ATAGTTGTAG	ATAGGGTGTA	TTCTTTGTAG	TACTCTAGGT	TCTTAAATGC	6240	
AGCGCTTATA	GT	TTCTGTTG	TTACCTGTC	ATCTGTAAGG	ACTACAGTAT	6300	
TTCTCCTTT	TTCAATTCA	CTGTGATTGA	TTTGATTTT	TTTGTGTTT	GATTTCTAG	6360	
AGTATACTTA	GCAACAGCTT	CACGTTCAA	TATTTCTTA	TCGGTACTAG	TCAATGTTAA	6420	
TATTGGCTTT	TCAGATAATT	CAACCAATT	TTCAATAGTT	GCAGTTAATT	TTCAACAGC	6480	
TTCGTTA	ACT TCAC	TTGTT	TAGCATCTGT	ATTAGCTGCA	ACTTTTCAG	6540	
TTCAAGTTGG	AGGTTTGCC	AACTCTATC	ACTGTAATGT	TCTTTACCT	TTGTTTTGC	6600	
ATCTGCAATC	GTATTGTTA	ATTCAGTTT	ATCAACGTT	AGAGCGCAA	TAGCCGTTT	6660	
AAGTTTATT	GTCTCGCTAT	TTACCTCAGG	CTGTTTACA	GGCTCTGAAG	CATAGACACC	6720	
TTTGCAGTT	TCTAAAACAG	GTCCAAGAGC	ATTGTAAC	GCTGAGAAT	AATCAGTAGG	6780	
AGAAA	ACTGAA	CTAGCTTAT	CAATTGATT	ATTTAACTCA	CTTTTATCAA	CTGGTTCTTT	6840
AGTACCAATA	CCCTTAT	TATCTCTGG	TTTCGGTGT	TCCTCTACAG	CCTTCTCTTC	6900	
TTCAGGA	ACT	TCTGGTTGCT	TTCTGGCTC	AACTGGTGCC	GTTGGTGCCT	GTCGTCTTC	6960
TCTTGGCGCG	ACTGGTTCAC	CTGCTTGTC	AACTTTGGT	TCCTCTGTG	GTTCTGTTG	7020	
TTTTCTACA	GCAGGCC	TTT	CAACTTTGG	TTGTTCAATA	GATTGATTAA	CAGTCCTC	7080
TTTGGTTCT	ACAGTTCTT	CAGCCTGGT	ATCTGGAGTT	GACTCTTCTT	GT	TTCCGGTGT	7140

179

TTCCTCTACA	GCCTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTGGCG	CGACTGGTTC	ACCTGCTTGT	TCAACTTTG	ATTCCCTCAGC	7260
TGGTTTGCTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTCCTCTG	GTGTTGACTC	7320
AACCTCTCCA	CCTACTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTGCGT	CAGTAGGTTT	TACCTCCGAT	TTGGTTCTT	CCTTTGGACT	7440
TTCTCTGTCT	TTAGGTGCTT	CTTCTTTGG	AGCTTCCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7560
CTCTCCAGGT	TTTGTGAGG	TTTCTTCTAA	AACAGTGTCC	AAGCCAAGCG	TTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAAGA	CGCTAGCAAT	TTTCTTCTC	TTGTTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTT	TGATACACCA	AACCATAAAC	AACTTCATTC	CTGTCAGGCT	TTCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATCTCA	8100
AAACTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTGGACG	8160
ACTAGCCAGT	GCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTC	AGACCAAAC	GCTCTGCCAC	8400
CTGACGTTCA	ACAAAGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAAC	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATAGT	CTCCACTATC	AGCTCACCAA	TCTCTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GGCCCCCTGC	TTCAAAATTGG	TCTTTCTAA	AAACATCTCC	ACTACCTGAC	GTGTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTT	8700
TTTCTTGTCTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTGC	CCAATTACGC	ATAAAACCTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTCTA	TTCTATTAT	ATATATTCA	ACTTCGTCC	8820
CTTTTTGGGG	TCTAGAATCA	ATCTTCATAT	GGTAATTGGC	TCCAAAATGA	AGTTTGAGCC	8880

180

GTTGATCGAC ATTTTGAAGA CCAACTCCCC CACGTTTGAG TTGACTTTGA CTACTATCAC	8940
CAGCATCTTG GAAGCCAACG CCATCATCCT CAATAACGGAT GACCAATCCC GAATCCTGTT	9000
TCTGGACAGA AAGTTTAATA TGGCCCTGAC CTTCCCTTTC CTTAATGCCA TGGTAAAGAG	9060
CATTTCTAC AAGGGGTGT AGGACCAGCT TGGGTAAGAC TAAATTATCA AAGGCAACAT	9120
TTTCATTAAT TTCGTATTCC AGCTTATCTC CATAGCGTTG TTTCTGGATA AAGAGATACT	9180
GGCGGACATG ATTGATTTCG TCAGAGAGAC AAATCAAGTC CTTGCCTTGA TTGAGCGCCA	9240
AGCGGAAATA GGTTGCCAAG GACTTGGTCA CCTGCACCCAC TCGCTGACTA TCATGAAATT	9300
CAGCCATCCA GATGATGGTG TCCAAAGTGT TATAGAGGAA ATGTGGATTA ATCTGGCTCG	9360
AAAGGGCTTG AAGTTGGTAC TGACGGGTG TTTCTTCCTG GCTACGAATA GCTACCATCA	9420
ACTGATCAAT CTGATCCAAC ATAGCATTAA ATTGGCGAGT TACTTCTCTC AGTTCATAGG	9480
CACCAACTTC CTTGGCACGA AGATTTGAG CACCAGAACG AATTTCCAAC ATGGTTTCTC	9540
TCAAATCCTT CAAAGGAGCA ATCCAGCGTT TAAGACTGAA CCACACTAAG CAGAGACAGA	9600
CAAGAAGAGA TGTGACACTG GCCCCAAGCA AGGTCCACAA GAGCTGACTC CGAACCTGGT	9660
CTAACTTTTC CAATGATGAC ACGCCAAGCA CCGTCCAATC AGTTCTGCA ATCTTCTCTT	9720
GACTGACGTA GGATTGTGA CCAGGAGTAT AACCTGTGACC TGTATCGATG TAGGTTTCA	9780
TAGCCTCCAT TTTGCTAGAC GAACTATAAA CTGTGTGTTG AGGATGGTAG ACAAAATTCA	9840
GGTTTCATT GATAATGAAG GCIAAGCCCT GCTGCCCAA CTGGAGTTGA TTGAGATAGG	9900
CTTCCAGAGT TTCATAAGAA ATATCCAAAC GAAGCACACC AAGATTGGCT CCCTTGCAT	9960
CAACAAGTTC TTGAGTGACA GAAATGACCC ACTGACTATC TGATTTACGA GCTGGAGTCA	10020
AAACAGGCAT AGCTCCCTGA TGAATGGCCT TTTGGTACCA ATCCTCAGCC ATCATATCAG	10080
AGGAAGTTT CATCTGCACA CTGTCATCTG TAGAAATGAC CTGACCAGAT TTGGTCACCA	10140
GCACAAACAGT TTTCAAGTCC TTATCTGACT TCAAGATGGT CAAAAACAAA TCTCGGATTC	10200
CCTCGACCTT GTCTTGACTG GGATTCTCAG CATAGGCCAG AACATCCGTC TGCTGGGTCA	10260
AACCAGTCGA GGTGGTTCT AGTTTTTGA TATAAGACTG AATAAAAGTGG CTAGTCTGGC	10320
TGATGGTCGT TTGGCTGTTG CCCTCAATGG TGGCCTCAAT GGCTGAAGAA CTTGATTGAT	10380
AGTAGAAAGT TCCAACCAGA GCTAGGAGAA TGAGAAAGAC CAGAAAGATG GAAATAACCA	10440
TTCTAACTAA AAGAGAAGAA CGCTTCATCG GTCTTCTCCC TTCTTAAACT GACGAGGTGT	10500
CACACCTGCA ATCTGCTAA AACGTTGGGT AAAATAGTTC ATATCTTCAA AACCAACCTT	10560
CTCTGCGATC TCATAAAATCT TCAGATCTGT AGTTAAAAGC AAGAGCTTGG CTTGTTAAC	10620
ACGTTCTCTC ACCAGATAAT CCTGAAAAGG CAAGCCCAAC TCTTTCTTAA TCAAGGAAC	10680

CAGATAGGTC GGACTAAAAC CTAAGTCACT GGCTAAAGAC TTTAAACTAA ATTGGCTATC	10740
AGCCAGATGA GACTGGATT TCTGGGCCAT GTTTCCTTCA AACCTATTAG TCAATAAATC	10800
TTGTAACTGC TCTTCTTCT CTTCCCTGTC TAGTTTTGT TTGATTTCC CCAACATTTC	10860
CTCAATATCC TGACGAGAAA AGGGTTTGAG CAGGTAGTCG TCCACACCTA GTTGACAGC	10920
AGACAAGGCA TAATCAAAAT CATCGTAACC TGTTAAAAG ACCAAATGAA CCTGAGGATA	10980
GGTTTCTCGT ACCAGACTGG CCAACTGGAT GCCATTAGA TGAGGCATGT TGATATCGGT	11040
TAAAATGATA TCTGGCACCT GCTTTGGAT CAATTCCCAA GCCTGCCTTC CATTTCAGC	11100
CTGACCGATG ATTTCCATAT CGTAGGCTGC TACATTGACC AGTTTAGTCA AACCTTGTCT	11160
TACCAAGATAT TCATCTCTA CGATTAAGAT TGTGTAGGTC ATGCTCTGCT CCTTTACCAC	11220
TTACTAGTAT CAGTATAGCA AAATTCTCCT CTAACTGCTT AGGAAAGACC TCTTATACTC	11280
AATAAAAATC AAAAAGTAAA CTAGGAAGAT AGCCACAGGT TTCTCAAAGT ACCGCTTTGA	11340
GGTTGTAAAT AAAACTGACG AAGTCGACTC AAAGTATAGC TTTGAGGTTG TAGATAAAAC	11400
TGACGAAGTC GATAACCCCTA CATACTGAA GGCGACGCTG ACGTGGTTG AAGAGATTT	11460
CGAAGAGTAT TAATCAACAT AATCTAGTAA ATAAGCGTAc CTTTTCTTC CATTGGTCT	11520
TTGGGAATAA AGCGGATAGA GAGGCTATTG ATACAGTAAC GTAAGCCGCC CTTGCTCCTGT	11580
GGACCATCCG TAAAGACATG CCCAAGGTGA GAATCTCCTA CTCGGCTCCG CACTTCCATA	11640
CGCGTCATAT TGTAGGACTT ATCTCCTTG TAGGTGACAA CATCTGGACT GATGGGTTGG	11700
GTAAAACCTAG GCCAGCCACA ACCAGACTCA AATTGTCTT TTGATGAAAA GAGAGGTTCC	11760
CCAGTTGCTA TATCCACATA GATACCGGAT TCAAATTAT CCCAGTAACG GTTGAGAAA	11820
GCTCGTTCTG TTTGATTTTC CTGGGTAACT GCATACTCCT CAGGTGACAG GGTCTTTTC	11880
AATTCCCTCAT CACTTGGTTT TGGATATTG CTGGCATCAA TGACAGGATA GGCCGCCTGA	11940
TTAACATTGA TATGGCAGTA GCCATTGGA TTTTCTTGA GATAGTCTTG ATGGTAATCC	12000
TCAGCCACCA CAAAATTCTT CAAGTTTCC TTTCAACTG CTAGAGGTTG ATCGTATTTC	12060
TTAGCCACCT CATCAAAGAC TTGGTTAAC TCTTCAAAT CTTGTCATC TGTGTAATAA	12120
ACACCAAGTAC GGTACTGGT CCCCACATCA TTTCCTTGT TATTTTGCT GGTTGGATTG	12180
ATAATGCGGA AATAGTGAAG CAGGATTTCC TTGAGAGAAA TTGCTTGGC ATCATAAGTG	12240
ACATGGACGG TTTCTGCATG ACCTGTTTGG TTAATCAATT CGTACTTGGT TGTTCTCCT	12300
CTACCATTG CATAGCCTGA AACGGCATCC GTCACCCCGG GAACACGTGA GAAATATTCC	12360
TCCACTCCCC AGAAACAAACC TCCAGCTAGA TAAATTCGT GCAAGTCTGC GTCTTTACTA	12420

182

ATTTCTGT	TTTTCACTGC	TTTCCTCCT	TGGCTAACTG	CCGCCTTTC	AATTGCGAG	12480
GCATCTGT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGTTAT	GGCTAGAAAA	12540
AATACTCCTA	GCAACAAGAA	GATTTTAAC	TTATCATTCA	TAAGACGCC	CCTAGGCTAA	12600
TTCCCTCAA	GTGCGAAA	TTGCATCTT	TTCCATGAAT	CCTGGATGT	TTTGACCAG	12660
CTTGCCCT	TTGTCTATAA	AGGCTGGGT	TGGGTAAGAA	CGGACACC	AAGTTTCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAACCCC	AGAATTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTACG	13020
TGCGCTTGT	TTACTAGCTG	TCTGCTCCGT	CTTCATTCA	TCTTCGTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTCATAT	TGATATTCT	TTCCATTAA	TTCAAATAAT	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAC	CCATCACAA	AATGAGAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
TCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCCTCCAA	GCAAAACTAA	AGGTCAAGCC	CAATAAAAT	GCCTGACTAT	13500
AGCCCTTACC	ATTTGCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAAC	AGCTCCATAG	CCCAACAAAA	13680
TAAATATAAA	GGAAATTCC	GCTATAAAGG	CCAGAGTCG	TAATAAACTA	GTAACTGAGA	13740
TTGAAAATT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGTAT	13800
AGACCGTAA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCCT	ATCATTAT	TGATAGATTT	13920
ATTATA						13926

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20199 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCAGCAGAA AAATGGCATT TGGAGATAAT GGAAATCGTA	AAAAAACTAT GTTTGAGAAA	60
ATAACCTTGT TTATCGTGAT TATCATGCTA GTAGCAAGTT	TATTGGGAAT TTTTGCAACT	120
GCAATTGGTG CCCTCAGTAA TCTATAAAAT AGATTCAAGA	AAATTTAGTG ACTGGGATTT	180
CCCAGCCCTT TTTTAAAGTG AGAACAAAATA ATGAGTATGT	TTTTAGATAC AGCTAAGATT	240
AAGGTCAAGG CTGGTAATGG TGGCGATGGT ATGGTTGCCT	TTCGTCGTGA AAAATATGTC	300
CCTAATGGAG GCCCTTGGGG TGGTGATGGT GGTCGTGGAG	GCAATGTGGT CTTCGTTGTA	360
GACGAAGGAC TACGTACCTT GATGGATTTG CGCTACAATC	GTCATTTCAA GGCTGATTCT	420
GGTAAAAAG GGATGACCAA AGGGATGCAT GGTCGTGGTG	CTGAGGACCT TAGAGTTCGA	480
GTACCACAAG GTACGACTGT TCGTGATGCG GAGACTGGCA	AGGTTTTAAC AGATTTGATT	540
GAACATGGGC AAGAATTAT CGTTGCCAC GGTGGTCGTG	GTGGACGTGG AAATATTCGT	600
TTCGCGACAC CAAAAATCC TGCAACGGAA ATCTCTGAAA	ATGGAGAACC AGGTCAAGGAA	660
CGTGAGTTAC AATTGGAACt AAAAATCTTG GCAGATGTCG	GTTTAGTAGG ATTCCCATCT	720
GTAGGGAAGT CAACACTTT AAGTGTATT ACCTCAGCTA	AGCCTAAAAT TGGTGCCTAC	780
CACTTTACCA CTATTGTACC AAATTAGGT ATGGTTCGCA	CCCAATCAGG TGAATCCTTT	840
GCAGTAGCCG ACTTGCCAGG TTTGATTGAA GGGGCTAGTC	AAGGTGTTGG TTTGGGAACt	900
CAGTTCCCTCC GTCACATCGA GCGTACACGT GTTATCCTTC	ACATCATTGA TATGTCAGCT	960
AGCGAGGGCC GTGATCCATA TGAGGACTAC CTAGCTATCA	ATAAAGAGCT GGAGTCTTAC	1020
AATCTTCGCC TCATGGAGCG TCCACAGATT ATTGTAGCTA	ATAAGATGGA CATGCCTGAG	1080
AGTCAGGAAA ATCTTGAGA CTTTAAGAAA AAATTGGCTG	AAAATTATGA TGAATTGAA	1140
GAGTTACCAAG CTATCTTCCC AATTCTGGA TTGACCAAGC	AAGGTCTGGC AACACTTTA	1200
GATGCTACAG CTGAATTGTT AGACAAGACA CCAGAATTTC	TGCTCTACGA CGAGTCCGAT	1260
ATGGAAGAAC AAGCTTACTA TGGATTTGAC GAAGAACAAA	AAGCCTTGA AATTAGTCGT	1320
GATGACGATG CGACATGGGT ACTTTCTGGT GAAAAACTCA	TGAAACTCTT TAATATGACC	1380
AACTTTGATC GTGATGAATC TGTGATGAAA TTTGCCGTC	AGCTTCGTGG TATGGGGTT	1440
GATGAAGCCC TTCGTGCGCG TGGAGCTAAA GATGGGGATT	TGGTCCGCAT TGGTAAATT	1500
GAGTTGAAAT TTGTAGACTA GGAGACTGGT ATGGGAGATA	AACCGATATC TTTCCGAGAT	1560
CGGGATGGTA ATTTTGTTC CGCCGCAGAC GTTTGGAATG	AAAAGAAATT GGAAGAACTA	1620

184

TTTAATCGTC	TCAATCCAAA	TCGTGCCTTG	AGATTGGCAC	GAACTAAAAA	GGAAAATCCA	1680
TCTCAGTAAA	GAAGCTAAAAA	AATCCCGTGC	CTCATCAGAC	ACGGGATTTT	GTTGGTACGAC	1740
AGGCATGTAT	AGCAAACGTGA	ATCTGGAATA	GCACAGCATA	TCTTCTAAAAA	TATAGTAAAAA	1800
TGAAATGAGA	ACAGGACAAA	TCGATCAGGA	CAGTAAAATC	GATTCTAAC	AATGTTTAT	1860
AAGCAGAGAT	GTACTATTCT	AGTTTCAATC	AACTATATTG	TTATAAATTG	ATTTGAATT	1920
CAAATTTAAA	TTGTTTGATT	CTTATTTCAA	TTTGTATAG	TATATCTGAT	GTCAAAGTTC	1980
TCGGCGAGTC	AAATAGCGAT	TCCCAAGCCT	GACTATCGTG	AGGTAGCGGA	TTAAAATGGT	2040
CTGGGGATAG	ACCGTTTAA	GTCTGACGCT	GGAAATAAGA	ATTGTCAGAA	GAAGGGATAG	2100
CGAAATCGTG	GCTCTACGAA	CAGGAACGTG	ATAATAAGGC	GTATATAGCG	GATAAGAGGG	2160
CATCAAACTC	TAAAGTCCAA	AAAGGTAGTC	GTAACCTATA	TGCGTAAATC	ACGAGAGTAA	2220
TTGAATTCGT	ACTAAGATT	TCTATTTCA	CTGTAACCTT	TTAACGCCCT	TATATCTTGT	2280
ATACACGAGG	AAAGATGTAC	GACTTATCCC	GTGAGGTCTA	TCACTATAAA	GAGAAAACGA	2340
CAGATAGAAG	TGATCCTGAG	TCACGGTTAT	CTGTCTGATA	GGACGGTATG	TATAAACGC	2400
TTCTGTGAAC	TGAGAGAAGG	GGGAGAAGTT	CTTGCTAAA	TTTAGTTGAA	CAGCCGTATT	2460
CCGATACTTA	GATAAGAGAT	CTAGTCTTAG	CTCCTACTCA	GTTTTAGGG	ATAAAAAAGG	2520
GGCAATAGCG	ATTCGAGAAA	GATTATACTC	TTCGAAAATC	TCTTCAAATC	ACGTCAATAT	2580
CGCCTTGTG	TATGTGTAGG	ATACTGACTA	CGTCAGTTCC	ATCTACAACC	TCAAAACAGT	2640
GTTTTGAGCA	ACcTGCGGCT	AGTTCCCTAG	TTTGATCTT	GATTTTCATT	GAGTATTAGT	2700
AATTCACTTA	CTAACTCGTC	AACTCTGATT	TATCCAATAA	AATTGAAAAG	GATGGAAAAA	2760
AGGATAAAATT	TATGATATAC	TTTATTTGA	AGACCTTATT	AGAAATCTTG	AAAGAGTATT	2820
GAAAACCTAG	AATGAGAAAA	ATTGTTATCA	ATGGTGGATT	ACCACTGCAA	GGTGAATCA	2880
CTATTAGTGG	TGCTAAAAT	AGTGTGTTG	CCTTAATTCC	AGCTATTATC	TTGGCTGATG	2940
ATGTGGTGAC	TTGGATTGC	GTTCCAGATA	TTTCGGATGT	AGCCAGTCTT	GTCGAAATCA	3000
TGGAATTGAT	GGGAGCTACT	GTAAAGCGTT	ATGACGATGT	ATTGGAGATT	GACCCAAGAG	3060
GTGTTCAAAA	TATTCCAATG	CCTTATGGTA	AAATTAACAG	TCTTCGTGCA	TCTTACTATT	3120
TTTATGGGAG	CCTCTTAGGC	CGTTTGGTG	AAGCGACAGT	TGGTCTACCG	GGAGGGATGTG	3180
ATCTTGGTCC	TCGTCCGATT	GAATTACACC	TAAAGGCATT	TGAAGCTATG	GGTGCCACTG	3240
CTAGCTACGA	GGGAGATAAC	ATGAAGTTAT	CTGCTAAAGA	TACAGGACTT	CATGGTGCAA	3300
GTATTTACAT	GGATACGGTT	AGTGTGGGAG	CAACGATTAA	TACGATGATT	GCTGCGGTTA	3360
AAGCAAATGG	TCGTACTATT	ATTGAAAATG	CAGCCCGTGA	ACCTGAGATT	ATTGATGTAG	3420

185

CTACTCTCTT	GAATAATATG	GGTCCCCATA	TCCGTGGGC	AGGAACTAAT	ATCATCATTA	3480
TTGATGGTGT	TGAAAGATTA	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	3540
CTGGAACATA	TATATCTTTA	GCTGCTGCAG	TTGGTAAAGG	AATTCTGATA	AATAATGTTC	3600
TTTACGAACA	CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	3660
TATCTGAAGA	CAGCATTTC	GTCGAGGAAC	AGTCTAATT	GAAAGCAATC	AATATTAAGA	3720
CAGCTCCTTA	CCCAGGCTTT	GCAACTGATT	TGCAACAAACC	GCTTACCCCT	CTTTTACTAA	3780
GAGCGAATGG	TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	3840
TTGAACTAGC	AAAGATGGAT	GGCGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	3900
GTGGACGTGA	TTTACGTGGG	GCCAGTGTAA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	3960
TAGTCATTGC	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	4020
TACGTGGTTA	TTCTGATATT	ATCGAAAAAT	TACGTAATT	AGGAGCGGAT	ATTAGACTTG	4080
TTGAGGATTA	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTCTT	4140
TTTTGAAAC	GGATCGCTTG	TATTGCGTC	CTTTCTTTT	TAGTGTAGT	CAGGACTTCC	4200
GCGAGATAGC	TTCAAATCCA	GAAAATCTTC	AATTATTTT	CCCAACGCAG	GCAAGTCTGG	4260
AAGAAAGTCA	ATATGCCTG	GCCAATTACT	TTATGAAGTC	CCCTTGGGA	GTGTGGCAA	4320
TTTGTGACCA	GAAAAATCAA	CAAATGATTG	TTCTTATTAA	ATTTGAGAAG	TTAGATGAAA	4380
TCAAAAAAGA	AGCTGAGCTT	GGCTATTTT	TGAGAAAAGA	TGCTTGGTC	CAAGGATTAA	4440
TGACAGAGGT	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTGA	GGAATTGGC	TTAAAACAAT	4500
TATTTATCAT	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4560
TTAGTTGTT	CCGTCAGTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAATG	CGGGATTATC	4620
TTGAATTTCG	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAT	TCTAAGCTAT	4680
TTGGAGGAAT	TACCACTAGG	AAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
GTTAGTGATG	GAACAGCCTA	TCGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAAGTGCTAT	AGAGAGATTA	4860
ACGTTTGCTG	AAATTGCCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGCA	AGAAGGTTA	4920
GAGAGAGAAT	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	AACAAAATAT	CTTGCTTAC	4980
CTTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
GAAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTCAGG	TTCATGATGA	TGTGCTTAAA	5100
CTGGCCAATC	AAAAAGGGAT	TCCTGTTCTA	AGAAGTAAGC	ATGATACCTT	TACCGTCGCG	5160

186

ACCATGATCA ATAAAGCCTT GTCAAATGTC CAAATCAAGA CTGATATTCT GACAGTTGAG	5220
AAACTTTATC GCCCTAGTCA TGAGTATGGT TTTCTGAGAG AGACAGATAC AGTTAAAGAT	5280
TATTTGGACT TGGTCGTAA GAATCGTAGC AGCCGTTCC CTGTTATCAA TCAACATCAG	5340
GTCGTTGTTG GTGTTGTAAC CATGAGAGAC GCTGGTGATA AATCACCAAG CACGACAATT	5400
GATAAGGTTA TGTCTCGTAG TCTATTTTG GTTGGATTAT CGACAAATAT TGCCAATGTG	5460
AGTCAACCGA TGATCGCAGA AGACTTTGAA ATGGTACCAAG TTGTTCGAAG CAATCAAAC	5520
TTGCTTGGCG TTGTGACGCG ACAGAGATGTC ATGGAGAAGA TGAGCCGTTG CCAAGTTCG	5580
GCTCTACCAA CTTTTCTGA GCAGATTGGA CAAAAGCTCT CTTATCACCA TGATGAAGTA	5640
GTCATTACAG TGGAACCCCTT TATGCTAGAA AAAAATGGAG TTTTGGCTAA TGGTGTATTG	5700
GCAGAAATTG TGACCCACAT GACCGATTAGT AGTTGTTAAT AGTGGTCGCA ATCTCATTAT	5760
CGAGCAGATG CTGATCTACT TTTTGCAGGC TGTTCAGATA GATGATATAT TGCGCATTCA	5820
GGCACGGATT ATTCACTCATA CGAGACGGTC AGCTATAATT GATTACGATA TTTATCATGG	5880
TCACCAGATT GTTTCAAAAG CAAATGTGAC TGTAAAATT AATTAGAAAC TAGGAGAAAA	5940
GATGATAACA TTAAAATCAG CTCGTGAAAT CGAACCTATG GACAAGGCTG GTGATTTCT	6000
AGCAAGTATT CATATAGGCT TACGTGATTT GATTAAGCCA GGCGTAGATA TGTGGGAAGT	6060
TGAAGAATAT GTCCGCCGTC GTTGTAAAGA AGAAAATTTC CTTCCACTTC AGATTGGGGT	6120
TGACGGTGCC ATGATGGACT ATCCTTATGC TACCTGTTGC TCTCTTAACG ATGAAGTGGC	6180
TCACGCTTTC CCTCGTCATT ATATCTGAA AGATGGTGAT TTGCTAAAG TTGATATGGT	6240
TTTGGGAGGT CCCATTGCTA AATCTGACCT AAATGTCTCA AAATTAACACT TCAACAATGT	6300
TGAACAAATG AAAAATACA CTCAGAGCTA TTCTGGTGGT TTAGCAGACT CATGTTGGC	6360
TTATGCTGTT GGTACACCGT CCGAAGAAGT CAAAAACTTG ATGGATGTAA CCAAAGAAGC	6420
TATGTACAAG GGTATTGAGC AAGCTGTTGT TGGAAATCGT ATCGGTGATA TCGGTGCGC	6480
TATTCAAGAA TACGCTGAAA GTCGTGGTTA CGGTGTAGTG CGTGATTTGG TTGGTCATGG	6540
TGTTGGCCA ACTATGCACG AAGAACCAAT GGTTCTAAC TATGGTATTG CAGGTCGTGG	6600
ACTCCGTCTT CGTGAAGGAA TGGTCTAAC CATTGAACCA ATGATCAATA CAGGGCATTG	6660
GGAAATTGAT ACAGATATGA AAACCTGGTTG GGCGCATAAG ACCATTGACG GTGGATTGTC	6720
ATGTCAGTAT GAACACCAAT TTGTCATTAC GAAAGATGGA CCTGTTATCT TGACTAGCCA	6780
AGGTGAAGAA GGAACCTATT AATAAAAAGT GAAAAGACTA CTGGAAGTTT ATTTTGATAA	6840
AAAATCCAGT AGATCTTTTC ATAATAAAAC GCATTGTATC AAGTGTAGG GGCTGATATC	6900
ATGCGTTTT CTGCTTTAA GATTTTTCC AACTCTGTTT GTAAGCGCAT CATAACAAAG	6960

187

GGTCTAGGAT TCAGGGCTCT CCTCCTATAT ACTATTAGTA AAGTAAAACT AAGGGAGGAT	7020
ATTTTAGTGT CGCAGTCTAT TGTTCCGTGA GAGATTCCAC AATATTGTCG TTTTGATTCT	7080
AAAAAGAGAA ATGGAATTCT GTTTAATGTT CGTATTGCCA ATCTTAAATT TACTTTTTA	7140
TATTATACTT CCTGCGAAC AAAATATGGT ATAGTAGTTC TATGAATGAT GAAGCAAGTA	7200
AACAACTAAC TGATGCACGA TTTAAGCGTC TTGTTGGTGT TCAGCGTACC ACTTTGAAG	7260
AGATGTTAGC TGTATTAAGA ACAGCTTATC AACTTAAACA CGCAAAAGGT GGACGAAAAC	7320
CTAAATTAAG CCTAGAAAGAC CTTCTTATGC CCACTCTTCA ATAGTGCAG AATATCGAAC	7380
TTATGAAGAA ATTGCGGCTG ATTTGGTAT TCACGAAAGC AACTTTATCC GTCGGAGCCA	7440
ATGGGTTGAA ATAACCTCTG TTCAGAAAGTGG TTTTACGGTT TCAAGAACTC CTCTCAGTTC	7500
TGAGGACACG GTAATGATTG ATGCGACGGA AGTAAAATC AATGCCCTA AAAAAACAAT	7560
TAGCGAATGA TTCTGGTAA AAGAAATTTC ACGCTATGAA GGCTCAAGCG ATTGTCACAA	7620
GTCAAGGGAG AATTGTTCT TTGGATATCG CTGTGAACTA TAGTCATGAT ATGAAGTTGT	7680
TCAAAATGAG TCGTAGAAAT ATCGAACAAAG CTGGTAAAAT CTTGGCTGAC AGTGGTTATC	7740
AAGGGCTCAT GAAGATATAT CCTCAAGCAC AAACCTCACG TAAATCCAGC AAACTCAAGC	7800
CGCTAACAGC TGAAGATAAA GCCTATAACC ATGCGCTATC TAAGGAAAGA AGCAAGGTTG	7860
AGAACATCTT TGCCAAACTA AAAACGTTA AAATATTTC AACAAACCTAT CGAAATCATC	7920
GTAAACGCTT CGGATTACGA ATGAATTGAA GTGCTGGTAT TATCAATCAT GAACTAGGAT	7980
TCTAGTTTG CAGGAAGTCT ATTGAGGTAT TGAGCTAGTT TATGAAAAAA TTGGGTGAAA	8040
AGTCGAGTGT TTTAGAAACC CACAGTGTAG TATTCTAGTT TCAATCCACT ATATTTGCT	8100
ACTCCCCGTA AAGTTCTAT TTTCCCTGAT TTCTGATATA ATAGAAATAT TGACTTCAAG	8160
AGTAAGGAAG AGAAGATGAA CGCATTATTA AATGGAATGA ATGACCGTCA GGCTGAGGCG	8220
GTGCAAACGCA CAGAAGTCC CTTGCTAATC ATGGCAGGGG CTGGTTCTGG AAAGACTCGT	8280
GTTTGACCC ACCGTATCGC TTATTTGATT GATGAAAAGC TGGTCAATCC TTGGAATATC	8340
TTGGCCATTA CCTTTACCAA CAAGGCTGCG CGTGAGATGA AAGAGCGTGC TTATAGCCTC	8400
AATCCAGCGA CTCAGGACTG TCTGATTGCG ACCTTCCACT CCATGTGTGT GCGTATTTG	8460
CGTCGGATG CGGACCATAT TGGCTACAAT CGTAATTGTA CAATTGTGGA TCCTGGTGA	8520
CAGCGAACGC TCATGAAACG TATTCTAAA CAGTTGAACT TGGACCCCAA AAAATGGAAT	8580
GAACGAACTA TTTTGGGGAC CATTCCAAT GCTAAGAATG ATTTGATTGA TGATGTTGCT	8640
TATGCTGCCA AAGCTGGCGA TATGTATACG CAAATTGTGG CCCAGTGTAA TACAGCCTAT	8700

188

CAAAAAGAAC	TTCGTCAGTC	TGAATCCGTT	GACTTTGATG	ATTTGATTAT	GCTGACCTTG	8760
CGTCTCTTG	ATCAAATCC	TGATGTTTG	ACCTACTACC	AGCAAAATT	CCAATACATC	8820
CACGTTGATG	AGTACCAAGA	TACCAACCAC	GCTCAGTACC	AATTGGTCAA	ACTCTGGCT	8880
TCCCGTTTA	AAAATATCTG	TGTGGTTGGG	GATGCGGACC	AGTCATCTA	CGGTTGGCGT	8940
GGTGCTGATA	TGCAGAATAT	CTTGGACTTT	GAAAAGGATT	ACCCCAAAGC	CAAGGTTGTT	9000
TTGTTGGAGG	AAAATTACCG	CTCAACAAA	ACCATTCTCC	AAGCGGCCAA	CGAGGTTATT	9060
AAAAATAATA	AAAATGCCG	TCCTAAAAAT	CTCTGGACTC	AAAACGCTGA	TGGGGAGCAA	9120
ATCGTTTACT	ATCGTGCCGA	TGATGAGCTG	GATGAGGCTG	TATTTGTAGC	CAGAACCATC	9180
GATGAACCTA	GTCGCACTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
AATGCCAGT	CCCGTACAAT	TGAGGAAGCC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GTTGGCGGAA	CCAAATTCTA	CAGCCGTAAG	GAAAATTGCG	ATATTATTGC	TTATCTCAAC	9360
CTTATTGCTA	ATTTGAGTGA	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAACGT	9420
GGAATTGGTC	TAGGTACAGT	TGAGAAAATC	CGTGATTTG	CAAATTGCA	AAATATGTCT	9480
ATGCTGGATG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
ATCTGGGATT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
ACAGAGTTGG	TTGAGTCCGT	CCTAGAAAAA	ACAGGTTATG	TCGATATTCT	TAACTCCAA	9660
GCGACTCTAG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTC	TGTTACGAAG	9720
AACTTTGATG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
TTCTTAAATG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAAG	GTACTCAGGA	GACATCAGAA	9840
GTGACCTTG	TGACCCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	9900
GGGATGGAAG	AAAATGTCTT	TCCACTTAGT	CGTGCAGCTG	AAGATTCTAGA	TGAATTAGAA	9960
GAAGAGCGCC	GTCTAGCCTA	TGTAGGTATC	ACCGCGTCAG	AGAAAATTCT	CTATCTGACC	10020
AATGCCAACT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	10080
AACGAAATCA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	CTCGTCCTGC	AAATACAAGC	10140
TTTAAGGCAT	CATATAGCAG	TGGTAGTATT	TCCTTGGTC	AAGGTATGAG	TTGGCTCAG	10200
GCTCTTCAAG	ACCGTAAACG	CGGTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	10260
TTTGGTCAAT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	10320
GATATTGCTC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	10380
GCTAGGCAGG	AATTGAAAAT	CAATTCCC	GAAGTAGGTT	TGAAAAAAACT	TTTAGCCAGT	10440
GTGGCTCCAA	TTGAGAAAAA	AATCTAATT	TCCATCCTTC	TCACGAATAA	TAAAGTGAGG	10500

AGGATTTTA TGTACAGTAT TTCAATTCAA GAAGATTAC TATTACCAAG AGAAAGGCTG	10560
GCCAAGGAAG GAGTTGAAGC GCTTAGTAAC CAAGAGTTGC TAGCTATTT ACTCAGGACA	10620
GGAACACGTC AAGCTAGCGT TTTTGAATT GCCCAAAAAG TCTTGAACAA TCTTCAAGC	10680
CTAACGGATT TGAAAAAAAT GACCCTGCAG GAATTGCAGA GTTTGTCTGG TATTGGCGT	10740
GTAAAGGCCA TAGAATTACA AGCTATGATT GAACTGGGC ATCGTATTCA CAAACACGAG	10800
ACTCTTGAAA TGGAAAGTAT TCTCAGCAGT CAAAAGTTGG CCAAGAAGAT GCAGCAGGAA	10860
TTAGGGATA AAAAACAAAGA GCACCTGGTG GCACTCTATC TCAATACTCA AAATCAAATC	10920
ATCCATCAGC AGACCATTTC TATCGGGTCT GTAACTCGTA GTATCGCTGA ACCGCGAGAG	10980
ATTCTTCACT ATGCAATCAA GCATATGGCG ACTTCTCTTA TCTTGGTCCA CAATCATCCT	11040
TCAGGAGCGG TAGCGCCTAG CCAAAATGAT GATCATGTCA CTAAACTTGT TAAAGAAGCC	11100
TGCGAATTGA TGGGGATTGT TCTCTTGGAC CATTGATTG TCTCTCATTC TAATTACTTT	11160
AGTTATCGTG AAAAGACAGA TTTAATCTAA AGTTCATCAA CGACATAGTC AAAGAGTTT	11220
TTATCTTGG GACGATTTTC AAAAAGAAGT TCTGGATGCC ATTGGACACC GAGAAAGGCG	11280
ACATCATCCG TACTCATGAC AGCCTCAATG ATACCATCTT TAGGATCATG AGCCACAAC	11340
TTTAAATTTG GTGCTAAGTC CTTGATGCTC TGGTGGTGGA AGGAGTTGAT ATGAGAGATT	11400
TCTCCATAGA TTTCTTGGAG AACGGTATCT GGTTCTGTTA CCAAGCGTTG AGTTGTGTAC	11460
TCAACAGAAG AATCCTGCCA ATGGTCTTCG ATATCTGGT ACAAAAGTCC ACCCATGGCA	11520
ACGTTAAAGA GTTGGGTACC ACGGCAGACA GAGAAAATGG GCTTTTCTG TTTAATAGCT	11580
TCCTTGATGA GGGCCAGTTC GAAGATATCT CTTGAAGGT GATAGTCATC ACTATCAATG	11640
GTTTTGGTT CGCCATAAAA TTTGGATCG ACATTTGCC CACCTGTCAA GATGAGCTTG	11700
TCAATCAAAC TGATATACTG GCAGGCCATT TCTTGATCAC CAATCGGTAG GATGATGGGA	11760
ATCCCCTCCAG CATCTTAAC GCCTTCAACA AAGCCTTTG CTGCGTAGCT CATCATGATG	11820
TCATCATCTG GATGAGTTT TTCGTTTCCT GTAATCCAA TAACTGGTTT TTTCATAAAA	11880
TGATTTCCG TTTCTAATCC TCTTTTCGCA TGAAGTAGAG GAGGGTTTGG AGTTCACTTG	11940
TCAAATCGAC ATACTGAACG ACCACGTCTT TTGGTAAATG CAGATGGACT GGTGAAAAAC	12000
TGAGAATTCC TTTCACACCA GCATCAACCA AGAGATTAGC AACCTCTGT GACTTGACGC	12060
TGGGAACAGT TAGGATAGCA GTCTTCACAT CAGCATCCTT GATTTTATCC TTGATCTGAG	12120
AAATCCCGTA AATGGGAATC CCGTCAGGAG TTTGGGTACC GACTTCAGGA TGGCGTCTA	12180
GGTCAAAGGC CATGATAATC TTCATCTTGT TACGTTCGTG GAAGCGGTAG TGGAGAAGGG	12240

190

CATGGCCCAT	ATTTCCAATA	CCAACCAGCA	TGACATTGGT	AATAGAGTTG	TCATTGAGCA	12300
AATCGGCAA	AAATGTCATT	AGTTTTTGAT	CATCATAGCC	AAAACCACGA	CGACCAAGTT	12360
CACCAAAATA	GGAAAAATCA	CGACGTACGG	TCGCTGAATC	AATACCGATA	GCCTCTGCAA	12420
TTTGCTTAGA	GTTGGCACGT	TCAATCTTTT	CTGCATGAAA	TCTCTTAAAA	ATTCGATAGT	12480
AGAGAGAGAG	TCTTTTGCT	GTAAGCTTTG	GAATAGCAA	CTGTTTATCT	TTCACAAAAT	12540
CACAACCTTT	CTATTCTTCT	ATTTATAGA	AACATTGTGA	AAAAATCAAC	AAAAATAAGA	12600
AAAAACTAAG	AAAAATCTTA	GTTTGATGT	AAAAAATCTG	CATGAGATAG	AAAACGGTAG	12660
AGGTCTCCGA	CCAGCCCCCTG	ATAAACTTTT	TTGCCCTAA	AAGTCAGAGA	AGTCACATAA	12720
AGTGTATCTG	GTAAGGTTAC	ACATCCTGAC	AAAGTCAACA	TGAGAGCCTC	ATGATCCTCA	12780
TACTTGAGAG	TACGCTCTAC	ATGATAGCAG	TCCTTATAGG	TCAGTTCAA	CATTTGGCT	12840
CTATCTTCC	GATTTGTAA	AGACACCACG	TTCTACCAAG	CTATCCATGA	GGAAAGTAGAA	12900
TTTTTCCCTGA	TGAATATGGT	GGTCTCTGA	TTTGAAAATA	TCAACTAGAC	GAAGGCCAAA	12960
CTTGTCACTG	ATATTGATTT	TAGCCCCTGT	AAGTCCTTG	TTAATGATGA	TTTGAGTTG	13020
GAAGCCTTCA	CCGCTGTTG	GCACCTTTTC	CAAAGGCAG	GTCAGTTCAT	AGTTACCAAC	13080
CTTAGTTCA	AAAAAGGTGT	TATCTTGAG	GGTGAATT	TTAACAGAAAG	GGCTAAGAGT	13140
GTAATCGTAA	CGACAATT	TTAACTGAAT	GATTTTTCA	AATGCCATAT	GGCTAACCTC	13200
CGATAATTTC	TTTTAAGGTT	TTTGCAGGG	TTTGTAGGTC	TTCAACGGTA	TTTGAGGCG	13260
ACAAAATGAT	GCGAAGGGAT	TCCTCAAGC	GTTCTGAATT	TGCGCCATAC	ATGGCTTC	13320
GAACATGGCT	GGATTGGACA	ACGCCCTGCAG	TACAGGCTGA	GCCAGTAGAG	ATTGAAATT	13380
CAGCTAAATC	TAGCCGAAGG	AGTAAGAGGT	CATTTTCTG	ACCAGGAAAT	CCAATATTGA	13440
GAACATAAGG	GAGATGATGT	TTTCCTCTAT	TCAGGTAATA	CTGAATGCC	TCCAGCTCTG	13500
CCAGAAAGGC	AGTTTCTAGA	TTTTGTACAT	GTTGAAAATG	TTCTTCTTGT	TTTTCTAGGT	13560
CTTCTTTAG	GGCTGCAACC	ATGCCTACAA	TGGCAGGCAG	ATTTTCAGTT	CCTGCACGTT	13620
TTTCTGTTCTG	CTGGTCTCCG	CCATGTAGAT	AGGAATCAA	GTCCATGCTA	GATGGTAGA	13680
GAAAACCGAT	TCCCTTAGGA	CCATGGAATT	TGTGGGCAGA	AGCAGTGAGA	AAATCAATGC	13740
CCAATTCTTC	TGAATGAATT	GGGATTTAC	CAATAGCCTG	AACTGCATCA	ACATGATAGG	13800
CAGCAGGGGTG	TTGCTTGAGT	ATTTGGCAA	TTTCAGCGAT	GGGCAGTAGG	TTTCCTGTCT	13860
CATTATTGAC	AAACATGGTA	GAAACAAAAA	TCGTATCGTC	ACGTAAAGCC	TTTTGAATT	13920
GCTGGGCTGT	GATTTCTTGA	TTTTCTGGCT	GGATAATGGT	TGCTTCAAAC	CCAAAGTGTT	13980
GAACCAAGTA	ATCAATTGTT	TCAAGGACAG	CATGGTGCTC	GATGGCAGTT	GTGATGATAT	14040

191

GTTTTCCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATT	TTGCCTTCAG	14100
TCCCCACCAGA	AGTGAAAAAG	ATATGTTGAG	GTTCGGTCCT	TAGTAACTGG	GCTAGTTCC	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT	14220
TTCCCGTGGGT	TTCTTGCA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
TCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
TAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAACGTT	14580
CAGAGAAGGT	ACGTCCGT	TTTAAAATAT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTATC	GCAGTAATGT	TTTGCAGATA	14820
GGGGAACAGT	GAAAAGATTA	TCCACTGGAA	TATCAAAGAA	ACCTTGAACC	TGAACGGCAT	14880
GCAAATCAAG	AGTCAGGATA	CGATCAACTC	CAGCCTTAAC	CAGCATATTG	GCAACTAGTT	14940
TTCGCTGTAAG	TGGCTCACGA	GGACAAGCAA	TCCGGTCTTG	ACGTGCATAG	CCAAAATATG	15000
GAAGGACAAAC	GTTGATACTG	TGGGCACTTG	CACGCACACA	AGCATCGACC	ATGATTAACA	15060
ATTCCATTAG	GTGGTTGTTG	ACAGGGAAAC	TTGTTGATTG	GATGATGTA	ACATCATAAC	15120
CACGGACACT	TTCTTCGATA	TTTACTTGG	TTTCTCCGTC	TGAAAATTGA	CGTGATGATA	15180
GTTCCTCAAG	TGGGACACCA	ACAGCTTGGG	CAATTTTTG	TGCAATCTCT	TGGTTAGAGT	15240
TGAGTGCAGA	AAGTTTCATG	TTTTTTCTAT	CTGACATTAT	AGACCGCTCT	CTGTAAACTT	15300
TATAAAATCCT	AGTTATATT	ACCTTACATA	TATGAACTGG	GATTTGTGTA	TTTTTATCTT	15360
TTCTTATTTA	CCAAAAAATG	GAGATTATTT	CAGCTATTTT	TCATACTTT	GACAAATCGA	15420
ACCAATTTCG	AAGGAGCTTT	TTGATAGGAA	ATCTGATTTT	TCTCTAAAAA	TTGTGAGAA	15480
TCCTGTTTGC	CTTGCTCATG	ATTTTCCACT	TCAAGCTCCA	ATTCGTAATC	TGTTATATCA	15540
AAGTATCGGC	TCTGATCCAG	TGCCATGAGA	CCAATAGCTG	TTTCATTTC	ATAGCGAAGC	15600
GTTGTTAGAC	AACCAAGAAC	CTGCCAGTTC	TTACTTTGG	TACCATGTTT	CGCCAATTCA	15660
TCCAGTACTA	GCCCTTGAGG	AAGTTCTTCC	TTACTCAGAT	AGTTCTCAGC	ATCTTTAGT	15720
TGCAATTTTT	GGTTGTATT	CATGTTCCA	ACACTCTGCG	GGACTTTGAG	TGTCAACTCA	15780

192

GCCCAGTCTT	CAAAGGTTCG	AATGCGCATA	GCGACTTTCT	TTTCTCGCAG	TTCAAAATCA	15840
GGCGTGTGCA	TGTAGTAATT	TGTTTGAAGA	ACAGGAGTGA	CACCTGTGAA	CTGGTCTTTT	15900
AGACGATTGT	ATTCATCTT	TTTCAATAGT	GTTCATCAATT	CAATTCTAA	ATGTTTCATT	15960
TTTCTTACCT	TTTTTATCG	TTGAAAGCGG	ATTATGGTA	TAATAAGCAT	TGTATTATT	16020
GTATATGAAT	CTGGAGAAAA	AATCAAAGAT	ATTTTGACG	GATAATATGA	GAACAAGGGA	16080
GAATATATGA	CCTTAGAATG	GGAAAATTT	CTAGATCCTT	ACATTCAAGC	TGTTGGTGAG	16140
TTAAAGATTA	AACTTCGTGG	TATTCGTAAG	CAATATCGTA	AGCAAAATAA	GCATTCTCCA	16200
ATTGAGTTG	TGACCGGTCG	AGTCAAGCCA	ATTGAGAGCA	TCAAAGAAAA	AATGGCTCGT	16260
CGTGGCATTA	CTTATGCGAC	CTTGGAACAC	GATTCAGG	ATATTGCTGG	CTTACGGTGT	16320
ATGGTTCACT	TTGTAGATGA	CGTCAAGGAA	GTAGTGGATA	TTTGCACAA	CGTCAGGAT	16380
ATGCAATCA	TACAGGAGCG	AGATTACATT	ACTCATAGAA	AAGCATCAGG	CTATCGTTCC	16440
TATCATGTGG	TAGTAGAATA	TACGGTTGAT	ACCATCAATG	GAGCTAAGAC	TATTTGGCA	16500
GAAATTCAAA	TTCGTACTTT	GGCCATGAAT	TTCTGGCAA	CGATAGAACAA	TTCTCTCAAC	16560
TACAAGTACC	AAGGGGATT	CCCAGATGAG	ATTAAGAACG	GACTGAAAT	TACAGCTAGA	16620
ATCGCCCATC	AGTTGGATGA	AGAAATGGGT	GAAATTGCTG	ATGATATCCA	AGAAGCCCAG	16680
GCACCTTTTG	ATCCTTGAG	TAGAAAATTA	AATGACGGTG	TAGGAAACAG	TGACGATACA	16740
GATGAAGAAT	ACAGGTAAC	GAATTGATCT	GATGCCAAT	AGAAAACCGC	AGAGTCAAAG	16800
GGTTTTGTAT	GAATTGCGAG	ATCGTTGAA	GAGAAATCAG	TTTATACCTCA	ATGATACCAA	16860
TCCGGATATT	GTCATTTCCA	TTGGCGGGGA	TGGTATGCTC	TTGTCGGCCT	TTCTAAAGTA	16920
CGAAAATCAG	CTTGACAAGG	TCCGTTTAT	CGGTCTTCAT	ACTGGACATT	TGGCCTTCTA	16980
TACAGATTAT	CGTGATTTG	AGTTGGACAA	GCTAGTGACT	AATTTGCAGC	TAGATACTGG	17040
GGCAAGGGTT	TCTTACCCG	TTCTGAATGT	GAAGGTCTTT	CTTGAAAATG	GTGAAGTTAA	17100
GATTTTCAGA	GCACCAACG	AAGCCAGCAT	CCGCAGGTCT	GATCGAACCA	TGGTGGCAGA	17160
TATTGTAATA	AATGGTGTTC	CCTTGAAACG	TTTCTGTGGA	GACGGCTAA	CAGTTCGAC	17220
ACCGACTGGT	AGTACTGCCT	ATAACAAAGTC	TCTTGGCGGT	GCTGTTTAC	ACCCCTACCAT	17280
TGAAGCTTTG	CAATTAACGG	AAATTGCCAG	CCTTAATAAT	CGTGTCTATC	GAACACTGGG	17340
CTCTTCCATT	ATTGTGCCCTA	AGAAGGATAA	GATTGAACCTT	ATTCCAACAA	GAAACGATTA	17400
TCATACTATT	TCGGTTGACA	ATAGCGTTTA	TTCTTTCCGT	AATATTGAGC	GTATTGAGTA	17460
TCAAATCGAC	CATCATAAGA	TTCACTTTGT	C CGCAGTCCT	AGCCATACCA	GTTCCTGGAA	17520
CCGTGTTAAG	GACGCCCTTA	TCGGCGAGGT	GGATGAATGA	GGTTTGAATT	TATCGCAGAT	17580

193

GAACATGTCA	AGGTTAACGAC	CTTCTAAAAA	AAGCAGCAGG	TTTCTAAGGG	ATTGCTGGCC	17640
AAGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
CTATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTGAAACCC	17760
TTGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACCT	TCTAGTCTTG	17820
AATAAACCCCT	ATGGAGTGGC	TTCTATTCCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTGCCTA	AGCACGGTTA	TGCCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
TCCATTATTA	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCAAC	TGCACACTGG	TCGAACCCAT	18240
CAAATCCGAG	TCCATTTTC	TCATATCGGT	TTTCCTTGC	TGGGAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTAT	18360
CATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AACTTTTGA	AAAGTCTAAA	GCCAACCTTG	TTGGTAAAAAA	18540
TGCTCGTATC	GTTCTCCCTG	AAGGGAAAGA	GCCTCGTATT	CTTCAAGCAA	CAAACGCTT	18600
AGTAAAAGAA	ACAGAAGTGA	TTCCTGTTT	GCTTGGAAAT	CCTGAAAAAA	TTAAAATTAA	18660
TCTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTAC	GACCCTCAAC	ATTATCCTCA	18720
ATTTGAAGAA	ATGGTTCTG	CCTTGGTGGA	GGCTCGAAG	GGAAAATGA	CTGAAGAAGA	18780
TGTACGCAAG	GTGTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGAT	GGAAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TCGCCCCAGC	18900
TCTACAAATC	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
TCGTGGTACG	GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AAACATCAATC	CAGATGCAGA	19020
AGCCTTGGCT	GAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAAC	19080
TAAAATTGCC	ATGTTGAGCT	ATTCTACTAA	AGGTTCAAGGG	TTTGGTAAA	GGCGTTGATAA	19140
GGTCGTTGAA	GCAACTAAAA	TTGCTCACGA	CTTGCCTCCT	GACCTTGAAA	TCGATGGTGA	19200
GTTGCAATT	GATGCAGCCT	TTGTTCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19260
GGTAGCTGGT	CAAGCAAATG	TCTTCATCTT	CCCAGGTATC	GAGGCAGGAA	ATATTGGTTA	19320

194

CAAGATGGCT	GAACGCCTGG	GTGGCTTGC	GGCTGTTAGGA	CCTGTTTGC	AAGGTTAAA	19380
CAAGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTACA	AGTTGACCCT	19440
CATCACAGCA	GCTCAAGCAG	TTCATCAATA	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500
TACTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCTGAG	AACTAAATTA	19560
CTGATTGGTG	TCAAAAAGGA	AAACCTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620
AGAAATCTGT	AATATACATA	TCCGTAAAAC	GATAATTCC	CTTTTGATT	TTAAATGAGT	19680
ATGAAAAGAG	AATTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740
GAGAAAAGGAC	AAATTTCATC	CTTTCTTTT	TGATATTTCAG	AGCGATAAAA	ATCCGTTTT	19800
TGAAGTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTG	ATGAGATTAT	19860
TGGTCGCTTC	CAGTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ATCTTTCTT	19920
TATCTTGAG	GAAGGTTTTA	AAGACAGTCT	AAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980
CCTCAATAAG	TCCGAAAAAT	TTCTCTGGTT	CCTTATTCTG	GAAGTGAAGAA	AGCAAGAGTT	20040
GATAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTG	TTTAAATCT	20100
CTTTTATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGTTATCA	CTCAGTTTAC	20160
GGCTATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19702 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ACCCGATGTA	TCAGCGGATA	TTTACTCTAT	TTTCACAAACG	ATGTTATAACC	CACAATAAAA	60
GAAAAAAAGAC	CCTAAGGTCT	CCTTGCTTT	TATTATTAAC	CGCGTTCAAC	TTTACCTGAT	120
TTCAAAGCAC	GAGCTGAAGC	CCAAACTTTT	TTAGGTTTAC	CATCGATAAG	AACAGTAACT	180
TTTGAAAGGT	TTGGTTTAC	GGCACGTTTT	GTTGGTTCA	TCGCGTGTGA	ACGGTTGTT	240
CCTGATACAG	TCTTACGACC	TGTAAAGTAA	CATACTTTAG	CCATTGTGTT	TTCCCTCCTAT	300
TAGATCTAAT	ATAGCGGATG	TGCTAGCACC	ACATACCGTA	CTATGTTATC	ACATTTCTT	360
GTTCCTTGCA	AGGAAATTGG	AAGATTTTTT	ATTTGTGTCT	TAAATCAGGT	CTTGCCTGAC	420
ATTTTGCTC	TCCACATGCC	ATCGTTGATT	AACAGAACAC	CAGAATTAAA	ATTATGTGTA	480
TAAGGAAATCAT	CTCTAACTGC	AGCTAAGGGT	ATAGCCGTCA	AGTCCAAATC	CCACAGCTCA	540

195

TCTATCGATT TTCTTACAAC AATATCTGAA TCCAAATACA GTACACGAGA CTCGCTTACA	600
TACTTTGGAA TAAAATACCT AAAAAAGCCG CATATGAAAG TCCCTCAAAG GGGAGACGAT	660
AACCTTTCAAG AATATTACTG TCAATCTAAA CATTACAAT CTCACTATTC AAAGTCTCTA	720
GTCTTTTTC CATCAATTGG AACCATCTC GCGGAAGGTC ATCATTAAA ACATAAAACT	780
TAAGATTATA ATGATGAACA CAAAGAGATT TTATTGTTGT TTCAACTTTA TCCATATAAG	840
CATTATCTGC ACCTAAGACA ATCGTTTTT TCTCTTCTT CACTTTTAT CTCATTTCTT	900
TTTATTCCCA TCATATTATT CCCATCATAT GTTTCCCATC ATATGTTCT ACGTAACCAT	960
TATTTTCGCC TATTCGTTCG TAAAACCATA CCAGTGGAGA TTTTAGATGA AGTCCCATTA	1020
CGGTTTACAA TTTTACATT ACGACACGGA GTTTACAAA TCGATTTCAT TTGCCAACAG	1080
TAGTTAGTGA GGCAGTTAGC TAGTCGCCA AATAGCGACT AGCGTCCAAC AATTGGAAC	1140
TTTAGTTCCA ATTGTTGGTA CTGAGTCACA TCTTCTCCTC TAACTCTACG TCTGGATACT	1200
TGTCCGAAA CCAGCGGAGG GCAAAGTCAT TTTCAAAGAG AAAGACTGGT TGGTCAAAAC	1260
GGTCTTTGGC TAAGATATTG CGACTTGACG ACATCCGTT ATCCAAGTCC TCAGGCTTGA	1320
TCCAACGAAC GGTCTTTTA CCCATTGGGT TCATAACTAC TTCCGCATTG TACTCGCCTT	1380
CCATGCGGTG TTTAAAGACT TCAAACGTGA GTTGACCTAC AGCGCCTAGC ATGTACTCAC	1440
CTGTTTGGTA ATTCTTATAA AGCTGAACGG CTCCCTCTTG CACCAATTGC TCAATCCCC	1500
TGTGGAAGGA TTTTGCTTC ATAACATTCT TAGCAGAAAC TTTCATGAAA ATCTCAGGTG	1560
TAAAGGTTGG CAGGGGTTCA AATTCAAAC TGTGTTTTCC AACCGTCAAG GTATCCCCA	1620
CCTGATAAGT ACCGGTATCG TAAACCCCGA TAATATCACC TGCCACGGCA TTGGTCACAT	1680
TCTCACGACT CTCCGCCATA AACTGGGTAA CATTAGATAG TTTAGCCCC TTACCAGTAC	1740
GAGGGAGATT GACACTCATG CCGCGCTCAA ATTGCCAGA TACGATAACGG ACAAAGGCAA	1800
TACGGTCACG GTGACGAGGG TCCATGTTGG CTTGGATTTT AAAGACAAAG CCTGAGAAAT	1860
CCTTGTATA AGGATCCACA ATTCACCGT CTGTTTCTT GTGACCATGT GGTTCTGGAG	1920
CAAACCTTGAG GAAGGTTCA AGGAAGGTCT GCACACCAAA GTTGTCAAG GCTGAACCGA	1980
AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC TGAAAACCTCA TTCCCGCTT	2040
CATTTAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAGAGTT	2100
TGTCCCCGTC TTCTAGACTG GCAAAACGCT CATCCCCTTT GTAAAGCTCT AAACGTTGGT	2160
TATAGAGGTC ATACAAGCCC TCAAAGGCTT TCCCCATCCC GATAGGCCAG TTCATAGGGT	2220
AGCTAGCAAT GCCCAAGATT TCTTCCAATT CTTGCAAGAG ATCCAAAGGC TCACGACCGT	2280

196

CACGGTCCAG	CTTGTTCAT AAGGTAAGA CTGGAATGCC	ACGATGTTC ACAACCTCAA	2340
ACAATTCTT	GGTTTGAGCC TCGATCCCCT	TGGCAGAGTC CACGACCATG ACCGCAGCAT	2400
CCACCGCCAT	CAAGGTACGA TAGGTATCTT	CTGAGAAAGTC CTCGTGCCCT GGC GTGTCTA	2460
AGATATTCAC	GCGCTTGCCG TCGTAGTCAA	ATTGCATAAC AGATGAAGTA ACAGAAATCC	2520
CACGTTGCTT	CTCGATATCC ATCCAGTCAG	ATTTAGCAAA AGTCCCTGTT TTCTTCCCTT	2580
TTACCGTACC	AGCCTCACGA ATCTCACCCC	CAAAGTAGAG TAACTGCTCA GTGATGGTTG	2640
TTTTCCCCGC	GTCCGGGTGG GAGATAATGG	CAAAGGTACG ACGTTCTTA ATTTCTTCTT	2700
GAATATTCAT	AAGTTCTCTT TCTTGATTC	TCTATTTTC TTGTTTCAAT AGCTGAGAAT	2760
GATTTTTACA	TTGGATTTA CCATTCCTT	CAACACTCCA TTATATCGGA TTTAGCATT	2820
TTTTTCAATT	TCTATTCTT TTCACCTCCC	CCTCCCTTAT TTATAGGAAA ATATGGTAAA	2880
ATAGAACAGA	CTAAAATCA TCATTTCACG	AAAGGATGCA AGATGAAAAT TACGCAAGAA	2940
GAGGTAACAC	ACGTTGCCAA TCTTCAAAAA	TTAAGATTCT CTGAAGAAGA AACTGCTGCC	3000
TTTGCACCA	CCTTGCTCAA GATTGTTGAC	ATGGTTGAAT TGCTGGCGA AGTTGACACA	3060
ACTGGTGTG	CACCTACTAC GACTATGGCT	GACCGCAAGA CTGTA CTCG CCCTGATGTG	3120
GCCGAAGAAG	GAATAGACCG TGATCGCTG	TTTAAAAACG TACCTGAAAA AGACAAC TAC	3180
TATATCAAGG	TGCCAGCTAT CCTAGACAAT	GGAGGAGATG CCTAATGACT TTTAACAAATA	3240
AAACTATTGA	AGAGTTGCAC AATTCCTTG	TCTCTAAGGA AATTCTGCA ACAGAATTGA	3300
CCCAAGCAAC	ACTTGAAAAT ATCAAGTCTC	GTGAGGAAGC CCTCAATTCA TTTGTCACCA	3360
TCGCTGAGGA	GCAAGCTCTT GTTCAAGCTA	AAGCCATTGA TGAAGCTGGA ATTGATGCTG	3420
ACAATGTCCT	TTCAGGAATT CCACTTGCTG	TTAAGGATAA CATCTCTACA GACGGTATTG	3480
TCACAACTGC	TGCCTCAAAA ATGCTCTACA	ACTATGAGCC AATCTTGAT GCGACAGCTG	3540
TTGCCAATGC	AAAAACCAAG GGCATGATTG	TCGTTGGAAA GACCAACATG GACGAATTG	3600
CTATGGGTGG	TTCAGGTGAA ACTTCACACT	ACGGAGCAAC TAAAAACGCT TGGAAACCACA	3660
GCAAGGTTCC	TGGTGGTCA TCAAGTGGTT	CTGCCGCAGC TGTAGCCTCA GGACAAGTTC	3720
GCTTGTCACT	TGGTTCTGAT ACTGGTGGTT	CCATCCGCCA ACCTGCTGCC TTCAACGGAA	3780
TCGTTGGTCT	CAAACCAACC TACGGAACAG	TTTCACGTTT CGGTCTCATT GCCTTGGTA	3840
GCTCATTAGA	CCAGATTGGA CCTTTGCTC	CTACTGTTAA GGAAAATGCC CTCTTGCTCA	3900
ACGCTATTGC	CAGCGAAGAT GCTAAAGACT	CTACTTCTGC TCCTGTCCGC ATCGCCGACT	3960
TTACTTCAAA	AATCGGCCAA GACATCAAGG	GTATGAAAAT CGCTTGCCT AAGGAATACC	4020
TAGCCGAAGG	AATTGATCCA GAGGTTAAGG	AAACAATCTT AAACGCCGCC AAACACTTTG	4080

197

AAAAAATTGGG TGCTATCGTC GAAGAAAGTCA GCCTTCCTCA CTCTAAATAC GGTGTTGCCG	4140
TTTATTACAT CATCGCTTCA TCAGAACGCTT CATCAAACCT GCAACGCCTC GACGGTATCC	4200
GTTACGGCTA TCGCGCAGAA GATGCAACCA ACCTTGATGA AATCTATGTA AACAGCCGAA	4260
GCCAAGGTTT TGGTGAAGAG GTAAAACGTC GTATCATGCT GGGTACTTTC AGTCTTTCAT	4320
CAGGTTACTA TGATGCCTAC TACAAAAAGG CTGGTCAAGT CCGTACCCCTC ATCATTCAAG	4380
ATTTCGAAA AGTCTTCGCG GATTACGATT TGATTTGGG TCCAACGTCT CCAAGTGTG	4440
CCTATGACTT GGATTCTCTC AACCATGACC CAGTTGCCAT GTACTTAGCC GACCTATTGA	4500
CCATACCTGT AAACTTGGCA GGACTGCCGTG GAATTTCGAT TCCTGCTGGA TTCTCTCAAG	4560
GTCTACCTGT CGGACTCCAA TTGATTGGTC CCAAGTACTC TGAGGAAACC ATTTACCAAG	4620
CTGCTGCTGC TTTTGAAGCA ACAACAGACT ACCACAAACA ACAACCCGTG ATTTTGGAG	4680
GTGACAACTA ATGAACCTTG AAACAGTCAT CGGACTTGAA GTCCACGTAG AGCTAACAC	4740
CAATTCAAAA ATCTTCTCAC CTACTTCTGC CCACTTGGA AATGACCAAA ATGCCAACAC	4800
TAACGTGATT GACTGGTCTT TCCCAGGAGT TCTACCAGTT CTCAATAAAG GGGTTGTTGA	4860
TGCCGGTATC AAGGCTGCTC TTGCCCTCAA CATGGACATC CACAAAAAGA TGCACTTGA	4920
CCGCAAGAAC TACTTCTATC CTGATAACCC CAAAGCCTAC CAAATTCTC AGTTTGATGA	4980
ACCAATCGGA TATAATGGCT GGATTGAAAGT CAAACTAGAA GACGGTACGA CCAAGAAAAT	5040
CGGTATCGAA CGTCCCCACC TAGAGGAAGA CGCTGGTAA AACACCCATG GTACAGATGG	5100
CTACTCTTAT GTTGACCTCA ACCGCCAAGG GGTTCCCTTG ATTGAGATTG TATCTGAGGC	5160
AGATATGCGT TCTCCTGAAG AAGCCTATGC TTATCTGACA GCCCTCAAGG AAGTTATCCA	5220
GTACGCTGGC ATTTCTGACG TTAAGATGGA GGAAGGTTCG ATGCGTGTGG ATGCCAACAT	5280
CTCCCTTCGT CCTTATGGTC AAGAGAAATT CGGTACCAAG ACTGAATTGA AGAACCTCAA	5340
CTCCTCTCA AACGTTCGTA AAGGTCTTGA ATACGAAGTC CAACGCCAGG CTGAAATTCT	5400
TCGCTCAGGT GGTCAAATCC GCCAAGAAC ACGCCGTTAC GATGAAGCGA ATAAAGCAAC	5460
CATCCTCATG CGTGTCAAGG AAGGGGCTGC TGACTACCGC TACTTCCCAG AACCAACACT	5520
ACCCCTCTTT GAAATTCTG ACGAGTGGAT TGAGGAAATG CGGACTGAGT TGCCAGAGTT	5580
TCCAAAAGAA CGTCGTGCGC GTTATGTATC TGACCTTGGT TTATCAGACT ACGATGCTAG	5640
TCAGTTGACT GCTAATAAAG TCACCTCTGA CTTCTTGAA AAAGCTGTTG CCCTAGGTGG	5700
TGATGCCAAA CAAGTCTCTA ACTGGCTCCA AGGGGAAGTC GCTCAGTTCT TGAATGCTGA	5760
AGGTAAAACA CTGGAACAAA TCGAATTGAC ACCAGAAAAC TTGGTTGAAA TGATTGCCAT	5820

198

CATCGAAGAC	GGTACTATTT	CATCTAAGAT	TGCCAAGAAA	GTCTTTGTCC	ATCTAGCTAA	5880
AAATGGCGGT	GGCGCGCGTG	AATAACGTGGA	AAAAGCAGGT	ATGGTTCAAA	TTTCAGATCC	5940
AGCTATCTTG	ATCCAATCA	TCCACCAAGT	CTTTGCCGAT	AACGAAGCTG	CTGTTGCCGA	6000
CTTCAAGTCA	GGCAAACGTA	ACGCCGACAA	GGCTTTACAG	GATTCCATTAT	GAAGGCAACC	6060
AAAGGCCAAG	CCAACCCACA	AGTTGCCCTT	AAACTACTTG	CACAGGAATT	GGCGAAGTTG	6120
AAAGAAAAACT	AGACAGAACAA	AAACCAGCCC	TAAGGTTGGT	TTTTTCTCT	CTACCAACTC	6180
CCAATAACTA	TTTTGGCTTT	ATTTCCAGAG	TATTTTATGG	TAAAATGAAG	AGTAATAATA	6240
TTTATTAAAG	AGGTAAAAAC	ATGATTGAAG	CAAGTACCTT	AAAAGCTGGT	ATGACCTTG	6300
AAACAGCTGA	CGGCAAATTG	ATTCGCGTTT	TGGAAGCTAG	TCACCACAAA	CCAGGTAAAG	6360
GAAACACGAT	CATGCGTATG	AAATTGCGTG	ATGTCCGTAC	TGGTTCTACA	TTTGACACAA	6420
GCTACCGTCC	AGAGGAAAAAA	TTTGAACAAG	CTATTATCGA	GAUTGTCCCA	GCTCAATACT	6480
TGTACAAAAT	GGATGACACA	GCATACTTCA	TGAATACAGA	AACTTATGAC	CAATACGAAA	6540
TCCCTGTAGT	CAATGTTGAA	AACGAATTGC	TTTACATCCT	TGAAAACCTCT	GATGTGAAAA	6600
TCCAATTCTA	CGGAACGTGAA	GTGATCGGTG	TCACCGTTCC	TACTACTGTT	GAGTTGACAG	6660
TTGCTGAAAC	TCAACCATCT	ATCAAAGGTG	CTACTGTTAC	AGGTTCTGGT	AAACCAGCAA	6720
CGATGGAAAC	TGGACTTGTC	GTAAACGTTC	CAGACCTCAT	CGAAGCAGGA	CAAAAACCTCG	6780
TTATCAACAC	TGCAGAAAGGA	ACTTACGTTT	CTCGTGCCTA	ATCTCTAGAA	AGAGGT CATT	6840
CTATGGGAAT	TGAAGAACAA	CTTGGCGAAA	TCGTTATCGC	CCCACGTGTA	CTTGAAAAAA	6900
TCATTGCTAT	CGCTACTGCA	AAGGTAGAGG	GTGTTCACTC	TTTTTCAACAC	AGATCAGTGT	6960
CTGATAACCT	TTCAAAACTT	TCACTCGGCC	GTGGCATTTA	TCTTAAAAAC	GTGGACGAAG	7020
AACTCACAGC	AGATATCTAT	CTCTACCTTG	AGTACGGAGT	AAAAGTTCC	AAGGTAGCGG	7080
TTGCTATCCA	GAAAGCTGTC	AAAGATGCCG	TCCGTAATAT	GGCTGATGTA	GAACTCGCTG	7140
CTATCAATAT	TCACGTTGCA	GGTATCGTCC	CAGATAAAAC	ACCAAAACCA	GAATTGAAAG	7200
ATCTATTGCA	CGAGGACTTC	CTCAATGACT	AGTCCACTAT	TAGAATCTAG	ACGCCAACTC	7260
CGTAAATGCG	CTTTTCAAGC	TCTCATGAGC	CTTGAGTTCG	GTACGGATGT	CGAAACTGCT	7320
TGTCGTTTCG	CCTATACTCA	TGATCGTGAA	GATACGGATG	TACAACCTCC	AGCCTTTTG	7380
ATAGACCTCG	TTTCTGGGT	TCAAGCTAAA	AAGGAAGAAC	TAGATAAGCA	AATCACTCAG	7440
CATTTAAAAG	CAGGTTGGAC	CATTGAACGC	TTAACGCTCG	TGGAGAGAAA	CCTCCTTCGC	7500
TTGGGAGTCT	TTGAAATCAC	TTCATTTGAC	ACTCCTCAGC	TGGTTGCTGT	TAATGAAGCT	7560
ATCGAGCTTG	CAAAGGACTT	CTCCGATCAA	AAATCTGCC	GTTTTATCAA	TGGACTGCTC	7620

199

AGCCAGTTG TAACAGAAGA ACAATAAGC TCTTGTCAA CTGTA GTGGG TTGAAAAAAA	7680
GCTAAGCTCG AGAAAGGACA AATTTCGTCC TTTCTTTTT GATGTTCAAA GCGATAAAAAA	7740
TCCGTTTTCA GAAGTTTCGA AACCAAAGC ATTGCGCTTG ATAAGTTGA	7800
TGAGATTATT GGTCGCTTCC AGTTGGCAT TAGAATAGTG TAGTTGAAGG GCGTTGACAA	7860
TCTTTCTTT ATCTTGAGG AAGGTTTAA AGACAGTCTG AAAAATAGGA TGAGCCTGCT	7920
TAAGATTGTC CTCATAAGT CCGAAAAATT TCTCTGGTTC CTTATTCTGG AAGTGAACAA	7980
GCAAGAGCTG ATAGAGCTGA TAGTGGTGT TCAAGTCTTG TGAATGGCTC AAAAGCTTGT	8040
CTAAAATCTC TTTATTGGTT AAGTGCATAC GAAAAGTAGG ACGATAAAAT CGCTTATCAC	8100
TCAGTCTACG GCTATCCTGT TGAATGAGTT TCCAGTAGCG CTTGATATCC TTGTATTCTAT	8160
GGGATTTCG ATGAAACTGA TTCATGATTT GGACACGCAC ACGACTCATG GCACGGCTAA	8220
GATGTTGTAC AATGTGAAG CGATCAAGAA CGATTTAGC ATTCGGGAGT GAAACAGTCT	8280
GGGAGACTGT TTCAGCTGA GCCTAGGAAT TTGAAAGCGA AGCTGTTAG CCAAGTCATA	8340
GTAAGGGCTA AACATATCCA TAGTAATAAT TTTGACGCGA CATCGGACAA CTCTATCGTA	8400
GCGAAGAAAG TGATTTCGAA TGATAGCTTG TGTTCTACCC TCAAGAACAG TGATGATATT	8460
GAGATTGTTA AAATCTTGCG CAATGAAGCT CATCTTCCC TTTGTAAAAG CATACTCATC	8520
CCAAGACATA ATCTCAGGAA GACAAGAAA ATCATGTTA AAGTGAAAAT CATTGAGCTT	8580
ACGAATAACA GTTGAAGTTG AGATGGAAAG CTGATGGCA ATATCAGTCA TAGAAATCTT	8640
TTCAATCAAC TTTGAGCAA TCTTTGGTT GATGATACGA GGGATTTGGT GATTTTCTT	8700
GACGATAGAA GTTTCAGCGA CCATCATTG TGAACAGTGA TAGCACTTGA ATCGACGCTT	8760
TCTAAGGAGA ATTCTAGTAG GCATACAGT CGTTTCAAGA TAAGGAATT TAGAAGGTTT	8820
TTGAAAGTCA TATTCTTCA ATTGGTTCC GCACTCAGGG CAAGATGGGG CGTCGTAGTC	8880
CAGTTGGCG ATGATTTCTC TGTGTGTATC CTTATTGATG ATGTCTAAA TCTGGATATT	8940
AGGGCTTTA ATGTCTAGTA ATTTTGTGAT AAAATGTAAT TGTTCCATAT GAATCTTCT	9000
AATGAGTTGT TTTGTGCGCTT TTCATTATAG GTCATATGGG ACTTTTTTC TACAATAAAA	9060
TAGGCTCCAT AATATCTATA GGGGATTTAC CCACTACAAA TATTATAGAG CCAACAATAA	9120
AAAGAAAAAG TGTTTGATAG ATATCAAACA CTTTTTCTT TGCTCCCAC TATCTAAAAA	9180
AATGATAATA GATATAATTG TAAACAAAAA TCCAGATAGG TTTTGCATGA TTGAGAAAGT	9240
TAAAAAAACT ATGGCAGAGA ATCGTTAAC TCAAGATTGTC GGTAGAACGA TAAACAAGGG	9300
CAAAAAAGAA ACCAATCAGA CTATAATATA ATAAACTAAT TGGATCTCTG TGAGATAGTA	9360

200	
TCAAATGGCT AATCCCAAAG ATGATAGCAG ATAGGATAAC ATCCAAATAG TACTTGGACT	9420
AGGGAAAGAA GGTATTCTA AAATACCCCTC TATCAAGAGT CTCCTCAAAA ACAGGACCGA	9480
TGATTACAGG CAGGACAAAA GATAAGATAG TCGATAAAAA GGTTGGTTGT CCATTTGAAA	9540
AAAGCACGGT AAAATACTCA TCATGAATAT TCCTATGATT AATCAAATGA GCATAGCGTG	9600
CCCAAAAATT ACCGAGAAC TGATAAACCA CATAAGTTGC AAATAAGTAG AAGACAAATG	9660
ACCAGTTCCA GCTCTTTTC TCAAAGATAA AGAGCATCTT TTCTTTTT AACCTCCAAA	9720
TTAATAGAAG GAAACTTCCC ACTAATCCC TTGTTAAAAT AAGAGAATAG ACATCAGCTC	9780
CTAACCCCTAA AATGATCGTC ACATACAATC CAATTGTTG TGGTAAATAG GTAGATAGTA	9840
AAAAATAAAAG CAAAATATT CCAAATTGTC TTAGTTTTT TGTGTTCTC ATCGTACTTT	9900
TTTGAAGAT TACCTGCTC GGAAGCCGTA CTTCCAAGCA TCTATATAAG AATTAAGTGC	9960
CCCTTGCCCTC ATATAGGGAG CAAATTCTCT ATAATATAAC CATCTACTAT ATCCATCTC	10020
CCAAACAGCA AGACCACCTG AAGTTGCTC CAAGTCCTCA GTTGAAAGAA CTGTAATGT	10080
ATTTGTACCT GTCATTGCAA GTACCTTCTT AAAATAGATT GTTGTAGGCT CACATTATA	10140
GTATATTTCT TTTTTTGTCT ATTTTATAGC CCATCTCCTC AACTGGCAAT TTTTCGACCT	10200
GAATTACATT TTTCCATAAA AAATGAGACC TTTCTAGTCT CATTAGTCA TTCTTAGTAT	10260
TTTCTAAATC GTTGATAGCG TTCTTCCAGC AACTCTTCTA GCGGTTTTG TGAAAGTCTA	10320
GCCAGCTCCG TTTGGAGTTC TTTTTGACA CTCTTAATCA GTTCTTTACT AGAAAGTCCT	10380
ATTCAGAAA TCACCTTATC CACCACGTCC ATTCTAAACA GTTCATGCCA AGTGATTTTC	10440
ATCAGTTCTG CTGCTTCCAT AGCGCGAGTA CCGTCCTTCC ATAAAATGGA AGCAAAGCCT	10500
TCTGGACTGA GAATGGCATA GATAGAATT TCCAGCATCC AGACACGGTC CGCGACAGCT	10560
AGAGCCAGAG CCCCGCCTGA ACCACCTTCA CCGATAATAA TGGCGATAAT AGGAACCTTC	10620
AGGTCACTCA TTTCCATGAG ATTGCGAGCG ATAGCTTCCC CTTGACCACG TTCTTCCGCT	10680
CCGACACCAG GATAAGCACC TGCTGTATTG ATAAAGGTCA CAACTGGACG GCCAAATTTC	10740
TCAGCCTGTT TCATCAACCG CAGTGCCTT CGGTAGCCTT CTGGATGTGG TTGGCCAAA	10800
TTCCGTTTGA GGTTGTCTT CAAACTCTTG CCTTTTGGA TACCAACCAC TGTTACAGCT	10860
TGGTCTCCAA GCCAACCAAT ACCACCAACA ACTGCACCAT CATCACGAAA AGAACGGTCA	10920
CCATGTAATT GGATAAAATTC ATCAAAAATG CCTGTCGCAA AGTCCAAGGT TGTCAAGCGA	10980
CTCTGCTCAC GCGCTTCTCT GACTATTTT GCAATATTCA TCTAGGACTC CCTCCATGCA	11040
ATCTGACTAG GCTAGCAATC GTATCTGGTA AGTCTCTTCT TTTGACAATA GCATCCACAA	11100
AGCCATGTTA TAATAGGAAT TCTGCCTTT GGAAATCCTC AGGCAAGCTT TCACGAACCG	11160

201

TATTTTCAAT CACACGACGC CCAGCAAAAC CAACCAAGCT CTGTGGTTCA GCCAGAATGA	11220
TATCGCCTTC CATAGCGAAA GAAGCTGTCA CACCACCACT CGTTGGATCT GTCAAAATGG	11280
TCAGGGTAAAA GAGACCAGCA TTTGAATGGC GTTTAACCGC CGCAGAGATC TTAGCCATCT	11340
GCATGAGACT CATGATTCTC TCCTGCATAC GGGCTCCACC AGAGGCTGTG AATAGGACAA	11400
CTGGCAATT TTCGACAGTC GCATACTCAA ACAAACGAGT GATTTTTCA CCTACAACCG	11460
TACCCATAGA AGCCATGATA AAGTTAGAAT CCATAATCCC AAGAGGCCACA GTCTGACCTT	11520
TAATAAGAGC AGTTCCCTGTC ACAACGGCTT CATGCAGACC TGTTTTTCA CGCATAGATG	11580
CCAGTTTCTT TTGGTAACCA GGGAAATGCA AGGGATCCTT GCTTTCAATC CCTGTAAACAA	11640
ATTCTTGAA GGTTCCCATA TCAATCGTCA AAGCCAAGCG TTCTTGGCA GAAATACGAA	11700
AGGTATAGCT ACAGTGCAGGA CAGATACGTT CACTTCCCAG ATCCTTCTGA TAGATGGTAT	11760
GCTTACAGCC TGGACACTGG GAAAATAATT CATCTGGAAC CTCTGGCTTA GCTTGAGGTT	11820
TTTCCCTAAC CGAACGATTG GGATTGATTC GAATATACTT ATCTTTTTA CTAAATAGAG	11880
CCATTGATTC CCCTTTCCGG TTTAAACTCT TAAAGTCATT TTATTCTTT TCTTGATATT	11940
TAGGTAAGAA GGTTCCATC AAGAAGGAAG TATCATAATC CCCAGCAATG ACATTGCGAT	12000
CTGAAATGAG GTCAAGCTGG AAATCTGCAT TGGTCTGCAC TCCTTCAATT TCTAATTCAT	12060
AGAGGGCACC TTGCATTTTC ATCAAGGCAGT CAAAACGATT TTCGCCGTGT ACTATGATT	12120
TGGCAATCAT ACTATCATAA TAAGGCGAA TGGTATAACC TGGATAAACT GCTGAATCCA	12180
CGCGCAAGCC AACTCCACCA CTTGGCAGAT AGAGATTAGT AATCTTACCT GGACTTGGAG	12240
CAAAGTTAAA GGCTGGTTT TCTGCATTGA TACGACACTC GATGGCATGA CCGCGTAGGA	12300
CAATATCTTC TTGCTTAACA GACAAAGGCT GACCTGCCGC AATGCAAATC TGTTCCCTAA	12360
CGATATCAAC ACCTGAAACA AACTCTGTTA CTGGATGTTT TACCTGAACA CGAGTATTCA	12420
TCTCCATGAA ATAGAAATTG CTACTTGCTT CATCAAGAAG AAATTCAATG GTTCCTGCAT	12480
TCTCATAGCC AACAAACTCT GCCGCTCGAA CAGCAGCAGC ACCTATTCA TGACGCAGCG	12540
TTTTTCCGAT TGCAATCGAG GGACTTTCTT CCAAAACCTT TTGGTTATTG CTTTGAAGAG	12600
AACAATCCCC TTCACCCAAG TGAATCACAT GTCCATGCTC ATCACCTAGG ATTTGAACCT	12660
CAATGTGCCG AGCTGGATAG ATAACCCGTT CTATGTACAT GGCACCATTG CCATAATTGG	12720
CCTTGGCCTC ACTAGAGGCA GTTTCAAAGG CAGAAACGAG GTCATCTGGT TTTTCAACCT	12780
TACGAATCCC TTTACCACCT CCACCTGCTG AAGCCTTGAG CATAACAGGA TAGCCAATT	12840
TTTCAGCAAC AATCAAAGCT TCTTCAGAGT TATGCACTTC TCCATCTGAA CCTGGTATAA	12900

202						
CAGGCACACC	TGCTTTAAC	TC ATCTGAGCAC	GCGCATTGAT	CTTATCCCC	ATCATATCCA	12960
TAACATGACC	AGATGGACCG	ATAAACTTGA	TACCTACTTC	TTCACACATG	GTCGCAAATT	13020
TGGAATTTTC	ACTGAGAAAT	CCAAAACCAG	GGTGAATAGC	TTCTGCCTCA	GTCAAGACTG	13080
CAGCTGATAG	AACTGCATTA	ATATTGAGAT	AAGACTCTGT	TGCCTGCCA	GGACCAATAC	13140
AAACTGCTTC	ATCTGCCAAA	AGCGTATGAA	GAGCTTCCTT	ATCAGCAGTT	GAATAAACCG	13200
CTACCGTCGC	AATCCCCAAT	TCACGTGCCG	CACGGATAAT	ACGAACCGCA	ATTCACCCAC	13260
GATTGGCAAT	TAAAATTTT	CGAAACATGG	AGAACCTCCT	TAGTTCCAA	TTGCAAAAGT	13320
AAGGGTACCA	CTGGCTGCAA	GCTTGCCATC	CACTTCAGCC	TTTGCTTCAA	CCACAGCTAT	13380
GGTGCCACGA	CGTTTACAA	AACTCGCTGT	CATAACCAAT	TGGTCGCCTG	GTACAACCTG	13440
CTTCTTGAAC	TTAACCTTGT	CCATACCAGC	GTAAAAGACC	AGTTTCCTT	TATTTTCAGG	13500
TTTTGATAAC	TCCAACACAC	CGGCAGTTG	CGCCAAGGCT	TCCATAATCA	CAACACCTGG	13560
CATAACTGGG	TATTGAGGAA	AGTGGCCGTT	AAAGAAAGGC	TCGTTGATGG	TCACATTTT	13620
GATAGCAACA	ATGGTATCCT	CGCTCACTTC	CAAGACACGG	TCCACTAGAA	GCATAGGATA	13680
ACGGTGGGGA	AGAGCTCTT	TGATTCCTTG	AATATCGATC	ATTTGATACG	TACCAATCCT	13740
TTACCAAACT	CAACCATTTC	TTCGTTAGAG	ACGAGAATT	CCGTTACCA	ACCATCCTTA	13800
GGAGCTGGGA	TTTCATTCA	GACTTCATG	GCTTCGATAA	TTACCAATGT	TTGACCTTTT	13860
TTGACACTAT	CACCAACTGT	AACGAAGGC	GGTTTATCTG	GTCCAGCAGC	CAAGTAAACC	13920
ACTCCAACAA	GTGGACTCTC	TACAAGATTT	CCCTCAGTAG	CCACACTTGC	TTCAGCTGG	13980
GCTGGAACCT	CTTCTGCTAC	AGTCTCTGCT	GGAGCAGATG	TAGGAGCTAC	TGGACTCGGT	14040
GTTGCTAGAA	CGGGTGTGG	AGCGACTTGA	GTTGCAACTT	CAGGCACAGG	TCTTGCTTCA	14100
TTCTTGCTAA	ACTGCAACTC	ATCCGTCCC	TTTTTATAAG	AAAATTCTCT	CAAACTTGAC	14160
TGGTCAAATT	GAGTCATCAA	GTCTTTAATA	TCGTTAAAT	TCATACTTAT	CTATTCTCCC	14220
AACGTTTGAA	AGCAAGAACT	GCATTGTGGC	CTCCAAAACC	AAAAGTATTT	GAAATAGCGT	14280
ATGGAATTTC	TTTCTCCAAG	CCTTGTCCAT	AAACGACATT	AGCTTCGATA	TAATCTGATA	14340
CTTCACTTGT	CCCAGCTGTC	ATTGGTACAA	AGTTATGACG	CATAGCTTCG	ATGGTGACGA	14400
TAGCTTCTAC	TGCACCCGCA	GCCCCCAGCA	AATGTCCTGT	AAAAGACTTG	GTTGATGATA	14460
CAGGTACTTC	CTTACCAAGA	ACAGCTACGA	TAGCACCAC	TTCTCCTTT	TCATTGGCAG	14520
GAGTTGACGT	TCCGTGAGCA	TTGACATAGG	CTACTTGCTC	TGGAGAAATC	TCAGCTTCTT	14580
CCAAGGCTAG	TTTGATGGCC	TTGATAGCTC	CCTGACCTTC	TGGATGTGGA	GAAGTCATGT	14640
GGTAGGCATC	ACAAGTATTT	CCGTAACCAA	CCACTTCAGC	CAGGATAGTA	GCTCCACGTT	14700

203

TTTCAGCGTG TTCAAGACTT TCTAGAACCA ACATCCCTGA ACCTTCACCC ATAACAAACC	14760
CATTGCGATC CTTATCAAAT GGGATCGAAG CACGAGTTGG ATCCTCTGTA GTAGAGAGAG	14820
CTGTTAAGGC TTGGAAACCA GCGATGGCAA AAGGTGTGAT AGAAGCTTCT GTTCCTCCCA	14880
CCAACATCAC ATCTTGAAA CCAAACCTAA TGGAGCGGAA GGCATCCCCA ATCGCATCAT	14940
TTGATGAAGA GCAGGCAGTA TTGATAGATT TACAAACACC GTTTGCACCA AAACGCATGG	15000
CTACATTCCC AGAAGCCATA TTTGGTAAAG CTTTGGAAAG AGTCATTGGT TTGACACGTT	15060
TGGGTCTTT TTCATGAAGG CGAAGTACCT GATCTTCAAT TTCCCTTGATT CCACCAATAC	15120
CAGATGCAAC GATAACACCA AAACGATCCC TATTAAGAGC CTCTACATCA AGATTGGCAT	15180
GATTTACAGC CTCTTGGGCT GCATACAAGG CATATAAAGA ATAGTTATCA AAACGGTTGG	15240
TATCTTTTT TACAAAGTAT TTATCGAACG GAAAATCTTG GATTCTGCC GCATTATGCA	15300
CATCAAAGTC ACTATGATCA AATTGGTAA TGCCACCAAT GCCGATTTTC CCAGTTGCTA	15360
AACTATTCCA AAATTCTTCT GGTGTATTTG CGATTGGAGA TGTTACTCCA TAACCTGTTA	15420
CCACTACTCG ATTGAGTTTC ATTCTTTCA CCTCTAGCTT TCGCTACATA CTTAACCCAC	15480
CATCAATGGC AACCACTTGT CCAGTTAGAT AATCTGGCC TGCTAAAAAT ACTGTCAAAT	15540
CTGCAACCTG CTCTGCCTGC CCAAATTCTT TCATCGGAAT CTGAGCTAGT GTAGCTTCCT	15600
TAATCTTATC TGACAGGATA GCGGTCAAT CAGACTCAAT CATTCCCTGGA GCAATCACAT	15660
TGACTCGTAT ATTCCGACTA GCGACCTCGC GTGCCACAGA CTTGGTAAAG CCAATCAAGC	15720
CAGCCTTAGA AGCAGCATAA TTAGCTTGAC CAATATTCCC CATCAAACCA ACAACACTAG	15780
ACATATTAAT GATAGCACCT TCTCTGGCTT TCATCATCGG TTTCAAGACT GATTGTGTCA	15840
TATTAAAGGC ACCAGTCAGA TTGACCTTGA GCACTTTTTC AAAATCTGCT TCTGTCATCT	15900
TGAGCATAAG AGTATCTTGG GTAATCCCTG CATTGTTGAC CAAACACATCT ACTGAAACCA	15960
GTTCTGCAAT AGCTTGATCA ATCATACGCT TAGCGTCTGC AAAATCTGAT ACATCTCCTG	16020
AAATGGGAAC CACCTTGATA CCATAGTTG AAAACTCAGC GAGCAATTCT TCTGAGATTG	16080
CCCCACGACT GTTTAAGACA ATGTTGGCTC CTGCTTGAGC AAACCTGTGG GCGATGGCAA	16140
GACCAATTCC ACGACTCGAA CCTGTAATAA AGATATTTT ATGTTCTAGT TTCACTTTTT	16200
TCTCTTCAAA ACTTCTACTT ATTTTAGTCT ATTTTCTAA AAGTGCTACT AAAACTCGCTT	16260
GATCTTCCAC ATGAGCTAAG TGAGCAGTTT GATCAATTTC TTTAACAAAA CCTGACAAGA	16320
CTTTCCCCGG TCCAATCTCG ATAAAGTTGC TTATGCCTGC TTCTTGATG ACCCAATAC	16380
TTTCATAGAA ACGAACGGGT TCCTTGACCT GACGCGTCAA GAGCTGAGCA ATGTCCTCTT	16440

204

TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	16500
CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	TAGCAGGTTG	AAGGAGAGCG	GTGTGAAAGG	16560
GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	TGGCACCTGC	TTCTTGCAA	AGTTCAACCG	16620
CTCGATCAAC	TGCAACCAC	TCTCCAGCAA	TGACGATTG	TGCAGGTGTG	TTATAGTTGG	16680
CTGGAGTAAC	CACTCCAAGT	TCAGAAGCTT	TTTGACAGGC	TTCTTCAATG	ACCTCTACTG	16740
GCGTATTGAG	AACTGCTTAC	ATCTGCCAG	AGTCAGCAGG	AGCCGCTCT	TCCATATAGG	16800
CTCCACGCTT	AGCTACCAAG	GCAACCGCAT	CTTCAAAATC	CAAGGCGCCA	CTTGCCACCA	16860
AGGCAGAGTA	TTCTCCAAGA	GACAAACCAG	CAACCATATC	AGGCTGATAG	CCCTTTCTT	16920
GCAATAAACG	GTAGATAGCA	ACCGAAGTCG	CTAGAATGGC	TGGTTGCCA	TAGCGGGTCT	16980
GATTGAGTTT	GTCTTCTTCC	GTATCGATGA	GATAACGCAA	ATCATAACCG	AGCACCTGGC	17040
TCGCTCGATC	AATCGTTTCT	TTAACAAATCG	GATACTGATC	ATAGAAATCC	CGTCCCATCC	17100
CTAGATACTG	GGCACCTTGA	CCAGCAAATA	AAAAGGCTGT	TTTAGTCATT	TCTTACAAC	17160
CCTGTCCAGC	GAGAGGCTTC	TTCTGAATT	TTCTTAGCGG	CTCCGTAATA	CAAATCTTT	17220
AGGATTTCTT	CAGCTGTTTC	TTCTTTAGAA	ACAAGCCCTG	CGATTTGACC	TGCCATAACA	17280
GAGCCACCAT	CCACATCACC	GTGAACAACT	GCTTTGGCTA	GAGCACCTGC	TCCCATTG	17340
TCAAAGATTT	CTAAATCAGG	ATCTCTTGC	TTAAAGGCAT	CTTTTCAGC	CAGTTCAAAA	17400
TCTCTAGTCA	ACTGATTTT	AATAGCACGA	ACAGCATGAC	CAAAGTGCTG	AGCTGAAATC	17460
GTAGTATCAA	TATCCCTTGC	TTTTAAAATT	TTCTCCTTGT	AGTTGGATG	GGCATTGAC	17520
TCTTTTGCAA	CTACAAACCG	TGTCCCCACC	TGTACAGCCT	CTGCACCTAG	CATAAAGCCA	17580
GCCGCAGCAC	CTTCACCATC	CGCAATTCC	CCTGCAGCAA	TAACAGGAAT	AGATATAGCT	17640
GTGGCTACCT	GTGCGACCAA	GGTCATGGTT	GTAAATTAC	CGATATGCC	CCCAGCTTCC	17700
ATTCCCTCTG	CAATAACAGC	GTCTGCACCG	ATTTTTCCA	TGCGTTAGC	TAAAGCGACA	17760
CTAGGAACAA	CAGGAATAAC	GATTATCCA	GCTTCATGGA	AACGTTCCAT	ATACTTGCTT	17820
GGATTTCTG	CTCCTGTTGT	GACAACCTTA	ACACCTCTT	CAATAACGAG	ATCCACGATG	17880
TCTTCCACAA	AGGGAGATAA	GAGCATGATG	TTGACCCAA	AGGGTTTATC	AGTCAATGAT	17940
TTGATTTAT	CAATATTGGC	CTTGACAACT	TCTTCGGGG	CATTTCCCC	ACCGATAATT	18000
CCTAACCTC	CAGCCTTGG	AACAGCCCCT	GCCAAATCAC	CATCAGCAAC	CCAGGCCATC	18060
CCTCCTTGG	AAATAGGATA	ATCAATCTTC	AATAATTCTG	TAATACGCGT	TTTCATAGTG	18120
CCTCCAAACCT	TCCTTGCTTA	CGTAATAGTT	CGATTTCACC	ATAATTGAC	AGTCAAAC	18180
TTACCTAAC	AAGAGGGAGT	GGGTTCTCC	CTACTCCTTC	TACTAATATT	CTGCTTATT	18240

205

TGCTTGCTCT	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTGT	CTTTTCAAA	TACTGCCATG	ATAGGACTCC	TTTAAAATAA	18480
ATAGTTTTT	TATAACAATG	TGTTCACCA	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTG	GCTCGGTCAA	CACCAATT	TCTAGGCCATC	18720
TTATCCAAA	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAAC	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGGGTT	AACTCAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTT	TCGTATTCCC	19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTGTA	19440
ACCACTTGCT	CTGGCACAC	ATGAGCAACC	TGACTTATT	TTGCAAAGC	CATTATTCA	19500
AATCCCTCAA	AAATTGGTAA	AGATTAGTCA	AACCTTAC	CATGACAGCA	ATTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTCTACCA	TGGCCTGTG	GAAGCGTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTCTTT	GTCAAATGCA	GATGCCAAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG				19702

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6211 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAAAATTTCC	TCTCTCTCT	TGAAAAATT	TGAAAAAATG	GTATGATAGT	AACAAGTTAT	60
TTTTAAGAGG	AAAGAAAGGG	GAATAATGGA	GAAAATCAGT	TTAGAACATC	CTAACAGGG	120
GTCGGACCTA	GTGTTGGAAA	CACTTCGTGA	TTTAGGAGTT	GATACCATCT	TTGGTTATCC	180
TGGTGGTGCG	GTGTTGCCTT	TTTATGATGC	GATATATAAT	TTTAAAGGCA	TTCGCCACAT	240
TCTAGGGCGC	CATGAGCAAG	GTTGTTGCA	TGAAGCTGAA	GGTTATGCCA	AATCAACTGG	300
AAAGTTGGGT	GTTGCCGCTG	TCACTAGTGG	ACCAAGGAGCA	ACAAATGCCA	TTACAGGGAT	360
TGCGGATGCC	ATGAGCGATA	GCGTTCCCCT	TTTGGTCTTT	ACAGGTCAGG	TGGCCGAGC	420
AGGGATTGGG	AAGGATGCC	TTCAGGAGGC	AGACATCGT	GGAATTACCA	TGCCAATCAC	480
TAAGTACAAT	TACCAAGTTC	GTGAGACAGC	TGATATTCCG	CGTATCATT	CGGAAGCTGT	540
CCATATCGCA	ACTACAGGCC	GTCCAGGGCC	AGTTGTAATT	GACCTACCAA	AAGACATATC	600
TGCTTTAGAA	ACAGACTTCA	TTTATTCAACC	AGAAGTGAAT	TTACCAAGTT	ATCAGCCGAC	660
TCTTGAGCCG	AATGATATGC	AAATCAAGAA	AATCTTGAAG	CAATTGTCCA	AGGCTAAAAA	720
GCCAGTCCTG	TTAGCTGGTG	GTGGAATTAG	TTATGCTGAG	GCTGCTACGG	AACTAAATGA	780
ATTTGCAGAA	CGCTATCAAA	TTCCAGTGGT	AACCAGTCTT	TTGGGACAAG	GAACGATTGC	840
AACGAGTCAC	CCACTCTTTC	TTGGAATGGG	AGGCATGCAC	GGGTCATTG	CAGCAAATAT	900
TGCTATGACC	GAAGCGGACT	TTATGATTAG	TATTGGTTCT	CGTTTCGATG	ACCGTTGAC	960
GGGGAATCCT	AAGACTTCG	CTAAGAATGC	TAAGGTTGCC	CACATTGATA	TTGACCCAGC	1020
TGAGATTGGC	AAGATTATCA	GTGCAGACAT	TCCTGTAGTT	GGAGATGCTA	AGAAGGCCTT	1080
GCAAATGTTG	CTAGCAGAAC	CAACAGTTCA	CAACAAACACT	GAAAAGTGG	TTGAGAAAGT	1140
CACTAAAGAC	AAGAATCGTG	TTCGTCTTA	TGATAAGAAA	GAGCGTGTGG	TTCAACCGCA	1200
AGCAGTTATT	GAACGAATTG	GTGAATTGAC	GAATGGAGAT	GCCATTGTGG	TAACAGACGT	1260
TGGTCAACAC	CAAATGTGGA	CAGCTCAGTA	TTATCCTAC	CAAATGAAC	GTCAGTTAGT	1320
GACTTCAGGT	GGTTTGGGAA	CAATGGCTT	TGGAATTCCA	GCAGCAATCG	GTGCTAAAAT	1380
TGCTAACCCA	GATAAGGAAG	TAGTCTTGT	TGTTGGGGAT	GGTGGTTCC	AAATGACCAA	1440
CCAGGAGTTG	GCTATTTGA	ATATTACAA	GGTCCAATC	AAGGTGGTTA	TGCTGAACAA	1500
TCATTCAC	GGAATGGTTC	GCCAGTGGCA	GGAATCCTTC	TATGAAGGCA	GAACATCAGA	1560
GTCGGTCTT	GATACCCTTC	CTGATTCCA	ATTGATGGCG	CAGGCTTATG	GTATTAAAAA	1620
CTATAAGTTT	GACAATCCTG	AGACCTTGGC	TCAAGACCTT	GAAGTCATCA	CTGAGGATGT	1680

207

TCCTATGCTA ATTGAGGTAG ATATTCTCG TAAGGAACAG GTGTTACCAA TGGTACCGGC	1740
TGGTAAGAGT AATCATGAGA TGTTGGGGGT GCAGTTCCAT GCGTAGAATG TTAACAGCAA	1800
AAACTACAAAAA TCGTTCAGGA GTCCTCAATC GCTTACAGG TGTCTATCT CGTCGTCAGG	1860
TTAATATTGA AAGCATCTCT GTTGGAGCAA CAGAAGATCC GAATGTATCG CGTATCACTA	1920
TTATTATTGA TGTTGCTTCT CATGATGAAG TGGAGCAAAT CATCAAACAG CTCAATCGTC	1980
AGATTGATGT GATTCGATT CGAGATATTA CAGACAAGCC TCATTTGGAG CGCGAGGTGA	2040
TTTTGGTTAA GATGTCAGCG CCAGCTGAGA AGAGAGCTGA GATTTTAGCG ATTATTCAAC	2100
CTTTCCTGTC AACAGTAGTA GACGTAGCGC CAAGCTCGAT TACCATTCAAG ATGACGGGAA	2160
ATGCAGAAAA GAGCGAACCC CTATTGCGAG TCATTCGCCA ATACGGTATT CGCAATATTG	2220
CTCGAACGGG TGCAACTGGA TTTACCCGCG ATTTAAATC CAACTAAAT TTATTAAACC	2280
AGCCTAAAAG GCAATAAATA ATAGAAAAGA GAGAAAAGCT ATGACAGTTC AAATGGAATA	2340
TGAAAAAGAT GTTAAAGTAG CAGCACTTGA CGGTAAAAAA ATCGCCGTTA TCGGTTATGG	2400
TTCACAAGGG CATGCGCATG CTCAAAACTT GCGTGATTCA GGTCGTGACG TTATTATCGG	2460
TGTACGTCCA GGTAAATCTT TTGATAAAGC AAAAGAAGAT GGATTTGATA CTTACACAGT	2520
AGCAGAAGCT ACTAAGTGG CTGATGTTAT CATGATCTTG GCGCCAGACG AAATTCAACA	2580
AGAATTGTAC GAAGCAGAAA TCGCTCCAAA CTTGGAAGCT GGAAACGCAG TTGGATTTGC	2640
CCATGGTTTC AACATCCACT TTGAATTAT CAAAGTTCCCT GCGGATGTTAG ATGTCTTCAT	2700
GTTGTCTCCT AAAGGACCAAG GACACTTGGT ACGTCGTACT TACGAAGAAG GATTTGGTGT	2760
TCCAGCTCTT TATGCAGTAT ACCAAGATGC AACAGGAAAT GCTAAAACA TTGCTATGGA	2820
CTGGTGTAAA GGTGTGGAG CGGCTCGTGT AGGTCTTCTT GAAACAACCTT ACAAAAGAAGA	2880
AACTGAAGAA GATTTGTTTG GTGAACAAGC TGTACTTTGT GGTGGTTGA CTGCCCTTAT	2940
CGAAGCAGGT TTCGAAGTCT TGACAGAAGC AGGTTACGCT CCAGAATTGG CTTACTTTGA	3000
AGTTCTTCAC GAAATGAAAT TGATCGTTGA CTTGATCTAC GAAGGTGGAT TCAAGAAAAT	3060
GCGTCATCT ATTTCAAACA CTGCTGAATA CGGTGACTAT GTATCAGGTC CACGTGTAAT	3120
CACTGAACAA GTTAAAGAAA ATATGAAGGC TGTCTTGGCA GACATCCAAA ATGGTAAATT	3180
TGCAAATGAC TTTGTAAATG ACTATAAAGC TGGACGTCCA AAATTGACTG CTTACCGTGA	3240
ACAAGCAGCT AACCTGAAA TTGAAAAAGT TGGTGCAGAA TTGCGTAAAG CAATGCCATT	3300
CGTTGGTAAA AACGACGATG ATGCATTCAA AATCTATAAC TAATTAGAAA TATATAGCGC	3360
TGGAGATGAT TTTATGAAAA AGATTATGAG AAAATTGCA TCGTTATTAT TGGTTCTAGT	3420

208

TGTATAATGT	AATTACACCG	TCGGTAATAG	TGCTAGCAGA	CCAAAATAAA	GCAGATTGGT	3480
CGTATGATGA	AAATGCTGTA	ATTAACATTT	ATGATGATGC	TAATTTGAA	GATGGTAGGT	3540
TGCATATGAA	CTTGAAACAA	TTCTCAAAT	TGGCACAAAT	AGCTAGAGAA	GAAGGTCTTG	3600
AAATTCAATC	TCCGTTGAG	AGAGCTGGTG	CGACTAAATC	TGCTCGTTAT	ATAGCGAAAT	3660
GGATTTGAG	AAATAAAAAAA	CATTAACAAA	TATAGTTGGT	AAATCATTAG	GACCTAAATC	3720
AGCTGTTAGA	TTCGGAGAAG	CTTATCCTA	TATTGAAGGT	CCTCTTCGCCA	GAATAATGA	3780
GACGATAGAT	GGCGGTTAT	ATCAAATAGA	GCAAATTATT	GCATCTGGAT	TGAAAGAAC	3840
GGGTTAAAT	GACTGGACTG	CGAAAACTTT	AGCTTCAGCT	ATTCGTGGG	TATTAGATGT	3900
ACTTATTTAG	GGGTTGAAAT	CATATGAATA	TTACCAATT	GTTCCTATC	AAGACAGGAT	3960
GTGATGAAAC	TGATAGGCAA	CTGCAAAAC	TATTTTTCA	GTTGGATT	CAATTGGGAG	4020
AATTGACAGA	TCAACTAAGA	AAATTAGATT	CTAATTTGT	TCCTCGTAGT	CAATTGTAG	4080
ACACGTTGGA	TTTGAATGAT	GTAGAATATA	AAGAAATT	AAACTATT	ATCTCCATC	4140
GTAATGATAG	TGAAGAAAGT	TTGGTAGAAT	GGTTATATGA	TTGGATT	ACAAATCGTT	4200
ATGAACCTCC	TAAAGAGTTT	TCGATTGTA	TGGCTCATAA	ATACCATGAA	AGTGTACTG	4260
AAGTTTCGG	AGATGAATAA	CTAAAAAAC	GTCATTAGTG	ACTGTTTTT	ATAGAAAAG	4320
AGGTTTTATA	TGTTAAGTTC	AAAAGATATA	ATCAAGGCTC	ACAAGGT	GAACGGTGTG	4380
GTTGTGAATA	CTCCACTGGA	TTACGATCAT	TATTTATCGG	AGAAGTATGG	TGCTAAGATT	4440
TATTTGAAAA	AAGAAAATGC	CCAGCGTGT	CGCTCCTT	AAATCGTGG	TGCCTATT	4500
GCCATTTCCC	AGCTCAGCAA	GGAAAGAACGT	GAACGTGGGG	TAGTCTGC	TTCTGCCGGA	4560
AATCATGCGC	AGGGAGTAGC	CTATACTTGT	AATGAAATGA	AAATTCC	TACTATCTT	4620
ATGCCCATTA	CTACGCCACA	ACAAAAGATT	GGTCAGGTTC	GCTTTTTGG	TGGGGATT	4680
GTAACTATT	AACTAGTTGG	AGATACTT	GATGCC	CCAAAGCAGC	TCAAGAATT	4740
ACAGTCTCTG	AAAATCGTAC	CTTTATTGAT	CCTTTGATG	ATGCTCATGT	TCAAGCAGGT	4800
CAAGGAACAG	TTGCTTATGA	GATTTAGAA	GAAGCTCGAA	AAGAATCGAT	TGATTGAT	4860
GCTGTCTGG	TTCCTGTTGG	TGGGGCGGT	CTCATTGCCG	GGGTTCTAC	CTATATCAAG	4920
GAAACAAGTC	CAGAGATTGA	GGTTATCGGA	GTAGAGGCAG	ATGGAGCGCG	TTCCATGAA	4980
GCTGCCTTG	AGGCTGGAGG	TCCAGTAAA	CTCAAGGAAA	TTGATAAATT	TGCTGATGGG	5040
ATTGCTGTGC	AAAAGGTAGG	TCAGTTGACC	TATGAAGCAA	CTCGTCAACA	TATTAAC	5100
TTGGTAGGTG	TCGATGAGGG	ATTGATTCT	GAAACCTTGA	TTGACCTT	CTCTAAGCAA	5160
GGGATAGTCG	CAGAACCTGC	TGGAGCGGCT	AGTATCGCCT	CTTTAGAGGT	TTTAGCTGAA	5220

209

TATATTAAGG GGAAAACCAT TTGTTGTATC ATTTCTGGAG GAAATAATGA TATCAACCGT	5280
ATGCCAGAAA TGGAAGAGCG TGCCTTGATT TATGATGGTA TCAAACATTA CTTTGTGGTC	5340
AATTTCCCAC AACGTCCAGG AGCTTTGCGT GAGTTTGTAA ATGATATCCT GGGGCAAAT	5400
GATGATATCA CACGTTTGA GTATATCAA CGAGCTAGCA AGGGAACAGG CCCAGTATTA	5460
ATTGGGATCG CTTTAGCAGA TAAGCATGAT TATGCAGGTT TGATTCGTAG AATGGAAGGT	5520
TTTGATCCAG CTTATATTAA CTTAAATGGT AATGAAACGC TTTATAATAT GCTTGTCTGA	5580
GGACTAATAA AAAAATATCA TACCTTCATT TTGATTCCT ATCTATTGAC AAGCATAGTC	5640
ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAAACCAC GTTAGCTCTA TCTGCAACCT	5700
CAAAACAGTG TTTTGAGCAA CTTGCGGCTA CCTTCCTAGT TTGCTCTTG ATTTTCATTG	5760
AGTATAAGGT ATGATTTGAT TTCTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT	5820
AAGTAATTAA CTGAGCTTAT CTGCTTGTC ATCTCTATTAA AGGATGGTT AGATAATCGG	5880
GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTG AAGGACATAA	5940
GGAATACCTA TCTCTCAGAT GATTATTGAGA GGAAGAAAAGA TAGGAGTTTG TGAGCTAGTG	6000
AAGGCTTGGG TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG	6060
CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTCGC ACCTTAAGAG	6120
GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT	6180
ATATTATCGG ATTTAAAAAG GAAGTAAGAA A	6211

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 7939 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCGGACTCCC CACGATTCTT CAAAATAACT GAGTATATTT CTATCTTGAT TTTCAGATAT	60
AAATTCTTCC TTCTGTGGCC TCTTCTTACG CTTGAGAAGA GCTTCTCCGA CATGGCTTCT	120
TCCTTACTGA GCAAAACCTT GAGCATAGAT AAGTTTGACT GGCAAGCGTG CTCTTGATA	180
TTGGCTCCC TTCCCACAT TGTGGATAGC GAGGCGTCTT CTCATATCAG TCGTATAGCC	240
TATATAGTAG GATCCATCAC GACACTCCAG AACGTACATA TAAGCCTTAT GATCCATAAT	300
AAATCTCTTC GATTTGGGC GTATAAGAGC CATCATCATT GTGGACAATC AAAGGAGGTA	360

210						
AGACCTTAAA	GCCACTTGTT	GAGGCCATCCT	TGATCGCCTC	AATCAAAGC	ATATTGGCTT	420
CCTTTCTCT	TTTGGATAA	ACAAACTGCA	GGCGCTTAGG	GGCTAGATTA	TGTCGTTTA	480
ACGTATCAA	AATATCCAGA	AGTCGATCAG	GACGATGAAC	CATGGCCAAA	CGCCCATTAG	540
ACTTGAGAAT	ACTCTGGCA	CTACGACAGA	TTCTTCCAA	ATTAGTCGTG	ATTCGTGTC	600
GAGCCAAGAG	ATAATGTTCA	CTCTCGTTCA	GATTAGAATA	AGGATTCAAC	TTGAAATAGG	660
GTGGATTACA	CAAATCATA	TCCACCTTAC	TCCCCCTGAAT	GTGAGCAGGC	ATATTTTCA	720
AATCATCGCA	GATGACCTGC	ATTTGCTCCT	CTAATCCATT	CAAACGGACA	GAGCGTTCAG	780
CCATATCCGC	AAACGCTCC	TGAATCTCAA	CAGACAATAT	CTGTGCTTGA	GTACGAGTGC	840
TAGCAAAAAG	CCCCACTGCT	CCATTCCCAG	CACAGAAAATC	CACAATCAAC	CCCTCTTAG	900
GAAAACGTGG	AAATCGTGAT	AAGAGAACAC	TATCCACCGA	ATAGCTAAAA	ACCTCTCTAT	960
TTTGAATGAT	TTTGATATCT	GTCGAAAAGA	GCTGGTTAAT	GCGCTCTCCT	GATTTAATA	1020
ATTGTTCTTC	TTCCATGGTC	CTATTATAGC	AAATTCAATAT	TAACATTACA	AAAAATATAA	1080
AACTCTAAC	TACTTCTTCT	TTTTAAATG	GTGCAGGGCT	TCTCCAGTCC	AGATTGGTAG	1140
CATTCTCGA	AAGGGAGCAA	AGCCGTAGTT	AAAGCGTCG	CTTGAAAAGC	GTCTCCGTCT	1200
AGGAAACTGG	TACTTTCTT	CCTCCAAAGT	GCGGATAGAA	AGACTGGCTT	TCCCTGTAAA	1260
TTCATCTAAA	TCCACTACCT	GAACTTGAAC	CTCTTCATCG	ACTTTCAAGG	TTTCATGAAT	1320
ATTTTCAATA	AATCCTGTCC	GAATCTCTGA	AATGTGAATC	AGCCCCGTAT	CACCCGTCTC	1380
TAACTCAACA	AAGGCACCGT	AGGGCTGAAT	CCCTGTAATA	CGCCCCTTA	GCTTATCACC	1440
GATTTTCATC	TTAGTCCTCG	ATTICAATAG	TTTCAATTAC	AACATCTTCA	ACTGGCTTGT	1500
CCATAGCTCC	TGTCTCAACA	GCAGCAATGG	CATCCAAGAC	AGCGTAAGAT	GCTTCATCAG	1560
CTAACTGACC	AAAAACCGTG	TGACGGCGGT	CTAGGTGAGG	TGTCCCACCT	TGATTGGCAT	1620
AGATTTCTGC	AATCGGTTCT	GGCCAACCAC	CACGAGTAAT	TTCTTTCTTA	GAATAAGGTA	1680
GGTGTGGTT	TTGCACGATA	AAGAACTGGC	TGCCGTTGGT	ATTTGGACCA	GCATTGCCA	1740
TGGAAAGAGC	ACCACGGATA	TTGTAAGCT	CTTCTGAGAA	TTCATCCTCA	AAAGATTGCG	1800
CGTAGATTGA	CTCGCCACCC	ATACCAGTTC	CAGTTGGTC	TCCACCTTGG	ATCATAAAAGT	1860
CCTTGATAAT	ACGGTGAAA	ATGACACCAC	CATAGTAGCC	ATCTTTGAA	AGAGATACAA	1920
AGTTAGCCAC	TGTTTAGGA	GCATGTTCAAG	GGAAAAGCTT	GATACGTAAG	TCTCCGTGAT	1980
TGGTCTTAAT	AGTCGCAAGA	GGACCTTCTA	CTGTTCAAT	GTCTACTTGT	GGAAAATGCA	2040
ATTCTTTTTC	TACCATAACCA	AATACTTCTA	AGGCAGCAAA	AATGCCATCT	TCTTCTAATG	2100
TTTTGTAAAT	ATAATCTGCT	TTTCTTTGA	TTTTATCATG	AGAAAATCCC	ATGGCAACGC	2160

211

TGATTCCAGC ATAATCAAAG AGTTCCAAGT CGTTGAGACC ATCTCCAAA ACCATGACCT	2220
TCTCTGGTTT CAAGCCAAGG TGTTCCACAA CCTTTCCAC CCCCCTCGCT TTGGAGCCTG	2280
AAATCGGCAC AATATCAGAC GAATGTTGAT GCCAACGAAC CATGCGAAGT TTGTCTGAGA	2340
GACTGTCAGG CAAGTGCAAG TCATCTCCCT TATCTTCAAA AGTCCACATC TGATAGATAT	2400
CTTCTTTTC ATGGAAATCG GGATCTACAT CTAAGTCGGG ATAAATTGGA TTGATAGCTT	2460
CACTCATCAT ATCGGTGCGA GTCGACAAC TGGCATCATG ACTCCCAACC AAGCCATACT	2520
CAATTCCCTTC TTGCTTAGCC CAAGAGATAT ACTCCTCAAC ATCTGACTTT TCAATCTGAT	2580
GCTGATAAAAT GACCTGACCT TTTTATCTT CGATATAAGC CCCATTCAAA GTTACAAAAA	2640
AGTCAGGCTT GAGATCACGA ATCTCTGGAA CAACACCAAA AATGCCACGT CCAGAGGCAGA	2700
TTCCTGTTAA AATTCCCTTT TCACCGCAACT GTTTAAAAAC AGTGGGAATT GTAGTTGGAA	2760
TAACCCCTGT CTTTGAATTC CGCAATGTAT CATCAATATC AAAAAAGACA ATCTTGATCT	2820
TCTTTGCCTT GTATCTTAAT TTCGCGTCCA TCTCACTACC TCTTTCAATC TAACTCTTTC	2880
CATTATATCA TAAAGTAGGC AAATCCCTA TTTTCAAAAA GTTTATCATT TTATTTTAA	2940
TTTCTTGGAT GAGAAAAGAG ACATATTTAT GAAAAAGCTC CATCGTGCTT TTAATGTGTT	3000
CTCTTGTGTTT CAAACTCGTA AAAAGGGAGC CACTGATCCT AACTCGCTCT CTCATTCAA	3060
AGCTTGTGAA AAAAGACCCG TTGGGGCTTT AATTGCTT CTTGTTTCA AGCTCATGAA	3120
AAAGAGACCC AACTGGGTCT TTTCTTTAAT CTTCGTTTAC GAAAGGCATC AAAGCCATTAA	3180
CGCGAGCGCG TTTGATAGCT GTTGTACTT TACGTTGGTT TTTAGCTGAA GTTCCTGTTA	3240
CACGACGAGG AAGGATTTCC CACGTTCTG AAACGAAACG GCTAAGAACG TCAGTATCTT	3300
TGTAATCAAC ATATTCAATT TTGTTGCTG CGATGTAATC AACTTTTTA CGCGTTTGA	3360
ATCCGCCACG ACGTTGTGA GCCATGTTT TTCTCCTTTA TAAGTTAGT TGTCCATTAG	3420
AATGGTAAAT CATCATCTGA AATATCCAAT GGGTTGTTG CTCCAAATGG ATTTTCATTA	3480
CGTGAAAAGT CTGGTACTGA ATTTGTAGGT GCTGAATAGT TTGCAGTTGG TGCAGAGTAA	3540
GCTCCACCTG TGTGACCCCTC ACGCACACTA CGGCTTCCA ACATTGGAA ATTCTCAGCC	3600
ACGACCTCTG TCACGTAGAC ACGTTGTCT TGCTGGTTAT CGTAACTACG AGTCTGGATA	3660
CGACCTGTCA CCCCCATAAG TGAGCCTTT TTAGCCAGT TAGCAAGATT TTCAGCCTGT	3720
TGGCGCCACA TAACGACATT GATAAAATCA GCCTCACGTT CACCATTG ACTCTTAAAT	3780
GTACGGTTA CTGCAAGAGT AAAAGTCGCA ACTGCTACAT TTGATGGGGT ATAACGCAAC	3840
TCAGCGTCAC GTGTCATACG CCCTACAAGT ACAACATTGT TAATCATAGT TTACCTTCTT	3900

212

ACGCGTCAAT	TTTGACGATC	ATGTGACGAA	GAATGTCAGC	GTTGATTTTT	GAAAGACGGT	3960
CAAACCTTT	AAGAGCTGCA	TCGTCATTG	CTTCAACGTT	AACGATGTGG	TAAAGTCCTT	4020
CACGGAAATC	TTGGATTCG	TATGCAAGAC	GACGTTTTTC	CCAAGTTTT	GATTCAACAA	4080
CAGTTGCACC	GTTGTCAGTC	AAAATAGAGT	CAAACGTGC	TACCAAAGCG	TTTTAGCTT	4140
CTTCTTCAAT	GTGGACGA	ATGATATAAA	GAATTCGTA	TTTAGCCATT	GATATGTTCC	4200
TCCTTTGGT	CTAATGACCC	CAAGACTTTG	CAAGGGTAA	GTGAGGTTCG	CTCACAAATAA	4260
ACTATTATAC	TAGAAAAAT	TTTTTACGC	AAAGTAAAAC	ACTAGAATTTC	GAAAAAACGC	4320
CACATGGGCG	TTTCTCTGTT	CTTATGGTTT	GATACGGTGC	AACATACGTG	GGAATGGAAT	4380
AGCTTCACGG	ATATGTTTG	TTCCTGCTGC	GAAGGTTACC	ATACGTTGA	TACCGATACC	4440
AAATCCTCCG	TGTGGAACTG	TACCGTATTT	ACGAAGGTCA	AGGTAGAATT	CATATTCTGT	4500
ACGATCCATG	CCAAGTTCAT	CCATCTTAGC	GACAAGGGCA	TCGTAATCTT	CCTCACGCAT	4560
AGACCCACCG	ATAATTCTC	CATAGCCTTC	TGGAGCAAGC	AAAGTCTGCAC	AAAGCACGCG	4620
CTCTGGATT	CCAGGAACTG	GTTCATGTA	GAAGGCCTTG	ATGGCTGCTG	GATAGTTCAT	4680
GACAAATGTT	GGCACACCAA	AGTGGTTGAA	AATCCAAGTT	TCCGTGGTG	ACCCAAAGTC	4740
ATCACCATGC	TCAAGATGCT	CGTAGTCAGC	ATCTTCATCA	TTTTCATGCT	CTTGCAAGAG	4800
GTCAATGGCT	TGATCGTAAG	TGATACGTTT	GAATGGCTCT	GCAATGTAGC	GTTCAGAGAG	4860
TTCTGTATCA	CGTTCCAAGG	TTTCCAAGGC	TTGAGGCGCG	CGGTCAAGAA	CACCTTGTAG	4920
AAGAGCTTTC	ACATAAGCTT	CTTGCAAGTC	AAGCGACTCA	TCATGTGTCA	AGTATGAGTA	4980
CTCAGCATCC	ATCATCCAGA	ACTCAGTCAA	GTGACGGCGT	GTTCAGGCACG	5040	
GAAAACGTGGA	CCAAAGTCAA	AGACACGACC	AAGAGCCATA	GCCCCCTGCTT	CTAGGTAAG	5100
CTGACCTGAT	TGGCTCAAGT	AGGCTGGCGT	TCCGAAGTAG	TCAGTTCAA	AGAGTTCTGT	5160
AGAATCTTCT	GCCGCATTTC	CTGAAAAGAAT	TGGGCTGTCA	AACTTCATAA	AAACGTTCTT	5220
GTCAAAGAAC	TCATAAGTTG	CATAGATAAT	AGCGTTACGG	ATTTGCAACA	CAGCTACTTG	5280
CTTACGAGAG	CGTAgGCCACA	AGTGACGGTT	ATCCATCAA	AAGTCTGTTC	CGTGTCTTT	5340
TGGTGTGATT	GGGTAGTCTT	GAGATTCAACC	GATCACTTCG	ATGTCTGTGA	TGTCCAACTC	5400
ATAGCCAAAT	TTAGAACGTT	CGTCCTCTTT	GACAATACCT	GTCACATAAA	CAGACGTTTC	5460
TTGGCTCAAG	CGTTTGATAA	CATCAAACCT	CTCAAGTCCC	ACTTCTTCAC	CAAATTTTC	5520
GACAAAGTTT	GGTTTAAAG	CCACACCTTG	AAAGAAGGCT	GPTCCATCAC	GCAATTGTAA	5580
GAAAGCGATT	TTCCCTTTTC	CTGATTTGTT	GGCAACCCAA	GCGCCAATCG	TCACTTCCTG	5640
ACCAACATAG	TCTTTTACGT	CAATAATCGT	TACACGTTTT	GTCATTATTT	TTCTTCTTCT	5700

213

TTTTTATTCT TTATGGCAAA CCACCTCTAT ATTGTTCCCA TCCAGGTCAA TCATAAAAGC	5760
AGCATAGTAA ATCGGATGCT CACTTCGATA ACCAGGAGCC CCATTGTCTC GCCCACCTGC	5820
CTCTAAGCCA GCCTCATAAC AAGCCTGAAC TTCTTCCTTA TTTTCTGCTA AAAAAGCAAA	5880
ATGAACAGGA TCTTGTGTTC CCTGAGTCAG CCAAAAATCA CCACCAGGAT GAGGGCTGTT	5940
CGGGGATAGA AAACTAATTA GAGAACTAGT CTTAAAAGCC AATTTATAGT CAAAGGAGC	6000
GAGAAAATC CTATAAAATC CTTATGAAAT TTGTAATCC TTTACCTAA TCTCAAATG	6060
ATCAATCATT CTCACTACCC ATAAATGCTT TCAAGCGTTC GACTGCTCT TTAAGCGTGT	6120
CTAGGTCTGT CGCATAGCTG AGGGGACAT TTTCTGGTGC TCCAAATCCA GTCCTGTAA	6180
CCAAGGCCAC TTCGGCTTCT TCTAAGATAA CAGTTGTAAA GTCTGTACA TCCGTGTAGC	6240
CTTTCATCTC CATGGCCTTT TTGACATTTG GGAAGAGATA GAAGGCCCC TGCGGTTTGA	6300
CCACTTCAAA TCCTGGTACC TCTGCAAGGA GGGGATAGAT GGTTAAAGA CGTTCCCAA	6360
AGGCCTGACG CATGCTTTCT ACAGTATCTT GCTCACCTGA TAGAGCCTCA ACTGCTGCAT	6420
ATTGGGCTAC TGCTGACGGA TTCGAAGTTG TTTGACCTGC AATCTTGGAC ATGGCAGCGA	6480
TAATGTCTGC TTCTCCAACG GCATAACCAA TCCGCCAACC AGTCATGGCA TAAGTTTAG	6540
ACACACCATT GATGACCACT GTTGTGTTGC GAATCGCTTC CGATAGGCTA GAAATCGGTG	6600
TGAACACTATG ACCATTATAA ACCAAGCGGC CATAGATATC GTCTGCTAGG ATGAGAATAT	6660
CATTTTCTAC AGCCCAGTTT CCAATTGCCA AGAGTTCCTC ACGGGTGTAATCATAACCTG	6720
TGGGATTAGA TGGCGAATTG AGCACCAAAA CCTTGGTCTT GTCAGTGCAG GTCGCTCTA	6780
ACTGCTCTAC GGTCACCTTA AAGTGATTGT CTTCTTAGC AGAAACAAAG ACGGGAACGC	6840
CTTCTGCCAT CTTGACCTGA TCTCCATAGC TAACCCAGTA TGGGGTTGGG ATGATGACTT	6900
CATCACCTGG ATTGACCAACA GCCATAAAAGA AGGTATAGAG AGAATATTG GCTCCCGCAG	6960
CGACTGTAC TTGATTGAC GCTACAGAAT AGCCGTAAAA GCGCTCAAAG TAGCTATTGA	7020
CCGCCGCCTT AAGCTCTGGC AGACCTGAGG TTACTGTATA AAAAGAACCA CGCCCATCTC	7080
GAATCGATGC AATGGCGGCA TCTTGGATAT TTTTGGGAGT AGTAAATCT GGCTCACCCA	7140
AGGTTAGAGA CAAAATATCT CTACCCCTCAG CCTTCAGTGC TTTGGCACGG GCTCCAGCAG	7200
CCAAAGTCAC ACTTTCTTCC ATTTCTAAAA CACGGTTGGA TAGTTTCATA GGCCCTCCTT	7260
GTTGACCAAT GCTCCTGTT CAAAATCTAC TAGATAAAAAA TCAGATCCTG ACTTAACTTC	7320
CCAGATTGGC TTATCTTGAT AACGGCCAAA GGTTATCTG TCAATCTCGC CAGCTCCCTT	7380
TTCCCTTAGAA ACCGTTCTG CTTTTCTTG TGAAACACCC TGATTTAGCT GATAAACGTA	7440

214

AATCTTATGG TCATCTTAC CAATCAGGAC AGCAAGCGCT TCTTGCTGTT TGTTACGACC	7500
AAGAACGCTG TAATAAGATT CCAAGCCATT GTATAAATCA ACCTGATCAG CCTGCTCTAA	7560
TCCTGCATAC TGCTGAGCTA ATTTTCTCC TTCACTTTA GCTGTTGAT AGGGTTTCAT	7620
GCTAAGAGAA ACCATATACA GAAAGGAACC ACTGATAACC ACAAACAAAA TCGTCATCCC	7680
TAGACCATAC TGCCACAGTA GATTATTTTG TGCTTTGTT TGCTTTTTT TCACTCGTCT	7740
ATTTTACCAT CTATTAAGCT TTATTACAAG TGAATATAAG AATACTCTTC GAAAATCTCT	7800
TCAAACCACG TCAGCTTTAT CTGCAGACCT CAAAGCTGTG CTTTGAGCAA CCAATTCTAT	7860
TTCTCCCTTC AAACAAAACC GATTTGAAA GTGAAACAGT TCTTACTTTT TCAGTCACAA	7920
ATGATTAGAG TTTGCCGGG	7939

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC GTCAAATAAT TACCATTGTT TTTAATACCG AAATTTTAT CTACTGAAAA	60
TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT	120
GTAATCAGTA TCACCTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA	180
ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA	240
CATGAGTACT TGTTGTTCT TTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCCACC	300
GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA	360
ATCATCGAAT GCCAATGTTA ATTTGGTTT AGTCCATGTC TTACCATTTT CATCACTATA	420
ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT	480
GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA	540
ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTG TTGTCATCTT	600
TTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTG ATATTTCTA GTGTTCCGTT	660
AAAACCAAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC	720
TTTAATATCC TTGATGTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCAATT	780
TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC	840
AGCCTTTGT TTGTAATTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTATT	900

215

GGAAGAAGTA	TCACCGCCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
ATAACTATT	TGTTGACCGG	GTTTGGATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
TAACTCTTTA	GTAACATTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTTT	TTTCTAACAGAC	1140
AGGAGTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	GAGTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTGA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAACAGTTA	CATATTGTTT	1380
AATATTTTTT	TTCATTTTAT	TTTCCTCGT	TTAAAACTTT	GATAACAAGT	TTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	ACCAACATAT	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTTCAG	1620
TATTTTCAAC	AACAATATGA	ATATCTAAAT	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACCTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	TCAATATCAA	1740
TTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTCTAA	AAAATCACAG	ACTTTTGAAA	1800
AATATTTATT	GACAGAAGCA	TATCGTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
TTTCTCTTTT	CTATTAGTGA	CGAACCTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACAA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	GAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
TTGGAGGAAG	GAAGTATTAA	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTAGAAA	CAAATCCAAG	AATAAATACA	CCACCAAGTA	2160
GACCAAGTAC	AACTCCCAGT	AAACTATTGA	ACCATTGTA	TGCAGATTAA	ATATCTGAGT	2220
GAGCCATGAC	AATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
TCCATGAAGT	TGCAACAGAG	TTCAACCTG	TTGAAATAGT	TGATTGAGAT	GCTGCATAAA	2400
TCGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AACTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	AAGTAAAAGA	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TTGTGAACAA	CATCTTATTA	AGTTTCTTAA	TATTTGTGT	TGTAGTAAAA	CGTTGAACCA	2640

216

AATCTTGAGA TGAAGCATAG GAAGACAAGA TTGTAAAGCC TGAACCCATC ACAATTAAAA	2700
AGATGGAGTT TGAAAGCAAG TTAGGATCGA AAAGTTTTTC ATTTGCAGCA AGGAATTTC	2760
CGTTTGCTAA TGTTTCTGCT ACTGCACCAA AGCCACCTTT AATATTAGCA ATCAGTACAA	2820
ATAAAGCTAA AACGACACCA CTAATCAGAA TCACACCTTG AATAAAGTCT GTCCATAATA	2880
CGGATTTAG ACCACCAGTA TAAGAATAAA CAATTGCAAC TACACCCATC AAAATAATCA	2940
AAATATTGAT GTCATTCCCT GTCAACTTG ATAAACCAGC TGATGGGAGG TACATAATGA	3000
TAGACATACG TCCCATTGA TAAATAATAA ACAAGAGTGC TGAAATAATA CGAAGTGCTT	3060
TAGAATTAAA ACAGTTATCC AAGTAATCAT ATGCCGTATC GATGTCTATC CGTGCAAAGA	3120
TAGGTAAGAT AAAACGAATT GTCAGTGGAA TAGCTACTAC CATCCCTAAT TGAGCAAACC	3180
ATAAAATCCA GCTACCTGCA TAAGAGCTAC CAGCGAGTCC CAAGAAGGAA ATCGGACTGA	3240
GCATTGTGGC AAAAATGGAT ACCGAAGTAA CATAACCAAGG AACCGAACCA TCTCCTTTAA	3300
AGAACTCTTT TCCTTTCATC TCTTTTTAG AGAAATAGAT ACCTGCAACC AACACCGCAA	3360
GTAAATAAAC AATCAAGATA ATTAAGTCAA TTATTGTAAA TCCTGTTGTG CCCATAACAT	3420
ATCTCCATAT TGATTTTATT TATTATAAAA ATTCTTTTCG TGCTGTTGA ATAAGTTCTG	3480
CTGCTGTTT TGCAACTTCC AAGTCACCTT CTGCCAATGC TTCTAAAGGT TGACGAACAG	3540
AACCTAAATC AAGTTTTCA TTTAGACGCA AAACCTCTT TGCTACAGCA TACATATTG	3600
CCTTACCTGA TATCATCTTA TAGATAACTT CATTGATAGC ATATTGAAGT TTTTAGCTG	3660
TATCTAAATC TCGTTCTTGA ATCAAACCTT CCAATTCAA GAACAAATCT GGCATAACGC	3720
CATAAGTACC ACCAATACCA GCTTCTGCTC CCATCAAGCG ACCACCAAGA TATTGTTCAT	3780
CTGGACCATT GAATACAATG TAATCTTCTC CACCTGCAGC TACAAACATT TGAATATCTT	3840
GTACAGGCAT AGAAGAATT TTAACTCCAA TCACACGAGG ATTTGACGC ATTGTTGCAT	3900
ACAAAATCACC AGTCAACGCA ACCCCTGCCA ATTGTGGAAT ATTATAGATA ATAAAATCTG	3960
TATTTGACGC AGCTTCACTC ATTGCATTCC AATATGCTGC GATTGAATAC TCTGGCAATT	4020
TGAAATAAT AGGTGGATA GCTGCAATAG CATCGACTCC AACACTTCT GAATGTTTG	4080
CCAATTCGAT ACTATCTTTC GTGTTATTAC ATGCAATATG GTTGATAACT GTTAATTAC	4140
CTTTAGCAAC TTCCATAACA GCTTCAATAA TTTGTTACG ATCTTCTACA CTTTGGTAA	4200
TACATTCAACC TGAAGAACCA TTTACATAGA TACCTTTAC ACCTTGTCA ATGAAATATT	4260
GTACCAGAGA TTTTACACGA TCTTGGCTAA TTTCACCATT TTCATCATAG CAAGCATAAA	4320
ATGCAGGGAT AACGCCTTG TATTTAGTTA AATCTTCAT CAGATTTCTC CTTTATATTG	4380
TTTTTTATTG GATGACATTA ATAAATCGCT GAGCAATTTC TTTGGACGT GTAATCGCTC	4440

217

CACCAATGAC TACACTGGTA ACACCTAACAC TATAAGCTTT TTTTAATTGT TCTGGATAAT	4500
GAATTTTCT CCGGCAATTA CCGGAATATT AAAATCAGCC AATTTTTCA TTAGTCAAA	4560
ATCAGGCTCA TCTGATGTA CACTGTACT TGTGTAACCT GATAATGTT TACCAACAAA	4620
ATCAACGCCT GATTAAATG CATAGAGACC TTCATCTAAA TTACTTACAT CCGCCATCAG	4680
CAATTGATTG GGATATTTT CTTTATTTT TTTGATAAAT TCACTGACAA CTAAGCCATC	4740
ATATCTTGGT CTTAAAGTTG CATCAAATGC AATGACTGTT GTTCCGCATT CTACAAGTTC	4800
ATCTACTTCT TTCACTCGTAG CAGTAATATA TGTTCTTGA GGTGGATAAT CCCTTTGAT	4860
AATTCCAATT ATTGGTAAAT CTACTACTTT CTGAATTGCT TTAATATCAC GCACAGAATT	4920
TGCGCGAATG CCCACTGCTC CTGCCCTCAA AGCTGCTTTA GCCATAAAAG GCATCAAGCT	4980
AAATTCTTCA TTATAAAGGG CTTCACCAAGG TAAAGCTTGA CAAGAAACAA TGACTCCACC	5040
TTGAACTTGG CTTATAAATT TTTCTTCTAGT CCAAATTTGG CTCATTTAT TATTCCCT	5100
TATGGATAAT AGTTTGATTG TAATAATATT GTCTCTCTGG ACTTTCCAGA TAATTAGAGA	5160
ATAAGCAGTC TGTAAATTAA AGTATTGGAA ACTGAGGTGA TATGCGATTG CCATACGAGA	5220
GATGATCGGT CGAAGCTAAT AACAAATAGTT CATCAAAGAA ACAATCTCT TCGTCAAATT	5280
TTCTTGTAGT CATTAAAATC GTTTAGCGC CTTTATCTGC AGCTTTTGT AGACCTCTA	5340
GTACAATATC AGTTGACCT GAAATGGATG CTCCAATGAC AAGGCAATT TCATTAAGTA	5400
GTAAGCTACT CCACAAAATC ATATCCTCGT CTGATAATAC TTCACCAATC ACTCCGAGAC	5460
GCATAAAATCT CATCTTCATT TCTTGAAAG CAAGAACAGA ACTTCCTTTA CCGTAGAGAT	5520
ATACACGCTC AGCAGTTCT ATCATCTCAG CAATACGCTC AAGTTGAACT TCATCAAGAA	5580
CCGTGTAAGT TTTTCTCAAC ATTTCTCAT AGTCGGATAA AACTTTTCT GTTGCCTCTG	5640
TATATAATGC CAACTTTCT TTCTCATGAA TCATCTCTTG GTATTGAAA ATGAATTGTC	5700
TAAAACCTTT AAAACCACAT TTTTCGCAA ATCGAGTCAA TGTTGCTTTG GATACATTA	5760
GGTATTGCGA CAATGCTTTA GATGAATAAT CATTCAAGAGG TTGCTGTTT AAGAAGAATT	5820
TAGCAATGTC TTTTCAGCA TATGCCATAT TTGGTAAGTT AGCTTCTATC ATTGGAATTA	5880
GTTCCTTTTG CAGAACATA TGAGCTCCTT AGTTGAAGTA AACGTTACA TTCTTTATTT	5940
TAACACTTTT TTTTTTTTC AATATTTTC ATAAATTAGA AACTAGTTTC CAATTCTTT	6000
CGTTTCATAA CAGAACACA AACAAAAA TATAATAGTT TTTATTCTT TTATCGTAAT	6060
TATATGTATT GTAAGAACGT TTATCACTAA TAATATGTT ATATTAAAAT ATTTTAGTAA	6120
TATTTTATTG TGGTTTATT ATTTCTTTTC GGAATTCTA TATAATATTT TATTTCTAAA	6180

218

AAAATTGAAA	AAATATTTCT	AGTTCTTTA	TTTTATATAG	GTAATATATT	TTATTTCTAA	6240
ATTAAGAG	AATCCCATAA	AAACTACAGA	TTTATGAGAT	AAATCAGGTC	ACCTATTTA	6300
AAAAAGCAGC	AAACTATAAA	CTAAAAAGTT	CCACACCAAA	TGTAACCCCCA	TACTTCCCCA	6360
TAAGTCAGAT	TTATAGCGCA	CCATACCTAA	AAACATTCCA	AGTAAACGT	ACAGACACCA	6420
AGCTAGAATG	GTTCTGGAT	GATGACTAA	GGCAAATAAA	ACACTTGTCA	AAGCAACTCG	6480
AATATCTAAT	TTTCTAACCA	AGTCCATAA	AATTCACGA	TACAGAAATT	CTTCAACCAT	6540
ACTCGCATTG	ATTAAGAACAA	ATAAAAATGA	AAACCAAGGA	ACTTGATGTT	GAAGGCCAAT	6600
TAAATTTGTT	TGATTCGTGC	TTCCTTGAGC	ATGAATCAGG	CTAAAACATA	GACTTATAAT	6660
CAGTAGACTA	GCTAGTCCAA	TACCAAGGCA	TTTCATCCTA	GTTCATCATAT	TGACCTTGAC	6720
CACTTGTGTT	CGTTGACCAT	ACATCCATAA	AAAAGAAAAA	AGAGACGCAC	CATAGAGAAC	6780
CTGTAGTATA	GTTAACTCAC	CGATACAAAG	AAATTCAT	AAGTATAGAG	ATACCAATAG	6840
GACATTTACT	TGTTGGAATA	TATAAACTGG	AATTATTCTT	TTCATAGTTA	CCTCCGAAAT	6900
AAATCTTCAT	AATCTAAATC	TAATATCTGC	ACAATCCTT	CTACCCATGG	ACTTTGAGGC	6960
ATTCGTTGTT	CCATCTTGTA	GTGGCGAAC	TTTTGATATA	AACGATTCAA	TTCACTTGGA	7020
TAGTGAAACT	CTCCCGCAAA	CATTTTCTG	GTAACTCAA	TCCAGCTGAT	ATTTCTTCA	7080
GCCAAAATAA	TGGACAAGTT	CTCCAAAAT	CGTTCAGCCA	TATTrCTTCT	CCTTTAGTTA	7140
GATAAAATAAT	GTGTTGyGC	CATGAAATC	AATTGTTCG	TATCTCTTGG	CAATAGAGCT	7200
CTAGCCTCTT	CCAAATTCAAG	ACTTGGATAA	ACCCGTTAT	TTGAAACAC	AAAAGGAAGT	7260
CCGATGGTTA	GTTCAGGATT	TTTAAATT	ATCTAACGA	AATCCGTAA	TCTTAGATTG	7320
TCACGGTTCT	TAAATCGTAA	AAATTGGGA	GATAAAAACT	CAAACAAATC	TGAAGAATAG	7380
CTCATCATCT	CAATTAATT	GTCCTTGTC	ATTTCAAGAA	CTGAATGACA	AGATAACCTCA	7440
ATGCCATAGT	TTTGGAAAGAA	GTCTAAAAGA	AGTTGATTT	TTGGCTATT	TTTACTTGA	7500
TAGAGATCAA	TCATGGGAGA	CCTCCAACAA	ATTTGCTTCC	ATTTGATATT	CTGAGACGAT	7560
TAAGGAATCT	AAACAACTTTG	AGAAGTTAAT	CGATTCTTG	TCTTCATCAT	AAGCTTTAC	7620
AGTTACTTGG	GTTGTAAGTA	TCCCCTTTT	TCCCTCGGCT	CGATAGTCTT	GTCAATATAA	7680
AAACAAAACA	AGATTCTGAT	TATCATCTAC	AAAGGCATTA	ACTCCGTTCT	TTATATCCTG	7740
ACTTTCAAGG	AATTCCATAA	CGTTTGAAG	ATAGGATTCA	AAAATAGTG	GGTAATTATG	7800
TTTTTTATGG	TAATCATCTA	AAAATGTTAC	CTCAAACCTCA	CATGGATAAT	TGGGCATCAA	7860
AAATATTTGT	TCATCCAGCT	GTTTGATTT	TGCATCATGT	AATTCTGTTT	CTAATTCATC	7920
ACAAATCTAGT	ATTGATTCTT	TATTTAATGC	TTTTATCTTT	TTCCTCTATT	TCTTTAATT	7980

219

TCTTTGCGAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAAACTTGT	TTATAGAGCT	8040
GACTATTAAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
GAAAACACTC	TTTAGGAGTG	ATTCGTCGTA	TTCTCAAACG	GTAAAATTGT	CCATCTATTA	8160
AAACACCAGC	TACTTGGTAA	ACTTGTATTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CCATTTGACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	TCCAACCTCA	CCACGACGAT	8280
ACTGAGAACT	TGGCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
TTTTCGTTGC	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
TTTTATCTCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACCT	CCATAGACAC	8460
GACCTGTCTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAAC	GACAATGCCA	TAACGATCCT	8520
GAGTATTTAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
TGTCTAATCT	ATCTGGTGC	ATACAAGGAA	TCGCAACTTT	AAATCCTCT	CCTTTACCAC	8640
GAACTAAGGT	TGGCGAAGA	CCTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
ATGGATTCAA	ATTCCTAGT	GCTTCAAAG	TCTCAGAGTT	AGTGCTTGA	CCTTCTCGTC	8760
TGAAAGGAAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCCTCT	8820
CTCTGTTTT	GGGAACGCCA	AAATCCTTAC	TGTTAACGCAC	CTGCCACTCA	ACATCAAACC	8880
CCAACTCATC	AACTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GGCCTTTAAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCCGAGCAA	9000
TTTCAAAGAA	CAAAGTTCCCT	CTAGTATCTT	CAAATCCCAA	TCGTCTTCCT	GCGATTGAAA	9060
ATGCTTGACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	TTTTTAAATT	9120
CGTCATCTGA	AACATCTCGT	ATGTCATGAA	ATTCTATTTC	TCCTTCCGTT	TGAAAAATGG	9180
ACTTATAAGA	TTTCCTAGCA	AATTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
GAGCTTCCAT	TCCCACCTA	AAGCCTCCTA	TCCCAGCAAA	AAAATCTAAA	ACCCAAATCA	9300
TTCATACCTC	TCTCAACTAG	ATGTAACTTA	CAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
TCCTCCTCAT	GAGGTCACTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
TTCCTCAAAA	GGGCAGACTC	CTCCCCTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
CTTTAATGCA	TCATTAACGA	CGCTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
AGGTTGACTT	TTCTAACCT	AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
CTAGACAATT	TGAGGAGCTG	CTTGCCTCCT	GTTCGAACAC	ATTTCCCTAC	CACGTGAAGA	9660
AAAAGATGGC	GGAAGCGTTT	GATTGTTAAA	GTTGGAAGT	CACCTCCAGC	TAGATGTTG	9720

220	
AGAAAAAAGAT AGAGATTGTA GGCGATACAG CTCATCATCA TACGAACCTCG TTTTGATTA	9780
AGGTTGAACT ATCCGTTTA TCGCCAAAAA ATCCCTCCTT CATCTCCTTG ATGAAATTCT	9840
CGGCTTGACC ACGTCCACGA TAAAGCTGAA ACTGGTCTTG GCTTGTTCG GTACCGA	9897

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8148 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAACA AGCCAAGACC AGTTTCAGCT TTATCGTGG CA GTGGTCAAG CCGAGAATT	60
CATCAAGGAG ATGAAGGAGG GATTTTTGG CGATAAAACG GATAGTTCAA CCTTAATCAA	120
AAACGAAGTT CGTATGATGA TGAGCTGTAT CGCCTACAAT CTCTATCTT TTCTCAAACA	180
TCTAGCTGGA GGTGACTTC AAACTTAAC AATCAAACGC TTCCGCCATC TTTTCTTCA	240
CGTGGTAGGA AAATCTGTT GAACAGGACG CAAGCAGCTC CTCAAATTGT CTAGTCTCTA	300
TGCCTATTCC GAATTGTTT CAGCACTTTA TTCTAGGATT AGAAAAGTCA ACCTGAATCT	360
TCCTGTTCCCT TATGAACCAC CTAGAAGAAA AGCGTCGTTA ATGATGCATT AAAGAACAGT	420
CGAGATGAAA AAATCGTGTG ACGAACCAAG GGAGGAGTCT GCCCTTTGA GGAAATCTAG	480
CGAGGAAAAA CGATACTGGA ACAGCAGAAA GTAAACTGA CCTCATGAGG AGGAAGAAAG	540
TGGCTCATGA GGTCAGGGT TTTGTAAGTT ACATCTAGTT GAGAGAGGTA TGAATGATTT	600
GGGTAAATAC AATGAGCTTG AAAGAAGTAG CAAACTCACC AAGGCCAAT TCTTGAGAA	660
TCAGATGCTG GATTATACCA TCATTGCGCA TGAGAGTTT GAAATCATCC GTCATTCTGT	720
CTACCAGACA GATGATCGTG AAGTGGAAA TGCTCTGGCT TTTGAAGTGA AAAATGATGA	780
AACAGACAAG CTGATTCTGT TATTAAGCGA GGATATTGGT GTAGGTGAAA ATTGTGCCT	840
CGTTGACGGA ACAAAATGC GTGGAAAATG TTTAGTATAT GATAAAATAA ATGAGAGAAT	900
GATTGCGCTTG CAGTGCTAGA AATAGGCATT TTGAATAGTG AATATGTTAT AATAAGTATT	960
AGTAGGAGGT GTTTTAGATT GGAGAAGAAA CTGACCATAA AAGACATTGC GGAAATGGCT	1020
CAGACCTCGA AAACAACCGT GTCATTTAC CTAACCGGA AATATGAAA AATGTCCCAA	1080
GAGACACGTG AAAAGATTGA AAAAGTTATT CATGAAACAA ATTACAAACC GAGCATTGTT	1140
GCGCGTAGCT TAAACTCCAA ACGAACAAAA TTAATCGGTG TTTTGATTGG TGATATTACC	1200
AACAGTTCT CAAACCAAAT TGTAAAGGGA ATTGAGGATA TCGCCAGCCA GAATGGCTAC	1260

221

CAGGTAATGA TAGGAAATAG TAATTACAGC CAAGAGAGTG AGGACCGGTA TATTGAAAGC	1320
ATGCTTCTCT TGGGAGTAGA CGGCTTTATT ATTCAGCCGA CCTCTAAATT CCGAAAATAT	1380
TCTCGTATCA TCGATGAGAA AAAGAAGAAA ATGGCTTTT TTGATAGTC GCTCTATGAA	1440
CACCGGACTA GCTGGGTTAA AACCAATAAC TATGATGCCG TTTATGACAT GACCCAGTCC	1500
TGTATCGAAA AAGGTTATGA ACATTTCTC TTGATTACAG CGGATACGAG TCGTTGAGT	1560
ACTCGGATTG AGCGGGCAAG TGTTTGTG GATGCTTAA CAGATGCTAA TATGCGTCAC	1620
GCCAGTCTAA CCATTGAAGA TAAGCATACG AATTGGAAC AAATTAAGGA ATTTTACAA	1680
AAAGAAATCG ATCCCGATGA AAAAACTCTG GTATTTATCC CTAACTGTTG GGCCCTACCT	1740
CTAGTCTTAA CCGTTATCAA AGAGTTGAAT TATAACTTGC CACAAGTTG GTTGATTGGT	1800
TTTGACAATA CGGAGTGGAC TTGCTTTCT TCTCCAAGTG TTTCGACGCT GGTTCAGCCC	1860
TCCTTTGAGG AAGGACAACA GGCTACAAAG ATTTTGATTG ACCAGATTGA AGTCGCAAT	1920
CAAGAAGAAA GGCAACAAGT CTTGGATTGT AGTGTGAATT GGAAAGAGTC GACTTCTAA	1980
AATGAAGGAA AATGACTTGC AATCTCTGTT AAGAAATAAA ATAATCCAC CTAGAACAAAG	2040
CTAGGTGGGA TTATTTGCCT ATGAAATGAG AAATTATGGG AGCAAGCTCC TAAATCAACT	2100
GTTCAGTCTTAA ACTACTTGAT AAAAGTTATA GAAGTAGGCC AAACATTGAAA	2160
TGATGGTTAC GACTAGGAAT ATTGAAAATT TCCATTGGAC AGGGTTGGTT AAAAGTTGTG	2220
GAAAGGATAT GAGGAGAAAG AAGAGGGCTG CGTTGAGGAC AGGTATCCGT TTTGATTGTA	2280
TTTTCTCAAG TCCTTTATTG AGCGCAGGAA GAAAGAGGAG TAGGAGTAGT AAAACTGTAT	2340
GAGAAATAGC TCCTGAAGTA AGGGCGAAGA AAAGGAAAAT ACTGATAAAA ACATGAATGA	2400
TCAGTAGTCT AGCTAGTGAT TTCATAAGGC ACCTCCTAAT CCTGGTCTTT TTAGCTCTT	2460
GCAATACGAA GTGAGTCGAC AATATGTATC ATCACTCCGA AAAAGAAAGC TCCCAGTATA	2520
GTTCAGTCTTAA TATGTTTGT ATTTAGAAGA GAACTGATAA AATTTGGATT TTCACTTGTT	2580
AGGGTATCAA TGAGTGAAT TATAAAAAT ATCACTGTTCA CATAAAATCGA ACCTGCTTTC	2640
AGACCAGGAT AACGTAACG TTTCTTTCT TTTTCATGA GTTTCCCTCT AATCCTCATC	2700
TTGATTTTC TTAGTTTTG CAATGCGACG GGAGATGAGG AACTGTATGC TCGCTCCGAA	2760
GAAAATAGAA CCGAGAAATAC TTGATACACC ATTTCTTATA GTGAGAAGAG AATGAAAATA	2820
GTCCTGACCT TCATCTATGA GTATCCTGAG AAGAGGAGTT ATAAAAAAACA TCCATAGACC	2880
AAAGAACAAA CCTGCTTCA GACCTGGGTA GTGTAGTTGC TTGCTTTCTT TCTCATTCA	2940
CATATCTGGT TCAATGACTG TGATGCCTGT TTTTTTCATT TGGTAGGTGA CATAGCCAGA	3000

222

AGCGATGAGG GCAATCACTA AAATCAGAGG AGGATAGATT AGAGCCACTT CTTGAGGGTA	3060
TTTATAGGCC AGAAGGAGTG GAATAAGATT TCCGAAAATC ATCAGATAAA AGAGGATGAT	3120
AAAGACTTGG TTCCCAATAC TATCGGCCTC ACGCCGTTG TATTCGTCAA GGGGACCAGA	3180
AATACCGTAT GTGCGTTGA TCAGTTTTC AGTGAAGGTT TCTTTTTCA TGAGTTGCT	3240
CCTTTTTAA AAATCTTCCT CCCAAAAGAG ACTGTTGAGG TCAGTTGGA GGCTGCGGC	3300
GAGATTGAGA CAGAGTTCCA AGGTTGGATT GTACTTGTG TTTTCAATCA TATTGATAGT	3360
CTGTCTCGAG ACACCGATAT CCTTGGCGAG TTGAGCTGG GAAATACCCA ATTCCCTGCG	3420
AAATTCTTTC ACACGATTCA TCTGTTCTCC TTTCTGATTT ATGTCGTATA TATTGACTA	3480
TATTATAGTC TTTAAACAT AAAGTGTCAA GTATTTTGA CATATTTTT GAAGAAATAG	3540
TAGTCTCCTT GTCCTATTTG TCTGACAAGT GCAAGCTGGT CGGATTTGTG GTAAAATAGA	3600
TAAGATATGA CAAAAGAATT TCATCATGTA ACGGTCTTAC TCCACGAAAC GATTGATATG	3660
CTTGACGTAA AGCCTGATGG TATCTACGTT GATGCGACTT TGGGCGGAGC AGGACATAGC	3720
GAGTATTTAT TAAGTAAATT AAGTAAAAAA GGCCATCTCT ATGCCTTGA CCAGGATCAG	3780
AATGCCATTG ACAATGCGCA AAAACCTTG GCACCTTACA TTGAGAAGGG AATGGTGACC	3840
TTTATCAAGG ACAACTTCCG TCATTACAG GCATGTTGC CGCAAGCTGG TGTTCAGGAA	3900
ATTGATGGAA TTTGTTATGA CTTGGGAGTG TCTAGCCTC AATTAGACCA GCGTGAGCGT	3960
GGTTTTCTT ATAAAAAGGA TGCGCCACTG GACATGCGGA TGAATCAGGA TGCTAGCCTG	4020
ACAGCCTATG AAGTGGTGA CAATTATGAC TATCATGACT TGGTTCGTAT TTTCTTCAAG	4080
TATGGAGAGG ACAAAATTCTC TAAACAGATT GCGCGTAAGA TTGAGCAAGC GCGTGAAGTG	4140
AAGCCGATTG AGACAACGAC TGAGTTAGCA GAGATTATCA AGTTGGTCAA ACCTGCCAAG	4200
GAACCTCAAGA AGAAGGGGCA TCCTGCTAAG CAGATTTCC AGGCTATTG AATTGAAGTC	4260
AATGATGAAC TGGGAGCGGC AGATGAGTCC ATCCAGCAGG CTATGGATAT GTGGCTCTG	4320
GATGGTAGAA TTTCAGTGAT TACTTTCAT TCCTTACAAG ACCGCTTGAC CAAGCAATTG	4380
TTCAAGGAAG CTTCAACAGT TGAAGTTCCA AAAGGCTTGC CTTTCATCCC AGATGATCTC	4440
AAGCCCAAGA TGGAAATTGGT GTCCCGTAAG CCAATCTTGC CAAAGTGCAGA AGAGTTAGAA	4500
GCCAATAACC GCTCGCACTC AGCCAAGTTG CGCGTGGTCA GAAAAATTCA CAAGTAAGAG	4560
GGAAAAAGAT GGCAGAAAAA ATGGAAAAAA CAGGTCAAAT ACTACAGATG CAACTTAAAC	4620
GGTTTTCGCG TGTGGAAAAA GCTTTTACT TTTCCATTGC TGTAACCACT CTTATTGTAG	4680
CCATTAGTAT TATTTTTATG CAGACCAAGC TCTTGCAAGT GCAGAATGAT TTGACAAAAA	4740
TCAATGCGCA GATAGAGGAA AAGAAGACCG AATTGGACGA TGCCAAGCAA GAGGTCAATG	4800

223

AACTATTACG TGCAGAACGT TTGAAAGAAA TTGCCAATTC ACACGATTG CAATTAAACA	4860
ATGAAAATAT TAGAATAGCG GAGTAAGATA TGAAGTGGAC AAAAGAGTA ATCCGTTATG	4920
CGACCAAAAA TCGGAAATCG CCGGCTGAAA ACAGACGCAG AGTTGGAAAA AGTCTGAGTT	4980
TATTATCTGT CTTTGTFFFF GCCATTTTTT TAGTCAATT TGCGGTCATT ATTGGGACAG	5040
GCACTCGCTT TGGAACAGAT TTAGCGAAGG AAGCTAAGAA GGTCATCAA ACCACCCGTA	5100
CAGTTCCCTGC CAAACGTGGG ACTATTTATG ACCGAAATGG AGTCCCATT GCTGAGGATG	5160
CAACCTCCTA TAATGTCTAT GCGGTCTATTG ATGAGAACTA TAAGTCAGCA ACGGGTAAGA	5220
TTCTTTACGT AGAAAAAACCA CAATTTAACCA AGGTTGCAGA GGTCTTTCAT AAGTATCTGG	5280
ACATGGAAGA ATCCTATGTA AGAGAGCAAC TCTCGCAACC TAATCTCAAG CAAGTTCCCT	5340
TTGGACCAAA GGGAAATGGG ATTACCTATG CCAATATGAT GTCTATCAAA AAAGAATTGG	5400
AAGCTGCAGA GGTCAAGGGG ATTGATTTTA CAACCAAGTCC CAATCGTAGT TACCCAAACG	5460
GACAATTGTC TTCTAGTTT ATCGGTCTAG CTCAGCTCCA TGAAAATGAA GATGGAAGCA	5520
AGAGCTTGCT GGGAACCTCT GGAATGGAGA GTTCCTTGAA CAGTATTCTT GCAGGGACAG	5580
ACGGCATTAT TACCTATGAA AAGGATCGTC TGGTAATAT TGTACCCGGA ACAGAACAAAG	5640
TTTCCCAACG AACGATGGAC GGTAAGGATG TTATACAAAC CATTCCAGC CCCCTCCAGT	5700
CCTTTATGGA AACCCAGATG GATGCTTTTC AAGAGAAGGT AAAAGGAAAG TACATGACAG	5760
CGACTTTGGT CAGTGCTAAA ACAGGGAAA TTCTGGCAAC AACGCAACGA CGCACCTTG	5820
ATGCAGATAC AAAAGAAGGC ATTACAGAGG ACTTTGTTTG GCGTGATATC CTTTACCAAA	5880
GTAACATATGA GCCAGGTTCC ACTATGAAAG TGATGATGTT GGCTGCTGCT ATTGATAATA	5940
ATACCTTCC AGGAGGAGAA GTCTTTAATA GTAGTGAGTT AAAAATTGCA GATGCCACGA	6000
TTCGAGATTG GGACGTTAAT GAAGGATTGA CTGGTGGCAG AACGATGACT TTTTCTCAAG	6060
GTTCAGGATG CTCAGGATGAA CCCTCCTTGA GCAAAAGATG GGAGATGCTA	6120
CCTGGCTTGA TTATCTTAAT CGTTTTAAAT TTGGAGTTCC GACCCGTTTC GGTTGACGG	6180
ATGAGTATGC TGGTCAGCTT CCTGCGGATA ATATTGTCAA CATTGCGCAA AGCTCATTG	6240
GACAAGGGAT TTCAGTGACC CAGACGCAA TGATTCGTGC CTTTACAGCT ATTGCTAATG	6300
ACGGTGTCT GCTGGAGCCT AAATTTATTA GTGCCATTAA TGATCAAAT GATCAAATG	6360
CTCGGAAATC TCAAAAAGAA ATTGTGGAA ATCCTGTTTC TAAAGATGCA GCTAGTCTAA	6420
CTCGGACTAA CATGGTTTG GTAGGGACGG ATCCGGTTA TGGAACCATG TATAACCACA	6480
GCACAGGGCAA GCCAACTGTA ACTGTTCCCTG GGCAAAATGT AGCCCTCAAG TCTGGTACGG	6540

224

CTCAGATTGC	TGACGAGAAA	AATGGTGGTT	ATCTAGTCGG	GTTAACCGAC	TATATTTCT	6600
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTAT	CTTGTATGTG	ACGGTCCAAC	6660
AACCTGAACA	TTATTCAAGT	ATTCAGTTGG	GAGAATTG	CAATCCTATC	TTGGAGCGGG	6720
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCCTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	TTAAAAAAAT	TACATTAACT	TTAGGAGACT	7140
AATATGTTA	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAA	AGCTGGGACT	CCTACAATGG	GAGGTTGGT	TTCTTGTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCA	CAATAATGTG	7380
GGAATGATT	TGTTCATCTT	GGTCTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTCTAT	ATTTTCTTCG	CTCTTTCTG	GCTAGTCGGT	7620
TTTCAAAACG	CAGTAAACT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
ATTAGTTGT	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTC	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
ACTTCTGTTA	TGATGCAAGT	CAGTTATTT	AAACTGACAG	GTGGTAAACG	TATTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATT	TATATTGAT	GTAAGAATGG	CACCCCTGATG	TTTCAGGG		8148

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9909 base pairs
 - (B) TYPE: nucleic acid

225

(C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TACTCCACCC	TTAATATCCG	TTCCTGTAAA	TACTTTACCG	CTTTTAAGTT	CATAGAATTG	60
AACTTTAAA	TGCTTGTCTT	CAAGCATCTT	TTCCATCCAA	TTTTTAGGAG	TTTGACCAGC	120
TTTAAATAAA	AACCTTGCTG	GGGTGATTAG	TATAGATTTA	TCTGCGATTT	TATAAGCTTC	180
ATCAATAAAA	TAGTGATATA	TCGGCTCATC	TCTGGCTTCT	CCTGTTCCCT	GATACGGAGG	240
ATTTCCATTC	ACGACATCAA	ATTTCATTTC	ACTTTCCCTCG	CTAGATAGGC	GCTAAAACC	300
TATCATTCTA	TTCTTTTCC	AGTCCTTGAT	ATGGGTTTTA	GATTCTCTA	CTTCTTGGAC	360
TTCTAGCTCA	TCCGAAACA	AACTCAATTG	TTGAGATTGC	TTTGTTTAG	CTGAATAAGG	420
ACTACTTTT	TTCAATCCAT	CCATCTGAAA	GACATTGTA	GAGATAATAG	TCGCAATTTC	480
TTTCTTTTGC	TCTAATGTTG	GTTGATTTC	AGTCTTAGCT	AGATAATAGT	CCTCAAAAGT	540
TGCCAAAAGA	TTCTCACGCG	CCAAAAGGAG	AGAATCTCCT	TGATACTCAT	AACCATACGA	600
AGCATGATAA	GCATTTTA	CAAGTTTATA	AAATGTGACT	TCATCTGAAA	CCTCACGACT	660
AATCCGTTGC	AGTTTCTAT	CAACAAAACC	AACTCGCTCA	GATAATGGAA	TTTCCTCACC	720
AGTTACGGTA	TCATATCTCG	TTACCATATA	AGGTGCTTCA	CCACAAGTTA	CCTCTAACCA	780
TCGTAAGTCC	ACATACTCCT	CAAGACTTAA	CGAGCCTAAT	TTCGATTCTA	CATATCCATT	840
TTGCTTTGCG	ACCAACCACG	TTGGTGTAAA	CACTTCTGCC	CTTATTTTG	TCCGATCTTT	900
TTGTTCATAT	TTGGATTTTT	CAGATCTGGG	CTGAATCAAG	TTGGCAAAGT	TTCCAGTAAC	960
CTTACTTGGG	TTGATGCGAT	CACTTGGAGC	AAATCCCTTT	CCTAACATT	CATAAGAATG	1020
CGTAnGCCAA	ACAATTGATT	TCTTGTGCGT	TCGATCTTTT	AAAAGAATT	TTAATAAGTC	1080
AGCCGATTCT	TTAGCCAAAC	TTTCTTCACT	AAATATCTATT	GTCATCAGCA	ACCTCTCTTA	1140
TATTGTAAGC	CCTATTATAT	CATATTTAA	AGAATGAAAA	TTTACTTGAA	AAAAGTAATT	1200
CAATAAATAT	CTCTCCGATG	ACCAACTTCT	AGAGTAGCAA	CGACTAATTC	ATCATCTACA	1260
ATTTGTACGA	TAACCTCGATA	ATTACCAATT	CTATAGCGCC	ATTGACCAAC	GCGATTACCA	1320
ACCAAAAGCCT	TTCCGTGTCG	TCTTGGGTCT	TCCAAAACAT	TGGTTGTAA	ATAGTTGTA	1380
ATTAGCTTCT	GCGTATAACG	GTCCAATT	TTCAATTGCT	TGATAAAAACG	TCTTGTGGA	1440
ACTAATTAT	ACAAATTATT	CATCCTCAA	GCCTAAATCA	TGCATCATTT	CTTCCCAAGT	1500
AATGGGTTCA	ACTCCTTTT	CCAAGTCTTC	AAATACTCT	TGATAGGCTA	AATCTGCCAC	1560

226

ACGAGCATCG TATTCATCTT CTAGGGCTTC AAGAGTTTG GTGCGAATAA GTTCCGAAAG	1620
GGAAAACCTCCT TCAAACCTAG CCATTGCTTT CATAAAATGTT TTATCAGCTT CAGAAACTTT	1680
TAATGTAATA GTAGTCATCT TTTGTGCTCC CTTTTTTAAT GGTAACACCA TTGTATTACT	1740
TTTTAGGTGT TCAGTCATAA TAAAAAGAAC ACCTTCTCAG CGTTCTTCT ATATCTCTGT	1800
CAATGGTGTGTT GCGGTATCTG GTGAGGTATC ATAAACCTTA AAGTCTACTC CGACTCCCAG	1860
ATCAGCTTGA GCCAGCTGAT TGACCAGTGT CATATGAGCC AGTTCCCTGA TATTGTTTTC	1920
CTTAGATAAAA TGCCCAAGGT AAATCTTCTT AGTACGATTT CCTAGCGTCC GAATCATAGC	1980
TTCAGCACCG TCCTCGTTAG AAAGGTGACC AAGGTCAGAT AGGATTCGTT GTTGAGTCG	2040
CCAAGCGTAA GAACCTGATC GCATAATCTC TACATCATGG TTGGCCTCGA TAAGATAACC	2100
ATCCGCATTTC TCGACAATGC CCGCCATACG GTCACTGACA TAACCTGTAT CTGTCAAGAG	2160
GACAAAACCTC TTATCATCCT TCATAAAAGCG ATAGAACTGC GGTGCGACTG CATCATGGCT	2220
TACACCAAAA CTCTCGATGT CGATATCTCC AAAGGTTTG GTTTTACCCA TTTCAAAAT	2280
ATGCTTTGC GAAGAATCCA CCTGCCAAG ATATTTACTA TTTTCCATAG CTTGCCAGGT	2340
CTTTTCATTG GCATAAAAGAT CCATACCATA CTTGCGAGCC AAAACGCCTA CTCCATGGAT	2400
ATGATCTGAA TGCTCATGGG TAATCAAGAT GGCACTCCAGG TCTTCTGGCT TACGGTTAAT	2460
TTCAGCTAGC AGACTGGTAA TTTCTTGCC AGACAAGCCT GCATCTACTA AAAGCTTCTT	2520
TTTGAGGTT TCCAGATAAA AAGAATTTC ACTGGAACCC GACGCTAAA TACTGTATTT	2580
AAAGCCTATT TCACTCATTC TAGTCTTCTA CTTCATCCTC CCATACTTCT TCTTTCACTG	2640
CATCCTTATC ATAAGGGAGT ACAATGGTAA AGGTTGAACC CTTGCCGTAT TCACTCTTGG	2700
CCCCAAATAAA GCCCTTATGT TGTTGATAA TTTCTTAGC GATAGACAGT CCTAGACCTG	2760
TACCACCTTG TGACGACTT CTAGCACGAT CCACACGATA GAAACGGTCA AAGATACGTG	2820
GTAAAATCCTG CTTAGGAATC CCCAAACCGT GGTCAAGAAAT GGATAAAATC ATCTGGTCTT	2880
CAGTTGTCTT CATTCTGACA GTGATTTAC CCCCATCTGG CGAATACTTA ATAGCATTAT	2940
TTAAAATATT GTCGACAAAC TGCCTCATCT TATCTGTATC AATTTCATC CAGATAGAAT	3000
TGATGGGATA ATCTCTCACC AACTCATATT TTTCTCCTT TTCCTGTCTT TTCACTTTGT	3060
CAAAACGATT GAGGATAAAAG GTAATAAAAG CAGTGAAGTT AATCAGTTCC ACATCTAGGT	3120
GAATGGTAGC ATTATCAATA CGTGAAAGAT GGAGGAGATC CGTCACCATG CGCATCATAC	3180
GGTTGGTCTC ATCAAGAGAA ACCTTGATAA AGTCTGGTGC TACAGTTCA CACAAAGCCC	3240
CCTCATCCAA GGCTTCAAGA TAGGATTTA CGCTAGTCAG AGGAGTCCGT AACTCATGGC	3300
TAACATTGGA AACAAAGAGT CTTCGTTCGC GTTCTTCCTT CTCCTGCTCC GTCGTATCAT	3360

227

GCAAAACAGC CACCAAACCT GAAATAAAGC CAGACTCTCG ACGTATCAAG GCAAAGCGAA	3420
CTCGAAGGTT CAAATATTG CCGATTGATAT CTTGGGAATC TAGCAACAAT TCTGGACTTT	3480
GGGTAATCAA ATCACGCAAT TCATAGTTTT CTTCTATCTT GAGCAATTCC AAAATGCTTC	3540
TATTCAGAAC ATCTTCCTTA ACCAACCCCCA GTTGCTTCTT GGCTGTATCG TTAATCATGA	3600
TAATCTGACC CCGACGGTTA GTCGCAAGAA CCCCATCTGT CATATAAAAC AGAATACTAT	3660
TTAGCCTCTT ACTCTCTGT TCTAGATTTT CCTGAGTGAG ACGAATAACC TCCGACAAGT	3720
CATTCAAATT ATTGGTAATA TTGGTGATTT CAGACCCACC TTGCATATCA AGAACCTGG	3780
AATAATCTCC TGCAATCAA TCTTTAACCT TTTGATTGAC TTGCTTCAAC TGAATATTAT	3840
CACGTCTATT TTCCAGTAAT AAGAGGGTCA CAACAAGGAT GAAACCTAAC AAAATCAGGA	3900
TAAAGATAAA ATCTCTGGTA AAAATGGTTT GTTTCAGTAA ATCAAGCATT ATTTCTCATG	3960
TAATACCTCA CACCACGGCG CGTCAAGATA TACTCTGGTC GGCTGGCGT ATCTCAATC	4020
TTCTCACGCA GACGTCGTAC AGTCACATCA ACTGTACGGA CATCACCAAA ATAGTCATAA	4080
CCCCAGACAG TCTCAAGCAA GTGTTCGCGC GTGATGACTT GACCTGTATG CGATGCTAAA	4140
TGATACAAAA GCTCAAATTC ACGATGGTT AAGTCTAGTT CTTCGCCATA TTTTTTAGCC	4200
ACGTAGGCCTGCTGGGTT ACATAGTCAT CTGCCCCAAG TTCCAAACCG	4260
CTCTCCTGAC CATCTACTGG CATAGGTTGA GAACGACGCA GAAGAGCTTT AACACCCGCC	4320
TGCAACTCAC GATTGGAGAA GGGTTTTGTT ACATAGTCAT CTGCCCCAAG TTCCAAACCG	4380
ATAACCTTAT CAAATTCACT ATCTTTGGCT GAAAGCATAA GAATGGGCAC ACTGCTTGT	4440
TTACGAATGG TTCTAGCAAC TTCTAAACCA TCAATTCTG GAAGCATCAA ATCCAGAATA	4500
ATAATATCTG GTTGCTCTGC TTCAAATTGTC TCTAGCGCTT CACGACCATT AAAAGCAGTT	4560
ACAACCTCGT AACCTCCCTT GGTCAATTAA AACTTGATAA TATCCGAGAT TGGTTCTCA	4620
TCATCTACAA TTAGTATTTT TTTCATATGT TCACCTTTCTT CTCTACTATT ATACCAAAAA	4680
AATAGTCAGA AGACACAATA GCTAGTCTTG GCTACTGTCT AAGTTGGCTT GTGCATAAAC	4740
CTGCCAGATT TTTTGTGGG GTTGGCAAG TGGGTAATTG TTGAATTCTT CTGGTGAAG	4800
CCAGCGAACT TCCCTATCTG AAAAATCATG GAAGTCACTC ACCTGACCTG CTACAATCTG	4860
TACATGCCAT TTTCGATGAC TAAAAACATG CTGGACTGTA TCAAAACAAA CATCAAGCCA	4920
ATCAACATCT AGGTCATAGT CCTGCTGGAA ACTCTCTTCT GGACTGGAC CAAAGTTTCAC	4980
ACTTTCTTCC GCAACCTGAT GAAAGAGGTC AAACGTCTCT TCTTGCGAAA AGTTATCAAC	5040
TTCTATAAAG GGGAAATGCC AAAAACCTGC CAAGAGCTTT TCGCTTCAAG	5100

228

TAAAAATTGT	CCTTGAGAAT	TTTTCACAAC	TAAGGCTTTA	AGATAAAATAG	GAACCGGCTT	5160
TTTCTTAGGA	GATTTAATTG	GATAACGGTC	CATGGTTCCA	TTCTGATATG	CCGCACTAAA	5220
GTCCTTGACT	GGGCTTCCTT	CAGGTCTGGG	ATTTACAGGA	GACTCAATAT	CAGACCCTAA	5280
GTCCATCAAG	GCTTGATTAA	AATCACCCGG	ACGATCCGGA	TTAACAGAAG	TCTCCATCAT	5340
TGCCTGAAAA	ATTTTCGAT	TACTTGGAAAT	CCCAATATCG	TGGTTGACTT	CAAACAGACG	5400
CGCCAAGACC	CGCATGACAT	TACCATCTAC	AGCTGGCTCA	GGCAAGTTAA	AAGCAATACT	5460
GGAAATGGCT	CCTGCTGTGT	AAGGTCCAAT	CCCTTCAGG	CTGGAAATTC	CTTCATAGGT	5520
ATTTGGAAAT	TGGCCACCAA	AGTCAGTCAT	AATCTGCTGG	GCTGCAGCCT	GCATATTGCG	5580
AACTCGAGAA	TAATAGCCC	AGCCCTCCCA	AGCTTCAGT	AAACTCTCCT	CAGGCGCAGT	5640
TGCCAGACTT	TCGACAGTTG	GAAACCAGTC	CAAAATCTT	TCGTAGTAAG	GGATAACTGT	5700
ATCCACCCCTG	GTCTGCTGAA	GCATGATTTC	AGATACCCAG	ATGTGATAAG	GATTTTACT	5760
TCTCCTCCAA	GGCAAATCTC	TTTTGTTTC	ATCATACCAA	GCGAGAAGTT	TCTCACGGAA	5820
AGAAATGACT	TTCTCCTCCG	GCCACATGAC	GATACCGTAT	TCTTCAAAT	CTAACATATC	5880
TCTAGTATAA	CACAGAAGGT	TTCACCTGTC	TTTGTATCTG	ATTTATAATA	TTTTCAATAG	5940
ATAGTATATA	ACTTTCTAT	CTACTTATAC	TCAATGAAAA	TCAAAGAGCA	AACTAGGAAG	6000
CTAGCCGCAG	GTTGCTCAAA	ACACTGTTT	GAGGTTGTGG	ATAGAACTGA	CAGAGTCAGT	6060
ATCATATACT	ACGGCAAGGT	GAAGCTGACG	TAGTTGAAG	AGATTTCGA	AGAGTATAAA	6120
TCTTATTGAT	GAACTGCTTG	CAGTCTGAGA	AAAAATGAGC	TTGGATATTA	TTTCCAAACT	6180
CACTTAAAGT	CAATTCAAT	CCACTAGAAC	AAGCCTAGTA	CAGTTCCATC	GCTTCAACA	6240
TCCATGTTGA	GAGCTGCTGG	ACGTTTGGG	AGACCTGGCA	TGGTCATAAC	ATCACCCAGTT	6300
AAGGCAACGA	TGAAGCCTGC	ACCTAATTTT	GGTACCAATT	CACGAATGGT	AATTCAAAG	6360
TTTCTGGTG	CTCCAAGCGC	ATTGGATTG	TCTGAGAAC	TGTATTGAGT	TTTAGCCATA	6420
CAGATTGGCA	ATTTGTCCTA	ACCGTTTGA	ACGATTTGAG	CAATTGTTGT	TTGAGCTTTC	6480
TTCTCAAAGT	TCACTTTGCT	ACCACGATAG	ATTCAGTGA	CAATTGTTTC	AATCTTTCT	6540
TGGACAGAAA	GGTCATTATC	ATACAAACGT	TTATAGTTAG	CTGGATTTC	AGCAATTGTC	6600
TTAACAACTG	TTTCGGCAAG	TGCTACTCCA	CCTCTGCTC	CATCAGCCCA	GACACTAGCC	6660
AATTCAACTG	GTACATCGAT	TGAGGCACAG	AGTTCTTTA	AGGCTGCAAT	TTCAGCTTCT	6720
GTATCAGATA	CAAATTGCGTT	AATAGCTACA	ACTGCTGGAA	TACCGAACTT	ACGGATATT	6780
TCAACGTGGC	GTTTCAAGTT	AGCAAAACCT	GCACGAACTG	CCTCTACATT	TTCTTCAGTC	6840
AGAGCGTCTT	TAGCCACACC	ACCATTCAATC	TTAAGGGCAC	GAAGGGTTGC	GACAATAACA	6900

229

ACTGCATCTG GAGATGTTGG CAAGTTGGT GTCTGATAT CAAGGAATT CTCAGCACCA	6960
AGGTCCGCAC CAAAACCAGC TTCAGTAACA GTGTAATCAG CCAAGTGAAG GGCTGTTGTC	7020
GTCGCCAAAA CAGAGTTACA GCCATGAGCG ATATTGGCAA ATGGACCACC GTGTACAAAG	7080
GCAGGTGTAC CGTAAATTGT CTGAACCAAG TTTGGCTTAA TAGCATCCTT CAAAATCAAA	7140
GCCAAGGCAC CCTCAACCTG CAAATCACCT ACAGAAACAG GCGTACGGTC ATAGCGATAA	7200
CCAATAACGA TATTGCCAA ACGACGTTTC AAGTCCTCGA TGTCGTTGC CAAGCAAAGA	7260
ATTGCCATGA TTTCTGAAGC AACTGTAATA TCAAAACCAT CCTCACGTTGG AATACCGTTT	7320
AGAGGACAC CAAGACCAAC AGTCACATGG CGGAGCGTAC GGTCGTTCAA GTCCACAAACG	7380
CGTTTCCAGA GGATACGACG TTGATCAATT CCCAGCTCAT TCCCTGGTG CAAGTGGTTG	7440
TCAATCAAGG CAGAAAGGGC ATTGGTGGCA GTTGTAAATAG CATGCATATC TCCAGTAAAG	7500
TGGAGGTTGA TGTCTTCAT TGGCAGAACT TGTGCATACC CACCACCAAGC AGCACCAACCC	7560
TTGATCCCCA TGACTGGACC AAGAGACGGT TCGCGGATAG CAATCATGGT TTTCTGCCA	7620
ATCTTGTTCAGGACCAAGGTTGA AGGCACTCGC AAGACCAATG GTAAGCGTCG ACTTTCCCTTC ACCTGCAGGT	7680
GTTGGGTTGA TGGCAGTAAC CAAGATCAAT TTACCGACTG GATTGCTCTC AACTGCACGA	7740
ATTTTATCAA AGCTGAGTTT AGCCTGTAC TTTCCGTACA ACTCCAAATC GTCATAAGAA	7800
ATACCAAGTT TCTCTACAAAC ATCAACAATT GGCTTCAACT CAATACTCTG TGGGATTTC	7860
ATATCTGTTT TCATTCAAA TTCCCTAAAC CTCTTATATG ATAATTCTATT ATATCACAAA	7920
ACAAGATTTT TAACATCCTA AAACTCTCTA AACGTTCGTA AATATCTCTG TTTTTAAGAC	7980
TTTTAGAGTC CTTTCTTAAA TTTTATATGG CTTTATAGTT TGAAACTATA ATAAATCTTC	8040
GTTTTTACCA AAAATTATC ACTTTCATTT TACTTACCGC TTATTTTTGT GTACAATAGT	8100
GCTATGAAAA TTTTAGTTAC ATCGGGCGGT ACCAGTGAAG CTATCGATAG CGTCCGCTCT	8160
ATCACTAACCC ATTCTACAGG TCACTTGGGG AAAATTATCA CAGAGACTTT GCTTTCTGCA	8220
GGGTATGAAG TTTGTTTAAT TACGACAAAAA CGAGCTCTGA AGCCAGAGCC TCATCCTAAC	8280
CTAAGTATTC GAGAAATTAC CAATACCAAG GACCTCTAA TAGAAATGCA AGAACGTGTT	8340
CAGGATTATC AGGTCTTGAT CCACTCAATG GCTGTTCTG ACTACACTCC TGTTTATATG	8400
ACAGGGCTTG AGGAAGTTCA GGCTAGCTCC AATCTAAAG AATTTTTAAG CAAGCAAAT	8460
CATCAGGCCA AGATTTCTTC AACTGATGAG GTTCAGGTTT TGTTCCCTAA AAAGACACCC	8520
AAAATCATAT CCCTAGTCAA GGAATGGAAT CCTACTATTG ATCTGATTGG TTTCAAACGT	8580
CTGGTTGATG TTACCGAAGA TCATCTGGTT GACATTGCAC GAAAAAGTCT TATCAAGAAT	8640

230

CAAGCAGATT TAATCATCGC GAATGACCTG ACTCAAATT CAGCAGATCA GCACCGAGCT	8700
ATATTTGTTG AGAAAAATCA GCTTCAAACA GTCCAGACTA AAGAAGAAAT TGCAGAACTC	8760
CTCCTTGAAA AAATTCAAGC CTATCATTCT TAGAAAGGAA AACTATGGCA AACATTCTCT	8820
TGGCTGTAAC GGGTTCAATC GCCTCTTATA AGTCGGCAGA TTTAGTCAGT TCTCTAAAAA	8880
AACAAGGCCA TCAAGTCACT GTCTTAATGA CTCAGGCTGC TACAGAGTTT ATCCAACCTT	8940
TGACACTACA GGTACTCTCA CAGAACCTG TCCACTTGGA TGTCATGAAG GAACCCTATC	9000
CTGATCAGGT CAATCATATC GAACTTGGAA AAAAAGCAGA TTTATTTATC GTGGTACCTG	9060
CAAATGCTAA CACTATTGCA AAATCAGCTC ACGGATTGCG GGACACATG GTAACCAGTA	9120
CAGCTCTAGC CCTACCAACT CATATTCCCA AACTAATAGC TCCTGCTATG AATACAAAAA	9180
TGTATGACCA TCCAGTAACT CAGAATAATC TGAAAACATT AGAAACTACG GCTATCAGCT	9240
GATTGCTCCT AAGGAATCCC TACTAGCTTG TGGAGACCAC GGACGAGGAG CTTTAGCTGA	9300
CCTCACAAATT ATTTTAGAAA GAATAAAGGA AACTATCGAT GAAAAAACGC TCTAATATTG	9360
CACCCATTGCG TATCTTTTT GCTACCATGC TCGTGATACA CTTTCTGAGC TCACTTATCT	9420
TTAACCTTTT TCCATTCCA ATCAAACCGA CCATTGTTCA TATTCTGTGTC ATTATTGCCA	9480
GCATTATTTA TGGTCCACGA GTTGGGGTTA CACTTGGATT TTTGATGGGA TTACTTAGCT	9540
TGACGGTTAA CACGATTACG ATTCTACCGA CAAGCTACCT CTTCTCTCCC TTCGTACCAA	9600
ACGGAAACAT CTACTCAGCT ATCATTGCCA TCGTCCCACG TATTTTGATT GGTTAACTC	9660
CTTACTTAGT CTATAAACTG ATGAAAAACA AGACTGGTCT GATTTTAGCT GGAGCCCTTG	9720
GTTCcTTGAC AAATACTATC TTTGTCCTTG GAGGAATCTT CTTCTTATTT GGAAATGTTT	9780
ATAATGGAAA TATCCAACCTT CTTCTGGCAA CCGTTATCTC AACAAATTCA ATTGCTGAAT	9840
TGGTCATTTC TGCAATTCTA ACCCTAGCCA TTGTTCCACG ACTACAAACC TTGAAAAAAT	9900
AAAAACAGG	9909

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1126 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG	60
AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCTGTTT CTAGGTATTG ACGCCATTAA	120

231

TAAAGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
CTTTACAAAA	CAACTTCATA	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
TATTCTTTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGAAGATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCCAGG	360
TCACCCAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GATTTCAACT	GCTACTGGTT	TTGCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGAAGGTTAC	AATATCTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAAGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGTTCTTTAT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAAGTGTTCGT	GACCGTTACA	ATGCCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGACTTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GATTGAAGTG	AAGACGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACACGGCGCC	CCTCTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTACGAACCA	TTTGAAATTTC	CAGAACAAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCGTGGCGCA	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCCAGAACTG	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAG	TCGAAGTGAC	1080
TCCAGCAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTtCTCAA	GCAACT		1126

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2520 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CCGGCAACAA	AAAAGAAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GCTAAGCCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTG	120
GGCATATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTGCA	TATTGAAAAT	AATTATGAAC	180
CGCAATATAT	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AAAAAGCTAA	TAAAGTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTCTT	300
GGCATTGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

232

AAATCACCAA GGATGCAGTC AAAAATGCTT TAAAGAACCC TCGTAAGATC GATATGGACT	420
TGGTCGATGC CCAACAAGCT CGTCGGATCT TGGATCGCTT GGTAGGGTAT TCGATTCGC	480
CTATTTGTG GAAGAAGGTC AAGAAGGGCT TGTCAGCAGG TCGCGTTCA GTCATTGCC	540
TTAAACTCAT CATTGACCGT GAAAATGAAA TCAATGCCTT CCAGCCAGAA GAATACTGGA	600
CAGTTGATGC TGTCTTTAAA AAGGGAACCA ACAATTCA TGCTTCCTTC TATGGAGTAG	660
ATGGTAAAAAA GATGAAACTG ACCAGCAATA ACGAAGTCAA GGAAGTCTTG TCTCGTCTGA	720
CGAGTAAAGA CTTTCAGTA GATCAGGTGG ATAAGAAAGA GCGCAAGCGC AATGCTCCTT	780
TACCCCTATAC CACTTCATCT ATGCAGATGG ATGCTGCCAA TAAAATCAAT TTCCGTACTC	840
GAAAAACCAT GATGGTGCC CAACAGCTCT ATGAAGGAAT TAATATCGGT TCTGGTGTTC	900
AAGGTTTGAT TACCTATATG CGTACCGATT CGACTCGTAT CAGTCCTGTA GCGCAAAATG	960
AGGCGGCAAG CTTCATTACG GATCGTTTG GTAGCAAGTA TTCTAACGAC GGTAGCAAGG	1020
TCAAAAACGC ATCAGGTGCT CAGGATGCC CAGGATGCC ATGAGGCTAT TCGTCCGTCA AGTGTCTTTA	1080
ATACACCAGA AAGCATCGCT AAGTATCTGG ACAAGGATCA GCTTAAGCTA TATACCCCTA	1140
TCTGGAATCG TTTTGCGCT AGCCAGATGA CAGCGGCCGT TTTTGATACC ATGGCTGTTA	1200
AATTGTCTCA AAAAGGGGTT CAATTGCTG CCAATGGTAG TCAGGTTAAG TTTGATGGTT	1260
ATCTTGCCAT TTATAATGAT TCTGACAAGA ATAAGATGTT ACCGGACATG GTTGGTGGAG	1320
ATGTTGCTCAA ACAGGTCAAT AGCAAAACAG AGCAACATTT CACCCAACCG CCTGCCCGTT	1380
ATTCTGAAGC AACACTGATT AAAACCTTAG AGGAAAATGG GGTTGGACGT CCATCAACCT	1440
ACGCCAAC CATTGAAACC ATTCAAGAAC GTTATTATGT TCGCCTGGCA GCCAAACGTT	1500
TTGAACCGAC AGAGTTGGGA GAAATTGTCATAAGCTCAT CGTTGAATAT TTCCCAGATA	1560
TCGTAAACGT GACCTTCACA GCTGAAATGG AAGGTAAACT GGATGATGTC GAAGTTGGAA	1620
AAGAGCAGTG GCGACGGGTC ATTGATGCC TTTACAAACC ATTCTCTAAA GAAGTTGCCA	1680
AGGCTGAAGA AGAAATCGAA AAAATCCAGA TTAAGGATGA ACCAGCTGGA TTTGACTGTG	1740
AACTGTGTGG CAGTCCAATG GTCATTAAAC TTGGTCGTTT TGGTAAATTC TACGCTTGTA	1800
GCAATTCCC AGATTGCCGT CATAACCAAG CAATCGTGA AGAGATTGGT GTTGAGGTGTC	1860
CAAGCTGTCA TCAGGGACAA ATTATTGAGC GAAAAACCAA GCGTAATCGC CTATTCTATG	1920
GTTGCAATCG CTATCCAGAA TGTGAATTAA CCTCTGGGA CAAGCCTGTT GGTCGTGACT	1980
GTCCAAAATG TGGCAACTTC CTCATGGAGA AAAAAGTCCG TGGTGGTGGC AAGCAGGTTG	2040
TTTGTAGCAA AGGCGACTAC GAGGAAGAAA AGATGGCTCT TTGTCAACTG TAGTGGTTG	2100
AAGTCAGCTA AGCTCGAGAA AGGACAAATT TTGTCCTTTC TTTTTTGATA TTCAGAGCGA	2160

233

TAAAAAATCCG TTTTTGAAG TTTCAAAAGT TCCGAAAACC AAAGGCATTG CGCTTGATAA	2220
GTTTGATGAG ATTATTGGTC GCTTCCAATT TGGCGTTAGA ATAGTGTAGT TGAAGGGCGT	2280
TGACGATTTT CTCTTTGTC TTTAGAAAGG TTTTAAAGAC AGTCTGAAAA AGAGGATGAA	2340
CCTGCTTTAG ATTGTCTCA ATGAGTCCGA AAAATTCTC CGGTTCCCTA TTCTGAAAGT	2400
GAAACAGCAA GAGTTGATAG AGCTGATAGT GATGTTCAA GTCTTGTGAA TAGCTCAAAA	2460
GCTTGTAA AATCTCTTA TTGGTTAAAT GCATACGAAA AGTAGGGCGA TAAAAATGTT	2520

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10993 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACAC	60
GTTCATAGTA GTCATCCGGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC	120
CAGATTCAAG AATATCAGAC AAGACCGGTC TCTTGTCCCTG ACGTTGTTCT ACACCAACGAG	180
AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCCTT GGCTAGTATT TTCAACTGAC	240
GAGAAATTTC AGAAAATTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA	300
AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTCTTG AGCCAATTAA CGAGAACGAG	360
AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGcTA	420
GATTACCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA	480
TAGAATGTGA CTCCACTAAG CCTCTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC	540
CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACCTT AGTCCCAATG TTCTGAGCGA	600
TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT	660
CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA	720
TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC	780
GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTCTG	840
CCTGAGCAAT AATTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG	900
TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTCTGC AACAAATCTTA GCATAATACT	960
CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTAAC CAAGTAAGAC AAGCCACCAA	1020

234

TATTCTGTAA	ATCACCTGAA	TTATCAAGGA	TAGTACGAAC	CGTTGTTGCA	TCTATGGCAT	1080
CACCACGATC	GGATAAAATCG	ACCATGGCTT	GGAAAATCAA	ACGATGGGCA	TACTTAAAAA	1140
AGTCCCGAGA	CTCAATGTAT	TCTCGCACAA	AAACAAGTTT	ACTCTCATCA	ATAAAGATAG	1200
CCCCTAAAC	GGATTGCTCA	GCTAAGATAT	CTTGAGGTTG	TACTCGTAAC	TCTTCTACTT	1260
CTGCCATCAG	ACTTCCCTTC	CTTTACAAT	CTTGTCAAGA	AGGTGTAAAC	TTATCCTTCT	1320
TTCACACGAA	GATTGATTAC	ACTTGTGATA	TCTTGATAGA	TTTTCACTGG	CACATCAATC	1380
AAACCAACCG	CTCGAACCG	AGCTTGTACT	TGAATATGAC	GTTTATCAAT	CTTAATTCCA	1440
AATTGCTTT	GCAATTCTTC	TGCAATCTTC	TTATTGGTAA	TAGAACCAAA	GGTACGACCA	1500
TCTGGACCAA	CTTTTCAAC	AAATTCTACA	ACAGTTTCTT	CTGCTTCAAG	TTGTGCTTTA	1560
ATTGCTTTTC	CTTCTGCAAT	CATCTCAGCG	TGAGCTTTTT	CTTCCGATTT	TTGTTTACCA	1620
CGAAGTTCAC	CTACAGCTTG	AGCAGTCGCT	TCTTGGCTA	GATTCTTTT	GATAAGAAAG	1680
TTTGCGCAT	ACCCGTGTTG	TACTTCCTTA	ATTCGCCTT	TTTTACCTTT	TCCTTTAACAA	1740
TCTGCTAAAA	AGATTACTTT	CATTCTTCTT	TCTCCTTTTC	CTTCATTTC	TTTAATACAA	1800
TTTCTGTCAG	TTTTTCACCT	GCTTCTGACA	AGGTTACATC	TTTAATTGAA	GCTGCTGCCA	1860
AATTAAAGTG	GCCTCCACCG	CCTAACTCTT	CCATAATCCG	TTGTACATTC	AGTTTACTAC	1920
GACTTCGAGC	TGAGATAGAG	ATAAACCTT	GTGTATTCTT	CGCAAGAACAA	AAACTCGCTT	1980
CAATACCTGA	CATGGCTAAC	ATGGCATCTG	CTGCCTTACT	AATAACAAC	GTATCATAGC	2040
ATTCATGTC	CTTAGCCTCT	GCTATTAGTA	CATCTGAACC	TAATTACCG	CCCTGTAAAAA	2100
TAAGTTCAT	GACCTCACGA	TATTCTCAA	AACTGTCGC	AGCGATTCCC	TGGATAGCAA	2160
TACTATCACT	TCCGCGCGTT	CTGAGATAGC	TAGCAACATC	AAATGTCCGA	CTAGTTACTC	2220
GCGAGGGTGA	ATTTTTAGTA	TCCAACATCA	TACCAGCCAT	CAAGACACTT	GCTTGCATAC	2280
GACTCAAACG	ATTTTCTTA	GAATTCTGGA	ACTGAATCAA	TTCCGTTACC	AACTCACTGG	2340
CACTACTTGC	ACCACTTCG	ATATAAGTAA	TAACCGCATT	ATCTGGAAA	TCCTGATCCC	2400
TTCTATGGTG	GTCAATAACA	ATGGTTGGG	TAATAAAATC	ATAAAATTCT	TTTGATAATG	2460
TTAAGGCTGT	CTTTGAATGG	TCTACAAGAA	TCAACAAAGA	ACGATTGGTC	ACCATCCCCA	2520
TTGCATCCTT	AACAGACAAC	AACTCGTAA	CTCCTTCTTT	TTCTATGAAT	GAAACAGCTC	2580
GTTCAATATC	TGGAGACATT	TGTTCTTCAT	CATAAAAGAGC	ATAGCTATT	TCAATCACAT	2640
TGCTGGCGAA	CAACTGCATA	CCTACAGCAG	AGCCCAAAGC	ATCCATGTCT	AAATTTTGT	2700
GACCGACTAC	AAAAACCTGA	TCTACACTCC	GAATCTTATC	TGAAATAGCT	GTCATCATAG	2760
CGCGCGTACG	AGTCCGTGTA	CGCTTGATTG	AAGCAGCAGA	CCCACCAACCA	AAATAAACTG	2820

235

GATTTTCGGT TTCGTCGTT TCCTTAACAA CCACCTGGTC GCCACCACGT ACTTCAGCCA	2880
AGTTCAAATT GAGCAAAGCA ACTTTCCCTA TCTCATCATG ATTTCCATCG CCATAAGAAA	2940
ATCCCATACT TAAGGTCAAG GGCAACTGTC TCTGTTTCGA CTCTCTCTG AAAGCATCAA	3000
TAACAGAAAA TTTATCATTTC ATCAAGCCCT CAAGCACCGT GTAGTCAGTA AATAGATAAA	3060
ATCGATCCAT ACTTACCGA CGAGAAAACA TCATGTGTTT TTCTGAAAAC TCTGATATAA	3120
AATTAGCTAC AAAACTATTG ATTTGACTAA TATCTGACTC AGAAGTTCA TCCTCCAAAT	3180
CATCATAATT ATCCACAGAG ACAATCCCAA TCACTGGTCT ACTTGTTACC AATTCATCTG	3240
TTATGGCTTG TTCCCTGGAT ACATCTACAA AATACAAAAC ACCGGAAGAA GCATCCATAT	3300
GAACAGCATA ACGCTTCTCA CCAAGCTTGG CATAAGTAGA CGGATTTCT ACTGAAGCCT	3360
TGATAATCGT TTGAACAGCT TCTAAATCAA AATCACCATC TTCTGGTC AAAATCAATT	3420
CAGCATAGGG ATTAAACCCAC TCAACCTCTC CAGAAGATAA ATTCAATTTC ATAACACCTA	3480
CAGGCATCTG TTCCAATAGA GCTGTCAAAC TTTCTTCCGC TTGGTGGTTT ACATACTGTA	3540
TCTGTTCTAC ATCACTCCTT GTATAATGCA CTCTCAGTTT CTTAAATAAA AAAACATAGC	3600
CTCCTACAAA AAGAAACAAA ATTAAAACCG TCAACAGATT ATTATTAACA AAAATAATGA	3660
AAGTGGATAA GACTCCAAAC GCAATCAATC CTACTAGAAT AGGAAAATT GGACTTACAT	3720
AAAATTTTTT CATTCAAAAC CTCTTGGCAC CCATTATAACC ATAATACCCC TCAAAAAGCG	3780
ACTTTTTAAA AGTGTAAATCA GTAATTCTAT CAATTATAAG AAAAAGGTAG TTTACAATT	3840
AGTAAACCTA CCTTTACACA TATTGAAATT AAGATTCTTT AACCTCTAAC AAACCAATT	3900
CGCCATCCTC ACGACGATAA ATCACATTGG TTGTCTGATC TTCAACATCC ACATAGATAA	3960
AGAAATCATG CCCCAATAAA TCCATTTGTA GAATTGCTTC TTCCAAATCC ATTGGTTTTA	4020
AATCAATTG TTTTGAACGA ACAACTTAG ACTGGACAAT ATTTGAATCT TCCACCAAAG	4080
CATCTGTAAA TAATTGACCA GTTGCTACCT TATTTTTATT TTTACGCTCG ATTTTGTTT	4140
TATTTTTACG AATCTGACGT TCAATTATAT CAGTTACAAG GTCAATTGAA CCATACATAT	4200
CTTGAGATAC ATCTTCTGCG CGGAGAGTAA TAGATCCAAG CGGAATCGTT ACTTCCACTT	4260
TAGCCGTTT TTCACGATAA ACTTTTAAGT TAATTGGGC ATCCAACCTCT TGTTCTGGTT	4320
GGAAGTACTT TTGATCTTT TCGAGTTTAG AAACTACATA ATCACGAATT GCTTCTGTTA	4380
CTTCTAGGTT TTCACCAACGG ATACTATATT TAATCATATG AGTACCTTCT TTCTAACAT	4440
TTTTGTTTTT ATGATTATAT TATAACGCTT TCATTCTATT TTTGCAAATT TTTCTCAT	4500
CTTACAAGGG AAAATGTTT TACATCCTTA GCACCAGCTT CTTCCAACAG TTTCTTAACA	4560

236

CGATTTATAG TTGCTCCTGT AGTATAGATA TCATCTATAA GTAGGATTT TTTAGGAATA	4620
GTGACTCCAC TTTAAATAAA GAAAGGAAGT TCTGCCCCA AGCGCTCTGA ACGATTTTA	4680
GAAGAACTGG CTCTCTCTTC TCTTTCTCT AATAAATCCA GATACTCAA GCCTGCTGCC	4740
TCTACCAAGC CCTCAACCTG ATTAATCCT CTATTAGCAT ATCTATCAGG ACTTAGGGGA	4800
ATTACAACAA ATTGATACTC TTTGTACTT TTCAACTCCT CACTTAAAAA TGAAGCGAAA	4860
ACTTTCTTA ACAGGAAGTC TCCATCAAAC TTATACCGAC TGAAAAAATC CTTCATAGCT	4920
TGATTGTAAG TAAAAATCGC TCTATGACTG ACTTCAACTC CCTCTTTACA CCAAAGTTGA	4980
CAATCTTGAC ACTTTGTTGA CAACTCTGTT TTCATACAAT TTGGACAGTT CTCTTCCCCA	5040
ATTCTTTCAA AAGTAGAACATC ACAGTCTGAA CAAAGACAAG AGTCATCATT CCTCAGAAGT	5100
AAGAGACTAC TAAAAGTTAA AACAGTCTTC ATAGTCTGCC CACATAACAA GCACTTCATA	5160
GACCAGCCTC CTTATTTCATC ATCTGAATT CTTAATCGC CTTCTTGATT GAAGCATTAA	5220
ACCCATCATG GAAGAAAAGC AAATCTCCTG TCGGTCTATC CATGCTTCGT CCAACTCGTC	5280
CACCAATCTG AATCAAAC TA GACTGGTAA ACAAACGATG ATTGGCCTCT ACTACGAAAA	5340
CATCCACACA AGGGAGGTA ACTCCCGCCT CCAAGATTGT CGTACTGATA AGTATGTCA	5400
GTTCTCCATC TCGAAAAGCT TGTACTTGCT CTAATCGATC CTCTGTTACA GAAGATACAA	5460
AGCCAATTCTT CTCATTTGGA AATTGCTCCT GTAAGATTTC TGCTAACTGC TCCCCTTCT	5520
TAATTCTGA AGCAAAATG AGTAACGGAT AAGCTGTCTT TCTCTGCTTC TCAATATAGG	5580
ACTTTAACTT TGGTGACAAA CGATTCTTGT CTAAGTAGCG ATTAAAATCC GATAACCAAA	5640
TTGGTTTTGG AATAATCAAC GGATTCCAT GAAACCGTCT CGGTAAATTG AGTCTTTTA	5700
GTTCTCCTAA ACGGACCTTT TTATCTAACT CATTGGTCGA AGTCGCTGTT AAAAGATTC	5760
TCAATCCATT CTCCTTACA CTATTCTGA CAGCGTGGTA AAGCATGGGA TTATCACAT	5820
AAGGAAAAGC ATCTACTTCA TCCACTATCA GCAAATCAAAGCTGATAAA AACTTCAATA	5880
ACTGATGGGT TGTTGCAACA ACTAGTGGTG TTCGAAAATA AGGTTCCGAT TCTCCATGTA	5940
GCAAAGCTAT CCCGCAAGAA AAATCCTGTT GCAGGCGCTT GTACAGCTCC AAACAAACAT	6000
CTATGCGAGG ACTAGCCAAA CACACTGCAC CACCCGCATT GATCACTTTA GCCACTACTT	6060
GATAAAATCAT TTCTGTCTTT CCAGCTCCTG TTACCGCATG AACTAAGGTT GGCTTTGCT	6120
TGTCTACTAC TTGAAGCAAT CCCTCTGACA CCTTCTCTTG AAAAGGAGTT AATTGGCCGC	6180
GCCATTTGAG AACATCTTGC TTTGGAAAAT CCTCCTGCGG AAAATAGTAT AAAGTTTGAT	6240
CACTTCTGAC TCGCTTCATC AGCAAGCACT CTCGACAATA GTAAGCACCG ATGGGCAAAT	6300
ACCATTCTTC TAGAATAGTA CTATTACAGC GTTGACAGAA AAGTTCCCG TTTCTCCTTC	6360

237

TCATTGCTGG AAGTTCTCC GCCAACTGAC GTTCTTCTTC TGTTAATTCA TTCTCAGTAA	6420
ATAAACGACC GAGATAATCT AAATTTACTT TCATACTTCT TTATTCGTAA AAACTAGCAC	6480
TTTAGATGAT TTTTAGTAC AATTAATCA TGGAATTAG GACAATTAAA GAGGACGGTC	6540
AAGTCCAAGA AGAAATCAA AAATCTCGCT TTATCTGCCA TGCCAAGCGT GTTTATAGCG	6600
AAGAAGAGGC TCGTGACTTC ATTACTGCCA TCAAAAAAGA ACACATACAAA GCGACACATA	6660
ACTGCTCTGC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAGT GATGATGGTG	6720
AGCCTAGTGG TACTGCTGGT GTTCCCAGTC TTGGGGTACT AGAAAATCAC AATCTCACCA	6780
ATGTCTGTGT GGCGTGACA CGCTACTTTG GTGGTATTAA ACTAGGCCT GGAGGACTAA	6840
TTCGTGCTTA CGCCGGCAGT GTCGCCCTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA	6900
AAGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAAC	6960
TCCTTAAAGA ACATGGCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA	7020
TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTA	7080
ATGGAAAAGT CACTTTAAGT GACCAAGGTT TACGAGAGGT TGAAGTTCCCT GTAAACTTAG	7140
TGTAAACAAT GAATAATACA GCGTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAA	7200
ATAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT	7260
CGTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTATGA	7320
CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA	7380
AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AACACCCGAT	7440
TGTTAAACTT ACAACACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC	7500
ATTTAATCCT GGTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAGCTGA	7560
ACAAGATGGT ATTCTGAAAC CTGGTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG	7620
TATTGGACTT TCATGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA	7680
AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGCCTAAC	7740
TCCTGGTAGC GAGGGAATGA AAGGTCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG	7800
TGATGGTTTC CTTCCCTTTC AATTGACAA TCCAGCTAAT CCAGAAAGTAC ACGAAAGAAC	7860
AACAGGAGCT GAGATACTAG CTGCTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG	7920
AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA	7980
CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG	8040
TCCTCACAAA ATTCAAGGTA TCTCAGCTGG ATTTATTCCCT GATACACTTG ATACTAAAGC	8100

238

CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG	8160
TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA	8220
GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAAG ATAACGGTGA	8280
ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA	8340
AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTCTT ATTGCACCTT	8400
TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCCTCTAAA ACCTCTTGT TTACGAGAGT	8460
TTCCACGTTT GGAAGACATT CTAGAAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA	8520
TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTGTTTC	8580
TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC	8640
CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG	8700
TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCTTA	8760
CGTGTGATTG GTAAACCCAT CCTAGCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC	8820
AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT	8880
AAAGGGGCTT TAGGAATAGG AGCTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT	8940
TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT	9000
TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT	9060
TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT	9120
GGAGAAGGAG GTGATAAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTGAAAAA	9180
CAGATGAGTA TAAAAAGAAA GTCCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATT	9240
ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTAGAAGCA	9300
GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT	9360
CAGCCAATCT ACTTGTTCA G TGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAAGT	9420
CAGTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAC CCCAGTAAAG	9480
AACTTTAAAG CGGTCTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC	9540
CAATTCAAAG TGGGTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT	9600
CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA	9660
CCTTCCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT	9720
ACCTTGTTAT GACCGCGCTTA CTATGAATT GAAGTATAGT CTCCTAAATG CACTTAGCCC	9780
TTATTATAGG GCTTTTGTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAAATT	9840
TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG	9900

239

TTATTCAAGG CTGCTGCCAT TGTAGCTGCA ACTTCAGCTT CGAAGTCGTT TGCAGCTTTC	9960
TCGATACCTT CACCAACTTC AAAGCGAGCA AACTCAACTA CCGAAGCGTT AACTGATTCA	10020
AGGTATGCTT CAACTGTCTT GCTGTCATCC ATGATGTAAA CTTGTGCAAG AAGTGTGTAA	10080
GCTTGGTCAA CTTTAGTGT TTCAAGCATG AAGCGATCCA TTTTACCTGG AATAATTTG	10140
TCCCAGATT TTCTGGTTT GCCTCTGCA GCCAATTCAAG CTTTGATGTC AGCTTCAGCT	10200
TGAGCAATAA CATCATCAGT TAATTGAGCT TTGATCCAT ACTTCAAGTG TGGAAGAGCT	10260
GGTTTATTAA CCATTGCACG GCTTCGTTG TCTTGGTCGA TAACGTGATT CAATTGTGCC	10320
AACTCATCTT TAACGAATTG CTCATCCAAT TCTTGTAAG AAAGAACTGT TGGTTTCATC	10380
GCTGCGATGT GCATTGACAA TTGTTTAGCA AGTGCTTCGT CTCCACCTTC AACAACTGAA	10440
ATAAACACCGA TACGTCCACC GTTATGTTGG TATGCTCAAAG AGTGTGTCG GTCTGTTTT	10500
TCAATCAATG CAAAGCGACG GAATGAGATT TTCTCTCCGA TAGTTGCTGT TGCAGATACTG	10560
TATGCAGCTT CAAGAGTTTC ACCTGAAGGC ATTATCAAAG CAAGAGCTTC TTCGTTGTTA	10620
GCAGGTTTTC CTTCAGCAAT GACTTTAGCT GTAGTATTAA CCAATTCAAC GAATTGAGCG	10680
TTTTTGCAA CGAAGTCAGT TTCAGCGTTT ACTTCAATAA CTGCTGCAAC ATTACCGTTA	10740
ACATAAACAC CAGTCAAACCT TTCTGCAGCA ACACGGTCAG CTTTCTTAGC TGCCTTAGCC	10800
ATACCTTTTT CACGAAGCAA TTCATCGCT TTTTCGATGT CACCGTCTGT TTCTACAAGC	10860
GCTTTTTAG CGTCCATAAAC ACCGGCACCA GATTTTCAC GCAAATCTTT TACAAGTTA	10920
GCTGTAATTCTGCCATTAAATTCTCCTA TATTTTTGAA AAATAGGAGA GCGCGGCTAA	10980
GCCCCGCCTCG	10993

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8411 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG GTTTGGCACC TCGATGTCGG CTCGTCGCAT CCTGGGGCTG TAGTCGGTCC	60
CAAGGGTTGG GCTGTCGCC CATTAAAGCG GCACGCGAGC TGGGTTCAGA ACGTCGTGAG	120
ACAGTTCGGT CCCTATCCGT CGCGGGCGTA GGAAATTGAGA GAGGATCTGC TCCTAGTACG	180
AGAGGACCAG AGTGGACTTA CCGCTGGTGT ACCAGTTGTC TTGCCAAAGG CATCGCTGGG	240

240						
TAGCTATGTA	GGGAAGGGAT	AAACGCTGAA	AGCATCTAAG	TGTGAAACCC	ACCTCAAGAT	300
GAGATTCCC	ATGATTATAT	ATCAGTAAGA	GCCCTGAGAG	ATGATCAGGT	AGATAGGTTA	360
GAAGTGGAAAG	TGTGGCGACA	CATGTAGCGG	ACTAATACTA	ATAGCTCGAG	GACTTATCCA	420
AAGTAACTGA	GAATATGAAA	GCGAACGGTT	TTCTTAAATT	GAATAGATAT	TCAATTGTA	480
GTAGGTATTA	CTCAGAGTTA	AGTGACGATA	GCCTAGGAGA	TACACCTGTA	CCCATGCCGA	540
ACACAGAAGT	TAAGCCCTAG	AACGCCGGAA	GTAGTTGGGG	GTTGCCCCCT	GTGAGATAGG	600
GAAGTCGCTT	ACCTTTAAC	CGCCATAGCT	CAGTTGGTAG	TAGCGCATGA	CTGTTAAC	660
TGATGTCGTA	GGTCGAGTC	CTACTGGCGG	AGTAATTGAT	AAAAGGGaAC	ACAGCTGTGT	720
TCCTCTTTTT	GTATCAATT	GTATCACCAA	GCATTTCAT	AAGGAAGTCT	GTTATTCTT	780
GAGAACTTTC	TTTTTTCCA	TGTGCAATCC	AAGTTTGGCA	GACACCAAAA	AGTCATGAG	840
TTAGATAGAT	GCTACTATAT	TCTAAC	TGGTATTAG	ATTCA	ATAAATCGCT	900
TTTGTAATC	TGTACTAAC	ATGATATGAA	GTTTATTTCG	TAAGAAATT	TGGATTCTT	960
TAGTCCCATT	TTCAGAAAGA	AGGGCAGCCA	GAAGTGGTTC	TGACTCTAGA	TATTCAAAAA	1020
CTTCTAAAT	AGCGTCTTT	TTGTGATGAG	CATGTTTG	AAAAATATAT	TCAAATGTAT	1080
GGAATAGCTT	GCTTTGATAG	TGCTCAATCA	TATCATACTT	ATCCTTATAG	TGAGTATAGA	1140
AGCTGGAACG	ACTAATTCCG	GCTTTTCTA	CTAATTGAC	AGTAGAAATT	TTATCAAATG	1200
GCTGTTCCAT	CAGTAATTGT	ACCATAGCAT	TTCAATAGT	TCGCTTGTT	TTAAGCGTT	1260
TGTTACTTTC	TTGCATATTT	CCTCCTTGTA	ACAAATTAG	ACTATATGTC	AAAAATAGA	1320
TTTTTTATCT	TGTAATTAG	ATTTTTAAT	GTATAATCTA	TTATATCAA	ATTTAGACA	1380
ATATGTTAA	AAAAGGAGAA	ACTAAGTTA	AAGAATGGAA	AGCAATTAA	AAAAACCAA	1440
CCTTTATTAT	TGTCATGATC	GGGATTCTC	TTATTCCAGA	TCTGTACAAT	ATCATATT	1500
TGTCATCAAT	GTGGGATCCA	TATGGCAAT	TGTCGACTT	ACCTGTGGCA	GTTGAAATA	1560
ATGATAAAGA	GGCTTCCTAT	AATGGTAATA	CTATGGCAAT	AGGAAAAGAC	ATGGTGTCCA	1620
ATTTAAAAGA	AAATAAAACC	TTGGATTTC	ATTTGTAGA	TGAAGAGGAA	GGAAAGAAGG	1680
GATTGGAAGA	TGGCGATTAC	TATATGGTAG	TGACTTTACC	AAAGTGGATTA	TCTGAAAAAA	1740
CAACTACATT	ATCCAATATT	CAATCGACAG	CAGCTTATCA	ATCATTGACA	AGTGAGCAAC	1800
AAACTGAGAT	AAGTGATTCT	GTATCTCAA	ATTCAACTGA	TAGTATTCAA	TCGGCTCAGT	1860
CAATTGTAGC	TTTAGTACAA	GATTACAGG	GAAGTTAGA	AAACTTACAA	AATCAATCTT	1920
CTAATCTTC	GACTTTAAA	AATCAATCTA	ATCAAGTATC	ACCTATTACT	TCTACTCTT	1980
TGATAGGATT	GTCAAGTGG	TTAACAGAGA	TACAAGGAGA	TGTTACTAGC	AAATTAGTTC	2040

241

CTGCCAGTCA	GTCGATTGCA	TCAGGTGTA	ACGCATATA	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGCGC	AAGTCAACTA	AGTGAAAAAA	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
TAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
AATTACAATC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTAGA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAGTT	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTTGTCAAA	TCCACTCAAT	CTTTCAAAA	CAGACAATGA	TCAAGTTCT	GTAAATGGAA	2520
TCGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	CAACAAATAT	2580
GATATTGCGG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TTGAGCTGAA	ATAAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTGGTAT	ATGGAGGAGT	2700
TCAGCTTATT	GGTTAACGTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	2760
AAGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTCTCA	CTTATTTGCA	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	2880
TGCTTGACA	AATGATTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCTAGT	2940
TTCGGGATT	CGACAAACAA	TCTCTATCAA	CAAGTCATT	TCCTAGCTGT	CATACTAGTT	3000
CTATTTACTA	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
AATCGACCGA	TTAACTGGTC	GATTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
ATTCCAATA	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3180
ATGAAGGAAA	GTGTAATAGT	TCCTTCCCC	TTGGGAATGT	CAACTTCAT	AAATCCAGTT	3240
TGAGCTTGT	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCTAA	3300
GGAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAA	AACCTTGT	3360
TTAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTT	GAATTGCCTC	GGTGAAGTT	3420
TTGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
CTAACATTGA	TATTGAAAGT	TTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
ACATTATCAG	TTGTAAAAGT	CTTTTTTCA	CCATTACAA	GGATGTCAAC	CTTCTTTGT	3600
TTATCGTTAG	AAAAGTGAAG	GTTCATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAAC	3660
TCAATTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
TTAGTATTTT	CTATTTTTC	TGTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAATTG	3780

242

ACGTTAGCAA	GTTGATTAA	AAATGAGGCC	TGATTATCCA	AGGTATGTC	ATTGAAC	TG	3840
ACATCATTGT	AAACAGATTG	ACTCGCACT	GCAATCGGAA	GAGAGTATTG	ATTTTCATAT		3900
AGGGTAAGAT	TATCTTTTG	ATAGATATCT	TTAAAGCCAT	ACTTATCAAT	AGGACTGTCT		3960
GAGATATTGT	ACTGGATACC	AAATAAACTA	TCAGCCAAA	TACTATTATT	TGCATATCGG		4020
AGATTGAGAT	TAGTCCCAGA	GGATTTAAAA	CCAAGTTTAT	CTAAAGTAGA	GCTTGATGAA		4080
CGATTCGAA	CAGATGAAAA	TTGAGAGATT	CCATTGTAGT	TGAATTCAT	ACTGTCATTT		4140
CCTGTCTGAG	TTTGTAGTTT	TTCAGTACGA	GTAAATTGAT	TTCCAATATA	TGTTGAGAAA		4200
GATTCCATAG	CTGGGATATC	TCGACTATAA	GCACHTCGAG	AAGCAAATCC	CCATTCCCTA		4260
GCAATTCCGT	CCATTGAGA	TGAAGCATTT	AAACTCATT	CAACCACTAT	AAATAAAGAG		4320
ATTAGAATGG	CAAATAGATT	CACAGATATA	AACTTTTGA	TAACTGCAAG	GAGTAAAAGA		4380
GAATAGACAA	CCAAAATTC	AAGAGTAAGC	AGAATATTCA	AATCTGTTAA	AAAAGAATAA		4440
TGCGATTTA	GATAGATGGT	AGCTAAAAT	CCTGCTACTA	CAAGAAAAAG	CGAAACTAAA		4500
AAATTCCAGA	CTTTAAGTTC	TTTCAGACGC	TTAACAGACTT	CTGCTGCTGT	GTAAATTAAAC		4560
AAGGTAGAGA	AAATCCAAGC	ATAGCGATGT	AAAAACATGT	TTGGAGTATG	CATGCCPTGC		4620
CAAATAAGT	CAAGAGCTTC	TATGTAAAAG	CTTGCAATT	GAAATGCAA	GAATATTACA		4680
TATATGAGTT	TCACGTGAAA	CTTAATAGAT	TTCAGCGTAA	AAAATAAAAT	GGTCAAAATA		4740
AAGGGAAATA	GTCCAACAAA	AATCATTGGG	ATGGCCCCAT	ACTTTGTTGT	GTCAAAGGAA		4800
CCAATGAATT	GCTTAGCAAA	GAGATCAAGA	TACCAAGCTAC	TTTCAGTTG	AAACTTTGTA		4860
ACTTCAGTCA	ATTTTCCCC	ATGTGCTGT	AAATCAAATA	GAGTGGGAAG	AGTCATAATC		4920
AAACTAGCCA	TACCAGCTAA	AAAGGAGATA	ACTATGAAAT	CAAGAACAGA	TGATTTCGA		4980
GTCTTAAAGT	CCCACGAAAT	TTGACAGAGA	TACCAAGAAA	TAAGAAACAA	TACTGTCATA		5040
TATCCAAAAT	AATAATTTCG	AATAAAATAAG	ATTGACAGAC	TTGTAAAGTA	CAATAGGAGT		5100
TTCTTTTCAG	TTATCAGTAG	ATGTAAACCA	GTATATAATT	AAGGAATCAA	GATAAAAACA		5160
TCTAGCCAGG	TTTTTATCTC	TAATTGACTG	ACAGTGAAAC	TCATCAGAGC	ATAGGAAGTA		5220
GATAAGGCTA	GTTTTAAAT	CTGAGGGATA	GATTGAAACA	ATTTATTCAA	ACTAAAAAAG		5280
GTTGACAGAC	CAATCAATCC	AAATTAAAG	AGAGTTGTCA	GATAGATAGC	ATCTGGCATA		5340
TTCGTTAGAT	CAAAAAAGTA	AACCAGAGGC	GCGAGAAAAC	TACCCAAGTA	ATAACTAGAT		5400
AGGGCATAGA	AGTTTAGCCC	TAGACCACTT	GTAAAGGTGT	AAAACAGATT	ACTATTCCA		5460
TGTAGGATAT	TTCGTAAGGC	TACATCAAAA	ATAACGTATT	GATGAAAGCC	ATCTCCTAAT		5520
AGAGGAGAGT	TGTCGCTATT	CCAGTAGATA	CTTTGAGATA	GATATACTCC	AGACATAATC		5580

243

ACTACAGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	TTTTTAAAAA	TGATTTCATG	5640
TTACCTCGTA	GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTAT	5700
TTAGTCTTTC	CAAAGTTCTT	TAACCTTTGC	TTGTACTTCT	GCATTTCTA	GGAATTCACTC	5760
GTAGGTTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAGTTGA	ATAAATTTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTT	5880
CAATCCATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTGTTG	GATCATCAAG	5940
TACAAGGACA	TTTGATTTA	AGAGCATGAG	TTTGAAAGC	ATGACACGAA	CTTTTCTCC	6000
CCCTGACAAG	ACATTACAG	GTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
GAAGCCACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCAGATTGAC	GCAACCAGTC	6120
AAGAATTGAT	TCTCCTCCTG	CAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
AGTTGTAAC	CCCCACTTGA	CAGTTCTTC	ATAGTCATA	TCTCCATGA	TTGCACGAAT	6240
TAATGCCAGTC	TTTGAAATAT	CATTTGTCC	AAATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
GATGAAACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTCTAC	6360
TGTCAAGAGA	TCATTACCAA	TCTCACGTT	CGCTTTAAAG	TTGATAAAATG	GATATTACG	6420
ACTAGATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
CTGCCTTGAC	TTAGAACAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTAAT	6540
TTTTTCTTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTAA	GCAGCAAGCT	CAGAAGATT	6600
CTTCCAGAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTT	CCAAAGTCAA	GGTCGGCCAT	6660
GTGAGTACAA	ACTTTGTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAAGTCAATC	AAGAAGTCTT	CTAACCAAGT	AATCGATTGG	ATATCCAAC	CGTTAGTAGG	6780
CTCGTCCAAG	AGAAGAACAT	CTGGTTTAC	AAAAAGTGT	TTGGCGAGGA	GAACCTTAC	6840
TTTTTCACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTCTG	GAATGTTAG	6900
GTTTTGAAGT	AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAAC	6960
TCCCTCGAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCC	TCATGTAGAT	7020
AGCATCTTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCAGATAA	CGACATCAAT	7080
GGCACGTTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
ACCAAGAGAG	ATGTGACCAAG	TAGTAGGTT	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
TGATTTCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTCTG	TAAATTGAT	7260
ATTGACATCA	TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

244

CAATGTTTT CTCCTATATG TGTAATATAT TTATTCTACT AGAAAATACA GAAATATTCA	7380
AATTTTATT TGTCAATTGT GTGTAAATTAT TATTTACAGT ATCCTTACA CAAATCTGTA	7440
AAAAGCAAGG CTGATTATT TTGATAAATT ACGGTTATT CATTAAAAAA ATGCTATAAT	7500
TGAAAGGACT ATATCGAAGG AGAACAAAAT GACTAAACCC ATTATTTAA CAGGAGACCG	7560
TCCAACAGGA AAATTGCATA TTGGACATTA TGTTGGAAGT CTCAAAATC GAGTATTATT	7620
ACAGGAAGAG GATAAGTATG ATATGTTGT GTTCTTGCT GACCAACAAG CCTTGACAGA	7680
TCATGCCAAA GATCCTCAAA CCATTGTAGA GTCTATCGGA AATGTGGCTT TGGATTATCT	7740
TGCAGTTGGA TTGGATCCAA ATAAGTCAAC TATTTTATT CAAAGCCAGA TTCCAGAGTT	7800
GGCTGAGTTG TCTATGTATT ATATGAATCT AGTTTCGTTA GCACGTTGG AGCGAAATCC	7860
AACAGTCAAG ACAGAGATTTC CTCAGAAAGG ATTTGGAGAA AGCATTCCGA CAGGATTCTT	7920
GGTCTATCCA ATCGCTCAAG CAGCTGATAT CACAGCTTTC AAGGCTAATT ATGTTCCGT	7980
TGGGACAGAT CAGAAACCAA TGATTGAGCA AACTCGTGAA ATTGTTCGTT CTTTAACAA	8040
TGCATATAAC TGTGATGCTC TGGTAGAGCC GGAAGGTATT TATCCAGAAA ATGAGAGAGC	8100
AGGGCGTTTG CCTGGTTAG ATGGAAATGC TAAAATGTCT AAATCACTAA ATAATGGTAT	8160
TTATTTAGCT GATGATGCGG ATACTTTGCG TAAAAAAAGTA ATGAGTATGT ATACAGATCC	8220
AGATCATATC CGCGTTGAGG ATCCAGGTAA GATTGAGGGAA AATATGGTTT TCCATTATCT	8280
AGATGTTTT GGCGTCCAG AAGATGCTCA AGAAATTGCT GATATGAAAG AACGTTATCA	8340
ACGAGGTGGT CTTGGTGATG TGAAGACCAA GCGTTATCTA CTTGAAATAT TAGAACGTGA	8400
ACTGGGTCCCG G	8411

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9064 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TGCCGTACTC AAGTACAGCC TGCCTAAGT TTCTAGTTT GCTCTTGAT TTTCATTGAG	60
TATTAGTAAC CAAAATCCGA CCACATAGCC AGCCCCTATG AATATAGCCA TTAAAGCTAG	120
CATGGAATTAA AGGAAATTAA AAACCACCGC AGATACAAAG GTTAGCACAA AAACATTAAA	180
AGCAATGGTG TCAGAAGCCA AGACTAGAAT ATAGGGTGTC AACCGATCTA AAGTTTGGA	240
ATCTAGGAAA AATAAGTGT TATACATGAT GACCTCCTCT ATGGCTGAAA AGCAAGCCTT	300

245

TTGTTTTTTT	ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATTATTGA	TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGCAAAGA	TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAAATGAG	GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
TGCTTAAAGA	AAGCATGTTG	CAGTAATCCT	CTATAAATCA	ATTCTTCCAT	CAGTGGAAACC	600
AGAAAGAACAA	GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCCT	ATAACCAATC	660
AATACAGCCC	AACCTTCCGC	AGTTGACTGA	ACATGTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTGGAACA	CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATT	TTTCTTGGA	780
ATGCGGAAGA	GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAAACTCA	AGATATTTG	AATCCAGAAT	AAATTGCCCTA	TCTGAGAAGA	AAATTGCCAA	900
TAGTTTGGAA	CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	CGAAAAATAA	GTAAGAGAAG	960
ACTGCACTTA	TTTTGAATAG	AAGTTGATAC	TTTTCATAG	AAATCCTCCC	TACTATGACC	1020
TCACCTTGTCT	AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTGTTGTTTT	TTAAGGCTA	1080
ACCTGACTAC	TAGATAATAG	ATACATTAAG	GCATTAAGA	CAATGAAAAT	ATGTCCATAG	1140
AATAAAATCA	ACCTCGCATC	CAAACCAAGA	TAAAGTTGA	TTATCAAAAA	GATGAGCAAA	1200
AGAATTGAA	ACCATAAGGT	TTTTCCAAAA	ATAAATTAA	AGCGATTTCG	AATATCTACT	1260
TCCTTGATTT	TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTGTAAA	GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	TTTGAAAAA	TGTCCCTAAA	1380
AGAATATCCA	ACACACTACT	CAAGAAAATA	ACAAAAAATA	ATCTGTATTT	CATATTAAAT	1440
ACCTCCATTC	ATTTATTTCA	CTAACAAATT	AATAGAGCCT	TCTACTCAA	TATCCTGTCA	1500
GAAAAGGATA	GAAAGCTACT	TTTTATAATA	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACAAGCAG	AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATT	TGTTTCTGAA	1620
ATACCTCTAT	ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
TTGGTTCTAG	GACTAACCAA	ATCATCATT	ACTTATATT	AAGAGTATCT	CTTTTATTTT	1740
AATGTATGTT	AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAATGA	ACAGTAACGG	1800
GGTTAAAGTCT	CTAAAAAAAT	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAACTATC	TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCAAGAGC	GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTAGT	1980
ATATCATTGT	TTTTAAAT	TTTCATCCA	AATCTTGAAT	TGTCATCGAA	ACATCTTGAA	2040

246

TTGTTAAAAA ATTTAAAAAG TAAGCATTAA AACATACATT TCCTCTTAT ATTGTATTGA	2100
TACCAACTTG TTTGTAGACT TTTCATCCTG CTATCACATA TCATTTGAC AGGCAGAACAA	2160
ATATTAAAGA AACTCCCTG TAAATTAAGC TAGCAAATAC AGGGGAGAAA TTTATTTTT	2220
AGAGAGTACT ATCCGTATCC TTTTGGAAAG ATTTGAAAAA TATTTTCTA ATTAAGTCAT	2280
CCATATAAGG ACCAAATATA CCAACTACTA AACCAATAAT AAAACTTTA AAATCCATAA	2340
TTACCACCAA CATATTGCTG CATAGGCTAC ACCTCCAAGT ATAGCTCCAC CTGCAGCACC	2400
AGTTACACCT ATTCCTATAG CAAATGGTCC CAATAGAAAT GTCAAACCGT TGTTGCACAC	2460
CCATCAATTG CGCCATATGC AACCCCTGCT GCACAACTAA TTTTCTTCC CCAATCAATA	2520
TCTCCACCTT CAACGCAAGC AAGCATTCA TTATCCATAA CTGCAAATTG TGACATCATT	2580
TTTGTATCCA TATAGTGTAT CACTTTCAAG TTACGGAACA AGTTAATAT AAAAATTATC	2640
AAAAAAACAT AGGCAATAAA GAGAAAAATT AATTATCAT AGATTAGAAA TAATATGACA	2700
AAACAATTCA ATGATGTTAA TTCAATAGTC TTTTGTAAAA TATCGGAGAT ACTTATGGAT	2760
AGATAAAATAA GATAGGTTG AAAAGCGAAG AGAATAATAA AGAATATAGC CTTCATAAAA	2820
TTTAGCTTTC ATTTTATGA TGTAGCGGTA TAGGCTAAAT ATCCACAAAC CACTGCTCCT	2880
CCAATTCCCTC CTATTGCAAGC GCCCCATGGT CCTAGAAGTC TCCCATATTT CACTCCACCC	2940
GCTGCACAAAC CTAAAGCAGC AACTACAGCT GCTCCTCCGG AATTACCTCC ATAAACCTCA	3000
CTCAGCATTG TTTCATTAT ATTACAATAA GTATTCAAC AAGTCTCCTT TTATTAAT	3060
CCACCCGTTG CCCCTGTTAC TCCTGCCAA AGATCCACAC CAAATTTAGC TCCTATGTAT	3120
CCACATGCTC CCATAAATGG TGCTCCAACA CCACTCGCAG CACAAATAGC TGCCCTAGC	3180
CCCCAGCCAC CAAAAGCAGC ACCACCCACCT TCTAAGACAT TAGTTGCCA ATTATTCTG	3240
CCTCCTTCAA TACTAGATAA CATAAGTTATA TCCATTTCAT GAAATTGTC CATAATT	3300
GTATCCATGA CAAATACTCT TTTTATTTT TAATTTTGT CTTGTTGAA CTTTGACAAG	3360
TTTAGTATAT CATCGTTTT TAAAATTTT CATCCAGATT TTGAATAGTC ATCGAACGT	3420
CTTGAATTGC AAAAATTACA TTAGACTTCC TGCACAACTA GAATCCTAGT TCATGATTGA	3480
TAATACCAGC ACTCAAATTC ATTCGTAATC CGAACGCTTT ACGATGACTT CGATAGGTTG	3540
TTGAAAACAT TTTAACGTT TTTACTTGG CAAAGATGTT CTCAACCTTG CTTCTCTCCT	3600
TAGATAGCGC ATGGTTACAG GCTTTATCTT CAACTGTTAG CGGTTTGAGT TTGCTGGATT	3660
TACGTGAAGT TTGTGCTTGA GGATATATCT TCATGAGCCC TTGATAACCA CTGTCAGCCA	3720
AGATTTTACC AGCTTGTCCG ATATTTCTGC GACTCATTTT GAACAACTTC ATATCATGAC	3780
AATAGTTCAC AGTGATATCC AAAGAAACAA TTCTCCCTG ACTTGTGACA ATCGCTTGAG	3840

247

TCTTCATAGC GTGAAATTTC TTTTACCAAG AACATTAGC TAATTCTTT TTTAGGGCGA	3900
TTGATTTTA CTTCCGTGCG ATCAATCATT ACCGTGTCCT CAGAACTGAG AGGAGTTCTT	3960
GAAATCGTAA CACCACTTG AACAAAGAGTT ACTTCAACCC ATTGGCTCCG ACGGAGTAAG	4020
TTGCTTTCGT GAACACCAAA ATCAGCCGCA ATTTCTTCAT AAGTGCGGTA TTCTCGCACA	4080
TATTGAAGAG TGGCCATAAG AAGGTCTTCT AGGCTTAATT TAGGTTTCG TCCACCTTT	4140
GCGTGTAA GTTGATAAG TGTTTTAAT ACAGCTAGCA TCTCTTCAAAGTCTGCGC	4200
TGAACACCAAA CAAGACGCTT AAATCGTGCA TCAGTTAGTT GTTTACTTGC TTCATAATT	4260
ATAGAACTAT AGTAAAATGA AATAAGAACAA GGATAAAATCG ATCAGGACAG TCAAATCGAT	4320
TTCTAACAAAT GTTTAGAAG TAGAGGCAGTA CTATTCTAGT TTCAATCTAC TATACTATAC	4380
CATATTTGT TTCGCAAGGAA ATCTATTATA AAAGGGTAAG TATTGAAAAA ACACCTACCC	4440
TTTCTTTTA TACTTCATTA AGCTCTACTT TTCTATAATAC TTCAAGCCCC ACATGAGCAG	4500
AAGCATGATG ATTAAGCAGA GAACAGCGCC AATATAAGCG ATTATTTGTT GGTAGGATTC	4560
TCCTGCTGTG ATACCTCTAT ACAAAACAAAT AATAGACATA AAACCTGTCA AGCCGATGAA	4620
CATAAGTTGA TTGGTTCTAG GACTAACCAA ATCATCATCT TCAAACCTCTC TTATCCTCAT	4680
TTCCCTAGTG AGATAAACAG TAACCAAAAT AGAAGCCAAG TTAATAACTA CTAAAAGAAA	4740
TTGGAAAACG ACGGAAAAT TTAAAAAACTG ACCGAGATAGA AATAGATAAG TAGAAACAAG	4800
CAAGGGCAAC TGACCTAAGA ACAATCTCGC AAGGAAGATG TTCCGTTTT TAGCAAGAAA	4860
AGTTTTCATT TCTTTCTCC TTTCTTTTA TTGATAGCAA AATAGATCAT AACTGCAATC	4920
ACATAGGCTA TGGTATAAAA TAGCTGATAC CAAGCACTCT CCCTAACGGG ATATAGAAAG	4980
ATGGACATGA TTAGATACAG AACGAAAATA ATCAGTATTT TTTCTTCAT AAGATTCCCT	5040
CCTAAATGTG CGATTTATCT TAGTGAGCA AGAACATTAA CACTGCTAGT ATAGCACTTA	5100
TTTGACCTT GGATCACTCA AATCATAAAAT GGTCACTAAA ACCTCTTGAA TTGTAAAAT	5160
TAAAAAAAGCA AGCATGAAAAA ACATACTTTC CTCTTTATAT TGTATTGATA CCAACTTGTT	5220
TGTAGACTTT TCATCCTGCT ATCACATATC ATTTGACAG GCGAAACAAT ATTAAGAAA	5280
CTCCCCGTGTA AATTAAGCTA GCAAATACAG GGGAGAAATT TATTTTTAG AGAGTACTAT	5340
CCGTATCCTT TTTGAAAGAT TTTGAAATAA TTTTTCTAAT TAAGTCATCC ATATAAGGAC	5400
CAAATATACC AACTACTAAA CCAATAATAA AACTTTAAA ATCCATAATT ACCACCAACA	5460
TGTTGCTGCA TAGGCTACAC CTCCAAGTAT AGCTCCACCC GCAGCACCAG TTGCTGCACC	5520
TTGCCATGTT CCTGTTTAA TGCCTAGTT AAGACCTCTT GCTGCTCCTC CTCCAACACC	5580

248

TGCTTTGGCA	AAATCTCCCC	AATTGCATCC	GCCACCTTCA	ACGCAAGCAA	GCATTTCA	5640
ATCCATAACA	GAAAATTGTG	ACATCATTTC	TGTATCCATG	ACAAATACTC	CTTTTTAAA	5700
AAACTAAAAT	AAATCAGAAT	AGAACCTCA	TAATTTACT	ATAAGTCTTA	CCAACCTAGT	5760
CCCAATTAT	CACCAACCAT	ACCTCCTAAG	CATGTTAAC	CACCCCCAAT	TGCACCAATG	5820
TGTGCTCAA	CAAATGCACC	AGCAAGTCCA	GCTACTCCTA	AAGTGGCCAA	ACCTGCTCCA	5880
GTTCCACCAG	TTATAATTCC	CGTAGTGA	CCTGTTAAC	GTGCATTG	ACAATCAGTG	5940
GAGCTATACC	CCCCTTCAAC	TTTCGCAAGC	ATTCAGTAT	CCATAACCTC	TAACGTGAC	6000
AACATTTTG	TATTCATGAT	GAATACCTCC	TTTTTATTTT	CAATTGTTA	CCAAAGTCTT	6060
AAATTCAATA	AACAAATAGA	TTTTTTATAG	TATCTTTTG	ATTTCTAA	AAAAGTATAT	6120
ACGTCTACTA	TCTCTTAA	GGTAGCAGTA	CCTATTTTTT	AGTCTAAGAT	TTCAATAATC	6180
TTGAGTATCT	AAAATATCTT	AATTCGTTA	TTCTCCTTGC	AATAAAAAGT	TTTACTATAC	6240
TATTTATTAA	CTTGCAGAAA	GCAAAAAATA	TTAGTAAATA	ATAGTTATA	GTAAAGTTT	6300
TTATTCCTAC	CAATCCATCA	ACTAAGTAA	GCATCAACGA	TTACATAAAC	GATTGATAAT	6360
ATAATTAAAA	TTTGCTAAC	TATCTTATTC	TCATCATTCT	TAGATAACTT	TGATATTTG	6420
TAAGTAAGTA	AATAAGACAG	TAAATTAATA	GCGATAATAA	TACTATATT	AAGAATCATA	6480
ATCTTACAAA	GAGGACATAA	TTCTGAACC	TACACAAATA	AGTGTGCTG	CTCCCCAGT	6540
TATCGGACCA	GTCGCAGCAG	CTAATAGTAC	TGCTCCAATA	CAACCACCGA	TTGCAGATCC	6600
TAAATTGCCT	CTTCCTCCAC	TAACTATTTC	GAGTTCTTCA	TTATCCATAA	CAGAAAATTG	6660
TTCCATCATT	TTTGTATTCA	TGACAAATAC	TCCTTTTTC	TTTTTTATT	TTTGTCTTGT	6720
TGTAACTTG	ATAAGTTAG	TATATCATCG	TTTTTTAAA	TTTTTCATCC	AGATCTGAA	6780
TTGTCATCGA	AACGTCTTGA	ATTAGCTTT	TTATTCAG	CCACCTCTAA	ATGTTAAA	6840
AAAATAATT	CTAATCACCT	TTTTACCATT	CAGGAAGTTT	TAATGACTAT	TCAAGATTTC	6900
ATAAAATATG	AACTTAGTTT	TATGACATAA	TAGACCTATC	CACTATATGA	AAGGAATTGC	6960
CAATGACTTC	TTATAAACGT	ACATTTGTT	CTCAAATAGA	TGCGAGAGAC	TGTGGTGTG	7020
CTGCCTTAGC	CTCGATTGCT	AAATTCTATG	GTTCAGATTT	TTCTCTAGCT	CACTTGAGAG	7080
AACTTGCAA	GACCAATAAA	GAAGGGACGA	CTGCTCTTGG	CATTGAAAA	GCCGCTGATG	7140
AAATGGGCTT	TGAAAACAAGA	CCTGTTCAAG	CAGATAAAAC	GCTCTTGAC	ATGAGTGATG	7200
TCCCCCTATCC	ATTTATCGTT	CACGTTAAC	AAGAAGGAAA	ACTCCAACAT	TACTATGTTG	7260
TCTATCAAAC	AAAGAAAGAC	TATCTGATTA	TTGGTGATCC	TGACCCCTCT	GTAAAAATCA	7320
CTAAAATGTC	AAAAGAACGC	TTTTCTATG	AATGGACTGG	AGTAGCTATT	TTTCTAGCTA	7380