Programme de la semaine 12 (du 18/12 au 24/12).

Arithmétique, ensemble \mathbb{R}

- Divisibilité dans \mathbb{Z} . Division euclidienne dans \mathbb{N}^* . Nombres premiers : définition, décomposition en facteurs premiers, infinité des nombres premiers. PGCD, PPCM, algorithme d'Euclide.
- Majorants, minorants, max, min, borne sup, borne inf pour une partie de ℝ, existence (NE PAS POSER D'EXERCICE SUR LES BORNES SUP ET INF).
- Partie entière (notation |x|), valeurs approchées décimales à 10^{-n} près par excès et par défaut.

Suites: presque tout

- Définition d'une suite réelle, suites constantes, stationnaires, majorées, minorées, bornées, monotones, strictement monotones.
- Suites arithmétiques, suites géométriques, suites arithmético-géométriques, suites récurrentes linéaires doubles (théorème admis).
- Limite finie ou infinie d'une suite réelle, convergence, divergence. Unicité de la limite.
- Toute suite convergente est bornée, une suite qui tend vers $+\infty$ est minorée non majorée, une suite qui tend vers $-\infty$ est majorée non minorée.
- Opérations sur les limites : somme, multiplication par un scalaire, produit, passage à l'inverse, composition par une fonction.
- Croissances comparées, quelques limites revenant à des taux d'accroissement.
- Stabilité des inégalités larges par passage à la limite. Théorème d'encadrement, de minoration, de majoration.
- Théorèmes sur les limites d'une suite monotone.
- Suites adjacentes, théorème sur les suites adjacentes.
- Suites extraites : définition, si $u_n \underset{n \to +\infty}{\longrightarrow} \ell \in \overline{\mathbb{R}}$ alors toute suite extraite a aussi ℓ pour limite. Si la suite des termes d'indices pairs et la suite des termes d'indices impairs ont même limite ℓ , alors la suite admet ℓ pour limite. Limite éventuelle de (q^n) pour $q \in \mathbb{R}$.

Nous n'avons pas encore vu les suites à valeurs complexes

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - Unicité de la limite finie.
 - Si $u_n \xrightarrow[n \to +\infty]{} -\infty$, alors $(u_n)_{n \in \mathbb{N}}$ est majorée mais non minorée.
 - Si u et v convergent respectivement vers des réels ℓ et ℓ' , alors u+v converge vers $\ell+\ell'$.
 - Démonstration du théorème sur les suites adjacentes.

Semaine suivante : Suites, introduction aux DL.