

Data Science @ NOS

18
Data Scientists

250+GB of data/day

4.1+TB of RAM

Supervised Learning **Established** Oper. Research & Simulation **Recommender Systems Unsupervised Learning** Network / Graph Analysis NLP / Speech Data Vizualization / GIS Reinforcement Learning

Reinforcement Learning
Computer Vision

Best Time 4 Contact

NOS needs to call customers to communicate discounts, contractual terms, resolve technical issues, etc.

Calling at the wrong time is inconvenient for the client and affects the likelihood of success of further calls.

Current dialling strategy is left to partners at call centers and is often rules/quarentines based.

>12M Calls since start of 2019

15.9% (1)
Calls answered

Use ML to learn from existing data and inform each partner when to contact each client.

Data Analysis

Answer rate by MSISDN type over time

- Calling mobile phones yields better results on average.
- The best time to contact a mobile phone is is not the same as a landline phone.

Answer rate by number of shared CAs

- Some MSISDNs are associated with multiple clients.
- Some are default values, fake numbers, etc.

Data Analysis

Answer Rate by Previous Contact result

- Previous call results are important to predict future calls.
- If the client already answered once the likelihood of answering again goes up to over 30%.

Answer Rate by previous rate (same hour)

If the client answers the phone frequently at a specific time of day, that is a good time to try and call again.

Data Analysis

There is more availability between 12:00 - 13:00 and then again after 18:00.

Each region has a specific behaviour over time.

We were hoping to observe larger differences between costal and inland zones.

Train								
x_hour	x_answer_perc	x_mobile_type	x_prev_result	x_num_calls_hour	:	y_target		
10	30%	Т	Handled	3		Т		
12	0%	F	Busy	1	•••	F		
22	75%	Т	Handled	2		F		

- Manipulating feature values allows us to simulate what-if scenarios and make predictions for future calls.
- Must be careful not to invalidate other feature values
 (e.g. data-leakage)

Call History

- Time and Day of contact
- Outcome
- Client/MSISDN information
- Reschedules

85

Contractual Information

- Account Type and Age
- Services and Technology
- Preferential Contact Hours
- Revenue
- •

Call Profiles

- By client, MSISDN or both
- Overall vs last 30 days
- # calls, % of answers, avg. call duration, ...

Target Encoding

• Specific for each hour

Hour	Value	Mean Target		
10	Handled	35%		
10	Busy	20%		
•••				
11	Handled	37%		
11	Busy	21%		
	•••			

https://github.com/pablo14/shap-values

```
shap <- shap.score.rank(model, X_train)
plot_data <- shap.prep(shap, X_train)

plot.shap.summary(plot_data)
xgb.plot.shap(X_train, model)</pre>
```


% of calls made to the same MSISDN at the same hour of day that where answered

Mean Target Encoding of the previous call result (handled, busy,...) made by the same MSISDN

Schedule Optimization

Integer Linear Programming (ILP) can be used to maximize the likelihood of a client answering when subject to the operational constraints.

In practice ILP is computationally slow and requires many assumptions to hold

$$\begin{aligned} & \max_{x} \sum_{n=1}^{N} \sum_{t=1}^{T} P_{n,t} x_{n,t} \\ & \text{s.t.} \quad x_{n,t} \in \{0,1\} \\ & \sum_{t=1}^{T} x_{n,t} \leq M, \ \forall_{n} \in \{1,\dots,N\} \\ & \sum_{n=1}^{N} x_{n,t} \leq \mathcal{O}, \ \forall_{t} \in \{1,\dots,T\} \\ & \sum_{t=1}^{N} x_{n,k} \leq 1, \ \forall_{t} \in \{1,\dots,T-\Upsilon\}, \forall_{n} \in \{1,\dots,N\} \end{aligned}$$

"Putting a Call Centre in Peak Performance", IST, João Lourenço, 2018

Schedule Optimization

Heuristics allow you to obtain a good enough solution in a fraction of the time.

Minimax Regret (a.k.a Savage Criterion)

Providing a ranking for all MSISDNs instead of a list of MSISDNs to call at each hour, allows for dynamic scalling of operation size.

	10h	11h	12h	13h	14h	15h
MSISDN 1	10,9%	14,2%	15,1%	19,3%	3,8%	15,2%
MSISDN 2	9,8%	5,2%	5,1%	10,6%	14,2%	12,8%
MSISDN 3	1,3%	1,9%	2,0%	2,3%	0,7%	1,0%
MSISDN 4	18,2%	32,1%	25,9%	28,4%	2,4%	26,8%
	8,4%	5,1%	4,3%	0%	15,5%	4,1%
Opportunity	4,4%	9,0%	9,1%	3,6%	0%	1,4%
cost	1,0%	0,3%	0,2%	0%	1,5%	1,3%
	13,9%	0%	6,2%	3,7%	29,7%	5,3%
	#3	#3	#2	#1	#3	#3
Result	#2	#4	#4	#3	#1	#2
nesuit	#1	#2	#1	#1	#2	#1
	#4	#1	#3	#4	#4	#4

Road to Production

Troubleshooting

Data analysis can be used to pinpoint bugs in systems you don't even have access to

Results

67%

Increase in Answer Rate

32% (1)

Decrease in Call Attempts **15%**(1)

Increase in Client Reach

Future Work

- Scale up
 - Move to fully distributed architecture
 - Scale up to many more operations
- Control Groups
 - Measure BTC impact in the long-run
 - Ensure we can keep learning
- Revisit design choices (scheduling mostly)
- Try out Reinforcement Learning for solving prediction and scheduling in one go
- Improve ops tools (input data validation)
- Incremental stuff (better data cleaning, better features)

Thank You!

