Introduction to Computer Graphics

Modeling (2) –

April 21, 2016 Kenshi Takayama

Subdivision surfaces

First, we'll look at its theoretical basis:

B-Spline curves

Example: 2D polyline represented as function

Representing polyline using linear basis

de Boor's n-th order basis

- Recursively defined:
 - $B_0(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$

•
$$B_n(t) = \frac{t}{n}B_{n-1}(t) + \frac{n+1-t}{n}B_{n-1}(t-1)$$

- Properties:
 - n-th order piecewise polynomial
 - Zero outside [0, n+1] (local support)
 - Cⁿ⁻¹ continuous

Using quadratic basis -> quadratic B-spline

Using cubic basis → cubic B-spline

Important property of basis: partition-of-unity

- X-coord of B-spline: $x(t) = \sum_i x_i B_n(t-i)$
- Consider moving all control points x_i by the same amount c:

•
$$x(t) = \sum_{i} (x_i + c) B_n(t - i)$$

$$= \sum_{i} x_{i} B_{n}(t-i) + c \underbrace{\sum_{i} B_{n}(t-i)}_{1}$$

• Partition-of-unity ensures that the entire curve is also moved by c

Cubic B-spline vs. Cubic Catmull-Rom spline

Representation	Piecewise cubic	Piecewise cubic
Defined as	Linear combination of cubic bases	Given coordinate value at each knot $t=t_k$, compute derivative at each knot Cubic Hermite interpolation for each interval
Passes through CPs?	No	Yes
Continuity across intervals	C ² -continuous	C ¹ -continuous

From B-spline to subdivision

Another important property of basis function

 Can be decomposed into weighted sum of the same basis functions with halved support

Decomposing quadratic B-spline

Decomposing quadratic B-spline

Decomposing quadratic B-spline

Generating quadratic curves via subdivision

Split each vertex into 2 new vertices
 (= For each edge, generate 2 new vertices)

Decomposing cubic B-spline

Decomposing cubic B-spline

Decomposing cubic B-spline

Generating cubic curves via subdivision

- For each edge, generate a new vertex at its midpoint
- Move each vertex to weighted average of its neighbors

Generating quadratic surfaces via subdivision

Bi-quadratic basis:

$$B_{2,2}(s,t) = B_2(s) B_2(t)$$

Split each vertex into 4 new vertices
 (= For each face, generate 4 new vertices)

Generating cubic surfaces via subdivision

Bi-cubic basis: $B_{3,3}(s,t) = B_3(s) B_3(t)$

• For each face, generate a new vertex at its barycenter

Generating cubic surfaces via subdivision

For each edge, generate a new vertex at weighted average of its neighbors

Generating cubic surfaces via subdivision

Bi-cubic basis: $B_{3,3}(s,t) = B_3(s) B_3(t)$

3/32

1/64

1/8

Move each vertex to weighted average of its neighbors

Generalizing subdivision scheme

Fundamental limitation of B-splines

- Need "clean" quadrilateral decomposition of the region
 - "Clean" vertex: # of neighboring faces (valence) is 4
 - If valence is not 4 → singularity
 - Theoretically impossible to obtain in general
 - Special case: donut (torus)
- What you can do: Create B-spline patches around singularities, try to maintain continuity across patches by manual work
 - → Very hard, tedious ⊗

• Generalize B-spline stencils through geometric interpretations

Generalizing quadratic stencil (Doo-Sabin)

$$P = \frac{1}{16} (9 A + 3 B + 3 C + D)$$

$$= \frac{A + B + C + D}{4} + \frac{A + B}{2} + \frac{A + C}{2} + A$$

$$= \frac{A + B + C + D}{4} + \frac{A + B}{2} + \frac{A + C}{2} + A$$

For each polygon's each vertex, generate a new vertex at the average of the polygon's barycenter, its adjacent edges' midpoints, and itself

Examples of Doo-Sabin

Examples of Doo-Sabin

Generalizing cubic stencils (Catmull-Clark)

$$P = \frac{A_1 + A_2 + A_3 + A_4}{4}$$

For each polygon, generate a new vertex at its barycenter

Generalizing cubic stencils (Catmull-Clark)

$$P = \frac{3}{8}(A_1 + A_2) + \frac{1}{16}(B_1 + B_2 + B_3 + B_4)$$

$$= \frac{ \begin{array}{c} \text{Barycenter} \\ A_1 + A_2 + B_1 + B_2 \\ \hline 4 \\ \end{array} + \frac{ \begin{array}{c} A_1 + A_2 + B_3 + B_4 \\ \hline 4 \\ \end{array} }{2} \\ = \frac{ \begin{array}{c} \text{Midpoint} \\ A_1 + A_2 \\ \hline 2 \\ \end{array} }{2}$$

For each edge, generate a new vertex at the average of the barycenters of its adjacent polygons and its midpoint

Generalizing cubic stencils (Catmull-Clark)

Comparison

Catmull-Clark = cubic surface

Doo-Sabin = quadratic surface

Subdivision scheme for triangle meshes (Loop)

 Based on B-spline basis defined on triangular lattice

• C²-continuous cubic surface except at singularities

Comparing Catmull-Clark & Loop

- Catmull-Clark is de facto standard in CG industry
 - Quad meshes can naturally represent two principal curvature directions

Other subdivision schemes

- four-point method
 - Passes through CPs (interpolating)
 - ←→ approximating
 - Cannot be represented as polynomials
 - C¹-continous
 - Surface version: butterfly method

- Many more variants
 - Kobbelt's method
 - $\sqrt{3}$ -method
 - etc...

Geri's Game (Pixar, 1997)

- First film using subdivision surfaces
 - Previously (Toy Story), tedious modeling work using B-splines

https://www.youtube.com/watch?v=9IYRC7g2ICg

Controlling smoothness

Can represent sharp edges by altering subdivision rules

Controlling smoothness

• Can represent sharp edges by altering subdivision rules

Resources for learning subdivision techniques

- Smooth Subdivision Surfaces Based on Triangles [Loop, MSc. Thesis 87]
 - Thorough & visual explanation of literature (Doo-Sabin & Catmull-Clark)
 - Some known errors: http://www.cs.berkeley.edu/~sequin/CS284/TEXT/LoopErrata.txt
- Subdivision for Modeling and Animation [SIG00 Course]
 - Most famous survey, but a little arcane
 - http://www.cs.nyu.edu/~dzorin/sig00course/
- OpenSubdiv from research to industry adoption [SIG13 Course]
 - More recent topics
 - http://dx.doi.org/10.1145/2504435.2504451

Halfedge data structure

Mesh representation using vertex & face lists

OFF file format

```
OFF
   -0.5 -0.5 0.5
   0.5 -0.5 0.5
Geometry data
   0.5 0.5 0.5
   -0.5 0.5 -0.5
   0.5 0.5 -0.5
    -0.5 -0.5 -0.5
   0.5 -0.5 -0.5
Fopology data
```

- ← #vertices, #faces
- ← xyz coord of 0th vertex
 - •

- ← xyz coord of 7th vertex
- ← 0th face's #vertices and vertex indices
 - •
- ← 6th face's #vertices and vertex indices

Mesh representation using vertex & face lists

• Info needed during mesh processing (e.g. subdivision)

- Set of faces around a vertex
- Set of faces adjacent to a face
- Vertices at an edge's endpoints
- Faces at both sides of an edge
- etc...

• Can be stored as "array or arrays", but consumes more memory 🕾

Halfedge data structure

- Store link information:
 - (1) Vertex → One of halfedges emanating from it
 - (2) Face → One of halfedges composing it
 - (3) Halfedge → Vertex that it points to
 - (4) Halfedge → Face that it belongs to
 - (5) Halfedge → Next halfedge
 - (6) Halfedge → Halfedge opposite to it
- Circling around a face:

$$(2) \rightarrow (5) \rightarrow (5) \rightarrow \dots$$

Circling around a vertex:

$$(1) \rightarrow (6) \rightarrow (5) \rightarrow (6) \rightarrow (5) \rightarrow \dots$$

http://www.openmesh.org/

When a new face is added

- Generate halfedges
- Link vertex to halfedge (1)
- Link halfedge to vertex (3)
- Link halfedge to next halfedge (5)
- Link halfedges to face (4)
- Link face to halfedge (2)
- Link halfedge to its opposite halfedge if such exists (6)

Papers

- Recursively generated B-spline surfaces on arbitrary topological meshes [Catmull,Clark,CAD78]
- A 4-point interpolatory subdivision scheme for curve design [Dyn,Levin,CAGD87]
- A butterfly subdivision scheme for surface interpolation with tension control [Dyn,Levine,Gregory,TOG90]
- Sqrt(3)-subdivision [Kobbelt,SIGGRAPH00]
- Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values [Stam,SIGGRAPH98]
- Interactive multiresolution mesh editing [Zorin,Schroder,Sweldens,SIGGRAPH97]
- Interpolating subdivision for meshes with arbitrary topology [Zorin,Schroder,Sweldens,SIGGRAPH96]