

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains

2024-06-19

Eunsu Baek, Keondo Park, Jiyoon Kim, Hyung-sin Kim

- DNN models are widely used recently.
- They, however, often does not perform well when environment changes!
- Domain shift is the main reason for the performance drop.
 - Training data domain ≠ Test data domain

Video shows 8-car pileup after a Tesla allegedly using Full Self-Driving stopped in a highway tunnel

Grace Kay Jan 11, 2023, 8:00 AM GMT+9

Share

A Save

Video obtained by The Intercept appears to show a Tesla causing an 8-car pileup on November 24, 2022. The Intercept reporter Ken Klippenstein on Twitter

Source: Business insider

Many approaches to tackle domain shift.

Out-of-Distribution (OOD) detection

Many approaches to tackle domain shift.

Tries to make a smarter DNN model, but is it the best?

Out-of-Distribution (OOD) detection

(c) OOD benchmark (ImageNet)

Human vision system

Human vision system

Current solution

Read more books and be smart:)

It's too close!!
I can't see anything!!

Human vision system

Current

"Best solution?"

It's too bright!! I can't see anything!!

It's too close!! I can't see anything!!

Human vision system

Current

"Easier and better solution!"

It's too bright!! I can't see anything!!

It's too close!! I can't see anything!!

Computer vision system

Computer vision system

ES-Studio

- Controllable testbed for Environment and Sensor domain
 - Capture real-world perturbations related to light (On/Off) and camera parameters (ISO / Shutter speed / Aperture)
 - Ensure reproducibility

[Photo of ES-Studio]

ImageNet-ES dataset

Covariate shift datasets from the environment & sensor domain

Val. Set

1000 sampled images from ImageNet

2 Light options (On / Off) (64 + 5) Camera parameter options

138K Images

Test Set

1000 sampled images from ImageNet

2 Light options (On / Off) (27 + 5) Camera parameter options

64K Images

Total 202K Images

ImageNet-ES dataset

• Sample images from test set:

- What is the best OOD definition?
- Semantics-centric framework
 - Most widely used.
 - Any samples not included in the class definition of training domain => OOD
 - Treating C-OOD (Covariate shifted data, e.g. *ImageNet-ES*) as OOD or ID in entirety.
 - SOTA OOD detection techniques (ViM, ODIN, etc.) developed to work well under this framework.

Semantics-centric framework

- Test on three OOD detection techniques: ViM, MSP, ODIN
- Model: EfficientNet-B0
- Three datasets
 - In-Distribution (ID): Tiny-ImageNet
 - Semantics OOD (S-OOD): Texture-O
 - Covariate shifted OOD (C-OOD): ImageNet-ES

Semantics-centric framework

- Test on three OOD detection techniques: ViM, MSP, ODIN
- Model: EfficientNet-B0
- Three datasets
 - In-Distribution (ID): Tiny-ImageNet
 - Semantics OOD (S-OOD): Texture-O
 - Covariate shifted OOD (C-OOD): ImageNet-ES

Semantics-centric framework

- Test on three OOD detection techniques: ViM, MSP, ODIN
- Model: EfficientNet-B0
- Three datasets
 - In-Distribution (ID): Tiny-ImageNet
 - Semantics OOD (S-OOD): Texture-O
 - Covariate shifted OOD (C-OOD): ImageNet-ES

No clear distinction on ImageNet-ES!

- Alternative framework: Model-Specific OOD framework
 - Model specific acceptance or rejection (MS-A or MS-R)
 - MS-A: correctly classified by model (ID+, C-OOD-)
 - MS-R: misclassified by model (S-OOD, ID-, C-OOD-)

- Alternative framework: Model-Specific OOD framework
 - Test on three OOD detection techniques: ViM, MSP, ODIN
 - Model: EfficientNet-B0
 - Two datasets
 - In-Distribution (ID): Tiny-ImageNet
 - Covariate shifted OOD (C-OOD): ImageNet-ES

- Alternative framework: Model-Specific OOD framework
 - Test on three OOD detection techniques: ViM, MSP, ODIN
 - Model: EfficientNet-B0
 - Two datasets
 - In-Distribution (ID): Tiny-ImageNet
 - Covariate shifted OOD (C-OOD): ImageNet-ES

0.0025 0.0020 0.0015 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005

Still, no clear distinction between

Clear separation between ImageNet-ES+ and ImageNet-ES-

- Evaluation of OOD detection methods
 - Do current OOD methods work consistently on real covariate shift samples?

Figure 6. Each point represents the OOD score measured on the single parameter setting of *ImageNet-ES*.

Classical methods (MSP or ODIN) show more desirable correlation

SOTA method (ViM) accepts numerous samples as ID which are misclassified by the model

- Evaluation of OOD detection methods
 - Do current OOD methods work consistently on real covariate shift samples?

[Consistency] OOD score - Classification Accuracy (EfficientNet-B0)

With ImageNet-ES, we found that no single method is superior in both C-OOD and S-OOD detection.

20 30 40 50 60 Classification ACC (%)

Figure 6. Each point represents the OOD score measured on the single parameter setting of *ImageNet-ES*.

samples as ID which are misclassified by the model

Experiments: Domain generalization

- How to enhance the robustness in the environmental and sensor domain (ImageNet-ES)?
 - Basic digital augmentation: color-jitter, solarize and posterize
 - Advanced digital augmentation: DeepAugment and AugMix
 - Include real-world perturbed data (ImageNet-ES) for finetuning

Experiments: Domain generalization

- How to enhance the robustness in the environmental and sensor domain (ImageNet-ES)?
 - Basic digital augmentation: color-jitter, solarize and posterize
 - Advanced digital augmentation: DeepAugment and AugMix
 - Include real-world perturbed data (ImageNet-ES) for finetuning

Experiments: Domain generalization

- How to enhance the robustness in the environmental and sensor domain (ImageNet-ES)?
 - Basic digital augmentation: color-jitter, solarize and posterize
 - Advanced digital augmentation: DeepAugment and AugMix
 - Include real-world perturbed data (ImageNet-ES) for finetuning

Table 2. Evaluation with different robustness enhancing strategies. The result is based on ResNet-50. (IN: ImageNet)

ID	Comp.aug	Basic	Advanced digital aug	Incl.	Eval dataset			
110		digital aug		ImageNet-ES	IN	IN-C	ImageNet-ES	
1	√				85.8	51.0	49.6	
2	\checkmark	\checkmark			85.8	51.7	50.4	
3	\checkmark	\checkmark	\checkmark		85.5	57.4	49.1	
4	\checkmark			\checkmark	86.0	51.8	55.8	
5	\checkmark	✓		\checkmark	85.8	51.4	54.5	
6	✓	✓	✓	✓	84.0	57.9	53.7	

Including ImageNet-ES data for finetuning improves the robustness on both digitally or real-world corrupted images.

 In practice, sensor parameter control is as important as obtaining smart model.

Table 3. Evaluation of various models on *ImageNet-ES*. (IN: ImageNet, AE: Auto exposure)

Model	Num.	Pretraining	DG method	IN	ImageNet-ES		
Model	Params	Dataset	DG method		AE	All params	Best
	26M	IN-1K	-	86.3	32.2	50.2	80.1
ResNet-50 [8]		IN-21K	DeepAugment [13] +AugMix [12]	87.0	53.3	61.4	84.0
ResNet-152 [8]	60M	IN-1K	-	87.6	41.1	54.3	83.3
Efficientnet-B0 [32]	5M	IN-1K	-	88.1	51.4	58.1	83.8
Efficientnet-B3 [32]	12M	IN-1K	-	88.3	62.0	66.2	86.8
SwinV2-T [23]	28M	IN-1K	-	90.7	54.2	63.1	86.8
SwinV2-B [23]	88M	IN-1K	-	92.0	60.1	65.6	89.0
OpenCLIP-b [17]	87M	LAION-2B	Text-guided pretrain	94.3	66.3	71.0	92.7
OpenCLIP-h [17]	632M	LAION-2B	Text-guided pretrain	94.7	79.1	77.6	94.7
DINOv2-b [26]	90M	LVD-142M	Dataset curation	93.6	74.5	73.9	92.2
DINOv2-g [26]	1.1B	LVD-142M	Dataset curation	94.7	84.3	79.6	94.2

Well-tuned parameter setting (Best) improves the prediction accuracy by 9.9 ~ 47.9 (vs Auto Exposure) by 14.6 ~ 29.9 (vs All params)

 In practice, sensor parameter control is as important as obtaining smart model.

Table 3. Evaluation of various models on *ImageNet-ES*. (IN: ImageNet, AE: Auto exposure)

Model	Num.	Pretraining	DG method	IN	ImageNet-ES		
Wiodei	Params	Dataset		111	AE	All params	Best
	8] 26M	IN-1K	-	86.3	32.2	50.2	80.1
ResNet-50 [8]		IN-21K	DeepAugment [13] +AugMix [12]	87.0	53.3	61.4	84.0
ResNet-152 [8]	60M	IN-1K	-	87.6	41.1	54.3	83.3
Efficientnet-B0 [32]	5M	IN-1K	-	88.1	51.4	58.1	83.8
Efficientnet-B3 [32]	12M	IN 1K	·	00.2	0.	66.2	86.8
SwinV2-T [23]	2° M	IN 1K	120x larger mod	e .2	62	86.8	
SwinV2-B [23]	8 1	II K	400x more traini	ng da [.]	ta .1	٥.6	89.0
OpenCLIP-b [17]	13	LA -2B	S I		.3	71.0	92.7
OpenCLIP-h [17]	632M	LAION-2B	Text-guided pretrain	94.7	79.1	77.6	94.7
DINOv2-b [26]	90M	LVD-142M	Dataset curation	93.6	74.5	73.9	92.2
DINOv2-g [26]	1.1B	LVD-142M	Dataset curation	94.7	84.3	79.6	94.2

Even Efficientnet-B0 with the best outperforms OpenCLIP-h with auto exposure setting!

Qualitative analysis on ImageNet-ES

Qualitative analysis on ImageNet-ES

Sensor control should prioritize features based on **model's perspective**, rather than human intuition

Conclusion & Future work

- Investigated distribution shifts resulting from perturbations in Environmental and Sensor domains.
- **ES-Studio**: controllable testbed for environmental and sensor domains
- ImageNet-ES: A novel covariate shifted dataset from the environment & sensor domain
- OOD detection: Limitation of semantics-centric framework => Need for new OOD detection method to incorporate both S-OOD and C-OOD
- Domain generalization: ES-augmentation improves the robustness in both conventional and ImageNet-ES benchmarks.
- Sensor parameter control
 - With well-tuned sensor parameters, light model could perform comparably to heavier and advanced model.
 - Need of model-centric design instead of relying solely on human aesthetics.
- Future work: Improve ES-Studio to take photos of real objects or printed photos, rather than capturing display.

Thank you:)