Москва 2025

Расчет географических расстояний

Расчет географических расстояний

Использование инструментов RapidMiner для расчёта расстояний между географическими координатами. Задача — освоить процесс вычисления расстояний и познакомиться с основными геоинформационными формулами на примере реальных маршрутов.

Географические координаты

Географические координаты способ указания местоположения любой точки Земли. Они включают широту (latitude, север-юг) и долготу (longitude, восток-запад). Значения указываются в градусах и десятичных долях.

Форматы координат

- Десятичные градусы (55.7558°): наиболее удобны для вычислений.
- Градусы, минуты, секунды (55°45'21"): часто используются в картографии и навигации, требуют предварительной конвертации.

Исходные данные для расчёта

В расчёте используется маршрут Москва – Владивосток. Данные содержат города, координаты начальных и конечных точек сегментов маршрута. Всего 6 сегментов с координатами широты и долготы.

Импорт и проверка данных

Данные загружаются оператором Read CSV. Проверяется правильность формата и тип столбцов (широта, долгота — тип real). Ошибки на этом этапе критически влияют на дальнейшие расчёты.

Преобразование координат

Для тригонометрических расчётов координаты из градусов переводят в радианы. Используется формула:

Радианы = Градусы × π / 180

Это обязательный шаг перед расчётом расстояний на сфере.

Формула расчёта расстояния

Расстояние вычисляется по формуле сферического закона косинусов (Haversine). Это точная тригонометрическая формула, учитывающая сферическую форму Земли и обеспечивающая высокую точность на практике.

Формула Haversine

R

```
distance_km = 6371 ×
acos[sin(lat1) × sin(lat2) + cos(lat1)
× cos(lat2) × cos(lon2 - lon1)]
```

где 6371 — средний радиус Земли в километрах.

Почему сферическая модель

Формула Haversine предполагает Землю идеальной сферой. На практике её погрешность менее 1% на дистанциях до 5000 км, что приемлемо для большинства задач логистики и планирования маршрутов.

Эллипсоидные модели Земли

Для более точных задач (геодезия, авиация) используют формулы на основе эллипсоида (например, формула Винценти). Точность таких формул доходит до сантиметров даже на больших дистанциях.

Оператор Generate Attributes

Этот оператор используется для расчёта новых столбцов в RapidMiner. Сначала переводятся градусы в радианы, затем вычисляются расстояния. Каждый шаг прописывается последовательно в виде

Типичные ошибки при расчёте

- Неправильно указаны знаки координат.
- Координаты перепутаны (широта-долгота).
- Использован неверный формат градусов.

Такие ошибки значительно искажают итоговые результаты.

Контроль корректности расчёта

Результаты проверяются сравнением с известными расстояниями (например, Москва-Нижний Новгород ~400 км). Совпадение с реальными расстояниями подтверждает правильность расчёта и корректность данных.

Расчёт суммарной длины маршрута

Используя оператор Aggregate, вычисляется общая длина маршрута путём суммирования отдельных сегментов. Например, суммарное расстояние от Москвы до Владивостока ≈ 7100 км.

Определение экстремумов маршрута

Дополнительно вычисляются минимальный и максимальный сегменты маршрута. Например, максимальный сегмент маршрута Иркутск-Хабаровск (~2200 км) выделяется как наиболее протяжённый участок.

Расчёт среднего расстояния

Среднее расстояние сегментов маршрута позволяет оценить его равномерность. Большая вариация расстояний показывает необходимость учёта логистических особенностей при планировании остановок и снабжения.

B...

Row No.	StartCity	StartLat	StartLon	EndCity	EndLat	EndLon	lat1_rad	lon1_rad	lat2_rad	lon2_rad	distance_km	segment_n
1	Moscow	55.756	37.618	Nizhny Novg	56.297	43.936	0.973	0.657	0.983	0.767	397.045	Moscow - Ni
2	Nizhny Novg	56.297	43.936	Yekaterinburg	56.839	60.606	0.983	0.767	0.992	1.058	1020.469	Nizhny Novg
3	Yekaterinburg	56.839	60.606	Novosibirsk	55.008	82.936	0.992	1.058	0.960	1.448	1399.578	Yekaterinbu
4	Novosibirsk	55.008	82.936	Irkutsk	52.287	104.305	0.960	1.448	0.913	1.820	1434.565	Novosibirsk
5	Irkutsk	52.287	104.305	Khabarovsk	48.483	135.084	0.913	1.820	0.846	2.358	2205.331	Irkutsk - Kh
6	Khabarovsk	48.483	135.084	Vladivostok	43.115	131.886	0.846	2.358	0.753	2.302	646.115	Khabarovsk

Создание названий сегментов

В RapidMiner удобно использовать оператор Generate Attributes для формирования столбца с названиями сегментов маршрута, объединяя начальные и конечные города (например, «Москва - Нижний Новгород»).

Визуализация данных

Полученные расстояния сегментов удобно визуализировать на барчарте, где ось Х — название сегмента, а ось Ү дистанция. Это позволяет быстро выявить наиболее длинные участки маршрута.

Картографическая визуализация

Для наглядности результаты расчётов можно визуализировать на карте (choropleth map), показывая цветом длину сегментов маршрута. Такие карты упрощают восприятие и интерпретацию данных.

Дополнительные расчёты (время)

Добавив среднюю скорость транспорта, можно рассчитать продолжительность каждого сегмента маршрута. Это важный элемент планирования расписаний и оптимизации логистических процессов.

Практическое применение

Географические расчёты востребованы в бизнесе для оптимизации транспортных затрат, выбора мест расположения складов и пунктов выдачи товаров, а также в туристической отрасли.

Интеграция с внешними источниками

RapidMiner позволяет интегрироваться с внешними API, такими как Google Maps или OpenStreetMap, загружая данные о координатах и автоматизируя их расчёт в реальном времени.

Масштабирование процессов

Расчёты в RapidMiner легко масштабируются до тысяч или миллионов пар координат. Для больших объёмов данных рекомендуется использовать пакетную обработку или серверные расширения платформы.

Выводы и рекомендации

RapidMiner обеспечивает точный расчёт географических расстояний с минимальными временными затратами. Использование визуализации и дополнительных аналитических функций повышает качество и практическую ценность результатов.

