

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Линейная задача быстродействия»

Студент 315 группы А.А. Анашкина

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

1 Постановка задачи

Задана линейная система обыкновенных дифференциальных уравнений:

$$\dot{x} = Ax + Bu + f, \quad t \in [t_0, +\infty).$$

Здесь $x, f \in \mathbb{R}^2$, $A \in \mathbb{R}^{2 \times 2}$, $B \in \mathbb{R}^{2 \times 2}$, $u \in \mathbb{R}^2$. На значения управляющих параметров u наложено поточечное ограничение: $u \in \mathcal{P}$. Пусть \mathcal{X}_0 — начальное множество значений фазового вектора, \mathcal{X}_1 — целевое множество значений фазового вектора. Необходимо решить следующую задачу быстродействия:

$$\begin{cases}
\dot{x} = Ax + Bu + f, \\
x(t_0) \in \mathcal{X}_0, \\
u \in \mathcal{P}, \quad u = u(t), \\
x(t_1) \in \mathcal{X}_1, \quad t_1 \geqslant t_0, \\
\mathcal{J}[u(\cdot)] = t_1 - t_0 \to \inf\{u(\cdot)\}.
\end{cases} \tag{1}$$

Здесь t_0 — фиксированный момент времени. Также известны множества, для которых необходимо вычислить опорные функции и опорные множества:

$$\mathcal{X}_0 = \{x_0\},\$$

$$\mathcal{P} = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + \sigma x_2^2 \leqslant \zeta, \ \sigma x_1^2 + x_2^2 \leqslant \zeta\}, \quad \sigma, \zeta > 0,\$$

$$\mathcal{X}_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x_1 - \alpha| + |x_2 - \beta| \leqslant \gamma\}, \quad \alpha, \beta, \gamma > 0.$$

Также необходимо написать программу в среде MatLab, обладающую минимальным пользовательским интерфейсом, позволяющим ввести все параметры системы ОДУ, а также параметры численного метода. Она должна корректно определять, разрешима ли задача быстродействия, и если разрешима, то должно быть выведено приближённое время быстродействия:

$$T = t_1 - t_0 > 0.$$

Программа должна иметь возможность отображать все необходимые пользователю графики.

2 Теория, необходимая для решения задачи

2.1 Принцип максимума Понтрягина

Рассмотрим линейную задачу быстродействия 1.

Определение 1. Оптимальной парой будем называть $(x^*(\cdot), u^*(\cdot))$, удовлетворяющую всем условиям линейной задачи быстродействия.

Теорема 1. Пусть $(x^*(\cdot), u^*(\cdot))$ — оптимальная пара на $[t_0, t_1]$, являющаяся решением задачи быстродействия. Тогда существует функция $\psi(t)$ такая, что $\psi(t) \not\equiv 0, \ \dot{\psi} = -A^T \psi, \ \psi \in \mathbb{R}^2$. Выполняются условия:

Условие максимума:

$$\langle \psi(t), Bu^*(t) \rangle = \rho(\psi(t)|B\mathcal{P}) \quad \forall t \in [t_0, t_1].$$
 (2)

Условие трансверсальности на левом конце:

$$\langle \psi(t_0), x^*(t_0) \rangle = \rho(\psi(t_0) | \mathcal{X}_0). \tag{3}$$

Условие трансверсальности на правом конце:

$$\langle -\psi(t_1), x^*(t_1) \rangle = \rho(-\psi(t_1) | \mathcal{X}_1). \tag{4}$$

2.2 Опорные функции

Определение 2. Введём скалярное произведение $\langle \cdot, \cdot \rangle$: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ векторов $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$ в \mathbb{R}^n :

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

Определение 3. Пусть $Z \subseteq \mathbb{R}^n$, тогда опорной функцией множества Z будем называть функцию $\rho(l \mid Z) : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$, такую что:

$$\rho(l \mid Z) = \begin{cases} \sup\{\langle l, z \rangle | z \in Z\}, & Z \neq \emptyset, \\ -\infty, & Z = \emptyset. \end{cases}$$

Свойство 1 (Положительная однородность).

$$\rho(\alpha l \mid Z) = \alpha \rho(l \mid Z), \ \forall \alpha > 0, \ \forall l \in \mathbb{R}^n.$$

Свойство 2 (Аддитивность).

$$\rho(l \mid Z_1 + Z_2) = \rho(l \mid Z_1) + \rho(l \mid Z_2), \ \forall Z_1, Z_2 \neq \emptyset,$$

где сумма понимается в смысле Минковского. В частности, если $Z_2=\{z_2\}$ — множество из одной точки, то $\rho(l\mid Z_1+Z_2)=\rho(l\mid Z_1)+\langle l,z_2\rangle$.

Данные для анализа множества являются компактами, поэтому будем рассматривать следующую задачу оптимизации:

f(x,y) — функция двух пременных, $X=\{(x,y)\in\mathbb{R}^2|\psi(x,y)\leq 0\}\in\mathbb{R}^2,$

$$\begin{cases} f(x_0, y_0) \to \max, \\ \psi(x_0, y_0) \leqslant 0. \end{cases}$$

Метод множителей Лагранжа Memod множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y) = f(x,y) + \lambda \psi(x,y)$. Необходимые условия экстремума задаются системой уравнений, из которых определяются стационарные точки:

$$\begin{cases} \frac{\partial F}{\partial x} = 0, \\ \frac{\partial F}{\partial y} = 0, \\ \psi(x_0, y_0) = 0. \end{cases}$$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак d^2F . Если в стационарной точке $d^2F < 0$, то f(x,y) имеет в точке (x_0,y_0) условный максимум.

2.3 Вычисления для начального множества значений

Рассмотрим $\mathcal{X}_0 = \{x_0\}$ — одноточечное множество. По определению можем найти его опорную функцию:

$$\rho\left(\ell \mid \mathcal{X}_0\right) = \langle \ell, x_0 \rangle. \tag{5}$$

2.4 Вычисления для целевого множества значений

Рассмотрим $\mathcal{X}_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x_1 - \alpha| + |x_2 - \beta| \leqslant \gamma\}, \quad \alpha, \beta, \gamma > 0.$ Это ромб с центром в точке (α, β) и длиной полудиагонали γ . Рассмотрим $K_0^{2,2}$ — ромб с центром в нуле и диагоналями длины 2. По определению можно сказать, что:

$$\rho(l \mid K_0^{2,2}) = \max\{l_1, l_2, -l_1, -l_2\} = \max\{|l_1|, |l_2|\}.$$

Положим $c = (\alpha, \beta)$. Тогда используя свойство 1 и свойство 2 получим:

$$\rho(l \mid \mathcal{X}_1) = \langle l, c \rangle + \gamma \max\{|l_1|, |l_2|\}. \tag{6}$$

Таким образом, из геометрической интерпретации опорного множества можно сделать вывод, что оно содержит точки, являющиеся вершинами ромба, то есть $(\alpha, \beta - \gamma), (\alpha + \gamma, \beta), (\alpha, \beta + \gamma), (\alpha - \gamma, \beta)$.

2.5 Вычисления для множества ограничений на управление

Рассмотрим $\mathcal{P} = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + \sigma x_2^2 \leqslant \zeta, \ \sigma x_1^2 + x_2^2 \leqslant \zeta\}, \ \sigma, \zeta > 0$. Это множество представляет собой пересечение двух эллипсов с центром в точке (0,0). Заметим, что множество \mathcal{P} симметрично относительно осей Ox_1 и Ox_2 . Поэтому далее будем рассматривать множество при $x_1 \geqslant 0, x_2 \geqslant 0$. Рассчитаем опорную функцию для множества $\{(x_1, x_2) : x_1^2 + \sigma x_2^2 = \zeta\}$ с помощью метода Лагранжа.

$$\mathcal{L} = \ell_1 x_1 + \ell_2 x_2 + \lambda \left(x_1^2 + \sigma x_2^2 - \zeta \right),\,$$

$$\frac{\partial \mathcal{L}}{\partial x_1} = \ell_1 + 2\lambda x_1 = 0.$$

Отсюда получаем:

$$x_1 = -\frac{\ell_1}{2\lambda}. (7)$$

Аналогично дифференцируем \mathcal{L} по переменной x_2 и выражаем x_2 :

$$\frac{\partial \mathcal{L}}{\partial x_2} = \ell_2 + 2\sigma \lambda x_2 = 0.$$

$$x_2 = -\frac{\ell_2}{2\sigma\lambda} \tag{8}$$

Так же дифференцируем $\mathcal L$ по переменной λ :

$$\frac{\partial \mathcal{L}}{\partial \lambda} = x_1^2 + \sigma x_2^2 - \zeta = 0. \tag{9}$$

Подставим в 9 выражения 7 и 8:

$$\frac{\ell_1^2}{4\lambda^2} + \frac{\sigma\ell_2^2}{4\sigma^2\lambda^2} - \zeta = 0,$$

$$-4\sigma\lambda^2\zeta + \sigma\ell_1^2 + \ell_2^2 = 0.$$

Отсюда выражаем λ . Выбираем решение $\lambda < 0$, так как $x_1 > 0, x_2 > 0$:

$$\lambda = -\sqrt{\frac{\sigma\ell_1^2 + \ell_2^2}{4\sigma\zeta}} = -\sqrt{\frac{\ell_1^2}{4\zeta} + \frac{\ell_2^2}{4\sigma\zeta}}.$$

Подставим полученное значение в 7, 8:

$$\begin{cases} x_1 = \ell_1 \sqrt{\frac{\sigma\zeta}{\sigma\ell_1^2 + \ell_2^2}}, \\ x_2 = \frac{\ell_2}{\sigma} \sqrt{\frac{\sigma\zeta}{\sigma\ell_1^2 + \ell_2^2}}. \end{cases}$$

$$(10)$$

Теперь по определению можем найти опорную функцию множества:

$$\rho_1 = \ell_1 x_1 + \ell_2 x_2 = \sqrt{\zeta \ell_1^2 + \frac{\zeta}{\sigma} \ell_2^2}.$$
 (11)

Аналогично находим опорную функцию для второго эллипса $\{(x_1,x_2):\sigma x_1^2+x_2^2=\zeta\}$:

$$\rho_2 = \ell_1 x_1 + \ell_2 x_2 = \sqrt{\frac{\zeta}{\sigma} \ell_1^2 + \zeta \ell_2^2}.$$
 (12)

Рассмотрев Рис.1а, понимаем, что точка пересечения эллипсов играет важную роль при вычислении опорной функции множества. Определим её координаты, решив следующую систему:

$$\begin{cases} x_1^2 + \sigma x_2^2 = \zeta, \\ x_2^2 + \sigma x_1^2 = \zeta. \end{cases}$$
 (13)

Отсюда получаем, что:

$$\begin{cases} x_1^0 = \pm \sqrt{\frac{\zeta}{1+\sigma}}, \\ x_2^0 = \pm \sqrt{\frac{\zeta}{1+\sigma}}. \end{cases}$$
 (14)

Рис. 1: Графическое представление множества ${\cal P}$

Рассмотрим случай $\sigma>1$. Заметим, что значение опорной функции зависит от расположения рассматриваемой точки относительно прямой $x_1=x_2$. Тогда выше прямой $x_1=x_2$ граница множества представляет собой дугу эллипса $x_1^2+\sigma x_2^2=\zeta$, а ниже прямой $x_2^2+\sigma x_1^2=\zeta$. Пояснением к этому служит Рис1а. Тогда:

$$x_1 > x_2 \Rightarrow \frac{l_2}{l_1} < \frac{1}{\sigma} \Rightarrow \rho = \rho_2,$$

$$x_1 < x_2 \Rightarrow \frac{l_2}{l_1} > \sigma \Rightarrow \rho = \rho_1.$$

Итак, при $\sigma > 1$ получим:

$$\rho\left(\ell,\mathcal{P}\right) = \begin{cases}
\sqrt{\frac{\zeta}{\sigma}\ell_1^2 + \zeta\ell_2^2}, & \frac{|\ell_2|}{|\ell_1|} < \frac{1}{\sigma}, \\
\sqrt{\zeta\ell_1^2 + \frac{\zeta}{\sigma}\ell_2^2}, & \frac{|\ell_2|}{|\ell_1|} > \sigma, \\
\sqrt{\frac{\zeta}{1+\sigma}}\left(|\ell_1| + |\ell_2|\right), & \frac{1}{\sigma} \leqslant \frac{|\ell_2|}{|\ell_1|} \leqslant \sigma.
\end{cases}$$
(15)

Запишем также соответствующее значение опорного вектора:

$$\begin{cases} x_1^* = \frac{\ell_1}{\sigma} \sqrt{\frac{\sigma\zeta}{\ell_1^2 + \sigma\ell_2^2}}, \\ x_2^* = \ell_2 \sqrt{\frac{\sigma\zeta}{\ell_1^2 + \sigma\ell_2^2}}. \\ \frac{|\ell_2|}{|\ell_1|} < \frac{1}{\sigma}; \end{cases}$$
(16)

$$\begin{cases}
x_1^* = \ell_1 \sqrt{\frac{\sigma\zeta}{\sigma\ell_1^2 + \ell_2^2}}, \\
x_2^* = \frac{\ell_2}{\sigma} \sqrt{\frac{\sigma\zeta}{\sigma\ell_1^2 + \ell_2^2}}.
\end{cases} \frac{|\ell_2|}{|\ell_1|} > \sigma;$$
(17)

$$\begin{cases} x_1^* = \sqrt{\frac{\zeta}{1+\sigma}} \frac{|\ell_1|}{\ell_1}, \\ x_2^* = \sqrt{\frac{\zeta}{1+\sigma}} \frac{|\ell_2|}{\ell_2}. \end{cases} \quad \frac{1}{\sigma} \leqslant \frac{|\ell_2|}{|\ell_1|} \leqslant \sigma.$$
 (18)

Рассмотрим случай $\sigma < 1$. Теперь выше прямой $x_1 = x_2$ располагается граница эллипса $\sigma x_1^2 + x_2^2 = \zeta$. Пояснением к этому служит 1b. Аналогично рассуждениям выше получим следующую опорную функцию:

$$\rho\left(\ell,\mathcal{P}\right) = \begin{cases}
\sqrt{\frac{\zeta}{\sigma}\ell_{1}^{2} + \zeta\ell_{2}^{2}}, & \frac{|\ell_{2}|}{|\ell_{1}|} > \frac{1}{\sigma}, \\
\sqrt{\zeta\ell_{1}^{2} + \frac{\zeta}{\sigma}\ell_{2}^{2}}, & \frac{|\ell_{2}|}{|\ell_{1}|} < \sigma, \\
\sqrt{\frac{\zeta}{1 + \sigma}} \left(|\ell_{1}| + |\ell_{2}|\right), & \sigma \leqslant \frac{|\ell_{2}|}{|\ell_{1}|} \leqslant \frac{1}{\sigma}.
\end{cases}$$
(19)

Опорные векторы выглядят следующим образом:

$$\begin{cases} x_1^* = \frac{\ell_1}{\sigma} \sqrt{\frac{\sigma\zeta}{\ell_1^2 + \sigma\ell_2^2}}, \\ x_2^* = \ell_2 \sqrt{\frac{\sigma\zeta}{\ell_1^2 + \sigma\ell_2^2}}. \end{cases} \frac{|\ell_2|}{|\ell_1|} > \frac{1}{\sigma};$$
 (20)

$$\begin{cases}
x_1^* = \ell_1 \sqrt{\frac{\sigma\zeta}{\sigma\ell_1^2 + \ell_2^2}}, \\
x_2^* = \frac{\ell_2}{\sigma} \sqrt{\frac{\sigma\zeta}{\sigma\ell_1^2 + \ell_2^2}}, \\
x_1^* = \sqrt{\frac{\zeta}{1 + \sigma}} \frac{|\ell_1|}{\ell_1}, \\
x_2^* = \sqrt{\frac{\zeta}{1 + \sigma}} \frac{|\ell_2|}{\ell_2}.
\end{cases} \qquad (21)$$

$$\begin{cases} x_1^* = \sqrt{\frac{\zeta}{1+\sigma}} \frac{|\ell_1|}{\ell_1}, \\ x_2^* = \sqrt{\frac{\zeta}{1+\sigma}} \frac{|\ell_2|}{\ell_2}. \end{cases} \quad \sigma \leqslant \frac{|\ell_2|}{|\ell_1|} \leqslant \frac{1}{\sigma}.$$
 (22)

3 Описание численного алгоритма

3.1Алгоритм решения

- 1. Осуществляем перебор начального условия сопряжённой системы $\psi(t_0)$ по единичной окружности.
- 2. Решаем сопряжённую систему $\dot{\psi} = -A^T \psi$ с найденным начальным значением $\psi (t_0)$.
- 3. Используя условие максимума 2, находим u(t) как опорный вектор множества $\mathcal P$ в направлении $B^{T}\psi(t)$.
- 4. Находим x(t), решив дифференциальное уравнение $\dot{x} = Ax + Bu + f$ с начальным условием $x(t_0)$.
- 5. С помощью перебора по $\psi(t_0)$ находим минимальное время t^* перехода от множества \mathcal{X}_0 ко множеству \mathcal{X}_1 . Таким образом, находим оптимальную пару $(x^*(t), u^*(t))$.

3.2 Замечания к решению

- 1. В случае, когда матрица В является вырожденной или нулевой, используем сингулярное разложение матрицы и заменяем нулевые собственные значения малой величиной, заданной как параметр.
- 2. Ошибку решения вычисляем, используя условие трансверсальности на правом конце 4, по формуле $\delta = |\rho(-\psi(t_1)|\mathcal{X}_1) - \langle -\psi(t_1), x^*(t_1) \rangle|.$
- 3. После первого запуска программы с фиксированными параметрами получаем минимальное значение времени t^* . Далее пользователь может нажать на кнопку улучшения результатов. Тогда за верхнюю оценку времени быстродействия принимается t^* , между каждыми двумя уже известными $\psi(t_0)$ добавляются новые значения, и для них производится рассчет по уже известному алгоритму. Таким образом, пересчёт использует и не изменяет ранее полученные результаты.

4 Примеры работы алгоритма

4.1 Пример 1

Ниже представлены значения параметров и матриц, необходимые для решения задачи.

$$A = \begin{pmatrix} -2 & -1 \\ -1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, \quad f = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

$$t_0 = 0, \ t_1 = 0.5, \ \mathcal{X}_0 = (1,0), \ \alpha = 2, \ \beta = 2, \ \gamma = 1, \ \eta = 1, \ \sigma = 1.$$

Число итераций равно 100.

При данных значениях параметров получили $t^*=0.4370,\ \delta=0.0052.$

Рис. 2: $x_2(x_1)$

Рис. 3: $u_2(u_1)$

Рис. 4: Графики $x\left(t\right)$

Рис. 5: Графики $u\left(t\right)$

4.2 Пример 2

Рассмотрим пример, в котором множество \mathcal{X}_0 находится очень близко к границе множества \mathcal{X}_1 . Ниже представлены значения параметров и матриц, необходимые для решения задачи.

$$A = \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$t_0 = 0, \ t_1 = 0.5, \ \mathcal{X}_0 = (3, 1.9), \ \alpha = 2, \ \beta = 2, \ \gamma = 1, \ \eta = 0.5, \ \sigma = 4.$$

Число итераций равно 100.

При данных значениях параметров получили $t^*=0.0125,\ \delta=0.0020.$ Для удобства график увеличен.

Рис. 6: $x_2(x_1)$

4.3 Пример 3

Рассмотрим пример, иллюстрирующий разрывную зависимость t^{*} от параметров системы.

$$A = \begin{pmatrix} -10 & -1 \\ 0.5 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, \quad f = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

$$t_0 = 0, \ t_1 = 0.7, \ \mathcal{X}_0 = (4.5, 2.3), \ \alpha = 2, \ \beta = 2, \ \gamma = 1, \ \eta = 1, \ \sigma = 3.$$

Число итераций равно 100.

При данных значениях параметров получили $t^*=0.2107,\ \delta=0.2749.$

Рис. 7: $x_2(x_1)$, $\mathcal{X}_0 = (4.5, 2.3)$

Далее пусть $\mathcal{X}_0=(4.5,2.2)$. Теперь получим $t^*=0.1892,\ \delta=0.2798$.

Рис. 8: $x_2(x_1)$, $\mathcal{X}_0 = (4.5, 2.2)$

Таким образом, убедились в том, что t^* не зависит непрерывно от параметров системы.

4.4 Пример **4**

Теперь рассмотрим, как присходит улучшение решения. Ниже представлены значения параметров и матриц, необходимые для решения задачи.

$$A = \begin{pmatrix} -2 & 2 \\ -2 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}, \quad f = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$t_0 = 0, \ t_1 = 0.15, \ \mathcal{X}_0 = (3, 0.5), \ \alpha = 2, \ \beta = 2, \ \gamma = 1, \ \eta = 2, \ \sigma = 1.$$

Число итераций равно 20.

При первом запуске программы получили $t^*=0.3587,\;\delta=0.2031.$

После локального улучшения получили $t^* = 0.3551, \ \delta = 0.3156.$

Далее увеличим число итераций до 100 и запустим программу. Получим $t^*=0.3325,$ $\delta=0.0249.$

(а) Результаты до улучшения.

(b) Локальное улучшение.

(с) Глобальное улучшение.

Рис. 9: Результаты улучшения решения.

Результаты доказывают, что время быстродействия и ошибка уменьшились. Таким образом, проиллюстрировали глобальное и локальное улучшение решения.

Список литературы

- $[1]\ https://sawiki.cs.msu.ru/index.php/Onopная функция множества.$
- [2] Арутюнов А. В. Лекции по выпуклому и многозначному анализу. ФИЗМАТ-ЛИТ, 2014.