Some notes on Ω_j in presheaf toposes

Sina Hazratpour* sinahazratpour@gmail.com

October 26, 2017

Abstract

As we discussed given a local operator¹ $j: \Omega \to \Omega$ in a topos \mathcal{E} one can obtain a retract Ω_j of Ω by taking equalizer of id and j. We remarked that both Ω and Ω_j are injective objects of \mathcal{E} and Ω_j is precisely the image of j. In these notes, I will show how to obtain the object Ω_j in $\mathcal{E} \simeq Psh(\mathcal{C}, \mathbb{J})$ and j is the classifying morphism of subobject $\mathbb{J} \hookrightarrow \Omega$. My reference for some of the material here is (MacLane & Moerdijk 1992), particularly section 5.1.

1 Closed sieves

Suppose S is a sieve on object U of category C. For every composable pair of morphisms $f: V \to U$ and $g: W \to V$, we have

$$\updownarrow \frac{S \ni fg}{f^*S \ni g}$$

By putting $g = id_V$, we have $f \in S$ if and only if f^*S is the maximal sieve $\mathcal{C} \downarrow V$. Furthermore, given a Grothendieck topology² \mathbb{J} on \mathcal{C} we say a sieve S on U covers a morphism $f: V \to U$ if $f^*S \in \mathbb{J}(V)$. We denote this by $S \triangleright f^{3}$ We then have⁴

$$\updownarrow \frac{S \blacktriangleright f \circ g}{f^* S \blacktriangleright g} \tag{1}$$

^{*}School of Computer Science, University of Birmingham, Birmingham, UK.

 $^{^1{\}rm Also}$ known as Lawvere-Tierney topology.

²A better name is coverage.

³This covering relation is mentioned implicitly without the notation in chapters 2 and 3 of (MacLane & Moerdijk 1992). My feeling is that by making it explicit not only will there be less verbiage but also it will be useful for forming derivation trees of proofs. Perhaps a fancier way of defining the covering relation ▶ is to say it is a subfunctor of product functor $\langle Sub \circ y, \mathbf{el} \circ y \rangle : \mathcal{C} \to \mathfrak{Cat} \times \mathfrak{Cat}^{\mathrm{op}}$ where $\mathbf{el} : Psh(\mathcal{C}) \to \mathfrak{Cat}$ assign to each presheaf on \mathcal{C} its category of elements.

⁴The form of this derivation suggests that there must some adjunction between suitable categories lurking around.

for every morphism $g: W \to V$. Notice that $S \triangleright id_U$ iff S covers U iff $S \in \mathbb{J}(U)$. Moreover, if $S \triangleright id_U$ then $S \triangleright f$ for any f with cod(f) = U. Also, any sieve S covers any of its members: $S \ni f \implies S \triangleright f$.

Remark 1.1. Stability condition of Grothendieck topology \mathbb{J} can be formulates as

$$\Downarrow \frac{S \blacktriangleright f}{S \blacktriangleright f \circ a} \tag{2}$$

and transitivity is to say for any sieve R on U

$$\Downarrow \frac{S \triangleright f \text{ and } R \triangleright S}{R \triangleright f} \tag{3}$$

where $R \triangleright S$ is short for $R \triangleright f$ for all $f \in S$.

Corollary 1.2. Since we always have $R \ni f \implies R \triangleright f$ for any sieve R on U and any morphisms $f: V \to U$, from (3) above we conclude that

$$\Downarrow \frac{S \blacktriangleright f \text{ and } S \subset R}{R \blacktriangleright f} \tag{4}$$

Definition 1.3. A sieve M on object U is **closed** whenever for any morphisms $f: V \to U$, if $M \triangleright f$ then $M \ni f$.

Remark 1.4. By (1), pulling back a closed sieve gives a closed sieve. That is,

$$\Downarrow \frac{M : \text{closed}}{f^*M : \text{closed}}$$

Example 1.5. Take the unit circle \mathbb{T} represented by $\{z \in \mathbb{C} : ||z|| = 1\}$ where \mathbb{C} is the complex plane. Take the subspace topology on \mathbb{T} inherited from Euclidean topology on \mathcal{C} . Choose opens $U_0 = \{e^{it} : -0.00001 < t < \pi\}$ and $U_1 = \{e^{it} : \pi < t < 2\pi + 0.00001\}$. Then $\downarrow U_0 \cup \downarrow U_1$ is a sieve on \mathbb{T} which is not closed. If we tweak U_0 and U_1 a bit we get U_0' and U_1' as the upper and lower open semicircles. Then the sieve $\downarrow U_0 \cup \downarrow U_1$ is closed but not covering.

1.1 Closure of sieves

For any sieve S on U we want to construct the smallest closed sieve \overline{S} on U which contains S. The characteristic morphism of $\mathbb{J} \hookrightarrow \Omega$, j, is given by $j_U(S) = \{h : \mathbf{I} \to U | S \triangleright h\}$. We use closure operator associate to j to define \overline{S} ; form the pullback

$$\begin{array}{c|c} \overline{S} & \stackrel{!}{\longrightarrow} 1 \\ \downarrow & \downarrow \\ yU & \stackrel{j \circ \chi_S}{\longrightarrow} \Omega \end{array}$$

So,

$$\overline{S}(V) = \{h : V \to U | j(h^*S) = \text{maximal sieve on V} \}$$

$$= \{h : V \to U | h^*S \triangleright 1_V \}$$

$$= \{h : V \to U | S \triangleright h \}$$

Therefore, $\overline{S} = \{h | \operatorname{cod}(h) = U \text{ and } S \triangleright h\}$. For start notice that S covers its own members, So, indeed $S \subset \overline{S}$. Stability condition of Grothendieck topology implies that \overline{S} is a sieve. Following derivation shows that \overline{S} is closed.

$$\frac{\overline{S} \triangleright f \qquad S \triangleright \overline{S}}{\frac{S \triangleright f}{\overline{S} \ni f}}$$

Any inclusion $S \hookrightarrow M$ of S into a closed sieve factors through $S \hookrightarrow \overline{S}$. Following derivation exhibits this fact:

$$\begin{array}{c}
\overline{S} \ni f \\
\hline
S \triangleright f \\
\hline
M \triangleright f \\
\hline
M \ni f
\end{array}$$

Exercise 1.6. Closure operation commutes with restriction (pullback) operation, that is for any morphism $g: V \to U$ in C, $g^*(\overline{S}) = \overline{g^*S}$

2 Defining Ω_i in presheaf toposes

Suppose a site $(\mathcal{C}, \mathbb{J})$ is given. In the topos $\mathcal{E} = Psh(\mathcal{C}, \mathbb{J})$ the subobject classifier is computed by $\Omega(U) = \{\text{Sieves on } U\}$. Define Ω_i to be presheaf obtained as the equalizer

$$\Omega_j \succ -\stackrel{e}{-} \rightarrow \Omega \xrightarrow{id} \Omega$$

We then have for every U in \mathcal{C} ,

$$\begin{split} \Omega_j(U) &= \{ \text{Sieves } S \text{ on } U | \ j_U(S) = S \} \\ &= \{ \text{Sieves } S \text{ on } U | \ \{ V \xrightarrow{h} U : S \blacktriangleright h \} = S \} \\ &= \{ \text{Closed sieves } S \text{ on } U \} \end{split}$$

 Ω_j acts on morphism by restriction (i.e. pulling back) of closed sieves. See (1.4). More explicitly $\Omega_j(f)(M) = f^*M$.

First we show that Ω_i is J-separated presheaf and ultimately a J-sheaf.

Proposition 2.1. Ω_j just defined is separated presheaf, meaning that there is at most one way to amalgamate any compatible family of local sections to get a global section.

Proof. Let U be any object of \mathcal{C} and S a covering sieve on U. Take two global sections M and N in $\Omega_j(U)$ and suppose they yield equal local sections on S. Thus we have two closed sieves M and N on U with $f^*M = f^*N$ for any $f \in S$. In particular $M \cap S = N \cap S$ as sieves on U. We prove that M = N.

$$\frac{M\ni f}{M\blacktriangleright f} \qquad S\blacktriangleright f$$

$$\frac{M\cap S\blacktriangleright f}{N\cap S\blacktriangleright f}$$

$$\frac{N\blacktriangleright f}{N\ni f}$$

Proposition 2.2. Ω_j just defined is a sheaf, meaning that there is exactly one way to amalgamate any compatible family of local sections to get a global section.

Proof. What we need to show is existence of such amalgamation. Consider an object U in \mathcal{C} and a sieve S on U. Take any compatible family $\{M_{\rho} \in \Omega_{j}(\text{dom}(\rho)) : \rho \in S\}$ of closed sieves indexed by elements of sieve S. The natural thing to do is to combine all of these closed sieves to obtain a sieve on U. So, we form $M = \{\rho \circ g : g \in M_{\rho}\}$. One easily sees that M is indeed a sieve on U. However, it need not be closed. Again the natural thing to do is to consider its closure $\overline{M} = \{h : . \to U : M \triangleright h\}$. It is a closed sieve with right amalgamation property, that is $\rho^*\overline{M} = M_{\rho}$ for any ρ in S. To show this one only needs to prove that $\rho^*M = M_{\rho}$ because of (1.6). $M_{\rho} \subset \rho^*M$ is true by definition of M. For other way around, we have:

$$\frac{\rho^*M\ni f}{M\ni \rho f}$$

$$\exists \rho'\in S\ \exists f'\in M_{\rho'}\ .\ \rho'f'=\rho f$$

$$(f')^*M_{\rho'}=f^*M_{\rho}$$
maximal sieve on
$$\operatorname{dom}(f)=f^*M_{\rho}$$

$$\frac{M_{\rho}\blacktriangleright f}{M_{\rho}\ni f}$$

Remark 2.3. The subobject classifier morphism true : $1 \mapsto \Omega$ factors through inclusion $\Omega_j \mapsto \Omega$ simply because maximal sieves are closed.

4

Suppose a subobject $A \to E$ in topos \mathcal{E} is characterized by the morphism (or predicate if you like) $\chi_A : E \to \Omega$. Then its closure $\overline{A} \to E$ is characterized by $j \circ \chi_A$. A is closed iff $j \circ \chi_A = \chi_A$, which is to say χ_A factors through Ω_j :

Thus we have isomorphism

$$\phi \colon Hom_{\mathcal{E}}(E, \Omega_j) \cong ClSub_{\mathcal{E}}(E) \colon \psi \tag{5}$$

natural in E; where $\phi(a) = (ea)^*(\mathsf{true})$ and $\psi(A) = (\chi_A)_j$. Let us examine this isomorphism for representable presheaves:

$$\Omega_i(U) \cong Hom_{\mathcal{E}}(yU,\Omega_i) \cong ClSub(yU) \cong \{ \text{ closed sieves on } U \}$$

This of course establishes Ω_j as **closed subobject classifier** of \mathcal{E} . We know what Ω_j looks like in $Psh(\mathcal{C}, \mathbb{J})$, and now we want to know what closed subsheaves of a given presheaf are. Here is something to keep in mind: Sub-presheaves of sheaves need not be sheaves themselves. For instance take sheaf C_0 of real valued continuous functions on real line \mathbb{R} with its standard Euclidean topology. Presheaf BC_0 of real-valued bounded continuous functions on \mathbb{R} is a subobject of C_0 in $Psh(\mathcal{O}(\mathbb{R}), \mathbb{J}_{\mathbb{R}})$.

Lemma 5.1.4 (MacLane & Moerdijk 1992) proves that in any elementary topos \mathcal{E} equipped with a local operator $j: \Omega \to \Omega$ and $A \mapsto E$ any subobject of a j-sheaf E, A is a j-sheaf iff A is a closed subobject of E. We would like to give a more down-to-earth description of a closed sub-presheaf of a presheaf. Notice that by discussion above we have that A is a closed sub-presheaf of presheaf E if and only if its classifying natural transformation $\chi_A \colon E \to \Omega$ factors through Ω_j . This means for any U in \mathcal{C} and any local section $x \in E(U)$,

sieve $\chi_A(U)(s) = \{ \stackrel{f}{\to} U | x \cdot f \in A(\text{dom}(f)) \}$ is closed. This is equivalent to the following rule:

$$\Downarrow \frac{\{ \stackrel{g}{\rightarrow} V | x \cdot fg \in A(\text{dom}(g)) \} \in \mathbb{J}(V)}{x \cdot f \in A(V)}$$
(6)

for any $f: V \to U$. Setting f = id, we get:

$$\Downarrow \frac{\{\stackrel{g}{\rightarrow} U | x \cdot g \in A(\text{dom}(g))\} \in \mathbb{J}(U)}{x \in A(U)}$$

This leads to the following corollary:

Corollary 2.4. Let E be as sheaf on a site $(\mathcal{C}, \mathbb{J})$, and A a sub-presheaf of E. A is a sheaf iff for every object U of \mathcal{C} and every section $x \in E(U)$ and for every covering sieve S of U, we have $x \in A(U)$ whenever $x \cdot f \in A(V)$ for every $f : V \to U$ in S.

We can also compute the closure of any sub-presheaf $A \hookrightarrow E$:

$$\begin{split} \overline{A}(U) &= \{x \in E(U) | \ j\chi_A(U)(x) = \text{maximal sieve on } U\} \\ &= \{x \in E(U) | \ j(\{\ \stackrel{f}{\to}\ U | \ x \cdot f \in A(U)\}) = \text{maximal sieve on } U\} \\ &= \{x \in E(U) | \ \{V \stackrel{g}{\to}\ U | \{\ \stackrel{f}{\to}\ U | \ x \cdot f \in A(U)\} \blacktriangleright g\} = \text{maximal sieve on } U\} \\ &= \{x \in E(U) | \ \{g | \ \{W \stackrel{k}{\to}\ V | \ x \cdot gk \in A(W)\} \in \mathbb{J}(V)\} = \text{maximal sieve on } U\} \\ &= \{x \in E(U) | \ \{\stackrel{k}{\to}\ U | \ x \cdot k \in A(\text{dom}(k))\} \in \mathbb{J}(U)\} \\ &= \{x \in E(U) | \ \exists S \in \mathbb{J}(U) \forall f \in S, \ x \cdot f \in A(\text{dom}(f))\} \end{split}$$

Example 2.5. Every locale L has a canonical Grothendieck topology \mathbb{J}_{can} . This gives rise to local operator in Psh(L). Suppose both $A \rightarrowtail E$ in Psh(L). \overline{A} is again a presheaf and is given by:

$$\overline{A}(u) = \{x \in E(U) | \exists \{u_i\}_{i \in I} \text{ in } L \text{ such that } u = \bigvee u_i \text{ and } \forall i. \ x|_{u_i} \in A(u_i)\}$$

Example 2.6. Take locale of real numbers \mathbb{R} . Consider presheaf BC_0 of real-valued bounded continuous functions as subpresheaf of the sheaf C_0 of real-valued continuous functions. Then, for instance $tan(\pi x) \in \overline{BC_0}(\frac{-1}{2}, \frac{1}{2})$ but $tan(\pi x) \notin BC_0(\frac{-1}{2}, \frac{1}{2})$. Indeed, $\overline{BC_0} = C_0$

3 A bigger picture of things

A bigger picture I got from reading (MacLane & Moerdijk 1992) is as follows: Start with an elementary topos \mathcal{E} equipped with a local operator j. Our example of his elementary topos in these notes was $Psh(\mathcal{C}, \mathbb{J})$ and j the locale operator associated to the Grothendieck topology \mathbb{J} . One defines a j-sheaf by saying an object F of \mathcal{E} is a j-sheaf whenever every dense⁵ subobject $m: A \rightarrow E$ in \mathcal{E} , pre-composition with m induces a bijection of sets

 $^{^{5}}m$ is dense if $\overline{m} = 1_{E}$.

 $Hom_{\mathcal{E}}(E,F) \to Hom_{\mathcal{E}}(A,F)$. Then one shows category of j-dense objects form a subtopos $Sh_j(\mathcal{E})$ where the lex left adjoint to embedding is sheafification functor $a \colon \mathcal{E} \to Sh_j(\mathcal{E})$. By classifying property of Ω in \mathcal{E} we have:

$$Hom_{\mathcal{E}}(E,\Omega) \cong Sub_{\mathcal{E}}(E)$$

natural in object E. We also mentioned that Ω_j is a closed subobject classifier in \mathcal{E} :

$$Hom_{\mathcal{E}}(E,\Omega_j) \cong ClSub_{\mathcal{E}}(E)$$

Moreover by the fact that Ω_j is a j-sheaf and using adjunction $a \dashv inc$, we have:

$$Sub_{Sh_{j}(\mathcal{E})}(aE) \cong Hom_{Sh_{j}(\mathcal{E})}(aE, \Omega_{j}) \cong Hom_{\mathcal{E}}(E, \Omega_{j}) \cong ClSub_{\mathcal{E}}(E)$$

In particular, if E is a sheaf then $Sub_{Sh_{j}(\mathcal{E})}(E) = ClSub_{\mathcal{E}}(E)$. In topos of presheaves this implies that a sub-presheaf of a sheaf is a sheaf itself iff it is a closed sub-presheaf.

References

MacLane, S. & Moerdijk, I. (1992), 'Sheaves in geometry and logic', *Springer-Verlag New York*.