Chapter-2 Complex Number

AI24BTECH11032 Shreyansh Sonkar

- 7) If $1,a_1,a_2,a_3....a_{n-1}$ are the *n* roots of unity, then show that $(1-a_1)(1-a_2)(1-a_3)....(1-a_{n-1}) = n$ (1984- 2 Marks).
- 8) Show that the area of the triangle on the Argand diagram formed by the complex numbers z, iz & z + iz is $\frac{1}{2}|z|^2$.

(1986-2 Marks).

9) Let $\mathbf{Z_1} = 10 + 6i$ and $\mathbf{Z_2} = 4 + 6i$. if \mathbf{Z} is any complex number such that the argument of $\frac{(Z-Z_1)}{(Z-Z_2)}$ is $\frac{\pi}{4}$ then prove that $Z - 7 - 9i = 3\sqrt{2}$

(1990-4 Marks).

- 10) if $iz^3 z^2 z + \iota = 0$ then show that |z| = 1 (1995-5 Marks).
- 11) If $|Z| \le 1$, $|W| \le 1$, show that $(Z W)^2 \le (|Z| |W|)^2 + (\arg Z \arg W)^2$ (1995-5 Marks).
- 12) Find all non-zero complex numbers **Z** satisfying \bar{Z} = iZ^2

(1996-2 Marks).

13) Let $\mathbf{z_1}$ and $\mathbf{z_2}$ be roots of the equation $z^2 + pz + q = 0$, where the coefficients \mathbf{p} and \mathbf{q} may be complex numbers. Let \mathbf{A} and \mathbf{B} represent z_1 and z_2 in the complex plane . if $\angle \mathbf{ABC} = \alpha \neq 0$ and $\mathbf{OA} = \mathbf{OB}$, where \mathbf{O} is the origin, prove that $p^2 = 4q \cos^2\left(\frac{\alpha}{2}\right)$.

(1997-5 Marks)

14) For complex number **z** and **w**,prove that $|z|^2 w - |w|^2 z = z - w$ if and only if z = w or $\bar{w} = 1$.

(1999-10 Marks).

15) Let a complex number α , $\alpha \neq 1$, be a root of the equation z^{p+q} - z^p - z^q +1=0, where **p**,**q** are the distinct primes. Show that either $1 + \alpha + \alpha^2 + ... + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + ... + \alpha^{q-1} = 0$, but not both together.

(2002-5 Marks)

16) If $\mathbf{z_1}$ and $\mathbf{z_2}$ are two complex number such that $|z_1 < 1 < |z_2|$ then prove that $\left| \frac{1-z_1\bar{z}_2}{z_1-z_2} \right| < 1$.

(2003-2 Marks)

17) Prove that there exists no complex number **z** such that $|z|_{1,\frac{1}{3}}$ and $\sum_{r=1}^{n} a_r z^r = 1$ where $|a_r|_{1,2}$.

(2003-2 Marks)

18) Find the centre and radius of circle given by $\left|\frac{z-\alpha}{\beta}\right| = k, k \neq 1$ where, $z=x+i, \alpha=\alpha_1+i\alpha_2$, $\beta=\beta_1+i\beta_2$.

(2004-2 Marks)

19) If one the vertices of the square circumscribing the circle $|z - 1| = \sqrt{2}$ is $2 + \sqrt{3}i$ find the other vertices of the square.

(2005-4 Marks)

PASSAGE - 1

Let A,B,C be three sets of complex number as defined below

$$\mathbf{A} = \{z : | \operatorname{Im} z \ge 1\}$$

B={
$$z: |z-2-i|=3$$
}

$$C = \{z: Re((1-i)z) = \sqrt{2}\}$$

a) The number of element in the $\mathsf{set} A \cap B \cap C$ is

(2008)

- (a) 0
- (b) 1
- (c) 2
- (d) ∞

b) Let **z** be any point in**A** \cap **B** \cap **C** Then, $|z + 1 - i|^2 + |z - 5 - i|^2$ lies between

(2008)

- i) 25 and 29
- iii) 35 and 39
- ii) 30 and 34
- iv) 40 and 44

c) Let **z** be any point **A B C** and let **w** be any point satisfying |w-2-i| < 3. Then, |z|-|w|+3 lies between

(2008)

- i) -6 and 3
- iii) -6 and 6
- ii) -3 and 6
- iv) -3 and 9