

ством, что $B_M(e_s, e_t) = (\eta_s | \eta_t)$ для $s, t \in S$. Следовательно, она положительна. Так как η_s линейно зависимы (§ 3, № 9, предложение 8), то она вырождена.

Таким образом, мы можем применить к M предыдущие построения. В тех же обозначениях, что и ранее, имеем $(\epsilon_s | \epsilon_t) = (\eta_s | \eta_t)$, и существует, причем единственный, изоморфизм φ гильбертовых пространств, отображающий T на пространство переносов в A , так что $\varphi(\epsilon_s) = \eta_s$. Пусть a и b — две различные вершины камеры C_0 и s_0 — отражение из S , для которого $a \notin N_{s_0}$. Пусть, далее, $\lambda = (\eta_{s_0} | a - b)$ и ψ — аффинная биекция пространства A_M на A , определенная формулой

$$\psi(a_{s_0} + x) = a + v_{s_0} \lambda \varphi(x) \quad \text{для } x \in T.$$

Отсюда сразу видно, что $\psi(L_s) = N_s$ при всех $s \in S$ и что ψ переводит скалярное произведение на A_M в некоторое кратное скалярного произведения на A . Тотчас приходим к выводу что, ψ коммутирует с действием W . Наконец, единственность ψ очевидна, потому что a_s , например, есть единственная точка в A_M , инвариантная относительно отражений $t \in S$, $t \neq s$.

§ 5. Инварианты в симметрической алгебре

1. Ряд Пуанкаре градуированной алгебры

Пусть K — коммутативное кольцо с единицей, отличное от 0. Пусть M — градуированный K -модуль типа \mathbf{Z} и M_n — множество однородных элементов из M степени n . Предположим, что M_n для каждого n есть *свободный модуль конечного типа*. Тогда ранг $\operatorname{rg}_K(M_n)$ определен при всех n (Ком. алг., гл. II, § 5, № 3).

ОПРЕДЕЛЕНИЕ 1. Если существует $n_0 \in \mathbf{Z}$, такое, что $M_n = 0$ при $n \leq n_0$, то формальный ряд $\sum_{n \geq n_0} \operatorname{rg}_K(M_n) T^n$, являющийся элементом кольца $\mathbf{Q}((T))$, называется рядом Пуанкаре модуля M и обозначается символом $P_M(T)$.

Пусть M' — другой градуированный K -модуль типа \mathbf{Z} и $(M'_n)_{n \in \mathbf{Z}}$ — его градуировка. Предположим, что M'_n равно нулю для всех n , меньших некоторого числа. Тогда

$$P_{M \oplus M'}(T) = P_M(T) + P_{M'}(T), \tag{1}$$

и если снабдить $M \otimes_K M'$ полной градуировкой (Алг., гл. II, 3-е изд., § 11, № 5), то

$$P_{M \otimes M'}(T) = P_M(T) P_{M'}(T). \tag{2}$$

(Если система (W, S) гиперболического типа, то, как мы видели, $(e_s^* \cdot e_s^*) \leq 0$ для любого $s \in S$ — в обозначениях упражнения 12. Сужение B_M на гиперплоскость $E(s)$, ортогональную к e_s^* , будет поэтому ≥ 0 . Так как $E(s)$ порождена всеми e_t , $t \neq s$, то мы получаем (H_2) . Обратно, предположим, что (H_1) и (H_2) выполнены. Пусть $x = \sum_s a_s e_s$ — элемент из E , для которого $x \cdot x < 0$, и пусть x_+ (соотв. x_-) — сумма тех $a_s e_s$, для которых $a_s > 0$ (соотв. ≤ 0). Показать, что тогда либо $x_+ \cdot x_+ < 0$, либо $x_- \cdot x_- < 0$. Если V — открытый симплексиальный конус, порожденный всеми e_s , и H — множество $x \in E$, таких, что $x \cdot x < 0$, то существует связная компонента H_0 множества H , пересекающая V . Используя (H_2) , показать, что H_0 не пересекает стенок конуса V , т. е. $H_0 \subset V$. Получить отсюда, что форма $B_M(x, y)$ невырождена и имеет сигнатуру $(n - 1, 1)$ и что C содержится в $-H_0$, откуда следует, что (W, S) имеет гиперболический тип.)

14) Показать, что для того чтобы (W, S) имела компактный гиперболический тип (см. упражнение 12), необходимо и достаточно выполнение следующих двух условий:

(H_1) форма B_M неположительна;

(HC) для любого подмножества $T \subset S$, отличного от S , группа W_T конечна (т. е. форма $B_M(T)$ положительна и невырождена).

(Использовать упражнения 12 и 13.)

В частности, система Кокстера гиперболического типа ранга 3 имеет компактный гиперболический тип в том и только том случае, когда все $m(s, s')$ конечны (см. упражнение 4).

¶ 15) * а) Показать, что следующие девять графов¹⁾ имеют компактный гиперболический тип и что с точностью до изоморфизма ими исчерпываются все графы ранга 4, обладающие этим свойством (использовать классификацию, данную в гл. VI, § 4):

б) Тот же вопрос в случае ранга 5 приводит к следующим пяти графикам:

¹⁾ В этих графах каждое ребро, не снабжённое числовой отметкой, имеет на самом деле коэффициент 3 (см. гл. IV, § 1, № 9).