Forum Statistika dan Komputasi, April 2011 p : 35-43 ISSN : 0853-811

PENERAPAN METODE RANDOM FOREST DALAM DRIVER ANALYSIS

(The Application of Random Forest in Driver Analysis)

Nariswari Karina Dewi¹, Utami Dyah Syafitri², Soni Yadi Mulyadi³

¹ Mahasiswa Departemen Statistika, FMIPA-IPB

² Departemen Statistika, FMIPA-IPB

³ PT. Ipsos Indonesia

E-mail: ¹naris.ayes@yahoo.com

Abstract

Driver analysis is one approach to know which the greatest expalanatory variables influence the response variable. This analysis is well known in marketing research. In this area, explanatatory variables (X) and response variable (Y) ussually are measured by ordinal data and the relationship between those variables is non linier. One of the approach to build model on that situation is random forest. Two important things in random forest are size of random forest and sample size of X. In this research, we worked with simulation to know the size of random forest which give higher accuration and more stabil. The simulation showed that the best condition achieved when the size of random forest is 500 and the sample size of X is 4.

Key words: *driver analysis, random forest, variable importance.*

PENDAHULUAN

Persaingan pasar mendorong produsen untuk selalu memperbaiki kinerja produknya, misalnya kesediaan seseorang untuk membeli produk tersebut. Perbaikan dapat dilakukan secara efektif dan efisien jika diketahui prioritas atribut produk yang menggerakkan kinerja yang dimaksud. Dalam riset pemasaran, analisis yang digunakan untuk menghasilkan informasi tersebut dikenal dengan nama *driver analysis*.

Driver analysis didasarkan pada metode yang mengeksplorasi hubungan antara peubah penjelas dan peubah respons. Metode yang biasa digunakan antara lain yaitu analisis regresi dan analisis korelasi. Sementara itu, data yang dianalisis umumnya berupa data kategorik serta memiliki hubungan non-linier antara peubah penjelas dan peubah responsnya. Oleh sebab itu, diperlukan metode yang lebih sesuai dengan kondisi data. Salah satu metode tersebut adalah metode random forest.

Random forest didasarkan pada teknik pohon keputusan sehingga mampu mengatasi masalah non-linier. Metode ini merupakan metode pohon gabungan. Untuk mengidentifikasi peubah penjelas yang relevan dengan peubah respons, random forest menghasilkan ukuran tingkat kepentingan (variable importance) peubah

penjelas. Dalam bidang biostatistika, hal tersebut diterapkan pada masalah *gene selection* pada data *microarray* (Díaz-Uriarte & Andrés 2006). Penerapan *random forest* dalam bidang biostatistika memang telah populer. Prioritas peubah penjelas dapat diketahui melalui ukuran tingkat kepentingan peubah penjelas. Oleh karena itu, metode *random forest* dapat diterapkan pada *driver analysis*. Penelitian ini mengkaji hal tersebut. Pada penelitian ini, *driver analysis* dilakukan dalam rangka memperbaiki kinerja produk Z, yaitu mengenai kesediaan seseorang membeli produk Z.

Tujuan penelitian ini adalah mengetahui ukuran *random forest* dan ukuran contoh peubah penjelas yang menghasilkan *random forest* berakurasi prediksi tinggi dan stabil, serta yang menghasilkan *driver analysis* yang stabil.

TINJAUAN PUSTAKA

Driver Analysis

Driver analysis merupakan istilah yang digunakan secara luas meliputi berbagai metode analisis. Driver analysis dilakukan untuk memahami pengaruh peubah penjelas terhadap peubah respons sehingga dapat diketahui prioritas setiap peubah penjelas dalam menggerakkan peubah respons (Weiner & Tang 2005). Metode

analisis yang digunakan dalam *driver analysis* disesuaikan dengan kondisi data yang dianalisis (Sambandam 2001).

Classification and Regression Tree (CART)

CART merupakan metode eksplorasi data yang didasarkan pada teknik pohon keputusan. Pohon klasifikasi dihasilkan saat peubah respons berupa data kategorik, sedangkan pohon regresi dihasilkan saat peubah respons berupa data numerik (Breiman *et al.* 1984). Pohon terbentuk dari proses pemilahan rekursif biner pada suatu gugus data sehingga nilai peubah respons pada setiap gugus data hasil pemilahan akan lebih homogen (Breiman *et al.* 1984; Sartono & Syafitri 2010).

Gambar 1 Struktur Pohon pada Metode CART.

Pohon diilustrasikan dalam Gambar 1. Pohon disusun oleh simpul t_1 , t_2 , ..., t_5 (Gambar 1). Setiap pemilah (*split*) memilah simpul nonterminal menjadi dua simpul yang saling lepas. Hasil prediksi respons suatu amatan terdapat pada simpul terminal.

Menurut Breiman *et al.* (1984), pembangunan pohon klasifikasi CART meliputi tiga hal, yaitu:

- 1. Pemilihan pemilah (split)
- 2. Penentuan simpul terminal
- 3. Penandaan label kelas

Random Forest

Metode random forest adalah pengembangan dari metode CART, yaitu dengan menerapkan metode bootstrap aggregating (bagging) dan random feature selection (Breiman 2001). Dalam random forest, banyak pohon ditumbuhkan sehingga terbentuk hutan (forest), kemudian analisis dilakukan pada kumpulan pohon tersebut. Pada gugus data yang terdiri atas n amatan dan p peubah penjelas, random forest dilakukan dengan cara (Breiman 2001; Breiman & Cutler 2003):

- 1. Lakukan penarikan contoh acak berukuran *n* dengan pemulihan pada gugus data. Tahapan ini merupakan tahapan *bootstrap*.
- Dengan menggunakan contoh bootstrap, pohon dibangun sampai mencapai ukuran maksimum (tanpa pemangkasan). Pada setiap simpul, pemilihan pemilah dilakukan dengan memilih m peubah penjelas secara acak, dimana m << p. Pemilah terbaik dipilih dari m

- peubah penjelas tersebut. Tahapan ini adalah tahapan *random feature selection*.
- 3. Ulangi langkah 1 dan 2 sebanyak *k* kali, sehingga terbentuk sebuah hutan yang terdiri atas *k* pohon.

Respons suatu amatan diprediksi dengan menggabungkan (*aggregating*) hasil prediksi *k* pohon. Pada masalah klasifikasi dilakukan berdasarkan *majority vote* (suara terbanyak).

Error klasifikasi *random forest* diduga melalui error OOB yang diperoleh dengan cara (Breiman 2001; Breiman & Cutler 2003; Liaw & Wiener 2002):

- 1. Lakukan prediksi terhadap setiap data OOB pada pohon yang bersesuaian. Data OOB (*out of bag*) adalah data yang tidak termuat dalam contoh *bootstrap*.
- 2. Secara rata-rata, setiap amatan gugus data asli akan menjadi data OOB sebanyak sekitar 36% dari banyak pohon. Oleh karena itu, pada langkah 1, masing-masing amatan gugus data asli mengalami prediksi sebanyak sekitar sepertiga kali dari banyaknya pohon. Jika *a* adalah sebuah amatan dari gugus data asli, maka hasil prediksi *random forest* terhadap *a* adalah gabungan dari hasil prediksi setiap kali *a* menjadi data OOB.
- 3. Error OOB dihitung dari proporsi misklasifikasi hasil prediksi *random forest* dari seluruh amatan gugus data asli.

Breiman dan Cutler (2003) menyarankan untuk mengamati error OOB dan k kecil, lalu memilih m yang menghasilkan error OOB terkecil. Jika random forest dilakukan dengan menghasilkan importance, disarankan variable menggunakan banyak pohon, misalnya 1000 pohon atau lebih. Jika peubah penjelas yang dianalisis sangat banyak, nilai tersebut dapat lebih besar agar variable importance yang dihasilkan semakin stabil.

Mean Decrease Gini

Mean Decrease Gini (MDG) merupakan salah satu ukuran tingkat kepentingan (variable importance) peubah penjelas yang dihasilkan oleh metode random forest. Misalkan terdapat p peubah penjelas dengan , maka MDG mengukur tingkat kepentingan peubah penjelas X_h dengan cara (Breiman & Cutler 2003; Sandri & Zuccolotto 2006):

dengan

: besar penurunan indeks Gini untuk peubah penjelas X_h pada simpul t

k : banyaknya pohon dalam *random forest* (ukuran *random forest*)

METODOLOGI

Data

Data yang digunakan dalam penelitian ini adalah data sekunder yang diperoleh dari sebuah perusahaan riset pemasaran di Indonesia. Data tersebut terdiri atas sejumlah merek yang berbeda, dimana merek-merek tersebut merupakan jenis produk yang sama, yaitu produk Z. Banyaknya amatan dalam data adalah 1200 amatan.

Data yang digunakan terdiri atas sebuah peubah respons dan dua puluh peubah penjelas. Seluruhnya berskala pengukuran ordinal dengan lima kategori. Peubah responsnya adalah status kesediaan seseorang untuk membeli produk Z, sedangkan peubah penjelasnya adalah status kesetujuan seseorang terhadap atribut produk Z. Kategori masing-masing peubah dapat dilihat pada Tabel 1. Untuk melakukan metode *random forest* pada masalah klasifikasi, skala pengukuran data dianggap nominal.

Tabel 1 Kategori peubah penjelas dan peubah respons

Peubah	Kategori peubah				
reuban	Kode	Kode Keterangan			
Penjelas (X)	1	Sangat tidak setuju			
	2	Tidak setuju			
	3	Biasa saja			
	4	Setuju			
	5	Sangat setuju			
Respons (Y)	1	Pasti tidak akan membeli			
	2	Tidak akan membeli			
	3	Tidak yakin akan membeli			
		atau tidak			
	4	Akan membeli			
	5	Pasti akan membeli			

Metode

- 1. Melakukan analisis statistika deskriptif terhadap peubah respons.
- 2. Melakukan simulasi random forest.
 - a. Sebanyak 1000 random forest dibentuk pada setiap m dan k yang dicobakan, kemudian dicatat tingkat misklasifikasi masing-masing random forest dan mean decrease gini (MDG) setiap peubah penjelas. Nilai *m* dan *k* yang disarankan Breiman (2001) dicobakan dalam simulasi ini. Nilai k yang disarankan untuk digunakan pada metode bagging juga dicobakan, yaitu k = 50. Umumnya k = 50sudah memberikan hasil yang memuaskan untuk masalah klasifikasi (Breiman 1996). Sementara itu, $k \ge 100$ cenderung menghasilkan tingkat misklasifikasi yang konstan (Sutton 2005). Nilai m dan k yang dicobakan adalah:

- -
- dimana p adalah banyaknya peubah penjelas dalam data, yaitu p = 20.
- b. Menganalisis tingkat misklasifikasi random forest yang dihasilkan dari langkah 2a. Analisis dilakukan secara eksploratif.
- c. Melakukan driver analysis dengan metode random forest, yaitu mengamati urutan MDG peubah penjelas. MDG setiap peubah penjelas dihasilkan pada langkah 2a.
- 3. Melakukan analisis korelasi Spearman terhadap data.
- 4. Melakukan intepretasi hasil driver analysis.

Metode *random forest* dihasilkan menggunakan *software R ver* 2.12.0 dengan paket *randomForest ver* 3.6-2. Kriteria berhenti memilah yang digunakan adalah terdapatnya satu amatan pada simpul terminal.

HASIL DAN PEMBAHASAN

Analisis Deskriptif

Berdasarkan Tabel 2, diketahui terdapat 5 kategori pada peubah respons. Karena tidak ada responden yang menyatakan 'pasti tidak akan membeli', maka peubah respons yang dianalisis hanya terdiri atas 4 kategori. Dari 1200 responden, 56% responden menyatakan akan membeli produk Z, 41.7% responden menyatakan pasti akan membeli produk Z, 2% responden menyatakan tidak yakin akan membeli produk Z atau tidak membelinya, dan 0.3% responden menyatakan tidak akan membelinya. Secara deskriptif dapat dikatakan bahwa sebagian besar responden bersedia membeli produk Z.

Tabel 2 Frekuensi dan persentase kategori peubah respons (status kesediaan seseorang untuk membeli produk Z)

Kategori peubah respons		Frekuensi	Persentase
Kode	Keterangan	riekuelisi	(%)
1	Pasti tidak akan membeli	0	0.0
2	Tidak akan membeli	4	0.3
3	Tidak yakin akan	24	2.0
	membeli atau tidak		
4	Akan membeli	672	56.0
5	Pasti akan membeli	500	41.7
	Total	1200	100.0

Simulasi Ukuran *Random Forest* dan Ukuran Contoh Peubah Penjelas terhadap Keakuratan Prediksi *Random Forest*

Perubahan rataan tingkat misklasifikasi random forest akibat perubahan m disajikan dalam Gambar 2. Semakin besar k, perubahan

rataan tingkat misklasifikasi akibat perubahan m menjadi semakin tidak terlihat. Namun terlihat bahwa rataan tingkat misklasifikasi terendah selalu dicapai saat —, yaitu m=4, pada setiap k yang dicobakan. Ini menunjukan bahwa m=4 adalah m optimal. Hal tersebut juga menunjukkan bahwa m optimal sudah dapat diketahui meski dengan k kecil. Dengan m=4, k random forest yang terbentuk merupakan k random forest dengan pohon yang kuat, namun korelasi antar pohon cukup kecil.

Gambar 2 Rataan tingkat misklasifikasi *random forest* berukuran *k* pada beberapa ukuran contoh peubah penjelas (*m*).

Gambar 3 Rataan tingkat misklasifikasi *random* forest berukuran contoh peubah penjelas m pada beberapa ukuran random forest (k).

Gambar 3 memperlihatkan perubahan rataan tingkat misklasifikasi akibat berubahnya k. Terlihat bahwa semakin besar k maka semakin kecil rataan tingkat misklasifikasi. Breiman (2001) menyatakan bahwa tingkat misklasifikasi random forest akan konvergen menuju nilai tertentu saat ukuran random forest semakin besar. Hasil simulasi (Gambar 3) sesuai dengan hal tersebut, yaitu ditunjukkan dengan saat k semakin besarnya penurunan rataan tingkat misklasifikasi menjadi semakin tidak terlihat. Peningkatan k dari 500 pohon menjadi 1000 pohon terlihat tidak memberikan penurunan rataan tingkat misklasifikasi yang berarti. Dengan demikian. dapat dikatakan bahwa tingkat misklasifikasi random forest dalam memprediksi kesediaan membeli mulai konvergen saat menggunakan 500 pohon dan konvergen menuju 34.5%. Nilai tersebut adalah tingkat misklasifikasi terendah.

Penyebaran misklasifikasi tingkat menggambarkan kestabilan tingkat misklasifikasi. Dengan membandingkan seluruh diagram kotak garis pada Gambar 4, terlihat bahwa panjang diagram kotak garis cenderung konstan meskipun terjadi perubahan m. Akan tetapi, diagram kotak garis semakin memendek saat k meningkat. Ini menunjukkan bahwa kestabilan tingkat misklasifikasi random forest hanya bergantung pada k. Semakin besar k maka semakin stabil tingkat misklasifikasi random forest.

Gambar 4 Diagram kotak garis tingkat misklasifikasi *random forest* pada ukuran contoh peubah penjelas (m) dan ukuran *random forest* (k).

Gambar 4 juga memperlihatkan terdapatnya konvergensi tingkat misklasifikasi. Memendeknya diagram kotak garis terjadi secara perlahan dan bergerak menuju nilai tertentu. Saat k sebesar 1000, tingkat misklasifikasi $random\ forest$ berada antara 33% dan 35.5%, dengan letak pemusatan terdapat pada nilai sekitar 34.5%. Pada k tersebut, kestabilan akurasinya adalah yang terbaik dibandingkan dengan pada k yang lebih kecil. Selain itu, letak pemusatannya merupakan nilai konvergensi tingkat misklasifikasi, juga merupakan tingkat misklasifikasi terendah yang dapat dicapai.

Simulasi Ukuran *Random Forest* dan Ukuran Contoh Peubah Penjelas terhadap Hasil *Driver Analysis*

Pada penerapan random forest dalam driver analysis (DA-RF), random forest menghasilkan nilai mean decrease gini (MDG) untuk setiap peubah penjelas. Driver analysis dilakukan dengan memeringkatkan peubah penjelas berdasarkan MDG. Oleh karena itu, kestabilan MDG sangat menentukan kestabilan hasil driver analysis.

Hasil simulasi berupa diagram kotak garis MDG disajikan dalam Gambar 5. Tampak bahwa semakin besar *m* maka semakin besar nilai MDG. Akan tetapi, hal tersebut tidak mengubah panjang diagram kotak garis. Hasil ini menunjukkan bahwa keragaman MDG selalu sama besar pada *m*

berapapun, yang berarti m tidak mempengaruhi kestabilan MDG sehingga m tidak mengubah hasil *driver analysis*. Dengan demikian, diketahui bahwa m tidak mempengaruhi kestabilan hasil *driver analysis*.

Mengenai pengaruh k terhadap MDG, peningkatan k menyebabkan diagram kotak garis semakin pendek, yang berarti semakin besar k maka semakin stabil MDG. Berbeda dengan susunan diagram kotak garis pada Gambar 4, Gambar 5 memperlihatkan bahwa memendeknya diagram kotak garis tidak disertai dengan perubahan letak pemusatan MDG. Hasil tersebut menunjukkan bahwa kestabilan MDG sangat bergantung pada k, namun k tidak mempengaruhi besar perolehan MDG. MDG memiliki kestabilan yang baik saat k bernilai lebih dari 500, sehingga hasil driver analysis stabil pada k tersebut.

Telah diketahui bahwa m tidak mengubah hasil driver analysis, namun random forest memiliki akurasi tertinggi saat m = 4. Oleh karena itu, pengamatan hasil driver analysis selanjutnya dilakukan pada driver analysis saat m = 4. Hal tersebut dilakukan dengan menyusun driver

analysis berdasarkan rataan MDG dari 1000 random forest. Hasilnya ditampilkan dalam Gambar 6. Seperti hasil sebelumnya, Gambar 6 juga memperlihatkan bahwa perubahan k tidak menyebabkan perubahan letak pemusatan, sehingga berapapun k yang digunakan tidak mempengaruhi rataan MDG peubah penjelas. Oleh sebab itu, penyusunan driver analysis berdasarkan rataan MDG menghasilkan driver analysis yang stabil.

Berdasarkan nilai rataaan MDG pada Gambar 6, terlihat bahwa hasil *driver analysis* pada k=25 dan k=50 sedikit berbeda dengan hasil *driver analysis* pada k lainnya (k=100,500,1000). Pada k=25, hal tersebut terjadi saat urutan X6-X14, yaitu dengan masing-masing nilai rataan MDG sebesar 31.319 dan 31.328. Sementara itu, pada k=50, hal tersebut terjadi saat urutan X_1 - X_{13} , dengan masing-masing nilai rataan MDG sebesar 28.651 dan 28.668. Karena nilai-nilai tersebut tidak terlalu berbeda jauh, maka hasil *driver analysis* berdasarkan rataan MDG tetap dapat dikatakan stabil meskipun menggunakan k yang bernilai kecil.

Gambar 5 Diagram kotak garis *mean decrease gini* (MDG) pada *random forest* (m = 2, 4, 8; k = 25, 50, 100, 500, 1000).

Dalam Gambar 6 diperlihatkan bahwa rataan MDG tertinggi dimiliki oleh X₂. Penurunan rataan MDG yang cukup drastis hanya terjadi pada peubah penjelas peringkat 1 dan 2, yaitu X2 dan X6. Pada peringkat selanjutnya, rataan MDG menurun secara lambat. Hal tersebut menunjukkan bahwa X₂ teridentifikasi sebagai atribut yang paling penting dalam mempengaruhi kesediaan membeli produk Z, serta memiliki pengaruh yang jauh lebih besar daripada pengaruh atribut lainnya. menunjukkan bahwa memperbaiki atribut X2 jauh lebih berpengaruh terhadap perbaikan kesediaan membeli dibandingkan dengan jika memperbaiki atribut lainnya. Oleh karena itu, memperbaiki hal kesediaan seseorang dalam membeli produk Z, sangat diprioritaskan untuk memperbaiki atribut X₂. Prioritas berikutnya disesuaikan dengan hasil driver analysis. Urutan prioritas atribut berdasarkan hasil driver analysis $X_2 - X_6 - X_{14} - X_8 - X_{15} - X_1 - X_{13} - X_7 - X_{12} - X_5 - X_{19}$ X_{17} - X_{18} - X_{3} - X_{10} - X_{20} - X_{9} - X_{16} - X_{4} - X_{11} .

Nilai koefisien korelasi Spearman antara kesediaan membeli produk Z dan atribut produk Z disajikan dalam Tabel 3. Arah koefisien korelasi Spearman menggambarkan bentuk hubungan antara suatu atribut dengan kesediaan seseorang membeli produk Z. Saat koefisien korelasi Spearman bernilai positif, maka diindikasikan bahwa terdapatnya suatu atribut di dalam produk Z mampu menggerakkan seseorang untuk bersedia membeli produk Z. Sebaliknya, koefisien korelasi Spearman yang bernilai negatif mengindikasikan bahwa tidak terdapatnya suatu atribut di dalam produk Z akan menggerakkan seseorang untuk bersedia membeli produk Z. Untuk atribut X_2 , koefisien korelasi Spearman antara atribut X2 dengan kesediaan membeli produk Z bernilai positif dan nyata pada taraf nyata 5%. Hasil ini menunjukkan bahwa terdapatnya atribut X_2 di dalam produk Z dapat menggerakkan seseorang untuk bersedia membeli produk Z.

Jika frekuensi terpilihnya suatu peubah penjelas untuk menjadi pemilah simpul dalam sebuah random forest diamati, maka terlihat bahwa atribut X_2 merupakan peubah penjelas yang paling sering terpilih sebagai pemilah simpul. Hal tersebut sejalan dengan hasil *driver analysis* berdasarkan rataan MDG. Akan tetapi, saat m=8, hal tersebut tampak tidak sejalan dengan hasil *driver analysis*. Saat m=8, atribut X_6 menjadi peubah penjelas yang paling sering terpilih sebagai pemilah simpul. Ini dapat terjadi karena untuk menghasilkan nilai MDG suatu peubah penjelas, nilai penurunan *impurity* peubah penjelas tersebut juga turut diperhitungkan. Nilai modus mengenai frekuensi terpilihnya suatu peubah penjelas untuk menjadi pemilah dalam sebuah *random forest* pada masingmasing m dan k yang dicobakan dapat dilihat pada Lampiran 1, Lampiran 2, dan Lampiran 3.

Tabel 3 Koefisien korelasi Spearman antara peubah penjelas dan peubah respons

Peubah Penjelas	Korelasi	Nilai-p
X_1	0.091	0.002
X_2	0.229	0.000
X_3	0.159	0.000
X_4	0.129	0.000
X_5	0.138	0.000
X_6	0.147	0.000
X_7	0.224	0.000
X_8	0.191	0.000
X_9	0.143	0.000
X_{10}	0.114	0.000
X_{11}	0.146	0.000
X_{12}	0.071	0.013
X_{13}	0.149	0.000
X_{14}	0.040	0.161
X_{15}	-0.013	0.659
X_{16}	0.061	0.034
X_{17}	0.071	0.014
X_{18}	0.205	0.000
X_{19}	0.237	0.000
X_{20}	0.223	0.000

Gambar 6 Urutan rataan mean decrease gini (MDG) pada random forest (m = 4; k = 25, 50,100, 500, 1000).

SIMPULAN DAN SARAN

Simpulan

Random forest berukuran contoh peubah penjelas sebesar 4 dan ukuran random forest lebih dari 500 memberikan akurasi prediksi yang tinggi dan stabil, yaitu dengan tingkat misklasifikasi berkisar antara 33% dan 35.5% dengan nilai rataannya sebesar 34.5%. Pada penerapan random forest, penyusunan driver analysis berdasarkan MDG menghasilkan driver analysis yang stabil jika ukuran random forest lebih dari 500. Untuk penyusunan driver analysis berdasarkan rataan MDG dari 1000 random forest, driver analysis tetap stabil meskipun menggunakan ukuran random forest cukup kecil. Hasil driver analysis pun stabil pada berbagai ukuran contoh peubah penjelas.

Saran

Penelitian ini dilakukan pada ukuran *bootstrap* yang sama besar dengan ukuran data, yaitu sebesar 1200. Selain itu, juga dilakukan pada ukuran iterasi simulasi (banyaknya *random forest* dalam satu iterasi simulasi) sebesar 1000. Berkenaan dengan hal tersebut, saran untuk penelitian selanjutnya adalah:

- 1. Mengurangi ukuran *bootstrap* untuk melihat bagaimana pengaruhnya terhadap akurasi *random forest* dan hasil *driver analysis*. Salah satu keunggulan metode *random forest* adalah mampu menganalisis data yang ukuran datanya jauh lebih sedikit dibandingkan ukuran peubah penjelas dalam data (Breiman & Cutler 2001; Díaz-Uriarte & Andrés 2006).
- 2. Mengurangi ukuran iterasi simulasi untuk mengetahui ukuran iterasi yang efisien dalam menghasilkan *driver analysis* yang stabil.

DAFTAR PUSTAKA

Brieman L, Friedman JH, Olshen RA, Stone CJ. 1984. *Classification and Regression Trees*. New York: Chapman & Hall.

- Breiman L. 1996. Bagging Predictors. *Machine Learning* 24:123-140.
- Breiman L. 2001. Random Forests. *Machine Learning* 45:5-32.
- Breiman L, Cutler A. 2001. Random Forest. [terhubung berkala]. http://www.stat.berk eley.edu/~breiman/RandomForests/cc_home.ht m#intro [8 Jul 2010].
- Breiman L, Cutler A. 2003. Manual on Setting Up, Using, and Understanding Random Forest V4.0. [terhubung berkala]. http://oz.berkeley.edu/users/bre iman/Using_random_forests_v4.0.pdf [8 Jul 2010]
- Díaz-Uriarte R, Andrés SA de. 2006. Gene Selection and Classification of Microarray Data Using Random Forest. *BMC Bioinformatics* 7:3.
- Liaw A, Wiener M. Des 2002. Classification and Regression by randomForest. *RNews Vol.* 2/3:18-22.
- Sambandam R. 2001. Survey of analysis methods Part I: key driver analysis. [terhubung berkala]. http://www.trchome.com/white-paper-lib rary/wpl-all-white-papers/206 [30 Nop 2009].
- Sandri M, Zuccolotto P. 2006. Variable Selection Using Random Forest. Di dalam: Zani S, Cerioli A, Riani M, Vichi M, editor. *Data Analysis, Classification and the Forward Search*; University of Parma, 6-8 Jun 2005. New York: Springer. hlm 263-270.
- Sartono B, Syafitri UD. 2010. Ensemble Tree: an Alternative toward Simple Classification & Regression Tree. Forum Statistika dan Komputasi 15(1):1-7.
- Sutton CD. 2005. Classification and Regression Trees, Bagging, and Boosting. *Handbook of Statistics* 24:303-329.
- Wiener JL, Tang J. 2005. Multicollinearity in Customer Satisfaction Research. Ipsos Loyalty.

Lampiran 1 Modus frekuensi terpilihnya peubah penjelas sebagai pemilah (*split*) simpul dalam sebuah *random forest* dengan ukuran contoh peubah penjelas (*m*) sebesar 2 dan ukuran *random forest* (*k*) sebesar 25, 50, 100, 500, dan 1000

Peubah	Ukuran Random Forest (k)					
Penjelas	25	50	100	500	1000	
X_1	388	789	1564	7817	15523	
X_2	421	856	1731	8700	17380	
X_3	350	712	1446	7215	14289	
X_4	342	715	1405	6972	13985	
X_5	374	778	1523	7480	14908	
X_6	424	834	1646	8310	16624	
X_7	356	691	1415	7040	14079	
\mathbf{X}_{8}	389	786	1568	7790	15598	
X_9	357	719	1434	7076	14106	
X_{10}	376	730	1493	7482	14894	
X_{11}	320	682	1334	6678	13095	
X_{12}	376	763	1549	7781	15596	
X_{13}	372	748	1517	7657	15201	
X_{14}	411	829	1606	8155	16271	
X_{15}	394	768	1555	7749	15486	
X_{16}	357	716	1440	7163	14456	
X_{17}	371	758	1527	7681	15341	
X_{18}	322	679	1354	6604	13344	
X_{19}	315	642	1303	6398	13016	
X_{20}	292	571	1136	5778	11461	

Lampiran 2 Modus frekuensi terpilihnya peubah penjelas sebagai pemilah (*split*) simpul dalam sebuah *random forest* dengan ukuran contoh peubah penjelas (*m*) sebesar 4

Peubah	Ukuran Random Forest (k)				
Penjelas	25	50	100	500	1000
X_1	437	858	1768	8881	17677
X_2	493	995	1994	10041	19990
X_3	368	742	1493	7494	15041
X_4	384	783	1566	7780	15479
X_5	438	885	1720	8692	17337
X_6	482	983	1976	9804	19671
X_7	373	716	1443	7442	14828
X_8	450	876	1819	8984	17914
X_9	382	784	1550	7710	15411
X_{10}	414	836	1669	8322	16771
X_{11}	357	722	1455	7268	14383
X_{12}	444	887	1789	8927	17846
X_{13}	431	871	1749	8742	17476
X_{14}	457	941	1838	9231	18315
X_{15}	418	841	1681	8414	16899
X_{16}	392	750	1526	7570	15180
X_{17}	411	838	1691	8407	16826
X_{18}	355	685	1407	7136	14139
X_{19}	322	644	1309	6405	12866
X_{20}	264	558	1083	5421	10888

Lampiran 3 Modus frekuensi terpilihnya peubah penjelas sebagai pemilah (*split*) simpul dalam sebuah *random forest* dengan ukuran contoh peubah penjelas (*m*) sebesar 8

Peubah	Ukuran Random Forest (k)					
Penjelas	25	50	100	500	1000	
X_1	420	839	1663	8351	16707	
X_2	488	946	1935	9418	19072	
X_3	317	649	1296	6465	12987	
X_4	349	711	1437	7136	14306	
X_5	421	842	1662	8386	16751	
X_6	490	980	1954	9756	19578	
X_7	326	677	1327	6743	13439	
X_8	415	867	1739	8584	17150	
X_9	347	688	1388	6934	13879	
X_{10}	389	773	1556	7739	15546	
X_{11}	326	652	1316	6620	13260	
X_{12}	417	820	1641	8245	16590	
X_{13}	419	839	1703	8379	16885	
X_{14}	430	850	1712	8478	16870	
X_{15}	386	764	1529	7666	15272	
X_{16}	323	660	1314	6570	13130	
X_{17}	387	760	1530	7654	15425	
X_{18}	334	648	1315	6504	13071	
X_{19}	276	555	1074	5442	10982	
X_{20}	227	443	938	4630	9260	