日本国特許庁 JAPAN PATENT OFFICE

21.6.2004

· 別紙添付の曹類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 8月11日

RECEIVED 1 2 AUG 2004

出願番号

特願2003-291426

Application Number:

[JP2003-291426]

WIPO PCT

出 願 人 Applicant(s):

[ST. 10/C]:

宇部興産株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH

RULE 17.1(a) OR (b)

2004年

11]

7月30日

特許庁長官 Commissioner, Japan Patent Office 【書類名】 【整理番号】 【あて先】 【国際特許分類】 【発明者】 【住所又は居所】 【氏名】 【発明者】

【氏名】

TSP030802 特許庁長官殿 C07D239/88

特許願

【住所又は居所】 山口県宇部市大字小串1978番地の5宇部興産株式会社 宇部研究所内 【氏名】 西野 繁栄 月者】 山口県宇部市大字小串1978番地の5

山口県宇部市大字小串1978番地の5 宇部興産株式会社 宇部研究所内 弘津 健二

【発明者】
 【住所又は居所】 山口県宇部市大字小串1978番地の5 宇部興産株式会社 宇部研究所内 【氏名】 島 秀好

【発明者】

【住所又は居所】 山口県宇部市大字小串1978番地の5

宇部興産株式会社 宇部研究所内

【氏名】 鈴木 忍

 【特許出願人】
 【識別番号】 000000206
 【氏名又は名称】 宇部興産株式会社 【代表者】 常見 和正
 【手数料の表示】
 【予納台帳番号】 012254

【予納台帳番号】 012254 【納付金額】 21,000円 【提出物件の目録】 特許請求の

【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 要約書 1 【曹類名】特許請求の範囲

【請求項1】

一般式(1)

【化1】

 R^0NH_2

(1)

(式中、R⁰ は、水素原子又は炭化水素基を示す。) で示されるアミン化合物の存在下、一般式(2) 【化2】

$$R_1$$
 X_1
 $COOR^4$
 R_2
 X_3
 NH_2
 R_3
(2)

(式中、 X^1 、 X^2 及び X^3 は、炭素原子又は硫黄原子を示す(但し、 X^1 、 X^2 及び X^3 のいずれかひとつのみが硫黄原子である。)。 R^1 、 R^2 及び R^3 は、それぞれ X^1 、 X^2 及び X^3 が炭素原子の時のみ存在し、同一又は異なっていても良く、置換基を有していても良い、反応に関与しない基を示す。又、 R^4 は、水素原子又は炭化水素基を示す。なお、 R^1 、 R^2 及び R^3 は、互いに結合して環を形成していても良い。)で示されるチオフェンアミノカルボン酸化合物と、一般式(3)

【化3】

(R⁵O)₃CR⁶

(3)

(式中、 R^5 は、炭化水素基を示し、 R^6 は、 R^1 \sim R^3 と同義である。)で示される有機酸化合物とを反応させることを特徴とする、一般式 (4) 【化4】

(式中、 X^1 、 X^2 、 X^3 、 R^0 、 R^1 、 R^2 、 R^3 及び R^6 は、前記と同義である。)で示されるチエノピリミジノン化合物の製法。

【請求項2】

 R^{5} が、メチル基又はエチル基である請求項1記載のチエノピリミジノン化合物の製法

【曹類名】明細書

【発明の名称】チエノピリミジノン化合物の製法

【技術分野】

[0001]

本発明は、チオフェンアミノカルボン酸化合物からチエノピリミジノン化合物を製造する方法に関する。チエノピリミジノン化合物は、医薬や農薬等の合成中間体又は原料として有用な化合物である。

【背景技術】

[0002]

従来、チオフェンアミノカルボン酸化合物からチエノピリミジノン化合物を製造する方法としては、例えば、チオフェンアミノカルボン酸化合物と様々な窒素含有化合物(ホルムアミド、ニトリル類、イミノエステル類)とを反応させる方法が開示されている(例えば、非特許文献1参照)。しかしながら、この方法では、良い収率を得るためには、高い反応温度及び長い反応時間が必要となるために、反応操作が繁雑となるという問題があり、チエノピリミジノン化合物の工業的製法としては有効ではなかった。

【非特許文献 1】 Angew. Chem. internat. Edit., 7, 136(1968)

【発明の開示】

【発明が解決しようとする課題】

[0003]

本発明の課題は、即ち、上記問題点を解決し、温和な条件下、簡便な方法によって、チオフェンアミノカルボン酸化合物からチエノピリミジノン化合物を高収率で製造出来る、 工業的に好適なチエノピリミジノン化合物の製法を提供することである。

【課題を解決するための手段】

[0004]

本発明の課題は、一般式 (1)

[0005]

【化1】

 R^0NH_2

(1)

[0006]

(式中、R⁰ は、水素原子又は炭化水素基を示す。) で示されるアミン化合物の存在下、一般式 (2)

[0007]

【化2】

$$R_1$$
 X_1
 $COOR^4$
 R_2
 X_3
 NH_2
 R_3
(2)

[0008]

(式中、 X^1 、 X^2 及び X^3 は、炭素原子又は窒素原子を示す(但し、 X^1 、 X^2 及び X^3 のいずれかひとつのみが硫黄原子である。)。 R^1 、 R^2 及び R^3 は、それぞれ X^1 、 X^2 及び X^3 が炭素原子の時のみ存在し、同一又は異なっていても良く、置換基を有していても良い、反応に関与しない基を示す。又、 R^4 は、水素原子又は炭化水素基を示す。なお、 R^1 、 R^2 及び R^3 は、互いに結合して環を形成していても良い。)で示されるチオフェンアミノカルボン酸化合物と、一般式(3)

[0009]

【化3】

(R⁵O)₃CR⁶

(3)

[0010]

(式中、 R^5 は、炭化水素基を示し、 R^6 は、 $R^1 \sim R^3$ と同義である。) で示される有機酸化合物とを反応させることを特徴とする、一般式 (4)

[0011]

【化4】

$$R_{2}$$
 X_{1}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{3}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{6}
 X_{6}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{6}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{5}
 X_{6}
 X_{7}
 X_{7

(式中、 X^1 、 X^2 、 X^3 、 R^0 、 R^1 、 R^2 、 R^3 及び R^6 は、前記と同義である。) で示されるチエノピリミジノン化合物の製法によって解決される。

【発明の効果】

[0013]

本発明により、温和な条件下、簡便な方法によって、チオフェンアミノカルボン酸化合 物からチエノピリミジノン化合物を高収率で製造出来る、工業的に好適なチエノピリミジ ノン化合物の製法を提供することが出来る。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 4\]$

本発明の反応において使用するアミン化合物は、前記の一般式(1)で示される。その 一般式(1)において、 R^0 は、水素原子又は炭化水素基であるが、炭化水素基としては 、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキ シル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロプロピル 基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロ オクチル基等のシクロアルキル基;ベンジル基、フェネチル基、フェニルプロピル基等の アラルキル基;フェニル基、p-トリル基、ナフチル基、アントラニル基等のアリール基を 示す。なお、これらの基は、各種異性体を含む。

[0015]

前記アミン化合物の使用量は、チオフェンアミノカルボン酸化合物1モルに対して、好 ましくは1~100モル、更に好ましくは3~40モルである。なお、アミン化合物の形状は特 に限定されず、気体、液体又は固体のいずれの形状でも良く、又、有機溶媒(例えば、ア ルコール類)の溶液としても使用出来る。

[0016]

本発明の反応において使用するチオフェンアミノカルボン酸化合物は、前記の一般式(2)で示される。その一般式(2)において、 R^1 、 R^2 及び R^3 は、それぞれ後述のX¹、X²及びX³が炭素原子の時のみ存在し、同一又は異なっていても良く、置換基を有 していても良い、反応に関与しない基であるが、具体的には、例えば、水素原子、アルキ ル基、シクロアルキル基、アラルキル基、アリール基、ハロゲン原子、ヒドロキシル基、 アルコキシル基、アルキルチオ基、ニトロ基、シアノ基、カルボニル基、アミノ基(R¹ を除く)又はカルボキシル基(R^3 を除く)を示す。なお、 R^1 、 R^2 及び R^3 は、互い に結合して環を形成していても良い。

[0017]

前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、プチル基、ペン チル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。な お、これらの基は、各種異性体を含む。

[0018]

前記シクロアルキル基としては、例えば、シクロプロピル基、シクロプチル基、シクロ ペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。

[0019]

前記アラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基 等が挙げられる。なお、これらの基は、各種異性体を含む。

[0020]

前記アリール基としては、例えば、フェニル基、p-トリル基、ナフチル基、アントラニ ル基等が挙げられる。なお、これらの基は、各種異性体を含む。

前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が 挙げられる。

[0022]

前記アルコキシル基としては、例えば、メトキシル基、エトキシル基、プロポキシル基 等が挙げられる。なお、これらの基は、各種異性体を含む。

前記アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基 等が挙げられる。なお、これらの基は、各種異性体を含む。

[0024]

前記のアルキル基、シクロアルキル基、アラルキル基、アリール基、アルコキシル基、 アルキルチオ基又はアミノ基(R¹を除く)は、置換基を有していても良い。その置換基 としては、炭素原子を介して出来る置換基、酸素原子を介して出来る置換基、窒素原子を 介して出来る置換基、硫黄原子を介して出来る置換基、ハロゲン原子等が挙げられる。

[0025]

前記炭素原子を介して出来る置換基としては、例えば、メチル基、エチル基、プロピル 基、プチル基、ペンチル基、ヘキシル基等のアルキル基;シクロプロピル基、シクロプチ ル基、シクロペンチル基、シクロヘキシル基、シクロプチル基等のシクロアルキル基;ビ ニル基、アリル基、プロペニル基、シクロプロペニル基、シクロブテニル基、シクロペン テニル基等のアルケニル基;ピロリジル基、ピロリル基、フリル基、チエニル基等の複素 環基;フェニル基、トリル基、キシリル基、ビフェニリル基、ナフチル基、アントリル基 、フェナントリル基等のアリール基;ホルミル基、アセチル基、プロピオニル基、アクリ ロイル基、ピバロイル基、シクロヘキシルカルボニル基、ベンゾイル基、ナフトイル基、 トルオイル基等のアシル基(アセタール化されていても良い);カルボキシル基 (R⁴を 除く);メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基(R ³を除く);フェノキシカルボニル基等のアリールオキシカルボニル基(R³を除く); トリフルオロメチル基等のハロゲン化アルキル基;シアノ基が挙げられる。なお、これら の基は、各種異性体を含む。

[0026]

前記酸素原子を介して出来る置換基としては、例えば、ヒドロキシル基;メトキシル基 、エトキシル基、プロポキシル基、プトキシル基、ペンチルオキシル基、ヘキシルオキシ ル基、ヘプチルオキシル基、ベンジルオキシル基、ピペリジルオキシル基、ピラニルオキ シル基等のアルコキシル基;フェノキシル基、トルイルオキシル基、ナフチルオキシル基 等のアリールオキシル基が挙げられる。なお、これらの基は、各種異性体を含む。

[0027]

前記窒素原子を介して出来る置換基としては、例えば、メチルアミノ基、エチルアミノ 基、プチルアミノ基、シクロヘキシルアミノ基、フェニルアミノ基、ナフチルアミノ基等 の第一アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、メチルエチ ルアミノ基、メチルプチルアミノ基、ジフェニルアミノ基等の第二アミノ基;モルホリノ 基、チオモルホリノ基、ピペリジノ基、ピペラジニル基、ピラゾリジニル基、ピロリジノ

[0028]

前記硫黄原子を介して出来る置換基としては、例えば、メルカプト基;チオメトキシル 基、チオエトキシル基、チオプロポキシル基等のチオアルコキシル基;チオフェノキシル 基、チオトルイルオキシル基、チオナフチルオキシル基等のチオアリールオキシル基等が 挙げられる。なお、これらの基は、各種異性体を含む。

[0029]

前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ る。

[0030]

又、R⁴は、水素原子又は炭化水素基であるが、炭化水素基としては、例えば、メチル 基、エチル基、プロピル基、プチル基、ペンチル基、ヘキシル基等のアルキル基;シクロ プロピル基、シクロプチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル 基;ベンジル基、フェネチル基、フェニルプロピル基等のアラルキル基;フェニル基、ト リル基、ナフチル基、アントリル基等のアリール基が挙げられる。なお、これらの基は、 各種異性体を含む。

[0031]

本発明の反応において使用する有機酸化合物は、前記の一般式(3)で示される。その 一般式(3)において、R⁵ は、水素原子又は炭化水素基であるが、炭化水素基としては 、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキ シル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロプロピル 基、シクロプチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロ オクチル基等のシクロアルキル基;ベンジル基、フェネチル基、フェニルプロピル基等の アラルキル基;フェニル基、p-トリル基、ナフチル基、アントラニル基等のアリール基を 示すが、好ましくはアルキル基、更に好ましくはメチル基、エチル基である。なお、これ らの基は、各種異性体を含む。

[0032]

又、 R^6 は、 $R^1 \sim R^3$ と同義であり、 X^1 、 X^2 及び X^3 は、炭素原子又は硫黄原子 を示す(但し、 X^1 、 X^2 及び X^3 のいずれかひとつのみが硫黄原子である。)。

[0033]

前記有機酸化合物の使用量は、チオフェンアミノカルボン酸化合物1モルに対して、好 ましくは1.0~15モル、更に好ましくは1.1~5.0モルである。

[0034]

本発明の反応は溶媒の存在下又は非存在下において行われる。使用する溶媒としては、 反応を阻害するものでなければ特に限定されず、例えば、メタノール、エタノール、イソ プロピルアルコール、n-プチルアルコール、t-プチルアルコール、n-ペンタノール等のア ルコール類;N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類;N,N'-ジメ チルイミダゾリジノン等の尿素類;ジメチルスルホキシド等のスルホキシド類;ベンゼン 、トルエン、キシレン、メシチレン等の芳香族炭化水素類;塩化メチレン、クロロホルム 、ジクロロエタン等のハロゲン化脂肪族炭化水素類等;アセトニトリル、プロピオニトリ ル等のニトリル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類 が挙げられるが、好ましくはアルコール類、アミド類、ニトリル類、更に好ましくはメタ ノール、エタノール、N, N' -ジメチルイミダゾリジノン、アセトニトリルが使用される。 これらの溶媒は、単独又は二種以上を混合して使用しても良い。

[0035]

前記溶媒の使用量は、反応液の均一性や攪拌性等によって適宜調節するが、チオフェン アミノカルボン酸化合物1gに対して、好ましくは0~50g、更に好ましくは0~20g、特に好 ましくは0~5gである。

[0036]

本発明の反応は、例えば、不活性ガスの雰囲気にて、アミン化合物、チオフェンアミノ カルボン酸化合物、有機酸化合物及び溶媒を混合して攪拌させる等の方法によって行われ る。その際の反応温度は、好ましくは40~200℃、更に好ましくは50~150℃であり、反応 圧力は特に制限されない。

[0037]

なお、最終生成物であるチエノピリミジノン化合物は、反応終了後、例えば、抽出、濾 過、濃縮、蒸留、再結晶、カラムクロマトグラフィー等による一般的な方法によって単離 ・精製される。

[0038]

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定され るものではない。

【実施例1】

[0039]

(3H-チエノ[3,2-d]ピリミジン-4-オンの合成)

内容積10mlのステンレス製耐圧容器に、3-アミノチオフェン-2-カルボン酸メチル1.00g (6.36mmol)、オルトギ酸メチル2.02g(19.1mmol)、15質量%のアンモニアのメタノール溶 液5.0ml(38mmol)を加え、130℃で7時間反応させた。反応終了後、室温まで冷却した後に 減圧下で濃縮した。次いで、濃縮物に酢酸エチル50ml及び水50mlを加えて分液し、水層を 減圧下で濃縮乾固させ、黒色固体として3H-チエノ[3,2-d]ピリミジン-4-オン0.84gを得た (単離収率:87%)。

3H-チエノ[3,2-d]ピリミジン-4-オンの物性値は以下の通りであった。

[0040]

 1 H-NMR(DMSO-d₆, δ (ppm)); 7.29(1H, d, J=5.1Hz), 7.99(1H, d, J=5.5Hz), 8.12(1H, s) CI-MS(m/e); 153(M+1)

【産業上の利用可能性】

[0041]

本発明は、チオフェンアミノカルボン酸化合物からチエノピリミジノン化合物を製造す る方法に関する。チエノピリミジノン化合物は、医薬や農薬等の合成中間体又は原料とし て有用な化合物である。

【書類名】要約書

【要約】

【課題】 本発明の課題は、温和な条件下、簡便な方法によって、チオフェンアミノカルボン酸化合物からチエノピリミジノン化合物を高収率で製造出来る、工業的に好適なチエノピリミジノン化合物の製法を提供することである。

【解決手段】 本発明の課題は、

一般式(1)

【化1】

R⁰NH₂

(1)

(式中、R⁰ は、水素原子又は炭化水素基を示す。) で示されるアミン化合物の存在下、一般式 (2) 【化2】

$$\begin{array}{c}
R_1 \\
X_1 \\
COOR^4 \\
R_2 - X_2 \\
NH_2
\end{array}$$
(2)

(式中、 X^1 、 X^2 及び X^3 は、炭素原子又は硫黄原子を示す(但し、 X^1 、 X^2 及び X^3 のいずれかひとつのみが硫黄原子である。)。 R^1 、 R^2 及び R^3 は、それぞれ X^1 、 X^2 及び X^3 が炭素原子の時のみ存在し、同一又は異なっていても良く、置換基を有していても良い、反応に関与しない基を示す。又、 R^4 は、水素原子又は炭化水素基を示す。なお、 R^1 、 R^2 及び R^3 は、互いに結合して環を形成していても良い。)で示されるチオフェンアミノカルボン酸化合物と、一般式(3)

【化3】

(R⁵O)₃CR⁶

(3)

(式中、 R^5 は、炭化水素基を示し、 R^6 は、 $R^1 \sim R^3$ と同義である。)で示される有機酸化合物とを反応させることを特徴とする、一般式(4) 【化 4】

(式中、 X^1 、 X^2 、 X^3 、 R^0 、 R^1 、 R^2 、 R^3 及び R^6 は、前記と同義である。)で示されるチエノピリミジノン化合物の製法によって解決される。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-291426

受付番号

50301330542

書類名

特許願

担当官

第五担当上席 0094

作成日

平成15年 8月12日

<認定情報・付加情報>

【提出日】

平成15年 8月11日

特願2003-291426

出願人履歷情報

識別番号

[000000206]

1. 変更年月日

2001年 1月 4日

[変更理由]

住所変更

住 所

山口県宇部市大字小串1978番地の96

氏 名 宇部興産株式会社