Contents

1.	Combinatorial methods	2
2.	Fourier-analytic techniques	3
3.	Probabilistic tools	3
4.	Further topics	3

1. Combinatorial methods

Definition. Let G be an abelian group and $A, B \subseteq G$. The sumset of A and B is

$$A + B := \{a + b : a \in A, b \in B\}.$$

The **difference set** of A and B is

$$A - B := \{a - b : a \in A, b \in B\}.$$

Proposition. $\max\{|A|, |B|\} \le |A + B| \le |A| \cdot |B|$.

Proof. Trivial.

Example. Let $A = [n] = \{1, ..., n\}$. Then $A + A = \{2, ..., 2n\}$ so |A + A| = 2|A| - 1. Lemma. Let $A \subseteq \mathbb{Z}$ be finite. Then $|A + A| \ge 2|A| - 1$ with equality iff A is an arithmetic progression.

Proof.

- Let $A = \{a_1, ..., a_n\}$ with $a_i < a_{i+1}$. Then $a_1 + a_1 < a_1 + a_2 < \cdots < a_1 + a_n < a_2 + a_n < \cdots < a_n + a_n$.
- Note this is not the only choice of increasing sequence that works, in particular, so does $a_1+a_1 < a_1+a_2 < a_2+a_2 < a_2+a_3 < a_2+a_4 < \cdots < a_2+a_n < a_3+a_n < \cdots < a_n+a_n$.
- So when equality holds, all these sequences must be the same. In particular, $a_2+a_i=a_1+a_{i+1}$ for all i.

Exercise. If $A, B \subseteq \mathbb{Z}$, then $|A + B| \ge |A| + |B| - 1$ with equality iff A and B are arithmetic progressions with the same common difference.

Example. Let $A, B \subseteq \mathbb{Z}/p$ for p prime. If $|A| + |B| \ge p + 1$, then $A + B = \mathbb{Z}/p$. *Proof*.

- $g \in A + B$ iff $A \cap (g B) \neq \emptyset$ where $(g B = \{g\} B)$.
- Let $g \in \mathbb{Z}/p$, then use inclusion-exclusion on $|A \cap (g-B)|$ to conclude result.

Theorem (Cauchy-Davenport). Let p be prime, $A, B \subseteq \mathbb{Z}/p$ be non-empty. Then

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof.

- Assume $|A| + |B| \le p + 1$, and WLOG that $1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Use induction on |A|. |A| = 1 is trivial.
- Let $|A| \geq 2$ and let $0 \neq a \in A$. Then since p is prime, $\{a, 2a, ..., pa\} = \mathbb{Z}/p$.
- There exists $m \ge 0$ such that $ma \in B$ but $(m+1)a \notin B$. Let B' = B ma, so $0 \in B'$, $a \notin B'$ and |B'| = |B|.
- $1 \le |A \cap B'| < |A|$ (why?) so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$.

• Since $(A \cap B') + (A \cup B') \subseteq A + B'$ (why?), we have $|A + B| = |A + B'| \ge |(A \cap B') + (A \cup B')| \ge |A \cap B'| + |A \cup B'| - 1 = |A| + |B| - 1$.

Exercise. Find a counterexample for Cauchy-Davenport for general abelian groups (e.g. \mathbb{Z}/n for n composite).

Example. Fix a small prime p and let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then V + V = V, so |V + V| = |V|. In fact, if $A \subseteq \mathbb{F}_p^n$ satisfies |A + A| = |A|, then A is an affine subspace (a coset of a subspace).

Proof. If $0 \in A$, then $A \subseteq A + A$, so A = A + A. General result follows by considering translation of A.

Example. Let $A \subseteq \mathbb{F}_p^n$ satisfy $|A+A| \leq \frac{3}{2} |A|$. Then there exists a subspace $V \subseteq \mathbb{F}_p^n$ such that $|V| \leq \frac{3}{2} |A|$ and A is contained in a coset of V.

Proof. Exercise (sheet 1). \Box

2. Fourier-analytic techniques

3. Probabilistic tools

4. Further topics