Machine Learning

TRAINING X2 X3 Yu Size Shope Textor Χı **८०**\ Appl 2 Apl

- A supervised learning method
- Though it is a supervised learning method, it is a 'lazy learner', i.e. does not construct a model using training data
- Classification is determined based on a majority vote of the nearest neighbors of each point
- Suitable for classification where items in a class tend to be fairly homogenous on the values of attributes
- Not suitable if the data is too noisy or the target classes do not have clear demarcation in terms of attribute values

- Nonparametric model: distribution-free tests because no assumption of the data needing to follow a specific distribution
- Commonly used for classification
- Can also be used for regression

 New data point is assigned a class which has the most data points in the nearest neighbors of the point

Minkowiski $\left(\left|\chi_{12} - \chi_{11}\right|^{p} + \left|\chi_{21} - \chi_{22}\right|^{p}\right)$

- Nearest neighbors are calculated based on shortest distance.
- Most commonly used distance measure is Euclidean distance (default)

 Manhattan / Taxi Distance: Also called L1 norm. It is the sum of the differences in each dimension.

- Mahalanobis distance takes into account the covariance between attributes
- Jaccard distance (for Boolean data) = number of non-equal dimensions / number of nonzero dimensions.
- Matching distance (for Boolean data) = number of non-equal dimensions / number of dimensions

- To ensure all the dimensions have similar scale, it is necessary to normalize the data. Common way to normalize data is
 - · Z-score standardization using formula

$$z_i = \frac{x_i - \bar{x}}{s}$$

- Min-max scaler
 - \cdot X_std = (X min) / (max min)

Pairplot

- Advantages -
 - Makes no assumptions about distributions of data
 - Easy to understand and implement
 - Not impacted by outliers
 - Able to segregate classes using non-linear boundary
- Dis-advantages -
 - Determining the optimal value of K is a challenge
 - Not effective when the class distributions have large overlap

Does not output any models. Calculates distances for every new point.
 Hence very computation intensive

Selecting value of K

- K is a hyperparameter must be picked in order to get the best possible fit for the data set
- K controls the shape of the decision boundary we talked about earlier
- A small value of k means that noise will have a higher influence on the result

Hands-on exercise

D: ... Day2/KNAl.

Confusion Matrix

frecision

	Predicted			egl		
			Α	В	С	
Recall	le	Α	15	0	0	1
	Actual	В	0	19	2	ı
		С	0	0	17	1
			-/	1	17/10	1

- Classification accuracy = correct predictions / total predictions
- Precision is the proportion of the predicted positive cases that were correct.
 - Precision of C = 17/(17+2)
- Recall is the proportion of positive cases that were correctly identified
 - Recall for B = 19 / (19+2)

Confusion Matrix

		Predicted			
		Positive	Negative		
Actual	Positive	TP	FN		
	Negative	FP	TN		

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Recall = $\frac{TP}{TP + FN}$ Precision = $\frac{TP}{TP + FP}$

- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.
- Note that in binary classification, recall of the positive class is also known as "sensitivity"; recall of the negative class is "specificity".
- High recall, low precision: This means that most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.
- Low recall, high precision: This shows that we miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP)