Revisão do conteúdo 10 Bimestre

Prof. Ramon Gomes da Silva

Aula 01 - Introdução aos conceitos de produção e produtividade

Produção é entendida como um conjunto de atividades que levam à transformação de um bem tangível em um outro com maior utilidade;

A **produtividade** é mais tradicionalmente conceituada como a relação entre o valor do produto/serviço produzido e o custo de insumos para produzi-lo.

$$\begin{aligned} \text{PTF} &= \text{produtividade total de uma firma} = \frac{output \text{ total da firma}}{input \text{ total da firma}} \\ \text{PP}_{ij} &= \frac{O_i}{I_i} \text{ para todos os } j \end{aligned}$$

Aula 02 - Sistema de produção enxuta (lean manufacturing)

Conceitos da produção enxuta

Produção enxuta, também conhecida como 'lean manufacturing' ou 'just-in-time', é ao mesmo tempo uma filosofia, um método de planejamento e controle de operações e uma abordagem à melhoria; Foi desenvolvido pela Toyota Motor Company no período pós 2ª Guerra Mundial, chamado de **Toyota Production System (TPS)**; Tem o objetivo de atender a demanda instantaneamente, com qualidade perfeita e sem desperdícios;

"O fluxo de itens (materiais, informações ou clientes) que constituem serviços e produtos sempre entregue exatamente o que o cliente quer (qualidade perfeita), na quantidade exata (nem muito nem pouco), exatamente quando preciso (nem cedo nem tarde), e exatamente onde foi pedido (no lugar certo) ao menor custo possível."

Produção empurrada versus puxada

Produção empurrada: do inglês "push system" é um processo produtivo planejado baseado em uma previsão da demanda (MRP, ordens de produção), onde cada processo produz uma determinada quantidade independente do consumo do processo seguinte;

Produção puxada: do inglês "pull system" é um sistema de produção onde cada ciclo da fabricação "puxa" a etapa do processo anterior, na qual a ordem de produção sai a partir da demanda dos clientes para só então ser produzida.

Toyota Production System (TPS)

- 1. As quatro regras do TPS;
- Noção de ideal Toyota;
- 3. Tipos de desperdícios;
- 4. Kanban;
- 5. Kaizen;
- 6. Housekeeping, 5 sensos, ou 5s;

Aula 03 - Localização de empresas

Tipos de localização

- Cluster: nome utilizado para caracterizar um agrupamento natural de empresas similares em determinada região geográfica, com as mesmas características econômicas e com um objetivo comum de competitividade.
- 2. Condomínio industrial
- 3. Consórcio modular
- 4. Cooperativas

Método de centro de gravidade para localização de empresa industrial

Método do centro de gravidade: procura-se avaliar o local de menor custo para a instalação da empresa, considerando o fornecimento de matérias-primas e os mercados consumidores.

Exemplo: Na rede a seguir, MP é um ponto de fornecimento de matérias-primas e PA é um ponto de consumo de produtos acabados.

A localização horizontal (LH) e a localização (LV) são calculados como mostrado nas Tabelas 01 e 02.

Método de centro de gravidade para localização de empresa industrial

Tabela 1 Tabela 2

	_							
		DISTRIBUIÇÃO DOS LOCAIS						
km 5	500	MP1			PA1	PA2		
4	400		MP2	PA3				
3	300	PA4						
2	200							
1	100	PA5				МР3		
km	0	100	200	300	400	500		

CUSTOS/QUANTIDADES									
DADOS									
LOCAL	OHANTIDADE CUSTO DE TRANSPORTE		(HORIZ	LOCALIZAÇÃO (HORIZONTAL E VERTICAL)					
MP1	200	3	100	500					
MP2	400	2	200	400					
MP3	300	2	500	100					
PA1	150	4	400	500					
PA2	300	3	500	500					
PA3	50	5	300	400					
PA4	250	4	100	300					
PA5	50	3	100	100					

Método de centro de gravidade para localização de empresa industrial

$$ext{Localização horizontal} = rac{\displaystyle\sum_{i=1}^n t_i imes CT_i imes LH_i}{\displaystyle\sum_{i=1}^n t_i imes CT_i}$$

$$ext{Localização horizontal} = rac{\displaystyle\sum_{i=1}^n t_i imes CT_i imes LH_i}{\displaystyle\sum_{i=1}^n t_i imes CT_i} \hspace{1.5cm} ext{Localização vertical} = rac{\displaystyle\sum_{i=1}^n t_i imes CT_i imes LV_i}{\displaystyle\sum_{i=1}^n t_i imes CT_i}$$

$$LH = 1.400.000/4.900 = 285,7$$

$$LV = 1.845.000/4.900 = 376, 5$$

Espaço para dúvidas

Prof. Ramon Gomes da Silva, MSc.

ramongs1406@gmail.com https://ramongss.github.io

