

ODMB user's manual

Optical DAQ MotherBoard for the ME1/1 stations of the CMS muon endcap detector

Firmware tag: 3.0B

ODMB.V2, ODMB.V3, and ODMB.V4 compatible

Manuel Franco Sevilla, Frank Golf, Guido Magazzù, Tom Danielson, Adam Dishaw, Jack Bradmiiller-Feld UC Santa Barbara

Table of Contents

Front panel	2
General Firmware version VME access through the board discrete "emergency" logic Jumpers and test points	3 3 3 4
Device 1: DCFEB JTAG Example: Read DCFEB UserCode	5 5
Device 2: ODMB JTAG Example: Read ODMB UserCode	6
Device 3: ODMB/DCFEB control Bit specification DCFEB pulses command "W 3200" Information accessible via command "R 3YZC"	7 8 8
Device 4: Configuration registers Note	9
Device 5: Test FIFOs Notes	10 10
Device 6: BPI Interface (PROM)	11
Device 7: ODMB monitoring Translation into temperatures, current, and voltages	12 12
Device 8: Low voltage monitoring	13
Device 9: System tests	14
Firmware block diagram	15

Front panel

Push buttons

- HRST: Reloads firmware in PROM onto FPGA
- SRST: Resets registers/FIFOs in FW. LEDs 1-12 blink at different speeds for ~3s
- PB1: Sends L1A and L1A_MATCH to all DCFEBs. Turns on LED 12

LEDs set in firmware

- 1: 4 Hz signal from clock for data → DDU
- 3: 2 Hz signal from clock for data → PC
- 5: 1 Hz signal from internal ODMB clock
- 7: Data taking: ON normal, OFF pedestal
- 9: Triggers: ON external, OFF internal
- 11: Data: ON real, OFF simulated
- 2: Bit 0 of L1A_COUNTER
- 4: Bit 1 of L1A_COUNTER
- 6: Bit 2 of L1A_COUNTER
- 8: Bit 3 of L1A_COUNTER
- 10: Bit 4 of L1A_COUNTER
- 12: Briefly ON when a VME command is received.
 Also ON when PB1 is pressed

LEDs set in hardware

- DDU: Signal Detected on DDU RX
- PC: Signal Detected on PC RX
- ETD: DTACK enable for discrete logic (active low)
- EJD: JTAG enable for discrete logic (active low)
- DON: DONE signal from FPGA. ON when programmed
- INIT: INIT_B signal from FPGA (active low)
- **LOCK**: QPLL is locked
- ERR: Error with QPLL
- Bottom 12: Voltage monitoring

General

Firmware version

For a given firmware tag **VXY-ZK**:

- Usercode is XYZKdbdb
- ❖ Firmware version read via "R 4200" is XYZK

VME access through the board discrete "emergency" logic

The FPGA may be accessed via JTAG through the discrete logic as follows

- The VME address is 0xFFFC
- * The bit 0 of the data sent is TMS
- The bit 1 of the data sent is TDI

For example, to read the Usercode, starting from JTAG idle (five TMS = 1 & one TMS = 0), the commands are:

```
W FFFC 1 To Select-DR-Scan
W FFFC 1 To Select-IR-Scan
W FFFC 0 To Capture-IR
W FFFC 0 To Shift-IR
W FFFC 0 Shifting IR (Read UserCode IR = 3C8)
W FFFC 0 Shifting IR
W FFFC 0 Shifting IR
W FFFC 2 Shifting IR
W FFFC 0 Shifting IR
W FFFC 0 Shifting IR
W FFFC 2 Shifting IR
W FFFC 2 Shifting IR
W FFFC 2 Shifting IR
W FFFC 3 Shifting IR and to Exit1-IR
W FFFC 1 To Update-IR
W FFFC 0 To Run Test/Idle
W FFFC 1 To Select-DR-Scan
W FFFC 0 To Capture-DR
W FFFC 0 Shifting DR
R FFFC 0 Shifting DR (Read bit 0 of UserCode)
```

Since the Usercode register is 32 bits, the last two commands should be repeated 31 more times.

Jumpers and test points

Place the **jumpers** marked in **red** in the diagram (master mode). The signals sent to the **test points** marked are:

			-		-		-
TP13	RAW_LCT(1)	TP14	L1A_MATCH(1)	TP31	Defined by TP_SEL	TP32	
TP15	RAW_LCT(2)	TP16	L1A_MATCH(2)	TP33		TP34	
TP17	RAW_LCT(3)	TP18	L1A_MATCH(3)	TP35	Defined by TP_SEL	TP36	
TP19	RAW_LCT(4)	TP20	L1A_MATCH(4)	TP37		TP38	
TP21	RAW_LCT(5)	TP22	L1A_MATCH(5)	TP39		TP40	
TP23	RAW_LCT(6)	TP24	L1A_MATCH(6)	TP41	Defined by TP_SEL	TP42	
TP25	RAW_LCT(7)	TP26	L1A_MATCH(7)	TP43		TP44	
TP27	L1A	TP28	DDU_DATA_VALID	TP45	Defined by TP_SEL	TP46	
TP29	OTMBDAV	TP30	ALCTDAV	TP47	DCFEB_TDI	TP48	
	•	•	•	TP49	DCFEB_TMS	TP50	2.5V
R92		ST16 M0 ST17 M1 ST18 M2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	QP QP QP 3 2 2 2 2 3 5 2 130T 6	-6 -6 -6	8.1 P2V5 7 8.3 8.3 P2V5 7 8.3 8.3 P2V5 7 8.3 P2V5 7 8.3 P2V5 7 8.3 P2V5 7 P2	

Firmware tag: 3.0B

TP46 TP48

Device 1: DCFEB JTAG

"Y" refers to the number of bits to be shifted

Instruction		Description							
W	1Y00	Shift Data; no TMS header; no TMS tailer							
W	1Y04	Shift Data with TMS header only							
W	1Y08	Shift Data with TMS tailer only							
W	1Y0C	Shift Data with TMS header & TMS tailer							
R	1014	Read TDO register							
W	W 1018 Resets JTAG protocol to IDLE state (data sent with this command is disregated)								
W	1Y1C	Shift Instruction register							
W	1020	Select DCFEB, one bit per DCFEB							
R	1024	Read which DCFEB is selected							

Example: Read DCFEB UserCode

DCFEB registers are set and read via JTAG. The following procedure reads the 32-bit USERID of DCFEB 3:

```
W 1020 4 Select DCFEB 3 (one bit per DCFEB)

W 191c 3C8 Set instruction register to 3C8 (read UserCode)

W 1F04 0 Shift 16 lower bits

R 1014 0 Read last 16 shifted bits (DBDB)

W 1F08 0 Shift 16 upper bits

R 1014 0 Read last 16 shifted bits (XYZK)
```

Device 2: ODMB JTAG

"Y" refers to the number of bits to be shifted

Instruction		Description							
W	2Y00	Shift Data; no TMS header; no TMS tailer							
W	2Y04	Shift Data with TMS header only							
W	2Y08	Shift Data with TMS tailer only							
W	2Y0C	Shift Data with TMS header & TMS tailer							
R	2014	Read TDO register							
W	2018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)							
W	2Y1C	Shift Instruction register							
W	2020	Change polarity of V6_JTAG_SEL							

Example: Read ODMB UserCode

Read FPGA UserCode:

```
W 291C 3C8 Set instruction register to 3C8 (read UserCode)
W 2F04 0 Shift 16 lower bits
R 2014 0 Read last 16 shifted bits (DBDB)
W 2F08 0 Shift 16 upper bits
R 2014 0 Read last 16 shifted bits (XYZK)
```

Device 3: ODMB/DCFEB control

Insti	ruction	Description						
W/R	3000	0 → nominal mode, 1 → calibration mode						
W	3004	ODMB soft reset						
W	3008 ODMB optical reset							
W	3010	Reprograms all DCFEBs						
W	3014	L1A reset and DCFEB RESYNC						
W/R	3020	TP_SEL register (selects which signals are sent to TP31, TP35, TP41, TP45)						
F2 /5	21.00	LOODDAOK O vaa laankaali taroo värtamallaankaali						
	3100	LOOPBACK: 0 → no loopback, 1 or 2 → internal loopback						
W/R	3110	DIFFCTRL (TX voltage swing): 0 → minimum ~100 mV, F → maximum ~1100mV						
R	3120	Read DONE bits from DCFEBs (7 bits)						
R	3124	Read if QPLL is locked						
	2000	Condo pulace to DOFFDs (see heleu)						
W	3200	Sends pulses to DCFEBs (see below)						
W/R 3300		Data multiplexer: 0 → real data, 1 → dummy data						
W/R	3304	Trigger multiplexer: 0 → external triggers, 1 → internal triggers						
W/R	3308	LVMB multiplexer: 0 → real LVMB, 1 → dummy LVMB						
W/R	3400	0 → normal, 1 → pedestal (L1A_MATCHes sent to DCFEBs for each L1A).						
W/R	3404	0 → normal, 1 → OTMB data requested for each L1A (requires special OTMB FW)						
W/R	3408	Bit 0 → kills L1A. Bits 1-7 → kills L1A_MATCHes						
W/R	340C	MASK_PLS: 0 → normal, 1 → no EXTPLS/INJPLS (for non-pulsed pedestals from CCB)						
R	3YZC	Read ODMB_DATA corresponding to selection YZ (see below)						

Bit specification DCFEB pulses command "W 3200"

- ► DCFEB_PULSE[0] Sends INJPLS signal to all DCFEBs.
- ▶ DCFEB_PULSE[1] Sends EXTPLS signal to all DCFEBs.
- ▶ DCFEB_PULSE[2] Sends test L1A and L1A_MATCH to non-killed DCFEBs.
- ▶ DCFEB_PULSE[3] Sends LCT request to OTMB.
- ▶ DCFEB_PULSE[4] Sends external trigger request to OTMB.
- ▶ DCFEB_PULSE[5] Sends BC0 to all DCFEBs.

Information accessible via command "R 3YZC"

- YZ = 3F: Least significant 16 bits of L1A_COUNTER
- ► YZ = 21-29: Number of L1A_MATCHes for given DCFEB, OTMB, ALCT
- YZ = 31-37: Gap (in number of bunch crossings) between the last LCT and L1A for given DCFEB
- ▶ YZ = 38: Gap (in number of bunch crossings) between the last L1A and OTMBDAV
- YZ = 39: Gap (in number of bunch crossings) between the last L1A and ALCTDAV
- ► YZ = 41-49: Number of packets stored for given DCFEB, TMB, or ALCT
- ► YZ = 4A: Number of packets sent to the DDU
- YZ = 4B: Number of packets sent to the PC
- YZ = 51-59: Number of packets shipped to DDU and PC for given DCFEB, TMB, or ALCT
- ▶ YZ = 61-67: Number of data packets received with good CRC for given DCFEB
- ► YZ = 71-77: Number of LCTs for given DCFEB
- ► YZ = 78: Number of available OTMB packets
- ► YZ = 79: Number of available ALCT packets
- ► YZ = 4F: Read number of times the QPLL lock has been lost
- YZ = 5A: Read last CCB CMD[5:0] + EVTRST + BXRST strobed
- YZ = 5B: Read last CCB DATA[7:0] strobed
- YZ = 5C: Read toggled CCB_CAL[2:0] + CCB_BX0 + CCB_BXRST + CCB_L1ARST + CCB_L1A + CCB_CLKEN + CCB_EVTRST + CCB_CMD_STROBE + CCB_DATA_STROBE
- YZ = 5D: Read toggled CCB_RSV signals

Device 4: Configuration registers

Instruction		Description							
W/R	4000	LCT_L1A_DLY[5:0] → Set to LCT/L1A gap - 100							
W/R	4004	OTMB_DLY[5:0] → Set to L1A/OTMBDAV gap read with "R 338C"							
W/R	400C	ALCT_DLY[5:0] → Set to L1A/ALCTDAV gap read with "R 339C"							
W/R	4010	INJ_DLY[4:0] - Delay: 12.5*INJ_DLY [ns]							
W/R	4014	EXT_DLY[4:0] - Delay: 12.5*EXT_DLY [ns]							
W/R	4018	CALLCT_DLY[3:0] - Delay: 25*CALLCT_DLY [ns]							
W/R	401C	KILL[9:1] (ALCT + TMB + 7 DCFEBs)							
W/R	4020	CRATEID[6:0]							
W/R 4028		Number of words generated by dummy DCFEBs, OTMB, and ALCT							
R	4100	Read ODMB unique ID¹							
R	4200	Read firmware version							
R	4300	Read firmware build							
R	4400	Read month/day firmware was synthesized							
R	4500	Read year firmware was synthesized							

Note

1. If unique ID not set, request UCSB to write it.

Device 5: Test FIFOs

Z refers to FIFO: 1 → PC TX, 2 → PC RX, 3 → DDU TX, 4 → DDU RX, 5 → OTMB, 6 → ALCT

Instruction		Description					
R	5000	Read one word of selected DCFEB FIFO					
R	500C	Read numbers of words stored in selected DCFEB FIFO					
W/R	5010	Select DCFEB FIFO					
W	5020	Reset DCFEB FIFOs (7 bits, one per FIFO, which are auto-reset)					
R	5 Z 00	Read one word of FIFO					
R	5Z0C	Read numbers of words stored in FIFO					
W	5 Z 20	Reset FIFO					

Notes

- 1. All these FIFOs except PC/DDU TX can hold a maximum of 2,000 18-bit words (36 kb).
 - 1. PC and DDU TX are 4 times larger.
- 2. The **OTMB**, **ALCT**, and **7 DCFEB FIFOs** store the data as it arrives in parallel to the standard data path
 - They can hold a maximum of 3 OTMB, 4 ALCT, and 2 DCFEB data packets
- 3. The DDU TX FIFO stores DDU packets just before being transmitted
 - They include the DDU header (4 words starting with 9, 4 starting with A), ALCT data, TMB data, DCFEB data, and trailer (4 words starting with F, 4 starting with E)
- 4. The PC TX FIFO stores DDU packets wrapped in ethernet frames just before being transmitted
 - They include the ethernet header (4 words) and trailer (4 words) and fillers.
 - They need to be at least 32 words long
- 5. The **DDU** and **PC RX FIFOs** can be used for loopback tests

Device 6: BPI Interface (PROM)

Important: Instruction 6000 takes ~1 second, during which Device 4 and 6 write commands are ignored

Instruction		Description								
W	6000	Write configuration registers to PROM								
W	6004	Set configuration registers to retrieved values from PROM								
W	6020	Reset BPI interface state machines								
W	6024	Disable parsing commands in command FIFO while filling FIFO with commands (no data)								
W	6028	Enable parsing commands in the command FIFO (no data)								
W	602C	Write one word to command FIFO								
R	6030	Read one word from read-back FIFO								
R	6034	Read number of words in read-back FIFO								
R	6038	Read BPI Interface Status Register								
R	603C	Read Timer (16 LSBs)								
R	6040	Read Timer (16 MSBs)								

Device 7: ODMB monitoring

Reads output of the ADC inside the FPGA

Instruction		Description							
R	7000	FPGA temperature							
R	7100	LV_P3V3: input to FPGA regulators							
R	7110	P5V: input to PPIB regulator and level for 5V chips							
R	7120	IPPIB: current going to PPIB (on V2s and V3s, board temperature THERM2)							
R	7130	P3V6_PP: voltage level for PPIB							
R	7140	P2V5: voltage level for FPGA and 2.5V chips							
R	7150	THERM1: board temperature close to the regulators							
R	7160	P1V0: voltage level for FPGA							
R	7170	P5V_LVMB: voltage level for LVMB							

Translation into temperatures, current, and voltages

The output of the 7YZ0 commands is a 12 Rithum 508 to 50 Ryz. The measurement is: $T_{FPGA} = \frac{12 \text{Rest.}}{4096} - 273.15 \text{ [°C]}$

$$T_{\rm FPGA} = rac{60}{4096} - 273.1$$
 is $R_{\rm cr} imes 5000$

• The FPGA temperature is $I_{PPIB} = \frac{R_{12} \times 5000}{4096} - 10 \text{ [mA]}$

• The PPIB current is

• The temperature of the thermistors THERM1, THERM2 is given by

	R _{XY}	377	455	55A	687	7DD	959	AF8	CB5	E87	FFF
	T [° C]	15	20	25 By/7	30	35	40	45	50	55	60
•			$ m V_{YZ}$	$=\frac{7012}{2048}$	$\times m V_{YZ,Nor}$	_n [V]					

• The voltage levels are

, where $V_{YZ,\;\text{Nom}}$ is the nominal voltage level for that

 $register. \ That \ is, \ V_{10, \ Nom} = 3.3 V, \ V_{13, \ Nom} = 3.6 V, \ V_{11, \ Nom} = V_{17, \ Nom} = 5 V, \ V_{14, \ Nom} = 2.5 V, \ and \ V_{16, \ Nom} = 1 V.$

Device 8: Low voltage monitoring

Instruction		Description							
W	8000	Send control byte to ADC							
R	8004	Read ADC							
W	8010	Select DCFEBs/ALCT to be powered on (8 bits, ALCT + 7 DCFEBs)							
R	8018	Read which DCFEBs/ALCT are powered on							
W	8020	Select ADC to be read, 0 to 6							
R	8024	Read which ADC is to be read							

Table 1. Control-Byte Format

BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
START	SEL2	SEL1	SEL0	RNG	BIP	PD1	PD0

PD1	PD0	MODE
0	0	Normal operation (always on), internal clock mode.
0	1	Normal operation (always on), external clock mode.
1	0	Standby power-down mode (STBYPD), clock mode unaffected.
1	1	Full power-down mode (FULLPD), clock mode unaffected.

INPUT RANGE	RNG	BIP
0 to +5V	0	0
0 to +10V	1	0
±5V	0	1
±10V	1	1

Device 9: System tests

Inst	ruction	Description	
W	9000	Test the DDU TX/RX with a given number of PRBS 27-1 sequences	
R	900C	Read number of errors during last DDU PRBS test	
W	9100	Test the PC TX/RX with a given number of PRBS 27-1 sequences	
R	910C	Read number of errors during last PC PRBS test	
W	9200	Check N*10000 bits from the PRBS pattern sent by the DCFEB	
W/R	9204	Select DCFEB fiber to perform PRBS test	
R	9208	Read number of error edges during last DCFEB PRBS test	
R	920C	Read number of bit errors during last DCFEB PRBS test	
W/R	9300	Set PRBS type for DCFEB: 1 → PRBS-7, 2 → PRBS-15, 3 → PRBS-23, 4 → PRBS-31	
W	9400	Check N*10000 bits from the PRBS pattern sent by the OTMB	
R	9404	Read number of enables sent by the OTMB	
R	9408	Read number of good 10000 bits sent by the OTMB	
R	940C	Read number of bit errors during last OTMB PRBS test	
W	9410	Reset number of errors in OTMB counter	

Firmware block diagram

The firmware can be downloaded from http://github.com/odmb/odmb ucsb v2

