1983 FI1.4

若
$$\frac{12}{8}$$
 = k 及 $8:d=k:100$,求 d 的值。

Find the value of d, if $\frac{12}{8} = k$ and 8: d = k: 100.

1984 FI5.3

一繩長 20 m,依 2:4:6 之比例分成三段。若最長一段為 N m,求 N 的值。

A piece of string, 20 m long, is divided into 3 parts in the ratio of 2:4:6.

If N m is the length of the longest portion, find the value of N.

1985 FG10.3

若
$$\frac{p}{q} = \frac{q}{r} = \frac{r}{s} = 2$$
且 $R = \frac{p}{s}$, 求 R 的值。

If $\frac{p}{q} = \frac{q}{r} = \frac{r}{s} = 2$ and $R = \frac{p}{s}$, find the value of R.

1987 FI2.3

In a:b=5:4, b:c=3:1 and a:c=y:4, find the value of y.

1989 FG9.4

已知
$$a:b=3:8$$
, $b:c=5:6$,且 $a:c=r:16$,求 r 的值。

If a:b=3:8, b:c=5:6 and a:c=r:16, find the value of r.

1991 FG8.3

若
$$p:q=2:3$$
, $q:r=4:5$,且 $p:q:r=8:t:15$,求 t 的值。

If p: q = 2: 3, q: r = 4: 5 and p: q: r = 8: t: 15, find the value of t.

1991 FG8.4

If $\frac{1}{x}$: $\frac{1}{y} = 4$: 3 and $\frac{1}{x+y}$: $\frac{1}{x} = 3$: m, find the value of m.

1992 HI18

若
$$a:b=3:4$$
 及 $a:c=2:5$,求 $\frac{ac}{a^2+b^2}$ 的值。

If
$$a:b=3:4$$
 and $a:c=2:5$, find the value of $\frac{ac}{a^2+b^2}$.

1992 FI3.4

If
$$\frac{1}{x}: \frac{1}{y}: \frac{1}{z} = 3:4:5$$
 and $\frac{1}{x+y}: \frac{1}{y+z} = 9 \times 12:d$, find the value of d .

1993 FI2.3

將 \$(3000-2620) 按 5:6:8 分成 3 份,最小的一份為\$c。求 c 的值。

Dividing (3000 - 2620) in a ratio 5:6:8, the smallest part is c. Find the value of c.

1993 FI4.2

某兩數的比例為 5:8。當每邊加 12 時,兩數的比例變為 3:4。若 b 為原本兩數之差及 b>0,求 b 的值。

The ratio of two numbers is 5 : 8. If 12 is added to each of them, the ratio becomes 3 : 4. If b is the difference of the original numbers and b > 0, find the value of b.

1994 HI5

若
$$a:b=2:1$$
、 $b:c=3:2$ 及 $c:d=5:3$,求 $a:b:c:d$ 的值。

If a:b=2:1, b:c=3:2 and c:d=5:3, find the value of a:b:c:d.

1994 FI1.3

若
$$x:y=2:3 \cdot x:z=4:5 \cdot y:z=b:c$$
, 求 c 的值。

If x: y = 2: 3, x: z = 4: 5, y: z = 12: c, find the value of c.

1997 HI6

若
$$yz:zx:xy=1:2:3$$
,求 $\frac{x}{yz}:\frac{y}{zx}$ 的值。

If yz : zx : xy = 1 : 2 : 3, find the value of $\frac{x}{yz} : \frac{y}{zx}$.

1998 FI4.1

已知
$$\frac{10x-3y}{x+2y} = 2$$
且 $p = \frac{y+x}{y-x}$,求 p 的值。

Given that $\frac{10x - 3y}{x + 2y} = 2$ and $p = \frac{y + x}{y - x}$, find the value of p.

1999 HG2

若 a:b:c=3:4:5 及 a+b+c=48,求 a-b-c 的值。

If a:b:c=3:4:5 and a+b+c=48, find the value of a-b-c.

2002 HI7

若
$$\frac{(a-b)(c-d)}{(b-c)(d-a)}$$
=3,求 $\frac{(a-c)(b-d)}{(a-b)(c-d)}$ 的值。

If
$$\frac{(a-b)(c-d)}{(b-c)(d-a)} = 3$$
, find the value of $\frac{(a-c)(b-d)}{(a-b)(c-d)}$.

2002 HG1

有糖果一袋分配給甲、乙、丙三人。甲、乙、丙三人依次所得的糖果數目的 比是5:4:3。若把糖果重新分配給甲、乙、丙三人使其比依次為7:6:5, 則其中一人比原本所得的數目多了40粒,問此人原本所得的糖果數目。

A bag of sweets is distributed to three persons A, B and C. The numbers of sweets 2009 FI3.3 obtained by A, B and C are in the ratios of 5:4:3 respectively. If the sweets are re-distributed to A, B, C according to the ratios 7:6:5 respectively, then one of them would get 40 more sweets than his original number. Find the original number Let x_1, x_2, x_3, x_4 be real numbers and $x_1 \neq x_2$. of sweets obtained by this person.

2006 FI2.1

已知
$$a:b:c=6:3:1$$
。若 $R=\frac{3b^2}{2a^2+bc}$,求 R 的值。

Given that a:b:c=6:3:1. If $R=\frac{3b^2}{2a^2+bc}$, find the value of R.

2007 FG3.1

如圖,MN 是一直綫, $\angle OON = a^{\circ}$, $\angle POO$ $= b^{\circ}$ \not ∠ $POM = c^{\circ}$ ∘

若 b: a=2:1 及 c: b=3:1 , 求 b 的值。

In the figure, MN is a straight line,

$$\angle QON = a^{\circ}$$
, $\angle POQ = b^{\circ}$ and $\angle POM = c^{\circ}$.

If b : a = 2 : 1 and c : b = 3 : 1, find the value of b.

2008 HI4

設 $a \cdot b \cdot c$ 和 d 為實數。若 $\frac{a}{b} = \frac{1}{2}$, $\frac{b}{c} = \frac{3}{2}$, $\frac{c}{d} = \frac{4}{5}$ 及 $\frac{ac}{b^2 + d^2} = e$, 求 e 的值。

Let a, b, c and d be real numbers. If $\frac{a}{b} = \frac{1}{2}$, $\frac{b}{c} = \frac{3}{2}$, $\frac{c}{d} = \frac{4}{5}$ and $\frac{ac}{b^2 + d^2} = e$, find the value of e.

2008 FI2.2

設 $a \cdot b$ 和 c 是實數且b:(a+c)=1:2 及 a:(b+c)=1:3。

若
$$Q = \frac{a+b+c}{a}$$
 , 求 Q 的值。

Let a, b and c be real numbers with ratios b:(a+c)=1:2 and a:(b+c)=1:3.

If
$$Q = \frac{a+b+c}{a}$$
, find the value of Q .

設 $x_1 \cdot x_2 \cdot x_3 \cdot x_4$ 為實數及 $x_1 \neq x_2 \circ$ 若 $(x_1 + x_3)(x_1 + x_4) = (x_2 + x_3)(x_2 + x_4) =$ -1 及 $p = (x_1 + x_3)(x_2 + x_3) + (x_1 + x_4)(x_2 + x_4)$,求 p 的值。

If $(x_1 + x_3)(x_1 + x_4) = (x_2 + x_3)(x_2 + x_4) = -1$ and

 $p = (x_1 + x_3)(x_2 + x_3) + (x_1 + x_4)(x_2 + x_4)$, find the value of p.

2010 FG1.2

已知
$$\frac{x+z}{2z-x} = \frac{z+2y}{2x-z} = \frac{x}{y}$$
, 其中 $x \cdot y \cdot z$ 為正數。求 $\frac{x}{y}$ 的值。

Let x, y and z be positive numbers. Given that $\frac{x+z}{2z-x} = \frac{z+2y}{2x-z} = \frac{x}{y}$.

Find the value of $\frac{x}{y}$.

2011 HI4

在 $\triangle ABC$ 內,分別垂直於三條邊 $AB \times BC$ 及 CA 的高的比是 3:4:5。 若三條邊的長均為整數,求 AB 的最小值。

In $\triangle ABC$, the ratio of the altitudes perpendicular to the three sides AB, BC and CAis 3:4:5. If the lengths of the three sides are integers, find the minimum value of AB.

2011 FG1.3

若
$$x \cdot y$$
 及 z 為實數 , $xyz \neq 0$, $2xy = 3yz = 5xz$ 及 $c = \frac{x+3y-3z}{x+3y-6z}$ 。求 c 的值。

If x, y and z are real numbers, $xyz \ne 0$, 2xy = 3yz = 5xz and $c = \frac{x + 3y - 3z}{x + 3y - 6z}$,

find the value of c.

2014 HG7

已知 $a \cdot b \cdot c$ 及 d 為四個不相同的數,且(a+c)(a+d)=1 及(b+c)(b+d)=1, 求 (a+c)(b+c) 的值。

Given that a, b, c and d are four distinct numbers, where (a + c)(a + d) = 1 and (b + c)(b + d) = 1. Find the value of (a + c)(b + c).

2017 FI2.2

袋中有若干粒紅色及藍色的彈珠,紅色彈珠與藍色彈珠的比例為 3:1。若加入 8 粒藍色彈珠,紅色彈珠與藍色彈珠的比例則為 2:1。 求彈珠的總數 b。

There is a set of red marbles and blue marbles. When a red marbles are added to the set, the ratio of red marbles to the blue marbles is 3:1. When 8 blue marbles are added, the ratio of red marbles to blue marbles becomes 2:1.

Determine the total number of marbles, b.

Answers

1983 FI1.4 1600 3	1984 FI5.3 10	1985 FG10.3 8	1987 FI2.3 15	1989 FG9.4 5
1991 FG8.3 12	1991 FG8.4 7	1992 HI18 $\frac{9}{10}$	1992 FI3.4 140	1993FI2.3 100
1993 FI4.2 9	1994 HI5 30:15:10:6	1994 FI1.3 10	1997 HI6 4 : 1	1998 FI4.1 15
1999 HG2 -24	2002 HI7 $\frac{2}{3}$	2002 HG1 360	2006 FI2.1 $\frac{9}{25}$	2007 FG3.1 40
2008 HI4 12 61	2008 FI2.2 4	2009 FI3.3 2	2010 FG1.2 2	2011 HI4 20
2011 FG1.3 2	2014 HG7 -1	2017 FI2.2 64		