Математический анализ 2

Georgy

@georgyshamteev

Содержание

1 Лекция	2
1.1 Ряды	2
1.1.1 Опр. сходимости ряда	2
1.1.2 Критерий Коши	2
1.1.3 Необходимое условие сходимости ряда	2
1.2 Операции над рядами	2
1.2.1 Группировка без перестановки (группировка)	2
1.3 Знакопостоянные ряды	3
1.3.1 Опр. знакоположительный ряд	3
1.3.2 Теорема Лобачевского-Коши	3
1.3.3 Сходимость ряда вида $\sum rac{1}{n^p}$	3
1.3.4 Ряд Бертрана	
1.4 Признаки сравнения рядов	4
1.4.1 Первый признак сходимости	4
1.4.2 Второй признак сходимости	4
1.4.3 Третий признак сходимости	4
2 Лекция	5
2.1 Другие признаки знакопостоянных рядов	5
2.1.1 Усиленный радикальный признак Коши	5
2.1.2 Признак Даламбера	5
2.1.3 Интегральный признак	5
2.1.4 Признак Куммера	6
2.1.5 Признак Бертрана	6
2.1.6 Признак Раабе	7
2.1.7 Признак Гаусса	7
2.2 Признаки сравнения любых рядов	7
2.2.1 Признаки Абеля и Дирихле	7
2.2.2 Преобразование Абеля	8
3 Лекция	9
3.1 Операции над числовыми рядами	9
3.1.1 Абсолютная и условная сходимость	
3.1.2 Перестановка без группировки	9
3.1.3 Теорема Римана	9
3.1.4 опр. Произведение рядов по Коши	11
3.1.5 Теорема Тёплица	11
3.1.6 Теорема Коши о суммировании по Чезаро	11
3.1.7 Теорема Мертинса	12
3.1.8 Теорема Абеля	12
3.1.9 Теорема Абеля об умножении абсолютно схоляциихся рядов	13

1 Лекция

1.1 Ряды

Опр. сходимости ряда.

 $\sum\limits_{n=1}^{\infty}a_n=a,$ $a_n\in\mathbb{R}.$ $A_k=\sum\limits_{n=1}^ka_n$ - частичная сумма ряда. Тогда ряд сходится, если существует конечный предел частичных сумм: $\sum\limits_{n=1}^{\infty}=\lim_{k\to\infty}A_k=a.$

Критерий Коши.

$$\textstyle\sum\limits_{n=1}^{\infty}a_n\text{ -}\operatorname{cx}\Leftrightarrow\forall\ \varepsilon>0\ \exists N(\varepsilon)\in\mathbb{N}:\forall\ k,m\in\mathbb{N}\geq N(\varepsilon)\Rightarrow\left|\sum\limits_{n=k}^{k+m}a_n\right|<\varepsilon.$$

Необходимое условие сходимости ряда.

$$\sum\limits_{n=k}^{k+m}a_n$$
 - cx $\Rightarrow \lim\limits_{n\to\infty}a_n=0$

1.2 Операции над рядами

Сложение:
$$\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n + b_n$$

Умножение на скаляр: $\lambda \cdot \sum\limits_{n=1}^{\infty} a_n = \sum\limits_{n=1}^{\infty} \lambda \cdot a_n$

Группировка без перестановки (группировка).

а)
$$\sum_{n=1}^{\infty}a_{n}$$
 - числовой ряд

а)
$$\sum_{n=1}^\infty a_n$$
 - числовой ряд b) $\{K_n\}^\infty\subseteq\mathbb{N}: egin{cases} k_1=1\\k_i< k_{i+1} \end{cases}$

c)
$$\sum_{n=1}^{\infty} b_n = \underbrace{\left(a_1 + \ldots + a_{k_2-1}\right)}_{b_1} + \underbrace{\left(a_{k_2} + \ldots + a_{k_3-1}\right)}_{b_2} + b_3 + \ldots$$

1)
$$\sum_{n=1}^{\infty} a_n = a \Rightarrow \sum_{n=1}^{\infty} b_n = a$$
.

Тогда: 1) $\sum\limits_{n=1}^{\infty}a_n=a\Rightarrow\sum\limits_{n=1}^{\infty}b_n=a.$ 2) Если $\lim\limits_{n\to\infty}a_n=0$, $\sum\limits_{n=1}^{\infty}b_n=b$ и $\exists~m:k_{n+1}-k_n< m~\forall n$ (т.е. группировка не более чем по m слагаемых), то $\sum\limits_{n=1}^{\infty}a_n=b.$

Proof:

$$B_N=b_1+\ldots+b_N=|{\rm packpыbaem}\ b_i|=a_1+\ldots+a_{k_{N+1}-1}=A_{k_{N+1}-1}\Rightarrow$$

$$\Rightarrow \{B_N\}$$
 подпоследовательность $\{A_N\} \Rightarrow \sum\limits_{n=1}^{\infty} b_n = a$

$$\tilde{a_i} = \max \left\{ \left| a_{k_i} \right|, ..., \left| a_{k_{i+1}-1} \right| \right\}$$

$$A_n = a_1 + \dots + a_n$$

$$\exists ! \ k_i : n \in [k_i, k_{i+1} - 1]$$

$$A_n = b_1 + \ldots + b_{i-1} + a_{k_i} + \ldots + a_n = B_{i-1} + a_{k_i} + \ldots + a_n \leq B_{i-1} + \tilde{a_i} \cdot m$$

$$B_{i-1} - \tilde{a_i} \cdot m \leq A_n$$

При $n \to \infty \Rightarrow i \to \infty \Rightarrow \tilde{a}_i \Rightarrow 0$.

$$\begin{split} B_{i-1} - \tilde{a_i} \cdot m &\leq A_n \leq B_{i-1} + \tilde{a_i} \cdot m \Rightarrow \\ b - 0 \cdot m &\leq A_n \leq b + 0 \cdot m \Rightarrow \\ A_n \to b \end{split}$$

Замечание:

Если нет доп. условий, то в обратную сторону неверно. Контрпример:

$$\sum_{n=1}^{\infty} a_n : (1-1) + (1-1) + (1-1) + \dots$$

$$\textstyle\sum\limits_{n=1}^{\infty}b_n:0+0+0+\dots$$

Ряд b_n сходится, а a_n — расходится.

Если добавить в условие, что $\lim_{n \to \infty} a_n = 0$, то всё еще неверно.

$$\textstyle \sum\limits_{n=1}^{\infty} a_n : (1-1) + \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}\right) + \dots$$

$$\textstyle\sum\limits_{n=1}^{\infty}b_n:0+0+0+\dots$$

Ряд a_n расходится по Коши.

1.3 Знакопостоянные ряды

Опр. знакоположительный ряд.

$$\sum\limits_{n=1}^{\infty}a_{n},\,\,a_{n}\geq0\,\,\forall n$$
 - знакоположительный ряд.

Теорема Лобачевского-Коши.

Пусть:

a)
$$a_n \geq 0$$

b)
$$a_n \ge a_{n+1}$$

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}$$
 ~ по сходимости $\sum\limits_{n=0}^{\infty}2^{n}a_{2^{n}}$

Proof:

$$a_2 \le a_2 \le a_1$$

$$2a_4 \le a_3 + a_4 \le 2a_2$$

$$4a_8 \le a_5 + a_6 + a_7 + a_8 \le 4a_4$$

...

$$2^n a_{2^{n+1}} \le a_{2^{n+1}} + \dots + a_{2^{n+1}} \le 2^n a_{2^n}$$

$$\tfrac{S_{n+1}-a_1}{2} \leq A_{2^{n+1}}-a_1 \leq S_n$$

Если исходная сходится, то $\frac{S_{n+1}-a_1}{2}$ - неубывающая и ограниченная сверху последовательность \Rightarrow сходится. Аналогично, если сходится конденсированная, то $A_{2^{n+1}}-a_1$ - неубывающая и ограниченная сверху последовательность \Rightarrow сходится.

Сходимость ряда вида $\sum \frac{1}{n^p}$.

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p > 0$$

По теореме Лобачевского-Коши исходный ряд эквивалентен:

$$\sum\limits_{n=0}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum\limits_{n=0}^{\infty} \left(2^{1-p}\right)^n$$
 - геометрическая прогрессия, где $q=2^{1-p}$

Тогда ряд сходится $\Leftrightarrow |q| < 1$

$$2^{1-p}<1\Rightarrow p>1$$

Ряд Бертрана.

$$\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}(\ln(n))^{\beta}}$$
 - сходится $\Leftrightarrow \left\{ \substack{\alpha>1\\ \alpha=1,\ \beta>1} \right.$

1.4 Признаки сравнения рядов

Первый признак сходимости.

Пусть:

- a) $a_n, b_n \ge 0$
- b) $a_n \leq b_n$ финально

1)
$$\sum\limits_{n=1}^{\infty}b_n$$
 — сходится $\Rightarrow\sum\limits_{n=1}^{\infty}a_n$ — сходится 2) $\sum\limits_{n=1}^{\infty}a_n$ — расходится $\Rightarrow\sum\limits_{n=1}^{\infty}b_n$ — расходится.

Второй признак сходимости.

Пусть:

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}{\sim}$$
 по сходимости $\sum\limits_{n=1}^{\infty}b_{n}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c\in(0,\infty)\Rightarrow\sum_{n=1}^\infty a_n$$
~ по сходимости $\sum_{n=1}^\infty b_n$

Третий признак сходимости.

Пусть:

a)
$$a_n,b_n>0$$
b) $\frac{a_{n+1}}{a_n}\leq \frac{b_{n+1}}{b_n}$

1)
$$\sum_{n=1}^{\infty} b_n$$
 - $\operatorname{cx} \Rightarrow \sum_{n=1}^{\infty} a_n$ - cx .

$$2) \sum_{n=1}^{n=1} a_n - \text{pacx} \Rightarrow \sum_{n=1}^{\infty} b_n - \text{pacx}.$$

2 Лекция

2.1 Другие признаки знакопостоянных рядов

Усиленный радикальный признак Коши.

Пусть:

a)
$$a_n \ge 0 \ \forall n$$

b) $L = \overline{\lim_{n \to \infty} a_n^{\frac{1}{n}}}$

Тогда:

1)
$$L < 1 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$$
 - сходится

2)
$$L>1\Rightarrow\sum\limits_{n=1}^{\infty}a_{n}$$
 - расходится

Proof:

1)
$$\overline{\lim_{n \to \infty}} \, a_n^{\frac{1}{n}} = L < 1 \Rightarrow \exists \; q \in (0,1) \; \exists \; N : \forall n \geq N \to a_n^{\frac{1}{n}} \leq q \Leftrightarrow a_n \leq q^n \Rightarrow \sum_{n=1}^\infty q^n$$
 - сходится \Rightarrow

$$\Rightarrow \sum_{n=1}^{\infty} a_n$$
 - сходится.

2)
$$\overline{\lim_{n \to \infty}} \, a_n^{\frac{1}{n}} = L > 1 \Rightarrow \forall N \; \exists \; n \geq N : a_n^{\frac{1}{n}} > 1 \Rightarrow a_n > 1 \Rightarrow \lim_{n \to \infty} a_n \neq 0 \Rightarrow \sum_{n=1}^\infty a_n$$
 - расходится.

Признак Даламбера.

Пусть:

a)
$$a_n > 0 \ \forall n \in \mathbb{N}$$

b)
$$d = \underline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n}$$
; $D = \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n}$

Тогда:

1)
$$D < 1 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$$
 - сходится

2)
$$D>1\Rightarrow\sum\limits_{n=1}^{\infty}a_{n}$$
 - расходится

Proof:

$$\varliminf_{n\to\infty}\frac{a_{n+1}}{a_n}\le\varliminf_{n\to\infty}a_n^\frac{1}{n}\le\varlimsup_{n\to\infty}a_n^\frac{1}{n}\le\varlimsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

Ссылаемся на Коши.

<u>Замечание</u>

Признак Коши сильнее признака Даламбера. Пример ряда, к которому применим Коши, но не применим Даламбер:

5

$$\sum_{n=1}^{\infty} 2^{(-1)^n - n}$$

Интегральный признак.

Пусть:

а)
$$f:[1,\infty]\to\mathbb{R};\ f(x)\geq 0;\ f(x)$$
 не возрастает.

Тогда:

Если сходится
$$\sum\limits_{n=1}^{\infty}f(n),$$
 то сходится $\int_{1}^{\infty}f(x)dx$

Признак Куммера.

Пусть:

a)
$$a_n, b_n > 0 \ \forall n$$

b) Положим
$$c_n = b_n \cdot \frac{a_n}{a_{n+1}} - b_{n+1}$$

Тогда:

1)
$$\exists L>0 \ \exists N: \ \forall n\geq N \to c_n\geq L \Rightarrow \sum\limits_{n=1}^{\infty}a_n$$
 - сходится.

Проще говоря, если c_n финально отделены от 0, то ряд a_n сходится.

2)
$$\sum\limits_{n=1}^{\infty} \frac{1}{b_n}$$
 - расходится и $\exists N: \forall n \geq N \to c_n \leq 0 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$ - расходится.

Проще говоря, если ряд $\frac{1}{b_n}$ расходится и $c_n \leq 0$ финально, то ряд a_n расходится.

Proof:

1) Пусть N=1

$$\begin{split} c_n & \geq L \ \forall n \Rightarrow a_n \cdot b_n - b_{n+1} \cdot a_{n+1} \geq L \cdot a_{n+1} \\ A_n & = \sum_{k=1}^n a_k = \frac{1}{L} \sum_{k=1}^n L \cdot a_k = \frac{1}{L} \bigg(L a_1 + \sum_{k=1}^{n-1} L \cdot a_{k+1} \bigg) \leq a_1 + \frac{1}{L} \sum_{k=1}^{n-1} \big(a_k b_k - a_{k+1} b_{k+1} \big) = a_1 + \frac{1}{L} \sum_{k=1}^{n-1} a_k = \frac{1}{L} \sum_{k=1}^n a_k = \frac{1}$$

$$+rac{1}{L}\cdot(a_1b_1-a_nb_n)\leq a_1+rac{a_1b_1}{L}\Rightarrow A_n\leq a_1+rac{a_1b_1}{L}\Rightarrow \{A_n\}
ewedge$$
и ограничен $\Rightarrow\sum\limits_{n=1}^{\infty}a_n$ - сходится.

2)
$$c_n \le 0 \Rightarrow \frac{a_n}{a_{n+1}} \le \frac{b_{n+1}}{b_n} = \frac{\frac{1}{b_n}}{\frac{1}{b_{n+1}}}$$

По 3 признаку сравнения , т.к. $\sum_{n=1}^{\infty}\frac{1}{b_n}$ - расходится, то $\sum_{n=1}^{\infty}a_n$ - тоже расходится.

Признак Бертрана.

Пусть:

a)
$$a_n > 0 \ \forall n$$

b)
$$\lim_{n \to \infty} \ln(n) \Big(n \Big(\frac{a_n}{a_{n+1}} - 1 \Big) - 1 \Big) = B \in [-\infty; \infty]$$

Тогда:

1) Если
$$B>1\Rightarrow \sum\limits_{n=1}^{\infty}a_n$$
 - сходится.

2) Если
$$B < 1 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$$
 - расходится.

Proof:

1) Возьмем в признаке Куммера $b_n = n \ln(n); \sum_{n=1}^\infty \frac{1}{b_n}$ - расходится

$$c_n = n \ln(n) \frac{a_n}{a_{n+1}} - (n+1) \ln(n+1) = \underbrace{\ln(n) \left(\left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow B > 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right)}$$

6

 \Rightarrow Выражение $\rightarrow L>0 \Rightarrow \sum\limits_{n=1}^{\infty}a_{n}$ - сходится по Куммеру.

$$c_n = n \ln(n) \frac{a_n}{a_{n+1}} - (n+1) \ln(n+1) = \underbrace{\ln(n) \left(\left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow B < 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1$$

 \Rightarrow Выражение $\rightarrow L < 0 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$ - расходится по Куммеру.

Признак Раабе.

Пусть:

$$\lim_{n\to\infty} n\Big(\tfrac{a_n}{a_{n+1}}-1\Big)=R$$

Тогла:

- 1) $R > 1 \Rightarrow$ сходится
- 2) $R < 1 \Rightarrow$ расходится

Proof:

Подставляем в $\lim_{n\to\infty}\ln(n)\Big(n\Big(\frac{a_n}{a_{n+1}}-1\Big)-1\Big)=B$ - из признака Бертрана очевидным образом следуют пункты 1 и 2.

Признак Гаусса.

Пусть:

a)
$$a_n > 0, \exists \lambda \in \mathbb{R}, \exists \mu \in \mathbb{R}, \exists \varepsilon > 0$$

b)
$$\frac{a_n}{a_{n+1}}=\lambda+\frac{\mu}{n}+\frac{\gamma}{n^{1+arepsilon}}$$
, где $\left\{\gamma\right\}_1^N$ ограничено.

Тогда:

1)
$$\left\{ egin{aligned} \lambda > 1 \\ \lambda = 1 & \text{м} \ \mu > 1 \end{aligned}
ight. \Rightarrow \sum_{n=1}^{\infty} a_n$$
 - сходится

2)
$$\left\{ egin{aligned} \lambda < 1 & \sum_{n=1}^\infty a_n - \mathrm{pасходится} \\ \lambda = 1 & \mu \leq 1 \end{aligned}
ight.
ight.$$

Proof:

Возьмём Бертрана.

$$\lim_{n \to \infty} \ln(n) \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) = B$$

1) Если $\lambda > 1$, то $B = +\infty$

Если $\lambda=1$ и $\mu>1$, то:

$$\lim_{n\to\infty}\ln(n)\big(n\big(\big(1+\frac{\mu}{n}+\frac{\gamma}{n^{1+\varepsilon}}\big)-1\big)-1\big)=\lim_{n\to\infty}\ln(n)\big(n\big(\frac{\mu}{n}+\frac{\gamma}{n^{1+\varepsilon}}\big)-1\big)=\lim_{n\to\infty}\ln(n)\underbrace{\big(\mu+\frac{\gamma}{n^{\varepsilon}}-1\big)}_{\text{const}>0}=+\infty$$

2) Если $\lambda < 1$, то $B = -\infty$

Если $\lambda=1$ и $\mu<1$, то $B=-\infty$ - аналогично 1 пункту.

Если
$$\lambda=1$$
 и $\mu=1$, то в итоге имеем $B=\lim_{n\to\infty} \frac{\ln(n)}{n^\varepsilon} \gamma_n \to 0.$

2.2 Признаки сравнения любых рядов

Признаки Абеля и Дирихле.

Пусть:

Дирихле	Абель		
$\left \frac{\exists M>0: \forall n\in\mathbb{N}}{\left \sum\limits_{k=1}^{n}a_{k}\right \leq M}\right $	$\sum\limits_{n=1}^{\infty}a_{n}$ - сходится.		
$\lim_{k o\infty}b_k=0$	$\exists M>0: \forall n\\ b_n \leq M$		
$\{b_n\} earrow$ или $\{b_n\} \searrow$	$\{b_n\} \nearrow$ или $\{b_n\} \searrow$		

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}b_{n}$$
 - сходится.

<u>Примечание</u>

Дирихле \Longrightarrow Абель

Преобразование Абеля.

Пусть:

 $\left\{a_{n}\right\}_{n=1}^{\infty}$ и $\left\{b_{n}\right\}_{n=1}^{\infty}$ - последовательности вещественных чисел.

Тогла:

 $\forall n,k \in \mathbb{N}$ выполнено:

$$\sum\limits_{i=n+1}^{n+k}a_ib_i=A_{n+k}b_{n+k}-A_nb_{n+1}+\sum\limits_{i=n+1}^{n+k-1}A_i\big(b_i-b_{i+1}\big)$$
, где $A_m=\sum\limits_{i=1}^ma_i$

3 Лекция

3.1 Операции над числовыми рядами

Абсолютная и условная сходимость.

$$\sum_{n=1}^{\infty} a_n$$
:

- сходится абсолютно, если сходится $\sum\limits_{n=1}^{\infty}|a_n|$
- сходится условно, если сходится $\sum\limits_{n=1}^{\infty} a_n$, но расходится $\sum\limits_{n=1}^{\infty} |a_n|$

Перестановка без группировки.

Пусть:

$$\sum\limits_{n=1}^{\infty}a_{n}$$
 - сходится абсолютно.

 $\tau:\mathbb{N}\to\mathbb{N}$ - биекция, задает перестановку ряда.

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{\tau(n)}=\sum\limits_{n=1}^{\infty}a_{n}$$

Proof

Пусть
$$a_n \geq 0$$
, тогда докажем, что $\sum\limits_{k=1}^{\infty} a_{\tau(k)} = \sum\limits_{k=1}^{\infty} a_n$

$$N = \max(\tau(1), ..., \tau(n))$$

$$B_n=\sum\limits_{k=1}^na_{\tau(k)}\leq\sum\limits_{k=1}^Na_k\leq a\Longrightarrow\{B_n\}$$
 - ограничена и не убывает $\Longrightarrow B_n\to b\leq a$

Применим au^{-1} и аналогичными рассуждениями получим, что $\sum\limits_{k=1}^\infty a_{ au^{-1}\circ au(k)} \leq \sum\limits_{k=1}^\infty a_k = a \leq b$

Отсюда
$$a \leq b \leq a \Rightarrow b = a \Rightarrow B_n \to a$$

Возьмём теперь
$$p_k = rac{a_k + |a_k|}{2} \geq 0,$$
 $q_k = rac{|a_k| - a_k}{2} \geq 0.$

$$B_n = \sum\limits_{k=1}^{n} a_{\tau(k)} = \sum\limits_{k=1}^{n} p_{\tau(k)} - \sum\limits_{k=1}^{n} q_{\tau(k)}$$

$$\sum\limits_{k=1}^\infty a_{\tau(k)}=\sum\limits_{k=1}^\infty p_{\tau(k)}-\sum\limits_{k=1}^\infty q_{\tau(k)}$$
 (т.к. ряды p_k и q_k сходятся) = |по доказанному выше| =
$$\sum\limits_{k=1}^\infty p_k-\sum\limits_{k=1}^\infty q_k=\sum\limits_{k=1}^\infty a_k$$

Теорема Римана.

Пусть:

$$\sum\limits_{n=1}^{\infty}a_{n}$$
 - сходится условно.

Тогла

1)
$$\forall a \in \mathbb{R} \; \exists \; \tau: \mathbb{N} \to \mathbb{N} \;$$
 биекция : $\sum\limits_{n=1}^{\infty} a_{\tau(n)} = a$

2)
$$\exists~\tau_1,\tau_2:\mathbb{N}\to\mathbb{N}$$
 биекция : $\sum\limits_{n=1}^\infty a_{\tau_1}(n)=+\infty;\sum\limits_{n=1}^\infty a_{\tau_2}(n)=-\infty$

3)
$$\exists \ au: \mathbb{N} o \mathbb{N}$$
 биекция : $\sum\limits_{n=1}^{\infty} a_{ au(n)}$ - расходится

Proof:

$$\sum_{k=1}^{\infty} a_k$$

 α_n - n-ый неотрицательный член,

 β_n -
 n-ый отрицательный член.

$$\sum\limits_{k=1}^{\infty}a_k$$
 - сходится условно $\Rightarrow\sum\limits_{k=1}^{\infty}\alpha_k=+\infty;\sum\limits_{k=1}^{\infty}\beta_k=-\infty$

Допустим это неверно.

Если оба ряда α и β сходятся. Тогда оценим $\sum\limits_{k=1}^m |a_k| \leq \sum\limits_{k=1}^m \alpha_k + \sum\limits_{k=1}^m |\beta_k| \leq C \Rightarrow \sum\limits_{k=1}^m a_k$ сходится абсолютно. Противоречие.

Пусть ряд α сходится, ряд β расходится. Тогда частичные суммы будут расходиться при стремлении к бесконечности. Если записать формально, то если $\sum\limits_{k=1}^{\infty}\alpha_k=+\infty, \sum\limits_{k=1}^{\infty}\beta_k=\beta>-\infty$, то $\forall E>0\ \exists N(E): \forall m\geq N(E)\Rightarrow \sum\limits_{k=1}^{m}\alpha_k>E-\beta.$

Пусть М настолько велико, что в $\{a_1,...,a_M\}$ лежат все $\{\alpha_1,...,\alpha_m\}$, тогда:

 $\sum\limits_{k=1}^{M}a_k\geq\sum\limits_{k=1}^{m}\alpha_k+\beta>E$ - в силу произвольности Е частичные суммы не ограничены, а значит ряд a_n расходится. Противоречие.

1) Пусть $a \in \mathbb{R}$ произвольно. Будем делать следующее:

Прибавляем α_i , пока сумма не будет больше a. Как только сумма стала больше a, начинаем прибавлять β_i , как только сумма стала меньше a, снова начинаем прибавлять α_i и так далее.

Стоит оговорить три момента:

- 1. Мы всегда можем брать α_i , которые будут нас «поднимать», потому что их бесконечно много и $\sum\limits_{k=1}^{\infty}\alpha_k=+\infty$. Аналогично с β_i .
- 2. Почему мы действительно сойдёмся к a? Исходный ряд сходится условно $\Rightarrow a_k \to 0 \Rightarrow \alpha_i \to 0; \beta_i \to 0$. Тогда $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geq N \Rightarrow \alpha_i < \frac{\varepsilon}{2}; |\beta_i| < \frac{\varepsilon}{2}$. В момент, когда все α_i и β_i с номерами меньше N войдут в сумму мы начнём отклоняться от a не больше, чем на $\frac{\varepsilon}{2}$. В силу произвольности ε ряд сходится к a по Коши.

- 3. Почему ряд перестановка исходного? По построению ряд включает в себя все члены исходного и только их.
- 2) Чтобы уйти в бесконечность будем брать так:

Берём альфы до 1, потом одну бету, альфы до 2, потому одну бету и т.д.

3) Чтобы сумма расходилась будем набирать так, чтобы получилась последовательность вида $\{1,-1,2,-2,3,-3...\}$.

опр. Произведение рядов по Коши.

 $\sum\limits_{k=1}^\infty a_k$ и $\sum\limits_{k=1}^\infty b_k$ ряда, тогда ряд $\sum\limits_{k=1}^\infty c_k$, где $c_k=a_1b_k+a_2b_{k-1}+\ldots+a_kb_1$ называется произведением рядов по Коши.

Теорема Тёплица.

Пусть:

$$\begin{pmatrix} t_{11} & & & \\ t_{21} & t_{22} & & & \\ t_{31} & t_{32} & t_{33} & & \\ & \cdots & \cdots & \cdots & \\ t_{n1} & t_{n2} & t_{n3} & \cdots & t_{nn} \\ \vdots & \vdots & \vdots & & \vdots \end{pmatrix}$$

a)
$$\forall j \to \lim_{i \to \infty} t_{ij} = 0$$

b) $\exists K: \forall i \to \sum\limits_{i=1}^i \left|t_{ij}\right| \leq K$ - для любой строки сумма модулей элементов меньше К.

c)
$$\lim_{i \to \infty} t_i = 1$$
, где $t_i = t_{i1} + \ldots + t_{ii}$

Тогда:

1)
$$\lim_{i \to \infty} x_i = 0 \Longrightarrow \lim_{i \to \infty} z_i = 0$$
, где $z_i = x_1 t_{i1} + ... + x_i t_{ii}$

2)
$$\lim_{i \to \infty} x_i = x \in \mathbb{R} \Longrightarrow \lim_{i \to \infty} z_i = x$$
, где $z_i = x_1 t_{i1} + \ldots + x_i t_{ii}$

Теорема Коши о суммировании по Чезаро.

Для любых $x_i \in \mathbb{R}, i \in \mathbb{N}$ выполнено:

$$\lim_{i \to \infty} x_i = x \Longrightarrow \lim_{i \to \infty} z_i = x$$
, где $z_i = \frac{x_1 + x_2 + \ldots + x_i}{i}$.

Proof:

Положим
$$t_{i1}=t_{i2}=\ldots=t_{ii}=rac{1}{i} \ \forall i \in \mathbb{N}$$

Данные t_{ij} удовлетворяют всем пунктам теоремы Тёплица \Rightarrow наше утверждение следует из 2 пункта теоремы.

Лемма 1

$$\begin{cases} \lim\limits_{i\to\infty}x_i=0\\ \lim\limits_{i\to\infty}y_i=0\\ \sum\limits_{j\to\infty}x_j \text{ - cx. абс.} \end{cases} \Rightarrow \lim\limits_{i\to\infty}z_i=0\text{, где }z_i=x_1y_i+\ldots+x_iy_1$$

Лемма 2

$$\begin{cases} \lim\limits_{i\to\infty} x_i = x \in \mathbb{R} \\ \lim\limits_{i\to\infty} y_i = y \in \mathbb{R} \end{cases} \Rightarrow \lim\limits_{i\to\infty} z_i = xy, \text{где } z_i = \frac{x_1y_i + \ldots + x_iy_1}{i}$$

Теорема Мертинса.

Пусть:

a)
$$\sum\limits_{k=1}^{\infty}a_k=a\in\mathbb{R},\ \sum\limits_{k=1}^{\infty}b_k=b\in\mathbb{R}$$

b) Хотя бы один сходится абсолютно

Тогда:

$$\sum_{k=1}^{\infty} c_k = ab, \ c_k = a_1b_k + ... + a_kb_1$$

Proof:

Пусть ряд a_k сходится абсолютно без потери общности.

$$C_n=a_1B_n+\ldots+a_nB_1$$
, где $C_n=\sum\limits_{k=1}^nc_k,\;B_n=\sum\limits_{k=1}^nb_k$. Положим также $\beta_n=\sum\limits_{k=n+1}^\infty\beta_k$.

$$C_n=a_1(b-\beta_n)+a_2(b-\beta_{n-1})+\ldots+a_n(b-\beta_1),$$
 т.к. $B_n+\beta_n=\sum\limits_{k=1}^\infty b_k=b$

$$C_n = b(a_1+\ldots+a_n) - (a_1\beta_n+\ldots+a_n\beta_1)$$

Положим $x_i = \beta_i$ и $y_i = a_i$ Тогда:

1.
$$\lim_{i \to \infty} x_i = 0$$
, т.к. $x_i = \beta_i = b - B_i = b - b = 0$

2.
$$\lim_{i \to \infty} y_i = 0$$
, необходимый признак сходимости

$$3.\ \ \forall i\sum_{j=1}^i \left|y_j\right| \leq K = \sum_{j=1}^\infty \left|a_j\right|$$
 - K существует, т.к. мы предположили, что ряд a_i сходится абсолютно.

Тогда по лемме 1 имеем $a_1\beta_n+\ldots+a_n\beta_1\to 0$ при $n\to\infty.$

Соответственно,
$$\lim_{n\to\infty}C_n=b\underbrace{(a_1+\ldots+a_n)}_{\to a}-\underbrace{(a_1\beta_n+\ldots+a_n\beta_1)}_{\to 0}=ab-0=ab.$$

Теорема Абеля.

Пусть:

a)
$$\sum_{k=1}^{\infty} a_k = a$$

$$b) \sum_{k=1}^{\infty} b_k = b$$

c)
$$\sum\limits_{k=1}^{\infty}c_{k}=c$$
, где $c_{k}=a_{1}b_{k}+...+a_{k}b_{1}$

Тогда:

$$c = ab$$

Proof:

Положим $A_n = \sum_{i=1}^n a_i$, $B_n = \sum_{i=1}^n b_i$, $C_n = \sum_{i=1}^n c_i$. Несложно заметить и проверить, что $C_1 + \dots + C_n = A_1 B_n + \dots + A_n B_1$

Т.к. $\lim_{n\to\infty}A_n=a, \lim_{n\to\infty}B_n=b$ при $x_i=A_i, y_i=B_i$ по лемме 2 имеем: $\frac{C_1+\ldots+C_n}{n}=\frac{A_1B_n+\ldots+A_nB_1}{n}\to ab$ при $n\to\infty$

$$\frac{C_1+\ldots+C_n}{n}=\frac{A_1B_n+\ldots+A_nB_1}{n}\to ab$$
при $n\to\infty$

С другой стороны, $\lim_{n\to\infty}C_n=c$, поэтому в силу теоремы Коши имеем $\frac{C_1+\ldots+C_n}{n}\to c$, при $n\to\infty$.

Из полученных выше равенств заключаем c=ab.

Замечание

Пусть есть два числовых ряда $\sum\limits_{i=1}^{\infty}a_i$ и $\sum\limits_{i=1}^{\infty}b_i$. Как можно определить их произведение:

$$\left(\sum_{i=1}^{\infty}a_i\right)\cdot\left(\sum_{i=1}^{\infty}b_i\right)=~?$$

Такое произведение можно определить как сумму ряда $\sum\limits_{i=1}^{\infty}c_i$, где каждый элемент a_ib_j встречается ровно один раз. Но в каком порядке брать эти слагаемые? Как только мы фиксируем какой-либо порядок мы получаем умножение рядов, однако несложно заметить, что таких порядков столько же, сколько биекций $\mathbb{N} \to \mathbb{N}^2$, т.е. несчетное количество. Следующая теорема Абеля показывает, что если ряды сходятся абсолютно, то порядок не важен.

Теорема Абеля об умножении абсолютно сходящихся рядов.

Пусть:

а) Ряды $\sum\limits_{i=1}^{\infty}a_{i}$ и $\sum\limits_{i=1}^{\infty}b_{i}$ сходятся аболютно.

b)
$$i\mapsto (m_i,n_i)$$
 - биекция $\mathbb{N}\to\mathbb{N}^2$.

c)
$$\sum\limits_{i=1}^{\infty}a_{i}=a,$$
 $\sum\limits_{i=1}^{\infty}b_{i}=b$

Тогда:

$$\sum_{i=1}^{\infty} a_{m_i} \cdot b_{n_i} = ab$$

Proof:

 $\sum\limits_{i=1}^N \left| a_{m_i} b_{n_i} \right| \leq \left(\sum\limits_{i=1}^K |a_i| \right) \cdot \left(\sum\limits_{i=1}^K |b_i| \right)$, где $K = \max\{m_1, m_2, ..., m_N, n_1, n_2, ..., n_N\}$ т.к. любое слагаемое левой суммы присутствует в правой сумме и все слагаемые правой суммы неотрицательны.

$$\begin{array}{l} \sum\limits_{i=1}^{N}\left|a_{m_{i}}b_{n_{i}}\right|\leq\left(\sum\limits_{i=1}^{K}|a_{i}|\right)\cdot\left(\sum\limits_{i=1}^{K}|b_{i}|\right)\leq\hat{a}\hat{b}\in\mathbb{R},\text{ где }\hat{a}=\sum\limits_{i=1}^{\infty}|a_{i}|,\ \hat{b}=\sum\limits_{i=1}^{\infty}|b_{i}|\Longrightarrow\sum\limits_{i=1}^{N}\left|a_{m_{i}}b_{n_{i}}\right|\text{ сходится абсолютно.} \end{array}$$

В силу теоремы о перестановке членов ряда сходящегося абсолютно перестановка на сумму не влияет. Переставим члены ряда следующим образом:

На i диагонали лежат c_i . Сгруппируем члены по диагонялям. Легко увидеть, что получившийся после группировки ряд - это произведение рядов $\sum\limits_{i=1}^{\infty}a_i$ и $\sum\limits_{i=1}^{\infty}b_i$ по Коши. Т.к. ряд сходился до группировки, то сходится и после, причем к тому же числу.

Т.к. сходятся ряды $\sum_{i=1}^\infty a_i$ и $\sum_{i=1}^\infty b_i$, а также сходится полученный ряд, то по т. Абеля сумма ряда равна ab, что и требовалось доказать.