Legami ed interazioni

Legami	Dipendenza da dist.	Energie tipiche	Commento		
Leg. covalente	(nm) contatto	kJ mol ⁻¹ 100-500	definisce entità molecolari		
Ione-ione	1/r	250	solo tra ioni		
Interazione	Dipendenza da dist.	Energie tipiche	Commento		
Ione-dipolo	1/r ²	20	statici		
Dipolo-dipolo	1/r ³	~1	statici		
Dipolo-dipolo	1/r ⁶	~1	in movimento		
Dispersione	1/d ⁶	~1	polarizzabilità !		

Dipoli e momenti di dipolo molecolari

dipolo elettrico

$$\mu = q \cdot r$$

Per molecole biatomiche

$$\mu$$
 (in Debye) $\approx (\chi_A - \chi_B)$

Interazioni intermolecolari ~ elettrostatiche

Interazioni ione-dipolo permanente

Energia Potenziale d'interazione ione-dipolo (statica): E_P^{∞} - $|Z|\mu Ir^2$ (a) Na⁺ e (b) Cl^- solvatati da H_2O

Interazioni dipolo permanente-dipolo permanente

Energia tra due dipoli permanenti e statici A e B: \mathbf{E}_{P}^{∞} $-\mu_{A}\mu_{B}Ir^{3}$

Energia tra due dipoli permanenti e in movimento $A \in B : \mathbf{E}_{P} \propto -\mu_A \mu_B / r^6$

Interazioni intermolecolari (2)

Le interazioni intermolecolari riguardano anche specie apolari che possono essere polarizzate da un campo elettrico. Dipendono molto dalla polarizzabilità.

Interazioni ione-dipolo indotto

Energia $\mathbf{E} \propto -\mathbf{Z}^2 \alpha / (r^4)$

Z = Nr cariche ione,

 α = polarizzabilità

Interazioni dipolo permanente-dipolo indotto

Energia $E_P \propto \mu_1^2 \alpha_2 / (r^6)$ α_2 = polarizzabilità specie 2

e.g. α per benzene = 1.16 10⁻³⁹J⁻¹C²m² Per molecole con μ = 1D (per HCl μ = 1,1D) a distanza di 0.3nm da benzene E = - 0.8 kJ mol⁻¹

Polarizzabilità = α determina μ_{ind} = α E

Propensione di un atomo (della sua "atmosfera elettronica") a deformarsi in un campo elettrico E: viene indotto un dipolo $\mu_{ind} = \alpha$ E on $\alpha \sim \infty$ r³ o $\alpha \sim \infty$ (EI₁)-3

Energia_{inter} =
$$-\frac{Z^2\alpha}{4\pi\varepsilon_0 r^4}$$

Atomo isolato

Atomo in campo elettrico

Se E espresso in V m⁻¹= JC^{-1} m⁻¹ e μ in Cm $\Rightarrow \alpha = \mu/E$ in $J^{-1}C^{2}$ m², scomodo. $\alpha' = \alpha/(4\pi\epsilon_0)$ e, ϵ_0 in $J^{-1}C^{2}$ m⁻¹, α' dato in 10⁻²⁴ m³ o, a volte, in \mathring{A}^3

H 0,667		T	α'	(volu	ıme di	pol	arizza	bilit	$\hat{\mathbf{A}}$) $\hat{\mathbf{A}}^3$			He	0,2
Li 24,3	Be 5,6	В	3,03	C	1,76	N	1,10	O	0,80	F	0,56	Ne	0,4
Na 23,6	Mg 10,	6 Al	8,34	Si	5,38	P	3,63	S	2,9	Cl	2,18	Ar	1,6
K 43,4	Ca 22,	8 Ga	8,1	Ge	6,1	As	4,3	Se	3,8	Br	3,1	Kr	2,5
Rb 47,3	Sr 27,	6 In	10,2	Sn	7,7	Sb	6,6	Te	5,5	I	5,5	Xe	4,0

Interazioni intermolecolari (3)

Interazioni dipolo istantaneo - dipolo indotto.

= forze di dispersione, forze di London

Energia E d'interazione tra due dipoli istantanei A e B:

$$E \propto -\alpha_A \alpha_B/r^6$$

Dipendono essenzialmente dalle polarizzabilità

Legami ed interazioni tra atomi

Interazione	Dipendenza da dist. (nm)	Energie tipiche kJ mol ⁻¹	Commento
Leg. covalente	contatto	100-500	definisce entità molecolari
Ione-ione	1/r	250	solo tra ioni
Ione-dipolo	1/r ²	20	
Dipolo-dipolo	1/r ³	~1	statici
Dipolo-dipolo	1/r ⁶	~1	in movim.
Dispersione	1/r ⁶	~1	polarizzabil.

Interazioni attrattive determinate dalla polarizzabilità, o per dipoli in moto casuale (gas, ~ liquidi), importanti a distanze r piccole.

Interazioni intermolecolari

confronto con energia legami

Interazioni intermolecolari:

Potenziali di Lennard-Jones

per forze di dispersione

repulsione

attrazione

$$V(R)_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]$$

 $\varepsilon = profondità minimo$

 σ =distanza da origine del punto in cui V(R) =

0; minimo $\approx 2 \cdot r_{VdW} \dot{e}$ a 1.1-1.2 σ

Sostanza	$\sigma(m)$	$\epsilon(J)$
Не	$2,56 \times 10^{-10}$	$1,41 \times 10^{-22}$
Ne	$2,75 \times 10^{-10}$	$4,92 \times 10^{-22}$
Ar	$3,40 \times 10^{-10}$	$1,654 \times 10^{-21}$
Kr	$3,60 \times 10^{-10}$	$2,36 \times 10^{-21}$
Xe	$4,10 \times 10^{-10}$	$3,06 \times 10^{-21}$
H_2	$2,93 \times 10^{-10}$	$5,11 \times 10^{-22}$
O_2	$3,58 \times 10^{-10}$	$1,622 \times 10^{-21}$

Raggi di Van der Waals: interazioni di "non-legame"

- Andamento simile, ma molto più grandi dei raggi atomici covalenti e metallici.
- Interazioni di non-legame molto più deboli di un legame chimico convenzionale (covalente, ionico o metallico).
- · Scarsa sovrapposizione tra le distribuzioni di carica degli atomi isolati.

TABLE 12: Consistent van der Waals Radii for All Main-Group Elements^a

1	2	13	14	15	16	17	18
Н							He
1.10							1.40
Li	Be	В	C	N	O	F	Ne
1.81	1.53	1.92	1.70	1.55	1.52	1.47	1.54
Na	Mg	Al	Si	P	S	Cl	Ar
2.27	1.73	1.84	2.10	1.80	1.80	1.75	1.88
K	Ca	Ga	Ge	As	Se	Br	Kr
2.75	2.31	1.87	2.11	1.85	1.90	1.83	2.02
Rb	Sr	In	Sn	Sb	Te	I	Xe
3.03	2.49	1.93	2.17	2.06	2.06	1.98	2.16
Cs	Ba	Tl	Pb	Bi	Po	At	Rn
3.43	2.68	1.96	2.02	2.07	1.97	2.02	2.20
Fr	Ra						
3.48	2.83						

Carbon atoms

Van der Waals
Interactions

www.substech.com

Graphite structure

^a Bold values are from the present work, value for H is from Rowland and Taylor, and other values are from Bondi.

Punti di fusione ed ebollizione di varie sostanze (°C)

Sostanza	T di fusione	T di ebollizione
Noble gases		
He	$-270 (3.5 \text{ K})^*$	-269 (4.2 K)
Ne	-249	-246
Ar	-189	-186
Kr	-157	-153
Xe	-112	-108
Halogens		
F_2	-220	-188
F_2 Cl_2	-101	-34
Br_2	-7	59
I_2	114	184
Hydrogen halides		
HF	-93	20
HCl	-114	-85
HBr	-89	-67
HI	-51	-35

La T_{eb} di una sostanza cresce al crescere delle interazioni intermolecolari. Anche la T_{fus} : ma meno regolarmente.

^{*} ad alta pressione

IUPAC Periodic Table of the Elements

1	1																18
																	2
H hydrogen																	He
1.007 94(7)	2		Key:									13	14	15	16	17	helium 4.002 602(2)
3	4		atomic num	nber								5	6	7	8	9	10
Li	Be		Symb	ol								В	С	N	0	F	Ne
lithium	beryllium		name									boron	carbon	nitrogen	oxygen	fluorine	neon
6.941(2)	9.012 182(3)	-	standard atomic	weight								10.811(7)	12.0107(8)	14.0067(2)	15.9994(3)	18.998 4032(5)	20.1797(6)
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
sodium 22.989 770(2)	magnesium 24.3050(6)	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	phosphorus	sulfur	chlorine	argon
19	20	21	22	23	24	25						26.981 538(2)	28.0855(3)	30.973 761(2)	32.065(5)	35.453(2)	39.948(1)
K		Sc	Ti	V			26	27	28	29	30	31	32	33	34	35	36
potassium	Ca	scandium	titanium	vanadium	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983(1)	40.078(4)	44.955 910(8)	47.867(1)	50.9415(1)	51.9961(6)	manganese 54.938 049(9)	iron 55.845(2)	cobalt 58.933 200(9)	nickel 58.6934(2)	copper 63.546(3)	zinc 65.409(4)	gallium 69.723(1)	germanium 72.64(1)	74.921 60(2)	selenium 78.96(3)	579.904(1)	krypton 83.798(2)
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85.4678(3)	87.62(1)	88.905 85(2)	91.224(2)	92.906 38(2)	95.94(2)	[98]	101.07(2)	102.905 50(2)	106.42(1)	107.8682(2)	112.411(8)	114.818(3)	118.710(7)	121.760(1)	127.60(3)	126.904 47(3)	131.293(6)
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium 132.905 45(2)	barium 137.327(7)		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
87	88	89-103	178.49(2)	180.9479(1)	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.078(2)	196.966 55(2)	200.59(2)	204.3833(2)	207.2(1)	208.980 38(2)	[209]	[210]	[222]
Fr	Ra		Rf	100000000000000000000000000000000000000				109	110	111							
francium	radium	actinoids	rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs hassium	Mt	Ds	Rg							
[223]	[226]		[261]	[262]	[266]	[264]	[277]	meitnerium [268]	darmstadtium [271]	roentgenium [272]							
		I	ı							11	J						
		CONTRACTOR SALES	HEATHER HEATHER STREET				Maria de la companya										
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
4		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		lanthanum 138.9055(2)	cerium 140.116(1)	praseodymium 140.907 65(2)	neodymium 144.24(3)	promethium [145]	samarium 150.36(3)	europium 151.964(1)	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
((()))))(((((()	.00.0000(2)	140.110(1)	1-70.307 00(2)	144.24(3)	[140]	130.36(3)	151.904(1)	157.25(3)	158.925 34(2)	162.500(1)	164.930 32(2)	167.259(3)	168.934 21(2)	173.04(3)	174.967(1)	
	T	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	4	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		[227]	232.0381(1)	231.035 88(2)	238.028 91(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]	

Note:

- "Aluminum" and "cesium" are commonly used alternative spellings for "aluminium" and "caesium."
- IUPAC 2001 standard atomic weights (mean relative atomic masses) are listed with uncertainties in the last figure in parentheses (R. D. Loss, Pure Appl. Chem. 75, 1107-1122 (2003)]. These values correspond to current best knowledge of the elements in natural terrestrial sources. For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets.
- Elements with atomic numbers 112 and above have been reported but not fully authenticated.

Legame a idrogeno

 $\mathsf{D}^{\delta_1} - \mathsf{H}^{\delta^+} \cdot \cdot \cdot : \mathsf{A}^{\delta_2}$

Interazione dipolo-dipolo con ~ grande δ^+ su H (molto piccolo): \Rightarrow forte potere polarizzante di H \Rightarrow interazione forte

L'energia del legame a idrogeno è legata a:

- 1. l'elettronegatività χ_D di D
- 2. χ_A di A, disponibilità di lone pairs e tendenza di A a condividerli
- 3. dimensioni di A (meglio piccolo, polarizzabilità di A poco importante)

Il legame idrogeno è direzionale

Il legame idrogeno nel ghiaccio, in quanto direzionale, porta alla formazione di spazi «vuoti» nel cristallo, che è quindi meno denso del liquido.

diagramma di stato di H₂O

mostra i campi di esistenza (in funzione di $P \in T$), delle fasi di H_2O

Temperature (°C)	Pressure (mmHg)	210		В			Fluido supercritico	
0 5 10 15 20 21 22 23 24 25 26 27 28 29 30 40 50 60 70	4.6 6.5 9.2 12.8 17.5 18.7 19.8 21.1 22.4 23.8 25.2 26.7 28.3 30.0 31.8 55.3 92.5 149.4 233.7	Dressione (atm) 0,0 0,006	Pressione atmosferica Punto di congelamento normale		H ₂ O Liquido T H ₂ O Gassoso	Pun	C GAS LIQUI nto di nizione male	
80 90 100	355.1 525.8 760.0			0, Гег	01 10 mperatura (°C	00 374	,2	

Legami a idrogeno in acidi nucleici:

trasferimento informazione genetica mediata da legami H

Legami ed interazioni tra atomi

Interazione	Dipendenza da dist.	Energie tipiche	Commento
Leg. covalente	(nm) contatto	kJ mol ⁻¹ 100-500	definisce entità molecolari
Ione-ione	1/r	250	solo tra ioni
Ione-dipolo	1/r ²	20	
Dipolo-dipolo	1/r ³	~1	statici
Dipolo-dipolo	1/r ⁶	~1	in movim.
Dispersione	1/d ⁶	~1	polarizzabil.!
Leg. a idrogeno	~ contatto	20	H legato a N,O,F