# ESPECIALIZAÇÃO EM CIÊNCIA DE DADOS — PUC-RIO MACHINE LEARNING

**AULA 3: PROBLEMAS DE REGRESSÃO** 

Tatiana Escovedo, PhD. tatiana@inf.puc-rio.br

#### AGENDA

- Problemas de Regressão
- Regressão Linear
- Regularização
- Regressão Logística
- KNN (para Regressão)
- Árvore de Regressão
- SVM (para Regressão)

# PROBLEMAS DE REGRESSÃO

 Considere um grupo varejista com esta região de negócios:



- Problema: onde abrir uma nova filial?
- Métrica de qualidade de uma boa filial: Faturamento Médio Annual
  - Métrica conhecida nas regiões onde há filiais e desconhecida nas demais.

Como podemos inferir os valores para os bairros não disponíveis (NA)?

| Bairro | Faturamento |
|--------|-------------|
| Α      | 105.000     |
| В      | NA          |
| C      | NA          |
| D      | NA          |
|        |             |
| K      | NA          |
| L      | 150.000     |
| M      | NA          |

- 1º passo: levantar variáveis que estão tanto presente nos bairros com/sem Faturamento:
  - Renda per Capita
  - IDH
  - Número de Concorrentes
  - Número de Habitantes
  - Preço do m<sup>2</sup>
  - Etc.

 2º passo: Separar as bases de dados – Com Faturamento e Sem Faturamento

|     | Bairro | Renda/Hab. | <br>Preço do m² | Faturamento |
|-----|--------|------------|-----------------|-------------|
|     | Α      | 1500       | <br>2500        | 105.000     |
| Com | Н      | 2400       | <br>5300        | 180.000     |
| Ŭ   |        |            | <br>            |             |
|     | L      | 3400       | <br>2750        | 150.000     |
|     | В      | 2500       | <br>1780        | NA          |
|     | C      | 1000       | <br>3500        | NA          |
| Sem | D      | 4300       | <br>6500        | NA          |
| Š   |        |            | <br>            |             |
|     | K      | 7000       | <br>8900        | NA          |
|     | M      | 2800       | <br>3900        | NA          |

■ 3º passo: Elaborar um modelo de Regressão



7/55

Finalmente: a partir do modelo, seleciona-se o bairro com Maior
Faturamento Esperado

|         | Bairro | Renda/Hab. | <br>Preço do m² | Faturamento |
|---------|--------|------------|-----------------|-------------|
| 유       | Α      | 1500       | <br>2500        | 105.000     |
| Observa | Н      | 2400       | <br>5300        | 180.000     |
| Se      | ***    |            | <br>            |             |
| Ö       | L      | 3400       | <br>2750        | 150.000     |
|         | В      | 2500       | <br>1780        | 125.000     |
| 9       | C      | 1000       | <br>3500        | 200.000     |
| Esperad | D      | 4300       | <br>6500        |             |
| sbe     |        |            | <br>            |             |
| ш       | K      | 7000       | <br>8900        | 180.000     |
|         | M      | 2800       | <br>3900        | 120.000     |

### PROBLEMA DE REGRESSÃO: DEFINIÇÃO

- Dado um conjunto de n padrões, em que cada padrão é composto por informação de variáveis explicativas (X) e de uma variável resposta contínua/discreta (y).
- Objetivo: construir um modelo de regressão que dado um novo padrão estime o valor mais esperado para a variável resposta.

| Padrão                | Explicativas           |  |                  | Resposta              |
|-----------------------|------------------------|--|------------------|-----------------------|
| $x_1$                 | <i>x</i> <sub>11</sub> |  | $x_{1J}$         | <i>y</i> <sub>1</sub> |
| $\mathbf{x}_2$        | <i>x</i> <sub>21</sub> |  | $x_{2J}$         | <b>y</b> 2            |
| <b>x</b> <sub>3</sub> | <i>X</i> 31            |  | X <sub>3</sub> J | <i>y</i> 3            |
|                       |                        |  |                  |                       |
| $\mathbf{x}_{i}$      | x <sub>i1</sub>        |  | $x_{iJ}$         | Уi                    |
|                       |                        |  |                  |                       |
| $\mathbf{x}_n$        | x <sub>n1</sub>        |  | $x_{nJ}$         | Уn                    |

## CLASSIFICAÇÃO X REGRESSÃO

- Classificação: Resultado categórico
  - Conceder ou não crédito para um cliente?
- Regressão: Resultado numérico (contínuo ou discreto)
  - Conceder qual valor de crédito para um cliente?

#### Tarefas como:

- Preparação da base de dados;
- Separação em conjuntos de treino e teste;
- Definição dos critérios de parada do algoritmo;
- Treinamento e teste;

são feitas de forma equivalente.

#### REGRESSÃO

- Também chamada de Estimação
- Aprendizagem Supervisionada a partir de dados históricos
- Diferença na avaliação de saída: em vez da acurácia, estima-se a distância ou o erro entre a saída do estimador e a saída desejada: o processo de treinamento do estimador tem por objetivo corrigir o erro observado, buscando minimizar um critério de maneira que os valores estimados estejam próximos dos valores reais no sentido estatístico.
- A Classificação pode ser vista como um caso particular da Regressão.

#### MÉTRICAS DE DESEMPENHO PARA REGRESSÃO

RMSE (root mean squared error, ou raiz do erro quadrático médio): quanto menor, melhor o modelo.

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} e_j^2}$$

 MSE (mean squared error, ou erro quadrático médio): quanto mais próximo de 0, melhor o modelo. Fornece uma ideia da magnitude do erro, mas nenhuma ideia da direção.

$$MSE = \frac{1}{n} \sum_{j=1}^{n} e_j^2$$

Coeficiente de Determinação (R²): quanto mais próximo de 1, melhor o ajuste do modelo (o quanto y é explicado por x):

$$R^{2} = 1 - \frac{SQE}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

 Sendo SQE a soma dos erros quadráticos (sum of squared errors):

$$SQE = \sum_{j=1}^{n} e_j^2$$

- No exemplo anterior, vamos somente considerar:
  - os dados que possuem valores para a Variável Resposta
  - a relação entre Variável Explicativa Renda/Hab e o Faturamento
- Observação trivial: Quanto maior a Renda per Capita do Bairro, maior o Faturamento no Bairro. Mas como formular esta relação matematicamente?

| Bairro | Renda/Hab. | Faturamento |  |
|--------|------------|-------------|--|
| Α      | 1500       | 105.000     |  |
| Н      | 2400       | 180.000     |  |
|        |            |             |  |
| L      | 3400       | 150.000     |  |



 Solução Regressão Linear: ajustar uma reta que melhor passe pelos pontos.

$$\widehat{Fat}_{Bairro} = \beta_0 + \beta_1 \times RendaPerCapita_{Bairro}$$



Modelo:  $\widehat{Fat}_{Bairro} = 190$ 

Matematicamente, o faturamento estimado para todos os bairros é de 190, o que não parece um valor muito real. Vamos tentar novamente, alterando o valor do intecepto (onde a linha corta o eixo v) :

15/55

**Tentativa 2:**  $\beta_0$  é nosso intercepto



Modelo:  $\widehat{Fat}_{Bairro} = 120$ 

- Agora, o faturamento estimado para todos os bairros é de 120. Apesar de a reta estar um pouco mais próxima dos pontos, este modelo também não parece muito útil.
- Vamos tentar usar a informação de renda per capita, diminuindo, por exemplo, 2 vezes o seu valor pelo faturamento estimado que temos até o momento:

Tentativa 3: Aonde foi parar a reta?



**Modelo:**  $\widehat{Fat}_{Bairro} = 120 - 2 \times RendaPerCapita_{Bairro}$ 

 Agora a reta sumiu do gráfico.
Vamos corrigir o intercepto para ver se obtemos melhores resultados:

Tentativa 4: Corrigindo o intercepto



**Modelo:**  $\widehat{Fat}_{Bairro} = 1502 - 2 \times RendaPerCapita_{Bairro}$ 

- Mas espere... tínhamos observado anteriormente que a relação estre as variáveis renda per capita e faturamento era positiva.
- Vamos trocar o sinal da nossa equação para exprimir essa relação:

Tentativa 5: Aonde foi parar a reta novamente?



**Modelo:**  $\widehat{Fat}_{Bairro} = 1502 + 2 \times RendaPerCapita_{Bairro}$ 

• A reta sumiu novamente! Vamos, outra vez, corrigir o intercepto:

Tentativa 6: Corrigindo o intercepto novamente



**Modelo:**  $\widehat{Fat}_{Bairro} = -1400 + 2 \times RendaPerCapita_{Bairro}$ 

• Estamos chegando perto, bastando apenas corrigir um pouco a inclinação da reta:

Tentativa 7: Corrigindo a inclinação



**Modelo:**  $\widehat{Fat}_{Bairro} = -1400 + 1,35 \times RendaPerCapita_{Bairro}$ 

 Se continuarmos neste processo manual (e cansativo!), vamos em algum momento chegar à solução ótima para o problema:

#### Melhor solução: $\beta_0$ e $\beta_1$ ótimos



**Modelo:**  $\widehat{Fat}_{Bairro} = -24,49 + 0,15 \times RendaPerCapita_{Bairro}$ 

 Este modelo significa que, a cada aumento de R\$100 na renda per capita do bairro, espera-se que isso reflita em 0,15 \* 100 = 15 mil de faturamento para a filial.



Esta solução é dita ótima porque passa mais perto dos pontos (considerando a distância euclidiana).

Logo, para cada escolha dos parâmetros  $\beta_o$  e  $\beta_1$  na equação

$$\widehat{Fat}_{Bairro} = \beta_0 + \beta_1 \times RendaPerCapita_{Bairro}$$

 é possível calcular os erros (ou desvios) dessa escolha.



 $\widehat{Fat}_{Bairro} = -24,49 + 0,15 \times RendaPerCapita_{Bairro}$ 

 Porém, observe que se somarmos os erros para calcular o erro total do modelo, pelos erros individuais serem positivos e negativos, eles se anulam.

| Fat | Fât              | $e = Fat - \hat{Fat}$        |
|-----|------------------|------------------------------|
| 180 | 130              | 50                           |
| 175 | 115              | 60                           |
| 65  | 120              | -55                          |
|     |                  |                              |
| 70  | 82               | -12                          |
|     | 180<br>175<br>65 | 180 130<br>175 115<br>65 120 |

 Assim, a melhor prática é trabalhar com a magnitude do erro (erro ao quadrado, por

$$\sum_{i \in Bairro} e_i^2 = (Fat_i - \hat{Fat}_i)^2 = 50^2 + 60^2 + (-55)^2 + \dots + (-12)^2 = 230$$

• Moral da história: a Regressão Linear consiste em escolher  $\beta_o$  e  $\beta_1$  para construir uma reta que minimize a soma dos quadrados dos erros (SQE):

$$SQE = \sum_{i \in Bairro}^{n} e_i^2$$

Na primeira tentativa, o SQE foi 3224, na segunda, 1224, e assim por diante, até que chegamos na melhor solução, com SQE 230.

Neste exemplo consideramos apenas a relação entre Faturamento e Renda Per Capita. Em problemas reais, dificilmente haverá uma única variável x capaz de prever o y!

#### REGRESSÃO LINEAR MÚLTIPLA

Se quiséssemos adicionar uma nova variável (como por exemplo preço do m²), teríamos o modelo de regressão linear múltipla:

$$\widehat{Fat}_i = \beta_0 + \beta_1 \times RendaPerCapita_i + \beta_2 \times PrecoM^2$$

Basta adicionar as demais variáveis preditoras  $(x_1, x_2, ..., x_n)$  e seus coeficientes correspondentes!



#### REGRESSÃO LINEAR MÚLTIPLA

 A solução seria construir um plano (em vez de uma reta) que melhor se ajuste aos pontos:



- Neste caso, os coeficientes podem ser estimados pelo Método dos Mínimos Quadrados\* (Ordinary Least Squares).
- Este método busca encontrar o melhor ajuste para um conjunto de dados tentando minimizar a soma dos quadrados das diferenças entre o valor estimado e os dados observados.

28/55

https://pt.wikipedia.org/wiki/M%C3%A9todo\_dos\_m%C3%ADnimos\_quadrados https://towardsdatascience.com/linear-regression-understanding-the-theory-

#### REGRESSÃO LINEAR: RESUMO

- A Regressão Linear modela a relação entre uma variável de resposta (y) e os preditores (X).
- Assume-se um relacionamento linear entre X e y, ou seja, que y pode ser calculado através de uma combinação linear de X.
  - Apenas um x: regressão linear simples
  - Mais de um x: regressão linear múltipla

#### REGRESSÃO LINEAR: RESUMO

- Corresponde ao problema de estimar uma função a partir de pares entrada-saída.
  - Simples:  $y = \beta_0 + \beta_1 x$ , sendo  $\beta_0$  e  $\beta_1$  os coeficientes de regressão (especificam o intercepto do eixo y e a inclinação da reta)
  - Múltipla: a equação deve ser estendida para equação de plano/hiperplano:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$
- A solução da tarefa de regressão consiste em encontrar valores para os coeficientes de regressão de forma que a reta (ou plano/hiperplano) se ajuste aos valores assumidos pelas variáveis no conjunto de dados.

### REGRESSÃO LINEAR: AVALIAÇÃO

- A saída de um estimador é um valor numérico contínuo que deve ser o mais próximo possível do valor desejado, e a diferença entre esses valores fornece uma medida de erro de estimação do algoritmo.
  - Seja  $d_j = 1$ , ..., n a resposta desejada para o objeto j e  $y_j$  a resposta predita do algoritmo, obtida a partir da entrada  $x_j$ . Então,  $e_j = d_j y_j$  é o **erro** observado na saída do sistema para o objeto j.

### REGRESSÃO LINEAR: AVALIAÇÃO

- O processo de treinamento do estimador tem por objetivo **corrigir** este erro observado e, para tal, busca **minimizar** um critério (função objetivo) baseado em  $e_j$  de maneira que os valores de  $y_i$  estejam próximos dos de  $d_i$  no sentido estatístico.
- Se a equação de regressão aproxima suficiente bem os dados de treinamento, então ela pode ser usada para estimar o valor de uma variável (y) a partir do valor da outra variável (x).
- Resumindo: a regressão linear procura pelos coeficientes da reta que minimizam a distância dos objetos à reta.
- OBS: apesar da sua simplicidade, modelos lineares são surpreendentemente competitivos em relação a modelos não lineares.

## MÉTODOS DE REGULARIZAÇÃO

- A regressão linear usa o método dos mínimos quadrados para estimar os seus coeficientes, buscando minimizar a soma dos quadrados (RSS – residual sum of squares).
- No caso de um coeficiente ser zero, a influência da variável de entrada no modelo é removida (0 \* x = 0).
- O modelo se torna menos complexo e com melhor interpretabilidade, pois as variáveis não-relevantes (que não estão realmente associadas à resposta) são eliminadas.

# MÉTODOS DE REGULARIZAÇÃO

- Os métodos de regularização são extensões de treinamento do modelo linear que, além de buscar minimizar a soma do erro quadrático, buscam reduzir a complexidade do modelo através de uma função de penalidade:
  - Ridge: busca minimizar também o quadrado da soma absoluta dos coeficientes (regularização L2).
  - Lasso: busca minimizar também o valor absoluto da soma dos coeficientes (regularização L1).
- Esses métodos são eficazes quando há correlação entre os atributos de entrada, e os mínimos quadrados comuns superestimam os dados de treinamento, ocorrendo o overfitting.

Ridge: 
$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$
 Lasso:  $RSS + \lambda \sum_{j=1}^{p} |\beta_j|$ 

34/55

# MÉTODOS DE REGULARIZAÇÃO

- O parâmetro de ajuste  $\lambda$  serve para controlar o impacto da penalidade.
  - Quando  $\lambda = 0$ , o termo da penalidade não tem efeito e o resultado é similar ao método dos mínimos quadrados.
  - Quanto maior é λ, maior é o impacto da penalidade e maior a diminuição dos coeficientes.
- Ridge: A penalidade poderá diminuir todos os coeficientes para próximo de zero, mas nunca exatamente a zero. O modelo gerado sempre terá todas as variáveis preditoras e não é robusto a *outliers*, podendo prejudicar a interpretabilidade do modelo, mas sendo capaz de aprender padrões mais complexos.
- Lasso: A penalidade pode levar alguns coeficientes a exatamente zero (quando λ é suficientemente grande), realizando a seleção de variáveis preditoras e facilitando a interpretabilidade do modelo, que é mais simples e robusto a *outliers*, mas não é capaz de aprender padrões mais complexos.

# REGRESSÃO LOGÍSTICA

#### REGRESSÃO LOGÍSTICA

- Não se confunda! É um algoritmo de classificação e não de regressão.
- Usado para estimar valores discretos (valores binários como 0/1, sim / não, verdadeiro / falso) com base em um conjunto de variáveis independentes.
- Calcula a probabilidade de ocorrência de um evento, ajustando os dados a uma função  $logit(p) = \log\left(\frac{p}{1-p}\right) = \log(p) \log(1-p)$ .
- Como prevê a probabilidade, seus valores de saída estão entre 0 e 1 (como esperado).

### REGRESSÃO LOGÍSTICA

Utiliza função logística, também chamada de sigmóide: uma curva em forma de S que pode mapear qualquer número em um intervalo entre 0 e 1 (mas nunca exatamente nestes limites).

$$f(x) = \frac{1}{1 + e^{-x}}$$

• onde f(x) é a saída prevista.



Transformação logística entre -6 e 6 (Fonte: Wikipedia)

### REGRESSÃO LOGÍSTICA

- De forma similar à regressão linear, usa uma equação como representação:
  - os valores de entrada (x) são combinados linearmente usando coeficientes para prever um valor de saída (y).
- O valor de saída é modelado em valor binário (0 ou 1) em vez de um valor numérico.

#### REGRESSÃO LOGÍSTICA - PROBABILIDADES

 A regressão logística modela a probabilidade da classe padrão. Por exemplo, se estivermos modelando o sexo de uma pessoa dada sua altura, o modelo de regressão logística pode ser escrito como:

P(sexo = masculino | altura)

 Escrito de outra forma, estamos modelando a probabilidade de uma entrada X pertencer à classe padrão (Y = 1):

$$P(X) = P(Y=1 \mid X)$$

 Note que a predição da probabilidade pode ser transformada em um valor binário (0 ou 1) para fazer a classificação.

## REGRESSÃO LOGÍSTICA – ESTIMANDO OS COEFICIENTES

- Os coeficientes da Regressão Logística podem ser estimados usando os dados de treinamento, através do método de estimação de máxima verossimilhança\*, um método matemático que busca valores para os coeficientes de forma a minimizar o erro nas probabilidades preditas pelo modelo para os dados.
  - Os melhores coeficientes resultarão em um modelo que vai prever um valor muito próximo de 1 para a classe padrão e um valor muito próximo de 0 para a outra classe.
- Após determinados os coeficientes, para fazer predições com a Regressão Logística, basta calcular os coeficientes e aplicar a equação resultante.

41/55

Lembrando o problema anterior:

|     | Bairro | Renda/Hab. | # Concorrentes | Faturamento |
|-----|--------|------------|----------------|-------------|
|     | Α      | 1500       | 14             | 105.000     |
| Com | Н      | 2400       | 8              | 180.000     |
| ŭ   |        |            |                |             |
|     | L      | 3400       | 10             | 150.000     |
|     | В      | 20         | 1780           | NA          |
|     | C      | 1000       | 5              | NA          |
| Sem | D      | 4300       | 15             | NA          |
| Š   |        |            |                |             |
|     | K      | 7000       | 9              | NA          |
|     | M      | 2800       | 7              | NA          |

Ao organizar esses dados em um gráfico, tem-se:



Pergunta:



 KNN para Regressão: O Faturamento Esperado é a média aritmética dos k vizinhos mais próximos



# ÁRVORE DE REGRESSÃO

#### ÁRVORE DE REGRESSÃO

- É construída de forma similar à árvore de classificação: a partir do nó raiz, os dados são particionados usando uma estratégia de divisão e conquista de acordo com a característica que resultará no resultado mais homogêneo após a separação ser realizada.
- Nas árvores de classificação, a homogeneidade é medida pela entropia; nas árvores de regressão, a homogeneidade é medida por estatísticas como variância, desvio padrão ou desvio absoluto da média.
- A predição é a média dos valores dos exemplos de cada folha.

## ÁRVORE DE REGRESSÃO: CRITÉRIO DE DIVISÃO

Um critério de divisão comum para árvores de regressão é a redução de desvio padrão (SDR – Standard Deviation Reduction), que mede a redução no desvio padrão, comparando o desvio padrão antes da divisão com o desvio padrão ponderado após a divisão.

$$SDR = sd(T) - \sum_{i} \frac{|T_i|}{|T|} \times sd(T_i)$$

■ A função sd(T) refere-se ao desvio padrão dos valores no conjunto  $T_1$ , enquanto  $T_2$ ,  $T_2$ , ...,  $T_n$  são os conjuntos de valores resultantes de uma divisão em uma característica. |T| refere-se ao número de observações no conjunto T.

# ÁRVORE DE REGRESSÃO: PREDIÇÃO - EXEMPLO

Se o desvio padrão é mais reduzido com a divisão em uma característica B do que em A, deve-se realizar a divisão primeiro em A, resultando em uma árvore mais homogênea.

| original data      | 1              | 1 | 1 | 2 | 2 | 3              | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 7 | 7 |
|--------------------|----------------|---|---|---|---|----------------|---|---|---|---|---|---|---|---|---|
| split on feature A | 1              | 1 | 1 | 2 | 2 | 3              | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 7 | 7 |
| split on feature B | 1              | 1 | 1 | 2 | 2 | 3              | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 7 | 7 |
|                    | T <sub>1</sub> |   |   |   |   | T <sub>2</sub> |   |   |   |   |   |   |   |   |   |

 Supondo que a árvore de regressão está pronta com apenas esta divisão em B, a predição pode ser feita considerando se o novo exemplo caiu no conjunto T<sub>1</sub> ou no conjunto T<sub>2</sub>, calculando a media dos valores deste conjunto.

# ÁRVORE DE REGRESSÃO



- O SVM também pode ser usado como método de regressão, mantendo todos os principais recursos que caracterizam o algoritmo, como a margem máxima), sendo chamado SVR (Support Vector Regression).
- O SVR foi proposto em 1997, mas é pouco utilizado, pois existem modelos mais simples para regressão com resultados semelhantes ou melhores.
- Assim como no SVM para Classificação, o modelo produzido pelo SVR depende apenas de um subconjunto dos dados de treinamento.

- A ideia básica do SVR é mapear um conjunto de dados X em um espaço multidimensional, através um mapeamento não-linear (usando funções kernel) e realizar uma regressão linear neste espaço transformado, considerando apenas os pontos que estão dentro da margem. O melhor modelo é o hiperplano que possui o número máximo de pontos.
- Comparado ao modelo de Regressão Linear, o SVR tem a vantagem de utilizar uma grande variedade de funções que se adequa aos modelos.
- Na regressão linear, tentamos minimizar a taxa de erro, enquanto que no SVR, tentamos ajustar o erro dentro de um determinado limite, definido pela margem.

