Bio 1M: Human evolution (complete)

1 Patterns of evolution

Humans as an example

- We are an example of a biological species that has evolved
 - Many of your friends are probably humans
- Humans seem unique:
 - How do they differ from other evolved organisms?
 - What do they share with other evolved organisms?

Similarities and differences

- What is different about people?
 - **Answer**: Complex thoughts
 - **Answer:** Culture
 - <u>Answer</u>: Language
 - **Answer:** Technology
- What is the same?
 - Answer: We're here because our ancestors reproduced
 - Answer: If reproductive success depends on heritable variation in traits ...
 - * **Answer:** We're still evolving
 - * **Answer:** In what direction or directions?

History

- There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates
 - Mammals
 - Primates
 - Apes

Timeline

- Why not just say how long ago?
 - Periods may be punctuated by major events
 - * Radiations, mass extinctions
 - People started talking about periods before they had good measures of how long ago things happened
 - Periods have cool names
 - * Answer: Connections help people think clearly

1.1 Context for evolution

- Adaptations build on existing adaptations often in unexpected ways
- Evolution does not know where it's going
- In a constant environment, species can only improve with gradual adaptations to the same environment
 - and will be in danger of getting "stuck", e.g. vertebrate eyes
- A changing environment provides opportunities to try new combinations and build in unexpected directions

Physical changes

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - * Rivers changing course
 - * Mountain ranges separating valley species
 - * **Answer:** Provides opportunities for allopatric speciation

Changing ecosystems

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - Who do I eat? Who is trying to eat me? How do I reproduce?
- Co-evolution is a key driver of diversity. For example:
 - Plants evolve new ways to use insects for sex, or vertebrates for dispersal
 - Animals evolve new ways to benefit from plant resources

Mammalian ancestors

- Our ancestors, the **therapsids**, radiated and dominated many terrestrial environments before dinosaurs did
- Therapsids were largely replaced by dinosaurs in the age of dinosaurs
 - But some survived, and one radiated after a mass extinction

Radiation and contraction

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:
 - Therapsids, apes, hominins (us)
- Radiation gives many chances for adaptation
 - Things that have had radiations may be more likely to persist
 - Even after periods of contraction

Reasons for contraction

- What are some reasons that a diverse clade suffer many extinctions?
 - Answer: Changing conditions (climate change, continents moving)
 - **Answer:** Competition from other clades (therapsids vs. dinosaurs)
 - Answer: Competition from a successful member (people vs. other hominins)

Observer bias

- We see a lot of clades with a history of radiations
- Does that mean most clades radiate?
 - **Answer**: Maybe it's just the ones see
 - **Answer:** Clades with a history of radiations may be more successful

Advantages of previous radiation

- They've explored more kinds of environments
- They're found in more different specific places
 - e.g., marsupials in Australia
- They've had more chances to adapt
 - May have a few very successful species (like us)

2 The evolution of primates

- Humans are **primates**, an "order" characterized by
 - Highly developed **stereroscopic** vision
 - * Eyes are close together, face forward, and are used together
 - * Allows 3-d visualization
 - Versatile limbs
 - * Grasping hands and feet
 - * Nails and fingertips (instead of claws)
 - Large brains

Traits

- What sort of traits do biologists use to characterize a group?
 - <u>Answer</u>: Derived traits
- How would you interpret the fact that humans don't have grasping feet?
 - **Answer:** Our ancestors lost the trait
 - Answer: It takes many traits to make an accurate phylogeny

Changing models

- Does swinging through trees provide evidence that bonobos are closer to orangutans than to humans or gorillas?
 - Answer: Depends on the ancestor: in this case it seems hard to say
 - <u>Answer</u>: Even if there is evidence, there's more evidence that they're closer to us
- We used to think people were far from chimps and gorillas
 - **Answer:** Observer bias
 - Answer: Phenetic approaches: humans have a lot of adaptations
 - * Answer: And we're good at recognizing them more observer bias

The angiosperm explosion

- Flowering plants diversified very rapidly around 100 mya million years ago
- This radically changed the ecology of the world, and opened up many new niches, apparently including space for primates

Primate adaptations

- There are a variety of theories for how characteristic primate adaptations evolved
- Each step was likely favored adaptively
- Likely something to do with processing and handling angiosperm fruit and flowers
 - Or else the insects that fed on these fruit and flowers

Adaptive theories

- There are many theories for why primate traits might have been adaptively favored in our ancestors
 - Leaping from branch to branch
 - Climbing and balancing on trees
 - Exploiting new plant resources
 - Catching insects
 - Adaptive foraging: the ability to switch between types of food, and to learn to use new types of food

Patterns of adaptation

- These strategies may have evolved sequentially
 - Maybe exploiting tree resources came first, but similar traits helped some species later catch insects
 - Maybe traits which evolved for one specific purpose later became useful for adaptive foraging

3 Apes

Ape adaptations

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- More upright
- Better at hanging, and worse at sitting
- Lots of missing pieces of the puzzle
 - There may be a lot of convergent evolution and secondary loss going on

Patterns of replacement

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - **Answer:** Changing climactic conditions
 - <u>Answer</u>: Changes in plants or insects
 - **Answer:** Unpredictable adaptive innovations
- What if the ape radiation had never happened?
 - **Answer:** Less diversity between surviving apes
 - **Answer:** Probably no people

4 Learning about the past

Getting fed

- A major factor in adaptation is food source.
- The most important strategies for early primates were:

- Frugivory: eating fruits (and sometimes flowers)

- Folivory: eating leaves

- **Insectivory**: eating insects

Teeth

- Teeth are very important for processing food
- Why do we have two sets of teeth?
 - Answer: Makes it more likely our teeth will last for longer
 - **Answer:** This is probably also why wisdom teeth come in late
- Teeth help scientists understand what extinct animals ate
 - Often preserved, highly adapted

Eyes

- Eye **orbits** are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - Answer: Better for precise tasks, three-dimensional visualization
 - **Answer:** Not as good for looking around, being alert
- What are the advantages and disadvantages of larger eyes?
 - **Answer:** Better for night vision
 - **Answer:** More costly? Harder to protect?
 - Answer: Are small (or deep) eyes better for day vision?

Sexual dimorphism

- Information about differences between males and females has implications about social structure and mating patterns
 - In species where there is more variation in male success (less bonding in pairs), we expect:
 - * **Answer:** More sexual dimorphism
 - * **Answer:** More competition between males for females

Dimorphism and sexual strategies

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - Answer: Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- Which species should have larger male genitals?
 - **Answer**: Chimpanzees have much larger genitals.
 - Answer: Gorillas don't use genitals as part of sexual competition
- What about humans?

Learning about evolution

- Understanding the course of evolution is an important part of understanding how things work now
 - How organisms work, and how ecosystems work
- There are many challenges:
 - Timelines, identification, convergent evolution

Summary

- People have important differences from other organisms
- We got here using the same rules of natural selection as everyone else
 - Things may be different now, but even that is not so clear
- Adaptation does not move in a straight line
 - Changing conditions lead to opportunities for new adaptations
 - New adaptations themselves can be an important cause of changing conditions
 - * Innovations, or co-evolution with other taxa

5 Hominins

- Hominins refer to people and our upright ancestors
- Characterized by:
 - Walking upright
 - Specific changes in chewing design: teeth, jaws and skull

Taxonomy

- Homonoidea, Hominidae, Homininiae, Hominini, Hominina, Homo
- Why so much detailed splitting?
 - **Answer:** We're a little bit full of ourselves
 - **Answer:** Observer bias

Putting together the puzzle

- What did our common ancestor with chimpanzees look like?
- Which fossils are related to which other fossils?
- The key is which features are reliable indicators of relatedness?
 - **Answer:** How do we tell the difference between convergence and homology?
 - **Answer:** It's all in the details
 - **Answer:** And it's not always clear

Competition and replacement

- H. erectus replaced everything that came before it
- H. sapiens replaced everything that came before it

Modern humans

- Characterized by small face and teeth
- Less robust skeletal structure
- Evolved in Africa around 200 kya (thousand years ago)
- Took over most of the world in the last 50,000 years

Why are we here?

- Modern humans arose around 200 kya, but took over the world around 50 kya
- What happened?
 - Cultural change?
 - Evolutionary change?
 - * Sudden or gradual?
 - Why don't we see evidence?
 - * Answer: Might be about our brains, and not reflected in fossils

Evaluating evidence

- There are a lot of theories and a great deal of expertise
- But expertise can also lead to over-confidence
- As with other examples, we try to make and test theories
 - Answer: Make predictions about things that haven't been seen vet

Apelike ancestors

- Were our ancestors more like us, or more like apes?
 - Answer: Trick question: we are apes, if apes are a clade
 - Answer: Among living apes, the closest relatives of our ancestors is us
 - Answer: In some important ways, we have evolved more than chimpanzees have
 - Answer: But chimpanzees have probably evolved more than we think
 - * Answer: Observer bias
 - * **Answer:** Our ancestors are less like chimps than we thought

Upright posture

- How did upright posture and upright walking evolve?
- It's not known, but there are many theories:
 - Adaptation to walking on the ground instead of swinging through trees
 - * **Answer:** If so, probably dependent on **gradual** evolution from existing form
 - Adaptation for keeping cool
 - Adaptation for harvesting food
 - Adaptation for carrying food

Gradual evolution

- Hominins' evolution of upright posture was likely dependent on evolutionary history and circumstance
 - Built on previous adaptations
- Evolution of upright posture almost certainly led to further evolutionary change:
 - Carrying and storing things
 - Making and using tools
- Given the dramatic amount of evolution, there were likely a lot of adaptive "loops"
 - Changes in one area set the stage for changes in another area ...

Studying evolution

- Evidence from fossils
 - knees, hips, backs, skulls all provide evidence about posture
 - teeth and jaws provide evidence about diet
- Evidence from archaeology
 - hominin fossils may be found in particular placess
 - associated with fossils from things that homining used to eat
 - or with tools

Back and forth evolution

- Many very early hominins (6 mya) had facial and dental features that were similar to later hominins (2 mya)
 - Less similar to chimpanzees
 - But also less similar to Australopiths (3 mya)
- Is this surprising?
 - **Answer:** Radiation and contraction
 - * <u>Answer:</u> The hominins we found may not be directly related to the Australopiths
 - **Answer:** Evolution is not goal-oriented
 - * **Answer:** Changing conditions can lead to changing directions of evolution

Hominin phylogenies

- Hominins had a large number of speciation and extinction events
 - Consistent with radiation and contraction
 - Likely provided more opportunities for adaptation in the long run
- The tree is not well understood, despite intensive study
 - **Answer:** Changing environments and convergent evolution

6 Sociality

Complex foraging

- A key part of human evolution was shaped by **complex foraging** strategies of our ancestors they relied on many types of food, including types of food that are difficult to get or process
- What adaptations likely favored this strategy?
 - <u>Answer</u>: Clever hands, upright walking
- What further adaptations might this strategy have favored?
 - **Answer:** Big brains
 - Answer: co-operation, including male-female co-operation
 - **Answer:** Social behaviour

Looping

- Lots of adaptations may be partly explained by adaptive loops
 - <u>Answer</u>: Complex foraging \implies more sociality \implies bigger brains \implies more opportunities to adapt complex foraging techniques . . .
 - <u>Answer:</u> More communication \implies more complex social interactions \implies bigger brains \implies more opportunities to evolve better communication or language

Complex foraging and co-operation

- Complex foraging may have promoted co-operation between females and males, since primate child care is not well suited to a hunting life style
- It may have promoted co-operation between people with different skills, since they might have access to food at different times
- It may have promoted co-operation among hunters, since hunting success is highly variable
- It may have promoted co-operation in teaching and learning

Complex foraging and thinking

- Complex foraging favors large brains that can learn a lot
- It also favors a long learning period
 - Sensitivity vs. crystallization
 - * Time periods when we learn, vs. time periods when we have fixed behaviours
- It also favors communication

Complex foraging and gender roles

- How might complex foraging affect child care and sexual dimorphism?
 - Answer: If males and females co-operate, then pair bonds might be more stable
 - Answer: If pair bonds are more stable, we expect sexual dimorphism to be less

Social behaviour

- As behaviour becomes more social, a wide variety of other adaptations may become available
 - Mostly related to thinking and communication
- Leading to more opportunities for looping:
 - Answer: Bigger brains may facilitate more food-gathering and survival strategies
 - **Answer:** Communication may favor co-operation

How social were early hominins? (not covered)

- What kind of clues might be available?
 - **Answer:** Sexual dimorphism
 - **Answer:** Physical structures consistent with vocal communication
 - Answer: Dental enamel! Preserves amazingly detailed history of growth and growth rate

Sexual dimorphism (not covered)

- The extent of sexual dimorphism tells us at least something about social structures
 - Answer: Large amounts of sexual dimorphism probably mean less sociality and co-operation
 - **Answer:** At least among adult males
- How do we know whose bones are male and female?
 - Answer: Pelvises (hip bones) are very different in all of our ancestors

- **Answer:** Because childbirth
- How do we know whose teeth are male and female?
 - **Answer:** We don't, usually
 - **Answer:** Bimodality can tell us about dimorphism anyway

Bimodality (not covered)

- Bimodality means having two peaks in a distribution
 - For example, a modern human height distribution would have a peak for men, and a peak for women
- If traits are strongly dimorphic, we should be able to tell by sampling, even if we don't know which fossils come from males and which from females

Teeth (not covered)

- Chimpanzees and (especially) gorillas have extreme sexual dimorphism in tooth size
- We can tell our ancestors have less dimorphism than that even if we can't tell the males from the females
 - Answer: We would expect to see two clear peaks in the distribution

Rate of development

- Why do human children develop so slowly?
 - **Answer:** Presumably related to elaborate sociality
- We are therefore very interested in how long it took our ancestors to mature
- Clues are available
 - Dental enamel
 - Molar development
- But it's a hard problem

Summary

- People evolved by the same basic rules as other organisms
 - **Answer:** Adaptation by natural selection
- Followed a very different path
 - Answer: Strong loops that continually created new adaptive opportunities
- There is a lot we can learn about ourselves from biology

- **Answer:** We are affected by all of the same basic processes as other organisms
- And also a lot that we can't learn
 - $\underline{\mathbf{Answer:}}$ We are also strongly affected by our complex brains (and complex cultures)