# Linear Algebra 2 Notes

paraphrased by Tyler Wright

An important note, these notes are absolutely **NOT** guaranteed to be correct, representative of the course, or rigorous. Any result of this is not the author's fault.

# 1 Groups, Rings, and Fields

#### 1.1 Definition of a Group

A group is a set G combined with a group operation  $\circ: G \times G \to G$  such that:

- For all g, h, j in G, g(hj) = (gh)j (associativity)
- There exists e in G such that eg = ge = g for all g in G
- For all g in G, there exists  $g^{-1}$  in G such that  $gg^{-1} = g^{-1}g = e$  where e is the identity of G.

#### 1.2 Definition of a Homomorphism

A homomorphism between two groups G, H is a function  $f: G \to H$  such that f(gh) = f(g)f(h) for all g, h in G.

### 1.3 Properties of Homomorphisms

We can derive some properties of homomorphisms, for G, H groups, and  $f: G \to H$  a homomorphism:

- The image of the identity in G is the identity in H
- $\bullet$  The kernel of f is a subgroup of G
- The image of f is a subgroup of H
- Bijective homomorphisms are isomorphisms.

### 1.4 Definition of a Ring

A ring with unity is a set R along with an addition map +, and a multiplication map  $\circ$  where  $+, \circ : R \times R \to R$  such that:

- (R, +) is an abelian group (of which the identity is called zero)
- The multiplication operation is associative
- The multiplication operation has a two-sided identity not equal to the zero identity (called one)
- For all a, b, c in R, a(b+c) = ab + ac and (a+b)c = ac + bc.

A ring is commutative if the multiplication operation is commutative.

### 1.5 Definition of a Subring

For the ring  $R = (R', +, \circ)$  and S a set, S is a subring of R if  $S \subseteq R'$  and  $(S, +, \circ)$  is a ring.

### 1.6 Definition of a Ring Homomorphism

For rings with unity R and S,  $f:R\to S$  is a ring homomorphism if for all a,b in R:

$$f(a+b) = f(a) + f(b)$$
$$f(ab) = f(a)f(b)$$
$$f(1_R) = 1_S$$

Essentially, this says that f is a homomorphism for the groups formed by R and S under addition and multiplication.

#### 1.7 Definition of a Field

A field  $\mathbb{F}$  is a ring with unity with the following properties:

•  $(\mathbb{F} \setminus \{0\}, \circ)$  is an abelian group.

#### 1.8 Definition of the Field Characteristic

For a field  $\mathbb{F}$ , the field characteristic char( $\mathbb{F}$ ) is the smallest positive integer n such that:

$$\sum_{i=1}^{n} 1 = 1 + 1 + \ldots + 1 = 0,$$

or zero if no such value n exists.

### 1.9 Definition of the Algebraic Closure of Fields

A field  $\mathbb{F}$  is called algebraically closed if all non-constant polynomials with coefficients in  $\mathbb{F}$  also has a root in  $\mathbb{F}$ .

# 2 Vector Spaces

### 2.1 Definition of a Vector Space

A vector space over a field  $\mathbb{F}$  is a set V with an addition operation  $+: V \times V \to V$  and a scalar multiplication operations  $\circ: \mathbb{F} \times V \to V$  such that for all a, b in  $\mathbb{F}$  and v, w in V:

- (V, +) is an abelian group
- $1 \circ v = v$  where 1 is the multiplicative identity of  $\mathbb{F}$
- $(ab) \circ v = a \circ (b \circ v)$
- $(a+b) \circ v = a \circ v + b \circ v$
- $a \circ (v + w) = a \circ v + a \circ w$ .

### 2.2 Definition of a Subspace

For V a vector space over the field  $\mathbb{F}$  and W a set, W is a subspace of V if it is a subset of V and is a vector space with respect to the addition and scalar multiplication defined by V.

It is sufficient to verify that for any a in  $\mathbb{F}$  and v, w in W we have that a(v+w) is in W.

#### 2.3 Definition of a Linear Combination

For a set V with addition operation +, a field  $\mathbb{F}$  and n in  $\mathbb{N}$ , a linear combination of  $v_1, \ldots, v_n$  in V is:

$$\sum_{i=1}^{n} a_i v_i,$$

for  $a_1, \ldots, a_n$  in  $\mathbb{F}$ .

# 2.4 Definition of the Span

For a set V with addition operation + and a field  $\mathbb{F}$ , the span of  $W \subseteq V$  is the set of all the linear combinations of the values in W. Denoted by span(W).

### 2.5 Definition of Linear Independence

For a vector space V and  $W \subseteq V$ , we say W is linearly dependent if there exists a non-trivial linear combination of all the vectors in W equal to zero (and linearly independent otherwise).

#### 2.6 Properties of Linear Independence

For a vector space V with  $W \subseteq V$ :

- $0 \in W \Rightarrow W$  is linearly independent
- W linearly independent  $\Rightarrow$  any  $X \subseteq W$  is linearly independent
- If there's a linearly dependent subset of W, then W is linearly dependent.

#### 2.7 Definition of a Basis

For a vector space V with  $W \subseteq V$ , if W is linearly independent and  $\operatorname{span}(W) = V$ , we say that W is a basis of V.

Saying W is a basis is equivalent to saying that each vector in V can be **uniquely** written as a linear combination of vectors in W.

Additionally, for finite vector spaces, we have that all bases have the same amount of elements.

#### 2.8 Definition of Dimension

For non-infinite bases, we say that the value of the basis is the dimension of the vector space it is a member of. Vector spaces with such bases are called finite-dimensional and all other vector spaces are infinite-dimensional.

By convention, for a vector space V,  $\dim(\{0_V\}) = 0$ .

#### 2.9 Isomorphisms from Dimension

For V, W finite-dimensional vector spaces over  $\mathbb{F}$  with  $\dim(V) = \dim(W)$ , then  $V \cong W$ .

If we set  $n = \dim(V)$ , we have that  $V \cong \mathbb{F}^n$ .

Such an isomorphism can be found by mapping a vector in terms of some chosen basis vectors ( $v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$ ) to the coefficients  $(a_1, a_2, \ldots, a_n)$ .

# 3 Linear Maps

#### 3.1 Definition of a Linear Map

Let V, W be vector spaces over a field  $\mathbb{F}$ , we have that  $f: V \to W$  is a linear map if for all a, b in  $\mathbb{F}$  and u, v in V:

$$f(au + bv) = af(u) + bf(v).$$

A bijective linear map is called an isomorphism. If  $f: V \to W$  is an isomorphism, we say that V and W are isomorphic, denoted by  $V \cong W$ .

### 3.2 The Kernel of Linear Maps

Let V, W be vector spaces over a field  $\mathbb{F}$ , and  $f: V \to W$  be a linear map. We define the kernel of f as:

$$Ker(f) = \{ v \in V : f(v) = 0_{\mathbb{F}} \}.$$

Saying Ker(f) is  $\{0_{\mathbb{F}}\}$  is equivalent to saying f is injective.

# 3.3 The Image of Linear Maps

Let V, W be vector spaces over a field  $\mathbb{F}$ , and  $f: V \to W$  be a linear map. We define the image of f as:

$$\operatorname{Im}(f) = \{ w \in W : \exists v \in V \text{ with } f(v) = w \}.$$

Saying Im(f) is W is equivalent to saying f is surjective.

### 3.4 The Inverse of Linear Maps

For a bijective linear map f, the inverse of f is also linear.

#### 3.5 Properties of the Set of Linear Maps

For V, W vector spaces over a field  $\mathbb{F}$ , we define  $\mathcal{L}(V, W)$  to be the set of all linear maps from V to W.

### 3.6 The Rank-Nullity Theorem

For V, W finite-dimensional vector spaces and  $f: V \to W$  a linear map, we have that:

$$\dim(V) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)).$$

Thus, for a linear map  $f:V\to V$ , if f is injective or surjective then it's an isomorphism.

#### 4 Matrices

#### 4.1 Definition of a Matrix

For m, n in  $\mathbb{Z}_{>0}$  and  $\mathbb{F}$  a field. An  $m \times n$  matrix with entries in  $\mathbb{F}$  is a map M:  $[m] \times [n] \to \mathbb{F}$ , more commonly written as  $M = (a_{ij})$  representing the rectangular array of values held by M.

The set of all  $m \times n$  matrices over  $\mathbb{F}$  is denoted by  $M_{m \times n}(\mathbb{F})$ .

# 4.2 Types of Matrix

For m, n in  $\mathbb{Z}_{>0}$  and  $\mathbb{F}$  a field, let M be in  $M_{m\times n}(\mathbb{F})$ . We have the following types of matrix:

• Square: where m = n

• Upper Triangular: if  $a_{ij} = 0$  for i > j

• Lower Triangular: if  $a_{ij} = 0$  for i < j

• **Diagonal**: if  $a_{ij} = 0$  for  $i \neq j$ 

• Symmetric: if  $a_{ij} = a_{ji}$ 

• Anti-symmetric: if  $a_{ij} = -a_{ji}$ .

### 4.3 Properties of the Space of Matrices

For m, n in  $\mathbb{Z}_{>0}$  and  $\mathbb{F}$  a field, we have that  $M_{m \times n}(\mathbb{F})$  is a vector space over  $\mathbb{F}$  where matrices are added and multiplied by scalars component-wise. So, for  $M_1 = (a_{ij}), M_2 = (b_{ij})$  in  $M_{m \times n}$  and c in  $\mathbb{F}$  we have:

$$cM_1 = (ca_{ij})$$
  
 $M_1 + M_2 = (a_{ij} + b_{ij}).$ 

Additionally, the zero vector is  $M_0 = (0)$  and the vector space has a basis consisting of  $M_{ij}$  where all entries are zero except the  $(i, j)^{\text{th}}$  entry. This leads to the conclusion that the dimension is mn and thus that  $M_{m \times n} \cong \mathbb{F}^{mn}$ .

### 4.4 Matrix Multiplication

For a, b, c in  $\mathbb{Z}_{>0}$  and a field  $\mathbb{F}$ , we can define the multiplication of the two matrices  $X = (x_{ij})$  in  $M_{a \times b}$  and  $Y = (y_{ij})$  in  $M_{b \times c}$  as follows:

$$XY = (\sum_{k=1}^{b} x_{ik} y_{kj}).$$

This operation is not commutative in general but is associative.

For A, B in  $M_n$ , we have that AB is also in  $M_n$ . This, along with matrix addition, makes  $M_n$  a ring with unity with multiplicative identity  $I_n = (\delta_{ij})$ . However, there exists A, B in  $M_n$  such that AB = 0 so,  $M_n$  is not a field.

# 4.5 Matrices of Linear Maps

For V, W vector spaces over a field  $\mathbb{F}$ , for some m, n in  $\mathbb{Z}_{>0}$  we have  $A = \{v_1, \ldots, v_n\}$ ,  $B = \{w_1, \ldots, w_n\}$  bases for V and W respectively. Given f in  $\mathcal{L}(V, W)$ , the matrix associated to f (with respect to the bases A and B) is the  $m \times n$  matrix:

$$M_{BA}(f) = (a_{ij}),$$

where we define  $a_{ij}$  by:

$$f(v_j) = \sum_{i=1}^m a_{ij} w_i,$$

for each j in [n].

#### 4.6 Matrices of Composed Linear Maps

For U, V, W vector spaces over a field  $\mathbb{F}$ , for some l, m, n in  $\mathbb{Z}_{>0}$  we have  $A = \{u_1, \ldots, u_n\}$ ,  $B = \{v_1, \ldots, v_n\}$ ,  $C = \{w_1, \ldots, w_n\}$  bases for U, V, W respectively. Given g, f in  $\mathcal{L}(V, W)$ , we have:

$$M_{CA}(g \circ f) = M_{CB}(g)M_{BA}(f).$$

#### 4.7 Transition Matrices

For a finite-dimensional vector space V, with an identity I and bases A, A', we call  $M_{A'A}(I) = C_{A'A}$  a transition matrix.

We have that  $C_{A'A}$  is invertible and  $C_{A'A}^{-1} = C_{AA'}$ .

Essentially, the transition matrix transforms between bases.

#### 4.8 Matrix Transitions

For a finite-dimensional vector space V, with  $f:V\to V$  a linear operator, and bases A,B:

$$M_{BB}(f) = C_{AB}^{-1} M_{AA}(f) C_{AB}$$
$$= C_{BA} M_{AA}(f) C_{AB}.$$

#### 4.9 Similar Matrices

For matrices A', A, we say that A' and A are similar if there exists an invertible matrix C such that:

$$A' = C^{-1}AC.$$

This is denoted by  $A' \sim A$ . Similarity forms an equivalence relation on the space of square matrices.

If we have  $A \sim A'$  and A represents some linear operator f for some basis B, then we have that for some basis B', f has matrix A'.

# 5 Eigenvectors and Eigenvalues

#### 5.1 Definition of an Eigenvectors and Eigenvalues

For a vector space V over  $\mathbb{F}$  with  $f: V \to V$  a linear operator, a non-zero vector v in V is an eigenvector if  $f(v) = \lambda v$  for some  $\lambda$  in  $\mathbb{F}$  which is called the eigenvalue corresponding to v.

### 5.2 Definition of an Eigenspace

For a vector space V over  $\mathbb{F}$  with  $f:V\to V$  a linear operator and some eigenvalue  $\lambda$ , we define the eigenspace of  $\lambda$  as the set of eigenvectors with eigenvalue  $\lambda$ .

This is denoted by  $E(\lambda)$  and  $E(\lambda) \cup \{0_V\}$  forms a subspace of V. The dimension of  $E(\lambda)$  is the geometric multiplicity of  $\lambda$ .

# 6 Direct Sums and Projections

#### 6.1 Definition of a Direct Sum

For V, W vector spaces, we define the direct product of V and W as:

$$V \oplus W = \{(v, w) : v \in V, w \in W\},\$$

with addition and scalar multiplication defined coordinate-wise and zero vector  $(0_V, 0_W)$ .

# 6.2 The Equivalence of Direct Sums

For  $V, W \subseteq U$ , we have that the following are equivalent:

- $U = V \oplus W$
- ullet Each element in U can be written uniquely as the sum of elements in V and W
- The map  $f: V \oplus W \to U$ ;  $(v, w) \mapsto v + w$  is isomorphism.

### 6.3 The Addition Map for Direct Sums

For V, W subspaces of a vector space U, and  $f: V \oplus W \to U$  defined by:

$$f((v, w)) = v + w,$$

we have that:

- $\bullet$  f is linear
- f is injective if and only if  $V \cap W = \{0\}$
- f is surjective if and only if  $V \cup W$  spans U.

### 6.4 Projections

For V, W subspaces of U with  $U = V \oplus W$ , the projection **onto** V along W is the linear operator  $P_{V,W}: U \to U$  where:

$$P_{V,W}(u) = v,$$

where u = v + w for some unique v in V and w in W.

We have that for a linear operator P, P is a projection if and only if  $P \circ P = P$ .

#### 6.5 f-invariance

For a vector space V with  $U \subseteq V$  a subspace and  $f: U \to U$  a linear operator, we have that U is f-invariant if for all u in U we have f(u) in U.

The eigenspaces of f are examples of f-invariant spaces.

# 6.6 Matrices of Linear Maps (using f-invariance)

For  $U, W \subseteq V$  subspaces of the vector space V such that  $V = U \oplus W$ , let  $B_U, B_W$  be finite bases of U and V respectively. If we have a linear operator  $f: V \to V$  such that U and W are f-invariant, we have that the matrix with respect to the basis  $B = B_U \cup B_W$  of f has the following block form:

$$M_{BB}(f) = \begin{pmatrix} M_{B_V B_V}(f) & 0\\ 0 & M_{B_W B_W}(f) \end{pmatrix}.$$

# 7 Quotient Spaces

### 7.1 Definition of a Quotient Space

For a vector space V with  $W \subseteq V$  a subspace. We define an equivalence relation on V by declaring:

$$v_1 \sim v_2 \text{ if } v_1 - v_2 \in W.$$

The set of equivalence classes is called the quotient of V by W and is denoted by V/W. For some v in V, we denote the class containing v by v+W (similarly to cosets in Introduction to Group Theory). So, we have:

$$V/W = \{v + W : v \in V\},\$$

with addition and multiplication defined for  $v_1, v_2$  in V and a in the field:

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$
  
 $a(v_1 + W) = av_1 + W.$ 

#### 7.2 Linear Map to the Quotient Space

For a vector space V with  $W \subseteq V$  a subspace, we can define  $\pi : V \to V/W$  for some v in V by f(v) = v + W. We have that  $\pi$  is linear and its kernel is W.

### 7.3 Isomorphisms formed by Linear Maps

For V,W vector spaces and  $f:V\to W$  a linear map, we have an isomorphism  $\mathrm{Im}(f)\cong V/\mathrm{Ker}(f).$ 

### 7.4 Existence of a Linear Operator on the Quotient Space

For a vector space V with  $W \subseteq V$  a subspace and a linear operator  $f: V \to V$ , there exists a well-defined operator  $\bar{f}: V/W \to V/W$  if and only if W if f-invariant. We call this the induced operator on V/W.

### 7.5 Matrices formed using Quotient Spaces

Consider a finite-dimension vector space V and  $f: V \to V$  a linear operator with W an f-invariant subspace of V. If we have  $B_W$  a basis for W, that we extend to a basis B of V and set A:

$$A = \{v + W : v \in B \setminus B_W\},\$$

a basis of V/W and we can form a matrix in block form:

$$M_{BB}(f) = \begin{pmatrix} M_{B_W B_W}(f) & * \\ 0 & M_{AA}(\bar{f}) \end{pmatrix},$$

where  $\bar{f}$  is the induced operator on V/W and \* marks the area of the matrix which we cannot determine.

# 8 Dual Spaces

#### 8.1 Definition of a Dual Space

For V a vector space over  $\mathbb{F}$ , we have that the dual space  $V^*$  is  $\mathcal{L}(V,\mathbb{F})$ , the set of linear maps from V to  $\mathbb{F}$ . We have that addition and scalar multiplication are defined for some v in V, f, g in  $V^*$ , and a in  $\mathbb{F}$ :

$$(f+g)(v) = f(v) + g(v),$$
  

$$(af)(v) = af(v).$$

#### 8.2 Definition of a Dual Basis

For V a finite-dimensional vector space over  $\mathbb{F}$ , with  $\dim(v) = n$  and a basis  $B = \{v_1, \ldots, v_n\}$ . We define the dual basis  $B^* = \{v_1^*, \ldots, v_n^*\}$  by defining  $v_i^* : V \to \mathbb{F}$  as the unique linear map such that:

$$v_i^*(v_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

Equivalently, for v in V, we have that there's unique  $(a_1, \ldots, a_n)$  in  $\mathbb{F}$  such that:

$$v = \sum_{i=1}^{n} a_i v_i,$$

so we let  $v_i$  be such that:

$$v_i^*(v) = v_i^* \left(\sum_{j=1}^n a_j v_j\right) = \sum_{j=1}^n a_j v_i^*(v_j).$$

We have that  $B^*$  is a basis for  $V^*$ . Additionally, we have that V and  $V^*$  are isomorphic by the isomorphism mapping  $v_i$  to  $v_i^*$ .

#### 8.3 Definition of the Annihilator

For V a vector space over  $\mathbb{F}$  with  $S \subseteq V$ , the annihilator of S is the subspace  $S^0$  of  $V^*$  where for f in  $S^0$ ,  $S \subseteq \text{Ker}(f)$  (or rather, for all s in S, f(s) = 0).

#### 8.4 Properties of the Annihilator

For V a vector space with  $U, W \subseteq V$  subspaces, we have that:

- $\bullet \ (U+W)^0 = U^0 \cap W^0$
- $U \subseteq W \Rightarrow W^0 \subseteq U^0$ ,

and for V finite-dimensional,

- $\bullet \ (U \cap W)^0 = W^0 + U^0$
- $\dim(W) + \dim(W^0) = \dim(V)$ .

# 8.5 Isomorphism to the Double Dual Space

For V a finite-dimensional vector space over  $\mathbb{F}$ , we have  $F: V \to V^{**}$ . That is:

$$V^{**} = \mathcal{L}(V^*, \mathbb{F}) = \mathcal{L}(\mathcal{L}(V, \mathbb{F}), \mathbb{F}),$$

so for some v in V we have:

$$F(v): V^* \to \mathbb{F}.$$

We define F for some f in  $V^*$  as follows:

$$F(v)(f) = f(v).$$

We have that F is an isomorphism.

### 8.6 Definition of the Transpose

For V, W vector spaces with  $f: V \to W$  a linear map. We define the transpose as  $f^t: W^* \to V^*$  where for g in  $W^*$ , v in V:

$$f^t(g) = (g \circ f).$$

So, for some v in V:

$$f^t(g)(v) = (g \circ f)(v) = g(f(v)).$$

### 8.7 The Transpose and Matrices

If we have V, W finite-dimensional vector spaces over  $\mathbb{F}$  with bases  $A = \{v_1, \ldots, v_n\}$ ,  $B = \{w_1, \ldots, w_m\}$  and corresponding dual bases  $A^* = \{v_1^*, \ldots, v_n^*\}$ ,  $B^* = \{w_1^*, \ldots, w_m^*\}$  respectively, we have that for some linear map  $f: V \to W$ , and  $f^t: W^* \to V^*$  the transpose map:

$$M_{BA}(f) = \left(M_{A^*B^*}(f^t)\right)^t.$$

That is, for a given map, the matrix of transpose map is itself the matrix transpose of the matrix of the map.