ЦИФРОВАЯ ТРАНСФОРМАЦИЯ ЭКОНОМИКИ и БЛОКЧЕЙН

СВИРИДЕНКО Д.И., д.ф.-м.н., (ИМ СО РАН, НГУ, Айлайн Технологии)

-что происходит?

4-я Технологическая революция:

- . . .
- Цифровая трансформация бизнеса, включая такие направления, как:
 - a. Big&Stream Data
- **b.** Искусственный Интеллект (моделирование знаний, обнаружение знаний, распознавание образов, машинное обучение, в т.ч. глубокое обучение (deep lerning), ...)
 - с. Системы распределенного реестра (в т.ч. блокчейн)
 - d. Smart контракты
 - е. Интернет вещей
 - f. Экономика длинного хвоста (Web 2.0),
 - g. Квантовые вычисления, ...

	Возможности новых технологий	Риски внедрения
	Прорыв в ИИ, Интернете вещей, финтехе, анализе	Навязывание и заимствование западных технологий,
	больших данных, информационной безопасности	деградация собственных компетенций
	Новые функции, возможности общения, ускорение	Новые уязвимости, закладки, слежка, утечки
	коммуникаций и платежей, новый уровень комфорта	персональных данных, потеря тайны личной жизни
	Новые рынки, новые бизнес-модели, новые большие	Риск быстрого захвата новых рынков
	компании, новые массовые сервисы и информационные	транснациональными компаниями
	услуги	
	Рост производительности труда, рост эффективности,	Потеря рабочих мест, безработица, социальная
	внедрение ИИ, автоматизация, роботизация	напряжённость, возникновение слоя тунеядцев
	«Экономика обмена», исчезновение посредников,	Юридическая неопределённость, этические проблемы,
	повышение скорости и стандартизации услуг, уберизация	рост мошенничеств, снижение качества и ответствен-
	медицины, образования, транспорта, сферы услуг	ности, «роботизация» людей, рост социального
		отчуждения
	Большие данные, анализ персональных данных,	Исчезновение приватности, навязчивая реклама, новый
	электронная идентификация и аутентификация личности,	цифровой тоталитаризм, утечка персональных данных
	электронный двойник гражданина	граждан за границу к мощным иностранным игрокам.
	Инвестиции, стартапы, новые деньги, новые индустрии,	Захват экономики более сильными и богатыми
	«перелицовка» традиционных индустрий	иностранными игроками. Внешнее управление
١		экономикой.
	Итог: новый технологический уклад, новая	Итог: новая стадия Цифровой колонизации. новая
ш		цифровая экономика принадлежит не нам,
V		управляется извне, служит чужим интересам, а не
	государственного управления	Российской Федерации

Что делать? Не поддаваться магии чужих новых технологий! Развивать свои подходы и технологии

В ОБЛАСТИ НОВЫХ ТЕХНОЛОГИЙ:

- **Большие данные:** использовать только свои продукты на основе собственной научной базы; использовать и хранить БД только на территории РФ, по утверждённым в РФ регламентам
- Искусственный интеллект: развивать ИИ на основе собственных научных школ, использовать только свои технологии и продукты, заказывать разработки в области ИИ преимущественно отечественным институтам, университетам и компаниям.
- Интернет вещей, промышленный Интернет, радиометки RFID: использовать отечественные разработки и своих разработчиков, собственные технологии, протоколы, регламенты и стандарты; прекратить бездумную инфильтрацию и диффузию в страну чужих устройств, соединённых с Интернетом, нужно проверять и «стерилизовать» импортные устройства и технологии Интернета вещей.
- ▶ Распределенные реестры (блокчейн): удерживать лидирующие позиции в мире, серьёзно изучать применимость этой технологии в области финансов и госуправления, использовать отечественные распределенные реестры с российской криптографией, никаких глобальных реестров с внешним управлением.
- **Криптовалюты:** создавать собственные валюты и биржи, шлюзы во внешний рынок, соблюдая крайняя осторожность, поскольку нельзя допустить оборота чужих валют с неконтролируемой эмиссией, оборотом и курсом.

■ В ОБЛАСТИ ЗАКОНОДАТЕЛЬСТВА:

- Опережающее законодательство, упреждающее возникновение проблем и рисков
- «Законодательные песочницы» определить отрасли и регионы, где разрешить развитие новых технологий без немедленной правовой ответственности
- Быстрое реагирование и настройка законодательства
- ► Национальная ориентация законодательства с целью поддержки импортозамещения и цифрового суверенитета.
- Защита граждан и частной жизни прямой запрет выкачивания больших данных о гражданах, обществе, экономике и государстве за рубеж.

ПРОБЛЕМЫ ЦИФРОВИЗАЦИИ:

- а. Проблема неструктурированных и слабоструктурированных данных
- b. Системы глубокого обучения представляют собой фактически «черный ящик», которые могут *ошибаться*, поэтому их нельзя применять в наиболее ответственных областях (оборона, медицина, финансы, логистика, юриспруденция, ...)
- b. В системах ИИ нет «творческого воображения» и нет адекватных моделей вероятностного прогнозирования.
- с. В ИИ нет понятия «задача» и методов ее постановки, а, значит, и нет методологии решения
- d. Методы машинного обучения только *аппроксимируют* данные, но не могут *обнаруживать знания*

ВЫВОД: Существующие подходы не способны полностью удовлетворить ожидания бизнеса от цифровизации

Цифровая трансформация – что это?

- Цифровизация как процесс глубокого проникновения идеи создания и использования *ЦИфровых моделей* в экономическую практику; при этом, речь идет не о решении отдельных экономических задач с помощью цифровизации, а о создании как сейчас модно говорить ЭКОСИСМЕМ.
- **Цифровая экономика** как результат повсеместной оцифровки процессов, что позволяет все более эффективно решать, комплексные и масштабные экономические *задачи*, например, оптимально управлять активами с помощью *цифровых моделей*.
- Следствие: Речь идет об использовании Цифровых моделей при решении экономических задач, что заставляет акцентировать внимание на умении моделировать.

вопросы:

- **ЧТО ТАКОЕ ЗАДАЧА?**
- **ОТКУДА БЕРУТСЯ ЗАДАЧИ?**
- **►КАК РЕШАТЬ ЗДАЧИ?**
- ►ГДЕ ИСКАТЬ ИДЕИ РЕШЕНИЯ ЗАДАЧ?
- **ЧТО ТАКОЕ МОДЕЛЬ?**
- **КАКИЕ НУЖНЫ МОДЕЛИ?**

$3A\Delta AYA =$

семантическая/информационная МОДЕЛЬ предметной области, исходные данные, цель, критерий решения задачи

ПРОЦЕСС ФОРМУЛИРОВКИ ЗАДАЧИ

<u>ОНТОЛОГИЯ И КОНТЕКСТ ЗАДАЧИ</u>

ЯЗЫК задачи? - термины, понятия, определения, их связи,... предварительная формулировка задачи

Контекстный Оператор ПОЧЕМУ? – Причины и история возникновения задачи

ЗАЧЕМ? — Цель решения и последствия решения задачи

НАДЗАДАЧА? – Частью какой задачи (надзадачи) является наша задача?

ПОДЗАДАЧИ? – Из каких частей (подзадач) состоит наша задача?

Формулировка_ ЗАДАЧИ **ЧТО 1?** – Точная формулировка задачи = < исходные данные, цель>

ЧТО 2? - Критерий приемлемости решения задачи

ПРОЦЕСС РЕШЕНИЕ ЗАДАЧИ

КАК? – Идея, Концепция, а затем и Алгоритм/Технология решения задачи

КЕМ? ЧЕМ? СКОЛЬКО? – Требуемые ресурсы

ГДЕ?, КОГДА?, ... – Локация, время, ...

Формула идеальности решения задачи

$$M(S) = \frac{\Sigma F}{\Sigma \Phi(P, V, L, T, E, \$, Q, H)}$$

F – полезные функции системы, нужные потребителю;

Ф – функции затрат;

Р – вес технической системы;

V – объём технической системы;

L – характерные размеры технической системы;

Т – затраты времени (хранение, транспортировка, переналадка, ремонт и пр.);

Е – энергопотребление;

\$ — стоимость;

Q- % брака;

Н – вредные функции (выбросы, отходы, загрязнения и т.д.)

ПОИСК ИДЕЙ РЕШЕНИЯ ЗАДАЧИ

16

Фантастика

Открытия, прорывные изобретения

Тренды развития

Бенчмаркинг

Производственная необходимость

Бесплатный ресурс

Потребность

Что раздражает

Найти идеи

Исходная семантическая модель

- Явное описание объектов и связей между ними
- Декларативная ("что" вместо "как")
- Математически строгая семантика
- Напрямую доступна средствам ИИ

Данные и знания модели

- Явно: Анна работает в школе № 130
- Неявно: Супруга Петра работает в школе №130
- **Неявно**: У Анны и Петра есть общие дети
- **Неявно**: Есть супруги, работающие в учебных заведениях, заключивших договор о сотрудничестве

Данные и знания модели

СУПРУГ

• Явно: Анна работает в

Знания включают:

- Данные непосредственно доступны из описания
- **Неявную информацию** получаемую **логическими рассуждениями**
- Неявную информацию могут извлекать как **люди**, так и автоматические **средства ИИ**

СОТРУДНИЧЕСТВЕ

заведениях, заключивших договор о сотрудничестве

Данные и знания модели

СУПРУГ

• Явно: Анна работает в

Примеры моделей:

- Модель умного города
- Модель озера Байкал (содержит междисциплинарные научные данные об озере)
- Модель естественного языка (используется системами-переводчиками)
- Бизнес-модель **предприятия** (содержит декларативные описания бизнес-процессов)
- Диагностическая модель заболевания (автоматизация диагностики)

СОТРУДНИЧЕСТВЕ

заведениях, заключивших договор о сотрудничестве

ПОЧЕМУ ЦИФРОВИЗАЦИЯ, А НЕ ИНФОРМАТИЗАЦИЯ?

"Информатизация"

"Цифровизация"

дает средства, улучшающие и поддерживающие традиционные приемы решении <u>отдельных</u> задач

задает инновационные и креативные модели, создаваемые в единой технологической среде (экосистеме) для решения классов задач

Информатизация бизнеса

Единая модель бизнеса — цельная система взаимодействующих бизнес-процессов

Информатизация бизнеса

Структурированная модель бизнеса — цельная модель, структурированная по семантическим компонентам

Информатизация бизнеса

WORKFLOW

Бизнес-модель «Бюджет и планирование» Бизнес-модель «Управление ресурсами»

Бизнес-модель «Управление контрактами»

Бизнес-модель «Управление кадрами»

Бизнес-модель «Управление клиентами»

программирование

Проблемы "запрограммированной" модели

1. «Растворение» модели в программном коде и БД

2. "Лоботомия": слабое взаимодействие подсистем

1. «Растворение» модели

- В коде семантика модели исчезает ("что" заменяется на "как")
- В БД семантика модели разлагается на множество таблиц
- Модель становится неявной и намертво связанной с кодом

2. «Лоботомия»

- Слабое взаимодействие подсистем
- Проблемы межкомпонентного импорта
- Ограничение возможностей автоматизации

«ЛОБОТОМИЯ»: ВДОЛЬ И ПОПерек

ПОСЛЕДСТВИЯ

Ослабление контроля

- Возможны только явно запрограммированные инструменты контроля и аналитики
- ▶ Необходимы дополнительные ВІ-системы для бизнес-аналитики

Отсутствие гибкости

- Ограниченная гибкость и модифицируемость
- Высокая цена перестройки модели

Тяжелое внедрение

- Необходимость «ломать» бизнес-модели предприятия под модели ІТ-системы
- Проблема взаимодействия IT-систем друг с другом
- Проблема переподготовки

Трудность роботизации

- Поскольку модели растворены в коде и БД, то они недоступны для управленческих роботов
- ▶ Разрыв единой "бизнес-ткани« по нескольким ІТ-системам

«ЛОБОТОМИЯ»: ВДОЛЬ И ПОПерек

• Информатизация – «враг» цифровизации

Семантическое моделирование

исходные положения:

- Методологическую основу семантического моделирования составляет задачный подход, теоретической базой является математическая логика (теория нумераций, теория вычислимых моделей, формульная определимость вычислений, вычисление как проверка истинности на вычислимой модели), теория вероятностей и другие разделы математики.
- Решение бизнес-задач осуществляется в рамках и терминах релевантной предметной области.
- Описание предметной области и постановка задачи осуществляется в
 декларативном виде в виде некоторой логико-вероятностной системы. Подобное
 формальное декларативное описание предметной области и запросов к ней носит
 название семантической модели.
- Семантическая модель предметной области должна быть исполняемой, т.е. должна существовать возможность интерпретации логико-вероятностных модельных конструкций как вычислительных процедур.
- Процесс моделирования предметной области в виде семантической модели представляет собой процесс проектирования информационной модели, представляющей данную предметную область. Данный процесс протекает в определенной технологической среде, основным элементом которой является технологическая платформа (bSystem + DISCOVERY).

Семантическое моделирование

Бизнес-модель «Бюджет и планирование» Бизнес-модель «Управление ресурсами» Бизнес-модель «Управление контрактами»

Бизнес-модель «Управление кадрами»

Бизнес-модель «Управление клиентами»

ИСПОЛНЯЕМАЯ МОДЕЛЬ ПРЕДПРИЯТИЯ

Ничего не делаем: сама модель исполняемая

ПЕРВИЧНАЯ МОДЕЛЬ

Программируем модель, рассыпая ее на код и базу данных

СЕМАНТИЧЕСКАЯ МОДЕЛЬ

Обычная практика

Семантика на выходе

Обычная практика

Модель (база знаний)

Восстановленные структуры данных

- Конвертор в базы данных
 - Конвертор в текстовые форматы

Семантически разрушенные данные

Медицинские

данные

"Болото" неструктурированных данных

- Обработчик больших данных
 - Восстановитель семантики

Семантика на входе

ЧТО ТАКОЕ ИСПОЛНЯЕМАЯ МОДЕЛЬ?

- Нужна метафора! (от др.греч. μεταφορά — «переносное значение»)
- Документ всем понятная в бизнесе метафора "единицы данных"
- Исполняемая модель строится средствами платформы bSYSTEM как сеть документов

Документная модель

Структура документа

Δοκ. «(CΚΛΑΔ)»

Название: Склад №5

Завсклад: Иванова О.И.

Хранение:

МОРКОВЬ	100
ΛУК	50
•••	

Статус: Действующий

Документ имеет

- форму
- набор полей (параметров) с
 - данными,
 - аудио, видео,
 - ссылками на другие документы,
 - кодом на Librettino
- статус ("документооборот")
- код проводок на Librettino

ОЧЕНЬ ПОНЯТНАЯ СТРУКТУРА ДЛЯ ЛЮДЕЙ

НА САМОМ ДЕЛЕ – ЛОГИЧЕСКАЯ ФОРМУЛА

Документ как оборотень

Для хранилища данных – обычный **объект**

Для людей – обычный документ

Запись в блокчейне как умный контракт

Классифицирует другие документы – как **аналитика**

Инструмент для ИИ и **роботов**

Описывает операции – как **транзакция**

Имеет строгое описание – как логическая формула

Элемент семантической модели – как узел сети

Документная модель как своеобразная "грибница

"Грибы" – рабочие места

СВОЙСТВА ДОКУМЕНТНОЙ МОДЕЛИ

- Документная модель это сеть взаимосвязанных документов
- Документные модели являются декларативными и исполняемыми
- Документы могут исполнять в модели следующие роли:
 - Объект
 - Признак
 - Операция
 - Агрегатор (BI)
- Документы-операции привязываются к статусу документа
- Проводка документа это его переход в новый статус с исполнением кода
- Запросы в документных моделях пишутся в языке Librettino, который имеет строгую логико-математическую семантику; в этом языке формируются корректные и проверяемые умные контракты

Нейронные сети

- Много успешных приложений
- Обучение через «натаскивание»
- Изолированность от знаний
- Невозможность обоснования решения никто не знает, как нейронная сеть приходит к своим решениям (эффект "Черного ящика").
- *Нестабильность* непредсказуемое поведение в нестандартных ситуациях.

ВЫВОД: Нам не подходят!

Машинное обучение документной модели

Семантический вывод vs нейронные сети

Этапы построения цифровой модели

- 1. Проектируются базовые документы объектов, аналитик, операций
- 2. «Примешиваются» нужные модели(«пластилиновое» моделирование)
- 3. Проектируются документы-агрегаторы
 - 4. Формируются умные контракты
 - 5. Надстраиваются методы ИИ (машинное обучение, управляющие роботы)

Шаги цифровизации бизнеса

Построение модели:

"пластилиновое" моделирование *as-it-is*

Погружение компонент

в семантическую модель («тихой сапой»)

Преображение бизнеса

(as-must-be) через модернизацию модели

Моделирование vs программирование

	Программирование	Моделирование
Модель	Неявная, расчлененная	Явная, цельная
Эластичность	Перепрограммирование	Корректировка модели
Интеграция	Перепрограммирование	Смешение моделей
Внедрение	Большой кровью	Тихой сапой
Код и данные	Раздельная обработка	Единая среда
Разработчик	Модельер + Программист	Модельер

ДОКУМЕНТНАЯ МОДЕЛЬ – ЧТО НОВОГО?

- Сохранение семантики в потоке данных (резкое сокращение неструктурированных данных)
- Семантика на входе, а не на выходе
- Операции, управляемые моделью вместо БД управляемой кодом
- Пара (код+БД) заменяется на исполнимую декларативеую модель
- Сочетание операционного управления и ВІ
- Исполнимая декларативная модель прямой инструмент для ИИ и роботов
- Децентрализация управления взаимодействием контрагентов (в сочетании с блокчейном)
- Принципиальное сокращение издержек на разработку и поддержку

DSYSTEM + DISCOVERY

- Представляют собой единую технологическую платформу цифровизации бизнеса и иной деятельности
- Базируются на концепции семантического моделирования и средствах ИИ нового поколения
- Интегрируют средства оперативного управления и средства Business Intelligence
- Реализуют идею машинного обучения и семантического вывода

СЕМАНТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

 сохранение знаний (семантики) в процессе проектирования декларативных исполняемых моделей предметных областей

- процесс решения бизнес-задачи базируется на принципе «правильная постановка задачи и есть ее решение» и представляет собой обработку декларативного запроса к исполняемой модели соответствующей предметной области
- СЕМАНТИЧЕСКОЕ МОДЕЛИРОВАНИЕ как новое поколение инструментария ИИ:
 - 1. МЕТОДОЛОГИЯ
 - 2. ТЕОРИЯ
 - 3. ТЕХНОЛОГИЯ
 - 4. ПРАКТИКА

Методологические аспекты семантического подхода к цифровизации бизнеса:

- Что такое бизнес-задача? Откуда берутся бизнес-задачи? Чем отличается творческая задача от просто задачи? Принцип и формула идеальности
- Как человек решает бизнес-задачи?
- Методы формализации бизнес-задач. Дискретная математика и бизнес-задачи
- Исполнимые семантические модели, сложность исполнимости
- Процесс решения задачи: потребности --> действия --> принципы/алгоритмы действия --> исполняемая модель + запрос к модели
- Формальные, языковые и технологические средства семантического моделирования
- Вероятностное прогнозирование достижения решения задачи
- **Время, вероятность, оракулы**
- **Документные модели как основной инструмент решения задач в бизнесе**
- Блокчейн, «умные» сделки, «умные контракты, «умные» облигации, криптовалюта в семантическом моделировании
- Проблема верификации документных моделей как проблема соответствия полученного решения исходному критерию решения задачи

Теоретические аспекты семантического подхода к цифровизации бизнеса:

- Теория нумераций, вычислимые модели, формульная определимость и вычислимость, обобщенная вычислимость
- Формальные средства описания предметных областей, бизнес-задач и процесса их решения; логика, вероятность, время, оракулы, ...
- Вычислительная сложность логико-вероятностных представлений предметных областей и бизнес-задач
- Системы обнаружения знаний вместо систем аппроксимации данных
- Семантический интеллект: семантические нейронные сети, машинное семантическое обучение, мультимодальные системы, ...
- ► /Классификация бизнес-задач, изучение выделенных классов задач
- **▼ Защита бизнес-информации, криптография, блокчейн**
- Документные модели и их верификация
- Теория проектирования документных моделей
- Семантические сделки и контракты, семантические облигации, семантическая криптовалюта и прочее
- Семантические интеллектуальные коммуникации

Технологические аспекты семантического подхода к цифровизации бизнеса:

- Технологическая среда проектирования исполнимых моделей:
 - **р** среда описания потребности (контекстный оператор, паттерны, ...),
 - среда описания действий (паттерны,...),
 - **реда описания принципов/алгоритмов действий (паттерны,...),**
 - среда/язык описания исполняемых моделей,
 - среда исполнения моделей
- ► Технологическая платформа: bSYSTEM + DISCOVERY
- ▶ Верификация формализованных представлений в процессе проектирования исполнимых моделей

Практические аспекты семантического подхода к цифровизации бизнеса:

- Ритейл, Потребкооперативы
- Логистика
- **A3C**
- Сервисы для сотовых операторов
- ▶ "Умные" чат-боты
- Биржа
- Социальная сеть для предпринимателей
- Платформа для ICO, "умные" контракты, криптовалюта
- **►** Генетика, Медицина
- Госучреждения

БЛОКЧЕЙН И УМНЫЕ КОНТРАКТЫ

Семантические модели и блокчейн

- Модель первична, блокчейн вторичен
- Роль блокчейна: фиксация изменений в критически значимых компонентах семантической модели
- Не обязательно уводить в блокчейн всю семантическую модель
- Можно использовать разные блокчейн-платформы

Доверие – контракт сохранен в блокчейне. Невозможно отрицать и изменять

Автономность – не нужен брокер, юрист или другой посредник для подтверждения

Инновационность – предлагает невиданные бизнесмодели, например, ICO

<u>Бэкап</u> – невозможно потерять документ: он повторен много раз в блокчейне

Безопасность – криптография хранит документы в безопасности

<u>Скорость</u> – сокращается время на бумажную работу и проверки

<u>Экономия</u> – умные контракты сберегают деньги на посреднико например, на нотариуса

<u>Аккуратность</u> – верифицированный умный контракт может многократно использоваться без проверок

Эфириум – платформа для умных контрактов

Виталик Бутерин на ПМЭФ'17

Эфир (Ethereum, ETH) – криптовалюта

- Solidity полный по Тьюрингу язык для разработки умных контрактов
- Умный контракт программа на Solidity
- ICO (Initial Coin Offering)

Есть трудности с юридической верификацией Solidity-программ (математически **нереализуемо**)

Эфириум – платформа для умных контрактов

Эфир (Ethereum. ETH) – криптовалюта

• Интерпретация умного контракта как программы – концептуально ошибочна!

• Умный контракт — это автоматически действующая модель взаимодействия контрагентов

программ (математически нереализуемо)

СПАСИБО!

Тел: +7 961 875 1808

E-mail: dsviridenko47@gmail.com

Skype: dsviridenko