Esercizio 3. Siano $X_1, X_2, \ldots, X_{1200}$ variabili aleatorie indipendenti ed identicamente distribuite su $(\Omega, \mathcal{F}, \mathbf{P})$ con comune distribuzione di Bernoulli di parametro 1/600. Poniamo

$$S(\omega) \doteq \sum_{i=1}^{1200} X_i(\omega), \ \omega \in \Omega, \quad N \doteq \min \{ n \in \mathbb{N} : \mathbf{P}(S \le n) \ge 0.98 \}.$$

Sia dia una stima per N in tre modi diversi, usando

- a) la disuguaglianza di Chebyshev;
- b) l'approssimazione di Poisson;
- c) l'approssimazione normale.

$$B[X] = P = \frac{1}{600}$$

$$Nom(X) = P(1-P) = \frac{1}{600}(1-\frac{1}{600})$$

$$B[S] = P + S = \frac{1}{600} \cdot 1200 = 2$$

$$Von(S) = P(1-P) = \frac{1}{600}(1-\frac{1}{600})1200$$

$$= 538$$

$$= 538$$

$$= 538$$

$$= 300$$

$$PO(SSON) = Benomerals (Piccosum)$$

$$S \sim Bin (M, K) \sim Bin (1200, \frac{1}{600})$$

$$K = M \cdot K = 1200 \cdot \frac{1}{600} = 2$$

 $P(S \leq M) \geq 9.93$

FROUSS(2) = 9.38 DANZS

BORPASSATO INX

J

Nx25

Cumulative probability, Poisson distribution

			Cumu	lative j	probal	oility,	Poiss	on d	listr	ibutio	n		
	$-\lambda$	x = 0	1	2	3	4	(5	7	6	7	8	9	
	0.02	0.980	1.000										
1	0.04	0.961	0.999	1.000				\					.5
1	0.06	0.942	0.998	1.000					\				
1	0.08	0.923	0.997	1.000					1				
1	0.10	0.905	0.995	1.000					\·				
	0.15	0.861	0.990	1.000	1.000				١	\			
	0.20		0.983	0.999	1.000					\			
l	0.25	0.779	0.974	0.998	1.000					\			
\	0.30	0.741	0.963	0.996	1.000					\			
1	0.35	0.705	0.951	0.995	1.000					١			
(0.40	0.670	0.938	0.992	0.999	1.000				- 1			
\	0.45	0.638	0.925	0.989	0.999	1.000				١			
1	0.50	0.607	0.910	0.986	0.998	1.000				1			
١	0.55	0.577	0.894	0.982	0.998	1.000				- 1			
\	0.60	0.549	0.878	0.977	0.997	1.000							
١.	0.65	0.522	0.861	0.972	0.996	0.999	1.000)		- 1			
- 1	0.70			0.966	0.994	0.999	1.000)		- /			
- (0.75	0.472	0.827	0.960	0.993	0.999	1.000			- /			
١	0.80		0.809	0.953	0.991	0.999	1.000)		- 1			
١	0.85	0.427	0.791	0.945	0.989	0.998	1.000			- 1			
1	0.90	0.407	0.772	0.937	0.987	0.998	1.000)		/			
- 1	0.95	0.387	0.754	0.929	0.984	0.997	1.000			/			
- 1	1.00	0.368	0.736	0.920	0.981	0.996	0.999		000	/			
- 1	1.1	0.333	0.699	0.900	0.974	0.995	0.999		000	/			
- 1	1.2	0.301	0.663	0.879	0.966	0.992	0.999		000	/			
- /	1.3	0.273	0.627	0.857	0.957	0.989	0.998		009				
/	1.4	0.247	0.592	0.834	0.946	0.986	0.997		9Ø9	1.000			_
- 1	1.5	0.223	0.558	0.809	0.934	0.981	0.996		999	1.000	~	2	-5
/	1.6	0.202	0.525	0.783	0.921	0.976	0.99		-	1.000			
- /	1.7	0.183	0.493	0.757	0.907	0.970	0.99	•		1.000			
(1.8	0.165	0.463	0.731	0.891	0.964	0.990		997	0.999	1.000		
-/1	1.9	0.150	0.434	0.704	0.875	0.956	0.98'		997	0.999	1.000		
-	(2.0)	0.135	0.406	0.677	0.857	0.947			996	0.999	1.000		
	2.2	0.111	0.355	0.623	0.819	0.927	0.978		993	0.998	1.000		
	2.4	0.091	0.308	0.570	0.779	0.904	0.964		988	0.997	0.999	1.000	
	2.6	0.074	0.267	0.518	0.736	0.877	0.951	0.9	983	0.995	0.999	1.000	
									~_~				

NORMANS & FANDAND -> MODISTA $P(S \leq M)$ CSNTRANG $\sqrt{S-6[S]}$ \sqrt{NORMS} \sqrt{NORMS}

J(y) ≥0.38 -> 2,96

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7128	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8951	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8\$15	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.\$770	0.8790	0.8810	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.901
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.931
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0/9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	019608	0.9616	0.9625	_0.968
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.3686	0.9693	0.9699	0.970
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.979	9803	0.9808	0.9812	0.981
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.984	0.9076	0.9850	0.9854	0.985
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.991
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.993
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996

MEIN N N- 5[5) 22.06 (() 200 () $M = \frac{2}{599}$ 22.06 $N \ge 5$ CHOB 7 >65V P(|Y-5[4]|ZE) = NOZ(7)

$$P(S \le M) = 1 - P(S \ge M) = 1 - P(S \ge M + 1)$$
 $P(S \ge M + 1) = P(S - S[S]) \ge M + 1 - G[S]$
 $M + 1 - G[S]$
 $M + 1 - G[S]$
 $P(S - S[S]) \ge M - 1) \le GON(S)$
 $CM + 1 - G[S]$
 $CM + 1 - G[S]$

$$m = 11 \rightarrow M = 11$$

Esercizio 4. Si trovino variabili aleatorie non-negative X e Y tali che $\mathbf{P}\left(X \leq Y \leq 4X\right) = 1, \quad \mathbf{E}\left[Y\right] = 2\mathbf{E}\left[X\right], \quad \mathbf{E}\left[Y^2\right] \neq 4\mathbf{E}\left[X^2\right].$

$$X = 1$$
 $P(1 \le y \le 4) = 1$
 $5[x] = 2 = 2$
 $5[x^2] + 4 = 5[x^2]$
 $\frac{1}{4}$

$$X = 1 \quad \text{ord}$$

$$S[t] = \sum_{i=1}^{N} x_i \cdot P(x_i) \int_{\text{pinno}}^{\text{sorton}} x_i \cdot P(x_i) \int_{\text{pinno}}^{\text{sorton}} x_i \cdot P(x_i) \int_{\text{pinno}}^{\text{sorton}} x_i \cdot P(x_i) \int_{\text{pinno}}^{\text{sorton}} x_i \cdot P(x_i) \int_{\text{pinno}}^{\text{pinno}} x_i \cdot$$

55.1

$$\frac{1}{2} \times \frac{1}{3} = 3 \cdot \frac{1}{3} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{3} = \frac{1}{6} = \frac{1}{3}$$

$$\frac{5(x^{2})}{5(x^{2})} = (-3)^{2} \cdot \frac{1}{3} + (-1)^{2} \cdot \frac{1}{5} + (2)^{2} \cdot \frac{1}{6}$$

$$+ (6)^{2} \cdot \frac{1}{3} = 85$$

$$vor(x) = 6(x^2) - (6(x))^2$$

$$= 95 - 42 = 521$$

$$= 36$$

$$\times = v^{2} \quad \text{lenif} \quad (0,1)$$

$$\frac{1}{(0,1)} = \frac{1}{b-2} = \frac{1}{1-p}$$

$$5[x] = 5[0^{2}] =$$

$$0^{\infty} \begin{cases} x - f_{0}(x) dx \\ - \infty \end{cases}$$

$$1 \begin{cases} x^{2} dx = \begin{bmatrix} x^{3} \\ 3 \end{bmatrix}^{1} = \frac{1}{3} - 0 = \frac{1}{3} \end{cases}$$

$$5[x^{2}] = 5[0^{4}] = 5 \begin{cases} x^{4} - f_{0}(x) dx \\ - \infty \end{cases}$$

$$5[x^{2}] = 5[0^{4}] = 5 \begin{cases} x^{4} - f_{0}(x) dx \\ - \infty \end{cases}$$

$$\frac{b(x^{2})}{b(x^{2})} = \frac{b(x^{2})}{b(x^{2})} = \frac{b($$

$$\begin{array}{l}
\times = 1 - 7 \\
\times = 1 - 7
\end{array}$$

$$\begin{array}{l}
\times = 1 - 7 \\
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 4 \times 5 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 6 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 6 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 6 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times = 2 \times 62
\end{array}$$

$$\begin{array}{l}
\times = 2 \times 62$$

$$\begin{array}{l}
\times =$$

$$\int_a^b f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x)dx$$

$$S + W + APSNS...$$

$$= 2 \int_{0}^{\infty} e^{-2x} dx - 2 \int_{0}^{\infty} x \cdot e^{-2x} dx$$

$$= \left[-e^{-2x} \right]_{0}^{\infty} = 1 \quad \text{int. parti} \quad \left[-x \cdot e^{-2x} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-2x} dx$$

$$= 0 + \left[-\frac{1}{2} e^{-2x} \right]_{0}^{\infty} = \frac{1}{2}$$

$$-7 \quad E[X] = 1 - \frac{1}{2} = \frac{1}{2}$$

U

$$= 1 - \frac{1}{2} = \frac{1}{2}$$
.