The group G is isomorphic to the projective special linear group PSL(3,2). Ordinary character table of $G \cong PSL(3,2)$:

	1a	2a	3a	4a	7a	7b
χ_1	1	1	1	1	1	1
χ_2	3	-1	0	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_3	3	-1	0	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$
χ_4	6	2	0	0	-1	-1
χ_5	7	-1	1	-1	0	0
χ_6	8	0	-1	0	1	1

Trivial source character table of $G \cong PSL(3,2)$ at p = 3:

The source character table of $G = I BL(9,2)$ at $p = 0$.													
Normalisers N_i	N_1					N_2							
p-subgroups of G up to conjugacy in G		P_1					P_2						
Representatives $n_j \in N_i$	1a	2a	4a	7a	7b	1a	2a						
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	9	1	1	2	2	0	0						
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	6	2	0	-1	-1	0	0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	15	-1	-1	1	1	0	0						
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	7	-1	-1	0	0	1	-1						

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(2, 5, 7)(3, 4, 6)]) \cong C3$

$$N_1 = Group([(2,4)(3,5),(1,2,3)(5,6,7)]) \cong PSL(3,2)$$

 $N_2 = Group([(2,5,7)(3,4,6),(4,6)(5,7)]) \cong S3$