COMPSCI 589 Lecture 7: Ensembles and Classification

Benjamin M. Marlin

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu). Created with support from National Science Foundation Award# IIS-1350522.

Outline

- 1 Ensembles
- 2 Bagging
- 3 Boosting
- 4 Stacking
- 5 Wrap-Up

Ensembles •00

■ An *ensemble* is simply a collection of models that are all trained to perform the same task.

- An *ensemble* is simply a collection of models that are all trained to perform the same task.
- An ensemble can consist of many different versions of the same model, or many different types of models.

- An *ensemble* is simply a collection of models that are all trained to perform the same task.
- An ensemble can consist of many different versions of the same model, or many different types of models.
- The final output for an ensemble of classifiers is typically obtained through a (weighted) average or vote of the predictions of the different models in the ensemble.

- An *ensemble* is simply a collection of models that are all trained to perform the same task.
- An ensemble can consist of many different versions of the same model, or many different types of models.
- The final output for an ensemble of classifiers is typically obtained through a (weighted) average or vote of the predictions of the different models in the ensemble.
- An ensemble of different models that all achieve similar generalization performance often outperforms any of the individual models

- An *ensemble* is simply a collection of models that are all trained to perform the same task.
- An ensemble can consist of many different versions of the same model, or many different types of models.
- The final output for an ensemble of classifiers is typically obtained through a (weighted) average or vote of the predictions of the different models in the ensemble.
- An ensemble of different models that all achieve similar generalization performance often outperforms any of the individual models.
- **Question:** How is this possible?

Ensembles 000

> ■ Suppose we have an ensemble of binary classification functions $f_k(\mathbf{x})$ for k = 1, ..., K.

- Suppose we have an ensemble of binary classification functions $f_k(\mathbf{x})$ for k = 1, ..., K.
- Suppose that on average they have the same expected error rate $\epsilon = E_{p(x,y)}[y \neq f_k(\mathbf{x})] < 0.5$, but that the errors they make are independent.

- Suppose we have an ensemble of binary classification functions $f_k(\mathbf{x})$ for k = 1, ..., K.
- Suppose that on average they have the same expected error rate $\epsilon = E_{p(x,y)}[y \neq f_k(\mathbf{x})] < 0.5$, but that the errors they make are independent.
- The intuition is that the majority of the K classifiers in the ensemble will be correct on many examples where any individual classifier makes an error

- Suppose we have an ensemble of binary classification functions $f_k(\mathbf{x})$ for k = 1, ..., K.
- Suppose that on average they have the same expected error rate $\epsilon = E_{p(x,y)}[y \neq f_k(\mathbf{x})] < 0.5$, but that the errors they make are independent.
- The intuition is that the majority of the K classifiers in the ensemble will be correct on many examples where any individual classifier makes an error.
- A simple majority vote can significantly improve classification performance by decreasing variance in this setting.

- Suppose we have an ensemble of binary classification functions $f_k(\mathbf{x})$ for k = 1, ..., K.
- Suppose that on average they have the same expected error rate $\epsilon = E_{p(x,y)}[y \neq f_k(\mathbf{x})] < 0.5$, but that the errors they make are independent.
- The intuition is that the majority of the K classifiers in the ensemble will be correct on many examples where any individual classifier makes an error.
- A simple majority vote can significantly improve classification performance by *decreasing variance* in this setting.
- **Question:** How can we come up with such an ensemble?

Ensembles

000

Suppose we collect multiple independent training sets $Tr_1, ..., Tr_K$ and use each of these training sets to train a different instance of the same classifier obtaining K classification functions $f_1(\mathbf{x}), ..., f_K(\mathbf{x})$.

- Suppose we collect multiple independent training sets $Tr_1, ..., Tr_K$ and use each of these training sets to train a different instance of the same classifier obtaining K classification functions $f_1(\mathbf{x}), ..., f_K(\mathbf{x})$.
- Classifiers trained in this way are guaranteed to make independent errors on test data.

- Suppose we collect multiple independent training sets $Tr_1, ..., Tr_K$ and use each of these training sets to train a different instance of the same classifier obtaining K classification functions $f_1(\mathbf{x}), ..., f_K(\mathbf{x})$.
- Classifiers trained in this way are guaranteed to make independent errors on test data.
- If the expected error of each classifier is less than 0.5, then the weighted majority vote is guaranteed to reduce the expected generalization error.

- Suppose we collect multiple independent training sets $Tr_1, ..., Tr_K$ and use each of these training sets to train a different instance of the same classifier obtaining K classification functions $f_1(\mathbf{x}), ..., f_K(\mathbf{x})$.
- Classifiers trained in this way are guaranteed to make independent errors on test data.
- If the expected error of each classifier is less than 0.5, then the weighted majority vote is guaranteed to reduce the expected generalization error.
- **Question:** What is the weakness of this approach?

Outline

- 1 Ensembles
- 2 Bagging
- 3 Boosting
- 4 Stacking
- 5 Wrap-Up

Bagging

■ Bootstrap aggregation or Bagging is an approximation to the previous method that takes a single training set Tr and randomly sub-samples from it K times (with replacement) to form K training sets $Tr_1, ..., Tr_K$.

Bagging

- Bootstrap aggregation or *Bagging* is an approximation to the previous method that takes a single training set Tr and randomly sub-samples from it K times (with replacement) to form K training sets $Tr_1, ..., Tr_K$.
- Each of these training sets is used to train a different instance of the same classifier obtaining K classification functions $f_1(\mathbf{x}), ..., f_K(\mathbf{x})$.

Bagging

- Bootstrap aggregation or *Bagging* is an approximation to the previous method that takes a single training set Tr and randomly sub-samples from it K times (with replacement) to form K training sets $Tr_1, ..., Tr_K$.
- Each of these training sets is used to train a different instance of the same classifier obtaining K classification functions $f_1(\mathbf{x}), ..., f_K(\mathbf{x})$.
- The errors won't by totally independent because the data sets aren't independent, but the random re-sampling usually introduces enough diversity to decrease the variance and give improved performance.

 Bagging is particularly useful for high-variance, high-capacity models.

- Bagging is particularly useful for high-variance, high-capacity models.
- Historically, it is most closely associated with decision tree models.

- Bagging is particularly useful for high-variance, high-capacity models.
- Historically, it is most closely associated with decision tree models.
- A very successful extension of bagged trees is the random forest classifier.

- Bagging is particularly useful for high-variance, high-capacity models.
- Historically, it is most closely associated with decision tree models.
- A very successful extension of bagged trees is the random forest classifier.
- The random forests algorithm further decorrelates the learned trees by only considering a random sub-set of the available features when deciding which variable to split on at each node in the tree.

Example: Bagging vs Random Forests

000

Outline

- 1 Ensembles
- 2 Bagging
- 3 Boosting
- 4 Stacking
- 5 Wrap-Up

Boosting

Boosting is an ensemble method based on iteratively re-weighting the data set instead of randomly resampling it.

Boosting •00

Boosting

- Boosting is an ensemble method based on iteratively re-weighting the data set instead of randomly resampling it.
- The main idea is to up-weight the importance of data cases that are missclassified by the classifiers currently in the ensemble, and then add a next classifier that will focus on data cases that are causing the errors.

Boosting

- Boosting is an ensemble method based on iteratively re-weighting the data set instead of randomly resampling it.
- The main idea is to up-weight the importance of data cases that are missclassified by the classifiers currently in the ensemble, and then add a next classifier that will focus on data cases that are causing the errors.
- Assuming that the base classifier can always achieve an error of less than 0.5 on any data sample, the boosting ensemble can be shown to decrease error.

AdaBoost Algorithm

- 1. Input: $S = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_N, y_N)\}$, Number of Iterations T
- 2. Initialize: $d_n^{(1)} = 1/N$ for all n = 1, ..., N
- 3. **Do for** t = 1, ..., T,
 - (a) Train classifier with respect to the weighted sample set $\{S, \mathbf{d}^{(t)}\}$ and obtain hypothesis $h_t : \mathbf{x} \mapsto \{-1, +1\}$, i.e. $h_t = \mathcal{L}(S, \mathbf{d}^{(t)})$
 - (b) Calculate the weighted training error ε_t of h_t :

$$\varepsilon_t = \sum_{n=1}^N d_n^{(t)} \mathbf{I}(y_n \neq h_t(\boldsymbol{x}_n)) ,$$

(c) Set:

$$\alpha_t = \frac{1}{2}\log\frac{1-\varepsilon_t}{\varepsilon_t}$$

(d) Update weights:

$$d_n^{(t+1)} = d_n^{(t)} \exp \{-\alpha_t y_n h_t(\boldsymbol{x}_n)\}/Z_t$$
,

where Z_t is a normalization constant, such that $\sum_{n=1}^N d_n^{(t+1)} = 1$.

- 4. Break if $\varepsilon_t = 0$ or $\varepsilon_t \ge \frac{1}{2}$ and set T = t 1.
- 5. Output: $f_T(\boldsymbol{x}) = \sum_{t=1}^T \frac{\alpha_t}{\sum_{r=1}^T \alpha_r} h_t(\boldsymbol{x})$

Example: AdaBoost

Outline

- 1 Ensembles
- 2 Bagging
- 3 Boosting
- 4 Stacking
- 5 Wrap-Up

Stacking (or Blending)

 Unlike bagging and boosting, stacking is an algorithm for combining several different types of models.

Stacking (or Blending)

- Unlike bagging and boosting, stacking is an algorithm for combining several different types of models.
- The main idea is to form a train-validation-test split and train many classifiers $f_k(\mathbf{x})$ on the training data.

Stacking (or Blending)

- Unlike bagging and boosting, stacking is an algorithm for combining several different types of models.
- The main idea is to form a train-validation-test split and train many classifiers $f_k(\mathbf{x})$ on the training data.
- The trained classifiers are used to make predictions on the validation data set and a new feature representation is then created where each data case consists of the vector of predictions of each classifier in the ensemble $\tilde{\mathbf{x}} = [f_1(\mathbf{x}), ..., f_K(\mathbf{x})]$.

- Unlike bagging and boosting, stacking is an algorithm for combining several different types of models.
- The main idea is to form a train-validation-test split and train many classifiers $f_k(\mathbf{x})$ on the training data.
- The trained classifiers are used to make predictions on the validation data set and a new feature representation is then created where each data case consists of the vector of predictions of each classifier in the ensemble $\tilde{\mathbf{x}} = [f_1(\mathbf{x}), ..., f_K(\mathbf{x})]$.
- Finally, a meta-classifier called a *combiner* is trained to minimize the validation error given the data $\{(y_i, \tilde{\mathbf{x}}_i) | i = 1, ..., N\}$.

Stacking (or Blending)

- Unlike bagging and boosting, stacking is an algorithm for combining several different types of models.
- The main idea is to form a train-validation-test split and train many classifiers $f_k(\mathbf{x})$ on the training data.
- The trained classifiers are used to make predictions on the validation data set and a new feature representation is then created where each data case consists of the vector of predictions of each classifier in the ensemble $\tilde{\mathbf{x}} = [f_1(\mathbf{x}), ..., f_K(\mathbf{x})]$.
- Finally, a meta-classifier called a *combiner* is trained to minimize the validation error given the data $\{(y_i, \tilde{\mathbf{x}}_i) | i = 1, ..., N\}$.
- The extra layer of combiner learning can deal with correlated classifiers as well as classifiers that perform poorly.

Example: Netflix Prize (2009)

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 releaders.

Rank	Team Name	Best Test Score	½ Improvement	Best Submit Time			
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos							
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28			
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22			
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40			
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31			
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20			
6	<u>PragmaticTheory</u>	0.8594	9.77	2009-06-24 12:06:56			
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09			
8	Dace	0.8612	9.59	2009-07-24 17:18:43			

Example: Netflix Prize (2009)

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 releaders.

Rank	Team Name	Rest Test Score	% Improvement	Best Submit Time
	Prize - RMSE = 0.8567 - Winning 1			Dest submit min
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
3	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43

Winning team used stacked predictor of 450+ different models.

Outline

- 1 Ensembles
- 2 Bagging
- 3 Boosting
- 4 Stacking
- 5 Wrap-Up

Classification Wrap-Up

■ We've covered a good mix of classical and state-of-the-art classifiers including KNN, decision trees, naive Bayes, LDA, logistic regression, SVMs, neural networks and ensembles.

Classification Wrap-Up

- We've covered a good mix of classical and state-of-the-art classifiers including KNN, decision trees, naive Bayes, LDA, logistic regression, SVMs, neural networks and ensembles.
- We covered three of the most important meta issues in classification: generalization assessment, capacity control, and hyperparameter selection.

Classification Wrap-Up

- We've covered a good mix of classical and state-of-the-art classifiers including KNN, decision trees, naive Bayes, LDA, logistic regression, SVMs, neural networks and ensembles.
- We covered three of the most important meta issues in classification: generalization assessment, capacity control, and hyperparameter selection.
- Things we didn't cover: feature selection, feature engineering, dealing with class imbalance, covariate shift, cost of errors, classifier evaluation beyond accuracy, structured prediction, sequential decisions...

Classifier Evaluation

Image Segmentation

grass

Mesh Segmentation

Image to Text

Wrap-Up oooo•o

Image to Text

A very cute looking cat in a hat

Wrap-Up

Playing Atari Breakout

https://www.youtube.com/watch?v=EfGD2qveGdQ

