Logo/Not Logo

Thurs 6:30pm Session 6 Alyssa Augsburger, Laura Herman, Emma Tebbe, Yixun Zhang

Motivation

- Brandfolder is a digital asset management company
- Companies upload thousands of different media files
- Goal is to save time spent organizing files by automatically identifying those files that are logos

Literature

• Binary classification is a common problem solved with machine learning

Our Contribution

- Directly impacts Brandfolder
- Brandfolder does not currently have a method for logo recognition

Process

- 1. Data collection
- 2. Pre-processing
- 3. Logistic regression
- 4. Single layer neural net
- 5. Multilayer neural net

Data Source

 Images are randomly selected from public Brandfolders

Data

- 3755 images in total
- Data selection:
 - Same image size (each image has a 224x224-pixel dimension by RGB)
 - Balanced Logo vs
 Non-logo count

	attachment_key	size_mb	height	width	h_to_w	filename	logo	pixel_array
0	00xjny6u	0.011849	520.0	506.0	1.027668	Esterdale Theatre - Logo.png	1	[0.5923961, 0.54204315, 0.51498044, 0.5923961,
1	04o31jop	0.012610	269.0	396.0	0.679293	BLUE_LOGO.png	1	[0.5923961, 0.54204315, 0.51498044, 0.5923961,
2	0840h7ox	0.399114	518.0	920.0	0.563044	ZEN_LB-5.jpg	0	[0.106121555, 0.05576863, 0.052235294, 0.09043
3	0awudx2h	0.011226	200.0	200.0	1.000000	article central 200.jpg	1	[0.5923961, 0.54204315, 0.51498044, 0.5923961,
4	0bb8y85h	0.263813	885.0	800.0	1.106250	1116-100_WGTank_white.jpg	0	[0.5923961, 0.54204315, 0.51498044, 0.5923961,
3750	zu7y3rha	0.147371	498.0	702.0	0.709402	journalism.jpg	0	$\hbox{[-0.007603933, -0.05795686, -0.08501961, -0.00}$
3751	zuanbsqe	0.580392	206.0	415.0	0.496386	2013 05 26_techstars_id_final_bug solo graysca	1	[0.5923961, 0.54204315, 0.51498044, 0.5923961,
3752	zw9234v4	2.021135	1645.0	1450.0	1.134483	SPIN N GLO SILVER WING GPK MY.jpg	0	[0.5923961, 0.54204315, 0.51498044, 0.5923961,
3753	zxfqbfj1	0.012057	36.0	345.0	0.104348	cornerstone web logo medium.png	1	$\hbox{[-0.40760392, -0.45795685, -0.4850196, -0.4076}$
3754	zzgkjqna	0.027983	56.0	350.0	0.160000	fieldcontrolslogohorz web.jpg	1	[0.5923961, 0.54204315, 0.51498044, 0.5923961,

Overview

Pre-processing

- Remove null data
- Standardized pixel data and metadata
- Split datasets into training(60%), dev data(20%)
 and testing data(20%)

Missing values

Correlations

Pre-processing

Use PCA to fit and transform training and test data

Logistic Regression

- 1. Reduced pixel only data: 59.3% accuracy, c = 0.001
- 2. Metadata only: 84.8% accuracy, c = 0.1
- 3. Reduced pixel + metadata: 59.3% accuracy, c = 0.001

- Try using L1 penalty
- Try reducing dimensionality of pixel data only via PCA and append to original metadata

Logistic Regression L1 Penalty

Dependent variable: logo dummy Independent variables: full pixel array, file size, aspect ratio, filetype dummy variables

Optimized Variables C = 0.1

Max F1 = 84.6%

Logistic Regression Pixel-only PCA dimension reduction

Dependent variable: logo dummy Independent variables: k pixel PCA dimensions, file size, aspect ratio, filetype dummy variables

Optimized Variables

K = 1

C = 0.1

Max F1 = 86%

Neural Net - Features

Features:

Pixel vector feature

h_to_w ratio

size

filetype dummies

JPG

PNG

Other

Neural Network

- Created model using TensorFlow and Keras
 Tuner so that we could easily tune
 hyperparameters
- Allowed us to tune the following hyperparameters:
 - Number of nodes in the first dense layer = varied from 32 to 512
 - Learning rate = varied from .01 to .001
- Best accuracy = 80.96%

Trial complete Trial summary |-Trial ID: 01df5a15a53d0a3231ca043abc7ba30 |-Score: 0.8482024073600769 |-Best step: 0 Hyperparameters: |-learning_rate: 0.001 |-tuner/bracket: 0 |-tuner/bracket: 0 |-tuner/initial_epoch: 0 |-tuner/initial_epoch: 0 |-tuner/round: 0 |-units: 512 INFO:tensorflow:Oracle triggered exit The hyperparameter search is complete. The optimal number of units in the first densely-connected

layer is 384 and the optimal learning rate for the optimizer

is 0.001.

Multilayer Neural Net

- 3 layers
 - Dense: hidden layers, activation function is relu
 - Regularization: dropout
 - Dense: 2 output nodes logo/not logo; activation function is softmax
- Varied hidden layers, epochs, and dropout rate
- Optimizer
 - Adam
 - Loss function: sparse categorical cross-entropy
 - Varied learning rate

Results

- Multilayer neural net has similar accuracies as logistic regression
 - Logistic regression could be a better choice due to computational cost

	Parameters		Accuracy
Logistic Regression	Regularization: c=0.1	Dev data: 86.0% Test data: 83.4%	
2-Layer Neural Net	Hidden nodes: 480	Epochs: 10 Learning rate: 0.0001	Dev data: 80.0% Test data: 81.6%
3-Layer Neural Net	Hidden nodes: 401 Dropout rate: 0.5	Epochs: 50 Learning rate: 0.001	Dev data: 86.4% Test data: 84.8%

Conclusions

Model proves useful for:

- Brandfolder use
- Image classification in many domains
- Organization in many domains

Next Steps?

- Convolutional net
- Increase sample size/Spark
- Continue to tune existing model to optimize performance

Questions?