DSE 210: Probability and Statistics using Python

Worksheet 5 — Fitting distributions to data

- 1. A real number X is drawn from the Gaussian distribution N(10, 16).
 - (a) What is the probability that $X \geq 10$?
 - (b) What is the probability that X = 10?
 - (c) What is the probability (roughly) that X > 14?
 - (d) What is the probability (roughly) that $X \leq 2$?
- 2. A call center keeps track of the number of phone calls they receive: over a period of 500 hours, they record the number of calls received during every one-hour interval (the number of calls during the first hour, during the second hour, and so on). Let N_k be the number of one-hour intervals during which k calls were received, for $k = 0, 1, 2, \ldots$ Here is their data:

Notice that $N_0 + N_1 + \cdots = 500$.

- (a) You decide to model the number of calls received in an hour by a $Poisson(\lambda)$ distribution. What value of λ should you choose?
- (b) Under this choice of λ , what are the expected entries in the table above, i.e. the expected number of one-hour intervals (out of 500) during which k calls are received, for k = 0, 1, ...?
- 3. Show that the *mode* of the Poisson(λ) distribution—that is, the point with highest probability—is $|\lambda|$.
- 4. Maximum likelihood and smoothing. Upon tossing a coin 20 times, you get heads every time.
 - (a) How would you estimate the bias (that is, the heads probability) of the coin, using maximum likelihood?
 - (b) How would you estimate the bias of the coin, using maximum likelihood with Laplace smoothing?
 - (c) Under your estimate from part (b), what is the probability of seeing the sequence of tosses *HHTTHH*? You don't need to simplify the numeric expression.
- 5. Fitting a multinomial. Fix the following vocabulary: $V = \{a, rose, is, flower\}$.
 - (a) In a bag-of-words representation, what is the vector form of the document 'A rose is a rose is a rose'?
 - (b) Fit a multinomial model to this document using maximum likelihood but not Laplace smoothing. What is the resulting distribution (give the probability of each word in V)?
 - (c) Same as part (b), but with Laplace smoothing.

6. Fitting an exponential distribution by maximum likelihood. The exponential distribution with parameter $\lambda > 0$ is a distribution over $(0, \infty)$ with the following density:

$$p(x) = \lambda e^{-\lambda x}.$$

Suppose we observe data $x_1, \ldots, x_n > 0$ and we want to fit an exponential distribution to it. In this problem, we will derive the maximum-likelihood choice of λ .

- (a) Write down the likelihood function $Pr(data|\lambda)$.
- (b) Write down the log-likelihood $LL(\lambda) = \ln \Pr(\text{data}|\lambda)$.
- (c) Use calculus to determine the value of λ that maximizes the log-likelihood.
- 7. For any real number $\lambda > 0$, let U_{λ} denote the uniform distribution over $[0, \lambda]$.
 - (a) Write down the formula for the density of U_{λ} .
 - (b) Given a set of observations $x_1, x_2, \ldots, x_n > 0$, we decide to fit a U_{λ} distribution to them. What is the maximum-likelihood choice of λ ?
- 8. Suppose Z_1, \ldots, Z_k are independent N(0,1) random variables. Define $X = Z_1^2 + \cdots + Z_k^2$. The distribution of X is called the chi-squared distribution with k degrees of freedom.
 - (a) Plot the density of the chi-squared distribution with 10 degrees of freedom using scipy.stats.chi2.
 - (b) By generating random samples from this distribution, estimate its median.