

Feb 25, 2022

Bristol's Modified Medium

Kristel Sanchez¹

¹University of Michigan - Ann Arbor

document.

Duffy Lab, EEB, University of Michigan

kmonell

This recipe is used to culture algae of the genus *Ulothrix* in the lab. However, in can be used to grow other organisms such as cyanobacteria, chrysophyta, euglenophyta and other green algae.

Kristel Sanchez 2022. Bristol's Modified Medium. protocols.io https://protocols.io/view/bristol-s-modified-medium-b5mqq45w	
document ,	6
Feb 25, 2022	
Feb 25, 2022	
58768	

This recipe is used to culture algae of the genus *Ulothrix* in the lab. However, in can be used to grow other organisms such as cyanobacteria, chrysophyta, euglenophyta and other green algae.

Bristol's Modified Medium

Author: Kristel Sánchez

This recipe is based on Flinn Scientific, Inc Bristol's Modified Medium (BMM) recipe.

Summary

This recipe is used to culture algae of the genus *Ulothrix* in the lab. However, in can be used to grow other organisms such as cyanobacteria, chrysophyta, euglenophyta and other green algae.

Materials

Α	В	С
Apparatus &	Labware	Reagents
Equipment		
Autoclave	500 mL polyethylene	Sodium nitrate, NaNO3
	bottles	
Aluminum foil	Graduated	Calcium
	cylinder	chloride, CaCl2•2H2O
Autoclave tape	500 mL beakers	Magnesium Sulfate,
		MgS04•7H20
Analytical balance	Stirring	Potassium
	magnet	phosphate dibasic, K2HPO4
Weight boats or paper	5L glass aspirator	Potassium phosphate
	bottle	monobasic, KH2PO4
	Rubber cap	Sodium
	for 5L	chloride, NaCl
	Rubber hose	UTEX
		GR+/NH4 Medium soil water
	spatula	Iron (III)
		chloride, FeCl3

Primary Stock Solutions

These solutions are prepared by dissolving the prescribed amount of chemical into 400mL of MilliQ water. Store these solutions in polyethylene bottles at 4°C.

Α	В	С	D
Compound	Symbol	Grams (g)	Final concentration mg/L
Sodium nitrate	NaNO3	10	0.025
Calcium chloride	CaCl2·2H2O	1	0.0025
Magnesium sulfate	MgSO4•7H2O	3	0.0075
Potassium phosphate dibasic	K2HP04	3	0.0075
Potassium phosphate monobasic	KH2PO4	7	0.0175
Sodium chloride	NaCl	1	0.0025

1% Iron chloride solution

Combine 1g of iron (III) chloride in 100mL of MilliQ water. Store in polyethylene bottle at 4°C.

Final solution

Obtain an aspirator bottle that has a rubber hose and clamp already attached to it and add 1000 mL of

MilliQ water. Next, add 50 mL of each primary stock solution into the aspirator media culture bottle. Add five drops of 1% iron (III) chloride solution and 200mL of soil water. Fill the bottler until the 5L mark with MilliQ water. Place the rubber stopper laterally (so it does not completely plug the top opening of the aspirator bottle) and completely cover the top with aluminum foil. Cover the end of the rubber hose with aluminum foil (or connect it to the second aspirator bottle if setting up a new culture). Autoclave the mixture by selecting program number 2 in the autoclaves found in the 4 or 5thfloor of the BSB building (or at 121 °C for 15 min). Once autoclave program has run, remove the bottles carefully from autoclave using the autoclave gloves. Let the liquid and bottles to cool down before using.