W układach fizycznych napięcie elektryczne może reprezentować stany logiczne. Bramką nazywamy prosty obwód elektroniczny realizujący funkcję logiczną. Pewien zakres napięcia odpowiada stanowi logicznemu 0, a inny zakres stanowi logicznemu 1. Zwyczajowo stanowi 0 przypisujemy niższe napięcie niż stanowi 1 dlatego stan logiczny 0 nazywamy stanem logicznym niskim i oznaczamy L (ang. low), a stan logiczny 1 nazywamy stanem logicznym wysokim i oznaczamy H (ang. high) Dopuszczalne poziomy napięć dla wejść i wyjść bramek są rozsunięte dla zapewnienia marginesu zakłóceń.

- VOH minimalne napięcie wyjścia w stanie wysokim
- VOL maksymalne napięcie wyjścia w stanie niskim
- VIH minimalne napięcie wejścia w stanie wysokim
- VIL maksymalne napięcie wejścia w stanie niskim

Sterowane mogą być tylko wejścia bramek! W przyjętej konwencji symboliki bramek kółko na linii sygnałowej oznacza negację zmiennej.

Podstawowe bramki logiczne:

- **BUF** bramka buforująca
 - Symbol logiczny

Wyrażenie algebraiczne

$$A \equiv B = Q$$

Opis

Q jest jeden jeżeli A i B są takie same

$A \equiv B$	Q
0	0
1	1

- NOT, INV (inwerter) bramka negacji
 - Symbol logiczny

Wyrażenie algebraiczne

$$\overline{A} = Q$$

Opis

Q jest jeden jeżeli A i B są zero

Tabela prawdy

Α	q
0	1
1	0

• AND

Symbol logiczny

Wyrażenie algebraiczne

$$A * B = Q$$

Opis

Q jest jeden jeżeli A i B są jeden

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

• NAND

Symbol logiczny

Wyrażenie algebraiczne

$$\overline{A*B} = Q$$

Opis

Q jest jeden jeżeli A lub B są zero

■ Tabela prawdy

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

• <u>OR</u>

Symbol logiczny

Wyrażenie algebraiczne

$$A + B = Q$$

Opis

Q jest jeden jeżeli A lub B są jeden

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

• NOR

Symbol logiczny

Wyrażenie algebraiczne

$$\overline{A+B}=Q$$

Opis

Q jest jeden jeżeli A i B są zero

Tabela prawdy

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

XOR

Symbol logiczny

Wyrażenie algebraiczne

$$A \oplus B = Q$$

Opis

Q jest jeden jeżeli albo A albo B jest jeden

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

• XNOR

Symbol logiczny

■ Wyrażenie algebraiczne

$$\overline{A \oplus B} = Q$$

Opis

Q jest jeden jeżeli A oraz B są takie same

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1