1 Tabelle der Parameter

Gruppe	Symbol	Bedeutung	Wert	Einheit	von	zu
Fahrzeugcharakteristik	$i_{ges.}$	Gesamtübersetzung	9.00 [1]	: 1	-	-
	A	Stirnfläche	2,22 [2]	m^2	-	-
	c_w	Luftwiderstandkoeffizient	0,23 [2]	1	-	-
	f_{Roll}	Rollwiderstandkoeffizient	von anderen Modulen gegeben	1	Gesamtfahrzeug	-
	m	Gesamtmasse (Auto und Fahrer)	2000 [2]	kg	-	-
	λ	${\bf Drehmass enzuschlags faktor}$	1 *	1	-	-
	F_{Reib}	Reibungswiderstand	von anderen Modulen gegeben	N	Gesamtfahrzeug	-
	r	Reifen Radius	0.2286 [1]	m	-	-
Aussenbedingungen	γ	Steigungswinkel	von anderen Modulen gegeben	rad	Gesamtfahrzeug	-
	v_L	Windgeschwindigkeit	von anderen Modulen gegeben	m/s	Gesamtfahrzeug	-
	ρ	Luftdichte	1.293	$kg\cdot m^{-3}$	-	-
Dynamik	M_{Mot}	Motordrehmoment	von anderen Modulen gegeben	Nm	Elektrische Maschine	-
	M_{Brems}	Bremsdrehmoment	von anderen Modulen gegeben	Nm	Gesamtfahrzeug	-
	M_{Rad}	Raddremoment	kalkuliert	Nm	-	-
	F_{Roll}	Rollwiderstand	kalkuliert	N	-	-
	$F_{St.}$	Steigungswiderstand	kalkuliert	N	-	-
	F_L	Luftwiderstand	kalkuliert	N	-	-
	α	Fahrzeugbeschleunigung	kalkuliert	$m\cdot s^{-2}$	-	-
	v	Fahrgeschwindigkeit	kalkuliert	$m\cdot s^{-1}$	-	Gesamtfahrzeug
	n_{Rad}	Raddrehzahl	kalkuliert	rpm	-	-
	n_{Mot}	Motordrehzahl	kalkuliert	rpm	-	Elektrische Maschine
	S	Zurückgelegte Strecke	kalkuliert	m		Gesamtfahrzeug
Anfangsbedigungen	S_0	Anfangsposition	als 0 angenommen, einstellbar	m	Gesamtfahrzeug	-
	v_0	Anfangsgeschwindigkeit	als 0 angenommen, einstellbar	$m \cdot s^{-1}$	Gesamtfahrzeug	-

 $^{^{\}ast}$ theoretisch größer als 1, aber keine Quelle gefunden

Tabelle 1: Definition von Variablen

2 Annahmen

- 1. Die Fhar- und Windgeschwindigkeit verlaufen parallel zueinander $(v_L||v)$
- 2. Kein Getriebeverlust ($\eta_{Getriebe} = 100\%$)
- 3. Rollwiderstandkoeffizient ist geschwindigkeit unabhängig ($f_{Roll} = konst.$)
- 4. Die Kraftschlussbeanspruchung ist groß genug $(\mu \ge \frac{F_x}{F_Z})$
- 5. kein Schlupf (s = 0)

3 Angewandte Gleichungen

$$M_{Rad} = M_{Mot} \cdot i_{ges.} \tag{1}$$

$$Z = \frac{M_{Rad} - M_{Brems}}{r} \tag{2}$$

$$F_{Roll} = m \cdot g \cdot f_{Roll} \cdot \cos \gamma \tag{3}$$

$$F_{St} = m \cdot g \cdot \sin \gamma \tag{4}$$

$$F_L = \frac{1}{2} \cdot \rho \cdot c_w \cdot A \cdot (v - v_L) \cdot |v - v_L| \tag{5}$$

$$\alpha = \frac{Z - F_{Roll} - F_{St} - F_L}{m \cdot \lambda} \tag{6}$$

$$v = v_0 + \int_0^t \alpha \, d\tau \tag{7}$$

$$S = S_0 + \int_0^t v \, d\tau \tag{8}$$

$$n_{Rad} = \frac{v \cdot 30}{r \cdot \pi} \tag{9}$$

$$n_{Mot} = n_{Rad} \cdot i_{ges.} \tag{10}$$

4 Modell-Darstellung

Abbildung 1: Übersicht

Abbildung 2: Getriebe

Abbildung 3: Beschleunigungsrechner

Abbildung 4: Rad

Abbildung 5: Aussenbedingungen

Abbildung 6: Fahrzeugcharakteristik

5 Verbesserungspotentiale

Nehmen Sie bitte Kontakt mit uns auf, wenn Sie die angegebenen Verbesserungspotenziale diskutieren oder eine neue Verbesserungsrichtung vorschlagen möchten.

- 1. Berücksichtigung von Seitenwind
- 2. Berücksichtigung von Vorspur- und Kurvenwiderstand
- 3. Berücksichtigung von Schlupf
- 4. Berücksichtigung von Kraftschlussbeanspruchung in Abhängigkeit mit Schlupf s und Fahrzeugposition S (unterschiedliche Straßentypen, Regen...) $\mu(s,S)$
- 5. Reale Getriebe mit Drehmomentverlust
- 6. Eine genauere Modellierung des Rollwiderstands

Literatur

- [1] Tesla Model 3 Features and Specs.
- [2] Aniruddh Mohan, Shashank Sripad, Parth Vaishnav, and Venkatasubramanian Viswanathan. Automation is no barrier to light vehicle electrification. arXiv preprint arXiv:1908.08920, 2019.