

Systemy Analagowe i Cyfrowe

LAB nr 1

Wzmacniacze operacyjne

Autorzy:	Aleksander Łyskawa 275462 Kacper Karkosz 275495	
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka	
Termin zajęć:	pon 13:15-15:30	
Prowadzący:	dr inż. Marek Kukawczyński	
Data:	20.03.2024	

1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie układu wzmacniacza odwracającego i nieodwracającego, których wzmocnienie K_U osiągnie odpowiednio 180 $\left[\frac{V}{V}\right]$, oraz 12 $\left[\frac{V}{V}\right]$. Rzeczywisty układ został skonstruowany przy wykorzystaniu wzmacniacza odwracającego TL061 oraz kilku rezystorów do ustalenia wzmocnienia układu.

Następnie przeprowadzono badania na zaprojektowanym układzie, aby uzyskać następujące charakterystyki:

- charakterystykę przejściową $U_{wy} = f(U_{we})$
- charakterystyki częstotliwościowe $|K_U| = f(f)$ oraz $\phi = f(f)$

Charakterystyki zostały wyznaczone na podstawie:

- symulacji w programie LTSpice
- dokonanie pomiarów na fizycznie zbudowanym układzie

1.1 Dobór rezystorów

W celu uzyskania zadanej wartości wzmocnienia $K_U = 180 \left[\frac{V}{V} \right]$, musieliśmy dobrać dwa rezystory R_1 oraz R_2 tak, aby iloraz ich rezystancji $\frac{R_2}{R_1}$ wynosił $180 \left[\frac{V}{V} \right]$:

$$K_U = \frac{R_2}{R_1} = 180 \left[\frac{V}{V} \right]$$

Dobraliśmy zatem wartości z szeregu:

- $R_1 = 1[k\Omega]$
- $R_2 = 180[k\Omega]$

Natomiast wartość rezystancji rezystora R_3 otrzymujemy z równoległego połączenia rezystorów R_1 oraz R_2 :

$$R_3 = \frac{R_1 \cdot R_2}{R_1 + R_2} = 0.994 [k\Omega] \approx R_1$$

Dla wzmacniacza nieodwracającego, w celu uzyskania wzmocnienia K_U na zadanym poziomie $12 \left\lceil \frac{V}{V} \right\rceil$, wartości rezystorów wynosiły odpowiednio:

- $R_1 = 1[k\Omega]$
- $R_2 = 12 [k\Omega]$
- $R_3 \approx R_1 = 1[k\Omega]$

1.2 Rzeczywiste wartości rezystorów

Rzeczywiste wartości rezystorów zostały zmierzone przy pomocy multimetru z funkcją omomierza, i wynosiły odpowiednio:

- $R_1 = 0.98654 [k\Omega]$
- $R_2 = 178,08 [k\Omega]$
- $R_3 = 1.9936 [k\Omega]$

1.3 Schemat w LTSpice

Rysunek 1: Schemat wzmacniacza odwracającego

Rysunek 2: Schemat wzmacniacza nieodwracającego

2 Symulacje w LTSpice

2.1 Charakterystyka przejściowa

2.2 Wykres zależności modułu wzmocnienia i fazy od częstotliwości sygnału

3 Badanie układu rzeczywistego

3.1 Charakterystyka przejściowa

Rysunek 3: charakterystyka przejściowa $U_{wy}=f(U_{we})$

$$\left| K_U \right| = \frac{4, 3 \cdot 5}{6, 2 \cdot 0, 2} = \frac{21.5}{1, 24} = 17, 33 \left[\frac{V}{V} \right]$$
 (1)

3.2 Tabela pomiarowa

Rysunek 4: Tabela pomiarowa do wyznaczenia charakterystyk częstotliwościowych

F	U _{we}	U_{wy}	ф	K
[Hz]	[mV]	[V]	[°]	[V/V]
10	488	8,64	-179	17,70
20	493	8,64	-179	17,53
40	492	8,64	-179	17,56
70	492	8,64	-179	17,56
100	496	8,64	-179	17,42
200	496	8,64	-179	17,42
400	496	8,64	-177	17,42
700	496	8,64	-175	17,42
1000	496	8,56	-171	17,26
2000	496	8,4	-164	16,94
4000	500	7,76	-151	15,52
7000	504	6,56	-138	13,02
10000	508	5,44	-124	10,71
20000	516	3,24	-110	6,28
40000	524	1,72	-98,3	3,28
70000	524	0,992	-92,7	1,89
100000	524	0,704	-90,7	1,34
200000	536	0,36	-85,6	0,67
400000	540	0,18	-76	0,33
700000	540	0,102	-64,6	0,19
1000000	512	0,068	-54,7	0,13

3.3 Wykresy

4 Wnioski

- Wykresy charakterystyk częstotliwościowych generowane przez program LTSpice, są
 porównywalne z wyznaczonymi przy pomocy pomiarów. Niewielkie różnice w kształcie
 charakterystyk mogą być wynikiem niedoskonałości wykonania poszczególnych elementów składających się na badany układ, oraz ograniczoną liczbą pomiarów dla rzeczywistego układu.
- Charakterystyka przejściowa zarejestrowana w programie LTSpice, wykazuje niemal identyczne cechy jak ta wyznaczona przy użyciu oscyloskopu. Sugeruje to poprawność konstrukcji układu.
- Spodziewane wzmocnienie wynosiło około 180[V]. Analiza danych tabelarycznych pokazuje, że na początku eksperymentu wzmocnienie utrzymywało się na poziomie $17,70\left[\frac{V}{V}\right],$ jest to ponad dziesięciokrotnie mniej niż wartość oczekiwana. Przyczyną może być przeprowadzanie pomiarów na zbyt wysokim napięciu wejściowym, wynoszącym 500[mV] co spowodowało, że wzmocnienie K_U rzędu $180\left[\frac{V}{V}\right]$ nie mogło zostać osiągnięte przy zasilaniu wzmaczniacza równym 24[V]. Inną przyczyną mogło być błędne nastawienie tłumienia sondy oscyloskopu na 10x.