1. Into

Public key cryptography - is a method of encrypting, which allows individuals to securely communicate without sharing the secret key.

2. Asymmetric encryption.

Trapdoor one way function - function that can be easily computed in one way, and hard in the inverse without special(secret) information(trapdoor). In this case forward -> encrypt. Inverse -> decrypt.

Private key - is key to decrypt message. Public key - is key to encrypt message.

For signatures private key enables to sign and public to verify this sign validity.

Arithmetic functions, that considered as a one way(not proofed)

- 1. Multiplication and factorization
- 2. $x^y \mod n = z \Longrightarrow \text{ find } y$
- 3. $x^y \mod n = z \Longrightarrow \text{ find } x$
- 4. $x^2 \mod n$. n not prime, $jacobi(z/n)=1 \Longrightarrow find x$
- 5. $g^ab \mod p => find a$

3. Group

Group is set of elements, that are related to each other according to certain well-defined rules.

 Z_p^* - is a group with nonzero integers between 1 and p-1 modulo some prime nomber p.

3.1. Axioms

Operation for example is a multiplication.

- 1. Closure $a, b \in G, a * b = c \rightarrow c \in G$
- 2. Associativity a * (b * c) = (a * b) * c
- 3. Identity existence a * 1 = a
- 4. Inverse existence a * b = 1

A group is commutative if a * b = b * a A group is cyclic if there is generator g

$$g \in G, \forall x \in G, \exists n : g^n = x$$

3.2. How to choose or check that a is a generator?

Theorem $g \in Z_p^*$ is a generator of Z_p^* if and only if $g^{\frac{p-1}{q}} \neg \equiv 1 \mod p$ for all primes q such that $q \mid (p-1)$

4. Diffie-hellman

Protocol:

1. Choose large prime p and large generator a in \mathbb{Z}_p^* , choose x_1 , where $0 < x_1 < p-1$

5. Rsa

Public key can encrypt.

Private key can decrypt.

X represents a number in Z_n^* , binary value of X must be less than n.(also n and x are coprime, can just check that $\neg x|e$)

Public key is a pair of (n, e)

Y is a ciphertext. $Y = (x^e \mod n)$

Decryption: the private key is d. $y^d \mod n = x$

$$x^{ed} \bmod n = x \bmod n$$

$$x^{ed-1} \bmod n = 1 \bmod n$$

It's possible only when:

$$ed - 1 = k\varphi(n)$$

$$x^{k\varphi(n)+1} \operatorname{mod} n = 1x \operatorname{mod} n$$

First, choose p and q, count n=p*q, count $\varphi(n) = (p-1)(q-1)$

Second, choose e coprime to n. Solve equation $ed = 1 \mod \varphi(n)$. $d = e^{-1} \mod \varphi(n)$