

Por: Juan Pablo Lobato

Índice:

D	iseño y Modelado de la Arquitectura de Comunicación	. 3
	Análisis de Modelos	. 3
	Diseño Lógico y Segmentación	. 4
2.	Capa Física – Cálculos y Selección de Tecnologías	. 5
	2.1 Cálculo de la capacidad de los enlaces	. 5
	2.2 Selección de Técnicas de Modulación	. 5
	2.3 Evaluación de la Eficiencia del Encapsulamiento	. 6
3.	Capa de Red – Direccionamiento, Subneteo y Enrutamiento	. 7
	3.1 Diseño del esquema de direccionamiento IP:	. 7
	3.2 Enrutamiento y rutas óptimas:	. 8
	Capa de Transporte – Selección de Protocolos y Cálculo del Tamaño de Ventar	
	4.1 Selección de Protocolos de Transporte	
	4.2 Cálculo del Tamaño de Ventana en TCP	. 9
5.	Capa de Aplicación – Servicios, Multiplexación y Multimedia	. 9
	5.1 Implementación de Servicios y Resolución de Nombres	. 9
	5.2 Servicios Multimedia	. 9
6.	Seguridad – Estrategias y Configuración	10
	6.1 Políticas y Medidas de Seguridad	10
	6.2 Cifrado y Autentificación	10
7.	Implementación en Cisco Packet Tracer	10
	7.1 Construcción de la Topología	11
	7.2 Configuración de Protocolos y Servicios	15

Diseño y Modelado de la Arquitectura de Comunicación

Análisis de Modelos

Modelo OSI

Capa 7: Aplicación	 Función: interfaz entre el usuario final y las aplicaciones. Protocolos: HTTP/HTTPS, FTP, SMTP, SNMP, DNS, Telnet. Integración: portales web para los ciudadanos, interfaces de control de tráfico, sistemas de gestión, aplicaciones de monitores ambiental.
Capa 6: Presentación	 aplicaciones de monitores ambiental Función: traducción de datos entre formatos ya sea cifrado, descifrado o de compresión o descompresión. Protocolos: SSL/TLS, JPEG, MPEG, ASCII, Unicode. Integración: conversión de formatos para imágenes de videovigilancia, cifrado de datos, compresión de stream.
Capa 5: Sesión	 Función: establece, administra y finaliza conexiones entre aplicaciones locales y remotas. Protocolos: NetBIOS, RPC, SIP. Integración: gestión de sesiones para videoconferencias, gestión de sesiones para sistemas de control de acceso en edificios públicos.
Capa 4: Transporte	 Función: segmentación, corrección de errores y control de flujo de extremo a extremo. Protocolos: TCP, UDP. Integración: TCP para transacciones críticas, UDP para streaming de cámaras y sensores loT.
Capa 3: Red	 Función: enrutamiento de paquetes, optimización de caminos y direccionamiento lógico. Protocolos: IP (IPv4/IPv6), ICMP, OSPF, BGP. Integración: interconexión entre los diferentes segmentos de la red.
Capa 2: Enlace de Datos	 Función: acceso al medio, direccionamiento físico (MAC), detección de errores. Protocolos: Ethernet, Wi-Fi, PPP, ATM, Frame Relay. Integración: switches en redes internas, conexión Wi-Fi para ciertos usuarios, enlaces punto a punto entre segmentos de la red.
Capa 1: Física	 Función: transmisión de bits a través del medio físico Protocolos: Cables (UTP, fibra óptica), conectores, frecuencia de radio. Integración: cableado de fibra en los edificios y en las ciudades, cableado cat6a en cada para conectar con el dispositivo final y radioenlace entre edificios.

Modelo TCP/IP

Capa 4: Aplicación	 Función: une la función de las tres capas 5, 6 y 7 de OSI. Protocolos: HTTP, FTP, SMTP, Telnet, SSH, SNMP, DNS. Relación con modelo OSI: combina la interfaz de usuario, representación de datos y control de sesión.
	 Integración: los servicios de aplicación que requieren los diferentes servicios.
Capa 3: Transporte	 Función: entrega de datos extremo a extremo Protocolos: TCP y UDP Relación con modelo OSI: corresponde a la capa de transporte, capa 4. Integración: asegura la fiabilidad en las comunicaciones y la eficiencia en la transmisión.
Capa 2: Internet	 Función: enruaminto de datagramas a través de redes. Protocolos: IP, ICMP, IGMP, ARP. Relación con modelo OSI: capa red, capa 3. Integración: enrutamiento entre redes.
Capa 1: Acceso de la Red	 Función: interfaz con hardware de red y medios físicos. Protocolos: Ethernet, Token Ring, FDDI, Wi-Fi Relación con modelo OSI: combina las capas Físicas y de Enlace de Datos. Integración: infraestructura física y de enlace que permite la comunicación local y entre ubicaciones.

Diseño Lógico y Segmentación

2. Capa Física – Cálculos y Selección de Tecnologías

2.1 Cálculo de la capacidad de los enlaces

Fórmula de Shanon

$$C = B * \log_2(1 + SNR)$$

Donde:

C = Capacidad del canal en bits por segundo (bps)

B = Ancho de banda del canal en Hertzios (Hz)

SNR = Relación señal-ruido (debe convertirse de dB a escala lineal)

Cómo convertir SNR de dB a escala lineal

 $SNRlineal = 10^(SNR(dB)/10)$

Aplicación a nuestra infraestructura:

1. Para enlaces inalámbricos entre edificios

B = 80 MHz

SNR = 18 dB

SNRlineal = 10^(18/10) = 10^1,8 = 63,1

Formula de Shannon $\rightarrow C = 80000000 * \log_2(1 + 63,1) = 480000000 bps = 480 Mbps$

2. Para enlaces críticos, fibra óptica

B = 400 MHz

SNR = 30 dB

 $SNRlineal = 10^{(30/10)} = 1000$

Formula de Shannon $\rightarrow C = 400000000 * \log_2(1 + 1000) = 3990000000 bps = 3,99 Gbps$

3. Para enlaces con cable Cat 6a

B = 500 MHz

SNR = 35dB

SNRlineal = 10^(35/10) = 10^3,5 = 3162,28

Formula de Shannon $\rightarrow C = 500000000 * \log_2(1 + 3162,28) = 5815000000 bps = 5,82 Gbps$

2.2 Selección de Técnicas de Modulación

Modulación	Bits por símbolo	Eficiencia	Robustez frente	Aplicaciones
		espectral	a ruido	adecuadas

BPSK	1	Baja	Muy alta	Enlaces críticos
				con bastante
				ruido
QPSK	2	Media	Alta	Comunicaciones
				móviles básicas
16-QAM	4	Alta	Media	Wi-Fi, enalces
				con buena SNR
64-QAM	6	Muy alta	Baja	LAN, enlaces
				con excelente
				SNR
256-QAM	8	Extremadamente	Muy baja	Fibra óptica,
		alta		enlaces óptimos

Selección para la infraestructura:

Enlaces cableados:

- o Dentro de edificios: modulación **256-QAM**, debido a su alta eficiencia espectral.
- o Entre edificios cercanos: modulación **16-QAM**, compleja pero velocidad alta.

Enlaces inalámbricos:

- Radioenlaces punto a punto: modulación 16-QAM, equilibrio entre velocidad y resistencia a interferencias.
- Redes Wi-Fi: modulación 64-QAM, alta eficiencia espectral con capacidad de adaptarse a distintas condiciones, podemos cambiarlo a BPSK en condiciones malas.
- Red de IoT: modulación QPSK, gran robustez frente a interferencias externas, y buena para transmisión de video en lo que importa es la velocidad.

2.3 Evaluación de la Eficiencia del Encapsulamiento

Ejemplo Práctico: Datos de una cámara de videovigilancia

Datos útiles: 1400 bytes

Sobrecarga por capa:

4. Capa Aplicación (RTP para video): 12 bytes

3. Capa Transporte (UDP): 8 bytes

2. Capa de Red (IPv4): 20 bytes

1. Capa Enlace (Ethenet): 18 bytes

Preámbulo y delimitadores: 8 bytes

Total: 66 bytes

Cálculo de la eficiencia:

Tamaño total del paquete: 1400 + 66 = 1466 bytes

Eficiencia = (Datos útiles / Tamaño total) x 100 = (1400/1466) x 100) = 95,5%

La eficiencia es de un 95,5% debido al tamaño de los datos.

3. Capa de Red – Direccionamiento, Subneteo y Enrutamiento

3.1 Diseño del esquema de direccionamiento IP:

Segmento	Bloque de dirección IP	Máscara	CIDR
Servicios Gubernamentales	10.1.0.0	255.255.254.0	/23
Seguridad pública y emergencias	10.2.0.0	255.255.254.0	/23
Transporte y monitoreo ambiental	10.4.0.0	255.255.254.0	/23
Servicios Multimedia	10.3.0.0	255.255.254.0	/23
Gestión y administración de red	10.0.254.0	255.255.254.0	/23

Cálculos para servicios gubernamentales – 10.0.0.0/24

Dirección de red: 10.0.0.0

• Dirección broadcast: 10.0.0.255

Rango de direcciones válidas para host: 10.0.0.1 – 10.0.0.254

• Número total de hosts disponibles: 254

Cálculos para seguridad pública - 10.0.1.0/24

Dirección de red: 10.0.1.0

Dirección broadcast: 10.0.1.255

Rango de direcciones válidas para hosts: 10.0.1.1 – 10.0.1.254

Número total de hosts disponibles: 254

Cálculo para transporte y monitoreo - 10.0.2.0/24

• Dirección de red: 10.0.2.0

Dirección broadcast: 10.0.2.255

Rango de direcciones válidas para hosts: 10.0.2.1 – 10.0.2.254

Número total de hosts disponibles: 254

Cálculo para servicios multimedia – 10.0.3.0/24

• Dirección de red: 10.0.3.0

Dirección broadcast: 10.0.3.255

Rango de direcciones válidas para hosts: 10.0.3.1 – 10.0.3.254

Número total de hosts disponibles: 254

Explicación de porque la máscara /24

La he elegido por varias razones, entre ellas porque proporciona 254 direcciones IP utilizables (2^8-2), más que de sobra para los servicios municipales y porque limita el tráfico de broadcast a segmentos de un tamaño que se puede administrar con facilidad.

3.2 Enrutamiento y rutas óptimas:

En este algoritmo de dijktra vemos que en lo que más tarda en comunicar es a la red de emergencia, da igual por donde vayas porque la red de emergencias y transporte-monitoreo esta en una sola.

4. Capa de Transporte – Selección de Protocolos y Cálculo del Tamaño de Ventana

4.1 Selección de Protocolos de Transporte

Características	TCP	UDP	Servicio municipal óptimo
Orientado a conexión	Sí	No	TCP: servicios gubernamentales críticos
Control de flujo	Sí	No	TCP: transmisión de documentos oficiales
Control de congestión	Sí	No	TCP: servicios ciudadanos
Detección/corrección de errores	Sí	No	TCP: datos financieros
Entrega ordenada	Sí	No	TCP: bases de datos distribuidas
Bajo overhead	No	Sí	UDP: streaming de cámaras
Baja latencia	No	Sí	UDP: aviso de emergencias
Multicast/broadcast	No	Sí	UDP: avisos a ciudadanos

1. Servicios gubernamentales:

Protocolo: TCP

Justificación: lo principal que buscamos en estas transacciones son la integridad de los datos y la seguridad, ya que cualquier error en ellos puede conllevar a problemas legales.

2. Servicios de seguridad pública y emergencias:

Protocolo: Híbrido (UDP para video, TCP para datos)

Justificación: las cámaras necesitan rapidez en la transmisión de datos, no importa si un frame se pierde ocasionalmente.

3. Transporte y monitoreo ambiental:

Protocolo: UDP

Justificación: los sensores IoT envían datos continuamente lo que colapsaría el protocolo TCP.

4. Servicios multimedia para ciudadanos:

Protocolo: UDP para streaming y TCP para VoD Justificación: para el streaming al ser en vivo debemos ceder la posible pérdida de algunos frame.

4.2 Cálculo del Tamaño de Ventana en TCP

Ventana óptima = Ancho de banda x RTT

RTT = 50 ms = 0.050 s

MSS = 1500 bytes

Ancho de banda = 300 Mbps (esto es una suposición) = 300000000 bps

Ventana óptima = 300000000 bps x 0,050 s = 15000000 bits

Convierto de bits a bytes:

15000000 / 8 = 1875000 bytes

Número de segmentos MSS en tránsito simultáneamente:

Número de segmentos = Tamaño de ventana / MSS = 1875000 bytes / 1500 bytes/segmento = 1250 segmentos

5. Capa de Aplicación – Servicios, Multiplexación y Multimedia

5.1 Implementación de Servicios y Resolución de Nombres

- DNS: configurare un servidor DNS para la red. Así la red podrá traducir el nombre de un dominio en una dirección IP.
- FTP/SFTP: en la red gubernamental pondré un servidor de archivos para poder almacenarlos todos.
- HTTP/HTTPS: para colocar web para la ciudadanía y como web del ayuntamiento.

5.2 Servicios Multimedia

- Servicio de Streming con protocolo UDP, se utilizará en cámaras de vigilancia y eventos públicos. Así garantizamos una baja latencia a pesar de perder de vez en cuando un poco de información en los paquetes
- Protocolo adaptativo: DASH para adaptarse a los cambios del ancho de banda: cat 6a, fibra o inalámbrica.

6. Seguridad – Estrategias y Configuración

6.1 Políticas y Medidas de Seguridad

Diseño de la red

Voy a dividir las zonas en 3, incluyendo la zona DMZ siendo 0 la más crítica donde más seguridad debe haber y 3 la menos. Esto facilitara la expansión de segmentos de la red en un futuro.

Zona	Nivel de	Recursos	Medidas
	Seguridad	Protegidos	Principales
Zona 0	Crítico	Base de datos,	Aislamiento físico,
		sistemas	autentificación
		financieros	MFA, cifrado total
Zona 1	Alto	Sistemas de	Firewalls, IPS/IDS,
		emergencia,	VPN
		servidores de	
		control	
Zona 2	Medio	Redes, servicios	VLANs y firewall
		de administración	

Para interconectar de forma segur los diferentes segmentos sensibles, configuraremos túneles VPN Ipsec site-to-site

6.2 Cifrado y Autentificación

- TSL/SSL: configuración para cifrar las comunicaciones críticas, por ejemplo portales web y transferencia.
- AAA: protocolo para autentificar a los usuarios, se implementara en un servidor.

7. Implementación en Cisco Packet Tracer

La red la hemos estructurado en tres router's: dmz, gubernamental y ciudadanía-transporte-emergencias:

7.1 Construcción de la Topología

Hemos creado servidores FTP, HTTP, DNS y AAA para almacenar datos autentificar al usuario hacer web proteger la web y traducir el dominio por la dirección ip correspondiente. También vpn, algunos acls y configuración en los firewalls.

Aquí algunas pruebas:

El ACL en un firewall:

```
ciscoasa(config) # show access-list
access-list cached ACL log flows: total 0, denied 0 (deny-flow-max 4096) alert-interval
300
access-list outside-in; 1 elements; name hash: 0x85d4ba4a
access-list outside-in line 1 extended permit ip 10.0.0.0 255.0.0.0 any(hitcnt=0)
0xd5bc6bc0
ciscoasa(config) #
ciscoasa#
```

7.2 Configuración de Protocolos y Servicios

Capturas de pruebas del funcionamiento de la red y su configuración: La configuración de un ACS, todos siguen el mismo patron:

La web de la dmz:

