1-010 Energy for the particle in a 3-D $\bigvee (\vec{r}) = 0$ か(スリモ)中の V(r) = \approx elsesture \psi = 0 $\forall n_{x}, n_{y}, n_{z}$ $(x, y, z) = \left(\frac{2}{a} \sin \frac{n_{x} \pi x}{a}\right) \left(\frac{2}{b} \sin \frac{n_{y} \pi y}{b}\right)$ $X\left(\sqrt{2}Sin\frac{n_2\pi 2}{c}\right)$

 $=\frac{\pi^{2}+2}{2m}\left(\frac{n^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}+\frac{n^{2}}{c^{2}}\right)$

Spectroscopy interaction Spectroum Presence of different frequency or wome length in a light Sunlight tw = hc Different colour represent different 2 Matter Interaction atoms/molecules. simplest example. or H-like atoms Emitted light Bohr model hD= 1E (semi classical) = Ex-Ei

The energy levels of H-like atoms En = - m z eq 1 8622 n2 (Electronic energy levels) n=3 PASCHEN = II Real If an electron transition n=2 popper than No to No emitten photon · emergy = AE = | Ei-Ef| $=h\nu = \left(-\frac{mz^2e^4}{86^2h^2} \frac{1}{n_i^2}\right) - \left(-\frac{mz^2e^4}{86^2h^2} \frac{1}{n_f^2}\right)$ = mzer (1/2 - 1/2) = hc $\Rightarrow \frac{1}{\lambda} = Z^2 \frac{me^4}{86^4 c h^3} \left(\frac{1}{\eta^2} - \frac{1}{\eta^2} \right)$ $= Z^2 \mathcal{R}_{\infty} \left(\frac{1}{\eta_1^2} - \frac{1}{\eta_1^2} \right)$ Z = atomic number Ros = Rydberg constant = 1.09737 X 10 7 m-1

Quantum Mechanics 2 atomicstates
One-electroni actomic state is defined by quantum numbers on I me mis one or light
quantum numbers or ilimi
n = poincipal quantum number
L= Orbital angular momentum quantum number
$n = 1, 2, 3, \dots$ $\Delta l = \pm 1 \text{ only}$
$L = 0, 1, \dots, n-1$. For from sition s : $1s \rightarrow np ns \leftarrow 2p \rightarrow nd$
me = magnetic quamturin number
-1, -htl, -ht2, (b-2) , (b-1), th
ms = spin magnetic quantum number.
1-1+8 total angular momentum by coupling the
Orbital angularmomentum & fin angular momentum
Fine structure in H-atom energy levels (Relativistic effect of spin-orbit) Enj = - 13:6 eV
$E_{nj} = -\frac{13.6 \text{ eV}}{n^2} \left[\frac{1 + \alpha^2}{n^2} \left(\frac{n}{3 + 2} - \frac{3}{4} \right) \right]$
$d = finestructure constant \frac{d}{137} (dimensionless)$

Spectoscopy. Types of Ad Atomic (AES) Emission spectroscopy (A.AS) Assorption spectroscopy (AFS) fluorexence spectroscopy (MS)Mast spectroscopy Ariother: X-ray Alusrescence (XRF) AAS, AES, AFS Interactions between UV-visible light and the valence electrons of free gaseous adoms. XRF I high energy photon or charged particles Collide with inner-shell electrons of atom, initiating transitions, cith eventual emission of

XAS - X-roy absorption spectroscopy

X-ray photons.

Molecular spectra
In case of molecules, The vibration of the rise to
Grives vise to
o vibrational energy which is also quantized
(Quintum Mechanics)
$= \frac{1}{\lambda} \Delta E = \frac{hc}{\lambda} \lambda \lambda \text{ Infra-red}$
order of the
4 '
2) the notation gives is also
2) the rotation gives rise to rotational energy which is also quantized Quantum Mechanics
The separations
order corresponding
to microwave
~100pm < 2 Cn1 cm

End.