

SEQUENCE LISTING

1

<110> MORGAN, BRYAN P.
RUSHMERE, NEIL K.
HINCHLIFFE, STEWART J.
VAN DEN BERG, CARMEN W.

<120> MODIFIED BIOLOGICAL MATERIAL

<130> WN/KH/JJ/WCM

<140> 09/673,032
<141> 2000-12-06

<150> PCT/GB99/01085
<151> 1999-04-08

<150> GB 9807520.3
<151> 1998-04-09

<160> 24

<170> PatentIn Ver. 2.1

<210> 1
<211> 123
<212> PRT
<213> Porcus sp.

CJ
<400> 1
Met Gly Ser Lys Gly Gly Phe Ile Leu Leu Trp Leu Leu Ser Ile Leu
1 5 10 15

Ala Val Leu Cys His Leu Gly His Ser Leu Gln Cys Tyr Asn Cys Ile
20 25 30

Asn Pro Ala Gly Ser Cys Thr Thr Ala Met Asn Cys Ser His Asn Gln
35 40 45

Asp Ala Cys Ile Phe Val Glu Ala Val Pro Pro Lys Thr Tyr Tyr Gln
50 55 60

Cys Trp Arg Phe Asp Glu Cys Asn Phe Asp Phe Ile Ser Arg Asn Leu
65 70 75 80

Ala Glu Lys Lys Leu Lys Tyr Asn Cys Cys Arg Lys Asp Leu Cys Asn
85 90 95

Lys Ser Asp Ala Thr Ile Ser Ser Gly Lys Thr Ala Leu Leu Val Ile
100 105 110

Leu Leu Leu Val Ala Thr Trp His Phe Cys Leu
115 120

<210> 2
<211> 773
<212> DNA

RECEIVED

APR 03 2002

TECH CENTER 1600/2900

<213> Porcus sp.

<220>

<221> CDS

<222> (90) .. (458)

<400> 2
gaaaagacgc gcaggccggg ccgctctccc gacggggagt agcgctgcag ccggacgcag 60
ggtcgcgtta gaatccatag acggtcacg atg gga agc aaa gga ggg ttc att 113
Met Gly Ser Lys Gly Gly Phe Ile
1 5

ttg ctc tgg ctc ctg tcc atc ctg gct gtt ctc tgc cac tta ggt cac 161
Leu Leu Trp Leu Leu Ser Ile Leu Ala Val Leu Cys His Leu Gly His
10 15 20

agc ctg cag tgc tat aac tgt atc aac cca gct ggt agc tgc act acg 209
Ser Leu Gln Cys Tyr Asn Cys Ile Asn Pro Ala Gly Ser Cys Thr Thr
25 30 35 40

gcc atg aat tgt tca cat aat cag gat gcc tgt atc ttc gtt gaa gcc 257
Ala Met Asn Cys Ser His Asn Gln Asp Ala Cys Ile Phe Val Glu Ala
45 50 55

gtg cca ccc aaa act tac tac cag tgt tgg agg ttc gat gaa tgc aat 305
Val Pro Pro Lys Thr Tyr Tyr Gln Cys Trp Arg Phe Asp Glu Cys Asn
60 65 70

ttc gat ttc att tcg aga aac cta gcg gag aag aag ctg aag tac aac 353
Phe Asp Phe Ile Ser Arg Asn Leu Ala Glu Lys Lys Leu Lys Tyr Asn
75 80 85

tgc tgc cgg aag gac ctg tgt aac aag agt gat gcc acg att tca tca 401
Cys Cys Arg Lys Asp Leu Cys Asn Lys Ser Asp Ala Thr Ile Ser Ser
90 95 100

ggg aaa acc gct ctg ctg gtg atc ctg ctg gta gca acc tgg cac 449
Gly Lys Thr Ala Leu Leu Val Ile Leu Leu Val Ala Thr Trp His
105 110 115 120

ttt tgt ctc taactgtaca ccaggagagt ttctcctcaa ttccctctgt 498
Phe Cys Leu

ctctctgttc ctatccca tgctgcggtg ttccaaaggc tgtgtatgct ccagcttctt 558

cctgttggga aggactaac ctagctttag cactttggat tagagagaga aactttgagc 618

gactttgaag accaggcctg ttggcagaga agacctgtca gaggggaaac gtttaagag 678

tgaagcacag gtgatttgag cgaggcctat gcgtttcct ctgctttgg caggaccagc 738

tttgcggtaa ccattcgata gattccacaa tcctt 773

<210> 3
<211> 17
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 3
tgytayaayt gyathaa 17

<210> 4
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 4
agrtcytyyt krcarca 17

<210> 5
<211> 36
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

C2
Art
<400> 5
ccagtgagca gagtgacgag gactcgagct caagct 36

<210> 6
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 6
ccagtgagca gagtgacg 18

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 7
gaggactcga gctcaagc 18

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 8
tgcactacgg ccatgaattg 20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 9
tcgttgaagc cgtgccaccc 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 10
aggtccttct tgcaagcgtg 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 11
cttctccgct aggtttctcg 20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 12
gcattccatcg aacctccaac 20

```
<210> 13  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: Primer  
  
<400> 13  
ggttctagag tagcgctgca gccggac  
  
<210> 14  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: Primer  
  
<400> 14  
ggtggatcct tctctgccaa caggcct  
  
<210> 15  
<211> 1637  
<212> DNA  
<213> Porcus sp.  
  
<220>  
<221> modified_base  
<222> (17)  
<223> a, t, c, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (1323)  
<223> a, t, c, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (1330)  
<223> a, t, c, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (1357)  
<223> a, t, c, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (1378)  
<223> a, t, c, g, other or unknown  
  
<220>  
<221> modified_base
```

```
<222> (1403)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1424)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1437)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1445)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1513)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1520)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1527)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1535)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1544)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1563)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1588)
<223> a, t, c, g, other or unknown

<220>
<221> modified_base
<222> (1609)..(1611)
<223> a, t, c, g, other or unknown
```

<220>
 <221> modified_base
 <222> (1625)
 <223> a, t, c, g, other or unknown

<400> 15
 ccaccgcggc ggcggcncgc tctagaacta gtggatcccc cgggctgcag gaattcggca 60
 cgagatcg tcttaatcg ggaggtcgca gagtccggga gcccgtcggg gtcggcgttc 120
 cccgcgcaca tgagtccct gcccgggagc gccccccgcgg tgaggcgct aatgggcgg 180
 cagacgcgcgc cggcgctgt gctgctgctg ctgctgctgt gtatccggc tgccgagggt 240
 gactgcagcc ttccacccga tgtacctaata gccaaccag atttgcgagg tcttgcaga 300
 ttccctgaac aaaccacaaat aacataaaaaa tctaacaagg gctttgtcaa agttcctggc 360
 atggcagact cagtgcctg tcttaatgt aatggtcag aagttgcaga attttgtaa 420
 cgtagctgtg atgttccaaac caggctacat ttgcacatctc taaaaaaagtc ttacagcaaa 480
 cagaattatt tcccagaggg ttccacccgtg gaatatgagt gcccgtaaagg ctataaaaagg 540
 gatcttactc tatcagaaaa actaacttgc cttcagaatt ttacgtggc caaacctgat 600
 gaatttgca aaaaaaaaaa atgtccgact cctggagaac taaaaaatgg tcatgtcaat 660
 ataacaactg acttgttatt tggcgcatcc atcttttct catgtaacgc agggtacaga 720
 ctatggtg caacttctag ttactgttt gccatagcaa atgatgtga gtggagtgat 780
 ccattgccag attgccaaga aatttctcca actgtcaaag ccataccagc tggtgagaaa 840
 cccatcacag taaatttcc agcaacaaag tatccagcta ttcccaggc cacaacgagt 900
 ttccatccaa gtacatctaa aaatcgagga aacccttctt caggcatgag aatcatgtcg 960
 tctggtagcca tgcacttat tgcaggaggt gttgctgtt ttataataat tggtgccta 1020
 attctagcca aaggtttctg gcactatgga aaatcaggct cttaccacac tcatgagaac 1080
 aacaaagccg ttaatgttgc attttataat ttacctgcga ctggcgatgc cgcagatgt 1140
 agacctggta attaacaaaaa ggacgtgcgt gtgtacact gacagtttg cttatggtgc 1200
 tagtaaccat tggctagctg acttagccaa agaagagttt agaagaaaagt gcacacaagt 1260
 acacagaata tttcagttt cttaaaactt tcagggtggg gtggacatag ttgtggtag 1320
 tgnctctcgntttcatggc ttaatggc ttaaggncata taggaatgca cagaaccnnaa 1380
 gagaaacaaa tctatccgtaa antacatcc tcaacacttc taanactt gaaatngaa 1440
 caagntcata agattggag caattacttt cccaaaagg tgagaaaaat ggagaaattt 1500
 ggtcatgggt agnaattttt gaaaaangaa acccnaaaagg ggantttcc ccccaaagg 1560
 ggnnaagggtt ttttattta attaaggnaa aaaaaaaaaa aaaaacccnn ngggggggccc 1620
 cgggncccat ttccct 1637

C2
Cont

<210> 16
 <211> 978
 <212> DNA
 <213> Porcus sp.

<400> 16
 cacgagccgc cggcgctgct gctgctgctg ctgctgctgt gtatccggc tgccgagggt 60
 gactgcagcc ttccacccga tgtacctaata gccaaccag atttgcgagg tcttgcaga 120
 ttccctgaac aaaccacaaat aacataaaaaa tctaacaagg gctttgtcaa agttcctggc 180
 atggcagact cagtgcctg tcttaatgt aatggtcag aagttgcaga attttgtaa 240
 cgtagctgtg atgttccaaac caggctacat ttgcacatctc taaaaaaagtc ttacagcaaa 300
 cagaattatt tcccagaggg ttccacccgtg gaatatgagt gcccgtaaagg ctataaaaagg 360
 gatcttactc tatcagaaaa actaacttgc cttcagaatt ttacgtggc caaacctgat 420
 gaatttgca aaaaaaaaaa atgtccgact cctggagaac taaaaaatgg tcatgtcaat 480
 ataacaactg acttgttatt tggcgcatcc atcttttct catgtaacgc agggtacaga 540
 ctatggtg caacttctag ttactgtttt gccatagcaa atgatgtga gtggagtgat 600
 ccattgccag attgccaaga aatttctcca actgtcaaag ccataccagc tggtgagaaa 660
 cccatcacag taaatttcc aggtacaaa gccctatcat ctcctcagaa accctccaca 720
 gcaaatactc tagctacaga gttactacca actcctcagg aaccaccac agtaaatgt 780
 ccagatagta aagccatatac atctcctcag aaaccctcca cagtaataac tccagctaca 840
 gacttactac caactcctca ggaaccacc acagtaaatg ttccagatag taaagccata 900
 tcatctctc agaaaccctc cacagtaaat actccagctc agacttacta ccaactcctc 960

aggaacccac cacagtaa

978

<210> 17
 <211> 327
 <212> PRT
 <213> Porcus sp.

<400>	17																			
Met	Gly	Gly	Gln	Thr	Pro	Pro	Pro	Leu												
1					5				10								15			
Cys	Ile	Pro	Ala	Ala	Gln	Gly	Asp	Cys	Ser	Leu	Pro	Pro	Asp	Val	Pro					
					20				25							30				
Asn	Ala	Gln	Pro	Asp	Leu	Arg	Gly	Leu	Ala	Ser	Phe	Pro	Glu	Gln	Thr					
					35				40							45				
Thr	Ile	Thr	Tyr	Lys	Cys	Asn	Lys	Gly	Phe	Val	Lys	Val	Pro	Gly	Met					
					50				55							60				
Ala	Asp	Ser	Val	Leu	Cys	Leu	Asn	Asp	Lys	Trp	Ser	Glu	Val	Ala	Glu					
					65				70							80				
Phe	Cys	Asn	Arg	Ser	Cys	Asp	Val	Pro	Thr	Arg	Leu	His	Phe	Ala	Ser					
					85				90							95				
Leu	Lys	Lys	Ser	Tyr	Ser	Lys	Gln	Asn	Tyr	Phe	Pro	Glu	Gly	Phe	Thr					
					100				105							110				
Val	Glu	Tyr	Glu	Cys	Arg	Lys	Gly	Tyr	Lys	Arg	Asp	Leu	Thr	Leu	Ser					
					115				120							125				
Glu	Lys	Leu	Thr	Cys	Leu	Gln	Asn	Phe	Thr	Trp	Ser	Lys	Pro	Asp	Glu					
					130				135							140				
Phe	Cys	Lys	Lys	Gln	Cys	Pro	Thr	Pro	Gly	Glu	Leu	Lys	Asn	Gly						
					145				150							160				
His	Val	Asn	Ile	Thr	Thr	Asp	Leu	Leu	Phe	Gly	Ala	Ser	Ile	Phe	Phe					
					165				170							175				
Ser	Cys	Asn	Ala	Gly	Tyr	Arg	Leu	Val	Gly	Ala	Thr	Ser	Ser	Tyr	Cys					
					180				185							190				
Phe	Ala	Ile	Ala	Asn	Asp	Val	Glu	Trp	Ser	Asp	Pro	Leu	Pro	Asp	Cys					
					195				200							205				
Gln	Glu	Ile	Ser	Pro	Thr	Val	Lys	Ala	Ile	Pro	Ala	Val	Glu	Lys	Pro					
					210				215							220				
Ile	Thr	Val	Asn	Phe	Pro	Ala	Thr	Lys	Tyr	Pro	Ala	Ile	Pro	Arg	Ala					
					225				230							235				
Thr	Thr	Ser	Phe	His	Ser	Ser	Thr	Ser	Lys	Asn	Arg	Gly	Asn	Pro	Ser					
					245				250							255				

Ser Gly Met Arg Ile Met Ser Ser Gly Thr Met Leu Leu Ile Ala Gly
 260 265 270
 Gly Val Ala Val Ile Ile Ile Val Ala Leu Ile Leu Ala Lys Gly
 275 280 285
 Phe Trp His Tyr Gly Lys Ser Gly Ser Tyr His Thr His Glu Asn Asn
 290 295 300
 Lys Ala Val Asn Val Ala Phe Tyr Asn Leu Pro Ala Thr Gly Asp Ala
 305 310 315 320
 Ala Asp Val Arg Pro Gly Asn
 325

<210> 18
 <211> 325
 <212> PRT
 <213> Porcuss sp.

<400> 18
 His Glu Pro Pro Pro Leu Leu Leu Leu Leu Leu Cys Ile Pro
 1 5 10 15
 Ala Ala Gln Gly Asp Cys Ser Leu Pro Pro Asp Val Pro Asn Ala Gln
 20 25 30
 Pro Asp Leu Arg Gly Leu Ala Ser Phe Pro Glu Gln Thr Thr Ile Thr
 35 40 45
 Tyr Lys Cys Asn Lys Gly Phe Val Lys Val Pro Gly Met Ala Asp Ser
 50 55 60
 Val Leu Cys Leu Asn Asp Lys Trp Ser Glu Val Ala Glu Phe Cys Asn
 65 70 75 80
 Arg Ser Cys Asp Val Pro Thr Arg Leu His Phe Ala Ser Leu Lys Lys
 85 90 95
 Ser Tyr Ser Lys Gln Asn Tyr Phe Pro Glu Gly Phe Thr Val Glu Tyr
 100 105 110
 Glu Cys Arg Lys Gly Tyr Lys Arg Asp Leu Thr Leu Ser Glu Lys Leu
 115 120 125
 Thr Cys Leu Gln Asn Phe Thr Trp Ser Lys Pro Asp Glu Phe Cys Lys
 130 135 140
 Lys Lys Gln Cys Pro Thr Pro Gly Glu Leu Lys Asn Gly His Val Asn
 145 150 155 160
 Ile Thr Thr Asp Leu Leu Phe Gly Ala Ser Ile Phe Phe Ser Cys Asn
 165 170 175
 Ala Gly Tyr Arg Leu Val Gly Ala Thr Ser Ser Tyr Cys Phe Ala Ile
 180 185 190

Ala Asn Asp Val Glu Trp Ser Asp Pro Leu Pro Glu Cys Gln Glu Ile
 195 200 205
 Ser Pro Thr Val Lys Ala Ile Pro Ala Val Glu Lys Pro Ile Thr Val
 210 215 220
 Asn Phe Pro Gly Thr Lys Ala Leu Ser Ser Pro Gln Lys Pro Ser Thr
 225 230 235 240
 Ala Asn Thr Leu Ala Thr Glu Leu Leu Pro Thr Pro Gln Glu Pro Thr
 245 250 255
 Thr Val Asn Val Pro Asp Ser Lys Ala Ile Ser Ser Pro Gln Lys Pro
 260 265 270
 Ser Thr Val Asn Thr Pro Ala Thr Asp Leu Leu Pro Thr Pro Gln Glu
 275 280 285
 Pro Thr Thr Val Asn Val Pro Asp Ser Lys Ala Ile Ser Ser Ser Gln
 290 295 300
 Lys Pro Ser Thr Val Asn Thr Pro Ala Gln Thr Tyr Tyr Gln Leu Leu
 305 310 315 320
 Arg Asn Pro Pro Gln
 325

<210> 19
 <211> 376
 <212> PRT
 <213> Homo sapiens

C2
 Cont

<400> 19
 Pro Ser Val Pro Ala Ala Leu Pro Leu Leu Gly Glu Leu Pro Arg Leu
 1 5 10 15
 Leu Leu Leu Val Leu Leu Cys Leu Pro Ala Val Trp Gly Asp Cys Gly
 20 25 30
 Leu Pro Pro Asp Val Pro Asn Ala Gln Pro Ala Leu Glu Gly Arg Thr
 35 40 45
 Ser Phe Pro Glu Asp Thr Val Ile Thr Tyr Lys Cys Glu Glu Ser Phe
 50 55 60
 Val Lys Ile Pro Gly Glu Lys Asp Ser Val Thr Cys Leu Lys Gly Met
 65 70 75 80
 Gln Trp Ser Asp Ile Glu Glu Phe Cys Asn Arg Ser Cys Glu Val Pro
 85 90 95
 Thr Arg Leu Asn Ser Ala Ser Leu Lys Gln Pro Tyr Ile Thr Gln Asn
 100 105 110
 Tyr Phe Pro Val Gly Thr Val Val Glu Tyr Glu Cys Arg Pro Gly Tyr
 115 120 125

Arg Arg Glu Pro Ser Leu Ser Pro Lys Leu Thr Cys Leu Gln Asn Leu
 130 135 140

Lys Trp Ser Thr Ala Val Glu Phe Cys Lys Lys Ser Cys Pro Asn
 145 150 155 160

Pro Gly Glu Ile Arg Asn Gly Gln Ile Asp Val Pro Gly Gly Ile Leu
 165 170 175

Phe Gly Ala Thr Ile Ser Phe Ser Cys Asn Thr Gly Tyr Lys Leu Phe
 180 185 190

Gly Ser Thr Ser Ser Phe Cys Leu Ile Ser Gly Ser Ser Val Gln Trp
 195 200 205

Ser Asp Pro Leu Pro Glu Cys Arg Glu Ile Tyr Cys Pro Ala Pro Pro
 210 215 220

Gln Ile Asp Asn Gly Ile Ile Gln Gly Glu Arg Asp His Tyr Gly Tyr
 225 230 235 240

Arg Gln Ser Val Thr Tyr Ala Cys Asn Lys Gly Phe Thr Met Ile Gly
 245 250 255

Glu His Ser Ile Tyr Cys Thr Val Asn Asn Asp Glu Gly Glu Trp Ser
 260 265 270

Gly Pro Pro Pro Glu Cys Arg Gly Lys Ser Leu Thr Ser Lys Val Pro
 275 280 285

Pro Thr Val Gln Lys Pro Thr Thr Val Asn Val Pro Thr Thr Glu Val
 290 295 300

Ser Pro Thr Ser Gln Lys Thr Thr Thr Lys Thr Thr Thr Pro Asn Ala
 305 310 315 320

Gln Ala Thr Arg Ser Thr Pro Val Ser Arg Thr Thr Lys His Phe His
 325 330 335

Glu Thr Thr Pro Asn Lys Gly Ser Gly Thr Thr Ser Gly Thr Thr Arg
 340 345 350

Leu Leu Ser Gly His Thr Cys Phe Thr Leu Thr Gly Leu Leu Gly Thr
 355 360 365

Leu Val Thr Met Gly Leu Leu Thr
 370 375

<210> 20
 <211> 128
 <212> PRT
 <213> Homo sapiens

<400> 20
 Met Gly Ile Gln Gly Gly Ser Val Leu Phe Gly Leu Leu Leu Val Leu
 1 5 10 15

```

Ala Val Phe Cys His Ser Gly His Ser Leu Gln Cys Tyr Asn Cys Pro
          20           25           30

Asn Pro Thr Ala Asp Cys Lys Thr Ala Val Asn Cys Ser Ser Asp Phe
          35           40           45

Asp Ala Cys Leu Ile Thr Lys Ala Gly Leu Gln Val Tyr Asn Lys Cys
          50           55           60

Trp Lys Phe Glu His Cys Asn Phe Asn Asp Val Thr Thr Arg Leu Arg
          65           70           75           80

Glu Asn Glu Leu Thr Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe
          85           90           95

Asn Glu Gln Leu Glu Asn Gly Gly Thr Ser Leu Ser Glu Lys Thr Val
          100          105          110

Leu Leu Leu Val Thr Pro Phe Leu Ala Ala Ala Trp Ser Leu His Pro
          115          120          125

```

```

<210> 21
<211> 126
<212> PRT
<213> Rattus sp.

<400> 21
Met Arg Ala Arg Arg Gly Phe Ile Leu Leu Leu Leu Ala Val Leu
      1           5                   10                  15

Cys Ser Thr Gly Val Ser Leu Arg Cys Tyr Asn Cys Leu Asp Pro Val
      20          25                   30

Ser Ser Cys Lys Thr Asn Ser Thr Cys Ser Pro Asn Leu Asp Ala Cys
      35          40                   45

Leu Val Ala Val Ser Gly Lys Gln Val Tyr Gln Gln Cys Trp Arg Phe
      50          55                   60

Ser Asp Cys Asn Ala Lys Phe Ile Leu Ser Arg Leu Glu Ile Ala Asn
      65          70                   75                  80

Val Gln Tyr Arg Cys Cys Gln Ala Asp Leu Cys Asn Lys Ser Phe Glu
      85          90                   95

Asp Lys Pro Asn Asn Gly Ala Ile Ser Leu Leu Gly Lys Thr Ala Leu
      100         105                  110

Leu Val Thr Ser Val Leu Ala Ala Ile Leu Lys Pro Cys Phe
      115         120                  125

```

<210> 22
<211> 123
<212> PRT
<213> Murine sp.

<400> 22
 Met Arg Ala Gln Arg Gly Leu Ile Leu Leu Leu Leu Ala Val
 1 5 10 15
 Phe Cys Ser Thr Ala Val Ser Leu Thr Cys Tyr His Cys Phe Gln Pro
 20 25 30
 Val Val Ser Ser Cys Asn Met Asn Ser Thr Cys Ser Pro Asp Gln Asp
 35 40 45
 Ser Cys Leu Tyr Ala Val Ala Gly Met Gln Val Tyr Gln Arg Cys Trp
 50 55 60
 Lys Gln Ser Asp Cys His Gly Glu Ile Ile Met Asp Gln Leu Glu Glu
 65 70 75 80
 Thr Lys Leu Lys Phe Arg Cys Cys Gln Phe Asn Leu Cys Asn Lys Ser
 85 90 95
 Asp Gly Ser Leu Gly Lys Thr Pro Leu Leu Gly Thr Ser Val Leu Val
 100 105 110
 Ala Ile Leu Asn Leu Cys Phe Leu Ser His Leu
 115 120

C2
 Cnold

<210> 23
<211> 6
<212> PRT
<213> Homo sapiens

<400> 23
 Cys Cys Lys Lys Asp Leu
 1 5
 <210> 24
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Illustrative peptide
 <220>
 <221> MOD_RES
 <222> (7)
 <223> Any amino acid
 <220>
 <221> MOD_RES
 <222> (10)
 <223> Any amino acid
 <400> 24
 Asp Cys Gly Leu Pro Pro Xaa Val Pro Xaa Ala Gln Pro Ala
 1 5 10