PROCEDURE OVERVIEW

1. Project directory

G:\\SmartHome

2. Data source

Inputs:

From reddit smarthome database:

- reddit comments
- reddit_submissions

MySQL_data.p

Source_Sub_OneTree.py

- random select 5000 comments From each of the subreddits (smarthome/homeautomation)
- get the corresponding submission and all the comments within the selected comment's tree

Output:

.\\DataSource_backup\\df_tree.csv

Text on the form:

- a tree of comments sorted by tier position and posting time

Output Text: a+1ab+2ab+1abc+1abcd+2abcd

3. Preprocessing

Columns Name	Description – df_tree.csv	
tree_ids	comment identifiers separated by <new tier=""> when the id that follows is a comment from a new tier; or <same tier=""> when the id that follows is a comment within the last <new tier=""></new></same></new>	
tree_bodies	comments separated by <new tier=""> when the comment that follows is a comment from a new tier; or <same tier=""> when the comment that follows is a comment within the last <new tier=""></new></same></new>	
id	first tier comment identifier	
link_id	submission identifier	
title	submission title	
selftext	submission self text	

Inputs:

.\\DataSource backup\\df tree.csv

Output:

.\\DataSource backup\\ sub onetree train.csv <u>|\DataSource_backup\|</u> sub onetree test.csv

bot_test.py

- remove comments from bots manually identified using bot_test.py
- remove comments where 70% words are not in English

spelling_test.py

- run a spelling check to see If there are systematic errors

- deal with stop words, URLs, html formatting, Internal hyphen, punctuation, lemmatization, stemming
- remove row with short text
- divide the data in 80% training and 20% testing

4. Visualization

NLP_visualization.py

- words frequency from text word count distribution
- vocabulary descriptive stats words frequency from vocabulary

5. Modelling

Columns Name	Description – sub_onetree_train.csv	
tree_ids	comment identifiers separated by <new tier=""> when the id that follows is a comment from a new tier; or <same tier=""> when the id that follows is a comment within the last <new tier=""></new></same></new>	
tree_bodies	comments separated by <new tier=""> when the comment that follows is a comment from a new tier; or <same tier=""> when the comment that follows is a comment within the last <new tier=""></new></same></new>	
id	first tier comment identifier	
link_id	submission identifier	
title	submission title	
selftext	submission self text	
text	submission title _{submission selftext _{tree_bodies}}	
URL	stripped out hyperlinks	
clean_text	colummn with the pre-processed text	

Inputs:

.\\DataSource_backup\\
sub_onetree_train.csv

NLP_modelling.py

Output:

- trained vocabulary: **nb**xx_**na**xx [**nb**: no_below, **na**: no_above]
- trained models dict : axx_bxx [a: alpha, b: beta]
- trained bigram

- create bi-gram
- save trained bigram in \\venv\\lib\\site-packages\\\
 gensim\\test\\test_data\\train_bigram\\nbxx_naxx_bigram.pkl
- remove from the vocabulary words that occur too often and too infrequently
- save vocabulary in \\venv\\lib\\site-packages\\\ gensim\\test\\test_data\\vocabulary\\nbxx_naxx
- run models and save in \venv\\lib\\site-packages\\
 gensim\\test\\test_data\\train_models\\nbxx_naxx_axxx_bxxx_models.pkl

NOTE: working with 8GB RAM

6. Evaluation

Inputs:

.\\DataSource_backup\\
sub_onetree_train.csv
trained vocabulary
trained models
trained bigram

NLP_evaluation.py

- Calculate Coherence Gensim cv
- Calculate Cao Juan 2009
- Calculate Arun 2010
- Calculate Coherence Mimno 2011

Output:

- In \\venv\\lib\\site-packages\\gensim\\\test\\test_data\\evaluation\\
- trained models dict: axx_bxx[a: alpha, b: beta]

IMPORTANT: run evaluation from terminal with args: the trained vocabulary of interest and the alpha params

- > python NLP_evaluation.py nb5_na04 a001_
- > python NLP evaluation.py nb5 na04 a01
- > python NLP_evaluation.py nb5_na04 a1_
- > python NLP_evaluation.py nb5_na04 a10_

7. Selection

Inputs:

evaluation metrics in \\venv\\lib\\site-packages\\gensim\\\test_\data\\evaluation\\

NLP selection.py Output: - In . || Figure ||

- plot the evaluation metrics trends in order to find the best combination of alpha, beta and num. of topics

7. Model Inspection

Inputs:

selected trained model trained vocabulary trained bigram .\\DataSource backup\\\ sub onetree train.csv

LDA_classification.py

NLP_inspection.ipynb/ NLP_inspection.html

- top words per topic
- pyLDAvis
- summary output documents/topics
- Jensen-Shannon Distance

Output:

 $In \wenv{\lib}\site-packages\gensim{\test{test_data}\nspection}{\}$

- JSD calculation for all documents in nb5_na04_JSD_dict.pkl
- Documents with JSD <= 0.4 to the to the reference for each topic

LDA topic number	Inferred topic	Index pyLDAvis
19	Broad topic regarding Automation - Devices - Network	1
18	Smart lights	2
9	Smart termostat	3
7	Home entertainment - voice assistant	4
4	Audio - Speakers	5
16	Smart Lock systems	6
15	Smart camera - surveillance	8
11	Smart plugs - power systems	9
5	Smart door systems	10

8. Semantic Search Engine

