

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

Unidad 3: Funciones

Funciones. Definición

Una función es una relación entre dos variables, una llamada variable independiente (x) y la otra llamada variable dependiente (y), que cumple la condición que a cada valor de la variable independiente le corresponde un único valor de la variable dependiente, lo que expresamos simbólicamente así

$$f: A \rightarrow B / y = f(x)$$

Funciones. Definición

Se dice que f es función o aplicación de A en B, si <u>a todo elemento</u> del conjunto A le corresponde por f <u>un único</u> elemento del conjunto B.

Simbólicamente:

Sea
$$f: A \rightarrow B/y = f(x)$$

Se dice:
$$\forall x \in A, \exists! y \in B / y = f(x)$$

Funciones. Definición

Definición: f es una función o aplicación de A en B si y sólo si f es un subconjunto de AxB que satisface las siguientes condiciones:

Condición de existencia:

$$\forall x \in A, \exists y \in B / (x, y) \in f$$

Condición de unicidad:

$$(x, y) \in f \land (x, z) \in f \Rightarrow y = z$$

Ejercicio: Dadas las relaciones mediante los siguientes diagramas. Indicar cuáles son funciones y cuáles no justificando las respuestas.

Ejercicio: Dada las relaciones mediante los siguientes gráficos cartesianos. Determinar si es función o no.

Ejercicio

Analizar en cada una de las siguientes relaciones, si cada valor de la variable independiente (VI), determina un único valor de la dependiente (VD). Determinar si la dependencia es funcional.

- Edad (VI) y peso (VD) de un individuo.
- b) Peso (VI) y edad (VD) del mismo individuo.
- Precio de la nafta (VI) y día del año (VD).
- Día del año (VI) y precio de la nafta (VD).
- Un número (VI) y su cuadrado (VD).

7

Clasificación de Funciones

Una función es inyectiva si a elementos diferentes de A le corresponden imágenes diferentes. $\forall x_1, x_2 : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Una función es Suryectiva o sobreyectiva si todo elemento de B es imagen de algún elemento de A. $\forall y \in B, \exists x \in A/y = f(x)$

Una función es Biyectiva si es inyectiva y suryectiva.

$$\forall y \in B, \exists! x \in A / y = f(x)$$

7

Función Inversa:

La única función que admite inversa es la función biyectiva.

Sea
$$f: A \rightarrow B/y = f(x) \Rightarrow f^{-1}: B \rightarrow A/x = f^{-1}(y)$$

FUNCIÓN LINEAL

Una función de la forma:

f: $R \rightarrow R/f(x) = ax + b$ donde a, $b \in R$, se denomina función lineal.

Su gráfica es una recta.

El valor a se llama pendiente de la recta y representa la tangente trigonométrica del ángulo positivo que la recta determina con el semieje positivo de las abscisas.

El valor b se llama ordenada al origen y es la ordenada del punto en que la recta intersecta al eje de las ordenadas.

Ejemplos:

Representar gráficamente las siguientes funciones en un mismo sistema de ejes:

a)
$$f: R \rightarrow R/f(x) = 2$$

$$g: R \to R/g(x) = -1$$

b)
$$f: R \rightarrow R/f(x) = 2x$$

$$g: R \to R/g(x) = 3x$$

$$h: R \rightarrow R/h(x) = -2x$$

c)
$$f: R \to R/f(x) = 2x$$

$$g: R \to R/g(x) = 2x+1$$

$$h: R \rightarrow R/h(x) = -2x+3$$

Sea
$$f: R \rightarrow R/f(x) = a.x + b$$

$$Si \quad a = 0 \Rightarrow f(x) = b$$

Esta función recibe el nombre de función constante.

Sea
$$f: R \rightarrow R/f(x) = a.x + b$$

$$Si \quad a \neq 0 \land b = 0 \Longrightarrow f(x) = ax$$

Sea $f: R \rightarrow R/f(x) = a.x + b$

 $Si \quad a \neq 0 \land b \neq 0 \Longrightarrow f(x) = ax + b$

Función Cuadrática

Una función de la forma:

 $f: R \to R/f(x) = ax^2 + bx + c$ con $a, b, c \in R$ y a $\neq 0$, se denomina función cuadrática.

Su gráfica es una parábola.

Ejemplos:

Representar gráficamente las siguientes funciones en un mismo sistema de ejes:

a)
$$f: R \to R / f(x) = x^2$$
 $g: R \to R / g(x) = -x^2$

b)
$$f: R \to R/f(x) = x^2$$
 $g: R \to R/g(x) = x^2 + 2$
 $h: R \to R/h(x) = x^2 - 3$

c)
$$f: R \to R / f(x) = x^2 + x - 2$$

Función Cuadrática

Sea
$$f: R \rightarrow R/f(x) = a.x^2 + bx + c$$
, $a \ne 0$

$$Si b = 0 \land c = 0 \Longrightarrow f(x) = ax^2$$

2)
$$Sib = 0 \land c \neq 0 \Rightarrow f(x) = ax^2 + c$$

$$a > 0$$
 $c > 0$

$$a > 0$$

 $c < 0$

$$a < 0$$
 $c > 0$
 $f(x)$

3) $Sib \neq 0 \land c = 0 \Rightarrow f(x) = ax^2 + bx$

4)
$$Sib \neq 0 \land c \neq 0 \Rightarrow f(x) = ax^2 + bx + c$$

Mediante la evaluación del signo de los coeficientes de la expresión algebraica, determinar la posible gráfica de la función.

FUNCIONES ESPECIALES

- Función parte entera
- Función módulo
- Función factorial
- Función característica

FUNCIÓN PARTE ENTERA

Se llama parte entera de un número real x, ent (x) al menor número entero entre los cuales está comprendido si x no es un número entero y al mismo número entero si x es entero.

$$f: R \to Z/f(x) = ent(x)$$

$$f: R \to Z/f(x) = [x]$$

También se conoce con el nombre de función parte entera por defecto o función suelo

$$f: R \to Z/f(x) = |x|$$

$$f: R \to Z/f(x) = [x]$$

En geogebra: f(x) = floor(x)

FUNCIÓN PARTE ENTERA

Se llama parte entera por exceso de un número real x, al mayor número entero entre los cuales está comprendido si x no es un número entero y al mismo número entero si x es entero.

$$f: R \to Z/f(x) = \lceil x \rceil$$

FUNCIÓN MÓDULO

$$f: R \to R_0^+ / f(x) = |x|$$

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

En geogebra: f(x) = Abs(x)

LA FUNCIÓN FACTORIAL

La Función Factorial es una función con dominio en los enteros no negativos y con imagen en los números naturales:

$$f: N_0 \to N / f(x) = \begin{cases} 0! = 1 \\ 1! = 1 \\ n! = 1.2.3.4....(n-1).n \end{cases}$$

Por ejemplo:

FUNCIÓN CARACTERÍSTICA

Sea
$$A \subset X$$

$$f: X \to \{0,1\}/f(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

Consideremos dos funciones: $f: A \to B \quad y \quad g: B \to C$ Entonces la relación $g \circ f \subset AxC$ es una función de A en C tal que:

$$(g \circ f)(x) = g[f(x)]$$
, $\forall x \in A$

El símbolo $g \circ f$ denota la función compuesta de f con g o la composición de f con g. Puede leerse: "f compuesta con g" o "g cerito f".

$$f: A \to B \quad y \quad g: B \to C$$

 $g \circ f: A \to C/(g \circ f)(x) = g[f(x)] \quad \forall x \in A$

Veamos que la composición entre f y g (así definidas) es también una función:

Sea $x \in A$. Como f es función, existe un único $y \in B$ tal que y = f(x). De la misma manera, como $y \in B$ y g es función, existe un único $z \in C$ tal que z = g(y)

Por lo tanto, existe un único $z \in C$ tal que $z = g(y) = g[f(x)] = (g \circ f)(x)$, para cada $x \in A$.

$$f: A \to B \quad y \quad g: B \to C$$

 $g \circ f: A \to C/(g \circ f)(x) = g[f(x)] \quad \forall x \in A$

Observación: $f: A \rightarrow B$ $y g: B \rightarrow C$

El conjunto de llegada de f coincide con el dominio de g.

Im(f) no necesariamente es igual a B.

¿Qué pasaría si estos conjuntos no coincidieran?

 $\mathbf{lm}(f) \subset \mathbf{B}$

Dado un x cualquiera en A, su imagen f(x), existe y es única. A su vez, como f(x) es un elemento de Im(f) y $Im(f) \subset B$, podemos afirmar que f(x) es un elemento de B y, por lo tanto, tendrá un único correspondiente en C por la función g. Es decir, dado $x \in A$, existe un único $z \in C$, tal que $z = g[f(x)] = (g \circ f)(x)$. Luego, la relación $g \circ f$ es una función.

CONCLUSIÓN:

Para que la composición $g \circ f$ sea una **función** basta con verificar:

$$Im(f) \subseteq Dom(g)$$

Ejercicio: Dadas las funciones f y g

$$f: R \to R/f(x) = x+1$$
 $g: R \to R/g(x) = x^2$

- a) Calcular $g \circ f$ y $f \circ g$.
- b) Determinar si las composiciones halladas en el ítem a) son o no funciones.