# Advanced Computational Fluid Dynamics (AM 6513)



Report on Assignment 1

Kumar Saurabh (MA14M004)

# **Table of Contents**

| <u>Topic</u>                              | Page Number |
|-------------------------------------------|-------------|
| Problem Definition                        | 3           |
| Governing Equation                        | 3           |
| Initial Condition                         | 3           |
| Boundary Condition                        | 3           |
| Numerical Formulation                     | 4           |
| Algorithm                                 | 4           |
| Input data                                | 4           |
| Results                                   |             |
| <ul><li>Case 1 (∆t = 0.1 s)</li></ul>     | 5           |
| <ul><li>Case 2 (∆t = 0.01 s)</li></ul>    | 6           |
| <ul> <li>Case 3 (Δt = 0.001 s)</li> </ul> | 7           |
| Appendix                                  |             |
| <ul> <li>Matlab Code</li> </ul>           | 8           |

# **Problem definition:**



$$\propto = 1 \frac{m^2}{s}$$

Length = 1 m

$$\Delta x = 0.1 m$$

Compute the solution from t = 0 to t = 10 sec in steps of

1. 
$$\Delta t = 0.1$$

2. 
$$\Delta t = 0.01$$

3. 
$$\Delta t = 0.001$$

Plot the results for t = 0, 0.5, 1, 2, 5, 10 sec.

# **Governing Equation:**

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

where

- T is the temperature
- t is the time
- $\alpha$  is the thermal diffusivity
- x is the distance

# **Initial Condition:**

T = 0 °C everywhere

# **Boundary Condition:**

$$T_{x=0} = 100$$
°C

$$T_{x=1} = 0 \, {}^{\circ}\text{C}$$

### **Numerical Formulation:**



Using the FTCS (Forward in time and Central in Space) to discretize the governing equation, we get:

$$\begin{split} \frac{T_i^{n+1} - T_i^n}{\Delta t} &= \propto \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2} \qquad \textit{for } i = 2,3,4,\dots..10 \\ T_i^{n+1} &= \gamma T_{i+1}^n + (1 - 2\gamma) T_i^n + \gamma T_{i-1}^n \quad \textit{for } i = 2,3,4\dots...10 \\ \textit{where } \gamma &= \alpha \frac{\Delta t}{\Delta x^2} \end{split}$$

Imposing the Boundary condition:

$$T_1 = 100 \,^{\circ}\text{C}$$
  
 $T_{11} = 0 \,^{\circ}\text{C}$ 

# **Algorithm:**

- 1. Initialize  $\Delta t$ ,  $\Delta x$ , N,  $\alpha$ .
- 2. Initialize T\_old[i] = 0 for i = 2,..., N and T\_old[1] = 100 (Boundary Condition)
- 3. Calculate T\_new[i] using the above formulation for i = 2... N 1. T\_new[1] =  $100^{\circ}$ C and T\_old[0] =  $0^{\circ}$ C.
- 4. Swap T\_old with T\_new.
- 5. Go to step 3 till time elapsed is less than 10 s.

#### **Input data:**

|   | Α     | В | С      | D   | Е              |
|---|-------|---|--------|-----|----------------|
| 1 | Δt    | α | Length | Δχ  | Y (calculated) |
| 2 | 0.1   | 1 | 1      | 0.1 | 10             |
| 3 | 0.01  |   |        |     | 1              |
| 4 | 0.001 |   |        |     | 0.1            |
| 5 |       |   |        |     |                |

# **Results:**

# • Case 1:

 $\Delta t = 0.1 \text{ s}$  $\Upsilon = 10$ 

Since  $\Upsilon > 0.5$ , therefore, we see oscillations in this case.



#### • Case 2:

 $\Delta t = 0.01 \text{ s}$  $\Upsilon = 1$ 

Since  $\Upsilon > 0.5$ , therefore, we see oscillations in this case.

At time = 10 s, the temperature began to oscillate between -  $\infty$  (Minus Infinity) and  $\infty$  (Infinity). So we are not able to see any curve.



#### • Case 3:

 $\Delta t = 0.001 \text{ s}$  $\Upsilon = 0.1$ 

Since  $\Upsilon < 0.5$ , therefore, we do not see oscillations in this case and steady state is attained.



#### **Appendix**

#### **Matlab Code:**

```
close all;
clear all;
clc;
%% Details
% Author Name: Kumar Saurabh
% Roll No. MA14M004
%% Reading the data from input file
Time interval = xlsread('inputMA14M004 assign1.xlsx','Sheet1','A2:A4');
alpha = xlsread('inputMA14M004 assign1.xlsx', 'Sheet1', 'B2');
len = xlsread('inputMA14M004 assign1.xlsx','Sheet1','C2');
delta x = xlsread('inputMA14M004 assign1.xlsx','Sheet1','D2');
for i = 1:3
    %% Initializing the input
    delta t = Time interval(i);
    X = 0:delta x:len;
    time = 0;
    figure(i);
    %% Calculations
    x \text{ size} = (\text{len/delta } x) + 1;
    gamma = alpha*delta t/(delta x^2);
    T \text{ old} = zeros(x size, 1);
    T old(1) = 100; %Boundary Condition
    % At time t = 0 s
    T 0 = T \text{ old};
    subplot(2,3,1);
    plot(X,T 0);
    xlabel('X (m)');
    ylabel('Temperature (\circC)');
    title('time = 0 s');
    %% Calculations for various times
    while(time < 10)</pre>
        T new = zeros(x size,1);
        T \text{ new}(1) = 100;
        time = time + delta t;
         for j = 2: (x size - 1)
             T \text{ new}(j) = gamma*T \text{ old}(j+1) + (1 - (2*gamma))*T \text{ old}(j) +
gamma*T old(j - 1);
        end
         % At time t = 0.5 s
         if(abs(time - 0.5) < (10^{(-6)}))
             T point5 = T new;
             subplot(2,3,2);
```

```
plot(X,T point5);
            title('time = 0.5 \text{ s'});
            xlabel('X (m)');
             ylabel('Temperature (\circC)');
        end
        %% At time t = 1 s
        if(abs(time - 1) < (10^{(-6)}))
            T 1 = T new;
             subplot(2,3,3);
            plot(X,T 1);
            title('time = 1 s');
            xlabel('X (m)');
             ylabel('Temperature (\circC)');
        end
        % At time t = 2 s
        if(abs(time - 2.000) < (10^{(-6)}))
             T 2 = T new;
            subplot(2,3,4);
            plot(X,T 2);
            title('\overline{time} = 2 s');
            xlabel('X (m)');
             ylabel('Temperature (\circC)');
        end
        % At time t = 5 s
        if(abs(time - 5.000) < (10^{(-6)}))
            T 5 = T \text{ new};
            subplot(2,3,5);
            plot(X,T 5);
            title('time = 5 s');
            xlabel('X (m)');
             ylabel('Temperature (\circC)');
        end
        %% At time t = 10 s
        if(abs(time - 10.000) < (10^{(-6)}))
            T 10 = T new;
            \overline{\text{subplot}}(\overline{2},3,6);
            plot(X,T 10);
            title('time = 10 s');
            xlabel('X (m)');
             ylabel('Temperature (\circC)');
        end
        %% Updation of Temperature
        T_old = T_new;
    end
    suptitle(['Temperature distribution with {\Delta t} =
', num2str(delta t)])
```

end