B 21. Given: $\overline{AB} \perp \overline{BC}$; $\overline{DC} \perp \overline{BC}$; $\overline{AC} \cong \overline{BD}$ Prove: $\triangle BCE$ is isosceles.

- 23. Use an indirect proof to show that no triangle has sides of length x, y, and x + y.
- **24.** The legs of a right triangle are 4 cm and 8 cm long. What is the length of the median to the hypotenuse?
- 25. If a 45°-45°-90° triangle has legs of length $5\sqrt{2}$, find the length of the altitude to the hypotenuse.
- **26.** The altitude to the hypotenuse of a 30° - 60° - 90° triangle divides the hypotenuse into segments with lengths in the ratio $\frac{?}{?}$: $\frac{?}{?}$.

28. In $\triangle DEF$, $m \angle F = 42$, $m \angle E = 90$, and DE = 12. Find EF to the nearest integer. (Use the table on page 311.)

- **29.** In right $\triangle XYZ$ with hypotenuse \overline{XZ} if $\cos X = \frac{7}{10}$ and XZ = 24, then to the nearest integer $XY = \frac{?}{}$.
- 30. If a tree is 20 m high and the distance from point P on the ground to the base of the tree is also 20 m, then the angle of elevation of the top of the tree from point P is $\frac{?}{}$.
- 31. If \overline{PQ} and \overline{PR} are tangents to the circle and $m \angle 1 = 58$, find $m \angle 2$.

- 32. $\triangle ABC$ is an isosceles right triangle with hypotenuse \overline{AC} of length $2\sqrt{2}$. If medians \overline{AD} and \overline{BE} intersect at M, find AD and AM.
- 33. Draw two segments and let their lengths be x and y. Construct a segment of length t such that $t = \frac{2x^2}{y}$.
- 34. An equilateral triangle has perimeter 12 cm. Find its area.
- 35. Find the area of an isosceles trapezoid with legs 7 and bases 11 and 21.
- 36. a. Find the length of a 200° arc in a circle with diameter 24.b. Find the area of the sector determined by this arc.
- 37. B and E are the respective midpoints of \overline{AC} and \overline{AD} . Given that AB = 9, BE = 6, and AE = 8, find:
 - **a.** the perimeter of $\triangle ACD$
 - **b.** the ratio of the areas of $\triangle ABE$ and $\triangle ACD$

