

THE

NAUTILUS

A MONTHLY JOURNAL
DEVOTED TO THE INTERESTS OF
CONCHOLOGISTS

VOL. XXVII.

MAY, 1913, to APRIL, 1914.

348001

EDITORS AND PUBLISHERS:

H. A. PILSBRY, Curator of the Department of Mollusca, Academy of Natural Sciences
PHILADELPHIA.

C. W. Johnson, Curator of the Boston Society of Natural History, Boston. QL 401 N 25 V. 27-28

INDEX

TO

THE NAUTILUS, XXVII.

INDEX TO SUBJECTS, GENERA AND SPECIES.

Achatinellidae of Oahu, Two new	39
Acmæa fergusoni in Connecticut	72
Alasmidonta undulata	23
Aldrich collection	83
Amastra, a new sinistral	68
Amastra montagui Pils, n. sp	39
Amastra pilsbryi Cooké, n. sp	65
Ancylide of North Africa, note on the (Pl. VII) . 113,	124
Ancylastrum	124
Ancylus clessini	128
Annularia pseudalatum Torre (Pl. III, figs. 8, 9)	37
Annularia ramsdeni P. & H. (Pl. III, figs. 5, 6)	37
Aporemodon, a remarkable new Pulmonate genus	24
Arangia sowerbyana Pfr	11
Arizona, camps in the Catalines and White Mts. 60,	109
Ashmunella pilsbryana Ferriss n. sp	109
Brachypodella insulæ cygni Clapp sp. nov. (Pl. VI, fig. 10).	99
Cardium (Trigoniocardia) galvestonense Harris (Pl. VI).	102
Ceratodiscus ramsdeni Pils, n. sp	134
Cerion (Strophiops) biminiensis Hend. & Clapp, n. sp.	
(Pl. IV, figs. 9, 10)	64
Cerion sagraianum in South Africa	143
Charonia Gistel, a generic name for Triton tritonis	56
Choanopoma caribbæum Clapp, sp. nov. (Pl. VI, figs. 3, 4).	100
Choanopoma (Ramsdenia) mirifica Preston, a synonym of	
C. nobilitatum Gundl.	72
Chondropoma carenasense P. & H. (Pl. III, fig. 4).	37
Chondropoma garcianum Torre (Pl. III, figs. 2, 3).	37
Chondropoma wilcoxi P. & H. (Pl. III, fig. 1)	37
Clausilia emersoni Pilsbry n. sp. (Pl. IV, figs 1-5).	66
Clementia obliqua Jukes-Browne, note on	103

Collecting in Coosa River, Alabama	84
Collecting land shells in Maui, Territory of Hawaii	71
Collecting Unionidæ in Eastern Tennessee	70
Colobostylus nelsoni Clapp sp. nov. (Pl. VI, figs. 1, 2) .	99
Conchological museum for Japan	13
Conus geographus, poisoning by the bite of	117
Cuban collecting	136
Cuban and West American shells, Illustrations of	37
Cypraea exanthema, cervus and cervinetta	8
Cypraea miliaris Gmel., with descriptions of new varieties.	69
Cypraea miliaris var. brevis Smith var. nov	70
	70
Cypraea miliaris var. eburnea Barnes	70
Cypraea miliaris var. intermedia Smith var. nov	69
Cypraea miliaris var. majistra Melv	79
Drupa, on the nomenclature of	
Drymæus insulæcygni, Clapp sp. nov	98
Epiphragmophora dupetithouarsi cuestana Edson (Pl. III,	07
figs. 13, 14)	37
Epiphragmophora tudiculata grippi Pils. (Pl. III, figs. 15,	0=
16, 17)	37
Epiphragmophora tudiculata, note on a new variety.	49
Ferrissia clessiniana Jickeli (Pl. VII, figs. 9-11)	127
Ferrissia isseli Bgt. (Pl. VII, figs. 4-8)	126
Ferrissia pallaryi Walker n. sp. (Pl. VII, figs. 12-14) .	127
Ferrissia platyrhynchus Walker n. sp. (Pl. VII, figs. 1-3).	125
Fusconaja bursa-pastoris B. H. Wright	90
Fusconaja subrotunda leucogona Ortm. n. var	89
Galba ferruginea in Oregon	24
Gundlachia hjalmarsoni Pfr. in the Rio Grande, Texas	
(Pl. IV, figs. 6–8)	79
Gundlachia l'hotelleriei Walker n. sp. (Pl. VII, figs. 15-21).	128
Helix hortensis in New England, further notes on . 61, 83,	, 107
Hesperarion hemphilli maculatus Ckll	143
Hirase conchological museum (Pl. I)	13
Idaho shells, Northern	104
Lampsilis recta	57
Land shells carried by birds	71
Land shells collected on the Bimini Islands, Gun and Cat	
Cays, Bahamas	63
Land shells from Ellsworth, Maine	95
Land shells of Cecil Co., Maryland	96
Lymnæa (Radix) auricularia in Charles River, Boston	83
Lucidella pilsbryi Clapp sp. nov. (Pl. 6, figs. 6, 7)	100
Maine, Freshwater shells of St. John's River	139
	3. 88
Margaritana margaritifera falcata	89

Margaritana sinuata Lam	88
Marine shells from drift on Upper Matecumbe Key, Florida.	59
Martyn's Universal Conchologist, Another note on, . 95,	107
Miocene correlation, notes on	101
Mollusca from Wyoming Co., N. Y	56
Murex tritonis Linné, the generic name to be used for .	55
Najades, studies in	88
Notes	143
Nyctilochus Gistel	55
Oreohelices from Wyoming, Notes on some	50
Oreohelix cooperi W. G. B.	52
Oreohelix cooperi minor Ckll	53
Oreohelix hendersoni dakani Henderson n. subsp	38
Oreohelix haydeni betheli Pils. and Ckll. in Colorado .	39
Oreohelix ioensis Pils	134
Oreohelix peripherica Anc	53
Oreohelix pygmæa Pils. (Pl. III, figs. 10, 12)	, 52
	50
Oreohelix yavapai extremitatis Pils. & Ferriss	16
Pacific conchological club	
Parreysia from Kamurun Africa, two new species of	85
Parreysia loboensis Frierson n. sp. (Pl. V)	85
Parreysia nyangensis Frierson n. sp. (Pl. V)	86
Partula emersoni Pilsbry n. sp. (Pl. IV, fig. 11)	67
Partulina montagui Pilsbry n. sp	40
Pecten circularis Sowb	122
Pecten (Euvola) cataractes Dall, n. n	121
Pectens, notes on some West American	121
Philomycus caroliniensis form nebulosa at New Orleans .	3
Philomycus costaricensis (Morch) var. a	3
Philomycus from the Republic of Panama	2
Physa heterostropha Say in Europe	112
Planorbis antrosus Conr	106
Planorbis vermicularis Gld	144
Polygyra barbigera	12
Polygyra edvardsii Bld	12
Post-glacial Mollusca of Emmet Co., Mich	7
Post-glacial Mollusca, Waukesha Co., Wisconsin	68
Publications received	106
Pyramidula solitaria occidentalis (Marts.)	105
Pyrazus milium Dall, in Florida	59
Ricinula = Drupa	79
Sayella crosseana Dall in Florida	59
Shell collecting on the west coast of Baja California	25
Shells from a pleistocene deposit near Sierra Nueva, Santo	
Domingo	120
Shells from a single dredge haul off Key West, Fla	120

Shells of Fresh Pond, Cambridge, Mass	. 24
Showalter or Schowalter	96, 108
Sonorella betheli Hendersoni n. sp	. 123
Sonorella from the Grand Canyon, Arizona	. 122
Sonorella, odorous	. 135
Spring collecting in Southwest Virginia	81, 91
Strophitus edentulus and undulatus	. 23
Succinea ovalis, reversed	. 24
Succinea rüsei on Bobolinks	. 72
Swan Island, List of land shells from	. 97
Thracia conradi, Notes on	. 73
Unio complanatus	23, 29
Unio gibbosus	23, 29
Unio of the Wabash and Maumee drainage	. 131
Unio (Nephronaias) ortmanni Frierson n. sp. (Pl. II)	. 14
Unio fauna of the great lakes 18, 29	, 40, 56
Urocoptis (Arangia) sowerbyana—a note on its radula	. 11
Veronicella from Guatemala	. 1
Veronicella mexicana betheli Cocherell v. nov.	. 2
Trochidæ, A new genus of	. 86
Vetulonia Dall new genus	. 86
Vetulonia galapagana Dall n. sp	. 87
Vetulonia jeffreysi Dall	. 87
Wyoming shells	. 37
Zoölogical station, Naples	4, 16

INDEX TO AUTHORS.

Baker, Frank C				7	94	54	68 104
Berry S. S	•	•	•	• '	, 44	, 04	, 68, 104
Clapp, Geo. H.	•	•	•	. 19	62	Ġ.	77, 107
Clapp, Wm. F.	•	•	•	. 14	, 00	, 04	24 97
Cockerell, T. D. A.	•	•	•	•	•		24, 97
Cooke, C. Montague	•	•	•	•	•	•	1, 2, 143
Dall, Wm. H.	•	•	•	٠	•	9.0	103, 121
	•	•	•	•	٠ ,		
Ferriss, Jas. H.	•	•	•	•	. 0,	, 00,	109,134
Frankenberger, Zdenka	•	•	•	•	•	•	. 112
Frierson, L. S	•	•	•	•	•		14, 85
Goodrich, Calvin .	•	•	•	•	•	01	, 91, 131
Hand, Edwin E	•	•	•	•	•	•	. 144
Hedley, Charles .	•	•	•	. 50	C4	05	
Henderson, John B.	•	•	•	. 59,			120, 136
Henderson, Junius .	•	•	•	•	•	01	, 38, 122
Iredale, Tom	•	•	•	477	01	00	. 55
Johnson, C. W.	•	•	•	. 41,	01,	85,	106, 142
Lowe, H. N	•	•	•	•	•	•	. 25
Mazyck, Wm. G.	•	•	•	•	•	•	107, 108
Morse, Edward S.	•	•	•	•	•	•	. 73
Nylander, Olof O	•	•	•		•	•	. 139
Olsson, Axel	•	•	•	•	•	•	. 101
Ortmann, Arnold .	•	•	•	•	•	٠	. 88
Pepper, G. W.	•	٠.					. 143
Pilsbry, H. A.	24,	35,	39, 47,	49, 50	, 65	, 72	, 96, 133
Presbry, Eugene W.	•	•	•	•	•	٠	. 8
Ramsden, Chas. T.	•		•	•	•	•	11, 71
Smith, Herbert H	•	•	•	•	•	•	. 96
Smith, Maxwell .	•		•	•	•		4, 16, 69
Stock, Chester	•	•	•		•	•	. 16
Vanatta, E. G.	•						. 120
Walker, Bryant .	•	•	•	•			. 124
Wheat, Silas C	•	•	•	•		•	. 72

Vol. XXVII.

MAY, 1913.

No. 1

A SLUG OF THE GENUS VERONICELLA FROM GUATEMALA.

BY T. D. A. COCKERELL.

At Puerto Barrios, Guatemala, Mr. E. Bethel recently found a Veronicella, which he brought to me alive. Among the species recorded from Mexico and Central America, it closely resembles only V. mexicana (Pfeffer), which occurs at Vera Cruz. It appears to be distinguished by the broad sole, and female orifice well caudad of the middle and very close to the sole. Internally, the accessory glands are numerous and very long. On the whole, however, it is so close to V. mexicana that I record it as a variety; its status will only be precisely determined when more material is available for comparison. It is not impossible that V. mexicana was composite; certainly the example sent by Strebel to Semper seems doubtfully identical with the animal figured in Strebel's work on the Mollusca of Mexico.

One species of Veronicella, V. stolli von Martens, has already been described from Guatemala. Its anatomy is unknown, but it is readily known from Mr. Bethel's slug by the presence of a narrow median longitudinal yellow band. It may be that V. stolli is identical with V. olivacea Stearns from Nicaragua. An unnamed Veronicella from Honduras, briefly described in Nautilus, April, 1895, p. 142, seems on the whole intermediate between our slug and V. mexicana. It is most probably conspecific with our animal, but it may represent a different, allied, species. Its anatomy is unknown.

Veronicella mexicana betheli v. nov.

Above, warm red-brown, paler toward the sides, with scattered pale dots; dorsal and subdorsal regions irregularly and not densely speckled with blackish; on the anterior third this speckling is resolved into a pair of obscure bands, a little nearer to each other than either to the lateral margin. Beneath pale reddish, darker posteriorly, and speckled with pale. Sole pale ochreous. Tentacles dark grey. There is not the slightest indication of a pale dorsal line. Under a lens, it is seen that the body above and below (especially posteriorly below) is very closely beset with minute pale dots, which correspond with punctiform depressions, while over this pattern are set numerous much larger diffused pale spots. All this is hardly to be noticed without magnification. Length (at rest) about 50 mm., breadth in middle about 23; breadth of sole 9 mm.; of body on each side of it 7 mm., sole not projecting beyond body.

The above was from the living slug. In alcohol it appears as follows: Length 34, breadth 18 mm.; width of sole 7 mm.; female orifice 19 mm. from anterior end, 16 from posterior, only one mm. from sole; sole with about 7 cross-striæ in one mm.; end of sole broadly rounded, about 2 mm. from hind end. Jaw strongly arched, with about 25 strong ribs; teeth about 54-1-54, ordinary, middle tooth reduced, shaped like a spear-head, marginals quadrate; salivary glands normal, pale yellow; esophagus longitudinally corrugated; stomach with a portion having a diameter of about 2 mm. not covered by liver; albumen glands large, bright orange-yellow; receptaculum seminis oval, yellowish-plumbeous, about 1.25 mm. long; accessory glands about 38, of which about 24 are 11 mm. long, the others variously shorter, several only half as long.

A PHILOMYCUS FROM THE REPUBLIC OF PANAMA.

BY T. D. A. COCKERELL.

During a recent visit to Central America, Mr. E. Bethel found three specimens of a *Philomycus* at Bocas del Toro, Republic of Panama. The genus is new to Panama. Two specimens are evidently adult (one opened showed fully-developed genitalia), the other is immature. The slug may be described as follows:

Philomycus costaricensis (Mörch), variety a.

Length (in alcohol) about 11.5 mm., width of sole 1.5 mm.; very pale ochreous, the mantle with rather sparse grey floccose markings, and a pair of (subdorsal) grey bands, irregular in outline and more or less interrupted, consisting in fact of crowded grey spots. Respiratory orifice about 2 mm. from anterior end of mantle. Sole with a distinct median groove, evanescent anteriorly. Penis-sac cylindrical, the apical end curved over and turned downwards, so that the whole structure looks like a compressed interrogation mark. Jaw broad, strongly arcuate, about 1170 µ across, and 320 deep in middle, the outer thirds wholly without ribs or evident striae, the inner third with six broad ribs, distinct above, but failing below. (The young specimen shows better developed ribs, five in number.) Teeth about 21-13-1-13-21, the central ones strongly tricuspid, the lateral cusps small. The teeth agree in general character with those of P. dorsalis, as figured by Binney, differing however in the relatively longer basal plates, the short and broad central teeth not much more than half as long as the plate, certainly not over threefifths as long. The interesting thing about this species is that it belongs strictly to the group of P. hemphilli and P. secretus, found in North Carolina. It is apparently P. costaricensis (Mörch), at least as described by W. G. Binney (Ann. N. Y. Ac. Sci., May, 1884) from material collected in Costa Rica by Gabb. Our slug differs from Binney's account in the greater number of teeth (Binney says about 28-1-28), and perhaps in the very definite ribbing of the jaw. I call it variety a, so that it can be referred to separately, but it does not seem wise to give it a name. P. auratus (Tate), from Nicaragua, may perhaps be a form of the same species. On the other hand the Mexican P. sallei (Cr. & Fisch.) and P. crosseana (Strebel) appear to belong to the group of typical Philomycus.

On his way home, Mr. Bethel collected a couple of *Philomycus* at New Orleans. These are *P. caroliniensis* (Bosc.) of the form which I separated (Ann. Mag. Nat. Hist., Nov., 1890, p. 382) as *nebulosus*. This is the common, widely distributed animal, from Canada southward; current opinion does not support my attempt to separate the true *P. caroliniensis* from Virginia, but I am not yet altogether satisfied that careful study will not confirm the supposed distinctions.

THE ZOOLOGICAL STATION AT NAPLES.

BY MAXWELL SMITH.

In 1872 Dr. Anton Dohrn founded at Naples the nucleus of the first biological station to be operated in a scientific manner. The original building was erected through the personal generosity of its founder, who in addition supplied funds for some years until the principal European governments recognized the importance of the work done and the advantages afforded the students of their respective universities. At the present time the zoölogical station, as it is called, receives annual grants from Germany, England and Italy. It is undoubtedly the largest institution of its kind, a fact which may be attributed to the co-operation just mentioned.

The buildings are situated in the Villa Navionale, a fine park. facing the Bay of Naples. In the centre, on the ground floor, is the celebrated aquarium which is open to the public. Nearby, but with a separate entrance, is the receiving room. Here the spoils of the dredging steamer are brought in and either placed in the tanks or preserved in alcohol. Off this room are smaller rooms, lined with shelves, where rows of glass jars filled with specimens are kept. On the floor above is the splendid library, a high ceiling and long windows, which admit plenty of light, combine to make this an admirable apartment for work at any time of the year. Adjacent is the new museum where Prof. Gast, the curator, is following a pleasing system of arrangement. This consists of mounting the shells of each species upon a piece of glass which is framed in narrow wood. The glass may be turned over, so that the under portion of a specimen may readily be examined. The mounted shells are laid in flat cases on a background of dark green linoleum. To this way of exhibiting specimens I have only one objection. The glue used for mounting too often cracks and falls away, or else if put on thickly it shows and detracts from the general appearance. Personally I prefer glass topped boxes. They exclude dust and may be shifted about without fear of a mix-up. The wall cases of the museum are to be filled with preserved specimens. The lighting comes from above, but is arranged in such a manner that direct sunlight is avoided, the writer noticed on exhibition a fine series of Aporrhais gerresianus and in a wall case an enormous Argonanta argo L., very well preserved.

Visits to the aquarium, of course, were most interesting, the sea water is stored under the buildings and pumped into the tanks mixed with the proper proportion of air. The visitor entering the darkened corridor is at once struck by the brilliant colors and the great size of the living collection. Surely nowhere, in an aquarium, is there such a wealth of animal life. Let us examine the first tank. It is devoted exclusively to echinoderms. In the center are hundreds of feather stars (Antedon rosacea) clinging to dead coral stems. At first sight these appear to be plants on account of their yellow or red plumed arms. Crawling all about are other star fish of bright and somber hues. Here and there is a sea urchin and occasionally a sea cucumber. Tank 3 is devoted to mollusks. Swimming about are several squids (Loligo) which have the curious power of suddenly swimming backwards without the inconvenience of turning around These delicate animals, with transparent bodies, and large eyes only live a few days in captivity. The floor of the tank is strewn with gaping red pectens (P. jacobeus) which I noticed swimming down from a ledge of rock by suddenly opening and closing their valves, an awkward but quick means of locomotion. Clinging to the surface of a rock is a large Umbrella mediterranea and nearby several Haliotis. Several huge Tritonium nodiferus, with their opercula thrown to one side, may be observed slowly moving about on the bottom of the tank. One of the most interesting forms is Aplysia limacina, a large brown sea hare, which crawls about or swims by the aid of its wing-like lateral projections. When stones covered with vegetable matter are brought into the tank the Aplysias immediately bestir themselves and will clean the stones in an hour or two. The longevity of Aplysia in the aquarium may be ascribed to this manner of feeding. Tethys, one of the most beautiful naked mollusks of this region, only lives a few weeks after capture. It swims by violent writhings of the body from side to side. Aeolis and Doris make up for their small size by brilliant coloring. The delicate forms, many of them pelagic, are kept separated in glass receptacles, partly sunken in the water, the perfectly transparent Pterotrachea, a long thin animal with a curved proboscus and Carinaria, another interesting form rarely live more than a day in captivity. In a similar way are kept the beautiful mushroom-shaped Medusa or jelly fish, which propel themselves by opening and closing the body like an umbrella. The Medusa are also transparent, some of them are of a delicate pink. They vary greatly in shape. One is like a narrow ribbon, another resembles a bunch of flowers on a central stalk. The octopus tanks attracts many visitors, especially when a crab is let down on a string for their benefit.

Through the kindness of Prof. Gast I was invited to go out on the dredging steamer "Johannis Müller," which is maintained by the zoölogical station for working the deeper portions of the Bay of Naples. This steamer is about forty feet long and carries a crew of four men, who, when not engaged at the wheel or boiler, assist in sorting out the material on deck, or managing the dredging machinery.

At 7 a. m. we left the small harbor at the west end of the city. The sun rose close to Vesuvius shortly after and promised a good day. After a run of twenty-five minutes, a point in the bay opposite the Capo, a promentory, was reached. From here the course was turned towards the Secca di Benda Palummo banks which consist of coral and sponges. Upon arrival the steamer swung around, and the "beam trawl" was let down. This was kept in the proper position on the sea bottom, by means of glass globes filled with air attached to the net. The trawl was lowered slowly into the water with wire rope, after which the steamer ran very slowly, the trawl thus dragging along the sea bottom and filling all the time. Three hauls were made with this apparatus, the trawl remaining down half an hour in each case. A mechanical indicator was used to ascertain the tension during the work. After the time mentioned had elapsed, the steamer was stopped and turned around, to facilitate the bringing up of the outfit. This done the contents were deposited upon the deck. The first haul was in 200 feet of water, the bottom, stone and mud. This locality, not being especially rich in mollusks as other parts of the bay, yielded only the following:

Leptothyra sanguinea (L.) Living examples.

Pseudomurex (Coralliophila). meyendorffi (Calc.) Two large specimens.

Isocardia cor (L.)

Cardium tuberculatum L.

Tellina exigua Poli.

Pecten pes felis (L.) Only single valves of the last four. (To be concluded.)

NOTES ON POST-GLACIAL MOLLUSCA. I. EMMET COUNTY, MICHIGAN.

BY FRANK C. BAKER.

Authentic records of life from the deposits laid down by the waters of the Glacial Great Lakes are, apparently, exceedingly scarce. It is proposed to record such as have come to the writer's notice. A recent canvas of the available literature revealed the fact that little real work has been done relative to this subject. This is especially true regarding records bearing upon interglacial time, where the majority of records available are "wood and unios," which are said to have occurred in well borings. It is needless to add that this material would be of the utmost value if properly identified.

Some years ago Mr. A. W. Slocum, of the Fried Museum of Natural History, collected a number of mollusks from marl beds at Oden and Kegomic, Emmet County, Michigan. Oden lies between the Algonquin and Nipissing beaches, while Kegomic is on the old lake floor. These marl deposits are reported to be upwards of sixty feet in thickness, and the Kegomic deposit probably represents both the Algonquin and Nipissing stages. The large lakes, Burt and Mullet, as well as the smaller lakes, Crooked, Pickerel, etc., are relics of the wide strait which, during these late stages, connected Lakes Huron and Michigan and separated portions of Emmet and Cheboygan counties from the lower peninsula, the former territory forming an island, with the straits of Mackinac on the north.

The following species of mollusks have been identified from the two localities.

Oden.

Sphaerium striatinum (Lamarck).
Physa niagarensis Lea.
Planorbis autrosus Conrad.
Planorbis campanulatus Say.
Galba emarginata canadensis (Sowb.).
Lymnaea stagnalis appressa Linné.

Kegomic.

Sphaerium striatinum (Lamarck). Pisidium compressum (Prime).

Physa niagarensis Lea.
Ancylus parallelus Haldeman.
Planorbis deflectus Say.
Planorbis campanulatus Say.
Galba galbana (Say).
Galba humilis rustica (Lea).

Comparisons between the faunas of the two localities would be without significance until more systematic collecting has been done. The list of species will doubtless be greatly extended by future research.

CONCERNING CYPRAEA EXANTHEMA, CERVUS AND CERVINETTA.

BY EUGENE W. PRESBREY.

C. exanthema, Lin., 1767; Gray, 1825; Reeve, 1844; Hinds, 1845; Adams, 1852; Roberts, 1885; Dall, 1903.

C. cervus, Lin., 1771; Lam., (cervina) 1822; Gray, 1825; Reeve (var. ex.), 1844; Adams, 1852; Roberts, 1885.

C. cervinetta, Kiener,—; Desh, 1844; Adams, 1852; Roberts, 1885. Reeves says cervinetta is var. of cervus. Adams speaks of cervina, which was Lamarck's name for cervus, as distinct from cervus. Gray names var. a, and b, of exanthema. Roberts says cervinetta is a var. of exanthema.

For habitat, Roberts give cervus to Panama and West Coast of America. Dr. Dall properly locates exanthema from Hatteras to Darien, but he does not mention cervus either as a variety or as being found on the Florida east coast. Reeve and Sowerby located cervus in the East Indies. Adams said Polynesian Province.

The majority of monographers have distinguished cervus from exanthema, but none seems to have found a home for it. Nor are the other two definitely placed. Roberts is nearest to the facts.

For three years past the writer has had favorable opportunities for the study of these species in there natural habitat and may, perhaps, presume to record some facts that have forced themselves upon him.

Cypraea exanthema is found from Hatteras to Darien, but in greatest numbers and perfection of development around the Florida keys. They are born in the deep water. When an inch or so in

length, (bullaform) they come up to the mangrove roots that fringe the coral islands. These islands, or keys, are half surrounded, on the sheltered side, by clear channels two or three feet deep. channels have free communication with the sea. The favorite food for exanthema is washed in from the live coral beds by every tide. The mangroves furnish shelter and coloring matter for the shell-Exanthema, unless disturbed does not leave the mangroves till ready to breed, when it goes to deeper waters. Cypraea exanthema is elongated, cylindrical, with tapering extremities, anterior aperture narrow and not depressed. The head and neck of animals is small, not often extended, because food comes to it. Sides of shell profusely decorated with ring spots, particularly near the base. Spots white with dark centers. The mantles, in young shells are purple black, studded with pustules that project flexible papillæ. These papillæmay be extended or withdrawn entirely into the pustule. The pustules become transparent lenses as the shell approaches adult form. The papillæ remain black and receive color through a circulation duct that is easily visible to the naked eye, particularly where it crosses the lens to the papilla. The lenses form the spots and the papillæ form the central dots. These papillæ are loaded with color and probably deposit all the color needed for decoration of the outer shell. The inner mucous membrane supplies the enamel. The papillæ near the outer edge of mantle soon lose the color bearing faculty, or, lacking supply, produce only nebulous white spotsnear the top of the shell. These papillæ possess a highly sensitive, independent, nerve ganglia. If one be touched, however delicately, it will instantly be withdrawn. The others will not be disturbed.

Color of shell, fugitive purple that turns to shades of brown upon exposure to light. Length of shell three to four inches, altitude about one-third the length.

C. exanthema is found on both sides of the Gulf Stream which is a thousand feet deep between Florida and the Bahamas, with a surrent of five or more miles an hour. Bahama, Jamaica and Colon specimens are coarser in texture, the spots are less frequent, form less regular and the color much paler. Less food and fewer mangroves. The true exanthema is not found on the Florida west coast.

CYPRAEA CERVUS. The most favorable habitat of this shell is

along the Florida west coast, in thirty to fifty feet of water, where it attains fullest growth. But it is also found from Key West to Miami, perhaps farther north, on the east coast. These specimens, sharing exanthema's habitat, show some reasonable variation from the west coast specimens, chiefly, however, in coloring.

The shell of cervus is not cylindrical, it is dome shape, inflated, swollen, with a rounded fullness of body extending to extremities. Anterior opening large, three times as large as exanthema, other dimensions being equal. The anterior opening is not depressed. The larger head and neck of cervus is always out in search of food which it prefers to seek in the open waters. It is a constant traveler and must have room for easy manipulation of head and foot.

Mantles of cervus, when young, are steely grey. Pustules and papillæ, shorter than exanthema, are milky white and remain so. There are no color ducts. There seems to be an absence of nerve ganglia; the papillæ are not sensitive. Spots more numerous and solid white, sometimes confused. The mantle-guides (not "teeth!") are usually irregular in cervus. Color, pale brown to ashy grey, on West Coast, where it never goes to mangroves. On East Coast it takes on exanthema coloring and the anterior opening is slightly smaller. Exertion for food is not necessary. Length, four to seven inches. Altitude, two to four inches.

Cypraea cervus is not found on the West Coast of America. It is not found at Panama. The writer has yet to find a specimen below Key West. Its natural habitat is West Coast of Florida.

Cypraea cervinetta has many of the characteristics of the other two. It is found under rocks at extreme low tide, near coral patches. It finds a fair substitute for mangrove bark from which to extract coloring matter of a purple tone that does not turn to exanthema brown. Shell subcylindrical, with straight sides and flattened curves. Anterior opening widened, as in cervus, but with cup-like depression around the opening. It has the activity of cervus and seeks its own food, which is scarce in its habitat. Like cervus, it must have free room for movement. The mantles have the distinguishing features of cervus and exanthema. Ring spots and solid white ones appear at random on the same shell. Cervinetta never attains the size of exanthema. Many specimens are fully matured when only one inch long. Color, silver grey purple. Length, one to three inches. Altitude, three-eighths to one inch.

Cervinetta, apparently, belongs exclusively to Panama Province. The writer has a theory. It is that cervinetta is the closest survivor of the original type, that before the Isthmus was formed the habitat of cervinetta was both East and West. After the Isthmus became a barrier between the oceans the Gulf Stream currents were turned up the East Coast. These currents carried cervinetta northward where it found no volcanic disturbance, better food and environment, and cervus and exanthema were evolved from cervinetta.

But I wish somebody would say why all Cypraea, in Florida, are called "micramocks."

UROCOPTIS (ARANGIA) SOWERBYANA (PFR.)—A NOTE ON ITS RADULA.

BY CHAS. T. RAMSDEN.

Being very much interested in procuring specimens of this shell, I took a trip to its habitat, with Drs. Carlos de la Torre, of the University of Havana, and Thomas Barbour, of the Museum of Comparative Zoölogy at Cambridge, Mass.

Unfortunately, although we had a hard ride up "Monte Libano," we did not reach the right locality; I, however, promised Dr. de la Torre that I would try again, further up the mountain, as we were both most anxious to procure living specimens to study the radula, which was unknown to Pilsbry.

On March 13, 1913, I again went up the mountain for some twenty miles on horseback, over an infernal road, and upon turning over the first stone, I found, to my great delight, my first living specimen of Arangia sowerbyana (Pfr.). I at once concluded that it would be an easy matter to fill my pockets and the small box I had with me, with specimens, and felt sorry I had not brought along more boxes, to take a good supply. A five hours diligent search, however, in crevices, under and on rocks, brought to light some half dozen specimens. I was however satisfied, as we would now be able to know its radula.

Having sent a part of the catch to Dr. de la Torre for examination, he reports the following: The radula is like that of the Jamaican Spirocoptis, measuring ten millimeters in length, by one and one-half in breadth, consisting of some 150 V-shaped rows of numerous small teeth; of these the central tooth is very narrow and unicuspid, while the laterals are numerous and similar in size and appearance; the formula being 20.1.20.

Guantanamo, Cuba, 17th April, 1913.

NOTES.

DR. PILSBRY, who has been studying Achatinellida in the Hawaiian Islands during the winter, has returned to Philadelphia, reporting a highly successful expedition. Communications for the NAUTILUS may hereafter be sent to him as usual.

Polygyra (Stenotrema) edwardsi (Bld.).—In his remarks in regard to this species, Ann. N. Y. Lyc., VI, 277, Bland says: "In barbigerum the attached, hair-like epidermal processes are produced at the suture and carina into cilia, which are entirely wanting in this species." This is incorrect, as three specimens from "Ky.," with Bland's label, in the collection of the late Mrs. George Andrews, all show traces of the sutural and peripheral fringes, and a beautiful albino, collected by Mrs. Andrews at Coal Creek, Anderson Co., Tenn., has the fringes as strong as in any specimen of barbigera that I have seen. The fringe is perfect from apex to lip and the "cilia" measure about 1 mm. in length. Two other specimens from Coal Creek show the fringes but not so strong. These shells also show that the "acute, raised, transverse tubercles" on the base of the shell, in Bland's description, are the hair-scars which in fresh, unrubbed specimens are surmounted by stiff, erect bristles.

I have examined twenty specimens of *P. edwardsi* from eight localities, and all but one (a dead, weathered shell), show at least traces of the sutural fringe. The trouble appears to be that the shells are generally covered with a thick, very adherent coating of dirt, and in trying to remove it the fringes are rubbed off. Traces of the sutural fringe often remain when the peripheral fringe has entirely disappeared, and shells showing the stiff bristles on the base are, apparently rare.—Geo. H. Clapp.

VOL. XXVII.

JUNE, 1913.

No. 2

A CONCHOLOGICAL MUSEUM FOR JAPAN.

The opening of a museum devoted entirely to mollusks would be an event of importance anywhere. It is gratifying to learn that the efforts of Mr. Yoichiro Hirase to found such an institution in Kyoto have resulted in a handsome and well-filled museum, of which we give a view.

The opening ceremonies of Mr. Hirase's Conchological Museum were held on March 22d at 1 p.m. Professor N. Kato, of the Doshisha College, an earnest advocate and counselor of the work, presided at the ceremony, which began with an account of the museum, and the causes leading to its establishment, by Mr. Hirase. The Hon. Omori, Governor of Kyoto Prefecture; Dr. Kuhara, President of the Kyoto Imperial University; Mr. Kato, representative of the Mayor of Kyoto, and Dr. Harada, President of the Doshisha University, delivered speeches or read notes of congratulation and good wishes on the completion of the museum. Dr. M. Matsumoto, Professor of the Kyoto Imperial University, delivered an address on the subject, "The Collection of Specimens of Natural History," after which Mr. Tanaka, Assistant Professor in the Tokyo Imperial University, and the most prominent ichthyologist of Japan, read a note of greetings and good wishes. A good number of letters and telegrams from our friends both abroad and at home had been received, but, the time being pressing, only a few of them were read, such as those from Dr. Takamine in America, Mr. Marshall Gaines and Dr. Nolan. Lastly, Shintaro, Mr. Hirase's son, expressed hearty thanks for the kindness and sympathy of the ladies and gentlemen present, and the ceremony closed with refreshments. Over 150 persons were present, chiefly professors of high schools and universities, officials and other public-spirited citizens who were earnest advocates of the undertaking.

On the following day about 150 principals of middle and common schools were invited, and the day following the museum was opened to the public. The daily number of visitors has been about 300.

On March 31st the museum was honored by the visit of a party of royal guests, the Imperial Crown Prince and his two royal brothers. Mr. Hirase and his son were received in audience by His Highness, who expressed great interest in the museum and its contents.

It was at first intended to exhibit as many species as possible, both foreign and Japanese, but when the Japanese shells were installed it was found that there was little space left for the foreign ones, so that only a very small part of them could be exhibited. It was decided that the Japanese species should be replaced with those from abroad twice or thrice a year, and that the first replacement should be made in August next. The foreign species are to be exhibited just as a tourist goes round the world, according to the countries whence they come. For purposes of reference, Mr. Hirase desires to exhibit photographs of museums and exhibit-rooms; of vivaria, or places connected with the cultivation of mollusks; of shell-button factories; also photographs of shores or other natural habitats of mollusks, in any country, and scenes of collecting shells, and of natives who wear shells as ornaments. We hope that American conchologists will supply a creditable exhibit for the United States.

The opening of the Museum was commemorated by the issue of a handsome series of postal cards, which with other gifts were sent to friends and correspondents in Japan and abroad.

UNIO (NEPHRONAIAS) ORTMANNI, N. SP.

BY L. S. FRIERSON.

Shell large and ponderous, length 82, alt. 44, diam. 30 mm., variable in shape, elliptical, to subtrapezoidal, frequently arcuate; sides somewhat flattened, biangulate behind, or very bluntly pointed. The young are obsoletely rayed, greenish yellow; adults are eradiate and dark brown. Beaks small, incurved, pointed, low, and without

any sculpturing. The whole disc is densely and heavily sulcate, nacre white, salmon or purple. Teeth strong; cardinals double in both valves; laterals single in the right valve, cicatrices well marked, confluent behind, separate before. Beak cavities rather shallow.

Dr. Ortmann writes that the anatomy is practically that of the Elliptio division of Unionidæ: Marsupium in the outer gills, glochidia subcircular; length 0.23, alt. 0.22 mm., about like gibbosus Barnes. Gravid in February. The sexes may not be indicated by any dimorphism. Found by Mr. A. A. Hinkley, in the Conchins River, near Quirigua, Guatemala (Atlantic drainage). Cotypes have been generously distributed by Mr. Hinkley to the Academy of Natural Sciences of Philadelphia, the U. S. National Museum and various collectors cabinets.

This shell is clearly placed in the *Nephronaias* division by its evident near kinship to *melleus* Lea, and to *persulcatus* Lea, from which species *ortmanni* differs in being much larger, and of a different outline.

Some specimens resemble in shape *U. goascoranensis* Lea, and *U. sphenorhynchus* Crosse and Fischer, but these species are not sulcate. The anatomy of this shell being that of *Elliptio* makes it necessary for the systematist to recast his ideas of *Nephronaias*, hitherto supposed to be allied to the *Lampsilinæ*. It is with great pleasure that I dedicate this species to my friend, Dr. A. E. Ortmann.

Mr. Hinkley procured also numbers of the *Unio calamitarum* Morelet, from a mountain stream, "Rio Blanco," whose mouth lies opposite Livingston.

The stones rolling down the stream after the tropical rains play havoc with the Unios, ninety per cent. having met with accidents. Consequently, the outlines of the shells are extremely variable. Mr. Lea made the error of spelling the name calimatarum, pointed out by von Martens, who supposes Morelet's name to mean either "the Unio of a little green frog," or "of reeds" (as also Sowerby). These shells of Hinkley's show that Morelet may have intended that his U. calamitarum should mean "the unio of calamities" (from calamitas), but if so it is rather peculiarly constructed. The synonymy of this shell includes the U. dysoni Lea, and U. hjalmarsoni Dunker, possibly others.

A plate illustrating U. ortmanni will appear next month.

THE PACIFIC CONCHOLOGICAL CLUB.

BY CHESTER STOCK, UNIVERSITY OF CALIFORNIA.

There has long been felt the need of an organization on the Pacific coast which would be valuable to the amateur collector, to the conchologist, and to those using conchology as supplementary to their studies in zoölogy and palaeontology. With such a combined purpose in view, an organization known as the Pacific Conchological Club has recently received its initial start at the University of California. It is to be hoped that the beneficent effects of a society of this sort will stimulate still further interest in conchology as a science on this coast.

The occasional meetings which will be held will bring the conchclogist in touch with the invertebrate zoölogist and palaeontologist and with their problems in which conchology so often plays an important rôle. Furthermore, it is the desire of the society to ultimately establish at the university one of the largest collections of shells on the coast. This collection will be augmented from time to time by the results of excursions to the beaches and through the medium of exchange.

On April 23d a meeting was held at the University of California, at which time Mr. B. L. Clark reported on the molluscan fauna of Bolinas Bay, California. A representative collection of this fauna was obtained on a recent excursion held under the auspices of the society. Other features of the program were a discussion on the factors controlling the distribution of mollusks by Dr. F. B. Sumner, and a report by Prof. W. J. Raymond on a thesis entitled, "Variations in the Forms of *Thais* found on the Pacific Coast," by Bertha M. Challis, of the University of Washington.

THE ZOOLOGICAL STATION AT NAPLES.

BY MAXWELL SMITH.

(Concluded from page 6.)

Continuing the account of our dredging trip in the Bay of Naples, on board of the "Johannis Müller," the second haul was in 150 feet of water and resulted in the capture of a dozen living Scaphander lignarius, L., the animal of which is much larger than the shell.

The third haul was in 450 feet of water on mud bottom, which seemed a more congenial home for mollusks. This time the net came up quite full. Its contents were washed cleaner of mud by running the steamer full speed ahead before lifting the net over the rail. The more delicate fish and other animals were removed first, then the mud was scooped up by hand after it had been deposited on the deck. A quantity at a time was then placed in one of two trays in a sifting box, sea water was poured over these, the upper retaining the larger and the lower the smaller objects, the mud and water passing out of an opening below. In this way the material was quickly separated. The larger animals were put immediately into jars of sea water, arranged in baskets on the deck, while the smaller were placed in buckets to be examined and sorted later. Among many small forms I noticed the following:

Hyalaea tridentata Forsk.

Aeolis sp.

Fusus rostratus Olivi.

Nassa limata Chem.

Pecten flexuosus Poli.

Pecten pes-felis L.

At 3 p. m. it was necessary to return, as the catch might have been spoiled by the swell which grew stronger. Upon our arrival in Naples the material was at once transferred to the zoölogical station. The animals which are to be preserved are treated with cocaine. In the case of the mollusca this leaves them extended from the shell, as in life. A 75 per cent. solution of alcohol is finally used for their preservation. The institution issues a priced catalogue, and the specimens are sold and delivered to museums in all parts of the world.

At the time of this writing the zoölogical station is building a much larger steamer for dredging, so that in the future the work will not be restricted to the Bay of Naples, but will include Sicily and the adjacent coasts. This boat will have a laboratory, library, and cabins for sleeping on board, besides more powerful dredging machinery for work in still deeper water. It is to be hoped that the Mediterranean, with its rich cosmopolitan fauna, will soon be better known from a biological point of view.

THE UNIONE FAUNA OF THE GREAT LAKES.

BY BRYANT WALKER, SC. D.

The Unione fauna of the Great Lakes is one of considerable interest to the student of geographic distribution. It might naturally be expected that the St. Lawrence system, extending from Minnesota to the ocean, and affording a continuous waterway of more than 2,000 miles, and which flows nearly east and west through a region of substantially the same climatic and other environmental conditions, and with no natural connections with the Mississippi and Ohio systems, would be inhabited by a common fauna, throughout its entire length. As compared with the Mississippi drainage system, which extends from the far north to the almost semi-tropical regions of the Gulf States, it would seem that the fauna of the latter would naturally be much more diverse in its character than that of the St. Lawrence system, but the contrary is the case. The fauna of the Mississippi Valley, from one end to the other, is a substantially homogeneous fauna, varying simply in the number of species in different parts of its extent. But on examining the Unionidæ of the Great Lakes, we find that, while the fauna of Lake Superior, at the western extremity of the system is similar to that of the lower St. Lawrence, and the New England States, there is in the center of the system, with Lake Erie as its metropolis, an entirely different fauna, which extends eastward as far as the Ottawa River and Montreal, and westward to the Saginaw Valley, and even perhaps as far The relations of this fauna are entirely with that of as Mackinac. the Ohio and Mississippi Valleys.

This interpolation of a distinct faunal area in the middle of a great drainage system is very remarkable, and, so far as I know, is without parallel in any other of the great river systems of the world. And when, in addition to this, we find that there this intermediate fauna is, in almost every case, so modified from the typical form of the several species represented, that, in a very large proportion of the species, the Great Lake forms have, at one time or another, been described as species distinct from the typical forms as found in the Mississippi fauna, and that this fact has recently been made the basis of an argument by Dr. Scharff, in his interesting book on the "Distribution and Origin of Life in America," for his theory of

acrement

an unglaciated area in central North America, on the ground that this peculiar fauna of Lake Erie and the adjoining waters is a relict fauna, the remnant of a pre-glacial immigration from the south, rather than a post-glacial invasion, which has been modified since the disappearance of the glacier, the subject becomes one of considerable importance and worthy of careful consideration.

The study of the geographic distribution of the North American Naiades is one of comparatively recent origin, and it is only within the last fifteen or twenty years that any particular attention has been given to it. The fact is that it is only within that time that sufficient data have been accumulated, upon which any reasonable generalizations could be based. The time and efforts of the earlier generation of students, of which Dr. Lea was the leading exponent, were wholly taken up in differentiating and describing the new species as they were collected in various parts of the country. The first attempt to deal in any general way with the distribution of the fauna was that of Simpson, who, in his monumental work, "The Synopsis of the Naiades," published in 1900, not only put the classification of the family for the first time upon a scientific basis, but also separated the fauna into its several main constituents.

According to Simpson, North America, north of Mexico, is divided into three great faunal areas: on the east and limited on the west by the Appalachian Mountains toward the south, and extending in an indefinite direction towards the north and northwest, is the Atlantic region; on the west coast, bounded by the Rocky Mountains and the Sierra Nevadas on the east, is the Pacific region; while the whole interior portion of the country, extending from the Gulf as far north as Unione life can survive, forms one large province inhabited by the fauna, which he calls the Mississippian. The additional information of the subject that has been accumulated since the publication of Simpson's book has served only to confirm the correctness of his general division into these three great regions, but, as might be naturally expected, certain modifications will have to be made as the results of our increased knowledge of the range of many of the species. So far as the purposes of this paper are concerned, it is only necessary to say that, in figure 1, p. 20, I have extended the Atlantic region across the Georgian Bay and about half way along the eastern end of Lake Superior, both on the north and on the south shores.

Fig. 1.

While it is, perhaps, probable that the whole of Lake Superior should be included in this system, I have hesitated to do so on account of the apparent failure of *Unio complanatus*, which may be considered the characteristic species of the fauna, to extend into the western part of the lake. It is quite possible that it may, but we have no definite record of its occurrence west of Marquette county, Michigan, on the south shore, or of the Michipicoten River, on the north shore. It was not found by the University of Michigan expeditions of 1904 and 1905, either in the streams of Ontonagon county,

Michigan, on the south shore, nor at Isle Royale, at the western end of the lake. On the other hand, Lampsilis luteola, a characteristic species of the Mississippian fauna, was common at Isle Royale, and is known to extend along the south shore as far at least as Marquette county, and is represented on the north shore by a closely allied form, Lampsilis superioriensis, from the Michipicoten River.

The fauna of the Atlantic region, in its northern portion, is a very meagre one. As represented in the New England States, and in a general way as far south as Mason and Dixon's Line, it consists of only thirteen species, but south of that, and increasingly so towards the extreme south, it becomes a wonderfully varied fauna, in which the specific lines in many of the groups seem to be almost wholly obliterated. As an example of this, it might be mentioned that, in the case of Unio complanatus Dill., while Dr. Lea, in the northern portion of the region, recognized only the one species, in the southern portion he described no less than forty-six forms as distinct species, which Simpson in his synopsis has referred to the typical form as synonyms.

Taking the Atlantic fauna as represented in New England as the basis of comparison with that of the Great Lakes, as found in Lake Erie and the Detroit River, we find the two faunas represented by the following list:

LAKE ERIE.

NEW ENGLAND.

Truncilla Dy snome triquetra triangularis Bar.

sulcata delicata Simpson. perplexa rangiana Lea.

Micromya fabalis Lea.

Lampsilis

ventricosa canadensis Lea.

multiradiata Lea. luteola rosacea De Kay.

Ligania recta sageri Con.
nasuta Say.
Micromairis Lea.
Carundua parva Bar.
Proputa alata Say.

nasuta Say.

Lampsilis cariosa Say. ochracea Say.

radiata Gmel.

gracilis Bar. leptodon Raf. Obovaria leibii Lea. ellipsis Lea.

Plagiola

elegans Lea.

Truncilla donaciformis Lea.

Obliquaria reflexa Raf.

Strophitus edentulus Say.

Anodonta

marginata Say. imbecilis Say.

grandis footiana Lea.

grandis benedictensis Lea. Anodontoides ferussaciana subcylindracea Lea.

(Symphynota) Lasmefora compressa Lea.

costata Raf.

Alasmidonta

marginata varicosa Lam. calceolus Lea.

pricerche Hemilastena ambigua Say.

(Unio) gibbosus Bar. Quadrula

hippopæa Lea (plicata Say?).

lachrymosa Lea.

pustulosa Lea.

rubiginosa Lea.

undata Bar. (?).

coccinea paupercula Simp.

subrotunda Lea.

Strophitus undulatus Say.

Anodonta

marginata Say.

cataracta Say. implicata Say.

Alasmidonta undulata Say. marginata varicosa Lam. heterodon Lea.

Margaritana margaritifera L. Unio)complanatus Dill.

tuberculata Raf.

ych . A tastoolus Hild

The Atlantic fauna is made up of five genera and thirteen species,

while the Lake Erie fauna includes fifteen genera and thirty-nine species.

Of the Atlantic fauna, three species, Lampsilis nasuta, Anodonta marginata and Alasmidonta marginata varicosa, and perhaps a fourth, are also found in Lake Erie.

Two species, Margaritana margaritifera, a preglacial immigrant from Europe, and Alasmidonta undulata, do not extend into the Erie basin and have no closely allied representatives there.

The remainder, though not found in the Lake Erie fauna, are, nevertheless, represented there by closely allied species evidently of a common derivation, as indicated in the foregoing list. Eliminating these species, we find the remainder of the Lake Erie fauna to consist of eleven genera and thirty species, which are not represented in any way in the New England fauna.

The relation of these two faunas in the region of the Great Lakes region can, perhaps, be best shown graphically by a comparison of the range of two of their characteristic species, which are closely related to each other, and both of wide distribution, viz., Unio complanatus Dill, and U. gibbosus Bar. - Illy two delatations

It will be observed from figure 2, that Unio complanatus extends from the Atlantic region proper, northwesterly across Ontario into Georgian Bay, up the St. Mary's River and along the eastern half of both the north and south shores of Lake Superior, and, so far as we know, probably occupies all of the Canadian region north and east of that line as far as Hudson's Bay and Labrador. On the other hand, Unio gibbosus, the representative of the Mississippian fauna, extends from the Menominee River, the dividing line between Wisconsin and Michigan, entirely around the shore of Lake Michigan and along the south shore of Lake Huron from Mackinac through the St. Clair River, Lake St. Clair, the south shore of Lake Erie, and east as far as the Ottawa River. At that point the two species are found living together in the same stream. It occupies, of course, the entire inland region south of the Great Lakes in Wisconsin, Illinois, Michigan, Ohio and western New York.

(To be continued.)

Cont. P. 29.

¹ The specific distinctness of *Strophitus edentulus* and *undulatus* is questioned by eminent authority.

NOTES.

GALBA FERRUGINEA IN OREGON.—Recently Mr. John A. Allen sent me some small living Lymnaeas which, upon comparison with western species, proved to be Galba ferruginea (Haldeman). They were collected in a small pool at Oswego, Clockamas Co., Oregon, and furnish the first authentic record of this species for this State.

G. ferruginea has been authentically reported from California and Washington. It was originally credited to Oregon by Haldeman, the specimens being collected by Nuttall, but no locality was given. Mr. Allen has added to his collecting laurels by rediscovering this species in the State from which it was first described.

These specimens show that there is considerable variation in the degree of impression of the inner lip on the parietal wall, and hence the umbilicus may be widely open or almost closed. The animal is dark yellowish-horn flecked with small white dots.—Frank C. Baker.

REVERSED SUCCINEA OVALIS AND OTHER SHELLS OF FRESH POND, CAMBRIDGE, MASS.—While looking for Planorbis hirsutus, I found a number of other interesting things at Fresh Pond. Vitrea hammonis (electrina Gld.), Pupa ovata (modesta), Euconulus fulvus, Succinea ovalis, retusa and avara, Vallonia costata and excentrica, Cochlicopa lubrica, Helicodiscus parallelus, Zonitoides arborea, Pyramidula cronkhitei anthonyi, etc., and 17 species of fresh-water shells. Among the Succinea was one live, full-grown ovalis reversed. Is this a common occurrence? I have never found one before.—William F. Clapp, May 6, 1913.

PUBLICATIONS RECEIVED.

On Aporemodon, a Remarkable New Pulmonate Genus. By G. C. Robson (Annals and Mag. Nat. Hist., April, 1913).—A minute limpet from Singapore is described under the above caption. The shell is brownish-yellow with red radial stripes, the apex anterior and turned toward the left side. The dentition has a remarkable resemblance to that of *Vallonia*, near which it is for the present classed by Mr. Robson. We suspect that it may turn out to belong to the *Siphonariidæ* when the entire animal is known.—H. A. P.

UNIO ORTMANNI FRIERSON

THE NAUTILUS.

Vol. XXVII.

JULY, 1913.

No. 3

SHELL COLLECTING ON THE WEST COAST OF BAJA CALIFORNIA.

BY H. N. LOWE.

My long anticipated collecting trip to the coast of Lower California was at last realized in the spring of 1912, when a party was being made up for a month's cruise in Mexican waters.

The staunch little power yacht "Flyer" was chartered for the trip. Besides the crew of three, our party was made up of the owner of the boat, the taxidermist, the tourist, the ornithologist, and the conchologist.

After a day spent at San Diego securing our clearance papers and half a day at Ensenada with the Mexican authorities, we were at last on our way. We cast anchor for the night in a small cove a few miles south of Point Banda. There had been a slow drizzle of rain all day and on going ashore I secured some five live specimens of Helix stearnsiana walking over the bushes. On Todos Santos Islands and San Martin (the southern limit of the species) I found live specimens under loose rocks, but none under or near any of the numerous species of cactus which thrive here. On Santa Catalina Island the nearly allied form Helix kelletti lives on the cactus (cholla) and is found under it at all seasons of the year. A few specimens of Glyptostoma newberryanum were found on the Todos Santos.

At Point Banda I secured my first Monoceros lugubre, and though a common species it gave me pleasure to find something I had never before collected. The specimens found here were very small only

about a quarter of the size of the fine ones further south from San Martin and San Gerónimo Islands. Further south, at Cape Colnette, large beds of Mytilus californicus were uncovered at low tide. Among the mussels were fine large Monoceros pauciliratum Stearns and Macron lividus. Wedged in between and attached to the byssus of the mussels we found many Tapes grata Sby. and Tapes staminea Conr., a rather unique place for that genus to be found. A few good Saxicava arctica and one large Entodesma saxicola were added to the list. The largest of the Mytilus were worm-eaten, wave worn and battered, and altogether the most disreputable looking specimens I had ever seen. Many of the worst shells had quite pretty pearls snugly hidden in their internal anatomy, some having as many as twenty-six small "seed pearls" and others but a single large one. The pearls from this species, unlike the elegant ones from the Haliotis, have no commercial value, lacking sufficient luster. The Tegula gallina Fbs. found here were mostly var. tincta Hemphill. The Monoceros pauciliratum were right in their prime here, though we found a few as far south as Cedros. Monoceros engonatum Conr. although small were very good specimens but we found none south of here.

Another day's sail brought us to San Martin Island, lying five leagues out from the "Bay of the Five Hills." It is a small island of very evident volcanic origin, the crater of its extinct volcano being visible for many miles. On climbing to the summit of the crater we were dazzled by a wealth of golden daisies which carpeted the interior. The only land shell to be found was the ever present Helix stearnsiana, but this seemed to be its southern limit, as we found few here and none further south. A natural breakwater of black lava boulders runs out for half a mile from the south end forming one of the best anchorages for small vessels on the coast. This island, like San Gerónimo, is the breeding place of thousands of sea birds which come here in the spring—gulls, cormorants, terns, osprey, turnstones, oyster-catchers, duck hawk, surf birds, pelicans, etc. On San Gerónimo Is. hundreds of auklets or "mutton birds" were nesting in burrows which they dig in the sandy earth, laying but one white egg about the size of a pigeon's egg.

The wild fauna of these southern islands seems to be having hard luck. On Guadalupe Is. the domestic cat, run wild, has about exterminated a rare petrel and several other birds from that island,

On Cedros the dogs have entirely cleared out a rare dwarf species of deer which formerly lived here. On Todos Santos the common rat has in the last few years made life so strenuous for the sea birds that they have given up nesting here entirely. Since birds' eggs have been cut out of the rat's bill-of-fare, they have developed a fondness for snails and I fear in a year or two 'Todos Santos will be as destitute of snails as it is of birds' eggs.

San Gerónimo Island is smaller than San Martin, only about one and a half miles in length and as bare as a picked hen. Its barren sandy soil seems incapable of supporting any vegetation save a few stunted bushes. Only very dead specimens of Helix levis var. near crassula Dall were obtainable, though I made a thorough and systematic search for them. The reefs on the west side yielded a number of good small species.

Margarites acuticostatus Cpr. Mitromorpha gracilior Hemphill. Modiolus opifex Say. Truncatella stimpsoni Stearns Arca gradata Brod. & Sby. Mitra lowei Dall. Marginella varia. Marginella politula Cooper. Triforis pedroana B. Bittium attenuatum Cpr. Bittium munitum munitoides B. Cerithiopsis alcima B. Cerithiopsis pedroana B. Cerithiopsis carpenteri B. Turbonilla buttoni D. & B. Odostomia helga D. & B.

Eulima bitorta Van. Milneria minima Dall. Cardita subquadrata Cpr. Columbella penicillata Cpr. Fusus luteopictus Dall. Lucina californica Conr. Hipponyx antiquatus Linn. Gadinia reticulata Sby. Opalia crenatoides Cpr. Ocinebra gracillima Stearns. Pecten latiauritus Cpr. Acmaea asmi Midd. Mitromorpha filosa Gabb.

On San Gerónimo we found Acmæa persona Esch and var. digitalis, also a form of A. spectrum which seemed to be copying the peculiar shape of A. persona, Acmaa scabra, A. pelta var. nacelloides and Lottia gigantea Gray were also found on the reefs.

The Tegula gallina were the largest I have ever seen.

We left San Gerónimo Island rather hurriedly the evening of the second day as a southeaster was coming up. Next morning found us at the north end of Cedros Island where the Esperanza Mining Company had their wharf and buildings for shipping the gold ore from their mines in the interior of the island. There were practically no marine species at this end of the island as the shore line drops into deep water. After several days' search I was well repaid by finding some fine live specimens of the beautiful Helix veatchii (Newc.) Tryon. This species varies much from almost white to dark many-banded specimens. At first I found a few fairly good dead shells, but search as I might under stones, through cactus, and chaparral not a live one could I find, until by chance I spied one roosting on a limb of the dwarf oak peculiar to this island. This species seems to be entirely a tree snail.

At the south end of the island a *Helix* identified by Dr. Pilsbry with *H. canescens* Ads. and Rve. occurs in colonies in exposed places on rocks. *H. veatchii* is scattered over a larger area on the island, the many color varieties being found sometimes on the same tree.

At South Bay Cedros Island we collected under stones at low water the following:

Semele rupium Sby.
Vermetus fewkesii Yates.
Scurria mesoleuca Mke.
Latirus lugubris C. B. Ads.
Drillia moesta Cpr.
Trivia solandri.
Arca reeviana d Orb.
Arca gradata B. & S.
Columbella fasciata Sby.
Mopalia muscosa Gld.
Ishnochiton conspicuus Cpr.
Ishnochiton acrior Cpr.
Ishnochiton didymus B.
Ishnochiton clatheratus Cpr.

Callistochiton decoratus.
Chaetopleura gemmea Cpr.
Cyanoplax hartwegii.
Nuttallina scabra.
Murex incisa.
Murex nuttalli Conr.
Lucapina crenulata.
Macron lividus A. Ads.
Amphissa versicolor Dall.
Tegula aureotinctum Fbs.
Tegula gallina Fbs.
Fissurella volcano Rve.
Fissurella volcano var. crucifera Dall.

Callistochiton crassicostatus Cpr. Megatebennus bimaculatus.

Cedros Island seems to be the northern limit of the large red crab

Grapsus grapsus. They are very hard to catch for the moment they see one approaching, they clatter off pell-mell over the rocks as fast as their ten legs will carry them and jump into deep water where they swim like a fish.

On a pebble beach midway the east coast of Cedros I found the following beach-worn shells cast up by some storm; the list is interesting in that it shows the intermingling of northern and southern species at this point.

Cypraea spadicea Gray.
Ranella californica.
Pomaulax undosus Wood.
Conus californicus Conr.
Semele decisa Conr.
Uvanilla regina Stearns.
Venus fordii Yates.
Triton gibbosum.
Macron aethiops.
Cymatium corrugatum Lam.
Conus gradatus Mawe.

Arca grandis B. & S.
Dosinia ponderosa.
Pecten subnodosus.
Fusus dupetithouarsi Kiener.
Drillia penicillata Cpr.
Monoceros muricatum Brod.
Crucibulum imbricatum.
Purpura biserialis Blve.
Venus undatella Sby.
Cassis sp.
Oniscia sp.

For several miles along the cliffs on the southwest coast of Cedros extends a well marked stratum about a foot in thickness of *Lucina californica*, and very strangely not another marine species was found with them.

In about ten fathoms off Palm Spring on the east coast we succeeded in making one haul of the dredge with the following results: Hemicardium biangulatum.

Nassa insculpta.

Pecten latiauritus.

A number of small or difficult species collected on the trip remain to be identified. A list of them will appear later. Dr. Pilsbry has in press an illustrated paper on the Helices of the *Micrarionta* group collected.

As the weather was unfavorable for a continued southerly cruise, we reluctantly headed the "Flyer" for home where we arrived just four weeks from the time of starting.

THE UNIONE FAUNA OF THE GREAT LAKES.

BY BRYANT WALKER, SC. D.

(Continued from page 23.)

The distribution of these two species, Unio complanatus and U. gibbosus (fig. 2), in a general way, shows the relative position the Atlantic and Mississippian faunas occupy in the region of the Great Lakes. Of course there are variations in the range of individual species, but these, on the whole, do not interfere with the general proposition to be discussed in this paper.

Fig. 2.

The discussion, then, includes the consideration of four questions: 1st, the origin of the Atlantic and Mississippian faunas; 2d, how and when the peculiar extension of the Atlantic fauna to the northwest took place; 3d, how and when the extension of the Mississippian fauna into the Great Lakes took place; and 4th, whether the peculiarly modified fauna of Lake Erie, as it exists to-day, is the result of a pre-glacial invasion, which survived in that region during the glacial period, or whether it was a post-glacial immigration.

t Josephens

I.

In considering the present distribution of the Naiad fauna of North America it is to be borne in mind that while our knowledge as yet is only fragmentary, and there is a great deal more to be learned before definite final conclusions can be drawn, nevertheless there are certain fundamental facts which seem to be reasonably well established, and with which such tentative deductions as we may attempt to make at the present time must be in agreement.

In the first place, it seems to be well established that the peculiar North American Naiad fauna originated west of the Mississippi, in the region extending from Utah and Colorado north to Athabasca and Saskatchewan, in British America.

The earliest forms of recognizable Naiades that are known are from the Triassic and a few more are known from the Jurassic. All these forms are simple and comparatively uniform in their character. But towards the end of the Cretaceous Period, there was, for some reason or other, an extraordinary epidemic, as it were, of mutation in this group, and, in the rocks that were laid down in these western lands at that time, are to be found prototypes of many of the modern groups, which are to-day characteristic of the recent fauna.

In the second place, it is to be kept in mind that north of the line of glaciation, the entire system of drainage was radically changed as one of the results of the Glacial Period.

Thirdly, assuming the general proposition that the center of distribution of a group must be considered the region of the greatest abundance of individuals and the greatest diversity of specific development, it would seem to be reasonably well established that the present fauna of the Mississippian region has spread out from two great centers; the one on the east, in the head waters of what we

now know as the Tennessee System, and the other in the southwest, probably in the Ozark region.

Assuming the origin of the Naiad fauna in the western region above mentioned, the first question to be determined is the derivation of the Atlantic fauna from this primitive fauna of Cretaceous time in the west.

The oldest land in eastern North America is that known as the Laurentian Highlands of Eastern Canada. With the gradual elevation of the continent in early times, which ultimately resulted in a connected land surface from the east to the mountainous regions of the west, the earliest system of drainage that was established in the region now occupied by the Great Lakes, was, according to the consensus of the best geologic opinion, towards the west, and when, in process of time, the highlands known as the Appalachian Mountains and the Cumberland Plateau were raised up, they formed a water shed, which determined the then existing systems of drainage.

According to Branner (1), prior to Cretaceous times, the then Cumberland Plateau extended continuously from the Appalachian Mountains southwest into western Texas. At that time the Mississippi River was not in existence, the drainage from the south of this great water shed was into the Gulf of Mexico, the drainage from its north side was north and west, and probably in the beginning, ended in the great Mesozoic sea, which extended along the foot of the Rocky Mountains from the Gulf of Mexico to the Arctic Ocean.

While we do not know as much of the exact course of these preglacial rivers as we should like, nor as much as we hope to know in future, there has been of recent years a considerable advance in our knowledge in this particular, and there is enough of data now available to give us at least a general idea of some of the particulars of that ancient drainage system. It was, of course, entirely overwhelmed and nearly obliterated by the effect of the ice cap, which overthrew the ancient system, and from which grew our present system of drainage, but here and there there are enough remnants to afford us some information as to the lines along which this preglacial drainage system was established.

As shown by Fig. 3, which is copied from Grabau (2), the preglacial drainage of the region of the lower Great Lakes was towards the southwest. The ancient Dundas River, originating in the Laurentian Highlands, flowed southwesterly across the present bed of Lake Erie, and possibly along the general course of the present Maumee and Wabash Rivers towards the western sea. In a similar way the ancient Saginaw River was a western-flowing stream, extending from the highlands on the east across the Georgian Bay, up the Saginaw Valley, and southwest towards the sea. And further north a similar drainage was also established. According to Fowke (3) the present course of the Ohio River is quite different from that of the great river which drained that region in pre-glacial

Fig. 3.

times. The present course of the Ohio is made up of fragments of ancient drainage beds united by connecting links forced through by the glacial waters on the retreat of the ice. According to Grabau the present bed of the Ohio is about 150 feet above the ancient bed of the pre-glacial drainage, and according to Fowke the Great Kanawha River, which is now a southern tributary of the Ohio, at that time flowed northwesterly across southern Ohio into Indiana, and presumably, either as a separate river or as a tributary of the Dundas, flowed westerly towards the sea or into the Mississippi.

If these theories of the ancient pre-glacial drainage of this region are correct, it does not require much imagination to see how, from their ancient place of origin in the west, the primitive ancestral forms of our present fauna were enabled to spread to the east up these ancient waterways to the headwaters of these pre-glacial streams, and then, during the many elevations and sinkings of Tertiary times, through the stream transference consequent upon such orographic changes, this immigration of the primitive fauna was transferred into the eastern drainage, and thus became the ancestral stock of the present Atlantic fauna.

That this emigration from the west to the east was a very early one, there can be no doubt, and that it was long antecedent to the Glacial Period seems beyond question, both from a geological and a zoological standpoint. The fact that not only from the Glacial Period, but for long ages prior to that time, the Appalachian system must have been a barrier to the entrance of the western fauna into eastern waters would seem to be beyond question, and this view is strengthened and corroborated by the fact that the two faunas have been so long separated that they have become specifically differentiated in the great majority of cases. The time that is involved in such a change must be very great. That it must be so is shown by the fact that the fossil Unios found in the inter-glacial drift of eastern Canada are the same as the recent examples of the same species found to-day. It is probable that this emigration from the west took place after the primitive fauna of early times had begun to mutate under the peculiar influence of the later Cretacic times, and while, of course, there is much that is indefinite and purely speculative in regard to these questions, there are some facts, which seem to point with some directness, as to when that migration might have taken place.

One of the characteristic species of the Atlantic fauna is Lampsilis radiata, which extends at the present time along nearly the whole extent of the Atlantic drainage. It is very closely related to another characteristic species of the Mississippian fauna, the Lampsilis luteola, and, indeed, these two specimens are so closely related that while in the main there is no difficulty for the average student to separate them, yet oftentimes there are individual specimens which are very difficult to place with entire satisfaction.

(To be continued.)

NOTES.

DR. A. E. ORTMANN reports excellent collecting of *Unionida* in Wise Co., Va., and southward. Some very interesting systematic observations have been made.

MR. H. F. CARPENTER of Edgewood, Providence, R. I., has just returned from a four months' trip to South America.

Mr. C. W. Johnson is about to leave Boston for a collecting campaign in northern Vermont in the interests of the New England faunal collection of the Boston Society of Natural History.

At the Natural History Museum on November 29th, Mr. Edgar Albert Smith, I. S. O., Assistant-Keeper in the Zoological Department, was presented by the Director, Dr. L. Fletcher, F. R. S., on behalf of a large number of subscribers with a silver tea and coffee service, a drawing room clock and a pair of field glasses. Mr. Smith has served the Trustees of the British Museum for 45 years, having joined the staff in 1867. The subscribers included, besides his colleagues on the Museum staff, many friends outside who are interested in mollusca, the group of animals to which Mr. Smith's scientific work has mainly been devoted.—The Museums Journal.

PUBLICATIONS RECEIVED.

CATALOGUE OF THE BRITISH SPECIES OF PISIDIUM (recent and fossil) in the collections of the British Museum, with notes on those of Western Europe. By B. B. Woodward, F. L. S., etc. Printed by order of the Trustees of the British Museum, 1913. Pp. ix + 144; 30 plates. "Of all the genera of British non-marine mollusca none has presented more difficulties to the student than *Pisidium*. The small size of the shells, their great variability, the lack in most cases of any striking external characteristics, as well as the confusion in which the subject has been left by the various authorities, have all contributed to these difficulties, with the result that the genus has

been largely neglected." Conchologists everywhere will heartily agree with the opening paragraph of Mr. Woodward's book, quoted above, which is true not only of British Pisidia, but of the genus throughout its range.

In the discrimination of species, characters of the hinge are chiefly relied upon, the forms of the individual teeth and other details of hinge-structure affording criteria of far more value, according to Mr. Woodward, than external shape and sculpture of the shell. "In one locality, all the species will exhibit less sculpturing than the normal forms; in another, more; all may be dwarfed or all abnormally large; occasionally one species in the gathering will show greater increase in size over the average, while its associates are undersized; or exaggerated inflation may be the prevailing feature." While other authors have described the teeth of Pisidia, the subject has never before been dealt with in the thorough manner of this work. The terminology of M. Félix Bernard is used in the descriptions of hinges.

The author does not venture to establish subgenera, and seems skeptical of those proposed by other writers.

Seventeen species are recognized, fourteen of them living in the British Islands, two extinct. The work on British forms necessitated a critical study of practically all Palæarctic Pisidia,—a couple of hundred described forms, most of them synonyms or indeterminate,—so that the scope of the work is far broader than its title indicates. Distribution, both recent and as fossils, is dealt with in the most ample manner. The plates illustrate very fully the local variations, the figures being photographs enlarged two to three diameters and reproduced by gelatine process. It may be questioned whether a smaller number of larger figures would not be more useful. There are also four plates of much enlarged figures showing the hinges.

Whether the development of methods, the examination of vast numbers of specimens from many localities, or the study of an involved and exasperating literature is considered, the practical conchologist will realize that Mr. Woodward's task has involved an enormous total of work. Notwithstanding its geographic limitations we believe that the Catalogue will initiate a new epoch in the study of this family, all over the world.

H. A. P.

CUBAN AND WEST AMERICAN LAND SHELLS.

THE NAUTILUS.

Vol. XXVII.

AUGUST, 1913.

No. 4

ILLUSTRATIONS OF CUBAN AND WEST AMERICAN SHELLS.

The figures on plate III represent types or cotypes of the following species:

Fig. 1. Chondropoma wilcoxi P. & H. Cotype. NAUTILUS XXVI, 45.

Figs. 2, 3. Chondropoma garcianum Torre MS. Types. Palma Sola, prov. Matanzas, Cuba.

Fig. 4. Chondropoma carenasense P. & H. Cotype. Cayo Carenas, Cuba. NAUTILUS XXVI, 44.

Figs. 5, 6. Annularia ramsdeni P. & H. & Cotype. NAUTILUS XXVI, p. 42. Fig. 7, & Cotype.

Figs. 8, 9. Annularia pseudalatum Torre. Type. NAUTILUS XXVI, 43.

Figs. 10, 11, 12. Oreohelix pygmæa Pils. See p. 51.

Figs. 13, 14. Epiphragmophora dupetithouarsi cuestana Edson. Cotype. NAUTILUS XXVI, p. 37.

Figs. 15, 16, 17. Epiphragmophora tudiculata grippii Pilsbry. Santee, 18 miles from San Diego, California.

SOME WYOMING SNAILS.

BY JUNIUS HENDERSON.

Mollusk records for Wyoming are so scarce that the following species in the University of Colorado Museum, recently collected in that State by Messrs. Don W. Walker, Roy M. Butters and Norman deWitt Betts, may be of interest:

Oreohelix cooperi (W. G. B.). Horse Creek Station, Laramie County, Wyoming (Butters).

Oreohelix cooperi minor (Ckll.). North Fork of Rock Creek, Johnson County, Wyoming (Betts).

Pupilla muscorum (Linné). North Fork of Clear Creek, Johnson County, Wyoming (Betts).

Vallonia cyclophorella Ancey. North Fork of Clear Creek, Johnson County, Wyoming (Betts).

Euconulus fulvus alaskensis Pils. North Fork of Clear Creek, Johnson County, Wyoming (Betts).

Pyramidula cronkhitei anthonyi Pils. North Fork of Clear Creek, Johnson County, Wyoming (Betts).

Succinea avara Say. Ten miles northeast of Basin, Wyoming (Walker).

A NEW OREOHELIX FROM COLORADO.

BY JUNIUS HENDERSON.

In The Nautilus, Vol. XXVI, p. 30, Dr. Pilsbry has indicated that the forms of Oreohelix from Glenwood Springs and Newcastle which have been tentatively recorded and distributed as O. haydeni gabbiana (Hemp.) are not gabbiana at all, but are forms of O. hendersoni Pils. I have examined a large series from each place, and have compared them with a large series of typical hendersoni. The characters distinguishing the specimens from Newcastle and Glenwood from true hendersoni are so constant as to clearly entitle them to a separate name, and yet the relationship, in spite of the lack of intergrading specimens, is so evident it seems best to consider them a subspecies rather than a distinct species.

OREOHELIX HENDERSONI DAKANI n. subsp.

Distinguished from typical hendersoni by the following shell characters: Spire much more elevated; peripheral angulation of the earlier whorls disappearing on the penultimate whorl, so that scarcely a trace of it is observable in front of the aperture on the last whorl of the adult shell; shell larger, whorls higher in proportion to width, producing a corresponding difference in shape of aperture.

Alt. 14, diam. 22, whorls $5\frac{1}{2}$.

Types in University of Colorado Museum, cotypes in Academy of

Natural Sciences of Philadelphia. Type locality, northwest corner of Peebles ranch, two miles up Elk Creek from Newcastle, Colorado, where it was found in great abundance by Mr. Albert Dakan, in April, 1908. Mr. Dakan was also the collector of the types of hendersoni. I found dakani nine miles east of Meeker, Colorado, in 1909, where it was associated with O. cooperi (W. G. B.). In color the specimens from both localities average a trifle lighter than typical hendersoni, being almost white, with a slight creamy tinge. A large series from the well-known colony on the south side of the Grand River at Glenwood Springs, Colorado, is on an average very much darker and less robust, but otherwise so closely agrees with the Newcastle specimens that I have not thought a separate name advisable. The forms of this species agree in the almost total absence of spiral color lines on the last whorl.

It may not be out of place to say here that Mr. Dakan has recently found at Lyons, Colorado, typical specimens of O. haydeni betheli Pils. & Ckll. This carries its range across to the eastern base of the Front Range, which constitutes the Continental Divide, and 100 miles to the northeast of the type locality.

TWO NEW ACHATINELLIDE OF OAHU.

BY H. A. PILSBRY.

In March last I went in company with Dr. C. Montague Cooke from Honolulu to Hilo, Hawaii, chiefly for the purpose of studying Mr. Thaanum's superb collection of Hawaiian shells. One of his recent acquisitions was a sinistral Amastra, from Waiahole, which is certainly new; and at his suggestion I name it for the companion of my Hawaiian journey. Amastra montagui n. sp. is sinistral, imperforate, oblongconic, rather thin, chestnut colored, with a denuded ecru-olive patch in front of the aperture. The surface has a somewhat silky gleam, due to the rather fine wrinkles along lines of growth. The apex is obtuse, embryonic whorls convex, nearly smooth; outlines of the spire noticeably convex. Suture well impressed, the whorls a little swollen below it. The aperture is not very oblique, slate-violet within; peristome black at the edge, strengthened by a low white callus within; columella with reflexed and adnate edge, bearing a rather strong, white, subtriangular lamella. Length 13, diam. 7.8, length

of aperture 6 mm.; $5\frac{1}{2}$ whorls. It will be figured in the present volume of the Manual of Conchology.

Another species of unusual interest is a fossil *Partulina* which was discovered by Dr. Cooke several years ago in a superficial road cutting at the junction of Manoa road with the upper road, back of Rocky Hill, which terminates the western ridge of Manoa valley.

Only one Partulina has been known in Oahu hitherto, that being P. dubia (Newc.). The present form, which I will call Partulina montagui n. sp., is not related to dubia, but to such Molokaian species as P. dwightii Newc. I regard these two Partulinas and the few Oahuan species of Laminella as stragglers from the Molokai-Lanai-Maui evolution-center, which reached Oahu before the subsidence of a ridge which I believe formerly connected the islands.

P. montagui cannot have been extinct for any great length of time, as the specimens occur in the humus, only buried a few inches below the turf. Probably the forest disappeared from where they are found not more than seventy-five to a hundred years ago. It must have been extinct in the early fifties, or it would surely have been found by Newcomb, Gulick or Emerson.

The shell is sinistral, perforate, ovate-conic, with acuminate spire, thick and solid, sculptured with close, irregular wrinkles, the last whorl malleated; whorls $7\frac{1}{3}$, the upper ones nearly flat, the rest convex; suture superficial. Outer and basal margins of the peristome expanded, thick, heavily thickened within; columellar margin thick; columellar fold thick and moderately prominent.

Length 25, diam. 14 mm. (108181 A. N. S. P.). Length 24.7, diam. 12.5 mm. (111 coll. Irwin Spalding). Length 26.9, diam. 13.1 mm. (33581 B. P. Bishop Mus.).

THE UNIONE FAUNA OF THE GREAT LAKES.

BY BRYANT WALKER, SC. D.

(Continued from page 34.)

Now, according to the geologists, some time about the beginning of the Cretaceous Period there was a great sinking of the land in the Gulf region. It extended from central Texas east to the middle of Alabama, and in a triangular shape north to southern Illinois. It

broke through and separated the ancient Cumberland Plateau, which prior to that time extended continuously from the eastern mountains into western Texas. It admitted the sea to a point, as above stated, north of the present junction of the Ohio and Mississippi, and during nearly the whole of Tertiary times there was a body of salt water between the western highlands and the eastern portion of the Cumberland Plateau, in what is now Tennessee and Kentucky. This invasion of the sea was, of course, an absolute barrier to any communication between the Unione faunas of the two regions.

The evidence afforded by the present distribution of the species of the group, to which these species belong, shows that its center of distribution, as affecting the present fauna, was in the southwest. Not only is the southwest the region of the greatest variation in the species of this group, but, while it extends from Texas easterly along the Gulf States as far as Alabama, and even into Georgia and Florida, and extends north through the entire Mississippi Valley to the Appalachians on the east and the Arctic regions on the north, there is no representative of that group found to-day, so far as records show, in any part of the Tennessee Valley. The inference to be drawn from this fact is that the group originated in the west, and after the great landslide of Cretaceous times. Another example, bearing upon the same general fact, is the distribution of the group, of which the well-known Quadrula rubiginosa is a leading example. If we are to rely upon the proposition that the center of distribution is the region where there is the greatest abundance of individuals and of specific forms, it would seem certain that this group originated in the southwest and from thence spread eastward to its present distribution. But Quadrula rubiginosa, like Lampsilis luteola, is not found in the Tennessee Valley. Its distribution through the Gulf States is similar to that of the Lampsilis, and its distribution north through the Mississippi and Ohio valleys is exactly the same. Like luteola, it is found in the Lake Erie, but for some reason, that we do not now know, no form of that group ever succeeded in obtaining a foothold at any time in the northern Atlantic fauna.

If the inferences to be drawn from these facts and others like them are to be relied upon, there would seem to be good reason to infer that the emigration, which was the beginning of the Atlantic fauna, took place after the invasion of the sea in the Mississippi Valley in Cretaceous times, and would probably seem to have been in later Cretaceous or early Tertiary times.

It would seem most probable that the primitive ancestral form of the complanatus group also reached the Atlantic region by the same northern route. Although the greatest diversity of forms belonging to it is now peculiar to the southeastern Atlantic states and, under the axiom already quoted, would seem to indicate that that region was the center of distribution of the group, the weight of evidence is against it.

As has already been stated, the invasion of the sea up the Mississippi Valley in Cretaceous times prevented any emigration towards the east from the southwest during nearly the whole of the Tertiary Period. Moreover, during the greater part of that time this region itself was covered by the sea. The invasion of the southeastern States by the present Unione fauna must necessarily have been, comparatively speaking, a recent one. Had it been coincident with the advance of the southwestern fauna that now occupies the Gulf States to the west of the Alabama River, there would, no doubt, be some evidence left in the present fauna of those States. But there is none. The present distribution of the group shows that it stops abruptly before reaching the Alabama River. With one exception, the group is not represented in the fauna of the Alabama at the present time, nor is it found at all in any of the Gulf States west of that river.

The exuberant variability of the group in the southeastern States at the present time would also seem to indicate that it is comparatively a new comer, and that it has not even yet had time to settle down to stable lines of development.

On the other hand, the homogeneity of the group as a whole, in spite of its extreme variability within the group limits, would indicate that it is of ancient origin. The extraordinary range of the typical species, from Lake Superior to the Atlantic and south to Georgia, is evidence in the same direction.

Taking everything into consideration it must be said that, with the exception of a comparatively small number of species that from one cause or another have been able to get into the South Atlantic States from the faunas of the Alabama and Tennessee systems, all the evidence goes to show that the characteristic fauna of that region has been derived from the north.

II.

Assuming, then, that the Atlantic fauna, in its inception, was derived from a very early immigration from the west, there has been abundance of time for it to become specifically differentiated. Unless the unanimous opinion of the geologists of this country is entirely wrong, it is clear that whatever remnants of this ancient fauna were left along the course of this ancient track of migration towards the east in the region of the Great Lakes were wiped out absolutely by the invasion of the ice during the Glacial Period. Whatever may be said in regard to there being any geological evidence of an unglaciated area in north central British America, there would seem to be no doubt but that the region of the Great Lakes was the very center of the destruction wrought by the invasion of the ice. As has already been said, the entire system of drainage was absolutely changed. The old system was wiped out and a new and radically different one established. The Great Lakes themselves are entirely the result of changes in the earth's surface, wrought by the invasion and subsequent retreat of the ice. It is stated by Grabau that at Detroit the present surface is 130 feet above the pre-glacial surface, and that the ancient bed of the pre-glacial Cuyahoga at Cleveland is 400 feet below the bed of the present river, and, as has already been stated, the present bed of the Ohio is 150 feet above that of its ancient predecessor. According to Taylor (4) the front of the retreating ice-cap at Toledo, Detroit and Port Huron stood in two hundred feet of water. There is no part of the present area occupied by the Great Lakes and their tributaries that was not included within this area of glacial destruction. We may assume, therefore, that whatever fauna was in existence prior to the advent of the ice was wiped out absolutely from this region. This being assumed, the present extension of the Atlantic fauna to the northwest must be looked for in the various systems of temporary drainage that were established in the post-glacial times prior to the final establishment of the existing St. Lawrence system. There can be no doubt but that here and there in the Atlantic region, north of the glaciated area, there were places in which the remnants of the ancient fauna were preserved, and that, from these harbors of refuge, upon the retreat of the ice, the Unionide were able to re-people the barren waters of the new land.

The ice in the lower lake region retreated towards the north and

east, and in the first stage, as soon as the edge of the glacier had passed the height of land north of the Mississippi and Ohio Valleys, the waters were impounded, and in the southern end of the present Lake Michigan and in the western ends of the present Lake Superior and Lake Erie, but at a much higher level, were formed the first post-glacial lakes. Lake Maumee, at that time bounded on the north and east by the ice, found an outlet into the Ohio through the present valley of the Maumee and the Wabash. Upon the further retreat of the ice to such an extent that a way was opened for an

Fig. 4.

outlet towards the east, there were successively different systems established. One of the earliest of these (Fig. 4) was that known as the Trent outlet, which extended, as shown by the figure, from the eastern end of Georgian Bay southeast across Ontario into Lake Ontario. From the south side of Lake Ontario the water flowed through the present Mohawk Valley into the Hudson.

The opening of this new outlet to the east so lowered the water that it was diverted from its former course through Lake Erie, and the present area occupied by that lake became dry land, except for such local drainage as might be necessarily incident to the region itself. Later, another outlet was formed, known as the Nipissing outlet, at a still lower level, which resulted in the closing of the Trent outlet, and the establishment of a new one along the present valley of the Ottawa into the St. Lawrence. When the Nipissing outlet was first established, however, there had been a lowering of the land toward the east, and the sea had invaded the region to a considerable distance up the Ottawa Valley beyond the present city of Ottawa, and into Lake Ontario. Later, with the subsequent rising of the land, the Nipissing outlet flowed through the present Ottawa Valley into what is now known as the St. Lawrence. It seems reasonably certain that the western invasion of the Great Lake region of the Atlantic fauna was through either the Trent or the Nipissing outlet, and the probability is in favor of the Trent outlet, because that was always entirely fresh water, and there would seem to be every probability, from what we know of the inter-glacial extension of the Mississippi fauna into this region, that the postglacial lakes were almost immediately invaded by the fish and with them the Unionidæ of the regions to the south and to the east. So far as the particular question here involved is concerned, it is immaterial by which of these routes the invasion took place. Both of them began on the west, at the Georgian Bay, and afforded a continuous waterway from the east to the northwest. Both of these outlets were antecedent to the establishment of an outlet through the Niagara River. That no invasion from the east of the Atlantic fauna could have taken place by that route is clear for the reason that there was always, to a greater or less degree, a falls in the Niagara River, which was an absolute barrier to any migration of the fish upstream from the east, and that there was no such invasion from the east by that route is shown by the fact that in the case of the Unio complanatus, there is no evidence to show that it ever reached Lake Erie. The remarkable agreement between the present range of Unio complanatus and the route of these earlier postglacial outlets is evidently more than a mere coincidence. If, then, the invasion was through either the Trent or the Nipissing outlet into Georgian Bay, it is easy to see how the species spread along the north shore of the Georgian Bay into the St. Mary's, and from thence into the eastern Lake Superior, without getting either into Lake Erie, Lake St. Clair, or the lower part of Lake Huron.

III.

As has already been stated, the first post-glacial lakes formed by the retreat of the ice in this region were in the south end of Lake Michigan and the west ends of Lake Erie and Lake Superior,

Fig. 5.

bounded on the south by the height of land and on the north and east by the ice cap.

Glacial Lake Erie (Lake Maumee), at that period, drained southwest into the Ohio, and as I have already shown in my paper on "The Distribution of the Unionidæ in Michigan," (5) there can be no doubt but that almost immediately there was an invasion of this lake from the Ohio of the dominant species of that region, and it is unnecessary at the present time to discuss that subject further. In the same way, and at about the same time, the St. Croix outlet of Lake Duluth into the Mississippi would have given an opportunity for an invasion of that region by the Mississippian fauna. And it would seem probable that the occurrence of Lampsilis luteola and superioriensis in the western portion of Lake Superior at the present time is to be accounted for in that way.

(To be concluded.) ent P.56

PUBLICATIONS RECEIVED.

THE GIANT SPECIES OF THE MOLLUSCAN GENUS LIMA OB-TAINED IN PHILIPPINE AND ADJACENT WATERS. By Paul Bartsch (Proc. U. S. Nat. Mus., Vol. 45, pp. 235-240, pls. 12-20, 1913) The giant Limas here described were obtained during the Philippine cruise of the fisheries steamer "Albatross," 1907-1910. They occur only in deep water-161 to 559 fathoms. "They are by no means abundant or universally distributed, for of the 369 dredgings made in more than 100 fathoms only 18 yielded these mollusks." Lima (Callolima) smithi measures as follows: Alt. 175 mm., lat. 118 mm., diam. 48 mm. The type was dredged off Baliscasag Island in 432 fathoms. L. (Callolima) philippinensis measures, alt. 177, lat. 111. diam. 37; dredged off the outer Tayabas Light in 190 fathoms. L (Callolina) rathbuni was obtained from eight stations at depths ranging from 161 to 226 fathoms, the largest specimen measuring. alt. 208 mm., lat. 156 mm., diam. 59 mm. L. (Acesta) celebensis has an alt. of 159 mm., and was dredged south of North Island, Buton Strait, in 519 fathoms. The paper is a valuable contribution to our knowledge of the deep-sea mollusca.—C. W. J.

THE PHILIPPINE MOLLUSKS OF THE GENUS DIMYA. By Paul Bartsch (Proc. U. S. Nat. Mus., Vol. 45, pp. 305-307, pls. 27 and 28, 1913). Dimya lima was found attached to the shells of Lima (Callolima) smithi and L. (Callolima) dalli, in 161 to 281 fathoms.

Mollusques de la France et des Régions Voisines. Par A. Vayssière, professeur à la Faculté des sciences de Marseille, et L. Germain, préparateur au Muséum d'Histoire naturelle et à l'Institut Océanographique. 2 vols. in 18vo, 800 pages, with 67 plates containing 707 figures.

The first volume, treating of the Amphineura and Opisthobranchs, is from the pen of Professor Vayssière, than whom no more competent authority could be found, the Opisthobranchs having occupied the author for many years. This connected account of the European species, in which the results of the most recent studies are presented in condensed form, will be a valuable reference book for classification and synonymy as well as a guide to identification.

The second volume contains an account of the land and fluviatile gastropod mollusks, by M. Louis Germain, who treats the subject in a broad spirit, relegating to synonymy many of the so-called species contained in the works of Locard and other writers of the species-splitting school. The work will doubtless be very useful in Europe, and also to conchologists elsewhere who have occasion to refer to European species. The figures, while characteristic, are coarse and crudely executed, and by no means equal to the other qualities of the work. The price is very moderate, 10 francs for the two volumes.—H. A. P.

DIAGNOSES OF NEW SHELLS FROM THE PACIFIC OCEAN. By William Healey Dall. Proc. U. S. Nat. Mus., Vol. 45, pp. 587-497. Twenty-two new species from both shores of the Pacific are described, and one new genus, Halicardissa, type Verticordia perplicata Dall, from near the Galapagos Is.

New Land Shells from the Philippine Islands. By Paul Bartsch. Proc. U. S. Nat. Mus., Vol. 45. Obba worcesteri and Cochlostyla olanivanensis, from Olanivan I., and Cochlostyla calusannsis, from Calusa I., are land shells from small and rarely visited islands.

NOTES.

The ninety-third anniversary of the birthday of the Rev. Joseph Rowell was celebrated by a luncheon on April 20th. Many interesting speeches recalled events in the long career of Mr. Rowell as paster of the Mariners' Church in San Francisco for 55 years. Two generations of conchologists have known Mr. Rowell as a naturalist. The day was concluded with a dinner and family reunion.

¹ Forming part of the "Encyclopédie Scientifique," issued by O. Doin et Fils, 8 Place de Odéon, Paris.

THE NAUTILUS.

VOL. XXVII.

SEPTEMBER, 1913.

No. 5

NOTE ON A NEW VARIETY OF EPIPHAGMOPHORA TUDICULATA.

BY H. A. PILSBRY.

This species is widely distributed in the southern part of California where it inhabits regions of quite diverse conditions of climate and soil. As would be expected, it varies conspicuously. Numerous races or local subspecies have been defined. Without entering into any revision of them here, a brief synopsis of the races may be found useful. Typical E. tudiculata Binney. Shell large, solid, copiously malleate, moderately to narrowly umbilicate. Type locality San Diego.

E. t. cypreophila Cooper. Smaller, thinner, often less malleate. Tuolumme, Merced and Calaveras Counties. Probably a Lower-Sonoran form.

E. t. umbilicata Pils. Openly umbilicate, solid, finely malleate throughout. San Luis Obispo Co.

E. t. convicta Hemph. Small, copiously malleate, without a band at the shoulder. San Diego Co.

E. t. subdolus Hemph. Similar but banded, and a little smoother. Probably Upper-Sonoran. San Jacinto Valley.

E. t. tularensis Hemph. Perforate, very thin, yellowish citrine or light yellowish olive. Fraser's Mill, Tulare Co.

E. t. binneyi Hemph. "Uniform greenish yellow without blotches or markings except a very faint trace of a band at the periphery. Mountains of San Diego Co."

E. t. grippi n. subsp. Pl. 3, figs. 15, 16, 17.

The shell is thin, imperforate, more globose than tudiculata,

strongly striate above, smoother and very glossy below, not malleated, or with only slight traces of malleation. Color dark raw umber or passing into dark olive, with a conspicuous dark chocolate band above the periphery, bordered with ecru-olive. Sutural line citron yellow. First four whorls russet or sometimes salmon-buff. Columellar lip spreads and is adnate over the umbilicus.

Alt. 24, diam. 32 mm.

Alt. 21.5, diam. 28.3 mm.

Santee, 18 miles from San Diego, California, collected by the late-Mr. C. W. Gripp. Figured cotypes and eight others are No. 105300 A. N. S. P.

This very handsome snail is probably most nearly related to E. t. binneyi Hemph. which was described from a single specimen. It is known to me by one "dead" shell from Murphy's Canyon Mission Valley, San Diego Co., identified by Mr. Hemphill and given me by Doctor Fred Baker. E. t. binneyi is less globose than grippi, lighter colored, with no band.

NOTES ON SOME OREOHELICES FROM WYOMING.

BY HENRY A. PILSBRY.

The material giving occasion for these notes was collected by Mr. Don W. Walker in the vicinity of Shell, Big Horn Co., in northern Wyoming, for Mr. Junius Henderson, Curator of the University Museum at Boulder, Colo. We are indebted to Mr. Henderson for the opportunity of studying the shells, and for various notes bearing upon them, in part quoted below.

OREOHELIX YAVAPAI EXTREMITATIS Pilsbry & Ferriss.

Shell Creek Canyon, 10 miles northeast of Shell, Wyo., with Occooperi and O. pygmæa, see below. Dry Gulch 2½ miles east and 3 miles north of Shell, a dry place without timber, only a few bushes; dead weathered shells, strongly keeled. White Creek Canyon, 8 miles east of Shell, in very damp pine forest, only dead shells found. Trapper's Creek 7 miles east of Shell, about 4 miles south of White Creek Canyon, dead shells only.

This is a carinated form which differs from O. hemphilli (Newc.) by being less excavated above and below the peripheral keel, the

last whorl far less swollen above. In O. hemphilli all post embryonic whorls are more convex above. Moreover, O. hemphilli, according to Mr. Binney, has well-developed side-cusps on central and lateral teeth. These are entirely wanting in O. yavapai and its varieties, in numerous specimens I have examined, including some from Shell-Creek Canyon.

The Oreohelices are divisible into two groups by certain peculiarities of the soft anatomy. One of these groups has hitherto been found only in Arizona, and comprised O. barbata of the Chiricahua Mts., and O. yavapai of central Arizona and New Mexico, with several subspecies in the Grand Canyon. On comparison with the specimens from Wyoming, no tangible difference, either in the shell or the soft anatomy could be found. Both vary somewhat in the prominence of the peripheral keel, but in the Wyoming specimens it is usually a trifle more prominent than in the average extremitatis from Arizona, the most strongly keeled "subfossil" shells reminding one of O. chiricahuana. On comparing a large number the difference is minimized, selected extremitatis from the type locality having the keel as strong as in any of the Wyoming lot.

The extension of this form northward is unexpected, the whole width of Utah and Colorado as well as most of Wyoming lying between its northern and southern areas. Mr. Henderson writes:

"I suppose little is yet really known of the molluscan fauna of the region intervening between the Grand Canyon and Wyoming. I find but little published literature on Wyoming shells, and do not know of much collecting having been done in eastern Utah or western Colorado. It is true that at present there are great stretches of country unfavorable to land snails in that region, and equally true that semi-arid conditions have prevailed in the southwest for a long time—probably since Pliocene time. Nevertheless, there are several reasons for believing that during that long period of semi-aridity there has been more or less fluctuation within narrow limits. During each cycle of increased moisture favorable conditions would reach greater extent, and if the snails spread with the increase of favorable territory, there would be small areas where they could obtain a

¹See "Mollusca of the Southwestern States V," 1911, where the Oreohelices of the Grand Canyon are figured.

foothold and continue to thrive locally until the next cycle of moisture, and thus in a few hundred years, perhaps extend their range a long way, and in a few thousand years cross a State or two. I have some interesting mollusk records bearing upon the question of such fluctuations, not yet published. So the mere fact of intervening distance is not a fatal objection to considering the Wyoming shells identical with the Grand Canyon form, if you do not think the difference in the keel is sufficient to separate them, of which I am doubtful myself. *** Professor Cockerell was just in the Museum and we went over the extremitatis material together, and conclude that in the uneroded shells there is no essential difference between the Wyoming specimens and those from the Grand Canyon, so I am labelling them all extremitatis."

OREOHELIX COOPERI (W. G. B.).

Trapper's Creek, 7 miles east of Shell, White Creek Canyon. Shell Creek Canyon, 10 miles northeast of Shell. 2 miles south of Anchor on the north slope of mountain at its foot, among pines and underbrush, on Owl Creek. This place is about 60 miles south of Shell Creek.

OREOHELIX PYGMÆA n. sp. Plate III, figs. 10, 11, 12.

The shell is related to O. cooperi, from which it differs in being smaller, with a narrower umbilicus, much more convex whorls, and rougher sculpture. The spire is convexly conic. Embryonic two whorls moderately convex, finely and weakly striate, with a few distinct spirals on the latter part near the periphery. Post embryonic whorls increase very slowly and are very convex, the convexity greater above the middle of each, with sculpture of strong, irregular wrinkles along growth-lines and moderate or very weak spiral impressed lines. On the last whorl, which is very convex throughout, the sculpture is strongest above, but continues upon the base. Suture deeply impressed. Umbilicus small, its width contained five to six times in that of the shell. Peristome thin, forming \(\frac{3}{4}\) to \(\frac{4}{5}\) of a circle. The spire is flesh-colored when worn, fleshy-brown with whitish streaks in young shells; the last 1 or 1\(\frac{1}{2}\) whorls are impure white with fleshy streaks; marked with a deep brown band below the

¹ Junius Henderson in letter, Nov. 15, 1912.

periphery, and usually several narrower bands above it and on the base.

Alt. 8.7, diam. 11 mm., whorls 5.

Alt. 7, diam. 9.7 mm., whorls 43.

Alt. 7, diam. 9.3 mm.

Alt. 8, diam. 9 mm.

Shell Creek Canyon, 10 miles northeast of Shell, Wyoming, type and cotypes no. 106977 A. N. S. P., also 106979 A. N. S. P. (dead shells from type loc.). Also in coll. University of Colorado. It was found also in White Creek Canyon, 8 miles east of Shell, in very damp pine forest. Collected by Don W. Walker.

"Mr. Walker, who collected the Wyoming material, says the Shell Creek pygmæa and cooperi were found together on a steep slope on the south side of the canyon, where they occurred in great numbers, more of the small ones below and more of the cooperi above" (Henderson). It was found with O. cooperi also in White Creek Canyon.

This snail is exactly intermediate between O. cooperi (W. G. B.) and O. peripherica (Ancey). The irregular costulæ or wrinkles are stronger than in the first, but weaker and less regular than in O. peripherica. Further collections in Wyoming may show that O. pygmæa connects with one or the other of these species, but at present it seems best to rank it as a distinct species, since this course is more likely to insure critical examination into its status by those who may secure further material. Moreover, its occurrence in company with O. cooperi disposes of the hypothesis that pygmæa is a stunted or unfavorable-station form of cooperi—an idea which I would otherwise have been inclined to harbor. It is readily distinguishable from young or small cooperi by the far greater convexity of the whorls of the spire, as well as by the sculpture. As I have seen a great number of O. cooperi from many places, it does not seem likely that intergrading forms occur.

O. cooperi minor (Ckll.) is a larger form than pygmæa, having less convex whorls, and the other characters of cooperi, of which it is, as the name implies, merely a somewhat diminutive race. Specimens from Mr. Henderson, taken at McCoy, Colo., and identified by Professor Cockerell as his var. minor, have been compared.

O. peripherica (Anc.) is the prior specific name to include the series of local races described as var. binneyi, newcombi, multicostata,

gouldi, albofasciata and castaneus Hemphill, all of northeastern Utah. So far as specimens now known to us give evidence, these local forms taken together constitute a species distinct from O. idahoensis (Newc.). No real intergrades between peripherica and idahoensis have yet been found, whatever may exist still uncaught in the territory intervening between their respective areas.

MOLLUSCA FROM WYOMING CO., N. Y.

BY FRANK C. BAKER.

A few years ago the writer spent a week's vacation in Wyoming County, N. Y., and incidently gathered a few shells as opportunity offered.

Banks of Genesee River, near Portage, under bark of dead tree trunk:

Zonitoides arborea (Say).

Gastrodonta ligera (Say).

Pyramidula cronkhitei anthonyi Pilsbry.

Cochlicopa lubrica (Müll.).

In running brook by roadside:

Galba umbilicata (C. B. Adams).

Farm of John Smallwood, near Warsaw, swamp in bottom land: Galba palustris (Müll.).

Physa gyrina (Say).

Swales in upland woods:

Zonitoides arborea (Say).

Pyramidula cronkhitei anthonyi Pilsbry.

Succinea avara Say.

Physa gyrina Say.

Aplexa hypnorum (Linné).

Segmentina armigera (Say).

Galba palustris (Müll.).

Galba obrussa (Say).

Galba umbilicata (C. B. Adams).

Sphærium occidentale Prime.

¹ See Second Supplement to Terr. Moll. V, pp. 29-32.

THE GENERIC NAME TO BE USED FOR MUREX TRITONIS LINNE.

BY TOM IREDALE.

In The Nautilus, Vol. XXVI, pp. 53, 59, Sept., 1912, my friend Dr. W. H. Dall, commenting upon a note by Mathews and myself regarding the first introduction of the genus Septa by Perry, wrote: "The first name available for the group typified by Murex tritonis L. seems to be Nyctilochus of Gistel, 1848."

Recently, referring to some notes I made upon Gistel's names a complication seems apparent and I therefore give the data I have.

Gistel in the "Naturgeschichte Thierreiche," 1848, gave a long list of preoccupied names and substitutes. On p. 11 he included; "Triton (Laurenti, Lurch) bl: Triton (Broderip, Isis 1835, 453, Rankenfüssl): Nyctilochus N."

From this it would appear that Nyctilochus was provided as a substitute for Triton of Broderip as used in the Isis 1835, 453. At this place a résumé of the papers published in the Proc. Zool. Soc. Lond. is given and we find:

"P. 71, Triton clathratus, nitidulus, distortus, reticulatus, mediterraneus, ceylonensis, lineatus, decollatus."

The "p. 71" refers to the Proc. Zool. Soc. Lond., 1833, where these species are described by "G. B. Sowerby," and a note given after *lineatus* reads:

"These seven may be regarded by some as mere varieties of Trit. maculosus of Lamarck, although I am fully satisfied of their being perfectly distinct species."

There is evidently an error in Gistel's reference both to the column of the "Isis" and to the page of the Proceedings of the Zoological Society, the second error deriving from the first. The reference to the "Isis" should be column 452; there is no paper on Triton by Broderip on page 71 of the Proceedings, but there is on page 5. Here we have a different list from that of Sowerby, namely, Triton lignarius, constrictus, tigrinus, rudis, lineatus, gibbosus, scalariformis, and convolutus. None of these is a Septa, and Nyctilochus judged by either list of species is synonymous with Bolten's earlier names, or with Fusus Helbling (non auct.).

In the body of his work Gistel however provided a generic name for *M. tritonis* L. alone, and I conclude that this name should be used. On p. 170, Gistel introduced:

"Tritonshornschnecke (Charonia Nob.; sonst: Tritonium)." Then follows a generic diagnosis and there is given a description of the species "Ch. tritonis Nob."

I conclude then, if no name exists prior to Gistel, 1848, that *Charonia* Gistel should be the generic name to be used for *Murex* tritonis Linné.

Two further points require notice: To those unable to refer to Gistel a second *Charonia* might prove troublesome, as on p. 178 with a quaint carelessness he proposes *Charonia* for an Acaleph.

The family name to be used for the *Tritons* I would suggest should be *Cymatiidæ*, based upon the oldest genus name in the family. Basing the family name upon the supposed typical genus seems a quite unscientific method, as so much would depend upon the personal equation; speaking for myself I would have considered *Murex tritonis* Linné, a quite atypical member of the family, glancing over the whole of the molluscs at present associated in it.

THE UNIONE FAUNA OF THE GREAT LAKES.

BY BRYANT WALKER, SC. D.

(Continued from page 47.)

IV.

From what has already been said, it would seem to be clear that there is not any possibility that the present fauna of Lake Erie could be a relict fauna that persisted there during the glacial period. The entire region was covered by the ice and the entire configuration of the land was overwhelmed, blotted out, and the system of drainage was entirely changed by the drift deposited on the retreat That under the enormous thickness of the ice cap throughout that entire area, there could have been any survival of a Naiad fauna seems absolutely impossible. But there are other facts, which show that the representatives now found in the Great Lake region of the Mississippi and Ohio faunas, are the results of a postglacial invasion and that the modifications that have taken place in their size, shape, and appearance have been brought about by environmental changes since glacial times. The entire Lower Peninsula of Michigan was in the glaciated area. If the present fauna of that area has been derived from a survival in the Great Lakes, or in any of the pre-glacial streams of that region, of the pre-glacial fauna, and not from a post-glacial invasion from the south, it would seem a necessary result that the Unione fauna of the entire region should be to-day of the same general character, and that the peculiarities of the present Lake Erie fauna should be also characteristic of the same species as found in the interior waters of the State. But that is not the fact. The differentiation that has occurred is entirely in the race which is found in the colder waters of the Great Lakes. In the warmer waters of the interior of the State, the species attain the same size, the same luxuriance of growth and the same color that they do at the present time in the Mississippi and Ohio valleys. In other words, the interior waters of the Lower Peninsula of Michigan are inhabited by the typical forms of these species just as clearly and as certainly as the examples found in the Great Lakes are peculiarly modified into what is known as the Great Lake forms.

Thus, for example, the Great Lake form of the species known as Lampsilis recta is depauperate, and standing by itself, would seem to be specifically different from the typical form. It was described as a distinct species under the name of sageri by Conrad. But in the Rouge River, less than ten miles from Detroit River, and in the Clinton River, at Mt. Clemens, at no greater distance from Lake St. Clair, examples of this species are typical in every respect, and are as large and heavy as the average specimens from the Ohio and Mississippi valleys. The same is true of nearly every species now represented in the peculiar fauna of the Great Lakes. That being the case, it is obvious that either one of two things must be true. There has been no natural connection between the St. Lawrence region and the Ohio Valley since the Maumee outlet of the postglacial Lake Erie was cut off by the retreat of the ice and the establishment of another outlet at a lower level. If the present Lake Erie fauna was the survival of the pre-glacial fauna of that region, then the interior of the State must have been populated by migration upstream from the relict fauna of the Great Lakes, and it hardly seems possible if that were true, that the subsequent modifications of these species from the Great Lake form consequent upon their introduction to a different environment, warmer water, and more abundant food, should have been directly back to and exactly coincident with the typical form as found in the regions south of the glaciated area. On the other hand, if that is not so, the only alternative is that the present Lake Erie fauna was derived from an immigration of the typical forms from the south, and that where these immigrants obtained a foothold in the interior waters of the State, where the local conditions were substantially the same as those in the Ohio Valley, they retained their characteristic form, while such individuals of this invasion as remained in the Great Lakes and were subject to the peculiar influences of that environment, became modified by it with the result, as shown by the present conditions, of a varietal, but not a specific, differentiation.

In conclusion, the deductions that would seem to naturally result from the foregoing discussion are these:

- 1. That the Atlantic fauna originated from a very early pre-glacial invasion from the west, probably in late cretaceous or early tertiary times.
- 2. That the present extension of the Atlantic fauna towards the northwest was the result of an invasion from the west, in post-glacial times, most probably through the Mohawk and Trent outlets into Georgian Bay, and from thence into Lake Superior.
- 3. That the present existence of so large a representation of the Mississippian fauna in Lake Erie is to be ascribed to a post-glacial invasion from the Mississippi Valley through the Maumee outlet into the post-glacial Lake Maumee.
- 4. That the original pre-glacial fauna of the present St. Lawrence system was absolutely exterminated during the glacial period, and that the peculiar fauna now characteristic of Lake Erie is the result of the modification from environmental causes of the post-glacial immigrants from the south, and not the result of any survival in that region of any part of the pre-glacial fauna.

Note.—By an error on the part of the type-writer, *Ptychobranchus phaseolus* Hild. was omitted from the list of the Lake Erie species on p. 22. It was included in the original draft of the paper and is necessary to complete the tally of "thirty species" peculiar to that lake mentioned on p. 23. It is an abundant species at the western end of the lake, but dwarfed like most of the fauna.

BIBLIOGRAPHY.

1. Branner, John C. The Former Extension of the Appalachians across Mississippi, Louisiana and Texas. Am. Jour. Sci. (4), iv, 1897, p. 357.

EAST

- 2. Grabau, A. W. Guide to the Geology and Paleontology of Niagara Falls and Vicinity. Bull. Buff. Soc. Nat. Hist., vii, 1901, No. 1.
- 3. Fowke, Gerard. Pre-glacial Drainage Conditions in the Vicinity of Cincinnati, Ohio. O. State Acad. Sci., Special Papers, No. 3, 1900, p. 68.
- 4. Taylor, F. B. A Short History of the Great Lakes. Studies in Indiana Geography, x, 1897.
- 5. Walker, Bryant. The Distribution of the Unionidæ in Michigan, 1898.

MARINE SHELLS FROM DRIFT ON UPPER MATECUMBE KEY, FLORIDA.

BY JOHN B. HENDERSON.

In May last while cruising down the Florida keys in the "Eolis," Mr. Simpson, Mr. Clapp and I went ashore on Upper Matecumbe for an assault upon the land shells. Returning along the beach we observed a little sheltered cove, wherein the usual line of small drift shells appeared to be exceptionally rich. We scooped up a pill-box full—containing about the measure of an ordinary tablespoon—of this rubbish. The appended list of species therein contained may be of interest. The presence of Pyrazus milium Dall is noteworthy, as this little Cerithium has only recently been described from the Pleistocene of Panama. The Sayella crosseana Dall is also interesting. This specimen is perfect, of a rich chestnut-brown, and greatly resembles a miniature Obeliscus from Cuba. There are some other species in the lot, but the shells are too young or worn for positive identification.

Rissoina chesnelli Mich.
Rissoina laevigata C. B. Ad.
Rissoina decussata Montagu.
Rissoina cancellata Philippi.
Alvania lipeus Dall.
Litiopa bombyx Kiener.
Caecum foridanum Stimp.
Caecum cooperi Smith.
Meioceras nitidum Stimp.
Seila terebralis C. B. Ad.
Cerithium variabilis Ad. (small race).
Pyrazus milium Dall.
Triforis nigrocinctus C. B. Ad.
Bittium varium Pfr.

Mangilia biconica C. B. Ad.

Crepidula fornicata L. (young).
Acmaea punctulata pulcherrima Guild.
Siphonaria alternata Say (young).
Phasianella pulchella Orb.
Neritina viridis Lam.
Neritina viridis Lam.
Neritina viridis Lam.
Lechnochiton papillosus Ad.
Eulima gracilis C. B. Ad.
Pedipes mirabilis Muhlf.
Actaeon punctostriatus C. B.
Ad.
Tornatina canaliculata Say.
Tornatina candei Orb.
Truncatella bilabiata Pfr.

Mangilia atrostyla Dall.
Mangilia stellata Stearns.
Marginella catenata Montagu.
Anachis avara Say (var.).
Anachis pulchella Kiener.
Olivella mutica Say.
Olivella floralia Duclos.
Crepidula convexa Say (young).

Truncatella caribbeensis Sby. Sayella crosseana Dall. Odostomia sp. Augulus tampaensis Conr. Pleuromeris tridentata Say. Codakia orbiculata Mtg. Chione grus Holmes. Transenella stimpsoni Dall.

CORRESPONDENCE FROM ARIZONA.

Late in May Mr. Ferriss went into camp in Sabino canyon in the southern Catalinas, about 20 miles from Tucson. The following extracts give an idea of the conditions of molluscan life in that vicinity.

"The climate here is dryer than formerly, or else we have much to find out touching the Sonorellas. This situation will compare favorably with Nine-mile Waterhole in the Chiricahuas, and the Sierra Colorado, as to crumbling granite and quartzite, dryness and heat. I go forth for dead shells, and if any are found alive it is so much velvet. The proportion of dead in fair condition to alive is about 100 to 1, and you have nearly all the live ones. That is, I find about one alive on each day's trip. In some cases one species apparently died out years ago and another came in later; thus I have some very old shells.

"Another thing that makes me feel that the climate has changed is that there are remains of an Indian city at the mouth of the canyon, extending up to the Rincons, ten miles, and about four in width. When the water failed they probably moved. There are similar village foundations on the other side of the mountain and on the east side of the Dragoons.

"There is more bird, fish and mammal life here than in any mountain we have visited, and much of it is interesting, and again I am sorry you are not here. The snakes and lizards are fine. I have a good turtle shell the Acadamy can have if of value. There is also a little "stink pot" in the stream.

"The prairie dog here is a mere puppy, a pigmy. The chipmunks and squirrels are different. The birds are gorgeous. * * *

"JAS. N. FERRISS."

1-5. PILSBRY: CLAUSILIA EMERSONIANA.

- 6-8. CLAPP: GUNDLACHIA HJALMARSONI PFR.
- 9, 10. HENDERSON AND CLAPP: CERION BIMINIENSE.
 - 11. PILSBRY: PARTULA EMERSONI.

THE NAUTILUS.

VOL. XXVII.

OCTOBER, 1913.

No. 6

FURTHER NOTES ON HELIX HORTENSIS IN NEW ENGLAND.

BY CHARLES W. JOHNSON.

About 1834 Amos Binney collected and later described (Boston Journ. Nat. Hist., vol. i, p. 485, pl. 17, 1837) a form of Helix hortensis as Helix subglobosa, stating that "it is common on the lower part of Cape Cod and on Cape Ann, and is very abundant on Salt Island, a rocky, uninhabited island near Gloucester." Salt Island being the only exact locality mentioned might therefore be considered the type locality of this form. Binney had evidently at that time not seen a banded form from North America, for on page 487, in comparing these with the Helix hortensis of Europe, he says: "Ours being yellow, with an olivaceous tint and destitute of bands, while that is remarkable for its great diversity of coloring and brilliant zones."

Again referring to the species under *Helix hortensis* in his "Terrestrial Air-breathing Mollusks," vol. ii, p. 112, he says: "The prevalent character of this and probably of other species in a given locality seems to undergo a considerable change from time to time. When I first visited Salt Island, where this species abounds, ten years ago, it was impossible to find a single specimen with either lines or bands, one uniform color prevailed throughout. At the present time the banded varieties are said not to be uncommon."

Recently I obtained from Salt Island a number of specimens, all representing the plain olivaceous yellow form described by Binney as *H. subglobosa*. Not a single banded form could be found on the island. On the other hand, on Briar Neck, a rocky promontory only

one-fifth of a mile from Salt Island, to which one can walk at low tide, only the banded form—12345 and occasionally 10345—could be found. Note that Binney in his second work says, "banded varieties are said not to be uncommon." This would indicate that he did not visit the island a second time, and that there is no positive proof that the banded varieties referred to came from there. They were probably found on the near-by promontory.

At Bass Rocks, one-half mile southwest of Briar Neck, and separated by a sandy beach, marsh and creek, both the plain and banded forms occur in almost equal numbers. The yellowish-white form, subalbida Locard, comprise about one-half of those classed as plain, the other being the bright yellow form, often with an obsolete brown or translucent band. The banded forms show the following variations: 12345, 123(45), 12045, 00300. After a shower I found these in numbers, but only along the narrow strip of natural growth left between the road and high-water mark. This strip being traversed by a walk, many were crushed under foot by pedestrians. I next visited Emerson Point ("Land's End," Rockport), about two miles northeast of Briar Neck, from which it is separated by Long Beach and a small creek. Here I found both the plain and banded forms, only about 25 per cent., however, being banded.

It seems quite interesting that in the four localities above mentioned, the shells from the two nearest together (Salt Island and Briar Neck) show scarcely any variation in their respective stations, while those found on either side are considerably diversified, and that the form *subglobosa* on Salt Island has undoubtedly remained unchanged since Amos Binney collected it there about eighty years ago.

During the month of July Dr. J. A. Cushman, while collecting material with Prof. J. S. Kingsley in Casco Bay, Maine, visited a number of the islands and made a very interesting collection of Helix hortensis, adding materially to our knowledge of its distribution. On the western portion of Brown Cow Island, 96 specimens were collected, of which six were banded—12345; nine had pale translucent bands—v. arenicola, and the remainder were the v. subglobosa. From the eastern portion of the island the material contains 35 v. subglobosa and six banded—12345; among the latter there was a tendency for bands one and two to fuse toward the margin.

From Inner Green Island the collection contained 160 plain; 16 banded—12345; 3—00300; band three is somewhat obsolete, and bands one and two are frequently more or less fused toward the margin; a few with translucent bands.

The collection from Swan Island of 43 specimens are all banded —12345, and show but little variation.

The specimens from White Bull Island show perhaps the greatest variation of any New England locality. The following variations were represented in a series of 95 specimens; 6 subglobosa; 4, 00300, band usually obsolete except near the margin; 2, 00340, band four obsolete except near the margin, and bands one and five very slightly indicated near the margin; 68, 12345; 10, (12)345; 1, (123)45; 3, (12345). The species has not before been recorded from the last two mentioned islands.

On Eastern Mark Island only *Pyramidula alternata* Say, and *Polygyra albolabris* Say, were found, with one sinistral specimen of the latter. On Jaquish and Turnip Islands only *Pyramidula alternata* was found.

LAND SHELLS COLLECTED ON THE BIMINI ISLANDS, GUN AND CAT CAYS, BAHAMAS.

BY GEORGE H. CLAPP.

In May 1912 the writer with J. B. Henderson and Charles T. Simpson visited the Biminis and adjacent keys in the yacht Eolis. The object of the expedition was primarily for the collection of marine mollusks along the edge of the Gulf Stream which almost touches the shore of these islands; considerable effort was made however, to secure a full list of the land shells and the following represents the results of some hard work under a very hot sun. The identification of these shells was made under the difficulties always presented by a fauna that consists of a mixture of several elements and where the various races of species through isolation have taken on characteristics differing slightly from the typical. The astonishing abundance of Cepolis varians is worthy of comment. For the most part, however, land shells are not abundant on these islands, even the Cerions, that standby of collectors in the Bahamas, are only to be gathered in a few restricted localities.

Lucidella tantilla Pils.	Bimini, Cat and Gun Cays.
Opisthosiphon bahamensis Shutt.	Gun Cay.
Thysanophora selenina Gld.	Bimini, Cat and Gun Cays.
" sp.	Bimini.
sp.	Bimini, Cat and Gun Cays.
Pupoides modicus Gld.	Bimini, and Cat Cay.
Bifidaria servilis Gld.	Bimini, and Cat Cay.
" hordeacella Pils. (?)	Bimini, and Cat Cay.
« sp.	Cat Cay.
Strobilops hubbardi A. D. Br.	Bimini.
Opeas pumilum Pfr.	Bimini.
Oleacina solidula Pfr.	Cat Cay.
Varicella (Pichardiella) gracillima	
floridana Pils.	Bimini, Cat Cay.
Polygyra microdonta Desh.	Bimini.
Cepolis (Hemitrochus) varians	
Mke.	Bimini.
Cepolis (Hemitrochus) maynardi	
Pils.	Bimini, Cat and Gun Cays.
Cepolis (Plagioptycha) duclosiana	
Fér.	Bimini.
Succinea sp. (juv.)	Bimini.
Cerion maynardi Pils.	Bimini.
" biminiense H. and C.	Bimini.
" pillsburyi Pils. & Van.	Bimini.
•	

The above listed Bif. servilis Gld. cannot well be separated from B. rupicola Say of the Atlantic coast of the United States.

CERION (STROPHIOPS) BIMINIENSE SP. NOV.

BY JOHN B. HENDERSON, JR., AND GEO. H. CLAPP.

Shell shortly rimate, cylindric in the last two whorls, then gradually tapering to the apex; solid and strong; livid flesh-colored, frequently with whitish blotches, which include two or three ribs, or the ribs may be lighter than the body color; tip generally white and the last whorl much lighter below the periphery. Sculpture of regular,

crowded ribs narrower than their intervals; ribs slightly bent forward at the suture, 32 to 36 on the penultimate whorl in average specimens. Whorls about 10, very slightly convex, the last ascending in front. Aperture vertical, slightly flesh-tinted inside; peristome white, thick, well reflexed, terminations slightly approaching; parietal callus heavy, appressed. Parietal tooth narrow and very short, about ½ mm. high, axial fold moderate.

Smallest, length $19\frac{1}{2}$, diam. $10\frac{1}{4}$, aperture $8\frac{1}{2} \times 7\frac{3}{4}$ mm., whorls 9, ribs 33.

Largest, length $27\frac{3}{4}$, diam. 13, aperture $11\frac{1}{2} \times 9\frac{3}{4}$ mm., whorls 10, ribs 37.

Average length $24\frac{1}{2}$, diam. 12, aperture 10×9 mm., whorls 10, ribs 36.

There is considerable variation in the number of ribs, as a specimen $21\frac{1}{2} \times 10\frac{1}{2}$ mm. has 38, one $22 \times 11\frac{1}{2}$ has 42, and one $27\frac{1}{2} \times 12$ has only 31.

Plate IV, figs. 9, 10. Over 200 shells have been examined. Southern end of North Bimini Cay, Bahamas, May, 1912.

These shells were collected on the extreme southern end of the Cay on young sisal plants. From 15 to 30 shells could be gathered from a single plant. An occasional specimen was picked up under or on the "sea-grapes," but it appears to be confined to the southern point of the island, as further up only an occasional dead "crabshell" was found. About three-quarters of these shells are cleaned perfectly, and these are considerably lighter than the ones in which part of the animal remains. By accident only two young examples were saved, and these show no sign of internal teeth. In collecting we noticed that a number of the adult shells had the lower part of the lip bitten off, as if some rodent had attacked them at that point.

NEW SPECIES OF CLAUSILIA AND PARTULA FROM THE COLLECTION OF MR. J. S. EMERSON.

BY H. A. PILSBRY.

When looking over the fine series of Hawaiian shells in the collection of Mr. Emerson in Honolulu, I had opportunity to note the presence of many shells foreign to the islands. Among them there is a good series of land shells collected by him in Europe, and many

interesting South Sea shells from places visited by the well-known "Morning Star," and from other sources.

Unfortunately the limitation of my time allowed only brief glances at a few drawers of this rich material. The following species were among a few shells which Mr. Emerson put aside for me to take home for determination.

CLAUSILIA EMERSONIANA n. sp. Pl. IV, figs. 1 to 5.

The shell is slenderly fusiform, opaque, vinaceous buff with paler ribs, upper half tapering slowly to an obtuse apex. Whorls about 10, the first 2 corneous, very convex, delicately striate, the tip glossy; riblets then begin, at first rather well spaced on the convex whorls. In the middle of the fifth whorl they become closer, and from there to the last whorl they are close, straight and strong, and the whorls are only slightly convex. The last whorl, in dorsal view, is decidedly narrower, straight-sided, the base convex, indistinctly angular at junction of lateral and basal surfaces. The back of the last whorl has few, widely separated ribs, alternating with short ones below the suture. Last whorl solute, shortly free. Aperture quadrate-rounded, the peristome continuous, free, white, broadly expanded and reflected. Superior lamella low, not attaining the margin, widely separated from the spiral lamella; inferior lamella low, obliquely ascending, sigmoid, penetrating slightly deeper than the spiral lamella, to the middle of the ventral face. Subcolumellar lamella not visible in the aperture. Principal plica strong, conspicuous in the aperture, penetrating to a lateral position, approaching close to the spiral lamella deep within. Lunella lateral, straight, oblique, somewhat protractive, at the upper end terminating in an ill-defined upper palatal nodule which is united by a callus with the principal plica; lower end of the lunella running into an oblique lower palatal plica.

Length 17.5, diam. in the middle 3.5 mm.; $10\frac{1}{3}$ whorls. Length 15.25, diam. in the middle 3.4 mm.; $9\frac{1}{2}$ whorls.

The clausilium is narrow, parallel-sided, arcuate and twisted, in transverse section v-shaped, much thickened along the longitudinal convexity and at the distal end, which is obtusely rounded; gradually tapering into the filament above. Pl. IV, figs. 1, 2.

Malta. Cotypes No. 108775 A. N. S. P. and in Mr. Emerson's collection.

This species differs conspicuously from *C. imitatrix* Bttg.¹ by its much more slender contour and the sculpture of the last whorl, besides various other details. *C. melitensis* Gatto, differs in sculpture, shape and position of the lunella, etc.

C. imitatrix was placed by Dr. Boettger in the sub-genus Papillifera, noting that it is transitional to Albinaria. Westerlund in his latest monograph places imitatrix and melitensis in a new section, Imitatrix, of Albinaria. The systematic position of C. imitatrix is therefore somewhat uncertain, and as that species seems the most closely related one to C. emersoniana, I assign the latter to the sub-genus Papillifera with some doubt. However, from the shape and curvature of the clausilium, I do not think it can be an Albinaria. In sculpture and texture, the shells are much like Siciliaria.

PARTULA EMERSONI n. sp. Pl. IV, fig. 11.

The shell is rather narrowly, half-covered umbilicate, elongate, rather thin, Isabella color or of a slightly more olive shade, having an extremely faint brown band below the periphery and a distinct but narrow whitish border below the suture. Surface very glossy; earlier whorls distinctly engraved spirally, but on the penultimate whorl only the upper half is so engraved; last whorl not spirally striate, but distinctly and rather coarsely malleate. Outlines of the spire slightly convex, the summit obtuse. Whorls 5½, moderately convex, the last somewhat flattened above the periphery, very convex beneath. Suture moderately impressed, an inconspicuous cord immediately above and partly covered by it in the intermediate whorls. Aperture long ovate; peristome nearly white, well expanded and reflected, slightly thickened within.

Length 19.1, diam. 9.2, length of aperture with peristome 9.5 mm. The locality of this species is unfortunately not certain. It was collected on one of the voyages of the "Morning Star," and is labeled "Ponape."? As it is of Melanesian type, and unlike the known Caroline Island Partulas, this locality seems doubtful. The species clearly belongs to the subgenus Melanesica, but is quite distinct from all known species by the conspicuous malleation and absence of engraved spiral lines on the last whorl. Few other species are so long and narrow as this. It is named in honor of Mr. J. S. Emerson, of Honolulu.

¹ Jahrbücher d. d. Malak. Ges. VI, p. 120, pl. 3, f. 13. Kobelt, Iconographie, n. F. VI, p. 31, no. 1005.

NOTES ON POST-GLACIAL MOLLUSCA, II: WAUKESHA COUNTY, WISCONSIN.

BY FRANK C. BAKER.

A few years ago Mr. Frank M. Woodruff secured a number of post-glacial mollusks near Waukesha, Wisconsin. This locality is in the northwestern part of the County, and is well within the area of the late Wisconsin ice sheet. The body of water in which the mollusks lived was one of the many small lakes left by the retiring lobes of the Lake Michigan glacier. It has not been possible to correlate this marl deposit with any one glacial stage of Lake Chicago. Mr. Woodruff reports the shells as very abundant. Eight species have been identified, as noted below:

Amnicola walkeri Pilsbry.
Physa ancillaria warreniana Lea.
Physa walkeri Crandall. Several scalariform individuals.
Planorbis campanulatus Say.
Planorbis bicarinatus Say.
Planorbis parvus Say.
Planorbis exacuous Say.
Galba nashotahensis Baker.

A NEW SINISTRAL AMASTRA.

BY C. MONTAGUE COOKE, PH.D.

AMASTRA PILSBRYI n. sp.

Shell imperforate, sinistral, elliptical with conic spire which is somewhat contracted near the summit. One cotype is of an old gold color, streaked with chestnut behind the outer lip, and with the spire brownish; the other (dead) cotype is wax yellow in front of the aperture, elsewhere with a yellow gleam under a pale tawny cuticle, the last third of the last whorl chestnut. Surface of the last whorl semi-matt, the spire more shining; smooth to the eye, but under the lens unequal growth-wrinkles are seen. Embryonic 2½

whorls carinate, the keel visible above the suture; first half whorl nearly smooth, the next two whorls sculptured with regular, slightly arcuate ribs, at first rather coarse, becoming finer to the end of the embryonic shell, which comprises $2\frac{1}{2}$ whorls. Whorls $5\frac{1}{2}$, convex, the last swollen below the deeply impressed suture, ventricose, tapering below. The aperture is rather long and narrow, slightly oblique, white within. Peristome slightly thickened close to the edge. Columellar lamella of moderate size, thin and spiral, white; parietal callus thin.

Length 13.1, diam. 7.7, length of aperture 7 mm.

Length 13.4, diam. 8.1, length of aperture 7.1 mm.

Mt. Helu, West Maui. Cotypes in coll. Bishop Museum and Acad. Nat. Sciences. Also in Mr. Thaanum's collection.

While sinistral species are common in Achatinella and Partulina, they are very rare in Amastra. Outside of the section Heteramastra, only two have been published, Amastra thanumi Pilsbry and A. montagui Pilsbry, both from Oahu.

ON CYPREA MILIARIS GMEL., WITH DESCRIPTIONS OF NEW VARIETIES.

BY MAXWELL SMITH.

C. MILIARIS Gmel. Syst. Nat., p. 5420, 1790.

Roberts' description in the Manual of Conchology, vol. vii, p. 192, is as follows: "Differs from the preceding (lamarcki) in being narrower, the dorsal spots are smaller and never occilated, and the sides are white." Melvill writes that the spots "are never eyed, or, at all events, extremely rarely." This and all of the varieties are pitted at the sides. Japan, Philippines, N. S. Wales.

C. MILIARIS Gmel. var. MAGISTRA Melvill. Proc. Manchester Literary and Philosophical Society for 1888, p. 227.

"Characters the same as in the type, but teeth very well developed, and size, long. $2\frac{1}{8}$, lat. $1\frac{1}{8}$ inch. . . . It is a handsome shell, and in fine condition it slightly resembles C. guttata on dorsal surface only." Habitat, Japan.

C. MILIARIS Gmel. var. BREVIS var. nov.

Shell shorter, covered on the dorsal surface with larger spots, teeth finer, aperture narrower than the type. Long. 1½, lat. ½ inch. Habitat, Japan.? Type in the writer's collection.

C. MILIARIS Gmel. var. INTERMEDIA var. nov.

Aperture like the type, sides correspondingly pitted, dorsal surface suffused with white, yellow ground and spots showing through in the center, similar in shape to C. eburnea. Long. $1\frac{3}{4}$, lat. $1\frac{1}{4}$ inch. Habitat unknown. This form connects eburnea Barnes with miliaris Gmel. Type in the writer's collection.

C. MILIARIS Gmel. var. EBURNEA Barnes.

C. eburnea Barnes. Ann. Lyc. N. H. I., p. 133, 1824. C. lactea Wood, 1838.

With the material on hand I believe that I am justified in reducing this well-known Cypræa to varietal rank. It is surprising that, at this late date, evidence should turn up to prove eburnea to be only a variety of miliaris. The intermediate form, already described, does so conclusively. Both occur in the Philippines. Roberts places eburnea after miliaris in the Manual, but writes that it "differs from lamarcki Gray in being pure ivory-white." To my mind it only resembles it in the size of the teeth. The aperture of lamarcki is often much narrower below.

NOTES.

MR. FRANK C. BAKER, Curator of the Chicago Academy of Sciences, is spending the month of September in northern Idaho, and expects to visit Oregon, Washington and Vancouver before returning.

DR. ARNOLD E. ORTMANN reports success in collecting Unionidee in the North Fork of the Holston, Clinch, Powell and Upper Cumberland rivers. He is now at Knoxville, and writes: "I have secured a tremendous material of Nojades, and shall be able, from the study of the anatomy, to straighten out the systematic position of many species. Lea's work on the Najades of this region is poor—below criticism. He described individuals, but not species, but,

on the other hand, he mixed up, in several instances, different species, even genera, in one species. The best I did so far was in Clinch River in Claiborne Co., Tenn. 38 species within $\frac{1}{8}$ of a mile of the river. But I have several other good localities; and so far only in a region where the rivers are not too large (where I was able to wade clear across)."

COLORADO COLLEGE at its last commencement conferred the honorary degree of Sc.D. on Professor Theodore D. A. Cockerell, who holds the Chair of Zoölogy in the University of Colorado.

DR. C. MONTAGUE COOKE has returned from a trip by schooner to Palmyra Island, an islet south of the Hawaiian group, near the Equator.

MR. H. N. Lowe, of Long Beach, Cal., reports good success in collecting Helices during a recent trip to Catalina Islands.

MR. D. THAANUM in company with Mr. Kuhns, of Honolulu, spent two weeks in July collecting land shells in Maui. "With the exception of one day, all our time was spent in entirely new territory, and the results are highly satisfactory. Our first headquarters was at an altitude of 4000 feet above Ulupalakua on East Maui. From there we worked two remnants of forest, one at Polipoli (Kula), and one on the opposite side of camp, Auwahi. Kula seemed exhausted. Two species of Amastra and five specimens of Laminella picta were all we could gather in, besides 'trash' of course. Auwahi turned out better. Four species of Amastra and one of Partulina, this latter scarce. From there we jumped to West Maui and spent three days in Oluwalu gulch. I have never seen a shell-record from there, nor heard of anybody ever collecting there. No Partulinas were found, except three fragments (P. perdix and kuhnsi); but I know we did not get up high enough. Otherwise the finds were simply amazing! Six species or varieties of Amastra, four of them apparently new, and several new species of Leptachatina, besides 'pin-heads.'"

LAND SHELLS CARRIED BY BIRDS .- I am sending in a small

vial two shells which I took alive from among the feathers of freshly-shot Bob-o-links here at San Carlos Estate, Guantanamo, Cuba. I shall be very glad to know what this Bob-o-link shell is. Is it a Cuban shell, or did the birds bring this shell from some more southern country, and if so, from what country? [The shells are Succinea riisei, a species known from St. Croix and Porto Rico.] This will throw some light on where the birds spent the last few days before starting for Cuba, as the shells were alive and the birds were shot on the second day of their arrival. This is doubly interesting to me, as I am interested in both conchology and ornithology. This may also prove how certain shells are distributed. Did you ever know of shells being found alive on birds? Not in them but on them. If not, it seems to me that a note for the NAUTILUS is in order.—Chas. T. Ramsden.

Acmæa fergusoni.—A regrettable omission occurs in my discussion of a Long Island Acmæa (A. fergusoni Wheat) in Science Bulletin, Vol. 2. No. 2, pp. 17–20, published July 16, 1913, by the Museum of the Brooklyn Institute of Arts and Sciences. I have just discovered in "The Molluscan Fauna of New Haven," by George H. Perkins, Proc. Boston Society of Natural History, vol. xiii, pp. 109–163, on p. 127, the description of a single specimen of Tectura testudinalis from the vicinity of New Haven, "the only specimen that I have seen from here." Mr. Perkins' description is excellent, and proves the identity of his specimen with A. fergusoni from Hempstead Bay and Wading River, L. I.—Silas C. Wheat.

CHOANOPOMA (RAMSDENIA) MIRIFICA Preston, Proc. Malac. Soc., London, x, p. 323, June, 1913, was sent me by Mr. Chas. T. Ramsden with the request to compare it with *Ctenopoma nobilitatum* Gundl. I find that it agrees perfectly with Gundlach's species, of which part of the original lot is before me.—H. A. PILSBRY.

Mr. J. H. Ferriss is on his way, by team, to the White Mountains of Arizona, which have never been explored by a conchologist. It is rumored that the *Sonorellas* are in a panic.

THE NAUTILUS.

VOL. XXVII.

NOVEMBER, 1913.

No. 7

NOTES ON THRACIA CONRADI.

BY EDWARD S. MORSE.

For years I have hunted in vain for a living specimen of Thracia conradi. This year my friend John M. Gould has collected specimens alive in Portland associated with Solenomya borealis, and the expanded animal is so interesting that I am induced to publish these observations ahead of my other work on the subject. After storms I have repeatedly found the broken shells, often with the adductor muscles still adhering, but never a perfect specimen. The gulls immediately recognize the conspicuous white object on the beach and break the thin and fragile shell, devouring the fat morsel within. The gulls alone are not entirely responsible for the fractured shells. A live specimen was sent to me from Portland carefully packed in seaweed. It arrived with the umbonal region of one valve broken and the fractured portion standing at right angles to the vertical axis. Jeffreys reports the same feature in the British species of Thracia. He says: "The power of tension continually exercised by the strong and elastic cartilage exceeds that of the shell, and the latter being the weaker body gives away and is split in the conflict. Only one species (T. distorta), which is comparatively more solid than the others, resists the strain and remains uninjured."

For many years I have collected living specimens of New England mollusca for the purpose of drawing the expanded parts of the animal, and nearly all the larger, and many of the smaller species, have been drawn. I have been led to do this in the belief that the soft parts are of more importance than the hard parts of a mollusk in any discussion of generic or other taxonomic considerations. The low features of the protobranchia would never have been suspected from the shell alone. The drawings of the soft parts of the lamellibranchs, thus far published, are in most instances valueless and misleading. An important exception to this statement is the work of The beautiful drawings of the expanded Meyer and Möbius.1 animals have never been surpassed. The drawings of the soft parts of lamellibranchs in Forbes and Hanley's British Mollusca are, with few exceptions, poor and misleading. In one case, indeed, the siphonal tubes are sticking out of the wrong end of the shell! As an illustration of the inaccuracy of most of the efforts of drawing the live creature, reference may be made to a drawing of Lævicardium mortoni, which appeared in Gould and Binney.3 Where the drawing came from I do not know. In no way does it accord with the description of the animal credited to S. Smith, nor does it bear the faintest resemblance to the creature. This cut was reproduced in one of the U.S. Fish Commissioners reports with no comment on its inaccuracy.

A study of the soft parts of Verrill's genus Gastranella, in a living state, revealed the fact that it was simply an early stage of Petricola pholadiformis, and with this hint I made a complete series of the shell from the extreme young to the adult. Dr. Dall had, however, come independently to the same conclusion regarding the identity of the two forms. With the exception of the classical work of William Clark on the British Marine Testaceous Mollusca the descriptions of the soft parts of mollusca, though rarely given, are usually inadequate and often incorrect. As an illustration of the character of some of this work, could anything be more absurd than the description of the animal of the genus Thracia, which may be found in a standard work on British Mollusca. It embraces a line of four words and is given as a generic distinction, "Body oval, tubes separate."

In most of the earlier descriptions the siphonal openings of *Thracia* are described as fringed, and the figures of *Thracia phaseolina* and *distorta* in Forbes and Hanley show densely fringed openings. The figures, of course, are entirely wrong, as the descriptions quoted from Clark indicate. The description in Jeffreys of the animal of *T. papyracea* is the nearest correct of all I have yet encountered:

"Upper tube marked with 8 and the lower with 4 faint longitudinal lines or streaks, which terminate at the orifices in the same relative number of short, thick and blunt cirri."

Allusions are made to the anatomy of the animal of Thracia conradi in comparing it with European species, but no figure of the expanded creature has ever been published. The nearest approach to a description of its habits is found in a monograph on the family Osteodesmacea, by Joseph P. Couthony, published seventy-five years ago. In this monograph is first defined T. conradi as a distinct species. He says: "The specimen of Thracia serving for the preceding description was obtained in the early part of March last with the living animal. It was buried about six inches below the surface at low-water mark. An accident deprived me of an opportunity to examine the animal, and repeated visits in search of another have been wholly unsuccessful." Professor Verrill says: "The species burrows so deep in the mud or sand that it is seldom taken alive with the dredge."

The specimen of Thracia conradi which I examined remained in a vessel of fresh sea water for three days without a sign of life. At one time the occupants of the house were away and there was no vibration caused by their moving about, and then for the first time the creature timidly thrust out its tubes. It was extremely sensitive to any jar, and placing the pencil ever so carefully on the table caused it to immediately retract. The tubes were entirely separate and nearly as long as the shell. The excurrent tube was bent in a sharp curve dorsally and the incurrent tube in a similar manner ventrally. This attitude never varied, and it occurred to me that buried in the sand it might rest its tubes on the surface as figured by Meyer and Möbius of Scrobicularia piperata. Clark in the abovementioned work describes a similar attitude of the tubes in Thracia phaseolina as follows: * * * " and posteriorly, for the issue of two moderately long siphons, which are separate nearly their length, but the animal always carries them in a divergent posture at the extremities * * * the tubes are capable of great inflation." The tubes when fully expanded are white and translucent, the upper tube having its orifice surrounded by six short blunt tubercles, while the lower tube has its orifice surrounded by four similar tubercles. These terminate in faint longitudinal lines, marking the siphonal tubes precisely as described in the English species. At intervals the

tubes enlarge as if about to burst, becoming semi-globular at the ends; then suddenly collapsing the tubes become narrow and opaque-white in color. The tubes may perform this action independently.

In the description of the tubes of *Thracia distorta* a behavior is indicated precisely as seen in *T. conradi*. "Tubes globularly inflated at extremity, which increases whole length and then suddenly collapses."

The most marked peculiarity of T. conradi is the sharply defined collar which surrounds the base of the siphonal tubes. This collar

is a prolongation of the mantle, with an extension of the periostracum, as seen in many other lamellibranchs, but in no instance have I met with a description of any structure approaching the collar of T. conradi. It flares like the corolla of a flower, and its edges are reflected as shown in the figure here given. This prolongation of the posterior border of the mantle is seen in other forms, but in no case with the definition or freedom from the base of the siphonal tubes as seen in this species.

In Saxicava and Mya the prolongation of the mantle is closely adherent to the tubes. My own observations show that in Anatina

papyracea the mantle is prolonged at the siphonal end but does not surround the tubes like a collar, nor are its edges reflected. Pandora trilineata has a translucent envelope surrounding the base of the siphons and closely adherent. In Yoldia limatula and Y. sapotilla there are distinct lobes of the mantle flanking the sides of the tubes. In Tagelus gibbus there are two projecting and rounded lappets corresponding to the siphons. The siphonal collar of T. conradi, its separateness from the tubes and widely reflected edge is, so far as I know, unique among the lamellibranchs. Whether this feature should constitute a generic character I am not prepared to say. Dr. William Stimpson' in mentioning T. conradi says: "The absence of an ossiculum in the species would seem sufficient to separate it generically from other Thraciæ. But the animal resembles so closely that of the large English species which possess the ossiculum, that I have thought it best to consider the appendage unimportant."

BIBLIOGRAPHY.

- 1. Meyer and Möbius. Fauna der Kieler Bucht.
- 2. Forbes and Hanley. A History of British Mollusca and their Shells.
- 3. Gould and Binney. Invertebrata of Massachusetts.
- 4. Report of Commissioner of Fish and Fisheries, 1871-72, Plate XXIV.
- 5. Jeffreys. British Conchology.
- 6. Couthouy. Monograph on the Family Osteodesmacea. Boston Journal Natural History. Vol. II, No. 2.
- 7. Stimpson. A Revision of the Synonomy of the Testaceous Mollusks of New England.

GUNDLACHIA HJALMARSONI PFR. IN THE RIO GRANDE, TEXAS.

BY GEO. H. CLAPP.

The above-mentioned Gundlachia was picked out of drift debris collected on the Texas side of the Rio Grande by Mr. R. D. Camp of Brownsville, Texas. It is associated in the trash with thousands of Bifidaria, Thysanophora, etcetera, over twenty-five species in all.

Gundlachia hjalmarsoni, which Dr. Pilsbry kindly identified for me by comparison with some of the lot collected by Hjalmarson, was first described in 1858 by Dr. Louis Pfeiffer, whose specimens came from Honduras. No figure has ever been published, and the species was evidently known to Crosse and Fischer and E. von Martens only by the original account. One of my specimens is figured on plate IV, figs. 6, 7, 8. All of the specimens found in three quarts of the "drift" are of the septate form shown in the figure. I have examined the material very carefully with a reading glass, and no Ancylus was found. The figured specimen measures 4.1 mm. long, 1.8 wide, 1.2 high.

In some Rio Grande drift from Presidio, Texas, sent to me by Bryant Walker, I found a single *Gundlachia*, which is indistinguishable from *G. hjalmarsoni*, except that it is only $1\frac{1}{2} \times \frac{2}{3}$ mm. It is so small that I am sure I would not have noticed it if I had not been looking for *Gundlachia*. It is the Brownsville shell in miniature.

The large size, peculiar shape and strong sculpture of *G. hjalmar-soni* distinguish it from all other species of the United States. As the species is new to the United States fauna, it has been thought desirable by the Editors of the Nautilus to append a translation of the original description.

"Shell ancyliform, oval-oblong in outline, thin, radially striatulate, pale corneous; vertex rounded, posterior; basal partition occupying one-third the length, arcuately cut out; aperture dilated in front; basal margin not incumbent in front and behind. Length 4, diam. in the middle scarcely 2, alt. $1\frac{1}{3}$ mm.

"Hab.: Santa Roza, Honduras (Hjalmarson).

"Just as Gundlachia ancyliformis in Cuba lives in company with Ancylus, and in the same manner, so also Mr. Hjalmarson found this new species in company with a weakly convex, very pale horn-colored species of Ancylus, which I do not venture to name, as I have no exact knowledge of the genus." (Pfeiffer, Malakozoologische Blätter, v, December, 1858, p. 197.)

The above description was made from a single example, in which the septum was incomplete. Hjalmarson subsequently obtained the complete septate form in the same locality. The form with a larger shell added to the septate stage was not found.

ON THE NOMENCLATURE OF DRUPA.

BY CHARLES HEDLEY.

A necessary but mournful process in scientific advancement is the elimination of familiar names. It has been shown by Dr. Dall (Journ. of Conch., XI, 1906, p. 294) that *Ricinula* of Lamarck, 1812, and *Ricinella* of Schumacher, 1817, must yield to *Drupa* Bolten, 1798, of which the type is *D. morum* Bolten.

Continuing the process of revision from genus to species, similar changes occur, for with the fall of *Ricinula* go the Lamarckian specific names associated with it. The presentation of the genus most accessible to students is that of Tryon's Manual of Conchology, II, 1880, pp. 182–185. In the genus as there framed the specific names require amendment. Meeting at the first step *Ricinula hystrix* Linn., it is to be remarked that Hanley (Ips. Linn. Conch., 1855, p. 294) has shown that *Murex hystrix* Linn., is an immature *M. ricinus* L., to the synonymy of which it must be accordingly transferred. Other synonyms of *M. ricinus* are *D. tribulus* Bolten, recognized by von Martens (Rumphius, Gedenboek, 1902, p. 116) and *R. arachnoides* Lamk., noted by Tryon.

The place which Tryon gave to *R. hystrix* should apparently be taken by *Drupa rubuscaesius* Bolten, of which clathrata Lamarck, 1822, and speciosa Dunker, 1867, seem to be synonyms. But *R. reeveana* Crosse, should be parted from its heading and subordinated as an absolute synonym to *D. rubusidaeus* Bolten, an independent species. Again, *R. laurentiana* Petit should be cut away from the species to which Tryon binds it and associated with *R. digitata*.

R. horrida Lamarck, was preceded both by R. violacea Schumacher, 1817, and D. morum Bolten, 1798. As the same figure in the Conchylien Cabinet was cited by all three authors, the coincidence of names is exact. Similarly another of Martini's figures (979) is given as foundation by Bolten in 1798 for his D. grossularia, by Schumacher in 1817 for his R. dactyloides, and by Lamarck in 1822 for his R. digitata. So that the claim for Bolten's name is here also clear. Deshayes has pointed out (An. s. vert., X, p. 50, footnote) that Blainville unfortunately redescribed the yellow form of this species as "lobata," while to the nameless brown form he gave the preoccupied name of "digitata." On the ground of expediency, Deshayes thereupon reversed Blainville's names. Though

his example has been followed, this action is quite illegitimate. For the brown form is available the name of "fusca," apparently introduced by Deshayes (op. cit., p. 53) for f. 4, pl. 235, of Sowerby's Genera of Shells.

R. biconica of the Manual represents a group rather than a species, in which we may distinguish D. spinosum H. & A. Adams, Genera I, 1851, p. 130, for Reeve's Ricinula, f. 12b; D. iostomus A. Adams, Proc. Zool. Soc., 1851, p. 267, and Gardiner, Fauna Laccadive, Pl. XXXV, f. 14; and R. andrewsi, Smith, P. Mal. Soc., VIII, 1909, p. 369, fig.

So the species grouped by Tryon under Ricinula, sensu stricto, may thus be tabulated in revised nomenclature; synonyms in italics.

- 1. DRUPA MORUM Bolten, 1798.
 - R. violacea Schumacher, 1817.
 - R. horrida Lamarck, 1822.
- 2. DRUPA IODOSTOMA Lesson, 1842.
- 3. DRUPA GROSSULARIA Bolten, 1798.
 - R. dactyloides Schumacher, 1817.
 - R. digitata Lamarck, 1822.
 - R. lobata Blainville, 1832.
 - var. fusca Deshayes, 1844.
 - R. digitata Blainville, 1832.
 - var. laurentiana Petit, 1850.
- 4. DRUPA RICINUS Linne, 1758.
 - D. tribulus Bolten, 1798.
 - M. hystrix Linne, 1758.
 - R. arachnoides Lamarck, 1822.

var. elegans Brod. & Sowerby, 1828. var. albolabris Blainville, 1832.

- 5. DRUPA RUBUSCAESIA Bolten, 1798.
 - R. clathrata Lamarck, 1822.
 - R. speciosa Dunker, 1867.
 - R. spathulifera Blainville, 1832.

var. miticula Lamarck, 1822.

- 6. DRUPA RUBUSIDAEUS Bolten, 1798.
 - R. reeveana Crosse, 1862.
- 7. DRUPA BICONICA Blainville, 1832.
- 8. DRUPA SPINOSA H. & A. Adams, 1853.
- 9. Drupa iostomus A. Adams, 1853.
- 10. DRUPA ANDREWSI Smith, 1909.

SPRING COLLECTING IN SOUTHWEST VIRGINIA.

BY CALVIN GOODRICH.

Early in May last I joined Dr. Ortmann at Charleston, W. Va., for two weeks among the richly-stored sources of the Tennessee. The road took us along the Kanawha for an hour or two, and then making a sudden turn swung into the mountains, every slope and valley of which was a lure to the winter-wearied collector. At Princeton we transferred to automobile and, packed amid the hand baggage like shells in a box, were driven into Bluefield, just over the line from the older Virginia.

The first collecting was in the Clinch at Cedar Bluff, Tazewell Co., Va., where there is a long shoal upon a wide and picturesque bend. The river ran swiftly, but not more swiftly than word to the local chief of police. Through him and a zealous deputy we learned two interesting facts, that the Puritan Sunday is not passed completely into history, and that the idea of assessing fines without the formality of trial or pronouncement from the bench is in as good standing in the Appalachians as among the police in the bigger centers of population. However, the village powers did not agree with the chief's conviction as to our condition of hopeless sinfulness, and with a friendliness which paid for the adventure they bade us return to the river.

Pleurocera unciale Hald. and Anculosa subglobosa Say, with Goniobasis simplex Say, in smaller numbers, were on every stone. Io here was all of the smooth form described by Anthony under the name of inermis. This locality is some miles above the uppermost locality for Io recorded by Adams. Working among the rocks and in the swifter water of the right bank, Dr. Ortmann collected Fusconaia bursa-pastoris (Wright), Truncilla capsaeformis (Lea), Ptychobranchus subtentus (Say), Eurynia perpurpurea (Lea) and Eurynia nebulosa (Conrad), while in the sandy ground along the left bank the predominating species were Quadrula cylindrica strigillata (Wright), Medionidus conradicus (Lea), Strophitus edentulus (Say) and Lampsilis multiradiata (Lea). Symphynota costata (Raf.) was everywhere, and because of its manner of hiding all except the edges of the valves it became a source of irritation. The shells had to be dug out, if only to learn that they were not of some other and desired

species. The catch of Unios at Cedar Bluff was eighteen species, among them some riddles in Pleurobema, which at last account were still making trouble for the Doctor. Out of the drift at the head of the rapids we picked Sphæria, which Dr. Sterki has kindly identified as Sphærium fabale Pme., S. solidulum Pme., Pisidium virginicum Gmel., P. compressum Pme., and three individuals "apparently near P. noveboracense Pme." The next morning I climbed the bluff and found Polygyra albolabris major, rugeli, thyroides, zaleta and stenotrema; Gastrodonta acerra and gularis; Omphalina fuliginosa, Zonitoides arborea and the umbilicated form of Vitrea indentata. The weather had been dry for weeks, and the land mollusca had to be dug for. I uncovered Lymnæa obrussa and Succinea avara glued to leaves in a dried-up brook.

Our next jump was to St. Paul, Wise Co., Va., still on the Clinch. Decided differences were to be remarked in the fauna. In the rapids opposite Fink station, Russell Co., a mile or so above St. Paul, were Fusconaia edgariana (Lea), Crenodonta undulata (Barnes), Ptychobranchus phaseolus (Hild.), and Nephronaias perdix (Lea), none of which had appeared at Cedar Bluff. The Io at this station was beginning to assume nodules. One specimen equals Io lurida of Reeve. Anculosa subglobosa Say, which at Cedar Bluff was wholly without bands, so far as we noted, was almost universally banded in the rapids at Fink. To me they seemed also to run larger. In the material brought away from this place appeared Pleurocera tenebrocinctum Anth. and P. opaca Anth.

The following morning Dr. Ortmann went to Cleveland, Russell Co., up the river, whence he returned aglow with enthusiasm over the discovery of twenty-five species of Naiades, while I had a try for land shells among the Russell county hills. The most interesting observations were that the Polygyra appressa, rugeli and thyroides of the region seemed to prefer the stray logs of the high pastures to the woods, that the ratio of banded Polygyra profunda to unbanded was 1 to 10, and that there thrived here a Succinea ovalis Say, of quite surprising size, one specimen reaching 25 mm., the extreme recorded by Binney. Though the dead of this species was plentiful, only one living individual was found. In brooks fed by hillside springs, I came upon a few specimens of Pomatiopsis cincinnatiensis Lea, Paludestrina nickliniana Lea, and Lymnæa obrussa Say.

(To be concluded).

NOTES.

HELIX HORTENSIS: A CORRECTION IN DISTRIBUTION.—When the first survey of Casco Bay was made the authorities should not have allowed the inhabitants there to keep three Rams, two Brown Cows and three Mark Islands. If not a hindrance to navigation, these certainly add confusion to the records bearing on geographical distribution.

The "Brown Cow Island," referred to by myself and others, should be Western Brown Cow Island. This island is divided into an eastern and a western portion, the latter being the larger and the one that has been referred to in former papers as Brown Cow Island. Although Helix hortensis is also found in the eastern portion, it is less abundant there. Eastern Brown Cow is an entirely separate island about ten miles east of Western Brown Cow. On this island Dr. J. A. Cushman also found a few H. hortensis, all belonging to the variety subglobosa.

The "Swan Island" mentioned on page 63 of The Nautilus for October, should have been Seal Island. It is situated on the eastern side of Cape Smallpoint. This should not be confused with the Seal Island, or Seal Rock of the Matinicus group, where H. hortensis is also found.

C. W. Johnson.

LYMNÆA (RADIX) AURICULARIA IN CHARLES RIVER, BOSTON, MASS.—Since Mr. W. F. Clapp recorded the occurrence of this species in the Charles river (NAUTILUS, Vol. XXVI, p. 116), it seems to have greatly increased. My young friend, P. S. Remington, has found it in numbers on the Boston (Allston) side near the Speedway.

C. W. J.

Mr. T. H. Aldrich has given his collection of shells, by estimate not far from 20,000 named species, to the Museum of the Alabama Geological Survey. The collection was begun as far back as 1859 in a New York village where Mr. Aldrich passed his boyhood. It includes not only his own gatherings and exchanges from all parts of the world, but many large purchases, notably the Mauritius shells collected by Col. Nicholas Pike, a very large and fine set; the Bermuda and Nova Scotia collections of J. M. Jones; the Parker cabinet of about 5,000 listed species; all the conchological collections

made by the late Wm. Doherty in the Malay Islands, Burmah and Indo-China, and a very full set of Garrett's Polynesian species. The Unionidæ were sold to Mr. Frierson; with that exception the collection is intact. It contains a good many types of species described by Mr. Aldrich and others. The series of operculate land shells is especially rich. All the known terrestrial species of Alabama are represented.

The Museum, an outcome of the Geological Survey, is by law an integral part of the University of Alabama, near Tuscaloosa. Practically it is the State Museum of Natural History, with a general scope, but giving special attention to the geology, fauna and flora of the State. Its set of Alabama fresh-water and land shells, including the Showalter collection, was already extensive and growing rapidly. Mr. Aldrich has been a generous friend of the institution; three years ago he gave to it all his duplicate shells, and the very rich collections of tertiary invertebrate fossils are largely due to him.

MR. HERBERT H. SMITH, Curator of the Museum of the Alabama Geological Survey, has recently brought back from the Coosa River the largest and finest collection of fresh-water shells ever made by him. There are about 25,000 selected specimens, including a very large number of species, some of them new to science. The principal locality worked was Weduska Shoals, between Shelby and Coosa Counties, believed to be the richest place on this very productive river. The Shoals will soon be covered with 20 feet of water by the great dam of the Alabama Power Company, now nearly completed. Mr. Smith's expedition was planned in order to obtain large series of the shells while they are still accessible. In all probability some of the Weduska species will not be found elsewhere; many Coosa mollusca are extremely local, even restricted to a small part of one shoal. These Weduska species, if not collected now, would have been forever lost to science; in fact, they are likely to become extinct under the changed conditions. Special efforts were made to secure a full set of the animals of Pleuroceratidæ for anatomical purposes, and about 5,000 of these were preserved.

MRS. M. BURTON WILLIAMSON, who spent the summer abroad, visited the conchological museums of New York, Philadelphia and Washington on her way to the west coast.

PARREYSIA NYANGENSIS FRIERSON. PARREYSIA LOBOENSIS FRIERSON.

THE NAUTILUS.

Vol. XXVII.

DECEMBER, 1913.

No. 8

TWO NEW SPECIES OF PARREYSIA FROM KAMERUN, AFRICA.

BY L. S. FRIERSON.

PARREYSIA LOBENSIS n. sp. Plate V, lower figures.

Shell small, ovate. Epidermis dark brownish green, or olive, shining on the disc, but dull on the post slope. Surface of the shell densely covered with concentric, irregularly ziz-zag, sulcations, resembling the beak sculpturing of such shells as Unio simonis Tristram, giving a somewhat "dried-paint" aspect to the outer surface. By transmitted light, dark blotches may be noted under the epidermis; beaks badly eroded in the specimens seen, but probably high and incurved. Nacre soft, orange, or pale yellowish pink. Muscle scars of medium depth, nearly or quite confluent, lateral teeth single in the right, double in the left valve. Cardinals are much split up in both valves. Beak cavities deep, but not compressed. Length 35, height 25, diameter 18 mm. Dimensions of a cotype, length 32, height 25, diameter 15 mm. The shell's chief character is the sulcated aspect of its exterior, resembling in this regard the Spatha kamerunensis of Walker, which accompanied this shell. It shows a distant kinship to P. hauttecœuri Bourg, but too remote to be confounded with that species. It more nearly resembles P. nyangensis nobis. It was collected in the Lobo River, Kamerun, Africa, by Mr. George Schwab, Jan. 28, 1913, for the Museum of Comparative Zoology, Cambridge. Type No. 20164. A cotype is in my own cabinet.

PARREYSIA NYANGENSIS n. sp. Plate V, upper figures.

Shell small, elliptical or oval. Epidermis brown, slightly greenish, shell rather thin, covered with coarse, irregular concentric sulcations, or corrugations. Post ridge, though very faint, is inclined to be double. Nacre soft, whitish, inclined to pinkish purple in the beak cavities. Muscle scars confluent, not strong. One lateral in the right, two in the left valve. Two cardinals in the right valve, the inner one much the larger. Two cardinals in the left valve, both sulcated. Length 42, height 32, diameter 22 mm.

This species was collected by Mr. George Schwab, in the Nyang River, March 13, 1913 (Kamerun, Africa).

Type deposited in the Museum of Comparative Zoology, Cambridge, No. 21160. The present species is most nearly allied to the preceding species, *Parreysia lobensis nobis*. It differs in being more lenticular and higher behind the beaks, and the anterior portion protrudes forward more. The exterior is much more coarsely corrugated, the corrugations being at least three times as large. Its teeth are less split up.

A NEW GENUS OF TROCHIDÆ.

BY WILLIAM HEALEY DALL.

While working on the Mollusca of the Lightning and Porcupine expeditions in 1883, J. Gwyn Jeffreys described in the Proceedings of the Zoological Society a shell which he called *Trochus cancellatus*. This was not the *Trochus cancellatus* of Münster, and therefore the name must be changed. Moreover no attempt to include this species in a known genus has been satisfactory, and, having found another species in some dredgings from the Galapagos Islands, I propose to name it.

VETULONIA n. g.

Shell turbiniform, small, thin, with radiating ribs crossing spiral threads; umbilicated; the peristome interrupted by the body whorl; the outer lip in the completely adult reflected and somewhat thickened, the aperture unarmed.

Type V. galapagana Dall, from deep water near the Galapagos Islands.

VETULONIA JEFFREYSI Dall.

Trochus cancellatus Jeffreys, Proc. Zoological Soc. London, 1883, p. 96, pl. XX, f. 4; not of Münster, in Goldfuss, Petr. Germ. III, pp. 58, pl. 181, f. 5, 1842.

Machæroplax cancellatus Jeffreys, 1883.

Margarita cancellata Kobelt, 1888.

Solariella cancellata Locard, Rep. Moll. Travailleur et Talisman, II, p. 32, 1898.

Distribution: Off the coast of Portugal, in N. Lat. 39° 55′ at a depth of 994 fathoms, bottom temperature 40.3° F. Also Josephine Bank in 340 to 430 fathoms; Jeffreys. Off the coast of Morocco, in 1900 meters, and south of Cape Mondego in 1818 meters; Locard. Yucatan Channel in 400 fathoms; U. S. Fish Commission.

VETULONIA GALAPAGANA n. sp.

Shell small, white, of four moderately convex whorls (the nucleus defective) the suture distinct; spiral sculpture between the sutures of seven or eight close-set flattish threads, crossed by (on the last whorl) seventeen narrow, slightly elevated, laminate ribs which become obsolete toward the umbilicus on the base; the last rib forming the outer lip is markedly larger and thicker than its predecessors; the umbilicus is funicular, shallow and with no marginating rib, it does not penetrate the axis; aperture rounded, interrupted by the body whorl, the outer lip reflected, thickened, but with a sharp edge. Operculum unknown. Height 2.2; max. diameter 3.4 mm.

Distribution: Near the Galapagos Islands in 634 fathoms, sand, bottom temperature 39.9° F., one specimen. U.S. N. Mus., 207607.

This species is larger than V. jeffreysi, has coarser spiral sculpture and a smaller umbilicus. I have chosen it for the type, as the Atlantic species is represented in our collection by two specimens which have not formed the thickened lip, and, from the description, the specimens from the Atlantic dredged by the European expeditions were also not quite mature. The type is opaque yellowish white, but when fresh was probably translucent white like the Atlantic species. The whole surface is uniformly spirally threaded except the radiating lamellæ.

STUDIES IN NAJADES.

BY DR. A. E. ORTMANN.

The following studies intend to continue my "Notes upon the families and genera of the Najades," published in the Annals of the Carnegie Museum, vol. 8, 1912, pp. 222-365. They contain additional observations on the anatomy and systematic position of forms which have come to hand since that paper was published.

MARGARITANA SINUATA (Lamarck). (See Ortmann, l. c. p. 232).

I have received from W. Israël the soft parts of two specimens from the eastern Pyrenees, near Perpignan, France.

The gill-structure of this species is entirely like that of *M. margaritifera*, that is to say, the interlaminar connections are irregularly scattered and do not form septa and water tubes, and near the base of the gills there is a slight tendency to stand in oblique rows. The inner edge of the anal opening is almost smooth, with very slight and indistinct crenulations, and does not differ from that of *M. margaritifera*. The connection of the posterior margins of the palpi extends, in the two specimens before me, for a little less than one-half of the margins, while in *M. margaritifera* they are connected for from one-half to two-thirds, but this clearly depends upon the state of the contraction.

MARGARITANA MARGARITIFERA (Linnæus). (See: Ortmann, l. c. p. 220.)

W. Israël sent me 10 gravid females of this species, collected August 6, 1912, in the Goernitzbach, Oelsnitz, Saxony.

These specimens show that there is no difference whatever in the shell of the two sexes, and chief of all, that the so-called "arcuate" shape of the shell is not connected with sex.

The structure of the gills, chiefly the arrangement of the interlaminar connections, is somewhat variable: the tendency of these connections to form oblique rows is variously developed, and, as far as I can see from the present material, is most strongly pronounced in the female. However, I could not venture to warrant that it is possible to distinguish the sexes by this feature.

In the gravid females, all four gills are charged: sometimes practically the whole of the gills is filled with embryos; in other cases a

larger or smaller part at the anterior end of the gills is not charged, but this may be due to the fact that the contents have been partly discharged. The charged gills are very little swollen, and the embryos fill the interstices between the interlaminar connections without forming placentæ; yet a slight mutual cohesion of the embryo is present.

The glochidia are very small. Length, 0.06 mm.; height, 0.07 mm. Their shape is subovato-circular, slightly higher than long. The lower margin is more narrowly rounded, so that a blunt and indistinct point is indicated. Of the published figures, that of Harms (Zool. Anzeig. 31, 1907, p. 817, fig. 5) comes nearest to the actual shape, but is too regularly round. The other figures of Harms (ibid., fig. 4, and Zool. Jahrb. Anat. 28, 1909, pl. 13, figs. 1 and 2) are poor, since they represented oblique views of the glochidium. The figure of Schierholz (Denkschr. Ak. Wiss. Wien. 55, 1889, pl. 4, fig. 65) does not at all represent this species.

Harms gives 0.0475 mm. as the size, which, according to my measurements, is too small. He also describes and figures small teeth or spines in the middle of the lower margin; I cannot see these. In their place there is a narrow flange, which projects toward the inside of the shell, and in a lateral (edgewise) view, this appears sometimes as a short spine.

MARGARITANA MARGARITIFERA FALCATA (Gould). (According to Simpson, Pr. U. S. Mus., 22, 1900, p. 677, synonym to M. margaritifera).

Two specimens from Chehalis River, Porter, Chehalis Co., Washington, collected by H. Hannibal, July, 1912.

This western form of *M. margaritifera*, whether we regard it as distinct or not, has exactly the structure of the soft parts of the normal form. In one of the two specimens before me, the arrangement of the interlaminar connections in oblique rows is much more distinct than in the other; the former might possibly be a female.

Fusconaja subrotunda leucogona nov. var.

This form is the representative of *F. subrotunda* (Lea) in Elk River in West Virginia (Kanawha drainage). I collected it on May 25, 1911, at Sutton, Braxton Co.; on July 8, 1911, at Gassaway, Braxton Co., and July 10, 1911, at Shelton, Clay Co. I also saw

dead shells on July 9 at Clay, Clay Co. The type-set is from Gassaway, Carn. Mus., no. 615399.

This form may be described as a rather small and somewhat flattened subrotunda. It corresponds to a degree to the var. kirtlandiana (Lea) of the upper Tuscarawas, Beaver and French Creek drainages in Ohio and Pennsylvania, but it is not quite so flat as the latter, is smaller, and has not the subulate shape of the upper posterior part. In fact, in shape it does not differ much from typical subrotunda, and moreover, the degree of compression is quite variable.

The soft parts, however, show some very marked peculiarities in their color. While typical subrotunda has either orange or whitish soft parts, with the placentæ and eggs (and of course the gills of the gravid female) always of a red color, in the Elk River form the soft parts are of the white type, and placentæ and eggs are white. This, at least, is the rule. But there are rare exceptions: at Gassaway I found a single male, which had orange soft parts, and at Shelton I found a few males and females with orange soft parts, and a few females had cream-colored, pink or red placentæ; in one case only orange soft parts and red placentæ were associated. This shows clearly that the Elk River shell is to be regarded only as a local race of subrotunda, probably passing into the normal form in the lower part of Elk River (Shelton, where the greatest number of specimens with red or orange was found, is the lowermost point where I collected.

The anatomy of this form is absolutely identical with that of sub-rotunda. On all three dates I found gravid females, but on May 25 they all had only eggs; on the other days glochidia were present. One specimen collected July 8 had the ovisacs only partly charged, and in a number of them the basal part was empty, while the distal part contained yet parts of the placentæ. This shows that the placentæ are sometimes discharged in sections. Glochidia identical in shape and size with those of subrotunda and kirtlandiana (Ortmann, Mem. Carn. Mus., 4, 1911, pl. 89, fig. 1). Length, 0.13; height, 0.15 mm.

Fusconaja bursa-pastoris (B. H. Wright). (See Quadrula b.-p. Simpson, 1900, p. 791).

I collected a number in Clinch River, at Richland and Raven Tazewell Co., Va., on Sept. 20 and 21, 1912.

Structure identical with that of *F. subrotunda*. Analopening separated from the supra-anal by a very short mantle connection, with fine but distinct crenulations. Branchial with papillæ. Posterior margins of palpi connected for about one-third to one-half of their length.

Gills short and wide, the inner wider. Inner lamina of inner gill free from abdominal sac, except at its anterior end. In the female, all four gills have marsupial structure. None of the females was gravid.

Color of soft parts generally of the orange type, with foot, adductors and mantle margin often deep orange, rarely paler. In a few specimens the soft warts were pale brown to whitish. Gonads in most females intensely red (crimson); also in the males more or less red or pink, but in the latter they were in some cases brownishgray.

(To be continued.)

SPRING COLLECTING IN SOUTHWEST VIRGINIA.

BY CALVIN GOODRICH.

[Concluded from page 82.]

Some additions were made the next morning to Dr. Ortmann's Naiad list of the Clinch a mile and a half below St. Paul: Micromya cælata (Conrad), Eurynia recta (Lam.), and Nephronaias ligamentina gibba (Simpson), closely allied to N. perdix (Lea). Io at this point was seemingly all provided with tubercules. The shells were to be found on the larger stones on the up-stream side, or under an up-stream shelf, in the swifter water. An occasional one appeared in relatively quiet water. The white disintegrating shells of Campeloma decisum (Say), were common on the flood plain here.

Our next collecting spot was in the South Fork of the Powell river at Big Stone Gap, Wise Co., Va. The Doctor tackled the stream at once, while I climbed the big ridge, which hangs over it, in search of land material. The ridge proved to be entirely of sandstone and was as barren of molluscan life as the ordinary town lot, no bones at all being seen and only two living individuals, juvenile Polygyræ. Joining Dr. Ortmann after a couple of hours, I found

him happy over the plentifulness of the Naiades; they made up in this and in new interest what they lacked in variety. The most striking fact was that while Eurynia vanuxemensis (Lea), was unknown to the Clinch, it was one of the most common species of the Powell, at least at this station. Io was not seen. Two specimens only of Anculosa subglobosa were collected. Pleurocera unciale, of a heavier aspect than the species in the Clinch, and Goniobasis simplex were common. In flood pools, I was lucky enough to make several interesting finds: Physa crandalli Baker, Planorbis bicarinatus Say, Lymnæa obrussa Say, and, best of all, Ancylus obscurus Hald., which Mr. Walker tells me has been one of the long-lost species.

The weather turning stormy, we regretfully gave up plans for further collecting in the Powell river and in shoals of the Clinch which could be conveniently reached from Big Stone Gap. So in hopes of getting out of what might happen to be a localized storm area, we went on to Gate City, Scott Co., which brought us into the Holston drainage. Though assured that no shells had ever been seen in the Little Moccasin, which runs as a sort of decorative border to the corporation of Gate City, the results proved, as they usually do in such cases, that the resident sense of observation was of indifferent development. Two species of Naiades were found in this stream and, had the creek been clearer, probably more had been collected. The purple-black Goniobasis spinella Lea, was an easy mark in the yellow water, and many specimens were taken. The ubiquitous Pleurocera unciale was here and also Goniobasis clavæformis Lea, a species new to the expedition. Physa heterostropha Say, covered the wooden sides of the flume of a grist mill run by this creek.

Following the Little Moccasin slowly down stream, we came to the Big Moccasin creek. Almost at once Dr. Ortmann struck a pocket of clams and in the course of a few minutes had taken seven specimens. But luck quickly deserted, a thunder shower forcing us to the protection of a covered bridge. After it was over there was nothing to do but trudge home, as the water had risen and was carrying a heavy load of clay. The Pleuroceratidæ of the Big Moccasin seemed to be the three species of the Little Moccasin—exceedingly eroded—and one other species, Anculosa subglobosa.

The weather instead of improving grew constantly worse. The Doctor decided to go to points south for a try at the Holston river

and thence across the mountains into the Atlantic drainage, and I determined upon a search for land shells at Natural Tunnel, a few miles up the line from Gate City. It was the kind of day to bring the snails out, warm and steaming, and they did prove to be out, twenty species being bagged. Here, as in Russell county, Polygyra profunda had mostly dispensed with bands. But Polygyra elevata had assumed them. An interesting depauperate colony of this species was found on the face of the cliff between the natural and artificial tunnels. It was scarcely more than half the size of elevata living just out of the northern mouth of the natural tunnel. A mountain brook contained a small and handsome form of Goniobasis aterina Lea. One could stand upright and pick these little fellows from the rocks where they lived in the spray of the falls. From Stock creek, tributary to the Clinch and the stream which carved the natural tunnel, were taken Pleurocera unciale, Goniobasis simplex and Goniobasis aterina—this last surely the same or an offspring of simplex.

Acknowledgments are due to Mr. F. C. Baker, Mr. Bryant Walker, Mr. A. A. Hinkley and Dr. Victor Sterki for identifications, and to Mr. George H. Clapp for valuable comment on the land shells.

From a preliminary catalogue made by Dr. Ortmann, and to use which I have his kind permission, the following list of the collections of last May had been made:

Fusconaia bursa-pastoris (Wright). Clinch River, Cedar Bluff, Cleveland, Fink, St. Paul.

Fusconaia estabrookiana (Lea). "Synonyms, fassinans Lea and fassinans rhomboideum Simpson and others." Clinch, Cedar Bluff, Fink, St. Paul, Powell, Big Stone Gap, Big Moccasin, Moccasin Gap.

Fusconaia appressa (Lea) or edgariana (Lea). "Practically nothing but a flattened edgariana." Clinch, Cleveland, Fink, St. Paul.

Crenodonta undulata (Barnes). Clinch, Cleveland, Fink, St. Paul.

Quadrula intermedia (Conrad). "Possibly tuberosa Lea and sparsa Lea." Clinch, Cleveland.

Quadrula cylindrica strigillata (Wright). Clinch, Cedar Bluff, Cleveland, Fink.

Pleurobema maculatum (Conrad). Clinch, Cedar Bluff, Cleveland, St. Paul, north fork of Holston.

Pleurobema oviforme (Conrad). "Runs into clinchense Lea." Clinch, Cedar Bluff, Cleveland.

Pleurobema sp.? "Looks like a flattened obliquum Lam." Clinch, Cleveland.

Pleurobema argentum (Lea). "With many synonyms, such as planior Lea and brevis Lea." Clinch, Cedar Bluff, Cleveland, Fink, St. Paul, Powell, Big Stone Gap, Big Moccasin, Moccasin Gap.

Elliptio gibbosus (Barnes). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul, also in middle fork of the Holston.

Lastena lata (Raf.). Clinch, Cleveland, St. Paul.

Symphynota costata (Raf.). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul; also in middle fork of the Holston.

Symphynota holston (Lea). "Not an Alasmidonta." Clinch, Cedar Bluff, Powell, Big Stone Gap, Little Moccasin, Gate City.

Alasmidonta minor (Lea). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul; also in the Holston.

Alasmidonta marginata (Say). Clinch, Cleveland, Fink, St. Paul; also in middle fork of Holston.

Strophitus edentulus (Say). Clinch, Cedar Bluff, Cleveland, St. Paul.

Micromya caelata (Conrad). Clinch, St. Paul.

Ptychobranchus phaseolus (Hild.). Clinch, Cleveland, Fink, St. Paul.

Ptychobranchus subtentus (Say). Clinch, Cedar Bluff, Cleveland, St. Paul; in middle fork of Holston.

Nephronaias ligamentina gibba (Simp.). Clinch, St. Paul.

Nephronaias perdix (Lea). Clinch, Cleveland, Fink, St. Paul.

Medionidus conradicus (Lea). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul, Powell, Big Stone Gap, Big Moccasin, Moccasin Gap.

Eurynia fabalis (Lea). Clinch, Cleveland, St. Paul.

Eurynia perpurpurea (Lea). Clinch, Cedar Bluff, Cleveland, St. Paul.

Eurynia nebulosa (Conrad). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul, Powell, Big Stone Gap, Big Moccasin, Moccasin Gap.

Eurynia vanuxemensis (Lea). Powell, Big Stone Gap, Little Mcccasin, Gate City, Big Mcccasin, Mcccasin Gap. "Common in Holston."

Eurynia recta (Lam.). Clinch, St. Paul.

Lampsilis ovata ventricosa (Barnes). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul.

Lampsilis multiradiata (Lea). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul, Big Moccasin, Moccasin Gap.

Truncilla capsaeformis (Lea). Clinch, Cedar Bluff, Cleveland, Fink, St. Paul, Big Moccasin, Moccasin Gap.

In September, 1912, Dr. Ortmann found a single specimen of *Truncilla haysiana* (Lea) in the Clinch river at Raven, Tazewell county, Va. This species was missed in the visit of last May.

NOTES.

Another Note on Martyn's Universal Conchologist.—
It may be of interest to those readers of The Nautilus who are lovers of rare books, to learn that there is now a fifth copy of the "Universal Conchologist" in the United States. The volumes are large folio, bound in morocco and gold, and essentially like the magnificent copy in the Stanford University Library (see Nautilus, vol. XXII, 1908, p. 72), except that they comprise only the first 81 plates (vols. I–II). The plates are themselves in excellent preservation, but the sumptuous binding is badly worn. A prospectus of the work in French, dated 1787, is laid into the second volume. In neither this copy nor that at Stanford is there any plate of medals, as has been described for other editions. The volumes were acquired from a Paris dealer and are now in the private library of the writer.

The opportunity should be taken to correct a slight error which crept into my former note in these pages as above cited. It is the fourth volume of the Stanford University copy which lacks the explanatory table; vol. III appears to be complete.—S. S. Berry.

LAND SHELLS FROM ELLSWORTH, MAINE.—The following species were taken in a few hours' collecting October last along the shores of the Union River, just below Ellsworth, Maine. The shells were sent to Mr. George H. Clapp, who kindly identified them for me:

Vallonia pulchella Müll.
Vallonia excentrica Sterki.
Acanthinula harpa Say.
Zonitoides arborea Say.
Vitrea cellaria L.
Vitrea radiatula Ald.
Euconulus fulvus Müll.
Pyramidula cronkhitei anthonyi Pils.
Pyramidula alternata Say.
Vitrina limpida Gld.
Cochlicopa lubrica Müll.
Succinea ovalis totteniana Lea.—John B. Henderson.

I NOTICE that, in my note published in The Nautilus, the Editor changed "Schowalter" to "Showalter," as Lea and others wrote it; I wrote it so myself until recently. Being in doubt about the spelling, I asked Dr. Schowalter's son, whom I met at Point Clear, near Mobile. He said that both he and his father always wrote the name with a c. It is a small matter, but deemed worthy of mentioning.—Herbert H. Smith.

LAND SHELLS OF CECIL Co., MARYLAND, collected by Mr. Bayard Long.—A small lot of leaf-mould gathered in the rocky woods along the Susquehanna River at Bald Friar, contained the following species. As nothing has been published on the shells of this part of Maryland, the records may be of interest, especially Polygyra fraudulenta and Bifidaria procera, neither of which has turned up in the adjacent part of Pennsylvania:

Polygyra albolabris (Say).

thyroides (Say).

fraudulenta (Pils.).

hirsuta (Say).

Circinaria concava (Say).

Gastrodonta intertexta (Binn.).

suppressa (Say.).

Zonitoides minuscula (Binn.).

Vitrea indentata (Say.).

Vitrea rhoadsi Pils.
hammonis (Strom.).
Pyramidula alternata (Say.).
perspectiva (Say.).
Punctum pygmæum (Drap.).
Bifidaria procera (Gld.).
contracta (Say.).
pentodon (Say.).
Carychium exile H. C. Lea.
—H. A. Pilsbry.

W. F. CLAPP: SHELLS FROM SWAN ISLAND. AXEL OLS ON: ON MIOCENE CORRELATION.

THE NAUTILUS.

VOL. XXVII.

JANUARY, 1914.

No. 9

LIST OF LAND SHELLS FROM SWAN ISLAND, WITH DESCRIPTIONS OF FIVE NEW SPECIES.

BY W. F. CLAPP.

The following list is based on the land shells found on Swan Island by Mr. George Nelson in April 1913. The material was collected for the Museum of Comparative Zoology, Cambridge, Massachusetts.

Swan Island is situated in the Caribbean Sea about one hundred miles northeast of Spanish Honduras, and three hundred and fifty miles west of Jamaica. About one quarter of the land is cleared and devoted to the raising of cocoanuts; the remaining three-quarters is an almost impenetrable jungle. The soil, rich in lime and phosphate, and the luxurious vegetation, render the island an ideal home for the land mollusca.

From the standpoint of the zoögeographer the fauna of the island is of considerable interest. With so few species represented, it is impossible to be positive when and whence it obtained its molluscan fauna; but further collecting should yield a greater number of species, from which interesting conclusions may be drawn, regarding former land connections in this region.

The Chondropoma is most closely related to Cuban or Haitian species; the Brachypodella to Cuban, although its resemblance to B. costulata of Jamaica is striking. The Cæcilioides is also Cuban. The Lucidella and Drymæus are both closely allied to both Jamaican

and Central American species, while the *Thysanophora* and *Opeas* are so widely distributed that they have little or no significance.

I am greatly indebted to Dr. Pilsbry for assistance in determining the specific values and relationships of the different species, and to Mr. George Nelson for the photographs reproduced on the plate.

The list of species follows:

Thysanophora selenina (Gld.)
Drymæus insulæ-cygni, sp. nov.
Opeas micra (d'Orb)
Brachypodella insulæ-cygni,
sp. nov.
Microceramus concisus (Morel).

Cacilioides consobrina (d'Orb.)
Succinea latior C. B. Adams.
Colobostylus nelsoni, sp. nov.
Chondropoma caribbæum,
sp. nov.
Lucidella pilsbryi, sp. nov.

DRYMAEUS INSULÆ-CYGNI, sp. nov. Pl. VI, fig. 5.

Shell perforate, oblong conical, thin, straw-colored or white, the last one or two whorls irregularly marked with faint longitudinal streaks of pale brown or pink, generally delicate pink on the reflexed columellar lip. Surface glossy, spirally striated with numerous fine incised lines. Apex with typical *Drymaeus* sculpture. Whorls 6½-7 slightly convex.

Aperture ovate, oblique to axis of whorls. Peristome simple, slightly expanded below. Columellar surface within the aperture oblique and more or less sinuous. Columellar lip reflexed in a small flat plate above the umbilicus.

Alt. 30 mm., diam. 13 mm., ap. l. 14 mm.

Alt. 28 mm., diam. 12 mm., ap. l. 13 mm.

Alt. 24 mm., diam. 11 mm., ap. l. 11.5 mm.

Alt. 35 mm., diam. 13 mm., alt. l. 15 mm.

Less solid and opaque than *D. immaculatus*, with sutures more impressed, last whorl shorter. Aperture broader and peristome more convex. The spire resembles in shape that of *D. immaculatus* from Jamaica. The aperture is like that of *D. lilaceus* from Porto Rico. The texture resembles that of *D. sulphureus* from Central America.

The animal when alive is dark bluish green above, fading to slate gray on the sides. The outer edge of the foot is tinged with green, which changes abruptly to cream color near the central part.

Types: No. 22877, M. C. Z.

BRACHYPODELLA INSULÆ-CYGNI, sp. nov. Pl. VI, fig 10.

Shell small, white, thin, translucent, cylindrical, tapering with straight outlines to a narrow truncate apex. Surface sculptured with strong white riblets, oblique to axis of shell, about 12-13 occurring on the penultimate whorl, interspaces about 4 or 5 times as broad as the ribs. Whorls strongly convex, the last not carinate or angulate, its latter half free, descending in a cylindrical neck.

Aperture oblique, rounded, slightly angular at the outer margin, lip white, reflexed. Axis simple, slender.

Length 7 mm., diam. 2. mm., whorls $9\frac{1}{2}$ (truncate).

In living specimens the part of the shell containing the animal is dark grey, with very noticeable, small, irregular black spots on the animal showing between the ribs in the lowest whorls. Apex generally truncate, 4 or 5 corneous whorls being lost. In a specimen retaining the apical whorls the first 2 are vertically costulate, the lower ones becoming more obliquely sculptured.

The shell is similar to *B. minuta*, as described in the Manual of Conchology (vol. 16, p. 58), in size, in having the last whorl not carinate or angular, and in the slender axis, but it differs in having much coarser sculpture. From *B. dominicensis* it differs in color, in having deeper sutures, more convex whorls, and no basal keel; but in the spacing of the riblets and form of the axis, it is similar. In color and in having the whorls most strongly convex just below the suture, in the wide spacing, number, and prominence of the riblets, the shell reminds one of the Jamaican *B. costulata*; but costulata has the last whorl strongly carinate.

Types: No. 22889 M. C. Z.

COLOBOSTYLUS NELSONI, sp. nov. Pl. VI, figs. 1, 2.

Shell small, umbilicate, turbinate conical, surface longitudinally striate, with coarse sharp striæ on early whorls, becoming finer and more numerous on last whorl. The umbilical region generally showing a few coarse spiral lines, occasionally extending over the entire whorl. Two general color forms are noticeable, one with the upper whorl purple black, the color gradually fading till on the lower whorl it is purple red; the other form is light horn color throughout, with rows of equidistant square spots, the first two or three spots below the suture being frequently connected, forming short longitudinal lines. The number of spiral rows of these spots

on each whorl varies considerably, but average about three on the antepenultimate, five on the penultimate, and seven on the ultimate. The spots are equidistant whether considered as forming spiral or longitudinal rows. Whorls 3-4, the first growth being lost. Aperture vertical, subcircular, color within corresponding to the outside. Peristome with slightly raised white inner rim, and broad flat white expansion, slightly dilated at the columellar margin, and also above where adnate to the whorl.

Length 11.5 mm., width 7 mm.

Length 10.5 mm., width 6.5 mm.

Operculum white, slightly concave, with involuting lines and deeply grooved edge. The dark central core is nearer the columellar margin than any other portion of the peristome.

Types: No. 22879, M. C. Z.

CHONDROPOMA CARIBBÆUM, sp. nov. Pl. VI, figs. 3, 4.

Shell subperforate, oblong, truncate, solid, with spiral flattened ridges and more numerous longitudinal lines. Color varying from horn to purple black, remaining whorls $4\frac{1}{2}$, convex, suture deep, nearly simple. Aperture vertical, longer than wide, rounded below, narrowed above. Peristome simple, adnate to the penultimate whorl, upper outer edge slightly broadened and reflexed.

Operculum cartilaginous, rounded below, broadly pointed above; whorls few, rapidly enlarging, outer half having edge turned abruptly out, inner edge turned in.

Length 10.5 mm., diam. 4.5 mm., ap. 3 mm.

Length 10 mm., diam. 4.5 mm., ap. 3 mm.

In size and general appearance this shell resembles *C. simplex*, from Haiti, but the spiral and longitudinal lines are finer and more numerous, and the last whorl is always adnate.

Types: No. 22885, M. C. Z.

LUCIDELLA PILSBRYI, sp. nov. Pl. VI, fig. 6, 7.

Shell depressed, with elevated, fine, spiral lines, strongest on early whorls, nearly obsolete on rounded periphery, base nearly smooth, or with more or less numerous, delicate, spiral furrows. Spire depressed, whorls 4, the last slightly deflexed. A thin granular callus extends from the aperture over the umbilical region, ending in a slight depression. Aperture very oblique, peristome white, a

little expanded above, thickened and reflexed below. Basal lip with short, white, obtusely triangular tooth, projecting in the plane of the last whorl, not projecting into the aperture.

Alt. 1.2 mm., diam. 3.5 mm., s. diam. 2.8 mm.

Four living specimens of this shell were collected. It belongs to the subgenus *Perenna* Guppy. It is smaller, more depressed, darker in color and with less acute liræ than *L. lineata*. In other members of the *lineata* group the basal tooth is squarish and projected into the aperture, but in *pilsbryi* it is broadly pointed and is a continuation of the lower whorl, not projecting into the aperture.

The slightly reflexed upper margin of the aperture, with no trace of tubercular teeth and the small size of the basal tooth, suggest a very slight immaturity. Possibly a larger series would contain older specimens, which would be found to have upper marginal tubercles, and a more strongly developed basal tooth. In any case the shell will be found to be specifically distinct.

Types; No. 22890 M. C. Z.

NOTES ON MIOCENE CORRELATION.

BY AXEL OLSSON.

The deposits which we have come to recognize as of Miocene age on our Atlantic coastal plain differ in many respects from beds of similar age found in other regions. This uniqueness is due to their faunal characteristics, which were developed under conditions of which we have records nowhere else. Therefore, direct correlation or specific identity of forms is possible in only a few cases, and the Miocene age of these beds is based rather more on stratigraphic than on paleontologic grounds.

The seas of our Eocene and Oligocene periods were rather warm, and hence their faunas find their closest affinities in our present tropical seas. At the close of the Oligocene, conditions began to change. In the Oak Grove sands of Florida the fauna in a slight way portraits the coming Miocene one. However, more important, of which this special case is but a preliminary result, is the inauguration of a great series of orogenetic movements which culminated in a great series of Miocene uplifts. In Europe the whole series of

folding extended from the Pyrenees Mountains in Spain to the Himalayas in Asia. In America the union of the North and South Americas, the fusion of the island of Florida with the mainland, which was again severed towards its close.

As we would naturally expect, a series of such great changes would have some great effect upon the direction of oceanic currents. It is to this that an appeal has been made for the explanation of the uniqueness of our Atlantic coast Miocene faunas. This fauna is one typically developed in cold waters. This being shown especially well by the abundance of Astartidæ, Ledas and of such Venericardias related to our recent Venericardia borealis. The warm-waterloving series of the Oligocene retreated to the Antillean region, to return again towards the close of the Miocene and in the Pliocene, when conditions again became favorable to them, to retreat again before the general refrigeration which ushered in the Pleistocene glacial advances. Also further proof of a cold oceanic current creeping south along our coast is to be noted that the Miocene floras of the adjacent mainland indicate a warm, mild climate.

In the course of paleontologic work, it became rather desirable to obtain some immature shells of certain species. In order to do so I began the examining of the sand and marl contained inside of closed valves of several large bivalve shells, amongst which was a specimen of *Melina* (Perna) maxillata (Deshayes) from the Choptank River, Maryland. In so doing, two small but beautifully preserved valves of a small *Trigoniocardia* were discovered which later were identified as Cardium (Trigoniocardia) galvestonense Harris. They are figured on plate VI, figs. 11, 12.

This species was first described by Professor G. D. Harris from specimens obtained from the deep well drillings of the Galveston Artesian well. Specimens from there are figured, Pl. VI, figs. 8, 9. The maximum depth attained in this well is 2,920 feet of which the interval between 2,158 and 2,920 feet was referred to the Upper Miocene. This fauna is tropical in its make-up, differing conspicuously from the cold Chesapeake fauna which at the same time extended into the Gulf of Mexico, through the Suwanee straits which separated Florida from the main-land. With the typical expression

¹Bull. of American Paleontology. Vol. I, No. 3, p. 91, pl. 1, fig. 3, 3a. Dec. 2, 1895.

of the Chesapeake fauna as developed in Virginia and Maryland, only a few species are held in common, while with the Upper or Duplin Miocene horizon of N. C., agreement is much closer, due as much to similarity of climatic conditions as to a similarity in age.

Besides Cardium galvestonense Harris, two other species are available for correlation in both the Chesapeake beds of Maryland and the Miocene of the Galveston well, namely Mytilus conradinus Orb. and Crassinella galvestonensis Harris. These two species are rather abundant and occur in nearly the whole series of our Miocene beds. The former from New Jersey southward, the latter as far north as Maryland. Cardium galvestonense however until its present discovery in the Choptank formation of Maryland has escaped notice outside of its type area. Its distribution is such as to indicate, that it may be expected anywhere in the intermediate area. Its rarity outside of the Texan region, where it is abundant, indicates that it is a warm-water-loving form, finding as Professor Harris notes, its nearest relations with Antillean species. So far it is the only Trigoniocardia discovered in our Atlantic coast Miocene beds, although the group is abundantly represented in the Oligocene beneath.

NOTE ON CLEMENTIA OBLIQUA JUKES-BROWNE.

BY WM. H. DALL.

Mr. A. L. Jukes-Browne in the Annals and Magazine of Natural History for July, 1913, p. 60, has published a description of a new species of Clementia under the specific name of obliqua, which was supposed to come from Porto Rico. By the kindness of J. Cosmo Melvill, Esq., I have been able to examine one of the two specimens upon which this species was founded. It proves not to be a Clementia, not to come from Porto Rico, and to be a species described by Carpenter under the name of Clementia subdiaphana forty-eight years ago. As Clementia was, according to Adams and Woodward, a Dosinoid animal, and the soft parts of this species are Veneroid, it was transferred by me to the genus Marcia, section Venerella, in my revision of the Veneridæ in 1902. I figured the species in the Proceedings of the U. S. National Museum in 1891 from an exceptionally rotund specimen. Mr. Jukes-Browne's figures are of the more

common and elongated type. The cotype of obliqua examined by me has a specimen of Galerus contortus Cpr. adhering to it, which, like the bivalve, ranges from Alaska to the Santa Barbara Islands of California. All true Clementias are more or less concentrically undulated and have a deep linguiform pallial sinus, both of which features are absent from the so-called C. obliqua.

NORTHERN IDAHO SHELLS.

FRANK C. BAKER.

During the month of September the writer visited various portions of Oregon, Washington, and Idaho. Nearly three weeks of this period was spent in Northern Idaho in the beautiful Kootenai Valley and about Lake Pend Oreille. This region is quite unknown conchologically and it was hoped that some fine new species of Oreohelix or Polygyra might be found, comparable perhaps to the Sonorellas, etcetera, that our friend Ferriss has dug from the rocks of the Grand Canyon and the stony wastes of Arizona. Evidently we did not tear enough of the mountains to pieces, and so the pleasing sensation of finding a novelty was denied us. Perhaps the fact that we were examining the sturdy young trees of a newly acquired apple orchard (as well as counting the number of boxes of apples we would sell from these trees!) also accounted for our failure to secure a larger number of species.

Considerable time was given to hunting for snails, and a large number of specimens was secured, but of few species. A more detailed and careful search would doubtless increase this number, but the fact seems evident that the forests of pine, hemlock, spruce, and fir in this region do not harbor a large variety of molluscan life. As this is a new region, the list, though small, may be of value. The orchard tract near McArthur, Idaho is a little over 2000 feet in elevation.

Circinaria vancouverensis (Lea). Kootenai Orchard, McArthur, Idaho. This snail is not common the only specimens obtained (two in number) being found near our sleeping tent, one under the floor and the other beneath a burnt log. The specimens are smaller than those living to the westward, at a lower elevation.

Euconulus trochiformis (Montagu)—fulvus Müll. Specimens were found plentifully on old boards under the wooden floors of the sleeping tents.

Zonitoides arborea (Say). This is the commonest snail here, as in our eastern forests, and is found everywhere in large quantities. Specimens from Idaho and Chicago cannot be distinguished.

Pyramidula solitaria occidentalis (Marts.). This fine shell was found only high up on the mountain sides at an elevation above 4000 feet. At this height they were very abundant for about 500 feet, when they totally disappeared, their ecological elevation being between 4000 and 4500 feet. They were found in hollows in well-wooded ravines at the base of rocky projections, where there was a vigorous growth of shrubs, and in dell-like valleys between mountain spurs. They were always found (in September) buried under leaves and débris, sometimes to the depth of several inches. The color is rich brown or chestnut, with two reddish bands, which are specially conspicuous in the aperture.

These shells were at first somewhat of a puzzle, for they seemed to combine characteristics of both Oreohelix cooperi and Pyramidula solitaria. Prof. Elrod 1 notes a similarity between these two species near McDonald Lake, Mission Mountains, Montana. To Mr. Wm. Moss, Superintendent of the Kootenai Orchards, is due the discovery of these shells. We had searched diligently for nearly two weeks without finding even a dead specimen, though the mountain side had been ascended for a thousand feet. Upon mentioning the fact to Mr. Moss, he stated that he had seen piles of big shells way up on the mountains. A subsequent climb to this altitude (2000 feet above the orchard) revealed the coveted Helices.

Galba parva (Lea). This little Lymnæid was found only in a small creek at McArthur.

Physa diaphana Tryon. The Orchard, McArthur; Moravia, about eight miles north of McArthur. This is the common Physa and occurs in some localities in great abundance.

Chaos in the *Physida* is painfully realized when one attempts to definitely place a member of this family. *Diaphana* was originally described from California, but the species under discussion, though occurring so far to the eastward of this region, conforms to the

¹ Bull. University of Montana, Biological Series, No. 3, p. 112.

descriptions and figures of Tryon 1 more closely than to any other, both in size (11-13 mill. long) and form. The collumella is precisely as described by Tryon. It is probable that many of the western Physas have a wide distribution west of the Rocky Mountains.

Planorbis antrosus Conrad. A single specimen of this species was picked up on the shore of Pend Oreille River, in front of the fish-hatching building, across the river from Sandpoint. It is exactly like the variety portagensis Baker, from Maine. Though the two localities are separated by 2500 miles of territory, there is no question concerning the identity of the Idaho shell. Only three other records of bicarinatus (antrosus) are known from Idaho, and these are all from the "panhandle," not far removed from the locality under consideration.²

At Glacier National Park, Montana, in a ravine about a mile west of the hotel, a number of dead shells of *Oreohelix cooperi* (W. G. B.) were secured. No living specimens could be found, though special search was carried on for them. Glacier Park Station is about 5000 feet altitude.

PUBLICATIONS RECEIVED.

Description of Some New Cerionide, by C. J. Maynard (Appendix to Records of Walks and Talks with Nature, Vol. v, pp. 177-200, 1913). The object of this notice is to call the attention of conchologists to this somewhat obscure publication, containing over thirty-five so-called new species. The author states in the introduction that "The following announcements of the discovery of certain laws which govern the evolution of groups and the descriptions of some species are here given preliminary to a revision of my monograph of the Cerionidæ." The author's brevity in describing species and his combinations of hyphenated names are something remarkable. The latter method is evidently necessary to emphasize his belief that "a species may become established even though it is still bound to its parent species by living links." Having made no special study of this interesting family, it would be useless for me to comment further, for in doing so I might seriously encroach upon the vocabulary

¹See Tryon, con. Haldeman's Mon., p. 134, pl. 6, fig. 15.

² See Walker, NAUTILUS, XXIII, p. 25, 1909.

of a specialist on the Cerionida who might later have occasion to criticise this work.—C. W. J.

A PRELIMINARY LIST OF THE MOLLUSCA OF MISSOURI (exclusive of the *Unionida*), by F. A. Sampson (Trans. Acad. Science, St. Louis, Vol. xxii, pp. 67–108, 1913). A valuable and interesting list of 132 species, giving their distribution throughout the State.

OBSERVATIONS ON LIVING SOLENOMYA (velum and borealis), by Edward S. Morse (Biol. Bull., Vol. xxv, pp. 261-281, 1913). An exceedingly interesting article, in which the animals are clearly shown by some 22 figures, and their habits and structure fully described. Their movements consist of a series of vigorous darts, which send them rapidly through the water. They seem to have the peculiar habit of burrowing in the mud posterior end downward, this attitude being contrary to the behavior of all other burrowing lamellibranchs.—C. W. J.

NOTES.

HELIX HORTENSIS ON WHITE BULL ISLAND, ME.—I have read with much interest your paper in October Nautilus on Helix hortensis in New England, and note on page 63, you mention that the species has not before been recorded from White Bull Island, Maine. With this I am sending you a partial catalogue of the land shells in my collection, which I printed in 1889. (Circumstances prevented its completion). On page 32, No. 2066, you will find the species listed from that locality, received from Rev. E. C. Bolles (of Portland, Maine) who sent them to me October 30, 1867. This may not constitute a "record," though copies of the catalogue have been somewhat extensively circulated among my friends and correspondents in this country and abroad, but possibly you may be interested to know that its existence on White Bull Island was known 46 years ago.—WM. G. MAZYCK.

MARTYN'S UNIVERSAL CONCHOLOGIST.—Seeing Mr. Berry's note in December Nautilus reminds me that I have had a copy of the first two volumes of this rare work in my library since May 1908 and as it differs in some particulars from those already put on record I give description below.

It is bound in full tree calf in one volume, trimmed to $10\frac{3}{4}$ by $13\frac{7}{16}$ inches. The frontispiece has elaborate gold grapevine pattern surrounding the figure of *Turritella terebra*. Then follows a title page which does not appear to be in the National Museum or Academy of Natural Science copies. (See Dall, Proc. U. S. Nat. Mus. Vol. xxix, p. 422). This title is as follows:

The /Universal Conchologist, / Exhibiting / The Figure of every known Shell accurately drawn and painted after Nature: / With A/ New Systematic Arrangement / by the Author / Thomas Martyn. / Sold at his House, No. 16 Great Marlborough Street, London. / / Le / Conchologiste Universel, / montrant la figure de chaque coquille aujourd'hui connue: / Soigneusement Dessinee, et peinte d'apres Nature. / Le tout Arrange selon le Systeme / De L'Auteur, / Thomas Martyn. / Se vend chez lui No. 16 Great Marlborough Street, Londres, 1789. /

Then follows the title-page given by Dall; engraved dedication to the King; the bastard title. The Introduction and Preface are as given by Dall, but the two plates of medals are bound between pages 26 and 27 of the Preface. The two Explanatory Tables follow the blank page 40. Close to the lower, right-hand margin of the first Table is engraved *Obser* which probably refers to the sheet of ''Observations" in the Henderson copy but missing from this. (See Dall, Proc. U. S. Nat. Mus., Vol. XXXIII, p. 186).

GEO. H. CLAPP.

Showalter or Schowalter.—In the December Nautilus Mr. H. H. Smith mentions Lea's incorrect spelling of the name of Dr. S[c]howalter. It was my privilege to enjoy delightful correspondence with the Doctor for several years, and I can assure any one interested that the Doctor's son is mistaken. He did not "always write the name with a c." I enclose a tracing of his very plainly written signature of a letter dated March 11, 1867, at which time he certainly spelled the name Showalter, as Lea, Ravenel, Tryon, I, and others have spelled it. The changed spelling must have been coincident with his marriage in December, 1867, as in his last letter before that event, written in November, he used only Sh, and in the first one which I received after it, dated July 10, 1868, the Sch appears and so continued to the end.—Wm. G. Mazyck.

WALKER: ANCYLIDÆ OF NORTH AFRICA.

THE NAUTILUS.

VOL. XXVII.

FEBRUARY, 1914.

No. 10

CAMPS IN THE CATALINAS AND WHITE MOUNTAINS OF ARIZONA, WITH DESCRIPTION OF A NEW AMERICAN LAND SHELL.

BY JAS. H. FERRISS.

On my last vacation last summer I found a new land snail, another wooly one, on a rock slide of the San Francisco river, about ten miles above Clifton, Graham Co., Arizona. It belongs in a group with Ashmunella walkeri Ferriss and A. lepiderma P. & F. I have held this out to name after Dr. H. A. Pilsbry who has been with me on so many of these vacation excursions and ought to have been with me on this. Dr. Pilsbry has taken the laboring oar on the catch of this expedition otherwise, and together with the findings of the catch of Pilsbry, Daniels and Ferriss in southern Arizona for 1910, the report will be published in the Proceedings of the Academy of Natural Sciences, Philadelphia.

ASHMUNELLA PILSBRYANA n. sp.

Shell lens-shaped, acutely carinated; umbilicus straight and narrow, 1.6 min. wide, enlarging on the last turn to 3 mm. Thin, pale, corneous brown. Surface sculptured with irregular growth striæ, closely papillose, not striated spirally: covered with a thin dull epidermis, with short, light colored, cuticular scales upon the papillæ in young, unrubbed specimens. $5\frac{1}{2}$ whorls, rounded, deeply sutured, last whorl impressed above the periphery; lower side of last whorl three times as wide as the upper surface; deeply guttered behind the lip.

Aperture wide and oblique; parietal callus barely visible, carrying a nearly straight parietal lamella which runs nearly parallel with the lower edge of the aperture, and is bent inward at the outer end, in shape a fair representation of a letter J reversed. 3 teeth upon the outer lip well developed: a wide tooth just below the peripheral angle, somewhat receding or set back from the lip; a pair of teeth upon the basal margin, yoked together at their outer ends, and extending inward across the thickening of the peristome, in shape therefore like the letter U.

Alt. 5.7, diam. 14 mm.

Largest shell 14.8 mm. diam. by 6.4 alt. Smallest, 13.9 diam. by 6.1 alt.

The shell in color and general appearance seems close to A. walkeri Ferr., but is larger, being less depressed, and it has a narrower umbilicus and more whorls. In sculpture and epidermal covering it is similar to A. lepiderma P. & F., of which the new species is a sort of large edition.

Cotypes in coll. Academy of National Sciences, Philadelphia, and in my own collection.

In a hasty search I found but eight of these, of which two were alive, at the foot of a rocky slide on the east bank of the river in company with *Sonorella* and smaller shells.

May 7th, 1913 I left Joliet just a-crawling, for there had been no vacations since 1910, and the fight for bread had been usually hard. I returned home October 20th, the longest vacation I ever had; and the best of it is, the bread question is settled so that I shall not want, and the vacations hereafter can be as frequent and long as I please.

Until September, I chaperoned a party of invalids in the Santa Catalina Mountains near Tucson. This chaperoning and my own tired feeling prevented me from making a complete survey of that range, though I had done a little of it in 1910. I brought home a large quantity of dirt containing Pupas, many cans of dead Sonorellas, and the skins of five kinds of rattle-snakes, picked off of 'em here and there in the hills.

With Frank Coles, a splended guide and biscuit maker, I drove across the plains and over the mountains from Tucson to Wilcox, then to the Graham Mountains, Solomonville, the Peloncillo Mts., and to Clifton, picking up snails, snakes, terrapins, ferns and daisies; occasionally a few peaches, melons, and our own belongings. It was

an interesting ride. As a rule the condition of the highways for exercise, equals any gymnasium this side of the Alleghanies. We tipped our wagon over in the Graham Mountains, but we held it up all but once, anyhow.

Physa was found in the water tanks and cienegas, and Oreohelix strigosa depressa and a Sonorella were found in the Grahams; another Sonorella in the Peloncillos, but more of them are there.

This was a mere scouting expedition to see how the land lay for ferns and snails another year. We seldom remained more than one night in the same camp, hitting high spots for collecting at meal times, and before hitching up.

Coles knew where the water was and where it was not, and so arranged the drinks. At Clifton, we corralled our wagon, and with horses to ride and mules to pack, continued the journey to the White Mountains of Arizona (not new Mexico). On Eagle Creek, the fourth day, we commenced to find Oreohelix. As we climbed over the edge of the Blue Range, I found an Ashmunella of the chiricahuana group and Oreohelix in the pine woods under logs. This was at 12,000 feet above the sea, but the ascent had been gradual. It did not seem high. From this point to the top of the White Mountains (Old Baldy, 14,000 feet,) the ascent was easy, the trail fine, the grass high and cattle fat.

Upon the return trip, we left the Eagle Creek trail at the Rim of the Blue Mts. and dropped down Raspberry Canyon to the Blue River, 5000 feet, returning to Clifton by the Blue and San Francisco Rivers. At about 4,000 feet, Sonorellas were found again, and Ashmunella pilsbryana. The rocky slides looked inviting. It was a hard race for horse feed, as the floods had destroyed grazing on the flats, the bluffs were unscaleable, and duty called me home. I opened only four "slides" in the last fifty miles.

The river's banks have the best prospects. At every slide I scratched, I found a new species. All had been unexplored country conchologically, and I expected to find great things, large as tea saucers, banded and punctuated with scarlet, clothed in feathers and spines. Nevertheless, I found a dozen or so that are new; and next year I hope to revisit the neglected slides and go farther into the big mountains. I know the way now.

Cole shot a bear and we ate it up, also several deer and other smaller things. The streams were full of speckled trout and the pine and spruce forest a continual delight. The Oreohelix were beautiful in colors, quite equal to those neutral brown tints of the Philippine snails.

Everything, all summer long, in Sonorellas, Ashmunellas and Oreohelix, except one *Oreohelix* and one group of *Sonorella*, was found in the rocky slides or talus, and many were dead. I had theories that dry weather, epidemics, insects or fungi had killed them, but most of these theories are also dead, or in a dying condition. Perhaps I did not stay long enough upon one slide to find their home. It is nearly all slide work, and healthy. After sleeping nearly half a year under the stars in the high woods, I am strong as a farmer. Those invalids I chaperoned are well.

Joilet, Ill., Nov., 1913.

PHYSA HETEROSTROPHA SAY IN EUROPE.

BY ZDENKA FRANKENBERGER.

Of late there have appeared in the literature many statements of the presence of Physa acuta Drap. in Central Europe. It was found in Leipsic, Gotha, Königsberg, Jena, Dresden, Munich, Copenhagen, Basil, etc., almost always in botanical or other gardens, where it was thought to have been brought in by the aquarists. In the neighborhood of Prague we could confirm some years ago, a species of Physa which was remarkable by its size and quite another form of the shell than are the two common Bohemian species of Physa, Physa fontinalis L. and Aplexa hypnorum L. It could not be identified with Physa acuta, but it is surely the American species, Physa heterostropha Say, as it was stated already in the Catalogue of Bohemian Molluscs by Babor and Novak. With some care one cannot be mistaken in the right determination of this snail, for both the shell (with thicker walls, a lip in the aperture and of a large size) and the animal (more robust, olivaceous) are quite different from Physa acuta, which does not occur in the eastern parts of Europe, and the eastern frontier of the distribution of which is the

¹ Babor u. Novak, Verzeichniss der posttertiären Fauna der böhmischen Weichtiere. Nachrbl. d. deutschen Malakozool. Ges., 1909.

Rhine. But now Dr. C. R. Boettger described a new variety of Physa actua from Oppeln in Silesia, which he calls var. thermalis. It is said to differ from the type by its larger size, thicker shell and irregular surface. In the same locality lives a species of Spharium, which is described as Sph. tetensi sp. n., but the author says that it is quite similar to the American Sph. simile Say. From the illustration of the new variety of Physa acuta it is evident that there is no acuta at all, but that this form is quite identical with the large specimens of Physa heterostropha, which occurs near Prague of the same size. How the case stands with other records from Central Europe, I dare not say; but it is very probable that all these supposed Physa acuta are in reality P. heterostropha, which was introduced with American fishes and plants of aquaristic commerce, and which found in our waters suitable circumstances of life. On the contrary Physa acuta as an animal of warmer regions of Western Europe scarcely could live any long time in the cold waters of our pools and brooks.

NOTES ON THE ANCYLIDAE OF NORTH AFRICA.

BY BRYANT WALKER SC. D.

Through the great courtesy of M. Paul Pallary of Oran-Eckmuhl, Algeria, the well-known student of North African Mollusca, I have been recently enabled to study his entire collection of North African Ancylidæ.

The collection consists of twenty-nine lots, nineteen from Algeria, six from Morocco, one from Tunis and four from Egypt.

In preparing the following notes, which are based mainly on M. Pallary's collection, I have made use of such additional material as I have in my own collection and such of the literature as I have at my disposal.

I am under special obligations to Dr. E. F. Weber of the Natural History Museum of Geneva, Switzerland, for drawings and inval-

¹C. R. Boettger, Beiträge zur Kenntniss der Molluskenfauna Schlesiens. Nachrbl. d. deutschen Malakozool. Ges., 1913.

uable information in regard to several of Bourguignat's types, which have enabled me to definitely determine the species described by that author.

The distribution of the Ancylidae in North Africa is entirely in in accord with the faunal limits set forth by Germain in his recent essay on the "Malacographie de L'Afrique Equatorial", (1909, p. 118). According to that author Africa, north of Lat. 17° N. and including the Azores, the Madeira, Canary and Cape Verde Islands, belongs to the Palæarctic Region. In the fluviatile Mollusca, however, the Valley of the Nile forms an exception and is populated by the characteristic fauna of the Equatorial Region. And this is true, also, in regard to the Ancylidæ.

In Europe, Ancylus is represented by two, and only two, very distinct groups: Ancylus s. s., of which A. fluviatilis L. is the type, and Acroloxus, of which the type and only species is the A. lacustris L.

The latter does not seem to have extended its range across the Mediterranean. But the *fluviatilis* group is found in great abundance and variety from Abyssinia to Morocco.

Two species have been described from Abyssinia by Jickeli, (1874, p. 223), A. abyssinicus and compressus, for the latter of which Bourguignat, (1883, p. 84), has proposed to substitute the name of hamacenicus, compressus being preoccupied both by Parreyss and Nyst. Clessin, (1882, p. 31), considers it to be only a variety of abyssinicus.

The collection of M. Pallary contains one species from Tunis.

Thirteen species of more or less doubtful validity have been listed from Algeria by Bourguignat and others.

Four species are listed from Morocco by Pallary in his last catalogue (1904, p. 54.), of the fauna of that country.

The A. aduncus Gld. from Madeira is referred to the European A. striatus Q. & G. by Wollaston, (1878, p. 470).

According to that author the same species, striatus, occurs abundantly on the islands of Grand Canary, Palma and Teneriffe in the Canaries.

The A. rupicola Mouss. (1872, p. 141), from Teneriffe is an allied and probably depauperate form of the same species according to Wollaston.

All of these species undoubtedly belong to the group of A. fluviatilis and show that the ancyloid fauna of these countries is purely palæarctic.

The single species, however, recorded from the Cape Verde Islands, A. milleri Dohrn, (1869, p. 18), so far as can be judged from the imperfect description, would seem to be a Ferrissia. If so, it probably marks the extreme northern extension of the Equatorial fauna on the west coast.

The family is not represented at all in the Azores.

In Algeria, in addition to the species of the fluviatilis group, are found the two remarkable species described by Bourguignat and for which he created the genus Brondelia, (1862, p. 89), B. drouetiana and gibbosa, which retain the apical whorls in maturity. In this respect they resemble the Tasmanian species of Ancylastrum. Unfortunately the soft anatomy of these forms is, as yet, unknown and, until that is determined, the systematic position of the group must remain uncertain. In all probability, it will be found to be more closely related to Ancylus s. s. than to Ancylastrum.

In both Brondelia and Ancylastrum the apical whorls are sinistral and the animal is, probably, sinistral also. On the other hand, Ancylus s. s., which loses its sinistrally coiled apical whorls at a very early stage and in maturity has the apex usually more or less turned to the right, never to the left, while the animal is sinistral, is commonly (Taylor, 1895, p. 115) considered an example of heterostrophy. As a matter of fact, a careful study of the shells belonging to the different groups of the Ancylidæ will show that the species having the apex turned toward the right are really sinistral in their essential construction. In the same way, Acroloxus with its apex turned to the left and a dextral animal would have also in reality a dextral shell.

In view of the prevalence of the various forms of the *fluviatilis* group as a characteristic feature of the fauna of Algeria, it was a cause of great surprise to find among the *Ancyli* of M. Pallary's collection a very distinct and curious species of *Ferrissia*.

The genus Ferrissia, for in view of the distinct character of the radula, which will be discussed at length in my final paper on the Ancylidæ of South Africa now in preparation, I believe it to be entitled to generic rank, has the most extended range of any group of the Ancylidæ. While Ancylus s. s. and Acroloxus are restricted to the Palæarctic Region of the Old World, Burnupia to South Africa, Ancylastrum and Latia to New Zealand, and Lanx and Lavapex to America, Ferrissia, with the exception of the Palæ-

arctic Region of the Old World (Northern Africa as herein stated excepted) has a world-wide distribution.

With its apparent metropolis in North America, it has recently been found abundantly in South Africa (Walker, 1912, p. 142), and extends northerly along the east coast of the Equatorial Region and in the Valley of the Nile to Alexandria.

Ancylus tanganyicensis Smith (1906, p. 184), is a Ferrissia.

The species collected by Blanford (1870, p. 472), in a small stream near Mai Wahiz, Tigre, an affluent of the Nile (l. c., p. 61), and doubtfully referred by him to the Indian A. verruca Bens., is also a Ferrissia. Blanford's specimens, now in the Indian Museum at Calcutta, was sent in 1908 to the Rev. Prof. Gwatkin of Cambridge, England, to enable him to extract and examine the radula, which he informed me was of the Ferrissia type. Through his courtesy the shells were sent to me for examination on their way back to Calcutta. At that time I had no specimens of the Indian species in my collection for comparison and, as I had then no expectation of ever doing any work on the African fauna, I unfortunately neglected to make any description or figures. My note, made at the time, was simply that the specimens were Ferrissias. This confirmed Prof. Gwatkin's opinion based on his examination of the radula and settled the generic position of the form, though, unfortunately, its specific character must remain uncertain until it can be more critically examined.

There are, so far as I know, no authentic records of the occurrence of *Ferrissia* on the west coast of Equatorial Africa. As already stated, it seems probable that the *A. milleri* Dohrn from the Cape Verdes belongs to this group, but only an examination of the types can definitely determine that question.

There is every probability, however, that, sooner or later, Ferrissia will be found to be of general distribution in Equatorial Africa.

The Indian A. verruca Bens., the Japanese A. baconi Bgt., the Australian A. australis Tate, the New Zealand A. woodsi John., (possibly the non-septate form of a Gundlachia according to Hedley, 1895, p. 66), and the Hawaiian A. sharpi Sykes are all Ferrissias.

This world-wide distribution of *Ferrissia* is very significant and goes to show that, like certain other fresh-water pulmonate types of similar distribution, it is probably of very ancient origin. And the apparent agreement between its present range and the conditions of

land and water in Upper Cretaceous times as depicted by Ortmann (1902, p. 381), may be more than a mere coincidence.

While Ferrissia and Laevapex are very closely related, the worldwide range of the former is in marked contrast with the restricted one of the latter, which is apparently confined to America.

I can not accept Hannibal's statement, (1912, p. 153), that the Ancylidæ have been evolved "from simple, patelliform ancestors". I agree rather with Grabau, (1902, p. 921), that "our modern patelliform species are probably not primitive types", but are descended from ancestors with spiral shells. The persistence of spiral apical whorls in Brondelia and Ancylastrum and the deciduous spiral apex of Ancylus s. s. would seem to be conclusive on that point.

While there may be no great force in an argument based on the usually thinner and flatter shell of *Lævapex* as compared with that of *Ferrissia*, so far as it goes, it tends to show a progressive degeneration of the shell-secreting function in the former group.

For these reasons I can not follow Hannibal, (1. c. p. 150), in subordinating *Ferrissia* to *Lævapex* as a subgenus. To my mind, the reverse is actually the fact and *Lævapex* is a comparatively recent offshoot from the ancient *Ferrissia* stock.

My main purpose in undertaking the examination of the Pallary collection was to determine as far as possible the relative range of Ancylus s. s. and Ferrissia in North Africa. It would be quite impossible for any one without access to types of Bourguignat and large series of Palæarctic material either to attempt to identify Bourguignat's species or to satisfactorily determine the validity of the African species belonging to the fluviatilis group. And I have not attempted to do so.

(To be continued.)

POISONING BY THE BITE OF CONUS GEOGRAPHUS.2

The following report by Dr. A. Herbert Hallen was forwarded to the Australian Museum, Sydney, by Dr. B. G. Corney, from Fiji, 10th September, 1901. Accompanying it was a shell, identified as Conus geographus, said to be similar to the one that inflicted the severe bite described. The following is the extract from the Gov-

¹ From The Australasian Medical Gazette, September, 1912.

ernment Medical Officer's Report, Levuka, for the month of June, 1901:

"I had under observation the case of a European lady here who was the subject of a severe form of poisoning by a shell-fish of the species of which a shell is now sent for identification.

"The lady was fishing not far from the shore in the evening, with her family and native servant in the boat. The shell-fish having been obtained, the boy cracked it to extract the meat, which was large in quantity for the size of the shell, and having cracked the shell, handed it to his mistress with the meat hanging from its internal attachment. To free the flesh she inserted her little finger towards the upper end, and, she declares, felt it shoot out a sharppointed thing which penetrated her finger and caused such a peculiar sensation that she at once called out that she was bitten and poisoned.

"The poisonous matter is said to be the yellow pulpy matter at the thicker end of the shell; it might of course be merely reproductive or digestive tissue, or again there might well be a modification of some secretory gland to form a protective poison gland, and in the latter case, nature would surely provide along with poison, some mechanical means to promote injection into the enemy."

"The point of puncture in this case was minute and only to be seen with great care; indeed, that it was a puncture was much less readily seen than the local effect of the poison which caused a bluish discoloration of the surrounding tissues. It was situated at the point of the patient's little finger near the side of the nail. Through so small a puncture, and in so short a time as was allowed to its insertion (she did not unfortunately suck the wound), but a most minute quantity of the poison could have entered the circulation, yet the effects were most grave. Locally a numbness was first experienced. This extended rapidly up the arm, which became paralysed and the paralysis spread thence rapidly throughout the body. It was peculiar that not only was general muscular control abolished, even so far that the head had to be supported over the trunk in order that unimpeded breathing might be allowed to continue; but there was a loss also in a lesser degree (as I think) of sensation, with numbness

The wound was doubtless inflicted by the radula, of which the teeth are well known to be provided with ducts communicating with a poison-secreting gland.—Ed.

and "pins and needles" beginning in the arm and becoming generalised through the body, and to a more marked degree there was a disappearance of muscular sensation and a complete absence of knee jerks. The patient constantly asked where her limbs were. Utterance was thick and indistinct. The respiratory and cardiac muscular apparatus did not at any time participate to a dangerous degree in the paralysis. The stomach, however, may have been effected, for I could not induce vomiting. When at its worst, some three or four hours after the poisoning began, the condition distinctly affected the throat, and a good deal of distress was caused by the difficulty in removing accumulated fluid. The poison seemed to me to clearly belong to the class of which curare is the type. Of this I felt assured as soon as I had examined the patient and observed the freedom of the respiratory and circulatory centers from its actions compared with the absolute abrogation of voluntary muscular paralysis, so that, the patient weighing 16 odd stone, I felt a good deal of anxiety as to whether the arms would not dislocate at the shoulder when the body was lifted in the chair by the hands under the armpits; indeed it was exceedingly difficult to move the patient, all the parts being so abnormally yielding. The treatment I adopted was merely directed to the maintaining of life till the poison should have been destroyed. The heart and lungs were quite equal to their work if other circumstances could be kept favorable. This was done by placing the patient in a semi-recumbent position in a canvas chair, and by keeping the head in such a position that breathing and swallowing were facilitated. I should have liked to relieve the circulation by inducing vomiting, but failed to do so-Had I had strychnine with me, I should have injected it hypodermic ally, but I did not feel justified in leaving the patient to get it. The worst was past in about six hours. The wound was made about 9.30 p. m. Paralysis lasted on with steadily diminishing intensity till late next day, but the numbness lasted considerably longer in the injured finger, and for a month after the patient experienced a shock in the little finger on hard impaction-as in playing the piano. This was the last symptom to clear up, unless the sore eyes, which began and lasted later, are to be attributed to this poison as their cause. Though natives declare that recovery from fish poisoning is often complicated by sore eyes, yet I am not aware that the tradition would apply to this kind. I have heard since of other cases of this kind of fish poisoning, and among others of a Kadavu woman who died before she could be got from the shore."

NOTES.

A few weeks ago the skipper of my little boat, the Eolis, made a single dredge haul off Key West, Florida, in 90 fathoms, rough rocky bottom, and just on the edge of the "Pourtales Plateau" and within the Gulf Stream. Although the number of species obtained is small the catch is a remarkable one and seems to me well worth recording. It is as follows;—

- 1 Sipho (Ptychosalpinx) n. sp.
- 1 Liomesus stimpsoni Dall
- 18 Voluta (Maculopeplum) dohrni Sby
 - 2 Voluta (Aurinia) dubia Brod
- 2 Voluta (Aurinia) gouldiana Dall
- 4 Calliostoma bairdi V. and S.
- 6 Murex beaui F. and B.
- 1 Phyllonotus nuttingi Dall
- 1 Pteronotus macropterus Desh
- 2 Coralliophila deburghii Reeve
- 1 Conus mazei Desh
- 3 Phos candei orb
- 10 Nassa hotessieri Orb
- 1 Cassis inflata Shaw
- 6 Pleurotoma albida Perry

JOHN B. HENDERSON.

MR. LLOYD B. SMITH collected the following species of shells from a Pleistocene deposit near Sierra Nueva, Santo Domingo. It may be of interest to put the find on record as the type of *C. moenensis* Galb. was found in Costa Rica.

Bullaria amygdalum Dillw.

Columbella mercatoria Lam.

Murex similis Sowb.

Thais coronata L.

Strombus pugilis L.

Cerithium literatum Born.

Cerithium moenensis Gabb.

Natica caurena Lam. Neritina virginea L.

Chione cancellata L.

Chione paphia L. Chama lingua-felis Rve.

E. G. VANATTA.

THE NAUTILUS.

VOL. XXVII.

MARCH, 1914.

No. 11

NOTES ON SOME WEST AMERICAN PECTENS.

BY WILLIAM H. DALL.

Since publishing my notes on West Coast Pectens in 1898, in the Transactions of the Wagner Institute, a very large amount of material has accumulated which enables me to revise and correct the nomenclature then adopted and the views of relationship of the different forms treated. The complete work is reserved for future publication, some notes however having an immediate interest.

In 1839 Anton described under the name of Pectan excavatus a species from China afterward named by Sowerly P. sinensis. This is a good species. In 1846 the plate of the Mollusca of the "Voyage of the Venus" by Valennciennes were issued and contain a Pecten named P. excavatus. Whether the name is a mere coincidence, or the species was supposed to be the same as Anton's, cannot be known, as the text was never published. At any rate the shell figured was identical with that commonly known as P. dentatus G. B. Sowerby, 1842. But there is a P. dentatus described by J. Sowerby in 1829, so that the name of 1842 cannot be used. For this common species of the Gulf of California I propose the name of Pecten (Euvola) cataractes.

The group of Pectens including P. islandicus Müller, P. ruhidus Hinds (= hindsii Cpr.), P. hastatus Sowerby, P. hericius Gould, etc. has always puzzled writers, all of whom, including myself, have been misled by worn specimens or insufficient material.

Possessing the types of Gould, Carpenter, and Arnold, and a full series of the recent shells in good condition, I have reached the following conclusions.

P. hastatus Sowerby, is a good species of small size and limited distribution in the California region.

P. hericius Gould is distinct, and distributed from Port Althorp, Alaska to San Diego, Cal. The variety albidus Dall, if not a distinct species, is probably an extreme form of hericius.

P. islandicus Müller, extends from the Arctic south in constantly deeper water to the Strait of Fuca. Varieties of this were supposed to be P. rubidus Hinds, by Middendorff, who did not know the true rubidus, and his name for one variety, beringiana, takes precedence of my variety strategus, which is identical.

P. hindsii Carpenter (rubidus Hinds, not Martyn) has a very wide distribution from Bering Sea to Cape St. Lucas. It is a good species, the typical form of which has the major ribs on the right valve flattish and smooth. In my variety navarchus they are rounded and densely imbricate. The two can be separated in the dark.

Pecten (Plagioctenium) circularis Sowerby, has had a confused nomenclatorial career. It was first named tumidus by Sowerby in 1835, but there is an older tumidus of Turton, 1822. Sowerby then replaced the name by ventricosus under which the species is commonly catalogued. But he had also described in 1835 a P. circularis from Guaymas, Mexico, which as figured appears to be merely a color variety of tumidus. There is a P. circularis of Goldfuss, but it appears to have been published in 1836. The species will then (as indicated by Arnold) take the name circularis. It is closely analogous to the Atlantic P. dislocatus Say, and its variety æquisulcatus bears the same relation to the type that the Atlantic irradians does to dislocatus (= gibbus Lam.)

Pecten (Patinopecten) caurinus Gould. This species can at once be distinguished from its analogue P. yessoënsis Jay, by the fact that its minor surface sculpture is purely concentric, while that of the Japanese shell is reticulate when in perfect condition.

P. digitatus Hinds, is probably only a young specimen of P. (Nodipecten) subnodosus Sowerby.

A NEW SONORELLA FROM THE GRAND CANYON, ARIZONA.

BY JUNIUS HENDERSON.

Among some shells recently received from Mr. Ellsworth Bethel, of East Denver High School, were four dead specimens of Sonorella

collected by him on Bright Angel Trail, at Grand Canyon, Arizona, in 1913. He was collecting fungi, and unfortunately did not note the exact locality of the snail find, but writes that he followed the trail closely, and thinks he got the shells "about one hundred yards west of the upper limit of the trail and not more than twenty feet below the top," though he cannot be certain and "may have gotten them as far down as the half way house." He supposed them to be common and made no note of the place. They are much larger than the common S. coloradoensis of that region, and differ in other respects. They did not seem to fit the description of any other species, but the finding of so large a species along a trail which has been searched by some of our ablest conchologists and most thorough collectors made me doubt that it could be new, so I sent two specimens to Dr. Pilsbry, who pronounced them undescribed.

SONORELLA BETHELI, new species.

Shell rather large, moderately elevated. Whorls five and one-half convex, increasing regularly in size, the last descending about one millimeter in the last five millimeters to the aperture. Lip slightly everted, more strongly so at the base of the aperture, and somewhat reflected over the umbilicus, its terminations connected by a thin transparent callus. Umbilicus moderate, open to the apex. Aperture shortly oval-lunate, oblique. Growth-lines fine, but well-defined under a lens; numerous wrinkles, usually rounded, occasionally acute, coincident with the growth-lines but of course much less numerous. The most interesting character of the species is the spiral sculpture, unusual in this genus, consisting of numerous incised lines, slightly flexuous over the tranverse wrinkles, covering the last whorl from umbilicus to suture, and extending without diminution over the anterior half of the penultimate whorl, above which they begin to disappear. Though the four specimens at hand are all more or less weathered, one shows the periostracum to be smooth and shiny, and probably originally of isabella color. One dark-brown spiral band, reaching a width of about one millimeter on the last whorl, occurs just above the periphery, so as to be concealed on all but the last whorl and the anterior half of the penultimate.

Measurements in millimeters: Type (in Univ. Colo. Museum), maj. lat. 21, min. lat. 18.5, alt. 14, alt. measured just in front of aperture 10.5, height of aperture 9.5, width of aperture to callus

margin 10.5. Cotype (in Univ. Colo. Museum), broken specimen, maj. lat. 20.5, min. lat. 17, alt. 14. Cotype (in possession of Mr. Bethel), with third whorl depressed, maj. lat. 20.5, min. lat. 17, alt. in front of aperture 9.5. Cotype (in Acad. Nat. Sci. Phila.), maj. lat. 21.2, min. lat. 18.2, alt. 13.1 mm.

Type locality, Bright Angel Trail, Grand Canyon, Arizona.

NOTES ON THE ANCYLIDAE OF NORTH AFRICA.

BY BRYANT WALKER, SC. D.

(Concluded from p. 117.)

The following so-called species of the Ancylus fluviatilis group have been listed from Algeria by Bourguignat and others:

Ancylus brondeli Bgt.

costulatus Kust.

compressiusculus M. T. subriparius Bgt.

epipedus Bgt.

fluviatilis L.

bledahensis Bgt. = fluviatilis gibbosus teste Westerl.
djurdjurensis Deb.

peraudieri Bgt.

platylenus Bgt.

raymondi Bgt.

striatus Q. & G.

simplex Fer. = fluviatilis teste Clessin and Westerlund.
gibbosus Bgt. = fluviatilis var. teste Clessin and Westerlund.

strictus Mor.

In this connection it seems necessary to call attention to the persistently erroneous use of *Ancylastrum* Bgt. for this group by the continental authors, e. g., Fischer, 1881, p. 504, Clessin, 1882, p. 27, Westerlund, 1885, p. 89, Germain, 1913, p. 261.

As Hedley (1894, p. 118) has already shown, Bourguignat twice gave A. cumingianus as the type of that group. "Since the describer of the group clearly and repeatedly declared his type to be cumingianus, it is not legitimate for Fischer, Clessin or Tryon to alter the type of Ancylastrum from A. cumingianus to A. fluviatilis.

That Bourguignat also included A. fluviatilis and other members of Ancylus proper in Ancylastrum is unfortunate, but it does not invalidate the genus."

If Ancylastrum, Acroloxus, Ferrissia, etc., are retained as subgenera or sections of Ancylus, then the group of fluviatilis would belong to Ancylus s. s. If, however, these other groups are to be considered, as they should be, of generic value, then there is no occasion for any subgeneric or sectional designation of the fluviatilis group at all.

In addition to the various representatives of the fluviatilis group represented in the fauna of Northern Africa as hereinbefore mentioned from Abyssinia, Tunis, Algeria, Morocco and the Canary and Madeira Islands, the examination of the Pallary collection has revealed the existence of the following species belonging to Ferrissia and Gundlachia.

FERRISSIA PLATYRHYNCHUS n. sp. Pl. VII, figs. 1-3.

Shell rather elevated, oval, the left margin somewhat more curved than the right, anterior and posterior margins regularly rounded, thin, translucent, light corneous, lines of growth regular and rather strong; anterior slope somewhat radially wrinkled; apex large and very prominent, radially striate, turned to the right and overhanging the posterior slope, surrounded by a distinct constriction, which is deeper posteriorly, obliquely flattened above, with an enormous apical depression, surrounded by a strong ridge, which is more conspicuous along the posterior margin; anterior slope convex; posterior slope very oblique and nearly straight below the apical constriction; sides compressed; lateral slopes flattened, oblique and nearly straight on both sides.

Length 3.75, width 2.25, alt. 1.25 mm.

Type locality, "Baraki, pres le Gué de Constantine, Algeria."
Type in the collection of Paul Pallary.

The occurrence of a species of Ferrissia in Algeria was a great surprise. A recent visit to Geneva enabled me to examine the collection of Bourguignat and I was able to satisfy myself that there are no Ferrissias from Algeria in his collection. In view of the very considerable amount of collecting that has been done in Algeria in years past, the form here described would seem to be very rare as it has not been found by any other collector and only a single specimen

in this instance, which was collected by Letourneaux. It would seem possible that it may be a stray specimen imported in some way from some other locality.

The species is remarkable for the unusual development of the apex, which is very different from any other form species of *Ferrissia* known to me. It is apparently very similar to that of *Ancylus caliculatus* Bgt. It is possible that in both cases it is an individual abnormality as Clessin has already suggested in regard to Bourguignat's species. Whether this is the fact can only be determined from additional material, which is very desirable. But in any event, it is evidently quite distinct from any of the described species from the Nile Valley.

FERRISSIA ISSELI (Bgt). Pl. VII, figs. 4-8.

1866, Ancglus isseli Bourguignat, Moll. Nouv. Lit., p. 214, pl. XXXIII, figs. 13-18.

1882, " Clessin, Conch. Cab., Ancyliden, p. 61, pl. 4, fig. 9.

The types of this species were collected by Issel at "Rambe", (Ramleh fide Pallary), near Alexandria.

The specimens submitted by M. Pallary were collected by L'hotellerie "on the leaves of the papyrus" at Alexandria.

Through the courtesy of Dr. Weber, I have been enabled to definitely determine this species, which was misapprehended by M. Pallary in his "Catalogue de la Faune Malacologique d' Egypte". The species there figured under this name is really the A. clessinianus Jickeli.

Bourguignat's description is sufficiently accurate, but his figures are very inaccurate and misleading. Dr. Weber has kindly supplied me with camera-lucida outlines of the type, which are reproduced (figs. 7-8), and in reference to them, he writes: "Vous pouvez ainsi comparer ces dessins avec ceux publies par Bourguignat et voir les differences, car, a notre avis, elles sont notables; pour nous, les dessins de Bourguignat ne sont pas corrects; maintenant, il faut ajouter qu'il existe une assez grande variation de form d'un individu a l'autre chez la meme espece".

Apparently this species is not so abundant as the others collected by L'hotellerie as only two examples were found in the material received from M. Pallary. These agree very exactly with the original description and the figures sent by Dr. Weber and are, undoubtedly, Bourguignat's species.

The shell is small, obovate, with a very prominent, almost bulbous, apex, which is radially striate and decidedly more excentric than in F. pallaryi, the anterior slope is very convex and the posterior slope is nearly straight below the depression beneath the projecting apex; the lateral slopes are steeper and less oblique than in pallaryi. Compared with the none-septate form of Gundlachia l'hotelleriei it is larger, more decidedly obovate, higher, with a more convex anterior slope and the apex is much more prominent. A. clessinianus is entirely different in its shape and proportions. The specimen I have figured measures: length 3, width 2, alt. 1 mm.

A small set from Ismailia, which I think belong to this species, are all very much laterally compressed and are proportionally higher than the typical form. A characteristic example measures 3.25 x1.75 x 1.5 mm. This peculiarity is probably the result of some unusual environmental conditions. A similar instance in *Ferrissia parallela* Hald. was figured by me several years ago, (1904, p. 77, pl. V, figs. 4-6).

FERRISSIA CLESSINIANA (Jickeli). Pl. figs. 9-11.

1882. Ancylus clessinianus Jickeli, Jahrb. Deutsch. Mal. Ges., p. 366.

1909. Ancylus isselt Pallary, Mem. Inst. Egypt., VI, p. 60, pl. IV, fig. 11.

According to Pallary the types of this species were sent by the collector, L'hotellerie, to Clessin under the MSS. name of A. Photelleriei Bgt. But it is quite different from the shells that Bourguignat had in his collection under that name. Jickeli did not figure his species, but his description agrees exactly with specimens that I have referred to it and there seems to be no reasonable doubt as to the identification. The example figured is the shell figured by Pallary as A. isseli and is in his collection. It measures: length 4.25, width 2.33, alt. 1.25 mm.

The species is larger than any of the associated species of the Nile fauna and entirely different in shape, which in a general way recalls that of the American A. parallelus Hald.

FERRISSIA PALLARYI n. sp. Pl. VII, figs. 12-14.

Shell small, subdepressed, rather broadly ovate, the left margin more curved than the right; anterior and posterior margins regularly rounded; thin, translucent, light horn color; lines of growth very fine and regular; apex radially striate, obtuse, not prominent, not elevated above the anterior slope, situated at about the posterior third of the length and distinctly turned to the right; anterior slope slightly, but rather evenly curved from the apex, but becoming nearly straight towards the anterior margin; posterior slope nearly straight, being but slightly incurved; lateral slopes oblique, the left quite convex, the right nearly straight, slightly incurved beneath the apex.

Length 3.25, width 2.25, alt. 1 mm.

Type locality, Canal Mahmoudich, Alexandria, Egypt.

Type in the collection of Paul Pallary. Cotype, Coll. Walker.

Although only one mature and two immature examples are before me, this species is so entirely different from the other species of the Nile that I do not hesitate to describe it. Its broad-oval outline, more oblique lateral slopes and the position and shape of the apex are characteristic and quite unlike any of the described species from that region.

Named in honor of M. Paul Pallary, who has done much to elucidate the fauna of Northern Africa.

Gundlachia l'hotelleriei ("Bourguignat") n. sp. Pl. VII, figs. 15-21.

Ancylus clessini Pallary, Mem. Inst. Egypt., VI, p. 59.

Shell very small. The non-septate form (figs. 15-19) is subdepressed, narrowly ovate, being wider anteriorily, mostly on the left margin, the right being nearly straight in the median portion and and about equally curved at both ends; anterior and posterior margins regularly rounded; thin, translucent, light horn color; lines of growth fine and regular, anterior slope somewhat radially wrinkled; apex prominent, very obtuse, radially striate and turned towards the right, situated at the posterior \(\frac{1}{4}\) of the length; anterior slope long, decidedly and regularly convex; the posterior slope short and straight, but slightly oblique, from the base of the protuberant apex; left slope very convex above, thence descending in a nearly straight, oblique line to the margin; right slope less oblique and nearly straight, being very slightly concave below the swell of the apex.

Length 2.75, width 1.5, alt. 1 mm.

The septate form (figs. 20-21) is smaller than the non-septate and

the lateral margins are less expanded, they are nearly parallel, the left being slightly convex, the right slightly concave; as usual in this stage the sides of the aperture have the appearance of being drawn in toward each other in the process of constructing the septum, in front of the septum the anterior margin is somewhat expanded; the septum occupies about two-thirds of the entire length, it is decidedly curved along the lateral margins and posteriorly, but the anterior portion is flattened in the center as though from contact with the back of the animal when in motion and towards the septum descends quite obliquely; the margin of the septum is only slightly convex in the center, curving quite abruptly forward as it joins the lateral margins of the shell. The surface conditions are as in the non-septate form.

The fully matured (Gunlachoid) stage is unknown.

Length 2.1, width at margin of septum 1, greatest width 1.2, alt. 75 mm.

Type locality, Alexandria, Egypt.

Types no. 35966 Coll. Walker. Cotypes in the collection of Paul Pallary.

Dr. Weber has kindly furnished outlines (figs. 15-16) of the types of Bourguignat's unpublished species and there can be no question but that this, and not the A. clessinianus of Jickeli, was the form that he had intended to describe under the name which I have adopted.

It is also the species that Pallary erroneously referred to as A. clessini, but did not describe. Both names being without published description, I have given the preference to the anterior one of Bourguignat.

I have no doubt but that both of the forms above described belong to the same species.

The non-septate form is very similar to the North American A. shimekii Pils. and A. pumilus Sterki, but differs from both in elevation and other details. Dr. Pilsbry has already suggested that shimekii is the non-septate form of a Gundlachia, and I am inclined to think that pumilus will prove to be the corresponding condition of the Ohio Gundlachia, which is probably the meekiana of Stimpson.

The occurrence of this species in Egypt was wholly unexpected and was the first record of the genus from the Old World.¹

¹ Shortly after these shells were received from M. Pallary, I received from

Unfortunately the fully matured form with the secondary growth has not yet been found.

The fact certainly seems to be that the range of Gundlachia, like-that of Ferrissia is world-wide and the two are apparently coincident. It is quite possible that others of the so-called Ferrissias will eventually prove to be the non-septate forms of Gundlachia. At the same time, if the evidence afforded by the North American species is to-be relied upon, it is only certain species of "Ferrissia" that ever become septate. There is no evidence, so far as I know, that the typical species of Ferrissia ever form a septum.

BIBLIOGRAPHY.

- 1870. Blanford, W. T. Observations on the Geology and Zoology of Abyssinia.
 - 1862. Bourguignat, J. R. Spicileges Malacologiques.
- 1883. Bourguignat, J. R. Histoire Malacologique de l'Abyssinie.
 - 1882. Clessin, S. Conchylien Cabinet, Ancylien.
- 1869. Dohrn, H. Die Binnenconchylien der Capverdischen-Inseln. Mal. Blätt., XVI, pp. 1-23.
 - 1881. Fischer, H. Manuel de Conchyliologie.
- 1909. Germain, Louis. La Malacographie de l'Afrique Equitoriale. Arch. Zool. Exp. et Gen. (5), I, pp. 1-165.
 - 1913. Germain, Louis. Mollusques de la France, II.
 - 1848. Gould, A. A. Proc. B. S. N. H., II, p. 210.
- 1902. Grabau, A. W. Studies of Gastropoda. Am. Nat.,. XXXVI, p. 917.
- 1912. Hannibal, Harold. A Synopsis of the Recent and Tertiary Mollusca of the Californian Province. Proc. Mal. Soc., London, X, p. 112.
- 1894. Hedley, Charles. On the Value of Ancylastrum. Proc. Mal. Soc., London, I, p. 118.
- 1895. Hedley, Charles. On the Australian Gundlachia. NAUT., IX, p. 61.

Mr. John Farquhar of Grahamstown, Cape Colony, two specimens of a fully matured *Gundlachia* from that region. To which, if any, of the recently described species of *Ferrissia* from South Africa this form is to be approximated I am as yet uncertain. But the occurrence of the genus from both of the extreme ends of Africa is certainly a matter of great interest.

1874. Jickeli, C. F. Fauna Land und Susswasser Mollusken Nord-Ost Afrikas.

1872. Mousson, A. Revision de la Faune Malacologique des Canaries.

1902. Ortmann, A. E. The Geographical Distribution of Freshwater Decapods, and its bearing upon Ancient Geography. Proc. Am. Phil. Soc., XLI, pp. 267-400.

1904. Pallary, Paul. Quatrieme Contribution a l'etude de la faune malacologique du Nord-ouest de l'Afrique. Jour. de Conch., LII, pp. 1-58.

1909. Pallary, Paul. Catalogue de la Faune Malacologique d'Egypte. Mem. L'Inst., Egypt, VI.

1894-1900. Taylor, J. W. Monograph of the Land and Freshwater Mollusca of the British Isles, I.

1878. Wollaston, T. V. Testacea Atlantica.

1904. Walker, Bryant. Notes on Eastern American Ancyli. NAUTILUS, XVIII, pp. 75-83.

1912. Walker, Bryant. A Revision of the Ancylidæ of South Africa. NAUT., XXV, pp. 139-144.

1885. Westerlund, C. A. Fauna der Palaearctischen Region, V.

UNION OF THE WABASH AND MAUMEE DRAINAGE SYSTEMS.

BY CALVIN GOODRICH.

If only as a matter of record, it may be worth while to set down the fact that the drainage of the Great Lakes and that of the Ohio became united in the great flood of March-April, 1913.

A little southwest of Fort Wayne, Ind., the St. Mary's River, tributary to the Maumee, approaches within three miles of the Little Wabash River, belonging to the Ohio system. The land between is known as "The Prairie" and the dividing line of the two drainage basins upon it is not perceptible to the human eye. It was across this stretch that the St. Mary's River sent its flood waters last spring, and no doubt it was responsible in no small measure for the damage wrought at Peru and Logansport some distance down the Wabash.

The Wabash and Erie canal, now many years abandoned, skirted

"The Prairie" and entered the main stream of the Wabash not farbelow Huntington. There is excellent reason for believing that the Unione fauna of the Maumee has received additions, by means of this canal, since the days when the upper part of what is now the Maumee water course served as a southward flowing outlet for the glacial lake Maumee. Such additions are Quadrula cylindrica strig_ illata (B. H. Wright), Pluerobema clava (Lam.), Plagiola securis (Lea) and Symphynota complanata (Barnes). Q. cylindrica strigillata has proceeded down the river as far as Antwerp, Ohio, and clava as far as Defiance. Knowledge of securis is confined to one specimenfound in a clammer's camp just below Fort Wayne. The lowermost station for complanata is New Haven, about seven miles below Fort Wayne. While this species is known to two other streams within the Great Lakes drainage, it is unquestionably a new comer in the Maumee. Call records Obovaria retusa (Lam.) from the St. Joseph, which receives the name of Maumee at Fort Wayne. It is highly probable that he had before him specimens or Quadrula pustulosa, much produced forward, free of tubercles and suggestive of This form is to be seen not infrequently in many parts of the Manmee.

The Naiades of the Maumee and the upper parts of the Wabash now very nearly approximate one another, counting the recent additions for which the Wabash and Erie canal may be thanked. In a rather hurried collecting excursion along the main stream of the Wabash from St. Henry, Ohio, to Blufton, Ind., last fall, Uniocrassidens Lam. and Quadrula heros (Say) (possibly) were the only species found which are unknown to the Great Lakes drainage. In case either of these species appears some day in the Maumee, its presence might reasonably be accounted for by glochidia-bearing fish which crossed the divide in the course of the flood of 1913.

It is convenient here to chronicle the finding of *Unia tetralasmus sayii* Ward, a stranger from the southern drainage, in Cedar Creek, Lucas County, and Toussaint Creek, Ottawa County, Ohio. These small streams empty into Lake Erie and are only a few miles apart. Further exploration is necessary before it is wise to speculate asto the reason for the appearance of the species so far from homewaters.

THE NAUTILUS.

VOL. XXVII.

APRIL, 1914.

No. 12

A NEW CUBAN LAND OPERCULATE.

BY H. A. PILSBRY.

During a recent visit to Cuba Dr. Henry Skinner, in the intervals of entomological researches, collected a few land shells. Some dirt scraped up on the San Carlos Estate, near Guantánamo, contained over twenty species of shells, including the following new species, which is named in honor of Mr. Charles T. Ramsden, Manager of the Estate, in acknowledgment of his attainments in Cuban entomology, ornithology and conchology.

The new species is by far the smallest cyclophoroid snail yet known from Cuba, and is further of interest for the reason that it is a distinctly phylogerontic or aged form, such as the writer has found in numerous other Antillean groups. The snail fauna of the West Indies contains many groups bearing the marks of old age, and in all probability approaching extinction. Sometimes this is manifested by extravagant development of spines, hollow ribs or knobs, often by more or less uncoiling in the later stages of growth. Some other families of the fauna show no signs of decadence.

The systematic position of the new species is doubtful, since none retained the operculum; but it is evidently congeneric with the Haitian shell described as *Ceratodiscus solutus* Henderson and Simpson (Nautilus XV, p. 73, pl. 5, figs. 1, 2). Both of these species seem related to the *Cyclotus minimus* Gundl., of Pfeiffer (Mon. Pneumon. III Suppl. 2, p. 16; Suppl. 3, p. 31.) which has been referred to *Crocidopoma*, a subgenus of *Aperostoma*, but I believe incorrectly. The operculum of *C. minimus* is extremely peculiar. The nucleus is

at the external border. A smooth, wedge-shaped area radiates towards the columellar margin, and the areas above and below this are lamellose, the lamellæ at right angles to the sides of the median wedge. This is quite unlike all known genera of the region.

CERATODISCUS RAMSDENI n. sp.

The shell is minute, planorboid, the spire slightly sunken, umbilicus open, conic, showing all the whorls. Whorls 2\frac{3}{3}, tubular, the last whorl descending slightly and becoming free from the preceding a short distance behind the aperture. Initial half whorl smooth; following whorl having several raised spiral threads; subsequent whorls with sculpture of fine, somewhat irregular growthlines only. The aperture is slightly oblique, not quite circular, the inner border being a little straightened. The peristome expands just perceptibly, and is not or scarcely thickened.

Alt. 1.3, diam. 3 mm.

Guantánamo, Cuba, on the San Carlos Estate, numerous specimens.

This species is far smaller than *C. minimus*, and differs by the restriction of spiral sculpture to the first neanic whorl, and by the free end of the last whorl. In *C. minimus* the spiral sculpture continues upon the last whorl. Although the specimens of *C. ramsdeni* were dirty when collected, I doubt whether they are so in life. *C. minimus* carries a peculiar, bicarinate coat of dirt, firmly cemented on with mucus, and which almost or quite conceals the shell.

C. solutus H. &. S., of Haiti, is a larger shell, more depressed, with the last whorl free for a greater distance.

The new species will be illustrated next month, together with various other new Cuban shells.

NOTES.

BY JAS. H. FERRISS.

A set of Oreohelix iowensis Pils. from Prof. B. Shimek of Iowa City, with gentle washing and a slight touch of oil exhibited their pink bands, though resurrected from their tombs in the Loess where they slept some thousands of years. The syringing also brought out five juveniles from one specimen, and some of those were also banded.

While telling "snake stories" I will tell them all. In our collections of 1910 in the Santa Rita Mountains, Arizona (Pilsbry, Daniels and Ferriss), we found a thin and small Sonorella belonging apparently to a new group, near S. rowelli (Newc.), Again we found a member of the same group in the Santa Catalinas, and last year I extended it into the Grahams and Peloncillos. The habitat and habits of Sonorella are usually dry, but these were wet, with a fondness for deep woods and old logs. It was found easily in the dark gulches of the Catalinas last summer, and in its vicinity a bitter odor was noticed, something like that given out by Parnassus grass, skunk cabbage, and a Tennessee goldenrod. It came from the snail. As I picked it from its resting place it shot out a drop or two of juice into the air, but that was the extent of the disturb-The odor soon disappeared and was not repeated. Of the hundreds found of this odorous group I saw only three shells broken by the chipmunks, and very seldom a dead one. Last summer I gathered over 300 Sonorellas of the rinconensis group in one slide of rock, and found only two alive. Often mice and chipmunks defeated me entirely in slides containing both Oreohelix and Sonorella.

Robert Camp, a student and collector of birds, now at Brownsville, Texas, has found more delight in snail collecting than in truck gardening, and is now sending out some of the finest Texans produced. That region is peculiarly adapted for good colors and good health in snails. His Euglandina texasiana Pfr. (not singleyana W. G. B.) are perfect as perfect can be, for I was down there in January and helped him catch 'em.

He sent me in Arizona last summer some Planorbis cultratus Orb. and Segmentina obstructa (Morel) he had found in the dry Texas soil from four to six inches deep. Turned loose in a cup of Arizona water they were soon crawling about. In January we collected in a cotton field that had been cultivated four years, and on the edge of the field in the shade and unbroken ground found the shell alive four inches down in stiff black soil, cracked so long that the cracks were lined with moss. The live shells however were not in the cracks but in the sections of black and baked soil. In a low spot of the field, a springy place, we found them also with a Succinea, Physa and Planorbis liebmanni, Dkr., but no ne were alive. The latter resembles the Segmentina except in wanting teeth. It is also larger. The P. cultratus is thin as a sheet of ledger paper and very delicate in appearance.

On this Texas journey we went up the Rio Grande as far as Rio Grande City. In Louisiana I visited Mr. L. S. Frierson and saw his collection of Uniones with great profit. I heard the story of Dr. W. S. Strode of my own State, barefooted, attempting to kick down a cypress knee in Lake St. Charles. These knees in color sometimes do look like a toadstool of tropical growth.

I also learned that Mr. Frierson was well supplied with Anodonta suborbiculata Say. He found a fragment of that rare queen of the Anodontas at the edge of a pond near his village and employed a gentleman of color to gather them at a nickel per clam. Two days later the black imp of darkness drove up to his house with a two-horse team, the wagon box full of A. suborbiculata.

I did not find Rev. H. E. Wheeler at Arkadelphia, Ark. These Methodist conchologists move too often.

CUBAN COLLECTING; SAN DIEGO DE LOS BANOS.

BY JOHN B. HENDERSON.

Mr. Charles T. Simpson and the writer recently made a collecting trip to San Diego de los Banos. This old and very dilapidated Cuban town is about seventy five miles west of Havana and lies just at the entrance to a pass through the southern range of the Sierra de los Organos and is an admirable starting point for daily collecting excursions into the mountains. This is given as the type locality of a number of species and judging from its frequent reference in Cuban lists it must have been a favorite field for the older collectors who first made known Cuba's remarkable land snail fauna. town itself lies in the lowlands and therefore offers nothing to the collector for Cuba's level plains and valleys are almost destitute of shells. On account of this fact Cuba still maintains three quite distinct land shell faunas, each inhabiting its own mountain system. These three systems were once separated by the sea and developed their own island faunas, but now that a general elevation of the whole region has connected them all by dry land a mingling of the three faunas might naturally be expected. Such, however, is the case only to a very slight extent. The connecting land areas are lowlands, the tobacco fields, the cane fields and cattle ranges of the island. With a very few exceptions the Cuban land shells cannot find proper conditions for life in the lowlands and the three mountain faunas of the island are almost as effectually separated as when the sea surrounded them.

The great mountain system of western Cuba (Organos) has suffered rapid erosion and it now happens that whole ranges once a part of the main system have been so cut down by atmospheric forces that they exist today only in the form of more or less detached hills, -or "mogotes" as the natives call them. These mogotes, in point of size, may be quite respectable mountains with all the pinnacles and organ-pipe peaks so characteristic of the region, or they may be but a comparative handful of worn down boulders appearing like a little hump on the level landscape. They are practically always heavily wooded and maintaining as they do all the conditions of life needed by the snails, they possess each and every one a little faunula of its own, -modified, of course, by long isolation from the main range. This accounts in one way for the great richness in Cuba of species. Nature has brought this about by dividing her mollusks into thousands of little preserves and isolating them. As erosion cuts down the mogotes and their quarters become more and more restricted the mollusks that can adapt themselves and fight the battle of life the best, persist,—they generally become smaller in size, while others not so adaptable disappear. Thus every mogote has a surprise or two for the collector, -usually a new species or subspecies of Urocoptis.

In most countries there are certain genera of land or fresh water shells that appear to be especially plastic or quick to modify their forms to meet new conditions. In the Bahamas the Cerions, in Europe the Clausilias, in the United States the Pleuroceratidæ and in Cuba the Urocoptis. If these last had received the kind of application that some genera in other parts of the world have received, there would be in Cuba about a thousand species of them,—that is after the mogotes had all been explored. But these Urocoptids have much to tell of what has happened to Cuba in the past. They almost indicate three separate migrations into the island from different sources and at different times. One of these may prove to be along a ridge once connecting Cuba through Camaguay, Santa Clara, and the Isle of Pines with Central America, an immigration quite distinct from the one supposedly into Pinar del Rio from Yucatan. Until the land operculates of Cuba shall have been wholly revised as

to genera they can tell but little, indeed, they can only confuse the student. The names *Chondropoma*, *Choanopoma*, *Colobostylus*, *Tudora*, etc., mean nothing applied indiscriminately as they are.

When Simpson and I first attacked the mountains about San Diego our first impression was that we were gathering the very same species taken before many miles west at Vinales, Sumidero etc., and it was easy to fancy ourselves back in our old haunts of two years ago. We were, however, deceived by the *similarity* only of the species of the two localities. The majority are different species, especially, as one might anticipate, among the Urocoptids. It is only the genera and the sections that are the same.

The delights of mogote collecting are hard to exaggerate, and there are many mogotes all about San Diego de los Banos. Each is a little treasure trove full of life and a bower of tropical luxuriance and we worked them all within a distance of several miles of the town. A day spent on La Guida, a splendid mountain of the main range, will give perhaps a good example of our daily work while at San Diego. An early morning walk of about six miles brings us to the "sacred presence" and we leave the so-called road to ford a river and plunge into the fearful jungle at the base of the mountain. There are no shells in this jungle, but upon reaching the actual base of the mountain great rocks are first met and among them the dead shells give an index to what we may expect when we get up a little higher. Traveling is most difficult here until the first line of rocks is passed and the steep sides are reached. Then somebody picks a Cepolis parraiana off a tree and we begin to look sharp for Liguus. Then we reach a region of huge masses of limestone broken off and fallen from the great cliffs above, all smothered in vegetation. Here we discover on the rocks and the trees Urocoptis irrorata and in the smaller crevices Urocoptis quirensis, saxosa and one or two closely allied species. Simpson calls out that he has a Macroceramus (elegans), and then we grub for a time in the soil about the bases of the rocks and turn out Megalomastoma mani and that splendid Alcadia (Emoda) sagraiana, and there are also here many smaller things as Lyobasis angustata, Pichardiella acuticostata and its curious variety horrida of Pilsbry. Climbing still higher we reach the foot of the great perpendicular wall towering naked above us for several hundred feet, and new conditions are at once met. Eutrochatella regina is very common and we cease even to gather it. An occa-

sional colony of Eutrochatella acuminata keeps our enthusiasm warm, and then we discover a colony of that perfect little gem among land shells, Eutrochatella chrysochasma, with its pinkish cast and flaming red aperture. The big Chondropoma shuttleworthi are quite abundant and we only take the best looking specimens, but the more rare Chon. sagebieni is much more shy; we get but a few of them living. Annularia blaini is everywhere, and we tell our Cuban guide not to take any more of them. An occasional Pleurodonte (Thel.) rangeliana with its commoner cousin Pl. auricoma is taken. Oleacina o. straminea and the smaller solidula along with the species that have the incised lines upon their spires are fairly abundant. Less so are the Rectoleacina cubensis and R. episcopalis, but they are there to be had for the search. Some one warns the rest that it is getting time to pull out for home, and we reluctantly drop the work and scramble back to the river, an hour at least to go half a mile. In the river we enjoy the luxury of a swim in the cool, clear water, and revive our energies for the long "hike" back.

Wherever the naturalist wanders there is always a beyond that is gilded by imagination and mystery. From a high point we could gaze into a beyond of high sierras among which our native guide pointed out the great Pan de Guajaibon, far away and indistinct as a cloud peak above the mass of mountains. Guajaibon has always been our dream mountain for future conquest. It was visited a half century ago by that most enterprising of Cuban collectors, Charles Wright, but since then it has guarded well its conchological treasures.

DISTRIBUTION OF SOME FRESH WATER SHELLS OF THE ST. JOHN'S RIVER VALLEY IN MAINE. NEW BRUNSWICK AND QUEBEC.

BY OLOF O. NYLANDER.

For many years I have been collecting shells in the valley of the St. John's River and its tributaries, the Aroostook and Fish Rivers in Maine, and Madawaska and Green Rivers in New Brunswick and Quebec. Every tributary has some interesting forms, of which many are peculiar to a single locality. Many of the tributaries of St. John's River are in the forest. It is a lumbermen's field for harvest, and great quantities of logs are floated down these rivers every year. Sawmills large and small are to be found nearly every-

where. The sawdust and other waste is thrown in the water, and is forming extensive deposits in the river and tributaries. It is very destructive to Molluscan and other animal life.

Anodonta marginata Say. Is distributed in the main river and the lakes and tributaries on muddy bottom. Common.

Alasmidonta undulata Say. St. John's River at Fort Kent and Conners. Also in the Aroostook and Fish Rivers. Rare.

Margaritana margaritifera Linné. Is found in the Aroostook River and some of its tributaries. I have not seen M. margaritifera in any of the St. John's River tributaries above Grand Falls. If it is living in the upper part of St. John's River it is rare.

Unio complanatus Solander. Generally distributed in the Aroostook and Fish Rivers, rare in the St. John's River. In Témiscouata Lake is a small form of this species that is common in deep water in the lakes of Maine (Fish River lakes).

Sphaærium striatinum Lamarck. Common on rocky bottom in Fish River, in St. John's River at Fort Kent, and in Madawaska River at St. Rose.

Ancylus borealis Morse. In 1899 I found five specimens of this rare shell in the St. John's River at Fort Kent.

Lymnæa (Galba) emarginata Say. Second Eagle Lake, Fish River and St. John's River at Fort Kent, abundant on rock bottom feeding on Confervæ.

Lymnæa (Galba) emarginata mighelsi Binney. This variety is represented by fine large specimens at Square, Cross, and Portage Lakes. The type of Lymnæa ampla Mighels came from Square Lake.

Lymnæa (Galba) emarginata canadensis Sowerby. A large colony was found on rocky bottom on the north side of Mt. Wissic, Témiscouata Lake, Province of Quebec. The colony is located in a partly sheltered cove in water two to ten feet deep or more. Among those found here I have noted certain peculiarities that are common to all species that are found on rocky bottom in more or less sheltered position. Each colony has its peculiar variations and need a geographical name to express their habitat rather than a specific designation of any individual. See F. C. Baker's work on "The Lymnæidæ of North and Middle America."

Physa heterostropha Say. Common in the St. John's River at Fort Kent, also in the Fish and Aroostook Rivers.

Physa ancillaria Say. Common at Square Lake inlet; dredged in Second Eagle Lake and Portage Lake on Fish River. A single specimen was seen at Mt. Wissic, in Temiscouata Lake.

Physa sayii Tappan. A large colony exists in the Caribou stream at Caribou village, Me. A second locality is at the Third Falls on Green River, New Brunswick. The shells are common below the falls and of large size.

Planorbis bicarinatus Say. Common in the St. John's River at Fort Kent, in the First Lake on Green River New Brunswick, and in the Fish and Aroostook Rivers, Maine.

Planorbis bicarinatus aroostookensis Pilsbry. Has only been observed in the towns of Woodland and Caribou, Maine.

Planorbis bicarinatus portagensis Baker. It is apparently a deep water form and is found in Fish River, Maine. Specimens of this variety are also found in First Lake, Green River, New Brunswick.

Planorbis companulatus Say. Common in Fish River Lakes, Maine, and First Lake, Green River, New Brunswick.

Planorbis deflectus Say. Salmon Brook, Aroostook County, Maine, and First Lake, Green River, New Brunswick.

Planorbis trivolvis Say. Is well distributed in the Fish River Lakes and in the Aroostook River Lakes. It is represented in the First Lake, Green River, New Brunswick, by a large form with the whorls somewhat flattened.

Of landshells, Succinea retusa Lea is common around Temiscouata Lake.

Polygyra albolabris Say, is common on Mt. Wissic, Temiscouata Lake.

Pyramidula striatella and Zonitoides arboreus seem to be common in the Northern part of New Brunswick.

Zoögenitis harpa Say, I have collected near Green Mt. on Green River.

Succinea ovalis Say is common at Grand Falls, New Brunswick.

Polygyra monodon cava Pilsbry was collected at St. Leonards,
New Brunswick.

When a complete survey can be made of the St. John's River there will be many interesting varieties or mutations discovered. This survey should be made before the lumber operators and the sawmills have destroyed the most important lakes and tributaries.

PUBLICATIONS RECEIVED.

CATALOG OF THE MOLLUSCA OF SOUTH CAROLINA, by William G. Mazyck (Contributions from the Charleston Museum, II, 1913). Little has been published bearing directly on the Mollusca of South Carolina since the days of Ravenel. A new catalogue is therefore hailed with much pleasure. The Introduction, giving a history of the local conchological work, is very interesting. The list of students began with Mr. Stephen Elliott, of Charleston, who was a correspondent of Say and Rafinesque. Following him were Dr. Edmund Ravenel, who published two catalogues of his collections. Prof. Lewis R. Gibbes and Lieut. J. D. Kurtz both published catalogues of the shells of the State.

The list contains 424 entries, but a considerable number of names, quoted from former catalogues, are synonyms, as noted below.

New forms described are: Polygyra hopetonensis var. charlestonensis. Marginella spilota (Ravenel MS.), from Sullivan's Island. Epitonium elliotti, Pawley's Island. Turbonilla kurtzii, Sullivan's Island. Cyclostrema zacalles, entrance of Charleston Harbor. Lampsilis tenerus (Ravenel MS.), Santee Canal.

There are many interesting locality records. Rumina decollata is reported to be gradually spreading through the State. Maculopeplum junonia is very rarely found on Sullivan's Island. Numerous species, which we usually associate with the Florida fauna, are recorded.

In these days, when mollusk nomenclature is so unsettled, the making of a local list covering so wide a range of families and genera is fraught with difficulties. Moreover, the author had to include many earlier records which could not be checked up, among the authentic materials of his own collecting. The authorities for such records are given, and they must be accepted for what they are worth. These difficulties have naturally resulted in some discrepancies and duplications, which it may not be amiss to note here.

Tornatina canaliculata and Cylichna oryza belong to different families, and can not both be placed in the genus Acteocina. Busycon eliceans is only a variety of carica, and plagosum of pyrum. "Chrysodomus islandicus" Linné, is now recognized to be a truly Arctic species, and belongs, together with pubescens and stimpsoni, to the genus Tritonofusus. Seila terebralis is now known as S.

adamsi, H. C. Lea. There seems to be some confusion in the species of Arca. A. limula and lienosa are only found fossil; the latter has been confused with the recent secticostata Rve. (floridana Con.). A. holmesii is a synonym of campechensis, and pexata and americana are only varieties. Plicatula cristata is a synonym of gibbosa. Anomia ephippium is restricted to Europe, our species being A. simplex. Mytilus domingensis is a synonym of M. exustus Linné. Mytilus cubitus is a synonym of Modiolus citrinus Bolten, and M. plicatulus—demissus Dillw., Lithophaga appendiculata and attenuata are synonyms of L. bisulcata. L. caudigera and forficata are synonyms of L. aristata Dillw., L. lithophaga Gibbes (not Linné)—niger Orb., Chama lazarus—macerophylla Gmel., Cardium pictum—serratum, Dactylina—Pholas, P. costata and truncata are now placed in the genus Barnea. P. semicostata and M. pusilla are synonyms of Martesia striata Linné, M. smithi—caribæa Orb.—C. W. J.

NOTES.

CERION SAGRAIANUM INTRODUCED INTO SOUTH AFRICA.—In August, 1913, I sent some live Cerion sagraianum Pfr., which I had received from Cuba, to Dr. Pecker, Grahamstown, Cape Colony, Africa. The Doctor wrote me that he had placed them in a certain part of his garden, and that they had made themselves at home. They burrowed under the dead leaves. He is going to let me know from time to time how they get along. Dr. Paul Bartsch, suggested that I write to you regarding this experiment, in ordes that a proper record of the planting may be made which would save considerable trouble sometime in the future.—G. W. Pepper.

HESPERARION HEMPHILLI MACULATUS.—A few days ago my friend Mr. S. N. Knudsen gave me a living slug found among plants received at Boulder, through a wholesale house in Denver. The slug proves on examination to be *H. hemphilli* var. maculatus Ckll. It is immature, and the genitalia do not show their proper characters, but everything visible agrees with the form to which it is assigned. It must be confessed, however, that the distinctions between *H. niger* and *H. hemphilli* are rather unsatisfactory, especially in view of the variation in the genitalia of *H. niger* observed by Pilsbry and Vanatta. The two supposed species also occupy the

same territory. It will be useful to give a description of the living H. h. maculatus.

Length when crawling about 27 mm.; light greyish olivaceous, the head and anterior part of mantle paler and yellower, the oculiferous tentacles reddish ochreous. With a lens the surface of the animal is seen to be sprinkled with pale dots. Mantle almost immaculate, only a few obscure small dark or dusky spots. Sides of body caudad of mantle with conspicuous scattered black spots, none very large. Sole pale, without dark markings. In alcohol the animal is about 14 mm. long; mantle 6 mm., appearing dusky with pallid margins; margin of foot wholly immaculate. Shell convex, $3\frac{1}{3}$ mm. long, $2\frac{1}{3}$ broad, white, opaque. Jaw with eleven flattened ribs, occupying the middle half. Teeth about 27-1-27, the lateral four or five with short blunt cusps.—T. D. A. Cockerell.

Sometimes Locality Adds Interest to a Shell.—In Notes, December, 1911, p. 95, appeared a word on Vallonia in Chicago. My offer to send some to anyone interested brought many replies, and led to friendly exchanges. I now have two other "finds" to share. The first is Pisidium huachucanum Pils., collected in Colorado at an elevation of 7500 feet. Found in one little pond about 10 by 12 feet, all hidden in tall grass. The other, Planorbis vermicularis Gld., collected on Modjeskas ranch California in summer of 1913. These were from an artificial pond away off in the desert, miles and miles "away from anywhere." Puzzle—how did they get there? On feet of aquatic birds? If anyone wishes specimens of these let him speak.—Edwin E. Hand, Wendell Phillips High School, Chicago, Ill.

NOTICE TO SUBSCRIBERS.—There has been no change in the subscription price of The Nautilus since it was established twenty-five years ago. In the meantime the cost of printing has gradually increased. It has only been through the sale of back volumes that we have been able to meet the expenses of publication. This year a further advance in the cost of printing leaves us no alternative but to increase the subscription price to \$1.50 per year, beginning with the May number, Volume XXVIII. Such increase will preserve that proper relation between receipt and expenditure which is essential to the continued existence of the journal.—The Editors.

THE

NAUTILUS

A MONTHLY JOURNAL DEVOTED TO THE INTERESTS OF CONCHOLOGISTS

VOL. XXVIII
MAY, 1914, to APRIL, 1915

EDITORS AND PUBLISHERS HENRY A. PILSBRY

Curator of the Department of Mollusca, Academy of Natural Sciences
PHILADELPHIA

CHARLES W. JOHNSON

Curator of the Boston Society of Natural History
Boston

INDEX

TO

THE NAUTILUS, XXVIII.

INDEX TO SUBJECTS, GENERA AND SPECIES.

Acmæa, notes on some northwest coast	13
Agaronia gibbosa Born	103
Agaronia gibbosa aurantia Johns. n. var	103
Agriolimax from Guatemala	55
Agriolimax guatemalensis motaguensis Ckll. n. subsp	57
Alasmidonta (Pegias) fabula (Lea)	65
Alasmidonta (Pressodonta) minor Lea	46
Alasminota Ortmann n. subgen. of Symphynota	41
Amygdalonaias donaciformis Lea	67
Ancylidæ, notes on the classification of	23
Annularia eburnea prestoni Ramsden n. subsp	50
Annularia mayensis Torre & Ramsden n. sp	50
Anodonta oregonensis Lea	43
Antillean Paleogeography, notes on	84
Arca limula Conr. on Long Island	85
Arkansas, Unione fauna of Cache River	73
Ashmunella heterodon Pils	112
Ashmunella mogollonensis Pils 110,	112
Ashmunella pilsbryana Ferriss	110
Bathytoma from the upper pleistocene of San Pedro, Cal.,	
a new form	64
Bathytoma clarkiana Rivers n. sp. (Pl. III, f. B. C.)	64
Billups, A. C. (obituary)	34
Birds transporting food supplies	71
Boston Malacological Club	82
Brachiopoda, retention of color	93
Brachypodella brooksiana Gundl. (Pl. I, f. 5)	5, 6
Brachypodella obesa and suturalis Weinl	132
Brachypodella ramsdeni Torre n. sp. (Pl. I, f. 2)	5
Brachypodella torreana Ramsden n. sp. (Pl. I, f. 1)	4
British Columbia, notes on mollusks from	87

Bulimulus schiedeanus in Texas	132
Bursa bubo L	80
Bursa rubeta L	80
Bursa tenuigranosa Smith	80
Caecilioides gundlachi in Florida	131
Campeloma lewisii Walker n. n. (Pl. V, f. 3)	126
Campeloma ponderosum coarctatum Lea (Pl. V, f. 4-7).	125
Carunculina Simpson, genus	68
Carunculina parva Barnes	129
Carunculina texasensis Lea	141
Cephalopoda of the Hawaiian Islands	72
Cephalopoda, West Coast 22, 23	, 47
Cephalopoda, West Coast	
6-8	1
Circinaria caelata Mazyck, note on	12
Cochlicopa lubrica in Western Pennsylvania	96
Color ornamentation in fossil Brachiopods	93
Correspondence from Japan and China	90
Crenodonta perplicata Conr	21
Cuba, land shells from Varadera (Cardenas)	106
Cuba, land shells of	136
Diplopoma torrei Ramsden n. sp	134
Ectracheliza truncata Gabb., a Hemisinus	84
Elliptio lanceolatus Lea	32
Emarginulinae, notes on West American	62
Fusconaia selecta Wheeler n. sp. (p. 4)	76
Fusconaja askewi Marsh	20
Gonidea angulata	143
Gundlachia, the earliest notice of a species of the genus.	128
Gundlachia or Navicella?	132
Helix hortensis from a Maine shell heap	131
Hemisinus in Antillean Oligocene	84
Hemphillia glandulosa B. & B.	87
Hemphill, Henry (obituary)	58
Lasmigona Raf	40
Lastena lata Raf	106
Leptachatina cookei Pils. n. sp	61
Lexingtonia Ortmann n. gen	28
Lexingtonia subplana Conr	29
Lucidella tantilla Pils. (Pl. II, f. 5)	50
Lymnaea auricularia Lea	119
Lymnaea emarginata mighelsi, absent in old localities	95
Lymnaea, classification of	116
Lymnaeids, a provisional key to the subgenera and species	-
of North America	119

Macroceramus richaudi lineatistrigatus Pils	91
Maine mollusca, additions to the list of 18	, 48
Medionidus conradicus Lea	142
Microceramus longus Henderson n. sp	136
Modiolus demissus Dillw., and var. granosissimus Sowb.	35
Mollusca, some European	10
Molluscan fauna from vicinity of Bolinas Bay, Cal	25
Mollusks from Magician Lake, Cass and Van Buren Coun-	
ties, Mich.	8
Musculus phenax Dall. n. sp	138
Najades, studies in 20, 28, 41, 65, 106,	129
New Mexican expedition of 1914	109
New Mexico, shells of Duran	37
Newspaper conchology	70
Notes	131
Octopus	47
Oliva annulata Gmel.	103
Oliva bulbosa Bolt.	101
Oliva caerulea Bolt	102
Oliva carolinensis Conr	140
Oliva fulgurator Bolt.	115
Oliva funebralis Lam.	100
Oliva ispidula Linné	102
Oliva ispidula var. samarensis Johns n. var.	103
Oliva litterata Lam	
Oliva oliva Linné	99
Oliva reticularis Lam.	114
Oliva sayana Rav.	139
Oliva sericea Bolt	97
Oliva spicata Bolt.	115
Oliva tigrina Lam.	100
Oliva tricolor Lam.	102
Oliva variegata Bolt	101
Olivancillaria urceus Bolt.	103
Oreohelix barbata Pils.	110
Ostrea elongata Solander (O. virginica Gmel.)	2
Ostrea fischeri Dall n. nom.	1
Ostrea serra Dall n. sp.	2
Ostrea tubulifera Dall n. sp	3
Paludina coarctata and incrassata Lea (Pl. V)	121
Panopea generosa, possible transportation of	47
Pecten nucleus irradians, statistical study in variation of	52
Petricola dactylus Sowb. in Buzzards Bay	95
Physa acuta Drap. (Pl. III, f. A)	70
Physa heterostropha Say in Europe	69

Pleistocene, a remarkably rich pocket of fossil drift from	
the	80
Pleurobema fassinans Lea	31
Pleurobema friersoni Wright	30
Pleurobema missouriensis Marsh (Pl. V, figs. 1, 2)	140
Pleurodonte sagemon goodrichi Ramsden n. subsp	49
Polygyra cohuttensis Clapp n. sp	78
Polygyra inflecta mobiliensis Clapp n. var	128
Postpliocene shells of Providence and Lupus, Mo	15
Prolasmidonta Ortmann n. subgen	44
Proptera capax Green	67
Publications Received 12, 35, 59, 72, 84, 96,	
Puncturella caryophylla Dall n. sp	63
Puncturella cognata Gould	63
Puncturella cooperi Carp	63
Puncturella cucullata Gould	
Puncturella falklandica A. Ads	63
Puncturella galeata Gould	64
Puncturella longifissa Dall n. sp	63
Puncturella major Dall	64
Puncturella multistriata Dall n. sp	63
Pupilla muscorum xerobia Pils. n. subsp. (Pl. II, f. 1, 2)	38
Quadrula pustulata Lea	21
Ranella lampas of authors, notes on	80
Rhytidopoma tollini Ramsden n. sp	135
Rimula mazatlanica Carp	62
Rumina decollata in Texas	11
Shells from Sussex Co., N. J.	11
Simpsonaias Frierson n. gen.	
	40
Simpsoniconcha Frierson n. gen	
Subemarginula yatesii Dall	62
Symphynota (Alasminota) holstonia	43
Symphynota (Alasminota) hoistonia	40
Tertiary fossils on Long Island	85
Thysanophora hornii (Gabb)	110
Tornatellides pilsbryi Cooke n. sp.	79
Unionidae, remarks on classification of the	6
Unione fauna of Cache River, Arkansas	73
Unio crassa Ritz	33
	32
Unio pietorum Linn	4, 5
Urocoptidae, new Cuban species of	51
Urocoptis mayensis Torre & Ramsden n. sp	4
Urocoptis phisoryana Ramsden n. sp. (F1. 1, 1. 5, 4) Urocoptis scobinata Ramsden n. sp.	133
DEDCODER SCOUTHALA DAIHSHELL H. SD	1011

THE NAUTILUS.	vii
Valvata piscinalis in Canada	
Valvata tricarinata basalis Van. n. var	105
Valvata tricarinata infracarinata Van. n. var	104
Vertigo alabamensis Clapp n. sp	137
Vertigo alabamensis conecuhensis Clapp n. subsp	
Vertigo oscariana Sterki	137
Vitrinella from Boston, Mass., a new fossil	38
Vitrinella shimeri Clapp n. sp. (Pl. II, f. 6-8)	39
Volvidens, new genus	
Zeidora flabellum Dall	

INDEX TO AUTHORS.

D. L First J. C.
Baker, Frank C
Baker, Dr. Fred 90
Berry, S. S
Boettger, C. R
Chace, E. P 47, 144
Clapp, Geo. H
Clapp, Wm. F
Cockerell, T. D. A
Colton, Harold S
Cooke, C. Montague 79
Dall, Wm. H
Ferriss, Jas. H
Frierson, L. S
Gratacap, L. P
Greger, Darling K. 93
Hanham, A. W
Hannibal, Harold
Henderson, John B
Johnson, C. W
Latchford, F. R
Lermond, N. W
Mazyck, Wm. G
McAtee, W. L 72
Nylander, Olof O
Ortmann, Arnold
Pilsbry, H. A
Ramsden, Chas. T
Rivers, J. J
Sampson, F. A
Torre, Carlos de la 5
Vanatta, E. G
Walker, Bryant 121, 140
Wheeler, H. E 73
Winkley, H. W

1. BRACHYPODELLA TORREANA. 2. B. RAMSDENI. 3, 4. UROCOPTIS PILSBRYANA. 5. B. BOOKSIANA. 6, 7, 8. CERATODISCUS RAMSDENI.

THE NAUTILUS.

VOL. XXVIII.

MAY, 1914.

No. 1

NOTES ON WEST AMERICAN OYSTERS.

BY WILLIAM H. DALL.

On endeavoring to review the oysters of the Pacific Coast some notes were made which seemed likely to be of use to students.

OSTREA IRIDESCENS Gray, 1854; Cpr. Maz. Cat., 1856.

The brief diagnosis of the earlier name is not sufficient to identify this with O. prismatica Gray, 1825. O. spathulata Sowerby, 1871, is based on a worn upper valve of O. iridescens. The species is known to range throughout the Gulf of California and to Mazatlan. I have not compared the African species listed by Carpenter under the same name.

O. MEGODON Hanley, 1845. (O. gallus Val., 1846, and O. taylori Gabb, 1866).

From the Gulf of California to Peru. Fossil in the West Indies.

O. FISHERI Dall, n. nom. (O. jacobæa Rochebrune, Bull. Mus., Paris, 1895, not of Linné, 1758).

Rude, dark purple, sharply plicated, with an inner purple margin, valves subequal, and interior opaque white. Named in honor of W. J. Fisher who made large collections in the Gulf of California and Alaska. This species grows large and heavy, and is only known from the Gulf of California.

O. VEATCHII Gabb, 1866.

Large, rather roundly plicated, internally with olive, brown stains

and white margin. Lower California and the Gulf. Fossil at San Diego and Cerros Island.

O. CUMINGIANA Dunker, Abbild. II, 1847. (O. amara Cpr., 1857; O. angelica Rochebrune, 1895. A variety, O. mexicana Sowerby, 1871).

The typical form has olive greenish interior, the margin with many small plications, the exterior white. The variety is deeply cup-shaped with blackish interior margin. The species ranges from Lower California to Panama.

O. PALMULA Carpenter, 1857 (O. lucasiana Rochebrune, 1895). Puget Sound to La Paz, Mexico.

Margin bounded inwardly by a line of minute pustules, interior dark or greenish. This might well be an extreme mutation of the preceding species but needs connecting links and has a more northern distribution.

O. SERRA Dall, n. sp.? Lower California to Panama.

Like the West-Indian species which grows on gorgonians, narrow, plicate, with flattish upper valve, deep lower valve, greenish outsider inside white with black margin; shell two to three inches long, about an inch wide. If mexicana occupied a similar situs the result would be somewhat similar.

- O. COLUMBIENSIS Hanley, 1845. (O. ochracea and tulipa of Sowerby, 1871, not O. tulipa Lamarck; O. turturina of Rochebrune, 1895). On mangroves. Lower California to Peru. Large, thin, purplish.
- O. LURIDA Carpenter, 1864. Sitka to Cape St. Lucas.
- O. rufoides is the thin, long variety grown in a current. O. expansa the form adhering to a flat surface; sometimes reaching the shape called by Carpenter laticaudatus.
- O. ELONGATA Solander, 1786. (O. virginica Gmelin, 1792; O. rostrata and floridensis Sowerby, 1871; O. virginiana, canadensis and borealis Lamarck, 1819.)

Transplanted from the middle Atlantic coast it has failed to reproduce its kind, as the water is too cold for the spat to live in.

- O. CONCHAPHILA Carpenter, 1856. Mazatlan to Panama. This prettily painted form seems likely to retain specific rank.
- O. CHILENSIS Philippi. Gulf of California to Chile.

This is the large edible Gulf species, referred by Carpenter to O. virginica, which it much resembles except in wanting the purple muscular impression. It has numerous synonyms. O. retusa Reeve, of the Hawaian Pliocene is also very similar.

- O. CHILDENSIS Sowerby, from southern Chile, is small, round, and feebly plicate, but may be a degenerate variety of O. chilensis.
- O. MULTISTRIATA Hanley, 1846. Gulf of California to Panama.

Usually small and flat with brown and purple blotches on the white inner surface. Easily identified by the sharp radial striæ of the outer surface which is usually a purple tint.

OSTREA TUBULIFERA Dall, n. sp.

The specimen serving as type for this species was collected in the Gulf of California by Henry Edwards; it is suborbicular, about 45 mm. in diameter, nearly flat, with a whitish nacre, brilliantly polished inside, purple clouds showing through, and with a translucent irregularly crenulated margin. The ligamentary area is narrow and very inconspicuous; on each side of it the margin is pustulate for a short distance; the outer surface is mostly dark purple, dull, minutely corrugated and densely covered with small erect tubules of a dark reddish-brown color, 2 to 4 mm. high and from 2 to 1 mm. in diameter. Only those at the extreme margin communicate with the interior of the valves, and these are fissured on the distal side. Those of the surface behind the margin are completely tubular. The attached valve was not obtained. Several beachworn specimens from Panama have lost their tubules and exhibit only a vermicularly corrugated surface. The attached valve is very flat and irregular with a very wide but very short area. These specimens are of a faded purple, but are probably the same species as the valve from the Gulf of California. The only species at all approaching this in character is the O. spinosa Quoy, which comes from a widely different region, and has a very prominent, direct and produced ligamentary area.

NEW CUBAN SPECIES OF UROCOPTIDÆ.

BY CHARLES T. RAMSDEN.

UROCOPTIS (IDIOSTEMMA) PILSBRYANA n. sp. Pl. I, figs. 3, 4.

The shell is white, truncate, retaining 14 or 15 whorls in the adult stage, the truncation closed by a very convex plug; upper third tapering, the remainder cylindrical. Whorls flat, the last two or three convex; base with a very weak revolving cord or none. The surface is dull, with sculpture of low axial ribs, which are narrow and weak in the middle of each whorl, enlarged at both ends, which abut against ribs above and below, the ribs being, as it were, continuous from whorl to whorl. In the upper part of the shell, some of the ribs are hollow, as in U. uncata. Where unworn, the surface between ribs is finely, sharply striate axially. The last whorl is shortly free in front, and near the aperture it is dilated peripherally and flattened above and below. The aperture is small, shortly fusiform, the narrower part peripheral in position. The peristome is expanded at the outer part, elsewhere reflected. Internal axis is simple and slender in the first three whorls, then a spiral lamella bearing a few projections arises, soon followed by corresponding hooks from below, forming a stage of about two whorls where there are pairs of converging hooks. This is followed by a stage in which there is a broad, smooth superior lamella, and strong hooks arising from the basal partition at intervals of about half a whorl (fig. 4). Finally, in the last two whorls the hooks disappear and the spiral lamella becomes low and finally disappears.

Length 15.5, greatest diameter 3.8 mm.

Length 16.5, greatest diameter 3.6 mm.

Locality, "La Hembrita," Monte Toro, Guantanamo.

This remarkable species closely resembles *U. uncata* externally, but differs widely from that, and from all other known species, by having a smooth spiral lamella in the whorls of the cylindrical part of the shell. The peculiar axial armature of *U. uncata* and other species of the subgenus *Idiostemma* has been figured by Pilsbry in his monograph of *Urocoptide*.

BRACHYPODELLA (GYRAXIS) TORREANA, n. sp. Pl. I, fig. 1.

The shell is extremely slender, retaining the apex perfect (two

left figures) or losing very few whorls (two right figs.) in the adult stage; widest at the upper third; white. Whorls 25-26, rather strongly convex, the first four smooth, the rest regularly and closely striate, the striae nearly straight, strongly oblique, about as wide as the intervals. Last half whorl free and deeply descending, sharply striate. The free part is cylindrical and forms about one-fifth of the total length of the shell. Aperture circular, oblique, with broadly flaring, trumpet-like peristome. Internal axis very slender and gyrate.

Length 17.3, greatest diameter 1.8 mm.

Length 15, greatest diameter 1.7 mm.

Locality, "La Hembrita," Monte Toro.

This charming species is related to *B. brooksiana*, but differs by the less swollen shape, more numerous whorls and shorter "neck" of the last. Moreover, the last whorl is cylindrical in *U. torreana*, but in *U. brooksiana* it has a conspicuous basal keel. Specimens of *U. brooksiana* are figured, pl. I, fig. 5, for comparison with the new species. By the want of a basal keel and the convex whorls, *B. torreana* is more nearly related to *B. turcasiana*, a far smaller species. Named in honor of my friend Dr. C. de la Torre.

The figured types have been deposited in the collection of the Academy of Natural Sciences.

A NEW CUBAN SPECIES OF BRACHYPODELLA.

BY CARLOS DE LA TORRE.

Brachypodella (Gyraxis) ramsdeni, n. sp. Pl. I, fig. 2.

The shell is very slender, the greatest diameter contained 12 or 13 times in the length, whitish, slightly shining, widest at about the upper fourth, composed of about 25 whorls, adult shells usually having lost a few. The whorls are convex, and the last five or six have a rounded ridge (or basal carina) above the suture, and a slight concavity above the ridge. The last half whorl is free and descends spirally in a long "neck," the basal carina prominent on the upper half of the neck, but gradually disappearing, leaving it nearly cylindrical near the aperture, which is triangular-rounded, oblique, and very small. Sculpture of rather irregular, very oblique striæ; the

free part of the last whorl having sharper, more widely-spaced riblets. Internal axis slender, moderately gyrate in the later whorls.

Length 24, greatest diam. 1.8 mm.

Length 22.5, greatest diam. 1.9 mm. (truncate).

Collected at "La Lechuza," Monte Toro, by Mr. Charles T. Ramsden, to whom the species is dedicated.

This is a much larger shell than B. booksiana Gundl., with less swollen spire, and much less strongly gyrate axis. The basal carina is visible on more whorls, the neck is shorter, and the sculpture less regular. It is a very interesting addition to the subgenus Gyraxis.

REMARKS ON CLASSIFICATION OF THE UNIONIDÆ.

BY L. S. FRIERSON.

In 1820 and in 1831 C. S. Rafinesque published descriptions of a large number of *Unionidæ*. Of these, he is credited in the "Synopsis of the Naiades, C. T. Simpson, 1900," with but seven or eight species. Conrad, having access to specimens labelled by Rafinesque, gave a list of such species as he identified. Except in such cases as when a patent error can be shown we are bound to accept Conrad's identifications.

The fact that Conrad made mistakes at times, can have no weight, for no author is free from these. Conrad, however, only awarded to Rafinesque those species described in 1820. Those described in 1831 have uniformly been dumped by all subsequent authors (known to the writer) in the trash-pile of "indeterminate Unionidæ." There is no valid reason for this, as several of these latter species are clearly and unmistakably recognizable. In place of seven or eight species, Rafinesque is entitled to precedence in at least thirty.

An annotated synoptical table is is process of making, and will be published shortly. Because of the important bearing of these facts upon modern classification, this preliminary sketch is given, from the latter point of view, for our author was a genius in the art of proposing genera.

(1) LEPTODEA Rafinesque, 1820. Type leptodon Rafinesque (= tenuissimus Lea). If this species should prove to be congeneric

with fragilis Rafinesque (= gracilis Barnes) the genus Pareptera Ortmann, 1911, must become a synonym.

- (2) ELLIPSARIA Rafinesque, 1820. Type (by elimination) fasciolaris Rafinesque (= phaseolus Barnes) must reduce to synonymy the genus Ptychobranchus Simpson, 1900, type phaseolus Barnes.
- (3) Amblema Rafinesque, 1820. Type (by elimination) costatus Rafinesque, 1820, must take the place of Crenodonta Schluter, 1836.
- (4) Hemistena Rafinesque, 1820, (a contraction of Hemilastena) proposed tentatively for Lastena lata, is of course a synonym. Hence the application of this generic term by Mr. C. T. Simpson, to the ambigua Say (= hildreihianus Lea) can not stand. For this shell, ambigua Say, I therefore propose the new generic term Simpsonaias.
- (5) EPIOBLASMA Rafinesque, 1831. Type biloba Rafinesque, 1831, (= foliatus Hildreth) must replace the subgenus Dysnomia Agassiz, 1852.
- (6) TOXOLASMA Rafinesque, 1831. Type (by elimination) lividus Rafinesque, 1831, (= glans Lea) must take the place of the subgenus Carunculina Simpson, 1900, type texasensis Lea, and the group really should have generic standing.
- (7) Lemiox Rafinesque, 1831. Type rimosus Rafinesque, 1831 (= cælatus Conrad). Since this exceedingly characteristic species deserves generic rank, it must, for this species at least, take the place of Micromya Agassiz.
- (8) DECURAMBIS Rafinesque, 1831. A subgenus proposed for Alasmodon marginata Say, variety truncata (= scriptum Rafinesque) and atropurpureum Rafinesque, 1831 (= raveneliana Lea). This subgenus must displace Rugifera Simpson, 1900.
- (9) Bariosta Rafinesque, 1831. Type ponderosus Rafinesque, 1831, a synonym of crassidens Lamarck (= trapezoides Lea), is antedated by Amblema Rafinesque, unless the U. crassedens Lamarck (= trapezoides Lea) should prove to be, as Conrad suggested, of a different group from the plicatus group.
- (10) SULCULARIA Rafinesque, 1831. Type (by elimination) badium Rafinesque (= Marg. holstonia Lea) must be regarded as a subgenus of Symphynota Lea, as constituted by Simpson, 1900, replacing in part the subgenus Pressodonta Simpson, 1900.
- (11) DIPLASMA Rafinesque, 1831. Type D. marginata Rafinesque, must take the place of Lamellidens Simpson, 1900, type

marginalis Lamarck. The failure to recognize this well-defined genus by most subsequent authors is a very remarkable fact.

In the preparation of the above remarks I am indebted in a very large degree to my friend Dr. A. E. Ortmann.

MOLLUSKS FROM MAGICIAN LAKE, CASS AND VAN BUREN COUNTIES, MICHIGAN.

BY FRANK C. BAKER.

Magician Lake lies between Van Buren County on the north and Cass County on the south. It is about two and a half miles long and half a mile wide. The banks on the north border are high but on the south, east and west they are for the most part low and swampy. The lake occupies an elongated depression in the Wisconsin drift and contains four deep holes, 40 to 60 feet in depth. The shores are shallow and shelving, and, with the exception of one or two short intervals, one may wade entirely around the lake. outlet is at the southeast side (known as Silver Creek), and empties into the West branch of Dowagiac Creek, which drains into the St. Joseph River, a Lake Michigan stream. The migrations of the mollusks have probably been largely by the way of the St. Joseph, although some of the species may have reached this spot in postglacial time via the Kankakee-St. Joseph portage; but the fauna as a whole probably reached these lakes by way of the Chicago outlet when Lake Michigan was in the Lake Chicago stage. It is evident that Magician Lake was once much higher, with a large, wide outlet, for high terraces may be seen on the south, and also bordering the outlet. Ancient marl beds exist, now covered by three feet of peat, containing mollusks of a colder climate, attesting the ancient occupancy of this lake by icy waters.

Mollusks were notably abundant in individuals and species. The species are listed by ecological regions. My thanks are due to Dr. Herman S. Pepoon for assistance in collecting much of the material.

Beach debris South Shore, all dead shells.

Alasmidonta calceola (Lea).

Anodonta grandis footiana Lea.

Lampsilis luteola (Lam.).

Sphaerium simile (Say).

Planorbis antrosus Conrad.

Planorbis antrosus angistomus

Hald..

Planorbis parvus Say.

Sphaerium striatinum (Lam.). Musculium truncatum (Lind). Valvata tricarinata Say. Amnicola limosa (Say). Amnicola lustrica (Pilsbry). Physa heterostropha Say. Physa integra Hald.. Physa niagarensis Lea. Planorbis trivolvis Say.

Planorbis campanulatus Say. Planorbis campanulatus Say.

Sandy beach on north side of Lake, water one to four feet deep. Alasmidonta calceola (Lea). Anodonta grandis footiana Lea.

Anodonta marginata Say. Anodontoides ferussacianus subcylindraceus Lea.

Lampsilis luteola (Lam.). Lampsilis ventricosa (Barnes).

Valvata tricarinata Say.

Physa gyrina Say.

Aplexa hypnorum (Linn.).

Segmentina armigera (Say). Galba obrussa decampi (Streng).

Succinea retusa Lea. Succinea avara Say.

Planorbis deflectus Say.

Pyramidula cronkhitei anthonyi Pilsbry.

Zonitoides arborea (Say). Vitrea rhoadsi Pilsbry.

Polygyra thyroides (Say).

Amnicola limosa (Say). Amnicola lustrica Pilsbry. Campeloma integra (Hald.). Physa heterostropha Say. Physa niagarensis Lea. Planorbis antrosus Conrad. Planorbis parvus Say (dead).

Marsh above marl bed, east of Magician Lake cottages. Planorbis antrosus angistomus Hald.

Paludestrina nickliniana (Lea).

Heavy damp woods south side of lake.

Succinea retusa Lea.

Pyramidula cronkhitei anthonyi Pilsbry.

Zonitoides arborea (Say). Vitrea hammonis (Ström).

In swale in woods.

Sphaerium occidentale (Prime).

Aplexa hypnorum (Linn.).

Segmentina armigera (Say).

Strobilops virgo (Pilsbry). Polygyra thyroides (Say).

Polygyra monodon (Rackett).

Polygyra hirsuta (Say).

Galba obrussa (Say). Galba parva (Lea).

Hemlock Island, west end of lake. The center of the island is about twenty feet above the level of the lake. All shells were found under old bark or fallen pieces of trees.

Succinea retusa Lea (found on Zonitoides arborea (Say). vegetation at margin of island). Vitrea indentata (Say).

Helicodiscus parallelus (Say). Strobilops labyrinthica (Say). Pyramidula cronkhitei anthonyi Pilsbry.

NOTES.

of veror Valvata Piscinalis in Canada.— I found last autumn in Humber Homsher Bay, Toronto, inside the "sea-wall," a flourishing colony of Valvata piscinalis Müll. There was much rubbish along the shore, including straw and marsh grass, such as is used abroad in packing fragile articles for export; and I have no doubt these little strangers were introduced from England or Eastern Europe in some such material. Another alien-long however known to have become established in the United States and at Cornwall in Ontario-Bythinia tentaculata L., abounds nearby, in the lagoons on the islands in Toronto Bay. I may add that these quiet waters also harbor fine specimens of Anodonta cataracta Say (fluviatilis Dillw.) and Anodonta grandis Say. Their occurrence in the same locality should end forever the contention that one is the eastern form and the other the western form of the same species. The same ecological conditions, and the commingling in the same water of the spermatozoa of both, would necessarily result in hybrids or extinction of differences if the two species were not naturally distinct, and each capable of preventing fertilization by the other. - F. R. LATCHFORD.

Some European Mollusca.—The receipt of a new part of Taylor's beautiful monograph of the Land and Freshwater Mollusca of the British Isles reminds me of an observation on Helicigona arbustorum var. alpicola Fér., a small rather elevated variety of a yellowish color, with one band or none, which I found on the summit of the Rigi, in Switzerland. The soft parts were uniformly pale reddish instead of dark, and although Taylor states that the animal of this species varies independently of the shell, it seems possible here the two things go together, the alpicola form being perhaps a valid subspecies. At Zürich and Gersau, Switzerland, I found typical arbustorum; at the latter place also the yellowish bandless form. The varieties of H. arbustorum, with additional bands, figured by Taylor, are very interesting, but certainly the form with an

extra band below the principal one should be separated from the true bifasciata, in which the extra band is above. Taylor's pl. XXXIV, f. 13, may accordingly be called v. infrafasciata. At Wangen, Baden, I noted that the Helix pomatia were of full size, distinctly larger than the form observed in Switzerland (Gersau, Fluelen). Observations on the variation of H. nemoralis and hortensis yielded nothing of special interest; at Wangen H. hortensis v. lutea with bands 00000, 123(45) and 1(23)45. At Schaffhausen H. hortensis lutea 00000. At Gersau H. hortensis lutea 12345. At Fluelen H. nemoralis rubella 00000. At Zürich the Arion ater was dark reddish brown, with bright orange-vermillion foot-fringe. At Wangen the A. ater presented the beautiful bright red var. rubra, which I had never had the pleasure of finding before, but also the red-brown variety. At Troyes, France, Helix fruticum was found in both the reddish and whitish varieties. I was pleased to find Helicodanta obvoluta, which I had never collected before, at Brugg, Switzerland. Helicigona lapicida was found at Brugg and at Wangen .- T. D. A. COCKERELL.

RUMINA DECOLLATA IN TEXAS.—Mr. Camp found a large colony of Rumina decollata Linné, in a Brownsville, Texas, garden, and succeeded in getting a few without losing the points, carrying them in cotton. They are larger than my Charleston or New Orleans specimens and less uniform in general architecture. The largest measured 30\frac{1}{2} alt., 11 mm. diam.—J. H. Ferriss.

LAND SHELLS FROM SUSSEX Co., N. J.—The following species were picked from leaf mould collected by Mr. Bayard Long, near Big Spring, Springdale, near Newton, Sussex Co., N. J.:

Polygyra albolabris (Say).
Polygyra hirsuta (Say).
Polygyra monodon fraterna

(Say).

Bifidaria armifera (Say).

Bifidaria contracta (Say).

Bifidaria corticaria (Say).

Bifidaria pentodon (Say).

Vertigo gouldii Binn.

Vertigo milium Gld.

Cochlicopa labrica (Müll.).

Vitrea indentata (Say).
Euconulus chersinus (Say).
Euconulus sterkii (Dall.).
Zonitoides minuscula (Binn).
Gastrodonta suppressa (Say).
Pyramidula alternata (Say).
Pyramidula cronkhitei anthonyi
Pils.

Punctum pygmæum (Drap.). Carychium exile H. C. Lea. The entire set was donated to the Acad. Nat. Sci. of Philadelphia. C. exile and P. c. anthonyi were the most abundant forms in the collection, and E. sterkii is, I believe, new to the State.—E. G. VANATTA.

NOTE ON CIRCINARIA CÆLATA MAZYCK.—In the Catalogue of American Land Shells published in Nautilus XI. (p. 128), this form was subordinated to *C. duranti*, as a sub-species. By the courtesy of Mr. Mazyck, I have been able to examine the type specimen of *cælata*. On going over the series in the collection of the Academy, no specimens were found connecting it with *duranti*, and I now believe it to be a distinct and well-characterized species, one of the handsomest of the genus.—H. A. Pilsbry.

MR. A. A. HINKLEY made a brief mid-winter journey to Guatemala, obtaining some interesting additions to his former collections there. A fine series of the large Pachycheiti of Lake Ysabel and environs was taken. Among the land shells he secured a good series of the splendid Calocentrum gigas v. Mart.—H. A. P.

PUBLICATIONS RECEIVED.

A PRELIMINARY LIST OF THE MOLLUSCA OF MISSOURI (exclusive of the Unionida).-By F. A. Sampson. Trans. of the Academy of Science of St. Louis, xxii, July 18, 1913. The various State catalogues which have been brought out in the last ten or fifteen years have recorded data of great value to the student of distribution of mollusks, indispensable to inquiries into the origin and migrations of the several groups of our fauna. Missouri is an especially interesting state. Lying near the western border of the humid area, the northern border of the Ozarkian fauna, and within the peripheral range of some Austral forms, it is an area where numerous species reach their extreme range. Mr. Sampson has given in this catalogue the results of many years of work in the state, a total of 117 species and varieties, and some 900 locality records. Among the species first described from Missouri we note two not in Mr. Sampson's list: Polygyra blandiana Pils. and Ferr. and Amnicola missouriensis Pils .- H. A. P.

THE NAUTILUS.

VOL. XXVIII.

JUNE, 1914.

No. 2

NOTES ON SOME NORTHWEST COAST ACMAEAS.

BY WILLIAM H. DALL.

Since Dr. Philip Carpenter's review of the Acmaeas of the Northwest Coast (Am. Journ. Conch., II, 1866) all writers on the subject, including myself, have to a large extent, if not entirely, accepted his conclusions as to their nomenclature.

Having occasion to revise the magnificent series of these shells in the National Museum, I have recently reviewed the whole nomenclature from the beginning, and to my surprise and dismay found that Dr. Carpenter, in his desire to perpetuate the manuscript names of his friend Thomas Nuttall, had frequently ignored the rules altogether, had adopted names which he knew to be preoccupied, and in several cases misidentified early authors' species. Mr. Robson of the British Museum had intimated to me some time ago that the nomenclature of these limpets was in a very bad state of confusion, but until I came to work over them myself I had no realization of the true condition.

In extenuation it must be remembered that fifty years ago the necessity of strictly conforming to the rules was little appreciated, and many excellent naturalists of that day are responsible through their carelessness for much of the trouble now encountered.

In reviewing the work of an author who like Eschscholtz gave several names to mutations of the same species, the most acceptable way is to take his first name for the consolidated species and put the others in synonymy. Dr. Carpenter, however, in choosing in such cases did not follow this method. However, as the first reviser, his selection may be considered final, or we should practically have to change all his names. In the space here available it is not practicable to give a full discussion, but the final results may be noted.

Acmaea cassis Eschscholtz, is a splendid form of A. pelta (Esch.) Cpr., and A. fimbriata Gould, is synonymous. Acmaea pelta Cpr., has five or six synonyms, and as tolerably distinct mutations includes nacelloides Dall; monticola pars (Nutt.) Cpr.; and olympica Dall (Pilsbry, Man., pl. 8, figs. 92, 93, 94).

Acmaea patina (Esch.) Cpr., has many synonyms, and, as recognizable mutations, ochracea Dall; emydia Dall (the Arctic testudinalis of my 1871 paper); cribraria (Gld.) Cpr.; and parallela Dall; the latter corresponding to the A. alveus of the Atlantic coast.

Acmaea persona Eschscholtz, is not Carpenter's persona (which is a mutation of digitalis Esch.) but is the shell Carpenter called cumingii in 1866; though not the same as the prior cumingii of Reeve. A. persona is a fine species, and I have a large series ranging from Alaska Peninsula to Socorro Island.

Acmaea digitalis Eschscholtz, is the northern form which merges into umbonata (Nutt.) Reeve, southward; and then into textilis Gould, at its southernmost range. Part of Gould's scabra of 1846 is the same as textilis Gld. + persona Cpr. (not Esch.) + oregona (Nutt. MS.) Cpr.

Acmaea scabra Gould, 1846 (from type), is the shell later named spectrum (Nutt. MS.) Reeve, and is generally known under the latter name, which of course must be discarded.

Acmaea scabra (Nutt. MS.) Reeve, 1855 (not of Gould, 1846), must take the earliest synonym, which seems to be limatula Cpr., 1866.

Acmaea var. funiculata Cpr., merges by imperceptible degrees into the later tenuisculpta Cpr., and that into mitra Eschscholtz.

Acmaea persona Esch. (not Cpr.), merges southward into strigillata Cpr.

Acmaea semirubida Dall, resembles triangularis Cpr., but is more oval in outline, with crimson rays on a white ground; it ranges from the Gulf of California to Panama.

Scurria aeruginosa (Midd., 1847, as Patella, with a wrong habitat) is an earlier name for the shell generally known as mesoleuca Menke, 1851, from the Gulf of California.

In studying these mollusks it is necessary to remember that the different species often have an almost identical series of color variations, so that if one is guided chiefly by color, there is a liability to put together mutations belonging to different species. There is little doubt that food greatly influences and directly changes both the color and texture of the outer layers of the shell, while the form is directly related to the situs of the individual.

An interesting fact in the distribution of these animals is the evidence they give in favor of the probability of the former existence of an elevated ridge or range roughly parallel with the coast of California and the peninsula, and of which the Santa Barbara Islands, Guadelupe, and Socorro are the only supermarine indications at the present day. It looks as if there was a second gulf or inlet between this range and that of Lower California, so that the cool-temperate species were able to extend as far south as Socorro on the western coast of the western range, while the more tropical forms were able to reach far to the North in the warmer waters of the inner area between the outer range and the continent to the east of it, including what is now the Gulf of California.

POSTPLIOCENE SHELLS OF PROVIDENCE AND LUPUS, MISSOURI.

BY F. A. SAMPSON.

Several trips to these two places have given many specimens. Providence, Boone County, is on the north side of the Missouri river, a place now of only a few houses, but formerly, in the days of steamboat travel on the river, a large town and important shipping point. The grading for the Missouri, Kansas and Texas railroad along the river cut into the bluffs, and uncovered the deposits containing great numbers of postpliocene land shells. The deposit is of later period than the Kansas loess, and is not the fine silt of the loess, but is of clay intermixed with stones of various sizes.

Lupus is almost opposite on the other side of this river, in Moniteau County, where the grading for the river route of the Missouri Pacific railroad uncovered the beds with the fossil shells. A mile above Lupus was the former town and steamboat landing of Mt. Vernon, a town of which no trace now remains. On both sides of the river the rocky bluffs are of Chouteau limestone, resting on beds

of Devonian, and capped by Upper Burlington limestone. The Chouteau fossils, especially the crinoids, are interesting, and the type specimen of one species came from Mt. Vernon, while Providence has given the types of many fossils.

The most of the shells found at both places are now found living in the neighborhood, while others have not been found in any nearby county. The following species have been collected:

Polygyra profunda Say. The largest of the Providence shells are of 31 mm. diameter, but the Lupus shells up to 34 mm. averaging smaller size, but more plentiful and some preserving the color band. So far this has not been found living in the state except at Courtney, in Jackson County, near Kansas City.

Polygyra albolabris alleni Weth. At both places fine shells from 26 to $32\frac{1}{2}$ mm. diameter are common, and more plentiful at Lupus. The living shells have been found in the neighborhood to about the same size, but from a rock pile in an open field near Columbia they were only 23 to 25 mm. and very similar to the still smaller ones found in a cemetery at Kansas City.

Polygyra thyroides Say. Of fifty shells picked up at Providence thirty-six were thyroides edentata, and of thirty-seven at Lupus twenty-five were the same.

Polygyra elevata Say. Not much variation in size, somewhat smaller at Lupus, and all similar to the living ones found on both sides of the river. Some that seemed to have been entirely mature were edentate.

Polygyra clausa Say. Scarce at both places.

Polygyra pennsylvanica Green. This is rather uncommon at both places. A walk of three miles along the railroad, during which many thousand shells were picked up or seen, gave but a single one of this species. It is not now found living in this part of the State.

Polygyra appressa Say. These are of the three-tooth variety found rather plentifully in many places in Missouri. On both sides of the river the shells vary much in size, many being larger than those now living in the neighborhood. It is the most plentiful shell at Providence, but scarce at Lupus. The shells varied in size from 15 to 22 mm., and many of the smaller ones have only a trace of lip teeth.

Polygyra inflecta Say. Sparingly found at both places, but sometimes uncertain as to whether fossil, or simply dead shells that had dropped from higher parts of the bluff.

Polygyra fraterna Say. The same may be said of this as of the last. From both places.

Polygyra monodon Rack. From both places.

Polygyra hirsuta Say. Sparingly at both places. The ordinary size is of 7 mm. diameter, but one from Providence is of 9 mm. and somewhat differing from the smaller ones in other respects.

Succinea ovalis Say. A single one found at Lupus.

Gastrodonta ligera Say. A single one was found at Lupus. At some places in Boone county the living ones are plenty.

Helicina occulta Say. In my report of the Shells of Missouri this was given as Helicina orbiculata tropica. It is rather scarce on both sides of the river, and has never been found living in the State.

Vitrea indentata Say. From Lupus.

Vitrea hammonis Strom. Some young shells from Lupus were probably of this species.

Zonitoides minusculus Binne. From Lupus.

Zonitoides milium. From Lupus.

Bifidaria armifera Say. At Lupus.

Bifidaria contracta Say. These and other minute shells were not found imbedded in the dirt, but in clearing the larger Polygyra of the dirt that filled them a number of small shells were found. These and some smaller Pupillidæ that have not been identified, were found at Lupus.

Pyramidula solitaria Say. This at Providence is perhaps as abundant as P. appressa, but at Lupus it is rare and somewhat smaller.

Pyramidula alternata Say. At Providence they are of good size and not plenty; at Lupus rare and smaller.

Pyramidula perspectiva Say. A single specimen was found at each place.

Helicodiscus parallelus Say. From Lupus.

Carychium exile H. C. Lea. From Lupus.

An idea of the comparative number of the species may be had from the results of a walk along the railroad for three miles on the Providence side, during which hundreds of shells were picked up or seen, among which were only four profunda, one pennsylvanica, one clausa, and one alternata, while soltiaria and appressa were abundant, and elevata next in abundance.

ADDITIONS TO THE LIST OF MAINE MOLLUSCA.

BY N. W. LERMOND.

Since the publication of my Catalogue of the Mollusca of Maine in 1909, the following species and varieties, some new some old, have been added to the list:

Modiolaria substriata, Gray.

One young specimen of this species was collected by John A. Allen. It was attached to an old bottle in Portland Harbor, near Hope Island.

MACOMA TENTA, Say.

Four dead specimens were taken by the writer in Aug., 1909, in the Georges River, near Taylor's Point, Cushing Shore, in six fathoms, on a muddy bottom.

Specimens were submitted to Prof. Pilsbry for determination.

ODOSTOMIA (MENESTHO) BISUTURALIS OVILENSIS, Bartsch.

The type of this subspecies was taken by Henry W. Winkley in Sheepscott River, Lincoln County. See Bartsch's Pyramidellidæ of New England and Adjacent Region, p. 107.

TURBONILLA (PYRGISCUS) CASCOENSIS, Bartsch.

"The type and two additional specimens, Cat. no. 203,795 U. S. N. M., come from Casco Bay, Maine." See page 96 of Bartsch's Pyramidellidæ. Dr. Bartsch does not state when, or by whom, these specimens were collected.

CINGULA HARPA, ----?

One specimen taken by Henry W. Winkley, at Eastport summer of 1913. Of this rare find, Mr. Winkley writes me as follows: "I think my identification correct. Formerly reported from 150-500 fathoms. I like to capture a stray bird now and then—it is fine sport."

COLUMBELLA (ASTYRIS) LUNATA Say.

Several live specimens of this species were dredged by Henry W. Winkley in the Sheepscott River at Damariscotta and by myself in Maple-juice Cove and Broad Cove, near mouth of the Georges River, Knox Co., during the summer of 1912. The latter locality is the most northern record for this species.

RETUSA OBTUSA VAR. TURRITA.

Reported by Mr. Dwight Blaney from Frenchman's Bay.

MUSCULIUM ROSACEUM Prime.

A few specimens (immature) taken by Dana W. Sweet in Sandy River, Franklin County, and by the writer in Georges River, North Warren, Knox County.

MUSCULIUM RYCKHOLTI Normand.

Fairly plentiful in the small ponds of Warren and Thomaston, Knox County.

MUSCULIUM PARVUM St (?).

Six specimens of a Musculium were collected by the writer during past season in the Georges River at North Warren, Knox Co., and sent to Dr. Sterki for determination.

MUSCULIUM SECURIS ("form or even variety," Sterki).

Collected August 17, 1913, in Georges River, North Warren. They were returned labeled as above.

MUSCULIUM WINKLEYI St.

Taken at Saco, York County, by Henry W. Winkley, and at Avon, Franklin County, by Dana W. Sweet.

PISIDIUM MONAS St.

Six specimens—one nearly full grown, others juv.—taken August 17, 1913, in Georges River, North Warren, by the writer.

Dr. Sterki, to whom the material was submitted, remarks as follows: "rather like the type from Michigan. Some examples, probably of same, though a little larger, from Aroostook Co. (Nylander)."

PISIDIUM PUNCTATUM var. SIMPLEX St.

Two specimens, almost full grown, taken by the writer in George River, North Warren, Aug., 1913.

PISIDIUM VARIABILE VAR. CICER Pr.

Eleven immature specimens taken at same time and place as above.

PISIDIUM MINUS (Adams).

A few specimens taken by the writer in Black River, Warren, Knox Co., season of 1909, and in Mill River, Thomaston, 1909 and 1910.

PISIDIUM ABDITUM VAR. LACTEUM St.

Two live specimens and a few single valves taken in Georges River, North Warren, season of 1913.

PISIDIUM SPHAERICUM St.

About twenty specimens, mostly immaculate, a few nearly full grown, taken Aug., 1913, in Georges River, North Warren.

AMNICOLA SCHROKINGERI Frauenfeldt.

Collected by Rev. Henry W. Winkley, at Saco, York county.

LYMNÆA DESIDIOSA VAR. PLICA Lea.

Collected in Buckfield, Oxford County, by John A. Allen.

PLANORBIS HIRSUTUS Gld. (= albus Müll) and P. DEFLECTUS Say.

Were inadvertently omitted from my published list. The former has been reported from Aroostook, Knox and Penobscot counties; the latter from Aroostook, Knox, Oxford and Penobscot counties.

VERTIGO NYLANDERI St.

Woodland, Aroostook Co. (Nylander). See NAUTILUS, Vol. XXII, p. 107.

STUDIES IN NAJADES.

BY DR. A. E. ORTMANN.

(Continued from Vol. XXVII, p. 91.)

Fusconaja askewi (Marsh). (See: Quadrula a. Simpson, 1900, p. 786.)

A number of specimens, among them males, sterile and gravid females, from Sabine River, Logansport, De Soto Par., Louisiana, were received from D. S. Frierson, mostly collected on August 1, 1912, but one gravid female was collected on September 21.

In all females (altogether eleven) all four gills had marsupial structure, and in five gravid ones all four gills were charged. But in one gravid individual only the outer gills contained glochidia; but the inner gills had distinctly marsupial structure. Since there were placentæ and fragments of them in the suprabranchial canals and the cloaca cavity, this specimen was caught in the act of discharging.

The breeding season probably ends in August, but the gravid specimen, with glochidia, collected on September 21, is remarkable. It

seems that in lower latitudes the breeding time does not depend strictly on the season. For instance, I have a gravid female, with eggs, of Fusconaja undata (Barnes) from the Ouachita River, Arkadelphia, Clark Co.. Arkansas, collected by H. E. Wheeler on September 3, 1912, while another one, recorded previously (Ortmann, 1912, p. 241) was obtained in the same condition March 21, 1911.

F. askewi has a short mantle connection between anal and supraanal, which was absent (torn?) in a few cases. Anal with very fine papillæ, branchial with distinct papillæ. Inner lamina of inner gills free from abdominal sac, except at anterior end. Posterior margins of palpi connected for about one-half of their length or a little less.

In the female, all four gills are marsupial. Placentæ well developed, subcylindrical, and, according to a communication from Frierson, red "in most cases." Glochidia without hooks, semielliptical, higher than long. Length, 0.13, height, 0.15 mm.

Color of soft parts partly destroyed in alcohol, but there are indications that mantle edge, adductors, and foot, had a more or less pronounced tendency to be orange-brown. Frierson informs me, that in life the soft parts may be orange or whitish.

This species clearly belongs in the undata-trigona-rubiginosa group, and is not at all related to the species with which it has been placed by Simpson (1900, p. 786), at any rate, it is not related to Elliptio beadleianus (Lea) (see Ortmann, l. c. p. 268), although it resembles this species somewhat in the shell; but this is clearly a case of convergency.

CRENODONTA PERPLICATA (Courad) (See Ortmann, 1912, p. 248).

A gravid female, with glochidia, was received from H. E. Wheeler, from the "Old River" of the Ouachita River, Arkadelphia, Clark Co., Arkansas, collected June 26, 1911. Another discharging female, is at hand from Sabine River, Logansport, De Sota Par., Louisiana, collected by L. S. Frierson, August 1, 1912.

Also in this species the breeding season seems to be subject to considerable variation: ripe glochidia are present as early as June 26, and as late as August 6.

The glochidia of the present specimens are absolutely like those observed previously. Length, 0.20; height, 0.21 mm.

QUADRULA PUSTULATA (Lea) (See Simpson, 1900, p. 781).

Wabash River, New Harmony, Posey Co., Indiana, collected

Aug. 8, 1912, by A. A. Hinkley. Aside from several very young ones, the sex of which could not be ascertained, there were two large males, and a gravid female, discharging glochidia. The date (Aug. 8) indicates the end of the breeding season.

Anal opening separated from the supraanal by a short mantle-connection, but in the largest male the two openings are united, the mantle-connection being undoubtedly torn. Anal with the inner edge almost smooth, branchial with distinct papillae. Posterior margins of palpi connected for about one-balf of their length.

Inner lamina of inner gills free from the abdominal sac, except at anterior end. In the female, all four gills are marsupial. The shape of the placentae could not be observed, since the female was discharging, and the glochidia filled the suprabranchial canals and cloacal cavity in large, loose masses. But many glochidia were yet lodged in all four gills.

Glochidia subovate, higher than long, of medium size. Length, 0.20; height, 0.24 mm.

Color of soft parts apparently of the whitish type.

This is a true Quadrula, allied in its shell characters to Q. lach-rymosa (Lea). From Q. pustulosa (Lea) it is rather sharply distinguished by the glochidia, which are considerably larger in the latter species, 0.23×0.30 according to Lefevre and Curtis (Journ. Exp. Zool., 1910, p. 98, fig. 1, F), while I found them (in specimens from West Virginia) to be 0.22×0.29 mm.

(To be continued.)

NOTES.

Another Giant Squid in Monterey Bay.—Since the publication of my note in the Nautilus of February, 1912, I have been informed of the occurrence of another big squid in the same region as the one previously reported. Hoping to secure further details, I laid the note to one side, but as no further data have been forthcoming, it may be well to publish the record that it may not be lost. Such information as I have been able to obtain was furnished to Dr. Harold Heath of Stanford University by Mr. K. Hovden, Manager of the Booth Canning Company at Monterey, who happened to be fortunate enough to see the specimen.

About October 12, 1912, some Italian fishermen in Monterey Bay

encountered and captured an immense squid, thereupon bringing it to shore. Its gross measurements I have been unable to ascertain, but the animal is stated to have weighed close to 500 pounds. The arms were about a yard long, and the general color of the animal a dark red. Mr. Hovden endeavored to purchase the specimen for five dollars, but this sum was refused by the fishermen, who devoured the prize raw.—S. S. Berry.

Large Squid on the Oregon coast, is thus reported by the Newport (Oregon) Journal.—Mrs. C. L. Hansen, wife of the lightkeeper at Heceta lighthouse, 30 miles south of here, and her daughter discovered a squid half out on the rock but a few yards away. Several of the long tentacles were reaching further, while the ugly head with the parrot-like beak was well out of water. The huge goggle eyes were fixed upon the two people. Mrs. Hansen called to her husband, and the squid slipped back into the water as he approached. It could be plainly seen, however, alongside the rock. Mrs. Hansen then called Fred Deroy, the assistant keeper, and with a long gaff hook and grappling rakes the two men succeeded in landing and killing the monster. The tentacles were seven feet long and the body 28 inches, making it over 16 feet from tip to tip. The body proper was over six feet long and of mottled brown color. It had a diamond-shaped tail about 27 inches across.

Note on the Classification of the Ancylidae.—Dear Editors: The receipt of the February number of the Nautilus has recalled to my attention the fact that for nearly two years I have before me without opportunity to complete it a paper on the classification of the Ancylidae that had circumstances been otherwise would have prevented a serious misunderstanding on the part of Mr. Walker of my ideas on the ancestry of the fresh-water limpets. That Grabau's statement that "our modern patelliform species are probably not primitive types" is, I think, plausible, but it is nevertheless true that several families of the fresh-water pulmonates show by their development a much more recent simple patelliform stage such as I described that probably does not have anything to do with the primitive stage indicated by Grabau.

I very much doubt that the dextral genera Lanx, Fisherola, Laevapex, Acroloxus and Gundlachia are actually as closely related to Ancylus, Brondelia, and Ancylastrum as supposed. The latter

genera in their late development, if they do not maintain it to maturity, possess a coiled shell and upon this the limpet-like shell of Ancylus is secondarily developed. It may be further noticed that these latter genera are all sinstral and I am under the impression that the anatomy corresponds closely. At any event it is quite different from that of Lanx, Laevapex (Ferrissia) and Gundlachia, which do not show any evidence in their post-embryological development that they ever possessed a coiled shell though I suspect they did at one time far back in their history. I have been hoping to study the early development of one of these genera but it is a little out of my line at present. The latter genera should, I think, at least be segregated in another family, the Laevapecidae, with subfamilies Laevapecinæ and Lancinæ, and probably another subfamily for the secondarily coiled forms that may belong here. In this case my statement regarding the simple patelliform ancestors would refer to this family since it was the development of these and not that of the Old World group that I studied.

In regard to the generic classification of the Laevapecidæ there is opportunity for considerable disagreement of opinion. I¹ have called attention to the fact that in Lanx, Fisherola and Zalophancylus the sculpture is solely concentric and the apex lies along the medial line, the genera being distinguished chiefly by the position of the apex, which may be central, sub-central, or terminal, arbitrary characters perhaps, but ones which run through a number of species that seem to group together in other respects. In Gundlachia, Kincaidilla, Laevapex, and Ferrissia the problem is much more difficult. I am not by any means sure that I can always tell a non-septate Gundlachia or Kincaidilla from a Ferrissia. Our local species look easy; but after comparing Walker's figures of African Ferrissias I would not hesitate to call most of the latter non-septate Gundlachias, though I believe Walker knows Ferrissias better than I do.

I am sorry that Walker has not examined the post-embryonic stages of some large Ferrissia that actually shows the development from Laevopex. Both Ferrissia and Lanx show unmistakable indications of derivation from a very low-spired form such as is represented by Laevapex and Walkerola respectively, as I have observed in at least two species in the former genus and three in the latter. This form I should regard as the least specialized modern type among the Laevapecidæ.—Harold Hannibal.

¹ Proc. Mal. Soc. Lond. x, 1912, p. 147 ff.

THE NAUTILUS.

VOL. XXVIII.

JULY, 1914.

No. 3

THE MARINE MOLLUSCAN FAUNA FROM THE VICINITY OF BOLINAS BAY, CALIFORNIA.

BY BRUCE L. CLARK.

Bolinas Bay lies about ten miles to the north of the Golden Gate. It is one of the few coves along the rocky coast of Marin County where good collections of marine shells may be obtained. W. M. Wood in vol. xi, no. 5, p. 49 the Nautilus, describes Bolinas Bay as the "Conchologist's Paradise;" certainly there are very few places along the coast of middle California where specimens may be found in such great abundance.

At Bolinas we find two different types of shore line, the long spit which nearly cuts off the bay from the ocean and the rocky beach. Duxbury Reef, about two miles to the southwest of the town of Bolinas, extends out into the ocean for over a mile. This is bared at low tide and is one of the best localities that can be imagined for collecting certain rock-loving species. For a more complete description of this locality the reader is referred to the paper mentioned above.

In March, 1913, the Pacific Conchological Club took a trip to Bolinas Bay for the purpose of making collections at that point. The material collected on this excursion was turned over to the writer for determination. This collection was considerably augmented by Mr. Daniel Emery, who visited Bolinas Bay at a later date. He collected out on the reef and

obtained certain species that had never been reported in this vicinity before.

The list of species given below is the largest ever reported from Bolinas Bay. It includes a number of forms that had heretofore not been reported as far north. Two other lists of species from this locality have been published, one by Robt. E. C. Stearns in 1866, the other by W. M. Woods in 1897. Mr. Stearns published a list of eighty-three marine species. Mr. Wood, to whose paper reference has already been made, listed seventy-nine species. The number of species in the collection of the Pacific Conchological Club is ninety-seven. To this may be added those listed by Stearns and Wood and not found in the Pacific Conchological Club collections, making a total of one hundred and twenty-seven species from this locality.

Species collected at Bolinas Bay by the Pacific Conchological Club.

Amphineura Ischnochiton raymondi Pils. Cryptochiton stelleri Midd. Mopalia vespertina Gould Mopalia muscosa Gould Pelecypoda Adula falcata Gould Adula stylina Carpenter Anomia lampe Gray Cardita subquadrata Carpenter Cardium corbis Martyn Chama exogyra Conrad Chama pellucida Sowerby Cryptomya californica Conrad Macoma balthica Linnaeus Macoma cf. inflatula Dall Macoma inquinata Deshaves Macoma nasuta Conrad

Macoma secta Conrad Macoma, n. sp.? Modiola recta Conrad Monia macrochisma Deshayes Mytilus californicus Conrad Mytilus edulus Linnaeus Paphia tenerrima Carpenter Paphia staminea Conrad staminea rugerata Paphia Desh. Paphia staminea Conrad var. orbella Parapholas californicus Conrad Petricola carditoides Conrad. Pecten giganteus Gray Pecten hastatus Sowerby Pholadidea penita Conrad Platydon cancellatus Conrad Saxicava pholadis Linnaeus

¹ Proc. Calif. Acad. Sci., vol. iii, p. 275.

Saxicava rugosa Linnaeus
Saxidomus nuttalli Conrad
Schizothærus nuttalli Conrad
Semele rubropicta Dall
Siliqua lueida Conrad
Siliqua nuttalli Conrad
Solen sicareus Gould
Spisula eatilliformis Conrad
Tellina bodegensis Hinds
Tellina buttoni Dall
Zirphea crispata Linnaeus
Xylotrya setacea Tryon

Gasteropoda

Acmæa asmi Middendorf
Acmæa scabra Eschscholtz
Acmæa spectrum Reeve
Acmæa mitra Eschscholtz
Acmæa pelta Eschscholtz
Acmæa patina Eschscholtz
Acanthina engonata Conrad
Amalthea cranoides Carpenter

Amphissa corrugata Reeve
Amphissa versicolor Dall
Bittium eschrichti Midd.
Calliostoma costatum Martyn,
Cerithidea californica Hald.
Chrysodomus dirus Reeve
Columbella (Astyris) gausapata Gould
Columbella (Astyris) gausapata carinata Hinds
Crepidula adunca Sowerby
Crepidula nivea Gould

Diala sp.?
Epitonium indianorum Hinds
Fissuridea aspera Esch.
Haliotus rufescens Swains
Haliotus cracherodii Leach
Lacuna porrecta exaequata
Carpenter
Littorina planaxis Philippi
Littorina scutulata Gould
Margarites acuticostatus Cpr.
Megatebennus bimaculatus
Dall

Nassa cooperi Forbs Nassa fossata Gould Nassa mendica Gould Nassa perpinguis Gould Ocinebra Iurida munda Cpr. Ocinebra lurida Middendorf Ocinebra interfossa Cpr. Odostomia tenuis Carpenter Olivella biplicata Sowerby Olivella intorta Carpenter Polynices lewisii Gould Polynices draconica Dall Purpura foliata Gould Tegula funebrale A. Adams Tegula brunnea Philippi Tegula monterevi Kien Tegula pulligo Martyn Thais lamellosa Gmelin Thais lima Martyn Thais saxicola Valenciennes Turris incisa Carpenter Turris ophiderma Dall

Species collected by Robt. E. C. Stearns at Bolinas Bay and not found in the collection of the Pacific Conchological Club.

Amphineura
Tonicella lineata Wood

Pelecypoda Clidiophora sp. Macoma secta var.edulis Nutt.
Pholadidea ovoidea Gould
Semele rubiolineata "auct.
non Conrad"
Venerupis lamellifera Con.
Gasteropoda
Acmaea insessa Hinds (Nacella insessa Hinds)
Acmaea instabilis Gld. (Nacella instabilis Gld.)
Acmaea triangularis Cpr.¹
Fissuridea murina Dall (Glyphis densiclathrata Rve.)

Lacuna unifasciata Cpr.
Lacuna solidula Sby.
Muricidea californica Hinds
Murex trialatus Sowerby
Ocinebra lurida Midd. var.
aspera Bairs
Tegula montereyi Kien
(Chlorostoma pfeifferi
Phil.)
Thais lamellosa var. ostrina
Gould

Species collected by W. M. Wood at Bolinas Bay and not found in the Pacific Conchological Club collections or in the list given by Stearns.

Amphineura
Mopalia hindsii
Pelecypoda
Entodesma saxicola Baird
Kellia laperousii Deshayes
Lithophagus plumulata Hanl.
Lyonsia californica Conrad
Mytilimeria nuttalli Conrad
Pholadidea parva Tryon

Saxicava arctica Linn.

Gasteropoda
Crepidula navicelloides Nuttall (C. nivea Gould)
Haliotes fulgens Phil.
Hipponyx tumens (Amalthea tumens Cpr.)
Margarites pupilla Gould

STUDIES IN NAJADES.

BY A. E. ORTMANN.

(Continued from page 22.)

LEXINGTONIA nov. gen.

Shell subquadrate or subtrapezoidal, with slightly elevated beaks, and well developed hinge teeth. Beaks not much an-

According to Keep probably a variety of A. paleacea Gld.

terior. Outer surface without sculpture. Epidermis lighter or darker brownish, with rather indistinct rays, which are narrower or wider, and do not break up into blotches. Beak distinct consisting of rather numerous (six to

> VIVERSITY OF WATERL WATERLOO, ONTARIO

which form an ridge, and are ed, but without I the disk, they

trated from the

INTERLIBRARY LOAN SERVICE

ection, which is listinct papillae, nner lamina of arsupial in the id the placentae ceolate), rather ical, of medium

> iptio, and differs 1 placentae, and le much those of arsupial, and the beak sculpture, said to approach much resembles tonia apparently l in several other : sculpture), and eate a new genus, side, and Pleuro-

o subplanus Con-

rad, Monogr. Union. 9, 1837, p. 73, pl. 41, 1. 1, from "branch of James River' (= North River), Lexington, Rockbridge Co., Va.—Simpson, Pr. U. S. Mus., 22, 1900, p. 720: "North Carolina and Virginia").

I found seven specimens of this species. One was found at

Please the loan of this accept our

material thanks

the type-locality on June 7, 1912, and proved to be a gravid female, with the glochidia fully developed. The others were found about 7 or 8 miles below in North River, above Buena Vista, Rockbridge Co., Va.: 2 males, 2 sterile, and 2 gravid females, one of the latter with eggs, the other with the glochidia just beginning to form. The largest is a male, length 40.5, height 27.5, diameter 13.5 mm., the next largest, a female, measures, length 40, height 27, diameter 15 mm.

The shape of the shell is somewhat variable: Conrad's figure represents a rather long specimen; I have such specimens, but others are shorter. The figure shows no trace of rays, but sometimes these are rather distinct.

In Simpson's system (l. c., pp. 719-720), this species forms the group of *U. striatulus*, together with three others: *striatulus* Lea, *amabilis* Lea, and *brimleyi* Wright. I have no doubt that these are indeed closely allied, and should not be astonished, if they finally should prove to be all the same species. Of *striatulus* and *brimleyi* I am rather strongly inclined to think that is the case.

The essential characters of the soft parts have been mentioned in the description of the genus. It should be noted that the mantle connection between anal and supraanal is present in all of my specimens, and although shorter than the anal, is better developed than in the species of Fusconaja, Quadrula, Plethobasus, and Pleurobema. The comparatively distinct papillae of the anal should also be noted.

The color of the abdominal sac and the gills is grayish-white; foot paler or darker orange, adductors pale orange. The charged outer gills of the gravid female are bright red (like those of Fusconaja rubiginosa). Also the gonads are red. Placentae subcylindrical, sometimes very slightly compressed, but only near the base; they are rather solid and can easily be taken out entire, even when glochidia are present.

Glochidia semielliptical, without hooks. Length and height the same, 0.18 mm.

PLEUROBEMA FRIERSONI (B. H. Wright) (See: Quadrula fr. Simpson, 1900, p. 787).

A number of specimens of typical friersoni were received

from L. S. Frierson, collected August 1, 1912, in Sabine River, Logansport, De Soto Par., La.

Others were sent by H. E. Wheeler from the Ouachita River, Arkadelphia, Clark Co., Ark., collected at various dates. Among them were two gravid females, collected May 19, 1911, one with eggs, the other with unripe glochidia.

The specimens from Ouachita River are not typical frier-soni, but resemble this species greatly; they are quite variable in shape, but in the average more oblique. Whatever they are, the anatomy of these two forms is identical.

The structure of the soft parts is that of the genus *Pleuro-bema*, with the outer gills only marsupial. The placentae are lanceolate and compressed. Glochidia not fully mature, but their shape could be made out; they are semielliptical, higher than long, approximate size, length 0.13, height 0.15 mm.

The soft parts seem to have been whitish in all.

This species belongs near to *P. riddelli*, as described by me previously (l. s., p. 262). I first thought they were this species, till Mr. Frierson called my attention to *friersoni*, and I think he is right. Whether the specimens from Jackson, Miss., are actually *riddelli*, remains to be seen.

PLEUROBEMA FASSINANS (Lea) (See: Simpson, 1900, p. 762).

A number of specimens from North Fork Holston River, Saltville, Smyth Co., Va., collected by myself on September 17, 1912.

Anal opening separated from the supraanal by a short mantle-connection, its inner edge with fine papillae. Branchial with larger papillae. Posterior margins of palpi connected for about one-half of their length. Inner lamina of inner gills free from abdominal sac, except at anterior end. In the female (many were examined) only the outer gills are marsupial, having much more crowded septa than the inner gills. No gravid females were found.

In all specimens, the soft parts were grayish-white to palebrown; in one case, foot and adductor muscles have been marked as orange-brown. None of the shells has been marked as having had red gonads. The natural affinities of this species remain yet to be investigated. It seems to be a true *Pleurobema*, but represents, in the shell, a peculiar type, which has no closer relation to any of those, of which the soft parts are known.

ELLIPTIO LANCEOLATUS (Lea) (See: *Unio lanc.*, Simpson, 1900, p. 734).

I collected, on June 3, 1912, two specimens, one a gravid female, in Mountain Run, Culpeper, Culpeper Co., Va., and about a dozen, part of them gravid, on June 5, 1912, in Rapidan River, Rapidan, Culpeper Co., Va. All gravid females had eggs, and thus the beginning of the breeding season falls probably in May.

Structure of soft parts identical with that of *E. complanatus*, and chiefly with *E. productus*, agreeing with the latter in the rather long mantle-connection between anal and supraanal (almost as long as anal). (See: Ortmann, 1812, p. 270.) Structure of marsupium in the gravid female as described in *E. complanatus*; only the outer gills are marsupial, the eggs are whitish, forming rather distinct, lanceolate and compressed placentae.

Unio pictorum (Linnaeus) (See: Ortmann, 1912, p. 274).

In 1911, I have received from W. Israël a number of gravid specimens from Germany. They were collected on May 12, 15, 22, 27, and 28, 1911. Some of those collected on May 22, 27, and 28 had glochidia, and on May 22 some were in the act of discharging.

The investigation of the marsupium shows that the outer gills are only moderately swollen, when charged, and that the edge remains sharp and is not distended. The eggs form lanceolate and compressed placentae, which are not very solid, and when glochidia are developed, there is no or very little cohesion between them; they fall easily apart and pass out of the suprabranchial canals in loose, irregular masses. No traces of lateral water canals have been observed, and the ovisacs remain open below.

The glochidia are of the Anodonta-type, as was known

before, being subtriangular in outline, and having hooks. But they are rather small, length and height being about equal, 0.21 mm. This is entirely at variance with the statement of Harms (Zool. Jahrb. Anat., 28, 1909, p. 332) and Haas (Pr. Malacol. Soc. London, 9, 1910), quoted in my text, p. 275, that they are 0.29 mm. long. But possibly this is simply a slip of the pen or a misprint.

UNIO TUMIDUS Retzius.

I have gravid specimens, received from W. Israël, collected in Germany on May 22 and 27, 1911. One of the first date had unripe glochidia.

The structure of the soft parts is exactly like that of *U. pictorum*. The glochidia are immature, and the hooks are not yet developed. In general shape they resemble much those of *U. pictorum*, but they seem to be smaller, 0.19 mm.; but this should be confirmed by the measurements of ripe glochidia.

Unio crassus Retzius.

W. Israël sent me gravid females from Germany, collected on May 2, 12, 25, 26, and on June 6 and July 21, 1911. Glochidia were found in specimens collected on May 26 and June 6, on the latter date they were being discharged. In addition, a single gravid female with eggs was collected on December 24, 1910, but this is regarded by W. Israël as an exceptional case. Also the date July 21 appears as somewhat abnormal. The normal breeding season apparently lasts from April to June.

Also here the structure is similar to that of *U. pictorum*. Placentae distinct only, when eggs are present, and not very solid. In the discharging female the glochidia were in the suprabranchial canals in loose, irregular masses. Glochidia of the same shape as in *U. pictorum*, but slightly smaller, and less high in proportion to length; length 0.19-0.20, height 0.18-0.19.

THE WATER CANALS IN THE MARSUPIUM OF THE ANODONTINAE. Lefevre and Curtis (Bull. Bur. Fisher, 30, 1912, p. 133) regard the lateral or secondary water canals ("respiratory canals") of the charged marsupium of the Anodontinae as a special device for aëration, not of the embryos, as I believe, but of the blood of the gravid female, the mother. Their argument is, that it is hard to see that a canal shut off from the embryos by a membrane could increase the facilities of aëration. I think, this argument rests upon a complete misunderstanding of the requirements and actual conditions; a canal, which permits a circulation of water within the gill, although separated from the embryos by a thin membrane, surely gives a better chance for aëration of the embryos, than the complete absence of such a canal, and, consequently, the complete absence of any water circulation within the marsupial gill. The mass of embryos inside of the water tubes is of such a character, that it would completely choke up the ostia, and there would be only a water current over the outer faces of the gill, separated from the embryos by the whole thickness of the gill-lamina, which is considerable. For this reason. I emphatically must maintain my first opinion, that the lateral water tubes have the function of furnishing breathing water for the embryos and glochidia, and not for the mother.

(To be continued.)

A. C. BILLUPS.

Mr. A. C. Billups died early in June at his home in Lawrenceburg, Indiana. He was known to conchologists as an ardent collector of shells, his chief interest being in freshwater species. Besides his conchological work, Mr. Billups was known as an entomologist, a pursuit in which he took especial delight and satisfaction. In his business as a mechanical engineer, Mr. Billups traveled extensively for a time, installing power plants of various kinds; and this gave many opportunities for collecting in those branches of natural history which interested him. It also gave opportunities for personal intercourse with brother naturalists, many of whom will hear of his death with sincere sorrow. Mr. Billups is survived by his wife and son, Mr. C. F. Billups.

NOTES.

Mr. T. Van Hyning has recently been appointed Librarian of the Experimental Station, and Director of the Museum of the Florida State University; his address is now, Florida State University, Gainesville, Florida.

Modiolus demissus Dillw. and var. Granosissimus Sby.—Dr. Dall, in the Trans. Wagner Inst., iii, 796, 797, has pointed out that Modiola plicatula Lam. (An. s. Vert., vi, 1819, p. 113) is preceded by Mytilus demissus Dillw., Descr. Cat. Rec. Shells, Vol. I, 1817, p. 314, described from Virginia and Carolina. He suggests using the name demissa for the southern form with beaded sculpture, and plicatula for the northern specimens with smoother ribs. All the examples from the Carolinas loaned to me by Mr. Mazyck were the same as the northern specimens; so, unless the beaded form actually is also found in Carolina, the name granosissima Sowerby (Proc. Mal. Soc. London, xi, 1914, p. 9) from Andaras, S. America, and Florida, will have to be used for the Florida beaded variety. M. plicatula will then become a synonym of demissa Dillw.—E. G. Vanatta.

PUBLICATIONS RECEIVED.

ON THE ANATOMY OF CONUS TULIPA LINN, AND CONUS TEXTILE LINN. By H. O. N. Shaw (The Quarterly Journal of Microscopical Science, Vol. 60, pt. 1, pp. 1-60, April, 1914). A clear and concise account of the anatomy of these two interesting shells, illustrated by 6 plates and 12 text-figures.

Anatomie des Clausilies Danoises, I, Les Organes Génitaux. Par C. M. Steenberg (Mindeskrift for Japetus Steenstrup, xxix, pp. 1-44, 1914). A well worked-out study, full of interest to workers in the anatomy of land snails.

THE PLIOCENE MOLLUSCA OF GREAT BRITAIN. By F. W. Harmer (Palaeontographical Society, 1913, pt. 1, pp. 1-200,

pl. 1-24, Feb., 1914). This part covers the non-marine species and a portion of the marine Gasteropoda. The author's treatment of Buccinum and allied genera is very interesting. Of B. undatum 12 varieties are recognized. To the form which is also found on the eastern coast of North America the varietal name of littoralis King (1846) is used. There is apparently an older name for this form-undulatum Möller (Kroyer's Tidsskrift, vol. iv, p. 84, 1842) which was adopted by Stimpson. Some sixteen other species of Buccinum are described and figured, including a number found living on the Banks of Newfoundland. A new genus Scarlesia is proposed for the group of which Trophon costifera S. V. Wood is the type. The Chrysodomus dirus Reeve = incisus Gld. = sitkensis Midd. of the Pacific coast probably belongs to this genus. Neptunea decemcostata Say is considered a variety of N. despecta Linné. The author is very conservative, using most of the older generic names, rather than those now adopted by most conchologists. The work is indispensable to one studying the boreal fauna, from the intimate relation of British Pliocene with recent North Atlantic species. figures are excellent phototypes.-C. W. J.

Land Shells from the Tertiary of Wyoming. By T. D. A. Cockerell. (Bull. Amer. Mus. Nat. Hist., vol. 33, pp. 323-325.) Professor Cockerell's studies in tertiary insects and land shells of the Rocky Mountain region are giving us glimpses of a fauna of surpassing interest. His last paper describes several types new to America. Protoboysia is a Pupoid snail with the last whorl running up the spire nearly to the summit; length and width 3½ mm. It differs from the Indian Boysia by a peculiar construction of the last whorl. Boysia sinclairi and B. phenacodorum are forms which "cannot at present be distinguished from Boysia." With these species which certainly seem to have Oriental relations, were found a Vitrea, a Thysanophora, Pyramidula ralstonensis and Orcohelix megarche. All are from the Clark's Fork Basin.—H. A. P.

¹The species of Searlesia resembles Urosalpinx rather closely. It is remarkable that so large a number (12) should be found in one restricted area.

- 1, 2, PUPILLA MUSCORUM XEROBIA PILSBRY.
 - 3. AGRIOLIMAX GUATEMALENSIS CROSSE & FISCHER.
 - 4. AGRIOLIMAX G. MOTAGUENSIS COCKERELL.
 - 5. LUCIDELLA TANTILLA PILSBRY, VAR.
- 6-8. VITRINELLA SHIMERI CLAPP.

THE NAUTILUS.

VOL. XXVIII.

AUGUST, 1914.

No. 4

SHELLS OF DURAN, NEW MEXICO.

BY H. A. PILSBRY.

When enroute for El Paso, over the Rock Island road, in August, 1910, Mr. L. E. Daniels, and the writer stopped four hours at the station of Duran, Torrance Co., N. M. This place lies about 75 or 80 miles southeast from Albuquerque, at an elevation of 6272 ft., and was selected because it is near the highest point crossed by the C. R. I. & P. road. We had thought it rather a pity to ride through the State without trying out the collecting. After trying Duran we felt reconciled to go on.

The most promising place seemed to be a large, steep, flat-topped butte about a mile south of the station. It proved to be composed of level-bedded white sandstone, the lower slopes stony. We found shells most abundant under large flat stones near the top of the north side. The sides and top are thickly covered with scrubby junipers, some pinyons and a little kneehigh scrub-oak. We noted several cacti — Cereus, Echinocactus, Opuntia and Cylindropuntia, and a couple of small ferns; also a small species of Yucca and a filamentous Agave. From the top one sees low ranges and isolated barren buttes.

From about Santa Rosa to Corona the railroad runs through similar sandstone country, modeled by erosion. At Corona, the highest point, the road crosses one of the ranges of sandstone hills. Probably the snails we found are a fair sample of the fauna of all this country.

Zonitoides minuscula alachuana (Dall). One specimen. Vallonia cyclophorella Ancey. Very abundant. Vallonia gracilicosta Reinh. Much less common. Pupilla muscorum xerobia Pils. Moderately abundant. Bifidaria pellucida hordeacella (Pils.). Very abundant.

Pupilla muscorum xerobia n. subsp. Pl. II, figs. 1, 2.

Bifidaria pilsbryi Sterki. Two specimens.

Shell small, very short, composed of 5½ whorls, the last three forming the cylindric portion, those above forming a very short, obtuse cone; last whorl ascending a little, having a stout buff crest behind the thin, well-expanded lip. There is a small, short, parietal lamella but no other teeth. Length 2.5, diam. 1.5 mm.

Types no. 104005 A. N. S. P. from Duran, N. M. Others of the same lot in collections of L. E. Daniels and J. H. Ferriss.

Mr. Vanatta looked over the collection of the Academy and reports that he found the same small race from the following localities, all in Colorado. Trinidad, Pilsbry and Ferriss, 1906. Magnolia, Boulder Co., 8000 ft., D. McAndrews. Estes Park, E. H. Ashmun. Black Lake Creek, T. D. A. Cockerell. Near Golden, 7000 ft., E. E. Hand.

The length varies from 2.25 to 2.75 mm. in the lot taken at Duran.

A NEW FOSSIL VITRINELLA, FROM BOSTON, MASSACHUSETTS.

BY WILLIAM F. CLAPP.

Through the kindness of Dr. H. W. Shimer of the Massachusetts Institute of Technology I have been able to examine some of the material he has received from the excavation for the Boylston street subway, Boston, Mass. The results of Dr. Shimer's investigations concerning the marine

fauna which formerly flourished in this region, will appear in a forthcoming publication of the Boston Society of Natural History. I therefore confine myself to the description of a new mollusk which occurs quite plentifully in the material submitted to me, referring those desiring further information regarding its age and the species with which it was found associated, to the publication mentioned above.

VITRINELLA SHIMERI, sp. nov. Pl. II, figs. 6, 7, 8.

Shell small, white, solid, depressed, whorls three, the ultimate rapidly enlarging; smooth above, beneath with about eighteen deeply incised lines radiating from the umbilical region. Suture distinct, umbilicus small, deep, aperture very oblique, circular, not modified by previous whorl, peritreme not continuous, modified to a more or less thin glaze on body whorl, outer lip simple, columellar lip greatly thickened in the direction of and encroaching on the umbilical region. Greatest diameter 1.25 mm., height .5 mm.

It is most readily distinguished from other Vitrinellas, by the radiating lines of the base, caused by the folding back of the thickened inner lip at regular stages of growth. Viewed from above the strongly curved continuation of the outer lip from the suture to the periphery, is more noticeable than in any related species.

The genus Vitrinella has been restricted by Miss Katharine J. Bush (Trans. Conn. Acad. Sci., vol. 10, 1897) to a group of "small more or less hyaline" shells, etc. While V. shimeri can not possibly be considered as hyaline it agrees well with all of the other characters of the genus. It is possible that its solid opaque appearance may be the result of the age of the specimens. No species of Vitrinella have been previously recorded from New England.

Associated with Nassa obsoleta, Mulinia lateralis, Odostomia bisuturalis, Mya arenaria and Macoma balthica. V. shimeri belonged to the "between tide" fauna of what were formerly the Charles River flats.

Type: Museum of Comparative Zoology, no. 2600. Paratypes: U. S. National Museum, Boston Society of Natural

History, Mass. Institute of Technology, Academy of Natural Sciences of Philadelphia.

OBSERVATIONS ON THE GENUS SYMPHYNOTA, LEA.

BY L. S. FRIERSON.

In 1819 Rafinesque proposed the genus *Proptera*, and the only described species placed in it by him was the *Unio alata* Say, which has thus been accepted as type of the genus ever since. Evidently unaquainted with Rafinesque's writings at the time, Dr. Lea, ten years afterwards (1829) proposed an almost identical genus, *Symphynota*, and *named as type*, the same shell, *Unio alatus!* (Obs. vol. 1, page 38). The genus *Symphynota* therefore is a synonym, pure and simple, and Simpson's and other's use of the name, no doubt arose from overlooking the fact that Lea originally took *U. alatus* as type. This being so, those species placed in *Symphynota* by Simpson (Synopsis 1900, pages 662-666) must be placed in the genus *Lasmigona* Rafinesque, 1831. Type *L. costata* Rafinesque (1820).

In the May (1914) NAUTILUS, page 7, I proposed the term Simpsonaias for Hemilastina. This name has been preoccupied however, and for it I propose the term Simpsoniconcha, in honor of Mr. C. T. Simpson.

VOLVIDENS, NEW GENUS.

BY JOHN B. HENDERSON.

I am often puzzled by the generic names applied by authors to many of the small species of Antillean land-shells; as in the case of the Cuban "Thysanophora" tichostoma Pfr., a fairly common species of the Matanzas and Havana Provinces. So far I have never succeeded in capturing a living specimen of this and therefore cannot seek the aid of an anatomist in deter-

mining its true position with final certainty. Obviously, however, it is not a *Thysanophora*,—nor is it a *Gastrodonta*. It cannot well be a *Sagda*,—nor *Odontosagda*, yet it seems to be closely related to both. Its very prominent character of a centrally placed continuous lamella on the parietal wall I think justifies the creation of a genus to include it within the subfamily *Sagdina*. I therefore propose for it the new genus, to be described for the present as follows:

Volvidens, n. g.

Shell small, depressed, widely umbilicate, rather thin and shining and of *Zonites*-like texture. Aperture with an internal sharply raised lamella centrally placed on the parietal wall. Lip simple. Type: *Helix tichostoma* Pfr.

This lamella in fully adult specimens extends back about one-half whorl. Back of this it appears to have been absorbed but there are evidences of its existence from the early whorls. It differs from all the *Proserpinella* group by its lack of an apical callus.

I have not infrequently found in collections among lots of *V. tichostoma* specimens of *Strobilops hubbardi*. To the naked eye the two species appear very much alike, but they can never be confused when examined under a glass. I have seen no mention of the presence of this latter species in Cuba, but I have found it in many localities in Havana and Pinar del Rio Provinces, and it is quite likely it will be found throughout the Antilles. Cuban specimens are smaller than those from Florida, but otherwise identical.

STUDIES IN NAJADES.

BY A. E. ORTMANN.

(Continued from page 34.)

Genus: Symphynota, subgenus Alasminota nov. subgen.

This new subgenus is proposed for the species: Margaritana holstonia Lea as type, which has been placed by Simpson

(1900, p. 670) in the genus Alasmidonta. However, the chief character of Alasmidonta is in the beak sculpture, which is heavy and generally concentric, at the outmost with only a slight indication of a sinus. And, further, some species of Alasmidonta have a tendency to have the inner lamina of the inner gill more or less connected with the abdominal sac (Ortmann, 1912, pp. 279, 280, 294). These are the only essential characters which distinguish this genus from Symphynota Lea.

Marg. holstonia has a beak sculpture which is not heavy, consisting of four to six rather fine and sharp bars, the first one or two subconcentric, the following ones sharply double looped, the posterior loop smaller, separated from the anterior by a deep, sharp, re-entering angle. This sculpture is identical with that of Symphynota compressa, viridis, and complanata. Aud, further, M. holstonia has the inner lamina of the inner gills free from the abdominal sac, agreeing also in this with Symphynota. Thus it is evident, this species should be placed here.

Symphynota has three subgenera, according to Simpson, but to none of these holstonia can be assigned, and thus it is best, to create a new subgenus, Alasminota, for it. Its relation to the other subgenera may be made clear by the following table:

Genus Symphynota Lea.

a¹ Hermaphroditic. Cardinal and lateral teeth present. Beak sculpture sharply double-looped. Shell subovate or subtrapezoidal, moderately long.

Subgenus: Symphynota Simpson.

- a² Gonochoristic. Cardinal teeth present, laterals rudimentary or absent.
 - b¹ Shell elongated elliptical, rather small. Surface without sculpture. Beak sculpture sharply double-looped.

 Subgenus: Alasminota Ortmann.
 - b² Shell subrhomboid, subtrapezoidal, or subovate, moderately long or short, quite large. Surface with more or less developed sculpture of radiating ridges upon the posterior slope.

c¹ Shell large, ovate-rhomboid, high and short. Beak sculpture sharply double-looped. Radial ridges upon posterior slope present or obsolete.

Subgenus: Pterosygna Rafinesque.

c² Shell rather large, subrhomboidal or subtrapezoidal, moderately long. Beak sculpture coarse, less distinctly double-looped (only sinuated). Radial ridges upon posterior slope well developed.

Subgenus: Lasmigona Rafinesque.

SYMPHYNOTA (ALASMINOTA) HOLSTONIA (Lea) (See: Alasmidonta h. Simpson, 1900, p. 670).

On September 19, 1912, I collected two males in Clinch River, Tazewell, Tazewell Co., Va., and on September 20, one gravid female, with glochidia, in the same river at Richland, same county.

Anal separated from supraanal by a mantle-connection, which is rather short, shorter than the anal, its inner edge distinctly crenulated. Branchial with papillae. Posterior margins of palpi united for about one-half of their length.

Inner lamina of inner gills free from abdominal sac, except at anterior end. Structure of gills Anodontine: in the gravid female, only the outer gills are marsupial, they have lateral water canals, and their edge is more or less distended. Glochidia of typical shape, subtriangular, with hooks, large, slightly higher than long. Length 0.32, height 0.38 mm.

Anodonta oregonensis Lea (Simpson, 1900, p. 628).

Twelve specimens, mostly females and gravid, in part with glochidia, have been obtained from T. Kincaid. They were collected in autumn 1911 in ponds near Seattle, King Co., Washington.

Soft parts of the type of the genus *Anodonta*: anal opening small, its inner edge indistinctly crenulated or almost smooth. Supraanal somewhat longer than the anal, widely remote, about twice its own length, from the anal.

Glochidia large, subtriangular, with hooks. Length 0.33-0.34, height 0.32-0.33. The difference between height and length is minimal. These Glochidia agree well with those of

A. cygnea (Linnaeus), except in being slightly smaller (in cygnea they are about 0.35 to 0.36 mm.; in A. grandis and cataracta, the glochidia are still larger, 0.36 x 0.37).

This species is also in shell characters closely allied to the European A. cygnea. The soft parts have been previously described by Lea (Obs., 10, 1863, p. 454).

Anodonta marginata Say. (See Simpson, 1900, p. 632).

One gravid female, collected August 4, 1912, by O. E. Jennings in Six Mile Lake, Silver Islet, Thunder Cape, Canada (North shore of Lake Superior).

The soft parts agree in every respect with those of A. grandis and cataracta. The specimen had only eggs and no glochidia.

Lea's description of the soft parts of A. fragilis (= marginata) differs in giving the posterior margins of the palpi united nearly the whole length. In my specimen they are united for about one-fourth on the right side, and for nearly one-half on the left, agreeing also in this respect with A. grandis.

THE SUBGENERA OF ALASMIDONTA Say.

Simpson's division into subgenera does not seem to be quite satisfactory, some closely allied species being separated in it. The subgenus Bullella is not known in its anatomy, but from shell characters it is very near to the subgenus Alasmidonta. The species A. holstonia is, as has been shown above, a Symphynota. The genus Pegias Simpson should fall as a subgenus in this genus. It is further to be remarked, that the subgenera Pressodonta, Alasmidonta, and Pegias are more closely related to each other than to the two other subgenera.

a¹ Lateral hinge-teeth present, but their number reversed, two in right, one in left valve. Beak sculpture moderately heavy, bars with an angle upon the posterior ridge, and a slight sinus in front of it. Inner lamina of inner gills free. Female shell recognizable by a slight swelling in the region of the posterior ridge.

Subgenus: *Prolasmidonta* nov. subgen.

Type: *A. heterodon* (Lea).

- a² Lateral hinge-teeth obsolete or absent. Beak sculpture more or less heavy, with or without a sinus. Inner lamina of inner gills with the tendency to become more or less united to the abdominal sac.
 - b¹ Posterior ridge of shell indistinct or blunt, posterior slope not distinctly truncated, without corrugations, or only with faint traces of them. Cardinal teeth strongly developed, triangular or squarish, stumpy. Epidermis with unbroken rays.
 - c¹ Beak sculpture moderately heavy, subconcentric. Shell subrhomboid, posterior ridge moderately developed, blunt, posterior angle of shell little elevated above base line. Female shell distinguishable by a slight swelling of the posterior ridge, accompanied by a radial depression of the posterior slope, causing a shallow emargination of the posterior margin.

Subgenus: Pressodonta Simpson. (Type: A. calceolus (Lea)).

- c² Beak sculpture very heavy, bars straight or with a slight indication of a sinus in front of the posterior angle.
 - d¹ Shape of shell regularly ovate, with posterior and moderately elevated above the basal line, and upper and lower margins converging rather uniformly toward it, without a truncation. Posterior ridge indistinct. Male and female shells undistinguishable.

Subgenus: Alasmidonta Simpson. (Type: A. undulata (Say)).

d² Shape of shell irregularly subovate, with posterior end greatly elevated above base line, and an oblique truncation below this end. Posterior ridge present. Female shell distinguishable by the stronger development of the posterior ridge and the greater obliquity of the postero-basal truncation, which is slightly emarginate.

Subgenus: Pegias Simpson (as genus). (Type: A. fabula (Lea)).

b² Posterior ridge of shell distinct, rounded or rather sharp. Posterior slope more or less truncated, with distinct corrugations. Cardinal teeth weak, compressed, not stumpy, sometimes even obsolete. dermis with rays which generally break up into a pattern of spots. Beak sculpture very heavy, bars slightly sinuate. Female shell not distinguishable from that of the male. Subgenus: Rugifera Simpson.

(Type: A. marginata Say).

The position of A. collina (Conrad) is yet doubtful. The type-species of *Pressodonta* is unknown in its anatomy, but it is very closely allied to A. minor, in fact, the two may be only forms of the same species, so that we may safely assume that they agree in structure.

ALASMIDONTA (PRESSODONTA) MINOR (Lea) (See: Ortmann, 1912, p. 295).

I collected a number of specimens in the North Fork Holston River, Saltville, Smyth Co., Va. (September 17, 1912), and in Clinch River, at Richland and Cedar Bluff, Tazewell Co., Va. (September 20, 1912).

The soft parts of this species were described previously from a single male and a single gravid female. In these, the inner lamina of the inner gills was free from the abdominal sac, except at the anterior end.

From Saltville, I have preserved the soft parts of three males and two gravid females, and they all have the inner lamina of the inner gills entirely connected with the abdominal sac. From Richland I preserved two males and three gravid females: of these, the males have the posterior part of the inner lamina free for about half the length of the abdominal sac, one of the females shows the same condition, but the second has even a larger part of the inner lamina free (about two-thirds), and the third has it almost entirely connected, only a small hole remains open at the posterior end of the foot. From Cedar Bluff I have the soft parts of a gravid female, and here the inner lamina is free for a little more than one-half of the abdominal sac.

Thus, in this species, this character is variable. The fact that those from Holston River have all completely connected inner laminae, and those from the Clinch tend to have it more or less free, may be purely accidental.

All females contained glochidia. The measurements are: length, 0.32; height, 0.27 mm. This is larger than my former measurements (0.31 x 0.25), but a re-examination of the old material shows, that the former values were correct. Thus there seems to be a variation in the size of the glochidia, but the shape is in both cases the same.

NOTES.

Possible transportation of Panopea generosa.—I wish to tell of an instance of the transporting of shells from one locality to another. About a year ago I saw in one of the Los Angeles fish markets four large "Goeducks," (Panopea generosa). Not having the shell in my collection I asked about them and found that they were shipped in from Puget Sound and were considered very fine, 50 cents each. I did not purchase and learned a week later that they had finally been sold to some one for fish-bait. Several months later a friend picked up two large valves of Panopea generosa on a nearby beach. Panopea generosa has been found in this locality but they are smaller than the northern form and very scarce and I am inclined to think that my two valves are from Puget Sound having been thrown from some of the piers by the fishermen, and finally worked upon the beach; at least it is not impossible.—E. P. CHACE.

A LARGE OCTOPUS.—While deep-sea fishing at Long Beach, Cal., Capt. A. H. Mason of the launch Esther C, had a terrific struggle with an octopus measuring 16 feet from tip to tip of tentacles.

Captain Mason brought the octopus to the surface while fishing for rock cod. After the devil-fish had been safely

dumped into the boat Mason attempted to shove it into a box when it fastened several of its tentacles around his shoulder and arm and was attempting to encompass his body when the captain grabbed a gaff hook and killed it.

Mason was the only person aboard the launch at the time.
—(Los Angeles Express, May 22.)

MOLLUSCA OF MAINE.—The June NAUTILUS has an article by N. W. Lermond on additions to the Maine Mollusca. A few slight corrections are needed.

Columbella (Astyris) lunata Say.

Lowtide at Damariscotta (not dredged), not Sheepscott River, which is ten miles away. Add also as localities: Orrs Island and Quohog Bay, at Casco Bay.

Musculium winkleyi, St. Old Orchard (not Saco).

Amnicola schroekingeri, Saco, proves to be a new species and is now Amnicola winkleyi, Pilsbry.

The following are also new to Lermond's list:

Pyramidella (Syrnola) fusca, Damariscotta at low tide. Odostomia winkleyi, Quohog Bay. Odostomia gibbosa, Quohog Bay.

-HENRY W. WINKLEY.

Harper's Ranch, 6 miles above Clifton, Arizona, on the Frisco river, July 1, '14.— * * * We get a rattlesnake (Crotalus mollossus) every day. * * *

We find a Sonorella here on both sides of the river. In three days got 4 alive, 200 dead. Also an Ashmunella (4 dead) that seems to be a beardless pilsbryi. Will try the Copper King Mt. one day, and then move up the river four miles.

We have a team, a lumber wagon and a high-school New York boy of 17. We plan to go to Luna and then cross over to the Mongollons and down the Frisco to Duncan on the railroad.—JAS. H. FERRISS.

THE NAUTILUS.

Vol. XXVIII.

SEPTEMBER, 1914.

No. 5

NOTES ON SOME LAND SHELLS OF EASTERN CUBA.

BY CHARLES T. RAMSDEN.

Recent collections have added two species to the Cuban fauna, one a Haitian *Macroceramus*, the other a tiny *Lucidella*, first described from Florida. A few other new forms are now described, to be illustrated when enough others come to hand to make a plate.

PLEURODONTE (Caracolus) SAGEMON GOODRICHI n. subsp.

The shell is imperforate, with elevated, dome-shaped spire, the chief height of which is in the penultimate whorl, those above being depressed. Last whorl indistinctly angular in front, becoming rounded. Peristome white, its outer margin rounded, not provided with a point. There are black bands above and below and a faint brown line upon the periphery; ground-color yellow (chamois) except above the upper band, where it is hazel or kaiser brown. Summit and a band above the suture on the spire are whitish. Alt. 21½, diam. 30½ mm.

La subida á "La Hembrita," Monte Toro, Guantánamo, very close to where *Urocoptis* (*Idiostemna*) pilsbryana was found.

Named for my friend Mr. Calvin Goodrich, of Toledo, Ohio. This elevated race is obviously different from the high forms figured by Pfeiffer in *Novitates Conchologicæ*, pl. 91, figs. 3 to 6, the latter being acutely keeled.

ANNULARIA EBURNEA PRESTONI, n. subsp.

Very closely related to *eburnea*, but flatter the whorls smaller in caliber; aperture with a broad chestnut band within. Alt. 8.3, diam. 18 mm.

Taken on the "Ojo de Ague" Range between Guantánamo and "Ramón de las Yaguas", nine leagues from the former, and 4 leagues from the latter. I wish to name it for Mr. H. B. Preston of London.

Annularia mayensis Torre & Ramsden, n. sp.

Closely related to A. interstitialis from which it differs in sculpture; the larger threads being more numerous and closer, especially on the last half whorl, the smaller, interstitial threads are more minute than those of interstitialis. The last whorl remains adnate or is only very narrowly free from the preceding at the aperture. Wing of the lip well developed, the peristome well built out in front of it in females, less so in the males. Color very pale brown.

Alt. 11, diam. 15 mm.; 4½ whorls. The males are about 4 mm. smaller in diameter.

"La Ysabelita" de Ramsden, La Maya, Oriente Province, Cuba.

LUCIDELLA TANTILLA (Pilsbry). Pl. 2, fig. 5 (enlarged).

This species was at first thought to be new, but Dr. Pilsbry, on comparing it with his L. tantilla (described as a Helicina) from Florida, decided that the two were identical. It adds one more Cuban species which has extended its range to the tropical margin of Florida.

The shell is minute, depressed, glossy, light pinkish cinnamon. Sculpture of regular and rather close grooves in the direction of growth-lines. Whorls $3\frac{1}{2}$, moderately convex. Aperture oblique. Outer lip slightly thickened, brown, expanded and a little reflected, retracted slightly at the upper insertion. There is a shallow notch at the junction of the basal lip and the short columella. Axial callus large and thick. Alt. 1.2, diam. 2.1 mm.

Between La Victoria and Nimfitas, on Monte Toro, Guantánamo, in deep woods; found in dirt at the root of a large tree.

MACROCERAMUS RICHAUDI LINEATISTRIGATUS Pilsbry.

A single perfect specimen of this Haitian shell was taken on the beach at the mouth of a small port 12 miles to the east of Guantánamo harbor, by Oscar Tollin, who was with me on that trip. The name of this port is "Puerto Escondido" which translated means "The Hidden Port." It was used in the old days by the pirates as a haven.

Dr. Pilsbry kindly compared the specimen with the type, and states that it has larger, bolder markings, more whorls, and slightly coarser striation, but there can be no doubt of the identity of the Cuban shell with that of Haiti. It remains to be seen whether this is a drifted specimen, or a real inhabitant of the region, which washed down upon the beach. It measures, length 17, diam. 5½ mm., 13¾ whorls.

UROCOPTIS (Gongylostoma) MAYENSIS Torre & Ramsden, n. sp.

The shell is very slenderly fusiform, usually retaining the apex perfect; corneous, somewhat transparent, maculate with opaque white. Surface sculptured with close, fine, but rather weak, strongly oblique striæ, the first 9 whorls smooth, last half of the last whorl pale brown with thread-like striæ on the back. First ten whorls convex, the rest flattened, last half of the last whorl free, tubular, whitish above. Aperture oblique, circular, the peristome reflexed above, elsewhere flaring. Axis encircled with a single thin, obtusely serrate lamella, obsolete in the later whorls, where the axis is extremely slender and somewhat sinuous.

Length 18.5, greatest diam. 2.1 mm.; 22½ whorls.

"La Ysabelita" de Ramsden, La Maya, Oriente Province.

Belongs to the group of *U. wrighti*, but is distinct by its large size and weak sculpture.

RESULTS OF A STATISTICAL STUDY OF VARIATION IN THE BLUE SHELLS OF PECTEN NUCLEUS IRRADIANS FOUND AT ATLANTIC CITY, N. J.

BY HAROLD S. COLTON.

Upon the beach of the Atlantic shore of New Jersey are found dead shells colored blue by clay particles infiltered into the shell. These shells have obviously been buried in the mud or clay of the bottom, out of which they have been washed by the surf.

In collecting shells from along the beach at Atlantic City in 1904, the author fancied that the blue *Lunatia heros* differed in shape from the uncolored ones.

Not having sufficient material with which to base a conclusion, he returned in the Spring to Atlantic City to collect Lunatia. Although in January they were abundant, now not a single one could be found. At once it was seen that Pecten would be a much more favorable form on which to work, as it was abundant and the ribs of the shell would be easy to count, therefore a few hundred of white and blue ones were collected.

In the course of time the writer happened to mention to Dr. E. F. Phillips, the present chief of the Bureau of Apiculture at Washington, on what material he was working. Dr. Phillips became interested, and in 1905 a joint trip to the coast was made and over five hundred blue right valves of Pecten were collected near Ventnor.

The ribs of these were counted, applying the arbitrary rules of Davenport (1900). The number of ribs of each shell was counted independently and compared. When there was a difference of opinion the ribs were recounted, and no record was made until both agreed.

This study was not completed and therefore not published. While sufficient blue ones were at hand, not enough white ones (representing the form of Pecten now living) were collected for comparison. However, in looking over the results it seemed that it might be of interest to publish them as they

stand and let some one else take up the problem and bring it to a conclusion.

In some places along the Atlantic coast of New Jersey are exposed at low tide stumps of trees and also such turf as is now forming in the meadows behind the line of sand dunes. By this we can infer that the coast line is sinking. This being the case, the dunes are progressing inland, covering up the meadow turf and exposing it again in the ocean beach. Between the dunes and the mainland is oftentimes a bay or a channel. This bay or channel has a muddy bottom as a rule and there the Pecten lives. As the dune line progresses forward the meadow encroaches on the bay, burying the dead shells of the Pecten which are later exposed by the action of the surf and cast on the beach after the dune line has passed over them.

It would be interesting to test if such a theory were correct and note the direction of the evolution of the Pecten or other form during the time that they were buried.

An examination of well borings made in the beach might help throw light upon this point.

Experiments also might be made as to the rate of infiltration of the clay particles into the shell which may be rapid. The author made sections of the shells. These sections show that the clay has penetrated the shell to the center, the pearly layer alone excepted.

With the geologic evidence from well borings, with the experimental evidence from the rate of infiltration of the clay particles and the comparison of the variation of the blue forms with those now living, a conclusion might be drawn as to the direction of evolution in Pecten.

In the table which follows, N = the number of shells the rays of which were counted,—A = the mean,— σ the standard deviation from the mean,—C = the coefficient of variation,—and P. E. the probable errors of the mean, the standard deviation, and the coefficient of variation. These have been computed by the ordinary methods. With them in lower case are placed similar counts made by Davenport (1900) on Pecten irradians from several other localities.

Pecten irradians	14				quer			21	N	A	P.E.A.	σ	Ρ.Ε.σ.	С	P.E.C.
BLUE PECTEN ATLANTIC CITY	6	72	187	185	44	5	1		500	16.416	+ .028	.028	+ .020	5.65	+ .12
Cold Spring Harbor	2	15	108	515	308	90	7	1	1046	17.35	+ .018	.876	+ .013	5.049	+ .074
Cutchogue		33	95	127	22	4			281	16.53	+ .034	.852	+ .024	5.15	+ .15
Fire and Oak Islands	1	6	15	24	4				50	16.48	+.084	.877	+ .060		

These comparisons show that the average number of ribs of the blue Pecten at Atlantic City is less than the same species at Cold Spring Harbor but about the same as at Fire Island and Cutchogne. That they are more variable than any of these that Davenport reported is also shown by the statistics. To determine the significance of these differences will require much more work.

The author wishes to thank Dr. E. F. Phillips for his share in the work, and also for first introducing him to modern statistical methods.

Literature.

Davenport, C. B.—1900. On the Variation of the shell of Pecten irradians Lamarck, from Long Island. Am. Nat. XXXIV, pp. 863-877.

Davenport, C. B.—1903. A Comparison of the Variability of some Pectens from the East and the West Coast of the United States. Mark Anniversary Volume, pp. 121-136, New York, Henry Holt.

Davenport, C. B.—1903. Quantitative Studies in the Evodution of Pecten opercularis from three localities of the British Isles. Proc. Am. Acad. Arts and Science XXXIX, pp. 123-159.

Davenport and Hubbard, M. E.—1904. Ray Variability in Pecten varius. Jour. Exp. Zool., Vol. 1, p. 607.

Davenport, C. B.—1904. Statistical Methods. Wiley & Sons, New York.

SOME SLUGS (AGRIOLIMAX) FROM GUATEMALA.

BY T. D. A. COCKERELL.

When my wife went to Guatemala early in 1912, I begged her to look for slugs, which I supposed would be found in abundance. To her surprise and mine, they proved extremely scarce, the only one obtained being two specimens of Agriolimax, of the type of A. lævis. These may be described as follows:

- (1). From Antigua, a locality in the highlands. Pl. II. fig. 3. About 12 mm. long in alcohol; mantle 5 mm. long, the respiratory orifice 31/4 mm. from its anterior end: color light brownish suffused with slate grey, the mantle dark slate grey; sides below mantle pallid; sole yellowish white; lateral pedal furrow a little above middle of lateral margin of sole; median area of sole a trifle broader than lateral areas, except posteriorly; shell 2½ mm. long, 1¼ broad, narrow, slightly convex, not very thick, the anterior (nuclear) end distinctly emarginate; jaw of the same type as that of A. lavis, the median projection very large. Penis sac like that figured for A. lævis by Taylor, Monog. L. & F. W. Moll, Brit. Is., part 10, f. 141, with the rounded end curled over, but the whole structure rather more slender, its length a fraction over 2 mm. The lingual membrane of which a beautiful preparation was kindly made for me by Miss Rosamond Patton, shows 31-15-1-15-13 teeth, formed essentially as in A. lavis (Taylor, f. 136). except that the central tooth has the mesocone a trifle broader, and the long and slender marginals have no sign of an ectoconal angle. The stomach was full of fragments of leaves, which exhibited cells containing very characteristic crystals, which my colleague Dr. F. Ramaley at once recognized as being exactly like the crystals in leaves of Begonia, on which common tropical plant the slug doubtless fed.
- (2). From Quirigua, a locality in the tropical lowland jungle. Pl. II, fig. 4. About 10 mm. long in alcohol, of the usual form; mantle 5 mm. long, respiratory orifice 3 mm. from

anterior end; color dark coffee brown, including sole; mantle a shade darker than body; no markings; lateral pedal furrow below middle of sides of sole; median area of sole about as wide as either lateral area. Penis-sac curled like a letter s. Shell 2½ mm. long, a fraction over 1 mm. broad, formed as in the Antigua specimen. Marginal teeth mostly simple, but the inner ones with small side cusps. The stomach contained vegetable remains, including numbers of two-armed hairs, which Dr. Ramaley identifies as being almost certainly those of a leguminous plant.

The character of the penis sac, wholly without any apical branched gland, places both these species in the group of A. lævis, and separates them from A. agrestis. The jaw also is entirely of the lævis type. It is a most extraordinary thing that slugs from the moist tropical coast region of Guatemala, and others from the highlands of that country, apparently native species, should so closely resemble the slug found at high altitudes in the mountains of Colorado, and that common in northern Europe. The fact of the wide distribution of the lævis type has long been known, but one remains amazed at such migrations combined with such conservatism!

The same type of slug occurs at high altitudes in Asia. The character of the marginal teeth in the Quirigua slug agrees quite closely with that of A. tibetanus Godwin-Austen (Records Indian Museum, II, 1908, p. 414), from an altitude of 14,500 feet. The inner angle of the first laterals (admedians of Godwin-Austen) is less prominent in the Tibet slug, but the drawing is not very detailed. In attempting to distinguish the Guatemalan slugs from veritable A. lavis, we are almost at a loss. The total absence of any angle or tooth on the marginals in the Antigua slug appears distinctive, but the far northern A. lævis hyperboreus is figured as having just such marginals. The shell in our specimens, except for the narrow form, shows nothing characteristic; it has not the obtusely keeled form of that of A. berendti and A. hemphilli pictus. The slight differences shown in the figures of the middle and first lateral teeth of the Antigua and Quirigua specimens are apparently of no particular significance, as the

teeth of the different transverse rows are not precisely alike. Both forms, however, show very distinctly the inner angular projection of the first laterals, which is (probably in error?) omitted from Strebel's figures of A. stenurus and A. berendti. and also from Semper's figure of A. brasiliensis. The figures of stenurus and brasiliensis do indeed show an inner angle. but from its position it is evidently neither an angle or endoconal point. On comparison with A. guatemalensis Crosse & Fischer the shell in our slugs is seen to be narrower than the figure in Miss. Sci. Mex. (1878) pl. 9, f. 2; and the lateral teeth have a well-marked endocone, whereas the figure in Miss. Sci. Mex., pl. 9, f. 4, shows none. Much has been made of the inner tooth of the inner laterals, but I suspect that some of the published figures may be faulty, since when the focus is not exactly right it cannot always be seen. Von Ihering's figures of the teeth of A. brasiliensis show the inner tooth very well, and differ from Semper's figures of the same species.

It is at present somewhat uncertain whether the Antigua and Quirigua slugs represent different species or subspecies; but since they occupy entirely different life-zones, and present some tangible structural differences, it seems probable that they should be given different names. A. quatemalensis is said to be 15-18 mm. long, bluish-black, the mantle darker, the sole pale; central tooth plainly tricuspidate. This might well apply to the Antigua slug, allowing for the usual varia-The teeth of quaternalensis were 35-14-1-14-35, which is sufficiently near the formula of the Antigua slug. The locality of quatemalensis is Totonicapan, where it was obtained by Bocourt. This, like Antigua, is in the midst of the mountain country, and may be expected to have a similar fauna. All things considered, then, I believe I am justified in calling the Antigua specimen A. guatemalensis Crosse & Fischer, 1870. The Quirigua slug, from the tropical lowlands of the Motagua Valley, may for the present be known as A. quatemalensis motaquensis n. subsp.

I will take the opportunity to note that Taylor (op. cit., p. 126) is surely in error when he refers my A. lævis maculatus to A. lævis lacustris (Bonelli). The marginal teeth of

lacustris, as well figured by Lessona and Pollonera, are very unlike those of A. lævis, and appear to indicate a distinct species, as the Italian authors maintained.

HENRY HEMPHILL.

We have just received notice of the death, July 25, at Oakland, Cal., of Henry Hemphill, in his eighty-fifth year. Mr. Hemphill was born in Wilmington, Del., in 1830, but for many years had been a resident of the state of California. He was a mason by trade and took great pride in his proficiency. More than fifty years ago he became interested in the shells of the Pacific coast and formed one of a group of enthusiastic collectors which included Kellogg the botanist, Harford, Voy, Stearns and others, of which he was the last survivor. His trade brought him in, at California union wages, such a good income that he could not only lay away a fair nest egg for his old age, but take long vacations. During these periods he visited Florida and all parts of the Pacific coast south of British Columbia, and became one of our most expert collectors of mollusks. The genus of slugs, Hemphillia, was named in his honor by the late W. G. Binney, and a host of species commemorate in like manner his success as a collector.

He published but few papers himself, but was the cause indirectly of much publication by others. He had a keen eye for relationships and differences, and at times mounted on large tablets series of land shells with radiating lines of variation which were most instructive, and which found a place in some of the most important museums. He had been long a widower, and, as age diminished his energies, he retired to Oakland, where for the last few years he made his home with an only daughter. His kindly ways and generosity to others will keep his memory green among those who knew him. He left what is doubtless the best and most complete collection of Pacific coast shells, up to the time of his retirement, that is to be found anywhere except in the National Museum. It is particularly rich in series showing

variation, and in the land shells; also including much valuable exotic material received in exchange. It is to be hoped that this collection may be preserved intact in one of the public institutions of the Pacific coast, as at present a collection of shells worthy of the State of his adoption does not exist in any university or museum west of the Rockies. (Science, August 21, 1914).

PUBLICATIONS RECEIVED.

A Descriptive Catalogue of the Naiades or Pearly Fresh-water Mussels. By Charles Torrey Simpson. Published by Bryant Walker, Detroit, Mich., pp. xi,1540. Mr. Simpson's Synopsis of the Naiades, 1900, next after the Observations of Lea, has done more than any other work to stimulate and direct the study of fresh-water mussels. Very little work had been done on our fauna for many years until Simpson's investigation inspired renewed research. The large mass of work which has appeared in the last few years, extending the lines initiated by Simpson, is the best testimonial to the value of his Synopsis.

After the Synopsis was launched, Mr. Simpson began the more comprehensive work now before us, in which all of the species are described. It was intended that all should be illustrated, but this expectation could not be realized, and on the removal of the author to Florida in 1902, the work was laid aside. Unwilling to see the progress of Naiad study delayed for want of a descriptive work fully developing Simpson's system, Mr. Bryant Walker undertook the publication of this monumental monograph, assisting Mr. Simpson in completing the descriptions of the period from 1902 to January, 1913. The labor and expense of bringing out the book must have been very great, and Mr. Walker has earned the gratitude of conchologists for his part in it.

Mr. Simpson has adhered to the classification of the Synopsis, with few changes, in the belief that subsequent work on taxonomy and nomenclature has not yet progressed far enough to warrant such a general revision as will even-

tually become necessary with the progress of science. A few corrections have been made in generic nomenclature. We note that the new name *Cristidens* was misspelled in the heading on p. 1154. The synonymy is given in full, and keys have been made to the species of many genera. The index contains about 7600 entries.

The Descriptive Catalogue gives students access to descriptions of all the species, which otherwise could be had only in a large library, which would take years to accumulate; and it also contains the full exposition of the principles of Simpson's classification which has revolutionized the study of Naiads. It should certainly be in the hands of all interested in fresh-water mussels.

The division of the book into three parts, each with titlepage, was an excellent idea, since each makes a volume of about 500 pages.

ILLUSTRATIONS OF A THOUSAND SHELLS. By Y. Hirase, Kyoto, Japan. Part One of this exceedingly interesting publication has been received. It contains 95 beautifully colored figures, arranged in Japanese style on twenty double folding plates. The coloring and drawings are as a whole remarkably good; many of the more recently described species, such as—Cyclophorus hirasei Pils., Ornithochiton hirasei Pils., Chlamys hirasei Bavay and the rare and beautiful Pleurotomaria hirasei Pils. are figured. It forms a unique conchological work.—C. W. J.

NOTE.

In a recent number of the Bulletin du Muséum National d'Histoire Naturelle (1913, p. 476) M. Germain proposes the new subgenus Pseudoclavator for Bulimus favannei Brug., Clavator heimburgi Kob. and Bul. crassilabris Gray. He omits B. procteri Sowerby, which belongs to the same group, and does not explain why the name Leucotænius is not available for the same series of species, B. favannei being its type.—H. A. P.

PLATE III

A. PHYSA ACUTA DRAP.
B, C. BATHYTOMA CLARKIANA RIVERS.

THE NAUTILUS.

Vol. XXVIII.

OCTOBER, 1914.

No. 5

A NEW SPECIES OF LEPTACHATINA.

BY H. A. PILSBRY.

LEPTACHATINA COOKEI n. sp.

The shell is perforate, ovate-conic, weakly marked with growth-lines, or nearly smooth, and glossy in the best preserved specimens. Apex small, obtuse, the spire straightly conic above, convex below; the last whorl more or less noticeably compressed, more flattened than the penultimate whorl; the base is convex, compressed around the axial crevice. Whorls 61/2 slowly enlarging the penultimate somewhat convex, those above nearly flat. The suture is superficial; in the last third of a whorl it ascends slightly and at the aperture it is rather abruptly, arcuately deflexed. The aperture is oblique, ovate, contracted; outer lip obtuse; columellar lip reflected, thickened on the face, and appressed above the narrow perforation, continuous with a callous cord which bounds the rather thick parietal callus, and terminates in an enlargement or tubercle which is separated from the termination of the outer lip by a narrow groove or posterior commissure of the aperture. The columellar lamella is thin, broad and subhorizontal, outwardly emerging to the edge of the columella.

Length 10, diam. 5, aperture 4 mm. 6½ whorls.

Length 9.5, diam. 4.9 mm.

Length 9.3, diam. 5 mm.

Length 9.2, diam. 4.4 mm.

Oahu: Kawaihapai, on a steep wooded bluff about 500 ft. above the coastal plain, and perhaps 3/4 mile from the sea. Type no. 110593 A. N. S. P. Paratype in Bishop Mus.

This is a much larger, more robust species than other forms having a parietal callus and posterior commissure. The columellar lamella is broader and less oblique. By its form and texture it recalls *L. resinula*, which differs in apertural characters.

Kawaihapai is near the western cape of Oahu, and the bluff there is the last terrace of the Waianae mountains. My companions there were Dr. Cooke and Mr. Forbes of the Bishop Museum.

NOTES ON WEST AMERICAN EMARGINULINAE.

BY WM. H. DALL.

The large Subemarginula yatesii Dall, 1902, from Monterey Bay, seems to be represented by a fragment from the Bay of Panama. S. bella Gabb, described in 1865 is apparently very rare. I have an uneasy feeling that it may prove to be the young of yatesii; at all events the point will bear investigation; the specimens at my disposal are insufficient to decide the question. Zeidora flabellum Dall, 1895, is only known by the type specimen from deep water off Clarion Island. Rimula mazatlanica Carpenter, 1857, is likewise represented only by its type.

Puncturella (Cranopsis) expansa Dall, 1896, we have from Panama Bay and the Galapagos Islands in deep water.

The typical Puncturellas have the internal septum, below the slit, buttressed by props. *P. noachina* of British seas is the type. But a large number of the species are destitute of this feature. The northern species have thickish tentacles, with the

eyes on protuberances at their outer bases; the antarctic forms have long slender tentacles with the eyes about one third the length from the insertion of the tentacle. Behind the true tentacles is another pair, shorter and without eyes, probably really belonging to the epipodial series of cirri, but separated by a gap from the other shorter ones behind them. These pseudotentacles were figured from life by Couthouy and from a spirit specimen by Strebel, and are not represented in the forms of the northern hemisphere. The males in both groups have a well developed verge behind the right tentacle. This of course disposes of the identity claimed on conchological grounds for the antarctic and northern species like noachina.

Beginning with those species destitute of props to the septum we have *P. cucullata* Gould, 1849; high, with strong ribs, wide interspaces which may be smooth or radially grooved. It ranges from Kadiak Island to La Paz, Mexico. Nearest to this is *P. multistriata* Dall, n. sp. with small, slightly alternated, rather close set radial threads. This has generally been associated with *cucullata* as an extreme variation; but the very large series I have indicates that it is distinct. It ranges from the Aleutian chain south to San Diego, and the Cortez Bank, Cal.

P. cooperi Carpenter, 1864, has been received from southeastern Alaska and extends to the Santa Barbara Islands, Cal. It is small, erect and very feebly sculptured.

P. caryophylla Dall, n. sp. minute, high, cylindro-conic, with strong, even, radial threads, resembles nothing so much as a miniature solitary coral, and has been dredged off San Diego, Cal., in 40 to 80 fathoms.

P. longifissa Dall, n. sp. is low, narrow, small, with an arcuate back, strong radial threads, very posterior apex, and the slit half as long as the distance from the apex to the anterior margin. It has been found only in 10 fathoms, off Bering Island, Bering Sea.

The Antarctic species are *P. cognata* Gould, 1849, from Orange Harbor, Patagonia, which has been often identified as *P. noachina*, being one of the species with props. *P. falklandica* A. Adams, 1862, is without them, while *P. conica* Orbigny, 1841, has only the faintest traces of a supporting callus. Both

are common to the southern part of Chile, the Magellanic region, and the Falkland Islands.

The largest species of the genus, which reaches 58 mm. long and 28 mm. high, is *P. major* Dall, 1891, ranging from the Pribiloff Islands, Bering Sea, to Boca de Quadra in southern Alaska. It has faint transverse lines of callus but no pits, and the shell is very thin for its size. Lastly *P. galeata* Gould, 1849, has strong pits and props, with a finely threaded, closeset, radial sculpture. It ranges from Unalashka, Aleutian Islands, to the Santa Barbara Islands, California.

A NEW FORM OF BATHYTOMA FROM THE UPPER PLEISTOCENE OF SAN PEDRO, CAL.

BY PROF. J. J. RIVERS.

Plate III, figs. B, c, represent two examples selected from six discovered by Dr. F. C. Clark, who has been for several years an investigator of the coast species of both fossil and recent Mollusca.

Dr. Clark and myself have a partnership in Paleontology, each holding equal rights under the firm name of "Rivers and Clark". Dr. Clark does most of the excavating of strata, while I have the delight to nominate the species when I am able. Our material is great, and unless we can obtain assistance, years will elapse before a complete catalogue will be forthcoming.

Bathytoma clarkiana Rivers. I name this in honor of my colleague, Dr. F. C. Clark of Santa Monica, Cal. The fossil is heavily charged throughout the whole of its structure with carbonate of lime. The columella is thicker than in any described species. If the shell be placed with its aperture downwards, many conchologists would think it an exotic species of Mitra. But there are none of the known species of Bathytoma that represents this form in its attenuate outline. This figure will explain the oblique condition of the sutures that divide the whorls.

The sculpture has mostly been eroded, but in parts the sculpture remains, resembling that of other members of the genus.

Bathytoma clarkiana if restored, would measure 116 mm, over all, the body whorl measuring 68 mm, the spire 48 mm.

The photos submitted to you have also been sent to the scrutiny of Dr. R. H. Tremper of Ontario, and his reply reads thus;—"The photo is very interesting. I suspect your shell represents some extinct form of Bathytoma. I have not seen a specimen of this genus so long, nor so attenuate. Your fossil is not B. tremperiana of Dall. The latter is a very different shell and very much smaller, good-sized specimens measuring 67 mm.; body whorl 82 mm., spire 35 mm., making the body whorl shorter than the spire, while in your specimen the body whorl measures 68 mm., and the spire 48 (if restored)."

STUDIES IN NAJADES.

BY A. E. ORTMANN.

(Continued from page 47.)

ALASMIDONTA (PEGIAS) FABULA (Lea) (See: Pegias f. Simpson, 1900, p. 661).

Three males and two gravid females (with glochidia) from North Fork Holston River, Saltville, Smyth Co., Va., collected Sept. 17, 1912.

Anal opening separated from the supraanal by a well developed, but rather short mantle-connection. Inner edge of anal crenulated, that of branchial with papillae. Posterior margins of palpi connected for about one third of their length.

Inner lamina of inner gills free in about the posterior half of the length of the abdominal sac, or a little more, so that the connection in front is distinctly longer than usual. Gills of Anodontine structure, in the female only the outer ones are marsupial, have lateral water canals, and are distended at the edge. The glochidia fill the ovisacs in a mass, which does not form distinct placentae. Glochidia very large, of a specific, peculiar shape. They have the general Anodontine character, and possess the typical hooks, but the anterior and posterior margins are strongly convex, so that the hinge-line is considerably shorter than the length of the glochidium. The general shape thus becomes almost transversely elliptical, with the upper margin straight in the middle, the lower with a slightly projecting point, which bears the hook. Length 0.40, height 0.36 mm.

Color of soft parts whitish, mantle margin with square black spots posteriorly, entirely black on the inside of supraanal and anal.

The structure of the soft parts of this species is truly Anodontine, and does not show any essential differences from that of the genera Symphynota, Anodonta, Anodontoides, and Alasmidonta. Thus we are to rely only on the shell characters. The most important one, the beak sculpture, clearly places this species with the genus Alasmidonta, but the general shape of the shell, chiefly the peculiar truncation at the posterior end and the rather strong sexual dimorphism, give it a rather isolated position. Simpson created the genus Pegias for it, relying, as it appears, chiefly on the shape of the shell. But shape of shell is rather variable in the genus Alasmidonta, and I think enough justice is done to this, if we regard Pegias as a subgenus of Alasmidonta. The shape of the glochidia is unique, and although of the common Anodontine type, the triangular outline is changed, in consequence of the great convexity of the anterior and posterior margins, into a transversely elliptical. But since the glochidia also of other species of Alasmidonta show differences in shape, also this character is hardly of more than subgeneric value.

In Simpson's diagnosis of the genus *Pegias*, the radial depression in front of the posterior ridge is unduly emphasized: it is very faint, and indicated only in the female. The statement that anal and supraanal are not separated is not correct.

AMYGDALONAJAS DONACIFORMIS (Lea) (*Plagiola d.* Simpson, 1900, p. 605).

One male and one gravid female, with glochidia, from Wabash River, New Harmony, Posey Co., Ind., collected by A. A. Hinkley, Aug. 8, 1912.

Soft parts agreeing with those of A. elegans (Lea), as described previously (Ortmann, l. c. p. 328). The posterior margins of the palpi are connected for about one-fourth of their length. Inner lamina of inner gills in both specimens connected with abdominal sac, leaving only a small hole open at posterior end of foot. Marsupium of the female formed by 25-30 ovisaes. Glochidia extremely small, subovate, agreeing in shape with those of A. elegans, but even a little smaller. Length 0.05, height 0.06 (in elegans they are said to be 0.075×0.09 mm.). These are the smallest glochidia known to me.

PROPTERA CAPAX (Green) (See: Lampsilis c. Simpson, 1900, p. 529).

I have males and females of this species from Wabash River, New Harmony, Posey Co., Ind., collected by A. A. Hinkley, Aug. 8, and from the Mississippi River, Martins Landing, Rock Island Co., Ill., collected by Dr. Coker, October 5, 1912.

Coker and Surber (Biol. Bull. 20, 1911, p. 179, pl. 1, f. 4) have first discovered that this species has the glochidia of *Proptera*. Among both of my sets are gravid females with glochidia, and I have been able to confirm this, and to study the rest of the anatomy.

Mantle connection between anal and supraanal rather long, slightly longer than the anal, the latter crenulated; branchial with papillae. In the female, the inner edge of the mantle in front of the branchial is slightly lamellar, with few remote, fine crenulations, which resemble minute papillae posteriorly (near the branchial); but these "papillae" are in proportion to the size of the animal extremely small, much smaller than in the genus Eurynia; the lamellar edge is nowhere flap-like, as in Lampsilis, and runs forward about one-third

of the mantle margin, passing gradually into the smooth anterior section, of the edge. Posterior margins of the palpi connected for about one-third or one-half of their length.

Inner lamina of inner gills entirely connected with abdominal sac. Marsupium kidney-shaped, consisting of many ovisacs, located in the posterior section of the outer gill. Glochidia celt-shaped, agreeing with the figure given by Coker and Surber. Measurements length 0.09, height 0.18 mm. They are much smaller than those of $P.\ alata\ (0.21\times0.38)$, but about as large as those of $P.\ laevissima\ (0.12\times0.18)$, but the latter are more dilated at the lower margin.

Soft parts whitish throughout, with the mantle margin brownish-black, more intensely so posteriorly.

Nobody, except Coker and Surber, has doubted hitherto, that this species, according to the shape of the shell, is closely allied to Lampsilis ovata and ventricosa, in fact, the shape of the shell is very much like that of old females of L. ventricosa. Anatomical investigations has shown now, that this is no Lampsilis at all. It is a true Proptera, and a close examination of the shell reveals, that the resemblance to L. ventricosa is indeed only superficial. This is shown first of all in the character of the hinge teeth, of the ligament and the symphynote character of the upper margin, and then by the lack of a distinct differentiation of the male and female shell. In the female, the postbasal region is indeed slightly expanded; but this difference is very indistinct, in fact, I was unable to tell the males from the females, before I had looked at the soft parts: the sexes are even less distinct than in the other species of Proptera.

The present specimens show that glochidia are present at the beginning of August and the beginning of October, but they do not give an indication as to the duration of the breeding season.

Genus: Carunculina Simpson, 1898 (as subgenus, Simpson, 1900, p. 563, and Ortmann, 1912, p. 337).

I think now, that Carunculina is entitled to generic rank. Characters of the shell (chiefly the beak sculpture), and

characters of the soft parts (the "caruncle" in front of the branchial opening, and the inner lamina of the inner gills, which is more or less free) sufficiently distinguish it from Eurynia. In addition, there seems to be a difference, from Eurynia, in the glochidia, which are suboval, with the margins rather regularly curved, not much higher than long, and smaller in the two species of Carunculina, in which they are known. In Eurynia, subgenus Micromya, the glochidia are larger, distinctly higher than long, and nearly subspatulte, with the anterior and posterior margins nearly straight. In the typical Eurynia the glochidia are subovate, but larger and higher in proportion.

I have given (l. c.) *U. parvus* Barnes as type of the subgenus, while Simpson (1900) names *U. texasensis* Lea. However, when Simpson first published the subgenus (as section, in: Baker, Bull. Chicago Ac. Sci. 3, 1898, p. 109, misprinted as *Corunculina*), he used it only for one species, *U. parvus*, and this, consequently, is to be regarded as the type.

(To be continued.)

"PHYSA HETEROSTROPHA SAY" IN EUROPE.

BY CAESAR R. BOETTGER.

In the Nautilus, Vol. xxvii, No. 10, pp. 112-113, Mr. Frankenberger states that all the Physas lately introduced into Central Europe are not the European Physa acuta Drap. but the North American Physa heterostropha Say. He believes that Babor and Novak were the first to record this North American shell in the waters of Central Europe. This is not the case. In 1907 D. Geyer already mentioned (Jahreshefte des Vereins für Vaterl. Naturkunde in Württemberg, 1907, pp. 426) that it is possible that the ancestor of our form is Physa heterostropha Say. It may be that now and then Physa heterostropha Say is introduced into Germany with American fishes and plants of aquaristic commerce. But this must be very rare and the ex-

ception. As a matter of fact, however, I have never seen among the many specimens examined any true Physa heterostropha Say from a German locality. Even if Frankenberger had seen introduced specimens of the American form, he ought not to have generalized this fact. He would not have arrived at such exaggerated conclusions, if he had seen such large series of the introduced German shell as well as such quantities of the Southern and Western European Physa acuta Drap. from so many localities as I have been able to study. Had Mr. Frankenberger asked me for information,—it would not have been the first time we corresponded,-I should have been glad to give him any desired. This is especially the case with my Physa acuta thermalis (Nachrichtsblatt der Deutschen Malakozoologischen Gesellschaft, 1913, p. 161). But this information was even rather superfluous, as I have stated (l. c.), that I had a series showing all intergradations from typical Physa acuta Drap. to my new form (Plate III, fig. A.)

This latter shell has reached such a large size by reason of the prevailing favorable conditions. The accompanying figures clearly illustrate this fact. There can be no doubt that all Physas—rare exceptions admitted—found in Central Europe and not belonging to Physa fontinalis L. are specimens (and their descendants) of Physa acuta Drap. from Southern and Western Europe introduced by aquarists. In many cases it is even still possible to trace their history, as their local forms may often be recognized. Apparently Mr. Frankenberger believes every large Physa with elongated spire and rough surface to be Physa heterostropha Say, quite ignoring the fact that in the natural range of Physa acuta Drap. there are also races showing these characters.

NOTES.

Newspaper Conchology—The following choice specimen of newspaper science has appeared in several western papers.

"Test snails speed record. Tucson, ariz., Aug. 29.—Prof. Farniss, a naturalist of Joliet, Ill., whose specialty is snails,

has gone into the White Mountains with Frank Cole, a trapper and guide, to study the effect of altitude upon some snails he is taking with him.

"It is well known that snails travel slowly at low altitudes. What their running time is in the more invigorating climate of the mountains will be one of Farniss' problems."

BIRDS TRANSPORTING FOOD SUPPLIES. — Mr. Charles T. Ramsden's interesting note on "The Bobolink as a conveyor of mollusca'' suggests to me the desirability of drawing attention to two other instances of similar phenomena. Professor G. E. Beyer of Tulane University, who has been a close student of Louisiana birds for many years, has collected numerous Upland Plover (Bartramia longicauda) soon after their arrival upon the Gulf Coast, which bore beneath their wings from 20 to 40 small snails of the genus Physa. In reply to a query about this point Professor Beyer in a letter of August 7, 1911 says: The peculiar habit which this bird has in concealing the snails among the under wing feathers has been known to me for many years. When first discovered I pointed out this singular fact to several of my hunter friends. The occurrence, however, was so regular and was confirmed so often in after years, that I expected the habit to be generally known. I used to count the number of snails regularly; at one time I found as many as forty-one, oftener between twenty and thirty, never less than ten or twelve. The stomachs of the birds always contain a number of crushed shells of the snails. Furthermore, the finding of these snails is only possible if the birds are obtained shortly after their arrival from the South, the earliest date of which I always placed about March 22. I was at the time unable to determine whether the species of snail was the same or different from ours, for the genus contains several species. At the time the Papabotte's arrive here, Physa is not common with us and does not become plentiful until May and June. I am sorry to say that I became as it were side-tracked in after years as I had intended to continue this

inquiry and extend it to other migratory birds of a similar nature.—W. L. McAtee, Biological Survey, Washington, in *The Auk*, July, 1914, p. 404.

PUBLICATIONS RECEIVED.

THE CEPHALOPODA OF THE HAWAIIAN ISLANDS. By S. Stillman Berry. Bull. Bur. of Fisheries, vol. 32, Document no. 789, 1914. A monographic, illustrated account, based chiefly upon material collected by the Fisheries steamer Albatross. The fauna contains about 25 named species, together with about half as many uncertain forms. The absence of the great genera Loligo and Sepia is an unexpected peculiarity. Sepia being a littoral group, the author suggests that "wide oceanic areas may in some way form a special barrier to its dispersion. If this be true, we should perhaps expect other littoral forms, such as the Polypi [Octopus], to be distributed in accordance with the same principle, but this does not appear to be the case. An explanation of this anomaly may be found in the hypothesis that the dissemination of these other forms took place at a more ancient period." The case of Sepia seems to be analogous to that of Fulgur and other gastropods of our coast which pass the veliger stage in the egg-capsule, and thus have never reached Bermuda, whilst genra with swimming embryos are common to Florida and Bermuda. The presence of Polypus in Hawaii indicates, probably, a less isolated condition in former times.

In summing up, Mr. Berry concludes that "although the ensemble of Hawaiian Cephalopods shows many features peculiar to itself, it appears reasonable to regard it as an offshoot, now largely isolated, of the great Indo-Malayan fauna, and therefore impossible of any definite or satisfactory correlation with that of other regions of the north Pacific." The conclusions of students of other groups of animals are quoted, supporting this estimate of the faunal relations of the islands.

FUSCONAIA SELECTA WHEELER.

THE NAUTILUS.

VOL. XXVIII.

NOVEMBER, 1914.

No. 7

THE UNIONE FAUNA OF CACHE RIVER, WITH DESCRIPTION OF A NEW FUSCONAIA FROM ARKANSAS.

BY H. E. WHEELER.

Conchologists have seldom visited the "Sunken Lands" of Northeastern Arkansas, and little is known of their molluscan fauna. Through these vast flood-plains flow long sluggish "bayous" which for most of the year develop into respectable streams, but in long-continued droughts dwindle to a chain of muddy hollows. Such a river is the Cache. It is formed by the confluence of several small creeks which rise in the swamps of southeastern Missouri and on the western slopes of Crowley's Ridge in the upper part of Clark County, Arkansas. It flows through, or forms the boundary of, eight counties in this state. The only settlement on its banks is a small saw-mill hamlet, and the two nearest towns along its course have less than 500 inhabitants each. For more than one-half of its course of more than one hundred and eighty miles it parallels Black River. then, maintaining a more southerly direction, it continually approaches the easterly bearing course of White River, into which it empties near Clarendon in Monroe County.

Since Crowley's Ridge is the great divide between the St. Francis basin and the Sunken Lands on the east, and the wide valleys of the Cache and other (and more important) rivers on the west, a few notes on its geologic origin and history may be of interest.

Crowley's Ridge extends from southeast Missouri in a some-

what regular curve to Helena, Arkansas, on the Mississippi River, varying in width from less than a mile to more than fifteen miles. Its greatest distance from the Mississippi River is sufficiently indicated by the line between Nettleton and Osceola, approximately forty miles. Near Greenville in Green County the Ridge reaches a maximum elevation of 250 feet above the valley of the Cache, and in many sections there are denuded areas or "ampitheatres" of great extent, but of limited agricultural promise. The lowest beds are clays on which are imposed great deposits of sand and gravel, and the whole capped with loess. The loess is of early Pleistocene age, the gravels are Tertiary, the sands are also Tertiary but of a much older period, while the clays at the base are Eocene as established upon paleo-botanic data. Thrice alternately this region has been depressed and elevated during Tertiary times and before the great depositary and erosive activities of the glacial period began. As Professor Call* truly observes, Crowley's Ridge is "the residual product of long-continued erosion. It is in no sense an upheaval, nor does it, in Arkansas, contain a rock of crystalline character or of Paleozoic age. Its existence is due to the resistance it has offered to erosive forces which have leveled the greater part of the region. It stands now a silent witness to a history so wonderful that the imagination is taxed by any attempt to compass all the details."

The fauna of all the rivers west of Crowley's Ridge and east of the Paleozoic escarpment † in Arkansas possesses a peculiar interest owing to the fact that they are the modern representatives of the ancient Mississippi, which in pre-glacial times did not cut through the solid rock southeast of Cape Girardeau, Missouri, but swept through the lowlands of Black, White and Cache rivers, uniting with the Ohio south of Helena. For the same reason the fauna of St. Francis basin will claim attention as this was the subsequent channel of the Mississippi when it broke through Crowley's Ridge at Chalk Bluff on the Missouri-

^{*} An. Rep. Geol. Surv. Ark., 1889, Vol. II, p. 131.

[†] This boundary is accurately enough marked for descriptive purposes by the Saint Louis and Iron Mountain Railroad.

Arkansas line, and followed in general the present course of the St. Francis River.*

In the Cache River bottoms occasional forests of cypress are found, though not as frequently as in the swamps east of the Ridge. Generally the lowlands are so flat that, as has been well remarked, "near the North boundary of Clark County it seems to be a matter of indifference to many streams whether they flow into the Cache or into the Black River." The ecologist will find in Harper's "Phyteographical Notes on the Coastal Plain of Arkansas,"† data of much value concerning the vegetation on Crowley's Ridge and the adjacent Prairie regions.

The writer collected a large number of mussels from Cache River at Nemo in Craighead County, on the Bonnerville and Southwestern Railroad, on June 19th, 1914. Since then collecting has been done in Black River and also in the St. Francis. Little and Tyronza rivers on the East of the Ridge, and a comparative study of the forms obtained will be shortly undertaken,

Of the nineteen species listed from the Cache, the Quadrula, which is described below, proved to be the most abundant form, though Crenodonta trapezoides (Lea) and Lampsilis hydiana (Lea) were very common. No univalves were found except Vivipara contectoides (W. G. Binn) and Campeloma levisii (Walker). I am indebted to Dr. Bryant Walker for a revision of my identifications.

LIST OF SPECIES.

Lampsilis hydiana (Lea).

Lampsilis fallaciosa (Smith) Simpson.

Eurynia subrostrata (Say). A peculiar form approaching nasuta, but only a few females were obtained.

Eurynia lienosa (Con.)? A single young shell, but most probably of this species.

Carunculina parva (Barnes).

Proptera purpurata (Lam.).

Paraptera gracilis (Lea).

Obovaria castanea (Lea).

^{*}See Branner, An. Rep. Geol. Sur. 1889, Vol. II, p. xiv. †The Plant World, February 1914, Vol. 17, pp. 36-48.

Plagiola elegans (Lea).

Anodonta imbecilis (Say). The species suborbiculata which might be expected here was not found. Undoubtedly it will be found in the adjacent swamp ponds.

Anodonta grandis leonensis (Lea).

Anodonta texasensis (Lea).

Arcidens confragosa (Say).

Uniomerus tetralasmus (Say).

Crenodonta perplicata (Con.).

Crenodonta trapezoides (Lea).

Quadrula (Tritogonia) tuberculata (Bar.).

Quadrula pustulosa (Lea).

Fusconaia selecta n. sp. Plate IV.

Shell large, solid, quadrate to rhomboidal, much inflated, and inequilateral; dorsal margin evenly curved, gradually curving into the anterior and posterior margins; anterior margin somewhat projecting but regularly rounded; posterior margin obliquely curved, meeting the basal margin in a blunt, rounded point on the base line; basal margin nearly straight, slightly incurved in front of the posterior ridge; umbonal region greatly inflated, flattened in the centre, the greatest diameter of the shell being through the anterior portion; beaks prominent, incurved, their sculpture indeterminate by reason of erosion; posterior ridge strong, roundly angled, extending to posterior point; a shallow medial depression extends from the beaks to the basal emargination, in front of the posterior ridge: the central portion of the disk is decidedly flattened; the posterior area is wide, flattened toward the margin, and markedly incurved from the posterior ridge; surface smooth, with regular and even growth-lines, having the rest-periods clearly defined; epidermis polished and shining in young and half-grown shells, rougher in mature specimens; colored bright reddish-brown, with an undercast of yellow or ochre or occasionally green, becoming with age dull redbrown, deeping to black on the umbonal region; young shells are faintly and beautifully rayed; in young shells the epidermis is "faintly, radiately puckered or festooned, giving an appearance of superficial, radiating striæ" extending from beaks to basal margin, and these are stronger on the dorsal area immediately behind the posterior ridge; ligament moderately developed, redbrown; hinge strong; interdentum short and flat; in the right valve there is a single, strong, high, triangular and rather smooth pseudocardinal which is ragged apically, and separated from the dorsal margin by a deep, narrow, straight pit for the reception of the anterior pseudocardinal of the left valve and cut away behind to accommodate the posterior pseudocardinal and a long sharp curved lateral; in the left valve the pseudocardinals are low, ragged, and nearly confluent, the anterior one flat, and nearly parallel with the hinge line, the posterior one sharp and triangular, laterals long and somewhat curved; muscle scars deeply impressed, the anterior confluent, the posterior separate; beak cavities deep and capacious; nacre white, sometimes faintly salmon-tinted, irridescent posteriorly.

Length 67.5, height 55.5, diameter 43 mm.

Type locality: Cache River, Nemo, Craighead County, Arkansas.

Type in cabinet of H. E. Wheeler; co-types in collection of Dr. Bryant Walker, Mr. L. S. Frierson, Alabama Museum of Natural History, and Academy of Natural Sciences.

Remarks.—This species is closely related to Fusconaia undata (Bar.), but is readily distinguished from it by having the anterior portion of the umbonal area and the posterior ridge almost equally inflated, thus making a remarkably wide and flattened area in the middle of the shell, and by its broad, flattened and incurved posterior area. It further differs from undata in not having its narrow, elevated beaks, and in being without the flattened area in front, which is called by Mr. Simpson the "secondary lunule." It is too inflated to be confused with rubiginosa (Lea) or with cerina (Con.), and too inequilateral, as well as too inflated, to be taken for hebetata (Con.), from which it also differs in lacking the peculiar posterior end characteristic of that species.

Dr. Walker points out that young shells of the size of the one figured are rhomboid and only moderately inflated. But with increasing growth the inflation of the umbonal region is rapidly developed, and half-grown specimens are proportionately higher, shorter and more inflated than the adults. An example at this

stage measures: length 43, height 41, diameter 33 mm. At this period the resemblance to typical *undata* is quite striking.

Mr. L. S. Frierson was the first to call my attention to the peculiarities of this species, and both he and Dr. Bryant Walker have generously aided me in its description.

A NEW POLYGYRA OF THE STENOTREMA HIRSUTA GROUP FROM GEORGIA.

BY GEO. H. CLAPP.

Polygyra cohuttensis n. sp.

Shell imperforate, thin, reddish-horn color; densely hirsute with very fine, short hairs. Whorls 5, those of the spire convex with a well-impressed suture; the body whorl with the per-

iphery situated high, very convex below, impressed in the umbilical region, abruptly deflected at the aperture and contracted behind the lip. Aperture transverse, narrow, widening anteriorly; parietal tooth large, erect, parallel to the lip in its lower half, then curving outward and in the upper third inward terminating in a hook which passes under the lip between the notch and the lip tooth, outer end connected with the peristome by a low ridge; outer lip reflected back against the body-whorl but free its entire length; lip notch stretched out so that it forms a regular curve in the lip for over half its length with the edge raised from the lip; beyond the notch the lip sweeps around the inner end of the parietal tooth and then forms a small tooth above; fulcrum medium.

Largest shell (type), diam. $7\frac{1}{4}$, alt. 5 mm., smallest 6 x 4, average 7 x 5 mm.

The character of the lip at once differentiates this species

from all others of the group; it is apparently closest to P. brevipila.

Collected by Herbert H. Smith on "Fort Mountain and foothills below 1500 feet, Cohutta Mountain, Murry Co., Ga," Aug., 1914.

Type in my collection, cotypes in collections of Academy of Natural Sciences (No. 110919), Geological Survey of Alabama, U. S. National Museum.

DESCRIPTION OF A NEW SPECIES OF TORNATELLIDES.

BY C. MONTAGUE COOKE, PH. D.

TORNATELLIDES PILSBRYI n. sp.

Shell minutely perforate, elongate-conic, corneous, glossy, under a lens minutely striate with growth lines; thin, diaphanous. Spire elongate-conic, with almost straight outlines; apex slightly obtuse. Suture hardly impressed, margined with a broad line. Whorls nearly 7, the embryonic increasing rapidly, convex, minutely, indistinctly, spirally striate, the rest increasing slowly and regularly, nearly flat, the last whorl long, tapering towards the base. Aperture narrow, obliquely truncate-ovate. Parietal lamella large, oblique. Columella narrow below, tumid above, furnished with two well developed, deeply seated lamellæ, of which the lower is the stronger. Peristome thin, erect, the outer margin regularly arcuate. Length 3.1, diam. 1.5, of apert. 1.1, parietal lamella 0.29, umbilicus 0.3 mm.

Oahu: Popouwela, in the Waianae Mts. (Cooke). Type no. 36261 Bishop Museum, cotypes no. 110764 A.N.S. Phila.

All the specimens were collected on the trunks of a species of *Urera*, a foot or two above the ground. It was not abundant at that time, and a later visit to the exact spot did not yield a single specimen. Pilsbry and Spalding were along on the first trip, but apparently neither collected specimens.

This species is characterized by its very strong parietal lamella and the columellar lamellæ, which persist in the adult stage. The columellar lamellæ are rather long, fairly strong and oblique; the upper is situated just below the parietal wall.

The parietal lamella is remarkably strong and extends inward for nearly a whorl.

In an immature specimen with $5\frac{1}{2}$ whorls the parietal lamella is 0.27 mm. in height. The lower columellar lamella is 0.2, the upper 0.14 mm. in height.

NOTES ON RANELLA LAMPAS OF AUTHORS.

BY E. G. VANATTA.

Having gone over the specimens in the collection of the Academy of Natural Sciences, using Mr. E. A. Smith's enlightening article (Journal of Conch., vol. 14, p. 226, 1914), I would like to supplement it by recording my impressions. It seems to me that there are three species involved.

I. Bursa bubo (L.). The first name for any of the shells in question is Murex rana [var.] bubo Linnæus, 1758. Also in Gmelin. T. bufo Bolten is a synonym. Var. gigantea Smith is a name applied to the extra large size, and var. lissostoma Smith for these with a darker-colored aperture.

II. Bursa rubeta (L.). The second species was named by Linnæus Murex rana [var.] rubeta. Also of Gmelin; T. rubeta Bolt., B. rubeta Smith. T. tuberosum Bolt. is a synonym, and has page-priority over rubeta if the names were to date from Bolten.

III. Bursa tenuigranosa Smith. (B. rubeta var. tenuigranosa Sm.). The Academy has a fine specimen 10 inches long, from "India," the gift of M. Thomas. It seems to me to be a distinct species.

A REMARKABLY RICH POCKET OF FOSSIL DRIFT FROM THE PLEISTOCENE

BY T. S. OLDROYD.

In digging away the dirt from a side hill on my place in the Los Cerritos two miles back from the ocean at Long Beach and over 100 feet above sea level, I found some drift in a fissure or pocket in a hard calcareous formation under seven feet of top soil. It consisted mostly of fine sand and broken shells and would measure up about one cubic foot. I call it drift from

the difference in the habitats of the various species when found living: some were common—those usually found at low tide in estuaries or on mud flats; some from rocky beaches and some usually found in deep water. I found one species, the only specimens I ever obtained living, in a piece of coral brought up from 200 fathoms. The shells, most of them very small, were remarkably well preserved. After sieving and sorting and saving nothing but good specimens, I obtained 105 species and over 4000 specimens, as follows.

Marginella varia Sby., 17 Marginella subtrigona Cpr., 2 Eulima micans Cpr., 21 Drillia hemphilli Stearns, 81 Acteon punctocaelatus Cpr., 16 Acteon traskii Stearns, 2 Platidea anomioides Scacchi, 1 Cadulus nitentior Cpr., 13 Dentalium neohexagonum Pils., 18 Dentalium pseudohexagonum Dall, 125 Caecum californicum Dall, 18 Caecum hemphilli Stearns, 6 Vermetus (tips only), 5 Cylichna alba Brown, 15 Volvula cylindrica Cpr., 15 Tornatina harpa Dall, 3 Tornatina carinata Cpr., 228 Tornatina cerealis Gld., 57 Cyclostremella californica Bartsch, 2 Mangilia angulata Dall, 123 Mangilia variegata Cpr., 17 Epitonium hindsii Cpr., 10 Epitonium bellastriatum Cpr.,

Epitonium tincta Cpr., 2

Epitonium undetermined, 3

Turbonilla ambusta D. & B., 2 Turbonilla laminata Cpr., 18 Turbonilla torquata Gld., 20 Turbonilla undetermined, 1 Turbonilla undetermined, 1 Olivella pedroana Conr., 662 Olivella biplicata Sby., 3 Olivella intorta Cpr., 15 Crepidula adunca Sby., 135 Crepidula excavata Brod., 12 Crepidula nivea Gld., 6 Crepidula onyx Sby., 3 Crepidula dorsata Brod., 1 Crucibulum spinosum Sby., 11 Siphonaria peltoides Cpr., 1 Megatebennus bimaculatus Dall, 3 Lucapinella callomarginata Cpr., 2 Ischnochiton conspicuus Cpr., 1 Acanthina spirata Blainv., 27 Acanthina engonata aurantia Dall, 3 Tritonalia poulsoni Nutt., 11 Tritonalia foveolata Hds., 1 Tegula viridula ligulata, Mke., Calliostoma gemmulatum Cpr., 22

Turbonilla tenuicula Gld., 20 Cerithiopsis pedroana Bartsch, Cerithiopsis cosmia Bartsch, 4 Odostomia tenuis Cpr., 54 Odostomia io D. & B. (?), 10 Turris ophiderma Dall, 5 Melampus olivaceus Cpr., 10 Amphissa versicolor Dall, 2 Columbella carinata Hds., 238 Columbella gausapata Gld., 200 Columbella tuberosa Cpr., 2 Columbella oldroydi Arnold, Columbella oldroydi var., 10 Phasianella compta Gld., 215 Eulithidium substriatum Cpr., Lacuna unifasciata Cpr., 412 Nassa cerritensis Arnold, 8 Nassa mendica Gld., 3 Nassa perpinguis Gld., 148 Nassa fossata Gld., 21 Nassa tegula Reeve, 3 Conus californicus Hds., 22 Polinices recluziana Petit, 52 Thracia curta Conr., 1 Saxicava arctica Linn, 1 Astarte branneri Arnold, 10 Nucula suprastriata Cpr., 413

Corbula luteola Cpr., 77 Calliostoma canaliculatum Mart., 1 Calliostoma tricolor Gabb, 1 Cerithidea californica Hald., 5 Myurella simplex Cpr., 10 Leda taphria Dall, 6 Petricola denticulata Sby., 20 Donax laevigata Desh., 8 Donax californica Conr., 1 Pecten aquisulcatus Cpr., 1 Pecten latiauritus Conr., 3 Pecten monotimeris Conr., 10 Phacoides nuttallii Conr., 6 Tellina meropsis Dall, 1 Mactra falcata Gld., 2 Cardium procerum Sby., 1 Anomia lampe Gray, 5 Ostrea lurida Cpr., 1 Metis alta Conr., 1 Cryptomya californica Conr., 1 Platyodon cancellatus Conr., 1 Chione succincta Val., 1 Chione undatella Sby., 1 Paphia laciniata Cpr., 1 Paphia staminea Conr., 1 Semele decisa Conr., 1 Saxidomus giganteus Desh., 1 Amiantis callosa Conr., 1

THE BOSTON MALACOLOGICAL CLUB.

The Boston Malacological Club has completed successfully its fourth year. It is a hopeful sign that although the first flush of enthusiasm and novelty has passed by, the club still flourishes. The character of the organization is extremely informal.

While the membership includes a number of distinguished professional scientific men, it also includes members who make no pretensions to scientific training, but from one point of view or another, find common ground in their interest in, and love of, shells. In recognition of this varied membership it has been sought to make the meetings of varied character. Some evenings have been devoted chiefly to technical papers; others to a comparative study, exhibition and exchange of shells. The meetings are held monthly from October to April.

Among the important papers given during the year were:—one by Dr. Hervy W. Shimer on the very interesting semi-fossil mollusks from the subway excavation in the Back Bay, Boston, based on the same material from which the Secretary has described a new Vitrinella; one by Professor R. T. Jackson on stages of growth in the Mollusca, particularly Nautilus and Hinnites, illustrating the recapitulation theory; one by Dr. P. E. Raymond discussing the probable cause of the peculiar double-looped beak sculpture of the Naiades, which we found to be in the tooth or spur of the glochidial embryo; one by Professor E. S. Morse on the differences between shells from shell mounds and their living local descendants, which differences he found to be very appreciable, and singularly constant in trend not only in New England, but in Japan and (so far as investigated) in Europe.

In June the club held its first field meeting, making an excursion to the varied shores of Cohasset which, if not productive of any novelties, was, at least, well attended, much enjoyed, and the occasion of some interesting observations.—WILLIAM F. CLAPP, Secretary.

NOTES.

Mrs. T. S. Oldroyd, of this city, will leave for Oakland tomorrow on the Beaver, having been summoned north to arrange, classify, and pack away, preparatory to their display, more than 1000 shell specimens that are valued at \$6,000. This collection was recently bequeathed to the California Academy of Science, San Francisco, by the late Henry Hemphill, who, while alive, was considered the dean of shell collectors.—Los Angeles Tribune, Sept. 30.

Note on Antillean Paleogeography. - A recent paper by A. P. Brown and the writer, describing the freshwater shells of the Oligocene of Antigua (Proc. A. N. S. Phil., 1914, p. 309) seems to throw some light upon the little-understood paleogeography of the West Indies. The presence of three species of Hemisinus indicates that although a large area of the present Antillean islands was submerged in the Oligocene, there must have been considerable extent of land, since these are river snails, and a number of species would not be likely to have been evolved, or to exist, unless permanent streams existed at least equal to those of the larger Antillean islands. The Oligocene fossil Ectracheliza truncata Gabb, from Santo Domingo, further supports this view. This shell is not marine, as Gabb supposed. It is really nothing but a Hemisinus, though a very large one, equal to the large South American species. It may be regarded as certain that at the stage of the Oligocene when the Antigua bed was formed, as well as those of Santo Domingo, a considerable land area existed in the eastern Antillean region, and that this land was, or had been, connected with continental South America, the original home of Hemisinus. The marine fossiliferous beds of northern Santo Domingo and of Haiti, as well as that of Bowden, Jamaica, were deposited in shallow water near the shore, judging from the character of the fossils.—

H. A. PILSBRY.

PUBLICATIONS RECEIVED.

Littoral Marine Mollusks of Chincoteague Island, Virginia. By John B. Henderson and Paul Bartsch. Proc. U.S.N.M., Vol. 47, pp. 411-421, plates 13, 14. New species are Epitonium virginicum, Turbonilla powhatani, T. pocahontasæ, T. toyatani, T. virginica, Odostomia toyatani, O. virginica, O. pocahontasæ, Triphoris pyrrha, Diastoma virginica, Cerithiopsis virginica. The large, typical form of Urosalpinx cinereus was found, up to 51.5 mm. long. In a protected cove, in which cold springs keep the bottom temperature down to about 8° below that of the open sea, the northern species Yoldia limatala and Nucula proxima were found.

H. A. P.

THE NAUTILUS.

VOL. XXVIII.

DECEMBER, 1914.

No. 8

TERTIARY FOSSILS ON LONG ISLAND.

BY L. P. GRATACAP.

Myron L. Fuller in his Geology of Long Island (p. 79) writes: "Long Island has never yielded any fossils of Tertiary Age, the diatoms from Rockway and elsewhere described by A. M. Edwards, being from deposits that are clearly interglacial or post-glacial."

Mr. Thomas C. Topping of Bridghampton, Long Island, a highway commissioner, in digging out the side of a bare hill to widen a road, six miles east of the village of Southampton, lately uncovered some fossil shells, which interested him, and were by him given to Mr. William S. Pelletreau, the historian of Southampton.

The shells taken from a light yellow sandy marl, at a depth of eight to ten feet below the surface, were in excellent preservation, and unmistakably of tertiary origin. The locality is three or four miles from the sea, and has an approximate elevation of seventy five feet above high tide water-mark.

The shells were kindly shown to me by Mr. Pelletreau who recognized their interest. They consist entirely of Arcas, and number in all twelve separate valves. There are ten valves of Arca (Scapharca) transversa Say and two of Arca limula Conrad.

The latter species is significant. It is referred by Dr. Dall to the Miocene of North Carolina, Virginia, Maryland, S. Carolina and New Jersey, and to the Pliocene in Florida, Georgia and S. Carolina. Dr. Dall writes of it (Contributions to the Tertiary Fauna of Florida, 1898); "Arca limula is with little doubt the progenitor of A. ponderosa, Say, from which it differs by a more quadrate outline and more anterior beaks. The sculpture is usually more elegant." This species does not survive in the recent molluscan faunas.

A. (Scapharca) transversa, Say, very familiar to-day along the eastern sea-board of the United States, apparently began its life history in the Pliocene, and in the upper beds of that formation, (Dall): attaining its maximum development perhaps in the Pliocene also. The determination of the formally correct reference in time of these fossils, which are unquestionably contemporaneous with each other, is—without more evidence—uncertain. But assuming as fixed the datum point of A. transversa as somewhere in the Pliocene, and allowing weight to the probability of A. limula finishing its career in the Pliocene, an age not later than that formation may be safely predicated for the shells at Southampton. And the deduction seems legitimate that at that day the climatic conditions along the edges of Long Island were more mild than to-day. It is to be hoped that explorations in this neighborhood will establish more valuable and extended conclusions.

In view of the discussions now pertinaciously continued as to the stability of our coast line, it is, in this connection, interesting to learn that at Southampton, according to the old records (Pelletreau) the ocean has encroached on the land to an extent of the whole width of the beach, and fence-posts formerly set up back of the "beach banks" (sand dunes) are now down to the level of the water at ordinary high-water mark. These dunes ("beach banks") also retreat before the incessant whipping and pressure of the winds, and deserted whaling boats, formerly abandoned behind them, viz., on their northern slopes, have been overwhelmed and have subsequently re-emerged on the south side of the northwardly shifting sand mounds, whose transgression for a time buried them.

NOTES ON MOLLUSKS FROM BRITISH COLUMBIA.

BY A. W. HANHAM.

Puncturella cucullata Gould.

My daughter Phyllis took a full-grown living specimen at low tide this season at Maple Bay, B. C., crawling on the under side of a ledge of rock. Previously I had the species only from Departure Bay, where it was taken rarely by dredging in fairly deep water.

Hemphillia glandulosa Bl. & Binn.

My acquaintance with this species is very limited. I never met with it during several season's careful collecting in the district around Victoria, B. C. Here I have taken it twice-but only in small numbers—by scraping over the dead leaves in small thickets in pastures close to the Corvichan River; in similar surroundings, further back from the river, I could not find any. With it may be taken Prophysaon hemphilli Bl. & Binn. (abundant), Polygyra columbiana Lea (frequent), and Polygyra germana Gould (occasional). In the thickets back from the river our big slug Ariolimax columbianus Gld. may be found in some numbers. In my garden, the last two seasons, both this slug and P. hemphilli have shown up in great numbers and have done some damage. Another slug-perhaps Ariolimax niger Cooper-was noticed on Mt. Arrowsmith, Vancouver Island, at an elevation of 4,500 feet, in 1913 and again this year. It was quite rare, however.

Selenites sportella Gld.

I took a fine sportella this summer for the first time, although I have often tried to imagine that some of the smaller S. vancouverensis taken were this species. One good specimen and some remains were taken from the cliff a little above high-water

mark on Salt Spring Island towards the end of August, only a few miles from Maple Bay, "as the crow flies." If it had not been the dry season I dare say I might have discovered more or had better success.

Pisidium sp.

Two or three small shells, one living, were found in a very shallow pond, fed by the surrounding snow banks, on Mt. Arrowsmith, Vancouver Island, at an elevation of over 5,000 feet, on August 6th, 1914.

Contents of Wild Duck's Crop and a few other notes. In October my son shot some ducks (Canvas-backs) on Quamichan Lake, which lies a quarter of a mile below, or distant from, our house, and when cleaning them he came and told me that their "crops" appeared to be full of shells. I got him to empty one of them on to a newspaper, and later sorted them out, with the following result:

Lymnæa sp. Several dozen, mostly juvenile, but some half an inch long.

Physa sp. About the same number and size.

Planorbis exacutus Say. Three specimens.

Valvata virens Tryon. Over 200 specimens. The species is greenish and perfectly smooth, and I give this name, as it is the name mentioned by the late Rev. G. W. Taylor in his catalogue of the mollusca of this province, and no other species is listed.

Sphærium or Pisidium sp. Two, one fairly large—but both may be Pisidia—in about the same quantity as the Valvata.

An examination of the crops disclosed absolutely no sign of food of any other kind, and all the crops—there were six birds—appeared to be crammed with shells.

I have found the bivalves fairly abundant in this lake about the roots of the water lilies, but the *Valvata* only rarely, not more than 20 having been taken, so this catch was quite a "find."

Quamichan Lake, B. C. (Vancouver Island).

FRESH WATER SHELLS IN MOOSE RIVER, SOMERSET COUNTY, MAINE.

BY OLOF O. NYLANDER.

Moose River is made up of many lakes and is the main tributary to Moosehead Lake. I have visited this part of Maine twice to make collections of the lower Devonian fossils, and in exploring the lake shores for long distances I have had favorable opportunity to also collect some of the recent shells.

Anodonta marginata Say, Common in Brassua Lake, and Long Pond.

Alasmidonta undulata Say. One living specimen from Brassua Lake and a few dead shells in Long Pond, it seems to be quite rare.

Unio complanatus Sol. Plentiful in the above lakes.

Sphærium sulcatum Lam. One large specimen and many small ones from the South and of Brassua Lake.

Musculium secure Prime. A few dead shells in Misery stream, a tributary to Moose River.

Campeloma decisum Say. Common in Brassua Lake.

Amnicola limosa Say. Common on aquatic plants in the Lakes.

Lymnæa emargin ıta, var. mighelsi W. G. Binney. On the east side of Brassua Lake above the outlet, on a rocky shore a colony of this interesting shell was discovered, a dozen living specimens were collected and about the same number of dead ones. They all compare very well with the large form obtained at Square Lake inlet, some years ago. All of the specimens were the var. mighelsi, no young shells were seen, only old and full grown specimens.

Planorbis bicarinatus Say. Common in Brassua Lake, a few in Long Lake, and at Baker Brook Point, Moosehead Lake.

Planorbis companulatus Say. Dead shells were quite common at the south and of Brassua Lake.

By any one having time to work in this part of Maine, I think many interesting things might be found.

CORRESPONDENCE FROM JAPAN AND CHINA.

TOKYO, JAPAN, April 23, 1914.

Dear Dr. Pilsbry: I have intended writing you any time during the past fortnight—but these are busy times and little gets done except what is absolutely necessary. I thought you would be interested in an account of a call I made on Mr. Hirase at his Conchological Museum—

We landed at Nagasaki, ran down to Kagoshima where we inspected the still active volcano of Sakurajima, which erupted so alarmingly in January—We were on the Transport Logan and received wireless reports that thousands were killed. Actually the death toll is said to have been eighteen, for the disturbance began twenty-four hours before reaching its full height and the three or four thousand people living on the island escaped to the mainland.

The scenery on the run down to Kagoshima is really fine—one long gorge surpassing the Rhine in beauty, though not having the historical and legendary associations of that river.

We came back via the Inland Sea, stopping at Miyajima, one of the three brag beauty-spots of Japan. I had a fine afternoon on the beaches—getting a lot of stuff that was new to me, and some old friends.

At Kyoto I sent a note to Mr. Hirase, asking if I might call that afternoon, and received a cordial note in return. Mr. Hirase is a dignified Japanese gentleman, nearly of my own age I should judge, full-bearded and fine-looking. After half an hour spent in tea drinking and conversation, Mr. Hirase and his assistant spent a couple of hours in showing me over the collection. They have about ten thousand species and varieties of Mollusks—three thousand Japanese and seven thousand foreign. The collection is beautifully mounted, each specimen or species with Latin names and additional notes and names in Japanese. Being Japanese, the arrangement is artistic, as all things are in this country, and it is a delight to go over it. There has been no economizing of space at the expense of fine appearance, so there is room for few foreign shells besides the Japanese. Mr.

Hirase informs me that several times a year all foreign shells are changed in their cases, so that all of these shells are gone over completely each year, each set being exhibited several weeks.

I scarcely had time to make any specific notes but recall a few striking things. At one place they have various sets of land shells arranged in series to include several recognized species in such a manner as to leave almost no breaks perceptibly demarking specific limits, after a manner with which Mr. Hemphill has made us familiar at home with his Helix strigosa group. At another point a case is given up to an exhibition of freaks, each mounted with a perfect specimen of the same species. Among them is a large Haliotis gigantea with two full series of holes. Some of the others are even more striking. Among rarities is a splendid series of Pleurotomarias.

Last week I ran down for a couple of days to Misaki to visit the Biological Station connected with the Imperial University. There I met Dr. C. Ishikawa who was down with a class of advanced students for the University vacation and Mr. S. Fujita who has charge regularly. Mr. Fujita has done some work on mollusks but his most important work is the artificial production of marketable pearls—a process which he has but recently perfected. After our return from the Kyoto-Obama trip I hope to run down again and do some careful collecting. A single day on the beaches verified Mr. Fujita's statement that the fauna is very rich.

We are having a truly delightful visit in Japan; though I never was so helpless,—the language, with no connection to any other that I am familiar with, and offering an entirely new set of roots and word forms, is unbelievably difficult, and I have gotten no hold on it whatever.

On Board S. S. Amping Maru.
October 29, 1914.

It is some time since I reported, so here goes. We are on our way to Formosa but have a two-day stop off Foochow, China before making the last 24-hour run. Have had a very rapid run through Korea and China, most interesting every-

where, but not very productive of shells. We spent about a week in Korea — half in Seoul and three days in a trip to visit Dr. Borrow, an English lady-physician who is doing a marvellous lot of surgical work in a very primitive hospital in an out-of-the-way place, twenty-six miles from the R. R. On this trip I picked up about two hundred Melanias in a little stream we followed for a mile or two; I also got about thirty species of flowers, although the season is late.

Korea is almost absolutely free of timber, a tradition stating that early Koreans cut it all out to make the country appear barren and to prevent invasion by envious neighbors. It is closely cultivated however wherever it is level enough and the yield is generally good.

The most striking thing to the tourist is the costuming of men and women and the hair dressing of the men. All married men wear the hair in a closely tied topknot projecting about four inches from the vertex. The unmarried men and boys part their hair in the middle and braid it into a long pig-tail. So that we took them all for girls till we learned that no girl or woman is seen without a skirt.

From Seoul we ran through Manchuria to Peking, where we spent a week, doing the ordinary stunts including a two-days run out to Nankow to see the great Wall and the Ming tombs. Then we ran to Hankow by rail where we took boat down the Yang Tse to Nanking where we put in two delightful days as guests of Mrs. Thurston, an old friend of my wife's who is president of a Woman's College, already endowed but yet to be built.

I am astonished at the educational and hospital work being carried by the various missionary boards in the cities of China. There are seventeen separate establishments, churches, chapels, hospitals, and schools and a university under control of the American Episcopal board in the three cities Hankow, Han Yang and Wuchang grouped about the junction of the Han and Yang Tse rivers.

At Nanking around the old examination halls I took about a hundred Helices of three species, and later—on the way to the tomb of the first Ming Emperor I got two or three hundred

Planorbes, thanks to some helpers—men, women and children. When I gave them the enormous sum of twenty cents Mexican—about eight cents—they pretty nearly mobbed me. Mrs. T. said I should have given them four or five coppers and that for months to come every foreigner who went that way would have shells offered to him in the hope of finding another crazy man like me.

At Soochow I met Professor N. Gist Gee of Soochow University who took me out on the canals and lake for a beautiful afternoon's collecting. We saw the river life of the Chinese, the Sampans or house boats in which they are born, live and die; also we saw the fishing with trained cormorants, a queer sight of which I had read. More important we took somewhere from seven to ten species of shells which were everywhere plentiful: Anodonta, Unio, Vivipara (at least three species) a Bythinia, Corbicula and Sphærium. It was most interesting and profitable day.

Very sincerely yours,

FRED BAKER.

ON THE RETENTION OF THE ORIGINAL COLOR ORNAMENTATION IN FOSSIL BRACHIOPODS.

BY DARLING K. GREGER.

In 1908 the writer published what he believes to be the first recorded American occurrence of the preservation of the ornamental color design of a Palaeozoic brachiopod.* In this notice the species described, Cranaena morsii Greger, came from the Craghead Creek Shales (Middle Devonic) of central Missouri, and at the time, we had in mind the remarkable fact of the preservation of the original color design rather than a suggestion that the markings described were a remnant of the original pigmentation. Our observations, however, since the publication of the article, lead us to believe that in rare instances the original pigment is retained, in a more or less altered condition.

^{* 1808,} Greger, D. K., American Journal of Sci., Vol. 25, pp. 313-314.

In his work on the Middle Devonic of Wisconsin, Dr. H. F. Cleland* figures three species of Brachiopoda, on which the original color design is preserved, viz., *Lingula milwaukeensis* Cleland, Pl. 12, Figs. 3 and 4; Lingula sp. indet, Pl. 12, Fig. 5; and *Craenaena iowensis* Calvin, Pl. 13, Figs. 8 and 9. To this interesting list of occurrences we are able to add three more in which the preserved markings assume a definite pattern and another in which the entire shell is colored and of which we are somewhat dubious.

Greger Coll., No. 35-17. Lingula sp., Rowley† from the Grassy Creek Shale (Upper Devonic) of Pike County, Missouri, frequently shows dark blue bands, concentrically arranged, and these we at first attributed to variation in the thickness of the test, but after carefully removing the shell from the matrix, their true character was discovered. The ornamental design of this species is identical with that of Lingula milwaukeensis Cleland. That these bands of color are a vestige of the original ornamentation of the species can scarcely be questioned.

Greger Coll., No. 282-5. Dielasma Calvini, H. & W., from the upper beds of the Craghead Creek Shale, in two examples, show rays of color, the design being quite similar to the markings shown on Cranaena iowaensis Calvin, in Dr. Cleland's figures. In our shells the lines are very faint and at best afford little more than a suggestion of the color design.

Greger Coll., No. 70-10. A specimen of *Orbiculoidea humilis* Hall, from the Hamilton shales of the Canandaigua Lake region of New York, retains the color pattern, which consists of alternating concentric bands of light greenish horn and dark chestnut brown.

Greger Coll., No. 79-12. Crania modesta, W. & St. J., from the Cherokee Shale (Pennsylvanian) of Central Missouri, attached to a section of a large Crinoid Column, are dark blue or slate-colored, their host being pearl-gray or nearly white.

^{* 1911,} Cleland, H. F., Wis. Geol. and Nat. Hist. Surv. Bull., No. 21, Pl. 12, figs. 3, 4, 5; Pl. 13, figs. 8, 9.

^{† 1908,} Rowley, R. R., Mo. Geol. Surv., Vol. 8, 2nd Series, p. 74, Pl. 17, fig. 14.

The finest example of the preservation of color pattern in a fossil Brachiopod that has yet come to the writer's notice, consists of two specimens of *Coenothyris vulgaris* Schl., from the Muschelkalk (Triassic), the design assuming the form of fasciculated rays of bright red, the body color varying from light buff to dull horn. The fresh bright color shown in these shells suggests the retention of original pigment, practically unaltered, during the process of the silization. Greger Coll., No. 351-4.

In conclusion, we would also call attention to *Discinisca lugubris* Conrad, from the Choptank Formation (Miocene) of Maryland. All specimens of this Brachiopod that have passed under the writer's observation are blue-black and on one small example faint concentric bands are present.

NOTES.

Petricola dactylus Sowerby.—In a recent letter from Mr. - G. W. Pepper he says: "In all published accounts pertaining to the habits of Petricola pholadiformis it is stated that they are 'found living in hard clay.' This seems to be entirely at variance with my collecting in Buzzard's Bay, Mass., where I obtained over 100 specimens from a colony living in sand and gravel in company with the common clam (Mya arenaria). fact I have been unable to find them except associated with the common clam." In writing to Mr. Pepper I obtained some of the specimens, and was pleased to find that they were P. dactylus, a much scarcer species on the New England coast than P. pholadiformis, and from which it is readily distinguished by its less cylindrical form, due to the wider and more flattened The dividing line between the larger and smaller ribs is less clearly defined. In well-preserved specimens the very young, yellowish shells, described as Gastranella tumida, can be distinctly seen on the umbones.—C. W. Johnson.

LYMNÆA EMARGINATA MIGHELSI ABSENT IN ITS OLD LOCALI-TIES.—In September I visited Square Lake Inlet, where L. emarginata mighelsi was formerly so abundant, and not a single living or dead shell could be found. The same was true at Cross Lake.—Olof O. Nylander.

Cochlicopa Lubrica in Western Pennsylvania.—About the middle of October a friend living in Sewickley, Pa., first noticed a lot of small shells on a flagstone walk at the side of his house. He called me up by telephone and I requested him to get some of the shells, which he did and they proved to be Cochlicopa lubrica Müll. On Nov. 30 I visited the place and found the living shells present in large numbers as I gathered over 100 from along the edge of the walk in a few minutes. In 25 years collecting in the Sewickley Valley I have found this species decidedly rare so their sudden appearance in the center of the village is very interesting. With the lubrica were a number of Vallonia excentrica St., which has become very common all through the valley in the past few years. The specimens of lubrica, you will note, are a small compact form averaging 5 mm in length.—Geo. H. Clapp.

PUBLICATIONS RECEIVED.

A new Pearly Fresh-water Mussel of the genus Hyria from Brazil. By L. S. Frierson. Proc. U.S.N.M., Vol. 47, p. 363, pl. 12. Hyria amazonia n. sp.

List of Mollusca of Harding and Perkins counties. South Dakota Geological Survey, Bull. No. 6. 1914, pp. 95, 96. By Wm. H. Over. In this little-known region, every contribution is of value, giving records from the wide gap between the better known States on the east and west.

The Land and Fresh-water Molluscs of the Dutch West Indian Islands. By Dr. J. H. Vernhout. Notes Leyden Museum, Vol. 36, pp. 177-189. A useful compilation, with a bibliography, and some new records for Curação.

THE NAUTILUS.

VOL. XXVIII.

JANUARY, 1915.

No. 9

FURTHER NOTES ON THE OLIVIDAE.

BY CHARLES W. JOHNSON.

I. ORIENTAL SPECIES.

As one very important work (Chenu's Illustrations Conchyliologiques, Oliva by Duclos) was not available at the time I wrote my previous notes (Nautilus, xxiv, pp. 49-51, 64-68, 121-124) on several species of Oliva, the names of which were affected by adopting the oldest recognizable characterization, it seems well at this time to briefly review the subject. I will therefore give a more complete synonymy of the species, together with some additional notes, hoping thus to show more clearly the changes in nomenclature and the relationship of the species and varieties.

1. OLIVA SERICEA (Bolten).

Porphyria sericea Bolten, Mus. Bolt., p. 33, 1798.

O. textilina Lamarck, Ann. du Mus., xvi, 309, 1810.

Var. tremulina Lam., Ann. du Mus., xvi, 310, 1810.

granitella Lam., Ann. du Mus., xvi, 314, 1810.

obtusaria Lam., Anim. sans vert., vii, 436, 1822.

hepatica Lam., (not Marrat) Ann. du Mus., xvi, 320, 1810.

fumosa Marrat, Thes. Conch. iv, pl. 9, f. 119.

Var. olympiadina Ducl. (pars) in Chenu's Ill. Conch., pl. 13, f. 11, 12.

Var. nobilis Reeve, Conch. Icon., vi, pl. 2, figs 3 a-c, 1850.

Var. pica Lam., Ann. du Mus., xvi, 310, 1810.

concinna Marr., Thes. Conch., iv, pl. 7, f. 100, 101.

Var. tenebrosa Marr., Thes. Conch., iv, pl. 13, f. 177.

Var. ponderosa Duclos, in Chenu's Ill. Conch., pl. 14. f, 8, 9.

Var. miniacea Bolten, Mus. Bolt., p. 33, 1798.

miniata Link, Besch. Rostock Samml., pl. 2, p. 95, 1807.

erythrostoma Lam., Ann. Du Mus., xvi, 309, 1810.

magnifica Ducros, Revue critique du genre Oliva, p. 30, pl. 1, f. 4. 1857.

azemula Duclos, in Chenu's Ill. Conch., pl. 15. f. 10, 11, (decorticated)

Var. porphyritica Marr. (pars) Thes. Conch., pl. 7, f. 105.

Var. sylvia Duclos (pars) in Chenu's Ill. Conch., pl. 14, f. 12.

Var. marrati Johns., Naut., vol. xxiv, p. 51, 1910.

1a. Subsp. irisans Lamarck, Ann. du Mus., xvi, 312, 1810.

Var. zeilanica Lam., Anim. sans vert., vii, 436, 1822.

mazaris Ducl. in Chenu's Ill. Conch., pl. 22, f. 7, 8. Var. ornata Marrat, Illus. Conch., iv, pl. 7, f. 102, 103.

cylindrica Marr. (not Sowerby) Thes. Conch. iv, p. 14, f. 193, 594.

lignaria Marr., Illus. Conch., iv, pl. 14, f. 195, 196.

Var. cryptospira Ford, Proc. Acad. Nat. Sci. Phila., 1891, p. 99, f. 3, 4.

Var. fordii Johnson, Naut., vol. xxiv, pl. 51, 1910.

Both Bolton and Lamarck refer to the same figure in Martini (Conch. Cab., ii, tab. 51, f. 559) which represents the finely marked, indistinctly banded form, with a light cream-yellow aperture. Length 70-85 mm.

Under the Var. tremulina is grouped a large series connecting sericea with miniacea, but typified by having a white or bluish white aperture. It was not figured by Lamarck but all the authors seem to agree—although several intermediate figures are given. The typical form is that figured by Reeve, pl. 4, f. 6c; Weinkauff, pl. 17, f. 2; Marrat, pl. 8, f. 117. O. fumosa is only a dark smoky form. The Var. olympiadina is restricted to

figures 11 and 12, an albinic form. Nobilis represents the large three-banded form, pica the brown form with large white subtriangular spots, and tenebrosa the almost or entirely brown form. Length 70–100 mm.

The thick, light-colored var. ponderosa is intermediate between forms referable to tremulina on the one hand and miniacea on the other. The latter both Bolten and Lamarck refer to the same figures by Martini (Conch. Cab., ii, tab. 45, figs. 476, 477). I have restricted the porphyritica to the small form (45-55 mm.) with bands of bright purple spots, of which I have recently received specimens through Mr. Wm. N. Southern, collected by Mr. Frank E. Rand, at Ponape, Caroline Islands. The name of sylvia is applied to the orange-yellow form with a red aperture, and marrati to the dark brown red-mouthed form as figured by Marrat, (Thes. Conch., pl. 7, f. 109), representing a parallel variation to that of tenebrosa and fordi.

The subspecies *irisans*, though poorly defined, is the oldest name and has already been applied to various forms of this group by authors. There is only one figure referred to by Lamarck that can be considered as *irisans* (Martini, Conch. Cab. II, Tab. 561); the others are questioned. This figure has not a callous spire and the description "spire acuminate" does not apply to the low callous-spired forms, figured by Weinkauff, Marrat and Duclos, but to the form figured by Reeve (Pl. 6, fig. 8b). Figure 8d is the orange-yellow acutely spired zeilanica and fig. 8a the low callous-spired ornata. The typical cryptospira is light yellow with only slight traces of dark marking (Thes. Conch., pl. 9, f. 125) while fordi is the dark brown, callous-spired form (Thes. Conch., pl. 9, f. 126). There is also a pure white, callous-spired form (albescens).

2. OLIVA OLIVA (Linné).

Voluta oliva Linné, Syst. Nat., 10 ed. p. 729, 1758. Porphyria vidua Bolten, Mus. Bolt., p. 35, 1798. Cylindrus nigellus Meuschen, Mus. Gevers., p. 376.

O. maura Lam., Ann. du Mus., xvi, p. 309, 1810.

O. mauritiana (Martini) Marrat (pars) Thes. Conch., iv, pl. 10, 1870.

Var. fenestrata Bolten, Mus. Bolt., p. 34, 1798. fusca Link, Besch. Rostock. Samml., p. 95, 1807.

Var. fulminans Lam., Ann. du Mus., xvi, p. 312, 1810.

Var. sepulturalis Lam., Ann. du Mus., xvi, p. 311, 1810.

Var. macleaya Ducl.; in Chenu's Ill. Conch., pl. 23, f. 13–16. fabreii Ducros, Revue critique du genre Oliva, p. 43, pl. I,

f. 8, 1857.

The species oliva Linné cannot be ignored, in the light of our present ruling in nomenclature; while a composite species, the prevailing form is readily recognized as Hanley in his "Shells of Linneus" page 215 says:—"Still it is not unworthy of remark that the Oliva nigrita of Karsten (O. maura of Sowerby, Genera Shells) has been indicated as the principal variety or form in the "Museum Ulricae" and that all cited engravings (Argenville alone excepted) of the tenth edition of the "Systema" wherein the species originally appeared, pertain to that shell". The plain olive-green or yellowish form is fenestrata; with broad irregular longitudinal stripes, fulminans; with narrow irregular stripes and bands sepulturalis; with a light pearl-gray ground color and less conspicuous markings the more pronounced var. macleaya.

3. OLIVA TIGRINA (Lamarck).

- O. tigrina Lam., Ann. du Mus., xvi, p. 322, 1810 (not Meuschen).
- O. holoserica (Martini) Marrat, Thes. Conch., pl. xiii, f. 179, 181.
- O. athonia Ducl. in Chenu's Ill. Conch., pl. 5, f. 22, 23 (juv.)
 - O. stainforthii Reeve, Conch. Icon., vi, pl. 19, f. 40 (juv.) Var. fallax Johnson, Nautilus, xxiv, 65, 1910.

The dark brown form resembling O. oliva is the var. fallax, representing the color variation common to many species.

4. OLIVA FUNEBRALIS (Lamarck).

- O. funcbralis Lam., Ann. du Mus., xvi, p. 332, 1810.
- O. labradorensis (Bolten) Marr., Thes. Conch., pl. xi, f. 146-148.

O. leucostoma Ducl. in Chenu's Ill. Conch., pl. 29, f. 14-16.

O. propingua Marr., Thes. Conch., pl. xi, f. 141-142.

O. avelana (Lam.) Marr. Thes. Conch., pl. xi, f. 149-150.

O. glandiformis Marr. (not Lam.) pars, Thes. Conch., pl. xii, f. 174, 175.

O. guliola Ducl., in Chenu's Ill. Conch., pl. 30, f. 5, 6.

An extremely variable species, the limits of which are very difficult to define. The figure cited by Bolten is unrecognizable. O. avelana as figured by Marrat probably represents faded examples, of which I have seen similar colored specimens. Under glandiformis Marrat figures at least two species; figure 173 is a form of elegans, the others probably variations of this species. The figure referred to by Lamarck as glandiformis can not be identified.

5. OLIVA BULBOSA (Bolten).

Porphyria bulbosa Bolt., Mus. Bolt., p. 34, 1798. Oliva undulata Lam., Ann. du Mus., xvi, p. 318, 1810. Voluta ventricosa Dillw., Cat. Recent Shells, i, 515, 1817.

Var. inflata Lam., Ann. du Mus., xvi, 319, 1910.

picta Reeve, Conch. Icon. Oliva, sp. 79, pl. 26, f. 79 (juv.)

ovum-ralli Ford, Proc. Acad. Nat. Sci. Phila., 1889, p. 139.
(decorticated).

Var. tuberosa Bolt., Mus. Bolt., p. 37, 1798.
bicingulata Lam., Ann. du Mus., xvi, p. 319, 1810.
bicincta Marr., Thes. Conch., iv, pl. xiii, f. 189.

Var. fabagina Lam., Ann. du Mus., xvi, p. 325, 1810.

crassa (Martini) Marrat, Thes. Conch., iv, pl. xiii, f. 186, The typical form has undulating longitudinal stripes, both Bolten and Lamarck referring to the same figures (Conch. Cab. ii, Tab. 47, f. 507, 508). Var. inflata has only small bluishgray spots and bicingulata two dark brown bands. Var. fabagina is irregularly clouded with dark brown. Pure white examples constitute the var. alba.

6. OLIVA VARIEGATA (Bolten)

Porphyria variegata Bolt., Mus. Bolt., p. 33, 1798. O. evania Ducl. in Chenu's Ill. Conch., pl. 22, f. 3, 4. O. zebra Kuster, Conch. Cab., Oliva, Tab. 5, 6, 1878. Var. reticulata (Bolten).

Porphyria reticulata Bolt., Mus. Bolt., p. 33, 1798.

O. sanguinolenta Lam., Ann. du Mus., xvi, 316, 1810.

The grayish-white reticulated form is typical. The dark olive-green, finely reticulated form is the var. *reticulata*. In the latter case both Bolten and Lamarck refer to the same figures (Martini, Conch. Cab. ii, Tab. 48, f. 512, 513).

7. OLIVA TRICOLOR Lamarck.

O. tricolor Lam., Ann. du Mus., 316, 1810.

O. guttula (Martini) Marr., Thes. Conch., iv, pl. xii, f. 165-168.

var. philantha Ducl., in Chenu's Ill. Conch., ii, pl. 22, f. 5, 6.

This species is more closely related to *variegata* than to *elegans*. The var. *philantha* is the light-colored form often approaching O. caerulea in external appearance.

8. OLIVA CÆRULEA (Bolten).

Porphyria caerulea Bolt., Mus. Bolt., xvi, p. 313, 1810.

O. episcopalis Lam., Ann. du Mus., xvi, p. 313, 1810.

Var. lugubris Lam., Ann. du Mus., xvi, 317, 1810.

The var. *lugubris* is based on the small form heavily clouded with brown, as figured by Duclos, (Chenu's Ill. Conch., ii, pl. xi, f. 5, 6.) also by Marrat (Thes. Conch. iv, pl. 4. f. 48). It was not figured by Lamarck.

9. Oliva ispidula (Linné)

Voluta ispidula Linné, Syst. Nat., 10 ed. p. 730, 1758.

O. hispidula Ducl. in Chenu's Ill. Conch., Oliva p. 14, ispidula pl. 8.

O. tigridella Ducl. in Chenu's Ill. Conch., pl. 9, f. 13, 14.

Var. stellata Ducl. Chenu's Ill. Conch., pl. 8, f. 11, 12.

Var. taeniata Link, Besch. Rostock Samml., pl. 2, p. 98, 1807.

Var. flaveola Ducl., Chenu's Ill. Conch., pl. 7, f. 17-20.

Var. candida Lam., Ann. du Mus., xvi, p. 322.

This extremely variable species, most readily distinguished

by its brown aperture, has several well marked varieties. Var. stellata is white with coarse brown markings and low spire, taeniata white with a broad subsutural band,—flaveola is yellow with a white aperture and candida is an albino form. Specimens from Sarmar, Philippines, collected by Mr. E. L. Moseley, are all uniform in color, representing the dark reticulated form (Thes. Conch., fig. 248). This might bear the varietal name of samarensis.

10. OLIVA ANNULATA (Gmelin).

Voluta annulata Gmel., Syst. Nat., p. 3441, 1790. O. leucophaea Lam. Ann. du Mus., xvi. p. 314, 1810.

Var. amethystina Bolten., Mus. Bolt., p. 35, 1798.
aurata Link, Besch. Rostock. Samml., pl. 2, p. 97, 1807.
guttata Lam., Ann. du Mus., xvi, p. 315, 1810.
cruenta (Solander) Dillw., Cat. Recent Shells, i, 514, 1817.
maculata Ducl. in Chenu's Ill. Conch., pl. 16, f. 1-5.

Var. mantichora Ducl., Chenu's Ill. Conch., pl. 16, f. 7, 8. emicator Marrat. (Pars), Thes. Conch., pl. 5, f. 57, 60.

It seems unfortunate that the pale abnormal form should have to be the type of the species, instead of the beautiful amethystina. To the latter both Bolten and Lamarck refer to the same figures by Martini (Conch. Cab. ii, Tab. 46, f. 491, 492). Many specimens of the var. mantichora show the same malformation of the typical form—an elevated ridge at the periphery.

11. Agaronia gibbosa (Born).

Voluta gibbosa Born, Test. Mus. Caes., p. 215, 1780.

Voluta utriculus Gmelin, Syst. Nat., p. 3441, 1790.

Oliva gibbosa Marrat, Thes. Conch. iv, pl. 19, f. 307 (pars).

Oliva (Agaronia) gibbosa Tryon, Manual Conch., v, 90, f. 85-87, 1883.

The dark brown specimens are usually decorticated. The orange-yellow form might bear the varietal name of A. g. aurantia, n. var.

12. OLIVANCILLARIA URCEUS (Bolten).

Porphyria urceus Bolt., Mus Bolt., p. 37, 1798. Oliva brasilana Lam., Ann. du Mus., xvi, 322, 1810. Voluta pinguis Dillw., Cat. Recent Shells, i, 516, 1817. Oliva (Olivancillaria) brasiliana Tryon, Manual Conch., v, 90, pl. 36, f. 88.

TWO NEW VARIETIES OF VALVATA.

BY E. G. VANATTA.

VALVATA TRICARINATA INFRACARINATA n. var. fig. 1, 2.

Shell globose, depressed, translucent, early whorls orange colored, body-whorl greenish gray, spire moderately elevated, apex obtruse, suture linear, whorls $3\frac{1}{4}$, rapidly increasing, last whorl flattened above, with an impressed line near the suture, slightly angular at the shoulder, periphery rounded, surface polished, provided with irregular growth lines. Umbilicus wide, deep, funnel-shaped, surrounded by a strong carina. Aperture oblique, orbicular, slightly angular at the suture and base, parietal wall short, lip thin.

Alt. 2.53 diam. 3.48 apert. alt. 1.74 diam. 1.55 mm.

Type in the collection of the Academy of Natural Sciences number 12087 from White Pond, New Jersey, collected by Dr. H. A. Pilsbry and Mr. S. N. Rhoads in 1895. Also in the collection from Hamilton, Ontario (Robert Walton); Mohawk, New York (Dr. James Lewis); Post Pliocene at Halcyon Lake,

Duchess Co., New York (W. S. Teator); Post Pliocene at White Pond, New Jersey (Dr Joseph Leidy); and Saginaw Bay, Michigan (Prof. M. Miles.)

Differs from V. t. simplex Gld by having a basal carina and from V. t. confusa Wkr. by lacking a keel at the shoulder.

VALVATA TRICARINATA BASALIS n. var. figs. 3, 4.

Shell discoidal, thin, translucent, greyish corneous, spire truncate, slightly elevated, apex impressed, suture linear, shallow. Whorls 3½, the first ones with a median carina, bodywhorl slightly descending at the aperture, with two strong carinæ, the upper surface between the suture and the shoulder keel flat, slightly convex between this and the peripheral carina, base evenly rounded to the rather large deep umbilicus, surface rather dull, sculptured with irregular growth striæ. Aperture irregularly truncate orbicular, lip thin, angular at the suture, upper carina and peripheral keel; base and columella evenly arcuate, upper lip straight.

Alt. 2.56 diam. 4.15, apert. alt. 1.69, diam. 1.74 mm.

Type in the collection of the Academy of Natural Sciences number 11995 from the Hudson River, New York (W. M. Gabb). Also in the collection from Vermont (J. S. Phillips).

Differs from *V. tricarinata* Say by lacking the basal carina, and from *V. t. confusa* Wkr. by the absence of a basal keel and in having a peripheral carina.

LAND SHELLS FROM VARADERO (CARDENAS) CUBA.

BY JOHN B. HENDERSON.

Varadero is a little settlement of winter cottages planted in the sands of a long narrow peninsula that encloses the Bay of Cardenas. There is a core of pleistocene coral rock more or less densely covered with scrub growth with many cacti as a feature. Besides this there is only the beach sand on the one side and mangrove swamps on the other making altogether a most uninviting field for land-shelling. The following list represents only a few hours collecting but is probably almost a complete census of the region.

Oleacina solidula Pfr.

" subulata Pfr.
Obeliscus homalogyra Shuttl
Varicella (Pich.) gracillima Pfr.
Thysanophora selenina Gould

" boothiana Pfr. Volvidens tichostoma Pfr. Cepolis cubensis penicillata Urocoptis poeyana variegata Pfr.

" garceana Presas (var) Macroceramus gundlachi Pfr. Microceramus gossei Pfr.

" denticulatus Gundl.

Cerion sagraianum Pfr.
'' hologlyptum

Pils.

Liguus fasciatus Mull. Guppya gundlachi Pfr.

Pupoides marginatas Say Bifidaria sp.

Chondropoma pictum Pfr.

" dentatum Say Alcadia hispida Pfr.

Eutrochatella rupestris Pfr.

STUDIES IN NAJADES.

BY DR. A. E. ORTMANN.

LASTENA LATA (Rafinesque).

Simpson, Pr. U. S. Mus. 22. 1900 p. 654.—Descr. Cat. 1914 p. 453.

I have collected a number of specimens in Clinch River, at Cleveland, Russel Co., Va., and at St. Paul, Wise Co., Va., among them three gravid females (May 13 and 14, 1913), one

of which (May 13) had glochidia, the others eggs. Additional specimens, the females not charged, were found on Sept. 7 and 8, 1914 in Clinch River at Clinton and Edgemoor, Anderson Co., Tenn.

This shell has been taken by Simpson (l. c.) for a form allied to Anodonta, and I have accepted this view, and have treated the genus Lastena with the subfamily Anodontina (Ann. Carnegie Mus. S. 1912 p. 297); but in the description (p. 298) of the soft parts of the sterile female, I have called attention to the fact, that typical Anodontine characters have not been observed in the marsupial gills: there were no traces of lateral water tubes, and no thickened tissue at the edge.

The present specimens show conclusively that Lastena does not belong to the Anodontina, but that it is a member of the subfamily Unionina. Also the fact that in May females with eggs were found, indicates that this is a tachytictic form (summer breeder), and not a bradytictic, as the Anodontina are.

My previous description, as far as it concerns the anal and supraanal openings, the branchial opening, the palpi and general features of the gills, is confirmed by the present material. To this, however, should be added the peculiar shape of the foot, described by Simpson as: "very large club shaped, capable of great extension". This is a very important character of the genus, and is found in no other North American Naiad, and in this feature Lastena can be compared only with the South American Mycetopoda, which, however, belongs to an entirely different family. When contracted, the foot does not show its remarkable features; but in life, when extended, it is extremely elongated, at least as long as the shell, of subcylindrical, somewhat compressed shape, with a distal swelling. Apparently, the foot serves as a permanent anchor, and is not withdrawn into the shell under ordinary circumstances, even when the shell is closed, and hence the closed shell is gaping at the anterior end.

The marsupium of Lastena lata is restricted to the outer gills, and not the whole outer gill is marsupial, but only the middle portion of it, about one half of the length of the gill. The anterior and posterior sections remain non-marsupial. The

charged part is moderately swollen, with the edge remaining sharp. The ova or glochidia form lanceolate, moderately developed placentæ. Glochidia almost semicircular, slightly oblique, inequivalve, with one one end somewhat narrower, the other somewhat wider. They are distinctly longer than high. Length 0.19; height 0.15 mm. The lower margin is uniformly and broadly rounded, and there is no trace of a point or a hook.

Color of soft parts (in life) pale, as described previously; placentæ whitish.

Lastena belongs to the subfamily Unioninae of the family Unionidae, and is most closely allied to Elliptio. This is also supported by the shape of the shell and the beak sculpture. However, Lastena differs from Elliptio (and from all other genera of the Unioninae) by several important characters, which are unique, and would possibly entitle it to the rank of a subfamily, in case the Unioninae should be elevated to a family. In the shell, the most prominent feature is the reduction of the hinge, a case very rarely observed in the Unioninae (the only other one known to me is Gonidea). In the soft parts, the structure is like Elliptio, but the restriction of the marsupium to the middle part of the other gills is peculiar, and so is the extreme development of the foot. Also the glochidia, although of the general Unionine type, are unusual on account of their obliquity.

Lastena represents a unique specialization of the *Elliptio*-type, and is a very good genus, which, in the systematic arrangement, should follow *Elliptio* and *Uniomerus*.

PUBLICATIONS RECEIVED.

Bulletins of American Paleontology, No. 24. New and interesting Neocene fossils from the Atlantic Coastal Plain, by Axel Olsson. Numerous new species from the Miocene of Virginia to Florida are described. The blue clay marls of the lower James river valley are considered to belong to the Yorktown formation, and not, as some geologists have stated, to the Calvert.

THE NAUTILUS.

VOL. XXVIII.

FEBRUARY, 1915.

No. 10

OUR NEW MEXICAN EXPEDITION OF 1914.

BY JAS. H. FERRISS.

The Ashmunella territory, so far known, lies in the south-western corner of New Mexico and the south-eastern corner of Arizona. A line drawn south-westerly from Sante Fe, N. M., 500 miles to Nogales, Arizona, will mark the northwestern side. A line starting 125 miles eastward of Santa Fe, in San Miguel county N. M., running parallel with the former line to the Organ Mountains in Donna Anna county will mark the south-eastern boundary. Southward the genus is not known below the Mexican line. There is much territory near at hand that remains unexplored.

Following the scouting expedition of 1913 a second scouting expedition, assisted by Mr. L. E. Daniels was made into this territory in the summer of 1914. In a heavy farm wagon, accompanied by Mrs. Ferriss and Miss Nellie Shepherd, artist of Oklahoma city, and with plenty of time, canvas and provisions, the steps of the expedition of 1913 were retraced from Clifton up the San Francisco and Blue rivers to Cosper's ranch, a distance of 50 miles; then continued up the Blue to its head, and to Luna, New Mexico, all in a northerly direction. From Luna the party turned south-easterly across the San Francisco Mountains of New Mexico, (not Arizona,) to the Mogollon mountains of New Mexico by the way of Alma. The state of Arizona also, by the way, has a range of Mogollon Mountains, further west.

Colonies of Ashmunella pilsbryana were found about the Harper ranch, Copper King Mountains, four miles above Clifton, continuing to the mouth of the Blue river; and Sonorellas of different groups to the mouth of the little Blue, a distance by river of about 25 miles.

Many of these colonies were dead, and in others it was difficult to find more than two or three shells alive. The removal of the trees has changed natural conditions; formerly where deep shade and a moistened leaf-mould existed, the soil now baked by the sun, is barren of vegetation. Particularly is this true within twenty miles of the cities and villages. The Mexican is an industrious wood cutter. A white fungus growth also takes posession of the rocky slides which in death turns black, and carries all the lower vegetable life with it. Larger shell life is seldom found in these fungus-stricken areas, where the dead shells lie thick.

While the Sonorellas are found often in the shady, ideal snail talus, some of the colonies survive the timber stripping, and thrive fairly well among dry rocks on southern exposures, often in company with *Thysanaphora hornii*, and if in limestone, with Holospiras.

For thirty miles above the Little Blue river only the smaller species were obtained—mostly Vallonias, Thysanophoras, Euconulus and Helicodiscus. In the next twenty miles a dozen colonies of the larger Oreohelix were located. Again Oreohelix was found at about 8000 ft. elevation, while crossing the San Francisco range from Luna to Alma; also on Lisa Creek, draining the San Francisco Mountains.

The upper San Francisco river upon this trail had nothing to offer; but at Mongollon, 7500 feet, the snails were again found friendly. A colony of small *Oreohelix barbata* Pils., was found in the suburbs of that city and from that point to Willow creek, 9000 feet, *Ashmunella mogollonensis* and the larger Oreohelices were never out of sight, presenting interesting variations in size, color and form, and also with the numerous albinos.

At this altitude vegetation and snails thrive equally as well as in eastern Tennessee, also grazing grasses, and the party camped here for a couple of weeks. The trout were fine. Another colony of *Oreohelix barbata* was found at this elevation.

Turning south and eastward from Mogollon, the larger Oreohelix disappeared from the gulches. The higher peaks, and the
largest and most promising canyon, Whitewater, were left unexplored. The wagon needed a broken road, and as the track
down the San Francisco had been destroyed by floods we kept
the Silver City road for about thirty miles, then turned southwest at Cactus Flats, driving through a beautiful pasture country for about forty miles. It was so beautiful that we went into camp and cleaned shells for a couple of days on the bank of
a shaded stream.

Leaving this pasture country, where we trotted the horses the only time on the trip, the party returned easterly again, and over a rough hilly country of Juniper and rattle-snakes, drove for two and one-half days, to Steeple Rock, a mining town in its resting period. South again fourteen miles to Duncan on the Gila, then thirty-two miles down the river, northwestward, to Clifton. The cowboys cross from Mogollon to Clifton in one day, but it took seven days of travel with a farm wagon. Altogether in three months we made a journey of 335 miles.

Apparently the same snails inhabit this land here, in a direct and pure line of ancestry from those living upon the land before the mountains were uplifted. The conditions after the uplift upon the White and Blue Mountains of Arizona and the northern slope of the Mogollons in New Mexico remain about the same, and with the isolation and the 100 miles of deserts, rivers and mountains between, the Ashmunellas and the Oreohelix are the same. This also remains true of the shells in the Kaibab plateau, northern Arizona.

On both the northern and southwestern slopes of the Mogollons are found all the forms, colors and sizes of O. barbata, that the Chiricahua mountains, 125 miles south, have given. This is the only member of the southern mountain groups that has traveled, outside of the small forms, such as Pupas, Thysanophora and Vallonias. Where the peaks are sharper, divided by dry gulches, the snails divide into species, varieties and groups. In one limestone slope of the Dragoon mountains a dike of granite 50 feet in thickness divides the Holospiras into two distinct species.

Upon the slopes of the mountains of southern Arizona and New Mexico and the knobs and peaks of the desert this specific development is intensified, and it is but a short distance from one species of Sonorella to another. Of the four leading genera of this region, the Sonorellas are best fitted to cope with the drouths and the woodchoppers. If it is limestone country, the Holospiras are tenacious. Both are found in very hot and dry rocks, doing fairly well. Sonorellas, two alive, were found near Castle Rock upon the homeward journey. Other promising prospects were left for another season. This Sonorella family follows the mountains down to 3,000 feet in Arizona. Nearly every little hill in Pima county, Arizona, has its own species of Sonorella.

Returning to our subject, the Mogollons, two side trips were made into the mountains on foot from Glenwood, New Mexico. In the Little Whitewater canyon one of the smallest of Ashmunellas was obtained. A two-days journey in the Cave Creek Canyon secured a larger Ashmunella and Oreohelix barbata, in large quantities. One juvenile of the larger Oreohelix only came to the net.

Another journey of two days was taken up the Dry Canyon, six miles south of Glenwood. Six miles up the Valley a camp was made. Here the precipices boxed in the stream so completely the canyon was not scarred by man or cattle, the stream was full of pound trout, and the slides full of snails.

The Glenwood Ashmunellas had teeth upon the lip, but no lamella or tooth upon the parietal wall. One species measured ten mm. in diameter, the other twelve to fourteen and one-half. In the Dry Creek canyon, measurements ran from ten to sixteen mm. and as to teeth, ran the scale from none to three and a lamella. In twenty colonies there were about as many variations in species and forms, and in some colonies, as with Ashmunella heterondon. Pils., all variations in teeth existed. Oreohelix barbata varied still more in size and form, with some liberality in color.

Ashmunella mogollensis came in about six miles above camp, and here the vegetation was so luxuriant that Ashmunellas were found in the weeds they slept in. The miner who owned the

cabin at that point was a tight-wad and had locked the door when he left, and thus we slept out a couple of nights.

The Mogollon Mountains at this point run up to 10,500 feet and are termed rough. The roughness consists of granite, quartzite, and various forms of igneous rock, so far as snail hunters have explored. Rocks resembling limestone, and so termed, were found to be a volcanic product.

Above 7,000 feet the timber is heavy and plentiful. Yellow and White Pine, White and Cork Bark Fir, Pseudo Hemlock, Oak and Quaking Asp predominate. Cottonwoods, Sycamore and Walnut dominate the lower valleys, and the Junipers rule in the foot-hills.

It is a large range for the Southwest, at least 100 miles long and thirty to forty wide; drained southward by tributaries of the Gila, the San Francisco and the Membres rivers.

The indications furnished by these few canyons in a large number opening to the South point to a fruitful field. A well equipped party would require at least one year in which to make a hasty survey. The rainy season starts about the first of July and continues until the middle of August. The summer of 1914 was something unusual however and we had a shower every day except three. Rain however is pleasing to snails. After a good shower they travel over the stones for half a day. The climate above 5000 feet is cool enough for comfort at that season of the year—in truth the temperature is perfect.

The mountains of the Southwest are inexhaustible to the conchologists of this generation. Should any desire to assist in this work, in the Mogollon or other ranges of which we have knowledge, they will find us prompt with both information and advice. There is a larger country than we can hope to explore, all within the states of New Mexico and Arizona.

In another article we hope to give a detailed account of the snails collected, in cooperation with Dr. Pilsbry,—a companion on other Arizona and New Mexico expeditions.

FURTHER NOTES ON THE OLIVIDAE.

BY CHARLES W. JOHNSON.

II. OCCIDENTAL SPECIES.

OLIVA CAROLINENSIS (Conrad).

- O. cylindrica Sowerby, Quart. Jour. Geol., vi, p. 45, 1849 (pars) not cylindracea Borson 1820 = cylindrica Duel., not cylindrica Marr. 1870.
- O. litterata Lam., Ann. du Mus., xvi, p. 315, 1810 (not Bolten 1798) Dactylus carolinensis Conr., Proc. Acad. Nat. Sci., Phila., xiv, p. 563, 1863.
- O. circinata Marrat, Thes. Conch., iv, p. 21, pl. 17, f. 277, 1871; Johnson, Nautilus, xxiv, p. 123, 1911.

Var. citrina Johns., NAUT., xxiv, p. 123, 1911.

In substituting a name for O. litterata Lam., pre-occupied, I used O. circinata Marr., overlooking the fact that it had previously been described by Conrad as a fossil from the Miocene of North Carolina, the synonymy being given by Dr. Dall in his work on the Tertiary Fauna of Florida (Trans. Wagner Free Inst. Sci., vol. 3, pt. 1, p. 44, 1890). As Sowerby's name cannot be considered, I have adopted that given by Conrad. The Miocene and Pliocene forms cannot be separated from the recent. The var. citrina is the bright yellow form occasionally found on the Gulf coast of Florida.

OLIVA RETICULARIS Lamarck.

- O. reticularis Lam., Ann. du Mus., xvi, 314, 1810.
- O. tisophana Ducl., in Chenu's Ill. Conch., ii, pl. 17, f. 17, 18.
- O. memnonia Ducl., in Chenu's Ill. Conch., ii, pl. 17, f. 19, 20.
- O. olivaceus (Meuschen) Marr., Thes. Conch., iv, pl. 4, f. 46, 47, 51-53.
- O. sowerbyi Marr., Thes. Conch., iv, pl. f. 114, 115.
- O. reclusa Marr., Thes. Conch., iv, pl. 17, f. 264.
- O. mercatoria Marr., Thes. Conch., iv, pl. 17, f. 269.
- Var. nivosa Marr., Thes. Conch., iv, pl. 17, f. 276.
- Var. bifasciata Küster; Conch. Cab., Wienkauff, Oliva, p. 38, tab. 10, f. 8, 9.

hepatica Marr. (not Lamarck), Thes. Conch., iv, pl. 3, f. 27, 28.

formosa Marr., Thes. Conch., iv, pl. 3, f. 29, 30.

Var. olorinella Ducl. in Chenu's Ill. Conch., ii. pl. 7, f. 15, 16.

quersolina Ducl. in Chenu's Ill. Conch., ii, pl.11, f. 7, 8. pallida Marr. (not Swainson), Thes. Conch. pl. 25, f. 472.

Although not as variable as its Pacific analogue, O. spicata, from the west coast of Mexico and Central America, there are several well marked variations and some confusion owing to many of the older authors uniting some forms of the two species. Var. nivosa is the large cylindrical form; when banded with brown it is the bifasciata. The white form is olorinella. O. pallida Marr. may possibly represent the albino form of another species.

OLIVA FULGURATOR (Bolten).

Porphyria fulgurator Bolten, Mus. Bolt., p. 36, 1798.

O. fusiformis Lam., Ann. du Mus., xvi, p. 318, 1810.

O. ispidula Link, Besch. Rostock, Samml., part 2, 1807; Marrat, Thes. Conch., iv, pl. 2, f. 15-17.

bullata Marr., Thes. Conch., iv, pl. 24, f. 448.

Var. obesina Ducl., in Chenu's Ill. Conch., ii, pl. 17, f. 9, 10. Both Bolten and Lamarck refer to the same figure by Martini (Conch. Cab. ii, tab. 51, f. 562). Specimens are frequently more or less clouded with brown.

OLIVA SPICATA (Bolten).

Porphyria spicata Bolt., Mus. Bolt., p. 35, 1798.

P. arachnoidea Bolt., Muss. Bolt., p. 36, 1798.

P. litterata Bolt., Mus. Bolt., p. 36, 1798 (not Lamarck, 1810).

O. araneosa Lam., Ann. du Mus., xvi, p. 315, 1810.

O. melchersi Menke, Zeit. für Mal., p. 24, 1851.

Var. hemphilli Johns., NAUTILUS xxiv, 122, 1911.

Var. subangulata Philippi, Abb., xix, tab. 1, f. 2.

Var. oniska Ducl., in Chenu's Ill. Conch., ii, pl. 32, f. 9. perfecta Johns., Nautilus xxiv, 122, 1911.

Var. pindarina Ducl., in Chenu's Ill. Conch., ii, pl. 12, f. 10, pl. 17, f. 7, 8. punctulata Marr. Thes. Conch., iv, pl. 2, f. 12, 13. harpularia (Lam.) Reeve, Conch. Icon., pl. 14, f. 28

(decorticated).

Var. venulata Lam. Ann. du Mus., xvi, 313, 1810.

reticularis Reeve (pars) Conch. Icon., vi, pl. 10, f. 16 b.

obesina Reeve (pars) Conch. Icon., vi, pl. 10, f. 16 c.

mariae Ducros, Rev. crit., p. 50, pl. 2, f. 26.

Var. graphica Marr., Thes. Conch., iv, pl. 3, f. 36. porcea Marr., Thes. Conch., iv, pl. 3, f. 35. oblonga Marr., Thes. Conch., iv, pl. 2, f. 14.

Var. violacea Marr., Thes. Conch., iv, pl. 4, f. 56. Var. ustulata Lam., Anim. sans vert., v, 620, 1822.

oriola Ducl. (not Lam.), in Chenu's Ill. Conch., ii, pl. 11, f. 1, 2.

fuscata Marr., Thes. Conch., iv, pl. 2, f. 20-22. brunnea Marr., Thes. Conch., iv, pl. 4, f. 54, 55.

Var. polpasta Ducl. in Chenu's Ill. Conch., Pl. 17, f. 1, 2.

Var. cumingi Reeve, Conch. Icon., vi, pl. xi, f. 19.

ligneola Reeve (pars) Conch. Icon., vi, pl. 21, f. 57 a b (juv.)

Bolten and Lamarck again refer to the same figure by Martini (Conch. Cab., ii, tab. 48, f. 509). Bolten refers to it a second time as his type of arachnoidea, while the figure he refers to as the type of his litterata (Conch. Cab., ii, tab. 46, f. 488) is not sufficiently characterized for varietal distinction. The above varieties were briefly diagnosed in my previous paper (NAUTILUS, xxiv, p. 122, 1911).

ON CLASSIFICATION IN GENERAL AND THE GENUS LYMNAEA IN PARTICULAR.

BY HAROLD SELLERS COLTON.

The value of the generic name is the subject of this paper. To illustrate this, the genus Lymnaea is considered.

The most recent classification of this group is that of F. C.

Baker in his admirable "Lymnaeidae of North and Middle America" (Chicago Academy of Sciences Pub. No. 3, 1911) p. 120. Whereas the older classifications considered shell characters alone, this author "proposed to classify the Lymnæids by the characters of the shell, genitalia (shape of prostate, relative size and form of the penis and penis-sac) and radula."

On a basis of these criteria he has split the genus Lymnæa as defined by Haldeman 1840, Gould, Binney 1868, Dall 1871, Tryon 1872 & 1884 and more recently by Dall in 1905, into six genera: Lymnaa, Pseudosuccinea, Radix, Bulimnaa, Acella and Galba. He has done this mainly by raising a number of subgenera and sections of former authors to generic rank. I wish to ask this question: Is this at the present time justifiable? (1) Baker lists 103 species and varieties of the old Lymnæa in this work. Of but 33 have anything of the anatomy, radula and genital organs been studied. Therefore the shell characteristics are the important ones after all. (2) All these new genera are based largely on quantitative characters. The only qualitative character mentioned is the radula and this is given quite a subordinate place in the classification. (3) In his diagnosis of the genus Galba in his key he states that the "Penis (epiphallus) is shorter than the penis-sac" (Penis).1

However, for two of the species of this genus the epiphallus is longer than the penis. See Baker p. 263 and 277.

In the mind of the writer our present knowledge will not allow us to make a comprehensive classification of the Lymnæids based on the anatomy of the snail. We know too few species well. On the other hand the shell characters alone in a mollusk with such a generalized form of shell as have the Lymnæids are not characters on which one can base much reliance.

On account of these reasons the writer would make the recommendation that the old genus $Lymn\alpha a$ should be retained in the sense that it has been used for the past seventy years. These

¹I am indebted to Dr. H. A. Pilsbry for calling my attention to the fact that Baker has called the *epiphallus* the penis, and the true penis he has called the penis-sac. In this paper I will adhere to the general usage and refer to the epiphallus and penis instead of penis and penis-sac.

new genera of Baker will then become sub-genera. The sub-genera of Baker will be reduced to sections with one exception, viz., that of *Simpsonia*, now *Pseudogalba*, be retained as a sub-genus. This form seems to the writer, on account of the character of the radula, to be sufficiently different to cause its removal from the sub-genus *Galba*. We have then the following classification:—

Genus Lymnæa Lamarck.

Subgenus Lymnæa contains the stagnalis group.

Subgenus Pseudosuccinea contains the columella group.

Subgenus Radix contains L. auricularia.

Subgenus Bulimnæa contains L. megasoma.

Subgenus Acella contains L. haldemani.

Subgenus Pseudogalba (Simpsonia) contains the humilis and obrussa, umbilicata and parva groups.

Subgenus Galba contains the section Galba, and the palustris,

catascopium and emarginata groups.

The classification recommended above has certain advantages over that proposed by Baker in that it indicates differences between groups of snails but does not commit one to place a shell the anatomy of whose animal is unknown in a given genus. can be provisionally placed in a subgenus by superficial resemblance and if later changed will not affect the generic name. It is by the generic name that animals are catalogued. This is a very important practical matter and one that cannot be too much emphasized. To change generic names without an overwhelming amount of evidence in favor of the change is hindering instead of advancing the science. Species and minor groups on the other hand cannot be too much subdivided. It is an advance to describe every variation that can be distinguished. Of this work Bateson (Problems of Genetics, p. 249) says:-"They will serve science best by giving names freely and by describing everything to which their successors may possibly want to refer and generally by subdividing their material into as many species as they can induce any responsible society or journal to publish." It must not be thought that the writer of this is trying in any way to slight the value of Baker's work. It is a work of very great value and splendidly arranged. clear statement of what we know of the group and what we do not know is most important. It is a model which many should follow. It has been the constant companion and guide of the writer for the past two years. He does not wish this paper to be considered a criticism but rather as an appendix to that work, making it, if possible, still more valuable to students of American mollusks.

To recapitulate: generic names are those by which animals are catalogued, therefore should not be changed without overwhelming evidence in favor of the change. This value of the genera in cataloguing has not been sufficiently emphasized.

A PROVISIONAL KEY TO THE SUBGENERA AND SPECIES OF NORTH AMERICAN LYMNAEIDS.

BY HAROLD S. COLTON.

The following is a preliminary key to some of the best known species in the genus Lymnaea. It is based on a careful study of the wealth of material in Baker's Lymnaeidae of North and Middle America. To this the writer has added a little that has come under his observation during the past eight years that he has been working with this group.

It must be noted that *L. auricularia* appears in two places in the key. This is because the radula of the Philadelphia form

is different from the radula of the Chicago form.

It must be remembered also, as stated in the preceding article that the radula and character of the reproductive organs are the important characters in classification as the shell is such a generalized form. This being the case it will be of value in locating but 33 species and varieties as the other 73 have been described by shell characters alone. When they have been studied the key no doubt will have to be much modified.

The writer found it impossible to sub-divide the groups in his key. The species within a group are distinguished by shell characters alone, and although one familiar with species can distinguish them without much difficulty, it is almost impossible

to state the differences in a few words.

This key is intended as a supplement to that of Baker p. 125. It makes no pretense of completeness. The writer, therefore, would be glad to hear of any practical difficulties arising in its application.

In the following key the ratio between the aperture length

and the shell length is referred to as the "ratio."

GENUS LYMNAEA:-

Fresh-water pulmonate mollusks. Shell: normally dextral, rarely sinistral, ovately oblong to elongate. Animal: with a short, wide, rounded foot. Tentacles: flattened. Central tooth of the radula unicuspid; laterals bi-or tri-cuspid. Male and female genital openings separate and on the right side. Mantle margins contained within the shell.

(I) The first lateral tooth of the radula has three cusps, the
others two.
The epiphallus longer than the penis. Color pat-
tern of the mantle conspicuous. Adult with a
flaring lip (Subgenus Radix) L. auricularia p. 179
(II) The lateral teeth of the radula with two cusps.
(1). 1st cusp grooved : epiphallus less than penis. (Subgenus
Acella) L. haldemani p. 192
(2). 1st cusp ungrooved.
(A) Axis gyrate: epiphallus 1 of penis—(Subgenus
Lymnæa)—Stagnalis Group p. 136
(B) Axis not gyrate. Epiphallus equal or less than the
penis but over ½. (Subgenus Galba).
(a) with not evident spiral sculpture—
Galba Group p. 200
(b) with evident spiral sculpture.
(aa) Ratio between two and three—
Patie between 11 and two
Ratio between $1\frac{1}{2}$ and two. (aaa) Ovate shell, narrow inner lip, no true
umbilicus—Catascopium Group . p. 377
(bbb) Bulbous shell, wide inner lip and umbil-
cus—Emarginata Group p. 408
(III) Lateral teeth with three cusps.
(1) Axis gyrate.
(A) Epiphallus less than the penis; shell succiniform
Subgenus Pseudosuccinea—Columella Group . p. 162
(B) Epiphallus less than the penis.
(a) Shell thin and transparent—color pattern of
mantle visible through shell—lip flaring in
adult—ratio less than $1\frac{1}{2}$. (Subgenus Radix) L. auricularia p. 179
L. auricularia p. 179 (b) Shell solid bulimiform—ratio greater than
1 $\frac{1}{2}$. (Subgenus Bulimnea).
T
(2) Axis not gyrate (Subgenus Pseudogalba).
Epiphallus usually shorter than the penis.
(aa) Inner lip flattened out and excavated.
L. umbilicata p. 236
(bb) Inner lip erect. L. parva p. 243
(b) Epiphallus usually longer than the penis.
(aa) 10 mm. long, has 5 whorls
L. humilis p. 25
(bb) 10 mm. long, has 4 whorls
L. obrussa p. 270
P = 10

WALKER: ON CAMPELOMA, ETC.

THE NAUTILUS.

VOL. XXVIII.

MARCH, 1915.

No. 11

ON PALUDINA COARCTATA AND INCRASSATA LEA.

BY BRYANT WALKER.

The descriptions of both of these species were read by Dr. Lea before the American Philosophical Society on Dec. 16, 1842 and were published on or before Jan. 3, 1843. Since that time they have led a varied and precarious existence at the hands of subsequent authors. Lea's types were, in both instances, single, imperfect specimens received from Dr. Foreman without any more precise locality than that of "Alabama." Lea never figured either of his species. But this was done by W. G. Binney twice, though the two figures in each case are so dissimilar that it does not seem possible that they could have been drawn from the same specimens, were it not so stated by the author.

Binney in his preliminary "Descriptive Catalogue of the species of Amnicola, Vivipara, etc. of North America", published by the Smithsonian Institution in 1862 and purporting to be "proof", not only published a figure of the type of coarcata, but also one of "a perfect specimen" from the Lea collection. In this paper he recognized the species as a valid one, but added to it as synonyms the exilis and lima of Anthony.

In the same paper he also figured the incrassata and gave it specific rank.

In this final work, "Land and Freshwater Shells of North America, Part III," (1865), he omitted the figures of coarctata

published in 1852 and gave a new figure of the type, (fig. 108) and also presented his own description of the form as he understood it, which he illustrated by two figures under one number, (fig. 106). Both his description and these figures are excellent and represent a well marked form, which is abundantly found in the southern states from Alabama to Arkansas. He also retained the synonymy given in 1862.

In this work he referred *incrassata* to *Lithasia* and gave a new and better figure of the type.

In the Conchologia Iconica, (1863), Reeve followed Binney in uniting coarctata Lea and exilis Anth., but considered lima as specifically distinct. His figure of coarctata represents exilis and was drawn from the same specimen figured by Binney, as Anthony's type.

In 1869, Dr. James Lewis, (Am. Jour. Con., V, p. 34), from the examination of a series from the Coosa River in the Wheatley collection, came to the conclusion that "all the probabilities of the case point very strongly to the supposition that the true coarctata is a young shell from the Coosa River which, when mature, received the name ponderosa." While expressly refusing "to decide any question of difference or of identity between ponderosa of the Coosa and of the Ohio system of rivers," Dr. Lewis was evidently very strongly inclined to the opinion that the two forms were specifically distinct. On p. 36, Dr. Lewis also refers to specimens from Corinth, Miss., in the Wheatley collection labeled "coarctata Lea," which seem to be identical with the coarctata of Binney and concludes: "It is needless to add that this species is not coarctata; it is one, which in a careful review of this genus, should receive a distinct designation."

Apparently, Dr. Lewis has long before come to the same conclusion, as Binney states that as early as 1862, there were in the Smithsonian Museum, specimens of his, Binney's, coarctata from Jackson, Miss., labeled "compressa Lewis." Dr. Lewis, however, never published any description of his compressa and, so far as I have been able to ascertain, never referred to it in any of his writings.

Later, however, in his "Fresh-water and Land Shells" of Alabama, (1876), he somewhat modified his opinion. In the

body of the Catalogue, he lists nolani, coarctatus Lea and incrassatus as varieties of ponderosus and the coarctatus of Binney as decisus (coarctate var.) In the appendix, however, he states that "it is inferred that coarctata and incrassata are identical with the shells Mr. Tryon calls nolani" and "if the species really be distinct from ponderosus, it should receive the name of coarctata or incrassata, either of which has priority of nolani." He also says "a slender variety of M. decisa occurring in Big Prairie Creek has been confounded with the Coosa shell that Mr. Lea calls coarctata. There are peculiarities of form and color that should forbid the association of the Prairie Creek shell with the Coosa River coarctata."

Tryon, in his Continuation of Haldeman's "Monograph of the Fresh-water Univalve Mollusca of the United States," (1870), separated the Coosa River form of ponderosus as a distinct species under the name of nolani. He gave incrassata specific rank with decapitata Anth. as a synonym and figured both, apparently, from the type specimens. He also recognized coarctata as a distinct species with exilis Anth. as a synonym, and thinks "the Alabama locality (for coarctata) somewhat doubtful." His figure represents the typical form and not the coarctata of Binney.

In 1886. R. E. Call published an elaborate paper "On the Genus Campeloma Rafinesque with a revision of the Species," (Bull. Wash. Coll. Lab., I, pp. 149–165). His treatment of Lea's coarctata is very blind. Apparently by some oversight, he makes no reference to Lea's coarctata in his synonymy. But he includes Binney's (1865) figure of Lea's type, (Pl. IV, fig. 10), in the figures stated on p. 155 to represent subsolidum Anth. Why he did not give precedence to Lea's name, if he intended to unite the two forms, is difficult to understand.

He refers both incrassata Lea and decapitata Anth. to decisum as synonyms and adds :

"Melantho (Paludina) coarctata, ex auctores in partim non Lea (=subsolidum Anthony)." Just what this was intended to mean is perplexing, as he refers Binney's figures of his coarctata (Pl. iv, figs. 8 and 9), to subsolidum on p. 155. With this exception, there is no reference to Lea's species in his paper save some cursory remarks in his discussion of lima Anth.

In a later paper, ("On Geographic and Hypsometric Distribution of North American Viviparidae," Am. Jour. Sci., xlviii, 1894, pp. 132–141), however, he seems to have adopted Binney's conception of coarctata, which he recognizes as a valid species. In connection with C. subsolidum, he states that "to the south of Missouri, it is replaced by its congener, Campeloma coarctatum Lea". And on p. 137, he says "over all the states from Arkansas south to Texas and east to central Alabama ranges a form, to which Mr. Lea gave the name of Campeloma coarctatum. It appears to be most nearly related to Campeloma subsolidum, being related to it as Campeloma lima is related to Campeloma rufum".

From a careful study of a very considerable amount of material from Alabama, Mississippi, Louisiana, Texas, Arkansas and Missouri collected by Wheeler, H. H. Smith, Hinkley, Singley and others, including the Lewis collection, I have come to the conclusion that Dr. Lewis was entirely right in his judgment as to these several forms. Figures 4 to 7 on my plate are from shells in his collection and no doubt, were considered by him at the time he prepared his Alabama Catalogue.

Lea's incrassata is a deformed, depauperate specimen. Mr. W. B. Marshall of the National Museum has kindly compared the original of my figure 4 with Lea's type and writes: "It is like Lea's type of incrassata in practically every detail. Your shell is a trifle larger". Figure 5 is a larger example of the same kind, less aberrant and connecting up directly with the typical form. Figure 6 is the typical coarctata of Lea and is also the normal young shell of Tryon's nolani. Figure 7 is the mature form of fig. 6 and the usual manifestation of the Coosa form known as nolani. It grows larger than that occasionally and is frequently more inflated. But, on the whole, the Alabama form is differentiated from the typical ponderosum of the Mississippi system by its more elongated, more cylindrical and less inflated form. I have seen no specimens that agreed exactly with Tryon's figure 10. It would seem either to be an extreme, aberrant example or to have had its peculiarities exaggerated in drawing. But there can be no doubt but that the three forms described as incrassata Lea, coarctata Lea and nolani Tryon are individual variants of the same species. Whether the Alabama race should be considered simply a variety of the typical ponderosum of the Mississippi system or be given specific rank is largely a matter of individual opinion. Dr. Lewiswas evidently, at one time, inclined to consider them specifically distinct, but his latest opinion was, apparently, different. Personally I am inclined to consider them local races of a common species.

The name that should be used for the Alabama race presents an interesting question. Incrassata and coarctata were not only described at the same time, but both descriptions were published on the same page, incrassata preceding coarctata. If the rule of priority applies to page precedence, it would be necessary to use Lea's first name, incrassata. But this would be very unfortunate; for the specific type would be an immature, deformed and depauperate example. On the other hand, while the type of coarctata is also a young shell, it is, nevertheless, a perfectly normal one and represents the species much more correctly. It is, therefore, very desirable to use that name, if it can be done without violating the provisions of the International Code. On referring the question to Dr. Pilsbry, he replies:—

"In this kind of a case, it is held that the first reviser may select which name may hold. Jordan and some others consider position on a page as giving "precedence," a view which has been vigorously combated and which has not been supported by the International Committee on Nomenclature, who hold that all names on one page, or indeed in one work, were published simultaneously (see Opinion 40 of the International Committee on Nomenclature). Personally I believe in Jordan's view, as an artificial precedence is better than no rule. You have, however, the right to decide either way under the rules".

Under this opinion and for the reason above given, I select "coarctata Lea" as the name to be used for this form.

The synonymy, therefore, becomes as follows:

Campeloma ponderosum coarctatum (Lea). Pl. V, figs. 4-7. 1843. Paludina coarctata Lea, Pr. Am. Phil. Soc., II, p. 243. 1862. Vivipara coarctata W. G. Binney, Desc. Cat., p. 30, figs. 50-51.

1865. Melantho coarctata W. G. Binney, L. & F. W. Shells, III, p. 53, fig. 108.

1869. Melantho coarctata Lewis, Am. Jour. Con., v, p. 34.

1870. Vivipara coarctata Tryon, Mon., p. 32, pl. 15, fig. I.

1876. Vivipara (Melantho) ponderosus coarctatus Lewis, Fauna of Ala., L. & F. W. Shells, pp. 24 and 40.

1886. Campeloma subsolidum Call, Bull. Wash. Coll. Lab., I, pl. iv, fig. 10.

1843. Paludina incrassata Lea, Pr. Am. Phil. Soc., II, p. 243.

1862. Vivipara incrassata W. G. Binney, Desc. Cat., p. 34, fig. 58.

1865. Lithasia incrassata W. G. Binney, L. & F. W. Shells, III, p. 65, fig. 65.

1870. Vivipara incrassata Tryon, Mon., p. 29, pl. 15, fig. 7.

1876. Vivipara (Melantho) ponderosus incrassatus Lewis, Fauna of Ala., L. & F. W. Shells, pp. 24 and 40.

1886. Campeloma decisum (part) Call., Bull. Wash. Coll. Lab., I, p. 156.

1870. Vivipara nolani Tryon, Mon., p. 25, pl. 12, figs. 10-11.

1876. Vivipara (Melantho) ponderosus nolani Lewis, Fauna of Ala., L. & F. W. Shells, pp. 24 and 40.

1886. Campeloma ponderosum (part) Call, Bull. Wash. Coll. Lab.. I, p. 154, pl. III, figs. 8-9.

This disposition of Lea's coarctata necessitates a new name for the coarctata of Binney. I propose to call it Campeloma lewisii in memory of Dr. James Lewis, who was the first to recognize its specific distinctness from Lea's coarctata.

The synonymy will be as follows:

CAMPELOMA LEWISII n. n. Pl. V, fig. 3.

1865. Melantho coarctata W. G. Binney, L. & F. W. Shells, III, p. 52, fig. 106.

1869. Melantho sp.? Lewis, Am. Jour. Con., v, p. 36.

1876. Vivipara (Melantho) decisus (coarctate var.) Lewis, Fauna of Ala., L. and F. W. Shells, pp. 24 and 41.

1886. Campeloma subsolidum (part) Call, Bull. Wash. Coll. Lab., I, p. 155, pl. iv, figs. 8-9.

1894. Campeloma coarctatum Call, Am. Jour. Sci., xlviii, p. 137.

Binney's description of his *Melantho coarctata* is very apt and his figures, (fig. 106), are excellent, though smaller than the species frequently attains in its maximum development. For this reason and because there is no locality indicated for the shells figured by Binney, I have chosen as the types a series from the Yallabusha River, Grenada Miss., collected by Hinkley.

The figured type, apex eroded and with only three whorls remaining, measures alt. 38.75, diam. 23.5 mm. I have before me a specimen from Village Creek, Hardin Co. Texas, collected by Singley, which, with only two whorls remaining, measures alt. 42, diam. 25.5 mm.

Campeloma lewisii is an abundantly distributed species in the southern states, ranging west from Alabama, through Mississippi and Louisiana, to Texas and north to Missouri and (possibly) to southern Illinois, (See Baker, Bull. Ills. St. Lab. N. H., vii, 1906, p. 89). Apparently it flourishes to the best advantage in the warm waters of the southern rivers as the specimens from Mississippi and Texas are larger and heavier than those from northern Alabama and Arkansas.

Compared with subsolidum, which it apparently replaces in the Gulf States, it is a thinner, lighter shell, the spire is usually more or less flattened and the suture less impressed and the whorls lack the shoulder, which is usually well marked in subsolidum. It is more closely related to decisum but differs in size, shape and texture, the suture is less impressed, the spire more produced, the body whorl proportionately longer and the aperture is a more elongated oval.

I have it before me from the following localities: Flint River, Gurley; and the Tombigbee River, Demopolis, Ala.; Big Black River, Durant; Tombigbee River, Columbus; Tallahatchee River, Abbeville; Yallabusha River, Grenada; Pearl River and Conway's Slough, Jackson and a branch of the Tangipahoa River, Pike Co., Miss.; Lake Bisteneau, Bienville, La.: Caddo Lake and Village Creek, Hardin Co., Texas, Cypress Creek, Ouachita River and Old River, Arkadelphia; Big Deciper Creek, Clark Co.; Cache Creek, Nemo and the St. Francis River, Lake City, Ark. and "Missouri."

POLYGYRA INFLECTA MOBILENSIS NEW VAR.

BY GEO. H. CLAPP.

A very interesting form of *P. inflecta* has recently been found by Mr. L. H. McNeill in Mobile, Ala., and as it seems to be constant, having been found in two different parts of the City and on Dauphine Island, I have named it as above.

It differs from the type in being flatter, with the last whorl less swollen beneath, the teeth small and weak, and in always having the umbilicus partly uncovered; white to light-horn-color but "when found the shells are covered with a black, very adherent coating".

On Dauphine Island, in the Gulf just at the entrance to Mobile Bay, Mr. McNeill found dead shells of the same form.

. The majority of the shells have about one half whorl less than the typical form, from Mobile, as shown by measurements below.

Six examples, the largest to smallest, measure:

Gr.	diam,	$11\frac{1}{2}$,	alt.,	6	mm.	whorls 5	
"	"	$11\frac{1}{2}$,	"	$5\frac{3}{4}$	66	"	$4\frac{1}{2}$
6.6	"	$10\frac{1}{2}$	66	$5\frac{1}{2}$	4.6	66	$4\frac{1}{2}$
"	6.6	$10\frac{1}{2}$	66	5	"	"	$4\frac{1}{2}$
"	"	$10\frac{1}{4}$,	"	5	"	"	$4\frac{3}{4}$
"	"	10,	66	51	"	"	43

Five typical shells from Mobile measure:-

Gr. diam. $10\frac{3}{4}$, alt. $6\frac{3}{4}$ mm. whorls 5 '' '' $10\frac{3}{4}$, '' $6\frac{1}{2}$ '' '' 5 '' '' $10\frac{1}{2}$, '' 6 '' '' 5 '' '' 10, '' 6 '' '' 5

Types number 7163 of my collection.

THE EARLIEST NOTICE OF A SPECIES OF THE GENUS GUNDLACHIA.

BY WM. H. DALL.

Rummaging through the volumes of the "Skrivter" of the Natural History Society of Copenhagen in which Lorenz Spengler printed many of his papers toward the end of the 18th century, I recently came on a little paper by Martin Vahl on a new species of *Patella*. Vahl was a Danish Naturalist who wrote chiefly on vertebrates, and after whom Mörch named the Greenland species of *Lymnæa*.

It is probable that he was also interested in botany, as he relates that he found his *Patella* (in the Linnean sense) on the blades of a species of the genus *Aponogeton* from the East Indies. He states that of the Linnean species of *Patella*, it is nearest to *P. fornicata* and *porcellana* (both now placed in the genus *Crepidula*).

His shell was of about the size of a grain of wheat, horny, fragile, smooth, with a reticulation of brown lines; the apex short, blunt, basal and somewhat incurved; the base with a transverse horizontal lip less than a quarter of the basal length. The station of the shell in fresh waters on the blades of Aponogeton in the East Indies. The shell is not figured, but it seems certain that nothing but a species of the group called Gundlachia can correspond to this description, read in 1796, and published in 1798, in the fourth volume of the Skrivter, part 2, pp. 153–5. He called the species Patella aponogetonis. It was not until 1849 that Pfeiffer proposed the name Gundlachia for a Cuban species.

STUDIES IN NAJADES.

BY A. E. ORTMANN.

(Continued from page 69.)

CARUNCULINA PARVA (Barnes). (See Ortmann, 1912, p. 338.)

I received a number of specimens from Arkansas through H. E. Wheeler. Gravid females, with glochidia, were collected in the Ouachita River, Arkadelphia, Clark County, on May 19 and June 23, 1911. Among many specimens collected in Saline River, Benton, Saline County, on July 13, 1911, no gravid

females were present. The same was the case in specimens from Big Deceiper Creek, Gum Springs, Clark County, collected September 25, 1911. Of two gravid females collected in Malvern Creek, Malvern, Hot Springs County, June 10, 1912, one had eggs, the other glochidia. Another female, collected August 9, 1912, by A. A. Hinkley in Big Creek, Solitude, Posey County, Indiana, was gravid with eggs. As will be remembered, I found myself gravid females with eggs in Pennsylvania on June 17, 1909.

Thus eggs are known to occur on June 10, June 17 and August 9, while glochidia were present on May 19, June 10 and June 26. These records are rather confusing. It may be that the beginning of the breeding season is irregular (June to August), and that the glochidia are discharged in June, so that the end and beginning of the season overlap. But this should be studied more closely.

In the female the inner mantle-edge in front of the branchial has the following structure: First, immediately in front of the branchial, there is a group of four to six small papillae with black base and whitish tips; then follows a slightly lamellar expansion of the inner edge, which is right in front of those papillae thickened, so as to form the "caruncle." This caruncle may be white or brownish (chestnut), of various shapes, cylindro-conical, or pyramidal, or semi-globular, sometimes somewhat divided. In front of the caruncle the edge is slightly wavy and disappears soon. The group of small papillae, with their black base, form a more or less marked black spot, and sometimes this black color extends forward and backward, forward so as to enclose the base of the caruncle, backward along the base of the papillae of the branchial. Also in the male the group of small papillae is present and marked by a black spot, and in front of this the inner edge is slightly lamellar, but without a caruncle.

In most of the specimens recently investigated, the supraanal opening was not closed, but normal, separated from the anal by a mantle connection a little shorter than the supraanal, but as long as or slightly longer than the anal. But in one specimen from Malvern, a male, the supraanal is undoubtedly

closed, thus confirming my previous observation in Pennsylvanian specimens; but this character is apparently not constant.

Glochidia subovate, anterior, ventral, and posterior margins forming a rather regular curve. They are somewhat higher than long, but not quite so high as in Lea's figure (Obs. 13, 1874, pl. 21, f. 3). Length, 0.18; height, 0.20 mm.

(To be continued.)

NOTES.

Helix hortensis from a Maine Shell Heap.—Dr. Glover M. Allen, in company with Mr. James F. Porter, while excavating in a shell heap on Great Spruce Head Island, Penobscot Bay, found Helix hortensis at a depth of from one to two feet below the surface, associated with bones of the large extinct mink—Mustela macrodon Prentiss. Although this mink has probably not been extinct for any great length of time, the association of the two forms is another evidence in support of the conclusion that the presence of H. hortensis in North America is in no way associated with its settlement by Europeans. Mr. Porter also found a fresh specimem of H. hortensis near Duck Harbor, Isle au Haute, Me., a new locality for the species.—C. W. Johnson.

Cæcilioides gundlachi (Pfr.) in Florida:—In March, 1914 Mr. John B. Henderson sent me two bags of dirt gathered on the south bank of the Miami River about two miles above Miami, and in it I found four specimens of the above species. This may be the species collected by Bartlett in Florida many years ago and called "C. acicula" by Binney; Manual, p. 429, as acicula has never been found there by recent collectors. Pilsbry, Manual of Conchology, second series, Vol. XX, p. 43, states that the shells found by A. D. Brown at Princeton N. J., "no doubt imported with West Indian plants," are gundlachi although Binney recorded them in the Manual as acicula.—Geo. H. Clapp.

BULIMULUS SCHIEDEANUS (PFR.) IN TEXAS:—In May 1913, Mr. Walter E. Koch found dead shells of this species near Terlingua, Brewster Co., Texas which are indistinguishable from Mexican specimens. The largest measures $41\frac{1}{2}x21\frac{1}{2}$ mm, with seven whorls.—Geo. H. Clapp.

Dr. Ortmann informs us that he has received a letter from Dr. F. Haas, of the Senckenburg Museum, Frankfurt a. M. He is in Spain. At the beginning of the war, he was in the High Pyrenees, and descending into French territory, was seized. All his belongings were taken from him by the French authorities, including his collections, and he was finally permitted to pass over into Spain.

After many hardships, on account of lack of funds, he was at last taken care of by a branch-plant of an electric company of his home town. He is now there, and his address is: Care of Sociedad Electro-Quimica, Flix (Tarragona) Spain.

VIVIPAROUS UROCOPTIDE—While going over Urocoptids in the Museum I noticed that *Brachypodella* (*Liparotes*) obesa and suturalis (Weinl.) are both viviparous. Shells of both species contain young of two or three whorls. You may already know this, but I do not find it recorded.—W. F. CLAPP, Museum of Comparative Zoology.

Gundlachia or Navicella?—As a supplement to Dr. Dall's article on the earliest notice of *Gundlachia* it may be as well to mention that on looking over Vahl's paper I was struck by the resemblance of his "Patella" to the genus *Navicella*. I see that Tryon (Man. Conch. X) has taken the same view.—H. A. Pilsbry.

1-3, 5. RAMSDEN: CUBAN LAND SHELLS.
4. HENDERSON: MICROCERAMUS LONGUS.
6-8. CLAPP: NEW SPECIES OF VERTIGO.

THE NAUTILUS.

VOL. XXVIII.

APRIL, 1915.

No. 12

ON SOME NEW CUBAN LAND SHELLS.

BY CHARLES T. RAMSDEN.

Among numerous interesting finds in the district of Guantánamo during the winter, three very distinct forms are selected for the following descriptions. Others are being worked up, and the descriptions will shortly follow.

UROCOPTIS (ARANGIA) SCOBINATA Torre and Ramsden, n. sp. Plate vi, figs. 3.

The shell is column-shaped, the upper half tapering to a rather wide truncation; waxen white, the base livid brown near the lip, both within and externally; without gloss; sculptured with thin, delicate rib-striæ which are stronger near the lower suture on each whorl, and are distinctly crimped; the irregularities being regular in successive riblets give an appearance of spiral sculpture. The whorls are nearly flat, parted by a distinctly impressed suture. The upper breach is closed by a flat, vertical septum, usually concealed by persistence of part of a whorl above it. The last whorl has a very prominent carina defining the base, which is slightly convex. The aperture is vertical, irregularly rounded, bluntly angular at the termination of the keel. Peristome thin, reflected, adnate for a short distance above. The internal axis bears a

single smooth median lamella which becomes very much weaker in the penultimate whorl.

Length 33.5, diameter 6.5 mm; 13 whorls remaining.

Length 31.5, diameter 6.5 mm.

Locality.—Subida a "La Hembrita", Monte Toro, Guantánamo. Type No. 111446 A. N. S. P., paratypes in collections of Torre and Ramsden.

This species differs from *U. sowerbyana* Pfr. in the following details. The delicate riblets are distinctly crimped, while in *sowerbyana* they are even; the basal carina is decidedly more prominent; the axial lamella is thinner, and in the penultimate whorl it is weaker; the lip is shortly adnate above; finally the color of the aperture differs.

The mantle of the animal is black, with white flames widest at the upper suture, and some small white spots between the flames. In life it shows through the shell, as in the figure.

The jaw and radula of this species have been examined by Dr. Pilsbry, who supplies the following notes. The jaw is extremely thin, composed of about 65 delicate narrow plaits, the middle ones forming a triangular area of short plaits. The radula has about 19.1.19 teeth, shaped like those of *U. (Esochara) fabreana*. The central tooth is very narrow as in *Esochara*. The dentition of the subgenus *Arangia* was not known before, but it confirms the inferences drawn from the shell as to the general position of the group. By the greater number of teeth it is more generalized than the other Cuban subgenera of *Urocoptis*.

DIPLOPOMA TORREI, n. sp. Plate vi, figs. 1, 1a.

The shell is scarcely perforate, pupiform, truncate, slightly more than four whorls remaining in the adult stage; russet vinaceous or almost white, with some small darker spots disposed in vertical series and upon the subsutural projections.

Sculpture of very low, rather wide, rounded spirals on the last 2 or $2\frac{1}{2}$ whorls, becoming strong at the base and in the umbilicus of the last whorl; about seven of these spirals visible on the penultimate whorl. Vertical sculpture of crowded, fine rib-striæ, which are slightly thickened where they pass over the spirals. The whorls are moderately convex, broadly ap-

pressed and irregularly, deeply lacerated above. The aperture is slightly longer than wide: peristome narrowly reflexed, thin, fluted, and having a small lobe at the upper extremity.

The operculum shows three whorls and a gray sunken nucleus externally, the whorls flat and tangentially striate, separated by a deep narrow suture. The inner face is concave and light yellow. The edge shows the two layers separated by a very deep cleft.

Length 15, diam. of last whorl, above the aperture 7 mm.; longest axis of aperture outside peristome 6 mm.

Locality.—Ojo de Agua range, between Guantánamo and Ramon de las Yaguas. Types No. 111445 A. N. S. P., paratypes in Ramsden collection.

This species differs conspicuously from *D. architectonicum* in both shell and operculum, but the latter has the very deep peripheral cleft characteristic of the genus. It was a great surprise to come upon a new species of this group.

RHYTIDOPOMA TOLLINI, n. sp. Pl. vi, fig. 5.

The shell is umbilicate, conic, composed of $4\frac{1}{2}$ strongly convex whorls. The summit is somewhat mamillar and distorted, the first whorl extremely convex, smoothish, next half whorl narrower. The last two whorls have a sculpture of very irregular, in part twinned axial laminæ which are enlarged at intervals in spiral bands, of which there are about 12 on the last whorl at the aperture; those on the inner (umbilical) side crowded, the rest widely spaced and larger, giving the appearance of coarse, low, spiral cords. The suture is irregular by the unequal prominence of the laminæ. The last whorl is barely free at the aperture. Peristome is simple, not expanded, but having a small lobe at the sutural extremity.

The operculum lodges lid-like upon the edge of the peristome. It is circular, concave within, flat externally, composed of about 7 narrow, closely-wound whorls, which are obliquely striate and parted by a rather deep, narrow suture.

Length 7, diam. 7 mm.

Locality.—Fifteen miles south of Media Luna, on the Pilón road, collected by O. Tollin. Type no. 111444 A. N. S. P., paratypes in coll. Ramsden.

A species of peculiar form. No other Rhytidopoma (= Ctenopoma, preoccupied) is of this shape. A slight approach to the sculpture of R. tollini is seen in R. perspectivum. In life the shells are thickly coated with soil.

MICROCERAMUS LONGUS, N. SP.

BY JOHN B. HENDERSON.

Among a lot of shells recently received from a limestone hill belonging to the Cubitas range in northern Camaguay Province, Cuba, is a new *Microceramus* belonging to the *gossei* group but quite distinct from that well-known and widely-distributed species. It is figured on plate vi, fig. 4. I give the following diagnosis:

Shell imperforate, turrited, tapering above the tenth whorl to an entire apex. Nuclear whorls two, ribbed. Opaque corneous brown streaked with wide white patches. Sculptured with oblique, closely pressed striæ, about 50 on lower whorls. Below and sometimes crossing the suture an irregularly spaced row of white nodules or bosses, less frequent in upper whorls. Whorls 15, well rounded in upper series becoming almost flat on cylindrical portion of shell. Base shows a very faint keel. Aperture slightly oblique, almost round, with white and very feebly expanded lip, the converging ends separated by smooth parietal wall. Axis simple.

Length 14, diam. 3.5 mm.; length ap. 2.75 mm.

Length 12, diam. 4 mm.

Length 10, diam. 3.25 mm.

In the lot received there is but little variation in color or disposition of white sutural nodules, but some range in size. The large number of whorls and the general facies of the shell at once suggests the *Spiroceramus* group, but the absence of an axial lamella precludes it.

Type no. 111447 A. N. S. Phila, ; topotypes in coll. J. B. H.

DESCRIPTION OF A NEW SPECIES OF VERTIGO, WITH NOTES ON OTHER FORMS.

BY GEO. H. CLAPP.

VERTIGO ALABAMENSIS n. sp. Plate vi, figs. 6, 6a, 6b.

The shell is cylindric-oval, perforate, convex, sutures well impressed, the last whorl somewhat tapering below, bulging above, and deeply constricted over the palatal folds; crest well marked. Lip well reflected, pale brown, and deeply constricted opposite the upper palatal, simple above the constriction, and with a strong callous or internal collar running down and connecting with the columella. Denticles 7, the parietal high, sinuous and deeply entering; angular strong, flat; upper palatal deep, very high in front and tapering to the rear, lower palatal very deeply seated, inner end back of the subcolumellar lamella, both palatals distinctly showing from the outside as white lines. Columellar lamella strong flat; subcolumellar bifid, strong; basal fold distinct, set on the callous collar just below the subcolumellar lamella.

Length 1.8, diam. 1.0 mm.—Length of aperture 0.69, width 0.63 mm.

"Among rotting leaves in a ravine near junction of North River with Black Warrior, Tuscaloosa Co., Ala." (H. H. Smith 1909).

Vertigo alabamensis conecuhensis n. subsp. Plate, vi, figs. 7, 7a.

At Evergreen, Conecuh Co., Ala., Mr. Smith found a variety (No. 9158) which differs from the type in being shorter and more globose with the teeth less strongly developed and the basal fold absent in all shells examined. Length 1.53, diam. 1.0 mm. Length of aperture 0.58, width .63 mm.

The types of these are in my collection; paratypes in coll. A. N. S. Phila.

VERTIGO OSCARIANA Sterki, variety. Plate vi, fig. 8.

This rare species was taken at Evergreen, Conecuh Co., Alabama. The specimens are more transparent than the types, and a little less strongly striate, but they agree in the characters of the aperture.

A NEW SPECIES OF MODIOLARIA FROM BERING SEA.

BY WILLIAM HEALY DALL.

Iredale has selected as type of *Musculus* Bolten, 1798, the species *Mytilus discors* Gmelin, the *Musculus* of Klein having no nomenclatorial standing. Therefore the familiar name *Modiolaria* becomes a synonym.

In a handful of dry algae sent from the Pribiloff Islands, Bering Sea, by Mr. G. Dallas Hanna, and profusely inhabited by the fry of *Mytilus edulis, Turtonia minuta* and young *Haloconcha reflexa*, a number of specimens which seemed unduly inflated for young *Mytilus* were noted. Placed under the microscope these were recognized as something new, though a casual glance would hardly have led to their separation.

Musculus phenax n. sp.

Shell small, very solid, inflated, brownish or bluish black, mytiliform; anterior end very short, but with the beaks extending slightly in front, attenuated, rounded, compressed below, with two or three radial impressed sulci; posterior end widening, rounded, the dorsal margin with an obscure angle about midway, the base behind the sulci convexly arcuate; the beaks blunt, inflated, conspicuous; surface polished, with inconspicuous incremental irregularities; interior blackish purple, with a very strong nymph for the ligament, and three or four denticles where the external sulci meet the margin. Length 7.7, maximum breadth 4.5, maximum diameter 4.0 mm.

Habitat. St. George Island, Pribiloff group, Bering Sea, living among algae, to which the specimens adhere by a strong byssus. U. S. Nat. Mus., no. 271733.

This would certainly be taken for a young Mytilus without careful examination. The most obvious differences are the greater inflation; the anterior portion (which is usually pale in the Mytilus) is dark; the inflated beaks which do not quite reach the anterior end, and internally the hinge characters. It agrees with M. vernicosa Midd. in not forming a byssal net over the valves.

OLIVA LITTERATA, LAMARCK.

BY WM. G. MAZYCK.

In the February Nautilus Mr. Johnson substitutes Conrad's name Oliva carolinensis for O. circinata, Marrat, which he had previously used for this well-known shell, Lamarck's name having been pre-occupied by Bolten, overlooking the fact that Dr. Edmund Ravenel had published the name Oliva sayana twenty-nine years before Conrad's description of Dactylina carolinenis.

The little shelf of books which I dignify with the title of "my Library" furnishes the following facts:

In 1834 Dr. Ravenel published a Catalogue of the Recent Shells in his Cabinet, on page 19 of which we find these entries:

- "O. litterata, Lam. 20 Ceylon.
- *O. Sayana, South Carolina.
 - *O. litterata, Say.

*These shells are certainly distinct, and therefore should be distinguished by different names. The O. Sayana, sometimes exceeds 3 inches in length—fine specimens are rare—worn specimens not uncommon on the coast of South Carolina."

In 1874 a second edition of this Catalogue was issued and on page 16 we read:

"512 O. litterata, (O. Sayana, Rav.) Sull. I., S. C."—a clear indication that he recognized the specific identity of the shells which he had formerly considered distinct.

I find no further allusion to Ravenel's name until 1889 when Dr. Dall mentions it as a synonym of *O. litterata* Lam., in Blake Moll., part 2, p. 133. With these facts before us it appears that the correct synonymy is

OLIVA SAYANA, Ravenel.

Oliva litterata, Lamarck, Ann. Mus., xvi, p. 315, 1810.

Oliva literata, Say, Am. Conch., pl. 3, 1830.

Oliva sayana, Ravenel, Cat., p. 19, 1834.

Oliva cylindrica, Sowerby. Quar. Jour. Geol., vi, p. 45, 1849. pars.¹

¹ Fide Johnson.

Strephona literata, Tuomey & Holmes, Pleioc. Foss. S. C., p. 140, 1857.

Olivancillaria (Utriculina) litterata, H. & A. Adams, Gen. i, p. 141, 1858.

Dactylina carolinensis, Conrad, Pro. Ac. Nat. Sci., p. 563, 1862. Oliva circinata, Marrat, Thes. Conch., iv. p. 21, 1871. Oliva litterata, (O. Sayana, Rav.) Ravenel, Cat., p. 16, 1874.

PLEUROBEMA MISSOURIENSIS MARSH.

BY BRYANT WALKER.

This species was described by the late William A. Marsh in 1901 in The Nautilus, xv, p. 74. The types were collected by the late Ellwood Pleas in the Black River near Poplar Bluff, Butler Co., Mo. It has not as yet been found by any other collector. It was not figured by the author, and owing to this fact and the rather unfortunate comparisons with other species made in the remarks accompanying the description, it has always been a conundrum to other students of the Unionidæ.

After Mr. Marsh's death in 1913, his collection of Unionidæ was acquired by Mr. L. S. Frierson and myself. The four specimens of *missouriensis* mentioned by Marsh were found and the type and one other are now in my collection. The other two belong to Mr. Frierson.

The specimen now figured (pl. V, figs. 1, 2) is marked "Type" on the interior of the right valve.

The examination of these specimens shows that the systematic position and relationship of the species was misunderstood by Mr. Marsh.

Missouriensis is not a Pleurobema, but is a Quadrula of the subrotunda group as defined by Simpson. It has no resemblance to P. bigbyense Lea at all. The comparison with P. hartmanianum Lea is equally fallacious and would seem to have been based upon a misapprehension of that species, for which, perhaps, he is not to blame. Hartmanianum is restricted to the

¹ Fide Johnson.

Alabama drainage system, but Simpson states that Lea, himself, had identified certain shells from the Clinch River as that species. This may have been the source of the erroneous comparison. At any rate, in the collection of the late Mrs. George Andrews were shells from the Holston River, which had been identified by Marsh as hartmanianum, and it seems probable that it was with such shells that the comparison was made. These shells are identical with the form that he subsequently described as Q. beauchampii. Both this species and his Q. andrewsii are hardly distinguishable from globata Lea and pilaris Lea and, indeed, all of these forms, together with lesueurianus Lea, form a natural group of inosculating races, which may represent simply a phase of subrotundum Lea. In the French Broad, Tellico and Hiawassee rivers there is found a form that is more compressed than typical pilaris and which would seem to be nearer to lesueurianus. It is with this form that missouriensis is most closely allied and, until a final and authoritative disposition can be made of the entire group, it must be considered as the western representative of that very perplexing aggregation.

STUDIES IN NAJADES.

BY A. E. ORTMANN.

(Continued from page 131.)

Carunculina texasensis (Lea) (See Ortmann, 1912, p. 339).

I have specimens from the Old River of the Ouachita River, Arkadelphia, Clark Co., Ark., among them gravid females, collected by H. E. Wheeler on July 17, 1911, which had in part eggs, in part young glochidia, and females with eggs collected August 20, 1912. L. S. Frierson sent gravid females with eggs and ripe glochidia, collected August 1, 1912, in Sabine River, Logansport, De Soto Par., La. Thus also here the breeding season remains obscure, but conditions might be the same as in *C. parva*. A specimen from Logansport, collected Aug. 1, was discharging.

Soft parts very much like those of *C. parva*, but the black spot behind the caruncle is not well marked, but represented by a black streak, extending along the branchial opening forward to the base of the caruncle, and beyond. Caruncle globular, subcylindrical, or pear-shaped, brownish or white, and quite conspicuous upon a black base. In the male, the black streak may be distinct or obscure, and the caruncle is entirely missing.

Rest of the anatomy as described previously; in one specimen, however, the inner lamina of the inner gills was free for only about one half of the length of the abdominal sac. In all specimens, the supraanal was open.

Glochidia identical with those of *C. parva*, Length: 0.18. Height: 0.20 mm.

Carunculina glans (Lea) (see: Lampsilis (Carunculina) glans Simpson, 1900, p. 565).

A sterile female from the Old River of Ouachita River, Arkadelphia, Clark Co., Ark., collected by H. E. Wheeler, July 17, 1911.

Inner edge of mantle, from branchial to caruncle, and a little in front of the latter, with a black streak, this streak, most intense just behind the caruncle, forming an ill-defined black blotch. Caruncle subcylindrical, brown.

Edge of sterile marsupium dark brown (no dark pigment seen here in C. parva and texasensis).

MEDIONIDUS CONRADICUS (Lea). (See Ortmann, 1912, p. 335.)

Only one male and a gravid female were at hand when I described the anatomy of this form. Recently I have collected a large number in North Fork, Holston River, Saltville, Smyth Co., Va. (September 17, 1912), and in Clinch River, Richland and Raven, Tazewell Co., Va. (September 20 and 21, 1912), and preserved the soft parts of six males, two sterile, and six gravid females. All of the latter have glochidia, but in some they are immature, thus indicating the beginning of the breeding season early in September.

Soft parts as described, and inner lamina of inner gills always free, except at anterior end. Marsupium as described, but

larger in larger specimens. Ovisacs as distinct as in other forms; their number may go up to 20 and even more. The marsupium assumes, when larger, the normal, kidney-like shape, but there is always a considerable part of the gill, at the posterior end, non-marsupial.

Inner edge of mantle, in front of the branchial, with very variable papillae. My former description apparently represents not the normal condition, for in the present material the papillae are posteriorly (near the branchial) generally very indistinct, often absent, and only anteriorly there are one, two or three rather long ones, of subcylindrical shape (but hardly "hair-like").

Glochidia as described before, almost subspatulate (with anterior and posterior margins nearly straight and forming an indistinct angle with the lower margin). They are much higher than long. Length 0.28, height 0.27 mm. (former measurements 0.22 x 0.28).

I have seen in none of the specimens from the Holston and Clinch Rivers a trace of the byssus of the adult shell.

Color of soft parts: whole mantle, and also the gills and posterior part of abdominal sac, suffused with black. Mantle margin intensely black posteriorly. The charged marsupium is white, without pigment on the edge, and contrasts strongly with blackish color of the rest of the gills.

I think *Medionidus* is a good genus, distinguished by character of shell and soft parts. The location of the marsupium, and of the marsupial swelling of the female shell is different from that of the allied genera (chiefly *Eurynia*), but also shell sculpture and papillae of mantle offer good characters.

(To be concluded.)

NOTES.

GONIDEA ANGULATA Lea. In a letter from Mr. John A. Allen who has been collecting shells in Oregon, especially about his home in Oswego, he states, that *Gonidea angulata* Lea was in great abundance in the canal which connects Tualatin River with Oswego Lake, Clackamas Co., Oregon. Only a few young ones were seen. The *Gonidea* were well sunk in the gravel,

probably were obliged to be, to escape being washed out by the winter floods. Perhaps the juvenile specimens were sunk so as to be practically invisible. Where the canal passed through hard clay, the Gonidea live in holes something like Petricola ploladiformis Lam. "I wonder how they made the holes?" The canal is not for boats, but carries water for power. At most places it is a trough blasted through rock, and here the Gonidea are very abundant in the running water; but it also lives in the still water of the lake.—E. G. Vanatta.

A REPAIRED SHELL.—While digging Zirfæa gabbi Tryon, at Anaheim Bay, Cal. recently I took one about $2\frac{1}{2}$ inches long that had repaired a very bad break in its shell. One valve was whole but the other had been broken from end to end, the break being nearly straight and not far from the umbones and a piece of the shell as large as a 25-cent piece was entirely gone from the lower end of the valve. At the line of the break the pieces of shell had separated $\frac{1}{4}$ inch and were fastened together by new shell nearly to the original outline. The new shell was somewhat translucent and lacked the characteristic sculpturing of the shell. In the same bank of red clay I get Pholas pacifica Stearns, Platyodon cancellatus Conrad, and Schizothærus nuttallii Conrad.—E. P. Chace.

On the occasion of the dedication of the Mellon Institute of Industrial Research of the University of Pittsburg, February 26th, the honorary degree of Doctor of Science was conferred upon Mr. George Hubbard Clapp, president of the board of trustees of the University.

Dr. Paul Bartsch has been made Curator of Marine Invertebrates of the National Museum. As conchologists we hope that his new responsibilities will not diminish his activities along

molluscan lines.

PUBLICATIONS RECEIVED.

ILLUSTRATIONS OF A THOUSAND SHELLS, part 2, By Y. HIRASE, Kyoto, Japan, Jan. 1915. The second part of this unique work, is fully as interesting as the first. It contains 105 excellent figures making the total for the two parts 200. The author shows indomitable zeal in promoting the study of Japanese mollusks. He deserves all the encouragement possible, and we wish him success.—C. W. J.

QL 401 Nautilus

N25

v.27-28

Biological & Medical

Serials

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

