RO/IR 08.03.2004

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

돌 원 번 호 : 10-2003-0025434

인 :

Application Number

출 원 년 월 일 : Date of Application

2003년 04월 22일 APR 22, 2003

출 원 Applicant(s) 학교법인 포항공과대학교 POSTECH FOUNDATION

2004 년 03 월 05 일

하 청

COMMISSIONER

방	담 당	심 사 관
방 식 심		
1 11 1		
완		

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2003.04.22

[발명의 국문명칭] 신규 포스포라미다이트 화합물

【발명의 영문명칭】NEW PHOSPHORAMIDITE COMPOUNDS

【출원인】

【명칭】 학교법인 포항공과대학교

【출원인코드】 2-1999-900096-8

【대리인】

【성명】 오규환

【대리인코드】 9-1998-000435-1

【포괄위임등록번호】 2000-016245-0

【대리인】

【성명】 장성구

[대리인코드] 9-1998-000514-8

【포괄위임등록번호】 2000-016240-3

【발명자】

【성명의 국문표기】 김병현

【성명의 영문표기】 KIM,Byeang Hyean

【주민등록번호】 550228-1120814

【우편번호】 790-390

【주소】 경상북도 포항시 남구 지곡동 756 교수숙소 6-601

【국적】 KR

【발명자】

【성명의 국문표기】 김수정

【성명의 영문표기】 KIM,Su Jeong

【주민등록번호】 710829-1110921

【우편번호】 790-784

【주소】 경상북도 포항시 남구 효자동 산 31번지 포항공과대학교 기숙사 11-3 10

【국적】 KR

【발명자】

【성명의 국문표기】 방은경

【성명의 영문표기】 BANG, Eun-Kyoung

【주민등록번호】 801223-2019039

【우편번호】 790-390

【주소】 경상북도 포항시 남구 지곡동 포항공과대학교 기숙사 여3동 305호

【국적】 KR

【우선권주장】

【출원국명】 KR

【출원종류】 특허

【출원번호】 10-2003-0001392

【출원일자】 2003.01.09

【증명서류】 첨부

【심사청구】 청구

【핵산염기 서열목록 또는 아미노산 서열목록】

【서열개수】14

【서열목록 전자파일】첨부

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사를 청구합니다.

대리인 오규환 (인)

대리인 장성구 (인)

【수수료】

【기본출원료】	20	면	29,000	원
【가산출원료】	27	면	27,000	원
【우선권주장료】	1	건	26,000	원
【심사청구료】	2	항	173,000	원
【합계】			255,000	원

【감면사유】 학교

【감면후 수수료】

140,500 원

【첨부서류】 1.요약서·명세서(도면)_1통

2.기타첨부서류[우선권증명서류{2003년 1월 9일자로 특허청에 기제출된 건을 원용함}]_1통

【요약서】

[요약]

본 발명은 새로운 DNA 변형체의 합성에 사용될 수 있는 포스포라미다이트(phosphoramidite) 화합물에 관한 것으로, 본 발명의 포스포라미다이트 화합물은 여러 가지 기능을 갖는 작용기가 도입됨으로써 다양한 목적의 올리고데옥시리보누클레오티드의 합성을 위한 새로운 빌딩블록으로서 의약 및 생명과학 분야에서 고효율의 진단도구 개발, 다양한 나노 구조의 ODN(oligodeoxyribonucleotide) 합성 등에 이용할 수 있다.

【대표도】

도 1

【명세서】

【발명의 명칭】

<1>

<2>

<3>

:4>

:5>

6>

신규 포스포라미다이트 화합물{NEW PHOSPHORAMIDITE COMPOUNDS}

'【도면의 간단한 설명】

도 1은 합성 올리고머의 용융온도를 나타낸 그래프이고,

도 2 및 3은 합성 올리고머의 CD 스펙트럼을 나타내는 것이고,

도 4는 정제된 올리고머의 HPLC 크로마토그래피를 나타낸 것이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 새로운 DNA 변형체의 합성에 사용될 수 있는 포스포라미다이트(phosphoramidite) 화합물에 관한 것이다.

DNA는 모든 생물의 유전정보를 저장하고 생명을 유지하기 위한 가장 중요한 물질로서, 유전학 분야에서는 화학적인 방법을 통해 합성 DNA를 제조하고 이를 약 으로 사용하여 질병을 극복하고자 하는 연구가 시도되고 있다(Agrawal, S., Synthesis and Properties, Humana Press: Totowa, Chapter 1-4, (1993) 및 Kool, E. T., Chem. Rev., 97; 1473(1997)).

특히 최근에는 축적된 DNA 자체의 구조나 성질을 바탕으로 DNA를 적극적으로

변형하여 의학 및 생명과학 분야에 적용하려는 시도가 많이 이루어지고 있으며, 구조적으로 흥미로운 변형 핵산들도 많이 합성된 바 있다(Newcome, G. R., et al., Dendritic Molecules: Concepts, Synthesis, Perspectives. VCH Publishers, New York, 116(1996); Shchepinov, M. S. et al., Nucleic Acids Res., 25, 4447-4454(1997); Shchepinov, M. S. et al., Nucleic Acids Res., 27, 3035-3041(1999); 및 Winfree, E. et al., Nature, 394, 539-544(1998)).

<7>

또한, 여러 개의 올리고데옥시리보누클레오티드(oligodeoxyribonucleotide; ODN) 가닥이 하나의 분자를 이루는 DNA인 분지 DNA(branched DNA, bDNA)는 이미 다 목적으로 연구가 진행되고 있는데, 이는 자연적으로 RNA(branched RNA)의 구조와 역할을 규명하기 위해서 또는 트리플렉스(triplex)를 안정화시키는 꺽인 형태의 올리고머를 디자인하기 위해 연구되거나(Hudson, R. H.; Uddin, A. H.; Damha, M. J., J. Am. Chem. Soc., <u>117</u>, 12470-12477(1995)), 특정 DNA 서열을 찾아내는 과정에서 신호증폭의 도구로 연구되어 왔다(Collins, M. L. et al., Nucleic Acids Research, Vol. 25, No. 15, 2979-2984(1997); 및 Horn, T, et al., Nucleic Acids Research, Vol. 25, No. 23, 4835-4849(1997)). bDNA를 반 복적으로 연결하여 고-분지된(hyperbranched) 폴리머나 덴드리머(dendrimer)를 합 성하고자 하는 연구도 진행되고 있다. 덴드리머는 하나의 화합물로 구성된 폴리머 의 일종으로서, 이의 말단 부위에 다양한 기능기를 도입하여 원하는 기능을 수행하 도록 하거나, 올리고머의 골격 부분과 특정 분자와의 상호작용을 유도할 수 있어 연구되고 있다(Newkome, G. R. et al., Chem. Rev.,

1746(1999)).

<8>

<9>

<10>

:11>

한편, 포스포라미다이트와 아데노신(A), 구아노신(G), 시티딘(C) 및 티미딘(T)이 결합된 화합물들을 이용하면 자동화된 DNA 합성기에 의해 다량의 천연 형 DNA를 용이하게 얻을 수 있으며, 임의의 포스포라미다이트 유도체들은 자동화된 DNA 합성기에 의해 간단히 DNA내로 삽입될 수 있다.

이에 본 발명자들은 여러 분야에 적용할 수 있는 새로운 DNA 변형체의 제조에 사용될 수 있는 단위체를 개발하기 위해 계속 연구한 결과, 기능성 작용기를 포스포라미다이트에 도입시켜 새로운 DNA 빌딩블럭을 형성시킴으로써 다양한 목적의 ODN을 합성하는데 사용될 수 있는 포스포라미다이트 화합물을 개발하여 본 발명을 완성하였다.

【발명이 이루고자 하는 기술적 과제】

본 발명의 목적은 다양한 기능을 갖는 DNA 변형체를 제조하는데 사용될 수 있는 새로운 포스포라미다이트 화합물을 제공하는 것이다.

【발명의 구성】

상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식 1 내지 5로부터 선택된 포스포라미다이트 화합물을 제공한다: :12> 【화학식 1】

<13> 【화학식 2】

<14> 【화학식 3】

<15> 【화학식 4】

:16> 【화학식 5】

:17> 상기식에서, R은

:18>

20>

디메톡시트리틸(DMTr)기, 레불리닐(levulinyl, Lev)기 또는 tert-부틸디메틸실릴(TBDMS)기이다.

19> 상기 포스포라미다이트 화합물 중 화학식 1의 화합물은 하기와 같은 S- 또는 R-이성질체일 수 있다.

S-이성질체

R-이성질체

21> 또한, 상기 식에서 DMTr 기, TBDMS 기 및 Lev 기는 각각 하기와 같은 구조를

갖는다:

<23>

<24>

- DM1r IBUNG (22>

상기 본 발명의 포스포라미다이트 화합물 중 특히 바람직한 것은 (S)-(+)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-1,3-부탄디올), (R)-(-)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-1,3-부탄디올, (O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-벤질글리콜레이트), O-DMTr-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-리토콜 알콜, O-트리-DMTr-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-펜타에리트리톨, O-DMTr-O-di-Lev-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-펜타에리트리카미타에리트리를, O-DMTr-O-Lev-O-TBDMS-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-펜타에리트리를, 의한시리트리를 및 화학시 5의 덴드리머 포스포라미다이트 화합물이다.

본 발명의 포스포라미다이트 화합물들은 포스포라미다이트에 생체내에서 다양한 기능을 갖는 작용기, 예를 들어, 1,3-부탄디올, 벤질 글리콜레이트 또는 리토콜산(lithocolic acid)을 도입시킴으로써 제조될 수 있으며, 특히 펜타에리트리톨및 덴드리머를 도입시킴으로써 제조된 포스포라미다이트 화합물들은 다양한 기능을 갖는 분지 DNA(bDNA)의 합성에 사용될 수 있다.

이하, 본 발명을 좀더 상세하게 설명한다.

1) (S)-(+)- 또는 (R)-(-)-1,3-부탄디올을 이용한 광학적으로 순수한 화학식 1의 포스포라미다이트 화합물의 합성(반응식 1)

1,3-부탄디올은 누클레오시드에서 염기와 당고리를 제거한 가장 간단한 구조의 화합물로서 이 화합물의 두 거울상 이성질체인 (S)-(+)- 또는 (R)-(-)-1,3-부탄디올의 1차 알콜을 DMTr (Dimethoxytrityl)기로 보호하고(화합물 6 및 7), 2차 알콜에 포스포라미다이트기를 도입하여 화학식 1의 구조를 갖는 (S)-(+)- 또는 (R)-(-)-포스포라미다이트를 수득할 수 있다.

수득된 (S)-(+)- 또는 (R)-(-)-포스포라미다이트는 올리고누클레오티드와 올리고누클레오티드를 연결하는 연결자(linker)로 이용이 가능할 것이다.

【반응식 1】

<25>

<26>

<27>

<28>

<29>

<3()>

<31>

2) 벤질 글리콜레이트를 이용한 화학식 2의 포스포라미다이트 화합물의 합성(반응식 2)

THF를 용매로 사용하고 DIPEA(N,N-diisopropylethylamine) 존재 하에 벤질

글리콜레이트와 클로로-(2-시아노에틸)-N,N-디이소프로필아미노포스핀을 결합시킴 으로써 화학식 2의 포스포라미다이트를 수득할 수 있다.

올리고누클레오티드 합성의 기본 프로토콜에 따르면 화학식 2의 포스포라미다이트 화합물에서 벤질기가 제거됨으로써 산 작용기가 도입될 수 있으므로, 수득된 포스포라미다이트는 합성기를 이용하여 산 작용기를 도입하고자 할 때 사용할수 있다.

【반웅식 2】

32>

:33>

<34>

<35>

<36>

3) 리토콜산을 이용한 화학식 3의 포스포라미다이트 화합물의 합성(반응식 3)

리토콜산의 카르복시 산기를 환원하여 1차 알콜(화합물 8)을 만든 후 DMTr 기를 도입하고(화합물 9), 나머지 2차 알콜에 포스포라미다이트기를 도입함으로써 화학식 3의 포스포라미다이트 화합물을 제조할 수 있다.

콜레스테롤 유사체인 리토콜산은 소수성이어서 세포막을 잘 통과할 수 있으므로, 리토콜산이 치환된 화학식 3의 포스포라미다이트 화합물은 세포 투과성이 향상되어 안티센스나 항-유전자 치료법에 응용시 효과를 증진시킬 것으로 기대된다. 또한, 상기 포스포라미다이트 화합물은 DNA에 삽입시 DNA의 2차 및 3차 구조형성에 영향을 미칠 것으로 기대된다.

【반응식 3】

37>

:38>

:39>

4) 펜타에리트리톨을 이용한 화학식 4의 포스포라미다이트 화합물의 합성(반 응식 4)

4개의 히드록시기를 갖고 있는 펜타에리트리톨의 1 내지 3개의 히드록시기를을 DMTr 보호기로 보호반응을 수행하여 얻어진 산물 중 DMTr 기가 3개 도입된 화합물(화합물 10)의 나머지 히드록시기에 포스포라미다이트기를 도입하여 화학식 4a의 포스포라미다이트 화합물을 합성할 수 있고, DMTr기가 2개 도입된 화합물(화합물 11)에 새로운 보호기로 Lev(levulinyl)기를 도입하여 중간체 화합물(화합물 13)을얻은 후 나머지 히드록시기에 포스포라미다이트 기를 도입하여 화학식 4b의 포스포라미다이트를 합성할 수 있다. 또한, 하나의 DMTr기가 도입된 화합물(화합물 12)에 Lev기를 도입하는 과정에서 2 개의 lev가 도입된 부산물(화합물 14)을 얻고, 이화합물에 포스포라미다이트기를 도입하여 화학식 4c의 포스포라미다이트 화합물을합성할 수 있으며, DMTr기와 lev기를 각각 하나씩 갖는 화합물(화합물 15)에

TBDMS(tert-butyldimethylsilyl)기를 도입하고(화합물 16), 포스포라미다이트기를 도입하여 화학식 4d의 포스포라미다이트 화합물을 수득할 수 있다.

얻어진 화합물들은 합성기를 이용한 덴드리머(dendrimer)의 합성 및 bDNA의합성을 위해 이용할 수 있다. 특히, 서로 다른 염기서열을 갖는 bDNA를 합성하는데 이용이 가능하며, bDNA를 합성한 후 DNA 나노 구조의 형성을 위해서도 적용할수 있다.

【반응식 4】

<40>

<41>

<42>

<43>

<44>

5) 덴드리머를 이용한 화학식 5의 덴드리머 포스포라미다이트의 합성(반응식 5)

화합물 17의 덴드리머 화합물의 알콜에 포스포라미다이트기를 도입하여 화학 식 5의 덴드리머 포스포라미다이트 화합물을 수득하였다.

수득한 덴드리머 포스포라미다이트 화합물을 이용함으로써 원하는 작용기를

갖는 덴드리머를 올리고누클레오티드에 손쉽게 도입할 수 있을 것으로 기대된다.

【반응식 5】

15>

16>

17>

18>

19>

이하 하기 실시예에 의하여 본 발명을 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한 정되는 것은 아니다.

실시예 1 : (S)-(+)-1,3-부탄디올을 이용한 화학식 1a의 포스포라미다이트 화합물의 제조

(단계 1) S-(+)-1-O-(4,4'-디메톡시트리틸)-1,3-부탄디올(화합물 6)의 제조

S-(+)-1,3-부탄디올 (96 mg, 1.065 mmol)을 3ml의 피리딘에 녹인 후, 빙수욕 중에서 0℃로 냉각한 후 4,4'-디메톡시트리틸 클로라이드 (430 mg, 1.27 mmol)를 첨가하였다. 빙수욕을 제거하여 상은으로 만들고 6시간 동안 교반하였다. 여기에 5% NaHCO₃ 용액 (10 ml)을 넣은 후 에틸 아세테이트 (15 ml)로 추출하였다. 유기 용매 층을 MgSO4으로 건조한 후, 감압 중류하였다. 얻어진 노란색 액체를 실리카 갤럽 크로마토그래피(용출액: 에틸 아세테이트:헥산=1:3)로 정제하여 표제 화합물 (401 mg, 1.02 mmol)을 96% 수율로 수득하였다.

50> R_f = 0.3 (에틸 아세테이트:헥산=1:2); IR (NaCl) v (cm⁻¹) 3462, 3059,

3034, 2959, 2927, 2848, 2835, 1607, 1508, 1250; ¹H NMR (아세톤- d_6) δ 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7.18 (m, 7H), 6.86 (t, 2H, J=2.6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3.50 (br, 1H), 3.28-3.14 (m, 2H), 1.73 (m, 2H), 1.11(d, 3H, J=6.2Hz); ¹³C-NMR (75.5 MHz, 아세톤- d_6) δ 158.1, 145.3, 136.1, 136.0, 129.5, 127.6, 127.2, 126.1, 112.5, 85.4, 64.2, 60.6, 54.2, 39.0, 23.1; MS-FAB (m/z): $C_{25}H_{26}O_4$ 에 대한 [M] 계산치: 392; 실측치: 392; [a] $C_{25}H_{26}O_4$ 에 대한 [M] 기사차 392; 실측치: 392; [a] $C_{25}H_{26}O_4$ 에 대한 [M] 기사차 392; 실측치: 392; [a]

(단계 2) (S)-(+)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이 트)-1,3-부탄디올)(화학식 la)의 제조

<51>

<52>

상기 단계 1에서 수득된 $S^-(+)-1-O^-(4,4'-디메톡시트리틸)-1,3-부탄디올 (1,5.5) 158 mg, 0.402 mmol)을 3 ml의 THF에 녹인 후, DIPEA (140 <math>\mu$, 0.804 mmol)를 첨가

하여 30분 동안 교반한 후 클로로-(2-시아노에틸)-N,N-디이소프로필아미노 포스핀 (177 μl, 0.80 mmol)을 천천히 첨가하였다. 이 때 생성되는 흰색 침전물을 여과하여 제거하고 감압 증류하였다. 이어서, 5% NaHCO₃ 용액 (20 ml)을 넣은 후 CH₂Cl₂ (20 ml)로 추출한 다음, MgSO₄으로 유기 용매 충을 감압 증류하여 수분을 제거하였다. 얻어진 노란색 액체를 실리카 겔 칼럼 크로마토그래피 (용출액: 에틸 아세테이트:헥산=1:5)로 정제하여 무색의 표제 화합물 (203 mg, 0.34 mmol)을 85% 수율로수득하였다.

<53>

1_{H-NMR} (300 MHz, 아세톤-a) 8 7.47-7.43(2H, m), 7.34-7.25 (5H, m), 7.22-7.16 (1H, m), 6.89-6.80 (4H, m), 4.15 (1H, m), 3.74 (3H, s), 3.73 (3H, s), 3.63-3.51 (3H, m), 3.20-3.16 (2H, m), 2.68 (1H, t, J=6.0Hz), 2.55 (1H, t, J=6.0Hz), 1.94-1.73 (3H, m), 1.21-1.11 (12H, m), 1.07 (1.5H, s), 1.05 (1.5H, s); 13C-NMR (75.5 MHz, 아세톤-a) 8 158.1, 145.2, 136.0, 129.6, 129.5, 127.7, 127.6, 127.2, 126.1, 117.7, 117.6, 112.5, 85.4, 68.0, 67.7, 67.4, 67.2, 60.0, 59.8, 59.2, 58.1, 57.8, 57.5, 54.2, 42.4, 42.2, 38.3, 23.7, 23.6, 23.6, 23.5, 23.4, 21.6, 19.5, 19.4; 31P-NMR (121 MHz, 아세톤-a) 8 149.0, 148.3; MS-FAB (m/z): $C_{34}H_{45}N_{2}O_{5}P_{1}Na_{1}$ 의 대한 [M+Na] † 계산치: 615; 실촉치: 615.

실시예 2 : (R)-(-)-1,3-부탄디올을 이용한 화학식 lb의 포스포라미다이트 화합물의 제조

(단계 1) №(-)-1-0-(4,4'-디메톡시트리틸)-1,3-부탄디올(화합물 7)의 제조

:54>

:55>

<56>

<57>

유·(-)-1,3-부탄디올 (103 mg, 1.14 mmol)을 3 ml의 피리딘에 녹인 후, 빙수욕상에서 0℃로 냉각한 후 4,4'-디메톡시트리틸 클로라이드 (460 mg, 1.36 mmol)를 첨가하였다. 빙수욕을 제거하여 상온으로 만들고 6시간 동안 교반하였다. 여기에 5% NaHCO₃ 용액 (10 ml)을 넣은 후 에틸 아세테이트 (15 ml)로 추출하였다. 유기용매 층을 MgSO₄으로 건조한 후, 감압 증류하였다. 얻어진 노란색 액체를 실리카겐 칼럼 크로마토그래피 (용출액: 에틸 아세테이트:헥산=1:3)로 정제하여 표제 화합물 (437 mg, 1.11 mmol)을 97% 수율로 수득하였다.

R_f = 0.3 (아세테이트:헥산=1:2); IR (NaCl) δ (cm⁻¹) 3462, 3059, 3034, 2960, 2929, 2835, 1607, 1508, 1250; ¹H NMR (아세톤-d₆) δ 7.47 (t, 1H, J=1.7Hz), 7.45(br, 1H), 7.35-7.20 (m, 7H), 6.87 (t, 2H, J=2.6Hz), 6.84 (t, 2H, J=2.6Hz), 3.92(br, 1H), 3.73(s, 6H), 3.47(d, 1H, J=3.7Hz), 3.25-3.14 (m, 2H), 1.71 (m, 2H), 1.09(d, 3H, J=6.2Hz); ¹³C-NMR (75.5 MHz, 아세톤-d₆) δ 158.1, 145.2, 136.1, 136.0, 129.5, 127.6, 127.2, 126.1, 112.5, 85.4, 64.2, 60.5, 54.1, 38.9, 23.0; MS-FAB (m/z): C₂₅H₂₆O₄에 대한 [M][†] 계산치: 392; 실측치:

392; $[a]_{D}^{21} = -9.9$ (c 1.0, CHCl₃).

<58>

<59>

<60>

(단계 2) (R)-(-)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-1,3-부탄디올(화학식 1b)의 제조

상기 단계 1에서 수득한 R-(-)-1-O-(4,4'-디메톡시트리틸)-1,3-부탄디올 (2,138 mg, 0.315 mmol)을 2 ml의 THF에 녹인 후, DIPEA (140 μ , 0.804 mmol)를 첨가한 다음, 30분 동안 교반한 후 클로로-(2-시아노에틸)-N,N-디이소프로필아미노 포스핀 (157 μ , 0.70 mmol)을 천천히 첨가하였다. 이 때 생성되는 흰색 침전물을 여과하여 제거하고 감압증류하였다. 5% NaHCO3 용액 (10 ml)을 넣은 후 CH_2Cl_2 (15 ml)로 추출한 다음, $MgSO_4$ 으로 유기용매 층을 감압증류하여 수분을 제거하였다. 수 득된 노란색 액체를 실리카 겔 칼럼 크로마토그래피 (용출액: 에틸 아세테이트:헥산=1:5)로 정제하여 무색의 표제 화합물 (108 mg, 0.182 mmol)을 52% 수율로 수득하였다.

R_f = 0.45 (에틸 아세테이트: 헥산=1:5) ¹H-NMR (300MHz, 아세톤- d_6) δ 7.47-7.43 (2H, m), 7.34-7.25 (5H, m), 7.22-7.16 (1H, m), 6.89-6.80 (4H, m), 4.15 (1H, m), 3.76 (3H, s), 3.75 (3H, s), 3.63-3.51 (3H, m), 3.20-3.16 (2H, m), 2.68 (1H, t, J=6.0Hz), 2.55 (1H, t, J=6.0Hz), 1.94-1.73 (3H, m), 1.19-1.10

(12H, m), 1.05 (1.5H, s), 1.03 (1.5H, s); ¹³C-NMR (75.5 MHz, 아세톤- d_6) δ 158.1, 145.2, 136.0, 129.5, 129.5, 127.6, 127.5, 127.2, 126.1, 117.6, 112.4, 85.3, 67.9, 67.7, 67.4, 67.2, 66.7, 59.9, 59.8, 58.0, 57.8, 57.5, 54.1, 42.4, 42.2, 38.3, 38.2, 24.8, 23.7, 23.6, 23.5, 23.4, 23.3, 21.6, 19.4, 19.3; ³¹P-NMR (121 MHz, 아세톤- d_6) δ 149.0, 148.3; MS-FAB (m/z): $C_{34}H_{45}N_2O_5P_1Na_1$ 에 대한 .

시험예 1

<62>

<61>

상기 실시예 1 및 2에서 제조된 화학식 1a 및 1b의 거울상 이성질체를 임의의 올리고누클레오티드의 내부에 삽입하여 하기와 같은 방법으로 가장 작은 단위의키랄 중심체의 차이가 전체의 올리고누클레오티드의 구조에 미치는 영향을 관찰하였다. 이 때 올리고데옥시리보누클레오티드는 급속 핵산 합성기 8900 (Expedite Nucleic Acid Synthesis System 8090)에 상기 포스포라미다이트 화합물을 넣어 합성하였다.

<63>

합성된 ODNs의 염기 서열과 Maldi-Tof mass(3-하이드록실피콜린산을 매트릭 스로 사용; 25000V; 극성: 양성)를 이용하여 확인한 분자량은 표 1과 같다.

65>

서	서열	분자량		
열	16	계산치	실측치	
번		,		
j j				
1	$5'd-T_6RpT_5$	3425.3	3433.3	
2	5'd-T ₆ SpT ₅	3425.3	3462.3	
3	5'd-A ₅ RpA ₆	3528.7	3534.5	
4	5'd-A ₅ SpA ₆	3528.7	3538.6	
5	5'd-T ₁₂	3577.4	3594.0	
6	5'd-T ₁₁	3274.2	3277.6	
7	5'd-A ₁₂	3690.2	3701.0	
8	5'd-A ₁₁	3377.6	3384.1	
9	5'd-AACGTTRpAACGTT	3786.0	3794.0	
10	5'd-AACGTTSpAACGTT	3786.1	3794.9	
11	5'd-AACGTTAAACGTT	3947,6	3950.7	
12	5'd-AACGTTTAACGTT	3938.2	3944.7	
13	5'd-AACGTTGAACGTT	3963,2	3969.1	
14	5'd-AACGTTCAACGTT	3923.2	3925.9	

Rp: (R)-(-)-1-0-DMTr-3-0-((2-시아노에틸)-N,N-디이소프로필

-포스포라미다이트)-1,3-부탄디올

Sp: (S)-(+)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필

-포스포라미다이트)-1.3-부탄디올

또한, 상기와 같이 합성한 ODNs로부터 표 2에 기재된 바와 같은 조합에 의해 제조된 이중체(duplex)의 용용온도(melting temperature, Tm)를 확인하기 위해, 100 mM NaCl 및 20 mM MgCl₂를 함유하는 트리스-HCl 완충액(10 mM, pH 7.2)에서 1.0 $^{\circ}$ C/분의 비율로 온도를 증가시키면서 이중체의 흡광도(260 nm) 변화를 측정하여 하기 표 1 및 도 1에 나타내었다. 여기에서, 이중체 1, 2, 9는 총 농도를 4.0 $^{\circ}$ M로 기 를 제 3 내지 8 및 10은 총 농도를 6.6 $^{\circ}$ M로 조정하여 실험하였다.

【丑 2】

66>

:67>

<68>

<69>

	3/5	서옄	Tm(℃)	△Tm(℃)
	이중체(Duplex)		26	-12
11	올리고 1 / 올리고 7	$5d-T_6RpT_5 / 5d-A_{12}$		
2	올리고 2 / 올리고 7	$5d-T_6SpT_5 / 5d-A_{12}$	26	-12
3	올리고 3 / 올리고 5	5d-A ₅ RpA ₆ / 5d-T ₁₂	28	-10
-	올리고 4 / 올리고 5	5d-A ₅ SpA ₆ / 5d-T ₁₂	27	-11
4		5d-T ₆ RpT ₅ / 5d-A ₅ RpA ₆	15	-23
5	올리고 1 / 올리고 3	0		-24
6	올리고 1 / 올리고 4	$5d-T_6RpT_5$ / $5d-A_5SpA_6$	14	
7	올리고 2 / 올리고 3	5d-T ₆ SpT ₅ / 5d-A ₅ RpA ₆	15	-23
		5d-T ₆ SpT ₅ / 5d-A ₅ SpA ₆	15	-23
8	올리고 2 / 올리고 4	Od 10-F-0 .	20	0
9	올리고 5 / 올리고 7	5d-T ₁₂ / 5d-A ₁₂	38	
10	올리고 6 / 올리고 8	5d-T ₁₁ / 5d-A ₁₁	35	-3
10	올리고 6 / 올리고 8	5d-T ₁₁ / 5d-A ₁₁	35	

여기에서 보듯이, 올리고 1과 A₁₂로 이루어진 이중체 및 올리고 2와 A₁₂로 이

루어진 이중체의 Tm은 T₁2와 A₁2로 이루어진 이중체의 Tm 보다 12 ℃ 낮은 값을 가짐

을 알 수 있다. 이는 1,3-부탄디올이 수소 결합할 수 있는 염기가 없고, 당고리

보다 유연하기 때문에 낮은 Tm을 갖는 것으로 보인다. 이로부터 알 수 있는 중요

한 사실은 이중체 1과 이중체 2가 같은 Tm을 가지므로, 화학식 1a의 R-이성질체와

화학식 1b의 S이성질체가 전체 올리고누클레오티드의 Tm에 영향을 미치지 않는다

는 것이다.

또한, 각 올리고머의 CD (circular dichroism) 스펙트럼을 측정하여 도 2 및

3에 나타내었고, 이 결과로부터 천연의 DNA와 본 연구를 통해 얻어진 올리고누클레

오티드가 유사한 이중나선 구조를 가진다는 것을 알 수 있다.

한편, 올리고 1, 올리고 2 및 이들의 혼합물(1:1)을 사용하여 하기와 같은

조건으로 HPLC을 수행하였다:

:70>

온도: 상온

:71>

, 칼럼: Agilent Eclipse XDB-C18, 4.6x150 mm, 5μ , 공극 크기 80Å

:72>

용매 프로그램: 시료 주입 후, 5% 아세토니트릴/0.1M 트리에틸암모늄 아세테이트 (TEAA) pH 7.0를 10분동안 흘려준 후, 10분 동안 50% 아세토니트릴/0.1M TEAA로 선형적으로 증가시킨 다음 5분간 유지시키고, 선형적으로 감소시켜 초기 상태로한다.

:73>

유속: 1 ml/분

:74>

그 결과, 도 4에서 볼 수 있는 바와 같이, 올리고 1(a), 올리고 2(b) 및 올리고 1과 2의 혼합물(c)이 같은 체류시간에 용출되어 S- 및 R-이성질체가 거의 차이가 없음을 알 수 있다.

:75>

상기 결과들로부터 S- 및 R-이성질체는 구조적인 차이를 나타내기는 하지만 이들이 포함된 전체 올리고누클레오티드의 구조에는 영향을 거의 미치지 않음을 알수 있다.

<76>

실시예 3: 벤질 글리콜레이트를 이용한 화학식 2의 O-((2-시아노에틸)-N,N-디이소 프로필-포스포라미다이트)-벤질글리콜레이트의 제조

<77>

벤질글리콜레이트 (100 μ , 0.704 mmol)를 7 ml의 THF에 녹인 후, DIPEA (480 μ , 2.8 mmol)를 첨가하였다. 30분 동안 교반한 후 클로로-(2-시아노에틸)-N,N-디이소프로필아미노 포스핀 (234 μ , 1.06 mmol)을 천천히 첨가하고 30분 동안

추가로 교반하였다. 이 때 생성된 과량의 흰색 침전물을 여과하여 제거하고 용액은 감압 증류하였다. 이어서, 5% NaHCO₃ 용액(25 ml)을 넣은 후 CH₂Cl₂(40 ml)로 추출하고, MgSO₄으로 유기용매 층을 감압 증류하여 수분을 제거하였다. 얻어진 노란색 액체를 실리카 겔 칼럼 크로마토그래피 (용출액: 에틸 아세테이트:헥산=1:3)로 정제하여 무색의 액체인 표제 화합물 (167 mg, 0.458 mmol)를 65% 수율로 수득하였다.

<78>

MS (FAB): m/z: 389.0 [M+Na⁺]; IR (니트): v=3032, 2967, 2932, 1758, 1496, 1455, 1395, 1185, 1098; ¹H-NMR (300 MHz, CDCl₃) & 7.33 (5H, s), 5.16 (2H, s), 4.28-4.17 (2H, m), 3.91-3.81 (2H, m), 3.64-3.57 (2H, m), 2.63-2.56 (2H, m), 1.77-1.23 (12H, m); ¹³C-NMR (75.5 MHz, CDCl₃) & 169.8, 169.8, 134.9, 128.1, 128.0, 117.3, 66.3, 60.4, 60.1, 58.6, 58.4, 42.9, 42.7, 24.2, 24.1, 24.0, 19.8, 19.8; ³¹P-NMR (121 MHz, CDCl₃) & 153.7; HRMS-FAB (m/z): C₁₈H₂₇N₂O₄P₁Na₁에 대한 [M+Na]⁺ 계산치: 389.1606; 실촉치: 368.1603.

<79>

실시예 4: 리토콜산(lithocolic acid)을 이용한 화학식 3의 포스포라미다이트 화합물의 제조

(단계 1) 리토콜 알콜(화합물 8)의 제조

<80>

<81>

<82>

<83>

<84>

<85>

<86>

리토콜산 (527 mg, 1.40 mmol)을 30 ml의 THF에 녹이고, 0℃로 냉각한 다음 LAH(Lithium aluminum hydride) (247.6 mg, 6.58 mmol)를 첨가하여 4시간 동안 교반한 후 250 μl H₂0를 넣고, 15% NaOH 수용액 (2+50 μl)을 첨가하였다. 750 μl의 H₂0를 추가로 넣어 주면 흰색 고체가 과량으로 생성되는데, 이를 여과하여 제거하고 감압증류하여 흰색의 고체인 표제 화합물 (486.4 mg, 1.33 mmol)을 95% 수율로 수 특하였다.

m.p. 96.5-97.8 ℃;

MS (EI): m/z: 362.3 [M^{\dagger}];

IR (니트): v=3205, 2934, 2862, 1446, 1066, 914, 728cm⁻¹; ¹H-NMR (300MHz, CDCl₃) δ =3.61-3.57 (3H, m), 1.82-1.01 (28H, m), 0.90 (6H, s), 0.62 (3H, s); ¹³C-NMR (75.5MHz, CDCl₃) δ 70.3, 62.0, 56.0, 55.7, 42.1, 41.6, 35.9, 35.3, 35.1, 35.0, 34.1, 31.5, 30.0, 29.0, 27.8, 26.8, 26.0, 23.7, 23.0, 20.3, 18.2, 11.6; HRMS-FAB (m/z): C₂₄H₄₁O₁에 대한 [M-OH] [†] 계산치: 345.3157; 실측치: 345.20.

(단계 2) O-DMTr-리토콜 알콜(화합물 9)의 제조

단계 1에서 수득한 화합물 8 (455.1 mg, 1.25 mmol)과 DMAP (68 mg, 0.06

mmol)이 녹아 있는 피리딘 (10 ml) 용액에 DMTr-Cl (544 mg, 1.63 mmol)을 첨가하였다. 상은에서 19 시간 동안 교반한 후, 피리딘을 감압 증류하였다. 5% NaHCO3(50 ml)을 넣어 준 후 에틸 아세테이트(50 ml)로 추출한 후, 유기층을 MgSO4로 건조하고 감압증류하여 오랜지색 오일을 얻었다. 이를 플래시크로마토그래피(flash chromatography) (용출액: 에틸 아세테이트/헥산=1:4)로 정제하여 흰색 고체인 표제 화합물 (744.8 mg, 1.12 mmol)을 89% 수율로 수득하였다.

m.p. 81.2-82.1 ℃;

<87>

<88>

MS (FAB): m/z: 664.4 (M[†]); IR (니트): v=3421, 2934, 2863, 1739, 1608, 1582, 1509, 1446, 1250, 1175, 1036, 827cm⁻¹; ¹H-NMR (300MHz, CDCl₃) & =7.45 (d, 2H, J=7.2Hz), 7.35-7.26 (m, 7H), 6.89-6.80 (dd, 4H, J1=7.0Hz, J2=1.9Hz), 3.80 (s, 6H), 3.64 (br, 1H), 3.04-2.98 (m, 2H), 1.99-0.89 (m, 34H), 0.63 (s, 3H); ¹³C-NMR (75.5 MHz, CDCl₃): & =159.0, 148.2, 137.6, 130.7, 129.0, 128.3, 127.2, 126.6, 113.7, 86.4, 72.6, 64.7, 57.3, 56.9, 55.9, 43.4, 42.9, 41.2, 40.9, 37.2, 36.6, 36.3, 36.1, 35.3, 33.1, 31.3, 28.9, 27.9, 27.4, 27.2, 24.9, 24.1, 21.6, 19.4, 12.8; HRMS-FAB (m/z): C₄₅H₆₀O₄에 대한 [M-OH][†] 계산치: 664.4492; 실측 치: 664.4489.

(단계 3) O-DMTr-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-리토콜 알콜(화학식 3)의 제조

89>

90>

:91>

단계 2에서 수득한 화합물 9 (89.2 mg, 0.15 mmol)와 DIPEA (77 μl, 0.45 mmol)을 CH₂Cl₂ (2 ml)에 녹인 후 클로로-(2-시아노에틸)-N,N-디이소프로필-포스핀 (49 μl, 0.225 mmol)을 천천히 첨가하였고, 온상에서 15분 동안 교반하였다. 이어서, 5% NaHCO₃(10 ml)을 CH₂Cl₂(10 ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 증류하여 흰색 고체를 얻었다. 이를 플래시 크로마토그래피(용출액: CH₂Cl₂/ 헥산=1:1.5)로 정제하여 흰색의 고체인 표제 화합물(69.3 mg, 0.081 mmol)을 54% 수율로 수득하였다.

MS (FAB): m/z: 866 [M+H[†]]; IR (口重): v=3353, 2962, 2935, 2866, 1608, 1509, 1463, 1446, 1376, 1364, 1300, 1250, 1178, 1035, 975, 827, 754cm⁻¹; ¹H-NMR(300MHz, CDCl₃) & =7.35 (d, 2H, J=7.6Hz), 7.25-7.11 (m, 7H), 6.73 (d, 4H, J=8.7Hz), 3.70 (s, 9H), 3.52 (m, 2H), 2.91 (m, 2H), 2.65 (t, 2H, J=6.4Hz), 1.88-0.80 (m, 46H), 0.53 (s, 3H); ¹³C-NMR (75.5MHz, CDCl₃) & =159.0, 146.2, 137.6, 130.7, 129.0, 128.3, 127.2, 113.7, 110.1, 86.4, 77.9, 75.2, 74.9, 64.7, 59.1, 58.8, 57.2, 56.9, 55.9, 43.8, 43.7, 43.4, 43.0, 41.1, 40.9, 36.6, 36.2, 36.0, 35.3, 33.1, 32.3, 30.3, 28.9, 28.0, 27.4, 27.1, 25.4, 25.3, 25.2,

25.1, 24.9, 24.0, 21.5, 21.1, 21.0, 19.4, 12.7; P-NMR (121 MHz, CDCl₃) $\delta = 148.1, 147.4; \text{ HRMS-FAB (m/z): } C_{54}H_{78}O_5N_2P_1 \text{에 대한 [M+1]+ 계산치: 865.5648; 실 축치: 865.5641.}$

실시예 5: bDNA의 합성을 위한 화학식 4a의 포스포라미다이트의 제조 (단계 1) 펜타에리트리톨의 DMTr 보호반응 (화합물 10, 11 및 12의 합성)

:92>

:93>

:94>

<95>

펜타에리트리톨 (1.1 g, 7.34 mmol) 및 DMAP(4-dimethylaminopyridine) (276 mg, 2.26 mmol)가 녹아 있는 Py/DMF (2/1, 15 ml) 용액에 DMTr-Cl (4.1 g, 12.1 mmol)을 첨가하였다. 상온에서 10 시간 동안 교반한 다음, 5% NaHCO₃(80 ml)을 넣어준 후 CH₂Cl₂(50 ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 증류하여 오랜지색 오일을 수득하였다. 이를 플래시 크로마토그래피(용출액: 에틸 아세테이트:헥산=1:2에서 화합물 10을 얻고, 에틸 아세테이트:헥산=1:1에서 화합물 11을 분리한 후, CH₂Cl₂/MeOH=10:1 로 화합물 12를 얻음)로 정제하여 세가지 반응 산물(화합물 10: 2.93 g, 2.81 mmol, 70%; 화합물 11: 520 mg, 0.702 mmol, 11.6 %; 화합물 12: 395 mg, 0.901 mmol, 7.4 %)을 수득하였다.

화합물 10: m.p. 96.3-97.8 °C; MS (FAB): m/z: 1065.3 (M+Na[†]); IR (니트): v=3410.1, 2929.6, 1607.4, 1508.1, 1461.7, 1300.2, 1250.6, 1176.4, 1034.3 cm⁻¹;

 1 H-NMR (300MHz, CDCl₃): δ =7.26-7.24 (m, 6H), 7.19-7.15 (m, 21H), 6.72 (d, 12H, J=8.9Hz), 3.76 (s, 18H), 3.59 (s, 2H), 3.32 (s, 2H); 13 C-NMR (75.5 MHz, CDCl₃): δ =158.8, 145.3, 136.3, 130.6, 128.6, 128.1, 126.9, 113.4, 86.4, 64.3, ...

:96>

화합물 11: m.p. 88.8-89.7 ℃. MS (FAB): m/z: 763.2 (M+Na)[†]; IR (니트): v=3442, 1684, 1652, 1608, 1507, 1457, 1250, 1217, 1176, 1034cm⁻¹, ¹H-NMR (300MHz, CDCl₃): δ =7.38-7.36 (m, 4H), 7.29-7.20 (m, 14H), 6.80 (4, 8H, J=8.5Hz), 3.76 (s, 12H), 3.64 (s, 4H), 3.23 (s, 4H), 2.39 (s, 2H); ¹³C-NMR (75.5MHz, CDCl₃): δ =158.0, 144.3, 135.3, 129.7, 127.7, 127.4, 126.3, 112.7, 85.8, 65.0, 62.7, 54.7, 45.0; HRMS-FAB (m/z): C₅₂H₅₄O₁₀Na에 대한 [M+Na][†] 계산치: 763.3247; 실측치: 763.3247.

97>

화합물 12: 실온에서 오일상의 화합물; MS (FAB): m/z: 461.1 (M+Na[†]); IR (니트): v = 3734.1, 3404.7, 2927.3, 1733.7, 1607.2, 1540.8, 1508.1, 1458.0, 1300.8, 1250.1, 1176.1, 1033.3, 828.9, 754.7 cm⁻¹, ¹H-NMR (300MHz, CDCl₃): δ =7.40-7.39 (m, 2H), 7.31-7.24 (m, 7H), 6.84-6.81 (m, 4H), 3.77 (s, 6H), 3.71 (s, 6H), 3.16 (s, 2H), 2.35 (br, 2H), 1.63 (br, 1H); 13 C-NMR (75.5MHz, CDCl₃): δ =158.8, 135.7, 130.2, 128.2, 127.2, 113.5, 65.4, 64.1, 55.4, 45.5.

(단계 2) *O*-트리-DMTr-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-펜타 에리트리톨 (화학식 4a)의 제조

:98>

:99>

100>

화합물 10 (560 mg, 0.537 mmol)과 DIPEA (187 μ , 1.074 mmol)을 THF (6 ml)에 녹인 후 클로로-(2-시아노에틸)-N,사디이소프로필-포스핀 (297 μ , 1.34 mmol)을 천천히 첨가하여 상온에서 1 시간 동안 교반하였다. 5% NaHCO₃(10ml)을 넣어 준 후 에틸 아세테이트(10ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 증류하여 노란색 오일을 수득하였다. 이를 플래시 크로마토그래피(용출액: 에틸 아세테이트:헥산=1:3)로 정제하여 무색의 오일의 표제 화합물 (236 mg, 0.190 mmol, 35 %)을 수득하였다.

MS (FAB): m/z: 1265.6 [M+Na[†]]; ¹H-NMR (300 MHz, CDCl₃): δ =7.27-7. 14 (m, 27H), 6.72-6.68 (m, 12H), 4.11 (q, 2H, J=6.7Hz), 3.75 (s, 18H), 3.39-3.23 (m, 8H), 2.23 (t, 2H, J=6.3Hz), 2.03 (s, 2H), 1.31-1.22 (m, 4H), 1.09 (d, 6H, J=6.7Hz), 0.95 (d, 6H, J=6.7Hz); ¹³C-NMR (75.5 MHz, CDCl₃): δ =157.7, 144.7, 135.8, 129.7, 127.8, 127.1, 126.0, 112.5, 85.1, 62.3, 57.7, 54.7, 42.5, 24.1,

24.0, 13.7; ³¹P-NMR (121.5 MHz, CDCl₃): δ =148.9; HRMS-ESI (m/z): C₇₇H₈₃N₂O₁₁P₁Na₁ 에 대한 [M+Na] [†] 계산치: 1243.5852; 실측치: 1243.5807.

실시예 6: bDNA의 합성을 위한 화학식 4b의 포스포라미다이트 화합물의 제조 (단계 1) O-Di-DMTr-O-Lev-펜타에리트리톨 (화합물 13)의 제조

상기 실시예 5의 (단계 1)에서 수득한 화합물 11 (506 mg, 0.68 mmol), EDC (288 mg, 1.50 mmol), 및 DMAP (184 mg, 1.50 mmol)이 녹아 있는 CH₂Cl₂ 용액 14 ml에 루불린산 (77 μl, 0.75 mmol)을 첨가하였다. 상온에서 3 시간 동안 교반한 다음, 5% NaHCO₃(20ml)을 넣고 CH₂Cl₂(10ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압증류한 후 이를 플래시 크로마토그래피(용출액: 에틸아세테이트/헥산=1:2)로 정제하여 노란색 고체인 표제 화합물 (319.7 mg, 0.37 mmol, 55%)을 수득하였다.

104>

101>

102>

103>

m.p. 55.4-56.1 °C; MS (FAB): m/z: 861.3 (M+Na[†]); IR (以巨): v=3522.7, 3055.8, 3035.1, 3000.1, 2955.5, 2932.7, 2836.1, 1733.6, 1717.2, 1506.3, 1301.6, 1251.3, 1177.6, 1154.9, 1072.5, 1033.9 cm⁻¹; ¹H-NMR (300MHz, 아세톤- d_6): $\delta = 7.41$ -7.38 (m, 4H), 7.29-7.18 (m, 14H), 6.85-6.82 (m, 8H), 4.15 (s, 2H), 3.77 (s, 12H), 3.77 (s, 12H), 3.69-3.67 (m, 2H), 3.50 (m, 1H), 3.29 (s,

4H), 2.63 (t, 2H, J=6.7Hz), 2.35 (t, 2H, J=6.7Hz), 2.07 (s, 3H); ¹³C-NMR (75.5MHz, CDCl₃): δ =205.7, 172.4, 159.0, 145.9, 136.4, 130.6, 128.0, 126.9, 126.3, 113.3, 86.2, 64.0, 61.9, 55.0, 45.5, 37.7, 28.0; HRMS-FAB (m/z): C₅₂H₅₄O₁₀Na에 대한 [M+Na][†] 계산치: 861.3615; 실특치: 861.3617.

(단계 2) O-Di-DMTr-O-Lev-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-펜타에리트리톨 (화합물 4b)의 제조

105>

106>

107>

상기 (단계 1)에서 수득한 화합물 13 (319.7 mg, 0.37 mmol)와 DIPEA (260 μ , 1.48 mmol)을 THF (4 ml)에 녹인 후 클로로-(2-시아노에틸)-N,N-디이소프로필-포스핀 (166 μ , 0.74 mmol)을 천천히 첨가하였다. 상은에서 1 시간 30분 동안 교반한 다음, 5% NaHCO₃(10ml)을 넣고 에틸 아세테이트(10ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 증류하여 노란색 오일을 수득하였다. 이를 플래시 크로마토그래피(용출액: CH_2Cl_2 /핵산=3:2)로 정제하여 노란색 오일인 표제 화합물 (302.8 mg, 0.29 mmol, 77%)을 수득하였다.

MS (FAB): m/z: 1040 (M+H+); IR (니트): v=2964, 2931, 2932, 1736, 1720, 1607, 1581, 1508, 1463, 1444, 1250, 1177, 1032 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ =7.24 (d, 4H, J=7.2Hz), 7.17-7.09 (m, 14H), 6.67 (d, 8H, J=8.4Hz), 4.02 (q,

2H, J=10.7Hz), 3.68 (s, 12H), 3.66-3.37 (m, 6H), 3.16 (m, 4H), 2.50 (t, 2H, J=7.0Hz), 2.35 (t, 2H, J=6.3Hz), 2.28 (t, 2H, J=6.7z), 2.05 (s, 3H), 1.21 (t, 4H, J=5.7Hz), 1.05 (d, 6H, J=6.7Hz), 0.94 (d, 6H, J=6.7Hz); ¹³C-NMR (75,5 MHz, CDC1₃): δ =172.5, 158.8, 145.2, 136.2, 130.5, 128.4, 127.9, 126.8, 117.9, 113.2, 86.0, 61.6, 60.6, 55.4, 43.3, 43.1, 38.0, 30.0, 28.0, 24.8, 24.7, 14.4, 158.0, 144.2, 135.3, 135.0, 129.7, 127.7, 127.4, 127.3, 126.3, 117.2, 112.6, 112.5, 85.8, 85.5, 62.6, 61.6, 61.4, 60.2, 57.9, 57.7, 54.7, 46.9, 43.5, 42.7, 42.5, 37.3, 30.47, 29.3, 27.3, 24.2, 24.1, 22.1, 20.7, 19.9, 19.8; ³¹P-NMR (121.5 MHz, CDC1₃): δ =150.2; HRMS-FAB (m/z): C₆₁H₇₂N₂O₁₁P₁Na₁에 대한 [M+H] [†] 계산치: 1039.4874; 실촉치: 1039.4877.

실시예 7: bDNA의 합성을 위한 화학식 4c의 포스포라미다이트 화합물의 제조 (단계 1) O-DMTr-O-Lev-펜타에리트리톨 (화합물 14) 및 O-DMTr-O-di-Lev-펜타에리트리톨 (화합물 15)의 제조

108>

109>

110>

상기 실시예 5의 (단계 1)에서 수득된 화합물 12 (484.3 mg, 1.10 mmol), EDC (253 mg, 1.32 mmol), 및 DMAP (162 mg, 1.32 mmol)이 녹아 있는 MC 용액 10 ml에 루불린산 (135 mg, 1.32 mmol)을 첨가하였다. 상온에서 3시간 동안 교반한다음, 5% NaHCO₃(20 ml)을 넣어 준후 CH₂Cl₂(15 ml)로 추출하였다. 유기층을 MgSO₄

로 건조하고 감압 증류한 후 이를 플래시 크로마토그래피(용출액: 에틸 아세테이트:헥산=1:2과 에틸 아세테이트:헥산=1:1로 용출)로 정제하여 노란색 액체인 표제화합물 (화합물 14: 141 mg, 0.22 mmol, 20%; 화합물 15: 285 mg, 0.53 mmol, 48%)을 수득하였다.

j

11>

화함물 14: MS (FAB): m/z 657,2 (M+Na[†]); IR (니트): v=3390, 1792, 1772, 1699, 1684, 1653, 1558, 1540, 1521cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ =7.41-7.38 (m, 2H), 7.28-7.20 (m, 7H), 6.85-6.81 (m, 4H), 4.16-4.10 (m, 4H), 3.78 (s, 6H), 3.54 (d, 2H, J=6.8Hz), 3.14 (s, 2H), 2.69 (t, 4H, J=6.5Hz), 2.50-2.44 (m, 4H), 2.15 (s, 6H), 1.25 (t, ¹H, J=7.14Hz); ¹³C-NMR-DEPT (75.5 MHz, CDCl₃): 5=130.7 (CH₁), 128.7(CH₁), 128.5 (CH₁), 128.5 (CH₁), 113.8 (CH₁), 63.6 (CH₂), 62.6 (CH₂), 61.8 (CH₂), 55.9(CH₃), 38.6 (CH₂), 30.4 (CH₃), 28.5 (CH₂); HRMS-ESI (m/z): C₃₆H₄₂O₁₀Na에 대한 [M+Na][†] 계산치: 657.2676; 실촉치: 657.2673.

112>

화합물 15: MS (FAB): m/z 559.2 (M+Na[†]); IR (니트): v=3400, 3179, 3084, 3056, 3001, 2929.7, 2835.8, 1716.9, 1606.4, 1508.5, 1445.2, 1380.3, 1301.3, 1250.3, 1228.2, 1177.6, 1033.9, 996.5, 949.8, 830.4, 807.2, 754.7cm⁻¹; ¹H-NMR

(300MHz, CDCl₃): δ =7.38-7.35 (m, 2H), 7.26-7.11 (m, 7H), 6.75 (d, 4H, J=8.5Hz), 4.35 (s, 2H), 4.22(s, 2H), 3.68 (s, 6H), 3.64 (s, 4H), 3.08 (s, 2H), 2.57 (t, 2H, J=6.6Hz), 2.37 (t, 2H, J=6.6Hz), 2.05 (s, 3H); ¹³C-NMR (75.5MHz, CDCl₃): δ =206.2, 172.4, 157.9, 153.8, 144.4, 135.4, 129.6, 127.6, 127.3, 126.2, 112.6, 85.5, 63.4, 63.2, 61.7, 54.6, 44.3, 29.3, 27.4; HRMS-FAB (m/z): C₃₁H₃₆O₈Na에 대한 [M+Na] [†] 계산치: 559.2308; 실측치: 559.2308.

(단계 2) *O-DMTr-O-*di-Lev-*O-*((2-시아노에틸)-*N,N*-디이소프로필-포스포라미다이트) -펜타에리트리톨 (화학식 4c)의 제조

<113>

<114>

<115>

단계 1에서 수득한 화합물 14 (141 mg, 0.222 mmol)과 DIPEA (77 μ k, 0.445 mmol)을 THF (6 ml)에 녹인 후 클로로-(2-시아노에틸)-N,N-디이소프로필-포스핀 (74 μ k, 0.33 mmol)을 천천히 첨가하였다. 이어서, 상온에서 30분 동안 교반한 다음, 5% NaHCO₃(10 ml)을 넣고 에틸 아세테이트(10 ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 중류하여 노란색 오일을 수득하였다. 이를 플래시 크로마토그래피(용출액: 에틸아세테이트/헥산=1:3)로 정제하여 노란색 오일인 표제 화합물 (114.2 mg, 0.1354 mmol, 61 %)을 제조하였다.

MS (FAB): m/z: (M+Na⁺); IR (니트): v=2966, 2933, 1738, 1717, 1607,

1508, 1463, 1362, 1301, 1250, 1202, 1178, 1154, 1076, 1032 cm⁻¹; ¹H-NMR (300 MHz, CDC1₃): δ =7.40-7.38 (m, 2H), 7.29-7.26 (m, 7H), 6.82 (d, 4H, J =8.7Hz), 4.17-4.12 (m, 4H), 3.78 (s, 6H), 3.73-3.65 (m, 2H), 3.61-3.51 (m, 2H), 3.15 (s, 2H), 2.68 (t, 4H, J=6.5Hz), 2.56 (t, 2H, J= 6.3Hz), 2.48 (t, 4H, J=6.5Hz), 2.16 (s, 6H), 1.25 (d, 2H, J=6.7Hz), 1.16 (d, 6H, J= 6.7Hz), 1.10 (d, 6H, J=6.7Hz); ¹³C-NMR (75,5 MHz, CDC1₃): δ =205.8, 171.8, 158.0, 158.0, 144.2, 135.3, 135.0, 129.7, 127.7, 127.4, 127.3, 126.3, 117.2, 112.6, 112.5, 85.8, 85.5, 62.6, 61.6, 61.4, 60.2, 57.9, 57.7, 54.7, 46.9, 43.5, 42.7, 42.5, 37.3, 30.47, 29.3, 27.3, 24.2, 24.1, 22.1, 20.7, 19.9, 19.8; ³¹P-NMR (121.5 MHz, CDC1₃): δ =150.7

실시예 8: bDNA의 합성을 위한 화학식 4d의 포스포라미다이트 화합물의 제조 (단계 1) O-DMTr-O-Lev-O-TBDMS-펜타에리트리톨 (화합물 15)의 제조

<116>

<117>

<118>

상기 실시예 7의 (단계 1)에서 수득한 화합물 15 (213 mg, 0.40 mmol)과 DMAP (164 mg, 1.33 mmol)가 녹아 있는 THF (4 ml) 용액에 tert-부틸디메틸실릴 클로라이드 (65 mg, 0.44 mmol)를 첨가하였다. 상온에서 3 시간 동안 교반한 다음, 5% NaHCO₃(10 ml)을 넣어 준 후 $CH_2Cl_2(20 \text{ ml})$ 로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 증류한 후 이를 플래시 크로마토그래피(용출액: 에틸 아세테이트 /헥

산=1:2)로 정제하여 노란색 액체인 표제 화합물 (119 mg, 0.18 mmol, 46%; Di-보호 된 산물: 72.8 mg, 0.1 mmol, 25%)을 수득하였다.

:119>

:120>

(단계 2) *O-DMTr-O-Lev-O-TBDMS-*((2-시아노에틸)-*N,N*-디이소프로필-포스포라미다이 트)-펜타에리트리톨 (화합물 4d)의 제조

:121>

단계 1에서 수득한 화합물 16 (134.8 mg, 0.207 mmol)과 DIPEA (144 μ , 0.828 mmol)을 THF (4.2 ml)에 녹인 후 클로로-(2-시아노에틸)-N,N-디이소프로필-포스핀 (114 μ l, 0.518 mmol)을 천천히 첨가하였다. 상온에서 1시간 30분 동안 교 반한 다음, 5% NaHCO3 (10 ml)을 넣어 준 후 에틸 아세테이트(10 ml)로 추출하였다. 이 유기층을 MgSO4로 건조하고 감압 증류하여 노란색 오일을 수득하였다. 이를 플래시 크로마토그래피(용출액: 에틸 아세테이트/헥산=1:3)로 정제하여 노란색 오일인 표 제 화합물 (86.2 mg, 0.101 mmol, 50%)을 수득하였다.

<122>

MS (FAB): m/z: 873.33 (M+Na⁺); IR(니트): v=2961.8, 2930.2, 2881.8, 1721.9, 1607.7, 1508.9, 1463.6, 1445.3, 1362.9, 2856.3,1738.0, 1251.5, 1178.0 cm-1; 1 H-NMR (300 MHz, CDCl₃): δ =7.41-7.38 (m, 2H), 7.29-7.17 (m, 7H), 6.79 (d, 4H, J=8.9Hz), 4.11-4.09 (m, 2H), 3.76 (s, 6H), 3.70-3.52(m, 8H), 3.12 (s, 2H), 2.66-2.64 (m, 2H), 2.53-2.45 (m, 4H), 2.15 (s, 3H),1.14 (d, 6H, J=6.8Hz), 1.08 (dd, 6H, J1=6.7Hz, J2=1.4Hz), 0.08 (d, 9H, J=6.8Hz) 1.1Hz), -0.03 (d, 6H, J=2.4Hz); $^{13}C-NMR(75.5 MHz, CDCl₃): <math>\delta = 205.9$, 171.9, 157.9, 144.6, 135.7, 129.7, 127.2, 126.1, 117.2, 112.5, 85.3, 63.2, 61.0, 60.4, 57.7, 54,7, 45.0, 42.6, 42.5, 37.4, 29.4, 27.3, 25.3, 24.2, 24.1, 19.9, 17.7, -6.12; $^{31}P-NMR$ (121.5 MHz, CDC1₃): δ =150.3, 150.1; HRMS-FAB (m/z): C₄₆H₆₇N₂O₉P₁Si₁Na₁에 대한 [M+Na] [†] 계산치: 873.4251; 실측치: 873.4252.

:123> 실시예 9: 덴드리머를 이용한 화학식 5의 포스포라미다이트 화합물의 제조

:124>

125>

화합물 17의 덴드리머 화합물 (84 mg, 0.11 mmol, 입수처: Hawker, C. J.; Frkchet, J. M. J. J. Am. Chem. SOC. 112, 7638-7647(1990))와 N-메틸 몰포린 (260 μ , 2.36 mmol)을 CH₃CN (4 ml)에 녹인 후 클로로-(2-시아노에틸)-N,N-디이소 프로필-포스핀 (140 μ , 0.62 mmol)을 천천히 첨가하였다. 상은에서 5분간 교반한 다음, 5% NaHCO₃(10 ml)을 넣고 에틸 아세테이트 (15 ml)로 추출하였다. 유기층을 MgSO₄로 건조하고 감압 증류하여 옅은 노란색 오일을 수득하였다. 이를 플래시크로마토그래피(용출액: 에틸아세테이트/핵산=1:3)로 정제하여 옅은 노란색 오일인 표제 화합물 (96 mg, 0.10 mmol, 92%)을 수득하였다.

H-NMR (300 MHz, CDCl₃): $\delta = 7.32-7.23$ (m, 20H), 6.61 (s, 4H), 6.50 (br, 4H), 6.47 (s, 1H), 4.94 (s, 8H), 4.88 (s, 4H), 4.49 (s, 2H), 4.11 (q, 2H), 3.92 (t, 2H), 2.28 (t, 2H), 1.04(d, 6H), 0.93 (d, 6H); 13 C-NMR (75 MHz, CDCl₃): $\delta = 160.9$, 160.8, 140.0, 137.5, 129.3, 128.7, 128.3, 107.2, 106.5, 102.4, 70.9, 70.7, 53.0, 44.9, 44.8, 43.0, 22.5, 22.4.; 31 P-NMR (127 MHz, CDCl₃): $\delta = 150.9$.

'【발명의 효과】

<126>

이와 같이 본 발명에서 수득된 포스포라미다이트 화합물은 여러 가지 기능을 갖는 작용기가 도입됨으로써 다양한 목적의 올리고데옥시리보누클레오티드의 합성을 위한 새로운 빌딩블록으로서 의약 및 생명과학 분야에서 고효율의 진단도구 개발, 다양한 나노 구조의 ODN 합성 등에 이용할 수 있다.

【특허청구범위】

【청구항 1】

하기 화학식 1 내지 5로부터 선택된 포스포라미다이트 화합물:

화학식 1

화학식 2

화학식 3

화학식 4

화학식 5

상기식에서, R은

디메톡시트리틸(DMTr)기, 레불리닐(levulinyl,

Lev)기

또는

알콜,

tert-부틸디메틸실릴(TBDMS)기이다.

[청구항 2]

제 1 항에 있어서,

(S)-(+)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-1,3-부탄디올), (R)-(-)-1-O-DMTr-3-O-((2-시아노에틸)-N,N-디이소프로필-포스포라미다 이트)-1,3-부탄디올,

O-DMTr-((2-시아노에틸)-N,N-디이소프로필-포스포라미다이트)-리토콜

○ 트리-DMTr-((2-시아노에틸)-N, N-디이소프로필-포스포라미다이트)-펜타에리트리톨, ○ -DMTr-O-di-Lev-O-((2-시아노에틸)-N, N-디이소프로필-포스포라미다이트)-펜타에리트리톨 및 ○ -DMTr-O-Lev-O-TBDMS-((2-시아노에틸)-N, N-디이소프로필-포스포라미다이트)-펜타에리트리톨 화합물인 포스포라미다이트 화합물.

[도 1]

[도 2]

[도 3]

[도 4]

【서열목록】

```
<110>
         POSTECH FOUNDATION
         PHOSPHORAMIDITE COMPOUNDS
<120>
         FPD/200210-0049
<130>
<150>
         2003-1392
         2003-01-09
<151>
<160>
         14
<170>
         KopatentIn 1.71
<210>
         1
<211>
         12
<212>
         DNA
         Artificial Sequence
<213>
<220>
<223>
         oligo 1
<220>
<221>
         modified_base
<222>
         (7)
         n is (R)-phosphoramidite compound
<223>
<400>
         1
                                                                            12
ttttttnttt tt
<210>
         2
         12
<211>
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         oligo 2
<220>
<221>
         modified_base
<222>
          (7)
         n is (S)-phosphoramidite compound
<223>
<400>
          2
                                                                             12
ttttttnttt tt
```

47-43

<210> <211> <212>	3 12 DNA	
<213>	Artificial Sequence	
<220> <223>	oligo 3	
<220> <221> <222> <223>	<pre>modified_base (6) n is (R)-phosphoramidite compound</pre>	
<400> aaaaanaa	3 maa aa	12
<210> <211> <212> <213>	4 12 DNA Artificial Sequence	
<220> <223>	oligo 4	
<220> <221> <222> <223>	modified_base (6) n is (S)-phosphoramidite compound	
<400>	4	
aaaaana		12
<010×	5	
<210> <211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligo 5	
.100:	·	
<400> • titttt	5	12
	titt ti	

}

1

<210> <211> <212>	6 11 DNA	
<213>	Artificial Sequence	
<220> <223>	oligo 6	
<400> ttttttt	6 ttt t	11
<210> <211>	7 12	
<211> <212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligo 7	
<400>	7	
aaaaaaaa		12
<210>	8	
<211>	11	
<212> <213>	DNA Artificial Sequence	
\ 213>	Altificial dequence	
<220>		
<223>	oligo 8	
<400>	8	11
aaaaaaa	аааа а	11
<210>	9	
<211>	13	
<212>	DNA Artificial Sequence	
<213>	Artificial Sequence	
<220>		
<223>	oligo 9	
<220>		
<221>	modified_base	
<222>	(7)	
<223>	n is (R)-phosphoramidite compound	

<400>		13
aacgttnaa	c gtt	
<210>	10	
<211>	13	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligo 10	
	•	
<220>		
<221>	modified_base	
<222>	(7)	
<223>	n is (S)-phosphoramidite compound	
<400>	10	13
aacgttna	ac gtt	
<210>	11	
<211>	13	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligo 11	
<400>	11	13
aacgttaaac gtt		
<210>	12	
<211>	13	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligo 12	
<400>	12	10
aacgttta	ac gtt	13
_		
<210>	13	

<211> <212> <213>	13 DNA Artificial Sequence	
<220> <223>	oligo 13	
<400> aacgttga	13 ac gtt	13
<210> <211> <212> <213>	14 13 DNA Artificial Sequence	
<220> <223>	oligo 14	
<400>	14	13

aacgttcaac gtt