Tutorial 3: Finding the median

Definition 1 (Median problem). An instance of the *median problem* is an array $A \in \mathbb{Z}^n$ of n integers. The valid solution to such an instance is the value y = A'[n/2] when A' is obtained by sorting A.¹

The simplest solution to the median problem sorts A and outputs the $\frac{n}{2}$ -th value, an algorithm with time complexity $\Theta(n \log n)$. Your goal is to design a more efficient algorithm.

1 Median using approximate median

The approximate median problem is a relaxed version of the median problem defined as follows.

Definition 2 (Approximate median problem). An instance of the approximate median problem is an array $A \in \mathbb{Z}^n$ of n integers. A valid solution to such an instance is any value $y \in A'\left[\frac{3n}{10}\right], \ldots, A'\left[\frac{7n}{10}\right]$ when A' is obtained by sorting A.

Assume you have an APPROXMEDIAN algorithm that solves the approximate median problem and has time complexity $\Theta(n)$. Using this algorithm and the Divide & Conquer approach, design an algorithm that solves the median problem and has time complexity $\Theta(n)$.

2 Approximate median using median

Assume that we have a MEDIAN algorithm that runs in time $\Theta(n)$, but can only find the median in sets of size at most $\frac{n}{5}$. Use this algorithm to solve the approximate median problem on instances of size n with and has time complexity $\Theta(n)$.

3 Linear-time median algorithm

Use the ideas developed above to design an algorithm that solves the median problem and has time complexity $\Theta(n)$.

Technically, the median can be either $A'[\lceil n/2 \rceil]$ or $A'[\lceil n/2 \rceil]$ when n is even, but we'll ignore floors and ceilings for this tutorial.