Ronald Adomako

CE 5338

Hydrologic Engineering,

Professor Martin Pierson

HW 3, Sep. 14, 2022

```
from wand.image import Image as WImage
img = WImage(filename='5338+HW+3+Rational+Method.pdf')
img
```

Out[3]:

CE 5338 HYDROLOGIC ENGINEERING

Assignment #3 Pipe Sizing for Storm Drainage by the Rational Method

Due Sept. 14th (10 points)

The sketch below shows a proposed layout for a storm drainage system for a subdivision in Springfield. The table below shows the land use, drainage area, length of overland flow, length of each pipe, and percentage of impervious area for each sub-basin. Use the City of Springfield Design guide; rational method to compute the <u>design discharge</u> for each inlet and each pipe. Submit a table that summarizes your calculations.

The city requires that the system be designed for a 10 year recurrence interval. Determine the <u>size of pipes</u> needed.

ID#	Land Use	Average Lot Size, acre	Drainage area, acres	Impervious area, %	Land Average Slope, %	Length of Overland Flow, (ft)
I1	Residential	1/4	3	-	8.3	200
12	1/2 ImPervious 1/2 Lawn		3	-	7.7	170
13	Residential	1/2	5	-	5	300
14	Residential	1	3	-	5	300
15	Woods	n/a	3.5	15	2.2	450
16	Residential	1/4	2.5	-	2.2	250
17	Residential	1/2	2.5	-	1.5	200
18	Road Way	n/a	2.5		1.5	300

PipeID #	Average Slope of Pipe, %	Length of Pipe , (ft)
P1	1.4	170
P2	0.5	160
Р3	0.5	125
P4	0.5	140
P5	0.3	160

PipeID #	Average Slope of Pipe, %	Length of Pipe , (ft)
P6	0.3	300
P7	0.2	125
P8	0.1	200

Solution

Chapter 5 Calculation of Runoff

Table 13. USGS Regression Equations for Estimation of Peak Flows in Urban Areas (Southard 2010)

Recurrence Interval	USGS Regression Equation (Q = estimated peak flow rate [cfs], A = drainage area [mi2], I = impervious area in percent)
2-year	$Q_2 = 188DRNAREA^{0.599}10^{0.014IMPLNLCD01}$
5-year	$Q_5 = 352DRNAREA^{0.592}10^{0.011IMPLNLCD01}$
10-year	$Q_{10} = 484DRNAREA^{0.594}10^{0.010IMPLNLCD01}$
25-year	$Q_{25} = 671DRNAREA^{0.599}10^{0.008IMPLNLCD01}$
50-year	$Q_{50} = 826DRNAREA^{0.604}10^{0.008IMPLNLCD01}$
100-year	$Q_{100} = 991DRNAREA^{0.608}10^{0.007IMPLNLCD01}$
500-year	$Q_{500} = 1420DRNAREA^{0.619}10^{0.006IMPLNLCD01}$

Table 2. Rainfall Intensity-Duration-Frequency Relationships from NOAA Atlas 14 Volume 8 Version 2, Precipitation-Frequency Atlas of the United States, Midwestern States.

Duration	Intensity of Precipitation (in/hr)										
Duration	1-year	2-year	5-year	10-year	25-year	50-year	100-year				
5 min	4.56	5.16	6.36	7.32	8.64	9.72	10.80				
10 min	3.30	3.78	4.62	5.34	6.30	7.08	7.86				
15 min	2.68	3.08	3.76	4.32	5.12	5.76	6.40				
30 min	1.96	2.28	2.78	3.20	3.78	4.24	4.68				
1 hr	1.29	1.50	1.84	2.14	2.55	2.88	3.21				
2 hr	0.80	0.93	1.15	1.34	1.61	1.82	2.04				
3 hr	0.60	0.69	0.86	1.00	1.21	1.38	1.56				
6 hr	0.37	0.42	0.52	0.60	0.73	0.83	0.94				
12 hr	0.22	0.25	0.30	0.35	0.42	0.48	0.54				
24 hr	0.13	0.15	0.18	0.21	0.25	0.28	0.32				
48 hr	0.08	0.09	0.11	0.13	0.15	0.17	0.19				
72 hr	0.06	0.06	0.08	0.09	0.11	0.12	0.13				

Table 5. Values of Nk for the Kerby-Hathaway Equation

Surface Type	Nk		
Smooth impervious surface	0.05		
Smooth bare packed soil, free of stones	0.10		
Poor grass, cultivated row crops, or moderately-rough bare surfaces			
Pasture or average grass cover	0.40		
Deciduous timberland	0.60		
Conifer timberland, deciduous timberland with deep forest litter, or dense grass cover	0.80		

Table 6. Runoff Coefficients Based on Surface Type for Rational Equation

By Surface Type—Use as	Basis for Computation of Composite Runoff Coefficients						
Surface Type	Runoff Coefficients						
Asphalt, concrete pavement, roofs	0.95-1.0						
Gravel surfaces, compacted	0.85-0.95						
Gravel surfaces, not compacted	0.50-0.70						
Parks, golf courses, farms	0.10-0.20						
Lawns, pastures, hayfields Flat (<2% slopes) Average (2-7% slopes)	0.10-0.15 0.15-0.20						
Steep (>7% slopes)	0.20-0.30						
Woods	0.05-0.15						
Composite Co	efficients for Single Family Residential Areas						
Average lot size, 1/4 acre	Flat (<2% slopes) Average (2-7% slopes) Steep (>7% slopes) 0.35-0.45 0.40-0.50 0.45-0.55						
Average lot size, 1/3 acre	Flat (<2% slopes) Average (2-7% slopes) Steep (>7% slopes) 0.30-0.40 0.33-0.43 0.40-0.50						
Average lot size, 1/2 acre	Flat (<2% slopes) Average (2-7% slopes) Steep (>7% slopes) 0.25-0.35 0.30-0.40 0.36-0.46						
Average lot size, 1 acre	Flat (<2% slopes) Average (2-7% slopes) Steep (>7% slopes) 0.20-0.25 0.25-0.30 0.30-0.38						
Average lot size, 3 acres	Flat (<2% slopes) Average (2-7% slopes) Steep (>7% slopes) 0.10-0.20 0.16-0.24 0.25-0.33						

Note: The ranges of C values presented in this table are typical for return periods of 2- to 10-years and assume average antecedent moisture conditions. Higher values are appropriate for larger design storms.

Table 1. Typical Manning's Roughness Coefficient (n) Values for Open Channels.

Channel Lining	Minimum	Average	Maximum
Earthen	0.020	0.025	0.030
Mowed grass	0.025	0.030	0.035
Grass-not mowed	0.030	0.035	0.040
Grass with brush/trees	0.040	0.050	0.060
Cobble bottom, grass/root side	0.030	0.040	0.050
Concrete-smooth	0.012	0.013	0.015
Concrete-rough	0.015	0.017	0.020
Riprap d ₅₀ 6 inches	0.032	0.035	0.038
Riprap d ₅₀ 9 inches	0.035	0.038	0.040
Riprap dso 12 inches	0.038	0.040	0.042
Riprap d ₅₀ 18 inches	0.040	0.042	0.044
Riprap d ₅₀ 24 inches	0.042	0.044	0.047
Grouted boulders	0.025	0.032	0.040

Design Peak for 10 year storm: Q_{10}

Section	Land use	Acre	Avg lot size (Acre)			Land average, slope %	Pipe slope average	Pipe length	c (coefficient)		i (intensity, in/hr) = t_inf	Q (cfs- cubic foot per sec.)		
_1	Residential	3	1/4	200		8.3	1.4	170	0.5	0.4	0.5239	0.7859	Q (cfs) =	CiA
_2	1/2 impervious 1/2 Lawn	3		170	50	7.7			0.3	0.4	0.5147	0.4632	Q_max =	1.6910
_3	Residential	5	1/2	300		5	0.5	125	0.35	0.4	0.5026	0.8795		
_4	Residential	3	1/1	300		5	0.5	140	0.275	0.4	0.5484	0.4524	t_overland=	.0078(N_k* L/[S^0.5])^0.77
_5	Wood	3.5	n/a	450	15	2.2	0.3	160	0.1	0.6	1.1392	0.3987	L_undev <=	500 ft.
_6	Residential	2.5	1/4	250		2.2	0.3	300	0.5	0.4	1.3528	1.6910	L_dev <=	300 ft.
7	Residential	2.5	1/2	200		1.5	0.2	125	0.35	0.4	0.7989	0.6991		
_8	Roadway	2.5	n/a	300		1.5	0.1	200	0.975	0.05	0.2314	0.5640		
													t_undev=	0.83(L/[S^0.5])^0.77
				Section	Pipe length	Pipe slope average	Darcy (ft)	n	Manning		Pipe Diameter (in)			2 * t undev
							7.7			10 1 7		(in.)	t_grass=	_
				I_1 I_2	170 160				0.553 0.679		8.988 10.905		_	0.4 * t_undev 0.2 * t_undev
				1_2	125				0.679				t_concrete=	0.2 * t_undev
				_	140				0.687				Darcy (ft)	(2.16*Q*n/\s\)^.375
				1_4	160				0.887		12.001			(0.811*f*Q/(g *S))^0.2
				1_5									ivianning (rt)	(U.811*T*Q/(g*S))*U.2
				1_6	300 125				0.734 0.825					
				I_7 I_8	200				0.825					
				1_0	200	0.1	1.229	0.13	0.526	0.016	14.740	13		
												-		

In []: