МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное образовательное учреждение высшего образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ УНИВЕРСИТЕТСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЕ No 1

«Линейные процессы обработки данных»

студента 2 курса, ИСП-208 группы

Шарибжанов Рамис Фяритович

Направление 09.02.07 – «Информационные системы и программирование»

Руководите		
Преподават	ель	
М.В. Валее	3	
		-
Работа защ	ищена	
Работа защі «	ищена	>>

Оглавление

1. Номер по	ервый	4
1.1. Пост	гановка задачи	4
1.2. Стру	ктурные требования	4
1.3. Опис	сание работы	4
1.4.1.	Использование переменных	4
1.4.2.	Псевдокод программы	4
1.4.3.	Блок-схема алгоритма	5
1.4.4.	Листинг программной реализации	5
1.4.5.	Результаты	6
1.4.6.	Тесты	6
2. Номер вт	горой	7
2.1. Пост	гановка задачи	7
2.2. Стру	ктурные требования	7
2.3. Опис	сание работы	7
2.4.1. I	Использование переменных	7
2.4.2. I	Псевдокод программы	7
2.4.3. I	Блок-схема алгоритма	7
2.4.4. J	Листинг программной реализации	9
2.4.5. I	Результаты	9
2.4.6.	Гесты	9
3. Номер тр	ретий	10
3.1. Пост	гановка задачи	10
3.2. Стру	ктурные требования	10
3.3. Опис	сание работы	10
3.4.1. I	Используемые переменные	10
3.4.2. I	Псевдокод программы	10
3.4.3. I	Блок-схема алгоритма	11
3.4.4. J	Листинг программной реализации	12
	Результат	
3.4.6.	Гесты	13
	етвертый	

	4.1. Пост	ановка задачи	14
	4.2. Стру	ктурные требования	14
	4.3. Опис	ание работы	14
	4.4.1. <i>V</i>	Іспользуемые переменные	14
	4.4.2. Г	Ісевдокод программы	14
	4.4.3. E	Блок-схема алгоритма	14
	4.4.4. Л	Іистинг программной реализации	16
	4.4.5. P	езультат	16
	4.4.6. T	^Т есты	16
5.	. Номер пя	тый	17
	5.1. Пост	ановка задачи	17
	5.2. Стру	ктурные требования	17
	5.3. Опис	ание работы	17
	5.5.1.	Используемые переменные	17
	5.5.2.	Псевдокод программы	17
	5.5.3.	Блок-схема алгоритма	17
	5.5.4.	Листинг программной реализации	19
	5.5.5.	Результат	19
	5.5.6.	Тесты	19
6	СПИСОК	СПИТЕРАТУРЫ	20

1. Номер первый

1.1. Постановка задачи

Вычислите значение функции $y = \frac{e^{-x^1} + e^{-x^2}}{2}/2$ с клавиатуры в вести х1 и х2 и вывести у.

1.2. Структурные требования

Структурных требований нет.

1.3. Описание работы

1.4.1. Использование переменных

Х1 – ввести с клавиатуры

Х2 – ввести с клавиатуры

Ү – вывести на экран

1.4.2. Псевдокод программы

Ввести с клавиатуры х1 и х2

Найти значение функции $y = \frac{e^{-x_1} + e^{-x_2}}{2}/2$

Вывести у

1.4.3. Блок-схема алгоритма

1.4.4. Листинг программной реализации

```
#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
#include <clocale>
#include <math.h>
int main()
{
    setlocale(0, "rus");
    float x1, x2, y;
    printf("Введите значение переменных X1 и X2:\n");
    scanf_s("%f%f", &x1, &x2);
    y = (exp(-x1) + exp(-x2))/2;
    printf("\nY = %f",y);
    getch();
    return 0;
}
```

1.4.5. Результаты

```
    а:\эагрузки\testэчегэ\pebug\testэчегэ.exe

#include "stdafx.h"
                                                         Введите значение переменных Х1 и Х2:
#include <stdio.h>
#include <comio.h>
                                                          0,1 0,2
#include <clocale>
                                                         Y = 0,861784
#include <math.h>
int main()
    setlocale(0, "rus");
    float x1, x2, y;
    printf("Введите значение переменных X1 и X2:\n");
    scanf_s("%f%f", &x1, &x2);
    y = (\exp(-x1) + \exp(-x2))/2;
    printf("\nY = %f", y);
    getch();
    return 0;
}
```

X1	X2	Ручной подсчёт	Программный
			подсчёт
0,1	0,2	0,861784	0,861784
0,23	0,3	0,767676	0,767676
0,45	0,45	0,637628	0,637628
0,12	2	0,511128	0,511128

2. Номер второй

2.1. Постановка задачи

Вычислить площадь треугольника со сторонами a, b, c по формуле Герона $s = \sqrt{p}*(p-a)*(p-b)*(p-c)$ p = (a+b+c)/2 клавиатуры в вести a, b, c, p и вывести p и s.

2.2. Структурные требования

Сумма 2 сторон должно быть больше третьего.

а, b, c не должны ровняться нулю.

2.3. Описание работы

2.4.1. Использование переменных

а – сторона треугольника

b – сторона треугольника

с – сторона треугольника

р – аргумент для полупериметра треугольника

s – ответ решаемой по формуле Герона

2.4.2. Псевдокод программы

Ввести с клавиатуры а, b, с.

Проверяем чтобы сумма двух чисел было больше третьего числа

Находим р формуле $p = \frac{a+b+c}{2}$

Находим s
$$s = \sqrt{p} * (p - a) * (p - b) * (p - c)$$

Выводим ѕ

2.4.3. Блок-схема алгоритма

2.4.4. Листинг программной реализации

```
#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
#include <clocale>
#include <math.h>
int main()
     setlocale(0, "rus");
     float a, b, c, s, p;
     printf("Введите значения сторон треугольника\n");
     scanf_s("%f%f%f", &a, &b, &c);
      if(a>0 && b>0 && c>0 && a+b>c && a+c>b && b+c>a)
       p = (a + b + c)/2;
       s = sqrt(p * (p - a) * (p - b) * (p - c));
       printf("\np = %f", p);
       printf("\ns = f", s);
  else printf("Такой треугольник не существует\n");
  getch();
  return 0;
```

2.4.5. Результаты

```
#include "stdafx.h"
#include <stdio.h>
#include <comio.h>
#include <clocale>
#include <math.h>
int main()
    setlocale(0, "rus");
    float a, b, c, s, p;
    printf("Введите значения сторон треугольника\n");
    scanf s("%f%f%f", &a, &b, &c);
       if(a>0 && b>0 && c>0 && a+b>c && a+c>b && b+c>a)
        p = (a + b + c)/2;
        s = sqrt(p * (p - a) * (p - b) * (p - c));
        printf("\np = %f", p);
        printf("\ns = %f", s);
   else printf("Такой треугольник не существует\n");
   getch();
   return 0;
```


a	ь	c	Ручной	Программный
			подсчёт	подсчёт
17	7	18	19	61,644138
34	54	28	58	408,705261
45	45	32	61	672,951721
25	25	25	37,500000	70,632935

3. Номер третий

3.1. Постановка задачи

Вычислить высоты треугольника со сторонами а, b, с по формулам.

$$s = \sqrt{p * (p - a) * (p - b) * (p - c)},$$

 $p = (a + b + c)/2,$
 $h_a = 2 * s/a,$
 $h_b = 2 * s/b,$
 $h_c = 2 * s/c.$

3.2. Структурные требования

Сумма 2 сторон должно быть больше третьего.

а, b, c не должны ровняться нулю.

3.3. Описание работы

3.4.1. Используемые переменные

а – сторона треугольника

b – сторона треугольника

с – сторона треугольника

р – аргумент для полупериметра треугольника

s – ответ решаемой по формуле Герона

ha – высота a

hb – высота b

hc – высота с

3.4.2. Псевдокод программы

Проверяем чтобы сумма двух чисел было больше третьего числа

Находим р формуле
$$p = \frac{a+b+c}{2}$$

Находим s
$$s = \sqrt{p} * (p - a) * (p - b) * (p - c)$$

Находим ha по формуле ha = 2 * s/a

Находим hb по формуле hb = 2 * s/b

Находим hc по формуле hc = 2 * s/c

Выводим ha, hb, hc

3.4.3. Блок-схема алгоритма

3.4.4. Листинг программной реализации

```
#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
#include <clocale>
#include <math.h>
int main()
{
     setlocale(0, "rus");
     float a, b, c, s, p, h1, h2, h3;
     printf("Введите значение сторон треугольника\n");
       scanf_s("%f%f%f", &a, &b, &c);
       if(a>0 && b>0 && c>0 && a+b>c && a+c>b && b+c>a)
       p = (a + b + c)/2;
       s = sqrt(p * (p - a) * (p - b) * (p - c));
       h1 = 2 * s/a;
       h2 = 2 * s/b;
       h3 = 2 * s/c;
       printf ("\nh1 = f\nh2 = f\nh3 = f", h1,h2,h3);
       else
              printf("Такой треугольник не существует\n");
          getch();
       return 0;
}
```

3.4.5. Результат

```
#include "stdafx.h"
#include <stdio.h>
#include <comio.h>
#include <clocale>
#include <math.h>
int main()
    setlocale(0, "rus");
   float a, b, c, s, p, h1, h2, h3; printf("Введите значение сторон треугольника\n");
      scanf s("%f%f%f", &a, &b, &c);
      if(a>0 && b>0 && c>0 && a+b>c && a+c>b && b+c>a)
       p = (a + b + c)/2;
       s = sqrt(p * (p - a) * (p - b) * (p - c));
       h1 = 2 * s/a;

h2 = 2 * s/b;
       h3 = 2 * s/c;
       printf ("\nh1 = f\nh2 = f\nh3 = f', h1,h2,h3);
              printf("Такой треугольник не существует\n");
       getch();
       return 0;
```

```
Введите значение сторон треугольника
43 23 32
h1 = 16,766651
h2 = 31,346348
h3 = 22,530188
```

a	b	c	Ручной	Ручной	Ручной	Програ	Програ	Програ
			подсчёт	подсчёт	подсчёт	ммный	ммный	ммный
			ha	hb		подсчёт	подсчёт	подсчёт
						ha	hb	hc
4	2	3	16,7666	31,3463	22,5301	16,7666	31,3463	22,5301
3	3	2	51	48	88	51	48	88
1	1	1	12,9903	12,9903	12,9903	12,9903	12,9903	12,9903
5	5	5	81	81	81	81	81	81
3	2	1	10,0696	13,6947	22,8245	10,0696	13,6947	22,8245
4	5	5	54	29	49	54	29	49
2	3	4	36,9748	25,9822	20,8988	36,9748	25,9822	20,8988
6	7	6	00	92	00	00	92	00

4. Номер четвертый

4.1. Постановка задачи

Вычислите площадь поверхности и объём усечённого конуса, используя функцию возведения в квадрат POW.

$$s = \pi * (R + r) * l + \pi * R^{2} + \pi * r^{2},$$
$$v = (1/3) * (R^{2} + r^{2} + R * r) * h * \pi.$$

4.2. Структурные требования

r = не должно ровняться нолю

h = не должно ровняться нолю

R > r

1 > h

4.3. Описание работы

4.4.1. Используемые переменные

h – высота

r – радиус верху

R – радиус основания

s – Площадь поверхности усеченного конуса

v – объём усеченного конуса

4.4.2. Псевдокод программы

Вводим с клавиатуры r, R, k, h

Проверяем что бы r и h >0, R>r, l>h.

Выполняем $s = \pi * (R + r) * l + \pi * R^2 + \pi * r^2$,

Выполняем $v = (1/3) * (R^2 + r^2 + R * r) * h * \pi$.

4.4.3. Блок-схема алгоритма

4.4.4. Листинг программной реализации

```
#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
#include <clocale>
#include <math.h>
int main()
      setlocale(0, "rus");
     float v, s, R, r, 1, h;
      printf("Введите значение переменных R, r, l и h");
      scanf s("%f%f%f%f", &R, &r, &l, &h);
       if (r>0 && h>0 && R>r && 1>h)
       s = 3.14159 * (R + r) * 1 + 3.14159 * pow(R, 2) + 3.14159 * pow(r, 2);
      v = h * 3.14159 * (pow(R,2) + pow(r,2) + R * r) * 1/3;
      printf("\ns = \f", s);
      printf("\nv = \f", v);
      else
      printf("Такой конус не существует\n");
        getch();
      return 0;
```

4.4.5. Результат

```
#include "stdafx.h"
#include <stdio.h>
                                                                                                24 19 9 3
#include <comio.h>
#include <clocale>
                                                                                               s = 4159,465332
v = 4376,234863
#include <math.h>
int main()
    setlocale(0, "rus");
    float v, s, R, r, 1, h;
        printf("Введите значение переменных R, r, 1 и h");
       scanf_s("%f%f%f%f", &R, &r, &l, &h);
if (r>0 && h>0 && R>r && 1>h)
       s = 3.14159 * (R + r) * 1 + 3.14159 * pow(R, 2) + 3.14159 * pow(r, 2);
       v = h * 3.14159 * (pow(R,2) + pow(r,2) + R * r) * 1/3;
printf("\ns = %f", s);
printf("\nv = %f", v);
       printf("Такой конус не существует\n");
        getch();
```

h	R	r	1	Ручной	Ручной	Программны	Программный
				подсчёт s	подсчёт у	й	Подсчёт у
						подсчёт s	
1	1	7	5	1753,007202	2874,554932	1753,007202	2874,554932
5	2						
2	1	9	3	4159,465332	4376,234863	4159,465332	4376,234863
4	9						
9	9	6	5	100373,79687	1689681,12500	100373,79687	1689681,12500
9	7	5	6	5	0	5	0

5. Номер пятый

5.1. Постановка задачи

Вычислите значение функции, используя функцию возведения е в заданную степень EXP и функцию SIN.

$$y = a * e^{-a*\omega * x} * \sin(\omega * x) ,$$

$$x = (\pi/2 - \varphi).$$

5.2. Структурные требования

fi>0

fi < 1

ome>0

ome<1

5.3. Описание работы

5.5.1. Используемые переменные

fi -фи вводим с клавиатуры

ome – оме вводим с клавиатуры

x – находим по формуле $x = (\pi/2 - \varphi)$

y – находим по формуле $y = a * e^{-a*0*x} * \sin(\omega * x)$

5.5.2. Псевдокод программы

Вводим с клавиатуры fi и оте

x – находим по формуле $x = (\pi/2 - \varphi)$

у – находим по формуле $y = a * e^{-a*0*x} * \sin(\omega * x)$

выводим у

5.5.3. Блок-схема алгоритма

5.5.4. Листинг программной реализации

5.5.5. Результат

```
#include "stdafx.h"
                                                          d:\Загрузки\test34e25\Debug\test34e25.exe
#include <stdio.h>
#include <comio.h>
                                                         Введите значение переменных fi и om
#include <clocale>
                                                         0,45 0,345
- #include <math.h>
                                                         y = 0,256073
| int main()
                                                         x = 1,120000
    setlocale(0, "rus");
    float y, x, a = 1, fi, om;
      printf("Введите значение переменных fi и om");
       scanf s("%f%f", &fi, &om);
       if (fi>0 && fi<1 && om>0 && om<1)
       x = 3.14/2 - fi;
       y = a * exp(-a * om * x) * sin(om * x);
       printf("\ny = f\nx = f\n", y, x);
       else
       printf ("Вы ввели недопустимые значения");
       getch();
      return 0;
1
```

fi	ome	Ручной	Программный	Ручной	Програм
		подсчёт у	подсчёт у	подсчёт	мный
				X	подсчёт
					X
0,45	0,345	0,256073	0,256073	1,120000	1,120000
0,1	0,1	0,126448	0,126448	1,470000	1,470000
0,14	0,15	0,171765	0,171765	1,430000	1,430000
0,5665	0,2345	0,184266	0,184266	1,003500	1,003500

6. СПИСОК ЛИТЕРАТУРЫ

- 1. Конова Е.А., Поллак Г.А. Алгоритмы и программы. Язык С++: Учебное пособие. 2-е изд., стер. СПб.: Издательство "Лань", 2017. 384 с.
- 2. Седжвик Роберт. Алгоритмы на C++.: Пер. с англ. М.: ООО "И.Д. Вильямс", 2011. 1056 с.
- 3. Лафоре Р. Объектно-ориентированное программирование в С++. Классика Computer Science. 4-е изд. - СПб.: Питер, 2015. - 928 с.
- 4. Орлов С.А. Теория и практика языков программирования: Учебник для вузов.
 - Стандарт 3-го поколения. СПб.: Питер, 2014. 688 с.
- 5. Павловская Т.А. С/С++. Процедурное и объектно-ориентированное программирование: Учебник для вузов. Стандарт 3-го поколения. СПб.:
 - Питер, 2015. 496 с.
- 6. Павловская Т.А. С#. Программирование на языке высокого уровня: Учебник для вузов. - СПб.: Питер, 2014. - 432 с.
- 7. Плаксин М.А. Тестирование и отладка программ для профессионалов будущих и настоящих. М.: БИНОМ. Лаборатория знаний, 2013. 167 с.