Phosphoinositide 3-kinases: a conserved family of signal transducers

Bart Vanhaesebroeck, Sally J. Leevers, George Panayotou and Michael D. Waterfield

Phosphoinositide 3-kinases (PI3Ks) generate lipids that are implicated in receptor-stimulated signalling and in the regulation of membrane traffic. Several distinct classes of PI3Ks have now been identified that have been conserved throughout eukaryotic evolution. Potential signalling pathways downstream of PI3Ks have been elucidated and PI3K function is now being characterised in several model organisms.

MEMBRANE LIPIDS DO not only have a structural role, but are also involved in signalling processes. A well-known example of this is the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [Ptdlns $(4,5)P_2$]* by phospholipase C (Fig. 1), giving rise to diacylglycerol and inositol(1,4,5) P_3 , and to subsequent intracellular Ca^{2,7} release and protein kinase C (PKC) activation1. The lipids in the Ptdlns(4,5)P, pathway are also substrates for phosphoinositide 3-kinases (PI3Ks), which phosphorylate the hydroxyl group at position 3 on the inositol ring and induce different signals (Fig. 1). This review will focus on three areas of PI3K research in which substantial progress has recently been made. First, we will describe the structural features and classification of the different PI3Ks. Next, we will review recently identified molecules that act upstream and downstream of PI3Ks. Finally, we will describe work on PI3K in different eukaryotic organisms, and discuss how these studies may contribute to our future understanding of the function of PI3K signalling.

PI3Ks generate three different lipids

PI3Ks convert PtdIns, PtdIns(4)P and PtdIns(4,5) P_2 to PtdIns(3)P, PtdIns(3,4) P_2 and PtdIns(3,4,5) P_3 , respectively (Fig. 1).

B. Vanhaesebroeck, S. J. Leevers, G. Panayotou and M. D. Waterfield are at the Ludwig institute for Cancer Research, Riding House Street, London, UK W1P 8BT; M. D. Waterfield is also in the Department of Biochemistry and Molecular Biology, University College, Gower Street, London, UK WC1E 6BT.

PtdIns(3)P is constitutively present in eukaryotic cells and its levels are largely unaltered upon cellular stimulation. By contrast, PtdIns(3,4)P, and PtdIns(3,4,5)P, are almost absent from resting cells. Their intracellular concentration rises sharply upon stimulation with a variety of ligands, suggesting a likely function as second messengers (reviewed in Ref. 2). PI3K lipid products are not substrates for phospholipases, so they are not degraded into soluble inositol phosphates. Instead, phosphatases mediate their catabolism by removing the phosphate group at position 3 or 5 of the inositol ring^{2,3} (Fig. 1). Several 5-phosphatase genes have now been cloned (for overview, see Ref. 3) and their role in signalling is being elucidated (for example, see Ref. 4).

PI3Ks fall into three classes

PI3K catalytic subunits can be divided into three main classes on the basis of their *in vitro* lipid substrate specificity, structure and likely mode of regulation (Table I; see also Ref. 5).

Class I PI3Ks phosphorylate PtdIns, PtdIns(4)P and PtdIns(4,5) P_2 . In vivo, however, their preferred substrate is likely to be PtdIns(4,5) P_2 . All mammalian PI3Ks from this class interact with active, GTP-bound Ras (Refs 6–10; R. Wetzker, pers. commun.). They all form heterodimeric complexes with adaptor proteins that link them to different upstream signalling events. Class I PI3K catalytic subunits can be subdivided into two subclasses (A and B) according to the type of adaptor subunit with which they associate.

Class I_A PI3Ks are 110–130 kDa proteins that interact with adaptor subunits containing src homology-2 (SH2) domains. These adaptors bind phosphorylated Tyr residues, thereby linking class I_A PI3K catalytic subunits to Tyr kinase signalling pathways. Class I_A PI3K catalytic subunits include mammalian p110 α , - β and δ , and homologous molecules from several other species (Table I). They contain several conserved regions including the adaptor- and the Ras-binding sites, the PI-kinase region (PIK; of unknown function, also found in PI4Ks) and the carboxy-terminal kinase domain⁵.

To date, eight different adaptor subunits for class I, catalytic subunits have been described (seven in mammals encoded by three different genes, and one in Drosophila; see Fig. 2). They all contain two SH2 domains linked by an inter-SH2 region, which is both necessary and sufficient for binding to the catalytic subunits. The SH2 domains bind phosphorylated Tyr residues specifically within a pTyr-x-x-Met motif. The 85 kDa adaptors also contain an SH3 domain and a breakpoint cluster region (BCR)homology domain (BH), whose precise binding partners and/or regulatory role are unclear. There has been no report to date of a preferential coupling between any of the class I, adaptors and catalytic subunits, although it is possible that tissue-specific differences in function or regulation may exist.

Class I, P13Ks are stimulated by G-protein By subunits, and do not interact with the SH2-domain-containing adaptors that bind to class I Pl3Ks (Table I). The first identified member of this PI3K subfamily, p110y (Ref. 11) contains an aminoterminal Ras-binding site, a PIK domain and a catalytic domain (Table I). Stephens and co-workers recently reported the isolation of a regulatory p101 subunit that associates tightly with p110y (Ref. 12). This novel adaptor does not display any homology with known proteins and the exact mechanism by which it mediates coupling of p110y to G proteins remains unknown.

Class II Pl3Ks are larger (> 200 kDa) enzymes that phosphorylate *in vitro* PtdIns and PtdIns(4)P, but not PtdIns(4,5)P₂. Their defining feature is a C2 domain¹³ at their carboxyl terminus (Table I). The C2 domains of class II Pl3Ks lack critical Asp residues that coordinate

^{*}Nomenclature used is according to Ref. 1. Phospholnositide (PI) is used as a generic term, whereas phosphatidylinositol (Ptdins) is used to indicate specific phospholnositides, e.g. Ptdins(3)P.

Figure 1
Phosphoinositide pathways. Ins, inositol; Pl 3-kinases, phosphoinositide 3-kinases; Ptdlns, phosphatidylinositol.

binding of Ca²⁺ in the first C2 domain of synaptotagmin¹³. Consistent with this, a class II Pl3K has been found to bind lipids in a Ca²⁺-independent manner¹⁴. At present, it is unknown whether class II Pl3K activity is regulated by extracellular stimuli.

Class III Pl3Ks have a substrate specificity restricted to PtdIns. These Pl3Ks are homologous to Vps34p, the only Pl3K present in yeast. Vps34p is essential for the trafficking of newly formed proteins from the Golgi to the vacuole, the equivalent of the mammalian lysosome (reviewed in Refs 3, 15, 16). Members of this class of Pl3Ks also

occur as heterodimers. Yeast Vps34p is found in complex with Vps15p, a 170 kDa Ser/Thr kinase, which both activates and recruits Vps34p to membranes¹⁵. Similarly, human Vps34p associates with a 150 kDa Vps15p homologue17. The current hypothesis is that class III Pl3Ks and their Ptdlns(3)Plipid product fulfil a housekeeping role in constitutive membrane trafficking and vesicle morphogenesis^{3,15,16}. It is worth mentioning here that class I and II enzymes and their lipid products are also likely to have a function in vesicular trafficking, for example in post-endocytic sorting of ligand-stimulated receptors^{3,15,16}.

Signalling via PI3Ks

Recent advances in the understanding of signals feeding into and relayed by mammalian class I Pl3Ks will be reviewed, focusing on the signalling molecules per se, without elaborating on the multiple biological responses (such as cytoskeletal rearrangements, cellular migration, mitogenesis, differentiation and protection from apoptosis) in which Pl3Ks have been implicated (reviewed in Refs 18–20).

What happens upstream of class I PI3Ks? Class I PI3Ks are involved in signalling by the majority of receptors with intrinsic or associated (e.g. Src-like) Tyr kinase

	In vitro lipid substrates and structural features of catalytic subunits ^a	Subunits ^b	Subunits ^b	
Class		Catalytic .	'Adaptor'	Regulation
I A -€	Ptdins, Ptdins(4)P, Ptdins(4,5)P ₂	p110α, β, δ (m) Dp110 (Dm) AGE-1 (Ce) PIK1, PIK2 (Dd)	p85α, β (m) p55α, γ (m) p50α (m) p60 (Dm)	Tyr kinases and Ras
в —		p110γ (m) PIK3 (Dd)	p101 (m)	G protein $\beta\gamma$ subunits and Ras
II 	Ptdins, Ptdins(4)P	PI3K-C2α/Cpk-m/p170 (m) > PI3K-C2β (m) PI3K_68D/Cpk (Dm) PI3K-C2 (Ce)	?	?
111	Ptdins ————————————————————————————————————	Vps34p⁵	Vps15p (Sc) p150 (m)	Constitutive?

*Key of structural motifs: adaptor-binding (light purple); Ras-binding (green); C2 (yellow); PIK (dark purple); kinase domain (red). For the proteins other than those derived from yeast, fruit fly and mammals, no biochemical proof of PI3K lipid kinase activity is available. These enzymes have been allocated to a particular class of PI3K mainly based on primary sequence homology of the core kinase domain⁵. The abbreviations used are: m, mammalian; Ce, Caenorhabditis elegans; Dd, Dictyostelium discoldeum; Dm, Drosophila melanogaster, Sc, Saccharomyces cerevisiae. The GenBank/EMBL accession numbers for class I and II catalytic subunits are: mammalia: p110α (human: Z29090, HSU79143; mouse: U03279; bovine: M93252), p110β (human: S67334), p110γ (human: X83368; pig: Y10743), p110β (human: Y10055, U57843, U86587; mouse, U86453), PI3K-C2α (human: Y13367), Cptha (also known as p170) (mouse: U52193; U55772), PI3K-C2β (Y13892, Y11312) – D. melanogaster. Dp110 (Y09070), PI3K-68D (also known as Cpk) (X92892; U52192) – C. elegans: age-1 (U56101), putative C2-domain containing PI3K (on cosmid Z69660) – D. discoideum: PIK1 (U23476), PIK2 (U23477) and PIK3 (U23478). Accession numbers for p101, Vps15p and p150 are Y10742, M59835 and Y08991, respectively.

The prototype of the class ||| PI3Ks is the *S. cerevisiae* protein Vps34p (X53531). Vps34p homologues from other species are not shown individually. They are: human PI3K (Z46973); *D. melanogaster*, PI3K_59F (X99912); *D. discoideum*, PIK5 (U23480); and the Vps34p-related PI3Ks from *Schizosaccharomyces pombe* (U32583), Soybean (L29770), *Arabidopsis thaliana* (U10669) and *C. elegans* (Y12543).

activity, and by receptors linked to heterotrimeric G proteins (for a listing of the signals that trigger class I PI3K activation, see Refs 2, 21).

At present, it is unclear how G-protein signals are relayed from the plasma membrane to the class I_B enzymes. For class I_A Pl3Ks, the phosphorylated Tyr residues, generated on receptors or associated substrate molecules (such as IRS-1/2 in signalling by insulin and cytokines) form the docking sites for the SH2 domains of the Pl3K adaptor subunits. This adaptor-mediated translocation of Pl3Ks to receptor Tyr kinases and their substrates is likely to help position the catalytic subunits close to membranes that contain their lipid substrates.

In addition, class I PI3Ks interact with Ras proteins in a GTP-dependent manner. Thus far, this interaction has only been studied in detail for the p110a-p85a complex^{6,8-10}. The Ras-related proteins, Rac (which has been implicated in signalling downstream of Pl3Ks22) and Rho, do not bind p110a-p85a (Ref. 6). In vitro, Incubation of GTP-Ras with p110α-p85α results in a modest increase in PI3K kinase activity8. Co-expression studies of p110α-p85α with various Ras mutants indicate that Ras can regulate p110ap85a in vivo^{6,10} (Fig. 3). Evidence from experiments using platelet-derived growth factor (PDGF)-receptor mutants also suggests that accumulation of GTP-bound Ras is required for full activation of class I PI3Ks by PDGF²³. At present, however, it is not yet known to what extent PI3K activation by receptor Tyr kinases also occurs independently of Ras (Fig. 3).

Taken together, these data indicate that PI3Ks might be another class of Ras effector molecules, alongside proteins such as the Raf Ser/Thr kinases (reviewed in Ref. 24). The interaction of Ras with a PI3K might result in allosteric activation and/or contribute to PI3K recruitment to the plasma membrane. Interestingly, Ras effector mutants have been identified that interact with p110a, but not with Raf-1 (and vice versa)25 consistent with the existence of a Raf-independent signalling pathway downstream of Ras (see also below). It should be noted that data have also been reported that position Ras downstream of PI3Ks²⁶.

What happens downstream of PI3Ks? It is generally hypothesised that PI3K lipid products interact with certain proteins and modulate their localisation and/or activity. The recent characterisation of protein modules, such as pleckstrinhomology (PH)²⁷ and C2 domains, which can bind lipids, supports this view. If se-

Figure 2

Overview of the different adaptor subunits for class I_A phosphoinositide 3-kinases. P, Pro-rich region; BH, bcr homology region. p50 α and p55 α (also known as p85/AS53) are splice variants of p85 α , whereas p85 β and p55 γ (also indicated as p55 $^{\text{PiK}}$) are encoded by different genes. Triangles indicate further splice insertions in p85 α and p55 α (here named p85 α). Possible regulatory phosphorylation sites are indicated as Ser608 (Ref. 30) and YIEM. GenBank/EMBL accession numbers are: p85 α (human, M61906; bovine, M61745; mouse, M60651, U50413; rat, D64045), p50 α (mouse, U50414; rat, U50412), p55 α (human, U49349; rat, D64048), p85 β (bovine, M61746; rat, D64046), p55 γ (mouse, S79169; rat, D64047), p60 (*Drosophila melanogaster*, Y12498). *Bovine p55 γ (M. D. Waterfield *et al.*, unpublished).

lective targets downstream of receptorstimulated PI3Ks exist, they are expected to have very high affinity and specificity for PtdIns(3,4) P_2 and/or PtdIns(3,4,5) P_3 over $Ptdlns(4,5)P_2$ because the latter lipid is estimated to be at least 10-100times more abundant in most stimulated cells28. The observation that certain PH domains seem to bind specifically to either PtdIns $(4,5)P_2$ or PtdIns $(3,4,5)P_3$ is consistent with such a hypothesis²⁹. However, another important consideration is that several PI3Ks possess intrinsic protein kinase activity, which might be involved in PI3K signalling. Thus far, only auto- and intersubunit phosphorylation of PI3Ks has been documented and no in vivo protein kinase substrates for PI3Ks have been identified9,30.

One postulated function for PI3Ks is in cytoskeletal reorganisation via exchange factors that regulate the small GTP-binding protein Rac²², and that modulate the affinity of integrins for the extracellular matrix⁵². In addition, several protein Ser/Thr kinases have been placed downstream of PI3Ks in receptor-stimulated signalling, including Akt [also termed protein kinase B (PKB) or RAC-PK (Related to PKA and PKC-protein kinases)], p70 ribosomal S6 kinase (p70^{SSk}) and PKC (Fig. 3).

(1) Akt and its target GSK3. The Akt Ser/Thr protein kinases, the cellular homologues of the retroviral oncogene v-akt, are activated upon receptor-Tyr kinase stimulation (reviewed in Ref. 31). The three mammalian Akt molecules identified to date are all composed of an amino-terminal PH domain, followed by a catalytic domain and a small (-70 amino acids) carboxy-terminal extension, which lacks sequence homology to other proteins.

The activation of Akt most likely involves specific phosphorylations as well as a PH-domain mediated lipid binding. However, while it is clear that Akt can bind lipids, the specificity of this event and its effect on the activity and on the intracellular localisation of Akt remain controversial31,32. Upon stimulation of cells with insulin, two sites in Akt-1 (Thr308 in the catalytic domain and Ser473 in the carboxy-terminal tail) become phosphorylated in vivo in a PI3K-sensitive manner³³ (Fig. 3). Phosphorylation of both residues appears to be critical for high-level activity of Akt, suggesting that one or more upstream kinases activate Akt in vivo. Recently, a protein kinase activity has been purified which phosphorylates Akt at Thr308

Figure 3

Signalling pathways linked to mammalian class I_A phosphoinositide 3-kinases. Arrows only denote a signalling pathway without specifying whether intermediary signalling molecules are involved. Abbreviations used: GSK3, glycogen synthase kinase-3; MAPK, mitogenactivated protein kinase; p70S^{SK}, p70 S6 kinase; PDK, Ptdins(3,4) P_2 /(3,4,5) P_3 -dependent kinase; PH, pleckstrin-homology domain.

(but not Ser473) in vitro³². Remarkably, the activity of this kinase is uniquely dependent on the presence of Ptdlns $(3,4,5)P_3$ or Ptdlns $(3,4)P_2$, and has therefore been named Ptdlns $(3,4)P_2/(3,4,5)P_3$ -dependent kinase-1 (PDK1).

Given that Akt is one of the most likely downstream targets of PI3Ks identified so far, and that Akt seems to play a central role in the PI3K-mediated protection against apoptosis²⁰, it is important to know what lies further downstream on this pathway (Fig. 3). There is some evidence to position p70^{86k} (see below) downstream of Akt34. To date, however, the only known substrate of Akt in vivo is glycogen synthase kinase-3 (GSK3). Upon stimulation of cells with insulin, Akt phosphorylates GSK3 on a single, conserved regulatory amino-terminal Ser in a PI3K-sensitive manner³⁵. Phosphorylation and consequent inactivation of GSK3 results in the dephosphorylation and activation of a spectrum of metabolic and gene-regulatory proteins (reviewed in Ref. 36). Therefore, this link may turn out to be crucial for PI3K to

exert its varied downstream effects. It should be mentioned that, in addition to PI3K and Akt, the Raf/mitogen-activated protein kinase (MAPK) pathway has also been implicated in GSK3 regulation by growth factors other than insulin (such as epidermal growth factor; reviewed in Ref. 36).

(2) p70^{56k} becomes activated upon mitogenic stimuli and plays an important role in the progression of cells from G1 to S phase of the cell cycle. It phosphorylates the S6 protein component of the 40S ribosomal subunit during mitogenic responses, but might also be involved in the regulation of other cellular processes (reviewed in Refs 37–39). The role of S6 phosphorylation is still not fully understood, but correlates with an increase in translation, probably from specific mRNAs encoding proteins essential for G1 progression (reviewed in Ref. 39).

Activation of p70^{S6k} is regulated by multiple independent Ser/Thr-directed phosphorylations. This activation is independent of the Raf/MAPK pathway, but involves PI3Ks and the PIK-related

kinase, mTOR (for mammalian-target of rapamycin), as well as PKC and as yet unidentified proline-directed kinases (reviewed in Refs 37–39). However, kinases that directly phosphorylate and activate p70^{S6k} in vivo have not been identified.

(3) PKC/PRK. Both the lipid substrates and products of PI3Ks have been reported to activate, in vitro, a broad panel of PKC family members and PKC-related kinases [PRK, also indicated as protein kinases N (PKN)]40. Although one group has shown that both PtdIns $(4,5)P_2$ and PtdIns $(3,4,5)P_3$ activate these kinases to the same extent, other groups (cited in Ref. 40) have reported conflicting data, which may be attributed to differences in lipid presentation procedures. Whereas PKCs may indeed be affected by PI3K lipid products, there is no consensus as to which member of this family, if any, is a selective target of these lipids.

Model systems in different organisms

In addition to mammals, PI3K genes have been identified in other organisms including yeasts, plants, slime molds, nematodes and fruit flies. Although the analysis of PI3K function in most of these organisms is at an early stage, future work applying genetic techniques should complement the mammalian studies in several respects. Most importantly, a genetic approach should allow the identification and characterisation of interacting genes, and improve our understanding of the function of different PI3Ks at the level of a cell, organ or entire organism. Below, we summarise the genetic systems currently emerging that are likely to play an important role in future studies of PI3K function.

Yeasts possess only class III PI3Ks and have already provided a useful model system to examine the function of this PI3K class. As described above, studies in *S. cerevisiae* and in mammalian cells have been complementary and suggest a ubiquitous role in constitutive vesicular trafficking¹⁵.

The slime moid D. discoldeum is a motile chemotactic unicellular organism that can form multicellular aggregates and fruiting bodies under conditions of nutritional stress. Four putative D. discoideum PI3K genes have been identified⁴¹. DdPIK1 and -2 resemble class I_A PI3Ks; DdPIK3 is most closely related to the class I_B group of G-protein-activated PI3Ks; and DdPIK5 closely resembles class III Vps34p-like PI3Ks. Separate disruption of each class I PI3K gene has no detectable phenotype whereas simultaneous disruption

The lab of the second

of both class I_A PI3Ks has pleiotropic effects on growth and development, suggesting a certain level of redundancy^{A1}. By contrast, removal of the class III PI3K is lethal, as is removal of the class I_B PI3K together with either of the class I_A PI3Ks.

The nematode C. elegans is a more complex multicellular eukaryote with speclalised terminally differentiated cells. C. elegans possesses genes encoding one PI3K from each class, though only the function of the class I, PI3K homologue has been studied to date⁴². The class l_A PI3K gene, termed age-1 or daf-23, was identified in genetic screens for mutants that promote longevity (age mutants)43 and for mutants that affect dauer larvae formation (daf mutants)44. Under uncrowded conditions with ample food, wild-type C. elegans develop rapidly through four larval stages (L1-L4) to become adult worms with a life span of 2-3 weeks (Fig. 4). By contrast, when food is scarce and the population density high, an alternative third stage larva, the dauer larva, is formed. Dauer larvae are developmentally arrested, non-feeding and can endure harsh environmental conditions. When more favourable conditions return, dauers recover and develop into adults with a normal life span, irrespective of how much time has been spent as a dauer.

Null mutations in the age-1 PI3K result in C. elegans that form dauer larvae constitutively, suggesting that age-1 normally suppresses dauer formation under favourable conditions. Alternatively, age-1 may be required for L3 development such that in the absence of age-1 activity, dauer larva development occurs by default. Presumably, when nutrients are depleted, age-1 is inactivated and an altered developmental programme that leads to dauer formation is initiated. C. elegans with reduced levels of the age-1 PI3K (e.g. with maternal, but not zygotic age-1 Pl3K, or carrying weak mutant alleles of age-1) do not form dauer larvae, but develop into adults with significantly extended adult lifespans^{45,48} (Fig. 4). A plausible explanation for this link between the daf and age phenotypes is that the genes normally expressed in the dauer larvae to make them longlived and resistant to environmental stress are inappropriately expressed in adults with reduced levels of age-1, thereby conferring increased longevity and stress resistance^{45,46}.

The analysis of genetic interactions between age-1 and various daf mutants has facilitated their ordering into a complex

Figure 4

Mutations in age-1 phospholnositide 3-kinase affect the life cycle of *Caenorhabditis elegans*. A scheme depicting the effects of loss of function mutations in the *age-1* PI3K gene on the nematode life cycle. The four larval stages (L1–L4) and the dauer larva, are shown. + food indicates that worms were growing in uncrowded conditions with ample food; – food indicates that worms were growing in over-crowded conditions with limited food; * indicates life cycle stages with increased resistance to environmental stress.

pathway affecting dauer formation and life span^{47,48,53}. Characterisation of these genes at the molecular level should help to clarify the way in which the *age-1* PI3K functions as a signalling molecule. Mutations in *daf-2* also result in both constitutive dauer formation and increased adult longevity, while mutations in *daf-16* suppress both the dauer constitutive and increased longevity phenotypes resulting from mutations in *age-1* and *daf-2*. It will be intriguing to discover what the *daf-2* and *daf-16* genes encode.

The fruit fly D. melanogaster has genes encoding one PI3K from each class¹⁴, so should also serve as a useful model system with which to address the function of the different PI3Ks. The D. melanogaster class I, PI3K, Dp110 (Ref. 49; Table I) associates with p60, an SH2 domaincontaining adaptor (Fig. 2), which, like its mammalian counterparts, recognises the pTyr-x-x-Met motif⁵⁰. Ectopic expression studies have suggested that Dp110 might play a role in the control of cell growth49. The overproduction of Dp110 in wing or eye imaginal discs (sheaths of epithelial cells which expand and differentiate during larval growth and ultimately give rise to the structures that make up the adult fly) results in adult flies with enlarged wings

or eyes, whereas overproduction of a dominant-negative version of Dp110 inhibits the growth of these structures⁴⁹. Interestingly, loss of function mutations in the *D. melanogaster* homologue of the insulin receptor, Inr, also inhibits imaginal disc cell growth and result in the generation of smaller-than-wild-type flies⁵¹. So, in flies as well as mammals, class I_A PI3Ks might be important targets of the insulin receptor, and may regulate normal growth during development.

Concluding remarks

In recent years, a multitude of PI3Ks have been identified with unique molecular and biochemical characteristics indicating that they fall into distinct PI3K. classes. The challenge now is to assign biological roles to each of these classes and to determine whether the lipids generated by the different classes of PI3Ks exert selective or redundant biological functions. One crucial issue is to find how 3-phosphorylated lipids mechanistically affect downstream signalling. To fully understand the biological events brought about by PI3K signalling, there is clearly a need to combine a variety of experimental approaches including pharmacology, biochemistry, cell biology and genetics.