Data science the business point of view

Marius Marcu May 2015

mariusmarcu@global.t-bird.edu

Presentation outline

- Big data the new natural resource
- The data scientists the new, modern gold miners
- How you can make most of your Data Science opportunity

Big data – the new natural resource

Big data – the new natural resource

- Observations captured one by one and entered manually on paper or in the computer
- Human activity on the web leaves traces captured by various entities
- Internet of things streams of data automatically captured from sensors or human activity into databases or sophisticated graphs
- Many "mountains" of data
 - Cost of storage low, # of devices/sensors higher every year
 - Reasons to store: financial vs other (competitive advantage)
 - Creating Data + Metadata (data about the data)

90% of all of the world's data generated in the last two years

Source: Accenture white paper 2013

Source: IDC Digital Universe study, April 2014

Big Data characteristics

Who produces/collects data and for what purpose?

- **Users/individuals** they like to keep/share what they produce. "Sentimental value" vs "make money". Data mostly shared.
- **Businesses** optimize/grow the business make more money. Data mostly NOT shared except when the main business is collection & sale of data and or insights.
- Government Govern/protect/serve citizens.
 Mostly NOT shared, except sometimes for information purposes and public transparency.
 Sometimes they try to make a buck to balance gov operating costs.
- Education institutions research purposes. Data shared to the extent allowed by research and community scrutiny.

The landscape of big data and the tools to mine it

- Mountains of data collected today but businesses are interested only in the golden nuggets: metrics vs insights vs predictive analytics
- Few bridges between mountains
 - Data sets in diff frameworks/storage models that don't necessarily talk with each other
- Even fewer data miners
 - Few know how to apply the Scientific method to big data sets
- Nascent data mining within most orgs (BRONZE AGE?)
 - High hopes for what they can get out of advanced analytics.
 - Organization don't have (YET) the capabilities they need to exploit big data
 - Lack of alignment on key issues for people inside individual organizations.

Big Data Landscape

Analytics Infrastructure

Hortonworks

MAPR VERTICA

cloudera

INRIX

Big Data Market Forecast by Component, 2011-2017 (\$US billions) \$47.5 \$50.00 \$43.4 \$45.00 \$37.7 \$40.00 **Big Data** Revenue (\$US billions) \$35.00 professional services \$27.9 \$30.00 Big Data application-\$25.00 Big Data **Analytics & Transactional** \$18.1 Database \$20.00 Market \$15.00 \$11.4 \$10.00 \$7.2 **Big Data storage** \$5.00 Big Data compute revenue \$0.00 2011 2012 2013 2014 2017 2015 2016 Big Data XaaS Revenue \$0.34 \$0.60 \$1.03 \$1.71 \$2.43 \$2.87 \$3.19 Big Data Professional Services Revenue \$3.85 \$6.07 \$9.24 \$12.31 \$15.30 \$2.43 \$14.06 Big Data Application (Analytic and Transactional) Revenue \$0.48 \$0.93 \$1.77 \$3.24 \$4.94 \$6.05 \$6.89 Big Data NoSQL Database Revenue \$0.10 \$0.19 \$0.39 \$0.73 \$1.14 \$1.41 \$1.62 Big Data SQL Database Revenue \$0.72 \$1.02 \$1.45 \$2.00 \$2.48 \$2.74 \$2.91 \$0.15 \$0.25 \$0.42 \$0.67 \$0.93 \$1.08 \$1.19 Big Data Infrastructure Revenue Big Data Networking Revenue \$0.18 \$0.28 \$0.44 \$0.67 \$0.89 \$1.02 \$1.11 Big Data Storage Revenue \$1.16 \$1.83 \$2.88 \$4.39 \$5.85 \$6.68 \$7.27 Big Data Compute Revenue \$1.64 \$2.45 \$3.64 \$5.23 \$6.70 \$7.50 \$8.06 Total Big Data Revenue \$7.2 \$11.4 \$18.1 \$27.9 \$37.7 \$43.4 \$47.5 Database as % of Total Big Data Market 9.8% 9.6% 9.6% 9.5%

Big data market to reach almost \$50bn by 2017

Greatest potential opportunities for Big Data (from a volume of data perspective):

- Banking and securities
- **Communications**
- Media and Services
- Government
- Manufacturing
- **Natural Resources**

Figure 2. Big Data Opportunity Heat Map by Industry

Finance and insurance is EASY to capture and has HIGH value potential

Construction data NOT EASY to capture and has LOW value potential

What about?

- Computers and other electronic products
- Healthcare
- Educational Services

The ease of capturing big data's value, and the magnitude of its potential, vary across sectors.

Example: US economy

Big data: value potential index

Source: US Bureau of Labor Statistics; McKinsey Global Institute analysis

¹ For detailed explication of metrics, see appendix in McKinsey Global Institute full report Big data: The next frontier for innovation, competition, and productivity, available free of charge online at mckinsey.com/mgi.

Gartner's 2014 Hype Cycle for Emerging Technologies

Which will influence more the way companies do business in the future?

- 1, 2, 3?
- 1, 3, 2 ?
- 3, 2, 1?

Data Scientists – the new, modern, gold miners

Data scientists, the modern gold miners

- Must know how to construct intelligent hypotheses
- Understand the principles of experimental testing and design
- Able to evaluate the validity of data analyses.
- A background in scientific experimental design will be particularly valued (randomized testing and experimentation becomes more commonplace)

Data analytics everywhere... forever? Forever ever?

- Data collection –make vs buy
- Data preparation 60% of project time!!!
- Analysis based on clear objectives from org
- Insights/predictions/forecasts
- Recommend optimizations to business
- Present to decision makers
- Management actions
- Results

Rinse and repeat

Looking for the (perfectly) skilled Data Scientist?

Keep looking...

in Data Science specialization may be key

Pay rates for data scientists around the world

US/Canada – life is good

Australia/NZ - thought leaders

Outsource oppts : Asia and Europe

Working hard and dreaming about a better future

Food for thought: Data Forensics not Data Science could be the skill shortage

- 2011- McKinsey: US alone short of 140,000 and 190,000 people with deep analytical skills
- 2014 Capgemini the biggest challenge in big data is often the provenance of the data.
 - "you only get out what you put in"
- From enterprise data (largely controlled) to lots of disparate sources
- 100s of small variations in the way business is conducted = "finer adjustments" that need more accuracy not less.
- Knowing more about your data sources can better inform your modelling

3 key dimensions to asses data:

- 1. **Provenance** do you trust that source, what level of quality can we expect in the data? Adjust models accordingly
- 2. Legality important to understand what is and isn't allowed
- 3. Sensitivity breaching some ethical boundaries?
 - brand reputation and image can make or break companies,
 - impact of people knowing about your use of their data (NSA revelations; Target "targeting" pregnant women)

Understanding your data sources could be the real skill in turning big data into value

How you can make most of your Data Science opportunity

Data Science – mostly about business?

Source: Forbes "what is a data scientist" series word cloud

Data Scientists - helping change business and the world

Which job will you help replace?

- Front-line Military Personnel Will Be Replaced With Robots
- Private Bankers and Wealth Managers Will Be Replaced With Algorithms
- Lawyers, Accountants, Actuaries, and Consulting Engineers Will Be Replaced With Artificial Intelligence

What are the jobs that will be in demand in this brave new world only a decade away?

Personal Worker Brand Coaches And Managers, **Professional Triber**, Freelance Professors, Urban Farmers, End-Of-Life Planner, Senior Carer, **Remote Health Care Specialist**, Neuro-Implant Technicians, Smart-Home Handyperson, **Virtual Reality Experience Designer**, Sex Worker Coach

Data Science is: Science & Art

- Where do you fit? where you can add most value today
- Where do you want to be? where you can get paid best and work the least (or where you like it most)
- **Gravitate** towards companies with big data sophistication and thought leaders in big data (high tech, cloud companies, pharma... etc)
- Start in science and move into art
- Packaging & delivery of insights can be as important as content
- Connect with fellow data scientists
- Kaggle can help you grow Data Hero?

Summary

- Big Data the new natural resource
- Everyone is looking for the gold nuggets
- Data Scientists the new, modern gold miners
- Data Science tools bronze age
- Data science is here to stay and you are in the right boat
- Data Science = Science & Art
- Find the start point that is right for you and....

.... Get to rule Kaggle!

Q & A

...Marius plans to make his first million in the next 5yrs with a project/company powered by Data Science...

What is your plan?

Let's chat

mariusmarcu@global.t-bird.edu