# PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ CIENCIAS SOCIALES CICLO 2022-2

#### Econometría 1

## Práctica Dirigida 1 - Solucionario

Profesor: Juan Palomino <u>juan.palominoh@pucp.pe</u>
Jefe de Práctica: Tania Paredes <u>tania.paredes@pucp.edu.pe</u>

Fecha: 27 - 08 - 20202

## 1. El modelo de Regresión Lineal

a. Evalúe si los siguientes modelos son lineales en parámetros:

i. 
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

**SOL:** 

Si es lineal en parámetros.

• 
$$\frac{\partial Y_i}{\partial \beta_2} = X_i$$

ii. 
$$Y_i = \beta_1 + \beta_2^2 X_i + u_i$$

### **SOL:**

No es lineal en parámetros.

$$\bullet \quad \frac{\partial Y_i}{\partial \beta_2} = 2\beta_2 X_i$$

iii. 
$$Y_i = \beta_1 + \beta_2 X_i^{-1} + u_i$$

### **SOL:**

Si es lineal en parámetros.

$$\bullet \quad \frac{\partial Y_i}{\partial \beta_2} = X_i^{-1}$$

iv. 
$$Y_i = AX_i^{\beta_1} e^{u_i}$$

## **SOL:**

No es lineal en parámetros.

$$\bullet \quad \frac{\partial Y_i}{\partial \beta_2} = AX_i^{\beta_1} ln(X_i) e^{u_i}$$

Plus: No obstante, si tomamos logaritmos a  $\ln (Y_i) = \ln(AX_i^{\beta_1}e^{u_i})$  obtenemos:

$$lnY_i = lnA + \beta_1 lnX_i + u_i$$

Este último sí sería lineal en parámetros.

b. Proponga ejemplos de variables reales en cada modelo, explique qué signo esperaría para dicho coeficiente e interprete el coeficiente  $\beta_2$  en los siguientes modelos:

i. 
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

# **SOL:**

SOL:

 $Y_i = \beta_1 + \beta_2 \ln X_i + u_i$ 

Y: Producción por hectorea de cultivo (toreladas) X: Abono transgénico utilizado (kilogramo)  $\frac{\partial Y}{\partial \ln(x)} \approx \frac{\Delta Y}{\Delta \ln(x)} = \frac{\Delta Y}{\Delta \times} = \frac{\Delta Y}{\Delta \times 1.00} = \frac{B_2}{\Delta \times 1.00} > 0$ Un incremento de 1% por cierdo de  $\chi_2$  (1% de ema torrelada de abono transgénico) genera un incremento de  $R_2$  do Y (producción um incremento de  $R_2$  do Y (producción

iii.  $ln Y_i = \beta_1 + \beta_2 X_i + u_i$ 

por hectarea)

## **SOL:**

(ii. Y: Salario mensual (sales)

X: Añon de prisson (año:)

2/17 = 01/7 = 01/7 = 22 <0

Mn incremento de una unidad de X (un año de prisson) genera una reducción de (B2.100)%

de Y (salario mensual).

iv.  $ln Y_i = \beta_1 + \beta_2 ln X_i + u_i$ 

## **SOL:**

iv. Y: PBI per cépita (soleo)

X: Términos de intercombio (natio Px sobre Pn)

Dlu Y a Dlu Y = DNY = B2 >0

Du X Dlu X = DNY = B2 >0

Un incremento de 1º1, de la variable X (términos de intercombio) genera sun incremento de B2º1. en Y (PBI per cápita). Plus: Este es el concepto de elasticidad.

c. Represente los casos de homocedasticidad y heterocedasticidad a través de gráficos de dispersión, siendo el primero un gráfico de las observaciones y el segundo de los residuos (un gráfico para cada caso)

### **SOL:**



d. ¿Qué supuesto respalda la no asociación entre los regresores y el término de error?

<u>SOL</u>: El supuesto que respalda la no asociación entre regresores y el término de error es el de exogeneidad, donde la esperanza condicionada del término de perturbación, dado los valores de X es igual a cero.

$$E[u_i|X_i]=0$$

#### 2. Derivación de Estimación de Estimadores MCO

Los datos de producción de 22 empresas de una determinada industria dan lugar a los siguientes resultados, donde Y = ln (Demanda de la industria) y X = ln (Precio del bien) :  $\bar{Y} = 20$ ,  $\bar{X} = 10$ ,  $\sum_{i=1}^{22} (Y_i - \bar{Y})^2 = 60$ ,  $\sum_{i=1}^{22} (X_i - \bar{X})^2 = 100$ ,  $\sum_{i=1}^{22} (X_i - \bar{X})(Y_i - \bar{Y}) = 110$ .

i. Calcule los estimadores de MCO del modelo.

### **SOL:**

• 
$$\widehat{\beta}_2 = \frac{\sum_{i=1}^{22} (X_i - \underline{X})(Y_i - \underline{Y})}{\sum_{i=1}^{22} (X_i - \underline{X})^2} \frac{110}{100} = 1.1$$

• 
$$\hat{\beta}_1 = \overline{Y} - \hat{\beta}_2 \overline{X} = 20 - 1.1(10) = 9$$

ii. Interprete los estimadores.

#### **SOL:**

•  $\hat{\beta}_2$ : Se interpreta como la elasticidad precio de la demanda. Un aumento del 1% en el precio aumenta en promedio 1.1% la producción.

### 3. Laboratorio

Dados los siguientes datos para Consumo (C) e Ingreso (I), estime por MCO el modelo  $C_i = \beta_1 + \beta_2 I_i + u_i$  en una hoja de cálculo de Excel:

| Obs. | I    | C    |
|------|------|------|
| 1    | 16.3 | 15.6 |
| 2    | 6.8  | 6.4  |
| 3    | 8.6  | 9.2  |
| 4    | 15.3 | 14.9 |
| 5    | 8.7  | 7.2  |
| 6    | 7.8  | 7.6  |
| 7    | 8.7  | 7.2  |
| 8    | 8.3  | 7.2  |
| 9    | 9.4  | 7.9  |
| 10   | 10.8 | 8.8  |
| 11   | 5.1  | 4.1  |
| 12   | 11.6 | 11.1 |

- Interprete los resultados de la estimación. a.
- Muestre en Excel que se cumplen las siguientes propiedades b. numéricas de la estimación por MCO:

  - 1.  $\sum e_i = 0$ 2.  $\sum e_i X_i = 0$ 3.  $\sum e_i \hat{Y}_i = 0$ 4.  $\hat{\bar{Y}} = \bar{Y}$
- c. Realice la estimación por MCO en Stata y R.