Módulo 1 - Diapositiva 6 Ecuaciones Lineales y Cuadráticas en \mathbb{R}

Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales

Temas

ullet Ecuaciones lineales y cuadráticas en $\mathbb R$

 \bullet Ecuación cuadrática en $\mathbb R$ y discriminante.

Ecuación

Igualdad entre dos expresiones algebraicas que involucra una o varias cantidades desconocidas llamadas incógnitas.

Solución o raíz de la ecuación

Valor de la incógnita que verifica la igualdad

Un problema registrado en una antigua tablilla Babilónica dice:

" Un anciano dejó al morir 65 monedas de oro, que debían repartirse entre sus 5 hijos de modo que cada uno recibiera 3 monedas menos que el hermano que le antecede"

Para resolver situaciones como la planteada, es posible escribir una ecuación que de solución a dicha situación (modelar el problema).

Ecuación lineal

$$ax + b = 0, \ a \neq 0$$

Ejemplos

- x = -7 es solución de la ecuación lineal 5x + 3 = -25 + x ya que este valor verifica la igualdad.
- 2 Para la ecuación $3 \frac{1}{2}x = 2x 7$ tenemos que

$$3 + 7 = 2x + \frac{1}{2}x$$
 por tanto $10 = \frac{5}{2}x$

de donde tenemos que x=4 es la solución de la ecuación inicial.

Ecuación cuadrática

$$ax^2 + bx + c = 0, \ a \neq 0$$

Soluciones:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ejemplo

Las soluciones de la ecuación $4x^2 - 9x + 2$ son

$$x = \frac{-(-9) \pm \sqrt{(-9)^2 - 4(4)(2)}}{2(4)} = \frac{9 \pm 7}{8}$$

es decir x = 2 y $x = \frac{1}{4}$

Ecuación Cuadrática

Discriminante

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$ la ecuación tiene dos soluciones reales y distintas.
- Si $\Delta = 0$ la ecuación tiene una única solución real.
- Si $\Delta < 0$ la ecuación no tiene soluciones reales.

Ejemplo

Las ecuación anterior $4x^2 - 9x + 2$ tiene discriminante

$$\Delta = (-9)^2 - 4(4)(2) = 49 > 0$$

por tanto tiene dos soluciones reales y diferentes.

Ejemplos:

• El discriminante de la ecuación $4x^2 - 12x + 9 = 0$ es

$$\Delta = (-12)^2 - 4(4)(9) = 0,$$

por tanto la ecuación tiene una única solución real que es $x = \frac{3}{2}$.

2 El discriminante de la ecuación $x^2 + x - 2 = 0$ es

$$\Delta = (1)^2 - 4(1)(-2) = 9 > 0,$$

por tanto la ecuación tiene dos soluciones reales diferentes que son x=-2 y x=1.

3 El discriminante de la ecuación $x^2 + 2x + 2 = 0$ es

$$\Delta = (2)^2 - 4(1)(2) = -4 < 0,$$

por tanto la ecuación no tiene soluciones reales.

Ejemplo 1.

La suma de tres enteros consecutivos es 27. Determine el mayor de dichos números.

La ecuación lineal que modela este problema es

$$x + (x - 1) + (x - 2) = 27$$

con x representando el mayor de los números, así

$$3x - 3 = 27$$

cuya solución es x=10, es decir el mayor de los números es 10 y los otros dos son 9 y 8.

Ejemplo 2.

Un lote rectangular es 8 metros más largo que ancho y tiene un área de 2900 metros cuadrados. Hallar las dimensiones del lote.

Si representamos el ancho por x, entonces el largo será x+8, con lo cual la ecuación cuadrática que modela este problema es

$$x(x+8) = 2900,$$

es decir la ecuación

$$x^2 + 8x - 2900 = 0$$

cuyas soluciones son x=50 y x=-58. Dado que x es una medida de longitud, esta no puede ser una cantidad negativa, por tanto la solución al problema es x=50, es decir el terreno tiene 50 metros de ancho por 58 metros de largo.

Referencias

Sullivan, M. Álgebra y Trigonometría, 7^a Edición. Editorial Pearson Prentice Hall, 2006.

Swokowski, E.W. Cole, J.A. Álgebra y Trigonometría con Geometría Analítica 13^a Edición. Editorial Cengage Learning, 2011

Zill, D. G. Dewar, J. M. Álgebra, Trigonometría y Geometría Analítica, 3^a Edición. Editorial McGraw-Hill, 2012.