

Overview 1. Introduction 2. Pathway analysis 3. Pathways as tools for network analysis 4. Workshop setup and dataset

Biological pathways Pathways are found everywhere Utility to biologists as conceptual models is obvious If modeled properly - immensely useful for computational analysis and interpretation of large-scale experimental data

Why pathway analysis? "A picture is worth a thousand words." Intuitive and simple Puts data into a biological context More efficient than looking up single gene information Reduces complexity → several hundred pathways instead of thousands of genes Higher explanatory power than a simple gene list Visual representation

Pathway elements • Data nodes • GeneProducts, Proteins, Metabolites, Pathways, etc. • Interactions • Activation, Inhibition, Binding, Stimulation, etc. • Literature references • For every element • Annotations • External identifiers added for data nodes and interactions

Annotation of biological entities • Challenge: • Many different biological online databases → different identifiers for the same biological element • Manual mapping of identifiers is very time-consuming and error-prone • Solution: • BridgeDb framework → identifier mapping databases for gene products, metabolites and interactions

A and FCS do not take pathw	
	ay topology into account!
u don't know yet where the c thway.	hanges occur in the
vays <u>look at the pathway diag</u> anges to make the right concl	
	vays <u>look at the pathway dia</u> g

Pathway analysis methods • Overrepresentation analysis: • Ranked list of pathways			
	Up-regulated pathways	Z-score	Perm.
	(log2FC > 2, p-value < 0.05)	Z-score	p-value
	Cell Cycle	6.12	0.001
	G1 to S cell cycle control	4.26	0.002
	Synaptic Vesicle Pathway	3.89	0.001
	DNA Damage Response	3.88	0.002
	ATM Signaling Pathway	3.80	0.001
Same method is also	rttm oignamig raunnay	0.00	0.001
used for Gene	Down-regulated pathways (log2FC < -2, p-value < 0.05)	Z-score	Perm. p-value
Ontology analysis	Complement and Coagulation Cascades	5.87	0.001
	Complement Activation	5.84	0.001
	Adipogenesis	5.49	0.001
	Differentiation of white and brown adipocyte	5.44	0.001
	Triacylglyceride Synthesis	4.53	0.001
WP Summit 2018 – Workshop 1		=	30

Overview 1. Introduction 2. Pathway analysis 3. Pathways as tools for network analysis 4. Workshop setup and dataset

WikiPathways app - Load pathways as networks in Cytoscape - Use online database query in Cytoscape or open local GPML file - apps.cytoscape.org/apps/wikipathways

WikiPathways app • App supports two views: - Pathway view - complete visual appearance - ideal for data visualization - Network view - simplified networks without any of the graphical elements of the original pathway diagram - ideal for topological analyses, network merging and automatic layout

Cytoscape automation Available since the last major release (3.6.0+) Execute commands from within R or Python WikiPathways and CyTargetLinker app both have automation interface

Workshop setup Step-by-step instructions Required data provided in a zip file https://github.com/PathVisio/tutorials/2018-WP-Summit Feel free to ask questions at any point Three instructors will help you out

Workshop setup Data visualization on pathways Identifying affected pathways Using pathways as networks Extension of pathways with regulatory information Pathway-gene associations

