Session 16: Assignment 1

Problem Statement 1:

A test is conducted which is consisting of 20 MCQs (multiple choices questions) with every MCQ having its four options out of which only one is correct. Determine the probability that a person undertaking that test has answered exactly 5 questions wrong.

Solution:

Formula to calculate k successes in n trials = C(n,k) sk(1-s)(n-k) C(n,k) sk(1-s)(n-k)

Here,
$$n = 20$$
, $n - k = 5$, $k = 20 - 5 = 15$

Here the probability of success = probability of giving a right answer = s = 1414

Hence, the probability of failure = 1 - 1414 = 3434

So, P (exactly 5 out of 20 answers incorrect) = C (20, 5) **(14)(14) 1515** (34)(34) 55

$$\rightarrow \rightarrow$$
 P (5 out of 20) =

$$(20*19*18*17*16)(5*4*3*2*1)(20*19*18*17*16)(5*4*3*2*1)$$
 (14)(14) 1515 (34)(34)

55

= 0.0000034 (approximately)

Problem Statement 2:

A die marked A to E is rolled 50 times. Find the probability of getting a "D" exactly 5 times.

Solution:

Here,
$$n = 50$$
, $k = 5$, $n - k = 4/5$.

The probability of success = probability of getting a "D" = s = 1/5

Hence, the probability of failure = probability of not getting a "D" = 1 - s = 4/5.

Problem Statement 3:

Two balls are drawn at random in succession without replacement from an urn containing 4 red balls and 6 black balls. Find the probabilities of all the possible outcomes.

Solution:

First determine the probabilities of the events.

Table of Probability of events		
Events	Probability	
RR	(4/10)(3/9) = 2/15	
RB	(4/10)(6/9) = 4/15	
BR	(6/10)(4/9) = 4/15	
BB	(6/10)(5/9) = 1/3	

The probability of 0 black balls (RR)is 2/15

The probability of 1 black ball is (RB or BR) is 4/15+4/15 = 8/15

The probability of 2 black balls (BB) is 1/3

If Z is the random variable representing the number black balls. The probability distribution will be :

Ζ	p(Z)
0	2/15
1	8/15
2	1/3

Notice that the sum of the probabilities = 2/15+8/15+1/3 = 1
