Homework Four: Natural Language Processing

Quin'darius Lyles-Woods

November 19, 2021

1 Lexical Translation Model using IBM Model 1

Given a corpus of two English sentences with their translation in Latin below.

English this course

Latin hoc utique

English Text processing

Latin Textus processus

Build your lexical translation model (IBM Model 1) and show each training (expectation maximization) step's computation. Assume that the model only trains for two iterations.

Uniform Probablity

$$\begin{split} Probablity(this|hoc) &= \frac{1}{2} \\ Probablity(course|utique) &= \frac{1}{2} \\ Probablity(course|utique) &= \frac{1}{2} \\ \end{split} \qquad \qquad \begin{aligned} Probablity(Text|Textus) &= \frac{1}{2} \\ Probablity(processing|processus) &= \frac{1}{2} \\ \end{aligned}$$

$$Probablity(this|hoc)*Probablity(course|utique) = \frac{1}{4}$$

$$Probablity(Text|Textus)*Probablity(processing|processus) = \frac{1}{4}$$

$$Probablity(A|E,F) = \frac{1}{2}$$
$$Probablity(A|E,F) = \frac{1}{2}$$

2 Translation Model using BLUE Score

Given candidate translation sentences and their references below. Evaluate your translation model performance using BLUE score where n-gram order, N=3.

2.1 Answer

Given the N Gram count of 3 it makes the model not pickup the phrases well. The model doesn't match any of the N grams in the second candidate sentence.

Blue Score, Replacing ones with zeros by transforming all values by one.

Sentence One =
$$\left\{\frac{8}{8} * \frac{5}{7} * \frac{3}{6}\right\}^{\frac{1}{3}} = .7095$$

Sentence $Two = \left\{\frac{6}{6} * \frac{3}{5} * \frac{1}{4}\right\}^{\frac{1}{3}} = .5313$
 $Average = \left\{\frac{.7095 + .5315}{2}\right\} = 62.04\%$

Candidate One the cat the cat on the	Reference One the cat is on the mat
mat	Unigram
Unigram	C1 C2 - the
R1 R2 - the	C1 C2 - cat
R1 R2 - cat	C1 C2 - is
R1 R2 - the	C1 C2 - on
R1 R2 - cat	C1 C2 - the
R1 R2 - on	C1 C2 - mat
R1 R2 - the	Bigram
R1 R2 - mat	C1 C2 - the cat
Bigram	C1 C2 - cat is
R1 R2 - the cat	C1 C2 - is on
R1 R2 - cat the	C1 C2 - on the
R1 R2 - the cat	C1 C2 - the mat
R1 R2 - cat on	Trigram
R1 R2 - on the	C1 C2 - the cat is
R1 R2 - the mat	C1 C2 - cat is on
	C1 C2 - is on the
Trigram	C1 C2 - on the mat
R1 R2 - the cat the R1 R2 - cat the cat	Reference Two there is a cat on the mat
R1 R2 - the cat on	Unigram
	- there
R1 R2 - cat on the	C1 C2 - is
R1 R2 - on the mat	C1 C2 - a
Candidate Two the cat on mat mat	C1 C2 - cat
Unigram	C1 C2 - on
R1 R2 - the	C1 C2 - the
R1 R2 - cat	C1 C2 - mat
R1 R2 - on	Bigram
R1 R2 - 011 R1 R2 - mat	C1 C2 - there is
	C1 C2 - is a
R1 R2 - mat	C1 C2 - a cat
Bigram	C1 C2 - cat on
R1 R2 - the cat	C1 C2 - on the
R1 R2 - cat on	C1 C2 - the mat
R1 R2 - on mat	Trigram
R1 R2 - mat mat	C1 C2 - there is a
Trigram	C1 C2 - is a cat
R1 R2 - the cat on	C1 C2 - a cat on
R1 R2 - cat on mat	C1 C2 - cat on the
R1 R2 - on mat mat	C1 C2 - on the mat

3 Passage Retrieval

Design a question answering system for finding definition of all the machine learning keywords from Wikipedia pages.

Example Query Text: Support Vector Machine

Your system should return the corresponding wiki page for this query. Please show overall diagram of your system and explain each individual component.

Answer

There is a program called docgrab that I have created that will reach out a reformat the question into a query for wiki. Once that is done it will search and return the appropriate article. Then the program output is piped into another program that will get the HTML document and return only the text describing the search query.

Entity Linking 4

What is entity linking? How the overall entity linking system works? How would you find matching between mention and entity in the linking system?

Answers

Entity Linking

Entity Linking is the task of assigning a unique identity to entities mentioned in text.

Entity Linking System

Linking parts of a passage together requires a dataset that contains lots of known entities. You can parse through a document finding the comparing each of the unique tokens to the dataset that you have on and mark the ones that match as entities is distinct categories such as people, places, events.

Matching in a linking system

A very simple but robust version of this is using Wikipedia's articles as your data set. Simply if the article is not there its probably not going to be an entity.

5 Machine Translation Issues

What is the machine translation issues? Please provide explanations and examples for each of the cases.

Answer

The problem with machine translation are lexical translation, and reordering.

Lexical Translation

Lexical Divergence¹, cause words that could mean different things to produce erroneous outcomes within machine translation. The parts of speech that exposes this most are going to be the Homonym² and Polysemous³.

Reordering

Local reordering deals with the order of operations of the part of speech. While long distance reordering deals with the complete syntactic parts of speech.

¹Ambiguities with the language.

²each of two or more words having the same spelling or pronunciation but different meanings and origins. 3 the coexistence of many possible meanings for a word or phrase.