LAB2_AML

$Andreas\ C\ Charitos\ [and ch552] \\ 9/29/2019$

Contents

ssignment 1	2
Transition Matrix	2
Emission Matrix	
Plot of Transmission and Emission Matrix	3
essignment 2	3
ssignment 3	3
ssignment 4	3
Table with the Accuracies from simulation	3
ssignment 5	4
Table with the accuracies for diffrent simulations	
Plot of Accuracies for diffrent simulations	5
ssignment 6	5
Table with the accuracies for diffrent sample sizes	5
Plot of the Accuracies for diffrent samples	
Plot of the Entropies for different samples	7
Plot of Entropies for Filter and Smoothed	7
ssignment 7	8
conclusion	8
ppendix	9
Code used for Lab	9

Assignment 1

We are asked to model the behavior of a robot that walks around a ring. The ring is divided into 10 sectors. At any given time point, the robot is in one of the sectors and decides with equal probability to stay in that sector or move to the next sector. You do not have direct observation of the robot. However, the robot is equipped with a tracking device that you can access. The device is not very accurate though: If the robot is in the sector i, then the device will report that the robot is in the sectors [i-2,i+2] with equal probability. Start by defining the model which requires the following components:

- The hidden states z_t
- The observed states x_t
- The transition matrix with the probabilities for the hidden states
- The emission matrix with the probabilities for the observed states

```
## The states are :
## State_1 State_2 State_3 State_4 State_5 State_6 State_7 State_8 State_9 State_10
## The observed states are :
## a b c d e f g h i j
Next we report the Transition and emission matrices
```

Transition Matrix

State_1	State_2	State_3	State_4	State_5	State_6	State_7	State_8	State_9	State_10
0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5
0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5

Emission Matrix

0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0											
0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0	a	b	a	С	d	е	f	g	h	i	j
0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.2
0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.2
	0.2	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0	0.0	0.2	0.0	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.0
0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.0	0.0
0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2
0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2
0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2

Plot of Transmission and Emission Matrix

Transition - Matrix

Emission - Matrix

Assignment 2

Next we simulate from the defined model 100 timesteps

Assignment 3

We then discard the hidden states from the sample obtained above. And use the remaining observations to compute the filtered and smoothed probability distributions for each of the 100 time points. We compute also the most probable path.

Assignment 4

Now we calculate the accuracy for the filter, smooth and most probable path.

Table with the Accuracies from simulation

	Filter	Smooth	Viterbi
Accuracy	0.48	0.65	0.57

We observe that the accuracy of the smooth is better that filter and viterbi. The reasoning behind this is in the way the filtering and smoothing are calculated:

3

- Filtering : $p(Z^t|x^{0;t} = \frac{\alpha(Z^t)}{\sum_z t\alpha(z^t)})$ Smoothing : $p(Z^t|x^{0:T} = \frac{\alpha(Z^t)\beta(Z^t)}{\sum_z \alpha(z^t)\beta(z^t)})$

The filter is calculating the probability of state given the observations up to this timestep while smooth is calculating the state given all the previous observations.

Assignment 5

Here we simulate 100 different simulated samples with 100 timesteps. The puspose of this procedure is to see if the that the smoothed distribution should be more accurate than the filtered distributions.

Table with the accuracies for diffrent simulations

	replicate n= 1	replicate n= 2	replicate n= 3	replicate n= 4	replicate n= 5	replicate n= 6	replicate n= 7	replicate n= 8	replicate n= 9	replicate n= 10
filter_accuracy	0.54	0.42	0.54	0.59	0.47	0.56	0.50	0.61	0.41	0.51
$smooth_accuracy$	0.75	0.58	0.77	0.66	0.67	0.70	0.59	0.64	0.60	0.59
viterbi_accuracy	0.50	0.50	0.63	0.47	0.67	0.54	0.51	0.51	0.59	0.51
	replicate n= 11	replicate n= 12	replicate n= 13	replicate n= 14	replicate n= 15	replicate n= 16	replicate n= 17	replicate n= 18	replicate n= 19	replicate n= 20
filter_accuracy	0.50	0.60	0.53	0.61	0.63	0.45	0.64	0.46	0.58	0.46
$smooth_accuracy$	0.69	0.73	0.69	0.72	0.64	0.67	0.77	0.59	0.71	0.73
viterbi_accuracy	0.48	0.44	0.64	0.66	0.51	0.39	0.42	0.62	0.48	0.65
	replicate n= 21	replicate n= 22	replicate n= 23	replicate n= 24	replicate n= 25	replicate n= 26	replicate n= 27	replicate n= 28	replicate n= 29	replicate n= 30
filter_accuracy smooth_accuracy	0.62 0.70	0.55 0.69	0.49 0.61	0.52 0.61	0.65 0.69	0.40 0.65	0.61 0.79	0.57 0.71	0.51 0.59	0.47 0.63
viterbi_accuracy	0.44	0.49	0.51	0.42	0.52	0.44	0.52	0.44	0.44	0.47
	replicate n= 31	replicate n= 32	replicate n= 33	replicate n= 34	replicate n= 35	replicate n= 36	replicate n= 37	replicate n= 38	replicate n= 39	replicate n= 40
filter_accuracy	0.51	0.54	0.46	0.53	0.61	0.51	0.60	0.68	0.67	0.66
smooth_accuracy viterbi_accuracy	0.71 0.53	0.65 0.51	0.54 0.33	0.62 0.58	0.72 0.40	0.76 0.59	0.57 0.34	0.69 0.51	0.81 0.60	0.73 0.44
	replicate n= 41	replicate n= 42	replicate n= 43	replicate n= 44	replicate n= 45	replicate n= 46	replicate n= 47	replicate n= 48	replicate n= 49	replicate n= 50
filter_accuracy smooth_accuracy	0.60 0.71	0.58 0.77	0.53 0.72	0.58 0.70	0.52 0.76	0.65 0.77	0.46 0.65	0.47 0.77	0.48 0.63	0.43 0.64
viterbi_accuracy	0.48	0.41	0.46	0.63	0.49	0.49	0.49	0.38	0.34	0.50
	replicate n= 51	replicate n= 52	replicate n= 53	replicate n= 54	replicate n= 55	replicate n= 56	replicate n= 57	replicate n= 58	replicate n= 59	replicate n= 60
filter_accuracy	0.50	0.55	0.61	0.54	0.44	0.38	0.55	0.57	0.51	0.59
smooth_accuracy	0.67	0.73	0.75							
viterbi_accuracy	0.47			0.66	0.70	0.58	0.64	0.73	0.66	0.64
	0.11	0.64	0.66	0.66 0.43	0.70 0.43	0.58 0.54	0.64 0.53	0.73 0.49	0.66 0.44	0.64 0.46
	replicate n= 61									
filter_accuracy	replicate $n=61$ 0.50	0.64 replicate n= 62 0.56	0.66 replicate n= 63 0.63	0.43 replicate n= 64 0.56	0.43 replicate n= 65 0.40	0.54 replicate n= 66 0.52	$\begin{array}{c} 0.53 \\ \\ \text{replicate n= 67} \\ \\ 0.56 \end{array}$	0.49 replicate n= 68 0.42	0.44 replicate n= 69 0.49	0.46 replicate n= 70 0.46
filter_accuracy smooth_accuracy viterbi_accuracy	replicate n= 61	0.64 replicate n= 62	$\begin{array}{c} 0.66 \\ \\ \hline \\ \text{replicate n= 63} \end{array}$	0.43 replicate n= 64	0.43 replicate n= 65	0.54 replicate n= 66	$\begin{array}{c} 0.53 \\ \\ \\ \text{replicate n= 67} \end{array}$	0.49 replicate n= 68	0.44 replicate n= 69	0.46 replicate n= 70
$smooth_accuracy$	replicate n= 61 0.50 0.63	0.64 replicate n= 62 0.56 0.65	0.66 replicate n= 63 0.63 0.71	$\begin{array}{c} 0.43 \\ \\ \text{replicate n= 64} \\ 0.56 \\ 0.67 \end{array}$	0.43 replicate n= 65 0.40 0.59	0.54 replicate n= 66 0.52 0.68	$\begin{array}{c} 0.53 \\ \\ \text{replicate n= 67} \\ \\ 0.56 \\ 0.67 \end{array}$	0.49 replicate n= 68 0.42 0.59	0.44 replicate n= 69 0.49 0.68	0.46 replicate n= 70 0.46 0.70
$smooth_accuracy$	replicate n= 61 0.50 0.63 0.52	$\begin{array}{c} 0.64 \\ \\ \text{replicate n= 62} \\ 0.56 \\ 0.65 \\ 0.44 \end{array}$	$\begin{array}{c} 0.66 \\ \\ \text{replicate n= 63} \\ 0.63 \\ 0.71 \\ 0.44 \\ \end{array}$	$\begin{array}{c} 0.43 \\ \\ \text{replicate n= 64} \\ 0.56 \\ 0.67 \\ 0.46 \\ \end{array}$	$\begin{array}{c} 0.43 \\ \\ \text{replicate n= 65} \\ 0.40 \\ 0.59 \\ 0.51 \end{array}$	$\begin{array}{c} 0.54 \\ \\ \text{replicate n= } 66 \\ \\ 0.52 \\ 0.68 \\ 0.34 \end{array}$	$\begin{array}{c} 0.53 \\ \\ \text{replicate n= } 67 \\ \\ 0.56 \\ 0.67 \\ 0.59 \end{array}$	$\begin{array}{c} 0.49 \\ \\ \text{replicate n= 68} \\ 0.42 \\ 0.59 \\ 0.36 \end{array}$	$\begin{array}{c} 0.44 \\ \\ \text{replicate n= 69} \\ 0.49 \\ 0.68 \\ 0.43 \end{array}$	0.46 replicate n= 70 0.46 0.70 0.55
smooth_accuracy viterbi_accuracy	$\begin{array}{c} \text{replicate n=61} \\ 0.50 \\ 0.63 \\ 0.52 \\ \end{array}$ replicate n= 71	$\begin{array}{c} 0.64 \\ \\ \text{replicate n= 62} \\ 0.56 \\ 0.65 \\ 0.44 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 72} \\ \end{array}$	$\begin{array}{c} 0.66 \\ \\ \text{replicate n= 63} \\ 0.63 \\ 0.71 \\ 0.44 \\ \\ \text{replicate n= 73} \end{array}$	$\begin{array}{c} 0.43 \\ \\ \text{replicate n= 64} \\ 0.56 \\ 0.67 \\ 0.46 \\ \\ \end{array}$ replicate n= 74	$\begin{array}{c} 0.43 \\ \\ \text{replicate n= 65} \\ 0.40 \\ 0.59 \\ 0.51 \\ \\ \end{array}$ replicate n= 75	$\begin{array}{c} 0.54 \\ \\ \text{replicate n= 66} \\ 0.52 \\ 0.68 \\ 0.34 \\ \\ \end{array}$ replicate n= 76	$\begin{array}{c} 0.53 \\ \\ \text{replicate n= 67} \\ 0.56 \\ 0.67 \\ 0.59 \\ \\ \end{array}$ replicate n= 77	$\begin{array}{c} 0.49 \\ \\ \text{replicate n= 68} \\ 0.42 \\ 0.59 \\ 0.36 \\ \\ \end{array}$ replicate n= 78	$\begin{array}{c} 0.44 \\ \\ \text{replicate n= 69} \\ 0.49 \\ 0.68 \\ 0.43 \\ \\ \end{array}$ replicate n= 79	$\begin{array}{c} 0.46 \\ \\ \text{replicate n} = 70 \\ 0.46 \\ 0.70 \\ 0.55 \\ \end{array}$ replicate n= 80
smooth_accuracy viterbi_accuracy filter_accuracy smooth_accuracy	$\begin{array}{c} \text{replicate n= 61} \\ 0.50 \\ 0.63 \\ 0.52 \\ \\ \text{replicate n= 71} \\ 0.39 \\ 0.51 \\ 0.50 \\ \end{array}$	replicate n= 62 0.56 0.65 0.44 replicate n= 72 0.72 0.71 0.58	$\begin{array}{c} \text{replicate n= 63} \\ \text{0.63} \\ \text{0.71} \\ \text{0.44} \\ \\ \text{replicate n= 73} \\ \text{0.56} \\ \text{0.70} \\ \text{0.38} \\ \end{array}$	$\begin{array}{c} \text{replicate n= 64} \\ 0.56 \\ 0.67 \\ 0.46 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 74} \\ 0.50 \\ 0.76 \\ 0.44 \\ \end{array}$	$\begin{array}{c} \text{replicate n= 65} \\ 0.40 \\ 0.59 \\ 0.51 \\ \end{array}$ $\begin{array}{c} \text{replicate n= 75} \\ 0.58 \\ 0.70 \\ 0.45 \\ \end{array}$	$\begin{array}{c} \text{replicate n= 66} \\ 0.52 \\ 0.68 \\ 0.34 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 76} \\ 0.47 \\ 0.61 \\ 0.44 \\ \end{array}$	$\begin{array}{c} \text{replicate n= 67} \\ 0.56 \\ 0.67 \\ 0.59 \\ \\ \text{replicate n= 77} \\ 0.52 \\ 0.70 \\ 0.52 \\ \end{array}$	replicate n= 68 0.42 0.59 0.36 replicate n= 78 0.56 0.69 0.66	$\begin{array}{c} 0.44 \\ \\ \text{replicate n= 69} \\ 0.49 \\ 0.68 \\ 0.43 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 79} \\ 0.54 \\ 0.75 \\ 0.54 \\ \end{array}$	replicate n= 70 0.46 0.70 0.55 replicate n= 80 0.53 0.72 0.47
smooth_accuracy viterbi_accuracy filter_accuracy smooth_accuracy viterbi_accuracy	$\begin{array}{c} {\rm replicate}\; n{\rm =}\;61\\ 0.50\\ 0.63\\ 0.52\\ \\ \\ {\rm replicate}\; n{\rm =}\;71\\ 0.39\\ 0.51\\ 0.50\\ \\ \\ \\ {\rm replicate}\; n{\rm =}\;81\\ \\ \end{array}$	$\begin{array}{c} 0.64 \\ \\ replicate n = 62 \\ 0.56 \\ 0.65 \\ 0.44 \\ \\ \\ replicate n = 72 \\ 0.72 \\ 0.71 \\ 0.58 \\ \\ \\ replicate n = 82 \\ \end{array}$	$\begin{array}{c} 0.66 \\ \\ \text{replicate n= } 63 \\ 0.63 \\ 0.71 \\ 0.44 \\ \\ \\ \text{replicate n= } 73 \\ 0.56 \\ 0.70 \\ 0.38 \\ \\ \\ \text{replicate n= } 83 \\ \end{array}$	$\begin{array}{c} 0.43 \\ \\ \text{replicate n= 64} \\ 0.56 \\ 0.67 \\ 0.46 \\ \\ \\ \text{replicate n= 74} \\ 0.50 \\ 0.76 \\ 0.44 \\ \\ \\ \text{replicate n= 84} \end{array}$	$\begin{array}{c} \text{replicate n= 65} \\ 0.40 \\ 0.59 \\ 0.51 \\ \\ \text{replicate n= 75} \\ 0.58 \\ 0.70 \\ 0.45 \\ \\ \text{replicate n= 85} \\ \end{array}$	$\begin{array}{c} \text{replicate n= 66} \\ 0.52 \\ 0.68 \\ 0.34 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 76} \\ 0.61 \\ 0.61 \\ 0.44 \\ \\ \end{array}$ replicate n= 86	$\begin{array}{c} \text{replicate n= 67} \\ 0.56 \\ 0.67 \\ 0.59 \\ \\ \text{replicate n= 77} \\ 0.52 \\ 0.70 \\ 0.52 \\ \\ \text{replicate n= 87} \\ \end{array}$	replicate n= 68 0.42 0.59 0.36 0.56 0.69 0.66	$\begin{array}{c} 0.44 \\ \\ replicate n= 69 \\ 0.49 \\ 0.68 \\ 0.43 \\ \\ \end{array}$ $\begin{array}{c} replicate n= 79 \\ 0.54 \\ 0.75 \\ 0.54 \\ \\ \end{array}$ $\begin{array}{c} replicate n= 89 \\ \end{array}$	replicate n= 70 0.46 0.70 0.55 replicate n= 80 0.53 0.72 0.47
smooth_accuracy viterbi_accuracy filter_accuracy smooth_accuracy	$\begin{array}{c} \text{replicate n= 61} \\ 0.50 \\ 0.63 \\ 0.52 \\ \\ \text{replicate n= 71} \\ 0.39 \\ 0.51 \\ 0.50 \\ \end{array}$	replicate n= 62 0.56 0.65 0.44 replicate n= 72 0.72 0.71 0.58	$\begin{array}{c} \text{replicate n= 63} \\ \text{0.63} \\ \text{0.71} \\ \text{0.44} \\ \\ \text{replicate n= 73} \\ \text{0.56} \\ \text{0.70} \\ \text{0.38} \\ \end{array}$	$\begin{array}{c} \text{replicate n= 64} \\ 0.56 \\ 0.67 \\ 0.46 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 74} \\ 0.50 \\ 0.76 \\ 0.44 \\ \end{array}$	$\begin{array}{c} \text{replicate n= 65} \\ 0.40 \\ 0.59 \\ 0.51 \\ \end{array}$ $\begin{array}{c} \text{replicate n= 75} \\ 0.58 \\ 0.70 \\ 0.45 \\ \end{array}$	$\begin{array}{c} \text{replicate n= 66} \\ 0.52 \\ 0.68 \\ 0.34 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 76} \\ 0.47 \\ 0.61 \\ 0.44 \\ \end{array}$	$\begin{array}{c} \text{replicate n= 67} \\ 0.56 \\ 0.67 \\ 0.59 \\ \\ \text{replicate n= 77} \\ 0.52 \\ 0.70 \\ 0.52 \\ \end{array}$	replicate n= 68 0.42 0.59 0.36 replicate n= 78 0.56 0.69 0.66	$\begin{array}{c} 0.44 \\ \\ \text{replicate n= 69} \\ 0.49 \\ 0.68 \\ 0.43 \\ \\ \end{array}$ $\begin{array}{c} \text{replicate n= 79} \\ 0.54 \\ 0.75 \\ 0.54 \\ \end{array}$	replicate n= 70 0.46 0.70 0.55 replicate n= 80 0.53 0.72 0.47

	replicate n= 91	replicate n= 92	$replicate \ n=\ 93$	$replicate \ n=\ 94$	$replicate \ n = \ 95$	replicate $n=96$	$replicate \ n=\ 97$	$replicate \ n=\ 98$	$replicate \; n = 99$	$replicate \; n \! = 100$
filter_accuracy	0.46	0.49	0.55	0.55	0.51	0.55	0.51	0.60	0.66	0.55
smooth_accuracy	0.63	0.58	0.68	0.64	0.72	0.69	0.68	0.70	0.79	0.70
viterbi_accuracy	0.42	0.50	0.44	0.47	0.48	0.38	0.37	0.48	0.58	0.54

Plot of Accuracies for diffrent simulations

As we can see in general the performance of the smooth is better than filter and viterbi.

Assignment 6

Next, we generate samples with diffrent sizes in order to investigate the claim that having more timesteps we can find better where the robot is. We report the table of the accuracies and the entropy for some samples.

replications

Table with the accuracies for diffrent sample sizes

	nSample= 10	nSample = 15	nSample = 20	nSample = 25	nSample = 30	nSample = 35	nSample= 40	nSample= 45	nSample = 50	nSample = 55
filter_accuracy	0.3	0.4000000	0.65	0.48	0.6333333	0.6000000	0.400	0.5111111	0.46	0.6000000
smooth_accuracy	0.6	0.5333333	0.75	0.52	0.8333333	0.6285714	0.625	0.755556	0.74	0.7090909
viterbi_accuracy	0.7	0.2000000	0.45	0.28	0.6333333	0.3714286	0.550	0.4444444	0.54	0.3090909
	nSample= 60	nSample= 65	nSample= 70	nSample= 75	nSample= 80	nSample= 85	nSample= 90	nSample= 95	nSample= 100	nSample = 105
filter_accuracy	0.6000000	0.4307692	0.6000000	0.44	0.575	0.6470588	0.5333333	0.4736842	0.52	0.4000000
smooth_accuracy	0.7000000	0.6615385	0.6571429	0.48	0.750	0.6941176	0.6444444	0.7157895	0.57	0.5714286
viterbi_accuracy	0.4833333	0.3384615	0.4857143	0.40	0.600	0.3764706	0.4222222	0.4631579	0.39	0.4000000
	nSample= 110	nSample= 115	nSample= 120	nSample= 125	nSample= 130	nSample= 135	nSample= 140	nSample= 145	nSample= 150	nSample= 155
filter accuracy	0.5636364	0.5652174	0.5583333	0.640	0.4461538	0.4666667	0.5357143	0.5172414	0.5466667	0.4451613
smooth accuracy	0.7363636	0.6260870	0.7333333	0.720	0.6076923	0.6370370	0.6428571	0.6620690	0.7066667	0.7548387
viterbi_accuracy	0.4636364	0.4869565	0.4666667	0.472	0.5076923	0.4740741	0.4785714	0.5931034	0.5000000	0.4645161
	nSample= 160	nSample= 165	nSample= 170	nSample= 175	nSample= 180	nSample= 185	nSample= 190	nSample= 195	nSample= 200	nSample= 205
filter_accuracy	0.58750	0.4606061	0.5352941	0.5257143	0.5333333	0.4540541	0.5421053	0.5692308	0.595	0.5658537
smooth_accuracy	0.72500	0.6969697	0.6529412	0.6742857	0.6555556	0.6648649	0.7263158	0.7282051	0.705	0.6926829

	${\it nSample}{=}~210$	${\it nSample}{=}~215$	${\it nSample}{=}~220$	${\it nSample}{=}~225$	${\it nSample}{=}~230$	${\it nSample}{=}~235$	${\it nSample=240}$	${\it nSample}{=}~245$	${\it nSample}{=}~250$	${\it nSample}{=}~255$
filter_accuracy	0.4809524	0.5720930	0.5363636	0.5066667	0.5956522	0.5361702	0.5875000	0.5877551	0.544	0.5137255
smooth_accuracy	0.6238095	0.7209302	0.7136364	0.6977778	0.6956522	0.6723404	0.7166667	0.7183673	0.648	0.6352941
viterbi_accuracy	0.3666667	0.5162791	0.5272727	0.5022222	0.4913043	0.5106383	0.4583333	0.5224490	0.476	0.5098039

	${\it nSample=260}$	${\it nSample=265}$	${\it nSample}{=}~270$	${\it nSample}{=}~275$	${\it nSample=~280}$	${\it nSample}{=}~285$	${\it nSample=290}$	${\it nSample=295}$	${\it nSample=300}$
filter_accuracy	0.5846154	0.4830189	0.4962963	0.4654545	0.5821429	0.5543860	0.4965517	0.5220339	0.5833333
smooth_accuracy	0.7269231	0.6566038	0.7000000	0.6727273	0.6642857	0.6385965	0.6827586	0.6779661	0.6633333
viterbi_accuracy	0.5038462	0.5320755	0.4444444	0.5454545	0.5178571	0.4280702	0.5517241	0.5152542	0.4766667

Plot of the Accuracies for diffrent samples

Plot of the Entropies for different samples

Plot of Entropies for Filter and Smoothed

So at first we ploted the entropies for different timesteps and then for a sampled simulation with 100 timesteps. As we can see there is no evidence that supports the claim that having more samples helps up to predict the state of the robot better.

Assignment 7

Finally, we take a random sample from the 100th timestep samples we created in Assignment 5 and calculate the probabilities in the 101 timestep for the hidden states.

	prob_step101
State_1	0.0000000
State_2	0.0000000
$State_3$	0.0000000
State_4	0.0000000
State_5	0.0000000
State_6	0.0000000
State_7	0.0636856
State_8	0.2682927
State_9	0.4363144
State_10	0.2317073

Conclusion

In conclusion we can see that on general the smooth will report better accuracy compared with the 2 other methods and the number of the samples does not provide any more information that can help us identify the robot possition better.

Appendix

Code used for Lab

```
# Libraries
   # -----
  library(HMM)
  library(seqHMM) #another library for HMMs
  library(diagram)
  library(entropy)
   library(dplyr)
   # Question 1
  names = 1:10
   States = c() # initialize the hidden states z
   for (i in 1:10) {
      States = c(States, paste("State_", names[i], sep = ""))
  }
15
  States # print the vector with the States x
   Symbols = letters[1:10] # initialie the observed states
17
  # transmission matrix
  transProbs = matrix(0, 10, 10) # transmission matrix-hidden
19
   diag(transProbs) = 0.5
  diag(transProbs[, -1]) = 0.5
21
  transProbs[10, 1] = 0.5
  emissionProbs = toeplitz(c(0.2, 0.2, 0.2, rep(0, 5), 0.2,
      0.2)) # emission matrix-observable
  # print transition probabilities
  TP = as.data.frame(transProbs)
  colnames(TP) = States
   knitr::kable(TP)
  # print emission probabilities
  EP = as.data.frame(emissionProbs)
  colnames(EP) = Symbols
  knitr::kable(EP)
  # initialize HMM
  hmm = initHMM(States, Symbols, transProbs = transProbs,
      emissionProbs = emissionProbs)
   # using the diagram package
36
   plotmat(transProbs, box.size = 0.05, box.col = "lightyellow",
      arr.length = 0.4, main = "Transition - Matrix") # plot the transition-matrix
38
   plotmat(emissionProbs, box.size = 0.05, box.col = "lightyellow",
      arr.length = 0.4, main = "Emission - Matrix") # plot the emission-matrix
40
   # Question 2
42
               _____
   # -----
  nSim = 100
   sim = simHMM(hmm, nSim) # simulate 100 timesteps
   # ------
   # Question 3
   sim.obs = sim$observation # discard the hidden states
```

```
# filter
    f = forward(hmm, sim.obs)
   f tab = prop.table(exp(f), margin = 2) # marginalize over the columns so thats why we have 2 to prop t
   # smooth
   b = backward(hmm, sim.obs)
54
    # b_tab=prop.table(exp(b),2)
    smooth_= posterior(hmm, sim.obs) # or we can use the prop. table(exp(f)*exp(b), 2)
   # viterbi algorithm for most probable path
   vit = viterbi(hmm, sim.obs)
    # Question 4
60
61
    # compute accuracy for filter
    t.index = apply(f_tab, 2, which.max) # marginalize over the columns
    t = sapply(t.index, function(y) {
        States[y]
65
   })
    # accuracy for filter
67
   ac1 = sum(t == sim$states)/length(sim$states)
   # compute accuracy for smooth
69
    t1.index = apply(smooth , 2, which.max)
    t1 = sapply(t1.index, function(y) {
71
        States[y]
   })
73
    # accuracy for smooth
74
   ac2 = sum(t1 == sim$states)/length(sim$states)
   # compute accuracy for viterbi
    ac3 = sum(vit == sim$states)/length(sim$states)
    accuracy_tab = cbind(ac1, ac2, ac3)
    colnames(accuracy_tab) = c("Filter", "Smooth", "Viterbi")
   rownames(accuracy_tab) = "Accuracy"
80
    accuracy_tab
    knitr::kable(as.data.frame(accuracy_tab))
82
    # Question 5
84
    accuracy_func = function(user_hmm, number_sim) {
86
        # --function that returns the filter ,smooth,viterbi
        # accuracy for a hmm , and number of time steps --
88
        simHMM = simHMM(user hmm, number sim)
        sim_hmm_obs = simHMM$observation # discard the hidden states
90
        # filter
91
        forward_pass = forward(user_hmm, sim_hmm_obs)
92
        forward_table = prop.table(exp(forward_pass), 2) # marginalize over the cols Margin=2 to prop tabl
93
94
        back_pass = backward(user_hmm, sim_hmm_obs)
95
        # back_table=prop.table(exp(back_pass),2)
        smooth_ = posterior(user_hmm, sim_hmm_obs)
                                                     # or prop.table(exp(forward_pass)*exp(back_pass),2)
97
        # viterbi algorithm for most probable path
        viterbi_res = viterbi(user_hmm, sim_hmm_obs)
99
        # compute accuracy for filter
        t.index = apply(forward_table, 2, which.max) # marginalize over the columns
101
        t = sapply(t.index, function(y) {
```

```
user_hmm$States[y]
103
        })
104
        # accuracy for filter
105
        filter accuracy = sum(t == simHMM\states)/length(simHMM\states)
106
         # compute accuracy for smooth
107
        t1.index = apply(smooth_, 2, which.max)
108
        t1 = sapply(t1.index, function(y) {
            user hmm$States[y]
110
        })
        # accuracy for smooth
112
        smooth_accuracy = sum(t1 == simHMM$states)/length(simHMM$states)
113
        # compute accuracy for viterbi
114
        viterbi_accuracy = sum(viterbi_res == simHMM$states)/length(simHMM$states)
115
        # compute entropy for filter
116
        filter_entropy = apply(forward_table, 2, FUN = entropy.empirical)
117
        return(list(simHMM, accuracies = c(filter_accuracy,
118
            smooth_accuracy, viterbi_accuracy), entropy = list(filt_ent = filter_entropy,
119
            smooth_ent = smooth_entropy)))
120
121
    # replicate the results from accuracy function 10 times
122
    # with 100 timespters every time
123
    nreps = 100
    rep res = replicate(nreps, accuracy func(hmm, 100))
125
    # create a matrix with the results from the rep_res
126
    # -- the second row of rep res
127
    results mat = matrix(unlist(rep res[2, ]), nrow = 3, ncol = nreps,
        bvrow = F
129
    # colnames-rownames
    colnames(results_mat) = paste("replicate n=", 1:nreps)
131
    rownames(results_mat) = c("filter_accuracy", "smooth_accuracy",
132
        "viterbi_accuracy")
133
    results mat
134
    # make table knitr::kable(as.data.frame(results_mat)) #
135
    # don't fit page make tables
136
    t1 <- kable(as.data.frame(results_mat[, 1:10]), format = "latex",
137
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
138
    t2 <- kable(as.data.frame(results_mat[, 11:20]), format = "latex",
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
140
    t3 <- kable(as.data.frame(results_mat[, 21:30]), format = "latex",
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
142
    t4 <- kable(as.data.frame(results_mat[, 31:40]), format = "latex",
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
144
    t5 <- kable(as.data.frame(results_mat[, 41:50]), format = "latex",
        booktabs = TRUE) %>% kable styling(latex options = "scale down")
146
    t6 <- kable(as.data.frame(results_mat[, 51:60]), format = "latex",
147
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
148
    t7 <- kable(as.data.frame(results_mat[, 61:70]), format = "latex",
149
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
150
    t8 <- kable(as.data.frame(results_mat[, 71:80]), format = "latex",
151
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
152
    t9 <- kable(as.data.frame(results_mat[, 81:90]), format = "latex",
153
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
154
    t10 <- kable(as.data.frame(results_mat[, 91:100]), format = "latex",
155
```

```
booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
156
    t1
157
    t2
    t3
159
    t4
    t.5
161
    t6
    t.7
163
164
    t8
    t9
165
    t10
166
    # plot of the accuracies
167
    cols = c("gray30", "mediumorchid", "chartreuse")
168
    plot(1:nreps, results_mat[2, ], type = "1", ylim = c(0,
169
        0.9), col = cols[1], lwd = 2, main = paste("Smooth~Filter~Viterbi for\n ",
170
        nreps, " replications for 100 timesteps "), panel.first = grid(25,
171
        25), ylab = "Accuracy", xlab = "replications")
172
    lines(1:nreps, results_mat[1, ], col = cols[2], lwd = 2)
173
    lines(1:nreps, results_mat[3, ], col = cols[3], lwd = 2)
174
    legend("bottomleft", legend = c("Smooth", "Filter", "Viterbi"),
        col = cols, lty = 1, lwd = 2)
176
    # Question 6
178
179
    sample grid = seq(10, 300, 5) # generate grid of timesteps
180
    # apply the accuracy funciton to the grid
    accuracy_mat = sapply(sample_grid, function(y) {
182
        accuracy_func(hmm, y)
183
    })
184
    # create a matrix with the results from the accuracy_mat
185
    # -- the second row of raccuracy_mat
186
    res_acc_mat = matrix(unlist(accuracy_mat[2, ]), nrow = 3,
187
        ncol = length(sample_grid), byrow = F)
188
    # row-column names
189
    colnames(res_acc_mat) = paste("nSample=", sample_grid)
    rownames(res_acc_mat) = c("filter_accuracy", "smooth_accuracy",
191
        "viterbi_accuracy")
192
    # print the matrix
193
    res_acc_mat
    # construct a table
195
    # knitr::kable(data.frame(res_acc_mat)) # dont't fit
    # page
197
    t11 <- kable(as.data.frame(res acc mat[, 1:10]), format = "latex",
        booktabs = TRUE) %>% kable styling(latex options = "scale down")
199
    t12 <- kable(as.data.frame(res_acc_mat[, 11:20]), format = "latex",
200
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
201
    t13 <- kable(as.data.frame(res_acc_mat[, 21:30]), format = "latex",
202
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
203
    t14 <- kable(as.data.frame(res_acc_mat[, 31:40]), format = "latex",
204
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
205
    t15 <- kable(as.data.frame(res_acc_mat[, 41:50]), format = "latex",
206
        booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
207
    t16 <- kable(as.data.frame(res_acc_mat[, 51:59]), format = "latex",
208
```

```
booktabs = TRUE) %>% kable_styling(latex_options = "scale_down")
209
    t11
210
211
    t12
    t13
212
    t14
    t.15
214
    t.16
    # plot of the accuracies
216
    cols1 = c("grey73", "deeppink2", "peachpuff4")
    plot(sample_grid, res_acc_mat[2, ], type = "1", ylim = c(0,
218
        0.9), col = cols1[1], lwd = 2, main = paste("Smooth~Filter~Viterbi Accuracy \nfor n=",
219
        sample_grid[1], ":", rev(sample_grid)[1]), panel.first = grid(25,
220
        25), ylab = "Accuracy")
221
    lines(sample_grid, res_acc_mat[1, ], col = cols1[2], lwd = 2)
222
    lines(sample_grid, res_acc_mat[3, ], col = cols1[3], lwd = 2)
223
    legend(x = 10, y = 0.18, legend = c("Smooth", "Filter",
224
        "Viterbi"), col = cols1, lty = 1, lwd = 2)
225
    sample_indx <- sample(1:50, 9)</pre>
    sample_indx
227
    par(mfrow = c(3, 3))
    for (i in sample_indx) {
229
        plot(accuracy_mat[, i]$entropy, type = "o", col = sample(colors(),
             1), pch = 20, ylab = "Entropy", xlab = "nSample",
231
             panel.first = grid(25, 25), main = paste("Entropy for nSampe=",
                 sample_grid[i], " \nfor 10 timesteps"))
233
    }
    # take a sample with 100 timesteps from 4
235
    samp1 = rep_res[, 60]
236
    plot(samp1$entropy$filt_ent, main = "Entropy filtered and smoothed",
237
        type = "l", col = "mediumspringgreen", ylab = "Entropy",
238
        ylim = c(0, 2), panel.first = grid(25, 25))
239
    lines(samp1$entropy$smooth_ent, col = "mediumorchid1")
240
    legend(x = "topright", lty = 1, legend = c("Smoothed", "Filtered"),
241
        col = c("mediumspringgreen", "mediumorchid1"))
242
    # Question 7
244
    rndSample = rep_res[1, sample(1:dim(rep_res)[2], 1)]
246
    post = posterior(hmm, rndSample[[1]]$observation)
    prob_step101 = transProbs %*% post[, 100]
248
    df = data.frame(prob_step101)
    rownames(df) = States
250
    knitr::kable(df)
252
254
    par(mfrow = c(5, 5))
255
    for (i in 5:14) {
256
        plot.ts(f_tab[, i])
257
        pch1 = as.character(1:10)
258
        points(f_tab[, i], pch = pch1, cex = 1.25, font = 4,
259
             col = 1:10)
        legend("topleft", legend = States, col = 1:10, pch = pch1)
261
```