

Introdução SO

Finalidade do SO

Marcio Santana

marcio.santana@sptech.school

Finalidade dos Sistemas Operacionais

Quando você pensa sobre o SO:

- Por que os **computadores** precisam de um SO?
- Por que os **usuários** precisam de um SO?
- Por que as **empresas** precisam de um SO?
- Qual a principal função/papel dele?
- Por que é importante aprender sobre SO?

Finalidade dos Sistemas Operacionais

- Um SO atua como facilitador intermediário, na manipulação, entre o usuário e o hardware do computador.
- O objetivo de um sistema operacional é facilitar e prover um ambiente que permite ao usuário, executar software de modo conveniente e eficiente.
- Após o SO ser <u>carregado</u> no computador por um programa de <u>inicialização (BIOS)</u>, gerencia os recursos de um computador, controlando o fluxo de informações.
- Fornece interfaces com o usuário via linha de comando (CLI) e/ou via interface gráfica (GUI).

Definições de Sistemas Operacionais

Silberschatz (2000)

Um SO é **um programa** que **controla** as execuções de **outros programas** e atua como uma interface entre o usuário de um computador e o hardware do computador.

Tanenbaum (2009)

O SO é o **único programa** em execução **o tempo todo no computador** (geralmente chamado de **kernel**), desde que, o hardware em que ele opera esteja ativo, ou seja, computador ligado.

Machado (2007)

Um SO reside na alocação de recursos e serviços, como memória, processadores, dispositivos e informações/dados.

O SO inclui programas, em seus pacotes, que permitem **gerenciar** esses recursos, como um **controlador de tráfego, módulo de gerenciamento** de memória, programas de E/S, e sistemas de arquivos

Componentes Físicos:

- CPU
- Memória Principal
- Memória Secundária
- Placa Mãe
- Fonte
- Periféricos E/S

Aplicativos e Programas:

- S0
- GUI ou CLI
- Navegador Web
- · Cliente de e-mail
- Jogos
- Drives/firmwares

Definições – 3 Pilares do SO

Kernel - Núcleo

É o núcleo do SO, o seu core!

É pelo Kernel que se inicia o **processo de detecção de todo o hardware** necessário para que ocorra o bom funcionamento dos conjuntos que compõem o computador.

Middleware – Software Meio

É um software intermediário que atua como uma ponte entre diferentes aplicações e o SO, **fornecendo serviços e recursos comuns.**

Em termos gerais, o middleware engloba, servidores web (API), sistemas de autenticação e **drivers de dispositivos**.

Shell - Concha

É um interpretador de comandos.

Por meio do shell é possível interagir com o núcleo do sistema operacional (kernel).

Entendendo melhor

Figura 1 – Kernel (núcleo do Sistema Operacional); Shell (concha, interpretador de comandos para execução) – Ferrari (2012)

Visão geral de arquitetura de sistemas operacionais

Atualização e/ou obsolescência

Os tipos de **obsolescência programada** podem ser as seguintes.

Tipos

funcionais:

computadores com defeito de fabricação.

operacionais:

SOs que atualizam e os antigos aparelhos não comportam tal atualização e vice-versa.

Mecânico

Computadores ou celulares emitem alertas sobre desatualização de seus componentes eletrônicos.

Restaurativo

Que pode ser **trocado** ou **recuperado** ao ser enviado para assistência técnica.

Motivos para atualização do hardware e SO:

- maior segurança
- correção de erros
- acesso a novos recursos
- maior produtividade

Padronização da TI

Por que tanta preocupação?

 A atualização de hardware e SO de uma empresa se faz necessário por conta das atualizações que corrigem problemas de falhas, bugs, segurança.

- Quando o tema é SO <u>não se pode olhar apenas para a máquina</u> que está utilizando, mas no **conjunto** de solução computacional dentro de uma empresa.
- Porém, nem todas as organizações mantém uma Tl atualizada e estruturada.

 Por este motivo torna-se fundamental a padronização, por exemplo, dos SO, dos computadores, das redes e plataformas de internet.

Padronização da TI e de SO

Benefícios

- Redução de custos;
- Aumento da facilidade na administração dos recursos de TI;
- Maior velocidade no contingenciamento de falhas e problemas;

- Diminuição de paralisações;
- Baixa quantidade de perdas ao executar os trabalhos;
- Definição clara dos processos.

Uma das normas que oferecem uma coleção de diretrizes recomendadas para melhorar o desempenho de TI, é o **ITIL** ou **Biblioteca** de Infraestrutura da TI.

a) Exemplos de Sistemas Operacionais:

EM USO			DESCONTINUADOS
CentOS	FreeD0S	OpenSuSE	BeOS
DaVinci OS	Gentoo	Linux	
Debian	Haiku	Plan 9	Mac OS Classic
Arch	Kali	React0S	
Manjaro	Mint	Slackware	MS-DOS
Sabayon	Mac0S	Solaris	
Solus0S	Mageia	Unix	NeXTStep
DragonflyBSD	Menuet0S	Ubuntu	
eComStation	MINIX	Windows NT	0S/2
Fedora	NetBSD	Elementary OS	
FreeBSD	OpenBSD	RedHat	

Agradeço a sua atenção!

Marcio Santana

marcio.santana@sptech.school

SÃO PAULO TECH SCHOOL