$3a\partial a 4a$. Нагреватель воды мощностью $P=2200 {
m BT}$ подсоединён к сети напряжением $U=220 {
m B}$ через удлинитель, длинный двужильный кабель длиной $l=50 {
m m}$ и сечением каждой из двух жил $a=0.75 {
m mm}^2$. Кабель-удлинитель смотан в бухту (размеры и число витков не имеют значения, пусть будет диаметр $20\text{-}30 {
m cm}$).

Найти тепловую мощность, выделяемую в бухте кабеля.

Рис. 1: Сопротивления одной жилы кабеля, нагрузки (нагревателя воды) и другой жилы кабеля в бухте.

Peшение. Заметим, что ток последовательно протекает через три сопротивления: жилу кабеля, $\frac{1}{2}R_{\rm B}$, сопротивление нагревателя воды, $R_{\rm H}$, и возвращается через другую жилу кабеля, $\frac{1}{2}R_{\rm B}$. Сначала найдём все сопротивления, затем ток через них, а потом — мощность $P_{\rm B}$, выделяемую этим током в бухте.

$$I = \frac{U_{220 \text{ B}}}{R_{\text{B}} + R_{\text{H}}} \tag{1}$$

Здесь $U_{220~\mathrm{B}}$ обозначает напряжение, R_B — сопротивление бухты сетевого кабеля, а R_H — сопротивление нагрузки