Paul Gustafson

Texas A&M University - Math 607 Instructor: Thomas Schlumprecht

HW 1

1 Let $f: X \to Y$. Prove that

a) if
$$A,B\subset Y$$
, then $f^{-1}(A\cap B)=f^{-1}(A)\cap f^{-1}(B)$ and $f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$

b) For a family $(A_{\lambda})_{{\lambda}\in\Lambda}\subset P(X)$, show that $f^{-1}(\bigcup_{{\lambda}\in\Lambda}A_{\lambda})=\bigcup_{{\lambda}\in\Lambda}f^{-1}(A_{\lambda})$ and $f^{-1}(\bigcap_{{\lambda}\in\Lambda}A_{\lambda})=\bigcap_{{\lambda}\in\Lambda}f^{-1}(A_{\lambda})$

and give examples for the following situations

- c) $f^{-1}(f(A)) \neq A$, for some $A \subset X$,
- d) $f(f^{-1}(B)) \neq B$ for some $B \subset Y$,
- e) $f(\cap_{\lambda \in \Lambda}) \neq \cap_{\lambda \in \Lambda} f(A_{\lambda})$, for some family $(A_{\lambda})_{\lambda \in \Lambda} \subset P(X)$.

Proof. (a) is a subcase of (b). To prove the first part of (b),

$$x \in f^{-1}(\bigcup_{\lambda \in \Lambda} A_{\lambda}) \iff f(x) \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$$

$$\iff f(x) \in A_{\lambda} \text{ for some } \lambda$$

$$\iff x \in f^{-1}(A_{\lambda}) \text{ for some } \lambda$$

$$\iff x \in \bigcup_{\lambda} f^{-1}(A_{\lambda}).$$

For the second part,

$$x \in f^{-1}(\bigcap_{\lambda \in \Lambda} A_{\lambda}) \iff f(x) \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$$

$$\iff f(x) \in A_{\lambda} \text{ for all } \lambda$$

$$\iff x \in f^{-1}(A_{\lambda}) \text{ for all } \lambda$$

$$\iff x \in \bigcap_{\lambda} f^{-1}(A_{\lambda})$$

For (c), let $X=\{0,1\}$ and $Y=\{0\}$. Let $A=\{0\}\subset X$. Let $f:X\to Y$ be the constant function. Then $f^{-1}(f(A))=f^{-1}(Y)=X\neq A$.

For (d), let $X = \{0\}$ and $B = Y = \{0, 1\}$. Let $f : X \to Y$ be the constant function at 1. Then $f(f^{-1}(B)) = f(X) = \{1\} \neq B$.

For (e), let $X = \{0, 1\}$ and $Y = \{0\}$. Let $A_1 = \{0\}$ and $A_2 = \{1\}$. Let $f: X \to Y$ be the constant function. Then $f(A_1 \cap A_2) = f(\emptyset) = \emptyset$, but $f(A_1) \cap f(A_2) = \{0\}$.

2 Show that the following two statements are equivalent for two nonempty sets A and B.

- a) There is an injection $\phi: A \to B$.
- b) There is a surjection $\psi: B \to A$.

1

Proof. Suppose (a) holds. Let $(U_b)_{b\in B}$ be defined by $U_b = \phi^{-1}(\{b\})$ if $b \in \phi(A)$ and $U_b = A$ otherwise. By the axiom of choice, there exists $f \in \prod_{b \in B} U_b$. Since each $U_b \subset A$, there exist identity injections $i_b : U_b \to A$ for each $b \in B$. Define $\psi : B \to A$ by $\psi(b) = i_b(f(b))$.

To see that ψ is surjective, let $a \in A$. Since ϕ is injective, $\phi^{-1}(\phi(\{a\}))$ contains only a. Hence, $f(\phi(a)) \in (U_{\phi(a)} = \phi^{-1}(\phi(\{a\})))$ implies that $f(\phi(a)) = a$. Thus, $\psi(\phi(a)) = i_{\phi(a)}f(\phi(a)) = i_{\phi(a)}(a) = a$.

Now suppose (b) holds. Let $(U_a)_{a\in A}$ be defined by $U_a=\psi^{-1}(\{a\})$, which are non-empty since ψ is surjective. By AC, there exists $f\in \prod_{a\in A} U_a$. Since each $U_a\subset B$, there exist identity injections $i_a:U_a\to B$. Define $\phi:A\to B$ by $\phi(a)=i_a(f(a))$.

To see that ϕ is injective, let $b \in B$ and suppose $x, y \in \phi^{-1}(\{b\})$. Then $x \in f^{-1}(i_x^{-1}(\{b\}), \text{ so } f(x) \in i_x^{-1}(\{b\}) = \{b\} \text{ and similarly for y. Hence, } f(x) = b = f(y)$. Hence, $b \in (U_x \cap U_y)$. But $U_x \cap U_y = \psi^{-1}(\{x\}) \cap \psi^{-1}(\{y\}) = \psi^{-1}(\{x\} \cap \{y\})$. Thus, $\{x\} \cap \{y\}$ is nonempty, so x = y.

2