

UMR CNRS 9189

Multispectral Demosaicing Using Intensity in Edge-Sensing and Iterative Difference-Based Methods

Sofiane Mihoubi

Laboratoire CRIStAL - Université Lille1

Authors:

Sofiane Mihoubi Olivier Losson Benjamin Mathon Ludovic Macaire

Multispectral Image

Color image:

3 color channels (R, G, B).

Multispectral image:

K spectral channels $I^1, ..., I^K$.

Single sensor camera

- A single-sensor multispectral camera provides an MSFA raw image.
- An MSFA raw image is composed of a periodically repeated basic pattern.
- To mimic snapshot mosaic camera¹, we focus on 16-channel MSFA raw image with 4×4 periodic pattern.

¹B.Geelen *et al.*. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. San Francisco, California, USA, Feb 2014.

Demosaicing

Experimental procedure

- Intensity estimation
- Using intensity for demosaicing
- 3 New Proposal: Nearby channel intensity
- Experimental results
- Conclusion

Intensity Definition

Definition:

Average of all channels of a multispectral image at each pixel.

Issue:

In MSFA raw image, there is only one available channel at each pixel.

Estimated intensity from MSFA²

Proposal:

Average of all channels in a neighbourhood of each pixel using isoweight filter:

$$\frac{1}{64} \cdot \begin{bmatrix}
1 & 2 & 2 & 2 & 1 \\
2 & 4 & 4 & 4 & 2 \\
2 & 4 & 4 & 4 & 2 \\
2 & 4 & 4 & 4 & 2 \\
1 & 2 & 2 & 2 & 1
\end{bmatrix}$$
(1)

The coefficients are inversely proportional to the number of occurrences in the neighbourhood.

 11	12	9	10	11	12	9	
 15	16	13	14	15	16	13	
 3	4	1	2	3	4	1	
 7	8	5	6	7	8	5	
 11	12	9	10	11	12	9	
 15	16		14	15	16	13	
 3	4	1	2	3	4	1	

²S. Mihoubi *et al.* Multispectral demosaicing using intensity-based spectral correlation. Image Processing Theory, Tools and Applications (IPTA 15), Orléans, France, Nov. 2015.

- Intensity estimation
- 2 Using intensity for demosaicing
- 3 New Proposal: Nearby channel intensity
- Experimental results
- Conclusion

Intensity Difference² (step 1)

²S. Mihoubi *et al.* Multispectral demosaicing using intensity-based spectral correlation. Image Processing Theory, Tools and Applications (IPTA 15), Orléans, France, Nov. 2015.

Iterative Intensity Difference² (step>1)

Update the intensity using previously estimated channels.

Iterate the ID algorithm using the updated intensity.

²S. Mihoubi *et al.* Multispectral demosaicing using intensity-based spectral correlation. Image Processing Theory, Tools and Applications (IPTA 15), Orléans, France, Nov. 2015.

Limitation

Conclusion:

Iterating improves the performances, but after 10 iterations, the performances decreases.

³F. Yasuma *et al.* Generalized assorted pixel camera: Postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. Sep. 2010.

- Intensity estimation
- Using intensity for demosaicing
- 3 New Proposal: Nearby channel intensity
- Experimental results
- Conclusion

Spectral correlation

Assumption:

Each channel is strongly correlated with its spectrally close channels and may not be correlated with spectrally far away channels.

Spectral bands of channels of a multispectral image

• We propose a new intensity estimation to iterate ID algorithm.

Proposal: Iterative Nearby Channel Difference (ItNCD)

• Instead of updating the intensity using all channels, compute a specific intensity for each channel, using only the spectrally closest channels.

② Iterate the ID algorithm using the new intensities.

- Intensity estimation
- Using intensity for demosaicing
- 3 New Proposal: Nearby channel intensity
- 4 Experimental results
- Conclusion

PSNR comparison

Conclusion:

- There is no regression of performances.
- For all iterations our new Proposal always provides better performances.

Visual comparison

 $Size=512 \times 512$

Channel 8 of Egyptian statue

(a) Reference.

(c) ItID

(b) ID

(d) ItNCD

- Intensity estimation
- Using intensity for demosaicing
- New Proposal: Nearby channel intensity
- Experimental results
- Conclusion

Conclusion

• Single sensor camera provides MSFA RAW image and need to be demosaiced.

• The intensity can be estimated from this raw image, and can be efficiently used for demosaicing.

• We propose a new estimation for the intensity based on nearby channel difference, and use it in iterative method.

Thank you for your attention

Previous visual comparison

(a) Reference.

(d) ISD, 35.98 dB

(b) WB, 34.46 dB

(e) ID, 36.16 dB

(c) SD, 35.12 dB

(f) ItID, 36.83 dB