ABR specifications generated by SpecTRA

The following specifications 1 were generated by SpecTRA for ABR, to be used in conjunction.

Specifications 1: Conjunctive specifications for ABR. (BS: Buffer Size, $\mathrm{DT}[-i]$: i^{th} last download time, BR: Bit Rate)

Precondition	Precondition
$BS \in [4.0, 5.0],$	$BS \in [4.0, 5.0],$
$DT[-1] \in [1.5, 6.6],$	$DT[-1] \in [1.5, 10.5],$
$DT[-2] \in [1.5, 7.9],$	$DT[-2] \in [0.2, 7.9],$
$DT[-3] \in [5.4, 10.5]$	$DT[-3] \in [1.5, 10.5]$
Postcondition	Postcondition
$BR \in \{300.0, 750.0, 1200.0, 2850.0\}$	$BR \in \{300.0, 750.0, 1200.0, 2850.0, 4300.0\}$

1 2

Precondition	Precondition	Precondition
$BS \in [4.0, 5.0],$	$BS \in [4.0, 5.0],$	$BS \in [4.0, 5.0],$
$DT[-1] \in [2.8, 6.6],$	$DT[-1] \in [2.8, 6.6],$	$DT[-1] \in [2.8, 6.6],$
$DT[-2] \in [1.5, 6.6],$	$DT[-2] \in [1.5, 7.9],$	$DT[-2] \in [2.8, 6.6],$
$DT[-3] \in [5.4, 9.2]$	$DT[-3] \in [4.1, 10.5]$	$DT[-3] \in [5.4, 9.2]$
Postcondition	Postcondition	Postcondition
$BR \in \{300.0, 750.0, 2850.0\}$	$BR \in \{300.0, 750.0, 1200.0, 4300.0\}$	$BR \in \{300.0, 750.0\}$

3 4 5

Precondition Precondition

$$\begin{split} BS \in [4.0, 5.0], & BS \in [4.0, 5.0], \\ DT[-1] \in [2.8, 6.6], & DT[-1] \in [2.8, 6.6], \\ DT[-2] \in [5.4, 10.5], & DT[-2] \in [6.6, 10.5], \\ DT[-3] \in [2.8, 6.6] & DT[-3] \in [2.8, 6.6] \end{split}$$

Postcondition Postcondition

 $BR \in \{300.0, 750.0, 1200.0, 2850.0, 4300.0\}$ $BR \in \{300.0, 750.0, 1200.0\}$

7

 $\begin{array}{lll} \textbf{Precondition} & \textbf{Precondition} \\ BS \in [4.0, 5.0], & BS \in [4.0, 5.0], \\ DT[-1] \in [2.8, 10.5], & DT[-1] \in [5.4, 10.5], \\ DT[-2] \in [1.5, 7.9], & DT[-2] \in [1.5, 6.6], \\ DT[-3] \in [1.5, 6.6] & DT[-3] \in [1.5, 5.4] \\ \textbf{Postcondition} & \textbf{Postcondition} \end{array}$

 $BR \in \{300.0, 750.0, 1200.0, 2850.0\} \ BR \in \{300.0, 750.0, 1850.0\}$

8

$\begin{array}{ll} \textbf{Precondition} & \textbf{Precondition} \\ BS \in [4.0, 5.0], & BS \in [4.0, 5.4], \end{array}$

 $DT[-1] \in [5.4, 10.5],$ $DT[-1] \in [1.5, 6.6],$ $DT[-2] \in [1.5, 6.6],$ $DT[-2] \in [1.5, 7.9],$

 $DT[-3] \in [1.5, 6.6] \qquad \qquad DT[-3] \in [4.1, 10.5]$

Postcondition Postcondition $BR \in \{300.0, 750.0, 1200.0\}$ $BR \in \{300.0, 750.0, 1850.0, 2850.0\}$

10 11

Precondition Precondition

$$\begin{split} BS \in [4.0, 5.4], & BS \in [4.0, 10.9], \\ DT[-1] \in [5.4, 10.5], & DT[-1] \in [0.2, 11.8], \\ DT[-2] \in [1.5, 6.6], & DT[-2] \in [0.2, 11.8], \\ DT[-3] \in [1.5, 6.6] & DT[-3] \in [0.2, 11.8] \end{split}$$

Postcondition Postcondition

 $BR \in \{300.0, 750.0, 1850.0, 2850.0, 4300.0\} \ BR \in \{300.0, 750.0, 1200.0, 1850.0, 4300.0\}$

Precondition Precondition

 $BS \in [4.0, 14.8],$ $BS \in [5.0, 6.1],$ $DT[-1] \in [0.2, 11.8],$ $DT[-1] \in [5.4, 9.2],$ $DT[-2] \in [0.2, 11.8],$ $DT[-2] \in [1.5, 5.4],$ $DT[-3] \in [0.2, 11.8]$ $DT[-3] \in [1.5, 5.4]$

Postcondition Postcondition

 $BR \in \{300.0, 750.0, 1200.0, 1850.0, 2850.0\}$ $BR \in \{300.0, 750.0, 1200.0, 2850.0, 4300.0\}$

14 15

Precondition Precondition $BS \in [6.1, 7.5],$ $BS \in [6.1, 7.8],$ $DT[-1] \in [0.2, 4.1],$ $DT[-1] \in [0.2, 4.1],$ $DT[-2] \in [4.1, 10.5],$ $DT[-2] \in [4.1, 10.5],$ $DT[-3] \in [1.5, 6.6]$ $DT[-3] \in [1.5, 6.6]$ Postcondition Postcondition

 $BR \in \{300.0, 750.0, 1850.0\}$ $BR \in \{300.0, 750.0, 1850.0, 4300.0\}$

16 17

Precondition Precondition

 $BS \in [6.1, 7.8],$ $BS \in [6.1, 8.2],$ $DT[-1] \in [0.2, 4.1],$ $DT[-1] \in [0.2, 4.1],$ $DT[-2] \in [4.1, 11.8],$ $DT[-2] \in [4.1, 10.5],$ $DT[-3] \in [1.5, 6.6]$ $DT[-3] \in [1.5, 6.6]$

Postcondition Postcondition

 $BR \in \{300.0, 750.0, 1200.0, 4300.0\}$ $BR \in \{300.0, 750.0, 1850.0, 2850.0, 4300.0\}$

18 19

Precondition Precondition

 $BS \in [6.1, 10.6],$ $BS \in [6.4, 7.5],$ $DT[-1] \in [0.2, 4.1],$ $DT[-1] \in [0.2, 4.1],$ $DT[-2] \in [0.2, 11.8],$ $DT[-2] \in [1.5, 5.4],$ $DT[-3] \in [1.5, 11.8]$ $DT[-3] \in [5.4, 11.8]$

Postcondition Postcondition

 $BR \in \{300.0, 750.0, 1200.0, 2850.0, 4300.0\}$ $BR \in \{300.0, 750.0, 1200.0\}$

$\begin{array}{lll} \textbf{Precondition} & \textbf{Precondition} \\ BS \in [6.4, 7.8], & BS \in [7.5, 8.2], \\ DT[-1] \in [0.2, 4.1], & DT[-1] \in [0.2, 4.1], \\ DT[-2] \in [1.5, 5.4], & DT[-2] \in [1.5, 5.4], \\ DT[-3] \in [5.4, 9.2] & DT[-3] \in [5.4, 9.2] \\ \textbf{Postcondition} & \textbf{Postcondition} \\ BR \in \{300.0, 750.0, 1850.0, 2850.0\} & BR \in \{300.0, 750.0, 1200.0\} \end{array}$

22 23

Precondition	Precondition
$BS \in [7.8, 9.2],$	$BS \in [8.2, 8.9],$
$DT[-1] \in [0.2, 4.1],$	$DT[-1] \in [0.2, 4.1],$
$DT[-2] \in [5.4, 9.2],$	$DT[-2] \in [5.4, 9.2],$
$DT[-3] \in [2.8, 6.6]$	$DT[-3] \in [2.8, 6.6]$
Postcondition	Postcondition
$BR \in \{300.0, 750.0, 1200.0\}$	$BR \in \{300.0, 750.0, 1850.0, 2850.0\}$

24 25

Precondition	Precondition
$BS \in [8.2, 9.6],$	$BS \in [8.5, 9.6],$
$DT[-1] \in [0.2, 4.1],$	$DT[-1] \in [0.2, 4.1],$
$DT[-2] \in [4.1, 9.2],$	$DT[-2] \in [0.2, 4.1],$
$DT[-3] \in [1.5, 6.6]$	$DT[-3] \in [2.8, 6.6]$
Postcondition	Postcondition
$BR \in \{300.0, 750.0, 1200.0, 2850.0\}$	$BR \in \{300.0, 750.0, 1200.0\}$

26 27

Precondition	Precondition
$BS \in [8.5, 10.6],$	$BS \in [10.9, 12.0],$
$DT[-1] \in [0.2, 4.1],$	$DT[-1] \in [0.2, 5.4],$
$DT[-2] \in [0.2, 4.1],$	$DT[-2] \in [0.2, 5.4],$
$DT[-3] \in [5.4, 10.5]$	$DT[-3] \in [4.1, 7.9]$
Postcondition	Postcondition
$BR \in \{300.0, 750.0, 1200.0\}$	$BR \in \{300.0, 750.0, 1200.0, 1850.0\}$

${\bf Precondition}$

 $BS \in [10.9, 12.3],$

 $DT[-1] \in [4.1, 7.9],$

 $DT[-2] \in [1.5, 6.6],$

 $DT[-3] \in [1.5, 5.4]$

Postcondition

 $BR \in \{750.0, 1200.0, 1850.0, 2850.0, 4300.0\}$