Analiza zachowania algorytmu dla różnych rozkładów danych.

Wielkość danych wejściowych instancji (10, 100, 150, 500, 1000, 1500, 5000, 10000, 15000, 25000)

Selection Sort

SELECTION SORT						
Dane uporządkowane	Losowo	rosnąco	malejąco	V-shape		
WIELKOŚĆ INSTANCJI	CZAS[s]					
10	0	0	0	0		
100	0	0	0	0		
150	0	0	0	0		
500	0	0	0	0		
1000	0	0	0	0		
1500	0	0	0	0		
5000	0,031	0,031	0,031	0,031		
10000	0,109	0,109	0,105	0,113		
15000	0,251	0,235	0,234	0,236		
25000	0,688	0,69	0,645	0,671		

Czas pracy algorytmu Selection Sort dla podanych wielkości instancji w zależności od rodzaju rozłożenia danych.

Decreasing < V-shape < Random < Increasing

Złożoność obliczeniowa O(n²) dla wszystkich przypadków.

Insertion Sort

INSERTION SORT					
Dane uporządkowane	Losowo	rosnąco	malejąco	V-shape	
WIELKOŚĆ INSTANCJI	Czas[s]				
10	0	0	0	0	
100	0	0	0	0	
150	0	0	0	0	
500	0	0	0	0	
1000	0	0	0	0	
1500	0	0	0	0,001	
5000	0,016	0	0,032	0,014	
10000	0,062	0	0,109	0,056	
15000	0,125	0	0,265	0,126	
25000	0,36	0	0,721	0,359	

Czas pracy algorytmu Insertion Sort dla podanych wielkości instancji w zależności od rodzaju rozłożenia danych.

Increasing < V-shape < Random < Decreasing

Złożoność obliczeniowa O(n²) dla wszystkich przypadków.

Quick Sort

QUICK SORT					
				V-	
Dane uporządkowane	Losowo	rosnąco	malejąco	shape	
WIELKOŚĆ INSTANCJI	CZAS[s]				
10	0	0	0	0	
100	0	0	0	0	
150	0	0	0	0	
500	0	0	0	0	
1000	0	0	0	0	
1500	0	0	0	0,025	
5000	0	0,078	0,047	0,032	
10000	0	0,25	0,197	0,124	
15000	0	0,593	0,418	0,297	
25000	0,016	1,641	1,176	0,816	

Czas pracy algorytmu Quick Sort dla podanych wielkości instancji w zależności od rodzaju rozłożenia danych.

Random < V-shape < Decreasing < Increasing

Złożoność obliczeniowa O(n²) dla najgorszego przypadku a O(n*log n) dla najlepszego przypadku.

Heap Sort

HEAP SORT					
Dane				V-	
uporządkowane	Losowo	rosnąco	malejąco	shape	
WIELKOŚĆ INSTANCJI	CZAS[s]				
10	0	0	0	0	
100	0	0	0	0	
150	0	0	0	0	
500	0	0	0	0	
1000	0	0	0	0	
1500	0	0	0	0,015	
5000	0	0,078	0,047	0,032	
10000	0	0,25	0,187	0,124	
15000	0	0,593	0,41	0,297	
25000	0,016	1,641	1,176	0,816	

Czas pracy algorytmu Heap Sort dla podanych wielkości instancji w zależności od rodzaju rozłożenia danych.

Random < V-shape < Decreasing < Increasing

Złożoność obliczeniowa O(n) dla najlepszego przypadku a O(n*log n) dla najgorszego przypadku.

Wnioski:

Na podstawie analizy czasów pracy poszczególnych algorytmów można stwierdzić, że najkorzystniejszą opcją jest losowe rozłożenie danych. Natomiast tą najmniej korzystną jest rozłożenie danych w sposób rosnący (increasing). Po porównaniu czasu pracy i złożoności obliczeniowej algorytmów można wysunąć wniosek, że najlepszym algorytmem sortowania jest Heap Sort ponieważ działa on zdecydowanie najszybciej, co szczególnie można zauważyć przy dużych wartościach.