Analysis Report (Part4): Exploratory Analysis

(Last updated: 10/05/21)

In this section, I will explore the data (read counts) to get an idea of what the distribution of the data will look like.

1. Loading the Necessary Libraries and Data

```
library(AnnotationDbi)
library(org.Hs.eg.db)
library(dplyr)
par(pch = 19)
tropical = c("darkorange", "dodgerblue", "hotpink", "limegreen", "yellow")
palette(tropical)
# read a merged_counts file
merged_counts = read.table("../merged_counts-v2.tsv", quote = "", sep = '\t')
# Read phenotype sample data
pheno_data = read.csv("../phenotype_data.tsv", quote = "", sep = '\t')
```

2. Checking the Phenotype Data

```
table(pheno_data$sex)

##
## F M
## 4 2

sum(pheno_data$age_group == " ")

## [1] 0

table(pheno_data$age_group, useNA = "ifany")

##
## adult fetal
## 3 3
```

```
table(pheno_data$sex, pheno_data$age_group)

##

## adult fetal
## F 2 2
## M 1 1
```

3. Normalization of Expression Data (Read Counts)

This is done here according to the Read Per Million (RPM) unit.

4. Checking the Distribution of the Expression Data (Read Counts)

Here, are some checks of the distribution of the expression data (output not shown)

```
is.na(counts_RPM[1,])
sum(is.na(counts_RPM))

# Make the distribution of NA's by genes
gene_na = rowSums(is.na(counts_RPM))
gene_na[5]
gene_na[1:5]

# Make the distribution of NA's by samples
sample_na = colSums(is.na(counts_RPM))
sample_na[6]
table(sample_na)
```

5. Boxplot of Counts (Filtered and log2 Transformed) of All the Samples

Boxplot of Counts (Filtered and log2 Transformed) of All the Sample

6. Histogram of the Counts of the First Sample

Plot a histogram to show the probability/frequency distribution of the filtered counts data of the first sample.

```
hist(log2(fil_counts_RPM[,1]+1), col = 2, Xlab = "log2(filtered_counts[,1] + 1)",
    main = "Histogram of the Counts of the First Sample")
```

Histogram of the Counts of the First Sample

7. MA-plot Between the First 2 Samples

The MA-plot between the first 2 samples is used to visualize the differences between measurements in those samples.

```
aa = log2(counts_RPM[,1]+1) + log2(counts_RPM[,2]+1)
mm = log2(counts_RPM[,1]+1) - log2(counts_RPM[,2]+1)
plot(aa, mm, col=2, main = "MA-plot Between the First 2 Samples")
```

MA-plot Between the First 2 Samples

8. Counts of Chromosome Y Genes in Male and Female Samples

Since cells of female samples lack Y chromosomes, we expect that male samples have more genes on this chromosome than female samples.

'select()' returned 1:many mapping between keys and columns

```
chr = chr[!duplicated(chr[,1]),]
# Confirm that the annotations still have the same sort as the counts
all(chr[,1] == rownames(counts_RPM))
```

[1] TRUE

```
## [1] TRUE
# Select the chromosome Y samples
fil_chrm_Y_counts_RPM = filter(counts_RPM, chr$CHR == "Y")
# Male samples have more genes on chromosome Y than females
```

Boxplot: Counts of Chrom. Y Genes in Male and Female Samples

