数学 AI(奈須田) 第 12 週 ①

5 高次導関数

復習: 関数 y = f(x) が区間 I で微分可能であるとき,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

を f(x) の導関数といい, f'(x) のほかに, $y', \frac{dy}{dx}, \frac{d}{dx}f(x)$ などと表すこともある. さらに, f'(x) も 微分可能であるとき, f'(x) の導関数を f(x) の第 2 次導関数といい, $f''(x), y'', \frac{d^2y}{dx^2}, \frac{d^2}{dx^2}f(x)$ などと表す. (復習終わり)

cf.
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
.

問題5.1 次の関数の第2次導関数を求めよ.

(1)
$$y = \sqrt[3]{x^2} \ (x > 0)$$

$$(2) \quad y = (3x+4)^5$$

$$(3) \quad y = xe^x$$

定義 (高次導関数)。 関数 y = f(x) の導関数 f'(x) が区間 I で微分可能であるとき, f'(x) の導関数 を f(x) の第 2 次導関数または 2 階導関数 (second derivative) といい, f''(x) と表す. 同様に, f''(x) が微分可能のとき, f(x) の第 3 次導関数(3 階導関数) f'''(x) が定義される.以下帰納的に, f(x) の第 n 次導関数(n 階導関数) $f^{(n)}(x)$ が定義され微分可能のとき, $f^{(n)}(x)$ の導関数として第 n+1 次 導関数 $f^{(n+1)}(x)$ が定義される. 次数が 2 以上の導関数を高次導関数 (higher-order derivative) という.

n 階導関数は、 $f^{(n)}(x)$ のほかに、 $y^{(n)}, \frac{d^n y}{dx^n}, \frac{d^n}{dx^n} f(x)$ などと表すこともある。

定義 $(n \ \text{回微分可能})$. 関数 y = f(x) が区間 I で n 次までの導関数が存在するとき、n 回微分可能であるという。 さらに、第 n 次導関数 $f^{(n)}(x)$ が I で連続のとき、f(x) は I で C^n 級であるという。

- ** f(x) が C^0 級であるとは、単に連続であることを表す。
 - f(x) が任意回数微分可能であるとき, C^{∞} 級(または無限回微分可能)であるという.

【例題 5.1】

関数 $y = \frac{1}{x}$ の第 n 次導関数を求めよ.

L

問題 5.2 次の関数の第 n 次導関数を求めよ.

$$(1) \quad y = e^{3x}$$

$$(2) \quad y = \frac{1}{1 - x}$$

数学 AI (奈須田) 第 12 週 ①

復習: $(fg)' = f'g + fg' \cdots (*)$

さらに、(fg)'' = (f''g + f'g') + (f'g' + fg'') = f''g + 2f'g' + fg''、(fg)''' = (f'''g + f''g') + 2(f''g' + f'g'') + (f'g'' + fg''') = f'''g + 3f''g' + 3f'g'' + fg'''、と計算できる。

命題 (Leibnizの公式). f, g がn 回微分可能な関数のとき,

$$(fg)^{(n)} = f^{(n)}g + {}_{n}C_{1}f^{(n-1)}g' + {}_{n}C_{2}f^{(n-2)}g'' + \dots + {}_{n}C_{r}f^{(n-r)}g^{(r)} + \dots + fg^{(n)}$$
$$= \sum_{r=0}^{n} {}_{n}C_{r}f^{(n-r)}g^{(r)}.$$

ただし、 ${}_{n}$ C $_{r}$ は $\binom{n}{r}$ とも書かれ、 $(a+b)^{n}$ を展開したときの $a^{n-r}b^{r}$ の係数(二項係数)である。 cf. Pascalの三角形.

証明. 数学的帰納法を用いる. n=1 のとき、(*) であり Leibniz の公式は成立する. ここで n=k のときに Leibniz の公式 が成り立つと仮定すると、

$$(fg)^{(k)} = \sum_{r=0}^{k} {}_{k}C_{r} f^{(k-r)} g^{(r)}$$

であり、両辺をxで微分して、

$$(fg)^{k+1} = \sum_{r=0}^{k} {}_{k}C_{r} \left[f^{(k-r+1)}g^{(r)} + f^{(k-r)}g^{(r+1)} \right]$$

を得る. $_kC_{r-1}+_kC_r=_{k+1}C_r$ に注意して、この右辺を $g^{(r)}$ に関する和に書き直すと、

$$\sum_{r=0}^{k+1} {}_{k+1} C_r f^{(k+1-r)} g^{(r)}$$

となる. よって、任意のn に対して Leibniz の公式が成立する.

-【例題 5.2】

 $y = x^2 \sin x$ の第 3 次導関数を求めよ.

L

問題 5.3 $y = x^3 \cos x$ の第 4 次導関数を求めよ.

6 曲線の媒介変数表示

6.1 媒介変数表示:イントロダクション

復習: 関数 $y = (x-2)^2 + 3$ のグラフは, $y = x^2$ のグラフを x 軸方向に +2,y 軸方向に +3 平行移動した放物線である.

これを、t = x - 2 とおいて、次のように考えてみよう。つまり、関数 $y = (x - 2)^2 + 3$ のグラフ上の点 P の x 座標と y 座標は、変数 t によって

$$x = t + 2$$
, $y = t^2 + 3$,

で表される. t の値が変わると、それに対応して x,y の値も変わり、点 P の軌跡は曲線 $y=(x-2)^2+3$ を描く.

t		-2	-1	0	1	2	3	• • •
X		0	1	2	3	4	5	• • •
\overline{y}	•••	7	4	3	4	7	12	•••

変数 x, y が、ともに変数 t の関数として

$$x = f(t), \quad y = g(t), \tag{*}$$

と表されるとき、それらを座標にもつ点 P(x,y) はある曲線を描く。このとき、(*) をこの曲線の媒介変数表示あるいはパラメータ表示といい、変数 t を媒介変数やパラメータ (parameter) と呼ぶ。

注意 媒介変数によるある曲線 C の表示は一通りとは限らない。

また、 $y = (x-2)^2 + 3$ の例のように、媒介表示された曲線が必ず y = [x ord] の形に変形できるわけではない。

復習: 原点 O を中心とする半径 r の円 $x^2 + y^2 = r^2$ は、一般角 θ を用いて

$$x = r \cos \theta$$
, $y = r \sin \theta$,

と表される。

数学 AI (奈須田) 第 12 週 ①

-【例題 6.1】

 $x = t^3 - 2t^2 + 1$, $y = t^2 - t$ で表される曲線の概形をかけ.

Ø

<u>問題 6.1</u> $x = 1 - \frac{1}{4}t^2, y = \sqrt{t}$ $(0 \le t \le 4)$ で表される曲線について、上の例題と同様にして、その概形をかけ、