Homework 1

Michael Morikawa

 $January\ 18,\ 2020$

Chapter 1

1.1

- 2. Which of these are propositions? What are the truth values of those that are propositions?
 - a. Do not pass go.
 - b. What time is it?
 - c. There are no black flies in Maine.
 - d. 4 + x = 5.
 - e. The moon is made of green cheese.
 - f. $2n \ge 100$.

Answer: c and e are both propositions, and both of their truth values are false.

- 4. What is the negation of each of these propositions?
 - a. Jennifer and Teja are friends.
 - b. There are 13 items in a baker's dozen.
 - c. Abby sent more than 100 text messages every day.
 - d. 121 is a perfect square.

Answer:

- a. Jennifer and Teja are not friends.
- b. There aren't 13 items in a baker's dozen.
- c. Abby sent less than or equal to 100 text messages every day.
- d. 121 is not a perfect square.
- 6. Suppose that Smartphone A has 256 MB RAM and 32 GB ROM, and the resolution of its camera is 8 MP; Smartphone B has 288 MB RAM and 64 GB ROM, and the resolution of its camera is 4 MP; and Smartphone C has 128 MB RAM and 32 GB ROM, and the resolution of its camera is 5 MP. Determine the truth value of each of these propositions.
 - a. Smartphone B has the most RAM of these three smartphones.
 - b. Smartphone C has more ROM or a higher resolution camera than Smartphone B.
 - c. Smartphone B has more RAM, more ROM, and a higher resolution camera than Smartphone A.
 - d. If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.

e. Smartphone A has more RAM than Smartphone B if and only if Smartphone B has more RAM than Smartphone A.

Answer:

- a. True
- b. True
- c. False
- d. False
- e. False

1.2

For exercises 2 & 4, translate into propositional logic.

2. You can see the movie only if you are over 18 years old or you have the permission of a parent. Express your answer in terms of m: "You can see the movie," e: "You are over 18 years old," and p: "You have the permission of a parent."

Answer: $m \to (e \lor p)$

4. To use the wireless network in the airport you must pay the daily fee unless you are a subscriber to the service. Express your answer in terms of w: "You can use the wire- less network in the airport," d: "You pay the daily fee," and s: "You are a subscriber to the service."

Answer: $w \to (d \lor s)$

1.3

6. Use a truth table to verify the first De Morgan law

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Answer:

p	q	$\neg p$	$\neg q$	$\neg (p \land q)$	$\neg p \lor \neg q$
Т	Т	F	F	F	F
Т	F	F	Т	Τ	Τ
F	Т	Т	F	Τ	T
F	F	Т	Т	T	Т

- 8. Use De Morgan's laws to find the negation of each of the following statements
 - a. Kwame will take a job in industry or go to graduate school.

- b. Yoshiko knows Java and calculus.
- c. James is young and strong.
- d. Rita will move to Oregon or Washington.

Answer:

- a. Kwame will not take a job in industry and not go to graduate school.
- b. Yoshiko doesn't know Java or doesn't know calculus.
- c. James is not young or not strong.
- d. Rita will not move to Oregon and will not move to Washington.
- 10. Show that each of these conditional statements is a tautology by using truth tables.
 - a. $[\neg p \land (p \lor q)] \rightarrow q$
 - b. $[(p \to q) \land (q \to r)] \to (p \to r)$
 - c. $[p \land (p \rightarrow q)] \rightarrow q$
 - d. $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$

Answer:

	p	q	$\neg p$	$p \lor q$	$[\neg p \land (p \lor q)]$	$[\neg p \land (p \lor q)] \to q$
	Т	Т	F	Τ	F	${ m T}$
a.	Т	F	F	Т	F	T
	F	Т	Т	Т	Τ	T
	F	F	Т	Τ	Τ	Τ

	p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$[(p \to q) \land (q \to r)]$	$[(p \to q) \land (q \to r)]$
								$\rightarrow (p \rightarrow r)$
	Т	Т	Т	Т	Τ	Τ	T	T
	Т	Т	F	Т	F	F	F	T
h	Т	F	Т	F	Τ	Т	T	T
b.	Т	F	F	F	Τ	Т	F	Т
	F	Т	Т	Т	Τ	Т	Τ	Т
	F	Т	F	Т	F	Т	F	Т
Ì	F	F	Т	Т	Τ	Т	T	Т
	F	F	F	Т	Τ	Т	T	Т

	p	q	$p \rightarrow q$	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
	Т	Т	Т	Τ	T
c.	Т	F	F	F	T
	F	Т	Т	F	T
	F	F	Т	F	T

	p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$[(p \lor q) \land (p \to r) \land$	
							$(q \to r)$	$(q \to r)] \to r$
	Т	Т	Т	T	Τ	Τ	Τ	Τ
	Т	Т	F	Т	F	F	F	T
d.	Т	F	Т	F	Τ	Τ	T	T
u.	Т	F	F	F	Τ	Τ	F	T
	F	Т	Т	Т	Τ	Τ	T	T
	F	Т	F	Т	F	Τ	F	T
	F	F	Т	Т	Т	T	T	Т
	F	F	F	Т	Τ	Τ	T	T

 $12\,$ Show that each conditional statement in Exercise 10 is a tautology without using truth tables.

a.
$$[\neg p \land (p \lor q)] \to q$$

b.
$$[(p \to q) \land (q \to r)] \to (p \to r)$$

c.
$$[p \land (p \rightarrow q)] \rightarrow q$$

d.
$$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$$

Answer:

a.

$$[\neg p \land (p \lor q)] \rightarrow q \equiv \neg [\neg p \land (p \lor q)] \lor q \qquad \text{(Equivalence from table)}$$

$$\equiv [\neg (\neg p) \lor \neg (p \lor q)] \lor q \qquad \text{(Double negation and De Morgan's Law)}$$

$$\equiv [p \lor (\neg p \land \neg q)] \lor q \qquad \text{(Double negation and De Morgan's Law)}$$

$$\equiv [(p \lor \neg p) \land (p \lor \neg q)] \lor q \qquad \text{(Distibutive Law)}$$

$$\equiv [\mathbf{T} \land (p \lor \neg q)] \lor q \qquad \text{(Negation Law)}$$

$$\equiv [(\mathbf{T} \land p) \lor (\mathbf{T} \land \neg q)] \lor q \qquad \text{(Identity Law)}$$

$$\equiv (p \lor \neg q) \lor q \qquad \text{(Identity Law)}$$

$$\equiv p \lor (\neg q \lor q) \qquad \text{(Associativity)}$$

$$\equiv p \lor \mathbf{T} \qquad \text{(Negation Law)}$$

$$\equiv \mathbf{T} \qquad \text{(Domination Law)}$$

b.

$$[(p \to q) \land (q \to r)] \to (p \to r) \equiv$$