蹈

财

৽

 \forall

课序号

任课教师姓名

叩 小

姓名

莊

锹

昆明理工大学试卷(A)

考试科目: 大学物理(II) 考试日期: 2012年1月5日 命题教师: 命题组

题号	_	11	Ξ	总分
评分				
阅卷人				

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31} \text{kg}$; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{eV} = 1.602 \times 10^{-19} \text{J}$; 基本电荷: $e=1.602\times10^{-19}$ C; 普朗克常数: $h=6.63\times10^{-34}$ J·s

选择题: (共12题,每题3分,共36分)

注意:答案请填在"[

1、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。若 把隔板抽出,气体向真空进行自由膨胀,达到平衡后气体的:[]

- (A) 温度不变, 熵增加 (B) 温度升高, 熵增加。
- (C) 温度降低, 熵增加 (D) 温度不变, 熵不变。

2、温度、压强相同的氦气和氧气,它们分子的平均动能 ε 和平均平动 动能 w 一定有如下关系: []

- (A) ε 和 \overline{w} 都相等 (B) ε 相等,而 \overline{w} 不相等
- (C) \overline{w} 相等, $\overline{n}_{\varepsilon}$ 不相等 (D) $\overline{\varepsilon}$ 和 \overline{w} 都不相等

3、容积恒定的容器内盛有一定量的某种理想气体,分子热运动的平均

第1页共8页

自由程为 $\overline{\lambda}_0$,平均碰撞次数为 \overline{Z}_0 ,若气体的热力学温度降低为原来的 1/4 倍,则此时分子平均自由程 λ 和平均碰撞频率 Z 分别为: [1

- (A) $\overline{\lambda} = \overline{\lambda}_0, \ \overline{Z} = \overline{Z}_0$
- (B) $\overline{\lambda} = \overline{\lambda}_0, \ \overline{Z} = \frac{1}{2}\overline{Z}_0$
- (C) $\overline{\lambda} = 2\overline{\lambda}_0$, $\overline{Z} = 2\overline{Z}_0$ (D) $\overline{\lambda} = \sqrt{2}\overline{\lambda}_0$, $\overline{Z} = \frac{1}{2}\overline{Z}_0$

4、设高温热源的热力学温度是低温热源的热力学温度的 n 倍,则理想气 体在一次可逆卡诺循环中, 传给低温热源的热量是从高温热源吸取的热 量的: 1

- (A) n 倍 (B) n-1 倍 (C) $\frac{1}{n}$ 倍 (D) $\frac{n+1}{n}$ 倍

5、劲度系数分别为 k_1 和 k_2 的两个轻弹簧并联,下面悬挂质量为 m 的物 体,构成一个竖挂的弹簧振子,则该系统的振动周期为:[

(A)
$$T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$$

$$(B) T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

(A)
$$T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$$
 (B) $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$ (C) $T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{2k_1 k_2}}$ (D) $T = 2\pi \sqrt{\frac{2m}{k_1 + k_2}}$

(D)
$$T = 2\pi \sqrt{\frac{2m}{k_1 + k_2}}$$

6、一个质点作简谐振动,振辐为A,在起始时刻质点的位移为-A/2,且 向x轴的正方向运动,代表此简谐振动的旋转矢量图为:[

第2页共8页

倒

观察到的结果为:

- (A) 散射光波长与材料有关,且波长比入射 X 光的波长长
- (B) 散射光波长与材料无关,且波长比入射 X 光的波长长
- (C) 散射光波长与材料有关,且波长比入射 X 光的波长短
- (D) 散射光波长与材料无关,且波长比入射 X 光的波长短
- 12、两种不同质量的粒子,如果其德布罗意波长相同,则这两种粒子的:

[]

1

- (A) 动量相同
- (B) 能量相同
- (C) 速度相同
- (D) 动能相同

二、填空题(共11题, 共34分)

- 2、两列波长为λ的相干简谐波相遇形成驻波,则驻波中相邻波节与波腹间的距离等于。
- 3、在杨氏双缝实验中,若在狭缝 S_1 后放置一薄介质片,与放置前相比,干涉条纹将_____。

(填"上移"、"下移"或"不动"

- 4、波长为 λ 的平行单色光垂直入射于单缝上,观察夫琅禾费衍射,若屏上 P 点处为第一级暗纹,则单缝处波面相应地可划分为_______个半波带;若现改用波长为 λ/2 的平行单色光垂直入射(其它条件不变),
- *P* 点将出现第_____级_____
- 5、在空气中有一劈尖形透明材料,其劈尖 角为 θ ,用在真空中波长为 λ 的单色光垂直

第4页共8页

骝

[¾]

	照射下形成干涉条纹,现测得相邻干涉明条纹间距为1,则此透明材料的						
	折射率为 n=。						
紅	6、一束光是自然光和线偏振光的混合光,且自然光和线偏振光的光强						
	比值为1:2, 若让它垂直通过一偏振片, 并以此入射光束为轴旋转偏振						
	片,则透射光强度最大值将是最小值的						
得	7、在迈克尔逊干涉仪中用波长为λ的单色 ——						
	光作为光源,两反射镜不相互垂直形成一劈						
	尖形空气膜,现移动动镜 M_2 观察到干涉条 M_1						
	纹向左移动了 N 条,则动镜 M_2 移动的距离 $\Gamma^{-1}M_2$ $\Gamma^{-1}M_2$						
К	为: <i>△l</i> =。						
	8、已知一粒子在一维无限深势阱中运动,其波函数可以表示为:						
	$\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} (0 \le x \le a, n = 1, 2, 3 \cdots)$						
长	则计算该粒子出现在0~4/3区间内概率的表达式为(不要求计算出最终						
	结果):。						
	9 、如图所示,一束动量为 p 的电子,通过缝宽 $p \mid p \mid$						
	为 a 的狭缝,在距离狭缝为 R 处放置一荧光屏, a						
絥	根据测不准关系式 $\triangle p_x \triangle x \ge h$,屏上衍射图样中						
	央明纹的宽度应该为 d =。						
	10 、静止质量为 m_e 的电子,从静止起经电势差为 U 的静电场加速后,该						
	电子的德布罗意波长为 λ=(不考虑相对论效应)。						
華	11、氢原子的部分能级跃迁如图。在这些 $n=4$						
	能级跃迁中,从 $n=$ 的能级跃迁 $n=3$						
	到 $n=$ 的能级时所发射的光子的						
	波长最短,属于赖曼系的有个, \downarrow						
	而属于巴尔末系的有						

第5页共8页

三、计算题(共3题,每题10分,共30分)

1、一定量的某种理想气体进行如图所示的循环过程。已知气在体状态 A 的温度为 $T_A=300$ K,求:

状态 A 的温度为 T_A =300K,求: (1) 气体在状态 B、C 的温度 T_B 和 T_C ; (2) 气体在 $A \rightarrow B$ 、 $B \rightarrow C$ 和 $C \rightarrow A$ 三个过程中分别对外所作的

功; (3) 经过 $A \rightarrow B \rightarrow C \rightarrow A$ 整个循环过程,气体从外界吸收的总热量。

3、一衍射光栅,每厘米有 400 条透光缝,每条透光缝宽为 $a=1\times10^{-3}$ cm,在光栅后放一焦距 f=1.0m 的凸透镜,现以 $\lambda=600$ nm 的单色平行光垂直照射光栅,求:(1)该衍射光栅的光栅常数 d 是多少?(2)透光缝为 a 的单缝衍射,其中央明条纹宽度 l_0 为多少?(3)在该宽度内出现的光栅衍射主极大是哪几个?