Seat No.

[4857]-1046

S.E. (Electronics/E&TC Engineering)

(Second Semester) EXAMINATION, 2015 INTEGRATED CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams and waveforms must be drawn wherever necessary.
 - (ii) Figures to the right side indicate full marks.
 - (iii) Use of calculator is allowed.
 - (iv) Assume suitable data if necessary.
- **1.** (a) The following specifications are given for the DIBO differential amplifier: [6]

 $R_E=4.7~k\Omega,~R_C=2.2~k\Omega,~R_{in1}=R_{in2}=50\,\Omega,~V_s=\pm~10~V$ and the transistor with $\beta_{ac}=\beta_{dc}=100$ with $V_{BE}=0.7~V.$

- (i) Determine the I_{CQ} and V_{CEQ} values.
- (ii) Determine the voltage gain.
- (b) With neat circuit, explain the dominant pole frequency compensation technique. [6]

Or

- 2. (a) Design a DIBO differential amplifier with a constant current bias using diodes to satisfy the following requirements :[6] Differential voltage gain Ad = ± 10 Current supplied by the constant current bias circuit = 4 mA Supply voltage $V_S = \pm 12 \ V$
 - (b) Write a note on noise in op-amp.

[6]

3. (a)	Explain virtual ground concept and virtual short concept.[6]
(<i>b</i>)	With neat circuit diagram and waveforms, explain working of half wave precision rectifier. [6]
	Or
4. (a)	Explain sample and hold circuit using op-amp. [6]
(<i>b</i>)	What are the limitations of ideal integrator? How are they
	overcome in practical integrators ? [6]
5. (a)	With neat circuit diagram, explain current to voltage converter. [5]
<i>(b)</i>	Draw the neat circuit diagram of R–2R ladder digital to analog
	converter (DAC) and explain its working. [5]
(c)	What output voltage would be produced by a D/A converter
	whose output range is 0 to 10 V and input binary number
	is: [3]
	(i) 10 (for a 2-bit DAC converter)
	(ii) 0110 (for a 4-bit DAC)
	(iii) 10111100 (for a 8-bit DAC).
	Or
6. (a)	Explain the operation of successive approximation type analog
(7)	to digital converter. [5]
(<i>b</i>)	With neat circuit diagram, explain V to I converter with grounded load. [5]
(c)	List various specifications of ADC. [3]
7. (a)	Explain the following: [10]
	(i) Digital phase comparator used in PLL
	(ii) PLL as a FSK demodulator.
[4857]-104	.6

(b) For LM317 adjustable voltage regulator, R_1 = 240 Ω and R_2 = 2 k Ω . If I_{adj} = 50 μA and V_{ref} = 1.25 V. Find value of V_o .

Or

- **8.** (a) Define the following terms with reference to PLL: [10]
 - (i) Free running frequency
 - (ii) Lock range
 - (iii) Capture range
 - (iv) Pull-in-time.
 - (b) Explain low drop-out regulator. [3]