Chapter 5

Digital Building Blocks

Figure 5.1 1-bit half adder

Figure 5.2 Carry bit

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Figure 5.3 1-bit full adder

Figure 5.4 Carry propagate adder

Figure 5.5 32-bit ripple-carry adder

Figure 5.6 (a) 32-bit carry-lookahead adder (CLA), (b) 4-bit CLA block

Figure 5.7 16-bit prefix adder

Figure 5.8 Synthesized adder

Figure 5.9 Subtractor: (a) symbol, (b) implementation

Figure 5.10 Synthesized subtractor

Figure 5.11 4-bit equality comparator: (a) symbol, (b) implementation

Figure 5.12 *N*-bit magnitude comparator

Figure 5.13 Synthesized comparators

Figure 5.14 ALU symbol

Figure 5.15 N-bit ALU

Figure 5.16 4-bit shifters: (a) shift left, (b) logical shift right, (c) arithmetic shift right

Figure 5.17 Multiplication: (a) decimal, (b) binary

Figure 5.18 4 · 4 multiplier: (a) symbol, (b) function, (c) implementation

Figure 5.19 Synthesized multiplier

Figure 5.20 Array divider

(c)
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

Figure 5.21 Fixed-point notation of 6.75 with four integer bits and four fraction bits

(a) 0010.0110(b) 1010.0110(c) 1101.1010

Figure 5.22 Fixed-point representation of □2.375: (a) absolute value, (b) sign and magnitude, (c) two's complement

Figure 5.23 Fixed-point two's complement conversion

$$0000.1100$$
 0.75 $+ 1111.0110$ $+ (-0.625)$ 0.125 (a)

Figure 5.24 Addition: (a) binary fixed-point, (b) decimal equivalent

Figure 5.25 Floating-point numbers

Figure 5.26 32-bit floating-point version 1

Sign	Exponent	Fraction	
0	00000111	110 0100 0000 0000 0000 0000	
1 bit	8 bits	23 bits	

Figure 5.27 Floating-point version 2

Figure 5.28 IEEE 754 floating-point notation

Figure 5.29 Floating-point addition

Figure 5.30 Counter symbol

Figure 5.31 *N*-bit counter

Figure 5.32 Synthesized counter

Figure 5.33 Shift register symbol

Figure 5.34 Shift register schematic

Figure 5.35 Shift register with parallel load

Figure 5.36 Synthesized shiftreg

Figure 5.37 Scannable flip-flop: (a) schematic, (b) symbol, and (c) N-bit scannable register

Figure 5.38 Generic memory array symbol

Figure 5.39 4 · 3 memory array: (a) symbol, (b) function

Figure 5.40 32 Kb array: depth = 2^{10} = 1024 words, width = 32 bits

Figure 5.41 Bit cell

Figure 5.42 4 · 3 memory array

Figure 5.43 Three-ported memory

Figure 5.44 DRAM bit cell

Figure 5.45 DRAM stored values

Figure 5.46 SRAM bit cell

Figure 5.47 32 · 32 register file with two read ports and one write port

Figure 5.48 ROM bit cells containing 0 and 1

Figure 5.49 4 · 3 ROM: dot notation

Figure 5.50 4 · 3 ROM implementation using gates

Figure 5.51 Fuse-programmable ROM bit cell

Figure 5.52 4-word · 1-bit memory array used as a lookup table

Figure 5.53 Synthesized ram

Figure 5.54 M · N · P-bit PLA

Figure 5.55 3 · 3 · 2-bit PLA: dot notation

Figure 5.56 3 · 3 · 2-bit PLA using two-level logic

Figure 5.57 General FPGA layout

Figure 5.58 Cyclone IV Logic Element (LE)

(Reproduced with permission from the Altera Cyclone · IV Handbook · 2010 Altera Corporation.)

Figure 5.59 LE configuration for two functions of up to four inputs each

Figure 5.60 LE configuration for one function of more than four inputs

Figure 5.61 LE configuration for FSM with two bits of state

Figure 5.62 ROM implementation: (a) dot notation, (b) pseudo-nMOS circuit

Figure 5.63 3 · 3 · 2-bit PLA using pseudo-nMOS circuits

Figure 5.64 Funnel shifter

Figure 5.65 ROM circuits

Figure M 01

Figure M 02

Figure M 03

Figure M 04

Figure M 05

Figure M 06

UNN Figure 1