

SAT LAB 1 – Composite Binding Simulation (Radial θ_4 – τ Coupling)

Setup:

- 50×50 hexagonal grid with $\tau \in \mathbb{Z}_3$ field and radial $\theta_4(x, y)$ kink.
- θ₄(r) = $(2\pi/3)(1 + \tanh[\mu(r r_0)])/2$, with μ = 5 μm⁻¹ and r₀ = 15 μm. Fusion penalty $\lambda(x, y) = \lambda_0 + \lambda_1 \cdot |\nabla \theta_4|$, with $\lambda_0 = 1.0$, $\lambda_1 = 10.0$.

Visualizations:

- 1. θ_4 contours identify the kink radius and energy localization band.
- 2. Mock τ fusion violation map shows suppression near kink ($r \approx r_0$). 3. $\lambda(x, y)$ peaks in the domain wall zone, enforcing τ fusion constraint.

Next Steps:

- Run full Metropolis annealing for τ dynamics under $\lambda(x, y)$.
- Enable optional θ_4 feedback update based on τ violations.
- Analyze domain alignment, defect localization, and fusion coherence.

Goal:

Determine whether τ domains preferentially bind to θ_4 kink regions, validating SAT composite structure dynamics.