Statistical Learning

https://github.com/ggorr/Machine-Learning/tree/master/ISLR

5 Resampling Methods

- 5.1 Cross-Validation
- 5.2 The Bootstrap

What is resampling method?

- Drawing samples from a training set
- Fitting a model on each sample

5.1 Cross-Validation

- 5.1.1 The Validation Set Approach
- 5.1.2 Leave-One-Out Cross-Validation
- 5.1.3 k-Fold Cross-Validation
- 5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation
- 5.1.5 Cross-Validation on Classification Problems

What is cross-validation

- Holding out some observations from the fitting process
- Computing test error rates from the holding out observations

5.1.1 The Validation Set Approach

- Validation set approach
 - Random splitting
 - A training set 50%
 - A validation set(= hold-out set) 50%
 - Training and computing test error rate

The Validation Set Approach

- Test errors are highly variable
 - high variance
- Test errors are overestimated
 - because training uses the half of data set

5.1.2 Leave-One-Out Cross-Validation

- Leave-one-out cross-validation (LOOCV)
 - Training on observations except one
 - Computing test error for leave one observation
 - Averaging test errors

Applying LOOCV

- Observations: $(x_1, y_1), \dots, (x_n, y_n)$
- Fitting the model on $(x_2, y_2), ..., (x_n, y_n)$
- Let

$$MSE_1 = (y_1 - \hat{y}_i)^2$$

- Similarly, compute $MSE_2, ..., MSE_n$
- Averaging test errors

$$CV_{(n)} = \frac{1}{n} \sum MSE_i$$

Linear or polynomial regression

Interesting formula

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

where h_i is the leverage, i.e.

 $h_i = i$ -th diagonal entry of the hat matrix $X(X^TX)^{-1}X^T$

LOOCV

Computational cost is high

5.1.3 k-Fold Cross-Validation

- Dividing observations into k groups (or folds)
 - The first fold is treated as a validation set
 - Fitting on the remaining k-1 folds
 - Averaging test errors

$$CV_{(k)} = \frac{1}{k} \sum MSE_i$$

k-fold CV

- Computational cost is not high
- Test errors are not highly variable

5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation

- Bias of test error Validation set approach $\geq k$ -Fold CV \geq LOOCV
- Variance of test error

k-Fold CV \leq LOOCV

5.1.5 Cross-Validation on Classification Problems

LOOCV

$$CV_{(n)} = \frac{1}{n} \sum Err_i$$
where $Err_i = I(y_i \neq \hat{y}_i)$

• *k*-fold CV

$$CV_{(k)} = \frac{1}{k} \sum Err_i$$
 where $Err_i = \sum_{j \in Validation_i} I(y_j \neq \hat{y}_j)$

5.2 The Bootstrap

- Bootstrap
 - Repeatedly sampling from the original data set with replacement (恢复提取)
 - Quantifying the uncertainty of an estimator
 - Example estimating the standard error of coefficient

Example: Invest

- X, Y: returns(收益) of two financial assets
- Invest ratio: α , 1α
- Minimize the risk or the variance $Var(\alpha X + (1 \alpha)Y)$
 - Solution

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$
 where $\sigma_X^2 = \text{Var}(X)$, $\sigma_Y^2 = \text{Var}(Y)$, and $\sigma_{XY} = \text{Cov}(X, Y)$

• From observation, estimating σ_X , σ_Y and σ_{XY} and computing

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}}$$

- Estimating the variance of α
 - Repeatedly sampling from the original data set with replacement
 - Computing the variance of $\hat{\alpha}$

