Introducción Pautas de Diseño Dependencias Funcionales Formas Normales basadas en Clave Primaria Definición General de 2FN y 3FN / BCFN Inferencia

Normalización

30/Agosto/2019

Normalización

• Salida del Diseño. Conjunto de relaciones

- Salida del Diseño. Conjunto de relaciones
- Calidad de Diseño. Necesidad de evaluar si una forma de agrupar atributos en un esquema es mejor que otra
- Niveles.
 - 1 Lógico (o Conceptual). Un buen diseño de esquemas a este nivel habilita a los usuarios a entender el significado de los datos de las relaciones
 - Implementación (o de Almacenamiento Físico). Cómo se almacenan y actualizan las tuplas

- Salida del Diseño. Conjunto de relaciones
- Calidad de Diseño. Necesidad de evaluar si una forma de agrupar atributos en un esquema es mejor que otra
- Niveles.
 - Lógico (o Conceptual). Un buen diseño de esquemas a este nivel habilita a los usuarios a entender el significado de los datos de las relaciones
 - Implementación (o de Almacenamiento Físico). Cómo se almacenan y actualizan las tuplas
- Objetivos.
 - Preservar la Información. Conceptos
 - Minimizar Redundancia Evitar almacenamiento de información redundante

- Salida del Diseño. Conjunto de relaciones
- Calidad de Diseño. Necesidad de evaluar si una forma de agrupar atributos en un esquema es mejor que otra
- Niveles.
 - 1 Lógico (o Conceptual). Un buen diseño de esquemas a este nivel habilita a los usuarios a entender el significado de los datos de las relaciones
 - Implementación (o de Almacenamiento Físico). Cómo se almacenan y actualizan las tuplas
- Obietivos.
 - Preservar la Información. Conceptos
 - Minimizar Redundancia Evitar almacenamiento de información redundante
- Pautas de Diseño. Cuatro pautas informales de diseño pueden utilizarse como medida para determinar la calidad de un diseño:

- Salida del Diseño. Conjunto de relaciones
- Calidad de Diseño. Necesidad de evaluar si una forma de agrupar atributos en un esquema es mejor que otra
- Niveles.
 - Lógico (o Conceptual). Un buen diseño de esquemas a este nivel habilita a los usuarios a entender el significado de los datos de las relaciones
 - Implementación (o de Almacenamiento Físico). Cómo se almacenan y actualizan las tuplas
- Obietivos.
 - Preservar la Información. Conceptos
 - Minimizar Redundancia Evitar almacenamiento de información redundante
- Pautas de Diseño. Cuatro pautas informales de diseño pueden utilizarse como medida para determinar la calidad de un diseño:
 - Estar seguro que semántica de atributos en esquemas es clara
 - 2 Reducir la información redudante en tuplas
 - Reducir la cantidad de valores NULL en tuplas
 - Desabilitar la posibilidad de generar tuplas espúreas
- Independencia. Estas pautas NO son siempre independientes unas de otras

Normalización - Pauta Nro. 1 - Semántica

 Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño.

Normalización - Pauta Nro. 1 - Semántica

- Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño.
- Ejemplo.

Normalización - Pauta Nro. 1 - Semántica

- Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño.
- **Ejemplo**. EMPLEADO_PROYECTO

_Nombre <u>E_DNI</u> E_Fecha_Nac	miento Dirección	P_Nombre	P_Número
----------------------------------	------------------	----------	----------

Normalización - Pauta Nro. 1 - Semántica

 Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño.

• Ejemplo. EMPLEADO_PROYECTO

 E_Nombre
 E_DNI
 E_Fecha_Nacimiento
 Dirección
 P_Nombre
 P_Número

¿Opinión?

Normalización - Pauta Nro. 1 - Semántica

 Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño.

• **Ejemplo**. EMPLEADO_PROYECTO

E_Nombre E_DN	E_Fecha_Nacimiento	Dirección	P_Nombre	P_Número
---------------	--------------------	-----------	----------	----------

¿Opinión?

- Mezcla atributos de EMPLEADO con PROYECTO
- Desde el punto de vista de la lógica, puede ser correcto
- Deficiente en cuanto a la calidad respecto de la semántica de la relación (Pauta Nro. 1)
- Puede ser utilizado como vista

Normalización - Pauta Nro. 1 - Semántica

- Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño.
- **Ejemplo**. EMPLEADO_PROYECTO

|--|

¿Opinión?

- Mezcla atributos de EMPLEADO con PROYECTO
- Desde el punto de vista de la lógica, puede ser correcto
- Deficiente en cuanto a la calidad respecto de la semántica de la relación (Pauta Nro. 1)
- Puede ser utilizado como vista
- Ejemplo OK. EMPLEADO

E_Nombre	E_DNI	E_Fecha_Nacimiento		Dirección_Laboral
	PROYECTO			
	F	_Nombre P_Número		
		TRABA	JA_EN	-

E_DNI P_Número

Normalización - Pauta Nro. 1 - Semántica

- Semántica. Cuanto más fácil es explicar la semántica de los esquemas, mejor es el diseño
- **EMPLEADO PROYECTO** Ejemplo.

		E_Nombre	<u>E_DNI</u>	E_Fecha_Nacimiento	Dirección	P_Nombre	P_Número
--	--	----------	--------------	--------------------	-----------	----------	----------

¿Opinión?

- Mezcla atributos de EMPLEADO con PROYECTO
- Desde el punto de vista de la lógica, puede ser correcto
- Deficiente en cuanto a la calidad respecto de la semántica de la relación (Pauta Nro. 1)
- Puede ser utilizado como vista
- **EMPLEADO** Ejemplo OK.

E_Nombre	E_DNI	II E_Fecha_Nacimiento		Dirección_Laboral	
PROYECTO					
TRARA IA EN					

- Pauta Nro. 1
- E DNI • Diseñar esquemas tal que sea fácil de explicar su significado
 - No combinar atributos de diversos tipos de entidades y relaciones en una misma relación

P Número

Normalización - Pauta Nro. 2 - Almacenamiento

• Objetivo. Minimizar espacio de almacenamiento a través del diseño

Normalización - Pauta Nro. 2 - Almacenamiento

- Objetivo. Minimizar espacio de almacenamiento a través del diseño
- Ejemplo. ¿Qué hacer para que este diseño ocupe menos espacio de almacenamiento?

Diseño "A"

EMPLEADO_DEPARTAMENTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Normalización - Pauta Nro. 2 - Almacenamiento

- Objetivo. Minimizar espacio de almacenamiento a través del diseño
- Ejemplo. ¿Qué hacer para que este diseño ocupe menos espacio de almacenamiento?

Diseño "A"

EMPLEADO_DEPARTAMENTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Diseño "B"

EMPLEADO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto
Diego	20222333	11/12/1970	5
Laura	33456234	02/04/1985	5
Marina	45432345	23/07/2006	2
Santiago	24345345	18/02/1975	5

DEPARTAMENTO

Nro_Depto	D_Nombre	
5	Publicidad y Promoción	
2	Reclutamiento y Selección	

Normalización - Pauta Nro. 2 - Almacenamiento

- Objetivo. Minimizar espacio de almacenamiento a través del diseño
- Ejemplo. ¿Qué hacer para que este diseño ocupe menos espacio de almacenamiento?

Diseño "A"

EMPLEADO_DEPARTAMENTO

E_Nombre <u>E_DNI</u>		E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Diseño "B"

EMPLEADO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto
Diego	20222333	11/12/1970	5
Laura	33456234	02/04/1985	5
Marina	45432345	23/07/2006	2
Santiago	24345345	18/02/1975	5

DEPARTAMENTO

Nro_Depto	
5	Publicidad y Promoción
2	Reclutamiento y Selección

- <u>Diseño "A"</u> almacena NATURAL JOIN de <u>Diseño "B"</u>.
- Anomalías de Actualización. Almacenar NATURAL JOINs introduce problemas adicionales. Anomalías. Inserción, Deleción y Modificación.

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Qué sucede si se desea insertar un nuevo empleado y se desconoce ó aún no ha sido asignado a un Departamento?

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

¿Qué sucede si se desea insertar un nuevo empleado y se desconoce ó aún no ha sido asignado a un Departamento?

Insertar nuevo empleado requiere incluír valores en atributos de departamento o NULL (si aún no ha sido asignado a ninguno)

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	NULL	NULL

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Qué sucede si se desea insertar un nuevo empleado y se desconoce ó aún no ha sido asignado a un Departamento?

Insertar nuevo empleado requiere incluír valores en atributos de departamento o NULL (si aún no ha sido asignado a ninguno)

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	NULL	NULL

• ¿Qué problema surge al insertar empleado asociado al Depto. 5?

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

¿Qué sucede si se desea insertar un nuevo empleado y se desconoce ó aún no ha sido asignado a un Departamento?

Insertar nuevo empleado requiere incluír valores en atributos de departamento o NULL (si aún no ha sido asignado a ninguno)

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	NULL	NULL

• ¿Qué problema surge al insertar empleado asociado al Depto. 5? Insertar nuevo empleado a departamento 5, requiere que los datos del departamento sean *consistentes* con el resto de los registros

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	5	Publicaciones y Prop.

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Es posible insertar un nuevo departamento que aún no posee empleados asignados?

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Es posible insertar un nuevo departamento que aún no posee empleados asignados? ¡No!

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Inserción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

- ¿Es posible insertar un nuevo departamento que aún no posee empleados asignados? ¡No!
 - NULL en campos de empleados viola la integridad de la entidad (NULL en atributo clave E_DNI)
 - Quando se asigna el primer empleado a dicho depto. esta tupla ya no es mas necesaria.

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Deleción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Deleción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Qué consecuencia tiene eliminar el registro correspondiente a Marina?

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Deleción.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Qué consecuencia tiene eliminar el registro correspondiente a Marina?

	E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
	Diego	20222333	11/12/1970	5	Publicidad y Promoción
	Laura	33456234	02/04/1985	5	Publicidad y Promoción
Ī	Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Se pierde toda la información correspondiente al departamento 2

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Modificación.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Modificación.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

• ¿Qué sucede si se desea modificar "Publicidad y Promoción" por "Publicidad, Promoción y Comunicación Integral"

Normalización - Pauta Nro. 2 - Almacenamiento

1. Anomalías de Modificación.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad y Promoción
Laura	33456234	02/04/1985	5	Publicidad y Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad y Promoción

 ¿Qué sucede si se desea modificar "Publicidad y Promoción" por "Publicidad, Promoción y Comunicación Integral"
 Modificar el valor de un atributo de un departamento requiere modificar TODAS las tuplas de ese departamento. Caso contrario, se generan inconsistencias.

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Diego	20222333	11/12/1970	5	Publicidad, Promoción y Comunicación Integral
Laura	33456234	02/04/1985	5	Publicidad, Promoción
Marina	45432345	23/07/2006	2	Reclutamiento y Selección
Santiago	24345345	18/02/1975	5	Publicidad, Promoción

Normalización - Pauta Nro. 2 - Almacenamiento

Pauta Nro. 2.

- Diseñar esquemas tal que no permitan anomalías de inserción, deleción y modificación
- Si permiten anomalías, señalarlas claramente y asegurar que programas que actualizan BD operarán correctamente

Normalización - Pauta Nro. 2 - Almacenamiento

Pauta Nro. 2.

- Diseñar esquemas tal que no permitan anomalías de inserción, deleción y modificación
- Si permiten anomalías, señalarlas claramente y asegurar que programas que actualizan BD operarán correctamente

Perfomance.

- Notar que esta pauta puede ser violada en favor de la performance
- Ejemplo. Guardar en cada factura cuánto falta pagar (saldo). Esto claramente se puede recuperar "recorriendo" los pagos asociados a una factura, pero hay que hacerlo cada vez que un usuario pregunta cuánto debe un cliente determinado, y es una pregunta bastante frecuente. El costo de esto es que, cada vez que se paga una factura, o se anula un pago hay que ir a actualizar ese número
- En tal caso se debe señalar y actuar en consecuencia (Ej. triggers/store procedures que realicen automáticamente actualizaciones)

Normalización - Pauta Nro. 3 - NULLs

 Esquemas. Atributos no relacionados y agrupados en una misma tabla pueden generar múltiples NULLs en una misma tupla.

Normalización - Pauta Nro. 3 - NULLs

- Esquemas. Atributos no relacionados y agrupados en una misma tabla pueden generar múltiples NULLs en una misma tupla.
- Ejemplo.

EMPLEADO_DEPARTAMENTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	NULL	NULL

Normalización - Pauta Nro. 3 - NULLs

- Esquemas. Atributos no relacionados y agrupados en una misma tabla pueden generar múltiples NULLs en una misma tupla.
- Ejemplo.

EMPLEADO_DEPARTAMENTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	NULL	NULL

• Problemas. ¿ Qué sucede en cuanto espacio, semántica, JOIN?

Normalización - Pauta Nro. 3 - NULLs

- Esquemas. Atributos no relacionados y agrupados en una misma tabla pueden generar múltiples NULLs en una misma tupla.
- Ejemplo.

EMPLEADO_DEPARTAMENTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_Depto	D_Nombre
Santiago	24345345	18/02/1975	5	Publicidad y Promoción
Tamara	27354632	28/02/1979	NULL	NULL

- Problemas. ¿Qué sucede en cuanto espacio, semántica, JOIN?
 - Desperdicio espacio almacenamiento
 - JOINs (en presencia de NULLs, INNER JOIN produce distinto resultado vs. OUTER JOIN)
 - ¿Cómo se interpretan funciones de agregación (COUNT, SUM, etc.)?
 - Diversas interpretaciones de NULL
 - El resultado no aplica a la tupla. Ej. Registro_Conducir no aplica a menores
 - Valor conocido pero ausente. Ej. Fecha_Nacimiento de un empleado puede ser desconocida
 - Valor desconocido (No sabemos si existe). Ej. Un empleado puede que tenga telefono y no sabemos el valor o puede que no tenga.

Normalización - Pauta Nro. 3 - NULLs

- Pauta Nro. 3.
 - Evitar asignar atributos a relaciones, cuando estos frecuentemente pueden ser NULLs
 - Si NULLs son inevitables, asegurar que las situaciones son excepcionales y no aplican a la mayoría de las tuplas

Normalización - Pauta Nro. 4 - Tuplas Espúreas

Ejemplo. Esquema original

EMPLEADO_PROYECTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
Diego	20222333	11/12/1970	5	Argentina
Laura	33456234	02/04/1985	5	Argentina
Marina	45432345	23/07/2006	2	Uruguay
Santiago	24345345	18/02/1975	5	Argentina

Descomposición.

E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
20222333	11/12/1970	5	Argentina
33456234	02/04/1985	5	Argentina
45432345	23/07/2006	2	Uruguay
24345345	18/02/1975	5	Argentina

E_Nombre	P_Ubicación
Diego	Argentina
Laura	Argentina
Marina	Uruguay
Santiago	Argentina

Normalización - Pauta Nro. 4 - Tuplas Espúreas

Ejemplo. Esquema original

EMPLEADO_PROYECTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
Diego	20222333	11/12/1970	5	Argentina
Laura	33456234	02/04/1985	5	Argentina
Marina	45432345	23/07/2006	2	Uruguay
Santiago	24345345	18/02/1975	5	Argentina

Descomposición.

E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
20222333	11/12/1970	5	Argentina
33456234	02/04/1985	5	Argentina
45432345	23/07/2006	2	Uruguay
24345345	18/02/1975	5	Argentina

¿Qué	problema	genera	esta	descom	posición?

E_Nombre	P_Ubicación
<u>∟_ivombre</u>	P_UDICACION
Diego	Argentina
Laura	Argentina
Marina	Uruguay
Santiago	Argentina

Normalización - Pauta Nro. 4 - Tuplas Espúreas

Ejemplo. Esquema original

EMPLEADO_PROYECTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
Diego	20222333	11/12/1970	5	Argentina
Laura	33456234	02/04/1985	5	Argentina
Marina	45432345	23/07/2006	2	Uruguay
Santiago	24345345	18/02/1975	5	Argentina

Descomposición.

E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
20222333	11/12/1970	5	Argentina
33456234	02/04/1985	5	Argentina
45432345	23/07/2006	2	Uruguay
24345345	18/02/1975	5	Argentina

E_Nombre	P_Ubicación
Diego	Argentina
Laura	Argentina
Marina	Uruguay
Santiago	Argentina

¿Qué problema genera esta descomposición?
 No permite recuperar información original de EMPLEADO_PROYECTO

Normalización - Pauta Nro. 4 - Tuplas Espúreas

Ejemplo. Esquema original

EMPLEADO_PROYECTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
Diego	20222333	11/12/1970	5	Argentina
Laura	33456234	02/04/1985	5	Argentina
Marina	45432345	23/07/2006	2	Uruguay
Santiago	24345345	18/02/1975	5	Argentina

Descomposición.

E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
20222333	11/12/1970	5	Argentina
33456234	02/04/1985	5	Argentina
45432345	23/07/2006	2	Uruguay
24345345	18/02/1975	5	Argentina

E_Nombre	P_Ubicación
Diego	Argentina
Laura	Argentina
Marina	Uruguay
Santiago	Argentina

- ¿Qué problema genera esta descomposición?
 No permite recuperar información original de EMPLEADO_PROYECTO
- ¿Cuál es el resultado de aplicar NATURAL JOIN?

Normalización - Pauta Nro. 4 - Tuplas Espúreas

Ejemplo. Esquema original

EMPLEADO_PROYECTO

E_Nombre	E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
Diego	20222333	11/12/1970	5	Argentina
Laura	33456234	02/04/1985	5	Argentina
Marina	45432345	23/07/2006	2	Uruguay
Santiago	24345345	18/02/1975	5	Argentina

Descomposición.

E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P_Ubicación
20222333	11/12/1970	5	Argentina
33456234	02/04/1985	5	Argentina
45432345	23/07/2006	2	Uruguay
24345345	18/02/1975	5	Argentina

E_Nombre	P_Ubicación
Diego	Argentina
Laura	Argentina
Marina	Uruguay
Santiago	Argentina

- ¿Qué problema genera esta descomposición?
 No permite recuperar información original de EMPLEADO_PROYECTO
- ¿Cuál es el resultado de aplicar NATURAL JOIN?

 Produce tunlas espúreas (información no válida)

Produce tuplas espúreas (información no válida)

E_DNI	E_Fecha_Nacimiento	Nro_PROYECTO	P₋Ubicación	E_Nombre
20222333	11/12/1970	5	Argentina	Diego
33456234	02/04/1985	5	Argentina	Diego
24345345	18/02/1975	5	Argentina 4	<u></u> Diego ■

Normalización - Pauta Nro. 4 - Tuplas Espúreas

- No deseable. Esta descomposición no es deseable porque cuando se intenta la reconstrucción a través de NATURAL JOIN no se obtiene información correcta
- Causa. P_Ubicación, relaciona ambos esquemas, pero no es ni clave primaria ni clave foránea de ninguno de ellos

Normalización - Pauta Nro. 4 - Tuplas Espúreas

- No deseable. Esta descomposición no es deseable porque cuando se intenta la reconstrucción a través de NATURAL JOIN no se obtiene información correcta
- Causa. P_Ubicación, relaciona ambos esquemas, pero no es ni clave primaria ni clave foránea de ninguno de ellos
- Pauta Nro. 4.
 - Diseñar esquemas tal que puedan ser relacionados por atributos que se encuentren apropiadamente relacionados por medio de condiciones de igualdad entre ellos (clave primaria, clave foránea), para evitar generación de tuplas espúreas
 - Evitar relaciones que contengan atributos de matching que no sean combinación de claves foránea/clave primaria porque JOINS sobre ellos pueden producir tuplas espúreas

- Propósito. Herramienta formal para el análisis de esquemas. Permite detectar y describir problemas descriptos previamente
- Informalmente. Restricción entre dos conjuntos de atributos X e Y de una BD.
 Los valores que toman los atributos de Y dependen de los valores que tomen X

- Propósito. Herramienta formal para el análisis de esquemas. Permite detectar y describir problemas descriptos previamente
- Informalmente. Restricción entre dos conjuntos de atributos X e Y de una BD.
 Los valores que toman los atributos de Y dependen de los valores que tomen X
- Los valores que toman los atributos de Y dependen de los valores que tomen X
 Ejemplo.

 EMPLEADO PROYECTO

E_DNI	P_Número	Horas	E_Nombre	P_Nombre	P₋Ubicación

- Propósito. Herramienta formal para el análisis de esquemas. Permite detectar y describir problemas descriptos previamente
- Informalmente. Restricción entre dos conjuntos de atributos X e Y de una BD.
 Los valores que toman los atributos de Y dependen de los valores que tomen X

- Propósito. Herramienta formal para el análisis de esquemas. Permite detectar y describir problemas descriptos previamente
- Informalmente. Restricción entre dos conjuntos de atributos X e Y de una BD.
 Los valores que toman los atributos de Y dependen de los valores que tomen X

- DFs.
 - {E_DNI, P_Número} → Horas
 - $E_DNI \rightarrow E_Nombre$
 - P_N úmero $\rightarrow \{P_N$ ombre, P_U bicación $\}$

Formalmente.

- Esquema relacional de la BD posee n atributos $A_1, A_2, ..., A_n$
- Pensar toda la BD descripta por un solo esquema universal $R = \{A_1, A_2, ..., A_n\}$. Esto no implica que realmente la BD se almacene como una tabla universal. Sólo se usará este concepto para construir la teoría formal de las dependencias de datos.

Definición.

- Sean X e Y dos conjuntos de atributos incluídos en R
- La dependencia funcional (DF) indicada como X → Y especifica una restricción sobre las posibles tuplas que pueden conformar una instancia r de R
- Restricción: para cualquiera dos tuplas t_1 y t_2 en r tal que $t_1[X] = t_2[X]$, se debe cumplir $t_1[Y] = t_2[Y]$

Formalmente.

- Esquema relacional de la BD posee n atributos $A_1, A_2, ..., A_n$
- Pensar toda la BD descripta por un solo esquema universal $R = \{A_1, A_2, ..., A_n\}$. Esto no implica que realmente la BD se almacene como una tabla universal. Sólo se usará este concepto para construir la teoría formal de las dependencias de datos.

Definición.

- Sean X e Y dos conjuntos de atributos incluídos en R
- La dependencia funcional (DF) indicada como X → Y especifica una restricción sobre las posibles tuplas que pueden conformar una instancia r de R
- Restricción: para cualquiera dos tuplas t_1 y t_2 en r tal que $t_1[X] = t_2[X]$, se debe cumplir $t_1[Y] = t_2[Y]$

Ejemplo.

EMPLEADO_PROYECTO

E_DNI	P₋Número	Horas	E_Nombre	P_Nombre	P₋Ubicación
20222333	2	123	Diego	Área 51	C.A.B.A
20222333	5	12	Diego	Ýaca viva	Neuquén

 $\textbf{E_DNI} \rightarrow \textbf{E_Nombre}$

- DFs.
 - $\{E_DNI, P_Número\} \rightarrow Horas$
 - $E_DNI \rightarrow E_Nombre$
 - P_Número → {P_Nombre, P_Ubicación}

- DFs.
 - {E_DNI, P_N úmero} \rightarrow Horas
 - \bullet E_DNI \rightarrow E_Nombre
 - P_Número → {P_Nombre, P_Ubicación}
- Frase. "Y es funcionalmente dependiente de X"
- **Definición 1**. Conjunto de atributos X se denominan **lado izquierdo** de la DF
- Definición 2. Conjunto de atributos Y se denominan lado derecho de la DF

- DFs.
 - {E_DNI, P_Número} \rightarrow Horas
 - \bullet E_DNI \rightarrow E_Nombre
 - P_Número → {P_Nombre, P_Ubicación}
- Frase. "Y es funcionalmente dependiente de X"
- Definición 1. Conjunto de atributos X se denominan lado izquierdo de la DF
- **Definición 2.** Conjunto de atributos Y se denominan **lado derecho** de la DF

Decidir si las siguientes propiedades son Verdaderas o Falsas

- DFs.
 - $\{E_DNI, P_Número\} \rightarrow Horas$
 - \bullet E_DNI \rightarrow E_Nombre
 - P_Número → {P_Nombre, P_Ubicación}
- Frase. "Y es funcionalmente dependiente de X"
- Definición 1. Conjunto de atributos X se denominan lado izquierdo de la DF
- **Definición 2.** Conjunto de atributos Y se denominan **lado derecho** de la DF

Decidir si las siguientes propiedades son Verdaderas o Falsas

- Propiedad 1. Si X es clave candidata (CK) de R, entonces X → Y ∀ subconjunto de atributos Y de R.
- **Propiedad 1'.** Si X es CK de R, entonces $X \to R$.
- Propiedad 2. $X \rightarrow Y$ implica $Y \rightarrow X$.

- Semántica. DF son propiedad de la semántica (o significado) de los atributos.
- Diseño. Diseñadores de las BD deben usar su entendimiento de la semántica de atributos de R para especificar las DF y deberán respetar TODOS los r(R)

- Semántica. DF son propiedad de la semántica (o significado) de los atributos.
- Diseño. Diseñadores de las BD deben usar su entendimiento de la semántica de atributos de R para especificar las DF y deberán respetar TODOS los r(R)
- Instancias legales. r(R) que satisface restricciones de DF se denomina instancia legal, estado legal o extensión legal de R
- Inferencia de DF. Dada una relación con sus datos, no es posible determinar sus DF a través de sus valores. Es necesario conocer el significado y relación que existe entre los atributos que la componen

- Semántica. DF son propiedad de la semántica (o significado) de los atributos.
- Diseño. Diseñadores de las BD deben usar su entendimiento de la semántica de atributos de R para especificar las DF y deberán respetar TODOS los r(R)
- Instancias legales. r(R) que satisface restricciones de DF se denomina instancia legal, estado legal o extensión legal de R
- Inferencia de DF. Dada una relación con sus datos, no es posible determinar sus DF a través de sus valores. Es necesario conocer el significado y relación que existe entre los atributos que la componen
- Ejemplo. ¿Cuáles son las DF? DICTA

Profesor	Curso	Libro
Pérez	Algo I	Dijkstra
Fernández	Algo II	Ullman
Ruz	BDs	Elmasri
Pérez	SO	Tanenbaum

- Semántica. DF son propiedad de la semántica (o significado) de los atributos.
- Diseño. Diseñadores de las BD deben usar su entendimiento de la semántica de atributos de R para especificar las DF y deberán respetar TODOS los r(R)
- Instancias legales. r(R) que satisface restricciones de DF se denomina instancia legal, estado legal o extensión legal de R
- Inferencia de DF. Dada una relación con sus datos, no es posible determinar sus DF a través de sus valores. Es necesario conocer el significado y relación que existe entre los atributos que la componen
- Ejemplo. ¿Cuáles son las DF? DICTA

Profesor	Curso	Libro
Pérez	Algo I	Dijkstra
Fernández	Algo II	Ullman
Ruz	BDs	Elmasri
Pérez	SO	Tanenbaum

- Existencia. Una DF puede existir si la cumple una instancia r(R)
 - Para "confirmar" la existencia de una DF es necesario conocer la semántica de sus atributos
 - Para <u>"descartar"</u> la existencia de una DF sólo basta mostrar la existencia de tuplas que violan dicha "potencial" DF

- Semántica. DF son propiedad de la semántica (o significado) de los atributos.
- Diseño. Diseñadores de las BD deben usar su entendimiento de la semántica de atributos de R para especificar las DF y deberán respetar TODOS los r(R)
- Instancias legales. r(R) que satisface restricciones de DF se denomina instancia legal, estado legal o extensión legal de R
- Inferencia de DF. Dada una relación con sus datos, no es posible determinar sus DF a través de sus valores. Es necesario conocer el significado y relación que existe entre los atributos que la componen
- Ejemplo. ¿Cuáles son las DF? DICTA

1	Froiesor	Curso	LIDIO
	Pérez	Algo I	Dijkstra
	Fernández	Algo II	Ullman
	Ruz	BDs	Elmasri
	Pérez	SO	Tanenbaum

- Existencia. Una DF puede existir si la cumple una instancia r(R)
 - Para <u>"confirmar"</u> la existencia de una DF es necesario conocer la semántica de sus atributos
 - Para <u>"descartar"</u> la existencia de una DF sólo basta mostrar la existencia de tuplas que violan dicha "potencial" DF
- Notación. Conjunto de DF, se denota como F
- Inferencia. Diseñador especifica DFs que son semánticamente obvias. Existen

- Se asume.
 - Se cuenta con el conjunto de DF para cada relación
 - Cada relación tiene designada su Clave Primaria (PK)

- Se asume.
 - Se cuenta con el conjunto de DF para cada relación
 - Cada relación tiene designada su Clave Primaria (PK)
- Proceso de Normalización.
 - Propuesto por Codd (1972a)
 - A cada esquema ejecutarle una serie de test para certificar que satisface una forma normal

- Se asume.
 - Se cuenta con el conjunto de DF para cada relación
 - Cada relación tiene designada su Clave Primaria (PK)
- Proceso de Normalización.
 - Propuesto por Codd (1972a)
 - A cada esquema ejecutarle una serie de test para certificar que satisface una forma normal
- Normalización de los datos.
 - Proceso de analizar los esquemas, basándose en DF y PK
 - Objetivo: lograr propiedades deseables
 - Minimizar redundancia
 - Minimizar anomalías de inserción, deleción y modificación
 - Esquemas que no pasan ciertos test de formas normales, se decomponen en esquemas más pequeños que pasan el test (y sus propiedades)

- Se asume.
 - Se cuenta con el conjunto de DF para cada relación
 - Cada relación tiene designada su Clave Primaria (PK)
- Proceso de Normalización.
 - Propuesto por Codd (1972a)
 - A cada esquema ejecutarle una serie de test para certificar que satisface una forma normal
- Normalización de los datos.
 - Proceso de analizar los esquemas, basándose en DF y PK
 - Objetivo: lograr propiedades deseables
 - Minimizar redundancia
 - Minimizar anomalías de inserción, deleción y modificación
 - Esquemas que no pasan ciertos test de formas normales, se decomponen en esquemas más pequeños que pasan el test (y sus propiedades)
- Definición. La forma normal de una relación refiere a la mayor forma normal alcanzada por ella

 Sin garantía. Las formas normales, consideradas aisladas de otros factores, no garantizan un buen diseño de la BD

- Sin garantía. Las formas normales, consideradas aisladas de otros factores, no garantizan un buen diseño de la BD
- Propiedades. Luego de proceso de normalización por descomposición
 - Nonadditive Join (Lossless Join). Garantía de que no ocurre problema de generación de tuplas espúreas. La relación original tiene que poder ser recuperada de la descomposición.
 - Preservación de DF. Garantía de que cada DF se encuentra representada en algún esquema resultante de la descomposición
- Lossless Join debe lograrse a cualquier costo
- Preservación de DF. Es deseable, pero en algunos casos es sacrificada

Súper Clave (SK).

• Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K).

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK).

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK).

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK
- Clave Secundaria.

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK
- Clave Secundaria. CK que no es PK

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK
- Clave Secundaria. CK que no es PK
- Atributo primo.

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK
- O Clave Secundaria. CK que no es PK
- ullet Atributo primo. Atributo de un esquema R que pertenece a alguna CK de R

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK
- O Clave Secundaria. CK que no es PK
- ullet Atributo primo. Atributo de un esquema R que pertenece a alguna CK de R
- Requisito. En la práctica, todos los esquemas deben poseer PK

- Súper Clave (SK). Una SK de $R = \{A_1, A_2, ..., A_n\}$ es un subconjunto de atributos $S \subseteq R$ con la propiedad de que no hay dos tuplas t_1 , t_2 en un estado legal r(R) que cumplan $t_1(S) = t_2(S)$
- Clave (K). Una clave K es una SK con la propiedad adicional de que al remover cualquier atributo de K, deja de ser SK. Es decir, K es una SK minimal
- Clave Candidata (CK). Si un esquema posee más de una clave, cada una de ellas se denominan clave candidata
- Clave Primaria (PK). Una de las CK es designada arbitrariamente como PK
- O Clave Secundaria. CK que no es PK
- ullet Atributo primo. Atributo de un esquema R que pertenece a alguna CK de R
- Requisito. En la práctica, todos los esquemas deben poseer PK
- Ejercicio. Proponer un Esquema con todos estos elementos e identificarlos

1FN.

- Prohíbe relaciones dentro de relaciones o relaciones como valores de atributos dentro de tuplas
- Admite El dominio de un atributo debe incluir sólo valores atómicos (simples e indivisibles). En la tupla, puede tomar 1 solo valor del dominio.

- 1FN.
 - Prohíbe relaciones dentro de relaciones o relaciones como valores de atributos dentro de tuplas
 - Admite El dominio de un atributo debe incluir sólo valores atómicos (simples e indivisibles). En la tupla, puede tomar 1 solo valor del dominio.
- Ejemplo.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

• ¿Está en 1FN?

- 1FN.
 - Prohíbe relaciones dentro de relaciones o relaciones como valores de atributos dentro de tuplas
 - Admite El dominio de un atributo debe incluir sólo valores atómicos (simples e indivisibles). En la tupla, puede tomar 1 solo valor del dominio.
- Ejemplo.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

• ¿Está en 1FN? ¡No! D_Areas_Influencia no es un atributo atómico

- Técnicas para alcanzar 1FN.
 - Remover atributo que viola 1FN y ubicarlo en una nueva relación, DEPTO_AREAS, junto con la PK D_Número. La nueva relación tiene como PK ambos atributos

- Técnicas para alcanzar 1FN.
 - Remover atributo que viola 1FN y ubicarlo en una nueva relación, DEPTO_AREAS, junto con la PK D_Número. La nueva relación tiene como PK ambos atributos

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

Introducció 1FN 2FN 3FN

FN basadas en PK - 1FN

- Técnicas para alcanzar 1FN.
 - Remover atributo que viola 1FN y ubicarlo en una nueva relación, DEPTO_AREAS, junto con la PK D_Número. La nueva relación tiene como PK ambos atributos

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL
Investigación	2	27-23345876-9
Prensa	3	20-17283948-4
Administración	8	27-38476827-2

DEPTO AREAS

_	
D_Número	D_Areas_Influencia
2	Argentina
2	Brasil
2	Uruguay
3	Chile
8	Argentina

- Técnicas para alcanzar 1FN.
 - Expandir la PK que permita que exista más de un mismo D_Número, pero con distinta área de influencia.

- Técnicas para alcanzar 1FN.
 - Expandir la PK que permita que exista más de un mismo D_Número, pero con distinta área de influencia.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

- Técnicas para alcanzar 1FN.
 - Expandir la PK que permita que exista más de un mismo D_Número, pero con distinta área de influencia.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

DEPARTAMENTO

	= = : : : : : : : : : : : : : : : : : :				
D_NOMBRE	D_Número	D_MGR_CUIL	D_Area_Influencia		
Investigación	2	27-23345876-9	Argentina		
Investigación	2	27-23345876-9	Brasil		
Investigación	2	27-23345876-9	Uruguay		
Prensa	3	20-17283948-4	Chile		
Administración	8	27-38476827-2	Argentina		

¿Qué problema tiene esta solución?

- Técnicas para alcanzar 1FN.
 - Expandir la PK que permita que exista más de un mismo D_Número, pero con distinta área de influencia.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Area_Influencia
Investigación	2	27-23345876-9	Argentina
Investigación	2	27-23345876-9	Brasil
Investigación	2	27-23345876-9	Uruguay
Prensa	3	20-17283948-4	Chile
Administración	8	27-38476827-2	Argentina

• ¿Qué problema tiene esta solución? Introduce redundancia en la relación

- Técnicas para alcanzar 1FN.
 - Si se conoce la máxima cantidad de valores que puede tomar el atributo, se pueden generar tantos atributos como esa cantidad.

- Técnicas para alcanzar 1FN.
 - Si se conoce la máxima cantidad de valores que puede tomar el atributo, se pueden generar tantos atributos como esa cantidad.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

Técnicas para alcanzar 1FN.

Si se conoce la máxima cantidad de valores que puede tomar el atributo, se pueden generar tantos atributos como esa cantidad.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Area_Influencia_1	D_Area_Influencia_2	D_Area_Influencia_3
Investigación	2	27-23345876-9	Uruguay	Brasil	Argentina
Prensa	3	20-17283948-4	Chile	NULL	NULL
Administración	8	27-38476827-2	Argentina	NULL	NULL

- Técnicas para alcanzar 1FN.
 - Si se conoce la máxima cantidad de valores que puede tomar el atributo, se pueden generar tantos atributos como esa cantidad.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Area_Influencia_1	D_Area_Influencia_2	D_Area_Influencia_3
Investigación	2	27-23345876-9	Uruguay	Brasil	Argentina
Prensa	3	20-17283948-4	Chile	NULL	NULL
Administración	8	27-38476827-2	Argentina	NULL	NULL

• ¿Qué problema tiene esta solución?

Introducció 1FN 2FN 3FN

FN basadas en PK - 1FN

Técnicas para alcanzar 1FN.

Si se conoce la máxima cantidad de valores que puede tomar el atributo, se pueden generar tantos atributos como esa cantidad.

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Areas_Influencia
Investigación	2	27-23345876-9	{Argentina, Brasil, Uruguay}
Prensa	3	20-17283948-4	{Chile}
Administración	8	27-38476827-2	{Argentina}

DEPARTAMENTO

D_NOMBRE	D_Número	D_MGR_CUIL	D_Area_Influencia_1	D_Area_Influencia_2	D_Area_Influencia_3
Investigación	2	27-23345876-9	Uruguay	Brasil	Argentina
Prensa	3	20-17283948-4	Chile	NULL	NULL
Administración	8	27-38476827-2	Argentina	NULL	NULL

- ¿Qué problema tiene esta solución?
 - Introducción de valores NULL en casos que la tupla no posee 3 valores para área
 - ¿Cuál es la semántica en cuanto a la ubicación de los valores de área?
 - Consultas acerca del área se vuelven más complejas. Ej. Listar todos los Departamentos cuya área de influencia incluye a "Argentina"

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles
- Múltiples atributos multivaludados. Debe manejarse con cuidado
- Ejemplo.

P_CUIL	P_Cédula_Azul	Teléfonos
27-23345876-9	{JYF 456, PFR 345, KOL 102}	{11-4567-2321, 11-6783-9283}
20-17283948-4	{RUI 234, FGH 736}	{2345-423-3456, 11-2343-2342, 11-2321-2321}

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles
- Múltiples atributos multivaludados. Debe manejarse con cuidado
- Ejemplo.

PERSONA

ı	P_CUIL	P_Cédula_Azul	Teléfonos
	27-23345876-9	{JYF 456, PFR 345, KOL 102}	{11-4567-2321, 11-6783-9283}
	20-17283948-4	{RUI 234, FGH 736}	{2345-423-3456, 11-2343-2342, 11-2321-2321}

Aplicando "textualmente" Estrategia Nro. 2.
 PERSONA_CEDULA_TELÉFONO
 P_CUIL | P_Cédula_Azul | P_Teléfono

¿Qué problema produce?

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles
- Múltiples atributos multivaludados. Debe manejarse con cuidado
- Ejemplo.

PEF	RSO	NA
-----	-----	----

P_CUIL	P_Cédula_Azul	Teléfonos
27-23345876-9	{JYF 456, PFR 345, KOL 102}	{11-4567-2321, 11-6783-9283}
20-17283948-4	{RUI 234, FGH 736}	{2345-423-3456, 11-2343-2342, 11-2321-2321}

 Aplicando "textualmente" Estrategia Nro. 2. PERSONA_CEDULA_TELÉFONO

P_CUIL | P_Cédula_Azul | P_Teléfono

 ¿Qué problema produce? Genera relación no existente entre P_Cédula_Azul y P_Teléfono

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles
- Múltiples atributos multivaludados. Debe manejarse con cuidado
- Ejemplo.

PEF	RSO	NA
-----	-----	----

P_CUIL	P_Cédula_Azul	Teléfonos
27-23345876-9	{JYF 456, PFR 345, KOL 102}	{11-4567-2321, 11-6783-9283}
20-17283948-4	{RUI 234, FGH 736}	{2345-423-3456, 11-2343-2342, 11-2321-2321}

 Aplicando "textualmente" Estrategia Nro. 2. PERSONA_CEDULA_TELÉFONO

P_CUIL | P_Cédula_Azul | P_Teléfono

 ¿Qué problema produce? Genera relación no existente entre P_Cédula_Azul y P_Teléfono

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles
- Múltiples atributos multivaludados. Debe manejarse con cuidado
- Ejemplo.

PERSON	NΑ
--------	----

P_CUIL	P_Cédula_Azul	Teléfonos
27-23345876-9	{JYF 456, PFR 345, KOL 102}	{11-4567-2321, 11-6783-9283}
20-17283948-4	{RUI 234, FGH 736}	{2345-423-3456, 11-2343-2342, 11-2321-2321}

 Aplicando "textualmente" Estrategia Nro. 2. PERSONA_CEDULA_TELÉFONO

P_CUIL P_Cédula_Azul P_Teléfono

- ¿Qué problema produce? Genera relación no existente entre P_Cédula_Azul y P_Teléfono
- Solución.

Introducció 1FN 2FN 3FN

FN basadas en PK - 1FN

- Mejor solución. La primer opción suele ser la mejor porque no sufre de redundancia y es genérica (no se limita a un máximo de valores posibles)
- Recursividad. La Técnica se puede utilizar recursivamente para múltiples niveles
- Múltiples atributos multivaludados. Debe manejarse con cuidado
- Ejemplo.

			PERSONA
~	5.6(1.4		

P_CUIL	P_Cedula_Azul	Telefonos	
27-23345876-9	{JYF 456, PFR 345, KOL 102}	{11-4567-2321, 11-6783-9283}	
20-17283948-4	{RUI 234, FGH 736}	{2345-423-3456, 11-2343-2342, 11-2321-2321}	

Aplicando "textualmente" Estrategia Nro. 2.
 PERSONA_CEDULA_TELÉFONO
 P_CUIL | P_Cédula_Azul | P_Teléfono

- ¿Qué problema produce? Genera relación no existente entre P_Cédula_Azul y P_Teléfono
- Solución. Utilizar Estrategia Nro. 1

PERSONA_CÉDULA
P_CUIL | P_Cédula_Azul |

PERSONA_TELÉFONO
P_CUIL P_Teléfonos

- Relaciones anidadas. Cuando el valor de una tupla es una relación.
- 1NF prohíbe relaciones anidadas

Ejemplo.

EMP_PROY

		Proyect	tos
E_CUIL	E_Nombre	P_Número	Horas
27-23345876-9	Diego	1	20,5
		2	3,5
20-17283948-4	Laura	4	10
27-38476827-2	Marina	2	7,5
		4	11,5
		7	3,0

• E_CUIL es PK de EMP_PROY. P_Número es clave parcial de relación anidada

Ejemplo.

EMP_PROY

		Proyect	os
E_CUIL	E_Nombre	P_Número	Horas
27-23345876-9	Diego	1	20,5
		2	3,5
20-17283948-4	Laura	4	10
27-38476827-2	Marina	2	7,5
		4	11,5
		7	3,0

- E_CUIL es PK de EMP_PROY. P_Número es clave parcial de relación anidada
- Técnica para alcanzar 1FN.
 - Mover atributos de relación anidada a una nueva relación
 - Agregar a la nueva relación la PK de relación original
 - PK de la nueva relación es: Clave parcial + PK relación original

Introducción 1FN 2FN 3FN

FN basadas en PK - 1FN

Ejemplo.

EMP_PROY

		Proyect	cos
E_CUIL	E_Nombre	P_Número	Horas
27-23345876-9	Diego	1	20,5
		2	3,5
20-17283948-4	Laura	4	10
27-38476827-2	Marina	2	7,5
		4	11,5
		7	3,0

- E_CUIL es PK de EMP_PROY. P_Número es clave parcial de relación anidada
- Técnica para alcanzar 1FN.
 - Mover atributos de relación anidada a una nueva relación
 - Agregar a la nueva relación la PK de relación original
 - ullet PK de la nueva relación es: Clave parcial + PK relación original

EMP

EMP PROY

E_CUIL	E_Nombre
27-23345876-9	Diego
20-17283948-4	Laura
27-38476827-2	Marina

E_CUIL	P_Número	Horas
27-23345876-9	1	20,5
27-23345876-9	2	3,5
20-17283948-4	4	10
27-38476827-2	2	7,5
27-38476827-2	4	11,5
27-38476827-2	> < 17₹ > <	30 ∢

- ullet DF Completa. Una DF X o Y es Completa si al eliminar algún atributo A de X la DF deja de existir
- **DF Parcial.** Una DF $X \to Y$ es Parcial si es posible eliminar algún atributo A de X y la DF continúa existiendo

- DF Completa. Una DF X → Y es Completa si al eliminar algún atributo A de X la DF deja de existir
- **DF Parcial.** Una DF $X \to Y$ es Parcial si es posible eliminar algún atributo A de X y la DF continúa existiendo
- Horas depende de manera Completa de PK
- E_Nombre depende de manera Parcial de PK
- P_Nombre y P_Ubicación dependen de manera Parcial de PK

- DF Completa. Una DF X → Y es Completa si al eliminar algún atributo A de X la DF deja de existir
- **DF Parcial.** Una DF $X \to Y$ es Parcial si es posible eliminar algún atributo A de X y la DF continúa existiendo

- Horas depende de manera Completa de PK
- E₋Nombre depende de manera Parcial de PK
- P_Nombre y P_Ubicación dependen de manera Parcial de PK
- 2FN. Un esquema R está en 2FN si todo atributo no primo A de R depende funcionalmente de manera completa de la PK de R

- **DF Completa.** Una DF $X \to Y$ es Completa si al eliminar algún atributo A de X la DF deja de existir
- DF Parcial. Una DF $X \to Y$ es Parcial si es posible eliminar algún atributo A de X y la DF continúa existiendo
- Horas depende de manera Completa de PK
- E_Nombre depende de manera Parcial de PK
- P_Nombre y P_Ubicación dependen de manera Parcial de PK
- 2FN. Un esquema R está en 2FN si todo atributo no primo A de R depende funcionalmente de manera completa de la PK de R
- Tips.
 - Verificar sólo DFs cuyos lado izq. posean atributos que sean parte de la PK; si la PK es un solo atributo no es necesario realizar ningún test. ¿Por qué?

• ¿Está en 2FN?

• ¿Está en 2FN? ¡NO! Se ve, por DF 2 y DF 3, que hay atributos que dependen parcialmente de la PK

- ¿Está en 2FN? ¡NO! Se ve, por DF 2 y DF 3, que hay atributos que dependen parcialmente de la PK
- Decomposición en 2FN

 Dependencia Transitiva Una DF X → Y en R es Transitiva, si existe un conjunto de atributos Z en R que no son ni Clave Candidata ni un subconjunto de alguna Clave de R, tal que X → Z y Z → Y

- Dependencia Transitiva Una DF X → Y en R es Transitiva, si existe un conjunto de atributos Z en R que no son ni Clave Candidata ni un subconjunto de alguna Clave de R, tal que X → Z y Z → Y
- Ejemplo.

- Dependencia Transitiva Una DF X → Y en R es Transitiva, si existe un conjunto de atributos Z en R que no son ni Clave Candidata ni un subconjunto de alguna Clave de R, tal que X → Z y Z → Y
- Ejemplo.

La DF $E_CUIL \rightarrow D_Nombre$ es transitiva a través de Nro_Depto ya que:

- Existe E_CUIL → Nro_Depto
- Existe Nro_Depto → D_Nombre
- Nro_Depto no es ni clave candidata ni parte de una clave de EMPLEADO_DEPARTAMENTO

- Dependencia Transitiva Una DF X → Y en R es Transitiva, si existe un conjunto de atributos Z en R que no son ni Clave Candidata ni un subconjunto de alguna Clave de R, tal que X → Z y Z → Y
- Ejemplo.

La DF $E_CUIL \rightarrow D_Nombre$ es transitiva a través de Nro_Depto ya que:

- Existe E_CUIL → Nro_Depto
- Existe Nro_Depto → D_Nombre
- Nro_Depto no es ni clave candidata ni parte de una clave de EMPLEADO_DEPARTAMENTO
- 3FN. Un esquema R está en 3FN si está en 2FN y ningún atributo no primo de R depende transitivamente de la PK

Ejemplo.

Ejemplo.

• ¿Está en 2FN?

Ejemplo.

• ¿Está en 2FN? ¡Sí! No hay dependencias parciales sobre la PK

Ejemplo.

- ¿Está en 2FN? ¡Sí! No hay dependencias parciales sobre la PK
- ¿Está en 3FN?

Ejemplo.

- ¿Está en 2FN? ¡Sí! No hay dependencias parciales sobre la PK
- ¿Está en 3FN? ¡NO! \exists dependencia transitiva $E_CUIL \rightarrow D_Nombre$

Ejemplo.

- ¿Está en 2FN? ¡Sí! No hay dependencias parciales sobre la PK
- ¿Está en 3FN? ¡NO! \exists dependencia transitiva $E_CUIL \rightarrow D_Nombre$
- Descomposición en 3FN.

 ED1 ⋈ ED2 recompone EMPLEADO_DEPARTAMENTO sin generar tuplas espúreas

- 2FN. Un esquema R está en 2FN si todo atributo no primo A de R no depende parcialmente (de manera funcional) de ninguna clave de R
- 2FN. Definición Alternativa. Un esquema R está en 2FN si todo atributo no primo A de R depende completamente (de manera funcional) de todas las claves de R

• ¿Está en 2FN?

• ¿Está en 2FN? ¡No! Tasa_Impuesto depende parcialmente de una CK (ver DF3)

• Ejemplo. CK

	LUILS					
ĺ	<u>id_Nacional</u>	Provincia	id_Provincial	Zonificación	Precio_m2	Tasa_Impuesto
DF1	. L	1	1	↑	↑	
DF2	: 1					↑
DF3	;					
DF4						

- ¿Está en 2FN? ¡No! Tasa_Impuesto depende parcialmente de una CK (ver DF3)
- Descomposición en 2FN.

	LOTES					
	<u>id_Nacional</u>	Provincia	id_Provincial	Zonificación	Precio_m2	Tasa_Impuesto
DF1	. L	1	1	↑	↑	
DF2	: ←					↑
DF3	}					
DF4						

- ¿Está en 2FN? ¡No! Tasa_Impuesto depende parcialmente de una CK (ver DF3)
- Descomposición en 2FN.

- 3FN. Un esquema R está en 3FN si, para toda dependencia funcional no trivial
 X → A de R, se cumple alguna de las siguientes condiciones:
 - X es SK de R
 - A es atributo primo de R
- **DF trivial.** La DF $A \to B$ es trivial si B es un subconjunto de atributos de A. Ej. $A \to A$ es una DF trivial

- 3FN. Un esquema R está en 3FN si, para toda dependencia funcional no trivial
 X → A de R, se cumple alguna de las siguientes condiciones:
 - X es SK de R
 - A es atributo primo de R
- **DF trivial.** La DF $A \to B$ es trivial si B es un subconjunto de atributos de A. Ej. $A \to A$ es una DF trivial
- Ejemplo.

• ¿LOTES_1 está en 3FN?

- 3FN. Un esquema R está en 3FN si, para toda dependencia funcional no trivial
 X → A de R, se cumple alguna de las siguientes condiciones:
 - X es SK de R
 - A es atributo primo de R
- **DF trivial.** La DF $A \to B$ es trivial si B es un subconjunto de atributos de A. Ej. $A \to A$ es una DF trivial
- Ejemplo.

• ¿LOTES_1 está en 3FN? ¡No! Debido a DF 3 y DF 4

- 3FN. Un esquema R está en 3FN si, para toda dependencia funcional no trivial
 X → A de R, se cumple alguna de las siguientes condiciones:
 - X es SK de R
 - A es atributo primo de R
- **DF trivial.** La DF $A \to B$ es trivial si B es un subconjunto de atributos de A. Ej. $A \to A$ es una DF trivial
- Ejemplo.

- ¿LOTES_1 está en 3FN? ¡No! Debido a DF 3 y DF 4
- ¿LOTES_2 está en 3FN?

- 3FN. Un esquema R está en 3FN si, para toda dependencia funcional no trivial
 X → A de R, se cumple alguna de las siguientes condiciones:
 - X es SK de R
 - A es atributo primo de R
- **DF trivial.** La DF $A \to B$ es trivial si B es un subconjunto de atributos de A. Ej. $A \to A$ es una DF trivial
- Ejemplo.

- ¿LOTES_1 está en 3FN? ¡No! Debido a DF 3 y DF 4
- ¿LOTES_2 está en 3FN? ¡Sí! Provincia es SK

Ejemplo.

LOTES_1

	id_Nacional	Provincia	id_Provincial	Zonificación	Precio_m2
DF1		↑	↑	↑	
DF2	↑	ļ			
DF4					

Ejemplo.

	id_Nacional	Provincia	id_Provincial	Zonificación	Precio_m2
DF1		↑	^	↑	
DF2	↑				
DF4					

Descomposición en 3FN.

Ejemplo.

	id_Nacional	Provincia	id₋Provincial	Zonificación	Precio_m2
DF1		↑	↑	↑	
DF2	↑				
DF4					

Descomposición en 3FN.

LOTES_1A

	id_Nacional	Provincia	id_Provincial	Zonificación
DF1		1	↑	
DF2	1	1	1	^

Definición General - BCFN (Boyce-Codd Normal Form)

Ejemplo.

- Restricciones adicionales.
 - Sólo 2 provincias: San Juan y Mendoza
 - Zonificación San Juan: SJ1, SJ2, SJ3, SJ4, SJ5
 - Zonificación Mendoza: MA, ME, MI, MO, MU

Definición General - BCFN (Boyce-Codd Normal Form)

Ejemplo.

LOTES_1A

	id_Nacional	Provincia	id_Provincial	Zonificación
DF1		↑	↑	
DF2	←			↑

- Restricciones adicionales.
 - Sólo 2 provincias: San Juan y Mendoza
 - Zonificación San Juan: SJ1, SJ2, SJ3, SJ4, SJ5
 - Zonificación Mendoza: MA, ME, MI, MO, MU
- Nuevo Ejemplo.

LOTES_1A

	id_Nacional	Provincia	id_Provincial	Zonificación
DF1				
DF2				
DF5				

• ¿Está en 3FN?

Definición General - BCFN (Boyce-Codd Normal Form)

Ejemplo.

LOTES_1A

Į	id_Nacional	Provincia	id_Provincial	Zonificación
DF1			<u> </u>	
DF2	1			↑

- Restricciones adicionales.
 - Sólo 2 provincias: San Juan y Mendoza
 - Zonificación San Juan: SJ1, SJ2, SJ3, SJ4, SJ5
 - Zonificación Mendoza: MA, ME, MI, MO, MU
- Nuevo Ejemplo.

LOTES_1A

_	-			
ic	I_Nacional	Provincia	id_Provincial	Zonificación
DF1		1	↑	
DF2	↑		ı	
DF5		↑		

 ¿Está en 3FN? ¡Sí! ... pero existe redundancia. Provincia se puede deducir de Zonificación

Nuevo Ejemplo.

Descomposición Boyce-Codd FN (BCFN).

Nuevo Ejemplo.

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX		
id_Nacional	Zonificación	id_Provincial

Nuevo Ejemplo.

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX			LOTES_1AY
id_Nacional	Zonificación	id_Provincial	<u>Zonificación</u>

- Redundancia. Esta representación la reduce
- Pérdida de DF. En la descomposición se pierde DF 2 dado que sus atributos dejan de coexistir

Provincia

Nuevo Ejemplo.

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX			LOTES_1AY	
id_Nacional	Zonificación	id_Provincial	<u>Zonificación</u>	Provincia

- Redundancia. Esta representación la reduce
- Pérdida de DF. En la descomposición se pierde DF 2 dado que sus atributos dejan de coexistir
- BCFN. Un esquema R está en BCFN si, para toda dependencia funcional no trivial X → A de R, X es SK de R

Nuevo Ejemplo.

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX	(LOTES_1AY	•
id_Nacional	Zonificación	id_Provincial	Zonificación	Provincia

- Redundancia. Esta representación la reduce
- Pérdida de DF. En la descomposición se pierde DF 2 dado que sus atributos dejan de coexistir
- BCFN. Un esquema R está en BCFN si, para toda dependencia funcional no trivial $X \rightarrow A$ de R, X es SK de R
- BCFN vs 3FN. BCFN es más restrictiva que 3FN ya que BCFN no permite que A sea primo

• Template. Visión esquemática de 3FN y no BCFN

• Ejemplo 2.

• ¿Está en 3FN?

• Ejemplo 2.

• ¿Está en 3FN? ¡Sí!

Ejemplo 2.

- ¿Está en 3FN? ¡Sí!
- ¿Está en BCFN?

Ejemplo 2.

- ¿Está en 3FN? ¡Sí!
- ¿Está en BCFN? ¡No!

Ejemplo 2.

- ¿Está en 3FN? ¡Sí!
- ¿Está en BCFN? ¡No!
- Descomposición 1. (Estudiante en ambas relaciones)

• Descomposición 2. (Materia en ambas relaciones)

Materia	Instructor	<u>Materia</u>	<u>Estudiante</u>

• Descomposición 3. (Instructor en ambas relaciones)

•		,
Instructor	Materia	Instructor

Ejemplo 2.

- ¿Está en 3FN? ¡Sí!
- ¿Está en BCFN? ¡No!
- Descomposición 1. (Estudiante en ambas relaciones)

Descomposición 2. (Materia en ambas relaciones)

Materia	<u>Instructor</u>	<u>Materia</u>	<u>Estudiante</u>

Descomposición 3. (Instructor en ambas relaciones)

Instructor	Materia	Instructor

- Las tres descomposiciones pierden la DF 1
- La única descomposición deseable es la 3, ya que no genera tuplas espúreas en el JOIN

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $\bullet \quad F \! = \! \{ E_CUIL \! \to \! Nro_Depto, Nro_Depto \! \to \! D_Nombre \}$

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - De ambas DFs se puede inferir que E_CUIL→D_Nombre

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - De ambas DFs se puede inferir que E_CUIL→D_Nombre
- Inferencia. Una DF $X \rightarrow Y$ es inferida de o implicada por un conjunto de DFs F de R si se cumple $X \rightarrow Y$ en toda instancia legal r(R). Es decir, siempre que r(R) satisface F, se cumple $X \rightarrow Y$

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL, Nro_Depto, D_Nombre}
 - $\bullet \quad F \! = \! \{ E_CUIL \! \to \! Nro_Depto \, , \! Nro_Depto \, \to \! D_Nombre \}$
 - De ambas DFs se puede inferir que E_CUIL→D_Nombre
- Inferencia. Una DF X→Y es inferida de o implicada por un conjunto de DFs F de R si se cumple X→Y en toda instancia legal r(R). Es decir, siempre que r(R) satisface F, se cumple X→Y
- Clausura. Conjunto de todas las DFs de F más todas las DFs que puedan ser inferidas de F. Se denota como F+
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - $F^+ = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre, E_CUIL \rightarrow D_Nombre, ...\}$
- lacktriangle Necesidad. Para calcular F^+ es necesario un método: Reglas de inferencia

Normalización - Reglas de Inferencia (Cont.)

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
 - Propiedades.
 - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1 a RI3, se cumple en cualquier estado r(R) que satisface F
 - Completa (Complete). F⁺ puede ser determinado a partir de F aplicando solamente RI1 a RI3

Normalización - Reglas de Inferencia (Cont.)

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
 - Propiedades.
 - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1 a RI3, se cumple en cualquier estado r(R) que satisface F
 - Completa (Complete). F⁺ puede ser determinado a partir de F aplicando solamente RI1 a RI3
- Reglas de Inferencia Adicionales. (corolarios de Armstrong)

Normalización - Reglas de Inferencia (Cont.)

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
 - Propiedades.
 - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1 a RI3, se cumple en cualquier estado r(R) que satisface F
 - Completa (Complete). F⁺ puede ser determinado a partir de F aplicando solamente RI1 a RI3
- Reglas de Inferencia Adicionales. (corolarios de Armstrong)
 - RI4 (regla de descomposición o proyección).
 {X→YZ}=X→Y
 - RI5 (regla de unión o aditiva). $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
 - **RI6** (regla pseudotransitiva). $\{X \rightarrow Y, WY \rightarrow Z\} = WX \Rightarrow Z = Z$

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales

- Diseño. Típicamente
 - ① Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?

- Diseño. Típicamente
 - O Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?
 - determinar conjunto de atributos x que aparecen del lado izq. de DFs de F
 - determinar conjunto Y de todos los atributos que dependen de X

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?
 - determinar conjunto de atributos X que aparecen del lado izq. de DFs de F
 - determinar conjunto Y de todos los atributos que dependen de X
- Clausura de X. Conjunto de atributos que son determinados por X basados en F. Se nota X⁺

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?
 - determinar conjunto de atributos X que aparecen del lado izq. de DFs de F
 - determinar conjunto Y de todos los atributos que dependen de X
- Clausura de X. Conjunto de atributos que son determinados por X basados en F. Se nota X⁺
- Algoritmo Nro. 1 para determinar X^+

Entrada: DFs F de R; subconjunto de atributos X de R

- 1. $X^+ := X$
- 2. repetir
- 3. $viejoX^+ := X^+$
- 4. Para cada $DF Y \rightarrow Z en F$ hacer
- 5. Si $Y \subseteq X^+$ entonces $X^+ = X^+ \cup Z$
- 6. hasta($X^+ = viejoX^+$)

```
    R=(idClase,CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap)
    F={
            DF1: idClase→{CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap},
            DF2: CodCurso→Puntos,
            DF3: {CodCurso,Instr}→{Libro,Aula},
            DF4: Libro→Ed,
            DF5: Aula→Cap
        }
```

Ejemplo.

```
    R=(idClase,CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap)
    F={
            DF1: idClase→{CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap},
            DF2: CodCurso→Puntos,
            DF3: {CodCurso,Instr}→{Libro,Aula},
            DF4: Libro→Ed,
            DF5: Aula→Cap
        }
```

Aplicando el algoritmo para obtener X⁺

```
• {idClase}+=
```

```
● R=(idClase,CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap)

● F=\{

DF1: idClase \rightarrow \{CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap\},

DF2: CodCurso \rightarrow Puntos,

DF3: \{CodCurso,Instr\} \rightarrow \{Libro,Aula\},

DF4: Libro \rightarrow Ed,

DF5: Aula \rightarrow Cap

}
```

- Aplicando el algoritmo para obtener X⁺
 - {idClase}+={idClase, CodCurso, Instr, Puntos, Libro, Ed, Aula, Cap}=R

```
● R=(idClase, CodCurso, Instr, Puntos, Libro, Ed, Aula, Cap)

• F=\{

DF1: idClase \rightarrow \{CodCurso, Instr, Puntos, Libro, Ed, Aula, Cap\},

DF2: CodCurso \rightarrow Puntos,

DF3: \{CodCurso, Instr\} \rightarrow \{Libro, Aula\},

DF4: Libro \rightarrow Ed,

DF5: Aula \rightarrow Cap

}
```

- Aplicando el algoritmo para obtener X⁺
 - $\bullet \quad \{\mathit{idClase}\}^+ = \{\mathit{idClase}, \mathit{CodCurso}, \mathit{Instr}, \mathit{Puntos}, \mathit{Libro}, \mathit{Ed}, \mathit{Aula}, \mathit{Cap}\} = R$
 - {CodCurso}⁺=

- Aplicando el algoritmo para obtener X⁺
 - {idClase}⁺={idClase, CodCurso, Instr, Puntos, Libro, Ed, Aula, Cap}=R
 - {CodCurso}⁺={CodCurso,Puntos}

- Aplicando el algoritmo para obtener X⁺
 - $\bullet \quad \{ \mathit{idClase} \}^+ = \{ \mathit{idClase}, \mathit{CodCurso}, \mathit{Instr}, \mathit{Puntos}, \mathit{Libro}, \mathit{Ed}, \mathit{Aula}, \mathit{Cap} \} = R$
 - {CodCurso}⁺={CodCurso,Puntos}
 - {CodCurso,Instr}⁺=

```
● R=(idClase,CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap)

● F=\{

DF1: idClase \rightarrow \{CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap\},

DF2: CodCurso \rightarrow Puntos,

DF3: \{CodCurso,Instr\} \rightarrow \{Libro,Aula\},

DF4: Libro \rightarrow Ed,

DF5: Aula \rightarrow Cap

}
```

- Aplicando el algoritmo para obtener X⁺
 - {idClase}+={idClase, CodCurso, Instr, Puntos, Libro, Ed, Aula, Cap}=R
 - {CodCurso}⁺={CodCurso,Puntos}
 - {CodCurso,Instr}⁺={CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap}

- Aplicando el algoritmo para obtener X⁺
 - $\{idClase\}^+ = \{idClase, CodCurso, Instr, Puntos, Libro, Ed, Aula, Cap\} = R$
 - {CodCurso}⁺={CodCurso,Puntos}
 - {CodCurso,Instr}⁺={CodCurso,Instr,Puntos,Libro,Ed,Aula,Cap}
- Observación. Clausura idClase ∉ {CodCurso,Instr}+ por lo tanto NO es CK

Normalización - Clave de una Relación

Algoritmo Búsqueda de una clave K de R a partir de un conjunto de DFs

Normalización - Clave de una Relación

Algoritmo Búsqueda de una clave κ de R a partir de un conjunto de DFs

Entrada: Relación R y un Conjunto de DFs F de R

- 1. K:=R
- Para cada atributo A∈ K

Computar $(K-A)^+$ con respecto a F

 $Si(K-A)^+$ contiene todos los atributos de R entonces $K:=K-\{A\}$

Normalización - Clave de una Relación

Algoritmo Búsqueda de una clave K de R a partir de un conjunto de DFs

Entrada: Relación R y un Conjunto de DFs F de R

- K:=R
- Para cada atributo A∈ K

Computar $(K-A)^+$ con respecto a FSi $(K-A)^+$ contiene todos los atributos de R entonces $K:=K-\{A\}$

 Algoritmo determina una sola de las CK. Depende fuertemente de la manera en que son removidos los atributos

Normalización - Bibliografía

 Capítulo 15 (hasta 15.5 inclusive) Elmasri/Navathe - Fundamentals of Database Systems, 6th Ed., Pearson, 2011.

