Complex Analysis: Homework 1

Martín Prado

August 9, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1.

Let $U \subseteq \mathbb{C}$ be an open set. Prove that U is connected if and only if it is path connected.

Solution:

 \Longrightarrow :

Exercise 2.

Part (a)

Let $z, w \in \mathbb{C}$ with $\overline{z}w \neq 1$, and $|z| \leq 1$ and $|w| \leq 1$. Prove that

$$\left| \frac{w - z}{1 - \overline{w}z} \right| \le 1$$

with equality if and only if |z| = 1 or |w| = 1.

Part (b)

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc in \mathbb{C} . For a fixed $w \in \mathbb{D}$ define

$$F(z) = \frac{w-z}{1-\overline{w}z}$$
 for $z \in \mathbb{C}$ with $\overline{w}z \neq 1$.

Prove that

(i) F is holomorphic in \mathbb{D} and $F(\mathbb{D}) \subseteq \mathbb{D}$.

- (ii) F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 for |z| = 1.
- (iv) $F: \mathbb{D} \to \mathbb{D}$ is bijective.

Exercise 3.

Let $U:=\{z\in\mathbb{C}: \operatorname{Im}(z)>0\}$. Prove that $\Phi:\mathbb{D}\to U, \ \Phi(z)=i\frac{1-z}{1+z}$ is a bijection and calculate its inverse.

Exercise 4.

Let $U:=\{z\in\mathbb{C}\ :\ \mathrm{Im}(z)>0\}$ and let $\Psi(z)=rac{\alpha z+\beta}{\gamma z+\delta}$ for fixed $\alpha,\beta,\gamma,\delta\in\mathbb{C}.$

- (a) Suppose that $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ with $\alpha\delta \beta\gamma > 0$. Prove that $\Psi: U \to U$ is a bijection.
- (b) Suppose that $\Psi: U \to U$ is a bijection. Prove tat the numbers $\alpha, \beta, \gamma, \delta$ can be chosen from \mathbb{R} .

Exercise 5.

Prove that $\frac{\overline{\partial f}}{\partial z} = \frac{\partial \overline{f}}{\partial z}$. Formulate and prove the chain rule for the Wirtinger derivatives.