

5.9 TCP报文段的首部格式

■ 为了实现可靠传输,TCP采用了面向字节流的方式。

5.9 TCP报文段的首部格式

■ 为了实现可靠传输,TCP采用了面向字节流的方式。

- 为了实现可靠传输,TCP采用了面向字节流的方式。
- 但TCP在发送数据时,是从发送缓存取出一部分或 全部字节并给其添加一个首部使之成为TCP报文段 后进行发送。

- 为了实现可靠传输,TCP采用了面向字节流的方式。
- 但TCP在发送数据时,是从发送缓存取出一部分或 全部字节并给其添加一个首部使之成为TCP报文段 后进行发送。
 - □ 一个TCP报文段由首部和数据载荷两部分构成;
 - □ TCP的全部功能都体现在它首部中各字段的作用。

5.9 TCP报文段的首部格式

	位	0							16			ar			31
		源端口									目	的端	П		
固定首部 (20字节)								序	믘	· ~6	22.				
			确 认 号												
(,,-,		数据偏移	保留	U R G	A C K	S		S F Y I N N	<u> </u>	2, 9	7.	窗口			
	,		校 验 和	S.	R	Ķ.	S	10,	11.	S. P	縣	急指	针		
扩展首部 (最大40字节)	,		选巧	į (ł	€ .	度	可	变)		P			填	充	

源端口:占16比特,写入源端口号,用来标识发送该TCP报文段的应用进程。

目的端口:占16比特,写入目的端口号,用来标识接收该TCP报文段的应用进程。

5.9 TCP报文段的首部格式

因特网

5.9 TCP报文段的首部格式

	位	0						1	6		0		31
固定首部 (20字节)		源端口							目的	端口			
							序号		25.				
							确认	믁					
		数据偏移	保留	R G	A C K	S	S	S F Y I N N	60, 91	窗	П		
	ļ		校验和	d.	Ŕ	Ķ.	ď	10,11.	61.0	紧 急	指 针		
扩展首部 (最大40字节)	,		选 项	į (·	K	度	可	变)	10.			填 充	

源端口: 80 目的端口: 49152

5.9 TCP报文段的首部格式

序号:占32比特,取值范围[0,2³²-1],序号增加到最后一个后,下一个序号就又回到0。

5.9 TCP报文段的首部格式

序号:占32比特,取值范围[0,2³²-1],序号增加到最后一个后,下一个序号就又回到0。 指出本TCP报文段数据载荷的第一个字节的序号。

5.9 TCP报文段的首部格式

确认号:占32比特,取值范围[0,23-1],确认号增加到最后一个后,下一个确认号就又回到0。

指出期望收到对方下一个TCP报文段的数据载荷的第一个字节的序号,同时也是对之前收到的所有数据的确认。

若确认号≡n,则表明到序号n=1为止的所有数据都已正确接收,期望接收序号为n的数据。

5.9 TCP报文段的首部格式

确认标志位ACK: 取值为1时确认号字段才有效; 取值为0时确认号字段无效。

TCP规定,在连接建立后所有传送的TCP报文段都必须把ACK置1。

TCP

计算机网络

第5章 运输层

5.9 TCP报文段的首部格式

序号=201 数据载荷长度=100字节 确认号=800 ACK=1 TCP报文段

| **TCP**| **ID**| **ID**

5.9 TCP报文段的首部格式

5.9 TCP报文段的首部格式

	位_0						16		al	31
		源端口	目	的端口						
							序号			
固定首部 (20字节)						J	确认号			
	数据偏移	保留	U R G	C	P F S S			90.	窗口	
		校验和	Ś	2	Ų,	si i	DIL Gr	紧	急指针	
扩展首部 (最大40字节)		选 项	(±	€ 1	变	ij	变)			填 充

数据偏移:占4比特,并以4字节为单位。

用来指出TCP报文段的数据载荷部分的起始处距离TCP报文段的起始处有多远。

这个字段实际上是指出了TCP报文段的首部长度。

首部固定长度为20字节,因此数据偏移字段的最小值为(0101)2

首部最大长度为60字节,因此数据偏移字段的最大值为(1111)2

数据载荷

5.9 TCP报文段的首部格式

数据偏移=1111

5.9 TCP报文段的首部格式

保留:占6比特,保留为今后使用,但目前应置为0。

5.9 TCP报文段的首部格式

窗口:占16比特,以字节为单位。指出发送本报文段的一方的接收窗口。

窗口值作为接收方让发送方设置其发送窗口的依据。

这是以接收方的接收能力来控制发送方的发送能力,称为流量控制。

5.9 TCP报文段的首部格式

	位	0			16	a'l	31
1			源端口			目的端	
固定首部 (20字节)			l	京号			
				确	认号		
		数据偏移	保留	U A P R S R C S S Y G K H T N	F I N	窗口	
			校 验 和		. E. L.	紧急指	针
扩展首部 (最大40字节)			选项	5 (长度可变	()		填 充

校验和:占16比特,检查范围包括TCP报文段的首部和数据载荷两部分。

在计算校验和时,要在TCP报文段的前面加上12字节的伪首部。

5.9 TCP报文段的首部格式

同步标志位SYN: 在TCP连接建立时用来同步序号。

5.9 TCP报文段的首部格式

同步标志位SYN: 在TCP连接建立时用来同步序号。

5.9 TCP报文段的首部格式

终止标志位FIN: 用来释放TCP连接。

5.9 TCP报文段的首部格式

终止标志位FIN: 用来释放TCP连接。

5.9 TCP报文段的首部格式

复位标志位RST: 用来复位TCP连接。

当RST=1时,表明TCP连接出现了异常,必须释放连接,然后再重新建立连接。

RST置1还用来拒绝一个非法的报文段或拒绝打开一个TGP连接。

5.9 TCP报文段的首部格式

	位	0						1	16			Ó	V_			31
固定首部 (20字节)		源端口									目	的	端 口			
						ļ	字 4	믕								
							确	认	믁							
		数据偏移	保留	U R G	A C K	P R S S H T	S Y N	F I N	io,	90.		窗	П			
1			校验和	s d	Ŕ	Ų,					紧	急	指 针			
扩展首部 (最大40字节)			选 项	(£	度可	变	()						填	充	

推送标志位PSH:接收方的TCP收到该标志位为1的报文段会尽快上交应用进程, 而不必等到接收缓存都填满后再向上交付。

	位_0		16	i	31
固定首部 (20字节)		源端口		目的端口	
			序号		
			确认号		
	数据偏移	保留	U A P R S F R C S S Y I G K H T N N	窗口	
1		校验和		紧 急 指 针	
扩展首部 (最大40字节)		选 项	(长度可变)	填 充	

5.9 TCP报文段的首部格式

		0					16		al	31
			源端口					目	的端口	
						序	믘			
固定首部 (20字节)						确认	무			
		数据偏移	保留	U A R C G K	SS	S F Y I N N	(c ₀)	90.	窗口	
	ļ		校验和	茶	XI,	$\langle \hat{O} \rangle$		紧	急指针	
扩展首部 (最大40字节)			选 项	i (长	度可	变)	Up.			填 充

紧急标志位URG: 取值为1时紧急指针字段有效; 取值为0时紧急指针字段无效。

紧急指针:占16比特,以字节为单位,用来指明紧急数据的长度。

当发送方有紧急数据时,可将紧急数据插队到发送缓存的最前面,并立刻封装到一个TCP报文段中进行 发送。紧急指针会指出本报文段数据载荷部分包含了多长的紧急数据,紧急数据之后是普通数据。

- 最大报文段长度MSS选项: TCP报文段数据载荷部分的最大长度。
- **窗口扩大选项: 为了扩大窗口 (提高吞吐率) 。**
- 时间戳选项:
 - □ 用来计算往返时间RTT
 - □ 用于处理序号超范围的情况,又称为防止序号绕回PAWS。
- 选择确认选项

5.9 TCP报文段的首部格式

	位	O						1	16			<u>ci l</u>			31
固定首部 (20字节)		源 端 口									目	内 端	П		
								序号	3						
							確	认	믁						
		数据偏移	保留	U R G	A C K	P R S S H T	S Y N	F I N	io,	90.	i	1 1			
	,		校验和	sć	R	V,		211.	(G)	0	紧 :	急指	针		
扩展首部 (最大40字节)	,		选 项	(ĸ.	度可	受	₹)						填 充	

填充:由于选项的长度可变,因此使用填充来确保报文段首部能被4整除 (因为数据偏移字段,也就是首部长度字段,是以4字节为单位的)。

- 为了实现可靠传输,TCP采用了面向字节流的方式。
- 但TCP在发送数据时,是从发送缓存取出一部分或 全部字节并给其添加一个首部使之成为TCP报文段 后进行发送。
 - □ 一个TCP报文段由首部和数据载荷两部分构成;
 - □ TCP的全部功能都体现在它首部中各字段的作用。

- 为了实现可靠传输,TCP采用了面向字节流的方式。
- 但TCP在发送数据时,是从发送缓存取出一部分或 全部字节并给其添加一个首部使之成为TCP报文段 后进行发送。
 - □ 一个TCP报文段由首部和数据载荷两部分构成;
 - □ TCP的全部功能都体现在它首部中各字段的作用。

