MÚLTIPLAS METÁSTASES PULMONARES - GATING 30-70

CASO

- L Prescrição → 5400 cGy (3 × 1800 cGy)

STRUCTURE SET

- Laringe, Medula (PRV), Parede Torácica, Pulmões (DE) e Traqueia
- Slice da CT: 2 mm

TRATAMENTO COM GATING 30-70

- L Nem todo caso é eletivo de Gating 30-70. Foram checados
 - Ly Movimentação da lesão → o ITV dobra de tamanho em função da respiração.
 - L Desenho dos ITVs | PTVs nas fases 30-70;
 - La Artefatos na imagem (diafragma) e tamanho da lesão (lesões pequenas podem não ser identificadas no CBCT)
 - Avaliar reprodutibilidade do ciclo respiratório do paciente (aplicativo RPM, no computador na tomografia)

CONFIGURAÇÃO DE CAMPOS

ACELERADOR → TrueBeam SN2534

ENERGIA → 6 MV FFF

GEOMETRIA → Arcos ipsilaterais

PTV 1: 2 MEIOS ARCOS ESTENDIDOS							
Campo	1_CW	2_CCW					
Gantry	20° → 181°	181° → 20°					
Colimador	5⁰	355⁰					
Mesa	O°	0°					

PTVS 2 E 3: 4 ARCOS CURTOS, INCIDÊNCIAS FAVORÁVEIS							
Campo	1_CW	2_CCW	3_CCW	4_CW			
Gantry *	50° → 179°	179° → 50°	230° → 181°	181° → 230°			
Colimador	5°	355°	5°	355°			
Mesa	0°	0°	O°	0°			

* Entradas em incidências favoráveis, tangenciando coração (1_CW e 2_CCW) e medula (3_CCW e 4_CW)

NTO

Off Manual Automatic NTO Priority 85 Distance from Target Border 0.20 cm Start Dose 95.0 % End Dose 25.0 % Fall-off 0.15

ISOCENTRO

- PTV1 Através do ajuste fino do *arc geometry* tool, com margem de 5 mm. Cuidado para deixar simétrico!
- L, PTV2 E 3 Deslocado lateralmente para a direita, para evitar colisão

ESTRATÉGIAS DE OTIMIZAÇÃO:

 $PTV1 \rightarrow Upper (0\% de volume, 125\% de dose, p: 0) | Lower (95\% de volume, 100% de dose, p: 200) |$

Ly PTV_Shell→ Margem de 0.3 mm do PTV

Upper (0% de volume, 110% de dose, p: 100) Lower (98% de volume, 100% de dose, p: 200)

Ly PTV_Core → Crop (0.3 mm) do PTV dentro da casca

Upper (0% de volume, 125% de dose, p: 0) I Lower (95% de volume, 108% de dose, p: 100)

 $OAR \rightarrow ALARA$

 \downarrow Aorta \rightarrow Upper (0% de volume, 350 cGy, p: 200) I (1% de volume, 300 cGy, p: 200)

L Coração → Upper (0% de volume, 400 cGy, p: 200) I (1% de volume, 300 cGy, p: 200)

 \downarrow Esôfago → Upper (0% de volume, 450 cGy, p: 150)

 \downarrow Medula_PRV \rightarrow (0% de volume, 390 cGy, p: 200)

Ly Parede Torácica → Upper (0% de volume, 2700 cGy, p: 150) | 71 cc, 975 cGy, p: 150)

Ly zPulmão_d → Upper (1.1% de volume, 1342 cGy, p: 55) I (7.1% de volume, 670 cGy, p: 55) I

Upper (16.7% de volume, 172 cGy, p: 55) I Mean (255 cGy, p: 55)

La Após a primeira otimização, foi realizado o intermediate dose + normalização 100% / 95%

zPTV_2E3 → Lesões próximas, foram consideradas uma só (PTV2e3_soma)

Ly zPTV2e3 → crop de 0.3 mm da aorta e do coração

Upper (0% de volume, 110% de dose, p: 0)

Lower (95% de volume, 5400 cGy, p: 200) I Lower (98% de volume, 5300 cGy, p: 150)

Ly PTV_Shell→ Margem de 0.3 mm do PTV soma

Upper (0% de volume, 110% de dose, p: 200) I Lower (98% de volume, 5400 cGy, p: 200)

Ly PTV_Core → Crop (0.3 mm) do PTV dentro da casca

Upper (0% de volume, 125% de dose, p: 0) I Lower (95% de volume, 108% de dose, p: 100)

OAR → ALARA

Ly Coração → Upper (0% de volume, 2200 cGy, p: 800) I (0.5% de volume, 1750 cGy, p: 300) I

Upper (1.5% de volume, 1375 cGy, p: 300)

Ly Esôfago → Upper (0% de volume, 1900 cGy, p: 300) I (2% de volume, 1700 cGy, p: 300) I

Upper (13.4% de volume, 975 cGy, p: 300)

Ly Medula → Upper (0% de volume, 900 cGy, p: 100) I (1% de volume, 600 cGy, p: 100) I

Upper (4.2% de volume, 525 cGy, p: 100)

 \downarrow zPulmão_e \rightarrow Upper (1.7% de volume, 2775 cGy, p: 100) I (10.9% de volume, 1100 cGy, p: 100)

L Após a primeira otimização, foi realizado o intermediate dose

DISTRIBUIÇÃO DE DOSE NO CORTE AXIAL E DVH METRICS - PLANO SOMA

Estrutura	Codigo	Estrutura no Caso	Descritor DVH	Objetivo	Desv Nv1	Desv Nv2	Prioridade	Resultado	Valor
PTV1_3x18Gy		PTV1_3x18Gy	D95%[Gy]	>=54	>=52.92	48.6			55.724 Gy
PTV1_3x18Gy		PTV1_3x18Gy	D95%[Gy]	<=54	<=55.08	56.7			55.724 Gy
PTV1_3x18Gy		PTV1_3x18Gy	D99%[Gy]						53.738 Gy
MEDULA_PRV		MEDULA_PRV	Max[Gy]	<=30	<=30	30			18.807 Gy
MEDULA		MEDULA	V23Gy[cc]	<=0.35	<=0.35	0.35			0.00 cc
MEDULA		MEDULA	V14.5Gy[cc]	<=1.2	<=1.2	1.2			0.01 cc
ESOFAGO_PRV		ESOFAGO	Max[Gy]	<=35	<=35	35			25.012 Gy
ESOFAGO		ESOFAGO	V19.5Gy[cc]	<=5	<=5	5			1.48 cc
CORACAO		CORACAO	Max[Gy]	<=38	<=38	38			28.621 Gy
CORACAO		CORACAO	V32Gy[cc]	<=15	<=15	15			0.00 cc
AORTA		AORTA	Max[Gy]	<=53	<=53	53			44.335 Gy
AORTA		AORTA	V47Gy[cc]	<=10	<=10	10			0.00 cc
TRAQUEIA		TRAQUEIA	Max[Gy]	<=40	<=40	40			0.199 Gy
TRAQUEIA		TRAQUEIA	V16.5Gy[cc]	<=4	<=4	4			0.01 cc
ARVORE_BRONQUICA		ARVORE_BRONQUICA	Max[Gy]	<=40	<=40	40			0.555 Gy
ARVORE_BRONQUICA		ARVORE_BRONQUICA	V16.5Gy[cc]	<=4	<=4	4			0.00 cc
PULMOES		PULMOES	V12.5Gy[cc]	<=1500	<=1500	1500			421.37 cc
PULMOES		PULMOES	V13.5Gy[cc]	<=1000	<=1000	1000			380.15 cc

ESTRUTURAS DE GATING 30-70

- Ly Desenhar diafragma nas fases 0, 30, 50, 70 e 90
 - Ly Fluoroscopia → Campo de Setup, Gantry: 180°, Colimador: 90°
 - L Exportar para RPM

N FERNANDEZ

QΑ

O PSQA foi feito usando Portal Dosimetry e câmara de ionização. A função gamma passou com 100% em todos os campos do Portal Dosimetry, exceto o campo 2_CCW do plano PTV2e3_G3070, que passou com 99.9%. A medida da câmara de ionização diferiu da medida calculada no Eclipse em -0,46% para PTV1_G3070 e -1,71% para PTV2e3_G3070.

PTV1_G3070, Campo 1_CCW

PTV2e3_G3070, Campo 2_CCW

TRATAMENTO

O paciente foi posicionado pelas marcas da tomografia usando o laser e um ajuste fino foi realizado com OSMS (*Optical Surface Monitoring System*, AlignRT). Após o posicionamento foi realizado um CBCT para correção da posição e se adquiriu uma nova referência, usada para o monitoramento intrafração com o OSMS. Para o gating 30-70 foi usado como referência o diafragma, desenhado durante o planejamento. Os dois planos demoraram cerca de uma hora ao todo.