Matematika G1-G2-G3 kidolgozott tételek

Kun László Ákos

2022/2023

MINTA!!

• To be continued

MINTA!!

• To be continued

MINTA!!

• To be continued

Matematika G1 szóbeli tételek

Halmazelmélet és komplex számok:

1. Halmaz, metszet, unió, különbség

- halmaz: nem definiált alapfogalom
 - **jelölés:** A, B halmazok; $a \in A; a \notin B$ (nem definiáljuk)
 - \varnothing **üreshalmaz:** egyetlen eleme sincs
 - **nemüres halmaz:** ∃ legalább egy eleme
 - jól megadott halmaz: ha bármely elemről eldönthető, hogy beletartozik-e

A és B az X alaphalmaz részhalmazai, ekkor

- metszet: $A \cap B = \{x \in X | x \in A \land x \in B\}$ Két halmaz diszjunkt, ha metszetük üres halmaz.
- unió: $A \cup B = \{x \in X | x \in A \lor x \in B\}$
- különbség: $A \setminus B = \{x \in X \mid x \in A \land x \notin B\}$
- egyéb: $A \subset A$ az A részhalmaza önmagának: reflexív tulajdonság

ha $A \subset B$ és $B \subset A \to A = B$ vagyis antiszimmetrikus (A részhz.-a B-nek és fordítva) ha $A \subset B$ és $B \subset C \to A \subset C$ tranzitív tulajdonság (A a nagyobb hz.-nak is részhz.-a)

2. Descartes-szorzat, hatványhalmaz

- **Descartes-szorzat:** Az A és B halmazok Descartes-szorzatán az A és B halmazok elemeiből alkotott összes rendezett elempár halmazát értjük.
 - Jelölése: $A \times B = \{(a; b) \mid a \in A \land b \in B\}$
 - Az $A \times B$ szorzathalmaz egy $T \in A \times B$ részhalmaza az A és B halmazok elemei közti kételemű (binér) reláció
 - Ha $(a;b) \in T$, akkor a és b relációban vannak: $a \top b$
- Hatványhalmaz: egy halmaz összes részhalmazainak halmaza Egy n elemű halmaznak 2^n darab részhalmaza van

Kommutativitás: felcserélhetőség Asszociativitás: csoportosíthatóság Disztributivitás: szétbonthatóság

3. Csoport, gyűrű, test

- Félcsoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak (pl. természetes számok esetén az összeadás)
- Csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak ÉS létezik zérus elem ill. inverz elem (összeadásnak a kivonás, szorzásnak az osztás az invertálása) (pl. egész számok halmaza esetén az összeadás)
- Abel-csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak és kommutatívak is ill. létezik a zérus elem és az inverz elem
- **Gyűrű:** olyan csoport, amelyben a kétváltozós műveletek már disztributívak is egymásra nézve (pl. az egész számok esetén az összeadásra nézve a szorzás) A gyűrűben tehát elvégezhető: az összeadás, a kivonás és a szorzás
- **Test:** olyan csoport, amelyben a kétváltozós műveletek disztributívak egymásra nézve (pl. racionális számoknál az összeadásra nézve a szorzás disztributív) A testben, mint algebrai struktúrában tehát elvégezhető az összeadás, kivonás, szorzás és az osztás

4. Komplex számok algebrai, trigonometrikus, exponenciális alakja

- Algebrai alak: $z = a + b \cdot i$ (z valós része a, képzetes része pedig b)
 - konjugált: $\overline{z} = a b \cdot i$
 - abszolút érték: $|z| = \sqrt{a^2 + b^2}$ (Pitagorasz-tételből), és mivel: $z \cdot \overline{z} = (a + b \cdot i)(a b \cdot i) = a^2 (b \cdot i)^2 = a^2 + b^2$, ezért $|z| = \sqrt{z \cdot \overline{z}}$
- Trigonometrikus (polár) alak: $z = r(cos(\varphi) + i \cdot sin(\varphi))$, mivel

$$\cos(\varphi) = \frac{a}{r}$$

$$sin(\varphi) = \frac{b}{r}$$

Tehát $a = r \cdot cos(\varphi)$ és $b = r \cdot sin(\varphi)$, innen már egyértelműen következik a trigonometrikus alak az algebraiból r-t kiemelve $(a = r \cdot cos(\varphi))$ és $b \cdot i = r \cdot i \cdot sin(\varphi)$

• Exponenciális alak: $z=r\cdot e^{e\cdot \varphi}$ - ez csak egy szimbólum, rövidítés, ami megkönnyíti a számolást a komplex számokkal, lényegében a trigonometrikus alak kicsit rövidebben.

5. Komplex számok hatványozása

de Moivre-képlet:

$$z^{n} = [r(\cos(\varphi) + i \cdot \sin(\varphi))]^{n} = r^{n}(\cos(n\varphi) + i \cdot \sin(n\varphi))$$

Bizonyítás: Teljes indukció használatával

- 1. n = 1-re és n = 2-re **igaz**
- 2. indukciós feltétel: n = k
- 3. Ekkor $z^k = r^k(\cos(k\varphi) + i \cdot \sin(k\varphi))$
- 4. ha n = k + 1, akkor:

$$\begin{split} z^{k+1} &= z^k \cdot k = r^k (\cos(k\varphi) + i \cdot \sin(k\varphi)) \cdot r(\cos(\varphi) + i \cdot \sin(\varphi)) \\ &= r^{k+1} [\cos(k\varphi + \varphi) + i \cdot \sin(k\varphi + \varphi)] = \\ &\qquad \qquad r^{k+1} [\cos((k+1)\varphi) + i \cdot \sin((k+1)\varphi)] \end{split}$$

és k+1 az n volt, tehát a bizonyítás kész.

6. Komplex számok gyökvonása

$$z_1^n = z_2 = r_1^n \cdot (\cos(n\varphi_1) + i \cdot \sin(n\varphi_1)) = r_2 \cdot (\cos(\varphi_2) + i \cdot \sin(\varphi_2))$$
$$z_1 = \sqrt[n]{z_2}$$

Két komplex szám akkor egyenlő, ha a hosszuk és argumentumuk is egyenlő:

- $r_1 = \sqrt[n]{r_2}$ (hossz)
- $n \cdot \varphi_1 = \varphi_2 + k \cdot 2\pi$ (argumentum) \rightarrow forgásszög, periodicitás miatt $p = 2\pi$
- Így $\varphi_1 = \frac{\varphi_2 + k \cdot 2\pi}{n}$ $k \in \{0, 1, 2, ..., n-1\}$
- Tehát:

$$\sqrt[n]{z} = \sqrt[n]{r}(\cos(\frac{\varphi + k \cdot 2\pi}{n}) + i \cdot \sin(\frac{\varphi + k \cdot 2\pi}{n}))$$

Az n-edik gyökvonás után olyan komplex számokat kapunk, amik egy szabályos sokszög (n-szög) csúcsai! Tehát n-edik gyökvonás esetén n db komplex szám a megoldás.

Numerikus sorozatok:

1. Numerikus sorozat határértéke

• Egy függvényt numerikus sorozatnak nevezünk, ha értelmezési tartománya \mathbb{N}^+ **Jelölései:** a_n , (a:n);

Megadása: explicit alak, rekurzív, leírás.

• **Tétel:** Az (a_n) konvergens és határértéke az $a \in \mathbb{R}$ akkor és csak akkor, ha bármely pozitív ε -hoz létezik olyan $N(\varepsilon)$ küszöbindex (küszöbszám), hogy a sorozat $N(\varepsilon)$ -nál nagyobb indexű elemei már az "a" ε -sugarú környezetébe esnek.

Következmény:

Ha egy sorozatnak véges sok elemét megváltoztatjuk, vagy a sorozathoz véges sok elemet hozzáveszünk/elhagyunk belőle, akkor sem a konvergencia, sem a határérték nem változik meg!

2. Konvergens, divergens sorozat

• **Definíció** Az (a_n) konvergens, ha van olyan $a \in R$ szám, hogy minden $\varepsilon > 0$ valós szám esetén létezik $N(\varepsilon)$ valós küszöbszám, hogy

$$|a_n - a| < \varepsilon, \ ha \ n > N(\varepsilon)$$

$$azaz$$

$$a - \varepsilon < a_n < a + \varepsilon$$

- Az "a" számot az (a_n) határértékének hívjuk, és a $\lim_{n\to\infty} a_n = a$ vagy az $a_n \to a$, ha $n \to \infty$ jelölést használjuk.
- Az (a_n) divergens, ha nem konvergens.

Tételek:

- Konvergens sorozat korlátos.
- Monoton korlátos sorozat konvergens.
- Monoton, nem korlátos sorozatnak van határértéke.
- \bullet konvergens \rightarrow van határértéke
- van határértéke/torlódási pontjai → nem biztos, hogy konvergens
- Bolzano-Weierstrass-tétel: minden korlátos sorozatnak van konvergens részsorozata.

3. Nevezetes sorozatok

Olyan sorozatok, amelyek határértékét nem kell bizonyítani, csak felhasználni!

- Bernoulli-féle egyenlőtlenség: ha $x \ge -1$, akkor $(1+x)^n \ge 1 + n \cdot x$
- 1. $a^n \to 0$, ha |a| < 1 $a^n \to 1$, ha a = 1 $a^n \to +\infty$, ha a > 1 a^n divergens, ha a < -1
- 2. $\sqrt[n]{a} \to 1$, ha $n \to \infty (a > 0)$
- 3. $a^n \cdot n^k \to 0,$ nullsorozat, ha |a| < 1 és krögzített természetes szám
- 4. $\sqrt[n]{n} \to 1$, ha $n \to \infty \ (n \ge 2)$
- $5. \ \frac{a^n}{n!} \to 0 (a \in \mathbb{R})$

Legfontosabb:

$$(1 + \frac{\alpha}{n})^n \to e^{\alpha}$$

4. Cauchy sorozat

• To be continued