Matemática II - Prof^a Aline - Números Complexos – Lista 1

- Sejam $z_1 = 2 i$ e $z_2 = (x 3) + (-26 + x^2)i$. Determine x real de modo que tenhamos $z_1 = z_2$.
- **18** Dados os números complexos $z_1 = 4 3i$, $z_2 = -1 + 5i$ e $z_3 = -4 7i$, determine: a) $z_1 - z_2 - z_3$ b) $(i + z_1) - (z_2 + z_3)$
- **20** Determine $x \in y$ reais na igualdade (3 + yi) + (x 2i) = 7 5i.
- **21** Quais os valores reais de *x* e *y* em $(2x^2 + 2i) (5x yi) = -2 3i$?
- 22 Sejam $z_1 = x + 3i$ e $z_2 = (2 y) + yi$. Determine x e y reais de modo que $z_1 z_2 = 5 4i$.
- 24 Efetue:

a) (3 + 2i) (1 - i)

c) (2 + 3i) - (1 + i)(2 - i)

b) (-4 + i) (3 - 2i) + (2 + i)

25 Efetue:

a) (1 + i) (1 - i)

c) $(4 + i)^2$

b) $(2 - 3i)^2$

26 Efetue:

a) $(2 + i)^2 - i (2 + i) \cdot (2 - i)$

b) $(1 + i)^4$

- **29** Determine $x \in \mathbb{R}$ e $y \in \mathbb{R}$ para que se tenha (2 i)(x + yi) = 15.
- **30** (PUC-RJ) Qual é o valor de $\left(\frac{\sqrt{2}}{2} (1+i)\right)^2$?
- **31** Determine $x \in \mathbb{R}$ e $y \in \mathbb{R}$ para que se tenha (x + yi)(3 + 2i) = 5 i.
- **32** Quais os possíveis valores reais de x e y que satisfazem a igualdade $(x + yi)^2 = 4i$?
- 33 Determine $x \in \mathbb{R}$ de modo que z = (x + 2i) (1 + i) seja imaginário puro.
- **34** Determine $x \in \mathbb{R}$ de modo que z = (2x + i) (1 xi) seja um número real.
- **35** Determine todos os valores reais de x e y para que a expressão $(x + iy)^2$ seja real e maior que 16.
- 41 Sejam os números complexos $z_1 = -1 + 2i$ e $z_2 = 3 + i$. Determine:

a) $\overline{z}_1 \cdot \overline{z}_2$

b) $\overline{z_1 \cdot z_2}$

- c) Compare os resultados obtidos em a e b.
- 42 Seja z = 3 + 4i um número complexo. Determine:

a) $(\overline{z^2})$

b) $(\bar{z})^2$

c) Compare a e b.

- **43** Sejam $z_1 = (3, -2)$ e $z_2 = (-4, 3)$. Determine $z_3 \in \mathbb{C}$ tal que $\overline{z}_1 + \overline{z}_3 = i \overline{z}_2$.
- 44 Determine $z \in \mathbb{C}$, tal que $\overline{z}(1+i) + z = 3 + 4i$.

- **48** Sejam os números complexos $z_1 = 2 + 5i$ e $z_2 = 3 + 2i$. Calcule:
- b) $\frac{z_1}{\bar{z}_2}$ c) $\frac{z_1}{i \cdot z_2}$
- 49 Obtenha o conjugado de $z = \frac{2+i}{7-3i}$.
- **50** Qual é o inverso de z = 1 2i?
- 55 Seja $z = \frac{4-3i}{-2-xi}$. Determine $x \in \mathbb{R}$ para que se tenha:
 - a) Re(z) = 0

b) Im(z) < 0

61 Efetue:

a)
$$\frac{1+i^9}{-3+i^{27}}$$

- b) $\frac{i^{45} + i^{37}}{i^{78}}$
- **62** Sendo z = (2 i)(3 + i) 7, calcule z^{11} .
- **63** (Uneb-BA) Se i é a unidade imaginária, qual é o valor de $i^{25} + i^{39} i^{108} + i \cdot i^{50}$?
 - 68 (Unificado-RJ)

Sejam z_1 e z_2 números complexos representados pelos seus afixos na figura acima. Dê a forma algébrica do número complexo dado pelo produto de \boldsymbol{z}_1 pelo conjugado de z_2 .

71 (UFF-RJ) Considere os números complexos m, n, p e q vértices de um quadrado com lados paralelos aos eixos e centro na origem, conforme a figura abaixo.

Qual é o número complexo correspondente a m + n + p + q?

- 72 Em relação à questão anterior, analise as seguintes afirmações, assinalando V ou F:
 - a) m + q é um número real.
 - b) $\overline{n} + \overline{m}$ é um número imaginário puro.
 - c) im estaria representado no 3º quadrante.
- 75 Qual é o módulo de cada um dos seguintes números complexos?
 - a) $z = \frac{2 3i}{1 i}$
- b) $i^{62} + i^{123}$
- c) -i(3 + 4i)
- **76** O módulo do número complexo z = x + 3i é 5. Determine x.
- 87 Determine o argumento de cada um dos seguintes números complexos:
 - a) $z = \sqrt{3} + i$

- c) $z = \frac{-1}{2} + i \frac{1}{2}$
- b) $z = \frac{\sqrt{2}}{2} i \frac{\sqrt{2}}{2}$
- d) $z = -1 \sqrt{3} i$
- 88 Qual é o argumento de cada um dos seguintes números complexos?

c) z = i

b) z = -2i

d) z = -4

Respostas:

- **16** x = 5
- **18** a) 9 i
- **20** x = 4 e y = -3
- **21** $\left(x = 2 \text{ ou } x = \frac{1}{2}\right) \text{ e y} = -5$
- **22** x = 0 e y = 7
- **24** a) 5 i
- b) -8 + 12i
- c) -1 + 2i

- **26** a) 3 i b) –4
- 30 i
- 31 x = 1 e y = -1
- **32** $(x = \sqrt{2} \text{ e y} = \sqrt{2})$ ou $\left(x = -\sqrt{2} \ e \ y = -\sqrt{2}\right)$
- **34** $-\frac{\sqrt{2}}{2}$ ou $\frac{\sqrt{2}}{2}$
- **42** a) -7 24i
 - b) -7 24i
 - c) Vale $(\overline{z})^2 = (\overline{z^2})$
- **43** (1, -2) = 1 2i

- **43** (1, -2) = 1 2i
- **44** 4 5i
- **48** a) $\frac{16}{13} + \frac{11}{13}$ i c) $\frac{11}{13} \frac{16}{13}$ i
 - b) $-\frac{4}{13} + \frac{19}{13}i$
- **49** $\frac{11}{58}$ $\frac{13}{58}$ i
- **50** $\frac{1}{5} + \frac{2}{5}i$
- **55** a) $x = \frac{8}{3}$ b) $x < -\frac{3}{2}$
 - **61** a) $\frac{-2 i}{5}$ b) -2i

 - **63** –1 i
 - **68** 11 + 17i
 - 71 zero
 - **72** a) V b) V c) F; II Q
 - **75** a) $\frac{\sqrt{26}}{2}$ b) $\sqrt{2}$
- **87** a) 30° $\left(\text{ou} \frac{\pi}{6}\right)$ c) 135° $\left(\text{ou} \frac{3\pi}{4}\right)$ b) 315° $\left(\text{ou} \frac{7\pi}{4}\right)$ d) 240° $\left(\text{ou} \frac{4\pi}{3}\right)$
- - b) $270^{\circ} \left(\text{ou} \frac{3\pi}{2} \right)$
- c) $90^{\circ} \left(\text{ou } \frac{\pi}{2} \right)$ d) $180^{\circ} (\text{ou } \pi)$