§4.3 二维随机变量函数的分布

问题:已知二维随机变量(X,Y)的概率特性

g(x,y)为已知的二元函数,Z = g(X,Y)

求: Z的概率特性

方法:转化为(X,Y)的事件

当(X,Y)为离散型随机变量时,Z也为离散型,

$$Z = z_k = g(x_{i_k}, y_{j_k})$$

$$P(Z = z_k) = \sum_{g(x_{i_k}, y_{j_k}) = z_k} P(X = x_{i_k}, Y = y_{j_k})$$

$$k = 1, 2, \cdots$$

当(X,Y)为连续型随机变量时,

$$F_Z(z) = P(Z \le z) = P(g(X, Y) \le z)$$
$$= \iint_{D_z} f(x, y) dx dy$$

其中 $D_z: \{(x,y) \mid g(x,y) \leq z\}$

$D_z: \{(x,y) \mid g(x,y) \leq z\}$ 的几何意义:

离散型二维随机变量的函数

例1 设二维离散型随机变量(X,Y)的概率分布为

求 $X+Y,X-Y,XY,Y/X,\max(X,Y)$ 的概率分布

解 根据(X,Y)的联合概率分布可得如下表格:

P	1/4	1/4	1/6	1/8	1/8	1/12
(X,Y)	(-1,-1)	(-1,0)	(1,-1)	(1,0)	(2,-1)	(2,0)
X+Y	-2	-1	0	1	1	2
X-Y	0	-1	2	1	3	2
XY	1	0	-1	0	-2	0
Y/X	1	0	-1	0	-1/2	0
Max(X,Y)	-1	0	1	1	2	2

故得

X + Y					
\overline{P}	1/4	1/4	1/6	1/4	1/12
X - Y	-1	0	1	2	3
P	1/4	1/4	1/8	1/4	1/8

XY	-2	-1	0	1	
P	1/8	1/6	11/24	1/4	
'		,		,	
Y/X	-1	-1/2	0	1	
P	1/6	1/8	11/24	1/4	
Max(X,Y)	-1	0	1	2	
P	1/6	1/8	7/24	5/24	

关于离散型随机变量的两个结论:

口设 $X \sim B(n_1,p), Y \sim B(n_2,p),$ 且X,Y相互独立, 则 $X + Y \sim B(n_1+n_2,p)$

口设 $X \sim P(\lambda_1), Y \sim P(\lambda_2), 且X, Y$ 相互独立, 则 $X + Y \sim P(\lambda_1 + \lambda_2)$

关于二项分布的和的分布的说明:

$$X \sim B(n_1, p), Y \sim B(n_2, p),$$
 则
$$Z = X + Y$$
的可能取值为 $0,1,2, ②, n_1 + n_2$
设 $n_1 \le n_2$,当 $k \le n_1$ 时,
$$P(Z = k) = \sum_{i=0}^k P(X = i, Y = k - i),$$

$$= \sum_{i=0}^k P(X = i) P(Y = k - i),$$

$$= \sum_{i=0}^k C_{n_1}^i p^i (1 - p)^{n_1 - i} C_{n_2}^{k - i} p^{k - i} (1 - p)^{n_2 - k + i}$$

$$= C_{n_1 + n_2}^k p^k (1 - p)^{n_1 + n_2 - k}$$

其中
$$\sum_{i=0}^k C_{n_1}^i C_{n_2}^{k-i} = C_{n_1+n_2}^k$$

当 $n_1 < k \le n_2$ 时

$$P(Z = k) = \sum_{i=0}^{n_1} P(X = i, Y = k - i)$$

$$= \sum_{i=0}^{n_1} C_{n_1}^i p^i (1 - p)^{n_1 - i} C_{n_2}^{k - i} p^{k - i} (1 - p)^{n_2 - k + i}$$

$$= C_{n_1 + n_2}^k p^k (1 - p)^{n_1 + n_2 - k}$$

当
$$n_2 < k \le n_1 + n_2$$
 时

$$P(Z = k) = \sum_{i=k-n_2}^{n_1} P(X = i, Y = k - i)$$

$$= \sum_{i=k-n_2}^{n_1} C_{n_1}^i p^i (1-p)^{n_1-i} C_{n_2}^{k-i} p^{k-i} (1-p)^{n_2-k+i}$$

$$= C_{n_1+n_2}^k p^k (1-p)^{n_1+n_2-k}$$

故
$$X + Y \sim B (n_1 + n_2, p)$$

事实上,从二项分布的背景,若每次试验事件 A 发生的概率为 p,则X + Y 表示做了 $n_1 + n_2$ 次独立试验事件 A 发生的次数

关于Poisson 分布的和的分布的说明:

$$X \sim P(\lambda_1), Y \sim P(\lambda_2),$$
则

$$Z = X + Y$$
 的可能取值为 0,1,2, ②,

$$P(Z=k) = \sum_{i=0}^{\kappa} P(X=i, Y=k-i),$$

$$=\sum_{i=0}^k \frac{\lambda_1^i e^{-\lambda_1}}{i!} \cdot \frac{\lambda_2^{k-i} e^{-\lambda_2}}{(k-i)!}$$

$$= \frac{e^{-\lambda_{1}-\lambda_{2}}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_{1}^{i} \lambda_{2}^{k-i}$$

$$=\frac{(\lambda_1+\lambda_2)^k e^{-\lambda_1-\lambda_2}}{k!}$$

$$k=0,1,2,\cdots$$