1) Рандомизированные и нерандомизированные решающие правила (РП).

Рассмотрим следующую статистическую задачу. Пусть имеется случайная выборка $X=(x_1^T,\dots,x_n^T)^T\in \mathfrak{X}\subseteq \mathbb{R}^{nN}$ из некоторого N-мерного распределения вероятностей $P_{\theta}(\cdot)$, заданного на измеримом пространстве (Ω,\mathfrak{F}) , где $\theta\in\Theta\subseteq\mathbb{R}^m$ — неизвестное истинное значение векторного параметра; Θ — параметрическое пространство; $\mathfrak{X}\subseteq\mathbb{R}^{nN}$ — выборочное пространство. Задано некоторое натуральное число $K\geqslant 2$ и определено некоторое разбиение параметрического пространства Θ на K областей:

Задача статистической проверки гипотез H_0, \ldots, H_{K-1} состоит в том, чтобы по наблюдаемой выборке X неким оптимальным образом оценить номер ν истинной гипотезы: d=d(X)=k – выносим решение в пользу гипотезы H_k (d=d(X) – статистическая оценка для ν). Возможно K решений ($k\in\{0,1,\ldots,K-1\}$). Множество возможных решений обозначим

$$D = \{0, 1, \dots, K - 1\}, \ |D| = K,$$

и назовем пространством решений.

Определение 12.4. Решающим правилом (решающей функцией, критерием, тестом) в вышесформулированной задаче статистической проверки гипотез называется функциональное отображение выборочного пространства $\mathfrak X$ в пространство решений D:

$$\mathfrak{X} \stackrel{d(\cdot)}{\to} D. \tag{12.1}$$

Определение 12.5. Нерандомизированным РП называется отображение (12.1) следующего вида:

$$d = d(X) = \begin{cases} 0, & X \in \mathcal{X}_0, \\ \vdots \\ K - 1, & X \in \mathcal{X}_{K - 1}, \end{cases}$$

еде $\{X_0, \dots, X_{K-1}\}$ – некоторое детерминированное борелевское разбиение выборочного пространства:

$$\mathfrak{X} = \bigcup_{k=0}^{K-1} \mathfrak{X}_k, \ \mathfrak{X}_k \cap \mathfrak{X}_l = \emptyset, \ k \neq l.$$

При этом, если выборка X фиксирована, то решение d = d(X) неслучайно.

Определение 12.6. Рандомизированным РП называется случайное отображение (12.1) следующего вида:

$$d = d(X, \omega), \ \omega \in \Omega, \ X \in \mathcal{X}, \ d \in D,$$

причем если выборка X фиксирована, то решение $d=d(X, \mathbf{w})$ является дискретной случайной величиной с множеством значений D и некоторым дискретным распределением вероятностей:

$$\phi_i = \phi_i(X) = \mathbf{P}\{d = i|X\}, i \in D.$$

При этом борелевские функции $\phi_i = \phi_i(X)$, $i \in D$, удовлетворяют следующим ограничениям:

$$0 \leqslant \phi_i(X) \leqslant 1, \ i \in D; \quad \sum_{i \in D} \phi_i(X) = 1, \quad X \in \mathcal{X},$$

и называются критическими функциями.

Укажем пошаговый алгоритм принятия решения с помощью рандомизированного решающего правила.

- 1. По выборке X вычисляем значения критических функций: $\phi_i = \phi_i(X), i \in D$, и определяем дискретное распределение вероятностей $\{\phi_0(X), \phi_1(X), \dots, \phi_{K-1}(X)\}$.
- 2. Проводим случайный эксперимент (жребий) со множеством исходов D и дискретным распределением вероятностей, найденным на шаге 1.
 - 3. Регистрируем исход k этого жребия и принимаем решение d = k.

Нерандомизированное решающее правило есть частный случай рандомизированного решающего правила, если критические функции принимают одно из двух возможных значений:

$$\phi_i(X) \in \{0,1\}, X \in \mathcal{X}; \mathcal{X}_i = \{X : \phi_i(X) = 1\}, i \in D.$$

2) Риск как вероятность ошибочной классификации и его минимум, который достигается на байесовском РП (БРП). Нерандомизированный характер БРП и его запись через апостериорные вероятности классов.

Предположим, что параметр θ – случайная величина, принимающая одно из двух возможных значений:

$$\theta \in \Theta = \{\theta_0, \theta_1\}; \ P\{\theta = \theta_i\} = \Pi_i, \ 0 < \Pi_i < 1, \ i = 0, 1; \ \Pi_0 + \Pi_1 = 1.$$

Наблюдается случайная выборка $X=(x_1^T,\dots,x_n^T)^T\in\mathbb{R}^{nN}$ объема n из некоторого распределения вероятностей с условной плотностью $p(x|\theta),\,x\in\mathbb{R}^N,\,\theta\in\Theta.$

Обозначим

$$p_i(X) = \prod_{j=1}^{n} p(x_j | \theta_i), i = 0, 1, -$$

условная плотность распределения выборки X при условии, что $\theta = \theta_i$. Истинное значение θ неизвестно, и определены две простые гипотезы:

$$H_i: \theta = \theta_i, i = 0, 1.$$

Задача заключается в построении теста для проверки H_0, H_1 по выборке X.

Построим рандомизированное решающее правило:

$$d = d(X, \omega) \in D = \{0, 1\}, \ X \in \mathbb{R}^{nN}, \ \omega \in \Omega;$$

$$P\{d(X, \omega) = 1 | X\} = \phi(X), \ P\{d(X, \omega) = 0 | X\} = 1 - \phi(X),$$
(12.9)

где $\phi(X)$ – произвольная критическая функция $(0 \le \phi(X) \le 1)$.

Обозначим: $\mathbf{v} = \mathbf{v}(\mathbf{w}) \in \{0,1\}$ — случайная величина Бернулли — номер истинной гипотезы $H_{\mathbf{v}}$. В силу случайности θ

$$P(H_i) = P{\theta = \theta_i} = \Pi_i, i = 0, 1,$$

поэтому Π_i принято называть априорной вероятностью i-й гипотезы.

Определение 12.12. Функцией потерь в рассматриваемой задаче проверки двух гипотез H_0, H_1 называется функция двух переменных:

$$w = w(i, j) \ge 0, i, j \in D = \{0, 1\},\$$

где w(i,j) – величина потерь, которые несет статистик в ситуации, когда на самом деле $\mathbf{v} = i$ (верна H_i), а принято решение d = j в пользу гипотезы H_i .

Определение 12.13. Принято говорить, что имеет место (0-1)-функция потерь, если

$$w(i,j) = 1 - \delta_{ij} = \begin{cases} 0, & i = j; \\ 1, & i \neq j. \end{cases}$$

Функцию потерь удобно задавать в виде матрицы потерь: $W = (w_{ij}), w_{ij} = w(i, j)$. В случае (0-1)-матрицы потерь имеем

$$W = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Определение 12.14. Функционалом риска называется математическое ожидание случайных потерь (средние потери)

$$r = r(\phi(\cdot)) = \mathbf{E}\{w(\mathbf{v}, d(X, \omega))\} \geqslant 0. \tag{12.10}$$

Определение 12.15 (байесовский принцип оптимальности). Критическую функцию $\phi(\cdot)$ в рандомизированном решающем правиле (12.9) надлежит выбирать таким образом, чтобы функционал риска (12.10) достигал минимального значения:

$$r(\phi^*(\cdot)) = \inf_{\phi(\cdot)} r(\phi(\cdot)). \tag{12.11}$$

При этом критическая функция $\phi^*(\cdot)$, определяемая (12.11), называется байесовской критической функцией, а соответствующее решающее правило $d^*(X, \mathbf{w})$, определяемое (12.9), – байесовским решающим правилом (БРП).

Теорема 12.2. Пусть в сформулированной выше задаче проверки простых гипотез H_0, H_1 функция потерь имеет следующий вид:

$$w(i,j) = \begin{cases} 0, & i = j, \\ w_0, & i = 0, \ j = 1, \\ w_1, & i = 1, \ j = 0, \end{cases}$$
 (12.12)

где $w_0 > 0$, $w_1 > 0$ – некоторые заданные величины.

Тогда байесовская критическая функция задается соотношением $(X \in \mathbb{R}^{nN})$:

$$\phi^*(X) = \begin{cases} 0, & L(X) < C^*, \\ \varkappa^*, & L(X) = C^*, \\ 1, & L(X) > C^*, \end{cases}$$
 (12.13)

e

$$L(X) = \frac{p_1(X)}{p_0(X)} \geqslant 0, \quad C^* = \frac{\Pi_0 w_0}{\Pi_1 w_1} \geqslant 0, \quad \varkappa^* \in [0, 1].$$
 (12.14)

Следствие 12.2. Среди байесовских решающих правил (12.13) существует нерандомизированное решающее правило:

$$d = d^*(X) = \begin{cases} 0, & L(X) < C^*, \\ 1, & L(X) \geqslant C^*. \end{cases}$$

Доказательство. Для доказательства достаточно выбрать $\varkappa^* = 1$. \square Следствие 12.3. Если имеет место (0-1)-функция потерь, m. e. $w_0 = w_1 = 1$, u гипотезы H_0, H_1 равновероятны $\Pi_0 = \Pi_1 = 1/2$, то БРП имеет вид

$$d = d^*(X) = \begin{cases} 0, & p_0(X) > p_1(X), \\ 1, & p_1(X) \ge p_0(X). \end{cases}$$
 (12.16)

Доказательство. Из формулы (12.14) имеем $C^* = 1, \varkappa^* = 1.$

Заметим в заключение, что решающее правило (12.16) часто называют тестом максимального правдоподобия.

3) Модель Фишера и ее важность для практики.

Пусть теперь условные плотности $\{p_i(\cdot)\}_{i\in\mathbb{S}}$ из (16.14), описывающие классы $\{\Omega_i\}_{i\in\mathbb{S}}$, – многомерные нормальные:

$$p_i(x) = n_N(x|\mu_i, \Sigma_i), \ x \in \mathbb{R}^N, \ i \in \mathcal{S}, \tag{16.19}$$

где наблюдения $x \in \mathbb{R}^N$ из класса Ω_i $(d^o = i)$ описываются условными: математическим ожиданием $\mu_i = \mathbf{E}\{x|\ d^o = i\}$ (так называемый центр i-го класса) и невырожденной ковариационной $(N \times N)$ -матрицей $\Sigma_i = \mathbf{E}\{(x - \mu_i)(x - \mu_i)^T |\ d^o = i\}\ (|\Sigma_i| \neq 0)$.

В приложениях при решении реальных задач часто наблюдения, подлежащие классификации, адекватно определяются частным случаем модели (16.13), (16.19) – моделью Фишера:

$$p_i(x) = n_N(x|\mu_i, \Sigma), \ x \in \mathbb{R}^N, \ i \in \mathcal{S}, \tag{16.20}$$

с общей для всех классов невырожденной ковариационной $(N \times N)$ -матрицей $\Sigma = E\{(x - \mu_i)(x - \mu_i)^T | d^o = i\}$ $(i \in \mathcal{S}, |\Sigma| \neq 0)$, описывающей статистический характер ошибок наблюдения: $x = \mu_{d^o} + \xi$, где распределение вероятностей N-вектора ошибок ξ не зависит от номера класса d^o , к которому принадлежит наблюдение x, и является N-мерным нормальным вектором с нулевым математическим ожиданим и ковариационной матрицей Σ ($\mathcal{L}\{\xi\} = N_N(\mathbf{0}_N, \Sigma)$).

Построим байесовское решающее правило.

Теорема 16.2. Пусть классы $\{\Omega_i\}_{i\in\mathbb{S}}$ определяются моделью (16.13), (16.19) с априорными вероятностями $\{\pi_i\}_{i\in\mathbb{S}}$ и невырожденными нормальными распределениями $\{N_N(\mu_i, \Sigma_i), |\Sigma_i| \neq 0\}_{i\in\mathbb{S}}$, тогда БРП (16.15) допускает представление $(x \in \mathbb{R}^N)$:

$$d_o(x) = \arg\min_{i \in S} \left((x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) + \ln|\Sigma_i| - 2\ln\pi_i \right), \tag{16.21}$$

и для модели Фишера (16.13), (16.20):

$$d_o(x) = \arg\min_{i \in S} ((x - \mu_i)^T \Sigma^{-1} (x - \mu_i) - 2 \ln \pi_i).$$
 (16.22)

Доказательство. Очевидно и следует из соотношения

$$d_o(x) = \arg\max_{i \in \mathbb{S}} (\pi_i p_i(x)) = \arg\max_{i \in \mathbb{S}} \ln(\pi_i p_i(x)) = \arg\min_{i \in \mathbb{S}} (-2\ln(\pi_i p_i(x))),$$

и вида плотности многомерного нормального распределения (14.1).

Следствие 16.2. В условиях модели Фишера (16.13), (16.20) при равновероятных классах: $\pi_i = 1/L$, $i \in S$, БРП имеет вид

$$d_o(x) = \arg\min_{i \in \mathcal{S}} \rho(x, \mu_i), \ x \in \mathbb{R}^N,$$
 (16.23)

$$\rho(x,y) = \sqrt{(x-y)^T \Sigma^{-1}(x-y)}, \ x, y \in \mathbb{R}^N, \quad -$$
 (16.24)

метрика Махаланобиса.

Следствие 16.3. Для модели Фишера (16.13), (16.20) в случае двух классов (L=2) байесовский риск r_o из (16.16) может быть вычислен из соотношения

$$\begin{split} r_o &= \pi_1 \Phi \left(-\frac{\Delta}{2} - \frac{h}{\Delta} \right) + \pi_2 \Phi \left(-\frac{\Delta}{2} + \frac{h}{\Delta} \right), \\ h &= \ln \frac{\pi_1}{\pi_2} = \ln \frac{\pi_1}{1 - \pi_1}, \end{split}$$

и при равновероятных классах ($\pi_1 = \pi_2 = 1/2$)

$$r_o = \Phi\left(-\frac{\Delta}{2}\right),$$

где $\Phi(\cdot)$ – функция распределения вероятностей стандартного нормального закона $N_1(0,1)$; $\Delta = \rho(\mu_1,\mu_2) = \sqrt{(\mu_1-\mu_2)^T \Sigma^{-1}(\mu_1-\mu_2)}$ – межклассовое расстояние Махаланобиса (расстояние Махаланобиса между «центрами» классов).

Доказательство. В случае двух классов (L=2) БРП (16.22) может быть записано в виде

$$d_o(x) = \begin{cases} 1, & B(x) < 0, \\ 2, & B(x) \ge 0, \end{cases}$$

где $B(x)=1/2\left((x-\mu_1)^T\Sigma^{-1}(x-\mu_1)-2\ln\pi_1-\left((x-\mu_2)^T\Sigma^{-1}(x-\mu_2)-2\ln\pi_2\right)\right)=b^Tx-H$ линейная по $x\in\mathbb{R}^N$ функция с коэффициентами

$$b = \Sigma^{-1}(\mu_2 - \mu_1), \quad H = \frac{1}{2}(\mu_1 + \mu_2)^T \Sigma^{-1}(\mu_2 - \mu_1) + h.$$

Для байесовского риска r_o из (16.16) имеем

$$r_o = \pi_1 \mathbf{P} \{ d_o(x) = 2 | d^o = 1 \} + \pi_2 \mathbf{P} \{ d_o(x) = 1 | d^o = 2 \} =$$

= $\pi_1 \mathbf{P} \{ B(x) \ge 0 | d^o = 1 \} + \pi_2 \mathbf{P} \{ B(x) < 0 | d^o = 2 \}.$

Найдем условные распределения вероятностей случайной величины B(x) при фиксированном номере класса $d^o = i$ для наблюдения x. Учтем, что при $d^o = i$ согласно модели Фишера случайный N-вектор-наблюдение $x \in \mathbb{R}^N$ имеет многомерное нормальное распределение $N_N(\mu_i, \Sigma)$, и по теореме 14.2 $B(x) = b^T x - H \in \mathbb{R}^1$ также имеет условное нормальное распределение: $\mathcal{L}\{B(x)|d^o = i\} = N_1(m_i, \sigma_i^2), i \in \mathbb{S}$. Найдем математическое ожидание m_i и дисперсию σ_i^2 $(i \in \mathbb{S}, \mathbb{S} = \{1, 2\})$:

$$\begin{split} m_i &= \mathbf{E}\{B(x)|d^o = i\} = b^T \mu_i - H = \\ &= (\mu_2 - \mu_1)^T \Sigma^{-1} \mu_i - \frac{1}{2} (\mu_1 + \mu_2)^T \Sigma^{-1} (\mu_2 - \mu_1) - h = \\ &= -\frac{1}{2} (\mu_1 + \mu_2 - 2\mu_i)^T \Sigma^{-1} (\mu_2 - \mu_1) - h = (-1)^i \frac{\Delta^2}{2} - h; \\ \sigma_i^2 &= \mathbf{D}\{B(x)|d^o = i\} = \cos\{b^T x - H, b^T x - H|d^o = i\} = \\ &= b^T \cos\{x, x|d^o = i\}b = b^T \Sigma b = (\mu_2 - \mu_1)^T \Sigma^{-1} \Sigma \Sigma^{-1} (\mu_2 - \mu_1) = \Delta^2. \end{split}$$

Продолжим преобразования риска r_o и получим

$$\begin{split} r_o &= \pi_1 \boldsymbol{P} \left\{ \frac{B(x) - m_1}{\Delta} \geqslant \frac{-m_1}{\Delta} \mid d^o = 1 \right\} + \pi_2 \boldsymbol{P} \left\{ \frac{B(x) - m_2}{\Delta} < \frac{-m_2}{\Delta} \mid d^o = 2 \right\} = \\ &= \pi_1 \left(1 - \Phi \left(\frac{-m_1}{\Delta} \right) \right) + \pi_2 \Phi \left(\frac{-m_2}{\Delta} \right) = \pi_1 \Phi \left(\frac{m_1}{\Delta} \right) + \pi_2 \Phi \left(\frac{-m_2}{\Delta} \right) = \\ &= \pi_1 \Phi \left(-\frac{\Delta}{2} - \frac{h}{\Delta} \right) + \pi_2 \Phi \left(-\frac{\Delta}{2} + \frac{h}{\Delta} \right) \;, \end{split}$$

где учтено свойство функции распределения стандартного нормального закона: $\Phi(z) = 1 - \Phi(-z), z \in \mathbb{R}$.

Замечание 16.3. Как видно из доказательства, в условиях модели Фишера БРП может быть выражено через функции, линейные по классифицируемому наблюдению, чего не скажешь о случае, когда ковариационные матрицы условных нормальных распределений, описывающих классы, различны. В связи с этим БРП для модели Фишера называется линейным, а при различных ковариационных матрицах — квадратичным.

4) Дискриминантный анализ в рамках модели Фишера.

Решим задачу дискриминантного анализа для модели (16.13), (16.19), когда классы $\{\Omega_i\}_{i\in\mathbb{S}}$ описываются неизвестными априорными вероятностями $\{\pi_i\}_{i\in\mathbb{S}}$ и невырожденными нормальными распределениями $\{N_N(\mu_i,\Sigma_i),|\Sigma_i|\neq 0\}_{i\in\mathbb{S}}$ с неизвестными значениями параметров $\{\mu_i,\Sigma_i\}_{i\in\mathbb{S}}$.

Наличие классифицированной обучающей выборки $X = \{x_1, \dots, x_n\}$ объема n, для которой известен вектор истинной классификации $D^o = (d_1^o, \dots, d_n^o)^T \in \mathbb{S}^n$, позволяет построить несмещенные оценки неизвестных характеристик $\{\pi_i, \mu_i, \Sigma_i\}_{i \in \mathbb{S}}$ классов $\{\Omega_i\}_{i \in \mathbb{S}}$ ($i \in \mathbb{S}$):

$$\hat{\pi}_i = \frac{n_i}{n}, \quad n_i = \sum_{t=1}^n \delta_{d_t^o, i}, \quad -$$
 (16.25)

доля наблюдений, попавших, согласно вектору истинной классификации $D^o \in \mathbb{S}^n$, в i-й класс;

$$\hat{\mu}_i = \overline{x}_{(i)} = \frac{1}{n_i} \sum_{t=1}^n \delta_{d_t^o, i} x_t \quad - \tag{16.26}$$

арифметическое среднее наблюдений из выборки X, попавших в i-й класс (оценка «центра» i-го класса);

$$\hat{\Sigma}_i = S_{(i)} = \frac{1}{n_i - 1} \sum_{t=1}^n \delta_{d_t^o, i} (x_t - \hat{\mu}_i) (x_t - \hat{\mu}_i)^T$$
 (16.27)

выборочная ковариационная матрица для i-го класса.

Несмещенность оценок априорных вероятностей (16.25) очевидна:

$$E\{\hat{\pi}_i\} = E\left\{\frac{1}{n}\sum_{t=1}^n \delta_{d_t^o,i}\right\} = \frac{1}{n}nP\{d_t^o = i\} = \pi_i, \ i \in S.$$

Оценки $\hat{\mu}_i$ и $\hat{\Sigma}_i$ из (16.26) и (16.27) при фиксированном $D^o \in \mathbb{S}^n$ согласно теореме 14.5 являются условно несмещенными оценками параметров многомерного нормального распределения $N_N(\mu_i, \Sigma_i)$, построенными по подвыборке $X^{(i)} = \{x_t \in X : d_t^o = i\}$ объема n_i : $E\{\hat{\mu}_i|D^o\} = \mu_i$, $E\{\hat{\Sigma}_i|D^o\} = \Sigma_i$, где условные математические ожидания не зависят от D^o , что означает безусловную несмещенность оценок (16.26) (16.27).

Подстановочное БРП, соответствующее (16.21) и основанное на оценках (16.25) – (16.27) имеет вид $(x \in \mathbb{R}^N)$

$$\hat{d}_o(x) = \arg\min_{i \in S} \left((x - \hat{\mu}_i)^T \hat{\Sigma}_i^{-1} (x - \hat{\mu}_i) + \ln|\hat{\Sigma}_i| - 2\ln\hat{\pi}_i \right), \tag{16.28}$$

и определяет процедуру *квадратичного дискриминантного анализа* (применяется, если $|\hat{\Sigma}_i| \neq 0, i \in \mathbb{S}$).

В случае модели Фишера (16.13), (16.20) ($\Sigma_i = \Sigma$, $i \in S$) можно продолжать пользоваться квадратичным РП (16.28), но с точки зрения точности оценивания лучше проводить линейный дискриминантный анализ, основанный на БРП (16.22) ($x \in \mathbb{R}^N$):

$$\hat{d}_o(x) = \arg\min_{i \in S} \left((x - \hat{\mu}_i)^T \hat{\Sigma}^{-1} (x - \hat{\mu}_i) - 2 \ln \hat{\pi}_i \right), \tag{16.29}$$

где в (16.29) вместо оценок ковариационных матриц $\{\hat{\Sigma}_i\}_{i\in\mathbb{S}}$ используется несмещенная оценка общей для всех классов ковариационной матрицы Σ :

$$\hat{\Sigma} = \frac{1}{n-L} \sum_{t=1}^{n} (x_t - \hat{\mu}_{d_t^o}) (x_t - \hat{\mu}_{d_t^o})^T,$$
 (16.30)

вычисляемая по всем n наблюдениям из выборки X (применяется, если $|\hat{\Sigma}| \neq 0$). Несмещенность оценки (16.30) следует из того, что при фиксированном векторе истинной классификации D^o матрица $(n-L)\hat{\Sigma}$ является суммой L независимых случайных матриц Уишарта:

$$(n-L)\hat{\Sigma} = \sum_{i \in S} A_i, \quad A_i = \sum_{x_t \in X(i)} (x_t - \hat{\mu}_i)(x_t - \hat{\mu}_i)^T;$$

$$\mathcal{L}\{A_i|D^o\}=W_N(\Sigma,n_i-1),\ i\in\mathbb{S},$$

а значит, по свойствам распределения Уишарта

$$\mathcal{L}\{(n-L)\hat{\Sigma}|D^o\} = W_N\left(\Sigma, \sum_{i \in S} (n_i - 1)\right) = W_N(\Sigma, n - L)$$

и $E\{\hat{\Sigma}|D^o\} = \Sigma$ не зависит от D^o , поэтому $E\{\hat{\Sigma}\} = \Sigma$.

Замечание 16.4. Перед проведением дискриминантного анализа целесообразно проверить гипотезу однородности (см. пп. 16.4.3):

$$\mu_1 = \ldots = \mu_L, \quad \Sigma_1 = \ldots = \Sigma_L.$$

Если она принимается, то выборка считается однородной, и дискриминантный анализ не проводится. В противном случае проверяется гипотеза о совпадении ковариационных матриц (см. п. 16.4.2):

$$\Sigma_1 = \ldots = \Sigma_L$$
.

Ее принятие или отклонение позволяет соответственно сделать выбор в пользу линейного (модель Фишера) или квадратичного дискриминантного анализа.

5) Иерархический кластер-анализ и определение неизвестного числа классов для дискриминантного анализа. Интернет:

Иерархический кластерный анализ - метод разбиения множества многомерных объектов на однородные группы, относящийся к классу агломеративных методов. Агломеративные методы последовательно объединяют отдельные объекты в кластеры.

Исходные данные:

- *n*. Число объектов;
- *m*. Число признаков;
- *X*. Матрица объектов;
- Q. Искомое число кластеров.

Пусть $X(n \times m)$ - матрица, описывающая n объектов в R^m . Алгоритм иерархической кластеризации заключается в последовательном слиянии кластеров с минимальным межкластерным расстоянием, начиная с n тривиальных кластеров по одному объекту в каждом и заканчивая на шаге n - Q после построения ровно Q кластеров.

Изначально расстояния между однообъектными кластерами – это расстояния между соответствующими объектами, и на каждом шаге пересчету подлежит только расстояние от вновь образованного кластера посредством слияния до оставшихся кластеров.

Межкластерное расстояние и, соответственно, метод пересчета межкластерного расстояния между произвольным кластером *i* и кластером, образованным посредством объединения кластеров *j*, *k* может быть определен одним из способов:

• ближайший сосед:

$$d_{i,jk} = \min(d_{ij}, d_{ik})$$

• максимальное расстояние:

$$d_{i,jk} = \max(d_{ij}, d_{ik})$$

• групповое среднее:

$$d_{i,jk} = \frac{n_j}{n_j + n_k} d_{ij} + \frac{n_k}{n_j + n_k} d_{ik}$$

• центроид:

$$d_{i,jk} = \frac{n_j}{n_j + n_k} d_{ij} + \frac{n_k}{n_j + n_k} d_{ik} - \frac{n_j n_k}{(n_j + n_k)^2} d_{jk}$$

• медиана:

$$d_{i,jk} = \frac{1}{2}d_{ij} + \frac{1}{2}d_{ik} - \frac{1}{4}d_{jk}$$

• минимальная вариация:

$$d_{i,jk} = \frac{(n_i + n_j)d_{ij} + (n_i + n_k)d_{ik} - n_i d_{jk}}{n_i + n_i + n_k}$$

Где n_i , n_i , n_k - размеры кластеров.

Способы, используемые для определения первоначальных расстояний между объектами:

• сумма модулей:

$$\sum_i |x_{1,i} - x_{2,i}|$$

• евклидова норма:

$$\sum_{i} (x_{1,i} - x_{2,i})^2$$

• корень из евклидовой нормы:

$$\sqrt{\sum_{i} (x_{1,i} - x_{2,i})^2}$$

Далее выбирается метод кластеризации, на основе которого проводиться дальнейшее исследование. Также иерархическая кластеризация позволяет строить древовидную структуру (дендрограмму), последовательно объединяя или разделяя объекты.

6) Метод средних в кластер-анализе и его использование наряду с иерархическим кластер-анализом при определении неизвестного числа классов.

Однако на практике чаще используют упрощенный вариант приведенной выше процедуры кластер-анализа, основанный на модели Фишера и использовании решающего правила (16.23), в котором в качестве метрики наряду с метрикой Махаланобиса (16.24) может использоваться и любая другая метрика (например, евклидова). Данный подход известен как метод L-средних. Опишем его для метрик Махаланобиса и Евклида.

Шаг 0. Из выборки $X=\{x_1,\dots,x_n\}$ выбираем какие-либо $L\geqslant 2$ наблюдений в качестве начальных приближений $\left\{\hat{\mu}_i^{(0)}\right\}_{i\in\mathbb{S}}$ для «центров» классов $\{\mu_i\}_{i\in\mathbb{S}}$. При использовании метрики Махаланобиса в качестве начального приближения для ковариационной матрицы Σ выбираем единичную матрицу: $\hat{\Sigma}^{(0)}=I_N$.

Шаг k ($k=1,2,\ldots$). Классифицируем наблюдения из выборки по «близости» к «центрам» классов:

$$\hat{d}_t^{(k)} = \arg\min_{i \in \mathbb{S}} \rho\left(x_t, \hat{\mu}_i^{(k-1)}\right), \ t = 1, \dots, n,$$

где либо

$$\rho\left(x_{t}, \hat{\mu}_{i}^{(k-1)}\right) = \sqrt{\left(x_{t} - \hat{\mu}_{i}^{(k-1)}\right)^{T} \left(\hat{\Sigma}^{(k-1)}\right)^{-1} \left(x_{t} - \hat{\mu}_{i}^{(k-1)}\right)} -$$

метрика Махаланобиса, либо

$$\rho\left(x_{t}, \hat{\mu}_{i}^{(k-1)}\right) = \left|x_{t} - \hat{\mu}_{i}^{(k-1)}\right| = \sqrt{\left(x_{t} - \hat{\mu}_{i}^{(k-1)}\right)^{T} \left(x_{t} - \hat{\mu}_{i}^{(k-1)}\right)} -$$

метрика Евклида.

Получаем $\hat{D}^{(k)} = \left(\hat{d}_1^{(k)}, \dots, \hat{d}_n^{(k)}\right)^T \in \mathbb{S}^n$ — оценка вектора истинной классификации $D^o \in \mathbb{S}^n$ на k-м шаге.

Уточняем оценки «центров» классов:

$$\hat{\mu}_{i}^{(k)} = \frac{1}{n_{i}^{(k)}} \sum_{t=1}^{n} \delta_{\hat{d}_{t}^{(k)}, i} x_{t}, \quad n_{i}^{(k)} = \sum_{t=1}^{n} \delta_{\hat{d}_{t}^{(k)}, i}, \ i \in \mathcal{S},$$

и ковариационной матрицы, если используется метрика Махаланобиса:

$$\hat{\Sigma}^{(k)} = \frac{1}{n-L} \sum_{t=1}^{n} \left(x_t - \hat{\mu}_{\hat{d}_t^{(k)}}^{(k)} \right) \left(x_t - \hat{\mu}_{\hat{d}_t^{(k)}}^{(k)} \right)^T.$$

Шаг-остановка. При $\hat{D}^{(k)} = \hat{D}^{(k-1)}$ $(k \geqslant 2)$ итерационный процесс останавливаем и полагаем: $\hat{\mu}_i := \hat{\mu}_i^{(k)}, \ i \in \mathcal{S}$, – оценки «центров» классов $\{\mu_i\}_{i \in \mathcal{S}}; \ \hat{\Sigma} := \hat{\Sigma}^{(k)}$ – оценка ковариационной матрицы Σ при использовании метрики Махаланобиса; $\hat{D} := \hat{D}^{(k)}$ – оценка вектора истинной классификации $D^o \in \mathcal{S}^n$.

Замечание 16.5. Эффективность всех методов кластер-анализа существенно зависит от межклассовых расстояний $\rho(\mu_i, \mu_j)$, $i \neq j \in S$: чем они больше, тем меньше доля ошибочных решений (16.18) и ниже «чувствительность» метода к выбору начальных приближений для «центров» классов и метрики (в методе L-средних).

С методом L-средних связана еще одна характеристика — nceedo-F-cmamucmuka $\Phi uuepa$:

$$PFS(L) = \frac{\frac{1}{L-1} \sum_{i \in S} n_i |\hat{\mu}_i - \overline{x}|^2}{\frac{1}{n-L} \sum_{t=1}^{n} |x_t - \hat{\mu}_{\hat{d}_t}|^2};$$

$$\hat{\mu}_i = \frac{1}{n_i} \sum_{t=1}^n \delta_{\hat{d}_t, i} x_t, \ n_i = \sum_{t=1}^n \delta_{\hat{d}_t, i}, \ i \in S; \quad \overline{x} = \sum_{i \in S} \frac{n_i}{n} \hat{\mu}_i = \frac{1}{n} \sum_{t=1}^n x_t,$$

которая при истинном числе классов L и $\hat{D}:=D^o$ имеет F-распределение Фишера с L-1 и n-L степенями свободы. Но более важно другое ее свойство: она имеет глобальный максимум на истинном числе классов. Это позволяет использовать ее для оценивания неизвестного числа классов L, задавая верхнюю границу L_+ и проводя кластер-анализ при каждом значении $L=2,\ldots,L_+$:

$$\hat{L} = \arg \max_{2 \leqslant L \leqslant L_{+}} PFS(L).$$

GPT

Иерархическая кластеризация позволяет строить дендрограмму — древовидную структуру, которая отражает, как группы объектов объединяются на каждом этапе. Она особенно полезна, если число кластеров заранее неизвестно. Метод средних и иерархический анализ могут быть объединены для оптимального результата:

- 1. Определение числа кластеров с помощью иерархического анализа:
 - Построение дендрограммы.
 - Выбор оптимального уровня разбиения (на основе визуального анализа дендрограммы или специальных критериев, например, метода локтя или индекса Силуэтов).
- 2. Использование k-means для уточнения кластеров:
 - После определения количества кластеров (k) метод средних используется для детального распределения объектов, так как он быстрее и лучше работает на больших данных по сравнению с чисто иерархическими методами.

Преимущества совместного использования:

- **Иерархический анализ** обеспечивает наглядность и помогает выбрать оптимальное количество кластеров.
- Метод средних эффективен для обработки больших наборов данных и уточнения структуры кластеров.
- Вместе они уменьшают риск субъективного выбора числа кластеров и повышают точность анализа.

Недостатки и вызовы:

- Метод k-means чувствителен к выбору начальных центроидов, что может привести к локальным минимумам.
- Иерархическая кластеризация может быть вычислительно затратной на больших данных.
- Оба метода предполагают, что кластеры имеют определенную форму (чаще сферическую), что не всегда соответствует реальным данным.

Интернет про использование с иерархической кластеризацией

Сначала определяется центр кластера, а затем группируют все объекты в пределах заданного от центра порогового значения.

Недостатки:

- Чувствительность к выбросам
- Необходимо заранее задавать количество кластеров, а не как в иерархическом анализе, получать это в качестве результата

Проблему с выбором числа кластеров можно преодолеть проведением иерархического анализа со случайно отобранной выборкой наблюдений и, таким образом, определить оптимальное количество кластеров.

Достоинства:

- Простота использования
- В качестве метрики используется Евклидово расстояние
- Возможность наглядной интерпретации кластеров с использованием графика «Средних значений в кластерах»

7) Визуализация выборки в дискриминантном анализе, графики средних по классам в кластер-анализе.

Визуализация выборки в дискриминантном анализе.

В случае модели Фишера (16.13), (16.20) ($\Sigma_i = \Sigma, i \in S$)

$$P\{d^{o}(\omega) = i\} = \pi_{i} > 0, i \in S; \quad \pi_{1} + \ldots + \pi_{L} = 1,$$
 (16.13)

$$p_i(x) = n_N(x|\mu_i, \Sigma), x \in \mathbb{R}^N, i \in S,$$
 (16.20)

ваться квадратичным РП (16.28), но с точки зрения точности оценивания лучше проводить линейный дискриминантный анализ, основанный на БРП (16.22) ($x \in \mathbb{R}^N$):

$$\hat{d}_o(x) = \arg\min_{i \in S} \left((x - \hat{\mu}_i)^T \hat{\Sigma}^{-1} (x - \hat{\mu}_i) - 2 \ln \hat{\pi}_i \right),$$
 (16.29)

где в (16.29) вместо оценок ковариационных матриц $\{\hat{\Sigma}_i\}_{i\in\mathbb{S}}$ используется несмещенная оценка общей для всех классов ковариационной матрицы Σ :

$$\hat{\Sigma} = \frac{1}{n-L} \sum_{t=1}^{n} (x_t - \hat{\mu}_{d_t^o})(x_t - \hat{\mu}_{d_t^o})^T,$$
 (16.30)

вычисляемая по всем n наблюдениям из выборки X (применяется, если $|\hat{\Sigma}| \neq 0$). Несме-

Замечание 16.4. Перед проведением дискриминантного анализа целесообразно проверить гипотезу однородности (см. пп. 16.4.3):

$$\mu_1 = \ldots = \mu_L, \quad \Sigma_1 = \ldots = \Sigma_L.$$

Если она принимается, то выборка считается однородной, и дискриминантный анализ не проводится. В противном случае проверяется гипотеза о совпадении ковариационных матриц (см. п. 16.4.2):

$$\Sigma_1 = \ldots = \Sigma_L$$
.

Ee принятие или отклонение позволяет соответственно сделать выбор в пользу линейного (модель Фишера) или квадратичного дискриминантного анализа. Рассмотрим типичные для задач статистической классификаци известные данные Фишера по ирисам [4] (Fisher Iris Data, 1936), представляющие собой наблюдения $x=(\tilde{x}_1,\tilde{x}_2,\tilde{x}_3,\tilde{x}_4)^T$ над четырьмя признаками (N=4): \tilde{x}_1,\tilde{x}_2 – длина и ширина чашелистика, \tilde{x}_3,\tilde{x}_4 – длина и ширина лепестка цветка ириса. Всего 150 наблюдений (n=150), принадлежащих к L=3 классам $(n_1=n_2=n_3=50)$: Ω_1 – ирис цветной (Iris versicolor), Ω_2 – ирис махровый (Iris setosa), Ω_3 – ирис чистый (Iris virginica).

Согласно замечанию 16.4 сначала решаем вопрос о целесообразности проведения классификации, проверяя гипотезу однородности (она отклоняется с уровнем значимости $\alpha = 0.05$). Затем устанавливаем, что ковариационные матрицы по классам совпадают (с уровнем значимости $\alpha = 0.05$), что приводит нас к модели Фишера и линейному дискриминантному анализу, проведя который, вычисляем долю ошибочных решений: $\gamma_n = 3/150 = 0.02$. На рис. 16.1 данные Фишера отображены в пространстве первых

Puc. 16.1. Диаграмма рассеяния данных Фишера в пространстве двух главных компонент: □ − Iris versicolor; ◦ − Iris setosa; ⋄ − Iris virginica

двух главных компонент, вычисленных на основе построенной при дискриминантном анализе оценки ковариационной матрицы, а в табл. 16.1 приведен фрагмент полученной классификации с вычисленными оценками апостериорных вероятностей классов. Видно, что на ошибочных решениях (помечены «*») доминирующее значение апостериорной вероятности далеко от единицы.

Графики средних по классам в кластер-анализе.

Проведя кластер-анализ методом L-средних в метрике Евклида, имеем долю ошибочных решений: $\gamma_n=16/150=0,11$, которая больше, чем в дискриминантном анализе, но по-прежнему приемлема. Полученные в кластер-анализе оценки «центров» классов показаны на рис. 16.2. Видно, что по каждому признаку они «достаточно» различаются. Отметим также, что для этих данных в предположении неизвестного числа классов псевдо F-статистика Фишера, подсчитанная по результатам метода L-средних при различных предполагаемых значениях числа классов, имеет глобальный максимум на истинном числе классов L=3.

Puc. 16.2. Графики средних для данных Фишера по результатам кластер-анализа: □ – Iris versicolor; ◦ – Iris setosa; ⋄ – Iris virginica

ЧатГПТ говорит:

Определение: Графики средних по классам показывают средние значения признаков для каждого класса (или кластера), что позволяет сравнивать, как разные классы отличаются по своим характеристикам.

Цель: Используется для анализа и понимания различий между классами по каждому признаку. Это может быть представлено в виде столбчатых диаграмм, линейных графиков или тепловых карт.

8) Проведение кластер-анализа неоднородных выборок и интерпретация его результатов.

Рассмотрим типичные для задач статистической классификаци известные данные Фишера по ирисам [4] (Fisher Iris Data, 1936), представляющие собой наблюдения $x=(\tilde{x}_1,\tilde{x}_2,\tilde{x}_3,\tilde{x}_4)^T$ над четырьмя признаками (N=4): \tilde{x}_1,\tilde{x}_2 – длина и ширина чашелистика, \tilde{x}_3,\tilde{x}_4 – длина и ширина лепестка цветка ириса. Всего 150 наблюдений (n=150), принадлежащих к L=3 классам $(n_1=n_2=n_3=50)$: Ω_1 – ирис цветной (Iris versicolor), Ω_2 – ирис махровый (Iris setosa), Ω_3 – ирис чистый (Iris virginica).

Проведя кластер-анализ методом L-средних в метрике Евклида, имеем долю ошибочных решений: $\gamma_n=16/150=0,11$, которая больше, чем в дискриминантном анализе, но по-прежнему приемлема. Полученные в кластер-анализе оценки «центров» классов показаны на рис. 16.2. Видно, что по каждому признаку они «достаточно» различаются. Отметим также, что для этих данных в предположении неизвестного числа классов псевдо F-статистика Фишера, подсчитанная по результатам метода L-средних при различных предполагаемых значениях числа классов, имеет глобальный максимум на истинном числе классов L=3.

Алгоритм метода L-средних:

Шаг 0. Из выборки $X=\{x_1,\ldots,x_n\}$ выбираем какие-либо $L\geqslant 2$ наблюдений в качестве начальных приближений $\{\hat{\mu}_i^{(0)}\}_{i\in \mathbb{S}}$ для «центров» классов $\{\mu_i\}_{i\in \mathbb{S}}$. При использовании метрики Махаланобиса в качестве начального приближения для ковариационной матрицы Σ выбираем единичную матрицу: $\hat{\Sigma}^{(0)}=I_N$.

Шаг k ($k=1,2,\ldots$). Классифицируем наблюдения из выборки по «близости» к «центрам» классов:

$$\hat{d}_t^{(k)} = \arg\min_{i \in \mathbb{S}} \rho\left(x_t, \hat{\mu}_i^{(k-1)}\right), \ t = 1, \dots, n,$$

где

$$\rho\left(x_{t}, \hat{\mu}_{i}^{(k-1)}\right) = \left|x_{t} - \hat{\mu}_{i}^{(k-1)}\right| = \sqrt{\left(x_{t} - \hat{\mu}_{i}^{(k-1)}\right)^{T} \left(x_{t} - \hat{\mu}_{i}^{(k-1)}\right)} - \frac{1}{2}$$

метрика Евклида.

Получаем $\hat{D}^{(k)} = \left(\hat{d}_1^{(k)}, \dots, \hat{d}_n^{(k)}\right)^T \in \mathbb{S}^n$ — оценка вектора истинной классификации $D^o \in \mathbb{S}^n$ на k-м шаге.

Уточняем оценки «центров» классов:

$$\hat{\mu}_{i}^{(k)} = \frac{1}{n_{i}^{(k)}} \sum_{t=1}^{n} \delta_{\hat{d}_{t}^{(k)}, i} x_{t}, \quad n_{i}^{(k)} = \sum_{t=1}^{n} \delta_{\hat{d}_{t}^{(k)}, i}, \ i \in \mathcal{S},$$

и ковариационной матрицы, если используется метрика Махаланобиса:

$$\hat{\Sigma}^{(k)} = \frac{1}{n-L} \sum_{t=1}^{n} \left(x_t - \hat{\mu}_{\hat{d}_t^{(k)}}^{(k)} \right) \left(x_t - \hat{\mu}_{\hat{d}_t^{(k)}}^{(k)} \right)^T.$$

Шаг-остановка. При $\hat{D}^{(k)} = \hat{D}^{(k-1)}$ $(k \geqslant 2)$ итерационный процесс останавливаем и полагаем: $\hat{\mu}_i := \hat{\mu}_i^{(k)}, \ i \in \mathbb{S}, \ -$ оценки «центров» классов $\{\mu_i\}_{i \in \mathbb{S}}; \ \hat{\Sigma} := \hat{\Sigma}^{(k)} \ -$ оценка ковариационной матрицы Σ при использовании метрики Махаланобиса; $\hat{D} := \hat{D}^{(k)} \ -$ оценка вектора истинной классификации $D^o \in \mathbb{S}^n$.

Замечание 16.5. Эффективность всех методов кластер-анализа существенно зависит от межклассовых расстояний $\rho(\mu_i, \mu_j)$, $i \neq j \in S$: чем они больше, тем меньше доля ошибочных решений (16.18) и ниже «чувствительность» метода к выбору начальных приближений для «центров» классов и метрики (в методе L-средних).

С методом L-средних связана еще одна характеристика — $ncee \partial o$ -F-cmamucmuka $\Phi uuepa$:

$$PFS(L) = \frac{\frac{1}{L-1} \sum_{i \in S} n_i |\hat{\mu}_i - \overline{x}|^2}{\frac{1}{n-L} \sum_{t=1}^n |x_t - \hat{\mu}_{\hat{d}_t}|^2};$$

$$\hat{\mu}_i = \frac{1}{n_i} \sum_{t=1}^n \delta_{\hat{d}_t, i} x_t, \ n_i = \sum_{t=1}^n \delta_{\hat{d}_t, i}, \ i \in \mathbb{S}; \quad \overline{x} = \sum_{i \in \mathbb{S}} \frac{n_i}{n} \hat{\mu}_i = \frac{1}{n} \sum_{t=1}^n x_t,$$

которая при истинном числе классов L и $\hat{D}:=D^o$ имеет F-распределение Фишера с L-1 и n-L степенями свободы. Но более важно другое ее свойство: она имеет глобальный максимум на истинном числе классов. Это позволяет использовать ее для оценивания неизвестного числа классов L, задавая верхнюю границу L_+ и проводя кластер-анализ при каждом значении $L=2,\ldots,L_+$:

$$\hat{L} = \arg\max_{2 \leqslant L \leqslant L_+} \mathrm{PFS}(L).$$