1 オープンアドレス法に関する議論

補題 1. m,t を正整数とする。m,t が互いに素であるための必要十分条件は、任意の整数 s,g $(0 \le s < m,\ 0 \le g < m)$ に対して

$$g \equiv s + jt \mod m$$

を満たすような非負整数 j が存在することである。

証明. 最初に、十分性を示す。(g,s)=(0,0), (g,s)=(1,0) を代入すると、

$$0 \equiv jt \mod m$$

$$1 \equiv j't \mod m$$

が成り立つから、ある整数kを用いて、

$$mk + (j' - j)t = 1$$

が成り立つ。したがって、m,t は互いに素である。よって十分性が示された。

次に、必要性を示す。まずs=0のときを示す。

ある非負整数 j_0, j_1 ($0 \le j_0 < j_1 < m$) に対して

$$g \equiv j_0 t \mod m$$

$$q \equiv j_1 t \mod m$$

が成り立つと仮定すると,

$$0 \equiv (j_1 - j_0)t \mod m$$

である。t は m と互いに素であるから、両辺を t で割ることができ、

$$0 \equiv j_1 - j_0 \mod m$$

よって $j_0=j_1$ であるが,これは $j_0< j_1$ に矛盾する。したがって,非負整数 j を $0\leq j< m$ の範囲で動かすとき, jt を m で割った余りはすべて相異なる。

このことと鳩の巣原理により,

$$g \equiv jt \mod m \tag{1}$$

を満たす非負整数iが0 < i < mの範囲に唯一つ存在する。

つぎに $s \neq 0$ のときを示す。 (1) の両辺に s ($0 \leq s < m$) を加え,さらに g + s を m で割った余りを g' とおくと,

$$g' \equiv s + jt \mod m$$

であり、しかも 0 < q' < m であるから、必要性が示された。