First-order separation over countable ordinals

FoSSACS '22, Munich

Thomas Colcombet, IRIF, U. Paris-Cité Sam van Gool, IRIF, U. Paris-Cité <u>Rémi Morvan</u>, Labri, U. Bordeaux

5 April, 2022

Goal: to better understand first-order logic on countable ordinals. Warm-up: finite words.

Goal: to better understand first-order logic on countable ordinals. Warm-up: finite words.

Let $u \in \Sigma^*$ where $A = \{a, b, c, \ldots\}$.

Goal: to better understand first-order logic on countable ordinals. Warm-up: finite words.

Let
$$u \in \Sigma^*$$
 where $A = \{a, b, c, \ldots\}$.

$$u \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

Goal: to better understand first-order logic on countable ordinals. Warm-up: finite words.

Let $u \in \Sigma^*$ where $A = \{a, b, c, \ldots\}$.

$$u \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

$$\inf u = \underbrace{\qquad \qquad a \qquad \qquad b \qquad \qquad }_{X}$$

Goal: to better understand first-order logic on countable ordinals. Warm-up: finite words.

Let $u \in \Sigma^*$ where $A = \{a, b, c, \ldots\}$.

$$u \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

$$\inf u = \begin{bmatrix} \dots & a & \dots & b & \dots \\ x & & y & & y \end{bmatrix}$$

i.e.
$$u \in \Sigma^* a \Sigma^* b \Sigma^*$$
.

FO-definability

FO-definability

```
Theorem [Schützenberger '65 & McNaughton-Papert '71]:
```

A morphism $f \colon \Sigma^* \to M$ is FO-definable IFF im f is aperiodic.

Corollary: FO-DEFINABILITY is decidable.

FO-definability

```
Theorem [Schützenberger '65 & McNaughton-Papert '71]:
```

A morphism $f \colon \Sigma^* \to M$ is FO-definable IFF im f is aperiodic. \leftarrow

Corollary: FO-DEFINABILITY is decidable.

every group in im f is trivial

Example!

$$f: \{a,b\}^* \to M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

	1	а	aa	0				
1	1	а	aa	0				
а	a	aa	а	0				
aa	aa	а	aa	0				
0	0	0	0	0				
1 _*								

Example!

$$f: \{a,b\}^* \rightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

f is not FO-definable...

Example!

$$f: \{a,b\}^* \to M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

f is not FO-definable... but still carries "FO-describable information"

Qualitative vs. quantitative

Qualitative vs. quantitative

Can we make a quantitative version of Schützenberger-McNaughton-Papert?

Qualitative vs. quantitative

Can we make a quantitative version of Schützenberger-McNaughton-Papert?

$$f: \{a,b\}^* \rightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$f \colon \{a,b\}^* \quad \rightarrow \qquad \qquad M$$

$$u \quad \mapsto \quad \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$g \colon \{a,b\}^* \quad \rightarrow \qquad \qquad \mathcal{P}(M)$$

$$u \quad \mapsto \quad \begin{cases} \{1\} & \text{if } u = \varepsilon \\ \{a,aa\} & \text{if } u \in a^+, \\ \{0\} & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$f: \{a,b\}^* \longrightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$g: \{a,b\}^* \longrightarrow \mathcal{P}(M)$$

$$u \mapsto \begin{cases} \{1\} & \text{if } u = \varepsilon \\ \{a,aa\} & \text{if } u \in a^+, \\ \{0\} & \text{if } u \text{ contains a 'b'} \end{cases}$$

In general:

- no canonical choice for g
- canonical choice for im g

$$f: \{a,b\}^* \longrightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$g: \{a,b\}^* \rightarrow \mathcal{P}(M)$$

$$u \mapsto \begin{cases} \{1\} & \text{if } u = \varepsilon \\ \{a,aa\} & \text{if } u \in a^+, \\ \{0\} & \text{if } u \text{ contains a 'b'} \end{cases}$$

In general:

- no canonical choice for g
- canonical choice for im g

Theorem [Henckell '88, revisited]:

- for every $f \colon \Sigma^* \to M$, there exists $g \colon \Sigma^* \to \langle M \rangle^{*, \operatorname{grp}}$ such that g FO-approximates f, i.e.
 - $f(u) \in g(u)$ for all $u \in \Sigma^*$, and
 - g is FO-definable;

$$f: \{a,b\}^* \longrightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$g \colon \{a,b\}^* \quad \to \qquad \qquad \mathcal{P}(M)$$

$$u \quad \mapsto \quad \begin{cases} \{1\} & \text{if } u = \varepsilon \\ \{a,aa\} & \text{if } u \in a^+, \\ \{0\} & \text{if } u \text{ contains a 'b'} \end{cases}$$

In general:

- no canonical choice for g
- canonical choice for im g

Theorem [Henckell '88, revisited]:

- for every $f \colon \Sigma^* \to M$, there exists $g \colon \Sigma^* \to \langle M \rangle^{*, grp}$ such that g FO-approximates f, i.e.
 - $f(u) \in g(u)$ for all $u \in \Sigma^*$, and
 - g is FO-definable;
- if $X \in \langle M \rangle^{*,grp}$, then "elements of X cannot be distinguished using first-order logic".

$$f \colon \{a,b\}^* \quad \to \qquad \qquad M$$

$$u \quad \mapsto \quad \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$g \colon \{a,b\}^* \quad \to \qquad \qquad \mathcal{P}(M)$$

$$u \quad \mapsto \quad \begin{cases} \{1\} & \text{if } u = \varepsilon \\ \{a,aa\} & \text{if } u \in a^+, \\ \{0\} & \text{if } u \text{ contains a 'b'} \end{cases}$$

In general:

- no canonical choice for g
- canonical choice for im g

Theorem [Henckell '88, revisited]:

- for every $f \colon \Sigma^* \to M$, there exists $g \colon \Sigma^* \to \langle M \rangle^{*, \operatorname{grp}}$ such that g FO-approximates f, i.e.
 - $f(u) \in g(u)$ for all $u \in \Sigma^*$, and
 - g is FO-definable;
- if $X \in \langle M \rangle^{*,grp}$, then "elements of X cannot be distinguished using first-order logic".

$$\langle M \rangle^{*,grp} = \{\{1\}, \{a\}, \{aa\}, \{a, aa\}, \{0\}\}$$

Henckell's theorem: motivation & statement

Reminder: we want to extract as many FO-definable information from $f: \Sigma^* \to M$ as possible.

In general:

- no canonical choice for g
- canonical choice for im g

Theorem [Henckell '88, revisited]:

- for every $f \colon \Sigma^* \to M$, there exists $g \colon \Sigma^* \to \langle M \rangle^{*, grp}$ such that g FO-approximates f, i.e.
 - $f(u) \in g(u)$ for all $u \in \Sigma^*$, and
 - *g* is FO-definable;
- if $X \in \langle M \rangle^{*,grp}$, then "elements of X cannot be distinguished using first-order logic".

$$\langle M\rangle^{*,grp}=\big\{\{1\},\{\color{red}a\},\{\color{red}aa\},\{\color{red}a,aa\},\{0\}\big\}$$

Henckell's theorem: motivation & statement

Reminder: we want to extract as many FO-definable information from $f: \Sigma^* \to M$ as possible.

Idea behind $\langle M \rangle^{*,grp}$: "saturate" your monoid with groups.

Definition: $\langle M \rangle^{*,grp}$ is the smallest submonoid $\mathcal N$ of $\mathcal P(M)$ containing all singletons and such that:

IF
$$\mathcal{G} \subseteq \mathcal{N}$$
 is a group, THEN $\bigcup \mathcal{G} \in \mathcal{N}$.

In general:

- no canonical choice for g
- canonical choice for im g

Theorem [Henckell '88, revisited]:

- for every $f \colon \Sigma^* \to M$, there exists $g \colon \Sigma^* \to \langle M \rangle^{*, \operatorname{grp}}$ such that g FO-approximates f, i.e.
 - $f(u) \in g(u)$ for all $u \in \Sigma^*$, and
 - *g* is FO-definable;
- if $X \in \langle M \rangle^{*,grp}$, then "elements of X cannot be distinguished using first-order logic".

$$\langle M \rangle^{*,grp} = \{\{1\}, \{a\}, \{aa\}, \{a, aa\}, \{0\}\}$$

ω-words: FO cannot capture group-like phenomena [Perrin '84] (qualitative) [Place & Zeitoun '16] (quantitative).

```
ω-words: FO cannot capture group-like phenomena [Perrin '84] (qualitative) [Place & Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

Example: bca, $cabc(ab)^{\omega}$, $(ab^{\omega}c)^{\omega}$, etc.

```
    ω-words: FO cannot capture group-like phenomena
    [Perrin '84] (qualitative)
    [Place & Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

```
Example: bca, cabc(ab)^{\omega}, (ab^{\omega}c)^{\omega}, etc.
```

```
\exists x. \ \text{last}(x) \land a(x) where \text{last}(x) := \forall y. \ y \leqslant x. The word has a last position, and it is an 'a'.
```

```
    ω-words: FO cannot capture group-like phenomena
    [Perrin '84] (qualitative)
    [Place & Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

```
Example: bca, cabc(ab)^{\omega}, (ab^{\omega}c)^{\omega}, etc.
```

```
\exists x. \ \text{last}(x) \land a(x) where \ \text{last}(x) := \forall y. \ y \leqslant x. The word has a last position, and it is an 'a'.
```

```
a^{\omega}cb^{\omega}ca (ab)^{\omega}b a^{\omega} yes no no
```

```
    ω-words: FO cannot capture group-like phenomena
    [Perrin '84] (qualitative)
    [Place & Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

```
Example: bca, cabc(ab)^{\omega}, (ab^{\omega}c)^{\omega}, etc.
```

```
\exists x. \ \text{last}(x) \land a(x) where \ \text{last}(x) := \forall y. \ y \leqslant x. The word has a last position, and it is an 'a'.
```

$$a^{\omega}cb^{\omega}ca$$
 $(ab)^{\omega}b$ a^{ω} yes no no

FO cannot capture group-like phenomena over countable ordinals:

```
[Bedon '01] (qualitative)
[Colcombet, van Gool & M., '22] (quantitative).
```

Languages over countable ordinals: example

Word	a^{ω}	$(a^{\omega}a)^{\omega}$	$(a^{\omega})^{\omega}a^{53}$	$a^{\omega \cdot \alpha + k}$
Longest finite suffix (LFS)	0	0	53	k

Can you give me an ordinal monoid recognising infinite words whose longest finite suffix has even length?

Languages over countable ordinals: example

Word
$$a^{\omega}$$
 $(a^{\omega}a)^{\omega}$ $(a^{\omega})^{\omega}a^{53}$ $a^{\omega \cdot \alpha + k}$
Longest finite suffix (LFS) o o 53 k

Can you give me an ordinal monoid recognising infinite words whose longest finite suffix has even length?

empty word _		1	а	aa	a^{ω}	$a^{\omega}a$
finite & odd	1	1	а	aa		$a^{\omega}a$
finite & even	а	a	aa	а		$a^{\omega}a$
infinite & even LFS	aa	aa	а	aa	a^{ω}	$a^{\omega}a$
infinite & odd LFS	a^{ω}	a^{ω}	$a^{\omega}a$	a^{ω}		
→ ·	$a^{\omega}a$	$a^{\omega}a$	a^{ω}	$a^{\omega}a$	a^{ω}	$a^{\omega}a$

Languages over countable ordinals: example

Word
$$a^{\omega}$$
 $(a^{\omega}a)^{\omega}$ $(a^{\omega})^{\omega}a^{53}$ $a^{\omega\cdot\alpha+k}$
Longest finite suffix (LFS) 0 0 53 k

Can you give me an ordinal monoid recognising infinite words whose longest finite suffix has even length?

Henckell's theorem over countable ordinals

Finite words

Goal: Extract as many FO-definable information from $f \colon \Sigma^* \to M$ as possible.

Countable ordinal words

Goal: Extract as many FO-definable information from $f \colon \Sigma^{\mathsf{ord}} \to \mathsf{M}$ as possible.

Henckell's theorem over countable ordinals

Finite words

Goal: Extract as many FO-definable information from $f \colon \Sigma^* \to M$ as possible.

Main tool: closure $\langle M \rangle^{*,grp}$ of M under product and "groupisation" of the singletons of M.

Countable ordinal words

Goal: Extract as many FO-definable information from $f \colon \Sigma^{\mathsf{ord}} \to \mathsf{M}$ as possible.

Main tool: closure $\langle M \rangle^{\rm ord,grp}$ of M under product, ω -iteration and "groupisation" of the singletons of M.

Henckell's theorem over countable ordinals

Finite words

Goal: Extract as many FO-definable information from $f \colon \Sigma^* \to M$ as possible.

Main tool: closure $\langle M \rangle^{*,grp}$ of M under product and "groupisation" of the singletons of M.

Theorem [Henckell '88]:

- for every set $X \in \langle M \rangle^{*,grp}$, "elements of X cannot be distinguished by FO"
- for every $f : \Sigma^* \to M$, there exists an FO-approximant $g : \Sigma^* \to \langle M \rangle^{*,grp}$.

Countable ordinal words

Goal: Extract as many FO-definable information from $f \colon \Sigma^{\mathsf{ord}} \to \mathsf{M}$ as possible.

Main tool: closure $\langle M \rangle^{\rm ord,grp}$ of M under product, ω -iteration and "groupisation" of the singletons of M.

Theorem [Colcombet, van Gool & M. '22]:

- for every set $X \in \langle M \rangle^{\text{ord,grp}}$, "elements of X cannot be distinguished by FO"
- for every $f : \Sigma^{\text{ord}} \to M$, there exists an FO-approximant $g : \Sigma^{\text{ord}} \to \langle M \rangle^{\text{ord}, grp}$.

The statement of the theorem is easy to generalise.

The proof isn't.

```
f: u \mapsto \begin{cases} 1 & \text{if } u \text{ is the empty word} \\ a & \text{if } u \text{ is finite } & \text{odd} \\ aa & \text{if } u \text{ is finite } & \text{even} \\ a^{\omega} & \text{if } u \text{ is infinite } & \text{even LFS} \\ a^{\omega} a & \text{if } u \text{ is infinite } & \text{odd LFS} \end{cases}
```

Countable ordinal words

Goal: Extract as many FO-definable information from $f: \Sigma^{\text{ord}} \to M$ as possible.

Main tool: closure $\langle M \rangle^{\text{ord,grp}}$ of M under product, ω -iteration and "groupisation" of the singletons of M.

Theorem [Colcombet, van Gool & M. '22]:

- for every set $X \in \langle M \rangle^{\text{ord,grp}}$, "elements of X cannot be distinguished by FO"
- for every $f: \Sigma^{\text{ord}} \to M$, there exists an FOapproximant $g: \Sigma^{\text{ord}} \to \langle M \rangle^{\text{ord,grp}}$.

The statement of the theorem is easy to generalise. The proof isn't.

$f: u \mapsto \begin{cases} 1 & \text{if } u \text{ is the empty word} \\ a & \text{if } u \text{ is finite & odd} \\ aa & \text{if } u \text{ is finite & even} \\ a^{\omega} & \text{if } u \text{ is infinite & even LFS} \\ a^{\omega}a & \text{if } u \text{ is infinite & odd LFS} \end{cases}$

$$\label{eq:mass} \langle M \rangle^{\text{ord},\text{grp}} = \big\{ \{1\},\, \{a\},\, \{aa\},\, \{a^\omega\},\, \{a^\omega a\},\, \{a^\omega a\},\, \big\}.$$

Countable ordinal words

Goal: Extract as many FO-definable information from $f: \Sigma^{\text{ord}} \to M$ as possible.

Main tool: closure $\langle M \rangle^{\text{ord,grp}}$ of M under product, ω -iteration and "groupisation" of the singletons of M.

Theorem [Colcombet, van Gool & M. '22]:

- for every set $X \in \langle M \rangle^{\text{ord,grp}}$, "elements of X cannot be distinguished by FO"
- for every $f: \Sigma^{\text{ord}} \to M$, there exists an FOapproximant $g: \Sigma^{\text{ord}} \to \langle M \rangle^{\text{ord,grp}}$.

The statement of the theorem is easy to generalise. The proof isn't.

$f: u \mapsto \begin{cases} 1 & \text{if } u \text{ is the empty word} \\ a & \text{if } u \text{ is finite } & \text{odd} \\ aa & \text{if } u \text{ is finite } & \text{even} \\ a^{\omega} & \text{if } u \text{ is infinite } & \text{even LFS} \\ a^{\omega} a & \text{if } u \text{ is infinite } & \text{odd LFS} \end{cases}$

$$\begin{split} \langle M \rangle^{\text{ord},\text{grp}} &= \big\{ \{1\}, \, \{a\}, \, \{aa\}, \, \{a^{\omega}\}, \, \{a^{\omega}a\}, \\ &\qquad \qquad \{a, aa\}, \end{split} \bigg\}. \end{split}$$

Countable ordinal words

Goal: Extract as many FO-definable information from $f \colon \Sigma^{\operatorname{ord}} \to M$ as possible.

Main tool: closure $\langle M \rangle^{\rm ord,grp}$ of M under product, ω -iteration and "groupisation" of the singletons of M.

Theorem [Colcombet, van Gool & M. '22]:

- for every set $X \in \langle M \rangle^{\text{ord,grp}}$, "elements of X cannot be distinguished by FO"
- for every $f \colon \Sigma^{\operatorname{ord}} \to M$, there exists an FO-approximant $g \colon \Sigma^{\operatorname{ord}} \to \langle M \rangle^{\operatorname{ord},\operatorname{grp}}$.

The statement of the theorem is easy to generalise. The proof isn't.

$f: u \mapsto \begin{cases} 1 & \text{if } u \text{ is the empty word} \\ a & \text{if } u \text{ is finite } & \text{odd} \\ aa & \text{if } u \text{ is finite } & \text{even} \\ a^{\omega} & \text{if } u \text{ is infinite } & \text{even LFS} \\ a^{\omega} a & \text{if } u \text{ is infinite } & \text{odd LFS} \end{cases}$

$$\begin{split} \langle \mathrm{M} \rangle^{\mathrm{ord},\mathrm{grp}} &= \big\{ \{1\},\, \{a\},\, \{aa\},\, \{a^\omega\},\, \{a^\omega a\},\\ &\quad \big\{ \frac{a}{a},aa \big\},\, \big\{ a^\omega,a^\omega a \big\} \big\}. \end{split}$$

Countable ordinal words

Goal: Extract as many FO-definable information from $f: \Sigma^{\text{ord}} \to M$ as possible.

Main tool: closure $\langle M \rangle^{\text{ord,grp}}$ of M under product, ω -iteration and "groupisation" of the singletons of M.

Theorem [Colcombet, van Gool & M. '22]:

- for every set $X \in \langle M \rangle^{\text{ord,grp}}$, "elements of X cannot be distinguished by FO"
- for every $f: \Sigma^{\text{ord}} \to M$, there exists an FOapproximant $g: \Sigma^{\text{ord}} \to \langle M \rangle^{\text{ord,grp}}$.

The statement of the theorem is easy to generalise. The proof isn't.

Succinct proof sketch

· Correctness:

for every set $X \in \langle M \rangle^{\operatorname{ord},\operatorname{grp}}$, "elements of X cannot be distinguished by FO" easy.

Succinct proof sketch

· Correctness:

for every set $X \in \langle M \rangle^{\operatorname{ord},\operatorname{grp}}$, "elements of X cannot be distinguished by FO" easy

Completeness:

for every morphism $f: \Sigma^{\text{ord}} \to M$, there exists an FO-approximant $g: \Sigma^{\text{ord}} \to \langle M \rangle^{\text{ord},\text{grp}}$.

Succinct proof sketch

· Correctness:

for every set $X \in \langle M \rangle^{\text{ord},\text{grp}}$, "elements of X cannot be distinguished by FO" easy

Completeness:

for every morphism $f : \Sigma^{\text{ord}} \to M$, there exists an FO-approximant $g : \Sigma^{\text{ord}} \to \langle M \rangle^{\text{ord},\text{grp}}$. hard

Start from a (partial) FO-approximant on $L \subseteq \Sigma^{\text{ord}}$ and build a (partial) FO-approximant on $L' \supseteq L$.

- True on finite words [Henckell '88, Place & Zeitoun '16]
- True on ω -words [Place & Zeitoun '16]
- True on a ord
- Inductive case: Detect some patterns in your word using first-order logic.

Time for the conclusion...

wasn't the title of this talk "First-order separation over countable ordinals"?

Time for the conclusion...

wasn't the title of this talk "First-order separation over countable ordinals"?

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in FO$ such that

 $u \vDash \varphi$ for all $u \in L_1$ $v \nvDash \varphi$ for all $v \in L_2$

Time for the conclusion...

wasn't the title of this talk "First-order separation over countable ordinals"?

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in FO$ such that

$$u \vDash \varphi$$
 for all $u \in L_1$ $v \nvDash \varphi$ for all $v \in L_2$

FO-SEPARABILITY:

L₁, L₂ regular languages Input: Decidable! Question: Are L_1 and L_2 FO-separable?

Open questions \mathcal{E} ongoing work

Domain (count. linear order)	Characterisation of FO:	Qualitative	Quantitative
Finite	groups	[Schützenberger '65, McNaughton & Papert '71]	[Henckell '88]
ω Ordinals	groups groups	[Perrin '84] [Bedon '01]	[Place & Zeitoun '16] [Colcombet, van Gool & M. '22]

Open questions $\overline{\mathscr{E}}$ ongoing work

- finite words: for some varieties, the saturation algorithm works (ex: aperiodic), for some it doesn't (ex: \mathcal{J} -trivial). Can we characterise varieties for which it works? [van Gool & Steinberg '19]
- finite words: study concatenation hierarchies [Place & Zeitoun, many papers since '13]

Domain (count. linear order)	Characterisation of FO:	Qualitative	Quantitative
Finite	groups	[Schützenberger '65, McNaughton & Papert '71]	[Henckell '88]
ω Ordinals	groups groups	[Perrin '84] [Bedon '01]	[Place & Zeitoun '16] [Colcombet, van Gool & M. '22]

Open questions \mathcal{E} ongoing work

- finite words: for some varieties, the saturation algorithm works (ex: aperiodic), for some it doesn't (ex: \mathcal{J} -trivial). Can we characterise varieties for which it works? [van Gool & Steinberg '19]
- finite words: study concatenation hierarchies [Place & Zeitoun, many papers since '13]
- (very) infinite words: provide quantitative results for first-order logic

Domain (count. linear order)	Characterisation of FO:	Qualitative	Quantitative
Finite	groups	[Schützenberger '65, McNaughton & Papert '71]	[Henckell '88]
ω Ordinals	groups groups	[Perrin '84] [Bedon '01]	[Place & Zeitoun '16] [Colcombet, van Gool & M. '22]

Open questions \mathcal{E} ongoing work

- finite words: for some varieties, the saturation algorithm works (ex: aperiodic), for some it doesn't (ex: \mathcal{J} -trivial). Can we characterise varieties for which it works? [van Gool & Steinberg '19]
- finite words: study concatenation hierarchies [Place & Zeitoun, many papers since '13]
- (very) infinite words: provide quantitative results for first-order logic

Domain (count. linear order)	Characterisation of FO:	Qualitative	Quantitative
Finite	groups	[Schützenberger '65, McNaughton & Papert '71]	[Henckell '88]
ω	groups	[Perrin '84]	[Place & Zeitoun '16]
Ordinals	groups	[Bedon '01]	[Colcombet, van Gool & M. '22]
Scattered	groups, gaps	[Bès & Carton '11]	ongoing work
Countable	groups, gaps, shuffles	[Colcombet & Sreejith '15]	ongoing work