Math 245C Lecture 27 Notes

Daniel Raban

June 3, 2019

1 Applying Distributions to Convolutions

1.1 Uniform estimates of functions on bounded sets

Last time, we proved the first half this theorem:

Theorem 1.1. Let $\phi \in C_c^{\infty}(\Omega)$, and let $T \in \mathcal{D}'(\Omega)$. Set $f(y) = T(\phi_y)$ for $y \in O_{\phi}$.

1. $f \in C^{\infty}(O_{\phi})$, and

$$D^{\alpha}f(y) = (-1)^{|\alpha|}T((D^{\alpha}\phi)_y).$$

2. If $\psi \in L^1(O_\phi)$ has compact support, then

$$T(\psi * \phi) = \int_{O_{\phi}} \psi(y) f(y) \, dy.$$

To prove the second half, we first make some remarks.

Remark 1.1. Fix R > 0, and set $Q = [-R, R]^d$. There are $a : (0, \infty) \to (0, \infty)$ and $m : (0, \infty) \to \mathbb{N}$ such that for all $\varepsilon > 0$,

$$\lim_{\varepsilon \downarrow 0} a(\varepsilon) = 0$$

and such that for every $\varepsilon > 0$, there is a partition $\{Q\}_{i=1}^{m(\varepsilon)}$ of squares of diameters less than $a(\varepsilon)$.

These conclusions extend to any set $\Omega \subseteq [-R, R]^d$ with $\Omega_i = Q_i \cap \Omega$.

Definition 1.1. Let $A \subseteq \mathbb{R}^d$, and let $f: A \to \mathbb{R}$. We define the **oscillation** of f as

$$osc(f, A, \delta) = \sup_{x, y \in A} \{ |f(x) - f(y)| : |x - y| \le \delta \}.$$

Remark 1.2. Assume $A = \Omega$ and $f : \Omega \to \mathbb{R}$ is uniformly continuous. Then

$$\int_{\Omega} f(x) dx = \sum_{i=1}^{m(\varepsilon)} \int (f(x) - f(x_i)) dx + |\Omega_i^{\varepsilon}| f(x_i^{\varepsilon}),$$

where $x_i^{\varepsilon} \in \Omega_i^{\varepsilon}$. As a consequence,

$$\left| \int_{\Omega} f(x) \, dx - \sum_{i=1}^{m(\varepsilon)} |\Omega_i^{\varepsilon}| f(x_i^{\varepsilon}) \right| \leq i |\Omega| \operatorname{osc}(f, \Omega, a(\varepsilon)).$$

Remark 1.3. If $\phi \in C_c^{\infty}(\Omega)$ and $T \in \mathcal{D}'(\Omega)$, we set

$$\phi_y(x) = \phi(x - y), \qquad x \in y + \operatorname{supp}(\phi),$$

and $y \mapsto T(\phi_y)$ is continuous on $O_{\phi} = \{ y \in \mathbb{R}^d : y + \operatorname{supp}(\phi) \subseteq \Omega \}.$

1.2 Proof of the theorem

Now we can prove the theorem.

Proof. Let $\psi \in L^1(O_\phi)$ be such that $\operatorname{supp}(\psi) \subseteq O_\phi$, We are to show that

$$\int_{O_{\phi}} \psi(y) T(\phi_y) \, dy = T(\psi * \psi).$$

Case 1: $\psi \in C_c^{\infty}(O_{\phi})$. Since $y \mapsto f(y) := \psi(y) T(\phi(y))$ is uniformly continuous on O_{ϕ} ,

$$\left| \int_{O_{\phi}} \psi(y) T(\phi_y) \, dy - \sum_{i=1}^{m(\varepsilon)} \psi(y_i^{\varepsilon}) T(\phi_{y_i^{\varepsilon}}) |\Omega_i^{\varepsilon}| \right| \le \operatorname{osc}(f, O_{\phi}, a(\varepsilon)) |O_{\phi}|$$

for some $y_i^{\varepsilon} \in \Omega_i^{\varepsilon}$ independent of T, ϕ, ψ . Set $\eta^{\varepsilon}(x) = \sum_{i=1}^{m(\varepsilon)} \psi(y_i^{\varepsilon}) \phi(x - y_i^{\varepsilon})$. Let K_1 be the closure of the set $\bigcup_{y \in O_{\phi}} (y + \operatorname{supp}(\phi)) \subseteq \Omega$. Then K_1 is compact.

For any multi-index $\alpha \in \mathbb{N}^d$,

$$\partial^{\alpha} \eta^{\varepsilon}(x) = \sum_{i=1}^{m(\varepsilon)} \psi(y_i^{\varepsilon}) \partial^{\alpha} \phi(x - y_i^{\varepsilon}) |\Omega_i^{\varepsilon}|.$$

This converges to $\int_{O_\phi} \psi(y) \partial^\alpha \phi(x-y) \, dy = \psi * \partial^\alpha$ uniformly:

$$\left| \int_{O_{\phi}} \psi(y) \partial^{\alpha} \phi(x-y) \, dy - \partial^{\alpha} \eta^{\varepsilon}(x) \right| \leq |\Omega| \operatorname{osc}(g_{\varepsilon}^{x}, \Omega, a(\varepsilon)) \xrightarrow{\varepsilon \to 0} 0,$$

where $g_{\varepsilon}^{x}(y) = \psi(y)\partial^{\alpha}\phi(x-y)$. This means $(\eta_{\varepsilon})_{\varepsilon}$ converges to $\psi * \phi$ in $C_{c}^{\infty}(O_{\phi})$. Consequently,

$$T(\phi * \psi) = \lim_{\varepsilon \to 0} T(\eta_{\varepsilon}) = \lim_{\varepsilon \to 0} \sum_{i=1}^{m(\varepsilon)} |\Omega_i^{\varepsilon}| T(\psi_{y_i^{\varepsilon}}) = \int_{O_{\phi}} \psi(y) T(\phi_y) \, dy.$$

Case 2: $\psi \in L^1(\emptyset_\phi)$ and $\operatorname{supp}(\psi) \subseteq O_\phi$: For each $\delta > 0$, let $\psi_\delta \in C_c^\infty(\emptyset_\phi)$ be such that $\int_{O_\phi} |\psi - \psi_\delta| \, dx \le \delta$, and assume there exists a compact K_2 such that $\operatorname{supp}(\psi_\delta) \subseteq K_2 \subseteq O_\phi$. Note that for a multi-index $\alpha \in \mathbb{N}^d$,

$$\partial_{\alpha}(\psi_{\delta} * \phi) = \partial^{\alpha}\phi * \psi_{\delta} \to \partial^{\alpha}\phi * \psi$$

uniformly on K_2 . Hence, $\psi_{\delta} * \phi \to \psi * \phi$ uniformly as $\delta \to 0$. We conclude that

$$T(\psi * \phi) = \lim_{\delta \to 0} T(\psi_{\delta} * \phi) = \lim_{\delta \to 0} \int_{O_{\phi}} \psi_{\delta}(y) T(\phi_y) \, dy = \int_{O_{\phi}} \phi(y) T(\phi_y),$$

using the dominated convergence theorem.

Let $\phi \in C^1(\Omega)$, and assume that $\int_{\Omega} |\phi|^p dx + \int_{\Omega} |\nabla \phi|^p dx < \infty$. Then $\nabla \phi$ as a distribution is equal to the usual $\nabla \phi$.

A consequence of our result will be that for every y and a.e. x,

$$\phi(x+y) - \phi(y) = \int_0^1 \nabla \phi(x+ty) \cdot y \, dt.$$