## NCEA Level 3 Calculus (Integration) 23. Trigonometric Substitution

Consider the integral

$$\int_{0}^{1} x^3 \sqrt{1-x^2} \, \mathrm{d}x.$$

There is no obvious easy substitution to simplify this integral and integration by parts could work but will require a lot of work with no guranteed payoff. However, recall that  $\sqrt{1-\sin^2\theta}=\cos\theta$ ; this identity suggests that we could perhaps substitute  $x=\sin\theta$  in order to obtain  $\mathrm{d}x=\cos\theta\,\mathrm{d}\theta$  and so

$$\int_{0}^{1} x^{3} \sqrt{1 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} \sin^{3} \theta \cos^{2} \theta d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \sin \theta (1 - \cos^{2} \theta) \cos \theta d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} (\cos^{2} \theta - \cos^{4} \theta) \sin \theta d\theta$$

Now, letting  $u = \cos \theta$  we obtain

$$\int_{0}^{\frac{\pi}{2}} (\cos^{2}\theta - \cos^{4}\theta) \sin\theta \, d\theta = -\int_{1}^{0} u^{2} - u^{4} \, du$$

$$= \frac{1}{3}u^{3} - \frac{1}{5}u^{5} \Big|_{u=0}^{1}$$

$$= \frac{1}{3} - \frac{1}{5} = \frac{2}{15}.$$

Here is a table of trig substitutions:

| U                | Substitution        | Identity                            |  |
|------------------|---------------------|-------------------------------------|--|
| $\sqrt{a^2-x^2}$ | $x = a\sin\theta$   | $1 - \sin^2 \theta = \cos^2 \theta$ |  |
| $\sqrt{a^2+x^2}$ | $x = a \tan \theta$ | $1 + \tan^2 \theta = \sec^2 \theta$ |  |
| $\sqrt{x^2-a^2}$ | $x = a \sec \theta$ | $\sec^2\theta - 1 = \tan^2\theta$   |  |

**Example.** Consider  $I = \int \frac{d\theta}{\sqrt{9+x^2}}$ . Let  $x = 3 \tan \theta$  so  $dx = 3 \sec^2 \theta d\theta$  and:

$$I = \int \frac{3\sec^2 \theta}{3\sqrt{1 + \tan^2 \theta}} d\theta = \int d\theta = \theta + C = \tan^{-1} \frac{x}{3}.$$

## Questions

- 1. S Find the following integrals:
  - (a)  $\int \frac{x^2 9}{x^3} \, dx$
  - (b)  $\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}}$
  - (c)  $\int_0^3 x^2 (9 x^2) dx$
  - (d)  $\int_0^1 x \sqrt{1 x^4} \, dx$
  - (e)  $\int_{\sqrt{2}}^{2} \frac{dx}{t^3 \sqrt{t^2 1}}$
  - (f)  $\int \frac{\sqrt{25x^2-4}}{x} \, \mathrm{d}x$
- 2. S Use the integral  $2\int_{r}^{-r} \sqrt{r^2 x^2} dx$  to find the area of a circle of radius r.
- 3. Scholarship 2005: Find, in terms of r, the area between the ellipse  $x^2 + 16(y r)^2 = r^2$  and the circle  $x^2 + y^2 = r^2$ . You may use the substitution  $x = r \sin u$  to find the integral  $\int \sqrt{r^2 x^2} \, dx$ .
- 4. S By integrating, verify that

$$\int_{0}^{x} \sqrt{a^2 - t^2} \, dt = \frac{1}{2} a^2 \sin^{-1} \left( \frac{x}{a} \right) + \frac{1}{2} x \sqrt{a^2 - x^2}.$$

5.  $\square$  A charged rod of length L produces a electric field at the point (a,b) given by

$$E(a,b) = \int_{-a}^{L-a} \frac{\lambda b}{4\pi\varepsilon_0 (x^2 + b^2)^{3/2}} dx.$$

Evaluate this integral to find an explicit expression for E(a, b).

6. One of these integrations should be done by partial fractions and one by trig substitution. Do them both.

$$\int \frac{dx}{(4x^2+9)^2} \qquad \int \frac{x^3}{x^2+x-6} \, dx$$

7. S Check this working (the substitution  $x = 3 \sin \theta$  is used). Find any mistakes.

$$I = \int \frac{\sqrt{9 - x^2}}{x^2} dx = \int \frac{\cos^2 \theta}{\sin^2 \theta} d\theta$$
$$= \int \frac{1 - \sin^2 \theta}{\sin^2 \theta} d\theta = \int \csc^2 \theta - 1 d\theta$$
$$= -\cot \theta - \theta = -\cot \left(\sin^{-1}(x/3)\right) - \sin(x/3)$$
$$= \frac{\sqrt{9 - x^2}}{x} - \sin(x/3).$$

8. S A water storage tank has the shape of a cylinder with diameter 10 m. It is mounted so that the circular cross-sections are vertical. If the depth of the water is 7 m, what percentage of the total capacity is being used?

9. S When writing this worksheet I went on the internet and found this. Find the mistake(s), and do the integral.





For trigonometric substitution to solve the above integral, fill in the blanks below using the picture of the triangle given.

| side A= 🖔                                     | $\delta x$ |            |             |              |
|-----------------------------------------------|------------|------------|-------------|--------------|
| side B=                                       | 6          |            |             | <b>±</b>     |
| side C=                                       | sqrt(36-2  | 5x^2)      |             |              |
| $\frac{5x}{6}$ $=$ ta $\frac{5}{6}$ d $x$ $=$ | n(Q)       |            |             |              |
| $\frac{5}{6}$ d $x =$                         | 1/cos(C    | ))^2       |             | ${ m d}Q$    |
| √36-25<br>6                                   |            | 1/cos(Q)   |             |              |
| Submit A                                      | nswer      | Incorrect. | Tries 1/8 P | revious Trie |