武 汉 大 学 计 算 机 学 院《数字逻辑》期末考试试题(B卷) 2007—2008 学年第二学期(闭卷考试)

TH 17	W. H	Lit. →	_tx_ / _t *
班号:	学号.	姓名:	成绩:
グエフ・	丁 ブ・	жт:	从沙。

(注: 答案全部写在答题纸上)

—、	填空	(17	分)
•		\ - .	/4 /

- $1, (17.5)_{10} = ()_{2} = ()_{8} = ()_{16}$
- 2、若 x=-0.1100,则 $[x]_{\mathbb{R}}=[$], $[x]_{\mathbb{R}}=[$]。
- 3、8421BCD 码 1001 0111 0010 0001 对应的十进制数是 (), 十进制数 52 对应的余 3 码是 ()
 - 4、数字逻辑电路可分为()和()两大类。
 - 5、PLA 的与陈列是()编程的,或陈列是()编程的。
 - 6、若采用奇校验, 当信息位为 10111 时, 校验位应是 ()。
 - 7、若 (3) 10 的 Gray 码为 011,则 (4) 10 的 Gray 码可能是 ()
 - 8、数字系统中,采用()码可以将减法运算转化为加法运算。
 - 9、若两输入与非门的输出为0,则其输入是()
- 10、要使 JK 触发器在 CP 脉冲作用下的次态与现态相同, JK 的取值应为

二、完成下列各题(每小题 10 分, 共 20 分)

- 1、证明 $AB + A\overline{B} + \overline{A}B + \overline{A}\overline{B} = 1$
- 2、把函数 $F(A,B,C,D) = \sum m(0,1,14,15) + \sum d(4,5,10,11,12)$ 化成最简"与__或" 式和最简"或 与"式。

三、分析题(每小题12分,共24分)

1、分析图 1 组合逻辑电路,写出表达式,列出真值表,说明电路逻辑功能。

- 2、对图 2 所示脉冲异步时序逻辑电路
 - ① 写出输出函数和激励函数表达式
 - ② 列出次态真值表,作出状态图和状态表
 - ③ 说明电路功能

四、设计与应用题(每小题 13 分, 共 39 分)

1、作出"1101"序列检测器的 Moore 模型原始状态图和状态表, 电路有一 个串行输入端x,一个输出端z。当x输入的序列中出现"1101"时,输出z为 1, 否则 z 为 0, 其典型输入输出序列如下:

输入x 01011011010

输出z

00000010000

- 2、用三一八译码器和适当的逻辑门设计一个全加器电路
- 3、用 D 触发器作同步时序逻辑电路的存储元件,实现下列最简二进制状态表

D触发器激励表如下

现	态	次态 $y_2^{(n+1)}y_1^{(n+1)}/输出Z$		$Q \rightarrow Q^{n+1}$		D
y ₂	y_1	<i>x</i> =0	<i>x</i> =1	 1	7	
0	0	01/0	10/0	 0	0	0
0	1	11/0	10/0	0	1	1
1	1	10/1	01/0	1	0	0
1	0	00/1	11/1	1	1	1