Subject: Data Structures and Algorithms Lab

Assignment No. 07

Roll No: **21118**

Date: 26-May-2021

Problem Statement:

You have a business with several offices; you want to lease phone lines to connect them up with each other; and the phone company charges different amounts of money to connect different pairs of cities. You want a set of lines that connects all your offices with a minimum total cost. Solve the problem by suggesting appropriate data structures.

Objectives:

- To understand about graph data structure
- Learn about various graph representations in computer memory
- To Lean about two most efficient algorithms to calculate MST
 - o Prim's algorithms
 - o Kruskal's algorithm

Outcomes:

- Implement adjacency matrix presentation of graph
- Implement Prim's algorithm and Kruskal's algorithm to find minimum spanning tree in a graph

Hardware Requirements:

• Manufacturer: Acer

• System Type: x-64 based PC

Memory and Processor: Intel core i5-8265U@1.60GHz, 8 GB DDR4 RAM, 512 GB SSD

Software Requirements:

• Operating System: Windows-10 (Home Edition)

IDE: eclipse (2020 – Edition)Compiler: GCC (version 6.3.0)

Theory:

1. Graphs are mathematical abstractions that are useful for solving many types of problems in computer science.

- 2. Any graph finite number of vertices and edges.
- 3. There are two major ways to represent graphs in computer memory. One can use either one depends on situation and problem.
 - a. Adjacency Matrix Representation It is time efficient to check edge between pair of vertices but it is space inefficient
 - b. Adjacency List Representation It is space efficient but not time efficient when we want to check edge between pair of vertices.
- 4. Minimum spanning tree: A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.
- 5. There are two popular algorithms to find mst in graph:
 - a. Prim's algorithm: It is a greedy algorithm. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.
 - b. Kruskal's algorithm: It finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected, it finds a minimum spanning tree. For a disconnected graph, a minimum spanning forest is composed of a minimum spanning tree for each connected component. It is a greedy algorithm in graph theory as in each step it adds the next lowest-weight edge that will not form a cycle to the minimum spanning forest.

ADT:

```
class Edge {
private:
       int u, v, wt;
public:
       Edge() \{u=0, v=0, wt=0;\}
       Edge(int x, int y, int w);
       friend class mst:
};
class mst {
private:
       int vertices, edges;
       int** adj_list;
       int* par; // to keep track of root node of mst in disjoint mst's (kruskal's algo)
       int find mst(int u);
       void union_mst(int u1, int u2);
public:
       mst(int n, int m);
       void printGraph();
       void addEdge(int u, int v, int w);
       int prims mst wt();
```

```
int kruskals_mst_wt();
       ~mst();
};
Pseudocodes:
Prims algorithm to find minimum spanning tree:
       Procedure Prims MST(G, V)
               mst_vert = empty set, rem_vert = {0, 1, 2, ..., V-1}
               vert wt(V), mst wt = 0.
               for each vertex v of graph G:
                      mark vert wt(v) as infinity
               start with any random vertex v
               mark vert_wt[v] as 0.
               add vertex v to mst vert.
               remove vertex v from rem vert.
               loop until rem vert is not empty:
                      Find and remove a vertex v from rem_vert having the minimum
                      possible value of vert wt.
                      add v to mst vert.
                      add vert_wt of v to mst_wt.
                      for all adjacent vertices v adj of v:
                              if v adj is present in rem vert and vert wt of v adj is greater
                              than cost(v, v adj):
                                     update vert_wt of v_adj to cost(v, v_adj)
               return mst wt;
Kruskal's algorithm to find minimum spanning tree:
       Procedure Kruskal(G) is
               F:=\emptyset, mst_wt=0
               for each v \in G.V do
                      MAKE-SET(v)
               for each (u, v) in G.E ordered by weight(u, v), increasing do
                      if FIND-SET(u) ≠ FIND-SET(v) then
                              F := F \cup \{(u, v)\} \cup \{(v, u)\}
                              UNION(FIND-SET(u), FIND-SET(v))
                              Add weight to mst wt
               return mst wt
```

<u>Testcases</u>: (0-based indexing)

Testcase	Input	Expected	Actual	Verdict
No.		Output	Output	
1	Vertices: 6	Prims algo:	Prims algo:	Passed
	Edges: 6	42	42	
	0 1 10			

	1 3 5 3 4 5 4 5 15 1 2 10 2 4 7	Kruskal's algo: 42	Kruskal's algo: 42	
	5 15 5 10 10 10			
2	Vertices: 5 Edges: 4 0 4 3 1 2 1 2 3 2 3 1 3	Prim's Algo: 6 Kruskals Algo: 6	Prim's Passed Algo: 6 Kruskals Algo: 6	Passed
	3 0 1			

Analysis of algorithms:

No.	Algorithm	Time Complexity	Space Complexity
1	Prims algorithm	O(n^2)	O(n) for storing set
		n: vertices in graph	of vertices
2	Kruskal's algorithm	O(n*m)	O(m) for storing
		n: vertices in graph	edges
		m: edges in graph	
		(find and union	
		operations are naïve	
		i.e. without any	
		optimizations)	

Applications:

Graph data structure has wide range of applications. Applications of minimum spanning tree are mentioned below.

- Cluster Analysis.
- Real-time face tracking and verification (i.e. locating human faces in a video stream).

- Protocols in computer science to avoid network cycles.
- Entropy based image registration.
- Max bottleneck paths.
- Dithering (adding white noise to a digital recording in order to reduce distortion).

Conclusion:

I have learned about representation of graph data structure in computer memory and about algorithms to calculate MST in graph. Also implemented two algorithms: Prim's algorithm and Kruskal's algorithm.