Аннотация

А помните алгебру? Числа там, дроби всякие, уравнения, неравенства. На самом деле, это все ерунда. Алгебра – про структуры, про симметрии. Этот курс именно про это, мы будет изучать, что называют "абстрактной" алгеброй. Может вы слышали, как учитель на уроке случайно сказал, о поле действительных чисел, а не о множестве. А про целые числа, так он почему-то не говорил. Мы подвигаем разные фигурки, повертим бусы в руках. Погуляем в полях, примерим кольца.

Чтобы понять каждую тему, нужно иметь базовые знания про числа, операции с ними и многочлены. Также он подойдет для тех, кто не боится непонятных слов и хочет разобраться в том, что они значат.

Содержание

1	Перестановки				
	1.1	Нотация перестановок	2		

2 Группы 6

Алгебра – наука о структурах, которые описываются с помощью операций и законов. Возможно, то что мы будем называть "алгебра" – это не совсем то, что вы привыкли называть "алгебра". Потому что в школьном курсе алгебры, особенно в старших классах, почему-то изучается анализ, а не сама алгебра.

Первая структура, с которой мы с вами познакомимся – это группы. Это одно из самых "базовых понятий", но оно же и является центральным.

1 Перестановки

Самая интерпретируемая группа – это группа перестановок. Вероятно, вы уже слышали о том, что такое перестановка, не задумываясь о её групповой структуре. Для начала, "нестрого" разберемся с перестановками. Упражнение 1. Сколько есть способов переставить n человек в очереди?

Пример 1. Напишем, какое-нибудь слово, например:

YIIIKA1

За один шаг разрешается поменять местами любые две буквы. Например, можно поменяв буквы А и К, получить слово

YIIIAK

Упражнение 2. Можно ли получить слово КАШУ из слова УШКА за один шаг? Если нет, то за какое минимальное число шагов можно это сделать?

Упражнение 3. Можно ли, начав, со слова ТАПОК, вернуться в исходное слово после 10 шагов? После 11 шагов?

В упражнении 3, вы заметили, что за 10 шагов все получилось. А вот за 11 – никак. На самом деле это не случайность, и верен более общий факт.

Утверждение 1.1. Если на каждом шаге разрешено поменять только две буквы, то за нечетное число шагов не получится вернуться в исходное слово.

Теперь возьмём другое слово, допустим, АДО. Есть три пары букв, которые можно поменять. Так что, за один шаг мы можем получить три слова.

ОДА ДАО АОД

¹Это слово осмысленное, но в дальнейшем, мы будем называть "словами" любые цепочки букв, не заботясь о том, являются ли они словами русского языка.

На втором шаге мы должны выбрать одно из этих слов и поменять в нём две буквы. Пару для обмена в каждом слове можно выбрать двумя способами, а два другие дадут новые слова.

ОДА
$$\rightarrow$$
 ДОА ОАД АДО
ДАО \rightarrow ДОА ОАД АДО
АОД \rightarrow ДОА ОАД АДО

Видно, что в результате получаются одни и те же три слова.

Упражнение 4. Проверьте, что за три шага получается тот же набор слов, что и за 1 шаг.

Видно, что мы разбили все варианты на две группы по три слова и на каждом шаге переходим из одной группу в другую:

А значит, вернуться в исходную группу (в частности, получить слово АДО) можно только за четное число шагов.

1.1 Нотация перестановок

Определение 1.2 (Перестановка). Перестановка – это функция, которая отображает множество букв в себя.

$$\sigma:\{1,2,\dots,n\}\to\{1,2,\dots,n\}.$$

Перестановка σ может быть записана в виде 1

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}.$$

Пример 2. При перестановка $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ Первая буква переходит на вторую, вторая – на первую, третья – на четвёртую, четвёртая – на третью. Допустим, со словом РЫБА наша перестановка сделает (на рисунке 1):

$$\sigma$$
(РЫБА) = ЫРАБ.

 $^{^{1}}$ Существуют и другая запись: ($\sigma(1)$ $\sigma(2)$ $\sigma(3)$... $\sigma(n)$).

Рис. 1: Перестановка σ .

Применяя одну перестановку за другой, мы можем получить новую перестановку. Для этого тоже есть запись. Пусть у нас есть две перестановки σ и τ . Тогда их произведение $\sigma \circ \tau$ – это перестановка, которая получается из τ , после чего к ней применяют σ^1 .

Пример 3. Пусть $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ и $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$. Тогда их произведение будет равно:

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(\tau(1)) & \sigma(\tau(2)) & \sigma(\tau(3)) & \sigma(\tau(4)) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}.$$

Давайте рассмотрим, что у нас происходит на примере слова КИНО (на рисунке 2).

Упражнение 5. Найдите композицию $\tau \circ \sigma$. Проверьте, что это не то же самое, что $\sigma \circ \tau$.

Определение 1.3 (Циклическая запись). Любую перестановку можно записать в виде произведения циклов. Например, перестановка σ (на рисунке 4)

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 6 & 2 & 4 \end{pmatrix}.$$

Записывается в виде:

$$\sigma = |1 \ 3 \ 5 \ 2\rangle |4 \ 6\rangle$$
.

У такой записи есть "свобода выбора". Один и тот же цикл можно записать по-разному. Например,

$$|1\ 3\ 5\ 2\rangle = |3\ 5\ 2\ 1\rangle = |5\ 2\ 1\ 3\rangle = |2\ 1\ 3\ 5\rangle.$$

¹Да! Именно так! Слева-направо!

Рис. 2: Перестановка $\sigma \circ \tau$.

Мы будем говорить, что у перестановки σ цикловой тип (4, 2) (в данном случае, это значит, что у нас есть один 4-цикл и один 2-цикл). А иногда еще будем рисовать диаграмму Юнга (на рисунке 3), данного циклового типа.

Рис. 3: Цикловой тип перестановки σ .

Рис. 4: Циклическая запись перестановки.

Есть одно важное понятие, которое может таким не показаться. Возможно, мы не сможем в полном объеме раскрыть его в этом курсе, но что же поделать. Перед этим, скажем, что *транспозиция* – это перестановка, которая меняет местами только две буквы.

Определение 1.4 (Четность перестановки). Перестановка называется четной, если она может быть записана в виде произведения четного числа транспозиций. Иначе, она называется нечетной.

Определение 1.5 (Порядок перестановки). Порядок перестановки σ – это наименьшее число n, такое что

$$\sigma^n = id$$
.

Теорема 1.6 (Порядок перестановки). Порядок перестановки о равен наибольшему общему делителю длин всех циклов в её циклической записи.

Доказательство. Цикл длины k_i возвращает элементы на место после k_i применений. Поскольку циклы не пересекаются, порядок всей перестановки — минимальное число k, при котором k делится на каждое k_i . Это и есть наименьшее общее кратное k_1, k_2, \ldots, k_m .

Задачи

- 1. Возьмите какое-нибудь четырёхбуквенное слово, скажем, прошлое слово УШКА. Покажите, что все варианты (*А сколько, кстати, их?*) тоже разбиваются на две группы, и обмен двух букв местами переводит нас из одной группы в другую.
- 2. Вова сказала своей подруге, что подарит ей доширак, если она в слове КОМАНДА сделает семь попарных обменов и получит исходное слово. В чём просчитался Вова?
- 3. Найти цикловой тип, порядок и четность перестановки

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 5 & 4 & 7 & 9 & 8 & 6 \end{pmatrix}.$$

- 4. Найдите все перестановки трехэлементного множества.
- 5. Докажите, что любая перестановка имеет обратную.
- 6. Найдите обратную перестановку для:

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$.

7. Верно ли, что композиция двух циклов длины 2 является перестановкой порядка 1 или 2?

2 Группы

Определение 2.1 (Группа). Это множество G с операцией \star , которое обладает следующими свойствами:

(і) Замкнутость:

$$\forall a, b \in G : a \star b \in G$$
.

(ii) *Ассоциативность*:

$$\forall a,b,c \in G: (a \star b) \star c = a \star (b \star c).$$

(iii) Наличие нейтрального элемента:

$$\exists e \in G : \forall a \in G : e \star a = a \star e = a.$$

(iv) Наличие обратного элемента:

$$\forall a \in G : \exists b \in G : a \star b = b \star a = e.$$

Для группы также существует обозначение: (G, \star) .

Существуют различные классификации групп. Например, классификация по типу операции. Бывают группы по сложению (аддитивные), то есть с операцией сложения. А также бывают группы по умножению (мультипликативные) – с операцией умножения.

Пример 1. $(\mathbb{Z}, +)$ множество целых чисел с операцией сложения.

Пример 2. $(\mathbb{Z}/(5), +)$ множество остатков по модулю 5 с операцией сложения.

Пример 3. Как множество – движения правильной фигуры, а операция тут – композиция этих движений. Например, у нас есть квадрат. Мы можем его поворачивать на 90 градусов, а также можем его отражать относительно осей симметрии. Тогда у нас получится группа, которая называется $D_4^{\ 1}$, она состоит из 8 элементов:

• *е* – ничего не делать;

- r^2 поворот на 180 градусов:
- *r* поворот на 90 градусов;
- r³ поворот на 270 граду-

¹Также такую группу можно было назвать Isom(\square).

сов:

- s_1 отражение относительно оси симметрии по оси x;
- s₂ отражение относительно оси симметрии по оси у;
- s_3 отражение относитель-

но диагонали, которая идет из левого верхнего угла в правый нижний;

s₄ – отражение относительно диагонали, которая идет из правого верхнего угла в левый нижний.

Рис. 5: Группа движений квадрата

Пример 4. До этого мы рассматривали с вами перестановки букв в словах. Такие перестановки тоже образуют группу. Она обозначается S_n , где n – количество букв в слове.

Определение 2.2 (Абелева группа). Группа G^1 называется абелевой, если она коммутативна, то есть:

$$\forall a, b \in G : ab = ba..$$

В этом моменте нужно себя спросить: "А что, бывает по-другому?!" И вот оказывается, что бывает. Для этого, можно рассмотреть один яркий пример.

Пример 5. Пусть у нас есть группа G, которая содержит в себе, по крайней мере два элемента: a= "надеть носок" и b= "надеть ботинок". ² Тогда одна последовательность действий не приведет к странным взглядам окружающих, а другая да.

 $^{^{1}}$ Часто операция опускается и подразумевается, что группа мультипликативна

 $^{^2}$ Такая группа устроена довольно сложно и в нашем курсе рассматриваться не будет. Ее название F_2 .

Упражнение 1. Какой из этих случаев "нормален", а какой нет?

Упражнение 2. Является ли группа D_4 абелевой?

Упражнение 3. Приведите свои примеры *абелевых* и *неабелевых* групп.