

MURI 98

Digital Communication Devices Based on

Nonlinear Dynamics and Chaos University of California at San Diego Web URL: http://rfic.ucsd.edu/chaos

1 Nov 2001

Processing Gain of Chaotic Synchronized Phased Array Antenna Elements in the Presence of Multiple Interfering Sources.

SCIENTIFIC/TECHNICAL APPROACHES

- Investigate robust chaotically modulated communications techniques
 - Pulse and frequency modulation for wireless
 - Continuous feedback for free-space optical
 - Bit-error rate and multi-user performance analysis of chaotic modulation

Control toobniques to improve

MURI OBJECTIVE

Design simple, strongly nonlinear electronic/optical digital communication devices operating in chaotic regime with minimal control circuitry

DOD CAPABILITIES ENHANCED

- Small, light-weight, low-power transmitters and receivers with much greater bit rates
- Low probability of interception detection
 - Developed Viterbi decoding algorithm for symbolic-dynamics-based chaotic modulation
 - Excellent agreement obtained between theory, simulations and experimental results in chaotic pulse position modulation electronic comm link
 - Developed improved code division multiple access (CDMA) code based on chaotic algorithms
- Dovoloped and demonstrated all optical