Álgebra Booleana & Portas Lógicas

- Circuitos digitais podem ser construídos com pequeno número de elementos primitivos.
- Circuito digital é um componente que somente assume dois valores lógicos: 0 e 1.
- Circuito eletrônicos são pequenos dispositivos chamados de Portas Lógicas (Gates)

• Representação de Transistores: Portas Lógicas

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

• Esses três circuitos, ou seus equivalentes, formam as três portas mais simples. Elas são chamadas de portas NOT, NAND e NOR, respectivamente.

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate

- As portas NOT são frequentemente chamadas de inversores.
- Se agora adotarmos a convenção de que "alto" (Vcc volts) é um 1 lógico, e que "baixo" (terra) é um 0 lógico, podemos expressar o valor de saída como uma função dos valores de entrada.

• Representação de Transistores: Portas Lógicas

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

Representação adotada pela maioria dos autores

• Os símbolos usados para representar cinco portas abaixo, juntamente com o comportamento funcional (tabela-verdade) de cada circuito.

• Nessas figuras, **A e B são entradas** e **X é a saída**. Cada linha especifica a saída para uma combinação diferente das entradas.

Portas Lógicas: 7 funções lógicas

Función lógica	Símbolo lógico de puerta	Tabla de verdad	Expresión booleana
Inversor	A — Ā Entrada Salida	Entrada Salida A A 0 1 1 0	A-Ā
AND .	A Y B Salida	Entradas Salidas B A AND NAND 0 0 0 1	A · B = Y
NAND	А В	0 1 0 1 1 0 0 1 1 1 1 0	A · B = Y
OR	А	Entradas Salidas B A OR NOR	A + B = Y
NOR	Entradas Salida A B Y	0 0 0 1 0 1 1 0 1 0 1 0 1 1 0	
OR exclusiva	A	Entradas Salidas B A XOR XNOR	A ⊕B = Y
NOR exclusiva	Entradas Salida	0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1	$\overline{A \oplus B} = Y$

Portas Lógicas: Tecnologias

- No período anterior a 2013, as duas principais tecnologias CIs (Circuitos Integrados) são:
- a)Portas Tipos Bipolares: TTL (*Transistor-Transistor Logic*) e ECL (*Emitter-Coupled Logic- alta velocidade*)
- b)Portas MOS (*Metal Oxide Semiconductor*): MOS são **mais lentas** do que TTL e ECL. MOS foram mais adotadas porque requerem **menos energia e ocupam menos espaço**. O MOS tem variedades (PMOS, NMOS e CMOS).

- Para descrever os CIs que podem ser construídos combinando portas, um novo tipo de álgebra é necessário, um em que variáveis e funções podem assumir apenas os valores 0 e 1.
- Tal álgebra é chamada de álgebra booleana, em homenagem ao seu descobridor, o matemático inglês George Boole (1815–1864).

Imagem de: https://georgeboole.com/media/central-media/it-mag-2015/LoT-GB200-news-story-mag.jpg

- Álgebra Booleana(álgebra de comutação) é um tipo específico de álgebra
- Uma função booleana tem uma ou mais variáveis de entrada e produz um único resultado.
- Uma função simples, f, pode ser definida dizendo que f (A) é 1 se A é 0 e f (A) é 0 se A é 1. Esta função é a função NOT da abaixo:

$$x = f(A)$$
, se $A = 0$ então $x = 1$; se $A = 1$ então $x = 0$

Representação com Álgebra Booleana

- Como uma **função booleana** de n variáveis tem 2^n combinações possíveis de valores de entrada.
- A função é descrita como uma tabela com 2ⁿ linhas, cada linha informando o valor da função para uma combinação diferente de valores de entrada.
- Tal tabela é chamada de **tabela verdade**. As tabelas abaixo são exemplos de tabelas verdade.

• Exemplo de tabela verdade com: duas, três e quatro entradas.

Α	В	в С		Χ
0	0	0		0
0	0	1		1
0	1	0		1
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1		1

Tabela duas entradas: 22

Tabela trę̂s)entradas: 23

Tabela de quatro entradas: 24

• 1) Quais são as saídas do inversor (às vezes chamado de porta NOT) na abaixo com o pulso (onda) na entrada?

• 1) Quais são as saídas do inversor (às vezes chamado de porta NOT) na abaixo com o pulso (onda) na entrada?

Resposta da Saída: 1010

• 2) Quais são as saídas da função AND com a onda digital de entrada?

• 2) Quais são as saídas da função AND com a onda digital de entrada?

• 3) Quais são as saídas da função OR com a onda digital de entrada?

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

• 3) Quais são as saídas da função OR com a onda digital de entrada?

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Resposta da Saída: 1011

• 4) Quais são as saídas da função OR com a onda digital de entrada?

Entradas		Sal	idas
В	A	XOR	XNOR
0	0	0	1
0	1	1	0
1	0	1	0
1	ı	0	1

• 4) Quais são as saídas da função OR com a onda digital de entrada?

Entradas		Salidas		
В	A	XOR	XNOR	
0	0	0	1	
0	- 1	1	0	
1	0	1	0	
1	ı	0	- 1	

Converter: TABELA VERDADE em FUNÇÃO BOOLEANA

- a) Saída 1: a função booleana é em linhas com combinações de variáveis de entrada que dão um valor de saída de 1.
- b) Multiplicação implícita ou um ponto para significar a função booleana AND
- c) + significar a função booleana OR
- d) Por convenção, colocaremos uma barra sobre uma variável de entrada para indicar que seu valor é invertido.
- e) A função booleana, M, é verdadeira (i.e., 1) se qualquer uma dessas quatro condições (mostradas abaixo) forem verdadeiras. $M = \bar{A}BC + A\bar{B}C + AB\bar{C} + AB\bar{C}$

$$M = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

Converter: TABELA VERDADE em FUNÇÃO BOOLEANA

- a) **Saída 1:** a **função booleana** é em linhas com combinações de variáveis de entrada que dão um valor de saída de 1.
- b) Multiplicação implícita ou um ponto para significar a função booleana AND
- c) + significar a função booleana OR
- d) Por convenção, colocaremos uma barra sobre uma variável de entrada para indicar que seu valor é invertido.
- e) A função booleana, M, é verdadeira (i.e., 1) se qualquer uma dessas quatro condições (mostradas abaixo) forem verdadeiras.

ABC: assume valor 1 quando A=0 e B =1 e C= 1 ABC: assume valor 1 quando A=1 e B =0 e C= 1

 $AB\bar{C}$: assume valor 1 quando A=1 e B =1 e C= 0

ABC: assume valor 1 quando A=1 e B =1 e C= 1

$$M = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

A função booleana, M, é verdadeira (i.e., 1) se qualquer uma dessas quatro condições forem verdadeiras.

Tabela Verdade vs Função Booleana vs CI

Tabela Verdade

Função booleana: M

A B C M 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

$$M = \bar{A}BC + A\bar{B}C + AB\bar{C} + AB\bar{C}$$

Circuito Integrado

Método para implementar um circuito para uma função booleana

- Método geral para implementar um circuito para qualquer função booleana:
 - 1. Escreva a tabela verdade para a função.
 - 2. Forneça inversores para gerar o complemento de cada entrada.
 - 3. Desenhe uma porta AND para cada termo com um 1 na coluna de resultado.
 - 4. Conecte as portas AND às entradas apropriadas.
 - 5. Alimente a saída de todas as portas AND em uma porta OR

Tabela Verdade vs Função Booleana vs CI

 $M = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$

Função Booleana: M

Tabela Verdade

Tabelas da Verdade: AND

■ A^B^C: Apresentar todas as possibilidades para as entradas A, B e C

O número de colunas corresponde ao número de entradas.

Uma tabela de três entradas teria 2^3 = oito linhas.

Tabelas da Verdade: AND

■ A^B^C: Apresentar todas as possibilidades para as entradas A, B e C

	Α	В	С	A^B^C
	V	V	V	V
$\overline{}$	V	V	F	F
□ 4)	V	F	V	F
	V	F	F	F
	F	V	V	F
	F	V	F	F
	F	F	V	F
	F	F	F	F

Uma tabela de três entradas teria 2^3 = oito linhas.

[•]O número de colunas corresponde ao número de entradas.

Conversão: Tabela Verdade vs Função Booleana vs CI

Tabela Verdade

	Entr	adas		Salida		Ent	radas		Salida	F	unção Bo
D	С	В	A	Y	D	С	В	A	Y		$D \cdot \overline{c} \cdot$
0	0	0	0	0	1	0	0	0	0	1	
0	0	0	1	0	1	0	· 0	1	0		
0	0	1	0	0	1	0	1	0	1	→ D.C.B.A-Y	1 1
0	0	1	1	0	1	0	1	1	0		
0	1	0	0	0	1	1	0	0	0	2	
0	1	0	1	0	1	1	0	1	0		
0	1	1	0	0	1	. 1	1	0	0		
0	1	1	1	0	1	1	1	1	0		

Função Booleana: M

1. Exercício: Tabela Verdade de "A E B"

• Construa a tabela verdade para a expressão booleana (A AND B).

1. Exercício: Tabela Verdade de "A E B"

- Construa a tabela verdade para a expressão booleana (A AND B).
- Solução:

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

2. Exercício: Tabela Verdade de "A OU B"

• Construa a tabela verdade para a expressão booleana (A OR B).

2. Exercício: Tabela Verdade de "A OU B"

- Construa a tabela verdade para a expressão booleana (A OR B).
- Solução:

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

3. Exercício: Tabela Verdade de "NOT A"

• Construa a tabela verdade para a expressão booleana (NOT A).

3. Exercício: Tabela Verdade de "NOT A"

- Construa a tabela verdade para a expressão booleana (NOT A).
- Solução:

4. Exercício: Tabela Verdade de A⊕B (XOR)

Construa a tabela verdade para a expressão booleana A⊕B (XOR)

4. Exercício: Tabela Verdade de A⊕B (XOR)

- Construa a tabela verdade para a expressão booleana A⊕B (XOR)
- Solução:

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

5. Exercício: Tabela Verdade de $(A \lor B) \land (A \land \neg B)$

5. Exercício: Tabela Verdade de $(A \lor B) \land (A \land \neg B)$

Construa a tabela verdade para $(A \vee B) \wedge (A \wedge \neg B)$.

Solução:

Α	В	$A \lor B$	$A \wedge \neg B$	$(A \vee B) \wedge (A \wedge \neg B)$
0	0	0	0	0
0	1	1	0	0
1	0	1	1 🕠	1
1	1	1	0	0

Referências:

- FUNDAMENTOS DE LOS MICROPROCESADORES Autores: ROGER L. TOKHEIM, Henry Sibley, High School Mendota Heights, Minnesota, Segunda edição.
- Structured computer organization Autores: Andrew S. Tanenbaum, Todd Austin. -- 6th ed