Определение 1. Два линейных оператора $A_i \colon D(A_i) \subset \mathcal{X} \to \mathcal{X}, i=1,2$ (\mathcal{X} — банахово пространство) называются подобными, если существует обратимый оператор $\mathcal{U} \in \operatorname{End} \mathcal{X}$, такой что $\mathcal{U}D(A_2) = D(A_1)$ и $A_1\mathcal{U}x = \mathcal{U}A_2x$ $\forall x \in D(A_2)$. Оператор \mathcal{U} назовем оператором преобразования оператора A_1 в A_2 .

Символом A будем обозначать невозмущенный линейный оператор $(A: D(A) \subset \mathcal{X} \to \mathcal{X})$, хорошо изученный с точки зрения интересующих нас структурных свойств. Оператор $B: D(B) \subset \mathcal{X} \to \mathcal{X}$ называется подчиненным оператору A, если $D(B) \supset D(A)$ и существует такая постоянная C > 0, что $|Bx| \leq C(||x|| + ||Ax||) \ \forall x \in D(A)$. Множество операторов, подчиненных оператору A, обозначим символом $\mathcal{L}_A(\mathcal{X})$.

Поскольку областью определения возмущенного оператора вида A-B, $B\in\mathcal{L}_A(\mathcal{X})$, является область определения D(A) оператора A, то будем далее всюду считать, что D(B)=D(A) $\forall B\in\mathcal{L}_A(\mathcal{X})$. Такая договоренность позволяет рассматривать $\mathcal{L}_A(\mathcal{X})$ как линейное пространство. Более того, $\mathcal{L}_A(\mathcal{X})$ можно нормировать, если положить $\|B\|_A=\inf C$, где инфимум берется по всем постоянным C>0, удовлетворяющим записанному выше неравенству. Нетрудно видеть, что $\mathcal{L}_A(\mathcal{X})$ – банахово пространство. Символами $\sigma(A)$ и $\rho(A)$ обозначается соответственно спектр и резольвентное множество оператора A.

Определение 2. Пусть \mathcal{U} – линейное многообразие операторов из \mathcal{L}_A и $\mathcal{J}: \mathcal{U} \to \mathcal{U}, \Gamma$: End \mathcal{X} – два трансформатора (т.е. линейные операторы в пространстве операторов). Тройку $(\mathcal{U}, \mathcal{J}, \Gamma)$ назовем допустимой для оператора A, а \mathcal{U} – допустимый пространством возмущений, если

- 1. \mathcal{U} банахово пространство (со своей нормой $\|\cdot\|$), непрерывно вложенное в $\mathcal{L}_A(\mathcal{X})$ (т.е. $\|X\| \geqslant const\|X\|_A \ \forall X \in \mathcal{U}$);
- 2. \mathcal{J} и Γ непрерывные операторы;
- 3. $(\Gamma X)D(A) \subset D(A)$ и $A\Gamma X \Gamma XA = X \mathcal{J}X \ \forall X \in \mathcal{U}$;
- 4. $(\Gamma X)Y, X\Gamma Y \in \mathcal{U} \ \forall X, Y \in \mathcal{U}$ и существует такая постоянная $\gamma > 0$, что $\|\Gamma\| \leqslant \gamma$ и $\max\{\|X\Gamma Y\|, \|(\Gamma X)Y\|\} \leqslant \gamma \|X\| \|Y\| \ \forall X, Y \in \mathcal{U};$
- 5. \mathcal{J} проектор и $\mathcal{J}((\Gamma X)\mathcal{J}Y) = 0 \ \forall X, Y \in \mathcal{U};$
- 6. $\forall X \in \mathcal{U} \ \forall \varepsilon > 0 \ \exists \lambda_0 \in \rho(A), \text{ then } \|X(A \lambda_0 I) 1\|_{\infty} < \varepsilon.$

Пусть $(\mathcal{U}, \mathcal{J}, \Gamma)$ — допустимая для оператора $A \colon D(A) \subset \mathcal{X} \to \mathcal{X}$ тройка и $B \in \mathcal{U}$ — возмущение оператора A. Будем искать такой оператор $X_0 \in \mathcal{U}$, чтобы выполнялось равенство

$$(A - B)(I + \Gamma X_0) = (I + \Gamma X_0)(A - \mathcal{J}X_0), \tag{1}$$

которое при условии $\|\Gamma X_0\|_{\infty} < 1$ (влекущего обратимость оператора $U = I + \Gamma X_0$) означает подобие операторов A - B и $A - \mathcal{J} X_0$. Нетрудно проверить, что равенство (1) имеет место, если X_0 – решение нелинейного уравнения вида

$$X = B\Gamma X - (\Gamma X)\mathcal{J}B - (\Gamma X)\mathcal{J}(B\Gamma X) + B = \Phi(X), \tag{2}$$

рассматриваемого в банаховом пространстве $\mathcal U$ допустимый возмущений. Из метода сжимающих отображений, примененного к нелинейному оператору

 $\Phi \colon \mathcal{U} \to \mathcal{U}$ (корректность его определения следует из определения допустимой тройки), получаем, что имеет место

Теорема 1. Если выполнено условие

$$\gamma \|B\| \|\mathcal{J}\| < \frac{1}{4},\tag{3}$$

то уравнение (2) имеет решение X_0 , для которого выполнено равенство (1), причем оператор $I + \Gamma X_0$ обратим.

Замечание 1. Построение трансформатора Γ обычно осуществляется с помощью трансформатора $ad_A \colon D(ad_A) \subset \operatorname{End} \mathcal{X} \to \operatorname{End} \mathcal{X}$ с областью определения $D(ad_A)$, состоящих из таких операторов $X_0 \in \operatorname{End} \mathcal{X}$, которые переводят D(A) в D(A), и оператор $AX_0 - X_0A \colon D(A) \to \mathcal{X}$ допускает единственное расширение с D(A) до некоторого оператора $Y_0 \in \operatorname{End} \mathcal{X}$ (и тогда полагается $Y_0 = ad_A X_0$).

Теоремы о расщеплении рассматриваемых здесь дифференциальных операторов получены с помощью выбора специальных допустимых троек, которые строятся в предположении существования разложения банахова пространства \mathcal{X} в прямую сумму $\mathcal{X} = \mathcal{X}_1 \oplus \mathcal{X}_2$ инвариантных относительно не возмущенного оператора $A \colon D(A) \subset \mathcal{X} \to \mathcal{X}$ подпространств \mathcal{X}_1 и \mathcal{X}_2 , причем множества $\sigma_i = \sigma(A_i), i = 1, 2$, взаимно не пересекаются $(A_i = A | \mathcal{X}_i, i = 1, 2, -$ сужение A на \mathcal{X}_i , и будем писать $A = A_1 \oplus A_2$).

Пусть \mathcal{P}_i , i=1,2, – проекторы, ассоциированные с указанным разложением пространства \mathcal{X} , т.е. $\mathcal{X}_i=\mathrm{Im}\mathcal{P}_i$, i=1,2. Отметим, что если одно из множеств σ_i , i=1,2, компактно, то $\mathcal{P}_i=P(\sigma_i,A)$, i=1,2, – проекторы Рисса, построенные по спектральным множествам σ_i , i=1,2.

Определение 3. Допустимая для оператора A тройка $(\mathcal{U}, \mathcal{J}, \Gamma)$ называется допустимой тройкой теории расщепления операторов, если выполнены следующие свойства:

- 1. $\mathcal{P}_i X \mathcal{P}_j \in \mathcal{U}, i, j = 1, 2$, для любого $X \in \mathcal{U}$, и трансформатор \mathcal{J} имеет вид $\mathcal{J} X = \mathcal{P}_1 X \mathcal{P}_1 + \mathcal{P}_2 X \mathcal{P}_2, X \in \mathcal{U}$;
- 2. $\mathcal{P}_i(\Gamma X)\mathcal{P}_j=\Gamma(\mathcal{P}_iX\mathcal{P}_j),\,i,j=1,2$ для любого $X\in\mathcal{U}$, причем $\mathcal{P}_i(\Gamma X)\mathcal{P}_i=0,\,i=1,2.$

Рассматриваемые нами допустимые тройки для оператора A удовлетворяют свойствам из определения 3. Это позволяет представить допустимое пространство \mathcal{U} в виде прямой суммы $\mathcal{U} = \mathcal{U}_{11} \oplus \mathcal{U}_{12} \oplus \mathcal{U}_{21} \oplus \mathcal{U}_{22}$ подпространств $\mathcal{U}_{ij} = \{\mathcal{P}_i X \mathcal{P}_j \colon X \in \mathcal{U}\}, i,j=1,2$. Символом X_{ij} будем обозначать оператор (операторный блок) $\mathcal{P}_i X \mathcal{P}_j$ из $\mathcal{U}_{ij}, i,j=1,2$, так что $X = (\mathcal{P}_1 + \mathcal{P}_2) X (\mathcal{P}_1 + \mathcal{P}_2) = X_{11} + X_{12} + X_{21} + X_{22}, X \in \mathcal{U}$.

Применяя к обеим частям уравнения (2) операторы \mathcal{P}_1 и \mathcal{P}_2 (справа и слева) и используя условие 2 из определения 3, получаем следующую систему уравнений для блоков $X_{ij},\,i,j=1,2,$ оператора $X\in\mathcal{U}$:

$$X_{11} = B_{12}\Gamma X_{21} + B_{11},\tag{4}$$

(5)

$$X_{21} = B_{22}\Gamma X_{21} - (\Gamma X_{21})B_{11} - (\Gamma X_{21})B_{12}\Gamma X_{21} + B_{21} = \Phi(X_{21}),$$

$$X_{12} = B_{11}\Gamma X_{12} - (\Gamma X_{12})B_{22} - (\Gamma X_{12})B_{21}\Gamma X_{12} + B_{12} = \Phi(X_{12}), \quad (6)$$

$$X_{22} = B_{21}\Gamma X_{12} + B_{22}. (7)$$

Важно отметить, что уравнения (5) и (6) независимы от остальных уравнений и рассматриваются соответственно в подпространствах \mathcal{U}_{21} и \mathcal{U}_{12} . Условия их разрешимости, и, следовательно, также и уравнений (4), (7), удобно формулировать, используя следующие величины: $b_{ij} = \|B_{ij}\|$, i,j=1,2, \tilde{b}_{12} , b_{21} – нормы операторов $X \mapsto B_{12}\Gamma X$: $\mathcal{U}_{12} \to \mathcal{U}_{12}$, $X \mapsto B_{21}\Gamma X$: $\mathcal{U}_{21} \to \mathcal{U}_{21}$ соответственно и \tilde{b}_{22} – наибольшая из норм операторов $X \mapsto (\Gamma X)B_{22}$: $\mathcal{U}_{12} \to \mathcal{U}_{12}$, $X \mapsto B_{22}\Gamma X$: $\mathcal{U}_{21} \to \mathcal{U}_{21}$. Отметим, что $\tilde{b}_{12} \leqslant \gamma b_{12}$, $\tilde{b}_{21} \leqslant \gamma b_{21}$.

Теорема 2. Пусть выполнено условие

$$d = \gamma b_{11} + \tilde{b}_{22} + 2\gamma (b_{12}b_{21})^{1/2} < 1.$$
(8)

Тогда оператор A-B подобен оператору вида

$$A - \mathcal{P}_1 X \mathcal{P}_1 - \mathcal{P}_2 X \mathcal{P}_2 = A - X_{11} - X_{22},$$