

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Test Report for FCC

FCC ID:XXV-NIKAO

					FCC ID:XXV	-NIKAO			
Repo	rt Number	ESTF151008-004							
	Company name	VIZEN ⁻	VIZEN TECHNOLOGY, INC						
Applicant	Address	# 502 Y SEOUL,		IG, 706-25 YEOKSAM-DONG, GANGNAM-GU,					
	Telephone	82-70-	-7734-3203						
	Product name	LCD TV	//MONITOR						
Product	Model name		NIKAO	Manufacturer	VIZEN TECHNOLOGY, INC				
	Serial number	NONE		Country of origin	KOREA				
Test date	7	-Jul-10		Date of issue	5-Aug-10				
Testing location	97-1 F	Hoiuk-Ri N	ESTECH. Majang-Myon, k	Co., Ltd. cheon-city, Kyung	gKi-Do, Kore	a			
Standard		FCC F	PART 15 (2008)	, ANSI C 63.4 20	003				
T 1 11	■ Conducted (Emission	☐ Class A	■ Class B	Test result	OK			
Test item	■ Radiated Em	nission	☐ Class A	■ Class B	Test result	OK			
Measurement	facility registration	number	94696						
Tested by	Senior Er	ngineer J.I	H.KIM	(Simplure)					
Reviewed by	Engineering	Manager	J.M.Yang	(Simure)					
Abbreviation	OK, Pass = Pass	ed, Fail=	= Failed,N/A =	not applicable					
* Note									
This 44									

- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 1 of 14

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Contents

1. Laboratory Information	3
2. Description of EUT	4
3. Test Standards ······	5
4. Measurement condition	6
5. Measurement of radiated emission	8
5.1 Measurement equipment	8
5.2 Environmental conditions	8
5.3 Test data	9
5.4 Test data	9
6. Measurement of conducted emission	10
6.1 Measurement equipment	10
6.2 Environmental conditions	10
6.3 Test data	11
7. Photographs of test setup	12
8. Photographs of EUT ······	14

Appendix 1. Spectral diagram (RGB MODE)

Appendix 2. Spectral diagram (HDMI MODE)

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Rm 1015, World Venture Center II, 426-5, Gasan-dong, Geumcheon-gu, Seoul, Korea (Safety & Telecom. Test Lab)

EMC Test Lab: 97-1, Hoeok-ri, Majang-myun, Ichion-city, Kyonggi-do, South Korea

1.3 Official Qualification(s)

KCC: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Filed Laboratory at Federal Communications Commission

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 3 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

2. Description of EUT

2.1 Summary of Equipment Under Test

Product Name : LCD TV/MONITOR

Model Number : NIKAO Serial Number : NONE

Manufacturer : VIZEN TECHNOLOGY, INC

Country of origin: KOREA

Rating : 120 Va.c., 60 Hz

Receipt Date : 6-Nov-09

X-tal list(s) : 12 MHz, 49.38 MHz

2.2 General descriptions of EUT

Items	Specification				
Broadcast signal	Color system:NTSC,ATSC,QAM-256,8-VSB				
system	Sound system:Stereo, MTS				
Antenna input	75 Ω				
impedence	7 J as				
Power supply	AC 100V, 60 Hz				
Sound output power	8 Ω 2 x 9 W				
Resolution	1366 x 768				
Brightness	500 cd/m2				
Contrast	2000: 1(Typical)				
Terminal	HDMI x 2 , S-Video x 1(NTSC), VGA x 1, Component x 2 , AV x				
	1(NTSC), Antenna X 1 , VGA sound in x 1 , SPDIF x 1				
OSD language	English / French / Spanish				
Operating	+ 32 °F to 104 °F(0 °C to 40 °C)				
temperature					

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 4 of 14

3. Test Standards

Test Standard: FCC PART 15 (2008)

TThis Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.4 (2003)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 5 of 14

4. Measurement Condition

4.1 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to the typical use of the EUT with respect to the expected hightest level of emission
- * After setting as test arrangment diagram, we tested the EUT under continuous displaying "H" character and playing Audio out /Video

4.2 Configuration and Peripherals

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 6 of 14

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

4.3 EUT and Support equipment

Equipment Name	Model	S/N	Manufacturer	Remark (FCC ID)
LCD TV/MONITOR	NIKAO	NONE	VIZEN TECHNOLOGY, INC.	EUT
Personal Computer	DCMF	6RKPHBX	Dell Inc.	
Keyboard	RT7D00	09N-1415	Dell Asia Pacific Sdn.	
Mouse	MO56UOA	G0304M8R	Dell Asia Pacific Sdn.	
Printer	K10299	NONE	CANON VIETNAM CO.,LTD	

4.4 Cable Connecting

Start Equ	lipment	End Equi	pment	Cable	Remark	
Name	I/O port	Name	I/O port	Length	Shielded	Remark
LCD TV/MONITOR	RGB	Personal Computer	RGB	2	Υ	
LCD TV/MONITOR	HDMI	Personal Computer	HDMI	2	Υ	
LCD TV/MONITOR	AUDIO-IN	Personal Computer	AUDIO-OUT	2	N	
Component1,2*5port	_	-	-	2	N	
AV IN*3port	_	-	-	2	N	
S-VIDEO	-	-	-	2	N	
Personal computer	USB	Keyboard	USB	2	Y	
Personal computer	USB	Mouse	USB	2	Υ	
Personal computer	USB	Printer	USB	2	Υ	

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 7 of 14

5. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2008). The test setup was made according to ANSI C 63.4 (2003) on an open test site, which allows a 3 m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

5.1 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESVS10	Rohde & Schwarz	838562/002	2011. 2. 01
Spectrum Analyzer	R3273	ADVANTEST	110600592	2011. 2. 01
LogBicon Antenna	VULB 9160	Schwarzbeck	3142	2011. 5. 19
Amplifier	8447F	HP	2805A02972	2011. 2. 01
Turn Table	2087	EMCO	2129	_
Antenna Mast	2070-01	EMCO	9702-203	_
ANT Mast Controller	2090	EMCO	1535	_
Turn Table Controller	2090	EMCO	1535	_

5.2 Environmental Condition

Test Place : Open site(3 m)

RGB mode

Temperature (°C) : 25 ℃

Humidity (%) : 49 % R.H.

HDMI mode

Temperature (°C) : 26 °C

Humidity (%) : 51 % R.H.

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 8 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5.3 Test data(RGB Mode)

Test Date: 8-Jun-10 Measurement Distance: 3 m

Total Sales									
Frequency Reading Po		Position	Height	Correctio	n Factor	Result Value			
(MHz)	(dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
31.94	23.50	V	1.0	10.51	0.9	40.0	34.91	-5.09	
130.04	23.10	V	1.0	11.65	1.8	43.5	36.54	-6.96	
140.58	18.60	V	1.0	12.41	2.0	43.5	33.01	-10.49	
159.98	25.00	V	1.0	12.95	2.0	43.5	39.99	-3.51	
169.68	20.60	Н	1.5	12.19	2.2	43.5	35.00	-8.50	
200.70	19.80	Н	1.2	9.69	2.3	43.5	31.82	-11.68	
245.20	28.50	Н	1.2	11.43	2.7	46.0	42.67	-3.33	
480.02	16.10	V	1.0	17.41	4.6	46.0	38.10	-7.90	
560.01	17.50	Н	1.0	19.21	5.2	46.0	41.94	-4.06	
640.04	16.00	Н	1.0	20.59	6.0	46.0	42.59	-3.41	
700.02	14.20	Н	1.0	21.24	6.3	46.0	41.75	-4.25	
760.21	13.00	Н	1.0	22.19	6.8	46.0	41.98	-4.02	

H: Horizontal, V: Vertical TEST MODE: Resolution 1 366*768(60Hz) at RGB mode (Worse Case)

*CL = Cable Loss-Amplifier Gain(In case of above 1 000 Mhz)

*CL = Cable Loss(In case of below 1 000 Mhz)

*The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi-peak detection at frequency below 1GHz.

*After connect with ferrite cores to RGB cable, tested radiated emission.

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 9-1 of 14

Remark

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5.3 Test data(HDMI Mode)

Test Date: 8-Jun-10 Measurement Distance: 3 m

Moded of the Moded								
Frequency	Reading	Position	Height	Correctio	n Factor	1	Result Value	e
(MHz)	(dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
32.00	22.80	V	1.0	10.51	0.9	40.0	34.21	-5.79
138.20	18.60	V	1.0	12.26	2.0	43.5	32.82	-10.68
140.58	19.50	V	1.0	12.41	2.0	43.5	33.91	-9.59
161.00	24.50	V	1.0	12.87	2.1	43.5	39.43	-4.07
181.50	19.80	Н	1.3	11.25	2.2	43.5	33.25	-10.25
200.70	19.80	Н	1.2	9.69	2.3	43.5	31.82	-11.68
245.50	28.00	Н	1.2	11.43	2.7	46.0	42.17	-3.83
480.02	16.10	V	1.0	17.41	4.6	46.0	38.10	-7.90
560.01	17.50	Н	1.0	19.21	5.2	46.0	41.94	-4.06
640.04	15.20	Н	1.0	20.59	6.0	46.0	41.79	-4.21
700.02	14.20	Н	1.0	21.24	6.3	46.0	41.75	-4.25
760.21	12.50	Н	1.0	22.19	6.8	46.0	41.48	-4.52

H: Horizontal, V: Vertical TEST MODE: Resolution 1 366*768(60Hz) at HDMI mode (Worse Case)

*CL = Cable Loss-Amplifier Gain(In case of above 1 000 Mhz)

*CL = Cable Loss(In case of below 1 000 Mhz)

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 9-2 of 14

Remark

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi-peak detection at frequency below 1GHz.

^{*}After connect with ferrite cores to RGB cable, tested radiated emission.

Am 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

6. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC Part 15 (2008). The test setup was made according to ANSI C 63.4 (2003) in a shielded. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

6.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
LISN	NNLA8120A	Schwarzbeck	8120161	2011. 2. 01
LISN	ESH3-Z5	Schwarzbeck	838979/010	2011. 2. 01
TEST Receive	ESPI7	Rohde & Schwarz	100185	2010. 8. 25
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	2011. 2. 01

6.2 Environmental Condition

Test Place : Shielded Room

RGB MODE

Temperature (°C) : 23 ℃

Humidity (%) : 48 % R.H.

HDMI MODE

Temperature (°C) : 23 ℃

Humidity (%) : 48 % R.H.

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 10 of 14

EST-QP-20-01(0)-(F15)

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

6.3 Test data (RGB MODE)

Test Date: 7-Jun-10

Test Date .	, 00	11 10								
Frequency	Correctio	n Factor	Line	Qu	Quasi-peak Value			Average Value		
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)	
0.16	0.10	0.4	Н	65.36	47.72	48.20	55.36	25.35	25.83	
0.19	0.10	0.4	Н	63.95	49.33	49.82	53.95	38.65	39.14	
0.22	0.10	0.4	Ν	62.74	49.94	50.43	52.74	35.21	35.70	
0.23	0.11	0.4	Ν	62.34	50.66	51.16	52.34	35.28	35.78	
0.24	0.11	0.4	Н	62.20	51.25	51.75	52.20	34.85	35.35	
0.27	0.11	0.4	Н	61.24	47.82	48.32	51.24	27.70	28.20	
0.56	0.12	0.4	Н	56.00	45.75	46.32	46.00	30.96	31.53	
0.59	0.12	0.5	Н	56.00	45.40	45.97	46.00	32.33	32.90	
0.72	0.12	0.5	Н	56.00	44.83	45.42	46.00	28.29	28.88	
0.82	0.12	0.5	Н	56.00	45.11	45.71	46.00	30.98	31.58	
0.94	0.12	0.5	Н	56.00	44.74	45.35	46.00	33.45	34.06	
0.97	0.12	0.5	Н	56.00	44.77	45.38	46.00	28.92	29.53	
10.60	0.41	1.0	Н	60.00	33.68	35.08	50.00	28.25	29.65	
11.25	0.43	1.0	Ν	60.00	33.98	35.43	50.00	26.58	28.03	
20.10	0.73	1.3	Ν	60.00	33.55	35.54	50.00	26.79	28.78	
25.98	0.81	1.4	Ν	60.00	34.16	36.37	50.00	28.69	30.90	
28.50	0.85	1.4	N	60.00	39.50	41.80	50.00	34.38	36.68	
28.74	0.86	1.4	Н	60.00	35.50	37.80	50.00	32.93	35.23	
Remark	H: Hot Line, N: Neutral Line									

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 11-1 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

6.3 Test data (HDMI MODE)

Test Date: 7-Jun-10

Test Date .	7-Ju	11-10							
Frequency	Correction	n Factor	Line	Quasi-peak Value		Average Value			
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.16	0.10	0.4	Ν	65.41	47.86	48.34	55.41	25.81	26.29
0.20	0.10	0.4	Н	63.82	49.31	49.80	53.82	38.55	39.04
0.22	0.10	0.4	Н	62.74	50.64	51.13	52.74	35.96	36.45
0.23	0.11	0.4	Н	62.49	51.08	51.58	52.49	35.07	35.57
0.26	0.11	0.4	Н	61.53	47.31	47.81	51.53	30.50	31.00
0.32	0.11	0.4	Н	59.66	47.87	48.39	49.66	35.22	35.74
0.56	0.12	0.4	Н	56.00	45.83	46.40	46.00	31.72	32.29
0.59	0.12	0.5	Н	56.00	45.48	46.05	46.00	32.23	32.80
0.70	0.12	0.5	Ν	56.00	43.85	44.44	46.00	28.48	29.07
0.71	0.12	0.5	Н	56.00	46.05	46.64	46.00	30.90	31.49
0.82	0.12	0.5	Н	56.00	45.28	45.88	46.00	31.18	31.78
0.84	0.12	0.5	Н	56.00	44.86	45.46	46.00	34.24	34.84
8.13	0.38	0.9	Ν	60.00	33.62	34.89	50.00	28.25	29.52
8.73	0.38	0.9	Н	60.00	33.99	35.29	50.00	29.06	30.36
11.04	0.43	1.0	Ν	60.00	35.00	36.43	50.00	27.97	29.40
25.99	0.81	1.4	N	60.00	34.62	36.83	50.00	27.95	30.16
26.48	0.82	1.4	Ν	60.00	34.48	36.70	50.00	27.46	29.68
28.57	0.85	1.4	Н	60.00	35.33	37.63	50.00	27.19	29.49
Remark	H: Hot Line, N: Neutral Line								

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 11-2 of 14

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

- 7. Photographs of test setup
- 7.1 Setup for Radiated Test : 30 MHz \sim 1 000 MHz

[Rear]

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 12 of 14

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

7.2 Setup for Conducted Test: 0.15 MHz ~ 30 MHz

[Front]

[Rear]

Report Number : ESTF151008-004 , Web : www. estech. co. kr Pag EST-QP-20-01(0)-(F15)

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

8. Photographs of EUT

[Front]

[Rear]

Report Number: ESTF151008-004, Web: www. estech. co. kr Page 14 of 14

Appendix 1. Spectral diagram

Comment: NIKAO RGB HOT
Date: 7.JUN.2010 15:15:17

*NEUTRAL (RGB MODE)

9 kHz RBW MT1 s

Att 10 dB AUTO PREAMP OFF

Comment: NIKAO RGB NEUTRAL Date: 7.JUN.2010 15:19:53

Appendix 2. Spectral diagram

*HOT (HDMI MODE)

30 MHz

Comment: NIKAO HDMI HOT
Date: 7.JUN.2010 15:34:27

150 kHz

*NEUTRAL (HDMI MODE)

RBW 9 kHz MT

Att 10 dB AUTO PREAMP OFF

Comment: NIKAO HDMI NEUTRAL Date: 7.JUN.2010 15:29:48