Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Белгородский государственный технологический университет им. В.Г. Шухова»

(БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №1.2

По дисциплине: «Дискретная математика»

Тема: «Нормальные формы Кантора»

Выполнил: студент группы ВТ-231

Борченко Александр Сергеевич

Проверили:

Островский Алексей Мячиславович

Рязанов Юрий Дмитриевич

Цель работы: изучить способы получения различных нормальных форм Кантора множества, заданного произвольным теоретико-множественным выражением.

Задания:

- 1. Представить множество, заданное исходным выражением (см.табл. 1), в нормальной форме Кантора.
- 2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением.
- 3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением.
- 4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

Вариант №2

Исходное выражение: $D \cap (D-C) \cup A-B-C \triangle (B-A)$

- 1. Представить множество, заданное исходным выражением в нормальной форме Кантора. Избавлюсь от операций разности и симметрической разности, раскрою групповые дополнения с помощью закона де Моргана, попутно раскрывая скобки при помощи закона дистрибутивности и упрощая выражение с применением свойств коммутативности, идемпотентности, поглощения и т.п:
- 1) $(D C) = D \cap \overline{C}$;
- 2) (B A) = $B \cap \overline{A}$;
- 3) DNC UA-B-C = DNCUANBNC;
- 4) $(D \cap \overline{C} \cup A \cap \overline{B} \cap \overline{C}) \Delta (B \cap \overline{A}) = (D \cap \overline{C} \cup A \cap \overline{B} \cap \overline{C}) \cap \overline{(B \cap \overline{A})} \cup (B \cap \overline{A}) \cap \overline{(D \cap \overline{C} \cup A \cap \overline{B} \cap \overline{C})};$
- 5) $(D \cap \overline{C} \cup A \cap \overline{B} \cap \overline{C}) \cap (\overline{B} \cap A) \cup (B \cap \overline{A}) \cap (\overline{D} \cap C \cup \overline{A} \cap B \cap C) = \overline{B} \overline{C} D \cup AD \overline{C} \cup \overline{A} B \overline{C} \cup (((\overline{D} \cup C) \cap (\overline{A} \cup B \cup C)) \cap B \cap \overline{A}) = \overline{C} O$

BCD U ADC U ABC U ABD U ABCD U ABC.

НФК: BCD U ADC U ABC U ABD U ABCD U ABC.

2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением;

$$D \cap (D-C) \cup A-B-C \Delta (B-A)$$

1) Разложение Шеннона:

$$\begin{array}{l} \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup \emptyset - \emptyset - \emptyset \Delta (\emptyset - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup \emptyset - \emptyset - \emptyset \Delta (\emptyset - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap D \cap ((U \cap (U - \emptyset) \cup \emptyset - \emptyset - \emptyset \Delta (\emptyset - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup \emptyset - \emptyset - U \Delta (\emptyset - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup \emptyset - U - \emptyset \Delta (U - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - \emptyset - \emptyset \Delta (\emptyset - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - U) \cup \emptyset - U - U \Delta (U - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((U \cap (U - U) \cup \emptyset - \emptyset - U \Delta (\emptyset - \emptyset)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((U \cap (U - U) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((U \cap (U - U) \cup U - \emptyset - U \Delta (\emptyset - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((U \cap (U - \emptyset) \cup U - \emptyset - \emptyset \Delta (\emptyset - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - \emptyset - \emptyset \Delta (\emptyset - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - \emptyset - \emptyset \Delta (\emptyset - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - \emptyset - \emptyset \Delta (\emptyset - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cap (\emptyset - \emptyset) \cup U - U - \emptyset \Delta (U - U)) \cup \\ \overline{A} \cap \overline{$$

AUBUCUDU N

 $\overline{\mathbf{A}} \cap \overline{\mathbf{B}} \cap \overline{\mathbf{C}} \cap \mathbf{D} \cap \mathbf{U} \cup \mathbf{U}$

 $\overline{A} \cap \overline{B} \cap C \cap \overline{D} \cap \emptyset \cup$

 $\overline{\mathbf{A}} \cap \mathbf{B} \cap \overline{\mathbf{C}} \cap \overline{\mathbf{D}} \cap \mathbf{U} \cup \mathbf{U}$

 $A \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap U \cup$

Ā∩B∩C∩D̄∩U U

 $\overline{\mathbf{A}} \cap \mathbf{B} \cap \overline{\mathbf{C}} \cap \mathbf{D} \cap \mathbf{U} \cup \mathbf{U}$

Ā∩B∩C∩D∩ø U

 $A \cap B \cap C \cap \overline{D} \cap \emptyset \cup$

 $A \cap B \cap \overline{C} \cap D \cap \emptyset \cup$

 $A \cap \overline{B} \cap C \cap D \cap \emptyset \cup$

 $\overline{\mathbf{A}} \cap \mathbf{B} \cap \mathbf{C} \cap \mathbf{D} \cap \mathbf{U} \cup$

 $A \cap \overline{B} \cap \overline{C} \cap D \cap U \ \cup$

 $A \cap \overline{B} \cap C \cap \overline{D} \cap \emptyset \cup$

 $A \cap B \cap \overline{\mathbb{C}} \cap \overline{\mathbb{D}} \cap \emptyset \cup$

 $A \cap B \cap C \cap D \cap \emptyset$

Совершенная НФК: $A\overline{B}\overline{C}D \cup \overline{A}\overline{B}\overline{C}D \cup \overline{A}B\overline{C}\overline{D} \cup \overline{A}BC\overline{D} \cup \overline{A}BC\overline{D} \cup \overline{A}B\overline{C}\overline{D} \cup \overline{A}BC\overline{D}$ $A\overline{B}\overline{C}D \cup \overline{A}BCD$.

2) Применение склеивания в обратном порядке:

 $\overline{BCD} \cup AD\overline{C} \cup A\overline{BC} \cup \overline{ABD} \cup \overline{ABCD} \cup \overline{ABC} =$

 $\begin{array}{l} {\bf A} \overline{\bf B} \overline{\bf C} {\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} {\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} {\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} {\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} {\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} {\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A} \overline{\bf B} \overline{\bf C} \overline{\bf D} \ \cup \ \overline{\bf A$

Совершенная НФК: $\overline{ABCD} \cup \overline{ABCD} \cup \overline{AB$

3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением;

Найдем простые импликанты, используя полученную совершенную НФК. (Знаки $+;^{*};*;;*;%;&;$? обозначают какое выражение с каким группируется)

0	1	2	3	4
	0001+%	0110*?	0111#?	
	0100*/	1001+^		
	1000^	0101#%/		
	-001	01-1&		
	010-*	011-*		
	01-0&			
	100-			
	0-01			
	01			

Сокращенная НФК: $\overline{B}\overline{C}D \cup A\overline{B}\overline{C} \cup \overline{A}\overline{C}D \cup \overline{A}B$.

4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

1) Составление матрицы Квайна:

	0001	1000	0100	1001	0110	0101	0111
-001	+			+			
(x1)							
100-		+		+			
(x2)							
01			+		+	+	+
(x3)							
0-01	+					+	
(x4)							

Метод Петрика:

Для каждого і-го столбца матрицы, не покрытого ядром Квайна, построю дизьюнкцию всех букв, обозначающих строки матрицы(xi), пересечение которых с і-м столбцом отмечено крестиком.

Это определяет 2 тупиковые НФК:

1)
$$X3X1X2 = 01$$
-- U -001 U 100 - = $\overline{A}B$ U $\overline{B}\overline{C}D$ U $A\overline{B}\overline{C}$

2)
$$X3X2X4 = 01$$
-- U 100 - U 0 - $01 = \overline{A}B$ U $A\overline{B}\overline{C}$ U $\overline{A}\overline{C}D$

Выберу тупиковые НФК, содержащие минимальные количества операций, по отношению ко всем другим тупиковым НФК:

Минимальные НФК: 1)
$$\overline{A}B \cup \overline{B}\overline{C}D \cup A\overline{B}\overline{C}$$
 2) $\overline{A}B \cup A\overline{B}\overline{C} \cup \overline{A}\overline{C}D$

Вывод: в ходе выполнения лабораторной работы я изучил способы получения различных нормальных форм Кантора множества, заданного произвольным теоретико-множественным выражением