STA 674

Regression Analysis And Design Of Experiments

Comparing and Selecting Models – Lecture 1

Comparing and Selecting Models

- Where does it fit in?
- What is it?
- Where next?

Comparing and Selecting Models

2

Comparing and Selecting Models

Variable Selection

- Parsimony: extreme unwillingness to spend money or use resources; <u>principle (or law)</u> of parsimony is the scientific principle that things are usually connected or behave in the simplest or most economical way. Oxford Online Dictionary (2019)
- "We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances." Sir Isaac Newton

Objective

• Identify the model that best describes the data with the least number of predictors.

Comparing and Selecting Models

1

Comparing and Selecting Models

Variable Selection

- 1. All Possible Regressions
- Fit separate models with all possible combinations of predictors and choose the one that maximizes or minimizes some criteria.
- Variable Selection Criteria
- 1. Residual error variance, s_e^2 (minimize)
- 2. Proportion of variance explained, R^2 (maximize)
- 3. Adjusted R^2 (maximize) NOT proportion of variance explained...use for model selection only
- 4. Mallow's C_p (small or close to p = K + 1) measures total mean square error, including bias
- 5. PRESS (minimize) prediction error compared to predicted value with rest of data?
- ... and many more.

Comparing and Selecting Models

Example – Effect of Smoking on Lung Capacity

Response

 $y = \log(\text{Full Expiratory Volume})$

Predictor Variables

$$x_1 = \text{height}$$

 $x_2 = \text{smoking } (0=\text{no,1}=\text{yes}) \text{ indicator variable}$

 $x_3 = \text{gender } (0 = \text{female}, 1 = \text{male}) \text{ indicator variable}$

all pairwise interactions:

- height and smoking,
- height and gender,
- smoking and gender Comparing and Selecting Models

Comparing and Selecting Models

Example - Effect of Smoking on Lung Capacity

• All possible regressions with adjusted R^2 criterion:

```
/* 1. All possible regressions */;
PROC REG DATA=FEV;
    MODEL logfev=ht smoke gender ht_x_gender smoke_x_gender smoke_x_ht /SELECTION=ADJRSQ;
RUN;
```

Number in Model			Variables in Model	
2	0.7958	0.7964	Ht Gender	
2	0.7958	0.7964	Ht ht_x_gender	
3	0.7955	0.7964	Ht Gender smoke_x_ht	
3	0.7955	0.7964	Ht Smoke Gender	
3	0.7955	0.7964	Ht Gender smoke_x_gender	
3	0.7955	0.7964	Ht Gender ht_x_gender	
3	0.7955	0.7964	Ht ht_x_gender smoke_x_ht	
3	0.7955	0.7964	Ht Smoke ht_x_gender	
3	0.7955	0.7964	Ht ht_x_gender smoke_x_gender	
1	0.7953	0.7956	Ht	
4	0.7953	0.7965	Ht Smoke Gender smoke_x_ht	
4	0.7953	0.7965	Ht Smoke ht_x_gender smoke_x_ht	
4	0.7952	0.7965	Ht Gender smoke_x_gender smoke_x_ht	

Comparing and Selecting Models

Example - Effect of Smoking on Lung Capacity

• All possible regressions with adjusted R^2 criterion:

```
/* 1. All possible regressions */;
PROC REG DATA=FEV;
    MODEL logfev=ht smoke gender ht_x_gender smoke_x_gender smoke_x_ht /SELECTION=ADJRSQ;
RUN;
```

Number in Model		R-Square	Variables in Model
2	0.7958	0.7964	Ht Gender
2	0.7058	0.7064	Ht ht_x_gender
	0.7055	0.7004	Ht Oender smoke_x_ht
3	0.7955	0.7964	Ht Smoke Gender
	0.7055	0.7064	Ht Cender smeke_x_gender
3	0.7955	0.7964	Ht Gender ht_x_gender
	0.7055	0.7004	Ht ht_x_gender smoke_x_ht
	0.7955	0.7004	Ht Omoke ht_x_gender
	0.7955	0.7904	Htht_x_gender smoke_x_gender
1	0.7953	0.7956	Ht
4	0.7953	0.7965	Ht Smoke Gender smoke_x_ht
4	0.7953	0.7965	Ht Smoke ht_x_gender smoke_x_ht
4	0.7952	0.7965	Ht Gender smoke_x_gender smoke_x_ht

Comparing and Selecting Models

Variable Selection

- 1. All Possible Regressions
- Advantages
 - Clear definition of "best" model.
 - Objective (once you have chosen a criterion).
 - All models considered.
- Disadvantages
 - Different criteria select different models.
 - Are small differences in criteria really meaningful?
 - The number of possible models grows exponentially.