法律声明

- □本课件包括演示文稿、示例、代码、题库、视频和声音等内容,小象学院和主讲老师拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意及内容,我们保留一切通过法律手段追究违反者的权利。
- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

Python库的使用II

本次说明

□本PPT后面仅列举使用Python库的效果截图, 详细内容请参考该PPT的配套代码。

数值计算

- □ 对于某二分类问题,若 for i in range(n / 2 + s += c(n, i) * p * return s

 0.6的分类器,采用少数 if __name__ == "__main__": for t in range(10, 101 print t, '次采样正确率: 0.6331032576

 终分类,则最终分类正 10 次采样正确率: 0.6331032576
 20 次采样正确率: 0.82463094649
 40 次采样正确率: 0.87023429415
 - 若构造100个分类器呢?

```
def bagging(n, p):
     for i in range(n / 2 + 1, n + 1):
         s += c(n, i) * p ** i * (1 - p) ** (n - i)
     return s
     for t in range(10, 101, 10):
         print t, '次采样正确率: ', bagging(t, 0.6)
C:\Python27\python. exe D:/Python/ML/6. Package/6. 1. Ensumble. py
10 次采样正确率:
               0.6331032576
20 次采样正确率: 0.755337203316
30 次采样正确率:
               0.824630946493
40 次采样正确率:
               0.870234294178
50 次采样正确率:
               0.902192635847
60 次采样正确率:
               0.925376305649
70 次采样正确率:
               0.942565538515
80 次采样正确率:
               0. 955502944118
90 次采样正确率:
               0. 965347339325
100 次采样正确率: 0.972900802243
```

时域与频域信号

快速傅里叶变换FFT与频域滤波

快速傅里叶变换FFT与频域滤波

快速傅里叶变换FFT与频域滤波

不同的阈值

奇异值分解-效果

SVD

- □ 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分 解方法,可以看做对称方阵在任意矩阵上的推广。
 - Singular:突出的、奇特的、非凡的
 - 似乎更应该称之为"优值分解"
- 假设A是一个m×n阶实矩阵,则存在一个分解使得:

$$A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}$$

- 通常将奇异值由大而小排列。这样,Σ便能由A唯一确定了。
- 与特征值、特征向量的概念相对应:
 - Σ 对角线上的元素称为矩阵A的奇异值;
 - U的第i列称为A的关于σi的左奇异向量;
 - V的第i列称为A的关于σi的右奇异向量。

SVD举例 $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}$

□ 已知4×5阶实矩阵A, 求A的SVD分解:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad V^{T} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ \sqrt{0.8} & 0 & 0 & 0 & -\sqrt{0.2} \end{bmatrix}$$

□ 矩阵U和V都是单位正交方阵: UTU=I, VTV=I

图像的卷积

图像的卷积

Code

卷积网络

卷积

深度网络

VGGNet

ConvNet Configuration									
Α	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
FC-4096									
FC-4096									
FC-1000									
		soft-	-max						

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

某股票收盘价数据处理

Demo

作业

- □ 实现任何一个函数曲线/曲面的Python显示。
 - Matplotlib
- □ 尝试使用SVD实现图像处理和特征提取。
- □ 熟悉Python的Numpy/Scipy数值计算数学库。

我们在这里

← → C wenda.chinahadoop.cn/explore/

贡献

关于在线广告和个性化推荐区别的一点浅见

计算机广告 wayaya 回复了问题 • 4 人关注 • 7 个回复 • 108 次浏览 • 2016-05-17 18:26

感谢大家!

恳请大家批评指正!