

Departamento de Tecnologias de Distribuição - DTD

Index

- 1. Introduction
- 2. Driver
- 3. Laboratory
- 4. Previous Works
- 5. Discussions

You control what you measure.

If you measure more precisely and quickly you will control better.

PMUs may provide better measurements in real time and help analysis off line.

PMUs and SCADA

APPLICATIONS

- Off-line:
 - Post event diagnostics.
- Real time:
 - Monitoring, protection and Control.
 - Examples: enhance state estimation, monitoring critical angles, monitoring oscillations, FACTS equipment control.

MOTIVATION: APPLICATIONS

OBJECTIVES

Synchrophasor Laboratory

To give technological support to:

- 1. Study the PMU applications.
 - Simulating in real time using real PMUs and virtual PMUs if necessary.
- 2. Study PMU performance using a metrological test bed based on NIST's SynchroMetrology Lab.

WORLD BANK FUNDING

Synchrophasor Laboratory

- 1. Real time simulator;
- 2. PMUs and PDC;
- 3. PMU test bed instrumentation;
- 4. Auxiliary instrumentation.

STUDY PMU APPLICATIONS

Synchrophasor Laboratory

- What equipment should have?
 - 1. Flexible equipment
 - 2. Up to date equipment
- What applications should study first?
 - 1. We are beginning discussions about it. Monitoring oscillations should be a good guess.

POSSIBLE CONFIGURATIONS

POSSIBLE CONFIGURATIONS

POSSIBLE CONFIGURATIONS

POSSIBLE CONFIGURATIONS: Control in the loop

METROLOGIC TEST BED

Synchrophasor Laboratory

- What equipment should have?
 - 1. Precision equipment
 - 2. Up to date equipment
 - 3. Flexible equipment
- What tests should be applied?
 - 1. IEEE Standard tests
 - C37.118.1 (metering)
 - C37.118.2 (communication)

STANDARD ASPECTS

IEEE Std 1344-1995 IEEE Standard for Synchrophasors for Power Systems

2005

C37.118-2005 - IEEE Standard for Synchrophasors for Power Systems

2011

IEEE Std C37.118.1™-2011 IEEE Standard for Synchrophasor Measurements for Power Systems

IEEE Std C37.118.2[™]-2011 - IEEE Standard for Synchrophasor Data Transfer for Power Systems

STANDARD ASPECTS

- Categories:
 - P (protection)
 Based on: Accuracy X Speed
 - M (metering)

- To evaluate the performance of PMUs:
 - TVE
 - FE (Frequency Measurement Error):
 - RFE (Rate of change of Frequency measurement Error): ROCOF

STANDARD ASPECTS

Tests:

Static

Dynamic

Ramp

Step

Amplitude and phase modulation

METROLOGIC TEST BED: NIST

METROLOGIC TEST BED PROPOSED

METROLOGIC TEST BED

Current and voltage signals synchronized by GPS are carried to PMU under test.

The control system knows the ideal phasors.

The control system receives the phasors measured by PMU.

The control system calculates TVE.

The results are presented.

CHALLENGES

- Dynamic tests must be done with the same small uncertainty
- The standards continue to be in discussion.

Study of Metering Chain (CTs) Thesis of Luiz Carlos Grillo (CEPEL) COPPE-UFRJ

Advisors: Prof. Glauco Taranto e José Eduardo

Accuracy Standard of metering current transformers

ACCURACY CRITERIA ACCORDING CT STANDARD

ACCURACY CRITERIA ACCORDING PMU STANDARD

ACCURACY CRITERIA CTs X PMU

Magnitude error (%)	Angle error (MINUTES)	TVE (%)	ACCURACY LIMIT (%)
-2,4	120	4,2	2,22
-1,2	40	1,7	0,34
-8,05	182,6	9,5	1,03
-2,4	20	2,5	1,63
0,6	-31,2	1,1	0,6

CONCLUSION:

THE CT STANDARDS SHOULD CONSIDER THE PMUS STANDARDS

Study of Internal Algorithms of PMUs
Thesis of Suzana C. Oliveira (CEPEL)
COPPE/UFRJ

Advisors: Prof. Edson Watanabe e José Eduardo

DRIVERS

Learn about the internal algorithm of PMUs.

 Tests at NIST (2009) "PMU Interoperability, Steady-State and Dynamic Performance Tests" by Moraes and all.

STUDY OF SYNCHROPHASOR CONCEPT

$$V = \cos(2\pi 60 + 0^\circ)$$

$$V = \cos(2\pi 61 + 0^\circ)$$

BLOCK DIAGRAM OF PMUS

BLOCK DIAGRAM OF PMUS QUANTIZATION

FREQUENCY DETECTION

Leakage effect

DETECÇÃO DE FREQUÊNCIA

PLL proposed to measure the frequency

CONCLUSION:

THE ALGORITHMS AND INTERNAL FILTERS SHOULD BE CONSIDERED CAREFULLY.

CONCLUSIONS

We are at the beginning!

THANKS AND DISCUSSIONS

Contact:

alves@cepel.br

Ministério de Minas e Energia