Série N°3: Endomorphismes, matrices et inverse d'une matrice

Exercice 1

Soit f l'endomorphisme de l'espace vectoriel $\mathbb C$ défini par

$$f(1) = 1$$
 et $f(i) = j$,

où j = $e^{i\frac{2\pi}{3}}$.

- 1. Démontrer que f est un automorphisme de \mathbb{C} .
- 2. Déterminer le complexe z tel que f(z) = i.
- 3. Soit f^{-1} l'application réciproque de f. Ecrire la matrice de f^{-1} relativement à la base $\{1,i\}$.

Exercice 2

Soit F le sous-ensemble de \mathbb{R}^3 défini par

$$F = \{X = (x, y, z) \in \mathbb{R}^3 / x - y + 2z = 0\}$$

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une base de F.
- 3. Montrer que $\mathbb{R}^3=F\oplus G$ où G est le sous-espace vectoriel de \mathbb{R}^3 engendré par le vecteur u=(2,1,1).

Exercice 3

Soit E un espace vectoriel de dimension 2 et (i, j) une base de E. Soit f et g deux endomorphismes de E dont les matrices dans la base (i, j) sont respectivement :

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}.$$

Soit $(x,y) \in \mathbb{R}$.

- 1. Montrer que f et g sont inversibles, puis trouver les matrices de f^{-1} et g^{-1} dans la base (i,j).
- 2. Déterminer dans la base (i, j) les matrices des endomorphismes suivants :

$$(x.f - y.g);$$
 $(2.f - x.id_E);$ $(-f + \pi.g);$ $(x.f + \pi y.g).$

3. Trouver des relations entre x et y pour que les endomorphismes

$$(x.f - y.g);$$
 $(2.f - x.id_E);$ $(-f + \pi.g);$ $(x.f + \pi y.g)$

soient inversibles.

Exercice 4

Soit E un espace vectoriel et f un endomorphisme de E tel que f^2 soit l'endomorphisme nul.

- 1. Calculer $(id_E f) \circ (id_E + f)$.
- 2. En déduire que $(id_E f)$ et $(id_E + f)$ sont bijectifs. Quels sont les endomorphismes $(id_E f)^{-1}$ et $(id_E + f)^{-1}$.

3. Vérifier les résultats précédents lorsque l'espace vectoriel E est de dimension 2 et lorsque f est l'endomorphisme de E dont la matrice dans une base (i,j) fixée de E est :

(a)
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
.

(b)
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

(c)
$$A = \begin{pmatrix} 1 & -\frac{1}{2} \\ 2 & -1 \end{pmatrix}$$
.

Exercice 5

On note par O la matrice nulle et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identité d'ordres 2. Soit $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ telle que

$$\begin{cases} \alpha + \delta &= -1\\ \alpha \delta - \beta \gamma &= -2, \end{cases}$$

On désigne $E = \overline{\langle I, A \rangle}$ l'espace engendré par les matrices I et A.

- 1. Quelle est la dimension de E?.
- 2. Vérifier que :

$$A^2 = -A + 2.I.$$

En déduire que A est inversible et que $A^{-1} \in E$.

- 3. Montrer que E est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$.
- 4. On prend $\alpha = -1$, $\beta = 2$, $\gamma = 1$ et $\delta = 0$.
 - (a) Vérifier que la relation : $A^2 = -A + 2.I$, est satisfaite.
 - (b) Préciser le noyau et l'image des endomorphismes φ et ψ de \mathbb{R}^2 dont les matrices dans la base naturelle sont respectivement :

$$A ext{ et } A + 2.I.$$

Exercice 6

On considère dans \mathbb{C} le système suivant :

$$\begin{cases} (1+i)x + (1+2.i)y = 1+5.i\\ (3-i)x + (4-2.i)y = 2-i. \end{cases}$$
 (6.1)

d'inconnus complexes x et y. On pose $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

1. Montrer qu'on peut écrire le système (6.1) sous la forme suivante :

$$A.X = b$$

où A est une matrice de $\mathcal{M}_2(\mathbb{C})$ à déterminer et $b = \begin{pmatrix} 1+5.i\\ 2-i \end{pmatrix}$

- 2. Montrer que la matrice A est inversible, puis trouver son inverse A^{-1} .
- 3. Ecrire $X = A^{-1}b$ et calculer x et y.