Logical Entailment

LOGIC I Benjamin Brast-McKie September 20, 2023

Logical Entailment

Satisfaction: An interpretation \mathcal{I} of SL satisfies a set of SL sentences Γ

iff $V_{\mathcal{I}}(\varphi) = 1$ for all $\varphi \in \Gamma$. Derivatively, an interpretation \mathcal{I} of SL satisfies a sentence φ of SL iff \mathcal{I} satisfies $\{\varphi\}$.

Logical Entailment: $\Gamma \vDash \varphi$ *iff* every SL interpretation \mathcal{I} that satisfies Γ also

satisfies φ .

Validity: An argument in SL is valid just in case its conclusion is

true in any interpretation in which its premises are true.

Question: How are we to describe the space of all valid arguments?

Answer: In terms of entailment.

Task 1: Show that validity and entailment are distinct:

• $\Gamma \vDash \varphi$ does not determine a unique argument.

Entailment does not order the premises.

• Entailment admits of infinitely many premises.

Entailment admits of no premises.

Tautology: An SL sentence φ is a *tautology* just in case $\vDash \varphi$.

Weakening: If $\Gamma \vDash \varphi$, then $\Gamma \cup \Sigma \vDash \varphi$.

Unsatisfiable

Absurdity: A contradiction entails everything: $A \land \neg A \models B$.

Bottom: Let ' \perp ' abbreviate any contradiction.

Unsatisfiable: A sentence is *unsatisfiable* just in case $\Gamma \vDash \bot$.

Task 2: Show that a set of SL sentences is unsatisfiable just in case

no SL interpretation satisfies it.

Consistency: Recall: a set of SL sentences is consistent just in case there

is a line on the complete truth table for those sentences which makes them all true, and *inconsistent* otherwise.

Task 3: Show that consistency and satisfiability are co-extensional.

Examples

Which sets of sentences are consistent? (e.g., is $\{(1), (2)\}$ consistent?)

Taller

- (1) Liza is taller than Sue.
- (2) Sue is taller than Paul.
- (3) Paul is taller than Liza.

Lost

- (4) Kim is either in Somerville or Cambridge.
- (5) If Kim is in Somerville, then she is not far from home.
- (6) If Kim is not far from home, then she is in Cambridge.
- (7) Kim is not in Cambridge.

Methods

Truth Tables: Mechanical but tedious.

- Bad if there are lots of sentence letters.
- Good for counterexamples. $A \equiv (B \supset C), A \land \neg B, D \lor \neg A \therefore C.$

Semantic Arguments: Good if there are lots of sentence letters.

 $(A \lor B) \supset (C \land D), \neg C \land \neg E : \neg A.$

Task 4: Provide a semantic argument.

Inference Rules: Suppose we were to schematize inferences.

- $\varphi \wedge \psi \vdash \varphi$.
- $\neg \varphi \vdash \neg (\varphi \land \psi)$.
- $\varphi \supset \psi$, $\neg \psi \vdash \neg \varphi$.
- $\neg(\varphi \lor \psi) \vdash \neg \varphi$.

Observe: Rules are valid.

Task 5: Use rules to derive above.

Proof Theory: How many rules are there, and how should we describe the space of all of them?