Algorytm genetyczny

Sebastian Woźniak 268491

January 2024

1 Populacja początkowa

Wielkość populacji zależy od liczby wierzchołków/długości genotypów i jest to $2\cdot \sqrt{V}$. Do wygenerowania populacji początkowej wyznaczane jest **MST** (Minimum Spanning Tree), a każdy osobnik powstaje z DFS rozpoczynając z losowego wierzchołka. Im większy rozmiar populacji tym lepsze wyniki końcowe jednak przykładowo zwiększenie jej rozmiaru dwukrotnie wydłuża czas działania algorytmu również dwukrotnie.

2 Selekcja

Do selekcji zostało użyte **podejście turniejowe**. Najlepsza grupa osobników w populacji jest wybierana do krzyżowania. Ponadto najlepszy spośród nich jest nadal członkiem następnej generacji (**elitaryzm**).

3 Krzyżowanie

Przetestowane zostały dwie metody krzyzowania dwupunktowego:

• PMX - Partially mapped crossover:

Losowane są dwa punkty wyznaczające pewną sekcje w genotypie.

Celem jest zamiana sekcji z rodzica A z sekcją rodzica B. Aby wygenerowany genotyp był rozwiązaniem dopuszczalnym należy dokonać zmian w częsciach genotypów obu rodziców nie leżących w sekcjach. W tym celu przechodzi się przez te częsci rodzica A od lewej do prawej i jeżeli trafi się na wierzchołek, który znajduje się wewnątrz sekcji rodzica B to wykonywany jest SWAP z wierzchołkiem pod odpowiedającym indexem we własnej sekcji. Analogiczne zmiany dla rodzica B.

• OX - Order crossover

Podobnie jak w poprzedniej metodzie losowane jest i oraz j. W tym przypadku chcemy zachować sekcje, a reszte wierzchołków przyjąć z drugiego

rodzica. Zaczynamy od wierzchołka znajdującego się w genotypie pod indexem j+1. Jeżeli odpowiadający mu wierzchołek w genotypie rodzica B nie należy do sekcji to przyjmujemy go. W przeciwym wypadku sprawdzany jest następny wierzchołek z genotypu B. Czynność jest powtarzana, aż zapełni się cały genotyp A. Analogiczne zmiany dla rodzica B.

Obie metody dawały wyniki na podobnym poziomie. Dla niektórych grafów PMX było trochę lepsze.

4 Mutacja

Dla każdego nowo utworzonego członka populacji mutacja mogła nastąpić z prawdopodobieństwem 0.1. Mutacja opiera się na algorytmie memetycznym jakim jest local search z funkcją INVERT skrócony do \sqrt{V} kroków.

5 Warunek stopu

Warunkiem stopu jest V generacji bez poprawenia najlepszego wyniku.

6 Wyniki

Graph	Avg. solution cost - LS	Avg. solution cost - GA	Best solution
xqf131	602.833	598.34	567
xqg237	1092.31	1079.86	1052
pma343	1455.89	1432.52	1401
pka379	1407.2	1381.2	1379
bcl380	1750.05	1718.5	1683
pbl395	1381.4	1351.4	1339
pbk411	1419.95	1411.53	1387
pbn423	1476.95	1457.54	1445
pbm436	1554.95	1538.45	1518
xql662	2689.23	2661.35	2649
xit1083	3844.42	3800.03	3759
icw1483	4819.41	4789.56	4776
djc1785	6547.51	6529.65	6452
dcb2086	7156.85	7082.24	6998
pds2566	8285.1	8225.53	8107