Mines PSI 1

Un corrigé

1 Tridiagonalisation.

Q.1. Comme la base canonique de \mathbb{R}^m est orthonormée, le produit scalaire de $x, y \in \mathbb{R}^m$ vaut $(x|y) = {}^t xy$. Ici,

$$Hu = u - 2u^{t}uu = u - 2u||u||^{2} = u - 2u = -u$$

$$\forall v \in \text{Vect}(u)^{\perp}, \ Hv = v - 2u^t uv = v - 2u(u|v) = v$$

Remarque : ceci montre que l'endomorphisme canoniquement associé à H est la réflexion orthogonale d'hyperplan $\operatorname{Vect}(u)^{\perp}$.

Q.2. On rappelle que ${}^tAB = {}^tB^tA$ dès que le produit AB existe. Ici, la transposition étant en outre linéaire et involutive,

$${}^{t}H = {}^{t}I - 2{}^{t}({}^{t}u){}^{t}u = I - 2u{}^{t}uu$$

De plus

$$H^{2} = I - 4u^{t}u + 4u^{t}uu^{t}u = I - 4u^{t}u + 4u||u||^{2t}u = I$$

On a ainsi $H = {}^{t}H = H^{-1}$ ce qui montre que H est à la fois symétrique et orthogonale.

Q.3. Par bilinéarité du produit scalaire, on a

$$||u||^2 = \frac{1}{2(1-\gamma_1)} (||g||^2 - 2(g|e_1) + ||e_1||^2) = \frac{1}{1-\gamma_1} (1-(g|e_1))$$

Par ailleurs, la base canonique étant orthonormée, $\gamma_i = (e_i|g)$. On en déduit alors que

$$||u||^2 = 1$$

Remarque: l'hypothèse (g, e_1) libre permet d'affirmer qu'il existe i > 1 tel que $\gamma_i \neq 0$ et que $\gamma_1^2 = ||g||^2 - \sum_{k \geq 2} \gamma_k^2 < 1$ ce qui donne en particulier $1 - \gamma_1 \neq 0$ et assure que u est bien défini. On a aussi ${}^t ug = \frac{1}{\sqrt{2(g-1)}} \left({}^t gg - {}^t ge_1 \right) = \frac{1}{\sqrt{2(g-1)}} \left(||g||^2 - (g|e_1) \right) = \frac{1}{\sqrt{2(g-1)}} \left(1 - \gamma_1 \right) = \sqrt{\frac{1-\gamma_1}{2}}$

On a aussi ${}^tug = \frac{1}{\sqrt{2(1-\gamma_1)}} \left({}^tgg - {}^tge_1 \right) = \frac{1}{\sqrt{2(1-\gamma_1)}} \left(\|g\|^2 - (g|e_1) \right) = \frac{1}{\sqrt{2(1-\gamma_1)}} \left(1 - \gamma_1 \right) = \sqrt{\frac{1-\gamma_1}{2}}$ et donc

$$Hg = g - 2u^t ug = g - 2\sqrt{\frac{1 - \gamma_1}{2}} \frac{g - e_1}{\sqrt{2(1 - \gamma_1)}} = e_1$$

Q.4. Soit $x \notin \text{Vect}(e_1)$. $g = \frac{1}{\|x\|}x$ est unitaire et non colinéaire à e_1 . En choisissant $u = \frac{g - e_1}{\sqrt{2(1 - \gamma_1)}}$, la question précédente donne

$$Hx = ||x||Hg = ||x||e_1$$

Q.5. Un calcul par blocs donne $(H_1$ étant une matrice de Householder, la question **2** donne $H_1^2 = I_{m-1}$)

$$\widehat{H_1}^2 = \left(\begin{array}{cc} 1 & {}^t\zeta \\ \zeta & H_1^2 \end{array}\right) = I_m$$

et on a donc $\widehat{H_1} = \widehat{H_1}^{-1}$ ce qui montrer que

$$\widehat{S} = \widehat{H_1}^{-1} \widehat{Q} \widehat{H_1}$$

est semblable à \widehat{Q} . On peut même dire que \widehat{S} représente l'endomorphisme \widehat{q} canoniquement associé à \widehat{Q} dans la base \mathcal{B} formée des colonnes de $\widehat{H_1}$ (ces colonnes forment une base puisque $\widehat{H_1}$ est inversible, on vient de le voir). Distinguons maintenant deux cas.

1

- Si $q_{2,1}$ est nul alors $q(e_1)$ est colinéaire à e_1 . En choisissant H_1 de façon quelconque, le premier vecteur de \mathcal{B} est e_1 et la première colonne de \widehat{Q} représente $q(e_1)$ dans \mathcal{B} est du type $(*,0,\ldots,0)$. Comme \widehat{S} est symétrique, la première ligne est la même et on a $\widehat{\sigma_{i,1}} = \widehat{\sigma_{1,i}} = 0$ pour i=2,m (et donc a fortiori pour i=3,m).
- Si $q_{2,1} \neq 0$, la question précédente utilisée avec $x = q_{2,1}$ donne une matrice H_1 telle que $H_1q_{2,1} = ||q_{2,1}||e'_1$ où e'_1 est le premier vecteur de la base canonique de \mathbb{R}^{m-1} . Un cacul par blocs donne alors

$$\widehat{S} = \left(\begin{array}{cc} c & {}^tq_{1,2}H_1 \\ H_1q_{1,2} & H_1QH_1 \end{array}\right)$$

Par choix de H_1 , on a donc $\widehat{\sigma_{i,1}} = \widehat{\sigma_{1,i}} = 0$ pour i = 3, m

Q.6. On vient de voir qu'il existe une matrice de Householder H_1 de taille m-1 telle que

$$\widehat{H_1}\widehat{Q}\widehat{H_1} = \begin{pmatrix} * & * & 0 & \dots & \dots & 0 \\ * & & & & \\ 0 & & & & \\ \vdots & & & H_1QH_1 & & \\ \vdots & & & & & \\ 0 & & & & & \end{pmatrix}$$

De même, H_1QH_1 étant une matrice symétrique d'ordre m-1, on trouve une matrice de Householder H_2 de taille m-2. En posant cette fois

on calcule $\widehat{H_2}\widehat{H_1}\widehat{Q}\widehat{H_1}\widehat{H_2}$ et on vérifie que l'on obtient une matrice du type

$$\widehat{H}_{2}\widehat{H}_{1}\widehat{Q}\widehat{H}_{1}\widehat{H}_{2} = \begin{pmatrix} * & * & 0 & \dots & 0 \\ * & * & * & 0 & \dots & 0 \\ 0 & * & & & & \\ \vdots & 0 & & S & & \\ \vdots & \vdots & & & & \\ 0 & 0 & & & & \end{pmatrix}$$

où S est encore une matrice symétrique. On a ainsi réussi à obtenir de bonnes seconde ligne et colonne (sans perdre les zéros apparus à l'étape précédente). En poursuivant ainsi (il y a m-2 étapes), on obtient des matrices symétriques et orthogonales $\widehat{H}_1, \ldots, \widehat{H}_{m-2}$ telles que

$$\widehat{H_{m-2}} \dots \widehat{H_1} \widehat{Q} \widehat{H_1} \dots \widehat{H_{m-2}}$$

est tridiagonale symétrique. Comme $\widehat{H_1} \dots \widehat{H_{m-2}}$ admet $\widehat{H_{m-2}} \dots \widehat{H_1}$ pour inverse, on a bien la relation de similitude voulue.

Remarque : on pourrait bien sûr décrire récursivement la stratégie précédente mais il est difficile de savoir ce que veut exactement l'énoncé.

2 Matrices de Jacobi.

Q.7. $T_0 x = \lambda x$ donne *n* équations qui s'écrivent

$$\begin{cases} (b_1 - \lambda)\xi_1 + a_1 = 0\\ \forall k \in [2, m - 1], \ a_{k-1}\xi_{k-1} + (b_k - \lambda)\xi_k + a_k\xi_{k+1} = 0\\ a_{m-1}\xi_{m-1} + (b_m - \lambda)\xi_m = 0 \end{cases}$$

Supposons, par l'absurde, que $\xi_m = 0$. Comme $a_{m-1} \neq 0$, la dernière équation donne $\xi_{m-1} = 0$. Comme $a_{m-2} \neq 0$, la précédente donne alors $\xi_{m-2} = 0$. Le processus (récurrent) se poursuit jusqu'à exploiter la seconde équation qui, comme $a_1 \neq 0$, donne $\xi_1 = 0$. On a alors x = 0 ce qui est contradictoire avec le fait que x est vecteur propre.

Remarque : on pourrait proprement montrer par récurrence descendante la nullité des ξ_i .

Q.8. Soit $\lambda \in \sigma(T_0)$ et u, v deux vecteurs propres associés (dont on note u_k et v_k les coordonnées dans la base canonique). La question précédente montre que u_n et v_n sont non nuls. Par ailleurs, $v_n u - u_n v \in \ker(T_0 - \lambda Id)$ (qui est un espace vectoriel) et sa dernière coordonnée est nulle. La question précédente montre que $v_n u - u_n v = 0$. Ainsi, (u, v) est liée. $\ker(T_0 - \lambda Id)$ est donc une droite vectorielle (espace non réduit à $\{0\}$ et où deux éléments sont liés).

Or, T_0 est diagonalisable puisque symétrique réelle. La somme des dimensions des sous-esapces propres est donc égale à m. Et comme toutes ces dimensions valent 1, on a finalement

$$\operatorname{card}(\sigma(T_0)) = m$$

3 Paires de Lax.

Q.9. T étant une solution de (5), les α_i et β_i sont dérivables sur \mathbb{R} puis, par récurrence à l'aide des relations, de classe C^{∞} sur \mathbb{R} .

Rappelons que si E est un espace vectoriel de dimension finie, un système linéaire d'ordre 1 d'inconnue $y: \mathbb{R} \to E$ est un système qui s'écrit $\forall t \in \mathbb{R}, \ y'(t) = a(t)(y(t))$ où pour tout tout t, $a(t) \in \mathcal{L}(E)$. Le cours nous indique que si $t \mapsto a(t)$ est continue de \mathbb{R} dans $\mathcal{L}(E)$ alors l'ensemble des solutions de ce système est un espace vectoriel de dimension $\dim(E)$. De plus, si $t_0 \in \mathbb{R}$ et $u \in E$, il existe une unique solution telle que $y(t_0) = u$ (problème de Cauchy).

Ces rappels étant faits, je dis que (6) est un problème de Cauchy pour un système différentiel linéaire d'inconnue $V: t \in \mathbb{R} \mapsto V(t) \in \mathcal{M}_n(\mathbb{R})$ (et donc, ici, $E = \mathcal{M}_n(\mathbb{R})$). L'application a du rappel est celle qui à un réel t associe $a(t): M \mapsto U(t)M$ qui est bien linéaire de E dans E.

Comme $t \mapsto a(t)$ est continue (ce qui résulte de la continuité de $t \mapsto U(t)$, provenant elle même de la continuité des α_i), le problème (6) admet bien une unique solution.

Remarque: tout s'éclaire quand on comprend qu'il s'agit d'un système à m^2 inconnues qui sont les fonctions coordonnées $v_{i,j}$ de V. La première équation du système est, par exemple,

$$v'_{1,1}(t) = \sum_{k=1}^{m} u_{1,k}(t)v_{k,1}(t) = \alpha_1(t)v_2(t)$$

Il y a m^2 telles équations et on est bien dans le cadre du cours...

Q.10. Posons $W: t \mapsto {}^tV(t)V(t)$. W est dérivable sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \ W'(t) = {}^tV'(t)V(t) + {}^tV(t)V'(t)$$

Or,
$${}^{t}V'(t) = {}^{t}V(t){}^{t}U(t) = -{}^{t}V(t)U(t)$$
 et $V'(t) = U(t)V(t)$. Ainsi,

$$\forall t \in \mathbb{R}, \ W'(t) = 0$$

W est donc constante sur l'intervalle \mathbb{R} . Comme W(0) = I, on a ainsi

$$\forall t \in \mathbb{R}, \ ^tV(t)V(t) = W(t) = I$$

ce qui montre que $V(t) \in O_m(\mathbb{R})$ pour tout réel t.

Q.11. Comme (fgh)' = f'gh + fg'h + fgh', on a

$$(^{t}VTV)' = {^{t}V'TV} + {^{t}VT'V} + {^{t}VTV'}$$

$$= {^{t}V^{t}UTV} + {^{t}V(UT - TU)V} + {^{t}VTUV}$$

$$= 0$$

le dernier point provenant de l'antisymétrie de U(t). Une fonction à dérivée nulle sur un intervalle est constante et ainsi

$$\forall t \in \mathbb{R}, \ ^{t}V(t)T(t)V(t) = {}^{t}V(0)T(0)V(0) = T_{0}$$

Comme V(t) est orthogonale, ceci montre que T(t) est semblable à T_0 pour tout t. Deux matrices semblables ayant même spectre, on a

$$\forall t \in \mathbb{R}, \ \sigma(T(t)) = \sigma(T_0)$$

4 Etude asymptotique.

Q.12. L est dérivable sur \mathbb{R} et

$$L' = 2 \sum_{i=1}^{m-1} \alpha_i \alpha_i' + \sum_{i=1}^m \beta_i \beta_i'$$
$$= 2 \sum_{i=1}^{m-1} \alpha_i^2 (\beta_{i+1} - \beta_i) + 2 \sum_{i=1}^m \beta_i (\alpha_1^2 - \alpha_{i-1}^2)$$

En développant, les termes s'éléminent presque tous. Il reste

$$L' = -2\alpha_0^2 \beta_1 + 2\beta_m \alpha_m^2 = 0$$

L est donc constante sur l'intervalle \mathbb{R} :

$$\forall t \in \mathbb{R}, \ L(t) = L(0) = \sum_{i=1}^{m-1} a_i^2 + \frac{1}{2} \sum_{i=1}^{m} b_i^2$$

Une somme de carrés étant positive, on a donc

$$\forall k \in [1, m], \ \beta_k(t)^2 \le 2L(t) = 2L(0)$$

et donc

$$\forall k \in [1, m], \ |\beta_k(t)| \le D = \sqrt{2L(0)}$$

Q.13. Fixons $i \in [1, m-1]$. On a

$$\sum_{j=1}^{i} \beta_j'(t) = 2\sum_{j=1}^{i} (\alpha_j^2(t) - \alpha_{j-1}^2(t)) = 2(\alpha_i^2(t) - \alpha_0^2(t)) = 2\alpha_i^2(t)$$

Intégrons cette égalité sur [0,t]:

$$\forall t \in \mathbb{R}, \ 2 \int_0^t \alpha_i^2(t) \ dt = \sum_{j=1}^i (\beta_j(t) - \beta_j(0)) = \sum_{j=1}^i (\beta_j(t) - b_j)$$

La fonction $t \mapsto \int_0^t \alpha_i^2(t) \ dt$ est croissante sur \mathbb{R} (puisque α_i^2 est positive) et elle est bornée (les β_j le sont). Par théorème de limite monotone, cette fonction admet une limite finie en $+\infty$ et en $-\infty.$ Ainsi, $\int_{\mathbb{R}}\alpha_i^2$ existe. Et comme $\alpha_i^2\geq 0,$ ceci revient à dire que

$$\alpha_i^2 \in L^1(\mathbb{R})$$

- **Q.14.** On montre par récurrence sur i que la propriété H_i : " β_i admet une limite finie en $\pm \infty$ " est vraie pour tout $i \in [1, m]$.
 - <u>Initialisation</u>: on a $\beta_1(t) = b_1 + 2 \int_0^t \alpha_1^2$ et H_1 est vraie puisque $\alpha_1^2 \in L^1(\mathbb{R})$. <u>Hérédité</u>: soit $i \in [2, m]$ tel que H_1, \ldots, H_{i-1} soient vraies. On a cette fois

$$\beta_i(t) = b_i - \sum_{k=1}^{i-1} (\beta_k(t) - b_k) + 2 \int_0^t \alpha_i^2$$

Comme $\alpha_i^2 \in L^1$ et comme $\beta_1, \dots, \beta_{i-1}$ admettent des limites finies en $\pm \infty$, la propriété H_i est vraie elle aussi.

Q.15. On a

$$\forall t \in \mathbb{R}, \ |\alpha_i(t)\alpha_i'(t)| = |\alpha_i^2(t)(\beta_{i+1}(t) - \beta_i(t))| \le 2D\alpha_i^2(t)$$

Ainsi, $\alpha_i \alpha_i'$ est une fonction continue sur $\mathbb R$ et majorée en module par une fonction intégrable sur \mathbb{R} . C'est donc aussi une fonction intégrable sur \mathbb{R} Remarquons que

$$\forall t \in \mathbb{R}, \ \int_0^t \alpha_i(u) \alpha_i'(u) \ du = \frac{1}{2} (\alpha_i^2(t) - \alpha_i^2(0)) = \frac{1}{2} \alpha_i^2(t)$$

On vien de voir que le membre de gauche admet une limite finie en $\pm \infty$ (l'intégrabilité entraîne l'existence de l'intégrale). Il en est donc de même du membre de droite et α_i admet des limites finie ℓ_i^+ et ℓ_i^- en $+\infty$ et $-\infty$. Si, par l'absurde, $\ell_i^+ \neq 0$ alors $|t\alpha_i^2(t)| \to +\infty$ quand $t \to +\infty$ ce qui indique que α_i^2 n'est pas intégrable au voisinage de $+\infty$ et est contradictoire avec ce qui précède. On a donc

$$\lim_{t \to +\infty} \alpha_i(t) = 0$$

On montre de même que

$$\lim_{t \to -\infty} \alpha_i(t) = 0$$

Q.16. On a $T(t) \mapsto \operatorname{diag}(\beta_1^+, \dots, \beta_m^+)$ quand $t \to +\infty$ (par exemple pour la norme infinie, le choix de norme importe peu puisque $\mathcal{M}_m(\mathbb{R})$ est de dimension finie). Or, $M \mapsto \det(M)$ est continue (par exemple par multilinéarité en dimension finie ou, plus simplement, par théorèmes d'opérations puisque le déterminant est somme et produit des coefficients de la matrice). On a donc

$$\lim_{t \to +\infty} \det(\lambda I - T(t)) = \det(\lambda I - \operatorname{diag}(\beta_1^+, \dots, \beta_m^+)) = \prod_{i=1}^m (\lambda - \beta_i^+)$$

Par ailleurs, on a vu (question 11) que $\sigma(T(t)) = \sigma(T_0)$ pour tout t et (question 8) que les valeurs propres de T_0 sont simples et en nombre m. On a donc

$$\forall t \in \mathbb{R}, \ \chi_t(\lambda) = \prod_{s \in \sigma(T_0)} (\lambda - s)$$

Un passage à la limite donne alors

$$\prod_{i=1}^{m} (\lambda - \beta_i^+) = \prod_{s \in \sigma(T_0)} (\lambda - s)$$

En procédant de même en $-\infty$, on a donc

$$\prod_{i=1}^{m} (\lambda - \beta_i^-) = \prod_{s \in \sigma(T_0)} (\lambda - s)$$

Q.17. En identifiant les racines des polynômes on a donc

$$\forall t \in \mathbb{R}, \ \sigma(T(t)) = \sigma(T_0) = B^+ = B^-$$

Q.18. Par définition de la borne inférieure, il existe une suite (t_n) d'éléments de A^+ telle que $t_n \to \tau$ quand $n \to +\infty$. α_i étant continue, on en déduit que

$$\alpha_i(\tau) = \lim_{n \to +\infty} \alpha_i(t_n) = 0$$

 α_i ne s'annulant pas sur $]0,\tau[$ (par définition de la borne inférieure) et étant non nulle en 0, elle est par théorème des valeurs intermédiaires (qui s'applique puisque α_i est continue) du signe de a_i sur tout l'intervalle.

Q.19. α_i ne s'annulant pas sur $[0, \tau]$, les relations (7) donnent

$$\forall t \in [0, \tau[, \frac{\alpha_i'(t)}{\alpha_i(t)} = \beta_{i+1}(t) - \beta_i(t)$$

En intégrant cette relation on en déduit que

$$\forall t \in [0, \tau[, \ln(|\alpha_i(t)|) - \ln(|\alpha_i(0)|) = \int_0^t (\beta_{i+1}(u) - \beta_i(u)) du$$

On passe à la valeur absolue et on utilise la postivité de l'intégrale pour en déduire

$$\forall t \in [0, \tau[, |\ln(|\alpha_i(t)|) - \ln(|\alpha_i(0)|)| \leq \int_0^t |\beta_{i+1}(u) - \beta_i(u)| du$$

$$\leq \int_0^t (|\beta_{i+1}(u)| + |\beta_i(u)|) du$$

$$\leq 2Dt$$

$$\leq 2D\tau$$

En passant à la limite quand $t \to \tau^-$, on obtient une contradiction $(+\infty \le 2D\tau)$ et on a donc $A^+ = \emptyset$. On fait le même raisonnement pour montrer que $A^- = \emptyset$ (on suppose l'inverse, on note τ la borne supérieure de A^- et on travaille sur $[\tau, 0]$). On a donc

$$\forall t \in \mathbb{R}, \ \alpha_i(t) \neq 0$$

Q.20. Supposons, par l'absurde, que $\beta_{i+1}^+ \ge \beta_i + .$ La question 17 montre que les β_k^+ sont deux à deux distincts (puisque B^+ est de cardinal m) et on a donc $\beta_{i+1}^+ > \beta_i + .$ Par définition des limites,

$$\exists t_0 / \forall t \ge t_0, \ \beta_{i+1}(t) > \beta_i(t)$$

- Si $a_i > 0$ alors α_i est toujours > 0 et les relations (7) donnent

$$\forall t \geq t_0, \ \alpha_i'(t) > 0$$

 α_i est donc croissante sur $[t_0, +\infty[, > 0 \text{ en } t_0 \text{ et de limite nulle en } +\infty, \text{ ce qui est impossible.}]$

- Si $a_i < 0$ alors α_i est toujours < 0 et les relations (7) donnent

$$\forall t \geq t_0, \ \alpha_i'(t) < 0$$

 α_i est donc décroissante sur $[t_0, +\infty[$, < 0 en t_0 et de limite nulle en $+\infty$, ce qui est impossible. Dans tous les cas, on a une contradiction et ainsi

$$\beta_{i+1}^+ < \beta_i^+$$

Les suites (β_k) et les (λ_k) sont toutes deux ordonnées dans l'ordre décroissant et prennent des valeurs globalement égales (question 17). On a donc

$$\forall i, \ \beta_{i+1}^+ = \lambda_i$$

On pourrait bien sûr mener une récurrence sur i pour le justifier.

Q.21. Par définition des limites,

$$\exists S > 0 / \forall t > S, \ \beta_i(t) - \beta_{i+1}(t) > \delta$$

Distinguous encore deux cas.

- Si $a_i > 0$ alors α_i reste > 0 et (7) donne

$$\forall t \geq S, \ \alpha_i'(t) \leq -\delta \alpha_i(t)$$

 $t \mapsto \alpha_i(t)e^{\delta t}$ est donc strictement décroissante sur $[S, +\infty[$ (sa dérivée est strictement négative) et si on pose $C = \alpha_i(S)e^{\delta S}$ on a

$$\forall t > S, \ 0 < \alpha_i(t) < Ce^{-\delta t}$$

- Si $a_i < 0$ alors α_i reste < 0 et (7) donne

$$\forall t \geq S, \ \alpha_i'(t) \geq -\delta \alpha_i(t)$$

 $t\mapsto \alpha_i(t)e^{\delta t}$ est donc strictement croissante sur $[S,+\infty[$ (sa dérivée est strictement positive) et si on pose $C=-\alpha_i(S)e^{\delta S}$ on a

$$\forall t > S$$
, $-Ce^{-\delta t} < \alpha_i(t) < 0$

Dans les deux cas, on a trouvé C > 0 tel que

$$\forall t > S, \ |\alpha_i(t)| < Ce^{-\delta t}$$

Si on veut des constantes indépendantes de i, il suffit de prendre le maximum des ces constantes pour i = 1, m. On fera cette hypothèse dans la suite. On a donc

$$\exists S, C > 0 / \forall i \in [1, m], \ \forall t > S, \ |\alpha_i(t)| < Ce^{-\delta t}$$

En utilisant les formules vues en question 14, on a

$$\beta_1(t) - \beta_1(s) = 2 \int_s^t \alpha_1^2$$

$$\forall i \in [2, m], \ \beta_i(t) - \beta_i(s) = -\sum_{k=1}^{i-1} (\beta_k(t) - \beta_k(s)) + 2\int_s^t \alpha_i^2$$

On fait tendre t vers $+\infty$ puis on passe au module :

$$|\lambda_1 - \beta_1(s)| = 2 \int_s^{+\infty} \alpha_1^2$$

$$\forall i \in [2, m], \ |\lambda_i - \beta_i(s)| \le \sum_{k=1}^{i-1} |\beta_k(t) - \beta_k(s)| + 2 \int_s^{+\infty} \alpha_i^2$$

Pour s > S, on peut utiliser le début de la question pour majorer u_i^2 . Pour tout s > S, on a alors

$$|\lambda_1 - \beta_1(s)| < \frac{C^2}{\delta} e^{-2\delta s}$$

$$\forall i \in [2, m], \ |\lambda_i - \beta_i(s)| < \sum_{k=1}^{i-1} |\beta_k(t) - \beta_k(s)| + \frac{C^2}{\delta} e^{-2\delta s}$$

Une récurrence immédiate donne finalement

$$\forall s > S, \ \forall i \in [1..m], \ |\lambda_i - \beta_i(s)| < \frac{(i+1)C^2}{\delta}e^{-2\delta s}$$

et on obtient le résultat voulu en posant

$$C' = \frac{(m+1)C^2}{\delta}$$