

Declaration page 1 of 2
10/650,296

DOCKET NO. 03-0861
81580 (6653)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:	TETELBAUM, Alexander)	<u>CERTIFICATE OF TRANSMISSION/MAILING</u>
)	I hereby certify that this correspondence is being
Serial No.:	10/650,296)	facsimile transmitted to the USPTO or deposited with
)	the United States Postal Service with sufficient postage
Filed:	August 27, 2003)	as first class mail in an envelope addressed to:
For:	METHOD OF CLOCK DRIVEN)	Commissioner for Patents, P.O. Box 1450, Alexandria,
	CELL PLACEMENT AND CLOCK)	VA 22313-1450 on the date below.
	TREE SYNTHESIS FOR)	<i>Susan R. Telford</i>
	INTEGRATED CIRCUIT DESIGN)	Susan R. Telford
Art Unit:	2825)	
Examiner:	Siek, Vuthe)	
)	

April 8, 2005

DECLARATION UNDER 37 C.F.R. § 1.131

I, ALEXANDER TETELBAUM, hereby declare as follows:

1. I am the inventor of the invention disclosed and claimed in the subject application;
2. I submitted a copy of the invention disclosure attached hereto for "CLOCK-DRIVEN PLACEMENT AND CLOCK SYNTHESIS" to LSI Logic Corporation before July 10, 2003, the effective date of U.S. Patent Application 2005/0010884 by Lu, et al.;
3. I conceived the invention disclosed in the attached invention disclosure in the United States of America;

Declaration page 2 of 2
10/650,296

DOCKET NO. 03-0861
81580 (6653)

4. I further declare that all statements made herein of my own knowledge are true; and that all statements not based on my own knowledge are believed to be true; and further that these statements were made with the knowledge that willful false statements are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code.

4/4/05

DATE

/s/
SIGNATURE

ALEXANDER TETELBAUM

03-086 (

I. Title of Your Invention: Clock-driven placement and clock synthesis	Number of Attached Pages:
Was your Invention first presented in an LSI Logic "Brainstorming Session?" (N)	
If yes, specify the docket number assigned to you in the reminder e-mail:	

APR 11 2005
RECEIVED TRADE SHOW

II. List of All Inventors: (attach a separate sheet for additional inventors)			
First Name: Alexander	M.I. :	Last Name: Telbaum	
Home Address: 26867 New Dobbie Ave, Hayward, CA, 94542		Mail Stop: E-192	Work Phone: 67867
LSI Employee: YES	Vice President: Sudhakar Sabada	Citizenship: USA	Work Fax: 64156
If no, identify Employer:	Manager: Ruben Molina	Hire Date: 3/9/1998	E-mail: alex@lsil.com
Job Title: Project Leader, MTS	Department: 0000107767	Home Phone: (510) 728-0265	

III. Public Disclosure of Your Invention:			
1. Was your Invention ever disclosed, either orally or in writing to anyone other than an LSI Logic employee? (N)			
2. If yes to 1, specify the date(s) of disclosure:			
3. Are there plans to disclose your Invention in the future? (unknown)			
4. If yes to 3, specify the date(s) of expected disclosure:			

RECEIVED
MAY 16 2003
LSI Logic Corp.
IP Law Dept.

IV. Use of Your Invention:			
1. Has your Invention been used? (Partly in several design scripts, will be used in lsimrs, FS3.5)			
2. If yes to 1, specify the date(s) of use:			
3. Are there plans to use your Invention in the future? (Yes)			
4. If yes to 3, specify the date(s) of expected use: 2003, 5-7 years			

V. Invention "offered for" or "on sale":			
1. Was a product or process containing your Invention "offered for sale" or "sold?" (N)			
2. If yes to 1, specify the date(s) of the offer or sale:			

VI. Prior Art: See attached document			
--------------------------------------	--	--	--

LSI Logic Invention Disclosure Form Docket Number:03-0000

VII. Background to Your Invention: See attached document

VIII. Detailed Description of Your Invention: See attached document

IX. Date of Your Invention:

1. Specify the date when you first conceived of your Invention*: (e.g. the conception date) 2002, July
2. Specify the date the first prototype was built*: (e.g. reduction to practice) Sept 2002

X. Customer/Vendor Contracts:

1. Was your Invention developed during performance of a customer/vendor contract*? (N)

LSI Logic Invention Disclosure Form Docket Number:03-0000

XI. Government March-In Rights:

1. Was your Invention conceived during performance of government contract*? (N)

XII. Signatures*: (sign only in BLUE ink)

We the aforementioned inventors submit in confidence this Invention disclosure to Attorneys within the LSI Logic Legal Dept. for the purpose of obtaining a legal opinion and/or legal advice as to the availability of patent, trade secret, and/or copyright protection for, and/or a general legal opinion or legal advice relating to the material contained within.

I(We) believe myself(ourselves) to be the first and original inventor(s) of this Invention:

Inventor:

Date:

1. Alexander Tetelbaum

5/12/2003

- 2.

- 3.

Two Witnesses who have read and understood this Invention disclosure*:

Full Name of Witness (Print and Sign Name)

Date:

1. Michelle Chiang

5/14/2003

2. Wei Huang

5/14/2003

The information within in this form has been provided to the LSI Logic Legal Department attorneys for the purpose of obtaining either a legal opinion, legal services, and/or assistance in a legal proceeding, and hence is privileged as an attorney-client communication.

Title of Your Invention:

1. Background of the Invention

Clock is very important component of the chip that impacts all aspects of the design. Difference in clock signal arrivals (the maximum of them is called clock skew) and any variation in clock skew or clock period (this variation is called jitter) decrease performance (operating frequency) and may lead to a functional failure (setup or hold time violations). There are the following most significant factors that lead to the constant difference in clock signal arrivals (clock skew S) or may dynamically change S:

- F1. Imperfect clock tree synthesis and resulting clock tree with non zero clock skew S (the ideal tree should be all-path-delay balanced and have zero skew).
- F2. The crosstalk. Transitions in signal nets dynamically and stochastically impact clock net delays. This impact results in additional (positive or negative) xtalk incremental delay in the clock nets that increases clock skew S (and clock jitter).
- F3. The variations in PVT (process, voltage, and temperature) parameters. Namely PVT parameters (or conditions like power dissipation, temperature, transistor sizes, wire width, layer thickness, gradients in doping, local hot spots, voltage drops, etc.) are not constant on a chip in different its areas and impact cell timing. As factor F2, some PVT parameters (like voltage and temperature) change dynamically and stochastically in space and time, and are unpredictable.
- F4. Chip functionality. The current clock synthesis tools do not understand design functionality in a sense that they data transfer from one flip-flop to another. It means that these tools ignore information about timing criticality of paths between flip-flops, which should meet setup or hold time requirement. It results in decreased performance or more timing violations that have to be fixed later.

These 4 factors impact the clock signals arrivals at the flip-flops (FFs) of timing critical paths and decrease performance and this decrease becomes even more significant for higher performance designs (smaller the clock periods). These factors also can lead to multiple timing violations (setup and hold time limits). To address these problems an iteration process of fixing/optimization is required, which is very time consuming.

A current design flow includes the following main steps:

- Cell placement (usually time-driven placement). After this step all cells including FFs are fixed.
- Clock implementation (synthesis) to find the clock tree with minimum clock skew (or so-called useful clock skew).
- Clock protection (by using additional spacing or shielding around clock nets).
- Crosstalk and static timing analysis (STA) that shows if the design meets timing (has timing closure). If there is no timing closure, then cell placement and the clock implementation should be fixed. This is very time consuming process with iterations thru many design stages.

The current clock synthesis tries to optimize only clock skew S (considers only one factor F1) and does not address factors F2-F4. Moreover, we will show that if cell placement is accomplished without taking into account the following step of clock implementation, then it is likely that there does not exist such clock tree that can be good in terms of all factors F1-F4.

We developed a new approach, where an initial (partial) clock synthesis is included in cell placement. It drives cell placement to find a solution that is optimal for clock synthesis—it find such cell placement that it becomes

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Method for Designing and Implementing a Logic Function

easy to satisfy requirements of all factors F1-F4. Some of the developed ideas are implemented in several optimization scripts and prototypes. The intention is to implement all these features in lsimrs tool for FS3.5 release.

We believe that this invention disclosure is very important because the following criteria:

1. Novelty of the invention. It is a significant improvement over the existing state of the art. It is a new approach with many benefits.
2. This invention will be in LSI internal use starting with FS3.5 release. It will be implemented in lsimrs and new design flow. This product incorporating the invention has a long technology life cycle of the commercial use (more than 5 years). So, LSI will be able to obtain a lot of benefits from the patent.
3. This invention is valuable, because there are not many ways or alternate technologies to "design around" the invention. Moreover, any alternate design would add a significant cost.
4. It is relatively easy to detect that a competitor is using this particular invention. It can be detected just from looking on placement of FFs. Thus, it is important to get patent protection for LSI.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

2. Description of the Problem

Fig. 1 shows a simplified flowchart for the current clock synthesis.

Fig. 1. Current clock synthesis simplified flow

Fig. 2 shows one path P between Flip-flop_1 (FF_1) and Flip-flop_2 (FF_2). Any path contains a chain of logical cells (combinational logic). Propagation delay $D(P)$ along P is a sum of cell delays $DC(P)$ (it is practically a constant) and signal (wire) delays $DW(P)$ along P. Wire delays $DW(P)$ are greater if a sum $L(P)$ of wire lengths along P is greater. Usually path P has a big delay $D(P)$ if it contains a lot of cells (in this case $DC(P)$ is large), and wire lengths $L(P)$ is big.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:
A high speed digital signal processing system for real time applications.

Fig. 2. Two Flip-flops placed on the chip and a path P between them

To simplify future consideration let us use simpler graphical representation for path P that is shown in Fig. 3.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 3. Two Flip-flops FF_1 and FF_2 placed on the chip and path P (simplified representation)

Current cell placement (Fig. 1) is performed to minimize path delays $D(P)$, because maximum $D(P)$ should be less than the clock period, and, thus, it defines the design performance. It means that the current cell placement is time-driven. Let us assume that path P in Fig. 3 is the result of such cell placement and $D(P)=D_o$, and $L(P)=L_o$, where L_o is comparable to chip size, and this placement meets timing. During next step (clock synthesis) in Fig. 1, a clock tree will be created (inserted). See Fig. 4.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 4. Clock tree with several clock buffers and clock nets is inserted.

The clock tree in Fig. 4 has two long different branches (1 and 2) to FF_1 and FF_2, because FF_1 and FF_2 are placed far away from each other at distance L(P). Now we will show that with such kind of placement (that is optimal in sense of minimum path delay D(P)) is not good for building a good (in sense F1-F4 factors) clock tree. Let us consider each factor at a time.

Factor F1: This clock tree will likely have a big clock skew, because FF_1 and FF_2 are located far away from each other; clock branches 1 and 2 have different routing (and possibly clock buffers), and it is difficult to balance this clock tree.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Appendix to the Invention Disclosure Form

Docket Number:

03-0000

Title of Your Invention:

Factor 2: Clock branches 1 and 2 have different clock nets in them and these nets have different aggressor nets. Thus, crosstalk-injected delay in branches 1 and 2 may be significantly different and one can speed up clock signal and another can slow down clock signal. This will increase clock skew and will introduce a clock jitter.

Factor 3: Clock branches 1 and 2 go thru completely different chip areas. Thus, PVT conditions in branches 1 and 2 will be different (they are different across the die). Therefore, ends of branches 1 and 2 will show much more delay differences over PVT than two ends, which would have shared the same branch. This delay difference will too increase clock skew.

Factor 4: If delay D(P) is small, then the delay difference in branches 1 and 2 should be minimal (zero clock skew). If delay D(P) is large (and some other conditions that will be discussed later), it may be useful to have delay in branch 2 more than in branch 1. Because current clock synthesis does not see design functionality, it does not distinguish between branches 1 and 2. Also, clock branches 1 and 2 go thru completely different chip areas and it is difficult (as we have already discussed above) to do any precise clock delay tuning.

We showed that the current clock synthesis and flow would lead to a big clock skew and jitter. Also, factors F1-F4 should to be taken into account during the timing closure of the design by applying more pessimistic delays on paths (STA tool like PrimeTime should add additional uncertainty). It makes timing closure more difficult to meet and leads to more design iterations. If we do not account for these effects during timing closure, then timing in these paths can fail in silicon (crosstalk effects and PVT variations become more significant in smaller technologies and more complex designs).

Situations become even more complex (in terms of finding an optimal clock tree) if we consider real designs, where paths can be “connected” thru common flip-flops. See example in Fig. 5 with 2 connected paths P(FF_1, FF_2) and P(FF_2, FF_3). In general case it maybe any number of connected paths. A traditional clock tree for this example is shown in Fig. 6 and is not good in sense of F1-F4 factors for the same reasons we have already discussed with example in Fig. 4.

LSI Logic - Confidential, Proprietary & Attorney-Client Privileged

(Mail to “Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal” - M/S AD-106)

Title of Your Invention:

A logic circuit having two connected paths (FF_1-FF_2, FF_2-FF_3)

Fig. 5. Two connected paths (FF_1-FF_2, FF_2-FF_3)

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 6. Two connected paths and traditional clock tree.

To meet timing closure we have to consider not all paths, but only timing critical. A path is timing critical (for the setup requirement) if the propagation delay along the path is more than some part (like 90%) of clock period. Usually path P is setup critical if it contains a lot of cells (like 40-70; in this case $DC(P)$ is large), and the average wire length between cells in P more than some small value (like 200 micron); or path has average number of cells (like about 2-30), but the average wire length between cells in P more than some big value (like 500 micron). A path is timing critical (for the hold requirement) if the propagation delay along the path is less than some part (like 10%) of clock period. Usually path P is hold critical if it contains a few (none) cells (like 0-5; in this case $DC(P)$ is very small), and the average wire length between cells in P less than some small value (like 200 micron).

If we consider only timing critical paths, then all paths constitute several groups (a partition on all paths) such that:

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

- Each critical path belongs to some group;
- Each group contains only connected critical paths; and
- If two critical paths are connected they belong to the same group.

We establish that the current clock synthesis and cell placement do not recognize, analyze, use, or take into account the path partition, and the clock tree that results from such flow will not take into account factors F1-F4 and will be not optimal.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

3. Proposal

Now, let us consider another cell placement with the same length L_0 for $L(P)$ as it in Fig. 4 , and hence the same $D(P)=D_0$. See Fig. 7.

Fig. 7. Another placement of FF_1 and FF_2 with the same D(P)

As one can see the main difference is that flip-flops FF_1 and FF_2 are placed close to each other. Thus, now we can insert a clock buffer and place it close to both FF_1 and FF_2. See Fig. 8.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 8. Optimal placement of FF_1 and FF_2 with clock sub-net.

The clock tree in Fig. 8 has two short connections (1 and 2) to FF_1 and FF_2 that constitutes a clock sub-net, because FF_1 and FF_2 are placed close to each other. Now we will show that that this cell placement (that is also optimal in sense of minimum path delay D(P)) and clock sub-tree is optimal (in sense F1-F4 factors) to build the optimal clock tree. To build the optimal clock tree we can use the current clock synthesis applied to the sub-tree that is already created in Fig. 8. See the result in Fig. 9.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 9. Optimal placement of FF_1 and FF_2 and clock tree.

Let us show that this clock tree is optimal (in sense F1-F4 factors. Let us consider each factor at a time.

Note: The clock tree has two parts: clock branch 1 and the sub-tree. Branch 1 can be excluded from the consideration (for all factors F1-F4), because it is a common part of both clock paths from clock input to FF_1 and FF_2. Any delay or crosstalk-injected delay, or PVT cause delay will be the same for FF_1 and FF_2.

Factor F1: This clock sub-net will likely have a very small clock skew, because FF_1 and FF_2 are located next to each other; connections 1 and 2 have different routing, but almost the same length and delay. The whole clock tree may have a non-zero clock skew (as it usually have for the current clock synthesis), but this skew will be between different partition parts. It means that this skew is between flip-flops that do not talk to each other. Thus even relatively big skew is acceptable.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Optimal clock sub-net with additional clock buffers

Factor 2: Connections 1 and 2 are parts of the same clock sub-net and, thus, have the same aggressor nets. Therefore, crosstalk-injected delay in connections 1 and 2 are practically the same and will not increase clock skew and will not introduce a clock jitter.

Factor 3: Connections 1 and 2 go thru the same chip area and are driven by the same clock driver. Thus, PVT conditions in connections 1 and 2 will be the same. Therefore, ends of connections 1 and 2 will show practically the same delay differences over PVT and it will not increase the clock skew.

Factor 4: If delay D(P) is small, then the almost zero delay difference in connections 1 and 2 is the best solution (Fig. 8, 9). If delay D(P) is large, it may be useful (these cases will be discussed later) to have the delay in connection 2 more than in connection 1. This solution is shown in Fig. 10.

Fig. 10. Optimal clock sub-net with additional clock buffers.

Note. If an additional delay is useful to introduce into connection 2, then the objective to place FF_2 close to FF_1 can be relaxed and it is allowed that additional clock buffers are placed in different areas than FF_1 or FF_2. See a solution in Fig. 11. In this case factors F1-F4 are not so important, because anyway we want to have

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

some non-zero skew between FF_1 and FF_2. The clock buffer still should be placed as close as possible to FF_1.

Fig. 11. Optimal placement and clock sub-net with additional clock buffers.

Fig. 12 shows a simplified flowchart for the new developed clock-driven placement and clock synthesis. We start with the simplest case, where the goal is zero clock skew (F1) and other factors F2-F4, but we do not introduce “useful” clock skew. This approach takes into account minimization (optimization) all 4 factors F1-F4. It knows about timing paths (especially critical ones) between the flop-flops and making use of this information. The cell placer not only minimizes critical paths, but also minimizes the size of area containing each partition group, which contains connected timing critical paths.

LSI Logic - Confidential, Proprietary & Attorney-Client Privileged

(Mail to “Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal” - M/S AD-106)

Title of Your Invention:

Fig. 12. New clock synthesis simplified flow for zero skew goal
Block brief description.

Block 0. Start point. No cell placement. No information on critical paths. Thus we have no partitioning of the critical paths.

Block 1. This is a cell placement where additionally to timing optimization we try to place flip-flops in each partition group as close to each other as possible. An example of an initial placement (first iteration) for one group is shown in Fig. 5. After several iterations, a possible result is shown in Fig. 13.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
 (Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 13. Optimal placement of partition group

Block 2. Running Static Timing Analysis to find all timing critical paths, and hence start and end flip-flops in these paths.

Block 3. Partitioning all flip-flops in critical paths. If any two critical paths have a common flip-flop, then all flip-flops of these paths are combined in a group. As a result:

- Each critical path belongs to some group;
- Each group contains only connected critical paths; and
- If two critical paths are connected they belong to the same group.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Block 4. The quality Q of the current cell placement is a weighted sum of a function DP_max that shows how good is the design timing (it is equals to the maximum path delay $DP=D(P)$) and a function LG_max that shows how good is the design in terms of F1-F4. Namely LG_max is the maximum distance between any two flip-flops in partition groups. Thus, if DP_max is small (good timing), but there is at least one group that has two flip-flops FF_1 and FF_2 far away from each other, then quality Q has a big value (quality is low).

Block 5. If quality Q is less than some specified value (or it was not improved during last iteration), then we finish placement iterations and transfer control to 6. Otherwise, we continue placement improvement.

Block 6. In each group we add one clock buffer. The strength of this clock buffer is determined by maximum distance between two flip-flops within the group. If this distance is small, then a weak clock driver can be selected. If the distance is larger, then stronger buffer should be taken. The clock buffer is placed in the middle between the two flip-flops within the group, which have maximum distance between each other. Then the buffer is connected to each flip-flop in the group. Thus, a clock sub-net is formed. See example Fig. 14 for Fig. 13. Note that this solution, when instead of inserting an additional clock buffer (the current solution), we use stronger clock buffer and longer connections is more preferable, because it is better in sense of factors F1-F4. Namely, clock skew is easier to minimize in connections than in buffers and connections. Connections have small dependence on PVT variation than cells. Crosstalk will be about the same, because it is the same clock sub-net. And, finally, if the distances are reasonably long, connections have smaller delay than clock buffers.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Clock buffer selection, placement, and connecting

Fig. 14. Clock buffer selection, placement, and connecting

Block 7 11 are traditional blocks in the current design flow

Finally, let us consider some modifications needed in case when we want to on purpose introduce an additional ("useful") delay in some clock sub-nets. The flowchart is still the same (Fig. 12), but the following blocks should be modified.

Block 3. Partitioning all flip-flops. In this case we partition not only FFs in critical paths, but some non-critical FFs also. Let explain it on an example in Fig. 15.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 15. A partition group with one timing critical and one non-critical paths

A known solution is to introduce an additional useful delay to FF_2 and have minimum skew and delay for FF_1 and FF_3. It is not difficult to implement an additional delay to FF_2, but for this placement (Fig. 15) it is very difficult to have zero skew between FF_1 and FF_3 and also small clock delay from clock source to both of them, because they are located far away from each other. We suggest creating a partition group that contains only FF_1 and FF_2. Then, after several placement iterations we will obtain the solution that is shown in Fig. 16.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 16. An optimal placement of partition group with one timing critical and one non-critical paths

Block 6. In each group we add one clock buffer and possibly some additional ("useful") clock buffers. The strength of this clock buffer is determined by maximum distance between two flip-flops within the group. If this distance is small, then a weak clock driver can be selected. If the distance is larger, then stronger buffer should be taken. The clock buffer is placed in the middle between the two flip-flops within the group, which have maximum distance between each other. Then the buffer is connected to each flip-flop in the group. Thus, a clock sub-net including group flip-flops is formed. See example Fig. 17 for Fig. 16.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 17. Group clock buffer and group clock sub-net

Finally, we insert additional clock buffers between main the clock buffer and FF_2. See Fig. 18. One can see that data going thru a timing critical path P(FF_1,FF_2) will be triggered with an additional delay. Thus, it allows handling very big path delay. At the same time, connections from the clock buffer and FF_1 and FF_3 are short with close to zero clock skew. Thus, data going thru a non-timing critical path P(FF_2,FF_3) will be triggered with close to zero delay and time from shorten clock period for FF_3 are used for extension of clock period for FF_2.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*

Title of Your Invention:

Fig. 18. Group clock buffer and additional buffers to FF_2.

We showed that the new clock synthesis and flow would lead to a small (or useful) clock skew. Also, important factors F1-F4 are taken into account during the timing closure of the design without applying more pessimistic delays on paths. This will improve design performance. It also makes timing closure easier to meet and minimizes design iterations. Finally, it decreases a risk of failure in silicon due to PVT variation or crosstalk effects.

*LSI Logic - Confidential, Proprietary & Attorney-Client Privileged
(Mail to "Intellectual Property Law Dept. Attn: New Invention Disclosures Paralegal" - M/S AD-106)*