

Data Driven Engineering II: Advaced Topics

Image processing and analysis

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Term Projects

Welcome to DDE II projects!

If you are interested in the group projects for fun or planning to take the final exam for credits, you need to register to a topic before 14.05.021. Note that each topic has a number of maximum participants. You may find the details in Lecture 1.

Particle Image Density Analysis in PIV Recordings

An object detection study for PIV analysis

Free places: 1

Physical interpretation of LCSs

Data driven model discovery in air blast atomizers

Free places: 5

Time resolved flow field analysis in film cooling

PIV data will be used for flow analysis.

Free places: 5

Others

for HPC access

Period of Event: Today - 14. May 2021

Outline of the week:

Conv. Neural Networks

- What is CNN?
- Why convolution is useful?
- where is it useful?
- K CNN How does it work?
- * "Hall of Fame,: Popular Arch.]

 * Transfer Learning with CNN

The soul never thinks without a picture.

where to begin ...

- * Increase in depth
- * increase in width is more filters is filter hacks
- * Regularization & fine tuning
- * Training hacks
- Data augmentation & tr. learning
- * Incremed image resolution

Who does not like classics of

LeNet-5 (1998)

One small step for men, one giant leap for CNN

Alex Net (2012)

- ★ Deeper := 5 Conv. + 3 Fully Con.

 → 60 M parameters
- * Stack conv. layers
- * use ReLu + Dropouts
- * Data agumentation

Deep Learning ...

- * 13 Conv. + 3 Fully-connected.
- * 138 M parameters
- * ReLu + Smaller Kernels (2×2,3×3)

C Deeper Variant "VGG-19"

Things get multi-layered:

inception-v1// Google Net (2014)

- * 22 Layers => 5M parameters
- * inception module > " network in network ,

enables much deeper network

Things get multi-layered:

inception-v1// Google Net (2014)

Things get multi-layered: v3 (2017)

smart touch:

ResNet (2015)

much deeper network -> 152 layers

Ly fewer parameters (26M)

Exp./Van. Gradient problem

* Residual learning

A smart touch:

ResNet (2015)

How does it help training ?

When network is initialized;

identify function MM training

13

A smart touch: ResNet (2015)

How does it help training?

Learning bottlenecks

It looks nice. Lets use it everywhere of

Dense Net 2017

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

15

Efficient Net: "Rethinking model scaling,

* balancing network { depth width resolution

Efficient Net: "Rethinking model scaling,

- * balancing network { depth width resolution
- depth = $d = \alpha \beta$; $\alpha \beta^2 \gamma^2 \approx 2$ (FLOPs) width = $\omega = \beta$; $\alpha, \beta, \gamma > 1$ res. = $C = \gamma \beta$; $\alpha, \beta, \gamma > 1$
- (i) $\phi = 1$; do grêd seach on α, β, δ eg. (1.2, 1.2, 1.15)
- (ii) Fix x, p, 8; scale & with respect to hardware

>> Stort small; gradually scale it

Too many option

- Models including CNN ~ 100 accomible Utilized in various fields

* > Classify + Location + many objects }

Model anatony reflects this aim

Backbone: extracts features

Backbore:

Dense block + Cross-Stage-Partial connections

Darknet 53

	Type	Filters	Size	Output
	Convolutional	32	3 × 3	256×256
	Convolutional	64	$3 \times 3 / 2$	128×128
]	Convolutional	32	1 × 1	
	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
	Convolutional	128	3×3	
	Residual			64 × 64
]	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional		1 × 1	
	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
	Convolutional	256	1 × 1	
	Convolutional	512	3×3	
	Residual			16 × 16
4×	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional		1 × 1	
	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	

nigher acc. > Resnet

1000

Connected

Neck

Combination of features managed here

P->feature layer

Head

- YOLOVY YOLOV3
- anchor-based detection
- 3 levels of granularity

Bag of Specials

- Mish activation
 Cross Stage Partial connections

Bag of Freebles

- Drop Block regularization
- Class label smoothing
- ★ Cut Mix & Mosaic data aug.

* Multi-input-weighted residual connections

Anchor Boxes

- (9) Create many boxes or each predictor
- (ii) For each box; calculate which objects bounding box has the highest overlap/non-overlap ratto. (IOU)
- (P(1) If highest (IOU) > 50% = "Detect object,
- (iv) ~40%-50% => ambiguous => not learn from this case,
- (v) < 40% ⇒ No object here \$7
 - ? Box dimensions => YOLO; K-means clustering on training data

24

colab

Computer Vision

544 methods • 43959 papers with code

Image Feature Extractors

Convolutions

26

Convolutional Neural Networks

METHOD	YEAR	PAPERS
ResNet	2015	1139
VGG	2014	293
AlexNet	2012	278
DenseNet	2016	248
MobileNetV2	2018	144
ResNeXt	2016	107
GoogLeNet	2014	106
EfficientNet	2019	101

Artificial Intelligence Review A Survey of the Recent Architectures of **Deep Convolutional Neural Networks**

13.05.2021

Image Net Challenge:

