ΛΥΣΗ

Η τριγωνομετρική συνάρτηση $f(x)=\rho\cdot\eta\mu(\omega x)$, όπου $\rho,\omega>0$ έχει μέγιστη τιμή ρ , ελάχιστη τιμή $-\rho$ και περίοδο $T=\frac{2\pi}{\omega}$.

Ως εκ τούτου,

α) Το
$$y_0 = (OA) = (OB) = \rho = 0.2$$
 μέτρα.

Η συνάρτηση y(t) έχει μέγιστη τιμή $1+\rho=1$,2, ελάχιστη τιμή $1-\rho=0$,8 και η απόσταση μεταξύ των δύο ακραίων θέσεων Α και Β της ταλάντωσης είναι:

$$|1,2-0,8|=0,4$$
 μέτρα.

β) η περίοδος της συνάρτησης
$$y(t)$$
 είναι: $T = \frac{2\pi}{\frac{\pi}{2}} \Leftrightarrow T = 4$.

γ) Ο πίνακας τιμών για τη συνάρτηση y(t)=1+0, $2\cdot\eta\mu\frac{\pi}{2}t$ για $t\in[0,4]$, είναι:

t	0	1	2	3	4
y(t)	1	1,2	1	0,8	1

Είναι $y_{max}=1$,2 και $y_{min}=0$,8 και η γραφική παράσταση της συνάρτησης:

δ) Ζητάμε ουσιαστικά να βρούμε ποια χρονική στιγμή $t \in [0,2]$, είναι y(t) = 1,1.

Έχουμε:
$$\begin{cases} y(t) = 1 + 0.2 \cdot \eta \mu \frac{\pi}{2} t \\ \kappa \alpha \iota \\ y(t) = 1.1 \end{cases} \Leftrightarrow 0.2 \cdot \eta \mu \frac{\pi}{2} t = 0.1 \Leftrightarrow \eta \mu \frac{\pi}{2} t = \frac{1}{2} \Leftrightarrow$$

$$\eta\mu\frac{\pi}{2}t=\eta\mu\frac{\pi}{6} \Leftrightarrow \begin{cases} \frac{\pi}{2}t=2\kappa\pi+\frac{\pi}{6} \\ \dot{\eta} &, \ \kappa\in Z \Leftrightarrow \begin{cases} t=4\kappa+\frac{1}{3} \\ \dot{\eta} &, \ \kappa\in Z \end{cases} \\ \frac{\pi}{2}t=2\kappa\pi+\frac{5\pi}{6} \end{cases}$$

Επειδή όμως $t \in [0,2]$, έχουμε:

$$0 \le t \le 2 \Rightarrow 0 \le 4\kappa + \frac{1}{3} \le 2 \Rightarrow -\frac{1}{12} \le \kappa \le \frac{5}{12}, \ \kappa \in \mathbb{Z}$$
 (1)

$$0 \le t \le 2 \Rightarrow 0 \le 4\kappa + \frac{5}{3} \le 2 \Rightarrow -\frac{5}{12} \le \kappa \le \frac{1}{12}, \ \kappa \in \mathbb{Z}$$
 (2)

Και από τις δύο σχέσεις προκύπτει ότι $\kappa=0$, επομένως: $t=\frac{1}{3}$ ή $t=\frac{5}{3}$.