STS Zusammenfassung

Joël Plambeck – plambjoe@students.zhaw.ch – Version 0.1

PDF

CDF

Kennzahlen

Kennzahlen

	nicht Klassiert	Klassiert
Quantil	$X_{q} = \begin{cases} \frac{1}{2} (X_{nq} + X_{nq+1}) & n \cdot q \text{ ganzzahlig} \\ [X_{nq}] & n \cdot q \text{ nicht ganzzahlig} \end{cases}$	$F(A) \le x \le F(B)$ $\frac{Q_{0.79} - A}{0.79 - F(A)} = \frac{B - A}{F(B) - F(A)}$
arith. Mittel	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\overline{x} = \sum_{i=1}^{m} M_i \cdot f_i$
Varianz	$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$	$S^2 = \sum_{i=1}^n (M_i - \overline{x})^2$
Varianz (korr)	$S_{\text{korr}}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$	$S_{\rm korr}^2 = \frac{n}{n-1} s^2$
Standardabweichung	$S = \sqrt{S^2}$	$S = \sqrt{S^2}$
Standardabweichung (korr)	$S_{\text{korr}} = \sqrt{S^2}$	$S_{\text{korr}} = \sqrt{S^2}$

Version 0.1 Last updated 2020-10-07 15:06:00 +0200

1 von 1 07.10.20, 15:10