## Calcul relationnel

Langage et sécurité des bases de données S5 L3 MIAGE Classique

Rafael Angarita Inspiré du cours de Thibault Anani Agondja et Sonia Guehis

> Nanterre Université Année 2023-2024

## Table des matières

## Table des matières

## Langages de requêtes relationnelles

#### Pouvoir d'expression

Représente ce qu'il est possible de calculer et les opérations qu'il est possible de faire

#### Algèbre relationnelle

- Langage procédural : langage qui décrit explicitement comment trouver le résultat en une suite d'instructions
- Langage de bas niveau difficile à manipuler proche des langages de programmation
- Notation algébrique

## Langages de requêtes relationnelles

#### Pouvoir d'expression

Représente ce qu'il est possible de calculer et les opérations qu'il est possible de faire

#### Algèbre relationnelle

- Langage procédural : langage qui décrit explicitement comment trouver le résultat en une suite d'instructions
- Langage de bas niveau difficile à manipuler proche des langages de programmation
- Notation algébrique

#### Calcul relationnel

- Langage déclaratif : langage qui décrit les propriétés que devra avoir le résultat plutôt que les procédures
- Langage de haut niveau facile d'accès proche du langage naturel
- Notation logique

Les deux langages possèdent le même pouvoir d'expression

## Logique du premier ordre

#### Définition

Formalisation du langage des mathématiques qui va permettre l'utilisation de formules logiques. A chaque formule logique correspond des données qui vérifient cette formule. Ce langage est composé de prédicats, d'opérateurs et de variables

## Logique du premier ordre

#### Définition

Formalisation du langage des mathématiques qui va permettre l'utilisation de formules logiques. A chaque formule logique correspond des données qui vérifient cette formule. Ce langage est composé de prédicats, d'opérateurs et de variables

L'interrogation de la base de données consiste donc à énoncer une formule qui correspond aux données que l'on souhaite extraire de la base

## Logique du premier ordre

#### **Définition**

Formalisation du langage des mathématiques qui va permettre l'utilisation de formules logiques. A chaque formule logique correspond des données qui vérifient cette formule. Ce langage est composé de prédicats, d'opérateurs et de variables

L'interrogation de la base de données consiste donc à énoncer une formule qui correspond aux données que l'on souhaite extraire de la base

#### 2 branches du calculs relationnels

- Le calcul des prédicats à variable domaine (DRC)
- Le calcul des prédicats à variable n-uplet (TRC)



# Schéma et instance : exemples

Parenté(Parent, Enfant) Descriptif(Parent, Age, Sexe, Ville) Scolarité(Enfant, Ecole)

| Parent   | Enfant  |  |  |
|----------|---------|--|--|
| Pascal   | Marie   |  |  |
| Pascal   | Leo     |  |  |
| Raymond  | Zoe     |  |  |
| Clara    | Zoe     |  |  |
| Marcel   | Raymond |  |  |
| Danamati |         |  |  |

Parenté

| Personne | Age | Sexe | Ville     |
|----------|-----|------|-----------|
| Pascal   | 40  | М    | Paris     |
| Marie    | 20  | F    | Paris     |
| Leo      | 18  | М    | Paris     |
| Zoe      | 2   | F    | Nice      |
| Clara    | 27  | F    | Nice      |
| Marcel   | 60  | М    | Marseille |
| Raymond  | 40  | М    | Nice      |
| Johnny   | 65  | М    | Lyon      |

Descriptif

| Enfant | Ecole |
|--------|-------|
| Zoe    | Α     |
| Marie  | В     |
| Leo    | Α     |

Scolarité

## Le calcul relationnel par n-uplet

#### Définition

Les formules logiques contiennent des variables correspondant à des n-uplets de la base et le résultat est l'ensemble des n-uplets vérifiant une formule logique.

Les requetes sont de la forme  $\{t|F(t)\}$  qui va retourner les n-uplets t vérifiant que F(t) est vraie

## Le calcul relationnel par n-uplet

#### Définition

Les formules logiques contiennent des variables correspondant à des n-uplets de la base et le résultat est l'ensemble des n-uplets vérifiant une formule logique.

Les requetes sont de la forme  $\{t|F(t)\}$  qui va retourner les n-uplets t vérifiant que F(t) est vraie

 $\{t.Nom, t.Pr\'enom|Etudiant(t)\}$  retourne le nom et prénom de tous les étudiants de la base de données

t est une variable qui désigne les n-uplets, t.Nom désigne la valeur de l'attribut Nom dans t et Etudiant(t) signifie que t est un n-uplet appartenant à la relation Etudiant

#### Définition

Fonction dont le résultat est soit vrai soit faux qui peut être relié à une ou plusieurs variables d'une relation

$$\{t|F(t)\}$$

Où F est une formule logique de premier ordre formée de :

- Constantes
- Attributs
- Comparateurs : =, <, >,  $\leq$ ,  $\geq$
- Connecteurs logiques : ∨ (ou), ∧ (et), ¬ (non)

Le résultat de  $\{t|F(t)\}$  contient tous les n-uplets vérifiant que F est vraie



## Requête

Liste des personnes de sexe féminin

| Personne | Age | Sexe | Ville |
|----------|-----|------|-------|
| Marie    | 20  | F    | Paris |
| Zoe      | 2   | F    | Nice  |
| Clara    | 27  | F    | Nice  |



### Requête

Liste des personnes de sexe féminin

| Personne | Age | Sexe | Ville |
|----------|-----|------|-------|
| Marie    | 20  | F    | Paris |
| Zoe      | 2   | F    | Nice  |
| Clara    | 27  | F    | Nice  |

$$\{t|Descriptif(t) \land t.Sexe = "F"\}$$



## Requête

Les personnes de plus de 40 ans

| Personne | Age | Sexe | Ville     |
|----------|-----|------|-----------|
| Marcel   | 60  | М    | Marseille |
| Johnny   | 65  | М    | Lyon      |

## Requête

Les personnes de plus de 40 ans

| Personne | Age | Sexe | Ville     |
|----------|-----|------|-----------|
| Marcel   | 60  | М    | Marseille |
| Johnny   | 65  | М    | Lyon      |

$$\{t|Descriptif(t) \land t.Age > 40\}$$

## Requête

Liste des parents de la base

| Parent  |
|---------|
| Pascal  |
| Raymond |
| Clara   |
| Marcel  |
|         |

## Requête

Liste des parents de la base

| Parent  |
|---------|
| Pascal  |
| Raymond |
| Clara   |
| Marcel  |
|         |

### Calcul relationnel

{t.parent|Parenté(t)}

### Remarque

Le doublon du n-uplet Pascal a été supprimé



# La Projection

## Requête

Qui sont les enfants de Raymond?

**Enfant** Zoe

# La Projection

#### Requête

Qui sont les enfants de Raymond?

**Enfant** Zoe

#### Calcul relationnel

 $\{t.enfant|Parenté(t) \land t.parent = "Raymond"\}$ 

### Remarque

Possibilité d'utiliser plusieurs opérateurs en même temps

## Exercices: Les prédicats

## Comment écrire ces requêtes en calcul relationnel?

- Les personnes qui habitent à Paris ou Nice
- 2 Les personnes qui n'habitent pas à Nice
- La ville où habite Raymond
- L'âge de Marcel
- Ses personnes qui habitent à Paris et qui ont plus de 18 ans

Les personnes qui habitent à Paris ou Nice

Les personnes qui habitent à Paris ou Nice

$$\{t|Descriptif(t) \land (t.ville = "Paris" \lor t.ville = "Nice")\}$$

Les personnes qui n'habitent pas à Nice

Les personnes qui habitent à Paris ou Nice

$$\{t|Descriptif(t) \land (t.ville = "Paris" \lor t.ville = "Nice")\}$$

Les personnes qui n'habitent pas à Nice

$$\{t|Descriptif(t) \land \neg(t.ville = "Nice")\}$$

La ville où habite Raymond

## Les personnes qui habitent à Paris ou Nice

$$\{t|Descriptif(t) \land (t.ville = "Paris" \lor t.ville = "Nice")\}$$

## Les personnes qui n'habitent pas à Nice

$$\{t|Descriptif(t) \land \neg(t.ville = "Nice")\}$$

## La ville où habite Raymond

$$\{t.ville|Descriptif(t) \land (t.personne = "Raymond")\}$$

## L'âge de Marcel

## Les personnes qui habitent à Paris ou Nice

$$\{t|Descriptif(t) \land (t.ville = "Paris" \lor t.ville = "Nice")\}$$

## Les personnes qui n'habitent pas à Nice

$$\{t|Descriptif(t) \land \neg(t.ville = "Nice")\}$$

### La ville où habite Raymond

$$\{t.ville|Descriptif(t) \land (t.personne = "Raymond")\}$$

### L'âge de Marcel

$$\{t.age|Descriptif(t) \land (t.personne = "Marcel")\}$$

Les personnes qui habitent à Paris et qui ont plus de 18 ans

### Les personnes qui habitent à Paris ou Nice

$$\{t|Descriptif(t) \land (t.ville = "Paris" \lor t.ville = "Nice")\}$$

## Les personnes qui n'habitent pas à Nice

$$\{t|Descriptif(t) \land \neg(t.ville = "Nice")\}$$

### La ville où habite Raymond

$$\{t.ville|Descriptif(t) \land (t.personne = "Raymond")\}$$

### L'âge de Marcel

$$\{t.age|Descriptif(t) \land (t.personne = "Marcel")\}$$

## Les personnes qui habitent à Paris et qui ont plus de 18 ans

$$\{t|Descriptif(t) \land t.ville = "Paris" \land t.age = 18\}$$

### Equivalence algèbre / calcul

Toute expression d'algèbre peut s'écrire en calcul

### L'Union

Algèbre relationnelle :  $Exp_1 \cup Exp_2$ 

#### Equivalence algèbre / calcul

Toute expression d'algèbre peut s'écrire en calcul

#### L'Union

Algèbre relationnelle :  $Exp_1 \cup Exp_2$ 

Calcul relationnel :  $\{t|Exp_1(t) \lor Exp_2(t)\}$ 

Permet d'obtenir les n-uplets à la fois soit dans Exp<sub>1</sub> soit dans

Exp<sub>2</sub> soit les deux

#### La Différence

Algèbre relationnelle :  $Exp_1 - Exp_2$ 

#### Equivalence algèbre / calcul

Toute expression d'algèbre peut s'écrire en calcul

#### L'Union

```
Algèbre relationnelle : Exp_1 \cup Exp_2
```

Calcul relationnel :  $\{t|Exp_1(t) \lor Exp_2(t)\}$ 

Permet d'obtenir les n-uplets à la fois soit dans Exp<sub>1</sub> soit dans

 $Exp_2$  soit les deux

#### La Différence

```
Algèbre relationnelle : Exp_1 - Exp_2
```

```
Calcul relationnel : \{t|Exp_1(t) \land \neg Exp_2(t)\}
```

Permet d'obtenir les n-uplets qui existent dans la relation  $Exp_1$  et

non dans la relation  $Exp_2$ 

### Propriétés

Les propriétés entre le calcul relationnel et l'algèbre relationnelle sont les mêmes

- Union : Commutatif et associatif
- Différence : Non commutatif et non associatif

## L'Union

## Requête

Les enfants de Raymond ou de Pascal



## L'Union

#### Requête

Les enfants de Raymond ou de Pascal



#### Calcul relationnel

 $\{t.enfant|Parenté(t) \land (t.parent = "Raymond" \lor t.parent = "Pascal")\}$ 

## La Différence

## Requête

Les enfants non scolarisés

| Enfant  |   | Enfant  | 1             |         |
|---------|---|---------|---------------|---------|
| Marie   |   | Emant   |               |         |
|         | - | Zoe     |               | Enfant  |
| Leo     | - | Marie   | $\rightarrow$ | Paymond |
| Zoe     |   | iviarie |               | Raymond |
|         | - | Leo     |               |         |
| Raymond |   |         | ]             |         |

## La Différence

### Requête

Les enfants non scolarisés



#### Calcul relationnel

 $\{t.enfant|Parenté(t) \land \neg Scolarité(t)\}$ 

## Exercices : Union et Différence

### Comment écrire ces requêtes en calcul relationnel?

- 1 Les parents de Marie ou de Raymond
- 2 Les personnes qui ne sont ni parisiens ni marseillais
- 3 Les personnes de sexe masculin qui habitent à Paris
- Les personnes de sexe féminin qui habitent Nice qui ont 20 ans ou plus
- 6 Les Parisiens de moins de 40 ans

Les parents de Marie ou de Raymond

Les parents de Marie ou de Raymond

```
\{t.\textit{parent}|\textit{Parent}\acute{e}(t) \land t.\textit{enfant} = \textit{``Marie''} \lor t.\textit{enfant} = \textit{``Raymond''}\}
```

Les personnes qui ne sont ni parisiens ni marseillais

#### Les parents de Marie ou de Raymond

```
\{t.parent|Parente(t) \land t.enfant = "Marie" \lor t.enfant = "Raymond"\}
```

Les personnes qui ne sont ni parisiens ni marseillais

$$\{t|Descriptif(t) \land \neg(t.ville = "Paris" \lor t.ville = "Marseille")\}$$

Les personnes de sexe masculin qui habitent à Paris

## Les parents de Marie ou de Raymond

$$\{t.parent|Parente(t) \land t.enfant = "Marie" \lor t.enfant = "Raymond"\}$$

Les personnes qui ne sont ni parisiens ni marseillais

$$\{t|Descriptif(t) \land \neg(t.ville = "Paris" \lor t.ville = "Marseille")\}$$

Les personnes de sexe masculin qui habitent à Paris

$$\{t|Descriptif(t) \land t.sexe = "M" \land t.ville = "Paris"\}$$

Les personnes de sexe féminin qui habitent Nice qui ont 20 ans ou plus

#### Les parents de Marie ou de Raymond

```
\{t.parent|Parente(t) \land t.enfant = "Marie" \lor t.enfant = "Raymond"\}
```

Les personnes qui ne sont ni parisiens ni marseillais

$$\{t|Descriptif(t) \land \neg(t.ville = "Paris" \lor t.ville = "Marseille")\}$$

Les personnes de sexe masculin qui habitent à Paris

$$\{t|Descriptif(t) \land t.sexe = "M" \land t.ville = "Paris"\}$$

Les personnes de sexe féminin qui habitent Nice qui ont 20 ans ou plus

$$\{t|Descriptif(t) \land t.sexe = "F" \land t.ville = "Nice" \land t.age \ge 20\}$$

Les Parisiens de moins de 40 ans

## Les parents de Marie ou de Raymond

```
\{t.parent|Parente(t) \land t.enfant = "Marie" \lor t.enfant = "Raymond"\}
```

#### Les personnes qui ne sont ni parisiens ni marseillais

$$\{t|Descriptif(t) \land \neg(t.ville = "Paris" \lor t.ville = "Marseille")\}$$

#### Les personnes de sexe masculin qui habitent à Paris

$$\{t|Descriptif(t) \land t.sexe = "M" \land t.ville = "Paris"\}$$

#### Les personnes de sexe féminin qui habitent Nice qui ont 20 ans ou plus

$$\{t|Descriptif(t) \land t.sexe = "F" \land t.ville = "Nice" \land t.age \ge 20\}$$

#### Les Parisiens de moins de 40 ans

$$\{t|Descriptif(t) \land t.ville = "Paris" \land t.age < 40\}$$

# Quantificateurs universel et existentiel

#### Quantificateur

Expression utilisée en mathématique pour formuler des propositions dans le calcul de prédicats

# Quantificateurs universel et existentiel

#### Quantificateur

Expression utilisée en mathématique pour formuler des propositions dans le calcul de prédicats

#### Pour tout

$$\{\forall t(F(t))\}$$

Pour tous les n-uplets dans la base la condition F(t) est vraie

# Quantificateurs universel et existentiel

#### Quantificateur

Expression utilisée en mathématique pour formuler des propositions dans le calcul de prédicats

#### Pour tout

$$\{\forall t(F(t))\}$$

Pour tous les n-uplets dans la base la condition F(t) est vraie

#### Il existe

$$\{\exists t(F(t))\}$$

Il existe un n-uplet dans la base qui vérifie la condition F(t)

# Expression des opérateurs algébriques

#### Soient les relation suivantes :

```
Exp_1(A, B)
Exp_2(C, D)
```

#### Produit cartésien

```
Algèbre relationnelle : Exp_1 \times Exp_2
Calcul relationnel :
```

$$\{t|\exists u, \exists v, Exp_1(u) \land Exp_2(v) \land t.a = u.a \land t.b = u.b \land t.c = v.c \land t.d = v.d\}$$

Permet d'obtenir les n-uplets de la relation  $Exp_1$  avec tous ceux de la relation  $Exp_2$ . Les deux relations n'ont pas forcément le même schéma

## Le Produit cartésien

 $\{t|\exists u, \exists v, Parente(u) \land Scolarite(v) \land t.parent = u.parent \land t.enfant = u.enfant \land t.enfant = v.enfant \land t.ecole = v.ecole\}$ 

| Parent  | Enfant  |
|---------|---------|
| Pascal  | Marie   |
| Pascal  | Leo     |
| Raymond | Zoe     |
| Clara   | Zoe     |
| Marcel  | Raymond |

Parenté

| Enfant | Ecole |
|--------|-------|
| Zoe    | Α     |
| Marie  | В     |
| Leo    | Α     |

| Parent  | Parenté.<br>Enfant | Scolarité.<br>Enfant | Ecole |
|---------|--------------------|----------------------|-------|
| Pascal  | Marie              | Zoe                  | Α     |
| Pascal  | Marie              | Marie                | В     |
| Pascal  | Marie              | Leo                  | Α     |
| Pascal  | Leo                | Zoe                  | Α     |
| Pascal  | Leo                | Marie                | В     |
| Pascal  | Leo                | Leo                  | Α     |
| Raymond | Zoe                | Zoe                  | Α     |
| Raymond | Zoe                | Marie                | В     |
| Raymond | Zoe                | Leo                  | Α     |
| Clara   | Zoe                | Zoe                  | Α     |
| Clara   | Zoe                | Marie                | В     |
| Clara   | Zoe                | Leo                  | Α     |
| Marcel  | Raymond            | Zoe                  | Α     |
| Marcel  | Raymond            | Zoe                  | В     |
| Marcel  | Raymond            | Leo                  | Α     |

Parente × Scolarité

## Exercices: Produit cartésien

Soient les relation suivantes :

| Α | В       | С | D | Е                | F |
|---|---------|---|---|------------------|---|
| 1 | 6       | 4 | 4 | 1                | 2 |
| 7 | 2       | 8 | 0 | 5                | 1 |
| 5 | 9       | 3 | 3 | 0                | 6 |
|   | $Exp_1$ |   |   | Exp <sub>2</sub> |   |

Quelle requête en calcul relationnel permet d'obtenir la relation ci-dessous?

| В | С | D | Ε | F |
|---|---|---|---|---|
| 6 | 4 | 4 | 1 | 2 |
| 6 | 4 | 0 | 5 | 1 |
| 6 | 4 | 3 | 0 | 6 |
| 2 | 8 | 4 | 1 | 2 |
| 2 | 8 | 0 | 5 | 1 |
| 2 | 8 | 3 | 0 | 6 |

## Exercices: Produit cartésien

$$\{t.b, t.c, t.d, t.e, t.f | \exists u, \exists v, Exp_1(u) \land \neg (u.a = 5) \land Exp_2(v) \land t.a = u.a \land t.b = u.b \land t.c = u.c \land t.d = v.d \land t.e = v.e \land t.f = v.f \}$$



| В | C | D | E | F |
|---|---|---|---|---|
| 6 | 4 | 4 | 1 | 2 |
| 6 | 4 | 0 | 5 | 1 |
| 6 | 4 | 3 | 0 | 6 |
| 2 | 8 | 4 | 1 | 2 |
| 2 | 8 | 0 | 5 | 1 |
| 2 | 8 | 3 | 0 | 6 |

# Expression des opérateurs algébriques

#### Soient les relation suivantes :

 $Exp_1(A, B)$ 

 $Exp_2(B, C)$ 

## La jointure

# Expression des opérateurs algébriques

#### Soient les relation suivantes :

```
Exp_1(A, B)
Exp_2(B, C)
```

#### La jointure

```
Algèbre relationnelle : Exp_1 \bowtie_F Exp_2
Calcul relationnel : \{t | \exists u, \exists v, Exp_1(u) \land Exp_2(v) \land t.a = u.a \land t.b = u.b \land u.b = v.b \land t.c = v.c\}
```

Permet d'obtenir les n-uplets qui vérifient le prédicat F du produit cartésien de  $Exp_1$  et  $Exp_2$ . Elle permet de combiner une paire de n-uplets de deux relations différentes en un seul n-uplet

## La Jointure

## Requête

Liste des parents et de l'école de leurs enfants

| Parent  | Enfant | Ecole |
|---------|--------|-------|
| Pascal  | Marie  | В     |
| Pascal  | Leo    | Α     |
| Raymond | Zoe    | Α     |
| Clara   | Zoe    | Α     |



| Parent  | Ecole |
|---------|-------|
| Pascal  | В     |
| Pascal  | А     |
| Clara   | Α     |
| Raymond | А     |

Parenté ⋈ Scolarité

## La Jointure

## Requête

Liste des parents et de l'école de leurs enfants

| Parent  | Enfant | Ecole |
|---------|--------|-------|
| Pascal  | Marie  | В     |
| Pascal  | Leo    | Α     |
| Raymond | Zoe    | Α     |
| Clara   | Zoe    | Α     |

| Parent  | Ecole |
|---------|-------|
| Pascal  | В     |
| Pascal  | Α     |
| Clara   | А     |
| Raymond | Α     |

Parenté ⋈ Scolarité

#### Calcul relationnel

 $\{t.parent, t.ecole | \exists u, \exists v, Parent\'e(u) \land Scolarit\'e(v) \land t.parent = u.parent \land t.enfant = u.enfant \land u.enfant = v.enfant \land t.ecole = v.ecole\}$ 

#### Soient les relations suivantes

**Personne**(<u>CIN</u>, Nom, Prenom, Adresse) **Voiture**(NCarteGrise, <u>CIN</u>, Modele) **Moto**(NCarteGrise, <u>CIN</u>, Modele)

Comment écrire ces requêtes en calcul relationnel?

- 1 Le modèle des voitures au nom de Cristophe Martin
- 2 Le nom des personnes qui possèdent une voiture mais pas de moto
- Se Le prénom des personnes qui possèdent une voiture et une moto
- L'adresse des personnes qui ne possèdent ni voiture ni moto



Le modèle des voitures au nom de Cristophe Martin

## Le modèle des voitures au nom de Cristophe Martin

```
\{t.modele | \exists u, \exists v, Personne(u) \land Voiture(v) \land u.nom = "Martin" \land u.prenom = "Cristophe" \land t.cin = u.cin \land u.cin = v.cin \}
```

Le nom des personnes qui possèdent une voiture mais pas de moto

#### Le modèle des voitures au nom de Cristophe Martin

```
\{t.modele | \exists u, \exists v, Personne(u) \land Voiture(v) \land u.nom = "Martin" \land u.prenom = "Cristophe" \land t.cin = u.cin \land u.cin = v.cin \}
```

Le nom des personnes qui possèdent une voiture mais pas de moto

```
\{t.nom|Personne(t) \land \exists u, Voiture(u) \land t.cin = u.cin \land \neg(\exists v, Moto(v) \land u.cin = v.cin)\}
```

Le prénom des personnes qui possèdent une voiture et une moto

#### Le modèle des voitures au nom de Cristophe Martin

```
\{t.modele | \exists u, \exists v, Personne(u) \land Voiture(v) \land u.nom = "Martin" \land u.prenom = "Cristophe" \land t.cin = u.cin \land u.cin = v.cin \}
```

#### Le nom des personnes qui possèdent une voiture mais pas de moto

```
\{t.nom|Personne(t) \land \exists u, Voiture(u) \land t.cin = u.cin \land \neg(\exists v, Moto(v) \land u.cin = v.cin)\}
```

#### Le prénom des personnes qui possèdent une voiture et une moto

```
\{t.prenom | Personne(t) \land \exists u, \exists v, Moto(u) \land Voiture(v) \land t.cin = u.cin \land u.cin = v.cin\}
```

## L'adresse des personnes qui ne possèdent ni voiture ni moto

#### Le modèle des voitures au nom de Cristophe Martin

```
\{t.modele | \exists u, \exists v, Personne(u) \land Voiture(v) \land u.nom = "Martin" \land u.prenom = "Cristophe" \land t.cin = u.cin \land u.cin = v.cin \}
```

#### Le nom des personnes qui possèdent une voiture mais pas de moto

```
\{t.nom|Personne(t) \land \exists u, Voiture(u) \land t.cin = u.cin \land \neg(\exists v, Moto(v) \land u.cin = v.cin)\}
```

#### Le prénom des personnes qui possèdent une voiture et une moto

```
\{t.prenom | Personne(t) \land \exists u, \exists v, Moto(u) \land Voiture(v) \land t.cin = u.cin \land u.cin = v.cin\}
```

#### L'adresse des personnes qui ne possèdent ni voiture ni moto

```
\{t.adresse | Personne(t) \land \neg(\exists u, Voiture(u) \land t.cin = u.cin) \land \neg(\exists v, Moto(v) \land u.cin = v.cin)\}
```

# Expression des opérateurs algébriques

#### Soient les relation suivantes :

 $Exp_1(A, B), Exp_2(B)$ 

#### La division

Algèbre relationnelle :  $Exp_1 \div Exp_2$ 

Produit une relation  $Exp_3$  qui comporte les attributs appartenant à  $Exp_1$  mais n'appartenant pas à  $Exp_2$ .

Calcul relationnel:

```
\{Exp_1(t) \land [\forall u, Exp_2(u)(\exists v, Exp_1(v) \land u.a = v.a) \land (v.b = t.b)]\}
```

 $Exp_1 \div Exp_2$  contient tous les n-uplets t de  $Exp_1$  tels que pour tous les n-uplets de  $Exp_2$  il existe v ayant :

- la même valeur que u pour les attributs en commun
- la même valeur que t pour les attributs appartenant à  $Exp_1$  et non à  $Exp_2$



#### La Division

## Requête

Les parents scolarisant leurs enfants dans toutes les écoles



#### La Division

#### Requête

Les parents scolarisant leurs enfants dans toutes les écoles

| Parent  | Ecole |   |          |               |        |
|---------|-------|---|----------|---------------|--------|
| Pascal  | В     |   | Ecole    |               | Parent |
| Pascal  | Α     | ÷ | Α        | $\Rightarrow$ | Pascal |
| Raymond | Α     |   | В        |               | Fascai |
| Clara   | А     |   | Diviseur | •             |        |
| Dividen | ıde   |   |          |               |        |

#### Calcul relationnel

 $\{t.parent|Parent\acute{e}(t) \land [\forall u, Scolarit\acute{e}(u)(\exists v, Parent\acute{e}(v) \land u.ecole = v.ecole) \land (v.parent = t.parent)]\}$ 



## **Exercices**: Division

#### Soient les relation suivantes :

| Personne | Age | Métier     |
|----------|-----|------------|
| Dupont   | 20  | Ingénieur  |
| Dupont   | 20  | Professeur |
| Durand   | 30  | Professeur |
| Martin   | 40  | Ingénieur  |
| Martin   | 40  | Professeur |
| Delarue  | 25  | Ingénieur  |
| Duchamp  | 28  | Professeur |
| Duchamp  | 28  | Ingénieur  |
| Didier   | 20  | Apprenti   |

Emplové

Métier
Ingénieur
Professeur
Apprenti

ıti

, ,

Quel est le résultat de la requête ci dessous?

```
 \{t.personne | Employ\'e(t) \land [\forall u, M\'etier(u) \land \neg (u.m\'etier = "Apprenti") \land (\exists v, Employ\'e(v) \land u.m\'etier = v.m\'etier) \land (v.personne = t.personne)] \}
```

## **Exercices**: Division

| Personne | Métier     |
|----------|------------|
| Dupont   | Ingénieur  |
| Dupont   | Professeur |
| Durand   | Professeur |
| Martin   | Ingénieur  |
| Martin   | Professeur |
| Delarue  | Ingénieur  |
| Duchamp  | Professeur |
| Duchamp  | Ingénieur  |
| Didier   | Apprenti   |

 $Exp_1$ 

