Appendix B

1 Export of SimpleSAT SRDB data into MIB data exchange format

In [?], authors have built and have shown how M&C data of SimpleSAT SRDB are defined. In this appendix, we aim to illustrate how this data could be represented in a set of MIB-compliant files. Additionally, in this illustrative scenario, we assume that the content of the MIB files is fully compliant with the PUS services implementation in the OBSW. More details concerning the compliance between MIB data and OBSW PUS services can be found in [?,?].

1.1 MIB definition of service 2 TC to switch on the RW

In this section, we show how the definition of PUS service 2 TC can be defined in MIB files to switch on the RW of SimpleSAT. Figure 1 shows what MIB files are used to encode the service 2 TC mentioned before before sending it to the onboard systems of SimpleSAT. Table 1 details the different steps of the encoding process.

Figure 2: Illustration of the content of the MIB CCF file

Figure 3: Illustration of the content of the MIB CDF file

Figure 4: Illustration of the content of the MIB CPC file

Figure 1: Example of encoding service 2 TC of SimpleSAT to switch on the RW

🔚 paf.d	at 🗵				
1	C00003	1553-CMD-RW	U	2	

Figure 5: Illustration of the content of the MIB ${\bf PAF}$ file

🔚 pas.d	at 🔀		
1	C00003	Switch-ON-RW	A0897
2	C00003	Switch-OFF-RW	352

Figure 6: Illustration of the content of the MIB ${\bf PAS}$ file

Step	MIB files role
Step 1	The operator selects the service 2 TC PK1021 whose
Step 1	definition is in the file CCF as shown in Figure 2
	The TC is associated with the parameter P00004 in
Stop 2	the file CDF as shown in Figure 3. The role of this
Step 2	parameter is to capture the action to be done by the
	RW
	P00004 parameter details are defined in the file CPC
Step 3	as shown in Figure 4. This parameter refers to the
	calibration C00003
	The calibration C00003 associates a raw value with
	the textual value Switch ON RW: The value is the
Step 4	encoding of the Mil-Std-1553 packet that will actu-
Step 4	ally switch on the RW onboard. The definition of
	the properties C00003 is in the file PAF as shown in
	Figure 5
	The mapping between raw values and their textual
Step 5	labels in C00003 are captured in the file PAS as
	shown in Figure 6

Table 1: MIB data encoding example for SimpleSAT

1.2 MIB definition of a housekeeping packet to report RW temperature

The second scenario consists in showing how MIB files, exported from Simple-SAT's SRDB, can be used to decode incoming housekeeping packet (PUS service 3). We show the decoding process as depicted in Figure 7 and what MIB files are involved in this process as summarized in Table 2.

Figure 7: SimpleSAT example of decoding TM raw data using MIB files

For each important object we provide a snapshot of its representation in the MIB files. For the detail of each column, it is possible to refer to the SCOS-2000

Step	MIB files role
	A raw TM packet flow arrives. As it is a representa-
	tion of a PUS-compliant packet, the packet's service,
1	subservice and application process identifier (APID)
	are extracted from its header. The structure of PUS-
	compliant packets is detailed in [?]
	By relying on information in the PIC file, which is
	part of the MIB exchange format, it is possible to
2	determine whether this flow also contains the values
	of one or two discriminants. Discriminants aim to
	identify each TM packet separately from the others
	Once the values of the tuple <service,sub-< td=""></service,sub-<>
	service, APID, Disciminants > are determined, then
3	using information in the file PID, it is possible to
3	identify the packet identifier named SPID [?]. The
	SPID represents a unique identifier of every TM
	packet
	Using this SPID: (1) The name of the packet is de-
	termined by relying on information in the file TPCF
	as shown in Figure 8. This name is PKT001 . This
4	is what operators will see on their screen.(2) The pa-
	rameters contained in the packet are determined by
	relying on the information in the file PLF. This list
	includes the parameter P00001
	Once the list of parameters is identified, their prop-
	erties are determined by relying on the content of the
	file PCF as shown in Figure 9. Among these prop-
5	erties, we can find the identifier of the parameter's
	calibration whose content is determined from the file
	CAF as shown in Figure 10. This calibration is then
	used to calculate the engineering value correspond-
	ing to the raw value of the parameter
6	These are the values along with their units which are
	displayed to the end user

Table 2: MIB data decoding example for SimpleSAT $\,$

Interface Control Document $(ICD)^1$.

Definition of telemetry packets is depicted in Figure 8.

			illatpcf.dat ☑
24500	PKT001	26	
24501	PKT003	22	
24502	PKT004	22	

Figure 8: Illustration of the content of the MIB \mathbf{TPCF} file

Definition of telemetry parameters along with their calibrations are depicted in Figure 9.

Figure 9: Illustration of the content of the MIB **PCF** file

Figure 10: Illustration of the content of the MIB CAF file

¹https://bit.ly/3h8jkgf