Lecture Notes on Data Structures and Algorithms: Analysis of Algorithms

Conrado Martínez U. Politècnica Catalunya

April 1, 2016

Part I

Analysis of Algorithms

- Introduction
 - Asymptotic Notation
 - Analysis of Iterative Algorithms
 - **Analysis of Recursive Algorithms**

Complexity of Algorithms

- Complexity of an algorithm = computational resources it consumes: execution time, memory space
- Analysis of algorithms → Investigate the propieties of the complexity of algorithms
 - Compare alternative algorithmic solutions
 - Predict the resources that an algorithm or data structure will use
 - Improve exisiting algorithms and data structures and guide the design of novel algorithms and DS

Complexity of Algorithms

In general terms, given an algorithm A with input set A, its complexity or cost (in time, in memory space, in I/Os, etc.) is a function T from A to \mathbb{N} (or \mathbb{Q} or \mathbb{R} , depending on what we want to study):

$$T: \mathcal{A}
ightarrow \mathbb{N} \ lpha
ightarrow T(lpha)$$

Characterizing such a function is too complex and the huge amount of information it yields cannot be handled, and is impractical.

Worst-, Best-, Average-case Complexity

Let A_n denote the set of inputs of size n and $T_n: A_n \to \mathbb{N}$ the restriction of T to A_n .

Best-case cost:

$$T_{\mathsf{best}}(n) = \min\{T_n(lpha) \, | \, lpha \in \mathcal{A}_n\}.$$

Worst-case cost:

$$T_{\mathsf{worst}}(n) = \max\{T_n(lpha)\,|\,lpha\in\mathcal{A}_n\}.$$

Average-case cost:

$$T_{\mathsf{avg}}(n) = \sum_{lpha \in \mathcal{A}_n} \mathsf{Pr}(lpha) \, T_n(lpha) \ = \sum_{k \geq 0} k \; \mathsf{Pr}(T_n = k).$$

Worst-, Best-, Average-case Complexity

• For all n > 0 and for all $\alpha \in \mathcal{A}_n$

$$T_{\mathsf{best}}(n) \leq T_n(lpha) \leq T_{\mathsf{worst}}(n).$$

2 For all n > 0

$$T_{\mathsf{best}}(n) \leq T_{\mathsf{avg}}(n) \leq T_{\mathsf{worst}}(n).$$

Worst-, Best-, Average-case Complexity

In general we will only study the worst-case complexity:

- Provides a guarantee on the complexity of the algorithm, the cost will never exceed the worst-case cost
- It is easier to compute than the average-case cost

Part I

Analysis of Algorithms

Introduction

2 Asymptotic Notation

Analysis of Iterative Algorithms

Analysis of Recursive Algorithms

Rates of Growth

A fundamental feature of the cost of an algorithm (a function, in general) is its rate of growth

Example

- ① Linear: $f(n) = a \cdot n + b \Rightarrow f(2n) \approx 2 \cdot f(n)$
- ② Quadratic: $q(n) = a \cdot n^2 + b \cdot n + c \Rightarrow q(2n) \approx 4 \cdot q(n)$

We say that linear and quadratic functions have different rates of growth. We can also say that they are of different orders of magnitude.

Rates of Growth

$\log_2 n$	n	$n\log_2 n$	n^2	n^3	2^n
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	262144
5	32	160	1024	32768	$6.87\cdot10^{10}$
6	64	384	4096	262144	$4.72\cdot 10^{21}$
• • •					
ℓ	N	L	C	Q	E
$\ell+1$	2N	2(L+N)	4C	8Q	E^2

Source: G. Valiente

Asymptotic Notation: Big-Oh

Constant factors and lower order terms are irrelevant as far as the rate of growth of a function is concerned: for instance, $30n^2 + \sqrt{n}$ has the same rate of growth as $2n^2 + 10n \Rightarrow$ asymptotic notation

Definition

Given a function $f: \mathbb{R}^+ \to \mathbb{R}^+$ the class $\mathcal{O}(f)$ (big-Oh of f) is

$$\mathcal{O}(f) \!=\! \{g \!:\! \mathbb{R}^+ \!\rightarrow\! \mathbb{R}^+ \mid \exists n_0 \; \exists c \; \forall n \!\geq\! n_0 \!:\! g(n) \!\leq\! c \!\cdot\! f(n) \}$$

In words, a function g is in $\mathcal{O}(f)$ if there exists a constant c such that $g < c \cdot f$ for all n from some value n_0 onwards.

Asymptotic Notation: Big-Oh

Although $\mathcal{O}(f)$ is a set of functions, people often write $g=\mathcal{O}(f)$ instead of $g\in\mathcal{O}(f)$. However, note that $\mathcal{O}(f)=g$ is nonsensical.

Basic properties of the \mathcal{O} notation:

- $lack {f O}$ If $\lim_{n o\infty}g(n)/f(n)<+\infty$ then $g=\mathcal{O}(f)$
- ② It is reflexive: for all $f: \mathbb{R}^+ \to \mathbb{R}^+$, $f = \mathcal{O}(f)$
- 1 It is transitive: if $f = \mathcal{O}(g)$ and $g = \mathcal{O}(h)$ then $f = \mathcal{O}(h)$
- For all positive constants c > 0, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Asymptotic Notation: Big-Oh

Since constant factors are irrelevant for the asymptotic notation we will systematically omit them: for instance, we will talk about $\mathcal{O}(n)$, not about $\mathcal{O}(4 \cdot n)$ (it is the same class); we will not express the base of logarithms unless they appear in an exponent, hence we will write $\mathcal{O}(\log n)$; we can change from one base to another multiplying by appropriate factor:

$$\log_c x = rac{\log_b x}{\log_b c}$$

Asymptotic Notation: Omega and Theta

Other asymptotic notations include Ω (omega) and Θ (zita). Ω defines the set of functions with rate of growth is bounded from below by the rate of growth of the given function:

$$\Omega(f) = \{g : \mathbb{R}^+ \to \mathbb{R}^+ \mid \exists n_0 \exists c > 0 \ \forall n \geq n_0 : g(n) \geq c \cdot f(n)\}$$

 Ω is reflexive and transitive; if $\lim_{n \to \infty} g(n)/f(n) > 0$ then $g = \Omega(f)$. On the other hand, Ω and $\mathcal O$ are related as follows: if $f = \mathcal O(g)$ then $g = \Omega(f)$, and vice-versa.

Asymptotic Notation: Omega and Theta

We will often say that $\mathcal{O}(f)$ is the class of function that grow no faster than f. Analogously, $\Omega(f)$ is the class of functions that grow at least as fast as f. Finally,

$$\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$$

is the class of functions with the same rate of growth as f. Θ is reflexive and transitive, as the other notations, but it is also symmetric: $f=\Theta(g)$ if and only if $g=\Theta(f)$. If $\lim_{n\to\infty} g(n)/f(n)=c$ for some c, $0< c<\infty$ then $g=\Theta(f)$.

Asymptotic Notation

Additional properties of the asymptotic notations (set inclusions are strict):

- For any to constants α and β , with $\alpha < \beta$, if f is an increasing function then $\mathcal{O}(f^{\alpha}) \subset \mathcal{O}(f^{\beta})$.
- ② For any two constants a and b > 0, if f is an increasing function then $\mathcal{O}((\log f)^a) \subset \mathcal{O}(f^b)$.
- **③** For any constant c > 1, if f is an increasing function $\mathcal{O}(f) \subset \mathcal{O}(c^f)$.

Asymptotic Notation

Conventional operations like sums, substractions, division, etc. can be extended to classes of functions (as defined by asymptotic notations) as follows:

$$A \otimes B = \{h \mid \exists f \in A \land \exists g \in B : h = f \otimes g\},\$$

where A and B are two sets of functions. Expressions of the form $f \otimes A$, where f a function, denote $\{f\} \otimes A$. With these conventions we can now write expressions such as $n + \mathcal{O}(\log n), \, n^{\mathcal{O}(1)}, \, \text{or } \Theta(1) + \mathcal{O}(1/n)$.

Asymptotic Notation: Rule of the sums and products

Rule of sums:

$$\Theta(f) + \Theta(g) = \Theta(f+g) = \Theta(\max\{f,g\}).$$

Rule of products:

$$\Theta(f) \cdot \Theta(g) = \Theta(f \cdot g).$$

Similar rules hold for \mathcal{O} and Ω .

Part I

Analysis of Algorithms

Introduction

Asymptotic Notation

Analysis of Iterative Algorithms

Analysis of Recursive Algorithms

- The cost of an elementary operation (e.g., comparing two integers) is Θ(1).
- ② If the cost of the fragment S_1 is f and that of S_2 is g then the cost of S_1 ; S_2 is f + g (sequential composition).
- \odot If the cost of S_1 is f, that of S_2 is g and the cost of evaluating the Boolean expression B is h then the worst-case cost of

```
\begin{aligned} &\text{if } B \text{ then } S_1 \\ &\text{else} S_2 \\ &\text{end if} \\ &\text{is } \mathcal{O}(\max\{f+h,g+h\}). \end{aligned}
```

If the cost of S in the i-th iteration is f_i , the cost of evaluating B is h_i and the number of iterations is g, then the cost of T of

while B do S

end while

is

$$T(n) = \sum_{i=1}^{i=g(n)} f_i(n) + h_i(n).$$

If $f = \max\{f_i + h_i\}$ then $T = \mathcal{O}(f \cdot g)$.

```
// example of use:
// vector<int> my_vector = read_data();
// cout << "min = " << minimum(v.begin(), v.end()) << endl;

template <class Elem, class Iter>
Elem minimum(Iter beg, Iter end) {
   if (beg == end) throw NullSequenceError;
   Elem min = *beg; ++beg;
   for (Iter curr = beg; curr != end; ++curr)
        if (*curr < min) min = *curr;
   return min;
}</pre>
```

Example (Finding the minimum)

If a comparison between two Elem's or an assignment of an Elem to a variable (e.g., min = *curr) are elementary operations then

- In the worst-case, the body of the for loop takes time $\Theta(1)$; the increment of iterators is also $\Theta(1)$
- 2 Comparing two iterators is $\Theta(1)$ since we need only to check that they "point" to the same object
- If the length of the sequence is n (n = end-beg) then the loop is executed n 1 times. Applying the rule of products we have then

$$F(n) = (n-1) \cdot \Theta(1) = \Theta(n) \cdot \Theta(1) = \Theta(n)$$

Example (Matrix multiplication)

The algorithm above computes the matrix product of $A = (A_{ij})_{m \times n}$ and $B = (B_{ij})_{n \times p}$ using its definition:

$$C_{ij} = \sum_{k=0}^{n} A_{ik} \cdot B_{kj}$$

Example (Matrix multiplication (cont'd))

- The body of the innermost **for** loop (on k) has cost $\Theta(1)$. Thus the body of the second **for** loop (on j) is, applying the rule of products, $\Theta(n)$.
- ② Similarly the body of the outermost loop (on i) has cost $\Theta(p \cdot n)$.
- **3** Thus the cost of the three nested loops is $\Theta(m \cdot p \cdot n)$.
- The other parts of the algorithm have cost $\Theta(m \cdot p)$. By the rule of sums, the overall cost of the algorithm is $\Theta(m \cdot n \cdot p)$.
- **5** For square matrices, setting N=m=n=p, the cost of the algorithm is $\Theta(N^3)$.

```
template <class T, class Comp = std::less<T>>
void insertion_sort(vector<T>& A, Comp smaller) {
   int n = A.size();
   for (int i = 1; i < n; ++i) {
        // put A[i] into its place in A[0..i-1]
        T x = A[i]; int j = i - 1;
        while (j >= 0 and smaller(x, A[j])) {
        A[j+1] = A[j];
        --j;
        };
        A[j] = x;
   }
}
```

Example (Insertion sort)

Insertion sort is one of the so-called *elementary sort algorithms*. It is very easy to understand and to program. Its running time for any instance is both $\Omega(n)$ and $\mathcal{O}(n^2)$. In particular, the best-case is $\Theta(n)$ and the worst-case is $\Theta(n^2)$.

```
template <class T, class Comp = std::less<T>>
void insertion_sort(vector<T>& A, Comp smaller) {
    int n = A.size();
    for (int i = 1; i < n; ++i) {
        // put A[i] into its place in A[0..i-1]
        T x = A[i]; int j = i - 1;
        while (j >= 0 and smaller(x, A[j])) {
            A[j+1] = A[j];
            --j;
        };
        A[j] = x;
    }
}
```

Example (Insertion sort (cont'd))

- The while can make any number of iterations from 0 (when the vector is already sorted) to i (when the vector is in reverse order). Its cost is $\Theta(i)$ assuming that the cost of the comparison smaller is $\Theta(1)$, and the assignment between elements of class T takes also constant time.
- 2 Thus the cost of the for loop in the worst-case is

$$\sum_{i=1}^{n-1} \Theta(i) = \Theta\left(\sum_{i=1}^{n-1} i\right) = \Theta\left(\frac{n(n-1)}{2}\right) = \Theta(n^2)$$

```
template <class T, class Comp = std::less<T>>
void insertion_sort(vector<T>& A, Comp smaller) {
   int n = A.size();
   for (int i = 1; i < n; ++i) {
        // put A[i] into its place in A[0..i-1]
        T x = A[i]; int j = i - 1;
        while (j >= 0 and smaller(x, A[j])) {
        A[j+1] = A[j];
        --j;
        };
        A[j] = x;
   }
}
```

Example (Insertion sort (cont'd))

- A quick upper bound follows by observing that the cost of the while loop is $\mathcal{O}(i) = \mathcal{O}(n)$, hence the cost of the algorithm is $\mathcal{O}(n^2)$.
- ① The cost of the for loop is $\Theta(n)$ in the best case, since the cost of the *i*-th iteration in the best case is $\Theta(1)$.
- **5** The average cost of the algorithm is also $\Theta(n^2)$, assuming each of the n! possible initial orderings of the vector is equally likely. The inner while loop will perform, on average, $\approx i/2$ iterations when inserting A[i].

Part I

Analysis of Algorithms

Introduction

Asymptotic Notation

Analysis of Iterative Algorithms

Analysis of Recursive Algorithms

The cost T(n) (worst-, best-, average-case) of a recursive algorithm satisfies a recurrence: an equation where T appears in both sides, with T(n) depending on T(k) for one or more values k < n. Recurrences appear often in one of the two following forms:

$$T(n) = a \cdot T(n-c) + f(n), \ T(n) = a \cdot T(n/b) + f(n).$$

First correspond to algorithms where the non-recursive part has cost f(n) and they make a recursive calls on inputs of size n-c, for some constant c.

Second corresponds to algorithm with non-recursive cost f(n) making a recursive calls on inputs of size (approx.) n/b, where b>1.

Theorem

Let T(n) satisfy the recurrence

$$T(n) = egin{cases} g(n) & ext{if } 0 \leq n < n_0 \ a \cdot T(n-c) + f(n) & ext{if } n \geq n_0, \end{cases}$$

where n_0 is a constant, $c \ge 1$, g(n) is an arbitrary function, and $f(n) = \Theta(n^k)$ for some constant $k \ge 0$.

Then

$$T(n) = egin{cases} \Theta(n^k) & ext{if } a < 1 \ \Theta(n^{k+1}) & ext{if } a = 1 \ \Theta(a^{n/c}) & ext{if } a > 1. \end{cases}$$

Theorem

Let T(n) satisfy the recurrence

$$T(n) = egin{cases} g(n) & ext{if } 0 \leq n < n_0 \ a \cdot T(n/b) + f(n) & ext{if } n \geq n_0, \end{cases}$$

where $a \ge 1$, b > 1 and n_0 constants, g(n) is an arbitrary function and $f(n) = \Theta(n^k)$ for some constant $k \ge 0$. Let $\alpha = \log_b a$. Then

$$T(n) = egin{cases} \Theta(n^k) & ext{if } lpha < k \ \Theta(n^k \log n) & ext{if } lpha = k \ \Theta(n^lpha) & ext{if } lpha > k. \end{cases}$$

The conditions $\alpha < k$, $\alpha = k$ and $\alpha > k$ are equivalent to $a < b^k$, $a = b^k$ and $a > b^k$, respectively.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.

Example (Towers of Hanoi)

The Towers of Hanoi is a puzzle in which we have n disks of decreasing diameters with a hole in their center and three poles A, B and C. The n disks initially sit in pole A and they must be transferred, one by one, to pole C, using pole B for intermediate movements. The rule is that no disk can be put on top of a disk with a larger diameter.


```
typedef char pole;
// Initial call: hanoi(n,'A', 'B', 'C');

void hanoi(int n, pole org, pole aux, pole dst) {
    if (n == 1)
        cout << "Move from " << org << " to " << dst << endl;
    else {
        hanoi(n - 1, org, dst, aux);
        // move the largest disk
        cout << "Move from " << org << " to " << dst << endl;
        hanoi(n - 1, aux, org, dst);
    }
}</pre>
```

Example (Towers of Hanoi (cont'd))

The cost f(n) of the non-recursive part is $\Theta(1)$, and for $n \leq n_0 = 1$ the cost is also $\Theta(1)$. The recurrence that describes the cost H(n) of hanoi is

$$H(n) = 2H(n-1) + \Theta(1)$$
, if $n > 1$

and $H(1) = \Theta(1)$. Applying the theorem for "substractive" recurrences with a=2 and c=1 we get $H(n) = \Theta(2^n)$. Indeed, it can be easily shown that exactly $M_n = 2^n - 1$ single moves are necessary (and sufficient) to move the n disks from A to C.

Example (Powers)

Given three positive integers x, y and m > 1, compute $x^y \mod m$.

• For any y_1, y_2 such that $y_1 + y_2 = y$,

$$x^y \mod m = ((x^{y_1} \mod m) \cdot (x^{y_2} \mod m)) \mod m,$$

that is, we can take $\mod m$ in intermediate steps to avoid dealing with very large numbers

• If we compute x^y , either iteratively or recursively, using the identity $x^y = x \cdot x^{y-1}$ for y > 0, we end up with an algorithm making $\Theta(y)$ products \Rightarrow exponential in the size of the input (we need $\approx \log_2(x) + \log_2(y) + \log_2 m$ bits)

Example (Powers)

Given three positive integers x, y and m > 1, compute $x^y \mod m$.

• For any y_1, y_2 such that $y_1 + y_2 = y$,

$$x^y \mod m = ((x^{y_1} \mod m) \cdot (x^{y_2} \mod m)) \mod m$$

that is, we can take $\mod m$ in intermediate steps to avoid dealing with very large numbers

• If we compute x^y , either iteratively or recursively, using the identity $x^y = x \cdot x^{y-1}$ for y>0, we end up with an algorithm making $\Theta(y)$ products \Rightarrow exponential in the size of the input (we need $\approx \log_2(x) + \log_2(y) + \log_2 m$ bits)

```
int power(int x, int y, int m) {
    if (y == 0) return 1;
    int p = power(x, y/2, m);
    if (y % 2 == 0)
        return (p * p) % m;
    else
        return (((p * p) % m) * x) % m;
}
```

Example (Powers (cont'd))

The cost P(y) (measured as the number of arithmetical operations) of power satisfies the following recurrence^a

$$P(y) = P(y/2) + \Theta(1),$$

and P(0)=0; we can solve the recurrence using the theorem for "divisive" recurrences with k=0, a=1 and b=2; since $\alpha=\log_2 1=0=k$ the solution is $P(y)=\Theta(\log y)\Rightarrow$ linear number of products in the size of the input

^aCeilings and floors can be safely ignored; the actual recurrence is $P(y) = P(\lceil y/2 \rceil) + \Theta(1)$.