ALGORITMO SIMPLEX

DCE692 - Pesquisa Operacional

Atualizado em: 4 de setembro de 2023

Iago Carvalho

Departamento de Ciência da Computação

PROGRAMAÇÃO LINEAR

Problemas de programação linear são descritos utilizando um conjunto de equações lineares

- Função objetivo
- Variáveis
- Restrições

É possível representar graficamente um problema de programação linear

- 3 variáveis
- Poucas restrições

E problemas maiores?

Algoritmo Simplex!

ALGORITMO SIMPLEX

Criado por George Dantzig em 1940s

- Inicialmente, feito como um trabalho de uma disciplina
- Usado para resolver sistemas de equações lineares

O Simplex (e demais trabalhos) renderam uma série de prêmios para Dantzig

- Prêmio Teoria John von Neumann (1975)
- Medalha Nacional de Ciências (1975)
- Prêmio Harvey (1985)
- Prêmio Harold Pender (1995)

ALGORITMO SIMPLEX

Durante seu desenvolvimento, Dantzig viu a oportunidade de minimizar/maximizar uma função objetivo

 Assim, ao invés de simplesmente resolver sistemas lineares, foi possível otimizar a solução destes sistemas

Assim, nascia a programação linear!

COMPLEXIDADE DO ALGORITMO SIMPLEX

Problemas de programação linear podem ser resolvidos em tempo polinomial

Entretanto, o Simplex é um algoritmo exponencial!

- Demonstrado em um caso extremamente particular
- Politopo de Klee-Minty

No caso médio, ele tem tempo polinomial

VISUALIZAÇÃO DO ALGORITMO SIMPLEX

PASSOS DO ALGORITMO SIMPLEX

- 1. Obter um problema de programação linear na forma padrão
- 2. Obter uma solução básica viável
- Teste de otimalidade
- 4. Caso a solução não seja ótima
 - Verificar qual variável não-básica pode entrar na base
 - Qual variável básica irá sair da base
- 5. Realizar operações de pivoteamento
 - Seleciona uma nova solução básica viável

SOLUÇÃO BÁSICA VIÁVEL

Uma solução básica viável é um conjunto de variáveis que satisfaz todas as restrições do problema

Um pouco difícil de definir com as variáveis \boldsymbol{x}

Entretanto, é muito fácil encontrar uma solução básica viável utilizando as variáveis de folga \boldsymbol{y}

RELEMBRANDO A AULA PASSADA

$$\begin{array}{rcl}
\min & c^T x \\
& Ax + y &= b \\
& x & \geqslant 0 \\
& y & \geqslant 0
\end{array}$$

onde

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$c = \{c_1, c_2, \dots, c_n\}$$

$$x^{T} = \{x_{1}, x_{2}, \dots, x_{n}\}\$$

$$b^{T} = \{b_{1}, b_{2}, \dots, b_{m}\}\$$

$$y = \begin{bmatrix} y_{1} & 0 & \dots & 0 \\ 0 & y_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & y_{m} \end{bmatrix}$$

9

RELEMBRANDO A AULA PASSADA

Representação matricial

$$\begin{array}{rcl}
\min & c^T x \\
& Ax + y &= b \\
& x & \geqslant 0 \\
& y & \geqslant 0
\end{array}$$

Representação extendida

SOLUÇÃO BÁSICA

Uma solução básica inicial pode ser formada por todas as variáveis de folga \boldsymbol{y}

Entretanto, deve-se observar o sinal delas

Caso a variável seja positiva, não é preciso tomar nenhuma medida

Caso a variável seja negativa, é preciso de um outro algoritmo

- Assunto para nossa próxima aula
- O Por hora, vamos assumir que todas são positivas

TABLEAU SIMPLEX

Vamos montar nosso tableau

TABLEAU SIMPLEX - EXEMPLO

Considere o problema abaixo em sua forma inicial e sua forma padrão, além de seu *tableau*

$$\begin{array}{ll} \max & x_1 + x_2 \\ & x_1 + 2x_2 \le 6 \\ & 2x_1 + x_2 \le 6 \\ & x_1, \ x_2 \ge 0 \end{array}$$

min
$$-x_1 - x_2$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

	x1	x2	x 3	x4	-Z	b
	1	2	1	0	0	6
	2	1	0	1	0	6
•	-1	-1	0	0	1	0

TABLEAU SIMPLEX - EXEMPLO

Solução básica viável (SBV) =
$$\{x_1 = 0, x_2 = 0, x_3 = 6, x_4 = 6\}$$

- As variáveis básicas são x₄ e x₄
- Vetores-coluna das variáveis básicas constituem uma matriz identidade

Neste caso, o valor da função objetivo (FO) é $z = -x_1 - x_2 = 0$

x1	x2	х3	x4	-Z	b			
1	2	1	0	0	6			
2	1	0	1	0	6			
-1	-1	0	0	1	0			
				valor de –z (negativo do valor da FO)				

O próximo passo é adicionar as variáveis básicas a nossa tabela

	VB	$ x_1 $	\mathbf{x}_2	X ₃	X ₄	-z	b
variáveis básicas	X ₃	1	2	1	0	0	6
variaveis basicas	X ₄	2	1	0	1	0	6
	-Z	-1	-1	0	0	1	0

A partir de agora, devemos pensar

O que fazer para melhorar o valor da função objetivo?

Para fazermos isto, devemos aumentar o valor das variáveis não-básicas que possam melhorar a função objetivo

 \bigcirc Em nosso caso, são as variáveis x_1 e x_2

Ambas as variáveis tem a mesma contribuição para a função objetivo

- Assim, podemos escolher qualquer uma delas
- \bigcirc Para prosseguirmos, vamos escolher x_1
- Além disso, vamos manter $x_2 = 0$
 - A ideia é trabalhar com uma variável por vez

Seja $x_1 = \lambda \ge 0$. Qual é o maior valor de λ que atende a todas as nossas restrições?

- $x_1 + 2x_2 + x_3 = 6$
- $\bigcirc 2x_1 + x_2 + x_4 = 6$
- Lembrem-se que $x_2 = 0$, $x_3 \ge 0$ e $x_4 \ge 0$

Temos que

- $\lambda + (2*0) + x_3 = 6 \rightarrow x_3 = 6 \lambda$
- $\bigcirc 2\lambda + 0 + x_4 = 6 \rightarrow x_4 = 6 2\lambda$

O maior valor de λ que satisfaz ambas as restrições é $\lambda=3$

- \bigcirc Este valor é na restrição relativa a x_4
- \bigcirc Desta forma, temos que x_1 entra na SBV e x_4 sai
- O valor da função objetivo passa a ser $z = -x_1 x_2 = -3$

Agora que x_1 e x_3 fazem parte da SBV, é necessário que os vetores-coluna relacionados a ambas as variáveis formem uma matriz identidade

Para isto, devemos

- Identificar o pivô
- Realizar operações de Eliminação de Gauss para transformar o vetor-coluna de x₁ para eliminar seus coeficientes
 - Exceto o coeficiente do pivô

Em nosso caso, o pivô é como abaixo

VB	x ₁	\mathbf{x}_{2}	X_3	X ₄	-Z	b
X ₃	1	2	1	0	0	6
X ₄	2	1	0	1	0	6
-Z	-1	-1	0	0	1	0

VB	x ₁	\mathbf{x}_{2}	X_3	X ₄	-Z	b
X ₃	1 2	2	1	0	0	6
X_4	2	1	0	1	0	6
-Z	-1	-1	0	0	1	0

- O Linha de x_4 é dividida por 2 para obtermos o coeficiente 1 no pivô
- Subtrair a linha de x₃ da linha de x₄
- O Subtrair a linha de -z da linha de x_4

Tabela inicial

VB	$ x_1 $	\mathbf{x}_{2}	\mathbf{X}_3	X ₄	-Z	b
X ₃				0		6
X_4	2	1	0	1	0	6
-Z	-1	-1	0	0	1	0

Novo *tableau*. Note que as colunas de x_1 e x_3 formam uma matriz-identidade

VB	X_1	\mathbf{x}_{2}	X ₃	X ₄	-Z	b
X_3	0	3/2		-1/2	0	3
X_1	1	1/2	0	1/2	0	3
-Z	0	-1/2	0	1/2	1	3

Notar que -z = 3, ou seja, z = -3

Ainda é possível melhorar o valor da função objetivo

- Para isto, devemos
 - Escolher uma variável para entrar na SBV
 - 2. Escolher uma variável para sair da SBV
 - 3. Realizar nova operação de pivoteamento

VB	X ₁	\mathbf{x}_2	\mathbf{x}_3	X ₄	-Z	b
X ₃	0	3/2		-1/2	0	3
x_1	1	1/2	0	1/2	0	3
-Z	0	-1/2	0	1/2	1	3

Ainda é possível melhorar o valor da função objetivo

- O Para isto, devemos
 - Escolher uma variável para entrar na SBV
 - 2. Escolher uma variável para sair da SBV
 - 3. Realizar nova operação de pivoteamento

Nosso novo pivô está marcado abaixo

VB	x_1	\mathbf{x}_2	X_3	X_4	-Z	b
X ₃	0	3/2	1	-1/2	0	3
x ₁	1	1/2	0	1/2	0	3
-Z	0	-1/2	0	1/2	1	3

VB		\mathbf{x}_{2}				b
X ₃	0	3/2	1	-1/2	0	3
X_1	1	1/2	0	1/2	0	3
-Z	0	-1/2	0	1/2	1	3

- 1. Dividir o valor da linha de x_1 pelo valor do pivô
- 2. Subtrair metade do valor da primeira linha à segunda linha
- 3. Adicionar metade do valor da primeira linha à última linha

VB	x_1	\mathbf{x}_2	X_3	X_4	-Z	b
\mathbf{x}_2	0	1	2/3	-1/3	0	2
x_{1}	1	0	-1/3	2/3	0	2
-Z	0	0	1/3	1/3	1	4

O valor da função objetivo agora é ótima

- \bigcirc Não existe nenhum coeficiente negativo na linha -z
- \bigcirc A SBV é $\{x_1 = 2, x_2 = 2\}$
- O valor da função objetivo é -4

VB	x_1	\mathbf{x}_{2}	X_3	X_4	-Z	b
\mathbf{x}_2	0	1	2/3	-1/3	0	2
X_1	1	0	-1/3	2/3	0	2
-Z	0	0	1/3	1/3	1	4

MÉTODO SIMPLEX - INTERPRETAÇÃO

Notem que o método Simplex percorreu os vértices de nossa solução gráfica

- 1. $SBV_1 = \{0, 0, 6, 6\}$
- 2. $SBV_2 = \{3,0,3,0\}$
- 3. $SBV_3 = \{2, 2, 0, 0\}$

MÉTODO SIMPLEX - CONSIDERAÇÕES

No tableau, os custos referentes às variáveis básicas devem ser iguais a zero

Os demais valores da linha de custos são denominados coeficientes de custo relativo.

- O termo relativo é utilizado porque os valores destes coeficientes dependem do vetor-base escolhido
- Os valores destes coeficientes correspondem a quanto é possível alterar o valor da função objetivo para cada alteração unitária da variável não-básica correspondente
 - Isto sempre mantendo a viabilidade da SBV

MÉTODO SIMPLEX - CONSIDERAÇÕES

Toda variável não-básica com valor negativo na linha -z é uma candidata a entrar na SBV

Pode-se escolher

- A de menor valor
- Uma aleatória
- A primeira variável encontrada com valor negativo

Não existe melhor opção

 Caso o problema seja muito grande (milhões de variáveis), inspecionar todas elas é inviável

forma padrão

$$\begin{array}{ll} \text{max} & x_1 + 2x_2 + 3x_3 - x_4 \\ \text{s.a} & x_1 + 2x_2 + 3x_3 \le 15 \\ 2x_1 + x_2 + 5x_3 \le 20 \\ x_1 + 2x_2 + x_3 + x_4 \le 10 \\ x_1, x_2, x_3, x_4 \ge 0 \end{array}$$

min
$$-x_1 - 2x_2 - 3x_3 + x_4$$

s.a $x_1 + 2x_2 + 3x_3 + x_5 = 15$
 $2x_1 + x_2 + 5x_3 + x_6 = 20$
 $x_1 + 2x_2 + x_3 + x_4 + x_7 = 10$
 $x_i \ge 0 \ (i = 1, ..., 7)$

VB	X ₁	\mathbf{x}_{2}	x ₃ 3 5 1	X_4	X ₅	x_6	x ₇	b
X ₅	1	2	3	0	1	0	0	15
x_6	2	1	5	0	0	1	0	20
x ₇	1	2	1	1	0	0	1	10
-FO	-1	-2	-3	1	0	0	0	0

Variável que entra é a variável não-básica que possui o menor valor associado na última linha

Variável que sai é aquela que com a menor razão computada

	VB	x_1	\mathbf{x}_{2}	X_3	X_4	x ₅	x_6	x ₇	b	razões
	X ₅	-1/5					-3/5		3	3/(7/5) = 15/7
	X_3	2/5	1/5	1	0	0	1/5	0	4	4/(1/5) = 20
	X ₇	3/5			1		-1/5	1		6/(9/5) = 30/9
•	-FO	1/5	-7/5	0	1	0	3/5	0	12	

VB	X ₁	\mathbf{x}_{2}	\mathbf{x}_3	X_4	\mathbf{x}_{5}	x_6	x ₇	b
x_2	-1/7	1	0	0	5/7	-3/7	0	15/7
x_3	15/35	0	1	0	-5/35	10/35	0	25/7
x ₇	30/35	0	0	1	-45/35	20/35	1	15/7
-FO	0	0	0	1	1	0	0	15

VB	X ₁	\mathbf{x}_{2}	\mathbf{x}_3	X_4	X ₅	x_6	x ₇	b
x ₂	-1/7	1	0	0	5/7 -5/35 -45/35	-3/7	0	15/7
X_3	15/35	0	1	0	-5/35	10/35	0	25/7
X ₇	30/35	0	0	1	-45/35	20/35	1	15/7
-FO	0	0	0	1	1	0	0	15

$$\bigcirc \ \, {\sf A} \ {\sf SBV} \ \left\{0,\frac{15}{7},\frac{25}{7},0,0,0,\frac{15}{7}\right\}$$
 é ótima

$$z = -x_1 - 2x_2 - 3x_3 + x_4 = -2\frac{15}{7} - 3\frac{25}{7} = -15$$