《微积分A2》第二十二讲

教师 杨利军

清华大学数学科学系

2020年05月06日

级数(series)

Definition

<u>定义</u>: (i) 给定一个数列 $\{u_k\}_{k>1}$, 记号

$$\sum_{k=1}^{+\infty}u_k=u_1+u_2+\cdots+u_n+\cdots$$

称为无穷级数, 简称为级数; (ii) 级数常简写为 $\sum_{k\geq 1} u_k$ 或 $\sum u_k$; (iii) 称 $S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \cdots + u_n$ 为上述级数 的部分和, 序列 $\{S_n\}$ 称为级数 $\sum u_k$ 的部分和序列; (iv) 若部分和序列 $\{S_n\}$ 收敛于极限 S (有限), 则称级数 $\sum u_k$ 收敛, 其 和为 S, 且记作 $\sum u_k = S$; (v) 若部分和序列 $\{S_n\}$ 发散, 则称 级数 $\sum u_k$ 发散.

级数与广义积分之比较

级数

$$\sum_{k=1}^{+\infty} u_k$$

与广义积分

$$\int_{a}^{+\infty} f(x) dx$$

的收敛定义完全类似:

级数
$$\sum_{k=1}^{+\infty} u_k$$
 收敛, 积分 $\int_a^{+\infty} f(x) dx$ 收敛, 若 $\lim_{n \to +\infty} \sum_{k=1}^n u_k$ 存在. 若 $\lim_{b \to +\infty} \int_a^b f(x) dx$ 存在.

例一

例: 考虑如下级数的收敛性

$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)}.$$

解: 由于一般项可以表示为

$$\frac{1}{\mathsf{k}(\mathsf{k}+1)} = \frac{1}{\mathsf{k}} - \frac{1}{\mathsf{k}+1}, \quad \forall \mathsf{k} \geq 1,$$

故级数的部分和为

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \left[\frac{1}{1} - \frac{1}{2}\right] + \left[\frac{1}{2} - \frac{1}{3}\right] + \dots + \left[\frac{1}{n} - \frac{1}{n+1}\right]$$

例一续

$$S_n = 1 - \frac{1}{n+1} \to 1$$
, $\exists n \to +\infty$.

这说明所考虑的级数收敛且其和为1,即

$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = 1.$$

解答完毕.

例二

例:设数 a 满足 |a| < 1,证明级数

$$\sum_{n=0}^{+\infty}a^n$$

收敛且

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}.$$

证:由于部分和Sn 可表为

$$S_n = 1 + a + \dots + a^{n-1} = \frac{1 - a^n}{1 - a} \to \frac{1}{1 - a},$$

故所证命题成立.

例三

例: 证明如下级数发散

$$\sum_{k=1}^{+\infty} \frac{1}{\sqrt{k}}.$$

证:对部分和Sn 可作如下估计

$$\begin{split} S_n &= \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} \\ &= \frac{n}{\sqrt{n}} = \sqrt{n} \to +\infty, \quad n \to +\infty. \end{split}$$

故级数 $\sum_{k=1}^{+\infty} \frac{1}{\sqrt{L}}$ 发散. 命题得证.

级数的线性性质

Theorem

定理:设级数 $\sum_{k>1} u_k$ 和 $\sum_{k>1} v_k$ 均收敛,则对任意实数 λ ,

$$\mu$$
, 级数 $\sum_{k\geq 1} (\lambda u_k + \mu v_k)$ 也收敛, 且

$$\sum_{\mathsf{k}=1}^{+\infty}(\lambda \mathsf{u}_\mathsf{k} + \mu \mathsf{v}_\mathsf{k}) = \lambda \sum_{\mathsf{k}=1}^{+\infty} \mathsf{u}_\mathsf{k} + \mu \sum_{\mathsf{k}=1}^{+\infty} \mathsf{v}_\mathsf{k}.$$

定理证明

Proof.

证明: 考虑级数 $\sum (\lambda u_k + \mu v_k)$ 的部分和

$$\sum_{k=1}^{n} (\lambda \mathbf{u}_k + \mu \mathbf{v}_k) = \lambda \sum_{k=1}^{n} \mathbf{u}_k + \mu \sum_{k=1}^{n} \mathbf{v}_k.$$

于上式令 $n \to +\infty$, 并根据级数 $\sum u_k$ 和 $\sum v_k$ 的收敛性可知, 级数 $\sum (\lambda u_k + \mu v_k)$ 的部分和收敛, 并且

$$\sum_{\mathsf{k}=1}^{+\infty}(\lambda \mathsf{u}_\mathsf{k} + \mu \mathsf{v}_\mathsf{k}) = \lambda \sum_{\mathsf{k}=1}^{+\infty} \mathsf{u}_\mathsf{k} + \mu \sum_{\mathsf{k}=1}^{+\infty} \mathsf{v}_\mathsf{k}.$$

例子

例: 求如下级数之和

$$\sum_{k\geq 0} \frac{(-1)^k + 2^k}{3^{k+2}}.$$

解: 由于

$$\sum_{k\geq 0} \frac{(-1)^k}{3^k} = \lim_{n \to +\infty} \sum_{k=0}^n \frac{(-1)^k}{3^k} = \lim_{n \to +\infty} \frac{1 - (-\frac{1}{3})^{n+1}}{1 - (-\frac{1}{3})} = \frac{3}{4},$$

$$- 2^k \qquad \qquad 1 - (\frac{2}{3})^{n+1}$$

$$\sum_{k\geq 0} \frac{2^k}{3^k} = \lim_{n\to +\infty} \sum_{k=0}^n \frac{2^k}{3^k} = \lim_{n\to +\infty} \frac{1-(\frac{2}{3})^{n+1}}{1-\frac{2}{3}} = 3,$$

例子续

故级数

$$\begin{split} \sum_{k\geq 0} \frac{(-1)^k + 2^k}{3^{k+2}} &= \frac{1}{9} \sum_{k\geq 0} \frac{(-1)^k + 2^k}{3^k} \\ &= \frac{1}{9} \left(\sum_{k\geq 0} \frac{(-1)^k}{3^k} + \sum_{k\geq 0} \frac{2^k}{3^k} \right) \\ &= \frac{1}{9} \left(\frac{3}{4} + 3 \right) = \frac{5}{12}. \end{split}$$

解答完毕.

级数收敛的必要条件

Theorem

<u>定理</u>: 收敛级数的一般项趋向于零. 也就是说, 若级数 $\sum_{k\geq 1} u_k$ 收敛, 则 $u_k \to 0$, 当 $k \to +\infty$ 时.

Proof.

证: 依定义级数 $\sum_{k>1} u_k$ 收敛, 即它的部分和序列 $\{S_n\}$ 收敛.

设
$$S_n = \sum_{k=1}^n u_k \to S.$$
 于是 $S_{n-1} \to S.$ 故 $u_n = S_n - S_{n-1}$

$$\rightarrow S - S = 0$$
. 定理得证.

Example

例: 级数 $\sum_{k=1}^{+\infty} (-1)^k$ 不收敛, 因为它的一般项 $(-1)^k$ 不趋向于零.

Cauchy 收敛准则

Theorem

<u>定理</u>: 级数 $\sum_{k\geq 1} u_k$ 收敛, 当且仅当对 $\forall \varepsilon > 0$, 存在正整数 N, 使得

$$\left|\sum_{k=n+1}^{n+p} u_k\right| < \varepsilon, \quad \forall n \ge N, \ \forall p \ge 1. \qquad (*)$$

 \underline{u} : 记 $S_n = \sum_{k=1}^n u_k$,则级数 $\sum_{k\geq 1} u_k$ 收敛 \iff 序列 $\{S_n\}$ 收敛 \iff $\{S_n\}$ 为 Cauchy 序列 \iff $\forall \varepsilon > 0$,存在正整数 N,使得 $|S_{n+p} - S_n| < \varepsilon$, $\forall n \geq N$, $\forall p \geq 1$,此即式(*) 成立.

例子

例:证明调和级数 (harmonic series) $\sum_{k>1} \frac{1}{k}$ 发散.

证: 反证. 假设它收敛, 则由 Cauchy 收敛准则知, 对 $\forall \varepsilon > 0$, 存在正整数 N. 使得

$$\sum_{\mathsf{k}=\mathsf{n}+1}^{\mathsf{n}+\mathsf{p}}\frac{1}{\mathsf{k}}<\varepsilon,\quad\forall\mathsf{n}\geq\mathsf{N},\;\forall\mathsf{p}\geq1. \tag{*}$$

取 $\varepsilon=1/3$,则存在 N 使得式(*) 成立. 于式(*) 中取 n = N, p=N,则

$$\sum_{k=N+1}^{2N}\frac{1}{k}<\frac{1}{3}.$$

例子续

另一方面

$$\sum_{k=N+1}^{2N} \frac{1}{k} = \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N}$$

$$> \frac{1}{2N} + \frac{1}{2N} + \dots + \frac{1}{2N} = \frac{N}{2N} = \frac{1}{2}.$$

这就导出了一个矛盾. 矛盾说明调和级数发散. 证毕.

正项(非负)级数及其收敛的充要条件

Definition

定义: 如果级数 $\sum_{k=1}^{+\infty} u_k$ 的一般项 $u_k > 0 (\geq 0)$, $\forall k \geq 1$, 则称该级数为正项(非负)级数.

Theorem

<u>定理</u>: 设 $\sum_{k=1}^{+\infty} u_k$ 为非负级数,则级数收敛,当且仅当它的部分和序列 $\{S_n\}$ 有上界.

Proof.

 \underline{u} : 由于级数为非负级数, 故它的部分和 $S_n = \sum_{k=1}^n u_k$ 关于 n 单调上升. 于是序列 $\{S_n\}$ 有上界 \iff 序列 $\{S_n\}$ 收敛 \iff 级数收敛. 证毕.

比较判别法 (the comparison tests)

Theorem

<u>定理</u>:设 $\sum u_k$ 和 $\sum v_k$ 均为非负级数,且 $0 \le u_k \le v_k$, $\forall k \ge 1$,

则 (1) 若级数 $\sum v_k$ 收敛, 则级数 $\sum u_k$ 也收敛;

(2) 若级数 $\sum u_k$ 发散, 则级数 $\sum v_k$ 也发散.

例子

Example

例:考虑级数 $\sum_{k>1} \frac{1}{k^2}$ 的收敛性. 由于

$$\frac{1}{\textbf{k}^2} < \frac{1}{\textbf{k}(\textbf{k}-1)}, \quad \forall \textbf{k} \geq 2,$$

且由前例知级数 $\sum_{k\geq 2}\frac{1}{k(k-1)}=\sum_{k\geq 1}\frac{1}{k(k+1)}$ 收敛, 故由上述比较判别法则知 $\sum_{k\geq 2}\frac{1}{k^2}$ 收敛. 从而级数 $\sum_{k\geq 1}\frac{1}{k^2}$ 收敛. (注:对一个级数增加或减少有限项,不改变这个级数的收敛性)

注记

 \underline{i} : 确定级数 $\sum_{k=1}^{+\infty} \frac{1}{k^2}$ 的精确值问题称作 Basel 问题. Euler 于1734 求得这个级数的精确值, 即

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

这个结论被誉为古往今来最伟大的定理之一. 欲知详情, 可参见 William Dunham 的书《天才引导的历程》(有两个中译本), 第九章.

定理证明

Proof.

证: 记 $S_n = \sum_{k=1}^n u_k$, $T_n = \sum_{k=1}^n v_k$, 则 $S_n \leq T_n$. 由于这两个级数均为非负级数, 故 $\{S_n\}$ 和 $\{T_n\}$ 均为单调上升序列.

- (1) 若级数 $\sum v_k$ 收敛, 则序列 $\{T_n\}$ 有上界, 从而序列 $\{S_n\}$ 也有上界, 故级数 $\sum u_k$ 收敛.
- (2) 若级数 $\sum u_k$ 发散,则 $S_n \to +\infty$,从而 $T_n \to +\infty$,故级数 $\sum v_k$ 发散.证毕.

例子

课本第237页例5.2.2: 考虑级数

$$\sum_{k=1}^{+\infty} \left[e - \left(1 + \frac{1}{k} \right)^k \right]^2$$

的收敛性.

<u>解</u>: 回忆数列极限理论里的一个结论, 序列 $(1+\frac{1}{k})^k$ 严格单调上升趋向于 e, 序列 $(1+\frac{1}{k})^{k+1}$ 严格单调下降趋向于 e. 由此得

$$0 < e - \left(1 + \frac{1}{\mathsf{k}}\right)^{\mathsf{k}} < \left(1 + \frac{1}{\mathsf{k}}\right)^{\mathsf{k}+1} - \left(1 + \frac{1}{\mathsf{k}}\right)^{\mathsf{k}}$$

$$= \Big(1+\frac{1}{k}\Big)^k\frac{1}{k} < \frac{e}{k}.$$

例子续

于是对上述级数的一般项 uk 有如下估计

$$0 < u_k = \left[e - \left(1 + \frac{1}{k}\right)^k\right]^2 < \frac{e^2}{k^2}.$$

已证级数 $\sum_{k\geq 1}\frac{1}{k^2}$ 收敛, 故级数 $\sum_{k\geq 1}\frac{e^2}{k^2}$ 收敛. 于是由比较判别法知所考虑的级数 $\sum_{k\geq 1}\frac{e^k}{k^2}$ 收敛. 证毕.

比较判别法的极限形式

Theorem

 $\underline{c}\underline{r}$: 设 $\sum u_k$ 和 $\sum v_k$ 均为非负级数. 假设当k充分大时,

$$v_k>0$$
 且 $\lim_{k\to +\infty} rac{u_k}{v_k}=$ L (允许 L $=+\infty$).

- 1) 当 $0 < L < +\infty$ 时, 级数 $\sum u_k$ 和 $\sum v_k$ 的收敛性相同;
- 2) 当 L = 0 且级数 $\sum v_k$ 收敛时, 则级数 $\sum u_k$ 收敛;
- 3) 当 L = $+\infty$ 且级数 $\sum v_k$ 发散时, 则级数 $\sum u_k$ 发散.

例子

课本第237页例5.2.1: 考虑如下级数的收敛性

$$\sum_{k=1}^{+\infty} \frac{\sqrt[3]{5k^3 - k^2 + 1}}{k^2}. \quad (*)$$

<u>解</u>:记上述级数的一般项为 u_k ,再记 $v_k = \frac{1}{k}$,则

$$\begin{split} \frac{u_k}{v_k} &= \frac{\sqrt[3]{5k^3 - k^2 + 1}}{k^2} \Bigg/ \frac{1}{k} \\ &= \frac{\sqrt[3]{5k^3 - k^2 + 1}}{k} = \sqrt[3]{5 - \frac{1}{k} + \frac{1}{k^3}} \to \sqrt[3]{5}. \end{split}$$

根据比较判别法的极限形式可知, 级数 (*) 与调和级数 $\sum_{k=1}^{1}$ 的收敛性相同. 由此可见级数 (*) 发散. 解答完毕.

定理证明

证: 情形一: $0 < L < +\infty$. 由假设 $\lim_{k \to +\infty} \frac{\sqcup k}{\sqcup k} = L$ 可知, 对 任意 $\varepsilon > 0$. 存在正整数 N. 使得

$$\left| \frac{\mathbf{u_k}}{\mathbf{v_k}} - \mathbf{L} \right| < \varepsilon, \quad \forall \mathbf{k} \ge \mathbf{N}.$$

上述不等式可写作

$$(L-\varepsilon)v_k < u_k < (L+\varepsilon)v_k, \quad \forall k \geq N.$$

取 $\varepsilon = L/2$, 即得

$$\frac{L}{2}v_k < u_k < \frac{3L}{2}v_k, \quad \forall k \geq N.$$

由此立刻得知, 级数 $\sum u_k$ 和 $\sum v_k$ 的收敛性相同.

证明续一

<u>情形二</u>: L = 0. 由假设 $\lim_{k\to +\infty}\frac{u_k}{v_k}=0$ 可知, 对任意 $\varepsilon>0$, 存在正整数 N, 使得

$$0 < \frac{u_k}{v_k} < \varepsilon \quad \text{\not \mathfrak{P}} \quad 0 < u_k < \varepsilon v_k, \quad \forall k \geq N.$$

取 $\varepsilon=1$, 则 $0<u_k<v_k$, $\forall k\geq N$. 于是根据比较判别法知, 当级数 $\sum v_k$ 收敛时, 则级数 $\sum u_k$ 收敛.

证明续二

<u>情形三</u>: $L = +\infty$. 由假设 $\lim_{k \to +\infty} \frac{u_k}{v_k} = +\infty$ 可知, 对任意大的正数 M > 0, 存在正整数 N, 使得

$$\frac{u_k}{v_k} > M \quad \text{$\not P$} \quad u_k > M v_k, \quad \forall k \geq N.$$

取 M=1, 则 $u_k>v_k$, $\forall k\geq N$. 由此可见, 当级数 $\sum v_k$ 发散时, 则级数 $\sum u_k$ 也发散. 定理得证.

Cauchy 积分判别法

Theorem

定理:设函数 f(x) 在区间 $[a, +\infty)$ 上非负连续,且单调下降(不必严格),则如下级数和广义积分

$$\sum_{k=k_0}^{+\infty} f(k) \quad \text{for} \quad \int_a^{+\infty} f(x) dx$$

同时收敛或同时发散, 这里 $k_0 \geq a$.

注: 上述定理通常称为Cauchy 积分判别法.

例子

Example

例: 考虑如下级数的收敛性

$$\sum_{n=1}^{+\infty} \frac{1}{n^p}. \quad (*)$$

回忆广义积分

$$\int_1^{+\infty} \frac{dx}{x^p},$$

当p > 1 时收敛, 当 $p \le 1$ 时发散. 因此根据上述 Cauchy 积分判别法可知, 级数 (*) 当p > 1 时收敛, 当p < 1 时发散.

Riemann-Zeta 函数与 Riemann 猜想

注: 通常记由下式

$$\zeta(\mathbf{p}) = \sum_{\mathbf{p}=1}^{+\infty} \frac{1}{\mathbf{n}^{\mathbf{p}}},$$

定义的函数为 $\zeta(p)$, 称为Riemann-Zeta 函数. 这是数论领域里非常重要的函数, 这里 p 取复数值. 当今数学界的最重要的猜想(无之一)即Riemann 猜想就是关于它的猜想: 函数 $\zeta(p)$ 的非平凡零点位于复平面的直线 $x=\frac{1}{2}$ 上.

Riemann-Zeta 函数专著

定理证明

证: 由于函数 f(x) 单调下降, 故

$$f(k+1) \leq \int_k^{k+1} f(x) dx \leq f(k), \quad \forall k \geq k_0.$$

对上式关于k 求和得

$$\sum_{k=k_0}^n f(k+1) \leq \int_{k_0}^{n+1} \! f(x) dx \leq \sum_{k=k_0}^n f(k)$$

由此可知级数和广义积分

$$\sum_{k=k_0}^{+\infty} f(k) \quad \not \exists r \quad \int_a^{+\infty} f(x) dx$$

同时收敛或同时发散. 定理得证.

Cauchy 积分判别法图示

FIGURE 5

例子

例: 考虑如下级数的收敛性

$$\sum_{n=2}^{+\infty} \frac{1}{n^p (lnn)^q}.$$

解:记上述级数的一般项为 un,即

$$u_n = \frac{1}{n^p (lnn)^q}.$$

<u>情形一</u>: p > 1, $q \in \mathbb{R}$ 任意. 取 $\varepsilon > 0$ 充分小, 使得 $p - \varepsilon > 1$.

令

$$v_n = \frac{1}{n^{p-\varepsilon}},$$

则级数 $\sum_{n=2}^{+\infty} v_n$ 收敛, 且

例子续一

$$\frac{u_n}{v_n} = \frac{\frac{1}{n^p(lnn)^q}}{\frac{1}{n^{p-\varepsilon}}} = \frac{1}{n^\varepsilon(lnn)^q} \to 0, \quad n \to +\infty.$$

由比较判别法可知级数 $\sum_{n=2}^{+\infty} u_n$ 收敛.

情形二: p < 1, $q \in \mathbb{R}$ 任意. 取 $\varepsilon > 0$ 充分小, 使得 $p + \varepsilon < 1$.

令 $v_n = \frac{1}{n^{p+\epsilon}}$, 则级数 $\sum_{n=2}^{+\infty} v_n$ 发散, 且

$$\frac{u_n}{v_n} = \frac{\frac{1}{n^p(lnn)^q}}{\frac{1}{n^{p+\varepsilon}}} = \frac{n^\varepsilon}{(lnn)^q} \to +\infty, \quad n \to +\infty.$$

由比较判别法可知级数 $\sum_{n=2}^{+\infty} u_n$ 发散.

例子续二

情形三: p=1. 考虑如下广义积分

$$\int_2^{+\infty} \frac{\mathrm{d}x}{x(\ln x)^q} = \int_{\ln 2}^{+\infty} \frac{\mathrm{d}y}{y^q}.$$

显然上述广义积分当q>1 时收敛, 当 $q\leq 1$ 时发散. 根据

Cauchy 积分判别法可知, 级数

$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^q}$$

当q > 1 时收敛, 当 $q \le 1$ 时发散.

例子续三

总结: 级数

$$\sum_{n=2}^{+\infty} \frac{1}{n^p (\ln n)^q}$$

- i) 当 p > 1, q 任意时, 收敛;
- ii) 当p < 1, q 任意时, 发散;
- iii) 当 p = 1, q > 1 时, 收敛;
- iv) 当 p = 1, $q \le 1$ 时, 发散.

解答完毕.

作业

第4章总复习题(page 229-230):

5, 8, 9, 10.

习题5.1(page 234-235):

2, 3, 4, 5, 6(1)(2)(3)(4)(5)(7)(8)(9), 7.

关于题6(7)的提示: 分解 $\arctan \frac{1}{2n^2} = \arctan \alpha_n - \arctan \beta_n$, 其中 α_n, β_n 与 n 有关的数.