

# Azure Networking WAN Scenarios

Yves Pitsch Gary Ratterree





## Microsoft Global Network

### One of the largest private networks in the world

- 8,000+ ISP sessions
- 130+ edge sites
- 44 ExpressRoute locations
- 33,000 miles of lit fiber
- SDN Managed (SWAN, OLS)



## Regional Networks

#### **High Availability Design**

#### Regional network gateway

Massively parallel, hyper scale DC interconnect (up to 1.6 Pb/s)

Space and power protected

#### RNG data centers

T-shirt sized (S,M, L, XL)

Contains server racks, DC NW

RNGs are sized to support growing the region by adding data centers



## Software Defined Networking (SDN)

**Azure SDN** 

Basis of all NW virtualization in our datacenters

Decoupled

SDN allows compute to evolve and converge to a single allocator



**Key to flexibility and scale is Host SDN** 

# SDN for WAN (SWAN)

Global control plane for Inter-DC network

**High Network Utilization** 

Router agents for FIB programming



WAN Challenges and Microsoft innovation

 Power and Space: Massive scale achieved by embedding the worlds lowest cost, lowest power per bit technology into commodity switching



- Exponential growth: SWAN
  - Reduce dependencies
  - Reduce hardware lifecycle effort
  - Increase Network Utilization
- Supply chain diversity, Optical agility: OLS



What next? SONIC for WAN...

## Proposal #1 Details (Peering Router)

#### Features Required

- IS-IS
- Further augment BGP for the edge
  - Community Lists
  - AS-PATH filter
  - Route-Map
- Large ACL (for edge-facing devices)

# Further enhancements for expansion of scenario, operational support

- Sflow/IPFIX for traffic measurement
- Policy Based Routing to check BGP community before sending

### Use-case and Motivation

#### **Usecase & Benefits**

- Commodity/ whitebox peering router
- Connect back to Internal WAN
- Box/ASIC vendor agnostic
- Reduced time to market for features
- Scale horizontally w/ programmable framework



## Proposal #2 Details (Backbone Router)

### Features required

- Support for multichip/modular devices
- Full stack MPLS/LDP support (including Segment Routing)— *SONiC* + *SAI* + *ASIC implementation*
- Support of WAN-facing hardware: MACSEC, Open Line System (OLS)
- Hooks for Cloud-Based SDN Tools and Operations (e.g. Streaming Telemetry, Event-based scripts)

## Use-case and Motivation

#### **Usecase & Benefits**

- Unified configuration and management (across hardware vendor)
- Agility for defect remediation
- Integrate with Cloud SDN solutions (e.g. for Traffic Engineering)
- Ability to utilize various Network Application containers



SONiC Network Applications (BGP, SNMP, IS-IS, LDP, SR)

Obj Library/Switch State Service

SAI API/ASIC SDK (w/MPLS)

Kernel (ASIC/Networking Drivers)

ASIC (FIB) — understands labels

## Q & A







## Moving Forward: Enabling WAN Scenarios

- Global Network is growing exponentially. We need
  - Agility for fast Time to Market feature release and defect remediation
  - To minimize hardware dependencies
  - To scale and grow the WAN efficiently while controlling costs
- Sonic is an integral element of our Cloud SDN solutions for intelligent traffic management
- Two major roles
  - Edge Peering Router
  - Backbone Router