Capítol 3:

Resistors

Electrònica bàsica

Resistor: Resistència

Un resistor és un dispositiu electrònic dissenyat per a presentar una certa resistència. Així doncs, representa la oposició que presenta el circuit a deixar passar el corrent.

Correspon a la relació entre les variacions de la tensió aplicada i les variacions del corrent que hi circula.

$$R = \frac{\Delta V}{\Delta I} = \frac{V_2 - V_1}{I_2 - I_1}$$

La conductància ens indica la facilitat que es té per a que circuli el corrent.

$$G=\frac{1}{R}$$

La **resistència nominal** (R_n) és el valor teòric del resistor en sortir de la fàbrica. Aquest valor ve donat pel codi de colors imprès als resistors.

La **tolerància** (%) correspon al percentatge que es pot desviar el valor real de la resistència per damunt i per sota respecte el valor nominal corresponent. S'entén al sortir de fàbrica, no més tard.

Codificació del valor de les resistències

Color	la Franja	2ª Franja	3ª Franja	Multiplicador	Tolerància	
Negre	0	0	0	10 ⁰		
Marró	1	1	1	10 ¹	±1%	
Vermell	2	2	2	10 ²	±2%	
Taronja	3	3	3	10 ³		
Groc	4	4	4	104		
Verd	5	5	5	10 ⁵		
Blau	6	6	6 10 ⁶			
Violeta	7	7	7	107		
Gris	8	8	8	108		
Blanc	9	9	9	10 ⁹		
Or				10 ⁻¹	±5%	
Plata				10-2	±10%	

- 1^a Franja: primera xifra significativa del valor resistiu.
- 2ª Franja: segona xifra significativa del valor resistiu.
- 3ª Franja: tercera xifra significativa del valor resistiu.
- Multiplicador: número de zeros que hem d'afegir a les xifres significatives.
- Tolerància: ± % que pot variar el valor de la resistència.

Codificació del valor de les resistències (2)

Exemples

Valor: $10 \times 10^2 = 1000\Omega = 1K\Omega \pm 5\%$

Valor: $339 \times 10^{0} = 339\Omega \pm 1\%$

S'ha normalitzat que és puguin substituir els punts decimals i les comes separadores de milers per equivalents: K (kilo) equival a 10³, M (mega) a 10⁶.

0,47 ohms	0R47			
1,5 ohms	1R5			
1000 ohms	1K			
4700 ohms	4K7			
1270000 ohms	1M27			

Resistències SMD

Les resistències SMD són de muntatge superficial i el seu valor nominal no ens el dóna un codi de colors, si no que tenen una codificació amb números i lletres. Una de les codificacions més usades és la que veurem en els següents exemples:

 1^a xifra - 2^a xifra - Multiplicador $12 \times 10^2 = 1200Ω$

 1^a xifra - R equival a , - 2^a xifra 1.6Ω

R equival a , - 1^a xifra - 2^a xifra 0.22Ω

Valors normalitzats de resistors

Hi ha la possibilitat d'un número infinit de valors de resistències i seria un caos si cada fabricant fes els valors que volgués. Es van establir unes normes que donen lloc a les sèries de resistències, les més comercials són E6, E12, E24 i E48, tot i que també podem trobar la E96 i la E192.

E6	1.0		1.5	2.2	3.3	4.7		6.8				
E12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E24	1.0 1.1	1.2 1.3	1.5 1.6	1.8 2.0	2.2 2.4	2.7 3.0	3.3 3.6	3.9 4.3	4.7 5.1	5.6 6.2	6.8 7.5	8.2 9.1
E48	1.0	1.05	1.10	1.15	1.21	1.27	1.33	1.40	1.47	1.54	1.62	1.69
	1.78	1.87	1.96	2.05	2.15	2.26	2.37	2.49	2.61	2.74	2.87	3.01
	3.16	3.32	3.48	3.65	3.83	4.02	4.22	4.42	4.64	4.87	5.11	5.36
	5.62	5.90	6.19	6.49	6.81	7.15	7.50	7.87	8.25	8.66	9.09	9.53

Els valors de la taula són les xifres significatives i al darrera podem afegir el número de zeros necessari $(0.27\Omega, 2.7\Omega, 27\Omega, 270\Omega, ...)$.

■ El **coeficient de tensió** correspon a la variació relativa de la resistència segons la tensió aplicada.

$$coeficient\ de\ tensi\'o = \frac{\frac{R_2-R_1}{R_1}}{\frac{R_2}{V_2-V_1}} \times 10^6\ ppm/V$$

- La **temperatura nominal (T_n)** correspon a la temperatura que el fabricant té al seu laboratori quan fa proves.
- La **temperatura màxima (T_{màx})** correspon a la temperatura interna màxima abans no es crema el dispositiu.
- La temperatura ambient (T_a o T_{amb}) correspon a la temperatura a la qual ens trobem al utilitzar el dispositiu.
- La temperatura interna (T_i) correspon a la temperatura a la que es troba el resistor. Es calcula amb la fórmula següent:

La potència nominal (P_n) correspon a la potència màxima que podem aplicar en un component sense deteriorar el resistor, si la temperatura ambient és inferior o igual a la temperatura nominal.

Recordem que la potència es calcula de la manera següent:

$$P = V.I = V^2/_R = I^2.R(W)$$

■ La **resistència tèrmica** (R_{TH}) correspon a la dificultat que presenta l'element a que la calor generada al seu interior surti a l'exterior.

$$R_{TH} = \frac{T_i - T_{amb}}{P}$$

Per tant l'auto-escalfament és directament proporcional a la potència dissipada i a la resistència tèrmica:

$$\Delta T = P \cdot R_{TH}$$

Corba de potencia

- **Zona I:** mentre la temperatura ambient sigui inferior a la temperatura nominal, el resistor podrà arribar a consumir la potencia nominal sense problemes ja que segur que la temperatura del resistor serà inferior a la temperatura màxima.
- **Zona II:** quan la temperatura ambient sigui superior a la temperatura nominal, per a que es segueixi complint que la temperatura del resistor sigui inferior a la temperatura màxima, l'auto-escalfament del resistor sumat a la T_{amb} ha de ser inferior a la T_{màx}, és a dir, no podrem deixar escalfar tant al resistor i per tant li haurem de reduir la potència màxima a dissipar.

La tensió nominal (V_n) correspon a la màxima tensió que podem aplicar al component sense superar la potència nominal. El valor d'aquesta tensió el calcularem nosaltres a través de les següents fórmules:

$$V_n = \sqrt{P_n R_n} \longleftrightarrow I_n = \sqrt{\frac{P_n}{R_n}}$$

- La **tensió màxima** (V_{màx}) correspon al voltatge màxim que pot suportar el component abans que es trenqui, és a dir, abans que es converteixi en un curtcircuit. És una dada que ens dóna el fabricant
- La **tensió màxima total** correspon al voltatge màxim que suporta el component abans que es faci malbé, és a dir, abans no es cremi o es trenqui. Calculem el valor d'aquesta tensió gràcies a la següent fórmula:

$$V_{MAX\ TOTAL} = \min (V_{MAX}, V_n)$$

Si $T_{amb} > T_n$ aleshores haurem de modificar la V_n a partir de la màxima potència a dissipar a aquella T_{amb}

La resistència crítica correspon al valor resistiu que al aplicar-li la tensió màxima (V_{MAX}) , està dissipant la Potència nominal (P_n) . En aquest cas, la tensió màxima i la tensió nominal coincideixen.

$$V_n = \sqrt{P_n R_n} = V_{m ax}$$

Quan això es compleix R_n passarà a ser R_c

- Si R_n > R_c es trencarà abans
 Si R_n < R_c es cremarà abans

$$R_c = \frac{V_{MAX}^2}{P_n}$$

■ El **coeficient de temperatura** correspon a la variació relativa de la resistència segons la variació de la temperatura

$$TC = \frac{\frac{R_2 - R_1}{R_1}}{T_2 - T_1} \cdot 10^6 \, ppm/^{\circ}C$$

Només la podem utilitzar amb variacions lineals

Si les variacions amb la temperatura no són lineals aleshores:

$$TC = \frac{dR}{dT} \cdot \frac{1}{R} \cdot 10^6 \ ppm/^{\circ}C$$

- El **nivell de soroll** depèn del material i de la qualitat de la resistència.
- Són les variacions de senyal que es detecten sobre una resistència quan li fem arribar una intensitat constant

$$N_{SOROLL} = \underbrace{\frac{V_{RMS}}{V_{dc}}} \qquad \qquad \sqrt{\frac{1}{T} \times \int_{0}^{T} S^{2}(t) dt}$$

Estabilitat (Derives)

A partir del moment que el resistor surt de fàbrica té una certa deriva depenent de la potència que té que dissipar, de la temperatura ambient a la que ha de treballar, el valor de la resistència i del temps de funcionament.

Els fabricants solen donar nomogrames adequats per a determinar un valor probable d'aquesta deriva.

Tipus de resistors lineals (I)

- **Resistors Aglomerats:** Es fa una pasta amb carbó i diferents aïllants i se li dona forma. No tenen efecte inductiu propi però si efecte capacitiu.
- Poden suportar fortes sobrecarregues.

Avantatges

- Donen molt de soroll.
- Tenen una deriva molt forta al llarg del temps.
- Cada vegada s'utilitzen menys.

Desavantatges

Tipus de resistors lineals (II)

Resistors de pel·lícula de carbó: Corresponen a un cilindre de ceràmica enrotllat amb carbó.

Procés de fabricació:

- Fabricació del nucli ceràmic.
- Piròlisis del metà.
- Espiralat.
- Soldadura de terminals.
- Protecció de diferents capes d'aïllant.
- Pintura del codi de colors.
- Comprovacions.

Imatge d'un resistor de pel·lícula de carbó

Tipus de resistors lineals (III)

- Resistors de pel·lícula metàl·lica: Corresponen a un cilindre de ceràmica enrotllat amb metall. El procés de fabricació és similar al de la pel·lícula de carbó.
- Hi ha tota la gama des de conductors fins a semiconductors.
- L'espiralat es fa amb raigs làser controlant el valor de la resistència amb un pont de Weahnstone mentre dura l'espiralat.

Té un nivell de soroll despreciable i una estabilitat més bona que els pirolítics.

Imatge d'un resistor de pel·lícula metàl·lica

Tipus de resistors lineals (IV)

- **Resistors bobinats:** Tenen un nucli ceràmic i fils metàl·lics bobinats dintre el nucli. S'utilitzen materials d'alta resistivitat
- Tenen un nivell de soroll menyspreable.
- Per a altes freqüències predomina l'efecte inductiu.

En els resistors bobinats de precisió s'inclouen els resistors que precisen alta estabilitat, absència de soroll i també els auto inductius amb els enrotllaments de sentit contrari.

Tipus de resistors lineals (V)

Resistors variables: A través d'un comandament extern, podem variar el valor de la seva resistència. Solen utilitzar-se per modificar el volum dels aparells, modificar la brillantor de la imatge o el guany d'un amplificador, per exemple. Es caracteritzen per tenir un angle de gir i el recorregut del cursor (circular o longitudinal).

Imatge d'un resistor variable

Tipus de resistors no lineals (I)

- NTC: Són resistors amb un coeficient de temperatura negatiu. Presenten una variació de la resistència amb la temperatura que no és lineal.
- Estan formats per materials semiconductors.
- Presenten una resistència nominal.
- Tenen un cert temps de resposta.
- Tenen un cert temps de recuperació.
- Presenten una constant de temps tèrmica K_t que representa el temps necessari perquè la temperatura baixi un 63% després de la desconnexió.

Tipus de resistors no lineals (II)

- **PTC:** Solament s'utilitza la zona II on es dona un canvi de l'estructura cristal·lina del BaTiO₃. Aproximadament per aquesta zona es valida l'expressió següent: $R \approx E \times e^{B \times T}$
- Tenen un cert grau de dependència amb la tensió per valors alts de la entrada.
- Presenten un coeficient de temperatura.
- Presenten una constant de temps tèrmica.

Tipus de resistors no lineals (III)

- **VDR:** Són resistors variables amb la tensió però de forma no lineal. Aquesta variació és deguda a l'estructura interna dels VDR ja que estan formats per un granulat de Carbur de silici o bé, Òxid de zinc. La resistència de contacte entre els grans varia molt amb la tensió; i el canvi és instantani.
- La característica V-I a l'escala lineal es pot utilitzar per trobar el punt de treball amb la tècnica de la recta de càrrega.
- Els VDR en corrent altern donen distorsions importants tan a les tensions com als corrents.

Tipus de resistors no lineals (IV)

- LDR: Són resistors que redueixen la seva resistència quan estan sotmesos a la llum. Solen estar fabricats amb Sulfur de Cadmi o Selenur de Cadmi que no disposen de portadors si estan a les fosques. L'energia radiant és suficient per arrancar electrons i permetre la conducció.
- La relació entre R i E és la següent: $R = A \times e^{-\alpha}$
- Les unitats d'il·luminació es mesuren d'acord amb la sensibilitat de l'ull humà a les diferents longituds d'ona segons la següent corba:

Exercicis Resolts

$$R_1 = 1.6k\Omega$$
 $R_2 = 100k\Omega$

$$P_{n1} = 1W \qquad P_{n2} = 2W$$

$$V_{n1} = 250V$$
 $V_{n2} = 200V$

$$T_n = 75^{\circ}$$
 $T_{amb} = 25^{\circ}$

$$V_{maxT1} = (250, \sqrt{1 \times 1600}) = \min(250,40) = 40V$$

$$V_{maxT2} = (200, \sqrt{2 \times 10^5}) = \min(250, 447, 21) = 200V$$

$$V_{maxTotal} = min(40, 200) = 40V$$

Exercicis Resolts

$$R_1 = 1.6k\Omega$$
 $R_2 = 100k\Omega$

$$P_{n1} = 1W \qquad P_{n2} = 2W$$

$$V_{n1} = 250V$$
 $V_{n2} = 200V$

$$T_n = 75^{\circ}$$
 $T_{amb} = 25^{\circ}$

$$I_{maxT1} = \frac{40}{1.6k} = 25mA$$

$$I_{maxT2} = \frac{200}{100k} = 2mA$$

$$I_{maxTotal} = min(25mA, 2mA) = 2mA$$

$$V_{maxTotal} = I_{maxTotal} (1.6k + 100k) = 203.2V$$

