Х22-Т6 — Колебания в заряженном цилиндре

A1^{0.50} Диск радиусом R заряжен поверхностной плотностью заряда σ_R . Определите потенциал $\varphi(y)$ в точке на оси на расстоянии y от центра диска. Потенциал равен нулю на бесконечности.

Потенциал от кольца шириной dr радиусом r

$$d\varphi = k \frac{\sigma_R \cdot 2\pi r dr}{\sqrt{y^2 + r^2}}$$

Потенциал от всего диска находим интегрированием:

$$\varphi(y) = \pi k \sigma_R \int_0^R \frac{d(r^2)}{\sqrt{y^2 + r^2}} = 2\pi k \sigma_R \left(\sqrt{R^2 + y^2} - |y| \right)$$

Ответ:

$$\varphi(y) = 2\pi k \sigma_R \left(\sqrt{R^2 + y^2} - |y| \right)$$

A2^{1.00} Два таких диска радиусом R заряжены поверхностной плотностью заряда $\sigma_R > 0$ находятся параллельно друг другу. Расстояние между центрами дисков равно 2L, центры находятся на оси дисков. В положении равновесия находятся заряд q массой m, который может двигаться только вдоль оси дисков. Определите угловую частоту ω_1 колебаний такого заряда. Какой знак заряда?

При смещении заряда на x вдоль оси на ближайшем диске оказывается внешнее кольцо шириной $\delta = 2Rx/L$, которое создаёт возвращающую силу. Суммарное поле остальных зарядов равно нулю. Поле этого кольца

$$E_x(x) = -k \frac{2\pi R \delta \sigma_R}{(L^2 + R^2)} \frac{L}{\sqrt{L^2 + R^2}} = -\frac{\sigma_R R^2}{\varepsilon_0 (L^2 + R^2)^{3/2}} x.$$

Уравнение движения заряда

$$m\ddot{x} = qE(x)$$
.

Угловая частота при колебаниях:

$$\omega^2 = \frac{q\sigma_R R^2}{m\varepsilon_0 (L^2 + R^2)^{3/2}}.$$

Ответ:

$$\omega^2 = \frac{q\sigma_R R^2}{m\varepsilon_0 (L^2 + R^2)^{3/2}},$$

$$q > 0$$
.

A3^{1.00} Теперь этот заряд может двигаться только в перпендикулярном направлении. Выразите угловую частоту ω_2 колебаний в таком случае через ω_1 . Какой теперь знак заряда?

Используем теорему Гаусса для маленького цилиндра между дисками, чтобы найти зависимость радиального поля $E_r(r)$ от смещения от оси r:

$$2\pi r \cdot 2x E_r(r) + 2\pi r^2 E_x(x) = 0$$

$$E_r(r) = -\frac{1}{2}E_x(x)\frac{r}{x}.$$

Заряд должен быть другого знака.

Видно, что коэффициент в линейной зависимости в 2 раза меньше, поэтому,

$$\omega_2 = \frac{\omega_1}{\sqrt{2}}.$$

Ответ:

$$\omega_2 = \frac{\omega_1}{\sqrt{2}},$$

$$q < 0$$
.

B1^{1.00} Боковая поверхность цилиндра радиусом R и длиной L заряжена поверхностной плотностью заряда σ_L . Определите потенциал в точке на оси на расстоянии z от центра одного из оснований цилиндра. Потенциал равен нулю на бесконечности.

Потенциал от кольца высотой dl на расстоянии l от нуля

$$d\varphi(y) = k \frac{\sigma_L \cdot 2\pi R dl}{\sqrt{(z+l)^2 + R^2}}.$$

Потенциал от всей боковой поверхности цилиндра находим интегрированием:

$$\varphi(y) = 2\pi kR\sigma_L \int_z^{L+z} \frac{d(l+z)}{\sqrt{(l+z)^2 + R^2}} = 2\pi kR\sigma_L \left(\operatorname{arth} \frac{L+z}{\sqrt{(L+z)^2 + R^2}} - \operatorname{arth} \frac{z}{\sqrt{z^2 + R^2}} \right).$$

Ответ:

$$\varphi(y) = 2\pi k R \sigma_L \left(\operatorname{arth} \frac{L+z}{\sqrt{(L+z)^2 + R^2}} - \operatorname{arth} \frac{z}{\sqrt{z^2 + R^2}} \right).$$

B2^{1.00} Два таких цилиндра (радиусом R и длиной L, поверхность заряжена поверхностной плотностью заряда $\sigma_L > 0$) поставлены рядом вплотную и имеют общую ось. В положении равновесия находятся заряд q массой m, который может двигаться только вдоль оси цилиндров. Определите угловую частоту ω_3 колебаний такого заряда. Какой знак заряда?

При смещении заряда на x вдоль оси на дальнем цилиндре оказывается внешнее кольцо шириной $\delta = 2x$, которое создаёт возвращающую силу. Суммарное поле остальных зарядов равно нулю.

Поле этого кольца

$$E_x(x) = k \frac{2\pi R \delta \sigma_L}{(L^2 + R^2)} \frac{L}{\sqrt{L^2 + R^2}} = \frac{\sigma_L R L}{\varepsilon_0 (L^2 + R^2)^{3/2}} x.$$

Уравнение движения заряда

$$m\ddot{x} = qE_x(x),$$

видно, что заряд должен быть отрицательным.

Угловая частота при колебаниях:

$$\omega_3^2 = \frac{|q|\sigma_L RL}{m\varepsilon_0 (L^2 + R^2)^{3/2}}.$$

Страница 2 из 4 ≈

Ответ:

$$\omega_3^2 = \frac{|q|\sigma_L RL}{m\varepsilon_0 (L^2 + R^2)^{3/2}},$$

$$q < 0$$
.

B3^{0.50} Теперь этот заряд может двигаться только в перпендикулярном направлении. Выразите угловую частоту ω_4 колебаний в таком случае через ω_3 . Какой теперь знак заряда?

Всё происходит аналогично А3, то есть

$$E_r(r) = -\frac{1}{2}E_x(x)\frac{r}{x},$$

значит $\omega_4^2 = \omega_3^2/2$ и заряд тоже должен поменять знак.

Ответ:

$$\omega_4 = \frac{\omega_3}{\sqrt{2}},$$

$$q > 0$$
.

C1^{1.50} Заряженный цилиндр радиусом R высотой L=40R/9 состоит из боковой поверхности и одного основания. Поверхностная плотность заряда боковой поверхности σ_L , основания σ_R . Если поместить точечный заряд в центр противоположного основания, то он окажется в положении равновесия. Определите отношение σ_L/σ_R .

Напряженность поля, создаваемого основанием цилиндра найдём как

$$E_R = -\left. \frac{d\varphi}{dy} \right|_L.$$

Эта напряженность равна

$$E_R = 2\pi\sigma_R k \left(1 - \frac{L}{\sqrt{R^2 + L^2}} \right).$$

Напряженность поля, создаваемого боковыми стенками цилиндра найдём как

$$E_L = -\left. \frac{d\varphi}{dz} \right|_0.$$

Эта напряженность равна

$$E_L = 2\pi\sigma_L k \left(1 - \frac{R}{\sqrt{R^2 + L^2}} \right).$$

Суммарное поле равно нулю, отсюда получаем:

$$\frac{\sigma_L}{\sigma_R} = -\frac{\sqrt{R^2 + L^2} - L}{\sqrt{R^2 + L^2} - R} = -\frac{41 - 40}{41 - 9} = -\frac{1}{32}$$

Ответ:

$$\frac{\sigma_L}{\sigma_R} = -\frac{\sqrt{R^2 + L^2} - L}{\sqrt{R^2 + L^2} - R} = -\frac{1}{32}$$

Страница 3 из 4 ≈

С2^{2.50} Заряженный цилиндр радиусом R=28b высотой L=45b состоит из боковой поверхности и одного основания. Заряд боковой поверхности $\sigma_L=-8\sigma_0$, заряд основания $\sigma_R=25\sigma_0>0$. На оси этой системы помещают частицу с зарядом q>0. Оцените численно координаты z (в единицах b) положений равновесия если частица может двигаться только вдоль оси. Координата z отсчитывается как на картинке. Сделайте это максимально точно, однако, достаточно с точностью 1%. Ответы попадающие в 1% от правильного получат полный балл.

Ищем такую точку, в которой суммарное поле равно нулю. Далее все длины измеряем в единицах b. Для точек с координатами z > -45 получаем уравнение

$$E(z) + E(z) = 0,$$

$$25\left(\frac{45+z}{\sqrt{28^2 + (45+z)^2}} - 1\right) - 8\left(\frac{28}{\sqrt{28^2 + (45+z)^2}} - \frac{28}{\sqrt{28^2 + z^2}}\right) = 0.$$

Чтобы решить уравнение на калькуляторе, представим его в виде z = f(z):

$$f(z) = -\frac{901}{25} + \sqrt{28^2 + (45 + z)^2} \left(1 - \frac{224}{25\sqrt{28^2 + z^2}} \right).$$

Получается ответ z = 0. Можно его подставить в f(z) и в этом явно убедиться.

Для того, чтобы учесть точки с координатами z < -45, составим следующее уравнение (меняется поле диска):

$$25\left(\frac{45+z}{\sqrt{28^2+(45+z)^2}}+1\right)-8\left(\frac{28}{\sqrt{28^2+(45+z)^2}}-\frac{28}{\sqrt{28^2+z^2}}\right)=0.$$

Чтобы решить уравнение на калькуляторе, представим его в виде z = f(z):

$$f(z) = -\frac{901}{25} - \sqrt{28^2 + (45+z)^2} \left(1 + \frac{224}{25\sqrt{28^2 + z^2}} \right).$$

Данное уравнение сходится очень медленно. Можно найти его корень методом бинарного поиска: подставляя некоторое число и проводя итерации наблюдать, увеличивается или уменьшается величина z.

Правильный ответ z = -1632.60163579414519440461610908047948157856626649004333963591...

Ответ:

$$\frac{z}{b} = 0.$$

 $\frac{z}{b} = -1632.60163579414519440461610908047948157856626649004333963591...$

C3^{1.00} В условиях предыдущего пункта частицу поместили в ближайшее к цилиндру положение равновесия, её масса m. Определите угловую частоту ω малых колебаний частицы.

Выбираем точку с координатой z=0. Раскладываем напряженность поля, получаем, что в этой точке $E(z)=-\alpha z,\, \alpha=2\pi\sigma_0 k\cdot \frac{560}{2809}\frac{z}{b}.$

Из уравнения колебаний

$$m\ddot{z} = -q\alpha z$$

получаем ответ.

Ответ:

$$\omega^2 = \frac{560\sigma_0}{5618\varepsilon_0 bm}$$

Страница 4 из 4 ≈