Modelo lineal Bayesiano

A. M. Alvarez-Meza, Ph.D. amalvarezme@unal.edu.co

Departamento de ingeniería eléctrica, electrónica y computación Universidad Nacional de Colombia-sede Manizales

Contenido

- Modelo lineal y mínimos cuadrados
- 2 Modelos Bayesianos
- Máxima verosimilitud
- Modelo lineal Bayesiano
- Maximum a posteriori (MAP)

Modelo lineal

- $y = f(x) = mx + b \Rightarrow$ noción lineal desde algebra básica.
- $y = f(x) = xw + b \Rightarrow$ extensión algebra vectorial.
- Los datos no siempre llegan limpios y no siempre comparten relaciones lineales!

Modelo lineal: extensión matricial

$$\hat{\boldsymbol{y}} = f(\boldsymbol{X}) = \boldsymbol{X}\boldsymbol{w} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1P} \\ x_{21} & x_{22} & \dots & x_{2P} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{NP} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_P \end{bmatrix}$$

- $\hat{\mathbf{y}} \in \mathbb{R}^N$, $\mathbf{X} \in \mathbb{R}^{N \times P}$, $\mathbf{w} \in \mathbb{R}^P$
- N: # muestras.
- *P* : # características.

Cómo encontrar los parámetros del modelo lineal (w)?

Modelo lineal regularizado

$$\epsilon(\boldsymbol{w}, \lambda) = \frac{1}{2} \|\boldsymbol{e}\|_2^2 + \frac{1}{2} \lambda \|\boldsymbol{w}\|_2^2$$

- $\|e\|_2^2$: cuantifica el desajuste entre los datos y el modelo lineal de aproximación.
- $\|\mathbf{w}\|_2^2$: cuantifica el sobreajuste (complejidad) de la solución.
- $\lambda \in \mathbb{R}^+$: parámetro de balance ("trade-off").
- Se necesita un λ que garantice una solución simple pero .exacta".

Regresión desde representación no lineal

- Polinomial: $\phi(\mathbf{x}) = \left[\mathbf{x}^{j}\right]_{j=1}^{D}$, D: grado del polinomio.
- Exponencial: $\phi\left(\mathbf{x}|\{\boldsymbol{\mu}_j\}_{j=1}^Q,\sigma\right) = \left[\exp\left(\frac{-\|\mathbf{x}-\boldsymbol{\mu}_j\|_2^2}{2\sigma^2}\right)\right]_{j=1}^Q$.
- Sigmoidal: $\phi\left(\mathbf{x}|\{\mathbf{\mu}_j\}_{j=1}^Q,\sigma\right) = \left[1/\left(1+\exp\left(\|\mathbf{x}-\mathbf{\mu}_j\|_2^2/(2\sigma^2)\right)\right)\right]_{j=1}^Q.$

Solución del modelo lineal sobre representaciones no lineales

Solución sobre X :

$$\boldsymbol{w}^* = \left(\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$y_i = \mathbf{x}_i \mathbf{w}$$

• Solución sobre Φ :

$$\mathbf{w}^* = \left(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \lambda \mathbf{I}\right)^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$$

$$\mathbf{X} \in \mathbb{R}^{N \times P}, \ \mathbf{w} \in \mathbb{R}^{P}, \ \mathbf{X}^{\top} \mathbf{X} \in \mathbb{R}^{P \times P}.$$

$$y_i = \phi(\mathbf{x}_i) \mathbf{w}$$

$$\Phi \in \mathbb{R}^{N \times Q}$$
. $\mathbf{w} \in \mathbb{R}^{Q}$. $\Phi^{\top} \Phi \in \mathbb{R}^{Q \times Q}$.

Thomas Bayes

Thomas Bayes 1701–1761

Thomas Bayes was born in Tunbridge Wells and was a clergyman as well as an amateur scientist and a mathematician. He studied logic and theology at Edinburgh University and was elected Fellow of the

Royal Society in 1742. During the 18th century, issues regarding probability arose in connection with

gambling and with the new concept of insurance. One particularly important problem concerned so-called inverse probability. A solution was proposed by Thomas Bayes in his paper 'Essay towards solving a problem in the doctrine of chances', which was published in 1764, some three years after his death, in the *Philosophical Transactions of the Royal Society*. In fact, Bayes only formulated his theory for the case of a uniform prior, and it was Pierre-Simon Laplace who independently rediscovered the theory in general form and who demonstrated its broad applicability.

Máxima verosimilitud I

• Supongamos la salida y del modelo de la forma:

$$y = f\left(\mathbf{x}, \mathbf{w}\right) + \epsilon$$

donde $\epsilon \sim \mathcal{N}(0, \beta^{-1})$.

• La incertidumbre en y está dada como

$$p(y|\mathbf{x}, \mathbf{w}, \beta^{-1}) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Consideremos un conjunto de datos (de entrenamiento)

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^{\top}, \dots, \mathbf{x}_N^{\top} \end{bmatrix}^{\top},$$

 $\mathbf{y} = \begin{bmatrix} y_1, \dots, y_N \end{bmatrix}^{\top},$

con $\mathbf{x}_i \in \mathbb{R}^P$, $\mathbf{y} \in \mathbb{R}$.

Ejemplo:

Máxima verosimilitud II

• Suponiendo que los datos son independientes e idénticamente distribuidos (iid) y $f(\mathbf{x}, \mathbf{w}) = \phi(\mathbf{x})\mathbf{w}$:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta) = \prod_{i=1}^{N} \mathcal{N}(y_i|\phi(\mathbf{x}_i)\mathbf{w},\beta^{-1})$$

Tomando el logaritmo de la verosimilitud se tiene

$$\log (p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta)) = \sum_{i=1}^{N} \log (\mathcal{N}(y_i|\phi(\mathbf{x}_i)\mathbf{w}, \beta^{-1}))$$
$$= \frac{N}{2} \log (\beta) - \frac{N}{2} \log (2\pi) - \beta E_D(\mathbf{w})$$
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \phi(\mathbf{x}_i)\mathbf{w})^2$$

• Ejercicio: Demuestre la anterior expresión.

Máxima verosimilitud III

- ullet Maximizar la verosimilitud es equivalente a minimizar $-eta {\sf E}_D({oldsymbol w})$
- De nuevo,

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \phi(\mathbf{x}_i) \mathbf{w})^2$$
$$= \frac{1}{2} (\mathbf{y} - \Phi \mathbf{w})^{\top} (\mathbf{y} - \Phi \mathbf{w})$$

donde

$$oldsymbol{\Phi} = egin{bmatrix} \phi(oldsymbol{x}_1) \ \phi(oldsymbol{x}_2) \ dots \ \phi(oldsymbol{x}_N) \end{bmatrix}$$

 $\Phi \in \mathbb{R}^{N \times Q}$, $\phi : \mathbb{R}^P \to \mathbb{R}^Q$.

Máxima verosimilitud IV

• La verosimilitud logarítmica está dada entonces como:

$$\log (p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta)) = \frac{N}{2} \log(\beta) - \frac{N}{2} \log(2\pi) - \frac{\beta}{2} (\mathbf{y} - \Phi \mathbf{w})^{\top} (\mathbf{y} - \Phi \mathbf{w})$$

Se tiene entonces

$$\begin{split} \frac{\partial \log \left(p\left(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}, \beta \right) \right)}{\partial \boldsymbol{w}} &= -\frac{\beta}{2} \frac{\partial}{\partial \boldsymbol{w}} \left[\left(\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w} \right) \right] \\ &= -\frac{\beta}{2} \frac{\partial}{\partial \boldsymbol{w}} [\boldsymbol{y}^{\top} \boldsymbol{y} - 2 \boldsymbol{y}^{\top} \boldsymbol{\Phi} \boldsymbol{w} + \boldsymbol{w}^{\top} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{w}] \end{split}$$

Note que

$$\frac{\partial \left(\boldsymbol{a}^{\top} \boldsymbol{x} \right)}{\partial \boldsymbol{x}} = \boldsymbol{a}, \qquad \frac{\partial \left(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \right)}{\partial \boldsymbol{x}} = \left(\boldsymbol{A} + \boldsymbol{A}^{\top} \right) \boldsymbol{x}.$$

Máxima verosimilitud V

Por ende

$$\frac{\partial \log \left(p\left(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta \right) \right)}{\partial \mathbf{w}} = \beta \left[\mathbf{\Phi}^{\top} \mathbf{y} \mathbf{w} - \mathbf{\Phi}^{\top} \mathbf{\Phi} \mathbf{w} \right].$$

• La solución de máxima verosimilitud para **w** está dada como:

$$oldsymbol{w}_{ML} = \left(oldsymbol{\Phi}^ opoldsymbol{\Phi}^ opoldsymbol{y}
ight)^{-1}oldsymbol{\Phi}^ opoldsymbol{y},$$

• La solución de máxima verosimilitud para β se obtiene de:

$$\frac{\partial \log \left(p\left(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \beta\right)\right)}{\partial \beta} = \frac{N}{2\beta} - \frac{1}{2} \left(\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w}\right)^{\top} \left(\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w}\right).$$

Ejercicio: Demuestre la anterior expresión.

Y así,

$$\frac{1}{\beta_{ML}} = \frac{1}{N} (\mathbf{y} - \phi \mathbf{w}_{ML})^{\top} (\mathbf{y} - \phi \mathbf{w}_{ML}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \phi(\mathbf{x}_i))^2.$$

Máxima verosimilitud VI

- Al igual que en mínimos cuadrados, el modelo de máxima verosimilitud puede regularizarse.
- Se pretende controlar el sobre entrenamiento.
- La función de error toma la forma

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N (y_i - \phi(\mathbf{x}_i)\mathbf{w})^2 + \frac{\lambda}{2} \mathbf{w}^\top \mathbf{w},$$

donde $E_W(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$.

• El valor de \boldsymbol{w} que minimiza $E_D(\boldsymbol{w}) + \lambda E_W(\boldsymbol{w})$ está dado por:

$$\mathbf{w} = \left(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \lambda \mathbf{I}\right)^{-1}\mathbf{\Phi}^{\top}\mathbf{y}.$$

Modelo Bayesiano como alternativa a la regularización

- Modelos lineales basados en mínimos cuadrados y máxima verosimilitud pueden regularizarse.
- El valor del parámetro de regularización se impone o asume.
- Una alternativa a la regularización es el tratamiento Bayesiano.

Algunas consideraciones

• La verosimilitud del modelo lineal esta dado por:

$$p(\mathbf{y}|\boldsymbol{\phi}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{y}|\boldsymbol{\phi}\mathbf{w}, \beta^{-1}\mathbf{I}).$$

- En máxima verosimilitud se calculó una solución puntual para $m{w}
 ightarrow m{w}_{ML}.$
- En estimación Bayesiana se asume un prior para w y se calcula la probabilidad a posteriori de w dados los datos y.
- ullet El posteriori sobre $oldsymbol{w}$ se usa para hacer predicciones.

Teorema de Bayes

• Para calcular el posterior sobre **w** se usa el teorema de Bayes:

$$p(\mathbf{w}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{y})},$$

donde p(y) es la evidencia, p(y|w) es la verosimilitud y p(w) es el prior.

- Usando el modelo $\mathbf{y} = f(\mathbf{w}, \mathbf{x}) + \epsilon$; con $\epsilon \sim \mathcal{N}(0, \beta^{-1})$, la verosimilitud es conocida.
- Dependiendo del prior que se escoja para w, es posible calcular analíticamente el posterior.

Prior y posterior

- Asumiendo que el prior es Gaussiano, el posterior es igualmente Gaussiano.
- En particular, suponga que $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$.
- Usando propiedades de la Gaussiana, se puede demostrar que:

$$p(\mathbf{w}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{y})} = \frac{\mathcal{N}(\mathbf{y}|\Phi\mathbf{w},\beta^{-1}\mathbf{I})\mathcal{N}(\mathbf{w}|\mathbf{m}_0,\mathbf{S}_0)}{p(\mathbf{y})}$$
$$= \mathcal{N}(\mathbf{w}|\mathbf{m}_N,\mathbf{S}_N).$$

donde

$$egin{aligned} m{m}_{\mathcal{N}} &= m{S}_{\mathcal{N}} \left(m{S}_0^{-1} m{m}_0 + eta m{\Phi}^{ op} m{y}
ight) \ m{S}_{\mathcal{N}}^{-1} &= m{S}_0^{-1} + eta m{\Phi}^{ op} m{\Phi}. \end{aligned}$$

Ejercicio: Demuestre las igualdades anteiores. Ver propiedades Gaussiana Multivariada en [Bishop, 2006] y los lemmas de la inversa de una matriz inversa https://tlienart.github.io/posts/2018/12/13-matrix-inversion-lemmas/index html.

A. M. Alvarez (UNAL)

Propiedades de la Gaussiana

 Dadas una distribución Gaussiana marginal para x, y una distribución Gaussiana condicional para y, dado x, de la forma:

$$egin{aligned}
ho(\mathbf{x}) &= \mathfrak{N}\left(\mathbf{x}|oldsymbol{\mu}, oldsymbol{\Delta}^{-1}
ight) \
ho(\mathbf{y}|\mathbf{x}) &= \mathfrak{N}\left(\mathbf{y}|oldsymbol{A}\mathbf{x}+oldsymbol{b}, oldsymbol{L}^{-1}
ight) \end{aligned}$$

la distribución marginal de y, y la distribución condicional de x dado y están dadas por:

$$egin{aligned}
ho(\mathbf{y}) &= \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{\mu}+\mathbf{b},\mathbf{L}^{-1}+\mathbf{A}\mathbf{\Delta}^{-1}\mathbf{A}^{ op}
ight) \
ho(\mathbf{x}|\mathbf{y}) &= \mathcal{N}\left(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{ op}\mathbf{L}(\mathbf{y}-\mathbf{b})+\mathbf{\Delta}\mathbf{\mu}\},\mathbf{\Sigma}
ight) \end{aligned}$$

donde

$$oldsymbol{\Sigma} = \left(oldsymbol{\Delta} + oldsymbol{A}^ op oldsymbol{L} oldsymbol{A}
ight)^{-1}$$

Prior más simple

- Un prior más sencillo sigue la forma $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$.
- El posterior está dado como

$$p(\boldsymbol{w}|\boldsymbol{y}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_N, \boldsymbol{S}_N)$$
.

donde

$$m{m}_{N} = eta m{S}_{N} m{\Phi}^{ op} m{y}$$

 $m{S}_{N}^{-1} = m{\alpha} m{I} + m{\beta} m{\Phi}^{ op} m{\Phi}.$

Ejemplo: posterior

$$\beta^{-1} = 0.04$$
, $\alpha = 2$, $w_0 = -0.3$, $w_1 = 0.5$.

Maximum a posteriori (MAP)

- La regularización se puede ver como la estimación del Maximum A Posteriori (MAP).
- El logaritmo del posterior es una función de w

$$\log (p(\boldsymbol{w}|\boldsymbol{y})) = -\frac{\beta}{2} \sum_{i=1}^{N} (y_i - \phi(\boldsymbol{x}_i)\boldsymbol{w})^2 - \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + \text{cte}$$

• Equivalente a la regularización si $\lambda = \alpha/\beta$.

Ejercicio: Demuestre la igualdad anterior teniendo en cuenta el modelo de mínimos cuadrados regularizados con norma-2.

Distribución predictiva

- Objetivo: hacer predicciones de y para nuevos valores x.
- Denotemos ese nuevo valor de entrada como x_{*} y la predicción resultante como y_{*}.
- La distribución predictiva para y* está dada como:

$$p(y_*|\mathbf{y}, \alpha, \beta, \mathbf{x}_*) = \int p(y_*|\mathbf{w}, \beta, \mathbf{x}_*) p(\mathbf{w}|\mathbf{y}, \alpha, \beta) d\mathbf{w}$$

• Usando las propiedades de la Gaussiana se puede demostrar que:

$$p\left(y_{*}|\boldsymbol{y},\alpha,\beta,\boldsymbol{x}_{*}\right) = \mathcal{N}\left(y_{*}|\phi(\boldsymbol{x}_{*})\boldsymbol{m}_{N},\sigma_{N}^{2}\left(\boldsymbol{x}_{*}\right)\right),$$
 donde $\sigma_{N}^{2}\left(\boldsymbol{x}_{*}\right) = \beta^{-1} + \phi\left(\boldsymbol{x}_{*}\right)\boldsymbol{S}_{N}\phi\left(\boldsymbol{x}_{*}\right)^{\top}$

• β y α se han asumido conocidos.

Ejemplo: distribución predictiva

Aproximación de la evidencia l

- Si no se conocen α y β , cómo se pueden estimar a partir del conjunto de entrenamiento?
- En un tratamiento Bayesiano general, se ponen priors sobre α y β y se calculan los posteriores.
- Alternativamente, se puede estimar como los parámetros que maximizan la evidencia $p(\mathbf{y}|\alpha,\beta)$.
- Este método se conoce como máxima verosimilitud tipo II, aproximación de la evidencia, Bayes empírico.

Aproximación de la evidencia II

La evidencia está dada como

$$p(\mathbf{y}|\alpha,\beta) = \int p(\mathbf{y}|\mathbf{w},\beta) p(\mathbf{w}|\alpha) d\mathbf{w}$$
evidencia =
$$\int \text{verosimilitud} \times prior$$

• Maximizando la expresión anterior en función de α y β :

$$\alpha = \frac{\gamma}{\boldsymbol{m}_{N}^{\top} \boldsymbol{m}_{N}},$$

donde
$$\gamma = \sum_{i} \frac{\lambda_{i}}{\alpha + \lambda_{i}}, \ (\beta \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}) \ \boldsymbol{u}_{i} = \lambda_{i} \boldsymbol{u}_{i},$$

$$\boldsymbol{m}_{N} = \beta \left(\beta \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} + \alpha \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{y}.$$

• Note que es una solución iterativa para α , porque γ y $\textbf{\textit{m}}_{\textit{N}}$ dependen de α .

Aproximación de la evidencia III

• Derivando $\log (p(y|\alpha,\beta))$ con respecto a β

$$rac{1}{eta} = rac{1}{N-\gamma} |oldsymbol{y} - oldsymbol{\Phi} oldsymbol{m}_N|^2$$
 .

• De nuevo esta es una solución implícita para β , porque m_N depende de β , la solución es iterativa.

Referencias I

Géron, A., (2019).

Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly Media.

Hansen, P. C. (1998).

Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. (Vol. 4), Siam.

Bishop, C. (2006).

Pattern recognition.

Machine Learning, 128.