Maximum Matching via Maximal Matching Queries

Christian Konrad, Kheeran K. Naidu & Arun Steward

University of Bristol, UK

 $\{\mathit{christian.konrad}, \mathit{kheeran.naidu}, \mathit{cw18903}\} @\mathit{bristol.ac.uk}$

Introduction

2 Algorithm

3 Lower Bounds

4 Conclusion

Introduction

2 Algorithm

3 Lower Bounds

4 Conclusion

In this talk, we consider bipartite graphs G = (A, B, E).

In this talk, we consider bipartite graphs G = (A, B, E).

Matchings

A matching M is a subset of vertex-disjoint edges of a graph.

In this talk, we consider bipartite graphs G = (A, B, E).

Matchings

A matching M is a subset of vertex-disjoint edges of a graph.

• **Maximal**: Every edge $e \in E \setminus M$ is incident to M.

In this talk, we consider bipartite graphs G = (A, B, E).

Matchings

A matching M is a subset of vertex-disjoint edges of a graph.

- **Maximal**: Every edge $e \in E \setminus M$ is incident to M.
- Maximum: Largest size, $\mu(G)$.

In this talk, we consider bipartite graphs G = (A, B, E).

Matchings

A matching M is a subset of vertex-disjoint edges of a graph.

- **Maximal**: Every edge $e \in E \setminus M$ is incident to M.
- Maximum: Largest size, $\mu(G)$.
- Maximal matchings are 0.5-approximations of maximum matchings.

Algorithm's Goal

Return a large matching of the bipartite input graph G = (A, B, E) using only deterministic edge queries to a maximal matching oracle.

Algorithm's Goal

Return a large matching of the bipartite input graph G = (A, B, E) using only deterministic edge queries to a maximal matching oracle.

Algorithm
A & B

Algorithm's Goal

Return a large matching of the bipartite input graph G = (A, B, E) using only deterministic edge queries to a maximal matching oracle.

Algorithm's Goal

Return a large matching of the bipartite input graph G = (A, B, E) using only deterministic edge queries to a maximal matching oracle.

Algorithm's Goal

Return a large matching of the bipartite input graph G = (A, B, E) using only deterministic edge queries to a maximal matching oracle.

Motivation

Computing a maximal matching is **easy** in various computational models such as **data streaming** and Massively Parallel Computation.

As long as Q can be **specified in** $\tilde{O}(n)$ **space**, each round can be implemented in **one pass** of the stream using **semi-streaming space**.

As long as Q can be **specified in** $\tilde{O}(n)$ **space**, each round can be implemented in **one pass** of the stream using **semi-streaming space**.

Known Algorithms

- 0.6-approximation **MBM** in 3-passes [KT17] (see also [KMM12, FKM⁺05]) state-of-the-art is 0.611-approximation [FS22].
- ② (1ϵ) -approximation **MBM** in $O(\frac{1}{\epsilon^2})$ -passes [ALT21] current state-of-the-art.

Algorithm

0.625-approximation algorithm in **3-rounds** of the deterministic edge-query model.

Implies a **3-pass semi-streaming** algorithm for **MBM** (state-of-the-art – improving on 0.611 [FS22]).

Algorithm

0.625-approximation algorithm in **3-rounds** of the deterministic edge-query model.

Implies a **3-pass semi-streaming** algorithm for **MBM** (state-of-the-art – improving on 0.611 [FS22]).

Lower Bounds

There **does not exist** a deterministic algorithm for **MM** (even for **MBM**) in the edge query model that achieves a better than

- ① 0.5-approximation in 1 round,
- \bigcirc (0.5 + o(1))-approximation in **2 rounds**, and
- \circ (0.625 + o(1))-approximation in **3 rounds**.

Algorithm

0.625-approximation algorithm in **3-rounds** of the deterministic edge-query model.

Implies a **3-pass semi-streaming** algorithm for **MBM** (state-of-the-art – improving on 0.611 [FS22]).

Lower Bounds

There **does not exist** a deterministic algorithm for **MM** (even for **MBM**) in the edge query model that achieves a better than

- **1** 0.5-approximation in **1 round**,
- \bigcirc (0.5 + o(1))-approximation in **2 rounds**, and
- (0.625 + o(1))-approximation in **3 rounds**.

Algorithm is optimal!

Previous Related Work

Previous Related Work

Vertex Query Model ([bKK20]) $Q \subseteq (A \cup B)$ $Algorithm \qquad Oracle \qquad (Maximal Matching)$ $M \subseteq G[Q]$

Previous Related Work

# Rounds	Vertex Query	Edge Query
1	0.5	0.5
2	0.5	0.5 + o(1) 0.625 + o(1)
3	0.6	0.625 + o(1)

Introduction

2 Algorithm

3 Lower Bounds

4 Conclusion

First Round

Find a maximal matching M in G by querying the complete graph $Q = A \times B$.

Subsequent Rounds

В	Α	В	Α
•	•	•	•
•	•	•	•
•	•	•	•
			_

First Round

Find a maximal matching M in G by querying the complete graph $Q = A \times B$.

Subsequent Rounds

First Round

Find a maximal matching M in G by querying the complete graph $Q = A \times B$.

Subsequent Rounds

First Round

Find a maximal matching M in G by querying the complete graph $Q = A \times B$.

Subsequent Rounds

First Round

Find a maximal matching M in G by querying the complete graph $Q = A \times B$.

Subsequent Rounds

Finding length-3 augmenting paths

Simple Strategy

- Find left wings
- Extend with right wings

Finding length-3 augmenting paths

Simple Strategy

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

Finding length-3 augmenting paths

Simple Strategy

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

•
$$|M| = 0.5 \cdot \mu(G)$$

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

$$\bullet |M| = 0.6 \cdot \mu(G)$$

Simple Strategy

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

Simple Strategy

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

Simple Strategy

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

- Find left wings
- Extend with right wings

- 0.625-approximation
- Not hard!

$$\bullet |M| = 0.6 \cdot \mu(G)$$

Simple Strategy

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

- Find left wings
- Extend with right wings

- $|M| = 0.5 \cdot \mu(G)$
- 0.625-approximation
- Not hard!

- $|M| = 0.6 \cdot \mu(G)$
- 0.6-approximation
- Hard instance!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

•
$$|M| = 0.6 \cdot \mu(G)$$

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

•
$$|M| = 0.6 \cdot \mu(G)$$

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

$$\bullet |M| = 0.5 \cdot \mu(G)$$

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

Our Strategy

- Find left and right wings
- Extend paths to either length-3 or length-5 augmenting paths

- $|M| = 0.6 \cdot \mu(G)$
- 0.7-approximation
- Not hard anymore!

$$\bullet |M| = 0.5 \cdot \mu(G)$$

0.625-approximation

Algorithm

• Hard instance!

Our Analysis

Main Lemma

Let $|M| = (0.5 + \epsilon) \cdot \mu(G)$ for $\epsilon \ge 0$, then our strategy finds

$$(0.125 - \frac{3}{4}\epsilon) \cdot \mu(G)$$

vertex-disjoint augmenting paths and the large matching found is of size

$$(0.625 + \frac{\epsilon}{4}) \cdot \mu(G).$$

This is tight for our algorithm.

Our Analysis

Main Lemma

Let $|M| = (0.5 + \epsilon) \cdot \mu(G)$ for $\epsilon \ge 0$, then our strategy finds

$$(0.125 - \frac{3}{4}\epsilon) \cdot \mu(G)$$

vertex-disjoint augmenting paths and the large matching found is of size

$$(0.625 + \frac{\epsilon}{4}) \cdot \mu(G).$$

This is tight for our algorithm.

Semi-Streaming

Using GREEDY this immediately gives a 3-pass semi-streaming algorithm with the same guarantees.

Introduction

2 Algorithm

3 Lower Bounds

4 Conclusion

Observation

Observation

Observation

Observation

Observation

The algorithm learns about **edges** M and **non-edges** N of G.

Main Idea

Observation

The algorithm learns about edges M and non-edges N of G.

Main Idea

ullet Find a hard instance for any sequence of queries $Q_1, Q_2 \dots$

Observation

The algorithm learns about edges M and non-edges N of G.

Main Idea

- ullet Find a hard instance for any sequence of queries $Q_1, Q_2 \dots$
- For any query Q_i , the information committed is a subset of \tilde{M}_i and \tilde{N}_i (up to isomorphisms)

One Round Two Rounds Three Rounds

	One R	<u>ound</u>		Two Rounds	Three Rounds
В	Α	В	Α		
	•	-•	•		
	•	-•	•		
	•	-•	•		
	•	-•	•		

	One R	<u>ound</u>		Two Rounds	Three Rounds
В	Α	В	Α		
	•	-•	•		
	•—	- •	•		
	•—	- •	•		
	•—	- •	•		

Two Rounds

Three Rounds

0.5 approx LB

approx LB

approx LB

Part A Part B

Part B

Part B

Part B

Α

$$0.625 + o(1)$$
 approx LB

Summary

Lower Bounds

There **does not exist** a deterministic algorithm for **MM** (even for **MBM**) in the edge query model that achieves a better than

- 0.5-approximation in 1 round,
- \bigcirc (0.5 + o(1))-approximation in **2 rounds**, and
- (0.625 + o(1))-approximation in **3 rounds**.

Summary

Lower Bounds

There **does not exist** a deterministic algorithm for **MM** (even for **MBM**) in the edge query model that achieves a better than

- 0.5-approximation in 1 round,
- (0.5 + o(1))-approximation in **2 rounds**, and
- (0.625 + o(1))-approximation in **3 rounds**.

Algorithm

0.625-approximation algorithm in **3-rounds** of the deterministic edge-query model.

Introduction

2 Algorithm

3 Lower Bounds

4 Conclusion

Randomisation

Do randomised query algorithms allow us to improve on our results?

Randomisation

Do randomised query algorithms allow us to improve on our results?

Adaptivity

Can we obtain better query algorithms if we allow multiple non-adaptive queries per round?

Randomisation

Do randomised query algorithms allow us to improve on our results?

Adaptivity

Can we obtain better query algorithms if we allow multiple non-adaptive queries per round?

Semi-Streaming

Is there a 3-pass semi-streaming algorithms for **MBM** that improves on our 0.625-approximation algorithm?

Randomisation

Do randomised query algorithms allow us to improve on our results?

Adaptivity

Can we obtain better query algorithms if we allow multiple non-adaptive queries per round?

Semi-Streaming

Is there a 3-pass semi-streaming algorithms for **MBM** that improves on our 0.625-approximation algorithm?

Thank You!

References I

- Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan, *An auction algorithm for bipartite matching in streaming and massively parallel computation models*, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021 (Hung Viet Le and Valerie King, eds.), SIAM, 2021, pp. 165–171.
- Lidiya Khalidah binti Khalil and Christian Konrad, Constructing large matchings via query access to a maximal matching oracle, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference) (Nitin Saxena and Sunil Simon, eds.), LIPIcs, vol. 182, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2020, pp. 26:1–26:15.

References II

- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang, *On graph problems in a semi-streaming model*, Theor. Comput. Sci. **348** (2005), no. 2-3, 207–216.
- Moran Feldman and Ariel Szarf, Maximum matching sans maximal matching: A new approach for finding maximum matchings in the data stream model, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference) (Amit Chakrabarti and Chaitanya Swamy, eds.), LIPIcs, vol. 245, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022, pp. 33:1–33:24.

References III

- Christian Konrad, Frédéric Magniez, and Claire Mathieu, *Maximum matching in semi-streaming with few passes*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings (Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio, eds.), Lecture Notes in Computer Science, vol. 7408, Springer, 2012, pp. 231–242.
- Sagar Kale and Sumedh Tirodkar, *Maximum matching in two, three, and a few more passes over graph streams*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA (Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala, eds.), LIPIcs, vol. 81, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2017, pp. 15:1–15:21.