

NHD-C0220BiZ-FS(RGB)-FBW-3VM

COG (Chip-On-Glass) Character Liquid Crystal Display Module

NHD- Newhaven Display

CO220- COG 2 lines x 20 characters BiZ- Model, with I2C interface

F- Transflective

S(RGB)- Side LED backlights – Red, Green, and Blue

F- FSTN (+) B- 6:00 view

W- Wide Temp $(-20^{\circ}C^{\sim} +70^{\circ}C)$

3.3V power supply M- with Mounting holes

RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101

Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	7/8/2009	Initial Release	CL
1	7/10/2009	Mechanical Drawing updated	BE
2	9/8/2009	Backlight supply current	BE
3	10/9/2009	Updated Electrical Characteristics	MC
4	12/9/2009	Updated Backlight Power supply and Current	MC

Functions and Features

- 2 lines x 20 characters
- Built-in ST7036i controller with I2C interface
- 3.3V power supply
- 1/16 duty, 1/5 bias
- Built-in DC supply for VLCD (requires 2 external capacitors)

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	RST	MPU	Active LOW Reset
2	SCL	MPU	Serial Clock (requires pull-up resistor)
3	SDA	MPU	Serial Data (requires pull-up resistor)
4	VSS	Power Supply	GND
5	VDD	Power Supply	+3.3V
6	VOUT	CAP	Voltage booster circuit – connect to 1uF cap to VSS or VDD
7	C1+	CAP	Connect to 1uF cap to PIN8
8	C1-	CAP	Connect to 1uF cap to PIN7

Recommended LCD connector: 2.0mm pitch pins, solder directly into PCB **Backlight connector:** 3.0mm pitch pins, solder directly into PCB **Mates with:** ---

Capacitance 0.47uF~2.2uF

Recommended value = 1uF

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		2.7	3.3	3.5	V
Supply Current	IDD	VDD=3.3V		1		mA
Supply for LCD (contrast)	VDD-V0	VLCD=VDD-V0	2.7		7.0	V
"H" Level input	Vih		0.7VDD	-	VDD	V
"L" Level input	Vil		0	-	0.8	V
"H" Level output	Voh		0.7VDD	-	VDD	V
"L" Level output	Vol		-	-	0.8	V
Backlight Supply Voltage – RED	VLED	-		2.2		V
Backlight Supply Current – RED	lled	-		10		mA
Backlight Supply Voltage – GREEN	VLED	-		3.3		V
Backlight Supply Current – GREEN	lled	-		10		mA
Backlight Supply Voltage – BLUE	VLED	-		3.3		V
Backlight Supply Current – BLUE	lled	-		12		mA

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle - Vertical	AV	Cr ≥ 2	-60		+35	0
Viewing Angle - Horizontal	AH	Cr ≥ 2	-40		+40	0
Contrast Ratio	Cr		1	6	-	
Response Time (rise)	Tr	1	1	150	200	ms
Response Time (fall)	Tf	-	-	150	200	ms

Controller Information

Built-in ST7036i. Download specification at http://www.newhavendisplay.com/app_notes/ST7036.pdf

Slave Address = 0x78

Table of Commands

Instruction			Ir	str	ucti	on	Coc	le			Description
mstruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC
Return Home	0	0	0	О	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on
Function Set	0	0	0	О	1	DL	N	DH	IS2	IS1	DL: interface data is 8/4 bits N: number of line is 2/1 DH: double height font IS[2:1]: instruction table select
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM/ICONRAM)
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/ICONRAM)

	Instruction table 0(IS[2:1]=[0,0])													
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.			
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	IAC0	Set CGRAM address in address counter			

						Ins	truc	tior	ı tal	ble	1(IS[2:1]=[0,1])
Bias Set	0	0	1	BS	1	0	FX	BS=1:1/4 bias BS=0:1/5 bias FX: fixed on high in 3-line application and fixed on low in other applications.			
Set ICON Address	0	0	0	1	0	0	AC3	AC2	AC1	AC0	Set ICON address in address counter.
Power/ICON Control/ Contrast Set	0	0	0	1	О	1	Ion	Bon	C5	C4	lon: ICON display on/off Bon: set booster circuit on/off C5,C4: Contrast set for internal follower mode.
Follower Control	0	0	0	1	1	0	Fon	Rab 2	Rab 1	Rab 0	Fon: set follower circuit on/off Rab2~0: select follower amplified ratio.
Contrast Set	0	0	0	1	1	1	СЗ	C2	C1	00	Contrast set for internal follower mode.

	Instruction table 2(IS[2:1]=[1,0])													
Double Height Position Select	0	0	О	О	О	1	UD	x	x	x	UD: Double height position select			
Reserved	0	0	0	1	x	x	x	x	x	x	Do not use (reserved for test)			

Display character address code:

ı	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Built-in Font Table (OPR1 = 0, OPR2 = 0)

57-54 50-50	0000	0001	0010	0011	0100	0101	0 110	0111	1000	1001	1010	10 1 1	1 100	1 1 01	11 10	1111
0000																
0001										***						
0010		88														
0011																
0 100																
0101																
0110																
0111																
1000																
1001																
1010																
1011																
1100		₿														
1101																
1110																
1111		8														

Example Initialization Program

```
/***************
         Initialization For ST7036i
***********************************
void init_LCD()
I2C_Start();
I2C_out(Slave);//Slave=0x78
I2C_{out}(Comsend);//Comsend = 0x00
I2C_out(0x38);
delay(10);
I2C_out(0x39);
delay(10);
I2C_out(0x14);
I2C_{out}(0x78);
I2C_out(0x5E);
I2C_out(0x6D);
I2C_{out}(0x0C);
I2C_out(0x01);
I2C_out(0x06);
delay(10);
I2C_Stop();
/***************
     Output command or data via I2C
******************
void I2C_out(unsigned char j)
                                   //I2C Output
      int n;
     unsigned char d;
     d=j;
      for(n=0;n<8;n++)
           if((d&0x80)==0x80)
           SDA=1;
           else
           SDA=0;
           d = (d << 1);
           SCL = 0;
           SCL = 1;
           SCL = 0;
      SCL = 1;
     while(SDA==1){
           SCL=0;
           SCL=1;
      SCL=0;
    *****************
```

```
/***************
      I2C Start
*****************
void I2C_Start(void)
   SCL=1;
   SDA=1;
   SDA=0;
   SCL=0;
/**************
     I2C Stop
****************
void I2C_Stop(void)
{
   SDA=0;
   SCL=0;
   SCL=1;
   SDA=1;
*******************
/**************
     Send string of ASCII data to LCD
*****************
void Show(unsigned char *text)
   int n,d;
   d=0x00;
   I2C Start();
   I2C_out(Slave); //Slave=0x78
   I2C_out(Datasend);//Datasend=0x40
   for(n=0;n<20;n++)
       I2C_out(*text);
       ++text;
   I2C_Stop();
  ***************
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 200hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 200hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 200hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 200hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+60°C, 90% RH, 96hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-20°C,30min -> 25°C,5min -> 70°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Sitronix

ST7036

Dot Matrix LCD Controller/Driver

■ Features

- 5 x 8 dot matrix possible
- Low power operation support:
 - -- 2.7 to 5.5V
- Range of LCD driver power
 -- 3.0 to 7.0V
- 4-bit, 8-bit, serial or I²C-bus MPU interface enabled
- 80 x 8-bit display RAM (80 characters max.)
- 10,240-bit character generator ROM for a total of 256 character fonts(max)
- 64 x 8-bit character generator RAM(max)
- Support two display mode:
 16-com x 100-seg and 80 ICON
 24-com x 80-seg and 80 ICON
- 16 x 5 -bit ICON RAM(max)

Wide range of instruction functions:
 Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor

shift, display shift, double height font

- Automatic reset circuit that initializes the controller/driver after power on and external reset pin
- Internal oscillator(Frequency=540kHz) and external clock
- Built-in voltage booster and follower circuit (low power consumption)
- COM/SEG direction selectable
- Multi-selectable for CGRAM/CGROM size
- Instruction compatible to ST7066U and KS0066U and HD44780
- Available in COG type

■ Description

The ST7036 dot-matrix liquid crystal display controller can display alphanumeric, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4_/ 8-bit with 6800-series, serial or fast I²C interface microprocessor. Since all the functions such as display RAM, character generator ROM/RAM and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be used with this controller/driver.

The ST7036 character generator ROM size is 256 5x8dot bits which can be used to generate 256 different character fonts (5x8dot).

The ST7036 is suitable for low voltage supply (2.7V to 5.5V) and is perfectly suitable for any portable product which is driven by the battery and requires low power consumption.

The display resolution of ST7036 dot-matrix_LCD driver can be either 1-line x 20 characters, 2-line x 20 characters or 3-line x 16 characters with 80 bit ICON.

The ST7036 dot-matrix LCD driver does not need extra cascaded drivers.

product Name	Character generator ROM Size	OPR1	OPR2	Support Character
ST7036-0A	256	1	1	English / Japan/Europe
-	-	-	-	-

ST7036	6800-4bit / 8bit,4-Line interface (without IIC interface)	
ST7036i	IIC interface	Bus

ST7036 Serial Specification Revision History			
Version	Date	Description	
0.1a	2003/04/28	1 st Edition	
0.1b	2003/06/03	PAD Dimension: IC L mark location modified Chip Size X/Y modified	
0.2a	2003/09/01	1. Include ST7036i	
1.0	2003/10/24	Add application circuit for 3 line display. 4 bit interface program example modified.	
1.1	2003/12/24	Remove the instruction of frequency adjust. Add the detail of CGRAM/CGROM arrangement.	
1.2	2004/5/13	Remove 'Preliminary'.	
1.3	2004/5/26	 Correct the I/O pad configuration. Add comments for I²C application. 	
1.4	2004/10/20	1. To modify icon RAM mapping. (P.24)	
1.5	2005/06/13	Modify operating temperature range Ta=-35℃ to 85℃	
1.6	2005/10/17	 To modify Operating Temperature Range Ta=-30℃ to 85℃ To modify Storage Temperature Range Ta=-65℃ to 150℃ To modify the vlcd voltage Range 3.0v~7.0v To modify the limiting values -0.3v~+6.0v To add Chip Thickness: 635 um 	
1.7	2006/7/10	1. To modify Chip Thickness: 480 um	
1.7a	2007/10/17	1. Adding description of 4-line interface in cover	

Pad Dimensions

> Chip Size: 5190.0 X 910.0 μm

Chip Thickness: 480 μm

Bump Pitch : 55 μm (min)

Bump Height : 17 μm (typ.)

> Bump Size :

Pad No.1~52 : 56 x 72 μm
 Pad No.53~170 : 35 x 101 μm

■ Pad Location Coordinates(N3=0 1 line/2 line)

<u> </u>	-ocation	000. a.	
Pad No.	Function	X	Υ
1	XRESET	1859	393
2	OSC	1783	393
3	VDD	1707	393
4	RS	1631	393
5	CSB	1555	393
6	RW	1479	393
7	Е	1403	393
8	DB0	1327	393
9	DB1	1251	393
10	DB2	1175	393
11	DB3	1099	393
12	DB4	1023	393
13	DB5	947	393
14	DB6	871	393
15	DB7	795	393
16	VSS	719	393
17	VSS	643	393
18	VSS	567	393
19	OPF1	491	393
20	OPF2	415	393
21	OPR1	339	393
22	OPR2	263	393
23	SHLC	187	393
24	SHLS	111	393
25	N3	35	393
26	TEST1	-41	393
27	VDD	-117	393
28	VDD	-193	393
29	VDD	-269	393
30	VIN	-345	393
31	VIN	-421	393
32	VOUT	-497	393
33	VOUT	-573	393
34	PSB	-649	393
35	VSS	-725	393
36	PSI2B	-801	393
37	CAP1P	-877	393
38	CAP1P	-953	393
39	EXT	-1029	393
40	VSS	-1105	393

Pad No. Function X Y 41 CLS -1181 393 42 CAP1N -1257 393 43 CAP1N -1333 393 44 VOUT -1409 393 45 VOUT -1485 393 46 V0 -1561 393 47 V0 -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 50 V3 -1865 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[7] -2180 378 57 COM[6]				
42 CAP1N -1257 393 43 CAP1N -1333 393 44 VOUT -1409 393 45 VOUT -1485 393 46 V0 -1561 393 47 V0 -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[8] -22125 378 56 COM[6] -2235 378 56 COM[6] -2235 378 57 COM[6] -2235 378 57 COM[6] -2518 365 58 COM[3] -2518 205 60 COM	Pad No.	Function	Х	Υ
43 CAP1N -1333 393 44 VOUT -1409 393 45 VOUT -1485 393 46 VO -1561 393 47 VO -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[8] -2235 378 56 COM[7] -2180 378 57 COM[6] -2235 378 56 COM[7] -2180 378 57 COM[6] -2235 378 56 COM[7] -2518 365 58 COM[3] -2518 310 59 COM	41	CLS	-1181	393
44 VOUT -1409 393 45 VOUT -1485 393 46 VO -1561 393 47 VO -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[8] -2235 378 56 COM[6] -2235 378 57 COM[6] -2235 378 57 COM[6] -22518 365 58 COM[3] -2518 365 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COM[1] -2518 20 63 SE	42	CAP1N	-1257	393
45 VOUT -1485 393 46 V0 -1561 393 47 V0 -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[7] -2180 378 57 COM[6] -2235 378 56 COM[7] -2180 378 57 COM[8] -2218 365 58 COM[3] -2518 255 60 COM[1] -2518 255 60 COM[1] -2518 20 61 COM[1	43	CAP1N	-1333	393
46 V0 -1561 393 47 V0 -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[8] -2235 378 56 COM[6] -2235 378 56 COM[6] -2235 378 57 COM[6] -2235 378 57 COM[6] -2235 378 56 COM[3] -2518 365 58 COM[3] -2518 365 58 COM[3] -2518 255 60 COM[1] -2518 20 61 COM	44	VOUT	-1409	393
47 V0 -1637 393 48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 56 COM[3] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 255 60 COM[1] -2518 20 61 <td< td=""><td>45</td><td>VOUT</td><td>-1485</td><td>393</td></td<>	45	VOUT	-1485	393
48 V1 -1713 393 49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[6] -2235 378 57 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 57 COM[6] -22518 365 58 COM[3] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 255 60 COM[1] -2518 20 61	46	V0	-1561	393
49 V2 -1789 393 50 V3 -1865 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COM[1] -2518 20 61 COM[1] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67	47	V0	-1637	393
50 V3 -1865 393 51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[6] -2235 378 56 COM[3] -2518 365 58 COM[3] -2518 365 59 COM[2] -2518 255 60 COM[1] -2518 255 60 COM[1] -2518 200 61 COMI1 -2518 90 63 SEG[3] -2518 -20 65 </td <td>48</td> <td>V1</td> <td>-1713</td> <td>393</td>	48	V1	-1713	393
51 V4 -1941 393 52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[4] -2518 365 58 COM[3] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COM[1] -2518 20 61 COM[1] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 35 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -240	49	V2	-1789	393
52 NC -2017 393 53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COMI1 -2518 20 61 COMI1 -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -240 69 SEG[8] -2518 -295 <t< td=""><td>50</td><td>V3</td><td>-1865</td><td>393</td></t<>	50	V3	-1865	393
53 COM[8] -2125 378 54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COM[1] -2518 200 61 COM[1] -2518 20 61 COM[1] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -185 68 SEG[6] -2518 -240 69 SEG[8] -2518 -350 71 SEG[10] -2253 -378	51	V4	-1941	393
54 COM[7] -2180 378 55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COM[1] -2518 200 61 COM[1] -2518 200 61 COM[1] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -20 65 SEG[4] -2518 -130 67 SEG[6] -2518 -130 67 SEG[6] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350	52	NC	-2017	393
55 COM[6] -2235 378 56 COM[5] -2290 378 57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COM[1] -2518 200 61 COM[1] -2518 145 62 SEG[1] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -350 71 SEG[19] -2518 -378 72 SEG[11] -2198 -378 <t< td=""><td>53</td><td>COM[8]</td><td>-2125</td><td>378</td></t<>	53	COM[8]	-2125	378
56 COM[5] -2290 378 57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COMI1 -2518 200 61 COMI1 -2518 90 63 SEG[1] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -185 68 SEG[6] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 <t< td=""><td>54</td><td>COM[7]</td><td>-2180</td><td>378</td></t<>	54	COM[7]	-2180	378
57 COM[4] -2518 365 58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COMI1 -2518 200 61 COMI1 -2518 90 63 SEG[1] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -185 68 SEG[6] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 <tr< td=""><td>55</td><td>COM[6]</td><td>-2235</td><td>378</td></tr<>	55	COM[6]	-2235	378
58 COM[3] -2518 310 59 COM[2] -2518 255 60 COM[1] -2518 200 61 COMI1 -2518 200 61 COMI1 -2518 145 62 SEG[1] -2518 90 63 SEG[2] -2518 90 63 SEG[2] -2518 90 63 SEG[3] -2518 -20 65 SEG[4] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378	56	COM[5]	-2290	378
59 COM[2] -2518 255 60 COM[1] -2518 200 61 COMI1 -2518 145 62 SEG[1] -2518 90 63 SEG[2] -2518 35 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 <	57	COM[4]	-2518	365
60 COM[1] -2518 200 61 COMI1 -2518 145 62 SEG[1] -2518 90 63 SEG[2] -2518 35 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	58	COM[3]	-2518	310
61 COMI1 -2518 145 62 SEG[1] -2518 90 63 SEG[2] -2518 35 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	59	COM[2]	-2518	255
62 SEG[1] -2518 90 63 SEG[2] -2518 35 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	60	COM[1]	-2518	200
63 SEG[2] -2518 35 64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	61	COMI1	-2518	145
64 SEG[3] -2518 -20 65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	62	SEG[1]	-2518	90
65 SEG[4] -2518 -75 66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	63	SEG[2]	-2518	35
66 SEG[5] -2518 -130 67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	64	SEG[3]	-2518	-20
67 SEG[6] -2518 -185 68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	65	SEG[4]	-2518	-75
68 SEG[7] -2518 -240 69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	66	SEG[5]	-2518	-130
69 SEG[8] -2518 -295 70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	67	SEG[6]	-2518	-185
70 SEG[9] -2518 -350 71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	68	SEG[7]	-2518	-240
71 SEG[10] -2253 -378 72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	69	SEG[8]	-2518	-295
72 SEG[11] -2198 -378 73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	70	SEG[9]	-2518	-350
73 SEG[12] -2143 -378 74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	71	SEG[10]	-2253	-378
74 SEG[13] -2088 -378 75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	72	SEG[11]	-2198	-378
75 SEG[14] -2033 -378 76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	73	SEG[12]	-2143	-378
76 SEG[15] -1978 -378 77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	74	SEG[13]	-2088	-378
77 SEG[16] -1923 -378 78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	75	SEG[14]	-2033	-378
78 SEG[17] -1868 -378 79 SEG[18] -1813 -378	76	SEG[15]	-1978	-378
79 SEG[18] -1813 -378	77	SEG[16]	-1923	-378
	78	SEG[17]	-1868	-378
80 SEG[19] -1758 -378	79	SEG[18]	-1813	-378
	80	SEG[19]	-1758	-378

517030	F	V	V
Pad No.	Function	Х	Υ
81	SEG[20]	-1703	-378
82	SEG[21]	-1648	-378
83	SEG[22]	-1593	-378
84	SEG[23]	-1538	-378
85	SEG[24]	-1483	-378
86	SEG[25]	-1428	-378
87	SEG[26]	-1373	-378
88	SEG[27]	-1318	-378
89	SEG[28]	-1263	-378
90	SEG[29]	-1208	-378
91	SEG[30]	-1153	-378
92	SEG[31]	-1098	-378
93	SEG[32]	-1043	-378
94	SEG[33]	-988	-378
95	SEG[34]	-933	-378
96	SEG[35]	-878	-378
97	SEG[36]	-823	-378
98	SEG[37]	-768	-378
99	SEG[38]	-713	-378
100	SEG[39]	-658	-378
101	SEG[40]	-603	-378
102	SEG[41]	-548	-378
103	SEG[42]	-493	-378
104	SEG[43]	-438	-378
105	SEG[44]	-383	-378
106	SEG[45]	-328	-378
107	SEG[46]	-273	-378
108	SEG[47]	-218	-378
109	SEG[48]	-163	-378
110	SEG[49]	-108	-378
111	SEG[50]	-53	-378
112	SEG[51]	2	-378
113	SEG[52]	57	-378
114	SEG[53]	112	-378
115	SEG[54]	167	-378
116	SEG[55]	222	-378
117	SEG[56]	277	-378
118	SEG[57]	332	-378
119	SEG[58]	387	-378
120	SEG[59]	442	-378

Pad No.	Function	X	Υ
121	SEG[60]	497	-378
122	SEG[61]	552	-378
123	SEG[62]	607	-378
124	SEG[63]	662	-378
125	SEG[64]	717	-378
126	SEG[65]	772	-378
127	SEG[66]	827	-378
128	SEG[67]	882	-378
129	SEG[68]	937	-378
130	SEG[69]	992	-378
131	SEG[70]	1047	-378
132	SEG[71]	1102	-378
133	SEG[72]	1157	-378
134	SEG[73]	1212	-378
135	SEG[74]	1267	-378
136	SEG[75]	1322	-378
137	SEG[76]	1377	-378
138	SEG[77]	1432	-378
139	SEG[78]	1487	-378
140	SEG[79]	1542	-378
141	SEG[80]	1597	-378
142	SEG[81]	1652	-378
143	SEG[82]	1707	-378
144	SEG[83]	1762	-378
145	SEG[84]	1817	-378
146	SEG[85]	1872	-378
147	SEG[86]	1927	-378
148	SEG[87]	1982	-378
149	SEG[88]	2037	-378
150	SEG[89]	2092	-378
151	SEG[90]	2147	-378
152	SEG[91]	2202	-378
153	SEG[92]	2518	-350
154	SEG[93]	2518	-295
155	SEG[94]	2518	-240
156	SEG[95]	2518	-185
157	SEG[96]	2518	-130
158	SEG[97]	2518	-75
159	SEG[98]	2518	-20
160	SEG[99]	2518	35

ST7036

Pad No.	Function	X	Y
161	SEG[100]	2518	90
162	COM[9]	2518	145
163	COM[10]	2518	200
164	COM[11]	2518	255
165	COM[12]	2518	310
166	COM[13]	2518	365
167	COM[14]	2290	378
168	COM[15]	2235	378
169	COM[16]	2180	378
170	COMI2	2125	378

Pad No.	Function	X	Υ

■ Pad Location Coordinates(N3=1 3 line)

<u> </u>	<u> </u>	Coolui	
Pad No.	Function	X	Υ
1	XRESET	1859	393
2	OSC	1783	393
3	VDD	1707	393
4	RS	1631	393
5	CSB	1555	393
6	RW	1479	393
7	Е	1403	393
8	DB0	1327	393
9	DB1	1251	393
10	DB2	1175	393
11	DB3	1099	393
12	DB4	1023	393
13	DB5	947	393
14	DB6	871	393
15	DB7	795	393
16	VSS	719	393
17	VSS	643	393
18	VSS	567	393
19	OPF1	491	393
20	OPF2	415	393
21	OPR1	339	393
22	OPR2	263	393
23	SHLC	187	393
24	SHLS	111	393
25	N3	35	393
26	TEST1	-41	393
27	VDD	-117	393
28	VDD	-193	393
29	VDD	-269	393
30	VIN	-345	393
31	VIN	-421	393
32	VOUT	-497	393
33	VOUT	-573	393
34	PSB	-649	393
35	VSS	-725	393
36	PSI2B	-801	393
37	CAP1P	-877	393
38	CAP1P	-953	393
39	EXT	-1029	393
40	VSS	-1105	393

CLS CAP1N CAP1N VOUT VOUT V0 V0 V1 V2	-1181 -1257 -1333 -1409 -1485 -1561 -1637 -1713	Y 393 393 393 393 393 393 393
CAP1N CAP1N VOUT VOUT V0 V0 V1 V2	-1257 -1333 -1409 -1485 -1561 -1637	393 393 393 393 393
CAP1N VOUT VO VO VO VO V1 V2	-1333 -1409 -1485 -1561 -1637	393 393 393 393
VOUT VOUT V0 V0 V1 V2	-1409 -1485 -1561 -1637	393 393 393
VOUT V0 V0 V1 V2	-1485 -1561 -1637	393 393
V0 V0 V1 V2	-1561 -1637	393
V0 V1 V2	-1637	
V1 V2		393
V2	-1713	
		393
	-1789	393
V3	-1865	393
V4	-1941	393
NC	-2017	393
COM[12]	-2125	378
COM[11]	-2180	378
COM[10]	-2235	378
COM[9]	-2290	378
COM[8]	-2518	365
COM[7]	-2518	310
COM[6]	-2518	255
COM[5]	-2518	200
NC	-2518	145
COM[4]	-2518	90
COM[3]	-2518	35
COM[2]	-2518	-20
COM[1]	-2518	-75
COMI1	-2518	-130
NC	-2518	-185
NC	-2518	-240
NC	-2518	-295
NC	-2518	-350
NC	-2253	-378
SEG[1]	-2198	-378
SEG[2]	-2143	-378
SEG[3]	-2088	-378
SEG[4]	-2033	-378
SEG[5]	-1978	-378
SEG[6]	-1923	-378
SEG[7]	-1868	-378
SEG[8]	-1813	-378
SEG[9]	-1758	-378
	NC COM[12] COM[11] COM[9] COM[9] COM[6] COM[6] COM[6] COM[5] NC COM[4] COM[3] COM[2] COM[1] COM[1] COM[1] COM[1] COM[1] SEG[1] SEG[1] SEG[3] SEG[4] SEG[6] SEG[7] SEG[8]	V3 -1865 V4 -1941 NC -2017 COM[12] -2125 COM[11] -2180 COM[10] -2235 COM[9] -2290 COM[8] -2518 COM[7] -2518 COM[6] -2518 COM[5] -2518 COM[4] -2518 COM[3] -2518 COM[2] -2518 COM[1] -2518 COM[1] -2518 NC -2518 <tr< td=""></tr<>

Pad No.	Function	Х	Υ
81	SEG[10]	-1703	-378
82	SEG[11]	-1648	-378
83	SEG[12]	-1593	-378
84	SEG[13]	-1538	-378
85	SEG[14]	-1483	-378
86	SEG[15]	-1428	-378
87	SEG[16]	-1373	-378
88	SEG[17]	-1318	-378
89	SEG[18]	-1263	-378
90	SEG[19]	-1208	-378
91	SEG[20]	-1153	-378
92	SEG[21]	-1098	-378
93	SEG[22]	-1043	-378
94	SEG[23]	-988	-378
95	SEG[24]	-933	-378
96	SEG[25]	-878	-378
97	SEG[26]	-823	-378
98	SEG[27]	-768	-378
99	SEG[28]	-713	-378
100	SEG[29]	-658	-378
101	SEG[30]	-603	-378
102	SEG[31]	-548	-378
103	SEG[32]	-493	-378
104	SEG[33]	-438	-378
105	SEG[34]	-383	-378
106	SEG[35]	-328	-378
107	SEG[36]	-273	-378
108	SEG[37]	-218	-378
109	SEG[38]	-163	-378
110	SEG[39]	-108	-378
111	SEG[40]	-53	-378
112	SEG[41]	2	-378
113	SEG[42]	57	-378
114	SEG[43]	112	-378
115	SEG[44]	167	-378
116	SEG[45]	222	-378
117	SEG[46]	277	-378
118	SEG[47]	332	-378
119	SEG[48]	387	-378
120	SEG[49]	442	-378

Pad No.	Function	X	Υ		
121	SEG[50]	497	-378		
122	SEG[51]	552	-378		
123	SEG[52]	607	-378		
124	SEG[53]	662	-378		
125	SEG[54]	717	-378		
126	SEG[55]	772	-378		
127	SEG[56]	827	-378		
128	SEG[57]	882	-378		
129	SEG[58]	937	-378		
130	SEG[59]	992	-378		
131	SEG[60]	1047	-378		
132	SEG[61]	1102	-378		
133	SEG[62]	1157	-378		
134	SEG[63]	1212	-378		
135	SEG[64]	1267	-378		
136	SEG[65]	1322	-378		
137	SEG[66]	1377	-378		
138	SEG[67]	1432	-378		
139	SEG[68]	1487	-378		
140	SEG[69]	1542	-378		
141	SEG[70]	1597	-378		
142	SEG[71]	1652	-378		
143	SEG[72]	1707	-378		
144	SEG[73]	1762	-378		
145	SEG[74]	1817	-378		
146	SEG[75]	1872	-378		
147	SEG[76]	1927	-378		
148	SEG[77]	1982	-378		
149	SEG[78]	2037	-378		
150	SEG[79]	2092	-378		
151	SEG[80]	2147	-378		
152	NC	2202	-378		
153	NC	2518	-350		
154	NC	2518	-295		
155	NC	2518	-240		
156	NC	2518	-185		
157	NC	2518	-130		
158	COM[13]	2518	-75		
159	COM[14]	2518	-20		
160	COM[15]	2518	35		

ST7036

Pad No.	Function	X	Y		
161	COM[16]	2518	90		
162	COM[17]	2518	145		
163	COM[18]	2518	200		
164	COM[19]	2518	255		
165	COM[20]	2518	310		
166	COM[21]	2518	365		
167	COM[22]	2290	378		
168	COM[23]	2235	378		
169	COM[24]	2180	378		
170	COMI2	2125	378		

Pad No.	Function	X	Υ

■ Block Diagram

■ Pin Function

Name	Number	I/O	Interfaced with	Function						
11010				External reset pin. Only if the power on reset be used, the						
XRESET	1	1	MPU	XRESET pin could be fixed to VDD.						
				Low active.						
				Select registers.						
RS	1	l,	MPU	0: Instruction register (for write)						
I C	ı	'	IVII O	Busy flag & address counter (for read)						
				1: Data register (for write and read)						
				Select read or write(In parallel mode).						
R/W	1	I	MPU	0: Write						
		-		1: Read						
E	1	ı	MPU	Starts data read/write. ("E" must connect to "VDD" when						
				serial mode is selected.)						
000	4	١.	MDU	Chip select in parallel mode and serial interface(Low						
CSB	1		MPU	active). When the CSB in falling edge state (in serial						
				interface), the shift register and the counter are reset.						
				DB0~DB3 are four low order bi-directional data bus pins. DB0~DB3 are used for data transfer and receive between						
				the MPU and the ST7036.						
				These pins are not used during 4-bit operation and must						
				connect to VDD.						
			MPU							
				DB4~DB7 are four high order bi-directional data bus pins. DB4~DB7 are used for data transfer and receive between						
				the MPU and the ST7036. DB7 can be used as a busy flag.						
DB0 to DB7	8	I/O		In serial interface mode DB7 is SI(input data),DB6 is						
				SCL(serial clock).						
				In I ² C interface DB7 is slave address A1, DB6 is slave						
			ļ	address A0, DB5 DB4 DB3 are SDA –out, DB2 DB1 are						
				SDA-in and D0 is SCL.						
				SDA and SCL must connect to I ² C bus (I ² C bus means that						
				connecting a resister between SDA/SCL and the power of						
				² C bus).						
				Extension instruction select:						
				0:enable extension instruction(add contrast/ICON/double						
Ext	1	I	ITO option	height font/ extension instruction)						
				1:disable extension instruction(compatible to ST7066U, but						
		1		without 5x11dot font)						
				Interface selection						
DCD	4	١.	ITO option	0:serial mode						
PSB	1		ITO option	("E" must connect to "VDD" when serial mode is selected.)						
				1:parallel mode(4/8 bit) In I ² C interface PSB must connect to V _{DD}						
		†		PSB PSI2B Interface						
			ITO option	0 0 No use						
PSI2B	1	1		0 1 4-line SPI						
1 0120	'	'		1 0 I ² C						
				1 1 Parallel 68						
		1		ı ı Faialiel 00						

Name	Number	I/O	Interfaced with				Function	า	
				Character generator select:					
				OPR	Ť	OPR2	CGROM	CGRAM	
				0		0	240	8	
OPR1,OPR2	2	I	ITO option	0		1	250	6	
				1		0	248	8	
				1		1	256	0	
SHLC	1	I	ITO option	Common signals direction select: 0:Com1~24←Row address 23~0(Invert) 1:Com1~24←Row address 0~23(Normal)					
SHLS	1	I	ITO option	0:Seg1	~100		ion select: address 99~ address 0~9	•	
COM1 to COM16	16	0	LCD	Common signals that are not used are changed to non-selection waveform. COM9 to COM16 are non-selection waveforms at 1/8 or 1/9 duty factor					
COMI2 COMI1	1	0	LCD	ICON c	omm	on signals			
Seg1~Seg10 Seg91~Seg100	21	0	LCD	Select "N3" pin for common or segment waveform or (follow up table 2 defined)			orm output		
N3	1	ı	ITO option	1 line/2 line or 3 line select : 0:1 line/2 line SEG0~SEG100:normal 1:3 line COMI1,SEG1~SEG5,SEG97~SEG100 re-defir			re-defined		
SEG11 to SEG90	80	0	LCD	Segment signals					
OPF1,OPF2	2	I	ITO option	The built-in voltage follower circuit selection OPF1 OPF2 Bias select 0 0 Built-in voltage follower(only use at EXT on the select of the se					e at EXT=0)
CAP1P	2	-	Power supply	For volt	age I	booster cire	cuit(VDD-VS	S)	
CAP1N	2	-	Power supply	Externa	l cap	acitor abo	ut 0.1u~4.7u	f	
VIN	2	-	Power supply	Input th	e vol	tage to boo	oster		
VOUT	4	-	Power supply			-		a capacitor booster is us	petween this sed.
V0 to V4	6	-	Power supply	V0-Vss	= 7\	` '	drive e follower cii	rcuit	
VDD,VSS	4,5	-	Power supply	VDD:2	.7V t	o 5.5V, VS	S: 0V		
CLS	1	I	ITO option	Internal/External oscillation select 0:external clock 1:internal oscillation					
osc	1	I	Oscillation	When the pin input is an external clock, it must be input OSC. When the on-chip oscillator is used, it must be connect to VDD.			-		
TEST1	1	I/O	Test pin	TEST1	must	connect to	VDD.		

■ EXT option pin difference table

Mode Difference	Normal mode (EXT=1) (Instruction compatible to ST7066U)	Extension mode (EXT=0)
Booster	Always OFF	ON/OFF controlled by instruction
, ,	Can't use the follower circuit Only use external resistor or internal resistor(1/5 bias)	Follower or internal/external resistor selectable
Contrast adjust	Control by external VR	Controlled by instruction with follower Controlled by external VR with internal/external resistor
ICON RAM	Can't be use	RAM size has 80 bit width(S1~S80).
Instruction	Control normal instruction similar to ST7066U.	Control extension instruction for low power consumption.
Double height font	Only 5x8 font	Can set 5x8 or 5x16 font

■ Function Description

System Interface

This chip has all four kinds of interface type with MPU: 4-bit bus, 8-bit bus, serial and fast I²C interface. 4-bit bus or 8-bit bus is selected by DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR).

The data register(DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM/ICON RAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.

The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS input pin in 4-bit/8-bit bus mode.

RS	R/W	Operation
L	Г	Instruction Write operation (MPU writes Instruction code into IR)
L	Н	Read Busy Flag(DB7) and address counter (DB0 ~ DB6)
Н	L	Data Write operation (MPU writes data into DR)
Н	Н	Data Read operation (MPU reads data from DR)

Table 1. Various kinds of operations according to RS and R/W bits.

I²C interface

It just only could write Data or Instruction to ST7036 by the IIC Interface. It could not read Data or Instruction from ST7036 (except Acknowledge signal).

SCL: serial clock input SDA_IN: serial data input

SDA_OUT: acknowledge response output

Slaver address could set from "0111100" to "0111111".

The I²C interface send RAM data and executes the commands sent via the I²C Interface. It could send data in to the RAM. The I²C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.1.

START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.2.

SYSTEM CONFIGURATION

The system configuration is illustrated in Fig.3.

- · Transmitter: the device, which sends the data to the bus
- · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer
- · Slave: the device addressed by a master
- · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message

- Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- · Synchronization: procedure to synchronize the clock signals of two or more devices.

ACKNOWLEDGE

Acknowledge signal (ACK) is not BF signal in parallel interface.

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the I²C Interface is illustrated in Fig.4.

I²C Interface protocol

The ST7036 supports command, data write addressed slaves on the bus.

Before any data is transmitted on the I²C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (01111**00** to 01111**11**) are reserved for the ST7036. The R/W is assigned to 0 for Write only. The I²C Interface protocol is illustrated in Fig.5.

The sequence is initiated with a START condition (S) from the I^2C Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I^2C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves.

A command word consists of a control byte, which defines Co and RS, plus a data byte.

The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the RS bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the RS bit setting; either a series of display data bytes or command data bytes may follow. If the RS bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7036i device. If the RS bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I²C INTERFACE-bus master issues a STOP condition (P).

During write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR).

The data register(DR) is used as temporary data storage place for being written into DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, writing into RAM, is done automatically. So to speak, after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.

The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS bit input in IIC interface.

RS	R/W Operation								
L	L	Instruction Write operation (MPU writes Instruction code into IR)							
Н	L	Data Write operation (MPU writes data into DR)							

Table 2. Various kinds of operations according to RS and R/W bits.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not High.

Address Counter (AC)

Address Counter(AC) stores DDRAM/CGRAM/ICON RAM address, transferred from IR.

After writing into (reading from) DDRAM/CGRAM/ICON RAM, AC is automatically increased (decreased) by 1.

When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports.

Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 6 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal.

1-line display (N3=0,N = 0) (Figure 7)

When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the ST7036, 20 characters are displayed. See Figure 7. When the display shift operation is performed, the DDRAM address shifts. See Figure 8.

Fig. 6 DDRAM Address

Fig. 7 1-Line Display

Fig. 8 1-Line by 20-Character Display Example

> 2-line display (N3=0,N = 1) (Figure 9)

Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the ST7036 is used, 20 characters $\times 2$ lines are displayed. See Figure 9. When display shift operation is performed, the DDRAM address shifts. See Figure 10.

Fig. 9 2-Line Display

Display Position	1	2	3	4	5	6	7	8		17	18	19	20
DDRAM	00	01	02	03	04	05	06	07		10	11	12	13
Address	40	41	42	43	44	45	46	47		50	51	52	53
			1										
For Shift	01	02	03	04	05	06	07	80		11	12	13	14
Left	41	42	43	44	45	46	47	48		51	52	53	54
For Shift	27	00	01	02	03	04	05	06		0F	10	11	12
Right	67	40	41	42	43	44	45	46		4F	50	51	52
			Fia.	10 2-	Line	bv 20)-Cha	racte	r Displav Example				

> 3-line display (N3=1,N =1) (Figure 11)

Case 1: When the number of display characters is less than 16 \times 3 lines, the tree lines are displayed from the head. For example, when just the ST7036 is used, 16 characters \times 3 lines are displayed. See Figure 11. When display shift operation is performed, the DDRAM address shifts. See Figure 12.

Display Position											
	1	2	3	4	5	6		14	15	16	
DDRAM Address	00	01	02	03	04	05		0D	0E	0F	
(hexadecimal)	10	11	12	13	14	15		1D	1E	1F	
	20	21	22	23	24	25		2D	2E	2F	
Fig. 11 3-Line Display											

Display Position										
	1	2	3	4	5	6		14	15	16
DDRAM Address	00	01	02	03	04	05		0D	0E	0F
(hexadecimal)	10	11	12	13	14	15		1D	1E	1F
	20	21	22	23	24	25		2D	2E	2F
	1	2	3	4	5	6		14	15	16
	01	02	03	04	05	06		0E	0F	00
For Shift Left	11	12	13	14	15	16		1E	1F	10
	21	22	23	24	25	26		2E	2F	20
	1	2	3	4	5	6		14	15	16
	0F	00	01	02	03	04		0C	0D	0E
For Shift Right	1F	10	11	12	13	14		1C	1D	1E
	2F	20	21	22	23	24		2C	2D	2E
		F	ig. 12	3-L	ine D	isplay	у	•	•	

Character Generator ROM (CGROM)

The character generator ROM generates 5 x 8 dot character patterns from 8-bit character codes. It can generate 240/250/248/256 5 x 8 dot character patterns (select by OPR1/2 ITO pin). User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight character patterns can be written.

Write into DDRAM the character codes at the addresses shown as the left column of Table 5 to show the character patterns stored in CGRAM.

See Table 5 for the relationship between CGRAM addresses and data and display patterns. Areas that are not used for display can be used as general data RAM.

ICON RAM

In the ICON RAM, the user can rewrite icon pattern by program.

There are totally 80 dots for icon can be written.

See Table 6 for the relationship between ICON RAM address and data and the display patterns.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area.

LCD Driver Circuit(N3=0)

LCD Driver circuit has 17 common and 100 segment signals for LCD driving. Data from CGRAM/CGROM/ICON is transferred to 100 bit segment latch serially, and then it is stored to 100 bit shift latch. When each common is selected by 17 bit common register, segment data also output through segment driver from 100 bit segment latch. In case of 1-line display mode, COM1 ~ COM8(with COMI) have 1/9 duty, and in 2-line mode, COM1 ~ COM16(with COMI) have 1/17 duty ratio.

LCD Driver Circuit(N3=1)

LCD Driver circuit has 25 common and 80 segment signals for LCD driving. Data from CGRAM/CGROM/ICON is transferred to 80 bit segment latch serially, and then it is stored to 80 bit shift latch. When each common is selected by 25 bit common register, segment data also output through segment driver from 80 bit segment latch. In case of 3-line display mode, COM1 ~ COM24(with COMI) have 1/25 duty.

COM/SEG Output pins

· · · · · · ·		. p								
N3	COMI1	COM	SEG	SEG	SEG	SEG	SEG	COM	COMI2	
INO	COIVII I	[1:8]	[1:5]	[6:10]	[11:90]	[91:96]	[97:100]	[9:16]	COIVIIZ	
VSS	COMI1	COM	SEG	SEG	SEG	SEG	SEG	COM	COMI2	
VSS		[1:8]	[1:5]	[6:10]	[11:90]	[91:96]	[97:100]	[9:16]	COMIZ	
VDD	NC	COM	COM[4:1]	NC	SEG	NC	COM	COM	COMI2	
VDD	INC	[5:12]	+ COMI1	INC	[1:80]	INC	[13:16]	[17:24]	COMIZ	

Table 3. COM/SEG output define

Cursor/Blink Control Circuit

It can generate the cursor or blink in the cursor/blink control circuit. The cursor or the blink appears in the digit at the display data RAM address set in the address counter.

Table 4 Correspondence between Character Codes and Character Patterns

ST7036-0A (ITO option OPR1=1,OPR2=1)

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	11 11
0000																
0001																
0010																
0011																
0100																
0101																
0110																
0111																
1000																
1001																
1010																
1011																
1100																
1101																
1110																
1111																

CGRAM/CGROM arrangement with (OPR1, OPR2)=

(0,0)	(0,1)	(1,0)	(1,1)				
67-64 60-60 0000 0001 · · ·	67-64 60-60 0000 0001 · · ·	67-64 60-60 0000 0001 · · ·	<u>57-54</u> 0000 0001 · · ·				
0000	0000	0000	0000				
0001	0001	0001	0001				
0010	0010	0010	0010 🔐 🔛 …				
0011	0011	0011	0011				
0100	0 100	0 100	0100				
0101	0101	0101	0101				
0110	0110	0110	0110				
0111	0111	0111	0111				
1000	1000	1000	1000				
1001	1001	1001	1001				
1010	1010	1010	1010				
1011	1011	1011	1011				
1100	1100	1100	1100				
1101	1101	1101	1101				
1110	1110	1110	1110				
1111	1111	1111	1111				

Character Code (DDRAM Data)							CGRAM Address						Character Patterns (CGRAM Data)								
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
		0	0	-	0	0	0			0	0	0				1	1	1	1	1	
					0	0	0		0	0	0	0	1	-	-	_	0	0	1	0	0
0					0	0	0				0	1	0				0	0	1	0	0
	0				0	0	0	()			0	1	1				0	0	1	0	0
	O				0	0	0				1	0	0				0	0	1	0	0
					0	0	0				1	0	1				0	0	1	0	0
					0	0	0				1	1	0				0	0	1	0	0
					0	0	0				1	1	1				0	0	0	0	0
		0	0	-	0	0	1	1 1 1	0	1	0	0	0	-	-	-	1	1	1	1	0
					0	0	1				0	0	1				1	0	0	0	1
0					0	0	1				0	1	0				1	0	0	0	1
	0				0	0	1	0			0	1	1				1	1	1	1	0
		U			0	0	1				1	0	0				1	0	1	0	0
					0	0	1				1	0	1				1	0	0	1	0
					0	0	1				1	1	0				1	0	0	0	1
					0	0	1				1	1	1				0	0	0	0	0

Table 5 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data)

Notes:

- 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
- 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence.
- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
- 4. As shown Table 5, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the T display example above can be selected by either character code 00H or 08H.
- 5. "1" for CGRAM data corresponds to display selection and "0" to non-selection, "-" Indicates no effect.
- 6. Different OPR1/2 ITO option can select different CGRAM size.

When ICON RAM data is filled the corresponding position displayed is described as the following table.

When SHLS=1, ICON RAM map refer below table

					IC	CON RAM	bits				
ICON Address	D7~D5	D	4	D	3	D	2	D	1	D0	
Addiess		N3 = 0	N3 = 1	N3 = 0	N3 = 1						
00H	-	S1/S81	S1	S2/S82	S2	S3/S83	S3	S4/S84	S4	S5/S85	S5
01H	-	S6/S86	S6	S7/S87	S7	S8/S88	S8	S9/S89	S9	S10/S90	S10
02H	-	S11/S91	S11	S12/S92	S12	S13/S93	S13	S14/S94	S14	S15/S95	S15
03H	-	S16/S96	S16	S17/S97	S17	S18/S98	S18	S19/S99	S19	S20/S100	S20
04H	-	S21	S21	S22	S22	S23	S23	S24	S24	S25	S25
05H	-	S26	S26	S27	S27	S28	S28	S29	S29	S30	S30
06H	-	S31	S31	S32	S32	S33	S33	S34	S34	S35	S35
07H	-	S36	S36	S37	S37	S38	S38	S39	S39	S40	S40
H80	-	S41	S41	S42	S42	S43	S43	S44	S44	S45	S45
09H	-	S46	S46	S47	S47	S48	S48	S49	S49	S50	S50
0AH	-	S51	S51	S52	S52	S53	S53	S54	S54	S55	S55
0BH	-	S56	S56	S57	S57	S58	S58	S59	S59	S60	S60
0CH	-	S61	S61	S62	S62	S63	S63	S64	S64	S65	S65
0DH	-	S66	S66	S67	S67	S68	S68	S69	S69	S70	S70
0EH	-	S71	S71	S72	S72	S73	S73	S74	S74	S75	S75
0FH	-	S76	S76	S77	S77	S78	S78	S79	S79	S80	S80

When SHLS=0, ICON RAM map refer below table

					IC	CON RAM	bits				
ICON Address	D7~D5	D4	ı	D	3	D	2	D	1	D	0
Audiess		N3 = 0	N3 = 1	N3 = 0	N3 = 1	N3 = 0	N3 = 1	N3 = 0	N3 = 1	N3 = 0	N3 = 1
00H	-	S100/S20	S80	S99/S19	S79	S98/S18	S78	S97/S17	S77	S96/S16	S76
01H	-	S95/S15	S75	S94/S14	S74	S93/S13	S73	S92S12	S72	S91/S11	S71
02H	-	S90/S10	S70	S89/S9	S69	S88/S8	S68	S87/S7	S67	S86/S6	S66
03H	-	S85/S5	S65	S84/S4	S64	S83/S3	S63	S82/S2	S62	S81/S1	S61
04H	-	S80	S60	S79	S59	S78	S58	S77	S57	S76	S56
05H	-	S75	S55	S74	S54	S73	S53	S72	S52	S71	S51
06H	-	S70	S50	S69	S49	S68	S48	S67	S47	S66	S46
07H	-	S65	S45	S64	S44	S63	S43	S62	S42	S61	S41
08H	-	S60	S40	S59	S39	S58	S38	S57	S37	S56	S36
09H	-	S55	S35	S54	S34	S53	S33	S52	S32	S51	S31
0AH	-	S50	S30	S49	S29	S48	S28	S47	S27	S46	S26
0BH	-	S45	S25	S44	S24	S43	S23	S42	S22	S41	S21
0CH	-	S40	S20	S39	S19	S38	S18	S37	S17	S36	S16
0DH	-	S35	S15	S34	S14	S33	S13	S32	S12	S31	S11
0EH	-	S30	S10	S29	S9	S28	S8	S27	S7	S26	S6
0FH	-	S25	S5	S24	S4	S23	S3	S22	S2	S21	S1

Table 6 ICON RAM map

■ Instructions

There are four categories of instructions that:

- Designate ST7036 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Others

instruction table at "Normal mode"

(when "EXT" option pin connect to VDD, the instruction set follow below table)

(when "EXI"	Opti	оп р		nstr					dotte	<i>7</i> 11 00	t follow below table)		nstruction T	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	OSC= 380kHz	OSC= 540kHz	OSC= 700kHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 µs	18.5 µs	14.3 µs
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 µs	18.5 µs	14.3 µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	26.3 µs	18.5 µs	14.3 µs
Function Set	0	0	0	0	1	DL	N	Х	х	х	DL: interface data is 8/4 bits N: number of line is 2/1	26.3 µs	18.5 µs	14.3 µs
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	26.3 µs	18.5 µs	14.3 µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 µs	18.5 µs	14.3 µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	0	0
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	26.3 µs	18.5 µs	14.3 µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	26.3 µs	18.5 µs	14.3 µs

Note:

Be sure the ST7036 is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7036. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

instruction table at "Extension mode"

(when "EXT" option pin connect to Vss, the instruction set follow below table)

Instruction			Ir	nstr	ucti	ion	Coc	le			Description		nstructio ecution T	
IIISti detion	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	OSC= 380kHz	OSC= 540kHz	OSC= 700kHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 µs	18.5 µs	14.3 µs
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 µs	18.5 µs	14.3 µs
Function Set	0	0	0	0	1	DL	N	DH	IS2	IS1	DL: interface data is 8/4 bits N: number of line is 2/1 DH: double height font IS[2:1]: instruction table select	26.3 µs	18.5 µs	14.3 µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 µs	18.5 µs	14.3 µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	0	0
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 µs	18.5 µs	14.3 µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 μs	18.5 µs	14.3 μs

	Instruction table 0(IS[2:1]=[0,0])														
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	26.3 µs	18.5 µs	14.3 µs	
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	IAC0	Set CGRAM address in address counter	26.3 µs	18.5 µs	14.3 µs	

	Instruction table 1(IS[2:1]=[0,1])														
Bias Set	0	0	0	0	0	1	BS	1	0	FX	BS=1:1/4 bias BS=0:1/5 bias FX: fixed on high in 3-line application and fixed on low in other applications.	_	18.5 µs	14.3 µs	
Set ICON Address	0	0	0	1	0	0	AC3	AC2	AC1	AC0	Set ICON address in address counter.	26.3 µs	18.5 µs	14.3 µs	
Power/ICON Control/ Contrast Set	0	0	0	1	0	1	Ion	Bon	C5	C4	Ion: ICON display on/off Bon: set booster circuit on/off C5,C4: Contrast set for internal follower mode.	26.3 µs	18.5 µs	14.3 µs	
Follower Control	0	0	0	1	1	0	Fon	Rab 2	Rab 1	Rab 0	Fon: set follower circuit on/off Rab2~0: select follower amplified ratio.	26.3 µs	18.5 µs	14.3 µs	
Contrast Set	0	0	0	1	1	1	СЗ	C2	C1	C0	Contrast set for internal follower mode.	26.3 µs	18.5 µs	14.3 µs	

						Inst	truc	tior	ı tal	ble	2(IS[2:1]=[1,0])			
Double Height Position Select	0	0	0	0	0	1	UD	X	х	х	UD: Double height position select	26.3 µs	18.5 µs	14.3 µs
Reserved	0	0	0	1	Х	Х	Х	Х	Х	Х	Do not use (reserved for test)	26.3 µs	18.5 µs	14.3 µs

Instruction table 3(IS[2:1]=[1,1]):Do not use (reserved for test)

■ Instruction Description

Clear Display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

Return Home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	X

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change.

Entry Mode Set

RS R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0 0	0	0	0	0	0	1	I/D	S

Set the moving direction of cursor and display.

I/D : Increment / decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

* CGRAM operates the same as DDRAM, when read from or write to CGRAM.

S: Shift of entire display

When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed. If S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1" : shift left, I/D = "0" : shift right).

S	I/D	Description
Н	Н	Shift the display to the left
Н	L	Shift the display to the right

Display ON/OFF

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

Control display/cursor/blink ON/OFF 1 bit register.

> D: Display ON/OFF control bit

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data is remained in DDRAM.

> C: Cursor ON/OFF control bit

When C = "High", cursor is turned on.

When C = "Low", cursor is disappeared in current display, but I/D register remains its data.

> B: Cursor Blink ON/OFF control bit

When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position.

When B = "Low", blink is off.

Cursor or Display Shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	X	X

> S/C: Screen/Cursor select bit

When S/C="High", Screen is controlled by R/L bit.

When S/C="Low", Cursor is controlled by R/L bit.

> R/L: Right/Left

When R/L="High", set direction to right.

When R/L="Low", set direction to left.

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed.

S/C	R/L	Description	AC Value
L	L	Shift cursor to the left	AC=AC-1
L	Н	Shift cursor to the right	AC=AC+1
Н	L	Shift display to the left. Cursor follows the display shift	AC=AC
Н	Н	Shift display to the right. Cursor follows the display shift	AC=AC

Function Set

RS	R/W	DE	7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0		0	1	DL	N	DH	IS2	IS1

DL : Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

N: Display line number control bit

When N = "High", 2-line display mode is set.

When N = "Low", it means 1-line display mode.

When "N3" option pin connect to VDD, N must set "N=1".

> DH : Double height font type control bit

When DH = "High" and N= "Low", display font is selected to double height mode (5x16 dot), RAM address can only use 00H-27H.

When DH= "High" and N= "High", it is forbidden.

When DH = " Low ", display font is normal (5x8 dot).

N	DH	•	in connect to gh	EXT option pin connect to low			
IN	ИΠ	Display Lines	Character Font	Display Lines	Character Font		
L	L	1	5x8	1	5x8		
L	Н	1	5x8	1	5x16		
Н	L	2	5x8	2	5x8		
Н	Н	2 5x8 Forbidden					

2 line mode normal display (DH=0/N=1)

1 line mode with double height font (DH=1/N=0)

► IS[2:1]: instruction table select

When IS[2:1]=(0,0): normal instruction be selected(refer instruction table 0)

When IS[2:1]=(0,1):extension instruction be selected(refer instruction table 1)

When IS[2:1]=(1,0):extension instruction be selected(refer instruction table 2)

When IS[2:1]=(1,1):Do not use (reserved for test)

Double height position set: IS[2:1]=(1,0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	UD	Х	X	X

> UD: Select double height font display position of screen.(N3=VDD)

When UD = "High", double height font is show on Com1~Com16.

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	AC3	AC2	AC1	AC0

When UD = "Low", double height font is show on Com9~Com24.

DH	UD	2 LINES(N3=VSS)	3 LINES(N3=VDD)
Н	Н	Com1~Com16 Double Height	Com1~Com16 Double Height Com17~Com24 Normal Display
Н	L	Com1~Com16 Double Height	Com1~Com8 Normal Display Com9~Com24 Double Height
L	X	Normal Display	Normal Display

3 Line mode normal display (DH = 0 / N = 1 / UD = don't care)

COM1 ..8 is normal , COM9 .. 24 is a double height font (DH = 1 / N = 1 / UD = 0)

COM17 ..24 is normal, COM1 .. 16 is a double height font (DH = 1 / N = 1 / UD = 1)

Set CGRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

Set DDRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH".

In 2-line display mode (N = 1), DDRAM address in the 1st line is from "00H" to "27H", and

DDRAM address in the 2nd line is from "40H" to "67H".

In 3-line display mode (N3=1, N=1), DDRAM address in the 1st line is from "00H" to "OFH", DDRAM in the 2nd line is from "10H" to "1FH", and DDRAM in the 3rd line is from "20H" to "2FH".

Read Busy Flag and Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

When BF = "High", indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted.

The address Counter (AC) stores DDRAM/CGRAM addresses, transferred from IR.

After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.

Write Data to CGRAM, DDRAM or ICON RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to CGRAM, DDRAM or ICON RAM

The selection of RAM from DDRAM, CGRAM or ICON RAM, is set by the previous address set instruction : DDRAM address set, CGRAM address set, ICON RAM address set. RAM set instruction can also determine the AC

direction to RAM.

After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Read Data from CGRAM, DDRAM or ICON RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM./ICON RAM

The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.

Bias Set

RS	R/W	 DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	BS	1	0	FX

BS: bias selection

When BS="High", the bias will be 1/4

When BS="Low", the bias will be 1/5

BS will be invalid when external bias resistors are used(OPF1=1,OPF2=1)

FX: must be fixed on high in 3-line application and fixed on low in other applications.

Set ICON RAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	AC3	AC2	AC1	AC0

Set ICON RAM address to AC.

This instruction makes ICON data available from MPU.

When IS=1 at Extension mode,

The ICON RAM address is from "00H" to "0FH".

Power/ICON control/Contrast set(high byte)

RS	R/W	 DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	1	Іом	Вом	C5	C4

> Ion: set ICON display on/off

When Ion = "High", ICON display on.

When Ion = "Low", ICON display off.

> Bon: switch booster circuit

Bon can only be set when internal follower is used (OPF1=0,OPF2=0).

When Bon = "High", booster circuit is turn on.

When Bon = "Low", booster circuit is turn off.

C5,C4 : Contrast set(high byte)

C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0). They can more precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage for LCD driver.

Follower control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	^	0	1	1	_	Eau	Rab	Rab	Rab
0	U	U	'	'	0	FON	2	1	0

Fon: switch follower circuit

Fon can only be set when internal follower is used (OPF1=0,OPF2=0).

When Fon = "High", internal follower circuit is turn on.

When Fon = "Low", internal follower circuit is turn off.

Note that Fon must be set to "Low" if (OPF1, OPF2) is not (0,0).

Rab2,Rab1,Rab0 : V0 generator amplified ratio

Rab2,Rab1,Rab0 can only be set when internal follower is used (OPF1=0,OPF2=0). They can adjust the amplified ratio of V0 generator. The details please refer to the supply voltage for LCD driver.

Contrast set(low byte)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	1	1	СЗ	C2	C1	C0

C3,C2,C1,C0:Contrast set(low byte)

C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0). They can more precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage for LCD driver.

■ Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the ST7036 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state (BF = 1) until the initialization ends. The busy state lasts for 40 ms after VDD rises to stable.

- 1. Display clear
- 2. Function set:

DL = 1; 8-bit interface data

N = 0; 1-line display

DH=0; normal 5x8 font

IS[2:1]=(0,0); use instruction table 0

- 3. Display on/off control:
 - D = 0; Display off
 - C = 0; Cursor off
 - B = 0; Blinking off
- 4. Entry mode set:

I/D = 1; Increment by 1

S = 0; No shift

5. 3 line: FX=1

1/2 line: FX=0

6. ICON control

Ion=0; ICON off

7. Power control

BS=0; 1/5bias

Bon=0; booster off

Fon=0; follower off

(C5,C4,C3,C2,C1,C0)=(1,0,0,0,0,0)

(Rab2,Rab1,Rab0)=(0,1,0)

8. Double Height Position Select

UD=0, double height font is show on Com9~Com24.

Note:

If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the ST7036.

When internal Reset Circuit not operate, ST7036 can be reset by XRESET pin from MPU control signal.

Initializing by Instruction

8-bit Interface (fosc=380kHz)

> Initial Program Code Example For 8051 MPU(8 Bit Interface):

, INITIA	L_STAR		-
	CALL	A,#38H WRINS_NOCHK DELAY30uS	;FUNCTION SET ;8 bit, N=1,5*7dot
	MOV CALL	A,#38H WRINS_NOCHK	;FUNCTION SET ;8 bit, N=1,5*7dot
	MOV CALL	DELAY30uS A,#14H WRINS_CHK	;set bias
	MOV CALL	DELAY30uS A,#78H WRINS_CHK DELAY30uS	;Contrast set adjustment
	MOV CALL	A,#5EH WRINS_CHK DELAY30uS	;Power/ICON/Contrast control
	MOV CALL	A,#6AH WRINS_CHK	;Follower control
	MOV CALL	DELAY30uS A,#0CH WRINS_CHK	;DISPLAY ON
	MOV CALL	DELAY30uS A,#01H WRINS_CHK DELAY2mS	;CLEAR DISPLAY
	MOV CALL	A,#06H WRINS_CHK DELAY30uS	;ENTRY MODE SET ;CURSOR MOVES TO RIGHT
	START XXXX XXXX XXXX XXXX		
,	S_CHK:		
WRIN	S_NOCH CLR CLR SETB MOV CLR	RS RW E P1,A	;EX: Port 3.0 ;EX: Port 3.1 ;EX:Port 3.2 ;EX:Port 1=Data Bus ;For Check Busy Flag
CHK_	_	RW E P1.7,\$;Check Busy Flag

4-bit Interface (fosc=380kHz)

> Initial Program Code Example For 8051 MPU(4 Bit Interface):

·				XXXX	
,	L_STAF			;	
		DELAY40mS		WRINS_CHK:	
			; FUNCTION SET	CALL CHK_BUSY	
		WRINS_ONCE	; 8 bit, DL = 1		
	CALL	DELAY2mS		PUSH A	
				ANL A,#F0H	
	MOV		; FUNCTION SET	CLR RS	;EX: Port 3.0
	CALL	WRINS_ONCE	; 8 bit, DL = 1	CLR RW	;EX: Port 3.1
	CALL	DELAY30uS		SETB E	;EX: Port 3.2
				MOV P1,A	;EX:Port1=Data Bus
	MOV	A,#30H	; FUNCTION SET	CLR E	
	CALL	WRINS_ONCE	; 8 bit, DL = 1	POP A	
	CALL	DELAY30uS		SWAP A	
				WRINS_ONCE:	
	CALL	CHK_BUSY		ANL A,#F0H	
	MOV	A,#20H	; FUNCTION SET	CLR RS	
	CALL	WRINS_ONCE	; 4 bit, $DL = 0$	CLR RW	
	CALL	DELAY30uS		SETB E	
				MOV P1,A	
	MOV	A,#29H	; FUNCTION SET	CLR E	
	CALL	WRINS_CHK	; 4 bit, $DL = 0$, $N = 1$,	MOV P1,#FFH	;For Check Bus Flag
	CALL	DELAY30uS	; IS2 = 0, IS1 = 1	RET	
				;	
	MOV	A,#14H	;bias	CHK_BUSY:	;Check Busy Flag
	CALL	WRINS_CHK		PUSH A	
	CALL	DELAY30uS		MOV P1,#FFH	
				\$1	
	MOV	A,#78H	;Contrast set	CLR RS	
			,		
	CALL	WRINS_CHK	,	SETB RW	
	CALL CALL		,	SETB RW SETB E	
			,	SETB E MOV A,P1	
	CALL		;Power/ICON/Contrast	SETB E	
	CALL MOV	DELAY30uS		SETB E MOV A,P1	
	CALL MOV	DELAY30uS A,#5EH		SETB E MOV A,P1 CLR E	
	MOV CALL	DELAY30uS A,#5EH WRINS_CHK		SETB E MOV A,P1 CLR E MOV P1,#FFH	
	MOV CALL CALL	DELAY30uS A,#5EH WRINS_CHK DELAY30uS		SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS	
	MOV CALL CALL MOV	DELAY30uS A,#5EH WRINS_CHK DELAY30uS	;Power/ICON/Contrast	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW	
	MOV CALL CALL MOV	DELAY30uS A,#5EH WRINS_CHK DELAY30uS A,#6AH	;Power/ICON/Contrast	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E	
	MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1	
	MOV CALL CALL MOV CALL CALL	DELAY30uS A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH	;Power/ICON/Contrast	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E	
	MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1	
	MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK	;Power/ICON/Contrast ;Follower control	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control ;DISPLAY ON	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H	;Power/ICON/Contrast ;Follower control	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK	;Power/ICON/Contrast ;Follower control ;DISPLAY ON	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK	;Power/ICON/Contrast ;Follower control ;DISPLAY ON	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL MOV CALL CALL MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL MOV CALL CALL MOV CALL CALL MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H	;Power/ICON/Contrast ;Follower control ;DISPLAY ON	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H WRINS_CHK	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
	MOV CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
·	MOV CALL CALL MOV CALL CALL MOV CALL CALL MOV CALL CALL CALL CALL CALL	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
; MAIN_	MOV CALL CALL MOV CALL CALL MOV CALL CALL MOV CALL CALL CALL MOV CALL CALL START	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
; MAIN_	MOV CALL CALL MOV CALL CALL MOV CALL CALL MOV CALL CALL START	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	
; MAIN_	MOV CALL CALL MOV CALL CALL MOV CALL CALL MOV CALL CALL CALL MOV CALL CALL START	A,#5EH WRINS_CHK DELAY30uS A,#6AH WRINS_CHK DELAY30uS A,#0CH WRINS_CHK DELAY30uS A,#01H WRINS_CHK DELAY2mS A,#06H WRINS_CHK DELAY30uS	;Power/ICON/Contrast ;Follower control ;DISPLAY ON ;CLEAR DISPLAY	SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,\$1 POP A	


```
Initial Program Code Example For 8051 MPU ( Serial Interface ):
·-----
INITIAL START:
    CALL HARDWARE_RESET
    CALL DELAY40mS
    MOV A,#38H
                       ;FUNCTION SET
    CALL WRINS_NOCHK ;8 bit, N=1,5*7dot
    CALL DELAY30uS
    MOV
                       ;FUNCTION SET
         A,#39H
    CALL WRINS_NOCHK ;8 bit, N=1,5*7dot,IS=1
    CALL DELAY30uS
    MOV
         A,#14H
                       ;bias
    CALL WRINS_NOCHK
    CALL DELAY30uS
    MOV
         A,#78H
                       :Contrast set
    CALL WRINS_NOCHK
    CALL DELAY30uS
    MOV
         A,#5EH
                       ;Power/ICON/Contrast control
    CALL WRINS_NOCHK
    CALL DELAY30uS
    MOV A,#6AH
                       ;Follower control
    CALL WRINS_NOCHK
    CALL DELAY200mS
                       ;for power stable
                       ;DISPLAY ON
    MOV
         A,#0CH
    CALL WRINS_NOCHK
    CALL DELAY30uS
    MOV
         A,#01H
                       ;CLEAR DISPLAY
    CALL WRINS_NOCHK
    CALL DELAY2mS
    MOV A,#06H
                       ;ENTRY MODE SET
    CALL WRINS_NOCHK ;CURSOR MOVES TO RIGHT
    CALL DELAY30uS
MAIN START:
    XXXX
    XXXX
    XXXX
    XXXX
   _____
WRINS_NOCHK:
     PUSH 1
    MOV
          R1,#8
    CLR
          RS
$1
     RLC
          Α
    MOV SI,C
    SETB SCL
    NOP
    CLR
          SCL
     DJNZ R1,$1
    POP
          1
    CALL DLY1.5mS
    RET
```

■ Interfacing to the MPU

The ST7036 can send data in two 4-bit operations/one 8-bit operation, serial 1 bit operation or fast I²C operation, thus allowing interfacing with 4-bit, 8-bit or I²C MPU.

For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the ST7036 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

Example of busy flag check timing sequence

> Intel 8051 interface(4 Bit)

- For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.
- Example of busy flag check timing sequence

> Intel 8051 interface(8 Bit)

- For serial interface data, only two bus lines (DB6 to DB7) are used.
- Example of timing sequence

> Intel 8051 interface (Serial 4-line)

- For I²C interface data, all eight bus lines (DB0 to DB7) are used.
- > Example of timing sequence

Intel 8051 interface (I²C interface)

■ Supply Voltage for LCD Drive

 When external bias resistors are used (OPF1=1,OPF2=1)

 When built-in bias resistors(9.6KΩ) are used (OPF1=1,OPF2=0)

Note: Do not use built-in booster while built-in bias resistors are used.

 When built-in bias resistors(3.3KΩ) are used (OPF1=0,OPF2=1)

Note: Do not use built-in booster while built-in bias resistors are used.

 When built-in voltage followers with external Vout are used (OPF1=0,OPF2=0 and instruction setting Bon=0,Fon=1)

When built-in booster and voltage followers are used(OPF1=0,OPF2=0)

Note: Ensure V0 level stable, that must let |Vout-V0| over 0.5V(if panel size over 4.5",the |Vout-V0| propose over 0.8V).

V0 voltage follower value calculation

V0=(1+
$$\frac{\text{Rb}}{\text{Ra}}$$
) x Vref
While Vref=VDD x($\frac{\alpha+36}{100}$)

C5	C4	C3	C2	C1	C0	α
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
			•			:
						:
1	1	1	1	0	1	61
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Rab2	Rab1	Rab0	1+Rb/Ra
0	0	0	1
0	0	1	1.25
0	1	0	1.5
0	1	1	1.8
1	0	0	2
1	0	1	2.5
1	1	0	3
1	1	1	3.75

The recommended curve: follower = 04H

Notes:

- 1. Vout \ge V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge Vss must be maintained.
- 2. If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout.
- 3. internal built-in booster can only be used when OPF1=0,OPF2=0.

The recommended curve: followe=01H

Notes:

- 1. Vout \ge V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge Vss must be maintained.
- 2. If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout.
- 3. internal built-in booster can only be used when OPF1=0,OPF2=0.

■ AC Characteristics

68 Interface

(Ta =-35℃ to 85℃)

Item	Signal	Symbol	Condition		7 to 4.5V ing	VDD=4.	Units	
item	Oigilai	Cyllibol	Condition	Min.	Max.	Min.	Max.	Omts
Address hold time	RS	t AH6	_	20	-	20	-	ns
Address setup time	RS	taw6		20	-	20	-	110
System cycle time	RS	tcyc6	_	400	-	280	-	ns
Data setup time	D0 to D7	tDS6		100	-	80	-	20
Data hold time	D0 to D7	tDH6	_	40	-	20	-	ns
Access time	D0 to D7	tACC6		-	500	-	400	
Output disable time	D0 to D7	toн6	CL = 100 pF	300	-	150	-	ns
Enable H pulse time	Е	tewn	_	200	-	120	-	ns
Enable L pulse time	E	tewL	_	150	1	130	-	ns

Note: All timing is specified using 20% and 80% of $\ensuremath{\mathsf{VDD}}$ as the reference.

Serial Interface

(Ta =-35℃ to 85℃)

Item	Signal	Signal Symbol (Condition -	VDD=2.7 to 4.5V Rating		VDD=4.5 to 5.5V Rating		Units
nom	Oigilai			Min.	Max.	Min.	Max.	Onno
Serial Clock Period		tscyc		200	-	100	-	
SCL "H" pulse width	SCL	tshw	_	20	-	20	-	ns
SCL "L" pulse width		tslw		160	-	120	-	
Address setup time	- RS	tsas		10	-	10	-	20
Address hold time	RS	tsah] —	250	-	150	-	ns
Data setup time	- SI	tsps		10	-	10	-	20
Data hold time	31	tsрн] —	10	-	20	-	ns
CS-SCL time		tcss		20	-	20	-	ns
C3-3CL tille	CS	tсsн	-	350	-	200	-	

 $^{^{\}star}1$ All timing is specified using 20% and 80% of VDD as the standard.

I2C interface

(Ta =-35℃ to 85℃)

Item	Signal	Symbol	Condition	VDD=2.7 Rati		VDD=4.5 Rati	Units	
item	Oigilai	Cynnbon	Condition	Min.	Max.	Min.	Max.	Omto
SCL clock frequency		f _{SCLK}		DC	300K	DC	400	kHz
SCL clock low period	SCL	t _{LOW}] —	2.5	_	1.3	_	
SCL clock high period		t _{HIGH}		0.6		0.6	_	μs
Data set-up time	SDA	t _{SU;DAT}		1800		700	_	ns
Data hold time	JUA	t _{HD:DAT}		0	_	0	0.5	μs
SCL,SDA rise time	SCL,	t _r		20+0.1C _b	300	20+0.1C _b	300	ns
SCL,SDA fall time	SDA	t _f		20+0.1C _b	300	20+0.1C _b	300	113
Capacitive load represent by each bus line		C _b	_	_	400	_	400	pf
Setup time for a repeated START condition	SDA	t _{SU;STA}	_	0.6		0.6	_	μs
Start condition hold time		t _{HD;STA}	_	1.8		1.0	_	μs
Setup time for STOP condition		t _{su;sto}	_	0.6	_	0.6		μs
Bus free time between a Stop and START condition	SCL	t _{BUF}	_	1.3	_	1.3	_	μs

• Internal Power Supply Reset

Notes:

- toff compensates for the power oscillation period caused by momentary power supply oscillations.
- Specified at 4.5V for 5V operation, and at 2.7V for 3V operation.
- For if 2.7V/4.5V is not reached during 3V/5V operation, internal reset circuit will not operate normally.

Hardware reset(XRESET)

■ Absolute Maximum Ratings

Characteristics	Symbol	Value		
Power Supply Voltage	VDD	-0.3 to +6.0		
LCD Driver Voltage	V_{LCD}	7.0- Vss to -0.3+Vss		
Input Voltage	V _{IN}	-0.3 to VDD+0.3		
Operating Temperature	T _A	-30°C to + 85°C		
Storage Temperature	T _{STO}	-65°C to +150°C		

■ DC Characteristics

(VDD = 2.7 V, TA =-35°C to 85°C)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	-	2.7	-	4.5	V
V_{LCD}	LCD Voltage	V0-Vss	2.7	-	7.0	V
VIN	Power Supply	-	-	-	3.5	V
I _{DD}	Power Supply Current	VDD=3.0V (Use internal booster/follower circuit)	-	160	230	uA
V_{IH1}	Input High Voltage (Except OSC1)	-	0.7 VDD	-	VDD	V
V_{IL1}	Input Low Voltage (Except OSC1)	-	- 0.3	-	0.8	V
V_{IH2}	Input High Voltage (OSC1)	-	0.7 VDD	-	VDD	V
V_{IL2}	Input Low Voltage (OSC1)	-	-	-	0.2 VDD	V
V _{OH}	Output High Voltage (DB0 - DB7)	I _{OH} = -1.0mA	0.7 VDD	-	-	V
V _{OL}	Output Low Voltage (DB0 - DB7)	I _{OL} = 1.0mA	-	-	0.8	>
R _{COM}	Common Resistance	$V_{LCD} = 4V$, $I_d = 0.05 mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_d = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	V _{IN} = 0V to VDD	-1	-	1	μΑ
I _{PUP}	Pull Up MOS Current	VDD = 3V	20	30	40	μΑ
fosc	Oscillation frequency	VDD = 3V,1/17duty	350	540	1100	kHz

■ DC Characteristics

(VDD = 4.5 V ,TA = -35 $^{\circ}$ C to 85 $^{\circ}$ C)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	-	4.5	-	5.5	V
V_{LCD}	LCD Voltage	V0-Vss	2.7	-	7.0	V
VIN	Power Supply	-	-	-	3.5	٧
I _{DD}	Power Supply Current	VDD=5.0V (Use internal booster/follower circuit)	-	240	340	μА
V_{IH1}	Input High Voltage (Except OSC1)	-	0.7 VDD	-	VDD	V
V_{IL1}	Input Low Voltage (Except OSC1)	-	-0.3	-	0.8	V
V _{IH2}	Input High Voltage (OSC1)	-	0.7 VDD	-	VDD	V
V_{IL2}	Input Low Voltage (OSC1)	-	-	-	1.0	V
V _{OH}	Output High Voltage (DB0 - DB7)	I _{OH} = -1.0mA	0.8 VDD	-	VDD	V
V _{OL}	Output Low Voltage (DB0 - DB7)	I _{OL} = 1.0mA	-	-	0.8	V
R _{COM}	Common Resistance	$V_{LCD} = 4V$, $I_d = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V$, $I_d = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	V _{IN} = 0V to VDD	-1	-	1	μА
I _{PUP}	Pull Up MOS Current	VDD = 5V	65	95	125	μΑ
fosc	Oscillation frequency	VDD = 5V,1/17duty	350	540	1100	kHz

■ LCD Frame Frequency

• 1/16 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/16 duty; 1/5 bias,1 frame =1.85us x 200 x 16 = 5.92ms=168.9Hz(SHLC and SHLS connect to High)

• 1/17 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/17 duty; 1/5 bias, 1 frame =1.85us x 200 x 17 = 6.29ms=159Hz(SHLC and SHLS connect to High)

1/8 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/8 duty; 1/4 bias,1 frame = 1.85us x 400 x 8 = 5.92ms=168.9Hz(SHLC and SHLS connect to High)

1/9 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/9 duty; 1/4 bias,1 frame = 1.85us x 400 x 9 = 6.66ms=150Hz(SHLC and SHLS connect to High)

● 1/25 Duty(Extension mode and 3-line); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/25 duty; 1/4 bias, 1 frame = 1.85us x 160 x 25 = 7.40ms=135.1Hz(SHLC and SHLS connect to High)

■ I/O Pad Configuration

ON: Pull Up OFF: floating Pull Up Circuit D0~5 D6, 7 Parallel-68 ON Pull Up V_{DD} Vdd Enable 4-line SPI Circuit ON OFF I²C OFF **PMOS PMOS** Data **NMOS** NMÖS

I/O PAD: DB0-DB7

■ LCD and ST7036 Connection

SHLC/SHLS ITO option pin can select at different direction for LCD panel

Com normal direction/Seg normal direction

ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP

3 line x 16 characters, SHLC=1 SHLS=1

Com normal direction/Seg reverse direction

ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP

3 line x 16 characters, SHLC=1, SHLS=0

Com reverse direction/Seg normal direction

ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP

3 line x 16 characters, SHLC=0, SHLS=1

Com reverse direction/Seg reverse direction

ABCDELCHINKLMNOP ABCDELCHINKLMNOP ABCDELCHINKLMNOP

3 line x 16 characters, SHLC=0, SHLS=0

■ Application Circuit (Normal mode)

- > Use internal resistor(9.6K ohm) and contrast adjust with external VR.
- > Booster always off.
- ➤ Has 240 character of CGROM.
- Internal oscillator.

■ Application Circuit(Extension mode)

- > Use internal follower circuit.
- > Booster has 2 times pump.
- ➤ Has 240 character of CGROM.
- Internal oscillator.

When the heavy load is applied, the dotted line part could be added.

■ Application Circuit (for glass layout)

• ST7036 over Glass,6800 serial 8bit interface, with booster and follower circuit on

ST7036 over Glass,6800 serial 4bit interface, with booster and follower circuit on

ST7036 over Glass, serial interface, with booster and follower circuit on

• ST7036 over Glass, I²C interface, with booster and follower circuit on

In I2C application, note that the impedence of SDAs and GNDs should be keep in the POWER PIN LEVEL.

User's Guide

LCD Safe Handling Procedure

For product support, contact

Newhaven Display International 2511 Technology Drive, #101 Elgin, IL 60124 Tel: (847)844-8795 Fax: (847)844-8796

USING LCD MODULES

LIQUID CRYSTAL DISPLAY MODULES

LCD's are composed of glass, liquid crystal fluid, and a polarizer. Please pay attention to the following items when handling:

- 1. Keep the temperature within a specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperatures and high humidity.
- 2. Do not touch, push or rub the exposed polarizer with anything harder than an HB lead pencil (glass, tweezers, etc).
- 3. N-hexane is recommended for cleaning the adhesives used to attach the front/rear polarizer. Reflectors made of organic substances will be damaged by chemicals such as acetone, toluene, ethanol and isopropyl alcohol.
- 4. If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, wipe it gently with absorbent cotton or another soft material like a chamois soaked in Isopropyl alcohol or Ethyl alcohol. Scrub gently to avoid damaging the display surface.
- 5. Wipe off saliva or water immediately! Contact with water over a long period of time may cause deformation or color fading.
- 6. Avoid contact with oil or any greasy substances.
- 7. If there is condensation on the surface and contact with the terminals while cold, it will damage, stain or dirty the polarizer. After the product is tested at a low temperature, they must be warmed up in a container before being exposed to room temperature environments.
- 8. Do not put or attach anything on the display area in order to avoid leaving marks.
- 9. Do not touch the display with bare hands. This will stain the display area and degrade the insulation between terminals. (Some cosmetics are detrimental to the polarizer).
- 10. Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 11. As glass is fragile, care should be taken to avoid chipping, while handling the edges especially.

PRECAUTIONS FOR HANDLING LCD MODULES

Since the LCD module has been assembled and adjusted with a high degree of precision, avoid applying excessive shock or force to the module or making any alterations or modifications to it.

- 1. Do not alter, modify or change the shape of the tab on the metal frame.
- 2. Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- 3. Do not damage or modify the pattern wiring on the printed circuit board.
- 4. Absolutely do not modify the zebra rubber strip (conductive rubber) or heat the seal connector!
- 5. Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- 6. Do not drop, bend or twist the LCD module. In particular, don't forcibly pull or bend the I/O cable or backlight cable.

7. In order to avoid cracking the FPC, pay attention to the area where the FPC is bent, the edge of the overlay, the area of the surface of Ni-Au plating, the area of soldering land, and the area of the through hole.

ELECTRO-STATIC DISCHARGE CONTROL

Since this module uses a CMOS LSI, give the same careful attention to the electrostatic discharge as you would for an ordinary CMOS IC.

- Make sure you are grounded when handling LCD modules. To minimize the performance degradation
 of the LCD modules resulting from destruction caused by static electricity, exercise care to avoid
 holding the following sections when handling the modules: exposed area of the printed circuit board,
 terminal electrode sections.
- 2. Before removing the LCD module from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- 3. When soldering the terminal of the LCD module, make sure the AC power source for the soldering iron does not leak.
- 4. When using an electric screwdriver to attach the LCD module, the screwdriver should be of ground potentiality, to minimize any transmission of electromagnetic waves producing sparks coming from the commutator of the motor.
- 5. As far as possible, make the electric potential of your work clothes and that of the work bench the ground potential.
- 6. To reduce the generation of static electricity, be careful that the air in the working environment is not too dry. (A relative humidity of 50-60% is recommended).

PRECAUTIONS FOR OPERATION

- 1. Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
- 2. Driving the LCD in the voltage above the limit shortens its life.
- 3. If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.
- 4. Response time is greatly delayed at temperatures below the operating temperature range, however this does not mean the LCD will be out of order. It will recover when it returns to the specified temperature range.
- 5. If the display area is pushed hard during operation, the display may become abnormal, however it will return to normal if it is turned off and then turned back on.
- 6. Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit, therefore it must be used under the relative condition of 40°C, 50% RH.
- 7. When turning the power on, input each signal after the positive/negative voltage becomes stable.

STORAGE

WHEN STORING LCD'S, THE FOLLOWING PRECAUTIONS ARE NECESSARY:

- 1. Store them in a sealed polyethylene bag. If properly sealed, there is no need for desiccant.
- 2. Store them in a dark place; do not expose them to sunlight or fluorescent light. Keep the temperature between 0°C and 35°C.
- 3. The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).
- 4. Environmental conditions:
 - A). Do not leave them for more than 160 hours at 70°C
 - B). They should not be left for more than 48 hours at -20°C

SAFETY

- 1. It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- 2. If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

LIMITED WARRANTY

Newhaven Display MAKES NO WARRANTY RESPECTING THE MERCHANTABILITY OF THE PRODUCTS OR THEIR SUITABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR USE OR RESPECTING INFRINGEMENT. Newhaven Display's liability arising out of any sale of products to Customer is expressly limited to repair and/or replacement of such Products, at Newhaven Display's election, with such remedies exclusive and in lieu of all others. Newhaven Display will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. This warranty is in lieu of any and all other warranties, whether oral, written, expressed, implied or statutory. Implied warranties of fitness for a particular purpose and merchantability are specifically excluded and shall not apply. Customer's obligations and Newhaven Display's remedies with respect to defective or nonconforming products, are solely and exclusively as stated herein. Furthermore, no warranty will apply if the Product has been subject to misuse, static discharge, neglect, accident, modification, or has been soldered or altered in any way or if any of the LCD handling precautions have been disregarded. Broken glass, scratches on polarizer, mechanical damages, as well as defects that are caused by accelerated environment tests are excluded from warranty. In returning products, they must be returned in their original packaging. If the original packaging is not used, the returned product must be properly packaged to prevent damage or warranty will be void. There must be a detailed description of the failures or defect for each returned part.

RETURN LCD MODULES UNDER WARRANTY

The Customer must notify Newhaven Display within one year from date of shipment of any defective product. If Newhaven Display agrees to accept a return, return freight charges may be paid by Newhaven Display. Newhaven Display will not accept COD shipments. Contact a sales representative for a Return Materials Authorization Number and addressing instructions prior to returning product.

Handling Precautions

1. Limitation of Application:

Newhaven products are designed for use in ordinary electronic devices such as business machines, telecommunications equipment, measurement devices..etc. Please handle the products with care. (See below)

Newhaven products are not designed, intended or authorized for use in any application which the failure of the product could result in a situation where personal injury or death may occur. These applications include, but are not limited to: life-sustaining equipment, nuclear control devices, aerospace equipment, devices related to hazardous or flammable materials...etc. (If Buyer intends to purchase or use the Newhaven products for such unintended or unauthorized applications, Buyer must secure prior written consent to such use by a responsible officer of Newhaven Display). Should Buyer purchase or use Newhaven products for any such unintended or unauthorized application (without such consent), Buyer shall indemnify and hold Newhaven and its officers, employees, subsidaries, affiliates and distributors harmless against all claims, costs, damages and expenses, and reasonable attorney's fees, arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Newhaven was negligent regarding the design or manufacture of the part.

2. Industrial Rights and Patents

Newhaven shall not be responsible for any infringement of industrial property rights of third parties in any country arising out of the application or use of Newhaven products, except which directly concern the structure or production of such products.

Do Not Press!

If pressure is applied to LCD, orientation may be disturbed. The LCD can be broken by shock!

Don't Swallow or Touch Liquid Crystal!

Liquid Crystal may leak if the display breaks. If it accidentally gets on your hands, wash them with soap and water!

Do Not Scratch!

No DC Voltage to LCD!

DC voltage or higher voltage than specified will reduce the lifetime of the LCD.

Do Not Put Pressure on the Metallic Frame or Disassemble the LCD Module

Pressure on the metallic frame and PCB may deform the conductive rubber or break the liquid crystal cell and backlight, which will cause defects.

LCD may be shifted or conductive rubber may be reshaped, which will cause defects.

Slowly Peel Off Protective Film!

Avoid static electricity.

Avoid Static Electricity!

Please be sure to ground human body and electric appliances during work. It is preferable to use a conductive mat on the table and wear cotton clothes or conduction processed fiber. Synthetic fiber is not recommended.

Wear Gloves While Handing!

It is preferable to wear gloves to avoid damaging the LCD.

Please do not touch electrodes with bare hands or leave any residue.

Keep Away From Extreme Heat and Humidity!

Use Alcohol to Clean Terminals!

When attaching with the heat seal or anisotropically conductive film, wipe off with alcohol before use.

Don't Drop Water on LCD!

Note that the presence of waterdrops or dew in the LCD panel may deteriorate the polarizer or corrode the electrodes.

Precaution in Soldering LCD Module

Basic instructions: Solder I/O terminals only.

Use soldering iron without leakage.

(1)Soldering condition to I/O terminals

Temperature at tip of the iron: 280±10°

Soldering time: 3~4 sec.

Type of solder: Eutectic solder (containing colophony-flux)

*Do not use flux because it may soak into the LCD Module or contaminate it.

*It is preferable to peel off protective film on the display surface after soldering I/O terminals are complete.

(2)Remove connector or cable

*When you remove connector or cable soldered to I/O terminals, please confirm that solder is fully melted. If you remove by force, electrodes at I/O terminals may be damaged(or stripped off).

*It is recommended to use a solder suction machine.

Long-term Storage

If it is necessary to store LCD modules for a period of time, please comply with the following procedures.

If storage conditions are not satisfactory, the display(especially polarizer) or soldering I/O terminals may become difficult(some oxide is generated at I/O terminals plating).

- 1.Store as delivered by Newhaven.
- 2.If you store it unpacked, put it in an anti-static bag, seal its opening and store where it is not subjected to direct sunlight or fluorescent light.
- 3.Store at temperature 0 to +35° and at low humidity. Please refer to our specification sheets for storage temperature range and humidity conditions.

Long-term Storage

Please use power supply with built-in surge protection circuit.