<u>Chapter 4:</u> <u>Network Layer Data Plane</u>

Chapter objectives:

- understand principles behind network layer services, with a focus on the data plane:
 - network layer service models
 - forwarding versus routing
 - Addressing
 - generalized forwarding
 - Internet architecture
- implementation in the Internet
 - IP protocol
 - NAT, middleboxes

Network Layer 4-1

1

Lecture 19

- Sections 4.1, 4.1.1, 4.1.2, 4.2, 4.2.1, 4.2.2
- Overview of network layer
 - Forwarding and control planes
 - Network service models
- What is inside a router
 - Input port processing & destination-based forwarding
 - Switching

Network Layer 4-2

Chapter 4: Network Layer

4. 1 Introduction

Network Layer 4-3

3

Network layer

- network layer protocols in every host, router
- data unit is packet or datagram (independent from other data units)
- transports segment from sending to receiving host
- sending side: encapsulates segments into packet
- network routers: examines header fields in IP packet & sends packet on an output port
- rcving side: delivers segments to transport layer

Network Layer 4-4

Two Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
 - router (or switch) does not determine route for each packet -> route is determined for all packets in a flow at the beginning, and router forwards packets on predetermined route

 values in arriving packet header
 - 0111
- routing: determine route taken by packets from source to destination
 - routing algorithms are used by every router to determine route -> route may be computed for each packet independently

Network Layer 4-5

5

Interplay between routing and forwarding routing algorithm routing algorithm local forwarding table header value output link 0100 3 0101 2 1001 1 value in arriving packet's header Otto 1 Network Layer 4-6

Network service model

Q: What *service model* for "channel" transporting packets from sender to receiver?

<u>example services for</u> individual packets:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

<u>example services for a</u> flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in interpacket spacing

Channel may not offer any guarantees - best effort service

Network Layer 4-7

7

Network layer service models:

Network Architecture		Guarantees ?				Congestion
		Bandwidth	Loss	Order	Timing	
Internet	best effort	none	no	no	no	no (inferred via loss)

Internet "best effort" service model

No guarantees on:

- i. successful datagram delivery to destination
- ii. timing or order of delivery
- iii. bandwidth available to end-end flow

Network Layer 4-8

Chapter 4: Network Layer

- 4. 1 Introduction
- 4.2 What's inside a router?

Network Layer 4-9

9

Router Architecture Overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP):
 - construct routing tables: which port leads to destination
- forwarding datagrams from incoming to outgoing link:
 - route packets using routing table

Network Layer 4-10

Destination-based forwarding

forwarding table							
Destination Address Range	Link Interface						
11001000 00010111 000 <mark>10000 00000000</mark>	n						
11001000 00010111 000 <mark>10000 00000</mark> 100 through	3						
11001000 00010111 000 <mark>10000 00000111</mark>	J						
11001000 00010111 000 <mark>11000 11111111</mark>							
11001000 00010111 000 <mark>11001 00000000</mark> through	2						
11001000 00010111 000 <mark>11111 11111111</mark>							
otherwise	3						

Q: but what happens if ranges don't divide up so nicely?

13

Longest prefix matching

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination A	Link interface			
11001000	00010111	00010**	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011**	*****	2
otherwise		*		3

examples:

11001000 00010111 00010110 10100001 which interface?
11001000 00010111 00011000 10101010 which interface?

· longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

examples:

15

Longest prefix matching

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

examples:

Longest prefix matching

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

17

Longest prefix matching

- *we'll see why longest prefix matching is used shortly, when we study addressing
- *longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: ~1M routing table entries in TCAM

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transferred from inputs to outputs
 - often measured as multiple of input/output line rate e.g., N inputs: switching rate N times line rate desirable
- three types of switching fabrics

19

Switching Via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- *packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Network Layer 4-20

21

Switching Via a Bus

bus

- datagram from input port memory to output port memory via a shared bus
 - input ports contend in transmitting packets on the shared bus, after adding output port numbers to packets
 - each output port listens to packets transmitted on bus, and extracts those with matching output port numbers
- bus contention: switching speed limited by bus bandwidth

Network Layer 4-22

Switching Via An Interconnection Network (space swtiching) overcome bus bandwidth limitations Banyan networks, crossbar, other interconnection nets initially developed to connect processors in crossbar multiprocessor 1 Crossbar switch 2 Ν N-1 2 Ν 1 Network Layer 4-23