Data Analysis of Pooled Dataset

We carried out dataset analysis of pooled dataset as follows.

Fig. 1 Number of Emails for each label

Fig. 2 Average word count for each label

Fig. 3 Average subject word count for each label

Comparison Study

Here we compare different Machine Learning algorithms using 3 different N-gram language models.

Point to note regarding LDA, we tried it but the system crashed for 2-gram and 3-gram dataset on Google Colab.

The values that follow are weighted average F1 scores.

	1-gram	2-gram	3-gram
Ayush Sharma			
MultinomialNB SVM Logistic Regression Decision Tree	0.84 0.87 0.89 0.82	0.83 0.87 0.86 0.84	0.67 0.80 0.81 0.75
Naman Goenka			
MultinomialNB SVM Logistic Regression Decision Tree	0.84 0.89 0.91 0.87	0.80 0.81 0.92 0.84	0.67 0.73 0.86 0.79
Mohul Maheshwari			
MultinomialNB SVM Logistic Regression Decision Tree	0.78 0.88 0.88 0.82	0.77 0.86 0.85 0.83	0.64 0.78 0.79 0.75

Mohul Maheshwari

Naman Goenka

Ayush Sharma

Data_1

MultinomialNB

Unigram

SVM

Logistic Regression

Unigram

Decision Tree

Data_2

MultinomialNB

Unigram

SVM

Logistic Regression

Unigram

Decision Tree

Data 3

MultinomialNB

Unigram

SVM

Linear regression

Unigram

Decision Tree

