Dynamic Pricing for Urban Parking Lots

Capstone Project - Summer Analytics 2025

By: Anurag Pandey **Date:** July 2025

1. Problem Statement

Urban parking resources are limited, and inefficient pricing often leads to either underutilized lots or excessive congestion. This project aims to implement a real-time dynamic pricing engine for 14 parking lots using live data streams and open-source tools.

Using pandas, numpy, and Pathway, we built three pricing models that increase in complexity — starting with a baseline and evolving into competition-aware pricing. This system is designed to scale to real-time urban infrastructure and help optimize occupancy, revenue, and driver satisfaction.

2. Dataset Overview

• Observations: 18,368

• Features: 12

No missing data or duplicates

Key Variables:

Feature	Description
ID	Unique parking lot identifier
Occupancy, Capacity	Used to determine fullness ratio
QueueLength	Number of vehicles waiting
TrafficConditionNearby	Proxy for surrounding congestion
VehicleType	Categorical: car, bike, truck
IsSpecialDay	Boolean indicating holidays/events
Latitude, Longitude	Used to calculate spatial proximity
Timestamp	Merged from LastUpdatedDate + Time

3. Models Used

Model 1: Baseline Linear Pricing

Formula:

Price(t+1)=Price $(t+\alpha)$. (CapacityOccupancy)

Base price: \$10

• **a (sensitivity)**: 2.0

• **Behavior**: Price increases gradually with lot fullness.

This model is simple and reactive but does not consider external conditions like traffic or queue length.

Model 2: Demand-Based Dynamic Pricing

We define a **custom demand function**:

Demand =

 α -CapacityOccupancy+ β -QueueLength- γ -Traffic+ δ -SpecialDay+ ϵ -VehicleTypeWeight

Weights:

- $\alpha = 2.0$ (Occupancy ratio)
- $\beta = 0.5$ (Queue length)
- γ = 1.0 (Traffic level)
- $\delta = 2.0$ (Special day boost)
- $\varepsilon = 1.2$ (Vehicle type)

Vehicle Weights:

• Car: 1.0

• Bike: 0.5

• Truck: 1.5

Price Mapping:

• Pricet = BasePrice· $(1+\lambda\cdot NormalizedDemand)$ $\lambda = 1.0$

Prices are bounded between \$5 and \$20

Normalization:

Demand is normalized per lot across all timestamps to ensure fair comparison.

Model 3: Competitive Pricing with Geo-Intelligence

This model uses **spatial intelligence** to adjust price competitively.

- If a lot is over 90% full and nearby lots (within 1km) are cheaper and less full → reduce price
- If nearby lots are full and expensive → increase price

We used geopy.distance.geodesic() to compute proximity and adjusted Model2Price ±10%:

- If reducing: price = max(0.9 × model2_price, 5)
- If increasing: price = min(1.1 × model2_price, 20)

This model mimics real-world driver behavior and market-based responses.

4. Assumptions

- Prices must be bounded between \$5 and \$20.
- Time intervals between records are consistent (~30 mins).
- Lot locations are fixed; no changes in lat-long.
- Nearby lots are defined within 1 km radius.
- Vehicle types affect demand: larger vehicles are weighted higher.

5. Real-Time Streaming with Pathway

We embedded pricing logic into a custom Transformer using Pathway, allowing:

- Live price recalculation per event
- Streaming ingestion from CSV-like connectors
- Real-time routing through the UDF

Example UDF Structure:

```
def compute_price_row(...):
raw_demand = ...
normalized = ...
base_price = 10
```

```
return clip(base_price * (1 + normalized), 5, 20)
```

We deployed this via:

pw.run()

The output table streams time-stamped prices for each lot.

6. Visualizations (Bokeh)

We created interactive Bokeh plots comparing all three models:

• X-axis: Timestamp

• Y-axis: Price

• Legend: Model 1, Model 2, Model 3

• Tools: Hover to inspect exact price/time

• Lots: Plots shown for 3 sample lots

Sample Chart Insights:

• Model 1 always increases, even during low queue/traffic.

• Model 2 adapts well to special days and peak traffic.

 Model 3 smooths pricing under pressure and avoids overpricing when competition exists.

7. Results & Observations

- Model 2 is a good balance of flexibility and interpretability.
- Model 3 provides the best real-world adaptation but adds computational overhead.

8. Future Work

- Reinforcement learning for pricing strategy optimization
- Driver rerouting suggestions using real-time demand heatmaps
- Integration with city-wide traffic APIs
- UI dashboard using Dash or Streamlit
- Multi-objective optimization (e.g., revenue + fairness + availability)