José Carlos da Silva Pereira Explicações de Matemática - Sala de Estudo

Exame Nacional do Ensino Secundário - Matemática A

Prova Modelo n.º 1

12.° ANO DE ESCOLARIDADE

"Pela evidência intrínseca da sua criação, o Grande Arquitecto do Universo começa agora a parecer um puro Matemático."

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1.	Um	baralho	de cart	tas com	pleto é	constituído	o por	52	cartas	, repartidas	por	quatro	naipes	de treze	cartas	cada:
										Retiram-se a						leto e
CC	olocar	n-se em	fila. Qu	antas fila	as difere	entes pode	mos f	orma	ar de n	nodo que no	s ext	remos f	iquem c	lois Reis?		

- **A** 10!
- **B** 4×3×10!
- C 12!
- 2. Seja S o espaço de resultados associados a uma certa experiência aleatória. Sejam A, B e C três acontecimentos $(A \subset S, B \subset S \in C \subset S)$. Sabe-se que $P(A \cap B) = P(C) = 0,2$ e que $A \cap B$ e C são incompatíveis. Qual é o valor de $P((A \cap B)|\overline{C})$?
 - **A** 0

- **B** 0.10
- **D** 0,4

3. Seja g uma função de domínio IR cujo gráfico se encontra parcialmente representado na figura. Sabe que:

As rectas de equações x = 1, y = 1 e y = 2 são assimptotas do gráfico de g;

$$- g(1) = 2.$$

Seja (u_n) uma sucessão tal que $\lim g(u_n) = 1$. O termo geral de da sucessão (u_n) pode ser:

- **4.** Sejam x e y dois números reais positivos tais que $y = \frac{2}{x}$. Qual é o valor exacto de $\log_4\left(\frac{x^3y^3}{4}\right)$?
- $\frac{1}{2}$

- **5.** Na figura está representada, em referencial o.n. xOy uma circunferência de equação $x^2 + y^2 = 4$.
 - Os pontos A, B e C pertencem à circunferência;
 - Os pontos A e C pertencem ao eixo Ox e o ponto B ao eixo Oy;
 - O ponto O é a origem do referencial.

Considera um ponto P que se desloca sobre o arco ABC e seja α a amplitude, em radianos, do ângulo AOP, $\alpha \in [0,\pi]$.

Qual das seguintes expressões dá a área da região sombreada em função de α ?

A
$$\pi - \alpha - tg\alpha$$

B
$$2\times(\pi-\alpha-\text{sen}\alpha)$$

$$\mathbf{C}$$
 $\pi - \alpha - \mathsf{seno}$

6. Seja h uma função cuja representação gráfica é a seguinte:

Qual das seguintes expressões designa um número negativo?

$$A$$
 $h'(-2) \times h''(1)$

B
$$h(0)+h'(3)\times h''(1)$$

$$(-3) + h''(-3)$$

$$D h(2)-h'(3)-h''(-4)$$

- 7. Em C, conjunto dos números complexos, considera o complexo $z = 2 2\sqrt{3}i$. Um argumento de $\frac{i}{z^2}$ é:
 - $A \frac{\pi}{6}$
- $\mathbf{B} \ \frac{\pi}{6}$

- $C \frac{2}{3}\pi$
- $\square \frac{7}{6}\pi$

8. Seja P a imagem geométrica do número complexo z. A imagem geométrica do número complexo $z+2i^{11}$ é:

- A O ponto A
- **B** O ponto B
- C O ponto C
- D O ponto D

GRUPO II - ITENS DE RESPOSTA ABERTA

- 1. Em C, conjunto dos números complexos, considera $z_1=\sqrt{3}-i$ e $z_2=2e^{i\frac{5\pi}{12}}$.
 - **1.1** Mostra que o número complexo $\frac{z_1 \times z_2}{2i} \sqrt{2}$ é um imaginário puro
 - **1.2** Seja $z_3 = \text{cis}\alpha$ um número complexo. Determina $\alpha \in \left]0, \frac{\pi}{2}\right[$ de modo que $\frac{\left(z_3\right)^2}{z_2}$ seja um número real.
- 2. Seja S um espaço de resultados associados a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis (A \subset S e B \subset S).
 - **2.1** Mostra que $P(\overline{A} \cap B) = P(B) P(A) + P(A|\overline{B}) \times P(\overline{B})$
 - 2.2 Num encontro de professores de Matemática de todo o país, realizado em Fátima, sabe-se que:
 - $-\,$ 5 em cada 7 professores não tem um mestrado em Educação;
 - 40% dos professores tem um mestrado em Análise;
 - Dos professores que não têm mestrado em Análise, a sexta parte têm mestrado em Educação.
 - Escolhendo aleatoriamente um professor, qual é a probabilidade desse professor não ter mestrado em Educação e ter mestrado em Análise? (Apresenta o resultado na forma de fracção irredutível) Sugestão: Podes utilizar a igualdade enunciada em 2.1
- 3. Um código de um cofre é constituído por 4 algarismos seguidos de 5 letras (Considera 26 letras). Um exemplo de um código deste cofre pode ser 1 0 0 2 A W Z B B. Escolhendo ao acaso um destes códigos, qual é a probabilidade de ter exactamente dois 6 e as letras todas distintas? (Apresenta o resultado na forma de dizima arredondada às centésimas)

- 4. Considera uma função f, continua em IR. Sabe-se que:
 - f tem um único zero para x = 1;
 - A recta de equação y = 2x + 1 é assimptota do gráfico de f quando $x \to +\infty$ e a recta de equação y = -3x é assimptota do gráfico de f quando $x \to -\infty$.

Seja g uma função definida em IR \ $\{1\}$ por $g(x) = \frac{x}{f(x)}$. Estuda a função g quanto à existência de assimptotas ao seu gráfico.

5. Considera a função f, definida no intervalo $\begin{bmatrix} 4,11 \end{bmatrix}$ por $f(x) = \frac{3\cos x + 3e^{-x}}{x}$. Recorrendo às capacidades gráficas da calculadora reproduz o gráfico de f na janela de visualização $\begin{bmatrix} 4,11 \end{bmatrix} \times \begin{bmatrix} -1,1 \end{bmatrix}$. Com base nesse gráfico resolve o sequinte problema:

Seja f' a função derivada de f. O conjunto-solução da condição f'(x) < 0 é um intervalo aberto a, b. Determina os valores de a e de b.

Justifica a resposta. (Apresenta os resultados arredondados às décimas)

- **6.** Seja g uma função, de domínio $]-2,+\infty[$, cuja sua **derivada** é dada por $g'(x)=2x^2-5\ln(x+2), \ \forall x\in]-2,+\infty[$.
 - **6.1** Seja r a recta tangente ao gráfico de g no ponto de abcissa -1. A recta r intersecta o eixo Ox num ponto P e o eixo Oy num ponto Q. Sabendo que g(-1)=3, determina a área do triângulo [OPQ], sendo O a origem do referencial.
 - **6.2** Estuda a função g quanto ao sentido das concavidades do seu gráfico e quando à existência de pontos de inflexão.
- 7. Um certo elemento radioactivo de massa M, em miligramas, desintegra-se segundo a lei $M(t) = a \times e^{-b \times t}$, onde t é o tempo em anos e a e b são constantes reais positivas.
 - **7.1** Sabendo que a massa inicial deste elemento radioactivo se reduz 80% ao fim de um **século**, determina o valor de **b**. (Apresenta o resultado na forma de dízima arredondada às milésimas)
 - **7.2** Nesta alínea considera b = 0.016. Mostra que $\frac{M(t+10)}{M(t)}$ é constante. Interpreta o resultado no contexto do problema. (Apresenta o resultado na forma de dízima arredondada às centésimas)

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. E

2. C

3. Г

C

5. B

6. [

7. D

R A

GRUPO II - ITENS DE RESPOSTA ABERTA

1.2
$$\frac{5}{24}\pi$$

2.2
$$\frac{3}{14}$$

4. A.V.:
$$x=1$$
; A.H.: $y=\frac{1}{2}$ quando $x \rightarrow +\infty$ e $y=-\frac{1}{3}$ quando $x \rightarrow -\infty$

050

5.
$$a \approx 6.1 \text{ e b} \approx 9.3$$

6.1
$$A_{[OPQ]} = \frac{25}{4}$$

6.2 O gráfico de g tem c.v. baixo em
$$\left] -2, \frac{1}{2} \right]$$
 e tem c.v. cima em $\left[\frac{1}{2}, +\infty \right]$ O gráfico de g tem P.I. para $x = \frac{1}{2}$

7.1
$$b \approx 0.016$$

7.2
$$\frac{M\!\left(t+10\right)}{M\!\left(t\right)}\!=\!e^{-0.16}\approx0.85$$
: A massa deste elemento radioactivo diminui 15% por década.

RESOLUÇÃO DA PROVA MODELO N.º 1

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Consideremos o seguinte esquema:

$$\frac{\text{Rei}}{4} \underbrace{\hspace{1cm}}_{101} \underbrace{\hspace{1cm}}_{101} \underbrace{\hspace{1cm}}_{3} \underbrace{\hspace{1cm}}_{3}$$

Então o número pedido é 4×3×10! e a resposta correcta é a B.

2. Como A \cap B e C são incompatíveis vem que $(A \cap B) \cap C = \emptyset$, assim $(A \cap B) \subset \overline{C}$ e portanto $(A \cap B) \cap \overline{C} = A \cap B$. Logo:

$$\begin{split} P\Big((A \cap B) \Big| \overline{C}\Big) &= \frac{P\Big((A \cap B) \cap \overline{C}\Big)}{P\Big(\overline{C}\Big)} = \frac{P\big(A \cap B\big)}{1 - P\big(C\big)} = \frac{0.2}{1 - 0.2} = \\ &= \frac{0.2}{0.8} = 0.25 \end{split}$$

A resposta é a C.

- 3. A resposta correcta é a **D**, pois $u_n = -ln(n) \rightarrow -\infty$ e portanto $g(u_n) \rightarrow 1$.
- **4.** Como $y = \frac{2}{x}$ então xy = 2. Logo:

$$\log_{4}\left(\frac{x^{3}y^{3}}{4}\right) = \log_{4}\left(x^{3}y^{3}\right) - \log_{4}4 = \log_{4}\left(\left(xy\right)^{3}\right) - 1 = \log_{4}2^{3} - 1$$

$$= \log_{4}8 - 1 = \frac{3}{2} - 1 = \frac{1}{2}$$

A resposta correcta é a C.

Cálculo Auxiliar: $\log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{\log_2 2^3}{\log_2 2^2} = \frac{3}{2}$, ou de uma outra forma, fazendo $\log_4 8 = y$ vem:

$$\log_4 8 = y \iff 8 = 4^y \iff 2^3 = (2^2)^y = 2^3 = 2^{2y} \iff 3 = 2y \iff y = \frac{3}{2}$$

5.
$$A_{\text{sombreada}} = \frac{1}{2} \times A_{\text{circulo}} - A_{\text{sectorAOP}} - A_{\text{[OCP]}} =$$

$$= \frac{1}{2} \times \pi \times 2^2 - \frac{\alpha}{2} \times 2^2 - \frac{\cancel{Z} \times 2\text{sen}\alpha}{\cancel{Z}} =$$

$$= 2\pi - 2\alpha - 2\text{sen}\alpha = 2 \times (\pi - \alpha - \text{sen}\alpha)$$

A resposta correcta é a B.

6. A resposta correcta é a **D**, pois h(2)=0, h'(3)>0 (A função é crescente em $\begin{bmatrix} 2,+\infty \end{bmatrix}$) e h''(-4)>0 (O gráfico de h tem concavidade voltada para cima em $]-\infty-3]$). Logo $h(2)-h'(3)-\underline{h''(-4)}<0$.

7.
$$|z| = \sqrt{2^2 + \left(-2\sqrt{3}\right)^2} = \sqrt{4 + 12} = \sqrt{16} = 4$$
. Seja θ um argumento de z, assim $tg\theta = \frac{-2\sqrt{3}}{2} = -\sqrt{3}$. Como $\theta \in 4.^\circ Q$, vem que θ pode ser $-\frac{\pi}{3}$. Assim:

$$\frac{i}{z^{2}} = \frac{e^{i\frac{\pi}{2}}}{4^{2}e^{i\left(-\frac{2\pi}{3}\right)}} = \frac{1}{16}e^{i\frac{\pi}{2}\frac{2\pi}{3}} = \frac{1}{16}e^{i\frac{7\pi}{6}}$$

Logo, um argumento de $\frac{i}{2}$ é $\frac{7\pi}{6}$, pelo que a resposta correcta é a D

- 8. Vamos resolver esta questão por dois processos distintos.
- **1.º Processo:** O número complexo z é da forma z=a+bi com a>1 e 0<b<1 (por observação da figura). Como $i^{11}=i^3=-i$ então $z+2i^{11}=a+bi-2i=a+i(b-2)$. Como b-2<0, pois $0<b<1\Leftrightarrow -2< b-2<-1$, então a imagem geométrica de $z+2i^{11}$ pertence ao 4.º quadrante.
- **2.º Processo:** Vamos utilizar a Regra do Paralelogramo para resolver esta questão. Seja Q a imagem geométrica do número complexo $2i^{11} = -2i$. Consideremos a figura seguinte:

Pela Regra do Paralelogramo tem-se $\overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OA}$, então o ponto A é a imagem geométrica do número complexo $z + \left(-2i \right) = z + 2i^{11}$.

A resposta correcta é a A.

1.

1.1 $\left|z_{_1}\right|=\sqrt{\left(\sqrt{3}\right)^2+\left(-1\right)^2}=\sqrt{3+1}=\sqrt{4}=2$. Seja θ um argumento de $z_{_1}$, assim $tg\theta=\frac{-1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}$. Como $\theta\in 4.^{\circ}Q$ então θ pode ser $=-\frac{\pi}{6}$, pelo que $z_{_1}=2e^{i\left(\frac{\pi}{6}\right)}$ e portanto:

$$\begin{split} \frac{z_1 \times z_2}{2i} - \sqrt{2} &= \frac{\cancel{Z} e^{i\left(\frac{\pi}{6}\right)} \times 2e^{\frac{i5\pi}{12}}}{\cancel{Z} e^{i\frac{\pi}{12}}} - \sqrt{2} = \frac{2e^{i\left(\frac{\pi}{6} + \frac{5\pi}{12}\right)}}{e^{i\frac{\pi}{12}}} - \sqrt{2} = \\ &= \frac{2e^{i\frac{\pi}{4}}}{e^{i\frac{\pi}{12}}} - \sqrt{2} = 2e^{i\left(\frac{\pi}{4} - \frac{\pi}{2}\right)} - \sqrt{2} = 2e^{i\left(-\frac{\pi}{4} - \frac{\pi}{2}\right)} - \sqrt{2} = \\ &= 2\times \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) - \sqrt{2} = \cancel{\sqrt{2}} - \sqrt{2}i - \cancel{\sqrt{2}} = -\sqrt{2}i \end{split}$$

e $-\sqrt{2}i$ é um imaginário puro.

1.2 O número complexo $\frac{\left(z_3\right)^2}{z_2}$ é um número real se e só se qualquer seu argumento for da forma $0+k\pi$, $k\in Z$. Assim:

$$\frac{\left(z_{3}\right)^{2}}{z_{2}} = \frac{\left(e^{i\alpha}\right)^{2}}{2e^{\frac{i5\pi}{12}}} = \frac{e^{i(2\alpha)}}{2e^{\frac{5\pi}{12}}} = \frac{1}{2}e^{i\left(2\alpha - \frac{5\pi}{12}\right)}$$

Logo
$$2\alpha - \frac{5}{12}\pi = k\pi$$
, $k \in \mathbb{Z} \Leftrightarrow 2\alpha = \frac{5}{12}\pi + k\pi$, $k \in \mathbb{Z} \Leftrightarrow \alpha = \frac{5}{24}\pi + \frac{k\pi}{2}$, $k \in \mathbb{Z}$

Para
$$k = 0 \rightarrow \alpha = \frac{5}{24}\pi \in \left]0, \frac{\pi}{2}\right]$$
. Portanto $\alpha = \frac{5}{24}\pi$.

2.

2.1
$$P(\overline{A} \cap B) \equiv P(\overline{A \cup B}) = 1 - P(A \cup \overline{B}) =$$

$$= 1 - (P(A) + P(\overline{B}) - P(A \cap \overline{B})) =$$

$$= 1 - P(A) - P(\overline{B}) + P(A \cap \overline{B}) =$$

$$= 1 - P(A) - 1 + P(B) + P(A \cap \overline{B}) =$$

$$= P(B) - P(A) + P(A|\overline{B}) \times P(\overline{B})$$

Justificação:

i)
$$P(A|\overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})} \Leftrightarrow P(A \cap \overline{B}) = P(A|\overline{B}) \times P(\overline{B})$$

2.2 Vamos resolver esta questão por dois processos distintos:

1.º Processo: Consideremos os acontecimentos A: «Professor com mestrado em Educação» e B: «Professor com mestrado em Análise». Queremos determinar $P(\overline{A} \cap B)$. Assim, pelo enunciado tem-se $P(A) = \frac{2}{7}$ (pois $P(\overline{A}) = \frac{5}{7}$), $P(B) = 0.4 = \frac{2}{5}$ e portanto $P(\overline{B}) = \frac{3}{5}$ e $P(A|\overline{B}) = \frac{1}{6}$. Logo $P(\overline{A} \cap B) = \frac{2}{5} - \frac{2}{7} + \frac{1}{6} \times \frac{3}{5} = \frac{3}{14}$.

2.º Processo: Consideremos os acontecimentos A: «Professor com mestrado em Análise» e E: «Professor com mestrado em Educação». Queremos determinar $P(\overline{E} \cap A)$. Vamos construir uma tabela para responder a esta questão. Do enunciado tem-se $P(\overline{E}) = \frac{5}{7}$, $P(A) = 0.4 = \frac{2}{5}$ e $P(E|\overline{A}) = \frac{1}{6}$. Assim:

_				
	Α	Ā	p.m.	
E	13 70	1 10	$\frac{2}{7}$	
Ē	3 14	1/2	<u>5</u> 7	
p.m.	<u>2</u> 5	<u>3</u> 5	1	

Logo
$$P(\overline{E} \cap A) = \frac{3}{14}$$

Justificações:

$$i) \ P\Big(E\big|\overline{A}\Big) = \frac{1}{6} \Leftrightarrow \frac{P\Big(E \cap \overline{A}\Big)}{P\Big(\overline{A}\Big)} = \frac{1}{6} \Leftrightarrow P\Big(E \cap \overline{A}\Big) = \frac{1}{6} \times \frac{3}{5} = \frac{1}{10}$$

ii)
$$P(E \cap A) = \frac{2}{7} - \frac{1}{10} = \frac{13}{70}$$

iii)
$$P(\overline{E} \cap A) = \frac{2}{5} - \frac{13}{70} = \frac{3}{14}$$

iv)
$$P(\overline{E} \cap \overline{A}) = \frac{5}{7} - \frac{3}{14} = \frac{1}{2}$$

3. O número de casos possíveis é $10^4 \times 26^5$. Para determinarmos o número de casos favoráveis consideremos o seguinte esquema: Se os dois 6 ficarem nas duas primeiras posições temos:

Os dois números 6 podem ocupar as quatros posições de 4C_2 maneiras distintas. Logo o número de casos favoráveis é dado por $^4C_2 \times 9^2 \times ^{26}A_5$ e a probabilidade pedida é $\frac{^4C_2 \times 9^2 \times ^{26}A_5}{10^4 \times 26^5} \approx 0,03$.

4.

i) Como a função f se anula para x=1 então o domínio da função $g \in IR \setminus \{1\}$. Assim $\lim_{x \to 1} g(x) = \lim_{x \to 1} \frac{x}{f(x)} = \frac{1}{f(1)} = \frac{1}{0} = \infty$.

Logo a recta de equação x=1 é assimptota vertical do gráfico de g. Como g é contínua em IR\{1}, visto ser quociente de funções contínuas no seu domínio, então o gráfico de g não tem mais assimptotas verticais.

ii) Como a recta de equação de equação y = 2x + 1 é assimptota do gráfico de f, quando $x \rightarrow +\infty$, então:

$$\begin{cases} \lim_{x \to +\infty} \left(f(x) - (2x+1) \right) = 0 & \text{e } \lim_{x \to +\infty} \left(f(x) - 2x \right) = 1 \\ \lim_{x \to +\infty} \frac{f(x)}{x} = 2 & \text{e } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(2x + 1 \right) = +\infty \end{cases}$$

Assim:

$$m = \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x}{f(x)}}{x} = \lim_{x \to +\infty} \frac{x}{x \times f(x)} = \lim_{x \to +\infty} \frac{1}{f(x)} = \frac{1}{+\infty} = 0$$

$$b = \lim_{x \to +\infty} \left(g(x) + mx \right) = \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{x}{f(x)} = \frac{1}{2}$$

Logo a recta de equação $y=\frac{1}{2}$ é assimptota horizontal do gráfico de g quando $x \to +\infty$.

iii) Como a recta de equação de equação y = -3x é assimptota do gráfico de f, quando $x \rightarrow -\infty$ então:

$$\begin{cases} \lim_{x \to \infty} (f(x) + 3x) = 0 & \text{e } \lim_{x \to \infty} \frac{f(x)}{x} = -3 \\ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} (-3x) = +\infty \end{cases}$$

Assim:

$$m = \lim_{x \to \infty} \frac{g(x)}{x} = \lim_{x \to \infty} \frac{\frac{x}{f(x)}}{x} = \lim_{x \to \infty} \frac{x}{x} = \lim_{x \to \infty} \frac{1}{f(x)} = \lim_{x \to \infty} \frac{1}{f(x)} = 0$$

$$b = \lim_{x \to \infty} (g(x) - mx) = \lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{x}{f(x)} = -\frac{1}{3}$$

Logo a recta de equação $y=-\frac{1}{3}$ é assimptota horizontal do gráfico de g quando $x \to -\infty$.

5. Utilizando o editor de funções da calculadora vamos definir a função $y_1 = \frac{3\cos x + 3e^{-x}}{x}$ na janela [4,11]×[-1,1]. Obtemos:

Temos que f'(x) < 0 no intervalo onde a função f é decrescente. Assim concluímos que $a \approx 6,1$ e $b \approx 9,3$.

6.

6.1

 i) Sabemos que o declive da recta r é dado pela derivada da função g no ponto de abcissa -1. Assim:

$$m_r = g'(-1) = 2 \times (-1)^2 - 5ln(-1+2) = 2 - 5ln1 = 2 - 5 \times 0 = 2$$

Logo a equação reduzida da recta \mathbf{r} é da forma y=2x+b. Como g(-1)=3 quer isto dizer que o ponto de coordenadas (-1,3) pertence ao gráfico de g e também à recta \mathbf{r} . Substituindo o ponto de coordenadas (-1,3) na equação y=2x+b tem-se:

$$3=2\times(-1)+b\Leftrightarrow 3=-2+b\Leftrightarrow b=5$$

Portanto a equação reduzida da recta \mathbf{r} é dada por y = 2x + 5.

ii) O ponto P é da forma (x,0) e pertence à recta ${\bf r}$, substituindo na equação de ${\bf r}$, y por zero, obtém-se: $0=2x+5 \Leftrightarrow x=-\frac{5}{2}$. Logo $P\left(-\frac{5}{2},0\right)$. Como a ordenada na origem da recta ${\bf r}$ é 5, então o ponto Q tem coordenadas (0,5).

Vamos representar o triângulo <code>OPQ</code> num referencial o.n. xOy:

$$\text{Assim } A_{\text{[OPQ]}} = \frac{\overline{OP} \times \overline{OQ}}{2} = \frac{\frac{5}{2} \times 5}{2} = \frac{\frac{25}{2}}{2} = \frac{25}{4}$$

6.2 Vamos começar por determinar a expressão analítica de g" e os seus zeros.

i)
$$g''(x) = (2x^2 - 5\ln(x+2))' = 4x - 5 \times \frac{1}{x+2} = \frac{4x^2 + 8x - 5}{x+2}$$

ii)
$$g''(x) = 0 \Leftrightarrow \frac{4x^2 + 8x - 5}{x + 8} = 0 \Leftrightarrow$$

 $\Leftrightarrow 4x^2 + 8x - 5 = 0 \land x + 2 \neq 0 \Leftrightarrow$
 $\Leftrightarrow \left(x = -\frac{5}{2} \lor x = \frac{1}{2}\right) \land x \neq -2$

Fazendo um quadro de sinal vem:

X	-2		1/2	+∞
$4x^2 + 8x - 5$	n.d.	_	0	+
x+2	n.d.	+	+	+
g''(x)	n.d.	_	0	+
g(x)	n.d.	\cap	P.I.	U

Concluímos então que o gráfico de g tem concavidade voltada para baixo em $\left]-2,\frac{1}{2}\right]$ e tem concavidade voltada para cima em $\left[\frac{1}{2},+\infty\right[\text{ . O gráfico de g tem P.I. para }x=\frac{1}{2}.$

7.

7.1 Se a massa inicial deste elemento radioactivo se reduz 80% ao fim de um século (cem anos), quer isto dizer que passados cem anos a massa inicial tinha-se reduzido **a** 20%. Assim vem:

$$M(100) = 0.2 \times M(0) \Leftrightarrow \cancel{a} \times e^{-100b} = 0.2 \times \cancel{a} \times e^{0} \Leftrightarrow e^{-100b} = 0.2$$
$$\Leftrightarrow -100b = \ln(0.2) \Leftrightarrow b = \frac{\ln(0.2)}{-100} \approx 0.016$$

$$7.2 \ \frac{M \big(t+10\big)}{M \big(t\big)} = \frac{\cancel{a} \times e^{-0.016 (t+10)}}{\cancel{a} \times e^{-0.016 t}} = e^{-0.046 (t-0.016 \times 10 + 9.046 t)} = e^{-0.16} \approx 0.85 \ .$$

A massa deste elemento radioactivo diminui 15% a cada dez anos, ou seja, a cada década.