

HIGH DURABILITY MISSILE DOMES.

AD A 0 62968

Raytheon Company Research Division Waltham, MA 02154

12 32

R. /Gentilman, E. /Maguire J. /Pappis

FILE COPY

Decemb

This desurrent has been approved and salor its distribution is untimited.

Interim Technical Report for Portol 1 October 1977-30 September 1978

1NOOO14-76-C-7635

Prepared for

OFFICE OF NAVAL RESEARCH Department of the Navy Arlington, VA 22217

11/18-04E/

Organization

Dr. L.M. Gillin
Aeronautical Research Laboratory
P.O. Box 4331
Fisherman's Bend
Melbourne, VIC 3001
AUSTRALIA

(1)

No. of

Copies

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
·		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED Interim Technical Report
HIGH DURABILITY MISSILE D	OMES	1 Oct 1977 - 30 Sept 1978
		6. PERFORMING ORG. REPORT NUMBER S-2439
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(+)
R. Gentilman		N00014-76-C-0635
E. Maguire		N00014-70-C-0035 >
J. Pappis 9. Performing organization name and address		10. PROGRAM ELEMENT, PROJECT, TASK
Raytheon Company		AREA & WORK UNIT HUMBERS
Research Division		
Waltham, MA 02154		12. REPORT DATE
Office of Naval Research		December 1978
Department of the Navy		13. NUMBER OF PAGES
Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(1) dillerent i	ion Controlline Office)	15. SECURITY CLASS. (of this report)
WONTONING AGENCY NAME & ACCRESSIT GITTERNIE		Unclassified
		15. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; di	camibusion unli	mia a d
Approved for public release; di	stribution uniti	nited.
17. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different free	n Report)
	<u>., </u>	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and i	identity by block number)	
Spinel		
Magnesium Aluminum Oxide Hot Forging		
IR Domes		
20. ABSTRACT (Continue on reverse side if necessary and is	dentify by block numbers	
Small hemispherical domes were	e fabricated fro	
(MgO·Al ₂ O ₃) and single crystal (Mg	O · 3. 5 Al ₂ O ₃)	spinel by hot forging. Applied
stresses of 70-105 MN/ m^2 at ~ 177		

Small hemispherical domes were fabricated from discs of polycrystalline (MgO·Al₂O₃) and single crystal (MgO·3.5 Al₂O₃) spinel by hot forging. Applied stresses of 70-105 MN/ m² at \sim 1775° C produced deformations of up to 1 cm in \sim 4 hrs. After polishing, the forged domes exhibited generally excellent quality. Some localized regions of optical scatter in the single crystal forgings have been identified as containing alumina precipitates. The present results demonstrate successfully the feasibility of fabricating full-size IR domes by hot forging. This will be the object of future work.

FOREWORD

This report was prepared by Raytheon Company, Research Division Waltham, Mass., under Contract No. N00014-76-C-0635, entitled, "High Durability Missile Domes." This work is administered under the direction of the Office of Naval Research, Material Sciences Division, Arlington, Virginia. Dr. Arthur M. Diness is the project scientist.

The work was carried out at Raytheon Research Division, Advanced Materials Department. Dr. J. Pappis is the department manager. Dr. Richard Gentilman is the principal investigator. Experimental work was performed by Mr. Edward Maguire.

This is the Interim Technical Report for Contract N00014-76-C-0635. covers the period 1 October 1977 to 30 September 1978. The report was given the Raytheon internal number S-2439.

TABLE OF CONTENTS

Sec.		Page
1.0	INTRODUCTION	1
2.0	EXPERIMENTAL PROCEDURE	5
3. 0	RESULTS AND DISCUSSION	8
4.0	SUMMARY	18
REFER	ENCES	20

LIST OF ILLUSTRATIONS

No.		Page
1	Schematic of Press Forging Technique	6
2	Furnace Assembly	7
3	Deformation Vs Time at Several Temperatures	11
4	Deformation Vs Time at Several Stress Levels	12
5	Press Forged Domes of Spinel	13
6	Press Forged Domes of Spinel	14
7	Press Forged Domes of Spinel	15
8	400× SEM Photos of Polished Dome	16
9	2000X SEM Photos of Polished Dome	17
10	Phase Diagram for the System MgO·Al ₂ O ₃	19

1.0 INTRODUCTION

Heat seeking missiles designed for air-to-air engagements face severe operational hazards that either reduce their effectiveness or raise the overall system's cost. The missiles are carried unprotected in exposed positions on aircraft. The infrared transparent dome can be broken during routine handling, pitted by sand and debris during takeoff and landing, or eroded by water droplet impact in flight through rain squalls. These problems are becoming increasingly severe as airspeeds are increased and as the introduction of terrain avoidance radar allows supersonic flight at very low altitudes.

Impact damage that leaves the dome intact but roughens the originally polished outer surface will degrade seeker performance in two ways. First, the minimum resolvable target size will be increased. In the current operational air-to-air missile, this factor is not critical. However, in the designs under consideration for the next generation missiles, seeker resolution will be severely affected by dome erosion. Second, roughening of the dome increases the amount of sunlight scattered into the seeker optics, raising the noise level in the infrared detection system and thus limiting the ability to detect targets. While these effects have not been well characterized, it is of considerable concern in current development of seekers designed for head-on approach.

Finally, immediately after missile launch, high tensile stresses are generated in the dome due to transient nonuniform aerodynamic heating of the dome. The severity of these stresses depends on the nature of the dome material (its thermal conductivity, heat capacity, and thermal expansion coefficient) and on the specific aerodynamic flight regime. For a rext generation missile launch at Mach 1.5 with a powered flight lasting 2.0 sec, significant tensile stresses develop at the inside dome surface during the missile's acceleration, reaching a maximum of approximately 12,000 psi just after the

end of the powered flight. However, the fracture strength of magnesium fluoride is only 10,000 psi at 450° C, the approximate average temperature of the dome during flight at the time of the maximum thermally induced stress.

Early forms of infrared missiles operated at short infrared wavelengths where fused silica domes could be used. This material has a very high resistance to thermal shock but suffers from rain erosion. Magnesium fluoride domes have provided higher strength, adequate resistance to rain erosion (for current applications), transparency in the 3 to 5 μ m atmospheric window, and the ability to withstand the thermal shock of current missiles in subsonic launch. However, magnesium fluoride domes are predicted to fail in either supersonic launch of current missiles or subsonic launch of the next generation designs and also to be adversely affected by rain during supersonic captive carry.

The need for a new, more durable missile dome is clear. New missile designs are being compromised by the lack of a dome material with the required strength, hardness, and thermal conductivity that can be produced at an acceptable cost. However, there are several highly durable crystalline oxide materials (Table 1) that are transparent at ultraviolet, visible, and infrared wavelengths out to $5\,\mu\mathrm{m}$ that will serve the optical needs of future seeker designs. Specifically, spinel has become a leading candidate material for future air-to-air missile domes.

The particular dome shape of interest during this investigation is a hemispherical sheel approximately 70 mm diameter and 3 mm thick. One approach proposed for the fabrication of such a shape from refractory oxides is to press forge flat plates at high temperatures. Work reported in the literature by Heuer, Hwang and Mitchell^{1,2} and by Becher³ showed that single crystals of spinel could be deformed plastically in compression. The experiments reported here were attempted to see if this plastic deformation

TABLE 1

INFRARED TRANSMITTING MATERIALS RANKED ACCORDING TO

THERMAL SHOCK RESISTANCE AT 450° C

	Absorpti on	Resista	nce to	R. T.		
	Between 4-5 µ	Therma	al Stress	Fracture		
	in 2 mm	<u>₽</u>	αE)	Strength	Knoop	Crystal
Material	T = 450° C	RI	RI 450° C	(psi)	Hardness	Structure
Si	40%	536	09	9,000	1150	Cubic
Ge	%09	88	52	13, 500	069	Cubic
Al ₂ 0 ₃	88	47	21	50,000	2200	Hexagonal
		į	;	•		:

2200 Hexagonal	1700 Cubic	900 Cubic	800 Cubic	356 Cubic	130 Hexagonal	150 Cubic	576 Tetragonal
50,000 22	28, 000 13	23,000	28, 000	15,000	8,000	7,500	22,000
21	Ħ	8	1	9	9	5.5	3.2
47	22	53	25	56	19	23	19.4
80	3%	<1%	<1%	Transparent	Transparent	Transparent	<1%
A1203	MgAI 204	MgO	Y ₂ 0 ₃	ZnS	CdS	ZnSe	MaF

process could be utilized where the stress applied was not simple compression. Also, it was desired to determine the feasibility of using polycrystalline as well as single-crystal spinel.

Spinel of excellent optical quality is available in both single-crystal and polycrystalline form. The selections made were single-crystal boules of alumina-rich spinel, generally 1 MgO to 3.5 Al₂O₃, grown by a Verneuil technique and plates of polycrystalline spinel of 1:2:: MgO:Al₂O₃ stoichiometry produced by a fusion casting process. The alumina-rich material has a lower yield stress than the stoichiometric 1:1 composition. As a preliminary step toward full-sized IR domes, experiments were size limited by the diameter of available single crystals of spinel, slightly over 3.2 cm. But the validity of the concept could be demonstrated by forging domes of smaller diameter but comparable curvature.

The present hot forging work was begun in 1977, with studies of simple beam deformation of alumina-rich spinel in three-point bending. During 1978, the technical feasibility of forging flat discs into hemispherical shells was demonstrated successfully.

Adolf Meller Co., Providence, RI.

2.0 EXPERIMENTAL PROCEDURE

Figure 1 shows schematically the press forging technique employed to form hemispherical dome shapes from flat plates of spinel. The plates, 2.62 - 2.86 cm diameter and 0.19 cm thick, were set into a hemispherical cavity in a graphite die and loaded at their center points by a matching hemispherical graphite punch. The radius of curvature was approximately 1.2 cm. Spacers of Grafoil 0.04 cm thick, between the spinel plate and the graphite die faces reduced interactions to a minimum.

Loaded in this manner, with the edge simply supported and the force applied at the center, the maximum stress developed is determined by 5

$$\sigma = \frac{3(1+\mu)P}{2\pi t^2} \left(\frac{1}{\mu+1} + \log_e \frac{r}{r_o} - \frac{1-\mu}{1+\mu} \frac{r_o^2}{4r^2} \right)$$

where o = maximum stress

μ = Poisson's ratio

P = central load

t = thickness of plate

r = radius of plate

r = radius of central loaded area

As the plate deforms, the radius of the central loaded area increases. This was taken into account and the load increased when necessary to maintain any given stress level. The loads that were applied produced maximum stresses in the plates of $525-1050 \text{ kg/cm}^2$ (7.5-15 kg).

In Figure 2 the furnace assembly is shown with the graphite die in place. The load was applied to the top punch by weights suspended below the furnace. This loading was static with incremental changes to maintain a given stress level as deformation proceeded. The extent of deformation

Figure 1. Schematic Diagram in Cross-Section of Hot Forging a Spinel Disc into a Hemispherical Dome Shape

Figure 2. Furnace Assembly.

was monitored on a dial indicator. A graphite heating element provided temperatures of 1750°-1800°C in an atmosphere of helium.

3,0 RESULTS AND DISCUSSION

In the course of the experiments reported here, twenty-six (26) runs were made with single-crystal spinel and seven (7) runs with polycrystalline plates. A summary of these forging runs is presented in Table 2. Data were selected from these to illustrate the effects of temperature and pressure on deformation rates. In Figure 3, deformation is seen to take place more rapidly as temperature is increased. These spinel plates wore subjected to a stress of 875 kg/cm² (12.5 ksi). Some deformation is shown at zero time because the load was applied throughout the heatup portion of the cycle while time was measured from the point at which a given temperature level was reached. Data for polycrystalline plates indicates lower rates under comparable temperature and pressure conditions. Pressure was the variable in Figure 4. As expected, the deformation was accelerated by increasing pressure. Good results were obtained at temperatures of 1750° to 1780° C and pressures of 700-1050 kg/cm² (10-15 ksi).

A number of the domes produced are shown in Figures 5, 6, and 7. There was no difficulty with gross defects such as cracks or tears. Surfaces did suffer some degradation as a result of contact with graphite. However, the surfaces were easily restored by polishing and as the polished domes in these photos demonstrate, the optical quality was excellent.

Some domes appeared to have cloudy areas that were not removed by surface polishing. Under the optical microscope, these areas were seen to contain numerous small crystals. Figure 8 shows SEM photos at 400% magnification of a clear area and a cloudy area of typical domes. The latter area is examined more closely in Figure 9 at 2000%. An x-ray microprobe was used to analyze the spots marked by the white dots in the lower photo. The

TABLE 2
SUMMARY OF SPINEL HOT FORGING RUNS

	Sar	nple		Max.		Defor-		
Run No.	Diam. cm	Thickness cm	Temp.	Stress Kg/cm ²	Time hr	mation cm	Loss %	Comments
20	2.78	0.19	1750	1120	5.5	0.32	6.2	cracked
21	2.78	0.09	1775	1050	8.0	0.68		cracked
22	2.78	0.25	1850	700	6.0	1.40		broken
23	2.78	0.19	1800	1050	2.5	1.20		broken
24	2.78	0.19	1800	700				broken
25	2.78	0.19	1775	1050	8.0	0.38	12.3	OK
26	2.78	0.20	1750	1260	12.0	0.71	23.8	broken
27	2.78	0.20	1750	980	12.0	0.46	34.3	OK
28	2.78	0,21	1780	1050	4.5	1.09		broken
29	2.78	0,19	1760	1050	6.0	0.42	9, 2	OK
30	2.78	0,19	1750	1050	12.5	0.41	22.5	ОК
31	2.78	0.20	1800	1050	8.0	0.45	44.2	OK
32	2.78	0.19	1780	840	7.5	0.53	31.9	ОК
33	1.90	0.19	1775	1050	4.0	0.50	11.3	ОК
34	1.90	0.20	1785	1050	7.0	0.50	5.0	ОК
35	2.60	0.19	1775	1050	11.0	0.59	3, 5	ОК
36	2.60	0.18	1770	1050	31.5	0.72	2, 4	OK
37	2.60	0.19	1760	1050	6.0	0.94	3, 8	OK
38	2.60	0.19	1765	1050	5.8	0.90	2, 0	OK
39	2.60	0.19	1775	1050	6.2	0.91	1.3	OK
42	2, 85	0.20		1050	~~~			broken, polyxtal
43	2.85	0.20	1780	875	8.0	1.09	4.7	OK, poly- xtal
44	2.60	0.20	1770	875	6.0	0.77	2.5	OK
45	2.60	0.21	1800	875	2.5	0.84	6.1	ОК
46	2.60	0.20	1780	875	5.0	0.93	5.7	ОК
47	2.60	0.19	1780	875	3. 5	0.90	9.1	ОК

TABLE 2 (Cont'd)

	San	nple		Max.		Defor-		
Run No.	Diam. cm	Thickness cm	Temp °C	Stress Kg/cm ²	Time hr	mation em_	Loss %	Comments
48	2.53	0.20	1790	875	8. 0	0.82	4.8	polyxtal some cracks
49	. 2. 53	0.20	1720	875				polyxtal broken
50	2.53	0.20	1775	700	8.5	0.79	3.8	polyxtal OK
51	2, 53	0.18	1750	700	8.5	0.70	4.3	polyxtal OK
52	2.53	0.19	1775	700	11.5	0.72	3.8	polyxtal OK
53	2.60	0.20	1785	1050	5. 5	0.37		OK
54	2, 60	0. 19	1785	1050	3.8	0.89	2.9	OK

Figure 3. Deformation Vs Time at Several Temperatures.

Figure 4. Deformation Vs Time at Several Stress Levels.

Figure 5. Press Forged Domes of Spinel.

Figure 6. Press Forged Domes of Spinel.

Figure 7. Press Forged Domes of Spinel.

400 X SEM CLEAR AREA

400 X SEM CLOUDY AREA

Figure 3. 400% SEM Photos of Polished Dome.

2000 X SEM

2000 X SEM WITH MARKERS

Figure 9. 2000% SEM Photos of Polished Dome.

three individual grains were identified as Al₂O₃ while the background matrix was spinel. It appears that some precipitation/recrystallization of alumina had occurred. This behavior was seen in domes press forged from plates of single-crystal spinel but not polycrystalline ones. A check of the phase equilibria of the system (Figure 10) provides an explanation for the difference in behavior. In the case of 3.5 to 1 single-crystal material, the forging temperatures of 1750° -1800° C placed the piece in a region where two phases, spinel and alumina, can exist. Under the same conditions, 2 to 1 polycrystalline material is within the single-phase spinel area.

4.0 SUMMARY

The concept of press forging hemispherical dome shapes from flat plates of magnesium aluminate spinel has been demonstrated. Small domes, 2.54 cm in diameter and 0.76 cm high, were fabricated from both single-crystal and polycrystalline material. Excellent optical quality was maintained. The only potential problem was presented by precipitation/recrystallization of ${\rm Al_2O_3}$ in single-crystal 3.5:1 spinel. This work is being pursued toward the fabrication of larger-sizes domes.

Figure 10. Phase Diagram for the System MgO-Al₂O₃.

REFERENCES

- L. Hwang, A. H. Heuer and T. E. Mitchell, <u>Deformation of Ceramic</u> Materials, New York: Plenum Press 1975, pp 257-270.
- T. E. Mitchell, L. Hwang and A. H. Heuer, "Deformation in Spinel,"
 J. Materials Science 11, 264-272 (1976).
- P. F. Becher, "Press-Forged Al₂O₃-Rich Spinel Crystals for IR Applications," Am. Ceram. Soc. Bull. 56 (11) 1015-1017 (1977).
- 4. R. L. Gentilman, E. A. Maguire and J. Pappis, "Transparent Fusion-Cast Polycrystalline Spinel," (to be published).
- F. B. Seely and J. O. Smith, <u>Advanced Mechanics of Materials</u>, 2nd ed., New York: John Wiley and Sons 1952, p. 227.

	No. of		No. of
Organization	Copies	Organization	Copies
Defense Documentation Center		Naval Construction Batallion	
Cameron Station		Civil Engineering Laboratory	
Alexandria, Virginia 22314	(12)	Port Hueneme, California 93043	
Office of Naval Research		Attn: Materials Division	(1)
Department of the Navy		Naval Electronics Laboratory Center	
Department of the havy		San Diego, California 92152	
Attn: Code 471	(1)	Attn: Electron Materials	
Code 102	(1)	Sciences Division	(1)
Code 470	(1)		• •
		Naval Missile Center	
Commanding Officer		Materials Consultant	
Office of Naval Research		Code 3312-1	
Branch Office		Point Mugu, California 93041	(1)
495 Summer Street			
Boston, Massachusetts 02210	(1)	Commanding Officer	
		Naval Surface Weapons Center	
Commanding Officer		White Oak Laboratory	
Office of Naval Research		Silver Spring, Maryland 20910	1.1
Branch Office		Attn: Library	(1)
536 South Clark Street	(1)	Devid II Menden Verral Object DID Cont.	
Chicago, Illinois 60605	(1)	David W. Taylor Naval Ship R&D Cente Materials Department	ľ
Office of Naval Research		Annapolis, Maryland 21402	(1)
San Francisco Area Office		witteborrs, merarana erace	(1)
760 Market Street, Room 447		Naval Undersea Center	
San Francisco, California 94102		San Diego, California 92132	
Attn: Dr. P. A. Miller	(1)	Attn: Library	(1)
	,		,
Naval Research Laboratory		Naval Underwater System Center	
Washington, D.C. 20390		Nowport, Rhode Island 02840	
	4.3	Attn: Library	(1)
Attn: Code 6000	(1)	New York Steeness Cont	
Code 6100 Code 6300	(1)	Naval Weapons Center	
Code 6400	(1)	China Lake, California 93555	153
Code 2627	(1) (1)	Attn: Library	(1)
1202 8000	(1)	Naval Postgraduate School	
Naval Air Development Center		Nonterey, California 93040	
Code 302		Attn: Mechanical Engineering Dept.	(1)
Warminster, Pennsylvania 18974		Hannana and and the till to hat	\ - /
Attn: Mr. F. S. Williams	(l)	Naval Air Systems Command	
		Washington, D.C. 20360	
Naval Air Propulsion Test Center			
Trenton, New Jersey 08628		Attn: Code 52031	(1)
Attn: Library	(1)	Code 52032	(1)
		Code 320	(1)

Organization	No. of Copies	Organization	No. of Copies
Naval Sea System Command		NASA Headquarters	
Washington, D.C. 20362		Washington, D.C. 20546	
Attn: Code 035	(1)	Attn: Code RRM	- (1)
Naval Facilities		nasa	
Engineering Command		Lewis Research Center	
Alexandria, Virginia 22331		21000 Brookpark Road	
Attn: Code 63	(1)	Cleveland, Ohio 44135	1-1
		Attn: Library	(1)
Scientific Advisor			
Commandant of the Marine Corps		National Bureau of Standards	
Washington, D.C. 20380	4	Washington, D.C. 20234	
Attn: Code AX	(1)		/2.1
		Attn: Metallurgy Division	(1)
Naval Ship Engineering Center		Inorganic Materials Division	(1)
Department of the Navy		Badanaa Wataha and Gamaria	
CTR BG #2		Defense Metals and Ceramics	
3700 East-West Highway		Information Center	
Prince Georges Plaza		Battelle Memorial Institute	
Hyattsville, Maryland 20782 Attn: Engineering Materials and		505 King Avenue	(1)
Services Office, Code 6101	(1)	Columbus, Ohio 43201	(1)
petarces office! come ofor	(1)	Director	
Army Research Office		Ordnance Research Laboratory	
Box CM, Duke Station		P.O. Box 30	
Durham, North Carolina 27706		State College, Pennsylvania 16801	(1)
Attn: Metallurgy & Ceramics Div.	(1)	Compa correspoi rentralizamente mocor	(4)
was marked by a constitution ball	(4)	Director Applied Physics Laboratory	
Army Materials and Mechanics		University of Washington	
Research Center		1013 Northeast Fortieth Street	
Watertown, Massachusetts 02172		Seattle, Washington 98105	(1)
Attn: Res. Programs Office		,	
(AKXMR-P)	(1)	Metals and Ceramics Division	
		Oak Ridge National Laboratory	
Air Force		P.O. Box X	
Office of Scientific Research		Oak Ridge, Tennessee 37380	(1)
Bldg. 410			
Bolling Air Force Base		Low Alamos Scientific Laboratory	
Washington, D.C. 20332		P.O. Box 1663	
Attn: Chemical Science Directorate	(1)	Los Alamos, New Mexico 87544	
Electronics and Solid State		Attn: Report Librarian	(1)
Sciences Directorate	(1)		
44. 5		Argonne National Laboratory	
Air Force Materials Lab (LA)		Metallurgy Division	
Wright-Patterson AFB	1	P.O. Box 229	4-1
Dayton, Ohio 45433	(1)	Lemont, Illinois 60439	(1)

ij

. .

Organization	No. of Copies	Organization	No. of <u>Copies</u>
Brookhaven National Laboratory Technical Information Division Upton, Long Island New York 11973 Attn: Research Library	(1)		
Library Building 50 Room 13 ¹ 4 Lawrence Radiation Laboratory Berkeley, California	(1)		

Organization	No. of Copies	Organization	No. of Copies
Dr. W.F. Adler Effects Technology Inc.		Professor A.H. Heuer Case Western Reserve University	
5383 Hollister Avenue		University Circle	
P.O. Box 30400		Cleveland, OH 44106	(1)
Santa Barbara, CA 92105	(1)		
		Dr. R. Hoagland	
Dr. G. Bansal		Battelle 505 King Avenue	
Battelle		Columbus, OR 43201	(1)
505 King Avenue Columbus, OH 43201	(1)	Columbus, on 40201	,
Columbas, on 43201	(-/	Dr. R. Jaffee	
Dr. R. Bratton		Electric Power Research Institute	
Westinghouse Research Lab.		Palo Alto, CA	(1)
Pittsburgh, PA 15235	(1)		
		Dr. P. Jorgensen	
Dr. A.G. Evans		Stanford Research Institute	
Rockwell International		Foulter Laboratory	(1)
P.O. Box 1085		Menlo Park, CA 94025	(-/
1049 Camino Dos Rios Thousand Oaks, CA 91360	(1)	Dr. R.N. Katz	
·	(*/	Army Materials and Mechanics	
Mr. E. Fisher		Research Center Watertown, MA 02171	(1)
Ford Motor Co.	(1)	watertown, rac 02171	(*/
Dearborn, MI	(1)	Dr. H. Kirchner	
Dr. P. Cielisse		Ceramic Finishing Company	
University of Rhode Island		P.O. Box 498	
Kingston, RI 02881	(1)	State College, PA 16801	(1)
Dr. M.E. Gulden		Dr. B. Koepke	
International Harvester Company		Honeywell, Inc.	
Solar Division		Corporate Research Center	
2200 Pacific Highway		500 Washington Avenue, South	(1)
San Diego, CA 92138	(1)	Hopkins, MN 55343	(1)
Dr. D.P.H. Hasselman		Mr. Frank Koubek	
Montana Energy and MHD Research		Naval Surface Weapons Center	
and Development Institute		White Oak Laboratory	
P.O. Box 3809	/15	Silver Spring, MD 20910	(1)
Butte, Montana 59701	(1)	E. Krafft	
Mr. G. Hayes		Carborundum Co.	
Naval Weapons Center		Niagara Falls, NY	(1)
China Lake, CA 93555	(1)	wangara same; w	\ - <i>*</i>
	1-7		

Windows Communication Communic

Organization	No. of Copies	Organization	Copi
Pur P P Name		Dr. J. Ritter	
Dr. F.F. Lange		University of Massachusetts	
Rockwell International		Department of Mechanical Engineering	
P.O. Box 1085			(
1049 Camino Dos Rios	(1)	Amherst, MA 01002	'
Thousand Oaks, CA 91360	(1)	B. C B. B.	
		Professor R. Roy	
Dr. J. Lankford		Pennsylvania State University	
Southwest Research Institute		Materials Research Laboratory	,
8500 Culebra Road		University Park, PA 16802	(
San Antonio, TX 78284	(1)		
		Dr. R. Ruh	
Library		AFML	
Norton Company		Wright-Patterson AFB	
Industrial Ceramics Division		Dayton, OH 45433	(
Worcester, MA 01606	(1)		
		Mr. J. Schuldies	
State University of New York		AiResearch	
College of Ceramics at Alfred University		Phoenix, AZ	(
Attn: Library		Professor G. Sines	
Alfred, NY 14802	(1)	University of California, Los Angeles	ł
•		Los Angeles, CA 90024	(
Dr. L. Hench			
University of Florida		Dr. N. Tallan	
Ceramics Division		AFML	
Gainesville, FL 32601	(1)	Wright-Patterson AFB	
· · · · · · · · · · · · · · · · · · ·		Dayton, OH 45433	(
Dr. N. MacMillan		•	
Materials Research Laboratory		Dr. T. Vasilos	
Pennsylvania State University		AVCO Corporation	
College Park, PA 16802	(1)	Research and Advanced Development	
	\- <i>\</i>	Division	
Mr. F. Markerian		201 Lowell Street	
Naval Weapons Center		Wilmington, MA 01887	(
Chine Lake, CA 93555	(1)	neamendanil in asaa.	,
OHERE DANCE OF 19333	\•/	Mr. J.D. Walton	
Dr. Perry A. Miles		Engineering Experiment Station	
Raytheon Company		Georgia Institute of Technology	
Research Division		Atlanta, GA 30332	(
28 Seyon Street		acterion of active	`
•	(1)	Dr. S.M. Widerhorn	
Waltham, MA 02154	W	Inorganic Materials Division	
No. D. Dies		National Bureau of Standards	
Mr. R. Rice			(
Naval Research Laboratory		Washington, DC 20234	(
Code 6360	/11		
Washington, D.C. 20375	(1)		

The state of the s

			No. of
	o. of opies	Organization	Copies
Dr. S.A. Bortz		Major W. Simmons	
IITRI		Air Force Office of Scientific	
10 W. 35th Street		Research	
Chicago, IL 60616	(1)	Building 410	
.		Bolling Air Force Base	
Mr. G. Schmitt		Washington, DC 20332	(1)
Air Force Materials Laboratory			
Wright-Patterson AFB		Dr. P. Becher	
Dayton, OH 45433	(1)	Naval Research Laboratory Code 6362	
Dr. D.A. Shockey		Washington, DC 20375	(1)
Stanford Research Institute		• •	
Poulter Laboratory		Mr. L.B. Weckesser	
Menlo Park, CA 94025	(1)	Applied Physics Laboratory	
		Johns Hopkins Road	
Dr. W.G.D. Frederick		Laurel, MD 20810	(1)
Air Force Materials Laboratory			
Wright-Patterson AFB		Mr. D. Richarson	
Dayton, OH 45433	(1)	AiResearch Manufacturing Company	
		4023 36th Street	
Dr. P. Land		P.O. Box 5217	
Air Force Materials Laboratory		Phoenix, AZ 85010	(1)
Wright-Patterson AFB			
Dayton, OH 45433	(1)	Dr. H.E. Bennett	
		Naval Weapons Center	
Mr. K. Letson		Code 3818	(1)
Redstone Arsenal	445	China Lake, CA 93555	(1)
Huntsville, AL 35809	(1)	W 0 B	
		Mr. G. Denman	
Dr. S. Freiman		Air Force Materials Laboratory	
Naval Research Laboratory		Code LPJ	
Code 6363	/11	Wright-Patterson AFB	(1)
Washington, DC 20375	(1)	Dayton, OH 45433	(1)
Director		Dr. D. Godfrey	
Materials Sciences		Admiralty Materials Laboratory	
Defense Advanced Research Projects		Polle, Dorset BH16 6JU	
Agency		UNITED KINGDOM	(1)
1400 Wilson Boulsvard			
Arlington, VA 22209	(1)	Dr. N. Corney	
		Ministry of Defense	
Dr. James Pappis		The Adelphi	
Raytheon Company		John Adam Street	
Research Division		London WC2N 6BB	4.5
28 Seyon Street Waltham, MA 02154		UNITED KINGDOM	(1)
	(1)		

の かんかん かいしゅんけい