KLAUSUR Informationstechnik

Wintersemester 2014

Prüfungsfach: Informationstechnik

Studiengang: Wirtschaftsinformatik, Softwaretechnik

Semestergruppe: WKB 1, SWB 1

Fachnummer: 1051002

Erlaubte Hilfsmittel: keine

Zeit: 90 min.

Wichtiger Hinweis für die Bearbeitung der Aufgaben:

Schreiben Sie bitte Ihre Lösungen möglichst auf die Aufgabenblätter. Sollte der vorgesehene Platz nicht reichen, verwenden Sie bitte jeweils die Rückseite.

Viel Erfolg wünscht Ihnen.

Reiner Marchthaler und Hans-Gerhard Groß

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

1 Boolesche Algebra

1.1 Schaltungsanalyse

(9 Punkte)

Abbildung 1: Zu untersuchende Schaltung

Geben Sie zu der Schaltung in Abbildung 1 die dazugehörige Boolesche Gleichung an.

Y =

Wie ist die Funktionslänge der Schaltung in Abbildung 1? Und erklären Sie den Begriff "Funktionslänge"!

l =

Erklärung:

Wie ist die Schachteltiefe der Schaltung in Abbildung 1? Und erklären Sie den Begriff "Schachteltiefe"!

k =

Erklärung:

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2 Zahlendarstellung und Codierung

2.1 ASCII-Code (8 Punkte)

Code	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	Hat	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	u	!	"	#	\$	%	&	,	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	•	;	<	=	>	?
4	@	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О
5	P	Q	R	S	T	U	V	W	X	Y	Z	[١]	^	_
6	6	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o
7	p	q	r	s	t	u	v	w	X	у	Z	{	I	}	~	DEL

Tabelle 1: ASCII-Tabelle (8 Bit)

Codieren Sie die folgende Information mit Hilfe des oben angegebenen ASCII-Codes. Wie lautet der zu der Information gehörige ASCII-Code in hexadezimaler Schreibfolge?

Zu codierende Information: Zuse3!	
ASCII-Code (hexadezimal):	

Decodieren Sie die folgende Bitfolge mit Hilfe des oben angegebenen ASCII-Codes. Wie lautet die decodierte Information?

ASCII-Code (binär): **0101 0011 0110 0101 0110 0111 0110 0101 0110 1100**Decodierende Information (Klartext):

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2.2 Codeumwandlung mit KV-Diagramm

(20 Punkte)

Zur Regelung des Verkehrs an einer Fußgängerfurt wird eine Lichtsignalanlage eingesetzt. Diese Lichtsignalanlage besitzt drei Lichtsignale (A_{gruen} , A_{gelb} , A_{rot}) für die Autofahrer und zwei Lichtsignale (F_{gruen} , F_{rot}) für die Fußgänger. Die Anlage hat sieben verschiedene Schaltzustände. Diese sieben Schaltzustände werden mit drei Bit (x_0 , x_1 , x_2) kodiert, der achte Schaltzustand ist unbestimmt (siehe Tabelle 2).

Zustand	X 2	x ₁	x ₀	Frot	Fgruen	Agruen	Agelb	A _{rot}	Fußgängerlichtsignal	Autofaherlichtsignal
0	0	0	0	0	0	0	0	0	aus	aus
1	0	0	1	1	0	0	0	0	rot	aus
2	0	1	0	1	0	1	0	0	rot	gruen
3	0	1	1	1	0	0	1	0	rot	gelb
4	1	0	0	1	0	0	0	1	rot	rot
5	1	0	1	1	0	0	1	1	rot	gelb/rot
6	1	1	0	0	1	0	0	1	gruen	rot
7	1	1	1	X	X	X	X	X	unbestimmt (don't care)	unbestimmt (don't care)

Tabelle 2: Codeumwandlung Lichtsignalanlage

 $1. \ \ Bestimmen \ Sie \ die \ DMF \ für \ die \ fünf \ Lichtsignale \ F_{gruen}, F_{rot}, A_{gruen}, A_{gelb}, A_{rot} \ mit \ Hilfe \ der \ KV-Diagramme$

$$\mathbf{DMF}: \mathbf{A_{gelb}} =$$

 $\mathbf{DMF}: \mathbf{A_{rot}} =$

 $DMF: F_{gruen} =$

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences
	Lichtsignale würden gemäß I $_2=1$ eingeschaltet?	nrer Lösung zu Teil 1. dieser Auf	gabe bei den Eingangssignalen
		_	zentralen Ampelsteuergerät übertra
Codewort entsteht.	ntsteht. Ein Fehler kann erkan it des übertragenen 9-Bit Cod	nnt werden, solange durch die V	nander übertragen, so dass ein <u>9-Bi</u> erfälschung kein gültiges Codewor fälscht werden, so dass kein gültiges
2.3 Zahlendar	estellung		(14 Punkte
1. Geben Sie d	lie Oktalzahl (7345 , 03) ₈ als H	lexadezimalzahl an.	
2. Geben Sie d	lie Hexadezimalzahl $(\mathbf{AB})_{16}$ a	n als:	
Dezimalza	hl (Betragszahl), falls Dualcoo	dierung zugrundeliegt:	

Dezimalzahl (ganze Zahl), falls 2er Komplement–Codierung zugrundeliegt:

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3. Zahlendarstellung nach IEEE 754

Wandeln Sie die Dezimalzahl $(+0.0)_{10}$ in eine Gleitkommazahl in einfacher Genauigkeit nach IEEE 754 in hexadezimaler Schreibweise um.

Hinweis zu Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754:

Bits 1 8 23
$$|M| = |M|$$
 ohne M_0

- Das Bit 31 (MSB) kennzeichnet das Vorzeichen.
- Die nächsten 8 Bit 30...23 geben den Exponenten an (Offsetdarstellung um 127).
- Die nächsten 23 Bit 22...0 geben die normalisierte Mantisse ohne die Vorkomma–Eins an.

Abbildung 2: Darstellung von Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

normalisierte Zahl	土	0 < Exponent < max	Mantisse beliebig
denormalisierte Zahl		0000 0000	Mantisse nicht alle Bits 0
Null	±	0000 0000	00
Unendlich	±	1111 1111	00
NaN	土	1111 1111	Mantisse nicht alle Bits 0

Tabelle 3: Sonderfälle Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

Platz für Berechnung:

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3 Hardware

Die in Abbildung 3 dargestellte 8 Bit-ALU enthält neben einem 8 Bit Addierer, eine 8 Bit-Logik-Einheit, ein 8-faches AND-Gatter sowie einen Block "Status" zur Bildung des Carry-Flags (CF), Overflow-Flags (OF), Zero-Flags (Z) und Negativ-Flags (N).

Abbildung 3: Aufbau 8-Bit ALU

Die Signale haben folgende Bitbreite:

Signalname	A	В	X	Y	R	K	AR	C_0	<i>C</i> ₇	C_8	CF	OF	Z	N
Breite in Bit	8	8	8	8	8	4	1	1	1	1	1	1	1	1

Tabelle 4: Bitbreite der Signale

Die gültigen Steuerworte des Steuersignals K sind der Tabelle 5 zu entnehmen.

Steuerwort (K)	Ergebnis für Stelle B_i	Logik-Funktion
$(0000) = 0_H$	$B_i = 0$	Kontradiktion
$(0001) = 1_H$	$B_i = 1$	Tautologie
$(0010) = 2_H$	$B_i = X_i$	Identität X
$(0011) = 3_H$	$B_i = Y_i$	Identität Y
$(0100) = 4_H$	$B_i = \overline{X}_i$	Bitweise Invertierung X
$(0101) = 5_H$	$B_i = \overline{Y}_i$	Bitweise Invertierung Y
$(1000) = 8_H$	$B_i = X_i \vee Y_i$	OR
$(1001) = 9_H$	$B_i = X_i \wedge Y_i$	AND

Tabelle 5: Wirkung des Steuersignals (K) auf B_i in Abhängigkeit von X_i und Y_i (i = 0, ..., 7).

Hinweis: AR=0 sperrt das 8-Bit AND-Gatter und AR=1 schaltet X nach A durch!

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3.1 ALU (14 Punkte)

Mit Hilfe der ALU in Abbildung 3 soll die Operation $\mathbf{R} = (\mathbf{X})$ AND (\mathbf{Y}) mit $\mathbf{X} = (\mathbf{2A})_{hex}$ und $\mathbf{Y} = (\mathbf{E3})_{hex}$ durchgeführt werden.

Welche Werte müssen die Signale K, AR und C_0 für diese Operation annehmen?

$$K =$$
 $C_0 =$

Führen Sie nun die Operation mit der gegebenen ALU handschriftlich durch und vervollständigen Sie die nachfol-

gende Tabelle 6.

belle 6.							Binärwert inte	erpretiert als
			Bin	ärwe	rte		Dualcode	2er Kompl.
Operand 1	X=							
Operand 2	Y=							
Operand 1	A=							
Operand 2	B=							
Übertrag	C=							
Ergebnis	R=							

Tabelle 6: Schema für die Operation "AND" mit Hilfe der gegebenen ALU

Bestimmen Sie die Status-Flags und tragen Sie diese in die Tabelle 7 ein.

CF	OF	Z	N

Tabelle 7: Statuswort der ALU nach der Operation

Platz für Nebenrechnungen:

3.2 Allgemeine Frage zur ALU

(5 Punkte)

Der Addierer in Abbildung 3 hat unter anderem die Ausgänge C_8 und C_7 . Wozu werden diese benötigt? Kurze Begründung.				

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

	y-Code	(6 Punkte)
	die Besonderheit von Gray-Code (Reflected Binary Code) im Vergleich zum normalen Binär-Code den Zusammenhang mit der Hamming-Distanz. Nennen Sie ein Beispiel wofür der Gray-Code	
4.2 Betr	iebssysteme	(6 Punkte)
	kurz wozu in einem Betriebssystem der <i>Scheduler</i> benötigt wird, und nennen Sie mindestens drei (duler <i>Scheduler</i> erfüllen muss.	3) Anforderungen,
4.3 Soft	ware Engineering	(6 Punkte)
	steht man im Software Engineering unter dem Begriff Separation of Concerns (Trennung von Bela 2 Beispiele für Separation of Concerns im Software Engineering an.	angen)? Geben Sie
nindestens	n ermöglicht das Klassenkonzept Objekt-Orientierter Sprachen Separation of Concerns?	

Prüfungsfach:	Informationstechnik	Wintersemester 2014	Hochschule Esslingen	
Name, Vorname:		MatNr.:	University of Applied Sciences	

Name, Vorname:	MatNr.:	Coniversity of Applied Sciences
4.4 Code Übersetzung (Kompil	erung)	(6 Punkte)
Erklären Sie kurz den Unterschied zwisch Rolle die Backus-Naur Form (BNF) bei di		l einem Parser (Syntax Analyzer), und welche
4.5 Hardware Architekturen		(6 Punkte)
Erklären Sie die grundsätzlichen Untersch	iede zwischen der Von Neumann-Archite	ektur und der Harvard-Architektur.