Question 1	Uy = la> X	9 42 43	
	16) - 0 1d)		
labc>ld>	91	92	93
1000>1d>	(100)(d)	1100>ld>	1000>1d>
(001)(d)	(101) ld>	1101>1001>	1001>1401>
1010>19>	1111)(d)	1111>1d@1>	1010>1d@1)
(011) (d)	(110)(d)	1110) Id>	1011)10)
(100) ld)	1000) (d)	1000>1d>	1700>19>
11017 (d)	(001)ld)	(b)(100)	1701 > 197
(110) (d)	1011)19>	1011>19)	(p1 (0111
1111)1d>	1010>19>	1010> ld>	1111> ld>

b) If
$$|abc\rangle|d\rangle = |abc\rangle|d\oplus f(a,b,c)\rangle$$
Base on the table,
$$\begin{cases} f(001) = f(010) = 1 \\ f(i) = 0 \end{cases}$$
, otherwise.

Question 2; 9) There are two marked elements; 1001) and 1010)

We know that 1001) = 11) and 1010>=12), then

$$f(i) = 1$$
, $i = 1, 2$
 $f(i) = 0$, $i = 0, 3, 4, 5, 6, 7$

So there are 2 marked elements $i = 1, 2; \rightarrow M = 2$.

b)
$$|\beta\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) \Rightarrow |1\rangle + |2\rangle = \sqrt{2}|\beta\rangle$$

$$|\alpha\rangle = \frac{1}{\sqrt{8-2}} \left(|0\rangle + |3\rangle + |4\rangle \right) \Rightarrow \sum_{i \notin S} |i\rangle = \sqrt{6} |\alpha\rangle$$

thus
$$\sum_{i \in S} |i\rangle = \sqrt{2}|\beta\rangle$$
; $\sum_{i \notin S} |i\rangle = \sqrt{6}|\alpha\rangle$,

$$= \frac{1}{128} = \frac{$$

So
$$|\varphi\rangle = \frac{\sqrt{3}}{2}|\alpha\rangle + \frac{1}{2}|\beta\rangle$$

Check out. $\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = 1 \leftarrow \text{satisfying def of amplitude}$

c) We have
$$\cos \frac{\theta}{2} = \frac{\sqrt{3}}{2}$$
 and $\sin \frac{\theta}{2} = \frac{1}{2}$

d)
$$G = \frac{1}{4} \begin{pmatrix} -3 & -1 & -1 & 1 \\ \frac{1}{4} & 3 & -1 & 1 \\ \frac{1}{4} & -1 & 3 & 1 \\ \frac{1}{4} & -1 & -1 & -3 \\ \frac{1}{4} & -1 & -1 & -1 \end{pmatrix}$$

$$|A| = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{1}{0} \\ 0 \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} \quad \text{and} \quad |B| = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$G(a) = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{2}{6} \\ \frac{2}{6} \\ \frac{2}{2} \\ \frac{1}{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3} \\ \frac{3}{3} \\ \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{2} \end{pmatrix}$$

$$= \frac{1}{\sqrt{6}} \sum_{i \notin S} |i| + \frac{3}{\sqrt{6}} \sum_{i \in S} |i|$$

$$= \frac{1}{\sqrt{6}} |a| + \frac{\sqrt{3}}{\sqrt{6}} |a| + \frac{\sqrt{3}}{\sqrt{6}} |a| + \frac{\sqrt{3}}{\sqrt{6}} |a|$$

$$= \frac{1}{\sqrt{6}} |a| + \frac{\sqrt{3}}{\sqrt{6}} |a| + \frac{\sqrt{$$

$$\frac{G(\beta)}{4\sqrt{2}} = \frac{2}{4\sqrt{2}} \left(\frac{\sum_{i \in S}}{\sum_{i \in S}} \right) - \frac{2}{4\sqrt{2}} \left(\frac{\sum_{i \in S}}{\sum_{i \notin S}} \right) \\
= \frac{1}{4\sqrt{2}} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{2}{4\sqrt{2}} \left(\frac{\sum_{i \in S}}{\sum_{i \notin S}} \right) \\
= \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) \\
= \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) \\
= \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) \\
= \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) \\
= \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) \\
= \frac{1}{2} \left(\frac{\sum_{i \in S}}{2} \right) - \frac{1}{2} \left(\frac{\sum_{i \in$$

So;
$$G(\alpha) = G(\alpha) + S(\alpha) + S(\alpha)$$

 $G(\beta) = -S(\alpha) + G(\alpha) + G(\alpha)$

where
$$\theta = \frac{\pi}{3}$$

- 3

$$\begin{array}{lll}
\Im & H^{\otimes 3} | o \rangle^{\otimes 3} &=& \frac{1}{2\sqrt{2}} \left(| o \rangle + | 1 \rangle \right) \otimes \left(| o \rangle + | 1 \rangle \right) \left(| o \rangle + | 1 \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle + | 1 \rangle \right) \left(| o \rangle + | 1 \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle + | o | o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle + | o | o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o o \rangle + | o | o \rangle \right) \\
&=& \frac{1}{2\sqrt{2}} \left(| o \rangle$$

h) We have $GH^{\otimes 3} = \frac{1}{\sqrt{2}} |1\rangle + \frac{1}{\sqrt{2}} |2\rangle$

thus the probability of measuring 1i) where ie S is 1

(Since output states is superposition of 11) and 12) in S)

. The probability of measuring 1001) is 1, so as 1010/.

Question 3; Ug = 1b> X Id)

a)	abc	91	92	93
	1000>1d>	(110)(d)	1110)(d)	(b(000)
	1001> (d)	1111) ld)	(111) Id@ 1>	1001>ld@1>
	10(10) (d)	1100) ld)	1100> ld>	1010) ld)
	1011 > ld>	(101) ld)	1101>10>	1011) Id)
	1160) ld)	1010) ld)	1010>10)	1100)1d)
	101) (d)	1011) (d)	1011) ld>	1101>1d>
	1110)10)	1000> 10>	1000)(d)	1110) la)
	1717) (q)	1001)(d)	1001)(d)	1111)(d)
So	$\begin{cases} g(1) = 1 \\ g(i) = 0 \end{cases}$; i= 0, 2, 3, 4,	5,6,7	

$$(e) \quad (Q.A10)^{\otimes 3} = Q(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

$$=\frac{1}{\sqrt{2}}|1\rangle-\frac{1}{\sqrt{2}}|2\rangle$$

Bonus, No, the chance of measing (1) or (12) is 1 in (121) and the chance of measurg (1) in (23 is $\frac{1}{2}$, (some as in O_4)

. The input state of Ug is $|\phi\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)$ and the marked element of Ug is only $|1\rangle$; now: let

$$|\alpha\rangle = |a\rangle$$
 and $|\beta\rangle = |1\rangle$, so: $|\varphi\rangle = \frac{1}{\sqrt{a}}|\alpha\rangle + \frac{1}{\sqrt{a}}|\beta\rangle$

thus
$$\cos \frac{\theta}{\lambda} = \frac{1}{\sqrt{2}}$$
 $\int \frac{\theta}{\lambda} = \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{2}$
 $\sin \frac{\theta}{\lambda} = \frac{1}{\sqrt{2}}$

As in proposition 9.6, we need to perform the minimum of iterations K such as $\sin\left(\frac{2k+1}{2}\theta\right) \simeq \sin\frac{\pi}{2} \to \exists g \theta = \frac{\pi}{2}$; adding

one more iteration does not impact to the final measurement.

As in Proposition 9.7;
$$\cos\left(\frac{\theta}{2}\right) = \sqrt{1-p} = \frac{1}{\sqrt{2}} = 1-p = \frac{1}{2}$$
 and $p = \frac{1}{2}\left(\text{exactly}\right)$

then $K \le \frac{1}{4}\sqrt{p} = \frac{11}{4}\sqrt{\frac{1}{2}} = 0.55 \rightarrow \text{no need for one more}$ iteration