Algebraic Topology

Midterm Review Sheets

Nutan Nepal

February 7, 2023

1. Homotopy and Homotopy Type

• Definition and basic intuition for homotopy of maps between topological spaces

• Homotopy of maps is an equivalence relation: statement and proof (can assume "restriction to closed subsets" lemma without proof)

• Homotopy of maps relative to a subset of their domain: definition and basic intuition

• Special case of homotopy rel endpoints for paths: homotopy relative to $\{0,1\}\subset [0,1]$
• Definition of homotopy equivalence between topological spaces
• Intuition for homotopy equivalence vs. homeomorphism, e.g. classifying letters of the alphabet
• Homotopy of maps is preserved when pre- or post-composing with some other map: statement and proof
• Homotopy equivalence of topological spaces is an equivalence relation: statement and proof

• Definitions of contractible topological space and nullhomotopic map
\bullet Proof that X is contractible iff every map into X is nullhomotopic iff every map out of X is nullhomotopic (HW 1)
• House with two rooms: basic idea (is it contractible? how would you describe it to a friend?)
\bullet Definition of retraction of a topological space X onto a subset A (idempotent map r from X to itself with image $A)$
\bullet Definition of deformation retraction of a topological space X onto a subset A (homotopy rel A from the identity on X to a retraction onto A)

•	Pictoral and formulaic descriptions of deformation retractions in examples (HW 1)
•	Example of a retraction from a space X onto a subset A that is not homotopic rel A to the identity map on X , i.e. doesn't come as the ending map of a deformation retraction (take $X=$ two-point set and send both points to the same point of X)
•	Definition of quotient topology on the set of equivalence classes X/\sim where X is a topological space and \sim is any equivalence relation on X
•	Proof that the quotient topology is a valid topology, via the interaction of preimages with unions / intersections
•	Definition of mapping cylinder M_f for a map $f: X \to Y$ of topological spaces
•	Proof that M_f deformation retracts onto Y (HW 1): you won't be asked to reproduce

this on the exam, but you should remember that the statement is true.
• Statement (no proof) that if f is a homotopy equivalence then M_f deformation retracts onto X
ullet Corollary that two spaces X and Y are homotopy equivalent if and only if there exists a third space Z deformation retracting onto both X and Y ; you should be able to prove this assuming the above statements.
• Example of a deformation retraction that's not " M_f retracting onto Y :" anything where distinct points of the larger space "collide" at an earlier time than $t=1$, e.g. thickened letter X deformation retracting onto a point by first deformation retracting onto an ordinary X and then shrinking the legs
2. Call Complains
2. <u>Cell Complexes</u>
• Definition of CW complex / cell complex, including definitions of n -skeleton and attaching map φ_{α} for a cell index α

• De	finitions of finite-dimensionality and finiteness for CW complexes
	finition of Euler characteristic of a finite CW complex; computing in examples by inting vertices, edges, faces, higher cells if they exist
• To	pological space associated to a finite-dimensional CW complex
• To	pological space associated to an infinite-dimensional CW complex
	nstructing CW decompositions of S^2 with any allowable number of vertices, edges, d faces (HW 2)
• Co	nstructing standard CW structure on $\mathbb{R}P^n$, number of cells in each dimension, Euler

the injectivity of the map $X^n \to X$

•	Definition of characteristic map Φ_{α} and cell e^n_{α} for an n -cell index α
•	Statement (no proof) that Φ_{α} gives a homeomorphism from $\operatorname{int}(D^n)$ to $e_{\alpha}^n\subset X$
•	Identifying the cells e_{α}^n in the usual CW structure on the torus: which cells are closed subsets of the torus? Only the vertex!
•	If X has a CW structure then every point of X is in a unique cell: statement only since that's all we covered, although the proof isn't so bad.
•	Definition of subcomplex of CW complex X as subset A of underlying topological space that's closed and consists of a union of cells
•	Proposition enabling us to build a CW structure on a subcomplex A : technical, won't be asked statement or proof, just know that if a subset A is closed and consists of a

union of cells then "everything works" when viewing A itself as a CW complex.
• Examples of subcomplexes: $\mathbb{R}P^k \subset \mathbb{R}P^n$ in the usual CW structure, same for complex case; equators of spheres not subcomplexes in the simplest CW structure but you can choose CW structure so that they're subcomplexes
• Example of a CW complex where the closure of some cell is not a subcomplex: attaching a closed interval in a sphere to a proper subinterval of a larger closed interval
3. Paths and Homotopy
\bullet Definition of straight line homotopy between any two paths with same endpoints in a convex subset X of \mathbb{R}^n
• Definition of reparametrization used in this section, and homotopy between a path and any reparametrization

of \mathbb{R}^n (usual topology)
• Definition of change-of-basepoint isomorphism β_h from $\pi_1(X, x_1)$ to $\pi_1(X, x_0)$ given a homotopy class $[h]$ of paths from x_0 to x_1 ; proof that β_h is an isomorphism
• Definition of simply connected
• X is simply connected iff for any x_0 , x_1 in X there is a unique homotopy class of paths joining them: statement and proof
• $\pi_1(X)$ is abelian iff all change-of-base point isomorphisms β_h depend only on the endpoints of h (HW 3)

• You won't be asked about problems 2 or 3 on HW 3.
 4. The Fundamental Group of the Circle Definition of covering space
\bullet Definition of homotopy lifting property with respect to a space Y
\bullet Definition of fibration (homotopy lifting property holds with respect to every space Y)
• Statement that covering spaces are fibrations with unique lifts of homotopies (no proof)
• Special case: path lifting principle with unique lifts of paths holds for covering spaces

(take Y to be a single point)

• Corollary about lifting homotopies rel endpoints between paths

• Statement (no proof) that $p(s) := (\cos(2\pi s), \sin(2\pi s))$ gives a covering space $R \xrightarrow{p} S^1$

• $\pi_1(S^1) \simeq \mathbb{Z}$: statement and proof assuming all previous lemmas (just the final proof itself)