ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20141 Khóa: 59, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1. Xét tính chẵn, lẻ của hàm số $y = \sin x + \cos^2 x$.

Câu 2. Tìm tiệm cận của đồ thị hàm số $y = xe^{\frac{1}{x}} + 1$.

Câu 3. Tính $\lim_{x\to 0} (1-\cos\frac{x}{2})^{\tan x}$.

Câu 4. Tính diện tích hình phẳng giới hạn bởi $x \ge y^2$, $x^2 + y^2 = 2y$.

Câu 5. Xét sự hội tụ của tích phân $\int_{1}^{\infty} \frac{\ln(2+x)}{x} dx$.

Câu 6. Cho $u = x^{y^z}$. Tính du(2, 1, 3).

Câu 7. Tìm cực trị của hàm số $z = 2x^2 + 3y^2 - e^{-(x^2+y^2)}$.

Câu 8. Hàm số y = |x|(x+1), $-1 \le x \le 2$ có thỏa mãn định lý Lagrange? Công thức Lagrange có đúng cho hàm số đó?

Câu 9. Tính diện tích mặt cong tròn xoay tạo nên khi quay đường $r = 2(1 + \cos \varphi)$ quanh trục cực.

Câu 10. Cho z = f(x,y) có các đạo hàm riêng đến cấp hai liên tục, còn x, y không là các biến số độc lập. Tính $d^2 f(x,y)$.

Thang điểm: Mỗi câu 1 điểm.

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20141 Nhóm ngành: CN + BK6, Khóa: 59, Thời gian: 90 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1. Tìm giới hạn $\lim_{x\to 0} \frac{e^x - \tan x - 1}{x^3}$.

ĐỀ̀ 6

Câu 2. Chứng minh rằng phương trình $x^7 - \cos x + 3x = 1$ có duy nhất nghiệm trên \mathbb{R} .

Câu 3. Tìm cực trị của hàm số $f(x) = \frac{x^2 + x + 1}{2x^2 + 1}$.

Câu 4. Tính tích phân $\int \ln(x^2 - 2x + 2) dx$.

Câu 5. Tìm giới hạn $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+3xy}$.

Câu 6. Tìm cực trị của hàm số $z = x^2 + 2xy + y^3 - y + 3$.

Câu 7. Cho hàm số z=z(x,y) xác định bởi phương trình $2x^2y+4y^2+x^2z+z^3=3$. Tính $\frac{\partial z}{\partial x}(1,0), \frac{\partial z}{\partial y}(1,0)$.

Câu 8. Chứng minh rằng hàm số $f(x) = 3x - \ln(x^2 + 1) + 3$ có hàm ngược $g(x) = f^{-1}(x)$. Tính g'(3).

Câu 9. Xét sự hội tụ và tính tích phân suy rộng $\int_{0}^{\infty} \frac{\arctan x}{(x+1)^2} dx$.

Câu 10. Cho $f^{(n+1)}$ là hàm số khả tích trên $[a,b], n \geq 0$. Chứng minh rằng

$$f(b) = \sum_{k=0}^{n} \frac{f^{k}(a)}{k!} (b-a)^{k} + \frac{1}{n!} \int_{a}^{b} f^{(n+1)}(t) (b-t)^{n} dt.$$

Thang điểm: Mỗi câu 1 điểm.