Presented By,

1:18101A0016 Lav Dabade

2:19101A2006 Harshala Ardekar

3: 19101A2007 Tanvi Gangar

Zomato recipe rating Prediction using Linear Regression

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

df = pd.read_csv('/zomato.csv', encoding='latin-1')

df.head()

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Lc
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	12
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	12
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	12
					Third		ON A	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Restaurant ID	9551 non-null	int64
1	Restaurant Name	9551 non-null	object
2	Country Code	9551 non-null	int64
3	City	9551 non-null	object
4	Address	9551 non-null	object
5	Locality	9551 non-null	object
6	Locality Verbose	9551 non-null	object
7	Longitude	9551 non-null	float64
8	Latitude	9551 non-null	float64
9	Cuisines	9542 non-null	object
10	Average Cost for two	9551 non-null	int64
11	Currency	9551 non-null	object
12	Has Table booking	9551 non-null	object
13	Has Online delivery	9551 non-null	object
14	Is delivering now	9551 non-null	object
15	Switch to order menu	9551 non-null	object
16	Price range	9551 non-null	int64
17	Aggregate rating	9551 non-null	float64
18	Rating color	9551 non-null	object
19	Rating text	9551 non-null	object
20	Votes	9551 non-null	int64
	67 (64/2) : (64/	E) 1 (42)	

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

df.describe()

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	
count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	95
mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	
std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	
min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	
25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	
75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	
max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	

df.columns

```
'Votes'],
dtype='object')
```

sns.distplot(df['Aggregate rating'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `di
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f2c85ad3f10>

sns.heatmap(df.corr(), annot=True)

0.00

-1.0 0.15 -0.23 -0.052-0.0017 -0.13 -0.33 -0.15 Restaurant ID - 1 - 0.8 Country Code -0.15 0.02 0.043 0.24 0.28 0.15 - 0.6 0.043 0.046 -0.079 -0.12 -0.085 -0.7 Longitude --0.23 0.4 -0.11 -0.170.00052-0.023 Latitude -0.052 0.02 0.043 0.2 Average Cost for two -0.0017 0.043 0.046 -0.11 0.075 0.052 0.068 0.0 -0.13 0.24 -0.079 -0.17 0.075 0.31 -0.33 0.28 -0.120.000520.052 0.44 0.31 Aggregate rating -0.15 -0.085 -0.023 0.068 0.31 Votes Restaurant ID Aggregate rating Votes Country Code Price range Longitude Average Cost for two

<matplotlib.axes._subplots.AxesSubplot at 0x7f2c85aad750>

Aggregate rating

x = df[['Restaurant ID', 'Country Code', 'Longitude', 'Latitude', 'Average Cost for two', 'Pr
y = df['Aggregate rating']

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.4, random_state=101)
x_train

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggregate rating	Votes
6831	18416859	1	77.199017	28.560495	400	1	0.0	2
8587	18204489	1	77.340025	28.565491	700	2	3.8	113
257	17257684	216	-93.637401	41.587219	10	1	4.4	659
669	2400027	1	81.835585	25.457687	600	3	3.4	83
2042	18462602	1	77.094712	28.481085	400	1	0.0	0
599	201044	214	55.278525	25.198291	285	3	3.2	506
5695	18349914	1	76.975319	28.611235	200	1	0.0	1
8006	312756	1	77.213345	28.562265	400	1	2.7	8
1361	307935	1	77.092692	28.490744	350	1	3.1	71
1547	3855	1	77.102077	28.480604	2500	4	3.5	57

from sklearn.linear_model import LinearRegression

lm = LinearRegression()

```
lm.fit(x_train, y_train)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
predictions = lm.predict(x_test)
predictions
```

```
array([ 3.30000000e+00, 3.00000000e+00, 3.10000000e+00, ..., 2.90000000e+00, -1.07182713e-14, 4.20000000e+00])
```

```
plt.scatter(y_test, predictions)
```

data.head()

<matplotlib.collections.PathCollection at 0x7f2c76f589d0>

Zomato recipe rating Prediction using KNN

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
data = pd.read_csv('/zomato.csv', encoding='latin-1')
```


sns.heatmap(data.corr(), annot=True)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f2c76f27a10>
                                                                                      -1.0
                                0.15 -0.23 -0.052-0.0017 -0.13 -0.33 -0.15
        Restaurant ID - 1
                                                                                      - 0.8
        Country Code -
                         0.15
                                  1
                                        -0.7
                                              0.02 0.043 0.24 0.28 0.15
                                                                                      - 0.6
                                -0.7
                                              0.043 0.046 -0.079 -0.12 -0.085
            Longitude -
                         -0.23
                                                                                      - 0.4
              Latitude --0.052 0.02 0.043
                                              1
                                                     -0.11 -0.170.00052-0.023
                                                                                      - 0.2
 Average Cost for two -0.0017 0.043 0.046 -0.11
                                                      1
                                                           0.075 0.052 0.068
                                                                                      - 0.0
           Price range - -0.13 0.24 -0.079 -0.17 0.075
                                                                   0.44 0.31
                                                                                       -0.2
                         -0.33 0.28 -0.120.000520.052 0.44
                                                                     1
                                                                          0.31
     Aggregate rating
                                                                   0.31
                                                                           1
                         -0.15
                               0.15 -0.085 -0.023 0.068 0.31
                 Votes
                          Restaurant ID
                                               Latitude
                                                                           Votes
                                                                    Aggregate rating
                                 Country Code
                                        Longitude
                                                      Average Cost for two
                                                             Price range
```

array([3.3 , 3. , 3.11818182, ..., 2.9 , 0. 4.03636364])

plt.scatter(y_test, y_pred)

<matplotlib.collections.PathCollection at 0x7f2c76f588d0>

