CLASSIFICATION AUTOMATIQUE DES BIENS DE CONSOMMATION

PARTIE I: INTRODUCTION

- I) CONTEXTE GÉNÉRAL
- 2) OBJECTIF DE L'ANALYSE
- 3) MÉTHODE GÉNÉRALE

CONTEXTE GÉNÉRAL

Contexte :

L'entreprise "Place de marché" souhaite lancer une marketplace e-commerce. Pour cela, les vendeurs doivent attribuer une catégorie manuellement à leurs produits à partir d'une description et d'une photo. Afin de passer à une plus large échelle et faciliter le processus, il devient nécessaire d'automatiser cette tâche.

Mission:

Réaliser une première étude de faisabilité d'un moteur de classification

- I. Analyse de données textuelles (description) + Clustering
- 2. Analyse de données visuelles (image) + Clustering

Données :

Export de la base de données contenant 1050 produits et leurs images associées

OBJECTIF DE L'ANALYSE :

Il existe 7 grandes catégories d'articles dans nos données (150 items par categories)

Peut on clusteriser les produits en 7 catégories uniquement par leur description + images ?

MÉTHODE GÉNÉRALE :

PARTIE II: ANALYSE DE TEXTE

- I) PRE-PROCESSING
- 2) MODÈLES DE BAG OF WORDS
- 3) MODÈLES DE WORD/SENTENCE EMBEDDING
- 4) RÉSULTATS

PRE-PROCESSING

'Key Features of Elegance Polyester Multicolor Abstract Eyelet Door Curtain Floral'...

['key', 'features', 'of', 'elegance', 'polyester', 'multicolor', 'abstract', 'eyelet', 'door', 'curtain']

['key', 'features', 'elegance', 'polyester', 'multicolor', 'abstract', 'eyelet', 'door', 'curtain']

Liste de mots non informatifs du corpus (pre-processed)

- Taille des mots :< 3 lettres
- Récurrence des Mots :
 x (13) mots les plus présents

PRÉSENTATION DU CORPUS

Après pre-processing:

Nombre de mots (tokens): 39567

Nombre de tokens uniques : 3910

MODÈLE DE BAG OF WORDS : COUNT VECTORIZER ET TF-IDF

Modèle Count Vectorizer

Phrase I: "Je suis à la maison"

Phrase 2: "La maison est dans la prairie"

Phrase 3: "Je suis à la plage"

	je	suis	à	la	maison	est	dans	prairie	plage
Phrase I	I	I	I	I	Ī	0	0	0	0
Phrase 2	0	0	0	2	I	I	I	I	0
Phrase 3	I	1	1	1	0	0	0	0	1

Modèle TF-IDF

Phrase I	0,2
Phrase 2	0,3
Phrase 3	0,2

TF * IDF où:

- •TF = nombre de fois où le mot est dans le document / nombre de mots dans le document
- •IDF = nombre de documents / nombre de documents où apparaît le mot

MODÈLE DE WORD EMBEDDING: WORD2VEC & FASTTEXT

Key Features of Elegance Polyester Multicolor Abstract Eyelet Door Curtain Floral

Modèle	Output
Word2vec	1200*
FastText	600*

- I. Création du modèle et entrainement sur tout le corpus.
- > Chaque mot transformé en vecteur (embedding)
- 2. Pour chaque document : Création de la matrice d'embedding des différents mots puis pooling (GlobalAverage)
- > Chaque document est un vecteur de dimension X

*Valeurs testées : 300, 600, 1200

Modèle: Devlin et al. arXiv, 2019

MODÈLE DE SENTENCE EMBEDDING : BERT

Modèle	Output
Word2vec	1200*
FastText	600*
BERT	768

Modèle:

Transformers: Vaswani et al. arXiv, 2017

BERT : Devlin et al. arXiv, 2019

Src images: https://kikaben.com/transformers-

encoder-decoder/

Bidirectional Encoder Representations from Transformers

MODÈLE DE SENTENCE EMBEDDING : SBERT

Sentence - BERT

Modèle entraîné sur deux BERT en parallèle (Siamese Networks)

Modèle	Output
Word2vec	1200*
FastText	600*
BERT	768
SBERT	768

Modèle : Reimer & Gurevych. arXiv, 2019

Src image: Saketh Kotamraju,

https://towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-1984d144a868

SBERT training Softmax Classifier (u,v,|u-v|)u Mean Mean pooling pooling **BERT BERT** Sentence B Sentence A

MODÈLE DE SENTENCE EMBEDDING : USE

Modèle	Output
Word2vec	1200*
FastText	600*
BERT	768
SBERT	768
USE	512

Universal Sentence Embedding

Modèle: lyyer et al. Proceedings of ACL/IJCNLP, 2015 Cer et al. arXiv, 2018

Src image:

hello

Deep Averaging Network

Final layer

Hidden layer 3

Hidden layer 2

Hidden layer 1

world

words

512-dim embedding

average

hello world

bigrams

token embeddings

RÉSULTATS DES DIFFÉRENTS MODÈLES

Meilleur modèle : Reduction par TSNE +SBERT

ARI: 0.69

REPRÉSENTATION DU MEILLEUR MODÈLE : SBERT ET TSNE

Meilleur modèle : Reduction par TSNE + SBERT

ARI: 0.69

MATRICE DE CONFUSION

PARTIE III: ANALYSE D'IMAGE

- I) PRE-PROCESSING
- 2) MODÈLE SIFT
- 3) MODÈLES DE RÉSEAUX DE NEURONES CONVOLUTIFS
- 4) RÉSULTATS

ETAPE I : PRE-PROCESSING

MODEL SIFT: SCALE-INVARIANT FEATURE TRANSFORM

- I) Création des descripteurs de chaque images
- 2) Détermination de cluster de descripteurs (résumer l'info de milliers de descripteurs)
- 3) Création des Features :
 - prédiction des clusters de chaque descripteur
 - création d'un histogramme = comptage du nombre de descripteurs par cluster

source: https://openclassrooms.com/fr/courses/4470531-classez-et-segmentez-des-donnees-visuelles/5072281-utilisez-ces-features-pour-classifier-des-images#/id/r-5144451

MODÈLES DE RÉSEAUX DE NEURONES CONVOLUTIFS : VGG16 & VGG19

Modèle	Paramètres	Output
VGG16	138,357,544	4096
VGG19	143,667,240	4096

Modèle: Simonyan & Zisserman. Conference paper at ICLR, 2015

Src image: Nash et al. Materials Degradation (Nature), 2018

MODÈLES DE RÉSEAUX DE NEURONES CONVOLUTIFS : RESNET50

Modèle	Paramètres	Output
VGG16	138,357,544	4096
VGG19	143,667,240	4096
ResNet50	25,636,712	2048

Modèle: He et al. CPVR 2015

Src image: Samsonlo. Kaggle, 2022

MODÈLES DE RÉSEAUX DE NEURONES CONVOLUTIFS : INCEPTIONV3

Modèle	Paramètres	Output
VGG16	138,357,544	4096
VGG19	143,667,240	4096
ResNet50	25,636,712	2048
InceptionV3	23,851,784	2048

Modèle: Szegedy et al. CPVR, 2017

Src image: Mo Ahn et al. PLOS ONE,n 2018

MODÈLES DE RÉSEAUX DE NEURONES CONVOLUTIFS : XCEPTION

Modèle	Paramètres	Output
VGG16	138,357,544	4096
VGG19	143,667,240	4096
ResNet50	25,636,712	2048
InceptionV3	23,851,784	2048
Xception	22,910,480	2048

Modèle: François Cholet. Conference: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

Src image: Westphal & Seitz. Additive Manufacturing, 2021

RÉSULTATS DES DIFFÉRENTS MODÈLES

Meilleur modèle : Reduction par TSNE + InceptionV3

ARI: 0.547

REPRÉSENTATION DU MEILLEUR MODÈLE : INCEPTIONV3 ET TSNE

Meilleur modèle : Reduction par TSNE + InceptionV3

ARI: 0.547

MATRICE DE CONFUSION

Erreurs principales:

- Home Furnishing (56%)
- Home Decor & Festive Needs (64%)

COMBINAISON DES FEATURES TEXTES (SBERT) + IMAGES (INCEPTIONV3)

Reduction par TSNE

ARI: 0,61

CONCLUSION

Le meilleurs modèle pour l'analyse de texte est le S-BERT (ARI 0,69)

Le meilleur modèle pour la classification d'image est le modèle InceptionV3 (ARI 0,55)

Une combinaison des features des deux approches n'est pas plus performante

Les données permettent une segmentation non supervisée

MOTEUR DE CLASSIFICATION

Rapide :

- Embedding par le modèle le plus efficace
- Application d'un algorithme de classification

Features sur Texte : Reduction par TSNE + SBERT

Classification: Random Forest

Accuracy: 0,94 (paramètres de base)

Lente :

- Sélection des meilleurs modèles de réseaux de neurones (Textes et/ou Images)
- Utilisation d'un classifier directement dans le modèle
- Fine tuning partiel (entraînement de certaines couches sur nos données)