ntroduction

Plan du

Classification

 α Saha Γ Θ

⊖ Coulomb

Debye ω_p

Introduction à la physique des plasmas

S. Mazevet

Laboratoire de Structure Electronique Département de Physique Théorique et Appliquée Commissariat à l'Energie Atomique Bruyères-Le-Châtel, FRANCE

Orsay, Septembre 2009

Table of contents

Introduction

Plan du cours

Classifica

Introduction

Γ Θ Coulom

Dalama

Plan

- Température
- lacktriangle Degré d'ionisation: lpha
- Saha
- Cinétiques-corrélés: Γ
- Plasmas classiques/dégénérés

- Ecrantage de Debye
- Oscillations dans les plasmas: fréquence plasma
- Descriptions utilisées pour les plasmas

Définition

Introduction

Plan du cours

Classific

Températu α Saha Γ Θ Coulomb

Debye ω_p Description

- Un plasma est défini comme un ensemble de particules chargées
- Un plasma est électriquement neutre: nombre égale de particules chargées positivement et négativement
- Toutes les particules interagissent entre elles via l'interaction coulombienne
- Contrairement à un gaz où les interactions sont de courte portée, dans un plasma les interactions sont donc de longue portée
- Ceci implique un comportement collectif des particules
- Modélisable comme deux fluides chargés en interaction
- ullet II existe des plasmas trés variés \pm denses, \pm chauds, \pm ionisés
- Tous les corps se transforment en plasma lorsque la température et/ou densité sont suffisement élevées

Applications

Introduction

Plan du

Classificatio

Températi α Saha Γ Θ Coulomb

Debye ω_p Description

- Astrophysique, 99% de la matière visible, atmosphéres stellaires, nébuleuses,...
- Fusion thermonucléaire controlée: magnétique ou par confinement inertiel
- Décharges électriques dans les gaz,...
- Matière dans des conditions extrémes

Exemples de Plasmas

Introduction

Plan du

Classification

canperation α
Saha
Γ
Θ
Coulomb

Debye ω_p Descriptio

Les différents types de plasmas sont catalogués en utilisant quelques paramètres clés.

Plan du cours

Introduction

Plan du

Classification

 α Saha Γ Θ Coulomb

Debye ω_p Description

- Généralités sur les plasmas, grandeurs fondamentales
- Collisions dans les plasmas
- Description fluide, ondes dans les plasmas (2 cours)
- Eléments de théorie cinétique (2 cours)
- Instabilités paramétriques
- Thèmes de recherche actuels sur les plasmas: interaction laser plasmas, matière dans les conditions extrèmes, simulations.

Introduction

Plan du cours

Température

Saha □ ⊖ Coulomb

 ω_p Description

- Pour un plasma proche de l'équilibre, les collisions sont suffisement fréquentes pour que les lois de la mécanique statistique soient applicables
- La distribution des vitesses des particules à une température T est donnée par une distribution de Maxwell-Boltzmann (une dimension)

$$f(u) = Aexp(-\frac{1}{2}mu^2/k_BT) \tag{1}$$

- fdu est le nombre de particules par m^3 avec une vitesse entre u et u+du, $\frac{1}{2}mu^2$ est l'énergie cinétique et $k_B=1.38\times 10^{-23}J/K$ la constante de Boltzmann
- ullet La constante A est reliée à la densité n par

$$A = n \left(\frac{m}{2\pi k_B T}\right)^{1/2} \tag{2}$$

Notion de température II

Introduction

cours

Classification Température

 α Saha Γ Θ Coulomi

Debye ω_P Description: L'énergie cinétique moyenne des particules dans cette distribution est

$$E_{av} = \frac{\int_{-\infty}^{\infty} \frac{1}{2} m u^2 f(u) du}{\int_{-\infty}^{\infty} f(u) du}$$
 (3)

• En utilisant une intégration par partie, on trouve, à une dimension:

$$E_{av} = \frac{1}{2}k_B T \tag{4}$$

 Ce résultat peut être facilement étendu à trois dimensions en utilisant

$$f(u, v, w) = A_3 exp \left[-\frac{1}{2} m(u^2 + v^2 + w^2) / k_b T \right]$$
 (5)

- L'énergie cinétique moyenne est alors $E_{av}=\frac{3}{2}k_bT$ soit $\frac{1}{2}k_bT$ par degré de liberté
- Il est courant, en physique des plasmas, d'exprimer la température en unité d'énergie: 1eV=11604K
- ullet Notion de température pour les électrons T_e et les ions T_i

Degré d'ionisation

Introduction

Plan du

Classificati

emperatu α Saha Γ Θ Coulomb

Debye $\omega_{\mathcal{P}}$ Description:

- \bullet L'état d'ionisation d'un plasma est lié à sa température T et sa densité n
- Pour un atome A dans un plasma, une collision ionisante est du type

$$e + A \to e + A^+ + e \tag{6}$$

- A l'équilibre, le plasma contient donc n_e électrons, n_i ions et n_0 neutres par unité de volume.
- Pour un plasma globalement neutre: $n_e = n_i = n$
- Le degré d'ionisation, α est définie par

$$\alpha = \frac{n}{n_0 + n} \tag{7}$$

Equilibre d'ionisation: Equation de Saha

Introduction

Plan du cours

Classification

 α Saha Γ Θ Coulomi

 ω_{p} Description

 A cause des collisions, les atomes, molécules, ou ions présents dans le plasma peuvent être ionisés si la température est telle que

$$k_B T > U_i/10 \tag{8}$$

où U_i est le potentiel d'ionisation.

- Si le plasma est à l'équilibre thermodynamique, l'ionisation est contre-balancée par la recombinaison
- Cet équilibre est décrit par l'équation de Saha

$$\frac{n_{i+1}n_e}{n_i} = \frac{g_{i+1}g_e}{g_i} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} exp[-(U_{i+1} - U_i)/k_b T]$$
 (9)

- g sont des facteurs de dégénérescence énergétique et $g_e=2$
- ullet n_i est la densité d'atomes dans leur i^{eme} état d'ionisation
- h est la constante Planck
- $\bullet \ \frac{(2\pi m_e k_B T)^{3/2}}{h^3}$ correspond à la longeur d'onde thermique d'un électron

Equilibre d'ionisation II

Introduction

Plan du cours

Températu α **Saha** Γ

Debye ω_P Description

- Le terme qui participe le plus est $exp[-U_i/k_bT]$ Si $U_i >> k_bT$ faible ionisation, $\alpha \to 0$ Si $U_i << k_bT$ fortement ionisé $\alpha \to 1$
- Application Numérique: Azote à température ordinaire $n_0=3.10^{25} \mathrm{m}^{-3}$, $U_i=14.5 \mathrm{eV}$, T=300K $\frac{n_i}{n_0}=10^{-26}$.
- Typiquement, α commence à être significatif lorsque $k_bT > U_i/10$
- Permet de distinguer les plasmas faiblement et fortement ionisés
- Avec plusieurs espèces (atomes, ions,..), il faut traiter les équations d'évolution pour toutes les espèces et les mécanismes associés: Physique Atomique à l'équilibre et hors équilibre
- Avec $n_e = n_i = \alpha n$, le facteur n déplace l'équation en faveur de la recombinaison: l'équation de Saha n'est pas valable à forte densité

Plasmas cinétiques-corrélés

Introduction

cours

Classification

saha Γ ⊖ Coulomb

 ω_{p} Description

- La distinction entre un plasma cinétique et un plasma corrélé se fait en comparant l'énergie cinétique à l'énergie d'interaction Coulombienne
- Energie cinétique $E_{cin} = \frac{3}{2}k_bT$
- Energie d'interaction Coulombienne

$$U_{int} = \frac{Z^2 e^2}{4\pi\epsilon_0 d} \tag{10}$$

avec d distance entre les deux particules

- Définition:
 - $\rightarrow U_{cin} >> U_{int}$ Plasma cinétique, comportement de type gaz parfait
 - $\rightarrow U_{cin} << U_{int}$ Plasma correlé, les forces électrostatiques modifient le comportement des particules chargées
- ullet On définit le paramètre de couplage $\Gamma=rac{U_{int}}{U_{cin}}$
 - $ightarrow \Gamma << 1$ plasma cinétique
 - $ightarrow \Gamma >> 1$ plasma corrélé

Plasmas cinétiques-corrélés II

Introduction

cours

Température α

Saha ↑ ⊖ Coulomb

 ω_{P} Description

• On définit la longueur de Landau: longueur d'approche de 2 particule d'énergie k_bT

$$r_0 = \frac{Z^2 e^2}{4\pi \epsilon_0 k_b T} \tag{11}$$

Le paramètre de couplage devient

$$\Gamma = \frac{Z^2 e^2}{4\pi\epsilon_0 d} \times \frac{1}{k_b T} = \frac{r_0}{d} \tag{12}$$

- La longueur de Landau permet également de classer un plasma $r_0 << d o$ cinétique $r_0 >> d o$ corrélé
- Le plasma est corrélé à faible température ou haute densité
- Le plasma est cinétique à haute température ou faible densité

Plasmas classiques/dégénérés

Plan du cours

Température
α
Saha
Γ
Θ

Debye ω_{p} Description:

- Si la distance entre 2 particules est petite, les fonctions d'onde se recouvrent et l'on ne peut plus négliger les effets quantiques
- ullet Ces effets vont se manifester d'abord sur les e car ils ont une fonction d'onde plus étendue
- L'extention spatiale d'une particule est donnée par la longueur thermique de de Broglie

$$\lambda_{th} = \frac{h}{\sqrt{mk_bT}} \tag{13}$$

$$\frac{d}{\lambda_{th}} = \left(\frac{3}{4\pi n}\right)^{1/3} \frac{\sqrt{mk_b T}}{h} = \sqrt{\frac{T}{T_F}} \tag{14}$$

avec T_F la température de Fermi

- Définition: $\to d >> \lambda_{th}$ ou $T >> T_F$: plasma classique, n faible ou T élevée $\to d << \lambda_{th}$ ou $T << T_F$: plasma dégénéré
- Lorsque le plasma est dégénéré, les effets quantiques sont importants. Il faut considérer la statistique de Fermi-Dirac
- Les électrons dans un métal est un exemple de plasma dégénéré

Intéractions longues portées

Introduction

Plan du cours

Classificat

Températur α Saha Γ ⇔

Coulomb

Debye ω_p Description

- ullet Dans un gaz parfait, les molécules n'interagissent que si elles s'approchent à une distance de quelques AA
- Dans les plasmas, les particules chargées interagissent à longue portée.
- ullet Le potentiel d'interaction est en 1/r

$$E = \frac{Q}{4\pi\epsilon_0 r^2} \tag{15}$$

- Nous allons étudier deux effets importants:
 - ightarrow Ecrantage de Debye : distance à laquelle la présence d'une charge se fait sentir
 - ightarrow Oscillation plasma : fréquence fondamentale pour un plasma

Ecrantage de Debye

Introduction

Classification

Températul
α
Saha
Γ
Θ
Coulomb

 $\begin{array}{c} \textit{Debye} \\ \omega_{P} \\ \textit{Description} \end{array}$

- Si on insère une charge dans un plasma, elle attire les charges opposées qui vont l'écranter
- Si la température du plasma est nulle, l'écrantage sera parfait
- ullet Si on insère une grille maintenue au potentiel constant ϕ_0
- Les ions sont supposés fixes alors que les électrons s'arrangent en fonction de leur température
- La fonction de distribution pour les électrons est

$$f(u) = Aexp[-(\frac{1}{2}mu^2 + q\phi)/k_bT]$$
 (16)

• Intégrer f(u) sur u et en notant que $n_e(\phi o 0) = n_\infty$, on obtient

$$n_e = n_\infty exp(e\phi/k_b T_e) \tag{17}$$

• En prenant maintenant l'équation de poisson à une dimension

$$\epsilon_0 \nabla^2 \phi = \epsilon_0 \frac{d^2 \phi}{dx^2} = -e(n_i - n_e) \tag{18}$$

Ecrantage de Debye II

Introduction

Plan du cours

Classification

Températu α Saha Γ Θ Coulomb

 $\begin{array}{c} \textit{Debye} \\ \omega_{\mathcal{P}} \\ \textit{Description} \end{array}$

• Utilisant l'expression de n_e , l'équation devient

$$\epsilon_0 \frac{d^2 \phi}{dx^2} = e n_\infty \left\{ \left[exp\left(\frac{e\phi}{k_b T_e}\right) \right] - 1 \right\}$$
(19)

Par linéarisation, on obtient

$$\epsilon_0 \frac{d^2 \phi}{dx^2} = \frac{n_\infty e^2}{k_b T_e} \phi \tag{20}$$

la solutions est du type

$$\phi = \phi_0 exp(-|x|/\lambda_D) \tag{21}$$

• λ_D est la longueur de Debye

$$\lambda_D = \left(\frac{\epsilon_0 K T_e}{ne^2}\right)^{1/2} \tag{22}$$

Ecrantage de Debye: interprétation

Introduction

Classification

Températul
α
Saha
Γ
Θ
Coulomb

Debye ω_P Descriptio

- ullet Si une charge est plus loin que λ_d , elle ne voit pas le potentiel ϕ_0
- Lorsque la densité augmente λ_D diminue
- \bullet Lorsque la température augmente, λ_D augmente: sans agitation thermique, toutes les charges viennent sur le potentiel
- La longueur d'onde de Debye permet de parler de quasi-neutralité pour un plasma.
- Si la taille du plasma, L, est telle que $L>>\lambda_D$, on voit que le plasma sera globalement neutre
- Conditions de validité: Il faut que le nombre de particules dans un volume de Debye soit >> 1:

$$N_D = \frac{4}{3}\pi n_0 \lambda_D^3 >> 1 \to \frac{4}{3}\pi \left(\frac{\epsilon_0 K T_e}{ne^2}\right)^{3/2} n_0 >> 1$$
 (23)

$$\left(\frac{d}{r_0}\right)^{3/2} >> 1 \to d >> r_0 \tag{24}$$

Dans un plasma cinétique

Oscillations dans les plasmas: fréquence plasma

Introduction

01---:6:--4:--

Températi α Saha Γ Θ Coulomb

 ω_p Descriptions

- Si les e sont déplacés par rapport aux ions considérés comme fixes, il y a apparition d'un champ électrique qui tend à les ramener à l'équilibre et maintenir la neutralité
- \bullet Les e étant légers, ils se mettent à osciller avec une fréquence charactéristique dite fréquence plasma ω_p
- Ces oscillations sont suffisement rapides pour que les ions n'aient pas le temps de réagir
- En considérant les ions fixes, la température électronique nulle et en l'absence de champs magnétique, le système à résoudre est:

$$\begin{cases}
mn_e \frac{d\mathbf{v}_e}{dt} = -en_e \mathbf{E} & \text{eq. du mouvement} \\
e_0 \nabla . \mathbf{E} = e_0 \partial \mathbf{E} / \partial \mathbf{x} = e(n_i - n_e) & \text{eq. de poisson} \\
\frac{\partial n_e}{\partial t} + \nabla . (n_e \mathbf{v}_e) = 0 & \text{eq. de continuité}
\end{cases}$$
(25)

Oscillations dans les plasmas: fréquence plasma II

Introduction

cours

Classification

 α Saha Γ Θ Coulomb

 ω_{p} Descriptions

- On suppose de petites perturbations $n_e=n_0+n_1$, ${\bf v_e}={\bf v_0}+{\bf v_1}$ et ${\bf E}={\bf E_0}+{\bf E_1}$
- Comme le plasma est quasi-neutre et à l'équilibre avant la perturbation

$$\nabla n_0 = \mathbf{v_0} = \mathbf{E_0} = 0;$$
 $\frac{\partial n_0}{\partial t} = \frac{\partial \mathbf{v_0}}{\partial t} = \frac{\partial \mathbf{E_0}}{\partial t} = 0$ (26)

Le système devient alors

$$\begin{cases}
 m_e \frac{\partial \mathbf{v_1}}{\partial t} = -e\mathbf{E_1} \\
 \epsilon_0 \nabla \mathbf{E_1} = en_1 \\
 \frac{\partial n_1}{\partial t} + n_0 \nabla \cdot \mathbf{v_1} = 0
\end{cases}$$
(27)

• Les solutions du type $n_1 = n_1 e^{i(kx-wt)}$ satisfont

$$\frac{\partial^2 n_1}{\partial t} - \omega_p^2 n_1 = 0 \quad \text{avec} \quad \omega_p = \left(\frac{n_0 e^2}{\epsilon_0 m_e}\right)^{1/2} \tag{28}$$

Descriptions utilisées pour les plasmas

Introduction

Plan du

Classification

 $\begin{array}{c} \alpha \\ Saha \\ \Gamma \\ \Theta \\ \text{Coulomb} \end{array}$

 ω_p Description

- Une description particulaire (incomplète): équation du mouvement...
- Théorie cinétique: équation de Boltzman. Particulièrement utilisée pour déterminer les coefficients de transport
- Théorie fluide: le plasma est considéré comme un ou deux fluides (e+ions). Permet de déterminer un ensemble de données macroscopiques comme la pression, la température,...
- Ces descriptions sont équivalentes et complémentaires