Módulo 2 :: AC :: LEI

12 de Outubro 2012

Questão 1

a) $\#I_1 = ?, \#CC_1 = ?, CPI_1 = ?, \#I_2 = ?, \#CC_2 = ?, CPI_2 = ?, ganho = ?$

Compilador Cl:

#I₁ =
$$\sum_{n=1}^{3} \#I_1[n] = 8*10^6$$

#CC₁ = $\sum_{n=1}^{3} \#I_1[n] * cpi[n] = (1 * 1 + 3 * 2 + 4 * 3) * 10^6 = 19*10^6$
CPI₁ = #CC₁ / #I₁ = 19 / 8 = 2.375

Compilador C2:

#I₂ =
$$10*10^6$$

#CC₂ = $(5*1+2*2+3*3)*10^6 = 18*10^6$
CPI₂ = $18/10 = 1.8$

 \rightarrow O C2 é mais rápido porque exige menos ciclos: #CC₂ < #CC₁.

$$ganho_{C2 \ sobre \ C1} = \frac{Texe_1}{Texe_2} = \frac{\#CC_1 * Tepu}{\#CC_2 * Tepu} = \frac{\#CC_1}{\#CC_2}$$

$$ganho_{C2 \ sobre \ C1} = \#CC_1 / \#CC_2 = \mathbf{1.056} \rightarrow C2 \ \text{\'e} \ \mathbf{1.056} \ \text{vezes mais r\'apido que C1}$$

b) $f_{con} = 1 \text{ GHz} = 10^9 \text{ Hz}$. **Texe₁ = ?, Texe₂ = ?**

$$\begin{aligned} \textbf{Texe_1} &= \#CC_1 * T_{cpu} = \#CC_1 / f_{cpu} = 19*10^6 / 10^9 = 19*10^{-3} = 19 \text{ms} \\ \textbf{Texe_2} &= \#CC_2 * T_{cpu} = \#CC_2 / f_{cpu} = 18*10^6 / 10^9 = 18*10^{-3} = 18 \text{ms} \end{aligned}$$

c) $f_{epu} = 2 \text{ GHz e novos CPI's dados pela tabela 3. } \text{CPI}_1=?, \text{Texe}_1=?, \text{CPI}_2=?, \text{Texe}_2=?$

#CC₁ =
$$\sum_{n=1}^{3} \#I_1[n] * cpi[n] = (1 * 2 + 3 * 3 + 4 * 4) * 10^6 = 27 * 10^6$$

CPI₁ = #CC₁ / #I₁ = 27 / 8 = 3.375

Texe₁ = #CC₁ / f_{cpu} = 27*10⁶ / 2*10⁹ = 13.5 * 10⁻³ = 13.5ms

#CC₂ = $\sum_{n=1}^{3} \#I_2[n] * cpi[n] = (5 * 2 + 2 * 3 + 3 * 4) * 10^6 = 28 * 10^6$

CPI₂ = #CC₂ / #I₂ = 28 / 10 = 2.8

Texe₂ = #CC₂ / f_{cpu} = 28*10⁶ / 2*10⁹ = 14 * 10⁻³ = 14ms

Questão 2

a) *CPI_base* = ? *e CPI_hard* = ?

base → f_{cpu} = 1.5 GHz, CPI_{base} dado pela 2^a coluna da tabela 4

$$hard \rightarrow f_{cpu} = 2 \text{ GHz}$$
, CPI_{hard} dado pela 3º coluna da tabela 4

CPI_base =
$$\sum_{n=1}^{4} Freq[n] * cpi_{base}[n] = 0.4 * 2 + 0.25 * 3 + 0.25 * 3 + 0.1 * 5 = 2.8$$

CPI_hard =
$$\sum_{n=1}^{4} Freq[n] * cpi_{hard}[n] = 0.4 * 2 + 0.25 * 2 + 0.25 * 3 + 0.1 * 4 = 2.45$$

b) MIPS_base = ?, MIPS_hard = ?, MIPS_base_pico = ? e MIPS_hard_pico = ?

$$Texe = \#I * CPI * T_{cpu} = \frac{\#I * CPI}{f_{cpu}}$$

$$MIPS = \frac{\#I}{Texe*10^6} = \frac{\#I}{\#I*CPI} = \frac{f_{cpu}}{\#I*CPI} = \frac{f_{cpu}}{CPi*10^6}$$
 (Milhões de Instruções Por Segundo)

MIPS_base =
$$1.5*10^9/(2.8*10^6) = 0,5357*10^3 =$$
536 MIPS MIPS hard = $2*10^9/(2.45*10^6) = 0,8163*10^3 =$ **816** MIPS

Para obter o MIPS de pico considera-se o CPI mais favorável (mínimo): 2 (CPI das instruções do tipo A)

Nota: um programa só com instruções do tipo A é "irreal".

MIPS_base_pico =
$$\frac{f_{cpu}}{CPI*10^6}$$
 = 1.5*10⁹/(2*10⁶) = **750** MIPS
MIPS_hard_pico = $2*10^9/(2*10^6)$ = **1000** MIPS

c) $ganho_{hard\ sobre\ base} = ?$

$$ganho_{hard\ sobre\ base} = \frac{\text{Texe_base}}{\text{Texe_hard}} = \frac{(\text{\#I_base} * \text{CPI_base})/\text{ } \textbf{f_base}}{(\text{\#I_hard} * \text{CPI_hard})/\text{ } \textbf{f_hard}} = \frac{\text{\#I_base} * \text{CPI_base} * \text{ } \textbf{f_hard}}{\text{\#I_hard} * \text{ } \text{CPI_hard} * \text{ } \textbf{f_base}}$$

Como se trata do mesmo programa: #I base = #I hard

$$ganho_{hard\ sobre\ base} = \frac{CPI_base\ *\ f_hard}{CPI_hard\ *\ f_base} = \frac{2.8\ *\ 2}{2.45\ *\ 1.5} = 1.524$$

→ a opção *hard* é 1,524 vezes mais rápida que a opção *base*

d) Opção *comp*: opção base com novas percentagens de instruções geradas pelo compilador (**tabela 5**). $CPI_{comp} = ?$, $ganho_{comp \ sobre \ base} = ?$ e $ganho_{comp \ sobre \ hard} = ?$

É necessário recalcular a frequência de cada tipo de instrução, não esquecendo de normalizar para 100% :

$$FreqA' = 0.4 * 0.9 = 0.36$$

$$FreqB' = 0.25 * 0.9 = 0.225$$

$$FreqC' = 0.25 * 0.85 = 0.2125$$

$$FreqD' = 0.1 * 0.95 = 0.095$$

FreqA' + FreqB' + FreqC' + FreqD' = 0.8925 (89.25% é menor que 100%, logo é necessário normalizar para 100%)

$$FreqA = 0.36 / 0.8925 = 0.4033$$

$$FreqB = 0.225 / 0.8925 = 0.2521$$

$$FreqC = 0.2125 / 0.8925 = 0.2381$$

$$FreqD = 0.095 / 0.8925 = 0.1064$$

$$CPI_{comp} = \sum_{n=1}^{4} Freq_{comp}[n] * cpi_{base}[n] = 0.4033 * 2 + 0.2521 * 3 + 0.2381 * 3 + 0.1064 * 5 = 2.8094$$

Notas: #I_comp = 0.8925 * #I_base e T_{cpu}_base=T_{cpu}_comp (mesma frequência)

$$\begin{aligned} \text{ganho}_{\text{comp sobre base}} &= \frac{\text{Texe_base}}{\text{Texe_comp}} = \frac{\#\text{I_base} * \text{CPI_base} * \text{Tcpu_base}}{\#\text{I_comp} * \text{CPI_comp} * \text{Tcpu_comp}} = \frac{\#\text{I_base} * \text{CPI_base} * \text{CPI_base} * \text{CPI_base}}{0.8925 * \#\text{I_base} * \text{CPI_comp} * \text{Tcpu_comp}} = \\ &= \frac{2.8}{0.8925 * 2.8094} = \textbf{1.117} \implies \text{opção } \textit{comp} \text{ \'e 1,117 vezes mais rápida que a opção } \textit{base} \end{aligned}$$

Relativamente à opção hard (f_{cpu_hard} =2.0Ghz):

$$\begin{aligned} \text{ganho}_{\text{comp sobre hard}} &= \frac{\text{Texe_hard}}{\text{Texe}_{\text{comp}}} = \frac{\#\text{I_hard} \, * \, \text{CPI_hard} \, * \, \text{Tcpu_hard}}{\#\text{I_comp} \, * \, \text{CPI_comp} \, * \, \text{Tcpu_comp}} = \\ &= \frac{\#\text{I_hard} \, * \, \text{CPI_hard} \, * \, \text{CPI_hard} \, * \, \text{fcpu_comp}}{0.8925 \, * \, \#\text{I_hard}} = \frac{2.45 \, * \, 1.5}{0.8925 \, * \, 2.8094 \, * \, 2} = \textbf{0,7328} \end{aligned}$$

- → a opção *comp* é mais lenta que a opção *hard*
- e) opção <u>comb</u> = combinação das opções hard e comp. CPIcomb = ? e ganho_{comb sobre base} = ?

$$CPI's_{comb} = CPI's_{hard} \equiv \text{colung 3 da tabela 4}$$

$$Fcpu_{comb} = Fcpu_{hard} = 2 \text{ GHz}$$

$$CPI_{comb} = \sum_{n=1}^{4} Freq_{comp}[n] * cpi_{hard}[n] = 0.4033 * 2 + 0.2521 * 2 + 0.2381 * 3 + 0.1064 * 4 = 2.4509$$

$$\begin{aligned} \text{ganho}_{\text{comb sobre base}} &= \frac{\text{Texe_base}}{\text{Texe}_{\text{comb}}} = \frac{\#\text{I_base} * \text{CPI_base} * \text{Tcpu_base}}{\#\text{I_comb} * \text{CPI_comb} * \text{Tcpu_comb}} = \\ &= \frac{\#\text{I_base} * \text{CPI_base} * \text{fcpu_hard}}{0.8925 * \#\text{I_base}} * \text{CPI_comb} * \frac{2.8 * 2}{0.8925 * 2.4509 * 1.5} = \textbf{1.71} \end{aligned}$$

- → opção *comb* é 1.71 vezes mais rápida que a *base*
- f) O tempo para desenvolver cada opção é dado na tabela 6. A concorrência melhora 1.034/mês. Desempenho inicial base = desempenho inicial concorrência. Que opções vale a pena desenvolver?

As opções *hard* e *comp* precisam de 6 meses para estar prontas.

Nessa altura <u>a concorrência</u> será (1.034)⁶ vezes mais rápida, ou seja, **1.222** vezes mais rápida.

- → O ganho da opção *hard* sobre a *base* é **1.524** → compensa desenvolve-la.
- → O ganho da opção *comp* sobre a *base* é 1.117, valor menor que 1.222 → <u>não</u> compensa desenvolve-la.

A opção *comb* precisa de 8 meses:

Nessa altura a concorrência será em média $(1.034)^8$ vezes mais rápida \equiv **1.3066**

→ Como o ganho de *comb* sobre a base é **1.71** → compensa desenvolve-la.

Questão 3

a) $CPI_{FP} = ?$

$$CPI_{FP} = 6 * 0.1 + 20 * 0.05 + 4 * 0.3 + 2 * 0.55 = 3.9$$

b) Reduzindo para metade o nº de divisões FP. Qual o ganho de desempenho?

$$CPI_{FP} = 6 * 0.1 + 10 * 0.05 + 4 * 0.3 + 2 * 0.55 = 3.4$$

 $ganho_{b)sobre a)} = CPI_a / CPI_b = 3.9 / 3.4 = 1.147$

c) Reduzindo para metade o CPI das adições FP. Qual o ganho? Explicar o resultado com a lei amdahl.

$$CPI = 6 * 0.1 + 20 * 0.05 + 2 * 0.3 + 2 * 0.55 = 3.3$$

$$ganho_{c) \ sobre \ a)} = CPI_a / CPI_c = 3.9 / 3.3 = 1.182$$

O ganho é maior porque as adições FP são mais comuns → A lei de *amdahl* diz: "Otimizar o caso mais comum"

d) Suponha outra máquina (NFP) sem unidade vírgula flutuante. Cálculos todos feitos com unidade de inteiros. MULT_{FP} exige 30 ops inteiras. ADD_{FP} exige 20 ops inteiras. DIV_{FP} exige 50 ops inteiras. Quantas vezes é mais rápida a máquina FP em relação a NFP?

O CPI da máquina NFP é 2 \rightarrow CPI_{NFP}=2 (apenas executa operações inteiras).

Mas o número de instruções aumenta:

$$\#I_{NFP} = (0.1 * 30 + 0.05 * 50 + 0.3 * 20 + 0.55 * 1) * \#I_{FP} = 12.05 * \#I_{FP}$$

 $ganho_{FP \, sobre \, NFP} = (\#I_{NFP} * CPI_{NFP}) / (\#I_{FP} * CPI_{FP}) = (12.05 * \#I_{FP} * CPI_{NFP}) / (\#I_{FP} * CPI_{FP})$
 $= (12.05 * 2) / 3.9 = 6.179$

e) Com f_{cpu} FP = f_{cpu} NFP=1GHz, MIPS_{FP}=? e MIPS_{NFP}=?

MIPS =
$$\#I/(\text{Texe}*10^6) = \#I/(\#I*\text{CPI}*\text{Tcpu}*10^6) = f_{cpu}/(\text{CPI}*10^6)$$

$$MIPS_{FP} = 10^9 / (3.9 * 10^6) = 10^3 / 3.9 = 256.4$$

$$MIPS_{NFP} = 10^9 / (2 * 10^6) = 10^3 / 2 = 500$$

Conclusão:

O MIPS da máquina NFP é maior que o da FP (quase o dobro), mas o tempo de execução de FP é 6.179 vezes menor.

Isto deve-se ao facto de os programas de NFP terem muitas mais instruções para realizar o mesmo trabalho.