Duality and optimality conditions

Optimality conditions

We do *not* assume convexity by default here.

Unconstrained problems

 $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$

Zeroth-order optimality condition

 $f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^d.$

Global optimality

Not easy to check

• First-order optimality condition: assume *f* is continuously differentiable. $\nabla f(\mathbf{x}^{\star}) = 0.$

Also known as the stationarity condition.

• Necessary condition: \mathbf{x}^* may locally minimize/maximize f, or even is a saddle point.

If f is convex, then necessary and sufficient. • Second-order optimality condition: assume f is twice continuously differentiable.

 $\nabla^2 f(\mathbf{x}^*) \ge 0.$ • Necessary condition: \mathbf{x}^* locally minimize f (if the first-order condition also holds).

Constrained problems

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \le 0$, $i = 1, ..., m$
 $h_i(\mathbf{x}) = 0$, $i = 1, ..., p$.

Assume all of these functions share some open set $U \subset \mathbb{R}^d$ as their domain.

Zeroth-order optimality condition

 $f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in C = \{\mathbf{x} : f_i(\mathbf{x}) \le 0, i = 1, ..., m, h_i(\mathbf{x}) = 0, i = 1, ..., p\}.$

Kuhn, H. W.; Tucker, A. W., Nonlinear Programming. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and

• First-order optimality condition: Karush-Kuhn-Tucker (KKT) conditions

Probability, 481--492, University of California Press, Berkeley, Calif., 1951. https://projecteuclid.org/euclid.bsmsp/1200500249 Karush, W., Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. Dept. of Mathematics, Univ. of

Chicago, Chicago, Illinois, 1939.

KKT conditions

Define the Lagrangian

$$\mathcal{L}(\mathbf{x}, \lambda, \mathbf{v}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p v_i h_i(\mathbf{x}).$$

The vectors $\lambda = (\lambda_1, \dots, \lambda_m)^T$ and $\mathbf{v} = (v_1, \dots, v_p)^T$ are called the **Lagrange multiplier vectors** or **dual variables**.

• Let \mathbf{x}^{\star} be a local minimizer of f_0 in the feasible region C.

• Assume $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ are continuously differentiable near \mathbf{x}^{\star} . • (Mangasarian-Fromovitz constraint qualification). Assume

1. the gradients $\nabla f_i(\mathbf{x}^*)$, $i = 1, \dots, m$, be linearly independent, and

2. there exists a vector \mathbf{v} with $\langle \nabla h_i(\mathbf{x}^*), \mathbf{v} \rangle = 0$ for i = 1, ..., p, and $\langle \nabla f_i(\mathbf{x}^*), \mathbf{v} \rangle < 0$ for all inequality constraints active at \mathbf{x}^* , i.e., for i with $f_i(\mathbf{x}^*) = 0.$

(The vector \mathbf{v} is a tangent vector in the sense that infinitesimal motion from \mathbf{x}^* along \mathbf{v} stays within the feasible region.)

• (Lagrange multiplier rule). Suppose that the objective function f_0 of the constrained optimization problem above has a local minimum at the feasible point \mathbf{x}^{\star} . If f_0 and the constraint functions are continuously differentiable near \mathbf{x}^{\star} , and the Mangasarian-Fromovitz constraint qualification holds at \mathbf{x}^{\star} , then there exist Lagrange multipliers $\lambda_1^*, \ldots, \lambda_m^*$ and v_1^*, \ldots, v_p^* such that

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \lambda^{\star}, \mathbf{v}^{\star}) = \nabla f_0(\mathbf{x}^{\star}) + \sum_{i=1}^m \lambda_i^{\star} \nabla f_i(\mathbf{x}^{\star}) + \sum_{i=1}^p \nu_i^{\star} \nabla h_i(\mathbf{x}^{\star}) = \mathbf{0}.$$
 Moreover, each of the multipliers λ_i^{\star} associated with the inequality constraints is nonnegative, and $\lambda_i^{\star} = 0$ whenever $f_i(\mathbf{x}^{\star}) < 0$.

• We can summarize the **KKT conditions** as

$$f_{i}(\mathbf{x}^{\star}) \leq 0, \quad i = 1, ..., m$$

$$h_{i}(\mathbf{x}^{\star}) = 0, \quad i = 1, ..., p$$

$$\lambda_{i}^{\star} \geq 0, \quad i = 1, ..., m$$

$$\lambda_{i}^{\star} f_{i}(\mathbf{x}^{\star}) = 0, \quad i = 1, ..., m$$

$$\nabla f_{0}(\mathbf{x}^{\star}) + \sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}(\mathbf{x}^{\star}) + \sum_{i=1}^{p} \nu_{i}^{\star} \nabla h_{i}(\mathbf{x}^{\star}) = \mathbf{0}.$$

• The fourth condition $\lambda_i^{\star} f_i(\mathbf{x}^{\star}) = 0$ is called the **complementary slackness**.

Remember that the KKT conditions are collectively a necessary condition for local optimality.

• If the optimization problem is *convex*, then they become a necessary and sufficient condition, i.e., finding a triple $(\mathbf{x}, \lambda, \mathbf{v})$ that satisfies the KKT conditions guarantees global optimiality of the triple.

 Many algorithms for convex optimization are conceived as, or can be interpreted as, methods for solving the KKT conditions. • (Slater's constraint qualification condition). Assume there exists a feasible point \mathbf{x}_0 such that $f_i(\mathbf{x}_0) < 0$ for active inequality constraints, i.e., for all i with

 $f_i(\mathbf{x}^*) = 0.$ • If f_i are convex, then Slater's condition implies the Mangasarian-Fromovitz condition.

Example: MLE of multinomial probabilities

The likelihood of observation (n_1, \ldots, n_r) from $\operatorname{mult}(n, (p_1, \ldots, p_r))$ is $\prod_{i=1}^r p_i^{n_i}$. The MLE problem is $minimize - \sum_{i=1}^{n} n_i \log p_i$

subject to
$$-p_i \le 0$$
, $i = 1, ..., r$

$$\sum_{i=1}^{r} p_i = 1.$$

This is a convex optimization problem. The Lagrangian is

$$\mathcal{L}(\mathbf{p}, \lambda, \nu) = -\sum_{i=1}^{r} n_i \log p_i - \sum_{i=1}^{r} \lambda_i p_i + \nu \left(\sum_{i=1}^{r} p_i - 1\right).$$

Differentiate with respect to **p** to have

$$0 = -\frac{n_i}{p_i} - \lambda_i + \nu, \quad i = 1, \dots, r.$$

Multiply p_i on both sides and sum on i to have

$$0 = -n - \sum_{i=1}^{r} \lambda_i p_i + \nu \sum_{i=1}^{r} p_i = -n - 0 + \nu$$

due to complementary slackness. Setting all $\lambda_i = 0$ gives $p_i = n_i/n$. The triple $((n_1/n, \dots, n_r/n), \mathbf{0}, n)$ satisfies the KKT conditions and hence is a global solution (Even if some $n_i = 0$).

Second-order optimality condition

Suppose the Lagrangian multiplier rule is satisfied at a point \mathbf{x}^* with associated multipliers λ and ν . Assume the Lagrangian $\mathcal{L}(\mathbf{x}, \lambda, \nu)$ is twice continuously differentiable in \mathbf{x} near \mathbf{x}^{\star} . If $\mathbf{v}^T \nabla^2_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \lambda, \nu) \mathbf{v} > 0$ for all $\mathbf{v} \neq \mathbf{0}$ satisfying $\langle \nabla h_i(\mathbf{x}^{\star}), \mathbf{v} \rangle = 0$ for all i and $\langle \nabla f_i(\mathbf{x}^{\star}), \mathbf{v} \rangle \leq 0$ for all active constraints, then \mathbf{x}^{\star} is a local minimum of f_0 .

• That is, $\nabla_{\mathbf{x}}^2 \mathcal{L}(\mathbf{x}^*, \lambda, \nu)$ is positive definite for all tangent vectors at \mathbf{x}^* .

Duality

• The Lagrange dual function is the minimum value of the Langrangian over x

simum value of the Langrangian over
$$\mathbf{x}$$

$$g(\lambda, \mathbf{v}) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \mathbf{v}) = \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right).$$

• No constraints are imposed on **x** in defining $g(\lambda, \nu)$.

■ Dual function $g(\lambda, \nu)$ is **concave** (subject to $\lambda \ge 0$) regardless of the convexity of the primal (original) problem (why?)

• Denote the optimal value of original problem by $p^\star = \inf_{\mathbf{x} \in C} f_0(\mathbf{x})$. For any $\lambda \geq \mathbf{0}$ and any ν , we have $g(\lambda, \nu) \leq p^{\star}$.

Proof: For any feasible point $\tilde{\mathbf{x}}$,

$$\mathcal{L}(\tilde{\mathbf{x}},\lambda,\mathbf{v}) = f_0(\tilde{\mathbf{x}}) + \sum_{i=1}^m \lambda_i f_i(\tilde{\mathbf{x}}) + \sum_{i=1}^p v_i h_i(\tilde{\mathbf{x}}) \leq f_0(\tilde{\mathbf{x}})$$
 because the second term is non-positive (since $\lambda \geq \mathbf{0}$) and the third term is zero. Then

 $g(\lambda, \nu) = \inf L(\mathbf{x}, \lambda, \nu) \le L(\tilde{\mathbf{x}}, \lambda, \nu) \le f_0(\tilde{\mathbf{x}}).$

• Since each pair (λ, ν) with $\lambda \geq 0$ gives a lower bound to the optimal value p^* . It is natural to ask for the best possible lower bound for p^* the Lagrange dual function can provide. This leads to the Lagrange dual problem

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \geq 0$,
s convex.

 $d^{\star} \leq p^{\star}$.

which is a convex problem whether or not the primal problem is convex. • Let $d^* = \sup_{\lambda \geq 0, \nu} g(\lambda, \nu)$. Then we have **weak duality**

The difference $p^* - d^*$ is called the **duality gap**.

• Strong duality refers to zero duality gap. This occurs when the problem is convex and the Lagrange multiplier rule holds at a feasible point $\hat{\mathbf{x}}$. Let the corresponding Lagrange multipliers be $(\hat{\lambda}, \hat{\nu})$. In this case, $\mathcal{L}(\mathbf{x}, \lambda, \nu)$ is convex in \mathbf{x} . Since the Lagrange multiplier rule states that $\nabla_{\mathbf{x}} \mathcal{L}(\hat{\mathbf{x}}, \hat{\lambda}, \hat{\nu}) = \mathbf{0}$, point $\hat{\mathbf{x}}$ furnishes an unconstrained minimum of the Lagrangian. Hence

• For convex problems, conditions for the Lagrange multiplier rule holds also yields strong duality, e.g., **Slater's condition**.

 $p^* \le f(\hat{\mathbf{x}}) = \mathcal{L}(\hat{\mathbf{x}}, \hat{\lambda}, \hat{\mathbf{v}}) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \hat{\lambda}, \hat{\mathbf{v}}) = g(\hat{\lambda}, \hat{\mathbf{v}}) \le d^*.$

(Why the first equality?) That is, $d^{\star} = p^{\star}$.

Example: QP dual

Consider the dual of QP

minimize
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}\mathbf{x} + \mathbf{q}^{T}\mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

(P > 0).

The Lagrangian is

$$\mathcal{L}(\mathbf{x}, \mathbf{v}) = \frac{1}{2}\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} + \mathbf{v}^T (\mathbf{A} \mathbf{x} - \mathbf{b}).$$

The dual function is

$$g(\mathbf{v}) = \inf_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} + \mathbf{v}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

$$= \inf_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T \mathbf{P} \mathbf{x} + (\mathbf{A}^T \mathbf{v} + \mathbf{q})^T \mathbf{x} - \mathbf{v}^T \mathbf{b}$$

$$= -\frac{1}{2} (\mathbf{A}^T \mathbf{v} + \mathbf{q})^T \mathbf{P}^{-1} (\mathbf{A}^T \mathbf{v} + \mathbf{q}) - \mathbf{v}^T \mathbf{b}.$$

The infimum is attained with

$$\mathbf{x} = -\mathbf{P}^{-1}(\mathbf{A}^T \mathbf{v} + \mathbf{q}).$$

Thus the dual problem is an **unconstraint** QP, which is easier to solve than the primal. The maximum of g(v) occurs at

or

$$\mathbf{v} = -(\mathbf{A}\mathbf{P}^{-1}\mathbf{A})^{-1}(\mathbf{b} + \mathbf{A}\mathbf{P}^{-1}\mathbf{q}).$$

 $\mathbf{0} = -\mathbf{b} - \mathbf{A}\mathbf{P}^{-1}(\mathbf{A}^T \mathbf{v} + \mathbf{q})$

Therefore the primal optimum is attained at

is attained at
$$\mathbf{x}^{\star} = -\mathbf{P}^{-1}(-\mathbf{A}^{T}(\mathbf{A}\mathbf{P}^{-1}\mathbf{A})^{-1}(\mathbf{b} + \mathbf{A}\mathbf{P}^{-1}\mathbf{q}) + \mathbf{q}) = \mathbf{P}^{-1}\mathbf{A}^{T}(\mathbf{A}\mathbf{P}^{-1}\mathbf{A})^{-1}(\mathbf{b} + \mathbf{A}\mathbf{P}^{-1}\mathbf{q}) - \mathbf{P}^{-1}\mathbf{q}.$$

Min-max inequality Note

$$\sup_{\lambda \geq \mathbf{0}, \mathbf{v}} \mathcal{L}(\mathbf{x}, \lambda, \mathbf{v}) = \sup_{\lambda \geq \mathbf{0}, \mathbf{v}} f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p v_i h_i(\mathbf{x}) = \begin{cases} f_0(\mathbf{x}) & \text{if } \mathbf{x} \in C \\ \infty & \text{otherwise} \end{cases} = f_0(\mathbf{x}) + \iota_C(\mathbf{x})$$

$$C = \{ \mathbf{x} : f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p \}.$$

where

$$g(\lambda, v) = \sup_{x \in \mathcal{X}} \inf_{x \in \mathcal{X}} f(\mathbf{x}, \lambda, v) \leq \inf_{x \in \mathcal{X}} f(\mathbf{x}, \lambda, v) = \inf_{x \in \mathcal{X}} f_{\alpha}(\mathbf{x}, \lambda, v)$$

Thus weak duality is

$$d^{\star} = \sup_{\lambda \geq \mathbf{0}, \nu} g(\lambda, \nu) = \sup_{\lambda \geq \mathbf{0}, \nu} \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda, \nu) \leq \inf_{\mathbf{x}} \sup_{\lambda \geq \mathbf{0}, \nu} \mathcal{L}(\mathbf{x}, \lambda, \nu) = \inf_{\mathbf{x} \in C} f_0(\mathbf{x}) = p^{\star}$$

or min-max inequlity.

References

Strong duality amounts to prove the minimax theorem

$$\sup_{\lambda \geq 0, \nu} \inf_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \lambda, \nu) = \inf_{\mathbf{X}} \sup_{\lambda \geq 0, \nu} \mathcal{L}(\mathbf{X}, \lambda, \nu).$$

• For some *nonconvex* problems strong duality may hold. Not all convex problems have strong duality.

Boyd & Vandenberghe (Ch. 5)

Lange, K., 2016. MM optimization algorithms (Vol. 147). SIAM. (Ch. 3) Lange, K., 2010. Numerical analysis for statisticians. Springer Science & Business Media. (Ch. 11)

In []: