Deep Learning & Engineering Applications

7. Transfer Learning

JIDONG J. YANG

COLLEGE OF ENGINEERING

UNIVERSITY OF GEORGIA

Transfer Learning

Learning how to play soccer → Learn how to play basketball

Learning how to play tennis \rightarrow Learn how to play table tennis

Learning linear algebra & statistics → Learn deep learning

Learning in classroom → Learning in workplace

Basically, apply knowledge gained while solving one problem to solve a different but related problem.

Motivated by the concept of "Learning to Learn."

 Focus on the need for lifelong machine-learning methods that retain and reuse previously learned knowledge

Formal Definition

A domain, D, is defined as $D = \{X, P(X)\}$

A task,
$$T = \{y, f(.)\}\$$
or $T = \{y, P(y|X)\}\$

Transfer Learning

- Given:
 - \circ A source domain $D_{\mathcal{S}}$ and learning task $T_{\mathcal{S}}$
 - \circ A target domain D_T and learning task T_T
- \circ Improve learning of the T_T in D_T using the knowledge in $D_{\mathcal{S}}$ and $T_{\mathcal{S}}$

[Pan and Yang, 2009] https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf

Relationship between Traditional ML and Various Transfer Learning Settings

Setting		$oldsymbol{D_S}$ and $oldsymbol{D_T}$	T_s and T_T
Traditional ML		Same	Same
Transfer Learning	Inductive	Same	Different but related
	Transductive	Different but related	Same
	Unsupervised	Different but related	Different but related

[Pan and Yang, 2009] https://www.cse.ust.hk/~qyang/Docs/2009/tkde transfer learning.pdf

Traditional ML vs Transfer Learning

Energy and Policy Considerations for Deep Learning

Model	Hardware	Power (W)	Hours	kWh·PUE	CO_2e	Cloud compute cost
Transformer _{base}	P100x8	1415.78	12	27	26	\$41–\$140
Transformer $_{big}$	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
$BERT_{base}$	TPUv2x16		96			\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1		32,623			\$44,055–\$146,848
GPT-2	TPUv3x32		168			\$12,902–\$43,008

Table 3: Estimated cost of training a model in terms of CO₂ emissions (lbs) and cloud compute cost (USD).⁷ Power and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

[Strubell et al., 2019] https://arxiv.org/pdf/1906.02243.pdf

Transfer Learning with CNN

- A CNN model usually includes two parts:
 - Convolutional base network
 - Classifier
- Transfer Learning:
 - Take the base network of a previously trained network.
 - Train a new fully connected classifier on top of the output of the base network.
 - Finetune the entire network.

Example: FCN with ResNet-18

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

