

MULTIMEDIA CODING

Final Project:
A JPEG-like coding system for color images

Giovanni Gallinaro

ID: 1210127

A JPEG-like coding system for color images

OBJECTIVES:

- Build a JPEG-like coding system
- Compare the results

STRUCTURE OF THE PRESENTATION:

- Introduction to JPEG
- Technical approach to the problem
- Discussion of the results

JPEG standard

- Introduced in 1992
- Lossy type of compression
- Basic idea: concentrate information in few samples

PROS	CONS
Amount of compression ← → Loss in details	Not suitable for multiple edits
Tunable quality of the compressed image	No transparency allowed
Good for high-quality phorographs	Not good for sharp lines and shapes

JPEG standard

PROCEDURE:

- Pre-processing
- Discrete Cosine Transform (DCT) on 8x8 blocks
- Quantization of the DCT coefficients
- Huffman coding on the quantized coefficients

Preprocessing

IMAGE PADDING:

- Number of rows and columns must be multiple of 8 **COLOR SPACE CONVERSION:**

• Co	onvert from	RGB to YCbCr: linear operation	C_b C_r	=	128 128	+	$0,169 \\ 0,5$	0,331 0,419	$\begin{bmatrix} 0, 5 \\ 0, 081 \end{bmatrix}$	G B	
V	Luminanco			1	1/1		123				

Υ	Luminance	_
Cb	Blue difference	
Cr	Red difference	Chroma components

- Y component -> most perceived by the human eye
- -> more compact representation

[Y] [0] [0,299 0,587 0,114] [R]

Chroma subsampling

- Chroma components can be downsampled
- Quality of the final result not too affected

Discrete Cosine Transform

- Partition the image into blocks of 8x8 pixels
- Apply DCT to each block -> more compact representation

$$t_{kl} = \begin{cases} \sqrt{\frac{1}{N}}cos(\frac{\Pi}{2N}(k-1)(2l-1)), & k = 1\\ \sqrt{\frac{2}{N}}cos(\frac{\Pi}{2N}(k-1)(2l-1)), & k = 2, 3...N \end{cases}$$

- 64 patterns -> basis functions
- Top left corner -> DC coefficient
 - Low-frequency, better perceived by human eye
- Other 63 coefficients -> AC coefficients

Quantization

- Use of quantization tables
- Result given by a rounding

$$F_{i,j} = \left| \frac{D_{i,j}}{Q_{i,j}} + 0.5 \right|$$

```
      17
      18
      24
      47
      99
      99
      99
      99

      18
      21
      26
      66
      99
      99
      99
      99

      24
      26
      56
      99
      99
      99
      99
      99

      47
      66
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99
      99
      99

      99
      99
      99
      99
      99
      99
      99
      99
      99</td
```

 Possibility of tuning the amount of quantization -> quality factor (default = 50)

 $Q'_{i,j} = Q_{i,j} \cdot \frac{1}{q_f} \cdot 50$

 Finer quantization step size for low frequency coefficients -> more compact representation

Encoding

AC and DC disposed using a zigzag scan

Different encoding for DC and AC coefficients:

- AC -> defined by the pair {size, skip}
- DC -> delta measure between adjacent blocks
- Both encoded using Huffman coding

Measures to evaluate the performace:

- Size of the encoded image [kB]
- Compression ratio = Original image size

 Compressed image size
- Computational complexity [seconds]
- $bpp = \frac{Compressed image size}{Number of pixels}$
- PSNR [dB]

$$PSNR = 10log_{10} \frac{255^2}{MSE} \qquad \text{where} \qquad MSE = \frac{\sum\limits_{M,N} [I_{original}(m,n) - I_{compressed}(m,n)]^2}{MN}$$

Original image

Compressed with quality = 5

Original image

Compressed with quality = 15

Original image

Compressed with quality = 30

Original image

Compressed with quality = 50

Original image

Compressed with quality = 80

Image	Quality	Enc. Size [kB]	C. Ratio	Time [s]	bpp	PSNR [dB]
Motocross	5	78.55	15.01	3.40	1.59	20.75
(Original	15	89.76	13.14	3.66	1.83	24.70
Size:	30	103.13	11.44	4.18	2.10	27.01
1179.64	50	117.14	10.07	4.63	2.38	28.75
kB)	65	126.18	9.35	5.21	2.57	29.70
	80	133.44	8.84	5.45	2.71	30.42
	100	142.56	8.27	6.18	2.90	31.19

Chroma Sub.	Enc. Size [kB]	C. Ratio	Time [s]	bpp	PSNR [dB]
Yes	117.14	10.07	4.63	2.38	28.75
No	197.37	5.97	12.26	4.01	29.52

With chroma subsampling (Quality = 50)

Without chroma subsampling (Quality = 50)

JPEG-like approach (Quality = 5)

Standard JPEG (Quality = 5)

Image	Quality	Enc. Size [kB]	Time [s]	PSNR [dB]
Standard JPEG	5 15 30 50	14.9 31.8 49.7 67.4	0.02 0.04 0.04 0.04	21.41 25.36 27.73 29.59
	65 80	82.7 112	0.06	30.96 33.30
JPEG- like	5 15 30	78.55 89.76 103.13	3.40 3.66 4.18	20.75 24.70 27.01
	50 65 80	117.14 126.18 133.44	4.63 5.21 5.45	28.75 29.70 30.42

JPEG-like approach (Quality = 15)

Standard JPEG (Quality = 15)

JPEG-like approach (Quality = 50)

Standard JPEG (Quality = 50)

JPEG-like approach (Quality = 80)

Standard JPEG (Quality = 80)

Thank you for your attention