Lecture 15

Remedy Selection and Risk Assessment

Superfund remedy selection

Completes characterization of site as basis for remedial selection

Selects remedial technologies and alternative remedies

Chooses the site remedy

Requirements for Superfund Remedies

- Protect human health and the environment
- Comply with applicable or relevant and appropriate requirements (ARARs)
- Be cost-effective
- Utilize permanent solutions and alternatives or resource-recovery technologies
- Favor treatment as principal element

Criteria for evaluating alternatives

Process of evaluating alternatives

Source: U.S. EPA, 1988. Guidance for conducting remedial investigations and feasibility studies under CERCLA (OSWER Directive 9355.3-01). Report Number EPA/540/G-89/004. U.S. Environmental Protection Agency, Washington, D.C. October 1988.

The Concept of "Screening"

- Uses indicators to identify candidates most likely to be found favorable
- Proceeds from coarse screening analysis to more refined
- Eventually, candidates from final screened list need detailed analysis

Screening makes practical an otherwise enormous task of evaluating all candidates

Example: Screening Criteria for Low-Level Radioactive Waste Disposal Site

Exclusionary factors:

Freestanding water

Earthquake zones

Federally-protected

State-protected

Landslide areas

Subsidence areas

Floodplain

Favorability factors:

Low permeability

Simple geology

No surficial sand & gravel

Far from water supplies

No high-yield aquifer

No shallow aquifer

Low erosion

Example (continued)

- Mapped areas with no aquifer within 50 feet of surface to evaluate "No shallow aquifer"
- Final site not within shallow aquifer area
- BUT...detailed site study discovered an unmapped shallow aquifer
- Site still found favorable based on all factors

Screening criteria are not final selection criteria!

Broome County Landfill Site, New York

Broome County Landfill Web site: http://www.gobroomecounty.com/dpw/DPWLandfill.php

Timeline for Example Site: Broom County Landfill, Colesville, New York

- 1969-84 Operated as MSW landfill
- 1973-75 Drummed industrial waste accepted
- 1983 Ground-water contamination discovered in private wells
- 1984 Site nominated for NPL
- 1986 Listed on NPL
- August 1986 RI work plan by PRPs
- April 1988 Draft RI report

Timeline, continued

Sept. 1988 – Final RI report

Dec. 1990 – Draft FS report

March 1991 – Record of Decision

June 1992 – Conceptual design report

1994-95 – Landfill capped for \$3 million

Identification of ARARs

Ground water: Federal MCLs and New York

State standards

Sediments: none

Action-specific: example: NYSDEC

regulations for landfills

Location-specific: example: Clean Water Act for

stream and river

Technology screening

General Response Action	Technology Type	Process Option	Retained as Representative Process Option
Waste Containment	Capping Barriers	 Synthetic membrane/soil Single Layer Multi-Media Slurry Walls Vitrified Wall Barrier Sheet Piles Grout Curtains 	No No Yes Yes No No No
Waste Removal	Excavation	Bottom Sealing Backhoes, excavators	No Yes

Waste Treatment	Contaminant Containment Stabilization/Solidification	In situOn-siteOff-site	No Yes Yes
	Contaminant Removal		
	Soil washing Stripping	 In situ On-site In situ vacuum extraction In situ steam extraction On-site low temperature On-site high temperature 	No No No No No No
	Contaminant Destruction		
	Bioremediation	 On-site composting In situ bioremediation On-site slurry bioreactor On-site leach bed 	No No No No
	Vitrification	In situ vitrificationOn-site vitrification	No Yes
	Incineration	 On-site rotary kiln On-site fluidized bed On-site infrared incinerator 	Yes No No
	Chemical Treatment	Off-site commercial incineratorIn situ	Yes No

General Response Action	Technology Type	Process Option	Retained as Representative Process Option
Waste Disposal	Land Disposal	On-site landfillOn-site RCRA vaultOff-site TSD	Yes No Yes
Groundwater Containment (See Waste Containment)			
Groundwater Collection	Pumping Subsurface Drains	Well Point DewateringPumping WellsTrench DrainsHorizontal Drains	No Yes No No
Groundwater Treatment	Physical/Chemical Biophysical	 Chemical Precipitation Neutralization Chemical Oxidation Granular Activated Carbon Steam stripping Air stripping Solids Filtration Chlorination Powdered Activated Carbon (PACT) Fluidized Carbon Bed 	Yes (ancillary) Yes (ancillary) Yes No No Yes Yes Yes (ancillary) Yes (ancillary) No No
Groundwater Disposal/Discharge	Off-site On-site	Local POTWSurface WaterGroundwaterOff-site TSDF	No Yes No No

General Response Action	Technology Type	Process Option	Retained as Representative Process Option
Ancillary Process	Regrading Backfilling	Not applicableNot applicable	Yes, with any construction Yes, with any construction
	Surface Water Controls	Dikes/bermsChannel, ditches, trenchesTerraces and benches	Yes, with any construction Yes, with any construction Yes, with any construction
	Air Pollution Controls	 Catalytic incinerator Catalytic oxidizer Carbon adsorption Wet precipitator Ionized wet scrubber Venturi/packed tower system Spray dryer/baghouse system Thermal de-NOX (ammonia injection) Dust suppression 	Yes, with air stripping Yes, with air stripping Yes, with air stripping Yes, with incineration processes Yes, with any construction operations
	Miscellaneous Materials Handling	ConveyorsShreddersCrushersMillsScreens	Yes, with on-site treatment alternatives Yes, with excavation alternatives

- No action monitoring
- No further action
 monitoring
 individual drinking-water supply
- 3. Limited action
 - 3a. Land purchase
 - 3b. New public water supply

4. Source containment

- 4a. Landfill cap, natural attenuation
- 4b. Landfill cap, ground-water pump and treat
- 4c. Landfill cap, expanded pump and treat
- 4d. Landfill cap, downgradient cutoff wall
- 4e. Landfill cap, slurry wall
- Sub-options for each:
 - 1. upgraded monitoring/maintenance of private systems
 - 2. new community water-supply system

- 5. Source removal/treatment/disposal
 - 5a. Landfill excavation, solidification/stabilization
 - 5b. Landfill excavation, on-site vitrification
 - 5c. Landfill excavation, off-site treatment/disposal
 - 5d. Landfill excavation, on-site treatment/disposal

1. No action

Required alternative

X. No further action

Not effective on all counts

3. Limited action

3a. Land purchase

3b. New public water supply

Carried through as health-protective baseline

Screening of alternatives

- 4. Source containment
 - Landfill cap, natural attenuation

 Not effective for ground-water baseflow
 - 4b. Landfill cap, ground-water pump and treat
 - 4c. Landfill cap, expanded pump and treat
 - 4d. Landfill cap, downgradient cutoff wall
 - 4. Landfill cap, slurry wall
 - No more effective than 4c but much more expensive

Screening of alternatives

- 5. Source removal/treatment/disposal
 - a. Landfill excavation, solidification/stabilization
 - 56. Landfill excavation, on-site vitrification
 - 5c. Landfill excavation, off-site treatment/disposal
 - 54. Landfill excavation, on-site treatment/disposal

Implementability for all four alternatives is questionable

18 alternatives → 9 alternatives

Evaluation of alternatives

Detailed analysis of alternatives

Conceptual design

Comparison with nine Superfund criteria

Comparative analysis

Ranking of alternatives with respect to nine criteria

Comparative analysis

Note: NYSDEC no longer uses this specific methodology!

Example of detailed analysis

Short-Term Effectiveness (Relative Weight = 10)

Analysis Factor	Basis for Evaluation During Detailed Analysis	Score
Protection of Community During Remedial Actions	Are there significant short-term risks to the community that must be addressed? (If answer is no, go to Factor 2.)	Yes — 0 No — 4
	Can the risk be easily controlled?	Yes — 1 No — 0
	Does the mitigative effort to control risk impact the community life-style?	Yes — 0 No — 2
Subtotal (maximum = 4)		
2. Environmental Impacts	Are there significant short-term risks to the environment that must be addressed? (If answer is no, go to Factor 3.)	Yes — 0 No — 4
	Are the available mitigative measures reliable to minimize potential impacts?	Yes — 3 No — 0
Subtotal (maximum = 4)		
3. Time to Implement the Remedy	• What is the required time to implement the remedy?	≤ 2 yr. $\frac{1}{2}$ $\frac{2}{2}$ yr. $\frac{1}{2}$ $\frac{1}{2}$
Subtotal (maximum = 2)	 Required duration of the mitigative effort to control short-term risk. 	≤ 2 yr. $\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{2}$
Subtotal (maximum = 2)		
TOTAL (maximum = 10)		

Selected remedy

Post-ROD Timeline

- Oct. 1995 Draft Focused Feasibility Study (FFS) report on new ground-water remedy
 - Demonstrated alternative technology was feasible, selected remedy would take much longer than predicted
- Oct. 1996 Revised FFS report
- 1996-99 Additional field sampling and pilot studies
- Jan. 2000 95% Design Report for ground-water remedial action

What's wrong with this process?

1983 – Ground-water contamination discovered in private wells

1994-95 – Landfill capped for \$3 million

2004 – ground-water remedial design under review

"Fixing" Superfund is a continuing issue

How clean is clean?

Need to determine **clean-up levels** to protect human health and the environment

Possible clean-up levels:

Analytical detection limits

Background levels

Regulatory standards or criteria

Site-specific risk assessment

Protection of ground-water quality

Mass removal

Site-specific risk assessment

Data Collection and Evaluation

Gather and analyze relevant site data

Identify potential chemicals of concern

Exposure Assessment

Analyze contaminant releases Identify exposed population Identify potential exposure pathways

Estimate exposure concentrations for pathways

Estimate contaminant intakes for pathways

Toxicity Assessment

Collect qualitative and quantitative toxicity information Determine appropriate toxicity values

Risk Characterization

Characterize potential for adverse health effects to occur

Estimate cancer risks

Estimate non-cancer hazard quotients

Evaluate uncertainty

Summarize risk information

EPA 1989, Risk Assessment Guidance for Superfund: Volume I – Human Health Evaluation Manual (Part A, Baseline Risk Assessment), December 1989, Report No. EPA/540/1-89/002.

Alternative terminology for risk assessment

RAGs terminology

d 1. Hazard identification

- Data collection and identification
- 2. Exposure assessment 2. Exposure assessment
- 3. Toxicity assessment

3. Dose-response assessment

4. Risk characterization

4. Risk characterization

Alternative terminology

Hazard identification

Identification of health effects by specific toxic chemicals:

Human exposure data

Epidemiological studies

Workplace studies

Animal studies

Laboratory animals used as models of human response

Hazard types:

Carcinogenic

Noncarcinogenic

Hazard identification

Carcinogenic effects:

- Class A *Known* human carcinogens
- Class B *Probable* human carcinogens based on human data and laboratory animal studies
- Class C *Possible* human carcinogens based on laboratory animal studies
- Class D Not classifiable
- Class E Noncarcinogenic

Dose-response assessment

Carcinogenic effects:

Cancer slope factor (CSF) – potential to cause cancer when inhaled, ingested, or adsorbed [units of (mg/kg/day)⁻¹]

Response (fraction of exposed group getting cancer)

Dose (mg/kg-body-weight/day)

Dose-response assessment

Dose-response assessment

Carcinogenic effects

Quantified via cancer slope factors – CSFs

Noncarcinogenic effects

Quantified via reference doses – RfDs

Represents No Observed Adverse Effect Level (NOAEL)

Data available from EPA Integrated Risk Information System (www.epa.gov/IRIS)

Source: U.S. EPA, 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final. Report Number EPA/540/1-89/002. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. December 1989. (http://www.epa.gov/superfund/programs/risk/ragsa/index.htm)

Ingestion

Eating contaminated soil

Drinking contaminated water

Inhalation

Breathing contaminated air

Breathing contaminated dust

Showering in contaminated water

Adsorption

Skin contact with contaminated soil

Showering in contaminated water

Intake [mg/kg-body-weight/day]:

$$I = \frac{C \cdot CR \cdot EF \cdot ED}{W \cdot AT}$$

C = chemical concentration [mg/kg or mg/L]

CR = contact rate [kg/day or L/day]

EF = exposure frequency [days/year]

ED = exposure duration [years in lifetime]

W = average body weight [kg]

AT = averaging time [days]

Risk characterization

Carcinogens:

```
Risk level = I·CSF

I = intake [mg/kg/day]

CSF = cancer slope factor [(mg/kg/day)-1]
```

Noncarcinogens:

HQ = Hazard quotient for individual chemical HI = Hazard index summed over all chemicals

$$HQ = \frac{I}{RfD}$$
 RfD = Reference dose
 $HI = \sum HQ$

Example

Example: Drinking-water consumption of benzene

C = concentration = 0.005 mg/L

CR = contact rate = 2 liters/day

EF = exposure frequency = 350 days/year

ED = exposure duration = 70 years

W = average body weight = 70 kg

AT = averaging time 70 years

$$I = \frac{C \cdot CR \cdot EF \cdot ED}{W \cdot AT} = \frac{0.005 \text{ mg/L} \cdot 2 \text{ L/day} \cdot 350 \text{ day/yr} \cdot 70 \text{ yr}}{70 \text{ kg} \cdot 70 \text{ yr} \cdot 365 \text{ day/yr}} = 0.0001 \text{ mg/kg} \cdot \text{day}$$

Example

Risk level = CSF·I

CSF = 1.5×10^{-2} to 5.5×10^{-2} per (mg/kg)/day from IRIS web site

Risk level = 2×10^{-6} to 8×10^{-6}

Put these causes of mortality in order of risk and estimate the risk

Heart disease

Struck by lightning

Murder

Drown

Cancer

Plane crash

Earthquake

Automobile accident

Drown in bathtub

Shark attack

Risk levels

Acceptable risk levels for cancer: 10⁻⁶ to 10⁻⁴

I in 5	2 x 10 ⁻¹
l in 7	1.4×10^{-1}
I in 100	10-2
I in 200	5 x 10 ⁻³
I in 1000	10-3
I in 10,000	10-4
I in 60,000	1.7×10^{-5}
I in 100,000	10 ⁻⁵
I in 1,000,000	10-6
I in 5,000,000	2 x 10 ⁻⁷
	in 7 in 100 in 200 in 1000 in 10,000 in 60,000 in 100,000 in 1,000,000

Calculating clean-up levels

$$I = \frac{C \cdot CR \cdot EF \cdot ED}{W \cdot AT}$$

Target risk level = TR = I·CSF =
$$\frac{C \cdot CR \cdot EF \cdot ED}{W \cdot AT} \cdot CSF$$

Solve for clean-up level = C:

$$C = \frac{TR \cdot W \cdot AT}{CSF \cdot CR \cdot EF \cdot ED}$$

Approaches for incorporating risk in cleanup decisions

Risk-based corrective action

Allows site cleanup to appropriate level for site use

Screening level concentrations

Allow expeditious screening of site risks

See American Society for Testing and Materials (ASTM), "Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites," Designation: E 1739 – 95.

RBCA Tiered Approach

- 1. Site assessment identify chemicals, receptors
- 2. Site classification determine urgency for action
- Tier 1 evaluation generic risk-based screening levels (RBSLs)
- 4. Tier 2 evaluation site-specific target levels (SSTLs)
- 5. Tier 3 evaluation site-specific target levels using more site characterization, complex models, etc.
- 6. Remedial action

RBCA scenarios

- 1. Inhalation of vapors
- 2. Ingestion of ground water
- Inhalation of outdoor vapors from ground water
- 4. Inhalation of indoor vapors from ground water
- Ingestion of surficial soil, inhalation of vapors and particulates from surficial soils, and dermal absorption of from surficial soil contact
- 6. Inhalation of outdoor vapors from subsurface soils
- 7. Inhalation of indoor vapors from subsurface soils
- Ingestion of ground water contaminated by leaching from subsurface soils

Enclosed-Space -Air Exchange L_{crack} Vadose Zone **Foundation Cracks** L_{GW} **Diffusing Vapors** Capillary Zone **Dissolved Contaminants Ground Water**

Volatilization from Ground Water to Enclosed-Space Air

Image adapted from: American Society for Testing and and Materials (ASTM), "Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites," Designation: E 1739 -95.

RBCA Tier 1 RBSLs

Example Tier 1 Risk-Based Screening Level (RBSL) Look-Up Table
--

Exposure Pathway	Receptor Scenario	Target Level	Benzene	Ethylbenzene	Toluene	Xylenes (Mixed)	Napthalenes	Benzo (a)pyrene
				Air				
Indoor Air	Residential	Cancer Risk = 1E-06	3.92E-01					1.86E-03
Screening	Residential	Cancer Risk = 1E-04	3.92E+01					1.86E-01
Levels for		Chronic $HQ = 1$	3.92E+01	1.39E+03	5.56E+02	9.73E+03	1.95E+01	1.0012-01
Inhalation	Commercial/	Cancer Risk = 1E-06	4.93E-01					2.35E-03
Exposure,	Industrial	Cancer Risk = 1E-04	4.93E+01					2.35E-01
μ/m^3		Chronic HQ = 1		1.46E+03	5.84E+02	1.02E+04	2.04E+01	
Outdoor Air	Residential	Cancer Risk = 1E-06	2.94E-01					1.40E-03
Screening		Cancer Risk = 1E-04	2.94E+01					1.40E-0
Levels for		Chronic HQ = 1		1.04E+03	4.17E+02	7.30E+03	1.46E+01	
Inhalation	Commercial/	Cancer Risk = 1E-06	4.93E-01					2.35E-03
Exposure,	Industrial	Cancer Risk = 1E-04	4.93E+01					2.35E-0
μ g/m ³		Chronic HQ = 1		1.46E+03	5.84E+02	1.02E+04	2.04E+01	
OSHA TWA I	PEL, μ g/m ³		3.20E+03	4.35E+05	7.53E+05	4.35E+06	5.00E+04	2.00E+0
	etection, Thresho	ld, μ g/m ³	1.95E+05		6.00E+03	8.70E+04	2.00E+02	
	or Background Range, μg/m ³		3.25E+00 to 2.15E+01	2.20E+00 to 9.70E+00	9.60E-01 to 2.91E+01	4.85E+00 t 4.76E+01	o	

Note---- This table is presented here only as an example set of Tier 1 RBSLs. It is not a list of proposed standards.

The user should review all assumptions prior to using any values.

RBCA RBSL and SSTL equations

Equations Used to Develop Example Tier 1 Risk-Based Screening Level (RBSLs)
Appearing in "Look-Up" Table - Carcinogenic Effects

Medium Exposure Route

Risk-Based Screening Level (RBSL)

Air Inhalation

$$RBSL_{air} \left[\frac{\mu g}{m^3 - air} \right] = \frac{TR \times BW \times AT_C \times 365 \frac{days}{years} \times 10^3 \frac{\mu g}{mg}}{SF_i \times IR_{air} \times EF \times ED}$$

Ground Water Ingestion (Potable Ground Water Supply only)

$$RBSL_{W} \left[\frac{mg}{L-H_{2}O} \right] = \frac{TR \times BW \times AT_{c} \times 365 \frac{days}{years}}{SF_{O} \times IR_{W} \times EF \times ED}$$

Ground Water

Enclosed-Space (Indoor) Vapor Inhalation

$$RBSL_{W}\left[\frac{mg}{L-H_{2}O}\right] = \frac{RBSL_{air}\left[\frac{\mu g}{m^{3}-air}\right]}{VF_{wesp}} \times 10^{-3} \frac{mg}{\mu g}$$

Ground Water

Ambient (Outdoor) Vapor Inhalation

$$RBSL_{w} \left[\frac{mg}{L-H_{2}O} \right] = \frac{RBSL_{air} \left[\frac{\mu g}{m^{3}-air} \right]}{VF_{wamb}} \times 10^{-3} \frac{mg}{\mu g}$$

RBCA RBSL and SSTL equations

	Volatilization Factor	rs (VF_i) , Leaching Factor (LF_{SW}), an	d Effective Diffusion Coefficients (Di eff)
Symbol	Cross-Media Ro	oute (or Definition)		Equation
VF _{wesp}	Ground Water ->	Enclosed-Space Vapors	VF _{wesp}	$ \begin{bmatrix} \frac{(\text{mg/m}^3 - air)}{(\text{mg/L-H}_2O)} \end{bmatrix} = \frac{H \left[\frac{D_{ws}^{eff}/L_{GW}}{ER L_B} \right]}{1 + \left[\frac{D_{ws}^{eff}/L_{GW}}{ER L_B} \right] + \left[\frac{D_{ws}^{eff}/L_{GW}}{(D_{crack}^{eff}/L_{crack})^{\eta}} \right]} \times 10^3 \frac{L}{m^3} A $
VF _{wamb}	Ground Water ->	Ambient (Outdoor) Vapors	VF _{wamb}	$\left[\frac{(\text{mg/m}^3-air)}{(\text{mg/L-H}_2O)}\right] = \frac{H}{1 + \left[\frac{U_{air}\delta_{air} L_{GW}}{WD_{ws}^{eff}}\right]} \times 10^3 \frac{L}{m^3} B$
VF _{SS}	Surficial Soils ->	Ambient Air (Vapors)	VF _{SS}	$\left[\frac{(\text{mg/m}^3\text{-air})}{(\text{mg/kg-soil})}\right] = \frac{2W\rho_{\text{S}}}{U_{\text{air}}\delta_{\text{air}}} \sqrt{\frac{D_{\text{S}}^{\text{eff}}H}{\pi\left[\theta_{\text{WS}}^{+}k_{\text{S}}\rho_{\text{S}}^{+}H\theta_{\text{as}}\right]}\tau} \times 10^3 \frac{\text{cm}^3\text{-kg}}{\text{m}^3\text{-g}} \text{ c}$
			VF _{SS}	$\[\frac{(\text{mg/m}^3-\text{air})}{(\text{mg/kg-soil})} \] = \frac{W\rho_s d}{U_{\text{air}} \delta_{\text{air}} \tau} \times 10^3 \frac{\text{cm}^3-\text{kg}}{\text{m}^3-\text{g}}; \text{ whichever is less}^D$
VFp	Surficial Soils ->	Ambient Air (Particulates)	VFp	$\left[\frac{(\text{mg/m}^3-air)}{(\text{mg/kg-soil})}\right] = \frac{P_aW}{U_{air}\delta_{air}} \times 10^3 \frac{\text{cm}^3-\text{kg}}{\text{m}^3-\text{g}} E$
VF _{samb}	Subsurface Soils	Ambient Air	VF _{samb}	$\left[\frac{(\text{mg/m}^3-\text{air})}{(\text{mg/kg-soil})}\right] = \frac{H\rho_s}{\left[\theta_{WS}^{+}k_S \rho_S^{+}H\theta_{as}\right]_1 + \left(\frac{U_{air}\delta_{air} L_s}{D_s^{eff}W}\right)} \times 10^3 \frac{\text{cm}^3\text{-kg}}{\text{m}^3\text{-g}}F$

Soil Screening Guidance

EPA procedure to evaluate soil contamination levels

If soils test below screening levels, no further action needed under CERCLA

Inverts intake equation to determine acceptable concentrations

EPA web site:

http://www.epa.gov/superfund/resources/soil/introtbd.htm

Screening Level Equation for Ingestion of Noncarcinogenic Contaminants in Residential Soil

Screening Level (mg/kg) =
$$\frac{\text{THQ x BW x AT x 365 d/yr}}{1/\text{RfD}_0 \text{ x } 10^{-6} \text{ kg/mg x EF x ED x IR}}$$

Parameter/Definition (units)	Default
THQ/target hazard quotient (unitless)	1
BW/body weight (kg)	15
AT/averaging time (yr)	6a
RfD _O /oral reference dose (mg/kg-d)	Chemical-specific
EF/exposure frequency (d/yr)	350
ED/exposure duration (yr)	6
IR/soil ingestion rate (mg/d)	200

^aFor noncarcinogens, averaging time equals to exposure duration.

Screening Level Equation for Ingestion of Carcinogenic Contaminants in Residential Soil

Screening Level (mg/kg) =
$$\frac{\text{TR x AT x 365 d/yr}}{\text{SF}_{0} \text{ x } 10^{-6} \text{ kg/mg x EF x IF}_{\text{soil/adj}}}$$

Parameter/Definition (units)	Default
TR/target cancer risk (unitless)	10-6
AT/averaging time (yr)	70
SF _o /oral slope factor (mg/kg-d) ⁻¹	Chemical-specific
EF/exposure frequency (d/yr)	350
IF _{soil/adj} /age-adjusted soil ingestion factor (mg-yr/kg-d)	114

Screening Level Equation for Inhalation of Carcinogenic Fugitive Dusts from Residential Soil

Derivation of the Particulate Emission Factor

Screening Level	= .	TR x AT x 365 d/yr	
(mg/kg)		URF x 1,000 μ g/mg x EF x ED x 1 PEF	

PEF (m³/kg) = Q/C x
$$\frac{3,600 \text{ s/h}}{0.036 \text{ x (1-V) x (Um/Ut)3 x F(x)}}$$

Parameter/Definition (units)	Default	Parameter/Definition (units)	Default
TR/target cancer risk (unitless) AT/averaging time (yr) URF/inhalation unit risk factor (µg/m³)-1 EF/exposure frequency (d/yr) ED/exposure duration (yr) PEF/particulate emission factor (m³/kg)	10 ⁻⁶ 70 Chemical-specific 350 30 1.32 x 10 ⁹	PEF/particulate emission factor (m³/kg) Q/C/inverse of mean conc. at center of a 0.5-acre-square source (g/m²-s per kg/m³) V/fraction of vegetative cover (unitless) Um/mean annual windspeed (m/s) Ut/equivalent threshold value of windspeed at 7 m (m/s) F(x)/function dependent on Um/Ut derived using Cowherd et al. (1985) (unitless)	1.32 x 10 ⁹ 90.80 0.5 (50%) 4.69 11.32 0.194

Screening Level Equation for Inhalation of Carcinogenic Volatile Contaminants in Residential Soil

Screening Level (mg/kg) =
$$\frac{\text{TR x AT x 365 d/yr}}{\text{URF x 1,000 } \mu\text{g/mg x EF x ED x } \frac{1}{\text{VF}}}$$

Parameter/Definition (units)	Default
TR/target cancer risk (unitless)	10-6
AT/averaging time (yr)	70
URF/inhalation unit risk factor (μg/m ³) ⁻¹	Chemical-specific
EF/exposure frequency (d/yr)	350
ED/exposure duration (yr)	30
VF/soil-to-air volatilization factor (m ³ /kg)	Chemical-specific

Derivation of the Volatilization Factor

$$\begin{array}{ll} \text{VF (m³/kg)} &= \frac{\text{Q/C x (3.14 x D}_{A} \text{ x T})^{1/2} \text{ x 10-4 (m²/cm²)}}{\text{(2 x}\rho_{b} \text{ x D}_{A})} \\ \text{where} \\ & D_{A} = \underbrace{\frac{[(\theta_{a}^{10/3} D_{i} \text{H'} + \theta_{w}^{10/3} D_{w})/\text{n²}]}{\rho_{b} \text{ K}_{d} + \theta_{w} + \theta_{a} \text{ H'}} } \\ \end{array}$$

Parameter/Definition (units)	Default
VF/Volatilization Factor (m ³ /kg)	
D _A /Apparent Diffusivity (cm ² /s)	
Q/C/Inverse of the mean conc. at the	68.81
center of a 0.5-acre-square source (g/m ² -s per kg/m ³)	
T/Exposure Interval (s)	9.5 x 10 ⁸
$ ho_{ m b}$ /Dry Soil Bulk Density (g/cm ³)	1.5

θ_a /Air-Filled Soil Porosity (L _{air} /L _{soil})	n- $ heta_{ m W}$
n/Total Soil Porosity (Lpore/Lsoil)	$1-(\rho_b/\rho_s)$
$ heta_{ m W}$ /Water-Filled Soil Porosity (L $_{ m water}$ /L $_{ m soil}$)	0.15
$\rho_{\rm S}$ /Soil Particle Density (g/cm ³)	2.65
D _i /Diffusivity in Air (cm ² /s)	Chemical-Specific
H'/Dimensionless Henry's Law Constant	Chemical-Specific
D _W /Diffusivity in Water (cm ² /s)	Chemical-Specific
K _d /Soil-Water Partition Coefficient	Chemical-Specific
$(cm^3/g) = K_{oc} f_{oc} (organics)$	
K _{oc} /Soil Organic Carbon Partition Coefficient (cm ³ /g)	Chemical-Specific
f _{oc} /Fraction Organic Carbon in Soil (g/g)	0.006 (0.6%)