This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 2月28日

出願番号

Application Number:

特願2001-053664

出 願 人
Applicant(s):

信越化学工業株式会社 松下電器産業株式会社 セントラル硝子株式会社

2001年 8月31日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 13070

【提出日】 平成13年 2月28日

【あて先】 特許庁長官 及川 耕造 殿

【国際特許分類】 C08L 83/07

【発明者】

【住所又は居所】 新潟県中頸城郡頸城村大字西福島28-1 信越化学工

業株式会社 合成技術研究所内

【氏名】 原田 裕次

【発明者】

【住所又は居所】 新潟県中頸城郡頸城村大字西福島28-1 信越化学工

業株式会社 合成技術研究所内

【氏名】 渡辺 淳

【発明者】

【住所又は居所】 新潟県中頸城郡頸城村大字西福島28-1 信越化学工

業株式会社 合成技術研究所内

【氏名】 畠山 潤

【発明者】

【住所又は居所】 新潟県中頸城郡頸城村大字西福島28-1 信越化学工

業株式会社 合成技術研究所内

【氏名】 河合 義夫

【発明者】

【住所又は居所】 大阪府髙槻市幸町1番1号

【氏名】 笹子 勝

【発明者】

【住所又は居所】 大阪府髙槻市幸町1番1号

【氏名】 遠藤 政孝

【発明者】

【住所又は居所】 大阪府高槻市幸町1番1号

特2001-053664

【氏名】 岸村 眞治

【発明者】

【住所又は居所】 埼玉県川越市今福中台2805番地 セントラル硝子株

式会社 化学研究所内

【氏名】 大谷 充孝

【発明者】

【住所又は居所】 埼玉県川越市今福中台2805番地 セントラル硝子株

式会社 化学研究所内

【氏名】 宮澤 覚

【発明者】

【住所又は居所】 埼玉県川越市今福中台2805番地 セントラル硝子株

式会社 化学研究所内

【氏名】 堤 憲太郎

【発明者】

【住所又は居所】 東京都千代田区神田錦町3丁目7番地1 セントラル硝

子株式会社内

【氏名】 前田 一彦

【特許出願人】

【識別番号】 000002060

【氏名又は名称】 信越化学工業株式会社

【特許出願人】

【識別番号】 000005843

【氏名又は名称】 松下電子工業株式会社

【特許出願人】

【識別番号】 000002200

【氏名又は名称】 セントラル硝子株式会社

【代理人】

【識別番号】 100079304

【弁理士】

【氏名又は名称】 小島 隆司

【選任した代理人】

【識別番号】

100103595

【弁理士】

【氏名又は名称】 西川 裕子

【手数料の表示】

【予納台帳番号】 003207

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 高分子化合物、レジスト材料及びパターン形成方法 【特許請求の範囲】

【請求項1】 下記一般式(1)で示される基を有する高分子化合物。

【化1】

(式中、R 1 は水素原子、フッ素原子、又は炭素数 $1\sim 20$ の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。R 2 、R 3 は水素原子、又は炭素数 $1\sim 20$ の直鎖状、分岐状もしくは環状のアルキル基である。R 2 、R 3 はそれぞれ結合して環を形成してもよく、その場合には酸素、硫黄、窒素などのヘテロ原子を含んでもよい炭素数 $1\sim 20$ のアルキレン基である。 j は $2\sim 4$ の整数である。)

【請求項2】 下記一般式(2-1)~(2-5)に示されるいずれかの繰り返し単位を有することを特徴とする請求項1に記載の高分子化合物。

【化2】

【請求項3】 請求項1又は2に記載の高分子化合物を含むことを特徴とするレジスト材料。

【請求項4】 (A)請求項1又は2に記載の高分子化合物、

- (B) 有機溶剤、
- (C) 酸発生剤

を含有することを特徴とする化学増幅ポジ型レジスト材料。

【請求項5】 更に塩基性化合物を含有する請求項4に記載のレジスト材料

【請求項6】 更に溶解阻止剤を含有する請求項4又は5に記載のレジスト 材料。

【請求項7】 (1)請求項3乃至6のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、

- (2)次いで加熱処理後、フォトマスクを介して波長100~180nm帯又は 1~30nm帯の高エネルギー線で露光する工程と、
- (3)必要に応じて加熱処理した後、現像液を用いて現像する工程と を含むことを特徴とするパターン形成方法。

【請求項8】 前記高エネルギー線が F_2 エキシマレーザー、 Ar_2 エキシマレーザー、又は軟X線であることを特徴とする請求項7に記載のパターン形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、微細加工技術に適したレジスト材料、特に化学増幅レジスト材料のベースポリマーとして有用な高分子化合物並びにこれを含有するレジスト材料及びこれを用いたパターン形成方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】

近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている。

微細化が急速に進歩した背景には投影レンズの高NA化、レジストの性能向上、短波長化が挙げられる。レジストの高解像度化及び高感度化に関しては、光照射によって発生する酸を触媒とした化学増幅ポジ型レジスト材料は優れた性能を有するものであり、遠紫外線リソグラフィーにおいて特に主流なレジスト材料になった(特公平2-27660号、特開昭63-27829号公報等に記載)。また、i線(365nm)からKrF(248nm)への短波長化は大きな変革をもたらし、KrFエキシマレーザー用レジスト材料は0.30ミクロンプロセスに始まり、0.25ミクロンルールを経て、現在0.18ミクロンルールの量産化への適用へと展開している。更には、0.15ミクロンルールの検討も始まっており、微細化の勢いはますます加速されている。

[0003]

ArF (193nm)では、デザインルールの微細化を0.13μm以下にすることが期待されているが、ノボラックやポリビニルフェノール系等の従来用いられていた樹脂が193nm付近に非常に強い吸収を持つため、レジスト用のベース樹脂として用いることができない。そこで透明性と必要なドライエッチング耐性の確保のため、アクリルやシクロオレフィン系の脂環族系の樹脂が検討された(特開平9-73173号、特開平10-10739号、特開平9-230595号公報、WO97/33198)。

[0004]

 F_2 (157nm)に関しては0.10 μ m以下の微細化が期待されているが、透明性の確保がますます困難になり、ArF用ベースポリマーであるアクリル樹脂では全く光を透過せず、シクロオレフィン系においてもカルボニル結合を有するものは強い吸収を持つことがわかった。また、KrF用ベースポリマーのポリビニルフェノールについては、160nm付近に吸収のウィンドウがあり、若干透過率が向上するものの、実用的なレベルにはほど遠いことが判明した。

[0005]

本発明は上記事情に鑑みなされたものであり、300nm以下、特にF₂(157nm)、Kr₂(146nm)、KrAr(134nm)、Ar₂(121nm)等の真空紫外光における透過率に優れたレジスト材料、特に化学増幅レジ

スト材料のベースポリマーとして有用な新規高分子化合物並びにこれを含むレジ スト材料及びこれを用いたパターン形成方法を提供することを目的にする。

[0006]

【課題を解決するための手段及び発明の実施の形態】

本発明者は上記目的を達成するため鋭意検討を重ねた結果、含フッ素脂環式ユニットを有するエステル基をベースポリマー中に導入することにより、透明性が飛躍的に向上する上にドライエッチング耐性も確保できるレジスト材料、特に化学増幅レジスト材料が得られること知見し、本発明をなすに至ったものである。

[0007]

即ち、本発明は下記の高分子化合物、レジスト材料及びパターン形成方法を提供する。

請求項1:下記一般式(1)で示される基を有する高分子化合物。

【化3】

$$R^{2} \xrightarrow{F_{2}C - (CF_{2})_{l}} R^{3} \qquad (1)$$

(式中、 R^1 は水素原子、フッ素原子、又は炭素数 $1\sim 20$ の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。 R^2 、 R^3 は水素原子、又は炭素数 $1\sim 20$ の直鎖状、分岐状もしくは環状のアルキル基である。 R^2 、 R^3 はそれぞれ結合して環を形成してもよく、その場合には酸素、硫黄、窒素などのヘテロ原子を含んでもよい炭素数 $1\sim 20$ のアルキレン基である。 1 は $2\sim 4$ の整数である。)

請求項2:下記一般式(2-1)~(2-5)に示されるいずれかの繰り返し単位を有することを特徴とする請求項1に記載の高分子化合物。

【化4】

請求項3:請求項1又は2に記載の高分子化合物を含むことを特徴とするレジスト材料。

請求項4:(A)請求項1又は2に記載の高分子化合物、

(B) 有機溶剤、

(C)酸発生剤

を含有することを特徴とする化学増幅ポジ型レジスト材料。

請求項5:更に塩基性化合物を含有する請求項4に記載のレジスト材料。

請求項6:更に溶解阻止剤を含有する請求項4又は5に記載のレジスト材料。

請求項7:(1)請求項3乃至6のいずれか1項に記載のレジスト材料を基板上 に塗布する工程と、

- (2) 次いで加熱処理後、フォトマスクを介して波長100~180nm帯又は 1~30nm帯の高エネルギー線で露光する工程と、
- (3)必要に応じて加熱処理した後、現像液を用いて現像する工程と を含むことを特徴とするパターン形成方法。

請求項8:前記高エネルギー線が F_2 エキシマレーザー、 Ar_2 エキシマレーザー、Q スは軟Q スは軟Q スは軟Q スとを特徴とする請求項7に記載のパターン形成方法。

[0008]

本発明者の検討によれば、157nm付近の透過率を向上させる方法としては、カルボニル基や炭素ー炭素間二重結合の数の低減化も一つの方法と考えられるが、ベースポリマー中へのフッ素原子の導入も透過率向上に大きく寄与することがわかってきた。実際、ポリビニルフェノールの芳香環にフッ素を導入したポリマーは実用的に近い透過率を得ることができた。しかしながら、このベースポリマーは下2レーザーのような高エネルギー光の照射によりネガ化が進行することが顕著になり、レジストとしての実用化は難しいことが判明した。これに対し、アクリル系樹脂やノルボルネン誘導体由来の脂肪族環状化合物を主鎖に含有する高分子化合物にフッ素を導入したポリマーは、吸収が低く抑えられるうえにネガ化の問題も解決できることがわかった。特に、本発明のようにエステル側鎖に含フッ素脂環式ユニットを導入したポリマー類は157nm付近での透過率が高い上に、優れたドライエッチング耐性を有することが判明した。

[0009]

以下、本発明について更に詳しく説明する。

本発明に係わる高分子化合物は、下記一般式(1)で示される基を有するもの であり、特に下記一般式 (2-1) ~ (2-5) で示されるいずれか 1 又は 2 以 上の繰り返し単位を有するものである。

【化5】

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

$$R^7$$
 R^9
 R^9

$$R^{7}$$
 R^{7}
 R^{8}
 R^{9}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3

$$R^{2}$$
 F_{2}
 F_{2}
 F_{2}
 F_{3}
 F_{4}
 F_{2}
 F_{2}
 F_{2}
 F_{3}
 F_{4}
 F_{5}
 F_{2}
 F_{2}
 F_{3}
 F_{4}
 F_{5}
 F_{5

$$F_{2}C$$
 R^{2}
 R^{2}
 R^{3}
 R^{5}
 R^{6}
 R^{6}
 R^{2}
 R^{6}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}

-(CF₂)_j

(2-3)

[0012]

この場合、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-プロピル基、sec-ブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基、2-エチルヘキシル基、n-オクチル基等が例示でき、特に炭素数1~12、とりわけ炭素数1~10のものが好ましい。なお、フッ素化されたアルキル基は、上記アルキル基の水素原子の一部又は全部がフッ素原子で置換されたものであり、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基等が挙げられる。更に、炭素数1~20のアルキレン基、フッ素化されたアルキレン基は、上記炭素数1~20のアルキル基、フッ素化されたアルキレン基は、上記炭素数1~20のアルキル基、フッ素化されたアルキル基から水素原子が1個脱離したものが挙げられ、炭素数が1~12、とりわけ炭素数1~10のものが好ましい。

[0013]

一般式(1)で表される置換基を具体的に例示すると下記のようなものが挙げ られる。

【化6】

[0015]

本発明の高分子化合物は繰り返し単位(2-1)~(2-5)のいずれかだけでも酸脱離性を有するが、レジストの解像性を向上させる点から、上記単位に加えて下記繰り返し単位(3-1)~(3-5)のいずれか1又は2以上の単位を導入することができる。

[0016]

【化7】

(式中、R 4 ~R 10 、X、mは上記と同じであり、Rは酸不安定基を表す。)

上記Rの酸不安定基としては、種々選定されるが、特に下記式(4)~(6)で示される基等であることが好ましい。

【化8】

$$\begin{array}{c|c}
 & O \\
 & -(CH_2)_a & -(CH_2)_a$$

[0019]

式 (4) において、 R^{12} は炭素数 $4 \sim 20$ 、好ましくは $4 \sim 15$ の三級アルキル基、炭素数 $4 \sim 20$ のオキソアルキル基又は上記一般式(6)で示される基を示し、三級アルキル基として具体的には、tert-ブチル基、tert-アミル基、1, 1-ジェチルプロピル基、1-エチルシクロペンチル基、1-ブチルシクロペンチル基、1-エチルシクロペンチル基、1-エチルシクロペンチル基、1-エチルシクロペンチル基、1-エチル-2-シクロペンテニル基、1-エチル-2-シクロペキセニル基、2-メチル-2-アダマンチル基等が挙げられ、オキソアルキル基として具体的には、<math>3-オキソシクロペキシル基、4-メチル-2-オキソオキサン-4-イル基、 $5-メチル-5-オキソオキソラン-4-イル基等が挙げられる。 a は <math>0 \sim 6$ の整数である。

[0020]

式 (5) において、 R^{13} 、 R^{14} は水素原子又は炭素数 $1\sim 18$ 、好ましくは $1\sim 10$ の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基、2-エチルヘキシル基、n-オクチル基等を例示できる。 R^{15} は炭素数 $1\sim 18$ 、好ましくは 1

~10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状、環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。

[0021]

【化9】

$$-(CH_2)_4$$
 $-OH$ $-(CH_2)_2O(CH_2)_3CH_3$ $-(CH_2)_2O(CH_2)_2OH$ $-(CH_2)_6$ $-OH$ $-(CH_2)_6$ $-OH$ $-(CH_2)_6$ $-OH$ $-(CH_2)_6$ $-(CH$

[0022]

 R^{13} と R^{14} 、 R^{13} と R^{15} 、 R^{14} と R^{15} とは環を形成してもよく、環を形成する場合には R^{13} 、 R^{14} 、 R^{15} はそれぞれ炭素数 $1\sim18$ 、好ましくは $1\sim10$ の直鎖状又は分岐状のアルキレン基を示す。

[0023]

上記式(4)の酸不安定基としては、具体的にはtert-ブトキシカルボニル基、tert-ブトキシカルボニルメチル基、tert-アミロキシカルボニルメチル基、tert-アミロキシカルボニルメチル基、1, 1-ジエチルプロピルオキシカルボニルメチル基、1, 1-ジエチルプロピルオキシカルボニルメチル基、1, 1-ジエチルプロピルオキシカルボニルメチル基、1-エチルシクロペンチルオキシカルボニル基、1-エチルシクロペンチルオキシカルボニルメチル基、1-エチル-2-シクロペンテニルオキシカルボニルメチル基、1-エトキシエトキシカルボニルメチル基、2-テトラヒドロピラニルオキシカルボニルメチル基、2-テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。

[0024]

上記式(5)で示される酸不安定基のうち直鎖状又は分岐状のものとしては、 具体的には下記の基が例示できる。

[0025]

[0026]

上記式(5)で示される酸不安定基のうち環状のものとしては、具体的にはテトラヒドロフラン-2-イル基、2-メチルテトラヒドロフラン-2-イル基、テトラヒドロピラン-2-イル基、2-メチルテトラヒドロピラン-2-イル基等が例示できる。式(5)としては、エトキシエチル基、ブトキシエチル基、エトキシプロピル基が好ましい。

[0027]

次に、式(6)において R^{16} 、 R^{17} 、 R^{18} は炭素数 $1\sim20$ の直鎖状、 分岐状もしくは環状のアルキル基等の1 価炭化水素基であり、酸素、硫黄、窒素 、フッ素などのヘテロ原子を含んでもよく、 R^{16} と R^{17} 、 R^{16} と R^{18} 、 R^{17} と R^{18} とは互いに結合して環を形成してもよい。

[0028]

式(6)に示される三級アルキル基としては、tertーブチル基、トリエチルカルビル基、1-エチルノルボルニル基、1-メチルシクロヘキシル基、1-

エチルシクロペンチル基、2-(2-x)アダマンチル基、2-(2-x)ル)アダマンチル基、x0 に x1 に x2 に x3 に x3 に x4 に x5 に x5 に x6 に x7 に x9 に

[0029]

【化11】

[0030]

ここで、 R^{19} は炭素数 $1\sim6$ の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基

、sec-ブチル基、n-ペンチル基、n-ヘキシル基、シクロプロピル基、シ クロプロピルメチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基 等を例示できる。 R 20 は炭素数 $2\sim6$ の直鎖状、分岐状又は環状のアルキル基 を示し、具体的にはエチル基、プロピル基、イソプロピル基、n-ブチル基、s e c - ブチル基、n - ペンチル基、n - ヘキシル基、シクロプロピル基、シクロ プロピルメチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等を 例示できる。 R^{21} 、 R^{22} は水素原子、炭素数 $1\sim6$ のヘテロ原子を含んでも よい1価炭化水素基、炭素数1~6のヘテロ原子を介してもよい1価炭化水素基 を示す。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子を挙げることがで き、-〇H、-〇R(Rはアルキル基、以下同じ)、-〇-、-S-、-S(= O) -、-NH₂、-NHR、-NR₂、-NH-、-NR-として含有又は介 在することができる。 R 21 、 R 22 としては、水素原子、アルキル基、ヒドロ キシアルキル基、アルコキシ基、アルコキシアルキル基等を挙げることができ、 これらは直鎖状、分岐状、環状のいずれでもよい。具体的には、メチル基、ヒド ロキシメチル基、エチル基、ヒドロキシエチル基、プロピル基、イソプロピル基 、n-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、メトキ シ基、メトキシメトキシ基、エトキシ基、 t e r t - ブトキシ基等を例示できる

[0031]

本発明の高分子化合物は上記単位に加えて、透明性を向上させる点から、メタクリル酸 2, 2, 2ートリフルオロエチル、メタクリル酸 1, 1, 1, 3, 3, 3ーヘキサフルオロイソプロピル、メタクリル酸 2, 2, 3, 3, 4, 4, 5, 5ーオクタフルオロペンチル等の含フッ素メタクリレート類を導入することができる。

[0032]

更に、本発明の高分子化合物は上記単位に加えて、密着性を向上させる点から 下記繰り返し単位(23)~(59)を導入することができる。

[0033]

[0034]

【化13】

(式中、R 5 ~R 7 は水素原子、フッ素原子、又は炭素数 1~20の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。 i は 0~4 の整数である。)

[0035]

本発明の高分子化合物を合成する場合、上記式(1)の基を有するモノマー、特に(2-1)~(2-5)の単位を与えるモノマー、更に必要により酸脱離性

モノマー(3-1)~(3-5)、透明性向上モノマー及び密着性向上モノマー(23)~(59)を溶媒に溶解させ、触媒を添加して、場合によっては加熱又は冷却しながら重合反応を行う。重合反応は開始剤(又は触媒)の種類、開始の方法(光、熱、放射線、プラズマ等)、重合条件(温度、圧力、濃度、溶媒、添加物)等によっても支配される。本発明の高分子化合物の重合においては、AIBN等のラジカルによって重合が開始されるラジカル共重合、アルキルリチウム等の触媒を用いたイオン重合(アニオン重合)等が一般的である。これらの重合はその常法に従って行うことができる。

[0036]

ラジカル重合開始剤としては特に限定されるものではないが、例として2,2 'ーアゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'ーアゾビス(2,4-ジメチルバレロニトリル)、2,2'ーアゾビスイソブチロニトリル、2,2'ーアゾビス(2,4,4-トリメチルペンタン)等のアゾ系化合物、tertーブチルパーオキシピバレート、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、tertーブチルパーオキシラウレート等の過酸化物系化合物、また水溶性開始剤としては過硫酸カリウムのような過硫酸塩、更には過硫酸カリウムや過酸化水素等の過酸化物と亜硫酸ナトリウムのような還元剤の組み合わせからなるレドックス系開始剤が例示される。重合開始剤の使用量は、種類、重合反応条件等に応じて適宜変更可能であるが、通常は重合させるべき単量体全量に対して0.001~5重量%、特に0.01~2重量%が採用される。

[0037]

また、重合反応においては重合溶媒を用いてもよい。重合溶媒としては重合反応を阻害しないものが好ましく、代表的なものとしては、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン、シクロヘキサン等の脂肪族又は芳香族炭化水素類、イソプロピルアルコール、エチレングリコールモノメチルエーテル等のアルコール類、ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル系溶剤が使用できる。これらの溶剤は単独でもあるいは2種類以上を混合し

ても使用できる。またドデシルメルカプタンのような公知の分子量調整剤を併用 してもよい。

重合反応の反応温度は重合開始剤の種類あるいは溶媒の沸点により適宜変更され、通常は20~200℃が好ましく、特に50~140℃が好ましい。かかる重合反応に用いる反応容器は特に限定されない。

このようにして得られる本発明にかかる重合体の溶液又は分散液から、媒質である有機溶媒又は水を除去する方法としては、公知の方法のいずれも利用できるが、例を挙げれば再沈澱濾過又は減圧下での加熱留出等の方法がある。

本発明の高分子化合物は、式(1)の基を有する単位 [式(2-1)~(2-5)等の単位] を U^1 、上記式(3-1)~(3-5)の単位を U^2 、式(2 3)~(5 9)の単位を U^3 とする場合、

$$-U^{1}_{a}-U^{2}_{b}-U^{3}_{c}-$$

と表すことができるが、a、b、cは、a+b+c=1で、

- 0. $1 \le a / (a + b + c) \le 0$. 9、より好ましくは0. $2 \le a / (a + b + c) \le 0$. 5
- 0. $1 \le b / (a + b + c) \le 0$. 8、より好ましくは 0. $2 \le b / (a + b + c) \le 0$. 5

 $0 \le c / (a+b+c) \le 0$. 5、より好ましくは $0 \le c / (a+b+c) \le 0$. 3

であることが好ましい。

[0041]

上記高分子化合物の重量平均分子量は1,000~1,000,000、特に 2,000~100,000とすることが望ましい。

なお、本発明の高分子化合物は、レジスト材料、特に化学増幅型、とりわけ化 学増幅ポジ型レジスト材料のベース樹脂として使用することができるが、膜の力 学物性、熱的物性、アルカリ可溶性、その他の物性を変える目的で他の高分子化合物を混合することもできる。その際、混合する高分子化合物の範囲は特に限定されないが、レジスト用の公知の高分子化合物等と任意の範囲で混合することができる。

[0043]

本発明のレジスト材料は、本発明の高分子化合物をベース樹脂とする以外は公 知の成分を用いて調製し得るが、特に化学増幅ポジ型レジスト材料は、

- (A) 上記高分子化合物 (ベース樹脂)、
- (B) 有機溶剤、
- (C) 酸発生剤

を含有する。

この場合、これらレジスト材料に、更に

- (D) 塩基性化合物、
- (E) 溶解阻止剤

を配合してもよい。

[0044]

本発明で使用される(B)成分の有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能であればいずれでもよい。このような有機溶剤としては、例えばシクロヘキサノン、メチルー2-n-アミルケトン等のケトン類、3-メトキシブタノール、3-メチルー3-メトキシブタノール、1-メトキシー2-プロパノール、1-エトキシー2-プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルでフェート、プロピレングリコールジメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸 tertーブチル、プロピオン酸 tertーブチル、プロピレングリコールモノ tertーブチルエーテルアセテート等のエステル類が挙

げられる。

[0045]

また、フッ素化された有機溶剤も用いることができる。具体的に例示すると、 2-フルオロアニソール、3-フルオロアニソール、4-フルオロアニソール、 2, 3-ジフルオロアニソール、2, 4-ジフルオロアニソール、2, 5-ジフ ルオロアニソール、5,8-ジフルオロー1,4-ベンゾジオキサン、2,3-ジフルオロベンジルアルコール、1,3-ジフルオロ-2-プロパノール、2' ,4'-ジフルオロプロピオフェノン、2,4-ジフルオロトルエン、トリフル オロアセトアルデヒドエチルヘミアセタール、トリフルオロアセトアミド、トリ フルオロエタノール、2,2,2ートリフルオロエチルブチレート、エチルヘプ タフルオロブチレート、エチルヘプタフルオロブチルアセテート、エチルヘキサ フルオログルタリルメチル、エチルー3-ヒドロキシー4, 4, 4-トリフルオ ロブチレート、エチルー2ーメチルー4,4,4ートリフルオロアセトアセテー ト、エチルペンタフルオロベンゾエート、エチルペンタフルオロプロピオネート 、エチルペンタフルオロプロピニルアセテート、エチルパーフルオロオクタノエ ート、エチルー4, 4, 4ートリフルオロアセトアセテート、エチルー4, 4, 4-トリフルオロブチレート、エチルー4,4,4-トリフルオロクロトネート 、エチルトリフルオロスルホネート、エチルー3-(トリフルオロメチル)ブチ レート、エチルトリフルオロピルベート、sec-エチルトリフルオロアセテー ト、フルオロシクロヘキサン、2, 2, 3, 3, 4, 4, 4ーヘプタフルオロー **1ーブタノール、1,1,1,2,2,3,3-ヘプタフルオロー7,7ージメ** チルー4, 6 - オクタンジオン、1, 1, 1, 3, 5, 5, 5 - ヘプタフルオロ ペンタンー2, 4ージオン、3, 3, 4, 4, 5, 5, 5ーヘプタフルオロー2 ーペンタノール、3,3,4,4,5,5,5-ヘプタフルオロー2-ペンタノ ン、イソプロピルー4,4,4ートリフルオロアセトアセテート、メチルパーフ ルオロデナノエート、メチルパーフルオロ(2-メチル-3-オキサヘキサノエ ート)、メチルパーフルオロノナノエート、メチルパーフルオロオクタノエート 、メチルー2, 3, 3, 3ーテトラフルオロプロピオネート、メチルトリフルオ ロアセトアセテート、メチルトリフルオロアセトアセテート、1, 1, 1, 2,

2, 6, 6, 6 - オクタフルオロー2, 4 - ヘキサンジオン、2, 2, 3, 3, 4、4、5、5ーオクタフルオロー1ーペンタノール、1H、1H、2H、2H ーパーフルオロー1ーデカノール、パーフルオロ(2,5ージメチルー3,6ー ジオキサンアニオニック)酸メチルエステル、2H-パーフルオロー5-メチル -3, 6-ジオキサノナン、1H, 1H, 2H, 3H, 3H-パーフルオロノナ ンー1, 2 - ジオール、1 H, 1 H, 9 H - パーフルオロー1 - ノナノール、1 H, 1H-パーフルオロオクタノール、1H, 1H, 2H, 2H-パーフルオロ オクタノール、2Hーパーフルオロー5,8,11,14ーテトラメチルー3, 6, 9, 12, 15-ペンタオキサオクタデカン、パーフルオロトリブチルアミ ン、パーフルオロトリヘキシルアミン、パーフルオロー2,5,8-トリメチル - 3, 6, 9 - トリオキサドデカン酸メチルエステル、パーフルオロトリペンチ ルアミン、パーフルオロトリプロピルアミン、1H, 1H, 2H, 3H, 3H-, 1-トリフルオロ-5-メチル-2,4-ヘキサンジオン、1,1,1-トリ フルオロー2ープロパノール、3,3,3-トリフルオロー1ープロパノール、 1, 1, 1ートリフルオロー2ープロピルアセテート、パーフルオロブチルテト ラヒドロフラン、パーフルオロ(ブチルテトラヒドロフラン)、パーフルオロデ カリン、パーフルオロ(1, 2ージメチルシクロヘキサン)、パーフルオロ(1 ,3-ジメチルシクロヘキサン)、プロピレングリコールトリフルオロメチルエ ーテルアセテート、プロピレングリコールメチルエーテルトリフルオロメチルア セテート、トリフルオロメチル酢酸ブチル、3-トリフルオロメトキシプロピオ ン酸メチル、パーフルオロシクロヘキサノン、プロピレングリコールトリフルオ ロメチルエーテル、トリフルオロ酢酸ブチル、1,1,1ートリフルオロー5, 5-ジメチル-2,4-ヘキサンジオン等が挙げられる。

[0046]

これらの溶剤は1種を単独で又は2種以上を混合して使用することもできるが、これらに限定されるものではない。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1-エトキシ-2-プロパノールの他、安全溶剤であるプロピレン

グリコールモノメチルアセテート及びその混合溶剤が好ましく使用される。

[0047]

なお、上記溶剤の使用量は、ベース樹脂100部(重量部、以下同じ)に対し300~10,000部、特に500~5,000部が好ましい。

[0048]

(C)成分の酸発生剤としては、下記一般式(60)のオニウム塩、式(61)のジアゾメタン誘導体、式(62)のグリオキシム誘導体、βーケトスルホン酸誘導体、ジスルホン誘導体、ニトロベンジルスルホネート誘導体、スルホン酸エステル誘導体、イミドイルスルホネート誘導体等が挙げられる。

[0049]

$$(R^{23})_{i}M^{+}K^{-}$$
 (60)

(式中、R 23 はそれぞれ炭素数 $1\sim12$ の直鎖状、分岐状又は環状のアルキル基、炭素数 $6\sim20$ のアリール基、又は炭素数 $7\sim12$ のアラルキル基を示し、 M^+ はヨードニウム、又はスルホニウムを表し、 K^- は非求核性対向イオンを表し、jは2又は3である。)

[0050]

R²³のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、2-オキソシクロペンチル基、ノルボルニル基、アダマンチル基等が挙げられる。アリール基としては、フェニル基、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1-トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4-フルオロベンゼンスルホネート、1,2,3,4,5-ペンタフルオロベンゼ

ンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等 のアルキルスルホネートが挙げられる。

[0051]

【化14】

(式中、 R^{24} 、 R^{25} は炭素数 $1\sim 12$ の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数 $6\sim 12$ のアリール基又はハロゲン化アリール基又は炭素数 $7\sim 12$ のアラルキル基を示す。)

[0052]

 R^{24} 、 R^{25} のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、アミル基、シクロペンチル基、シクロペキシル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、2,2,2ートリフルオロエチル基、2,2,2ートリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p-メトキシフェニル基、m-メトキシフェニル基、n-メトキシフェニル基、n-大中でカーにはアルコキシフェニル基、n-ロボールを表してはアルコキシフェニル基、n-ロボールを表してはアルコキシフェニル基、n-ロボールを表してはアルフェニル基、n-ロガチルフェニル基、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-1、n-2、n-1、n-1、n-2、n-2、n-2、n-2、n-3、n-4、n-4、n-4、n-4、n-4、n-5 n-6 n-6 n-7 n-8 n-8 n-8 n-8 n-8 n-8 n-8 n-9 n-9

[0053]

【化15】

$$R^{27}R^{28}$$
 $R^{26}-SO_2-O-N=C-C-N-O-SO_2-R^{26}$ (62)

(式中、R 26 ~R 28 は炭素数1~12の直鎖状、分岐状又は環状のアルキル 基又はハロゲン化アルキル基、炭素数6~12のアリール基又はハロゲン化アリ ール基、又は炭素数 $7\sim1$ 2のアラルキル基を示す。 R 2 7 、 R 2 8 は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、 R 2 7 、 R 2 8 はそれぞれ炭素数 $1\sim6$ の直鎖状、分岐状のアルキレン基を示す。)

[0054]

 $R^{26}\sim R^{28}$ のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、 R^{24} 、 R^{25} で説明したものと同様の基が挙げられる。なお、 R^{27} 、 R^{28} のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。

[0055]

酸発生剤として具体的には、例えばトリフルオロメタンスルホン酸ジフェニル ヨードニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニ ル)フェニルヨードニウム、pートルエンスルホン酸ジフェニルヨードニウム、 p-トルエンスルホン酸 (p-tert-ブトキシフェニル) フェニルヨードニ ウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロ メタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム 、トリフルオロメタンスルホン酸ビス(p-tert-ブトキシフェニル)フェ ニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブト キシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウ ム、pートルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルス ルホニウム、pートルエンスルホン酸ビス(p-tert-ブトキシフェニル) フェニルスルホニウム、pートルエンスルホン酸トリス(p-tertーブトキ シフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホ ニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスル ホン酸トリメチルスルホニウム、ヮートルエンスルホン酸トリメチルスルホニウ ム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘ キシル)スルホニウム、p-トルエンスルホン酸シクロヘキシルメチル(2-オ キソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフ ェニルスルホニウム、pートルエンスルホン酸ジメチルフェニルスルホニウム、 トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p-ト

ルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタン スルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロへ キシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタン スルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウ ム、エチレンビス [メチル (2-オキソシクロペンチル) スルホニウムトリフル オロメタンスルホナート]、1,2'ーナフチルカルボニルメチルテトラヒドロ チオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジア ゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(キシレンスル ホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス (シクロペンチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジ アゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチ ルスルホニル) ジアゾメタン、ビス (n-プロピルスルホニル) ジアゾメタン、 ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホ ニル)ジアゾメタン、ビス(n-アミルスルホニル)ジアゾメタン、ビス(イソ アミルスルホニル)ジアゾメタン、ビス(sec-アミルスルホニル)ジアゾメ タン、ビス(tert-アミルスルホニル)ジアゾメタン、1-シクロヘキシル スルホニルー1-(tert-ブチルスルホニル)ジアゾメタン、1-シクロヘ キシルスルホニルー1ー(tertーアミルスルホニル)ジアゾメタン、1ーt ert-アミルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン 等のジアゾメタン誘導体、ビスーΟー(ρートルエンスルホニル)ーαージメチ ルグリオキシム、ビス-O- (p-トルエンスルホニル) - α-ジフェニルグリ オキシム、ビス-O- (p-トルエンスルホニル) - α - ジシクロヘキシルグリ オキシム、ビス-〇-(p-トルエンスルホニル)-2,3-ペンタンジオング リオキシム、ビスー〇ー(p-トルエンスルホニル)-2-メチル-3,4-ペ ンタンジオングリオキシム、ビス-O-(n-ブタンスルホニル)-a-ジメチ ルグリオキシム、ビス-Ο-(n-ブタンスルホニル)-α-ジフェニルグリオ キシム、ビス-Ο-(n-ブタンスルホニル)-α-ジシクロヘキシルグリオキ シム、ビス-〇-(n-ブタンスルホニル)-2,3-ペンタンジオングリオキ シム、ビス-〇-(n-ブタンスルホニル)-2-メチル-3,4-ペンタンジ

オングリオキシム、ビス-Ο-(メタンスルホニル)-α-ジメチルグリオキシ ム、ビス-Ο-(トリフルオロメタンスルホニル)-α-ジメチルグリオキシム 、ビス-〇-(1,1,1-トリフルオロエタンスルホニル)-α-ジメチルグ リオキシム、ビスーO-(tert-ブタンスルホニル)-α-ジメチルグリオ キシム、ビス-Ο-(パーフルオロオクタンスルホニル)-α-ジメチルグリオ キシム、ビス-Ο-(シクロヘキサンスルホニル)-α-ジメチルグリオキシム 、ビス-〇-(ベンゼンスルホニル)-a-ジメチルグリオキシム、ビス-〇-(p-フルオロベンゼンスルホニル) - α-ジメチルグリオキシム、ビス-O-(p-tert-ブチルベンゼンスルホニル) -α-ジメチルグリオキシム、ビ スー〇-(キシレンスルホニル)-α-ジメチルグリオキシム、ビス-〇-(カ ンファースルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体、2 ーシクロヘキシルカルボニルー2ー(pートルエンスルホニル)プロパン、2ー イソプロピルカルボニルー2ー(pートルエンスルホニル)プロパン等のβーケ トスルホン誘導体、ジフェニルジスルホン、ジシクロヘキシルジスルホン等のジ スルホン誘導体、p-トルエンスルホン酸2,6-ジニトロベンジル、p-トル エンスルホン酸 2, 4 - ジニトロベンジル等のニトロベンジルスルホネート誘導 体、1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、1,2,3-ト リス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体、フタ ルイミドーイルートリフレート、フタルイミドーイルートシレート、5-ノルボ ルネンー2,3ージカルボキシイミドーイルートリフレート、5ーノルボルネン - 2, 3-ジカルボキシイミドーイルートシレート、5-ノルボルネン-2, 3 ージカルボキシイミドーイルーnーブチルトリフレスルホネート等のイミドイル スルホネート誘導体等が挙げられるが、トリフルオロメタンスルホン酸トリフェ ニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフ ェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(ptert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェ ニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブ

トキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルス ルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソ シクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニ ル) メチル(2-オキソシクロヘキシル) スルホニウム、1, 2'ーナフチルカ ルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス (ベンゼンスルホニル) ジアゾメタン、ビス (p-トルエンスルホニル) ジアゾ メタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルス ルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジ アゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビスー〇ー(p-ト ルエンスルホニル)-α-ジメチルグリオキシム、ビス-O-(n-ブタンスル ホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体が好ましく用いら れる。なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いるこ とができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリ オキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることにより プロファイルの微調整を行うことが可能である。

[0056]

酸発生剤の添加量は、ベース樹脂100部に対して0.2~15部が好ましく、0.2部より少ないと露光時の酸発生量が少なく、感度及び解像性が悪い場合があり、15部より多いと透明性が低くなり解像性が低下する場合がある。

[0057]

(D)成分の塩基性化合物は、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。このような塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる(特開平5-232706号、同5-249683号、同5-257282号、同5-289340号公報等記載

)。

[0058]

このような塩基性化合物としては、アンモニア、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシル基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。

[0059]

第一級の脂肪族アミン類の具体例としては、メチルアミン、エチルアミン、nープロピルアミン、イソプロピルアミン、nーブチルアミン、イソブチルアミン、secーブチルアミン、tertーブチルアミン、ペンチルアミン、tertーアミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示される。

[0060]

第二級の脂肪族アミン類の具体例としては、ジメチルアミン、ジエチルアミン、ジーn-プロピルアミン、ジイソプロピルアミン、ジーn-ブチルアミン、ジイソプロピルアミン、ジーn-ブチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N, N-ジメチルメチレンジアミン、N, N-ジメチルエチレンジアミン、N, N-ジメチルテトラエチレンペンタミン等が例示される。

[0061]

第三級の脂肪族アミン類の具体例としては、トリメチルアミン、トリエチルアミン、トリーnープロピルアミン、トリイソプロピルアミン、トリーnーブチルアミン、トリイソブチルアミン、トリーsecーブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリクロペキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシ

ルアミン、トリドデシルアミン、トリセチルアミン、N, N, N', N' ーテトラメチルメチレンジアミン、N, N, N', N' ーテトラメチルエチレンジアミン、N, N, N', N' ーテトラメチルテトラエチレンペンタミン等が例示される。

[0062]

混成アミン類の具体例としては、例えばジメチルエチルアミン、メチルエチル プロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン 等が例示される。

[0063]

芳香族アミン類の具体例としては、アニリン、N-メチルアニリン、N-エチルアニリン、<math>N-プロピルアニリン、N, N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、3-ニトロアニリン、4-エトロアニリン、3-ニトロアニリン、4-ビニトロアニリン、2, 4-ジニトロアニリン、2, 6-ジニトロアニリン、3, 5-ジニトロアニリン、N, N-ジメチルトルイジン等のアニリン誘導体や、ジフェニル (p-トリル) アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン等が例示される

[0064]

複素環アミン類の具体例としては、ピロール、2 Hーピロール、1 ーメチルピロール、2,4 ージメチルピロール、2,5 ージメチルピロール、Nーメチルピロール等のピロール誘導体、オキサゾール、イソオキサゾール等のオキサゾール誘導体、チアゾール、イソチアゾール等のチアゾール誘導体、イミダゾール、4 ーメチルイミダゾール、4 ーメチルー2ーフェニルイミダゾール等のイミダゾール誘導体、ピラゾール誘導体、フラザン誘導体、ピロリン、2 ーメチルー1ーピロリン等のピロリン誘導体、ピロリジン、Nーメチルピロリジン、ピロリジノン、Nーメチルピロリドン等のピロリジン誘導体、イミダゾリジン誘導体、ピリジン、メチルピリジン、プロピルピリジン、ブチルピリジン、4 ー (1 ーブチルペンチル)ピリジン、ジメチルピリジン、ジメチルピリジン、ジメチルピリジン、

トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3ーメチルー2ーフェニルピリジン、4ーtertーブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1ーメチルー2ーピリジン、4ーピロリジノピリジン、1ーメチルー4ーフェニルピリジン、2ー(1ーエチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等のピリジン誘導体、ピリダジン誘導体、ピリミジン誘導体、ピラゾリジが誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリンが誘導体、ピールでは、1Hーインダゾール誘導体、インドール誘導体、キノリン、3ーキノリンカルボニトリル等のキノリン誘導体、インドリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、アクリジン誘導体、フェナジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アテニン誘導体、アテニン誘導体、アテニン誘導体、アテニン誘導体、アテニン誘導体、アテニン誘導体、ウリジン誘導体、グアニン誘導体、ウラシル誘導体、ウリジン誘導体、グアニン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。

[0065]

カルボキシル基を有する含窒素化合物の具体例としては、アミノ安息香酸、インドールカルボン酸、ニコチン酸の他、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン等のアミノ酸誘導体が例示される。

[0066]

スルホニル基を有する含窒素化合物の具体例としては、3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が例示される。

[0067]

水酸基、ヒドロキシフェニル基を含有する含窒素化合物及びアルコール性含窒素化合物の具体例としては、2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノール

アミン、N, Nージエチルエタノールアミン、トリイソプロパノールアミン、2, 2' ーイミノジエタノール、2 ーアミノエタノール、3 ーアミノー1 ープロパノール、4 ーアミノー1 ーブタノール、4 ー (2 ーヒドロキシエチル) モルホリン、2 ー (2 ーヒドロキシエチル) ピリジン、1 ー (2 ーヒドロキシエチル) ピペラジン、1 ー [2 ー (2 ーヒドロキシエトキシ) エチル] ピペラジン、ピペリジンエタノール、1 ー (2 ーヒドロキシエチル) ピロリジン、1 ー (2 ーヒドロキシエチル) ー 2 ープロパンジオール、3 ーピロリジノー、4 ーピロリジノー、4 ーピロリジノー、4 ーピロリジノール、4 ーピロリジノール、4 ーピロリジンエタノール、4 ーピロリジノール、4 ーピロリジンエタノール、4 ーアジリジンエタノール、4 ーアジリジンエタノール、4 ーアジリジンエタノール、4 ーアジリジンエタノール、4 ーアジリジンエタノール、4 ーアジリジンエタノール、4 ーアミド等が例示される。

[0068]

アミド誘導体の具体例としては、ホルムアミド、Nーメチルホルムアミド、N 、Nージメチルホルムアミド、アセトアミド、Nーメチルアセトアミド、N, N ージメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。

[0069]

イミド誘導体の具体例としては、フタルイミド、サクシンイミド、マレイミド 等が例示される。

[0070]

更に下記一般式(B)-1で示される塩基性化合物から選ばれる1種又は2種以上を添加することもできる。

$$N(X)_{n}(Y)_{3-n}(B)-1$$

式中、n=1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)-1~(X)-3で表すことができる。側鎖Yは同一又は異種の、水素原子、又は直鎖状、分岐状又は環状の炭素数1~20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。

[0071]

ここで、 R^{300} 、 R^{302} 、 R^{305} は炭素数 $1\sim4$ の直鎖状もしくは分岐

状のアルキレン基であり、R 301 、R 304 は水素原子、又は炭素数 $_{1}\sim_{20}$ の直鎖状、分岐状もしくは環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を $_{1}$ あるいは複数含んでいてもよい。

[0072]

 R^{303} は単結合、又は炭素数 $1\sim4$ の直鎖状もしくは分岐状のアルキレン基であり、 R^{306} は炭素数 $1\sim2$ のの直鎖状、分岐状もしくは環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を 1 あるいは複数含んでいてもよい。

[0073]

【化16】

[0074]

一般式(B)-1で表される化合物は、具体的には下記に例示される。

トリス $(2-\lambda + + i)\lambda + + i)\lambda + + i)$ アミン、トリス $\{2-(2-\lambda + + i)\lambda + + i)$ エチル $\{2-(2-\lambda + + i)\lambda + + i)$ エチル $\{2-(2-\lambda + + i)\lambda + + i)$ エチル $\{2-(1-\lambda + i)\lambda + i)$ アミン、トリス $\{2-(2-\lambda + i)\lambda + i)$ エチル $\{2-(1-\lambda + i)\lambda + i)$ アミン、トリス $\{2-(2-\lambda + i)\lambda + i)$ エチル $\{2-(2-\lambda + i)\lambda + i)$ アミン、4 $\{2-(2-\lambda + i)\lambda + i)$ アミン、4 $\{2-(2-\lambda + i)\lambda + i)$ アミン、4 $\{2-(2-\lambda + i)\lambda + i)$ アミン、トリス $\{2-(2-\lambda + i)\lambda + i)$

ルオキシエチル)アミン、トリス(2-アセトキシエチル)アミン、トリス(2 プロピオニルオキシエチル)アミン、トリス(2-ブチリルオキシエチル)ア ミン、トリス(2-イソブチリルオキシエチル)アミン、トリス(2-バレリル オキシエチル)アミン、トリス(2-ピバロイルオキシキシエチル)アミン、N **,N-ビス(2-アセトキシエチル)2-(アセトキシアセトキシ)エチルアミ** ン、トリス(2-メトキシカルボニルオキシエチル)アミン、トリス(2-te rtーブトキシカルボニルオキシエチル)アミン、トリス[2-(2-オキソプ ロポキシ) エチル] アミン、トリス [2-(メトキシカルボニルメチル) オキシ エチル] アミン、トリス「2-(tert-ブトキシカルボニルメチルオキシ) エチル】アミン、トリス「2-(シクロヘキシルオキシカルボニルメチルオキシ) エチル] アミン、トリス(2ーメトキシカルボニルエチル)アミン、トリス(2-エトキシカルボニルエチル)アミン、N, N-ビス(2-ヒドロキシエチル)2-(メトキシカルボニル)エチルアミン、N,N-ビス(2-アセトキシエ チル) 2 - (メトキシカルボニル) エチルアミン、N, N-ビス(2-ヒドロキ シエチル)2-(エトキシカルボニル)エチルアミン、N,N-ビス(2-アセ トキシエチル) 2 - (エトキシカルボニル) エチルアミン、N, N - ビス (2 -ヒドロキシエチル) 2-(2-メトキシエトキシカルボニル) エチルアミン、N ,N-ビス(2-アセトキシエチル)2-(2-メトキシエトキシカルボニル) エチルアミン、N, N-ビス(2-ヒドロキシエチル)2-(2-ヒドロキシエ トキシカルボニル) エチルアミン、N, N-ビス(2-アセトキシエチル)2-(2-アセトキシエトキシカルボニル)エチルアミン、N, Nービス(2-ヒド ロキシエチル)2-[(メトキシカルボニル)メトキシカルボニル]エチルアミ ン、N, N-ビス(2-アセトキシエチル)2- [(メトキシカルボニル) メト キシカルボニル] エチルアミン、N, N-ビス(2-ヒドロキシエチル)2-(2-オキソプロポキシカルボニル) エチルアミン、N, N-ビス(2-アセトキ シエチル)2-(2-オキソプロポキシカルボニル)エチルアミン、N,N-ビ ス(2-ヒドロキシエチル)2-(テトラヒドロフルフリルオキシカルボニル) エチルアミン、N, N-ビス(2-アセトキシエチル)2-(テトラヒドロフル **フリルオキシカルボニル)エチルアミン、N, N-ビス(2-ヒドロキシエチル**

) 2-[(2-オキソテトラヒドロフラン-3-イル)オキシカルボニル]エチ ルアミン、N, N-ビス(2-アセトキシエチル)2-「(2-オキソテトラヒ ドロフラン-3-イル) オキシカルボニル] エチルアミン、N, N-ビス (2-ヒドロキシエチル) 2-(4-ヒドロキシブトキシカルボニル) エチルアミン、 N, N-ビス(2-ホルミルオキシエチル)2-(4-ホルミルオキシブトキシ カルボニル) エチルアミン、N, N-ビス(2-ホルミルオキシエチル)2- (2-ホルミルオキシエトキシカルボニル) エチルアミン、N, N-ビス (2-メ トキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキ シエチル) ビス [2 - (メトキシカルボニル)エチル] アミン、N - (2 - アセ トキシエチル)ビス [2-(メトキシカルボニル)エチル] アミン、N-(2-ヒドロキシエチル) ビス [2-(エトキシカルボニル) エチル] アミン、N-(2-アセトキシエチル) ビス [2-(エトキシカルボニル) エチル] アミン、N - (3-ヒドロキシー1-プロピル)ビス[2-(メトキシカルボニル)エチル] アミン、N - (3 - アセトキシー 1 - プロピル) ビス [2 - (メトキシカルボ ニル) エチル] アミン、Nー(2ーメトキシエチル) ビス「2ー(メトキシカル ボニル) エチル] アミン、N-ブチルビス [2-(メトキシカルボニル) エチル] アミン、N-ブチルビス[2-(2-メトキシエトキシカルボニル) エチル] アミン、N-メチルビス (2-アセトキシエチル) アミン、N-エチルビス (2 ーアセトキシエチル) アミン、N-メチルビス (2-ピバロイルオキシキシエチ ル) アミン、N-エチルビス [2-(メトキシカルボニルオキシ) エチル] アミ ン、N-エチルビス「2-(tert-ブトキシカルボニルオキシ)エチル]ア ミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニ ルメチル) アミン、N-ブチルビス(メトキシカルボニルメチル) アミン、N-ヘキシルビス(メトキシカルボニルメチル)アミン、β-(ジエチルアミノ)δ-バレロラクトンを例示できるが、これらに制限されない。

[0075]

更に下記一般式(B)-2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。

[0076]

【化17】

(B)-2

(式中、Xは前述の通り、R³⁰⁷は炭素数2~20の直鎖状もしくは分岐状の アルキレン基であり、カルボニル基、エーテル基、エステル基、スルフィドを1 個あるいは複数個含んでいてもよい。)

[0077]

上記式(B)-2として具体的には、1-[2-(メトキシメトキシ)エチル] ピロリジン、1-[2-(メトキシメトキシ)エチル] ピペリジン、4-「2 - (メトキシメトキシ) エチル] モルホリン、1 - [2 - [(2 - メトキシエト キシ)メトキシ] エチル] ピロリジン、1-[2-[(2-メトキシエトキシ) メトキシ] エチル] ピペリジン、4-[2-[(2-メトキシエトキシ) メトキ シ]エチル]モルホリン、酢酸2-(1-ピロリジニル)エチル、酢酸2-ピペ リジノエチル、酢酸2-モルホリノエチル、ギ酸2-(1-ピロリジニル)エチ ル、プロピオン酸2-ピペリジノエチル、アセトキシ酢酸2-モルホリノエチル 、メトキシ酢酸2-(1-ピロリジニル)エチル、4-[2-(メトキシカルボ ニルオキシ)エチル]モルホリン、1-[2-(t-ブトキシカルボニルオキシ **)エチル]ピペリジン、4-[2-(2-メトキシエトキシカルボニルオキシ)** エチル] モルホリン、3-(1-ピロリジニル) プロピオン酸メチル、3-ピペ リジノプロピオン酸メチル、3-モルホリノプロピオン酸メチル、3-(チオモ ルホリノ)プロピオン酸メチル、2-メチル-3-(1-ピロリジニル)プロピ オン酸メチル、3-モルホリノプロピオン酸エチル、3-ピペリジノプロピオン 酸メトキシカルボニルメチル、3-(1-ピロリジニル)プロピオン酸2-ヒド ロキシエチル、3ーモルホリノプロピオン酸2-アセトキシエチル、3-(1-ピロリジニル)プロピオン酸2-オキソテトラヒドロフラン-3-イル、3-モ ルホリノプロピオン酸テトラヒドロフルフリル、3-ピペリジノプロピオン酸グ リシジル、3-モルホリノプロピオン酸2-メトキシエチル、3-(1-ピロリ ジニル)プロピオン酸2-(2-メトキシエトキシ)エチル、3-モルホリノプ ロピオン酸ブチル、3-ピペリジノプロピオン酸シクロヘキシル、α-(1-ピ

ロリジニル)メチルー γ ーブチロラクトン、 β ーピペリジノー γ ーブチロラクトン、 β ーモルホリノー δ ーバレロラクトン、1ーピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1ーピロリジニル酢酸エチル、モルホリノ酢酸2ーメトキシエチルで挙げることができる。

[0078]

更に、一般式(B) $-3\sim$ (B) -6 で表されるシアノ基を含む塩基性化合物を添加することができる。

[0079]

【化18】

$$\left(X\right)_{3-n} N - \left(R^{308} - CN\right)_n \tag{B}-3$$

$$R^{307}N-R^{308}-CN$$
 (B)-4

$$\left(X \xrightarrow{3-n} N \xrightarrow{Q} R^{308} \xrightarrow{0} O \xrightarrow{R^{309}} CN\right)_n$$
 (B)-5

$$R^{307}$$
 N R^{308} O R^{309} CN (B)-6

(式中、X、 R^{307} 、nは前述の通り、 R^{308} 、 R^{309} は同一又は異種の 炭素数 $1\sim4$ の直鎖状、分岐状のアルキレン基である。)

[0080]

メチル、N-(2-シアノエチル)-N-(2-ヒドロキシエチル)-3-アミ ノプロピオン酸メチル、N-(2-アセトキシエチル)-N-(2-シアノエチ ル) -3-アミノプロピオン酸メチル、N-(2-シアノエチル)-N-エチル -3-アミノプロピオノニトリル、N- (2-シアノエチル)-N- (2-ヒド ロキシエチル)-3-アミノプロピオノニトリル、N-(2-アセトキシエチル **)-N-(2-シアノエチル)-3-アミノプロピオノニトリル、N-(2-シ** アノエチル) - N - (2 - ホルミルオキシエチル) - 3 - アミノプロピオノニト リル、N-(2-シアノエチル)-N-(2-メトキシエチル)-3-アミノプ ロピオノニトリル、N-(2-シアノエチル)-N- [2-(メトキシメトキシ) エチル]-3-アミノプロピオノニトリル、N-(2-シアノエチル)-N-(3-ヒドロキシー1ープロピル)ー3ーアミノプロピオノニトリル、Nー(3 ーアセトキシー1ープロピル)ーNー(2ーシアノエチル)ー3ーアミノプロピ オノニトリル、N-(2-シアノエチル)-N-(3-ホルミルオキシ-1-プ ロピル)-3-アミノプロピオノニトリル、N-(2-シアノエチル)-N-テ トラヒドロフルフリルー3-アミノプロピオノニトリル、N,N-ビス(2-シ アノエチル)-3-アミノプロピオノニトリル、ジエチルアミノアセトニトリル 、N,N-ビス(2-ヒドロキシエチル)アミノアセトニトリル、N,N-ビス (2-アセトキシエチル)アミノアセトニトリル、N,N-ビス(2-ホルミル オキシエチル) アミノアセトニトリル、N, N-ビス(2-メトキシエチル) ア ミノアセトニトリル、N, Nービス [2- (メトキシメトキシ) エチル] アミノ アセトニトリル、N-シアノメチル-N-(2-メトキシエチル)-3-アミノ プロピオン酸メチル、N-シアノメチル-N-(2-ヒドロキシエチル)-3-アミノプロピオン酸メチル、N-(2-アセトキシエチル)-N-シアノメチル ー3-アミノプロピオン酸メチル、N-シアノメチル-N-(2-ヒドロキシエ **チル)アミノアセトニトリル、N-(2-アセトキシエチル)-N-(シアノメ.** チル)アミノアセトニトリル、N-シアノメチル-N-(2-ホルミルオキシエ チル)アミノアセトニトリル、N-シアノメチル-N-(2-メトキシエチル) アミノアセトニトリル、N-シアノメチル-N-[2-(メトキシメトキシ)エ **チル] アミノアセトニトリル、N-(シアノメチル)-N-(3-ヒドロキシ-**

1ープロピル)アミノアセトニトリル、N-(3-アセトキシ-1-プロピル) -N-(シアノメチル)アミノアセトニトリル、N-シアノメチル-N-(3-ホルミルオキシ-1-プロピル)アミノアセトニトリル、N,N-ビス(シアノ メチル)アミノアセトニトリル、1-ピロリジンプロピオノニトリル、1-ピペ リジンプロピオノニトリル、4-モルホリンプロピオノニトリル、1-ピロリジ ンアセトニトリル、1-ピペリジンアセトニトリル、4-モルホリンアセトニト リル、3-ジエチルアミノプロピオン酸シアノメチル、N, N-ビス(2-ヒド ロキシエチル) - 3 - アミノプロピオン酸シアノメチル、N, N - ビス (2 - ア セトキシエチル) - 3 - アミノプロピオン酸シアノメチル、N, N - ビス (2 -ホルミルオキシエチル)-3-アミノプロピオン酸シアノメチル、N,N-ビス (2-メトキシエチル)-3-アミノプロピオン酸シアノメチル、N, Nービス [2-(メトキシメトキシ) エチル] -3-アミノプロピオン酸シアノメチル、 3 - ジエチルアミノプロピオン酸(2 - シアノエチル)、N, N - ビス(2 - ヒ ドロキシエチル)-3-アミノプロピオン酸(2-シアノエチル)、N,N-ビ ス(2-アセトキシエチル)-3-アミノプロピオン酸(2-シアノエチル)、 N, N-ビス (2-ホルミルオキシエチル) - 3-アミノプロピオン酸 (2-シ アノエチル)、N, N-ビス(2-メトキシエチル)-3-アミノプロピオン酸 **(2-シアノエチル)、N,N-ビス[2-(メトキシメトキシ)エチル]-3** -アミノプロピオン酸(2-シアノエチル)、1-ピロリジンプロピオン酸シア ノメチル、1-ピペリジンプロピオン酸シアノメチル、4-モルホリンプロピオ ン酸シアノメチル、1-ピロリジンプロピオン酸(2-シアノエチル)、1-ピ ペリジンプロピオン酸(2-シアノエチル)、4-モルホリンプロピオン酸(2 -シアノエチル)が例示される。

[0081]

なお、本発明塩基性化合物の配合量は全ベース樹脂100部に対して0.00 1~2部、特に0.01~1部が好適である。配合量が0.001部より少ない と配合効果がなく、2部を超えると感度が低下しすぎる場合がある。

[0082]

(E) 成分の溶解阻止剤は、酸の作用によりアルカリ現像液への溶解性が変化

する分子量3,000以下の化合物、特に分子量2,500以下のフェノールあるいはカルボン酸誘導体の水酸基の一部あるいは全部を酸不安定基で置換した化合物が適している。酸不安定基としては本発明に挙げられるフッ素を含むものであってもよいが、従来のフッ素を含まないものでもよい。

[0083]

分子量2,500以下のフェノールあるいはカルボン酸誘導体としては、4, 4'-(1-メチルエチリデン)ビスフェノール、[1, 1'-ビフェニルー4 , 4 ' -ジオール]-2,2' -メチレンビス[4 -メチルフェノール]、4, 4-ビス(4'-ヒドロキシフェニル)吉草酸、トリス(4-ヒドロキシフェニ , 2 - トリス(4'ーヒドロキシフェニル)エタン、フェノールフタレイン、チ モールフタレイン、3,3'ージフルオロ[(1,1'ービフェニル)-4,4 **'-ジオール]、3,3',5,5'-テトラフルオロ[(1,1'-ビフェニ** ルー4, 4'ージオール]、4,4'ー[2,2,2ートリフルオロー1ー(ト リフルオロメチル)エチリデン]ビスフェノール、4,4'-メチレンビス[2 ーフルオロフェノール]、2,2'ーメチレンビス[4-フルオロフェノール] _ 4 , 4 ' ーイソプロピリデンビス[2-フルオロフェノール]、シクロヘキシ リデンビス [2-フルオロフェノール]、4,4'- [(4-フルオロフェニル **)メチレン]ビス[2-フルオロフェノール]、4,4'-メチレンビス[2,** 6-ジフルオロフェノール]、4,4'-(4-フルオロフェニル)メチレンビ ス [2, 6-ジフルオロフェノール]、2, 6-ビス [(2-ヒドロキシ-5-フルオロフェニル)メチル]ー4ーフルオロフェノール、2,6ービス「(4ー ヒドロキシー3ーフルオロフェニル)メチル]ー4ーフルオロフェノール、2, 4-ビス[(3-ヒドロキシ-4-ヒドロキシフェニル)メチル]-6-メチル フェノール等が挙げられ、酸に不安定な置換基としては、式(4)~(6)と同 様のものが挙げられる。

[0084]

好適に用いられる溶解阻止剤の具体例としては、3, 3, 5, 5, -テトラフルオロ [(1, 1'-ビフェニル)-4, 4'-ジ-tert-ブトキシカル

ボニル]、4,4'-[2,2,2-トリフルオロ-1-(トリフルオロメチル) エチリデン] ビスフェノールー4, 4' ージーtertーブトキシカルボニル 、ビス(4-(2)-テトラヒドロピラニルオキシ)フェニル)メタン、ビス(4-(2'-テトラヒドロフラニルオキシ)フェニル)メタン、ビス(4-te rtーブトキシフェニル)メタン、ピス(4-tertーブトキシカルボニルオ キシフェニル)メタン、ビス(4-tert-ブトキシカルボニルメチルオキシ フェニル) メタン、ビス (4-(1'-エトキシエトキシ) フェニル) メタン、 ビス(4-(1'-エトキシプロピルオキシ)フェニル)メタン、2,2-ビス (4'-(2''-テトラヒドロピラニルオキシ))プロパン、2,2-ビス(4'-(2''-テトラヒドロフラニルオキシ)フェニル)プロパン、2,2-ビス(4'-tert-ブトキシフェニル)プロパン、2,2-ビス(4'-t ertーブトキシカルボニルオキシフェニル)プロパン、2,2ービス(4-t ertーブトキシカルボニルメチルオキシフェニル)プロパン、2,2-ビス(4'-(1''-エトキシエトキシ)フェニル)プロパン、2,2-ビス(4' - (1'' -エトキシプロピルオキシ)フェニル)プロパン、4,4-ビス(4 '-(2''-テトラヒドロピラニルオキシ)フェニル)吉草酸tert-ブチ 吉草酸tertーブチル、4,4ービス(4'ーtertーブトキシフェニル) 吉草酸tert-ブチル、4,4-ビス(4-tert-ブトキシカルボニルオ キシフェニル) 吉草酸 tertーブチル、4,4-ビス(4'-tertーブト キシカルボニルメチルオキシフェニル) 吉草酸 t e r t ーブチル、4, 4 ービス (4'-(1''-エトキシエトキシ)フェニル)吉草酸tert-ブチル、4 , 4 - ビス(4' - (1'' - エトキシプロピルオキシ)フェニル) 吉草酸 t e rtーブチル、トリス(4-(2'-テトラヒドロピラニルオキシ)フェニル) メタン、トリス(4-(2'-テトラヒドロフラニルオキシ)フェニル)メタン 、トリス(4-tert-ブトキシフェニル)メタン、トリス(4-tert-ブトキシカルボニルオキシフェニル) メタン、トリス (4-tertーブトキシ カルボニルオキシメチルフェニル)メタン、トリス(4-(1'-エトキシエト キシ)フェニル)メタン、トリス(4-(1'-エトキシプロピルオキシ)フェ

ニル)メタン、1, 1, 2ートリス(4'ー(2''ーテトラヒドロピラニルオキシ)フェニル)エタン、1, 1, 2ートリス(4'ー(2''ーテトラヒドロフラニルオキシ)フェニル)エタン、1, 1, 2ートリス(4'ーtertーブトキシフェニル)エタン、1, 1, 2ートリス(4'ーtertーブトキシカルボニルオキシフェニル)エタン、1, 1, 2ートリス(4'ーtertーブトキシカルボニルメチルオキシフェニル)エタン、1, 1, 2ートリス(4'ー(1'ーエトキシエトキシ)フェニル)エタン、1, 1, 2ートリス(4'ー(1'ーエトキシプロピルオキシ)フェニル)エタン、2ートリフルオロメチルベンゼンカルボン酸1, 1ーtertーブチル、2ートリフルオロメチル・ベンゼンカルボン酸1, 1ーtertーブチル、2ートリフルオロメチルシクロへキサンカルボン酸tertーブチル、デカヒドロナフタレンー2, 6ージカルボン酸tertーブチル、デオヒ・ブチル、デオキシコール酸tertーブチル、アダマンタンかができまった。アダマンタンができまった。アグマンタンができまった。アグマンタンができまった。アグマンタンができまった。アグマンタンができまった。アグマンタンができまった。アグマンタンが挙げられる。

[0085]

本発明のレジスト材料中における溶解阻止剤の添加量としては、レジスト材料中のベース樹脂100部に対して20部以下、好ましくは15部以下である。20部より多いとモノマー成分が増えるためレジスト材料の耐熱性が低下する。

[0086]

本発明のレジスト材料には、上記成分以外に任意成分として塗布性を向上させるために慣用されている界面活性剤を添加することができる。なお、任意成分の添加量は、本発明の効果を妨げない範囲で通常量とすることができる。

[0087]

ここで、界面活性剤としては非イオン性のものが好ましく、パーフルオロアルキルポリオキシエチレンエタノール、フッ素化アルキルエステル、パーフルオロアルキルアミンオキサイド、パーフルオロアルキルEO付加物、含フッ素オルガノシロキサン系化合物等が挙げられる。例えばフロラード「FC-430」、「FC-431」(いずれも住友スリーエム(株)製)、サーフロン「S-141」、「S-145」(いずれも旭硝子(株)製)、ユニダイン「DS-401」

、「DS-403」、「DS-451」(いずれもダイキン工業(株)製)、メガファック「F-8151」(大日本インキ工業(株)製)、「X-70-092」、「X-70-093」(いずれも信越化学工業(株)製)等を挙げることができる。好ましくは、フロラード「FC-430」(住友スリーエム(株)製)、「X-70-093」(信越化学工業(株)製)が挙げられる。

[0088]

本発明のレジスト材料を使用してパターンを形成するには、公知のリソグラフ ィー技術を採用して行うことができる。例えばシリコンウエハー等の基板上にス ピンコーティング等の手法で膜厚が 0.1~1.0μmとなるように塗布し、こ れをホットプレート上で60~200℃、10秒~10分間、好ましくは80~ 150℃、30秒~5分間プリベークする。次いで目的のパターンを形成するた めのマスクを上記のレジスト膜上にかざし、遠紫外線、エキシマレーザー、X線 等の高エネルギー線もしくは電子線を露光量1~200mJ/cm²程度、好ま しくは10~100mJ/cm²程度となるように照射した後、ホットプレート 上で60~150℃、10秒~5分間、好ましくは80~130℃、30秒~3 分間ポストエクスポージャベーク (PEB) する。更に、O. 1~5%、好まし くは2~3%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカ リ水溶液の現像液を用い、10秒~3分間、好ましくは30秒~2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法に より現像することにより基板上に目的のパターンが形成される。なお、本発明材 料は、特に高エネルギー線の中でも254~120nmの遠紫外線又はエキシマ レーザー、特に193nmのArF、157nmの F_2 、146nmの Kr_2 、 134 nmのKrAr、121 nmのAr₂等のエキシマレーザー、X線及び電 子線による微細パターンニングに最適である。また、上記範囲を上限及び下限か ら外れる場合は、目的のパターンを得ることができない場合がある。

[0089]

【発明の効果】

本発明のレジスト材料は、高エネルギー線に感応し、200nm以下、特に170nm以下の波長における感度が優れているうえに、含フッ素脂環式ユニット

の導入によりレジストの透明性が向上し、それと同時に優れたプラズマエッチング耐性を有する。従って、本発明のレジスト材料は、これらの特性により、特に F₂エキシマレーザーの露光波長での吸収が小さいレジスト材料となり得るもので、微細でしかも基板に対して垂直なパターンを容易に形成でき、このため超 L S I 製造用の微細パターン形成材料として好適である。

[0090]

【実施例】

以下、合成例及び実施例を示して本発明を具体的に説明するが、本発明は下記 実施例に制限されるものではない。

[0091]

[参考例1 (モノマー合成例)] 下記モノマー1の合成

窒素気流下、容量2LのSUSオートクレーブに747gのオクタフルオロシクロペンテン及び74gのシクロペンタジエンを仕込んで容器を密封し、170℃まで加熱し72時間温度を維持した。氷冷し内圧を下げた後、内容物を2Lなす型フラスコに移して減圧蒸留を行い、193gの下記化合物(65)を得た。

[0092]

窒素雰囲気下、2Lのなす型フラスコに得られた化合物(65)の100gと1.2Lのジクロロメタンを加えた。続いて室温でm-クロロ過安息香酸266gを加え、室温で48時間撹拌した。次に亜硫酸水素ナトリウム水溶液を室温で滴下し、過剰の試薬を分解後、大過剰の酢酸エチルで希釈し、0.5N水酸化ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、イオン交換水、飽和食塩水で洗浄した。得られた有機層を適量の硫酸マグネシウムで乾燥し、エバポレーターにて減圧濃縮した後、シリカゲルカラムクロマトグラフィーにて分離精製し、5gの下記化合物(66)を得た。

[0093]

窒素雰囲気下、2 Lなす型フラスコに化合物(66)の全量とテトラヒドロフラン1.8 Lを加えた。続いて氷冷下で水素化リチウムアルミニウム6.8 gを加え、0℃で3時間、室温で12時間撹拌した。次に多量のテトラヒドロフランで希釈した後、イオン交換水10 m Lを加え、室温で1時間撹拌し過剰の試薬を

分解した。続いて沈澱物をシリカゲルにて濾別し、エバポレーターにて減圧濃縮 した後、シリカゲルカラムクロマトグラフィーにて分離精製し、36gの下記化 合物(67)を得た。

[0094]

窒素雰囲気下、1 Lなす型フラスコに化合物(67)の全量と157 m L のメタクリル酸及び1.3 gのヒドロキノンを加えた。続いて室温で18.8 g の濃硫酸を加え、60℃で5時間撹拌した。次に多量の酢酸エチルで希釈した後、適量のイオン交換水を加え有機層を抽出した。続いてこの有機層を飽和炭酸水素ナトリウム水溶液、イオン交換水、飽和食塩水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥し、エバポレーターにて減圧濃縮した後、シリカゲルカラムクロマトグラフィーにて分離精製し、28.3 gのモノマー1を得た。

[0095]

【化19】

[0096]

[合成例1] モノマー1、メタクリル酸(2-xチルアダマンチル)及び下記モノマー2の共重合(4:4:2)

 $500 \, \mathrm{mL}$ のフラスコ中で26.2 gのモノマー1と17.9 gのメタクリル酸($2-\mathrm{x}$ チルアダマンチル)、6.1 gの下記モノマー2をトルエン100 m Lに溶解させ、十分に系中の酸素を除去した後、開始剤AIBN(アゾビスイソブチロニトリル)を0.34 g仕込み、60℃まで昇温して24時間重合反応を行った。

[0097]

得られたポリマーを精製するために、反応混合物をヘキサンに注ぎ、得られた 重合体を沈澱させた。更に得られたポリマーをテトラヒドロフランに溶かし、ヘ キサン10L中に注いでポリマーを沈澱させる操作を2回繰り返した後、重合体 を分離し、乾燥させた。このようにして得られた35.2gの白色重合体は光散 乱法により重量平均分子量が14,000g/molであり、GPC溶出曲線より分散度 (=Mw/Mn)が1.4の重合体であることが確認できた。得られたポリマーは 1 H-NMRの測定結果より、モノマー1とメタクリル酸(2-エチルアダマンチル)とモノマー2を41:39:20の比で含むものであることが わかった。

[0098]

【化20】

Monomer 2

[0099]

[合成例 2] モノマー1、メタクリル酸(2, 2, 3, 3, 4, 4, 5, 5 - オクタフルオロペンチル)、メタクリル酸(2- エチルアダマンチル)及びモノマー2の共重合(4:2:3:1)

 $500 \, \mathrm{mL}$ のフラスコ中で24.6gのモノマー1、10.1gのメタクリル酸(2,2,3,3,4,4,5,5ーオクタフルオロペンチル)、12.6gのメタクリル酸(2ーエチルアダマンチル)、2.9gの下記モノマー2をトルエン100 m L に溶解させ、十分に系中の酸素を除去した後、開始剤AIBNを0.32g仕込み、60℃まで昇温して24時間重合反応を行った。

[0100]

得られたポリマーを精製するために、反応混合物をヘキサンに注ぎ、得られた重合体を沈澱させた。更に得られたポリマーをテトラヒドロフランに溶かし、ヘキサン10 L中に注いでポリマーを沈澱させる操作を2 回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた32. 3 gの白色重合体は光散乱法により重量平均分子量が13, 000 g/mo1であり、GPC溶出曲線より分散度(=Mw/Mn)が1. 4の重合体であることが確認できた。得られたポリマーは 1 H-NMRの測定結果より、モノマー1、メタクリル酸(2, 2, 3, 4, 4, 5, 5-オクタフルオロペンチル)、メタクリル酸(2-エチ

ルアダマンチル)及びモノマー2を39:20:31:10の比で含むものであることがわかった。

[0101]

[合成例3] モノマー1、メタクリル酸(2, 2, 3, 3, 4, 4, 5, 5 - オクタフルオロペンチル)、メタクリル酸(2-エチルアダマンチル)及びモノマー2の共重合(3, 5:1, 5:3:2)

 $500 \, \mathrm{mL}$ のフラスコ中で22.8 $\, \mathrm{g}$ のモノマー1、8.0 $\, \mathrm{g}$ のメタクリル酸(2,2,3,3,4,4,5,5ーオクタフルオロペンチル)、13.3 $\, \mathrm{g}$ のメタクリル酸(2ーエチルアダマンチル)、6.1 $\, \mathrm{g}$ の下記モノマー2をトルエン100 $\, \mathrm{mL}$ に溶解させ、十分に系中の酸素を除去した後、開始剤AIBNを0.34 $\, \mathrm{g}$ 仕込み、60 $\, \mathrm{C}$ まで昇温して24時間重合反応を行った。

[0102]

得られたポリマーを精製するために、反応混合物をヘキサンに注ぎ、得られた重合体を沈澱させた。更に得られたポリマーをテトラヒドロフランに溶かし、ヘキサン10L中に注いでポリマーを沈澱させる操作を2回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた34.3gの白色重合体は光散乱法により重量平均分子量が14,000g/mo1であり、GPC溶出曲線より分散度(=Mw/Mn)が1.5の重合体であることが確認できた。得られたポリマーは¹H-NMRの測定結果より、モノマー1、メタクリル酸(2,2,3,3,4,4,5,5-オクタフルオロペンチル)、メタクリル酸(2-エチルアダマンチル)及びモノマー2を33:16:31:20の比で含むものであることがわかった。

[0103]

[評価例]

ポリマー透過率測定

得られたポリマー1gをプロピレングリコールモノメチルエーテルアセテート (PGMEA) 20gに十分に溶解させ、0.2 μ mのフィルターで濾過してポリマー溶液を調製した。比較例用ポリマーとして、分子量10,000、分散度 (Mw/Mn) 1.10の単分散ポリヒドロキシスチレンの水酸基の30%をテ

トラヒドロピラニル基で置換したポリマーを用意し、これを比較例用ポリマー1 とした。同様に、分子量15,000、分散度1.7のポリメチルメタクリレートを比較例用ポリマー2、メタ/パラ比40/60で分子量9,000、分散度2.5のノボラックポリマーを比較例用ポリマー3とし、上記と同様の方法でポリマー溶液を調製した。

[0104]

ポリマー溶液を MgF_2 基板にスピンコーティングして塗布後、ホットプレートを用いて100Cで90秒間ベークし、厚さ100nmのポリマー膜を MgF_2 基板上に作成した。この基板を真空紫外光度計(日本分光製、VUV-200S)に設置し、248nm、193nm、157nmにおける透過率を測定した。測定結果を表1に示す。

[0105]

【表1】

す。 ルムー	透過率(%)	透過率(%)	透過率(%)
4 1/4-	248nm	193nm	157nm
合成例 1 ポリマー	92	85	39
合成例 2 ポリマー	92	86	40
合成例 3 ポリマー	92	84	36
比較例 1 ポリマー	90	5	15
比較例 2 ポリマー	91	80	12
比較例 3 ポリマー	82	6	17

[0106]

レジスト調製及び露光

上記ポリマー及び下記に示す成分を表2に示す量で用いて常法によりレジスト液を調製した。次に、DUV-30(Brewer Science社製)を55nmの膜厚で成膜したシリコンウエハー上に得られたレジスト液をスピンコーティング後、ホットプレートを用いて100℃で90秒間ベークし、レジストの厚みを200nmの厚さにした。これにF2エキシマレーザー(リソテック社、VUVES)で露光量を変化させながら露光し、露光後直ちに120℃で90秒間ベークし、2.38%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行って、露光量と残膜率の関係を求めた。膜厚が0になった露光量

4 8

をEthとして、レジストの感度を求めた。

[0107]

【表2】

** 『マー (重量部)	酸発生剤 (重量部)	塩基性 化合物 (重量部)	溶解 阻止剤 (重量部)	溶媒 (重量部)	Eth 感度 (mJ/cm²)
合成例 1 (100)	PAG 1 (2)	トリフ*チルアミン (0.1)	-	PGMEA (1,000)	45
合成例 2 (100)	PAG 1 (2)	トリフ*チルアミン (0.1)		PGMEA (1,000)	23
合成例 3 (100)	PAG1 (2)	トリフ*チルアミン (0.1)		PGMEA (1,000)	33
合成例 1 (100)	PAG1 (2)	トリフ*チルアミン (0.1)	DRI1 (10)	PGMEA (1,000)	40
合成例 1 (100)	PAG2 (2)	トリフ*チルアミン (0.1)	_	PGMEA (1,000)	35
合成例 1 (100)	PAG1 (2)	トリエタノールアミン (0.1)	· <u> </u>	PGMEA (1,000)	38

[0108]

【化21】

[0109]

表 1, 2 の結果から、本発明の高分子化合物を用いたレジスト材料は、 F_2 ($157\,\mathrm{nm}$)の波長においても十分な透明性を確保できることがわかった。また、 VUVES 露光の結果、露光量の増大に従って膜厚が減少し、ポジ型レジストの特性を示すことがわかった。

【書類名】

要約書

【要約】

【解決手段】 下記一般式(1)で示される基を有する高分子化合物。

【化1】

$$R^{2} \xrightarrow{F}_{F_{2}C-(CF_{2})_{J}} R^{3} \qquad (1)$$

(式中、 R^1 は水素原子、フッ素原子、又は炭素数 $1\sim20$ の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。 R^2 、 R^3 は水素原子、又は炭素数 $1\sim20$ の直鎖状、分岐状もしくは環状のアルキル基である。 R^2 、 R^3 はそれぞれ結合して環を形成してもよく、その場合には酸素、硫黄、窒素などのヘテロ原子を含んでもよい炭素数 $1\sim20$ のアルキレン基である。11は $2\sim4$ の整数である。)

【効果】 本発明のレジスト材料は、高エネルギー線に感応し、200nm以下、特に170nm以下の波長における感度が優れているうえに、含フッ素脂環式ユニットの導入によりレジストの透明性が向上し、それと同時に優れたプラズマエッチング耐性を有する。従って、本発明のレジスト材料は、これらの特性により、特にF2エキシマレーザーの露光波長での吸収が小さいレジスト材料となり得るもので、微細でしかも基板に対して垂直なパターンを容易に形成でき、このため超LSI製造用の微細パターン形成材料として好適である。

【選択図】 なし

【書類名】 出願人名義変更届(一般承継)

【提出日】 平成13年 4月26日

【あて先】 特許庁長官 殿

【事件の表示】

【出願番号】 特願2001-53664

【承継人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代表者】 中村 ▲邦▼夫

【提出物件の目録】

【物件名】 権利の承継を証明する書面 1

【援用の表示】 平成13年 4月16日付提出の特許番号第31505

60号の一般承継による特許権の移転登録申請書に添付

した登記簿謄本を援用する。

出願人履歴情報

識別番号

[000002060]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

東京都千代田区大手町二丁目6番1号

氏 名

信越化学工業株式会社

出 願 人 履 歴 情 報

識別番号

[000005843]

1. 変更年月日 1993年 9月 1日

[変更理由] 住所変更

住 所 大阪府髙槻市幸町1番1号

氏 名 松下電子工業株式会社

出願人履歴情報

識別番号

[000002200]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

山口県宇部市大字沖宇部5253番地

氏 名

セントラル硝子株式会社

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録・

住 所

大阪府門真市大字門真1006番地

氏 名

松下電器産業株式会社