点集拓扑作业 (12)

Problem 1 证明 \mathbb{R} 的单点紧致化同胚于 \mathbb{S}^1 .

先证明 \mathbb{R} 同胚于 $\mathbb{S}^1 - \{(0,1)\}$. 注意到函数 $f: \mathbb{R} \to \mathbb{S}^1 - \{(0,1)\}, f(x) = \left(\frac{2x}{x^2+1}, \frac{x^2-1}{x^2+1}\right)$ 是同胚映射. 接下来证明 $\overline{\mathbb{S}^1 - \{(0,1)\}} = \mathbb{S}^1$. 只需证明 $\mathbb{S}^1 - \{(0,1)\}$ 不是闭集, 即 $\{(0,1)\}$ 不是开集, 这是显然的, 否则 $\exists B$ 是基元素, $B \subseteq \{(0,1)\}, B = \{(0,1)\},$ 这与基元素的定义矛盾. 因此根据同胚意义下单点紧致化唯一, 所以命题成立.

Problem 2 描述 $(0,1) \cup (2,3)$ 的单点紧化, 并证明你的结论.

 $(0,1) \cup (2,3)$ 非紧, 局部紧且 Hausdorff, 于是存在单点紧致化. 已知 (0,1),(2,3), $\mathbb R$ 与去单点圆周同胚, 所以 $(0,1) \cup (2,3)$ 同胚于

 $T = \{(x,y) \in \mathbb{R}^2 - \{(0,0)\} | (x-1)^2 + y^2 = 1 \text{ or } (x+1)^2 + y^2 = 1\}, T$ 的单点紧致化为 $T \cup \{(0,0)\}$,即两相切的圆周.

Problem 3 按照如下步骤证明 ℝ 的子空间 ℚ 不是局部紧致的:

- 1. 设 C 为 \mathbb{Q} 的紧子集, 证明 C 是 \mathbb{R} 的闭子集.
- 2. 设 C 为 $\mathbb Q$ 的紧子集且 $(q-\varepsilon,q+\varepsilon)\cap Q\subseteq C$, 证明 $[q-\varepsilon,q+\varepsilon]\subseteq C$, 从而 $\mathbb Q$ 不局部紧致.

注意到映射 $id:\mathbb{Q}\to\mathbb{R}, id(x)=x, \forall x\in\mathbb{Q}.\ \forall V$ 是 \mathbb{R} 的开集, $id^{-1}(V)=V\cap\mathbb{Q}$ 是 \mathbb{Q} 的开集, 所以 id 连续, 进而 id(C) 是 \mathbb{R} 上的紧子集, 而 \mathbb{R} 是 Hausdorff 空间, 所以 C 是 \mathbb{R} 的闭集.

只需证明 $\overline{(q-\varepsilon,q+\varepsilon)\cap\mathbb{Q}}=[q-\varepsilon,q+\varepsilon]$. 这是显然的. 于是根据 C 是 \mathbb{R} 的闭集, 所以 $\exists r\notin\mathbb{Q}$, 使得 $r\in[q-\varepsilon,q+\varepsilon]\subseteq C\subseteq\mathbb{Q}$, 矛盾! 所以不存在包含 q 的邻域的紧子集, 进而 \mathbb{Q} 不局部紧致.

Problem 4 设 $f: X \to Y$ 为映射, \mathcal{T} 为 X 上的拓扑. 证明: $\mathcal{F} = \{U \subseteq Y | f^{-1}(U) \in \mathcal{T}\}$ 为 Y 上的拓扑, 且相应于这两个拓扑 f 为连续映射.

这道题为什么出现在这里

先验证 \mathcal{F} 是拓扑. $f^{-1}(\phi) = \phi, f^{-1}(Y) = X$, 于是 $\phi, Y \in \mathcal{F}$. 设 $\forall \alpha \in J, U_{\alpha} \in \mathcal{F}$, 则 $f^{-1}(U_{\alpha}) \in \mathcal{T}$. 于是 $f^{-1}\left(\bigcup_{\alpha \in J} U_{\alpha}\right) = \bigcup_{\alpha \in J} f^{-1}(U_{\alpha}) \in \mathcal{T}$, 所以 $\bigcup_{\alpha \in J} U_{\alpha} \in \mathcal{F}$. 设 $\forall i = 1, \cdots, n, U_i \in \mathcal{F}$, 则 $f^{-1}(U_i) \in \mathcal{T}$, 于是 $f^{-1}\left(\bigcap_{i=1}^n U_i\right) = \bigcap_{i=1}^n f^{-1}(U_i) \in \mathcal{T}$, 所以 $\bigcap_{i=1}^n U_i \in \mathcal{F}$. 于是 \mathcal{F} 是拓扑. 连续映射由 定义立刻可得.

Problem 5 在 X=[0,1] 上定义等价关系为 $a\sim a, \forall a\in[0,1].0\sim1, 1\sim0.$ 证明 : X/\sim 同胚于 $\mathbb{S}^1.$

注意到映射 $f: X/\sim -\{0,1\} \to \mathbb{R}, f(x)=\tan \frac{\pi(2a-1)}{2}, \forall x\in X/\sim -\{0,1\},$ 其中 $a\in x$. 这是同胚映射, 于是 $X/\sim -\{0,1\}$ 与 \mathbb{R} 同胚, 又 $\overline{X/\sim -\{0,1\}}=X/\sim$, 于是 X/\sim 同胚于 \mathbb{S}^1 .

problem 6 设 X 为紧致 Hausdorff 空间, $f:X\to X$ 为连续映射, 且 $\forall x\in X, f(x)\neq x$. 求证: $\forall x\in X, \exists x$ 的开邻域 W 满足 $W\cap f(W)=\phi$.

为什么没用到紧致性

 $\forall x \in X$, 根据 X 是 Hausdorff 空间, $\exists U, V$ 是开集, $x \in U, f(x) \in V, U \cap V = \phi$. 记 $W = U \cap f^{-1}(V)$ 是开集, $x \in W$. 于是 $W \subseteq U, f(W) = f(U \cap f^{-1}(V)) \subseteq f(U) \cap f(f^{-1}(V)) \subseteq f(U) \cap V \subseteq V$. 因此 $W \cap f(W) \subseteq U \cap V = \phi, W \cap f(W) = \phi$.