# Time Series Analysis for Temperature Prediction DATS 6313

Liang Gao

George Washington University

10 December 2023

#### Content

- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

#### Overview

- The Jena Weather dataset was recorded every 10 minutes(2004 2020)
- Choose 3 years (2018 2020) of data, and average the data in each hour
- The dataset has 22 columns including "date" and 21 numerical variables(e.g. atmospheric pressure, Relative Humidity, Vapor pressure).
- The dependent variable is the temperature in Celsius

- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Mode
- 9 Residual Analysis
- 10 Conclusion

### Preprocessing the Data

- Use the Drift method to fill in the missing values
- Outliers fix: Average method for CO2 & Wind speed; Naive for max PAR



### Preprocessing the Data

■ Temperature over Time



### Preprocessing the Data

ACF of Temperature



### Preprocessing the Data

■ The observation is 14,036 in the train set(80%) and 3,509 in the test set(20%)

- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

### Stationarity

- The target variable passes the ADF test with a p-value of 0.00 but fails to pass the KPSS test with a p-value of 0.02
- The rolling mean and variance of temperature in Celsius, which stabilize once all samples are included
- The target variable dataset is weak-stationary

### Stationarity

■ Rolling mean & Variance of Temperature in Celsius



- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

### Time Series Decomposition

■ The strength of the trend is 94.37%, and the strength of the seasonality is 74.79%



- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

### Holt-Winter Method

■ This method captures most seasonality but not the trend



- 1 Overviev
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Mode
- 9 Residual Analysis
- 10 Conclusion

### Co-linearity check

- All the singular values are greater than 0, but the last few singular values are relatively small compared to the first largest one
- The condition number is 1,409,780.69 and is highly greater than 1,000
- Both results indicate severe co-linearity among some independent variables

# Principal Component Analysis(PCA)

- The threshold for the PCA feature selection is a variance ratio of less than 0.95
- 7 features are chosen
- Adjusted R-squared 0.982
- Mean of error 0.005
- Variance of error 0.017
- MSE 0.017
- All the coefficients are statistically significant with p-values less than 0.05

### Backwards Stepwise Regression

Started with the model containing all independent variables, removed one predictor with the highest p-value at a time. 3 features were deleted

| Remove      | p-value | Adj_R2 |
|-------------|---------|--------|
| \           | \       | 1.00   |
| PAR         | 0.79    | 1.00   |
| Vapor_p_max | 0.33    | 1.00   |
| CO2         | 0.09    | 1.00   |

Remove features with small coefficients(confidence interval for "rain time" is [-0.001, -0.000])

### Backwards Stepwise Regression

- 8 features are chosen
- Adjusted R-squared: 1
- Mean of error: 0.001
- Variance of error & MSE: less than 0.00001
- All the coefficients are statistically significant with p-values less than 0.05
- Problem: The condition number of the regression model is 4.1e+03, which indicates strong multi-collinearity or other numerical problems

# Variance Inflation Factor(VIF))

- The threshold for the VIF value is 10
- removed one predictor with the highest VIF value at a time(deleted 9 features)

| remove      | VIF           | Adj_R2 |  |
|-------------|---------------|--------|--|
|             |               | 1.00   |  |
| Vapor_p_max | 14,403,743.53 | 1.00   |  |
| H2O_conc    | 1,664,251.75  | 1.00   |  |
| Vapor_p     | 18,405.61     | 1.00   |  |
| PAR         | 790.68        | 1.00   |  |
| air_density | 304.34        | 1.00   |  |
| Tlog        | 40.65         | 1.00   |  |
| Temp_C_humi | 24.89         | 0.97   |  |
| wind_sp_max | 24.69         | 0.97   |  |
| SWDR        | 19.52         | 0.97   |  |

■ Delete one insignificant feature & 6 features with small coefficients

# Variance Inflation Factor(VIF)

- 3 features are chosen
- Adjusted R-squared: 0.971
- Mean & Variance of error: 0.031
- MSE: 0.030
- All the coefficients are statistically significant with p-values less than 0.05

# Final Regression Model(VIF)

- Model derived from VIF has fewer features and no multi-collinearity problem
- Model performance





# Final Regression Model(VIF)

Hypothesis tests: F-test & T-test

#### T-test

|        | coef    | std err  | t        | P> t  | [0.025   | 0.975]  |
|--------|---------|----------|----------|-------|----------|---------|
| c0     | -0.0063 | 0.001    | -4.336   | 0.000 | -0.009   | -0.003  |
| c1     | -0.3764 | 0.003    | -118.714 | 0.000 | -0.383   | -0.370  |
| c2     | 0.2389  | 0.003    | 70.797   | 0.000 | 0.232    | 0.246   |
| c3     | 0.7244  | 0.002    | 378.391  | 0.000 | 0.721    | 0.728   |
| ====== |         | ======== |          |       | ======== | ======= |

#### F-test

F-Test Results:

<F test: F=117357.3159157646, p=0.0, df\_denom=1.4e+04, df\_num=4>

# Final Regression Model(VIF)

Cross-validation

| Subset | MSE  | ${\sf MeanRMSE}$ | R-squared | Adj R-squared |
|--------|------|------------------|-----------|---------------|
| 1      | 0.05 | 0.22             | 0.96      | 0.96          |
| 2      | 0.04 | 0.19             | 0.97      | 0.97          |
| 3      | 0.02 | 0.15             | 0.97      | 0.97          |
| 4      | 0.04 | 0.19             | 0.97      | 0.97          |
| 5      | 0.03 | 0.16             | 0.97      | 0.97          |

■ The consistency of the metrics across different subsets suggests that the model is stable and generalizes well to different subsets of the data

- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Mode
- 9 Residual Analysis
- 10 Conclusion

### Base Models

Average, Niave, Drift, and SES





### Base Models

| Model   | Mean  | Variance | MSE   |
|---------|-------|----------|-------|
| Average | 0.39  | 55.47    | 55.62 |
| Naive   | -4.56 | 55.47    | 76.23 |
| Dirft   | -5.64 | 61.04    | 92.82 |
| SES     | -4.56 | 55.47    | 76.23 |

- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

### SARIMA Model

#### ■ GPAC & ACF/PACF of Raw Dataset



Autocorrelation



# (1,0,1) (1,0,0,24)

#### ■ 1-step prediction & residual ACF





Overview Preprocessing the Data 0000 Time Series Decomposition 000 Time Series Decomposition 000

### (1,0,1) (1,0,0,24)

#### Residual ACF/PACF & GPAC





# (1,0,3) (1,0,1,24)

#### ■ 1-step prediction & residual ACF





# (1,0,3) (1,0,1,24)

#### Residual ACF/PACF & GPAC





# (1,0,3) (2,0,2,24)

#### ■ 1-step prediction & residual ACF





# (1,0,3) (2,0,2,24)

#### Residual ACF/PACF & GPAC





# (1,0,3) (2,0,2,24)

#### ■ SARIMA model performance





- 1 Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Model
- 9 Residual Analysis
- 10 Conclusion

### Residual Analysis

- Box-Pierce test: Q > Q\*, fail the test
- Ljung-Box: p-values less than 0.05, fail the test
- Biased model: The estimated mean of the forecast error is -1.64
- Variance of the residual errors is 1.35 & Variance of forecast errors is 47.65
- Perform a zero-pole cancellation operation and there is no zero cancellation

- Overview
- 2 Preprocessing the Data
- 3 Stationarity
- 4 Time Series Decomposition
- 5 Holt-Winter Method

- 6 Feature Selection & Regression
- 7 Base Models
- 8 SARIMA Mode
- 9 Residual Analysis
- 10 Conclusion

### Conclusion

| Method  | Variance | Variance improvement (%) | MSE   | MSE improvement (%) |
|---------|----------|--------------------------|-------|---------------------|
| Average | 55.47    | 14.1 %                   | 55.62 | 9.46%               |
| Naive   | 55.47    | 14.1 %                   | 76.23 | 33.94%              |
| Dirft   | 61.04    | 21.94 %                  | 92.82 | 45.74 %             |
| SES     | 55.47    | 14.1%                    | 76.23 | 33.94%              |
| SARIMA  | 47.65    | -                        | 50.36 | -                   |