CHAPTER 9

BOOLEAN ALGEBRAS AND COMBINATORIAL CIRCUITS

LOGIC (COMBINATORIAL) CIRCUITS

- · Now we will view logic from the hardware's viewpoint
- We will also look at other similar ways to design circuits
- Taking the hardware's viewpoint
- From now on, everything is 0 or 1
 - 0 represents false
 - I represents true

BASIC GATES

LOGIC TABLES

- These gates work like our old logic
- A truth table will now be called a logic table
- We use 0, I instead of false, true
- For example, here is the logic table for AND

p	q	P AND q
0	0	0
0	I	0
1	0	0
1	I	I

COMBINATORIAL CIRCUITS

- The key kind of circuit we are concerned with is a combinatorial circuit
- This is a circuit in which an output is defined for each combination of inputs
- Combinatorial circuits can be built from AND, OR, NOT

PICTURES WITH WIRES

Here is a picture of two wires

- This is ambiguous; are these wires connected or is one just on top of the other?
- If we mean that the wires are connected, we will write it as (with a dot)

• If we mean that the wires are just one on top of another, we will write it as

A PICTURE OF A CIRCUIT

LET'S CREATE A LOGIC TABLE FOR IT

- We create a table with columns for each input and each intermediate step
- We then fill it in
- For example, we have columns for XI, X2, X3, X2 OR X3, XI AND (X2 or X3)
- Then we fill it in

THE LOGIC TABLE FOR THE CIRCUIT

XI	X2	X 3	X2 OR X3	XI AND (X2 OR x3)
0	0	0	0	0
0	0	1	1	0
0	Ī	0	1	0
0	Ī	1	1	0
1	0	0	0	0
Ī	0	1	I	I
I	Ĭ	0	1	I
Ī	Ī	1	1	1

WRITING A BOOLEAN EXPRESSION

- We could write a Boolean expression for the circuit
- We work backward from the output
- YI = ____ AND ____
- YI = XI AND
- YI = XI AND (X2 OR X3)

A BOOLEAN EXPRESSION

- What is a Boolean expression?
 - I used that term on the previous slide
 - I assumed we would guess at he meaning
- Here is a formal definition
 - 0 and I are Boolean expressions
 - XI, X2, ..., Xn are Boolean expressions
 - If (BE) is a Boolean expression
 - NOT (BE) is a Boolean expression
 - BEI AND BE2 is a Boolean expression
 - BEI OR BE2 is a Boolean expression
- This definition is recursive?

CREATING A CIRCUIT FROM A BOOLEAN EXPRESSION

- · To do this, you first work with what's inside parentheses, and then work outward
- Suppose the expression is YI = XI OR(X2 AND X3)
- We draw the circuit
- Start with X2 AND X3 X_2
- Then connect in XI or <that result>

SWITCHING CIRCUITS

- A switching circuit is a circuit made only of switches
- I will usually add a light bulb and a battery to show the point of the circuit
 - We do not draw these in an actual circuit
- In a switching circuit
 - You can use a letter more than once
 - But, if you use A in two different places, that means those two switches move together
 - And, if you use A and -A, that means those two switches move oppositely
- Do #25, p. 422

EQUIVALENT CIRCUITS

- Equivalent circuits are circuits where the same input values give the same outputs
- An example is (XI OR X2) AND X3 and (XI AND X2) OR X3
- Are these two circuits equivalent?

LAWS OF CIRCUITS-PART 1

- Associative laws
 - (a OR b) OR c = a OR (b OR c)
 - (a AND? b) AND c = a AND (b AND c)
- Commutative Laws
 - -aORb=bORa
 - -aANDb=bANDa
- Distributive Laws
 - -aAND (b OR c) = (aAND b) OR (aAND c)
 - a OR (b AND c) = (a OR b) AND (a OR c)

LAWS OF CIRCUITS-PART 2

- Identity Laws
 - $\times OR0 = x$
 - xAND I = x
 - The identity laws are quite useful in assembly language programming
- Complement Laws
 - x OR x' = I
 - xAND(x') = 0