Summary of Tableau 9, Part 2

Independence Repeated independent trials, product spaces

- * *Informally*: Independence captures the intuitive idea that if events are independent then the occurrence of one does not affect the chances of the others.
- * The formal definition: A finite or countably infinite collection of events $\{A_j, j \ge 1\}$ in a probability space is independent if (and only if), for every finite subset \mathbb{J} of indices (positive integers), we have a rule of products

$$\mathbf{P}\Big(\bigcap_{\mathbf{j}\in\mathbb{J}}\mathbf{A}_{\mathbf{j}}\Big)=\prod_{\mathbf{j}\in\mathbb{J}}\mathbf{P}(\mathbf{A}_{\mathbf{j}}).$$

- * From independent trials to product spaces and product measure:
 - * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \mapsto p_1(k), ..., \{a_{nk}\} \mapsto p_n(k)$.
 - * Compound chance experiment, product space and measure:
 - * Sample space: $\Omega = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n = \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * Atomic measure: $P\{(a_{1k_1}, ..., a_{nk_n})\} := p_1(k_1) \times ... \times p_n(k_n)$.

Summary of Tableau 9, Part 2

Independence Repeated independent trials, product spaces

- * *Informally*: Independence captures the intuitive idea that if events are independent then the occurrence of one does not affect the chances of the others.
- * The formal definition: A finite or countably infinite collection of events $\{A_j, j \ge 1\}$ in a probability space is independent if (and only if), for every finite subset \mathbb{J} of indices (positive integers), we have a rule of products

$$\mathbf{P}\Big(\bigcap_{\mathbf{j}\in\mathbb{J}}\mathbf{A}_{\mathbf{j}}\Big)=\prod_{\mathbf{j}\in\mathbb{J}}\mathbf{P}(\mathbf{A}_{\mathbf{j}}).$$

- * From independent trials to product spaces and product measure:
 - * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \mapsto p_1(k), ..., \{a_{nk}\} \mapsto p_n(k)$.
 - * Compound chance experiment, product space and measure:
 - * Sample space: $\Omega = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n = \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * Atomic measure: $P\{(a_{1k_1}, ..., a_{nk_n})\} := p_1(k_1) \times ... \times p_n(k_n)$.

Slogan

In the case of a finite or even countably infinite number of repeated independent trials, events in the compound experiment (product space) that are determined by nonoverlapping groups of trials are independent.