VG441 PSI 国辖纵 518021911039

1. We need to prove
$$\frac{\partial \theta^T X^T \times \theta}{\partial \theta} = 2 X^T X \theta$$

Let
$$A = X^{T}X$$
, $A^{T} = (x^{T}x)^{T} = x^{T}(x^{T})^{T} = x^{T}x = A$.

Therefore, A=X'x is symmetric.

Let A be a nxn matrix, and O be a nx1 matrix.

Let
$$B = A0$$
, then $B_i = \sum_{m=1}^{n} A_{im} O_m$

Let
$$C = \theta^T B$$
, then $C = \sum_{P=1}^{n} \theta_P B_P = \sum_{P=1}^{n} \theta_P \left(\sum_{m=1}^{n} A_{Pm} \theta_m \right)$

$$= A_{11} \theta_1 \theta_1 + A_{12} \theta_2 \theta_1 + \cdots + A_{1n} \theta_n \theta_1 + A_{21} \theta_1 \theta_2 + A_{22} \theta_2 \theta_2 + \cdots + A_{2n} \theta_n \theta_2 + \cdots$$

$$\frac{\partial C}{\partial \theta} = \frac{\partial C}{\partial \theta} = \begin{bmatrix} \frac{\partial C}{\partial \theta_1} \\ \frac{\partial C}{\partial \theta_2} \\ \vdots \\ \frac{\partial C}{\partial \theta_n} \end{bmatrix} = \begin{bmatrix} A_{11}\theta_1 + A_{12}\theta_2 + \cdots + A_{1m}\theta_n + A_{12}\theta_2 + \cdots + A_{1n}\theta_n \\ A_{21}\theta_1 + A_{22}\theta_2 + \cdots + A_{2m}\theta_n + A_{12}\theta_1 + A_{22}\theta_2 + \cdots + A_{2m}\theta_n \\ \vdots \\ A_{n1}\theta_1 + A_{n2}\theta_2 + \cdots + A_{nn}\theta_n + A_{1m}\theta_1 + A_{2m}\theta_2 + \cdots + A_{nn}\theta_n \end{bmatrix}$$

 $A_{n_1} \theta_1 \theta_n + A_{n_2} \theta_2 \theta_n + \cdots + A_{n_n} \theta_n \theta_n$

Since A is symmetric, we have Aij = Aji.

$$\frac{\partial \theta^{\mathsf{T}} \chi^{\mathsf{T}} \chi \theta}{\partial \theta} = \begin{bmatrix} 2 (A_{11} \theta_{1} + A_{12} \theta_{2} + \cdots + A_{1m} \theta_{n}) \\ 2 (A_{21} \theta_{1} + A_{22} \theta_{2} + \cdots + A_{2m} \theta_{n}) \\ 2 (A_{n1} \theta_{1} + A_{n2} \theta_{2} + \cdots + A_{nm} \theta_{n}) \end{bmatrix} = \begin{bmatrix} 2 \sum_{m=1}^{n} A_{1m} \theta_{m} \\ 2 \sum_{m=1}^{n} A_{2m} \theta_{m} \\ 2 \sum_{m=1}^{n} A_{nm} \theta_{m} \end{bmatrix} = \begin{bmatrix} 2 B_{1} \\ 2 B_{2} \\ 2 B_{n} \end{bmatrix} = 2 B$$

$$= 2A0 = 2X^{T}X0$$
Therefore, $\frac{\partial 0^{T}X^{T}X0}{\partial 0} = 2X^{T}X0$

2 (0)									
2.0	FO	PRO	FI	PRI	FΣ	PRZ			
	<i>5</i> 875	413	<i>6</i> ≥87.5	3712.5	6658.75	3341.25			
	5875	-53]5	5337.5	-4837.5	4853.75	-4353.75			
	1875	71X	6087.5	1912.5	6278.75	1721-25			
	<u> </u> \$875	-875	5787.5	-787.5	\$708.75	-708.75			

$$F0 = \overline{salary} = 5875$$

 $PR0 = True salary - F0$

Having Kids

DT 2:

$$F_2 = FI + y \times PRI$$

 $PR2 = True salary - F2$

②	FO	PRO	FI	PRI	F2	PRZ
	<i>5</i> 875	415	6083.33	3916.67	6277.78	3]22, 22
	5875	-53]5	560b. X	-\$10b.X	5350.93/5	-4850.9375
	1875	71X	6083.33	1916.67	6277.78	1722.22
	<u> 5</u> 875	-875	5831. V	-831.₹	5789.6875	-789.6875

$$F0 = \overline{salary} = 5875$$

 $PR0 = True salary - F0$

$$F_i = F_o + \mathcal{V} \cdot \text{output}$$