

Anno scolastico 2017-18 Lavoro Professionale Individuale

Nome Cognome:	Naoki Pross
Professione:	Elettronico
Titolo del progetto:	Spectrum Analyzer

Azienda:	CPT Bellinzona Centro Professionale Tecnico Viale S. Franscini 25 6500 Bellinzona				
Formazione approfondita:	S.2 Sviluppare prototipi				
Formatore:	Rinaldo Geiler,				
Data d'inizio:	12.04.2018	Ore a disposizione:	83 UD		
Data file lavoro:	15.05.2018	Ore effettive:	– UD		

Indice

1	Intro	Introduzione 2									
	1.1	Contesto	2								
	1.2	Requisiti	2								
	1.3	Concetto matematico	2								
	1.4	Norme di progetto	2								
2	Hard	ordware 3									
	2.1	Quadro generale	3								
	2.2	Selezione delle entrate	3								
	2.3	Circuito di amplificazione	3								
	2.4	Microcontroller	3								
	2.5	Visualizzazione	3								
3	Soft	tware	4								
•	3.1	Campionamento	4								
	3.2	Interfaccia al Computer	4								
	3.3	Interfaccia al Display	4								
	3.4	Fast Fourier Transform	4								
4	Con	Conclusioni 5									
•	4.1	Problemi riscontrati	5								
	4.2	Commento	5								
	4.3	Certificazione	5								
_	_		_								
5	1 ras	sformata di Fourier Nozioni preliminarie	7 7								
	5.1	5.1.1 Regressione lineare con il metodo dei minimi quadrati	7								
		5.1.2 Funzione armonica	7								
		5.1.3 Proprietà di ortogonalità del seno e del coseno	8								
	5.2	Polinomio Trigonometrico	8								
	5.3	Serie di Fourier	8								
	5.4										
	5.5										
	5.6										
	5.0	5.6.1 Motivazioni e Complessità temporale	9								
		5.6.2 Proprietà dei numeri complessi	9								
		5.6.2 Proprieta dei numeri complessi	9								

1 Introduzione

1.1 Contesto

Per portare a termine il percorso formativo per un attestato di capacità federale presso la Scuola Arti e Mestieri di Bellinzona è richiesto lo sviluppo individuale di un progetto di produzione di un prodotto. Per interesse personale nella matematica della trasformata di Fourier mi è stato assegnato di sviluppare un analizzatore spettrale.

1.2 Requisiti

È richiesto di sviluppare circuito per analizzare lo spettro dei segnali di frequenza fino a 10 kHz. Il dispositivo dovrà avere 3 possibili sorgenti: RCA/Cinch e 2 Audio Jack per un microfono e per una sorgente di audio generica. È inoltre richiesto che il calcolo dei dati dello spettrogramma sia eseguito da un microcontroller della Microchip, collegato a due altri dispositivi quali, una display e ad un computer in RS232, per poter visualizzare lo spettrogramma computato.

1.3 Concetto matematico

1.4 Norme di progetto

2 Hardware

- 2.1 Schema a blocchi
- 2.2 Selezione delle entrate
- 2.3 Circuito di amplificazione
- 2.4 Microcontroller
- 2.5 Visualizzazione

3 Software

- 3.1 Campionamento
- 3.2 Interfaccia al Computer
- 3.3 Interfaccia al Display
- 3.4 Fast Fourier Transform

4 Conclusioni

- 4.1 Problemi riscontrati
- 4.2 Commento
- 4.3 Certificazione

II sottoscritto	dichiara di av	ver redatto e pro	odotto individua	almente i	il lavoro di produzione.	
Data:				Firma:		
					Naoki Pross	

Bibliografia

[1] Example item title, (online), Author and other informations, https://www.example.com

5 Trasformata di Fourier

5.1 Nozioni preliminarie

5.1.1 Regressione lineare con il metodo dei minimi quadrati

La regressione lineare è un'approssimazione di una serie di dati ad una funzione lineare. Questa retta di approssimazione può essere calcolata in molteplici modi, per questo progetto è di interesse utilizzare il $metodo\ dei\ minimi\ quadrati$. Sarà dunque esplicato come trovare i coefficienti di una retta a m+1 termini partendo da N punti di riferimento.

$$r(x, a_0, \dots, a_m) = a_0 + x \sum_{i=1}^m a_i$$
 (5.1.1.1)

Consideriamo di avere gli insiemi X e Y entrambi con N termini di cui si prende le coppie ordinate di valori (x_k,y_k) $x_k\in X,$ $y_k\in Y$, ossia i punti dato di cui eseguire la regressione. Il metodo dei minimi quadrati trova i coefficienti della retta minimizzando il quadrato della differenza tra il valore stimato dalla retta $r(x_k)$ e il valore reale y_k .

$$\min((r(x_k) - y_k)^2) \quad \forall x_k \in X, y_k \in Y$$

Definiamo quindi la funzione da minimizzare arepsilon

$$\varepsilon(a_0, \dots, a_m) = \sum_{k=1}^{N} \left[r(x_k, a_0, \dots, a_m) - y_k \right]^2$$
(5.1.1.2)

Da cui si computa le derivati parziali rispetto ai coefficienti ricercati, ottenendo un sistema di equazioni lineare. Ciò corrisponde anche ad affermare che il gradiente di ε è un vettore $\in \mathbb{R}^{m+1}$ con tutte le componenti a 0.

$$\nabla \varepsilon = \langle 0, \dots, 0 \rangle$$

A questo punto si può procedere risolvendo il sistema con l'algebra lineare definendo la matrice di trasformazione ${\bf A}$ e il vettore dei termini noti \vec{u}

$$\nabla \varepsilon = \mathbf{A} \langle a_0, \dots, a_m \rangle + \vec{u} \iff \langle a_0, \dots, a_m \rangle = \mathbf{A}^{-1}(-\vec{u})$$

5.1.2 Funzione armonica

Una funzione armonica, sinusoidale, può essere descritta in molteplici modi. Iniziamo dunque osservando le forme più semplici, ossia la forma trigonometrica.

$$f(x) = a \cdot \sin(\omega x + \varphi) \tag{5.1.2.1}$$

$$f(x) = b \cdot \cos(\omega x + \vartheta) \tag{5.1.2.2}$$

Conoscendo la formula di Eulero (5.1.2.3)

$$e^{i\varphi} = \cos(\varphi) + i \cdot \sin(\varphi) \tag{5.1.2.3}$$

possiamo riscrivere f(x) nei seguenti modi

$$f(x) = \frac{a}{2i} \cdot \left(e^{i(x\omega + \varphi)} - e^{-i(x\omega + \varphi)}\right) \tag{5.1.2.4}$$

$$f(x) = \frac{b}{2} \cdot \left(e^{i(x\omega + \vartheta)} + e^{-i(x\omega + \vartheta)}\right) \tag{5.1.2.5}$$

5.1.3 Proprietà di ortogonalità del seno e del coseno

Per avere delle fondamenta solide prima dell'introduzione dell'argomento principale, sarà dimostrata l'ortogonalità delle due funzioni trigonometriche mediante alcune verità matematiche su degli integrali definiti. Per tutti i casi seguenti definiamo T come il periodo della funzione periodica.

$$\int_0^T \sin(\frac{m2\pi x}{T}) \, \mathrm{d}x = 0 \quad \forall m \in \mathbb{Z}$$

$$\int_0^T \cos(\frac{m2\pi x}{T}) \, \mathrm{d}x = 0 \quad \forall m \in \mathbb{Z}^*$$

$$\int_0^T \sin(\frac{m2\pi x}{T}) \cos(\frac{n2\pi x}{T}) \, \mathrm{d}x = 0 \quad \forall m, n \in \mathbb{Z}$$

$$\int_0^T \sin(\frac{m2\pi x}{T}) \sin(\frac{n2\pi x}{T}) \, \mathrm{d}x = 0 \quad \forall m, n \in \mathbb{Z} \mid m \neq \pm n$$

$$\int_0^T \sin^2(\frac{m2\pi x}{T}) \, \mathrm{d}x = \frac{T}{2} \quad \forall m \in \mathbb{Z}$$

$$\int_0^T \cos(\frac{m2\pi x}{T}) \cos(\frac{n2\pi x}{T}) \, \mathrm{d}x = 0 \quad \forall m, n \in \mathbb{Z} \mid m \neq \pm n$$

$$\int_0^T \cos^2(\frac{m2\pi x}{T}) \, \mathrm{d}x = \frac{T}{2} \quad \forall m \in \mathbb{Z}^*$$

Dimostrazioni

5.2 Polinomio Trigonometrico

5.3 Serie di Fourier

La serie di Fourier, nominata tale in onore a Jean-Baptise Joseph Fourier, di una funzione è descritta nel modo seguente.

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cdot \cos(\frac{n2\pi x}{T}) + b_n \cdot \sin(\frac{n2\pi x}{T}) \right]$$
 (5.3.0.1)

Con questa equazione Fourier ha teorizzato che è possibile rappresentare qualsiasi funzione come una combinazione lineare di armoniche di frequenze multiple di una frequenza di base. Con la seguente identià trigonometrica è possibile anche descrivere la serie con una notazione più compatta.

$$a \cdot \cos(\alpha) + b \cdot \sin(\alpha) = A \cdot \cos(\alpha - \theta)$$

Per $A = \sqrt{a^2 + b^2}$, $\cos(\vartheta) = \frac{b}{A}$ e $\sin(\vartheta) = \frac{b}{A}$. Dunque

$$f(x) = a_0 + \sum_{n=1}^{\infty} A_n \cdot \cos(\frac{n2\pi x}{T} - \vartheta_n)$$
 (5.3.0.2)

$$f(x) = a_0 + \sum_{n=1}^{\infty} A_n \cdot \sin(\frac{n2\pi x}{T} + \varphi_n)$$
 (5.3.0.3)

- 5.4 Trasformata di Fourier discreta
- 5.5 Trasformata di Fourier
- 5.6 Fast Fourier Transform
- 5.6.1 Motivazioni e Complessità temporale
- 5.6.2 Proprietà dei numeri complessi