VE320 – Summer 2024

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 6 Non-Equilibrium Excess Carriers in Semiconductors

Outline

6.1 Carrier generation and recombination

- 6.2 Characteristics of excess carriers
- 6.3 Quasi-Fermi levels
- 6.4 Excess carrier lifetime
- 6.5 Surface effects

The semiconductor in equilibrium

Intrinsic: $n_0 = p_0 = n_i$

 $n \text{ type} : n_0 >> n_i >> p_0$

 G_{n0} : the thermal generation rate of electrons

 G_{p0} : the thermal generation rate of holes

 R_{n0} : the recombination rate of electrons

 R_{p0} : the recombination rate of holes

$$G_{n0} = G_{p0} = R_{n0} = R_{p0}$$
 (direct G and R from band to band)

The semiconductor in equilibrium

Intrinsic: $n_0 = p_0 = n_i$

 $n \text{ type} : n_0 >> n_i >> p_0$

The semiconductor in equilibrium

Intrinsic: $n_0 = p_0 = n_i$

 $n \text{ type} : n_0 >> n_i >> p_0$

The semiconductor in equilibrium

Intrinsic: $n_0 = p_0 = n_i$

 $n \text{ type} : n_0 >> n_i >> p_0$

Excess carrier generation and recombination

Excess carrier generation and recombination

g' is not a function of n and p

Excess carrier generation and recombination

Excess carrier generation and recombination

Net recombination rate

Excess carrier generation and recombination

For n-type semiconductor, net recombination rate

$$R_n' = R_p' = \frac{\Delta p(t)}{\tau_{p0}}$$

For p-type semiconductor, net recombination rate

$$R_n' = R_p' = \frac{\Delta n(t)}{\tau_{n0}}$$

Excess carrier generation and recombination

$$g' = R' \implies \Delta p(t \le 0) = g' \tau_{p0}$$
 for $n - type$ semiconductors

$$g' = R' \implies \Delta n(t \le 0) = g' \tau_{n0}$$
 for $p-type$ semiconductors

Problem Example #1

Assume that excess carriers have been generated uniformly in a semiconductor to a concentration of $\Delta n(0) = 10^{15}$ cm⁻³. The generation of the excess carriers turns off at time t=0. Assuming the excess carrier lifetime is $\tau_{n0} = 10^{-6}$ s, calculate the recombination rate of excess carriers for t =4 μ s.

Outline

6.1 Carrier generation and recombination

6.2 Characteristics of excess carriers

6.3 Quasi-Fermi levels

6.4 Excess carrier lifetime

6.5 Surface effects

Continuity equation at steady state

$$\Delta p = g' \tau_{p0} \qquad \Delta p(x)$$

Continuity equation at steady state

Cross-section area: A
$$F_{p1}$$

$$\downarrow R'_{n}$$

$$\Delta x$$

For diffusion current:

of carriers passing (into) the area A at a unit time: $F_{p1}\cdot A$ # of carriers passing (out) the area A at a unit time: $F_{p2}\cdot A$ # of carriers recombined in that valume at a unit time: $R'_p\cdot A\cdot \Delta x$

Continuity equation at steady state

For diffusion current:

Steady-state continuity equation

Steady-state continuity equation

Steady state:

$$D_p \frac{d^2 p}{dx^2} - \mu_p E \frac{dp}{dx} - p \mu_p \frac{dE}{dx} - \frac{\Delta p}{\tau_{p0}} + g_p' = 0$$

When the n-type semiconductor is uniformly doped,

$$p(x) = p_0 + \Delta p(x)$$

$$D_p \frac{d^2 \Delta p}{dx^2} - \mu_p E \frac{d\Delta p}{dx} - \Delta p \mu_p \frac{dE}{dx} - \frac{\Delta p}{\tau_{p0}} + g_p' = 0$$

Time-dependent continuity equation

Time-dependent continuity equation

For an n-type semiconductor,

$$\frac{d\Delta p}{dt} = D_p \frac{d^2 p}{dx^2} - \mu_p E \frac{dp}{dx} - p\mu_p \frac{dE}{dx} - R'_p + g'_p$$
(minority carriers)

$$R_p' = \frac{\Delta p}{\tau_{p0}}$$

$$\frac{d\Delta n}{dt} = D_n \frac{d^2 n}{dx^2} + \mu_n E \frac{dn}{dx} + n\mu_n \frac{dE}{dx} - R'_n + g'_n$$

$$R_n' = R_p' = \frac{\Delta p}{\tau_{p0}}$$

$$g'_n = g'_p$$

Summary

Table 6.2

Specification	Effect
Steady state	$\frac{\partial(\delta n)}{\partial t} = 0, \frac{\partial(\delta p)}{\partial t} = 0$
Uniform distribution of excess carriers (uniform generation rate) + no boundary confined Zero electric field	$D_n \frac{\partial^2 (\delta n)}{\partial x^2} = 0, \qquad D_p \frac{\partial^2 (\delta n)}{\partial x^2} = 0$
Zero electric field	$E \frac{\partial (\delta n)}{\partial x} = 0, E \frac{\partial (\delta p)}{\partial x} = 0$
No excess carrier generation	g'=0
No excess carrier recombination (infinite lifetime)	$\frac{\delta n}{\tau_{n0}}=0, \frac{\delta p}{\tau_{p0}}=0$

Problem Exmaple #2

Given a piece of p-type uniformly doped semiconductor in contact with two metal electrodes separated by a length of L, forming a photoconductor device. The light illumination will create electronhole pairs at a generation rate of g. The minority carrier recombination lifetime is τ_0 . Find the analytical distribution of the excess minority electrons at zero external bias. Note that light illumination will not create excess carriers in metals.

Outline

- 6.1 Carrier generation and recombination
- 6.2 Characteristics of excess carriers
- 6.3 Quasi-Fermi levels
- 6.4 Excess carrier lifetime
- 6.5 Surface effects

6.3 Quasi-Fermi energy level

$$n_0 = n_i \exp\left(\frac{E_F - E_{Fi}}{kT}\right) \longrightarrow n_0 + \Delta n = n_i \exp\left(\frac{E_{Fn} - E_{Fi}}{kT}\right)$$

$$p_0 = n_i \exp\left(\frac{E_{Fi} - E_F}{kT}\right) \longrightarrow p_0 + \Delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right)$$

Problem example #3

A light beam is illuminated on the surface of a silicon wafer, generating excess carriers Δp_0 at the surface (x=0). The wafer is placed in a constant electric field with a known intensity E. We assume there is no external generation inside the wafer. The thickness of the wafer is infinite. Find the excess minority carriers at steady state as a function of the distance away from the surface (x=0). Small injection condition is always maintained and the wafer is uniformly doped as N_d .

* Find the quasi Fermi level of holes.

$$\frac{\partial p}{\partial t} = D_p \frac{\partial^2 p}{\partial x^2} - \mu_p E \frac{\partial p}{\partial x} - p \mu_p \frac{\partial E}{\partial x} + -\frac{\Delta p}{\tau} + G_{ex}$$

Outline

- 6.1 Carrier generation and recombination
- 6.2 Characteristics of excess carriers
- 6.3 Quasi-Fermi levels
- 6.4 Excess carrier lifetime
- 6.5 Surface effects

1. Capture of an electron from conductance band by an initially neutral empty trap

2. Inverse of process 1—the emission of an electron that is initially occupying a trap level back into the conduction band

3. Capture of an hole from valence band by a trap containing an electron (Or we may consider the process to be the emission of an electron from the trap into the valence band.)

4. Inverse of process 3—the emission of a hole from a neutral trap into the valence band. (Or we may consider this process to be the capture of an electron from the valence band.)

Problem Example #4

A PN junction consisting an n-type semiconductor in contact with another p-type semicondcutor (to be covered later) has a depletion region in which n_0 and p_0 are nearly zero. Suppose a silicon PN junction has defects located at the middle of the semiconductor. The defect concentration is 10^{16} cm⁻³ and the capture rate C_n and C_p for electrons and holes are 10^{-10} cm⁻³/s. Find the recombination rate of charge carriers in the depletion region of the Si PN junction.

$$N_t = 10^{16} \text{ cm}^{-3}$$

 $C_n = C_p = 10^{-10} \text{ cm}^{-3}/\text{s}$

Depletion region

Outline

- 6.1 Carrier generation and recombination
- 6.2 Characteristics of excess carriers
- 6.3 Quasi-Fermi levels
- 6.4 Excess carrier lifetime
- 6.5 Surface effects

6.5 Surface effects

Surface States

6.5 Surface effects

Surface recombination velocity

Surface recombination rate:

number of recombined carriers in a unit surface area at a give unit time

Problem example #5

A n-type semiconductor wafer is <u>uniformly doped</u> and <u>uniformly illuminated</u> by light. There is <u>no electric field</u>. The illumination generation rate is g and the minority carrier lifetime is τ. The semiconductor is long enough on the right side. On the left side edge, the surface recombination velocity is s. Find how does the concentration of the excess minority carriers change along x coordinate at steady state. Small injection condition is always maintained.

