IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-9 Canceled
- (Currently Amended) A brake system of the 'brake-by-wire' type for actuating a motor vehicle brake system comprising:
 - a brake booster operable in response to an input of a driver by a brake pedal and by an electronic regulating and control unit;
 - a device provided to decouple a force-transmitting connection between the brake pedal and the brake booster in a 'brake-by-wire' operating mode;
 - a master brake cylinder connected downstream of the brake booster in terms of effect, to one or more pressure chambers of which wheel brakes of the motor vehicle are connected;
 - a pedal travel simulator which interacts with the brake pedal in order for a resetting force acting on the brake pedal can be simulated in the 'brake-by-wire' operating mode independently of an actuation of the brake booster, and which can be enabled in the 'brake-by-wire' operating mode when the force-transmitting connection between the brake pedal and the brake booster is decoupled and can be disabled outside the 'brake-by-wire' operating mode;
 - a first sensor (6) for sensing a brake pedal actuating travel (S_{Bp});
 - a second sensor (18) for sensing a travel (S_{Da}) of an output member (20) of the brake booster:
 - a third sensor for sensing a brake pressure prevailing in the system, wherein output signals of the sensors are sent to the electronic regulating and control unit (7);
 - a control circuit for controlling the travel (S_{Ds}) covered by the output member (20) of the brake booster (3), a nominal value ($S_{Dsnominal}$) of the travel (S_{Ds}) covered by the output member (20) of the brake booster (3) being calculated corresponding to the actuating travel (S_{Ds}) of the brake pedal (1); and

a monitoring module (24) which, in the case of a fault such as inclusion of air or brake circuit failure, performs a partial compensation of the extension of the travel (S_{De}) covered by the output member (20) of the brake booster (3), which extension is caused by the fault; and

wherein a pressure fluid volume/pressure characteristic curve is stored in the monitoring module (24), so that the dependency of the pressure fluid volume absorption (Q) of the brakes or of the travel ($S_{\mathbb{D}_0}$) covered by the output member (20) of the brake booster (3) and corresponding to the pressure fluid volume absorption (Q) on the hydraulic pressure (p) Q or $S_{\mathbb{D}_0} = f(p)$, and in that the monitoring module (24) is furnished with the actual values ($S_{\mathbb{D}_{actual}}$) of the travel ($S_{\mathbb{D}_0}$) covered by the output member (20) of the brake booster (3) and of the hydraulic pressure (p) prevailing in the system, and a travel value ($S_{\mathbb{D}_{actual}}$) corresponding to the nominal value (Q_{cominal}) of the pressure fluid volume is calculated from the actual pressure value (p_{actual}) and compared with the actual value ($S_{\mathbb{D}_{actual}}$) of the travel ($S_{\mathbb{D}_0}$) covered by the output member (20) of the brake booster (3), and a correction value ($S_{\mathbb{D}_{actual}}$) of the monitoring module (24) from which a fault in the system is inferred, when the comparison result ($\Delta S_{\text{ore}} = S_{\text{model}} - S_{\text{Daschusl}}$) exceeds a threshold value (S_{Deschusl}).

(Cancelled)

- 12. (Previously presented) A brake system according to claim 10, wherein the partial compensation of the extension of the travel (S_{De}) covered by the output member (20) of the brake booster (3), which extension is caused by the fault, is performed by adding a correction value (S_{Derr}) to the nominal value (S_{Derominal}).
- 13. (Currently Amended) A brake system according to claim 12, wherein the correction value (S_{corr}) corresponds to half of a difference between the nominal value (S_{Denominal}) and the actual value (S_{Desotual}) of the travel (S_{De}) covered by the output member (20) of the brake booster (3).
- (Previously presented) A brake system according to claim 10, wherein the actual values (\$D_Basclusi, Pactual) undergo a low-pass filtering operation.

- (Previously presented) A brake system according to claim 10, wherein a transition function is activated when a case of fault is detected.
- (Previously presented) A brake system according to claim 10, wherein a warning lamp
 is activated when a case of fault is detected in the system.
- (Currently Amended) A brake system of the 'brake-by-wire' type for actuating a motor vehicle brake system comprising:
 - a brake booster operable in response to an input of a driver by a brake pedal and by an electronic regulating and control unit;
 - a device provided to decouple a force-transmitting connection between the brake pedal and the brake booster in a 'brake-by-wire' operating mode;
 - a master brake cylinder connected downstream of the brake booster in terms of effect, to one or more pressure chambers that wheel brakes of the motor vehicle are connected:
 - a pedal travel simulator which interacts with the brake pedal and due to which a resetting force acting on the brake pedal can be simulated in the 'brake-by-wire' operating mode independently of an actuation of the brake booster, and which can be enabled in the 'brake-by-wire' operating mode when the force-transmitting connection between the brake pedal and the brake booster is decoupled and can be disabled outside the 'brake-by-wire' operating mode:
 - a first sensor sensing a brake pedal actuating travel (S_{Bp});
 - a second sensor (18) for sensing a travel (S_{D_8}) of an output member of the brake booster;
 - third sensor for sensing the brake pressure prevailing in the system, wherein output signals of the sensors are sent to the electronic regulating and control unit (7); and
 - a control circuit for controlling the travel (S_{Da}) covered by the output member (20) of the brake booster (3) and the hydraulic pressure (p) prevailing in the system, nominal values $(S_{Dacominal}, p_{rominal})$ thereof being calculated corresponding to the actuating travel (S_{Bp}) of the brake pedal (1), and a monitoring module (24) being provided which, in the case of a fault such as the inclusion of air or brake circuit failure, switches the control circuit from

the travel control mode to the pressure control mode in order to perform a compensation of the extension of the travel (S_{Ds}) covered by the output member (20) of the brake booster (3), which extension is caused by the fault: and

wherein a transition function is activated when a case of fault is detected.

- 18. (Previously presented) A brake system according to claim 17, wherein a pressure fluid volume/pressure characteristic curve is stored in the monitoring module (24), so that the dependency of the pressure fluid volume absorption (Q) of the brakes or of the travel (S_{DB}) covered by the output member (20) of the brake booster (3) and corresponding to the pressure fluid volume absorption (Q) on the hydraulic pressure (p) Q or S_{DB} = f(p), and in that the monitoring module (24) is furnished with the actual values (S_{DBBCUBL}, Pacubla) of the travel (S_{DB}) covered by the output member (20) of the brake booster (3) and of the hydraulic pressure (p) prevailing in the system, and a travel value (S_{model}) corresponding to the nominal value (Q_{nominal}) of the pressure fluid volume is calculated from the actual pressure value (p_{actual}) and compared with the actual value (S_{DBBCUBL}) of the travel (S_{DB}) covered by the output member (20) of the brake booster (3), and a correction value (S_{corr}) is produced in the monitoring module (24) from which a fault in the system is inferred, when the comparison result (ΔS_{diff} = S_{model} S_{DBactual}) exceeds a threshold value (S_{threshold}).
- 19. (Previously presented) A brake system according to claim 18, wherein the partial compensation of the extension of the travel (S_{De}) covered by the output member (20) of the brake booster (3), which extension is caused by the fault, is performed by adding a correction value (S_{Derr}) to the nominal value (S_{Derominal}).
- (Previously presented) A brake system according to claim 19, wherein the correction value (S_{corr}) corresponds to half the result of the comparison (ΔS/2).
- (Previously presented) A brake system according to claim 17, wherein the switch-over
 of the control circuit from the travel control mode to the pressure control mode is
 performed by the correction value (S_{corr}).

- (Previously presented) A brake system according to claim 17, wherein the actual values (S_{Desclusi}, p_{sclusi}) undergo a low-pass filtering operation.
- 23. (Cancelled)
- 24. (Previously presented) A brake system according to claim 17, wherein a warning lamp (31) is activated when a case of fault is detected in the system.
- (Previously presented) A brake system according to claim 15, wherein the transition function is one of a low-pass filter and a ramp function.
- (Previously presented) A brake system according to claim 23, wherein the transition function is one of a low-pass filter and a ramp function.