Deep Equilibrium Models

Deep Networks via Root Finding Neurips 2019 Universal Transformer (Revisiting Recurrence)

- Encoder-decoder architecture
- Recurrent over revised representation of each position (depth)
- Two Steps:
 - Self attention between all positions in sequence
 - Transition function (shared across position and time) to update each position
- Advantages of weight sharing:
 - Regularizes/stabilizes training
 - Reduces model size
 - Any deep network can be written as a weight-tied deep network (appendix)

Output Probabilities

Softmax

After T steps

The Sequence of Intermediate Representations (Empirically) Converges

Can we solve directly for the fixed point?

Why do we have a predetermined, fixed number of layers?

Because of device memory constraints

We essentially choose a number of layers that fits in device memory.

Suppose we had infinite layers.

What is the limit of this model's intermediate representations? The eq point.

$$\lim_{i \to \infty} \mathbf{z}_{1:T}^{[i]} = \lim_{i \to \infty} f_{ heta} ig(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T} ig) \equiv f_{ heta} ig(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T} ig) = \mathbf{z}_{1:T}^{\star}$$

The Deep Equilibrium Approach

Instead of iteratively stacking layers, solve for and differentiate through the equilibrium.

Conventional weight-tied networks do this via fixed-point iteration,

$$\mathbf{z}_{1:T}^{[i+1]} = f_{\theta}(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T})$$
 for $i = 0, 1, 2, ...$

Is there a smarter way? Root finding algorithms,

$$g_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T}) = f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T}) - \mathbf{z}_{1:T}^{\star} \to 0$$

$$\mathbf{z}_{1:T}^{[i+1]} = \mathbf{z}_{1:T}^{[i]} - \alpha B g_{\theta}(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T}) \quad \text{for } i = 0, 1, 2, \dots$$

Newton's method or quasi-newton (Broyden), B is inverse Jacobian Or alternatively any root-finding algorithm

The Deep Equilibrium Approach

Typical Deep Neural Network

Deep Equilibrium Model

But how do we backprop?

In general we want to backprop through,

$$\ell = \mathcal{L}(h(\mathbf{z}_{1:T}^{\star}), \mathbf{y}_{1:T}) = \mathcal{L}(h(\mathsf{RootFind}(g_{\theta}; \mathbf{x}_{1:T})), \mathbf{y}_{1:T})$$

Rather than backprop through all Newton iterations, we can find the gradient in constant memory without any knowledge of RootFind,

$$\frac{\partial \ell}{\partial (\cdot)} = -\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \left(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \right) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)} = -\frac{\partial \ell}{\partial h} \frac{\partial h}{\partial \mathbf{z}_{1:T}^{\star}} \left(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \right) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)}$$

where $J_{q_{\theta}}^{-1}|_{\mathbf{x}}$ is the inverse Jacobian of g_{θ} evaluated at \mathbf{x} .

Independent of internals of f (any NN), no storage of intermediate hidden state, one matrix multiply step

Approximating the Inverse Jacobian

Computing the exact Jacobian inverse is cubic.

Instead make a low-rank approximation using Broyden's method (quasi-Newton).

I will skip lots of details here, but essentially we can compute

$$-\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \left(J_{g_{\theta}}^{-1}\Big|_{\mathbf{z}_{1:T}^{\star}}\right)$$

By instead solving for the vector-Jacobian product (which autograd gives you)

$$ig(J_{g_{ heta}}^{ op}ig|_{\mathbf{z}_{1:T}^{\star}}ig)\mathbf{x}^{ op}+igg(rac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}}igg)^{ op}=\mathbf{0}$$

Properties of Deep Equilibrium Models

1. Memory

Cheap: only store z* (equilibrium sequence) and f_\theta single layer

vector-jacobian has dim N x Td

Constant

- 2. Any choice of f_\theta that contracts (eg through layer norm, gated activation)
- No benefit to stacking

Evals that are sort of easy

Table 1: DEQ achieves strong performance on the long-range copy-memory task.

	Models (Size)			
	DEQ-Transformer (ours) (14K)	TCN [7] (16K)	LSTM [26] (14K)	GRU [14] (14K)
Copy Memory T=400 Loss	3.5e-6	2.7e-5	0.0501	0.0491

Table 2: DEQ achieves competitive performance on word-level Penn Treebank language modeling (on par with SOTA results, without fine-tuning steps [34]). [†]The memory footprints are benchmarked (for fairness) on input sequence length 150 and batch size 15, which does not reflect the actual hyperparameters used; the values also do *not* include the memory for word embeddings.

Word-level Language Modeling w/ Penn Treebank (PTB)					
Model	# Params	Non-embedding model size	Test perplexity	Memory [†]	
Variational LSTM [22]	66M	-	73.4	_	
NAS Cell [55]	54M	-	62.4	-	
NAS (w/ black-box hyperparameter tuner) [32]	24M	20M	59.7	-	
AWD-LSTM [34]	24M	20M	58.8	-	
DARTS architecture search (second order) [29]	23M	20M	55.7	-	
60-layer TrellisNet (w/ auxiliary loss, w/o MoS) [8] DEQ-TrellisNet (ours)	24M 24M	20M 20M	57.0 57.1	8.5GB 1.2GB	

Evals that are sort of real

Word-level Language Modeling w/ WikiText-103 (WT103)				
Model	# Params	Non-Embedding Model Size	Test perplexity	Memory [†]
Generic TCN [7]	150M	34M	45.2	2 0
Gated Linear ConvNet [17]	230M	-	37.2	-
AWD-QRNN [33]	159M	51M	33.0	7.1GB
Relational Memory Core [40]	195M	60M	31.6	=0
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.)	110M	72M	23.6	9.0GB
DEQ-Transformer (medium, adaptive embed., ours)	110M	70M	23.2	3.7GB
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB

Is Slow

Table 4: Runtime ratios between DEQs and corresponding deep networks at training and inference (> $1 \times$ implies DEQ is slower). The ratios are benchmarked on WikiText-103.

DEQ / 18-layer Transformer		DEQ / 70-layer TrellisNet		
Training	Inference	Training	Inference	
2.82×	1.76×	2.40×	1.64×	