SSC0903 – Computação de Alto Desempenho Apresentação da Disciplina

Professor Responsável

Paulo Sérgio Lopes de Souza

Objetivos

Transmitir aos alunos conceitos sobre computação de alto desempenho, considerando seus aspectos de hardware e software, com vistas ao desenvolvimento de aplicações paralelas.

Programa

Introdução à computação paralela: contexto e conceitos básicos;

Hardware paralelo para computação de alto desempenho: arquiteturas paralelas, organizações de hardware que impactam o desempenho (processadores, memórias e redes de interconexão);

Projeto de software para computação de alto desempenho: modelos de programação para aplicações paralelas, ferramentas para o desenvolvimento de aplicações paralelas (compiladores, bibliotecas e padrões), escalonamento de processos;

Avaliação de desempenho de sistemas computacionais de alto desempenho: métricas e metodologias;

Desenvolvimento de aplicações paralelas: estudos de caso;

Teste de programas paralelos: conceitos, técnicas e ferramentas para o teste de programas paralelos.

Como Serão as Aulas

Elas usarão diferentes metodologias, com exercícios e trabalhos práticos.

Avaliações (todas as avaliações terão notas entre 0 e 10)

Espera-se dos alunos uma postura proativa, respeitosa e ética em relação à disciplina e seus integrantes, incluindo a participação efetiva em atividades solicitadas dentro e fora da sala de aula.

ABs - Avaliações Bimestrais

Duas avaliações (AB1 e AB2) que formarão uma média ponderada das ABs. O conteúdo das ABs é acumulativo. Antes da data de AB será definido se a consulta a material durante a avaliação será permitida. Caso seja permitida, o tipo do material de consulta (eletrônico, impresso ou qualquer outro) será determinado pelo professor antes da AB. Caso possa ser utilizado, o material de consulta não poderá ser compartilhado entre os alunos. Podem haver avaliações teóricas ou práticas e as ABs podem ser individuais ou em grupo.

Cálculo da Média Ponderada => ABs = 0,4 * AB1 + 0,6 * AB2

Datas das ABs: AB1 23/04/2020 e AB2 25/06/2020

ACs – Avaliações Contínuas

Avaliações feitas pelos alunos ao longo do curso antes, durante e/ou após as aulas. As ACs podem ser leituras de material fornecido pelo professor, respostas individuais ou em grupo a provas e aplicação prática de conteúdo estudado dentro e fora da sala de aula. Todas as aulas, em tese, poderão ter ACs.

Para o cálculo da MF (vide abaixo), as ACs formarão uma média aritmética simples, considerando as 70% melhores notas do aluno nas ACs aplicadas à turma.

TBs - Trabalhos Práticos

Trabalhos solicitados aos alunos que apliquem o conhecimento estudado na solução de problemas. Estes trabalhos decerão ser realizados em grupo, a menos que o professor solicite a realização individual do trabalho.

Cálculo da Média Ponderada dos TBs a ser definido

Datas de Entrega dos Trabalhos: TB1 19/04/2020 e TB2 14/06/2020

Entrega via Moodle até as 23:59h dos dias indicados (domingo).

```
MF – Média Final

\underline{SE} ABs >= 5 \underline{E} ACs >= 5 \underline{E} TBs >= 5

\underline{ENTÃO}

MF = 0,5 * ABs + 0,2 * ACs + 0,3 * TBs

\underline{SENÃO}

MF = mínimo(ABs, ACs, TBs)
```

Dispensa da Segunda Avaliação Bimestral (AB2)

Os alunos estarão dispensados de realizar a AB2 **SE** obtiverem uma média aritmética superior ou igual a 7,5 em **todas** as Avaliações Contínuas do semestre (não apenas as 70% melhores notas) **E** tiverem uma nota na AB1 superior ou igual a 7,0 (sete). Neste caso a AB2 receberá o valor da AB1 para determinar a MF.

Mesmo tendo direito à dispensa da AB2, o aluno pode fazer esta avaliação, devendo apenas avisar previamente o docente que deseja fazê-la, para evitar gasto de energia e recursos desnecessariamente.

Controle de Frequência

Haverá controle de frequência nas aulas, conforme regras da USP

assinatura do aluno na lista (responsabilidade do aluno assinar)

E

chamada oral feita a critério do professor no início, meio ou fim da aula as avaliações podem ser usadas para validação da presença, a critério do professor

Prova de Recuperação (REC)

Conteúdo acumulativo do semestre todo. Provas com as mesmas regras das ABs. As regras específicas da REC serão disponibilizadas antes da prova pelo professor.

06/07/2020 (segunda) 10:00h ICMC/USP (Campus 1). Sala a confirmar.

Para poder fazer a REC serão seguidas as regras da USP:

Frequência $\geq 70\% E 3.0 \le MF < 5.0$

Bibliografia

PACHECO, P.S. An introduction to parallel programming. Morgan Kaufmann. Elsevier Science, 2011. ISBN: 978-0-12-374260-5

RAUBER, T.; RÜNGER, G. Parallel programming: for multicore and cluster systems. Springer, 2010. ISBN-10: 364204817X ou ISBN-13: 978-3642048173.

GRAMA,A.; KUMAR, U.; GUPTA,A.; KARYPIS, G. Introduction to Parallel Computing, 2nd Edition, 2003, ISBN: 0201648652.

QUINN, M.J. Parallel Programming in C with MPI and OpenMP, McGraw-Hill, Published 2003, ISBN: 0072822562.

STALLINGS, W. Arquitetura e Organização de Computadores: projeto para o desempenho, 5ª ed., Prentice-Hall, Inc., São Paulo, 2002.

SCOTT, L.R.; BAGHERI, B., Scientific Parallel Computing, 2005, Princeton University Press.

LASTOVETSKY, A.L. Parallel Computing on Heterogeneous Networks, 2003.

DONGARRA, J., et al Sourcebook of Parallel Computing, Morgan Kaufmann, John Wiley Sons, 2002, ISBN: 1558608710.

ALMASI,G.S.; GOTTLIEB,A. Highly Parallel Computing, 2a ed, The Benjamin/Cummings Publishing Company, Inc., 1994.

FOSTER, I. Designing and Building Parallel Programs, Addison-Wesley Publishing Company, 1994.

Dicas para Estudo

Slides e material de apoio usados pelo professor indicam o roteiro das aulas. Eles não são a aula. Estude pelos livros.

O conteúdo da disciplina é extenso. Estude semanalmente para o conteúdo não acumular.

Site da disciplina está no Moodle do STOA/USP. Este é o lugar para ver especificações e submeter os trabalhos

Contatos e Comunicação com os Alunos

Comunicação oficial ocorrerá em sala de aula e/ou via emails dos alunos registrados na USP.

Emails serão enviados pelo Moodle STOA/USP para a turma ou, conforme o caso, ao aluno em particular.

Para contatar o professor: pssouza@icmc.usp.br

Sala 4-136 ou 1-006 (LaSDPC), ICMC/USP Campus 1

Telefone: 3373-6623