

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
S1	4	("20040249809" "6609088").PN.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/03 14:57
S2	1	bounded with error same sub-tree	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/03 15:05
S3	50	bounded with error same compress\$3	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/03 15:06
S4	34	bounded with error with compress\$3	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/03 15:09
S5	1	bounded with error with compress\$3 same tree	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/03 15:10
S6	4897	search near2 tree	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:36
S7	4	search near2 tree same (time with weight)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:37
S8	99	search near2 tree same (time with level)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:37

EAST Search History

S9	15	search near2 tree same (time with level with node)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:47
S10	28	search near2 tree same (node with height)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:52
S11	1	sub-tree adj weight	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:54
S12	38	subtree with weight	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 10:57
S13	1	subtree with weight same pass	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/09 14:20
S14	15	subtree with weight same (single one)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 10:41
S15	204	affinity adj analysis	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 12:34
S16	2317	search adj tree	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 12:35

EAST Search History

S17	70	Iru with tree	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 12:40
S18	1	Iru with tree with stack	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 12:36
S19	1	Iru with tree with distance	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 12:36
S20	10	Iru with tree and locality	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 14:26
S21	4092	relative adj error	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/10 14:26
S22	10	relative adj error with tree	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 10:40
S23	1913	percent\$3 with histogram	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 10:42
S24	3	percent\$3 with histogram and Iru	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 14:43

EAST Search History

S25	502	linear adj fitting	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 11:07
S26	11219	histogram same distribution	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 14:43
S27	766	histogram same distribution same percent\$3	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 14:46
S28	33	histogram same distribution same percent\$3 same fit\$4	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 15:02
S29	15	histogram same linear adj fit\$4	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 15:31
S30	201	"reference affinity"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 15:32
S31	1044	affinity adj group	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/11 15:33
S32	62	affinity adj group with data	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:21

EAST Search History

S33	473	average with distance with limit	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:22
S34	5	average with distance with limit and cache	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:23
S35	3984	average with within with limit	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:24
S36	3088	(717/124-135).CCLS.	US-PGPUB; USPAT; USOCR	OR	OFF	2007/04/12 10:24
S37	0	S35 and S36	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:24
S38	22045	average with limit	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:24
S39	3	S36 and S38	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 10:26
S40	9	affinity adj group with average	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 11:01
S41	516	average adj affinity	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 11:01

EAST Search History

S42	0	average adj affinity with threshold	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 11:01
S43	3	average adj affinity with within	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 13:13
S44	3	k-percent	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 15:09
S45	3628	(717/140-161).CCLS.	US-PGPUB; USPAT; USOCR	OR	OFF	2007/04/12 15:09
S46	3088	(717/124-135).CCLS.	US-PGPUB; USPAT; USOCR	OR	OFF	2007/04/12 15:10
S47	336	reuse near distance	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 15:10
S48	2	(S45 S46) and S47	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 15:14
S49	0	711/159,160	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 15:14
S50	766	(711/159-160).CCLS.	US-PGPUB; USPAT; USOCR	OR	OFF	2007/04/12 15:15

EAST Search History

S51	0	S47 and S50	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/12 15:15
-----	---	-------------	---	----	----	------------------

[Subscribe \(Full Service\)](#) [Register \(Limited Service, Free\)](#) [Login](#)
 The ACM Digital Library The Guide

reference affinity

SEARCH**THE GUIDE TO COMPUTING LITERATURE**
[Feedback](#) [Report a problem](#) [Satisfaction survey](#)
Terms used reference affinity

Found 87,549 of 1,018,336

Sort results by

relevance [Save results to a Binder](#)Try an [Advanced Search](#)

Display results

expanded form [Search Tips](#)Try this search in [The Digital Library](#) [Open results in a new window](#)

Results 1 - 20 of 200

Result page: **1** [2](#) [3](#) [4](#) [5](#) [6](#) [7](#) [8](#) [9](#) [10](#) [next](#)

Best 200 shown

Relevance scale **1 Array regrouping and structure splitting using whole-program reference affinity**

Yutao Zhong, Maksim Orlovich, Xipeng Shen, Chen Ding

 June 2004 **ACM SIGPLAN Notices, Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and implementation PLDI '04**, Volume 39

Issue 6

Publisher: ACM PressFull text available: [pdf\(202.16 KB\)](#)Additional Information: [full citation](#), [abstract](#), [references](#), [citations](#), [index terms](#)

While the memory of most machines is organized as a hierarchy, program data are laid out in a uniform address space. This paper defines a model of *reference affinity*, which measures how close a group of data are accessed together in a reference trace. It proves that the model gives a hierarchical partition of program data. At the top is the set of all data with the weakest affinity. At the bottom is each data element with the strongest affinity. Based on the theoretical model, the paper p...

Keywords: array regrouping, program locality, program transformation, reference affinity, reuse signature, structure splitting, volume distance

2 Session 4: compilers 1: Lightweight reference affinity analysis

Xipen Shen, Yaoqing Gao, Chen Ding, Roch Archambault

 June 2005 **Proceedings of the 19th annual international conference on Supercomputing ICS '05****Publisher:** ACM PressFull text available: [pdf\(354.12 KB\)](#)Additional Information: [full citation](#), [abstract](#), [references](#), [index terms](#)

Previous studies have shown that array regrouping and structure splitting significantly improve data locality. The most effective technique relies on profiling every access to every data element. The high overhead impedes its adoption in a general compiler. In this paper, we show that for array regrouping in scientific programs, the overhead is not needed since the same benefit can be obtained by pure program analysis. We present an interprocedural analysis technique for array regrouping. For eac ...

Keywords: affinity, compiler, data interleaving, data regrouping, frequency, memory optimization

3 Exploiting cache affinity in software cache coherence

[Subscribe \(Full Service\)](#) [Register \(Limited Service, Free\)](#) [Login](#)
 The ACM Digital Library The Guide

average affinity

SEARCH**THE GUIDE TO COMPUTING LITERATURE**
[Feedback](#) [Report a problem](#) [Satisfaction survey](#)
Terms used average affinity

Found 56,614 of 1,018,336

Sort results by

relevance Save results to a Binder[Try an Advanced Search](#)

Display results

expanded form Search Tips[Try this search in The Digital Library](#) Open results in a new window

Results 1 - 20 of 200

Result page: [1](#) [2](#) [3](#) [4](#) [5](#) [6](#) [7](#) [8](#) [9](#) [10](#) [next](#)

Best 200 shown

Relevance scale

1 [The implications of cache affinity on processor scheduling for multiprogrammed, shared memory multiprocessors](#)

Raj Vaswani, John Zahorjan

September 1991 **ACM SIGOPS Operating Systems Review, Proceedings of the thirteenth ACM symposium on Operating systems principles SOSP '91**, Volume 25 Issue 5

Publisher: ACM Press

Full text available: [pdf\(1.57 MB\)](#)Additional Information: [full citation](#), [abstract](#), [references](#), [citations](#), [index terms](#)

In a shared memory multiprocessor with caches, executing tasks develop "affinity" to processors by filling their caches with data and instructions during execution. A scheduling policy that ignores this affinity may waste processing power by causing excessive cache refilling. Our work focuses on quantifying the effect of processor reallocation on the performance of various parallel applications multiprogrammed on a shared memory multiprocessor, and on evaluating how the magnitude of this cost aff ...

2 [Array regrouping and structure splitting using whole-program reference affinity](#)

 Yutao Zhong, Maksim Orlovich, Xipeng Shen, Chen Ding
June 2004 **ACM SIGPLAN Notices, Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and implementation PLDI '04**, Volume 39 Issue 6

Publisher: ACM Press

Full text available: [pdf\(202.16 KB\)](#)Additional Information: [full citation](#), [abstract](#), [references](#), [citations](#), [index terms](#)

While the memory of most machines is organized as a hierarchy, program data are laid out in a uniform address space. This paper defines a model of *reference affinity*, which measures how close a group of data are accessed together in a reference trace. It proves that the model gives a hierarchical partition of program data. At the top is the set of all data with the weakest affinity. At the bottom is each data element with the strongest affinity. Based on the theoretical model, the paper p ...

Keywords: array regrouping, program locality, program transformation, reference affinity, reuse signature, structure splitting, volume distance

3 [Affinity-based management of main memory database clusters](#)

Minwen Ji