

Notice of Allowability	Application No.	Applicant(s)	
	10/849,818	SANDHU ET AL	
	Examiner Ronald Baum	Art Unit 2136	

— The MAILING DATE of this communication appears on the cover sheet with the correspondence address—

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTO-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. This communication is responsive to 4/29/05.
2. The allowed claim(s) is/are 1-18.
3. Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All
 - b) Some*
 - c) None
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: _____.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.

4. A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
 5. CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
 - (a) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) hereto or 2) to Paper No./Mail Date _____.
 - (b) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date _____.
- Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6. DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. Notice of References Cited (PTO-892)
2. Notice of Draftsperson's Patent Drawing Review (PTO-948)
3. Information Disclosure Statements (PTO-1449 or PTO/SB/08),
Paper No./Mail Date 12282005
4. Examiner's Comment Regarding Requirement for Deposit
of Biological Material
5. Notice of Informal Patent Application (PTO-152)
6. Interview Summary (PTO-413),
Paper No./Mail Date 12282005.
7. Examiner's Amendment/Comment
8. Examiner's Statement of Reasons for Allowance
9. Other _____.

AYAZ SHEIKH
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100

DETAILED ACTION

EXAMINER'S AMENDMENT

An examiner's amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner's amendment was given in a telephone interview with Alfred Stadnicki, Reg. No. 30,226 on 1/3/2006.

1. Replace claims 1,9,10,17 with the following (shown *marked up* here, followed by *clean version*):

1. A system for accessing multiple different network stations without entry of a password, comprising:

a first network station

representing a network entity and

configured to

transmit a request for authentication of a user seeking access,

the user having

an associated password,

an associated user identifier, and

an associated asymmetric crypto-key, including

a first private key portion
obtainable with the password,
a second private key portion and
a public key portion;

a second network station
representing the user, and
having
the user identifier,
a combination symmetric crypto-key corresponding to
a first symmetric crypto-key and
a second symmetric crypto-key, and
the obtained first private key portion
encrypted with
the first symmetric crypto-key stored thereat, and
configured to

(i) transmit
the stored user identifier [MAC'd] message authenticated coded
with
the stored combination symmetric crypto-key responsive to
the transmitted authentication request, and

(ii) transmit
the transmitted authentication request

encrypted with
the stored combination symmetric crypto-key; and
a third network station,
representing a sponsor,
having
the user identifier,
the combination symmetric crypto-key,
the first symmetric crypto-key, and
the second private key portion stored thereat, and
configured to
(i) retrieve
the stored combination symmetric crypto-key by matching
the transmitted user identifier with
the stored user identifier,
(ii) verify
the MAC with
the retrieved combination symmetric crypto-key to
verify identity of the user,
(iii) decrypt
the transmitted encrypted authentication request with
the retrieved combination symmetric crypto-key to
recover the authentication request,

(iv) encrypt

the recovered authentication request with
the stored second private key portion and

(v) transmit

the encrypted authentication request and
the first symmetric crypto-key,
both encrypted with
the retrieved combination symmetric crypto-key;

wherein the second network station is further configured to

(i) decrypt

the transmitted encrypted authentication request and
first symmetric crypto-key, with
the stored combination symmetric crypto-key

to recover

the encrypted authentication request and
the first symmetric crypto-key,

(ii) decrypt

the stored encrypted first private key portion with
the recovered first symmetric crypto-key

to recover

the first private key portion,

(iii) to transmit

the recovered encrypted authentication request further
encrypted with
the recovered first private key portion; and
wherein the first station is further configured to
decrypt the transmitted further encrypted authentication request with
the public key
to thereby authenticate the user.

9. A system for accessing multiple different network stations, comprising:

a first station

representing a user

having

a password,

an identifier, and

an asymmetric crypto-key, including

a first private key portion,

a second private key portion and

a public key portion, and

configured

to transmit a log-in request including

the user identifier; and

a second station

representing a sponsor and
configured
to transmit a challenge responsive to
the transmitted log-in request;

wherein the first station is further configured

- (i) to process the user password
to obtain the first private key portion,
- (ii) to encrypt
a first symmetric crypto-key and
the transmitted challenge with
the obtained first private key portion
to form a first encrypted message, and
- (iii) to transmit the first encrypted message;

wherein the second station is further configured

- (i) to decrypt
the transmitted first encrypted message with
the second private key portion
to recover
the challenge and
the first symmetric crypto-key,
thereby authenticating the user,
- (ii) to combine

the recovered first symmetric crypto-key with
a second symmetric crypto-key
to form a combined symmetric crypto-key,
(iii) to store the combined symmetric crypto-key,
(iv) to encrypt
the second symmetric crypto-key and
a time value with the first symmetric crypto-key
to form a second encrypted message, and
(v) to transmit the second encrypted message;
wherein the first station is further configured
(i) to decrypt
the transmitted second encrypted message with
the first symmetric crypto-key
to recover
the second symmetric crypto-key and
the time value,
thereby authenticating the sponsor,
(ii) to combine
the recovered second symmetric crypto-key with
the first symmetric crypto-key
to form the combined symmetric crypto-key,
(iii) to encrypt

the first private key portion with

the first symmetric crypto-key,

(iv) to destroy

the first symmetric crypto-key and

the obtained first private key portion,

(v) to encrypt

a request for user authentication from another network entity with

the combined symmetric crypto-key

to form a third encrypted message and

(vi) to transmit

the user identifier,

[MAC'd] message authenticated coded with

the combined symmetric crypto-key, and

the third encrypted message;

wherein the second station is further configured

(i) to match

the transmitted user identifier with

the previously transmitted user identifier

to retrieve the combined symmetric crypto-key,

(ii) verify

the MAC with

the retrieved combined symmetric crypto-key

to verify identity of the user,

(iii) to decrypt

the third encrypted message with

the combined symmetric crypto-key

to recover the request for user authentication,

(iv) to encrypt

the request for user authentication with

the second private key portion

to form a fourth encrypted message,

(v) to encrypt

the first symmetric crypto-key and

the fourth encrypted message with

the combined symmetric crypto-key

to form a fifth encrypted message and

(vi) to transmit the fifth encrypted message;

wherein the first network station is further configured

(i) to decrypt

the transmitted fifth encrypted message with

the combined symmetric crypto-key

to recover

the transmitted first symmetric crypto-key and

the transmitted fourth encrypted message, and

thereby verify an identity of the sponsor,

(ii) to decrypt

the encrypted first private key portion with

the recovered first symmetric crypto-key,

(iii) to further encrypt

the recovered fourth encrypted message with

the decrypted first private key portion

to form an authentication message,

(iv) to transmit the authentication message to

the other network entity

to authenticate the user.

10. A method for accessing multiple different network stations without entry of a password associated with a user also having an associated identifier and an associated asymmetric crypto-key, including a first private key portion obtainable with the password, a second private key portion and a public key portion, comprising:

receiving a request for authentication of the user;

retrieving from a first memory,

without entry of the user password,

the user identifier,

a combination symmetric crypto-key corresponding to

a first symmetric crypto-key and

a second symmetric crypto-key, and
the first private key portion
encrypted with
the first symmetric crypto-key;
encrypting
the transmitted authentication request with
the retrieved combination symmetric crypto-key;
transmitting
the retrieved user identifier
[MAC'd] message authenticated coded with
the retrieved combination symmetric crypto-key, and
the received authentication request
encrypted with
the retrieved combination symmetric crypto-key;
matching
the transmitted user identifier with
a user identifier stored in a second memory, different than the first memory,
to retrieve the combination symmetric crypto-key from the second memory;
verifying
the MAC with
the retrieved combination symmetric crypto-key
to verify identity of the user;

decrypting

the transmitted encrypted authentication request with
the combination symmetric crypto-key
to recover the authorization request;

retrieving

the second private key portion and
the first symmetric crypto-key from the second memory;

encrypting

the recovered authorization request with
the retrieved second private key portion
to form an authentication message;

transmitting

the authentication message and
the retrieved first symmetric crypto-key,
both encrypted with
the combination symmetric crypto-key;

decrypting

the transmitted encrypted authentication message and
first symmetric crypto-key, with
the combination symmetric crypto-key retrieved from the first memory
to recover
the authentication message and

the first symmetric crypto-key;
decrypting
the retrieved encrypted first private key portion with
the recovered first symmetric crypto-key;
encrypting
the recovered authentication message with
the decrypted first private key portion
to complete the authentication message;
transmitting the completed authentication message; and
decrypting
the transmitted completed authentication message with
the user public key to thereby authenticate the user.

17. A method for accessing multiple different network stations by a user having a user identifier, a user password and an asymmetric crypto-key, including a first private key portion, a second private key portion and a public key portion;
transmitting a log-in request including the user identifier;
transmitting
a challenge of a sponsor responsive
to the transmitted log-in request;
processing
the user password

to obtain the first private key portion;
encrypting
a first symmetric crypto-key and
the transmitted challenge with
the obtained first private key portion
to form a first encrypted message;
transmitting the first encrypted message;
decrypting
the transmitted first encrypted message with
the second private key portion
to recover
the challenge and
the first symmetric crypto-key, and
thereby authenticate the user to the sponsor;
combining
the recovered first symmetric crypto-key with
a second symmetric crypto-key
to form a combined symmetric crypto-key;
storing
the combined symmetric crypto-key
in a first memory;
encrypting

the second symmetric crypto-key with
the first symmetric crypto-key
to form a second encrypted message;
transmitting the second encrypted message;
decrypting
the transmitted second encrypted message with
the first symmetric crypto-key
to recover
the second symmetric crypto-key, and
thereby authenticate the sponsor to the user;
combining
the recovered second symmetric crypto-key with
the first symmetric crypto-key
to form the combined symmetric crypto-key;
storing
the combined symmetric crypto-key
in a second memory,
different than the first memory;
encrypting
the first private key portion with
the first symmetric crypto-key;
destroying

the first symmetric crypto-key used to encrypt the first private key portion and
the obtained first private key portion;
encrypting
a request for authentication of the user with
the combined symmetric crypto-key
to form a third encrypted message;
transmitting
the user identifier,
[MAC'd] message authenticated coded with
the combined symmetric crypto-key, and
the third encrypted message;
matching
the transmitted user identifier with
the previously transmitted user identifier
to retrieve the combined symmetric crypto-key from the second memory;
verifying
the transmitted MAC with
the retrieved combined symmetric crypto-key
to verify an identity of the user;
decrypting
the third encrypted message with
the combined symmetric crypto-key

to recover the request for user authentication;
encrypting
the request for user authentication with
the second private key portion
to form a fourth encrypted message;
encrypting
the first symmetric crypto-key and
the fourth encrypted message with
the combined symmetric crypto-key stored in the first memory
to form a fifth encrypted message;
transmitting the fifth encrypted message;
decrypting
the transmitted fifth encrypted message with
the combined symmetric crypto-key stored in the second memory
to recover
the transmitted first symmetric crypto-key and
the transmitted fourth encrypted message, and
thereby verify an identity of the sponsor;
decrypting
the encrypted first private key portion with
the recovered first symmetric crypto-key;
further encrypting

the recovered fourth encrypted message with
the decrypted first private key portion
to form an authentication message;
transmitting
the authentication message
to the other network entity
to authenticate the user.

Clean claim version:

1. A system for accessing multiple different network stations without entry of a password, comprising:

a first network station
representing a network entity and
configured to
transmit a request for authentication of a user seeking access,
the user having
an associated password,
an associated user identifier, and
an associated asymmetric crypto-key, including
a first private key portion
obtainable with the password,
a second private key portion and

a public key portion;

a second network station

representing the user, and

having

the user identifier,

a combination symmetric crypto-key corresponding to

a first symmetric crypto-key and

a second symmetric crypto-key, and

the obtained first private key portion

encrypted with

the first symmetric crypto-key stored thereat, and

configured to

(i) transmit

the stored user identifier message authenticated coded with

the stored combination symmetric crypto-key responsive to

the transmitted authentication request, and

(ii) transmit

the transmitted authentication request

encrypted with

the stored combination symmetric crypto-key; and

a third network station,

representing a sponsor,

having

the user identifier,

the combination symmetric crypto-key,

the first symmetric crypto-key, and

the second private key portion stored thereat, and

configured to

(i) retrieve

the stored combination symmetric crypto-key by matching

the transmitted user identifier with

the stored user identifier,

(ii) verify

the MAC with

the retrieved combination symmetric crypto-key to

verify identity of the user,

(iii) decrypt

the transmitted encrypted authentication request with

the retrieved combination symmetric crypto-key to

recover the authentication request,

(iv) encrypt

the recovered authentication request with

the stored second private key portion and

(v) transmit

the encrypted authentication request and
the first symmetric crypto-key,
both encrypted with
the retrieved combination symmetric crypto-key;

wherein the second network station is further configured to

(i) decrypt

the transmitted encrypted authentication request and
first symmetric crypto-key, with
the stored combination symmetric crypto-key
to recover

the encrypted authentication request and
the first symmetric crypto-key,

(ii) decrypt

the stored encrypted first private key portion with
the recovered first symmetric crypto-key
to recover

the first private key portion,

(iii) to transmit

the recovered encrypted authentication request further
encrypted with
the recovered first private key portion; and

wherein the first station is further configured to

decrypt the transmitted further encrypted authentication request with
the public key

to thereby authenticate the user.

9. A system for accessing multiple different network stations, comprising:

a first station

representing a user

having

a password,

an identifier, and

an asymmetric crypto-key, including

a first private key portion,

a second private key portion and

a public key portion, and

configured

to transmit a log-in request including

the user identifier; and

a second station

representing a sponsor and

configured

to transmit a challenge responsive to

the transmitted log-in request;

wherein the first station is further configured

- (i) to process the user password
 - to obtain the first private key portion,
- (ii) to encrypt
 - a first symmetric crypto-key and
 - the transmitted challenge with
 - the obtained first private key portion
 - to form a first encrypted message, and
- (iii) to transmit the first encrypted message;

wherein the second station is further configured

- (i) to decrypt
 - the transmitted first encrypted message with
 - the second private key portion
 - to recover
 - the challenge and
 - the first symmetric crypto-key,
 - thereby authenticating the user,
- (ii) to combine
 - the recovered first symmetric crypto-key with
 - a second symmetric crypto-key
 - to form a combined symmetric crypto-key,
- (iii) to store the combined symmetric crypto-key,

(iv) to encrypt

the second symmetric crypto-key and
a time value with the first symmetric crypto-key
to form a second encrypted message, and

(v) to transmit the second encrypted message;

wherein the first station is further configured

(i) to decrypt

the transmitted second encrypted message with
the first symmetric crypto-key
to recover
the second symmetric crypto-key and
the time value,
thereby authenticating the sponsor,

(ii) to combine

the recovered second symmetric crypto-key with
the first symmetric crypto-key
to form the combined symmetric crypto-key,

(iii) to encrypt

the first private key portion with
the first symmetric crypto-key,

(iv) to destroy

the first symmetric crypto-key and

the obtained first private key portion,

(v) to encrypt

a request for user authentication from another network entity with
the combined symmetric crypto-key
to form a third encrypted message and

(vi) to transmit

the user identifier,
message authenticated coded with
the combined symmetric crypto-key, and
the third encrypted message;

wherein the second station is further configured

(i) to match

the transmitted user identifier with
the previously transmitted user identifier
to retrieve the combined symmetric crypto-key,

(ii) verify

the MAC with
the retrieved combined symmetric crypto-key
to verify identity of the user,

(iii) to decrypt

the third encrypted message with
the combined symmetric crypto-key

to recover the request for user authentication,

(iv) to encrypt

the request for user authentication with
the second private key portion
to form a fourth encrypted message,

(v) to encrypt

the first symmetric crypto-key and
the fourth encrypted message with
the combined symmetric crypto-key
to form a fifth encrypted message and

(vi) to transmit the fifth encrypted message;

wherein the first network station is further configured

(i) to decrypt

the transmitted fifth encrypted message with
the combined symmetric crypto-key
to recover
the transmitted first symmetric crypto-key and
the transmitted fourth encrypted message, and
thereby verify an identity of the sponsor,

(ii) to decrypt

the encrypted first private key portion with
the recovered first symmetric crypto-key,

(iii) to further encrypt

the recovered fourth encrypted message with

the decrypted first private key portion

to form an authentication message,

(iv) to transmit the authentication message to

the other network entity

to authenticate the user.

10. A method for accessing multiple different network stations without entry of a password associated with a user also having an associated identifier and an associated asymmetric crypto-key, including a first private key portion obtainable with the password, a second private key portion and a public key portion, comprising:

receiving a request for authentication of the user;

retrieving from a first memory,

without entry of the user password,

the user identifier,

a combination symmetric crypto-key corresponding to

a first symmetric crypto-key and

a second symmetric crypto-key, and

the first private key portion

encrypted with

the first symmetric crypto-key;

encrypting

the transmitted authentication request with
the retrieved combination symmetric crypto-key;

transmitting

the retrieved user identifier
message authenticated coded with
the retrieved combination symmetric crypto-key, and
the received authentication request
encrypted with
the retrieved combination symmetric crypto-key;

matching

the transmitted user identifier with
a user identifier stored in a second memory, different than the first memory,
to retrieve the combination symmetric crypto-key from the second memory;

verifying

the MAC with
the retrieved combination symmetric crypto-key
to verify identity of the user;

decrypting

the transmitted encrypted authentication request with
the combination symmetric crypto-key
to recover the authorization request;

retrieving

the second private key portion and

the first symmetric crypto-key from the second memory;

encrypting

the recovered authorization request with

the retrieved second private key portion

to form an authentication message;

transmitting

the authentication message and

the retrieved first symmetric crypto-key,

both encrypted with

the combination symmetric crypto-key;

decrypting

the transmitted encrypted authentication message and

first symmetric crypto-key, with

the combination symmetric crypto-key retrieved from the first memory

to recover

the authentication message and

the first symmetric crypto-key;

decrypting

the retrieved encrypted first private key portion with

the recovered first symmetric crypto-key;

encrypting

the recovered authentication message with

the decrypted first private key portion

to complete the authentication message;

transmitting the completed authentication message; and

decrypting

the transmitted completed authentication message with

the user public key to thereby authenticate the user.

17. A method for accessing multiple different network stations by a user having a user identifier, a user password and an asymmetric crypto-key, including a first private key portion, a second private key portion and a public key portion;

transmitting a log-in request including the user identifier;

transmitting

a challenge of a sponsor responsive

to the transmitted log-in request;

processing

the user password

to obtain the first private key portion;

encrypting

a first symmetric crypto-key and

the transmitted challenge with

the obtained first private key portion
to form a first encrypted message;
transmitting the first encrypted message;
decrypting
the transmitted first encrypted message with
the second private key portion
to recover
the challenge and
the first symmetric crypto-key, and
thereby authenticate the user to the sponsor;

combining
the recovered first symmetric crypto-key with
a second symmetric crypto-key
to form a combined symmetric crypto-key;

storing
the combined symmetric crypto-key
in a first memory;

encrypting
the second symmetric crypto-key with
the first symmetric crypto-key
to form a second encrypted message;
transmitting the second encrypted message;

decrypting

the transmitted second encrypted message with

the first symmetric crypto-key

to recover

the second symmetric crypto-key, and

thereby authenticate the sponsor to the user;

combining

the recovered second symmetric crypto-key with

the first symmetric crypto-key

to form the combined symmetric crypto-key;

storing

the combined symmetric crypto-key

in a second memory,

different than the first memory;

encrypting

the first private key portion with

the first symmetric crypto-key;

destroying

the first symmetric crypto-key used to encrypt the first private key portion and

the obtained first private key portion;

encrypting

a request for authentication of the user with

the combined symmetric crypto-key
to form a third encrypted message;
transmitting
the user identifier,
message authenticated coded with
the combined symmetric crypto-key, and
the third encrypted message;
matching
the transmitted user identifier with
the previously transmitted user identifier
to retrieve the combined symmetric crypto-key from the second memory;
verifying
the transmitted MAC with
the retrieved combined symmetric crypto-key
to verify an identity of the user;
decrypting
the third encrypted message with
the combined symmetric crypto-key
to recover the request for user authentication;
encrypting
the request for user authentication with
the second private key portion

to form a fourth encrypted message;
encrypting
the first symmetric crypto-key and
the fourth encrypted message with
the combined symmetric crypto-key stored in the first memory
to form a fifth encrypted message;
transmitting the fifth encrypted message;
decrypting
the transmitted fifth encrypted message with
the combined symmetric crypto-key stored in the second memory
to recover
the transmitted first symmetric crypto-key and
the transmitted fourth encrypted message, and
thereby verify an identity of the sponsor;
decrypting
the encrypted first private key portion with
the recovered first symmetric crypto-key;
further encrypting
the recovered fourth encrypted message with
the decrypted first private key portion
to form an authentication message;
transmitting

the authentication message
to the other network entity
to authenticate the user.

Examiner's Statement of Reasons for Allowance

2. Claims 1-18 are allowed over prior art.
3. This action is in reply to applicant's correspondence of 29 April 2005
4. The following is an examiner's statement of reasons for the indication of allowable claimed subject matter.
5. As per claims 1,9,10,17,18, generally, prior art of record, Erfani, U.S. Patent 6,542,993 B1, Jablon, U.S. Patent Pub. US2002/0067832 A1, Panjwani, U.S. Patent Pub. US2002/0018569 A1, Jablon, U.S. Patent 6,226,383 B1, Weber et al, U.S. Patent 6,178,409 B1, Underwood, U.S. Patent 6,704,873 B1, Ginter et al, U.S. Patent 6,948,070 B1, Oracle, and Fu et al fails to teach alone, or in combination, other than hindsight, at the time of the invention, the claimed features and limitations. Generally, prior art of record deals with various authentication schemes/system management aspects (Erfani, Jablon, Weber et al, Underwood, Fu and Ginter et al) comprising encryption (public, symmetric, session/transaction oriented), hashing, MAC functions, and information token aspects of the communications of the authentication request/responses across various network architectures (i.e., the Internet). The encryption service (i.e., key generation/exchange, partial and key exchange in the entirety) aspects are taught in the prior art of record (Panjwani, Jablon, Oracle and Fu) such that the various protocols per se (i.e., PKI, session/SSL, etc.,) are generally taught in association to applications dealing with network

communications/security services, but, the combination of authentication, encryption, and network architecture limitations are not taught, or are in any way other than hindsight, obvious.

6. Dependent claims 2-8,11-16 are allowable by virtue of their dependencies.

Conclusion

7. Any inquiry concerning this communication or earlier communications from examiner should be directed to Ronald Baum, whose telephone number is (571) 272-3861, and whose unofficial Fax number is (571) 273-3861. The examiner can normally be reached Monday through Thursday from 8:00 AM to 5:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ayaz Sheikh, can be reached at (571) 272-3795. The Fax number for the organization where this application is assigned is **571-273-8300**.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. For more information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Ronald Baum

Patent Examiner

AYAZ SHEIKH
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100