Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria ordinaria

Ejercicio 1. (2.5 puntos) Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C}^* \setminus \mathbb{R}^- \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_1^2 \frac{\log(nz + t^2)}{n^2 + t^2} dt.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-)$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb{C}^* \setminus \mathbb{R}^-$ y que su suma es una función holomorfa en $\mathbb{C}^* \setminus \mathbb{R}^-$.

Ejercicio 2. (2.5 puntos) Probar que, para $a, t \in \mathbb{R}^+$, se tiene:

$$\int_{-\infty}^{+\infty} \frac{\cos(tx)}{(x^2 + a^2)^2} dx = \frac{\pi}{2a^3} (1 + at) e^{-at}.$$

Ejercicio 3. (2.5 puntos) Probar que una función $f \in \mathcal{H}(\mathbb{C}^*)$ que diverge en cero y en infinito tiene al menos un cero. Probar además que el número de ceros de f es finito y mayor o igual que 2 (contando multiplicidad).

Ejercicio 4. (2.5) Probar el Lema de Schwarz: Sea $f \in \mathcal{H}(D(0,1))$ verificando f(0) = 0 y $|f(z)| \leq 1$ para cada $z \in D(0,1)$. Probar que $|f'(0)| \leq 1$ y $|f(z)| \leq |z|$ para cada $z \in D(0,1)$. Además, si ocurre |f'(0)| = 1 o $|f(z_0)| = |z_0|$ para algún $z_0 \in D(0,1) \setminus \{0\}$, entonces existe $\alpha \in \mathbb{C}$ de modo que $f(z) = \alpha z$ para cada $z \in D(0,1)$.

Pista: Para cada 0 < r < 1 estimar convenientemente el valor $\max\{|g(z)|: z \in \overline{D}(0,r)\}$ donde la función $g: D(0,1) \to \mathbb{C}$ viene dada por g(0) = f'(0) y $g(z) = \frac{f(z)}{z}$ para cada $z \in D(0,1)$.