Math 8100 Assignment 9

Due date: Friday 19th of November 2010

- 1. For each $k \in \mathbb{Z}$, define $\{u_k\} \in \ell^2(\mathbb{Z})$ by $u_k(j) = 1$ if j = k, $u_k(j) = 0$ otherwise. Verify that the set $\{u_k\}_{k \in \mathbb{Z}}$ forms a complete orthonormal system in $\ell^2(\mathbb{Z})$.
- 2. In $L^2(0,1)$ let $e_0(x) = 1$, $e_1(x) = \sqrt{3}(2x-1)$ for all $x \in (0,1)$.
 - (a) Show that e_0 , e_1 is an orthonormal system in $L^2(0,1)$.
 - (b) Show that the polynomial of degree 1 which is closest with respect to the norm of $L^2(0,1)$ to the function $f(x) = x^2$ is given by g(x) = x 1/6. What is $||f g||_2$?
- 3. Let E be a subset of a Hilbert space H.
 - (a) Show that E^{\perp} is a closed subspace of H.
 - (b) Show that $(E^{\perp})^{\perp}$ is the smallest closed subspace of H that contains E.
- 4. (a) The first three Legendre polynomials are

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = (3x^2 - 1)/2$.

Show that the orthonormal system in $L^2(-1,1)$ obtained by applying the Gram-Schmidt process to $1, x, x^2$ are scalar multiples of these.

(b) Compute

$$\min_{a,b,c} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 dx$$

(c) Find

$$\max \int_{-1}^{1} x^3 g(x) \, dx$$

where g is subject to the restrictions

$$\int_{-1}^{1} g(x) \, dx = \int_{-1}^{1} x g(x) \, dx = \int_{-1}^{1} x^{2} g(x) \, dx = 0; \quad \int_{-1}^{1} |g(x)|^{2} \, dx = 1.$$

- 5. (a) Verify that the following systems are orthogonal in $L^2(E)$:
 - i. $\{1/2, \cos x, \sin x, \dots, \cos kx, \sin kx, \dots\}$, when E is any interval of length 2π .
 - ii. $\{e^{2\pi ikx/(b-a)}\}_{k=-\infty}^{\infty}$, when E=(a,b).
 - (b) Let $f \in L^1(0, 2\pi)$.
 - i. Show that for any $\epsilon > 0$ we can write f = g + h, where $g \in L^2$ and $||h||_1 < \epsilon$.
 - ii. Use this decomposition of f to prove the Riemann-Lebesgue lemma:

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx \, dx = 0$$

6. Prove that every closed convex set K in a Hilbert space has a unique element of minimal norm.

Hint: If $0 \in K$, then the result is trivial; otherwise adapt the proof of Theorem 5.24 in Folland.

Challenge Problem IX

Hand this in to me at some point in the semester

IX. The Mean Ergodic Theorem:

Let U be a unitary operator on a Hilbert space H, $M = \{x : Ux = x\}$, P be the orthogonal projection onto M and $S_N = \frac{1}{N} \sum_{n=0}^{N-1} U^n$. Prove that $||S_N x - Px|| \to 0$ as $N \to \infty$ for all $x \in H$.

1