西安电子科技大学

考试时间 120 分钟

试

题

	题号	_	1		Ξ	•	总分	
	分数							
1	L L.考试形式 :		L 试日期: 202	 20年8月	日;	 3.本试卷共 3 元	」 大题,满分 100 分。	
Ę	班级	学号_		_姓名		任课教师_		
	NOTF: Write	e all answers	on the answe	er cheet				
				i siicet.				
Q.1	: Multiple (Choice. (20 _]	points)					
. A	system	is usually	has the high	her priority	on ke	ey decisions in	information system	
leve	elopment.							
	A. owner			B.	B. designer			
	C. user			D.	analys	st		
2.	syster	ms are front-	office inform	ation syste	ms wh	ich support bu	siness functions that	
exte	nd out to the	e organization	n's customers	8.				
	A. Inventory	control		В.	Huma	n resources		
	C. Customer	r managemen	t	D.	Manu	facturing		
3. " <i>F</i>	A standard sy	ystem develoj	pment proces	ss ('method	ology') purchased or	developed", which is	
oelo	ngs to CMM	level						
	A. 1			В.	2			
	C. 3			D.	4			
4. A	is th	e activity of o	documenting	, managing	, and c	ontinually imp	roving the process of	
syst	ems developi	ment.						
	A. project			В.	project	t management		
	C. system de	evelopment		D.	proces	ss management		
5	integrat	es various ap	proaches of s	ystems ana	lysis ar	nd design for ap	plications as deemed	
appi	ropriate to th	ne problem be	ing solved ar	nd the syste	m bein	g developed.		
	A. Informati	ion engineerii	ng	B.	Struct	ured analysis		
	C. Agile met	chod		D.	Rapid	analysis		
5. W	hen perforn	ning "observa	tion" fact-fin	ding metho	od,	is NOT app	oropriate?	
	A. obtain pe	rmission fron	n appropriate	e supervisoi	s or m	anagers		
	B. make som	e assumption	ıs					
	C. keep a lov	w profile						
	D. don't focu	us heavily on	trivial activit	ries				

7	is a graphical tool used to identify, exp	lore, and depict problems and the causes and
effec	ets of those problems.	
	A. Ishikawa (Fishbone) diagram	B. PERT chart
	C. Gantt chart	D. Workflow diagram
8	defines the minimum and maximum r	number of occurrences of one entity that may
be re	elated to a single occurrence of the other entity	•
	A. Subsetting criteria	B. Generalization
	C. Cardinality	D. Degree
9	is a process model used to depict the flo	ow of data through a system and the work or
proc	ressing performed by the system.	
	A. Flow chart	B. Data flow diagram
	C. Activity diagram	D. E-R diagram
10	is a measure of how well the solution	will work in the organization. It is also a
meas	sure of how people feel about the system/projec	ct
	A. Operational feasibility	B. Economic feasibility
	C. Schedule feasibility	D. Technical feasibility
11. A	(n) $\underline{\hspace{1cm}}$ relationship is used to model the	association between two classes: To indicate
that	when a change occurs in one class, it may affe	ect the other class. To indicate the association
betv	veen a persistent class and a transient class.	
	A. inheritance	B. dependency
	C. aggregation	D. composition
12. T	The approach is an iterative process in	volving a close working relationship between
the	designer and the users, to generate a small-	scale, incomplete, but working sample of a
desi	red system.	
	A. information engineering	B. prototype
	C. object-oriented design	D. rapid application development
	Data partitioning truly distributes rows and c	-
with	a little or no duplication assigns differe	ent columns to different servers.
	A. Vertical partitioning	B. Horizontal partitioning
	C. Orthogonal partitioning	D. Top-down partitioning
l4	is the process of translating the source	e data or document into a computer readable
form	nat.	
	A. Data entry	B. Data mining
	C. Data process	D. Data capture
15	is an internal output that presents inform	mation with little or no filtering.
	A. Daily report	B. Summary report
	C. Exception report	D. Detailed report
	n processing, the entered data is collected	ed into files called batches and processed as a
	plete batch.	
	A. batch	B. on-line
	C interactive	D remote batch

17. According to Galitz,	does NO1 result in confusion, panic, frustration, boredom,				
misuse, abandonment, and other u	undesirable consequences.				
A. excessive use of computer	A. excessive use of computer jargon and acronyms				
B. obvious or intuitive design	B. obvious or intuitive design				
C. inability to distinguish bet	C. inability to distinguish between alternative actions				
D. inconsistent problem-solv	D. inconsistent problem-solving approaches				
18 objects that hold applie	objects that hold application or business rule logic.				
A. Process	B. Control				
C. Entity	D. Interface				
19. The relationship wou	ld be used to limit the message sending between objects to one				
direction.					
A. association	B. navigability				
C. visibility	D. directional				
20 models the logic of a u	use case by depicting the flows of messages between objects in				
message sequence.					
A. Class diagram	B. Activity diagram				
C. Sequence diagram	D. Collaboration diagram				

Q.2: For each of the tasks listed below, draw a PERT chart and determine the critical path. (20 points)

Activity ID	Activity Description	Duration (Weeks)	Predecessor
A	Preliminary investigation	1	None
В	Problem analysis	2	A
С	Data requirement analysis	3	В
D	Process requirement analysis	5	В
E	Logical database design	6	С
F	Normalized form analysis	4	С
G	Physical database design	3	E, F
Н	Dataflow design	6	D, F
I	Interface design	4	G, H
J	System implementation	30	Ι
K	System testing	10	J
L	Installation	5	K

USE THE FOLLOWING NOTATION WHEN DRAWING THE PERT CHART.

Activity ID		
Early Start	Duration	
Late Start	Slack Time	

Q.3: Given the narrative description, answer the questions. (60 points)

The Xidian University Libraries is affiliated to Xidian University with 17 lending rooms (借阅室) in the two campuses. The manager has decided to redesign its collection material database named XLD. Currently, the database holds information on:

- ♦ Books, videos and CDs available for borrowing;
- ❖ Every item (book, video, CD) has a unique collection ID, a title, and an ISBN which is unique for every publication; every item may be in good order or damaged; note that if there are 10 copies of a single book, they have distinct collection ID, but identical ISBN;
- ♦ Books can be in Chinese, English, or another language; in either case, the database stores the language the book is written in;
- ♦ Books have a publisher and one or more authors; CDs and videos have a unique producer, and one or more artists.

In addition, the database maintains data on library users and their borrowed material:

- ♦ Each user has a unique userID, address, phone; users can be teachers, postgraduate or undergraduate students; each user can borrow material for 45 days;
- ♦ When a user selects an item to be borrowed, the library clerk updates the database, recording userID, collection, and date of borrowing;
- ♦ When a user returns an item, the library clerk updates the database, recording the date when the item was returned; if the item is overdue, the clerk also collects a fine calculated as DaysLate * fine/day; the fine per day amount is ¥0.10 for every user; the clerk also records the fine collected, if any; in addition, the clerk checks if the returned item is damaged, and if so, records this information;
- ◆ When a new material is purchased, it is catalogued (归类) (i.e., an entry is added to the database) and it is made available in some lending rooms. Damaged and unused material is removed from the collection. This is done once every six months.
- (1) Draw the <u>Context Data Flow Diagram</u> and <u>Functional Decomposition Diagram</u> for XLD. (15 points)
- (2) Produce an <u>Entity Relationship Diagram</u> (Logical Data Model) and a set of <u>Normalized</u> <u>Tables</u> for the scenario. (20 points)

Sample table: Tblname (primarykey#, foreignkey#, attrl, attr2)

- (3) It has been decided that the database will be developed using object oriented analysis and design (OOA/OOD) methodology.
 - a) Draw a <u>UML Use Case diagram</u> for XLD and write the expanded description of <u>ONE</u> primary use case (表格形式). (15 points)
 - b) Design an initial <u>Analysis Class Model</u> that shows the process and data required to support XLD. (10 points)