Complessità Computazionale e Oracoli

1. Introduzione alla Complessità Computazionale

La complessità computazionale è una branca dell'informatica teorica che studia l'efficienza degli algoritmi e la difficoltà intrinseca dei problemi. Si occupa di classificare i problemi in base alla quantità di risorse computazionali richieste per risolverli, come il tempo (numero di passi) o lo spazio (quantità di memoria). Le principali classi di complessità che vengono introdotte sono P e NP.

Definizione di O grande

Sia $f: N \to N$ una funzione che restituisce il numero di passi di calcolo elementari per un algoritmo A, dato un input di dimensione n. Scriviamo $f \in O(g(n))$ se f cresce asintoticamente tanto velocemente o lentamente di g.

Common asymptotic functions				
F	unction	designation	example algorithm	
1		constant	calculate mod 2	
lo	g(n)	logarithmic	binary search (in sorted database)	
n		linear	search in unsorted data	
n	log(n)	superlinear	merge sort	
n ²	2	quadratic	multiplication of integers	
n ³	3	cubic	matrix multiplication	
n ^p	Κ.	polynomial ($k \in$		
		N fixed)		
2"	1	exponential	naive calculation of the n-th Fibonac	ci number

2. Classi di Complessità: P e NP

- P: insieme dei problemi decisionali (cioè che richiedono una risposta sì/no) risolvibili da un algoritmo in tempo polinomiale rispetto alla dimensione dell'input.
- **NP**: insieme dei problemi decisionali per cui, se qualcuno propone una soluzione, possiamo **verificarla** in tempo polinomiale.
- NP-complete:
- 1. È in **NP** (cioè possiamo verificare una soluzione in tempo polinomiale).
- 2. È il più difficile tra i problemi in NP, nel senso che ogni altro problema in NP può essere ridotto a questo in tempo polinomiale.

In altre parole, se trovassimo un algoritmo efficiente (polinomiale) per anche uno solo dei problemi NP-completi, potremmo risolvere efficientemente tutti i problemi in NP.

- NP-hard: È almeno difficile quanto i problemi in NP, ma non è necessariamente in NP (quindi magari non possiamo neppure verificare le soluzioni in tempo polinomiale).
- PSPACE: contiene tutti i problemi risolvibili usando uno spazio di memoria polinomiale, indipendentemente dal tempo impiegato.

Un esempio classico in NP è il problema del **commesso viaggiatore**: trovare il percorso minimo tra varie città. Verificare la validità e il costo di un percorso è facile, ma trovarlo potrebbe essere molto difficile.

La grande domanda aperta è: **P = NP?** Ovvero, ogni problema per cui possiamo verificare velocemente una soluzione, possiamo anche risolverlo velocemente?

BPP – Bounded-error Probabilistic Polynomial time

La classe BPP (Bounded-error Probabilistic Polynomial time) comprende tutti quei problemi decisionali che possono essere risolti da un algoritmo randomizzato in tempo polinomiale, con una probabilità di errore limitata.

Caratteristiche Principali

1. VErrore limitato

L'algoritmo può restituire un risultato sbagliato, ma con probabilità inferiore a ½.

2. Algoritmo randomizzato

Gli errori derivano dall'uso di scelte casuali: l'algoritmo prende decisioni basate sulla casualità, per ottenere il risultato.

3. Riduzione dell'errore via ripetizione

La probabilità di errore può essere resa arbitrariamente piccola eseguendo più volte l'algoritmo e scegliendo il risultato più frequente (strategia del voto di maggioranza).

- 4. BPP rappresenta il confine della fattibilità per i computer classici.
- P ⊆ BPP (tutti gli algoritmi deterministici sono anche algoritmi probabilistici che non usano casualità).
- Si ritiene probabile che BPP = P, ma non è ancora dimostrato formalmente.
- BPP ⊆ PSPACE, cioè tutto ciò che si può fare in BPP si può fare anche con memoria polinomiale.

BQP – Bounded-error Quantum Polynomial time

BQP è la classe dei problemi risolvibili in tempo polinomiale da un computer quantistico, con errore limitato (come BPP).

Un problema decisionale E appartiene alla classe **BQP** (Bounded-error Quantum Polynomial time) se esiste un algoritmo quantistico A tale che:

- 1. Se la risposta corretta è E(x) = 1 per un input x, allora l'algoritmo restituisce A(x) = 1 con probabilità maggiore di 1/2.
- 2. Se la risposta corretta è E(x) = 0 per un input x, allora l'algoritmo restituisce A(x) = 0 con probabilità maggiore di 1/2.
- 3. L'algoritmo può essere implementato con circuiti quantistici uniformi di dimensione polinomiale.
- -La tripletta {NOT, AND, OR} è effettivamente sufficiente per costruire qualunque circuito logico classico; quindi, è un insieme universalmente completo per la computazione classica.
- -La porta di Toffoli (nota anche come CCNOT) è una porta logica reversibile e può essere effettivamente implementata nei computer quantistici. È spesso usata per simulare circuiti classici in ambito quantistico.
- -Ogni circuito classico può essere trasformato in un circuito quantistico (reversibile) con un overhead al più polinomiale.
- -Tutti i problemi che una macchina classica può risolvere in tempo polinomiale (**P**) possono essere risolti anche da un computer quantistico nello stesso tempo massimo (**BQP**). (*La classe P è contenuta nella classe BQP*.)

3. Macchine di Turing e Oracoli

Una macchina di Turing è un modello matematico che rappresenta il funzionamento astratto di un calcolatore. Una macchina di Turing con oracolo è una versione potenziata, in grado di fare domande a una "scatola nera" (l'oracolo), che risponde istantaneamente su un particolare problema.

Questa macchina permette di esplorare cosa accadrebbe se avessimo risposte istantanee a problemi complessi.

ORACOLI

- 1. Un oracolo nella teoria della complessità risolve un problema in un singolo passo, cioè in tempo O(1).
- 2. Un oracolo è trattato come una scatola nera: non sappiamo come funziona, ma possiamo interrogarlo fornendo input e osservando l'output. Questo è detto modello a scatola nera (black box model).
- 3. nella **computazione quantistica**, un oracolo è modellato come un **operatore unitario** Uf che agisce su uno stato quantistico psi.

$$U_f: |\psi\rangle - U_f - |\psi\rangle$$

Questo significa che l'oracolo codifica la funzione f in un circuito quantistico reversibile.

Quindi: un oracolo quantistico è rappresentato da un operatore unitario Uf che agisce su registri quantistici e codifica la funzione f in modo reversibile.

4. La computazione quantistica permette di ridurre il numero di chiamate a un oracolo rispetto alla computazione classica.

Algoritmo di Deutsch

Supponiamo di avere un **oracolo quantistico** che implementa una funzione:

f: $\{0, 1\} \rightarrow \{0, 1\}$. Questa funzione prende un bit in input e restituisce un bit in output. Tuttavia, non conosciamo il comportamento interno della funzione: vogliamo determinare se è **costante** oppure **bilanciata**.

1. Descrizione del problema

Sappiamo che la funzione f può essere di due tipi:

- Costante, se restituisce sempre lo stesso valore per entrambi gli input: ad esempio, f(0) = f(1) = 0, oppure f(0) = f(1) = 1.
- **Bilanciata**, se restituisce un valore diverso per ciascun input: ad esempio, f(0) = 0 e f(1) = 1, oppure viceversa.

Il nostro obiettivo è determinare se la funzione è costante o bilanciata, effettuando il minor numero possibile di chiamate all'oracolo.

2. Metodo classico

Su un computer classico, l'unico modo per risolvere il problema è interrogare direttamente la funzione due volte:

- Si calcola f(0) e poi f(1),
- Si confrontano i due risultati.

Se i due output sono uguali, la funzione è costante. Se sono diversi, la funzione è bilanciata.

In sintesi: sono necessarie due chiamate all'oracolo.

3. Metodo quantistico

Con la **computazione quantistica**, è possibile risolvere il problema con una **sola** chiamata all'oracolo, grazie a tre strumenti fondamentali:

- **Sovrapposizione**, che permette di valutare la funzione su più input contemporaneamente.
- Interferenza quantistica, che consente di cancellare o amplificare stati,
- Gate di Hadamard, che trasformano stati base in combinazioni lineari (superposizioni).

Il procedimento è il seguente:

1. Si preparano due gubit: il primo nello stato |0>, il secondo nello stato |1>.

- 2. Si applica il gate di Hadamard a entrambi i qubit, creando una sovrapposizione.
- 3. Si esegue una sola chiamata all'oracolo quantistico Uf, che agisce su tutti gli input in parallelo.
- 4. Si applica di nuovo il **gate di Hadamard** al primo qubit (quello che conteneva l'input).
- 5. Infine, si misura il primo qubit:
 - Se si ottiene 0, la funzione è costante.
 - Se si ottiene 1, la funzione è bilanciata.

4. Vantaggio quantistico

Questo schema dimostra un concetto fondamentale della computazione quantistica: un problema che richiede due valutazioni classiche può essere risolto con una sola valutazione quantistica, sfruttando la sovrapposizione e interferenza.

- Questo è il primo esempio storico di **vantaggio quantistico**, anche se in un caso molto semplice.
 - 1. L'oracolo quantistico Uf viene applicato una sola volta per determinare se f è costante o bilanciata.
 - (Questo è esattamente ciò che rende l'algoritmo di Deutsch un esempio di vantaggio quantistico: una sola chiamata all'oracolo è sufficiente per risolvere un problema che, in modo classico, richiede più interrogazioni.)
 - 2. Può essere esteso a funzioni booleane con dimensione di input arbitraria.
 - (L'estensione naturale dell'algoritmo di Deutsch è l'algoritmo di Deutsch-Jozsa, che lavora su funzioni f: $\{0,1\}^n \rightarrow \{0,1\}$, cioè con input di lunghezza arbitraria n. Anche lì, una sola chiamata all'oracolo quantistico (con sovrapposizione di tutti gli input possibili) è sufficiente.)
 - 3. Vantaggio teorico rispetto all'equivalente classico, ma scarso valore pratico.
 - (L'algoritmo dimostra un chiaro **speedup teorico**, ma per input piccoli il guadagno è minimo, e il problema non è particolarmente utile in applicazioni reali. Tuttavia, è **fondamentale come base teorica** per comprendere algoritmi più avanzati.)
 - 4. Tuttavia, la maggior parte degli algoritmi quantistici con vantaggi dimostrabili si basa su oracoli quantistici combinati con interferenza.