USN Model Question Paper-I with effect from 2022

Fourth Semester B.E Degree Examination Mathematical Foundations for Computing, Probability & Statistics (Computer Science & Allied Engg. branches)-21MATCS41

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Q.l	No.	Question	M	L	CO		
		Module -1					
01	a	Define tautology. Determine whether the following compound statement is a tautology or not. $\{(p \lor q) \to r\} \Leftrightarrow \{\neg r \to \neg (p \lor q)\}$	06	L2	CO1		
	b	Using the laws of logic, prove the following logical equivalence $[(\neg p \lor \neg q) \land (F_0 \lor p) \land p] \Leftrightarrow p \land \neg q.$	07	L3	CO1		
	С	Give direct proof and proof by contradiction for the statement "If n is an odd integer then $n+9$ is an even integer"	07	L2	CO1		
	<u> </u>	OR	1	1			
02	a	Test the validity of the arguments using rules of inference. $(\neg p \lor q) \to r$ $r \to (s \lor t)$ $\neg s \land \neg u$ $\underline{\neg u \to \neg t}$	06	L3	CO1		
		$ \therefore p $					
	b	Find whether the following arguments are valid or not for which the universe is the set of all triangles. In triangle XYZ, there is no pair of angles of equal measure. If the triangle has two sides of equal length, then it is isosceles. If the triangle is isosceles, then it has two angles of equal measure. Therefore Triangle XYZ has no two sides of equal length.	07	L3	CO1		
	С	If $p(x): x \ge 0, q(x): x^2 \ge 0, r(x): x^2 - 3x - 4 = 0, s(x): x^2 - 3 > 0$ Determine the truth or falsity of the following statement: i) $\exists x \big[p(x) \land q(x) \big]$ ii) $\forall x \big[p(x) \rightarrow q(x) \big]$ iii) $\forall x \big[q(x) \rightarrow s(x) \big]$ iv) $\forall x \big[r(x) \land s(x) \big]$ v) $\exists x \big[p(x) \land r(x) \big]$ vi) $\forall x \big[r(x) \rightarrow p(x) \big]$ vii) $\exists x \big[r(x) \rightarrow \neg p(x) \big]$	07	L2	CO1		
Module-2							
03	a	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$, If $(g \circ f)(x) = 9x^2 - 9x + 3$ determine a and b.	06	L2	CO2		

	b	Let $A = \{1, 2, 3, 4, 6\}$	and R	be a re	elation	on A c	lefined	by al	Rb if an	d only	if " a	is a	07	L2	CO2
		multiple of b". Write down the relation R, relation matrix $M(R)$ and draw its													
		digraph.													
	c	Prove that in every g	graph the	numb	er of ve	ertices o	f odd d	egree i	s even.				07	L2	CO2
	1	I					OR							T	1 ~~ •
4	a	The digraph of a relation R defined on the set $A = \{1, 2, 3, 4\}$ is shown below. Verify										06	L2	CO2	
		that (A, R) is a pos	set and o	constr	uct the	corres	pondin	g Has	se diag	ram.					
	1		1.0					1 0					0=	T.0	004
1	b	Let $A = B = C = R$					$\rightarrow C$	oe defii	ned by				07	L2	CO2
		f(a) = 2a + 1, g(b)	$=\frac{1}{3}b,$	$\forall a \in A$	$A, \forall b \in$	<i>B</i> .									
		Compute $g \circ f$ and	5				e. What	is(g	$(f)^{-1}$?						
	С	Define Graph isomo									orphic	or not.	07	L2	CO2
		Us U													
					Mo	dule-3									
5	a	Ten competitors i	n a bea	uty c			nked t	y two	judge	es A a	nd B	in the	06	L2	CO3
		following order:					1		ı						
		ID No. of competitors	1	2	3	4	5	6	7	8	9	10			
		Judge A	1	6	5	10	3	2	4	9	7	8			
		Judge B	6	4	9	8	1	2	3	10	5	7			
		Calculate the rank correlation coefficient.										~~			
	b	In a partially destro are available as 4: the coefficient of c	x - 5y	+ 33	= 0 ar	1d 20x	- 9 <i>y</i>							L2	CO3
	С	An experiment gave the following values:								07	L2	CO3			
		v(ft/min)	350	400	500										
	t(min.) 61 26 7 26 It is known that v and t are connected by the relation $v = at^b$. Find the best possible to the following terms of the connected by the relation $v = at^b$.						ogg :L 1 -								
		values of a and b.	ına t are	conn	ectea b	y tne r	eration	v = a	t . F11	na the	best p	ossibie			
	1	, aracs of a and b.												1	

		OR						
6	a	The following table gives the heights of fathers(x) and sons (y):	06 I	L2	CO3			
		x 65 66 67 67 68 69 70 72						
		y 67 68 65 68 72 72 69 71						
	1.	Find the lines of regression and Calculate the coefficient of correlation.	07	Τ.	CO2			
	b	Fit a parabola $y = ax^2 + bx + c$ for the data	07	L2	CO3			
		x 1.0 1.5 2.0 2.5 3.0 3.5 4.0						
		y 1.1 1.3 1.6 2.0 2.7 3.4 4.1			~~*			
	С	With usual notation, compute means x, y and correlation coefficient r from the	07	L2	CO3			
		Module-4	'					
7	a	A random variable <i>X</i> has the following probability function:	06	6 L2	CO4			
		x -2 -1 0 1 2 3						
		P(x) 0.1 k 0.2 2k 0.3 k						
		Find the value of k and calculate the mean and variance						
	b	Find the mean and standard deviation of the Binomial distribution	07	L2	CO4			
	С	In a test on 2000 electric bulbs, it was found that the life of a particular make was	07	L3	CO4			
		normally distributed with an average life of 2040 hours and Standard deviation of 60						
		hours. Estimate the number of bulbs likely to burn for						
		i. More than 2150 hours						
		ii. Less than 1950 hours						
		iii. Between 1920 and 2160 hours						
		OR						
8	a		06	L2	CO4			
	"	Find the constant k such that $f(x) = \begin{cases} kx^2 & 0 < x < 3 \\ 0 & otherwise \end{cases}$ is a p.d.f.						
		Also, compute i) $P(1 < x < 2)$ ii) $P(x \le 1)$ iii) $P(x > 1)$						
	b	2% of fuses manufactured by a firm are found to be defective. Find the probability	07	L2	CO4			
		that a box containing 200 fuses contains (i) no defective fuses (ii) 3 or more						
		defective fuses (iii) at least one defective fuse.						
	С	In a normal distribution 31% of the items are under 45 and 8% of the items are over	07	L2	CO4			
		64. Find the mean and S.D of the distribution.						
		Module-5						
9	a	The joint distribution of two random variables X and Y is as follows	06		CO5			
		Y		L2				
		X -4 2 7						
		1 1/8 1/4 1/8						
		5 1/4 1/8 1/8						
		Compute the following. (i) E(X) and E(Y) (ii) E(XY) (iii) σ_X and σ_Y						
		(iv) COV(X,Y) (v) $\rho(X,Y)$						
	1	$(11) \sim 1(21,1) (1) p(11,1)$		<u> </u>	<u> </u>			

	b	A coin was tossed 400 times and head turned up 216 times. Test the hypothesis that	07	L2	CO5						
		the coin is unbiased at 5% level of significance.									
	c	A certain stimulus administered to each of the 12 patients resulted in the following	07	L3	CO5						
		change in blood pressure 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, and 4. Can it be concluded									
		that the stimulus will increase the blood pressure? ($t_{.05}$ for 11 d.f = 2.201)									
	OR										
10	a	Explain the terms: (i) Null hypothesis (ii) Confidence intervals (iii) Type-I and	06	L2	CO5						
		Type-II errors.									
	b	The mean life of 100 fluorescent tube lights manufactured by a company is found to	07	L3	CO5						
		be 1570 hrs with a standard deviation of 120 hrs. Test the hypothesis that the mean									
		lifetime of the lights produced by the company is 1600 hrs at 0.01 level of									
		significance.									
	С	A die is thrown 264 times and the number appearing on the face(x) follows the 07									
		following frequency distribution.									
		x 1 2 3 4 5 6									
		y 40 32 28 58 54 60									
		Calculate the value of χ^2 .									

	Low	er-order thinking skills						
Bloom's	Remembering	Understanding	Applying					
Taxonom	(knowledge): L_1	(Comprehension): L_2	(Application): L_3					
y Levels								
	Higher-order thinking skills							
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L_5	Creating (Synthesis): L ₆					