Calculus of Noise

23.05.02 MIMIC 성균관대학교 수학과 김찬영

Calculus of Noise

Introduction

Motivation

Population Growth Model

Background

Probability Space Random Variable

Brownian

Motion

Stochastic Process

Filtrations

Martingales

Brownian Motion

Stochastic

Integrals

Applications

Motivation for Stochastic Caculus; Population Growth Model

Simple ODE problem depicting the growth of population N over time t

$$\frac{dN}{dt}(t) = a(t)N(t), \ N(0) = N_0$$

where a(t) is called the *relative growth rate*

(Solution)

Suppose a(t) is *deterministic* (i.e. a(t) = a is a constant).

$$\int_0^t a \, ds = \int_0^t \frac{\frac{dN}{dt}(s)}{N(s)} \, ds = \ln\left(\frac{N(t)}{N_0}\right)$$

$$\int_0^t a \, ds = at$$

$$\ln\left(\frac{N(t)}{N_0}\right) = at, \ N(t) = N_0 e^{at}$$

Motivation for Stochastic Caculus; How to integral a function with a noise?

In real world, the relative growth rate a(t) can be "stochastic".

Thus, we can use the expression

$$a(t) = r(t) + j(t)$$
 • (random error)

The problem can be rewritten as SDE (stochastic differential equation)

$$\frac{dN}{dt}(t) = (r(t) + j(t) \cdot \text{noise})N(t)$$

$$\frac{dN}{dt}(t) = r(t) \cdot N(t) + j(t) \cdot \text{noise} \cdot N(t)$$

Using integration expression,

$$N(t) = N_0 + \int_0^t r_s N_s ds + \int_0^t j_s N_s \cdot noise \cdot ds$$

but, how do we integrate the term?

$$\int_0^t j_s N_s \cdot noise \cdot ds$$

Solution; The Ito's Integral

We will define the new integration

$$\int_0^t j_s N_s \cdot noise \cdot ds = \int_0^t j_s N_s \cdot dB_s$$

to make ous feel that dB_s has a similar meaning to noise • ds and $B_{s+\epsilon}-B_s$ where B_s is a *Brownian motion* which is a "stochastic process" which is strongly related with normal distribution

Background

Background

Ω "All outcomes"

 $A,B \in \mathcal{A}$ "Events"

P(A) "The probability" of A

A σ -algebra

Background

Definition (σ -algebra)

(Setting)

arOmega : some set

 $P(\Omega)$: the power set of Ω

A σ -algebra (or σ -field) is a subset ${\mathcal A}$ of $P({\mathcal Q})$ that satisfies

- (1) $\Omega \in \mathcal{A}$
- (2) If $A \in \mathcal{A}$, then the complement $A \in \mathcal{A}$
- (3) \mathcal{A} is closed under countable union. i.e.

$$A_1, \ldots, A_k, \ldots \in \mathcal{A} \implies \sum_{k=1}^{\infty} A_k \in \mathcal{A}$$

Background

Definition (Measurable function)

(Setting)

(X, A) & (Y, B): measurable spaces

A $(\mathcal{A}-\mathcal{G})$ measurable function is a mapping $f: X \rightarrow Y$ s.t.

 $f^{-1}(B) \in \mathcal{A}$ for every set $B \in \mathcal{B}$.

If $f: X \rightarrow Y$ is a measurable function, then one can write

$$f:(X,\mathcal{A}) \longrightarrow (Y,\mathbf{B})$$

to emphasize the dependency on two σ -algebras $\mathcal{A} \ \& \ \mathcal{B}$

In special case, when (Y,\mathcal{B}) is a topological space with the Borel σ -algebra \mathcal{B} , we say f is \mathcal{A} -measurable if $f^{-1}(B) \in \mathcal{B}$ for every set $B \in \mathcal{B}$

Notation

Note that

 $A{\in}\mathcal{A} \Leftrightarrow \mathsf{The}$ indicator function $1_{\!A}$ is measurable w.r.t. a $\pmb{\sigma}\text{-field }\mathcal{A}$

We use notation

 $X \subseteq \mathcal{A} : \Leftrightarrow$ The function X is measurable w.r.t. a σ -field \mathcal{A}

Definition (The σ -algebra generated by functions)

(Setting)

$$f: X {
ightharpoonup} Y$$
 be a function $F = \left\{f_i
ight\}_{i \in I}$ be a collection of functions $f_i: X {
ightharpoonup} Y$ B be a ${m \sigma}$ -algebra of subsets of Y

Define the σ -algebra generated by f as the smallest σ -algebra on X containing $\{f^{-1}(S)\colon S\!\in\!B\}$ denoted by $\sigma(f)$

Define the σ -algebra generated by $F = \{f_i\}_{i \in I}$ as the smallest σ -algebra on X containing $\{f_i^{-1}(S) \colon S \in B\}$ for all $i \in I$ denoted by $\sigma(F)$

Moreover, a function $f: X \rightarrow Y$ is measurable w.r.t the σ -algebra $\mathcal C$ of $X \Leftrightarrow \sigma(f) \subseteq \mathcal C$

Background

Definition (Measure)

(Setting)

arOmega : some set

 ${\cal A}$: a ${m \sigma}$ -algebra (or ${m \sigma}$ -field) of ${\cal \Omega}$

A function $P: \mathcal{A} \to \mathbb{R}_{\infty}$ is called a *measure* if it satisfies the following properties

(1) Non-negativity

$$P(A) \ge 0$$
 for all $A \in \mathcal{A}$

(2) Null-empty set

$$P(\phi)=0$$

(3) σ -additivity

For pairwise disjoint sets $A_1, \ldots, A_k, \ldots \in \mathcal{A}$

$$P\left(\sum_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k)$$

Definition (Probability Space)

(Setting)

 Ω : the sample space of the random experiment

 ${\cal A}$: a ${m \sigma}$ -algebra of Ω

i.e. (Ω, \mathcal{A}) is a measurable space

A measure $P: \mathcal{A} \to \mathbb{R}_{\infty}$ is called a *probability measure* on a *probability space* (Ω, \mathcal{A})

if
$$P(\Omega) = 1$$

Definition (a Complete Probability Space)

A probability space $(\Omega, \mathcal{A}, \mathcal{P})$ is *complete* when

$${E \subseteq \Omega : P^*(E) = 0} \subseteq \mathcal{A}$$

where $P^*(E) := \inf \{P(F) : E \subseteq F \& F \in \mathcal{A} \}$

Definition (Random Variable)

A (real) random variable X on (Ω, \mathcal{A}) is a measurable function from Ω to \mathbb{R}

i.e. {
$$X^{-1}(B): B \in \mathcal{B}$$
 } $\subseteq \mathcal{A}$

where ${\mathscr B}$ is the Borel ${\pmb \sigma}$ -algebra on ${\mathbb R}$

Denote the probability that X takes on a value X(w) in a mesurable set $B \in \mathcal{B}$ as

$$P(X \in B) := P(\{w \in \Omega : X(w) \in B\})$$

Definition (Expectation)

(Setting)

 $(\Omega, \mathcal{A}, \mathcal{P})$: a probability space

X: a random variable on (Ω, \mathcal{A})

If X is integrable, then the expectation of X is defined by

$$E(X) := \int_{\Omega} X \, dP$$

Brownian
Motion

Brownian Motion

Definition (Stochastic Process)

A stochastic process $\{X_t\}_{t\in T}$ is a parametrized collection of random variables which are defined on a given probability space (Ω, \mathcal{A}, P) .

In discrete time, take $T=Z_{\geq\,0}$, or if we work in contunuous time, set $T=[0,\infty)$

Definition (Sample Path)

For each fixed $t \in T$, we have a random variable $X_t : w \in \Omega \mapsto X(w) = X(t, \bullet)$

For each fixed $w \in \Omega$, we just have a real valued fuction $t \in T \mapsto X_t(w)$

 $X_t(w)$ is called the sample path of the process for fixed $w \in \Omega$

Brownian Motion

Definition (Filtration)

A *filtration* on a probability space $(\Omega, \mathcal{A}, \mathcal{P})$ is a collection $F = \{F_t\}_{t \in T}$ of sub- σ -fields of a σ -field \mathcal{A} having the property that

$$s \leq t$$
 implies $F_s \subseteq F_t$

A filtered probability space $(\Omega, \mathcal{A}, F, \mathcal{P})$ is a probability space $(\Omega, \mathcal{A}, \mathcal{P})$ endowed with a filtration $F = \{F_t\}_{t \in T}$

We say that a stochastic process $\left\{X_t\right\}_{t\in T}$ is adapted to the filtration $F=\left\{F_t\right\}_{t\in T}$ when X_t is F_t -measurable for each $0\leq t<\infty$

A stochastic process $\{X_t\}_{t\in T}$ is always adapted to its *natural filtration* $F_t^X = \sigma(X_s: s \le t)$ that is the smallest filtration to which $\{X_t\}_{t\in T}$ is adapted.

Definition (Standard) Brownian Motion

The *standard Brownian motion* is a continuous-time stochastic process $\{B_t\}_{t\geq 0}$ on a probability space $(\Omega, \mathcal{A}, \mathcal{P})$ with the following properties:

- ① $P(B_0 = 0) = 1$
- ② For $0 = t_0 \le t_1 \le \dots \le t_k$,

the increments (displacements) $B(t_1)$, $B(t_2)-B(t_1)$, \cdots , $B(t_k)-B(t_{k-1})$ are independent random variables.

③ For $0 \le s \le t$, the increments $B_t - B_s \sim N(0, t - s)$

Brownian Motion

Definition (the Standard Brownian Filtration)

(Setting)

 $\{B_t\}_{t\in[0,T]}$ be a Brownian motion defined on a probability space $(\Omega, \mathcal{A}, \mathcal{P})$.

$$m{\sigma}\left\{B_{\scriptscriptstyle \mathcal{S}}
ight\}_{\scriptscriptstyle \mathcal{S}\;\leq\;T}$$
 : the $m{\sigma}$ -field generated by $\left\{B_{\!t}
ight\}_{t\in\,\left[\,0,\;T
ight]}$

$$N_T := \left\{ B \in \sigma \left\{ B_s \right\}_{s \le T} : P(B) = 0 \right\}$$

 $N:=\{A\subset\varOmega\colon A\subseteq B \text{ for some } B\subseteq N_T\}\text{, called "the set of null sets"}$

Assume that the probability measure P is extended so that P(A)=0 for each $A \in N$

Define the standard Brownian filtration as

the filtration
$$\{F_t\}_{t \in [0,T]}$$

where F_t is the smallest $m{\sigma}$ -field containing both $m{\sigma}\left\{B_{\scriptscriptstyle \mathcal{S}}\right\}_{\scriptscriptstyle \mathcal{S}\,\leq\, t}$ and N

Brownian Motion

Definition (the usual condition)

The standard Brownian filtration $\{F_t\}_{t\in[0,T]}$ has two basic properties

(1) $\{F_t\}_{t \in [0, T]}$ is a *Right-continuous* filtration.

$$F_t = F_{t+} := \bigcap_{t \,<\, s \,\leq\, T} F_s$$
 , for each $t \in [0,T]$

(2) $\{F_t\}_{t \in [0, T]}$ is a *complete* filtration.

$$N \in F_t$$
 , for each $t \in [0, T]$

We say "the standard Brownian filtration satisfies the usual conditions."

Integral

Definition (the natural domation of Ito Integral)

(Setting)

 (Ω, \mathcal{A}, P) is a complete probability space with a the standard Brownian filtration $\{F_t\}$ B: the set of Borel sets of [0, T]

Let $H^2([0,T])$ be the space of stochastic process $f=\left\{f_t(w)\right\}_{t\in[0,T]}$ s.t.

(1) (Measurable)

 $f_t : \varOmega \times [0,T] {\longrightarrow} (\mathbb{R},B) \text{ is measurable w.r.t the } \pmb{\sigma}\text{-algebra } F_T \times B \text{ on } \varOmega \times [0,T].$

$$\Leftrightarrow f(\bullet, \bullet) \in F_T \times B \text{ for all } t \in [0, T]$$

(2) (Adapted)

The random variable $f(\bullet,t)$ is adapted to $\{F_t\}$

 $\Leftrightarrow f(\bullet,t)$ is \mathcal{A}_t -measurable for each $t \in [0,T]$

$$\Leftrightarrow f(\bullet,t) \in F_t \text{ for all } t \in [0,T]$$

(3) (Integrability Constraint)

$$\| f \|_{2}([a,b]) := E \left(\int_{a}^{b} |f(w,t)|^{2} dt \right)^{\frac{1}{2}} < \infty$$

 $H^2([0,T])$ is called the natural domain of Ito integral

Notation

Let $H_0^2([0,T])$ be the subspace of $H^2([0,T])$ which consists $f=\left\{f_t(w)\right\}_{t\in[0,T]}$ s.t.

$$f(w,t) = \sum_{i=0}^{n-1} a_i(w) 1_{(t_i < t < t_{i+1})}(t)$$

where $0 = t_0 < t_1 < \dots < t_{n-1} < t_n = T$, $E(a_i^2) < \infty$ & $a_i \in F_{t_i}$

(i.e. a random variable a_i is F_{t_i} -measurable)

Definition

For $f \in H_0^2([0,T])$, define Integral of f as

$$(I(f))(w) := \sum_{i=0}^{n-1} a_i(w) \left\{ B_{t_{i+1}} - B_{t_i} \right\}$$

Note that (I(f))(w) is just a random variable even though f is a process.

Lemma 6.1. (Ito's Isometry on H_0^2)

For
$$f \in H_0^2([0,T])$$
,

$$\parallel I(f) \parallel_{L^2(dP)} = \parallel f \parallel_{L^2(dP \times dt)}$$

(Proof)

$$\begin{aligned} \text{We prove} &\parallel I(f) \parallel_{L^2(dP)}^2 = \parallel f \parallel_{L^2(dP \times dt)}^2. \\ \text{Since} & f(w,t) = \sum_{i=0}^{n-1} a_i(w) \mathbf{1}_{(t_i < t < t_{i+1})}(t) \implies f^2(w,t) = \sum_{i=0}^{n-1} a_i^2(w) \mathbf{1}_{(t_i < t < t_{i+1})}(t), \\ \text{R.H.S} & = E \bigg[\int_0^T \! f^2(w,t) dt \bigg] = E \bigg[\int_0^T \! \bigg[\! \sum_{i=0}^{n-1} \! a_i^2(w) \mathbf{1}_{(t_i < t < t_{i+1})} \bigg] dt \bigg] & \text{ (: Definition)} \\ & = E \bigg[\sum_{i=0}^{n-1} \! a_i^2(w) \int_0^T \! \mathbf{1}_{(t_i < t < t_{i+1})}(t) \bigg] = \sum_{i=0}^{n-1} E \big[a_i^2(w) \big] \big(t_{i+1} - t_i \big) \end{aligned}$$

$$\begin{split} \text{L.H.S} &= E\left[I(f)^2\right] = E\!\!\left[\sum_{i=0}^{n-1}\!a_i^2(w)\!\left\{B_{t_{i+1}}\!-B_{t_i}\right\}^2\right] \text{ ($\cdot\cdot$ Definition)} \\ &= \sum_{i=0}^{n-1}\!E\!\!\left[a_i^2(w)\right]\!E\!\!\left[\left(B_{t_{i+1}}\!-B_{t_i}\right)^2\right] \text{ ($\cdot\cdot$ } a_i \text{ and } B_{t_{i+1}}\!-B_{t_i} \text{ are independent)} \\ &= \sum_{i=0}^{n-1}\!E\!\!\left[a_i^2(w)\right]\!\left(t_{i+1}\!-t_i\right) \\ &\qquad \qquad (\!\cdot\cdot\!\cdot\!B_{t_{i+1}}\!-B_{t_i}\!\sim N\!\!\left(0,t_{i+1}\!-t_i\right) \text{ & $V\!\!\left(\vec{X}\!\right)\!=E\!\!\left(\vec{X}^2\right)\!-\left(E\!\!\left(\vec{X}\!\right)\right)^2\right)} \end{split}$$

Lemma (H_0^2 is dence in H^2)

For any $f \in H^2([0,T])$, there exists a seq. $f_n \in H_0^2([0,T])$ s.t.

$$\|f-f_n\|_{L^2(dP\times dt)} \rightarrow 0 \text{ as } n\rightarrow\infty$$

By the last Lemma, for any $f \in H^2([0,T])$, define

$$I(f) = \lim_{n \to \infty} I(f_n)$$

(Existence)

Suppose there exists a seq. $f_n \in H_0^2([0,T])$ s.t. $\|f-f_n\|_{L^2(dP\times dt)} \to 0$ as $n\to\infty$.

 \Rightarrow a sequence f_n is a Cauchy sequence.

 \Rightarrow By Ito isometry, a sequence $I(f_n)$ is a Cauchy sequence in $L^2(dP)$

 $\Rightarrow L^2(dP)$ is a complete metric space i.e. every Cauchy sequences converge.

 $I(f_n)$ converges to some element of $L^2(dP)$

(Well-defined)

Suppose
$$f'_n$$
 is anoter sequence s.t. $\|f-f'_n\|_{L^2(dP\times dt)} \to 0$ as $n\to\infty$. \Rightarrow By triangle inequality, $\|f_n-f'_n\|_{L^2(dP\times dt)} \to 0$ \Rightarrow By Ito isometry, $\|I(f_n)-I(f'_n)\|_{L^2(dP)} \to 0$ as $n\to\infty$ $\therefore I(f_n)=I(f'_n)$

Theorem (Ito's Isometry on H^2)

For
$$f \in H^2([0, T])$$
,

$$\parallel I(f) \parallel_{L^2(dP)} = \parallel f \parallel_{L^2(dP \times dt)}$$

(Proof)

Since H_0^2 is dence in H^2 , choose a seq. $f_n \in H_0^2([0,T])$ s.t.

$$||f-f_n||_{L^2(dP\times dt)} \rightarrow 0 \text{ as } n\rightarrow \infty$$

By the triangle inequality,

$$\parallel f \parallel_{L^2(dP \times dt)} \leq \parallel f - f_n \parallel_{L^2(dP \times dt)} + \parallel f_n \parallel_{L^2(dP \times dt)}$$

By taking the limit,

$$\parallel f \parallel_{L^2(dP \times dt)} \leq \parallel f_n \parallel_{L^2(dP \times dt)} \text{ as as } n {\longrightarrow} \infty$$

Similary,

$$\begin{split} \parallel f_n \parallel_{L^2(dP \times dt)} & \leq \parallel f_n - f \parallel_{L^2(dP \times dt)} + \parallel f \parallel_{L^2(dP \times dt)} \\ \parallel f_n \parallel_{L^2(dP \times dt)} & \leq \parallel f \parallel_{L^2(dP \times dt)} \text{ as as } n {\longrightarrow} \infty \\ & \therefore \parallel f_n \parallel_{L^2(dP \times dt)} {\longrightarrow} \parallel f \parallel_{L^2(dP \times dt)} \text{ as as } n {\longrightarrow} \infty \end{split}$$

By the same way, since $I(f) = \lim_{n \to \infty} I(f_n)$ in $L^2(dP)$,

$$\therefore \ \|\ I(f_n)\ \|_{L^2(dP)} {\longrightarrow} \ \|\ I(f)\ \|_{L^2(dP)} \ \text{as as} \ n {\longrightarrow} \infty$$

By Ito's Isometry on H_0^2 ,

$$\|I(f_n)\|_{L^2(dP)} = \|f_n\|_{L^2(dP \times dt)}$$

Therefore, $\|I(f)\|_{L^2(dP)} = \|f\|_{L^2(dP \times dt)}$

Ito's Integral; From a random variable to a stochastic process

We construct the map $I: H^2 \rightarrow L^2(dP)$, but to represent stochastic process, we need a mapping that takes a process to a process – not to a random variable.

For this purpose, we define a trancation function $m_t(w,s) \in H^2([0,T])$ defined by

$$m_t(w,s) = \begin{cases} 1 & \text{if } s \in [0,t] \\ 0 & \text{otherwise} \end{cases}$$
 for $t \in [0,T]$

For $f \in H^2([0,T])$, the product $m_t f \in H^2([0,T])$ for all $t \in [0,T]$, so $I(m_t f)$ is a well-defined element of $L^2(dP)$

Definition (Martingale)

(Setting)

 $\{F_t\}_{0 \leq t}$: a filtration on the probability space (Ω , $\boldsymbol{\mathcal{A}}$, $\boldsymbol{\mathcal{P}}$)

Suppose a stochastic porcess $\left\{X_{t}\right\}_{0 \ \leq \ t}$ is adapted to the filtration $\left\{F_{t}\right\}_{0 \ \leq \ t}$

(or $X_t \in F_t$ i.e. X_t is F_t -measurable for each $0 \le t$)

We say $\{X_t\}_{0 \le t}$ is a continuous-time martingale if

$$E(X_t | A_s) = X_s$$
 for any $0 \le s \le t$

 $\{X_t\}_{0 \le t}$ is called a *(sub/super) martingale* when "=" is replaced by " \le " or " \ge "

Definition (Maximal Sequence of Martingale)

(Setting)

 $\{M_n\}$: any sequence of random variables

The sequence defined by

$$M_n^* := \sup \left\{ M_m : 0 \le m \le n \right\}$$

is called the maximal sequence associated with $\{M_n\}$

Theorem (Doob's Maximal Inequality)

If $\{M_n\}$: a non-negative submartingale & $\lambda > 0$, then

$$\lambda P(M_n^* \geq \lambda) \leq E[M_n]$$

Theorem (Ito Integrals as Martingales)

For any $f{\in}H^2[0,T]$, there is a process $\left\{X_t\right\}_{t\in[0,T]}$

- (1) $\{X_t\}_{t\in[0,T]}$ is a continuous-time martingale w.r.t. the standard Brownian filtration F_t
- (2) For each $t \in [0, T]$, $P(\{w : X_t(w) = I(m_t f)(w)\}) = 1$

Proof of (1)

Since H_0^2 is dence in H^2 , choose some functions $f_n \in H_0^2[0,T]$ s.t.

$$||f-f_n||_{L^2(dP\times dt)} \rightarrow 0$$

Define a new process $X_t^{(n)}$ by taking

$$X_t^{(n)}(w) := I(m_t f_n)(w)$$

By explicit formular, for some $k \in \mathbb{N}$ s.t. $t_k < t \le t_{k+1}$,

$$X_{t}^{(n)}(w) = a_{k}(w) \left\{ B_{t} - B_{t_{k}} \right\} + \sum_{i=0}^{k-1} a_{i}(w) \left\{ B_{t_{i+1}} - B_{t_{i}} \right\}$$

$$(: m_t f_n(w,s) = \sum_{i=0}^{n-1} a_i(w) \mathbf{1}_{(t_i < t < t_{i+1})}(s) = a_k(w) \mathbf{1}_{(t_i < s < t)} + \sum_{i=0}^{k-1} a_i(w) \mathbf{1}_{(t_i < s < t_{i+1})})$$

Since $X_t^{(n)}$ is a continuous F_t -adapted martingale, we can apply Doob's maximar ineqaulity tp the continuous submartingale $M_t \coloneqq \left|X_t^{(n)} - X_t^{(m)}\right|$ for any $m \le n$ to find

$$\begin{split} P(\sup\left\{\left|X_{t}^{(n)}-X_{t}^{(m)}\right|:0\leq t\leq T\right\}\geq\epsilon) &\leq \frac{1}{\epsilon^{2}}E\!\!\left(\left|X_{t}^{(n)}-X_{t}^{(m)}\right|^{2}\right) \\ &\leq \frac{1}{\epsilon^{2}}\parallel f_{n}-f_{m}\parallel_{L^{2}(dP\times dt)}^{2} \quad \text{($:$ Ito's inequality)} \end{split}$$

Because f_n converges to f in $L^2(dP \times dt)$, we can choose an increasing subsequence n_k s.t.

$$\max \Big\{ \, \big\| \, f_n - f_{n_k} \, \big\| \, \big\|_{L^2(dP \times \, dt)}^2 : n_k \, \leq n \Big\} \leq 2^{-3k}$$

Taking $\epsilon = 2^{-3k}$,

$$P(\sup\{\left|X_{t}^{(n_{k+1})} - X_{t}^{(n_{k})}\right|: 0 \le t \le T\} \ge 2^{-k}) \le 2^{-k}$$

We now use the next Lemma.

Lemma (Borel-Cantelli Lemma)

If $\{A_{n}\}$ is any sequence of events, then

$$\sum_{n=1}^{\infty} P\!\big(A_n\big) < \infty \ \text{ implies } \ P\!\left(\sum_{n=1}^{\infty} 1_{A_n} < \infty\right) = 1 \ \text{i.e. } \ P\!\left(\sum_{n=1}^{\infty} 1_{A_n} = \infty\right) = 0$$

Taking $\Omega_0 = \bigcup_{n=1}^\infty A_n$ and $C(w) := \sum_{n=1}^\infty 1_{A_n}(w)$, $\sup\left\{\left|X_t^{(n_{k+1})} - X_t^{(n_k)}\right| : 0 \le t \le T\right\} \le 2^{-k} \text{ for all } k \ge C(w)$

Therefore, for all $w \in \mathcal{Q}_0$, $\left\{ X_t^{(n_k)}(w) \right\}$ is a Cauchy sequence in the uniform norm on C[0,T] and there is a continuous function $t \mapsto X_t(w)$ s.t.

$$X_t^{(n_k)}(w) \mapsto X_t(w)$$
 uniformly on $[0,T]$

By construction, $\left\{X_t^{(n_k)}(w)\right\}$ is a F_t martingale, so the martingale identity for $\left\{X_t\right\}$ follows i.e. $\left\{X_t\right\}$ is a continuous martingale.

Proof of (2)

By construction of f_{n_k}

$$m_t f_{n_t} \rightarrow m_t f$$
 in $L^2(dP \times dt)$

By Ito's Isometry,

$$I(m_t f_{n_t}) \rightarrow I(m_t f) \text{ in } L^2(dP)$$

We already know that

$$X_{\!t}^{(n_k)}(w) \mapsto X_{\!t}(w)$$
 in $L^2(dP)$

By the uniqueness of $L^2(dP)$ limits,

$$\parallel X_{\!t} - I\!\left(m_{\!t}f\right) \parallel_{L^2\!\left(dP\right)} = 0$$
 for each $t \in [0,T]$

This implies

$$P(\{w: X_t(w)=I(m_t f)(w)\})=1 \text{ for each } t \in [0, T]$$

Notation (Ito integral sign)

If $f \in H^2[0, T]$ & $\{X_t\}_{t \in [0, T]}$ is a continuous-time martingale s.t.

$$P(\{w: X_t(w)=I(m_tf)(w)\})=1$$
 for each $t\in[0,T]$,

then we write

$$\int_0^t f(w,s)dB_s := X_t(w)$$

for each $t \in [0, T]$.

Thanks!

Formula & Applications

Definition (Standard Process)

We say that a stochastic process $\left\{X_t\right\}_{0 \leq t \leq T}$ is a standard process provided that $\left\{X_t\right\}$ has the integral representation

i.e.
$$X_t = X_0 + \int_0^t a(w,s)ds + \int_0^t b(w,s)dB_s$$
 for $0 \le t \le T$

where $a(\bullet, \bullet)$ & $b(\bullet, \bullet)$ are adapted, measurable processes satisfying the conditions;

$$P\left(\int_{0}^{T} |a(w,s)| ds < \infty\right) = 1 \otimes P\left(\int_{0}^{T} |b(w,s)|^{2} ds < \infty\right) = 1$$

Theorem (Ito's Formular for Standard Process)

Suppose

$$f \in C^{1,2}(\mathbb{R}^+ \times \mathbb{R})$$

 $\{X_t\}$: a standard process having the integral representation

$$X_{t} = X_{0} + \int_{0}^{t} a(w,s)ds + \int_{0}^{t} b(w,s)dB_{s}$$
 , for $0 \le t \le T$

Then we have

$$f(t,X_t) = f(0,0) + \int_0^t \frac{\partial f}{\partial t}(s,X_s)ds + \int_0^t \frac{\partial f}{\partial x}(s,X_s)dX_s + \frac{1}{2}\int_0^t \frac{\partial^2 f}{\partial x^2}(s,X_s)b^2(w,s)ds$$

In the language of the box caculus, for the process $Y_t = f(t, X_t)$, we have

$$dY_t = f_t dt + f_x dX_t + \frac{1}{2} f_{xx} dX \cdot dX$$