Probability Distributions and EstimationWeek 12

Yunkyu Sohn School of Political Science and Economics Waseda University

Contents

- Random Variables and Probability Distributions (Chapter 6.3)
 - Overview
 - Bernoulli / Binomial distribution
 - Uniform / Normal distribution
 - Expectation and Variance
- ► The Law of large numbers (6.4.1)
- Central limit theorem (6.4.2)
- Unbiasedness (7.1.1)

Probability Density / Mass Function

- Probability mass function (PMF): f(x) for a discrete random variable
- Probability density function (PDF): f(x) for a continuous random variable
- ▶ Recall $P(\Omega) = 1$: total sum of f(x) (PMF), or the area of f(x) (PDF), must equal to 1.
- Cumulative mass function (CMF):

$$F(x) = P(X \le x) = \sum_{K \le x} f(k)$$

Cumulative density function (CDF):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

- ▶ What is the probability that a random variable X takes a value equal to or less than x?
- Area under the density curve
- Non-decreasing

Binomial Distribution

- ► The number of 1s (one of the binary outcomes) in multiple Bernoulli trials
- $\Omega = \{0, 1, ..., n-1, n\}$
- PMF $f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \qquad \binom{n}{x} =_n C_x$
- CMF $F(x) = P(X \le x) = \sum_{k=0}^{x} \binom{n}{k} p^{k} (1-p)^{n-k}$
- p = 0.5 and n = 3

0.4 0.3 -1990 0.2 -0.1 -0.0 0 1 2 3

Χ

Probability mass function

Cumulative distribution function

Uniform Distribution

- Every number in an interval has an equal chance of appearance
- Ω = set of real numbers in a range [a, b]
- PDF $f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$ $F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & x \ge b \end{cases}$
- Uniform distribution for the interval [a,b]

Probability density function

Cumulative distribution function

- Most famous and frequently observed distribution (Why?)
- ightharpoonup = real numbers (continuous number)
- ► X is normal RV with mean μ and standard deviation σ : $X \sim \mathcal{N}(\mu, \sigma^2)$
- PDF $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$
- e.g. $X \sim \mathcal{N}(0,1)$

- Singled peaked, symmetric
- ► about 2/3 are within 1 standard deviation (σ) from the mean
- ▶ about 95% are within 2 standard deviations (2 σ) from the mean

Expectation: Definition and General Properties

- Expectation (population mean) of a random variable X
 - Fixed value given a probability distribution (different from sample means)

$$\mathbb{E}(X) = \begin{cases} \sum_{x} x \times f(x) & \text{if } X \text{ is discrete,} \\ \int x \times f(x) \, dx & \text{if } X \text{ is continuous} \end{cases}$$

- Properties of expectation (a, b: constant values; X,Y: independent RVs)
 - 1. $\mathbb{E}(a) = a$.
 - 2. $\mathbb{E}(aX) = a\mathbb{E}(X)$.
 - 3. $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.
 - 4. $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$.
 - 5. If *X* and *Y* are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. But generally, $\mathbb{E}(XY) \neq \mathbb{E}(X)\mathbb{E}(Y)$.

Expectation: Examples

$$\mathbb{E}(X) = \begin{cases} \sum_{x} x \times f(x) & \text{if } X \text{ is discrete,} \\ \int x \times f(x) \, dx & \text{if } X \text{ is continuous} \end{cases}$$

- Expectation (population mean)
 - Expected value of a random variable
 - e.g. PMF: Bernoulli random variable

$$\mathbb{E}(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times f(0) + 1 \times f(1) = 0 \times (1 - p) + 1 \times p = p$$

e.g. PMF: Binomial random variable

$$\mathbb{E}(X) = 0 \times f(0) + 1 \times f(1) + \dots + n \times f(n) = \sum_{x=0}^{n} x \times f(x)$$

• e.g. PMF: Binomial random variable (Y_i is a Bernoulli RV with p)

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} \mathbb{E}(Y_i) = np$$

• e.g. PDF: uniform random variable defined in the interval [*a*,*b*]

$$\mathbb{E}(X) = \int_{a}^{b} x \times f(x) \, dx = \int_{a}^{b} \frac{x}{b - a} dx = \left. \frac{x^{2}}{2(b - a)} \right|_{a}^{b} = \frac{a + b}{2}$$

Variance: Definition and General Properties

Population variance (different from sample variance)

$$\mathbb{V}(X) = \mathbb{E}[\{X - \mathbb{E}(X)\}^2]$$

$$= \mathbb{E}[X^2 - 2X\mathbb{E}(X) + \{\mathbb{E}(X)\}^2]$$

$$= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \{\mathbb{E}(X)\}^2$$

$$= \mathbb{E}(X^2) - \{\mathbb{E}(X)\}^2.$$

e.g. PMF: Bernoulli random variable

$$\mathbb{V}(X) = \mathbb{E}(X) - {\mathbb{E}(X)}^2 = p(1-p)$$

e.g. PDF: Uniform random variable

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \{\mathbb{E}(X)\}^2 = \int_a^b \frac{x^2}{b-a} dx - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{x^3}{3(b-a)} \Big|_a^b - \left(\frac{a+b}{2}\right)^2 = \frac{1}{12}(b-a)^2.$$

Square root of population variance is population standard deviation

Variance: Definition and General Properties

- 1. V(a) = 0.
- 2. $\mathbb{V}(aX) = a^2 \mathbb{V}(X)$.
- 3. $\mathbb{V}(X+b) = \mathbb{V}(X)$.
- $4. \ \mathbb{V}(aX+b) = a^2 \mathbb{V}(X).$
- 5. If *X* and *Y* are independent, $\mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- ► If X is a normal RV, any transformation of form aX + b will follows normal
- $X \sim \mathcal{N}(\mu, \sigma^2)$
- $Y = cX \to Y \sim \mathcal{N}(c\mu, (c\sigma)^2)$
- $T = aX + b \to T \sim \mathcal{N}(a\mu + b, (a\sigma)^2)$
- **z-score:** $Z = (X \mu)/\sigma \rightarrow Z \sim \mathcal{N}(0,1)$

1.
$$\mathbb{E}(a) = a$$
.

2.
$$\mathbb{E}(aX) = a\mathbb{E}(X)$$
.

3.
$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b.$$

1.
$$V(a) = 0$$
.

2.
$$\mathbb{V}(aX) = a^2 \mathbb{V}(X)$$
.

3.
$$\mathbb{V}(X+b) = \mathbb{V}(X)$$
.

4.
$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$
. 4. $\mathbb{V}(aX + b) = a^2\mathbb{V}(X)$.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Probability that a normal random variable with mean μ and sdv σ lies within k standard deviations from the mean for a positive constant k > 0

$$P(\mu - k\sigma \le X \le \mu + k\sigma) = P(-k\sigma \le X - \mu \le k\sigma)$$

$$= P\left(-k \le \frac{X - \mu}{\sigma} \le k\right)$$
$$= P(-k \le Z \le k),$$

$$P(-k \le Z \le k) = P(Z \le k) - P(Z \le -k) = F(k) - F(-k)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- Singled peaked, symmetric
- ▶ about 2/3 are within 1 standard deviation (σ) from the mean
- ▶ about 95% are within 2 standard deviations (2 σ) from the mean

```
## plus minus 1 standard deviation from the mean
pnorm(1) - pnorm(-1)

## [1] 0.6826895

## plus minus 2 standard deviations from the mean
pnorm(2) - pnorm(-2)

## [1] 0.9544997
```

```
mu <- 5
sigma <- 2
## plus minus 1 standard deviation from the mean
pnorm(mu + sigma, mean = mu, sd = sigma) - pnorm(mu - sigma, mean = mu, sd = sigma)
## [1] 0.6826895
## plus minus 2 standard deviations from the mean
pnorm(mu + 2*sigma, mean = mu, sd = sigma) - pnorm(mu - 2*sigma, mean = mu, sd = sigma)
## [1] 0.9544997</pre>
```

Variance: Definition and General Properties

- 1. V(a) = 0.
- 2. $\mathbb{V}(aX) = a^2 \mathbb{V}(X)$.
- 3. $\mathbb{V}(X+b) = \mathbb{V}(X)$.
- 4. $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$.
- 5. If *X* and *Y* are independent, $\mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$.

Contents

- Random Variables and Probability Distributions (Chapter 6.3)
 - Overview
 - Bernoulli / Binomial distribution
 - Uniform / Normal distribution
 - Expectation and Variance
- ► The Law of large numbers (6.4.1)
- Central limit theorem (6.4.2)
- Unbiasedness (7.1.1)

The Law of Large Numbers (6.4.1)

As sample size grows, sample mean approaches the population mean

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}(X)$$

The Law of Large Numbers (6.4.1)

As sample size grows, sample mean approaches the population mean

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}(X)$$

The Law of Large Numbers (6.4.1)

As sample size grows, sample mean approaches the population mean

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}(X)$$

The law of large numbers:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}(X)$$

- relationship between the size of sample, its mean, and population mean
 - What about its distribution?
- ► The central limit theorem

Suppose that we obtain a random sample of n independently and identically distributed (i.i.d.) observations, X_1, X_2, \ldots, X_n , from a probability distribution with mean $\mathbb{E}(X)$ and variance $\mathbb{V}(X)$. Let us denote the sample average by $\overline{X}_n = \sum_{i=1}^n X_i/n$. Then, the **central limit theorem** states

$$\frac{\overline{X}_n - \mathbb{E}(X)}{\sqrt{\mathbb{V}(X)/n}} \rightsquigarrow \mathcal{N}(0, 1). \tag{6.41}$$

In the theorem, \rightsquigarrow indicates "convergence in distribution" as the sample size n increases.

The central limit theorem

Suppose that we obtain a random sample of n independently and identically distributed (i.i.d.) observations, X_1, X_2, \ldots, X_n , from a probability distribution with mean $\mathbb{E}(X)$ and variance $\mathbb{V}(X)$. Let us denote the sample average by $\overline{X}_n = \sum_{i=1}^n X_i/n$. Then, the **central limit theorem** states

$$\frac{\overline{X}_n - \mathbb{E}(X)}{\sqrt{\mathbb{V}(X)/n}} \rightsquigarrow \mathcal{N}(0, 1). \tag{6.41}$$

In the theorem, \rightsquigarrow indicates "convergence in distribution" as the sample size n increases.

The central limit theorem

Suppose that we obtain a random sample of n independently and identically distributed (i.i.d.) observations, X_1, X_2, \ldots, X_n , from a probability distribution with mean $\mathbb{E}(X)$ and variance $\mathbb{V}(X)$. Let us denote the sample average by $\overline{X}_n = \sum_{i=1}^n X_i/n$. Then, the **central limit theorem** states

$$\frac{\overline{X}_n - \mathbb{E}(X)}{\sqrt{\mathbb{V}(X)/n}} \rightsquigarrow \mathcal{N}(0,1). \tag{6.41}$$

In the theorem, \rightsquigarrow indicates "convergence in distribution" as the sample size n increases.

- ► z-score! Recall $X \sim \mathcal{N}(\mu, \sigma^2)$ **z-score:** $Z = (X \mu)/\sigma \rightarrow Z \sim \mathcal{N}(0, 1)$
 - Central limit theorem holds for ANY probability distribution

$$\mathbb{E}(\overline{X}_n) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n \mathbb{E}(X_i) = \mathbb{E}(X)$$

$$\mathbb{V}(\overline{X}_n) = \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}(X_i) = \frac{1}{n}\mathbb{V}(X)$$

- ▶ (hyptothetical values) # Youtube videos: very large! Exceeding 10¹¹
 - Mean number of views: 40,000
 - Standard deviation for the number of views: 40,000
 - ► Is the distribution normal? No!
 - ▶ Question: If you select 100 videos randomly, what is the chance that their views exceeds 46,000?


```
## sims = number of simulations
n.samp < -1000
z.binom <- z.unif <- rep(NA, sims)</pre>
for (i in 1:sims) {
    x \leftarrow rbinom(n.samp, p = 0.2, size = 10)
    z.binom[i] \leftarrow (mean(x) - 2) / sqrt(1.6 / n.samp)
    x \leftarrow runif(n.samp, min = 0, max = 1)
    z.unif[i] <- (mean(x) - 0.5) / sqrt(1 / (12 * n.samp))
## histograms; nclass specifies the number of bins
hist(z.binom, freq = FALSE, nclass = 40, xlim = c(-4, 4), ylim = c(0, 0.6),
     xlab = "z-score", main = "Binomial(0.2, 10)")
x \leftarrow seq(from = -3, to = 3, by = 0.01)
lines(x, dnorm(x)) # overlay the standard normal PDF
hist(z.unif, freq = FALSE, nclass = 40, xlim = c(-4, 4), ylim = c(0, 0.6),
     xlab = "z-score", main = "Uniform(0, 1)")
lines(x, dnorm(x))
```


Uniform (0, 1)

Contents

- Random Variables and Probability Distributions (Chapter 6.3)
 - Overview
 - Bernoulli / Binomial distribution
 - Uniform / Normal distribution
 - Expectation and Variance
- The Law of large numbers (6.4.1)
- Central limit theorem (6.4.2)
- Unbiasedness (7.1.1)

Unbiasedness

- Our ultimate quantities of interest are about populations
 - e.g. Average treatment effect for the entire population
 - e.g. Population fraction of candidate A supporters
- Challenge: In practice, we can only learn from samples
 - e.g. Sample average treatment effect estimates
 - e.g. Sample estimates of fraction of candidate A supporters

Unbiasedness

- What is formal language to describe quality of sample estimates??
 - We should relate sample estimates with population estimates
- An estimator is unbiased if its expectation equal the parameter.
 - e.g. sample average $\overline{X}_n : \mathbb{E}(\overline{X}_n) = \mathbb{E}(X)$
 - e.g. averaging an infinite number of survey samples of same size

Unbiasedness

- e.g. Sample Average Treatment Effect (SATE) for randomized control trials
 - SATE = $\frac{1}{n} \sum_{i=1}^{n} \{Y_i(1) Y_i(0)\}$
 - Difference in the means estimator
 - ► SATE = average of the treated average of the untreated

$$= \frac{1}{n_1} \sum_{i=1}^n T_i Y_i - \frac{1}{n-n_1} \sum_{i=1}^n (1-T_i) Y_i.$$

Unbiasedness

$$\mathbb{E}(\widehat{\mathsf{SATE}}) = \mathbb{E}\left(\frac{1}{n_1} \sum_{i=1}^n T_i Y_i(1) - \frac{1}{n-n_1} \sum_{i=1}^n (1-T_i) Y_i(0)\right)$$

Summary

- Random Variables and Probability Distributions (Chapter 6.3)
 - Overview
 - Bernoulli / Binomial distribution
 - Uniform / Normal distribution
 - Expectation and Variance
- ► The Law of large numbers (6.4.1)
- Central limit theorem (6.4.2)
- Unbiasedness (7.1.1)
- Next week:
 - SATE consistency, Population ATE, bias and interval estimates

See you next week.