Spring 2019

BUAN 6337: Predictive Analytics using SAS A Report of

Group Assignment 4 on Crackers Data Analysis

Submitted by Group 7
Vinay Singh 2021441554
Vaibhav Shrivastava 2021434681
Megan Malisani 2021440151
Pragati Mishra 2021434655
Ishan Jain 2021426222
Erhao Liang 2021435949

Under the Guidance of Prof. Shervin Shahrokhi Tehrani

1. Summary Statistics

There are 3292 obsevations consisting of 3 main brands with rest of them combine as Private: Sunshine, Keebler and Nabisco.

Feature Relevance:

Quantitative variable: PricePrivate, PriceNabisco, PriceKeebler and PriceSunshine. Qualitative variable: DisplPrivate, DisplKeebler, DisplSunshine, DisplNabisco, FeatPrivate, FeatKeebler, FeatSunshin, and FeatNabisco.

Market Share:

Nabisco has the highest market share- 1792 purchases. So 54.4% market share. Keebler has lowest market share: 226 purchases. So, 7.2% market share.

	The FREQ Procedure								
	PRIVATE	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
	0	2257	68.56	2257	68.56				
	1	1035	31.44	3292	100.00				
	SUNSHINE	Геодиолем	Doroant	Cumulative	Cumulative Percent				
ŀ		Frequency		. ,					
ŀ	0	3053	92.74	3053					
	1	239	7.26	3292	100.00				
	KEEBLER	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
	0	3066	93.13	3066	93.13				
	1	226	6.87	3292	100.00				
	NABISCO	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
	0	1500	45.57	1500	45.57				
	1	1792	54.43	3292	100.00				

Average price of brands:

Average Price of Keenler is highest= 1.1259 and average price of private is lowest = 0.6807.

Variable	N	Mean	Std Dev	Minimum	Maximum
PRICEPRIVATE	3292	0.6807290	0.1240652	0.3800000	1.1500000
PRICESUNSHINE					
PRICEKEEBLER	3292	1.1259386	0.1063765	0.8800000	1.3900000
PRICENABISCO	3292	1.0792254	0.1447765	0	1.6900001

Display or store feature:

Nabisco provides display and store feature more frequently.

FeatPrivate	Frequency	Percent	Cumulative Frequency	Cumulative Percent	DisplPrivate	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	3137	95.29	3137	95.29	0	2967	90.13	2967	90.13
1	155	4.71	3292	100.00	1	325	9.87	3292	100.00
FeatSunshine	Frequency	Percent	Cumulative Frequency	oumando	DisplSunshine	Frequency	Percent	Cumulative Frequency	
0	3168	96.23	3168	96.23	0	2868	87.12	2868	87.12
1	124	3.77	3292	100.00	1	424	12.88	3292	100.00
FeatKeebler	Frequency	Percent	Cumulative Frequency	Cumulative Percent	DisplKeebler	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	3152	95.75	3152	95.75	0	2942	89.37	2942	89.37
	140	4.25	3292	100.00	- 1	350	10.63	3292	100.00
1								Cumulative	Cumulative
1 FeatNabisco	Frequency	Percent	Cumulative Frequency	Cumulative Percent	DisplNabisco	Frequency	Percent	Frequency	Percent
	Frequency	Percent 91.34	Cumulative Frequency		DisplNabisco 0	Frequency 2172	Percent 65.98	Frequency 2172	Percent 65.98

2. Sampling Dataset

The SAS System					
The SURVEY	SEL	ECT Procedure			
Selection Method Simple Random Sampling					
Input Data Set	CRACKERS				
Random Number Se	2				
Sampling Rate		0.8			
Sample Size		263			
Selection Probability	у	0.800122			
Sampling Weight		0			
Output Data Set		CRACKERS_SAMPLED			

3. General Utility Model Equation

Allowing for the effect of price, display, and feature on utility to vary across brands, the utility equations are:

$$\begin{aligned} U_{ip} &= \beta_p + \beta \ price_{ip} + \beta_{p2} display_{ip} + \beta_{p3} feature_{ip} + \beta_{p4} price_{ip} * feature_{ip} \\ &+ \in_{ip} \\ U_{is} &= \beta_s + \beta \ price_{is} + \beta_{s2} display_{is} + \beta_{s3} feature_{is} + \beta_{s4} price_{is} \\ &* feature_{is} + \in_{is} \end{aligned}$$

$$U_{ik} = \beta_k + \beta \quad price_{ik} + \beta_{k2} display_{ik} + \beta_{k3} feature_{ik} + \beta_{k4} price_{ik} * feature_{ik} + \epsilon_{ik}$$

$$U_{in} = \beta_n + \beta \ price_{in} + \beta_{n2} display_{np} + \beta_{n3} feature_{in} + \beta_{n4} price_{in}$$

$$* feature_{in} + \epsilon_{in}$$

4. Formatted Data set

The data is not formatted as needed for using PROC LOGISTIC or PROC MDC. For each observation (purchase event for a single individual), each potential choice (brand) in the choice set should have its own row, as shown here:

5. Multi-Logit Model using Logistic

We have used LOGISTIC to build a multi-logit model and have used Price, Feature, Display metrics along with a interaction variable of Price * Feature.

Model-Fit Statistics

Model Fit Statistics							
Criterion	Witho	ut Covariates	With Covariates				
AIC		7302.999	5301.795				
SC		7302.999	5417.996				
-2 Log L		7302.999	5269.795				

Model performance compared to the null model

Testing Globa	I Null Hypoth	esis:	BETA=0	
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	2033.2040	16	<.0001	
Score	1931.3418	16	<.0001	
Wald	1316.8636	16	<.0001	

Parameter Estimates

- We can see from the Logit model that result for the Intercept of Nabisco, Sunshine are significant with the intercept 1.6671 and -0.8448 respectively. It is insignificant for Keebler at Pr>0.0085 level.
- Price is a significant variable in the model and has an intercept of -2.9949 for all the crackers
- Feature variable is only significant for Nabisco brand with intercept of 8.3761.
- All the brand variables if they are on display are insignificant Pr>>0.0001. The intercept for Keebler,
 Nabisco, Sunshine and Private cracker while on display are 9.1745, 8.37, 1.44 and 2.12 respectively
- If the interaction of Price and Feature takes place, then the results are only consistent for Nabisco brand with the intercept of -7.4445

Analysis of Conditional Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
cracker_choice	Keebler	1	-0.3728	0.1417	6.9200	0.0085	
cracker_choice	Nabisco	1	1.6671	0.1168	203.6067	<.0001	
cracker_choice	Sunshine	1	-0.8448	0.1170	52.1311	<.0001	
cracker_choice	Private	0	0	-			
price		1	-2.9949	0.2425	152.5672	<.0001	
feature*cracker_choi	Keebler	1	9.1745	3.8512	5.6751	0.0172	
feature*cracker_choi	Nabisco	1	8.3761	1.9827	17.8464	<.0001	
feature*cracker_choi	Sunshine	1	1.4477	1.2261	1.3941	0.2377	
feature*cracker_choi	Private	1	2.1290	2.0448	1.0840	0.2978	
displ*cracker_choice	Keebler	1	0.3339	0.2361	2.0005	0.1573	
displ*cracker_choice	Nabisco	1	0.1294	0.0880	2.1652	0.1412	
displ*cracker_choice	Sunshine	1	0.4357	0.1890	5.3165	0.0211	
displ*cracker_choice	Private	1	-0.2728	0.1724	2.5036	0.1136	
price*featur*cracker	Keebler	1	-8.3964	3.8483	4.7603	0.0291	
price*featur*cracker	Nabisco	1	-7.4445	1.8708	15.8350	<.0001	
price*featur*cracker	Sunshine	1	-0.9238	1.7107	0.2916	0.5892	
price*featur*cracker	Private	1	-3.7874	3.9808	0.9052	0.3414	

Explanation of Parameter Estimates

- Keebler and Sunshine generate lower Utility than Private cracker if everything else is same Nabisco generate higher Utility than Private crackers if everything else is same
- 2 If price increases, the purchase probabilities will drop for all the brands
- If there is a feature for a product in store, the purchase probability will increase, Keebler store feature has the strongest effect than Nabisco, Sunshine and Private cracker brands
- If there is a display for a product in store, the purchase probability will increase for all the brand except for Private Cracker. Keebler has the strongest effect of Store Display when compared to other brands.
- Interaction effect of Price and Feature indicate that the purchase probability will decrease if the price of cracker is increased and is on feature for each particular crackers brand

	Analysis	Analysis of Conditional Maximum Likelihood Estimates								
_	Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
1	cracker_choice	Keebler	1	-0.3728	0.1417	6.9200	0.0085			
	cracker_choice	Nabisco	1	1.6671	0.1168	203.6067	<.0001			
	cracker_choice	Sunshine	1	-0.8448	0.1170	52.1311	<.0001			
	cracker_choice	Private	0	0						
2 [price		1	-2.9949	0.2425	152.5672	<.0001			
\sim [feature*cracker_choi	Keebler	1	9.1745	3.8512	5.6751	0.0172			
3	feature*cracker_choi	Nabisco	1	8.3761	1.9827	17.8464	<.0001			
	feature*cracker_choi	Sunshine	1	1.4477	1.2261	1.3941	0.2377			
L	feature*cracker_choi	Private	1	2.1290	2.0448	1.0840	0.2978			
4	displ*cracker_choice	Keebler	1	0.3339	0.2361	2.0005	0.1573			
	displ*cracker_choice	Nabisco	1	0.1294	0.0880	2.1652	0.1412			
	displ*cracker_choice	Sunshine	1	0.4357	0.1890	5.3165	0.0211			
L	displ*cracker_choice	Private	1	-0.2728	0.1724	2.5036	0.1136			
5	price*featur*cracker	Keebler	1	-8.3964	3.8483	4.7603	0.0291			
	price*featur*cracker	Nabisco	1	-7.4445	1.8708	15.8350	<.0001			
	price*featur*cracker	Sunshine	1	-0.9238	1.7107	0.2916	0.5892			
	price*featur*cracker	Private	1	-3.7874	3.9808	0.9052	0.3414			

6. Multi Logit Model using PROC MDC

Parameter Estimates using MDC commands

We have reproduced the above Multi Logit model using PROC MDC and the result are consistent with the PROC LOGISTIC command.

Logit Model using MDC commands

The MDC Procedure

Conditional Logit Estimates

	Parameter Estimates							
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t	Parameter Label		
CRACKER_CHOICEPrivate	0	0	0					
CRACKER_CHOICESunshine	1	-0.8448	0.1170	-7.22	<.0001			
CRACKER_CHOICEKeebler	1	-0.3728	0.1417	-2.63	0.0085			
CRACKER_CHOICENabisco	1	1.6671	0.1168	14.27	<.0001			
price	1	-2.9949	0.2425	-12.35	<.0001			
CRACKER_CHOICEPrivateFEATURE	1	2.1290	2.0448	1.04	0.2978			
CRACKER_CHOICESunshineFEATURE	1	1.4477	1.2261	1.18	0.2377			
CRACKER_CHOICEKeeblerFEATURE	1	9.1745	3.8512	2.38	0.0172			
CRACKER_CHOICENabiscoFEATURE	1	8.3761	1.9827	4.22	<.0001			
CRACKER_CHOICEPrivateDISPL	1	-0.2728	0.1724	-1.58	0.1136			
CRACKER_CHOICESunshineDISPL	1	0.4357	0.1890	2.31	0.0211			
CRACKER_CHOICEKeeblerDISPL	1	0.3339	0.2361	1.41	0.1573			
CRACKER_CHOICENabiscoDISPL	1	0.1294	0.0880	1.47	0.1412			
CRACKER_CHOICEPrivate2	1	-3.7874	3.9808	-0.95	0.3414			
CRACKER_CHOICESunshine2	1	-0.9238	1.7107	-0.54	0.5892			
CRACKER_CHOICEKeebler2	1	-8.3964	3.8483	-2.18	0.0291			
CRACKER_CHOICENabisco2	1	-7.4445	1.8708	-3.98	<.0001			
Restrict1	1	5.0749E-7	12.2611	0.00	1.0000*	Linear EC [1]		

Goodness of Fit measures

Model Fit Summ	агу
Dependent Variable	brand_chosen
Number of Observations	2634
Number of Cases	10536
Log Likelihood	-2635
Log Likelihood Null (LogL(0))	-3651
Maximum Absolute Gradient	7.28365E-7
Number of Iterations	5
Optimization Method	Newton-Raphson
AIC	5302
Schwarz Criterion	5396

Goodness-of-Fit Measures						
Measure	Value	Formula				
Likelihood Ratio (R)	2033.2	2 * (LogL - LogL0)				
Upper Bound of R (U)	7303	- 2 * LogL0				
Aldrich-Nelson	0.4356	R / (R+N)				
Cragg-Uhler 1	0.5379	1 - exp(-R/N)				
Cragg-Uhler 2	0.5737	(1-exp(-R/N)) / (1-exp(-U/N))				
Estrella	0.5953	1 - (1-R/U)^(U/N)				
Adjusted Estrella	0.588	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)				
McFadden's LRI	0.2784	R/U				
Veall-Zimmermann	0.5928	(R * (U+N)) / (U * (R+N))				
N = # of observations,	K = # of	regressors				

7. PROBIT Model using PROC MDC

Model Fit Statistics

While comparing the Model Fit summary, we see that PROBIT model perform better than Logit Model since it has less AIC, though it is very minute difference

PROBIT Model Fit Summ	ary
Dependent Variable	brand_chosen
Number of Observations	2634
Number of Cases	10536
Log Likelihood	-2635
Log Likelihood Null (LogL(0))	-3651
Maximum Absolute Gradient	7.28365E-7
Number of Iterations	5
Optimization Method	Newton-Raphson
AIC	5302
Schwarz Criterion	5396

LOGIT						
Model Fit Summary						
Dependent Variable	brand_chosen					
Number of Observations	2634					
Number of Cases	10536					
Log Likelihood	-2632					
Log Likelihood Null (LogL(0))	-3651					
Maximum Absolute Gradient	0.06861					
Number of Iterations	90					
Optimization Method	Dual Quasi-Newton					
AIC	5306					
Schwarz Criterion	5430					
Number of Simulations	100					
Starting Point of Halton Sequence	11					

Ques 7
Goodness of Fit Measures

Ques 6

Goodness-of-Fit Measures		Goodness-of-Fit Measures				
Measure	Value	Formula	Measure	Value	Formula	
Likelihood Ratio (R)	2038.9	2 * (LogL - LogL0)	Likelihood Ratio (R)	2033.2	2 * (LogL - LogL0)	
Upper Bound of R (U)	/303	- 2 * LogL0	Upper Bound of R (U)	7303	-2 * LogL0	
Aldrich-Nelson	0.4363	R / (R+N)	Aldrich-Nelson	0.4356	R / (R+N)	
Cragg-Uhler 1	0.5389	1 - exp(-R/N)	Cragg-Uhler 1	0.5379	1 - exp(-R/N)	
Cragg-Uhler 2	0.5748	(1-exp(-R/N)) / (1-exp(-U/N))	Cragg-Uhler 2	0.5737	(1-exp(-R/N)) / (1-exp(-U/N))	
Estrella	0.5965	1 - (1-R/U)^(U/N)	Estrella	0.5953	1 - (1-R/U)^(U/N)	
Adjusted Estrella	0.5893	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)	Adjusted Estrella	0.588	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)	
McFadden's LRI	0.2792	R/U	McFadden's LRI	0.2784	R/U	
Veall-Zimmermann	0.5937	(R * (U+N)) / (U * (R+N))	Veall-Zimmermann	0.5928	(R * (U+N)) / (U * (R+N))	
N = # of observations, K = # of regressors		N = # of observations, K = # of regressors				

Ques 7 Ques 6

Like-hood Ratio are different in two results, Probit model is better than Multi-logit model on goodness-of-fit.

Difference: Logit vs Probit model

- Multi-Logit model suffers from IIA issue to capture asymmetric switching patterns
- Estimates under multinomial PROBIT model are different from conditional LOGIT model since all the intercept are bit increased for Probit Model
- In Logit model, five significant variables are in the result, which are Intercept for Sunshine& Nabisco, price, Nabisco when featured and when Nabisco when featured and price is increased.
- However, we can see in the Probit model, only Nabisco and price are significant parameter.
- Estimates for Intercept of Keebler brand has a positive effect compared to -ve intercept in Logit model
- Other Estimates of PROBIT model have consistent sign but increased value

PROBITI	PROBIT Model using MDC commands							
	The MDC Procedure							
Multinomial Probit Estimates								
	Dozomatos Estimatos							
	Parameter Estimates Standard Approx							
Parameter	DF	Estimate		t Value	Approx Pr > t	Parameter Label		
CRACKER_CHOICEPrivate	0	0	0					
CRACKER_CHOICESunshine	1	-0.4672	0.3484	-1.34	0.1799			
CRACKER_CHOICEKeebler	_1	0.2625	0.3673	0.71	0 4747			
CRACKER_CHOICENabisco	1	1.6545	0.3006	5.50	<.0001			
price	1	-2.6182	0.4121	-6.35	<.0001			
CRACKER_CHOICEPrivateFEATURE	1	1./6//	1.9531	0.91	0.3654			
${\tt CRACKER_CHOICES} unshine {\tt FEATURE}$	1	1.1725	1.1719	1.00	0.3171			
CRACKER_CHOICEKeeblerFEATURE	1	4.6624	2.6488	1.76	0.0784			
CRACKER_CHOICENabiscoFEATURE	1	6.8948	1.9342	3.56	0.0004			
CRACKER_CHOICEPrivateDISPL	1	-0.2656	0.1819	-1.46	0.1442			
CRACKER_CHOICESunshineDISPL	1	0.2250	0.1668	1.35	0.1774			
CRACKER_CHOICEKeeblerDISPL	1	0.1617	0.1529	1.06	0.2903			
CRACKER_CHOICENabiscoDISPL	1	0.0908	0.0790	1.15	0.2507			
CRACKER_CHOICEPrivate2	1	-2.9178	3.7479	-0.78	0.4363			
CRACKER_CHOICESunshine2	1	-0.8477	1.5730	-0.54	0.5900			
CRACKER_CHOICEKeebler2	1	-4.3079	2.6163	-1.65	0.0996			
CRACKER_CHOICENabisco2	1	-6.1862	1.7958	-3.44	0.0006			
STD_1	1	1.4471	0.3864	3.75	0.0002			
STD_2	1	1.1337	0.3654	3.10	0.0019			
RHO_21	1	-0.4053	0.5582	-0.73	0.4678			
RHO_31	1	-0.0865	0.4985	-0.17	0.8623			
RHO_32	1	0.4856	0.2121	2.29	0.0220			
Restrict1	1	0.0137	-	_	*	Linear EC [1]		

8. Probit Logit Model Selection

- We can compare the likelihood among four models below, which is indicating the goodness-of-fit. The highest one is Probit model in question 7, which doesn't have any RESTRICT when coding.
- Yes, there is IIA property associated with the Logit Model since the intercept are not consistent for Logit model when compared to all the other model shown below.

	PRC	BIT		
Goodness-of-Fit Measures		Good		
Measure	Value	Formula	Measure	
Likelihood Ratio (R)	2038.9	2 * (LogL - LogL0)	Likelihood Ratio (R)	
Upper Bound of R (U)	7303	- 2 * LogL0	Upper Bound of R (U)	
Aldrich-Nelson	0.4363	R / (R+N)	Aldrich-Nelson	
Cragg-Uhler 1	0.5389	1 - exp(-R/N)	Cragg-Uhler 1	
Cragg-Uhler 2	0.5748	(1-exp(-R/N)) / (1-exp(-U/N))	Cragg-Uhler 2	
Estrella	0.5965	1 - (1-R/U)^(U/N)	Estrella	
Adjusted Estrella	0.5893	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)	Adjusted Estrella	
McFadden's LRI	0.2792	R/U	McFadden's LRI	
Veall-Zimmermann	0.5937	(R * (U+N)) / (U * (R+N))	Veall-Zimmermann	
N = # of observations,	K = # of r	egressors	N = # of observations, h	<

Goodness-of-Fit Measures				
Measure	Value	Formula		
Likelihood Ratio (R)	2037.2	2 * (LogL - LogL0)		
Upper Bound of R (U)	7303	- 2 * LogL0		
Aldrich-Nelson	0.4361	R / (R+N)		
Cragg-Uhler 1	0.5386	1 - exp(-R/N)		
Cragg-Uhler 2	0.5745	(1-exp(-R/N)) / (1-exp(-U/N))		
Estrella	0.5962	1 - (1-R/U)^(U/N)		
Adjusted Estrella	0.5889	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)		
McFadden's LRI	0.279	R/U		
Veall-Zimmermann	0.5934	(R * (U+N)) / (U * (R+N))		
N = # of observations, K = # of regressors				

Result in question 7

Result in question 8 - I

Goodness-of-Fit Measures			Goodness-of-Fit Measures			
Measure	Value	Formula	Measure	Value	Formula	
Likelihood Ratio (R)	2035.1	2 * (LogL - LogL0)	Likelihood Ratio (R)	2030.8	2 * (LogL - LogL0)	
Upper Bound of R (U)	7303	- 2 * LogL0	Upper Bound of R (U)	7303	- 2 * LogL0	
Aldrich-Nelson	0.4359	R / (R+N)	Aldrich-Nelson	0.4353	R / (R+N)	
Cragg-Uhler 1	0.5382	1 - exp(-R/N)	Cragg-Uhler 1	0.5375	1 - exp(-R/N)	
Cragg-Uhler 2	0.5741	(1-exp(-R/N)) / (1-exp(-U/N))	Cragg-Uhler 2	0.5733	(1-exp(-R/N)) / (1-exp(-U/N))	
Estrella	0.5957	1 - (1-R/U)^(U/N)	Estrella	0.5948	1 - (1-R/U)^(U/N)	
Adjusted Estrella	0.5884	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)	Adjusted Estrella	0.5875	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)	
McFadden's LRI	0.2787	R/U	McFadden's LRI	0.2781	R/U	
Veall-Zimmermann	0.5931	(R * (U+N)) / (U * (R+N))	Veall-Zimmermann	0.5924	(R * (U+N)) / (U * (R+N))	
N = # of observations, K = # of regressors			N = # of observations, K = # of regressors			
Result in question 8 - $\scriptstyle II$			Result in question 8 - III			

9. Analysis for Nabisco

Normal Model

There are 418 Nabisco customer who predicted probability of more than 0.5 in the test dataset.

Nabisco Market Share = 418 /2632 = 15.88%

Ist Model: 10% Price Decrease

We decreased the Price of Nabisco by 10% and re analyzed the Market Share of the model.

Market Share = 548/2632 = 20 .8 %

There is increase of 4.92% market share using strategy 1.

2nd Model: Always on Feature

We put Nabisco always on feature and re-analyzed the Market Share of the model.

Market Share = 655/2632 = 24 .8 %

There is increase of 9% market share using strategy 2.

Conclusion: Since the Market Share increase more if we put Nabisco on Feature by 9%. Therefore, the brand Manager should implement second strategy.

Note: see code below

10. Conclusion:

Dataset has 3 main brands with all other brands combines as private. Dataset has (i)price of each 4 categories, (ii) display and store feature. By analyzing dataset, Nabisco has highest market share, and display and store feature have been used more frequently for Nabisco.

As per Logit model, price is significant for all category. Feature is significant only for Nabisco, display feature is insignificant for all brand and price-feature factor is significant for Nabisco only.

So, feature has positive effect on sales of Nabisco. Price has negative effect on sales of all brand.

As a brand manager of Nabisco, we would recommend decreasing price, and increasing store feature and price-feature factor to increase market share.

As a brand manager of Keeble, we would recommend decreasing price, increasing feature and display.

As a brand manager of Sunshine, we would recommend decreasing price, increasing feature and display.

As a brand manager of Private, we would recommend decreasing price, increasing feature and decrease display.

APPENDIX

```
/*Homework:4*/
LIBNAME HW4 'H:\My SAS Files\HW4';
PROC IMPORT OUT= HW4.Crackers
            DATAFILE= "H:\My SAS Files\HW4\crackers.csv"
            DBMS=CSV REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN;
DATA Crackers;
SET HW4.Crackers;
RUN:
/*1. Based on the previous lectures, provide a professional summary statistic of this
dataset.
Your summary should briefly explain the status of crackers brands in the market, based on
the above dataset?
For example: which brand has the highest market share? Is there any difference between
the average prices of these brands?
Which brand does provide display or feature in store more frequently? And, ... */
proc freq data=Crackers;
tables PRIVATE SUNSHINE KEEBLER NABISCO;
run:
PROC MEANS DATA=Crackers;
VAR PRICEPRIVATE PRICESUNSHINE PRICEKEEBLER PRICENABISCO;
RUN:
proc freq data=Crackers;
tables FeatPrivate FeatSunshine FeatKeebler FeatNabisco DisplPrivate DisplSunshine
DisplKeebler DisplNabisco;
run;
```



```
/*2*/
proc surveyselect
data= Crackers
out=crackers sampled
outall samprate=0.8
seed=2;
run;
data crackers training crackers test;
set crackers sampled;
if selected=1 then
output crackers training;
else
output crackers test;
/*3*//*no code*
//*4*//*need numeric choice in order to convert format*/
data crackers training;
set crackers training;
if (Private=1) & (Sunshine=0) & (Keebler=0) & (Nabisco=0) then Choice=1;
if (Private=0) & (Sunshine=1) & (Keebler=0) & (Nabisco=0) then Choice=2;
if (Private=0) & (Sunshine=0) & (Keebler=1) & (Nabisco=0) then Choice=3;
if (Private=0) & (Sunshine=0) & (Keebler=0) & (Nabisco=1) then Choice=4;
run:
data crackers test;
set crackers test;
if (Private=1) & (Sunshine=0) & (Keebler=0) & (Nabisco=0) then Choice=1;
if (Private=0) & (Sunshine=1) & (Keebler=0) & (Nabisco=0) then Choice=2;
if (Private=0) & (Sunshine=0) & (Keebler=1) & (Nabisco=0) then Choice=3;
if (Private=0) & (Sunshine=0) & (Keebler=0) & (Nabisco=1) then Choice=4;
run:
/*converting data*/
data crackers training (keep=id brand brand chosen price feature displ);
set crackers training;
array price vector{4} priceprivate pricesunshine pricekeebler pricenabisco;
array feature vector{4} featprivate featsunshine featkeebler featnabisco;
array display vector {4} displprivate displsunshine displkeebler displnabisco;
retain id 0;
id + 1;
do i=1 to 4;
brand=i;
brand chosen=(choice=i);
price=price_vector{i};
```



```
feature=feature vector{i};
displ=display vector{i};
output;
end:
run:
data crackers test (keep=id brand brand chosen price feature displ);
set crackers test;
array price vector{4} priceprivate pricesunshine pricekeebler pricenabisco;
array feature vector{4} featprivate featsunshine featkeebler featnabisco;
array display_vector{4} displprivate displsunshine displkeebler displnabisco;
retain id 0;
id + 1;
do i=1 to 4;
brand=i;
brand chosen=(choice=i);
price=price vector{i};
feature=feature vector{i};
displ=display vector{i};
output;
end;
run:
data crackers training;
set crackers training;
if brand='1' then cracker choice='Private ';
if brand='2' then cracker_choice='Sunshine';
if brand='3' then cracker_choice='Keebler';
if brand='4' then cracker choice='Nabisco';
drop brand;
run;
data crackers test;
set crackers test;
if brand='1' then cracker choice='Private ';
if brand='2' then cracker choice='Sunshine';
if brand='3' then cracker choice='Keebler';
if brand='4' then cracker choice='Nabisco';
drop brand;
run;
/* Ques 5: Estimate the logit model on the training sample using PROC LOGISTIC and report
the estimation results.
Please set the Private intercept equal to zero as the based. You need to report model
parameters, significance.
Also, provide bullet points on the meaning of the estimations results in terms of
consumers' utility by purchasing a brand. */
```



```
proc logistic data=crackers training;
 strata id;
 class cracker choice (ref = 'Private') / param=glm;
 model brand chosen (event='1') = cracker choice price cracker choice*feature
cracker choice*displ cracker choice*price*feature;
 title 'Logit Model using Logistic commands';
run;
/*Ques 6: Reproduce your results in Q5 using PROC MDC (HINT: See the SAS code posted for
the lecture for examples of replicating the
results with PROC MDC. You can use the same dataset format. Refer to the SAS manual for
more details about PROC MDC.
You will need to use "type=clogit" to estimate a multinomial model, and "nchoice=4" to
indicate there are four alternatives for each
choice occasion.
In PROC MDC, using the CLASS statement for a categorical variable with N levels will
create N dummy
variables, each for one level of the categorical variable. Use the restrict statement to
set the coefficient for one of the dummy variables
to zero - effectively omitting this dummy variable. You will need to do this for the main
effects and any interaction effects that
involve the variable used in the CLASS statement - refer to the SAS code for the lecture
for an example. Also, you cannot insert
the interaction effect price *feature directly into PROC MDC. First define a new variable
as price *feature, then insert it into model.
data crackers training1;
set crackers training;
price feature=price*feature;
run;
proc mdc data = crackers training1;
 id id;
  class cracker choice;
  model brand chosen = cracker choice price cracker choice*feature cracker choice*displ
cracker choice*price feature / type = clogit
nchoice = 4;
restrict cracker_choicePrivate=0; /* mdc does not allow flexible options to code class
variable. Need to explicitly force reference levels to zero */
title 'Logit Model using MDC commands';
run:
/*7. Nowuse the model in Q5, and estimate the PROBIT model using PROC MDC.
Do the estimation results look similar to Q6? Explain the differences.*/
/* Multinomial Probit with out restricting errors (it follows the basic seeting in SAS)
proc mdc data = crackers sampled mdc;
id id:
class cracker purchase;
```



```
model Brand purchase =cracker purchase price cracker purchase*feature
cracker purchase*displ cracker purchase*pricefeature / type = mprobit nchoice = 4;
restrict cracker purchasePrivate=0;
/* mdc does not allow flexible options to code class variable. Need to explicitly force
reference levels to zero */
ODS RTF close;
data crackers_training1;
set crackers training;
price feature=price*feature;
run;
proc mdc data = crackers training1;
  id id;
  class cracker choice;
  model brand chosen = cracker choice price cracker choice*feature cracker choice*displ
cracker choice*price feature / type = mprobit
nchoice = 4;
restrict cracker choicePrivate=0; /* mdc does not allow flexible options to code class
variable. Need to explicitly force reference levels to zero */
title 'PROBIT Model using MDC commands';
run:
/*8.In this Question, you need to estimate three new versions of the PROBIT model used in
I.Estimate the model where the error terms are normally distributed, independently and
identically.
This is equivalent that the covariance matrix is the identity matrix. II.
Estimate the model where the error terms are normally and independently distributed, but
allow for existence of heteroscedasticity.
This is equivalent that the covariance matrix is a diagonal matrix. III. Estimate the model
where the error terms are normally distributed,
there is no existence of heteroscedasticity, and the errors are correlated. This is
equivalent that the covariance matrix is a matrix
such that (1) all diagonal elements are equal to 1, and (2) there are non-zero
correlations among alternatives
(i.e., the off-diagonal elements are non-zero). (HINT: See the SAS code posted for the
lecture about PROC MDC.
Use the restrict statement to set the right parameters to zero to generate the above
models.
Note that all the above four models (Q7 and three models in Q8) are nested
model. Therefore, you can use the Loglikelihood to choose the
best model that fits into data. Now, based on your answer, is there any evidence against
IIA property in this data, which is existed by
using logit model in Q6?*//*I:Multinomial Probit allowing errors to be correlated, but
restricting them to be unit variance*/
proc mdc data = crackers sampled mdc;
id id;
class cracker purchase;
model Brand purchase =cracker purchase price cracker purchase*feature
cracker purchase*displ cracker purchase*pricefeature / type = mprobit nchoice = 4
unitvariance= (1 2 3 4);
/*diagonal elements equal to each other*/
```



```
restrict cracker purchasePrivate=0; /* mdc does not allow flexible options to code class
variable.
Need to explicitly force reference levels to zero */
run:
ODS RTF close; /*II: multinomial Probitrestricting errors to be uncorrelated, but allowing
heteroschedasticity*/
proc mdc data = crackers sampled mdc;
id id;class cracker purchase;
model Brand purchase =cracker purchase price cracker purchase*feature
cracker purchase*displ cracker purchase*pricefeature/ type = mprobit nchoice = 4 ;
restrict cracker purchasePrivate=0;
/* mdc does not allow flexible options to code class variable. Need to explicitly force
reference levels to zero */
restrict rho 21=0;
restrict rho 31=0;
restrict rho 32=0;
/* Allows heteroschedasticity, the variance of each predictor does not need to be the
same; error terms uncorrelated, then covariance
must be equal to zero, And because SAS automatically defaults the RHO of the bottom row to
zero (rho 41 \sim \text{rho } 43),
you only need to define the first two rows separately.*/
run:
ODS RTF close;
/*III:Multinomial Probit restricting errors to be iid*/
proc mdc data = crackers sampled mdc;
id id;
class cracker purchase;
model Brand_purchase =cracker_purchaseprice cracker_purchase*feature
cracker purchase*displ cracker purchase*pricefeature /type = mprobit nchoice = 4
unitvariance= (1 2 3 4);
restrict cracker purchasePrivate=0;
/* mdc does not allow flexible options to code class variable. Need to explicitly force
reference levels to zero */
restrict rho 21=0;
restrict rho 31=0;
restrict rho 32=0;
ODS RTF close;
       Now re-consider your model in Q6, i.e., the logit model. First, find the
predicted probability for each brand on your test dataset.
Nabisco brand manager believes if the predicted probability of busying Nabisco is greater
than 50%, the consumer will buy it for sure.
Use the predicted probabilities and 50% threshold to find Nabisco market share based on
test dataset. */
/*Now, the Nabisco brand manager has two strategies to increase its market share. I-
reducing their price by 10% or II-having feature in store
always. Now, based on test dataset and your model in Q6, find how far the Nabisco's
market share will increase by implementing one of these two
strategies? If we assume the implementation cost of both strategies are equal, which one
will be more profitable?
(Hint: You can follow the threshold 50% to find who buys Nabisco under the above
strategies in test dataset.) */
/*Taking the training data set and adding a new column selected which is equal to 1*/
data crackers training;
set crackers training;
selected=1;
```



```
*Taking the test data and making the field brand chosen as null*/
data crackers test;
set crackers test;
brand chosen = .;
selected=0;
price feature=price*feature;
run;
/*Aggregating training and test data*/
data extdata;
set crackers training crackers test;
run:
/*Using proc mdc data and getting the predicting probabilities*/
proc mdc data = extdata;
id id;
class cracker choice;
model brand chosen = cracker choice price cracker choice*feature cracker choice*displ
cracker choice*price feature / type = clogit nchoice = 4;
restrict cracker choicePrivate=0;
output out= probdata pred = p;
run;
/*Getting the data for Nabisco for the probability greater than 0.5*/
data probdata nabisco;
set probdata;
where cracker choice = 'Nabisco' and p >= 0.50 and brand chosen=.;
run;
9. T
/*Reducing the price by 10% and creating new data set with price reduced by 10$*/
data crackers test price;
set crackers test;
if cracker choice = 4 then price = price - (0.1 * price);
run;
/*Aggregating test and training data set*/
data extdata price;
set crackers training1 crackers test price;
run;
/*Predicting probabilities for new price data set*/
proc mdc data = extdata price;
id id;
class cracker choice;
model brand chosen = cracker choice price feature displ price feature / type =
clogitcovest = hess nchoice = 4;
restrict cracker choicePrivate=0;
output out= probdata price pred = p;
run;
/*Getting the data for Nabisco for the probability greater than 0.5*/
data probdata nabisco;
set probdata;
where cracker choice = 'Nabisco' and p >= 0.50 and brand chosen=.;
run:
```


run:

```
9.II
/*Creating new data set with feature for Nebisco*/
data crackers test feature;
set crackers test;
if cracker choice = 4 then feature = 1;
/*Aggregating training and test data*/
data extdata_feature;
set crackers_training1 crackers_test_feature;
run;
/*Predicting probabilities for feature data set*/
proc mdc data = extdata feature;
id id;
class cracker choice;
model brand chosen = cracker choice price feature displ price feature / type =
clogitcovest = hess nchoice = 4;
restrict cracker choicePrivate=0;
output out= probdata feature pred = p;
run;
/*Getting the data for Nabisco for the probability greater than 0.5*/
data probdata nabisco;
set probdata;
where cracker choice = 'Nabisco' and p \ge 0.50 and ;
run;
```

