MITTUNIVERSITETET

Tentamen – ET061G– 16 Mars 2015

Digitalteknik med VHDL

Tid: fem timmar
Tillåtna hjälpmedel: inga
Antal uppgifter: 9
Antal sidor: 5
Maxpoäng: 100 (50 poäng krävs för godkänt)

David Krapohl, tel: 060-148755, e-post: david.krapohl@miun.se

Anvisningar för inlämnade lösningar:

- Resonemang och motiveringar får ej vara så knapphändiga att de blir svåra att föja.
- Tankegången bakom uppställda ekvationer skall förklaras.
- Uträkningarna skall vara tillräckligt fullständiga för att visa hur slutresultatet har erhållits.
- Varje problemlösning skall avslutas med ett klart formulerat svar.

Uppgifter

Uppgift 1. 8 Poäng

Konvertera följande binärtal till hexadecimal och oktal form: 11001001001

Uppgift 2. 8 Poäng

Konvertera det decimala talet -51 till ett 8-bitars binärt tall på 2-komplementform.

Uppgift 3. 10 Poäng

Minimera föjande Boolesk uttryck: $a \cdot \overline{b} + \overline{a \cdot \overline{c}} \cdot d + a \cdot c + d \cdot c$

Uppgift 4.Avgör om föjande likhet gäller: $x \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{z} = (\overline{x} + \overline{y})(\overline{x} + z)(x + \overline{z})$

Uppgift 5. 10 Poäng

Minimera funktionen $f(a,b,c,d) = \sum (0,5,7,10,13,15) + d(2,8)$ genom att använda ett Karnaugh-diagram. Skriv resultatet som ett minimalt Summa-av-Produkt (SoP) uttryck.

Uppgift 6. 12 Poäng

Designa en funktion som tar de binära talen $X = (x_1, x_0)$ och $Y = (y_1, y_0)$ som inputs och jämför talen. Utgången $Z = (z_2, z_1, z_0)$ ska visa om X är mindre $(z_2 = 1)$, lika med $(z_1 = 1)$ eller större än $(z_0 = 1)$ Y. Svara med boolesk uttryck för outputbitarna.

Uppgift 7. 12 Poäng

Skriv VHDL-kod för funktionen beskrivit i uppgift 6.

Uppgift 8. 14 Poäng

Rita tillståndsdiagrammet för VHDL-koden i Appendix 1. Är detta en Moore- eller en Mealy-maskin? Motivera ditt svar.

Uppgift 9. 16 Poäng

Utveckla ett kretsschema för tillståndsdiagrammet nedan. Använd graykodning och T-vippor för tillståndsdiagrammet.

state diagram

Solution

Solution 1.

IOCT
$$0..11 \underbrace{001 001 001}_{3 \ 1 \ 1 \ 1}$$
 (1)
HEX $0..110 \underbrace{0100 1001}_{6 \ 4 \ 9}$ (2)

HEX
$$0..11001001001$$
 (2)

Solution 2.

11001101

Solution 3.

solve with deMorgan, then complements, then distributive

$$a + cd + \overline{d} = a + (\overline{d} + c)(\overline{d} + d)$$
$$a + c + \overline{d}$$

Solution 4.

true! DNF vs CNS from (WA: boolean function 37)

$$x \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{z} = (\overline{x} + \overline{y})(\overline{x} + z)(x + \overline{z})$$

Solution 5.

$$f = \overline{b} \cdot \overline{d} + b \cdot d$$

Solution 6.

Truth table:

no	x1	x2	y1	y0	z2	z1	z0
0	0	0	0	0	0	1	0
1	0	0	0	1	1	0	0
2	0	0	1	0	1	0	0
3	0	0	1	1	1	0	0
4	0	1	0	0	0	0	1
5	0	1	0	1	0	1	0
6	0	1	1	0	1	0	0
7	0	1	1	1	1	0	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	0	1	0
11	1	0	1	1	1	0	0
12	1	1	0	0	0	0	1
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	1
15	1	1	1	1	0	1	0

X smaller than Y

 $z_2 = \bar{a}\bar{b}d + \bar{a}c + \bar{b}cd$

X equal Y

 $z_1 = \bar{a}\bar{b}\bar{c}\bar{c} + \bar{a}b\bar{c}d + abcd + a\bar{b}c\bar{d}$

X larger than Y


```
Solution 7.
```

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity comp is
    port( x in : std_logic_vector (2 downto 0);
          y in : std_logic_vector (2 downto 0);
          z out: std_logic_vector (3 downto 0));
end comp;
architecture comp of comp is
    begin
    process (x,y)
        begin
        if x < y then
            z \ll 100;
        elsif x = y then
            z <= "010";
        else
            z <= "001";
        end if;
    end process;
```

end architecture comp;

Alternative: boolean expression from 6. Other alternative: case select when "x& y"...

Solution 8.

This is a mealy machine because state and output is set at the same time (in different processes, synchronized by clk).

Solution 9.

	· •	,						X					
S	0	1	7	S	gray	S	0	1	\overline{z}		q	q+	T
	A			A	00	00	00	01	0	=	0	0	0
				В	01	01	10	11	1		0	1	1
	D			C	11	11	01	10	0		1	1	0
	В		0	D	10	10	11	00	1		1	0	1
D	C	A	1	-				7+			_		-
							'	Σ'					

	I		
S	0	1	Z
00	00	01	0
01	11	10	1
11	10	01	0
10	01	10	1
	7	•	
t0:	'	0	

e q1	00,q0	01	11	10
0		1		1
1	1		1	

z: 00 01 11 10

Appendix

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity seqdet is
    port (clk: in std_logic;
          clr: in std_logic;
          din: in std_logic;
          dout: out std_logic);
end seqdet;
architecture seqdet of seqdet is
type state_type is (s0,s1,s2,s3,s4);
signal present_state, next_state: state_type;
begin
    sreg: process(clk, clr)
    begin
        if clr = '1' then
            present_state <= '0';</pre>
        elsif clk'event and clk = '1' then
            present_state <= next_state;</pre>
        end if;
    end process;
    C1: process(present_state, din)
    begin
        case present_state is
            when s0 =>
```

```
if din = '1' then
                      next_state <= s1</pre>
                  else
                      next_state <= s0;</pre>
                  end if;
             when s1 =>
                  if din = '1' then
                      next_state <= s2</pre>
                  else
                      next_state <= s0;</pre>
                  end if;
             when s2 =>
                  if din = '1' then
                      next_state <= s3</pre>
                  else
                      next_state <= s2;</pre>
                  end if;
             when s3 =>
                  if din = '1' then
                      next_state <= s1</pre>
                  else
                      next_state <= s0;</pre>
                  end if:
             when others =>
                  null;
         end case;
    end process;
    seq2: process(clk, clr)
    begin
         if clr = '1' then
             dout <= '0';
         elsif clk'event and clk='1' then
             if present_state = s3 and din = '1' then
                  dout <= '1';
             else
                  dout <= '0';
             end if;
         end if;
    end process;
end seqdet;
```