

Người trình bày: Nguyễn Minh Nhựt Số điện thoại: 0939013911 - 0981734105

- Sinh viên hiểu được các loại kiểm định ANOVA: Levene Test,
 ANOVA Test, Turkey Test trên bài toán kiểm định 1 phía
- Sinh viên nắm được bài toán kiểm định Chi-Square
- Thực hành trên các công cụ: Python, R, Excel

CHỦ ĐỀ 1 CÁC LẠI KIỂM ĐỊNH ANOVA VÀ ỨNG DỤNG (ANOVA TEST)

- Leven, ANOVA, Turkey Test
- o Thực hành trên R, Python và Excel

1 - KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ

HYPOTHESIS

Giả thuyết là một nhận định, một ý kiến

Giả thuyết khoa học là một nhận định, một ý kiến yêu cầu có một phương pháp kiểm định

1 - KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ

NULL HYPOTHESIS

1 - KIỂM ĐỊNH GIẢ THUYẾT THỐNG KẾ

ALTERNATIVE HYPOTHESIS

1 - KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ

DATASET DEMO INSURANCE SURVEY DATASET

nsurance Survey						
Age	Gender	Education	Marital Status	Years Employed	Satisfaction*	Premium/Deductible*
36	F	Some college	Divorced	4	4	N
55	F	Some college	Divorced	2	1	N
61	M	Graduate degree	Widowed	26	3	N
65	F	Some college	Married	9	4	N
53	F	Graduate degree	Married	6	4	N
50	F	Graduate degree	Married	10	5	N
28	F	College graduate	Married	4	4 5 5 5 5 5 5 5 3 2 3 2 3	N
62	F	College graduate	Divorced	9	3	N
48	M	Graduate degree	Married	6	5	N
31	M	Graduate degree	Married	1	5	N
57	F	College graduate	Married	4	5	N
44	M	College graduate	Married	2	3	N
38	M	Some college	Married	3	2	N
27	M	Some college	Married	2	3	N
56	M	Graduate degree	Married	4	4	Υ
43	F	College graduate	Married	5	3 3 3 5	Y
45	M	College graduate	Married	15	3	Y
42	F	College graduate	Married	12	3	Υ
29	M	Graduate degree	Single	10	5	N
28	F	Some college	Married	3	4	Y
36	M	Some college	Divorced	15	4	Y
49	F	Graduate degree	Married	2	4 5	N
46	F	College graduate	Divorced	20	4	N
52	F	College graduate	Married	18	2	N
Measured from 1-5 *Would you be willing						

F	G	Н	1	
College graduate	Graduate degree	Some college		
5	3	4		
3	4	1		
5	5	4		
3	5	2		
3	5	3		
3	4	4		
3	5	4		
4	5			
2				

LEVENE'S TEST

Phương sai các nhóm là bằng nhau hay không bằng nhau?

Kiểm tra tính đồng nhất của phương sai.

Là bước tiền điều kiện kiểm định ANOVA

THEORY LEVENE'S TEST

HO: PHƯƠNG SAI GIỮA CÁC NHÓM LÀ BẰNG NHAU

H1: PHƯƠNG SAI GIỮA CÁC NHÓM LÀ KHÁC NHAU

→ Nếu chấp nhận H0 (Giả thuyết) thì ta có thể nói rằng phương sai các nhóm là bằng nhau → Có thể kiểm định ANOVA

FORMULA LEVENE'S TEST

$$W = rac{(N-k)}{(k-1)} rac{\sum_{i=1}^k N_i (ar{Z}_{i.} - ar{Z}_{..})^2}{\sum_{i=1}^k \sum_{j=1}^{N_i} (Z_{ij} - ar{Z}_{i.})^2}$$

1.
$$Z_{ij} = |Y_{ij} - \bar{Y}_{i.}|$$

where \bar{Y}_{i} is the mean of the *i*-th subgroup.

$$\overline{Z}_{i.} = _{\text{Mean of all }} Z_{ij} \text{ data}$$
 $\overline{Z}_{i.} = _{\text{Mean }} Z_{ij} \text{ group } i$
 $N = _{\text{total number of samples}} N_{i} = _{\text{number of samples in group }} i$
 $k = _{\text{number of groups}} i$

$$W > F_{1-\alpha}(k-1;n-k)$$

Bác bỏ giả thuyết H0

THỰC HÀNH KIỂM ĐỊNH LEVENE TRÊN R

P-value	Decision
Less than 0.05*	Reject Null (H ₀) Hypothesis Statistical difference between groups
Greater than 0.05*	Fail to Reject Null (H ₀) Hypothesis No statistical difference between groups, or not enough evidence (data) to find a difference

^{*} Assuming $\alpha = 0.05$

o Cài thư viện R car

install.packages("car")

Sử dụng thư viện

require(car)

○ Kiểm định Levene trong R

leveneTest(value,group,center=mean)

- o Fisher: qf(p=.05,k-1,n-k, lower.tail=FALSE)
- Tham khảo chon center = mean

https://www.itl.nist.gov/div898/handbook/e
da/section3/eda35a.htm

THỰC HÀNH KIỂM ĐỊNH LEVENE TRÊN PYTHON

```
Groupby Education lây Satisfaction dwa
dang list
sep = df.groupby(group)[value].apply(list)
o Sử dụng thư viện
from scipy.stats import levene
o Kiểm định Levene trong Python
stat, p = levene(*sep,center = 'mean')
```

ANOVA'S one TEST

Trung bình các nhóm là bằng nhau hay không bằng nhau?

Loại ANOVA: One-way, Twoway, Multipleway (MANOVA)

Kiểm định ANOVA hay tên gọi khác là phân tích phương sai (Analysis of Variance).

Là một kỹ thuật thống kê tham số được sử dụng để phân tích sự khác nhau giữa giá trị trung bình của các biến phụ thuộc với nhau (Ronald Fisher, 1918).

Mục tiêu: Tìm xem yếu tố này có ảnh hưởng yếu tố khác hay không?

THEORY ANOVA'S one TEST

HO: TRUNG BÌNH CÁC NHÓM LÀ BẰNG NHAU

H1: TRUNG BÌNH CÁC NHÓM LÀ KHÁC NHAU

N1	N2	N3
x1	y1	z 1
x2	y2	z2
x3	у3	z3
x4	y4	z4
x6	у5	z5

(Giả thuyết) $H_0: \mu_1 = \mu_2 = ... = \mu_n$

(Đối thuyết) H_1 : ít nhất 1 cái khác nhau

Các giá trị lưu ý:

- k: số nhóm khảo sát
- n: Là số lượng tổng thể
- ni: Là số lượng phần tử thứ i

Phát biểu bài toán

Có thể cho rằng trung bình giữa các nhóm N1, N2 và N3 bằng nhau được hay không.

THEORY ANOVA'S one TEST

· Tính trung bình từng nhóm

N1	N2	N3
x 1	y1	z1
x2	y2	z2
x3	y3	z3
x4	y4	z4
x6	у5	z5
$\overline{N_1}$	$\overline{N_2}$	$\overline{N_3}$

Trung bình mỗi nhóm:

$$\overline{N_i} = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$$

• Trung bình tổng thể:

$$\overline{N} = \frac{1}{n} \sum_{i=1}^{k} \overline{N_i} . n_i$$

• Tính các đại lượng biến thiên

Biến thiên nội bộ trong nhóm i

Biến thiên trong nội bộ các nhóm

$$SS_i = \sum_{i=1}^{n_i} \left(x_{ij} - \overline{N_i} \right)^2$$

$$SSW = SS_1 + SS_2 + \dots + SS_K$$

THEORY ANOVA'S one TEST

• Biến thiên trong nội bộ các nhóm

$$SSW = SS_1 + SS_2 + \dots + SS_K$$

SSW (Within groups sum of square): là những biến thiên không do yếu tố kiểm soát (yếu tố dùng để phân tích nhóm) gây ra.

• Tổng bình phương độ lệch giữa các nhóm SSG

$$SSG = \sum_{i=1}^{n_i} n_i \left(\overline{N_i} - \overline{N} \right)^2$$

SSG (Between groups sum of square): là những biến thiên khác nhau giữa các nhóm tức là biến thiên do yếu tố nghiên cứu gây ra.

• Tổng biến thiên của 1 quan sát bất kỳ so với trung bình

$$SST = SSG + SSW$$

SST (Total sum of square): là tổng bình phương các độ lệch giữa từng quan sát với trung bình của tất cả quan sát. Biến thiên tổng = Biến thiên nghiên cứu + Biên thiên do các yếu tổ khác.

Nhận xét:

- Nếu phần biến thiên do các yếu tố tạo ra SSG > biến thiên do các yếu tố khác SSW. Vậy yếu tố đang nghiên cứu thật sự ảnh hưởng đến yếu tố kết quả.
- \rightarrow Tăng khả năng bác bỏ H0.

THEORY ANOVA'S one TEST

Tính các phương sai

Phương sai do các yếu tố khác tạo ra

$$MSW = \frac{SSW}{n-k}$$

Phương sai do yếu tố nghiên cứu tạo ra

$$MSG = \frac{SSG}{k-1}$$

· Kiểm định phương sai

$$F = \frac{MSG}{MSW}$$

$$\begin{array}{c} N\acute{e}u \ MSG \ l\acute{o}n, \ MSW \ nh\mathring{o} \rightarrow F \ l\acute{o}n \\ So \ s\acute{a}nh \end{array}$$

$$\begin{array}{c} F > F_{\alpha}(k-1;n-k) \\ B\acute{a}c \ b\mathring{o} \ gi\mathring{a} \ thuy\acute{e}t \ H0 \end{array}$$

THEORY ANOVA'S one TEST

Bảng ANOVA một yếu tố

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares (MS)	F
Within	$SSW = \sum_{j=1}^{k} \sum_{j=1}^{l} (X - \overline{X}_j)^2$	$df_w = k-1$	$MSW = \frac{SSW}{df_w}$	$F = \frac{\text{MSB}}{\text{MSW}}$
Between	$SSB = \sum_{j=1}^{k} (\overline{X}_j - \overline{X})^2$	$df_b = \mathbf{n} - \mathbf{k}$	$MSB = \frac{SSB}{df_b}$	
Total	$SST = \sum_{j=1}^{n} (\overline{X}_{j} - \overline{X})^{2}$	$df_t = n - 1$		

THỰC HÀNH KIỂM ĐỊNH ANOVA TRÊN R

Kiểm định Levene trong R

```
rs = aov(value~group,data=data_source)
Summary(rs)
```

o Fisher: qf(p=.05,k-1,n-k, lower.tail=FALSE)

THỰC HÀNH KIỂM ĐỊNH ANOVA TRÊN PYTHON

```
In [5]: import scipy.stats as stats
  fvalue, pvalue=stats.f_oneway(*sep)
  print(fvalue,pvalue)
3.9246517319277117 0.03563539756488997
```

Kiểm định Levene trong Python

```
from scipy.stats import stats
fvalue, pvalue= stats.f_oneway(*sep)
Print(fvalue,pvalue)
```

o Fisher: qf(p=.05,k-1,n-k, lower.tail=FALSE)

4- Kiểm định ANOVA sâu (Turkey's Testing)

TURKEY TEST

· Đặt vấn đề về kiểm định Turkey

Kiểm định Turkey: Trong trường hợp bác bỏ giả thuyết H_0 ta muốn kết luận về sự hơn kém giữa các trung bình thì ta cần phân tích sâu hơn.

- → Được gọi là **phân tích ANOVA sâu** (Kiểm định Turkey)
- · Cách giải quyết bài toán kiểm định Turkey

Với cùng mức ý nghĩa α, ta so sánh từng cặp trung bình để phát hiện các nhóm khác nhau.

Ví dụ 2: Trường hợp có 3 nhóm trung bình sánh

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases} \qquad \begin{cases} H_0: \mu_1 = \mu_3 \\ H_1: \mu_1 \neq \mu_3 \end{cases} \qquad \begin{cases} H_0: \mu_2 = \mu_3 \\ H_1: \mu_2 \neq \mu_3 \end{cases}$$

· Các bước kiểm định Turkey

Bước 1: Tính khoảng biến thiên trung bình giữa hai nhóm: $D_{ij} = |\overline{N_i} - \overline{N_j}|$

Bước 2: Tính chỉ số Turkey

$$T = q_{\alpha}(k, n - k) \sqrt{\frac{MSW}{n_{\min}}}$$

Bước 3: Bác bỏ H_0 nếu $D_{ii} > T$

4- Kiểm định ANOVA sâu (Turkey's Testing)

THỰC HÀNH KIỂM ĐỊNH TURKEY TRÊN R

```
> TukeyHSD(tt)
 Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = Satisfaction ~ Education, data = ex02)
$Education
                                       diff
                                                   lwr
Graduate degree-College graduate 1.0555556 -0.1715336
Some college-College graduate
                                 -0.3015873 -1.5742334
Some college-Graduate degree
                                 -1.3571429 -2.6641246
Graduate degree-College graduate 2.28264475 0.1003252
Some college-College graduate
                                 0.97105876 0.8230559
Some college-Graduate degree
                                 -0.05016107 0.0409193
>
```

Kiểm định Turkey trong R
 TurkeyHSD(Result of ANOVA)

KÉT LUẬN

4- Kiểm định ANOVA sâu (Turkey's Testing)

THỰC HÀNH KIỂM ĐỊNH TURKEY TRÊN PYTHON

```
In [8]: from statsmodels.stats.multicomp import pairwise_tukeyhsd
tukey = pairwise_tukeyhsd(endog=ex02['Satisfaction'],groups=ex02.Education, alpha =0.05)
print(tukey)

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff p-adj lower upper reject

College graduate Graduate degree 1.0556 0.1003 -0.1715 2.2826 False
College graduate Some college -0.3016 0.8231 -1.5742 0.9711 False
Graduate degree Some college -1.3571 0.0409 -2.6641 -0.0502 True
```

Kiểm định Turkey trong Python

```
from statsmodels.stats.multicomp import pairwise_tukeyhsd
tukey = pairwise_tukeyhsd(endog=value,groups=group,alpha=0.05)
print(tukey)
```


CHỦ ĐỀ 2 KIỂM ĐỊNH CHI-SQUARE (CHI-SQUARE TEST)

- Chi-Square Test
- o Thực hành trên R, Python và Excel

1 - KIEM ĐỊNH CHI-SQUARE TEST

CHI-SQUARE TEST

Kiểm định sự độc lập/phụ thuộc của hai biến dạng phân loại.

THEORY CHI-SQUARE TEST

 H_0 : Hai biến phân loại là độc lập

 H_1 : Hai biến phân loại là phụ thuộc

$$\chi^2 = \sum \frac{\left(f_0 - f_e\right)^2}{f_e}$$

 f_e của dòng i cột j = $\frac{(t \circ ng \ i)*(t \circ ng \ j)}{t \circ ng \ quan \ sát}$

1 - KIEM ĐỊNH CHI-SQUARE TEST

THEORY CHI-SQUARE TEST

	Observe	d Frequenci	es		
Count of Respondent	Cou	int of Respo	ondent		
Count of Respondent	Brand 1	Brand 2	Brand 3	Grand Total	
Female	9	6	22	37	
Male	25	17	21	63	
Grand Total	34	23	43	100	
frequency in row i	and colu	$\operatorname{mn} j = \frac{0}{2}$		al row i)(gra	
frequency in row i	Control of the	$\lim_{j \to \infty} j = \frac{0}{2}$	tota	al row <i>i</i>)(gra	
frequency in row i	Expected	$\operatorname{mn} j = -$	tota es	al row <i>i</i>)(gra	
frequency in row i Count of Respondent	Expected	$\frac{1}{2} = -\frac{1}{2}$ Int of Response	tota es	al row <i>i</i>)(gra l number of (43*3	
	Expected	$\frac{1}{2} = -\frac{1}{2}$ Int of Response	tota es ondent	al row <i>i</i>)(gra l number of (43*3	
Count of Respondent	Expected Cou Brand 1	d Frequenci int of Respo	total es ondent Brand 3	al row i)(gra l number of o (43*3 Grand Total	

- KIỂM ĐỊNH CHI-SQUARE TEST

THEORY CHI-SQUARE TEST

2- KIỂM ĐỊNH CHI-SQUARE TEST TRÊN R VÀ PYTHON

THỰC HÀNH CHI-SQUARE TRÊN R

```
> drink <- read.csv(file.choose(), header = TRUE)
> drink
    Gender Brand, Preference
      Male
                    Brand 3
                    Brand 3
    Female
      Male
                    Brand 3
      Male
                    Brand 1
                    Brand 1
   Female
                    Brand 2
                    Brand 2
    Female
                    Brand 2
                    Brand 1
10 Female
                    Brand 3
      Male
                    Brand 3
12
      Male
                    Brand 2
13 Female
                    Brand 3
      Male
                    Brand 3
15 Female
                    Brand 3
```

```
> tb = table(Gender, Brand.Preference)
> tb

Brand.Preference
Gender Brand 1 Brand 2 Brand 3
Female 9 6 22
Male 25 17 21
```

- Cài thêm Package MASS để kiểm Chi-quare
- Kiểm định Chi-Square trong R

```
chisq.test(tb) //tb: Là bảng đã được định
dạng
```

```
> chisq.test(tb)

Pearson's Chi-squared test

data: tb
X-squared = 6.4924, df = 2, p-value = 0.03892

> |
```

2- KIÉM ĐỊNH CHI-SQUARE TEST TRÊN R VÀ PYTHON

THỰC HÀNH CHI-SQUARE TRÊN PYTHON

```
In [5]: drink = pd.read csv("D:\\UIT-Term3\\PTTK\\Lab2\\11. Energy Drink Survey.csv")
        print(drink)
            Gender Brand Preference
                            Brand 3
            Female
                            Brand 3
                            Brand 3
              Male
                            Brand 1
                            Brand 1
                            Brand 1
              Male
              Male
                            Brand 3
        97
            Female
                            Brand 3
                            Brand 2
           Female
                            Brand 1
        [100 rows x 2 columns]
```

```
In [17]: chisqt = pd.crosstab(drink.Gender, drink['Brand Preference'])
print(chisqt)

Brand Preference Brand 1 Brand 2 Brand 3
Gender
Female 9 6 22
Male 25 17 21
```

- o Crosstab (Đưa dữ liệu ban đầu về dạng bảng)
- Kiểm định Chi-Square trong Python

```
c, p, dof, expected = stats.chi2_contingency(chisqt)
print(p)
```


CHỦ ĐỀ 3 BÀI TẬP LAB02 TẠI LỚP

3- BÀI TẬP TẠI LỚP

Bài 1. Nghiên cứu về thu nhập của các hộ gia đình ở ngoại thành, người ta chia ngoại thành 7 địa bàn dân cư khác nhau. Chọn ngẫu nhiên các hộ gia đình trong từng địa bàn và ghi nhận địa bàn. Địa bàn dân cư thứ 3 có 13 hộ được chọn, các địa bàn còn lại đều chọn 19 bộ. Kết quả ANOVA như sau:

Source of Variation	SS	df	MS	F
Between Groups	187,2649			
Within Groups				
Total	1269,6891			

- Điền vào những phần cam để hoàn thành bảng
- 2. Ở mức ý nghĩa 1% có thể kết luận rằng thu nhập trung bình của các hộ gia đình ở các địa bàn dân cư khác nhau là như nhau được hay không?

3- BÀI TẬP TẠI LỚP

Education Level	Income Level	Job Field
High School	Low	Education
College	High	Technology
High School	Low	Healthcare
Graduate School	High	Business
High School	Low	Technology
College	Low	Healthcare
Graduate School	High	Technology
High School	High	Business
Graduate School	High	Healthcare
College	Low	Business

Bài 2: Với tập dữ liệu. Số thứ tự chẵn làm bài 1, Số thứ tự lẻ làm bài 2

- 1. Kiểm định Chi-Square Education

 Level và Income Level
- 2. Kiểm định Chi-Square Job Field và Income Level

TÀI LIỆU THAM KHẢO.

- 1. https://www.investopedia.com/.
- 2. Roxy Peck and el, "Introduction to Statistics and Data Analysis", 6th Edition
- 3. Phil Simon, "The Hundred-Page Machine Learning Book"

