#### SHRIRAM **HANGARGEKAR**

# **RESTAURANT VISITOR FORECASTING**

IBM ADVANCED DATA SCIENCE CAPSTONE PROJECT



ETL

EDA

Model

Results

#### VISITOR FORECASTING

- What is the problem?
- Why is it an important problem?
- So, what is the solution?
- What is needed for solution?
- How is the solution achieved?



ETL

EDA

Model

Results

## ARCHITECTURAL DECISIONS





ETL

EDA

Model

Results

#### EXTRACT - TRANSFORM - LOAD



Transform

Load

- Connect to Data Source
- Download csv's in file
- Load in Pandas data-frame

- Handle missing data
- Adjusting the ranges
- Matching data types

- Merge all data
- Connect to server
- Store as csv

IBM Capstone Project

Shriram HANGARGEKAR

Introduction

ETL

EDA

Model

Results

#### ETL - DATA SOURCE



ETL

EDA

Model

Results

### RESTAURANTS BY SYSTEMS



System-wise distribution of hotels



ETL

EDA

Model

Results

#### RESTAURANTS BY GENRES



ETL

EDA

Model

Results

### RESTAURANTS AND VISITORS BY LOCATION



Restaurants by Area

Visitors by Area

ETL

EDA

Model

Results

## VISITORS TIMESERIES PLOT



ETL

EDA

Model

Results

## TRENDS IN VISITORS - OVER MONTH



ETL

EDA

Model

Results

## TRENDS IN VISITORS - OVER WEEK



ETL

EDA

Model

Results

## TRENDS IN VISITORS - OVER YEAR



ETL

EDA

Model

Results

## TRENDS IN VISITORS - OVER YEAR



ETL

EDA

Model

Results

## VISITORS VISITING PATTERN ACROSS YEAR







ETL

EDA

Model

Results

## VISITORS - ACTUAL V/S RESERVED



ETL

EDA

Model

Results

## VISITORS - ON HOLIDAYS & WEEKENDS





FTI

EDA

Model

Results

### MODEL DEFINITION

- CLASSICAL ML MODEL
- Gradient Booster Regressor



- DEEP LEARNING MODEL
- Seq2Seq LSTM Encode-Decoder



ETL

EDA

Model

Results

#### FEATURE ENGINEERING

- Features Derived:
  - From visit date: year, month, date, day, weekend, holiday
  - From area: City, ward, Street
  - From reservation: reservation days, visitors reserved
  - From visitors: statistical features min, max. mean, median, std
- Features Transformed:
  - Categorical: Label encoder
  - Numeric: Min Max Scaler
- Previous 7 days visitors (only for LSTM)

ETL

EDA

Model

Results

#### MODEL EVALUATION

- Data split 80:10:10 train-test-validation split
- Root mean squared logarithmic error as metric

$$RMSLE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(1+p) - \log(1+a))^2}$$

n is the total number of observations  $|p_i|$  is your prediction of target  $|a_i|$  is the actual target for i.

- Robustness to the effect of the outliers
- Measurement of relative error
- Biased penalty for overestimation

ETL

EDA

Model

Results

#### GRADIENT BOOST MODEL

- K-fold cross-validation and training
- Prediction is averaged over 5 folds
- Hyper Parameter tuning performed





Performance of base model: 0.71

\_\_\_\_\_\_

Performance of fine model: 0.72

IBM Capstone Project

Shriram HANGARGEKAR

Introduction

 $\mathsf{ETL}$ 

EDA

Model

Results

#### LSTM ENCODE-DECODER

- One layer of encoder
- Two layers of decoder units
- Two iterations with different features



| Layer (type)                             | Output Shape                                     | Param # | Connected to                                            |
|------------------------------------------|--------------------------------------------------|---------|---------------------------------------------------------|
| input_5 (InputLayer)                     | [(None, None, 32)]                               | 0       | []                                                      |
| input_6 (InputLayer)                     | [(None, None, 32)]                               | 0       | []                                                      |
| lstm_3 (LSTM)                            | [(None, 64),<br>(None, 64),<br>(None, 64)]       | 24832   | ['input_5[0][0]']                                       |
| lstm_4 (LSTM)                            | (None, None, 64)                                 | 24832   | ['input_6[0][0]',<br>'lstm_3[0][1]',<br>'lstm_3[0][2]'] |
| lstm_5 (LSTM)                            | [(None, None, 64),<br>(None, 64),<br>(None, 64)] | 33024   | ['lstm_4[0][0]']                                        |
| time_distributed_1 (TimeDistri<br>buted) | (None, None, 1)                                  | 65      | ['lstm_5[0][0]']                                        |

Total params: 82,753 Trainable params: 82,753 Non-trainable params: 0

Performance of first model: 1.61

Performance of second model: 2.09

IBM Capstone Project

Shriram HANGARGEKAR

Introductior

ETL

EDA

Model

Results

#### **SUMMARY**

- GBM works better
- Further tasks: Tuning LSTM for better performance
  - Activation Function
  - Number of layers
  - Number of hidden units in each layer
  - Optimizer
- Links below:
  - Architectural decision document :

Recruite Restaurants Visitors Forecasting ADD Document.pdf

• Entity relationship diagram:

Database Documentation.pdf

Jupyter Notebook:

IBM\_Capstone.ipynb

| Algorithm       | Variation        | RSMLE  | Visual |
|-----------------|------------------|--------|--------|
| Gradient Boost  | Before tuning    | 0.7174 | -      |
|                 | After tuning     | 0.7204 | ок     |
| Encoder-Decoder | With 3 prev days | 1.6358 |        |
|                 | With 7 prev days | 2.0922 |        |