1 Graph Model of Set Theory

- Directed graphs: $G = \langle V, A \rangle$
- A graph is well-founded if it has no looping paths and no infinite descending paths
- A graph is **extensional** if for any v_0, v_1 such that v_0 has the same incoming arrows as $v_1, v_0 = v_1$
- Two graphs are isomorphic if there is a function (isomorphism) σ between them such that:
 - $-\sigma$ is a bijection (surjection + injection)
 - $-vA_0u \leftrightarrow \sigma(v)A_1\sigma(u)$
- An automorphism is an isomorphism between some graph and itself (the identity is a trivial one)
- G is a subgraph of G' if $V \subseteq V'$ and $v_0 A v_1 \leftrightarrow v_0 A' v_1$ for all $v_0, v_1 \in V$
- G is maximal in some property Φ if G possesses Φ and there exists no graph G' such that:
 - G' possesses Φ ; and
 - -G is a proper subgraph of G'
- \bullet Let G be a $\mathit{maximal}$ well-founded graph with no non-trivial automorphisms
- Equivalently, G is a maximal well-founded graph which is extensional
- ullet G is then an intended model of Set Theory

2 First Order Logic & Model Theory