Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Автоматизированные системы обработки информации и управления»

Отчет Лабораторная работа № 5 По курсу «Технологии машинного обучения»

исполнитель:

Группа ИУ5-65Б Голубев С.Н.

"24" мая 2021 г.

ПРЕПОДАВАТЕЛЬ:

Гапанюк Ю.Е.

" " 2021 г.

1. Задание

- Выберите набор данных (датасет) для решения задачи классификации или регресии. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков. С использованием метода train_test_split разделите выборку на обучающую и тестовую. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.

2. Скрины jupyter notebook

Подготовка к анализу данных

Проверка на пропущенные значения

B [5]: data.isnull().sum()

Out[5]: Pregnancies
Glucose
BloodPressure
SkinThickness
Insulin
BMI
DiabetesPedigreeFunction
Age
Outcome
dtype: int64

Пропущенных значений нет

Основные статистические показатели для каждого параметра

B [6]: data.describe()

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Преообразование категориальных признаков в числовые

B [7]: from sklearn.preprocessing import LabelEncoder

B [8]: data. head()

Out[8]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

B [9]: data.describe()

Out[9]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

1. Тестовая и обучающая выборки

Подключим необходимый метод train_test_split из библиотек sklearn для разделения выборки на тестовую и обучающую

B [10]: from sklearn.model_selection import train_test_split

1.1. Разделение выборки на входные и выходные данные

1.1. Разделение выборки на входные и выходные данные

Задача регрессии будет состоять в предсказании платы за медицинское обслуживание на основании других параметров, в связи с этим следующее распределение входных и выходных параметров:

```
B [11]: X = data.drop(['BMI', 'DiabetesPedigreeFunction', 'Pregnancies', 'SkinThickness', 'Outcome'], axis = 1)
Y = data.Age
print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head())

Входные данные:

Glucose BloodPressure Insulin Age
0 148 72 0 50
1 85 66 0 31
2 183 64 0 32
3 89 66 94 21
4 137 40 168 33
```

Выходные данные:

```
0 50
1 31
2 32
3 21
4 33
```

Name: Age, dtype: int64

1.2. Разделим выборку на обучающую и тестовую

Размер тестовой выборки определим: 10%

Входные параметры обучающей выборки:

	Glucose	BloodPressure	Insulin	Age
499	154	74	193	39
720	83	86	0	34
556	97	70	0	30
583	100	76	0	42
150	136	74	204	24

Входные параметры тестовой выборки:

	Glucose	BloodPressure	Insulin	Age
661	199	76	0	22
122	107	74	100	23
113	76	62	0	25
14	166	72	175	51
529	111	65	0	31

Выходные параметры обучающей выборки:

```
499 39
720 34
556 30
583 42
150 24
Name: Age, dtype: int64
```

Выходные параметры тестовой выборки:

```
661 22
122 23
113 25
14 51
529 31
Name: Age, dtype: int64
```

Проверим:

```
B [13]: print(X_train.shape)
    print(X_test.shape)
    print(Y_train.shape)
    print(Y_test.shape)

    (691, 4)
    (77, 4)
    (691,)
    (77,)
```

1. Случайный лес

1.1. Построение случайного леса

Построим случайный лес из 5 деревьев

Подключим необходимый класс RandomForestRegressor из библиотек sklearn для построения случайного леса

```
B [14]: from sklearn.ensemble import RandomForestRegressor

B [15]: forest_1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)
forest_1.fit(X, Y)

Out[15]: RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)

B [16]: Y_predict = forest_1.predict(X_test)
    print('Cpcµняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_predict))
    print('Popµняя квдиратичная ошибка:', mean_squared_error(Y_test, Y_predict))
    print('Median absolute error:', median absolute error(Y_test, Y_predict))
    print('Kosффициент детерминации:', r2_score(Y_test, Y_predict))

    Cpcдняя абсолютная ошибка: 0.0025974025974026343
    Cpcдняя квдиратичная ошибка: 0.0005194805194805342
    Median absolute error: 0.0
    Kosффициент детерминации: 0.999995362214091
```

Построим график по полученным значениям

```
B [17]: plt.scatter(X_test.Age, Y_test, marker = 's', label = 'Тестовая выборка')
plt.scatter(X_test.Age, Y_predict, marker = 'o', label = 'Предсказанные данные')
plt.legend (loc = 'lower right')
plt.xlabel ('sex')
plt.ylabel ('age')
plt.show()
```


1.2. Нахождение лучшего случайного леса

```
B [20]: print('Лучший показатель средней квадратичной ошибки:', -grid_2.best_score_)
            print('Параметры для данного показателя:\n',
                                                                               grid_2.best_params_)
            Лучший показатель средней квадратичной ошибки: 0.21440338541666656
            Параметры для данного показателя:
{'max_features': 1.0, 'n_estimators': 100}
B [21]: forest 3 = RandomForestRegressor(n estimators=75, max features = 0.8, oob score=True, random state=10)
            forest_3.fit(X, Y)
Out[21]: RandomForestRegressor(max_features=0.8, n_estimators=75, oob_score=True,
                                           random_state=10)
B [22]: Y_predict3 = forest_3.predict(X_test)
B [23]: print('Средняя абсолютная ошибка:', print('Средняя квадратичная ошибка:', mean_absolute_error(Y_test, Y_predict3)) print('Median absolute error:', print('Коэффициент детерминации:', r2_score(Y_test, Y_predict3))
            Средняя абсолютная ошибка: 0.052467532467532225
            Средняя квадратичная ошибка: 0.009939393939393938
Median absolute error: 0.026666666666373
            Коэффициент детерминации: 0.9999112636962753
B [24]: plt.scatter(X_test.Age, Y_test, marker = 's', label = 'Тестовая выборка') plt.scatter(X_test.Age, Y_predict3, marker = 'o', label = 'Предсказанные данные')
            plt.legend (loc = 'lower right')
plt.xlabel ('sex')
plt.ylabel ('age')
            plt.show()
                60
                50
                                                 •
              e 40
                30
                                                 ■ Тестовая выборка
                                                    Предсказанные дан
                20
                    20
                                                                   60
                                                       50
```

Показатели точности стали сильно лучше

На графике видно хорошее совпадение тестовой выборки и предсказанных данных, хотя при возрасте от 50 до 60 заметно расхождение в д анных.

2. Градиентный бустинг

Построим ансамбль из 5 моделей

Подключим необходимый класс GradientBoostingRegressor из библиотек sklearn для построения ансамбля

```
B [25]: from sklearn.ensemble import GradientBoostingRegressor

B [26]: grad = GradientBoostingRegressor(n_estimators=5, random_state = 10) grad.fit(X_train, Y_train)

Out[26]: GradientBoostingRegressor(n_estimators=5, random_state=10)

B [27]: Y_grad_pred = grad.predict(X_test)

B [28]: print('Cpeдняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_grad_pred)) print('Cpeдняя квадратичная ошибка:', mean_squared_error(Y_test, Y_grad_pred)) print('Median absolute error:', median_absolute_error(Y_test, Y_grad_pred)) print('Koэффициент детерминации:', r2_score(Y_test, Y_grad_pred))

Cpeдняя абсолютная ошибка: 5.42699121419439 Cpeдняя квадратичная ошибка: 3.915118859601044 Median absolute error: 4.9958279675854556 Kooффициент детерминации: 0.643648281582005
```

```
pit.scatter(X_test.Age, Y_test, marker = 's', label = 'Тестовая выборка')
plt.scatter(X_test.Age, Y_grad_pred, marker = 'o', label = 'Предсказанные данные')
plt.legend (loc = 'lower right')
plt.xlabel ('sex')
plt.ylabel ('age')
plt.show()
  B [29]: plt.scatter(X_test.Age, Y_test,
                                50
                                                                                                    ...
                            e 40
                               20
                                                                                                          Предсказанные данн
                                                                                                                50
                                                                                            sex
                         Без подбора гиперпараметров ансамбль работает очень плохо
                         Для улучшения применим кросс-валидацию.
                                     "n_estimators': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100],

"max_features': [0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 1.0],

"min_samples_leaf': [0.01, 0.04, 0.06, 0.08, 0.1]
  B [31]: grid_gr = GridSearchCV(estimator=GradientBoostingRegressor(random_state=10),
                                                                                         param_grid=params,
scoring='neg_mean_squared_error',
                                                                                         cv=3,
                                                                                        n_jobs=-1)
                         grid_gr.fit(X, Y)
Out[31]: GridSearchCV(cv=3, estimator=GradientBoostingRegressor(random_state=10),
                                                             n jobs=-1,
                                                             B [32]: print('Лучший показатель средней квадратичной ошибки:', -grid_gr.best_score_)
                         print('Параметры для данного показателя:\n',
                                                                                                                                                                    grid_gr.best_params_)
                         Лучший показатель средней квадратичной ошибки: 0.3253784764530633
                         The manufacture of the manufact
 B [33]: grad1 = GradientBoostingRegressor(n_estimators=100, max_features = 0.8, min_samples_leaf = 0.01, random_state = 10)
                         grad1.fit(X_train, Y_train)
                        Y_grad_pred1 = grad1.predict(X_test)
                         Оценим полученный ансамбль
B [34]: print('Средняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_grad_pred1)) print('Средняя квадратичная ошибка:', mean_squared_error(Y_test, Y_grad_pred1)) print('Median absolute error:', print('Коэффициент детерминации:', r2_score(Y_test, Y_grad_pred1))
                         Средняя абсолютная ошибка: 0.2033341760282652
                         Средняя квадратичная ошибка: 0.06933438744657384
                         Median absolute error: 0.1808689146464033
Коэффициент детерминации: 0.9993810007631706
                         Построим график для визуального сравнения
```

```
marker = 's', label = 'Тестовая выборка')
B [35]: plt.scatter(X_test.Age, Y_test,
          plt.scatter(X_test.Age, Y_grad_pred1, marker = 'o', label = 'Предсказанные данные')
plt.legend (loc = 'lower right')
          plt.xlabel ('sex')
plt.ylabel ('age')
          plt.show()
                                                                 60
             50
                                        e 40
                                               Тестовая выборка

    Предсказанные данные

                 20
                            30
                                       40
                                                  50
```