Seidel III
Situation:
T: E -> C lessoletz fibration, comby from an articanonical Lessolutz pencil.
M Fibre
7: E -> C fibrewise compactification.
(we're really intensed in this).
CFIN) Fullya cat of Lefschetz fibration.
S (FM) Fuhaya cat of the fibre.
A, B are the fill subcategories associated to a chosen basis of beforbotz thimber (vanishing cycles). A generates F(H), and B split-generates F(M).
In fact, $A \rightarrow B$ is an inclusion,
hon (Vi, Vi) = \ hong(Vi, Vi) is ineed to choose astartly (south directly) where you need the abbination theory.
Frbiewise compactification yields deformations Be, Be, b. include in some way be Note: there are undertraked deformations. UI UI as before. (concooling for 40=0, 8 this is an Aon subsally.) Aq. Aq. b

"Theorem" Chose bin such a way that the deformation Agis is towal. Ithis can almost be done essentially uniquely). Then, Bab is defined over a finitely generated subalgebra of ClaJ. (Be can say precisely what generators are). cactual aim: defencie explicity in tens of generally of lesschetz fibration) (From now on, onit & from the rotation; asome always down this way). Reminder: Maurer-Centan desarration theory: Three versions (1) og dg Lie algba, lost at de gellet 29º [12] du+ 之[u,a]=0.

(2) as found para, but suitable folkation!

(3) = F'of = Fof = Fof = Fof = For all pokent

(suple to decreasing folkation)

[F'of] = Fi(of)

[F'of] = Fi(of)

[F'of] = Fi(of)

We look at $x \in (F^{1}of)^{2}$.

(3) of is as in (2), but $\alpha \in OJ^{2}[Q]$ by some promipotence.

Example for (1):

Deformation theory of A so algebras, e.g. B_q as a deformation of B_q as a deformation of B_q B_q as a deformation of B_q B_q

If we had a good grap here I can proceed by classifying deformations;

(unsprinkly, don't have goop on great conject how to competeit!)

Example for (2):

Given a graded algebra B, dissify Ass structures that extend the algebra structure. (no q-param; take appropriate filtered justice sources of CC (not whole uplan), filtered using grades of by H*(assoc-grades).

In situation (2):

Ex. Lenny: Sopre that $H^*\left(\frac{F^k of}{F^{k+1} of}\right) = 0 \quad \forall \quad k \geq 2$ * = 1,2.

Then, solins of the H-C eq'n in of one classified by

H2(01/220). (Sospace is linear & depends on H1).

Prof (partial): Suppose of early saturbies

B = dx + \(\frac{1}{2} \) [x, \(\frac{1}{2} \) [k7\(\frac{1}{2} \)]. (satisfies K-Cup to Prov)

Then, $d\beta \in F^{k+l}g$, hence we can write $\beta - d\beta \in F^{k+l}g$ for some $\beta \in F^{k}g$.

Applying a $\beta - gauge$ tensionation yields

an $\beta \in S^{k+l}g$ for some $\beta \in F^{k+l}g$. $\beta - d\beta \in F^{k+l}g$ for some $\beta \in F^{k+l}g$. $\beta - d\beta \in F^{k+l}g$ for some $\beta \in F^{k+l}g$.

In situation (3),

Lemma: Under the same vanishing assumptions, as before, sol'ns the of M-C in of [9] are classified by $H^{1}(9/F^{2}g)$ [9]. (some proof). Moreover, given a class in $H^{1}(9/F^{2}g) \otimes V$, $V \subseteq C[9]$ in subspace. Open Then, the corresp. MC elt. lies in

Application: Let A be an Assalgebra,
and P an invertible A-bimodule. A noncommutative divisor is
an Ass structure on invariety "line bundle" (Eurosor as a dg scheep add section as differential)

B = ABP[1] such that A is a subalgebra of B,
and the indiced A-bimodule structure of B/d = P is the given one.

Ass str. on B: AO - OA - Noun (yd "presenes weights" A = -oder Po -od -) P known (4P1819) "preservos aenths" Next: AB--OROPORO-OR -> & "uncrease neight by 1" (Ell stee ters increase weights
by 2 % b/c A-binoide map P >A (leading orde part of ne. divisor) or suraly.), ("Has is the section outting at the douker."). (it's possible to be found and gooded school XDZ" toward as divised) Exemple: A = B from Februarya categories (of it and M), with $P = B_A \cong A^{\nu}[1-n]$ (by used C-Y property). Introduce a new goding on B by "weight": & has woight O Pharweight -1. Consider Hochschild corchains that strictly increase weight. This gives a proprile potent Lie algebra of which classifies ac. divisors.

Now, look at His (Fk of/FkHof) -> His (hom (Pek). hon() (e.g. 8-) A & Pa, P-) P account for both sides).

tonsarch:
atso con use cycleson to roduce! Lemma Assure flat (*) H* (hom (904 d)) = 0 Y K = 1 Y x < 0 (no hows of regative degrees). Then, a no-divisor is completely determined by its leading order part. Rml: In the situation of anti-roussier! Lotadot & pencils, (*) Is always expected to hold, (there's an DP stars map for a fixed pt. Flew roh. to this, special seq. for this by Mclean, & after to star door it start till pos. degree, & de should be airs! Deformation theory of inc-divisions -As - strater on Bg = (ADP[1])[[2] a/ suitable properties. (A and P are NOT being deformed). (Brannot have a concluster, which used have blie in P). This is governed by of [9]. Lemma: Assuming (x), deformations of a no-divisor are classified by (a subspace of) H'(hom(P, A)) IQI NAMA dis il, easy genetric interretation Topology of the sound of the so