<u>สาเหตุและปัญหาหลัก</u>

เนื่องจากว่า ในปัจจุบันมีอัตราการเกิดอุบัติเหตุบนท้องถนนที่เกิดขึ้นบ่อยมาก แล้วสถานที่หลักๆส่วนใหญ่ ในการเกิด อุบัติเหตุบนท้องถนนคือทางด่วนที่ใช้ในจังหวัดกรุงเทพมหานคร ซึ่งเหตุผลหลักๆส่วนใหญ่ที่ทำให้เกิดอุบัติเหตุ คือ คนส่วนใหญ่ มีการขับรถเร็วที่เกินกว่าที่มาตรฐานได้มีการกำหนดหรือมีการเปลี่ยนเลนกระทันหัน โดยไม่ทันระวังหรือไม่ได้มองกระจกมอง ข้าง จึงทำให้เกิดอุบัติเหตุบนท้องถนน แต่อาจจะมีสาเหตุหลักๆ ที่เราไม่รู้หรือเรามองไม่เห็นสาเหตุหลักจริงๆ ที่ทำให้เกิด อุบัติเหตุบนท้องถนน แรวจึงได้มีการทำ Visualization เพื่อหาสาเหตุหลักจริงๆ ที่ทำให้เกิดอุบัติเหตุบนท้องถนน และหา แนวทางในการป้องกันและแก้ไขการเกิดอุบัติเหตุบนท้องถนน ให้มีอัตราการเกิดอุบัติเหตุในปีถัดๆ ไป ที่ลดน้อยลง

ซึ่งข้อมูลที่เรานำมาทำ Visualization มาจากเว็บไซต์ https://gdcatalog.go.th/dataset/gdpublish-exat-accident ซึ่งมีขั้นตอนในการทำงาน ดังนี้

1. ให้ทำการคลิก Start Lab ขึ้นมาก่อน

AWS ○ 04:00 Start Lab End Lab

2. แล้วทำการเขียนคำสั่งลงใน console

Write command: cat ~/.aws/credentials

```
ddd_v1_w_rsU_1383616@runweb69358:~$ cat ~/.aws/credentials
[default]
aws_access_key_id = ASIA46YTXNWJHYNM4G4F
aws_secret_access_key = 9CZvGeMh4IrAM2GJIzSmpF0nG/T0NQXIsYR3HezA
aws_session_token = FwoGZXIvYXdzEIb///////wEaDJEjudpUhIt7vuGntiLIAWKw8i9swjQYhdnHffExsb0uZnBP
1Defgt9K049LK54Pb5k1K5E3qyIvMDgXbj3YDE0+h+1dCX0dxQ9P/T74a7MXi5VWsoZ+r23dfHQKZDn2a0VnM/Ot00Xuwm+S
riXwzfsaQQmmPdAAdzaL0XWMx2LSLCPXqkVoO4aTpGQJq7vNXLtlSrkrOvkwe6npkKw5Z5Rr9DRqVjxKwJwxYSCw0gcJ9PbZ
hHKF22FcLTNyI/ER0Urjf5faGH+teZkirp3eNc9TYeRrGVOGKPPh2pwGMi3DpBuOCRNuyUtgTSKmxIujd3fB4gkOfz0NZ4Os
OH0o9EWtqF83L8L1lATjAWY=
ddd_v1_w_rsU_1383616@runweb69358:~$ [
```

- 3. จากนั้นทำการคัดลอกข้อมูล aws_access_key_id, aws_secret_access_key, aws_session_token มาใส่ใน code ของเรา ในส่วนของ function ในการ Upload Files ขึ้นไปเก็บไว้บน S3
- 4. จากนั้นจะมี 2 เครื่องมือหลักๆ ที่เราต้องทำการสร้าง คือ S3 และ Redshift
- 5. เข้าไปที่เครื่องมือที่มีชื่อว่า S3

6. แล้วคลิกที่ปุ่ม Create a bucket

Create a bucket

Every object in S3 is stored in a bucket. To upload files and folders to S3, you'll need to create a bucket where the objects will be stored.

Create bucket

7. จากนั้นให้ใส่ชื่อ Bucket แล้วคลิกที่ปุ่ม Create bucket

Bucket Versioning	
Disable	
○ Enable	
Tags (0) - <i>optio</i>	nal
-	gs to track storage costs and organize buckets. Learn more 🖸
No tags associated	with this bucket.
Add tag	
Add tag	
Add tag	
Default encryp	
Default encryp	otion new objects stored in this bucket. Learn more ☑
Default encryp Automatically encrypt	new objects stored in this bucket. Learn more 🗹
Default encrypt Automatically encrypt Server-side encrypt	new objects stored in this bucket. Learn more 🗹
Default encryp Automatically encrypt Server-side encrypt	new objects stored in this bucket. Learn more 🗹
Default encrypt Automatically encrypt Server-side encrypt Disable	new objects stored in this bucket. Learn more 🗹
Default encrypt Automatically encrypt Server-side encrypt Disable	new objects stored in this bucket. Learn more 🖸
Default encrypt Automatically encrypt Server-side encrypt Disable Enable	new objects stored in this bucket. Learn more 🖸

8. เมื่อทำการสร้าง Bucket เรียบร้อยแล้ว จะมี Bucket เกิดขึ้นมา ตามรูปภาพด้านล่าง

9. จากนั้นเข้าไปที่เครื่องมือที่มีชื่อว่า Redshift

10. แล้วคลิกที่ปุ่ม Create cluster

Provision and manage clusters

With a few clicks, you can create your first Amazon Redshift provisioned cluster in minutes.

Create cluster

11. ให้ทำการตั้งค่า Admin user name และ Admin user password ที่จะใช้ในระบบ Redshift

12. แล้วทำการคลิกที่ปุ่ม Create cluster

13. เนื่องจากการเข้าถึง Redshift เป็นแบบ Public เราจึงต้องทำการ Modify publicly accessible setting ก่อน ถึง จะทำการเข้าใช้งาน Redshift จากภายนอกได้

- 14. เมื่อทำการสร้าง S3 และ Amazon Redshift ไว้รอเรียบร้อยแล้ว
- 15. ไปที่ Gitpod.io ที่อยู่บน Browser

Write command: docker-compose up

เพื่อที่จะทำการ Start Airflow ขึ้นมา

```
08-capstone-project-airflow-triggerer-1
08-capstone-project-airflow-triggerer-1
08-capstone-project-airflow-triggerer-1
08-capstone-project-airflow-triggerer-1
08-capstone-project-airflow-triggerer-1
                                              [2022-12-17 06:52:42,895] {triggerer_job.py:101} INFO - Starting the triggerer
08-capstone-project-airflow-triggerer-1
08-capstone-project-airflow-init-1
                                              DB: postgresql+psycopg2://airflow:***@postgres/airflow
                                              Performing upgrade with database postgresql+psycopg2://airflow:***@postgres/airflow
08-capstone-project-airflow-init-1
                                              [2022-12-17 06:52:45,596] {migration.py:204} INFO - Context impl PostgresqlImpl. [2022-12-17 06:52:45,596] {migration.py:211} INFO - Will assume transactional DDL.
08-capstone-project-airflow-init-1
08-capstone-project-airflow-init-1
                                              [2022-12-17 06:52:45,601] {db.py:1531} INFO - Creating tables
08-capstone-project-airflow-init-1
08-capstone-project-airflow-init-1
                                              INFO [alembic.runtime.migration] Context impl PostgresqlImpl.
08-capstone-project-airflow-init-1
                                              INFO [alembic.runtime.migration] Will assume transactional DDL.
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
                                              [2022-12-17 06:52:46,394] {scheduler_job.py:701} INFO - Starting the scheduler
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
                                              [2022-12-17 06:52:46,395] {scheduler_job.py:706} INFO - Processing each file at most -1 times
                                              [2022-12-17 06:52:46 +0000] [62] [INFO] Starting gunicorn 20.1.0
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
                                              [2022-12-17 06:52:46 +0000] [62] [INFO] Listening at: http://0.0.0.0:8793 (62)
08-capstone-project-airflow-scheduler-1
                                              [2022-12-17 06:52:46 +0000] [62] [INFO] Using worker: sync
                                              [2022-12-17 06:52:46,410] {executor_loader.py:107} INFO - Loaded executor: LocalExecutor
08-capstone-project-airflow-scheduler-1
                                              [2022-12-17 06:52:46 +0000] [63] [INFO] Booting worker with pid: 63 [2022-12-17 06:52:46 +0000] [64] [INFO] Booting worker with pid: 64
08-capstone-project-airflow-scheduler-1
08-capstone-project-airflow-scheduler-1
```

- 16. คลิก Open Browser โดยไปที่ port : 8080 แล้วเลือก DAGs ที่ชื่อว่า "etl" ที่เราทำการสร้างขึ้นมา
- 17. แล้วทำการใส่ข้อมูล ดังนี้

Username: airflow Password: airflow

แล้วทำการคลิกที่ปุ่ม Sign In

- 18. แล้วไปที่เมนูที่ชื่อว่า Admin แล้วเลือก Connections
- 19. แล้วทำการสร้าง Connections โดยการใส่ข้อมูล ดังนี้

Edit Connection		
Connection Id *	my_redshift	
Connection Type *	Postgres v	
	Connection Type missing? Make sure you've installed the corresponding Airflow Provider Package.	
Description		
Host	redshift-cluster-1.cdagfejibaqn.us-east-1.redshift.amazonaws.com	
Schema	dev	
Login	awsuser	
Password		
Port	5439	
Extra		
Save 🖺 Test 🗸 ←		

- Connection Id: ให้ใส่ชื่อ Connection Id ของเรา
- Connection Type: เลือกประเภท connection โดยเลือกเป็น Postgres
- Host: copy Endpoint ที่อยู่ใน Redshift มาใส่
- Schema: ให้ใส่คำว่า "dev"
- Login: ให้ใส่ Admin username ที่ได้มีการตั้งค่าเอาไว้ ตอนสร้าง Redshift
- Password: ให้ใส่ Admin user password ที่ได้มีการตั้งค่าเอาไว้ ตอนสร้าง Redshift
- Port: ให้ใส่เลข "5439"

20. แล้วทำการคลิกที่ปุ่ม Test เพื่อทดสอบการ connection

Connection successfully tested Edit Connection my_redshift Connection Id * Postgres Connection Type * Connection Type missing? Make sure you've installed the corresponding Airflow Provider Package. Description redshift-cluster-1.cdagfejibaqn.us-east-1.redshift.amazonaws.com Host Schema dev awsuser Login ••••• Password 5439 Port Extra Save 🖺 Test 🚀

- 21. เมื่อทำการทดสอบ Connection ผ่านแล้ว ให้คลิกที่ปุ่ม Save
- 22. แล้วให้คลิกเข้าไปที่ DAGs ของเรา ที่มีชื่อว่า "etl"

DAGs

23. แล้วลองทำการ run DAGs


```
upload_files = PythonOperator(
    task_id="upload_files",
    python_callable=_upload_files,
create_tables = PythonOperator(
    task_id="create_tables",
    python_callable=_create_tables,
delete_tables = PythonOperator(
   task_id="delete_tables",
    python_callable=_delete_tables,
get_files = PythonOperator(
    task_id="get_files",
    python_callable=_get_files,
redshift_to_dataframe = PythonOperator(
    task_id="redshift_to_dataframe",
    python_callable=_redshift_to_dataframe,
upload_files >> create_tables >> delete_tables >> get_files >> redshift_to_dataframe
```

ซึ่ง Process การทำงาน DAGs ของเรา จะประกอบด้วย 5 ขั้นตอนหลัก ๆ ดังนี้

1. Upload_files

คือ การ Upload Files ข้อมูลจากเครื่องคอมพิวเตอร์ของเราที่อยู่บน Airflow เอาขึ้นไปเก็บไว้บน S3

```
def _upload_files():
    aws_access_key_id = "ASIA46YTXNWJMAF6LMDS"
    aws_secret_access_key = "NMbmnE1DJXoCuwt32ftTwKfq1Mpbr05xYCN9wT0V"
    aws_session_token = "FwoGZXIvYXdzEBMaDM34gwp8FTEATq1UayLIAYA61/WNhVUhAmJ9WAHaDaf0j+Pi2IpMkzP3XtHU8hI2Lq/GGQ7LhWE
    s3 = boto3.resource(
        "s3",
        aws_access_key_id=aws_access_key_id,
       aws_secret_access_key=aws_secret_access_key,
        aws_session_token=aws_session_token
    s3.meta.client.upload file(
        "/opt/airflow/dags/data/accident_2559.csv",
        "junnieebucket",
        "accident_2559.csv",
    s3.meta.client.upload_file(
        "/opt/airflow/dags/data/accident_2560.csv",
        "junnieebucket",
        "accident_2560.csv",
    s3.meta.client.upload_file(
       "/opt/airflow/dags/data/accident_2561.csv",
        "junnieebucket",
        "accident_2561.csv",
    s3.meta.client.upload_file(
       "/opt/airflow/dags/data/accident_2562.csv",
        "junnieebucket",
        "accident_2562.csv",
    s3.meta.client.upload_file(
       "/opt/airflow/dags/data/accident_2563.csv",
       "junnieebucket",
       "accident_2563.csv",
    s3.meta.client.upload_file(
        "/opt/airflow/dags/data/accident_2564.csv",
        "junnieebucket",
        "accident_2564.csv",
```

2. Create tables

คือ การสร้าง Table Accidents ต่าง ๆ รอไว้ใน Redshift เพื่อที่จะทำการ insert ข้อมูลจาก S3 เข้ามา เก็บไว้ใน Redshift

```
def _create_tables():
   hook = PostgresHook(postgres_conn_id="my_redshift")
   conn = hook.get_conn()
   cur = conn.cursor()
   table_create_accident_2559 = """
        CREATE TABLE IF NOT EXISTS accident_2559 (
           accident date VARCHAR(10),
           accident_time VARCHAR(10),
           expw_step VARCHAR(255),
           weather state VARCHAR(255),
            injur man int,
           injur_femel int,
           dead_man int,
           dead femel int,
           cause VARCHAR(255)
   table_create_accident_2560 = """
        CREATE TABLE IF NOT EXISTS accident_2560 (
            accident_date VARCHAR(10),
           accident_time VARCHAR(10),
            expw_step VARCHAR(255),
           weather state VARCHAR(255),
            injur_man int,
           injur_femel int,
           dead_man int,
           dead_femel int,
           cause VARCHAR(255)
   table_create_accident_2561 = """
       CREATE TABLE IF NOT EXISTS accident_2561 (
            accident_date VARCHAR(10),
            accident_time VARCHAR(10),
            expw_step VARCHAR(255),
           weather_state VARCHAR(255),
           injur_man int,
           injur_femel int,
           dead_man int,
           dead femel int,
           cause VARCHAR(255)
```

3. delete tables

คือ การลบข้อมูลที่อยู่ใน Table Accidents ต่าง ๆ ออกให้หมด หากมีข้อมูลเดิมที่มีอยู่แล้ว

```
def _delete_tables():
   hook = PostgresHook(postgres_conn_id="my_redshift")
   conn = hook.get_conn()
   cur = conn.cursor()
   table drop accident 2559 = "DELETE FROM accident 2559"
   table_drop_accident_2560 = "DELETE FROM accident_2560"
   table_drop_accident_2561 = "DELETE FROM accident_2561"
   table_drop_accident_2562 = "DELETE FROM accident_2562"
   table_drop_accident_2563 = "DELETE FROM accident_2563"
   table_drop_accident_2564 = "DELETE FROM accident_2564"
   table_drop_accident_2565 = "DELETE FROM accident_2565"
   drop_table_queries = [
       table_drop_accident_2559,
       table_drop_accident_2560,
       table_drop_accident_2561,
       table_drop_accident_2562,
       table_drop_accident_2563,
       table_drop_accident_2564,
       table_drop_accident_2565,
   for query in drop_table_queries:
       cur.execute(query)
       conn.commit()
```

4. get_files

คือ การ copy ไฟล์ Accidents ต่าง ๆ ที่ถูกเก็บอยู่ใน S3 ทั้งหมด ขึ้นไปเก็บไว้บน Redshift

```
def _get_files():
   hook = PostgresHook(postgres conn id="my redshift")
   conn = hook.get_conn()
   cur = conn.cursor()
   copy_table_accident_2559 = """
       COPY accident_2559 FROM 's3://junnieebucket/accident_2559.csv'
       ACCESS KEY ID 'ASIA46YTXNWJMAF6LMDS'
       SECRET_ACCESS_KEY 'NMbmnE1DJXoCuwt32ftTwKfq1Mpbr05xYCN9wT0V'
       SESSION_TOKEN 'FwoGZXIvYXdzEBMaDM34gwp8FTEATq1UayLIAYA61/WNhVUhAmJ9WAHaDaf@j+Pi2IpMkzP3XtHU8hI2Lq.
       IGNOREHEADER 1
       REGION 'us-east-1'
   copy_table_accident_2560 = """
       COPY accident_2560 FROM 's3://junnieebucket/accident_2560.csv'
       ACCESS_KEY_ID 'ASIA46YTXNWJMAF6LMDS'
       SECRET ACCESS KEY 'NMbmnE1DJXoCuwt32ftTwKfq1Mpbr05xYCN9wT0V'
       SESSION_TOKEN 'FwoGZXIvYXdzEBMaDM34gwp8FTEATq1UayLIAYA61/WNhVUhAmJ9WAHaDaf@j+Pi2IpMkzP3XtHU8hI2Lq,
       IGNOREHEADER 1
       REGION 'us-east-1'
   copy_table_accident_2561 = """
       COPY accident_2561 FROM 's3://junnieebucket/accident_2561.csv'
       ACCESS KEY ID 'ASIA46YTXNWJMAF6LMDS'
       SECRET ACCESS KEY 'NMbmnE1DJXoCuwt32ftTwKfq1Mpbr05xYCN9wT0V'
       SESSION_TOKEN 'FwoGZXIvYXdzEBMaDM34gwp8FTEATq1UayLIAYA61/WNhVUhAmJ9WAHaDaf@j+Pi2IpMkzP3XtHU8hI2Lq
       CSV
       IGNOREHEADER 1
       REGION 'us-east-1'
   copy_table_accident_2562 = """
       COPY accident 2562 FROM 's3://junnieebucket/accident 2562.csv'
       ACCESS KEY ID 'ASIA46YTXNWJMAF6LMDS'
       SECRET_ACCESS_KEY 'NMbmnE1DJXoCuwt32ftTwKfq1Mpbr05xYCN9wT0V'
       SESSION_TOKEN 'FwoGZXIvYXdzEBMaDM34gwp8FTEATq1UayLIAYA61/WNhVUhAmJ9WAHaDaf@j+Pi2IpMkzP3XtHU8hI2Lq,
       CSV
       IGNOREHEADER 1
       REGION 'us-east-1'
```

5. redshift_to_dataframe

แล้วเมื่อทำการ transform ข้อมูลใน Dbt เรียบร้อยแล้ว

ขั้นตอนสุดท้าย ก็จะทำการ Export ข้อมูลออกมาเป็นไฟล์ .csv เพื่อนำไปใช้ในการสร้าง Visualization ต่อไป

```
def _redshift_to_dataframe():
    # Get data from Redshift
    hook = PostgresHook(postgres_conn_id="my_redshift")
    conn = hook.get_conn()
    cur = conn.cursor()

    table_select_events_accidents_total = """ SELECT * FROM events_accidents_total """
    cur.execute(table_select_events_accidents_total)
    df = pd.DataFrame(cur.fetchall())
    df.to_csv (r'/opt/airflow/dags/data/download/events_accidents_total.csv', index = False)

    table_select_events_accidents_count_total = """ SELECT * FROM events_accidents_count_total """
    cur.execute(table_select_events_accidents_count_total)
    df = pd.DataFrame(cur.fetchall())
    df.to_csv (r'/opt/airflow/dags/data/download/events_accidents_count_total.csv', index = False)
```

- 24. หลังจากนั้น เมื่อกระบวนการทำงานของ Airflows เสร็จสิ้น เราจะมาทำการ transform ข้อมูลของเราใน Dht
- 25. โดยไปที่ Gitpod.io ที่อยู่บน Browser

Write command: pip install dbt-core dbt-redshift

Write command: dbt init

```
• (ENV) gitpod /workspace/swu-ds525/08-capstone-project (main) $ dbt init
  05:55:10 Running with dbt=1.3.1
Enter a name for your project (letters, digits, underscore): accident
 Which database would you like to use?
 [1] postgres
[2] redshift
 (Don't see the one you want? https://docs.getdbt.com/docs/available-adapters)
 host (hostname.region.redshift.amazonaws.com): redshift-cluster-1.cdagfejibaqn.us-east-1.redshift.amazonaws.com port [5439]:
  user (dev username): awsuser
 [1] password
[2] iam
 Desired authentication method option (enter a number): 1 password (dev password):
 password (dev password) dev database that dbt will build objects in): dev schema (default database that dbt will build objects in): public
  threads (1 or more) [1]: 1
 05:55:59 Profile accident written to /home/gitpod/.dbt/profiles.yml using target's profile_template.yml and your supplied values. Run 'dbt debug' to validate the connection. 05:55:59
 Your new dbt project "accident" was created!
 https://docs.getdbt.com/docs/configure-your-profile
 Need help? Don't hesitate to reach out to us via GitHub issues or on Slack:
   https://community.getdbt.com/
 Happy modeling!
```

```
! profiles.yml ×
home > gitpod > .dbt > ! profiles.yml > {} accident
  1
       accident:
         outputs:
  2
           dev:
  3
  4
              dbname: dev
  5
              host: redshift-cluster-1.cdagfejibaqn.us-east-1.redshift.amazonaws.com
  6
              password: Krue#55zz
  7
              port: 5439
  8
              schema: public
  9
              threads: 1
              type: redshift
 10
 11
              user: awsuser
 12
         target: dev
 13
```

ภาพนี้ จะเป็นภาพหน้าตาไฟล์ที่มีชื่อว่า "profiles.yml" ที่สร้างขึ้นมาจาก Dbt

Write command: dbt debug

```
• (ENV) gitpod /workspace/swu-ds525/08-capstone-project/accident (main) $ dbt debug
 06:01:05 Running with dbt=1.3.1
  dbt version: 1.3.1
 python version: 3.8.13
 python path: /workspace/swu-ds525/08-capstone-project/ENV/bin/python
 os info: Linux-5.15.0-47-generic-x86_64-with-glibc2.29
 Using profiles.yml file at /home/gitpod/.dbt/profiles.yml
 Using dbt_project.yml file at /workspace/swu-ds525/08-capstone-project/accident/dbt_project.yml
 Configuration:
    profiles.yml file [OK found and valid]
   dbt_project.yml file [OK found and valid]
  Required dependencies:
   - git [OK found]
 Connection:
   host: redshift-cluster-1.cdagfejibaqn.us-east-1.redshift.amazonaws.com
    port: 5439
   user: awsuser
   database: dev
   schema: public
   search path: None
   keepalives_idle: 240
    sslmode: None
   method: database
   cluster_id: None
   iam_profile: None
    iam_duration_seconds: 900
   Connection test: [OK connection ok]
 All checks passed!
```

Write command: dbt run

```
• (ENV) gitpod /workspace/swu-ds525/08-capstone-project/accident (main) $ dbt run
  06:00:14 Running with dbt=1.3.1
06:00:14 Found 2 models, 4 tests, 0 snapshots, 0 analyses, 327 macros, 0 operations, 0 seed files, 0 sources, 0 exposures, 0 metrics
  06:00:14
  06:00:16 Concurrency: 1 threads (target='dev')
  06:00:16
  06:00:19 1 of 2 OK created sql table model public.my_first_dbt_model ...... [SELECT in 2.61s]
  06:00:19 2 of 2 START sql view model public.my_second_dbt_model ...... [RUN]
  06:00:21
  06:00:21 Finished running 1 table model, 1 view model in 0 hours 0 minutes and 7.41 seconds (7.41s).
  06:00:21
  06:00:21 Completed successfully
  06:00:21
  06:00:21 Done. PASS=2 WARN=0 FRROR=0 SKTP=0 TOTAL=2
○ (ENV) gitpod /workspace/swu-ds525/08-capstone-project/accident (main) $ [
26. เมื่อทำการสร้างไฟล์ Dbt เสร็จเรียบร้อย ต่อมาจะมาทำการสร้าง Staging ต่าง ๆ โดยใช้ command
   ดังนี้
  select
      to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
      accident_time ,
      expw step ,
      weather_state ,
      injur_man ,
      injur femel ,
      dead man ,
      dead femel ,
      cause
  from accident 2559
 where accident date IS NOT NULL
  and
         accident time IS NOT NULL
  and
         expw_step IS NOT NULL

✓ select

      to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
      accident time ,
      expw step ,
      weather_state ,
      injur man ,
      injur femel ,
      dead man ,
      dead femel ,
      cause
  from accident 2560
  where accident_date IS NOT NULL
```

accident time IS NOT NULL

expw step IS NOT NULL

and

and

```
select
    to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
    accident_time ,
   expw_step ,
   weather state,
   injur_man ,
   injur_femel ,
   dead_man ,
    dead_femel ,
    cause
from accident_2561
where accident_date IS NOT NULL
and
    accident_time IS NOT NULL
and
    expw_step IS NOT NULL
select
   to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
   accident_time ,
   expw_step ,
   weather_state ,
   injur_man ,
   injur_femel ,
   dead_man ,
   dead_femel ,
   cause
from accident 2562
where accident_date IS NOT NULL
and accident_time IS NOT NULL
```

and expw_step IS NOT NULL

```
select
     to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
      accident_time ,
     expw_step ,
     weather_state ,
     injur_man ,
     injur_femel ,
     dead_man ,
     dead_femel ,
     cause
  from accident_2563
 where accident_date IS NOT NULL
       accident_time IS NOT NULL
  and
  and
      expw_step IS NOT NULL
  select
      to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
     accident_time ,
     expw_step ,
     weather_state ,
     injur_man ,
     injur_femel ,
      dead_man ,
      dead_femel ,
      cause
  from accident_2564
  where accident_date IS NOT NULL
  and accident_time IS NOT NULL
  and expw_step IS NOT NULL

✓ select

     to_date(accident_date, 'YYYYMMDD', FALSE) AS accident_date ,
     accident_time ,
     expw_step ,
     weather state,
     injur man ,
     injur_femel ,
     dead_man ,
     dead_femel ,
     cause
 from accident_2565
 where accident_date IS NOT NULL
 and
      accident_time IS NOT NULL
       expw_step IS NOT NULL
 and
```

Write command: dbt run

```
• (ENV) gitpod /workspace/swu-ds525/08-capstone-project/accidents (main) $ dbt run
02:22:28 Running with dbt=1.3.1
02:22:28 Found 10 models, 4 tests, 0 snapshots, 0 analyses, 327 macros, 0 operations, 0 seed files, 0 sources, 0 exposures, 0 metrics
02:22:28
02:22:30 Concurrency: 1 threads (target='dev')
02:22:30
02:22:30 1 of 9 START sql table model public.my_first_dbt_model ...... [RUN]
02:22:33 1 of 9 OK created sql table model public.my_first_dbt_model .......................[SELECT in 2.72s]
02:22:38 4 of 9 START sql view model public.stg_accident_2561 ...... [RUN]
02:22:40 4 of 9 OK created sql view model public.stg_accident_2561 ...... [CREATE VIEW in 2.34s]
02:22:40 5 of 9 START sql view model public.stg_accident_2562 ...... [RUN]
02:22:43 5 of 9 OK created sql view model public.stg_accident_2562 ...... [CREATE VIEW in 2.45s]
02:22:43 6 of 9 START sql view model public.stg_accident_2563 ...... [RUN]
02:22:45 6 of 9 OK created sql view model public.stg_accident_2563 ...... [CREATE VIEW in 2.30s]
02:22:47 7 of 9 OK created sql view model public.stg accident 2564 ...... [CREATE VIEW in 2.41s]
02:22:52
02:22:52 Finished running 1 table model, 8 view models in 0 hours 0 minutes and 24.47 seconds (24.47s).
02:22:52
02:22:52 Completed successfully
02:22:52
02:22:52 Done. PASS=9 WARN=0 ERROR=0 SKIP=0 TOTAL=9
```

24. แล้วมาดูผลลัพธ์ของ Stagging ทั้งหมด ที่ถูกสร้างขึ้นมาใน Redshift

25. แล้วทำการสร้าง Model ที่มีชื่อว่า "events accidents total" โดยใช้ command ดังนี้

```
select
   accident_date ,
   accident_time ,
   expw_step ,
   weather_state ,
   injur_man ,
   injur_femel ,
   dead_man ,
   dead_femel ,
    cause
from {{ ref('stg_accident_2559') }}
union
select
   accident_date ,
   accident_time ,
   expw_step ,
   weather_state ,
   injur_man ,
   injur_femel ,
   dead_man ,
   dead femel ,
    cause
from {{ ref('stg_accident_2560') }}
union
select
    accident_date ,
   accident_time ,
   expw_step ,
   weather state,
   injur_man ,
   injur_femel ,
   dead man ,
   dead_femel ,
    cause
from {{ ref('stg_accident_2561') }}
```

26. แล้วทำการสร้าง model ที่มีชื่อว่า "events_accidents_count_total" โดยใช้ command ดังนี้

```
select
    accident_date ,
    accident_time ,
    expw_step ,
    weather_state ,
    count(*) AS events_accidents_total ,
    cause
from {{ ref('events_accidents_total') }}
group by accident_date , accident_time , expw_step , weather_state , cause
```

Write command: dbt run

```
• (ENV) gitpod /workspace/swu-ds525/08-capstone-project/accidents (main) $ dbt run
02:54:35 Running with dbt=1.3.1
02:54:35 Found 11 models, 4 tests, 0 snapshots, 0 analyses, 327 macros, 0 operations, 0 seed files, 0 sources, 0 exposures, 0 metrics
02:54:35
02:54:38 Concurrency: 1 threads (target='dev')
02:54:38
02:54:38 1 of 11 START sql table model public.my_first_dbt_model ...... [RUN]
02:54:43 2 of 11 OK created sql view model public.stg_accident_2559 ...... [CREATE VIEW in 2.33s]
02:54:47 5 of 11 START sql view model public.stg_accident_2562 ...... [RUN]
02:54:50 5 of 11 OK created sql view model public.stg_accident_2562 ...... [CREATE VIEW in 2.45s]
02:54:55 8 of 11 START sql view model public.stg_accident_2565 ...... [RUN]
02:54:57 9 of 11 START sql view model public.my_second_dbt_model ...... [RUN]
02:54:59 9 of 11 OK created sql view model public.my_second_dbt_model ...... [CREATE VIEW in 1.79s]
02:54:59 10 of 11 START sql view model public.events_accidents_total .................. [RUN]
02:55:00 10 of 11 OK created sql view model public.events_accidents_total .................[CREATE VIEW in 1.72s]
02:55:02 11 of 11 OK created sql view model public.events accidents count total ....... [CREATE VIEW in 1.71s]
02:55:03
02:55:03 Finished running 1 table model, 10 view models in 0 hours 0 minutes and 27.52 seconds (27.52s).
02:55:03
02:55:03 Completed successfully
02:55:03
02:55:03 Done. PASS=11 WARN=0 ERROR=0 SKIP=0 TOTAL=11
```

ซึ่งผลลัพธ์จะได้ทั้งหมด 7 Staging และ 2 Modeling

ภาพนี้จะเป็นภาพรวมของ Staging และ Modeling ทั้งหมดของเรา

27. เรามาลองทำการ Query ดูข้อมูล ที่ถูกเก็บอยู่ใน Redshift

28. ทำการสร้าง Document โดยการเขียน command ดังนี้

Write command: dbt docs generate

```
(ENV) gitpod /workspace/swu-ds525/08-capstone-project/accidents (main) $ dbt docs generate
02:56:50 Running with dbt=1.3.1
02:56:51 Found 11 models, 4 tests, 0 snapshots, 0 analyses, 327 macros, 0 operations, 0 seed files, 0 sources, 0 exposures, 0 metrics
02:56:51
02:56:52 Concurrency: 1 threads (target='dev')
02:56:52
02:56:52 Done.
02:56:52 Building catalog
02:56:55 Catalog written to /workspace/swu-ds525/08-capstone-project/accidents/target/catalog.json
```

Write command: dbt docs serve --port 8001

```
O(ENV) gitpod /workspace/swu-ds525/08-capstone-project/accidents (main) $ dbt docs serve --port 8001
02:57:23 Running with dbt=1.3.1
02:57:23 Serving docs at 0.0.0.0:8001
02:57:23 To access from your browser, navigate to: http://localhost:8001
02:57:23
02:57:23
02:57:23 Press Ctrl+C to exit.
192.168.234.70 - - [18/Dec/2022 02:57:24] "GET / HTTP/1.1" 200 -
192.168.234.70 - - [18/Dec/2022 02:57:24] "GET /manifest.json?cb=1671332244764 HTTP/1.1" 200 -
192.168.234.70 - - [18/Dec/2022 02:57:24] "GET /catalog.json?cb=1671332244764 HTTP/1.1" 200 -
```


ซึ่งจากภาพ จะเห็นการทำงานของ Staging เหตุการณ์ของปีต่าง ๆ นำมาสร้าง Modeling ที่มีชื่อว่า "events_accidents_total" แล้วจาก Modeling ที่มีชื่อว่า "events_accidents_total" นำไปสรุป ผลรวมของเหตุการณ์เป็น Modeling ที่มีชื่อว่า "events_accidents_count_total"

29. จากนั้นทำการ Export Model เหล่านี้ ออกมาเป็นไฟล์ .csv

30. จากนั้น เราจะนำไฟล์ที่ทำการ Export Model ออกมาเป็นไฟล์ .csv นำมาใช้ในการสร้าง Visualization

จากภาพ จะเป็นการวิเคราะห์การเกิดอุบัติเหตุบนทางหลวงพิเศษ ของปี 2014-2022 จากภาพ อุบัติเหตุที่ เกิดขึ้นจะพบว่า ปี 2016 มีอัตราการเกิดอุบัติเหตุบนทางหลวงพิเศษที่มากที่สุด ซึ่งมีอัตราการเกิดอุบัติเหตุที่มากถึง 1,127 ครั้ง ซึ่งอุบัติเหตุบนทางหลวงพิเศษส่วนใหญ่ที่เกิดขึ้น จะพบบนทางหลวงพิเศษศรีรัช 1,413 เหตุการณ์ และมา จากสาเหตุส่วนใหญ่ คือ ขับรถเร็วเกินไป 2,547 เหตุการณ์ ซึ่งเป็นสาเหตุที่พบเป็นอันดับ 1 มากกว่าสาเหตุอื่น ๆ หลาย เท่า เราจึงนำการแสดงผล การทำ Visualization นี้ ไปปรับใช้ ในการแก้ไขและลดปัญหาการเกิดอุบัติเหตุในปีถัด ๆไปได้ เช่น มีการจำกัดความเร็วของอัตราการวิ่งของรถยนต์บนทางหลวงพิเศษ ห้ามขับรถเร็วเกินกว่าที่มาตราฐานกำหนดหรือ เกินความเร็วสูงสุด 120 กม/ชม. ถ้าเกินกว่านั้นหรือตามอัตราที่มาตราฐานกำหนด โดยจับจากกล้องวงจรปิด ก็ให้ สามารถปรับได้ทันที เพื่อลดอัตราการเกิดอุบัติเหตุบนทางหลวงพิเศษในปีถัด ๆไป ซึ่งจากภาพอัตราการเกิดอุบัติเหตุในปี ถัด ๆไป มีอัตราการเกิดอุบัติเหตุที่ลดน้อยลงเรื่อย ๆ ซึ่งของปีล่าสุด ปี 2022 มีอัตราการเกิดอุบัติเหตุที่ลดน้อยลง เหลือ 450 ครั้ง แต่ก็ยังเป็นจำนวนที่มากอยู่