本動画講義のファイルを

- データとして保存すること
- ・外部に動画講義を拡散すること

を固く禁じます。

約30秒後に 動画講義は自動的に始まります。

化学基礎 I

Positive electrode: $LiCoO_2 \longrightarrow Li_{(1,x)}CoO_2 + xLi^+ + xe^-$

Negative electrode: 6C+xLi++xe- → Li_xC₆

今日はリチウムイオン電池について、少しお話します。 皆さんが使っているスマホやノートパソコン、ゲーム機などの 電源に使われています。

最近は、電気自動車や家庭用の電量貯蔵としても使われていますよね。

リチウムイオン電池には、リチウム金属は使われていないということはご存じでしょうか?

リチウムイオン電池では、正極一負極の間をリチウムイオンがいったりきたりすることで電池の充電・放電が起こります。

工学研究科 マテリアル工学科 入山 恭寿 エ・9号館 519号室 iriyama@numse.nagoya-u.ac.jp

1. サンダーソンの考え方を用いて、講義で計算したHF以外に、HCI、HBr、HI のHの部分電荷を求め、教科書p 33の演習問題の解答と比較せよ。

S_b: 結合における平均的な電気陰性度 HF分子

$$S_b = \sqrt{S_H S_F} = 4.52$$

$$\Delta S_H = 4.52 - 3.55 = 0.97$$
 $\Delta S_F = 4.52 - 5.75 = -1.23$

$$\delta = \frac{\Delta S}{\Delta S_c}$$
 δ H: 0.97/3.92 = 0.25

HCI分子
$$S_b = \sqrt{S_H S_{Cl}} = 4.18$$

$$\Delta S_H = 4.18 - 3.55 = 0.63$$

 $\delta H: 0.63/3.92 = 0.16$

HBr分子
$$S_b = \sqrt{S_H S_{Br}} = 4.01$$

$$\Delta S_H = 4.01 - 3.55 = 0.46$$

 δH : 0.46/3.92 = 0.12

表 1・3 Sanderson による電気陰性度の値

元素	電気陰性度	ΔS_{c}	元素	電気陰性度	ΔS_{c}	元素	電気陰性度	ΔSc
Н	3.55	3.92	S	4.12	4.22	Cd	2.84	3.35
Li	0.74	1.77	Cl	4.93	4.62	Sn	3.09	3.16, 3.66
Be	1.99	2.93	K	0.42	1.35	Sb	3.34	3.80
В	2.93	2.56	Ca	1.22	2.30	Te	3.59	3.94
C	3.79	4.05	Zn	2.98	3.58	I	3.84	4.08
N	4.49	4.41	Ga	3.28	3.77	Cs	0.28	1.10
O	5.21	4.75	Ge	3.59	3.94	Ba	0.78	1.93
F	5.75	4.99	As	3.90	4.11	Hg	2.93	3.59
Na	0.70	1.74	Se	4.21	4.27	Tl	3.02	2.85
Mg	1.56	2.60	Br	4.53	4.43	Pb	3.08	3.21, 3.69
Al	2.22	3.10	Rb	0.36	1.25	Bi	3.16	3.74
Si	2.84	3.51	Sr	1.06	2.14			
P	3.43	3.85	Ag	2.59				

HI分子
$$S_b = \sqrt{S_H S_I} = 3.69$$

$$\Delta S_H = 3.69 - 3.55 = 0.14$$

 $\delta H: 0.14/3.92 = 0.04$

教科書演習問題と同様に、HI<HBr<HCI<HF の序列 でHの部分電荷が変化する。

部分電荷の減少 → イオン結合性の寄与の減少

2. Li の金属結合半径の値をもちいて、格子定数(Liは体心立法格子をとるので、その一片の辺の値)を計算せよ。

Liの金属結合半径: 1.57 Å

体心立方格子の一片の長さをa(A)とすると右図の赤線の長さは √3a であるが、これは金属結合半径の4倍の長さである。

$$\sqrt{3}$$
 x a = 1.57 x 4

$$a = 3.63 \text{ Å}$$

Li金属をグローブボックスを介して触ってみたい方、 コロナ明けに 一度研究室に遊びに来て見てください。

3. 金属結合半径、イオン半径についてそれぞれ説明せよ。

金属結合半径 : 金属結晶中の原子間距離の半分

イオン半径: イオン結晶において最近接のイオン間距離がその両イオンの半径の和に等しいと仮定し、成分イオンに半径をわりあてたもの

イオン半径については、下記に注意すること

- ·どの基準で求められた値か?(O²⁻(6)が126 pm or 140 pm)
- •配位数
- ·HS or LS
- •酸化価数

- 2章 元素の性質と周期性
- 2.6 結合エネルギー

結合エネルギーとは?

A-B

分子A-Bにおいて、A-Bの結合を切断するのに必要なエネルギー。 ただし、A-Bの結合エネルギーは、A-B を含む化合物に依存する。 従って、平均値で議論される。

平均值 : 459kJ/mol

結合エネルギーとは?

A-B

P-CI: 322 kJ / mol

P-CI: 259 kJ/mol

*超原子価の構造は特別扱いとする (結合距離が長くなるので、結合エネルギー が小さくなるという理由に基ずく)

結合エネルギー

$$AB(g) \longrightarrow A(g) + B(g)$$

表 2.9 原子間 0)単結合エネルギー(kJ	/mol)
-------------	------------	----	-------

	Н	С	Si	Ge	N	P	As	О	S	Se	F	C1	Br	I
Н	436	414	318	285	389	326	297	459	347	317	569	432	366	298
С		347	305	245	305	268	201	358	272	243	490	326	272	240
Si			226	176	335		_	452	226		598	402	310	234
Ge				188	255			360	_	_	473	339	280	213
N					159	~200		163			280	188		_
P						239		368	_	_	498	322	268	184
As							180	331			464	310	255	180
С								142			185	205	_	201
S									264		326	255	213	
e	夕舌	結合。							7	172	285	243	_	_
١	i		C=C 0	19 (=	. 107	2, C=C	onna)	C-N	616		158	255	238	278
l.	l i					6, Si = 5						242	218	209
r	i i												192	176
1	Ge-	Ge 212	, r-r	510, F	=P 40	31, O=	O 490,	3=5 4	101					151

a) 有機物では745kJ/mol.

表の値は 単結合の結合エネルギーであることに注意

単結合とは?

σ 結合

例:C-H 単結合

結合方向に 軌道が重なる

同じ原子間の単結合

周期律表で下に行くほど結合エネルギーは低下

C-C>Si-Si>Ge-Ge

原子が大きくなり、結合距離が長くなるため

例外

O-O < S-S > Se-Se

S-Sの結合エネルギーの方が、O-Oの結合エネルギーよりも大きい

N、O、F に関しては、孤立電子対(左図緑)間の反発の作用が大きく、結合が弱い 第三周期以降は、原子のサイズが大きくなるため、この効果は現れない。

表 2.9 原子間の 単結合エネルギー (kJ/mol)

	H	С	Si	Ge	N	P	As	О	S	Se	F	Cl	Br	I
Н	436	414	318	285	389	326	297	459	347	317	569	432	366	298
C		347	305	245	305	268	201	358	272	243	490	326	272	240
Si			226	176	335	$\overline{}$	_	452	226	_	598	402	310	234
Ge				188	255	_	_	360	-		473	339	280	213
N				\	159	~200		163	-	_	280	188	_	_
P				0		239	-	368	_		498	322	268	18
As							180	331	_		464	310	255	18
0								142	1	_	185	205	_	20
S									264	7	326	255	213	
Se	多重	社 ム								172	285	243	_	_
F	1		C=C 8	13 C=	0 1079	2, C=C	Qnna)	C-N	616		158	255	238	27
21	i					S_i , $S_i = S_i$						242	218	20
3r						31. 0 =							192	17
I	Ge-	Ge 212	, r-r	310, 1	= 1 40	51, 0=	495,	3-54	101					15

異原子A-B間の単結合

表2.9 原子間の単結合エネルギー(kJ/mol)

	H	C	Si	Ge	N	P	As	O	S	Se	F	CI	Br	I
	436	414	318	285	389	326	297	459	347	317	569	432	366	298
		347	305	245	305	268	201	358	272	243	490	326	272	240
			226	176	335		_	452	226	_	598	402	310	234
				188	255	_	_	360	-	_	473	339	280	213
					159	~200		163	-	-	280	188	_	_
						239	_	368	_	_	498	322	268	184
							180	331	_	_	464	310	255	180
								142	_	$\overline{}$	185	205	-	20
									264	_	326	255	213	
	多重	 姓ム							7	172	285	243	_	
	1		C=C 0	12 C=	0 107	2, C=C	onna)	C-N	616		158	255	238	27
						2, C=C 6, Si=S						242	218	209
8						0, S1 = 3 $81, O = 3$							192	176
	Ge-	Ge 212	, r-r	310, 1	= 1 40	o1, U=	0 495,	5=5	431					151

a) 有機物では745kJ/mol.

C-F > C-CI > C-Br > C-I

一方を固定し、同族で周期表を下がると結合エネルギーは小さくなる

・原子が大きくなる影響

結合距離が長くなる → 結合エネルギーは低下

異原子A-B間の単結合

As-As

180

孤立電子対による反発の影響

孤立電子対がある

As-H

247

	(孤立電子対がない)	原子との結合
孤立電子対なし $B/(k \mathrm{J} \ \mathrm{mol}^{-1})$	$B/(kJ \text{ mol}^{-1})$	$B/(kJ \text{ mol}^{-1})$
C-C 348	C-H 412	C-C1 338
Si-Si 226	Si-H 318	Si-Cl 391
Ge-Ge 188	Ge-H 289	Ge-Cl 342
	孤立電子対がある 原子との結合	水素との結合 (孤立電子対がない)
孤立電子対あり $B/(k \text{J mol}^{-1})$	$B/(kJ \text{ mol}^{-1})$	$B/(kJ \text{ mol}^{-1})$
N-N 163	N-Cl 200 •	N-H 388
	APPENDIX CONTROL CONTR	P-H 322

As-C1

水素との結合

孤立電子対との反発 → 結合エネルギーの低下

317

異原子A-B間の単結合

孤立電子対の空軌道へのπ供与性の影響

孤立電子対がある 原子との結合 水素との結合 (孤立電子対がない)

B-F > B-H

613 kJ/mol

390 kJ/mol

Bの電子配置 (1s)²(2s)²(2p)¹

Bが例えば BF_3 の分子を形成する場合、Bは sp^2 混成軌道を形成する。 分子の形状としては三角形である。

空の2p軌道

空の2p軌道は左下図のように平面に対して垂直に広がるが、空の2p軌道へFの孤立電子対が流れ込み、π結合を形成する。これにより、Fに孤立電子対が存在するが、結合が安定化する。

多重結合 とは?

σ 結合

例:C-H 単結合

結合方向に 軌道が重なる

π 結合

例:O=O 二重結合

例:N≡N 三重結合

р-р

(c) N₂ (sp混成)

例:金属イオン(M) の水和

p-d

結合方向と垂直(斜め)の 軌道が重なる

軌道の重なりやすさ が 結合エネルギー と相関

δ 結合

例:金属イオン間の 結合

4つの軌道の重なり

多重結合の数と結合エネルギー

C-C : 347 kJ/mol

251 kJ/mol

C=C : 598 kJ/mol

215 kJ/mol

C≡C : 813 kJ/mol

表2.9 原子間の単結合エネルギー(kJ/mol)

	Н	C	Si	Ge	N	P	As	O	S	Se	F	Cl	Br	I
H	436	414	318	285	389	326	297	459	347	317	569	432	366	298
0		347	305	245	305	268	201	358	272	243	490	326	272	240
i			226	176	335	$\overline{}$	_	452	226	-	598	402	310	234
е				188	255	_	_	360			473	339	280	213
					159	~200		163		_	280	188	_	_
						239		368	_		498	322	268	184
s							180	331	_		464	310	255	180
								142	_	_	185	205	_	201
3									264	_	326	255	213	
2	多重	 姓ム							7	172	285	243	_	_
			C=C 9	12 C=	0 107	2, C=C	onna)	C-N	616		158	255	238	278
						6, Si = 3						242	218	209
	i					81, O =							192	176
	Ge-	GE 212	, 1-1	310, 1	= 1 4	01, 0-	U 490,	3-34	101					151

a) 有機物では745kJ/mo

結合の多重度が上がるほど 原子間の距離が短くなり、 結合エネルギーも強くなる

多重結合による結合エネルギー変化

O-O : 142 kJ/mol

353 kJ/mol

O=O : 495 kJ/moll

表2.9 原子間の単結合エネルギー(kJ/mol)

				-		1								
	Н	С	Si	Ge	N	P	As	О	S	Se	F	Cl	Br	I
Н	436	414	318	285	389	326	297	459	347	317	569	432	366	298
С		347	305	245	305	268	201	358	272	243	490	326	272	240
i			226	176	335		_	452	226	_	598	402	310	234
e				188	255	_	_	360		_	473	339	280	213
1					159	~200		163	-	_	280	188	_	_
•						239		368		_	498	322	268	184
s							180	331	_	_	464	310	255	180
)							Г	142	1	$\overline{}$	185	205	_	201
3									264	_	326	255	213	
е	多重	 姓ム							7	172	285	243	_	
	1		C=C 8	313, C≡	0 107	2 C-C	Qnna)	C-N	616		158	255	238	278
1	1			418, N≡								242	218	209
r				310, N=				S=S 4					192	176
I	Ge-	GE 212	., r – r	510, F	=1 4	51, 0-	U 495,	3-34	91					151

a) 有機物では745kJ/mol.

O-O 単結合 : 孤立電子対間で反発が生じる

O=O 二重結合 : π結合が形成+孤立電子対がなくなる

π結合の強さ : 軌道間の重なりやすさ

第二周期元素 > 第三周期元素

多重結合による結合エネルギー変化

N-N : 159 kJ/mol

259 kJ/mol

N=N: 418 kJ/mol

528 kJ/mol

NEN : 946 kJ/mol

P-P : 239 kJ/mol

71 kJ/mol

P=P : 310 kJ/mol

171 kJ/mol

P≡P : 481 kJ/mol 原子間の単結合エネルギー(kJ/mol)

a) 有機物では745kJ/mol

π結合の強さ : 軌道間の重なりやすさ

第二周期元素 (O) > 第三周期元素 (S)

例 第二周期元素 (N) > 第三周期元素 (P)

π結合による結合エネルギー変化: 同一周期で右に行くほど増大

C (251 kJ/mol) < N (259 kJ/mol) < O (353 kJ/mol)

多重結合による結合エネルギーと構造

O-O : 142 kJ/mol

353 kJ/mol

O=O : 495 kJ/moll

O=O > O-O x 2 二重結合が安定

: 264 kJ/mol

167 kJ/mol

S=S : 431 kJ/mol

S=S < S-S x 2 単結合が安定

表2.9 原子間の単結合エネルギー(kJ/mol)

								3.50.00.000						
	Н	С	Si	Ge	N	P	As	О	S	Se	F	Cl	Br	I
Н	436	414	318	285	389	326	297	459	347	317	569	432	366	298
С		347	305	245	305	268	201	358	272	243	490	326	272	24
Si			226	176	335		_	452	226		598	402	310	23
Ge				188	255		_	360	-	_	473	339	280	21
N					159	~200	-	163	-	_	280	188	_	-
P						239		368		_	498	322	268	18
As							180	331	_	_	464	310	255	18
О							Г	142	_	_	185	205	$\overline{}$	20
S							_		264	_	326	255	213	-
Se	多重	 姓ム							· }	172	285	243	_	-
-	1		C=C 9	12 C=	0 107	2 C-C	onna)	C=N	616		158	255	238	27
21	1							Si=0				242	218	20
3r							_	S=S 4	10.				192	17
I	Ge-	GE 212	., 1-1	510, F	=1 40	51, 0-	U 495,	3-5 4	31					15

a) 有機物では745kJ/mol

π結合の強さ : 軌道間の重なりやすさ

第二周期元素 > 第三周期元素

S-S

多重結合による結合エネルギーと構造

酸素は O_2 分子 硫黄は S_8 分子など

物質	斜方硫黄	単斜硫黄	ゴム状硫黄
分子の形	0.207 nm	****	
分子の構成*	環状分子 S ₈	環状分子 S ₈	鎖状分子 S_x
外観	黄色,塊 状結晶	黄色, 針状結晶	褐色.**ゴム状固体
(3)点頻	113	119	_
密度(g/cm³)	2.07	1.96	_
二硫化炭素*** CS2への溶解	溶ける	溶ける	溶けない

同じ理由から 窒素は N_2 分子 リンは P_4 分子など

表個 黄リンと赤リン 🕍

物質	黄リン	赤リン					
外観	*						
	淡黄色 ろう状固体	暗赤色 粉末					
分子の 構成	正四面体状 分子 P4	網目状分子 P _x					
分子の 構造							
密度	1.82 g/cm ³	2.20 g/cm ³					
融点	44℃	590℃ (加圧下)					
発火点	34℃	260℃					
毒性	有毒	無毒					
CS ₂ へ の溶解	溶ける	溶けない					

リンの単体は組成式 P で表されることもある。純粋な黄リン P4 は白色である。

異核原子間の多重結合による結合エネルギー

π結合の強さは

第二周期同士 > 第二周期と第三周期 > 第三周期同士

酸素との結合

: 二重結合分子 0

S : 二重結合分子(折れ曲り) : 単結合と二重結合の混在 Se

Te : 単結合

ON: 三重結合

: 単結合(P₄O₆) と 単結合-二重結合の混在(P₄O₁₀) O P

15,16 族元素の酸化物

1. ベンゼンにおける炭素-炭素の結合エネルギーと結合距離は、どの程度の範囲にあると予測されるかを答えよ。また、その数値を調べてみよ。

2.酸素と炭素の結合ではCO2が形成され、酸素とケイ素の結合ではSiO2が形成される。これら酸化物の形状を調べるとともに、その違いが生じる理由について説明せよ。

3. 第二周期の元素(M)においては右に行くほど有効核電荷は増大するが、同一元素間での単結合(M-M)の結合エネルギーは必ずしも右に行くほど増大はしない。 この理由を説明せよ。

