Oppgaver for kapittel 0

0.1.1

Skriv som fullstendige kvadrat.

a)
$$x^2 + 6x + 9$$

a)
$$x^2 + 6x + 9$$
 b) $b^2 + 14b + 49$ c) $a^2 - 2a + 1$

c)
$$a^2 - 2a + 1$$

d)
$$k^2 - \frac{2}{3}k + \frac{1}{9}$$
 e) $c^2 - \frac{1}{2}c + \frac{1}{16}$ f) $y^2 + \frac{6}{7}y + \frac{9}{49}$

e)
$$c^2 - \frac{1}{2}c + \frac{1}{16}$$

f)
$$y^2 + \frac{6}{7}y + \frac{9}{49}$$

0.1.2

Skriv som fullstendige kvadrat.

a)
$$25a^2 + 90a + 81$$
 b) $9b^2 + 12a + 4$ c) $64c^2 - 16c + 1$

b)
$$9b^2 + 12a + 4$$

c)
$$64c^2 - 16c + 1$$

d)
$$\frac{1}{4}d^2 + \frac{3}{4}d + \frac{9}{16}$$

e)
$$\frac{1}{25}e^2 + \frac{4}{35}e + \frac{4}{49}e$$

d)
$$\frac{1}{4}d^2 + \frac{3}{4}d + \frac{9}{16}$$
 e) $\frac{1}{25}e^2 + \frac{4}{35}e + \frac{4}{49}$ f) $\frac{81}{64}f^2 - \frac{15}{4}f + \frac{25}{9}$

0.1.3

Vis at

a)
$$(a-b)^2 - b^2 = a(a-2b)$$

b)
$$(k+x)^2 - (k-x)^2 = 4kx$$

0.1.4

- a) Gitt to heltall a og b. Forklar hvorfor $(a+\sqrt{b})(a-\sqrt{b})$ er et heltall.
- b) Skriv om brøken $\frac{5}{2-\sqrt{3}}$ til en brøk med heltalls nevner.

0.1.5

Skriv om til et uttrykk der x er et ledd i et fullstendig kvadrat.

a)
$$x^2 + 6x - 7$$

a)
$$x^2 + 6x - 7$$
 b) $x^2 - 8x - 20$ c) $x^2 + 12 - 45$

c)
$$x^2 + 12 - 45$$

0.1.6

Hvorfor er det ved bruk av sum-produkt-metoden lurte å starte med å finne tall som oppfyller kravet $a_1a_2 = c$ (i motsetning til å finne tall som oppfyller kravet $a_1 + a_2 = b$?

1

0.1.7

Faktoriser uttrykkene fra oppgave 0.1.5.

0.1.8

Faktoriser uttrykkene.

a)
$$x^2 - 10kx + 25k^2$$

b)
$$y^2 + 8yz + 16z^2$$

c)
$$a^2 - 20aq + 100q^2$$

d)
$$x^2 + xy - 20y^2$$

e)
$$a^2 - 9ab + 14b^2$$

a)
$$x^2 - 10kx + 25k^2$$
 b) $y^2 + 8yz + 16z^2$ c) $a^2 - 20aq + 100q^2$ d) $x^2 + xy - 20y^2$ e) $a^2 - 9ab + 14b^2$ f) $y^2 - 9k^5y - k^2y + 9k^7$

0.1.9 (1TV23D1)

Funksjonen f er gitt ved

$$f(x) = x^2 - 2x - 8$$

I hvilke punkt skjærer grafen til funksjonen x-aksen?

0.1.10 (1TV23D1)

Gitt ligningen

$$x^3 - 5x^2 - 8x + 12 = (x - 1)(x + a)(x - b)$$

Bestem a og b slik at ligningen blir en identitet.

0.1.11

Gitt ulikheten

$$x^2 - 9x + 20 > x - 1$$

- a) Bruk figuren under til å løse ulikheten.
- b) Løs ulikheten ved hjelp av faktorisering.

0.1.12 (1TH21D1)

Skriv så enkelt som mulig

$$\frac{2x^2 - 2}{x^2 - 2x + 1}$$

0.1.13 (1TV21D1)

Skriv så enkelt som mulig

$$\frac{x}{x-3} + \frac{x-6}{x+3} - \frac{18}{x^2-9}$$

0.1.14 (1TH21D1)

Løs ulikheten.

$$x^2 + 2x - 8 < 0$$

0.1.15

Gitt ulikheten

$$\frac{10}{x+3} - \frac{2}{x+5} > 0$$

- a) Forklar hvorfor det er problematisk å gange begge sider av ulikheten med en fellesnevner.
- b) Løs ulikheten.

0.2.1

Gitt likningen

$$ax^2 + bx = 0$$

Vis, uten å bruke *abc*-formelen, at

$$x = 0$$
 \vee $x = -\frac{b}{a}$

0.2.2

Løs likningene.

- a) $2x^2 4x = 0$ b) $3x^2 + 27x = 0$
- c) $7x^2 + 2x = 0$ d) $8x 9x^2 = 0$

0.2.3

Løs likningene.

a)
$$x^2 - 4x - 4 = 0$$

$$(x^2 + 2x - 15)$$

a)
$$x^2 - 4x - 4 = 0$$
 b) $x^2 + 2x - 15$ c) $x^2 + 3x - 70 = 0$

d)
$$x^2 + 5x - 7 = 0$$
 e) $x^2 - x - 1 = 0$ f) $x^2 - 2x - 9 = 0$

e)
$$x^2 - x - 1 = 0$$

f)
$$x^2 - 2x - 9 = 0$$

g)
$$5x^2 + 2x - 7 = 0$$
 h) $8x^2 - 2x^2 - 9 = 0$ i) $3x^2 - 12x + 1 = 0$

h)
$$8x^2 - 2x^2 - 9 = 0$$

i)
$$3x^2 - 12x + 1 = 0$$

0.2.4 (1TH21D1)

Grafen til en andregradsfunksjon f går gjennom punktene (0, 12), (-3, 0)og (2,0). Bestem f(x).

0.2.5

Grafen til $f(x) = x^2 + 2x - 8$ er symmetrisk¹ om vertikallinja som går gjennom bunnpunktet. Finn x-verdien til dette punktet.

$$x^2 + 2x - y = -1 (I)$$

$$x + y = -2 \tag{II}$$

Vis at ligningssystemet ikke har løsning

- a) grafisk
- b) ved regning

¹Se også **Gruble 5**.

0.2.7

Gitt funksjonen $f(x) = ax^2 + bx + c$ og tallene $t = \frac{-b + \sqrt{b^2 - 4ac}}{4a}$ og $s = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

- a) Hva er verdien til f(t) og f(s)? Grunngi svaret uten bruk av utregning.
- b) Bekreft svaret fra a) ved utregning.
- c) Regn ut t-s. Hvilken sammenheng er det mellom dette tallet og nullpunktene til f?
- d) Regn ut $\frac{s+t}{2}$. Hvilken sammenheng er det mellom dette tallet og nullpunktene til f?
- e) Regn ut st. Hvis f(0) = 2 og st = 3, hva er da verdiene til a og c?

0.3.1

Utfør polynomdivisjon på uttrykkene

a)
$$\frac{x^4 - 2a3x^2 + 5}{x^3 + x}$$

b)
$$\frac{-7x^3 - 9x^2 + x}{-4x^2 + 3}$$

a)
$$\frac{x^4 - 2a3x^2 + 5}{x^3 + x}$$
 b) $\frac{-7x^3 - 9x^2 + x}{-4x^2 + 3}$ c) $\frac{2x^3 - 6x^2 + 9x - 27}{2x^2 + 9}$

0.4.1

P(x) = 0 for én av $x \in \{-1, 2, 3\}$. Faktoriser P når

a)
$$P = x^3 - 37x + 84$$

b)
$$P = x^3 + 10x^2 + 17x + 18$$

c)
$$P = 2x^3 + 21x^2 + 61x + 42$$

0.5.1 (R1H23D1)

Skriv uttrykkene nedenfor i stigende rekkefølge

$$2 \ln e$$
 , $3 \log_{10} 70$, $e^{3 \ln 2}$

Husk å grunngi svaret.

Merk: I originaloppgaven står det bare 3 log 70. Vi har her valgt å presisere at 10 er basen til logaritmen.

0.5.2

Løs likningen.

a)
$$7 \cdot 5^x = 14$$

b)
$$3 \cdot 8^x = 27$$

a)
$$7 \cdot 5^x = 14$$
 b) $3 \cdot 8^x = 27$ c) $10 \cdot 2^x = 19$

0.5.3

Vis at likningen

$$b \cdot a^x = c$$

har løsningen

$$x = \log_a \frac{c}{h}$$

0.5.4

Løs likningen. (Hint; se vedlegg??)

a)
$$(\ln x)^2 - 5 \ln x + 6 = 0$$

a)
$$(\ln x)^2 - 5 \ln x + 6 = 0$$
 b) $(\log x)^2 - 3 \ln x - 70 = 0$

c)
$$e^{2x} - 2x - 3 = 0$$

d)
$$e^{2x} + 7x - 18 = 0$$

0.5.5 (1TH21D1)

Løs ligningene

a)
$$\lg(2x - 6) = 2$$

b)
$$\frac{3^{2x} + 3^{2x} + 4}{2} = 29$$

Gruble 1

(T1H23D1)

Funksjonen f er gitt ved

$$f(x) = x^3 + 2x^2 - 5x - 6$$

I hvilke punkt skjærer grafen til funksjonen x-aksen?

Gruble 2

$$\sqrt{27} = \sqrt{x} + \sqrt{y}$$

Finn de heltallige verdiene til x og y.

Gruble 3

Skriv uttrykkene på formen $\left(\sqrt{a}+\sqrt{b}\right)^2$, hvor a og b er heltall.

- a) $10 2\sqrt{21}$
- b) $13 + 2\sqrt{22}$
- c) $8 + 4\sqrt{3}$
- d) $42 14\sqrt{5}$

Gruble 4

For en trekant med sidelengder a, b og c er arealet T gitt ved **Herons** formel:

$$T = \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a-b+c)(b+c-a)}$$

Bevis formelen.

Gruble 5

Gitt funksjonen $f(x) = ax^2 + bx + c$. Vis at grafen til f er symmetrisk om linja $x = -\frac{b}{2a}$.

Gruble 6

Vis at $2bd-2dr-r^2$ er en faktor i uttrykket $d^2r^2-(d+r)^2r^2+4bd^2(b-r).$

Gruble 7

Gitt funksjonen $f(x) = ax^2 + bx + c$. I gruble 5 viste vi at f er symmetrisk om linja $x = \frac{-b}{2a}$. Videre kan det vises at for alle tall k er

$$f\left(\pm k - \frac{b}{2a}\right) = \frac{4a^2k^2 - b^2}{4a} + c$$

Bruk dette til å utlede abc-formelen.