

planetmath.org

Math for the people, by the people.

a harmonic function on a graph which is bounded below and nonconstant

 $Canonical\ name \qquad A Harmonic Function On A Graph Which Is Bounded Below And Nonconstant$

Date of creation 2013-03-22 12:44:26 Last modified on 2013-03-22 12:44:26

Owner drini (3) Last modified by drini (3)

Numerical id 6

Author drini (3)
Entry type Example
Classification msc 30F15
Classification msc 31C05
Classification msc 31B05
Classification msc 31A05

There exists no harmonic function on all of the d-dimensional grid \mathbb{Z}^d which is bounded below and nonconstant. This categorises a particular property of the grid; below we see that other graphs can admit such harmonic functions.

Let $\mathcal{T}_3 = (V_3, E_3)$ be a 3-regular tree. Assign "levels" to the vertices of \mathcal{T}_3 as follows: Fix a vertex $o \in V_3$, and let π be a branch of \mathcal{T}_3 (an infinite simple path) from o. For every vertex $v \in V_3$ of \mathcal{T}_3 there exists a *unique* shortest path from v to a vertex of π ; let $\ell(v) = |\pi|$ be the length of this path.

Now define $f(v) = 2^{-\ell(v)} > 0$. Without loss of generality, note that the three neighbours u_1, u_2, u_3 of v satisfy $\ell(u_1) = \ell(v) - 1$ (" u_1 is the parent of v"), $\ell(u_2) = \ell(u_3) = \ell(v) + 1$ (" u_2, u_3 are the siblings of v"). And indeed, $\frac{1}{3} \left(2^{\ell(v)-1} + 2^{\ell(v)+1} + 2^{\ell(v)+1} \right) = 2^{\ell(v)}$.

So f is a positive nonconstant harmonic function on \mathcal{T}_3 .