Announcements Jan 8

- Mathematical autobiography due on Friday
- WeBWorK Warmup due Friday (not for a grade)
- Download the Piazza app
- My office hours today 2-3 and Monday 3-4 in Skiles 234
- Studio on Friday: same time, different room, with TA
- Remember the laptop rules

Section 1.1

Solving systems of equations

Outline of Section 1.1

- Learn what it means to solve a system of linear equations
- Describe the solutions as points in \mathbb{R}^n
- Learn what it means for a system of linear equations to be inconsistent

Solving equations

Solving equations

What does it mean to solve an equation?

$$2x = 10$$

$$x + y = 1$$

$$x + y + z = 0$$

Find one solution to each. Can you find all of them?

A solution is a *list* of numbers. For example (3, -4, 1).

Solving equations

What does it mean to solve a system of equations?

$$x + y = 2$$
$$y = 1$$

What about...

$$x + y + z = 3$$
$$x + y - z = 1$$
$$x - y + z = 1$$

Is (1,1,1) a solution? Is (2,0,1) a solution? What are all the solutions?

Soon, you will be able to see just by looking that there is exactly one solution.

 \mathbb{R}^n

 $\mathbb{R}=$ denotes the set of all real numbers

Geometrically, this is the number line.

 \mathbb{R}^n = all ordered n-tuples (or lists) of real numbers $(x_1,\,x_2,\,x_3,\,\ldots,\,x_n)$

Solutions to systems of equations are exactly points in \mathbb{R}^n .

When n=2, we can visualize of \mathbb{R}^2 as the *plane*.

When n=3, we can visualize \mathbb{R}^3 as the *space* we (appear to) live in.

We can think of the space of all *colors* as (a subset of) \mathbb{R}^3 :

So what is \mathbb{R}^4 ? or \mathbb{R}^5 ? or \mathbb{R}^n ?

 \dots go back to the *definition*: ordered n-tuples of real numbers

$$(x_1,x_2,x_3,\ldots,x_n).$$

They're still "geometric" spaces, in the sense that our intuition for \mathbb{R}^2 and \mathbb{R}^3 sometimes extends to \mathbb{R}^n , but they're harder to visualize.

\mathbb{R}^n

Last time we could have used \mathbb{R}^4 to label the amount of traffic (x,y,z,w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbb{R}^n , but we'll only draw pictures in \mathbb{R}^2 and \mathbb{R}^3 .

QIV codes

This is a 21×21 QR code. We can also think of this as an element of \mathbb{R}^n .

How? Which n?

What about a greyscale image?

This is a powerful idea: instead of thinking of a QR code as 441 pieces of information, we think of it as one piece of information.

Visualizing solutions: a preview

One Linear Equation

What does the solution set of a linear equation look like?

$$x+y=1$$
 \longrightarrow a line in the plane: $y=1-x$

One Linear Equation

What does the solution set of a linear equation look like?

x+y+z=1 \longrightarrow a plane in space:

One Linear Equation

Continued

What does the solution set of a linear equation look like?

$$x+y+z+w=1$$
 \longrightarrow a "3-plane" in "4-space"...

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

$$x - 3y = -3$$
$$2x + y = 8$$

What are the other possibilities for two equations with two variables?

What if there are more variables? More equations?

Poll

Is the plane in \mathbb{R}^3 from the previous example equal to \mathbb{R}^2 ? What about the xy-plane in \mathbb{R}^3 ?

- 1. yes + yes
- 2. yes + no
- 3. no + yes
- 4. no + no

Consistent versus Inconsistent

We say that a system of linear equations is consistent if it has a solution and inconsistent otherwise.

$$x + y = 1$$
$$x + y = 2$$

Why is this inconsistent?

What are other examples of inconsistent systems of linear equations?

Parametric form

The equation y = 1 - x is an implicit equation for the line in the picture.

It also has a parametric form: (t, 1-t)

Similarly the equation x+y+z=1 is an implicit equation. One parametric form is: (t,w,1-t-w).

Parametric form

The equation y = 1 - x is an implicit equation for the line in the picture.

It also has a parametric form: (t, 1-t)

Similarly the equation x+y+z=1 is an implicit equation. One parametric form is: (t,w,1-t-w).

What is an implicit equation and a parametric form for the xy-plane in \mathbb{R}^3 ?

Summary of Section 1.1

- A solution to a system of linear equations in n variables is a point in \mathbb{R}^n .
- The set of all solutions to a single equation in n variables is an (n-1)-dimensional plane in \mathbb{R}^n
- The set of solutions to a system of m linear equations in n variables is the intersection of m of these (n-1)-dimensional planes in \mathbb{R}^n .
- A system of equations with no solutions is said to be inconsistent.
- Line and planes have implicit equations and parametric forms.