Gleberson Gregorio da Silva Antunes Orientador: Prof. Dr. Kisnney Emiliano de Almeida Universidade Estadual de Feira de Santana

XVI Semana de Matemática da UESC

18 de Outubro de 2023

Estrutura da apresentação

- Grupos topológicos e filtro de vizinhanças do elemento neutro
- 2 Subgrupos topológicos
- 3 Grupos quocientes topológicos

Definição 1.1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G.

Definição 1.1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções

Definição 1.1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções

chamadas de **inversão** e **operação de** *G*, respectivamente, são contínuas.

Definição 1.1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções

$$i: G \longrightarrow G$$
 $x \longmapsto x^{-1}$
 $e \qquad \cdots G \times G \longrightarrow G$
 $(x,y) \longmapsto x \cdot y,$

chamadas de **inversão** e **operação de** G, respectivamente, são contínuas.

Daremos agora alguns exemplos de grupos topológicos.

Exemplo 1.2

Considere o grupo (\mathbb{K}_4,\cdot) .

Exemplo 1.2

Considere o grupo (\mathbb{K}_4 , ·). A topologia

$$\tau_{\mathbb{K}_4} = \{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\},$$

é tal que $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$ é um grupo topológico.

Exemplo 1.2

Considere o grupo (\mathbb{K}_4,\cdot) . A topologia

$$\tau_{\mathbb{K}_4} = \{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\},$$

é tal que $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$ é um grupo topológico.

Exemplo 1.3

Considere o grupo (\mathbb{Q}_8, \cdot) e $N = \{1, \overline{1}\}.$

Exemplo 1.2

Considere o grupo (\mathbb{K}_4 , ·). A topologia

$$\tau_{\mathbb{K}_4} = \{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\},$$

é tal que $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$ é um grupo topológico.

Exemplo 1.3

Considere o grupo (\mathbb{Q}_8,\cdot) e N = $\{1,\ \overline{1}\}$. A topologia τ gerada pela base

$$B = \{\{1, \bar{1}\}, \{i, \bar{i}\}, \{j, \bar{j}\}, \{k, \bar{k}\}\}\$$

torna (\mathbb{Q}_8 , ·) um grupo topológico.

Exemplo 1.4

Seja $(\mathbb{Z},+)$ o grupo aditivo dos números inteiros.

Exemplo 1.4

Seja $(\mathbb{Z},+)$ o grupo aditivo dos números inteiros. Dado um número primo p arbitrário considere a família

$$V_p:=\{U\subset\mathbb{Z}\;\text{; existe }n\in\mathbb{N}\;\text{tal que }p^n\mathbb{Z}\subset U\}.$$

Exemplo 1.4

Seja $(\mathbb{Z},+)$ o grupo aditivo dos números inteiros. Dado um número primo p arbitrário considere a família

$$V_p := \{ U \subset \mathbb{Z} ; \text{ existe } n \in \mathbb{N} \text{ tal que } p^n \mathbb{Z} \subset U \}.$$

A coleção

$$\tau = \{V \subset \mathbb{Z} \mid \text{para todo } v \in V, \text{existe } U \in V_p \text{ tal que } v + U \subset V\},$$

torna \mathbb{Z} um grupo topológico.

Teorema 1.5

Seja (G,\cdot,τ_G) um grupo topológico. Então (G,τ_G) é discreto se, e somente se, $\{1_G\}$ é aberto.

Exemplo 1.6

Sejam $(\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8})$ o grupo topológico do **Exemplo 1.3** e N = {1, $\bar{1}$ }.

Exemplo 1.6

Sejam $(\mathbb{Q}_8,\cdot,\tau_{\mathbb{Q}_8})$ o grupo topológico do **Exemplo 1.3** e N = {1, $\bar{1}$ }. Considere o grupo quociente

$$\mathbb{Q}_8/\{1,\overline{1}\} = \{\{1,\overline{1}\},\ i\{1,\overline{1}\},\ j\{1,\overline{1}\},\ k\{1,\overline{1}\}\},$$

munido da topologia quociente.

Exemplo 1.6

Sejam $(\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8})$ o grupo topológico do **Exemplo 1.3** e N = {1, $\bar{1}$ }. Considere o grupo quociente

$$\mathbb{Q}_8/\{1,\overline{1}\} = \{\{1,\overline{1}\}, i\{1,\overline{1}\}, j\{1,\overline{1}\}, k\{1,\overline{1}\}\},\$$

munido da topologia quociente. Note que

$$q^{-1}igg(igg\{\{1,\overline{1}\}igg)=\{1,\overline{1}\}\in au_{\mathbb{Q}_8}.$$

Exemplo 1.6

Sejam $(\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8})$ o grupo topológico do **Exemplo 1.3** e N = $\{1, \overline{1}\}$. Considere o grupo quociente

$$\mathbb{Q}_8/\{1,\overline{1}\} = \{\{1,\overline{1}\}, i\{1,\overline{1}\}, j\{1,\overline{1}\}, k\{1,\overline{1}\}\},\$$

munido da topologia quociente. Note que

$$q^{-1}igg(igg\{\{1,\overline{1}\}igg)=\{1,\overline{1}\}\in au_{\mathbb{Q}_8}.$$

Ou seja, $\left\{\{1,\overline{1}\}\right\} \in \tau_{Q_8/\{1,\overline{1}\}}$. Portanto, $\left(\mathbb{Q}_8/\{1,\overline{1}\},\tau_{\mathbb{Q}_8/\{1,\overline{1}\}}\right)$ é discreto, pelo **Teorema 1.4**.

Teorema 1.7

Sejam (G, \cdot, τ_G) e (H, \circ, τ_H) grupos topológicos e $f: G \to H$ um homomorfismo de grupos.

Teorema 1.7

Sejam (G, \cdot, τ_G) e (H, \circ, τ_H) grupos topológicos e $f: G \to H$ um homomorfismo de grupos. Então f é contínua se, e somente se, f é contínua em $1_G \in G$.

Definição 1.8

Sejam (G, \cdot) um grupo e τ uma topologia em G.

Definição 1.8

Sejam (G, \cdot) um grupo e τ uma topologia em G. Dado $g \in G$, chamamos de **filtro de todas as vizinhanças de** g o conjunto

Definição 1.8

Sejam (G, \cdot) um grupo e τ uma topologia em G. Dado $g \in G$, chamamos de filtro de todas as vizinhanças de g o conjunto

$$\mathcal{V}(g) := \{ \mathsf{U} \subset \mathsf{G} \mid \mathsf{g} \in \mathit{N}_g \subset \mathit{U}, \ \mathsf{para\ algum}\ \mathit{N}_g \in \tau_G \},$$

formado por todas as vizinhanças de $g \in G$.

Apresentamos agora a definição de filtro viável. Ela será essencial mais à frente, quando formos determinar algumas condições para que um grupo munido de uma topologia se torne um grupo topológico.

Apresentamos agora a definição de filtro viável. Ela será essencial mais à frente, quando formos determinar algumas condições para que um grupo munido de uma topologia se torne um grupo topológico.

Definição 1.9

Sejam (G, \cdot) um grupo e \mathcal{F} um filtro de G.

Apresentamos agora a definição de filtro viável. Ela será essencial mais à frente, quando formos determinar algumas condições para que um grupo munido de uma topologia se torne um grupo topológico.

Definição 1.9

Sejam (G, \cdot) um grupo e \mathcal{F} um filtro de G. Diremos que \mathcal{F} é viável quando

- i. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V \subset U$.
- ii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V^{-1} \subset U$.
- iii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V^{-1} \subset U$.
- iv. Para cada $U \in \mathcal{F}$ e a $\in G$, tem-se que $aUa^{-1} \in \mathcal{F}$.

Teorema 1.10

Sejam (G, \cdot) um grupo e \mathcal{V} um filtro viável de G.

Teorema 1.10

Sejam (G,\cdot) um grupo e $\mathcal V$ um filtro viável de G. Então, existe uma única topologia τ em G que torna (G,\cdot,τ) um grupo topológico e que faz $\mathcal V$ coincidir com $\mathcal V(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia.

Um subgrupo topológico é um subgrupo de um grupo topológico que relativo à topologia de subespaço é também um grupo topológico.

Um subgrupo topológico é um subgrupo de um grupo topológico que relativo à topologia de subespaço é também um grupo topológico. Nosso objetivo nesta seção é apresentar alguns resultados sobre esses objetos.

Definição 2.1

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G.

Definição 2.1

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Chamamos de **subgrupo topológico** o trio (H, \cdot, τ_H) , onde τ_H é a topologia subespaço.

Definição 2.1

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Chamamos de **subgrupo topológico** o trio (H, \cdot, τ_H) , onde τ_H é a topologia subespaço.

Daremos agora alguns exemplos de subgrupos topológicos.

Definição 2.2

Seja $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$, o grupo topológico do **Exemplo 1.2**.

Definição 2.2

Seja $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$, o grupo topológico do **Exemplo 1.2**. O conjunto $\{1, ab\}$ é um subgrupo de \mathbb{K}_4 . Então o trio $(\{1, ab\}, \cdot, \tau_{\{1, ab\}})$, onde $\tau_{\{1, ab\}}$ é a topologia de subespaço em $\{1, ab\}$, é um subgrupo topológico.

Reunimos uma série de proposições sobre subgrupos topológicos que serão apresentadas sob um único teorema.

Teorema 2.3

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G.

Teorema 2.3

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Então

Teorema 2.3

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Então

i. H é aberto se, e somente se, possui interior não-vazio.

Teorema 2.3

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Então

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.

Teorema 2.3

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Então

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.
- iii. Se H é fechado e $|G:H| < \infty$ então H é aberto.

Exemplo 2.4

 $(\mathbb{R},+, au_{\mathbb{R}})$ não admite nenhum subgrupo aberto,

Exemplo 2.4

 $(\mathbb{R},+,\tau_{\mathbb{R}})$ não admite nenhum subgrupo aberto, pois do contrário, como vimos no item ii do **Teorema 2.3**, poderíamos decompor \mathbb{R} como a união de dois abertos disjuntos, o que é absurdo.

Exemplo 2.5

Dado um número primo p arbitrário, considere o grupo topológico $(\mathbb{Z},+,\tau_{\mathbb{Z}})$ do **Exemplo 1.3**.

Exemplo 2.5

Dado um número primo p arbitrário, considere o grupo topológico $(\mathbb{Z},+,\tau_{\mathbb{Z}})$ do **Exemplo 1.3**. Notemos que

$$p^n\mathbb{Z}\subset V_p$$
,

por definição e, além disso, para todo $z \in \mathbb{Z}$, temos que

$$p^n z + p^n \mathbb{Z} \subset p^n \mathbb{Z}$$
.

Exemplo 2.5

Dado um número primo p arbitrário, considere o grupo topológico $(\mathbb{Z},+,\tau_{\mathbb{Z}})$ do **Exemplo 1.3**. Notemos que

$$p^n\mathbb{Z}\subset V_p$$
,

por definição e, além disso, para todo $z \in \mathbb{Z}$, temos que

$$p^n z + p^n \mathbb{Z} \subset p^n \mathbb{Z}$$
.

Ou seja, $p^n\mathbb{Z}$ é aberto. Como $p^n\mathbb{Z}$ é um subgrupo de \mathbb{Z} , o item ii do **Teorema 2.3** nos garante que esse conjunto é também fechado.

Teorema 2.6

Sejam (G,\cdot,τ_G) um grupo topológico, $H\subset G$ e $\mathcal{V}(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia. Então

Teorema 2.6

Sejam (G,\cdot,τ_G) um grupo topológico, $H\subset G$ e $\mathcal{V}(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia. Então

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

Teorema 2.6

Sejam (G,\cdot,τ_G) um grupo topológico, $H\subset G$ e $\mathcal{V}(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia. Então

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

ii. Se H é um subgrupo de G então \overline{H} também é um subgrupo G. Se H é normal então \overline{H} também é normal.

Teorema 2.6

Sejam (G,\cdot,τ_G) um grupo topológico, $H\subset G$ e $\mathcal{V}(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia. Então

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

- ii. Se H é um subgrupo de G então \overline{H} também é um subgrupo G. Se H é normal então \overline{H} também é normal.
- iii. $N = \overline{\{1\}}$ é um subgrupo fechado e normal.

Exemplo 2.7

Seja ($\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8}$), o grupo topológico do **Exemplo 1.3**.

Exemplo 2.7

Seja $(\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8})$, o grupo topológico do **Exemplo 1.3**. O conjunto $\{1\}$ é um subgrupo de \mathbb{Q}_8 .

Exemplo 2.7

Seja $(\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8})$, o grupo topológico do **Exemplo 1.3**. O conjunto $\{1\}$ é um subgrupo de \mathbb{Q}_8 . Como \mathbb{Q}_8 é finito, podemos utilizar o **Teorema de Lagrange** para determinar todos os seus subgrupos, que são

$$\{1\}, \{1,\overline{1}\}, \{1,\overline{1},i,\overline{i}\}, \{1,\overline{1},j,\overline{j}\}, \{1,\overline{1},k,\overline{k}\} \in \mathbb{Q}_8.$$

Exemplo 2.7

Seja $(\mathbb{Q}_8, \cdot, \tau_{\mathbb{Q}_8})$, o grupo topológico do **Exemplo 1.3**. O conjunto $\{1\}$ é um subgrupo de \mathbb{Q}_8 . Como \mathbb{Q}_8 é finito, podemos utilizar o **Teorema de Lagrange** para determinar todos os seus subgrupos, que são

$$\{1\},\ \{1,\overline{1}\},\ \{1,\overline{1},i,\overline{i}\},\ \{1,\overline{1},j,\overline{j}\},\ \{1,\overline{1},k,\overline{k}\}$$
 e \mathbb{Q}_8 .

Notemos então que $\{1,\overline{1}\}$ é o menor fechado que contém $\{1\}$. Segue daí que $\overline{\{1\}}=\{1,\overline{1}\}$, que é um subgrupo de \mathbb{Q}_8 .

Dado um número primo p arbitrário, consideremos o grupo topológico $(\mathbb{Z},+, au)$ do **Exemplo 1.4**.

Dado um número primo p arbitrário, consideremos o grupo topológico ($\mathbb{Z}, +, \tau$) do Exemplo 1.4. O Teorema 2.6 nos garante que $\overline{\{0\}}$ é um subgrupo fechado e normal.

Dado um número primo p arbitrário, consideremos o grupo topológico $(\mathbb{Z},+,\tau)$ do **Exemplo 1.4**. O **Teorema 2.6** nos garante que $\overline{\{0\}}$ é um subgrupo fechado e normal. Provaremos agora que $\overline{\{0\}}=\{0\}$.

Dado um número primo p arbitrário, consideremos o grupo topológico $(\mathbb{Z},+,\tau)$ do **Exemplo 1.4**. O **Teorema 2.6** nos garante que $\overline{\{0\}}$ é um subgrupo fechado e normal. Provaremos agora que $\overline{\{0\}}=\{0\}$.

Exemplo 2.8

Dado $z \in \mathbb{Z}$ não nulo, temos duas possibilidades:

Dado um número primo p arbitrário, consideremos o grupo topológico $(\mathbb{Z},+,\tau)$ do **Exemplo 1.4**. O **Teorema 2.6** nos garante que $\overline{\{0\}}$ é um subgrupo fechado e normal. Provaremos agora que $\overline{\{0\}}=\{0\}$.

Exemplo 2.8

Dado $z \in \mathbb{Z}$ não nulo, temos duas possibilidades:

1. $z \in p^n \mathbb{Z}$ para algum $n \in \mathbb{N}$.

Dado um número primo p arbitrário, consideremos o grupo topológico $(\mathbb{Z},+,\tau)$ do **Exemplo 1.4**. O **Teorema 2.6** nos garante que $\overline{\{0\}}$ é um subgrupo fechado e normal. Provaremos agora que $\overline{\{0\}}=\{0\}$.

Exemplo 2.8

Dado $z \in \mathbb{Z}$ não nulo, temos duas possibilidades:

- 1. $z \in p^n \mathbb{Z}$ para algum $n \in \mathbb{N}$.
- 2. $z \notin p^n \mathbb{Z}$ para todo $n \in \mathbb{N}$

No primeiro caso, $z=p^nq$ para algum $n\in\mathbb{N}$ e $q\in\mathbb{Z}$ não nulo. Seja m o maior natural tal que $z=p^nz\in p^m\mathbb{Z}$. Então $z\notin p^{m+1}\mathbb{Z}$.

No primeiro caso, $z=p^nq$ para algum $n\in\mathbb{N}$ e $q\in\mathbb{Z}$ não nulo. Seja m o maior natural tal que $z=p^nz\in p^m\mathbb{Z}$. Então $z\notin p^{m+1}\mathbb{Z}$. Sabemos que

$$\overline{\{0\}} = \bigcap_{\lambda \in I} F_{\lambda},$$

onde F_{λ} é fechado e contém 0.

No primeiro caso, $z=p^nq$ para algum $n\in\mathbb{N}$ e $q\in\mathbb{Z}$ não nulo. Seja m o maior natural tal que $z=p^nz\in p^m\mathbb{Z}$. Então $z\notin p^{m+1}\mathbb{Z}$. Sabemos que

$$\overline{\{0\}} = \bigcap_{\lambda \in I} F_{\lambda},$$

onde F_{λ} é fechado e contém 0. Vimos no **Exemplo 2.5** que cada $p^n\mathbb{Z}$ é fechado.

No primeiro caso, $z=p^nq$ para algum $n\in\mathbb{N}$ e $q\in\mathbb{Z}$ não nulo. Seja m o maior natural tal que $z=p^nz\in p^m\mathbb{Z}$. Então $z\notin p^{m+1}\mathbb{Z}$. Sabemos que

$$\overline{\{0\}} = \bigcap_{\lambda \in I} F_{\lambda},$$

onde F_{λ} é fechado e contém 0. Vimos no **Exemplo 2.5** que cada $p^n\mathbb{Z}$ é fechado. Como $z\notin p^{m+1}\mathbb{Z}$, temos que

$$z \notin \bigcap_{\lambda \in I} F_{\lambda}$$
.

No segundo caso, como $z \not\in p^n \mathbb{Z}$ para todo $n \in \mathbb{N},$ então

$$z \notin \bigcap_{\lambda \in I} F_{\lambda}$$
,

No segundo caso, como $z \not\in p^n \mathbb{Z}$ para todo $n \in \mathbb{N}$, então

$$z \notin \bigcap_{\lambda \in I} F_{\lambda}$$
,

pois cada $p^n\mathbb{Z}$ é fechado.

No segundo caso, como $z \not\in p^n \mathbb{Z}$ para todo $n \in \mathbb{N}$, então

$$z \notin \bigcap_{\lambda \in I} F_{\lambda}$$
,

pois cada $p^n\mathbb{Z}$ é fechado. Logo $\overline{\{0\}}=\{0\}$.

Um grupo quociente topológico é um grupo quociente que, munido da topologia quociente, é um grupo topológico.

Definição 3.1

Sejam (G,\cdot,τ_G) um grupo topológico e H um subgrupo normal de G. Chamamos de grupo quociente topológico o trio $\left(G/_{H},\sigma,\tau_{G/H}\right)$, onde $\tau_{G/H}$ é a topologia quociente.

Definição 3.1

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo normal de G. Chamamos de grupo quociente topológico o trio $\left(G/_{H}, \sigma, \tau_{G/H}\right)$, onde $\tau_{G/H}$ é a topologia quociente.

Apresentaremos agora alguns exemplos de grupos quocientes topológicos.

Exemplo 3.2

Sejam $(\mathbb{R},+,\tau_{\mathbb{R}})$ o grupo aditivo dos números reais munido da topologia usual e \mathbb{Z} , o conjunto dos números inteiros. Então podemos visualizar \mathbb{S}^1 como um grupo quociente topológico uma vez que $\mathbb{R}/\mathbb{Z} \cong \mathbb{S}^1$.

Exemplo 3.3

Sejam $(\mathbb{Q}_8,\cdot,\tau_{\mathbb{Q}_8})$ o grupo topológico do **Exemplo 1.3** e N = $\{1, \bar{1}\}$. Então o grupo \mathbb{K}_4 pode ser visualizado como um grupo quociente topológico uma vez que $\mathbb{Q}_8/\{1,\bar{1}\}\cong\mathbb{K}_4$.

Teorema 3.4

Sejam (G,\cdot, au_G) um grupo topológico e H um subgrupo normal de

G. Então o quociente $G/_H$ é discreto se, e somente se, H é aberto.

Referências

- DIKRANJAN, Dikran. Introduction to topological groups. preparation, http://users.dimi.uniud.it/~dikran.dikranjan/ITG.pdf, 2013.
- KUMAR, A. Muneesh; GNANACHANDRA, P. Exploratory results on finite topological groups. JP Journal of Geometry and Topology, v. 24, n. 1-2, p. 1-15, 2020.
- MEZABARBA, Renan Maneli. Fundamentos de Topologia Geral. [S. l.: s. n.], 2022. 574 p. Disponível em: https://sites.google.com/view/rmmezabarba/home?authuser=0. Acesso em: 10 set. 2022.
- SAN MARTIN, Luiz AB. **Grupos de lie**. Editora Unicamp, 2016.

Grupos topológicos e filtro de vizinhanças do elemento neutro Subgrupos topológicos Grupos quocientes topológicos Referências

Thank You