Quiz-3 answers and solutions

Coursera. Stochastic Processes

June 7, 2019

4 Week quiz

1. Consider the condition from the Kolmogorov continuity theorem: $\mathbb{E}[|X_t - X_s|^{\alpha}] \le K|t-s|^{1+\beta}, \quad \forall t, s > 0.$

For which parameters α , K and β this condition holds, if X_t is a Brownian motion?

Solution:
$$\mathbb{E}[|X_t - X_s|^{\alpha}] \le K|t - s|^{1+\beta}, \quad \forall t, s > 0.$$

If we take $\alpha=4$ and keep in mind that $X_t-X_s\sim N(0;t-s)$, then we will get $\mathbb{E}\left[|X_t-X_s|^4\right]=3(t-s)^2$.

2. Let $X_t = e^{W_t}$, where W_t is a Brownian motion. Find mathematical expectation $\mathbb{E}[X_t]$, variance $Var(X_t)$ and covariance function $K(t,s) = cov(X_t, X_s)$ (in the answers below it is assumed that $t > s \ge 0$).

Solution:

$$\mathbb{E}(X_t) = \mathbb{E}\left(e^{W_t}\right)$$

$$= \int_{-\infty}^{+\infty} e^x \cdot \frac{1}{\sqrt{2\pi t}} e^{\frac{-x^2}{2t}} dx$$

$$= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} e^{\frac{-x^2}{2t} + x} dx$$

$$= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} \exp\left(-\left(\frac{x}{\sqrt{2t}} - \sqrt{t/2}\right)^2 + t/2\right) dx$$

$$= \frac{e^{t/2}}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} \exp\left(-\left(\frac{x}{\sqrt{2t}} - \sqrt{t/2}\right)^2\right) dx$$

$$= \frac{e^{t/2}}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} \sqrt{2t} e^{-u^2} du$$

$$= \frac{e^{t/2}}{\sqrt{2\pi t}} \cdot \sqrt{2t} \cdot \sqrt{\pi}$$

$$= e^{t/2}$$

$$cov(X_t, X_s) = \mathbb{E}(X_t X_s) - \mathbb{E}(X_t) \mathbb{E}(X_s)
= \mathbb{E}(e^{W_t + W_s}) - e^{t/2 + s/2}
= \mathbb{E}(e^{W_t - W_s + 2W_s}) - e^{\frac{t+s}{2}}
= \mathbb{E}(e^{W_t - W_s + 2(W_s - W_0)}) - e^{\frac{t+s}{2}}
= \mathbb{E}(e^{W_t - W_s}) \mathbb{E}(e^{2W_s}) - e^{\frac{t+s}{2}}
= e^{(t-s)/2} e^{2s} - e^{\frac{t+s}{2}}$$

3. Let W_t be the Brownian motion. Calculate $\mathbb{P}\{W_1 + W_2 > 2\}$. In the possible answers below Φ is the distribution function of the standard normal distribution.

Answer: $1 - \Phi\left(\frac{2}{\sqrt{5}}\right)$, where Φ is a normal distribution function

Solution:

$$E(W_1) = E(W_2) = 0; Var(W_1) = 1; Var(W_2) = 2;$$

 $E(W_1 + W_2) = 0; Var(W_1 + W_2) = Var(W_1) + Var(W_2) + 2cov(W_1; W_2) = 1 + 2 + 2min(1; 2) = 5$

4. Let $Y_{n+1}=aY_n+X_n$, where $n=0,1,2,\cdots$. $Y_0=0,|a|<1,X_0,X_1,X_2,\cdots\sim N(0;1)$. Find $cov(Y_4;Y_3)$.

Answer: $a^5 + a^3 + a$.

Solution: $cov(Y_4; Y_3) = cov(a^3X_0 + a^2X_1 + aX_2 + X_3; a^2X_0 + aX_1 + X_2) = a^5 + a^3 + a$

5. Let X_t be a Brownian motion. Find

$$K(t,s) - Var(X_{min(t:s)}).$$

Answer: 0

Solution: $Var(X_{min(t;s)}) = min(t;s)$.