Discrete Structures and Theory of Logic Lecture-12

Dharmendra Kumar July 13, 2020

Peano Axioms and Principle of Mathematical Induction

Peano Axioms

These axioms are

- (1) $0 \in N$ (where $0 = \phi$)
- (2) If $n \in \mathbb{N}$, then $n^+ \in \mathbb{N}$, where $n^+ = n \cup \{n\}$
- (3) If a subset $S \subseteq N$ possesses the properties
 - (a) $0 \in S$, and
 - (b) If $n \in S$, then $n^+ \in S$

Then S = N.

Peano Axioms and Principle of Mathematical Induction

Principle of Mathematical Induction

Mathematical Induction is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.

The technique involves two steps to prove a statement, as stated below:-

Step 1(Base step): It proves that a statement is true for the initial value.

Step 2(Inductive step): It proves that if the statement is true for the number n, then it is also true for the number n+1.

Some examples

Example: Show that $n < 2^n$, by principle of induction method.

Solution:

Base step: For n = 0.

$$0 < 2^0 \Leftrightarrow 0 < 1$$

This is true. Therefore, the given statement is

true for n = 0.

Now, for n=1.

$$1<2^1\Leftrightarrow 1<2$$

This is true. Therefore, the given statement is

also true for n = 1.

Therefore, the statement is true for base step.

Inductive Step: Now suppose the statement is true for n=k. We shall prove it for n=k+1.

Since statement is true for n=k, therefore $k < 2^k \dots (1)$ For n = k+1.

$$k+1 < 2^k + 1$$
 Using equation (1) $< 2^k + 2^k$ $= 2.2^k$ $= 2^{k+1}$

Therefore, $k+1 < 2^{k+1}$.

Therefore, statement is also true for inductive step.

Hence the given statement is proved.

Example: Show that $2^n < n!$, $\forall n \ge 4$ by principle of induction method.

Solution:

Base step: For n = 4.

$$2^0 < 4! \Leftrightarrow 16 < 24$$

This is true. Therefore, the given statement is

true for n = 4.

Now, for n=5.

$$2^5 < 5! \Leftrightarrow 32 < 120$$

This is true. Therefore, the given statement is

also true for n = 5.

Therefore, the statement is true for base step.

Inductive Step: Now suppose the statement is true for n=k. We shall prove it for n=k+1.

Since statement is true for n=k, therefore $2^k < k!$ (1)

For
$$n = k+1$$
.

$$2^{k+1} = 2.2^k$$

 $< 2.k!$ Using equation (1)
 $< (k+1).k!$
 $= (k+1)!$

Therefore $2^{k+1} < (k+1)!$

Therefore, statement is also true for inductive step.

Hence the given statement is proved.

Example: Show that $n^3 + 2n$ is divisible by 3, by principle of induction method.

Solution:

Base step: For n = 1.

$$n^3 + 2n = 1^3 + 2x1 = 1 + 2 = 3$$

Clearly $n^3 + 2n$ is divisible by 3, therefore it is true for n = 1.

For n = 2.

$$n^3 + 2n = 2^3 + 2x^2 = 8 + 4 = 12$$

Clearly $n^3 + 2n$ is divisible by 3. Therefore it is also true for n = 2.

Therefore, the statement is true for base step.

Inductive Step: Now suppose the statement is true for n = k. We shall prove it for n = k+1.

Since statement is true for n = k, therefore $k^3 + 2k$ is divisible by 3. It can be written as $k^3 + 2k = 3m$(1)

For n = k+1.

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2(k+1)$$

= $(k^3 + 2k) + 3(k^2 + k + 1)$
= $3m + 3(k^2 + k + 1)$ Using equa-

tion (1)

$$= 3(m + (k^2 + k + 1))$$

Clearly it is divisible by 3. Therefore it is also true for n = (k+1).

Therefore, statement is also true for inductive step.

Hence the given statement is proved.

Exercise

- 1. Show that $S(n) = 1+2+3+....+n = \frac{n(n+1)}{2}$
- 2. Prove that $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{(n+1)}$
- 3. Show that $2+2^2+2^3+\dots+2^n=2^{n+1}-2$
- 4. Show that $3^n 1$ is a multiple of 2, for n = 1, 2, 3, ...

Exercise(cont.)

- 1. Show that $1+3+5+...+(2n-1) = n^2$, for n = 1,2, 3, ...
- 2. Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$, for $n \ge 2$ using principle of mathematical induction. AKTU(2019)
- 3. Prove by using mathematical induction that $7+77+777+......+777...........7 = \frac{7}{81}[10^{n+1} 9n 10] \ \forall \ n \in N. \qquad \text{AKTU(2019)}$