EXERCÍCIOS

Estabeleça se cada um dos esquemas das relações abaixo define ou não uma função de $A = \{-1, 0, 1, 2\}$ em $B = \{-2, -1, 0, 1, 2, 3\}$. Justifique.

a)

b)

c)

d)

Quais dos esquemas abaixo definem uma função de $A = \{0, 1, 2\}$ em $B = \{-1, 0, 1, 2\}$?

a)

b)

c)

d)

Quais das relações de IR em IR, cujos gráficos aparecem abaixo, são funções? Justifique.

III. Notação das funções

74. Toda função é uma relação binária de A em B; portanto, toda função é um conjunto de pares ordenados.

Geralmente, existe uma sentença aberta y = f(x) que expressa a lei mediante a qual, dado $x \in A$, determina-se $y \in B$ tal que $(x, y) \in f$, então $f = \{(x, y) \mid x \in A, y \in B \text{ e } y = f(x)\}.$

Isso significa que, dados os conjuntos A e B, a função f tem a lei de correspondência y = f(x).

Para indicarmos uma função f, definida em A com imagens em B segundo a lei de correspondência y = f(x), usaremos uma das seguintes notações:

f: A
$$\longrightarrow$$
 B ou $A \xrightarrow{f} B$ ou $f: A \to B$ tal que $f: A \to B$ tal que $f: A \to B$ tal que

EXERCÍCIOS

- a) f associa cada número real ao seu oposto.
- b) g associa cada número real ao seu cubo.
- c) h associa cada número real ao seu quadrado menos 1.
- d) k associa cada número real ao número 2.

146. Qual é a notação das seguintes funções?

- a) f é função de Q em Q que associa cada número racional ao seu oposto adicionado com 1.
- b) g é a função de Z em Q que associa cada número inteiro à potência de base 2 desse número.
- c) h é a função de IR* em IR que associa cada número real ao seu inverso.

147. Seja f a função de \mathbb{Z} em \mathbb{Z} definida por f(x) = 3x - 2. Calcule:

- a) f(2)
- b) f(-3)
- c) f(0)
- d) $f\left(\frac{3}{2}\right)$

148. Seja f a função de \mathbb{R} em \mathbb{R} definida por $f(x) = x^2 - 3x + 4$. Calcule:

a) f(2)

c) $f\left(\frac{1}{2}\right)$

e) $f(\sqrt{3})$

b) f(-1)

- d) $f\left(-\frac{1}{3}\right)$
- f) $f(1 \sqrt{2})$

Seja P o único número natural que é primo e par. Sendo $f(x) = (0,25)^{-x} + x - 1$, determine o valor de f(P).

150. Seja f a função de IR em IR assim definida

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ x + 1 & \text{se } x \notin \mathbb{Q} \end{cases}$$

Calcule:

a) f(3)

c) $f(\sqrt{2})$

e) $f(\sqrt{3} - 1)$

- b) $f\left(-\frac{3}{7}\right)$
- d) $f(\sqrt{4})$

f) f(0,75)

151. Seja a função f de \mathbb{R} em \mathbb{R} definida por $f(x) = \frac{2x-3}{5}$. Qual é o elemento do domínio que tem $-\frac{3}{4}$ como imagem?

Solução

Queremos determinar o valor de x tal que $f(x) = -\frac{3}{4}$;

basta, portanto, resolver a equação $\frac{2x-3}{5} = -\frac{3}{4}$.

Resolvendo a equação:

$$\frac{2x-3}{5} = -\frac{3}{4} \iff 4(2x-3) = -3 \cdot 5 \iff 8x-12 = -15 \iff x = -\frac{3}{8}.$$

Resposta: O elemento é $x = -\frac{3}{8}$.

- Seja a função f de $\mathbb{R} \{I\}$ em \mathbb{R} definida por $f(x) = \frac{3x+2}{x-I}$. Qual é o elemento do domínio que tem imagem 2?
- 153. Quais são os valores do domínio da função real definida por $f(x) = x^2 5x + 9$ que produzem imagem igual a 3?
- **154.** A função f de \mathbb{R} em \mathbb{R} é tal que, para todo $x \in \mathbb{R}$, f(3x) = 3f(x). Se f(9) = 45, calcule f(1).

Solução

Fazendo
$$3x = 9 \implies x = 3$$

Figure 10
$$3x = 9 \implies x = 3$$

 $f(9) = f(3 \cdot 3) = 3 \cdot f(3) = 45 = 3 \cdot 15 \implies f(3) = 15$

Fazendo $3x = 3 \implies x = 1$

$$f(3) = f(3 \cdot 1) = 3 \cdot f(1) = 15 = 3 \cdot 5 \implies f(1) = 5$$

Portanto, f(1) = 5.

- A função $f: \mathbb{R} \to \mathbb{R}$ tem a propriedade: $f(m \cdot x) = m \cdot f(x)$ para $m \in \mathbb{R}$ e $x \in \mathbb{R}$. Calcule f(0).
- 156. É dada uma função real tal que:

1.
$$f(x) \cdot f(y) = f(x + y)$$

2.
$$f(1) = 2$$

3.
$$f(\sqrt{2}) = 4$$

Calcule $f(3 + \sqrt{2})$.

EXERCÍCIOS

158. Estabeleça o domínio e a imagem das funções abaixo:

a)

b)

c)

d)

Nos gráficos cartesianos das funções abaixo representadas, determine o conjunto imagem.

a)

b)

c)

d)

INTRODUÇÃO ÀS FUNÇÕES

e)

f)

Considerando que os gráficos abaixo são gráficos de funções, estabeleça o domínio e a imagem.

a)

d)

e)

f)

Dê o domínio das seguintes funções reais:

a)
$$f(x) = 3x + 2$$

d)
$$p(x) = \sqrt{x-1}$$

g)
$$s(x) = \sqrt[3]{2x - 1}$$

$$b) g(x) = \frac{1}{x+2}$$

e)
$$q(x) = \frac{1}{\sqrt{x+1}}$$

b)
$$g(x) = \frac{1}{x+2}$$
 e) $q(x) = \frac{1}{\sqrt{x+1}}$ h) $t(x) = \frac{1}{\sqrt[3]{2x+3}}$

c)
$$h(x) = \frac{x-1}{x^2-4}$$

$$f) r(x) = \frac{\sqrt{x+2}}{x-2}$$

c)
$$h(x) = \frac{x-1}{x^2-4}$$
 f) $r(x) = \frac{\sqrt{x+2}}{x-2}$ i) $u(x) = \frac{\sqrt[3]{x+2}}{x-3}$

Sendo $x \ge 4$, determine o conjunto imagem da função $y = \sqrt{x} + \sqrt{x-4}$.

163. Se $f: A \to B$ é uma função e se $D \subset A$, chamamos de imagem de D pela função f ao conjunto anotado e definido por:

$$f < D > = \{y \in B \mid \text{existe } x \in D \text{ tal } \text{que } f(x) = y\}.$$

Se g é a função de IR em IR cujo gráfico está representado ao lado, determine a imagem g < [5; 9] > do intervalo fechado [5: 9].

V. Funções iguais

79. Duas funções $f: A \rightarrow B$ e $g: C \rightarrow D$ são iguais se, e somente se, apresentarem:

- a) domínios iguais (A = C)
- b) contradomínios iguais (B = D)
- c) f(x) = g(x) para todo x do domínio.

Isso equivale a dizer que duas funções f e g são iguais se, e somente se, forem conjuntos iguais de pares ordenados.

Exemplos

1°) Se $A = \{1, 2, 3\}$ e $B = \{-2, -1, 0, 1, 2\}$, então as funções de A em B definidas por:

$$f(x) = x - 1$$
 e $g(x) = \frac{x^2 - 1}{x + 1}$

são iguais, pois:

$$x = 1 \implies f(1) = 1 - 1 = 0$$
 e $g(1) = \frac{1 - 1}{1 + 1} = 0$
 $x = 2 \implies f(2) = 2 - 1 = 1$ e $g(2) = \frac{4 - 1}{2 + 1} = 1$
 $x = 3 \implies f(3) = 3 - 1 = 2$ e $g(3) = \frac{9 - 1}{3 + 1} = 2$

ou seja, $f = g = \{(1, 0), (2, 1), (2, 3)\}.$

- 2°.) As funções $f(x) = \sqrt{x^2}$ e g(x) = |x| de |R em |R são iguais, pois $\sqrt{x^2} = |x|$, $\forall x \in |R|$.
- 3°.) As funções $f(x) = x e g(x) = |x| de |R| em |R| não são iguais, pois <math>x \neq |x|$ para x < 0.

EXERCÍCIOS

- Sejam as funções f, g e h de |R| em |R| definidas por $f(x) = x^3$, $g(y) = y^3$ e $h(z) = z^3$. Quais delas são iguais entre si?
- **165.** As funções: f de |R| em |R| definida por $f(x) = \sqrt{x^2} e g$ de |R| em |R| definida por g(x) = x são iguais? Justifique.
 - 166. As funções f e g cujas leis de correspondência são

$$f(x) = \sqrt{\frac{x-1}{x+1}}$$
 e $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+1}}$ podem ser iguais? Justifique.

167. As funções $f \in g$ de $A = \{x \in |\mathbb{R}| -1 \le x \le 0 \text{ ou } x > 1\}$ em $|\mathbb{R}$, definidas por: $f(x) = \sqrt{\frac{x+1}{x^2-x}} \quad \text{e} \quad g(x) = \frac{\sqrt{x+1}}{\sqrt{x^2-x}} \quad \text{são iguais? Justifique.}$

168. As funções:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto x+1$ e $g: \mathbb{R} - \{1\} \longrightarrow \mathbb{R}$ são iguais? Justifique. $x \longmapsto \frac{x^2-1}{x-1}$