Jackson Hewitt® TAX SERVICE

Open Payments Analysis

Sergio Mastrogiovanni October 22, 2019

About me

... a Data Scientist AI evangelist and data storyteller

... a Professor of Intelligent Automation at New York University

... a Consultant with 20+ years in Continuous Improvement exp.

entrepreneur and global leader.

... an Innovation Coach | ... an Analytics Researcher at NYU Center for Sustainable Business

Outline

- Background
- Approach
- Python Model
- Analysis
- Next Steps

Background

Open Payments:

- Disclosure program managed by the Centers for Medicare & Medicaid Services (CMS).
- Promotes transparency and accountability.
- Helps consumers understand the financial relationships between pharmaceutical and medical device industries, and physicians and teaching hospitals.
- Financial relationships may include consulting fees, research grants, travel reimbursements, and payments made from the industry to medical practitioners.
- Data was taken from CMS site (2017): https://www.cms.gov/OpenPayments/Explore-the-Data/Dataset-Downloads.html

Background

Data Set:

- Annual data collection (2017). ~7Gb
- 4 Files:
 - 1. <u>General Payments (op_Dtl_GNRL_PGYR2017_P06282019.csv)</u>: Payments or other transfers of value made that are not in connection with a research agreement or research protocol.
 - 2. <u>Research Payments (OP DTL RSRCH PGYR2017_P06282019.csv)</u>: Payments or other transfers of value made in connection with a research agreement or research protocol.
 - 3. <u>Physician Ownership or Investment Interest Information (OP_DTL_OWNRSHP_PGYR2017_P06282019.csv</u>): Information about physicians who hold an ownership or investment interest in an applicable manufacturer or applicable GPO or who have an immediate family member holding such interest.
 - 4. Removed/Deleted records (op_REMOVED_DELETED_PGYR2017_P06282019.csv): Payments removed from previous analysis.
- Stakeholoders:

Approach

Exploratory data analysis

Modeling

Data Visualizations

Approach

Business Understanding

- **Understand Objective**
- CMS site and process
- **Determine Data Mining Goals**

Data Understanding

- Download data
- Describe Data
- **Explore Data**
- Verify Data Quality

Data Preparation

- Clean Data
- Construct Data
- Integrate & Format Data

Modeling

- Logistic Regression
- Generate Test Design
- **Build Model**
- Assess Model

Evaluation

- Evaluate Results
- Review **Process**
- Determine **Next Steps**

Reporting

- Create visualizations
- Create PowerPoint
- Address questions
- Review Presentation

Python Model

- 1. Import Data and Python packages
- 2. Assess Data Quality & Missing Values
- 3. Exploratory Data Analysis
- 4. Prediction and Results

Jupyter CMS model Last Checkpoint: a few seconds ago (autosaved) Edit View Insert Cell Kernel Widgets Help Python 3 O CMS Open Payments analysis Sections · Import data and python packages Assess Data Quality & Missing Values Exploratory Data Analysis · Prediction and Results 1. Import data and python packages In [125]: M #Import all the necessary packages for data analysis import pandas as pd import numpy as np import sklearn from sklearn import model_selection, linear_model from sklearn import feature_selection from sklearn, metrics import classification report from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.ensemble import RandomForestClassifier from sklearn.linear model import LogisticRegression from sklearn.metrics import confusion matrix from sklearn.svm import SVC

https://github.com/sergiomastro/CMS/blob/master/CMS%20model.ipynb

Exploratory data analysis

Research projects represent:

- 5.49% of the payments
- 653,488 payments made in 2017
- \$5.10 Billion

Exploratory data analysis

\$ General Payments	Amount \$2.90 Billion	Payments* 11.24 Million
Research Payments	Amount \$5.10 Billion	Payments* 653,488
☑ Value of Ownership	Amount \$976.93 Million	Payments* 2,840

Exploratory data analysis

Exploratory data analysis

Type of payments:

Research Projects:

Recipient Country	Number of Records	Total Amount of Payment USDollars	Avg. Total Amount of Payment USDollars	Min. Total Amount of Payment USDollars	Max. Total Amount of Payment USDollars	Std. dev. of Total Amount of Payment USDollars
United States	652,268	\$5,090,301,970	\$7,804	\$0	\$59,104,128	\$111,579
Null	659	\$3,200,450	\$4,857	\$15	\$337,500	\$15,238
Canada	96	\$3,026,142	\$31,522	\$20	\$195,750	\$54,826
Great Britain (Uk)	441	\$249,236	\$565	\$10	\$30,483	\$2,314
Belgium	16	\$245,809	\$15,363	\$6	\$45,003	\$13,052
Germany	1	\$6,909	\$6,909	\$6,909	\$6,909	
United States Minor Outlying Islands	3	\$5,437	\$1,812	\$279	\$4,020	\$1,959
Australia	1	\$4,336	\$4,336	\$4,336	\$4,336	
Poland	1	\$3,113	\$3,113	\$3,113	\$3,113	
Denmark	1	\$563	\$563	\$563	\$563	
Japan	1	\$48	\$48	\$48	\$48	

Data Prep & Sampling:

- Remove Deleted & Ownership records
- Remove nulls and correlated records
- Remove extra spaces
- Remove useless, redundant and noisy features (columns)
- Label Research records & join datasets
- Sampling:
 - Select a statistically significant sample
 - Confidence level: 95%, CI: .1
 - Sample size: **883,282**

Model:

- Unsupervised learning
 - Logistic Regression
 - Decision Tree
 - Random Forest
- Used observation to sample the relevant features from the dataset.
- Imbalanced dataset (number of observations for research payments are significant less than others).
- Didn't use Receiver Operating Characteristic(ROC) to find out the true positive rate over the false positive rate.

Next Steps

- Establish a baseline to which compare results later.
- Explore the frequent of the payments (weekly).
- Include regularization (lasso regularization) to reduce weights for features that are not significant to zero.
- Use a fully connected neural network: we have an important amount of data that would make Neural Networks work best.
- Lastly, do PCA to reduce the dimensionality of the data.

Lessons for future data collection

- Find a better technique for data sampling.
- Use the experimental study rather than observation study.
- Collection of unbiased datasets with a lesser class imbalances.
- Look for the causation rather than correlation of independent and dependent variables.

Data set attributes:

- Analyse common features across files.
- Review the data dictionary to understand the relationships.
- Remove correlated fields (e.g. address/city, name/last name, etc.).
- ID and name variables that must be discarded to ensure best accuracy and efficient computation of the algorithms used.
- Distinguish factors for payments:
 - Location
 - Type of Payment
 - Type of Physician
 - Total amount USD

Pitfalls

• Class imbalance: accuracy considered to be the best matrix to evaluate the results performance of the algorithm.

An algorithm which always predicts 0 (payment not for research purpose), the model would still give 99% accuracy because the 99% of the data is the one having the class 0.

We know that this is the worst algorithm which always predicts 0 no matter what, therefore we use and rely on Precision/Recall rather than ROC or Accuracy. Therefore, the f1-score, which is the arithmetic mean of precision and recall will cater this situation and give the correct output.

- Assumptions: Multicollinearity, Heteroscedasticity, normality.
- Outliers and overfitting.

Thank you

