Guide zu Übungsblatt 4

Hier eine Präzisierung bzw. ein Tipp zu **Aufgabe 1**. In der Rückrichtung hat man eine Rechts-Kan-Erweiterung $(F, \varepsilon : FG \Rightarrow \mathrm{Id}_{\mathcal{M}})$ gegeben und muss daraus eine Adjunktion $F \dashv G$ basteln. Das dafür nötige ε hat man ja bereits gegeben. Wie konstruiert man η ? Wie weist man die Dreiecksidentitäten nach?

Bei der Hinrichtung hat man eine Adjunktion $(F \dashv G, \eta, \varepsilon)$ gegeben und muss aus F eine Rechts-Kan-Erweiterung von $\mathrm{Id}_{\mathcal{M}}$ längs G machen. Außerdem muss man zeigen, dass G diese Erweiterung bewahrt. Man kann sogar zeigen, dass jeder Funktor H, der bei \mathcal{M} startet, diese Erweiterung bewahrt – das ist genauso schwer und spart sogar noch Schreibaufwand, da man im Spezialfall $H = \mathrm{Id}_{\mathcal{M}}$ das Resultat mitbeweist, dass F selbst eine Rechts-Kan-Erweiterung ist.

Zur Erinnerung: Man sagt genau dann, dass ein Funktor $H: \mathcal{A} \to \mathcal{B}$ eine Rechts-Kan-Erweiterung $(R, \varepsilon: RK \Rightarrow T)$ von $T: \mathcal{M} \to \mathcal{A}$ längs $K: \mathcal{M} \to \mathcal{C}$ erhält, wenn $(HR, H\varepsilon: HRK \Rightarrow T)$ eine Rechts-Kan-Erweiterung von HT längs K ist.

Ein Tipp für **Aufgabe 3**, der auch an sich eine schöne Übung im Umgang mit Diagrammen abgibt, ist: Sind das linke und rechte Quadrat jeweils Pushout-Diagramme, so ist auch das Gesamtrechteck ein Pushout-Diagramm.

Zu **Aufgabe 5c**): Die Objekte der Kategorie \mathcal{M}_{\star} sind Morphismen der Form $1 \to X$ in \mathcal{M} (mit $X \in \mathcal{M}$ beliebig). Dabei bezeichnet $1 \in \mathcal{M}$ das terminale Objekt in \mathcal{M} . Die Morphismen sind kommutative Dreiecke. Bei dieser Aufgabe ist einiges zu tun. Zunächst mal muss man zeigen, dass \mathcal{M}_{\star} wieder alle kleinen Limiten und Kolimiten enthält. Holt euch dazu Tipps ab! Anschließend muss man geeignet schwache Äquivalenzen, Faserungen und Kofaserungen definieren. Holt euch auch dafür Tipps ab!

Bei **Aufgabe 6** gibt es einen Tipp, der die Aufgabe deutlich vereinfacht. Bitte holt ihn euch bei mir ab. Die Notation soll jedenfalls andeuten, dass der gegebene Morphismus $A \to B$ eine Kofaserung und dass $X \to Y$ eine azyklische Faserung ist. Hängt euch gegebenenfalls nicht daran auf, bei dem von euch konstruierten Zylinder die Kofaserungseigenschaft nachzuweisen.