

CFD Predictions for Ocean Gliders

6th NRC-IOT Workshop on Underwater Vehicle Technology 21. Oct. 2010

<u>Dong Cheol Seo</u> & Christopher D. Williams NRC-IOT

Outline

- Research background
 - Concept of acoustic survey using ocean glider
 - Roll of CFD analysis
- Numerical model for CFD analysis
 - Grid system
 - Turbulence mode
- Results
 - Velocity and pressure contour
 - Pressure & shear coefficient
 - Validation
- Summary & future work

Ocean glider

- Saw-tooth trajectory of ocean glider
 - → Long operation time & wide coverage

Acoustic survey using ocean glider

- Long operation time
- Low ambient noise due to no external propulsion device
- Long base line between hydro-phones

Balancing problem

Importance of hydrodynamic force

To change the hull for installing the hydrophones

Needs for estimating hydrodynamic forces of the modified body

Object of CFD analysis

At design stage,

to predict hydrodynamic forces such as drag and lift

- Optimum design of the buoyancy engine
- Accurate prediction of the operation time

to estimate the local flow around hydrophone

Minimizing the ambient noise caused by violent flow

to predict maneuverabilty

 Radius of turning circle and the depth requirement for the mode change

In this study,

to examine CFD performance and prepare the hull modification

Geometric model

Slocum glider

From www.webresearch.com

Simplified geometry without tail wing and small appendages

Grid system

- Hybrid grid system
 - Unstructured surface mesh
 - Prismatic layer
 - 7 layers with 2mm thickness of the first layer ~ Y⁺ < 10
 - 1.8 million cells

Turbulence model

- Shear-stress transport (SST) k-ω model
 - Widely used model for streamlined aerodynamic and hydrodynamic bodies
- SST transition model
 - Developed for the laminar-turbulent transition
 - Reynolds number of ocean glider: 10⁵ ~10⁶
 - Cost effective method compared with LES* or DNS** considering transition flow

^{*} Large Eddy Simulation

^{**} Direct Numerical Simulation

Simulation case

- Approaching velocity
 - -0.3 m/s and 0.5 m/s
- Turbulence model
 - SST-kω model and transition model
- Zero angle of attack

0.3 m/s with SST-kω	0.3 m/s with transition
0.6 m/s with SST-kω	0.6 m/s with transition

Stream line

Velocity contour

Pressure contour

Drag component

Velocity [m/s]	Drag component -	SST k-ω model		Transition model	
		Force [N]	Portion [%]	Force [N]	Portion [%]
0.3	Pressure drag	0.18	37	0.18	33
	Viscous drag	0.32	63	0.35	67
	Total Drag	0.50	100	0.53	100
0.6	Pressure drag	0.68	38	0.70	39
	Viscous drag	1.12	62	1.11	61
	Total Drag	1.80	100	1.81	100

NRC-CNRC
Institute for
Ocean Technology

Pressure coefficient

$$C_P = \frac{P - P_{\infty}}{1/2\rho V_{\infty}^2}$$

where,

P: Pressure

 P_{∞} : Ambient pressure

 ρ : Density

 V_{∞} : Ambient velocity

NRC-CNRC
Institute for
Ocean Technology

Shear coefficient

$$C_S = \frac{\tau_{shear}}{1/2\rho V_{\infty}^2}$$

where,

 τ_{shear} : Shear stress

 ρ : Density

 V_{∞} : Ambient velocity

Turbulence kinetic energy contour (0.3 m/s)

SST k-ω model

$$TKE = \frac{1}{2} \left(\overline{\left(u_1'\right)^2} + \overline{\left(u_2'\right)^2} + \overline{\left(u_3'\right)^2} \right)$$

where,

 u'_i : Turbulent velocity (fluctuation term)

i.e. $u_i = \overline{u_i}$ (mean value) + u_i' (fluctuation)

Turbulence kinetic energy contour (0.6 m/s)

$$TKE = \frac{1}{2} \left(\overline{\left(u_1'\right)^2} + \overline{\left(u_2'\right)^2} + \overline{\left(u_3'\right)^2} \right)$$

where,

 u'_i : Turbulent velocity (fluctuation term)

i.e.
$$u_i = \overline{u_i}$$
 (mean value) + u_i' (fluctuation)

Computation time

On a 2.1 GHz Pentium® Dual core CPU with 2Gb memory

Velocity (m/s)	SST k-ω model Time (sec)	Transition model Time (sec)
0.3	13,144	16,744
0.6	15,240	18,239

Validation

Comparison with the experiment

Velocity (m/s)	CFD		Experiment*
	SST k-ω model [N]	Transition model [N]	. [N]
0.3	0.50	0.53	0.50
0.6	1.80	1.81	1.75

^{*}From B. Claus et al., JEME, 2010

Summary & future work

- Drag force is predicted by CFD method. The result is well agreed with the experimental result.
- Two turbulence model, SST-kω and SST Transition model are examined. Both of two models give the similar result. However, at some region, the flow shows little different pattern.
- Hydrodynamic forces will be estimated using the candidate hull shape for the hydrophone installation.
- More study and more validation is needed for the transition model.

Thanks for your attention!

