Registers

Number	Name	Description
0	X0	Always is equal to 0
1	X1	General purpose register
2	X2	General purpose register
3	Х3	General purpose register
4	X4	General purpose register
5	X5	General purpose register
6	X6	Stack pointer
7	X7	In this register is store the return address when a jal instruction is executed

Instructions

Nemonic	Opcode	Operation	Description
			Register rs is added to register rt and result is
add	0000	R[rd] = R[rs] + R[rt]	store in register rd.
			Register rs is added to Imm and result is store in
			register rd. Where Imm is constant value in
addi	0001	R[rt]= R[rs] + Imm	two's complement.
			It's a and bitwise between Register rs and rt and
and	0010	R[rd]=R[rs] & R[rt]	result is store in register rd.
			It's a and bitwise between Register rs and Imm
			and result is store in register rd. Where Imm is a
andi	0011	R[rt]=R[rs] & Imm	constant value in two's complement.
			If rt and rs are equal the PC = PC + BranAddr.
		if(R[rt]==R[rs])	Where BranAddr is the branch destination
beq	0100	PC = PC + BranAddr	(offset) in two's complement.
			If rt and rs are not equal the PC = PC +
		if(R[rd]!=R[rs1])	BranAddr. Where BranAddr is the branch
bne	0101	PC = PC + BranAddr	destination (offset) in two's complement.
j	0110	PC = Addr	Unconditional jump to Addr
		PC = JumAddr; X7=	It's is for procedures, when it's executed PC gets
jal	111	PC+1	the jump address and X7 stored current PC +1.
			It's used to return from procedures; when it's
jr	1010	PC= X7	executed PC gets the value stored in X7.

		R[rt] = M[rs] +	It's a load byte from memory. The memory addres is calculate by adding rs and Imm; where Imm is a constant value in two's complement
lb	1011	Imm]	and rt is the destination register.
•			It's a or bitwise between Register rs and rt and
or	1100	R[rd]=R[rs] R[rt]	result is store in register rd.
			It's a stored byte from memory. The memory
			addres is calculate by adding rs and Imm; where
			Imm is a constant value in two's complement
sb	1101	M[rs + Imm] = R[rt]	and rt is the source register.
•		R[rd] = R[rt] <<	Shift logical left; rt is shifted to the left base on
sll	1110	R[rs]	rs
		R[rd] = R[rt] >>	Shift logical right; rt is shifted to the rigth base
srl	1111	R[rs]	on rs