Award Number: W81XWH-10-2-0196

TITLE: CHEMOTHERAPY OF CUTANEOUS LEISHMANIASIS

PRINCIPAL INVESTIGATOR: DR. ARBA AGER

CONTRACTING ORGANIZATION: UNIVERSITY OF MIAMI

MIAMI, FL 33177

REPORT DATE: October 2012

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Material Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DO	Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of information is	estimated to average 1 hour per response, including the time for reviewing instruction	is, searching existing data sources, gathering and maintaining the
this burden to Department of Defense, Washington Headq 4302. Respondents should be aware that notwithstanding	of information. Send comments regarding this burden estimate or any other aspect of uarters Services, Directorate for Information Operations and Reports (0704-0188), 12 any other provision of law, no person shall be subject to any penalty for failing to cor	215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
valid OMB control number. PLEASE DO NOT RETURN Y	2. REPORT TYPE	3. DATES COVERED
October 2012	Final	01Sep2010–31 Dec 2012
4. TITLE AND SUBTITLE	T III CI	5a. CONTRACT NUMBER
CHEMOTHERAPY OF CUTANEOU	JS LEISHMANIASIS	
		5b. GRANT NUMBER
		W81XWH-10-2-0196

		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Arba Ager, Ph.D.		
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
E-Mail: aagar@mad miami adu		JI. WORK ONLY NOMBER
E-Mail: aager@med.miami.edu 7. PERFORMING ORGANIZATION NAME	C) AND ADDRESS/ES)	8. PERFORMING ORGANIZATION REPORT
I	5) AND ADDRESS(ES)	NUMBER
University of Miami		NOMBER
Miami, Fl 33177		
9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Army Medical Research and M	Nateriel Command	(1)
Fort Detrick, Maryland 21702-5012		
Torreson, maryland 21762 6612	•	11. SPONSOR/MONITOR'S REPORT
		NUMBER(S)
	Nomber(6)	
12. DISTRIBUTION / AVAILABILITY STAT	ENACNIT	
Approved for Public Release; Distri	bution Onlinited	
13. SUPPLEMENTARY NOTES		
14. ABSTRACT		
	MLS and MLL) were used to evaluate compounds a	at one or more levels. These test
	infected with Leishmania major. There were 11 ML	
	active; BU55197, BU5504,BP20206, BQ90098, BC	
	252825, BS04930, BS80690, BS93553, BU26730, I	
	d intradermally (ID) at the base of the tail. Drug treat	
	, 13 MLL tests were done and 113 compounds use	
BU59640, BU59640 and BU68452.	In the MLL test, mice were infected ID at the base	of the tail and treatment was started IP
	ed between 20-70 mm2. AmBiosome was used as	
	tabulation of data and statistically analyzing the res	
	<u> </u>	
l 15 SUBJECT TERMS. I Aishmania ma	ior Cutaneous Leishmaniasis, antileishmanial drug	le .

17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

38

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

USAMRMC

code)

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

U

c. THIS PAGE

U

a. REPORT

U

Table of Content

SF 298	2
Introduction	5
Body	5
Key Research Accomplishments	6
Reportable Outcomes	6
Conclusions	6
References	6
Appendices	7

INTRODUCTION

Leishmaniasis is a disease that has several different types of clinical pathology ranging from visceral pathology to simple cutaneous lesions. Cutaneous Leishmaniasis It has been around for centuries and remains a serious problem in areas such as Iraq, Afghanistan, Iran, Saudi Arabia, Yemen, Peru and Brazil. The US Army has had over 3,500 troops infected with this protozoan parasite. Kabul is believed to have the greatest number of cutaneous leishmania cases in the world with an incidence of over 67,000 cases per year. It is also found in more than 70 countries in the world. In the South American country of Colombia a large numbers of cutaneous leishmania cases (over 40,000) were reported between 2005 and 2009. It was caused by Leishmania braziliensis and many dogs serve as reservoir hosts that the vector (a sand fly) bites and gets infected then bites a human and transmit the disease. There is no vaccine for this parasite in humans so treatment relies on chemotherapy. The treatment for this disease is complicated because of several reasons; long treatment schedules, toxic drugs with many serious side effects, they are becoming less effective and many are expensive. Pentavalent antimonials are one of the major drugs used today but toxicity is a problem, resistance has developed and it must be administered by trained medical personnel for a prolonged time period. Miltifosine (an Alkyllysopholipid) is an oral preparation that has low efficacy and resistance has developed to it. Amphotericin B intravenous formulations are used in many areas of the world but they are very expensive and there are many side effects. Several other parental drugs such as pentamidine and oral triazoles like fluconazole and itraconazole have been used but their efficacy is still not very good. Paromomycin has been shown to be effective in some cases when administered topically in combination with Gentamicin. The majority of cases of cutaneous leishmaniasis from the Middle East are cause by Leishmania *major* and new therapies are desperately needed. We are using this parasite in a rodent model to find new effective chemotherapeutic agents.

BODY

There were 2 mouse models of cutaneous antileishmanial used in female BALB/c mice infected with Leishmania major. The first test is the Mouse Leishmania Suppressive (MLS) test system. The second test system tested compounds found active in the MLS test is called the Miami Leishmania Lesion (MLL) test system. Metacyclic parasites (1 X 106) obtained from cultures of donor mice infected footpads were used as an inoculum for each test. In the MLS test model and the MLL model the mice were injected with the parasites intradermally (ID) in the shaved area of the back about 1 inch forward from the tail. Test compounds were administered intraperitoneally (IP) once a day for 10 days starting 3 days post infection for the MLS tests and once a day for 10 days IP to mice in the MLL test once the developing lesion sizes were between 20-70 mm². The lesions were measured on days 14, 21 and 28 days after infection for the MLS test. For the MLL test the lesions were measures at the start of treatment then on days 7, 14, 21 and 28. The female BALB/c mice were weighed on the day of infection and daily during treatment then once a week for the duration of the MLS test. For the MLL test the mice were weighed on the day of infection then weekly until administration of test compounds. They were then weighed daily during treatment and then weekly until the end of the test. All of the data was entered into an Oracle database and at the conclusion of each test and an analysis of the data was made and a % suppression of the lesion sizes in both the MLS and MLL tests. In both the MLS and MLL tests the data obtained from the treated mice where compared with the infected non-treated control mice. The positive control was AmBisome at 12.5 mg/kg/day for 10 days in the MLS test and 37.5 mg/kg/day for 10 days in the MLL test. In the MLS and MLL tests compounds were considered active if the lesion size was suppressed by at least 50%.

For the MLS 242 compounds were tested and 19 were found to be active. There were 133 compounds tested in the MLL test system with only 13 exhibiting activity.

KEY RESEARCH ACCOMPLISHMENT

- Performed 11 MLS tests evaluating 242 compounds and found 19 actives.
- Performed 13 MLL tests evaluating 133 compounds and found 4 active.
- The new Oracle data base developed by WRAIR for data obtained in the Leishmanial MLS and MLL Test Systems was modified to enable changes in the protocol to be incorporated and it worked well for the following activities measured; mortality, mouse body weights, survival times, clinical pathology, toxicity, statistics including the % suppression of lesion size which was used to determine if a compound was active (need at least a 50% suppressive figure to be considered an active compound).

REPORTABLE OUTCOMES

The Oracle database developed by WRAIR for entering and analyzing data obtained from the Antileishmanial MLS and MLL Test Systems and was further validated. This database allows one to enter data for the MLS and MLL test systems as it is obtained directly into the database and analyzes it. Such data includes mouse body weights, drugs and their dosages, clinical observations of the mice, % suppression of lesion size, toxicity and mortality values. A similar database is being developed for the data obtained from the drug combination tests in the MLS and MLL Test Systems and the Miami Leishmania Hamster test system using *L. panamensis*.

There were 11 MLS tests where 242 compounds were tested with 19 active. In the MLL test system there were 13 tests with 133 compounds and found 4 active.

CONCLUSIONS

Two antileishmanial drug test systems (MLS and MLL) were validated in mice infected with *Leishmania major*.

Nineteen active compounds were found out of 242 in the MLS system. In the MLL system there were 4 active out of 133 compounds.

The Oracle Data Base System has been updated and validated to enter and analyze data for the MLS and MLL Test Systems. This data base allows all of the data in this system to be computerized and made available to Army researchers at Walter Reed on a regular basis.

REFERENCES

There was one publication during this contract period.

Perić M, Fajdetić A, Rupčić R, Alihodžić S, Ziher D, Bukvić Krajačić M, Smith KS, Ivezić-Schönfeld Z, Padovan J, Landek G, Jelić D, Hutinec A, Mesić M, **Ager A**, Ellis WY, Milhous WK, Ohrt C, Spaventi R. Antimalarial Activity of 9a-N Substituted 15-Membered Azalides with Improved in Vitro and in Vivo Activity over Azithromycin. J Med Chem. 55(3):1389-401, 2012.

APPENDICES

CURRICULUM VITAE

1. Date: DECEMBER, 2012

PERSONAL

- 2. Name: Arba L. Ager, Jr.
- **3.** Home Phone:
- **4.** Office Phone:
- **5.** Home Address:
- **6.** Current Academic Rank: Research Associate Professor
- **7.** Primary Department: Microbiology and Immunology
- **8.** Secondary or Joint Appointments:
- **9.** Citizenship: USA
- **10.** Visa Type (if non-citizen): None

HIGHER EDUCATION

11. Institutional (institution; degree; date conferred):

University of Oregon	Biology	B.S.	1964
Portland State University	Zoology	M.S.T.	1966
University of Georgia	Parasitology	Ph.D.	1972

- 12. Non-Institutional (description; dates): None
- **13.** Certification, licensure (description; board or agency; dates): None

EXPERIENCE

14. Academic (institutions; rank/status; dates):

Michigan State University Assistant Instructor Department of Microbiology

1966-1969

University of Georgia Department of Parasitology School of Veterinary Medicine Res. Assistant Professor 1971-1974

University of Miami School of Medicine Res. Associate Professor 1974-present Department of Microbiology & Immunology

- **15. Non-Academic** (employers; title; responsibilities; dates): None
- **16. Military** (branch; rank; responsibilities; dates): None

PUBLICATIONS [author(s) (in actual precedence of authorship); title; publisher or journal name; date; (current year first); page numbers]

17. Books and monographs published:

Avery, M.A., McLean, G., Edwards, G., Ager, A.L. 2000. Structure-Activity Relationships of Peroxide-Based Artemisinin Antimalarials. *In: Biologically Active Natural Products: Pharmaceuticals*, Cutler, S.J., Cutler, H.G. (eds). CRC Press, Boca Raton, Florida. p. 121-132.

Levander, O.A., Ager, A.L., Beck, M.A. 1995. Dietary Implications for Parasitic and Viral Infectious Diseases. *In: Nutrition, Lipids, Health, and Disease*, Ong, A.S.H., Niki, E., Packes, L. (eds). AOCS Press, Champaign, Illinois. p. 280-292.

Ager, A.L., May, R.G. 1986. Parasites from Blood Specimens. *In: Interpretive Medical Microbiology*, Dalton, H.P. and Nottebart, H.C. (eds). Churchill Livingstone, New York. p. 179-187.

Ager, A.L. 1984. Experimental Models: Rodent Malaria Models (*in vivo*). *In: Handbook of Experimental Pharmacology: Antimalarial Drugs*. Peters, W., Richards, W.H.G. (eds). Springer-Verlag, Berlin, Heidelberg, New York. 68/1:225-254.

18. Juried or refereed journal articles and exhibitions:

Perić M, Fajdetić A, Rupčić R, Alihodžić S, Ziher D, Bukvić Krajačić M, Smith KS, Ivezić-Schönfeld Z, Padovan J, Landek G, Jelić D, Hutinec A, Mesić M, **Ager A**, Ellis WY, Milhous WK, Ohrt C, Spaventi R. Antimalarial Activity of 9a-N Substituted 15-Membered Azalides with Improved in Vitro and in Vivo Activity over Azithromycin. J Med Chem. 55(3):1389-401, 2012.

Bukvić Krajačić M, Perić M, Smith KS, Schönfeld ZI, Žiher D, Fajdetić A, Kujundžić N, Schönfeld W, Landek G, Padovan J, Jelić D, **Ager A**, Milhous WK, Ellis W, Spaventi R, Ohrt C. <u>Synthesis</u>, <u>structure-activity relationship</u>, <u>and antimalarial activity of ureas and thioureas of 15-membered azalides</u>. J Med Chem. 54(10):3595-605, 2011.

Shah AH, Abdelzaher AM, Phillips M, Hernandez R, Solo-Gabriele HM, Kish J, Scorzetti G, Fell JW, Diaz MR, Scott TM, Lukasik J, Harwood VJ, McQuaig S, Sinigalliano CD, Gidley ML, Wanless D, **Ager A**, Lui J, Stewart JR, Plano LR, Fleming LE. <u>Indicator microbes correlate with pathogenic bacteria</u>, yeasts and helminthes in sand at a subtropical recreational beach site. J Appl Microbiol.110(6):1571-83,2011.

Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, Valderramos JC, Vilcheze C, Siedner M, Tsai JH, Falkard B, Sidhu AB, Purcell LA, Gratraud P, Kremer L, Waters AP, Schiehser G, Jacobus DP, Janse CJ, Ager A, Jacobs WR Jr, Sacchettini JC, Heussler V, Sinnis P, Fidock DA. The fatty acid biosynthesis enzyme Fabl plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe. 11;4(6):567-78, 2008.

Nanayakkara NP, Ager AL Jr, Bartlett MS, Yardley V, Croft SL, Khan IA, McChesney JD, Walker LA. Antiparasitic activities and toxicities of individual enantiomers of the 8-aminoquinoline 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-4-methyl-5-[3,4-dichlorophenoxy]quinoline succinate. Antimicrob Agents Chemother. 52:2130-7, 2008.

Guan J, Wang X, Smith K, Ager A, Gettayacamin M, Kyle DE, Milhous WK, Kozar MP, Magill AJ, Lin AJ. Malaria causal prophylactic activity of imidazolidinedione derivatives. J Med Chem, 50:6226-31, 2007.

Edstein, M.D., Kotecka, B.M., Ager, A.L., Smith, K., DiTusa, C., O'Neil, M.T., Kyle, D.E., Schiehser, G.A., Jacobus, D.P., Rieckmann, K.H. Antimalarial pharmacodynamics and pharmacokinetics of a third-generation antifolate--JPC2056--in cynomolgus monkeys using an in vivo in vitro model. J Antimicrob Chemother. 60:811-818, 2007.

Guan, J., Zhang, Q., O'Neil, M., Obaldia, N., Ager, A., Gerena, L., Lin, A. Antimalarial Activity of New Pyrrolo [3,2-f] quinazoline-1,3-diamine Derivatives. *Antimicrob. Agents & Chemother*. 49:4928-33, 2005.

Zhang, Q., Guan, J., Sacci, J., Ager, A., Ellis, W., Milhous, W., Kyle, D., Lin. A. Unambiguous Synthesis and Prophylactic Antimalarial Activities of Imidazolidinedione Derivatives. *J. Med. Chem.* 48:6472-81, 2005.

Avery, Mitchell A., Alvim-Gaston, Maria, Vroman Jeffrey A., Wu Baogen, Ager, Arba L., Peters, Wallace, Charman, William, Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 7. Direct Modification of (+)-Artemisinin and In Vivo Antimalarial Screening of New, Potential Preclinical Antimalarial Candidates. *J. Med. Chem.* 45:4321-4335, 2002.

Lindo, J.F., Validum, L., Ager, A.L., Campa, A., Cuadrado, R.R., Cummings, R., Palmer, C.J. Intestinal Parasites among Young Children in the Interior of Guyana. *West Indian Med J.* 51 (1): 25, 2002.

Laubach, H.E., Validum, L., Bonilla, J.A., Ager, A., Cummings, R., Mitchell, C., Cuadrado, R.R., Palmer, C.J. Identification of *Anopheles aquasalis* as possible vector of malaria in Guyana, South America. *West Indian Med J.* 50 (4): 319, 2001.

Jensen, N.P., Ager, A.L., Bliss, R.A., Canfield, C.J., Kotecka, B.M., Rieckmann, K.H., Terpinski, J., Jacobus, D.P. Phenoxypropoxybiguanides, Prodrugs of DHFR-Inhibiting Diaminotriazine Antimalarials. *J. Med. Chem.* 44:3925-3931, 2001.

Vennerstrom, J.L., Ager, A.L., Andersen, S.L., Grace, J.M., Wongpanich, V., Angerhoffer, C.K., Hu, J.K., Wesche, D.L. Assessment of the antimalarial potential of tetraoxane WR 148999. *Am. J. Trop. Med. & Hyg.* 62:573-578, 2000.

Vennerstrom, J., Dong, Y., Andersen, S., Ager, A., Fu, H., Miller, R., Wesche, D. Synthesis and antimalarial activity of sixteen dispiro-1,2,4,5-tetraoxane 7,8,15,16-Tetraxadispiro [5.2.5.2]hexadecanes. *J. Med. Chem.* 43/14:2753-2758, 2000.

Palmer, C.J., Dubon, J.M., Koenig, E., Perez, E., Ager, A., Jayaweera, D., Cuadrado, R.R., Rivera, A., Rubido, Palmer, D.A. Field evaluation of the Determine Rapid Human Immunodeficiency Virus Diagnostic Test in Honduras and the Dominican Republic. *J. Clin. Microbiology.* 37: 3698-3700, 1999.

Palmer, C.J., Validum, L., Lindo, J., Campa, A., Validium, C., Makler, M, Cuadrado, R., Ager, A. Field evaluation of the OptiMAL rapid diagnostic test during antimalarial therapy in Guyana. *Trans. Royal Soc. Trop. Med. & Hyg.* 93:517-518, 1999.

Palmer, C.J., Validum, L., Vorndam, V., Clark, G., Validum, C., Cummings, R., Lindo, J., Ager, A., Cuadrado, R. Dengue in Guyana. *Lancet*. 354:304, 1999.

Palmer, C.J., King, S.D., Cuadrado, R.R., Perez, E., Baum, M., Ager, A.L. Evaluation of the MRL Diagnostics Dengue Fever Virus IgM Capture ELISA and the PanBio Rapid Immunochromatographic Test for Diagnosis of Dengue Fever in Jamaica. *J. Clinical Microbiology*. 37:1600-1601, 1999.

Solo-Gabriele, H.M., Ager, A.L., Lindo, J.F., Dubon, J.M., Neumeister, S.M., Baum, M.K., Palmer, C.J. Occurrence of *Cryptosporidium* Oocysts and *Giardia* Cysts in Water Supplies of San Pedro Sula, Honduras. *Pan Am J. of Public Health* 4:398-400, 1998.

Vennerstrom, J.L., Ager, A.L., Dorn, A., Andersen, S.L., Gerena, L., Ridley, Milhous, W.K. Bisquinolines. 2. Antimalarial N,N-Bis(7-chloroquinolin-4-yl)heteroalkanediamines. *J. Med. Chem.* 41:4360-4364, 1998.

Makler, M.T., Palmer, C.J., Ager, A.L. A review of practical techniques for the diagnosis of malaria. *Annals of Trop. Med. & Parasit.* 92:419-433, 1998.

Palmer, C.J., Makler, M., Klaskala, W.I., Lindo, J.F., Baum, M.K., Ager, A.L. Increased incidenced of *Plasmodium falciparum* Malaria in Honduras, Central America. *Pan. Am. J. of Public Hlth.* 4:40-42, 1998.

Lindo, J.f., Dubon, J.M., Ager, A.L., deGourville, E., Solo-Gabrielle, H., Baum, M.K., Palmer, C.J. Intestinal parasitic infections in HIV positive and HIV negative individuals in Honduras. *Am. J. Trop. Med. & Hyg.* 58:431-435, 1998.

Palmer, C.J., Lindo, J.F., Klaskala, W.I., Quesada, J.A., Kaminsky, R. Baum, M.K., and Ager, A.L. Evaluation of the OptiMAL test for rapid diagnosis of *Plasmodium vivax* and *Plasmodium falciparum* malaria. *J. Clinical Microbiology*. 36:203-206, 1998.

Dubon, J.M., Palmer, C.J., Ager, A.L., Shor-Posner, G., Baum, M.K. Emergence of Multiple-drug-resistant Vibro cholerae 01 in San Pedro Sula, Honduras. *Lancet*. 349: 924, 1997.

Torok, D.S., Ziffer, H., Meshnick, S.R., Pan, X.Q., Ager, A. Synthesis and antimalarial activities of N-substituted 11-azaartemisinins. *J. Med. Chem.* 38: 5045-5050, 1995.

Levander, O.A., Ager, A.L., Beck, M.A. Vitamin E and selenium: contrasting and interacting nutritional determinants of host resistance to parasitic and viral infections. *Proceedings of Nutrition Soc.* 54: 475-487, 1995.

Andersen, S.L., Ager, A., McGreevy, P., Schuster, B.G., Wesche, D., Kuschner, R., Ohrt, C., Ellis, W., Rossan, R., Berman, J. Activity of azithromycin as a blood schizontocide against rodent and human plasmodia *in vivo*. *Am. J. Trop. Med. and Hyg.* 52:159-161, 1995.

Levander, O.A., Fontela, R., Morris, V.C., Ager, A.L. Protection against murine cerebral malaria by dietary-induced oxidative stress. *J. Parasitol.* 81:99-103, 1995.

Lin, A.J., Ager, A.L., Klayman, D.L. Antimalarial activity of dihydroartemisinin derivatives by transdermal application. *Am. J. Trop. Med. and Hyg.* 50:777-783, 1994.

Berman, J., Brown, L., Miller, R., Andersen, S.L., McGreevy, P., Schuster, B.G., Ellis, W., Ager, A., Rossan, R. Antimalarial activity of WR243251, a dihydroacridinedione. *Antimicrob. Agents Chemother*. *38*:1752-1756, 1994.

Andersen, S.L., Ager, A.L., McGreevy, P., Schuster, B.G., Ellis, W., Berman, J. Efficacy of azithromycin as a causal prophylactic agent against murine malaria. *Antimicrob. Agents Chemother*. 38:1862-1863, 1994.

Posner, G.H., Oh, C.H., Webster, H.K., Ager, A.L., Rossan, R.N. New antimalarial tricyclic 1,2,4-trioxanes: Preclinical evaluations in mice and monkeys. *Am. J. Trop. Med. and Hyg.* 50:522-526, 1994.

Levander, O.A., Ager, A.L. Malarial parasites and antioxidant nutrients. *Parasitology*. 107:S95-S106, 1993

Canfield, C.D., Milhous, W.K., Ager, A.L., Rossan, R.N., Sweeney, T.R., Lewis, N.J., Jacobus, D.P. PS-15: a potent, orally active antimalarial from a new class of folic acid antagonists. *Am. J. Trop. Med. and Hyg.* 49:121-126, 1993.

Shmuklarsky, M.J., Klayman, D.L., Milhous, W.K., Rossan, R.N., Ager, A.L., Tang, D.G., Heiffer, M.H., Canfield, C.J., Schuster, B.G. Comparison of β-artemeter and β-arteether against malaria parasites *in vitro* and *in vivo*. *Am. J. Trop. Med. and Hyg.* 48:377-348, 1993.

Vennerstrom, J.L., Fu, H.N., Ellis, W.Y., Ager, A.L., Wood, J.K., Andersen, S.L., Genera, L., Milhous, W.K. Dispiro-1,2,3,5-tetraoxanes: A new class of antimalarial peroxides. *J. Med. Chem.* 35:3023-3027, 1992.

Vennerstrom, J.L., Ellis, W.Y., Ager, A.L., Andersen, S.L., Gerena, L., Milhous, W.K. Bisquinolines.1.N,N-Bis(7-chloroquinolin-4-yl) akanediamines with potential against chloroquine-resistant malaria. *J. Med. Chem.* 35:2129-2134, 1992.

Levander, O.A., Ager, A.L., Morris, V.C., May, R.G. Protective effect of ground flaxseed or ethyl linolenate in a vitamin E-deficient diet against murine malaria. *Nutrition Research*. 11:941-948, 1991.

Klayman, D.L., Ager, A.L., Fleckenstein, L., Lin, A.J. Transdermal artelinic acid: An effective treatment of *Plasmodium berghei*-infected mice. *Am. J. Trop. Med. & Hyg.* 45:602-607, 1991.

Sundberg, R.J., Dalhausen, D., Manikumar, G., Mavunkel, B., Biswas, A., Scrinivasan, V., Musallam, H.A., Reid, W.A., Ager, A.L. Trypanocidal activity of 2-(4 -formylphenyl)imidazo 1,2-a pyridinum guanylhydrazones and related derivatives of quaternary heteroaromatic compounds. *J. Med. Chem.* 33:298-301, 1990.

Levander, O.A., Ager, A.L., Morris, V., May, R. *Plasmodium yoelii*: Comparative antimalarial activities of dietary fish oils and fish oil concentrated in vitamin E-deficient mice. *Exp. Para.* 70:323-329, 1990.

Levander, O.A., Ager, A.L., Morris, V.C., May, R.G. Menhaden-fish oil in a vitamin E-deficient diet: Protection against Chloroquine-resistant malaria in mice. *Am. J. Clin. Nutr.* 50:1237-1239, 1989.

Levander, O.A., Ager, A.L., Morris, V., May, R. Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: Effect on the susceptibility of mice to the malarial parasite *Plasmodium yoelii*. *Am. J. Clin. Nutr.* 50:346-352, 1989.

Childs, G.E., Lambros, C., Notsch, J., Pamplin, C.L., Davidson, D., Ager, A.L. Comparison of *in vitro* and *in vivo* antimalarial activities of 9-phenanthrenecarbinols. *Annals of Trop. Med. & Para.* 78:13-20, 1984.

Cherry, R., Ager, A.L. The incidence of blood parasites, helminths, and pentastomes in *Alligator mississiplensis*. *J. Parasitol*. 68:509-510, 1982.

Davidson, D.E., Ager, A.L., Brown, J.L., Chapple, F.E., Whitmire, R.E., Rossan, R.N. Recent developments of tissue schizonticidal antimalarial drugs. *Bull. W.H.O.* 59:463-479, 1981.

Kinnamon, K.E., Ager, A.L., Orchard, R.W. *Plasmodium berghei*: Combining folic acid antagonists for potentiation against malaria infection in mice. *Exp. Para.* 40:95-102, 1976.

Robertson, E.L., Ager, A.L. Uredofos: Anthelmintic activity against nematodes and cestodes in dogs with naturally occurring infections. *Am. J. Vet. Res.* 37:1479-1482, 1976.

19. Other works, publications and abstracts:

Levander, O.A., Ager, A.L. Omega-3 fatty acids, oxidative stress, and malaria. Omega 3 News 7:1-3, 1992.

Levander, O.A., Ager, A.L., Morris, V.C., Fontela, R., May, R. Antimalarial effects of dietary ground flax or ethyl linolenate in vitamin E-deficient mice. 54th Flax Institute of the U.S. 1992.

Levander, O.A., Ager, A.L., Morris, V.C., May, R.G. Antimalarial activity of a marine w3 free fatty acid concentrate in mice fed graded dietary levels of vitamin E. *In: Health Effects of w3 Polyunsaturated Fatty Acids in Seafoods.* (Eds) Simopoulus, A.P., Kifer, R.R., Martin, R.E., and Barlow, S.M. Karger, New York. p. 535-536, 1991.

Levander, O.A., Ager, A.L., Morris, V., May, R. Protective effect of dietary fish oil against malaria in vitamin E-deficient mice. **In:** Proceeding of the International Symposium on Health Effects of Fish and Fish Oil, St. John's, Newfoundland, Canada. *Health Effects of Fish and Fish Oils.* (Ed) Chandra, R.K. Arts Biomedical Publishers and Distributors. St. John's Newfoundland. 461-467, 1989.

Levander, O.A., Ager, A.L., Morris, V., May, R. Contrasting effects of selenium and vitamin Edeficiency on the antimalarial action of Qinghaosu in mice. *In: Trace Elements in Man and Animals*. (Eds) Hurley, L.S., Keen, C.L., Lonnerdal, B., Rucher, R.B. Plenum Press. New York. 6:255-256, 1988.

Abstracts:

Ager, A., Ellis, B., Magill, A., Notsch, J., Boodoo, R., Lui, J., Aviles, M., Ager, M., Mendez, J., Grogl, M. Evaluation of compounds for Cutaneous Leishmaniasis activity in BALB/c mice infected with *Leishmania major*. Am. Soc. Trop. Med. & Hyg. Washington, DC, 2009

Arba Ager¹, Bill Ellis², Juan Mendez², Richard Boodoo¹, Jenbon Lui¹, Max Grogl² CUTANEOUS LEISHMANIA MODEL IN BALB/C MICE WITH LEISHMANIA MAJOR TO DETECT NEW ANTILEISHMANIAL COMPOUNDS. Am. Soc. Trop. Med. & Hyg. New Orleans, LA, 2008

Schiehser GA, Terpinski J, Ager AL, Magill AJ, Milhous WK, Ohrt C, Saunders DL, Kyle DE, Edstein MD, Reickmann KH, Shanks GD, Sibley CH, Canfield CJ, Jacobus LR, Jacobus DP. Pre-clinical mouse toxicity study of a third generation antifolate, JPC-2056-I. Am.Soc.Trop. Med. & Hyg., New Orleans, LA, 2008

Kelly, JX., Smilkstein, M., Winter, R., Dodean, R., Ager, A., Hinrichs, D., Riscoe, M. New Insight on Orally-Active Acridone Antimalarials: Structural and Functional Diversity. Am. Soc. Trop. Med. & Hyg. Philadelphia, PA, 2007.

Schiehser GA, Terpinski J, Ager AL, Magill AJ, Milhous WK, Ohrt C, Saunders DL, Kyle DE, Edstein MD, Reickmann KH, Shanks GD, Sibley CH, Canfield CJ, Jacobus LR, Jacobus DP. Pre-Clinical Monkey Toxicity Study OF JPC-2056-I, A Third Generation Antifolate, 56TH Annual Meeting of the Am. Soc. Trop. Med. & Hyg., Philadelphia, PA, 2007.

Schiehser GA, Terpinski J, Ager AL, Magill AJ, Milhous WK, Ohrt C, Saunders DL, Kyle DE, Edstein MD, Reickmann KH, Shanks GD, Sibley CH, Canfield CJ, Jacobus LR, Jacobus DP. Pre-Clinical Mouse Toxicity Study OF JPC-2056-I, A Third Generation Antifolate, 56TH Annual Meeting of the Am. Soc. Trop. Med. & Hyg., Philadelphia, PA, 2007.

Edstein, M.D., Kotecka, B.M., Ager, A.L., O'Neil, M.T., Kyle, D.E., Schiehser, G.A., Reichmann, K.H., Jacobus, D.P. *Ex vivo* antimalarial activity of the third generation antifolate, JPC-2056 and its metabolite JPC-2067, in Cynomolgus monkeys. Am. Soc. Trop. Med. & Hyg. Washington, DC, 2005.

Schiehser, G.A., Shieh, H.M., Nevchas, I.K., Terpinski, J., Ager, A.L., Skillman, D.R., Milhous, W.K., Kyle, D.E., Edstein, M.D., Reichmann, K.H., Sibley, C.H., Canfield, C.J., Jacobus, L.R., Jacobus, D.P. Pre-clinical development of JPC-2056-I, a third generation antifolate. Am. Soc. Trop. Med. & Hyg. Washington, DC. 2005.

Freundlich, J.S., Shieh, H.M., Sarantakis, D., Anderson, J., Nevchas, I.K., Terpinski, J., Jacobus, L.R., Schiehser, G.A., Ager, A.L., Yu, M., Karagyozov, L., Lucumi, E., Kuo, M., Jacobs, W.R., Fidock, D.A., Sacchettini, J.C., Jacobus, D.P. Synthesis, biological activity, and x-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Am. Soc. Trop. Med. & Hyg. Washington, DC. 2005.

Schiehser, G.A., Shieh, H.M., Freundlich, J., Sarantakis, D., Anderson, J., Nevchas, I.K., Terpinski, J., Jacobus, L.R., Yu, M., Karagyozov, L., Lucumi, E., Kuo, M., Ager, A.L., Jacobs, W.R., Fidock, D.A., Sacchettini, J.C., Jacobus, D.P. 1,3-Daryl ureas and surrogates as inhibitors of *Plasmodium falciparum* enoyl ACP reductase and potential antimalarial therapeutics. Am. Soc. Trop. Med. & Hyg. Washington, DC, 2005.

Ager, A.L., Shearer, T.W., Schiehser, G.A., Jacobus, L.R., Jacobus, D.P. Reagent grade primate program. Am. Soc. Trop. Med. & Hyg. Miami, Fl. 2004.

Schiehser, G.A., Shieh, H.M., Nevchas, I.K., Terpinski, J., Ager, A.L., Skillman, D.R., Milhous, W.K., Shearer, T.W., Kyle, D.E., Edstein, M.D., Reichmann, K.H., Sibley, C.H., Canfield, C.J., Jacobus, L.R., Jacobus, D.P. A Pre-clinical candidate for development as a third generation antifolate. Am Soc. Trop. Med. & Hyg. Miami, Fl. 2004.

Jacobus, D.P., Jacobus, L.R., Ager, A.L., Schiehser, G.A. An oral dose-ranging toxicological study of PS-26: A potent analog of PS-15 in *Macaca fascicularis*. Am. Soc. Trop. Med. & Hyg., Denver, C0. 2002.

Palmer, C.J., Validum, L., Bonilla, J.A., Ager, A.L., Cuadrado, R.R. First appearance of Vivax-like malaria variant in Guyana, South America. Am. Soc. Trop. Med. & Hyg., Houston, TX. 2000.

Miller, D., Ager, A., Canfield, C., Jensen, N., Jacobus, D. Toxicity in Mice of PS-22, a New Antimalarial that is a Pro-Drug of a Triazine Related to WR 99210. Am. Soc. Trop. Med. & Hyg., Washington, DC. 1999.

Palmer, C.J., Validum, L., Ager, A.L., Vorndam, V., Clark, G., Lindo, J.F., Validum, C., Makler, M., Cuadrado, R.R. Simultaneous Occurrence of Malaria and Dengue in Guyana, South America. Am. Soc. Trop. Med. & Hyg., Washington, DC. 1999.

Dowdy, L., Castro, J., Ager, A., Martinez, O. Successful Use of Azithromycin as Adjunctive Therapy for Pseudomonas aeroginosa Sepsis in a Murine Model. ICAAC. San Francisco CA. 1999.

Palmer, C.J., L. Validum, J. Lindo, A. Campa, C. Validum, M. Makler, A. Ager. Field Evaluation of the OptiMAL Malaria Test for Following Therapy in Guyana. Am. Soc. Micro. Chicago, Ill. 1999.

- Palmer, C.J., J. Dubon, E. Koenig, A. Ager, D. Jayaweera, A. Rivera, A. Rubidi, and D. Palmer. Evaluation of the New Determine Rapid HIV Test Honduras and the Dominican Republic. Am. Soc. Micro. Chicago, Ill. 1999.
- Palmer, C.J., J. Dubon, W. Klaskala, R. Garcia-Bernal, R. Garcia, M. Baum and A. Ager. *Helicobacter pylori*: A potentially unrecognized health threat to HIV + individuals in developing countries. 12th World AIDS Conference. Geneva, Switzerland. June, 1998.
- Ager, A.L. New diagnostic tests for rickettsial and bacterial emerging diseases. 43rd Annual Commonwealth Caribbean Medical Research Council Meeting. Ocho Rios, Jamaica, April, 1998.
- Palmer, C.J., J. Dubon, M. Makler, V. Vorndam, W. Klaskala, M. Baum and A. Ager. Simultaneous outbreak of malaria and dengue in Honduras. International Conference on Emerging and Reemerging Diseases. Atlanta, Ga. March, 1998.
- Palmer, C.J., King, D., Baum, M., Ager, A.L. Comparison of the MDL and PanBio tests for detection of dengue fever in Jamaica. ICAAC, San Diego, Ca. Sept. 1998.
- Palmer, C.J., Validum, L., Makler, M., Baum, M., Ager, A.L. OptiMal verses traditional blood films for detection of malaria in Guyana. Am. Soc. Trop. Med. Hyg. Puerto Rico, Oct., 1998.
- Palmer, C.J., Ager, A.L. Current perspectives on military, scientific and industry viewpoints on obtaining FDA approval for new rapid diagnostic tests for tropical diseases. Symposium. Am. Soc. Trop. Med. Hyg. Puerto Rico, Oct. 1998.
- Palmer, C.J. and A.L. Ager. Obtaining FDA approval of the new diagnostic tests for tropical diseases. Am. Soc. Trop. Med. & Hyg. Orlando, Fl. Symposium, 1997.
- Ager, A.L., Thomas, L.M., Lindo, J.F., Paxton, H., Klaskala, W.I., Baum, M.K., and Palmer, C.J. Seroprevalence of *Rickettsia, Ehrlichia*, and *Leptospira* in Honduras, Central America. 46th Annual Meeting of Am. Soc. Trop. Med. & Hyg. Orlando, Fl. A. 235, 1997.
- Palmer, C.J., Lindo, J.F., Kaminsky, R.G., Baum, M.K., and Ager, A.L. Investigation of a malaria outbreak in Honduras using the OptiMAL test for rapid diagnosis. 46th Annual Meeting of Am. Soc. Trop. Med. & Hyg. Orlando, Fl. A. 500, 1997.
- Palmer, C.J., Dubon, J.M., Ager, A.L., Quesada, J., Shor-Posner, G., Zelaya, J., Klaskala, W., Baum, M.K. High prevalence of IgG antibodies to Helicobacter pylori in HIV positive patients in San Pedro Sula, Honduras. Am. Soc. Mic. Miami, Fl. 1997.
- Palmer, C.J., Lindo, J.F., Liang, X., deGourville, E., Ager, A.L., Quesada, J., Zelaya, J., Klaskala, W., Baum, M.K. A survey of dengue seroprevalence in Honduras, Central America. Pan American Clinical Virology Symposium. Clearwater, Fl. 1997.
- Palmer, C.J., deGourville, E.M., Dubon, J.M., Lindo, J.F., Ager, A.L., Baum, M.K. The effect of air transport and delayed analysis on the detection of Cryptosporidium in patient stools using antigendetection immunoassay, fluorescent antibodies and direct staining. PITTON. Atlanta, Ga. 1997.
- Ager, A.L., Morris, V.C., Levander, O.A. Effect of dietary vitamin E and para-aminobenzoic acid on malaria in mice fed mehanden oil. FASEB J 9(3):A2770, 1995.

Ager. A.L., Fontela, R., Morris, V.C., Levander, O.A. A menhaden oil vitamin E-deficient diet protects against cerebral malaria model. FASEB J. 7(3):A 874, 1993.

Morris, V.C., Ager, A.L., Fontela, R., Levander, O.A. Relative abilities of probucol, thioctic acid, and ascorbyl palmitate to block the antimalarial action of menhaden oil fed to vitamin E-deficient mice. FASEB J. 7(3):A 873, 1993.

Posner, G.H., Oh, C.H., Gerena, L., Milhous, W.K., Ager, A.L. Antimalarial tricyclic 1,2,3-trioxanes: Structure-activity relationships. 41st Annual Meeting for Am. Soc. Trop. Med. Hyg., Seattle, Washington, A 7, 1992.

Ager, A.L., Klayman, D.L., Lin, A.J. Transdermal activity of dihydroartemisinin against *Plasmodium berghei* infected mice. 41st Annual Meeting for Am. Soc. Trop. Med. Hyg., Seattle, Washington, A 197, 1992.

Levander, O.A., Ager, A.L., Morris, V.C., Fontela, R., May, R.G. Menhaden oil protects against malaria in mice fed ground chow. FASEB J. 6(4):A 1593, 1992.

Ager, A.L., Levander, O.A., Morris, V.C., Fontela, R., May, R.G. Once cured of malaria by a menhaden oil vitamin E-deficient diet, mice become resistant to rechallenge with parasite regardless of diet fed. FASEB J. 6(4):A 1594, 1992.

Morris, V.C., Ager, A.L., May, R.G., Fontela, R., Levander, O.A. Vitamin C, beta-carotene, and coenzyme Q₁₀ do not block the antimalarial action of menhaden oil fed to vitamin E-deficient mice. FASEB J. 6(4):1596, 1992.

Radha Krisha, V., Levander, O.A., Ager, A.L., Morris, V.C., Taylor, D.W. Antimalarial Antibody response of mice protected from lethal *Plasmodium yoelii* by a menhaden oil vitamin E-deficient diet. FASEB J. 6(4):1595, 1992.

Morris, V., Ager, A.L., Levander, O.A., May, R.G. Effect of dietary fat and vitamin E status on response of mice to antimalarials. FASEB J. 5(4):A 1205, 1991.

Levander, O.A., Ager, A.L., Morris, V., May, R.G. Comparative antimalarial effects on N-2 fatty acid ethyl esters in vitamin E-deficient mice. FASEB J. 5(5):A 4119, 1991.

Ager. A.L., Levander, O.A., Fontela, R., May, R.G., Morris, V.C. Chloroquine-resistant but not-sensitive *Plasmodium vinckei* cured in mice by menhaden oil diet deficient in vitamin E. FASEB J. 5(5):A 4120, 1991.

Vennerstrom, J.L., Ellis, W.Y., Ager, A.L., Andersen, S.L., Gerena, L., and Milhous, W.K. Bisquinolines. 1. Antimalarials with potential against chloroquine-resistant malaria. 40th Annual Meeting for Am. Sco. Trop. Med. Hyg. Boston, Mass. A 365, 1991.

Klayman, D.L., Ager, A.L., Fleckenstein, L.L., and Lin, A.J. An effective topical treatment of *Plasmodium berghei*-infected with artelinic acid. 40th Annual Meeting for Am. Sco. Trop. Med. Hyg. Boston, Mass. A 364, 1991.

Andersen, S.L., Vennerstrom, J.L., Hong-Ning F., Ellis W.Y., Ager, A.L., and Milhous, W.K. 1,2,4,5-Etraodanes: A new group of peroxide antimalarial drugs with potential for clinical utility. 40th Annual Meeting for Am. Sco. Trop. Med. Hyg. Boston, Mass. A 362, 1991.

Ager, A.L., Andersen, S.L., Louderback, A.L., May, R., and Milhous, W.K. Formaldehyde/detergent solution prevents blood borne transmission of *Plasmodium* infection in a mouse mode. 40th Annual Meeting for Am. Soc. Trop. Med. Hyg. Boston, Mass. A 247, 1991

Ager, A.L., May, R., 1990. Chloroquine-resistant *Plasmodium vinckei* parasites: Host parasite relationships and virulence. 39th Annual Meeting for Am. Soc. Trop. Med. Hyg. New Orleans, Louisiana, A 197, 1990.

Shmuklarsky, M.J., Klayman, D.L., Milhous, W.K., Kyle, D.E., Gerena, L., Rossan, R.N., Ager, A.L., Canfield, C.L., Schuster, B. Artemether and arteether vs. sodium artesunate and sodium artelinate: Efficacy *in vitro* and *in vivo* against malaria parasites. 39th Annual Meeting for Am. Soc. Trop. Med. Hyg. New Orleans, Louisiana, A 393, 1990.

Levander, O.A., Ager, A.L., Morris, V., May, R. Antimalarial activity of a marine omega-3 free fatty acid concentrate in vitamin E-deficient mice. FASEB J. 4(3): A 1380, 1990.

Ager, A.L., Levander, O.A., Fontela, R.G., Morris, V. Comparative antimalarial activity of menhaden oil diets deficient in vitamin E against 3 species of murine malaria. FASEB J. 4(3): A 1381, 1990.

Morris, V., Ager, A.L., May, R., Levander, O.A. Effect of selenium and synthetic antioxidants on the antimalarial action of menhaden oil fed to vitamin E-deficient mice. FASEB J. 4(3): A 1382, 1990.

Tian, X.M., Chen, S.Q., Ager, A.L., Levander, O.A. Antimalarial activity of Chinese traditional foods and medicinal herbs in mice. FASEB J. 4(3): A 2314, 1990.

Ager, A.L., Levander, O.A., May, R., Fontela, R.G., Morris, V. Omega-3 fatty acids from fish and plant oil sources exhibiting antimalarial activity in vitamin E-deficient mice. XI Congreso Latinoamericano de Parasitologia. Caracas, Venezuela. A 65, 1989.

Lin, A.J., Lee, M., Li, L.Q., Klayman, D.L., Milhous, W.K., Ager, A.L. New soluble artemisinin (qinghaosu) derivatives as antimalarial agents. 38th Annual Meeting for Am. Soc. Trop. Med. Hyg. Honolulu, Hawaii, A 519, 1989.

Ager, A.L., Levander, O.A., May, R., Morris, V. Menhaden oil in a vitamin E-deficient diet protects mice against chloroquine-resistant malaria. FASEB J. 3(3): A 658, 1989.

Levander, O.A., Ager, A.L., Morris, V., May, R. Comparative antimalarial action of plant and fish oil sources of omega-3 fatty acids in vitamin E-deficient mice. FASEB J. 3(3): A 659, 1989.

Levander, O.A., Ager, A.L., Morris, V., May, R. Contrasting antimalarial effects of fish oil and tropical plant oils in mice fed diets low in vitamin E. 14th International Congress of Nutrition. Seoul, Korea, 1989.

Ager, A.L., Levander, O.A., May, R., Morris, V. Antimalarial activity of peroxidized fish oil. XIIth International Congress for Tropical Medicine and Malaria. Amsterdam, The Netherlands. Excepta Medica. International Congress Series 810. p 347, 1988.

Ager. A.L., Levander, O.A., May, R., Morris, V. Further studies on the antimalarial action of fish oils in vitamin E-deficient mice. FASEB J. 2(6): A 1629, 1988.

Levander, O.A., Ager, A.L., Morris, V., May, R. Effects of qinghaosu, vitamin E, and fish oil on the susceptibility of mice to malarial infection. FASEB J. 2(5): A 1195, 1988.

May, R., Ager, A.L. Evaluation of experimental compounds for causal prophylactic activity against malaria in sporozoite inoculated mice. 37th Annual Meeting of Am. Soc. Trop. Med. Hyg. Washington, D.C. A 119, 1988.

Levander, O.A., Ager, A.L., Morris, V., May, R. Protection against malaria in mice by nutritional manipulation of host antioxidant status. 37th Annual Meeting of Am. Soc. Trop. Med. Hyg. Washington, D.C. A 320, 1988.

Levander, O.A., Ager, A.L., Morris, V., May, R. Effect of fish oils on malaria and trypanosomiasis in vitamin E-deficient mice. Am. J. Clin. Nutrition 47:762, 1988.

Ager, A.L, Levander, O.A., May, R., Morris, V. Effect of vitamin E-deficiency on the antimalarial action of qinghaosu in mice. Federation Proceedings 46:1163, 1987.

Musallam, H.A., Davidson, D.E., Rossan, R.N., Ager, A.L., Oduola, A.M.J., Kyle, D.E., Werbel, L.M., Milhous, W.K. Novel antimalarial "synergism" *in vivo* and *in vitro* between two steroisomers of the same drug. 37th Annual Meeting of Am. Soc. Trop. Med. Hyg. Los Angeles. A 328, 1987.

Levander, O.A., Ager, A.L., Morris, V., May, R. Effect of selenium and vitamin E-deficiency on the antimalarial action of qinghaosu in mice. Federation Proceedings, 1986.

20. Other works <u>accepted</u> for publication:

None

PROFESSIONAL

21. Editorial Responsibilities: Acta Tropica

22. Professional and Honorary Organizations (member; officer; date):

American Society of Microbiology American Society of Parasitology American Society of Tropical Medicine and Hygiene

23. Honors and Awards:

World Health Organizations Special Training Fellowship, April, 1978. University of Liverpool, England, Department of Tropical Medicine and Parasitology.

National Institute of Health Malariology Traineeship Fellow, University of Georgia, 1969-1972

Sociedad Ecuatoriana de Medicina Tropical y Parasitologia. (Honorary Member). 1988.

24. Other Professional activities (e.g., papers presented; performances; conference proceedings; seminar or conference panel member; catalogue work; etc.):

Conferences

First Rodent Malaria Genomics Meeting, Atlanta, Ga. Presented a paper entitled: The role of rodent malaria in antimalarial drug screening. 2001.

First American and Caribbean Workshop on Emerging and Re-emerging Diseases.

Tegucigalpa, Honduras. Presented a paper entitled: Malaria: Drug resistance and control in Central America. 1997.

Invited outside lectureships

Lectureships in Medical Parasitology, University of the West Indies, School of Medicine, Kingston, Jamaica, 1978, 1979, 1980, 1981.

Lectureship in Medical Parasitology, American University of the Caribbean, School of Medicine, Montserrat, 1982.

Consultantships

Consultant in Medical Parasitology to Universidad Cayetano Heredia, Lima, Peru.

25. TEACHING

Teach Medical Parasitology to MD students as part of MIC 501.

Teach Medical Parasitology to MD/MPH students

Teach Medical Parasitology MIC 322.

Teach Special Project Parasitology MIC 452 (Laboratory Course).

Teach Medical Parasitology part of MIC 301.

26. Thesis and Dissertation Advising/Post-doctoral student supervision (chairman or committee member; topic; student name; date):

David Lowery, Ph.D. June 1985.

Mary Kalscheuer, M.S. Biology Department, 1986.

Jorge Bonilla, Ph.D. Dept of Pathobiology, University of Florida 2004.

Tereza Magalhaes, Ph.D. Dept of Epidemiology 2005.

Appendix Leishmania

TABLE 1 MLS RESULTS

	T			1
				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
960	1	BQ97891	10	-52
	2	BS80118	160	-77
	3	BS82658	80	-151
	4	BS83397	20	-61
	5	BS83637	80	-85
	6	BS83646	80	-20
	7	BS84027	10	-151
	8	BS85293	40	-3
	9	BS85355	40	-192
	10	BU24067	20	-13
	11	BU30654	160	-18
	12	BU55197	160	56
	13	BU55204	160	100
	14	BS82354	80	-76
	15	BS79660	15	-8
	16	AF84868	80	-6
	17	BD36704	160	-88
	18	BM18573	160	-2
	19	BN34143	40	1
	20	BN43106	20	-87
	21	BN62067	160	38
	22	BN68532	5	-21
	23	BS94407	12.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
961	1	BN79704	20	Toxic
	2	BP16828	160	26
	3	BP20206	80	59
	4	BP21187	160	-29
	5	BQ35168	20	-48
	6	BQ35346	160	36
	7	BQ35382	160	33
	8	BQ35435	160	-29
	9	BQ90098	40	67
	10	BQ90552	10	51
	11	BQ90605	80	22
	12	BQ91942	80	-13
	13	BQ93197	40	-14
	14	BQ94836	10	-44
	15	BQ95235	40	14
	16	BQ95397	5	-17
	17	BQ95548	160	-54
	18	BQ95860	20	-66
	19	BQ96303	40	-59
	20	BR36919	80	-2
	21	BS81946	160	100
	22	BS82265	160	-14
	23	BS94407	12.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
969	1	BS83191	160	51
	2	BS83413	160	37
	3	BS84296	5	25
	4	BS84732	10	-2
	5	BS85051	10	20
	6	BS85999	80	25
	7	BS86085	80	73
	8	BS86245	40	-4
	9	BS89442	80	-6
	10	BS89951	10	20
	11	BS93384	40	12
	12	BS93768	160	-65
	13	BS96474	160	-37
	14	BU25304	10	-11
	15	BU25939	10	-30
	16	BU30118	40	53
	17	BQ90767	80	34
	18	BQ90794	5	-34
	19	BQ90810	20	9
	20	BQ90838	20	18
	21	BQ90981	160	52
	22	BQ91086	10	-27
	23	BS94407	12.5	97

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
970	1	BQ91540	160	6
	2	BQ91602	80	23
	3	BQ92029	160	-63
	4	BQ92083	160	-13
	5	BQ92145	160	54
	6	BQ92494	160	7
	7	BQ92761	10	14
	8	BQ93142	20	-20
	9	BQ93160	80	-47
	10	BQ93188	160	-23
	11	BQ93375	160	25
	12	BQ93400	160	-20
	13	BQ93446	10	7
	14	BQ93482	80	-36
	15	BQ93642	160	-30
	16	BQ93688	40	-45
	17	BQ93768	40	-30
	18	BQ94345	5	23
	19	BQ94381	40	-99
	20	BQ94416	40	-58
	21	BQ94443	20	-27
	22	BQ94452	20	12
	23	BS94407	12.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
971	1	BQ94461	80	-86
	2	BQ94470	10	-31
	3	BQ94505	80	-12
	4	BS83495	80	-92
	5	BS83575	10	-73
	6	BU25957	20	40
	7	BU30047	20	-51
	8	BQ91219	40	-29
	9	BQ91264	20	-5
	10	BQ91291	40	-66
	11	BQ91308	160	-65
	12	BQ91317	160	43
	13	BQ91399	80	-65
	14	BQ91433	20	-101
	15	BQ91451	80	-19
	16	BQ91479	4	-134
	17	BQ92798	20	Toxic
	18	BQ93035	20	-30
	19	BQ93295	10	21
	20	BQ93339	40	-33
	21	BQ93491	160	-103
	22	AG03635	10	-36
	23	BS94407	12.5	99

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
972	1	AJ64549	40	-39
	2	AR12559	80	4
	3	AW46149	10	-1
	4	BJ01377	16	1
	5	BM39769	20	-66
	6	BQ94498	40	33
	7	BQ94514	16	31
	8	BQ94569	20	-9
	9	BQ94578	10	11
	10	BQ94587	20	-67
	11	BQ94783	10	-71
	12	BQ94809	10	12
	13	BQ94818	20	-15
	14	BQ94854	2.5	-50
	15	BQ94872	20	-117
	16	BQ94916	5	-44
	17	BQ94934	160	-91
	18	BQ95137	10	-110
	19	BQ95164	10	-67
	20	BQ95379	10	-66
	21	BQ95404	20	-15
	22	BQ95511	40	-76
	23	BS94407	12.5	100

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
973	1	BQ95628	40	-17
	2	BQ95691	160	8
	3	BQ95717	20	-20
	4	BQ95799	10	15
	5	BQ96107	40	-1
	6	BQ96125	160	-3
	7	BQ96223	160	-14
	8	BQ96232	40	-5
	9	BS05259	10	-8
	10	BS80529	160	-14
	11	BS80583	40	Toxic
	12	BS80592	5	-11
	13	BS83360	160	11
	14	BS83904	80	-51
	15	BS83959	40	-52
	16	BS85257	10	-10
	17	BU24594	160	0
	18	BU29357	5	-88
	19	BU30109	80	-17
	20	BU30243	40	-65
	21	BQ92547	2.5	-4
	22	BQ94701	80	27
	23	BS94407	12.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
985	1	BU24281	40	18
	2	BS93740	160	29
	3	BS94069	40	17
	4	BS96670	160	-5
	5	AR49261	40	43
	6	AK55401	5	28
	7	AK78459	40	Toxic
	8	AQ52825	20	88
	9	BQ91424	20	27
	10	BQ97220	20	23
	11	BQ99215	2.5	23
	12	BS04930	20	50
	13	BS05268	5	16
	14	BS57459	160	47
	15	BS79464	160	20
	16	BS79624	80	-51
	17	BS80690	80	51
	18	BS82470	80	18
	19	BS83299	5	Toxic
	20	BS85284	160	-43
	21	BS88132	2.5	-57
	22	BS92449	20	-13
	23	BS94407	12.5	100

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
989	1	BS93553	5	100
	2	BS94265	40	41
	3	BS96189	20	-10
	4	BU24790	10	5
	5	BU26730	160	78
	6	BU59640	40	100
	7	BU60063	20	-75
	8	BH13827	20	47
	9	BM36240	80	-4
	10	BQ96296	160	-2
	11	BQ96483	160	-11
	12	BS82005	80	-23
	13	BS82032	160	38
	14	BS82210	80	7
	15	BS83440	80	-16
	16	BS83548	160	-8
	17	BS84652	80	-6
	18	BS85131	160	-18
	19	BS85168	20	32
	20	BU22223	40	27
	21	BU23177	160	-25
	22	BU23239	20	-46
	23	BS94407	12.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
990	1	BU24325	80	15
	2	BQ97248	80	-81
	3	BS82489	80	-7
	4	BS82505	40	6
	5	BS84858	60	54
	6	BS85408	40	-1
	7	BS85757	160	-21
	8	BU28421	20	9
	9	BS82336	80	3
	10	BS84849	20	-74
	11	BS86192	40	0
	12	BS88016	10	-70
	13	BU23720	40	37
	14	BQ97613	40	2
	15	BQ97640	20	-45
	16	BQ97659	40	-35
	17	BS82550	40	Toxic
	18	BS82612	40	38
	19	BS83271	80	-34
	20	BS83342	40	-51
	21	BS83708	80	-18
	22	BS83806	80	-32
	23	BS94407	12.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
991	1	BS83959	20	-9
	2	BS84741	160	28
	3	BS85202	160	-2
	4	BS86254	20	9
	5	BS92501	60	Toxic
	6	BS96483	80	-270
	7	BU22876	20	15
	8	BU24085	20	-55
	9	BU24101	20	-21
	10	BU26114	40	-32
	11	BQ99242	2.5	-42
	12	BQ99279	20	11
	13	BR29496	10	-29
	14	BR29521	10	-27
	15	BR29567	10	25
	16	BS82621	80	-84
	17	BU68407	40	-7
	18	BU68416	20	99
	19	BU68425	160	6
	20	BU68434	160	8
	21	BU68443	5	-64
	22	BU68452	80	3
	23	BS94407	12.5	100

TABLE 2 MLS ACTIVES

TEGT	COMPOUND	AAC/VC/DAV	<u>%</u>
<u>TEST</u>	COMPOUND	MG/KG/DAY	SUPPRESSION
960	BU 55197	160	56
	BU 55204	160	100
960	BP 20206	80	59
	BQ 90098	40	67
	BQ 90552	10	51
	BS 81946	160	100
969	BS 83191	160	51
	BS 86085	80	73
	BU 30118	40	53
	BQ 90981	160	52
970	BQ 92145	160	54
985	AQ 52825	20	88
	BS 04930	20	50
	BS 80690	80	51
989	BS 93553	5	100
	BU 26730	160	78
	BU 59640	40	100
990	BS 84858	60	54
	BU 68416	20	99

TABLE 3 MLL TESTS

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
965	1	AB11829	160	-19
	2	AB65390	160	-5
	3	AR18631	40	3
	4	AR18631	20	3
	5	AR18631	10	3
	6	BQ91102	20	4
	7	BQ92001	40	-2
	8	BQ92001	20	-2
	9	BQ92001	10	-2
	10	BQ92314	40	-7
	11	BQ95833	40	19
	12	BQ95833	20	19
	13	BQ95833	10	19
	14	BS84983	160	-9
	15	BS94407	37.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
966	1	BS84821	40	16
	2	BS84821	20	16
	3	BS84821	10	16
	4	BS82247	80	1
	5	AC97879	80	6
	6	AT29027	80	7
	7	BG21744	20	-17
	8	BG21744	40	2
	9	BQ93179	40	-3
	10	BQ93795	40	-9
	11	BQ93795	40	-9
	12	BQ94532	80	-3
	13	BQ97506	160	Toxic
	14	BS79786	40	-21
	15	BS80029	20	15
	16	BU25331	40	17
	17	BS94407	37.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
967	1	BG32694	80	1
	2	BH30346	10	6
	3	BL23622	160	10
	4	BM13827	80	-2
	5	BN08009	80	7
	6	BQ35177	10	20
	7	BQ93624	80	-12
	8	BQ95762	40	-1
	9	BQ97186	10	4
	10	BS83244	10	-13
	11	BS85444	10	34
	12	BS88025	80	5
	13	BU25180	40	26
	14	BU27997	40	Toxic
	15	BS94407	37.5	100

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
976	1	BU30574	40	-8
	2	BG32694	80	-27
	3	BL23622	160	-3
	4	BM13827	80	20
	5	BN08009	80	10
	6	BQ93624	80	-17
	7	BQ95762	40	-11
	8	BS88025	80	-16
	9	BU25180	40	15
	10	BU27997	40	4
	11	BU30574	40	-8
	12	BS94407	37.5	99

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
978	1	BQ35177	5	-2
	2	BS85444	5	Toxic
	3	BU27997	20	-5
	4	BS82247	40	-34
	5	AC97879	40	-33
	6	BQ97506	80	Toxic
	7	BQ97506	40	Toxic
	8	BS79786	20	-28
	9	BL23622	80	5
	10	BL23622	40	5
	11	BS88025	40	-26
	13	BS88025	20	-9
	14	BN08009	40	5
	15	BN08009	20	5
	16	BS94407	37.5	96

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
981	1	BG32694	40	50
	2	BG32694	25	50
	3	BG32694	15	50
	4	BM13827	40	37
	5	BM13827	20	37
	6	BM13827	10	37
	7	BM13827	5	37
	8	BU25180	20	33
	9	BU25180	10	33
	10	BU25180	5	33
	11	BS94407	37.5	100

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
983	1	BU59640	10	27
	2	BU59640	10	64
	3	BU59640	20	27
	4	BU59640	20	64
	5	BU59640	40	27
	6	BU59640	40	64
	7	BS94407	37.5	76

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
ILGI	OKOOI	COMI COME	IVIIND	301 1 KE331014
984	1	BU60072	20	0
	2	BU60072	40	11
	3	BU60081	0	2
	4	BU60081	0	-20
	5	BS94407	37.5	96

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
986	1	BG32694	40	22
	2	BG32694	25	22
	3	BG32694	15	22
	4	BM13827	40	22
	5	BM13827	20	22
	6	BM13827	10	22
	7	BM13827	5	22
	8	BU25180	20	28
	9	BU25180	10	28
	10	BU25180	5	28
	11	BS94407	37.5	99

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
987	1	BS83191	160	-30
	2	BS83413	160	-58
	3	BS84296	5	-50
	4	BS86085	40	-35
	5	BS85999	80	-28
	6	BS89951	10	-59
	7	BU30118	40	-63
	8	BQ90981	160	-32
	9	BS94407	37.5	85

				%
TEST	GROUP	COMPOUND	MKD	SUPPRESSION
988	1	BS94407	37.5	82
	2	BU59640	40	67
	3	NONE	0	
	4	BQ95762	20	16
	5	BQ95762	10	16
	6	BQ95762	5	16
	7	BQ93624	40	23
	8	BQ93624	20	23
	9	BQ93624	10	23
	10	BN62067	80	8
	11	BU55197	80	7
	12	BU55204	80	6

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
993	1	BU68407	40	-31
	2	BU68416	20	14
	3	BU68425	160	-10
	4	BU68434	160	-14
	5	BU68443	5	22
	6	BS94407	37.5	100

TEST	GROUP	COMPOUND	MKD	% SUPPRESSION
996	1	BU68452	80	64
	2	BU59640	40	-1
	3	BS93553	5	-4
	4	BS81508	160	-4
	5	BQ93786	40	-22
	6	BU26730	80	-28
	7	BQ93759	80	-29
	8	ZP74275	10	-17
	9	BU30190	160	-17
	10	ZW61835	160	-22
	11	BS94407	37.5	100

TABLE 4 MLL ACTIVES

TEST	COMPOUND	MKD	% SUPPRESSION
981	BG 32694	40	50
983	BU 59640	40	64
988	BU 59640	40	67
996	BU 68452	80	80