Instructions: For each problem, circle the letter of the best answer. You **must show all work** for credit. Partial credit may be awarded as appropriate.

- 1. If $f(x) = \frac{\ln x}{x}$, for all x > 0, which of the following is true?
 - (a) f is increasing for all x greater than o.
 - (b) f is decreasing for all x between o and 1.
 - (c) f is decreasing for all x between 1 and e.
 - (d) f is increasing for all x greater than 1.
 - (e) f is decreasing for all x greater than e.
- 2. The absolute maximum value of $f(x) = x^3 3x^2 + 12$ on the closed interval [-2, 4] occurs at x = 1
 - (a) 2
 - (b) -2
 - (c) 1
 - (d) 4
 - (e) 0
- 3. If the graph of $y = x^3 + ax^2 + bx 4$ has a point of inflection at (1, -6), what is the value of b?
 - (a) 0
 - (b) 1
 - (c) 3
 - (d) -3
- 4. The function f given by $f(x) = x^3 + 12x 24$ is
 - (a) decreasing for x < 0, increasing for x > 0
 - (b) decreasing for x < -2, increasing for -2 < x < 2, decreasing for x > 2
 - (c) decreasing for all x
 - (d) increasing for x < -2, decreasing for -2 < x < 2, increasing for x > 2
 - (e) increasing for all x

- 5. The function f given by $f(x) = 3x^5 4x^3 3x$ has a relative maximum at $x = 3x^5 4x^3 3x$
 - (a) -1
 - (b) $-\frac{\sqrt{5}}{5}$
 - (c) 1
 - (d) $\frac{\sqrt{5}}{5}$
 - (e) 0
- 6. What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$?
 - (a) -5
 - (b) 5
 - (c) $-\frac{10}{3}$
 - (d) -10
 - (e) 0
- 7. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =
 - (a) -1 and 0 only
 - (b) -1 and 2 only
 - (c) -1, 0, and 2 only
 - (d) 2 only
 - (e) -1 only
- 8. If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 4)g(x)$, which of the following is true?
 - (a) It cannot be determined if f has any relative extrema.
 - (b) f has relative maxima at x = -2 and at x = 2.
 - (c) f has a relative maximum at x = -2 and a relative minimum at x = 2.
 - (d) f has relative minima at x = -2 and at x = 2.
 - (e) f has a relative minimum at x = -2 and a relative maximum at x = 2.

9. What is the derivative of $y = \csc \sqrt{t}$?

(a)
$$-\frac{\csc\sqrt{t}\cot\sqrt{t}}{2\sqrt{t}}$$

(b)
$$-\sqrt{t}\cot^2\sqrt{t}$$

(c)
$$-\cot^2 \sqrt{t}$$

(d)
$$-\csc\sqrt{t}\cot\sqrt{t}$$

10. The graph of a twice-differentiable function f is shown in the figure below.

Which of the following is true?

(a)
$$f''(1) < f(1) < f'(1)$$

(b)
$$f'(1) < f(1) < f''(1)$$

(c)
$$f''(1) < f'(1) < f(1)$$

(d)
$$f(1) < f''(1) < f'(1)$$

(e)
$$f(1) < f'(1) < f''(1)$$

Free Response 1

The function

$$f(x) = \frac{x}{x^2 + 4}$$

has first derivative

$$f'(x) = \frac{4 - x^2}{(x^2 + 4)^2}$$

and second derivative

$$f''(x) = \frac{2(x^3 - 12x)}{(x^2 + 4)^3}$$

Sketch the graph of f(x) after completing the following questions:

- 1. State any domain restrictions for f(x)
- 2. Determine any critical points of f(x)
- 3. State intervals on which f(x) is increasing or decreasing
- 4. State intervals on which f(x) is concave up or concave down
- 5. Calculate any horizontal asymptotes of f(x)

Free Response 2

The graph f'(x) of the derivative of f(x) is shown below. f'(x) has horizontal tangents at x = -2, 2, 4 and zeros at x = -4, 0, 4. The domains of f'(x) and f(x) are [-6, 6].

1. On which x intervals is the function f decreasing? Justify your answer.

- 2. At which x value(s) does f have a local minimum? Justify your answer.
- 3. On which x intervals is the function f concave up? Justify your answer.

Test ID: 1414213 Page: 5