

FIRST SEMESTER 2021-2022 **Course Handout (Part II)**

Date: 05/08/2021

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No: CHE G558

Course Title:

Chemical Process Optimization

Instructor-in-charge: Dr. Arnab Dutta

Course Description: Introduction to Process Modelling and simulation, Fundamentals of analytical optimization. Survey of one dimensional line-search methods, and multi-dimensional unconstrained and constrained numerical optimization algorithms. Applications of linear programming, nonlinear programming, mixed integer linear/ nonlinear programming, and parameter estimation in chemical engineering. Feasible-path and infeasible-path techniques for chemical process flowsheet optimization, Evolutionary computation in Chemical Engineering.

1. Objective & Motivation:

The objective of this course is to introduce optimization techniques to students and discuss how to use optimization algorithms to improve the design and operation of the chemical process industry. The course will be divided into three modules. The first module will emphasize the mathematical formulation of the optimization problem. We will discuss how to develop an objective function of different types and the equality and inequality constraints. In the second module of the course, we will select a solution technique that is best suited for finding the maxima and minima of an objective function in single and multiple variables (both

unconstrained and constrained). We will learn both linear and non-linear programming for the particular type of objective function. Finally, in the third module, we will discuss some examples, case studies, and evolutionary computation tools for solving the optimization problems associated with the process industry.

Upon successful completion of this course, the student will be able to:

- Identify an optimization problem
- Formulate objective function with decision variables and constraints
- Choose the appropriate method for the solution of the optimization problem
- Learn about applications of optimization in chemical engineering domain

Text Books:

T1: Optimization of Chemical Processes, T. F. Edgar, D. M. Himmelblau and L. S. Lasdon, 2nd

Edition, McGraw Hill, 2001.

T2: Engineering Optimization: Theory and Practice, S. S. Rao, 4th Edition, John Wiley & Sons, Inc, 2009

Course Plan:

Lec.	Learning	Topics to be covered	Resource
No.	Objectives		
1	Introduction	 Get to know the students Understand students' notion about the subject Introduction to the course 	
2-3	What is Optimization	Chapter: 1 (T1)	
4-6	Formulation of Optimization problems	Objective functionDecision variablesConstraints	Chapters: 2-3 (T1), 1 (T2)
7-9	Fundamentals of analytical optimization	 Basic concepts: Continuity of functions Convex and concave functions Necessary & sufficient conditions 	Chapters: 4 (T1), 2 (T2)

10- 15	Linear programming	for an extremum of an unconstrained function Geometry of linear programs Simplex algorithm Duality in linear programming Decomposition principle Sensitivity analysis	Chapters: 3-4 (T2), 7 (T1)
16- 20	Nonlinear programming: One dimensional methods	Elimination methodsInterpolation methods	Chapter: 5 (T2)
21- 25	Nonlinear programming: Unconstrained techniques	Direct search methodsIndirect search methods	Chapters: 6 (T2), 8(T1)
26- 30	Nonlinear Programming: Constrained techniques	 Characteristics of a constrained problem Direct methods Indirect methods 	Chapter: 7 (T2)
31- 33	Mixed Integer Progra	Chapters: 9 (T1), 10(T2)	
34- 37	Modern Methods of Optimization	Particle Swarm OptimizationGenetic Algorithm	Chapter: 13 (T2)
38- 39	Introduction to Mul	Chapter: 14 (T2)	

2. Evaluation Scheme:

Component	Duratio	Weighta	Date & Time	Remarks
	n	ge		
	(minute	(%)		
	s)			
Mid-Term	90	30	TBA Later	Open Book
Assignments: 2		25	TBA in the	Nature of assignments
			class	will be discussed in the
				class
Project: 1		10	TBA in the	Nature of project will be
			class	discussed in the class
Comprehensive	120	35	TBA Later	Open Book
Examination				

- 3. Consultation Hour: Will be announced in the class.
- **4. Notices:** Notices concerning the course will be communicated via CMS.
- **5. Make-up Policy:** Make-up will be granted only for genuine cases with valid justification and only with prior permission of Instructor-in-charge.
- **6. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Arnab Dutta

Arnab Julta

Instructor-in-charge CHE G558