P5 - SEGMENTEZ DES CLIENTS D'UN SITE DE E-COMMERCE

Etudiant: Luc Rogers

Mentor: Etienne Sanchez

Sommaire

- □ 1. Problématique
- □ 2. Nettoyage
- □ 3. Feature engineering
- □ 4. Exploration
- □ 5. Modélisations
 - KMeans
 - DBSCAN
 - RFM
- 6. Stabilité dans le temps

3 Problématique

Problématique

- Segmentation des clients d'une plateforme de e-commerce
- Objectifs:
 - Fournir à l'équipe marketing une segmentation clients actionnable
 - Proposition de contrat de maintenance (analyse de la stabilité des segments au cours du temps)

Base de données open source :

https://www.kaggle.com/olistbr/brazilian-ecommerce

5 Nettoyage

Nettoyage

- - Orders, 'order_id'
 - Customers, 'customer_unique_id'
- On ne garde que les ordres ayant abouti (livraison effectuée, 'order-status'
 = delivered)
- Suppression des produits dont la catégorie n'est pas renseignée
- Supression des ordres avec bug sur la date d'approbation/de livraison
- Supression des quelques lignes avec valeurs manquantes
- Création à la main de catégories plus larges
 - → Jeu de données très propre, très peu de nettoyage à réaliser

- Order reviews:
 - order_id: ID de la commande
 - review_id: ID de l'avis utilisateur
 - review_creation_date: date de création de l'avis
 - review_score: note attribuée par l'utilisateur sur sa commande
- Order payments:
 - order_id
 - payment_installments : en combien de fois l'achat a été effectuée
 - payment_value: montant de l'achat
- Products:
 - product_category_name: catégorie du produit
 - product category name translation: traduction en anglais
- Order items:
 - order_id

- Customers:
 - customer_id: ID du client par commande (similaire à order_id?)
 - customer_unique_id: ID du client
 - customer_state: état de résidence du client
- Orders:
 - order_id
 - order_purchase_timestamp: data d'achat
 - order_delivered_customer_date: date de livraison
 - order_estimated_delivery_date: date de livraison estimée
- Products:
 - product_category_name: catégorie du produit
 - product_category_name_translation: traduction en anglais

- On réalise un 'merge' sur la variable 'order_id' des df suivants :
 - orders
 - order_reviews
 - order_payments
 - order_items
- On merge ensuite sur la variable 'customer_id' du df:
 - customers
- On réalise enfin un groupby sur la variable 'customer_unique_id':
 - Mean:
 - délai_livraison
 - retard_livraison
 - review_score
 - payment_installment
 - □ Sum:
 - payment_value
 - categories (variables encodées en one hot encoding)
 - First:
 - customer_states (variables encodées en one hot encoding)

- Variables du jeu de données cleané:
 - Récence (nombre de jours depuis le dernier achat)
 - Fréquence (nombre d'achat sur la période étudiée)
 - Montant (montant total des achats)
 - Délai de livraison
 - Retard de livraison (par rapport à la date de livraison estimée)
 - Review score
 - Payment installments (nombre de paiements)
 - Catégories des produits achetés (one hot encoding)
 - Etats de résidence (one hot encoding)

Distribution par catégorie

- Des catégories relativement bien distribuées
- → On passe de 73 à 16 catégories

Distribution par états

→ Distribution majoritaire vers Sao Paulo (SP)

Modélisations

- KMeans
- **DBSCAN**
- RFM

- Hyperparamètre: k, le nombre de clusters
- Illustration du concept:

1 er essai avec toutes les variables

→ Les scores obtenus ne permettent pas d'identifier un nombre de clusters optimal

□ 1^{er} essai avec toutes les variables, exemple avec k=12

→ Les clusters sont trop corrélés avec les états

2ème essai, sans les états:

→ Les scores obtenus ne permettent pas d'identifier un nombre de clusters optimal

→ Groupes 4 et 5 à prioriser!

□ 2nd essai sans les états, exemple avec k=6

Distribution par cluster

Modélisations – DBSCAN

- Hyperparamètre: epsilon, min_samples
- Illustration du concept:

Red: Core Points

Yellow: Border points. Still part of the cluster because it's within epsilon of a core point, but not does not meet the min_points criteria

Blue: Noise point. Not assigned to a cluster

Modélisations - DBSCAN

 Estimation d'epsilon en regardant la distance aux voisins de chaque point

On fixe epsilon de façon à ce que 90% des points aient au

moins un voisin

Modélisations - DBSCAN

min_samples = [60, 80, 100]

eps = [0.67, 1.04]

Modélisations – Segmentation RFM

- Segmentation manuelle: attribution d'un score en fonction des variables Récence-Fréquence-Montant:
 - □ CORE '123' most recent, frequent, revenue generating core customers that should be considered as most valuable clients
 - GONE '311', '312', '313' gone, one-timers those clients are probably gone
 - ROOKIE '111', '112', '113' just have joined new clients that have joined recently
 - WHALES '323', '213', '223 most revenue generating whales that generate revenue
 - LOYAL '221', '222', '321', '322' loyal users
 - REGULAR '121', '122', '211', '212' average users just regular customers that don't stand out

Modélisations – Segmentation RFM

Distribution des segments

Modélisations – Segmentation RFM

Correspondance avec KMeans

Evolution des flux clients pour 6 clusters tous les 1 mois

Evolution des flux clients pour 6 clusters tous les 3 mois

Evolution des flux clients pour 6 clusters tous les 6 mois

Conclusion

- Algorithmes non supervisés assez peu performants globalements sur ce jeu de données
- □ Pas de cluster qui se détache distinctement à part celui des retards de livraison, qui engendrent de mauvais avis
- □ La plupart des consommateurs n'achètent qu'une fois (97% de la base de données)
- Contrat de maintenance tous les 3 mois

Merci de votre attention

Annexe