

1. (15 Punkte)

Sei $U = \{0, 1, 2, 3, 4, 5\}$ und $T = \{0, 1, 2\}$. Betrachten wir die folgenden 5 Funktionen von U nach T:

$$h_1(x) = (x+1) \mod 3$$
 $h_2(x) = (x+2) \mod 3$ $h_3(x) = x \mod 2$
 $h_4(0) = h_4(5) = 2$ $h_4(1) = h_4(2) = 1$ $h_4(3) = h_4(4) = 0$
 $h_5(0) = h_5(1) = 2$ $h_5(2) = h_5(3) = 1$ $h_5(4) = h_5(5) = 0$

Bestimmen Sie eine Funktion h_6 von U nach T, sodass $\{h_1, h_2, h_3, h_4, h_5, h_6\}$ eine universelle Menge von Hashfunktionen bildet.

2. (15 Punkte)

Eine Menge \mathcal{H} von Funktionen $h: U \to \{0, 1, \dots, t-1\}$ heißt pseudo-universell, wenn für jedes $x \in U$ und jedes $i \in \{0, 1, \dots, t-1\}$ gilt

$$\frac{|\{h \in \mathcal{H} \mid h(x) = i\}|}{|\mathcal{H}|} \le \frac{1}{t}.$$

Es sei nun $S \subset U$ mit |S| = n.

- (a) Zeigen Sie, dass bei zufälliger Wahl einer Hashfunktion aus einer pseudo-universellen Familie \mathcal{H} für jedes $i \in \{0, 1, \dots, t-1\}$ die erwartete Anzahl von Elementen von S, die durch h auf i abgebildete werden, höchstens n/t ist. Die erwartete Größe jedes "Hash-buckets" ist also n/t.
- (b) Zeigen Sie, dass trotz der kleinen erwarteten Hash-bucket-Größen pseudo-universelle Hasfunktionen keine gute Idee sind.

Geben Sie eine Familie \mathcal{H} an, die zwar pseudo-universell ist, für die aber die Operationen SEARCH und DELETE wesentlich mehr als $\Omega(n/t)$ Operationen brauchen.

3. (10 Punkte)

Es sei U ein Schlüsseluniversum und für i=0,1 sei T_i jeweils eine Hashtafel der Größe t_i . Des weiteren seien \mathcal{H}_i jeweils eine universelle Familie von Hashfunktionen von U nach T_i .

Es sei nun $T = T_0 \times T_1$ eine Hashtafel der Größe $t = t_0 \cdot t_1$. Wir können ein Paar $(h_0, h_1) \in \mathcal{H}_0 \times \mathcal{H}_1$ als Funktion von U nach T auffassen, definiert als

$$(h_0, h_1)(x) = (h_0(x), h_1(x)).$$

Zeigen Sie, dass die Familie \mathcal{H} aller dieser Paare eine universelle Familie von Hashfunktionen von U nach T bildet.

4. (15 Punkte)

Es sei $U=\{0,1\}^d$ die Menge aller Bitstrings der Länge d. Für jedes $a\in U$ definiere die Funktion $h_a:U\to\{0,1\}$ durch

$$h_a(x) = (a_1 \wedge x_1) \operatorname{xor}(a_2 \wedge x_2) \operatorname{xor} \cdots \operatorname{xor}(a_d \wedge x_d).$$

- (a) Zeigen Sie, dass die Menge $\mathcal{H} = \{h_a | a \in U\}$ eine universelle Menge von Funktionen von U nach $\{0,1\}$ ist.
- (b) Wie kann man mit dieser Idee eine universelle Familie von Hashfunktionen von U nach $\{0,1\}^s$ bekommen für irgendein gegebenes s>1?