# Advanced Gym Recommender (AGR) 💝



Join now!





# **OUR TEAM**

Meet the creator of AGR!

# AGR's Developer



### 01. PROJECT INTRODUCTION

Project scope, background, motivation and goal

### 02. BACK-END SOLUTION

Recommendations logic and implementation

### 03. FRONT-END SOLUTION

UI application design and back-end integration

#### 04. SNEAK PEAK

Preview of the upcoming application in demand: AGR

#### 05. CONCLUSION

Solution overview, limitation and future improvement





# PROJECT INTRODUCTION

Market research, project scope and goal

### Background & Project Objectives

#### Market overview

Global gym industry is worth US\$96.7billion

Projected 230 million members by 2030, CAGR of 2.9%

### Rise of 'Digital fitness'

Global fitness application valued at US\$4.4 billion

# Challenges in exercise personalisation



Inadequate knowledge for newcomers



Selected routines do not meet fitness goals/preferences



Lack of motivation & accountability

## **Project Objectives**

01

Perform knowledge acquisition, discovery and representation

02

Design Recommender system to curate unique and relevant workouts

03

Provide User-user connections to improve retention





# BACK-END SOLUTION

Recommendations logic and implementation

### **RECOMMENDATION STRATEGY**



### For the first timer



First time Fanny

I have never used this app before, how will it know what I like?

> No worries! I just need some basic information from you and I can get your first recommendation ready

#### First recommendation needs to:

- Not cause too much hassle for the user
- Work with initially limited data on the user
- Provide a usable recommendation for user to rate afterwards to build up rating data for subsequent recommendations



### Content-based recommendation: Cosine Similarity

- Initial exercise selected by user serves as a proxy for representing his/her preferences (feature vector)
- Feature vector of selected exercise used as input to calculate cosine similarity with other exercises

$$similarity = \cos( heta) = rac{A.\,B}{||A||\,||B||} = rac{\sum_{i=1}^n A_i imes B_i}{\sqrt{\sum_{i=1}^n \left(A_i
ight)^2}\,\sqrt{\sum_{i=1}^n \left(B_i
ight)^2}}$$



## First pass recommendation flow

#### User input

•User chooses one out of 4 random exercises filtered to exercise goal

#### Exercise goals:

- General fitness
- Muscle building
- Endurance training

# Feature extraction

• Specific features from exercise are identified and used for similarity measurement

#### Bag-of-words

•Create a vector representation for the words in the selected features

# Similarity detection

• Use Cosine
Similarity as
a means to
determine
similarity of
exercise
selected to
the others in
database

# Similarity ranking

•Rank
exercises in
database
according to
Cosine
similarity
and
recommend
the top few

# First pass recommendation schematic



## Subsequent exercise recommendations



# Exercise buddy recommendation



# Exercise group recommendation









# FRONT-END SOLUTION

UI application design and back-end integration

# System Architechture



## Front-end webpage connections schematics





# **SNEAK PEAK**

Preview of the upcoming application in demand: AGR

## AGR — Home





# AGR — Mode Selection





## AGR — General Fitness





# AGR - Muscle Building





# AGR - Endurence





# AGR - Glossary





# AGR — Exercise Buddy







## Project achievements & future improvments



Extraction of domain knowledge and design of business rules, knowledge discovery of item features



Development of interactive frontend UI



Development of recommender system via model-based approach, with both exercise and user recommendations



Further improvements include using larger datasets of real user ratings and cloud implementations



Visit us at: <a href="https://github.com/chwa0001/IRSPM">https://github.com/chwa0001/IRSPM</a>

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

