PEC 1. Asignatura: Análisis de Datos Ómicos

José Alberto Camacho López

2025-04-02

1. Selección de dataset

En este primer apartado visitamos la página de Github del Borenstein Lab y encontramos datos curados de metabolómica (https://github.com/borenstein-lab/microbiome-metabolome-curated-data) y elegimos el dataset de FRANZOSA_IBD_2019 (https://github.com/borenstein-lab/microbiome-metabolome-curated-data/tree/main/data/processed_data/FRANZOSA_IBD_2019)

2. Carga de archivos y creación de un objeto de clase SummarizedExperiment

Cargamos las librerías necesarias

```
# Cargamos la librería readr para leeer archivos .tsv o .csv
library(readr)
# Cargamos la librería SummarizedExperiment
library(SummarizedExperiment)
## Cargando paquete requerido: MatrixGenerics
## Cargando paquete requerido: matrixStats
##
## Adjuntando el paquete: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
```

```
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Cargando paquete requerido: GenomicRanges
## Cargando paquete requerido: stats4
## Cargando paquete requerido: BiocGenerics
##
## Adjuntando el paquete: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
   The following objects are masked from 'package:base':
##
##
##
       anyDuplicated, aperm, append, as.data.frame, basename, cbind,
       colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##
##
       get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##
       match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##
       Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
       table, tapply, union, unique, unsplit, which.max, which.min
##
## Cargando paquete requerido: S4Vectors
##
## Adjuntando el paquete: 'S4Vectors'
## The following object is masked from 'package:utils':
##
       findMatches
##
## The following objects are masked from 'package:base':
##
       expand.grid, I, unname
##
## Cargando paquete requerido: IRanges
##
## Adjuntando el paquete: 'IRanges'
## The following object is masked from 'package:grDevices':
##
##
       windows
## Cargando paquete requerido: GenomeInfoDb
## Cargando paquete requerido: Biobase
## Welcome to Bioconductor
##
       Vignettes contain introductory material; view with
```

```
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Adjuntando el paquete: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
## rowMedians
## The following objects are masked from 'package:matrixStats':
##
## anyMissing, rowMedians
```

Cargamos la matriz de expresión génica (genera.counts.csv), con las muestras en las filas y las bacterias del microbioma en las columnas; el archivo de metadatos de las muestras (metadata.csv), que será utilizados como metadata de las filas (samples); y el archivo que contiene información adicional sobre los metabolitos (mtb.csv)

Creamos el objeto Summarized Experiment. Aunque previamente fusionamos los datos de counts y los de los metabolitos, eliminamos la primera columna Sample y verificamos que metadata_clean\$Sample coincide con rownames(data_matrix):

```
data_matrix <- cbind(counts[,-1], metabolites[,-1])</pre>
```

Verificamos que metadata clean\$Sample coincide con rownames(data matrix):

```
all(metadata_clean$Sample %in% rownames(data_matrix))
## [1] TRUE
```

Ahora sí, creamos el objeto SummarizedExperiment:

```
# Crea el SummarizedExperiment
se <- SummarizedExperiment(</pre>
  assays = list(counts = as.matrix(data_matrix)),
  rowData = metadata clean
)
# Mostrar se
Se
## class: SummarizedExperiment
## dim: 220 20566
## metadata(0):
## assays(1): counts
## rownames(220): PRISM.7122 PRISM.7147 ... Validation.UMCG9189151
##
   Validation.UMCG9830707
## rowData names(9): Sample Study.Group ... mesalamine steroids
## colnames(20566):
d__Bacteria.p__Firmicutes_A.c__Clostridia.o__Oscillospirales.f__CAG.272.g
  Flemingibacterium
d__Bacteria.p__Firmicutes_A.c__Clostridia.o__Lachnospirales.f__Lachnospir
aceae.g__F0428
   ... HILIC.pos_Cluster_2375..NA HILIC.pos_Cluster_2376..NA
## colData names(0):
```

Extraemos los metadatos de las muestras:

```
metadata se <- rowData(se)
metadata_se
## DataFrame with 220 rows and 9 columns
##
                                            Sample Study.Group
                                                                      Age
Age.Units
                                       <character> <character> <integer>
##
<character>
## PRISM.7122
                                        PRISM.7122
                                                            CD
                                                                       38
Years
                                        PRISM.7147
## PRISM.7147
                                                            CD
                                                                       50
Years
## PRISM.7150
                                        PRISM.7150
                                                            CD
                                                                       41
Years
## PRISM.7153
                                        PRISM.7153
                                                            CD
                                                                       51
Years
## PRISM.7184
                                        PRISM.7184
                                                            CD
                                                                       68
Years
## ...
                                                                      . . .
## Validation.UMCG8255148 Validation.UMCG8255148
                                                            UC
                                                                       21
Years
## Validation.UMCG8438880 Validation.UMCG8438880
                                                                       32
                                                            CD
```

Years	V-1: d-+: 1	IMCC011001	1.2	CD	20
## Validation.UMCG9119812	validation.	JMCG911981	12	CD	38
Years ## Validation.UMCG9189151	Validation L	IMCC01901	- 1	CD	51
Years	valluation.	JIICO 910913) T	CD	21
## Validation.UMCG9830707	Validation L	IMCGQQQQAT	27	CD	43
Years	valluation.	אלפכסבמאויונ	07	CD	43
##	Fecal.Calpro	ntectin :	antihiotic		
immunosuppressant	recar.carpre	JUECULII 6	ancibiocic		
##	<ir< td=""><td>nteger> <</td><td>character></td><td></td><td></td></ir<>	nteger> <	character>		
<pre><character></character></pre>	\	iceBe. / (
## PRISM.7122		207	No		
Yes		_0,			
## PRISM.7147		NA	No		
No					
## PRISM.7150		218	No		
Yes					
## PRISM.7153		NA	No		
No					
## PRISM.7184		20	No		
No					
##			• • •		
• • •					
## Validation.UMCG8255148		40	No		
No					
## Validation.UMCG8438880		45	No		
Yes					
## Validation.UMCG9119812		305	No		
Yes					
## Validation.UMCG9189151		44	No		
Yes					
## Validation.UMCG9830707		NA	No		
No		steroi	: da		
##	mesalamine				
## ## DDTCM 7122	<pre><character></character></pre>	Characte			
## PRISM.7122 ## PRISM.7147	No Yes		No No		
## PRISM.7150					
## PRISM.7150	No Yes		No No		
## PRISM.7184	No		No		
## FNI3M./104 ##					
## Validation.UMCG8255148	Yes	•	No		
## Validation.UMCG8438880	No		No		
## Validation.UMCG9119812	No		No		
## Validation.UMCG9189151	No		No		
## Validation.UMCG9830707	No	١	Yes		
			_ =		

Las principales diferencias entre SummarizedExperiment, perteneciente a la librería de su mismo nombre,y ExpressionSet, que pertenece a la librería Biobase (ambos de Bioconductor), son

- El primero usa assays, esto es, múltiples matrices de expresión como counts,
 FPKM, TPM, etc., mientras ExpressionSet sólo permite una matriz de expresión (assayData), con las genes en las filas y las muestras en columnas.
- Para los datos fenotípicos es más flexible SummarizedExperiment pues guarda los datos en colData, un dataframe, al contrario que ExpressionSet, que lo hace en phenoData (objeto de tipo AnnotatedDataFrame).
- Para anotación de genes pasa igual, SummarizedExperiment usa rowData, de nuevo un dataframe, más sencillo de entender que el formato AnnotatedDataFrame de ExpressionSet.
- Los metadatos son guardados en ExperimentData, de formato MIAME (Minimum Information About a Microarray Experiment), mientras el formato metadata de SE es más flexible.
- Dado que ExpressionSet está orientado a análisis de microarrays es más antiguo y es compatible con algunos paquetes antiguos de Bioconductor; mientras SummarizedExperiment, más moderno, fue concebido para trabajar con RNA-Seq y, por lo tanto, se vincula con paquetes como DESeq2, edgeR o limma.

3. Análisis Exploratorio

A continuación, procedemos a realizar un análisis exploratorio de nuestros datos:

```
# Vemos primeras filas de la matriz de counts y sus dimensiones
head(assay(se), 5)[, 1:5] # solo las primeras 5 filas y primeras 5
columnas
d Bacteria.p Firmicutes A.c Clostridia.o Oscillospirales.f CAG.272.g
 Flemingibacterium
## PRISM.7122
53
## PRISM.7147
785
## PRISM.7150
21881
## PRISM.7153
## PRISM.7184
139
d Bacteria.p Firmicutes A.c Clostridia.o Lachnospirales.f Lachnospir
aceae.g F0428
## PRISM.7122
37
## PRISM.7147
491
```

```
## PRISM.7150
359
## PRISM.7153
110
## PRISM.7184
462
##
d Bacteria.p Firmicutes A.c Clostridia.o Lachnospirales.f Lachnospir
aceae.g__Lachnoanaerobaculum
## PRISM.7122
472
## PRISM.7147
2548
## PRISM.7150
790
## PRISM.7153
401
## PRISM.7184
1167
##
d__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Carnobacteriac
eae.g Carnobacterium A
## PRISM.7122
## PRISM.7147
103
## PRISM.7150
64
## PRISM.7153
30
## PRISM.7184
16
##
d__Bacteria.p__Firmicutes_A.c__Clostridia.o__Lachnospirales.f__Lachnospir
aceae.g GCA.900066755
## PRISM.7122
1268
## PRISM.7147
8012
## PRISM.7150
63641
## PRISM.7153
1222
## PRISM.7184
1308
dim(assay(se))
## [1] 220 20566
```

```
# Ver dimensiones de Los metadatos
dim(rowData(se))
## [1] 220 9
```

Realizamos un resumen inicial de los datos de conteo:

```
# Convertimos los valores de conteo a un vector
counts_vector <- as.vector(t(assay(se)))
summary(counts_vector)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 0 0 1752 46 59525299</pre>
```

Esto muestra que los datos de conteo tienen una gran dispersión, pues tanto el mínimo como la mediana y primer cuartil es cero, además de un tercer cuartil realmente bajo. Sabemos entonces que más del 50% de los datos son cero. Es un distribución muy sesgada. Comprobamos la proporción de ceros:

```
mean(as.vector(t(assay(se)) == 0))
## [1] 0.552032
```

En este caso, deberemos trabajar con una transformación logarítmica de la data, antes de realizar los boxplots de distribución. Lo hacemos en tres slicing de nuestras miles de muestras:

```
# Aplicar la transformación logarítmica, log1p (log(1 + x)) a los datos
de conteo
data_log <- log1p(assay(se))</pre>
# Luego, aplicar estandarización (z-score)
data_std <- scale(data_log)</pre>
# Crear el objeto SummarizedExperiment con los datos estandarizados
se_std <- SummarizedExperiment(</pre>
  assays = list(counts = data std),
  rowData = rowData(se),
  colData = colData(se)
)
# Ver la estructura del objeto resultante
se_std
## class: SummarizedExperiment
## dim: 220 20566
## metadata(0):
## assays(1): counts
## rownames(220): PRISM.7122 PRISM.7147 ... Validation.UMCG9189151
     Validation.UMCG9830707
## rowData names(9): Sample Study.Group ... mesalamine steroids
```

```
## colnames(20566):
##
d__Bacteria.p__Firmicutes_A.c__Clostridia.o__Oscillospirales.f__CAG.272.g
 Flemingibacterium
##
d__Bacteria.p__Firmicutes_A.c__Clostridia.o__Lachnospirales.f__Lachnospir
aceae.g F0428
     ... HILIC.pos_Cluster_2375..NA HILIC.pos_Cluster_2376..NA
## colData names(0):
counts_vector <- as.vector(assay(se_std))</pre>
summary(counts_vector)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
## -8.8775 -0.4671 -0.1663 0.0000 0.4174 14.7650
```

La distribución se distribuye más homogéneamente. Ahora, la miramos en un histograma:

```
# Crear histograma
hist(
   counts_vector,
   breaks = 50,
   col = "steelblue",
   border = "white",
   main = "Histograma de los valores de counts",
   xlab = "Valores de counts",
   ylab = "Frecuencia",
   xlim = c(0, quantile(counts_vector, 0.99))
)
```

Histograma de los valores de counts

Y realizamos boxplots por conjunto de muestras, ya que son demasiadas para verlas en un único gráfico:

Distribución de valores de conteo por muestra

Dispersión

bastante alta.

Distribución de valores de conteo por muestra

En este caso la

dispersión es muy alta.

Distribución de valores de conteo por muestra

Cierta dispersión aquí.

Realizamos asimismo un cálculo de las componentes principales y la representación gráfica de la PC1 VS. PC2

```
# Realizar PCA usando prcomp
PCAS <- prcomp(assay(se_std))</pre>
# Mostramos cúales son las PCA
names(PCAS)
## [1] "sdev"
                  "rotation" "center"
                                         "scale"
# Mostramos las primeras filas de los primeros dos componentes
principales
head(PCAS$x[, 1:2])
                                  PC2
##
                       PC1
## PRISM.7122 -8.8543192
                            34.061730
## PRISM.7147 92.8440687 -24.149805
## PRISM.7150 71.8482616
                            -1.705047
## PRISM.7153 -16.6856543
                             7.747795
## PRISM.7184
               -0.7243619
                            20.240239
## PRISM.7238 -50.0862131 -21.811204
```

Debemos calcular cuánto se dispersan estas dos componentes principales con la varianza explicada por cada una de estas componentes:

```
# Calculamos la varianza explicada por cada componente
explained_variance <- PCAS$sdev^2 / sum(PCAS$sdev^2)

# Hacemos el porcentaje de varianza explicada
PC1_perc <- explained_variance[1] * 100
PC2_perc <- explained_variance[2] * 100</pre>
```

Mostramos las dos primeras componentes principales en un gráfico de dispersión:

Primeros dos componentes principales

Por último, caracterizamos las muestras en un clustering jerárquico

Para ello y en primer lugar, calculamos la distancia euclídea entre muestras:

```
# Cálculo de la distancia euclidia entre muestras
dist_matrix <- dist(assay(se_std), method = "euclidean")

# Realiza clustering jerárquico
hc <- hclust(dist_matrix, method = "ward.D2")

hc

##
## Call:
## hclust(d = dist_matrix, method = "ward.D2")

##
## Cluster method : ward.D2
## Distance : euclidean
## Number of objects: 220</pre>
```

Ploteamos el dendograma:

```
# Dendrograma de clustering jerárquico
plot(hc, labels = colnames(t(assay(se_std))), main = "Clustering
Jerárquico de las Muestras", cex = 0.7)
```

Clustering Jerárquico de las Muestras

dist_matrix hclust (*, "ward.D2")

Parece haber

tres grupos marcados y por eso tal vez veíamos tres grupos de distribuciones diversas.

Realizamos un heatmap de expresión:

```
library(ComplexHeatmap)
Heatmap(
  t(assay(se_std))[1:30, 1:30],
  column_names_gp = gpar(fontsize = 8),
  row_names_gp = gpar(fontsize = 3)
) # Recortamos, para que sea legible
```


Vemos que los metabolitos primero y 27º son los más sobreexpresados de la lista.

4. Creación de los archivos

Creamos los archivos pedidos en el enunciado:

```
# Guardamos el objeto SummarizedExperiment
#save(se, file = "data/se_object.Rda") # Para los datos originales
#save(se_std, file = "data/se_std_object.Rda") # Para los datos
estandarizados

# Guardamos la matriz y los metadatos en txt
#write.table(assay(se), file = "data/counts_matrix.txt", sep = "\t",
quote = FALSE)
#write.table(rowData(se), file = "data/metadata.txt", sep = "\t", quote =
FALSE)

#write.table(assay(se_std), file = "data/counts_matrix_std.txt", sep =
```

```
"\t", quote = FALSE)
#write.table(rowData(se_std), file = "data/metadata_std.txt", sep = "\t",
quote = FALSE)
```