Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа $N_{2}1$

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $(\mbox{группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

2025

Содержание

1	Формулировка задания		
	1.1 Задача 1	3	
	1.2 Задача 2	3	
2	Формализация	4	
3	Выполнение работы	4	
4	Результаты	5	
	4.1 Плотности вероятности и гистограммы	5	
	4.1 Плотности вероятности и гистограммы	7	
5	Вывод	9	

1 Формулировка задания

Для 4 распределений:

- Нормальное распределение N(x, 0, 1)
- ullet Распределение Коши C(x,0,1)
- \bullet Распределение Пуассона P(k,10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

1.1 Задача 1

Сгенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.

1.2 Задача 2

Стенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: $\bar{x}, medx, z_Q$. Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов. Вычислить оценку дисперсии. Представить полученные данные в виде таблиц.

2 Формализация

• Выборочное среднее:

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i \tag{1}$$

• Выборочная медиана:

$$medx = \begin{cases} z_{\frac{n+1}{2}} & n \text{ - нечётное} \\ \frac{z_{\frac{n}{2}} + z_{\frac{n+2}{2}}}{2} & n \text{ - чётное} \end{cases}$$
 (2)

• Полусумма квартилей:

$$z_Q = \frac{z_{\frac{1}{4}} + z_{\frac{3}{4}}}{2} \tag{3}$$

• Среднее:

$$E(z) = \bar{z} \tag{4}$$

• Оценка дисперсии:

$$D(z) = \bar{z^2} - \bar{z}^2 \tag{5}$$

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, scipy, pandas, mathplotlib. Были сгенерированны выборки, построены графики и гистограммы (сохранялись в виде файлов png), оценены характеристики распределений (выводились в консоль в формате таблиц LATEX). Программа отработала корректно.

4 Результаты

4.1 Плотности вероятности и гистограммы

Рис. 1: Нормальное распределение.

Рис. 2: Распределение Коши.

Рис. 3: Распределение Пуассона.

Рис. 4: Равномерное распределение.

4.2 Характеристики распределений Normal distribution

Sample size 10

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0.0	0.0	0.0
$D(z)^{(5)}$	0.109	0.14	0.13

Sample size 100

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_Q^{(3)}$
$E(z)^{(4)}$	0.0	0.00	-0.02
$D(z)^{(5)}$	0.010	0.016	0.013

Sample size 1000

	$x^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0.00	0.00	0.00
$D(z)^{(5)}$	0.0009	0.0015	0.00118

Cauchy distribution

Sample size 10

	$x^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0	0.0	0.0
$D(z)^{(5)}$	414	0.3	1.08

Sample size 100

	$x^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0	0.0	-0.03
$D(z)^{(5)}$	6e+3	0.024	0.05

Sample size 1000

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0	0.00	0.007
$D(z)^{(5)}$	15e+2	0.0025	0.0048

Poisson distribution

Sample size 10

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_Q^{(3)}$
$E(z)^{(4)}$	10	9.8	9.9
$D(z)^{(5)}$	1.024	1.5	1.24

Sample size 100

	x ⁽¹⁾	$med x^{(2)}$	$\mathbf{z}_Q^{(3)}$
$E(z)^{(4)}$	10	9.8	9.9
$D(z)^{(5)}$	0.09	0.21	0.16

Sample size 1000

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_Q^{(3)}$
$E(z)^{(4)}$	10	10	10
$D(z)^{(5)}$	0.009	0.006	0.003

Uniform distribution

Sample size 10

	$x^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0.0	0.0	0.0
$D(z)^{(5)}$	0.09	0.22	0.13

Sample size 100

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0.00	0.00	-0.02
$D(z)^{(5)}$	0.0099	0.028	0.015

Sample size 1000

	$X^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0.00	0.00	0.00
$D(z)^{(5)}$	0.0009	0.0027	0.0014

В сносках указаны номера формул, по которым происходило вычисление/ оценка.

Дисперсия оценивалась с точностью до четырёх значащих цифр, среднее - до двух.

5 Вывод

В ходе лабораторной работы было изучено четыре распределения: нормальное, Пуассона, Коши, равномерное. Для каждого были сгенерированны выборки размеров, указанных в соответствующих пунктах задания.

Для каждого распределения и размера выборки были построены гистограммы и графики плотности вероятности. Было замечено, что при увеличении числа элементов в выборке, гистограмма становится более похожей на график функции плотности.

Также были оценены различные характеристики каждой выборки.

В случае нормального распределения можно заметить, что характеристики положения и рассеивания с увеличением выборки приближаются к нулю, что объясняется симметричностью распределения.

Распределение Коши имеет особое поведение: выборочное среднее не имеет конечного математического ожидания или дисперсии, поэтому значение оказывается нестабильным. Характеристики положения и рассеивания медианы и полусуммы квартилей в случае распределения Коши приближаются к нулю (также в силу симметричности).

В случае распределения Пуассона характеристики положения оказались примерно равными 10. Оценка дисперсии стремится к нулю при увеличении числа элементов, что также согласуется с теорией (здесь, например, $D(\bar{x}) = \frac{10}{n}$).

Для равномерного распределения оценки также устремляются к нулю,

что согласуется с их теоретической оценкой (в силу симметричности интервала математическое ожидание величин должно быть равно нулю, а в силу обратной зависимости от количества элементов дисперсии оно также приближается к нулю).

Также отметим, что выборочное среднее будет иметь самую низкую дисперсию среди всех оценок, не считая распределения Коши, поскольку для них оно наилучшим образом приближает мат ожидание.

Таким образом, в ходе данной лабораторной работы были изучены свойства основных распределений и их оценки.