

Appunti di Basi Dati Modulo I

Colacel Alexandru Andrei

Disclaimer

INDICE

Indice

	Lemma della Chiusura1.1 Dimostrazione \Rightarrow	2 2 2
	Teorema $F^+ = F^A$ 2.1 Dimostrazione $F^A \subseteq F^+$	
3	Chiusura di X	5
4	Lemma Chiusura Inclusione	6
5	Chiusura di X in G	7
6	Join songs pordits	S

1 Lemma della Chiusura

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R. Si ha che:

$$X \to Y \in F^A \Longleftrightarrow Y \subseteq X^+ \tag{1}$$

1.1 Dimostrazione \Rightarrow

Dato $X \to Y \in F^A$, per la regola della decomposizione, otteniamo:

$$X \to A \in F^A, \quad \forall A \in Y$$
 (2)

e quindi, per definizione di X^+ , otteniamo che:

$$A \in X^+, \quad \forall A \in Y$$
 (3)

che significa:

$$Y \subseteq X^+ \tag{4}$$

1.2 Dimostrazione \Leftarrow

Dato:

$$Y \subseteq X^+ \tag{5}$$

si ottiene che:

$$X \to A \in F^A \quad \forall A \in Y \tag{6}$$

che implica, per la regola dell'unione, che:

$$X \to Y \in F^A \tag{7}$$

2 Teorema $F^+ = F^A$

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, si ha che:

$$F^{+} = F^{A} \tag{8}$$

2.1 Dimostrazione $F^A \subseteq F^+$

• Caso base (n = 0): se $X \to Y \in F^A$ senza aver applicato alcun assioma di Armstrong, allora l'unica possibilità è che:

$$X \to Y \in F^A \Leftrightarrow X \to Y \in F \tag{9}$$

Siccome $X \to Y \in F$, allora

$$X \to Y \in F \Rightarrow X \to Y \in F^+ \tag{10}$$

• Ipotesi induttiva forte: ogni dipendenza funzionale in F^A ottenuta da F applicando $k \le n$ assiomi di Armstrong è anche in F^+ :

$$X \to Y \in F^A tramitek \le nassiomi \Rightarrow X \to Y \in F^+$$
 (11)

• Passo induttivo: è necessario dimostrare che se $X \to Y \in F^A$ dopo aver applicato n+1 assiomi di Armstrong, allora $X \to Y \in F^+$.

È possibile ritrovarsi in uno dei seguenti tre casi:

1. Se l'(n+1)-esimo assioma applicato è l'assioma di riflessività, allora l'unica possibilità è che:

$$X \to Y \in F^A \Leftrightarrow Y \subseteq X \subseteq R \tag{12}$$

Dunque, poiché, $Y \subseteq X \subseteq R$, per ogni istanza legale di R si ha che:

$$\forall t_1, t_2 \in r_1, t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y] \tag{13}$$

da cui ne segue automaticamente che $X \to Y \in F^+$

2. Se l'(n+1)-esimo assioma applicato è l'assioma di aumento, allora è obbligatoriamente necessario che:

$$-\exists V, W \subseteq R \mid \exists V \to W \in F_A$$
, ottenuta applicando $j \leq n$ assiomi di Armstrong

$$-\exists Z\subseteq R\,|\,X:=VZ,\,Y:=WZ$$

Affinché si abbia che:

$$Z \subseteq R, V \to W \Rightarrow VZ \to WZ = X \to Y \in F^A$$
 (14)

Siccome per ipotesi induttiva si ha $V \to W \in F^A \Rightarrow V \to W \in F^+$ e siccome $Z \subseteq Z \Rightarrow Z \to Z \in F^+$, si vede facilmente che:

$$\begin{cases} V \to W \in F^+ \\ Z \to Z \in F^+ \end{cases} \implies \begin{cases} \forall t_1, t_2 \in r, t_1[V] = t_2[V] \implies t_1[W] = t_2[W] \\ \forall t_1, t_2 \in r, t_1[Z] = t_2[Z] \implies t_1[Z] = t_2[Z] \end{cases} \implies$$

$$\implies \forall t_1, t_2 \in r, t_1[VZ] = t_2[VZ] \implies t_1[WZ] = t_2[WZ] \implies$$

$$\implies \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y] \implies X \to Y \in F^+$$

3. Se l'(n+1)-esimo assioma applicato è l'assioma di transitività, allora è obbligatoriamente necessario che $\exists X \to Z, Z \to Y \in F^A$, ottenute con $k \le n$ assiomi di Armstrong, affinché si abbia che:

$$X \to Z \in F^A \lor Z \to Y \in F^A \Rightarrow X \to Y \in F^A \tag{15}$$

Siccome per ipotesi induttiva $X \to Z \in F^A \Rightarrow X \to Z \in F^+$ e $Z \to Y \in F^A \Rightarrow Z \to Y \in F^+$, si

vede facilmente che:

$$\begin{cases} X \to Z \in F^+ \\ Z \to Y \in F^+ \end{cases} \Longrightarrow$$

$$\Longrightarrow \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Z] = t_2[Z] \implies t_1[Y] = t_2[Y] \implies$$

$$\Longrightarrow X \to Y \in F^+$$

2.2 Dimostrazione $F^+ \subseteq F^A$

- Sia $X \subseteq R$ e sia r istanza di $R(X^+, R - X^+)$ tale che

	X^+			$R-X^+$		
A_1		A_i	A_j		A_n	
1		1	1		1	
1		1	0		0	

dunque tale che $\forall t_1, t_2 \in r$ si ha:

*
$$t_1[X^+] = (1, \dots, 1) = t_2[X^+]$$

*
$$t_1[R-X^+] = (1,\ldots,1) \neq (0,\ldots,0) = t_2[R-X^+]$$

– Notiamo che $\forall V, W \subseteq R \mid V \to W \in F$ si ha che:

- * Se $V \cap R X^+ \neq \emptyset$ (dunque anche se $V \subseteq R X^+$) allora $t_1[V] \neq t_2[V]$, dunque r soddisfa $V \to W \in F$
- * Se invece $V \subseteq X^+$, per il lemma precedentemente visto si ha che

$$V \subseteq X^+ \iff X \to V \in F^A$$

Siccome $V \to W \in F \implies V \to W \in F^A$, per transitività si ha che

$$X \to V \in F^A \land V \to W \in F^A \implies X \to W \in F^A \iff W \subseteq X^+$$

Nota

Poiché $F^+ = F^A$, per calcolare F^+ ci basta applicare gli assiomi di Armstrong sulle dipendenze in F in modo da trovare F^A .

Tuttavia, calcolare $F^+ = F^A$ richiede tempo esponenziale, quindi $O(2^{nk})$: considerando anche solo l'assioma di riflessività, siccome ogni possibile sottoinsieme di R genera una dipendenza e siccome i sottoinsiemi possibili di R sono $2^{|R|}$, allora ne segue che $|F^+| >> 2^{|R|}$.

Dunque, siccome $V,W\subseteq X^+,$ in definitiva si ha che

$$t_1, t_2 \in r, t_1[V] = (1, \dots, 1) = t_2[V] \land t_1[W] = (1, \dots, 1) = t_2[W]$$

e quindirsoddisfa ogni $V \to W \in {\cal F}$

- Siccome in entrambi i casi rsoddisfa ogni $V \to W \in {\cal F},$ allora rè legale.
- A questo punto, una qualsiasi dipendenza $X \to Y \in F^+$ deve essere soddisfatta da qualsiasi istanza legale di R, inclusa r stessa
- Poiché $X\subseteq X^+$, ne segue che la dipendenza non può essere soddisfatta a vuoto poiché $t_1[X]=t_2[X]$. Dunque, l'unica possibilità affinché $X\to A\in F^+$ sia soddisfatta da r è che $Y\subseteq X^+$ in modo che si abbia $t_1[Y]=t_2[Y]$
- A questo punto, per il lemma si ha che $Y \subseteq X^+ \iff X \to Y \in F^A$
- Dunque, siccome $X \to Y \in F^+ \implies X \to Y \in F^A$, concludiamo che $F^A \subseteq F^+$

3 Chiusura di X

4 Lemma Chiusura Inclusione

5 Chiusura di X in G

6 Join senza perdita