Teoremes de Càlcul en una variable

Capítol 1. Els nombres reals.

Teorema 1.1.10 (\mathbb{R} , +, ·, \leq) és l'*únic* cos ordenat arquimedià complet que conté els racionals com a subcòs ordenat. Per tant, els axiomes ($\mathbf{R1}$)-($\mathbf{R18}$) caracteritzen els nombres reals.

Teorema 1.2.7 Siguin $x, y \in \mathbb{R}$ amb x < y. Aleshores, existeixen $\alpha \in \mathbb{Q}$ i $\beta \in \mathbb{R} \setminus \mathbb{Q}$ tals que $x < \alpha < y$ i $x < \beta < y$. Tenim doncs que entre dos reals qualssevol hi ha infinits nombres racionals i infinits nombres irracionals.

Capítol 2. Funcions i successions. Límits.

Teorema 2.2.34 (Teorema de la convergència monòtona) Tota successió a_n monòtona i fitada és convergent. Observació: $\lim a_n = \sup\{a_n : n \in \mathbb{N}\}.$

Teorema 2.4.2 Les successions (s_n) i $(t_n)_{n\geq 1}$ definides per

$$s_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 $t_n = \left(1 + \frac{1}{n}\right)^n$

són convergents i tenen el mateix límit (el nombre e).

Teorema 2.4.6 El nombre e és irracional.

Teorema 2.5.4 (Teorema de Bolzano-Weierstrass) Tota successió fitada de nombres reals admet una successió parcial convergent.

Teorema 2.5.7 Qualsevol successió fitada de nombres reals admet límit superior i límit inferior.

Teorema 2.6.3 Qualsevol successió de Cauchy de nombres reals és convergent.

Capítol 3. Funcions contínues.

Teorema 3.2.1 (Teorema de Bolzano) Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval $I \subset \mathbb{R}$. Siguin $a, b \in I$ tals que a < b i f(a)f(b) < 0. Aleshores existeix $\alpha \in (a, b)$ tal que $f(\alpha) = 0$.

Teorema 3.2.10 (Teorema de Weierstrass) Sigui $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una funció contínua en l'interval tancat [a,b]. Aleshores existeixen $\alpha,\beta\in[a,b]$ tals que $m=f(\alpha)$ i $M=f(\beta)$ són, respectivament, el mínim absolut i el màxim absolut de la funció f.

Teorema 3.3.5 (Teorema de Heine) Tota funció contínua en un interval tancat és uniformement contínua.

Teorema 3.4.1 Per a tot nombre real positiu a > 0, existeix una única funció f contínua (i, pel Teorema 5.4.13, derivable) a \mathbb{R} tal que

1

- f(x+y) = f(x)f(y) per a qualssevol $x, y \in \mathbb{R}$
- f(1) = a

Aquesta funció s'anomena funció exponencial de base a, i compleix que $f(x) = a^x$.

Capítol 4. Derivació.

Teorema 4.2.3 (Teorema de Rolle) Sigui $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una funció tal que:

- f és contínua a [a, b]
- f és derivable a (a, b)
- f(a) = f(b)

Aleshores existeix $\xi \in (a, b)$ tal que $f'(\xi) = 0$.

Teorema 4.2.4 (Teorema de Cauchy) Siguin $f, g : [a, b] \subset \mathbb{R} \to \mathbb{R}$ funcions tals que:

- f i g són contínues a [a, b]
- f i g són derivables a (a,b)
- $g(a) \neq g(b)$
- per a tot $x \in (a, b)$, $f'(x) \neq 0$ o bé $g'(x) \neq 0$.

Aleshores existeix $\xi \in (a, b)$ tal que $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

Teorema 4.2.5 (Teorema del Valor Mig) Sigui $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una funció tal que:

- f és contínua a [a, b]
- f és derivable a (a, b)

Aleshores existeix $\xi \in (a, b)$ tal que $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

Capítol 5. Integració.

Teorema 5.1.14 Sigui $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una funció monòtona (i, per tant, fitada). Aleshores f és integrable.

Teorema 5.1.16 Sigui $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una funció contínua (i, per tant, fitada). Aleshores f és integrable.

Teorema 5.2.3 (Regla de Barrow) Siguin $f:[a,b]\to\mathbb{R}$ una funció integrable i $F:[a,b]\to\mathbb{R}$ una primitiva de f. Aleshores

$$\int_{a}^{b} f = F(b) - F(a)$$

Teorema 5.2.5 (Teorema Fonamental del Càlcul) Sigui $f:[a,b]\to\mathbb{R}$ una funció integrable i considerem la funció $F:[a,b]\to\mathbb{R}$ definida per $F(x)=\int_a^x f$ per a tot $x\in[a,b]$. Aleshores

- F és contínua a [a,b] i,
- si f és contínua a $c \in (a,b)$, aleshores F és derivable a c i F'(c) = f(c).

Teorema 5.2.9 (Teorema del Valor Mig per a Integrals) Sigui $f:[a,b] \to \mathbb{R}$ una funció contínua. Aleshores existeix $c \in (a,b)$ tal que $\int_a^b f = f(c)(b-a)$.

2