Chap11

Anjali Krishnan and Richard Troise

```
library(xtable)
library(gmodels)
```

First, set working directory. 'data' is a table with two columns and same number of rows, and should be numeric. Columns have headers indicating the names of the variables. **User will also input desired variable names in double quotes**

```
data <- read.csv("chap11.csv", header = FALSE, skip = 1)
colnames(data) <- c("sub_1", "sub_2", "sub_3", "sub_4", "sub_5")</pre>
```

We now combine the observations into one long column (score)

```
colnames(data) <- c("V1", "V2", "V3", "V4", "V5")
score=c(data$V1,data$V2,data$V3,data$V4,data$V5)</pre>
```

We now prepare the labels for the 4x5 scores according to the factor levels: a1 a2 a3 a4, a1 a2 a3 a4.....etc for Factor A

```
Fact_A=gl(4,1,4*5*1, labels=c("a1","a2","a3","a4"))
```

 $sub_1 \; sub_1....., \; sub_2 \; sub_2....., sub_3 \; sub_3 \;, sub_4 \; sub_4 \;, \; sub_5 \; sub_5..... etc \; for \; Subjects$

```
Subject=gl(5,4*1,5*4*1, labels=c("sub_1", "sub_2", "sub_3", "sub_4", "sub_5"))
```

We now form a data frame with the dependent variable and the factors, then we print the results

score	$Factor_A$	Subject
5	a1	sub_1
4	a2	sub_1
1	a3	sub_1
8	a4	sub_1
7	a1	sub_2
4	a2	sub_2
1	a3	sub_2
10	a4	sub_2
12	a1	sub_3
9	a2	sub_3
8	a3	sub_3
16	a4	sub_3
4	a1	sub_4
9	a2	sub_4
6	a3	sub_4

score	Factor_A	Subject
9	a4	sub_4
8	a1	sub_5
9	a2	sub_5
5	a3	sub_5
13	a4	sub_5

Anova when "Subject" is considered as a random factor, then we print the results

aov1=aov(score~Fact_A+Error(Subject),data=data)

```
summary(aov1)
##
## Error: Subject
          Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 4 115.3 28.82
##
## Error: Within
          Df Sum Sq Mean Sq F value Pr(>F)
## Fact_A
           3 124.4 41.47
                              14.18 3e-04 ***
## Residuals 12 35.1
                        2.93
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(model.tables(aov(score~Fact_A+Subject),"means"))
## Tables of means
```