บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 WirelessHART

ขนาดของการส่งข้อมูลและความสามารถของเครือข่ายที่มากขึ้น ทำให้เทคโนโลยีระบบ เครือข่ายแบบไร้สายในอุตสาหกรรม (Industrial Wireless LAN-IWLAN) มีการเติบโตอย่างสูง มากโดยเฉพาะในอุตสาหกรรมที่เน้นระบบงานอัตโนมัติ

เทคโนโลยีเหล่านี้ ยังเหมาะสมสำหรับแอปพลิเคชั่นที่ต้องการการสื่อสารแบบ end-to-end ที่ต้องการความทนทาน ความน่าเชื่อถือสูงว่าจะสามารถทำงานได้อย่างต่อเนื่องโดยไม่ล่มและ การติดต่อทางวิทยุที่ต้องการความปลอดภัยสูง IWLAN เป็นมาตรฐานที่พัฒนาขยายมาจาก IEEE 802.11a/b/g และ n standards ที่ใช้ในการส่งสัญญาณที่ความเร็วตั้งแต่ 54-Mbit/s ไปจนถึง หลายร้อย Mbit/s นอกจากนั้นยังมีความสามารถส่งข้อมูลได้มากกว่ามาตรฐานการส่งสัญญาณ แบบไร้สายอื่นๆ

โชลูชั่นที่มีความต้านทานต่ำ (low-latency solution) เป็นหัวใจสำคัญของของ
แอปพลิเคชั่นต่างๆ ที่ต้องการความสามารถเชื่อมต่อแบบ real-time อย่างเช่น การควบคุมดูแล
กระบวนการทำงานที่ค่อนข้างวิกฤต (monitoring critical processes) WirelessHART เป็น
คำตอบของความต้องการนี้ เพราะ WirelessHART เป็น Wireless version ของ fieldbusbased protocols ซึ่งเป็นเทคโนโลยีสำหรับการตรวจจับสัญญาณ (sensor) แบบ peer-to-peer
โดยใช้เครือข่ายไร้สาย ทำให้สามารถเพิ่มความสามารถสื่อสารแบบไร้สายให้แก่อุปกรณ์และระบบ
Highway Addressable Remote Transducer Protocol (HART)ของเดิม เทคโนโลยีนี้วาง
พื้นฐานอยู่บน ย่านความถี่ที่ไม่ต้องขออนุญาตที่ 2.4 GHz ที่ใช้ในเทคโนโลยีอื่นๆ เช่น Wi-Fi หรือ
Bluetooth และรวมทั้ง ZigBeeโดยให้ความปลอดภัยและการเชื่อมต่อที่มีการป้องกัน เพื่อให้
มั่นใจได้ว่าข้อมูลที่ถูกส่งทุกๆ แพ็กเกจถูกส่งในเวลาที่ข้อมูลนั้นเกิดขึ้นจริงแน่นอน Protocols นี้ยัง

ทำให้ผู้ใช้สามารถใช้ประโยชน์จากเทคโนโลยีแบบไร้สายได้เร็วและง่ายขึ้น ขณะเดียวกันยังคง ความสอดคล้องและทำงานร่วมกันกับ อุปกรณ์ เครื่องมือ และระบบเดิมที่เป็น HART ที่ใช้อยู่เดิม ได้

การใช้งานระบบไร้สายในอุตสาหกรรมนั้นเรียกได้ว่ามีความแตกต่างอย่างมากกับระบบไร้ สายที่เราใช้กันทั่วไป ดังนั้นการมองหาเทคโนโลยีที่มีความสามารถและฟีเจอร์ต่างๆ เช่นการ ตรวจจับเซ็นเซอร์, การมี Self-healing, Time Sync ฯลฯ ในเทคโนโลยี WirelessHART น่าจะ เป็นคำตอบที่ดีที่สุดในงานอุตสาหกรรม

รูปที่ 2.1 ตัวอย่างระบบไร้สายในอุตสาหกรรม

2.1.2 การสอบเทียบ

การสอบเทียบ หมายถึง ชุดของการดำเนินการซึ่งสร้างความสัมพันธ์ระหว่างค่าการชื้บอก โดยเครื่องมือวัดหรือระบบการวัด หรือค่าที่แสดงโดยเครื่องวัดที่เป็นวัสดุกับค่าสมนัยที่รู้ค่าของ ปริมาณที่วัดภายใต้ภาวะเฉพาะที่บ่งไว้ จากความหมายดังกล่าวขยายให้เข้าใจง่ายขึ้นก็คือ การ สอบเทียบเป็นชุดการดำเนินการภายใต้สภาวะเฉพาะเพื่อหาค่าความสัมพันธ์ระหว่างเครื่องมือวัด เพื่อเปรียบเทียบกับค่าที่รู้ของ ปริมาณที่วัด (ซึ่งต้องเป็นค่าที่สามารถอ้างอิงได้) ผลจากการสอบ เทียบจะให้ข้อมูลว่าเครื่องมือวัดที่ใช้ในการสำรวจยังคงมีคุณลักษณะทางด้านมาตรวิทยาที่ เหมาะสมในการใช้งาน

การวิเคราะห์ความแปรปรวนสองทาง Two-Way ANOVA การวิเคราะห์ความแปรปรวนมี 2 ตัวประกอบ จะใช้กับตัวแปรอิสระ 2 ตัวพร้อมกัน โดยต้องการศึกษาผลของ ตัวแปรอิสระแต่ละ ตัวที่มีต่อตัวแปรตาม และศึกษาปฏิสัมพันธ์ (Interaction) ระหว่างตัวแปรอิสระ 2 ตัวนั้น ให้ สังเกตว่ามีตัวแปร 2 ชนิด คือตัวแปรอิสระ 2 ตัว และ ตัวแปรตาม 1 ตัว ซึ่งตัวแปรตามจะเป็นผล ที่ผู้ทดลอง สังเกตได้หรือวัดได้

2.2 ซอฟแวร์ที่เกี่ยวข้อง

2.2.1 WonderwareInTouch HMI

WonderwareInTouch HMI เป็นซอฟแวร์HMI (Human Machine Interface) จาก บริษัท Invensys Process Systems ซึ่งปัจจุบันอยู่ภายใต้การบริหารโดย Schneider Electric กระบวนการต่างๆในระบบอุตสาหกรรมผ่านหน้าจอโดยที่ผู้ใช้หรือผู้ควบคุมไม่จำเป็นต้องอยู่หน้า งานเพื่อสังเกตกระบวนการต่างๆแต่จะสังเกตผ่านหน้าจอคอมพิวเตอร์ซึ่งผู้ดูแลสามารถควบคุม และดูงานตรงนี้ ซึ่งทำให้เกิดความสะดวกและลดจำนวนต้นทุนการจ้างงานด้วย

InTouch สามารถรันบนระบบปฏิบัติการ window ของ Microsoft ได้และประกอบไป ด้วยสามโปรแกรมที่สำคัญคือ InTouch Application Manager , WindowMaker และ WindowViewer

รูปที่ 2.2 InTouch Application Manager

InTouch Application Manager ใช้บริหารจัดการโปรแกรมประยุกต์ที่ผู้ใช้สร้างขึ้น กำหนดค่าของwindow viewer กำหนดความละเอียดของกราฟิกและยังมี DBDump และ DBLoad ซึ่งเป็นตัวเก็บฐานข้อมูลของกราฟิกโดยสามารถนำออกมาเป็นไฟล์excel ได้ทำไห้บริหาร จัดการง่ายขึ้น

รูปที่ 2.3 WindowMaker

WindowMaker เป็นโปรแกรมสร้างกำหนดค่าและแก้ไขกราฟิกภายในWindowMaker จะมีเครื่องมือในการวาดกราฟิกเขียนสคริปและมี Symbol Factoryสำเร็จรูปสามารถนำมาใช้ได้ เลยและใช้ในการกำหนดค่าให้สามารถเชื่อมต่อ industrial I/O systems กับ Microsoft Windows applicationsอื่นๆ

รูปที่ 2.4 WindowViewer

WindowViewerเป็นหน้าต่างแสดงผลเมื่อรันไทม์จาก WindowMaker สามารถบันทึก ข้อมูลที่ผ่านมาและรายงานและยังสามารถแสดงสัญญาณเตือนเมื่อเกิดความผิดปกติกับ กระบวนการทำให้ลดลดการสูญเสียจากอุบัติเหตุเนื่องจากระบบสามารถแจ้งเตือนเมื่อ กระบวนการเกิดปัญหา

2.2.2 SMC (system manager console)

รูปที่ 2.5 โปรแกรมSMC

SMC เป็นโปรแกรมที่เป็นตัวกลางสาหรับเชื่อมต่อ Gateway กับ WonderwareIntouch เข้าด้วยกันให้สามารถติดต่อสื่อสารกันได้เพื่อทำให้ WonderwareIntouch ดึงค่าที่จาก gateway มาแสดงผลและเก็บเป็นฐานข้อมูลเพื่อมาวิเคราะห์โดยจะต้องเปลี่ยน Type ของ Tagname เพื่อให้สามารถรับ Input จาก gateway ได้และยังมีฟังก์ชัน diagnostic ที่สามารถวิเคราะห์ความ ผิดพลาดหรือเครื่องมือการจัดการที่สามารถใช้ในการจัดการเครือข่ายคอมพิวเตอร์

2.3 ฮาร์ดแวร์ที่เกี่ยวข้อง

2.3.1 Gateway (Smart Wireless Gateway)

Gateway เป็นจุดต่อเชื่อมของเครือข่ายทำหน้าที่เป็นทางเข้าสู่ระบบเครือข่ายต่าง ๆ บน อินเตอร์เน็ต ในความหมายของ router ระบบเครือข่ายประกอบด้วย node ของ gateway และ node ของ host เครื่องคอมพิวเตอร์ของผู้ใช้ในเครือข่าย และคอมพิวเตอร์ที่เครื่องแม่ข่ายมีฐานะ เป็น node แบบ host ส่วนเครื่องคอมพิวเตอร์ที่ควบคุมการจราจรภายในเครือข่าย หรือผู้ ให้บริการอินเตอร์เน็ต คือ node แบบ gateway

Emerson[™] Smart Wireless Gateway 1420

รูปที่ 2.6 Gateway Model1420 (Emerson)

Gateway เป็นอุปกรณ์ฮาร์ดแวร์ที่เชื่อมต่อเครือข่ายต่างประเภทเข้าด้วยกัน เช่น การใช้เกตเวย์ใน การเชื่อมต่อเครือข่าย ที่เป็นคอมพิวเตอร์ประเภทพีซี (PC) เข้ากับคอมพิวเตอร์ประเภทแมคอิน ทอช (MAC) เป็นต้น

Gateway เป็นเหมือนประตูสื่อสาร ช่องทางสำหรับเชื่อมต่อข่ายงานคอมพิวเตอร์ที่ต่าง ชนิดกันให้สามารถติดต่อสื่อสารกันได้ โดยทำให้ผู้ใช้บริการของคอมพิวเตอร์หนึ่งหรือในข่ายงาน หนึ่งสามารถติดต่อเข้าสู่เครื่องบริการหรือข่ายงานที่ต่างประเภทกันได้ ทั้งนี้โดยการใช้อุปกรณ์ที่ เรียกว่า "บริดจ์" (bridges) โดยโปรแกรมคอมพิวเตอร์จะทำให้การแปลข้อมูลที่จำเป็นให้ นอกจาก ในด้านของข่ายงาน เกตเวย์ยังเป็นอุปกรณ์ในการเชื่อมต่อข่ายงานบริเวณเฉพาะที่ (LAN) สอง ข่ายงานที่มีลักษณะ ไม่เหมือนกันให้สามารถเชื่อมต่อกันได้ หรือจะเป็นการเชื่อมต่อข่ายงาน บริเวณเฉพาะที่เข้ากับข่ายงานบริเวณกว้าง (WAN) หรือต่อเข้ากับมินิคอมพิวเตอร์หรือต่อเข้ากับ

เมนเฟรมคอมพิวเตอร์ก็ได้เช่นกัน ทั้งนี้เนื่องจากเกตเวย์มีไมโครโพรเซสเซอร์และหน่วยความจำ ของตนเอง

รูปที่ 2.7 ลักษณะการส่งสัญญาณแบบฮาร์ท

Wireless Gateway คือ จุดต่อเชื่อมของเครือข่ายทำหน้าที่ เป็นทางผ่านสู่ระบบเครือข่าย ต่างๆ บนอินเทอร์เน็ตที่ใช้เทคโนโลยี ของ Wireless HART ในย่านความถี่2.4 GHz ซึ่งให้ เสถียรภาพ การสื่อสารระดับสูงด้วย Mesh Topology โดยเครื่องมือวัด แต่ละตัว มีความสามารถ ในการหาเส้นทางที่ดีที่สุดด้วยตัวเอง จึงเรียกเทคโนโลยีนี้ว่า Smart Wireless Gateway

2.3.2 Temperature Transmitter (Wireless)

Temperature transmitter (ทรานสมิทเตอร์) คือ อุปกรณ์ทางไฟฟ้าที่ใช้ในการรับ สัญญาณอุณหภูมิจากหัววัดอุณหภูมิ ชนิดใดชนิดหนึ่งจากเทอร์โมคัปเปิลType K, J, E, R, S และ T หรือ RTD Pt 100 Ω เพื่อส่งค่าอุณหภูมิผ่านสายไฟไปยังเครื่องควบคุมอุณหภูมิ เครื่องบันทึก อุณหภูมิ หรือดาต้าล็อกเกอร์, PLC, เทอร์โมมิเตอร์

Rosemount[™] 648 Wireless Temperature Transmitter

รูปที่ 2.8 Temperature Transmitter

รูปที่ 2.9 เทอร์โมคัปเปิล (RTD)

2.4 Ethernet Network

Ethernet เป็นเทคโนโลยีเครือข่ายที่ได้รับความนิยมมาก เพราะเป็นการส่งข้อมูลด้วย ความเร็วสูง ซึ่งในช่วงแรกที่มีการพัฒนาระบบ Ethernet สามารถที่จะส่งผ่านข้อมูลด้วยความเร็ว 10 เมกะบิตต่อวินาที (Mbps) แต่ปัจจุบันมีการพัฒนาเทคโนโลยีใหม่ที่เรียกว่า Fast Ethernet และ Gigabit Ethernet ที่ทำความเร็วได้ถึง 100 เมกะบิตต่อวินาที (Mbps) หรือ 1 Gbpsและ 1000 เมกะบิตต่อวินาที (Mbps) หรือ 10 GbEตามลำดับ

รูปที่ 2.10 ตัวอย่างรูปแบบการใช้งานระบบ Ethernet

โดยมีการควบคุมมาตรฐานของ Ethernet ด้วยสถาบันวิชาชีพวิศวกรไฟฟ้าและ อิเล็กทรอนิกส์ (Institute of Electrical and Electronics Engineers) หรือ IEEE ซึ่งเป็นองค์กร ที่ไม่หวังผลกำไรที่ค่อยดูแลและพัฒนาเทคโนโลยีทางไฟฟ้าและคอมพิวเตอร์ซึ่งก็รวมถึง Ethernet ด้วยเช่นกัน

Ethernet เป็นการสื่อสารแบบโพรโทคอล (Protocol) ของ LAN ชนิดหนึ่งที่พัฒนาขึ้นโดย 3 บริษัทใหญ่คือบริษัท Xerox Corporation, Digital Equipment Corporation (DEC) และ Intel ในปี ค.ศ. 1976 หรืออาจจะเรียกการสื่อสารแบบนี้ว่าเป็นการสื่อสารระดับล่างก็ได้เช่นกัน ระบบการส่งแบบ Ethernet นั้นเป็นระบบการส่งที่เรียกว่า CSMA/CD (Carrier Sense Multiple Access / Collision Detection) โดยอธิบายหลักการทำงานได้ดังนี้ ในการส่งข้อมูลแต่ละครั้งจะ ทำการส่งได้เพียงคนเดียวเท่านั้น แต่ถ้าในเวลาเดียวกันมีการส่งข้อมูลมาพร้อมกัน มากกว่า 1 คน ด้วยกัน ซึ่งเราเรียกว่า "Collision"

(OSI โมเดล ของ Ethernet/IP รูปจาก MOXA)

รูปที่2.14 OSI โมเดลของ Ethernet/IP

อุปกรณ์คอมพิวเตอร์แต่ละตัวจะมีการตรวจสอบ Collision เมื่ออุปกรณ์คอมพิวเตอร์ ตรวจสอบว่ามีการส่งข้อมูลมาพร้อมกัน อุปกรณ์เหล่านั้นจะหยุดส่งข้อมูลเพียงช่วงเวลาหนึ่ง และ จะทำการส่งใหม่ เวลาที่หยุดรอนั้นจะเป็นการสุ่มแบบสถิติ ทำให้การเกิด Collision อีกครั้งจะ เป็นไปได้น้อยมาก ๆ แต่ถ้าเกิดการ Collision จริง ๆอุปกรณ์คอมพิวเตอร์เหล่านั้นก็จะวนกลับมา รอและสุ่มเวลาอีกรอบจนกว่าจะไม่พบการ Collision อีก