Linearity Property of the Z-transform

If x,[n] \ X,(2) wim ROC1

and re[n] (> X2(2) with ROC2

then $x_3[n] = a_1x_1[n] + a_2x_2[n] \longleftrightarrow X_3(2) = a_1X_1(2) + a_2X_2(2)$ with $ROC_3 \supseteq ROC_1 \cap ROC_2$

Note: in most cases, you will find that ROC3 = ROC1 (\) ROC2

However, in the case that a linear combination of X1(2) and X2(2) results in the carrellation of a pole, then it is possible that ROC3 will be larger than the intersection of ROC1 and ROC2. This will be illustrated when we do example 1 below.

CAUTION: It is not always obvious that a pole cancellation has occured.

Any time that a linear combination of two infinite length sequences results in a finite-length sequence, you should anticipate the occurence of a pole cancellation. As demonstrated by previous examples, the ROC of a finite-duration sequence is easily determined by its rausality.

- Example 1: Use the Z-transform of a using together with the linearity and time-shift properties of the Z.T. to find the Z-transform of S[n] = using-using.

 Be sure to specify the ROC.
- Example 2: Use the Z-transform of a u[n] together with the linearity property of the $\geq .T$. to find the Z-transform of: $\chi[n] = \cos(2\pi F_0 n) u[n]$.

Be sure to specify the ROC.

Example 2 Use the Z-transform of a u[n] together with the linearity property of the Z.T. to find the Z-transform of $\chi[n] = \cos(2\pi F_n)$ u[n]

Be sure to specify the R.O.C.

Solution - will first use Euler's formula to rewrite $\chi[n]$ as: $\chi[n] = \cos(2\pi F_0 n) u[n] =$

Thus, allowing us to use linearity together with:

$$a^n u[n] \stackrel{\text{Z.T.}}{\longleftarrow} \frac{1}{1-az^{-1}}$$
, $|Z| > |a|$

to find:

X(Z)=

Multiplication by a in time domain
$$\Rightarrow scaling by ai' in z.domain$$
if $x[n] \longleftrightarrow X(z)$, $ROC_x: \lceil < |z| < \lceil 2 \rceil$
and if $g[n] = a^n x[n]$

then $g[n] \longleftrightarrow G(z) = X(\frac{z}{a})$, $ROC_g: |a| \lceil < |z| < |a| \lceil 2 \rceil$

Proof:
$$G(z) = \sum_{n=-\infty}^{\infty} g[n] z^{-n} = \sum_{n=-\infty}^{\infty} a^n \chi[n] z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} \chi[n] (a^n z)^{-n}$$

$$\operatorname{Recall} X(z) = \sum_{n=-\infty}^{\infty} \chi[n] z^{-n}$$

$$\therefore X(a^n z) = \sum_{n=-\infty}^{\infty} \chi[n] (a^n z)^{-n}$$

$$= X(a^n z)$$

if ROC of X(z) is: $r_1 < |z| < r_2$ then ROC of $X(a^2 z)$ is: $r_1 < |a^2 z| < r_2$ $\Rightarrow |a| r_1 < |z| < |a| r_2$

Ex. Determine the Z-transform of a cos $(2\pi F_0)$ u[n]

Previously, we found that if $x[n] = \cos(2\pi F_0)$ u[n]

then $X(z) = \frac{1-\cos(2\pi F_0)z^{-1}}{1-2\cos(2\pi F_0)}$ ROCx: |z| > 1

Time Reversal Property of Z-transform

If
$$\chi[n] \longleftrightarrow \chi(z)$$
, $ROC_{\chi}: \Gamma_1 < |z| < \Gamma_2$

and if $g[n] = \chi[-n]$

then $g[n] \longleftrightarrow G(z) = \chi(z^{-1})$, $ROC_{G} = \frac{1}{\Gamma_2} < |z| < \frac{1}{\Gamma_1}$

$$\chi[n] = \{ 1 2 3 \} \implies \chi(z) = 1 + 2z^{-1} + 3z^{-2}, |z| > 0$$

Given $u[n] \rightleftharpoons \frac{1}{1-2^{-1}}$, |z| > 1- Find $Z\{u[-n]\}$.

- Find $Z\{u[-n-1]\}$ (may require additional properties)

Will do Ex 2 on the next page.

Ex2 - illustrating the time-reversal or time-negation property.

a) Let
$$g[n] = u[-n]$$
. Find $G(z)$.

Soln: By the time-reversal property we know:

$$g[n] = u[-n] \xrightarrow{z.t.} G(z) = U(z^{-1}) = \frac{1}{1-(-1)^{-1}}, | 1>1$$

b) Let h[n] = u[-n-1]. Find H(z).

Soln: - will first express hin] as a time-shifted version of gin], and then apply the time-shift property of the Z.T. to find H(z).

$$g[n] = u[-n] \Rightarrow g[] = u[-n-1]$$

Thus, by the time-shift property:

$$h[n] = g[$$
 $H(z) =$

Multiplication-by-n property

If
$$g[n] = n \times [n]$$
 and $x[n] \stackrel{z.r.}{\longleftarrow} \chi(z)$, $r_1 < |z| < r_2$
then $g[n] \stackrel{z.r.}{\longleftarrow} G(z) = -z \frac{d}{dz} \chi(z)$, $ROC_G = ROC_X$

Exercises

a) Show that if g[n] = n x[n], then G(z) = - z d X(z)

$$G(z) = \sum_{n=-\infty}^{\infty} g[n] z^{-n} = \sum_{n=-\infty}^{\infty} n_{z}[n] z^{-n}$$

(note: the solution to a similar problem was illustrated by the hint for question 3e of Ass 2)

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} \implies X(z) = \sum_{n=-\infty}^{\infty}$$

b) Use previously-found ZT pairs in conjunction with the multiplication-by-n property of the Z.T. to find the Z-transform of $g[n] = n a^n u[n]$.

Soln: Let g[n] = n x[n] where x[n] = anu[n]. Then use the Known Z.T. pair:

$$\chi[n] = a^n u[n] \stackrel{\text{Z.T.}}{\longleftarrow} \chi(z) = \frac{1}{1 - az^{-1}}, |z| > |a|$$

together with the multiplication-by-n property to find G(2) as shown below:

$$\frac{d}{dz} \left(\frac{H\dot{c}}{Ho} \right) = -\frac{1}{2} \frac{d}{dz} \left(\frac{H\dot{c}}{Ho} \right) = -\frac{1}{2} \left(\frac{1 - az^{-1}}{1 - az^{-1}} \right) = \frac{d}{dz} \left(\frac{H\dot{c}}{Ho} \right) = \frac{Ho d(H\dot{c}) - H\dot{c} d(Ho)}{Ho Ho}$$

C) Given that: g[n] = na^u[n] and x[n] = a^u[n],
how do the poles of G(z) compare to the poles of X(z)?

In particular: are any new pole locations introduced in G(z) that
were not present in X(z)?

What about the multiplicity of the pules?

The multiplicity of the pules in Gilz) is _____

the multiplicity of the pules in X(z).

d) Recall that a^n is the characteristic mode of a discrete-time system with characteristic root, n=a. What is the additional characteristic mode of a system with a repeated root of multiplicity 2 at n=a (i.e., with $n=n_2=a$)?

$$\Phi_{1}[n] = a^{n}, \quad \Phi_{2}[n] =$$

We will soon see that X(z) is the transfer function of a system with impulse response, X[n]. The poles of X(z) are the Characteristic roots of the system.