CCC '20 55 Let b; be the burger ith person ordered. Let olp[i] be the probability that in [i, -, N-1], coach starts (replacing bi w/ bo) and Josh gets to eat his burger. BC: dp[u-1]=0. Recurrence: Fix i, compute dp[i].

If coach eats his own burger => 1, Josh wins.

If coach eats burger b, the last person who ordered burger b will end up w/ coach's situation. Let ab be last orderer of burger b.

We simply get $\frac{Cb}{N-i}$ dp[ab], and sum. $O(M^2)$. From dp[i] to dp[i-]: There is an extra bi. Then $dp[i] = \sum_{\substack{ab > i \\ b \neq b}} \frac{Cb}{N-i} \cdot dp[ab] + \frac{Cbotl}{N-i}$ Notice $dp[i-1] = \sum_{a_b > i-1} \frac{c_b}{N-i+1} \cdot dp[a_b] + \frac{c_b + 1}{N-i+1}$.

Drop the $\frac{c_b}{N-i+1}$ we have $\frac{\sum_{a_b > i} \frac{c_b}{N - iti} \cdot dp[a_b]}{a_b > i} = \frac{N - i}{N - i + 1} \cdot \frac{\sum_{a_b > i} \frac{c_b}{N - i} dp[a_b]}{N - i}$ + dp[avi] N-i+1, as Cx increments iff x = bi, and if $x \neq b_i$, C_x remains same.

This doesn't work for the case $b_i = b_0$. In this case $b_i = b_0$. In this case $b_i = b_0$. In this case $b_i = b_0$. $b_i = b_0$ 0/w $dp(i-i) = \frac{(N-i) dp(i) + cdp[avi]}{N-i+1} (0/w)$