Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi Prof. F. Pappalardi

Tutorato 12 - Gennaio 2011

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Sia R un anello commutativo ed unitario. Siano I,J due suoi ideali. Sia $I+J:=\{x+y \text{ con } x\in I,y\in J\}$. Sia $\phi:R\longrightarrow R/I\times R/J$, l'applicazione definita come $\phi(r):=(r+I,r+J)$ per ogni $r\in R$.

- Si dimostri che I + J è un ideale di R.
- Si dimostri che ϕ è un omomorfismo unitario di anelli.
- Si dimostri che ϕ è suriettivo se e solo se I + J = R.
- Si dimostri che il nucleo di ϕ è $I \cap J$.
- Nel caso $R = \mathbb{Z}$, $I = 5\mathbb{Z}$, $J = 12\mathbb{Z}$, si dimostri che $\mathbb{Z}/60\mathbb{Z} = \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$.

Esercizio 2.

- (a) Quali elementi del campo \mathbb{Z}_7 sono quadrati perfetti? (Cioè quali elementi $q \in \mathbb{Z}_7$ sono tali che l'equazione $X^2 = q$ ha soluzione in \mathbb{Z}_7 ?).
- (b) Dedurre da (a) per quali valori $a \in \mathbb{Z}_7$ si ha che $\mathbb{Z}_7[X]/(X^2 + a)$ è un campo;
- (c) Determinare l'inverso del generico elemento di $\mathbb{Z}_7[X]/(X^2+4)$;
- (d) Determinare i divisori dello zero in $\mathbb{Z}_7[X]/(X^2+3)$.

Esercizio 3.

Sia A l'insieme dei numeri complessi del tipo $a + ib\sqrt{5}$, con $a, b \in \mathbb{Z}$.

- Provare che A è un sottoanello di \mathbb{C} .
- Stabilire se A è un sottocampo di \mathbb{C} .
- Provare che $I = \{a + ib\sqrt{5} \mid a, b \in 2\mathbb{Z}\}$ è un ideale di A, ma non è un ideale primo di A.
- Provare che $J = \{a + ib\sqrt{5} \mid a \in 5\mathbb{Z}\}$ è un ideale massimale di A.

Esercizio 4.

Sia A anello commutativo unitario che ammette (per ogni suo elemento non nullo) una fattorizzazione in irriducibili, le seguenti sono equivalenti

- ${\bf (a)}\,$ la fattorizzazione è essenzialemente unica (a meno dell'ordine dei fattori e di invertibili)
- **(b)** $\forall a, b \in A \; \exists MCD(a, b)$
- (c) $p \in A, p \ irriducibile \Rightarrow p \ primo$