Podzielność

Definicja

Mówimy, że liczba całkowita a jest **podzielna** przez liczbę całkowitą b, jeżeli istnieje taka liczba całkowita k, że

$$a = kb$$
.

Piszemy wtedy

Inaczej mówiąc, mamy

$$b|a\iff\bigvee_{k\in\mathbb{Z}}a=kb.$$

Podzielność

```
→ b|a,
→ b dzieli a,
→ b jest dzielnikiem a,
→ b jest czynnikiem a,
→ a jest podzielne przez b,
→ a jest wielokrotnością b.
```

Przypadki szczególne

$$\longrightarrow \bigwedge_{n\in\mathbb{Z}} n|0,$$

$$\longrightarrow \bigwedge_{n\in\mathbb{Z}} n|n,$$

$$\longrightarrow \bigwedge_{n\in\mathbb{Z}} \pm 1|n,$$

$$\bigwedge_{n\in\mathbb{Z}}0|n\Rightarrow n=0.$$

$$n = l \cdot n$$

$$n = n \cdot 1$$

$$n = (-n) \cdot (-1)$$

Własności relacji podzielności

Twierdzenie

jest relacją w Z oraz

- \rightarrow jeżeli a|b i b|c, to a|c,
- \rightarrow jeżeli a|b i a|c, to dla dowolnych liczb całkowitych s i t zachodzi a|sb+tc,
- \rightarrow dla dowolnej liczby całkowitej $c \neq 0$,

$$a|b \iff ca|cb.$$

Ćwiczenie

Udowodnić powyższe twierdzenie.

(M1) relaga porpole

Dzielenie z resztą

Twierdzenie o dzieleniu z resztą

Niech $n \in \mathbb{Z}$ oraz $d \in \mathbb{N}$. Istnieje wtedy dokładnie jedna para liczb całkowitych q i r, dla której

$$n = qd + r$$
 oraz $0 \le r < d$.

Dzielenie z resztą

Twierdzenie o dzieleniu z resztą

Niech $n \in \mathbb{Z}$ oraz $d \in \mathbb{N}$. Istnieje wtedy dokładnie jedna para liczb całkowitych q i r, dla której

$$n = qd + r$$
 oraz $0 \le r < d$.

Dowód

- → Istnienie.
- → Jedyność.

Przykłady

$$\rightarrow$$
 14 = 2 · 6 + 2,

$$\rightarrow$$
 31 = (4) 7 + (3)

$$\longrightarrow$$
 55 = 3 · 15 + 10.

$$n \in \mathbb{Z}_1$$
 $k \in \mathbb{N}$
 $v = q \cdot d + \tau$ $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$
 $v = q \cdot d + \tau$

Podłoga i sufit

→ Funkcja podłoga

|x| := największa liczba całkowita mniejsza lub równa x.

→ Funkcja sufit

 $\lceil x \rceil := najmniejsza liczba całkowita większa lub równa <math>x$.

$$\begin{bmatrix} \frac{1}{2} \end{bmatrix} = 0$$

$$\begin{bmatrix} \frac{1}{2} \end{bmatrix} = -1$$

$$\begin{bmatrix} -\frac{4}{3} \end{bmatrix} = -1$$

$$\begin{bmatrix} \frac{1}{2} \end{bmatrix} = 1$$

Podłoga i sufit

→ Funkcja podłoga

 $\lfloor x \rfloor := największa liczba całkowita mniejsza lub równa <math>x$.

→ Funkcja sufit

 $\lceil x \rceil := najmniejsza liczba całkowita większa lub równa <math>x$.

W szczególności dla dowolnej liczby $x \in \mathbb{R}$ mamy

→ Istnienie. Niech

$$q := \left\lfloor \frac{n}{d} \right\rfloor, \qquad r := n - qd.$$

→ Istnienie. Niech

$$q := \left\lfloor \frac{n}{d} \right\rfloor, \qquad r := n - qd.$$

Wtedy oczywiście

$$n = n - qd + qd = qd + r$$

oraz

$$q \leqslant \frac{n}{d} < q+1 \quad \Rightarrow \quad qd \leqslant n < qd+d \quad \Rightarrow \quad 0 \leqslant r < d.$$

 \rightarrow **Jedyność**. Załóżmy, że dla q, q', r i r' zachodzi

$$n = qd + r = q'd + r', \qquad 0 \leqslant r, r' < d.$$

 \rightarrow **Jedyność**. Załóżmy, że dla q, q', r i r' zachodzi

$$n = qd + r = q'd + r', \qquad 0 \leqslant r, r' < d.$$

Wtedy

$$(q-q')d + (r-r') = 0.$$

 \rightarrow **Jedyność**. Załóżmy, że dla q, q', r i r' zachodzi

$$n = qd + r = q'd + r', \qquad 0 \leqslant r, r' < d.$$

Wtedy

$$(q-q')d + (r-r') = 0.$$

Ponieważ -d < r - r' < d, to (dlaczego?) r - r' = 0.

 \rightarrow **Jedyność**. Załóżmy, że dla q, q', r i r' zachodzi

$$n = qd + r = q'd + r', \qquad 0 \leqslant r, r' < d.$$

Wtedy

$$(q-q')d + (r-r') = 0.$$

Ponieważ -d < r - r' < d, to (dlaczego?) r - r' = 0. Wtedy również (q - q')d = 0, skąd q - q' = 0. Zatem q = q' oraz r = r'.

Oznaczenia

Jeżeli

$$n = qd + r,$$
 $0 \leqslant r < d,$

to q nazywamy ilorazem, a r resztą z dzielenia n przez d. Piszemy również

$$q = n \operatorname{div} d, \qquad r = n \operatorname{mod} d.$$

Wzory

Niech $n \in \mathbb{Z}$, $d \in \mathbb{N}$. Wtedy

$$n \operatorname{div} d = \left\lfloor \frac{n}{d} \right\rfloor,$$

$$n \mod d = \left(\frac{n}{d} - n \operatorname{div} d\right) d.$$

Wzory

Niech $n \in \mathbb{Z}$, $d \in \mathbb{N}$. Wtedy

$$n \operatorname{div} d = \left\lfloor \frac{n}{d} \right\rfloor, \qquad n \operatorname{mod} d = \left(\frac{n}{d} - n \operatorname{div} d \right) d.$$

Jako wniosek otrzymujemy

$$n = (n \operatorname{div} d)d + n \operatorname{mod} d, \qquad 0 \leqslant n \operatorname{mod} d < d.$$

$$n = q \cdot d + r$$

Algorytm dzielenia

Algorytm dzielenia

```
input: n \geqslant 0, d > 0
1
       output: q, r \in \mathbb{Z}, n = qd + r, 0 \leqslant r < d
2
       q := 0
3
     r := n
4
       while r \geqslant d do
5
            q := q + 1
6
           r := r - d
7
       end
8
```

Dlaczego ten algorytm działa?

Algorytm dzielenia: przykład

Niech n = 31 i d = 7.

Algorytm dzielenia: przykład

Niech
$$n = 31$$
 i $d = 7$.

			O
obrót pętli	q	r	$r \geqslant \chi$
0	0	31	1
1	1	24	1
2	2	17	1
3	3	10	1
4	4	3	0

Niezmienniki pętli

Zdanie p jest niezmiennikiem pętli

```
while q do
S
end
```

jeżeli spełniony jest następujący warunek:

Niezmienniki pętli

Zdanie p jest niezmiennikiem pętli

```
while q do
S
end
```

jeżeli spełniony jest następujący warunek:

Jeśli zdania p i q są prawdziwe zanim wykonamy kroki S, to zdanie p będzie prawdziwe po wykonaniu S.

Niezmienniki pętli

```
Twierdzenie o niezmiennikach (R. Floyd, 1967 r.)
Załóżmy, że p jest niezmiennikiem pętli
while q do
s
end
```

1

2

3

oraz, że zdanie p jest prawdziwe przed wejściem w pętlę. Wtedy zdanie p jest prawdziwe po każdej iteracji pętli. Jednocześnie jeśli pętla się kończy, to po jej zakończeniu zdanie p jest prawdziwe, a zdanie q fałszywe.

Algorytm dzielenia

```
input: n \ge 0, d > 0
1
      output: q, r \in \mathbb{Z}, n = qd + r
2
      q := 0
3
     r := n
4
      # niezmiennik: qd + r = n, r \geqslant 0
5
      while r \geqslant d do
6
           q := q + 1
7
           r := r - d
8
      end
9
```

Algorytm dzielenia: dowód poprawności

Zdanie $qd + r = n \land r \geqslant 0$ jest niezmiennikiem pętli, ponieważ $r - d \geqslant 0$ dla $r \geqslant d$ oraz

$$(q+1)d + (r-d) = qd + r + d - d = n.$$

Przed wykonaniem pętli zdanie $qd + r = n \wedge r \geqslant 0$ jest prawdziwe, gdyż

$$0 \cdot d + n = n \qquad \land \qquad n \geqslant 0.$$

→ Algorytm się zatrzymuje, ponieważ

$$r - d < r$$
.

Na mocy twierdzenia o niezmiennikach po zakończeniu mamy

$$qd + r = n$$
 \wedge $r \geqslant 0$ \wedge $\neg(r \geqslant d)$

czyli

$$qd + r = n$$
 \wedge $0 \leqslant r < d$.

Największy wspólny dzielnik

Niech m i n będą liczbami całkowitymi.

- Zbiór wspólnych dzielników dodatnich liczb m i n jest niepusty ponieważ 1|m i 1|n.
- Jeżeli $m \neq 0$ lub $n \neq 0$, to liczby m i n mają tylko skończenie wiele wspólnych dzielników dodatnich.
- Jeżeli $m \neq 0$ lub $n \neq 0$, to największy wspólny dzielnik dodatni liczb m i n oznaczamy przez

$$NWD(m,n). = \gcd(m,n)$$

$$(m,n)$$

Największy wspólny dzielnik

Niech m i n będą liczbami całkowitymi.

- Zbiór wspólnych dzielników dodatnich liczb m i n jest niepusty ponieważ 1|m i 1|n.
- Jeżeli $m \neq 0$ lub $n \neq 0$, to liczby m i n mają tylko skończenie wiele wspólnych dzielników dodatnich.
- Jeżeli $m \neq 0$ lub $n \neq 0$, to największy wspólny dzielnik dodatni liczb m i n oznaczamy przez

$$NWD(m, n)$$
.

Jak znaleźć NWD(m, n)?

NWD

Zadanie

NWD(135, 120)?

NWD

Zadanie

NWD(135, 120)?

NWD

Zadanie

NWD(135, 120)?

$$135 = 3^3 \cdot 5, \qquad 120 = 2^3 \cdot 3 \cdot 5.$$

Stąd

$$NWD(135, 120) = 15.$$

```
1
      output: d = \overline{NWD}(m,n)
2
      d := 1, k := 2
3
      while k \leq m \wedge k \leq n do
4
         if k \mid m \wedge k \mid n  do
5
             d := d * k
6
             m := m/k
7
              n := n/k
8
          else
9
              k := k+1
10
          end
11
      end
12
```

NWD – wersja naiwna

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
       output: d = NWD(m,n)
2
       d := 1, k := 2
3
       while k \leq m \wedge k \leq n do
4
            if k|m \wedge k|n do
5
                d := d * k
6
               m := m/k
7
                n := n/k
8
            else
9
              k := k+1
10
            end
11
       end
12
```

Dla $m,n\sim 2^{100}$ pętla może obrócić się około 2^{100} razy.

m>0 n>1

Twierdzenie

Załóżmy, że $m \in \mathbb{N}_0$ i $n \in \mathbb{N}$. Wtedy zbiór wspólnych dzielników liczb m i n jest taki sam jak zbiór wspólnych dzielników liczb n i m mod n.

Twierdzenie

Załóżmy, że $m \in \mathbb{N}_0$ i $n \in \mathbb{N}$. Wtedy zbiór wspólnych dzielników liczb m i n jest taki sam jak zbiór wspólnych dzielników liczb n i (m mod n).

Dowód.

→ Wystarczy sprawdzić (dlaczego?), że

$$\bigwedge_{k\in\mathbb{N}} \frac{(k|m \wedge k|n)}{\longleftarrow} \iff [k|n \wedge k|(m \bmod n)].$$

Twierdzenie

Załóżmy, że $m \in \mathbb{N}_0$ i $n \in \mathbb{N}$. Wtedy zbiór wspólnych dzielników liczb m i n jest taki sam jak zbiór wspólnych dzielników liczb n i (m mod n).

Dowód.

→ Wystarczy sprawdzić (dlaczego?), że

$$\bigwedge_{k\in\mathbb{N}} (k|m\wedge k|n) \iff [k|n\wedge k|(m \bmod n)].$$

→ Powyższa równoważność wynika (dlaczego?) z równości

desolution (m,n)=dretailin, m mod n)

Wniosek

Jeżeli $m \in \mathbb{N}_0$ i $n \in \mathbb{N}$, to

 $NWD(m, n) = NWD(n, m \mod n).$

N > 1

NWD(n,0) = n

Wniosek

Jeżeli $m \in \mathbb{N}_0$ i $n \in \mathbb{N}$, to

$$NWD(m, n) = NWD(n, m \mod n).$$

Przykłady:

NWD(135, 120) = NWD(120, 15) = NWD(15, 0) = 15,

$$(120, 135 \text{ mod})$$
 $(15, 100 \text{ mod})$ (15)

Wniosek

Jeżeli $m \in \mathbb{N}_0$ i $n \in \mathbb{N}$, to

$$NWD(m, n) = NWD(n, m \mod n).$$

Przykłady:

NWD(135, 120) = NWD(120, 15) = NWD(15, 0) = 15,

$$(15)$$
 (15)

```
input: m, n \in \mathbb{N}_0, m + n > 0

output: d = NWD(m, n)

d := m

k := n

while k \neq 0 do

(d,k) := (k,d \mod k)

end

NWD(d,k) = NUD(k,d \mod k)
```

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
     output: d = NWD(m,n)
2
            n m mod h
3
     k := n //
4
     \# NWD(d,k) = NWD(m,n)
5
                                 horo(f) = 9 mog F
     while k \neq 0 do
6
          (d,k) := (k,d \mod k)
7
     end
8
                  => NUD (noue (d), hove (h)) = NUD (d, k)
    = \sum_{k=0}^{\infty} NwD(d,0) = d
```

```
input: m,n

output: d

d := m

k := n

while k ≠ 0 do

(d,k) := (k,d mod k)

end
```

```
input: m,n \longrightarrow Pętla się kończy, ponieważ output: d 0 \le d \mod k < k.

d := m
k := n
while k \ne 0 do
(d,k) := (k,d mod k)
end
```

```
input: m,n \longrightarrow Pętla się kończy, ponieważ 0 \leqslant d \mod k < k.

d := m \longrightarrow NWD(d, k) = \text{NWD}(m, n) jest niezmiennikiem pętli.

while k \neq 0 do (d, k) := (k, d \mod k) end
```

$$k \leq \max \left(\frac{m_{1}}{k} \right) - \sum_{k} \frac{1}{k} = \sum_$$

→ Pętla się kończy, ponieważ input: m,n $0 \le d \mod k < k$. output: d d := m \rightarrow NWD(d, k) = NWD(m, n) jest k := n niezmiennikiem pętli. $_{5}$ while $k \neq 0$ do \leadsto Po zakończeniu mamy k = 0 $(d,k) := (k,d \mod k)$ i NWD(d,k) = NWD(m,n), skąd end d = NWD(d, 0) = NWD(m, n).< max 3 m, h3

```
input: m,n  
Pętla się kończy, ponieważ  
0 \le d \mod k < k.

0 \le d \mod k < k.

NWD(d, k) = NWD(m, n) jest  
niezmiennikiem pętli.

while k \ne 0 do  
(d, k) := (k, d \mod k)  
Po zakończeniu mamy k = 0  
i NWD(d, k) = NWD(m, n), skąd  
d = NWD(d, 0) = NWD(m, n).
```

Algorytm wykonuje co najwyże $(max\{m,n\})+1$ obrotów pętli.

Algorytm Euklidesa: przykłady

m = 45, n = 12	m = 20, n = 63	m = 12, n = 6
(d, k)	(d, k)	(d, k)
(45,12) (12,9) (9,3) (3,0)	(20,63) (63,20) (20,3) (3,2) (2,1) (1,0)	(12,6) (6 ,0)

Algorytm Euklidesa: przykłady

m = 45, n = 12	m = 20, n = 63	m = 12, n = 6
(d, k)	(d, k)	(d, k)
(45,12)	(20,63)	(12,6)
(12,9)	(63,20)	(6 ,0)
(9,3)	(20,3)	
(3 ,0)	(3,2)	
	(2,1)	
	(1 ,0)	

Wygląda na to, że obrotów pętli jest istotnie mniej niż n. Ile?

Twierdzenie

Algorytm Euklidesa wykonuje co najwyżej

$$2\log_2(m+n)+1$$

przebiegów pętli.

Twierdzenie

Algorytm Euklidesa wykonuje co najwyżej

$$2\log_2(m+n)+1$$

przebiegów pętli.

Dla przypomnienia

$$\log_2(m+n)=a \qquad \iff \qquad 2^a=m+n.$$

Twierdzenie

Algorytm Euklidesa wykonuje co najwyżej

$$2\log_2(m+n)+1$$

przebiegów pętli.

Dla przypomnienia

$$\log_2(m+n)=a \qquad \iff \qquad 2^a=m+n.$$

Przykładowo, jeżeli $m,n\sim 2^{100}$, to

$$\log_2(m+n) \sim \log_2(2 \cdot 2^{100}) = \log_2(2^{101}) = 101.$$

Twierdzenie

Jeżeli
$$m \geqslant n > 0$$
, to

noue
$$(k) \leq k-1$$

$$NUD(m,h) = NUD(n,m mod h)$$

$$n+m \bmod n < \frac{2}{3}(m+n).$$

Twierdzenie

Jeżeli $m \geqslant n > 0$, to

m=(m div h)ht
m mod h

 $n+m \bmod n < \frac{2}{3}(m+n).$

$$n+m \bmod n < \frac{2}{3}(m+n) \iff 3n+3(m \bmod n) < 2m+2n$$

$$n+m \bmod n < \frac{2}{3}(m+n)$$

Twierdzenie

Jeżeli $m \geqslant n > 0$, to

$$n+m \mod n < \frac{2}{3}(m+n).$$

$$n + m \mod n < \frac{2}{3}(m+n) \iff 3n + 3(m \mod n) < 2m + 2n$$

 $\iff n + 3[m - (m \operatorname{div} n)n] < 2m$

Twierdzenie

Jeżeli $m \geqslant n > 0$, to

$$n+m \bmod n < \frac{2}{3}(m+n).$$

$$n + m \mod n < \frac{2}{3}(m+n) \iff 3n + 3(m \mod n) < 2m + 2n$$

$$\iff n + 3[m] - (m \operatorname{div} n)n] < 2m$$

$$\iff m - (m \operatorname{div} n)n < 2n(m \operatorname{div} n) - n$$

$$\iff m - (m \operatorname{div} n)n < 2n(m \operatorname{div} n) - n$$

Twierdzenie

Jeżeli
$$m \ge n > 0$$
, to

$$n+m \bmod n < \frac{2}{3}(m+n).$$

$$n + m \bmod n < \frac{2}{3}(m+n) \iff 3n + 3(m \bmod n) < 2m + 2n$$

$$\iff n + 3[m - (m \operatorname{div} n)n] < 2m$$

$$\iff m - (m \operatorname{div} n)n < 2n(m \operatorname{div} n) - n$$

$$\iff m \bmod n < n[2(m \operatorname{div} n) - 1],$$

$$\iff n - 1 \implies 2 \cdot 1 - 1 = 1$$

Twierdzenie

Jeżeli
$$m \ge n > 0$$
, to

$$n+m \bmod n < \frac{2}{3}(m+n).$$

Dowód. Mamy

$$n+m \mod n < \frac{2}{3}(m+n) \iff 3n+3(m \mod n) < 2m+2n$$

$$\iff n+3[m-(m \operatorname{div} n)n] < 2m$$

$$\iff m-(m \operatorname{div} n)n < 2n(m \operatorname{div} n)-n$$

$$\iff m \mod n < n[2(m \operatorname{div} n)-1],$$

a ostatnia nierówność jest prawdziwa, ponieważ $m \mod n < n$ i $m \operatorname{div} n \geqslant 1$.

Złożoność Algorytmu Euklidesa

liczba obrotów
$$\leq 2 \log_2(m+n) + 1$$
.

Złożoność Algorytmu Euklidesa

liczba obrotów
$$\leq 2 \log_2(m+n) + 1$$
.

Dowód. Można założyć (dlaczego?), że $m \ge n$. Przy każdym obrocie pętli $(m < n) \longrightarrow (m, n) \longrightarrow (m, n)$

```
while k \neq 0 do
(d,k) := (k,d \mod k)
```

$$(d) + nowe(k) < \frac{2}{3}(d+k).$$

end

3

Złożoność Algorytmu Euklidesa / 🗦 🛴

liczba obrotów
$$\leq 2\log_2(m+n)+1$$
 ≤ 0 where $\begin{pmatrix} 0 \end{pmatrix} \rightarrow 0$ solute $\begin{pmatrix} 1 \end{pmatrix} \leftarrow 1$

Dowód. Można założyć (dlaczego?), że $m \geqslant n$. Przy każdym obrocie pętli

while
$$k \neq 0$$
 do
$$(d,k) := (k,d \mod k)$$

₃ **end**

mamy
$$nowe(d) + nowe(k) < \frac{2}{3}(d+k)$$
. Zatern, jeżeli obrotów było i , to (dlaczego?) $1 \le (\frac{2}{3})^i(m+n)$.

nove (nove (d)) + nove (nove (h))
$$< \frac{2}{3}$$
 (hove (b)) + hove (b) $< \frac{2}{3} \left[\frac{2}{3} \left(d + k \right) \right] = \left(\frac{2}{3} \right)^2 \left(d + k \right)$

Złożoność Algorytmu Euklidesa

liczba obrotów
$$\leq 2 \log_2(m+n) + 1$$
.

Dowód. Można założyć (dlaczego?), że $m \ge n$. Przy każdym obrocie pętli

```
while k \neq 0 do
(d,k) := (k,d \mod k)
end
```

mamy nowe(d) + nowe(k) < $\frac{2}{3}(d+k)$. Zatem, jeżeli obrotów było i, to (dlaczego?) $1 \leq (\frac{2}{3})^i (m+n)$. Stąd $(\frac{3}{2})^i \leq m+n$, czyli

$$i = \frac{1}{2}$$

$$i \log_2 \frac{3}{2} \leq \log_2(m+n).$$

$$i \leq 2 \log_2(m+n)^{\frac{1}{2}}$$

Złożoność Algorytmu Euklidesa

liczba obrotów
$$\leq 2 \log_2(m+n) + 1$$
.

Dowód. Można założyć (dlaczego?), że $m \geqslant n$. Przy każdym obrocie pętli

```
while k \neq 0 do
(d,k) := (k,d \mod k)
a end
```

mamy nowe(d) + nowe(k) < $\frac{2}{3}(d+k)$. Zatem, jeżeli obrotów było i, to (dlaczego?) $1 \leq (\frac{2}{3})^i (m+n)$. Stąd $(\frac{3}{2})^i \leq m+n$, czyli

$$2i\log_2\frac{3}{2}\leqslant 2\log_2(m+n).$$

Złożoność Algorytmu Euklidesa

liczba obrotów
$$\leq 2 \log_2(m+n) + 1$$
.

Dowód. Można założyć (dlaczego?), że $m \geqslant n$. Przy każdym obrocie pętli

```
while k \neq 0 do
(d,k) := (k,d \mod k)
a end
```

mamy nowe(d) + nowe(k) < $\frac{2}{3}(d+k)$. Zatem, jeżeli obrotów było i, to (dlaczego?) $1 \leq (\frac{2}{3})^i (m+n)$. Stąd $(\frac{3}{2})^i \leq m+n$, czyli

$$i \leqslant 2i \log_2 \frac{3}{2} \leqslant 2 \log_2 (m+n).$$

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
      output: d = NWD(m,n)
2
      d := m
3
      k := n
4
      while k \neq 0 do
5
           (d,k) := (k,d \mod k)
6
      end
7
```

NWD(m,n), rozhilad na aynnihi (HOLNE!) $m_1 n \in \mathbb{N}_0$ m + n > 0alogorgh Euhlidese (SLYBKIE!) NUD (m,n) = NUD (n, m mod n) = NUD(d,0) $\leq 2llop_2(m+n)+1 d = NUD(m,n)$ $O(log_2(m+n))$

 $V_{NUD(m,n)} = d = 13 \cdot m + t \cdot n$ 5.462

```
input: m, n \in \mathbb{N}_0, m + n > 0

output: d = NWD(m, n)

d := m

k := n

while k \neq 0 do

(d, k) := (k \setminus d \mod k)

end
```

$$\begin{cases} v = 0.9 + 1 \end{cases}$$

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
                                  delenie de 2 restip puer k
      output: d = NWD(m,n)
2
      d := m
3
      k := n
4
                                                  \ n = 0.0 + r \
      while k \neq 0 do
5
           \# d = (d \operatorname{div} k)k + d \operatorname{mod} k
6
           q := d div k
7
           (d,k) := (k,d - q * k)
8
      end
9
```

$$d = 135$$
 $k = 40$

Rozszerzony algorytm Euklidesa $q = 135 \text{ liv } 40^{\circ}$

Rozszerzony algorytm Euklidesa q=40 by 15=2

1 d := m
2 k := n
3 **while**
$$k \neq 0$$
 do
4 q := d div k
5 (d,k) := (k,d - q * k)
6 **end**

$$d = 135 \mid k = 40$$

$$d = 40 \mid k = 135 - 3 \cdot 40$$

$$d = 15 \mid k = 40 - 2 \cdot 15$$

$$d = 10 \mid k = 15 - 1 \cdot 10$$

```
1 d := m

2 k := n

3 while k \neq 0 do

4 q := d div k

5 (d,k) := (k,d - q * k)

6 end d = 13

d = 40

d = 15

d = 15

d = 15
```

$$d = 135$$
 $k = 40$
 $d = 40$ $k = 135 - 3 \cdot 40$
 $d = 15$ $k = 40 - 2 \cdot 15$
 $d = 10$ $k = 15 - 1 \cdot 10$
 $d = 5$ $k = 10 - 2 \cdot 5$

5 =

1 d := m
2 k := n
3 **while**
$$k \neq 0$$
 do
4 q := d div k
5 (d,k) := (k,d - q * k)
6 **end**

$$d = 135$$

$$d = 40$$

$$d = 15$$

$$d = 15$$

$$d = 10$$

$$d = 15$$

$$k = 40 - 2 \cdot 15$$

$$d = 10$$

$$k = 10 - 2 \cdot 5$$

$$d = \frac{?}{?} w - 2.15$$

$$5 = 15 - 1 \cdot 10$$

$$5 = 15 - 1 \cdot 10 = 15 - 1 \cdot (40 - 2 \cdot 15)$$

$$5 = 15 - 1 \cdot 10 = 15 - 1 \cdot (40 - 2 \cdot 15) =$$

$$= 3 \cdot 15 - 1 \cdot 40 = 3 \cdot (135 - 3 \cdot 40) - 1 \cdot 40$$

1 d := m
2 k := n
3 **while**
$$k \neq 0$$
 do
4 q := d div k
5 (d,k) := (k,d - q * k)
6 **end**

$$d = 135 \mid k = 40$$

$$d = 40 \mid k = 135 - 3 \cdot 40$$

$$d = 15 \mid k = 40 - 2 \cdot 15$$

$$d = 10 \mid k = 15 - 1 \cdot 10$$

$$d = 5 \mid k = 10 - 2 \cdot 5$$

$$5 = 15 - 1 \cdot 10 = 15 - 1 \cdot (40 - 2 \cdot 15) =$$

$$= 3 \cdot 15 - 1 \cdot 40 = 3 \cdot (135 - 3 \cdot 40) - 1 \cdot 40$$

$$= 3 \cdot 135 + 10 \cdot 40.$$

$$t = 3 \cdot 10 \cdot 40.$$

Twierdzenie

Dla dowolnych liczb $m, n \in \mathbb{N}_0$, które nie są jednocześnie równe zero, istnieją takie liczby całkowite s i t, że

$$\mathsf{NWD}(m,n) = s \cdot m + t \cdot n.$$

```
1    d := m
2    k := n
3    while k ≠ 0 do
4    q := d div k
5    (d,k) := (k,d - q * k)
6    end
```

```
d := m
k := n
while k ≠ 0 do
q := d div k
(d,k) := (k,d - q * k)
end
```

$$d_0=135 \mid k_0=40 \mid q_i$$

```
d := m
k := n
while k ≠ 0 do
q := d div k
(d,k) := (k,d - q * k)
end
```

$$d_0 = 135$$
 | $k_0 = 40$ | q_i | $d_1 = 40$ | $k_1 = 135 - 3 \cdot 40$ | $q_1 = 3$

$$d_0 = 135$$
 $k_0 = 40$ q_i
 $d_1 = 40$ $k_1 = 135 - 3 \cdot 40$ $q_1 = 3$
 $d_2 = 15$ $k_2 = 40 - 2 \cdot 15$ $q_2 = 2$

```
d := m
k := n
while k ≠ 0 do
q := d div k
(d,k) := (k,d - q * k)
end
```

1 d := m
2 k := n
3 **while** k
$$\neq$$
 0 **do**
4 q := d div k
5 (d,k) := (k,d - q * k)
6 **end**

$$d_0 = 135 \mid k_0 = 40 \mid q_i$$

$$d_1 = 40 \mid k_1 = 15 \mid q_1 = 3$$

$$d_2 = 15 \mid k_2 = 10 \mid q_2 = 2$$

$$d_3 = 10 \mid k_3 = 5 \mid q_3 = 1$$

$$d_4 = 5 \mid k_4 = 0 \mid q_4 = 2$$

1 d := m
2 k := n
3 while
$$k \neq 0$$
 do
4 q := d div k
5 (d,k) := (k,d - q * k)
6 end
$$d_{1} = 40 | k_{1} = 15 | q_{1} = 3$$

$$d_{2} = 15 | k_{2} = 10 | q_{2} = 2$$

$$d_{3} = 10 | k_{3} = 5 | q_{3} = 1$$

$$d_{4} = 5 | k_{4} = 0 | q_{4} = 2$$

$$d_{1} = k_{1-1}, q_{1} = d_{1-1} \text{ div } d_{1},$$

1 d := m
2 k := n
3 **while**
$$k \neq 0$$
 do
4 q := d div k
5 (d,k) := $(k,d-q*k)$
6 **end**

$$d_0 = 135 \quad k_0 = 40 \quad q_i$$

$$d_1 = 40 \quad k_1 = 15 \quad q_1 = 3$$

$$d_2 = 15 \quad k_2 = 10 \quad q_2 = 2$$

$$d_3 = 10 \quad k_3 = 5 \quad q_3 = 1$$

$$d_4 = 5 \quad k_4 = 0 \quad q_4 = 2$$

$$\rightarrow$$
 $d_i = k_{i-1}, q_i = d_{i-1} \operatorname{div} d_i,$

$$d_{i+1} = k_i = d_{i-1} - q_i \cdot k_{i-1} = d_{i-1} - q_i \cdot d_i$$

Zatem dla $i = 1, 2, \ldots, j$ mamy

$$q_i = d_{i-1} \text{ div } d_i, \qquad d_{i+1} = d_{i-1} - q_i \cdot d_i.$$

$$d_0=m$$

oraz

$$q_i = d_{i-1} \text{ div } d_i, \qquad d_{i+1} = d_{i-1} - q_i \cdot d_i$$

dla i = 1, 2, ..., j (j - liczba obrotów pętli).

→ Mamy

$$d_0 = m$$

oraz

$$q_i = d_{i-1} \text{ div } d_i, \qquad d_{i+1} = d_{i-1} - q_i \cdot d_i$$

dla i = 1, 2, ..., j (j - liczba obrotów pętli).

→ Dodatkowo wiemy, że

$$d_j = \mathsf{NWD}(m, n).$$

→ Mamy

$$d_0 = m$$

oraz

$$q_i = d_{i-1} \text{ div } d_i, \qquad d_{i+1} = d_{i-1} - q_i \cdot d_i$$

dla i = 1, 2, ..., j (j - liczba obrotów pętli).

→ Dodatkowo wiemy, że

$$d_j = \mathsf{NWD}(m, n).$$

$$d_j = s m + t n.$$

→ Mamy

$$d_0 = m$$

oraz $q_i = d_{i-1} \text{ div } d_i, \qquad d_{i+1} = d_{i-1} - q_i \cdot d_i$ dla $i = 1, 2, \dots, j$ (j - liczba obrotów pętli). $0 = 1, 2, \dots, j$ Dodatkowo wiemy, że $0 = 1, 2, \dots, j$ Dodatkowo wiemy, że $0 = 1, 2, \dots, j$

$$d_j = \mathsf{NWD}(m, n).$$

$$d_i = s \cdot m + t \cdot n$$
.

 \rightsquigarrow Skonstruujemy takie ciągi (s_i) , (t_i) , że

$$d_i = s_i \cdot m + t_i \cdot n, \qquad i = \underbrace{0, 1, \ldots, j}.$$

Na początku chcemy, aby

$$m = d_0 = s_0 \cdot m + t_0 \cdot n, \qquad m = 1 \cdot m + 0 \cdot n$$
 więc przyjmujemy $s_0 = 1$, $t_0 = 0$.
$$d_1 = m = 0 \cdot m + 1 \cdot h$$

Na początku chcemy, aby

$$m=d_0=s_0\cdot m+t_0\cdot n,$$

więc przyjmujemy $s_0 = 1$, $t_0 = 0$.

→ Dalej chcemy, aby

$$n=d_1=s_1\cdot m+t_1\cdot n,$$

więc przyjmujemy $s_1 = 0$, $t_1 = 1$.

Na początku chcemy, aby

$$m=d_0=s_0\cdot m+t_0\cdot n,$$
więc przyjmujemy $s_0=1,\ t_0=0.$
 $n=d_1=s_1\cdot m+t_1\cdot n,$
więc przyjmujemy $s_1=0,\ t_1=1.$

Następnie, skoro wiemy, że $d_2=d_0-q_1d_1$ to $d_2=s_0\cdot m+t_0\cdot n-q_1(s_1\cdot m+t_1\cdot n)=s_1$
 $d_2=s_0\cdot m+t_0\cdot n-q_1(s_1\cdot m+t_1\cdot n)=s_1$

Następnie, skoro wiemy, że $d_2 = d_0 - q_1 d_1$, to

$$d_2 = \underbrace{\left(s_0 - q_1 s_1\right)}_{s_2} m + \underbrace{\left(t_0 - q_1 t_1\right)}_{t_2} n.$$

Następnie, skoro wiemy, że $d_2 = d_0 - q_1 d_1$, to

$$d_2 = \underbrace{(s_0 - q_1 s_1)}_{s_2} m + \underbrace{(t_0 - q_1 t_1)}_{t_2} n.$$

 \rightarrow Ogólnie, dla $i \ge 1$ przyjmujemy

$$s_{i+1} \coloneqq s_{i-1} - q_i s_i, \qquad t_{i+1} \coloneqq t_{i-1} - q_i t_i.$$

Następnie, skoro wiemy, że $d_2 = d_0 - q_1 d_1$, to

$$d_2 = \underbrace{(s_0 - q_1 s_1)}_{s_2} m + \underbrace{(t_0 - q_1 t_1)}_{t_2} n.$$

 \leadsto Ogólnie, dla $i\geqslant 1$ przyjmujemy

$$s_{i+1} \coloneqq s_{i-1} - q_i s_i, \qquad t_{i+1} \coloneqq t_{i-1} - q_i t_i.$$

→ Wtedy, jeżeli

$$d_i = s_i \cdot m + t_i \cdot n$$
 oraz $d_{i-1} = s_{i-1} \cdot m + t_{i-1} \cdot n$,

to

$$d_{i+1} = d_{i-1} - q_i d_i = s_{i+1} \cdot m + t_{i+1} \cdot n.$$

$$d_{01}d_{1} \longrightarrow d_{1}$$
 $d_{i-1}, d_{i} \longrightarrow d_{i+1}$

Następnie, skoro wiemy, że $d_2 = d_0 - q_1 d_1$, to

$$d_2 = \underbrace{\left(s_0 - q_1 s_1\right)}_{s_2} m + \underbrace{\left(t_0 - q_1 t_1\right)}_{t_2} n.$$

 \longrightarrow Ogólnie, dla $i \ge 1$ przyjmujemy

$$s_{i+1} := s_{i-1} - q_i s_i, \qquad t_{i+1} := t_{i-1} - q_i t_i.$$

→ Wtedy, jeżeli

$$d_i = s_i \cdot m + t_i \cdot n$$
 oraz $d_{i-1} = s_{i-1} \cdot m + t_{i-1} \cdot n$,

to

$$d_{i+1} = d_{i-1} - q_i d_i = s_{i+1} \cdot m + t_{i+1} \cdot n.$$

Z zasady indukcji otrzymujemy

$$d_{i+1} = s_{i+1} \cdot m + t_{i+1} \cdot n, \qquad i = 1, 2, \dots, j-1.$$
 $\text{NUD}(m_n) = d_0' = s_0 \cdot m + t_0 \cdot n$

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
      output: d = NWD(m,n)
2
 d := m
3
   k := n
4
      while k \neq 0 do
5
         q := d div k
6
          (d,k) := (k,d - q * k)
7
      end
8
```

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
       output: d = NWD(m,n)
  d := m \qquad d \approx di-n
  d' := n \qquad d' \approx d'
  s := 1, s' := 0
t := 0, t' := 1
       while d' \neq 0 do
           q := d div d'
(d,d') := (d',d-q * d')
         (s,s') := (s',s-q * s')

(t,t') := (t',t-q * t')
11
12
       end
13
```

```
input: m, n \in \mathbb{N}_0, m + n > 0
1
      output: d = NWD(m,n)
2
      d := m
3
    d' := n
4
     s := 1, s' := 0
      t := 0, t' := 1
    \# d = sm + tn, d' = s'm + t'n
7
                                    Hone (9) = \text{Mone}(2).M
      while d' \neq 0 do
8
          q := d div x d
          (d,d') := (d',d-q * d')
10
          (s,s') := (s',s-q * s')
11
          (t,t') := (t',t-q * t')
12
      end
13
```

```
input: m,n
1
    output: d = NWD(m,n)
  d := m
  d' := n
  s := 1, s' := 0
  t := 0, t' := 1
    while d' \neq 0 do q := d \text{ div } k \neq 0
     (d,d') := (d',d-q * d')
     (s,s') := (s',s-q * s')
10
       (t,t') := (t',t-q * t')
11
     end
12
```

$$i \mid d_i \mid q_i \mid s_i \mid t_i$$

```
input: m,n
    output: d = NWD(m,n)
    d := m ____
3
                                                   q_i
                                                              t_i
    d' := n 
                                              135
    s := 1, s' := 0
5
    t := 0, t' := 1
    while d' \neq 0 do
7
     [q := d div k _____
8
     (d,d') := (d',d-q * d')
9
     (s,s') := (s',s-q * s')
10
     (t,t') := (t',t-q * t')
11
    end
12
```

```
input: m,n
1
    output: d = NWD(m,n)
    d := m
   d' := n
   s := 1, s' := 0
   t := 0, t' := 1
    while d' \neq 0 do
      q := d \operatorname{div} k
8
      (d,d') := (d',d-q * d')
9
     (s,s') := (s',s-q * s')
10
      (t,t') := (t',t-q * t')
11
    end
12
      3 = 3.135 - 10.40
```



```
input: m,n
1
    output: d = NWD(m,n)
   d := m
  d' := n
  s := 1, s' := 0
   t := 0, t' := 1
    while d' \neq 0 do
     q := d div k
      (d,d') := (d',d-q * d')
9
      (s,s') := (s',s-q * s')
10
      (t,t') := (t',t-q * t')
11
    end
12
```

i	d_i	q_i	Si	$ t_i $
0	135		1	0
1	40	3	0	1
2	15	2	1	_3

```
input: m,n
1
    output: d = NWD(m,n)
  d := m
  d' := n
  s := 1, s' := 0
  t := 0, t' := 1
    while d' \neq 0 do
    q := d div k
      (d,d') := (d',d-q * d')
9
      (s,s') := (s',s-q * s')
10
      (t,t') := (t',t-q * t')
11
    end
12
```

i	d_i	$ q_i $	Si	l t _i
0	135		1	0
1	40	3	0	1
2	15	2	1	-3
3	10	1	-2	7

```
input: m,n
1
    output: d = NWD(m,n)
  d := m
  d' := n
  s := 1, s' := 0
  t := 0, t' := 1
    while d' \neq 0 do
    q := d div k
      (d,d') := (d',d-q * d')
9
      (s,s') := (s',s-q * s')
10
      (t,t') := (t',t-q * t')
11
    end
12
```

i	d_i	q_i	Si	$ t_i $
0	135		1	0
1	40	3	0	1
2	15	2	1	-3
3	10	1	-2	7
4	5	2	3	-10

```
input: m,n
1
    output: d = NWD(m,n)
  d := m
  d' := n
  s := 1, s' := 0
  t := 0, t' := 1
    while d' \neq 0 do
    q := d div k
      (d,d') := (d',d-q * d')
9
      (s,s') := (s',s-q * s')
10
      (t,t') := (t',t-q * t')
11
    end
12
```

i	d_i	$ q_i $	Si	$ t_i $
0	135		1	0
1	40	3	0	1
2	15	2	1	-3
3	10	1	-2	7
4	5	2	3	-10
5	0			

```
input: m,n
1
    output: d = NWD(m,n)
2
   d := m
                                               |q_i|s_i|t_i
  d' := n
                                           135
  s := 1, s' := 0
                                           40
  t := 0, t' := 1
                                           15
    while d' \neq 0 do
                                           10
     q := d div k
8
    (d,d') := (d',d-q * d')
9
    (s,s') := (s',s-q * s')
10
    (t,t') := (t',t-q * t')
11
    end
12
```

$$NWD(135, 40) = 5 = 3 \cdot 135 + (-10) \cdot 40.$$