Contrôle continu 2

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. Formes quadratique Déterminer la matrice et la signature des formes quadratiques suivantes :

- 1. $q_1(x, y, z, t) = x^2 + 3y^2 + 4z^2 + t^2 + 2xy + xt + yt$ On a $q(x, y, z, t) = (x + y + t/2)^2 + 2y^2 + 4z^2 + 3/4t^2$. Cette forme quadratique est positive (et même définie positive, sa signature est (4, 0)).
- 2. $q_2(x, y, z) = x^2 + y^2 + 2z(x\cos\alpha + y\sin\alpha)$ où $\alpha \in \mathbb{R}$. On trouve $q_2(x, y, z) = (x + z\cos\alpha)^2 + (y + z\sin\alpha)^2 - z^2$. Cette forme quadratique n'est pas positive (sa signature est (2, 1)).

Exercice 2. Soit E un espace vectoriel euclidien et x, y deux éléments de E. Montrer que x et y sont orthogonaux si et seulement si $||x + \lambda y|| \ge ||x||$ pour tout $\lambda \in \mathbb{R}$.

Supposons que x et y sont orthogonaux. On choisit $\lambda \in \mathbb{R}$ quelconque et on a $||x + \lambda y||^2 = ||x||^2 + \lambda^2 ||y||^2 + 2\lambda \langle x, y \rangle = ||x||^2 + \lambda^2 ||y||^2 \ge ||x||^2$.

Réciproquement, si $||x + \lambda y|| - ||x|| \ge 0$ pour tout $\lambda \in \mathbb{R}$, il vient que

$$\lambda(\lambda ||y||^2 + 2\langle x, y \rangle) \ge 0$$

Dressant le tableau de signes de ce produit, il ne peut être toujours positif que si :

- $\ 2 \, \langle x,y \rangle + \lambda \|y\|$ est toujours nul, c'est-à-dire si y=0
- $-2\langle x,y\rangle + \lambda ||y||$ ne s'annule qu'en $\lambda=0$, c'est-à-dire si $\langle x,y\rangle=0$.

Dans les deux cas, on trouve bien que x et y sont orthogonaux.

Exercice 3. Lignes de niveau

1. Donner le domaine de définition de la fonction $f_1(x,y) = (y+x)^2$ et dessiner les lignes de niveau k avec k = -1 et k = 1

2. Soit $f_2(x,y) = \frac{x^4 + y^4}{8 - x^2 y^2}$.

La fonction étant positive l'ensemble de niveau -1 est vide. Pour l'ensemble de niveau 1 on a:

$$(x+y)^2 = 1 \Leftrightarrow x+y = \pm 1$$

C'est donc l'union des 2 droites parallèles dessinées ci contre.

(a) Dessiner le domaine de définition D de f_2

Il s'agit de déterminer l'ensemble des points du plan vérifiant $8 - x^2y^2$. Attention, il faut distinguer 4 cas correspondant aux 4 quadrants (ie supposer succéssivement que x > 0, x < 0, y > 0, y < 0). Dans tous les cas on trouve une hyperbole. Le domaine de définition de f_2 est tout le plan privé des 4 courbes en rouge ci contre.

(b) Déterminer la nature de D (ouvert, fermé, ni l'un ni l'autre)? Démontrer.

Le domaine de définition de f_2 est ouvert. En effet, c'est le complémentaire d'un fermé car $F = \{(x,y) \in \mathbb{R}^2 | 8 - x^2y^2\}$ est l'image réciproque du singleton $\{8\}$ (qui est un fermé) par l'application continue $(x,y) \mapsto x^2y^2$. On peut aussi le montrer directement en prenant une suite de F qui converge et démonter que la limite est encore dans F.

(c) Calculer la ligne de niveau k=2. Quel objet géométrique est-ce?

La ligne de niveau est l'ensemble des $(x,y) \in \mathbb{R}^2$ tels que $x^4 + y^4 + 2x^2y^2 = 16$. Ce qui donne $(x^2 + y^2)^2 = 16$ et implique que $x^2 + y^2 = 4$. C'est donc le cercle C de centre (0,0) et de rayon 2 auquel il faut retirer les points pour lesquels $x^2y^2 = 8$, points pour lesquels la fonction f n'est pas définie. Les points du cercle vérifiant cette relation vérifient aussi

$$x^2 + 8/x^2 = 4 \Rightarrow x^4 - 4x^2 + 8 = 0.$$

Posons $X = x^2$, alors X vérifie $X^2 - 4X + 8 = 0$. Le discriminant de cette équation est $16 - 4 \times 8 = -16 < 0$. Ainsi, l'équation n'a pas de solutions dans \mathbb{R} . La courbe de niveau recherché est bien le cercle de centre l'origine et de rayon 2.

Exercice 4. Limites Étudier la limite en l'origine de la fonction

$$f(x,y) = \frac{x\sin(y) - y\sin(x)}{x^2 + y^2}.$$

On a, au voisinage de (0,0),

$$\begin{split} |f(x,y)| & \leq 2 \frac{|x(y+o(y^2)) - y(x+o(x^2))|}{x^2 + y^2} \\ & \leq \frac{o(x^2) + o(y^2)}{x^2 + y^2} = \frac{x^2 \varepsilon_1(x) + y^2 \varepsilon_2(y)}{x^2 + y^2} \quad \text{avec } \lim_{x \to 0} \varepsilon_1(x) = \lim_{y \to 0} \varepsilon_2(y) = 0, \\ & \leq \frac{(x^2 + y^2) \max\{\varepsilon_1(x), \varepsilon_2(y)\}}{x^2 + y^2} \\ & \leq \max\{\varepsilon_1(x), \varepsilon_2(y)\} = \|(\varepsilon_1(x), \varepsilon_2(y))\|_{\infty} \xrightarrow[(x,y) \to (0,0)]{} 0 \end{split}$$

Ainsi, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.