6.852: Distributed Algorithms Fall, 2015

Lecture 7

Today's plan

- Exponential Information Gathering (EIG) algorithm for Byzantine agreement.
- Lower bounds:
 - Number-of-processors lower bound for Byzantine agreement.
 - Connectivity bounds.
 - Weak Byzantine agreement.
 - Time lower bounds for stopping and Byzantine agreement.
- Reading:
 - Sections 6.3-6.7
 - [Aguilera, Toueg]
 - [Keidar, Rajsbaum]
- Next: Some other distributed agreement problems

Byzantine agreement

- Recall correctness conditions:
 - Agreement: No two nonfaulty processes decide on different values.
 - Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 - Termination: All nonfaulty processes eventually decide.
- EIG algorithm for Byzantine agreement, using:
 - Exponential communication (in f)
 - f+1 rounds
 - n > 3f

EIG algorithm for Byzantine agreement

- Assume n > 3f.
- Same EIG tree as before.
- Relay messages for f+1 rounds, as before.
- Decorate the tree with values from V, replacing any garbage messages with default value v₀.
- Call the decorations val(x), where x is any node label.
- New decision rule:
 - Redecorate the tree bottom-up, defining newval(x).
 - Leaf: newval(x) = val(x)
 - Non-leaf: newval(x) =
 - newval of strict majority of children in the tree, if majority exists,
 - $-v_0$ otherwise.
 - Final decision: newval(λ) (newval at root)

Example: n = 4, f = 1

- T_{4,1}:
- Consider a possible execution in which p3 is faulty.
- Initial values 1 1 0 0
- Round 1
- Round 2

Example: n = 4, f = 1

• Now calculate newvals, bottom-up, choosing majority values, $v_0 = 0$ if no majority.

Correctness proof

- Lemma 1: If i, j, k are nonfaulty, then val(x)_i = val(x)_i for every node label x ending with k.
- In example, such nodes are (in red):

 Proof: k sends same message to i and j and they decorate accordingly.

Proof, cont'd

- Lemma 2: If x ends with a nonfaulty process index then ∃v
 ∈ V such that val(x)_i = newval(x)_i = v for every nonfaulty i.
- Proof: Induction on lengths of labels, bottom up.
 - Basis: Leaf.
 - Lemma 1 implies that all nonfaulty processes have same val(x).
 - newval = val for each leaf.
 - Inductive step: $|x| = r \le f$ (|x| = f+1 at leaves)
 - Lemma 1 implies that all nonfaulty processes have same val(x), say v.
 - We need newval(x) = v everywhere also.
 - Every nonfaulty process j broadcasts same v for x at round r+1, so val(xj)_i = v for every nonfaulty j and i.
 - By inductive hypothesis, also newval(xj)₁ = v for every nonfaulty j and i.
 - A majority of labels of x's children end with nonfaulty process indices:
 - Number of children of node x is $\geq n f > 3f f = 2f$.
 - At most f are faulty.
 - So, majority rule applied by i leads to newval(x)_i = v, for all nonfaulty i.

Main correctness conditions

Validity:

- If all nonfaulty processes begin with v, then all nonfaulty processes broadcast v at round 1, so val(j)_i = v for all nonfaulty i, j.
- By Lemma 2, also newval(j)_i = v for all nonfaulty i,j.
- Majority rule implies newval(λ)_i = v for all nonfaulty i.
- So all nonfaulty i decide v.

Termination:

- Obvious.

Agreement:

– Requires a bit more work:

 Path covering: Subset of nodes containing at least one node on each path from root to leaf:

- Common node: One for which all nonfaulty processes have the same newval.
- If a node's label ends in a nonfaulty process index, Lemma 2 implies it's common.
- Others might be common too.

- Lemma 3: There exists a path covering all of whose nodes are common.
- Proof:
 - Let C = nodes whose labels end with a nonfaulty process index.
 - By Lemma 2, every node in C is common.
 - Claim C is a path covering:
 - There are at most f faulty processes.
 - Each path contains f+1 labels ending with f+1 distinct indices.
 - So at least one of these labels ends with a nonfaulty process index.

 Lemma 4: If there's a common path covering of the subtree rooted at any node x, then x is common.

Proof:

- By induction, from the leaves up.
- "Common-ness" propagates upward.

Example:

- Lemma 4: If there's a common path covering of the subtree rooted at any node x, then x is common
- Proof:
 - By induction, from the leaves up.
 - "Common-ness" propagates upward.
- Example:

- Lemma 4: If there's a common path covering of the subtree rooted at any node x, then x is common
- Proof:
 - By induction, from the leaves up.
 - "Common-ness" propagates upward.
- Example:

- Lemma 3: There exists a path covering all of whose nodes are common.
- Lemma 4: If there's a common path covering of the subtree rooted at any node x, then x is common.
- Lemma 5: The root is common.
- Proof: By Lemmas 3 and 4.
- Thus, all nonfaulty processes get the same newval(λ).
- Yields Agreement.

Complexity bounds

- As for EIG for stopping agreement:
 - Time: f+1
 - Communication: O(n^{f+1})

Number of processes: n > 3f

Q: Is n > 3f necessary?

Lower bound on the number of processes for Byzantine Agreement

Number of processes for Byzantine agreement

- n > 3f is necessary!
 - Holds for any n-node (undirected) graph.
 - For graphs with low connectivity, may need even more processes.
 - Number of failures that can be tolerated for Byzantine agreement in an undirected graph G has been completely characterized, in terms of number of nodes and graph connectivity.
- Theorem 1: 3 processes cannot solve Byzantine Agreement with 1 possible failure.

Proof (3 vs. 1 BA)

 By contradiction. Suppose algorithm A, consisting of processes 1, 2, 3, solves BA with 1 possible failure.

 Construct new system S from 2 copies of A, with initial values as follows:

- A synchronous system of some kind.
- Not required to satisfy any particular correctness conditions.
- Not necessarily a correct BA algorithm for the 6-node ring.
- Just some synchronous system, which runs and does something.
- We'll use it to get our contradiction.

Proof (3 vs 1 BA)

- Consider 2 and 3 in S:
- Looks to them like:
 - They're in A, with a faulty process 1.
 - 1 emulates 1'-2'-3'-1 from S.
- In A, 2 and 3 must decide 0
- So by indistinguishability, they decide 0 in S also.

Proof (3 vs 1 BA)

- Now consider 1' and 2' in S.
- Looks to them like:
 - They're in A with a faulty process 3.
 - 3 emulates 3'-1-2-3 from S.
- They must decide 1 in A, so they decide 1 in S also.

Proof (3 vs 1 BA)

- Finally, consider 3 and 1' in S:
- Looks to them like:
 - They're in A, with a faulty process 2.
 - 2 emulates 2'-3'-1-2 from S.
- In A, 3 and 1 must agree.
- So by indistinguishability, 3 and 1' agree in S also.
- But we already know that process 1' decides 1 and process 3 decides 0, in S.
- Contradiction!

Discussion

- We get this contradiction even if the original algorithm A is assumed to "know n".
- That simply means that:
 - The processes in A have the number 3 hard-wired into their state.
 - Their correctness properties are required to hold only when they are actually configured into a triangle.
- We are allowed to use these processes in a different configuration S---as long as we don't claim any particular correctness properties for S.

Impossibility for n = 3f

- Theorem 2: n processes can't solve BA, if n ≤ 3f.
- Proof:
 - Similar construction, with f processes treated as a group.
 - Or, can use a reduction:
 - Show how to transform a solution for n ≤ 3f to a solution for 3 vs. 1.
 - Since 3 vs. 1 is impossible, this yields a contradiction.
- Treat n = 2 as a special case:
 - n = 2, f = 1
 - Each could be faulty, requiring the other to decide on its own value.
 - Or both nonfaulty, which requires agreement, contradiction.
- So from now on, assume $3 \le n \le 3f$.
- Assume a Byzantine Agreement algorithm A for (n,f).
- Transform it into a BA algorithm B for (3,1).

Transforming A to B

Algorithm:

- Partition A-processes into groups I_1 , I_2 , I_3 , where $1 \le |I_1|$, $|I_2|$, $|I_3| \le f$.
- Each B_i process simulates the entire I_i group.
- B_i initializes all processes in I_i with B_i's initial value.
- At each round, B_i simulates sending messages:
 - Local: Just simulate locally.
 - · Remote: Package and send.
- If any simulated process decides, B_i decides the same (use any).

Show B satisfies correctness conditions:

- Consider any execution of B with at most 1 faulty process.
- Simulates an execution of A with at most f faulty processes.
- Correctness conditions must hold in the simulated execution of A.
- Show these all carry over to B's execution.

B's correctness

Termination:

- If B_i is nonfaulty in B, then it simulates only nonfaulty processes of A (at least one).
- Those terminate, so B_i does also.

Agreement:

- If B_i, B_j are nonfaulty processes of B, they simulate only nonfaulty processes of A.
- Agreement in A implies all these agree.
- So B_i, B_i agree.

Validity:

- If all nonfaulty processes of B start with v, then so do all nonfaulty processes of A.
- Then validity of A implies that all nonfaulty A processes decide v, so the same holds for B.

General graphs and connectivity bounds

- n > 3f isn't the whole story:
 - 4 processes, can't tolerate 1 fault:

- -n > 3f, and
- conn(G) > 2f.

conn(G) = minimum number of nodes of G whose removal results in either a disconnected graph or a 1-node graph.

Examples:

conn = 1

conn = 3

Proof: "If" direction

- Theorem 3: BA is solvable in an n-node graph G, tolerating f faults, if and only if n > 3f and conn(G) > 2f.
- Proof ("if"):
 - Suppose both hold.
 - Then we can simulate a total-connectivity algorithm.
 - Key is to emulate reliable communication from any node i to any other node j.
 - Rely on Menger's Theorem, which says that a graph is c-connected (that is, has conn ≥ c) if and only if each pair of nodes is connected by ≥ c node-disjoint paths.
 - Since conn(G) \geq 2f + 1, we have \geq 2f + 1 node-disjoint paths between i and j.
 - To send a message, send it on all these paths (assumes graph is known).
 - Majority must be correct, so take majority message.

Proof: "Only if" direction

- Theorem 3: BA is solvable in an n-node graph G, tolerating f faults, if and only if n > 3f and conn(G) > 2f.
- Proof ("only if"):
 - We already showed n > 3f; remains to show conn(G) > 2f.
 - Show key idea with simple case, conn = 2, f = 1.
 - Canonical example:
 - Disconnect 1 and 3 by removing 2 and 4:
 - Proof by contradiction.
 - Assume some algorithm A that solves BA in this canonical graph, tolerating 1 failure.

Proof (conn = 2, 1 failure)

- Now construct S from two copies of A.
- Consider 1, 2, and 3 in S:
 - Looks to them like they're in A,
 with a faulty process 4.
 - In A, 1, 2, and 3 must decide 0
 - So they decide 0 in S also.
- Similarly, 1', 2', and 3' decide
 1 in S.

Proof (conn = 2, 1 failure)

- Finally, consider 3', 4', and 1 in S:
 - Looks to them like they're in A, with a faulty process 2.
 - In A, they must agree, so they also agree in S.
 - But 3' decides 0 and 1 decides 1 in S, contradiction.
- Therefore, we can't solve BA in this canonical graph, with 1 failure.

 As before, we can generalize to conn(G) ≤ 2f, or use a reduction.

Other Byzantine processor bounds

- The bounds n > 3f and conn > 2f are fundamental for consensus-style problems with Byzantine failures.
- Same bounds hold, in synchronous settings with f Byzantine faulty processes, for:
 - Byzantine Firing Squad synchronization problem,
 - Weak Byzantine Agreement, and
 - Approximate agreement.
- Also, in timed (partially synchronous settings), for maintaining clock synchronization.
- Proofs all use similar "pasting" methods.

Weak Byzantine Agreement [Lamport]

- Correctness conditions for BA:
 - Agreement: No two nonfaulty processes decide on different values.
 - Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 - Termination: All nonfaulty processes eventually decide.
- Correctness conditions for Weak BA:
 - Agreement: Same as for BA.
 - Validity: If all processes are nonfaulty and start with the same v, then v is the only allowed decision value.
 - Termination: Same as for BA.
- Limits the situations where the decision is forced to go a certain way.
- Similar style to one direction of the validity condition for the 2-Generals problem.

WBA Processor Bounds

- Theorem 4: Weak BA is solvable in an n-node graph G, tolerating f faults, if and only if n > 3f and conn(G) > 2f.
- Same bounds as for BA.

Proof:

- "If": Follows from results for ordinary BA.
- "Only if":
 - By constructions like those for ordinary BA, but slightly more complicated.
 - Show 3 vs. 1 here, rest LTTR.

Proof (3 vs. 1 Weak BA)

 By contradiction. Suppose algorithm A, consisting of procs 1, 2, 3, solves WBA with 1 fault.

- Let α_0 = execution in which everyone starts with 0 and there are no failures; results in decision 0.
- Let α_1 = execution in which everyone starts with 1 and there are no failures; results in decision 1.
- Let b = an upper bound on number of rounds for all processes to decide, in both α_0 and α_1 .
- Construct new system S from 2b copies of A:

Proof (3 vs. 1 Weak BA)

- Claim: Any two adjacent processes in S must decide the same thing..
 - Because it looks to them like they are in A, and they must agree in A.
- So everyone decides the same in S.
- WLOG, all decide 1.

Proof (3 vs. 1 Weak BA)

 Now consider a block of 2b + 1 consecutive processes that begin with 0:

- Claims:
 - To all but the endpoints, the execution of S is indistinguishable from α_0 , the failure-free execution of A in which everyone starts with 0, for one round.
 - To all but two at each end, indistinguishable from α_0 for two rounds.
 - To all but three at each end, indist. from α_0 for three rounds.
 - **–** ...
 - To midpoint, indistinguishable for b rounds.
- But b rounds are enough for the midpoint to decide 0, contradicting the fact that everyone decides 1 in S.

Lower bound on the number of rounds for Byzantine agreement

Lower bound on number of rounds

- Notice that f+1 rounds are used in all the agreement algorithms we've seen so far---both stopping and Byzantine.
- That's inherent: f+1 rounds are needed in the worst-case, even for simple stopping failures.
- Assume an f-round stopping agreement algorithm A tolerating f faults, and get a contradiction.
- Restrictions on A (WLOG):
 - n-node complete graph.
 - Decisions at end of round f.
 - $V = \{0,1\}$
 - All-to-all communication at every round ≤ f.

- Theorem 5: Suppose n ≥ 3. There is no n-process 1-fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round 1.
- Proof: Suppose A exists.
 - Construct a chain of executions, each with at most one failure, such that:
 - First has (unique) decision value 0.
 - Last has decision value 1.
 - Any two consecutive executions in the chain are indistinguishable to some process i that is nonfaulty in both. So i must decide the same in both executions, and the two must have the same decision values.
 - So decision values in first and last executions must be the same.
 - Contradiction.

Round lower bound, f = 1

- α_0 : All processes have input 0, no failures.
- •
- α_k (last one): All inputs 1, no failures.
- Start the chain from α_0 .
- Next execution, α_1 , removes message $1 \rightarrow 2$.
 - $α_0$ and $α_1$ indistinguishable to everyone except 1 and 2; since n ≥ 3, there is some other process.
 - These processes are nonfaulty in both executions.
- Next execution, α_2 , removes message $1 \rightarrow 3$.
 - α_1 and α_2 indistinguishable to everyone except 1 and 3, hence to some nonfaulty process.
- Next, remove message 1 → 4.
 - Indistinguishable to some nonfaulty process.

Continuing...

- Having removed all of process 1's messages, change 1's input from 0 to 1.
 - Looks the same to everyone else.
- We can't just keep removing messages, since we are allowed at most one failure in each execution.
- So, we continue by replacing missing messages, one at a time.
- Repeat with process 2, 3, and 4, eventually reach the last execution: all inputs 1, no failures.

- Theorem 6: Suppose n ≥ 4. There is no n-process 2-fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round 2.
- Proof: Suppose A exists.
 - Construct another chain of executions, each with at most 2 failures.
 - This chain is longer and more complicated.
 - Start with α_0 : All processes have input 0, no failures, 2 rounds:
 - Work toward α_n , all 1's, no failures.
 - Each consecutive pair is indistinguishable to some nonfaulty process.
 - Use intermediate execs α_i in which:
 - Processes 1,...,i have initial value 1.
 - Processes i+1,...,n have initial value 0.
 - No failures.

- Show how to connect α_0 and α_1 .
 - That is, change process 1's initial value from 0 to 1.
 - Other intermediate steps are essentially the same.
- Start with α_0 , work toward killing p1 at the beginning, to change its initial value, by removing messages.
- Then replace the messages, working back up to α_1 .
- Start by removing p1's round 2 messages, one by one.
- Q: Continue by removing p1's round 1 messages?
- No, because consecutive executions would not look the same to anyone:
 - E.g., removing 1 → 2 at round 1 allows p2 to tell everyone about the failure, at round 2.

 Removing 1 → 2 at round 1 allows p2 to tell all other processes about the failure:

- Distinguishable to everyone.
- So we must do something more elaborate.
- Recall that now we can allow 2 processes to fail in some executions.
- Use many steps to remove a single round 1 message 1 → i; in these steps, both 1 and i will be faulty.

Removing p1's round 1 messages

- Start with execution where p1 sends to everyone at round 1, and only p1 is faulty.
- Remove round 1 message 1 → 2:
 - p2 starts out nonfaulty, so sends all its round 2 messages.
 - Now make p2 faulty.
 - Remove p2's round 2 messages, one by one, until we reach an execution where 1 → 2 at round 1, but p2 sends no round 2 messages.
 - Now remove the round 1 message $1 \rightarrow 2$.
 - Executions look the same to everyone but 1 and 2 (and they're all nonfaulty).
 - Replace the round 2 messages from p2, one by one, until p2 is no longer faulty.
- Repeat to remove p1's round 1 messages to p3, p4,...
- After removing all of p1's round 1 messages, change p1's initial value from 0 to 1, as needed.

General case: Any f

- Theorem 7: Suppose n ≥ f + 2. There is no n-process ffault stopping agreement algorithm in which nonfaulty processes always decide at the end of round f.
- Proof: Suppose A exists.
 - Same ideas, longer chain.
 - Must fail f processes in some executions in the chain, in order to remove all the required messages, at all rounds.
 - Construction in book, LTTR.
- Newer proof [Aguilera, Toueg]:
 - Uses ideas from [Fischer, Lynch, Paterson] impossibility of consensus (which you will see later).
 - They assume strong validity, but their proof works for our weaker validity condition also.

[Aguilera, Toueg] proof

- By contradiction. Assume A solves stopping agreement for f failures and everyone decides after exactly f rounds.
- Consider only executions in which at most one process fails during each round.
- Recall: Failure at a round allows process to send any subset of the messages, or to send all but halt before changing state.
- Regard vector of initial values as a 0-round execution.
- Definitions (adapted from [FLP]): α , an execution that completes some finite number (possibly 0) of rounds, is:
 - 0-valent, if 0 is the only decision that can occur in any execution (of the kind we consider) that extends α .
 - 1-valent, if 1 is the only decision that can occur in...
 - Univalent, if α is either 0-valent or 1-valent (essentially decided).
 - Bivalent, if both decisions occur in some extensions (undecided).

Univalence and Bivalence

Initial bivalence

- Lemma 1: There is some 0-round execution (vector of initial values) that is bivalent.
- Proof (derived from [FLP]):
 - Assume for contradiction that all 0-round executions are univalent.
 - 000...0 is 0-valent.
 - 111...1 is 1-valent.
 - So there must be two 0-round executions that differ in the value of just one process, i, such that one is 0valent and the other is 1-valent.
 - But this is impossible, because if i fails at the start, no one else can distinguish the two 0-round executions.

Bivalence through f-1 rounds

- Lemma 2: For every k, 0 ≤ k ≤ f-1, there is a bivalent k-round execution.
- Proof: By induction on k.
 - Base (k=0): Lemma 1.
 - Inductive step: Assume for k, show for k+1, where k < f -1.
 - Assume a bivalent k-round execution α.
 - Assume for contradiction that every 1-round extension of α (with at most one new failure) is univalent.
 - Let α^* be the 1-round extension of α in which no new failures occur in round k+1.
 - By assumption, this is univalent, say WLOG that it's 1-valent.
 - Since α is bivalent, there must be another 1-round extension of α , α^0 , that is 0-valent.

Bivalence through f-1 rounds

- In α⁰, some single process, say i, fails in round k+1, by not sending to some set of processes, say J = {j₁, j₂,...j_m}.
- Define a chain of (k+1)-round executions, $\alpha^0, \alpha^1, \alpha^2, ..., \alpha^m$.
- Each α^I in this sequence is the same as α⁰ except that i also sends messages to j₁,
 j₂,...j_I.
 - Adding in messages from i, one at a time.
- Each α^{l} is univalent, by assumption.
- Since α^0 is 0-valent, either:
 - At least one of these is 1-valent, or
 - All are 0-valent.

Case 1: At least one α^{l} is 1-valent

- Then there must be some I such that α^{I-1} is 0-valent and α^{I} is 1-valent.
- But α^{l-1} and α^l differ after round k+1 only in the state of one process, j_l .
- We can extend both α^{l-1} and α^l by simply failing j_l at beginning of round k+2.
 - There is actually a round k+2 because we've assumed k < f-1, so $k+2 \le f$.
- And no one left alive can tell the difference!
- Contradiction for Case 1.

Case 2: Every α^I is 0-valent

- Then compare:
 - α^{m} , in which i sends all its round k+1 messages and then fails, with
 - α^* , in which i sends all its round k+1 messages and does not fail.
- No other differences, since only i fails at round k+1 in α^m.
- α^{m} is 0-valent and α^{*} is 1-valent.
- Extend to full f-round executions:
 - $-\alpha^{m}$, by allowing no further failures,
 - α^* , by failing i right after round k+1 and then allowing no further failures.
- No one can tell the difference.
- Contradiction for Case 2.

Bivalence through f-1 rounds

- So we've proved, so far:
- Lemma 2: For every k, 0 ≤ k ≤ f-1, there is a bivalent k-round execution.

Disagreement after f rounds

 Lemma 3: There is an f-round execution in which two nonfaulty processes decide differently.

Proof:

- Use Lemma 2 to get a bivalent (f-1)-round execution α with ≤ f-1 failures.
- In every 1-round extension of α , everyone who hasn't failed must decide (and agree).
- Let α^* be the 1-round extension of α in which no new failures occur in round f.
- Everyone who is still alive decides after α^* , and they must decide the same thing. WLOG, say they decide 1.
- Since α is bivalent, there must be another 1-round extension of α , say α^0 , in which some nonfaulty process (and so, all nonfaulty processes) decide 0.

Disagreement after f rounds

- In α^0 , some single process i fails in round f.
- Let j, k be two nonfaulty processes.
- Define a chain of three f-round executions, α^0 , α^1 , α^* , where α^1 is identical to α^0 except that i sends to j in α^1 (it might not in α^0).
- Then $\alpha^1 \sim^k \alpha^0$.
- Since k decides 0 in α^0 , k also decides 0 in α^1 .
- Also, $\alpha^1 \sim^j \alpha^*$.
- Since j decides 1 in α^* , j also decides 1 in α^1 .
- Yields disagreement in α¹, contradiction!
- So we've proved:
- Lemma 3: There is an f-round execution in which two nonfaulty processes decide differently.
- Which immediately yields the lower bound result.

Early-stopping agreement algorithms

- Tolerate f failures, but in executions with f' < f failures, terminate correspondingly faster.
- [Dolev, Reischuk, Strong 90] Gave a stopping agreement algorithm in which all nonfaulty processes terminate in at most min(f' + 2, f+1) rounds.
 - If f' + 2 ≤ f, decide "early", within f' + 2 rounds; in any case decide within f+1 rounds.
- [Keidar, Rajsbaum 02] Lower bound of f' + 2 for earlystopping agreement.
 - Not just f' + 1. Early stopping requires an extra round.

Early-stopping agreement algorithms

- Tolerate f failures, but in executions with f' < f failures, terminate correspondingly faster.
- [Keidar, Rajsbaum 02] Lower bound of f' + 2 for earlystopping agreement.
 - Not just f' + 1. Early stopping requires an additional round.
- Theorem 1: Assume 0 ≤ f' ≤ f 2 and f < n. Every earlystopping agreement algorithm tolerating f failures has an execution with f' failures in which some nonfaulty process doesn't decide by the end of round f' + 1.

- Special Case Theorem 2: Assume 2 ≤ f < n. Every early-stopping agreement algorithm tolerating f failures has a failure-free execution in which some nonfaulty process does not decide by the end of round 1.
- Definition: Let α be an execution that completes some finite number (possibly 0) of rounds. Then $val(\alpha)$ is the unique decision value in the extension of α with no new failures.
 - Different from bivalence defs---now consider value in just one particular extension.

- Theorem 2: Assume 2 ≤ f < n. Every early-stopping agreement algorithm tolerating f failures has a failure-free execution in which some nonfaulty process does not decide by the end of round 1.
- Definition: $val(\alpha)$ is the decision value in the extension of α with no new failures.
- Proof of Theorem 2:
 - Assume executions in which at most one process fails per round.
 - Identify 0-round executions with vectors of initial values.
 - Assume, for contradiction, that everyone decides by the end of round 1, in all failure-free executions.
 - val(000...0) = 0, val(111...1) = 1.
 - So there must be two 0-round executions α^0 and α^1 , that differ in the value of just one process i, such that $val(\alpha^0) = 0$ and $val(\alpha^1) = 1$.

- 0-round executions α^0 and α^1 , differing only in the initial value of process i, such that $val(\alpha^0) = 0$ and $val(\alpha^1) = 1$.
- In the ff extensions of α^0 and α^1 , all nonfaulty processes decide by the end of round 1.

Define:

- $-\beta^0$, 1-round extension of α^0 , in which process i fails, sends only to j.
- $-\beta^1$, 1-round extension of α^1 , in which process i fails, sends only to j.

• Then:

- $-\beta^0$ looks to j like ff extension of α^0 , so j decides 0 in β^0 by round 1.
- $-\beta^1$ looks to j like ff extension of α^1 , so j decides 1 in β^1 by round 1.
- β^0 and β^1 are indistinguishable to all processes except i, j.

Define:

- $-\gamma^0$, infinite extension of β^0 , in which process j fails right after round 1.
- $-\gamma^{1}$, infinite extension of β^{1} , in which process j fails right after round 1.
- By agreement, all nonfaulty processes must decide 0 in γ^0 , 1 in γ^1 .
- But γ^0 and γ^1 are indistinguishable to all nonfaulty processes, so they can't decide differently, contradiction.

Next time...

- Other kinds of consensus problems:
 - k-agreement
 - Approximate agreement (skim)
 - Distributed commit
- Reading:
 - Chapter 7 (just skim 7.2)