

- Exam 00
- Exam 01
- Exam 02
- Accueil
- Contact

# **MÉCANIQUE**

[ Retour | Accueil | Cours | Exercices | Examens | Quizz-Qcm | Q-R (tests) | Contact ]

## Examen avril 2001

#### **EXERCICE 1:**

On dispose d'une pyramide de coté a, de hauteur h et de masse M. Déterminer le moment d'inertie Ioz de la pyramide par rapport à l'axe oz?.

RAPPEL : Le moment d'inertie d'un rectangle ( de longueur  $a_1$  , de largeur  $b_1$  et de masse m ) par rapport à son axe de rotation ( D ) perpendiculaire au

rectangle passant par son centre de masse est  $\frac{1}{12}$ m  $\left(a_1^2 + b_1^2\right)$ ; On donne : V

$$= 1/3 a^2 h$$



Réponse :  $I_{zz} = \frac{1}{10} Ma^2$ 

#### **EXERCICE 2:**

Soit un champ de force  $\vec{\mathbf{F}}$  (M) définit dans un repère  $(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$  en tout point M(x, y, z) de l'espace par :

$$\vec{\mathbf{F}}$$
 (M) = (4x+yz)  $\vec{\mathbf{i}}$  + (-2y+xz)  $\vec{\mathbf{j}}$  + (2z+xy)  $\vec{\mathbf{k}}$ 

Calculer le travail de cette force quand son point d'application se déplace de A(-1, -2, 1) à B(2, 3, 2) ?

L'unité de longueur est le mètre, la force est exprimée en Newton.

#### REMARQUE IMPORTANTE:

Vous pouvez calculer directement l'énergie potentielle Ep sans démontrer que  $\mathbf{ro}\,\vec{t}\vec{F}=\vec{\nabla}\,\wedge\vec{F}=\vec{0}$ , vous calculerez ensuite le travail demandé.

Réponse : 
$$Ep = -2x^2 - xyz + y^2 - z^2 + C$$

X

$$W_{A\mathbf{P}B}(\mathbf{F}) = 14 J$$

### **EXERCICE 3:**

Dans le repère terrestre supposé galiléen, on considère un bloc de bois de masse  $m_1$  attaché à l'extrémité d'un ressort horizontal de constante de raideur k. A l'instant initial, le bloc est en équilibre, puis on tire une balle de fusil de masse m qui pénètre dans le bloc avec une vitesse  $\vec{v} = v_0$   $\vec{i}$  avec  $v_0$  = constante.

Déterminer l'expression de l'amplitude maximale xm des oscillations du système (bloc de bois + balle de fusil ) après le choc mou, en fonction de m,  $m_1$ , k et  $v_0$ ?



**Réponse:** 
$$x_m = \sqrt{\frac{m^2}{k(m+m_1)}} v_0$$

### **EXERCICE 4:**

Une roue ayant la forme d'un disque homogène de rayon R et de masse M tourne librement autour d'un axe horizontal. Sur la jante de cette roue, on enroule une fine corde à laquelle on fixe une masse m.

Trouver l'accélération angulaire de la roue et l'accélération tangentielle d'un point sur la jante ? On donne : M = 3.2 kg; m = 400 g; R = 40 cm et  $g = 9.8 \text{ m/s}^2$ 

**Réponse:** 
$$\alpha = 4.9 \text{ rad} / \text{s}^2 \text{ et } \text{a}_T = 1.96 \text{ m} / \text{s}^2$$

#### **EXERCICE 5:**

Donner les caractéristiques ( a, b, c, p, e) de la trajectoire elliptique d'un satellite de la Terre dont le périgée se trouve à la distance  $r_p = 7110$  km du centre de la Terre et l'apogée à la distance  $r_a = 8690$  km.

Calculer la période de révolution T?

On donne : Rayon terrestre:  $R_T = 6400 \text{ km}$ ;  $G = 6,67.10^{-11} \text{ SI}$ ;  $M_T = 6.10^{24} \text{ kg}$ 

**Réponse:** a = 7900 km : c = 790 km : b = 7860,4 km :

$$e = 0.1 : p = 7821 \text{ km} : T = 6974 \text{ s} = 1 \text{h} 56 \text{ mn} 14 \text{ s}$$

[ Retour | Accueil | Cours | Exercices | Examens | Quizz-Qcm | Q-R (tests) | Contact ]