Efficacité, Jeux, Équilibre

ECN 6013, automne 2019

William McCausland

2019-09-15

Allocations et efficacité à la Pareto, un exemple

- ► Trois agents (acteurs économiques): 1, 2 et 3.
- ▶ Cinq allocations (résultats) faisables : A, B, C, D et E.
- Exemples des allocations ou des résultats :
 - ▶ Parti politique au pouvoir (*A* est le PLC, *B* est le PCC, . . .)
 - ▶ Politiques sur le cannabis (A est "légalité totale", ..., E est "interdiction sans exception")
 - ▶ Allocations parmi les agents de 10 pommes et 10 oranges. *A* est une allocation (5, 3, 2) des pommes, (2, 4, 4) des oranges; *B*, . . .
- Préférences des agents :

Résultat	U_1	U_2	U ₃
A	25	50	25
В	20	25	60
C	25	50	50
D	10	15	70
Ε	5	10	60

Efficacité à la Pareto

- Une allocation (ou un résultat) est préférable à une autre allocation dans le sens de Pareto si tous les agents préfèrent le premier ou sont indifférents entre les deux.
- ▶ Si au moins un agent préfère strictement le premier, il est strictement préférable dans le sens de Pareto.
- Un résultat est efficace dans le sens de Pareto s'il n'y a pas de résultat alternatif faisable qui est strictement préférable dans le sens de Pareto.
- Notes:
 - L'efficacité est relative à l'ensemble des résultats faisables.
 - ► La préférence dans le sens de Pareto est transitive mais incomplète: il n'y a pas toujours un ordre.
 - Un résultat peut être efficace mais très injuste.
 - On n'a pas parlé des actions des agents, de leur optimisation, de l'équilibre. On n'a pas besoin pour parler de l'efficacité.
 - Concepts dérivés : équilibre efficace? prix efficace? quantité de pollution efficace?

Conditions suffisantes pour l'inefficacité, l'efficacité

Démontrer qu'un résultat est inefficace est souvent simple :

► Trouver un autre résultat qui le domine.

Deux conditions suffisantes pour l'efficacité d'un résultat :

- 1. Le résultat maximise une somme pondérée de l'utilité des agents, où tous les poids sont positifs.
- 2. Le résultat en question est strictement préféré à tous les autres resultats faisables par au moins un agent.

Exemple, allocation d'un gâteau

- ► Trois agents : 1, 2 et 3.
- Le résultat est l'allocation d'un gâteau : (x_1, x_2, x_3) tel que $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, $x_1 + x_2 + x_3 \le 1$.
- L'utilité de *i* est une fonction seulement de x_i , et la fonction est croissante.
- ▶ Une proposition fausse : tous agents préfèrent toujours un résultat efficace à un résultat inefficace. Agents 1 et 2 préfèrent (0.4, 0.4, 0.1) à (0.3, 0.3, 0.4).
- ▶ Une autre proposition fausse : un résultat x préférable au résultat y dans le sens de Pareto est efficace. Soit x = (0.3, 0.3, 0.3), y = (0.2, 0.2, 0.2).

Le dilemme des prisonniers

Un jeu de deux personnes (dilemme des prisonniers):

(U_1, U_2)	С	D
С	(1, 1)	(-1,3)
D	(2, -2)	(0,0)

Une interprétation où les agents sont un vendeur (1) et un acheteur (2) d'un objet :

- L'objet vaut 1 au vendeur, 3 à l'acheteur.
- Ils négocient un prix de 2.
- ▶ Pour le vendeur, C (coopérer, cooperate) veut dire envoyer l'objet par la poste, D (défecter, defect) veut dire le garder.
- ▶ Pour l'acheteur, C veut dire envoyer les 2 dollars; D, les garder.

Équilibre en stratégies dominantes

- Une stratégie dominante d'un joueur est une stratégie qui maximise l'utilité du joueur, pour chaque stratégie de l'autre.
- ▶ Dans le dilemme des prisonniers,
 - ▶ la stratégie $S_1^* = D$ est dominante pour le joueur ligne,
 - $S_2^* = D$ est dominante pour le joeur colonne.
- Un équilibre en stratégies dominantes est un profil de stratégies où la stratégie de chaque joueur est dominante.
- ▶ Ici, $S^* = (S_1^*, S_2^*) = (D, D)$ est l'équilibre unique en stratégies dominantes.
- ▶ Il est remarquable que le résultat (0,0) en équilibre n'est pas efficace.
- Remarquez le rôle des externalités.

Équilibre de Nash

Un jeu de coordination:

$\overline{(U_1,U_2)}$	L	R
U	(1,1)	(0,0)
D	(0,0)	(1, 1)

- Pas d'équilibre en stratégies dominantes.
- Les conditions pour un équilibre de Nash sont moins contraignantes.
- ▶ La stratégie S_1 est une *meilleure réponse* à la stratégie S_2 si elle donne l'utilité optimale quand joueur 2 joue S_2 .
- ▶ Un profil $S^* = (S_1^*, S_2^*)$ est un équilibre de Nash si S_1^* est la meilleure réponse à S_2^* et S_2^* est la meilleure réponse à S_1^* .
- ▶ Ici, (U, L) et (D, R) sont des équilibres de Nash.
- Un équilibre en stratégies dominantes est-il toujours un équilibre de Nash?

Plus sur le jeu de coordination

Exemples de coordination à plusieurs joueurs:

- Conduire à droite (ou à gauche)
- Rues sens uniques
- Pistes cyclables
- Adoption d'un standard, l'internet des objets.

Un jeu « Bach ou Stravinsky » :

$\overline{(U_1,U_2)}$	L	R
U	(1, 2)	(0,0)
D	(0,0)	(2,1)

► Encore, (U, L) et (D, R) sont des équilibres de Nash, mais les deux joueurs ne sont pas indifférents entre les deux.

Le jeu Faucon-Colombe (Hawk-Dove, Chicken)

$\overline{(U_1,U_2)}$	L	R
U	(0,0)	(-1,1)
D	(1, -1)	(-10, -10)

- Conflit sur une ressource
- ► Développer une nouvelle technologie
- ▶ Jeu de Chicken

Une façon d'éviter un dilemme des prisonniers

- Mettons qu'on peut s'engager à collaborer dans ce jeu.
- ▶ Par exemple, écrire un contrat enforcé par une tierce partie qui oblige un joueur à payer 5 dollars à l'autre s'il joue D.
- Le jeu devient

$\overline{(U_1,U_2)}$	С	D
С	(1, 1)	(4, -2)
D	(-3,3)	(0,0)

- On a un équilibre en stratégies dominantes, (C, C), un meilleur résultat pour les deux prisonniers.
- ▶ Un changement d'utilité à (C, D) et à (D, C) entraine un changement d'équilibre, même si on n'observe pas ces profils en équilibre des deux jeux.

Le dilemme des prisonniers avec *n* joueurs

- Un jeu avec n ≥ 2 joueurs est un dilemme des prisonniers si chaque joueur a une seule stratégie dominante et l'équilibre en stratégies dominantes est inefficace.
- Catégories d'exemples :
 - cartels
 - tragédie des biens communs
 - Le coût social de l'action dominante est plus grand que le coût individuel.
 - Le niveau de la consommation ou de l'exploitation est plus élevé que le niveau efficace.
 - biens publiques
 - Le bénéfice social des actions qui mènent à un résultat efficace est plus grand que le bénéfice individuel.
 - Le niveau de production est moins élevé que le niveau efficace.
- ▶ Il y a des cas semblables où il n'y a pas de stratégies dominantes mais un équilibre de Nash unique est inefficace.

Exemple, cartel

- ▶ Trois producteurs d'un bien : 1, 2, 3
- Le niveau de production est haut $(y_i = 200)$ ou bas $(y_i = 100)$ pour chacun et le coût est zéro pour les trois.
- Fonction de demande inverse : $p(Y) = 8 \frac{1}{100}Y$, où $Y = y_1 + y_2 + y_3$.
- Jeu simultané, pas répété
- Résultats:

<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	Y	p(Y)	$y_1p(Y)$	$y_2p(Y)$	$y_3p(Y)$
100	100	100	300	5	500	500	500
100	100	200	400	4	400	400	800
100	200	200	500	3	300	600	600
200	200	200	600	2	400	400	400

Une classification utile

Bien privé, excluable et rival

voiture, vêtements, nourriture

Bien club, excluable et non-rival

cinéma, parcs privés, télévision par satellite

Bien commun, non-excluable et rival

morue, eau souterraine

Bien publique, non-excluable et non-rival

défense nationale

Tragédie des biens communs

Exemples des tragédies des biens communs :

- ▶ Deux enfants : 2 tasses, 1 paille vs. 1 tasse, 2 pailles
- Surexploitation des océans : la morue au Québec
- ▶ Pétrol ou eau souterraine : Irak et Koweït
- Pollution de l'air, de l'eau
- Congestion routière
- Antibiotiques

Comment éviter ou réduire les tragédies des biens communs

- Clôtures barbelées
- Normes locales (homard, nouvelle angleterre)
- Attribution ou ventes des droits d'exploitation: spectrum eléctromagnétique, plafonnement et échange (cap and trade)
- Taxes pigoviennes, e.g. taxe de carbone
- Règlements (nationaux, internationaux)

Biens publiques

Biens publiques (non-excluable, non-rival)

- Exemples: phares, éclairage des rues, connaissance scientifique
- Problème de passager clandestin (free rider problem)

Une expérience :

- ightharpoonup n > 2 participants, dotation de 1 (dollar).
- ▶ Chaque participant *i* contribue x_i , garde $1 x_i$.
- ► Tous gagnent $0.5 \sum_{i} x_{i}$, 0.50\$ pour chaque \$ contribué.
- ▶ Bénéfice marginal privé de contribuer un dollar : 0.5.
- ▶ Bénéfice marginal sociale: 0.5*n*.

Comment encourager la production des biens publiques :

- Normes
- Technologie d'exclusion (télévision par satellite)
- Provision ou subvention par un gouvernement (l'armée)
- Exclusion imposée par un gouvernement (droits d'auteur)
- ► Contrat pour s'engager à contribuer si un quorum a lieu

Un modèle de biens publiques : spécification

- Le modèle est décrit dans le chapitre 8 de ML.
- ▶ Un parc donne une valeur $S^b n^{-a}$ (en dollars) a chacun des n ménages dans une communauté.
- $S = s_1 + s_2 + \ldots + s_n$ est la contribution totale en dollars.
- ▶ s_i est la contribution du ménage i.
- ightharpoonup 0 < a < b < 1, qui implique
 - le parc est un bien, pas un mal (b > 0),
 - une valeur marginal décroissante (b < 1),
 - un coût de congestion (a > 0),
 - un grand parc pour n est meilleur que n petits privés (b > a).

Un modèle de biens publiques : optimalité individuelle

- ▶ Rappel : la valeur à chaque ménage est de $S^b n^{-a}$.
- ▶ Un ménage i choisit $s_i \ge 0$ pour maximiser sa valeur privée :

$$(S_{-i}+s_i)^b n^{-a}-s_i.$$

- La valeur marginale privée de la contribution s_i est de $b(S_{-i} + s_i)^{b-1} n^{-a} 1$, qui est positive ssi $S_{-i} + s_i < (bn^{-a})^{1/(1-b)}$.
- Alors si $S_{-i} < (bn^{-a})^{1/(1-b)}$, la meilleur réponse est de contribuer la différence : $s_i^* = (bn^{-a})^{1/(1-b)} S_{-i}$.
- ▶ la valeur marginale sociale est de $b(S_{-i} + s_i)^{b-1}n^{1-a} 1$, qui est plus grande.

Un modèle de biens publiques : équilibre

- Il y a plusieurs équilibres avec contributions facultatives.
- En équilibre,
 - $S = S_{eq} \equiv (bn^{-a})^{1/(1-b)}$
 - ▶ la valeur au ménage i est de

$$(bn^{-a})^{b/(1-b)}n^{-a} - s_i^* = b^{b/(1-b)}n^{-a/(1-b)} - s_i^*.$$

▶ la valeur totale est de

$$V_{eq} = b^{b/(1-b)} n^{1-a/(1-b)} - (bn^{-a})^{1/(1-b)}$$

= $b^{b/(1-b)} n^{-a/(1-b)} (n-b)$.

Un modèle de biens publiques : valeur agrégée optimale

► La valeur agrégée comme fonction de *S* :

$$S^b n^{-a} \cdot n - S = S^b n^{1-a} - S.$$

- On considère ici le problème du planificateur social, pour trouver une allocation efficace.
- ► Condition nécessaire de 1ière ordre pour un max intérieure:

$$bS^{b-1}n^{1-a} - 1 = 0.$$

La valeur est concave, on maximise la valeur agrégée avec

$$S_o \equiv (bn^{1-a})^{1/(1-b)} > S_{eq} = (bn^{-a})^{1/(1-b)}.$$

La valeur agrégée maximale est de

$$V_o = (bn^{1-a})^{b/(1-b)}n^{1-a} - (bn^{1-a})^{1/(1-b)}$$

= $b^{b/(1-b)}n^{(1-a)/(1-b)}(1-b)$.

Comparaison

Contribution totale plus élevée dans les allocations optimales:

$$S_o = (bn^{1-a})^{1/(1-b)} > (bn^{-a})^{1/(1-b)} = S_e.$$

Valeur totale plus élevée dans les allocations optimales:

$$\frac{V_o}{V_e} = \frac{n^{(1-a)/(1-b)}(1-b)}{n^{-a/(1-b)}(n-b)} = \frac{1-b}{n-b}n^{1/(1-b)} > 1.$$

Notes

- L'allocation optimale symétrique supérieure (dans le sens de Pareto) que l'allocation optimale en équilibre symétrique.
- ► Comment démontrer que d'autres équilibres sont inefficaces dans le sens de Pareto?

Collectivisation agricole: un contrat à Xiaogang

- « Grand bond en avant » : Chine, 1958-1960
- Collectivisation agricole : quotas; terrain, outils et bétail communs; partage de l'excédent, coercition
- ▶ Grande famine de Chine : 1958-1962, 15-38 millions de morts
- Contrat de 18 villageois de Xiaogang
 - terrains individuels
 - sa part du quota rendue au gouvernement
 - sa production excédentaire gardée par chaque agriculteur
 - adoption des enfants en cas d'exécution ou de prison
 - production de grain : 15000 kg en 1978, 90000 kg en 1979
 - contrat illégal, condamné et ensuite toléré par le gouvernement chinois

Des villageois

Figure 1: Des villageois de Xiaogang

Le contrat

Un jeu où les actions ne sont pas simultanées

Voici une description d'un jeu en forme extensive, une arborescence qui représente les histoires de jeu possibles.

- ▶ Joueur A commence avec un choix entre L et R.
- Si A choisit L, le jeu se termine et le résultat est (1,5) : 1 pour A et 5 pour B.
- ▶ Si A choisit R, joueur B choisit entre U et D:
 - ▶ si *B* choisit *U*, le résultat est (3,3), et
 - ▶ si B choisit D, le résultat est (0,2).

Le jeu en forme normale

Voici le même jeu en forme normale, où les stratégies sont en matrice non-structurée:

$\overline{(U_A, U_B)}$	$(R \rightarrow U)$	$(R \rightarrow D)$
L	(1,5)	(1,5)
R	(3,3)	(0,2)

- ▶ $(R \rightarrow U)$ veut dire U en cas de R, $(R \rightarrow D)$ veut dire D en cas de R.
- ▶ If y a deux équilibres de Nash: $(L, R \to D)$ et $(R, R \to U)$.
- ▶ L'équilibre $(L, R \to D)$ est implausible rendu au noeud où il a un choix, il choisirait U, pas D.
- Une « menace » de « punir » A, à travers l'action D, n'est pas crédible.

Équilibre de Nash parfait en sous-jeux

- ▶ Il y a 5 sous-jeux du jeu en forme extensive:
 - 3 pour les noeuds finaux,
 - ▶ 1 pour pour le jeu lui-même,
 - ▶ 1 qui se réalise au cas où A choisit R.
- Un équilibre de Nash est parfait en sous-jeux si les stratégies sont Nash à chaque sous-jeu.
- ▶ L'équilibre $(L, R \to D)$ n'est pas parfait en sous-jeux mais l'équilibre $(R, R \to U)$ l'est.

Le dilemme des prisonniers répété avec date terminal

A et B joue ensemble le dilemme des prisonniers T fois:

$\overline{(U_A, U_B)}$	С	D
С	(c,c)	(I,h)
D	(h, I)	(d,d)

- ▶ l, d, c, h sont tels que (C, C) est un équilibre en stratégies dominantes du jeu à une période, mais inefficace (exercice).
- ▶ L'utilité pour la suite des jeux est $\alpha_1 u_1 + \ldots + \alpha_T u_T$.
- ▶ Par induction à l'envers, le seul équilibre parfait en sous-jeux est celui où les deux font *D* toujours, peu import l'histoire.
- ► La stratégie donnant-donnant (oeuil pour oeuil, tit-for-tat) est la stratégie où on commence par collaborer et joue l'action précédente de l'autre ensuite.
- ▶ Pour T = 2, $\alpha_1 = \alpha_2 = 1$, c = 20, d = 5, l = 1, h = 30, les meilleures réponses à donnant-donnant produisent C puis D.
- ► Conclusion: il n'y a pas de stratégie dominante.

Le dilemme des prisonniers répété infiniment

- On considère maintenant un nombre infini de périodes.
- L'utilité est $\sum_{t=0}^{\infty} \delta^t u_t$, où δ et un paramètre de patience.
- Autre interprétation : utilité espérée, (1δ) est la probabilité que le jeu se termine à chaque période.
- Une autre stratégie: gâchette sévère (grim trigger), où on collabore jusqu'à ce que l'autre défecte et on défecte à chaque période après.
- ▶ Si les deux joueurs jouent la stratégie gâchette, leur utilité est

$$c\sum_{ au=0}^{\infty}\delta^{ au}=rac{c}{1-\delta}.$$

Des équilibres en stratégies gâchette

La réponse à la stratégie gâchette où on collabore jusqu'à la période t-1 et on défecte après donne l'utilité

$$U = c \sum_{\tau=0}^{t-1} \delta^{\tau} + h \delta^{t} + d \sum_{\tau=t+1}^{\infty} \delta^{\tau}.$$

- ▶ $U > \frac{c}{1-\delta}$ veut dire que les meilleurs réponses sont celles qui produisent la défection à chaque période.
- $U < \frac{c}{1-\delta}$ veut dire que les meilleures réponses sont celles qui produisent la collaboration à chaque période, comme gâchette.
- Si δ assez grand, h et d assez petit, gâchette-gâchette est un équilibre. Exercice: pour quelles valeurs de c, d, h et δ gâchette-gâchette est-il un équilibre?
- ► Gâchette impose la pire « punition » pour une défection.
- ▶ Donnant-donnant plus « clément », plus « robuste ».
- ► Par contre : il se peut que D-D versus D-D ne soit pas un équilibre même si gâchette contre gâchette l'est.
- « C toujours » vs « C toujours » n'est jamais un équilibre.

Plus sur le dilemme de prisonniers répété infiniment

- ► Le profil où les deux joueurs emploient la stratégie « D toujours » est un équilibre de Nash parfait en sous-jeux.
- Exercice: pour quelles valeurs de c, h, d et δ est-ce que le profil où les deux joueurs jouent donnant-donnant est une équilibre de Nash?
- ► Si les joueurs sont suffisamment patients, il y a beaucoup d'équilibres où ils collaborent à chaque période.

Epilogue sur l'efficacité

- Une politique qui mène à une amélioration dans le sens de Pareto est rarissime.
- Juger une politique est difficile: quel est le bon standard pour ponderer un genre de coût contre un autre genre de bénéfice?
- La philosophie morale est difficile.
- ▶ Exemple: Jack gagne 10K, paie 1K (10%); Jill gagne 100K, paie 5K (5%) pour entretenir un puits commun dont ils tirent un montant égal d'eau. Est-ce juste?
- ► Efficacité Kaldor-Hicks et l'analyse coût-bénéfice.
- Utilité pas comparable, l'argent (volonté de payer) oui.
- Préférence révélée, surplus des consommateurs et des producteurs.
- ▶ Difficultés : justesse, l'utilité marginale de l'argent varie.

Plus sur le jeu Faucon-Colombe (Hawk-Dove, Chicken)

Version étroite de Faucon-Colombe :

L	R
(a, a)	(b,c)
(c,b)	(d,d)

où
$$c > a \ge b > d$$
.

Variations moins étroites : c>b>a>d, asymmétrie, plusieurs joueurs.

Plus sur le jeu de coordination

Version étroite du jeu de coordination

- ► Chaque joueur a le même ensemble d'actions faisable
- (a, a) est un équilibre de Nash, pour chaque action a
- Choix simultanés

L'existence de plusieurs équilibres de Nash purs ne suffit pas : le jeu de F-C a deux équilibrez de Nash.