Appendix 9

Stability analysis using Lyapunov theory

In this appendix, we present some results about the stability analysis of nonlinear systems using Lyapunov theory. It is largely based on [Slotine 91] and [Zodiac 96].

A9.1. Autonomous systems

Let us consider the autonomous system (i.e. time-invariant) represented by the following state equation:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \tag{A9.1}$$

A9.1.1. Definition of stability

An equilibrium point x = 0 such that f(x) = 0 is said to be:

- a) stable if for any $\varepsilon > 0$, there exists R > 0 such that if $||x(0)|| < \varepsilon$, then ||x(t)|| < R;
- b) asymptotically stable if for any $\varepsilon > 0$ and if $||\mathbf{x}(0)|| < \varepsilon$, then $||\mathbf{x}(t)|| \to 0$ as $t \to \infty$;
- c) exponentially stable if there exist two strictly positive numbers α and λ such that: $\|\mathbf{x}(t)\| \le \alpha \exp(-\lambda t) \|\mathbf{x}(0)\|$
- d) an equilibrium point is globally asymptotically (exponentially) stable if it is asymptotically (exponentially) stable for any initial value x(0). A linear system is always globally exponentially stable or unstable.

Some of these definitions are illustrated in Figure A9.1.

Figure A9.1. Stability definition

A9.1.2. Positive definite and positive semi-definite functions

The real function V(x) is positive definite (PD) in a ball B at the equilibrium point x = 0 if V(x) > 0 and V(0) = 0. The function V(x) should have continuous partial derivatives. Moreover, for some $\varepsilon > 0$, V(x) should be less than ε in a finite region at the origin.

If $V(x) \ge 0$, then the function is positive semi-definite (PSD).

A9.1.3. Lyapunov direct theorem (sufficient conditions)

If there exists V(x) PD in a ball B around the equilibrium point x = 0 and if:

- $\dot{V}(x)$ is negative semi-definite (NSD), then 0 is a stable equilibrium point;
- $\dot{V}(x)$ is negative definite (ND), then θ is asymptotically stable;
- V(x) is NSD and $\neq 0$ along all the trajectory, then **0** is asymptotically stable.

Moreover, if V(x) is PD all over the state space $\forall x \neq 0$, $V(x) \rightarrow 0$ as $x \rightarrow 0$, $\lim V(x) \rightarrow \infty$ as $||x|| \rightarrow \infty$ and if V(x) is ND, then 0 is globally asymptotically stable.

A Lyapunov function can be interpreted as an energy function.

A9.1.4. La Salle theorem and invariant set principle

If $\dot{V}(x)$ is only NSD, it is yet possible to prove that the system is asymptotically stable, thanks to La Salle theorem [Hahn 67].

Definition. The set G is invariant for a dynamic system if every trajectory starting in G remains in $G \forall t$.

Theorem. Let R be the set of all points where $\dot{V} = 0$ and M be the largest invariant set of R; then every solution originating from R tends to M as $t \to \infty$.

A9.2. Non-autonomous systems

Let us consider the non-autonomous system (i.e. time-varying) represented by the following state equation:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{t}) \tag{A9.2}$$

A9.2.1. Definition of stability

The equilibrium point x = 0 such that $f(x, 0) = 0 \ \forall t \ge t_0$ is said to be:

- a) stable at $t = t_0$, if for any $\varepsilon > 0$ there exists $R(\varepsilon, t_0) > 0$ such that if $||x(t_0)|| < \varepsilon$ then $||x(t)|| < R \ \forall t \ge t_0$;
- b) asymptotically stable at $t = t_0$, if it is stable and if there exists $R(t_0) > 0$ such that $||x(t_0)|| < R(t_0) \Rightarrow x(t) \rightarrow 0$ as $t \rightarrow \infty$;
- c) exponentially stable, if there exist two positive numbers α and λ such that: $\|\mathbf{x}(t)\| \le \alpha \exp(-\lambda (t-t_0)) \|\mathbf{x}(t_0)\|, \ \forall t \ge t_0 \text{ for } \mathbf{x}(t_0) \text{ sufficiently small;}$
- d) globally asymptotically stable, if it is stable and if $x(t) \to 0$ as $t \to \infty$, $\forall x(t_0)$;
- e) uniformly stable, if $R = R(\varepsilon)$ can be chosen independently of t_0 .

A9.2.2. Lyapunov direct method

Definition 1 (Function of class K)

A continuous function $\alpha: \Re^+ \to \Re^+$ is of class K if $\alpha(0) = 0$, $\alpha(\sigma) > 0 \ \forall \sigma > 0$, and α is non-decreasing.

Definition 2 (PD function)

A function V(x, t) is locally (globally) PD if and only if there exists a function α of class K such that V(0, t) = 0, $V(x, t) \ge \alpha(||x||)$, $\forall t \ge 0$ and $\forall x$ in a ball B.

Definition 3 (Decreasing function)

A function V(x, t) is locally (globally) decreasing if there exists a function α of class K such that V(0, t) = 0 and $V(x, t) \le \alpha(|x|)$, $\forall t > 0$ and $\forall x$ in a ball B.

Lyapunov theorem

Let us assume that in a ball B around the equilibrium point x = 0:

- there exists a Lyapunov function V(x, t) whose first derivatives are continuous;
- there exist functions α , β , γ of class K;

then, the equilibrium point is:

- a) stable if $V(x, t) \ge \alpha(||x||)$, $V(x, t) \le 0$;
- b) uniformly stable if $\alpha(\|\mathbf{x}\|) \le V(\mathbf{x}, t) \le \beta(\|\mathbf{x}\|)$, $\dot{V}(\mathbf{x}, t) \le 0$;
- c) uniformly asymptotically stable if:

$$\alpha(\|\mathbf{x}\|) \leq V(\mathbf{x},\,t) \leq \beta(\|\mathbf{x}\|),\,\dot{V}(\mathbf{x},\,t) \leq -\gamma(\|\mathbf{x}\|) < 0;$$

d) globally uniformly asymptotically stable if:

$$\alpha(\|\mathbf{x}\|) \leq V(\mathbf{x}, t) \leq \beta(\|\mathbf{x}\|), \ V(\mathbf{x}, t) \leq -\gamma(\|\mathbf{x}\|) < 0, \ \alpha(\|\mathbf{x}\|) \to \infty \text{ as } \mathbf{x} \to \infty.$$

Barbalat lemma. If $\mathbf{f}(t)$ is a uniformly continuous function such that $\lim_{t\to\infty} \mathbf{f}(t)$ is bounded as $t\to\infty$, then $\dot{\mathbf{f}}(t)\to 0$ as $t\to\infty$.

Barbalat theorem. If V(x, t) has a lower bound such that $V(x, t) \ge \alpha(||x||)$ and if $V(x, t) \le 0$, then $V(x, t) \to 0$ as $t \to \infty$ if V(x, t) is uniformly continuous with respect to time.