\mathbb{Z} posee el mismo número de elementos que \mathbb{N}

Ivan Gil

26 de junio de 2017

1. Motivación

Consideremos un conjunto $X = \{x_1, x_2, x_3, \dots, x_n\}$. De manera natural surge la siguiente pregunta: ¿Como podemos contar los elementos de X? Simplemente empezariamos a contar cada elemento. Esto lo hacemos asignado a cada elemento de X un numero natural. Esto es, asignamos 1 a x_1 , 2 a x_2 y asi sucesivamente hasta asignar n a x_n . En tal caso diremos que X tiene n elementos.

Basicamente hemos establecido una correspondencia biunivoca¹ entre X y una seccion de los primeros n números naturales. Esto ultimo es fundamental, pero solo lo hemos establecido cuando X es un conjunto finito. Afortunadamente, la misma idea puede extenderse a conjunto infinitos como ya veremos.

2. Marco teorico

Definición 2.1 (Equivalencia). Dos conjuntos X, Y no vacios se dicen ser equivalentes si existe una función $f: X \longrightarrow Y$ tal que f es biyectiva.

Observación 2.1. Podemos notar que el conjunto X de la motivación es equivalente al conjunto $I = \{1, 2, 3, \dots, n\}$. Es facil realizar la prueba, solo basta mostrar que existe un función biyectiva f entre I y X.

¹Una función biyectiva

Sea $f: I \longrightarrow X$ tal que $f(i) = x_i$. Si $f(i) = f(j) \Leftrightarrow x_i = x_j$, entonces se tiene que i = j y en consecuencia f es inyectiva. Por otro lado, si $x_j \in X$, entonces existe $j \in I$ tal que $f(j) = x_j$ con lo que f es sobreyectiva. En tales casos, se concluye que f es biyectiva. Ya que hemos podido determinar una función f entre X e I tal que es biyectiva, se tiene que ambos conjuntos son equivalentes.

Observación 2.2. Dos conjuntos son equivalentes si, y solo si, tienen la misma cantidad de elementos

3. Problema

Estamos en condiciones de probar que \mathbb{Z} tiene el mismo número de elementos que \mathbb{N} . Solo basta probar que ambos son equivalentes.

Lema 3.1. \mathbb{N} es equivalente a \mathbb{Z}

PRUEBA: Es suficiente mostrar que existe una biyección entre N y Z.

Sea
$$H_1 = \{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\}\$$
y $H_2 = \{x \in \mathbb{N} \mid x \equiv 1 \pmod{2}\}\$

Estudiemos las funciones $f_1:H_1\longrightarrow \mathbb{Z}^+$ y $f_2:H_2\longrightarrow \mathbb{Z}^-\cup\{0\}$ tales que

1.
$$f_1(x) = \frac{x}{2}$$

Es claro que f_1 es inyectiva ya que si $f_1(x_1) = f_1(x_2) \Leftrightarrow \frac{x_1}{2} = \frac{x_2}{2}$, entonces $x_1 = x_2$. Por otro lado, si $y \in \mathbb{Z}^+$, entonces existe $2y \in H_1$, ya que $2y \equiv 0 \pmod{2}$, tal que $f_1(2y) = \frac{2y}{2} = y$ y asi f_1 es sobreyectiva. Por tanto f_1 es biyectiva.

2.
$$f_2(x) = \frac{1-x}{2}$$

De manera similar, si $f_2(x_1) = f_2(x_2) \Leftrightarrow \frac{1-x_1}{2} = \frac{1-x_2}{2}$, entonces $x_1 = x_2$ y se tiene que f_2 es inyectiva. Por otro lado, si $y \in \mathbb{Z}^- \cup \{0\}$, entonces existe $1 - 2y \in H_2$, ya que $1 - 2y \equiv 1 \pmod{2}$, tal que $f_2(1-2y) = \frac{1-(1-2y)}{2} = y$ y asi f_2 es sobreyectiva. Por tanto f_2 es biyectiva.

Como $H_1 \cup H_2 = \mathbb{N}$ y $\mathbb{Z}^+ \cup \mathbb{Z}^- \cup \{0\} = \mathbb{Z}$. Podemos definir una función a trozos $f: \mathbb{N} \longrightarrow \mathbb{Z}$ tal que

$$f(x) = \begin{cases} \frac{x}{2} & \text{si } x \in H_1\\ \frac{1-x}{2} & \text{si } x \in H_2 \end{cases}$$

La cual es biyectiva ya que f_1 y f_2 tambien lo son.

Por tanto, $\mathbb N$ es equivalente a $\mathbb Z$