Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Centrale PSI Maths 1 2012

- Dans le problème, λ désigne *toujours* une application continue de \mathbb{R}^+ dans \mathbb{R}^+ , croissante et non majorée.
- Dans le problème, f désigne toujours une application continue de \mathbb{R}^+ dans \mathbb{R} .
- On note E l'ensemble des réels x pour lesquels l'application $t \mapsto f(t)e^{-\lambda(t)x}$ est intégrable sur \mathbb{R}^+ .
- On note E' l'ensemble des réels x pour lesquels l'intégrale $\int_0^{+\infty} f(t)e^{-\lambda(t)x} \ \mathrm{d}t$ converge.

On se propose ci-après d'étudier la transformation $f \mapsto Lf$ défini en 1, d'en établir quelques propriétés, d'examiner certains exemples et d'utiliser la transformation L pour l'étude d'un opérateur.

I Préliminaires, définition de la transformation L

1 Quelle inclusion existe-t-il entre les ensembles E et E'?

Désormais, pour $x \in E'$, on notera

$$Lf(x) = \int_0^{+\infty} f(t)e^{-\lambda(t)x} dt$$

- 2 Montrer que si E n'est pas vide, alors E est un intervalle non majoré de \mathbb{R} .
- $\boxed{\bf 3}$ Montrer que si E n'est pas vide, alors Lf est continue sur E.

II Exemples dans le cas de f positive

- 4 Comparer E et E' dans le cas où f est positive.
- 5 Dans les trois cas suivants, déterminer E.

5.a $f(t) = \lambda'(t)$ avec λ supposée de classe C^1 .

5.b
$$f(t) = e^{t\lambda(t)}$$
.

5.c
$$f(t) = \frac{e^{-t\lambda(t)}}{1+t^2}$$
.

- **6** Dans cette question, on étudie le cas $\lambda(t) = t^2$ et $f(t) = \frac{1}{1+t^2}$ pour tout $t \in \mathbb{R}^+$.
 - **6.a** Déterminer E. Que vaut Lf(0)?

- **6.b** Prouver que Lf est dérivable.
- **6.c** Montrer l'existence d'une constante A > 0 telle que pour tout x > 0, on ait

$$Lf(x) - (Lf)'(x) = \frac{A}{\sqrt{x}}$$

6.d On note $g(x) = e^{-x} Lf(x)$ pour $x \ge 0$. Montrer que

$$\forall x \ge 0, \ g(x) = \frac{\pi}{2} - A \int_0^x \frac{e^{-t}}{\sqrt{t}} \ dt$$

6.e En déduire la valeur de l'intégrale $\int_0^{+\infty} e^{-t^2} dt$.

III Etude d'un premier exemple

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$ et $f(t) = \frac{t}{e^t - 1} - 1 + \frac{t}{2}$ pour tout $t \in \mathbb{R}_+^*$.

- 7 Montrer que f se prolonge par continuité en 0. On note encore f le prolongement obtenu.
- 8 Déterminer E.
- |9| A l'aide d'un développement en série, montrer que pour tout x > 0, on a

$$Lf(x) = \frac{1}{2x^2} - \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

10 Est-ce que $Lf(x) - \frac{1}{2x^2} + \frac{1}{x}$ admet une limite finie en 0^+ ?

IV Généralités dans le cas typique

Dans cette partie, $\lambda(t) = t$ pour $t \in \mathbb{R}^+$.

- Montrer que si E n'est pas vide et si α est sa borne inférieure (on convient que $\alpha = -\infty$ si $E = \mathbb{R}$) alors Lf est de classe C^{∞} sur $]\alpha$, $+\infty$ [et exprimer ses dérivées successives à l'aide d'une intégrale.
- Dans le cas particulier où $f(t) = e^{-at}t^n$ pour tout $t \in \mathbb{R}^+$, avec $n \in \mathbb{N}$ et $a \in \mathbb{R}$, expliciter E, E' et calculer Lf(x) pour $x \in E'$.

13 Comportement en l'infini.

On suppose ici que E n'est pas vide et que f admet au voisinage de 0 le développement limité d'ordre $n \in \mathbb{N}$ suivant :

$$f(t) = \sum_{k=0}^{n} \frac{a_k}{k!} t^k + O(t^{n+1})$$

13.a Montrer que pour tout $\beta > 0$, on a, lorsque x tend vers $+\infty$, le développement asymptotique suivant :

$$\int_0^{\beta} \left(f(t) - \sum_{k=0}^n \frac{a_k}{k!} t^k \right) e^{-tx} dt = O(x^{-n-2})$$

13.b En déduire que lorsque x tend vers $+\infty$, on a le développement asymptotique :

$$Lf(x) = \sum_{k=0}^{n} \frac{a_k}{x^{k+1}} + O(x^{-n-2})$$

14 Comportement en 0.

On suppose ici que f admet une limite finie ℓ en $+\infty$.

- **14.a** Montrer que E contient \mathbb{R}_{+}^{*} .
- **14.b** Montrer que xLf(x) tend vers ℓ en 0^+ .

V Etude d'un deuxième exemple

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$ et $f(t) = \frac{\sin(t)}{t}$ pour tout t > 0, f étant prolongée par continuité en 0.

- 15 Montrer que E ne contient pas 0.
- 16 Montrer que $E =]0, +\infty[$.
- 17 Montrer que E' contient 0.
- **18** Calculer (Lf)'(x) pour $x \in E$.
- 19 En déduire (Lf)(x) pour $x \in E$.
- 20 On note pour $n \in \mathbb{N}$ et $x \ge 0$, $f_n(x) = \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} e^{-tx} dt$. Montrer que $\sum (f_n)_{n \ge 0}$ converge uniformément sur $[0, +\infty[$.
- **21** Que vaut Lf(0)?

VI Injectivité dans le cas typique

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$.

Soit g une application continue de [0,1] dans \mathbb{R} . On suppose que pour tout $n \in \mathbb{N}$, on a

$$\int_0^1 t^n g(t) \, \mathrm{d}t = 0$$

- **22.a** Que dire de $\int_0^1 P(t)g(t) dt$ pour $P \in \mathbb{R}[X]$?
- 22.b En déduire que g est l'application nulle.
- 23 Soient f fixée telle que E soit non vide, $x \in E$ et a > 0. On pose $h(t) = \int_0^t e^{-xu} f(u) du$ pour tout $t \ge 0$.
 - **23.a** Montrer que $Lf(x+a) = a \int_0^{+\infty} e^{-at} h(t) dt$.
 - **23.b** On suppose que pour tout $n \in \mathbb{N}$, on a Lf(x + na) = 0. Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale $\int_0^1 u^n h\left(-\frac{\ln(u)}{a}\right) du$ converge et qu'elle est nulle.
 - **23.c** Qu'en déduit-on pour la fonction h?
- **24** Montrer que l'application qui à f associe Lf est injective.

VII Etude en la borne inférieure de E

25 Cas positif.

On suppose que f est positive et que E n'est ni vide ni égal à \mathbb{R} . On note α sa borne inférieure.

- **25.a** Montrer que si Lf est bornée sur E, alors $\alpha \in E$.
- **25.b** Si $\alpha \notin E$, que dire de Lf(x) quand x tend vers α^+ ?

26 Dans cette question, $f(t) = \cos(t)$ et $\lambda(t) = \ln(1+t)$.

26.a Déterminer E.

26.b Déterminer E'.

26.c Montrer que Lf admet une limite en α , borne inférieure de E, et la déterminer.

VIII Une utilisation de la transformation L

Dans cette partie, \mathcal{P} désigne l'ensemble des fonctions polynomiales à coefficients complexes et on utilise la transformation L appliqué à des éléments de \mathcal{P} pour l'étude d'un opérateur U.

27 Soient P, Q deux éléments de \mathcal{P} . Montrer que l'intégrale $\int_0^{+\infty} \overline{P(t)}Q(t)e^{-t} dt$ converge.

28 Pour tout couple $(P, Q) \in \mathcal{P}^2$, on note

$$(P,Q) = \int_0^{+\infty} \overline{P(t)} Q(t) e^{-t} dt$$

Vérifier que (\cdot, \cdot) définit un produit scalaire sur \mathcal{P} .

 $|\mathbf{29}|$ On note D l'endomorphisme de dérivation et U l'endomorphisme de $\mathcal P$ défini par

$$U(P)(t) = e^t D(te^{-t}P'(t))$$

Vérifier que U est endomorphisme de \mathcal{P} .

 $\boxed{\bf 30}$ Montrer que pour tous P, Q de ${\cal P}$ on a

$$(U(P), Q) = (P, U(Q))$$

- Montrer que U admet des valeurs propres dans C, qu'elles sont réelles et que deux vecteurs propres associés à des valeurs propres distinctes sont orthogonaux.
- Soient λ une valeur propre de U et P un vecteur propre associé.
 - 32.a Montrer que P est solution d'une équation différentielle linéaire simple que l'on précisera.
 - **32.b** Quel lien y-a-t-il entre λ et le degré de P?
- 33 Description des éléments propres de U.

On considère sur $[0, +\infty[$ l'équation différentielle

$$(E_n)$$
: $tP'' + (1-t)P' + nP = 0$

avec $n \in \mathbb{N}$ et d'inconnue $P \in \mathcal{P}$.

- 33.a En appliquant la transformation L avec $\lambda(t) = t$ à (E_n) , montrer que si P est solution de (E_n) sur $[0, +\infty[$, alors son image Q par L est solution d'une équation différentielle (E'_n) d'ordre 1 sur $]1, +\infty[$.
- **33.b** Résoudre l'équation (E'_n) sur $]1, +\infty[$ et en déduire les valeurs et vecteurs propres de l'endomorphisme U.
- **33.c** Quel est le lien entre ce qui précède et les fonctions polynomiales définies pour $n \in \mathbb{N}$ par $P_n(t) = e^t D^n(e^{-t}t^n)$?