Examen PED marzo 2018 Modalidad 0

Normas:

- Tiempo para efectuar el test: 20 minutos.
- Una pregunta mal contestada elimina una correcta.
- Las soluciones al examen se dejarán en el campus virtual.
- Una vez empezado el examen no se puede salir del aula hasta finalizarlo.
- En la hoja de contestaciones el verdadero se corresponderá con la A, y el falso con la B.

	V	F		
En la especificación algebraica de los números naturales vista en clase, si no definimos la			1	V
semántica de la operación <i>suma</i> , las ecuaciones: suc(suc(cero)) y <i>suma</i> (cero,suc(cero)) podrían				
denotar diferentes valores.				
En C++, la herencia y el layering son el mismo concepto.			2	F
En C++, si una clase no contiene el destructor, un objeto creado nunca se destruye hasta que			3	F
finaliza el programa.			-	_
La expresión de la complejidad temporal es equivalente a la talla o tamaño del problema.			4	F
La función POT 2 descrita a continuación presenta una complejidad temporal O(2 ⁿ)	1 🗖	$\bar{\Box}$	5	F
función POT_2 (n: natural): natural	_	_	5	1
opción				
n = 1: devuelve 2				
n = 1. devuelve 2 $n > 1$: devuelve 2 * POT_2(n-1)				
fopción				
ffunción	۱	_	_	Е
La función de búsqueda BINARIA de un elemento en un vector ordenado tiene una complejidad	u	Ч	6	F
temporal en su peor caso de O(log ₁₀ n)		_	_	
Dada la operación <i>Examen</i> definida como sigue, donde IC equivale a inscabeza:	ш	Ц	7	V
Examen(Lista) → Lista				
VAR L1:Lista; x,y:ítem				
Examen(crear_lista())=crear_lista()				
$Examen(IC(crear_lista(), x)) = IC(crear_lista(), x)$				
Examen(IC(IC(L1,x)y))=IC(IC(Examen(L1),y),x)				
Si se aplica sobre la Lista= (a,b,c,d) , en la que a es el primer elemento de la lista, se obtiene				
como resultado la Lista= (b,a,d,c)				
Un árbol binario con un único nodo es un árbol lleno.			8	V
En la especificación algebraica del tipo Lista visto en clase, la sintaxis y la semántica de la			9	V
operación de borrado de un elemento (borrar) según la posición es la siguiente:		_		
borrar(lista, posicion) → lista				
VAR L ₁ : lista; x: item; p: posicion;				
borrar(crear(), p) = crear()				
$\mathbf{si} \ \mathbf{p} == \mathbf{primera(inscabeza(L_1, x))} \ \mathbf{entonces}$				
borrar(inscabeza($L_1, x), p$) = L_1				
si no borrar(inscabeza($L_1, x), p$) = inscabeza(borrar($L_1, p), x$)				
Teniendo en cuenta la sintaxis y la semántica de las operaciones del tipo Cola vistas en clase,			10	F
se cumpliría la siguiente ecuación:				
VAR a,b,c: ítem;				
desencolar(desencolar(encolar(encolar(crear(),a),b),c))) = c				
En la representación SECUENCIAL del tipo Cola visto en clase utilizando tipos base			11	F
("arrays"), tanto para colas (array normal) como para colas circulares (array circular), la				
condición de cola vacía es tope == fondo.				
En la especificación algebraica de los números naturales vista en clase, la sintaxis y la semántica			12	F
de la operación de multiplicación (<i>mult</i>) es la siguiente:				
$mult$: natural natural \rightarrow natural				
VAR x, y: natural;				
mult(cero, x) = cero				
mult(x, cero) = cero				
mult(y, x) = suma(mult(suc(y), x), x)				
Grado de un árbol es el número máximo de hijos que pueden tener sus subárboles (si el árbol			13	V
es n-ario, el grado es n).		_		•
, D-nac //.	J			