Group 15 - LAB 1

Mustafa Al-Janabi | Einar Lennelöv | Akanshu Mahajan

3.1 Single Layer Perceptron

Perceptron and delta learning on non-linearly separable set

Comparison between delta learning and perceptron learning on a single dataset.

Delta rule Sequential Learning

Delta learning rule applied to a single layer network using sequential learning rule instead of batch learning. (Epochs = 100 and learning rate = 0.001).

Conclusions: The network performed well in terms of classifying both the train data as well as the test data with an accuracy of 100%.

Non linearly separable

Comparison between perceptron learning and delta learning on linearly non-separable dataset.

Subsampling

Part of A	Part of B	Mean accuracy* ± 1std.
25%	25%	0.76 ± 0.06
50%	0%	0.58 ± 0.09
0%	50%	0.43 ± 0.08
{20% A[0] > 0} U {80% A[0] < 0}	0%	0.23 ± 0.00

^{*}Averaged over 100 runs.

Subsampling

3.2 Multi layer perceptron

Classification of non linearly separable

Average over 100 runs for different number of nodes in the hidden layer. **Conclusions:** Fastest convergence and best performance with 5 hidden nodes.

Generalisation

Average over 50 runs for different number of nodes in the hidden layer for training and validation sets.

Conclusions: Generalization is achieved for more than 10 hidden nodes.

Batch vs sequential

Same as previous slide, but using sequential learning.

Conclusions: Difficult to deduce differences.

Decision boundary

With 5 hidden nodes and learning rate η =0.01 we get

0 misclassifications with MSE=0 for training data and MSE=0 for the special case

Encoder problem 3 hidden layers

$$X = [-1, -1, 1, -1, -1, -1, -1, -1]$$

 $H = [-1, -1, -1]$

$$X = [-1, -1, -1, -1, -1, 1, -1, -1]$$

 $H = [1, 1, -1]$

$$X = [1, -1, -1, -1, -1, -1, -1, -1]$$

 $H = [1, 1, 1]$

Converges for high η .

Conclusions: Fastest convergence and best performance with 5 hidden nodes.

Encoder problem 2 hidden layers

$$X = [-1, -1, 1, -1, -1, -1, -1, -1]$$

 $H = [-1, -1]$

$$X = [-1, -1, -1, -1, -1, 1, -1, -1]$$

 $H = [-1, -1]$

$$X = [1, -1, -1, -1, -1, -1, -1, -1]$$

 $H = [1, -1]$

Converges for high η .

Conclusions: Fastest convergence and best performance with 5 hidden nodes.

Function approximation

Left: Average MSE over 10 runs for different number of nodes in the hidden layer. Right: Average MSE over 10 runs for different fractions of samples in training data.

Function approximation

Surface plots of the approximated gaussian, with training fraction 0.7.

4 Time series prediction

Average over 100 runs for different number of nodes in the hidden layer.

Conclusions: Fastest convergence and best performance with 5 hidden nodes.