Introduction to next generation microbiome data analytics

Open & reproducible microbiome data analysis spring school Wageningen, The Netherlands, May 28-30, 2018

Gerben DA Hermes, PhD
Laboratory of Microbiology,
Wageningen University & Research

'previous generation' microbiomics

The Godfather

- 1632 1723
- >1674
 - Spermatozoa
 - Blood cells
 - Dental plaque

A sense of scale

Metric Measurement of Size

1 Meter (m) = 1m 10 Decimeters (dm) = 1m 100 Centimeters (cm) = 1m 1,000 Millimeters (mm) = 1m 1,000,000 Micrometers (mm) = 1m 1,000,000,000 Nanometers (nm) = 1m 1,000,000,000,000 Picometers (pm) = 1m

The tree of life

Earth's biodiversity

relatedness/evolution/time Tenericutes Bacteria Nomurabacteria • Kaiserbacteria Zixibacteria Cloacimonetes Fibrobacteres Calescamantes Caldiserica WOR-3 TA06 Latescibacteria BRC1 Parcubacteria PVC Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Candidate Falkowbacteria Phyla Radiation Gracilibacteria BD1-5, GN02
Absconditabacteria SR1 Hydrogenedentes NKB19 Wirthbacteria Levybacteria Daviesbacteria Curtissbacteria Major lineages with isolated representative - italics Major lineage lacking isolated representative -Eukaryotes Micrarchaeota . Diapherotrites Nanohaloarchaeota Aenigmarchaeota Parvarchaeota DPANN Nanoarchaeota Woesearchaeota Opisthokonta Altiarchaeales Halobacteria Archaea Excavata Thaumarchaeota Archaeplastida Chromalyeolata

Amoebozoa

Building a prokaryotic phylogenetic tree Target gene: Molecular clock

16S rRNA gene: ~1500nt

- Target for detection & identification of bacteria.
- Ideal phylogenetic marker.
 - Universally distributed, functionally constant,
 - Sufficiently conserved, no horizontal transfer (?)

messenger RNA

- More than 3,000,000 sequences in databases.
- Alternating <u>variable</u> and <u>conserved sequence</u> domains.

■ Measures the evolutionary distance between microbial communities

Classification of all known life

prokaryotic species concept

De virussen worden hier niet behandeld, omdat deze geen organismen zijn en niet voldoen aan de belangrijke criteria voor het begrip leven.

Haeckel (1894) 3 rijken	Whittaker (1969) 5 rijken	Woese (1977) 6 rijken	Woese (1990) 3 domeinen	Cavalier-Smith (1998) 2 domeinen en 6 rijken		Keeling (2004) 3 domeinen en 5 supergroepen		
Animalia	Animalia	Animalia			Animalia		Unikonta	
Plantae	Fungi	Fungi		Eukaryota	Fungi	Eukaryota	Excavata	
	Plantae	Plantae	Eukarya		Plantae		Archaeplastida	
	Drotioto	Drotioto			Chromista		Chromalveolata	
Protista (niet behandeld door Linnaeus)	Protista	Protista			Protozoa		Rhizaria	
	Monera	Archaebacteria	Archaea	Drokonyota	Bacteria	Archaea		
		Eubacteria	Bacteria	Prokaryota	Dacteria	Bacteria		

16S rRNA gene similarity prokaryotes

- DNA-DNA hybridization (70%)
 - %G+C content
 - Free fatty acid analysis
 - morphological, biochemical and physiological characterization
 - Almost free exchange of genomic info

16S rRNA gene Escherichia Coli & Salmonella >98% similar

Human gastro-intestinal microbiota

Complex and diverse ecosystem

- ~ 100 +/- 50 species/ind (>200 strains), ~1000 sp. identified
- 5 dominante phyla: Firmicutes, Bacteroides, Proteobacteria, Actinobacteria and Verrucomicrobia
- Associated with numerous phenotypes/diseases states

Which method do you use to study the microbiota?

Depends on your research question!!!

Integrated 'meta-omics' approach to understand microbiological concepts

Van den Bogert and Leimena et al. 2011. Handbook of Mol. Micr. Ecol. Chapter 18

Integrated 'meta-omics' approach

Be careful with functional interpretations!

"Luckily we found THIS bone, so we were able to reconstruct the whole creature..."

Who is doing what in the intestine? Metatranscriptomics and metaproteomics

- -Metatranscriptomics: Community gene expression
- -Metaproteomics: Community protein production

Example: composition vs activity

Reciprocal diet exchange between Africans and Americans

Colon cancer rates:

-Africans:<10:100,000

-African Americans: >65:100,000

African Americans

Western diet

African diet

2 weeks

2 weeks

Africans

African diet

Western diet

ARTICLE

Received 23 May 2014 | Accepted 20 Jan 2015 | Published 28 Apr 2015

DOI: 10.1038/ncomms7342

Fat, fibre and cancer risk in African Americans and rural Africans

Stephen J.D. O'Keefe¹, Jia V. Li², Leo Lahti^{3,4}, Junhai Ou¹, Franck Carbonero^{5,1}, Khaled Mohammed¹, Joram M. Posma², James Kinross², Elaine Wahl¹, Elizabeth Ruder⁶, Kishore Vipperla¹, Vasudevan Naidoo⁷, Lungile Mtshali⁷, Sebastian Tims³, Philippe G.B. Puylaert³, James DeLany⁸, Alyssa Krasinskas⁹, Ann C. Benefiel⁶, Hatem O. Kaseb¹, Keith Newton⁷, Jeremy K. Nicholson², Willem M. de Vos^{3,4,10}, H. Res Gaskins⁵ & Erwin G. Zoetendal³ Microbiota-mediated reduction of colon cancer risk after consumption of African diet

Limited diet effect on microbiota composition Huge diet impact on microbiota activity

No cultured microbes, no microbiology

Previous generation microbiomics

All microbiological concepts based on cultured representatives

Example: Akkermansia muciniphila

- -Isolated in 2004
- -Gram-negative
- -specialized in mucin degradation

Subsequent studies:

- -Frequently associated to healthy controls in comparative analyses
- -Counteracts diet-induced obesity in mice

16S rRNA gene amplicon sequencing workflow

'Next Generation' Sequencers

Table 1 Comparison of sequencing technologies											
	Read length	Maximum insert size	Run time (hours (h) or days (d))	Reads per run	Relative cost factor (per Mb)	Scale of reads per sample	Scale of samples per run	Raw error rate (%)			
le								Total	Insertions	Deletions	Mismatches
ABI 3730	800 b	>1 Kb	2 h	96	100	10 ²	10¹	0.001	<<0.1	<<0.1	<<0.1
454 FLX Titanium	300–400 b	800 b	9 h	106	1	10 ³	10²	1	<1	<< 0.1	<<1
454 FLX+	500–600 b	1200 b	23 h	106	0.7	10 ³	10 ²				
Illumina GAIIx	76–101 b	500 b	6–9 d	4 × 10 ⁸	0.1	105-106	103-104	<1	<<1	<<1	<1
Illumina HiSeq 2000	101–151 b	500 b	9–15 d	3 × 10 ⁹	0.002	105-106	103-104				
Illumina MiSeq	36–151 b	500 b	4h–27 h	107	0.06	104	10 ²				
PacBio	1100 b	>1 Kb	1.5 h	3.5×10^{7}	1.5	10 ³	10¹	15	13	1	1
IonTorrent	200 b	400 b	2-3 h	$\begin{array}{c} 1.5 \times 10^{6} - \\ 3 \times 10^{6} \end{array}$	0.4	10 ³	10 ²	2	1	1	<1

Kuczynski et al., Nature rev. 2011

Why Next Generation Sequencing?

- Sanger: long sequences > more taxonomic information 450 – 1200 bp
- NGS shorter sequences > less taxonomic information 50 – 450 bp

Data

- Sanger: 10, 100, 200 sequences ... (time & \$)
- NGS 200.000 to > 1.000.000.000 sequences (much cheaper/sequence)

Amplicon sequencing

20.000 pe Depends on your research question!!!

PASSPORT

PCR

what to do with 10.000.000 sequences?

1 sample; pick 10.000.000 colonies

Or

100.000 colonies from 100 samples

Barcoding & multiplexing

Bacterial 165 rRNA sequencing workflow extension for non recolations student sealing the form the recolations and student sealing to the recolation of the recolation recolation of the recolati

Analysis pipeline/workflow

OTU -> Operational Taxonomic Unit (nt sequence -> biological entity)

Weeks/months

- Biological interpretation
- Hypothesis testing
- Months/year?

Day 2/3

29

The hard part....

Day 2/3

Recap

