Programação Linear - análise de sensibilidade Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

5 de novembro de 2020

Análise de sensibilidade

antes

- Até aqui, assumimos que os dados não eram alteráveis.
- Na realidade, os dados podem não estar totalmente correctos, ou podemos querer avaliar se deveremos actuar para os alterar.

Guião

- Após determinar a solução óptima, queremos analisar como é que a solução óptima varia quando varia o valor de um dado (passaremos a tratá-lo como um parâmetro),
- ou seja, analisar a sensibilidade da solução óptima ao parâmetro.
- Parâmetros a analisar: quantidade de recurso disponível e coeficiente da função objectivo.

depois

 Os solvers de programação linear produzem relatórios que ajudam a efectuar a análise de sensibilidade.

Motivação

• Resolvendo o seguinte modelo com um solver de PL:

```
max: 30x1 +20x2 +10x3;

restricao1: 1x1 + 1x2 + 2x3 <= 40;

restricao2: 2x1 + 2x2 + 1x3 <= 150;

restricao3: 2x1 + 1x2 <= 20;
```

• obtém-se o seguinte relatório com a solução óptima:

Objective	
Variables	result
	500
x1	0
x2	20
х3	10

- Para além de conhecer a solução óptima, fazer 20 unidades da actividade 2 e 10 unidades da actividade 3, com vendas de 500,
- podemos querer saber ...

Questões pós-optimização

- Se a quantidade do recurso 1 variasse, como variaria o valor da solução óptima?
- A variação seria igual dentro de que limites de variação do recurso?
- Se o preço da actividade 3 descesse, será que ainda seria atractiva?
- Qual o limite dessa descida para ainda ser atractiva?
- Qual o preço mínimo da actividade 1 para ela ser atractiva?

 Análise pós-optimização é uma designação alternativa de análise de sensibilidade.

Para além de determinarem a solução óptima do problema,

• os solvers de PL produzem Relatórios de análise de sensibilidade com informação para responder a estas questões.

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
x3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Conteúdo

- Objectivo da análise de sensibilidade
- Alteração num termo independente b_i de uma restrição
 - ullet análise matricial: alteração de b_i
- Conceito de preço-sombra
- Alteração num coeficiente c_j da função objectivo
- Apêndices
 - $lue{0}$ análise matricial: alteração de c_j (var. não-básica no quadro óptimo)

Objectivo

A análise de sensibilidade permite determinar:

- as alterações no quadro óptimo que decorrem de uma alteração no quadro inicial:
 - de um termo independente b_i da restrição i
 - de um coeficiente c_i da função objectivo
- os limites de variação desses elementos do quadro inicial sem alterar o conjunto de variáveis básicas da solução óptima.

Alteração do termo independente b_i

- O valor do termo independente b_i da restrição $A^i x \le b_i$ indica frequentemente a quantidade de recurso disponível.
- O valor pode alterar-se ou podemos estar interessados em comprar mais unidades de recurso.

Questões pós-optimização

- Se a quantidade do recurso variasse, como variaria o valor da solução óptima?
- A variação seria igual dentro de que limites de variação do recurso?

Exemplo 1: espaço a duas dimensões

Modelo, quadro óptimo e relatório Duals:

```
max: 12x1 +10x2;
tmaquina: 3x1 + 2x2<=120;
maodobra: 1x1 + 2x2<= 80;
material: 1x1 <= 30;
```

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>X</i> ₂	0	0	1	-0.25	0.75	0	30
<i>s</i> ₃	0	0	0	-0.5	0.5	1	10
x_1	0	1	0	s ₁ -0.25 -0.5 0.5	-0.5	0	20
Z	1	0	0	3.5	1.5	0	540

Duals			
Variables	value	from	till
objective	540	540	540
tmaquina	3,5	80	140
maodobra	1,5	60	120
material	0	$-\infty$	+∞
×1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞

- Como varia o valor da solução óptima quando o valor do parâmetro maodobra aumenta do valor inicial, 80, para 104?
- Do ponto de vista geométrico, a variação de um parâmetro b_i do modelo traduz-se numa translação da recta associada à restrição.

Variação do valor do óptimo: interpretação geométrica

Variação do valor do óptimo: interpretação geométrica

Limite variação parâmetro: interpretação geométrica

Variação do valor do óptimo em função do parâmetro b_2

Conceito de preço-sombra de um recurso

Preço-sombra: valor que o decisor atribui a uma unidade do recurso,

- medido pelo aumento do valor da função objectivo resultante de se usar uma unidade adicional do recurso.
- O valor é algo individual: diferentes agentes económicos podem atribuir valores diferentes a um dado recurso.
- Cada agente optimiza um modelo semelhante, mas com diferenças, e
- os valores do relatórios de análise de sensibilidade resultam do modelo.

Preço-sombra de um recurso vs. custo de um recurso

- O custo de um recurso (preço no mercado) é uma coisa diferente.
- A comparação do preço-sombra e do custo ajuda a tomar decisões no âmbito da análise pós-optimização.

Exemplo 2: o preço-sombra no quadro simplex

Quadro Inicial

	z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	40
$\overline{s_1}$	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
s 3	0	1 2 2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

Quadro Óptimo

	Z	x_1	x_2	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-1/2 -3/2 2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

O preço-sombra do recurso i é dado pelo custo reduzido $(c_B B^{-1})_i$

- $(c_B B^{-1})_i = \delta z / \delta(-s_i)$, i.e.,
- o valor da função objectivo aumenta $\delta z/\delta(-s_i)$ unidades por cada unidade adicional do recurso i;
- ullet acontece o oposto do que quando se aumenta a variável de folga s_i .

Exemplo 2: preço-sombra dos recursos 1 e 2

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
		0				1/2		-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500

- O preço-sombra do recurso 1 é $\delta z/\delta(-s_1)=+5$ (o valor da função objectivo aumenta 5 unidades por cada unidade adicional do recurso 1).
- O preço-sombra do recurso 2 é $\delta z/\delta(-s_2) = +0$.
- Não há interesse em ter unidades adicionais de recurso 2: o aumento do recurso 2 não aumenta o valor da função objectivo, só aumenta a folga s₂.

Relatório Duals (vamos ver que há um problema dual)

- A coluna value apresenta os valores da linha da função objectivo do quadro simplex:
 - $\{x1,...,x3\} \leftrightarrow \text{variáveis de folga do dual (de facto, são os valores simétricos, porque o$ *LPSolve* $apresenta o vector <math>c c_B B^{-1} A$).
 - {recurso1,...,recurso3} \leftrightarrow variáveis de decisão do dual ($c_B B^{-1}$).

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
x3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

• O relatório *Duals* indica que o preço-sombra do recurso 1 é 5.

Relatório Duals: interpretação

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
х3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

Relativamente ao recurso 1:

- quando a quantidade de recurso 1 (b_1) varia desde 20 até 240,
- o valor do óptimo da função obj. é $500 + 5(b_1 40)$, $\forall b_1 \in [20, 240]$,
- e as variáveis básicas óptimas continuam a ser x_3 , s_2 e x_2 .

Análise matricial: alteração de b_i

Quais os vectores / matrizes que sofrem alterações no quadro óptimo?

- Quando há uma alteração de um elemento do vector b (vector dos termos independentes das restrições),
- as únicas alterações no quadro óptimo são no vector $B^{-1}b$ e no elemento $c_BB^{-1}b$ (ver quadros no diapositivo seguinte).
- Lembrete: a matriz B é a submatriz de $[A \mid I]$ com as colunas das variáveis básicas:

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix}$$

ullet O vector c_B tem os coeficientes do vector c das mesmas variáveis.

Exemplo 2

		Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	5 3
	$\overline{s_1}$	0	1	1	2	1	0	0
Quadro Inicial	s 2	0	2	2	1	0	1	0
	5 3	0	2	1	0	0	0	1
	Z	1	-30	-20	-10	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃
		^	1 /0	^	1	1 /0	^	1 /0

Quadro Óptimo

<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
s ₂	0	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500
₩								

 $\begin{array}{c|c}
B^{-1} & \widetilde{0} \\
\hline
c_B B^{-1} & 1
\end{array}$

 $\begin{array}{c|ccccc} A & I & b \\ \hline -c & \widetilde{0} & 0 \end{array}$

40 150 20

0

=

Exemplo 2: análise da variação de b_1 (passa a ser $40 + \alpha$)

$$b_{ant} = \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix}$$
 , $b_{novo} = \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix}$

• Novo vector $B^{-1}b_{novo}$:

$$B^{-1}b_{novo} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix} = \begin{bmatrix} 10 + \alpha/2 \\ 100 - \alpha/2 \\ 20 \end{bmatrix}$$

• Novo valor de $c_B B^{-1} b_{novo}$:

$$c_B B^{-1} b_{novo} = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix} = \begin{bmatrix} 500 + 5\alpha \end{bmatrix}$$

Exemplo 2: quadro óptimo quando há uma variação de b_1

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s ₁	<i>s</i> ₂	<i>s</i> ₃	
	s_1	0	1	1	2	1	0	0	$40 + \alpha$
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>5</i> 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
		0	-1/2	0	1	1/2	0	-1/2	$10 + \alpha/2$
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	$100 - \alpha/2$
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	$500 + 5\alpha$

- Este quadro é óptimo dentro dos limites de variação de α , *i.e.*, enquanto todos os elementos de $B^{-1}b_{novo}$ forem não-negativos.
- Se o valor de α estiver para além desses limites, haverá um elemento negativo no lado direito do quadro, e é necessário usar o simplex dual [veremos depois] para determinar o novo quadro óptimo.

Exemplo 2: determinação dos limites de variação de α

• Limites de variação de α :

$$B^{-1}b_{novo} = \begin{bmatrix} 10 + \alpha/2 \\ 100 - \alpha/2 \\ 20 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} \alpha \ge -20 \\ \alpha \le 200 \end{cases}$$

ou seja,

$$-20 \le \alpha \le 200$$
.

• Limites de variação de b_1 (no quadro inicial, $b_1 = 40$):

$$40 - 20 \le b_1 \le 40 + 200,$$

ou seja,

$$20 \le b_1 \le 240$$
.

Estes são os valores apresentados no relatório Duals.

Alteração num coeficiente da função objectivo

- O valor do coeficiente c_j da função objectivo está frequentemente relacionado com o preço de venda ou com o lucro associado a uma actividade.
- O valor pode alterar-se ou podemos estar interessados em alterá-lo para a actividade se tornar atractiva.

Questões pós-optimização

- Se o preço da actividade 3 descesse, será que ainda seria atractiva?
- Qual o limite dessa descida para ainda ser atractiva?
- Qual o preço mínimo da actividade 1 para ela ser atractiva?

Exemplo 1: espaço a duas dimensões

Modelo, quadro óptimo e relatório Objective:

```
max: 12x1 + 10x2;

tmaquina: 3x1 + 2x2 \le 120;

maodobra: 1x1 + 2x2 \le 80;

material: 1x1 - 3x \le 80;

\frac{|z|}{x_1} \frac{|x_1|}{x_2} \frac{|x_1|}{x_1} \frac{|x_1|}{x_2} \frac{|x_1|}{x_1} \frac{|x_1|}{x_2} \frac{|x_1|}{x_1} \frac{|x_1
```

Objective						
Variables	from	till	from	till		
			value	value		
objective	540	540	540	540		
x1	5	15	$-\infty$	0		
x2	8	24	$-\infty$	0		

- Porque é que a solução óptima muda se o valor do coeficiente c₁ estiver fora do intervalo [5,15]?
- Do ponto de vista geométrico, a alteração de um coeficiente da função objectivo traduz-se numa alteração da direcção do vector gradiente.

Exemplo 1: alteração de um coeficiente da f. objectivo

Exemplo 1: alteração de um coeficiente da f. objectivo

Exemplo 1: alteração de um coeficiente da f. objectivo

Relatório Objective

Interpretação da informação do Relatório:

 Não há alteração das actividades atractivas (variáveis básicas na solução óptima) se todos os coeficientes da função objectivo pertencerem ao intervalo definido pelas colunas from e till.

Exemplo 2:

• Os coeficientes da função objectivo são $(c_1, c_2, c_3) = (30, 20, 10)$.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

 A análise matricial, usando a mesma metodologia, é apresentada nos Apêndices 1 e 2 (será aplicada num exercício das TP).

Exemplo 2: caso de var. não-básica no quadro óptimo

Relativamente ao coeficiente da função objectivo c_1 :

- A solução óptima terá como variáveis básicas óptimas x_3 , s_2 e x_2 se o coeficiente c_1 for menor ou igual a 35.
- Acima desse valor, a variável não-básica x₁ tornar-se-á atractiva para entrar na base, e é necessário usar o algoritmo simplex primal para determinar o novo quadro óptimo.
- Ver informação adicional no Apêndice 1.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Exemplo 2: caso de variável básica no quadro óptimo

Relativamente ao coeficiente da função objectivo c3:

- A solução óptima terá como variáveis básicas óptimas x_3 , s_2 e x_2 se o coeficiente c_3 pertencer ao intervalo [0,20].
- Se o valor for inferior a 0, a actividade x_3 deixa de ser atractiva.
- Se o valor for superior a 20, a actividade x₃ permanece atractiva, mas a solução óptima terá outras variáveis básicas.
- Ver informação adicional no Apêndice 2.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Conclusão

- O conceito de preço-sombra é um conceito fundamental.
- Os recursos mais críticos são os que têm maior preço-sombra.
- A análise de sensibilidade permite avaliar alternativas ao cenário actual, e ajuda em processos de decisão pós-optimização;
- permite evitar ter de resolver novamente o problema com novos valores dos parâmetros.
- A análise de sensibilidade à variação simultânea de vários parâmetros pode ser feita com análise matricial.
- A análise de sensibilidade dos elementos aij da matriz A é mais complexa.

Apêndices

- **4** Análise matricial das alterações de c_j (Variável não-básica no quadro óptimo)
- Análise matricial das alterações de c_j (Variável básica no quadro óptimo)
- Identificação da variável que entra na base quando há alteração do coeficiente de uma variável básica para além dos limites de variação
- Significado do elemento from value

1. Alteração de c_j : quais as alterações no quadro óptimo?

- Há alterações nas matrizes e nos vectores do quadro óptimo que envolvem os coeficientes da função objectivo que se alteram nos dados iniciais.
- É necessário distinguir 2 casos:

Caso I: Variável é não-básica no quadro óptimo

- só se altera um elemento do vector c,
- e só há alterações no vector $c_B B^{-1} A c$ do quadro final;

Caso II: Variável é básica no quadro óptimo

- alteram-se um elemento do vector c e um elemento do vector c_B (que é construído a partir de c),
- e há alterações nos vectores $c_B B^{-1} A c$, $c_B B^{-1}$ e $c_B B^{-1} b$ do quadro final.

1. Exemplo

	-
Quadro Inicial	
	_

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
<i>s</i> ₁	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>5</i> 3	0	1 2 2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0
	7	<i>X</i> 1	Χa	Χa	S ₁	50	52	ĺ

Quadro Óptimo

	. –	,,T	7.2	7.5	T	-2	-5	
Х3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

$$\begin{array}{c|c}
B^{-1} & \widetilde{0} \\
\hline
c_B B^{-1} & 1
\end{array}$$

А	I	Ь
- <i>c</i>	Õ	0

1. Exemplo: variação de c_1

• Como a actividade 1 não é atractiva, interessa analisar o aumento do valor do coeficiente c_1 , que passa a ser igual a $30 + \alpha$,

Caso I: Variável x_1 é não-básica no quadro óptimo

$$c_{ant} = \begin{bmatrix} 30 & 20 & 10 \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

Novo vector $c_B B^{-1} A - c_{novo}$:

$$c_{B}B^{-1}A - c_{novo} = c_{B}B^{-1}A - c_{novo} + c_{ant} - c_{ant} =$$

$$= (c_{B}B^{-1}A - c_{ant}) + (c_{ant} - c_{novo})$$

$$c_{B}B^{-1}A - c_{novo} = \begin{bmatrix} 5 & 0 & 0 \\ & & \end{bmatrix} + \begin{bmatrix} -\alpha & 0 & 0 \\ & & \end{bmatrix} =$$

$$= \begin{bmatrix} 5 - \alpha & 0 & 0 \end{bmatrix}$$

1. Exemplo: quadro óptimo quando há uma variação de c_1

		z	x_1	<i>X</i> 2	<i>X</i> 3	s_1	<i>s</i> ₂	<i>5</i> 3		
Quadro Inicial	<i>s</i> ₁	0	1	1	2	1	0	0	40	
	<i>s</i> ₂	0	2	2	1	0	1	0	150	
	<i>5</i> 3	0	2	1	0	0	0	1	20	
	Z	1	$-(30+\alpha)$	-20	-10	0	0	0	0	
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃		
Quadro Óptimo	X3	0	-1/2	0	1	1/2	0	-1/2	10	
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100	
	<i>X</i> ₂	0	2	1	0	0	0	1	20	
	Z	1	$5-\alpha$	0	0	5	0	15	500	

- Este quadro é óptimo dentro dos limites de variação de α , *i.e.*, enquanto todos os elementos de $c_B B^{-1} A c_{novo}$ forem não-negativos.
- Se o valor de α estiver para além desses limites, haverá um elemento negativo na linha da função objectivo, e é necessário usar o simplex primal para determinar o novo quadro óptimo.

1. Determinação dos limites de variação de lpha

• Limites de variação de α :

$$c_B B^{-1} A - c_{novo} = \begin{bmatrix} 5 - \alpha & 0 & 0 \\ 5 - \alpha \ge 0 & \{ \alpha \le 5 \end{bmatrix}$$

ou seja,

$$-\infty \le \alpha \le 5$$
.

Limites de variação de c₁:

$$-\infty \le c_1 \le 30 + 5,$$

ou seja,

$$-\infty \le c_1 \le 35$$
.

Estes são os valores apresentados no relatório Objective.

2. Exemplo: variação de c_3

• Como a actividade 3 é atractiva, interessa analisar o decremento do valor do coeficiente c_3 , que passa a ser igual a $10 - \alpha$,

Caso II: Variável x_3 é básica no quadro óptimo

$$c_{novo} = \begin{bmatrix} 30 & 20 & 10 - \alpha \end{bmatrix}$$

$$c_{B_{ant}} = \begin{vmatrix} 10 & 0 & 20 \end{vmatrix}$$

$$c_{B_{novo}} = \begin{vmatrix} 10 - \alpha & 0 & 20 \end{vmatrix}$$

(continua)

2. Exemplo: variação de c_3 (cont.)

Caso II: Variável x₃ é básica no quadro óptimo

Novo vector $c_{B_{novo}}B^{-1}$:

$$c_{B_{novo}}B^{-1} = \begin{bmatrix} 10-\alpha & 0 & 20 \\ & & & \\ & & & \\ & & & \end{bmatrix} * \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 5-\alpha/2 & 0 & 15+\alpha/2 \end{bmatrix}$$

Novo vector $c_{B_{novo}}B^{-1}A-c_{novo}$ (após efectuar todos os cálculos):

$$c_{B_{novo}}B^{-1}A - c_{novo} = \begin{bmatrix} 5 + \alpha/2 & 0 & 0 \end{bmatrix}$$

2. Exemplo: quadro óptimo quando há uma variação de c_3

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
Quadro Inicial	<i>s</i> ₁	0	1	1	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
Quadro Óptimo	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

- Este quadro é óptimo dentro dos limites de variação de α , *i.e.*, enquanto todos os elementos de $c_B B^{-1} A c_{novo}$ e de $c_{B_{novo}} B^{-1}$ forem não-negativos.
- Se o valor de α estiver para além desses limites, haverá um elemento negativo na linha da função objectivo, e é necessário usar o simplex primal para determinar o novo quadro óptimo.

2. Determinação dos limites de variação de lpha

• Limites de variação de α :

$$c_{B_{novo}}B^{-1}A - c_{novo} = \begin{bmatrix} 5 + \alpha/2 & 0 & 0 \\ \\ c_{B_{novo}}B^{-1} & = \end{bmatrix} \ge \widetilde{0}$$

$$c_{B_{novo}}B^{-1} = \begin{bmatrix} 5 - \alpha/2 & 0 & 15 + \alpha/2 \\ \\ 5 - \alpha/2 \ge 0 \\ \\ 5 - \alpha/2 \ge 0 \\ \\ 15 + \alpha/2 \ge 0 \end{bmatrix} \ge \widetilde{0}$$

ou seja,

$$-10 \le \alpha \le 10$$
.

Limites de variação de c₃ :

$$10-10 \le c_3 \le 10-(-10),$$

ou seja,

$$0 \le c_3 \le 20$$
.

Estes são os limites apresentados no relatório Objective.

3. Aumento do preço associado à actividade x_3

- Qual a variável não-básica que se tornaria atractiva se o preço associado à actividade x_3 fosse igual a $20 + \varepsilon$ (*i.e.*, $\alpha = -10 \varepsilon$)?
- Qual a variável básica que sairia da base?

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
Quadro Inicial	<i>s</i> ₁	0	1	1	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
Quadro Óptimo	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

3. Decréscimo do preço associado à actividade x_3

- Qual a variável não-básica que se tornaria atractiva se o preço associado à actividade x_3 fosse igual a 0ϵ (i.e., $\alpha = 10 + \epsilon$)?
- Qual a variável básica que sairia da base?

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	s 2	<i>s</i> ₃	
	s_1	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
Quadro Óptimo	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

4. Significado do elemento from value

- No Relatório Objective, o elemento da coluna from value só é significativo para variáveis não-básicas na solução óptima.
- Quando x_1 é atractiva (coluna pivô), entra na base, e toma o valor 20/2 = 10.
- É o valor da menor razão positiva (a linha pivô é a da variável básica x_2 (ver diapositivo seguinte).

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

4. Exemplo

		z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	5 3	
Quadro Inicial	<i>s</i> ₁	0	1	1	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	$-(30+\alpha)$	-20	-10	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
Quadro Óptimo	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha$	0	0	5	0	15	500

nota: coluna do quadro simplex mostra alterações em $B^{-1}b$

O novo vector $B^{-1}b_{novo}$ pode ser expresso em função do vector anterior $B^{-1}b_{ant}$ e de uma parcela de variação:

$$B^{-1}b_{novo} = B^{-1}b_{novo} + B^{-1}b_{ant} - B^{-1}b_{ant} =$$

= $B^{-1}b_{ant} + B^{-1}(b_{novo} - b_{ant})$

As alterações produzidas em $B^{-1}b_{ant}$ seguem a alteração existente na coluna da variável de folga associada ao recurso que varia (neste exemplo, a coluna de s_1).

$$B^{-1}b_{novo} = \begin{bmatrix} 10 \\ 100 \\ 20 \end{bmatrix} + \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 100 \\ 20 \end{bmatrix} + \alpha \begin{bmatrix} 1/2 \\ -1/2 \\ 0 \end{bmatrix}$$

nota: preço-sombra mostra alteração do valor de $c_B B^{-1} b$

O novo valor da função objectivo $c_B B^{-1} b_{novo}$ pode ser expresso em função do valor anterior $c_B B^{-1} b_{ant}$ e de uma parcela de variação:

$$c_B B^{-1} b_{novo} = c_B B^{-1} b_{novo} + c_B B^{-1} b_{ant} - c_B B^{-1} b_{ant} =$$

= $c_B B^{-1} b_{ant} + c_B B^{-1} (b_{novo} - b_{ant})$

As alterações produzidas em $c_B B^{-1} b_{ant}$ seguem o preço-sombra associado ao recurso que varia (neste exemplo, o recurso associado à variável de folga s_1).

$$c_B B^{-1} b_{novo} = \begin{bmatrix} 500 \\ \end{bmatrix} + \begin{bmatrix} 5 & 0 & 15 \\ \end{bmatrix} * \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 500 \\ \end{bmatrix} + \alpha \begin{bmatrix} 5 \\ \end{bmatrix}$$

Fim