HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

_

Fakultät IV Wirtschaft und Informatik

Leveraging Pretrained Unimodal Models for Efficient Vision-Language Pretraining

Master's thesis in Applied Computer Science

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Vision-Language Models

Vision-Language Models

Existing Vision-Language Models

Approach	# Params	Training data (Image-Text pairs)	Estim. Costs (\$)
CLIP	428M	400M	>77k
VLMo 562M		1B	>>10k
CoCa	2.1B	>3B	>350k

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Research Objective (Contributions)

- Develop a method for (more) efficient Vision-Language Pretraining
- It should be:
 - End-to-end self-supervised
 - Independent of pretrained multimodal components
 - Cheaper & smaller than existing VL models
 - Competitive in performance?

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Overview

Contrastive Loss

Contrastive Loss

Contrastive Loss

A sheep bends his head towards grass.

A small boat in a large body of water.

A group of people on the the beach flying kites.

Goal: Find suitable image-text pair in a set of images and texts => Ensures alignment

Architecture

Knowledge Distillation **Predict** Shared Encoder **Teacher** (pretrained vision model) BEiTv2 **BERT** Vision Model Language Model (pretrained) (pretrained) A sheep bends his head towards grass

Goal: Guides alignment => Improvement

Knowledge Distillation

Goal: Guides alignment => Improvement

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Results

Image-Text Retrieval

Results

Image-Text Retrieval

A group of people on the the beach flying kites.

A sheep bends his head towards grass.

A small boat in a large body of water.

Results

Image-Text Retrieval

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Unimodal Performance

Unimodal Performance

Image-Text Retrieval

Unimodal Performance – Future work

Contrastive Loss & Knowledge Distillation

Unimodal Performance – Future work

Contrastive Loss & Knowledge Distillation

Visual Reasoning – NLVR2

One of the grey box has exactly six objects

Content

Chapter 1	Motivation	Page 3
Chapter 2	Research Objective (Contributions)	Page 10
Chapter 3	Method	Page 12
Chapter 4	Results & Demo	Page 23
Chapter 5	Limitations	Page 27
Chapter 6	Conclusion	Page 35

Conclusion

Research Objectives

Approach	# Params	Training data (Image-Text pairs)	Estim. Costs (\$)
CLIP	428M	400M	>77k
VLMo	562M	1B	>>10k
CoCa 2.1B		>3B	>350k
Ours 117M		3.3M	15.5

Conclusion

Research Objectives

Criterion	Fulfilled	Note
End-to-end Self-supervised		
Smaller		
Cheaper		
Competitive in Performance		

99.84% cheaper than VLMo, **99.98%** cheaper than CLIP

Main issues: Very restricted in multimodal tasks, poor performance on unimodal tasks.

Thank you for your attention!

Literature

- T.-Y. Lin et al., "Microsoft COCO: Common Objects in Context," in Computer Vision ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., 2014, pp. 740–755.
- J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu, "CoCa: Contrastive Captioners are Image-Text Foundation Models," Transactions on Machine Learning Research, 2022, [Online]. Available: https://openreview.net/forum?id=Ee277P3AYC
- A. Radford et al., "Learning Transferable Visual Models From Natural Language Supervision," in Proceedings of the 38th International Conference on Machine Learning, M. Meila and T. Zhang, Eds., 2021, pp. 8748–8763.
- H. Bao et al., "VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts," in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., Curran Associates, Inc., 2022, pp. 32897–32912.
- W. Wang et al., "Image as a Foreign Language: BEIT Pretraining for Vision and Vision-Language Tasks," in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 19175–19186.
- A. Singh et al., "FLAVA: A Foundational Language And Vision Alignment Model," in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15617–15629.
- Y. Aytar, C. Vondrick, and A. Torralba, "See, Hear, and Read: Deep Aligned Representations," CoRR, 2017, [Online]. Available: http://arxiv.org/abs/1706.00932
- A. Suhr, S. Zhou, A. Zhang, I. Zhang, H. Bai, and Y. Artzi, "A Corpus for Reasoning about Natural Language Grounded in Photographs," in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez, Eds., Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 6418–6428.

Literature

- Z. Peng, L. Dong, H. Bao, Q. Ye, and F. Wei, "BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers," CoRR, 2022, [Online]. Available: https://arxiv.org/abs/2208.06366
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, J. Burstein, C. Doran, and T. Solorio, Eds., Jun. 2019, pp. 4171–4186.
- J. Gou, B. Yu, S. J. Maybank, and D. Tao, "Knowledge Distillation: A Survey," International Journal of Computer Vision, vol. 129, no. 6, pp. 1789–1819, Jun. 2021.

Conclusion

Vision-Language Landscape

Conclusion

Bachelor vs. Master's thesis

Criterion	Bachelor thesis	Master's thesis		
Model Size	<11M	117M (202M)		
Data	60k	>3.3M		
Data Collection	Available ready to use	Complex collection/scraping and preprocessing from various sources		
Performance	635 th place	Beating papers from Meta and OpenAl in some benchmarks		

Contrastive Loss

Vision-Language

Results *Image-Text Retrieval*

	MSCOCO (5K test set)				Flickr30K (1K test set)							
Model	$Image \rightarrow Text$		Text \rightarrow Image		Image \rightarrow Text			$Text \rightarrow Image$				
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
FLAVA	42.74	76.76	-	38.38	67.47	-	67.7	94.0	-	65.22	89.38	-
CLIP	58.4	81.5	88.1	37.8	62.4	72.2	88.0	98.7	99.4	68.7	90.6	95.2
BEiT-3	84.8	96.5	98.3	67.2	87.7	92.8	98.0	100.0	100.0	90.3	98.7	99.5
S-SMKE	53.54	81.1	89.52	35.65	66.0	77.77	70.9	92.1	96.0	52.72	80.2	87.46
S-SMKE finetuned	56.2	83.3	91.1	39.8	69.2	79.8	82.0	95.4	98.0	64.6	87.5	93.1

Metric	Meaning
R@1	Percentage of images where the correct text is the top-ranked result, or vice versa.
R@5	Percentage of images where the correct text is found within the top-5 results, or vice versa.
R@10	Percentage of images where the correct text is found within the top- 10 results, or vice versa.

Visual Reasoning – NLVR2

