We have covered a lot of theory in this course so far.

In this leadure and the next, I want to reniert some of

there results and provide additional examples and motivation

§ 1 Commutative algebra developed from the desire to understand polynomial equations.

The general formulation:

- ·) Rang, e.g. Z, Q or C.
- ·) n, m > 0 and fr > -, fm & R[Tr, -, Tr].
- ·) For any R-algebra B, define the solution set

$$X(B) := \begin{cases} (x_{1}, -, x_{n}) & \text{s.H.} \\ f_{1}(x_{1}, -, x_{n}) = \dots = f_{m}(x_{1}, -, x_{n}) = 0 \end{cases}$$

Morb banic questions: Is $X(B) \neq \emptyset$?

If yes, then what are its properties?

Example: Pythagorean Triples

Pythagorean Triple = triple $(0,0,6) \neq (a,b,c) \in \mathbb{Z}^3$ sh. $a^2 + b^2 = c^2$

(a,b,c) primitive \overline{dy} $\gcd(a,b,c) = 1$, c > 0.

Every Pythagorean Triple & a multiple of a primitive triple, so it suffices to determine these.

Lem 1 There is a bijection

I principle Pyth. Imples (a,b,c) $\frac{1:1}{2}$ $\frac{1:1}{2}$ $\frac{1}{2}$ $\frac{1:1}{2}$ $\frac{1}{2}$ $\frac{1$

Proof The converse map is given as follows:

Given x^2 , y with $x^2 + y^2 = 1$, wite $x = \frac{Q}{C}$, $y = \frac{b}{C}$ with C > 0 and g(d(a,b,c) = 1. Then may (x,y) b (a,b,c). \square

Define $X(R) := \{ (x,y) \in R \mid x^2 + y^2 = 1 \}$

The point P = (-1,0) lies in X(Q). Our arm is to find all other points of X(Q).

Prop 2 There & a bijection

$$Q \longrightarrow X(Q) \setminus \{P\}$$

$$q \longmapsto \left(\frac{1-q^2}{1+q^2}, \frac{2q}{1+q^2}\right)$$

$$(x, y)$$

Uste that $1+q^2>0$ $\forall q\in Q$ and that $x\neq -1$ for all $(x,y)\in X(Q)\setminus P_3^2$.

Lq of slope q through P.

in precisely one other points.

We show that this point hes

In Q^2 and has the coordinates written in Q.

Lq is defined by y = qx+q.

Thus we need to solve
$$\begin{cases} qx+q=y & (I) \\ x^2+y^2=1. & (I) \end{cases}$$

Substituting (I) in (II) gives

$$1 = x^2 + (qx+q)^2 = (1+q^2) x^2 + 2q^2 x + q^2$$

The beautiful phenomenon here is that we already know that $P \in L_q$, meaning that x = -1 is a zero of this quadratic polynomial. Then the other zero has to lie in Q as well!

Since $(x-\alpha)(x-\beta)=x^2-(\alpha+\beta)x+\alpha\beta$, we directly see it equals $\frac{1-q^2}{1+q^2}$. (Namely $\alpha=-1$, $\alpha\beta=\frac{q^2-1}{q^2+1}$ the obtain that

$$L_{q} \cap \left(X(Q) \setminus \frac{1}{2} P_{3}^{2} \right) = \left(\frac{1-q^{2}}{1+q^{2}}, \frac{2q}{1+q^{2}} \right),$$

and in plux the map is defined.

Converse map: Given $(x,y) \in X(Q) - P$, the slope of the line through P and $(x,y) \ge q = \frac{M}{X+1}$. \square

We can get back to Pythagorean Triples:

Write f = u/v with gcd(u,v) = 1. Then $\left(\frac{1-q^2}{1+q^2}, \frac{2q}{1+q^2}\right) \longleftrightarrow \left(1-q^2, 2q, 1+q^2\right)$ $\longleftrightarrow \left(v^2-u^2, 2uv, v^2+u^2\right) \text{ if one out of } u,v \text{ even.}$ $v^2 \text{ or } v^2/z \mid \left(v^2-u^2, 2uv, v^2+u^2\right) \text{ if both } u,v \text{ even.}$

is the corresponding primitive Rythagorean triple. More precisely, we have shown:

Thu Every Pyth. Triple is of the form $\begin{cases} (v^2 - u^2, 2uv, v^2 + u^2) & \text{one out of } u, v \text{ even.} \\ (v^2 - u^2, uv, v^2 + u^2) & u, v \text{ both odd} \end{cases}$ for a unique pair $u \in \mathbb{Z}$, $v \in \mathbb{Z}_{>0}$, (u, v) = 1.

Quertion: This is indeed a pretty result, but how it related to our course?	8
Consider the general situation of $f_1, -, f_m \in R[T_1, -, f_m]$	Tn]
again for a moment. Let A = R[T_1,, T_n]/	

/(/1, fm) Then we have seen that

Howel-alg
$$(A, B) \xrightarrow{\sim} X(B)$$
 $(*)$

$$((Y(T_n), -, Y(T_n))$$

In other words, the R-algebra A fully encodes the System of equations $f_n(x_{12}, x_n) = \dots = f_m(x_{12}, x_m) = 0$

Proof of (*) Cousides the siduation

He exists $\Leftrightarrow (f_i) = f_i(x_n, x_n) = 0 \quad \forall j = 1, -, m \prod$

For our Fyth, Triples, we wanted to compute Homa-alg $(Q(X,Y, \frac{1}{X+1})/(X^2+Y^2-1))$, Q)

Prop 3 (Juproves Prop 2) Let $R = 2[\frac{1}{2}]$. There is an isomorphism of R-algebras

 $R[X,Y,\frac{1}{X+1}]/(x^2+Y^2-1) \cong R[q,\frac{1}{1+q^2}]$

given by $X \mapsto \frac{1-q^2}{1+q^2}, Y \mapsto \frac{2q}{1+q^2}$.

The inverse map is given by $q \leftrightarrow \frac{y}{x+1}$.

Proof The formulas give the following <u>diagonal</u> maps:

We need to show they factor over the quotient and/or localization:

$$\chi^2 + \chi^2 - 1 \longrightarrow \frac{(1-q^2)^2 + 4q^2}{(1+q^2)^2} - 1 = 0$$

$$X+1 \mapsto \frac{1-q^2}{1+q^2} + 1 = \frac{1-q^2+1+q^2}{1+q^2} = \frac{2}{1+q^2}$$
This element her in $\mathbb{Z}[\frac{1}{2}, q, \frac{1}{q^2+1}]^{\times}$ so we have shown that $\mathbb{Z}[\frac{1}{2}, q, \frac{1}{q^2+1}]^{\times} + \mathbb{Z}[\frac{1}{2}, q, \frac{1}{q^2+1}]^{\times}$

$$q^2 + 1$$
 \longleftrightarrow $\left(\frac{y}{x+1}\right)^2 + 1 = \frac{y^2 + x^2 + 2x + 1}{(x+1)^2}$

$$= 2 \cdot \frac{X+1}{(X+1)^2} = \frac{2}{X+1}.$$

Since $x^2 + y^2 = 1$

This element her in $\mathbb{Z}\left[\frac{1}{2}, X, Y, \frac{1}{X+1}\right]/(X^2+Y^2-1)$, so we have shown that \mathbb{Y} exists.

One can now check directly that I and I are muchal inverses.

$$q \mapsto \left(\frac{1-q^2}{1+q^2}, \frac{2q}{1+q^2}\right).$$

- I want to mention a favour, and favourly difficult results in this context.
- Thun (Fernal's Last Theorem, Andrew Wiles 1994)

 Assume that nz3. There is no hiple $(x,y,t) \in \mathbb{Q}^3$ with $xyz \neq 0$ s. Hr. x'' + y'' = z''.
- ·) The condition $xyz \neq 0$ excludes the obvious solutions $x^n + 0^n = x^n$, $0^n + y^n = y^n$ etc.
- ·) Fernat stated this "erult" in 1637 and it has motivated generation of mathematicians since them.
- I highly recommend to have a look at its Wikipedia article.

§ 2 The Spectrum, sensited

Question: OK, thus is all interesting. But why did we spend so much him studying the spectrum?

Short Answer: The spectrum parametrizer solutions of the given equations in feld extensions.

Recall the setting from before:

- ·) R my, fis-, fin & R[Tis-, Tin]
- ·) A = R[T1, -, Tn]/(f1, -, fm)
- .) For B on R-algebra

X(B) = \(\(\chi_{1},-,\chi_{n}\)\(\in\)\(\frac{1}{2}(\chi_{1},-,\chi_{n})=0\)\(\frac{1}{2}(\chi_{1},-,\chi_{n})=0\)\(\frac{1}{2}(\chi_{1},-,\chi_{n})=0\)\(\frac{1}{2}(\chi_{1},-,\chi_{n})=0\)

Now consider an R-algebra $R \Omega$ that is a field. Given $X = (X_n - X_n) \in X(\Omega)$, let $P_x : A \Omega$ be the corresponding R-alg. homomorphism. Then $\ker(P_x)$ is a prime ideal and P_x induces a map $P_x : Out(A/\ker(P_x)) \Omega$

33 A concrete realization

We will soon prove the following theorem:

Thun (Hilbert's Nullstelleusake) Every movimal ideal of $\mathbb{C}[X_1, -, X_n]$ has the form $M_X = (X_1 - x_1, -, X_n - x_n)$ for a migul hiple $x = (x_1, -, x_n) \in \mathbb{C}^n$.

Consider now a map of polynomial map $h: C[Y_n, _, Y_m] \longrightarrow C[X_n, _, X_n]$ $Y_j \longmapsto f_j(X_n -, X_n) \quad j=1, _, m$

Prop 5 The following diagram commutes: (f₁(x), -, f_m(x)) C^m ~ Max Spec C[Y₁, -, Y_m] y --- My Proof Let $M_{X} = (X_1 - x_1, \dots, X_n - x_n) \subseteq \mathbb{C}[X_1, \dots, X_n].$ This ideal is the kernel of $Y_{x'}$ $C[X_n > -, X_n] \longrightarrow C$ Xi + Xi. It follows that (Spec h)(mx) = h-1(mx) equals the kernel of the composition $\mathbb{C}[Y_1, -, Y_m] \xrightarrow{h} \mathbb{C}[X_1, -, X_n] \xrightarrow{\varphi_x} \mathbb{C}$ $\gamma_i \longrightarrow f_i(X_n, X_n) \longrightarrow f_i(x_n, x_n),$ ie. 15 equal to $(Y_1 - f_1(x_1, -, x_n), -, Y_m - f_m(x_1, -, x_n))$ as clouded in the proposition.

The significance of Hilbert's Willstellensake and Prop 5 is that it allows to browslate all statements about polynomial maps and systems of polynomial equat. into commutative algebra.