Fundamentals of Machine Learning for Predictive Data Analytics

Chapter 3: Data Exploration Sections 3.1, 3.2, 3.3, 3.4

John Kelleher and Brian Mac Namee and Aoife D'Arcy

john.d.kelleher@dit.ie

brian.macnamee@ucd.ie

aoife@theanalyticsstore.com

- The Data Quality Report
 - Case Study: Motor Insurance Fraud
- Getting To Know The Data
 - Case Study: Motor Insurance Fraud
- Identifying Data Quality Issues
 - Case Study: Motor Insurance Fraud
- Handling Data Quality Issues
 - Handling Missing Values
 - Handling Outliers
 - Case Study: Motor Insurance Fraud
- Summary

The Data Quality Report

- A data quality report includes tabular reports that describe the characteristics of each feature in an ABT using standard statistical measures of central tendency and variation.
- The tabular reports are accompanied by data visualizations:
 - A histogram for each continuous feature in an ABT.
 - A bar plot for each categorical feature in an ABT.

Table: The structures of the tables included in a data quality report to describe (a) continuous features and (b) categorical features.

(a) Continuous Features

Feature	Count	% Miss.	Card.	Min.	1 st Qrt.	Mean	Median	3 rd Qrt.	Max.	Std. Dev.

(b) Categorical Features

Feature	Count	% Miss.	Card.	Mode	Mode Freq.	Mode %	2 nd Mode	2 nd Mode Freq.	2 nd Mode %

The following slides show a portion of the ABT that has been developed for the motor insurance claims fraud detection.

A portion of the ABT developed for this solution is shown first.

Table: Portions of the ABT for the motor insurance claims fraud detection problem.

								Ŧ		Num	%	CLAIM	F
	_		MARITAL	Num	Injury	HOSPITAL	CLAIM	TOTAL	Num	SOFT	SOFT	AMT	FRAU
ID	TYPE	Inc.	STATUS	CLMNTS.	TYPE	STAY	AMNT.	CLAIMED	CLAIMS	Tiss.	TISS.	Rcvd.	FLAG
1	CI	0		2	Soft Tissue	No	1,625	3250	2	2	1.0	0	1
2	CI	0		2	Back	Yes	15,028	60,112	1		0	15,028	0
3	CI	54,613	Married	1	Broken Limb	No	-99,999	0	0	0	0	572	0
4	CI	0		4	Broken Limb	Yes	5,097	11,661	1	1	1.0	7,864	0
5	CI	0		4	Soft Tissue	No	8869	0	0	0	0	0	1
6	CI	0		1	Broken Limb	Yes	17,480	0	0	0	0	17,480	0
7	CI	52,567	Single	3	Broken Limb	No	3,017	18,102	2	1	0.5	0	1
8	CI	0		2	Back	Yes	7463	0	0	0	0	7,463	0
9	CI	0		1	Soft Tissue	No	2,067	0	0	0	0	2,067	0
10	CI	42,300	Married	4	Back	No	2,260	0	0	0	0	2,260	0
		:				:					:		
300	CI	0		2	Broken Limb	No .	2.244	0	0	0	0	2.244	0
301	CI	0		1	Broken Limb	No	1.627	92.283	3	Ö	Ö	1.627	ő
302	ČÍ	0		3	Serious	Yes	270,200	0 0	0	ő	0	270,200	0
303	CI	0		1	Soft Tissue	No	7.668	92.806	3	0	0	7.668	Ö
304	ČÍ	46.365	Married	i	Back	No	3,217	92,000	0	U	0	1.653	0
304	01	40,505	Married		Dack	140	5,217				· ·	1,000	·
		:									- 1		
458	CI	48,176	Married	3	Soft Tissue	Yes	4,653	8,203	1	0	0	4,653	0
459	CI	0		1	Soft Tissue	Yes	881	51,245	3	0	0	0	1
460	CI	0		3	Back	No	8,688	729,792	56	5	0.08	8,688	0
461	CI	47,371	Divorced	1	Broken Limb	Yes	3,194	11,668	1	0	0	3,194	0
462	CI	0		1	Soft Tissue	No	6,821	0	0	0	0	0	1
		:				:					:		
491	CI	40,204	Single	1	Back	No .	75,748	11,116	1	0	0	0	1
492	CI	0	9 -	1	Broken Limb	No	6,172	6,041	1		0	6,172	0
493	ĊI	0		1	Soft Tissue	Yes	2,569	20.055	1	0	Ó	2.569	0
494	či	31.951	Married	1	Broken Limb	No	5.227	22,095	1	ō	ō	5.227	ō
495	ĊI	0		2	Back	No	3.813	9.882	3	0	Ó	0	1
496	či	ő		1	Soft Tissue	No	2.118	0,002	ő	ŏ	ő	ő	i
497	ČÍ	29.280	Married	4	Broken Limb	Yes	3,199	ō	ō	ō	ō	0	1
498	či	0		i	Broken Limb	Yes	32,469	ő	ő	ŏ	ő	16.763	ò
499	CI	46.683	Married	i	Broken Limb	No	179,448	ő	Ö	-	0	179,448	ő
500	ČÍ	10,000	· ····································	i	Broken Limb	No	8,259	0	Ö	0	0	0	1

Table: A data quality report for the motor insurance claims fraud detection ABT

(a) Continuous Features

		%			1 st			3 rd		Std.
Feature	Count	Miss.	Card.	Min	Qrt.	Mean	Median	Qrt.	Max	Dev.
INCOME	500	0.0	171	0.0	0.0	13,740.0	0.0	33,918.5	71,284.0	20,081.5
NUM CLAIMANTS	500	0.0	4	1.0	1.0	1.9	2	3.0	4.0	1.0
CLAIM AMOUNT	500	0.0	493	-99,999	3,322.3	16,373.2	5,663.0	12,245.5	270,200.0	29,426.3
TOTAL CLAIMED	500	0.0	235	0.0	0.0	9,597.2	0.0	11,282.8	729,792.0	35,655.7
NUM CLAIMS	500	0.0	7	0.0	0.0	8.0	0.0	1.0	56.0	2.7
NUM SOFT TISSUE	500	2.0	6	0.0	0.0	0.2	0.0	0.0	5.0	0.6
% SOFT TISSUE	500	0.0	9	0.0	0.0	0.2	0.0	0.0	2.0	0.4
AMOUNT RECEIVED	500	0.0	329	0.0	0.0	13,051.9	3,253.5	8,191.8	295,303.0	30,547.2
FRAUD FLAG	500	0.0	2	0.0	0.0	0.3	0.0	1.0	1.0	0.5

Table: A data quality report for the motor insurance claims fraud detection ABT.

(a) Categorical Features

			(4)	atogooa	0 01.0	-			
								2 nd	2 nd
		%			Mode	Mode	2 nd	Mode	Mode
Feature	Count	Miss.	Card.	Mode	Freq.	%	Mode	Freq.	%
INSURANCE TYPE	500	0.0	1	CI	500	1.0	_	_	-
MARITAL STATUS	500	61.2	4	Married	99	51.0	Single	48	24.7
INJURY TYPE	500	0.0	4	Broken Limb	177	35.4	Soft Tissue	172	34.4
HOSPITAL STAY	500	0.0	2	No	354	70.8	Yes	146	29.2

Figure: Visualizations of the continuous and categorical features in the motor insurance claims fraud detection ABT in Table 2 [7].

Figure: Visualizations of the continuous and categorical features in the motor insurance claims fraud detection ABT in Table 2 ^[7].

Figure: Visualizations of the continuous and categorical features in the motor insurance claims fraud detection ABT in Table 2 ^[7].

Figure: Visualizations of the continuous and categorical features in the motor insurance claims fraud detection ABT in Table 2 ^[7].

Getting To Know The Data

- For categorical features, we should:
 - Examine the mode, 2nd mode, mode %, and 2nd mode %
 as these tell us the most common levels within these
 features and will identify if any levels dominate the dataset.
- For continuous features we should:
 - Examine the mean and standard deviation of each feature to get a sense of the central tendency and variation of the values within the dataset for the feature.
 - Examine the minimum and maximum values to understand the range that is possible for each feature.

 When we generate histograms of features there are a number of common, well understood shapes that we should look out for.

Figure: Histograms for different sets of data each of which exhibit well-known, common characteristics.

Figure: Histograms for different sets of data each of which exhibit well-known, common characteristics.

Uniform

 A uniform distribution indicates that a feature is equally likely to take a value in any of the ranges present.

Normal (Unimodal)

 Features following a normal distribution are characterized by a strong tendency towards a central value and symmetrical variation to either side of this.

Unimodal (skewed left)

Unimodal (skewed right)

 Skew is simply a tendency towards very high (right skew) or very low (left skew) values.

Exponential

 In a feature following an exponential distribution the likelihood of occurrence of a small number of low values is very high, but sharply diminishes as values increase.

Multimodal

 A feature characterized by a multimodal distribution has two or more very commonly occurring ranges of values that are clearly separated. The probability density function for the normal distribution (or Gaussian distribution) is

$$N(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(1)

where x is any value, and μ and σ are parameters that define the shape of the distribution: the **population mean** and **population standard deviation**.

Figure: Three normal distributions with different means but identical standard deviations.

Figure: Three normal distributions with identical means but different standard deviations.

- The 68 95 99.7 rule is a useful characteristic of the normal distribution.
- The rule states that approximately:
 - 68% of the observations will be within one σ of μ
 - 95% of observations will be within two σ of μ
 - 99.7% of observations will be within three σ of μ .

Figure: An illustration of the 68-95-99.7 percentage rule that a normal distribution defines as the expected distribution of observations. The grey region defines the area where 95% of observations are expected.

Case Study: Motor Insurance Fraud

Examine the data quality report for the motor insurance fraud prediction scenario and comment on the central tendency and variation of each feature.

Identifying Data Quality Issues

- A data quality issue is loosely defined as anything unusual about the data in an ABT.
- The most common data quality issues are:
 - missing values
 - irregular cardinality
 - outliers

- The data quality issues we identify from a data quality report will be of two types:
 - Data quality issues due to invalid data.
 - Data quality issues due to valid data.

Table: The structure of a data quality plan.

Feature	Data Quality Issue	Potential Handling Strategies
		

Table: The data quality plan for the motor insurance fraud prediction ABT.

Feature	Data Quality Issue	Potential Handling Strategies
Num Soft Tissue	Missing values (2%)	
CLAIM AMOUNT	Outliers (high)	
AMOUNT RECEIVED	Outliers (high)	

Handling Data Quality Issues

Handling Missing Values

- Approach 1: Drop any features that have missing value.
- Approach 2: Apply complete case analysis.
- Approach 3: Derive a missing indicator feature from features with missing value.

- Imputation replaces missing feature values with a plausible estimated value based on the feature values that are present.
- The most common approach to imputation is to replace missing values for a feature with a measure of the central tendency of that feature.
- We would be reluctant to use imputation on features missing in excess of 30% of their values and would strongly recommend against the use of imputation on features missing in excess of 50% of their values.

 The easiest way to handle outliers is to use a clamp transformation that clamps all values above an upper threshold and below a lower threshold to these threshold values, thus removing the offending outliers

$$a_{i} = \begin{cases} lower & \text{if } a_{i} < lower \\ upper & \text{if } a_{i} > upper \\ a_{i} & otherwise \end{cases}$$
 (2)

where a_i is a specific value of feature a, and *lower* and *upper* are the lower and upper thresholds.

Case Study: Motor Insurance Fraud

What handling strategies would you recommend for the data quality issues found in the motor Insurance fraud ABT?

Table: The data quality plan for the motor insurance fraud prediction ABT.

Feature	Data Quality Issue	Potential Handling Strategies
Num Soft Tissue	Missing values (2%)	Imputation
		(median: 0.0)
CLAIM AMOUNT	Outliers (high)	Clamp transformation
		(manual: 0, 80 000)
AMOUNT RECEIVED	Outliers (high)	Clamp transformation
		(manual: 0, 80 000)
-		

Summary

- The key outcomes of the data exploration process are that the practitioner should
 - Have *gotten to know* the features within the ABT, especially their central tendencies, variations, and **distributions**.
 - Have identified any data quality issues within the ABT, in particular missing values, irregular cardinality, and outliers.
 - Have corrected any data quality issues due to invalid data.
 - 4 Have recorded any data quality issues due to valid data in a data quality plan along with potential handling strategies.
 - Be confident that enough good quality data exists to continue with a project.

- The Data Quality Report
 - Case Study: Motor Insurance Fraud
- Getting To Know The Data
 - Case Study: Motor Insurance Fraud
- Identifying Data Quality Issues
 - Case Study: Motor Insurance Fraud
- Handling Data Quality Issues
 - Handling Missing Values
 - Handling Outliers
 - Case Study: Motor Insurance Fraud
- Summary