La phylogénie des images dans les réseaux sociaux

Noé LE PHILIPPE

Équipe ICAR - William Puech

13 juin 2016

Sommaire

- Introduction
- 2 État de l'art
- 3 Notre approche
- 4 Résultats
- Conclusion

Le sujet de stage

Le sujet

La phylogénie des images dans les réseaux sociaux

Définition

"La phylogenèse ou phylogénie est l'étude des relations de parenté entre êtres vivants." — Wikipedia

Les applications

Réduire le nombre de versions de la même image pour optimiser l'espace de stockage

Suivre l'évolution et la diffusion d'images sur les réseaux sociaux

Détecter l'altération d'images

Définitions

Near-Duplicate Image (NDI)

Une image I_n est le near-duplicate [1] d'une image I_m si :

$$I_n = T(I_m), T \in \mathcal{T}$$

où ${\mathcal T}$ est un ensemble de transformations autorisées

Dans le cas général,

$$\mathcal{T} = \{\textit{resampling}, \textit{cropping}, \textit{affine warping}, \\ \textit{color changing}, \textit{lossy compression}\}$$

mais dans le cadre du stage, $\mathcal{T} = \{lossy\ compression\}$

1. joly2007content.

Définitions

Image Phylogeny Tree (IPT)

C'est l'arbre retraçant la parenté des images

Image phylogeny tree

Deux parties importantes lors de la reconstruction de l'arbre phylogénétique :

Correctement identifier la racine

 Estimer au mieux l'arborescence

Sommaire

- Introduction
- 2 État de l'art
- 3 Notre approche
- 4 Résultats
- Conclusion

Estimation de l'arbre de phylogenie

Visual Migration Map

- Les transformations sont directionnelles
- Relation parent-enfant si tous les détecteurs s'accordent sur la direction
- Simplification du graphe par sélection des plus longs chemins

[2]

Estimation de l'arbre de phylogénie

Image phylogeny tree

- Calcul d'une dissimilarity matrix
- Calcul d'un arbre couvrant de poids min (Kruskal ou autre)

[3] [4]

^{3.} dias2010first.

^{4.} dias2012image.

Convergence des blocs lors de compressions successives

But

Compter le nombre de compressions

3 types de blocs

- Les blocs plats
- Les blocs stables
- Les blocs cycliques

Comment?

plus petit commun multiple de la longueur des cycles

[5]

CarneinSB2016TelltaleWatermarks.

Convergence des blocs lors de compressions successives

Utilisation des blocs

- Les blocs de l'image
- Insérer des blocs

Les inconvénients

- Nécessite du padding
- Limité à la même table de quantification
- Résultats moyens pour Q < 100

Estimation de la matrice de compression primaire

Analyse des valeurs manquantes de l'histogramme

Artefacts distincts pour $Q^1 > Q^2$ et $Q^1 < Q^2$

Limites

- $Q^1 = Q^2$
- Q^1 est facteur de Q^2

Estimation de la matrice de compression primaire

Principe de leur méthode

Comparer l'histogramme de l'image originale et l'histogramme des images compressées avec des tables de quantification modèles puis compressées avec Q^2 et enfin garder la table pour laquelle la différence entre histogramme est la plus faible

Sommaire

- Introduction
- 2 État de l'art
- 3 Notre approche
- 4 Résultats
- Conclusion

Matrice de parenté

Matrice binaire de taille $n \times n$

Construction de l'arbre à partir de la matrice

(0)	Arbro	do	phyl	ogénie

-	I_0	I_1	I_2	I_3	I_4
I_0	-	0	0	0	0
I_1	0	-	0	1	1
I_2	1	1	-	1	1
I_3	0	0	0	-	0
I_A	0	0	0	0	_

(b) Matrice de parenté

Notre approche

Marqueur

Caractéristique de l'image qui indique qu'une certaine opération a été effectuée et qui va se transmettre aux enfants

Fonction de négation

 $f(I_m, I_n)$ est une fonction qui pour tout couple d'images (I_m, I_n) détecte à chaque fois qu'il est présent un marqueur visible dans une image et pas dans l'autre, et donc prouve qu'il n'y a pas de relation de parenté entre I_m et I_n .

Théorème

Pour tout couple d'images (I_m, I_n) d'un ensemble de near-duplicates, s'il n'existe pas de marqueur prouvant que I_m n'est pas le parent de I_n , alors il y a une relation parent-enfant entre I_m et $I_n, I_m \to I_n$.

Schéma de notre approche

Points clés de notre approche

Réduction d'un problème de reconstruction d'un arbre de phylogénie à un problème de négation de parenté

Facilement extensible

Les marqueurs : facteur de qualité

Estimation du facteur de qualité

Les marqueurs : valeurs manquantes dans l'histogramme des coefficients DCT

Les coefficients sont des multiples des valeurs de la table de quantification

Image simplement compressée

Image doublement compressée, $Q_1 > Q_2$

Sommaire

- Introduction
- 2 État de l'art
- 3 Notre approche
- 4 Résultats
- Conclusion

Des résultats mitigés

Détection du parent direct très fiable

Mauvaise détection des parents éloignés

Arbre incomplet dans le cas d'images manquantes

Sommaire

- Introduction
- 2 État de l'art
- 3 Notre approche
- 4 Résultats
- Conclusion

Conclusion - perspectives

Une méthode prometteuse

Trouver d'autres marqueurs

Traiter tous les cas de la compression JPEG

Ne pas se limiter à la compression

Conclusion - perspectives

Des questions?