What is claimed is:

2

3

4

organic layer.

1	 A liquid crystal display with an integrated
2	color filter, comprising:
3	an active matrix substrate with a plurality of
4	switching elements;
5	an insulating layer formed on the active matrix
6	substrate;
7	a double-organic layer formed on the insulating
8	layer;
9	a plurality of pixel electrodes formed on the
10	double-organic layer, and electrically
11	connected to the respective switching
12	elements via a plurality of respective
13	contact holes;
14	a substrate positioned a predetermined distance
15	above the active matrix substrate; and
16	a liquid crystal layer between the two
17	substrates.
1	2. The liquid crystal display with an integrated
2	color filter as claimed in claim 1, wherein the double-
3	organic layer comprises a plurality of color-filter units
4	and a transparent organic layer.
1	3. The liquid crystal display with an integrated

color filter as claimed in claim 2, wherein the color-

filter units layer is formed above the transparent

- 1 4. The liquid crystal display with an integrated 2 color filter as claimed in claim 2, wherein the 3 transparent organic layer is formed above the color-4 filter units layer.
- 5. The liquid crystal display with an integrated color filter as claimed in claim 2, wherein the transparent organic layer is formed of polycarbonate or acrylic-resin.
- 6. The liquid crystal display with an integrated color filter as claimed in claim 2, wherein the light transmission of the transparent organic layer is above 90%.
- 7. The liquid crystal display with an integrated color filter as claimed in claim 2, wherein the dielectric constant of the transparent organic layer is 2.6-3.6.
- 1 8. The liquid crystal display with an integrated 2 color filter as claimed in claim 2, wherein the thickness 3 of the transparent organic layer is $1.5-3.5\mu m$.

1

2

3

- 9. The liquid crystal display with an integrated color filter as claimed in claim 2, wherein the dielectric constant of the color-filter units is 3.5-5.0.
- 1 10. The liquid crystal display with an integrated color filter as claimed in claim 2, wherein the thickness of the color-filter units is $1.0-2.0\mu m$.

17

18

The liquid crystal display with an integrated 1 11. color filter as claimed in claim 2, wherein the color-2 filter units includes red, green and blue units. 3 The liquid crystal display with an integrated 1 color filter as claimed in claim 1, wherein the pixel 2 electrodes are made of indium tin oxide. 3 The liquid crystal display with an integrated 1 13. color filter as claimed in claim 1, wherein the contact 2 holes pass through the insulating layer and the double-3 organic layer. 4 An integrated color filter, comprising: 1 a substrate; 2 a plurality of switching elements formed on the 3 substrate in a matrix arrangement; 4 an insulating layer formed on the switching 5 elements; 6 a transparent organic layer formed above the 7 insulating layer; 8 a plurality of color-filter units formed above 9 the transparent organic layer; and 10 a plurality of pixel electrodes formed above 11 the color-filter units, and electrically 12 connected to the respective switching 13 elements via a plurality of respective 14 contact holes, wherein the contact holes 15 pass through the transparent organic 16

insulating layer.

layer, color-filter units and

the

1	15. An integrated color filter, comprising:
2	a substrate;
3	a plurality of switching elements formed on the
4	substrate in a matrix arrangement;
5	an insulating layer formed on the switching
6	elements;
7	a plurality of color-filter units formed above
8	the insulating layer;
9	a transparent organic layer formed above the
10	color-filter units; and
11	a plurality of pixel electrodes formed above
12	the color-filter units, and electrically
13	connected to the respective switching
14	elements via a plurality of respective
15	contact holes, wherein the contact holes
16	pass through the transparent organic
17	layer, color-filter units and the
18	insulating layer.
1	16. A method of fabricating an integrated color
. 2	filter, comprising:
3	providing a substrate;
4	forming a plurality of switching elements on
5	the substrate in a matrix arrangement;
6	forming an insulating layer on the switching
7	elements;
8	forming a transparent organic layer on the
9	switching elements, wherein the
10	transparent organic layer has a first hole

11	exposing a part of the surface of the
12	insulating layer;
13	etching the insulating layer by using the
14	transparent organic layer as an etching
15	mask to form a second hole in the
16	insulating layer, wherein the second hole
17	joins the first hole and exposes a part of
18	the surface of the switching elements;
19	forming a plurality of color-filter units with
20	a third hole on the transparent organic
21	layer, wherein the third hole forms a
22	contact hole together with the first and
23	the second holes to expose the part of the
24	surface of the switching elements; and
25	forming a plurality of pixel electrodes on the
26	color-filter units, wherein the pixel
27	electrodes are electrically connected with
28	the switching elements via the contact
29	hole.

17. The method of fabricating an integrated color filter as claimed in claim 16, wherein the transparent organic layer is made of polycarbonate or acrylic-resin.

1

2

3

1 18. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the light 3 transmission of the transparent organic layer is above 4 90%.

- 1 19. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the dielectric constant of the transparent organic layer is 2.6-3.6.
 - 1 20. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the thickness of the transparent organic layer is $1.5-3.5\mu m$.
 - 1 21. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the dielectric 3 constant of the color-filter units is 3.5-5.0.
 - 1 22. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the thickness of the color-filter units is $1.0-2.0\mu m$.
 - 1 23. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the color-filter 3 units includes red, green and blue units.
 - 1 24. The method of fabricating an integrated color 2 filter as claimed in claim 16, wherein the pixel 3 electrodes are made of indium tin oxide.
 - 1 25. A method of fabricating an integrated color
 2 filter, comprising:
 - providing a substrate;
 - forming a plurality of switching elements on the substrate in a matrix arrangement;
 - forming an insulating layer on the switching elements;

6 pr 1

1

2

3

1

2

3

4

8 forming a plurality of color-filter units with - 9 a first hole on the insulating layer; 10 forming a transparent organic layer on the color-filter units, having a second hole 11 to expose the first hole; 12 13 etching the insulating layer by using the 14 transparent organic layer as a mask, 15 forming a third hole in the insulating 16 layer to expose a part of the surface of 17 the switching elements, wherein the third 18 hole forms a contact hole together with 19 the first and the second holes; and 20 forming a plurality of pixel electrodes on the 21 transparent organic layer, wherein 22 pixel electrodes are electrically 23 connected with the switching elements via the contact hole. 24

- 26. The method of fabricating an integrated color filter as claimed in claim 25, wherein the transparent organic layer is made of polycarbonate or acrylic-resin.
- 27. The method of fabricating an integrated color filter as claimed in claim 25, wherein the light transmission of the transparent organic layer is above 90%.
- 1 28. The method of fabricating an integrated color 2 filter as claimed in claim 25, wherein the dielectric 3 constant of the transparent organic layer is 2.6-3.6.

- 29. The method of fabricating an integrated color filter as claimed in claim 25, wherein the thickness of the transparent organic layer is $1.5-3.5\mu m$.
 - 1 30. The method of fabricating an integrated color 2 filter as claimed in claim 25, wherein the dielectric 3 constant of the color-filter units is 3.5-5.0.
 - 31. The method of fabricating an integrated color filter as claimed in claim 25, wherein the thickness of the color-filter units is $1.0-2.0\mu m$.
 - 1 32. The method of fabricating an integrated color 2 filter as claimed in claim 25, wherein the color-filter 3 units includes red, green and blue units.
 - 1 33. The method of fabricating an integrated color 2 filter as claimed in claim 25, wherein the pixel 3 electrodes are made of indium tin oxide.