

Introduction to MATLAB for Math Modeling

MATLAB® provides many functions for implementing and analyzing mathematical models. The reference table below highlights a few core functions suitable for math modeling.

Quick Reference

Function	Example usage	Description	Doc
:	years = 5:10	Create a linearly spaced row vector: years = [5,6,7,8,9,10]	>>
for	<pre>for year = 5:10 % body code end</pre>	Executes "% body code" six times with year = 5 in the first execution	>>
()	years(3)	Extract the third element in years: 7	>>
zeros	pop = zeros(1,6)	Create an array of 0's with 6 columns: pop = [0,0,0,0,0,0]	>>
plot	plot(years,pop,'o')	Plot pop against years with circles	>>
*	years.*pop	Elementwise multiplication	>>
readtable	<pre>data = readtable('catPop.xlsx')</pre>	Load data from Excel file 'catPop.xlsx' into a table	>>
log	rc = log(1+rd)	Compute the natural log of 1+rd	>>
fit	<pre>popFit = fit(years,pop,'exp1')</pre>	Fit an exponential curve	>>
linspace	t = linspace(0,7,100);	Create an evenly spaced vector starting at 0 and ending at 7 with 100 elements	>>
@()	dgdt = @(t,g) g*cos(t)	Create an anonymous function	>>
	dgdt(pi,3)	Evaluate an anonymous function. Here: dgdt(pi,3) = -3	
ode45	[t,g] = ode45(dgdt, [0,10], -1)	Numerically solve $dg/dt = g*cos(t)$ on the interval [0,10] with $g(0) = -1$	>>

There's a lot more MATLAB out there to discover. Interested in learning more?

- MATLAB Onramp a free online training
- Getting Started with MATLAB a 10-minute introductory video
- <u>Teaching Science with MATLAB</u> Resources for educators teaching with MATLAB