Assignment Math45-Module-11-Exercises due 10/22/2020 at 11:59pm PDT

Which of the following best describes the purpose of 'reduction of order'?

- A. Given one solution of a 2nd-order homogeneous linear differential equation, find another (linearly independent) solution.
- B. Given two solutions of a 2nd-order homogeneous linear differential equation, determine whether they are linearly indepedndent.
- C. Determine whether a linear differential eqution is homogeneous or nonhomogeneous.

Solution:

SOLUTION:

The correct answer is A.

Correct Answers:

A

2. (1 point)

Consider the differential equation y'' - y = 0, and suppose we know that $y_1 = e^x$ is a solution.

(a) For our differential equation, what is the function P(x) with it in the form y'' + P(x)y' + Q(x)y = 0? [Choose/0/1/-1]

Generated by © WeBWorK, http://webwork.maa.org, Mathematical Association of America

(b) Plugging in P and y_1 into $y_1 \int \frac{e^{-\int Pdx}}{(y_1)^2} dx$ gives (after manipulating the constant) [Choose/A/B/C], where

B.
$$e^x \int \frac{e^{-\int e^x dx}}{e^{x^2}} dx$$
 C. $e^x \int \frac{c_1}{e^{2x}} dx$

C.
$$e^x \int \frac{c_1}{e^{2x}} dx$$

(c) Solving the integral from part (b) gives (after manipulating the constant) [Choose/A/B/C], where

B.
$$c_1 e^{-x} + c_2 e^x$$

$$C. e^{-x}$$

(d) We deduce that the second solution can be taken to be [Choose/A/B/C], where

$$B.y_2 = xe^{-x}$$

$$B.y_2 = xe^x$$
 $C. y_2 = e^{-x}$

Solution:

SOLUTION:

The answers are 0, C, B, and C, respectivily. Correct Answers:

- 0
- C
- B
- C

3. (1 point)

Enter a value for π

Correct Answers:

• 3.14159