Aufgabe 1 (Herbst 1996). Man zeige für das Polynom $f = X^4 - X + 1 \in \mathbb{Z}[X]$:

- (a) f hat keine reelle Nullstelle.
- (b) f ist irreduzibel über \mathbb{Q} .
- (c) Ist u + iv (mit $u, v \in \mathbb{R}$ eine Nullstelle von f in \mathbb{C} , so ist $g = X^3 4X 1$ das Minimalpolynom von $4u^2$ über \mathbb{Q} .
- (d) Die Galoisgruppe von f über \mathbb{Q} besitzt ein Element der Ordnung 3.
- (e) Keine Nullstelle $a \in \mathbb{C}$ von f ist, als Punkt der Zahlenebene, aus den Punkten 0 und 1 mit Zirkel und Lineal konstruierter.

Lösung. Zu (a): Für alle $a \in \mathbb{R}$ ist f(a) > 0. Dies sieht man folgendermaßen. Für $a \leq 0$ ist sowohl $a^4 \geq 0$, als auch $-a \geq 0$. Also

$$a^4 - a + 1 \ge 1$$
.

Für $a \ge 1$ ist $a^4 \ge a$, also $a^4 - a \ge 0$, also

$$a^4 - a + 1 \ge 1$$
.

Für 0 < a < 1 ist sowohl $a^4 \ge 0$, also auch $1 - a \ge 0$. Also

$$a^4 - a + 1 \ge 0.$$

Also hat f keine reellen Nullstellen.

Zu (b): Wir wenden das Reduktionskriterium modulo 2 an:

$$f \mod 2 = X^4 + X + 1 \in \mathbb{F}_2[X]$$

hat keine Nullstellen in \mathbb{F}_2 , spaltet also keine Linearfaktoren ab. Angenommen $X^4 + X + 1$ zerfiele über \mathbb{F}_2 in quadratische Faktoren

$$X^{4} + X + 1 = (X^{2} + aX + b)(X^{2} + cX + d) = X^{4} + (a + c)X^{3} + (d + ac + b)X^{2} + (ad + bc)X + bd.$$

Wegen der Eindeutigkeit der Koeffizienten eines Polynoms ist also

$$1 = bd$$
 folglich $b = d = 1$
 $0 = d + ac + b = ac$ folglich $a = 0$ oder $c = 0$
 $0 = a + c = 0$ folglich $a = c = 0$
 $1 = ad + bc = 0$ ein Widerspruch.

Also ist $X^4 + X + 1 \in \mathbb{F}_2[X]$ irreduzibel. Nach dem Reduktionskriterium ist $f = X^4 - X + 1 \in \mathbb{Z}[X]$ irreduzibel, also ist es auch irreduzibel über \mathbb{Q} (nach dem Satz von Gauß).

Zu (c): Die kubische Resolvente eines Polynoms $X^4 + pX^2 + qX + r$ ist gegeben durch $g = X^3 - pX^2 - 4rX + 4pr - q^2$. In unserem Fall ist p = 0, q = -1 und r = 1. Demnacht ist die kubische Resolvente des Polynoms $f = X^4 - X + 1$ gegeben durch

$$g = X^3 - 4X - 1.$$

Dies ist das Polynom aus der Angabe. Wir bestimmen nun eine Nullstelle davon. Seien a_1, a_2, a_3, a_4 die Nullstellen von f. Nach (a) sind diese echt komplex. Sie müssen paarweise konjugiert sein. Ohne Einschränkung nehmne wir an, daß $a_2 = \overline{a}_1$ und $a_4 = \overline{a}_3$. Mit ihnen kann man die Nullstellen von g ausdrücken als

$$\alpha = a_1 a_2 + a_3 a_4$$
$$\beta = a_1 a_3 + a_2 a_4$$

$$\gamma = a_1 a_4 + a_2 a_3$$

Es gilt

$$f = X^{4} - X + 1 = (X - a_{1})(X - a_{2})(X - a_{3})(X - a_{4})$$

$$= X^{4} - (a_{1} + a_{2} + a_{3} + a_{4})X^{3} + (a_{1}a_{2} + a_{1}a_{3} + a_{1}a_{4} + a_{2}a_{3} + a_{2}a_{4} + a_{3}a_{4})X^{2} +$$

$$- (a_{1}a_{2}a_{3} + a_{1}a_{2}a_{4} + a_{1}a_{3}a_{4} + a_{2}a_{3}a_{4})X + a_{1}a_{2}a_{3}a_{4}$$

Also muß

$$1 = a_1 a_2 a_3 a_4$$

$$1 = a_1 a_2 a_3 + a_1 a_2 a_4 + a_1 a_3 a_4 + a_2 a_3 a_4$$

$$0 = a_1 a_2 + a_1 a_3 + a_1 a_4 + a_2 a_3 + a_2 a_4 + a_3 a_4 = \alpha + \beta + \gamma$$

$$0 = a_1 + a_2 + a_3 + a_4$$

Aus der letzten Gleichung folgt

$$0 = a_1 + \overline{a}_1 + a_3 + \overline{a}_3 = 2u_1 + 2u_3$$

wobei u_1, u_3 jeweils die Realteile sind. Also $u_3 = -u_1$. Es ist nun

$$4u_1^2 = 4u_3^2 = (a_1 + \overline{a}_1)^2$$

$$= -(a_1 + \overline{a}_1)(a_3 + \overline{a}_3)$$

$$= -(a_1 + a_2)(a_3 + a_4)$$

$$= -(a_1a_3 + a_1a_4 + a_2a_3 + a_2a_4)$$

$$= a_1a_2 + a_3a_4 = \alpha$$

Es bleibt zu zeigen, daß g irreduzibel ist. Wir überlegen uns, daß g keine Nullstellen in $\mathbb Q$ hat. Fur eine solche $x=\frac{r}{s}\in\mathbb Q$, r,s teilerfremd, würde der Zähler r den konstanten Koeffizienten teilen, und der Nenner s den höchsten Koeffizienten. Beide sind 1, also kommt für x nur ± 1 in Frage. Aber dies sind keine Nullstellen von g, und damit ist g irreduzibel. Dies zeigt die Behauptung.

Zu (d): Sei $E = \mathbb{Q}(\alpha, \beta, \gamma)$ der Zerfällungskörper der kubischen Resolvente g. Dies ist eine Galoiserweiterung und es gilt $\operatorname{Gal}(g/\mathbb{Q}) = \operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(f/\mathbb{Q})/N$, wobei $N \triangleleft \operatorname{Gal}(f/\mathbb{Q})$ das Urbild der Klein'schen VIerergruppe unter der Injektion $\varphi : \operatorname{Gal}(f/\mathbb{Q}) \hookrightarrow \mathfrak{S}_4$ ist. Es gilt $[E : \mathbb{Q}] = [\operatorname{Gal}(f/\mathbb{Q}) : N] = |\operatorname{Gal}(g/\mathbb{Q})|$. Da g irreduzibel, normiert und separabel vom Grad 3 über \mathbb{Q} ist, gilt

$$3|\operatorname{Gal}(g/\mathbb{Q})|3! = 6.$$

Also ist $[\operatorname{Gal}(f/\mathbb{Q}): N] \in \{3, \}$ 6. Es folgt, daß $3 \mid |\operatorname{Gal}(f/\mathbb{Q})|$. (Genauer $\operatorname{Gal}(f/\mathbb{Q}) \cong \mathfrak{S}_4$ oder $\operatorname{Gal}(f/\mathbb{Q}) \cong A_4$.) Da 3 prim ist, enthält $\operatorname{Gal}(f/\mathbb{Q})$ ein Element der Ordnung 3.

Zu (e): Sei $a \in \mathbb{C}$ eine Nullstelle des irreduziblen Polynoms $f \in \mathbb{Q}[X]$, also ist insbesondere f das Minimalpolynom von a über \mathbb{Q} . Wäre a aus $\{0,1\}$ mit Zirkel und Lineal konstruierbar, so wäre die Galoisgruppe $\operatorname{Gal}(f/\mathbb{Q})$ eine Zweigruppe, also $|\operatorname{Gal}(f/\mathbb{Q})| = 2^t$. Wir haben jedoch bereits in (d) gezeigt, daß $3||\operatorname{Gal}(f/\mathbb{Q})|$. Somit ist a nicht konstruierbar.

Aufgabe 2 (Frühjahr 1995). Sei F/K eine nichttriviale endliche Galoiserweiterung mit auflösbarer Galoisgruppe. Zeigen Sie, daß es einen Zwischenkörper $K \subset E \subset F$ gibt, so daß E/K Galois'sch mit abelscher Galoisgruppe ist.

Lösung. Sei G = Gal(F/K). Nach Vorraussetzung ist G auflösbar, sie besitzt also eine Normalreihe mit abelschen Faktoren, das heißt eine Folge von Untergruppen

$$G = H_0 \supset H_1 \supset \ldots \supset H_m = \{e\},\$$

 $m \geqslant 0,$ so daß $H_{i+1} \triangleleft H_i$ und H_i/H_{i+1} abelsch ist für $0 \leqslant i < m.$

Insbesondere ist H_1 ein Normalteiler in G. Definiere nun $E:=\operatorname{Fix}_F(H_1)$. Dies ist der nach dem Hauptsatz der Galoistheorie zu H_1 korrespondierende Zwischenkörper, F/E ist Galois'sch und $\operatorname{Gal}(F/E)=H_1\subset G$. Da aber H_1 Normalteiler von G ist, ist nach dem zweiten Teil des Hauptsatzes der Galoistheorie auch E/K Galois'sch mit Galoisgruppe $\operatorname{Gal}(E/K)\cong G/H_1$. Nach Voraussetzung ist $G=H_0$ und H_0/H_1 abelsch. Damit ist $\operatorname{Gal}(E/K)$ abelsch, und E/K abelsche Galoiserweiterung, wie gewünscht

Aufgabe 3 (Herbst 1999). Die Antworten auf folgende Fragen sind mit einer kurzen Begründung zu versehen:

- (a) Gibt es ein irreduzibles Polynom aus $\mathbb{Q}[X]$, das in \mathbb{C} eine doppelte Nullstelle hat?
- (b) Gibt es ein irreduzibles Polynom aus K[X], das in einem Erweiterungskörper von K eine doppelte Nullstelle besitzt, wenn K ein endlicher Körper ist?
- (c) Geben Sie einen Körper K an und ein irreduzibles Polynom aus K[X], das im algebraischen Abschluß von K eine doppelte Nullstelle besitzt.
- (d) Geben Sie einen Körper K und ein Polynom fünften Grades aus K[X] an, das nicht durch Radikale auflösbar ist.
- Lösung. Zu (a): Nein: da der Körper $\mathbb Q$ Charakteristik 0 hat ist er vollkommen, also ist jedes irreduzible Polynom in $\mathbb Q[X]$ separabel, das heißt es hat in jedem Zerfällungskörper, und damit auch in $\mathbb C$ nur einfache Nullstellen.
- Zu (b): Nein: endliche Körper sind vollkommen, also ist jedes Polynom über einem solchen separabel.
- **Zu** (c): Sei $K = \mathbb{Z}/(2)(X)$, $f = Y^2 + X \in K[Y]$. Dann ist f irreduzibel, denn f ist irreduzibel in $\mathbb{Z}/(2)[X][Y]$ nach Eisenstein. Es gibt eine Erweiterung $K \subset L = K(y)$ vom Grad 2 mit $0 = f(y) = y^2 + X$, also $y^2 = X$ über $\mathbb{Z}/(2)$ und es gilt

$$(Y + y)^2 = Y^2 + 2Yy + y^2 = Y^2 + y^2 = Y^2 + X = f.$$

Zu (d): Sei K ein Körper und $f \in K[X]$ ein separables Polynom. Wenn die Galoisgruppe G(f) eine zu einer der Gruppen $A_n, n \geqslant 5$, isomorphen Untergruppe enthält, dann ist die Gleichung f = 0 nicht durch Radikale auflösbar. Der Grund: die $A_n, n \geqslant 5$, sind nicht auflösbar.

Ist insbesondere $F = X^n + U_1 X^{n-1} + \ldots + U_{n-1} X + U_n \in K(U_1, \ldots, U_n)[X]$ das allgemeine Polynom n^{ten} Grades, dann ist die Gleichung F = 0 für $n \ge 5$ nicht durch Radikale auflösbar, denn in diesem Fall ist $G(F) \cong \mathfrak{S}_n$.

Als Antwort auf die Frage können wir also als Grundkörper $K(U_1, ..., U_5)$ wählen, der transzendent über K ist, wobei K ein beliebiger Körper ist, und als Polynom $F = X^5 + U_1X^4 + ... + U_4X + U_5 \in K(U_1, ..., U_5)[X]$.

Aufgabe 4 (Herbst 1993). Sei $f \in K[X]$ ein normiertes irreduzibles Polynom über einem Körper K, sei α eine Nullstelle von f in einem Erweiterungskörper von K und es gelte $f(\alpha + 1) = 0$. Man zeige:

(a) Der Körper K hat positive Charakteristik.

Ist char(K) = p eine Primzahl und gilt zudem $\alpha^p - \alpha \in K$, so zeige man:

- (b) f stimmt mit dem Polynom $X^p X \alpha^p + \alpha$ überein.
- (c) Die Erweiterung $K(\alpha)/K$ hat eine zyklische Galoisgruppe der Ordnung p.

Aufgabe 5 (Herbst 2016). Finden Sie zwei Polynome $f, g \in \mathbb{Q}[X]$ gleichen Grades, so daß $\operatorname{Gal}(f)$ und $\operatorname{Gal}(g)$ gleich viele Elemente habe, aber $\operatorname{Gal}(f)$ abelsch und $\operatorname{Gal}(g)$ nicht abelsch ist.

Lösung. Die Ordnung der gesuchten Gruppen kann keine Primzahl sein. Die kleinste mögliche nichtabelsche Gruppe ist \mathfrak{S}_3 und hat Ordnung 6. Wir kennen bereits eine Galoiserweiterung mit dieser Galoisgruppe: Der Zerfällungskörper des Polynoms $X^3-2\in\mathbb{Z}[X]$ ist $\mathbb{Q}(\sqrt[3]{2},\zeta_3)$ und hat Ordnung 6 über \mathbb{Q} . (Im Examen müsste man das zeigen, hier verweise ich auf die Vorlesungsnotizen.)

$$\operatorname{Gal}(X^3 - 2/\mathbb{Q}) = \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}) \cong \mathfrak{S}_3.$$

Jede abelsche Gruppe der Odrnung 6 ist isomorph zu $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Diese ist zyklisch und insbesondere isomorph zu $(\mathbb{Z}/7\mathbb{Z})^{\times}$. Wir wissen, daß dies die Galoisgruppe der Erweiterung $\mathbb{Q}^{(7)}/\mathbb{Q}$ ist, also

des siebten Kreistielungskörpers $\mathbb{Q}(\zeta_7)$ über \mathbb{Q} . Das Minimalpolynom der primitiven siebten Einheitswurzel ζ_7 ist das Kreisteilungspolynom $\phi_7 = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$.

$$\operatorname{Gal}(\phi_7/\mathbb{Q}) = \operatorname{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}.$$

Da nicht nach irreduziblen Polynomen gefragt war, können wir das Polynom X^3-2 mit linearen "trivialen" Polynomen in $\mathbb{Z}[X]$ multiplizieren, um Polynome gleichen Grades zu erhalten. Etwa:

$$f = \phi_7 = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$$

$$g = (X^3 - 2)(X - 2)(X - 3)(X - 5)$$

Dann gilt

$$Gal(f/\mathbb{Q}) = Gal(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}$$
$$Gal(g/\mathbb{Q}) = Gal(\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}) \cong \mathfrak{S}_3$$

und $|\operatorname{Gal}(f/\mathbb{Q})| = |\operatorname{Gal}(g/\mathbb{Q})| = 6.$