3.3 Derivatives of Trigonometric Functions

- 1. $f(x) = x^2 \sin x \stackrel{\text{PR}}{\Rightarrow} f'(x) = x^2 \cos x + (\sin x)(2x) = x^2 \cos x + 2x \sin x$
- **2.** $f(x) = x \cos x + 2 \tan x \implies f'(x) = x(-\sin x) + (\cos x)(1) + 2 \sec^2 x = \cos x x \sin x + 2 \sec^2 x$
- 3. $f(x) = e^x \cos x \implies f'(x) = e^x (-\sin x) + (\cos x)e^x = e^x (\cos x \sin x)$
- **4.** $y = 2 \sec x \csc x \implies y' = 2(\sec x \tan x) (-\csc x \cot x) = 2 \sec x \tan x + \csc x \cot x$
- 5. $y = \sec \theta \tan \theta \implies y' = \sec \theta (\sec^2 \theta) + \tan \theta (\sec \theta \tan \theta) = \sec \theta (\sec^2 \theta + \tan^2 \theta)$. Using the identity $1 + \tan^2 \theta = \sec^2 \theta$, we can write alternative forms of the answer as $\sec \theta (1 + 2\tan^2 \theta)$ or $\sec \theta (2\sec^2 \theta 1)$.
- **6.** $g(\theta) = e^{\theta}(\tan \theta \theta) \implies g'(\theta) = e^{\theta}(\sec^2 \theta 1) + (\tan \theta \theta)e^{\theta} = e^{\theta}(\sec^2 \theta 1 + \tan \theta \theta)$

SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ☐ 191

7.
$$y = c \cos t + t^2 \sin t$$
 \Rightarrow $y' = c(-\sin t) + t^2(\cos t) + \sin t (2t) = -c \sin t + t(t \cos t + 2 \sin t)$

8.
$$f(t) = \frac{\cot t}{e^t}$$
 \Rightarrow $f'(t) = \frac{e^t(-\csc^2 t) - (\cot t)e^t}{(e^t)^2} = \frac{e^t(-\csc^2 t - \cot t)}{(e^t)^2} = -\frac{\csc^2 t + \cot t}{e^t}$

9.
$$y = \frac{x}{2 - \tan x}$$
 \Rightarrow $y' = \frac{(2 - \tan x)(1) - x(-\sec^2 x)}{(2 - \tan x)^2} = \frac{2 - \tan x + x \sec^2 x}{(2 - \tan x)^2}$

10.
$$y = \sin \theta \cos \theta \implies y' = \sin \theta (-\sin \theta) + \cos \theta (\cos \theta) = \cos^2 \theta - \sin^2 \theta$$
 [or $\cos 2\theta$]

11.
$$f(\theta) = \frac{\sin \theta}{1 + \cos \theta} \Rightarrow$$

$$f'(\theta) = \frac{(1+\cos\theta)\cos\theta - (\sin\theta)(-\sin\theta)}{(1+\cos\theta)^2} = \frac{\cos\theta + \cos^2\theta + \sin^2\theta}{(1+\cos\theta)^2} = \frac{\cos\theta + 1}{(1+\cos\theta)^2} = \frac{1}{1+\cos\theta}$$

12.
$$y = \frac{\cos x}{1 - \sin x}$$

$$y' = \frac{(1-\sin x)(-\sin x) - \cos x(-\cos x)}{(1-\sin x)^2} = \frac{-\sin x + \sin^2 x + \cos^2 x}{(1-\sin x)^2} = \frac{-\sin x + 1}{(1-\sin x)^2} = \frac{1}{1-\sin x}$$

13.
$$y = \frac{t \sin t}{1 + t} \Rightarrow$$

$$y' = \frac{(1+t)(t\cos t + \sin t) - t\sin t(1)}{(1+t)^2} = \frac{t\cos t + \sin t + t^2\cos t + t\sin t - t\sin t}{(1+t)^2} = \frac{(t^2+t)\cos t + \sin t}{(1+t)^2}$$

14.
$$y = \frac{\sin t}{1 + \tan t} \Rightarrow$$

$$y' = \frac{(1+\tan t)\cos t - (\sin t)\sec^2 t}{(1+\tan t)^2} = \frac{\cos t + \sin t - \frac{\sin t}{\cos^2 t}}{(1+\tan t)^2} = \frac{\cos t + \sin t - \tan t \sec t}{(1+\tan t)^2}$$

15. Using Exercise 3.2.61(a), $f(\theta) = \theta \cos \theta \sin \theta \implies$

$$f'(\theta) = 1\cos\theta \sin\theta + \theta(-\sin\theta)\sin\theta + \theta\cos\theta(\cos\theta) = \cos\theta \sin\theta - \theta\sin^2\theta + \theta\cos^2\theta$$
$$= \sin\theta \cos\theta + \theta(\cos^2\theta - \sin^2\theta) = \frac{1}{2}\sin 2\theta + \theta\cos 2\theta \quad \text{[using double-angle formulas]}$$

16. Using Exercise 3.2.61(a), $f(t) = te^t \cot t \implies$

$$f'(t) = 1e^t \cot t + te^t \cot t + te^t (-\csc^2 t) = e^t (\cot t + t \cot t - t \csc^2 t)$$

17.
$$\frac{d}{dx}(\csc x) = \frac{d}{dx}\left(\frac{1}{\sin x}\right) = \frac{(\sin x)(0) - 1(\cos x)}{\sin^2 x} = \frac{-\cos x}{\sin^2 x} = -\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} = -\csc x \cot x$$

18.
$$\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \frac{(\cos x)(0) - 1(-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = \sec x \tan x$$

19.
$$\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{\cos x}{\sin x}\right) = \frac{(\sin x)(-\sin x) - (\cos x)(\cos x)}{\sin^2 x} = -\frac{\sin^2 x + \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x} = -\csc^2 x$$

192 CHAPTER 3 DIFFERENTIATION RULES

20.
$$f(x) = \cos x \Rightarrow$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$
$$= \lim_{h \to 0} \left(\cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h}\right) = \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}$$
$$= (\cos x)(0) - (\sin x)(1) = -\sin x$$

- 21. $y = \sin x + \cos x \implies y' = \cos x \sin x$, so $y'(0) = \cos 0 \sin 0 = 1 0 = 1$. An equation of the tangent line to the curve $y = \sin x + \cos x$ at the point (0, 1) is y 1 = 1(x 0) or y = x + 1.
- 22. $y = e^x \cos x \implies y' = e^x (-\sin x) + (\cos x)e^x = e^x (\cos x \sin x) \implies$ the slope of the tangent line at (0,1) is $e^0(\cos 0 \sin 0) = 1(1-0) = 1$ and an equation is y 1 = 1(x-0) or y = x + 1.
- 23. $y = \cos x \sin x \implies y' = -\sin x \cos x$, so $y'(\pi) = -\sin \pi \cos \pi = 0 (-1) = 1$. An equation of the tangent line to the curve $y = \cos x \sin x$ at the point $(\pi, -1)$ is $y (-1) = 1(x \pi)$ or $y = x \pi 1$.
- **24.** $y = x + \tan x \implies y' = 1 + \sec^2 x$, so $y'(\pi) = 1 + (-1)^2 = 2$. An equation of the tangent line to the curve $y = x + \tan x$ at the point (π, π) is $y \pi = 2(x \pi)$ or $y = 2x \pi$.
- **25.** (a) $y = 2x \sin x \implies y' = 2(x \cos x + \sin x \cdot 1)$. At $(\frac{\pi}{2}, \pi)$, $y' = 2(\frac{\pi}{2} \cos \frac{\pi}{2} + \sin \frac{\pi}{2}) = 2(0+1) = 2$, and an equation of the tangent line is $y \pi = 2(x \frac{\pi}{2})$, or y = 2x.

26. (a) $y = 3x + 6\cos x \implies y' = 3 - 6\sin x$. At $\left(\frac{\pi}{3}, \pi + 3\right)$, $y' = 3 - 6\sin\frac{\pi}{3} = 3 - 6\frac{\sqrt{3}}{2} = 3 - 3\sqrt{3}$, and an equation of the tangent line is $y - (\pi + 3) = \left(3 - 3\sqrt{3}\right)\left(x - \frac{\pi}{3}\right)$, or $y = \left(3 - 3\sqrt{3}\right)x + 3 + \pi\sqrt{3}$.

27. (a) $f(x) = \sec x - x \implies f'(x) = \sec x \tan x - 1$

Note that f' = 0 where f has a minimum. Also note that f' is negative when f is decreasing and f' is positive when f is increasing.

28. (a) $f(x) = e^x \cos x \implies f'(x) = e^x (-\sin x) + (\cos x) e^x = e^x (\cos x - \sin x) \implies$ $f''(x) = e^x (-\sin x - \cos x) + (\cos x - \sin x) e^x = e^x (-\sin x - \cos x + \cos x - \sin x) = -2e^x \sin x$

SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 193

Note that f' = 0 where f has a minimum and f'' = 0 where f' has a minimum. Also note that f' is negative when f is decreasing and f'' is negative when f' is decreasing.

- **29.** $H(\theta) = \theta \sin \theta \implies H'(\theta) = \theta (\cos \theta) + (\sin \theta) \cdot 1 = \theta \cos \theta + \sin \theta \implies$ $H''(\theta) = \theta (-\sin \theta) + (\cos \theta) \cdot 1 + \cos \theta = -\theta \sin \theta + 2 \cos \theta$
- **30.** $f(t) = \sec t \implies f'(t) = \sec t \tan t \implies f''(t) = (\sec t) \sec^2 t + (\tan t) \sec t \tan t = \sec^3 t + \sec t \tan^2 t$, so $f''(\frac{\pi}{4}) = (\sqrt{2})^3 + \sqrt{2}(1)^2 = 2\sqrt{2} + \sqrt{2} = 3\sqrt{2}$.
- 31. (a) $f(x) = \frac{\tan x 1}{\sec x}$ \Rightarrow $f'(x) = \frac{\sec x(\sec^2 x) (\tan x 1)(\sec x \tan x)}{(\sec x)^2} = \frac{\sec x(\sec^2 x \tan^2 x + \tan x)}{\sec^2 x} = \frac{1 + \tan x}{\sec x}$
 - (b) $f(x) = \frac{\tan x 1}{\sec x} = \frac{\frac{\sin x}{\cos x} 1}{\frac{1}{\cos x}} = \frac{\frac{\sin x \cos x}{\cos x}}{\frac{1}{\cos x}} = \sin x \cos x \implies f'(x) = \cos x (-\sin x) = \cos x + \sin x$
 - (c) From part (a), $f'(x) = \frac{1 + \tan x}{\sec x} = \frac{1}{\sec x} + \frac{\tan x}{\sec x} = \cos x + \sin x$, which is the expression for f'(x) in part (b).
- **32.** (a) $g(x) = f(x)\sin x \implies g'(x) = f(x)\cos x + \sin x \cdot f'(x)$, so $g'(\frac{\pi}{3}) = f(\frac{\pi}{3})\cos \frac{\pi}{3} + \sin \frac{\pi}{3} \cdot f'(\frac{\pi}{3}) = 4 \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot (-2) = 2 \sqrt{3}$
 - (b) $h(x) = \frac{\cos x}{f(x)} \implies h'(x) = \frac{f(x) \cdot (-\sin x) \cos x \cdot f'(x)}{[f(x)]^2}$, so

$$h'(\frac{\pi}{3}) = \frac{f(\frac{\pi}{3}) \cdot (-\sin\frac{\pi}{3}) - \cos\frac{\pi}{3} \cdot f'(\frac{\pi}{3})}{\left[f(\frac{\pi}{3})\right]^2} = \frac{4(-\frac{\sqrt{3}}{2}) - (\frac{1}{2})(-2)}{4^2} = \frac{-2\sqrt{3} + 1}{16} = \frac{1 - 2\sqrt{3}}{16}$$

- 33. $f(x) = x + 2\sin x$ has a horizontal tangent when $f'(x) = 0 \Leftrightarrow 1 + 2\cos x = 0 \Leftrightarrow \cos x = -\frac{1}{2} \Leftrightarrow x = \frac{2\pi}{3} + 2\pi n$ or $\frac{4\pi}{3} + 2\pi n$, where n is an integer. Note that $\frac{4\pi}{3}$ and $\frac{2\pi}{3}$ are $\pm \frac{\pi}{3}$ units from π . This allows us to write the solutions in the more compact equivalent form $(2n+1)\pi \pm \frac{\pi}{3}$, n an integer.
- **34.** $f(x) = e^x \cos x$ has a horizontal tangent when f'(x) = 0. $f'(x) = e^x (-\sin x) + (\cos x)e^x = e^x (\cos x \sin x)$. $f'(x) = 0 \Leftrightarrow \cos x \sin x = 0 \Leftrightarrow \cos x = \sin x \Leftrightarrow \tan x = 1 \Leftrightarrow x = \frac{\pi}{4} + n\pi, n \text{ an integer.}$
- **35.** (a) $x(t) = 8\sin t \implies v(t) = x'(t) = 8\cos t \implies a(t) = x''(t) = -8\sin t$
 - (b) The mass at time $t=\frac{2\pi}{3}$ has position $x\left(\frac{2\pi}{3}\right)=8\sin\frac{2\pi}{3}=8\left(\frac{\sqrt{3}}{2}\right)=4\sqrt{3}$, velocity $v\left(\frac{2\pi}{3}\right)=8\cos\frac{2\pi}{3}=8\left(-\frac{1}{2}\right)=-4$, and acceleration $a\left(\frac{2\pi}{3}\right)=-8\sin\frac{2\pi}{3}=-8\left(\frac{\sqrt{3}}{2}\right)=-4\sqrt{3}$. Since $v\left(\frac{2\pi}{3}\right)<0$, the particle is moving to the left.

194 CHAPTER 3 DIFFERENTIATION RULES

36. (a) $s(t) = 2\cos t + 3\sin t \implies v(t) = -2\sin t + 3\cos t \implies a(t) = -2\cos t - 3\sin t$

(c) $s=0 \Rightarrow t_2 \approx 2.55$. So the mass passes through the equilibrium position for the first time when $t\approx 2.55$ s.

- (d) $v=0 \implies t_1 \approx 0.98$, $s(t_1) \approx 3.61$ cm. So the mass travels a maximum of about 3.6 cm (upward and downward) from its equilibrium position.
- (e) The speed |v| is greatest when s=0, that is, when $t=t_2+n\pi$, n a positive integer.

37.

From the diagram we can see that $\sin\theta = x/10 \iff x = 10\sin\theta$. We want to find the rate of change of x with respect to θ , that is, $dx/d\theta$. Taking the derivative of $x = 10\sin\theta$, we get $dx/d\theta = 10(\cos\theta)$. So when $\theta = \frac{\pi}{3}$, $\frac{dx}{d\theta} = 10\cos\frac{\pi}{3} = 10\left(\frac{1}{2}\right) = 5$ ft/rad.

38. (a)
$$F = \frac{\mu W}{\mu \sin \theta + \cos \theta}$$
 $\Rightarrow \frac{dF}{d\theta} = \frac{(\mu \sin \theta + \cos \theta)(0) - \mu W(\mu \cos \theta - \sin \theta)}{(\mu \sin \theta + \cos \theta)^2} = \frac{\mu W(\sin \theta - \mu \cos \theta)}{(\mu \sin \theta + \cos \theta)^2}$

(b)
$$\frac{dF}{d\theta} = 0 \Leftrightarrow \mu W(\sin \theta - \mu \cos \theta) = 0 \Leftrightarrow \sin \theta = \mu \cos \theta \Leftrightarrow \tan \theta = \mu \Leftrightarrow \theta = \tan^{-1} \mu$$

From the graph of $F=\frac{0.6(50)}{0.6\sin\theta+\cos\theta}$ for $0\leq\theta\leq1$, we see that $\frac{dF}{d\theta}=0 \quad \Rightarrow \quad \theta\approx0.54.$ Checking this with part (b) and $\mu=0.6$, we calculate $\theta=\tan^{-1}0.6\approx0.54$. So the value from the graph is consistent with the value in part (b).

39.
$$\lim_{x \to 0} \frac{\sin 5x}{3x} = \lim_{x \to 0} \frac{5}{3} \left(\frac{\sin 5x}{5x} \right) = \frac{5}{3} \lim_{x \to 0} \frac{\sin 5x}{5x} = \frac{5}{3} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \quad [\theta = 5x] = \frac{5}{3} \cdot 1 = \frac{5}{3}$$

$$\mathbf{40.} \lim_{x \to 0} \frac{\sin x}{\sin \pi x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\pi x}{\sin \pi x} \cdot \frac{1}{\pi} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{\theta \to 0} \frac{\theta}{\sin \theta} \cdot \frac{1}{\pi} \quad [\theta = \pi x]$$

$$= 1 \cdot \lim_{\theta \to 0} \frac{1}{\frac{\sin \theta}{\theta}} \cdot \frac{1}{\pi} = 1 \cdot 1 \cdot \frac{1}{\pi} = \frac{1}{\pi}$$

41.
$$\lim_{t \to 0} \frac{\tan 6t}{\sin 2t} = \lim_{t \to 0} \left(\frac{\sin 6t}{t} \cdot \frac{1}{\cos 6t} \cdot \frac{t}{\sin 2t} \right) = \lim_{t \to 0} \frac{6\sin 6t}{6t} \cdot \lim_{t \to 0} \frac{1}{\cos 6t} \cdot \lim_{t \to 0} \frac{2t}{2\sin 2t}$$
$$= 6 \lim_{t \to 0} \frac{\sin 6t}{6t} \cdot \lim_{t \to 0} \frac{1}{\cos 6t} \cdot \frac{1}{2} \lim_{t \to 0} \frac{2t}{\sin 2t} = 6(1) \cdot \frac{1}{1} \cdot \frac{1}{2}(1) = 3$$

42.
$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta} = \lim_{\theta \to 0} \frac{\frac{\cos \theta - 1}{\theta}}{\frac{\sin \theta}{\theta}} = \frac{\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta}}{\lim_{\theta \to 0} \frac{\sin \theta}{\theta}} = \frac{0}{1} = 0$$

SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 195

$$\textbf{43. } \lim_{x \to 0} \frac{\sin 3x}{5x^3 - 4x} = \lim_{x \to 0} \left(\frac{\sin 3x}{3x} \cdot \frac{3}{5x^2 - 4} \right) = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \lim_{x \to 0} \frac{3}{5x^2 - 4} = 1 \cdot \left(\frac{3}{-4} \right) = -\frac{3}{4}$$

44.
$$\lim_{x \to 0} \frac{\sin 3x \sin 5x}{x^2} = \lim_{x \to 0} \left(\frac{3 \sin 3x}{3x} \cdot \frac{5 \sin 5x}{5x} \right) = \lim_{x \to 0} \frac{3 \sin 3x}{3x} \cdot \lim_{x \to 0} \frac{5 \sin 5x}{5x}$$
$$= 3 \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 5 \lim_{x \to 0} \frac{\sin 5x}{5x} = 3(1) \cdot 5(1) = 15$$

45. Divide numerator and denominator by θ . (sin θ also works.)

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta} = \lim_{\theta \to 0} \frac{\frac{\sin \theta}{\theta}}{1 + \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta}} = \frac{\lim_{\theta \to 0} \frac{\sin \theta}{\theta}}{1 + \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \lim_{\theta \to 0} \frac{1}{\cos \theta}} = \frac{1}{1 + 1 \cdot 1} = \frac{1}{2}$$

46.
$$\lim_{x\to 0}\csc x\,\sin(\sin x)=\lim_{x\to 0}\frac{\sin(\sin x)}{\sin x}=\lim_{\theta\to 0}\frac{\sin \theta}{\theta}\quad [\operatorname{As} x\to 0, \theta=\sin x\to 0.]=1$$

$$47. \lim_{\theta \to 0} \frac{\cos \theta - 1}{2\theta^2} = \lim_{\theta \to 0} \frac{\cos \theta - 1}{2\theta^2} \cdot \frac{\cos \theta + 1}{\cos \theta + 1} = \lim_{\theta \to 0} \frac{\cos^2 \theta - 1}{2\theta^2 (\cos \theta + 1)} = \lim_{\theta \to 0} \frac{-\sin^2 \theta}{2\theta^2 (\cos \theta + 1)}$$

$$= -\frac{1}{2} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta + 1} = -\frac{1}{2} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \lim_{\theta \to 0} \frac{1}{\cos \theta + 1}$$

$$= -\frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{1}{1+1} = -\frac{1}{4}$$

48.
$$\lim_{x \to 0} \frac{\sin(x^2)}{x} = \lim_{x \to 0} \left[x \cdot \frac{\sin(x^2)}{x \cdot x} \right] = \lim_{x \to 0} x \cdot \lim_{x \to 0} \frac{\sin(x^2)}{x^2} = 0 \cdot \lim_{y \to 0^+} \frac{\sin y}{y} \quad \left[\text{where } y = x^2 \right] = 0 \cdot 1 = 0$$

49.
$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x} = \lim_{x \to \pi/4} \frac{\left(1 - \frac{\sin x}{\cos x}\right) \cdot \cos x}{(\sin x - \cos x) \cdot \cos x} = \lim_{x \to \pi/4} \frac{\cos x - \sin x}{(\sin x - \cos x) \cos x} = \lim_{x \to \pi/4} \frac{-1}{\cos x} = \frac{-1}{1/\sqrt{2}} = -\sqrt{2}$$

50.
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2} = \lim_{x \to 1} \frac{\sin(x-1)}{(x+2)(x-1)} = \lim_{x \to 1} \frac{1}{x+2} \lim_{x \to 1} \frac{\sin(x-1)}{x-1} = \frac{1}{3} \cdot 1 = \frac{1}{3}$$

$$\mathbf{51.} \ \frac{d}{dx} \left(\sin x \right) = \cos x \quad \Rightarrow \quad \frac{d^2}{dx^2} \left(\sin x \right) = -\sin x \quad \Rightarrow \quad \frac{d^3}{dx^3} \left(\sin x \right) = -\cos x \quad \Rightarrow \quad \frac{d^4}{dx^4} \left(\sin x \right) = \sin x.$$

The derivatives of $\sin x$ occur in a cycle of four. Since 99 = 4(24) + 3, we have $\frac{d^{99}}{dx^{99}}(\sin x) = \frac{d^3}{dx^3}(\sin x) = -\cos x$.

52. Let
$$f(x) = x \sin x$$
 and $h(x) = \sin x$, so $f(x) = xh(x)$. Then $f'(x) = h(x) + xh'(x)$,

$$f''(x) = h'(x) + h'(x) + xh''(x) = 2h'(x) + xh''(x)$$

$$f'''(x) = 2h''(x) + h''(x) + xh'''(x) = 3h''(x) + xh'''(x), \dots, f^{(n)}(x) = nh^{(n-1)}(x) + xh^{(n)}(x).$$

Since
$$34 = 4(8) + 2$$
, we have $h^{(34)}(x) = h^{(2)}(x) = \frac{d^2}{dx^2} (\sin x) = -\sin x$ and $h^{(35)}(x) = -\cos x$.

Thus,
$$\frac{d^{35}}{dx^{35}}(x\sin x) = 35h^{(34)}(x) + xh^{(35)}(x) = -35\sin x - x\cos x$$
.

196 CHAPTER 3 DIFFERENTIATION RULES

- 53. $y = A \sin x + B \cos x \implies y' = A \cos x B \sin x \implies y'' = -A \sin x B \cos x$. Substituting these expressions for y, y', and y'' into the given differential equation $y'' + y' 2y = \sin x$ gives us $(-A \sin x B \cos x) + (A \cos x B \sin x) 2(A \sin x + B \cos x) = \sin x \implies (-3A \sin x B \sin x + A \cos x 3B \cos x = \sin x \implies (-3A B) \sin x + (A 3B) \cos x = 1 \sin x$, so we must have -3A B = 1 and A 3B = 0 (since 0 is the coefficient of $\cos x$ on the right side). Solving for A and B, we add the first equation to three times the second to get $B = -\frac{1}{10}$ and $A = -\frac{3}{10}$.
- **54.** (a) Let $\theta = \frac{1}{x}$. Then as $x \to \infty$, $\theta \to 0^+$, and $\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{\theta \to 0^+} \frac{1}{\theta} \sin \theta = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.
 - (b) Since $-1 \le \sin(1/x) \le 1$, we have (as illustrated in the figure) $-|x| \le x \sin(1/x) \le |x|$. We know that $\lim_{x \to 0} (|x|) = 0$ and $\lim_{x \to 0} (-|x|) = 0$; so by the Squeeze Theorem, $\lim_{x \to 0} x \sin(1/x) = 0$.

- **55.** (a) $\frac{d}{dx} \tan x = \frac{d}{dx} \frac{\sin x}{\cos x}$ \Rightarrow $\sec^2 x = \frac{\cos x \cos x \sin x (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$. So $\sec^2 x = \frac{1}{\cos^2 x}$.
 - (b) $\frac{d}{dx} \sec x = \frac{d}{dx} \frac{1}{\cos x}$ \Rightarrow $\sec x \tan x = \frac{(\cos x)(0) 1(-\sin x)}{\cos^2 x}$. So $\sec x \tan x = \frac{\sin x}{\cos^2 x}$.
 - (c) $\frac{d}{dx} (\sin x + \cos x) = \frac{d}{dx} \frac{1 + \cot x}{\csc x} \Rightarrow$

$$\cos x - \sin x = \frac{\csc x (-\csc^2 x) - (1 + \cot x)(-\csc x \cot x)}{\csc^2 x} = \frac{\csc x [-\csc^2 x + (1 + \cot x) \cot x]}{\csc^2 x}$$
$$= \frac{-\csc^2 x + \cot^2 x + \cot x}{\csc x} = \frac{-1 + \cot x}{\csc x}$$

So
$$\cos x - \sin x = \frac{\cot x - 1}{\csc x}$$
.

56. We get the following formulas for r and h in terms of θ :

$$\sin\frac{\theta}{2} = \frac{r}{10} \quad \Rightarrow \quad r = 10\sin\frac{\theta}{2} \quad \text{and} \quad \cos\frac{\theta}{2} = \frac{h}{10} \quad \Rightarrow \quad h = 10\cos\frac{\theta}{2}$$

Now
$$A(\theta) = \frac{1}{2}\pi r^2$$
 and $B(\theta) = \frac{1}{2}(2r)h = rh$. So

$$\begin{split} \lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim_{\theta \to 0^+} \frac{\frac{1}{2}\pi r^2}{rh} = \frac{1}{2}\pi \lim_{\theta \to 0^+} \frac{r}{h} = \frac{1}{2}\pi \lim_{\theta \to 0^+} \frac{10\sin(\theta/2)}{10\cos(\theta/2)} \\ &= \frac{1}{2}\pi \lim_{\theta \to 0^+} \tan(\theta/2) = 0 \end{split}$$

SECTION 3.4 THE CHAIN RULE

197

57. By the definition of radian measure, $s=r\theta$, where r is the radius of the circle. By drawing the bisector of the angle θ , we can

$$\text{see that } \sin\frac{\theta}{2} = \frac{d/2}{r} \quad \Rightarrow \quad d = 2r\sin\frac{\theta}{2}. \ \ \text{So} \ \lim_{\theta \to 0^+} \frac{s}{d} = \lim_{\theta \to 0^+} \frac{r\theta}{2r\sin(\theta/2)} = \lim_{\theta \to 0^+} \frac{2\cdot(\theta/2)}{2\sin(\theta/2)} = \lim_{\theta \to 0} \frac{\theta/2}{\sin(\theta/2)} = 1.$$

[This is just the reciprocal of the limit $\lim_{x\to 0}\frac{\sin x}{x}=1$ combined with the fact that as $\theta\to 0, \frac{\theta}{2}\to 0$ also.]

58. (a)

It appears that $f(x) = \frac{x}{\sqrt{1-\cos 2x}}$ has a jump discontinuity at x=0.

(b) Using the identity $\cos 2x = 1 - \sin^2 x$, we have $\frac{x}{\sqrt{1 - \cos 2x}} = \frac{x}{\sqrt{1 - (1 - 2\sin^2 x)}} = \frac{x}{\sqrt{2\sin^2 x}} = \frac{x}{\sqrt{2}|\sin x|}$

Thus,

$$\lim_{x \to 0^{-}} \frac{x}{\sqrt{1 - \cos 2x}} = \lim_{x \to 0^{-}} \frac{x}{\sqrt{2} |\sin x|} = \frac{1}{\sqrt{2}} \lim_{x \to 0^{-}} \frac{x}{-(\sin x)}$$

$$= -\frac{1}{\sqrt{2}} \lim_{x \to 0^{-}} \frac{1}{\sin x/x} = -\frac{1}{\sqrt{2}} \cdot \frac{1}{1} = -\frac{\sqrt{2}}{2}$$

Evaluating $\lim_{x\to 0^+} f(x)$ is similar, but $|\sin x| = +\sin x$, so we get $\frac{1}{2}\sqrt{2}$. These values appear to be reasonable values for the graph, so they confirm our answer to part (a).

Another method: Multiply numerator and denominator by $\sqrt{1+\cos 2x}$.

3.4 The Chain Rule

- **1.** Let u = g(x) = 1 + 4x and $y = f(u) = \sqrt[3]{u}$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (\frac{1}{3}u^{-2/3})(4) = \frac{4}{3\sqrt[3]{(1+4x)^2}}$.
- **2.** Let $u = g(x) = 2x^3 + 5$ and $y = f(u) = u^4$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (4u^3)(6x^2) = 24x^2(2x^3 + 5)^3$.
- 3. Let $u = g(x) = \pi x$ and $y = f(u) = \tan u$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (\sec^2 u)(\pi) = \pi \sec^2 \pi x$.
- **4.** Let $u = g(x) = \cot x$ and $y = f(u) = \sin u$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (\cos u)(-\csc^2 x) = -\cos(\cot x)\csc^2 x$.
- **5.** Let $u = g(x) = \sqrt{x}$ and $y = f(u) = e^u$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (e^u) \left(\frac{1}{2}x^{-1/2}\right) = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$.
- **6.** Let $u = g(x) = 2 e^x$ and $y = f(u) = \sqrt{u}$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (\frac{1}{2}u^{-1/2})(-e^x) = -\frac{e^x}{2\sqrt{2 e^x}}$.
- 7. $F(x) = (5x^6 + 2x^3)^4 \Rightarrow F'(x) = 4(5x^6 + 2x^3)^3 \cdot \frac{d}{dx}(5x^6 + 2x^3) = 4(5x^6 + 2x^3)^3(30x^5 + 6x^2)$

We can factor as follows: $4(x^3)^3(5x^3+2)^36x^2(5x^3+1) = 24x^{11}(5x^3+2)^3(5x^3+1)$