BESARAN DAN SISTEM SATUAN

1.1 PENDAHULUAN

Fisika:

Ilmu pengetahuan yang mempelajari benda-benda dialam, gejala-gejala, kejadian-kejadian alam serta interaksi dari benda-benda dialam.

Fisika merupakan ilmu pengetahuan dasar yang mempelajari sifat-sifat dan interaksi antar materi dan radiasi.

Fisika merupakan ilmu pengetahuan yang didasarkan pada pengamatan eksperimental dan pengukuran kuantitatif (Metode Ilmiah).

Fisika — Kuant

Klasik (sebelum 1920)

Kuantum (setelah 1920)

- Posisi dan Momentum partikel dapat ditetapkan secara tepat
- ruang dan waktu merupakan dua hal yang terpisah

- Ketidak pastian Posisi dan Momentum partikel
- ruang dan waktu merupakan satu kesatuan

Hukum Newton

Dualisme Gelombang-Partikel Teori Relativitas Einsten

1.2 BESARAN DAN SATUAN

Besaran :

Sesuatu yang dapat diukur → dinyatakan dengan angka (kuantitatif) Contoh : panjang, massa, waktu, suhu, dll.

Mengukur :

Membandingkan sesuatu dengan sesuatu yang lain yang sejenis yang ditetapkan sebagai satuan.

Besaran Fisika baru terdefenisi jika: • ada nilainya (besarnya)

ada satuannya

contoh: panjang jalan 10 km

> Satuan:

Ukuran dari suatu besaran ditetapkan sebagai satuan.

Contoh: ■ meter, kilometer → satuan panjang

■ detik, menit, jam → satuan waktu

■ gram, kilogram → satuan massa

dll.

> Sistem satuan : ada 2 macam

- Sistem Metrik : a. mks (meter, kilogram, sekon)
 b. cgs (centimeter, gram, sekon)
- 2. Sistem Non metrik (sistem British)

Sistem Internasional, Le Systéme Internasional d'Unites (SI)

Sistem satuan mks yang telah disempurnakan → yang paling banyak dipakai sekarang ini.

Dalam SI:

Ada 7 besaran pokok berdimensi dan 2 besaran pokok tak berdimensi

7 Besaran Pokok dalam Sistem internasional (SI)

NO	Besaran Pokok	Satuan	Singkatan	Dimensi
1	Panjang	Meter	m	L
2	Massa	Kilogram	kg	M
3	Waktu	Sekon	S	Т
4	Arus Listrik	Ampere	Α	I
5	Suhu	Kelvin	K	θ
6	Intensitas Cahaya	Candela	cd	j
7	Jumlah Zat	Mole	mol	N

Besaran Pokok Tak Berdimensi

NO	Besaran Pokok	Satuan	Singkatan	Dimensi
1	Sudut Datar	Radian	rad	-
2	Sudut Ruang	Steradian	sr	-

≻Dimensi

Cara besaran itu tersusun oleh besaran pokok.

- Guna Dimensi:
 - 1. Untuk menurunkan satuan dari suatu besaran
 - 2. Untuk meneliti kebenaran suatu rumus atau persamaan
- Metode penjabaran dimensi :
 - 1. Dimensi ruas kanan = dimensi ruas kiri
 - 2. Setiap suku berdimensi sama

Besaran Turunan

Besaran yang diturunkan dari besaran pokok.

Contoh:

a. Tidak menggunakan nama khusus

NO	Besaran	Satuan
1	Kecepatan	meter/detik
2	Luas	meter ²

b. Mempunyai nama khusus

NO	Besaran	Satuan	Lambang
1	Gaya	Newton	N
2	Energi	Joule	J
3	Daya	Watt	W
4	Frekuensi	Hertz	Hz

Besaran Turunan dan Dimensi

NO	Besaran Turunan	Rumus	Dimensi
1	Luas	panjang x lebar	[L] ²
2	Volume	panjang x lebar x tinggi	[L] ³
3	Massa Jenis	massa volume	[M] [L] ⁻³
4	Kecepatan	perpindahan waktu	[L] [T] ⁻¹
5	Percepatan	kecepatan waktu	[L] [T]-2
6	Gaya	massa x percepatan	[M] [L] [T]-2
7	Usaha dan Energi	gaya x perpindahan	[M] [L]2 [T]-2
8	Impuls dan Momentum	gaya x waktu	[M] [L] [T]-1

Faktor Penggali dalam SI

NO	Faktor	Nama	Simbol
1	10 -18	atto	а
2	10 ⁻¹⁵	femto	f
3	10 ⁻¹²	piko	р
4	10 ⁻⁹	nano	n
5	10 ⁻⁶	mikro	μ
6	10 -3	mili	m
7	10 ³	kilo	K
8	10 ⁶	mega	М
9	10 ⁹	giga	G
10	10 ¹²	tera	Т

Contoh Soal

- 1. Tentukan dimensi dan satuannya dalam SI untuk besaran turunan berikut :
 - a. Gaya
 - b. Berat Jenis
 - c. Tekanan
 - d. Usaha
 - e. Daya

Jawab:

b. Berat Jenis =
$$\frac{\text{berat}}{\text{volume}}$$
 = $\frac{\text{Gaya}}{\text{Volume}}$ = $\frac{\text{MLT}^{-2}}{\text{L}^3}$
= MLT^{-2} (L⁻³)
= ML^{-2} T⁻² satuan kgm⁻²s⁻²

c. Tekanan =
$$\frac{\text{gaya}}{\text{luas}}$$
 = $\frac{\text{MLT}^{-2}}{\text{L}^2}$ = ML⁻¹T ⁻² satuan kgm⁻¹s⁻¹

d. Usaha = gaya x jarak =
$$MLT^{-2}xL = ML^{2}T^{-2}$$
 satuan kgm⁻²s⁻²

e. Daya =
$$\frac{\text{usaha}}{\text{waktu}}$$
 = $\frac{\text{ML}^2 \text{ T}^{-2}}{\text{T}}$ = ML 2 T $^{-3}$ satuan kgm 2 s $^{-3}$

- 2. Buktikan besaran-besaran berikut adalah identik:
 - a. Energi Potensial dan Energi Kinetik
 - b. Usaha/Energi dan Kalor

Jawab:

a. Energi Potensial : Ep = mgh

Energi potensial = massa x gravitasi x tinggi
= M x LT⁻² x L = ML²T⁻²

Energi Kinetik : Ek = ½ mv²

Energi Kinetik = ½ x massa x kecepatan²
= M x (LT^{-1) 2}
= ML²T⁻²

Keduanya (Ep dan Ek) mempunyai dimensi yang sama → keduanya identik

b. Usaha = ML^2T^{-2} Energi = ML^2T^{-2} Kalor = 0.24 x energi = ML^2T^{-2}

Ketiganya memiliki dimensi yang sama → identik