Gradeint Descent

Zahoor Tanoli (PhD)

Topics covered

- •What is gradient decent
- .How it works
- •Minimizing the Cost Function
- .What are the pitfalls

•Note: You are supposed to know about derivatives

What is Gradient Decent

- Optimisation algorithm
- In derivatives we learn to find minimum of a function
- Compute the first-order derivative
- Solve the equation derivative = 0 to find the inflection points
- Compute the second-order derivative in these points
- •When it's positive, it's a minimum
- If it's negative, it's a maximum

When Used

- •When you want to train a model
- •GD is applied which is:
- Algorithmic
- Iterative
- Works rather well in most cases

How it Works

- Imagine you are a skier on a mountain
- •Want to find the lowest point around

Looking Graphically

Slope is the derevative

- doesn't go up or down
- •The value of the derivative is the inclination of the slope at a specific point

Continued...

- •Consider the following function:
- $-f(x) = 2x^2 \cos(x) 5x$
- -Study it on the [-5, 5] interval:
- .Goal is to find the minimum
- There are 3 steps:
- -Take a random point x₀
- -Compute the value of the slope f'(x0)
- -Walk in the direction opposite to

Step-wise process

- Step 1: Take a random point $x_0 = -1$ gives us $f(x_0) = 6.98$
- Step 2: Compute the slope
- Step 3: Walk in the opposite direction on the basis of the value of slope
- -But what will be the step size?

Step size = 0.05

- •We're moving.. slowly!
- •After a dozen iterations, we obtain convergence:
- Finally gets to the minimum

Cost Function

- In the equation, y = mX+b, 'm' and 'b' are its parameters
- During the training process, there will be a small change in their values
- Let that small change be denoted by δ
- -parameters will be updated as m=m-δm and b=b-δb
- •Aim is to find those values of m and b in y = mx+b, for which the error is minimum

Rewriting Cost Function

Parameters with small changes:

$$m = m - \delta m$$
$$b = b - \delta b$$

Given Cost Function for 'N' no of samples

$$Cost = \frac{1}{N} \sum_{i=1}^{N} (Y_i' - Y_i)^2$$

Cost function is denoted by J where J is a function of m and b

$$J_{m,b} = \frac{1}{N} \sum_{i=1}^{N} (Y_i' - Y_i)^2$$

Substituting the term Y'-Y with error for simplicity

$$J_{m,b} = \frac{1}{N} \sum_{i=1}^{N} (Error_i)^2$$

Calculating GD

$$J_{m,b} = \frac{1}{N} \sum_{i=1}^{N} (Error_i)^2$$

$$\frac{\partial J}{\partial m} = 2. Error. \frac{\partial}{\partial m} Erro$$

$$\frac{\partial J}{\partial b} = 2 \cdot Error. \frac{\partial}{\partial b} Error$$

$$\frac{\partial}{\partial m}$$
Error = $\frac{\partial}{\partial m}(Y' - Y)$

$$\frac{\partial}{\partial m} Error = \frac{\partial}{\partial m} (mX + b - Y)$$
constants

$$\frac{\partial}{\partial m} Error = X$$

$$\frac{\partial}{\partial b}$$
Error = $\frac{\partial}{\partial b}$ (Y' - Y)

$$\frac{\partial}{\partial b} Error = \frac{\partial}{\partial b} (mX + b - Y)$$
constants

$$\frac{\partial}{\partial \mathbf{b}} \text{Error} = 1$$

Continued...

Plugging values in the cost function

$$\frac{\partial J}{\partial b} = 2$$
. Error * Learning Rate

2 in these equations isn't that significant

since it just says that we have a learning

rate twice as big or half as big

 $m^1 = m^0$ Error * X * Learning Rate

$$\frac{\partial J}{\partial m} = \operatorname{Error} * X * \operatorname{Learning Rate}$$
 $\frac{\partial J}{\partial b} = \operatorname{Error} * \operatorname{Learning Rate}$ Since $m = m - \delta m$ Since $b = b - \delta b$

 $b^1 = b^0 - \text{Error} * \text{Learning Rate}$

 $m^1,b^1 = next position parameters;$

m⁰,b⁰ = current position parameters

Pitfalls of GD

- Selecting good value of learning rate
- Vanishing gradient
- Local minima issue

Learning value selection

•See what happens if we take α =0.001

•See what happens if we take α =0.2

Local Minima

- Notice the final convergence point depends a lot on the initial point
- Sometimes it'll find the global minimum. Other times.. not.
- •To avoid this problem, the best way is to run the algorithms multiple times

