NAME:	INDEX NO:			
SCHOOL:	SIGNATURE:			

P525/1 CHEMISTRY Paper 1 August, 2019 2%Hrs

UNNASE MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

PAPER 1

Time: 2hours 45minutes

Instructions

- * Attempt all questions in section A and only six questions from section B.
- All questions are to be answered in the spaces provided.
- * A periodic table with relevant atomic masses is supplied at the back of the paper.
- Mathematical tables (3figures) and non-programmable silent scientific calculators may be used.
- * A piece of graph should be provided.

						For	Ex	ami	ner'	s Us	e O	nly	٠.				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A [46 MARKS]Answer **all** questions in this Section.

1. Standard electrode potentials for some half-cell reactions are given	below.
(i) $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn_{(s)} - 0.76(v)$	
(ii) $2 \text{ Mn } O_{2 (s)} + H_2 O_{(L)} + 2e^- \longrightarrow \text{Mn}_2 O_{3(s)} + 2OH^{(aq)} + 0.74(v)$	·)
(a) Write the cell notation of the cell formed when the half cell (i) and (ii) are
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(b)Write the overall cell reaction. (1½ ma	ırks)
(1½ ma	• • • • • • • • • • • • • • • • • • • •
	••••••
	•••••••
(c) Calculate the E.M.F of the cell.	arks)
•••••••••••••••••••••••••••••••••••••••	
(d) State whether the reaction is feasible or not. Give a reason for your and (1 ma	

	•••••
*	

predominant.	ine product that is
(i) CH_3	(1½marks)
HCl HCl	
Name the product	
(ii) CH ₃ COBr/ NaOH (aq) Reflux Name the product	(1½ marks)
Name the product	
(b) Write the mechanism for the reaction in (ii).	(1½ marks)
······································	
3. State what would be observed and in each case write the reaction that takes place when acidified Potassium Mangis reacted with;(i) Sulphur dioxide gas.Observation	
Equation	

(ii) Aqueous Potassium iodide. Observation	(2½ mark
Equation	
4. (a) Write; (i)Equation for ionsiation of bromoethanoic acid in water.	(1½ marks)
(ii)The expression for the acid dissociation constant.	(½ marks)
 (b) The molar conductivity of nitric acid, sodium bromoethanoate nitrate are 421, 61.2 and 89.3Ω-2cm2mol-1 respectively at infir Calculate the; (i) Molar conductivity at infinite dilution of bromoethanoic acid. 	e and sodium nite dilution.
(ii) Acid dissociation constant Ka, of a 0.1 Mbromoethanoic acid (The electrolytic conductivity of bromoethamic acid is 4.38 ×	solution. 10 ⁻³ Ω ⁻¹ cm ⁻¹). (3marks)

	······································				
5. (a) State the oxi		ate of the cent ach case give t			
					½ marks)
Complex ion	Oxidati	on state of cen	itral atom	Name of cor	nplex ion
Co (NH ₃) ₄ Cl]+					
Cu Br ₄ (H ₂ O) ₂] ²⁻					
Zn(OH) ₄ 2-					
b) Explain why tr	ansition r		mplex ions.		(02 mark
. Write equation	s to show	how the follow	ing convers	sions can be	effected.
(a) H ₂ C=CH ₂	to CH	I ₃ CONH ₂		(3 m	arks)
		24			

(b) CH ₃ CHO to CH ₃ COOCH ₂ CH ₃ .	(2½ mark
7. (a) State Le chatelier's principle.	(1 mark)
(b) Hydrogen and iodine react according to the following equat $H_{2(g)}+I_{2(g)}$ \longrightarrow $2HI_{(g)}$ $\Delta H=(^{+}Ve)$	ion.
State what would happen to the position of equilibrium when; (i) Temperature is lowered	
(ii) Pressure is increased	(½ mark)
(c) When Molar quantities of hydrogen and iodine are reacted in a at 500°c and 10 atmospheres. The equilibrium mixture was for 1.6 moles of hydrogen iodide. Calculate the equilibrium constant K _P for the reaction at 500°c	und to contain

 Explain the following observations; Silicon (VI) oxide is a solid at room temperature whereas carbon dioxide is gas at room temperature.
(b) Ammonium nitrate is readily soluble in water even though the standard enthalpy of solution has a positive value. (3 mas
;
9. 30g of compound Y depressed the freezing point of 50g of water by 6.2°c. (a) Calculate the relative molecular mass of y; (3 marks $(K_f = 1.86$ °C per 1000g of water)
CHINNASE Injust Mark Evaminations 2010

(b) The empirical formula of Y is CH ₂ O. Determine its molecular fo	(01 mark)
(c) Write equations to show how Y can be converted to chlorometha	

SECTION B: (54 MARKS)
Answer any six questions from this section.

10. The figure below shows the melting points of the elements in period 3 of the periodic table.

Explain each of the following observations (i)Magnesium has higher melting point than Sodium.	(3 marks)
(ii) Phosphorous has a larger and the second state of the second s	
(ii) Phosphorous has a lower melting point than sulphur.	(3 marks)
(iii) Silicon has the highest melting point.	(3 marks)
	······
s	
•	
11. A compound R contains 63.69% lead, 14.77% carbon, 1.859 the rest being oxygen.	% hydrogen and
(a) Calculate the empirical formula of R.	(2½ marks)

(b) A 2% aqueous solution of R freezes at -0.14°C. Determine formula of R.	ne the molecular (4½ marks)
······································	
(c) R reacts with aqueous iron (III) chloride solution to give and a white solid.	
(i) Identify R.	(½ mark)
(ii)Write equation for reaction that takes place.	(1½ marks)
······································	
	~•
12. (a) Write equations to show how each of the following chelements of the periodic table can be prepared.	nlorides of group (IV)
(i) Carbon tetrachloride.	(1½ marks)
(ii) Lead (II) Chloride.	(1½marks)
(iii) Lead (IV) chloride.	(1½ marks)
	* The sec of

(b) Compare the thermal stability of carbon tetrachloride and lea (Include equation for the reactions if any).	d (IV) chloride. 2½ marks)
c) Lead (IV) chloride is covalent whereas lead (II) chloride is ionic observation.	e. Explain this (02 marks)
13. Complete the following reactions and in each case write the acmechanism leading to the formation of the major product. (a) $CH_3 - C \equiv CH + CH_3Br = \frac{Na}{liquid NH_3}$	ccepted (4 marks)
(b) $O = NH_2OH = Reflux$	(5 marks)
@UNNASE Joint Mock Examinations 2019	Page 11

14. Describe the reaction(s) between chlorine and;	
(a) Benzene	(41/)
	(4½ marks)
	•••••••••••••••••••••••••••••••••••••••
	••••••
(b) Sodium hydroxide	
(b) Codium Hydroxide	(4½ marks)
	,

15. Silver carbonate is sparingly soluble in water. Write;	(1½ marks)
(i) Equation for solubility of silver carbonate in water.	(2,2,,
(ii) The expression for the solubility product for silver carbonate.	(1 mark)
(b)The solubility product for silver carbonate at 20°c is 8×10-12 m	ıol³dm-9.
Calculate the; (i) Solubility of silver carbonate in water in moldm ⁻³ at 20 ^o c	(2 marks)
5	
(ii) Mass of silver carbonate precipitated in a 0.1M aqueous solut potassium carbonate.	ion of (3 marks)
	•••••••
	••••••
	••••••

(c) State what would happen to the solubility of silver carbonate when aqueo ammonia is added to the solution in b(i). Give a reason for your answer.
(1½ mar
(= × mar
·
16. Oxygen diffused through a porous plug in 1.3 times than an alkyne y. (a) (i) Calculate the formula mass of Y. (2 marks)
(ii)Determine the molecular formula of Y. (1½ marks)
(b) Write the formulae and names of all possible isomers of Y. (2 marks)

		• • • • • • • • • • • • • • • • • • • •				(1 ma	ırk)
(ii) Write equations to sl							
		• • • • • • • • • • • • • • • • • • • •		······································			
-							
,							
17. (a) (i) State the distr							
(ii) Under which cond							
(b) The table below show at equilibrium in moldm		centration	of succ	inic acio	in eth	er and v	vater
Experiment number	1	2	3	4	5,	6	
[succinic acid] water	0.023	0.028	0.036	0.044	0.052	0.055	
[succinic acid] Ether	0.15	0.18	0.24	0.30	0.36	0.38	

(i) Plot a graph of [succinic acid] in ether against [succinic acid] in v(ii) Use the graph to determine the distribution constant of succinic between Ether and water.	acid (1 mark)
(c) 100cm ³ of ether was shaken with an aqueous solution containing succinic acid per dm ³ of solution. Calculate the mass of succinic acid that remained in the aqueous lateral (2½ m	g 18g of yer. aarks)
(d) State one application of the distribution constant. (1/2 ma	•