Inlever opdracht 3

Luc Veldhuis

20 maart 2017

- 1. Zij $n \geq 2$ en $G = \mathbb{Z}/n\mathbb{Z}$, een groep onder optelling.
 - (a) Bewijs dat voor elke \overline{a} in $\mathbb{Z}/n\mathbb{Z}$ de afbeelding $\phi_{\overline{a}}: G \to G$ met $\phi_{\overline{a}}(\overline{x}) = \overline{a} \cdot \overline{x}$ een homomorfisme is.

De functie $\phi_{\overline{a}}$ is een homomorfisme als geldt dat $\phi_{\overline{a}}(\overline{x}\overline{y}) = \phi(\overline{x})_{\overline{a}}\phi(\overline{y})_{\overline{a}} \ \forall \overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z}$ met $n \geq 2$

Omdat \overline{G} een groep is onder optelling, betekend dit dat $\overline{xy} = \overline{x+y} = \overline{x} + \overline{y}$. De laatste stap volgt uit definitie van additie op integers modulo n. Dit geeft: $\phi_{\overline{a}}(\overline{xy}) = \overline{a \cdot xy} = \overline{a \cdot (x+y)} = \overline{a \cdot (x+y)} = \overline{a \cdot x} + \overline{a \cdot y} = \overline{a \cdot x} + \overline{a \cdot y} = \overline{a \cdot \overline{x}} + \overline{a \cdot \overline{y}} = \phi_{\overline{a}}(\overline{x})\phi_{\overline{a}}(\overline{y})$ Dus $\phi_{\overline{a}}(\overline{xy}) = \phi_{\overline{a}}(\overline{x})\phi_{\overline{a}}(\overline{y})$ en dus is $\phi_{\overline{a}}$ een homomorfisme.

(b) Toon aan dat $\phi_{\overline{a}} = \phi_{\overline{b}}$ dan en slechts dan als $\overline{a} = \overline{b}$.

Bewijs '⇐':

We hebben dat $\overline{a} = \overline{b}$. Dan hebben we voor elke $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$, dat $\phi_{\overline{a}}(\overline{x}) = \overline{a} \cdot \overline{x} = \overline{b} \cdot \overline{x} = \phi_{\overline{b}}(\overline{x})$.

Bewijs ' \Rightarrow ':

We hebben dat $\phi_{\overline{a}}(\overline{x}) = \overline{a} \cdot \overline{x} = \overline{b} \cdot \overline{x} = \phi_{\overline{b}}(\overline{x}).$

Dus $\overline{a} \cdot \overline{x} = \overline{b} \cdot \overline{x}$. Omdat dit moet gelden voor elke $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$, geldt dit ook voor $\overline{1}$. Dit geeft

$$\overline{a} \cdot \overline{x} = \overline{b} \cdot \overline{x}$$

$$\overline{a} \cdot \overline{1} = \overline{b} \cdot \overline{1}$$

$$\overline{a} \cdot \overline{1} = \overline{b} \cdot \overline{1}$$

$$\overline{a} = \overline{b}$$

(c) Laat zien dat elk homomorfisme $\psi: G \to G$ gelijk is aan een $\phi_{\overline{a}}$. (Aanwijzing: waarom wordt ψ volkomen bepaald door $\psi(\overline{1})$?)

We weten dat als ψ een homomorfisme is, moet gelden dat $\psi(\overline{0}) = \overline{0}$.

We stellen nu dat $\psi(\overline{1}) = \overline{a}$

Omdat G een groep is onder optelling, weten we dat $\overline{1} + \overline{1} = \overline{11} \in G$.

We gaan inductie gebruiken om te bewijzen dat ψ gelijk is aan een $\phi_{\overline{a}}$.

We willen eerst laten zien dat voor elke rest klasse k in $\mathbb{Z}/n\mathbb{Z}$, $k \geq \overline{1}$ we $\psi(k)$ kunnen schrijven als $\underbrace{\psi(\overline{1})\dots\psi(\overline{1})}_{k}$

Basis stap:
$$\psi(\overline{1}) = \psi(\overline{1})$$

Inductie hypothese:
$$\psi(\overline{k}) = \underbrace{\psi(\overline{1}) \dots \psi(\overline{1})}_{k}$$

Bewijs:
$$\psi(\overline{k+1}) = \psi(\overline{k1}) = \psi(\overline{k})\psi(\overline{1}) = \underbrace{\psi(\overline{1})\dots\psi(\overline{1})}_{k}\psi(\overline{1}) = \underbrace{\psi(\overline{1})\dots\psi(\overline{1})}_{k+1}$$

Ook willen we laten zien dat $\overline{b} \cdot \overline{c} = \underline{\overline{b} \dots \overline{b}}$

Basis stap:
$$\overline{b}\overline{1} = \overline{b}$$

Basis stap:
$$b1 = b$$

Inductie hypothese: $\bar{b} \cdot \bar{c} = \underline{\bar{b} \dots \bar{b}}$

Bewijs:
$$\overline{b} \cdot \overline{c+1} = \overline{b \cdot (c+1)} \stackrel{\stackrel{\circ}{=}}{=} \overline{b \cdot c + b \cdot 1} = (\overline{b \cdot c})(\overline{b \cdot 1}) = \underline{\overline{b} \dots \overline{b}}_{c} \overline{b} = \underline{\overline{b} \dots \overline{b}}_{c+1}$$

Omdat we hebben aangenomen dat $\psi(\overline{1})=\overline{a}$ krijgen we nu $\forall \overline{x}\in G,\ \overline{x}\geq \overline{1}$ dat $\psi(\overline{x}) = \underbrace{\psi(\overline{1}) \dots \psi(\overline{1})}_{x} = \underbrace{\overline{a} \dots \overline{a}}_{x} = \overline{a} \cdot \overline{x} = \phi_{\overline{a}}(\overline{x}).$

Als
$$\overline{x} = \overline{0}$$
, dan geldt $\psi(\overline{0}) = \overline{0} = \phi_{\overline{a}}(\overline{0})$.

Dus als we $\overline{a} = \psi(\overline{1})$ kiezen, dan geldt dat $\phi_{\overline{a}}(\overline{x}) = \psi(\overline{x}) \ \forall \overline{x} \in G$