

Fermi Estimation (Breakdown of Problem Statement)

We are a team working under a Bio-Tech Startup going to launch its Home Check-Up Service with Online Booking offering the following initial services:

- 1. Full Body Check-Up with a Bio-Tech Device based on Blood Samples
- 2. Online Health Techs offering
 - i. Diabetes check-up device
 - ii. Blood Pressure check-up device
 - iii. Vitamins deficiency check-up device

We have to analyse Medical Market in India with respect to the given problem statement using Segmentation analysis and come up with a feasible strategy to enter the market, targeting the segments most likely to use their product in terms of Geographic, Demographic, Psychographic, Behavioural.

Data Sources (Data Collection)

The quality of empirical data is critical for developing a valid segmentation solution. Organizations collect data to make appropriate evaluation of their existing consumer base, their market reputation and public opinion, market trends, customer preferences and competitors. Empirical data for segmentation studies can come from a range of sources:

- from survey studies
- from observations such as scanner data where purchases are recorded
- loyalty programs
- experimental studies

We have datasets from government sites, free data warehouses and Kaggle. Some of the sites we have collected our data from are noted below:

- https://data.mendeley.com/
- https://www.ieee.org/
- https://www.kaggle.com/

Libraries Used (Python Modules)

NumPy - for computational math
Pandas - for working on dataframes
Seaborn - for visualizing relations and statistics of data
matplotlib.pyplot - for visualizing relations and statistics of data

Data Pre-processing (Feature Engineering)

Diabetes Datasets Summery

Bangladesh_UCI_Diabetes_Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 520 entries, 0 to 519
Data columns (total 17 columns):

		/	
#	Column	Non-Null Count	Dtype
0	Age	520 non-null	int64
1	Gender	520 non-null	object
2	Polyuria	520 non-null	object
3	Polydipsia	520 non-null	object
4	sudden weight loss	520 non-null	object
5	weakness	520 non-null	object
6	Polyphagia	520 non-null	object
7	Genital thrush	520 non-null	object
8	visual blurring	520 non-null	object
9	Itching	520 non-null	object
10	Irritability	520 non-null	object
11	delayed healing	520 non-null	object
12	partial paresis	520 non-null	object
13	muscle stiffness	520 non-null	object
14	Alopecia	520 non-null	object
15	Obesity	520 non-null	object
16	class	520 non-null	object

dtypes: int64(1), object(16)
memory usage: 69.2+ KB

Logs -

- First, we extracted only useful columns:
 'Age', 'Gender', 'Polyuria', 'Polydipsia',
 'Polyphagia', 'partial paresis',' Alopecia',
 'Obesity', 'class'.
- Then we changed all the object columns to numerical, such that we can perform segmentation on them
- Then we removed outliers present in 'Age' column.

India_Diabetes_Dataset_2019

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 952 entries, 0 to 951
Data columns (total 18 columns):

Data	COTUMNIS (COCAT TO	COTUMNIS).		
#	Column	Non-Null Count	Dtype	
0	Age	952 non-null	object	
1	Gender	952 non-null	object	
2	Family_Diabetes	952 non-null	object	
3	highBP	952 non-null	object	
4	PhysicallyActive	952 non-null	object	
5	BMI	948 non-null	float64	
6	Smoking	952 non-null	object	
7	Alcohol	952 non-null	object	
8	Sleep	952 non-null	int64	
9	SoundSleep	952 non-null	int64	
10	RegularMedicine	952 non-null	object	
11	JunkFood	952 non-null	object	
12	Stress	952 non-null	object	
13	BPLevel	952 non-null	object	
14	Pregancies	910 non-null	float64	
15	Pdiabetes	951 non-null	object	
16	UriationFreq	952 non-null	object	
17	Diabetic	951 non-null	object	
<pre>dtypes: float64(2), int64(2), object(14)</pre>				

memory usage: 134.0+ KB

Logs -

- First, we removed Rows containing Null Values.
- Then we extracted only useful columns: 'Age', 'Gender', 'Family_Diabetes',' highBP', 'Smoking',' Alcohol','Diabetic',' BMI', 'Stress', 'BPLevel', 'UriationFreq'.
- Then we changed all the object columns to numerical, such that we can perform segmentation on them
- We added new features like: obese_meter
- Then we removed outliers present in 'BMI' column.

North India Health Data 500

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Birth Age(yrs)	500 non-null	int64
1	Height(cms)	500 non-null	float64
2	Gender	500 non-null	int64
3	Weight(kg)	500 non-null	float64
4	Body Fat	500 non-null	float64
5	Visceral Fat	500 non-null	float64
6	Skeleton Muscle(%age)	500 non-null	float64
7	Body Age(yrs)	500 non-null	int64
8	RM(Kcal)	500 non-null	int64
9	BMI	500 non-null	float64
10	Systolic BP	500 non-null	int64
11	Diasttolic BP	500 non-null	int64
12	Pulse	500 non-null	int64
13	Suger Fasting	500 non-null	int64
14	Sugar PP	500 non-null	int64
15	Waist(cms)	500 non-null	float64

dtypes: float64(7), int64(9)
memory usage: 62.6 KB

Logs -

- First, we removed all unnecessary columns: 'Height(cms)','Skeleton Muscle(%age)','Body Age(yrs)','Waist(cms)','RM(Kcal)',
- Then we changed all the object columns to numerical, such that we can perform segmentation on them
- We added new features like: obese_meter, hypertension_meter, bloodsugar_meter
- Then we removed outliers present in 'Birth Age(yrs)', 'Weight(kg)', 'Body Fat', 'Sugar PP' columns.

Pima Diabetes Database

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	Pregnancies	768 non-null	int64	
1	Glucose	768 non-null	int64	
2	BloodPressure	768 non-null	int64	
3	SkinThickness	768 non-null	int64	
4	Insulin	768 non-null	int64	
5	BMI	768 non-null	float64	
6	DiabetesPedigreeFunction	768 non-null	float64	
7	Age	768 non-null	int64	
8	Outcome	768 non-null	int64	
dtypos: float64(2) int64(7)				

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

Logs -

- First, we removed all unnecessary columns:
 - 'Pregnancies','SkinThickness','DiabetesPed igreeFunction'.
- We added new features like: obese_meter, hypertension_meter, bloodsugar_meter
- Then we removed outliers present in 'Glucose', 'BloodPressure', 'Insulin', 'BMI', 'A ge' columns.

Hypertension Datasets Summery

North_India_Health_Data_500

We have already Preprocessed this dataset above, so we use the preprocessed version of this dataset.

HDHI Admission Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15757 entries, 0 to 15756
Data columns (total 56 columns):

Data	COTUMITS (COCA	1 50	COTUMNIS).		
#	Column			Non-Null Count	Dtype
0	SNO			15757 non-null	int64
1	MRD No.			15757 non-null	object
2	D.O.A			15757 non-null	object

```
D.O.D
3
                                    15757 non-null
                                                    obiect
                                                    int64
4
    AGE
                                    15757 non-null
5
    GENDER
                                    15757 non-null
                                                    object
                                    15757 non-null
6
    RURAL
                                                    object
7
    TYPE OF ADMISSION-EMERGENCY/OPD 15757 non-null
8
    month year
                                    15757 non-null
                                                    object
    DURATION OF STAY
9
                                    15757 non-null
                                                    int64
10
    duration of intensive unit stay 15757 non-null
                                                    int64
11
                                    15757 non-null
                                                    object
    SMOKING
                                    15757 non-null
12
                                                    int64
13 ALCOHOL
                                    15757 non-null int64
14
    DM
                                    15757 non-null
                                                    int64
15 HTN
                                    15757 non-null int64
    CAD
16
                                    15757 non-null int64
    PRIOR CMP
                                                    int64
17
                                    15757 non-null
18
    CKD
                                    15757 non-null
                                                    int64
19 HB
                                    15501 non-null float64
20
    TLC
                                    15467 non-null
                                                    float64
21 PLATFLETS
                                    15463 non-null float64
    GLUCOSE
                                    14812 non-null float64
                                                    float64
23
    UREA
                                    15513 non-null
24
    CREATININE
                                    15506 non-null
                                                    float64
25
    BNP
                                    6676 non-null
                                                    float64
26
    RAISED CARDIAC ENZYMES
                                    15757 non-null
                                                    int64
27
                                    14158 non-null
                                                    float64
28 SEVERE ANAEMIA
                                    15757 non-null int64
29
    ANAEMIA
                                    15757 non-null
                                                    int64
30
    STABLE ANGINA
                                    15757 non-null
                                                    int64
                                    15757 non-null
    STEMI
32
                                    15757 non-null
                                                    int64
    ATYPICAL CHEST PAIN
33
                                    15757 non-null
                                                    int64
34 HEART FAILURE
                                    15757 non-null int64
35
    HFREF
                                    15757 non-null
                                                    int64
36 HENEF
                                    15757 non-null
                                                    int64
    VALVULAR
37
                                    15757 non-null
38
    CHB
                                    15757 non-null
                                                    int64
39
    555
                                    15757 non-null
                                                    int64
40 AKI
                                    15757 non-null int64
    CVA INFRACT
41
                                    15757 non-null int64
42
    CVA BLEED
                                    15757 non-null
                                                    int64
43 AF
                                    15757 non-null
44
    VT
                                    15757 non-null
                                                    int64
45
    PSVT
                                    15757 non-null
                                                    int64
46 CONGENITAL
                                    15757 non-null
                                                    int64
47
    UTI
                                    15757 non-null
                                                    int64
48 NEURO CARDIOGENIC SYNCOPE
                                    15757 non-null
                                                    int64
    ORTHOSTATIC
                                    15757 non-null
    INFECTIVE ENDOCARDITIS
50
                                                    int64
                                    15757 non-null
51 DVT
                                    15757 non-null
                                                    int64
52 CARDIOGENIC SHOCK
                                    15757 non-null int64
53
    SHOCK
                                    15757 non-null int64
54
    PULMONARY EMBOLISM
                                    15757 non-null
                                                    int64
55 CHEST INFECTION
                                    15757 non-null object
dtypes: float64(8), int64(39), object(9)
```

Logs -

- First we removed all unnecessary columns: 'SNO', 'MRD No.', 'D.O.A', 'D.O.D', 'TYPE OF ADMISSION-EMERGENCY/OPD', 'month year', 'DURATION OF STAY', 'duration of intensive unit stay', 'OUTCOME','SHOCK','PULMONARY EMBOLISM', 'CHEST INFECTION','UTI', 'NEURO CARDIOGENIC SYNCOPE', 'ORTHOSTATIC','INFECTIVE ENDOCARDITIS', 'DVT', 'AKI', 'CVA INFRACT', 'CVA BLEED', 'AF', 'VT', 'PSVT','ACS','SEVERE ANAEMIA', 'ANAEMIA', 'EF', 'CREATININE', 'CKD', ' STABLE ANGINA', 'ATYPICAL CHEST PAIN','CONGENITAL','UREA','TLC','P LATELETS'
- Then we removed all rows containing null values.
- We added new features like heart_disease, by combining all columns of heart diseases.
- Then we removed outliers present in 'AGE','HB','GLUCOSE' columns.

Cardiovascular Disease Datasets Summery

CardioVascular Disease Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):

memory usage: 6.7+ MB

Data	COIUMNIS (COCAI 14	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	patientid	1000 non-null	int64
1	age	1000 non-null	int64
2	gender	1000 non-null	int64
3	chestpain	1000 non-null	int64
4	restingBP	1000 non-null	int64
5	serumcholestrol	1000 non-null	int64

6	fastingbloodsugar	1000 non-nu	ull int64	
7	restingrelectro	1000 non-nu	ull int64	
8	maxheartrate	1000 non-nu	ull int64	
9	exerciseangia	1000 non-nu	ull int64	
10	oldpeak	1000 non-nu	ıll float64	
11	slope	1000 non-nu	ull int64	
12	noofmajorvessels	1000 non-nu	ıll int64	
13	target	1000 non-nu	ıll int64	
dtyp	es: float64(1), int	64(13)		
memory usage: 109.5 KB				

Logs -

- We removed all unnecessary columns:
 'patientid','exerciseangia', 'oldpeak', 'slope',
 'noofmajorvessels','chestpain'.
- The dataset is already clean so we didn't require further pre-processing.

Data Analysis (Visualization)

Diabetes Datasets Analysis

Bangladesh_UCI_Diabetes_Dataset

We analysed the data after splitting the dataset into diabetic and non-diabetic patients. The following graphs are highlights of the analysis:

The mean age for people suffering from diabetes is found to be : 48.58. From the box plot it is evident that the Age group suffering from diabetes is : 39 - 57 years.

Its seen that among people suffering from Diabetes majority of them suffer from:

Polyuria (Excessive urination): 76 %

Polydisia (Excess thirst): 70 %

Polyphagia (Excessive hunger): 59 %

partial paresis_Pie_Chart_Diabetic

60% of Diabetic Patients are also seen to be suffering from Partial Paresis. (Incomplete Paralysis)

We have removed all those features which are irrelevant (and) or non-related with the disease & analysed only those features which can be medically examined.

India_Diabetes_Dataset_2019

We analysed the data after splitting the dataset into diabetic and non-diabetic patients. The following graphs are highlights of the analysis:

The mean BMI for people suffering from diabetes is found to be : 26.21. From the box plot it is evident that the BMI Range suffering from diabetes is : 23 - 30, which says a lot of them are overweight.

Gender_pie_chart_of_Diabetic_patients

Family_Diabetes_pie_chart_of_Diabetic_patients

Its seen that Male (60%) are more likely to suffer diabetes than females. And also if someone's family has a diabetes background then they are 67% more likely to suffer from diabetes.

Age_Distribution_Diabetic_Patients

Age group 50-59 and 60+ are majority who suffer from diabetes in this dataset.

We have removed all those features which are irrelevant (and) or non-related with the disease & analysed only those features which can be medically examined.

North_India_Health_Data_500

We analysed the data after splitting the dataset into Normal and Pre High Blood Sugar & High Blood Sugar patients. The following graphs are highlights of the analysis:

The mean age for people suffering from Pre High Blood Sugar is found to be: 37.25. From the box plot it is evident that the Age group suffering from Pre High Blood Sugar is: 28 – 45 years.

The mean age for people suffering from High Blood Sugar is found to be : 38.23. From the box plot it is evident that the Age group suffering from High Blood Sugar is : 30 - 44 years.

In this dataset the Age group suffering from diabetes is quite young compared to other datasets.

obese meter of High Blood Sugar hypertension meter of High Blood Sugar

From above Pie charts its clear that:

- 92% of High Blood Sugar Patients are either Overweight or Obese
- 85 % of High Blood Sugar Patients suffer from Hypertension

We have removed all those features which are irrelevant (and) or non-related with the disease & analysed only those features which can be medically examined.

Pima_Diabetes_Database

We analysed the data after splitting the dataset into diabetic and non-diabetic patients. The following graphs are highlights of the analysis:

Diabetic

Non_Diabetic

The mean age for people suffering from diabetes is found to be : 36.86. From the box plot it is evident that the Age group suffering from diabetes is : 29 - 44 years.

It represents the middle aged group (working group).

Obese 80.27% Healthy Overweight

It's Observed that 80% of diabetic patients are obese and 17% are overweight. So Diabetic Patients are also patients of obesity.

We have removed all those features which are irrelevant (and) or non-related with the disease & analysed only those features which can be medically examined.

Hypertension Datasets Analysis

North India Health Data 500

We analysed the data after splitting the dataset into Hypertension, Pre hypertension and normal patients. The following graphs are highlights of the analysis:

The mean age for people suffering from Pre Hypertension is found to be : 31.21. From the box plot it is evident that the Age group suffering from Pre Hypertension is : 21 - 42 years.

The mean age for people suffering from Hypertension is found to be : 38.28. From the box plot it is evident that the Age group suffering from Hypertension is : 30 - 45 years.

From above pie charts it's clear that:

- Male (57 %) are more prone to Hypertension
- Overweight (54%) and Obese (38%) patients frequently suffer from Hypertension
- Patients with High Blood Sugar (67%) also suffer from Hypertension

We have removed all those features which are irrelevant (and) or non-related with the disease & analysed only those features which can be medically examined.

HDHI Admission Dataset

We analysed the data after splitting the dataset into hypertension and normal patients. The following graphs are highlights of the analysis:

The mean age for people suffering from hypertension is found to be : 64.34. From the box plot it is evident that the Age group suffering from hypertension is : 57 - 72 years.

From the pie charts it's clear that:

- Male (60%) are more prone to Hypertension
- People from Urban areas are 78% more likely to get Hypertension.

We have removed all those features which are irrelevant (and) or non-related with the disease & analysed only those features which can be medically examined.

Cardiovascular Disease Datasets Analysis

CardioVascular Disease Dataset

We analysed the data after splitting the dataset into Heart Patients and Normal Patients. The following graphs are highlights of the analysis:

The mean age for people suffering from heart disease is found to be: 49.36. From the box plot it is evident that the Age group suffering from heart disease is: 35 - 63 years.

The mean Resting BP for people suffering from heart disease is found to be: 164.04. From the box plot it is evident that the Resting BP range suffering from heart disease is: 143 - 187. This implies people suffering from heart diseases have high Resting BP.

The mean heart rate for people suffering from heart disease is found to be : 152.11. From the box plot it is evident that the heart rate range suffering from heart disease is : 133 - 175. This implies people suffering from heart diseases tend to have high heart rate.

gender_Pie_Chart_heart_patients

From the pie chart it's clear that there are more Male (77%) heart patients in the dataset.

Segment Extraction (K-Means Clustering)

Diabetes Datasets Segmentation

Bangladesh_UCI_Diabetes_Dataset

It is a scatter plot of Principal_component_1 Vs Principal_component_2 of the dataset.

Number of Clusters = 2

Cluster_1: (Mostly Non-Diabetic Patients)

It contains 14.87% of all diabetic patients in the whole dataset. Means it is the cluster of majorly non-diabetic patients.

The Age distribution is: mean Age = 45.97, target range = 37 - 54

Cluster_2 : (Diabetic Patients)

It contains 85.12% of all diabetic patients in the whole dataset. Means it is the cluster of Diabetic patients.

The Age distribution is : mean Age = 49.42, target range = 40 - 57

India_Diabetes_Dataset_2019

It is a scatter plot of Principal_component_1 Vs Principal_component_2 of the dataset.

Number of Clusters = 2

Cluster_1: (Diabetic Patients)

It contains 94.04% of all diabetic patients in the whole dataset. Means it is the cluster of Diabetic patients.

Age distribution : 43% are 60+ and 29% are between 50 - 59, take up the majority. BP Level distribution : 60% of the people in cluster suffer from High Blood Pressure.

Cluster_2 : (Non-Diabetic Patients)

It contains 5.95% of all diabetic patients in the whole dataset. Means it is the cluster of Non-Diabetic patients.

Age distribution: 73.21% are less than 40 years old, take up the majority.

BP Level distribution: 91% of the people in cluster suffer from Pre High Blood Pressure.

North_India_Health_Data_500

It is a scatter plot of Principal_component_1 Vs Principal_component_2 of the dataset.

Number of Clusters = 2

Cluster_1: (Healthy Patients)

It contains 85% of all Normal Blood Sugar Patients & 97.64% of all Normal Blood Pressure Patients in the whole dataset. Means it is the cluster of Healthy patients.

Age distribution:

- Mean = 27
- Target range = 20 33

Pulse distribution:

- Mean = 82.26
- Target range = 73 90

Weight: 71% of the population has Normal Weight.

Cluster_2: (Diabetes & Hypertension Patients)

It contains 95.87% of all High Blood Sugar Patients & 94.53% of all High Blood Pressure Patients in the whole dataset. Means it is the cluster of Healthy patients.

Age distribution:

- Mean = 38.33
- Target range = 30 45

Pulse distribution:

- Mean = 146.21
- Target range = 87 99

Weight: 55.46% of the population are Overweight, & 39.84% of the population are Obese.

Pima_Diabetes_Database

It is a scatter plot of Principal_component_1 Vs Principal_component_2 of the dataset.

Number of Clusters = 4

Cluster_1: (Diabetic Patients)

It contains 48% of all Diabetic Patients of the hole dataset, but the cluster is a pure set of only diabetic patients. Means it is the cluster of Diabetic patients.

Age distribution:

- Mean = 38.31
- Target range = 29 47

Insulin distribution:

- Mean = 131.16
- Target range = 0 210

Glucose distribution:

- Mean = 167.50
- Target range = 152 181

Weight: 85.32% of the population are Obese.

Cluster_2 : (Non - Diabetic Patients)

It contains 0% of all Diabetic Patients of the hole dataset, and the cluster is a pure set of only non - diabetic patients. Means it is the cluster of Non - Diabetic patients.

Age distribution:

- Mean = 29.80
- Target range = 22 34

Insulin distribution:

- Mean = 62.20
- Target range = 0 101

Glucose distribution:

- Mean = 104.20
- Target range = 91 118

Weight: 51.5% of the population are Obese & 27.5% are Overweight.

Cluster_3 : (Diabetic Patients)

It contains 51.12% of all Diabetic Patients of the hole dataset, but the cluster is a pure set of only diabetic patients. Means it is the cluster of Diabetic patients.

Age distribution:

- Mean = 35.47
- Target range = 28 43

Insulin distribution:

- Mean = 68.42
- Target range = 0 140

Glucose distribution:

- Mean = 115.97
- Target range = 106 128

Weight: 75.43% of the population are Obese & 22.8% are Overweight.

Cluster_4: (Non - Diabetic Patients)

It contains 0% of all Diabetic Patients of the hole dataset, and the cluster is a pure set of only non - diabetic patients. Means it is the cluster of Non - Diabetic patients.

Age distribution:

- Mean = 35.07
- Target range = 24 41

Insulin distribution:

- Mean = 126.94
- Target range = 0 193

Glucose distribution:

- Mean = 154.25
- Target range = 144 158

Weight: 61.11% of the population are Obese & 29.62% are Overweight.

Hypertension Datasets Analysis

HDHI Admission Dataset

It is a scatter plot of Principal_component_1 Vs Principal_component_2 of the dataset.

Number of Clusters = 2

Cluster_1: (Healthy Patients)

It contains 0% of all Hypertension patients in the whole dataset. Means it is the cluster of healthy patients.

The Age distribution is: mean Age = 60.60, target range = 52 - 70

Cluster_2: (Hypertension Patients)

It contains 100% of all Hypertension patients in the whole dataset. Means it is the cluster of Hypertension patients.

The Age distribution is : mean Age = 64.34, target range = 57 - 72

Cardiovascular Disease Datasets Analysis

CardioVascular Disease Dataset

It is a scatter plot of Principal_component_1 Vs Principal_component_2 of the dataset.

Number of Clusters = 2

Cluster_1: (Healthy Patients)

It contains 0% of all Heart patients in the whole dataset. Means it is the cluster of healthy patients.

The Age distribution is:

- mean = 49.46
- target range = 35 63

The Resting BP distribution is:

- mean = 164.06
- target range = 143 187

The Serum Cholestrol distribution is:

- mean = 333.84
- target range = 241 456

The Max Heart Rate distribution is:

- mean = 152.16
- target range = 133 175

Cluster_2: (Heart Patients)

It contains 100% of all Heart patients in the whole dataset. Means it is the cluster of heart patients.

The Age distribution is:

- mean = 48.93
- target range = 32 66

The Resting BP distribution is:

- mean = 134.59
- target range = 122 142

The Serum Cholestrol distribution is:

- mean = 280.26
- target range = 230 345

The Max Heart Rate distribution is:

- mean = 136.16
- target range = 103 171

Profiling & Describing Potential Segments

Diabetes

- Diabetic Patients tend to suffer from other diseases like: Partial Paresis, Polyuria,
 Polydisia & Polyphagia.
- The Mean age across all datasets for people suffering from diabetes came out to be : 41.22 years. This indicates middle-aged and older people are more prone to diabetes.
- If a family has Diabetes roots, then the person is more likely to have diabetes.
- Male are more prone to diabetes than Females
- Large number of Overweight & Obese people suffer from Diabetes
- People suffering from Hypertension are also found to be patient of Diabetes.

Hypertension

- The Mean age across all datasets for people suffering from hypertension came out to be : 51.31 years. This indicates older people are more prone to hypertension.
- Male are more prone to hypertension than Females
- Large number of Overweight & Obese people suffer from hypertension.
- People suffering from High Blood Sugar are also found to be patient of hypertension.
- People living in urban areas are more likely to have Hypertension.

Heart Disease

- The Mean age across all datasets for people suffering from heart disease came out to be : 49.36 years. This indicates middle aged people are more prone to heart disease.
- Male are more prone to heart disease than Females
- Heart patients are observed to have high resting BP

Selection Of Target Segment

Diabetes

- Target Age: 35 60, mostly middle aged and older people.
- Target Sex : Male (dominant), Female (less dominant)
- People Suffering from Partial Paresis, Polyuria, Polydisia & Polyphagia.
- High Blood Pressure patients (systolic: 140 mm Hg or higher, diastolic: 90 mm Hg or higher)
- People with diabetic family background
- BMI > 25 (Overweight and Obese People)
- Blood Sugar Level 126 mg/dL or above.

<u>Hypertension</u>

- Target Age: 55 or Above, mostly older people.
- Target Sex : Male (dominant), Female (less dominant)
- High Blood Pressure patients (systolic: 140 mm Hg or higher, diastolic: 90 mm Hg or higher)
- People Belonging to URBAN areas

Heart Disease

- Target Age: 32 66, mostly middle aged and older people.
- Target Age: 55 or Above, mostly older people.
- Cholestrol range = 230 345

Finding Out Target Market Region (Fermi Estimation)

Diabetes

Top Highest Diabetes States in India:

- Tamil Nadu: With 13% of urban and 3.5% of rural population is suffering from diabetes.
- Punjab: 4.6% of Population suffering from diabetes.
- Karnataka: 7.5% of Population suffering from diabetes.
- Kerela: The most cases of diabetes in Kerala fall under 45 to 69 years category. That counts to 19.4% of people suffering from Diabetes.
- Gujarat: That accounts for 7.1% of diabetic cases in Gujarat for India.

Considering The Population, the most amount of diabetic patients reside in:

- Tamil Nadu (5.8 million patients)
- Karnataka (4.8million)
- Kerela (6.7 million patients)
- Gujarat (4.4 million)

The Internet User Base in:

- Tamil Nadu (93% in urban and 40% in rural) = 4.6 million Potential Customers
- Karnataka (9.3%) = 0.4 million Potential Customers
- Kerela (54%) = 3.6 million Potential Customers
- Gujarat (10%) = 0.4 million Potential Customers

Thus After all considerations the final Target market regions are:

- Tamil Nadu (93% in urban and 40% in rural) = 4.6 million Potential Customers
- **Kerela** (54%) = 3.6 million Potential Customers

Hypertension

Top Highest Hypertension States in India:

- Maharastra: 25.1% of Population suffering from hypertension.
- Andhra Pradesh: 13.3% of Population suffering from hypertension.
- Odisha: 9% of Population suffering from hypertension..
- Chhattisgarh: 8.4% of Population suffering from hypertension.
- Gujarat: 6.7% of Population suffering from hypertension.

Considering The Population, the most amount of hypertension patients reside in:

- Maharastra: 28 million patients
- Andhra Pradesh: 6.5 million patients
- Odisha: 3.9 million patients
- Gujarat: 0.4.2 million patients

The Internet User Base in:

- Maharastra (61%): 17 million Potential Customers

- Andhra Pradesh (31%): 1.2 million Potential Customers

- Odisha: (31%) : 2 million Potential Customers

- Gujarat (10%): 0.4 million Potential Customers

Thus After all considerations the final Target market region is:

- Maharastra (61%): 17 million Potential Customers

Heart Disease

Top Highest Heart Disease States in India:

- Tamil Nadu
- Punjab
- Kerela

Since we already have our target market of Diabetes in **Kerela** and **Tamil Nadu**, setting it for Heart Disease is economical and beneficial.

Vitamin Deficiency

Fig - State vs Vitamin D_deficient patients

Fig - State vs Vitamin A_deficient patients

- From above charts it is evident that Vitamin Deficiency predominantly exists in North India.
- So Potential Target Market can Include:
 - o Madhya Pradesh
 - o Punjab
 - o Jharkhand
 - o Chhatisgarh

Because these states have huge population and a lot of potential consumer.

Full Body Health Checkup

It can be included in above all suggested target markets as it is a vital part of online health service offering and can be integrated into all of the above mentioned diseases.

Customizing the Marketing Mix

Product

- 1. Full Body Check-Up with a Bio-Tech Device based on Blood Samples
- 2. Online Health Techs offering
 - i. Diabetes check-up device
 - ii. Blood Pressure check-up device
 - iii. Vitamins deficiency check-up device

Target Market

Diabetes & Heart Disease: Kerela, Tamil Nadu

Hypertension: Maharastra

Vitamin Deficiency: Any two of Madhya Pradesh, Punjab, Jharkhand, Chhatisgarh

Pricing Model

In current market full body checkup costs: Rs 1200

Daibetes, Hypertension Checkup device costs: Rs 500 – Rs 1500

Depending the quality of device and service provided by the Start Up, they can charge accordingly.

Promotion

Promotions can be done using:

- Medical shop branding
- Bus advertising
- Cab advertising
- YouTube and TV ads.

GitHub Link

https://github.com/ruck-45/Bio TEch Market Segmentation India/tree/master