

OBJECTIFS 3

- Connaître les notions de (dé)croissance, monotonie et extrema d'une fonction définie sur un intervalle. Savoir les repérer graphiquement et les relier à un tableau de variations.
- Pour une fonction affine, connaître le lien entre ses variations et le signe de son coefficient directeur.
- Connaître les variations des fonctions usuelles.

Variations

1. Croissance, décroissance

À RETENIR 99

Définition

Soit *f* une fonction définie sur un intervalle *I*. *f* est dite :

- **croissante** sur *I* si, pour tout $x, y \in I$, $x \le y \implies f(x) \le I$ f(y) (ie. lorsque x augmente, alors f(x) augmente);
- **décroissante** sur *I* si, pour tout $x, y \in I, x \le y \implies f(x) \ge I$ f(y) (ie. lorsque x augmente, alors f(x) diminue);
- **constante** sur *I* si elle garde la même valeur sur *I*;
- **monotone** sur I si f est croissante ou décroissante sur I.

Étudier les variations de f revient à déterminer comment f croît ou décroît sur I. On présente souvent ces résultats dans un tableau de variations.

EXEMPLE 9

La fonction f est décroissante sur $[0;1] \cup [3;4]$, et croissante sur [1;3]. On peut regrouper cela dans le tableau de variations ci-dessous.

Valeur de x	0	1	3	4
Variations de f	2	→ 0 —	→ 1 —	→ 0

EXERCICE 1

On a tracé la courbe représentative d'une fonction f ci-contre.

1. Dresser son tableau de variations sur l'intervalle [-2;2].

2. Extrema

À RETENIR 00

Définitions

Soit f une fonction définie sur un intervalle I.

- S'il existe $M \in \mathbb{R}$ et $a \in I$ tels que f(a) = M et $f(x) \le M$ pour tout $x \in I$, on dit que f a un **maximum** en a sur I. Ce maximum vaut alors M.
- S'il existe $m \in \mathbb{R}$ et $b \in I$ tels que f(b) = m et $f(x) \ge M$ pour tout $x \in I$, on dit que f a un **minimum** en a sur I. Ce maximum vaut alors M.

INFORMATION 6

Ainsi, le maximum de f est la plus grande valeur atteinte par cette fonction sur I; et le minimum de f est la plus petite valeur atteinte par cette fonction sur I.

EXERCICE 2

Déterminer le maximum de la fonction f de l'exercice précédent sur [-2;2].

Fonctions usuelles

1. Fonctions affines

À RETENIR 00

Propriété

Soit $f: x \mapsto ax + b$ une fonction affine telle que $a \ne 0$. Alors le tableau de variations de f dépend du signe de a.

$$Si \, a > 0$$
:

Valeur de x	$-\infty$	+∞
Variations de f	-∞	+∞

$Si \ a < 0$:

Valeur de x	$-\infty$	+∞
Variations de f	+∞	$-\infty$

EXERCICE 3

Établir le tableau de variations de la fonction $f: x \mapsto 5(x-1)$ sur [1;10].

2. Fonctions carré, cube, racine carrée, inverse

À RETENIR 00

Propriétés

1. La fonction carré est décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$. Elle admet un minimum en 0, qui vaut 0.

Valeur de x	$-\infty$	0	+∞
Variations de $x \mapsto x^2$	- ∞	0 —	+∞

2. La fonction cube est croissante sur \mathbb{R} . Elle n'a ni minimum, ni maximum sur \mathbb{R} .

Valeur de x	$-\infty$ $+\infty$
Variations de $x \mapsto x^3$	$-\infty$ $+\infty$

3. La fonction inverse est décroissante sur $]-\infty;0[$ et aussi décroissante sur $]0;+\infty[$. Elle n'a ni minimum, ni maximum sur $]-\infty;0[\cup]0;+\infty[$.

Valeur de x	$-\infty$	0	+∞
Variations de $x \mapsto \frac{1}{x}$	0 ————	+∞	→ 0

4. La fonction racine carrée est croissante sur $[0; +\infty[$. Elle admet un minimum en 0, qui vaut 0.

Valeur de x	0 +∞
Variations de $x \mapsto \sqrt{x}$	$0 \longrightarrow +\infty$

EXERCICE 4

1. Déterminer les variations de la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 4$.

2. Même question pour la fonction g définie sur $[0; +\infty[$ par $g(x) = -3\sqrt{x} + 1.$

EXERCICE 5

L'objectif de cet exercice est de démontrer que la fonction racine carrée est croissante. Soient x et y deux nombres positifs tels que $x \le y$. Il s'agit de montrer que $\sqrt{x} \le \sqrt{y}$.

1. Démontrer que $\sqrt{y} - \sqrt{x} = \frac{y-x}{\sqrt{x} + \sqrt{y}}$.

2. Que peut-on dire du signe de y - x? Et du signe de $\sqrt{x} + \sqrt{y}$?

3. Montrer que $\sqrt{y} - \sqrt{x} \ge 0$, puis conclure.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/variations-fonctions/#correction-5.