PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-351514

(43)Date of publication of application: 06.12.2002

(51)Int.CI.

G05B 19/404 B23Q 15/00 G05B 19/416 G05D 3/10

(21)Application number: 2001-153336

336 (71)Applicant :

CANON INC

(22)Date of filing:

23.05.2001

(72)Inventor:

DEGUCHI AKINOBU

(54) MANUAL OPERATION UNIT

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent position deviation of a movable shaft from occurring by making it possible to keep the acceleration and derivative acceleration of the movable shaft within an optional set range and accordingly making it possible to keep the movable shaft within the response range.

SOLUTION: Pulse strings generated by a manual handle are counted and are commanded to a controller of the movable shaft as a position command. A command with irregularities in a speed is generated because of being operated by a person. In this case, a numerical control regulates maximum acceleration and maximum derivative acceleration which can be responded by the shaft. Data are clipped so as not to command the shaft even though the manual handle inputs acceleration and derivative acceleration faster than the maximum acceleration and the maximum derivative acceleration. Change is made so that a movement command can perform smooth acceleration to command a position controller of the shaft.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

四公開特許公報(A)

(11)特許出願公開番号

特開 2 0 0 2 — 3 5 1 5 1 4 (P 2 0 0 2 — 3 5 1 5 1 4 A) (43)公開日 平成14年12月6日(2002.12.6)

(51) Int. C I. 7	識別記 号		FΙ			テーマコード(参考)
G 0 5 B	19/404		G 0 5 B	19/404	L	5H269
B 2 3 Q	15/00		B 2 3 Q	15/00	С	5H3O3
					G	
G 0 5 B	19/416		G 0 5 B	19/416	Q	
G 0 5 D	3/10		G 0 5 D	3/10	Е	
	審査請求 未請求 請求項の数 2	OL			(全6頁)	
(01) 山西平口	作品2001 152226 (D2001_152226)		(71)出願人	00000100	17	
(21)出願番号	特願2001-153336 (P2001-153336)		(11) 山城八		· ·株式会社	
(22) 山霧口	平成13年5月23日(2001.5.23)					丁目30番2号
(22) 出願日	十成15年5月25日(2001. 5. 25)		(72)発明者) H00 Hp.)
			(14) 光明省			丁目30番2号 キヤノ
				水が砂パン株式会		7] 口30田27 117
			(7.1) (A) TH (
			(74)代理人			(611夕)
			D h . (4		西山 恵三	
			トターム(室		9 AB01 BB03	
				5H3C		BB06 BB14 CC02
						GG06 GG11 HH05
					JJ01 JJ04	LL02 LL09
		}				

(54) 【発明の名称】手動操作装置

(57)【要約】

【課題】 加工装置の手動操作に用いる手動ハンドルに よる軸の駆動において、人が操作する為にハンドルの速 度ムラが発生する。速度ムラは移動する軸に対する対応 不可能な移動指令となる。軸の位置制御装置は応答が不 可能な為、位置偏差や振動を起こし不安定になる。この ような現象が起こることを防止する。

【解決手段】 手動ハンドルの発生するパルス列をカウ ントし、移動軸の制御装置に位置指令として指令する。 この時人が操作する為に速度ムラのある指令が発生す る。この場合数値制御装置において、軸の応答可能な最 大加速度及び最大加加速度を規定する。これ以上の加速 度・加加速度が手動ハンドルより入力されても軸に指令 されないように、データをクリップ。移動指令が滑らか な加速度を行うように変更し、軸の位置制御装置に指令 する。

20

【特許請求の範囲】

【請求項1】 回転角度に応じてバルス列を出力する手動バルス発生器を有し、手動バルス発生器の出力するバルス列を目標移動量に換算して可動軸を移動する数値制御の手動操作装置であって、前記バルス列と可動軸の移動量との換算比率を任意の規定値に設定する切り替え手段を有し、可動軸の移動量を前記換算比率で単位時間毎の目標指令に換算する計算手段において、目標指令が可動軸の加速度と加加速度とを任意の設定値の範囲内に納める計算手段を有することを特徴とする数値制御の手動操作装置。

【請求項2】 前記任意の加速度と加加速度が可動軸が 遅滞無く応答可能な最大加速度及び最大加加速度である ことを特徴とする請求項1に記載の数値制御の手動操作 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、加工装置の制御装置であり、特に研削、切削等の精密加工が必要な加工装置の手動操作装置に関するものである。

[0002]

【従来の技術】研削、切削等を行う精密な加工装置において、加工の準備、試し加工等で装置の可動軸を手動により移動させる機会は多く、またこの際にも精密な移動が必要である。

【0003】図3で示す様な手動装置において、手動パルス発生器3のハンドルの回転角度でパルス列を発生させる手動パルス発生器を用いた手動操作が行われる。手動パルス発生器の回転角度と可動軸の移動量との換算比率は自由に任意の換算比率に変更できるように倍率スイッチ1を設けてここで換算比率を決定し、多くの移動をさせたい場合には、換算比率の倍率を大きくし、多くの移動を少ない回転角度で必要な可動軸の移動が行われるようにする。

【0004】ここで、手動パルス発生器の回転角度と可 動軸の移動量との換算比率は可動軸の検出機構の分解能 の1パルスとの比率で表す。例えば可動軸の分解能が1 パルス=0.001 [mm] である場合、換算比率の倍 率を1~100倍の任意の整数倍とし、例えば倍率が1 00倍ならば手動パルス発生器が発生する1パルスに対 し、可動軸が100パルス=0.1[mm]移動する。 一回転 100 パルスの手動パルス発生器であれば 1 秒間 に1回転させれば、0.1 [mm/sec] の速度で可 動軸が移動する。可動軸の位置制御装置はパルス列で目 標位置を指令され移動するので、手動パルス発生器のパ ルス列から可動軸の移動量との換算は倍率スイッチの設 定に従い分周する分周器301を使用する機構である。 バルス列は分周器301でバイ率スイッチ2に従った比 率で分周され、可動軸制御装置6に送られる。可動軸制 御装置6はこの指令に従って、可動軸メカ機構7である 50 なる。

モータを使用して軸を駆動する。

[0005]

【発明が解決しようとする課題】しかしながら従来例に おいては、人が任意の速度で手動パルス発生器を回転さ せる為、回転速度に"ムラ"が発生しやすく、従って移 動軸への目標指令にもムラが発生した。特に手動パルス の回転角度から可動軸への換算比率が大きく、なおかつ 比較的ゆっくりと移動させる場合にはこの速度ムラは大 きくなる。速度ムラが発生した場合でも、従来例のよう に倍率スイッチによる換算比率の変更が分周器を用いて 行う為その速度ムラは直接可動軸の制御装置に指令さ れ、可動軸が速度ムラによる大きな加速度と加加速度の 変化に追従して移動しようとする。この時の加減速カー ブが可動軸の応答範囲を超える加速度や加加速度を発生 させる場合には可動軸が追従しえず位置偏差を生じ、最 悪の場合には位置の制御が破綻する事がある。制御不能 に陥らない場合においても位置偏差により、例えば工具 をワークの近くに移動するよう場合には位置偏差でオー バーシュートが起こると、接触事故が発生する可能性が ある。特に可動軸がエアベアリングで支持され、リニア モータで駆動するような非接触の制御対象である場合に は、摩擦による影響がないので駆動時の制限は最大速度 では無く最大加速度である場合が多く、従来の様に速度 の制限では問題が生じる。

【0006】また、加速度がモータの推力の限界を超えるような場合には、位置偏差や制御の破綻が生じ、この制限は重要である。加加速度についても、大きな加加速度の変化、特に加速度の不連続点で発生する加加速度の無限大点があるとインバルス状の衝撃が可動軸に加わる為、位置偏差や可動軸の振動につながりやすい。

[0007]

【課題を解決するための手段】本発明は、回転角度に応 じてパルス列を出力する手動パルス発生器を有し、手動 パルス発生器の出力するパルス列を目標移動量に換算し て可動軸を移動する数値制御の手動操作装置であって、 前記パルス列と可動軸の移動量との換算比率を任意の規 定値に設定する切り替え手段を有し、可動軸の移動量を 前記換算比率で単位時間毎の目標指令に換算する計算手 段において、目標指令が可動軸の加速度と加加速度とを 任意の設定値の範囲内に納める計算手段を有する構成と する事により、可動軸の加速度及び加加速度を任意の設 定範囲内に納めることが可能である為、可動軸の応答範 囲内に納めることが可能であり、可動軸の位置偏差の発 生を防ぐことができる。また、加減速による可動軸の駆 動源であるモータの負荷を一定範囲内に納めることも可 能である。更に、加速度及び加加速度を可動軸の応答可 能な最大値に規定した場合には、手動パルス発生器を用 いて、位置偏差や制御の破綻を生じることなく最大のパ フォーマンスで可動軸を素早く移動させることが可能と

【0008】また、加加速度の最大値を規定することにより、加速度の切り替わりによる可動軸へのショックを 軽減し、無用な振動が発生することを防ぐことが可能で ある。

[0009]

する。

【発明の実施の形態】手動バルス発生器 3 で発生するバルス列は 1 回転の発生バルス数が 1 0 0 であるエンコーダ内蔵の手動バルス発生器 3 で倍率スイッチ 1 の設定により倍率セレクタ 2 内の 1 バルスあたりの移動量が数値制御装置 5 に送られる。手動バルス発生器 3 から出力されたバルス列はカウンタ 4 でカウントされる。カウンタは 3 2 b i t のアップダウンカウンタで任意の一定時間 $T_c=5$ m s e c 毎にカウンタ 4 の値が読み込まれる。【0 0 1 0 】数値制御装置 5 の処理について説明する。手動モードスタート 1 0 1 で開始し、手動モードの開始時には現在の可動軸の開始時目標位置 x_n e x

【0011】103の処理において時間間隔Tcになる まで処理を待ち、T。毎にそれ以降の処理が行われる。 104の処理にて倍率セレクタ2の換算比率を読み込 む。105においてアップダウンカウンタであるカウン タ4の値を読み込む。この値はカウンタ4が手動パルス 発生器の発生したパルス数をTc間でカウントしたもの で、任意の一定時間T。毎に発生するタイミングで演算 装置がカウンタを読み込むまでのT。間のパルス数を数 値演算装置5に転送する。106において換算比率とカ ウンタの測定値からTcC毎の可動軸の移動量Sを算出 する。107において演算装置は算出された移動量 s と 前述の開始時目標位置xnextのメモリに入った値と を加算し、新たなる次回の目標位置xnextを算出す る。108においてフィルタは演算装置のプログラムで あるディジタルの 1 次ローパスフィルタ (ここではfc =5Hz)であって、目標位置xnextをフィルタリ ングし、フィルタを通した値を目標位置xxx11ter とする。このフィルタリングにより人が手動パルス発生 器を回転される場合の回転ムラにより発生するパルス列 の速度ムラを平滑化し、速度ムラの影響を軽減する。 1*

 $b_{-1} + 2c_{-1} + 3d_{-1} = b_0$

と今回の係数が与えられる。

【0015】また、最大加速度及び最大加加速度は(2)式を2階及び3階微分し、それぞれ、

$$x'' = 2 c + 6 d t$$
 . (5)

$$x'' = 6 d \cdot (6)$$

で求められる。加速度についても速度と同様に各T。毎のつなぎ目において不連続にならないことがこの点における加加速度が無限大にならない条件である。したがってつなぎ目において加速度の値が等しくする必要がある。そこで前回の補間式の係数と次回の補間式の件数を※

* 0 9 で目標位置 x r i l t e r と目標位置 x a m y から 移動量 s を算出する。

 $S = X_{filter} - X_{dmy}$ · · (1)

110において目標位置xriltorから目標位置xamyの補間計算を行う。目標位置をxとすると補間計算で規定する補間式は

 $x=a+bt+ct^2+dt^3$ ・・(2) で表す。

【0012】ここで計算された補間式は加速度及び加加速度のクリップ手段である111のクリップ判断で判断され、この補間式から算出されるt=1の時の目標位置xを113において次回の仮の目標位置xamyとなるようにメモリされ、114で補間式の係数は可動軸の位置制御装置に値が転送される。ここでTc間の処理は終了し、115で手動モードが終了していなければ再び処理は103に移る。

【0013】一方、114で転送されるコマンド及び多項式の係数は、可動軸の位置制御を行う位置制御装置に対しては同期タイミングTc=5 msec毎に(2)式で示す多項式の係数a,b,c,dの形式で目標位置及び移動のコマンドとして与えられる。ここで t はT c 時間を1とした無次元の値で $[0 \le t \le 1]$ の範囲で与えられ、位置制御装置は任意のサンプリング間隔T s=0. 1 msec毎にコマンドを与えられた時点から t=0,0.002,0.004···1の様に値をいれ算出された目標位置に可動軸を移動する。

【0014】ここで、前述の補間の係数の決定方法と112の処理の加速度及び加加速度のクリップ方法について説明する。補間式(2)式はT。間毎に計算される。この時速度は(2)式を1階微分した式、

 $x'=b+2ct+3dt^2$ ・・(3)で与えられる。ここでの補間の条件として、補間式のつなぎ目において加速度が無限大になるのを防ぐためには速度が不連続にならない事が条件である。各補間式のtの範囲が $[0 \le t \le 1]$ で前回の補間式の係数をa-1, b-1, c-1, d-1としt=1の値を算出し今回の補間式の係数を a_0 , b_0 , c_0 , d_0 でt=0としてつなぎ目の値を算出すると

· · (4)

40※前述の速度と同じように規定すると、

$$2 c_{-1} + 6 d_{-1} = 2 c_{0}$$
 · · (7)

【0016】前述したように t の範囲は $[0 \le t \le 1]$ としているので (5) 式で示す加速度の最大値は t = 0 または t = 1 の場合である。しかし、 t = 0 の場合には前回の補間式の t = 1 と同じ点で前回の補間において加速度のクリップは行われているので加速度の最大値の設定値を A_{max} とすると、

 $|A_{max}| \le |2c+6d| \quad [t=1] \quad \cdot \cdot \quad (8)$

を満たす加速度を与える、また、加加速度の最大値も規定されている。ここで仮に加加速度の規定最大値がJ

maxとすると(6)式より

* | J_{max} | ≦ | 3 d | ··(9) となるようにdの値を調整する。

【0017】ここで、今回の補間式の係数を求めると

となるのでd0の与え方のみ考慮すればよい。

※x 1 とすると

【0018】今回の補間式においてt=1の目標位置を※

$$d_0 = x_1 - (a_{-1} + 2b_{-1} + 4c_{-1} + 10d_{-1})$$
 ·· (13)

20

となるので、(7)(8)式の条件に合う場合はそのままの係数が可動軸制御装置に与えられる。もしも、条件を満たさない(7)、(8)式より J_{max} , A_{max} から d_o が算出される。しかしながら、ここで J_{max} , A_{max} から算出された d_o により算出される x_1 は本当の x_1 とは異なる加速度と加加速度をクリップされた補間式により算出された目標位置となる。

【0019】ここで計算された x_1 を114のように仮の目標位置 X_{dmx} に入れる。

【0020】以上の作業をT。間隔で繰り返す。

【0021】 [他の形態の形態例] 前述の形態例と数値 演算装置5内の処理が異なる。

【0022】202の処理で手動モードの開始時には現在の可動軸の開始時目標位置を次回の目標位置x next および仮の目標位置xamy としてそれぞれ別のメモリに記憶する。

【0023】203の処理で可動軸処理装置6に対する同期間隔 $T_{syn}=5\,m\,s\,e\,c\,o\,2$ 倍の一定時間 $T_c=1\,0\,m\,s\,e\,c$ 時間を設定。任意の加速度と加加速度の設定値 $A_{m\,a\,x}\cdot J_{m\,a\,x}$ から $T\,c$ 間で加速及び減速して 30ステップを行うことが可能なステップ距離 $s_{m\,a\,x}$ を算出する。

【0024】 204はタイマでありTc時間になるまで待ちTc時間と共に処理を205に移す。処理205では倍率スイッチ1でセレクトされた倍率セレクタ2の換算比率を読み込む。206ではアップダウンカウンタであるカウンタ4のTc間に手動パルス発生器3で発生したパルス数を読み込む。

【0025】207で換算比率とカウンタの測定値から T。間の可動軸の移動量snextを算出する。次に208で演算装置5は算出された移動量snext前述の 開始時目標位置xnextのメモリに入った値とを加算し、新たなる次回の目標位置xnextを算出する。また、ここで新たに更新されたxnextから現在の仮の 目標位置xamyとの差を新たなるsnextとして算出する。この処理はあとで述べる209以降の処理で前回のステップ量snextが加速度・加加速度の限界を 超えた場合のステップ量の残量を今回のステップで処理する為の処理である。

【0026】209において予め計算した5maxとs 50

noxtを比較する。比較結果snoxtがsmaxを 超えた場合には210に処理を移し、そうでない場合に は211に処理を移す。ここで210の処理でs

nox tが大きい場合には指令が加速度または加加速度 の最大値を超えているので、これを超えない最大移動量 であるSmaxを移動量として処理する。211におい ては移動量が加速度・加加速度の最大値を超えないの・ で、そのままsnextをしようとする。210,21 1においてステップ量を半分にし、加速分、減速分のス テップ量に分け、Tsyn間の移動量に分ける。212 では加速分の移動量から、位置のオフセットである係数 aを除くb, c, dを算出する。213において算出し た現在の目標位置を位置のオフセットaとして係数a~ d及び移動コマンドを可動軸制御装置6に転送する。次 に214で可動軸制御装置6との同期時間Tsynが経 過したかチェックし、経過した場合には215で減速分 の係数を算出し216で出力する。217においては今 回のステップ量を仮の目標位置xamょに加算し、目標 位置を更新する。

[0027]

【発明の効果】この発明は、以上説明したように構成されているので、可動軸の加速度及び加加速度を任意の設定範囲内に納めることが可能であり、したがって、可動軸の応答範囲内に納めることが可能であり、可動軸の位置偏差の発生を防ぐことができる。また、加減速による可動軸の駆動源であるモータの負荷を一定範囲内に納めることも可能である。更に、加速度及び加加速度を可動軸の応答可能な最大値に規定した場合には、手動バルス発生器を用いて、位置偏差や制御の破綻を生じることなく最大のパフォーマンスで可動軸を素早く移動させることが可能となる。

【0028】また、この発明にあっては、加加速度の最大値を規定することにより、加速度の切り替わりによる可動軸へのショックを軽減し、無用な振動が発生することを防ぐことが可能である。

【図面の簡単な説明】

【図1】本発明における形態例を示す図である。

【図2】本発明における他の形態例を示す図である。

【図3】従来例を示した図である。

【符号の説明】

- 1 倍率スイッチ
- 2 倍率セレクタ
- 3 手動パルス発生器
- 4 カウンタ
- 5 数值演算処理装置

- 6 可動軸制御装置
- 7 可動軸メカ機構
- 101~116 数値演算処理装置内処理ルーチン
- 201~219 数値演算処理装置内処理ルーチン
- 301 分周器

【図1】

【図2】

【図3】

