ml-mipt-advanced

Seminar 1. Embeddings, DSSM

Nikolay Karpachev 5.02.2024

Word embeddings. Evaluation

Q: How to evaluate embeddings (metric space) quality?

Word embeddings. Evaluation

Q: How to evaluate embeddings (metric space) quality?

Intrinsic quality measures

- Some specific intermediate task
- Fast to compute
- Should capture embeddings structure
- Need to ensure correlation with real-life tasks

Extrinsic quality measures

- Evaluation on actual downstream task
- Slow to compute
- Reliable

Intrinsic Evaluation

Word analogies

a:b::c:?

max cosine similarity

$$d = \underset{i}{\operatorname{argmax}} \frac{(x_b - x_a + x_c)^T x_i}{\|x_b - x_a + x_c\|}$$

Possible metrics

- accuracy over corpus
- mean position of correct answer in top-K proximal

Input	Result Produced	
Chicago: Illinois: : Houston	Texas	
Chicago: Illinois: : Philadelphia	Pennsylvania	
Chicago: Illinois:: Phoenix	Arizona	
Chicago: Illinois:: Dallas	Texas	
Chicago: Illinois:: Jacksonville	Florida	
Chicago: Illinois:: Indianapolis	Indiana	
Chicago: Illinois:: Austin	Texas	
Chicago: Illinois:: Detroit	Michigan	
Chicago: Illinois:: Memphis	Tennessee	
Chicago: Illinois:: Boston	Massachusetts	

Intrinsic Evaluation

- Synonym banks / thesauri
- Correlation with similarity judgements from humans
- Clusterization quality
- ...

DSSM (Deep Structured Semantic Model)

- shared metric space for objects
- not necessarily homogeneous
- e.g. text + images, text + audio

Any ideas?

DSSM (Deep Structured Semantic Model)

Textual data	→	etc.)	A (anchor)
Corresponding image	→	Image encoder (CNN etc.)	P (positive)
Non-correspon	→	Image encoder (CNN etc.)	N (negative)

Text encoder (word2vec PNNI

DSSM (Deep Structured Semantic Model)

Image encoder (CNN etc.)

ding image

P (positive)

N (negative)

Triplet loss (max margin loss)

Goal:
$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$

Loss:
$$\sum_{i=1}^{N} \left[\|f(x_{i}^{a}) - f(x_{i}^{p})\|_{2}^{2} - \|f(x_{i}^{a}) - f(x_{i}^{n})\|_{2}^{2} + \alpha \right]_{+}$$

DSSM Applications

- Cross-domain search (image by text)
- Intra-domain search (just like word2vec, metric space image2image, doc2doc etc.)

DSSM Applications

- Cross-domain search (image by text)
- Intra-domain search (just like word2vec, metric space image2image, doc2doc etc.)

Transfer knowledge from resource-rich domain to resource-poor

Semantic Search

- Embedding space (DSSM)
- Goal: retrieve most similar values to a given query

Q: How to retrieve most similar values by query?

Semantic Search

- Embedding space (DSSM)
- Goal: retrieve most similar values to a given query

Q: How to retrieve most similar values by query?

- Get embedding via corresponding encoder
- Cosine similarity
- Too slow

Approximate Semantic Search

 HNSW / NSW ([Hierarchical] Navigable Small World) - approximate nearest neighbour search

- Construct a graph in embeddings space [vertices == values]
- 2. Embed query, traverse graph of values by comparing current node proximity to query embedding

NSW

Search

- Pick initial graph node N
- Compute d(Q, Adj) for every neighbour
 Adj
- Adj_closest:= {A: d(Q, A) <= d(Q, Adj)
 for every Adj}</pre>
- Repeat until d(Q, N) < d(Q, Adj_closest)

NSW

Search

- Pick initial graph node N
- Compute d(Q, Adj) for every neighbour
 Adj
- Adj_closest:= {A: d(Q, A) <= d(Q, Adj)
 for every Adj}</pre>
- Repeat until d(Q, N) < d(Q, Adj_closest)

Expected closest path length: O(log n)

NSW

Graph construction

- Shuffle dataset points
- Sequentially insert
 - Link to M closest in current graph

NSW graph construction with M = 2

HNSW

Goal: Avoid dense clusters

Construction

- Build NSW graph
- With probability p, add node to next NSW layer

Search

- Start with top layer (sparse!)
- Find current layer optimum, traverse ancestor layer from retrieved node

