泛函分析期中测试解答

统计 91 董晟渤

2021年11月16日

题目 1. 设 f(x) 是 [0,1] 上的连续函数. 证明: 对任何实数 $\lambda \in \mathbb{R}$, 必存在唯一的 $u \in C([0,1])$ 满足如下形式的积分方程:

$$u(x) = f(x) + \lambda \int_0^x e^{x-s} u(s) ds.$$

解答. 在原积分方程两端同时除以 e^{-x} , 则原积分方程等价于

$$u(x)e^{-x} = f(x)e^{-x} + \lambda \int_0^x u(s)e^{-s}ds.$$

令 $v(x)=u(x)\mathrm{e}^{-x},\,g(x)=f(x)\mathrm{e}^{-x}\in C([0,1]),$ 只需证明积分方程

$$v(x) = g(x) + \lambda \int_0^x v(s) ds$$

存在唯一解 $v \in C([0,1])$. 考虑 $T: C([0,1]) \to C([0,1]), (Tv)(x) = f(x) + \lambda \int_0^x v(s) ds$, 只需验证存在 n > 1, 使得 T^n 是压缩映像. 计算得

$$d((T^{n}u)(s_{0}), (T^{n}v)(s_{0})) = \left| \lambda \int_{0}^{s_{0}} (T^{n-1}u(s_{1}) - T^{n-1}v(s_{1})) ds_{1} \right|$$

$$\leq |\lambda| \cdot \int_{0}^{s_{0}} d((T^{n-1}u)(s_{1}), (T^{n-1}v)(s_{1})) ds_{1}$$

$$\leq |\lambda|^{2} \cdot \int_{0}^{s_{0}} ds_{1} \int_{0}^{s_{1}} d((T^{n-2}u)(s_{2}), (T^{n-2}v)(s_{2})) ds_{2}$$

$$\leq \cdots$$

$$\leq |\lambda|^{n} \cdot \int_{0}^{s_{0}} ds_{1} \int_{0}^{s_{1}} ds_{2} \cdots \int_{0}^{s_{n-1}} d(u(s_{n}), v(s_{n})) ds_{n},$$

对上式取最大值得

$$d(T^{n}u, T^{n}v) = \max_{s_{0} \in [0,1]} d((T^{n}u)(s_{0}), (T^{n}v)(s_{0}))$$

$$\leq d(u, v) \cdot \int_{0}^{1} ds_{1} \int_{0}^{s_{1}} ds_{2} \cdots \int_{0}^{s_{n-1}} ds_{n}$$

$$= \frac{|\lambda|^{n}}{n!} \cdot d(u, v),$$

根据 $\frac{|\lambda|^n}{n!} \to 0$ 知, 存在 $n \ge 1$, 使得 $\frac{|\lambda|^n}{n!} < 1$, 根据压缩映像原理知, 存在 $v \in C([0,1])$, 使得 $T^n v = v$, 此时 T v = v.

题目 2. 设 $\mathscr X$ 是线性赋范空间, A 是 $\mathscr X$ 中有界的集合. 证明: A 是完全有界集当且仅 当对任何 $\varepsilon > 0$, 存在 $\mathscr X$ 的有限维子空间 M, 使得 A 中每个点与 M 的距离都小于 ε .

解答. 一方面, 设 A 是完全有界集, 对任意的 $\varepsilon > 0$, 设 A 的 ε -网为 $\{a_1, a_2, \dots, a_n\}$, 令

$$M = \operatorname{span}\{a_1, a_2, \cdots, a_n\},\$$

则 M 是满足条件的 \mathcal{X} 的有限维子空间.

另外一方面, 设对 $\varepsilon > 0$, 存在 $\mathscr X$ 的有限维子空间 M, 对任意的 $a \in A$, 都存在 $b \in M$, 使得 $d(b,a) < \varepsilon$. 令

$$N = \{b \in M | \operatorname{dist}(b, A) < \varepsilon\} \subset M,$$

则由 A 有界知 N 有界,且由 M 是有限维子空间知 N 完全有界,设 N 的 ε -网为 $\{b_1,b_2,\cdots,b_n\}$,则对任意的 $b_i\in\{b_1,b_2,\cdots,b_n\}$,存在 $a_i\in A$,使得 $d(a_i,b_i)\leq \varepsilon$. 考虑 $\{a_1,a_2,\cdots,a_n\}$,以下说明其是 A 的 3ε -网.

对任意的 $a \in A$, 都存在 $b \in N$, 使得 $d(a,b) < \varepsilon$. 又对给定的 $b \in N$, 存在 $b_i \in \{b_1, b_2, \dots, b_n\}$, 使得 $d(b,b_i) < \varepsilon$. 最后, 对给定的 b_i , 存在 $a_i \in \{a_1, a_2, \dots, a_n\}$, 使得 $d(a_i, b_i) < \varepsilon$. 从而

$$d(a, a_i) < d(a, b) + d(b, b_i) + d(b_i, a_i) < 3\varepsilon,$$

这便说明 A 存在有限 3ε -网, 由 ε 的任意性知 A 完全有界.

题目 3. 设 $0 < \alpha < \beta \le 1$ 且 $A \subset C^{0,\beta}([0,4])$ 是有界的. 证明: $A \in C^{0,\alpha}([0,4])$ 中的列紧集.

解答. 以下为了方便,记

$$d_0(x,y) = \max_{t \in [a,b]} |x(t) - y(t)|, \quad d_\alpha(x,y) = \sup_{t_1,t_2 \in [0,4], t_1 \neq t_2} \frac{|(x(t_1) - y(t_1)) - (x(t_2) - y(t_2))|^{\alpha}}{|t_1 - t_2|^{\alpha}}.$$

我们知道, $d = d_0 + d_\beta$ 是 $C^{0,\beta}[0,4]$ 上的距离, 且 A 在 C([0,4]) 上列紧. 设 $0 < \alpha < \beta \le 1$, $A \subset C^{0,\beta}[0,4]$ 有界, 则对任意的 $x,y \in A$, 有

$$d_{\alpha}(x,y) = \sup_{t_1,t_2 \in [0,4], t_1 \neq t_2} \frac{|(x(t_1) - y(t_1)) - (x(t_2) - y(t_2))|}{|t_1 - t_2|^{\alpha}}$$

$$= \sup_{t_1,t_2 \in [0,4], t_1 \neq t_2} \left(\frac{|(x(t_1) - y(t_1)) - (x(t_2) - y(t_2))|}{|t_1 - t_2|^{\beta}} \right)^{\frac{\alpha}{\beta}}.$$

$$|(x(t_1) - y(t_1)) - (x(t_2) - y(t_2))|^{1 - \frac{\alpha}{\beta}},$$

其中

$$\begin{cases} \left(\frac{|(x(t_1)-y(t_1))-(x(t_2)-y(t_2))|}{|t_1-t_2|^{\beta}}\right)^{\frac{\alpha}{\beta}} < M, \\ |(x(t_1)-y(t_1))-(x(t_2)-y(t_2))|^{1-\frac{\alpha}{\beta}} \le |(x(t_1)-y(t_1))|^{1-\frac{\alpha}{\beta}} + |(x(t_2)-y(t_2))|^{1-\frac{\alpha}{\beta}}, \end{cases}$$

以上两式相乘再取上确界得

$$d_{\alpha}(x,y) < 2M \cdot \max_{t \in [0,4]} |(x(t) - y(t))|^{1 - \frac{\alpha}{\beta}},$$

因此对于 $C^{0,\alpha}[0,4]$ 中的距离 d', 有

$$d'(x,y) = d_0(x,y) + d_{\alpha}(x,y)$$

$$< \max_{t \in [0,4]} |x(t) - y(t)| + 2M \cdot \max_{t \in [0,4]} |(x(t) - y(t))|^{1 - \frac{\alpha}{\beta}}.$$

任取 $\{x_n\} \subset A$, 由 A 在 C[a,b] 中列紧, 知 $\{x_n\}$ 在 A 中存在收敛到 x 的收敛子列 $\{x_{n_k}\}$, 满足对任意的 $\varepsilon > 0$, 都存在 $K \geq 1$, 使得对任意的 $k \geq K$, 都有

$$d_0(x_{n_k}, x) = \max_{t \in [0,4]} |x_{n_k}(t) - x(t)| < \varepsilon.$$

此时

$$d'(x_{n_k}, x) < \varepsilon + 2M \cdot \varepsilon^{1 - \frac{\beta}{\alpha}},$$

此即说明 $\{x_{n_k}\}$ 是 $\{x_n\}$ 按照 $C^{0,\alpha}[0,4]$ 的距离收敛的子列, 从而 A 在 $C^{0,\alpha}[a,b]$ 中列紧.

题目 4. 设 \mathscr{X} 是线性赋范空间, \mathscr{X}^* 是 \mathscr{X} 的对偶空间, 证明: \mathscr{X}^* 是 Banach 空间.

解答. 设 \mathscr{X} 是在数域 $\mathbb{K}(\mathbb{K} = \mathbb{R}$ 或 $\mathbb{C})$ 上的赋范线性空间, $\{f_n\} \subset \mathscr{X}^*$ 是 Cauchy 列, 也即对任意的 $\varepsilon > 0$, 存在 $N \geq 1$, 使得对任意的 $n, m \geq N$, 有

$$||f_n - f_m||_{\mathscr{X}^*} < \varepsilon.$$

从而对任意的 $x \in \mathcal{X}$, 有 $|f_n(x) - f_m(x)| < \varepsilon ||x||$. 此即说明对给定的 $x \in \mathcal{X}$, $\{f_n(x)\}$ 是 \mathbb{K} 上的 Cauchy 列, 故存在唯一的 $y_x \in \mathbb{K}$, 使得 $f_n(x) \to y_x$. 定义

$$f: \mathscr{X} \to \mathbb{K}, \quad x \mapsto y_x,$$

则 $\lim_{n\to\infty} f_n(x) = f(x)$, 容易验证 f 是线性的, 且

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le \lim_{n \to \infty} ||f_n||_{\mathscr{X}^*} \cdot ||x|| \le \left(\sup_{n \ge 1} ||f||\right) \cdot ||x||,$$

这便说明了 $f \in \mathcal{X}^*$. 接下来, 计算得

$$||f_n - f||_{\mathscr{X}^*} = \sup_{\|x\|=1} |f_n(x) - f(x)|$$

$$= \sup_{\|x\|=1} \lim_{m \to \infty} |f_n(x) - f_m(x)|$$

$$\leq \lim_{m \to \infty} \sup_{\|x\|=1} |f_n(x) - f_m(x)|$$

$$= \lim_{m \to \infty} ||f_n - f_m||_{\mathscr{X}^*} \to 0,$$

此即说明当 $n \to \infty$ 时, $\{f_n\}$ 依 \mathscr{X}^* 中的距离收敛到 $f \in \mathscr{X}^*$, 从而 \mathscr{X}^* 是完备的.

题目 5. (1) 设 $\mathscr X$ 是数域 $\mathbb F$ 上的线性赋范空间, $\mathscr X^*$ 是 $\mathscr X$ 的对偶空间, f_0, f_1, f_2, \cdots , $f_n \in \mathscr X^*$. 如果

$$\bigcap_{j=1}^{n} \ker(f_j) \subset \ker(f_0),$$

其中 $\ker(f) = \{x \in \mathcal{X} : f(x) = 0\}$, 证明: 存在 $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{F}$, 使得

$$f_0 = \sum_{j=1}^{n} \lambda_j f_j.$$

(2) 在 (1) 的基础上, 进一步证明: 如果 $f_1, f_2, \dots, f_n \in \mathcal{X}^*$ 是线性无关的, 则必存在 $e_1, e_2, \dots, e_n \in \mathcal{X}$, 使得对任意的 $1 \leq i, j \leq n$, 有 $f_i(e_j) = \delta_{ij}$.

解答. (1) 使用数学归纳法证明.

当 n=1 时,设 $\ker f_1 \subset \ker f_0$. 若 $f_1=0$,则 $\ker f_1=\mathscr{X}=\ker f_0$,从而 $f_0=0$,此 时对任意的 $\lambda_1 \in \mathbb{F}$,都有 $f_0=\lambda_1 f_1$;若 $f_1\neq 0$,则存在 $x_1\neq 0$,使得 $f_1(x_1)\neq 0$.不妨设 $f_1(x_1)=1$,否则可以用 $\frac{x_1}{f_1(x_1)}$ 代替 x_1 .从而,对任意的 $x\in\mathscr{X}$,都有

$$f_1(x) = f_1(x_1)f_1(x) = f_1(x_1 \cdot f_1(x)) \implies f_1(x - x_1 \cdot f_1(x)) = 0,$$

这便说明了 $x - x_1 \cdot f_1(x) \in \ker(f_1) \subset \ker(f_0)$, 因此

$$f_0(x - x_1 f_1(x)) = 0 \implies f_0(x) = f_0(x_1) f_1(x), \quad \forall x \in \mathscr{X},$$

取 $\lambda_1 = f_0(x_1)$ 即可.

假设当 $n \le k$ 时结论都成立, 则当 n = k + 1 时, 记 $\mathcal{X}_0 = \ker f_{k+1}$, 则

$$\bigcap_{j=1}^{k} \ker \left(f_j |_{\mathscr{X}_0} \right) = \bigcap_{j=1}^{k} \ker (f_j) \cap \mathscr{X}_0 = \bigcap_{j=1}^{k+1} \ker (f_j) \subset \ker (f_0) \cap \mathscr{X}_0 = \ker \left(f_0 |_{\mathscr{X}_0} \right),$$

从而, 根据归纳假设知, 存在 $\lambda_1, \lambda_2, \cdots, \lambda_k \in \mathbb{F}$, 使得

$$f_0|_{\mathscr{X}_0} = \sum_{j=1}^k \lambda_j |f_j|_{\mathscr{X}_0} \implies \left(f_0|_{\mathscr{X}_0} - \sum_{j=1}^k \lambda_j |f_j|_{\mathscr{X}_0} \right)(x) = 0, \quad \forall x \in \mathscr{X}_0,$$

记 $g = f_0 - \sum_{j=1}^k \lambda_j f_j$,则 $\mathcal{X}_0 = \ker(f_{k+1}) \subset \ker(g)$,根据归纳假设知, 存在 $\lambda_{k+1} \in \mathbb{F}$,使得

$$g = \lambda_{k+1} f_{k+1} \implies f_0 = \sum_{j=1}^{k+1} \lambda_j f_j.$$

根据以上过程,结合数学归纳法原理知原命题成立.

(2) 若对任意的 $1 \le i \le n$, 存在

$$x_i \in (\ker(f_i))^C \cap \bigcap_{j \neq i} \ker(f_j),$$

则 $\frac{x_i}{f_i(x_i)}$ 满足 $f_i\left(\frac{x_i}{f_i(x_i)}\right) = \delta_{ij}$. 否则, 假设存在 $1 \le i \le n$, 使得

$$(\ker(f_i))^C \cap \bigcap_{j \neq i} \ker(f_j) = \emptyset \implies \bigcap_{j \neq i} \ker(f_j) \subset \ker(f_i),$$

根据 (1) 知 f_1, f_2, \cdots, f_n 线性相关, 矛盾.

题目 6. 设 E 是实线性赋范空间 $\mathscr X$ 中以 0 为内点的真凸子集, $x_0 \in E$, 则存在闭超平面分离 x_0 和 E.

解答. 设 p 是 E 上的 Minkowski 泛函, 则 p 在 \mathscr{X} 上满足正齐次性和次可加性,

$$p(x) \le 1, \quad \forall x \in E, \quad \mathbb{H} \quad p(x_0) \ge 1.$$

由 0 是 E 的内点知, 存在 $\delta > 0$, 使得 $B(0,\delta) \subset E$. 又对任意的 $x \in E$, 都有 $\frac{\delta x}{2\|x\|} \in B(0,\delta) \subset E$, 因此

$$p\left(\frac{\delta x}{2\|x\|}\right) \le 1 \implies p(x) \le \frac{2}{\delta} \cdot \|x\|.$$

$$f_0: \mathscr{X}_0 \to \mathbb{R}, \quad \lambda x_0 \to \lambda p(x_0),$$

则 f_0 是 \mathcal{X}_0 上的线性泛函, 且 $f_0(\lambda x_0) \le \lambda p(x_0) \le p(\lambda x_0)$. 由 Hahn-Banach 定理知, 存在 \mathcal{X} 上的线性泛函 f, 使得

- (1) $f(\lambda x_0) = f_0(\lambda x_0) = \lambda p(x_0), \forall \lambda \in \mathbb{R}, \ \text{Min} \ f(x_0) = p(x_0) \ge 1;$
- (2) $f(x) \le p(x), \forall x \in \mathcal{X}$, 从而对任意的 $x \in E$, 都有 $f(x) \le p(x) \le 1$; 同时对任意的 $x \in \mathcal{X}$, 都有

$$f(x) \le p(x) \le \frac{2}{\delta} \cdot ||x||,$$

故 $f \in \mathcal{X}^*$.

根据 (1) 和 (2) 知 H_f^1 是分离 x_0 和 E 的超平面.