Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering ME6406 Machine Vision (Fall 2021)

Assignment #1: (ME6406A Due Wednesday September 15th 2021, 23:59pm EDT)

All programs should be written using MATLAB. Solutions must be consolidated into a **single pdf file** (including all results and an explanation of results) and a **zip file** (including all m-files used for the results). Solutions must be submitted electronically through **Canvas**. Late solutions will be penalized at 10% deduction from the homework score, and will NOT be accepted 24 hours after due date.

1. Pin-hole optics

Consider a dark edge projected through a pinhole. Show that

$$\rho = \frac{\delta A}{\delta O} = \frac{1}{\pi} \left[\cos^{-1} \frac{s}{R} - \frac{s}{R} \sqrt{1 - \left(\frac{s}{R}\right)^2} \right]$$

where $-R \le s \le R$; s is the displacement of the pinhole center from the edge; δO is the pin hole projection area; and δA is portion of δO in the dark area. Plot ρ as a function of s/R.

Fig. 1

2. Histogram equalization

Figure 2 shows an 8-bit gray-scale image of an eye-retina.

Fig. 2 eyeball.png

(a) Perform a histogram equalization of the sub-region shown in image matrix; give your results by completing Table 1. Show the histogram equalized results of sub-region matrix.

Table 1	Gray level	# of pixels	cdf	$\mathbf{q}_{\mathbf{k}}$	round(qk)
	113	1	1	5.31	5
	•	:	:	:	:
	:	:	:	:	:
	128	2	48	255	255

- (b) Perform histogram equalization on an image by writing a Matlab script for the following:
 - I. Read in and display the image 'eyeball.png'.
 - II. Compare by displaying the original and processed images and their histograms.

Suggested Matlab functions: imshow, imhist or hist, histeq

3. Filtering masks

(a) Show the value of a 5x5 Gaussian filter with σ equal to 2 pixels.

Sobel operator

- (b) Use a 3x3 Sobel operator to calculate the *magnitude* and *direction* of the gradient at pixel (X, Y)=(4, 5) in Fig. 2. Indicate the direction of the gradient on the pixel. (Note: Sobel operator is coordinate dependent. Be sure to use consistent coordinate systems on the sub-regions.)
- (c) Write a Matlab script to compute the gradient of an image. For illustration, use the Sobel operator on the image "IC_pin.png" shown Fig. 3(a). Display the gradient images (G_x, G_y, G) . Suggested Matlab functions: edge.m

Gaussian operator and Difference of Gaussian (DOG):

(d) Use an $m \times m$ Gaussian filter mask with different $\sigma(=1, 2 \text{ and } 5)$ to smooth the noisy image shown in Fig. 3(b). Compare the effect of σ on the smoothed image. Suggested Matlab functions: imfilter.m.

Notes: 'Smoothing effects are more prominent as sigma increases. Mask size increases as sigma increases.

(e) Perform DoG operation (with $\sigma = 1$ and $\sigma = 2$) on Fig. 3(c) and show the processed image.

4. Low-level information processing

- (a) Read in and convert the image (Fig. 4) into a gray-scale image. Binarize the image using three different thresholds; the "best or preferred" value, and an over-estimate and under-estimate values. (Use image histogram to help pick the threshold values).
- (b) Obtain the area and centroid of the two objects (nut and shelf) in the image with an appropriate threshold.

Suggested Matlab functions: rgb2gray.m, im2bw.m, bwlabel.m, regionprops.m

Figure 4 'nut_and_shell.png'