Problem 1

Finding the nature of the inhabitant of the island.

A: Aramis is a Knight B: Berthand is a Knight C: Charleston is a Knight

They say: Aramis: \neg B

 $\begin{array}{l} Berthand: \ \neg \ C \oplus B \\ Charleston: \ A \wedge \neg \ B \\ lets \ D: \neg \ B \Leftrightarrow \neg \ C \oplus B \\ E: \ \neg \ B \Leftrightarrow A \wedge \neg \ B \end{array}$

 $G: \neg C \oplus B \Leftrightarrow A \land \neg B$

A	В	C	¬В	$\neg C$	$\neg C \oplus B$	$A \land \neg B$	D	E	G	$D \wedge E \wedge G$
T	Т	Т	F	F	T	F	F	Т	F	F
T	F	F	Т	Т	T	Т	Т	Т	Т	T
Τ	Т	F	F	Т	F	F	Т	Т	Т	T
Τ	F	Т	Т	F	F	Т	F	Τ	F	F
F	Т	Т	F	F	Т	F	F	Т	F	F
F	F	F	Т	Т	Т	F	Т	F	F	F
F	T	F	F	Т	F	F	T	T	T	T
F	F	T	Т	F	F	F	F	F	Т	F

Bertrand is a Night, Charleston is Knave and Aramis is a Knave

Problem 2

1. Using the truth table to demonstrate that $((p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r))$ is a tautology

р	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p\rightarrow q)\land (q\rightarrow r)$	$p \rightarrow r$	$((p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$
T	Т	Т	Т	Т	T	Т	T
T	F	F	F	Т	F	F	T
T	T	F	T	F	F	F	Т
T	F	Т	F	Т	F	Т	Т
F	Т	Т	T	Т	T	Т	Т
F	F	F	T	Т	T	T	Т
F	T	F	T	F	F	Т	Т
F	F	Т	T	Т	T	T	Т

The statement is a tautology.

2. Using chain of logical equivalent.

$$\begin{array}{l} ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r) \equiv \neg ((\neg p \lor q) \land (\neg q \lor r)) \lor (\neg p \lor r) \\ \equiv \neg ((\neg p \lor q) \land (\neg q \lor r)) \lor (\neg p \lor r) \end{array}$$

3. Showing that $(p\rightarrow q) \rightarrow r$ and $p\rightarrow (q\rightarrow r)$ are not logical equivalent.

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$ (p \rightarrow q) \rightarrow r$	$p \rightarrow (q \rightarrow r)$
T	Т	Т	Т	Т	T	T
T	F	F	F	Т	T	T
T	T	F	T	F	T	F
T	F	Т	F	Т	F	T
F	Т	Т	Т	Т	T	Т
F	F	F	T	Т	T	T
F	Т	F	T	F	T	T
F	F	T	T	Т	T	T

The last two columns contain contradictory statements, thus the two logical statements are not equivalent.

Problem 3

- 1. $\forall xp(x) \equiv P(5) \land P(6) \land P(7) \land P(8)$
- 2. $\neg \exists x p(x) \equiv \neg P(5) \lor \neg P(6) \lor \neg P(7) \lor \neg P(8)$
- 3. $\neg \forall x p(x) \equiv \neg P(5) \land \neg P(6) \land \neg P(7) \land \neg P(8)$

Problem 4

Problem 5

- 1. Translating each of the group's travel requirements from English into a proposition.
 - (a) Shaggy: $V \vee \neg S$;
 - (b) Velma: $P \rightarrow \neg V$

- (c) Daphne: $B \leftrightarrow (L \wedge P)$
- (d) Fred: $\neg P$
- (e) Scooby: $\exists x T(x) \equiv P \vee V \vee S \vee B$
- 2. Satisfaction of the gangs proposition. Lets Sat be the logical the gangs go on vacation. For Sat to be True: $(V \lor \neg S) \land (P \to \neg V) \land (B \leftrightarrow (L \land P)) \land (\neg P) \land (P \lor V \lor S \lor B)$ must be true.
- 3. The team travel whish is possible. If V is true proposition a) will be true no matter the values of S. For b) to be true, P must be false. The statement c) is true only if B is false no matter the outcome of L. Because P was false, the statement d) must be true. Finally as one of the value each is true, statement e) is true.
 - -Venice
 - -Shanghai
- 4. Park W in west Africa.