

(3) For any triangulated surface S=|K| $X(K) = V - E + F \leq 2$ with equality \iff $|K| \cong S^2$

Conclude that given S=|K| after finitely many surgeries get S^2 . W/ finite set of disks marked.

Reversing surgery describes S as obtained from A & M-attendments.

II. Triangulating Sulfaces The Any Surface has a triangulation. Proof sketch in Special case: Assume SCR" is "smooth" near each pes, Slocally looks like linear subspace R2 CIR3. Given p can choose 0 < E << 1

st. if $C_{\epsilon}(p)$ abe side length ϵ around p than $S \cap C_{\epsilon}(p) \approx planar ctoss section.$

Combinatorial surface = Surface + triangulation

III. Euler number for L simplicial complex

 $\chi(L) = \sum_{n \geq 0} (-1)^n \# \{n-Simplices\}$

IKI combinatorial sufface $\chi(L) = V - E + F$.

Lemma IKI comb. suif => X(K) < 2 (next time X(K) = 2 Proof Choose max tree TCK (K) = 52 Let G dual graph: vertices \iff faces of K edges \iff edges of K not in T. $\chi(K) = V_K - E_K + F_K$ = $V_T - (E_T + E_G) + V_G = \chi(T) + \chi(G)$

Exercise:
$$T$$
 tree $\Rightarrow \chi(T)=1$.
 G graph $\Rightarrow \chi(G) \leq 1$.

$$\Rightarrow \chi(x) = \chi(x) + \chi(x) \leq z.$$

Exercise:
$$L = L_1 \cup L_2$$

 $\Rightarrow \chi(L) = \chi(L_1) + \chi(L_2) - \chi(L_1 \wedge L_2)$