23W-EC ENGR-11L-LEC-1 Module 4: Transient Response of the 2nd -Order Circuits

SANJIT SARDA

TOTAL POINTS

65 / 65

OUESTION 1

Series RLC Circuit Analysis 20 pts

1.1 Waveforms Image 6/6

- √ + 6 pts Correct
 - **+ 3 pts** Click here to replace this description.
 - + 0 pts Missing

1.2 Inductor Resistance 3/3

- √ + 3 pts Correct
 - + 2 pts Slightly Incorrect
 - + 0 pts Missing

1.3 Derivation of Output Voltage 8/8

- √ + 8 pts Correct
 - + 7 pts Slightly Incorrect
 - + 6 pts Slightly incorrect
 - + 4 pts Incorrect
 - + 2 pts Incorrect
 - + 0 pts Missing

1.4 Discussion 1 3/3

- √ + 3 pts Correct
 - + 2 pts Incomplete
 - + 1 pts Incomplete
 - + 0 pts Missing

OUESTION 2

Underdamped RLC Circuit Design 26

pts

2.1 Waveforms Image 6 / 6

- ✓ 0 pts Correct
 - 1 pts Slightly higher Overshoot
 - 3 pts Lower Overshoot
 - 1 pts Slightly lower Overshoot
 - 3 pts Higher Overshoot
 - 6 pts Incorrect

2.2 Overshoot measurement 3/3

- ✓ 0 pts Correct
 - 2 pts Too high Overshoot
 - 3 pts Incorrect
 - 1 pts Higher Overshoot
 - 1 pts Lower Overshoot
 - 3 pts Too Low Overshoot

2.3 Damped Frequency measurement 3 /

2

- √ 0 pts Correct
 - 3 pts Incorrect
 - 2 pts Slightly incorrect
 - 2 pts Partially incorrect

2.4 Derivation of Output Voltage 8/8

- ✓ 0 pts Correct
 - 4 pts Mistake
 - 2 pts Small mistake
 - 4 pts Partial
 - 8 pts Missing
 - 4 pts Derivation Missing

2.5 Discussion 1 3 / 3

- ✓ 0 pts Correct
 - 3 pts Incorrect
 - 1 pts Partially correct

2.6 Discussion 2 3/3

- √ 0 pts Correct
 - 3 pts Incorrect
 - 1 pts Partial explanation

QUESTION 3

Critically Damped RLC Circuit 19 pts

3.1 Waveforms Image 6/6

- √ + 6 pts Correct
 - + 5 pts Slightly Incorrect.
 - + 4 pts Slightly Incorrect
 - + 3 pts Incorrect
 - + 0 pts Missing

3.2 Potentiometer resistance 3/3

- √ + 3 pts Correct
 - + 1 pts Incorrect
 - + 0 pts Missing
 - + 2 pts Slightly incorrect

3.3 Derivation of Critical Damping

Resistance 4/4

- √ + 4 pts Correct
 - + 3 pts Slightly Incorrect
 - + 2 pts Incorrect
 - + 0 pts Missing

3.4 Discussion 1 3 / 3

- √ + 3 pts Correct
 - + 2 pts Slightly incorrect
 - + 0 pts Missing

3.5 Discussion 2 3/3

- √ + 3 pts Correct
 - + 2 pts Slightly Incorrect/Incomplete.
 - + 0 pts Missing

1. Series RLC Circuit Analysis

• What is the inductor resistance?

$$R_{inductor} = 165 \Omega$$

1.1 Waveforms Image 6/6

- √ + 6 pts Correct
 - + 3 pts Click here to replace this description.
 - + 0 pts Missing

1. Series RLC Circuit Analysis

• What is the inductor resistance?

$$R_{inductor} = 165 \Omega$$

1.2 Inductor Resistance 3/3

- √ + 3 pts Correct
 - + 2 pts Slightly Incorrect
 - + 0 pts Missing

• Derive theoretical equation for output voltage $v_o(t)$ (including R_L) across capacitor for your design.

When
$$V: \frac{7}{4} = \frac{1}{4} = \frac{1}{4$$

• What kind of damping is observed? Verify that this matches with the theoretical expectation.

Over damped.
$$=\frac{R}{\omega} = \frac{R}{2L} \cdot \frac{1}{L} = \frac{R}{2L} \cdot \frac{L}{2} = \frac{R}$$

We can see on the graph that the waveform is overdamped.

1.3 Derivation of Output Voltage 8/8

- √ + 8 pts Correct
 - + 7 pts Slightly Incorrect
 - + 6 pts Slightly incorrect
 - + 4 pts Incorrect
 - + 2 pts Incorrect
 - + 0 pts Missing

• Derive theoretical equation for output voltage $v_o(t)$ (including R_L) across capacitor for your design.

When
$$V: \frac{7}{4} = \frac{1}{4} = \frac{1}{4$$

• What kind of damping is observed? Verify that this matches with the theoretical expectation.

Over damped.
$$=\frac{R}{\omega} = \frac{R}{2L} \cdot \frac{1}{L} = \frac{R}{2L} \cdot \frac{L}{2} = \frac{R}$$

We can see on the graph that the waveform is overdamped.

1.4 Discussion 1 3/3

- √ + 3 pts Correct
 - + 2 pts Incomplete
 - + 1 pts Incomplete
 - + 0 pts Missing

2. Underdamped RLC Circuit Design

Overshoot Measurement:

Experimental Value of Resistor used (Ω)	Overshoot measured (%)
1000	.19%

Damped Frequency Measurement:

Experimental Damped Frequency (Hz)	Theoretical Damped Frequency (Hz)
1/2069 µ5-225 µ5) = 1205 Hz	1145 Hz

2.1 Waveforms Image 6 / 6

- **√ 0 pts** Correct
 - **1 pts** Slightly higher Overshoot
 - 3 pts Lower Overshoot
 - **1 pts** Slightly lower Overshoot
 - 3 pts Higher Overshoot
 - 6 pts Incorrect

2. Underdamped RLC Circuit Design

Overshoot Measurement:

Experimental Value of Resistor used (Ω)	Overshoot measured (%)
1000	.19%

Damped Frequency Measurement:

Experimental Damped Frequency (Hz)	Theoretical Damped Frequency (Hz)
1/2069 µ5-225 µ5) = 1205 Hz	1145 Hz

2.2 Overshoot measurement 3/3

- ✓ 0 pts Correct
 - **2 pts** Too high Overshoot
 - 3 pts Incorrect
 - 1 pts Higher Overshoot
 - 1 pts Lower Overshoot
 - 3 pts Too Low Overshoot

2. Underdamped RLC Circuit Design

Overshoot Measurement:

Experimental Value of Resistor used (Ω)	Overshoot measured (%)
1000	.19%

Damped Frequency Measurement:

Experimental Damped Frequency (Hz)	Theoretical Damped Frequency (Hz)
1/2069 µ5-225 µ5) = 1205 Hz	1145 Hz

2.3 Damped Frequency measurement 3/3

- **√ 0 pts** Correct
 - 3 pts Incorrect
 - 2 pts Slightly incorrect
 - 2 pts Partially incorrect

• Derive theoretical equation for output voltage $v_o(t)$ (including R_L) across capacitor for new design.

$$V_0'' + 7766 v_0' + (6.667E7) V_0 = 0$$

$$V_0'' + 7766 v_0' + (6.667E7) V_0 = 0$$

$$V_0(0+) = V_0(0+) = 0$$

$$V_0''(0+) = V_0'(0+) = \frac{1(0+)}{C} = 0$$

$$C_1 = -1$$

$$C_2 = -0.5377$$

$$V_0 = -e^{-3883t} cos(7180t) - 0.5377e^{-3883t} sin(7182t) + 1$$

Discussion

- How did the experimental damped frequency compare with the theoretical values?

 The experimental damped frequency is within 5% of the

 Answer in 2-3 lines. >

 Theoretical, It matches the theoretical value correctly.
- What happens if you try to make the overshoot smaller?

 To do this we would need to increase the resistance canswer in 1-2 lines.>

 If we keep doing this, it will become critically damped

2.4 Derivation of Output Voltage 8 / 8

- **√ 0 pts** Correct
 - 4 pts Mistake
 - 2 pts Small mistake
 - 4 pts Partial
 - 8 pts Missing
 - 4 pts Derivation Missing

• Derive theoretical equation for output voltage $v_o(t)$ (including R_L) across capacitor for new design.

$$V_0'' + 7766 v_0' + (6.667E7) V_0 = 0$$

$$V_0'' + 7766 v_0' + (6.667E7) V_0 = 0$$

$$V_0(0+) = V_0(0+) = 0$$

$$V_0''(0+) = V_0'(0+) = \frac{1(0+)}{C} = 0$$

$$C_1 = -1$$

$$C_2 = -0.5377$$

$$V_0 = -e^{-3883t} cos(7180t) - 0.5377e^{-3883t} sin(7182t) + 1$$

Discussion

- How did the experimental damped frequency compare with the theoretical values?

 The experimental damped frequency is within 5% of the

 Answer in 2-3 lines. >

 Theoretical, It matches the theoretical value correctly.
- What happens if you try to make the overshoot smaller?

 To do this we would need to increase the resistance canswer in 1-2 lines.>

 If we keep doing this, it will become critically damped

2.5 Discussion 1 3/3

- **√ 0 pts** Correct
 - 3 pts Incorrect
 - 1 pts Partially correct

• Derive theoretical equation for output voltage $v_o(t)$ (including R_L) across capacitor for new design.

$$V_0'' + 7766 v_0' + (6.667E7) V_0 = 0$$

$$V_0'' + 7766 v_0' + (6.667E7) V_0 = 0$$

$$V_0(0+) = V_0(0+) = 0$$

$$V_0''(0+) = V_0'(0+) = \frac{1(0+)}{C} = 0$$

$$C_1 = -1$$

$$C_2 = -0.5377$$

$$V_0 = -e^{-3883t} cos(7180t) - 0.5377e^{-3883t} sin(7182t) + 1$$

Discussion

- How did the experimental damped frequency compare with the theoretical values?

 The experimental damped frequency is within 5% of the

 Answer in 2-3 lines. >

 Theoretical, It matches the theoretical value correctly.
- What happens if you try to make the overshoot smaller?

 To do this we would need to increase the resistance canswer in 1-2 lines.>

 If we keep doing this, it will become critically damped

2.6 Discussion 2 3 / 3

- **√ 0 pts** Correct
 - 3 pts Incorrect
 - 1 pts Partial explanation

3. Critically Damped RLC Circuit

• What is the potentiometer resistance for critical damping?

$$R_{potentiometer} = 2.246 \text{ kg}$$

• Derive theoretical resistance needed for critical damping. (Include the effect of R_L)

3.1 Waveforms Image 6 / 6

- **√ + 6 pts** Correct
 - + **5 pts** Slightly Incorrect.
 - + 4 pts Slightly Incorrect
 - + 3 pts Incorrect
 - + 0 pts Missing

3. Critically Damped RLC Circuit

• What is the potentiometer resistance for critical damping?

$$R_{potentiometer} = 2.246 \text{ kg}$$

• Derive theoretical resistance needed for critical damping. (Include the effect of R_L)

3.2 Potentiometer resistance 3/3

- √ + 3 pts Correct
 - + 1 pts Incorrect
 - + 0 pts Missing
 - + 2 pts Slightly incorrect

3. Critically Damped RLC Circuit

• What is the potentiometer resistance for critical damping?

$$R_{potentiometer} = 2.246 \text{ kg}$$

• Derive theoretical resistance needed for critical damping. (Include the effect of R_L)

3.3 Derivation of Critical Damping Resistance 4/4

- √ + 4 pts Correct
 - + 3 pts Slightly Incorrect
 - + 2 pts Incorrect
 - + 0 pts Missing

Discussion

How close was the value of resistance you ended up with when using the potentiometer to obtain a critically damped response, to the theoretical value you have derived? Consider the effects of inductor resistance as well.

It was within 5 / of the theoretically devived valve.

<Answer in 1-3 lines. > The error may be a result of tuning the pot.

What did you observe in the output waveform as resistance varied?

Answer in 1-2 lines. >
The Resistance controls the behavior of dampening of the circuit
Under damped | Low R
Critically Damped | Mid R
Duerdamped | High R

3.4 Discussion 1 3/3

- √ + 3 pts Correct
 - + 2 pts Slightly incorrect
 - + 0 pts Missing

Discussion

How close was the value of resistance you ended up with when using the potentiometer to obtain a critically damped response, to the theoretical value you have derived? Consider the effects of inductor resistance as well.

It was within 5 / of the theoretically devived valve.

<Answer in 1-3 lines. > The error may be a result of tuning the pot.

What did you observe in the output waveform as resistance varied?

Answer in 1-2 lines. >
The Resistance controls the behavior of dampening of the circuit
Under damped | Low R
Critically Damped | Mid R
Duerdamped | High R

3.5 Discussion 2 3/3

- √ + 3 pts Correct
 - + 2 pts Slightly Incorrect/Incomplete.
 - + 0 pts Missing

University of California, Los Angeles

School of Engineering and Applied Science

Department of Electrical and Computer Engineering

Name: Sarjit Sarda

UID: 805964031

Experiment 4: Transient Response of the 2nd-Order Circuits

ECE11L Lab

Instructor: Sudhakar Pamarti