Network Science (VU) (706.703)

Empirical Analysis of Networks

Denis Helic

ISDS, TU Graz

November 24, 2023

Outline

- Introduction
- 2 Components
- 3 Shortest Paths and Small-World Effect
- 4 Degree Distributions
- Power Laws
- 6 Centralities
- Clustering Coefficients
- 8 Assortative Mixing

Basic Statistics

Network	Туре	n	771	С	S	l	α	C	Cws	7	Ref(s).
Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20	0.78	0.208	16,323
Company directors	Undirected	7 673	55 392	14.44	0.876	4.60	-	0.59	0.88	0.276	88,253
Math coauthorship	Undirected	253 339	496 489	3.92	0.822	7.57	-	0.15	0.34	0.120	89,146
Physics coauthorship	Undirected	52 909	245 300	9.27	0.838	6.19		0.45	0.56	0.363	234,23
Biology coauthorship	Undirected	1 520 251	11803064	15.53	0.918	4.92	-	0.088	0.60	0.127	234,23
Biology coauthorship Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1				9,10
Email messages	Directed	59812	86300	1.44	0.952	4.95	1.5/2.0		0.16		103
Email address books	Directed	16881	57 029	3.38	0.590	5.22	-	0.17	0.13	0.092	248
Student dating	Undirected	573	477	1.66	0.503	16.01	44.	0.005	0.001	-0.029	34
Sexual contacts	Undirected	2810					3.2				197,19
WWW nd.edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.067	13,28
WWW AltaVista	Directed	203 549 046	1 466 000 000	7.20	0.914	16.18	2.1/2.7				56
Citation network	Directed	783 339	6716198	8.57			3.0/-				280
WWW nd.edu WWW AltaVista Citation network Roget's Thesaurus	Directed	1 022	5 103	4.99	0.977	4.87	100	0.13	0.15	0.157	184
Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7		0.44		97,116
Internet	Undirected	10697	31 992	5.98	1.000	3.31	2.5	0.035	0.39	-0.189	66,111
Power grid	Undirected	4941	6 594	2.67	1.000	18.99	-	0.10	0.080	-0.003	323
Train routes	Undirected	587	19 603	66.79	1.000	2.16	-		0.69	-0.033	294
Power grid Train routes Software packages Software classes Electronic circuits	Directed	1 439	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.016	239
Software classes	Directed	1376	2 2 1 3	1.61	1.000	5.40	-	0.033	0.012	-0.119	315
Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3.0	0.010	0.030	-0.154	115
Peer-to-peer network	Undirected	880	1296	1.47	0.805	4.28	2.1	0.012	0.011	-0.366	6,282
Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.240	166
Protein interactions	Undirected	2115	2 240	2.12	0.689	6.80	2.4	0.072	0.071	-0.156	164
Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.263	160
Protein interactions Marine food web Freshwater food web	Directed	92	997	10.84	1.000	1.90	200	0.20	0.087	-0.326	209
Neural network	Directed	307	2.359	7.68	0.967	3.97	-	0.18	0.28	-0.226	323,32

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total number of vertices n; total number of edges m; mean degree c; fraction of vertices n; the largest component S (or the largest weakly connected component in the case of a directed network); mean geodesic distance between connected vertex pairs ℓ ; exponent n of the degree distribution if the distribution follows a power law (or "—" if not; n/out-degree exponents are given for directed graphs); clustering coefficient C_{N} from the alternative definition of E_{N} (N, N) and the degree correlation coefficient C_{N} from the alternative definition of E_{N} (N, N) and the degree correlation coefficient C_{N} from the alternative definition of E_{N} (N), and the degree correlation coefficient C_{N} from the alternative definition of E_{N} (N), and the degree correlation coefficient C_{N} from the alternative definition of E_{N} (N). Bank entries indicate unavailable data.

Components

- In an unidirected network, there is typically a large component that fills most of the network
- Very often over 90%
- Sometimes, it is 100%, e.g. the Internet
- Sometimes it depends also on how we collect data

Components in a directed network

- Weakly connected components correspond to components in an undirected network, i.e. we simply ignore link directions
- Otherwise, we have strongly connected components with corresponding in- and out-components
- Apart from the largest scc we have also a number of smaller ones with their in- and out-components
- Typically, all components form a so-called "bow-tie" model

Components in a directed network

Figure: Bow-tie model of the Web graph

Small-worlds

- In many networks the typical network distance between nodes is very small
- This phenomenon was first observed in the letter-passing experiment by Milgram
- It is called small-world effect
- ullet Typically, the average network distance ℓ scales as $\log n$

Diameter

- Sometimes we are also interested in the network diameter
- The extreme of the distance distribution, i.e. the longest shortest path in the network
- In many networks, the core of the network is very dense with the average network distance scaling as log log *n*
- Whereas at the periphery the diameter scales as logn

Effective diameter

- Effective diameter, or 90-percentile effective diameter, i.e. 90% of shortest paths is smaller than the effective diameter
- Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations by Leskovec et al.
- The empirical analysis has shown that when the networks grow the diameter becomes smaller

Effective diameter

- Frequency distribution of node degrees
- One of the most fundamental properties of networks
- ullet p_k is the fraction of nodes in a network that has degree k
- ullet p_k is also a probability that a randomly chosen node has a degree k
- Typically, we visualize a distribution with a histogram

Figure: Degree distributions of the Internet graph at the level of autonomous systems

- Most of the nodes have small degrees: one, two, or three
- There is a tail to the distribution corresponding to the high-degree nodes
- The plot cuts off but the tail is much longer
- The highest degree node is connected to about 12% of other nodes
- Such well-connected nodes are called hubs

- It turns out that most of the real-world networks have such long-tailed distributions
- Such distributions are called right-skewed
- For directed networks we have two distributions
- In-degree and out-degree distribution

Figure: Degree distributions on the Web, from Broder et al.

Power laws and scale-free networks

Figure: Degree distributions of the Internet graph on logarithmic scales

Power laws

 The degree distribution on logarithmic scales follows roughly a straight line

$$\ln p_k = -\alpha \ln k + c \tag{1}$$

 \bullet α and c are constants

$$p_k = Ck^{-\alpha} \tag{2}$$

• $C = e^c$ is another constant

Power laws

- ullet Distributions of this form that vary as a power of k are called *power* laws
- This is a common pattern seen in many different networks
- ullet The constant lpha is called the *exponent* of the power law
- Typical values are in the range: $2 \le \alpha \le 3$

- Power-law distribution is a very commonly occurring distribution
- Word occurences in natural language
- Friendships in a social network
- Links on the web
- PageRank, etc.

PMF

$$p(k) = \frac{k^{-\alpha}}{\zeta(\alpha)}$$

- $k \in \mathbb{N}$, $k \ge 1$, $\alpha > 1$
- $\zeta(\alpha)$ is the Riemann zeta function

$$\zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha}$$

- Power-law distribution is a very commonly occurring distribution
- 80%-20% rule
- Wealth distribution
- The sizes of the human settlements
- File size of internet traffic, etc.

PDF

$$f(x) = \begin{cases} (\alpha - 1) \frac{x_{min}^{\alpha - 1}}{x^{\alpha}}, x \ge x_{min} \\ 0, x < x_{min} \end{cases}$$

• $\alpha > 1$ is the exponent of the power-law distribution

CDF

$$f(x) = \begin{cases} 1 - (\frac{x_{min}}{x})^{\alpha - 1}, x \ge x_{min} \\ 0, x < x_{min} \end{cases}$$

Power laws

- Degree distributions do not follow power law equation over their entire range
- ullet For example, for small k we typically observe some deviation
- Thus, power laws are typically observed in the tail for high degrees
- Sometimes, there is also deviation in the tail because there is some cut-off that limits the maximum degree of nodes
- Network with power law degree distributions are called scale-free networks

Detecting power laws

 Another common solution to visualizing power laws is to construct cumulative distribution function

$$P_k = \sum_{k'=k}^{\infty} p_{k'} \tag{3}$$

 \bullet P_k is the fraction of nodes that have degree k or higher

Detecting power laws

- ullet Suppose the degree distribution p_k follows power law in the tail
- $p_k = Ck^{-\alpha}$, for $k \ge k_{min}$, for some k_{min} . Then for $k \ge k_{min}$:

$$P_k = \sum_{k'=k}^{\infty} k'^{-\alpha} \simeq C \int_k^{\infty} k'^{-\alpha} dk' = \frac{C}{\alpha - 1} k^{-(\alpha - 1)}$$
(4)

• Approximation of the sum by the integral is possible if we assume $\alpha > 1$ and is reasonable since the power law slowly varies for large k

Detecting power laws

- \bullet Thus, cumulative degree distribution is also a power law but with an exponent $\alpha-1$
- We can visualize the cumulative degree distribution on log-log scales and look for the straight line behavior
- ullet This has some advantages over visualizing p_k
- E.g. we do not need to bin the histogram and throw away information

Figure: Cumulative degree distributions on logarithmic scales

- Cumulative degree distribution is easy to calculate
- The number of nodes greater or equal to that of the rth-highest degree is r
- The fraction of nodes with degree greater or equal to that of the rth-highest degree is r/n and that is P_k
- ullet Thus, we calculate degrees, sort them in descending order and then number them from 1 to n
- These numbers are ranks r_i and we plot $\frac{r_i}{n}$ as a function of k_i

Degree k	Rank r	$P_k = \frac{r}{n}$			
4	1	0.1			
3	2	0.2			
3	3	0.3			
2	4	0.4			
2	5	0.5			
2	6	0.6			
2	7	0.7			
1	8	8.0			
1	9	0.9			
1	10	1.0			

Table: Example of cumulative degree distribution for degrees {0,1,1,2,2,2,2,3,3,4}

- Cumulative distribution have some disadvantages
- Successive points on a cumulative plot are not independent
- It is not valid to extract the exponent by fitting the slope of the line
- E.g. least squares method assumes independence of between the data points
- Also, which line to fit?

Parameter estimation

• It is better to calculate α directly from the data

$$\alpha = 1 + N \left[\sum_{i} \ln \frac{k_i}{k_{min} - \frac{1}{2}} \right]^{-1}$$
 (5)

• where, k_{min} is the minimum degree for which the power low holds and N is the number of nodes with $k \ge k_{min}$

Parameter estimation

Statistical error

$$\sigma = \frac{\alpha - 1}{\sqrt{N}} \tag{6}$$

- The derivation is based on maximum likelihood techniques
- Power law distributions in empirical data by Clauset et al.
- http://tuvalu.santafe.edu/~aaronc/powerlaws/

- ullet We observe some data, e.g. number of heads in m experiments with n coin flips
- We **choose** a probabilistic model to describe the dataset
- E.g. a Binomial r.v. with parameters (p, n)
- ullet p is the probability of heads on a single coin flip

PMF

$$p(x) = \binom{n}{x} (1-p)^{n-x} p^x \tag{7}$$

- Let us denote with X_1, \dots, X_m r.v. associated with our m experiments
- Each of them is a Binomial r.v. with parameters (p, n)
- They are mutually independent
- Independent and identically distributed (i.i.d.)

- We are interested in probability of observing the results of our *m* experiments
- For a single experiment:

Probability of a single experiment

$$p(x_i) = \binom{n}{x_i} (1-p)^{n-x_i} p^{x_i} \tag{8}$$

• For all *m* experiments (since experiments are i.i.d. r.v.)

Probability of all experiments

$$p(x_1, \dots, x_m | p) = \prod_{i=1}^m \binom{n}{x_i} (1-p)^{n-x_i} p^{x_i}$$
 (9)

- This probability is called likelihood
- ullet It is the probability of data given the parameter p
- Another name is likelihood function (function of parameter p)

Log-likelihood

 Typically, we take a logarithm and work with logs since it simplifies the analysis

Log-likelihood

$$\mathcal{L}(p) = ln(\prod_{i=1}^{m} {n \choose x_i} (1-p)^{n-x_i} p^{x_i})$$
(10)

$$= \sum_{i=1}^{m} (\ln \binom{n}{x_i} + (n - x_i) \ln(1 - p) + x_i \ln(p))$$
 (11)

$$= \sum_{i=1}^{m} \ln\binom{n}{x_i} + \ln(p) \sum_{i=1}^{m} x_i + \ln(1-p)(mn - \sum_{i=1}^{m} x_i) \quad (12)$$

Maximum Likelihood Estimation (MLE)

- ullet Now, we are interested in p that most likely generated the data
- ullet The data are most likely to have been generated by the model with p that maximizes the log-likelihood function
- Setting $\frac{d\mathcal{L}}{dp}=0$ and solving for p we obtain the maximum likelihood estimate

MLE

$$\frac{d\mathcal{L}}{dp} = \frac{1}{p} \sum_{i=1}^{m} x_i - \frac{1}{1-p} (mn - \sum_{i=1}^{m} x_i) = 0$$
 (13)

$$p = \frac{\sum_{i=1}^{m} x_i}{mn} = \frac{1}{m} \sum_{i=1}^{m} \frac{x_i}{n}$$
 (14)

We consider the continuous power law distribution

$$p(x) = \frac{\alpha - 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha} \tag{15}$$

• Given a data set with n observations $x_i > x_{min}$ we would like to know the value of α that is most likely to have generated the data

The probability that the data are drawn from the model

$$p(x|\alpha) = \prod_{i=1}^{n} \frac{\alpha - 1}{x_{min}} \left(\frac{x_i}{x_{min}}\right)^{-\alpha}$$
 (16)

• This probability is called *likelihood* of the data given model

- ullet The data are most likely to have been generated by the model with lpha that maximizes this function
- ullet Commonly, we work with *log-likelihood* $\mathcal L$
- ullet $\mathcal L$ has the maximum at the same place likelihood

$$\mathcal{L} = \ln p(x|\alpha) = \ln \prod_{i=1}^{n} \frac{\alpha - 1}{x_{min}} \left(\frac{x_i}{x_{min}}\right)^{-\alpha}$$
 (17)

$$\mathcal{L} = n \ln(\alpha - 1) - n \ln x_{min} - \alpha \sum_{i=1}^{n} \ln \frac{x}{x_{min}}$$
 (18)

• Setting $\frac{\partial \mathcal{L}}{\partial \alpha} = 0$ and solving for α we obtain the maximum likelihood estimate

$$\hat{\alpha} = 1 + n \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{min}} \right]^{-1} \tag{19}$$

- Normalization
- The constant *C* that appears in the power law equation is determined by the normalization requirement

$$\sum_{k=1}^{\infty} p_k = 1 \tag{20}$$

• $k^{-\alpha} = \infty$, for k = 0 and therefore we start at k = 1

$$C\sum_{k=1}^{\infty} k^{-\alpha} = 1 \tag{21}$$

$$C = \frac{1}{\sum_{k=1}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha)}$$
 (22)

• $\zeta(\alpha)$ is the Riemann zeta function

ullet Correctly normalized power law distribution for k>0 and $p_0=0$

$$p_k = \frac{k^{-\alpha}}{\zeta(\alpha)} \tag{23}$$

• If the power law behavior holds only for $k>k_{min}$ we obtain (with $\zeta(\alpha,k_{min})$ being incomplete zeta function)

$$p_k = \frac{k^{-\alpha}}{\sum_{k=k_{min}}^{\infty} k^{-\alpha}} = \frac{k^{-\alpha}}{\zeta(\alpha, k_{min})}$$
 (24)

• Alternatively, we can approximate the sum with an integral

$$C \simeq \frac{1}{\int_{k_{min}}^{\infty} k^{-\alpha} dk} = (\alpha - 1)k_{min}^{\alpha - 1}$$
 (25)

$$p_k \simeq \frac{\alpha - 1}{k_{min}} \left(\frac{k}{k_{min}}\right)^{-\alpha} \tag{26}$$

- Top-heavy distributions
- Another interesting property is the fraction of links that connect to the nodes with the highest degrees
- For a pure power law W is a fraction of links attached to a fraction P
 of the highest degree nodes

$$W = P^{\frac{\alpha - 2}{\alpha - 1}} \tag{27}$$

Figure: Lorenz curves for power law networks

- The curves have a very fast initial increase (especially if α is slightly over 2)
- This means that a large fraction of links is connected to a small fraction of the highest degree nodes
- For example, in-degrees on the Web have $k_{min}=20$ and $\alpha=2.2$
- For P = 0.5 we have W = 0.89, for W = 0.5 we have P = 0.015

- These calculations assume perfect power law
- We can still calculate W and P directly from the data
- For example, on the Web for W=0.5 we have P=0.011
- Similarly, in citation networks for W=0.5 we have P=0.083

- Eigenvector centralities have often a highly right-skewed distributions
- Also, variants of the eigenvector centralities such as PageRank exhibit often power law behavior
- E.g. the Internet, WWW, or citation networks
- Betweenness centrality also tends to have right-skewed distributions

Figure 8 10: Cumulative distribution functions for centralities of vertices on the

Figure: Cummulative distibutions of centralities on the Internet

- An exception to this pattern is closeness centrality
- ullet Values for closeness centralities are limited by 1 at the lower end and $\log\,n$ at the upper end
- Therefore their distributions cannot have a long tail
- Typically, closeness centrality distributions are multimodal, whit multiple peaks and dips

Figure: Histogram of closeness centralities on the Internet

- The clustering coefficient measures the average probability that two neighbors of a node are themselves neighbors
- It measures the density of triangles in the networks
- In real networks the clustering coefficient takes values in the order of tens of percent, e.g. 10% or even up to 60%
- \bullet This is much larger than what we would expect if the links are created by chance, e.g. 0.01%
- \bullet E.g. in collaboration networks of physicists expectation is 0.23% but the real value is 45%

- This large difference is indicative of social effects
- For example, it might be that people introduce the pairs of their collaborators to each other
- In social networks this process is called triadic closure
- An open triad of nodes is closed by the introduction of the last third link
- We can study the triadic closure processes directly if we have different version of datasets in time
- E.g. a study showed that it is much more likely (45 times) for people to collaborate in future if they had common collaborators in the past

- In some networks we have the opposite phenomenon
- The expected value of clustering exceeds the observed one
- For example, on the Internet we measure 1.2% and the expected value is 84%
- Thus, on the Internet we have mechanisms that prevent forming of triangles
- On the Web the measured clustering coefficient is of the order of the expected one

- It is not completely clear why different types of networks exhibit such different behaviors in respect to the clustering coefficient
- One theory connects these observations with the formation of communities in networks
- Social networks tend also to have positive degree correlations as opposed to other types of networks
- Thus, in social networks homophily and assortative mixing by degree plays a more important role than in other networks
- This tends to formation of communities and therefore the clustering coefficient becomes greater

- ullet Local clustering coefficient of a node i is the fraction of neighbors of i that are themselves neighbors
- In many networks there is a phenomenon that high degree nodes tend to have lower local clustering
- One possible explanation for this behavior is that nodes tend to form highly connected communities
- Communities of low degree nodes are smaller that work as small disconnected networks, i.e. cliques
- Probability that higher degree nodes form such huge cliques is rather small

Figure: Local clustering as a function of degree on the Internet

Assortative mixing by degree

- Assortative mixing by degree can be quantified by the correlation coefficient r
- ullet Typically, r is not of a large magnitude in real world networks
- There is clear tendency of social networks to have positive r (homophily)
- ullet Technological, information, biological networks tend to have negative r
- Simple graphs bias: the number of links between high-degree nodes is limited because they connect to low degree nodes
- Social networks: communities

Network analysis project

- Software
- C++: SNAP http://snap.stanford.edu/
- Python: NetworkX http://networkx.github.io/
- Python wrapper for Boost: Graph-Tool http://graph-tool.skewed.de/
- Python, R, C: IGraph https://igraph.org/

Network analysis project

- SNAP: http://snap.stanford.edu/
- KONECT: http://konect.cc/
- Dataset of choice
- From SNAP or KONECT Web site
- Your own dataset