

Oligodendrocyte precursors migrate along vasculature in the developing nervous system

章栩 2016/3/3

Contents

- Background
- Experiments
 - Aims
 - Methods
 - Results
 - Conclusions
 - Comments
- Summary
- Follow-up questions

• A brief review of oligodendrocytes

- This study tries to uncover
 - The substrate for OPC migration
 - Mechanisms directing OPC migration during development

- Aim:
 - Find the physical substrate for OPC migration
- Principles and methods in brief:
 - Immunostaining/Immunohistochemistry
 - Migratory OPCs express PDGFRα (labeled in green)
 - Vascular endothelial cell contain CD31 (labeled in red)

• Results:

• Many of these migratory OPCs are elongated along blood vessels, with their cell bodies directly on the abluminal endothelial surface and a single, long leading process along the vessel

- 58% (±4.4%) of OPCs have their cell bodies directly on a vessel wall
- Of the remainder, 67% ($\pm 8.9\%$) display at least one observable process that engages a vessel

- The number of OPCs in the mouse cortex tripled between E16 and E18.
- Olig2+ cells migrating from deep to superficial cortical layers palisade along the vasculature that penetrates the cortex at E18.

- Supplementary experiment:
 - Observations on the human cortex showed similar results
 - The first Olig2-expressing cells to arrive in the human outer cortex at gestational week 14 appose penetrating vessels

- Supplementary experiment:
 - Observations on the human cortex showed similar results
 - Association of Olig2+ and PDGFRα+ OPCs with blood vessels remains evident at gestational weeks 18 and 24

- Supplementary experiment:
 - Observations on the human cortex showed similar results
 - Migrating human OPCs, expressing PDGFR α , are morphologically similar to those of mice in that they extend single leading processes in the direction of movement along and toward vessels

• Conclusion:

 Modes of migration across mammalian species are common

• Comments on Experiment 1:

- Revealed the intimate relationship between OPCs and the vasculature through immunostaining
- Behaviors of OPCs on vessels remained unknown
- Comparison with human cortex may be too early
- Really necessary?

- Aim:
 - Live-image OPC migration to find its behaviors
- Principles and methods in brief:
 - Olig2-GFP reporter mouse intracardiacally infused with rhodamine-lectin for real-time observation
 - Select brain slices to observe regions with actively migrating OPCs

• Results:

• Two behaviors of OPCs were observed during migration on vessels: crawling & jumping

• Results:

• Crawling: Cell body maintaining contact with the abluminal endothelial surface

• Results:

• Jumping: OPC extending a leading process from one vessel toward another, followed by translocation of the cell body to make contact with the new vessel

- Jumping is more rapid than crawling, presumably entailing fewer physical contacts with the endothelial surface
- The association of migrating OPCs with the vasculature is also found in the spinal cord and at later postnatal times when OPCs are required to migrate

- Comments on Experiment 2
 - Revealed the dynamic behaviors of OPCs during migration on vessels
 - Requirements for such migration remained unknown
 - Could we perfrom this experiment at the very beginning?

- Aim:
 - Find the requirement for OPC migration on vessels
- Principles and methods in brief:
 - Disrupt vascular development using both conventional and conditional transgenic knockout mice
 - GPR124 (expressed by endothelium and pericytes within the CNS) is essential for developmental vascular sprouting

- Principles and methods in brief (continued):
 - At E11, mice lacking GPR124 exhibit

• CNS vascular patterning defects and reduced vascularization

- Principles and methods in brief (continued):
 - At E11, mice lacking GPR124 exhibit
 - CNS vascular patterning defects and reduced vascularization
 - Glomeruloid vascular abnormalities
 - highly irregular, multilayered endothelial aggregates with peripheral PDGFRβ+ pericyte investment
 - lack of ventricularly directed endothelial filopodia

- Principles and methods in brief (continued):
 - Hypothesis: OPC dispersal would be abnormal in E14 GPR124-/- embryos.

• Results:

zone

- Migration of Isl1/2-expressing motor neurons, Glast+ radial glial fibers and BLBP–expressing astrocytes all appeared normal
- OPCs abnormally accumulated in the pMN and failed to egress normally from the **spinal cord** ventricular

- 70% fewer OPCs dispersed into the surrounding gray matter
- Rates of OPC cell death were unchanged

• Conclusion:

- The problem is in **migration** (rather than differentiation, cell death, etc.)
- GPR124 is required for normal migration of OPCs

• Both endothelial cells and pericytes express GPR124, which one is really required?

- Supplementary Experiment:
 - Use Cdh5-cre:Gpr124(fl/fl) mice (Cdh5cre is vascular endothelium—specific VE-Cadherin-cre) to target loss of function to the **vascular endothelium**
 - The same OPC migration deficit was observed
 - GPR124 function in the **endothelium** is required to regulate OPC migration

- Supplementary Experiment:
 - Vascular development is also deficient in the brains of E14 GPR124—/— mice with associated severe OPC migration deficits

- Supplementary Experiment:
 - In PDGFRβ-null mice, which lack all pericytes, OPC migration was maintained
 - Thus, OPCs require an **endothelial vascular scaffold**, but **not pericytes**, as a physical substrate for migration throughout the developing CNS

- Comments on Experiment 3:
 - Revealed the required physical scaffold of OPC migration on vessels
 - Relationship between migration and differentiation remained unknown (When and how to happen & stop)

• Aim:

- Find the pathway influencing migration and differentiation (differentiation after migration)
- Principles and methods in brief:
 - (Previous studies have shown) the Wnt pathway inhibits OPC differentiation
 - Olig2-cre:Apc(fl/fl) mice lack the obligate Wnt repressor APC and thus have high levels of Wnt signals

• Results:

• Delays in OPC differentiation with resulting hypomyelination

• Results:

 Aberrant clusters of OPCs associated with vasculature throughout the brain and spinal cord at early postnatal times

- OPC aggregation around vessels and absence of increased proliferation
- Wnt activation in OPCs drives their attraction to the vascular scaffold

- OPC aggregation around vessels and absence of increased proliferation
- Wnt activation in OPCs drives their attraction to the vascular scaffold
- High Wnt tone in OPCs in Olig2-cre:Apc(fl/fl) mice leads to an inability to dissociate from the vasculature and disperse normally into CNS parenchyma

• High Wnt tone in OPCs in Olig2-cre:Apc(fl/fl) mice leads to an inability to dissociate from the vasculature and disperse normally into CNS parenchyma

- OPC aggregation around vessels and absence of increased proliferation
- Wnt activation in OPCs drives their attraction to the vascular scaffold
- High Wnt tone in OPCs in Olig2-cre:Apc(fl/fl) mice leads to an inability to dissociate from the vasculature and disperse normally into CNS parenchyma

• Results:

A loss of Wnt tone in OPCs, in cortical slice cultures treated with the small-molecule Wnt inhibitor XAV939, results in a 76% reduction in OPC recruitment to the microvasculature at postnatal day 1 (P1) and a 71% reduction in their migration to the outer cortex

- OPCs are a source of the ligands Wnt7a and Wnt7b during embryonic migration in the brain and spinal cord
- These ligands act cell-autonomously to activate the Wnt pathway in OPCs at later postnatal times

• Conclusion:

- The Wnt signal mediates the interaction with the endothelium during earlier OPC migration
 - High Wnt tone hampers OPC dissociation from the vasculature
 - Low Wnt tone reduces OPC migration
- Ligands Wnt7a and Wnt7b are candidates for the source of Wnt

- Comments on Experiment 4:
 - Demonstrated that high and low levels of Wnt signals lead to two different results
 - In the normal case, how the Wnt pathway controls the process remained unknown

- Aim:
 - Identify how Wnt pathway activation in OPCs promotes their attraction to the endothelium
- Principles and methods in brief:
 - Analyze mRNA transcripts up-regulated in mouse Wnt-activated OPCs

- Principles and methods in brief (continued):
 - Chemokine receptor Cxcr4
 - One of the most highly up-regulated factors in Wntactivated OPCs
 - A direct Wnt target in other systems
 - Binds the ligand Sdf1 (expressed by the endothelium throughout OPC developmental migration)

- Principles and methods in brief (continued):
 - Chemokine receptor Cxcr4
 - One of the most highly up-regulated factors in Wntactivated OPCs
 - A direct Wnt target in other systems
 - Binds the ligand Sdf1 (expressed by the endothelium throughout OPC developmental migration)
 - Has been implicated in OPC migration, but not in connection with the Wnt pathway or the vasculature

• Results:

• Up-regulation of Cxcr4 mRNA in the clustered Wntactivated OPCs associated with vessels in the brain and spinal cord of Olig2-cre:Apc(fl/fl) mice

• Results:

• Treatment of these mice in vivo with the Cxcr4/Sdf1 antagonist AMD3100 between developmental ages P3 and P10 leads to a reversal of vessel-associated OPC clustering throughout the CNS

- Treatment of these mice in vivo with the Cxcr4/Sdf1 antagonist AMD3100 between developmental ages P3 and P10 leads to a reversal of vessel-associated OPC clustering throughout the CNS
- A Wnt-activated, Cxcr4- dependent mechanism drives attraction of OPCs to the vascular scaffold

- Cxcr4
 - Expressed by OPCs during embryonic developmental migration
 - Down-regulated along with Wnt pathway downregulation in differentiating mature oligodendrocytes

• Results:

• Loss of Cxcr4 function leads to a diminished migratory ability of OPCs in the developing CNS

• Conclusion:

- Wnt activation in OPCs
 - Mediates their attraction to the vasculature and also blocks their differentiation during migration
 - The timing is coupled with Wnt down-regulation required for appropriate endothelial dissociation and subsequent differentiation

- Comments on Experiment 5:
 - Uncovered the Wnt pathway that regulates both OPC migration and differentiation
 - Is the pathway common across mammalian species? Is it the same for humans?
 - Is Cxcr4 the only factor in the Wnt pathway involving in this process?

- 1. OPCs migrate along the vesculature
 - Common modes of migration across mammalian species

- 2. A physical interaction that brings migrating OPCs into intimate contact with the endothelium
 - Crawling
 - Jumping

- 3. OPCs require an endothelial vascular scaffold, but not pericytes, as a physical substrate for migration throughout the developing CNS
 - GPR124 expressed by endothelium is required for normal migration of OPCs

- 4. The Wnt signal mediates the interaction with the endothelium during earlier OPC migration
 - Ligands Wnt7a and Wnt7b are candidates for the source of Wnt

- 5. Wnt pathway activation of Cxcr4 in OPCs mediates their attraction to the endothelium
 - Most likely via the endothelial-expressed Sdf1 ligand
 - Prevents these cells from differentiating while associated with the vasculature during migration

- Potential applications:
 - OPC migration in injured or diseased nervous system (into demyelinated areas) may have similar mechanisms
 - Critical in human diseases (multiple sclerosis, hypoxic injury of the newborn brain, etc.)
 - Dysfunction may contribute to disease progression in these debilitating human conditions

Follow-up questions

- Have we fully understood the process of OPC migration?
 - 1. How to prove the similarity between OPC migration during development and in injured or diseased nervous system? Can we carry out the same procedures?
 - 2. What is the biomechanical mechanism that cotrols the physical interaction between OPCs and the vesculature?
 - 3. What potential factors may affect OPC migration? Are there other pathways also participating in this process?

Thank You

