Although the amount of data may appear large size, Python Pandas will help to successfully parse through it.

Required libraries are Imported:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

- Data is imported using the following:

```
from google.colab import files
import io
data = files.upload()
school_df=pd.read_csv(io.StringIO(data['schools_complete.csv'].decode('utf-8')))
school_df.info
    <bound method DataFrame.info of</pre>
                                      School ID
                                                                 name
                                                                          type size
                      Huang High School District 2917 1910635
               1 Figueroa High School District 2949 1884411
    1
    2
               2 Shelton High School Charter 1761 1056600
    3
               3 Hernandez High School District 4635 3022020
    4
               4 Griffin High School Charter 1468 917500
                    Wilson High School Charter 2283 1319574
    5
               5
                                         Charter 1858 1081356
    6
               6
                   Cabrera High School
    7
               7
                     Bailey High School District 4976 3124928
    8
               8
                     Holden High School Charter 427 248087
                                         Charter 962 585858
    9
               9
                       Pena High School
    10
              10
                     Wright High School
                                         Charter 1800 1049400
    11
              11 Rodriguez High School District 3999 2547363
                    Johnson High School District 4761 3094650
    12
              12
                       Ford High School District 2739
    13
              13
                                                       1763916
    14
               14
                     Thomas High School
                                         Charter 1635 1043130>
```

school_df.head()

	School	ID	school name	type	size	budget		
	0	0	Huang High School	District	2917	1910635		
	1	1 F	igueroa High School	District	2949	1884411		
	2	2	Shelton High School	Charter	1761	1056600		
stude	ent_df=pd.re	ead_csv	(io.StringIO(data['student	s_comp	lete.csv'].decode('u	tf-8')))
	4	4	Griπin High School	Cnarter	1468	917500		
stude	ent_df.info							
	<pre><bound met<="" pre=""></bound></pre>	hod Data	aFrame.info of	Stud	lent ID)	name	reading_sco
	0	0	Paul Bradle			66	79	
	1	1	Victor Smit	-		94	61	
	2	2	Kevin Rodrigue			90	60	
	3	3	Dr. Richard Scot			67	58	
	4	4	Bonnie Ra			97	84	
	• • •		••			• • •		
	39165	39165	Donna Howar	d		99	90	
	39166	39166	Dawn Bel			95	70	
	39167	39167	Rebecca Tanne	r		73	84	
	39168	39168	Desiree Kid	d		99	90	
	39169	39169	Carolyn Jackso	n		95	75	
	[39170 row	s x 7 co	olumns]>					
	1							•

The name of the column in the data can be adjusted as needed:

```
# Rename col "name" in school_df to "school name"
school_df.rename({"name" : "school name"}, axis=1, inplace=True)

# Rename col "school" in student_df to "school name"
# Store renamed student_df as new df
renamed_student_df = student_df.rename(columns={"school" : "school name"})
```

A high-level snapshot (in table format) of the district's key measurements is generated below.

```
## Total Schools
total_schools = school_df["school name"].count()
## Total Students
total_students = renamed_student_df["school name"].count()
## Total Budget
total_budget = school_df["budget"].sum()
```

```
## Average Math Score
avg_math_score = renamed_student_df["math_score"].mean()
## Average Reading Score
avg_read_score = renamed_student_df["reading_score"].mean()
## % Passing Math based on 70
math_pass = renamed_student_df.loc[(student_df["math_score"] >= 70)]
count_pass_math = math_pass["math_score"].count()
per_math_pass = (count_pass_math/total_students)*100
## % Passing Reading based on 70
read pass = renamed student df.loc[(student df["reading score"] >= 70)]
count_pass_read = read_pass["reading_score"].count()
per read pass = (count pass read/total students)*100
## Overall Passing Rate (Average of the above two)
overall_pass = (per_math_pass + per_read_pass)/2
district_summary = {"Total Schools" : total_schools,
                   "Total Students" : total_students,
                   "Total Budget" : total_budget,
                   "Average Math Score" : avg_math_score,
                   "Average Reading Score" : avg_read_score,
                    "% Passing Math" : per_math_pass,
                   "% Passing Reading" : per_read_pass,
                   "% Overall Passing" : overall_pass
district_summary_df = pd.DataFrame([district_summary])
district_summary_df = district_summary_df[["Total Schools",
                   "Total Students", "Total Budget", "Average Math Score", "Average Reading
                   "% Passing Math", "% Passing Reading", "% Overall Passing" ]]
```

District_Summary

```
district_summary_df
```

An overview table summarizing the key criteria for each school is developed as follows:

```
# First, we will delete the School ID col from copy_school_sum because we will not need it
del copy_school_sum['School ID']
# We can print copy_school_sum to verify the del
# copy_school_sum
## Calculate the Per Student Budget
## Then, we will create a new col named 'Per Student Budget'
copy_school_sum['Per Student Budget'] = copy_school_sum['budget']/copy_school_sum['size']
## Average Math Score & Average Reading Score
## We will use a groupby function to group on school name and display both reading and mat
avg_math_read_tbl = renamed_student_df.groupby(['school name'])['reading_score', 'math_sco
# avg_math_read_tbl
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: FutureWarning: Indexi
## Now, we merge avg_math_read_tbl with copy_school_sum df. We want to merge on School Nam
copy_school_sum = copy_school_sum.merge(avg_math_read_tbl, on='school name', how="outer")
#copy_school_sum
## We will use conditionals to find the % Passing Math and % Passing Reading. Then, we wil
# % Passing Reading
summary_passing_read = renamed_student_df[renamed_student_df['reading_score']>=70]
#% Passing Math
summary_passing_math = renamed_student_df[renamed_student_df['math_score']>=70]
#summary_passing_read
#summary_passing_math
```

Count the number of students passing in reading

```
pass_read_count_sum = summary_passing_read.groupby(["school name"])['reading_score'].count
## Then, rename the column the 'reading_score' to 'Reading Count'
pass_read_count_sum.rename({'reading_score' : 'Reading Count'}, axis=1, inplace=True)
## Count the number of students passing in math
pass_math_count_sum = summary_passing_math.groupby(["school name"])['math_score'].count().
## Then, rename the column the 'math_score' to 'Math Count'
pass_math_count_sum.rename({'math_score' : 'Math Count'}, axis=1, inplace=True)
## Merge pass_math_count_sum with pass_read_count_sum
## We want to merge on School Name and by 'inner' to include only the contents found in bo
pass_count = pass_math_count_sum.merge(pass_read_count_sum, on="school name", how='inner')
#pass_count
## Merge copy_school_sum with pass_count we just created
## We want to merge on School Name and by 'outer' to include everything
copy_school_sum = copy_school_sum.merge(pass_count, on="school name", how='outer')
#copy_school_sum
## Calc % passing math and reading
## Take the subject count and divide by the school size, then pmultiply by 100 to get perc
# % Passing Math
copy_school_sum['% Passing Math'] = (copy_school_sum['Math Count']/copy_school_sum['size']
# % Passing Reading
copy_school_sum['% Passing Reading'] = (copy_school_sum['Reading Count']/copy_school_sum['
#copy_school_sum
# Now, we will delete the Math Count and Reading Count cols from copy_school_sum. Because
del copy_school_sum['Math Count']
del copy_school_sum['Reading Count']
## Calc % overall passing
## Overall Passing Rate (Average of the above two)
copy_school_sum['% Overall Passing'] = (copy_school_sum['% Passing Math'] + copy_school_su
#copy_school_sum
```

now, rename axis for reading and math scores to Avg. Reading Score and Avg. Math Score i

copy_school_sum

	school name	type	size	budget	Per Student Budget	Avg. Reading Score	Avg. Math Score	% Passing Math	Pi Ri
0	Huang High School	District	2917	1910635	655.0	81.182722	76.629414	65.683922	81.:
1	Figueroa High School	District	2949	1884411	639.0	81.158020	76.711767	65.988471	80.
2	Shelton High School	Charter	1761	1056600	600.0	83.725724	83.359455	93.867121	95.
3	Hernandez High School	District	4635	3022020	652.0	80.934412	77.289752	66.752967	80.8
4	Griffin High School	Charter	1468	917500	625.0	83.816757	83.351499	93.392371	97.
5	Wilson High School	Charter	2283	1319574	578.0	83.989488	83.274201	93.867718	96.
6	Cabrera High	Charter	1858	1081356	582.0	83.975780	83.061895	94.133477	97.1

The following is a list of the 5 best performing schools in terms of overall pass rate:

Create a table that highlights the top 5 performing schools based on Overall Passing Ra ## Found the top 5 performing by sorting copy_school_sum on the '% Overall Passing' col in ## By sorting, we can find the five top performing

 $top_performing_by_pr_df = copy_school_sum.sort_values(by=['\% \ Overall \ Passing'], \ ascending=[by_pr_df]$

top_performing_by_pr_df.head(5)

	school name	type	size	budget	Per Student Budget	Avg. Reading Score	Avg. Math Score	% Passing Math	Pass Reac
6	Cabrera High	Charter	1858	1081356	582.0	83.975780	83.061895	94.133477	97.039

Bottom 5 performing schools

Create a table that highlights the bottom 5 performing schools based on Overall Passing
Using the copy_school_sum df found the bottom 5 performing schools based on Overall Pas

bottom_five_by_pr_df = copy_school_sum.sort_values(by=['% Overall Passing']).head(5)

bottom_five_by_pr_df

	school name	type	size	budget	Per Student Budget	Avg. Reading Score	Avg. Math Score	% Passing Math	Pa: Rea
11	Rodriguez High School	District	3999	2547363	637.0	80.744686	76.842711	66.366592	80.22
1	Figueroa High School	District	2949	1884411	639.0	81.158020	76.711767	65.988471	80.7
0	Huang High School	District	2917	1910635	655.0	81.182722	76.629414	65.683922	81.3 ⁻
	Johnson								

A table lists the average math score for each grade level (9th, 10th, 11th, 12th) students in each school:

math_score

grade	9th	10th	11 th	12th
school				
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	22 26 <i>1</i> 706	ደ/ በ1በንደደ	Ջ Չ ՋՉ <mark>Բ</mark> ႗ՋՉ	ል3 医ላላወልይ

A table listing the average reading marks for each grade level (9th, 10th, 11th, 12th) students in each school is created as follows.

read	in	g s	co	re

grade	9th	10th	11th	12th
school				
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671

A schedule of breaking down school programs (for each student) is created based on average spending limits. 4 reasonable bins are used to spend on the school board. The table is being created.

```
# Copy the copy_school_sum and save as scores_by_school_spending
scores_by_school_spending = copy_school_sum.copy()

# Create bins - we will need labels and bins
bins = [0, 585, 615, 645, 675]
spending_labels = ['$0-585', '$586-615', '$616-645', '$646-675']

# Use bins and labels to sort through data and divide it up appropriately
# save bined data as bins_school_spending variable
bins_school_spending = pd.cut(scores_by_school_spending['Per Student Budget'], bins, label
# Convert bins_school_spending to df
bins_school_spending = pd.DataFrame(bins_school_spending)
# add Spending Level col
copy_school_sum['Spending Level'] = bins_school_spending
```

scores by school spending

Show cols for bins school spending to verify

	Avg. Reading Score	Avg. Math Score	% Passing Reading	% Passing Math	% Overall Passing
Spending Level					
\$0-585	83.933814	83.455399	96.610877	93.460096	95.035486
\$586-615	83.885211	83.599686	95.900287	94.230858	95.065572
\$616-645	81.891436	79.079225	86.106569	75.668212	80.887391

Group schools based on a reasonable approximation of school size (Small, Medium, Large).

```
# Create a copy of copy_school_sum and save as scores_by_school_size
scores_by_school_size = copy_school_sum.copy()

# Print scores_by_school_size to verify
# scores_by_school_size

# Create bins - we will need labels and bins
bins = [0, 1000, 2000, 5000]
size_labels = ['Small', 'Medium', 'Large']

# Use bins and labels to sort through data and divide it up appropriately
# save bin data as bins_school_size variable
bins_school_size = pd.cut(scores_by_school_size['size'], bins, labels = size_labels)

# Convert bins_school_spending to df
bins_school_size = pd.DataFrame(bins_school_size)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: FutureWarning: Indexi after removing the cwd from sys.path.

'% Passing Math',
'% Overall Passing'

].mean()

· ____

scores_by_school_size

add 'School Population' col

copy_school_sum['School Population'] = bins_school_size

		Avg. Reading Score	Avg. Math Score	% Passing Reading	% Passing Math	% Overall Passing
School Population	school name					
Large	Bailey High School	81.033963	77.048432	81.933280	66.680064	74.306672
	Figueroa High School	81.158020	76.711767	80.739234	65.988471	73.363852
	Ford High School	80.746258	77.102592	79.299014	68.309602	73.804308
	Hernandez High School	80.934412	77.289752	80.862999	66.752967	73.807983
	Huang High School	81.182722	76.629414	81.316421	65.683922	73.500171
	Johnson High School	80.966394	77.072464	81.222432	66.057551	73.639992
	Rodriguez High School	80.744686	76.842711	80.220055	66.366592	73.293323
	Wilson High School	83.989488	83.274201	96.539641	93.867718	95.203679
Medium	Cabrera High School	83.975780	83.061895	97.039828	94.133477	95.586652

Group schools based on school type (Charter vs. District).

scores_by_school_type.head()

	Avg. Reading Score	Avg. Math Score	% Passing Reading	% Passing Math	% Overall Passing
type					
Charter	83.896421	83.473852	96.586489	93.620830	95.103660
District	80.966636	76.956733	80.799062	66.548453	73.673757

Observations:

- We can observe that charter schools have greater pass rates in reading and math than district schools when we look at Scores by School Type.
- The fact that the top five performing schools had all been charter schools adds to this.
- When comparing Math and Reading Scores by Grade, we can see that pupils' math scores are generally lower than their reading scores.
- We can see from the Results by School Spending that there isn't always a link between school expenditure and overall math or reading scores.