DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

03564625

Image available

MANUFACTURE OF THIN FILM TRANSISTOR

PUB. NO.:

03-227525 [JP 3227525 A]

PUBLISHED:

October 08, 1991 (19911008)

INVENTOR(s): TAJIMA KAZUHIRO

NOGUCHI TAKASHI

APPLICANT(s): SONY CORP [000218] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

02-023079 [JP 9023079]

FILED:

February 01, 1990 (19900201)

INTL CLASS:

[5] H01L-021/336; H01L-029/784

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R002 (LASERS)

JOURNAL:

Section: E, Section No. 1151, Vol. 16, No. 4, Pg. 102,

January 08, 1992 (19920108)

ABSTRACT

PURPOSE: To realize an LDD structure in simple steps by implanting impurities to a thin semiconductor film with a gate electrode and a spacer of its sidewall as masks, and then heat treating it.

CONSTITUTION: A gate electrode 15 is formed on a thin semiconductor film 13 through a gate insulating film 14, a spacer 16 is formed on the sidewall of the electrode 15, impurities 17 are implanted into the film 13 with the electrode 15 and the spacer 16 as masks, and the film 13 is heat treated. In this case, the impurities 17 are not implanted by masking the gate 15 only, but the impurities 17 are diffused under the spacer 15 by heat treating the film 13, thereby realizing an LDD structure. The width and heat treating conditions of the spacer 16 are selected to suppress diffusion of the impurities 17 directly under the electrode 15. Thus, the structure may be realized in simple steps.

99日本国特許庁(JP)

⑩特許出願公開

@ 公 開 特 許 公 報 (A) 平3-227525

fint, Cl. 5

勿出 願 人

識別記号

宁内整理番号

❸公開 平成3年(1991)10月8日

H 01 L

9056-5F H 01 L 29/78 311 Y 審査請求 未請求 請求項の数 1 (全6頁)

60発明の名称 薄膜トランジスタの製造方法

②特 頤 平2-23079

29出 願 平2(1990)2月1日

隆

東京都品川区北品川6丁目7番35号 ソニー株式会社内

東京都品川区北品川6丁目7番35号 ソニー株式会社内

ソニー株式会社 東京都品川区北品川6丁目7番35号

29代 理 人 弁理士 土 屋

1. 発明の名称

薄膜トランジスタの製造方法

2. 特許請求の範囲

半導体薄膜上にゲート絶縁膜を介してゲート電 極を形成し、

前記ゲート電極の側壁にスペーサを形成し、

・前記ゲート電極と前記スペーサとをマスクにし て前記半導体薄膜内へ不純物を導入し、

前記半導体薄膜を熱処理する薄膜トランジスタ の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、LDD構造を有する薄膜トランジス タの製造方法に関するものである。

(発明の概要)

本発明は、上記の様な薄膜トランジスタの製造 方法において、半導体薄膜への不雑物の導入をゲ ート電極とその側壁のスペーサとをマスクにして 行い、その後に熱処理を行うことによって、簡単 な工程でLDD構造を実現することができ、しか も短チャネルトランジスタも製造することができ る様にしたものである。

〔従来の技術〕

薄膜トランジスタは、高集積化されたSRAM の負荷素子等として有望視されている。ところが、 薄膜トランジスタの活性層、つまりソース・ドレ イン領域及びチャネル形成領域が形成される層は、 一般に、多結晶半導体薄膜によって形成されてい

このため、薄膜トランジスタのオフ時のリーク 電波を低波させることが重要になっている。そし て、そのための一つの方法として、薄膜トランジ スタをLDD構造にして、ドレイン領域の電界を 援和することが有効であるとされている。

この様なしDD構造を実現するために、従来は、まずゲート電極のみをマスクにして半導体薄膜内へ不純物を導入し、更にゲート電極の側壁にスペーサを形成し、このスペーサとゲート電極とをマスクにして再び半導体薄膜内へ不純物を導入していた。

(発明が解決しようとする課題)

しかし、LDD構造を実現するためには、上述の戦略からも明らかな様に、不純物の導入を2回行う必要があり、その分だけ製造工程が複雑である。

しかも、スペーサ下へも不純物を導入した状態で、ソース・ドレイン領域の活性化等のための無処理を行うと、ゲート電極の直下へも不純物が拡散してしまう。従って、上述の様な従来の方法では、短チャネルトランジスタを製造することが難しい。

〔課題を解決するための手段〕

第5図を参照しながら説明する。

第1図及び第2図は、pチャネル薄膜トランジスタの製造に適用した第1実施例を示している。

この第1実施例では、第1A図に示す様に、石 英等から成る基板11上に8000人程度の厚さのSiOa膜12と、400人かまたは800人程度 の厚さの非晶質Si薄膜13とを順次に形成する。

そして更に、ゲート総縁膜であるSiOz膜14と、ゲート電極である多結晶Si膜15と、ゲート電極の個壁のスペーサであるSiOz膜16とを、従来公知の方法によって第1A図に示す形状に形成する。なお、SiOz膜16の基底部での幅は、0.15μm程度にする。

次に、第1 B 図に示す様に、多結晶Si 膜 1 5 と Si 0 = 膜 1 6 とをマスクにして非晶質Si 薄膜 1 3 内へ不統物 1 7 をイオン注入することによって、不統物注入領域 1 3 a を形成する。不統物 1 7 としては、B°、BP° = 、B° + Si° 等を用いる。

次に、非晶質Si薄膜13で固相結晶成長を行わ ・せるための600で程度のアニールを行って、第 本発明による薄膜トランジスタの製造方法は、 半導体薄膜13上にゲート 絶縁膜14を介してゲート電極15を形成し、前記ゲート電極15の側 壁にスペーサ16を形成し、前記ゲート電極15 と前記スペーサ16とをマスクにして前記半導体 薄膜13内へ不純物17を導入し、前記半導体薄膜13を熱処理する機にしている。

(作用)

本発明による薄膜トランジスタの製造方法では、ゲート電極15のみをマスクにした不純物17の 導入を行っていないが、半導体薄膜13に対する 熱処理によってスペーサ16下へ不純物17を拡 散させて、LDD構造を実現することができる。

しかも、スペーサ15の幅や熱処理条件を選定 することによって、ゲート電極15の直下への不 純物17の拡散を抑制することができる。

〔実施例〕

以下、本発明の第1~第4実施例を、第1図~

1 C 図に示す機に、非晶質Si薄膜 1 3 を多結晶Si 薄膜 1 8 にする。

そして更に、多結晶Si薄膜 1 8 の結晶性の向上とイオン注入した不純物 1 7 の活性化とのための 1 0 0 0 で、 1 0 秒間の短時間アニールをN。 雰囲気中で行って、ソース・ドレイン領域 1 8 a を形成する。

ところで、第2図は、高遷度のB・注入領域に対して10秒間の短時間アニールを行った場合の、アニール温度と拡散長との関係を示している。この第2図から、アニール条件を選定することによって拡散長を制御可能であることがわかる。

徒って、上述の様な1000で、10秒間の短時間アニールによって、第1 C図に示す様に、Si 0 x 膜16の基底部の幅と同じ0.15μmだけ不純物17が拡散する。この結果、Si0 x 膜16下に低温度のソース・ドレイン領域18 a が自動的に形成され、LDD構造が完成する。

これに対して、SiOz膜 1 6 下にも予め不統物 1 7 をイオン注入しておくと、ゲート電極である多

特開平3-227525(3)

結晶Si膜15の直下へも不純物17が拡散して、 短チャネルトランジスタを製造することができない。

第3図は、第2実施例を示している。この第2 実施例では、第3A図に示す様に、SiO,膜12上 に形成した非晶質Si薄膜(図示せず)を多結晶Si 薄膜18にし、更にこの多結晶Si薄膜 [8の結晶 性を向上させるために、エキシマレーザ光21の 照射による1200で程度のアニールを行う。

その後、第3B図に示す様に、不純物(図示せず)を注入してソース・ドレイン領域18aを形成するために、ランプ光22の5秒程度の照射による1000で程度のアニールを行う。ランプ光22としては、ハロゲンランプ光やアークランプ光等を用いる。

この様な第2実施例では、多結晶Si薄膜13を 形成するために1200で程度という高温のアニールを行っているので、リーク電流、サブスレッショルドスイング、移動度等の薄膜トランジスタの特性がよい。

図射された場合、多結晶S1膜15の影の部分はアニールされない。しかし、この第2実施例の様にランプ光22を用いると、基板11例からの熱の伝導もあるので、アニールが均一に行われる。

また、多結晶Si膜15や多結晶Si薄膜18を別の半導体膜で被覆した状態でアニールを行う場合、エキシマレーザ光21は単色光であるので被覆膜での干渉等による損失を受けるが、ランプ光22ではこの様な損失がない。

第4図は、第3実施例を示している。この第3 実施例では、第4A図に示す様に、基板11上に8000人程度の厚さのSi0a膜12を残圧CVDによって形成する。そして、Si0a膜12上に形成した多結晶Si環膜(図示せず)にSi*23を1×10¹⁸cm⁻¹程度のドーズ量にイオン柱入することによって、この多結晶Si環膜を非晶質Si環膜13にする。

次に、第4日図に示す様に、非晶質Si薄膜13 上に3000人程度の厚さのSiOa膜24を滅圧C VDによって形成して、非晶質Si薄膜13をSiOa しかも、1200で程度という高温のアニールはエキシマレーザ光21の照射によって行っており、エキシマレーザ光21は照射領域の主に要面近傍部分のみをアニールする。従って、下地に別の素子が形成されている場合でも、不純物の再分布や耐熱性の低い配線材料の劣化等の問題が少ない。

一方、ソース・ドレイン領域18aを形成するためのアニールは1000セ程度と比較的低温であるので、上述の様な下地への影響が元々少ない。

しかも、エキシマレーザ先21は部分照射しかされないが、ランプ光22は一括照射される。そして、ゲート電極である多結晶Si膜15がパターニングされた後のアニールはランプ光22の照射によって行っているので、合わせ特度やショット間のばらつき等の影響が少なく、スループットも高い。

また、多結晶Si膜15のパターニング後にエキ シマレーザ光21の照射によるアニールを行うと、 エキシマレーザ光21が多結晶Si膿15に斜めに

膜12、24によって上下から挟持する。なお、 SiOz膜12、24の代りに、SizN。膜を滅圧CV Dによって形成してもよい。

次に、非晶質Si薄膜13で固相結晶成長を行わせるためのアニールを行って、第40図に示す様に、非晶質Si薄膜13を多結晶Si薄膜18にする。その後、この多結晶Si薄膜18を缶性層にして薄膜トランジスタを製造する。

この様な第3実施例では、減圧CVDによって 形成されたSiOz膜12、24によって非晶質Si薄 膜13が上下から抉持されているので、固相結晶 成長時の核の発生密度が高い。

このため、多結晶Si薄膜 1 8 の粒径が均一であり、短チャネルの薄膜トランジスタでも特性が均一である。しかも、アニール時間も少なくてよい。また、SiOz 膜 2 4 の膜厚が薄く且つ汚染がなければ、このSiOz 膜 2 4 をそのままゲート絶縁膜として使用することができる。

なお、多結晶Si薄膜 1 B の粒径が均一になるに 連れて、その粒径が小さくなり、移動度も低くな

特開平3-227525(4)

る。しかし、多結晶SI薄膜 1 8 を形成するためのアニールの後に、更にエキシマレーザ光等による高温短時間アニールを行えば、4 0 cd / V・S程度の値は得ることができる。

第5図は、第4実施例を示している。この第4 実施例では、第5A図に示す様に、600で程度 の温度のアニールによる固相結晶成長によって4 00Aかまたは800A程度の厚さの多結晶Si確 膜18を形成し、この多結晶Si確膜18をアイランド状にパターニングする。

次に、多結晶Si薄膜18の結晶性を向上させるための1200で、5秒間程度の高温短時間アニールをNェ+O・またはO・雰囲気中で行う。この結果、第5B図に示す様に、多結晶Si薄膜18の表面に熱酸化によるSiO-膜25が形成される。

次に、第5 C図に示す様に、CVDによってSiOx膜26を所認の導さまで堆積させる。そして、SiOx膜25、26をゲート絶縁膜とし、ゲート電極の形成以降の工程を行う。

この様な第5実施例によれば、平坦性はよくな

いが膜質がよい点で耐圧が高いSiO. 膜25と、膜質はよくないが平坦性がよい点で耐圧が高いSiO. 膜26との積層膜をゲート絶縁膜としているので、ゲート絶縁膜の耐圧が高い環膜トランジスタを製造することができる。

(発明の効果)

本発明による薄膜トランジスタの製造方法では、 ゲート電極のみをマスクにした不純物の導入を行っていないので、簡単な工程でLDD構造を実現 することができる。

しかも、ゲート電極の直下への不純物の拡散を 抑制することができるので、短チャネルトランジ スタを製造することができる。

4. 図面の簡単な説明

第1図は本発明の一実施例を壊次に示す例断面図、第2図は熱処理温度と不純物の拡散县との関係を示すグラフ、第3図~第5図は夫々第2~第4実施例を順次に示す側断面図である。

なお図面に用いられた符号において、

1 3 非晶質Si薄膜

1 4 SiO.股

15 ----- 多結晶Si膜

17 ----- 不純物

である。

代理人 土屋 功

特開平3-227525 (6)

