

Tides of Taste: Personalized Seafood Restaurant Insights

Boyuan Chen
Gaurangi Agrawal
Mengxin Zhao
Varun Kaza

Introduction

Why We Are Interested in This Problem

- 1. A shared passion for dining out
- 2. An interest in the seafood culture of the Greater Boston Area
- 3. An ideal application of experience and expertise
- 4. Opportunity to work with various types of data and tools
- 5. Relevant to our immediate environment

Who It Is Useful To

Usefulness to Customers

- 1. To find frequently occurring words used in good reviews
- 2. To create a consolidated guide for tourists to the Greater Boston area
- 3. To allow customers to plan their trips in consideration of prices and reviews
- 4. To find the best time of day to visit a restaurant

Usefulness to Restaurants

- 1. To find a correlation between words used in reviews and the ratings given
- 2. To know the best time of day to focus their offerings
- 3. To determine price offerings

Data Structure

The Dataset

Dimensions	77 columns
Source	Google Reviews
Type of Data	Numeric, Boolean, Text, Vector, Events
Method of Extraction	Apify.com

Entity Relationship Diagram

Pipeline Structure

An EtTL pipeline automates the data flow from Google Map to the MotherDuck DB

Tools we used before SuperSet

Apify

Make API calls to get the data ingested.

Prefect

Pipeline Orchestration.

Google Cloud

Storage Bucket

As our data lake to store unprocessed json files

MotherDuck DB

As our data warehouse to store processed data.

Phase 1: Initial Ingestion "E & t" of the EtTL

We used initial_data_ingestion_flow.py to

- 1. make the first scrape of review from 2022-01-01 to 2024-10-07
- 2. Remove columns like review ID, URL info, etc.
- 3. Convert some categorical data into binary form, like whether the restaurant is temporarily/permanently closed
- 4. Combine the translated text and original text into one column
- 5. Count the number of review images for one review

Example:

```
"reviewImageUrls": [
"https://lh5.googleusercontent.com/p/AF1QipONR0VH5dOSceyOfy
wFtqK9M1Y3IGW4E68xpfpp=w1920-h1080-k-no-p",
"......"
],
```

-> Number of photo in one review = n

Initial Data Ingestion Flow

Phase 2: Weekly Review Ingestion "E & t" of the EtTL

We used deployment_cycle_scrape.py to

- 1. make the scrape of new reviews beginning from 2024-10-15 on a weekly basis
- 2. perform similar transformations towards the data and store it in the GCS bucket

Phase 3: Data Aggregation "E & t" of the EtTL

We used deployment_aggregation_flow.py to

- For the first two week:
 - 1. Identify the initial scraped data
 - 2. Identify the first weekly scraped data
 - 3. Append them into an aggregation file and remove duplicates using 2 fields: reviewerld & publishedAtDate
 - 4. Upload the file into GCS
- For the 3rd week and ahead:
 - 1. Identify the latest weekly scraped data
 - 2. Identify the most recent aggregation file
 - 3. Append them into an aggregation file and remove duplicates using 2 fields: reviewerld & publishedAtDate
 - 4. Upload the file into GCS

Phase 4: Transformation & Load "T & L" of the EtTL

We used deployment_transform_and_load.py to

- 1. perform the most basic text preprocessing (remove special characteristics, lowercase the text, etc.)
- Feature Splitting
 (for example, Review Rating-> food, service, atmosphere)
- 1. Save the dataframe into CSV format
- 2. Upload it into MotherDuck DB

The overall pipeline schedule

Dashboard Insights & Plans

Dashboard on Superset & Potential improvements on the pipeline

Superset Dashboard

Map of the Restaurants

Link: http://34.68.1.107:8088/superset/dashboard/p/dmR3QzZ5067/

Next Step:

- Text data: Implement NLP models to extract more insights from customer reviews.
 Analyze the text part of reviews to identify praises, complaints, and suggestions.
- Numerical data: Combined with text data, develop ML models that can represent and assess restaurant performance.
- Build the recommendation engine for customers and give restaurant owners insights to improve their food, service, decorations, etc.
- Enhance the pipeline by implementing monitoring and alert system for timely issue detection, utilize Generative AI tools in the next step.

Thanks For Listening!