Determination of the beam asymmetry Σ in η and η' -photoproduction using Bayesian statistics

JAKOB MICHAEL KRAUSE

Masterarbeit in Physik angefertigt im Helmholtz-Institut für Strahlen- und Kernphysik

vorgelegt der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität

Bonn

Sep 2022

Contents

1	Intro	roduction	1
	1.1	Photoproduction of Pseudoscalar Mesons	4
	1.2	Measurement of Polarization Observables	5
	1.3	Introduction to Bayesian statistics	5
	1.4	Motivation and Structure of this Thesis	5
2	Exp	perimental Setup	7
	2.1		7
		2.1.1 Tagger	8
	2.2	Beam Target	8
	2.3	Calorimeters	8
	2.4	Trigger	8
_	_		
3			1
	3.1	E .	1
	3.2	Time of particles	
	3.3		4
			4
			15
			21
	3.4	E E	22
			22
			25
			28
	3.5	Summary of event selection	31
4	Evtr	raction of the beam asymmetries Σ_n and $\Sigma_{n'}$	33
-	4.1	\mathbf{v}	34
	7.1		34
		·	36
	4.2		36
	4.2	,	36
		· · · · · · · · · · · · · · · · · · ·	36
			36
	4.3		36
	4.3	η	90 86

22nd June 2022 18:32

	4.3.2	Application of event based fit to data	36
	4.3.3	Systematic Error	36
6	Summary a	and outlook	27
	A.1 Statist	ical error for the asymmetry $A(\phi)$	29
Bi	bliography		31
Li	List of Figures		33
Li	st of Tables		35

vi 22nd June 2022 18:32

APPENDIX A

A.1 Statistical error for the asymmetry $A(\phi)$

Let $\tilde{N}_i^{\parallel/\perp}$ be the normalized event yields at bin ϕ_i . As mentioned in section 4.1, the asymmetry A_i at bin i is then given by

$$A_{i} = \frac{\tilde{N}_{i}^{\perp} - \tilde{N}_{i}^{\parallel}}{p_{\gamma}^{\parallel} \tilde{N}_{i}^{\perp} + p_{\gamma}^{\perp} \tilde{N}_{i}^{\parallel}} = \Sigma \cos \left(2 \left(\alpha^{\parallel} - \phi_{i} \right) \right), \tag{A.1}$$

where the event yields are normalized over all M ϕ -bins

$$\tilde{N}_{i}^{\parallel/\perp} = \frac{N_{i}^{\parallel/\perp}}{\sum_{j=1}^{M} N_{j}^{\parallel/\perp}}.$$

To estimate statistical errors according to Gaussian error propagation, the partial derivatives with respect to $N_i^{\parallel/\perp}$ have to be built:

$$\left(\Delta A_{i}\right)^{2} = \left(\frac{\partial A_{i}}{\partial \tilde{N}_{i}^{\parallel}} \Delta \tilde{N}_{i}^{\parallel}\right)^{2} + \left(\frac{\partial A_{i}}{\partial \tilde{N}_{i}^{\perp}} \Delta \tilde{N}_{i}^{\perp}\right)^{2},\tag{A.2}$$

where

$$\left(\frac{\partial A_i}{\partial \tilde{N}_i^{\parallel}}\right)^2 = \left[\frac{\tilde{N}_i^{\perp} \left(p_{\gamma}^{\perp} + p_{\gamma}^{\parallel}\right)}{\left(p_{\gamma}^{\parallel} \tilde{N}_i^{\perp} + p_{\gamma}^{\perp} \tilde{N}_i^{\parallel}\right)^2}\right]^2 \qquad \left(\Delta \tilde{N}_i^{\parallel}\right)^2 = \frac{\tilde{N}_i^{\parallel}}{\left(\sum_{j=1}^{M} \tilde{N}_j^{\parallel}\right)^2} + \frac{\tilde{N}_i^{\parallel}}{\left(\sum_{j=1}^{M} \tilde{N}_j^{\parallel}\right)^2} \tag{A.3}$$

Bibliography

- [San+11] A. M. Sandorfi, S. Hoblit, H. Kamano and T.-S. H. Lee,

 Determining pseudoscalar meson photoproduction amplitudes from complete experiments,

 Journal of Physics G: Nuclear and Particle Physics 38 (2011) 053001, ISSN: 1361-6471,

 URL: http://dx.doi.org/10.1088/0954-3899/38/5/053001.
- [Afz19] F. N. Afzal, Measurement of the beam and helicity asymmetries in the reactions $\gamma p \to p \pi^0$ and $\gamma p \to p \eta$, PhD thesis: Rheinische Friedrich-Wilhelms-Universität Bonn, 2019, URL: https://hdl.handle.net/20.500.11811/8064.
- [Afz+20] F. Afzal et al., Observation of the pη Cusp in the New Precise Beam Asymmetry Σ Data for $\gamma p \to p\eta$, Phys. Rev. Lett. **125** (15 2020) 152002, URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.152002.

22nd June 2022 18:32

List of Figures

1.1	Running coupling of QCD. The colored data points represent different methods to obtain a value for α_s . For more details it may be referred to [pdg]	2
1.2	Calculated nucleon (isospin $I = 1/2$) resonances compared to measurements. Left in each column are the calculations [bonnmodel], the middle shows the measurements and PDG rating [pdg]	3
1.3	Feynman diagram for the s-channel photoproduction of pseudoscalar mesons, adapted from [Afz19]	4
2.1	[cb]	7
2.2	[cb]	8
2.3	[cb]	8
2.4	D. Walther in [urban]	9
2.5	[cb]	9
2.6	[cb]	10
3.1	Distribution of event classes in $\eta' \to \gamma \gamma$ production	12
3.2	Time information of all final state particles and the beam photon for 3PED η' production	13
3.3	Reaction time t_r for 3PED η' production	14
3.4	Coplanarity of the $p\eta'$ final state with all other cuts applied for the energy bin $1500\text{MeV} \le E_{\gamma} < 1600\text{MeV}$. The vertical dashed lines show the cut ranges obtained from a gaussian fit to the data (open circles). The solid black histograms represent fitted MC data of $\eta' \to \gamma\gamma$	18
3.5	Polar angle difference of the $p\eta'$ final state with all other cuts applied for the energy bin $1500\mathrm{MeV} \leq E_{\gamma} < 1600\mathrm{MeV}$. The vertical dashed lines show the cut ranges obtained from a gaussian fit to the data (open circles). The solid black histograms represent fitted MC data of $\eta' \to \gamma\gamma$	18
3.6	Missing mass of the $p\eta'$ final state with all other cuts applied for the energy bin $1500\mathrm{MeV} \leq E_{\gamma} < 1600\mathrm{MeV}$. The vertical dashed lines show the cut ranges obtained from a fit to data (open circles) employing a Novosibirsk function. The solid colored histograms represent fitted MC data from relevant photoproduction reactions: in black η' , in green π^0 , in red η , in blue ω , in yellow $2\pi^0$, magenta $\pi^0\eta$. The turquoise histogram is the sum of all MC histograms.	19

22nd June 2022 18:32

3.7	Invariant mass of the $p\eta'$ final state with all other cuts applied for all energy and angular	
	bins. The open circles represent the measured data, the solid colored histograms fitted	
	MC data from relevant photoproduction reactions: in black η' , in green π^0 , in red η ,	
	in blue ω , in yellow $2\pi^0$ and in magenta $\pi^0\eta$. The turquoise histogram is the sum of	
	all MC histograms.	20
3.8	Invariant mass of the $p\eta'$ final state with all other cuts applied for the energy bin	
	$1500 \mathrm{MeV} \leq E_{\gamma} < 1600 \mathrm{MeV}$. The vertical dashed lines show the cut ranges	
	obtained from a gaussian fit to the η' MC data (solid black histogram). The open	
	circles represent the measured data, the solid colored histograms fitted MC data from	
	relevant photoproduction reactions: in black η' , in green π^0 , in red η , in blue ω ,	
	in yellow $2\pi^0$ and in magenta $\pi^0\eta$. The turquoise histogram is the sum of all MC	
	histograms	21
3.9	Acceptance for the reaction $\gamma p \to p \eta'$ after all cuts that have been discussed so far	
	for 2.5PED and 3PED events	22
3.10	Fraction of background events in the analyzed beam energy and angular bins	23
3.11		24
3.12	Generated energies of the two lowest energy photons in $2\pi^0$ photoproduction MC	
	data. The threshold of 20 MeV is marked by a vertical red line. Lowest energy photon	
	is shown on the top, second lowest energy photon is shown on the bottom	25
3.13	Generated energies of the two lowest energy photons in $2\pi^0$ and $\pi^0\eta$ photoproduction	
	MC data. The threshold of 20 MeV is marked by a vertical red line. Lowest energy	
	photon is shown on the top, second lowest energy photon is shown on the bottom	26
3.14	Polar angle difference $\Delta\theta$ between the photon with second highest energy and second	
	lowest energy of the $\pi^0 \eta$ final state	26
	Illustration of the misidentification process during reconstruction	27
3.16	Generated CMS angle $\cos \theta_{\rm gen.}$ vs. reconstructed CMS angle $\cos \theta_{\rm rec.}$ for both	
	background reactions. The slope $\cos \theta_{\rm gen.} = \cos \theta_{\rm rec.}$ is indicated by the solid line	28
3.17	Detector hits of the recoil proton, as obtained from MC data for the production of	20
2.10	η' , $2\pi^0$ and $\pi^0\eta$. CB: Crystal Barrel, FW: forward dector, MT: MiniTAPS	30
3.18	Difference in measured and calculated beam energy. Data points are shown as open	
	circles, MC data as solid histograms: in black η' , in green π^0 , in red η , in blue ω ,	
	in yellow $2\pi^0$ and in magenta $\pi^0\eta$. The turquoise histogram is the sum of all MC	21
2 10	histograms	31
3.19	the end clear peaks for all possibly produced mesons are visible. The vertical lines	
	indicate the mean cut ranges over all energy and angle bins	32
	indicate the inean cut ranges over an energy and angle onis	32
4.1	Left: Definition of angles α, ϕ, φ . Right: Photon momentum \vec{k} and polarization $\vec{\epsilon}$	
	define the beam polarization plane while the reaction plane is defined by the recoil	
	proton <i>p</i> and produced meson <i>M</i> .	33

34 22nd June 2022 18:32

List of Tables

1.1 1.2	Summary of the particles of the SM	
3.1	The five most probable decay modes of the η' meson. The most probable further	
	decay with according branching ratio is shown in brackets.[pdg]	11
3.2	Examined MC reactions that were used in sum for the fit	16
	Fit functions and cut ranges for each variable	
	Total cross sections σ in the energy range 1 500 to 1 800 MeV, branching ratios (BR)	
	to $n\gamma$ final states and maximum acceptance \tilde{A} for signal and possible background	
	contributions	23
3.5	Relative loss in signal and background events if a cut on ΔE is applied	

22nd June 2022 18:32 35