A CORRELATED TOPIC MODEL OF STRUCTURAL SCHEMATA IN POPULAR MUSIC

Dakota Killpack September 5, 2015

Princeton University

LATENT DIRICHLET ALLOCATION: AN OVERVIEW ____

LDA: OVERVIEW

 $^{^{1}\}mbox{Blei},$ David M. "Probabilistic topic models." Communications of the ACM 55.4 (2012): 77-84

LDA: OVERVIEW

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found in this article.

¹Blei, David M. "Probabilistic topic models." Communications of the ACM 55.4 (2012): 77-84

STATISTICAL PROPERTIES OF MUSIC AND TEXT

In their attempts to codify patterns of harmony in pop/rock music, music theorists have devised a handful of systems that would be good candidates for "topics".

Walter Everett: Rock uses a continuum of tonal systems, spanning:

- · "Conservative" major/minor diatonic harmonies (e.g. Billy Joel, The Beatles)
- · "Conservative" with modal influences
- · Blues-based harmonies relying on the pentatonic scale
- · Major triads based on the minor pentatonic scale (e.g. heavy metal)

¹Everett, Walter. "Making Sense of Rock's Tonal Systems." Music Theory Online 10.4 (2004): n. pag. Web. 4 Jan. 2010.

Nicole Biamonte: different ways of realizing underlying patterns

- Identifies several sets of chord pop/rock progressions that serve the same function as classical chord progressions, but using different musical materials
- · Creates a typology of chord progression styles
- · These styles, or 'microlanguages', are good topic candidates

¹Biamonte, Nicole. "Triadic Modal and Pentatonic Patterns in Rock Music." Music theory spectrum: The journal of the Society for Music Theory 32.2 (2010): 95–110.

Corpus studies confirm the intuition that there are multiple 'microstyles' in rock, e.g. Temperley + De Clerq's corpus analysis:

- · Two main harmonic profiles in rock
- · A flat-side (blues/pentatonic) cluster of chords and a sharp-side cluster of chords (common practice/diatonic)
 - · bVI, bVII, bIII vs. ii, VI, III
- Metal is almost a third cluster, and has a weak correlation between bII, $\sharp IV$, and a lack of V

¹De Clercq, Trevor, and David Temperley. "A corpus analysis of rock harmony." Popular Music 30.01 (2011): 47-70.

Such a definition of topics has a cognitive analogue: listeners have distinct statistical profiles for harmonic expectation in different musical styles.

Bryn Hughes:

- · When primed with classical music, trained musicians are more sensitive to out-of-key progressions
- · Harmonic rhythm plays a significant role in expectations
- · Listeners expect recurring chord patterns
- · Listeners have different sets of expectations for rhythmic different positions in 12-bar blues schemata

¹Hughes, Bryn, "Harmonic Expectation in Twelve-Bar Blues Progressions" (2011). Electronic Theses, Treatises and Dissertations. Paper 3663.

CORPUS

McGill Billboard Corpus

0.0 silence 0.15 C, intro, | A:min | A:min | A:min | 7.18 | A:min | A:min | A:min | 14.20 A, verse, | A:min | A:min | A:min |

¹John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga, 'An Expert Ground Truth Set for Audio Chord Recognition and Music Analysis', in Proceedings of the 12th International Society for Music Information Retrieval Conference, ed. Anssi Klapuri and Colby Leider (Miami, FL, 2011), pp. 633–38

Years are distributed approximately uniformly across the corpus, but the result approximates a normal distribution centered around 1977/1978.

Custom parser converts Billboard annotations to CSV and extracts metric information. All songs were transposed to C major.

0,4,C,min

Starting beat

0,3,A-,maj

Duration

3,1,B-,maj

· Transposed chord root

0,4,C,min

· Chord quality

CORPUS STATISTICS

To simplify and regularize the corpus, a subset of songs was selected such that:

- \cdot Meter was $\frac{3}{4}$ or $\frac{4}{4}$
- · There were no significant changes of meter

After selection, 876 songs remained.

DATA REPRESENTATION AND PREPROCESSING

The amount of information conveyed by harmony is not necessarily constant.

This should be captured during tokenization.

Bargram model:

- 1. Treat each measure as a token containing the aggregation of some number of chord tokens with labeled rhythmic positions
- 2. Perform collocation detection to identify chord progressions comprising multiple bars

Result:

- Long stretches of the tonic chord are identified as significant collocations, as are several 4-bar and 8-bar repeating circular chord progressions
- · Each one of these tokens forms a building block for topics that describe 'style' rather than simply assembling musical primitives

AND BEYOND

Collocations are formed based on the probability of their constituents cooccurring, and are accepted if:

$$\frac{(\mathsf{count}(w_i, w_j) - \delta) * N}{\mathsf{count}(w_i) * \mathsf{count}(w_j)} > \tau$$

where $\tau = 0.1$ is a threshold value, $\delta = 5$ is a minimum count value for tokens, and N is the vocabulary size.

After collocations are extracted, the corpus is thresholded, removing tokens that do not that appear in 3 or more ($\approx \frac{D}{300}$) documents, or 9 or more times overall ($\approx \frac{D}{100}$).

¹Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed Representations of Words and Phrases and their Compositionality. NIPS 2013: 3111-3119

Table: Top 10 bargrams

Bargram	Corpus frequency
0,4,c,maj	598
0,4,f,maj	468
0,4,g,maj	393
0,4,g,7	251
0,4,a,min	234
0,4,b-,maj	159
0,4,c,7	133
0,4,c,min	125
0,4,d,min	119
0,4,d,min7	118

Table: Top 10 bar-bigrams (___ indicates collocation)

Bar-bigram	Corpus frequency
0,4,c,maj0,4,c,maj	388
0,4,c,maj	352
0,4,f,maj0,4,f,maj	166
0,4,f,maj	152
0,4,g,maj0,4,g,maj	147
0,4,c,maj0,4,f,maj	142
0,4,g,maj	137
0,4,f,maj0,4,c,maj	131
0,4,f,maj0,4,g,maj	107
0,4,g,maj0,4,c,maj	107

Table: Bar-ngrams 100-110 (___ indicates collocation)

Bar-ngram	Corpus frequency
0,4,c,maj0,4,c,maj0,4,b-,maj0,4,b-,maj	19
0,4,f,maj0,4,g,maj0,4,c,maj0,4,c,maj	19
0,4,c,maj0,4,f,maj0,4,c,maj0,4,c,maj	18
0,4,d,min0,4,d,min	18
0,4,c,min0,2,a-,maj—2,2,b-,maj (x2)	18
0,2,a-,maj—2,2,b-,maj	18
0,4,a,min0,4,f,maj	18
0,4,a,maj	18
0,2,g,sus4—2,2,g,maj	18

For the final models, two rounds of collocation detection were used, resulting in a final vocabulary size of 615 tokens.

PMI: THE FINAL STEP

Traditional methods of evaluating topic models, such as calculating perplexity or test data likelihood, suffer from a low correlation with human perception of semantic coherence. Pointwise Mutual Information, or PMI, alleviates this problem.

$$PMI(w_i, w_j) = \log \frac{P(w_i, w_j)}{P(w_i)P(w_j)}$$

where $P(w_i, w_j)$ is based on a 3-term sliding window, and topics are scored based on the mean PMI score of each of the 8 most probable tokens in a topic with the other 7:

Topic PMI =
$$\frac{1}{8P_2} \sum_{i \neq j} PMI(w_i, w_j), i, j \in 1...8$$

PMI REGULARIZED LDA

Newman et al. proposed a method for incorporating PMI information into into LDA via structured priors. This greatly improves the human-rated coherence of topics, especially for very small corpora (like Billboard).

In their QUAD-REG model, prior knowledge is incorporated into the topic word-probability vectors ϕ_t via a quadratic form involving a sparse WxW matrix C, where entries are PMI scores between words.

$$p(\phi_t|C) \propto (\phi_t^\mathsf{T} C \phi_t)^\nu$$

¹Newman, Bonilla, Buntine (2011). Improving Topic Coherence with Regularized Topic Models. In NIPS 2011

RESULTS

FINDING THE OPTIMUM NUMBER OF TOPICS

Topic 1

- · 0,4,c,maj___0,4,c,maj(294)
- · 0,4,c,maj___0,4,c,maj7/7___0,2,g,sus4(b7,9)—2,2,c,7___0,4,f,maj(15)
- · 0,4,f,sus4(b7,9)___0,4,f,sus4(b7,9)(12)
- · 0,4,f,maj/9___0,4,f,maj/9(20)
- · 0,4,c,maj___0,2,d,min7—2,2,g,7(10)PM
- · 0,2,f,maj7—2,2,f,maj6(13)
- · 0,4,a,min9(10)
- · 0,4,b-,maj(9)(13)

Mean PMI: 2.619989

Topic 2

- · 0,4,c,5___0,4,c,5(45)
- · 0,4,c,5(44)
- · 0,4,c,5___0,4,c,5___0,4,c,5(51)
- · 0,4,f,5___0,4,f,5(18)
- · 0,4,c,5(b7)(11)
- · 0,4,e-,5(20)
- \cdot 0,4,g,5(10)
- · 0,2,a-,maj—2,2,b-,maj(37)

Mean PMI: 6.472619

Topic 3

- · 0,4,g,maj___0,4,g,maj(138)
- · 0,4,a,min___0,4,a,min(36)
- · 0,4,g,maj___0,4,g,maj___0,4,g,maj___0,4,g,maj(40)
- · 0,4,f,maj___0,4,g,maj(90)
- · 0,4,d,maj___0,4,d,maj(27)
- · 0,4,f,maj___0,4,c,maj/3(16)
- · 0,4,g,maj___0,4,g,maj___0,4,f,maj(36)
- · 0,4,g,maj___0,4,f,maj(33)

Mean PMI: 4.165779

Topic 4

- · 0,4,f,maj___0,4,f,maj___0,4,c,maj___0,4,c,maj(183)
- · 0,4,c,maj___0,4,c,maj___0,4,a,min___0,4,a,min(104)
- · 0,4,f,maj___0,4,f,maj___0,4,g,maj___0,4,g,maj(97)
- · 0,4,f,maj___0,4,f,maj___0,4,f,maj(29)
- · 0,4,c,maj___0,4,c,maj___0,4,f,maj___0,4,f,maj(150)
- · 0,4,a,min___0,4,a,min___0,4,f,maj___0,4,f,maj(34)
- · 0,4,g,7___0,4,c,maj___0,4,c,maj(60)
- · 0,4,f,maj___0,4,f,maj___0,4,g,7___0,4,g,7(13)

Mean PMI: 3.955108

Topic 5

- · 0,3,c,maj___0,3,c,maj(27)
- · 0,3,f,maj(19)
- · 0,3,c,maj(29)
- · 0,3,f,maj___0,3,f,maj(14)
- · 0,3,g,maj___0,3,c,maj(12)
- · 0,3,g,maj___0,3,g,maj(11)
- · 0,3,a,min(14)
- · 0,3,f,maj___0,3,g,maj(16)

Mean PMI: 11.213694

Topic 6

- · 0,4,a-,maj(57)
- · 0,4,b-,maj(79)
- · 0,4,e-,maj(54)
- · 0,4,g,min(26)
- · 0,4,f,min7(67)
- · 0,4,e-,maj___0,4,a-,maj(33)
- · 0,4,a-,maj___0,4,b-,maj(48)
- · 0,4,c,min7(49)

Mean PMI: 4.931101

Topic 7

- · 0,4,g,11(26)
- · 0,4,g,11___0,4,g,11(29)
- · 0,4,c,maj___0,4,g,min7___0,4,c,maj___0,4,g,min7(9)
- · 0,4,g,min7(43)
- · 0,4,c,maj9___0,4,c,maj9(15)
- · 0,2,f,maj—2,2,c,maj___0,4,g,maj(16)
- · 0,2,c,min—2,2,b-,maj___0,4,a-,maj(16)
- · 0,4,b-,maj/b7(15)

Mean PMI: 3.465998

Topic 8

- · 0,4,c,7___0,4,c,7___0,4,c,7___0,4,c,7(234)
- · 0,4,f,7___0,4,f,7___0,4,c,7___0,4,c,7(67)
- · 0,4,g,7___0,4,f,7___0,4,c,7___0,4,c,7(29)
- · 0,4,c,7___0,4,c,7___0,4,f,7(29)
- · 0,4,c,7___0,4,c,7___0,4,c,7(17)
- · 0,4,f,7___0,4,f,7(22)
- · 0,4,g,7___0,4,f,7(15)
- · 0,4,d,7___0,4,d,7___0,4,g,7___0,4,g,7(10)

Mean PMI: 7.060424

Topic 9

- · 0,4,f,maj___0,4,c,maj(77)
- · 0,4,c,maj/5___0,4,g,7(12)
- · 0,4,f,maj___0,4,c,maj___0,4,c,maj(13)
- · 0,4,g,7___0,4,c,maj___0,4,c,7___0,4,f,maj(15)
- · 0,4,d,7___0,4,g,7___0,4,g,7___0,4,c,maj(15)
- · 0,4,c,maj___0,4,g,min7(13)
- · 0,2,g,maj—2,2,f,maj(15)
- · 0,4,f,maj___0,4,c,maj___0,4,g,7___0,4,c,maj(9)

Mean PMI: 3.371266

Topic 10

- · 0,4,c,maj___0,4,c,maj___0,4,c,maj___0,4,c,maj(562)
- · 0,4,g,maj___0,4,c,maj___0,4,c,maj___0,4,c,maj(31)
- · 0,4,c,maj___0,4,c,maj___0,4,c,maj___0,4,f,maj(23)
- · 0,4,c,maj___0,4,c,maj___0,4,c,maj(65)
- · 0,4,f,maj___0,4,c,maj___0,4,c,maj___0,4,c,maj(47)
- · 0,4,c,maj___0,4,f,maj___0,4,f,maj___0,4,g,maj(10)
- · 0,4,c,maj___0,4,c,maj___0,4,c,maj___0,4,g,maj(19)
- · 0,4,c,7___0,4,f,maj___0,4,f,maj___0,4,c,maj(18)

Mean PMI: 5.373208

Topic 11

- · 0,4,c,maj(521)
- · 0,4,f,maj(241)
- · 0,4,a,min7(65)
- $\cdot 0,4,g,7(95)$
- · 0,4,d,min7(65)
- · 0,4,g,maj(118)
- · 0,4,d,min7___0,4,g,7(47)
- · 0,4,f,maj7(50)

Mean PMI: 2.465027

Topic 12

- · 0,4,g,maj___0,4,c,maj(82)
- · 0,4,a,min___0,4,g,maj(45)
- · 0,4,g,maj___0,4,c,maj___0,4,a,min___0,4,f,maj(12)
- · 0,4,e,min___0,4,f,maj(14)
- · 0,4,g,maj___0,4,a,min(30)
- · 0,4,f,maj___0,4,d,min(24)
- · 0,4,c,maj___0,4,a,min(44)
- · 0,4,a,min___0,4,d,maj(26)

Mean PMI: 4.124833

Topic 13

- · 0,4,c,min___0,4,c,min___0,4,c,min(319)
- · 0,4,c,min___0,4,c,min(91)
- · 0,4,c,min(122)
- · 0,4,c,min___0,4,c,min___0,4,f,min___0,4,f,min(22)
- · 0,4,c,min___0,4,c,min___0,4,c,min(13)
- · 0,4,c,min___0,4,c,min___0,4,b-,maj___0,4,b-,maj(66)
- · 0,4,b-,7___0,4,b-,7(14)
- · 0,4,e-,maj___0,4,e-,maj___0,4,e-,maj___0,4,e-,maj(11)

Mean PMI: 4.321794

Topic 14

- · 0,4,c,maj___0,4,c,maj___0,4,d,min___0,4,d,min(19)
- · 0,2,d,min—2,2,g,maj___0,4,c,maj(14)
- · 0,4,g,maj___0,4,g,maj___0,4,c,maj___0,4,c,maj(64)
- · 0,4,e,min___0,4,e,min___0,4,f,maj___0,4,f,maj(18)
- · 0,2,c,maj—2,1,f,maj/5—3,1,c,maj(18)
- · 0,4,f,maj___0,4,f,maj___0,4,c,maj___0,4,g,maj(17)
- · 0,4,f,maj___0,4,f,maj___0,4,a,min___0,4,a,min(14)
- · 0,4,d,maj(12)

Mean PMI: 2.262797

Topic 15

- · 0,4,c,maj___0,4,c,maj___0,4,c,maj___0,4,a,min(45)
- · 0,4,g,7___0,4,c,maj___0,4,c,maj___0,4,c,maj(41)
- · 0,4,a,min___0,4,a,min___0,4,a,min(10)
- · 0,4,c,min7___0,4,c,min7___0,4,c,min7___0,4,c,min7(215)
- · 0,4,g,maj___0,4,c,maj___0,4,c,maj___0,4,a,min(11)
- · 0,4,f,maj___0,4,c,maj___0,4,c,7___0,4,f,maj(10)
- · 0,2,f,maj—2,2,g,maj___0,4,c,maj___0,2,f,maj—2,2,g,maj___0,4,c,maj(34)
- · 0,4,c,min11___0,4,c,min11(15)

Mean PMI: 2.091902

Topic 16

- · 0,4,f,maj6(33)
- · 0,4,a,min(114)
- · 0,4,g,maj6(21)
- · 0,4,a,min/b7(11)
- · 0,4,c,min___0,4,c,min/b7___0,4,c,min/13___0,2,a-,maj7—2,2,g,7(108)
- · 0,4,g,sus4(b7)___0,4,g,7(14)
- · 0,4,a,7___0,4,d,min7(16)
- · 0,4,c,maj7___0,4,c,maj7(30)

Mean PMI: 3.715426

STRUCTURAL SCHEMATA

- · Random forest classifier with 100 trees
- · Four labels: Verse, Chorus, Prechorus, Bridge
- Mean success rate over 10-fold cross-validation was 50.67% for the four-class case
- · Bridge and Prechorus correctly identified in most cases, hinting at distinct topical content
- Classifier has most difficulty predicting Chorus label: least distinctive song section to maximize predictability for listeners?

STRUCTURAL SCHEMATA

YEAR PREDICTION

Year prediction experiment:

- · Random forest classifier with 100 trees
- · Corpus years sorted into 5 and 11 bins
- · Mean success rate over 10-fold cross-validation was 27.59% for the eleven-class case and 40.51% for the five-class case

YEAR PREDICTION

