2010 清华大学年硕士研究生入学考试试题

考试科目: _ 电路原理 _ 报考专业:

考试科目代码: [827]

题号		13-		总分
分数	N. W.			150分

第一题:

含理想运算放大器的电路如题图所示。电路中的运算放大器工作在线性区,求输出电压 u。。

第二题:

所示电路中,M = 10 mH, $L_1 = 10 \text{mH}$, $L_2 = 40 \text{mH}$, $C = \frac{4}{3} \mu F$, $u_s = [10 + 50 \sin 5000t + 25 \sin (10^4 t + 30^\circ)] V$ 。求:

- (1) 电流 i2 及其有效值;
- (2) 电压源发出的有功功率。

第三题:

电路如下图所示,已知 $Z_1 = 0.6 + 0.9j$; $Z_2 = 0.8 + 1.7j$; $Z_3 = 33 + 24j$; $u_1 = 240 \angle 0^\circ$; $u_2 = 240 \angle -120^\circ$; $u_3 = 240 \angle 120^\circ$;

- 求: (1) IA, IB, IC
 - (2) 画出用功率表测负载功率的图,并求其读数。

第四题:

正弦稳态电路如题图所示。已知 $\alpha=0.5$, $R_1=2\Omega$, $R_2=4\Omega$, $R_3=2\Omega$, $L_1=1$ H, $L_2=2$ H,M=0.5H,C=0.25F, $i_3(t)=5\sqrt{2}\sin 2t$ A。求电感电压 u_{L_2} 。

第五题:

电路如题图所示,其中 ε(t) 为单位阶跃函数。试用运算法求 i_L(t)。

第六题:

含有稳压管的电路如题图(a)所示,其中稳压管的伏安特性如题图(b)所示。

- (1) 若 R_L=820Ω, 10 V ≤ u_s ≤ 30 V, 求输出电压 u₀ 与输入电压 u_s 的关系并绘制曲线;
- (2) 当 us = 30 V 时,若使稳压管工作在其伏安特性的AB段,求 R. 的取值范围。

第七题:

所示电路,在频率 $f_0 = 10.7 \text{MHz}$ 下,二端口网络 N的 Y 参数矩阵为

$$Y = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{bmatrix} 0.116/89.8^{\circ} & 0 \\ 15.0 & 0.330/72.3^{\circ} \end{bmatrix}$$
mS,已知 $L = 4\mu$ H,G

- =0.06mS, C=43pF, 信号源 $u_s(t)=0.2$ sin($2\pi f_o t$) V_o
- (1) 求负载获得最大功率时的导纳 Y. 及其最大功率值;
- (2) 來负载获得最大功率时的电压增益|Ú。/Ús|。

第八题:

电路如题图所示,题图(b)为其拓扑图。

(1) 试写出该电路矩阵形式的节点电压方程 AYAT U。 = AYUs 中的各矩阵或向量 A、Y、Us、is 和U。;

(2) 试以支路 1、5、6 为树支,按先树支、后连支的顺序写出单连支回路矩阵 B和单树支割集矩阵 Q,并写出支路电压列向量 Ü。和支路电流列向量 İ。

第九题:

以 $[u_c,i_L]^T$ 为状态变量,列写题图所示电路的状态方程。若L=0.1H,C=0.2F, $R=1\Omega$, $i_S=6\varepsilon(t)$ A,求 $r=1\Omega$ 时电容电压 $u_c(t)$ 的零状态响应,并定性画出波形。

第十题:

所示一阶电路在激励 $e(t) = 6\epsilon(t)$ V 作用时, 电感电流 $i_L(t) = (3-3e^{-u})\epsilon(t)$ A, 方框内某一电阻上压降 $u_R(t) = (3+e^{-u})\epsilon(t)$ V 且 $i_L(0^-) = 9$ A 时的响应 $u_R(t)$ 。

第十一题:

电路如题图所示。t=0将开关切换到 $u_s(t)$,已知 $u_s(t)=6e^{-2t}\epsilon(t)V$,求电容电压 u_c 的零输入响应、零状态响应和全响应。

