

Constitutively Active Receptors

File Name	Recentor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP I	3	, illinois and a second			7. 100
MSHR_mouse	melanocyte-stimulating hormone MSH	TMII	92 VSIVLETTIIL K	adenylyl cyclase activity/ HEK293, stably transfected	(Robbins, Nadeau et al. 1993)
CLASS A GROUP II				/ EDJanousgra	Bournele Gamble et al
5H1B_human	5-hydroxytryptamine _{1B}	C-terminus of IC3	313 RERKA <u>T</u> KTLGI K, R, Q	binding of [~3]417[3]7 CHQ-KI	(ratwels, Couple et al. 1999)
5H2A_human	5-hydroxytryptamine _{2A}	C-terminus of IC3	322 NEQKA <u>C</u> KVLGI K	IP production / COS-7	(Egan, Herrick-Davis et al. 1998)
2H2C_rat	5-hydroxytryptamine _{2C}	C-terminus of IC3	312 MEDIA 9 WATE OF	PI hydrolysis / COS-7	(Herrick-Davis, Egan et al. 1997)
,			NEDSTONE TO		
					*

Figure 1 (Page 1 of 15)

CT ASS A					
	•				13:
A1AB_human	α _{1B} -adrenergic	TMDI	63 FAIVG <u>N</u> ILVIL	IP / COS-7	(Scheer, Fanelli et al. 1997)
	alpha 1B-AR		ď		
	-	junction between TMDIII and IC2	142 CAISI <u>D</u> RYIGV A		
A1AB_human	α _{1B} -adrenergic	junction between TMDIII and IC2	143 CAISID <u>R</u> YIGV K	IP / COS-7	(Scheer, Costa et al. 2000)
A1AB_human	alpna 15-Ar. α ₁₈ -adrenergic	TMIII	128 AVDVL <u>C</u> CTASI F	IP/COS-1	(Perez, Hwa et al. 1996)
		carboxyl end of IC3	293 REKKA <u>A</u> KTLGI	IP arachidonic acid release	
		TMV	E 204	IP / COS-1	(Hwa, Gaivin et al. 1997)
		and the second	Λ		
A1AB_human	α _{1B} -adrenergic	C-terminal IC3	SREKKAAKT X=19 different substitutions	PI / COS-7	(Kjelsberg, Cotecchia et al. 1992)
A1AB_human	α _{1B} -adrenergic	C-terminus IC3	288 293 KFSREKAAKTLGI KHI	PI hydrolysis / rat fibroblast	(Allen, Lefkowitz et al. 1991)
A2AA_human	α ₂ C10-adrenergic	C-terminal IC3 loop	TO TO	adenylyl cyclase inhibition / HEK293	(Ren, Kurose et al. 1993)
ACM1_human	alpha-2AAR muscarinic Hm1	C-terminal IC3 loop junction	360 SLVKEKKAARTLS	PI / HEK(U293)	(Högger, Shockley et al. 1995)
ACM2-human	muscarinic acetylcholine M1 muscarinic acetylcholine M2	junction of IC3 and TMVI	XKVTRTIL†A	IP production, inhibition of cAMP production /	(Liu, Blin et al. 1996)

Figure 1 (Page 2 of 15)

CLASS A					
ACM3_rat	m3 muscarinic (rat)	TMVI	507 TWTPY <u>N</u> IMVLVNT S	IP/COS-7	(Blüml, Mutschler et al. 1994)
ACM5_human	mS muscarinic acetylcholine M5	N-terminus to TMII TMVI	chimera composed of m2 1-69 m5 77-445 m2 301-466	β-gal / NIH 3T3	(Burstein, Spalding et al. 1996)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	TMVI	A59 465 AILLA EIITW TPYNI MVLVST M L H C V S F	β-gal; radioligand binding / NIH-3T3	(Spalding, Burstein et al. 1998)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	junction of TMVI and EC3	465 YNIMVLV <u>S</u> TFCDKCV X=V,F,R,K,+more	β-gal; radioligand binding / NIH-3T3	(Spalding, Burstein et al. 1997)
BIAR_human	β ₁ -adrenergic	C-terminus	389 RKAFQGLLCCA R	adenylyl cyclase; agonist binding / CHW	(Mason, Moore et al. 1999)
B2AR_human	β ₂ -adrenergic beta-2AR	C-terminal IC3 loop	266 272 FC <u>LK</u> BHKALKTLGI SR K A	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO	(Samama, Cotecchia et al. 1993); (Lefkowitz, Cotecchia et al. 1993)
DADR_human	dopamine D1A	carboxyl terminal IC3	264 SFKMS <u>FKR</u> ETKVLKT I K 288 from D1B receptor APDTSIKKETKVLKT	adenylyl cyclase; cAMP accumulation / HEK293	(Charpentier, Jarvie et al. 1996)
DADR_human	dopamine D1	TMVI	286 FVCCW <u>L</u> PFFIL A	CAMP accumulation / COS-7	(Cho, Taylor et al. 1996)
HH2R_rat	histamine H ₂	IC2	115 FMISL <u>D</u> RYCAV N,A	cAMP production / HEK-293	(Alewijnse, Timmerman et al. 2000)
	•				

Figure 1 (Page 3 of 15)

					J. C
File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Keierence
CLASS A GROUP III		is to			
OPSD_human	opsin	TMII	90 FMVLGGFTSTLY	transducin; phosphorylation by	(Rim and Oprian 1995)
	rhodopsin	A34, 444	0	rhodopsin kinase / COS	
		IMITI	GCNLEGFFAT		
			0		
•		TMVII	292 296 WHITE REPARENTY		
_			MILPAFFASSAMI E G,E,M		
			²⁹² Ala neutral a.a converted to		
			carboxylate and competes with ¹¹³ Glu for salt bridge with ²⁹⁶ Lys		
OPSD human	Opsin	TMIII	134	transducin; radioligand	(Acharya and Karnik
1			VVLAIERYVVV	binding / COS	1996)
	rhodopsin		I,Q,S		
OPSD human	opsin	TM6	257	transducin, GTPyS	(Han, Smith et al. 1998)
l	4		RMVIIMVIAFL	uptake / COS	
	rhodopsin		Y,N		
		plus TM3	plus G113Q		
OPSD_human	nisqo	TMVII	296	transducin; radioligand	(Govardhan and Oprian
			FAFFAGA	COO / Stringing	(Cohen. Yang et al. 1993)
-1	rhodopsın		X=E,M natural mutants		
_			+ 10 different a.a. substitutions		
			disrupts critical salt bridge between ²⁹⁶ Lys(TMVII) and ¹¹³ Glu(TMIII)		
		3	134		
		104	VVLAIERYVVV Q		(Cohen, Yang et al. 1993)
					4

Figure 1 (Page 4 of 15)

		_	_	_		_	٠.
6		ı			1		
995			*		٠,	,	
1. 1.	ŀ			,		,	
et s					ľ		
eig						.	l
r Si	ľ		١,				l
lan Isse			ľ				
₹.		:		•	Ŀ		
	Ī		Ť.	`	F.	;	ľ
`							l
		-			١.		١
			ľ	•			
opus oocy ormation /	١.				١		
eff mat mat	Ì.			-	ŀ		
for for	-		ŀ	٠,		-	l
S	ŧ.	K				: ·	
	Ī	-,	f	` .	Ī	_	1
	ŀ	2.	1	٠	1.	-	
			1				
		:	ŀ		1	. 1	
	ſ		ļ	<. 	ł		
	1	 دو	١	`-			
		,	ľ		١		
¥					ŀ	-	
250	1	٠.	١			٠.	
STS	ľ		ľ			٠.	
X					١		
<u> </u>	4	-	1		1	_	
	_				-	,	
	١	•					
	١						
TOWN SON			ł	- 	١		
	ľ		1				
<u>로</u>							
хх			Ì		ļ		
arb	-						
thyrotropin-releasing hormone carboxyl tail TRH-R	4	_	-	_	4		-
2			-				
iom i							
hor		٠	-				
ing							
eas					ļ		
-re							
nido							
ottr I-R			ļ				
T.R.I			İ				
	-	_	_	_	-	F	_
Se							
nou							
RFR_mouse							
5							
, L							

Figure 1 (Page 5 of 15)

, v. 3,

erence	كالمعاد الإسارة والمائد		(Marie Koch et al. 1999)		ŧ						
			Γ	IP production / CCS-/							
	Sequence			113	ISSI	A	256 256	LLFIICMLFFQI	ž.		_
	Mutation Site			2227 100		TMVI					
	Descritor	Kecepion			bradykinin B ₂	B2 bradvkinin	DZ Utacykamia	DN-Z			
	M. W.	File Name	CLASS A	GROUP IV	BRB2_human						

Figure 1 (Page 6 of 15)

				Aesay / Cells	Reference
File Name	Receptor	Mutation Site	Sednence	1	
CLASSA	المعالف المدار الذي المراز				
GROUP V AG2R_rat	ATıA	TMIII	111 ASVSFMLYASV	phospholipase C; IP production / COS-7	(Groblewski, Maigref et al. 1997)
	Type-1A angiotensis II		disrupts 111Asn(TMIII) -		4
AG2R_rat	ATıA	C-terminus of TM7	i	IP production / HEK- 293; intrcellular Ca ²⁺	(Parnot, Bardin et al. 2000)
	Type-1A angiotensis II	other multiple mutations	O	Di production	(Amatruda, Dragas-
FMLR_human	formylmethionylleucylphenylal anine (fMLPR)	ICI	JI LV <u>I</u> WV <u>AGFRMTHTVTTISY</u> LNKAVA LVVWVTAFEAKRTINAIWFLNLAVA	phospholipase C stimulation / COS-7	Graonic et al. 1995)
			(K above conflicts with SWISS-PROT database)		-
IL8B_human	interleukin-8 receptor B	IC2	138 ACISV <u>D</u> RYLAIVH	IP production; Carmoblization and actin	(Burger, Burger et al. 1999)
	CXCR-2 chemokine			polymerization / NIH 3T3	
LSHR_human	luteinizing hormone (LH)	IC3	564 MATNK <u>D</u> TKIAKK G	cAMP production / HEK293	(Kụdo, Osuga et al. 1996)
LSHR_human	luteinizing hormone (LH)	TMVI	578 ILIFIDFTCMA G	cAMP production / COS-7	(Shenker, Laue et al. 1993)
LSHR_human	luteinizing hormone (LH)	TM6	571 577 KIAKK <u>W</u> AILIF <u>T</u> DFTCM I I	cAMP production / COS-7	(Kosugi, Van Dop et al. 1995)
LSHR_rat	luteinizing hormone / human chorionic gonadotropin	TMVI	556 ILIFTDFTCMA G, Y	cAMP production / HEK 293T	(Bradbury, Kawate et al. 1997; Bradbury and Menon 1999)
OPRD_mouse	delta opiod receptor	TM3	128 KVLSI <u>D</u> YYNMF A, K, H	adenylyl cyclase inhibition / COS-7	(Cavalli, Babey et al. 1999) (Eggell: Bothier et al.
OXYR_human	oxytocin	ICZ	137 LMSLDRCLAIC A	Ir production / COS-7	(Faircin, 2aroix et a 1999)

Figure 1 (Page 7 of 15)

•

PAFR_human	platelet-activating factor (PAF)	C-terminus of IC3	231	IP production / COS-7	(Parent, Le Gouill et al.
-		-	EVAKKALMINOLI VIIAV R	_	
PAFR_human	platelet-activating factor (PAF)	TMIII	100 CLFFINTYCSV A	arachnidonate release, IP production, adenylyl cylcase inhibition / CHO	(Ishii, Izumi et al. 1997)
PE23_human	prostaglandin E ₃ , EP3III EP3IV	C-terminal tail	360 FCOBEFWGN FCOMRKRILREOBEFWGN Truncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
PE23_mouse	prostaglandin E ₃ EP3	carboxyl-terminal tail	336 KILLRKFCQ <u>IRDHT</u> (3α) <u>MMNHL</u> (3β) ^truncated	inhibition of adenylate cyclase / CHQ, stably expressed	(Hasegawa, Negishi et al. 1996)
THRR_human	thrombin	BC2 loop	259 268 CHDVLNETLLEGYYAYY DLKD KDF I	45Ca 2+ efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanevicz, Wang et al. 1996)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	BC1	486 YYNHA <u>I</u> DWQTG F,M	inositol phosphate diacylglycerol cascade / COS-7	(Parma, Van Sande et al. 1995)
		BC2	568 YAKVS <u>I</u> CLPMD T		
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMIII	509 ASELS <u>V</u> YTLTV A	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
		TMVII	672 YPLNS <u>C</u> ANPFL Y		•
TSHR_human	thyrotropin (TSHR)	TMV	597 VAFVI <u>V</u> CCHV L	cAMP formation / CQS-7 cells	(Esapa, Duprez et al. 1999)
TSHR_hyman	thyrotropin (TSHR)	TMVII	677 CANPFLYAIFT V	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
TSHR_human	thyroid stimulating hormone thyroid stimulating hormone	IC3	613 621 VRNPQ <u>YNPGDKDTK</u> IAK deletion	cAMP formation / COS-7	(Wonerow, Schoneberg et al. 1998)

Figure 1 (Page 8 of 15)

TSHR_human th	thyrotropin (TSHR)	IC3 / TMVI	623 632 KDTKIAKRMAVLIFIDFICM	cAMP activation / COS-7	(Paschke, Tonacchera et al. 1994)
V2R_human	thyroid stimulating hormone vasopressin V2	IC2	136 LAMTL <u>D</u> RHRAI	cAMP formation / CQS-7	(Morin, Cotte et al. 1998)
			А	•	

Figure 1 (Page 9 of 15)

		-7300	Commondo	Assav / Cells	Reference
File Name	Receptor	Mutation Site			المنظف معافدين والإنتاج في الإنتاج المناطقة
CLASS B					(1004) 1 The same of the
CALR_human	hyman calcitonin hCTR-1	wild type (native) protein		adenylyl cyclase cAMP production / COS-1	(Conen, 1 naw et al. 1991)
CLASS B					
PTRR_human	parathyroid hormone PTH / PTH-related peptide	junction of IC1 and TMII	223 TRNYI <u>H</u> MHLFL R, K	cAMP accumulation / COS-7	(Schipani, Jensen et al. 1997)
		junction of IC3 and TMVI	410 KLIKS <u>T</u> LVLMP C, others		
CLASS B					
GROUP III GIPR_human	glucose-dependent insulinotropic peptide (GIP-R)	TMVI	340 VFAPV <u>T</u> EBQAR P	cAMP production / L293	(Tseng and Lin 1997)
GLR_rat	glucagon	junction of IC loop1 and TMII	178 TRNYI <u>H</u> GNLFA R	cAMP accumulation / COS-7	(Hjorth, Orskov et al. 1998)
		IC end of TMVI	352 RLARS <u>T</u> LTLIP A		
VIPR_human	vasoactive intestinal peptide 1 (VIP)	junction of IC loop 1 and TMII	178 RNYIHMHLFI R requires functional integrity of the N-terminal EC domain	cAMP production / COS-7 or CHO	(Gaudin, Maoret et al. 1998) (Gaudin, Rouyer-Fessard et al. 1998)
		junction of IC loop 3 and TMVI	343 LARS <u>T</u> LLLIP X= K, P		

Figure 1 (Page 10 of 15)

_	7	*			_	ş-	T		 f		ľ	7		
Reference	, 15	VI Onelding of al	(Jensen, Spaiding et ai.	2000)						*			•	
A seast / Colle	ASSAY / COLO		IP / tsA											
	Sequence			in'	multiple combinations			X ¹					/	
	Mutation Site		701	N-terminal CC										
	Recentor			calcium-sensing]	
	File Name	T. II. L'ANTING	CLASSC	CASR_human										

Figure 1 (Page 11 of 15)

		-7:0	0,000	Assay / Cells	Reference
File Name	Receptor	Mutation Site	Sed hence		
CLASS D		2.		1 - 4 Joseph Company	(Olesnicky Brown et al.
674283	pheromone	TM6	229 DI.SAVOTVI.GT	neterotogous yeast assay	1999)
RCB2			C.		
C. cinereus		27/4	258	lacZ reporter gene	(Konopka, Margarit et al.
STE2_yeast	pheromone α-factor	TWO	QSLLVPSIIFI		(9661
			LL		3
CTTES	aboromone & factor	double mutations TM5	223	lacZ reporter gene /	(Dube, DeCostanzo et al.
157-36436	pieroinque Cracco		MSFVLVVK	yeast	2000)
		and	ย		
_			247 251	****	
		TM6	DSFHILLIMECOSLL		
			22 22		
		-			
			double mutations		
				O antimotocidada	(Roone, Davis et al. 1993)
STE3 yeast	pheromone a-factor	_IC3	144	p-garaciosidase	
)			DVRDILHCINS		
			252 250	R-coloctosidase	(Sommers, Martin et al.
STE2 yeast	pheromone α-factor	l IM6		Paracionata	2000)
			LANGUSALIVESTIFF		
					*

Figure 1 (Page 12 of 15)

Bibliography

Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin." J Biol Chem 271(41): 25406-11.

Alewijnse, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor."

Mol Pharmacol 57(5): 890-898.

mitogenesis and tumorigenicity." Proc Natl Acad Sci USA 88(24): 11354-8.
Amatruda, T. T., 3rd, S. Dragas-Graonic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances

novel domain for interaction with G-proteins." J Biol Chem 270(47): 28010-3.

Slüml, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all

Boone, C., N. G. Davis, et al. (1993). "Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype." Proc Natl Acad

Sci USA 90(21): 9921-5.
Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic

gonadotropin receptor to the cell surface." J Biol Chem 272(9): 5921-6. Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized."

Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-

Burstein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains."

Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid

Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate

Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." Mol Pharmacol

50(5): 1338-45. C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." Endocrinology 138(4): 1400-5. Cohen, D. P., C. N. Thaw, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." Biochemistry 32(23): 6111-5. Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." J Biol Chem 275(34): 26492-9.

Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non- autoimmune autosomal dominant hyperthyroidism." Nat Genet 7(3): 396-401. Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5- hydroxytryptamine 2A receptor by site-directed mutagenesis: inverse agonist Dube, P., A. DeCostanzo, et al. (2000). "Interaction between transmembrane domains five and six of the alpha -factor receptor." J Biol Chem 275(34): 26492-9.

Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." Mol Pharmacol Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." Thyroid 9(10): 1005-10. activity of antipsychotic drugs." J Pharmacol Exp Ther 286(1): 85-90.

Gaudin, P., J. J. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled

Gaudin, P., C. Rouyer-Fessard, et al. (1998). "Constitutive activation of the human VIP1 receptor." Ann N Y Acad Sci 865: 382-5. receptors." J Biol Chem 273(9): 4990-6.

Groblewski, T., B. Maigret, et al. (1997). "Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." J Biol Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." LBjol Chem 269(9): 6524-7.

Chem 272(3): 1822-6.
Han, M., S. O. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." Biochemistry 37(22): 8253-61.
Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity." L Biol Chem 271(4):

Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." INcurochem 69(3): 1138-44.
Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." Mol Endoctinol 12(1): 78-86.
Högger, P., M. S. Shockley, et al. (1995). "Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors." J Biol Chem

Hwa, J., R. Gaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." Biochemistry 36(3): 633-9.

Shii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants." I Biol Chem 272(12): 7846-54.

Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Ala116-Pro136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY C G-PROTEIN-COUPLED RECEPTOR [In Process Citation]." J Biol Chem 275(38): 29547-55.

Kjelsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region Jin, J., G. F. Mao, et al. (1997). "Constitutive activity of human prostaglandin E receptor EP3 isoforms." British J Pharmacol 121: 317-23.

Konopka, J. B., S. M. Margarit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." Proc Natl which constrains receptor activation." J Biol Chem 267(3): 1430-3.

Acad Sci U S A 93(13): 6764-9.

Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty." Hum Mol Genet 4(2): 183-8.

Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third

intracellular loop." J Biol Chem 271(37): 22470-8.
Lefkowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." Trends Pharmacol Sci 14(8): 303-7.
Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor- mediated G protein activation studied by insertion mutagenesis." J Biol

Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." Mol Pharmacol 55(1):

Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor." J Biol Chem 274(18):

Matus-Leibovitch, N., D. R. Nussenzveig, et al. (1995). "Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and AtT20 cells." J Biol Chem 270(3): 1041-7.

Morin, D., N. Cotte, et al. (1998). "The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities." FEBS Lett 441(3): 470-5.

Nanevicz, T., L. Wang, et al. (1996). "Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling." J Biol

Olesnicky, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self- compatibility in the mushroom Coprinus." Embo J 18(10):

Parent, J. L., C. Le Gouill, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor."

Figure 1 (Page 14 of 15)

identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades." Mol Endocrinol 9(6): 725-33.

Parnot, C., S. Bardin, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA Parnot, C., S. Bardin, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas:

library with an original pharmacological bioassay." Proc Natl Acad Sci U.S.A 97(13): 7615-20.
Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor Pauwels, P. J., A. Gouble, et al. (1999). "Activation of constitutive 5-hydroxytryptamine 1B receptor by a series of mutations in the BBXXB motif: positioning of the third in hyperfunctioning autonomous adenomas of the thyroid." J Clin Endocrinol Metab 79(6): 1785-9.

Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." Mol Pharmacol intracellular loop distal junction and its goalpha protein interactions [In Process Citation]." Biochem J 343 Pt 2: 435-42.

Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." J Biol

Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." Biochemistry 34(37): 11938-45.
Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." Cell 72(6):

Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." Thyroid 9(1):

Samama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." Journal of Biological

Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." Mol Pharmacol 57(2): 219-31.

Scheer, A., F. Fanelli, et al. (1997). "The activation process of the alpha 1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate." Proc Natl Acad Sci U S A 94(3): 808-13.

Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3',5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related

peptide receptors mutated at the two loci for Jansen's metaphyseal chondrodysplasia." Mol Endocrinol 11(7): 851-8.

Shenker, A., L. Laue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]." Nature

Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." Biochem Biophys Res Commun 232(1): Sommers, C. M., N. P. Martin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." Biochemistry 39(23): 6898-909. "Identification of a ligand-dependent switch within a muscarinic receptor." J Biol Chem 273(34): 21563-8. Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6."

Wonerow, P., T. Schoneberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." J Biol Chem

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

Light Emission Induced by the WT CCK-BR vs. a Constitutively Active Mutant

CCK-8

başal

A Point Mutation Confers Constitutive Activity to the Rat µ Opiod Receptor

Figure 4

Forskolin Stimulated HEK293 Cells Transfected With pcDNA1 and a CRE-luc Construct

Figure 5

The Rat μ Opioid Receptor Signals Through Gai

Figure 6

A Point Mutation Confers Constitutive Activity to the Rat µ Opioid Receptor

Target Residues Within Class I GPCRs

Figure 8

for Mutation Induced Constitutive Activity TMD III Asn (-14 from DRY) is a Target

The 'DRY' Motif is a Target for Mutation Induced Constitutive Activity

Figure 10

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

The -13 Position is a Target for Mutation Induced Constitutive Activity

Figure 1.

```
ATIA 1 -----MALNSSAEDEIKRI
     BK-2
                                1 -----MFSPWKISMFLSVREDSVPTTASFSWMLNVTLOGPTLNG.TFA
   crk 49 Lepanistan...pysitanysnysyverkensikynevinkyrkykvarnivenladada
orkr 49 Lepanistan...pysitanysyvervenkensikynevinkyrkykvarnivenladada
orm 59 Cpptgs...smitantimanysinycyveneensikynykvinkyrkykrarnivenhalada
ormr 57 Cpqtgs...smytantimanysinycyveneensikynyvyvinkyrkykrarnivenhalada
ord 37 ppgaksassialadautanysaycaveneensikyvinyrykykrarnivenhalada
atia 16 DDCpkagrhsyifyvyptiysinsiyveneensikyviviyyfymkeikyvasyelinladadi
bk-2 45 skcpqvewlgwlntiqppflwviryelathenifyrsyfclhksscivaeivignilaaadi
  ork 107 IVIIIIMPROSTVYIMI SWPEGDILCKOVISIDYYMVETSIET TYMSVDRYIAVCHPVK
orkr 107 IVIIIIMPROSAVIIMI SWPEGDILCKOVISIDYYMVETSIET TYMSVDRYIAVCHPVK
ormr 118 IAISTIPPOSAVIIMI MWPEGTILCKOVISIDYYMVETSIET CTWSVDRYIAVCHPVK
ormr 116 IAISTIPPOSAKVIME MWPEGTILCKOVISIDYYMVETSIET CTWSVDRYIAVCHPVK
ord 97 IAISTIPPOSAKVIME MWPEGNILCKOVISIDYYMVETSIET TYMSVDRYIAVCHPVK
AT1a 76 CFLLTDLWAVYTAMEYRWPEGNILCKOVASASVTENTVASJELITCISEDRYMATIVHPMK
IK-2 105 ILACGIAPIWATISNNFDWLBGETLCKOVASISVTENTVASJELITCISEDRYMATIVHPMK
                                                                                                                                                                            -14 from DRY
   67 k 166 ALDSZIPLKAKO NIE WOLSSSYGDSANYLGGIKVR. BDVDWIEGSLOFPDDDYSWYD

67 kr 166 ALDSZIPLKAKO NIE WOLSSSYGDSANYLGGIKVR. BDVDWIEGSLOFPDDEVSWYD

67 mr 177 ALDSZIPRNAKO NIE NIE SANGERWYF VATUKYR. O. GSID GWITTESHPTW. WWD

67 d 156 ALDSZIPRNAKO NIE WALASGEGET WWAVIZPR. D. GAVVOM OFFSPSW. WWD

AT1a 136 SRLRZYMLVAKOTO II WWAGLASD PAWDHRNV. YFIBNTNUTVCAFHYESRN. STLP

BK-2 165 MGRMRGVRWAKO YSTVIWGC ILLISSPYTV FRIMKEYSDEGHNVTACVI SVPS. . LIWE
   grk 224 iFWKICVF FARMIPVA INVCVIMULRAKSVRILSGSERKORNLERITRIVLVVVAVF
erkr 224 iFWKICVF FARMIPVA INVCVIMULRAKSVRILSGSERKORNLERITRIVLVVVAVF
orm 232 NLFK CVF FARMIPVA ITVCVGMILRAKSVRILSGSKEKORNLERITRIVLVVVAVF
orm 230 NLFK CVF FARMIPVA ITVCVGMILRAKSVRILSGSKEKORNLERITRIVLVVVAVF
ord 211 TVTKICVF FARMIPIA ITVCVGMILRAKSVRILSGSKEKORNLERITRIVLVVVAVF
AT1a 193 IGIGETKNILGS FFFF IN ITSVIJWKALKKAYE I OKNKPRNDD ... IFRE I MAIJVLEF
BK-2 222 VFTNVLINVVGRADD. I SVITTCINO I MOVLENNEMOKFKE I OTE . RRATVI VLVVIČLIGE
ork 284 WCM, WISTSHEALGS.T. SHSTAALSSWYRCLALGY MSS MPHLVAELDENF

orkr 284 THICKNEY BY AVEALGS.T. SHSTAALSSWYRCLALGY MSS MPHLVAELDENF

orm 292 IVCM PHILLAGE KALLES P. ENTEQTVS MESC ALGY MSC MPVLVAELDENF

ord 271 WCMAPIELS KALLES P. ENTEQTVS MESC ALGY MSC MPVLVAELDENF

ord 271 WCMAPIELS FROWN JOUD REDPLYVAELLIC ALGY MSS MPVLVAELDENF

ATLA 250 FFS MVBHOLETF MOVING UGVIHDCKISDIVDTAMPITIC TAYFUNG LNPLYVAELGKEF

EK-2 280 THICKLEFOUSTF MOTHER GILSSCODER INDVITQUAS FVEY SNS CLAPALY VIVGKRE
```

```
mORmouse 1 MDSSAGEGNISDCSDPIA.PASCSPA.ECSNUMLSHVDGNOSDFCGPNRYGLGGSHSLC
mORrat 1 MDSSTGEGNISDCSDPIA.QASCSPA.ECSNUMLSHVDGNOSDFCGLNRYGLGGNDSIC
mORbovin 1 MDSGAVETNASNCUDFFTHPSSCSPAPSESSNUMFSHIJGNLSDFCGPNRYELGGSDRIC
mORhuman 1 MDSSADERWASNCUDAIAY.SSCSPAFSESSNUMFSHIJGNLSDFCGPNRYDLGGRDSIC
mORPig 1 MDSSADERWASNCUDFFSPSSMCSPVPSESSNUMFSHIJGNLSDFCGPNRYDLGGRDSIC
mORWS 1 MESS..GNISDFLYPIS...NEVMS...NSSVLCRNFSNSTSFLNMNGSSRDSTD
                                                                             1 -----MALNSSAED KRIODD
           ATla
                                                                             1 -----mfsewkismflevredsvpttasfsadmlnvtlogetlng.tfacskc
           RK-2
         mORmouse 58 POTGSPSWATATTWALYSIVCVVGLPGNFLVMYVIVRYTKVKTATNIYIFNLALADALA
        morrat 58 porspswyrattivalysivcvvglegmelwwyvivrytkwkratwiyifwlaladala
morbovin 61 psacspswyrattiwalysivcvvglegmelwwyvivrytkwkratwiyifwlaladala
morhuman 60 pprospswyrattiwalysivcvvglegmelwwyvivrytkwkratwiyifwlaladala
        morpig 61 EPIESPSWITATIWALVSIVOVGASGUSVMVVIVRVIKMKIATNIVIENLALADALA
morws 48 EODKAB, WITATITTIVSIVOVGASGUSVMVVIGRYTKMKVATNIVIENLALADALA
ATIA 19 EKAGRESYIEVM. IPITAYSITEVVGASGUSLAVATVIYIYMKAKVASVE LALALADIGE
EK-2 48 EOVEWLGWINTI. OPPFLWVIEVEATLENIEVISVFCLHKSSOTVAETVIGNIAAADLIL
mormouse 118 ISTAPPOSYNYLMG. IMPFCNILCKIVISIDYYNWFTSIFTLCTWSVDRYLAVCHPVKAL
mormat 118 ISTAPPOSYNYLMG. IMPFCNILCKIVISIDYYNWFTSIFTLCTWSVDRYLAVCHPVKAL
morman 121 ISTAPPOSYNYLMG. IMPFGTILCKIVISIDYYNWFTSIFTLCTWSVDRYLAVCHPVKAL
mormig 121 ISTAPPOSYNYLMG. IMPFGTILCKIVISIDYYNWFTSIFTLCTWSVDRYLAVCHPVKAL
mormig 121 ISTAPPOSYNYLMG. IMPFGTYLCKIVISIDYYNWFTSIFTLCTWSVDRYLAVCHPVKAL
morws 107 ISTAPPOSYNYLMG. IMPFGDYUCKIVISIDYYNWFTSIFTLTWSVDRYLAVCHPVKAL
T1a - 78 LLTTPLWWYYTAMEYRWPFGNFLCKIASASYNTENCYASUFPLTGISCDRYTATVHPVKSR
EK-2 107 ACGLPFWATTISNNFDWLFGETLCRWVNFTISMNIVSSICFLWLWSCDRYLALVKTWSMG
  mermouse 177 DERTERNARIUMVCMMI SSAIGAPVMENAVVKORO GSIDCTATESHETMYWE MORRACI 177 DERTERNARIUMVCMMI SSAIGAPVMENAVVKORO GSIDCTATESHETMYWE MORROWIN 180 DERTERNARIUMVCMMI SSAIGAPVMENAVIKORO GSIDCTATESHETMYWE DERTERNARIUMVCMMI SSAIGAPVMENAVIVKORO GSIDCTATESHETMYWE DERTERNARIUMVCMMI SSAIGAPVMENAVIVKORO GSIDCTATESHETMYWE DERTERNARIUMVCMMI SSAIGAPVMENAVIVKORO GSIDCALTESHETMYWE DERTERNARIUMVCMMI SSAIGAPVMENAVIVKORO GSIDCALTESHETMYWE DERTERNARIUMVCMMI SSAIGAPVMENAVIVKORO GSIDCALTESHETMYWE ATTA 138 LRRIMLVAKUTCIIIMIWAGLASHEANIHARIUM YSIIVIMGOTILLESHEMWISHTIMK EYSDEGHNVTACVISYPS. LIWE
      RORMOUSE 230 NILKICYFIFAFIMPVLITTVCXGLMILRLKSVRWLSGSKEKDRNLRRITRMVLVVVAVF
  mORmouse
mORrat
mORbovin
mORhuman
mORpig
mORws
220
mORws
221
mORws
222
mORws
222
mORws
233
mORws
234
mORbovin
mORpig
mORws
235
mORws
226
mORws
227
mORws
228
mORws
228
mORws
229
mORws
220
mORws
230
mORws
230
mORws
231
mORws
232
mORws
233
mORws
233
mORws
234
mORws
235
mORws
235
mORws
236
mORws
237
mORws
237
mORws
238
mORws
238
mORws
239
mORws
240
mORws
250
mORws
250
mORws
260
mORws
270
    mormouse 290 IVCMTPIHLYVIIKALITI .... PETTEOTVSWHECIALGYTNSCLNPVLYAFLDEN
   morrat 290 IVCWTPIBLYVIKALIVI PETTFOLVSWEECIALGYINSCLMPVLVAFLDENF
   moRhuman 292 IVCAYPIHIYVIKALATI .... PETTEQTVSWHECIALGYTNSCLNPVLYAFLDENE
  mORpig 293 TVCMTPILLV KALT PRITTORYSMHECIALGYINSCANEVAYAFADENE MORWS 286 TECHTPILLV KALT PRITTORYSMHECIALGYINSCANEVAYAFADENE AT1a 250 FFSWYEHOUSTFIDVLO GVIHDCKISDIVDTAMPITIOTYFWACANETAYAYAFADENE EK-2 280 THEWLEFOUSTFIDTHRUGILSSCODERIIDVITQIASFWHYENSCANETAYIVIVGKRE
mORmouse 344 KRCSREFC . IPTSTIEQONSARIRONTREHESTANTVORTNHOLDNLEASTAPLE mORrat 344 KRCSREFC . IPTSTIEQONSARIRONTREHESTANTVORTNHOLDNLEASTAPLE mORbovin 347 KRCSREFC . IPTSTIEQONSARIRONTREHESTANTVORTNHOLDNLEASTAPLE mORhuman 346 KRCSREFC . IPTSSIEDONSARIRONTREHESTANTVORTNHOLDNLEASTAPLE mORPIG 347 KRCSREFC . IPTSSIEDONSARIRONTREHESTANTVORTNHOLDNLEASTAPLE mORWS 340 KRCSREFC . IPTSSIEDONSARIRONTREHESTANTVORTNHOLDNLEASTAPLE MORNING INTENSITE STANTVORTNHOLDNLEASTAPLE MORNING
```

Figure 14

An Intracellular Point Mutation Results in Loss of Ligand-Induced Function

IP Production / ³H Inositol incorporated

Figure 16

Figure 17