

KEY IDENTIFIERS FOR A MALIGNANT BREAST MASS

LILY VOGEL

METHODS

Used Decision Trees to find the important variables for predicting a malignant breast mass

Then used clustering to verify that these features were significant

KEY IDENTIFIERS

Radius of grade 3 cells

Number of concave points on contour of grade 3 cells

Decision Tree with Optimal Alpha

```
radius3 <= 0.109
                            gini = 0.468
                          samples = 569
                         value = [357, 212]
                           class = Benign
       concave_points3 <= 0.323
                                         gini = 0.109
              gini = 0.159
                                        samples = 190
             samples = 379
                                       value = [11, 179]
            value = [346, 33]
                                       class = Malignant
             class = Benign
  gini = 0.03
                            gini = 0.476
samples = 333
                           samples = 46
value = [328, 5]
                          value = [18, 28]
                         class = Malignant
class = Benign
```

PATHS From Decision Tree with Optimal Alpha

Outcome 1

small radius benign

Outcome 2

If the cell nucleus has a big radius, then the mass is likely malignant

If the cell nucleus has a small radius and a small number of concave points, the mass is likely benign

Outcome 3

If the cell nucleus has a small radius and a big number of concave points, the mass is likely malignant

SUPPORTING EVIDENCE

- These paths came from the interpretations of my decision tree with optimal cost complexity pruning hyperparameter (alpha α)
- I used cross validation to determine the optimal alpha value

CLUSTERS

The different colors correspond to different clusters

The triangle shaped points are benign masses & the circle ones are malignant

Interpretation:

- distinct clusters indicates that these features are significant
- given the benign masses are those that are low in both concave points and radius, it supports our findings from earlier

SUPPORTING EVIDENCE

- From clustering, there is evidence that supports our conclusions
 from the decision trees
- I used the elbow method to find the optimal number of clusters to use

NEXT STEPS

Given more time, I would be interested in looking into the following things to continue my exploration on breast mass diagnosis

Explore other features of grade 3 cell nuclei NEAR FUTURE

Specifically, explore grade 1 texture of cell nucleus since it appeared as splitting criteria in one of the trees

FUTURE

Explore each grade of cell nuclei separately and see if radius and concave points are still the most important features

FAR FUTURE

