Identifying Neural Waveforms From Vagus Nerve Recordings

- METHOD TO EXTRACT NEURAL EVENTS FROM RAW RECORDING.
- IDENTIFYING NEURAL WAVEFORMS "CORRELATED" WITH INJECTION-EVENT

GABRIEL ANDERSSON 2021-06-30

Main Steps in Pre-processing

Aim to find all Compound Action Potentials (CAPs) from raw recording.

- High pass filter Removes low frequencies from raw signal
- (Downsample Solve memory issues and speed up computations.)
- Adaptive Threshold Extracting the Neural Event from noise and other sources of interference. (e.g. cardiac events)

Pre-processing 1. High Pass Filter (hpf)

- Remove frequencies in signal below 10Hz.
- Assumes that this remove noise sources related, e.g. to micromovements of electrode caused by respiratory movements
- Respiratory rate in mice 80-230 bpm.
 (1.3 3.8 Hz)

Overview -- Extracting signal (CAPs) from noise and other sources of interference:

Includes:

Get signal where cardiac events are emphasized
 event of the 5ms scale. (Wavelet transform)

- Get signal where cardiac events are emphasized
 event of the 5ms scale. (Wavelet transform)
- Get signal where neural events are emphasized event of the 1ms scale. (Wavelet transform)

- Get signal where cardiac events are emphasized
 event of the 5ms scale. (Wavelet transform)
- Get signal where neural events are emphasized event of the 1ms scale. (Wavelet transform)
- Use a sliding window, calculating the local-intime noise-level for the two signals. (background statistics)
 - "CUT": "Cell Under Test".
 - w: windows where the standard deviation is estimated
 - w = 188ms
 - g: "guard" regions a possible signal in the "CUT" should not corrupt the SD-estimate.
 - g = 13 ms

- Get signal where cardiac events are emphasized
 event of the 5ms scale. (Wavelet transform)
- Get signal where neural events are emphasized event of the 1ms scale. (Wavelet transform)
- Use a sliding window, calculating the local-intime noise-level for the two signals. (background statistics)
- Extract cardiac- and neural events that deviated more than 3 SD from mean for both signals.

- Get signal where cardiac events are emphasized
 event of the 5ms scale. (Wavelet transform)
- Get signal where neural events are emphasized event of the 1ms scale. (Wavelet transform)
- Use a sliding window, calculating the local-intime noise-level for the two signals. (background statistics)
- Extract cardiac- and neural events that deviated more than 3 SD from mean for both signals.
- Discard neural events that cooccur with cardiac events.

The extracted CAPs / waveforms are:

- Assumed to be 3.5 ms in duration
- •"max-centered" the max peak is placed at the 1.75 ms mark.
- Example: (Not corresponding to right figure ->)

Example of Extracted Waveforms

Summary – Identifying CAPs

High Pass Filter

Remove low frequencies

Adaptive Threshold

- Emphasize Neural/Cardiac events
- Apply threshold
- Disregard CAPs that cooccur with cardiac events.

Amplitude threshold

Waveforms with a max-amplitude larger than a specific value are discarded.

Finding Shapes "Correlated" With Injection-Event

Raw Recording

Preprocess

Extract individual waveforms.

CAP-waveform

Incorporate Prior Belief

- Estimate event-rate.
- Label waveforms.

Build Probabilistic Model of Labeled Data

Study maxima of

 $\mathbb{P}(x \mid \text{"Increased event--rate after first/second cytokine injection"}).$

Similarity Measure – Similar CAPs Assumed to Encode Similar information

Event Rate: How often is a specific CAP-shape observed during time of recording.

Similarity Measure –

Balance between: "CAPs being similar enough" and "obtaining informative event-rates".

Similarity Measure –

Normalised Waveforms. Amplitude is not taken into consideration

Normalised CAPs.

Raw CAPs. (μV)

• Including the amplitude in the similarity measure either leads to a small number of observations, or very limited shape consistency.

Similarity Measure –

Normalised Waveforms. Amplitude is not taken into consideration

Normalised CAPs.

Raw CAPs. (μV)

• Including the amplitude in the similarity measure either leads to a small number of observations, or very limited shape consistency.

Example Results from "Zanos et. al." Recordings –

The most likely shapes, given some increase of event-rate after first injection.

- Left: Candidate CAP-shapes to encode TNF-information.
- Right: Their corresponding event-rate using similarity measure.

New Data: Total event-rate for all channels

Baseline_10min_LPS_10min_KCl_10min_210617_142447

New Data: Total event-rate for all channels

Baseline_10min_LPS_10min_KCl_10min_210617_103421

Comparing CAPs From Different (7) Channels

- Specified time, *t*.
- Find the channel with a CAP closest in time to t, denote : $t_{closest}$.
- All Channels with a CAP within 5 ms from $t_{closest}$ is plotted.

Comparing CAPs From Different (7) Channels

- Specified time, t.
- Find the channel with a CAP closest in time to t, denote : $t_{closest}$.
- All Channels with a CAP within 5 ms from $t_{closest}$ is plotted.

Comparing CAPs From Different (7) Channels

- Specified time, t.
- Find the channel with a CAP closest in time to t, denote : $t_{closest}$.
- All Channels with a CAP within 5 ms from $t_{closest}$ is plotted.

Observed CAPs for Different Channels During First Part of Recording

New Data Example of occurrence of waveform shapes

Preliminary Results
Baseline_10min_LPS_10min_KCl_10min_210617_103421-A-003

Preliminary Results
Baseline_10min_LPS_10min_KCl_10min_210617_103421-A-005

Preliminary Results
Baseline_10min_LPS_10min_KCl_10min_210617_142447-A-015

Preliminary Results
Baseline_10min_LPS_10min_KCl_10min_210617_142447-A-007

How to proceed?

- Duration of recording-periods, pre/post injection.
- Other sources of interference to take into consideration?
- Making use of all Channels:
 - Instead of using single electrode signal to describe a CAP use all 16?
 - E.g. Only consider CAPs that are observed in at least 7/15 channels
 - Estimate propagation-speed / direction?
- Regarding Parameters:
 - How large/small CAP amplitude thresholds are reasonable?

Duration of recording-periods, pre/post injection -- Longer Recording times?

Baseline_10min_LPS_10min_KCl_10min_210617_142447

Duration of recording-periods, pre/post injection -- Longer Recording times?

Baseline_10min_LPS_10min_KCl_10min_210617_103421