Série 8

L'exercise 1 sera discuté pendant le cours le lundi 14 novembre. L'exercice 2 (*) peut être rendu le jeudi 17 novembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a)

Déterminer si les énoncés proposés sont vrais ou faux.
• Soient U_1, U_2 deux sous-espaces vectoriels d'un K -espace vectoriel V . Alors $U_1 \setminus U_2$ est un sous-espace vectoriel de V .
○ vrai ○ faux
• Soient U_1, U_2 deux sous-espaces vectoriels d'un K -espace vectoriel V . Alors $U_1 \cup U_2$ est un sous-espace vectoriel de V .
○ vrai ○ faux
• Soient $v_1, v_2, v_3 \in \mathbb{R}^n, n \geq 3$. Si les familles $(v_1, v_2), (v_1, v_3)$ et (v_2, v_3) sont linéairement indépendantes, alors la famille (v_1, v_2, v_3) est aussi linéairement indépendante.
○ vrai ○ faux
• Si $(v_1, v_2, v_3, v_4, v_5)$ est une base d'un K -espace vectoriel V , alors la famille (v_1, v_2, v_5) est linéairement indépendante.
○ vrai ○ faux
• Soient (v_1, v_2, \ldots, v_n) une base d'un K -espace vectoriel V et $(w_1, \ldots, w_m) \in V$ une famille telle que $\operatorname{span}(w_1, w_2, \ldots, w_m) = V$. Alors $n \leq m$.
○ vrai ○ faux
Soit V un K -espace vectoriel de dimension 5. Soient U,W deux sous-espaces vectoriels de V tels que $\dim(U)=3$ et $\dim(W)=4$. Combien vaut $\dim(U\cap W)$?
O Cette dimension vaut nécessairement 2.
○ Cette dimension vaut 2 ou 3.
○ Cette dimension peut valoir n'importe quel entier entre 0 et 4.

Exercice $2 (\star)$

(b)

Soit V un K-espace vectoriel et U,W deux sous-espaces vectoriels de V. Montrer que $U\cap W$ est un sous-espace vectoriel de V.

Exercice 3

Soit (v_1, v_2, \ldots, v_m) une famille dans \mathbb{R}^n , où $m \leq n$. Soit $A = (v_1|v_2|\ldots|v_m) \in M_{n \times m}(\mathbb{R})$. Montrer que rang $(A) = \dim(\operatorname{span}(v_1, \ldots, v_m))$.

Indication: Voir l'Exemple 4.11 dans le polycopié.

Exercice 4

Vérifier si chacun des ensembles suivant est linéairement indépendant. Vérifier également s'ils engendrent l'espace vectoriel correspondant ou s'ils en sont une base.

- 1. L'ensemble $\{(1,1,0),(0,1,1),(1,0,0)\}$ dans les espaces vectoriels \mathbb{R}^3 et \mathbb{F}_2^3 .
- 2. L'ensemble $\left\{ \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$ dans l'espace vectoriel $M_{2\times 2}(\mathbb{R})$.
- 3. L'ensemble $\{(x-i)(x+i), x(x^2+1), 1\}$ dans l'espace vectoriel $\mathbb{C}_3[x]$.
- 4. L'ensemble $\{x+1, x^2+x+1, x^3+x, x^3+x^2\}$ dans l'espace vectoriel $\mathbb{R}_3[x]$.

Exercice 5

Considérer ces cinq vecteurs $v_1, v_2, v_3, v_4, v_5 \in \mathbb{R}^5$

$$v_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \qquad v_{2} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad v_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_{4} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad v_{5} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

- a) Trouver la dimension du \mathbb{R} -espace vectoriel $V = \operatorname{span}(v_1, v_2, v_3, v_4, v_5)$.
- b) Est-ce que la réponse change si on considère v_1, v_2, v_3, v_4, v_5 comme des vecteurs à coefficients dans \mathbb{F}_2^5 et $V = \text{span}(v_1, v_2, v_3, v_4, v_5)$ comme un \mathbb{F}_2 -espace vectoriel?

Exercice 6

Déterminer une base et la dimension des espaces vectoriels suivants :

1. Les solutions dans \mathbb{R}^3 du système suivant

$$\begin{cases} x+y-z=0\\ 3x+y+2z=0\\ 2x+3z=0 \end{cases}.$$

- 2. $\{(x,y) \in \mathbb{C}^2 \mid x+iy=0\}$ comme espace vectoriel sur \mathbb{C} .
- 3. $\{(x,y) \in \mathbb{C}^2 \mid x+iy=0\}$ comme espace vectoriel sur \mathbb{R} .
- 4. L'espace des polynômes harmoniques homogènes de degré au plus 2 à coefficients dans \mathbb{R} .

Indication : un polynôme homogène de degré inférieur ou égal à 2 dans \mathbb{R}^3 est une fonction de la forme

$$u: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(x, y, z) \longmapsto ax^2 + by^2 + cz^2 + dxy + eyz + fxz$, pour certains $a, b, c, d, e, f \in \mathbb{R}$.

Une fonction u est appelé harmonique si

$$\Delta u := u_{xx} + u_{yy} + u_{zz} = 0 \,,$$

où u_{xx} est la dérivée seconde de u par rapport à la première variable, u_{yy} est la dérivée seconde de u par rapport à la deuxième variable, et u_{zz} est la dérivée seconde de u par rapport à la troisième variable.

Exercice 7

Considérer les sous-espaces vectoriels suivants de \mathbb{R}^4

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - 2z + t = 0 \text{ et } z + 3t = 0\},$$

$$W = \text{span}((1, 0, 0, 0), (0, -1, 0, 0), (-1, 1, 0, 0), (0, 0, 0, 1)).$$

- 1. Calculer la dimension de U et W.
- 2. Montrer que $U + W = \mathbb{R}^4$.

Exercice 8

Soit V un K-espace vectoriel de dimension finie et soit U un sous-espace vectoriel de V. Montrer qu'il existe une base de V qui contient une base de U.