

CSE-201 Data Structure & Algorithm

Lecture - 1

Introduction to Data Structures

□ <u>Data Structures</u>

The logical or mathematical model of a particular organization of data is called a data structure.

☐ Types of Data Structure

1. Linear Data Structure

Example: Arrays, Linked Lists, Stacks, Queues

2. Nonlinear Data Structure

Example: Trees, Graphs

Figure: Linear and nonlinear structures

Choice of Data Structures

The choice of data structures depends on two considerations:

- 1. It must be rich enough in structure to mirror the actual relationships of data in the real world.
- 2. The structure should be simple enough that one can effectively process data when necessary.

Figure 2: Array with 8 items

Figure 3: Tree with 8 nodes

Data Structure Operations

- **1. Traversing:** Accessing each record exactly once so that certain items in the record may be processed.
- 2. Searching: Finding the location of the record with a given key value.
- **3. Inserting:** Adding a new record to the structure.
- **4. Deleting:** Removing a record from the structure.
- **5. Sorting:** Arranging the records in some logical order.
- **6.** Merging: Combing the records in two different sorted files into a single sorted file.

Algorithms

It is a well-defined set of instructions used to solve a particular problem.

Example:

Write an algorithm for finding the location of the largest element of an array Data.

Largest-Item (Data, N, Loc)

- 1. set k:=1, Loc:=1 and Max:=Data[1]
- 2. while k<=N repeat steps 3, 4
- 3. If Max < Data[k] then Set Loc:=k and Max:=Data[k]
- 4. Set k := k+1
- 5. write: Max and Loc
- 6. exit

Complexity of Algorithms

- The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space requirement of the algorithm in terms of the size n of the input data.
- Two types of complexity
 - 1. Time Complexity
 - 2. Space Complexity
- Sometimes the choice of data structures involves a time-space tradeoff.
 By increasing the amount of space for storing the data, it is possible to reduce the time needed for processing the data, or vice versa.

Analyzing Algorithms

- Predict the amount of resources required:
 - memory: how much space is needed?
 - computational time: how fast the algorithm runs?
- FACT: running time grows with the size of the input
- Input size (number of elements in the input)
 - Size of an array, polynomial degree, # of elements in a matrix, # of bits in the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed before termination

 Arithmetic operations (+, -, *), data movement, control, decision making (if, while), comparison

Algorithm Analysis: Example

Alg.: MIN (a[1], ..., a[n])
 m ← a[1];
 for i ← 2 to n
 if a[i] < m
 then m ← a[i];

Running time:

 the number of primitive operations (steps) executed before termination

```
T(n) = 1 [first step] + (n) [for loop] + (n-1) [if condition] + (n-1) [the assignment in then] = 3n-1
```

- Order (rate) of growth:
 - The leading term of the formula
 - Expresses the asymptotic behavior of the algorithm

Typical Running Time Functions

- 1 (constant running time):
 - Instructions are executed once or a few times
- logN (logarithmic)
 - A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- N (linear)
 - A small amount of processing is done on each input element
- N logN
 - A problem is solved by dividing it into smaller problems, solving them independently and combining the solution

Typical Running Time Functions

- N² (quadratic)
 - Typical for algorithms that process all pairs of data items (double nested loops)
- N³ (cubic)
 - Processing of triples of data (triple nested loops)
- N^K (polynomial)
- 2^N (exponential)
 - Few exponential algorithms are appropriate for practical use

Growth of Functions

n	1	lgn	n	nlgn	m²	n³	2 ⁿ
1	1	0.00	1	0	1	1	2
10	1	3.32	10	33	100	1,000	1024
100	1	6.64	100	664	10,000	1,000,000	1.2×10^{30}
1000	1	9.97	1000	9970	1,000,000	10 ⁹	1.1×10^{301}

Complexity Graphs

12

Complexity Graphs

2/25

Complexity Graphs

2/

Complexity Graphs (log scale)

Algorithm Complexity

Worst Case Complexity:

 the function defined by the maximum number of steps taken on any instance of size n

Best Case Complexity:

 the function defined by the *minimum* number of steps taken on any instance of size n

Average Case Complexity:

 the function defined by the average number of steps taken on any instance of size n

Best, Worst, and Average Case Complexity

Doing the Analysis

- It's hard to estimate the running time exactly
 - Best case depends on the input
 - Average case is difficult to compute
 - So we usually focus on worst case analysis
 - Easier to compute
 - Usually close to the actual running time

Strategy: find a function (an equation) that, for large n, is an upper bound to the actual function (actual number of steps,

memory usage, etc.)

Motivation for Asymptotic Analysis

- An exact computation of worst-case running time can be difficult
 - Function may have many terms:
 - $4n^2$ $3n \log n + 17.5 n 43 n^{2/3} + 75$
- An exact computation of worst-case running time is unnecessary
 - Remember that we are already approximating running time by using RAM model

Classifying functions by their Asymptotic Growth Rates (1/2)

- asymptotic growth rate, asymptotic order, or order of functions
 - Comparing and classifying functions that ignores
 - constant factors and
 - small inputs.
- The Sets big oh O(g), big theta Θ(g), big omega
 Ω(g)

Classifying functions by their Asymptotic Growth Rates (2/2)

- O(g(n)), Big-Oh of g of n, the Asymptotic Upper Bound;
- □ Θ(g(n)), Theta of g of n, the Asymptotic Tight Bound; and
- \square $\Omega(g(n))$, Omega of g of n, the Asymptotic Lower Bound.

Big-O

$$f(n) = O(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
 - If $f(n) = O(n^2)$, then:
 - f(n) can be larger than n^2 sometimes, **but...**
 - We can choose some constant c and some value n_0 such that for **every** value of n larger than n_0 : $f(n) < cn^2$
 - That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2
 - Or, in other words, f(n) does not grow more than a constant factor faster than n^2 .

Visualization of O(g(n))

-
$$2n^2 = O(n^3)$$
: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$

-
$$n^2 = O(n^2)$$
: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

- $1000n^2+1000n = O(n^2)$:

$$1000n^2 + 1000n \le cn^2 \le cn^2 + 1000n \Rightarrow c = 1001 \text{ and } n_0 = 1$$

-
$$n = O(n^2)$$
: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

Big-O

$$2n^{2} = O(n^{2})$$

$$1,000,000n^{2} + 150,000 = O(n^{2})$$

$$5n^{2} + 7n + 20 = O(n^{2})$$

$$2n^{3} + 2 \neq O(n^{2})$$

$$n^{2.1} \neq O(n^{2})$$

More Big-O

- Prove that: $20n^2 + 2n + 5 = O(n^2)$
- Let c = 21 and $n_0 = 4$
- $21n^2 > 20n^2 + 2n + 5$ for all n > 4 $n^2 > 2n + 5$ for all n > 4TRUE

Tight bounds

- We generally want the tightest bound we can find.
- While it is true that $n^2 + 7n$ is in $O(n^3)$, it is more interesting to say that it is in $O(n^2)$

Big Omega – Notation

• $\Omega()$ – A **lower** bound

 $f(n) = \Omega(g(n))$: there exist positive constants c and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

- $n^2 = \Omega(n)$
- Let c = 1, $n_0 = 2$
- For all $n \ge 2$, $n^2 > 1 \times n$

Visualization of $\Omega(g(n))$

⊕-notation

- Big-O is not a tight upper bound. In other words $n = O(n^2)$
- •
 •
 provides a tight bound

$$f(n) = \Theta(g(n))$$
: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

In other words,

$$f(n) = \Theta(g(n)) \Longrightarrow f(n) = O(g(n)) \text{ AND } f(n) = \Omega(g(n))$$

Visualization of $\Theta(g(n))$

A Few More Examples

- $n = O(n^2) \neq \Theta(n^2)$
- $200n^2 = O(n^2) = \Theta(n^2)$
- $n^{2.5} \neq O(n^2) \neq \Theta(n^2)$

• Prove that:
$$20n^3 + 7n + 1000 = \Theta(n^3)$$

- Let c = 21 and $n_0 = 10$
- $21n^3 > 20n^3 + 7n + 1000$ for all n > 10 $n^3 > 7n + 5$ for all n > 10TRUE, but we also need...
- Let c = 20 and $n_0 = 1$
- $20n^3 < 20n^3 + 7n + 1000$ for all $n \ge 1$ TRUE

- Show that $2^n + n^2 = O(2^n)$
 - Let c = 2 and $n_0 = 5$

$$2 \times 2^{n} > 2^{n} + n^{2}$$

$$2^{n+1} > 2^{n} + n^{2}$$

$$2^{n+1} - 2^{n} > n^{2}$$

$$2^{n} (2-1) > n^{2}$$

$$2^{n} > n^{2} \quad \forall n \ge 5 \quad \checkmark$$

Asymptotic Notations - Examples

• • notation

$$- n^2/2 - n/2 = \Theta(n^2)$$

$$- (6n^3 + 1) \lg n/(n + 1) = \Theta(n^2 \lg n)$$

$$n \neq \Theta(n^2)$$

Ω notation

$$- n^3 vs. n^2$$

$$n^3 = \Omega(n^2)$$

$$n = \Omega(\log n)$$

$$n \neq \Omega(n^2)$$

O notation

$$-2n^2$$
 vs. n^3

$$2n^2 \text{ vs. } n^3 \qquad 2n^2 = O(n^3)$$

$$- n^2 vs. n^2 n^2 = O(n^2)$$

$$n^2 = O(n^2)$$

-
$$n^3$$
 vs. $nlogn n^3 \neq O(nlgn)$

$$n^3 \neq O(nlgn)$$

Asymptotic Notations - Examples

 For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct.

-
$$f(n) = \log n^2$$
; $g(n) = \log n + 5$ $f(n) = \Theta(g(n))$
- $f(n) = n$; $g(n) = \log n^2$ $f(n) = \Omega(g(n))$
- $f(n) = \log \log n$; $g(n) = \log n$ $f(n) = O(g(n))$
- $f(n) = n$; $g(n) = \log^2 n$ $f(n) = \Omega(g(n))$
- $f(n) = n \log n + n$; $g(n) = \log n$ $f(n) = \Omega(g(n))$
- $f(n) = 10$; $g(n) = \log 10$ $f(n) = \Theta(g(n))$
- $f(n) = 2^n$; $g(n) = 10n^2$ $f(n) = \Omega(g(n))$
- $f(n) = 2^n$; $g(n) = 3^n$ $f(n) = O(g(n))$

Simplifying Assumptions

```
1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))
3. If f<sub>1</sub>(n) = O(g<sub>1</sub>(n)) and f<sub>2</sub>(n) = O(g<sub>2</sub>(n)),
then f<sub>1</sub>(n) + f<sub>2</sub>(n) = O(max (g<sub>1</sub>(n), g<sub>2</sub>(n)))
4. If f<sub>1</sub>(n) = O(g<sub>1</sub>(n)) and f<sub>2</sub>(n) = O(g<sub>2</sub>(n)),
then f<sub>1</sub>(n) * f<sub>2</sub>(n) = O(g<sub>1</sub>(n) * g<sub>2</sub>(n))
```

- Code:
- a = b;

• Code:

```
sum = 0;
for (i=1; i <=n; i++)
sum += n;</pre>
```

• Code:

Code:

```
    sum1 = 0;
    for (i=1; i<=n; i++)</li>
    for (j=1; j<=n; j++)</li>
    sum1++;
```

• Code:

```
sum2 = 0;
for (i=1; i<=n; i++)</li>
for (j=1; j<=i; j++)</li>
sum2++;
```

Code:

```
sum1 = 0;
for (k=1; k<=n; k*=2)</li>
for (j=1; j<=n; j++)</li>
sum1++;
```

• Code:

```
• sum2 = 0;

• for (k=1; k <= n; k *= 2)

• for (j=1; j <= k; j++)

• sum2++;
```

Recurrences

Def.: Recurrence = an equation or inequality that describes a function in terms of its value on smaller inputs, and one or more base cases

- E.g.: T(n) = T(n-1) + n
- Useful for analyzing recurrent algorithms
- Methods for solving recurrences
 - Substitution method
 - Recursion tree method
 - Master method
 - Iteration method