Projet de fin d'étude Déchiffrement de disque LUKS sous FreeBSD

Romain CHERRÉ, Pierre KOEBELIN

31 janvier 2019

Plan

Introduction

État de l'art

Développement

Utilisation

Difficultés rencontrées

000

Démonstration

Conclusion

Introduction

Chiffrement de disque

• Linux : géré par dm-crypt

• FreeBSD : géré par GELI

ightarrow modules de noyau

Chiffrement de disque

• Linux : géré par dm-crypt

• FreeBSD : géré par GELI

ightarrow modules de noyau

Création d'un module noyau

- Module pour FreeBSD
- Lire et écrire disques chiffrés LUKS

<u>État</u> de l'art

Différents types de chiffrement

Chiffrement à différents niveaux

- Chiffrement matériel
- Chiffrement logiciel de disque
- Système de fichiers chiffré
- Chiffrement de fichier

Chiffrement et organisation dans le système

Chiffrement logiciel

- Géré par des modules noyau
- Possible avec différents algorithmes
- Réalisé au moment de la lecture ou l'écriture
- Transparent pour l'utilisateur

Chiffrement et organisation dans le système

Sur Linux

- Outil cryptsetup
- Module dm-crypt
- Standard LUKS : Linux Unified Key Setup
- Empilement avec d'autres transformations device-mapper

Sur FreeBSD

- Outil et module GELI
- Paramètres possibles codés en dur
- Empilement avec d'autres transformations GEOM

Chiffrement et organisation dans le système - Linux

FIGURE - Organisation du code dans Linux

Chiffrement et organisation dans le système - FreeBSD

FIGURE – Organisation du code dans FreeBSD

Format sur le disque

Format = organisation des données et métadonnées sur le disque

Format LUKS

- LUKS header → métadonnées
- Keyslots \rightarrow 8 phrases secrètes
- Données chiffrées

Format GELI

- Données chiffrées
- GELI header → métadonnées

Format sur le disque

LUKS Header	KM1	KM2	КМЗ	KM4	KM5	КМ6	KM7	KM8	Données chiffrées

FIGURE – Format sur disque *LUKS*

FIGURE - Format sur disque GELI

Algorithmes

FIGURE - Chiffrement par secteur

Algorithmes

Chiffrement

• Même algorithme pour tout le disque

Vecteur d'initialisation

- Unique à chaque secteur
- Secteurs de 512 ou 4096 octets

Algorithmes

	Chiffrement					
Génération d'IV	AES-XTS	AES-CBC	CAST5-CBC			
plain64	x					
plain		х	x			
essiv:sha256		х				

Développement

Les métadonnées

Des métadonnées en communs

- Le MAGIC
- Version
- Algorithme de chiffrement et de hashage
- Sel
- Nombre d'itérations pour PKCS5v2
- Clé maître chiffrée

Les métadonnées - FreeBSD

FIGURE – Utilisation des métadonnées dans FreeBSD

Les métadonnées - Utilisation dans le code

000

FIGURE - Utilisation de la structure g_luks_metadata

000

Les métadonnées - Utilisation dans le code

FIGURE - Utilisation de la structure g_luks_softc

Les métadonnées - Transformation des métadonnées

FIGURE - Introduction d'un structure intermédiaire

000

Déchiffrement de la clé

FIGURE - Déchiffrement de la clé sous LUKS

Utilisation de drapeaux GELI

Activer/désactiver options de chiffrement de disques

- G ELI FLAG AUTH
 - → activer l'auhentification
- G_ELI_FLAG_SINGLE_KEY
 - ightarrow utiliser la même clé maître pour tous les secteurs

Création du disque déchiffré

FIGURE – Déchiffrement de la clé sous LUKS

Quelques changements par rapport à GELI

000

Taille du disque

Création du disque déchiffré

FIGURE - Déchiffrement de la clé sous LUKS

Quelques changements par rapport à GELI

000

- Taille du disque
- Décalage

Création du disque déchiffré

FIGURE – Déchiffrement de la clé sous LUKS

Quelques changements par rapport à GELI

000

- Taille du disque
- Décalage
- Lecture de métadonnées au début du disque

Passage de l'espace utilisateur au noyau

API GEOM

- Structure g_ctl_req
- Instruction g_ctl_issue

•00

Structure g_command

Passage de l'espace utilisateur au noyau

Code noyau ou espace utilisateur?

0.0

- API noyau Opencrypto Openssl
- Malloc
- HMAC et PKCS5v2
- Dérivation de la phrase de passe

00

Passage de l'espace utilisateur au noyau - Implémentation

FIGURE - Fonctionnement de GEOM_LUKS

Utilisation

Utilisation

Le système de fichiers

- EXT2, EXT3
- EXT4 : lecture seule sur FreeBSD
- ZFS
- FAT, FAT32
- NTFS

Utilisation

Partage de fichiers et haute disponibilité

- Dual boot
- Partage réseau : iSCSI, NFS, ...
- Supports amovibles

Difficultés rencontrées

Difficultés rencontrées

Noyau et userspace

- différentes bibliothèques
- algorithme de hashage : différents types
- allocation dynamique

Difficultés rencontrées

Débogage : dmesg et kgdb

- kern.geom.luks.debug
- printf
- kgdb et vmcore

Démonstration

Conclusion

Conclusion

Module actuel : support de

- lecture / écriture
- SHA256
- AES-XTS, AES-CBC
- plain et plain64

Conclusion

Module actuel : support de

- lecture / écriture
- SHA256
- AES-XTS, AES-CBC
- plain et plain64

Suite du projet

- amélioration du code
- scripts de tests
- revue par les développeurs FreeBSD
- ajout de fonctionnalités

Questions?

Démarrage

FIGURE - Démarrage sous Linux

Démarrage

FIGURE - Démarrage sous FreeBSD