CETU RESNET DENSENET

ОБЛАСТИ ПРИМЕНЕНИЯ

МОГУ МНОГО РАССКАЗАТЬ ПРИМЕРОВ ПРИМЕНЕНИЯ ЭТИХ НЕЙРОНОК В РОССИИ В РЕАЛЬНЫХ ЗАДАЧАХ ОТ МЕДИЦИНЫ ДО СТРОЙКИ И БЕСПИЛОТНИКОВ

- Определение границ это самая низкоуровневая задача, для которой уже классически применяются сверточные нейронные сети.
- Определение вектора к нормали позволяет нам реконструировать трёхмерное изображение из двухмерного.
- Saliency, определение объектов внимания это то, на что обратил бы внимание человек при рассмотрении этой картинки.
- Семантическая сегментация позволяет разделить объекты на классы по их структуре, ничего не зная об этих объектах, то есть еще до их распознавания.
- Семантическое выделение границ это выделение границ, разбитых на классы.
- Выделение частей тела человека.

И самая высокоуровневая задача - распознавание самих объектов.

Повышение четкости изображений

SRDenseNet – DenseNet for SR (Super Resolution) - https://towardsdatascience.com/review-srdensenet-densenet-for-sr-super-resolution-cbee599de7e8 и статья https://openaccess.thecvf.com/content_ICCV_2017/papers/Tong_Image_Super-Resolution_Using_ICCV_2017_paper.pdf

Перенос стиля изображения

https://towardsdatascience.com/ cool-factor-how-to-steal-styleswith-machine-learning-turi-createand-resnet-54f95fa9f26f

RESNET- RESIDUAL NETWORK (ДОСЛОВНО – «ОСТАТОЧНАЯ СЕТЬ»)

- Сеть от Microsoft. На соревнованиях в 2015 году она вдвое превзошла сеть победителя 2014 года (GoogleNet).
- По возможности распознавания образов эта сеть превзошла возможности человека
- Позволяет комбинировать обученные данные с не обученными и, таким образом, избегает затухания градиента (он всегда может пройти по блоку (skip-connection)

RESNET - ТЕОРИЯ

- С повышением числа слоев, из-за затухания
 градиента, сверточная нейронная сеть начинает деградировать
- Было сделано предположение, что если сверточная нейронная сеть достигла своего предела на каком-то слое, то все последующие слои должны «выродиться в торжественное преобразование»
- Благодаря промежуточным слоям, была решена проблема затухающего градиента, когда в каждый слой поступает и искаженные, и не искажённые сигналы.
- Обучать разницу между сверточным слоем и сигналом оказалось эффективнее, чем сам градиент

РЕШЕНИЕ ПРОБЛЕМЫ ЗАТУХАНИЯ ГРАДИЕНТА

ДАЛЬНЕЙШЕЕ PA3BИТИЕ ИДЕИ RESNET

- **ResNeXt** Добавили «расщепленную» свертку (или еще называют «мощность блока свертки»): 4@1x1 + 4@3x3 + 256@1x1. Блок оказался равнозначным по числу весов с аналогичным блоком ResNet
- InceptionResNet добавили блок Incetption (прямой связи)
- Se-ResNet перенос делится на 2 части:
 - GlobalEveragePooling + Dense(Relu) + Dense(Sigmoid) На последнем слое используется в 16 раз меньшее число нейронов, «сжимая» данные.
 - После этого данные такого блока перемножаются с выходом из свертки (аналогично вентилю забвения в LSTM)

DenseNet

DENSENET - DENSELY CONNECTED CONVOLUTIONAL NETWORK

- DenseNet (Densely Connected Convolutional Network) была предложена в 2017 году.
- Авторы представили компактно соединенный (dense) блок, который соединяет каждый слой с каждым другим слоем.
- В отличие от ResNet, признаки («фичи») прежде чем они будут переданы в следующий слой не суммируются, а конкатенируются (объединяются, channel-wise concatenation) в единый тензор. При этом количество параметров сети DenseNet намного меньше, чем у сетей с такой же точностью работы.
- Авторы утверждают, что DenseNet работает особенно хорошо на малых наборах данных.

DENSENET - APXИТЕКТУРА

Используются все возможные комбинации связей с промежуточными результатами

Таким образом у градиента появляется больше возможностей для оптимизации и сеть стала еще более устойчивой к переобучению

Figure 1. A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

СТАТЬИ

- •Original DenseNet paper: https://arxiv.org/pdf/
 1608.06993v3.pdf
- •DenseNet Semantic Segmentation: https://arxiv.org/pdf/
 1611.09326v2.pdf
- •DenseNet for Optical flow: https://arxiv.org/pdf/
 1707.06316v1.pdf
- •Review: DenseNet Dense Convolutional Network (Image Classification) https://www.machinelearningmastery.ru/review-densenet-image-classification-b6631a8ef803/ рекомендовать
- •Understanding and visualizing DenseNets https://
 https://
 densenets-7f688092391a
- DenseNet https://towardsdatascience.com/ densenet-2810936aeebb
- •Paper review: DenseNet -Densely Connected Convolutional Networks https://towardsdatascience.com/paper-review-densenet-densely-connected-convolutional-networks-acf9065dfefb
- •Architecture comparison of AlexNet, VGGNet, ResNet, Inception, DenseNet https://towardsdatascience.com/ architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d Рекомендовать!!

- https://towardsdatascience.com/understanding-andvisualizing-resnets-442284831be8 - рекомендовать!!!
- *Exploring DenseNets: From Paper To Keras https://towardsdatascience.com/exploring-densenets-from-paper-to-keras-dcc01725488b + https://towardsdatascience.com/exploring-densenets-from-paper-to-keras-dcc01725488b + https://towardsdatascience.com/exploring-densenets-from-paper-to-keras-dcc01725488b + https://towardsdatascience.com/exploring-densenets-from-paper-to-keras-dcc01725488b + https://towardsdatascience.com/drive/1v2p228o-
- _PRtecU0vYUXuGlG_VierqcP#scrollTo=wbkXMkrTgXiF&forc
 eEdit=true&sandboxMode=true
- •DenseNet on CIFAR10 https://
 https://
 <a href="toward
- *Видео: MLT CNN Architectures: DenseNet implementation https://www.youtube.com/watch?
 v=QKtoh9FJIWQ&feature=youtu.be
 https://github.com/Machine-Learning-Tokyo/DL-workshop-series/blob/master/Part%201%20-%20Convolution%20Operations/ConvNets.ipynb
 pekomengosate!!!!
- •Creating DenseNet 121 with TensorFlow https://
 https://
 tensorflow-edbc08a956d8

СТАТЬИ И ВИДЕО

- ResNet (34, 50, 101): «остаточные» CNN для классификации изображений: https://neurohive.io/ru/vidy-nejrosetej/ resnet-34-50-101/
- Понимание и кодирование ResNet в Kepace: https://github.com/priya-resnet-in-keras-446d7ff84d33/ и https://github.com/priya-dwivedi/Deep-Learning/blob/master/resnet_keras/ Residual_Network_Keras.ipynb
- Обзор топологий глубоких сверточных нейронных сетей https:// habr.com/ru/company/mailru/blog/311706/ рекомендовать!!
- Эволюция нейросетей для распознавания изображений в Google: Inception-ResNet https://habr.com/ru/post/303196/
- Residual neural network https://en.wikipedia.org/wiki/
 Residual neural network
- · Стэнфордский курс: лекция 9. Архитектуры CNN https://www.reg.ru/blog/stehnfordskij-kurs-lekciya-9-arhitektury-cnn/
 Рекомендовать!!!

Развитие идеи ResNet:

- ResNeXt https://www.youtube.com/watch?v=r5x9JdRpXyl
- ResNet, InceptionResNet, DenseNet https://www.youtube.com/watch?v=ZXqARhiMOb4
- Se-ResNet https://www.youtube.com/watch?
 v=uHOLCKw5hWI

Общая информация о подобных сетках:

- Глубокое обучение. Лекция 9. Residual Networks! (2019-2020) https://www.youtube.com/watch? v=QIC3Qt2JI0M
- Лекция: Архитектуры CNN (15.11.2019) https://www.youtube.com/watch?v=-z-eTx0TIV8
- ВИДЕО ПО АРХИТЕКТУРЕ СОВРЕМЕННЫХ СВЕРТОЧНЫХ СЕТЕЙ https://exponenta.ru/news/Arhitektury-sovremennyh-svertochnyh-setej

КОД - НЕЙРОНКИ МОЖНО ИЛИ НАПИСАТЬ САМОСТОЯТЕЛЬНО, ИЛИ ЗАГРУЗИТЬ ТИПОВЫЕ МОДЕЛИ ИЗ TENSORFLOW. KERAS

```
from keras.applications.resnet50 import ResNet50

u
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
```

ResNet on the CIFAR10

- Из официальной документации Keras: https://keras.io/zh/examples/cifar10_resnet/ Пришлось адаптировать к современной версии Tensorflow, но очень интересно!! Пример самостоятельного конструирования ResNet в моей ноутбуке: https://colab.research.google.com/drive/17G6k_T9qcKoUHNakCVAGXvikm0tXEwml? usp=sharing
- о том, как-то сделать5 <u>https://towardsdatascience.com/understand-and-implement-resnet-50-with-tensorflow-2-0-1190b9b52691</u>

Sign-Language MNIST

- https://github.com/priya-dwivedi/Deep-Learning/blob/master/resnet_keras/
 Residual Networks_yourself.ipynb для датасета https://www.kaggle.com/datamunge/sign-language-mnist но тут нет загрузки датасета
- https://www.kaggle.com/madz2000/cnn-using-keras-100-accuracy а тут можно взять загрузку датасета

