

User Modeling and Personalization Exercise 3: Bayesian Networks

Patrick Siehndel, Eelco Herder

L3S Research Center / Leibniz University of Hanover Hannover, Germany

12 May 2014

Exercise 1: Bayesian Networks / Reasoning under uncertainty

Given are the following CPTs (= Conditional Probability Tables):

P(likesClass	ics)	
0.4		
P(likesBlues	s)	
0.1		
likesBlues	likesClassics	P(likesJazz)
yes	yes	0.05
yes	no	0.45
no	yes	0.2

likesJazz	P(likesPianoJazz)
yes	0.85
no	0.3
likesJazz	P(likesBrazilJazz)
ves	0.9
, , , ,	

Exercise 1: Bayesian Networks / Reasoning under uncertainty

- 1. Draw the corresponding Bayesian Network.
- 2. Calculate the probability that a user...
 - 2.1 likes Classics. Blues and Jazz.
 - 2.2 does not like Classics and Blues, but Jazz and Piano Jazz.
 - 2.3 does not like Classics and Brazil Jazz, but Blues, Jazz and Piano Jazz.

- **1.2 a)** $P(Classics \land Blues \land Jazz) = P(Classics) * P(Blues) * P(Jazz|Classics, Blues) = 0,4 * 0,1 * 0,05 = 0,002$
- **1.2 b)** $P(\neg Classics \land \neg Blues \land Jazz \land PianoJazz) = (1 P(Classics)) * (1 P(Blues)) * <math>P(Jazz|\neg Classics, \neg Blues) * P(PianoJazz|Jazz) = 0.6 * 0.9 * 0.15 * 0.85 = 0.06885$

1.2 - c)

 $P(\neg Classics \land Blues \land Jazz \land PianoJazz \land \neg BrazilJazz) = (1 - P(Classics)) * P(Blues) * P(Jazz|\neg Classics, Blues) * P(PianoJazz|Jazz) * (1 - P(BrazilJazz|Jazz)) = 0,6 * 0,1 * 0,45 * 0,85 * 0,1 = 0,002295$

Exercise 2: Bayesian Networks / Reasoning under uncertainty

Given are the following CPTs (= Conditional Probability Tables):

likesLemons	likesIce	P(likesLemonice likesLemons, likesIce	
yes	yes	0.9	
yes	no	0.3	
no	yes	0.2	
no	no	0.05	
	likesFruit	P(likesLemons likesFruit)	
	yes	0.8	
- //	no	0.1	
		P(likesFruit)	
		0.7	
	likesFruit	P(likesApples likesFruit)	
	yes	0.8	
	no	0.05	

Exercise 2: Bayesian Networks / Reasoning under uncertainty

- 1. Draw the corresponding Bayesian Network.
- 2. Calculate the probability that a user...
 - 2.1 likes Fruit and Lemons, doesn't like Ice and Apple, and likes I emonIce
 - 2.2 likes Lemon Ice, if the user likes Lemons
- 3. What is the probability that a user likes Fruit, if he likes Apples?

2.1) User likes Fruit and Lemons, doesn't like Ice and Apple, and likes LemonIce.

$$P(F, L, \neg I, \neg A, LI)$$

$$= P(F) * P(L \mid F) * P(\neg I) * P(\neg A \mid F) * P(LI \mid L, \neg I)$$

$$= 0.7 * 0.8 * (1 - 0.9) * (1 - 0.8) * 0.3 = 0.00336$$

2.2) User likes Lemon Ice, if the user likes Lemons.

$$P(LI|L) = P(LI|L, I)P(I) + P(LI|L, \neg I)P(\neg I)$$
$$= 0.9 * 0.9 + 0.3 * 0.1$$
$$= 0.81 + 0.03 = 0.84$$

Note that P(L)=1, as it is given that the user likes lemons (if we had asked for the probability that the user likes Lemon Ice and likes Lemons, you had to include

$$P(L) = P(L|F)P(F) + P(L|\neg F)P(\neg F).$$

3) User likes Fruit, if he likes Apple. **Hint:** for this, we need to make use of *Bayes' Rule*.

$$P(F|A) = \frac{P(A|F)}{P(A)} * P(F)$$

continued from previous slide

$$P(F|A) = \frac{P(A|F)}{P(A)} * P(F)$$

$$= \frac{P(A|F)}{P(A|F)P(F) + P(A|\neg F)(P(\neg F))} * P(F)$$

$$= \frac{0.8}{0.8 * 0.7 + 0.05 * 0.3} * 0.7$$

$$= \frac{0.8}{0.56 + 0.015} * 0.7 = 0.97$$