GE23131-Programming Using C-2024

Status Finished Started Wednesday, 15 January 2025, 12:30 AM Completed Wednesday, 15 January 2025, 12:38 AM Duration 7 mins 25 secs Question 1 A binary number is a combination of 1s and 0s. Its nth least Correct significant digit is the nth digit starting from the right starting Marked out of with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit. P Flag question Example number = 23 Convert the decimal number 23 to binary number: 2310 $= 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$ The value of the 4th index from the right in the binary representation is 0. **Function Description** Complete the function fourthBit in the editor below. fourthBit has the following parameter(s): int number: a decimal integer int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number. Constraints $0 \le number < 2^{31}$ Input Format for Custom Testing Input from stdin will be processed as follows and passed to the function. The only line contains an integer, number. Sample Case 0 Sample Input 0 STDIN Function 32 → number = 32 Sample Output 0

0

Explanation 0

 $= (100000)_2$

Convert the decimal number 32 to binary number: 32₁₀

Sample Case 1 Sample Input 1

STDIN Function

77 → number = 77

Sample Output 1

1

Explanation 1

- Convert the decimal number 77 to binary number: 77_{10} = $(1001101)_2$.
- $\,\cdot\,\,$ The value of the 4th index from the right in the binary representation is 1.

Answer: (penalty regime: 0 %)

Reset answer

```
* Complete the 'fourthBit' function below
 2
 3
 4
     * The function is expected to return an
 5
     * The function accepts INTEGER number as
 6
 7
8
    int fourthBit(int number)
9 •
10
       int binary[32];
       int i=0;
11
12
       while(number>0)
13 •
14
           binary[i]=number%2;
15
           number/=2;
16
           i++;
17
18
       if(i>=4)
19 •
       {
           return binary[3];
20
21
22
       else
23
       return 0;
24
```

	Test	Expected	Got	
~	<pre>printf("%d", fourthBit(32))</pre>	0	0	
~	<pre>printf("%d", fourthBit(77))</pre>	1	1	

Question 2
Correct
Marked out of 1.00

F Flag question

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the list, sorted ascending. If there is no p^{th} element, return 0.

Example

n = 20

p = 3

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Returns:

int: the long integer value of the p^{th} integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

 $1 \le n \le 10^{15}$

 $1 \le p \le 10^9$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

Sample Case 0

Sample Input 0

STDIN Function

10 → n = 10

 $3 \rightarrow p = 3$

Sample Output 0

```
10 \rightarrow n = 105 \rightarrow p = 5
```

Sample Output 1

0

Explanation 1

Factoring n = 10 results in $\{1, 2, 5, 10\}$. There are only 4 factors and p = 5, therefore 0 is returned as the answer.

Sample Case 2

Sample Input 2

STDIN Function

```
1 \rightarrow n = 1
```

 $1 \rightarrow p = 1$

Sample Output 2

1

Explanation 2

Factoring n = 1 results in {1}. The p = 1st factor of 1 is returned as the answer.

Answer: (penalty regime: 0 %)

Reset answer

```
* Complete the 'pthFactor' function below
 3
     * The function is expected to return a L
     * The function accepts following paramet
     * 1. LONG_INTEGER n
* 2. LONG_INTEGER p
 8
   long pthFactor(long n, long p)
10
11 .
        int count=0;
12
        for(long i=1;i<=n;++i)
13
14
15
             if(n%i==0)
16
17
                 count++;
18
                 if(count==p)
19
20
                     return i;
21
22
             }
23
24
        return 0;
25
26
```

	Test	Expected	G
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5
~	<pre>printf("%ld", pthFactor(10, 5))</pre>	0	0
~	<pre>printf("%ld", pthFactor(1, 1))</pre>	1	1

GE23131-Programming Using C-2024

1

Question 2
Correct
Marked out of 1.00

P Flag question

Find the number of ways that a given integer, \mathbf{X} , can be expressed as the sum of the \mathbf{N}^{th} powers of unique, natural numbers.

printf("%d", myFunc(200)) 1

For example, if X = 13 and N = 2, we have to find all combinations of unique squares adding up to 13. The only solution is $2^2 + 3^2$.

Function Description

Passed all tests! ✓

Complete the powerSum function in the editor below. It should return an integer that represents the number of possible combinations.

powerSum has the following parameter(s):

X: the integer to sum to

 $\ensuremath{\text{N}}\xspace$ the integer power to raise numbers to

Input Format

The first line contains an integer \boldsymbol{X} .

The second line contains an integer ${\it N}$.

Constraints

1 ≤ X ≤ 1000

2 ≤ N ≤ 10

Output Format

Output a single integer, the number of possible combinations calculated.

Sample Input 0

10

2

Sample Output 0

1

Explanation 0

If X = 10 and N = 2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.

 $10 = 1^2 + 3^2$

```
Sample Input 1
  100
  2
  Sample Output 1
 Explanation 1
 100 = (10^2) = (6^2 + 8^2) = (1^2 + 3^2 + 4^2 + 5^2 + 7^2)
 Sample Input 2
 100
 3
Sample Output 2
Explanation 2
100 can be expressed as the sum of the cubes of 1, 2, 3, 4.
(1 + 8 + 27 + 64 = 100). There is no other way to express 100
as the sum of cubes.
Answer: (penalty regime: 0 %)
 Reset answer
        * Complete the 'powerSum' function below
   3
        * The function is expected to return an
* The function accepts following paramet
* 1. INTEGER x
        * 2. INTEGER n
  10
       int powerSum(int x, int m, int n)
           if(x==0)
 12
 13
                return 1;
 14
 15
           if(x<0)
 16
 17,
                return 0;
 18
 19
 20
           int count=0;
 21
           for(int i=m;;i++)
 22
 23
                int power=1;
 24
                for(int j=0;j<n;j++)
 25
               power*=i;
 26
 27
 28
           if(power>x)
 29
               break;
 30
 31
           count +=powerSum(x-power,i+1,n);
32
33
     return count;
34
35
```