Agrégation Interne

Les corps $\mathbb{Z}/p\mathbb{Z}$

1 Énoncé

Pour tout entier naturel $n \geq 2$, $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est l'anneau des classes résiduelles modulo n.

On note $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^* = \left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right) \setminus \left\{\overline{0}\right\}$ et $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^\times$ est le groupe multiplicatif des éléments inversibles de l'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$.

Si k est un entier relatif, on note $\overline{k} = k + n\mathbb{Z}$ la classe de k dans $\frac{\mathbb{Z}}{n\mathbb{Z}}$.

Pour tout couple (a, b) d'entiers relatifs, on note $a \wedge b$ le pgcd de a et b et $a \vee b$ leur ppcm.

$$-I-Les corps \mathbb{Z}/p\mathbb{Z}$$

- 1. Soit a un entier relatif. Montrer que les propriétés suivantes sont équivalentes :
 - (a) \overline{a} est inversible dans $\frac{\mathbb{Z}}{n\mathbb{Z}}$;
 - (b) a est premier avec n;
 - (c) \overline{a} est un générateur de $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},+\right)$.

On note $\varphi(n)$ le cardinal de $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^{\times}$ (fonction indicatrice d'Euler).

- 2. Montrer que pour tout entier relatif a premier avec n, on a $a^{\varphi(n)} \equiv 1$ (n) (théorème d'Euler).
- 3. Montrer que, pour tout entier $n \geq 2$, les assertions suivantes sont équivalentes :
 - (a) n est premier;
 - (b) pour tout entier naturel non nul α , on a $\varphi(n^{\alpha}) = (n-1) n^{\alpha-1}$;
 - (c) $\varphi(n) = n 1$;
 - (d) $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est un corps;
 - (e) $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est un intègre;
 - (f) $(n-1)! \equiv -1$ (n) (théorème de Wilson);
 - (g) pour tout entier k compris entre 1 et n-1, on a $\binom{n}{k} \equiv 0 \pmod{n}$.

- II - Ordre d'un élément dans un groupe

On rappelle que si (G, \cdot) est un groupe, en notant $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$ le sous-groupe de G engendré par un élément g de G et $\theta(g)$ le cardinal de ce groupe, on a les équivalences :

$$(\theta(g) = n) \Leftrightarrow (\langle g \rangle = \{g^r \mid 0 \le r \le n - 1\})$$

$$\Leftrightarrow (k \in \mathbb{Z} \text{ et } g^k = 1 \text{ \'equivaut \`a } k \equiv 0 \mod(n))$$

$$\Leftrightarrow (g^n = 1 \text{ et } g^k \ne 1 \text{ pour } 1 \le k \le n - 1) \text{ (si } n \ge 2)$$

$$\Leftrightarrow (n \text{ est le plus petit entier naturel non nul tel que } g^n = 1)$$

1

 $\theta(g)$ est l'ordre de g dans le groupe G.

- 1. Soit (G, \cdot) un groupe commutatif fini.
 - (a) Montrer que si g_1, g_2 sont deux éléments de G d'ordres respectifs m_1, m_2 premiers entre eux, alors $g_0 = g_1 g_2$ est d'ordre $m_1 m_2$.
 - (b) Montrer que si g_1, \dots, g_r sont $r \geq 2$ éléments de G d'ordres respectifs m_1, \dots, m_r deux à deux premiers entre eux, alors $g_0 = g_1 \dots g_r$ est d'ordre $m_1 \dots m_r$.
 - (c) Soient g_1, g_2 deux éléments de G d'ordres respectifs m_1, m_2 . En écrivant les décompositions en facteurs premiers de m_1 et m_2 sous la forme :

$$m_1 = \prod_{i=1}^k p_i^{\alpha_i} \prod_{i=k+1}^r p_i^{\alpha_i} = n_1 q_1, \ m_2 = \prod_{i=1}^k p_i^{\beta_i} \prod_{i=k+1}^r p_i^{\beta_i} = n_2 q_2$$

où les facteurs premiers p_i ont été regroupés de sorte que $\alpha_i > \beta_i$ pour $1 \le i \le k$ et $\alpha_i \le \beta_i$ pour $k+1 \le i \le r$, les exposants α_i, β_i étant positifs ou nuls, montrer que $g_1^{n_1}$ et $g_2^{n_2}$ sont d'ordres respectifs q_1 et q_2 et en déduire que $g_1^{n_1}g_2^{n_2}$ est d'ordre ppcm (m_1, m_2) .

(d) Montrer que:

$$\max_{g \in G} \theta(g) = \operatorname{ppcm} \{\theta(g) \mid g \in G\}$$

2. Montrer que tout sous-groupe fini du groupe multiplicatif $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$ d'un corps commutatif \mathbb{K} est cyclique.

$$-$$
 III $-$ Carrés dans $rac{\mathbb{Z}}{p\mathbb{Z}}$

Pour ce qui suit, $p \geq 3$ est un nombre premier impair et on note \mathbb{F}_p le corps $\frac{\mathbb{Z}}{p\mathbb{Z}}$

- 1. Montrer que :
 - (a) il y a exactement $\frac{p-1}{2}$ carrés et $\frac{p-1}{2}$ non carrés dans \mathbb{F}_p^* ;
 - (b) les carrés de \mathbb{F}_p^* sont les racines de $X^{\frac{p-1}{2}}-1$ et les non carrés sont les racines de $X^{\frac{p-1}{2}}+1$;
 - (c) le produit de deux carrés ou de deux non carrés de \mathbb{F}_p^* est un carré, le produit d'un carré et d'un non carré est un non carré.

Pour tout $\lambda \in \mathbb{F}_p^*,$ on définit le symbole de Legendre $\left(\frac{\lambda}{p}\right)$ par :

$$\begin{pmatrix} \frac{\lambda}{p} \end{pmatrix} = \left\{ \begin{array}{l} 1 \text{ si } \lambda \text{ est un carr\'e dans } \mathbb{F}_p^* \\ -1 \text{ sinon} \end{array} \right.$$

- 2. Montrer que:
 - (a) pour tout $\lambda \in \mathbb{F}_p^*$, le nombre de solutions de l'équation $\lambda x^2 = 1$ dans \mathbb{F}_p^* est $\left(\frac{\lambda}{p}\right) + 1$;

2

- (b) pour tout $\lambda \in \mathbb{F}_p^*$, on a $\lambda^{\frac{p-1}{2}} = \overline{\left(\frac{\lambda}{n}\right)}$ dans \mathbb{F}_p^* ;
- (c) l'application:

$$\begin{array}{ccc} \mathbb{F}_p^* & \to & \{-1,1\} \\ \lambda & \mapsto & \left(\frac{\lambda}{p}\right) \end{array}$$

est l'unique morphisme de groupes non trivial de \mathbb{F}_p^* sur $\{-1,1\}$.

3.

(a) Calculer
$$\left(\frac{\overline{1}}{p}\right)$$
 et $\left(\frac{-\overline{1}}{p}\right)$.

(b) Calculer
$$\sum_{k=1}^{p-1} \left(\frac{\overline{k}}{p} \right)$$
 et $\sum_{k=1}^{p-2} \left(\frac{\overline{k(k+1)}}{p} \right)$.

$$-$$
 IV $-$ Générateurs de $GL_n(\mathbb{K})$

 \mathbb{K} est un corps commutatif et $n \geq 2$ un entier naturel.

Pour i, j entiers compris entre 1 et n, on note E_{ij} la matrice dont tous les coefficients sont nuls sauf celui d'indice (i, j) qui vaut 1. La famille $\{E_{i,j} \mid 1 \leq i, j \leq n\}$ est alors une base de $\mathcal{M}_n(\mathbb{K})$.

On appelle matrice de transvection toute matrice de la forme :

$$T_{ij}(\lambda) = I_n + \lambda E_{ij}$$

avec $1 \leq i \neq j \leq n$ et $\lambda \in \mathbb{K}$ et matrice de dilatation toute matrice de la forme :

$$D_i(\lambda) = I_n + (\lambda - 1) E_{ii}$$

avec $1 \le i \le n$ et $\lambda \in \mathbb{K}^*$.

- 1. Montrer que les matrices de transvection et de dilatations sont inversibles.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - (a) Montrer que, pour $1 \le i \le n$ et $\lambda \in \mathbb{K}^*$, la matrice $D_i(\lambda)$ A est déduite de A en multipliant sa ligne numéro i par λ .
 - (b) Montrer que, pour $1 \leq j \leq n$ et $\lambda \in \mathbb{K}^*$, la matrice $AD_j(\lambda)$ est déduite de A en multipliant sa colonne numéro j par λ
 - (c) Montrer que, $1 \le i \ne j \le n$ et $\lambda \in \mathbb{K}$, la matrice $T_{ij}(\lambda) A$ est déduite de A en ajoutant à la ligne numéro i la ligne numéro j multipliée par λ .
 - (d) Montrer que, $1 \le i \ne j \le n$ et $\lambda \in \mathbb{K}$, la matrice $AT_{ij}(\lambda)$ est déduite de A en ajoutant à la colonne numéro j la colonne numéro i multipliée par λ .
- 3. Montrer que, pour toute matrice $A \in GL_n(\mathbb{K})$ il existe des matrices de transvection P_1, \dots, P_r et Q_1, \dots, Q_s telles que :

$$A = P_1 \cdots P_r D_n (\det (A)) Q_1 \cdots Q_s$$

Ce résultat se traduit en disant que l'ensemble des matrices de dilatation ou de transvection forme un système générateur du groupe multiplicatif $GL_n(\mathbb{K})$.

- V - Le théorème de Frobenius-Zolotarev

1.

- (a) Montrer que l'application $A \in GL_n(\mathbb{F}_p) \mapsto \left(\frac{\det(A)}{p}\right) \in \{-1,1\}$ est un morphisme de groupes non trivial.
- (b) Soit $\gamma: GL_n(\mathbb{F}_p) \to \{-1,1\}$ un morphisme de groupes non trivial.
 - i. Montrer que $\gamma(A) = 1$ pour toute matrice de transvection A.

- ii. Montrer que $\gamma\left(A\right)=\left(\frac{\det\left(A\right)}{p}\right)$ pour toute matrice de dilatation A.
- iii. Montrer que $\gamma\left(A\right)=\left(\frac{\det\left(A\right)}{p}\right)$ pour toute matrice $A\in GL_{n}\left(\mathbb{F}_{p}\right)$.

On rappelle que, si E est un un ensemble fini, la signature est l'unique morphisme de groupes non trivial du groupe symétrique S(E) sur $\{-1,1\}$.

Si E est un \mathbb{F}_p -espace vectoriel E de dimension n, le choix d'une base de E permet d'identifier toute matrice $A \in GL_n(\mathbb{F}_p)$ à un automorphisme de E qui est une permutation particulière de l'ensemble fini E, donc la restriction de la signature à GL(E) permet de définir une morphisme de groupes ε de $GL_n(\mathbb{F}_p)$ dans $\{-1,1\}$.

On admettra que, pour tout entier naturel non nul n, il existe dans l'anneau $\mathbb{F}_p[X]$ un polynôme irréductible de degré n.

- 2. Soit P un polynôme unitaire et irréductible de degré n dans $\mathbb{F}_p[X]$.
 - (a) Montrer que l'anneau quotient $\frac{\mathbb{F}_p[X]}{(P)}$ est un \mathbb{F}_p -espace vectoriel de dimension n et un corps à p^n éléments.

On notera \mathbb{F}_{p^n} ce corps.

- (b) En désignant par ω un générateur du groupe cyclique $\mathbb{F}_{p^n}^*$, montrer que l'application $\sigma: x \mapsto \omega x$ est une permutation de de signature -1 de $\mathbb{F}_{p^n}^*$.
- (c) Montrer que:

$$\forall A \in GL_n(\mathbb{F}_p), \ \varepsilon(A) = \left(\frac{\det(A)}{p}\right)$$

(théorème de Frobenius-Zolotarev).

3. En utilisant le théorème de Frobenius-Zolotarev, calculer $\left(\frac{2}{p}\right)$.