ISW2-ML

BRAUZI VALERIO-0333768

AGENDA

Risultati e conclusioni

- 1 Contesto e obiettivo
- Metodologia
 Minacce alla validità

CONTESTO

Ogni progetto di ingegneria del software include il testing per **identificare** e **correggere** i bug.

L'attività di testing è costosa, quindi, non può essere effettuata in modo comlpeto.

Si propone dunque un metodo per identificare le porzioni del progetto che più verosimilmente contengono bug.

OBIETTIVO

MOSTRARE L'APPLICAZIONE DI MODELLI DI MACHINE LEARNING PER OTTENERE PREDIZIONI SULLA BUGGINESS DELLE CLASSI DEI PROGETTI APACHE BOOKKEEPER E STORM, IDENTIFICANDO LE CONFIGURAZIONI PREDITTIVE OTTIMALI

MOSTRARE L'ANDAMENTO DELLE PRESTAZIONI DEI MODELLI USATI, AL VARIARE DELLE METRICHE E DELLE TECNICHE APPLICATE AI DATASET DI «ADDESTRAMENTO»

METODOLOGIA-DATA ACQUISITION

JIRA: ISSUE TRACKING SYSTEM PER LA RACCOLTA DEI TICKET FIXATI ED ETICHETTATI «BUG», ATTRAVERSO L'UTILIZZO DELLE API JSON

GIT: VERSION CONTROL SYSTEM PER LA RACCOLTA DEI COMMIT ED I FILE RIFERITI, ATTRAVERSO IL PLUGIN JGIT; DOVE OGNI COMMIT FA RIFERIMENTO AD UN TICKET JIRA.

METODOLOGIA-DATA PROCESSING

PROPORTION

___ AV
(AFFECTED VERSION)

$$p=rac{FV-IV}{FV-OV}$$

$$IV = FV - (FV - OV) \cdot p$$

METODOLOGIA-DATA PROCESSING

PROPORTION

COLD START

Nel caso in cui i BUG con IV disponibili fino al momento del calcolo siano meno di una threshold di 5, i dati a disposizione sono considerati troppo pochi per produrre una stima corretta di p; in tal caso essa viene calcolata come mediana di altri progetti della Apache Software Foundation: TAJO, SYNCOPE, OPENJPA, AVRO e BOOKKEEPER.

INCREMENTAL

La costante di proporzionalità è uguale alla media dei vari p dei BUG aventi IV e riferiti temporalmente prima del BUG a cui si vuole applicare Proportion.

METODOLOGIA-ASSUNZIONI

SNORING

Per ridurre il fenomeno dello snoring sono state eliminati tutti i dati relativi alla seconda metà delle release.

INCONSISTENZE TEMPORALI

Nell'analisi non si considerano i ticket che possiedono fixed version, opening version ed injected version temporalmente incoerenti: OV > FV e/o IV > OV.

INCONSISTENZE DI FORMATO

Nell'analisi non si considerano i ticket che non presentano al loro interno opening version e/o fixed version

METODOLOGIA-COSTRUZIONE DEL DATASET

A ciascuna coppia (classe, release) vengono assegnate alcune metriche che verranno sfruttate dai classificatori per effettuare le predizioni e una label booleana che ne riporti la buggyness.

METODOLOGIA-VALUTAZIONE DEI CLASSIFICATORI

Walk Forward: è una tecnica di validazione time-series, tiene conto dell'ordine temporale dei dati (non si possono utilizzare nel training set informazioni future).

Il dataset viene diviso per release ordinate cronologicamente

METODOLOGIA-CLASSIFICATORI & TECNICHE

Vengono considerate combinazioni dei classificatori e delle tecniche qui riportate:

Random Forest	Naive Bayes	IBK
↑ → →		
Feature selection	Balancing	Sensitive learining

M

CONCLUSIONI

bookkeeper:

Il classificatore migliore risulta essere IBk con featureSelection e sensitive learning

storm:

Il classificatore migliore risulta essere IBk con featureSelection e sensitive learning*

MINACCE ALLA VALIDITÀ

- In Jira non vengono considerate release senza data
- a causa di alcune eccezioni del codice java non è stato possibile pervenire alla misura NPofB20 di tutte le configurazioni
- I risultati di storm non sono di qualità sufficiente per fare delle stime concrete su dati mai visti dai classificatori
- Nel cold start si è supposto che gli altri progetti apache siano simili a storm e bookkeeper
- esistono ticket che non sono su jira ma sono presenti su github action
- vendor lock in

GRAZIE PER L'ATTENZIONE