Eigenvalues and Eigenvectors

Uday N. Gaitonde

IIT Bombay IIT Dharwad

September 10, 2018

Study the spreadsheet.

Successive Multiplication

Our transition matrix was

$$\mathbf{A} = \begin{bmatrix} 0.40 & 0.60 \\ 0.80 & 0 \end{bmatrix}.$$

Repeated pre-multiplication led to vectors going as $\mathbf{x} \leftarrow 0.92\mathbf{x}$, where \mathbf{x} is proportional to $\begin{bmatrix} 1.00 \\ 0.87 \end{bmatrix}$.

Formally, 0.92 is an **eigenvalue** of $\bf A$ and $\begin{bmatrix} 1.00 \\ 0.87 \end{bmatrix}$ is the corresponding **eigenvector**.

Formal Definitions

The formal defining relation is $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ where \mathbf{A} is a square matrix $(n \times n)$

and x is a column vector of size n.

We can rewrite the equation as $Ax = \lambda Ix$.

For a non-trivial solution to exist, we need $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$.

This is called the **characteristic equation** of A.

Definitions (cont)

 $det(\mathbf{A} - \lambda \mathbf{I})$ is called the **characteristic determinant** of \mathbf{A} .

 $(\mathbf{A} - \lambda \mathbf{I})$ is called the **characteristic matrix** of \mathbf{A} .

The characteristic equation of A can be expanded as an n-th degree polynomial.

This polynomial is called the **characteristic polynomial** of **A**.

Example

In our case,
$$\mathbf{A} = \begin{bmatrix} 0.40 & 0.60 \\ 0.80 & 0 \end{bmatrix}$$
.

The characteristic matrix is $\begin{bmatrix} 0.40 - \lambda & 0.60 \\ 0.80 & 0 - \lambda \end{bmatrix}.$

The characteristic determinant is
$$\begin{vmatrix} 0.40 - \lambda & 0.60 \\ 0.80 & 0 - \lambda \end{vmatrix}.$$

The characteristic equation is
$$(0.40 - \lambda)(0 - \lambda) - (0.80)(0.60) = 0$$
, i.e. $\lambda^2 - 0.4\lambda - 0.48 = 0$.

The LHS of this equation is the characteristic polynomial.

The solution of the characteristic equation is:

$$\lambda_1 = 0.9211102..., \quad \lambda_2 = -0.5211102...$$

These are the **eigenvalues** of the matrix A.

Question: Why did not notice the presence of λ_2 in the evolution?

To determine eigenvectors we need to solve:

$$(0.40 - \lambda)x_1 + (0.60)x_2 = 0$$

$$(0.80)x_1 + (-\lambda)x_2 = 0$$

once with $\lambda = \lambda_1$ and then with $\lambda = \lambda_2$.

Since the equations will be homogeneous, the eigenvectors will have one component arbitrary.

Let us take the second component as 1 (arbitrarily), for either eigenvector.

Then we have, the eigenvector for
$$\lambda_1$$
: $\mathbf{x}_{(1)} = \begin{bmatrix} 1.15139 \\ 1 \end{bmatrix}$

and the eigenvector for
$$\lambda_2$$
: $\mathbf{x}_{(2)} = \begin{bmatrix} -0.65139 \\ 1 \end{bmatrix}$

Note: Any eigenvector can be scaled, and will still remain an eigenvector.

We may **normalise** an eigenvector, by scaling it such its length, or Euclidean norm, is 1. In our case, the normalised eigenvectors will be:

$$\mathbf{x}_{(1)} = \begin{bmatrix} 0.75500 \\ 0.65573 \end{bmatrix}$$

$$\mathbf{x}_{(2)} = \begin{bmatrix} -0.65573\\ 0.75500 \end{bmatrix}$$

Eigenvalues

We expect, generally, the matrix A to be non-zero.

Hence, the characteristic polynomial will be non-trivial.

Thus, for an $n \times n$ matrix, we will have at least one eigenvalue, and at most n numerically different eigenvalues.

Eigenvalues and Eigenvectors

Generally, for a given matrix, eigenvalues are determined first, and then eigenvectors are computed for each eigenvalue. For a given eigenvalue λ , the eigenvector \mathbf{x} is obtained by solving $(\mathbf{A} - \mathbf{I}\lambda)\mathbf{x} = \mathbf{0}$.

Since the determinant

$$\begin{vmatrix} (a_{11} - \lambda) & a_{12} & \cdots & a_{1n} \\ a_{21} & (a_{22} - \lambda) & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & (a_{nn} - \lambda) \end{vmatrix} = 0,$$

there may not be a unique solution.

Recommended procedure:

Reduce the matrix to a row-echelon form.

At least one row at the bottom will be all zeros.

That makes x_n arbitrary.

Select any nonzero value for x_n , and solve for $x_{n-1}, x_{n-2}, \ldots, x_1$.

This gives us an eigenvector corresponding to the λ chosen.

The n eigenvalues of an $n \times n$ matrix may not all be distinct.

Let
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

We have: $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = 1.$

Two eigenvalues are equal.

The number of equal eigenvalues is called the **algebraic** multiplicity of that eigenvalue, as is denoted by M_{λ} .

In this case, $M_{\lambda_1}=1, M_{\lambda_2}=M_{\lambda_3}=2.$

Determination of eigenvectors. For $\lambda_1 = 2$:

 $(*) \implies x_1$ may have any value (say 1). $x_2 = 0$, $x_3 = 0$.

Thus,
$$\mathbf{x}_{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 .

This is normalised.

For
$$\lambda_2=\lambda_3=1$$
:
$$(2-1)x_1 + 0x_2 + 0x_3 = 0 \\ 0x_1 + (1-1)x_2 + 0x_3 = 0 \ (*) \\ 0x_1 + 0x_2 + (1-1)x_3 = 0 \ (*)$$
 Thus, $x_1=0$.

Thus, $x_1 = 0$.

 $(*) \implies x_2$ and x_3 may have any values.

$$x_2 = 0, \ x_3 = 0.$$

Selecting $(x_2, x_3) = (1, 0)$ and then (0, 1), we get

$$\mathbf{x}_{(2)} = egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \ \ \text{and} \ \ \mathbf{x}_{(3)} = egin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

These are linearly independent (and also normalised).

 $\mathbf{x}_{(2)}$ and $\mathbf{x}_{(3)}$ are **two linearly independent** eigenvectors of $\lambda_2 = \lambda_3 = 1$.

The number of linearly independent eigenvectors of a multiple eigenvalue is called the **geometric multiplicity** of that eigenvalue, and is denoted by m_{λ} .

In this case, $m_{\lambda_1} = 1, m_{\lambda_2} = m_{\lambda_3} = 2.$

Some relations:

$$\sum_{\text{distinct } \lambda \mathbf{s}} M_{\lambda} = n$$

Also

$$M_{\lambda} > m_{\lambda}$$

 $\Delta_{\lambda} = (M_{\lambda} - m_{\lambda})$ is known as the **defect** of that λ .

The defect is always zero or positive.¹

¹Study the example of a *defect* ive eigenvalue from Kreyszig.

A Vector Space

Let x and y be linearly independent eigenvectors of the same eigenvalue λ of a matrix A.

Then, given $\alpha, \beta \in \mathbb{R}, \alpha \neq 0, \beta \neq 0$, the following will also be eigenvectors of that λ :

$$\begin{array}{c}
\alpha \mathbf{x} \\
\beta \mathbf{y} \\
\alpha \mathbf{x} + \beta \mathbf{y}
\end{array}$$

Thus x and y together form the basis of a vector space, in which each member (vector) is an eigenvector of A for the given λ .

For a Real Matrix

Let A be a real matrix (all elements real).

⇒ All coefficients the characteristic polynomial are real.

⇒ All eigenvalues (roots of the CP) are either real or complex (in conjugate pairs).

If any λ is complex, then its eigenvector will also be complex.

Any odd-sized matrix will have at least one real eigenvalue.

A Theorem

A matrix A and its transpose A^T have the same set of eigenvalues.

Reason: transposing a determinant does not change its value.

Orthogonal Matrices

A matrix A is symmetric iff $A^T = A$.

A matrix A is skew-symmetric iff $A^T = -A$.

A matrix A is **orthogonal** iff $A^T = A^{-1}$.

Examples:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 is symmetric.

$$\mathbf{B} = \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$$
 is skew-symmetric.

$$\mathbf{C} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is orthogonal.

Check Orthogonality

$$\mathbf{CC}^{T} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \theta + \sin^{2} \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \cos \theta \sin \theta & \sin^{2} \theta + \cos^{2} \theta \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \mathbf{I}$$

 \implies C is orthogonal.

Eigenvalues of an Orthogonal Matrix

Theorem

The eigenvalues of any symmetric matrix are real.

Theorem

The eigenvalues of any skew-symmetric matrix are either purely imaginary, or zero.

Exercises:

Demonstrate these theorems by working out with 2×2 matrices.

Attempt to do the same with 3×3 matrices.

Orthogonal Transformations

Let A be an orthogonal matrix $(n \times n)$. Let x be a vector (column, n).

Then y = Ax is called an **orthogonal transformation** of x into y.

In 2D and 3D space, an orthogonal transformation represents a rotation and/or a reflection. (Also in n-dimensional space \mathbb{R}^n).

Orthogonal Transformations (cont)

Let \mathbf{a} and \mathbf{b} be two n-vectors (column). Then $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$ is called the **inner product** of \mathbf{a} and \mathbf{b} . This is similar to the dot product of the two vectors.

Let A be any $n \times n$ orthogonal matrix.

Theorem

If u = Aa and v = Ab, then $u \cdot v = a \cdot b$.

Thus, an orthogonal transformation preserves inner product.

The proof is simple.

Orthogonal Transformations (cont)

Proof

$$\begin{split} \mathbf{u} \cdot \mathbf{v} &= \mathbf{u}^T \mathbf{v} &= (\mathbf{A} \mathbf{a})^T (\mathbf{A} \mathbf{b}) \quad \text{(transformation)} \\ &= (\mathbf{a}^T \mathbf{A}^T) (\mathbf{A} \mathbf{b}) \quad \text{(expansion)} \\ &= \mathbf{a}^T (\mathbf{A}^T \mathbf{A}) \mathbf{b} \quad \text{(association)} \\ &= \mathbf{a}^T (\mathbf{A}^{-1} \mathbf{A}) \mathbf{b} \quad \text{(orthogonality)} \\ &= \mathbf{a}^T (\mathbf{I}) \mathbf{b} \quad \text{(inverse)} \\ &= \mathbf{a}^T \mathbf{b} \quad \text{(identity)} \\ &= \mathbf{a} \cdot \mathbf{b} \end{split}$$

Orthogonal Transformations (cont)

Corollary

Let u = Aa, where A is orthogonal.

Then $\mathbf{u} \cdot \mathbf{u} = \mathbf{a} \cdot \mathbf{a}$.

$$\therefore |\mathbf{u}|^2 = |\mathbf{a}|^2 \implies |\mathbf{u}| = |\mathbf{a}|.$$

 $|\mathbf{u}|$ is the magnitude of the vector \mathbf{u} , often called the Euclidean norm, and denoted by $\|\mathbf{u}\|$.

Thus, the length/magnitude of a vector is preserved after an orthogonal transformation.

Orthogonal Matrices

Theorem

A real square matrix $\mathbf{A}, (n \times n)$ is orthogonal iff its column vectors a_1, a_2, \ldots, a_n (and also its row vectors) form an **orthonormal** system, *i.e.*

$$\mathbf{a}_i \cdot \mathbf{a}_j = 0 \quad \text{if } i \neq j, \\ = 1 \quad \text{if } i = j.$$

Proof

The proof requires a study of the matrix $\mathbf{Z} \equiv \mathbf{A}^T \mathbf{A}$ and the realisation that an element of \mathbf{Z} , z_{ij} , is the inner product of the vectors \mathbf{a}_i and \mathbf{a}_j , either of which is a column vector of \mathbf{A} .

Orthogonal Matrices (cont)

Proof (cont)

If A is orthogonal, then Z, by definition is a unit matrix, and this leads to the conclusion that the set of vectors a_i , which represent the columns of A, is an orthonormal set of vectors.

On the other hand, if the set of vectors \mathbf{a}_i , which represent the columns of \mathbf{A} , is an orthonormal set of vectors, then \mathbf{Z} turns out to be a unit matrix, which leads to the conclusion that \mathbf{A} is an orthogonal matrix.

Orthogonal Matrices (cont)

Theorem

The determinant of an orthogonal matrix is either +1 or -1.

Proof

Orthogonal Matrices (cont)

Theorem

Any eigenvalue of an orthogonal matrix has an absolute value of 1. That is the eigenvalues are +1 or -1 or occur in complex conjugate pairs.

Properties of Eigenvectors — Eigenbases

Eigenvectors of an $n \times n$ matrix **A** may or may not form a basis for n-dimensional real space, \mathbb{R}^n .

Suppose such a basis exists (*i.e.* when all eigenvectors are linearly independent), then any n-vector \mathbf{x} can be represented as a linear combination of the eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots c_n \mathbf{x}_n$$

We can then replace the multiplication of matrix \mathbf{A} and any vector \mathbf{x} by a linear combination of vectors.

Eigenbases (cont)

To demonstrate this, let the corresponding eigenvalues be $\lambda_1, \lambda_2, \ldots, \lambda_n$. (These need not be all distinct.) Then we have $\mathbf{A}\mathbf{x}_j = \lambda_j \mathbf{x}_j$, and hence

$$\mathbf{A}\mathbf{x} = \mathbf{A}(c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n)$$

= $c_1(\mathbf{A}\mathbf{x}_1) + c_2(\mathbf{A}\mathbf{x}_2) + \dots + c_n(\mathbf{A}\mathbf{x}_n)$
= $c_1\lambda_1\mathbf{x}_1 + c_2\lambda_2\mathbf{x}_2 + \dots + c_n\lambda_n\mathbf{x}_n$

Thus, the multiplication-of-matrix-and-vector is replaced by scaled-sum-of-vectors.

Eigenbases (cont)

Theorem

If A $(n \times n)$ has n distinct eigenvalues, then its eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ form a basis for \mathbb{R}^n . (That is, the eigenvectors are all linearly independent.)

The proof is by reductio-ad-absurdum.²

The converse of this theorem is not true.

²Study the proof in Kreyszig.

Eigenbases (cont)

If the n eigenvalues are not distinct, then we need to look at the defects, if any.

If there is no defect, then we still have n distinct eigenvalues, and a basis is available.

But if a defect exists, then a basis may not exist.

Theorem

A symmetric matrix has an orthonormal basis for \mathbb{R}^n .

Similarity of Matrices

Let **A** be an $n \times n$ matrix.

Let $\widehat{\mathbf{A}}$ be another $n \times n$ matrix.

If an invertible matrix ${\bf P}$ exists, such that

$$\widehat{\mathbf{A}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$$
,

then $\widehat{\mathbf{A}}$ is defined as similar to \mathbf{A} , and the transformation $\widehat{\mathbf{A}} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is called a similarity transformation.

Similarity of Matrices (cont)

Theorem

If $\widehat{\mathbf{A}}$ is similar to \mathbf{A} , then (eigenvalues of $\widehat{\mathbf{A}}$) ==(eigenvalues of \mathbf{A}), and if \mathbf{x} is an eigenvector of \mathbf{A} corresponding to some eigenvalue λ , then $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x}$ is an eigenvector of $\widehat{\mathbf{A}}$ corresponding to the same eigenvalue λ .

Similarity of Matrices (cont)

Proof

$$\begin{array}{rcll} \mathbf{A}\mathbf{x} &=& \lambda\mathbf{x} & (\mathbf{x} \neq \mathbf{0}) \\ & \therefore \mathbf{P}^{-1}\mathbf{A}\mathbf{x} &=& \mathbf{P}^{-1}\lambda\mathbf{x} &=& \lambda(\mathbf{P}^{-1}\mathbf{x}) \\ \mathsf{But}\ \mathbf{P}^{-1}\mathbf{A}\mathbf{x} &=& \mathbf{P}^{-1}\mathbf{A}\mathbf{I}\mathbf{x} &=& \mathbf{P}^{-1}\mathbf{A}(\mathbf{P}\mathbf{P}^{-1}\mathbf{x}) \\ &=& (\mathbf{P}^{-1}\mathbf{A}\mathbf{P})\mathbf{P}^{-1}\mathbf{x} &=& \widehat{\mathbf{A}}(\mathbf{P}^{-1}\mathbf{x}) \\ & \therefore \widehat{\mathbf{A}}(\mathbf{P}^{-1}\mathbf{x}) &=& \lambda(\mathbf{P}^{-1}\mathbf{x}) \end{array}$$

 $\Longrightarrow \lambda$ is an eigenvalue of $\widehat{\mathbf{A}}$ and $\mathbf{P}^{-1}\mathbf{x}$ is the corresponding eigenvector.

(Note:
$$\mathbf{P}^{-1}\mathbf{x} \neq \mathbf{0}$$
. \because if $\mathbf{P}^{-1}\mathbf{x} = \mathbf{0}$, then $\mathbf{x} = \mathbf{I}\mathbf{x} = \mathbf{P}\mathbf{P}^{-1}\mathbf{x} = \mathbf{P}\mathbf{0} = \mathbf{0}$; but $\mathbf{x} \neq \mathbf{0}$.)

Diagonalisation of a Matrix

A diagonalised matrix of a given matrix $\mathbf{A}(n \times n)$ is a matrix similar to \mathbf{A} , which is diagonal, with each diagonal element an eigenvalue of \mathbf{A} .

Let ${\bf A}$ have a basis in its eigenvectors (*i.e.* its eigenvectors be all linearly independent). Let ${\bf X}$ be an $n\times n$ matrix with the eigenvectors of ${\bf A}$ as its column vectors. Then

$$D = X^{-1}AX$$

is a diagonal matrix with its main diagonal populated by the eigenvalues of ${\bf A}.$

Also:

 $\mathbf{D}^m = \mathbf{X}^{-1} \mathbf{A}^m \mathbf{X}$, where m is a positive integer.³

³Study and absorb the proof in Kreyszig.

Quadratic Form

Let $\mathbf x$ be an n-vector, and $\mathbf A$ an $n \times n$ matrix. Then

$$Q = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{j=1}^n \sum_{k=1}^n a_{jk} x_j x_k$$

is called a quadratic form in the components of ${\bf x}$ with ${\bf A}$ as its coefficient matrix.

Expanding the summations:

Quadratic Form (cont)

One can always assume that ${\bf A}$ is symmetric.

Homework

Show that $Q = \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B} \mathbf{x}$ where \mathbf{B} is the symmetric matrix $\mathbf{B} = \frac{1}{2} (\mathbf{A} + \mathbf{A}^T)$. Also show that $(\mathbf{A} - \mathbf{A}^T)$ is skew-symmetric and does not contribute to Q.

Quadratic Form in Geometry

A common quadratic form in coordinate geometry pertains to the conic sections. The general form is:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

(A, ..., F: real, not all zero.)

This can be written in a quadratic form as:

$$\underbrace{\begin{bmatrix} x & y & 1 \end{bmatrix}}_{\mathbf{X}^T} \underbrace{\begin{bmatrix} A & B/2 & D/2 \\ B/2 & C & E/2 \\ D/2 & E/2 & F \end{bmatrix}}_{\mathbf{A} \text{ (symmetric!)}} \underbrace{\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}}_{\mathbf{X}} = 0$$

Principal Axes in Quadratic Form

The coefficient matrix A in a quadratic form $Q = \mathbf{x}^T A \mathbf{x}$ is symmetric.

Hence, A has an orthonormal basis of eigenvectors.

Hence, if we use these eigenvectors as column vectors and create a matrix \mathbf{X} , that matrix will be an orthogonal matrix.

Hence, $\mathbf{X}^T = \mathbf{X}^{-1}$.

Let $D = X^{-1}AX$ be the diagonalisation of A.

$$\therefore \mathbf{X}\mathbf{D}\mathbf{X}^{-1} = \mathbf{X}\mathbf{X}^{-1}\mathbf{A}\mathbf{X}\mathbf{X}^{-1} = \mathbf{A}.$$

$$\therefore \mathbf{A} = \mathbf{X}\mathbf{D}\mathbf{X}^{-1} = \mathbf{X}\mathbf{D}\mathbf{X}^{T}$$

Principal Axes in Quadratic Form (cont)

We have:
$$Q = \mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{x}^T \mathbf{X}) \mathbf{D} (\mathbf{X}^T \mathbf{x})$$
.

Now, let
$$\mathbf{y} = \mathbf{X}^T \mathbf{x} = \mathbf{X}^{-1} \mathbf{x}$$
.

$$\therefore \mathbf{X}\mathbf{y} = (\mathbf{X}\mathbf{X}^{-1})\mathbf{x} = \mathbf{x}.$$

We also have: $\mathbf{x}^T \mathbf{X} = (\mathbf{X}^T \mathbf{x})^T = \mathbf{y}^T$).

$$Q = (\mathbf{x}^T \mathbf{X}) \mathbf{D} (\mathbf{X}^T \mathbf{x})$$
$$= \mathbf{y}^T \mathbf{D} \mathbf{y}.$$

This is an equivalent quadratic form with a diagonal coefficient matrix \mathbf{D} , wherein only the diagonal terms remain:

$$Q = \mathbf{y}^T \mathbf{D} \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2.$$

This brings us to the ...

Principal Axes Theorem

Given $Q = \mathbf{x}^T \mathbf{A} \mathbf{x}$; \mathbf{A} : symmetric, then $\mathbf{x} = \mathbf{X} \mathbf{y}$ transforms it to the **canonical form**: $Q = \mathbf{y}^T \mathbf{D} \mathbf{y}$, where $\mathbf{D} = \mathrm{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, where $\mathrm{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ is the **spectrum** of \mathbf{A} , and \mathbf{X} is an orthogonal matrix with corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ as column vectors.