# Lesson 16: Describing Categorical Data (Proportions)

# Preparation

### Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

| Problem | Part | Solution                                                                         |
|---------|------|----------------------------------------------------------------------------------|
| 1       | -    | b. Pie Charts                                                                    |
|         |      | d. Bar Charts                                                                    |
| 2       | -    | $\hat{p} = \frac{x}{n}$                                                          |
|         |      | n = total sample size                                                            |
|         |      | x = number of individuals in sample with the characteristic you are focusing on. |
| 3       | -    | P or the population proportion                                                   |
| 4       | -    | Standard Deviation of $\hat{p} = \sqrt{\frac{p(1-p)}{n}}$                        |
|         |      | n = total sample size                                                            |
|         |      | p = the true population proportion, which is also the mean of the distribution   |
|         |      | of $\hat{p}$                                                                     |
| 5       | -    | Answers may vary: Categorical data groups the individuals in your study into     |
|         |      | categories, while numerical data assigns numbers to the individuals in your      |
|         |      | study. These numbers are a subset of the real numbers and can be discrete or     |
|         |      | continuous.                                                                      |

#### Class Ranks in FDMAT 222



6 -

Problem Part Solution

# Class Ranks in FDMAT 222



| 7 | -            |                                                                                   |
|---|--------------|-----------------------------------------------------------------------------------|
| 8 | -            | Your answers could vary. You could've used proportions to describe the data,      |
|   |              | described the data in words, or displayed a frequency table.                      |
|   |              | Freshman: Count=8, $\hat{p}$ =0.0437                                              |
|   |              | Sophmore: Count=75, $\hat{p}$ =0.4098                                             |
|   |              | Junior: Count=59, $\hat{p}$ =0.3224                                               |
|   |              | <b>Senior</b> : Count=39, $\hat{p}$ =0.2131                                       |
|   |              | Other: Count=2, $\hat{p}$ =0.0109                                                 |
| 9 | A            | The mean is $7\%$ or $0.07$ in this sample and the standard deviation is $0.0093$ |
| 9 | В            | z = 1.073                                                                         |
| 9 | $\mathbf{C}$ | Area = 0.1416                                                                     |