Decision Tree (Warm-up Class)

Quang-Vinh Dinh Ph.D. in Computer Science

Entropy

***** Motivation

A: Get a red ball

B: Get a blue ball

$$p(A) = \frac{9}{10} = 0.9$$

$$p(B) = \frac{1}{10} = 0.1$$

E: Pick a ball from the basket

Experiment 1

Got a red ball

Experiment 2

Got a blue ball

Which experiment makes you more surprised?

How to measure the surprises?

Observation

 $Surprise(E) \mid p(E)$

 $\Rightarrow Surprise(E) = \frac{1}{p(E)}$

Problem?

Monotonic decrease of the function surprise(E)

$$log(Surprise(E)) = log\left(\frac{1}{p(E)}\right)$$
$$= -log(p(E))$$

In information theory

$$Information(x) = -log(p(x))$$

Entropy

Entropy: Average of information

$$H(X) := -\sum_{x \in X} p(x) \log(p(x))$$

$$p(X = 0) = \frac{9}{10} = 0.9$$

$$p(X = 1) = \frac{1}{10} = 0.1$$

$$H(X) = -\sum_{x \in X} p(x) \log(p(x))$$

$$= -0.9log(0.9) - 0.1log(0.1)$$

$$= 0.468$$

$$p(X = 0) = \frac{5}{10} = 0.5$$

$$p(X = 1) = \frac{5}{10} = 0.5$$

$$H(X) = -\sum_{x \in X} p(x) \log(p(x))$$

$$= -0.5log(0.5) - 0.5log(0.5)$$

$$= 1.0$$

Outlook	Temp	Humidity	Wind Play Tennis			
Sunny	Hot	High	Weak		No	
Sunny	Hot	High	Strong		No	
Overcast	Hot	High	Weak		Yes	
Rain	Mild	High	Weak		Yes	
Rain	Cool	Normal	Weak		Yes	
Rain	Cool	Normal	Strong		No	
Overcast	Cool	Normal	Strong		Yes	
Sunny	Mild	High	Weak		No	
Sunny	Cool	Normal	Weak		Yes	
Rain	Mild	Normal	Weak		Yes	
Sunny	Mild	Normal	Strong		Yes	
Overcast	Mild	High	Strong		Yes	
Overcast	Hot	Normal	Weak		Yes	
Rain	Mild	High	Strong		No	
					Optio	on_
Category = $3 > 2$ \rightarrow Combine \rightarrow Option_2: 0						
Ontion 3: I						

Entropy:

$E(S) = -\sum p_c log_2 p_c$

Information Gain

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

Training phase

$$S = \{9: Yes, 5: No\} \longrightarrow E(S) = -\frac{9}{14} log_2\left(\frac{9}{14}\right) - \frac{5}{14} log_2\left(\frac{5}{14}\right) = 0.94$$

$$S_{weak} = \{6: Yes, 2: No\} \longrightarrow E(S_{weak}) = -\frac{6}{8}log_2\left(\frac{6}{8}\right) - \frac{2}{8}log_2\left(\frac{6}{8}\right) = 0.811$$

$$S_{Strong} = \{3: Yes, 3: No\} \longrightarrow E(S_{Strong}) = -\frac{3}{6}log_2\left(\frac{3}{6}\right) - \frac{3}{6}log_2\left(\frac{3}{6}\right) = 1$$

$$\implies Gain(S, Wind) = E(S) - \frac{8}{14}E(S_{weak}) - \frac{6}{14}E(S_{Strong})$$

$$= 0.94 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1 = 0.048$$

Gain(S, Outlook) = max
$$\begin{cases} IG(S, Option_1) = 0.102 \\ IG(S, Option_2) = 0.226 \\ IG(S, Option_3) = 0.003 \end{cases}$$

$$S_{Sunny} = \{2: Yes, 3: No\} \longrightarrow E(S_{Sunny}) = 0.97$$

 $S_{Overcast,Rain} = \{7: Yes, 2: No\} \longrightarrow E(S_{Overcast,Rain}) = 0.764$
 $IG(S, Option_1)$
 $= E(S) - \frac{5}{14}E(S_{Sunny}) - \frac{9}{14}E(S_{Overcast,Rain})$
 $= 0.94 - \frac{5}{14}*0.97 - \frac{9}{14}*0.764 = 0.102$

$$\underline{Gain(S, Outlook)} = 0.226$$

Gain(S, Temp) = 0.015

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Choose Outlook with highest Gain score for root node

Option_2 is used to split

Classification Petal_Length Label ***** 1D-IRIS \bigcirc 0 0 1.3 0 \bigcirc 0.9 1.8 1.2 1.0 1.2 1.6 1.8 1.4 Petal_Length Label Class 0 Class 1 \bigcirc \bigcirc 0 1.6 1.0 1.2 1.4 1.8 1.0 1.2 1.4 1.6 1.8 Petal_Length Petal_Length

Classification

Petal_Length

Classification

1.0

1.2

1.4

Petal_Length

Classification *** 1D-IRIS** Petal_Length Label 0 1.3 0 0.9 0 1.7 1.8 1.2 Label Class 0 Class 1 0

1.6

1.8

DT - Classification

*** 1D-IRIS**

Petal_Length	Label
1	0
1.3	0
0.9	0
1.7	1
1.8	1
1.2	1

Classification

Classification

Label

Class 0

Class 1

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

feature_1 <= 0.80
feature_0 <= 1.50
feature_0 > 1.50
feature_1 > 0.80
class: 1

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1

Petal_Length	Petal_Width	Label
1.8	0.9	1
1.2	1.3	1

entropy = 0.0 samples = 3 value = [3, 0]

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0

entropy = 0.0 samples = 1 value = [0, 1]

Petal_Length	Petal_Width	Label
1.7	0.5	1

Petal_Length | Petal_Width Label 0.2 0 1.3 0.6 0 0.9 0.7 0 1.7 0.5 1.8 0.9 1.2 1.3

Simple IRIS

Classification Tree

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1

Petal_Length	Petal_Width	Label
1.8	0.9	1
1.2	1.3	1

Petal_Length

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0

Petal_Length	Petal_Width	Label
1.7	0.5	1

Simple IRIS

Petal_Length | Petal_Width

1.3

0.9

1.7

0.2

0.6

0.7

0.5

0.8

Label

0

0

0

Petal_Length	Petal_Width	Label
1.8	0.9	1
1.2	1.3	1

				•			•
•		0	•				
0.2	0.4	0.6 F	o. Petal_Wi		1.0	1.2	

Classification

Simple IRIS

Regression

Salary prediction

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

When Experience = 5.3,

Salary = **?**

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

 $\mu = \frac{1}{|S|} \sum_{i} S_i = 55.14$

 $mse = \frac{1}{|S|} \sum_{i} (S_i - \mu)^2 = 1417.97$

Experience	Salary
1	0

μ_L	$=\frac{1}{ L }\sum_{i}L_{i}=0$
mse_L	$= \frac{1}{ L } \sum_{i}^{3} (L_i - \mu)^2 = 0$

Experience	Salary
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

$$a_{mse} = \frac{|L|}{|S|} mse_L + \frac{|R|}{|S|} mse_R$$

$$= \frac{1}{14} * 0 + \frac{13}{14} * 1275.15$$

$$= 1184.07$$

$$\mu_R = \frac{1}{|R|} \sum_i R_i = 59.38$$

$$mse_R = \frac{1}{|R|} \sum_i (R_i - \mu)^2 = 1275.15$$

Experience	Salary	
1	0	
1.5	0	
2	0	
2.5	0	
3	60	100 -
3.5	64	80-
4	55	60 -
4.5	61	40 -
5	66	1 2 3 4 5 6
5.5	83	
6	93	
6.5	91	
7	98	
7.5	101	
$\mu = \frac{1}{ S } \sum_{i}$	$S_i = 55.14$	4

 $mse = \frac{1}{|S|} \sum_{i} (S_i - \mu)^2 = 1417.97$

<u>. </u>	
Experience	Salary
1	0
1.5	0
2	0
2.5	0

$\mu_L = \frac{1}{ L } \sum_i L_i = 0$
$mse_L = \frac{1}{ L } \sum_{i}^{\infty} (L_i - \mu)^2 = 0$

$$a_{mse} = \frac{|L|}{|S|} mse_L + \frac{|R|}{|S|} mse_R$$

$$= \frac{4}{14} * 0 + \frac{10}{14} * 282.35$$

$$= 201.68$$

$$\mu_{R} = \frac{1}{|R|} \sum_{i} R_{i} = 77.2$$

$$mse_{R} = \frac{1}{|R|} \sum_{i} (R_{i} - \mu)^{2} = 282.35$$

Regression

Salary prediction

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

```
YearsExperience <= 2.75
squared_error = 1417.98
samples = 14
value = 55.143
```

```
squared_error = 0.0
samples = 4
value = 0.0
```

```
YearsExperience <= 5.25
squared_error = 282.36
samples = 10
value = 77.2
```

```
squared_error = 14.16
samples = 5
value = 61.2
```

```
squared_error = 38.56
samples = 5
value = 93.2
```

```
1  y_mean = y.mean()
2  print('Mean:', y_mean)
3
4  diff = (y - y_mean)**2
5  mse = diff.sum()/14
6  print('mse:', mse)
```

Mean: 55.142857142857146 mse: 1417.9795918367347

100

DT - Regression

Experience	Salary
1	0
1.5	0
2	0
2.5	0

target=0.00

n=4

Experience	Salary
5.5	83
6	93
6.5	91
7	98
7.5	101

Regression

Salary

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

