TABLE OF CONTENTS

1.8 TRIGONOMETRIC INTEGRALS

Recall:

- $\blacktriangleright \sin^2 x = \frac{1}{2}(1 \cos 2x)$

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int \sin x \cos x \, \mathrm{d}x =$$

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int \sin x \cos x \, \mathrm{d}x =$$

$$\int \sin^{10} x \, \cos x \, \mathrm{d}x =$$

If we are correct that
$$\int \sin x \cos x \, dx =$$
 , then it should be true that $\frac{d}{dx} \left\{ \right.$ $\left. \right\} = \sin x \cos x$.

If we are correct that
$$\int \sin^{10} x \cos x \, dx =$$
 true that $\frac{d}{dx} \left\{ \int \sin^{10} x \cos x \, dx \right\} = \sin^{10} x \cos x$.

, then it should be

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int_0^{\frac{\pi}{2}} \sin^{\pi+1} x \, \cos x \, \mathrm{d}x =$$


```
If we are correct that \int \sin^{\pi+1} x \cos x \, dx = \int \sin^{\pi+1} x \cos x \, dx = \int \sin^{\pi+1} x \cos x \, dx, then it should be true that \frac{d}{dx} \left\{ \int \sin^{\pi+1} x \cos x \, dx = \int
```

INTEGRATING PRODUCTS OF SINE AND COSINE

Let $u = \sin x$, $du = \cos x dx$.

$$\int \sin^{10} x \cos^3 x \, \mathrm{d}x =$$

If we are correct that
$$\int \sin^{10} x \cos^3 x \, dx = \int \sin^{10} x \cos^3 x \, dx = \int \sin^{10} x \cos^3 x \, dx$$
, then it

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int \sin^5 x \cos^4 x \, \mathrm{d}x =$$

If we are correct that
$$\int \sin^5 x \cos^4 x \, dx =$$
 be true that $\frac{d}{dx}$ {

, then it should $= \sin^5 x \cos^4 x.$

GENERALIZE: $\int \sin^m x \cos^n bx \, dx$

To use the substitution $u = \sin x$, $du = \cos x dx$:

- \blacktriangleright We need to reserve one $\cos x$ for the differential.
- ▶ We need to convert the remaining $\cos^{n-1} x$ to $\sin x$ terms.
- ▶ We convert using $\cos^2 x = 1 \sin^2 x$. To avoid square roots, that means n 1 should be even when we convert.
- ▶ So, we can use this substitution when the original power of cosine, *n*, is ODD: one cosine goes to the differential, the rest are converted to sines.

GENERALIZE:
$$\int \sin^m x \cos^n x \, dx$$

To use the substitution $u = \cos x$, $du = -\sin x dx$:

- \blacktriangleright We need to reserve one $\sin x$ for the differential.
- ▶ We need to convert the remaining $\sin^{m-1} x$ to $\cos x$ terms.
- ▶ We convert using $\sin^2 x = 1 \cos^2 x$. To avoid square roots, that means m 1 should be even when we convert.
- ► So, we can use this substitution when the original power of sine, *m*, is ODD: one sine goes to the differential, the rest are converted to cosines.

MNEMONIC: "ODD ONE OUT"

Integrating
$$\int \sin^m x \cos^n x \, dx$$

If you want to use $u = \sin x$, there should be an odd power of cosine.

If you want to use $u = \cos x$, there should be an odd power of sine.

Carry out a suitable substitution (but do not evaluate the resulting integral):

To evaluate $\int \sin^m x \cos^n x \, dx$, we use:

- $ightharpoonup u = \sin x \text{ if } n \text{ is odd, and/or}$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$

What if *n* and *m* are both even?

$$\cos^2 x = \frac{1 + \cos 2x}{2} \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2} \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\int \sin^2 x \, \mathrm{d}x =$$

We check that
$$\int \sin^2 x \, dx =$$

by differentiating:

$$\cos^2 x = \frac{1 + \cos 2x}{2} \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

Evaluate $\int \sin^4 x \, dx$.

We want to check that $\int \sin^4 x \, dx =$

Recall:

- $ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}\{\tan x\} = \sec^2 x$
- $ightharpoonup \frac{d}{dx} \{ \sec x \} = \sec x \tan x$

$$\int \tan x \, \mathrm{d}x =$$

Let's check that
$$\int \tan x dx =$$

by differentiating.

Optional: A nifty trick – you won't be expected to come up with it. There is some motivation for the trick in Example 1.8.19 in the CLP-2 text.

$$\int \sec x \, dx = \int \sec x \left(\frac{\sec x + \tan x}{\sec x + \tan x} \right) \, dx$$

Useful integrals:

1.
$$\int \sec x \tan x \, dx =$$

$$2. \int \sec^2 x \, \mathrm{d}x =$$

3.
$$\int \tan x \, \mathrm{d}x =$$

4.
$$\int \sec x \, \mathrm{d}x =$$

Evaluate using the substitution rule:

$$\int \tan^5 x \, \sec^2 x \, \mathrm{d}x =$$

$$\int \sec^4 x \left(\sec x \tan x \right) dx =$$

Let's check that
$$\int \tan^5 x \sec^2 x \, dx =$$

by differentiating.

Evaluate using the identity $\sec^2 x = 1 + \tan^2 x$

$$\int \tan^4 x \sec^6 x \, \mathrm{d}x =$$

$$\int \tan^3 x \sec^5 x \, \mathrm{d}x =$$

Let's check that
$$\int \tan^4 x \sec^6 x \, dx =$$

CHOOSING A SUBSTITUTION: $\int \tan^m x \sec^n x \, dx$

Using $u = \sec x$, $du = \sec x \tan x dx$:

- Reserve $\sec x \tan x$ for the differential. (m, n should each be at least 1)
- From the remaining $\tan^{m-1} x \sec^{n-1} x$, convert all tangents to secants using $\tan^2 x + 1 = \sec^2 x$. (m-1 should be even, to avoid square roots)

To use the substitution $u = \sec x$, $du = \sec x \tan x \, dx$ to evaluate $\int \tan^m x \sec^n x \, dx$, n should be _____, and m should be _____

Choosing a Substitution: $\int \tan^m x \sec^n x \, dx$

Using $u = \tan x$, $du = \sec^2 x dx$:

- ► Reserve for the differential.
- ► From the remaining terms, convert all using $\tan^2 x + 1 = \sec^2 x$.

To use the substitution $u = \tan x$, $du = \sec^2 x \, dx$ to evaluate $\int \tan^m x \sec^n \, dx$, n should be _____.

Evaluating $\int \tan^m x \sec^n dx$

To evaluate $\int \tan^m x \sec^n dx$, we can use:

- \blacktriangleright $u = \sec x$ if m is odd and $n \ge 1$
- ▶ $u = \tan x$ if n is even and $n \ge 2$

Choose a substitution for the integrals below.

$$\int \sec^2 x \tan^2 x \, \mathrm{d}x$$

$$\int \sec^3 x \tan^3 x \, \mathrm{d}x$$

Evaluate
$$\int \tan^3 x \, dx = \int \frac{\sin^3 x}{\cos^3 x} \, dx$$

Let's check that
$$\int \tan^3 x \, dx =$$
 differentiating.

by

Generalizing the last example:

$$\int \tan^m x \sec^n x \, dx = \int \left(\frac{\sin x}{\cos x}\right)^m \left(\frac{1}{\cos x}\right)^n dx$$
$$= \int \frac{\sin^m x}{\cos^{m+n} x} dx$$
$$= \int \left(\frac{\sin^{m-1} x}{\cos^{m+n} x}\right) \sin x \, dx$$

To use $u = \cos x$, $du = \sin x \, dx$: we will convert $\sin^{m-1}(x)$ into cosines, so m-1 must be even, so m must be odd.

Evaluating $\int \tan^m x \sec^n dx$

To evaluate $\int \tan^m x \sec^n dx$, we can use:

- $ightharpoonup u = \sec x \text{ if } m \text{ is odd and } n \ge 1$
- \blacktriangleright $u = \tan x$ if n is even and $n \ge 2$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$
- $u = \tan x$ if m is even and n = 0 (after using $\tan^2 x = \sec^2 x 1$, maybe several times)

Evaluate
$$\int \tan^2 x \, dx$$