Servosystems and Robotics simple laws of motion: 3-step and cycloidal

	t	a	v	8
t	t_0, t_1	A	$A(t-t_0)$	$\frac{A(t-t_0)^2}{2} + s_0$
t	t_1, t_2	0	V	$\frac{A(t_1-t_0)^2}{2} + V(t-t_1) + s_0$
t	t_2, t_3	-D	$D(t_3-t)$	$\Delta s - \frac{D(t_3 - t)^2}{2} + s_0$

$$V = \Delta S/((t_1 - t_0)/2 + (t_2 - t_1) + (t_3 - t_2)/2)$$

$$A = V/(t_0 - t_1)$$

$$D = V/(t_3 - t_2)$$

Figura 9.5 Legge di moto ad accelerazione costante con accelerazione positiva $A=a^+$ diversa da quella negativa $D=a^-$.

$$\ddot{s} = \frac{\Delta s}{T^2} 2\pi \sin\left(2\pi \frac{t}{T}\right)$$

$$\dot{s} = \frac{\Delta s}{T} \left(1 - \cos\left(2\pi \frac{t}{T}\right)\right)$$

$$s = \Delta s \left(\frac{t}{T} - \frac{1}{2\pi} \sin\left(2\pi \frac{t}{T}\right)\right) + s_0$$

$$v_{max} = 2\frac{\Delta s}{T}$$
 $C_v = 2$ $a_{max} = 2\pi \frac{\Delta s}{T^2}$ $C_a = 2\pi$ $p_{max} = \frac{3}{2}\pi\sqrt{3} m \frac{\Delta s^2}{T^3}$ $C_p = \frac{3}{2}\pi\sqrt{3}$

Figura 9.4 Legge di moto cicloidale.