Digital Image Processing

Lecture # 2D: Fundamentals

Contents

- Neighborhood & Connectivity
- Connected Component Labeling
- Distance Metrics
- Arithmetic & Logical Operators

Relationships between pixels

 Neighbors of pixel are the pixels that are adjacent pixels of an identified pixel

4- Neighbors of a Pixel $-N_4(p)$

$$(x-1,y), (x+1,y), (x, y-1), (x, y+1)$$

Diagonal Neighbors of a Pixel – $N_D(p)$

$$(x-1,y-1), (x+1,y-1), (x-1,y+1), (x+1,y+1)$$

8- Neighbors of a Pixel $-N_8(p)$

Determine different regions in the image

- Establishing boundaries of objects and components of regions in an image
- Group the same region by assumption that the pixels being the same color or equal intensity
- Two pixels p & q are connected if
 - They are adjacent in some sense
 - If their gray levels satisfy a specified criterion of similarity

V: Set of gray levels used to define the criterion of similarity

4-connectivity

Set of gray levels $V = \{1\}$

V: Set of gray levels used to define the criterion of similarity

8-connectivity

If gray level gray level gray level

Set of gray levels $V = \{1\}$

V: Set of gray levels used to define the criterion of similarity

m-connectivity (Mixed Connectivity)

If gray level

- a. $q \in N_4(p) \alpha r$
- b. A Samuel Company of the Company o

Example: m – Connectivity

• Set of gray levels V = {1}

Note: Mixed connectivity can eliminate the multiple path connections that often occurs in 8-connectivity

Paths and Regions

- Path: Let coordinates of pixel p: (x, y), and of pixel q:
 (s, t)
- ◆ A path from p to q is a sequence of distinct pixels with coordinates: $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ where $(x_0, y_0) = (x, y)$ & $(x_n, y_n) = (s, t)$, and (x_i, y_i) is adjacent to (x_{i-1}, y_{i-1}) $1 \le i \le n$

 Process the image from left to right, top to bottom:

- i.) If only one of its neighbors (top or left) is 1, copy its label.
- ii.) If both are 1 and have the same label, copy it.
- iii.) If they have different labels

Copy the label from the left.

- Update the equivalence table.
- iv.) Otherwise, assign a new label.

Re-label with the smallest of equivalent labels

Pass 2

Same algorithm but examine also the upper diagonal neighbors of p

Background pixel

Unlabeled Pixel

Label 1

Label 3

EQUIVALENCE TABLE

Background pixel

Unlabeled pixel

- Label 1
- Label 2
- Label 3
- Label 4

Distance Metrics

• Let pixels p, q and z have coordinates (x,y), (s,t) and (u,v) respectively.

- D is a distance function or metric if
 - $D(p,q) \ge 0$ and
 - D(p,q) = 0 iff p = q and
 - D(p,q) = D(q,p) and
 - $D(p,z) \le D(p,q) + D(q,z)$

City block distance (D₄ distance)

		2		
	2	1	2	
2	1	0	1	2
	2	ı	2	
·		2		'

- Diamond with center at (x,y)
- $D_4 = 1$ are the 4 neighbors of pixel p(x,y)

Chessboard distance (D₈ distance)

- 2 2 2 2 2
- 2 1 1 1 2
- 2 1 0 1 2
- 2 1 1 1 2
- 2 2 2 2 2

- Square centered at p(x,y)
- $D_8 = 1$ are the 8 neighbors of pixel p(x,y)

Euclidean Distance

A circle with radius r centered at (x,y)

Arithmetic Operations

Carried out between corresponding pixel pairs

Arithmetic Operations

- Conversion to range 0 255
- ◆ Difference of two 8-bit images: -255 to 255
- Sum of two 8-bit images: 0 to 510
- Solution?

Set all values < 0 to 0

Set all values > 255 to 255

Full range of arithmetic operation not captured

Arithmetic Operations

• First perform the operation

Creates an image whose minimum value is 0

$$f_m = f - m(f)$$

Then perform

Creates a scaled image f_s with values in the range [0 K]

Logical Operations (Binary Images)

Acknowledgements

- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002
- Peters, Richard Alan, II, Lectures on Image Processing, Vanderbilt University, Nashville, TN, April 2008
- Brian Mac Namee, Digitial Image Processing, School of Computing, Dublin Institute of Technology
- Computer Vision & Computer Graphics, Mark Borg