Prova parziale **Ottimizzazione Combinatoria** 18 maggio 2004

Domanda 1

Enunciare e dimostrare il teorema di Berge.

Domanda 2

Disegnare un grafo G = (V, E) con le seguenti caratteristiche:

- 1. G è connesso
- 2. G soddisfa il teorema di Konig
- 3. $\rho + \tau = 7$
- 4. $\alpha = 4$

Domanda 3

Dato il seguente problema di Programmazione Lineare Intera:

$$\max 3 x_1 + 4 x_2 + 8 x_3 + 7 x_4 + 4 x_5 + 3 x_6 + 9 x_7 + 10 x_8$$
st
$$x_1 + x_2 + x_3 + x_4 \le 3$$

$$x_1 + x_5 \le 2$$

$$x_2 + x_6 \le 2$$

$$x_3 + x_7 \le 2$$

$$x_5 + x_6 + x_7 + x_8 \le 3$$

$$x_4 + x_8 \le 2$$

$$x \in \{0, 1\}^8$$

Il suo rilassamento lineare è intero? [Dimostrazione]

Domanda 4

Dato il problema di knapsack

$$\max\{\sum\nolimits_{j=1}^{n}c_{j}x_{j}\mid\sum\nolimits_{j=1}^{n}a_{j}x_{j}\leq b;\ x_{j}\in\{0,1\}\ \text{per}\ j=1,\,...,\,n\}$$

Descrivere un algoritmo per il calcolo del suo rilassamento lineare e dimostrarne la correttezza.

Esercizio 1

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	1	2	3	4	5	6	7
1	-	2	8	3	8	4	14
2	2	-	6	5	6	8	9
3	8	6	-	4	10	12	6
4	3	5	4	-	1	2	12
5	8	6	10	1	-	4	1
6	4	8	12	2	4	-	3
7	14	9	6	12	1	3	-

Prova parziale **Ottimizzazione Combinatoria** 18 maggio 2004

Cognome	
Nome	
Matricola	

Calcolare

- 1. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo.
- 2. Una soluzione euristica S ottenuta tramite l'algoritmo Nearest Neighbor.
- 3. Una soluzione euristica *S* ottenuta tramite l'algoritmo Double Tree.

Esercizio 2

Determinare, sul grafo di figura, il massimo matching e il minimo vertex cover, spiegando nel dettaglio i passi degli algoritmi utilizzati.

