Crystallographic Data For Minerals

Joseph R. Smyth and Tamsin C. McCormick

With the advent of modern X-ray diffraction instruments and the improving availability of neutron diffraction instrument time, there has been a substantial improvement in the number and quality of structural characterizations of minerals. Also, the past 25 years has seen great advances in high pressure mineral synthesis technology so that many new high pressure silicate and oxide phases of potential geophysical significance have been synthesized in crystals of sufficient size for complete structural characterization by X-ray methods. The object of this work is to compile and present a summary of these data on a selected group of the more abundant, rock-forming minerals in an internally consistent format for use in geophysical and geochemical studies.

Using mostly primary references on crystal structure determinations of these minerals, we have compiled basic crystallographic property information for some 300 minerals. These data are presented in Table 1. The minerals were selected to represent the most abundant minerals composing the crust of the Earth as well as high pressure synthetic phases that are believed to compose the bulk of the solid Earth. The data include mineral name, ideal formula, ideal formula weight, crystal system, space group, structure type, Z (number of formula units per cell), unit cell edges, a,

b, and c in Ångstrom units ($10^{-10}\,\mathrm{m}$) and inter-axial angles α , β , γ in degrees, unit cell volume in Å³, molar volume in cm³, calculated density in Mg/m³, and a reference to the complete crystal structure data.

To facilitate geochemical and geophysical modeling, data for pure synthetic end members are presented when available. Otherwise, data are for near end-member natural samples. For many minerals, structure data (or samples) for pure end members are not available, and in these cases, indicated by an asterisk after the mineral name, data for an impure, natural sample are presented together with an approximate ideal formula and formula weight and density calculated from the ideal formula.

In order to conserve space we have omitted the precision given by the original workers in the unit cell parameter determination. However, we have quoted the data such that the stated precision is less than 5 in the last decimal place given. The cell volumes, molar volumes and densities are calculated by us given so that the precision in the last given place is less than 5. The formula weights presented are calculated by us and given to one part in approximately 20,000 for pure phases and one part in 1000 for impure natural samples.

Mineral Physics and Crystallography A Handbook of Physical Constants AGU Reference Shelf 2

J. R. Smyth, and T. C. McCormick, Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0250

Table 1. Crystallographic Properties of Minerals.

Mineral	Formula		rystal Space ystem Group	Structure Type	Z	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Unit Cell ! Vol (ų) V		Density (calc)(Mg/i	Ref. m ³)
Single Oxides							-								
Hemi-oxide	C O	142.070	Cub. Pn3m	Cumita	2	4.2696						77.833	23.439	6.104	25
Cuprite Monoxides Group	Cu ₂ O	143.079	Cub. Frism	Cuprite	2	4.2090						11.633	23.439	0.104	23
Periclase	MgO	40.312	Cub. Fm3m	Halite	4	4.211						74.67	11.244	3.585	93
Wustite	FeO		Cub. $Fm\overline{3}m$	Halite	4	4.3108						80.11	12.062		67
Viusute Lime	CaO	56.079		Halite	4	4.1684						111.32	16.762		235
Bunsenite	NiO	•	Cub. $Fm\overline{3}m$	Halite	4	4.446						72.43	10.906		235
Manganosite	MnO		Cub. $Fm\overline{3}m$	Halite	4	4.8105						87.88	13.223	5.365	195
Tenorite	CuO		Mono. C2/c	Tenorite	4	4.6837	3.4226	5.1288		99.54		81.080	12.209		11
Montroydite	HgO		Orth. Pnma	Montroydite	4	6.612	5.20	3.531		77.54		128.51	19.350		12
Zincite	ZnO		Hex. P63mc	Wurtzite	2	3.2427	5.20	5.1948				47.306	14.246		189
Bromellite	BeO		Hex. P63mc	Wurtzite	2			4.2770				26.970	8.122		189
Sesquioxide Group		25.012	Hex. 103mic	Wai izite	2	2.0704		4.2110				20.510	0.122	5.000	.07
Corundum	Al ₂ O ₃	101 061	Trig. R3c	Corundum	6	4.7589		12.9912				254.80	25.577	3.986	157
Hematite	Fe ₂ O ₃		Trig. R3c	Corundum	6	5.038		13.772				302.72	30.388		23
Eskolaite	Cr ₂ O ₃		Trig. R3c	Corundum	6	4.9607		13.772				289.92	29.093		157
Karelianite	V ₂ O ₃		Trig. R3c	Corundum	6			14.002				297.36	29.850		157
Bixbyite			Cub. $la\overline{3}$	Bixbyite	16			14.002				834.46	31.412		75
Avicennite	Mn ₂ O ₃		Cub. 1a3	Bixbyite		10.543						1171.9	44.115		167
Claudetite	Tl ₂ O ₃		Mono. P2 ₁ /n	Claudetite	4		4.65	9.12		78.3		331.8	49.961	3.960	176
Arsenolite	As ₂ O ₃		Cub. $Fd\overline{3}m$	Arsenolite		11.0744	4.05	9.12		16.3		1358.19	51.127	3.870	177
	As ₂ O ₃		Cub. Fd3m	Arsenolite		11.0744						1386.9	52.208		217
Senarmontite Volume in its	Sb ₂ O ₃		Orth. Pccn		4		12 464	5.412				331.27	49.881	5.844	216
Valentinite	Sb ₂ O ₃	291.490	Orun. Pecn	Valentinite	4	4.911	12.464	3.412				331.27	47.001	2.044	210
Dioxide Group	T:O	70.000	Orth. Pbca	D t. ia .	8	9.184	5.447	5.145				257.38	19.377	4.123	17
Brookite Anatase	TiO ₂	79.890 79.890		Brookite Anatase	4	3.7842	3.447	9.5146				136.25	20.156		105
Anatase Rutile	TiO ₂	79.890 79.890			2	4.5845		2.9533				62.07	18.693		
	TiO ₂	150.69	-		2	4.737		3.185				71.47	21.523	7.001	15
Cassiterite	SnO ₂		-									46.54	14.017		20
Stishovite	SiO ₂	60.086	_		2	4.1790 4.396		2.6651 2.871				55.48	86.937		121
Pyrolusite	MnO ₂		Tetr. P42/mnn		2	4.396 5.1454	5.2075	5.3107		99.23		33.48 140.45	21.149		208
Baddeleyite	ZrO ₂		Mono. $P2_1/c$ Cub. $Fm\overline{3}m$	Baddeleyite Fluorite	4	5.4682	3.2013	5.5107		99.23		163.51	24.620		126
Uraninite Thorianite	UO ₂ ThO ₂		Cub. Fm3m	Fluorite	4	5.5997						175.59	26.439	9.987	227
Inorianie	11102	204.04	Cub. Fmsm	riuorite	4	3.3991						173.39	20.437	7.701	221
Multiple Oxides															
Chrysoberyl	BeAl ₂ O ₄	126.97	Orth. Pnmb	Olivine	4	4.424	9.396	5.471				227.42	34.244	3.708	96
Spi nel Group			_												
Spinel	MgAl ₂ O ₄		Cub. Fd3m	Spinel	8							528.14	39.762		61
Hercynite	FeAl ₂ O ₄		Cub. Fd3m	Spinel	8	8.1558						542.50	40.843	4.256	99
Magnesioferrite	MgFe ₂ O ₄		Cub. Fd3m	Spinel	8	8.360						584.28	43.989	4.547	100
Magnesiochromite			Cub. Fd3m	Spinel	8	8.333						578.63	43.564	4.414	100
Magnetite	FeFe ₂ O ₄		Cub. Fd3m	Spinel	8	8.394						591.43	44.528	5.200	100
Jacobsite	MnFe ₂ O ₄		Cub. Fd3m	Spinel	8	8.5110						616.51	46.416		100
Chromite	FeCr ₂ O ₄		Cub. Fd3m	Spincl	8	8.3794						588.31	44.293		100
Ulvoespinel	TiFe ₂ O ₄	223.59	Cub. Fd3m	Spinel	8	8.536						621.96	46.826	4.775	106

Table 1. Crystallographic Properties of Minerals (continued).

Mineral	Formula	Formula C Weight S	•	•	Structure Type	Z	a (Å)	b (Å)	c (Å)	α (°)	β (°)	Y (°)	Unit Cell Vol (Å ³) V	Molar /ol (cm³) (c	Density calc)(Mg/	Ref. m³)
Titanate Group									,		·			-		
Ilmenite	FeTiO ₃	151.75	_	R3	Ilmenite	6	5.0884		14.0855				315.84	31.705	4.786	229
Pyrophanite	MnTiO ₃	150.84	Trig.	R3	Ilmenite	6	5.137		14.283				326.41	32.766	4.603	235
Perovskite	CaTiO ₃	135.98	Orth.	Pbnm	Perov skite	4	5.3670	5.4439	7.6438				223.33	33.63	4.044	113
Armalcolite	Mg.5Fe.5Ti2O5	215.88	Orth.	Bbmm	Pseudobrookite	4	9.7762	10.0214	3.7485				367.25	55.298	3.904	230
Pseudobrookite	Fe ₂ TiO ₅	239.59	Orth.	Bbmm	Pseudobrookite	4	9.767	9.947	3.717				361.12	54.375	4.406	3
Tungstates and Mo	olybdates															
Ferberite	FeWO ₄	303.70	Mono	.P2/c	Ferberite	2	4.730	5.703	4.952		90.0		133.58	40.228	7.549	225
Huebnerite	MnWO ₄	302.79	Mono.	.P2/c	Ferberite	2	4.8238	5.7504	4.9901		91.18		138.39	41.676	7.265	231
Scheelite	CaWO ₄	287.93	Tetr.	<i>I</i> 4 ₁ /a	Scheelite	4	5.243		11.376				312.72	47.087	6.115	114
Powellite	CaMoO ₄	200.02	Tetr.	14 ₁ /a	Scheelite	4	5.23		11.44				301.07	45.333	4.412	101
Stolzite	PbWO ₄	455.04	Tetr.	14 ₁ /a	Scheelite	4	5.46		12.05				359.23	54.091	8.412	101
Wulfenite	PbMoO ₄	367.12	Tetr.	14 ₁ /a	Scheelite	4	5.435		12.11				357.72	53.864	6.816	101
Hydroxides																
Gibbsite	Al(OH)3	78.00	Mono	$P2_1/n$	Gibbsite	8	8.684	5.078	9.736		94.54		427.98	32.222	2.421	188
Diaspore	AIO(OH)	59.99	Orth.	Pbnm	Goethite	4	4.401	9.421	2.845				117.96	17.862	3.377	34
Boehmite	AlO(OH)	59.99	Orth.	Amam	Boehmite	4	3.693	12.221	2.865				129.30	19.507	3.075	98
Brucite	Mg(OH) ₂	58.33	Trig	P3m1	Brucite	1	3.124		4.766				40.75	24.524	2.377	243
Goethite	FeO(OH)	88.85	Orth.	Pbnm	Goethite	4	4.587	9.937	3.015				137.43	20.693	4.294	65
Lepidochrosite	FeO(OH)	88.85	Orth.	Cmc2 ₁	Boehmite	4	3.08	12.50	3.87				148.99	22.435	3.961	43
Carbonates																
Magnesite	MgCO ₃	84.32	Trig.	R3̃c	Calcite	6	4.6328		15.0129				279.05	28.012	3.010	54
Smithsonite	ZnCO ₃	125.38	Trig.	R 3 c	Calcite	6	4.6526		15.0257				281.68	28.276	4.434	54
Siderite	FeCO ₃	115.86	Trig.	$R\overline{3}c$	Calcite	6	4.6916		15.3796				293.17	29.429	3.937	54
Rhodochrosite	MnCO ₃	114.95	Trig.	R3̄c	Calcite	6	4.7682		15.6354				307.86	30.904	3.720	54
Otavite	CdCO ₃	172.41	Trig.	R3c	Calcite	6	4.923		16.287				341.85	34.316	5.024	26
Calcite	CaCO ₃	100.09	Trig.	R3c	Calcite	6	4.9896		17.0610				367.85	36.9257	2.7106	54
Vaterite	CaCO ₃	100.09	Hex.	$P6_3/mmc$	Vaterite	12	7.151		16.937				750.07	37.647	2.659	146
Dolomite	CaMg(CO ₃) ₂	184.41	Trig.	R 3	Dolomite	3	4.8069		16.0034				320.24	64.293	2.868	182
Ankerite	CaFe(CO ₃) ₂	215.95	Trig.	R3	Dolomite	3	4.830		16.167				326.63	65.576	3.293	21
Aragonite	CaCO ₃	100.09	Orth.	Pmcn	Aragonite	4	4.9614	7.9671	5.7404				226.91	34.166	2.930	51
Strontianite	SrCO ₃	147.63	Orth.	Pmcn	Aragonite	4	5.090	8.358	5.997				255.13	38.416	3.843	51
Cerussite	PbCO ₃	267.20	Orth.	Pmcn	Aragonite	4	5.180	8.492	6.134				269.83	40.629	6.577	191
Witherite	BaCO ₃	197.39	Orth.	Pmcn	Aragonite	4	5.3126	8.8958	6.4284				303.81	45.745	4.314	51
Azurite	Cu ₃ (OH) ₂ (CO ₃) ₂	344.65	Mono.	. <i>P</i> 2 ₁ /c	Azurite	2	5.0109	5.8485	10.345		92.43		302.90	91.219	3.778	245
Malachite	Cu ₂ (OH) ₂ CO ₃	221.10	Mono.	$P2_1/a$	Malachite	4	9.502	11.974	3.240		98.75		364.35	54.862	4.030	244
Nitrates				_												
Soda Niter	NaNO ₃	85.00	Trig.	R3c	Calcite	6			16.818				374.51	37.594	2.261	198
Niter	KNO ₃	101.11	Orth.	Pmcn	Aragonite	4	5.4119	9.1567	6.5189				323.05	48.643	2.079	159
Borates																

Table 1. Crystallographic Properties of Minerals (continued).

Mineral	Formula	Formula Cry Weight Syst		Structure Type	Z	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	α (°)	β (°)	γ (°)	Unit Cell Vol (Å ³)		Density (calc)(Mg/	Ref. m ³)
Kernite Colemanite	Na ₂ B ₄ O ₆ (OH) ₂ .3H ₂ O	273.28 M	-	Kernite	4	7.0172	9.1582	15.6774 6.102		108.86		953.41	143.560		48 42
	CaB ₃ O ₄ (OH) ₃ .H ₂ O	205.55 M	iono. r-2 ₁ /a	Colemanite	4	8.743	11.264	0.102		110.12		564.30	84.869	2.419	42
Sulfates								-							
Barite	BaSO ₄	233.40 O		Barite	4	7.157	8.884	5.457				346.97	52.245		147
Celestite	SrSO ₄	183.68 O		Barite	4	6.870	8.371	5.355				307.96	46.371		147
Anglesite	PbSO ₄		rth. Pbnm	Barite	4	6.959	8.482	5.398				318.62	47.977		147
Anhydrite	CaSO ₄	136.14 O	rth. Amma	Anhydrite	4	7.006	6.998	6.245				306.18	46.103	3 2.953	118
Gypsum	CaSO ₄ 2H ₂ O	172.17 M	Iono. 12/a	Gypsum	4	5.670	15.201	6.533		118.60		494.37	74.440	2.313	46
Alunite*	KAI3(SO ₄)2(OH)6	414.21 Ti	rig. <i>R</i> 3m	Alunite	3	7.020		17.223				735.04	147.572	2.807	145
Jarosite*	KFe ₃ (SO ₄) ₂ (OH) ₆	500.81 Ti	rig. $R\overline{3}m$	Alunite	3	7.304		17.268				797.80	160.172	3.127	112
Antlerite	$Cu_3(SO_4)(OH)_4$	354.71 O	rth. <i>Pnma</i>	Antlerite	4	8.244	6.043	11.987				597.19	89.920	2.959	91
Thenardite	Na ₂ SO ₄	142.04 O	rth. <i>Fddd</i>	Thenardite	8	9.829	12.302	5.868				709.54	53.419	2.659	90
Arcanite	K ₂ SO ₄	174.27 O	rth. Pmcn	Arcanite	4	5.763	10.071	7.476				433.90	65.335	2.667	142
Epsomite	MgSO ₄ 7H ₂ O	246.48 O	rth. P2 ₁ 2 ₁ 2 ₁	Epsomite	4	11.846	12.002	6.859				975.18	146.838	3 1.678	36
Phosphates															
Hydroxyapatite	Ca ₅ (PO ₄) ₃ OH		ex. P6 ₃ /m	Apatite	2	9.424		6.879				529.09	159.334		214
Fluorapatite	Ca ₅ (PO ₄) ₃ F	504.31 H	-	Apatite	2	9.367		6.884				523.09	157.527	3.201	215
Chlorapatite	Ca ₅ (PO ₄) ₃ Cl		ex. P63/m	Apatite	2	9.628		6.764				543.01	163.527		137
Monazite	CcPO ₄		Iono. $P2_1/n$	Monazite	4	6.77	7.04	6.46		104.0		298.7	44.98	5.23	76
Xenotime	YPO ₄		etr. 14 ₁ /amd	Zircon	4	6.878		6.036				285.54	43.00	4.277	123
Whitlockite	$MgFeCa_{18}H_2(PO_4)_{14}$		rig. R3c	Whitlockite		10.330		37.103				3428.8	688.386		38
Triphylite	LiFePO ₄	157.76 O		Olivine	4	10.334	6.010	4.693				291.47	43.888		237
Lithiophyllite	LiMnPO ₄		rth. <i>Pmnb</i>	Olivine	4		10.32	4.71				294.07	44.280		101
Amblygonite*	LiAI(F,OH)PO ₄		ric. PĪ	Amblygonite		5.18	7.15	5.04	112.11	97.78	67.88		48.242		16
Augelite*	Al ₂ (OH) ₃ PO ₄		iono. C2/m	Augelite		13.124	7.988	5.066		112.42		490.95	73.924		101
Berlinite	AlPO ₄	121.95 Tr	rig. P3 ₁ 21	Quartz	3	4.943		10.974				232.21	46.620	2.616	206
Orthosilicates															
Garnet Group	M- ALC: O	402.15	.L 1.71	C	0	11 450						1501.0	112.00	2 545	0
Pyrope Almandine	Mg3Al ₂ Si ₃ O ₁₂	403.15 C 497.76 C		Garnet		11.452						1501.9	113.08	3.565 4.312	8
	Fe ₃ Al ₂ Si ₃ O ₁₂		_	Garnet		11.531						1533.2	115.43		
Spessartine	Mn ₃ Al ₂ Si ₃ O ₁₂	495.03 C 403.15 C		Garnet Garnet		11.612						1565.7	117.88	4.199 3.600	161 161
Grossular Andradite	Ca ₃ Al ₂ Si ₃ O ₁₂	508.19 C				11.845 12.058						1661.9 1753.2	125.12 131.99	3.850	161
Uvarovite	Ca ₃ Fe ₂ Si ₃ O ₁₂ Ca ₃ Cr ₂ Si ₃ O ₁₂	500.48 C	_	Garnet Garnet		11.988						1733.2	129.71	3.859	161
Olivine Group	Ca3C12013O12	300.46	10. 1434	Garner	0	11.700						1722.6	129.71	3.639	101
Forsterite	Mg ₂ SiO ₄	140.70 Or	th. <i>Pbnm</i>	Olivine	4	4.7534	10.1902	5.9783				289.58	43.603	3.227	69
Fayalite	Fe ₂ SiO ₄		th. <i>Pbnm</i>	Olivine	4	4.8195	10.4788	6.0873				307.42	46.290	4.402	69
Tephroite	Mn ₂ SiO ₄	201.96 Or		Olivine	4	4.9023	10.5964	6.2567				325.02	48.939	4.127	69
Liebenbergite	Ni ₂ SiO ₄		th. <i>Pbnm</i>	Olivine	4	4.726	10.118	5.913				282.75	42.574	4.921	124
Ca-olivine	Ca ₂ SiO ₄	172.24 Or	th. <i>Pbnm</i>	Olivine	4	5.078	11.225	6.760				385.32	58.020	2.969	50
Co-olivine	Co ₂ SiO ₄	209.95 Or	th. Phum	Olivine	4	4.7811	10.2998	6.0004				295.49	44.493	4.719	32
Monticellite	CaMgSiO ₄	156.48 Or	th. <i>Pbnm</i>	Olivine	4	4.822	11.108	6.382				341.84	51.472	3.040	165
Kirschsteinite	CaFeSiO ₄	188.01 Or	th. Pbnm	Olivine	4	4.844	10.577	6.146				314.89	47.415	3.965	32

SMYTH AND McCORMICK

Mineral	TOINIUIA	Formula (Weight S	•		Structure Type	Z	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Unit Cell Vol (Å ³) V		Density calc)(Mg/r	Ref m ³)
Zircon Group																
Zircon	ZrSiO ₄	183.30	Tetr.	14 ₁ /amd	Zircon	4	6.6042		5.9796				260.80	39.270	4.668	95
I Iafnon	HfSiO ₄	270.57	Tetr.	141/amd	Zircon	4	6.5725		5.9632				257.60	38.787	6.976	212
Thorite*	ThSiO ₄	324.1	Tetr.	14 ₁ /amd	Zircon	4	7.1328		6.3188				321.48	48.407	6.696	222
Coffinite*	USiO ₄	330.2	Tetr.	14 ₁ /amd	Zircon	4	6.995		6.236				305.13	45.945	7.185	115
Willemite Group																
Phenacite	Be ₂ SiO ₄	110.10	Trig.	R₹	Willemite	18	12.472		8.252				1111.6	37.197	2.960	241
Willemite	Zn ₂ SiO ₄	222.82	Trig.	R3	Willemite	18	13.971		9.334				1577.8	52.795	4.221	207
Eucryptite	LiAISIO ₄	126.00	Trig.	<i>R</i> 3	Willemite	18	13.473		9.001				1415.0	47.347	2.661	97
Aluminosilicate (•															
Andalusite	Al ₂ SiO ₅	162.05	Orth.		Andalusite	4	7.7980	7.9031	5.5566				342.44	51.564	3.1426	233
Sillimanite	Al ₂ SiO ₅	162.05	Orth.		Sillimanite	4	7.4883	7.6808	5.7774				332.29	50.035	3.2386	233
Kyanite	Al ₂ SiO ₅	162.05	Tric.		Kyanite	4	7.1262	7.8520	5.5747	89.99	101.11	106.03	293.72	44.227	3.6640	233
Topaz	$Al_2SiO_4(OH,F)_2$	182.0	Orth.	Pbnm	Topaz	4	4.6651	8.8381	8.3984				346.27	52.140	3.492	242
Humite Group																
Norbergite*	Mg ₃ SiO ₄ F ₂	203.0	Orth.		Norbergite		4.7104	10.2718	8.7476				423.25	63.73	3.186	73
Chondrodite*	Mg5(SiO4)2F2	343.7	Mono.	<i>P</i> 2 ₁ / <i>b</i>	Chondrodite	2	4.7284	10.2539	7.8404		109.06		359.30	108.20	3.158	74
Humite*	$Mg_7(SiO_4)_3F_2$	484.4	Orth.		Humite	4	4.7408	10.2580	20.8526				1014.09	152.70	3.159	183
Clinohumite*	$Mg_9(SiO_4)_4F_2$	624.1	Mono.	-	Clinohumite		4.7441	10.2501	13.6635		100.786		652.68	196.55	3.259	186
Staurolite*	$Fe_4Al_{18}Si_8O_{46}(OH)_2$	1704.	Mono.	C2/m	Staurolite	1	7.8713	16.6204	5.6560		90.0		739.94	445.67	3.823	209
Other Orthosilica																
l'itanite	CaTiSiO ₅	196.06	Mono.	•	Titanite		7.069	8.722	6.566				370.23	55.748	3.517	213
Datolite	CaBSiO ₄ (OH)	159.94	Mono.		Datolite	4		7.608	9.636		90.40		354.23	53.338	2.999	63
Gadolinite*	RE ₂ FeB ₂ Si ₂ O ₁₀	604.5	Mono	-	Datolite		10.000	7.565	4.786		90.31		360.69	108.62	5.565	148
Chloritoid*	FeAl ₂ SiO ₅ (OH) ₂	251.9	Tric.		Chloritoid	4		5.50	9.15	97.05	101.56	90.10	462.72	69.674	3.616	88
Sapphirine*	Mg3,5Al ₉ Si _{1.5} O ₂₀	690.0	Mono.		Sapphirine		11.266	14.401	9.929		125.46		1312.11	197.57	3.493	149
Prehnite*	Ca ₂ Al(Al,Si ₃)O ₁₀ (OH) ₂	412.391			Prehnite		4.646	5.483	18.486				470.91	141.82	2.908	170
Pumpelleyite	Cag(Mg ₂ FeAl)Al ₈ Si ₁₂ O ₄₂ (Ol				Pumpelleyite	1		5.894	19.10	01.0	97.53	55.00	985.6	593.6	3.226	172
Axinite	HFeCa ₂ Al ₂ BSi ₄ O ₁₆	570.12	Iric.	PI	Axinite	2	7.157	9.199	8.959	91.8	98.14	77.30	569.61	171.54	3.324	220
Sorosilicates & (Epidote Group	Cyclosilicates															
Zoisi t e	Co-Al-Si-O -(OII)	151 26	Owk	D	7-i-i-		17 212	E EE0	10.026				004.47	107.10	2.224	52
Clinozoisite	Ca ₂ Al ₃ Si ₃ O ₁₂ (OH) Ca ₂ Al ₃ Si ₃ O ₁₂ (OH)	454.36 454.36	Orth. Mono.		Zoisite Epidote		16.212	5.559 5.583	10.036 10.155		115 50		904.47	136.19	3.336	52
-lancockite*	$Ca(Pb,Sr)FeAl_2Si_3O_{12}(OH)$	590.6	Mono.		Epidote Epidote	2	8.879 8.96	5.67	10.133		115.50 114.4		454.36 476.5	136.83 143.5	3.321	52 53
Allanite*	CaRE(Al,Fe) ₃ Si ₃ O ₁₂ (OH)	565.2	Mono.	•	Epidote	2		5.761	10.150		114.77		473.97	143.3	4.12 3.96	53
Epidote*	Ca ₂ , FeAl ₂ Si ₃ O ₁₂ (OH)	454.4	Mono.	•	Epidote	2	8.8877	5.6275	10.1517		115.383					70
Melilite Group	Cu2(1 67 112013012(O11)	757.7	MOHO.	1 21/11	Lpidote	۷	0.0077	3.0213	10.1317		113.363		458.73	138.15	3.465	/ (
Melilite*	CaNaAlSi ₂ O ₇	258.2	Tetr.	$P\overline{4}2_1m$	Melilite	2	7.6344		5.0513				204.41	00//3	2.012	107
Gehlenite*	Ca2AlAlSiO7	274.2		$P\overline{4}2_1m$	Melilite	2							294.41	88.662	2.912	134
Akermanite	Ca2MgSi2O7	274.2	Tetr.		Melilite	_	7.7173		5.0860				302.91	91.220	3.006	135
	es and Cyclosilictaes	212.04	icir.	r-42] m	Menne	2	7.833		5.010				307.55	92.619	2.944	116
	•	21 4 2 4	01	C	T		0.7707		10.1.5						_	
awsonite	CaAl ₂ Si ₂ O ₇ (OH) ₂ H ₂ O	314.24		Comm	Lawsonite	4		5.847	13.142				675.82	101.76	3.088	19
Beryl	Be ₃ Al ₂ Si ₆ O ₁₈	537.51		P6/mmc	Beryl	2			9.1900				674.89	203.24	2.645	152
Cordierite*	Mg ₂ Al ₄ Si ₅ O ₁₈	584.97	Orth.	Ccmm	Beryl	4	17.079	9.730	9.356				1554.77	234.11	2.499	45

Table 1. Crystallographic Properties of Minerals (continued).

Mineral	TOITIUIA		Crystal S System C		Structure Type	Z	(Å)	b (Å)	с (Å)	α (°)	β (°)	Υ (°)	Unit Cell Vol (ų)	Molar Vol (cm ³)	Density (calc)(Mg/	Ref. /m³)
Tourmaline*	NaFe3Al6B3Si6O27(OH)4	1043.3	Trig. R	?3m	Tourmaline	3	15.992		7.190				1592.5	319.7	3.263	66
Vesuvianite*	Ca ₁₉ Fe ₂ MgAl ₁₀ Si ₁₈ O ₇₀ (OH,F) ₈ 2935.	Tetr. P	4/nnc	Vesuvianite	2	15.533		11.778				2841.8	427.9	3.429	6
Chain Silicates																
Enstatite/Ferrosili	te Group															
Enstatite	Mg ₂ Si ₂ O ₆	200.79	Orth. P	bca	Orthopyroxene	8	18.227	8.819	5.179				832.49	62.676	3.204	197
Ferrosilite	Fe ₂ Si ₂ O ₆	263.86	Orth. P	bca -	Orthopyroxene	8	18.427	9.076	5.237				875.85	65.941	4.002	197
Clinoenstatite	Mg ₂ Si ₂ O ₆	200.79	Mono. P	$2_1/c$	Clinoenstatite	4	9.626	8.825	5.188		108.33		418.36	62.994	3.188	150
Clinoferrosilite	Fe ₂ Si ₂ O ₆	263.86	Mono. P	$2_1/c$	Clinoenstatite	4	9.7085	9.0872	5.2284		108.43		437.60	65.892	4.005	33
Clinopyroxene Gr	оир															
Diopside	CaMgSi ₂ O ₆	216.56	Mono.C	2 /c	Clinopyroxene	4	9.746	8.899	5.251		105.63		438.58	66.039	3.279	39
Hedenbergite	CaFeSi ₂ O ₆	248.10	Mono.C	72/c	Clinopyroxene	4	9.845	9.024	5.245		104.70		450.72	67.867	3.656	39
Jadeite	NaAlSi ₂ O ₆	202.14	Mono. C	72/c	Clinopyroxene	4	9.423	8.564	5.223		107.56		401.85	60.508	3.341	39
Acmite	NaFeSi ₂ O ₆	231.08	Mono. C	2/c	Clinopyroxene	4	9.658	8.795	5.294		107.42		429.06	64.606	3.576	44
Cosmochlor	NaCrSi ₂ O ₆	227.15	Mono. C	72/c	Clinopyroxene	4	9.579	8.722	5.267		107.37		419.98	63.239	3.592	39
Spodumene	LiAlSi ₂ O ₆	186.09	Mono.C	72/c	Clinopyroxene	4	9.461	8.395	5.218		110.09		389.15	58.596	3.176	39
Ca-Tschermaks	CaAlAlSiO ₆	218.20	Mono. C	2/c	Clinopyroxene	4	9.609	8.652	5.274		106.06		421.35	63.445	3.438	164
Pyroxenoid Group				_												
Wollastonite	Ca ₃ Si ₃ O ₉	348.49			Wollastonite	4	10.104	11.054	7.305	99.53	100.56	83.44	788.04	118.66	2.937	163
Bustamite*	(Ca _{2.4} Fe _{.6})Si ₃ O ₉	358.6	Tric. /1		Bustamite		9.994	10.946	7.231	99.30	100.56	83.29	764.30	115.09	3.116	163
Rhodonite	Mn ₅ Si ₅ O ₁₅	655.11	Tric. P		Rhodonite		7.616	11.851	6.707	92.55	94.35	105.67	579.84	174.62	3.752	155
Pyroxmangite	Mn ₇ Si ₇ O ₂₁	917.16			Pyroxmangite		6.721	7.603		113.18	82.27	94.13	812.31	244.63	3.749	155
Aenigmatite*	Na ₂ Fe ₅ TiSi ₆ O ₂₀	867.5	Tric. P	-	Aenigmatite		10.406	10.813	8.926	104.93	96.87	125.32	744.52	224.21	3.869	40
Pectolite*	HNaCa2Si3O9	332.4	Tric. P		Pectolite		7.980	7.023	7.018	90.54	95.14	102.55	382.20	115.10	2.888	163
Petalite	LiAlSi ₄ O ₁₀	306.26	Mono.P.	2/a	Petalite	2	11.737	5.171	7.630		112.54		427.71	128.80	2.378	219
Amphibole Group																
Gedrite*	$Na_5(Mg_5Fe_2)Al_2Si_6O_{22}(OH)_2$				Orthoamphibole	4	18.531	17.741	5.249				1725.65	259.8	3.184	169
Anthophyllite*	(Mg5Fe2)Si8O22(OH)2	843.94		nma	Orthoamphibole	4	18.560	18.013	5.2818				1765.8	265.9	3.111	58
Cummingtonite*	(Mg5Fe2)Si8O22(OH)2	843.94			Amphibole		9.51	18.19	5.33		101.92		902.14	271.7	3.14	60
Tremolite*	$Na_{.5}Ca_{2}Mg_{5}SI_{8}O_{22}(OH)_{2}$	823.90			Amphibole		9.863	18.048	5.285		104.79		909.60	273.9	3.01	92
Pargasite*	NaCa ₂ FeMg ₄ Al ₂ Si ₆ O ₂₂ (OH) ₂				Amphibole		9.910	18.022	5.312		105.78		912.96	274.9	3.165	185
Glaucophane*	Na ₂ (FeMg ₃ Al)Si ₈ O ₂₂ (OH) ₂	789.44	Mono. C	2/m	Amphibole	2	9.541	17.740	5.295		103.67		870.8	262.2	3.135	168
Sheet Silictaes																
Talc and Pyrophyl		Ama		-												.=.
Talc	Mg ₃ Si ₄ O ₁₀ (OH) ₂	379.65			Talc		5.290	9.173	9.460	90.46	98.68	90.09		136.654	2.776	175
Pyrophyllite	Al ₂ Si ₄ O ₁₀ (OH) ₂	360.31	Tric. C	1	Talc	2	5.160	8.966	9.347	91.18	100.46	89.64	425.16	128.036	2.814	125
Trioctahedral Mic	•	511.0			43.5	•										۵.
Annite*	KFe ₃ (AlSi ₃)O ₁₀ (OH) ₂	511.9	Mono. C		1M	2		9.324	10.268		100.63		506.82	152.63	3.215	94
Phlogopite*	KMg ₃ AlSi ₃ O ₁₀ (OH) ₂	417.3	Mono. C		1M	2		9.190	10.155		100.08		487.69	146.87	2.872	94
Lepidolite*	KAILi ₂ AlSi ₃ O ₁₀ (OH) ₂	385.2	Mono. C	-	2M ₁	4	0.207	9.053	20.185		99.125		939.82	141.52	2.724	192
Lepidolite*	KAILi ₂ AlSi ₃ O ₁₀ (OH) ₂	385.2	Mono. C		2M ₂	4		5.22	20.21		99.58		940.38	141.60	2.791	193
Lepidolite*	KAILi ₂ AISi ₃ O ₁₀ (OH) ₂	385.2	Mono. C.		1M	2		9.01	10.09		99.28		466.6	140.5	2.825	194
Zinnwaldite*	K(AlFeLi)AlSi ₃ O ₁₀ (OH) ₂	434.1	Mono. C.	Z/m	1 M	2	5.296	9.140	10.096		100.83		480.0	144.55	2.986	82

Table 1. Crystallographic Properties of Minerals (continued).

Mineral	I Olliula	Formula (Weight S	•	•	Structure Type	Z	a (Å)	b (Å)	c (Å)	α (°)	β (°)		Unit Cell Vol (ų)	Molar Vol (cm³) (Density calc)(Mg/	Ref. m ³)
Dioctahedral Mic	ca Group															
Muscovite*	KAl ₂ AlSi ₃ O ₁₀ (OH) ₂	398.3	Mono	c.C2/c	2M ₁	4	5.1918	9.0153	20.0457		95.74		933.56	140.57	2.834	187
Paragonite*	NaAl ₂ AlSi ₃ O ₁₀ (OH) ₂	384.3	Mono	c.C2/c	$2M_1$	4	5.128	8.898	19.287		94.35		877.51	132.13	2.909	129
Margarite*	CaAl ₂ AlSi ₃ O ₁₀ (OH) ₂	399.3	Mono	c.C2/c	2M ₂	4	5.1038	8.8287	19.148		95.46		858.89	129.33	3.061	83
Bityite*	Ca(LiAl) ₂ (AlBeSi ₂)O ₁₀ (OH) ₂	387.2	Mono	o.C2/c	2M ₁	4	5.058	8.763	19.111		95.39		843.32	126.98	3.049	130
Chlorite Group																
Chlorite*	$(Mg_5Al)(AlSi_3)O_{10}(OH)_2$	555.8		o.C2/m	Chlorite-IIb2	2	5.327	9.227	14.327		96.81		699.24	210.57	2.640	109
Chlorite*	$(Mg_5Al)(AlSi_3)O_{10}(OH)_2$	555.8	Tric.	$C\overline{1}$	Chiorite-IIb4	2	5.325	9.234	14.358	90.33	97.38	90.00	700.14	210.85	2.636	108
Clay Group																
Nacrite	Al ₂ Si ₂ O ₅ (OH) ₄	258.16			Nacrite	4		5.156	15.697		113.70		658.95	99.221	2.602	24
Dickite	Al ₂ Si ₂ O ₅ (OH) ₄	258.16			Dickite	4		8.937	14.738		103.82		662.27	99.721	2.588	22
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	258.16	Tric.		Kaolinite		5.1554	8.9448	7.4048	91.700	104.862	89.822		99.347	2.599	22
Amesite*	(Mg ₂ Al)(AlSi)O ₅ (OH) ₄	278.7	Tric.		Amesite		5.319	9.208	14.060	90.01	90.27	89.96	688.61	103.69	2.778	86
Lizardite*	Mg ₃ Si ₂ O ₅ (OH) ₄	277.1	Trig.	P31m	Lizardite 1T	1	5.332		7.233				178.09	107.26	2.625	144
Tektosilicates																
Silica Group	6:0	(0.005	. m	DO 01			4 100 4		F 4050				112.01	22 (00	2 (40	107
Quartz	SiO ₂		_	P3 ₂ 21	Quartz		4.1934		5.4052		100 000		113.01	22.688	2.648	127
Coesite	SiO ₂		Mono	•	Coesite	16			7.1829		120.283		548.76	20.657	2.909	210
Tridymite	SiO ₂		Mono		Tridymite		18.494	4.991	25.832		117.75		2110.2	26.478	2.269	111
Cristobalite	SiO ₂			P4 ₁ 2 ₁ 2	Cristobalite		4.978		6.948				172.17	25.925	2.318	173
Stishovite	SiO ₂	60.085	icur.	P4 ₂ /mnm	Ruule	2	4.1790		2.6651				46.54	14.017	4.287	20
F <i>eldspar Group</i> Sanidine	KAlSi ₃ O ₈	278.33	Mana	. C2/	Sanidine	4	8.595	13.028	7.179		115.94		722.48	108.788	2.558	199
Orthoclase	KAISi3O8	278.33		.C2/m .C2/m	Sanidine	4	8.561	12.996	7.179		116.01		719.13	108.788	2.571	47
Microcline	KAISi3O8	278.33	Tric.	_	Sanidine	4	8.560	12.964	7.192	90.65	115.83	87.70	720.07	108.425	2.567	31
High Albite	NaAlSi3O8	262.23	Tric.		Albite	4	8.161	12.904	7.213	93.53	116.46	90.24	667.12	100.423	2.610	234
Low Albite	NaAlSi3O8	262.23	Tric.		Albite	4	8.142	12.785	7.110	94.19	116.40	87.68	664.48	100.432	2.621	89
Anorthite	CaAl ₂ Si ₂ O ₈	278.36		-				12.763		93.11						228
Celsian	BaAl ₂ Si ₂ O ₈	375.47			Anorthite Anorthite	8 8	8.627	13.045	14.165 14.408	93.11	115.91 115.22	91.26	1 1336.35 14 66 .90			158
Feldspathoid Gro	w.n															
Leucite	KAlSi ₂ O ₆	218.25	Tetr.	14 ₁ /a	Leucite	16	13.09		13.75				2356.	88.69	2.461	139
Kalsilite	KAISiO ₄	158.17		-	Nepheline		5.16		8.69				200.4	60.34	2.621	178
Nepheline	KNa3Al4Si4O ₁₆	584.33		_	Nepheline		9.993		8.374				724.19		2.679	64
Meionite*	Ca ₄ Al ₆ Si ₆ O ₂₄ CO ₃	932.9	Tetr.	P4 ₂ /n	Scapolite		12.194		7.557				1123.7	338.40	2.757	13
Marialite*	Na ₄ Al ₆ Si ₆ O ₂₄ Cl	863.5	Tetr.	P4 ₂ /n	Scapolite		12.059		7.587				1103.3	332.26	2.599	132
Zeolite Group																
Analcime*	Na ₁₆ Al ₁₆ Si ₃₂ O ₉₆ ·16H ₂ O	3526.1	Tetr.	I4 ₁ /acd	Analcime	1	13.721		13.735				2585.8	1557.4	2.264	13
Chabazite*	Ca ₂ Al ₄ Si ₈ O ₂₄ ·13H ₂ O	1030.9	Trig.	$R\overline{3}m$	Chabazite	1	13.803		15.075				2487.2	499.4	2.065	3
Mordenite*	K ₈ Al ₈ Si ₄₀ O ₉₆ ·24H ₂ O	3620.4	Orth	Cmcm	Mordenite	1	18.167	20.611	7.529				2819.2	1698.0	2.132	15
Clinoptilolite*	KNa2CaAl6Si30O72:24H2O	2750.0	Mon	o.C2/m	Heulandite	1	17.633	17.941	7.400		116.39		2097.1	1263.0	2.177	21
Heulandite*	Ca ₄ K _{1.2} Al ₁₀ Si ₂₆ O ₇₂ ·26H ₂ O	2827.7		o.C2/m	Heulandite		17.715	17.831	7.430		115.93		2132.2	1284.3	2.221	4
Thomsonite*	NaCa ₂ Al ₅ Si ₅ O ₂₀ ·6H ₂ O	671.8	Orth	Pncn	Thomsonite	4	13.089	13.047	13.218				2257.3	339.9	2.373	

Mineral	Formula	Formula (Weight			Structure Type	Z	a (Å)	b (Å)	<i>с</i> (Å)	α (°)	β (°)	γ (°)	Unit Cell Vol (Å ³)		Density (calc)(Mg/	Ref. m ³)
Harmotome*	Ba ₂ Ca _{.5} Al ₅ Si ₁₁ O ₃₂ ·12H ₂ O	1466.7	Mono	o. P2 ₁ /m	Phillipsite	1	9.879	14.139	8.693		124.8		996.9	600.5	2.443	184
Phillipsite*	K _{2.5} Ca _{1.5} Al ₅ Si ₁₀ O ₃₂ ·12H ₂ O			$0.P2_1/m$	Phillipsite	1		14.300	8.668		124.2		1011.3	609.1	2.120	184
Laumontite*	CaAl ₂ Si ₄ O ₁₂ ·4H ₂ O	470.44	Mono	Am	Laumontite	4	7.549	14.740	13.072	90.	90.	111.9	1349.6	203.2	2.315	202
Natrolite*	Na ₂ Al ₂ Si ₃ O ₁₀ ·2H ₂ O	380.23		Fdd2	Natrolite		18.326	18.652	6.601				2256.3	169.87	2.238	174
Sodalite*	Na ₄ Al ₃ Si ₃ O ₁₂ ·Cl	484.6		$P\overline{4}3n$	Sodalite	2	8.870						697.86	210.16	2.306	133
Stilbite*	Na _{1.3} Ca _{4.2} Al ₁₀ Si ₂₆ O ₇₂ ·34H ₂			.C2/m	Stilbite		13.64	18.24	11.27		128.0		2210.	1331.	2.23	71
Scolecite*	CaAl ₂ Si ₃ O ₁₀ ·3H ₂ O	392.34			Natrolite		18.508	18.981	6.527		90.64		2292.8	172.62	2.273	107
Gonnardite*	Na ₆ Ca ₂ Al ₉ Si ₁₁ O ₄₀ ·12H ₂ O	1626.04			Natrolite		13.21		6.622				1155.6	696.00	2.336	141
Edingtonite*	Ba ₂ Al ₄ Si ₆ O ₂₀ ·8H ₂ O	997.22		$P\overline{4}2_{1}m$	Edingtonite		9.581		6.526				599.06	360.81	2.764	140
Gismondine*	Ca ₄ Al ₈ Si ₈ O ₃₂ ·16H ₂ O	1401.09		.P2 ₁ /a	Gismondine		10.024	10.626	9.832		92.40		1024.3	630.21	2.223	226
Garronite*	NaCa _{2.5} Al ₆ Si ₁₀ O ₃₂ ·13H ₂ O	1312.12			Gismondine		9.9266		10.3031				1015.24	611.48	2.146	9
Merlinoite*	K ₅ Ca ₂ Al ₉ Si ₂₃ O ₆₄ ·24H ₂ O	2620.81		Immm	Merlinoite		14.116	14.229	9.946				1982.28		2.195	72
Ferrierite*	Na ₃ KMgAl ₅ Si ₃₁ O ₇₂ :18H ₂ O	2614.2		.P2 ₁ /a	Ferrierite		18.886	14.182	7.470		90.0		2000.8	1205.1	2.169	79
Ferrierite*	NaKMg ₂ Al ₇ Si ₂₉ O ₇₂ ·18H ₂ O	2590.3		lmmm	Ferrierite		19.236	14.162	7.527		90.0		2050.5	1235.0	2.097	80
Faujasite* Erionite*	Na ₂ CaAl ₄ Si ₈ O ₂₄ ·16H ₂ O	1090.9		Fd3m	Sodalite		24.74						15142.	570.02	1.914	18
Cancrinite*	MgNaK ₂ Ca ₂ Al ₉ Si ₂₇ O ₇₂ ·18H	_		-	Erionite		13.252		14.810				2252.4	1356.6	1.978	201
Pollucite*	Ca _{1.5} Na ₆ Al ₆ Si ₆ O ₂₄ ·1.6CO ₂	1008.5		P63	Cancrinite		12.590		5.117				702.4	423.05	2.383	81
Brewsterite*	CsAlSi ₂ O ₆	312.06			Analcime		13.682	17 455	7 700		04.40		2561.2	96.41	3.237	156
	SrAl ₂ Si ₆ O ₁₆ ·5H ₂ O	656.17	Mono	.r2 ₁ /m	Brewsterite	2	6.767	17.455	7.729		94.40		910.2	274.12	2.394	10
High Pressure Sili Phase B Group	icates															
Phase B	Mg ₁₂ Si ₄ O ₁₉ (OH) ₂	741.09	Mono	P2./c	PhsB	1	10.588	14.097	10.073		104.10		1458.4	219.567	3.380	59
Anhydrous B	Mg ₁₄ Si ₅ O ₂₄	864.78		•	AnhB		5.868	14.178	10.073		104.10		835.96	251.749		59
Superhydrous B	Mg ₁₀ Si ₃ O ₁₄ (OH) ₄	619.40			PhsB		5.0894		8.6956				618.16	186.159		166
MgSiO ₃ -Group		017.10	0141.	1 122411	1 11315	L	3.0074	13.900	0.0930				016.10	160.139	3.521	100
MgSiO3-perovskit	e MgSiO3	100.40	Orth.	Pbnm	Perovskite	4	4.7754	4.9292	6.8969				162.35	24.445	4.107	103
MgSiO ₃ -ilmenite	MgSiO ₃	100.40	Trig.	$R\overline{3}$	Ilmenite	6	4.7284		13.5591				262.54	26.354	3.810	102
MgSiO3-garnet	MgSiO ₃	100.40	Tetr.	14 ₁ /a	Garnet	32	11.501		11.480				1518.5	28.581	3.513	7
Wadsleyite Group																
Wadsleyite	Mg ₂ SiO ₄	140.71	Orth.	Imma	Wadsleyite	8	5.6983	11.4380	8.2566				538.14	40.515	3.4729	104
βCo ₂ SiO ₄	Co ₂ SiO ₄	209.95	Orth.	Imma	Wadsleyite	8	5.753	11.524	8.340				552.92	41.628	5.044	151
Silicate Spinel Gro	ир															
γ-Mg ₂ SiO ₄	Mg ₂ SiO ₄	140.71	Cub.	Fd3m	Spinel	8	8.0449						524.56	39.493	3.563	196
γ-Fe ₂ SiO ₄	Fe ₂ SiO ₄	203.78		Fd3m	Spinel	8	8.234						558.26	42.030	4.848	236
γ-Ni ₂ SiO ₄	Ni ₂ SiO ₄	209.95	Cub.	Fd3m	Spinel	8	8.138						538.96	40.577	5.174	236
γ-Co ₂ SiO ₄	Co ₂ SiO ₄	209.50	Cub.	Fd3m	Spincl	8	8.044						520.49	39.187	5.346	151
Silica Group																
Coesite	SiO ₂		Mono		Coesite	16			7.1829		120.283		548.76	20.657		210
Stishovite	SiO ₂	60.085	Tetr.	P4 ₂ /mnm	Rutile	2	4.1790		2.6651				46.54	14.017	4.287	20
Halides				_												
Halite	NaCl	58.443		Fm3m	Halite	4	5.638						179.22	26.985		235
Sylvite	KCl		Cub.		Halite	4	6.291						248.98	37.490		235
Villiaumite	NaF	41.988		Fm3m	Halite	4	4.614						98.23	14.791		235
Carobbiite	KF	58.100	Cub.	$Fm\overline{3}m$	Halite	4	5.34						152.3	22.93	2.53	235

SMYTH AND McCORMICK

Mineral	Formula		Crystal Space System Group	Structure Type	Z	a (Å)	b (Å)	<i>с</i> (Å)	α (°)	β (°)	Y (°)	Unit Cell Vol (ų)	Molar Vol (cm ³)	Density (calc)(Mg/	Ref /m³)
Fluorite	CaF ₂	78.077	Cub. Fm3m	Fluorite	4	5.460						162.77	24.509	3.186	232
Frankdicksonite	BaF ₂	175.34	Cub. Fm3m	Fluorite	4	6.1964						237.91	35.824	4.894	180
Sellaite	MgF_2	62.309	Tetr. P42/mn	m Rutile	2	4.660		3.078				66.84	20.129	3.096	101
Calomel	Hg ₂ Cl ₂	472.09	Tetr. 14/mmn	: Calomel	2	4.45		10.89				215.65	64.94	7.269	101
Cryolite	Na ₃ AlF ₆	209.95	Mono. P2 ₁ /n	Cryolite	2	5.40	5.60	7.78		90.18					101
Neighborite	$NaMgF_3$	104.30	Orth. Pcmn	Perovskite	4	5.363	7.676	5.503				226.54	34.11	3.058	101
Chlorargyrite	AgCl	143.32	Cub. $Fm\overline{3}m$	Halite	4	5.556						171.51	25.83	5.550	101
lodyrite	AgI	234.77	Hex. P63mc	Wurtzite	2	4.58		7.49				136.06	40.98	5.730	101
Nantokite	CuCl	98.99	Cub. F43m		4	5.418						159.04	23.95	4.134	101
Sulfides															
Pyrrhotite	Fe ₇ S ₈	647.44	Trig. P3 ₁	Pyrrhotite	3	6.8673		17.062				696.84	139.90	4.628	62
Pyrite	FcS ₂	119.98	Cub. Pa3	Pyrite	4	5.418						159.04	23.95	5.010	29
Cattierite	CoS ₂	123.06	Cub. <i>Pa</i> 3	Pyrite	4	5.5385						169.89	25.582	4.811	162
Vaesite	NiS ₂	122.84	Cub. $Pa\overline{3}$	Pyrite	4 :	5.6865						183.88	27.688	4.437	162
Marcasite	FeS ₂	119.98	Orth. Prnm	Marcasite	2 4	4.436	5.414	3.381				81.20	24.45	4.906	30
l'roilite	FeS	89.911	Hex. <i>P</i> 62 <i>c</i>	Troilite	12	5.963		11.754				361.95	18.167	4.839	117
Smythite	$(Fe,Ni)_9S_{11}$	855.3	Trig R3m	Smythite	1 3	3.4651		34.34				357.08	215.07	3.977	221
Chalcopyrite	CuFeS ₂	183.51	Tetr. 142d	Chalcopyrite	4	5.289		10.423				291.57	43.903	4.180	84
Cubanite	CuFe ₂ S ₃	271.43	Orth. Pcmn	Cubanite	4 (6.467	11.117	6.231				447.97	67.453	4.024	218
Covelllite	CuS	95.60	Hex. P63/mm	c Covellite	6 3	3.7938		16.341				203.68	20.447	4.676	56
Chalcocite	Cu ₂ S	159.14	Mono. P21/c	Chalcocite	48 13	5.246	11.884	13.494		116.35		2190.9	27.491	5.789	57
Tetrahedrite	Cu ₁₂ FeZnSb ₄ S ₁₃	1660.5	Cub. 143m	Tetrahedrite	2 10	0.364						1113.2	335.25	4.953	179
Bornite	Cu ₅ FeS ₄	501.80	Orth. Pbca	Bornite	16 10	0.950	21.862	10.950				2521.3	98.676	5.085	122
Enargite	Cu ₃ AsS ₄	393.80	Orth. Pmn21	Enargite	2 '	7.407	6.436	6.154				296.63	89.329	4.408	2
Niccolite	NiAs	133.63	Hex. P63/mm	c NiAs	2 3	3.619		5.035				57.11	17.199	7.770	240
Cobaltite	CoAsS		Orth. Pca2 ₁	Cobaltite	4	5.582	5.582	5.582				173.93	26.189	6.335	77
Sphalerite	ZnS	97.434	Cub. <i>F</i> 43 <i>m</i>	Sphalerite	4 :	5.4053						157.93	23.780	4.097	239
Wurtzite(2H)	ZnS	97.434	Hex P63mc	Wurtzite	2 3	3.8227		6.2607				79.23	23.860	4.084	119
Greenockite	CdS	144.464	Hex P63mc	Wurtzite	2 4	4.1348		6.7490				99.93	30.093	4.801	235
Pentlandite	Ni ₅ Fe ₄ S ₈	773.5	Cub. Fm3m	Halite	4 10	0.044						1013.26	152.571	5.069	87
Alabandite	MnS	87.02	Cub. Fm3m	Halite	4 :	5.214						141.75	21.344	4.076	224
Galena	PbS	239.25	Cub. $Fm\overline{3}m$	Halite	4 :	5.9315						208.69	31.423	7.614	160
Clausthalite	PbSe	286.15	Cub. $Fm\overline{3}m$	Halite	4 (6.1213						229.37	34.537	8.285	160
Altaite	PbTe	334.79	Cub. $Fm\overline{3}m$	Halite	4 (6.4541						268.85	40.482	8.270	160
Molybdenite(2H)	MoS ₂	160.07	Hex P63/mm	Molybdenite	2 3	3.1602		12.294				106.33	32.021	4.999	28
l'ungstenite	WS ₂	247.92	Hex P63/mm	Molybdenite-	2H2	3.1532		12.323				105.77	31.853	7.785	203
Acanthite	Ag ₂ S	247.80	Mono. P2 ₁ /c	Acanthite	4 4	4.231	6.930	9.526		125.48		227.45	34.248	7.236	190
Argentite	Ag ₂ S	247.80	Cub. Im3m	Argentite	2 4	4.86						114.79	34.569	7.168	41
Proustite	Ag ₃ AsS ₃	494.72	Trig. R3c	Proustite	6 10	0.82		8.69				881.06	88.44	5.594	55
yrargyrite	Ag ₃ SbS ₃	541.55	Trig. R3c	Proustite	6 1	1.04		8.72				920.42	92.39	5.861	55
Cinnabar	HgS	232.65	Trig. P3 ₂ 21	Cinnabar	3 4	4.145		9.496				141.29	28.361	8.202	14
Metacinnabar	HgS		Cub. <i>F</i> 43 <i>m</i>	Sphalerite	4 :	5.8717						202.44	30.482	7.633	13
Coloradoite	HgTe	328.19	Cub. F43m	Sphalerite	4 (6.440						267.09	40.217	8.161	223
Stibnite	Sb ₂ S ₃	339.69	Orth. Pnma	Stibnite	4 11	1.302	3.8341	11.222				486.28	73.222	4.639	143
Orpiment	As ₂ S ₃	246.04	Mono. $P2_1/n$	Orpiment	4 11	1.475	9.577	4.256		90.68		467.68	70.422	3.494	154

Table 1. Crystallographic Properties of Minerals (continued).

Table 1. Crystallographic Properties of Minerals (continued).

Mineral	Formula	Formula Crystal Space Weight System Group	Structure Type	Z	a (Å)	b (Å)	c (Å)	α (°)	β (°)		Unit Cell Vol (ų)	Molar Vol (cm³) (c	Density calc)(Mg/i	Ref. m³)
Realgar	AsS	106.99 Mono. P2 ₁ /n	Realgar	16	9.325	13.571	6.587		106.38		799.75	30.107	3.554	154
Bismuthinite	Bi ₂ S ₃	514.15 Orth. Pmcn	Stibnite	4	3.981	11.147	11.305				501.67	75.539	6.806	110
Hazelwoodite	Ni ₃ S ₂	240.26 Trig. R32	Hazelwoodit	e 1	4.0718			89.459	89.459	89.459	67.50	40.655	5.910	171
Cooperite	PtS	227.15 Tetr. P42/mm	c Cooperite	2	3.465		6.104				73.29	22.070	10.292	35
Vysotskite	PdS	138.46 Tetr. P42/m	Cooperite	8	6.429		6.611				273.25	20.572	6.731	27
Millerite	NiS	90.77 Trig. R3m	Millerite	9	9.6190		3.1499				252.4	16.891	5.374	181
Linneaite	Co ₃ S ₄	305.06 Cub. Fd3m	Spinel	8	9.406						832.2	62.652	4.869	120
Polydymite	Ni ₃ S ₄	304.39 Cub. <i>Fd</i> 3m	Spinel	8	9.489						854.4	64.326	4.732	49
Violarite	FeNi ₂ S ₄	301.52 Cub. Fd3m	Spinel	8	9.465						847.93	63.839	4.723	49
Greigite	Fe ₃ S ₄	295.80 Cub. Fd3m	Spinel	8	9.875						962.97	72.499	4.080	238
Daubreelite	FeCr ₂ S ₄	288.10 Cub. Fd3m	Spinel	8	9.995						998.50	75.175	3.832	205
Loellingite	FeAs ₂	205.69 Orth. Pnnm	Loellingite	2	5.3001	5.9838	2.8821				91.41	27.527	7.472	136
Arsenopyrite	FeAsS	162.83 Mono. C2 ₁ /d	Arsenopyrite	8	6.546	9.451	5.649			89.94	349.48	26.312	6.189	68
Native Elements	i													
Diamond	C	12.011 Cub. Fd5m	Diamond	8	3.56679)					45.38	3.4163	3.5158	235
Graphite	С	12.011 Hex. P63/mm	Graphite	4	2.456		6.696				34.98	5.267	2.281	235
Silicon	Si	28.086 Cub. Fd3m	Diamond	8	5.43070)					160.16	12.058	2.329	235
Sulfur(a)	S	32.064 Orth. Fddd	Sulfur	128	10.467	12.870	24.493				3299.5	15.443	2.076	235
Sulfur(β)	\$	32.064 Mono. P2 ₁	Sulfur	48	10.926	10.885	10.790		95.92		1276.41	16.016	2.002	78
Kamacite	Fe	55.847 Cub <i>Im</i> 3m	OIron	2	2.8665						23.55	7.093	7.873	235
Taenite	FeNi	114,557 Cub Fm3m	Taenite	32	7.168						368.29	13.864	8.263	235
Nickel	Ni	58.710 Cub. Fm3m	FCC	4	3.52387	7					43.76	6.590	8.910	235
Copper	Cu	63.540 Cub. Fm3m	FCC	4	3.61496	5					47.24	7.113	8.932	235
Arsenic	As	74.922 Trig. <i>R</i> 3m	Arsenic	18	3.7598		10.5475				129.12	4.321	17.340	200
Tin	Sn	118.690 Tetr. /41/amd	Tin	4	5.8197		3.17488	3			107.54	16.194	7.329	235
Ruthenium	Ru	101.070 Hex. P63/mm	с НСР	2	2.7056		4.2803				27.14	8.172	12.368	85
Rhodium	Rh	102.905 Cub. Fm3m	FCC	4	3.8031						55.01	8.283	12.424	235
Palladium	Pd	106,40 Cub. Fm3m	FCC	4	3.8898						60.16	9,059	11.746	235
Silver	Ag	107.87 Cub. Fm3m	FCC	4	4.0862						68.23	10.273	17.500	235
Antimony	Sb	121.75 Trig. <i>R</i> 3m	Arsenic	6	4.3083		11.2743				180.06	18.075	6.736	235
Tellurium	Te	127.60 Trig. P3 ₁ 21	Selenium	3	4.456		5.921				101.82	20.441	6.242	1
lridium	Ir	192.20 Cub. Fm3m	FCC	4	3.8394						56.60	8.522	22.553	235
Osmium	Os	190.20 Hex. P6 ₃ /mm	c HCP	2	2.7352		4.3190				27.98	8.427	22.570	235
Platinum	Pt	195.09 Cub. Fm3m	FCC	4	3.9231						60.38	9.092	21.458	235
Gold	Au	196.967 Cub. Fm3m	FCC	4	4.07825	;					67.83	10.214	19.285	235
Lead	Pb	207.190 Cub. Fm3m	FCC	4	4.9505						121.32	18.268	11.342	235
Bismuth	Bi	208.980 Trig. R3m	Arsenic	6	4.54590)	11.86225	;			212.29	21.311	9.806	235

Acknowledgements. The authors thank Stephen J. Guggenheim (University of Illinois) and two anonymous reviewers for constructive criticism of the manuscript. This work was supported by National Science Foundation Grant EAR 91-05391 and U.S. Dept. of Energy Office of Basic Energy Sciences.

REFERENCES

- 1. Adenis, C., V. Langer, and O. Lindqvist, Reinvestigation of the structure of tellurium, Acta Cryst., C45, 941-942,
- 2. Adiwidjaja, G. and J. Lohn, Strukturverfeinerung von enargite, Cu₃AsS₄, Acta Cryst, B26, 1878-1879, 1970.
- 3. Akimoto, S., T. Nagata, and T. Katsura, The TiFe₂O₅ - Ti₂FeO₅ solid solution series, Nature, 179, 37-38, 1957.
- 4. Alberti, A., and G. Vezzalini, Thermal behavior of heulandites: a structural study of the dehydration of Nadap heulandite, Tschermaks Mineral. Petrol. Mitteilungen, 31, 259-270, 1983.
- Alberti, A., G. Vezzalini, and V. Tazzoli, Thomsonite: a detailed refine- ment with cross checking by crystal energy calculations, Zeolites, 1, 91-97, 1981.
- 6. Allen, F. Chemical and structural variations in vesuvianite. (PhD Thesis) Harvard University, 440p., 1985.
- 7. Angel, R.J., L.W. Finger, R.M. Hazen, M. Kanzaki, D.J. Weidner, R.C. Liebermann, and D.R. Veblen, Structure and twinning of single-crystal MgSiO₃ garnet synthesized at 17GPa and 1800°C, Am. Mineral., 74, 509-
- 8. Armbruster, T., C.A. Geiger, and G.A. Lager, Single-crystal X-ray structure study of synthetic pyrope almandine garnets at 100 and 293K, Am. Mineral., 77, 512-521, 1992.
- 9. Artioli, G., The crystal structure of garronite, Am. Mineral., 77, 189-196,
- 10. Artioli, G., J.V. Smith, and A. Kvick, Multiple hydrogen positions in the zeolite brewsterite, (Sr_{0.95},Ba_{0.05})Al₂ Si₆O₁₆.5H₂O, Acta Cryst., C41, 492-497, 1985.
- 11. Asbrink, S. and L.-J. Norrby, A refinement of the structure of copper (II) oxide with a discussion of some exceptional e.s.d.'s, Acta Cryst., B26, 8–15, 1970.
- 12. Aurivilius, K., The crystal structure of mercury (II) oxide, Acta Cryst., 9, 685–686, 1956.

- 13. Aurivillius, K., An X-ray and neutron diffraction study of metacinnabarite, Acta Chem., Scand., 18, 1552-1553, 1964.
- 14. Auvray, P. and F. Genet, Affinement de la structure cristalline du cinabre α-HgS, Bull. Soc. Fr. Mineral. Crist., 96, 218-219, 1973.
- 15. Baur W. H., Ueber die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2 SnO2, GeO2 und MnF2, Acta Cryst., 9, 515-520 1956.
- 16. Baur, W.H. Die Kristallstruktur des Edelamblygonits LiAlPO₄(OH,F), Acta Cryst., 12, 988-994, 1959.
- 17. Baur, W.H., Atomabstaende und Bildungswinkel im Brookite, TiO2, Acta Cryst., 14, 214-216, 1961.
- 18. Baur, W.H., On the cation and water positions in faujasite, Am. Mineral., 49, 697-704, 1964.
- 19. Baur, W. H., Crystal structure refinement of lawsonite, Am. Mineral., 63, 311-315, 1978.
- 20. Baur, W.H., and A.A. Kahn, Rutiletype compounds IV. SiO2, GeO2, and a comparison with other rutile-type Acta Cryst. B27, compounds, 2133-2139, 1971.
- 21. Beran, A. and J. Zemann, Refinement and comparison of the crystal structures of a dolomite and of an Fe-rich ankerite, Tschermasks Mineral. Petrol. Mitt., 24, 279-286, 1977.
- 22. Bish, D.L. and R.B. Von Dreele, Reitveld refinement of non-hydrogen positions in kaolinite. Clays and Clay Miner., 37, 289-296, 1989.
- 23. Blake, R. L., R. E. Hessevick, T. Zoltai, and L. W. Finger, Refinement of the hematite structure, Am. Mineral., 51, 123–129, 1966.
- 24. Blount, A. M., I. M. Threadgold, and S. W. Bailey, Refinement of the crystal structure of nacrite, Clays and Clay Miner., 17, 185-194, 1969.
- 25. Borie, B., Thermally excited forbidden reflections, Acta Cryst., A30, 337-341, 1974.

- 26. Borodin, V. L., V. I. Lyutin, V. V. Ilvukhin, and N. V. Belov, Isomorphous calcite-otavite series. Dokl. Akad. Nauk SSSR, 245, 1099-1101, 1979.
- 27. Brese, N. E., P. J. Squattrito, and J. A. Ibers, Reinvestigation of the structure of PdS, Acta Cryst., C41, 1829-1830,
- 28. Bronsema, K. D., J. L. de Boer, and F. Jellinek, On the structure of molybdenum diselenide and disulphide, Z. Anorg. Allg. Chem., 540/541, 15-17,
- 29. Brostigen, G. and A. Kjekshus, Redetermined crystal structure of FeS2 (pyrite), Acta Chem., Scand., 23, 2186-2188, 1969.
- 30. Brostigen, G., A. Kjekshus, and C. Romming, Compounds with the marcasite type crystal structure. VIII. Redetermination of the prototype, Acta Chem. Scand., 27, 2791-2796 1973.
- 31. Brown, B. E., and S. W. Bailey, The structure of maximum microcline, Acta Cryst., 17, 1391-1400, 1964.
- 32. Brown G. E., The crystal chemistry of the olivines (PhD Thesis), Virginia Polytechnic Institute and State University Blacksburg, VA 121 p.
- 33. Burnham, C. W., Ferrosilite, Carnegie Inst. Washington, Yb, 65, 285-290, 1967.
- 34. Busing, W. R., H. A. Levy, A single crystal neutron diffraction study of diaspore, AlO(OH), Acta Cryst., 11, 798-803, 1958.
- 35. Cabris, L. J., J. H. G. Leflamme, and J. M. Stewart, On cooperite, braggite, and vysotskite, Am. Mineral., 63, 832-839, 1978.
- 36. Calleri, M., A. Gavetti, G. Ivaldi, and M. Rubbo, Synthetic epsomite, MgSO₄.7H₂O: Absolute configuration and surface features of the complementary {111} forms, Acta Cryst., B40, 218-222, 1984.
- 37. Calligaris, M., G. Nardin, and L.

- Randaccio, Cation-site location in antaural chabazite, *Acta Cryst.*, *B38*, 602–605, 1982.
- 38. Calvo, C., and R. Gopal, The crystal structure of whitlockite from the Palermo quarry, *Am. Mineral.* 60, 120-133, 1975.
- Cameron, M., S. Sueno, C. T. Prewitt, and J. J. Papike, High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite, Am. Mineral., 58, 594-618, 1973.
- 40. Cannillo, E., F. Mazzi, J.H. Fang, P.D. Robinson, and Y. Ohya, The crystal structure of aenigmatite, *Am. Mineral.*, 56, 427–446. 1971.
- Cava, R. J., F. Reidinger, and B. J. Weunch, Single crystal neutron diff-raction study of the fast-ion conductor β-Ag₂S between 186 and 325°C, J. Solid St. Chem., 31, 69-80, 1980.
- Christ, C.L., J.R. Clark, and H.T. Evans, Jr., Studies of borate minerals (III): The crystal structure of colemanite, CaB₃O₄(OH)₃.H₂O, Acta Cryst., 11, 761-770, 1969.
- Christensen, H., and A.N. Christensen, The crystal structure of lepidochrosite (γ-FeOOH), Acta Chem. Scand., A32, 87–88.
- 44. Clark, J. R., D. E. Appleman, and J. J. Papike, Crystal chemical characterization of clinopyroxenes based on eight new structure refinements, *Mineral. Soc. Am. Spec. Pap.*, 2, 31–50, 1969.
- 45. Cohen, J. P., F. K. Ross, and G. V. Gibbs, An X-ray and neutron diffraction study of hydrous low cordierite, Am. Mineral., 62, 67-78, 1977.
- Cole, W.F., and C.J. Lancucki, A refinement of the crystal structure of gyspum, CaSO₄ .2H₂O, Acta Cryst., B30, 921–929. 1974.
- 47. Colville, A. A., and P. H. Ribbe, The crystal structure of an alularia and a refinement of the crystal structure of orthoclase, *Am. Mineral.*, 53, 25–37, 1968.
- 48. Cooper, W.F., F.K. Larsen, P. Coppens and R.F. Giese, Electron population analysis os accurate diffraction data. V. Structure and one-center charge refinement of the light-atom mineral kernite. Na₂B₄O₆(OH)₂. 3H₂O, Am.

- Mineral., 58, 21-31, 1973.
- 49. Craig, J. R., Violarite stability relations, Am. Mineral., 56, 1303–1311, 1971.
- Czaya R., Refinement of the structure of gamma-Ca₂SiO₄, Acta Cryst., B27, 848-849, 1971.
- De Villiers, J. P. R., Crystal structures of aragonite, strontianite, and witherite, Am. Mineral., 56, 758-767, 1971.
- Dollase W.A., Refinement and comparison of the structures zoisite and clinozoisite, Am. Mineral., 53, 1882–1898, 1968.
- Dollase, W. A., Refinement of the crystal structures of epidote, allanite, and hancockite, Am. Mineral., 56, 447-464, 1971.
- 54. Effenberger, H., K. Mereiter, and J. Zemann, Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates, Z. Krist., 156, 233-243, 1981
- 55. Engel, P. and W. Nowacki, Die verfeinerung der kristallstruktur von proustit, Ag₃AsS₃, und pyrargyrit, Ag₃SbS₃, Neues Jb. Miner. Mh., 6, 181–184, 1966.
- Evans, H. T., Jr. and J. A. Konnert, Crystal structure refinement of covellite, Am. Mineral., 61, 996–1000, 1076
- 57. Evans, H. T., Jr., The crystal structures of low chalcocite and djurleite, Z. Krist., 150, 299–320, 1979.
- 58. Finger, L.W., Refinement of the crystal structure of an anthophyllite, *Carnegie Inst. Washington*, Yb, 68, 283–288, 1970.
- 59. Finger, L.W., R.M. Hazen, and C.T. Prewitt, Crystal structures of Mg₁₂Si₄O₁₉(OH)₂ (phase B) and Mg₁₄Si₅O₂₄ (phase AnhB), Am. Mineral., 76, 1-7, 1991.
- 60. Fischer, K., A further refinement of the crystal structure of cummingtonite, (Fe,Mg)₇(Si₄O₁₁)₂(OH)₂, Am. Mineral., 51, 814–818, 1966.
- 61. Fischer P., Neutronenbeugungsuntersuchung der Strukturen von MgAl₂O₄und ZnAl₂O₄- spinellen in Abhaengigkeit von der Vorgeschichte, Z. Krist., 124, 275-302, 1967.
- 62. Fleet, M. E., The crystal structure of a

- pyrrhotite (Fe₇S₈), *Acta Cryst.*, *B27*, 1864–1867, 1971.
- 63. Foit, F.F., Jr, M.W. Phillips, and G.V. Gibbs, A refinement of the crystal structure of datolite, Am. Mineral., 58, 909–914, 1973.
- 64. Foreman, N., and D. R. Peacor, Refinement of the nepheline structure at several temperatures, Z. Krist., 132, 45-70, 1970.
- 65. Forsyth, J. B., I. G. Hedley, and C. E. Johnson, The magnetic structure and hyperfine field of goethite (α–FeOOH), J. of Phys., C1, 179–188, 1968.
- Fortier, S., and G. Donnay, Schorl refinement showing composition dependence of the tourmaline structure, Canad. Mineral., 13, 173-177, 1975.
- 67. Foster, P. K., and A. J. E. Welch, Metal oxide solutions: I. Lattice constants and phase relations in ferrous oxide (wustite) and in solid solutions of ferrous oxide and manganous oxide, *Trans. Faraday Soc.*, 52, 1626–1634, 1956.
- Fuess, H., T. Kratz, J. Topel-Schadt, and G. Mieher, Crystal structure refinement and electron microscopy of arsenopyrite, Z. Krist., 179, 335-346, 1987.
- 69. Fugino, K., S. Sasaki, Y Takeuchi, and R. Sadanaga, X-ray determination of electron distributions in forsterite, fayalite, and tephroite, Acta Cryst., B37, 513-518, 1981.
- Gabe, E. J., J. C. Portheine, and S. H. Whitlow, A reinvestigation of the epidote structure: confirmation of the iron location, Am. Mineral., 58, 218-223, 1973.
- 71. Galli, E., Refinement of the crystal structure of stilbite, *Acta Cryst.*, *B27*, 833–841, 1971.
- Galli, E., G. Gottardi, and D. Pongiluppi, The crystal structure of the zeolite merlinoite, *Neues J. Mineral. Monat.*, 1-9, 1979.
- 73. Gibbs, G. V, and P. H. Ribbe, The crystal structures of the humite minerals: I. Norbergite. *Am. Mineral.*, 54, 376–390, 1969.
- Gibbs, G. V., P. H. Ribbe, and C. W. Anderson, The crystal structures of the humite minerals II. Chondrodite, Am.

- Mineral., 55, 1182-1194, 1970.
- 75. Geller, S., Structures of alpha-Mn₂O₃, $(Mn_{0.983}Fe_{.017})_2O_3$, and $(Mn_{.37}Fe_{.63})_2$ O₃ and relation to magnetic ordering, Acta Cryst., B27, 821-828, 1971.
- 76. Ghouse K. M., Refinement of the crystal structure of heat-treated monazite crystal, Indian J. Pure Appl. Phys., 6, 265-268, 1968.
- 77. Giese, R. F., Jr., and P. F. Kerr, The crystal structures of ordered and disordered cobaltite, Am. Mineral., 50, 1002-1014, 1965.
- 78. Goldsmith, L. M. and C. E. Strouse, Molecular dynamics in the solid state. The order-disorder transition of monoclinic sulfur, J. Am. Chem. Soc., 99. 7580-7589. 1977.
- 79. Gramlich-Meier, R., V. Gramlich and W.M. Meier, The crystal structure of the monoclinic variety of ferrierite, Am. Mineral., 70, 619-623, 1985.
- 80. Gramlich-Meier, R., W.M. Meier, and B.K. Smith, On faults in the framework structure of the zeolite ferrierite. Z. Kristal., 168, 233-254.
- 81. Grundy, H.D. and I. Hassan, The crystal structure of a carbonate-rich cancrinite, Canad. Mineral., 20, 239-251, 1982.
- 82. Guggenheim, S., and S. W. Bailey, The refinement of zinnwaldite-1M in subgroup symmetry, Am. Mineral., 62, 1158-1167, 1977.
- 83. Guggenheim, S., and S. W. Bailey, Refinement of the margarite structure in subgroup symmetry: correction, further refinement, and comments, Am. Mineral., 63, 186-187, 1978.
- 84. Hall, A. R., Crystal structures of the chalcopyrite series, Canad. Mineral.. 13, 168–172, 1975.
- 85. Hall, E. O. and J. Crangle, An X-ray investigation of the reported hightemperature allotropy of ruthenium, Acta Cryst., 10, 240-241, 1957.
- 86. Hall, S. H., and S. W. Bailey, Cation ordering pattern in amesite, Clays and Clay Miner., 27, 241-247, 1979.
- 87. Hall, S.R. and J.M. Stewart, The crystal structure of argentian pentlandite (Fe. Ni)₈AgS₈, compared with the refined structure of pentlandite (Fe,Ni)₉S₈, Canad. Mineral., 12, 169-177, 1973.
- 88. Hanscom R., The structure of triclinic chloritoid and chloritoid polymor-

- phism. Am. Mineral., 65, 534-539.
- 89. Harlow, G. E., and G. E. Brown, Low Albite: an X-ray and neutron diffraction study, Am. Mineral., 65, 986-995, 1980.
- 90. Hawthorne, F.C. and R.B. Ferguson, Anhydrous sulfates. I: Refinement of the crystal structure of celestite with an appendix on the structure of thenardite, Canad. Mineral., 13, 181-187, 1975.
- 91. Hawthorne, F.C., L.A. Groat and R.K. Eby, Antlerite, CuSO₄(OH)₄, a heteropolyhedral wallpaper structure, Canad. Mineral., 27, 205-209, 1989.
- 92. Hawthorne, F. C., and H. D. Grundy, The crystal chemistry of the amphiboles: IV. X-ray and neutron refinements of the crystal structure of tremolite, Canad. Mineral., 14, 334-345, 1976.
- 93. Hazen, R. M., Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase, Am. Mineral., 61, 266-271, 1976.
- 94. Hazen, R. M., and C. W. Burnham, The crystal structures of one-layer phlogopite and annite, Am. Mineral., 58, 889-900, 1973.
- 95. Hazen, R. M., and L. W. Finger, Crystal structure and compressibility of zircon at high pressure, Am. Mineral., 64, 196-201, 1979.
- 96. Hazen, R.M. and L.W. Finger, High temperature crystal chemistry of phenacite and chrysoberyl, Phys. Chem. Miner., 14, 426-432, 1987.
- 97. Hesse, K.-F. Crystal structures of natural and synthetic α-eucryptite, LiAlSiO₄, Z. Kristal., 172, 147-151, 1985.
- 98. Hill, R.J., Hydrogen atoms in boehmite: a single-crystal X-ray diffraction and molecular orbital study, Clays and Clay Miner., 29, 435-445, 1981.
- 99. Hill R. J., X-ray powder diffraction profile refinement of synthetic hercynite, Am. Mineral., 69, 937-942 1984.
- 100. Hill, R. J., J. R. Craig G. V. Gibbs, Systematics of the spinel structure type, Phys. Chem. Miner., 4, 317-319 1979.
- 101. Hoelzel, A.R., Systematics of Minerals. Hoelzel, Mainz, 584pp.,
- 102. Horiuchi, H., M. Hirano, E. Ito, and Y.

- Matsui, MgSiO₃ (ilmenite-type): Single crystal X-ray diffraction study, Am. Mineral., 67, 788-793, 1982.
- 103. Horiuchi, H., E. Ito, and D.J. Weidner, Perovskite-type MgSiO3: Single-crystal X-ray diffraction study, Am. Mineral., 72, 357-360, 1987.
- 104. Horiuchi, H., and H. Sawamoto, β-Mg₂SiO₄: Single-crystal X-ray diffraction study, Am. Mineral., 66, 568-575, 1981.
- 105. Horn, M., C. F. Schwerdtfeger, and E. P. Meagher, Refinement of the structure of anatase at several temperatures, Z. Krist., 136, 273-281,
- 106. Ishikawa, Y., S. Sato, and Y. Syono, Neutron and magnetic studies of a single crystal of Fe₂TiO₄. Tech. rep., Inst. Sol. State Phys., Univ. of Tokyo A 455, 1971.
- 107. Joswig, W., H. Bartl, and H. Feuss, Structure refinement of scolecite by neutron diffraction, Z. Kristal., 166, 219-223, 1984.
- 108. Joswig, W., and H. Feuss, Refinement of a one-layer triclinic chlorite. Clays and Clay Miner., 38, 216-218, 1990.
- 109. Joswig, W., H. Feuss, and S.A. Mason, Neutron diffraction study of a one-layer monoclinic chlorite, Clays and Clay Miner., 37, 511-514, 1989.
- 110. Kanisceva, A. S., Ju. N. Mikhailov and A. F. Trippel, zv. Akad. Nauk SSSR, Neorg. Mater., 17, 1972-1975, 1981, as cited in Structure Reports, 48A, 31, 1981.
- 111. Kato, K., and A. Nukui, Die Kristallstruktur des monoklinen tief tridymits, Acta Cryst., B32, 2486-2491, 1976.
- 112. Kato, T., and Y. Miura, The crystal structures of jarosite and svanbergite, Mineral. J., 8, 419-430, 1977.
- 113. Kay, H. F., and P. C. Bailey, Structure and properties of CaTiO3, Acta Cryst., 10, 219-226, 1957.
- 114. Kay, M. I., B. C. Frazer, and I. Almodovar, Neutron diffraction refinement of CaWO4, J. Chem. Phys., 40, 504-506, 1964.
- 115. Keller, C., Untersuchungen ueber die germanate und silikate des typs ABO4 der vierwertigen elemente Thorium bis Americium, Nukleonik, 5, 41-48, 1963.
- 116. Kimata, M., and N. Ii, The crystal structure of synthetic akermanite

- Ca₂MgSi₂O₇, Neues Jahrbuch fuer Mineral., Monats., 1-10, 1981.
- 117. King, H. E., Jr., and C. T. Prewitt, High-pressure and high-temperature polymorphism of iron sulfide (FeS), *Acta Cryst.*, *B38*, 1877–1887, 1982.
- 118. Kirfel, A., and G. Will, Charge density in anhydrite, CaSO₄, from X-ray and neutron diffraction measurements, *Acta Cryst.*, *B36*, 2881–2890, 1980.
- 119. Kisi, E. H. and M. M. Elcombe, U parameters for the wurzite structure of ZnS and ZnO using powder neutron diffraction, Acta Cryst., C45, 1867–1870, 1989.
- 120. Knop, O., K. I. G. Reid, Sutarno, and Y. Nakagawa, Chalcogenides of the transition elements. VI. X-ray, neutron and magnetic investigation of the spinels Co₃O₄, NiCo₂O₄, Co₃S₄, and NiCo₂S₄, Canad. J. Chem., 22, 3463-3476, 1968, as cited in Structure Reports, 33A, 290-291, 1968.
- Kondrasev, J. D., and A. I. Zaslavskij,
 Izv. Akad. Nauk SSSR, 15, 179-186,
 1951.
- 122. Koto, K. and N. Morimoto, Superstructure investigation of bornite, Cu₅FeS₄, by the modified partial patterson function, *Acta Cryst.*, *B31*, 2268, 1975.
- 123. Krstanovic, I., Redetermination of oxygen parameters in xenotime, YPO₄, Z. Kristal., 121, 315-316, 1965.
- 124. Lager, G. A., and E. P. Meagher, High temperature structural study of six olivines, Am. Mineral., 63, 365-377, 1978.
- 125. Lee, J. H., and S. Guggenheim, Single crystal X-ray refinement of pyrophyllite-1Tc, Am. Mineral., 66, 350-357, 1981.
- Leonova, V. A., Effect of contamination on the lattice parameters of uraninite, *Dokl. Akad. Nauk SSSR*, 126, 1342–1346 1959.
- 127. LePage, Y., L. D. Calvert, and E. J. Gabe, Parameter variation in low quartz between 94 and 298K, J. of Phys. and Chem. Solids, 41, 721-725, 1980.
- 128. Levy, H.A. and G.C. Lisensky, Crystal structure of sodium sulfate decahydrate (Glauber's salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction, Acta Cryst, B34,

- 3502-3510, 1978.
- 129. Lin, C., and S.W. Bailey, The crystal structure of paragonite-2M₁, Am. Mineral., 69, 122-127, 1984.
- Lin, J.C., and S. Guggenheim, The crystal structure of a Li, Be-rich brittle mica: a dioctahedral-trioctahedra intermediate. Am. Mineral. 68, 130-142, 1983.
- 131. Lin, S.B., and B.J. Burley, The crystal structure of meionite, *Acta Cryst.*, *B29*, 2024–2026, 1973.
- 132. Lin, S.B., and B.J. Burley, Crystal structure of a sodium and chlorine-rich scapolite, *Acta Cryst.*, *B29*, 1272-1278, 1973.
- 133. Löns, J. and H. Schulz, Strukturverfeinerung von sodalith, Na₈Si₆ Al₆O₂₄Cl₂, Acta Cryst., 23, 434–436, 1967.
- 134. Louisnathan, S.J., The crystal structure of synthetic soda melilite, CaNaAlSi₂O₇, Z. Krist., 131, 314–321, 1970.
- 135. Louisnathan, S.J., Refinement of the crystal structure of a natural gehlenite, Ca₂AlAlSi)₂O₇, Canad. Mineral., 10, 822-837 1970.
- 136. Lutz, H. D., M. Jung, and G. Waschenbach, Kristallstrukturen des lollingits FeAs₂ und des pyrits RuTe₂, Z. Anorg., Chem., 554, 87–91, 1987, as cited in Structure Reports, 54A, 43, 1987.
- 137. Mackie, P. E., J. C. Elliott and R. A. Young, Monoclinic structure of synthetic Ca₅(PO₄)₃Cl, chlorapatite, Acta Cryst., B28, 1840–1848, 1972.
- 138. Mazzi, F., and E. Galli, Is each analcime different? *Am. Mineral.*, 63, 448–460, 1978.
- 139. Mazzi, F., E. Galli, and G. Gottardi, The crystal structure of tetragonal leucite, Am. Mineral., 61, 108-115, 1976.
- 140. Mazzi, F., E. Galli, and G. Gottardi, Crystal structure refinement of two tetragonal edingtonites, Neues Jahrhuch fur Mineralogie Monat., 373– 382, 1984.
- 141. Mazzi, F., A.O. Larsen, G. Gottardi, and E. Galli, Gonnardite has the tetrahedral framework of natrolite: experimental proof with a sample from Norway, Neues J. Mineral. Monat., 219–228, 1986.
- 142. McGinnety, J.A., Redetermination of

- the structures of potassium sulfate and potassium chromate: the effect of electrostatic crystal forces upon observed bond lengths, *Acta Cryst.*, *B28*, 2845–2852, 1972.
- 143. McKee, D. O. and J. T. McMullan, Comment on the structure of antimony trisulfide, Z. Krist., 142, 447–449, 1975.
- 144. Mellini, M., The crystal structure of lizardite 1T: hydrogen bonds and polytypism, Am. Mineral., 67, 587-598, 1982.
- 145. Menchetti, S. and C. Sabelli, Crystal chemistry of the alumite series: Crystal structure refinement of alumite and synthetic jarosite, Neues J. Mineral. Monat., 406-417, 1976.
- 146. Meyer, H.J., Struktur und Fehlordnung des Vaterits, Z. Kristal., 128, 182-212, 1969.
- 147. Miyake, M., I. Minato, H. Morikawa, and S. Iwai, Crystal structures and sulfate force constants of barite celestite, and anglesite, Am. Mineral., 63, 506-510, 1978.
- 148. Miyazawa, R., I. Nakai, and K. Magashima, A refinement of the crystal structure of gadolinite, Am. Mineral., 69, 948-953, 1984.
- 149. Moore, P.B., The crystal structure of sapphirine, Am. Mineral. 54, 31–49, 1969.
- 150. Morimoto, N., D. E. Appleman and H. T. Evans, The crystal structures of clinoenstatite and pigeonite, Z. Krist., 114, 120-147, 1960.
- 151. Morimoto, N., M. Tokonami, M. Watanabe, and K. Koto, Crystal structures of three polymorphs of Co₂SiO₄, Am. Mineral., 59, 475–485, 1974
- 152. Morosin, B., Structure and thermal expansion of beryl, *Acta Cryst.*, *B28*, 1899-1903, 1972.
- 153. Mortier, L., J. J. Pluth, and J. V. Smith, Positions of cations and molecules in zeolites with the mordenite-type framework IV. Dehydrated and rehydrated K-exchanged "ptilolite", Pergamon, New York, 1978.
- 154. Mullen, D.J.E. and W. Nowacki, Refinement of the crystal structures of realgar, AsS and orpiment, As₂S₃, Z. Krist., 136, 48-65, 1972.

- 155. Narita, H., K. Koto, and N. Morimoto, The crystal structures of MnSiO₃ polymorphs, rhodonite- and pyroxmangite-type, Mineral. J., 8, 329-342, 1977.
- 156. Newnham, R.E., Crystal structure and optical properties of pollucite, Am. Mineral., 52, 1515-1518, 1967.
- 157. Newnham, R.E. and Y. M. deHaan, Refinement of the alpha-Al₂O₃. Ti₂O₃, V₂O₃ and Cr₂O₃ structures, Z. Krist., 117, 235-237, 1962.
- 158. Newnham, R. E., and H. D. Megaw, The crystal structure of celsian (barium feldspar), Acta Cryst., 13, 303-312, 1960.
- 159. Nimmo, J. K., and B. W. Lucas, A neutron diffraction determination of the crystal structure of alpha-phase potassium nitrate at 25°C and 100°C, J. of Phys., C6, 201-211, 1973.
- 160. Noda, Y., K. Matsumoto, S. Ohba, Y. Saito, K. Toriumi, Y. Iwata, and I. Shibuya, Temperature dependence of atomic thermal paramters of lead chalcogenides, PbS, PbSe and PbTe, Acta Cryst., C43, 1443-1445, 1987.
- 161. Novak, G. A., G. V. Gibbs, The crystal chemistry of the silicate garnets, Am. Mineral., 56, 791-825, 1971.
- 162. Nowack, E., D. Schwarzenbach, W. Gonschorek, and Th. Hahn, Deformationsdichten in CoS2 und NiS2 mit pyritstruktur, Z. Krist., 186, 213-215, 1989.
- 163. Ohashi, Y., and L. W. Finger, The role of octahedral cations in pyroxenoid crystal chemistry I. Bustamite, wollastonite, and the pectolite-schizolite-serandite series, Am. Mineral., 63, 274-288, 1978.
- 164. Okamura, F. P., S. Ghose, and H. Ohashi, Structure and crystal chemistry of calcium Tschermak's pyroxene, CaAlAlSiO₆, Am. Mineral., 59, 549-557, 1974.
- 165. Onken H., Verfeinerung der kristallstruktur von monticellite, Tschermaks Mineral. Petrol. Miit., 10, 34-44 1965.
- 166. Pacalo, R.E.G. and J.B. Parise, Crystal structure of superhydrous B, a hydrous magnesium silicate symthesized at 1400°C and 20GPa, Am. Mineral., 77, 681-684, 1992,
- 167. Papamantellos, P. Verfeinerung der Tl2O3-struktur mittels neutronenbeu-

- gung, Z. Krist., 126, 143-146, 1968.
- 168. Papike, J. J., and J. R. Clark, The crystal structure and cation distribution of glaucophane, Am. Mineral., 53, 1156-1173, 1968.
- 169. Papike, J. J., and M. Ross, Gedrites: crystal structures and intra-crystalline cation distributions, Am. Mineral., 55, 1945-1972, 1970.
- 170. Papike, J.J., and T. Zoltai, Ordering of tetrahedral aluminum in prehnite, Am. Mineral., 52, 974-984, 1967.
- 171. Parise, J. B., Structure of hazelwoodite (Ni₃S₂), Acta Cryst., B36, 1179-1180, 1980.
- 172. Passaglia, E., and G. Gottardi, Crystal chemistry and nomenclature of pumpellyites and julgoldites, Canad. Mineral., 12, 219-223, 1973.
- 173. Peacor, D. R., High-temperature single-crystal study of cristobalite inversion, Z. Krist., 138, 274-298,
- 174. Pechar, F., W. Schaefer, and G. Will, A neutron diffraction refinement of the crystal structure of a natural natrolite, Na₂Al₂Si₃O₁₀ 2H₂O, Z. Kristal., 164. 19-24, 1983.
- 175. Perdikatsis, B., and H. Burzlaff, Strukturverfeinerung am Talk Mg3 [(OH)₂Si₄O₁₀], Z. Kristal., 156, 177-186, 1981.
- 176. Pertlik, F., Verfeinerung der kristallstruktur von claudetit (As₂O₃), Monats. Chem., 106, 755-762, 1975.
- 177. Pertlik F., Strukturverfeinerung von kubischem As₂O₃ (Arsenolith) mit Einkristalldaten, Czech. J. Phys., B28, 170-176, 1978.
- 178. Perrotta, A. J., and J. V. Smith, The crystal structure of kalsilite, KAlSiO₄, Mineral. Mag., 35, 588-595, 1967.
- 179. Peterson, R. C. and I. Miller, Crystal structure and cation distribution in freibergite and tetrahedrite, Mineral. Mag., 50, 717-721, 1986.
- 180. Radke, A. S., and G. E. Brown, Frankdicksonite, BaF₂, a new mineral from Nevada, Am. Mineral., 59, 885-888, 1974.
- 181. Rajamani, V. and C. T. Prewitt, The crystal structure of millerite, Canad. Mineral., 12, 253-257, 1974.
- 182. Reeder, R. J., Crystal chemistry of the rhombohedral carbonates, Rev. Mineral., 11, 1-47, 1983.
- 183. Ribbe, P. H., and G. V. Gibbs, Crystal structures of the humite minerals: III.

- Mg/Fe ordering in humite and its relation to other ferromagnesian silicates, Am. Mineral., 56, 1155-1169,
- 184. Rinaldi, R., J. J. Pluth, and J. V. Smith, Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome, Cryst., B30, 2426-2433, 1974.
- 185. Robinson, K., G. V. Gibbs, P. H. Ribbe, and M. R. Hall, Cation distribution in three hornblendes, Am. J. Sci., 273A, 522-535, 1973.
- 186. Robinson, K., G. V. Gibbs, and P. H. Ribbe, The crystal structures of the humite minerals IV. Clinohumite and titanoclinohumite, Am. Mineral., 58, 43-49, 1973.
- 187. Rothbauer, R., Untersuchung eines 2M₁-Muskovits mit Neutronenstrahlen, Neues J. Mineral. Monat., 143-154, 1971.
- 188. Saalfeld, H., and M. Wedde, Refinement of the crystal structure of gibbsite, Al(OH)_{3.} Z. Krist., 139, 129–135, 1974.
- 189. Sabine, T. M. and S. Hogg, The wurtzite Z parameter for beryllium oxide and zinc oxide, Acta Cryst., B25, 2254-2256, 1969.
- 190. Sadanaga, R. and S. Sueno, X-ray study on the α - β transition of Ag₂S, Mineral. J. Japan, 5, 124-143, 1967.
- 191. Sahl, K., Verfeinerung der kristallstruktur von cerussit, PbCO₃, Z. Krist., 139, 215-222, 1974.
- 192. Sartori, F., The crystal structure of a 2M₁ lepidolite, Tschermaks Mineral. Petrol. Mitt, 24, 23-37, 1977.
- 193. Sartori, F., M. Franzini, and S. Merlino, Crystal structure of a 2M₂ lepidolite, Acta Cryst., B29, 573-578, 1973.
- 194. Sartori, F., The crystal structure of a 1M lepidolite, Tschermaks Mineral. Petrol. Mitt. 23, 65-75, 1976.
- 195. Sasaki, S., K. Fujino, Y. Takeuchi, and R. Sadanaga, On the estimation of atomic charges by the X-ray method for some oxides and silicates, Acta Cryst., A36, 904-915, 1980.
- 196. Sasaki, S., C. T. Prewitt, Y. Sato and E. Ito, Single-crystal X-ray study of gamma-Mg2SiO4. J. of Geophysical Research, 87, 7829-7832, 1982.
- 197. Sasaki, S., Y. Takeuchi, K. Fujino, and S. Akimoto, Electron density distributions of three orthopyroxenes,

- $Mg_2Si_2O_6$, $Co_2S_{i2}O_6$, and $Fe_2Si_2O_6$, Z. Krist., 156, 279-297, 1982.
- 198. Sass, R.L., R. Vidale, and J. Donohue, Interatomic distances and thermal anisotropy in sodium nitrate and calcite, Acta Cryst., 10, 259-265,
- 199. Scambos, T. A., J. R. Smyth, and T. C. McCormick, Crystal structure refinement of a natural high sanidine of upper mantle origin, Am. Mineral. 72, 973-978, 1987.
- 200. Schiferl, D. and C. S. Barrett, The crystal structure of arsenic at 4.2, 78 and 299 °K, J. Appl. Cryst. 2, 30-36, 1969.
- 201. Schlenker, J.L., J.J. Pluth, and J.V. Smith, Dehydrated natural erionite with stacking faults of the offretite type, Acta Cryst., B33, 3265-3268, 1977.
- 202. Schramm, V., and K.F. Fischer, Refinement of the crystal structure of laumontite, Molecular Seive Zeolites-I, Advances in Chemistry Series, 101, 259-265, 1971.
- 203, Schutte, W. J., J. L. de Boer, and F. Jellinek, Crystal structures of tungsten disulphide and diselenide, J. Solid St. Chem., 70, 207-209, 1987.
- 204. Shintani, H., S. Sato, and Y. Saito, Electron-density distribution in rutile crystals, Acta Cryst., B31, 1981–1982,
- 205. Shirane, G. and D. E. Cox, Magnetic structures in FeCr₂S₄ and FeCr₂O₄, J. Appl. Phys., 35, 954-955, 1964.
- 206. Shternberg, A.A., G.S. Mironova, and O.V. Zvereva, Berlinite, Kristal., 31, 1206-1211 1986.
- 207. Simonov, M. A., P. A. Sandomerski, F. K. Egorov-Tesmenko, and N. V. Belov, Crystal structure of willemite, Zn₂SiO₄, Kristal., Dokl., Akad. Nauk USSR, 237, 581-583, 1977.
- 208. Smith, D. K., and H. W. Newkirk, The crystal structure of baddeleyite (monoclinic ZrO₂) and its relation to the polymorphism of ZrO2, Acta Cryst., 18, 983-991 1965.
- 209. Smith, J. V., The crystal structure of staurolite, Am. Mineral., 53, 1139-1155, 1968.
- 210. Smyth, J. R., G. Artioli, J. V. Smith, and A. Kvick, Crystal structure of coesite, a high-pressure form of SiO2, at 15 and 298 K from single-crystal neutron and X-ray diffraction data: test of bonding models. J. of Phys. Chem.,

- 91. 988-992, 1987.
- 211. Smyth, J.R., A.T. Spaid, and D.L. Bish, Crystal structures of a natural and a Cs-exchanged clinoptilolite. Am. Mineral., 75, 522-528, 1990.
- 212. Speer, J. A., and B. J. Cooper, Crystal structure of synthetic hafnon, HfSiO₄, comparison with zircon and the actinide orthosilicates, Am. Mineral., 67, 804-808, 1982.
- 213. Speer, J. A., and G. V. Gibbs, The crystal structure of synthetic titanite, CaTiOSiO₄, and the domain textures of natural titanites, Am. Mineral., 61, 238-247, 1976.
- 214. Sudarsanan, K. and R. A. Young, Significant precision in crystal structural details: Holly Springs hydroxyapatite, Acta Cryst., B25, 1534-1543, 1969.
- 215. Sudarsanan, K., P. E. Mackie, and R. A. Young, Comparison of synthetic and mineral fluorapatite, Ca₅(PO₄)₃F, in crystallographic detail, Mat. Res. Bull., 7, 1331-1338, 1972.
- 216. Svennson, C., The crystal structure of orthorhombic antimony trioxide, Sb₂ O₃ Acta Cryst., B30, 458-461, 1974.
- 217. Svennson, C., Refinement of the crystal structure of cubic antimony trioxide, Sb₂O₃, Acta Cryst., B31, 2016-2018, 1975.
- 218. Szymanski, J. T., A refinement of the structure of cubanite, CuFe₂S₃, Z. Krist., 140, 218–239, 1974.
- 219. Tagai, Y., H. Ried, W. Joswig, and M. Korekawa, Kristallographische untersuchung eines petalits mittels neutronenbeugung und transmissionselektronmikroskopie, Z. Kristal., 160, 159-170, 1982.
- 220. Takeuchi, Y., T. Ozawa, T. Ito, T. Araki, T. Zoltai, and J.J. Finney, The B₂Si₈O₃₀ groups of tetrahedra in axinite and comments on the deformation of Si tetrahedra in silicates, Z. Kristal., 140, 289-312, 1974.
- 221. Taylor, L. A., Smythite, Fe3+xS4, and associated minerals from Silverfields Mine, Cobalt, Ontario, Am. Mineral., 55, 1650-1658, 1970.
- 222. Taylor, M., and R. C. Ewing, The crystal structures of the ThSiO4 polymorphs: huttonite and thorite, Acta Cryst., B34, 1074-1079, 1978.
- 223. Thompson, R. M., The telluride minerals and their occurrence in Canada, Am. Mineral., 34, 342-383, 1949.

- 224. Tornoos, R., Properties of alabandite; alabandite from Finland, Neues Jb., Miner. Abh., 144, 1, 107-123, 1982.
- 225. Ülkü, D., Untersuchungen zur Kristallstruktur und magnetischen struktur des ferberits FeWO₄, Z. Krist., 124, 192-219 1967.
- 226. Vezzalini, G. and R. Oberti, The crystal chemistry of gismondines: the non-existence of K-rich gismondines, Bulletin de Mineralogie, 107, 805-812, 1984.
- 227. Vogel, R. E. and C. P. Kempter, Mathematical technique for the precision determination of lattice constants, U. S. Atomic Energy Commission, LA-2317, 30, 1959.
- 228. Wainwright, J. E., and J. Starkey, A refinement of the crystal structure of anorthite, Z. Krist., 133, 75-84, 1971.
- 229. Wechsler, B.A. and C.T. Prewitt, Crystal structure of ilmenite at high temperature and at high pressure, Am. Mineral., 69, 176-185, 1985.
- 230. Wechsler, B. A., C. T. Prewitt, and J. J. Papike, Chemistry and structure of lunar and synthetic armalcolite, Earth Planet. Sci. Lett., 29, 91-103 1976.
- 231. Weitzel, H., Kristallstrukturverfeinerung von Wolframiten und Columbiten. Z. Krist., 144, 238-258, 1976.
- 232. Willis, B.T.M., Anomalous behaviour of the neutron reflexions of fluorite, Acta Cryst., 18, 75-76, 1965.
- 233. Winter, J. K., and S. Ghose, Thermal expansion and high temperature crystal chemistry of the Al₂SiO₅ polymorphs, Am. Mineral., 64, 573-586, 1979.
- 234. Winter, J. K., F. P. Okamura, and S. Ghose, A high-temperature structural study of high albite, monalbite, and the analbite-monalbite phase transition, Am. Mineral., 64, 409-423, 1979.
- 235. Wyckoff, R. W. G. Crystal Structures, John Wiley & Sons, New York, 1963.
- 236. Yagi, T., F. Marumo, and S. Akimoto, Crystal structures of spinel polymorphs of Fe₂SiO₄ and Ni₂SiO₄, Am. Mineral., 59, 486-490, 1974.
- 237. Yakubovich, O.V., M.A. Simonov, and N.V. Belov The crystal structure of synthetic triphylite, LiFe(PO₄). Soviet Phys. Dokl., 22, 347-450, 1977.
- 238. Yamaguchi, S. and H. Wada, Remarques sur une griegite preparee

- par processus hydrothermal, Bull. Soc. Fr. Mineral. Cristallogr., 94, 549-550, 1971.
- 239. Yamanaka, T. and M. Tokonami, The anharmonic thermal vibration in ZnX (X=S, Se, Te) and its dependence on the chemical-bond characters, Cryst., B41, 298-304, 1985.
- 240. Yund, R. A., Phase relations in the system Ni-As, Econ. Geol., 56, 1273-1296, 1961.
- 241. Zachariasen, W. H., Refined crystal structure of phenacite, Be₂SiO₄, Kristallographiya., 16, 1161-1166, 1971.
- 242. Zemann, J., E. Zobetz, G. Heger, and H. Voellenkle, Strukturbestimmung eines OH-reichen topases, Oest. Akad. Wissenschaften, 6, 145-147, 1979.
- 243. Zigan, F. and R. Rothbauer, Neutronenbeugungsmessungen am brucit, Neues J. Mineral. Monat., 137-143, 1967.
- 244. Zigan, F., W. Joswig, H.D. Schuster, and S.A. Mason, Verfeinerung der Struktur von Malachit, Cu₂(OH)₂CO₃, durch Neutronenbeugung, Z. Krist., 145, 412-426, 1977.
- 245. Zigan, F., and H.D. Schuster, Verfeinerung der struktur von azurit, Cu₃(OH)₂(CO₃)₂, Z. Krist., 135, 416-436, 1972.