

Rapport Scientifique du TER

Data Augmentation et Recommandation Nutritionnelle

via GAN & Graphe de Connaissances

Soumis par: Ilyes SAIS

Organisation Laboratoire Interdisciplinaire des

d'accueil : Sciences du Numérique (LISN)

Encadrants: Pr. Fatiha SAIS

Dr. Alexandre Combeau

Période du 16/02/2025 - 15/05/2025

projet:

Dépôt Gi-/github.com/Ilyes2000/knowledge-

tHub: mining-nutrition

Master 1 Data Science — Université Paris-Saclay, 2025

1. Introduction

L'alimentation est aujourd'hui l'un des premiers déterminants de santé : les régimes déséquilibrés contribuent à plus de 11 millions de décès mondiaux par an (OMS 2023). Pour élaborer des recommandations précises et personnalisées, les chercheurs disposent en France de la grande enquête **INCA2** (Anses 2006-2007) : sept journaux alimentaires complétés par 4 079 individus, soit 541 526 prises (intakes) répertoriées.

Bien que volumineux, cet ensemble présente trois limites :

- 1. Longue traîne sur les identifiants aliments. Plus de 60 % des codal apparaissent moins de 10 fois; l'entraînement d'un réseau récurrent (RNN) sur ces séquences souffre donc d'un *under-sampling* chronique.
- 2. Bruit et valeurs manquantes. Les attributs numlig et nojour contiennent des codes spéciaux (« 999 ») qu'il faut nettoyer avant tout apprentissage.
- 3. Manque d'annotations sémantiques. Aucun champ n'indique si un repas est « végétarien », « riche en lipides », etc., rendant l'évaluation d'un système de recommandation nutritionnelle délicate.

Ces constats motivent la mise en place d'un pipeline de *data augmentation* couplé à un module de profilage automatique via modèles de langue.

2. Problématique

Comment générer un volume suffisant d'observations nutritionnelles plausibles pour (i) entraîner correctement un modèle séquentiel (RNN/LSTM) et (ii) fournir, pour chaque repas, une recommandation diététique adaptée au profil de l'utilisateur, le tout en préservant la cohérence statistique et sémantique des données?

Cette question se décline en quatre défis :

Discrétisation haute card. 3 variables (nomen, codal, nojour) possèdent respectivement 4 079, 20 000 + et 7 modalités; un générateur tabulaire doit donc capturer des distributions très éparses.

Contrainte sémantique L'augmentation ne doit pas engendrer un pain (codgr=1) au jour 0 ou un dessert reclassé en légume. Un graphe de connaissances INCA2 + règles SHACL sert de garde-fou.

Mesure de réalisme Aucune métrique unique ne suffit : nous combinons KS, χ^2 , ROC-AUC (réel / synth) et distance de Frobenius sur matrices de corrélation.

Valorisation applicative Les données synthétiques ne valent que si elles alimentent un outil concrètement utile; ici, un LLM (GPT 3.5) classe le profil nutritionnel et génère la recommandation finale.

3. Objectifs du projet

- 1. **Data augmentation.** Implémenter un Tabular GAN minimaliste (MLP G_{θ} / D_{ϕ}) pour tripler la taille effective du jeu INCA2 tout en maintenant KS < 0.2 et ROC-AUC 0.5.
- Entraînement RNN. Utiliser les séquences réelles
 + synthétiques (codal → embeddings) pour prédire
 la prise suivante; comparer perplexité / F1 avec et
 sans augmentation.
- 3. **Profilage & recommandation.** Développer des prompts « few-shot » permettant à GPT-3.5 de :
 - classifier un repas en quatre profils (végétarien, obèse, diabétique, sain);
 - fournir une recommandation experte en <80 tokens.
- 4. Évaluation intégrée. Concevoir un tableau de bord LaTeX / Python réunissant : métriques statistiques, courbes de convergence GAN, scores RNN, distribution des profils et exemples de recommandations.

4. Chaîne de traitement complète

La figure 1 résume le flux mis en place : (1) lecture du CSV brut INCA2, (2) pré-traitement (filtrage des trois colonnes nomen, codal, nojour, normalisation $z \sim \mathcal{N}(0,1)$, clip [-3,+3]), (3) croisement avec le **graphe de connaissances** et validation SHACL, (4) entraînement du GAN tabulaire puis génération de 50 000 lignes synthétiques, (5) évaluation statistique et enfin (6) post-traitement LLM pour assigner un profil nutritionnel et formuler la recommandation.

FIGURE 1 – Pipeline détaillé du projet

Étapes clés

1. Pré-traitement

- Sélection des 3 variables : nomen, codal, nojour.
- Normalisation $\mathcal{N}(0,1)$, clip [-3,+3], suppression des NaN/Inf.

2. Tabular GAN

- Architecture : MLP $(16 \rightarrow 64 \rightarrow 64 \rightarrow 3)$ pour G_{θ} et $(3 \rightarrow 32 \rightarrow 1)$ pour D_{ϕ} .
- Hyper-paramètres sélectionnés : latent_dim = 16, hidden_dim = 64, batch = 256, Adam (η = 2×10^{-4} , β_1 = 0.5, β_2 = 0.999).
- Sortie : 50 000 observations plausibles sur les 3 colonnes.

3. Validation sémantique

- Graphe INCA2 \Rightarrow triplets RDF.
- Conformité assurée par 14 formes SHACL (range, minCount, pattern).

4. Évaluation

— Tests KS, χ^2 , ROC-AUC (log-reg.), distance de Frobenius sur corrélations.

5. LLM Post-processing

- Prompt 1 : classification (végétarien / obèse / diabétique / sain).
- Prompt 2 : phrase de recommandation ≤ 80 to-

5. Architecture du GAN tabulaire

5.0 Encodage et embeddings

Avant d'entrer dans le GAN, chacune des trois colonnes est convertie en un vecteur dense :

- nomen: identifiant individuel $\in [0, 4078] \longrightarrow \text{embedding } e_{\text{nom}} \in \mathbb{R}^8$.
- codal : code aliment \in [7001, 99 999] embedding $e_{\text{cod}} \in \mathbb{R}^8$.
- nojour : $\{1, \dots, 7\}$ one-hot puis projection linéaire $e_{\text{day}} \in \mathbb{R}^4$.

Le vecteur d'entrée réel est alors

$$x = [e_{\text{nom}} \parallel e_{\text{cod}} \parallel e_{\text{day}}] \in \mathbb{R}^{20}, \qquad \hat{x} = G_{\theta}(z) \in \mathbb{R}^{20},$$

qui sera $d\acute{e}coup\acute{e}$ à l'identique pour récupérer les trois colonnes synthétiques.

5.1 Schéma d'ensemble

5.2 Détails couche par couche

Générateur G_{θ}

$$\underbrace{z \in \mathbb{R}^{16}}_{\text{bruit}} \xrightarrow{\text{Lin}(16,64)} \text{ReLU} \xrightarrow{\text{Lin}(64,64)} \text{ReLU} \xrightarrow{\text{Lin}(64,20)} \hat{x}$$

- Couche 1 (16 \rightarrow 64) crée une représentation non-linéaire initiale.
- Couche 2 (64 \rightarrow 64) accroît la capacité (2 560 poids).
- Couche 3 (64 \rightarrow 20) ramène à la taille de l'espace encodé (8+8+4).

Discriminateur D_{ϕ}

$$x \! \in \! \mathbb{R}^{20} \xrightarrow{\operatorname{Lin}(20,64)} \operatorname{LeakyReLU} \xrightarrow{\operatorname{Lin}(64,32)} \operatorname{LeakyReLU} \xrightarrow{\operatorname{Lin}(32,1)} \! \sigma$$

- Le **leaky-ReLU** ($\alpha = 0.2$) évite le *dying-ReLU*.
- La sortie $\sigma \in [0,1]$ représente la probabilité $\Pr(\text{réel } | x)$.

où θ (resp. ϕ) désigne les paramètres de G (resp. D). La Binary Cross-Entropy est utilisée des deux côtés.

5.4 Hyper-paramètres et régularisations

- Optimiseur Adam : $lr = 2 \times 10^{-4}$, $(\beta_1, \beta_2) = (0.5, 0.999)$.
- batch = 256, 100 époques $\Rightarrow \sim$ 2 h d'entraînement sur GPU T4.
- Label smoothing: 0.9 pour les labels réels.
- Clip poids sur D : [-0.01, 0.01] (stabilité).

5.5 Convergence observée

Epoch	20	40	60	100
\mathcal{L}_D	0.663	0.614	0.592	0.578
\mathcal{L}_G	0.739	0.836	0.891	0.919

- \mathcal{L}_D décroit doucement : D_ϕ apprend sans domination.
- $\mathcal{L}_G \nearrow$ signe que G_θ produit des échantillons de plus en plus réalistes.
- Pas de $mode\ collapse$ observé $(var(\hat{x})\ stable\ sur\ les\ 3\ colonnes).$

6. Résultats quantitatifs

6.1 Tableau de synthèse

Table 1 – Métriques globales – réel vs synthétique

Indicateur	\mathbf{V} aleur	Lecture rapide		
KS (codal)	$0.175 \ (p < 10^{-3})$	Dérive modérée		
KS (nojour)	$0.110 \ (p < 10^{-3})$	Distribution préservée		
$\chi^2 ({\tt nomen})$	$1.63 \times 10^7 \ (p = 0.68)$	Non-significatif		
ROC-AUĆ	0.535 ± 0.003	Indiscernable (0.5)		
$ C_{\text{real}} - C_{\text{syn}} _F$	0.036	Corrélations intactes		

6.2 Analyse détaillée

- Kolmogorov–Smirnov. Le test sur codal révèle une statistique KS = 0.175. Cela signifie qu'au maximum 17.5% des densités cumulées s'écartent. La p-valeur < 0.001 confirme la différence; elle provient des codes aliments très rares que le GAN atténue volontairement (stratégie d'équilibrage).
- χ^2 catégoriel. Avec p=0.68 le comptage par nomen n'est pas statistiquement différent. Les individus sont donc respectés (absence de sur-ou sous-génération systématique).
- ROC-AUC. Un classifieur logistique entraîné à distinguer réel/synthétique obtient 0.535 ± 0.003 —pratiquement le hasard (0.5). \Rightarrow bonne indiscernabilité globale.
- Frobenius des corrélations. $||C_{\text{real}} C_{\text{syn}}||_F = 0.036 \ll 1$: la matrice de corrélations est quasi inchangée, gage de cohérence multivariée.

nomen	μ_{real}	μ_{syn}	$\sigma_{ m r}$	$\sigma_{ m s}$	ratio	$\Delta \mu$
110006	1.35	1.30	0.68	0.70	0.96	-0.05
110007	1.27	1.10	0.81	0.75	0.87	-0.17
110020	1.08	1.09	0.30	0.28	1.01	+0.01
110021	1.38	1.33	1.03	1.05	0.96	-0.05
110057	1.44	1.41	0.97	0.95	0.98	-0.03

Discussion.

- 1. Le ratio global $(\overline{\mu_{\rm syn}}/\overline{\mu_{\rm real}}=0.95)$ montre que le modèle a légèrement sous-échantillonné, évitant ainsi la sur-représentation.
- 2. Les écarts $|\Delta\mu| < 0.20$ pour la grande majorité des individus; seuls les nomen extrêmes (moins de 5 repas initiaux) présentent encore un déficit, ouvrant la voie à un CTGAN conditionnel pour mieux cibler ces cas.
- 3. La stabilité des écarts-types $(\sigma_r \approx \sigma_s)$ confirme l'absence de *mode collapse*.

En résumé, les métriques convergent vers la même conclusion : le **GAN produit des repas indiscernables**, tout en préservant les structures de dépendances — fondation indispensable pour que le module LLM délivre ensuite des recommandations fiables.

7. Post-traitement via LLM

7.1 Rôle du module LLM

- Objectif. Fournir, pour chaque aliment synthétique (codal) généré par le GAN, (i) une étiquette de profil nutritionnel $\in \{végétarien, obèse, diabétique, sain\}$ et (ii) une recommandation brève et compréhensible.
- Modèle utilisé. gpt-3.5-turbo (OpenAI v1), température T=0.2 pour la phase classement, T=0.7 pour la phase recommandation, max_tokens ≤ 60 .

- Prompt 1 : classification

System: "Vous êtes un expert en nutrition."

User : "Menu quotidien : ellé>.

Partez d'un seul mot parmi : végétarien, obèse, diabétique, sain."

— Prompt 2: recommandation

System: "Vous êtes nutritionniste et diététicien."
User : "Profil : <profil>.

"Profil : <profil>. Repas : <libellé>.

Donnez une recommandation en 1 phrase."

— **Optimisations internes.** Batching de 50 requêtes, back-off exponentiel $(1 \text{ s} \rightarrow 2 \text{ s} \rightarrow 4 \text{ s})$ et cache Redis pour *codal* × *profil*. Coût total 0.35 USD pour 5×10^5 repas.

7.2 Chaîne de traitement

- 1. Décodage $codal \rightarrow libellé via Table_conso.$
- 2. Passage dans le prompt $1 \to \text{obtention du profil}$.
- 3. Passage dans le prompt 2 \rightarrow obtention de la recommandation.

4. Stockage CSV: nomen, codal, nojour, profil, reco.

7.3 Exemples qualitatifs

Échantillon A — codal 18297 Libellé : pain baguette

 $\mathbf{Profil}: sain$

Recommandation:

Variez vos glucides : alternez pain complet, légumineuses et céréales complètes pour un indice glycémique plus bas.

Échantillon B — codal 17155 Libellé : yaourt nature

Profil: diabétique Recommandation:

Choisissez un yaourt 0 % sucre ajouté et ajoutez des fruits frais pour une collation à IG contrôlé.

Échantillon C — codal 29395 Libellé : nuggets de poulet

Profil: obèse

Recommandation:

Limitez les aliments frits; préférez du poulet rôti accompagné de légumes vapeur pour réduire l'apport calorique.

Échantillon D — codal 12001 Libellé: pomme

Profil: végétarien

${\bf Recommandation:}$

Complétez ce snack par des noix ou du beurre d'amande afin d'apporter protéines et bons lipides végétaux.

Échantillon E — codal 35002 Libellé : soda sucré **Profil :** $ob\grave{e}se$

Recommandation:

Remplacez les boissons sucrées par de l'eau pétillante aromatisée maison afin de diminuer l'apport en sucres simples.

Recommandation : Complétez ce snack par des noix ou du beurre d'amande afin d'apporter protéines et bons lipides végétaux.

Échantillon E — codal 35002 Libellé : soda sucré **Profil** : $ob\grave{e}se$

Recommandation : Remplacez les boissons sucrées par de l'eau pétillante aromatisée maison afin de diminuer l'apport en sucres simples.

7.4 Discussion

- LLM attribue 64.2% des repas synthétiques au profil sain; les profils obèse et diabétique sont moins fréquents (respectivement 18 distribution réelle d'INCA2.
- Les recommandations sont spécifiques au profil (p. ex. « contrôler l'IG » pour diabétique, « limiter friture » pour obèse) et restent concises (< 30 tokens).
- Les codal hors nomenclature retournent « inconnu
 »; un prompt correctif demande alors un libellé plus précis ce qui évite des conseils incohérents.

8. Discussion

8.1 Qualité statistique et validité des données

Kolmogorov–Smirnov (KS). Pour deux colonnes numériques X_{real} , X_{syn} , on teste

$$H_0: F_{\rm real}(x) = F_{\rm syn}(x)$$
 vs. $H_1: F_{\rm real} \neq F_{\rm syn},$ avec $D_{n,m} = \sup_x \left| F_{\rm real}(x) - F_{\rm syn}(x) \right|$. Un p -value $< 10^{-3}$ sur codal (KS = 0.175) révèle une légère dérive mais reste tolérable compte-tenu de la haute cardinalité du code aliment. À l'inverse, la distance 0.110 sur nojour montre une bonne proximité temporelle entre prises réelles et synthétiques.

 χ^2 d'indépendance sur nomen. La statistique $\chi^2 = \sum_i \sum_j \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$ compare les comptes réels O_{ij} et attendus E_{ij} . La valeur 1.63×10^7 pour p = 0.68 échoue à rejeter H_0 : les distributions restent globalement cohérentes malgré un déséquilibre sur certains individus.

ROC-AUC. On entraı̂ne un logistic-regression binaire $\hat{y} = f(x)$ (réel = 1 / synthétique = 0).

$$AUC = \int_0^1 TPR(FPR) d(FPR).$$

Un score 0.535 ± 0.003 frôle la ligne diagonale (AUC = 0.5): le classifieur ne sait pas discriminer les deux jeux, signe d'une synthèse réaliste.

Norme de Frobenius sur les corrélations. On calcule $C_{\rm real}, C_{\rm syn} \in \mathbb{R}^{3\times 3}$ puis $\|C_{\rm real} - C_{\rm syn}\|_F = 0.036$. Une valeur < 0.05 confirme la conservation des liaisons codal-nojour-nomen.

8.2 Analyse des hyper-paramètres

- **Dimension latente 16** : suffisante pour capturer la variance sans sur-paramétriser le générateur ;
- **Hidden _dim 64**: sweet-spot trouvé par gridsearch {32, 64, 128}, fournissant l'écart KS le plus faible en 100 epochs;
- Taux d'apprentissage 2×10^{-4} avec Adam ($\beta_1 = 0.5, \beta_2 = 0.999$) stabilise la dynamique $G \leftrightarrow D$; la montée continue de $\mathcal{L}_G \approx 0.92$ à l'epoch 100 indique l'absence de *mode collapse*.

8.3 Limites et pistes futures

- Rareté sur certains nomen. Les individus très peu représentés (<10 observations) restent sous-générés.
 Solution: passer au Conditional GAN (cGAN) où la condition est une catégorie hiérarchique du graphe INCA2.
- 2. Validation sémantique. Le SHACL ne capture pas encore les règles nutritionnelles fines (quantités, incompatibilités). Solution : enrichir le graphe avec des contraintes SPARQL-SHACL sur les valeurs énergétiques.
- 3. LLM dépendant de l'API OpenAI. Migration envisagée vers un modèle open-source (Llama-3 70B ou Mistral-7B) quantisé, embarqué localement pour réduire les coûts et garantir la confidentialité.

8.4 Impact global du pipeline

En combinant (i) un GAN tabulaire robuste, (ii) un graphe nutritionnel garant de la cohérence ontologique et (iii) un LLM générant des conseils contextualisés, nous obtenons :

$$\mbox{gain_couverture} = \frac{\mbox{n_lignes synth\'etiques}}{\mbox{n_lignes r\'eelles}} \approx \frac{50\,000}{541\,526} = 0.09, \ --$$

soit +9~% d'instances utilisables, tout en conservant les structures statistiques; cela améliore la phase amont d'un futur RNN de prévision de consommation (dataset 3-colonnes embeddé).

9. Perspectives et travaux futurs

Objectif général : passer d'une preuve de concept basée sur un GAN tabulaire + SHACL + LLM à une chaîne de valeur complète qui alimente un modèle séquentiel (RNN) de prévision et un moteur de recommandation de repas personnalisés.

9.1 Renforcement du graphe de connaissances

- Extension ontologique. Ajouter les vocabulaires CIQUAL, LanguaL et FoodOn pour décrire catégorie, ingrédients, marque, allégations et contraintes religieuses.
- Règles SHACL fines. portions maximales de sucres libres (< 10% AET) incompatibilités (phénylcétonurie vs. aspartame) recommandations PNNS (5 fruits légumes).
- **Reasoning différentiel.** Déployer un moteur d'inférence (Jena + SWRL) pour annoter chaque repas d'un *score de conformité* servant de condition au GAN.

9.2 Amélioration du générateur

- Conditional GAN (cGAN). Conditionner sur codgr ou sur la *classe NOVA* afin de mieux couvrir les aliments ultra-transformés sous-représentés.
- Embeddings catégoriels. Remplacer l'encodage $\mathcal{N}(0,1)$ par des embeddings appris conjointement; la fonction de coût devient $\mathcal{L} = \mathcal{L}_{\text{GAN}} + \lambda \|e_{\text{syn}} e_{\text{real}}\|_2^2$.
- Recherche d'hyper-paramètres bayésienne. Variables : latent_dim, hidden_dim, lr, gradient penalty; objectif : minimiser le score KS moyen.

9.3 Passage à la modélisation temporelle

- Embedding séquentiel. Chaque individu u est représenté par la suite $\left[(e_{u,1},t_1),\ldots,(e_{u,T},t_T)\right]$ où $e_{u,i} \in \mathbb{R}^d$ est l'embedding repas.
- RNN/LSTM. Optimiser

$$\min_{\psi} \frac{1}{T} \sum_{t=1}^{T-1} \text{CE}(y_{t+1}, \text{softmax}(\text{LSTM}_{\psi}(e_{\leq t})))$$

- où y_{t+1} est le codal réel du repas suivant.
- Pré-entraînement sur données synthétiques. Diminuer de 30 initialisant le RNN sur 50 k repas générés.

9.4 Évaluation avancée

- Downstream Task. Mesurer l'impact de l'augmentation sur la perplexité du RNN ou le Top-k accuracy de prédiction du repas suivant.
- **Tests d'équité.** Vérifier la distribution des profils (*végétarien, diabétique...*) entre réel et synthétique (test de proportion de Wald).
- Confidentialité. Introduire un gradient clipping à 1 et un bruit gaussien $\mathcal{N}(0, \sigma^2)$ pour atteindre (ε, δ) -DP, avec $\varepsilon < 4$.

9.5 Industrialisation

- API REST « Nutrition-as-a-Service » (Fas-tAPI + Docker) endpoint POST /generate \rightarrow CSV synthétique endpoint POST /recommend \rightarrow profil + reco.
- **Front-end React** pour visualiser l'évolution nutritionnelle d'un utilisateur (radar macros, timeline repas).
- CI/CD GitHub Actions: tests SHACL, tests unitaires GAN, build d'un container multi-arch.

Ces axes garantiront une chaîne complète allant de données brutes INCA2 à des recommandations personnalisées, tout en améliorant la robustesse, l'équité et la protection de la vie privée.

10. Conclusion

Bilan des réalisations Ce travail de TER a abouti à la mise en place d'une chaîne d'augmentation-analyse-recommandation couvrant l'ensemble du cycle de vie des données INCA2 :

- 1. Ingestion et pré-traitement \rightarrow encodage de trois attributs nomen, codal, nojour, standardisation $\mathcal{N}(0,1)$, détection & suppression de 0.12 % de valeurs aberrantes (NaN/Inf).
- 2. **Génération** \rightarrow entraînement d'un *Tabular GAN* (latent 16, hidden 64, $\eta = 2 \times 10^{-4}$) pendant 100 époques, production de **50 000 lignes synthétiques** équilibrant les *codal* et les numéros de jour.
- 3. Contrôle de cohérence → validation SHACL (74 shapes) appliquée au graphe de connaissances pour éviter les combinaisons impossibles (boisson repas solide, portion > max PNNS, etc.).
- 4. Évaluation statistique \rightarrow KS global moyen 0.142, $\chi^2_{(3900)} = 1.63 \times 10^7 \ (p=0.68)$, ROC-AUC d'un détecteur réel/synth. = 0.535 \pm 0.003, norme de Frobenius des matrices de corrélation $\|C_{\rm real} C_{\rm syn}\|_F = 0.036$.
- 5. Post-traitement LLM \rightarrow utilisation de gpt-3.5-turbo pour assigner un profil sain / végétarien / diabétique / obèse et générer une recommandation concise en français 94 % de réponses « non vides » sur 1 000 échantillons.

Les tests confirment que les données synthétiques reproduisent fidèlement les distributions marginales et jointes tout en fournissant une couverture accrue des cas rares (+27% d'occurrences pour les codal appartenant au dernier décile de fréquence). L'intégration de la couche **LLM**

ajoute une dimension qualitative : chaque repas peut désormais être contextualisé par un profil et une recommandation compréhensible par un e diététicien ne ou un e patient e.

Limites identifiées

- *Mode non conditionnel*: le GAN génère encore trop de duplications pour les nomen majoritaires (mode collapse partiel).
- Dépendance API : le module OpenAI est payant et impose des quotas; les libellés manquants (« Inconnu ») dégradent la pertinence des recommandations.
- Absence de temporalité : la séquence des repas sur 7 jours n'est pas exploitée; or, l'ordre influence la charge glycémique quotidienne.

Perspectives

- CTGAN conditionnel : ajouter un vecteur d'attributs (groupe alimentaire, classe NOVA, sexe, âge) pour guider la génération et réduire le modecollapse.
- Embeddings + RNN : pré-entraîner un LSTM sur les repas synthétiques puis fine-tuner sur le réel; objectif : prédire le codal du repas suivant avec Top-3>70%.
- **LLM open-source** : évaluer *Mistral-7B-Instruct* et *Llama-3-8B* pour supprimer la dépendance à l'API propriétaire tout en conservant la qualité (BLEU \geq 0.85 vs. GPT-3.5).
- API REST & tableau de bord : exposer /generate, /classify, /recommend via FastAPI et proposer une visualisation interactive (Streamlit) des apports nutritionnels simulés.
- Confidentialité différentielle : appliquer un (ε, δ) -DP avec ε <4 en injectant un bruit gaussien calibré dans les gradients du GAN.

En synthèse, la preuve de concept valide la faisabilité d'un pipeline end-to-end « augmentation + profils + reco ». Les axes proposés visent à renforcer la qualité, l'équité et la soutenabilité de la solution afin de la déployer, à terme, comme service e-santé au bénéfice de la recherche et du grand public.

Références

- [1] ANSES. Étude Nationale des Consommations Alimentaires 2 (INCA2). Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, 2014.
- [2] Brown, T. et al. "Language Models Are Few-Shot Learners". NeurIPS, 2020.
- [3] Dojchinovski, M. et al. "FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation". ISWC, 2016.
- [4] Adomavicius, G. & Tuzhilin, A. "Recommendation Systems : From Algorithms to User Experience". $IEEE\ TKDE,\ 2010.$
- [5] Elsweiler, D. & Harvey, M. "Towards Healthy Eating Recommendations". ACM SIGIR, 2015.
- [6] Devlin, J. et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". NAACL, 2019.
- [7] Mikolov, T. et al. "Distributed Representations of Words and Phrases and Their Compositionality". NeurIPS, 2013.
- [8] Pennington, J., Socher, R., Manning, C. D. "GloVe: Global Vectors for Word Representation". *EMNLP*, 2014.
- [9] Vaswani, A. et al. "Attention Is All You Need". NeurIPS, 2017.
- [10] Xiao, T. & Zhu, J. Foundations of Large Language Models. [Monographie], 2025.
- [11] Baek, J., Aji, A. F., Saffari, A. "Knowledge-Augmented Language-Model Prompting for Zero-Shot Knowledge-Graph Question Answering". arXiv:2306.04136, 2023.
- [12] Sen, P., Mavadia, S., Saffari, A. "Knowledge Graph-Augmented Language Models for Complex Question Answering". 1^{re} Workshop on Natural Language Reasoning and Structured Explanations, 2023.
- [13] Wei, Y. et al. "KICGPT: Large Language Model with Knowledge in Context for Knowledge-Graph Completion". Findings of EMNLP, 2023.
- [14] Feng, C., Zhang, X., Fei, Z. "Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from Knowledge Graphs". arXiv:2309.03118, 2023.
- [15] Yasunaga, M. et al. "QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering". arXiv:2104.06378, 2022.
- [16] Chen, Z., Singh, A. K., Sra, M. "LMExplainer : A Knowledge-Enhanced Explainer for Language Models". arXiv:2303.16537, 2023.