UNCLASSIFIED

AD NUMBER AD872158 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; APR 1970. Other requests shall be referred to Army Aviation Materiel Labs., Fort Eustis, VA. **AUTHORITY** USAAVLABS ltr 23 Jun 1971

(2)

AD

AN EQUATION FOR PREDICTING THE RESIDUAL STATIC STRENGTH OF STIFFENED PANELS

AD NO.

By

I. E. Figge, Sr.

April 1970

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

Task 1F162204A17003 HT PS 68-2 USAAVLABS Technical Report 70-17 April 1970

AN EQUATION FOR PREDICTING THE RESIDUAL STATIC STRENGTH OF STIFFENED PANELS

By

I. E. Figge, Sr.

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

ABSTRACT

An equation has been developed to predict the residual static strength of stiffened panels. All parameters in the equation can be evaluated from tests on simple unstiffened specimens. The stiffened panel is treated as a composite material, with the sheet material representing the matrix and the stiffeners representing the fibers. The residual static strength of the cracked sheet, calculated using notch strength analysis, and the proportional limit of the stiffeners are used in the law-of-mixtures equation to calculate the residual static strength of the stiffened panels.

Excellent predictions of the residual static strength of stiffened panels have been obtained and are presented for a wide variety of panel configurations, type fasteness, and crack geometry.

TABLE OF CONTENTS

																	Page
ABSTRA	CT.	1.1		•		•	1.1	•	•	•	•	•	•	•		•	iii
LIST OF	ILL	UST	RA'	ГIC	NS	•	1 • 1	•		•	• 1	•			•		vi
LIST OF	TAB	LES	S .			•	•	•			1.	•	•	• 1		•	vii
LIST OF	SYM	воі	Ls	•		•	ι•	•			•	1•1	٠	• 1	•	•	viii
INTROD	UCTI	ON	•	•		•		•		•	•	•	٠	•		•	1
BACKG	ROUN	D.	•	•	•		•	•		•	•	•	٠	•	•	•	2
METHO	D.	•		•	•		•	٠	•	•	•	•	•	•	•		6
AGREEN	MENT	BE	тw	EE	N F	RE	DIC	TI	ON	ANI) E	ХРІ	ERI	ME	NT.	AL	
DATA		•	•	•	•	•				•		•	•	•	•	•	8
LITERA	TURE	CI	TE	D.	•	•	•	•	•	•	•	•	•	•			30
בי מדפות	TITIO	N															32

LIST OF ILLUSTRATIONS

Figure				Page
1	Residual Static Strength of Stiffened 7075-T6 Aluminum Panels	•	Ţ	3
2	Residual Static Strength of Stiffened 2024-T3 Aluminum Panels	•		4
3	Typical Residual Static Strength Behavior of Unstiffened 2024 and 7075 Aluminum Panels.	•		5
4	Experimental and Predicted Strengths of Stiffened Panels			19

LIST OF TABLES

Table		Page
ì	Constants Used To Calculate Residual Static Strength of Stiffened Panels	8
II	Residual Static Strength of Stiffened Panels	9
III	Average Differences Between Calculated and Experimental Data	17

LIST OF SYMBOLS

a one-half crack length, in.

Anet(sheet) net section area of sheet (panel width minus crack

length, times thickness), in.2

Anet(stiff) net section area of remaining stiffeners, in.2

A_{st} area of stiffener, in.²

C_M material constant obtained from experimental data

on unstiffened panels (Reference 5), in. - 1

D rivet diameter, in.

F stiffener failed prior to testing

K_u static notch strength factor

P rivet pitch, in.

PL(stiff) proportional limit of stiffener, ksi

S stiffener spacing, in.

S_{net} net section stress based on total area (skin plus

stiffener), ksi

S_{net(cal)} calculated net section stress based on total area

(skin plus stiffener), ksi

S_{net(exp)} experimental net section stress based on total area

(skin plus stiffener), ksi

t sheet thickness, in.

W specimen width, in.

 ρ' material constant (Neuber constant), in.

ou(sheet) ultimate tensile strength of sheet, ksi

 $\sigma_{\rm u}({\rm stiff})$

ultimate tensile strength of stiffener, ksi

INTRODUCTION

Current fail-safe design philosophy dictates the need for a practical method to predict the residual static strength of damaged or cracked structures. Several methods exist for predicting the residual strength behavior of unstiffened panels; for example, fracture mechanics, notch strength analysis, and effective width approach. If these methods are properly applied and their inherent limitations are recognized, acceptable engineering predictions can be made. Prediction methods for stiffened panels are somewhat more limited in their capability of making satisfactory predictions for a wide variety of configurations. Often the designer is forced to rely on experimental data obtained from stiffened panels that are similar, if not identical, to those he will ultimately use. Obviously, this approach is both time-consuming and costly.

Based on the need for a simple method to predict the residual strength of stiffened panels, it was the purpose of this study to develop a method which required only basic material properties and data from unstiffened panels to make the predictions.

BACKGROUND

The need for an improved method to predict the residual static strength of stiffened panels became apparent when some unpublished NASA data* on 30-inch-wide 2024-T3 and 7075-T6 aluminum panels with riveted aluminum stiffeners were being studied. In the NASA data, the ratio of stiffener area to skin area varied from 19 to 56 percent and the percentage of total area that failed (prior to testing) ranged from 12 percent to 66 percent. Interestingly, the test results indicated that the ratio of stiffener area to skin area had no apparent effect on the residual strength behavior, as shown in Figures 1 and 2. Since configuration had no apparent effect on the behavior, a single curve could be faired through all the data for a given material. Although the scatter was quite large, the curves indicate the trend of the data. Comparison of these faired curves indicates that the curve for the 7075-T6 material fall, above the curve for the 2024-T3 material. Typically, for unstiffened panels,2 the order of the curves is reversed; that is, the curve for the 2024 material falls above the curve for the 7075 material (see Figure 3).

For the curves presented in Figures 1 and 2, it became obvious that the methods commonly used to predict the residual static strength of stiffened panels (for example, Greif and Sanders and Romualdi et al would not result in suitable predictions since their approach is to adjust the unstiffened data by a factor which is some function of the specimen geometry (stiffener spacing, area, etc.) and the ratio of sheet to stiffener material moduli. In the NASA data, the stiffener and sheet material have identical moduli; therefore, the commonly used methods would result in adjustment of both curves in Figure 3 by the same factor. Thus, using these approaches would result in predicted curves ordered as shown in Figure 3, not as the actual results as shown in Figures 1 and 2.

^{*}Unpublished data obtained from additional testing on panels described in Reference 1.

Figure 1. Residual Static Strength of Stiffened 7075-T6 Aluminum Panels.

Figure 2. Residual Static Strength of Stiffened 2024-T3 Aluminum Panels.

Figure 3. Typical Residual Static Strength Behavior of Unstiffened 2024 and 7075 Aluminum Panels.

METHOD

The approach presented herein is to treat the panel as a composite material, with the sheet material representing the matrix and the stiffeners representing the fibers. The residual static strength of the crack sheet, calculated using notch strength analysis, and the proportional limit of the stiffeners are used in the law-of-mixtures equation, which has been shown to be applicable in predicting the strength of metal-metal composites (see, for example, Reference 5). It is assumed that the proportional limit of the stiffener is the limiting stress at which the stringer is effective in retarding the failure process.

The equation for predicting the residual static strength (S_{net}) of stiffened panels is as follows:

$$S_{net} = \frac{\text{Residual Static Strength }}{\text{of Sheet Material}} \left(\frac{\text{Net Sheet Area}}{\text{Total Area}} \right)$$
+ \frac{\text{Proportional Limit }}{\text{of Stiffeners}} \left(\frac{\text{Net Stiffener Area}}{\text{Total Area}} \right)

Then,

$$S_{\text{net}} = \frac{\sigma_{\text{u}(\text{sheet})} A_{\text{net}(\text{sheet})}}{K_{\text{u}} \left[A_{\text{net}(\text{sheet})} + A_{\text{net}(\text{stiff})}\right]} + \frac{PL_{\text{(stiff)}} A_{\text{net}(\text{stiff})}}{\left[A_{\text{net}(\text{sheet})} + A_{\text{net}(\text{stiff})}\right]}$$
(1)

where $\sigma_{u(sheet)}$ = ultimate strength of sheet material, ksi

PL(stiff) = proportional limit of stiffener, ksi

A_{net(sheet)} = net section area of sheet (panel width minus crack length, times thickness), in.²

Anet(stiff) = net section area of remaining stiffeners, in.2

 K_u = static notch strength factor

The static notch strength factor is calculated by using the following equation:

$$K_u = 1 + C_M \sqrt{a} \sqrt{\frac{1 - 2a/W}{1 + 2a/W}}$$
 (2)

where C_M = material constant obtained from experimental data on unstiffened panels, in. $-\frac{1}{2}$

a = one-half crack length, in.

W = specimen width, in.

Equation (1) requires only knowledge of basic material properties, that is, ultimate tensile strength and proportional limit, and sufficient residual static strength data on unstiffened panels to obtain the material constant, $C_{\mathbf{M}}$ (see Reference 6). For aluminum and some titanium alloys, the value of $K_{\mathbf{u}}$ can be calculated by using the curves presented in References 2 and 7 respectively.

AGREEMENT BETWEEN PREDICTION AND EXPERIMENTAL DATA

A literature survey was conducted to obtain test data covering a wide range of materials and specimen configurations. Although the search was extensive, only a limited amount of experimental data was available (References 8 through 11).

To demonstrate the overall applicability of the proposed method, no attempt was made to adjust the value of C_M for each specific set of data; rather, typical values of C_M were used in the calculations. Also, since the proportional limits were not quoted in the referenced reports, typical values were used. A summary of the values that were used in the calculations is presented in Table I.

TABLE I. CONSTANTS STATIC STR		CULATE RESIDUAL IFFENED PANELS
Material	C _M (in ½)	Proportional Limit (ksi)
2024-T3 Bare and Clad	0.65	45
7075-T6 Bare and Clad	1.90	55
PH14-8 (SRH 1050)	0.70	189
Ti8Al-1Mo-1V	0.60	116

In the case of Reference 8, notched panels rather than latigue cracked panels were tested. Calculation of K_u for notched panels requires the approach described in Reference 2. For the data in this report, the values of $\sqrt{\rho^{\dagger}}$ (material constant required to calculate K_u for notched specimens) were the same as those used in Reference 8 (see Table II).

г.	Sheet		Area of Each	No. of	Stiffener	Rivet	Rivet	Total Crack	Total Area	Saet(evn)	Srotfeall	,
Gross Section	Thick. (in.)	Stiffener Size	Stiffener (in. 2)	Stiffeners Failed	Spacing (in.)	P. ch (in.)	Dia (in.)	Length (in.)	Failed (pc.)	(ksi)		Spet(cal)
	Material: PL(stiff)	Material: 7075-T6 Clad PL _(stiff) = 55 ksi (est)			Ju(sheet)	eet) = 76 ks: fg = 81 ks:	KS:					ju
ببيليا	J 0. 051	1 x 1 x 1/8	0.234ª	2	(e)	0.5	5/32	17.75	40.6	38.7	44.2	0.87
	0.051	1 x 1 x 1/8	0.234ª	~1	(e)			16.63	38.3	41.5	43.5	0.95
	0.051	1 x 1 x 3/32	0.2343	2	(e)			16.50	38. 7	27.8	43.4	1.10
	0.064	1 x 1 x 3/32	0.178 ^b	4	(e)			22.50	66.0	43.2	7.17	1.04
	0.081	1 x 1 x 1/16	0. 122 ^c	7	(e)			10, 38	32.4	32	30.3	1.02
	6.031	1 x 1 x 1/16	0. 122 ^c	7	(e)	. <u>. </u>		17.00	48.4	42.8	34.1	1. 25
	0. 102	3/4 x 3/4 x 1/16	0.089 ^d	7	(e)	-, -		16.50	50.5	44.3	29.1	1.52
	0. 102	3/4 x 3/4 x 1/16	0.089d	0	(e)			4.63	12.8	8.04	28.9	1.41
	6. 102	3/4 x 3/4 x 1/16	0.089 ^d	7	(c)			17.13	52.3	34.9	29.5	1. 18
	0.051	1 x 1 x 1/6	0.234	7	(e)			11.63	33.4	35.6	40.7	0.87
	0.051	1 x 1 x 1/8	0,234ª	7	(0)			15. oi	38.9	39. 4	† . 7 †	0.92
	0.051	1 x 1 x 1/8	0.234ª	2	(e)	-		13, 38	36.3	43.9	41.5	1.05
~ ц	Vaterial PL(st.iff)	Material: 7075-Tú PĽ(stiff) = 55 ksi (est)			G _U (sh	$G_{\omega}(\text{sheet}) = 82.4 \text{ ksi}$ $\sigma_{\omega}(\text{stiff}) = 82.4 \text{ ksi}$. 1 ksi) = -	$\sqrt{p^2} = 0.144 \text{ in.}$ $W = 12 \text{ m.}$.:.
	0.054	3.75 x 0. Co4	0.240	c	,	9/16	3/16	1.50h	5.¢	01.3	53.0	1. 53
	0.064	2, 56 × 0.250	0.640		•	9/168	3/15	4. 00 ³	12.5	55.1	7. 2.	1.05
	0.064	0.50 x 0.064	0.032			3/3	1/8	0. 50h	т, С	66.5	58.5	1. 13
	0.064	0.75×0.064	0.048		•	3/8	1/8	1. 50h	11.1	56.0	51. :	1.05
	06.4	1 1 1/23				1		4				

	exp)		20	55	62	33	68)3	06	68	98		96	76	89		06	76	95	82	98
	Snet(cal)	in.	1.02	0.85	0.79	0.83	0.89	1.03	0.90	0.89	0.86	n 1	0.96	0.97	0.89	0.89	0.90	0.94	0.95	0.82	0.98
	Snet(cal)	4	47.3	47.3	47.3	50.1	50.1	54.1	47.3	46.3	47.0	$C_{M} = 0.65 \text{ in.}^{-\frac{1}{2}}$ W = 30 in.	39.7	39.9	40.8	40.0	37.9	38.6	38.0	38.0	1 42
	Snet(exp)	, γ γ	48.5	40.3	37.2	41.5	44.5	55.8	42.9	41.1	40.5	0 8	38.3	38.8	36.5	35.7	34.3	36.4	36.2	31.3	7
	Total Area Failed (pct)		18.8	18.8	18.8	33.3	33.3	8.2	20.0	31.3	45.5		30.0	32.5	38.2	33.5	31.2	38.9	34.7	25.7	22 2
	Total Crack Length (1n.)		2.78 ^h	2.78 ^h	2.78 ^h	6.00h	6.00 ^h	1. 00 ^h	2.50 ^h	4.00 ^h	6.00 ^h		10.94	12. 38	16. 13	13.06	10, 25	14.50	11.50	7.50	10 31
	Rivet Dia (in.)	4 ksi ksi	3/16	3/16	3/16	3/16	3/16	1/8	1/8	1/8	3/16	si	5/32								-
Continued	Rivet Pitch (in.)		91/6	2-3/4	5-1/2	9/16	91/6	3/8	3/8	3/8	9/16	$\sigma_{\rm u}({\rm sheet}) = 65 \text{ ksi}$ $\sigma_{\rm u}({\rm stiff}) = 57 \text{ ksi}$	0.5		-						-
table II - Col	Stiffener Spacing (in.)	$\sigma_{\rm u}({\rm sheet}) = 82.$ $\sigma_{\rm u}({\rm stiff}) = 82.4$		٠	•	ı	ì	ī	1	•	i	σ _u (sti±f)	(e)	(e)	(e)	(e)	<u>(e)</u>	(e)	(e)	(e)	19
ব	No. of Stiffeners Failed		0 -										7 -				·	-	<u>.</u>	· - _	-
	Area of Each Stiffener (m. 2)		0.178	0.178	0.178	0.192	0.192	0.0128	0.032	0.0512	0.0768		0.234a	0.234a	0.234a	0.234a	0.178 ^b	0.178 ^b	0.178 ^b	0.178b	0 122.6
	Stiffener Size (n.)	Material: 7075-T6 PL(stiff) = 55 ksi (est)	2.78×0.064	2.78 x 0.064	2.78 × 9.064	3.0×0.064	3.0×0.064	0.51 > 0.025	0.50×0.064	0.80×0.064	1.2 × 0.064	: 2024-T3 Clad = 45 ksi (est)	1 x 1 x 1/8	1 x 1 x 3/32	1 x 1 x 3/32	1 x 1 x 3/32	$1 \times 1 \times 3/32$	1 x 1 x 1/16			
	Sheet Thick. (in.)	Material PL(stiff)	-0.064	-0.064	-0.064	-0.064	-0.064	-0.064	-0.064	-0.064	-0.064	Material: PL(stiff)	<u> </u>	0.051	0.051	0.051	0.064	0.064	0.064	0.064	0.681
	Specimen Cross Section																			-	-

Total Area Snet(exp) Sret(cal) Snet(exp) Failed (ksi) (ksi) Snet(cal)	$G_{M} = 0.55 \text{ in.}^{-\frac{1}{2}}$ W = 30 in.	53.2 44.7 38.8 1.15	35.0 35.2 36.2 0.97	29.4 33.4 34.8 0.96	47.8 38.0 35.5 1.06	28.4 34.6 34.9 0.99	31.5 40.7 34.7 1.17	30.9 37.9 34.7 1.09	$C_{M} = 0.65 \text{ in.}^{-1}$ W = 57 in.	21.9 23.3 31.8 0.75	21.6 23.3 31.8 0.75	21.0 26.4 32.6 0.83	26.5 28.9 32.8 0.91	27.4 30.5 32.7 0.96	24.2 32.1 32.6 1.01	27.5 37.3 34.8 1.12
Total Crack Length (in.)		19.00	11.47	8.88	15.50	8.50	9.63	9.40		14.4	14. 2	14. 33	13.91	14.58	14. 32	15.88
Rivet Dia (in.)	Si Si	5/32	,					-	kci si	 ' 	7	•	7	1	•	•
Rivet Pitch	$\sigma_{\rm u(sheet)} = 65 \text{ ksi}$ $\sigma_{\rm u(stiff)} = 57 \text{ ksi}$	0.5						-	σ _{u(stiff)} = 66 kri σ _{u(stiff)} = 66 ksi	,	•	•	•	•	•	•
Stiffener Spacing (in.)	Ju(sheet) Ju(stiff)	(e)	<u>e</u>	9	٤	•	<u> </u>	٤	ou(she	19	19	19	19	61	9.5	9.8
No. of Stiffeners Failed		2 -		-				-		0	•	0	-	¥.	1	¥.
Area of Each Stiffener (in.2)		0. 122 ^c	0. 122 ^c	0.089d	0.089d	0.089d	0.089d	p680 0		0.095	0.095	0.095	0. 183	0. 143 ⁱ	0.081	0. ₁₃ ما
Stiffener Size (in.)	Material: 2024-T3 Clad PL(stiff) = 45 ksi (est)	1 x 1 x 1/16	1 x 1 x 1/16	$3/4 \times 3/4 \times 1/16$	$3/4 \times 3/4 \times 1/16$	3/4 x 3/4 x 1/16	3/4 x 3/4 x 1/16	3/4 x 3/4 x 1/16	Mazerial: 2024-T3 Alc¹ad PL(stiff) = 45 ksi (est)	•	ı	•	i	•	•	·
Sheet Thick. (in.)	Material: PL(stiff)	Jo. 081	0.081	0. 102	201 'C	0. 102	0. 102	0. 102	Ma.eria PL(stiff	L 0. 033	0.033	0.031	32 مح	№ 0.032	0.030	
Specimen Cross Section		لابلاسا								1 1 1	•		7	4 4	1111110.03°	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -

				•							
	Snet(exp) Snet(cal) in.	98	1. 10	1.03	1.05	1.04	1: 04	1.00	1.01	% .0	0.93
	(ksi) = 0.150 i 12 :a.	52.9	50.3	48.7	48.7	48.2	47.3	52.6	90.09	49.2	
	Snet(exp) S (ksi)	51.8	55.3	50.4	51.2	50.4	49.2	52.6	50.4	47.3	45.6
	Total Area Failed (pct)	4.0	10.0	80 80 1	18.8	25.0	33.3	8.2	20.0	31.3	45.5
	Total Crack Length (in.)	0. 50h	1.50h	2.78h	2.78h	4.00h	6. Joh	1.00 th	2.50h	4. 00h	6.00h
	Rivet Dia (in.) 2 ksi 2 ksi	1/8	1/8	3/16	3/16	3/16	3/16	1/8	1/8	1/8	3/16
ontinued	ffener Rivet Riv pacing Pitch Di (in.) (in.) (in qu(sheet) = 72.2 ksi du(stiff) = 72.2 ksi	3/8	3/8	9/16	91/6	91/6	91/6	3/8	3/8	3/8	91/6
Fable II - Continued	Stiffener Spacing (in.) Ou(she	·	1	•	•1	•	1		•	•	
	No. of Stiffeners Failed	o—						· · · · · · · · · · · · · · · · · · ·			
	Area of Each Stiffener (in. ²)	0.032	0.048	0. 178	0.178	0.128	0.192	0.0128	0.032	0.0512	0.0768
	Sheet Thick. Stiffener Size (in.) (in.) Material: 2024-T3 PL(stiff) = 45 kei (est)	0.50 × 0.064	0.75×0.064	1 x 1 x 3/32	2.78 × 0.064	2.0 × 0.064	3.0 × 0.064	0.51 × 0.025	0.50 × 0.064	0.80×0.064	1. 20 × 0. 064
	Sheet Thick. S (in.) Material: PL(stiff)	0.0/14	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0. 064	0.064
	Specimen Cross Section										

			Τ'n	Table II - Continued								
Specimen Sheet Cross Thick, Stiff Section (in.)	Stiffener Size	Area of Each Stiffener (in.?)	No. of Stiffeners Failed	Stiffener Spacing (in.)	Rivet Pitch (in.)	Rivet Dia (in.)	Total Crack Length (in.)	Total Area Failed (pct)	Snet(exp)	Snet(cal)	Snet(exp)	, .
Naterial: 2024-T3 Ald Stiffeners: 7075-T6 A. PL(stiff) : 55 ksi (est)	Material: 2024-T3 Alclad Stiffeners: 7075-T6 Alclad PL(stiff) = 55 ksi (est)			Ju(shee Ju(stiff	ou(sivet) = 62 ksi ou(stiff) = 74 ksi	·			O × a	C _M = 0.65 in. ² W = 35 in.; last two sections, W = 48 in.	$C_M = 0.65 \text{ in.}^{\frac{1}{2}}$ W = 35 in.; last two cross sections, $W = 48 in.$	· · · · · · · · · · · · · · · · · · ·
0.040	į.	0.121	0	6	,	ī	5. 10	10.8	40. a	39.1	1.04	
0.039	,	0.061		د،			5. 10	12.4	38.9	36.6	1.06	
0.040	•	0.121		12			5. 11	10.8	36.8	39.1	0.94	
— — 6. 039		0.061		12	ı		5. 10	12.4	35.2	36.5	96.0	
0.040	•	0.186		6	ï		5.01	9.3	43.0	41.3	1. 04	
0.039	ı	0.188		2		•	5.03	0	39.0	41.5	0.94	
0.040	ř	0.039	**************************************	•	1	•	5. 11	12.5	39.5	35. 3	1.08	
0.040	ı	0.119		, 0	r.	i	5.20	8.6	8.9	41.0	1. 14	
0.040	•	0.093		15	•		5, 18	9.0	34,6	36.1	0, 95	
0.041		0, 298		91			5.04	ur. 9	41.7	4.	1.00	
			•									
												7

Specimen	Sheet	Stiffener Size	Area of Each	No. of	Stiffener	Kivet	Rivet	Total	Total	Snet(exp)	Snet(cal)	Snet(exp)	øu(sheet)	Ou(stiff)
Section	(in.)		(in.2)	Failed	(in.)		(in.)	(in.)	(pct)	(ksi)	(ksi)	Snet(cal)	(ksi)	(ksi)
	Material: PL(stiff) =	al: Ti 8-1-1 Duplex Annealed [] = 116 ksi	ex Annealed							0 7	C _M = 0.60 in. ² / ₂ v = 12 in.	^\ 		
	0.00.0	1 × 0. 025	0.025	0-	•-	0.501	1/8	2.75	21.12	103.4	95.8	1. 07	145.8	153.0
	0.050	1 × 0.050	0.050	letron.		1.001	5/32		19.6	98.0	94.7	1.03	140.2	141.5
	0.050	1 × 0. 100	0.100		96	1.001	5/32		17.2	98.9	98.7	1.00	142.1	141.5
	0.050	1 x 0.025	0.025			0.501	1/8		1.12	104.0	92.1	1. 12	139.4	153.5
	0.050	1 × 0. 050	0.050			1.001	5/32		19.6	7.86	95.3	1.03	141.5	141.5
	0.050	1 × 0. 100	0.100			1.001	5/32	`	17.2	100.4	4.4	1.8	137.0	141.5
	0.050	1 x 0. 025	0.025			Seamm			21.1	104.0	93.9	1. 10	142.5	153.0
	0.050	1 × 0.025	0.025			Seamm			21.12	102.4	95.4	1.07	145.0	153.0
	0.050	1 x 0.025	0.025			0. 50 B	;		21.1	94.8	94.8	1. 00	1.44.1	153.0
	0.050	1 × 0.025	0.025			0. 50 m	ŀ		21.1	102.0	94.5	1.07	143.6	153.0
	0.050	1 × 0.050	0.050			Seam m			19.6	108.4	93.8	1. 15	138.6	141.5
	0.050	1 × 0.050	0.050			Seam m			19.6	101.0	93.6	1.07	138.2	141.5
	0.050	1 × 0.050	0.050	e e la se		1. 00 ^{fm} . 0			19.6	1.58	95. 1	0. %	141.0	141.5
	0.050	1 x 0.050	0.050	*******		1.00m.º			9.61	87.8	94.8	0.92	140.5	141.5
	0.00	1 × 0.050	0.050			1. 50 ^m	٠		19.6	3.6	94.2	8 .1	139.4	141.5
	0.00	1 × 0.050	0.050			1. 50 ^m	•		19.6	88.9	4.4	\$ 0	139.7	141.5
	0.00	1 x 0. 100	0.100			1. 00m. P			17.2	6 .601	98.0	1. 12	140.5	141.5
	0.050	1 × 0. 100	0.100			2. 00 ^m . P			17.2	105.4	98.2	1.07	140.9	141.5
	0.00	1 × 0.050	0.050			Cont			19.6	4.71	8.1	0. 80	144.0	141.5
	0.00	1 x 0.050	0.050			Cont			19.6	92.8	95.9	8.0	142.5	141.5
	0.050	1 × 0.050	0.050	8		4. 00ª. 9			9.61	4.6	93. 5	1.01	138.0	141.5
	0.00	1 × 0. 050	0.050			4. 00ª. 4			19.6	8.5	8.3	1.8	143.0	141.5
	0.000	1 × 0. 100	0.100			Conta			17.2	83.2	98.0	9.8	140.5	141.5
-					THE RESERVE THE PARTY OF THE PA									

Specimen Gross Section	Sheet Thick.	Stiffener Size	Area of Each Stiffener	No. of Stiffeners	Stiffener Spacing	Rivet Pitch	Rivet Dia	Total Crack Length	Total Area Failed	Snet(exp)	Snet(cal)	Snet(exp)	du(sheet)	(stiff)
	Materi. PL(stif	Material: PH14-8Mo(SRH 1050) PL(stiff) = 189 ksi	1 1050)								C _M = 0, 70 in. ² W = 12 in.	7.		
	0. 025	1 × 0.010	0.010	0-	₩.	0.301	3/32	2.75	21.5	113.4	138.0	0.82	220. 5	214.5
	0.025	1 × 0.025	0.025			0.501	1/8		19.6	131.6	141.9	0.93	215.5	221.5
	0.025	1 × 0.050	0.050			0.504	1/8		17.2	140.7	150.6	0.93	221.0	206. 5
	0.025	1 × 0.010	0.016			0. 30 ¹	3/32		21.5	120.2	135.3	0.88	215.5	214.5
	0.025	1 × 0. 025	0.025			0, 501	1/8		9.61	136.9	142.7	0.95	219.0	221. 5
	0.025	1 × 0.050	0.050			0 501	8/1		17.2	145.5	149.5	0.97	218.5	206. 5
	0.025	1 × 0.010	0.010			Seam	,		21.5	127.0	134.7	0.94	214.5	214.5
	0.025	1 × 0.010	0.010			Seam	•		21.5	32.1	135.8	0.97	216.5	214.5
	0.025	1 × 0.010	0.010	-,		0. 20 ^m	•		21.5	119.8	136.9	0.87	218.5	214.5
	97.0	1 × 0.010	0.010			0. 20m	ı		21.5	117.8	136.4	98.0	217.5	214.5
	0.025	1 × 0.025	0.025			Seam	•		9.61	155.0	133.0	1. 16	199.5	221.5
	0.025	1 × 0.025	0.025			Seam			9.61	148.2	139.7	1.06	213.0	221.5
	0.025	1 × 0.025	0.025		<u> -</u>	0. 50m. o		· · · ·	19.6	168.2	143.0	1. 17	219.5	221.5
	0.025	1 × 0. 025	0.025			0. 50m, o			19.6	161.8	144.0	1. 12	221.5	221.5
	0.025	1 × 0. 025	0.025			0.75 ^m			19.6	114.5	140.7	0.81	215.0	221.5
	0.025	1 × 0.025	0.025			0.75m	7		19.6	112.4	140.5	62.0	214.5	221.5
	0.025	1 × 0.050	0.050			1.00m.p	٠		17.2	140.1	148.2	96.0	215.5	206. 5
	0.025	1 × 0.050	0.050			1. 00 ^m . P	٠		17.2	141.3	145.7	8	209.5	206. 5
	0.025	1 × 0.025	0.025			Cont	•		9.61	152.2	140.7	1.08	215.0	221.5
·	0.025	1 × 0. 025	0.025			Cont			19.6	165.7	142.5	1. 16	218.5	221.5
	0.025	1 × 0.025	0.025			2.00 n. 9	,		19.6	125.9	135.8	0.92	205.0	221.5
·	0.025	1 × 0.025	0.025			2. 00n. 9			19.6	120.8	134.3	06 .0	202.0	221.5
	0.025	1 × 0.050	0.050			Cont			17.2	160.0	150.6	1.06	221.0	206.5
_				_				_						

	Table II - Concluded
rė	Outboard stiffener area = 0.480 in. ² (each)
Ġ.	Outboard stiffener area = 0.339 in. ² (each)
. · ·	Outboard stiffener area = 0.246 in. ² (each)
ф.	Outboard stiffener area = 0.171 in.2 (each)
•	Spacing from & as follows: 2.5, 9, 15 in.
	Stiffener bonded in grips only
56	Stiffener bonded full length
"Ei	Notch radius = 0, 005 in.
	Area each strap = 0.037 in.^2
·••	Area each strap = 0,084 in.2
.	Strap and stiffener failed
	• Mechanical fasteners (Monel rivets)
ë	Spot-weld
ď	Fusion weld
ċ	Longidtudinal butt-weld in skin at straps
ď	Two rows staggered
ở	Intermittent weld; 2.0-in. weld, 2.0-in. gap

The predictions obtained by using Equation 1 for all the available data are presented in Table II and in Figure 4 as tick marks. The experimental data are shown as symbols in the figures. The symbol F above the stiffeners indicates that the stiffener had been failed prior to testing. These data include specimen widths ranging from 12 inches to 57 inches, specimens with either riveted or welded stiffeners, and specimens containing either notches or fatigue cracks. It can be seen from Figure 4 that, in general, the predictions for the 7075-T6 aluminum panels discussed previously are higher than those for the 2024-T3 aluminum panels and thus tend to conform with the observed trends in Figures 1 and 2. The average differences between the calculated values and the experimental data for each material are presented in Table III.

TABLE III. AVERAGE DIFFERENCES BETWEEN CAL- CULATED AND EXPERIMENTAL DATA					
	Σ S _{net(cal)} - S _{net(exp)}				
No. of Points	No. of Points				
43	2.8 ksi				
26	6.0 ksi				
6	5.0 ksi				
18	8.3 ksi				
)					
6	11.6 ksi				
18	15.7 ksi				
	No. of Points 43 26 6 18				

The average differences for the Ti8Al-1Mo-1V panels with welded stiffeners and for the PH14-8 panels with either riveted or welded stiffeners are somewhat large. However, investigation indicates that there were differences of as much as 14.9 and 18.7 ksi for the Ti8Al-1Mo-1V and PH14-8 panels, respectively, in the results of tests on similar specimens. Based on this observation, the large differences between the calculated and experimental values for these cases are not considered to be unreasonable.

Even though typical values of the material constant, C_M , and the proportional limit were used for each material, with no attempt to adjust the values for each set of data, and even though there was inherent scatter in residual strength data on stiffened panels, the predictions are considered to be quite good. As can be seen in Figure 4, the method produced acceptable results for a wide range of configurations, type fasteners, and crack geometry.

Figure 4. Experimental and Predicted Strengths of Stiffened Panels.

Figure 4. Continued.

Figure 4. Concluded.

LITERATURE CITED

- 1. Whaley, Richard E., and Kurzhals, Peter R., FATIGUE-CRACK PROPAGATION IN ALUMINUM-ALLOY TENSION PANELS, NASA TN D-543, National Aeronautics and Space Administration, Washington, D. C., November 1960.
- 2. Kuhn, Paul, and Figge, I. E., UNIFIED NOTCH-STRENGTH ANALYSIS FOR WROUGHT ALUMINUM ALLOYS, NASA TN D-1259, National Aeronautics and Space Administration, Washington, D. C., May 1962.
- 3. Greif, Robert, and Sanders, J. L., Jr., THE EFFECT OF A STRINGER ON THE STRESS IN A CRACKED SHEET, Journal of Applied Mechanics, March 1965.
- 4. Romualdi, J. P., Frasier, J. T., and Irwin, G. R., CRACK-EXTENSION FORCE NEAR A RIVETED STIFFENER, NRL Report 4956, Naval Research Laboratory, Washington, D. C., October 1957.
- 5. Weeton, John W., and Signorelli, Robert A., FIBER-METAL COM-POSITE MATERIALS, NASA TN D-3530, National Aeronautics and Space Administration, Washington, D. C., August 1966.
- 6. Figge, I. E., RESIDUAL-STATIC-STRENGTH AND SLOW-CRACK-GROWTH BEHAVIOR OF DUPLEX ANNEALED Ti8Al-1Mo-1V SHEET, NASA TN D-4358, National Aeronautics and Space Administration, Washington, D. C., March 1968.
- 7. Figge, I. E., RESIDUAL STATIC STRENGTH OF SEVERAL TITANIUM AND STAINLESS STEEL ALLOYS AND ONE SUPERALLOY AT -109°F, 70°F, AND 550°F, NASA TN D-2045, National Aeronautics and Space Administration, Washington, D. C., December 1963.
- 8. Leybold, Herbert A., A METHOD FOR PREDICTING THE STATIC STRENGTH OF A STIFFENED SHEET CONTAINING A SHARP CENTRAL NOTCH, NASA TN D-1943, National Aeronautics and Space Administration, Washington, D. C., August 1963.

- 9. Lacey, G. C., THE RESIDUAL STATIC STRENGTH OF STRUC-TURES CONTAINING CRACKS, ARL/SM-288, Australia Aeronautical Research Laboratories, Fishermans Bend, Victoria, April 1962.
- 10. FUSELAGE FAIL-SAFE DESIGN DATA AND BOMB-RESISTANT ANALYSIS FOR THE SUPERSONIC TRANSPORT, FDL-TDR-64-80, Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, June 1964.
- 11. Crichlow, Walter J., THE ULTIMATE STRENGTH OF DAMAGED STRUCTURE-ANALYSIS METHODS WITH CORRELATING TEST DATA, The Proceedings of the Symposium on Full-Scale Fatigue Testing of Aircraft Structures, June 1959.

Unclassified

Unclassified			
Security Classification			
	ROL DATA - R &		
(Security classification of title, body of abstract and indexing 1 ORIGINATING ACTIVITY (Corporate author)			everall report is classified) ECURITY CLASSIFICATION
		Unclassified	
U. S. Army Aviation Materiel Laboratori	es 3	26. GROUP	
Fort Eustis, Virginia			
3 REPORT TITLE			
AN EQUATION FOR PREDICTING THE R	ECIDIIAI CEA	TIC CTI	DICELL OF
STIFFENED PANELS	ESIDUAL SIA	1110 511	RENGIH OF
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			
S. AUTHORIS) (First name, middle initial, last name)			
I. E. Figge, Sr.			
1			
. REPORT DATE	74. TOTAL NO. OF	PAGES	78. NO. OF REFS
April 1970	39		_ 11
BO. CONTRACT OR GRANT NO.	M. ORIGINATOR'S R	EPORT NUM	DER(\$)
	IISAAVI.AB	S Techn	ical Leport 70-17
b. PROJECT NO.	OUNTERD	USAAVLABS Technical Report 70-17	
Task 1F162204A17003, HT PS 68-2	A 07458 858087	NO(8) (Ann o	ther numbers that may be easigned
	this report)	HO(S) (ADD S	and instant and any or arrighted
ا ،			
10 DISTRIBUTION STATEMENT			
This document is subject to special export	controls, and	d each t	ransmittal to foreign
governments or foreign nationals may be	made only with	h prior a	approval of U. S.
Army Aviation Materiel Laboratories. Fo	rt Eustis, Vir	ginia 2	3604.
11-SUPPLEMENTARY NOTES	12. SPONSORING MIL	LITARY ACTI	VITY
	U.S. Army Aviation Materiel Laboratories		
	Fort Eustis, Virginia		
13 ADSTRACT	<u> </u>		
An equation has been developed to predict			9
panels. All parameters in the equation ca			
unstiffened specimens. The stiffened pane			
with the sheet material representing the m			
fibers. The residual static strength of the	cracked shee	et, calcu	lated using notch
strength analysis, and the proportional lin	nit of the stiff	eners ar	e used in the
law-of-mixtures equation to calculate the	residual statio	strengt	th of the stiffened
panels.			
Excellent predictions of the residual static	strength of s	tiffened	panels have been
obtained and are presented for a wide vari			
and crack geometry.	•		
9)			
1			
f			

Unclassified
Security Classification

Unclassified
Security Classification

LINK B LINK A LINK C KEY WORDS ROLE WT ROLE WT Residual Static Strength Stiffened Panels Fracture Toughness

Unclassified

3322-70

Security Classification