

Sentiment Analysis using Word-Graphs

SUPER

Social sensors for secUrity assessments and Proactive EmeRgencies management

John Violos, Konstantinos Tserpes, Evangelos Psomakelis, Konstantinos Psychas, Theodora Varvarigou

National Technical University of Athens

Co-funded by the European Commission's 7th Framework Programme

SUPER is a joint effort of social media and emergency management experts towards introducing a holistic, integrated and privacy-friendly approach to the use of social media in emergencies and security incidents.

Social Neworks during an Emergency Event

Picture from: www.theworld4realz.com

Social Sensors

- **Event SubEvent Detection**
- Topic Community Tracking
- **Sentiment Analysis**
- **Behaviour Abalysis**
- **Rumour Spreading Identification Credibility**
- **Intelligent Fusion and Reasoning**

Probabilistic Method Component

Deep Learning Component

Word Graph Representation

Sentiment Analysis 1/2

What is our principal challenge? To detect Sentiment Polarities of published textual posts in SN!

Sentiments:

- + Positive
- Negative
- = Neutral

Sentiment Analysis 2/2

How? SA Problem --> Text Classification Problem

What is our Contribution?

- Different Reprsentation Model (No BoW)
- Similarity Measures

Valuable information:

Neighborhood of the Words Sequence of words

Example:

The Movie is not boring
I do like it

I do not like the Movie
It is boring

Same Set of Words Different Sentiments A good solution is the Word Graphs!

Word Graph Represenation Model

ONTEXA ON

Directed & Unweighted Graph

- Edges ——— join neighbor Words
- Vicinity ——> Frame N

Word Graph Representation

Happy with my new Sony handycam

N=2

GRAPH CONSTRUCTION

N=2

Word Graph Representation

Curiosity is the key to creativity. - Akio Morita; Founder of SONY corp

GRAPH SIMILARITY METRICS:

- Containment Similarity # Common Edges # Max Edges Normalization
- Maximum Common SubGraph
 - **# Nodes**
 - **# Undirected Edges**
 - **# Directed Edges**

Graph Filtering

ORGANIZATION LOGO

Feature Selection techniques:

- Nodes
- Edges

Benefits:

- Improve the Accuracy
- Decrease the Dimensionality & Computation

Mutual Information:

The Appropriateness and the Contribution of each Edge for the Accurate Sentiment Prediction + - =

Training Dataset

Stage 2/7

1st part Training Dataset

Tweet ₁	Tweet ₆	Tweet ₁₁
_+)	· '	=

$$\begin{array}{c} \mathsf{Tweet}_3 \\ \mathsf{+} \\ \end{array}
\qquad \begin{array}{c} \mathsf{Tweet}_8 \\ \mathsf{-} \\ \end{array}
\qquad \begin{array}{c} \mathsf{Tweet}_{13} \\ \mathsf{=} \\ \end{array}$$

2nd part Training Dataset

Tweet _{N1+1}	Tweet _{N1+6}	Tweet _{N1+11}
+		=

$$\begin{array}{c} Tweet_{N1+3} \\ + \end{array} \qquad \begin{array}{c} Tweet_{N1+8} \\ - \end{array} \qquad \begin{array}{c} Tweet_{N1+13} \\ = \end{array}$$

$$\begin{array}{c} \mathsf{Tweet}_{\mathsf{N1+4}} \\ + \\ \end{array} \qquad \begin{array}{c} \mathsf{Tweet}_{\mathsf{N1+9}} \\ - \\ \end{array} \qquad \vdots$$

weet _{N1+5}	Tweet _{N1+10}	Tweet _{N2}
+		=

+ - Classifier

= - Classifier

+ = Classifier

- Positive tweets
- Negative tweets
- Neutral tweets

Classification of New Upcoming Tweet

+ - Classifier

= - Classifier

+ = Classifier

- Positive tweets
- Negative tweets
- Neutral tweets
- New upcoming tweet

Evaluation

ONTEXASON DE LA CONTEXAS DE LA CONTE

Public available Dataset from the research Language-Independent Twitter Sentiment Analysis of Sascha, Hufenhaus and Albayark

The dataset is manually annotated by workers on Amazon's Mehanical Turk

10594 tweets

- + 2334
- 1486
- = 6774

SA Accuracy with SOA Methods

	,	NYTE	
	1	THE	200
	200	2	· 畫 \
3	2 5	0	
	1200	1.	20
	1	₹	

Method	4Gram	4Gram Graphs
Bayesian Network	0.6788	0.6791
C4.5	0.6828	0.6896
SVM	0.6777	0.6847
Logistic Regression	0.6822	0.7115
Simple Logistic Regression	0.6816	0.7109
Multi-Layer Perceptron	0.6788	0.7069
Best-First Tree	0.6790	0.6840
Functional Tree	0.6822	0.7079

Experimental Results 1/3

10-Fold Cross Validation Various size of N (2 - 10) Frame Window Various Graph Similarity Metrics

No Graph Filering SVM Classifier

Experimental Results 2/3

10-Fold Cross Validation Four-Words Frame size Mutual Information on Edges as Feature Selection technique MCS Graph similarity techniques in combination with MI

deteriorates the Accuracy of the method

Contanimen Similarity SVM Classifier

10-Fold Cross Validation Various size of N (2 – 10) Frame Window Containment Similarity MCSUE Similarity

Gaussian Bayes classifier No Graph filtering

WGSA:

- Vicinity & sequence of the words-terms.
- Writing characteristics & Partial Matching.
- Polysemy
- Evolution of the Annotated Dataset
- The discard of the edges with low MI has as a result to separate the MCS that captures the sentiment.

MCS>CS

A correlation among a few common words is more important than the existance of many common word pairs.

MCSUES>MCSNS

The Dense Correlation among few words is more important than the sparse correlation between many words.

Weighted Graphs

- **Graph Similarity metrics**
- Targeted Sentiment Analysis
- More Sentiments
- Different Training Dataset to Testing Dataset

SUPER

Thank you for your attention!