

Edward Lorenz

- Professor of Meteorology at the Massachusetts Institute of Technology
- In 1963 derived a three dimensional system in efforts to model long range predictions for the weather
- The weather is complicated! A theoretical simplification was necessary

The Lorenz system

 Lorenz-rendszer egy folyadék mozgását írja le két réteg között különböző hőmérsékleten. Pontosabban, a folyadékot egyenletesen melegítik alulról és egyenletesen hűtik felülről.

- Az új változók jelentése:
- X a dimenziótlan sebességet,
- Y a dimenziótlan hőmérséklet különbséget a fel és le áramlások között és
- Z a hővezetési egyensúlytól vett eltérés dimenziótlanított jellemzője

The equations

- σ a folyadék típusától függ Összefügg a viszkozitás és a hőátadással az áramlás közben.
- b geometriai, fizikai arány
- r Rayleigh-számtól, hő vezetőképesség
- (Prandtl szám, Rayleigh szám és fizikai arány)

$$\frac{dx}{dt} = S(y - x)$$

$$\frac{dy}{dt} = -xz + rx - y$$

$$\frac{dz}{dt} = xy - bz$$

σ, r, b Are positive parameters

 σ =10, b=8/3, r varies in [0,30]

Equilibria

$$S1 = (0,0,0)$$

$$S2 = (\sqrt{b(r-1)}, \sqrt{b(r-1)}, r-1)$$

$$S3 = (-\sqrt{b(r-1)}, -\sqrt{b(r-1)}, r-1)$$

Linear stability of S1

Jacobian

$$J(0,0,0) = \begin{bmatrix} -S & S & 0 \\ r & -1 & 0 \\ 0 & 0 & -b \end{bmatrix}$$

Eigenvalues of J

$$I_{1,2} = \frac{-(S+1) \pm \sqrt{(S-1)^2 + 4Sr}}{2}$$

$$I_{3} = -b$$

Linear stability of S1

Linear stability of S1

$$I_{1,2} = \frac{-(S+1) \pm \sqrt{(S-1)^2 + 4Sr}}{2}$$

Valori di r	Comportamento	
0 < r < 1	$\sqrt{(S-1)^2 + 4Sr}$ £ $S+1$ Negative eigenvalues: asymptotic stability	
r = 1	$I_1 = 0$ $I_2 = -(S+1)$ $I_3 = -b$ Marginal stability	
r > 1	$\sqrt{(S-1)^2 + 4Sr} > S+1$ $I_1 > 0$ Positive eigenvalues: instability	

Stabilità lineare di S2 e S3

$$r_H = \frac{S(S+b+3)}{S-b-1} = 24.74$$

Linear stability of S2 and S3

The eigenvalues of J(S2) e J(S3) coincide and the associated eigenvalues are linearly independent

Eigenvalues as functions of r					
r	λ_1	λ_2	λ_3		
5	-11.809	$-0.92872 + i \ 4.1476$	$-0.92872 - i \ 4.1476$		
20	-13.357	$-0.15479 + i \ 8.7087$	$-0.15479 - i \ 8.7087$		
24.7368	-13.667	$-1.2725 \ 10^{-6} + i \ 9.6245$	$-1.2725 \ 10^{-6} - i \ 9.6245$		
24.74	-13.667	$9.5435\ 10^{-5} + i\ 9.6251$	$9.5435 \ 10^{-5} - i \ 9.6251$		
28	-13.855	$0.093956 + i \ 10.195$	$0.093956 - i\ 10.195$		

Close to r=24.74 the real part of the eigenvalues are positive From this value of r all the equilibria are unstable

Summary

r	S	L	stabilità
	S ₁	L 1, L 2, L 3 < 0	attrattiva
0 <r<1< td=""><td>S₂</td><td>_</td><td>non esiste</td></r<1<>	S ₂	_	non esiste
	S₃	-	non esiste
	S ₁	L 1, L 2, L 3 < 0	attrattiva
r=1	S ₂	L 1, L 2, L 3 < 0	attrattiva
	S₃	L 1, L 2, L 3 < 0	attrattiva
	S ₁	L 1, L 2 < 0, L 3 > 0	repulsiva
1 <r<24,74< td=""><td>S₂</td><td>L 1, Pε(L 2), Pε(L 3)< 0</td><td>attrattiva</td></r<24,74<>	S ₂	L 1, Pε(L 2), Pε(L 3)< 0	attrattiva
	S₃	$\lfloor 1, \operatorname{Pe}(\lfloor 2) \rfloor, \operatorname{Pe}(\lfloor 3) < 0$	attattiva
24,74 <r<30< td=""><td colspan="2">$\lfloor 1, \operatorname{Pe}(\lfloor 2), \operatorname{Pe}(\lfloor 3) > 0$ regime caotico</td></r<30<>	$\lfloor 1, \operatorname{Pe}(\lfloor 2), \operatorname{Pe}(\lfloor 3) > 0$ regime caotico		

Chaotic regime with periodic windows

r>30

Bifurcations

r = 1	S1 become unstable; S2, S3 are stable	Supercritical pitchfork bifurcation
r = 24.74	S2 e S3 become unstable, but no limit cycle is observed	S2 and S3 undergo a subcritical Hopf bifurcation

Bifurcation diagram

The Lorenz attractor

 "One meteorologist remarked that if the theory were correct, one flap of a seagull's wings would be enough to alter the course of the weather forever".

