Week 5

Exam and Intro to MO Theory

5.1 First Exam Review

10/17:

- Arrive by 9:25 AM on Wednesday.
- Probably four problems.
 - Won't be doing IRRs for T_d point groups or anything really complicated like that.
- All character tables we need to solve the questions will be provided.
- The questions are independent; if we can't solve problem 1, we'll still be able to take a shot at problem 2.
- Question: Assigning Cartesian coordinates or R_{xyz} to the Mulliken symbols.
 - Example: Assign R_z and $x^2 y^2$ in D_4 .
 - Draw the $d_{x^2-y^2}$ orbital and R_z vector in 3D space.
 - Subject the drawings to each symmetry operation.
 - For E, C_4, C_2, C_2', C_2'' , $d_{x^2-y^2}$ gets sent to itself, it's inverse, itself, itself, and it's inverse. Thus, $\Gamma = (1, -1, 1, 1, -1) = B_1$.
 - Likewise, we have for R_z that $\Gamma = (1, 1, 1, -1, -1) = A_2$.
 - $\Gamma_{p_y} = (1, 0, ...)$. Once you get to $\chi(C_4) = 0$, you know that it must be E. For C_2' , $p_x \mapsto 1$ and $p_y \mapsto -1$ or vice versa, so we sum these two to get 0. Since p_x, p_y both have $\chi(C_4) = 0$, they must be degenerate and equal to E.
 - On Wednesday, you don't need to draw out every image, but you need some justification, e.g., "I
 did a 90° turn."
- Memorize Mulliken symbol rules!
- Question: Problem C on PSet 2.
 - Ignore all of the text about qubits.
 - First step: Figure out what the basis is (it's the outer plane vectors, i.e., the arrows).
 - Point group: D_{4h} .
 - We need to find $\Gamma_{\text{out-of-plane}}$, a reducible representation! We're finding a RR for all of the arrows at once (not projecting one into the others), and then decomposing it into IRRs and hoping that one of them is a_{2u} .
 - We get

- We can reduce this down to

$$\Gamma = a_{2u} + b_{2u} + e_q$$

to identify a_{2u} .

- Similarly, in C_{4v} , we can reduce $\Gamma = (4,0,0,2,0) = a_1 + b_1 + e$ to identify a_1 .
- Review PSets and answers! I keep missing easy things. Really break down a procedure to attack the different types of problems.
- Question: Assign symmetries based off of IR spectra.
 - Example: Vibrational spectroscopy has played a role in supporting the structure of the ion shown below. Raman spectroscopy of the tetramethylammonium salt of this ion shows a single absorption in the region expected for I=O stretching vibrations at 789 cm⁻¹. Is a single Raman band consistent with the proposed trans orientation of the oxygen atoms? Rationalize your answer.
 - Approach: In D_{5h} , create an IRR with the two I=O bond vectors as your basis. Thus,

- We have that $\Gamma = a'_1 + a''_2$. Since only one of these (a'_1) is Raman active, a single Raman band is consistent with this structure.
- Question: Finding vibrational modes.
 - Example: What are the normal modes of trans- N_2F_2 .
 - Not linear, so we expect 3N 6 = 6 normal modes to deal with.
 - We begin doing the Cartesian displacement method.

- Note that we use dashes in two entries of Γ_{xyz} because since there are zeroes above and we are multiplying, it does not matter what these values are (they will end up being zero in the direct product, regardless).
- We can reduce to $\Gamma_{3N} = 4A_g + 2B_g + 2A_u + 4B_u$. Subtracting out $\Gamma_{\text{rot}} = A_g + 2B_g$ and $\Gamma_{xyz} = A_u + 2B_u$, we end up with $\Gamma_{\text{vib}} = 3A_g + A_u + 2B_u$.
- Let's go in depth. The spectroscopic activities are:
 - $A_u + 2B_u$ are IR active.
 - $3A_g$ is Raman active.
- Let's go even more in depth.
 - A_u is the only vibration that has a -1 in σ_h , i.e., it is the only one that vibrates out-of-plane.
 - If $\chi(\sigma_h) = +1$, then the vibration is symmetric with respect to σ_h . This must mean that the molecules are entirely confined to the plane. If $\chi(\sigma_h) = -1$, then we have an out of plane vibration (e.g., F atoms going above and below the plane in equal and opposite amounts there is a motion that can be inverted). If one F atom goes twice as far, this is probably E (think about what would be required for the projection operator).
 - If you get pictures of normal modes (hint hint!!), you can retroactively get Mulliken symbols by observing the symmetry with respect to the observations.