A - Spoon Taking Problem

Time Limit: $2 \sec / Memory Limit: 1024 MiB$

 ${\it Score:}\,400\,{\it points}$

Problem Statement

N people are sitting around a round table, and numbered 1 to N in a counterclockwise order. Each person has a dominant hand: left or right.

There are N spoons numbered 1 to N on the round table, with one spoon placed between each pair of adjacent people. For each $1 \leq i \leq N$, to the left and right of person i, there are spoons i and i and i and i respectively. Here, spoon i are spoons i and i and i are spoons i and i are spoons i and i are spoons i are spoons i are spoons i and i are spoons i and i are spoons i are spoons i are spoons i and i are spoons i and i are spoons i are spoons i and i are spoons i and i are spoons i are spoons i are spoons i and i are spoons i are spoons i and i are spoons i and i are spoons i are spoons i and i are spoons i and i are spoons i and i are spoons i are spoons i and i are spoons i and i are spoons i are spoons i and i are spoons i and i are spoons i are spoons i are spoons i are spoons i and i are spoons i are spoons i are spoons i and i are spoons i are spoons i are spoons i

Below is a diagram for N=4.

You are given a permutation (P_1,\ldots,P_N) of $(1,\ldots,N)$. In the order $i=1,\ldots,N$, person P_i will act as follows:

- If there is a spoon remaining on left or right side, they will take one of them.
 - If there are spoons remaining on both sides, they will take the spoon on the side of their dominant hand.
- Otherwise, they do nothing.

You are also given a string S of length N consisting of L, R, and ?. Among the 2^N possible combinations of dominant hands, find how many satisfy all of the following conditions, modulo 998244353:

- If the i-th character of S is L, person i is left-handed.
- If the i-th character of S is R, person i is right-handed.
- When everyone has finished acting, everyone has taken a spoon.

Constraints

- All input values are integers.
- $2 \le N \le 2 \times 10^5$
- (P_1,\ldots,P_N) is a permutation of $(1,\ldots,N)$.
- S is a string of length N consisting of L, R, and ?.

Input

The input is given from Standard Input in the following format:

Output

Print the answer in a single line.

Sample Input 1

```
3
1 2 3
L??
```

Sample Output 1

2

When persons 1, 2, and 3 are left-handed, left-handed, and right-handed, respectively, the actions are performed as follows:

- Person 1 starts acting. There are spoons on both sides, so person 1 takes spoon 1 on the left side, which is the same as their dominant hand.
- Person 2 starts acting. There are spoons on both sides, so person 2 takes spoon 2 on the left side, which is the same as their dominant hand.
- Person 3 starts acting. There is no spoon on the right side, but spoon 3 is remaining on the left side, so they take spoon 3. Everyone has finished acting and taken a spoon.

This combination of dominant hands satisfies the conditions. Besides, the conditions are also satisfied when persons 1, 2, 3 are all left-handed.

Sample Input 2

Sample Output 2

0

No combinations of dominant hands satisfy the conditions.

Sample Input 3

```
12
6 2 9 3 1 4 11 5 12 10 7 8
```

Sample Output 3

B - Parenthesis Arrangement

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: $400\,\mathrm{points}$

Problem Statement

You are given a string S of length 2N consisting of the characters (and). Let S_i denote the i-th character from the left of S.

You can perform the following two types of operations zero or more times in any order:

- Choose a pair of integers (i,j) such that $1 \leq i < j \leq 2N$. Swap S_i and S_j . The cost of this operation is A.
- Choose an integer i such that $1 \leq i \leq 2N$. Replace S_i with (or). The cost of this operation is B.

Your goal is to make S a correct parenthesis sequence. Find the minimum total cost required to achieve this goal. It can be proved that the goal can always be achieved with a finite number of operations.

▶ What is a correct parenthesis sequence?

Constraints

- All input values are integers.
- $1 \le N \le 5 \times 10^5$
- $1 \le A, B \le 10^9$
- S is a string of length 2N consisting of the characters (and).

Input

The Input is given from Standard Input in the following format:

$$egin{array}{cccc} N & A & B \ S & & & \end{array}$$

Output

Print the answer in a single line.

```
3 3 2 )))(()
```

Sample Output 1

5

Here is one way to operate:

- Swap S_3 and S_4 . S becomes))()(). The cost is 3.
- Replace S_1 with (. S becomes ()()(), which is a correct parentheses sequence. The cost is 2.

In this case, we have made S a correct bracket sequence for a total cost of 5. There is no way to make S a correct bracket sequence for less than 5.

Sample Input 2

```
1 175 1000000000
()
```

Sample Output 2

0

The given S is already a correct bracket sequence, so no operation is needed.

Sample Input 3

7 2622 26092458))()((((()()()((

Sample Output 3

C - Jumping Through Intervals

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

You are given N pairs of integers $(L_1,R_1),(L_2,R_2),\ldots,(L_N,R_N)$. Here, $L_i\leq R_i$ for all $1\leq i\leq N$.

A sequence of N integers $A=(A_1,A_2,\ldots,A_N)$ is called a **good integer sequence** if it satisfies the following condition:

• $L_i \leq A_i \leq R_i$ for all $1 \leq i \leq N$.

Find the lexicographically smallest **good integer sequence** A that minimizes $\sum_{i=1}^{N-1} |A_{i+1} - A_i|$.

▶ What is lexicographical order for sequences?

Constraints

- All input values are integers.
- $2 \le N \le 5 \times 10^5$
- $0 \le L_i \le R_i \le 10^9$

Input

The input is given from Standard Input in the following format:

 $egin{array}{c|c} N & & & & & \\ L_1 & R_1 & & & & \\ L_2 & R_2 & & & & \\ dots & & & & & \\ L_N & R_N & & & & \end{array}$

Output

Print the answer in a single line in the following format:

$$A_1$$
 A_2 \dots A_N

Sample Input 1

```
4
1 10
8 13
3 4
5 20
```

Sample Output 1

8 8 4 5

 $(A_1,A_2,A_3,A_4)=(8,8,4,5)$ is a good integer sequence. In this case, $\sum_{i=1}^{N-1}|A_{i+1}-A_i|=|8-8|+|4-8|+|5-4|=5$, which is the minimum value of $\sum_{i=1}^{N-1}|A_{i+1}-A_i|$.

Sample Input 2

```
3
20 24
3 24
1 75
```

Sample Output 2

20 20 20

Note that when multiple good integer sequences A minimize $\sum_{i=1}^{N-1} |A_{i+1} - A_i|$, you should print the lexicographically smallest of them.

```
15
335279264 849598327
446755913 822889311
526239859 548830120
181424399 715477619
342858071 625711486
448565595 480845266
467825612 647639160
160714711 449656269
336869678 545923679
61020590 573085537
626006012 816372580
135599877 389312924
511429216 547865075
561330066 605997004
539239436 921749002
```

Sample Output 3

526239859 526239859 526239859 467825612 467825612 467825612 467825612 449656269 449656269 449656269 62 6006012 389312924 511429216 561330066 561330066

D-LIS on Tree 2

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 700 points

Problem Statement

There is a tree with N vertices numbered 1 to N. The i-th edge of the tree connects vertices u_i and v_i bidirectionally.

For a permutation $P=(P_1,\ldots,P_N)$ of $(1,\ldots,N)$, we define f(P) as follows:

• For each vertex i $(1 \le i \le N)$, let $(v_1 = 1, v_2, \ldots, v_k = i)$ be the simple path from vertex 1 to vertex i, and let L_i be the length of a longest increasing subsequence of $(P_{v_1}, P_{v_2}, \ldots, P_{v_k})$. We define $f(P) = \sum_{i=1}^N L_i$.

You are given an integer K. Determine whether there is a permutation P of $(1,\ldots,N)$ such that f(P)=K. If it exists, present one such permutation.

- ▶ What is a longest increasing subsequence?
- ▶ What is a simple path?

Constraints

- All input values are integers.
- $2 \le N \le 2 \times 10^5$
- $1 \le K \le 10^{11}$
- $1 \leq u_i, v_i \leq N$
- The given graph is a tree.

Input

The input is given from Standard Input in the following format:

Output

If there is no permutation P such that f(P)=K, print No.

If there is a permutation P such that f(P) = K, print it in the following format:

```
Yes P_1 \ \ldots \ P_N
```

If multiple permutations P satisfy the condition, any of them will be accepted.

Sample Input 1

```
      5 8

      1 2

      2 3

      2 4

      4 5
```

Sample Output 1

```
Yes
3 2 1 4 5
```

If P = (3, 2, 1, 4, 5), then f(P) is determined as follows:

- The simple path from vertex 1 to vertex 1 is (1), and the length of the longest increasing subsequence of $(P_1)=(3)$ is 1. Thus, $L_1=1$.
- The simple path from vertex 1 to vertex 2 is (1,2), and the length of the longest increasing subsequence of $(P_1,P_2)=(3,2)$ is 1. Thus, $L_2=1$.
- The simple path from vertex 1 to vertex 3 is (1,2,3), and the length of the longest increasing subsequence of $(P_1,P_2,P_3)=(3,2,1)$ is 1. Thus, $L_3=1$.
- The simple path from vertex 1 to vertex 4 is (1,2,4), and the length of the longest increasing subsequence of $(P_1,P_2,P_4)=(3,2,4)$ is 2. Thus, $L_4=2$.
- The simple path from vertex 1 to vertex 5 is (1,2,4,5), and the length of the longest increasing subsequence of $(P_1,P_2,P_4,P_5)=(3,2,4,5)$ is 3. Thus, $L_5=3$.
- From the above, f(P) = 1 + 1 + 1 + 2 + 3 = 8.

Hence, the permutation P in the sample output satisfies the condition f(P)=8. Besides, P=(3,2,4,5,1) also satisfies the condition, for example.

```
7 21
2 1
7 2
5 1
3 7
2 6
3 4
```

Sample Output 2

No

It can be proved that no permutation P satisfies f(P)=21.

Sample Input 3

```
8 20
3 1
3 8
7 1
7 5
3 2
6 5
4 7
```

Sample Output 3

```
Yes
2 1 3 5 6 8 4 7
```

E-Three View Drawing

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 800 points

Problem Statement

Divide a cube with a side length of N into N^3 smaller cubes, each with a side length of 1, and select K of these smaller cubes. Construct one way to select them so that, when viewed from any of the three directions perpendicular to the faces of the cubes, all K selected cubes are visible and appear in the same shape.

To formulate the problem precisely, we associate each smaller cube after division with a triple of integers (x_i, y_i, z_i) .

Construct and print one set of K triples of integers (x_i, y_i, z_i) that satisfy the following conditions.

- $0 \le x_i, y_i, z_i < N$
- $\{(x_i,y_i)\,|\,1\leq i\leq K\}=\{(y_i,z_i)\,|\,1\leq i\leq K\}=\{(z_i,x_i)\,|\,1\leq i\leq K\}$
- The set mentioned in the previous item has K elements. That is, $(x_i, y_i) \neq (x_i, y_i)$ for $i \neq j$.

It can be shown that a solution exists for any input satisfying the constraints.

Constraints

- All input values are integers.
- $1 \le N \le 500$
- $1 \le K \le N^2$

Input

The input is given from Standard Input in the following format:

N K

Output

Print your answer in the following format:

If multiple solutions exist, any of them will be accepted.

Sample Input 1

3 3

Sample Output 1

Sample Input 2

2 4

Sample Output 2

Sample Input 3

Sample Output 3

F - Append Same Characters

Time Limit: 4 sec / Memory Limit: 1024 MiB

Score: 1000 points

Problem Statement

You are given N strings S_1, \ldots, S_N consisting of lowercase English letters. Consider performing the following two types of operations zero or more times in any order:

- Choose one lowercase letter c. Append c to the end of S_i for all $1 \leq i \leq N$.
- Choose an integer i such that $1 \leq i \leq N-1$. Swap S_i and S_{i+1} .

Find the minimum total number of operations required to make $S_i \leq S_{i+1}$ in lexicographical order for all $1 \leq i \leq N-1$.

▶ What is lexicographical order?

Constraints

- All input values are integers.
- $2 \le N \le 3 \times 10^5$
- ullet S_i is a string consisting of lowercase English letters.
- $1 \leq |S_i|$
- $|S_1| + |S_2| + \cdots + |S_N| \le 3 \times 10^5$

Input

The input is given from Standard Input in the following format:

N

 S_1

 S_2

:

 S_N

Output

Print the answer in a single line.

Sample Output 1

3

Here is one way to operate.

- Swap S_2 and S_3 . Now $(S_1,\ldots,S_5)=($ ab, a, rac, dab, ra).
- Append z to the end of each string. Now $(S_1,\ldots,S_5)=($ abz, az, racz, dabz, raz).
- Swap S_3 and S_4 . Now $(S_1,\ldots,S_5)=$ (abz, az, dabz, racz, raz). At this point, we have $S_i\leq S_{i+1}$ for all $i=1,\ldots,N-1$.

It is impossible to make $S_i \leq S_{i+1}$ for all $i=1,\ldots,N-1$ with fewer than three operations, so you should print 3.

Sample Input 2

3 kitekuma nok zkou

Sample Output 2

0

Before any operation is performed, we have $S_i \leq S_{i+1}$ for all $i=1,\dots,N-1$.

```
31
arc
arrc
rc
rac
rc
aara
ra
caac
cr
carr
rrra
ac
r
ccr
а
C
aa
acc
rar
C
а
r
rc
а
rc
cr
c
```

Sample Output 3

175

Note that we may have $S_i = S_j$ for i
eq j.