Residence time distribution

- Construction of C(t) and E(t)
- Convolution integral
- Step-input
- Some more on RTD
 - $lacktriangleq t_m$ and au and other moments
 - RTD of Ideal reactors
 - RTD of LFR

Lecture # 29 CHE331A

Residence time distribution

Goutam Deo

2020-2021 1st semester

- Space time and mean residence time are related \triangleright Space time (τ) was defined as V/v and it signified the average residence time the fluid spent in the reactor
- ▶ Based on the RTD function, the mean residence time is defined as:

$$t_{m} = \frac{\int_{0}^{\infty} tE(t)dt}{\int_{0}^{\infty} E(t)dt} = \int_{0}^{\infty} tE(t)dt$$

- ▶ This is the first moment of the RTD curve
- ▶ The total reactor volume can be determined from the cumulative distribution function F(t) of the reactor
 - At time t < 0 the reactor is completely filled with blue fluid elements
 - At time t = 0 red dye is injected
- Amount of blue dye corresponds to Reactor volume

Calculation of reactor volume from cumulative distribution function

- \blacktriangleright At time t = t' (> 0)
- ► Fraction of dye molecules in the effluent that have been in the reactor for $t \ge t'$ is 1-F(t')
- Volume of molecules leaving in a time dt is vdt
- Fraction of these molecules that have spent greater than equal to t is [1-F(t)]
 only blue molecules have spent time more than t in the reactor
- Volume of blue molecules leaving the reactor in dt is dV = v[1 F(t)]dt, which can be integrated from 0 to ∞ to give V
- ▶ Thus, $V = \int_0^\infty v[1 F(t)]dt$ and for constant volumetric flow rate

$$V = \nu \int_{0}^{\infty} [1 - F(t)]dt$$

The relationship between the mean residence time and the space time

- ▶ Previously, $V = v \int_0^\infty [1 F(t)] dt$ integrating by parts
- ▶ Integrating by parts we have: $\frac{V}{v} = \int_0^\infty [1 F(t)] dt = [t(1 F(t))]_0^\infty + \int_0^1 t dF$
- ▶ At t = 0, F(t) = 0 and $t \to \infty$, then [1-F(t)] = 0. Thus, first term is zero
- ► And, $\frac{V}{v} = \int_0^1 t dF = \tau$ However, dF = E(t)dt
- Thus, $\tau = \int_0^\infty t E(t) dt = t_m$ True when $v = v_0$ and for isobaric and isothermal operations and no change in number of moles
- ► Further, this is true for a closed system, i.e., no dispersion across boundaries

The RTD and its three moments

▶ First moment of the distribution is the mean residence time:

$$t_m = \int_0^\infty tE(t)dt$$

▶ Second moment is the variance, σ^2 :

$$\sigma^2 = \int_0^\infty (t - t_m)^2 E(t) dt$$

- o indicates the "spread" of the distribution
- ▶ Third moment is also taken about the mean and is related to "skewness"

$$s^{3} = \frac{1}{\sigma^{3/2}} \int_{0}^{\infty} (t - t_{m})^{3} E(t) dt$$

- Magnitude indicates if the distribution is skewed in one direction or the other related to the mean
- Other moments exist too

Dimensionless RTD function is used instead of function E(t), which depends on reactor size and flows

- ▶ Dimentionless time, θ , defined as: $\theta = \frac{t}{\tau}$
- ▶ Dimensionless RTD function, $E(\theta)$, is defined as: $E(\theta) = \tau E(t)$
- ▶ Thus, $E(\theta)$ vs θ is identical for all ideal PFRs and CSTRs
 - \circ E(t) vs t would vary depending on the space-time, i.e., the value of τ
- By normalizing different reactors can be compared directly
 - Numerical values may be otherwise different
- ▶ It can be easily shown that $\int_0^\infty E(\theta)d\theta = 1$
- Similar to E(t) (exit-age distribution function) the internal-age distribution, $I(\alpha)$, is also sometimes used: $I(\alpha) = (1 F(\alpha))/\tau$

RTD function can be defined for ideal reactors

- ► RTD function for PFR/PBR and Batch are simple
 - All atoms leaving the reactor (PFR/PBR) or in the reactor (Batch) have spent the same amount of time within the reactor
 - The RTD function is a spike of infinite height, zero width and area of 1
 - \circ Spike occurs at $t = \tau$ or $\theta = 1 \rightarrow$ represented by the Dirac delta function
 - $E(t) = \delta(t \tau)$ where $\delta(x) = 0$ at $x \neq 0$ and $\delta(x) = \infty$ at x = 0
 - \circ Further, $\int_{-\infty}^{\infty} \delta(x) dx = 1$ and $\int_{-\infty}^{\infty} g(x) \delta(x \tau) dx = g(\tau)$
- Mean residence time is: $t_m = \int_0^\infty tE(t)dt = \int_0^\infty t\delta(t-\tau)dt = \tau$
- ▶ Variance $\sigma^2 = \int_0^\infty (t \tau)^2 \delta(t \tau) dt = 0$ → No variance!
- Cumulative distribution function F(t) is: $F(t) = \int_0^t E(t)dt = \int_0^t \delta(t \tau)dt$

RTD function for the CSTR is not the same

- ▶ In a CSTR the conc. inside is the same as the conc at the exit
- ► For an inert tracer pulsed at t = 0 into a CSTR then at t > 0 we can do a material balance for the tracer, i.e., in out = accumulation (no reaction)
- ▶ $0 v \cdot C = V \frac{dC}{dt}$ Further, $C = C_0$ at t = 0. Then $C(t) = C_0 \exp(-t/\tau)$
- ► The C(t) for the CSTR can be used to determine E(t)
- ► Thus, $E(t) = \frac{C(t)}{\int_0^\infty C(t)dt} = \frac{C_0 \exp(-t/\tau)}{\int_0^\infty C_0 \exp(-t/\tau) dt}$ and $E(t) = \frac{\exp(-t/\tau)}{\tau}$
- ▶ Further, $E(\theta) = \exp(-\theta)$ and
- $F(\theta) = \int_0^{\theta} E(\theta) d\theta$ $F(\theta) = 1 \exp(-\theta)$

The moments of the RTD for a CSTR

- ▶ The first moment, the mean residence time, is given by: $t_m = \int_0^\infty tE(t)dt$
- ▶ Thus, $t_m = \int_0^\infty \frac{t}{\tau} \exp(-t/\tau) dt = \tau$ and
- ▶ The mean residence time is the space time, $\tau = V/v$
- ▶ The second moment, which is a measure of spread: $\sigma^2 = \int_0^\infty (t t_m)^2 E(t) dt$
- - Standard deviation is the square root of variance, and
 - For a CSTR, the standard deviation of the RTD function is as large as the mean

Laminar flow tubular reactor is an non-ideal reactor

- ► Before applying the RTD function to estimate conversions we can look into the flow behavior for a tubular reactor where there is laminar flow
- ▶ For laminar flow the velocity profile is parabolic, U(r) not ideal
- Velocity profile: $U(r) = U_{max} \left[1 \left(\frac{r}{R} \right)^2 \right] = 2 \left(\frac{v_0}{\pi R^2} \right) \left[1 \left(\frac{r}{R} \right)^2 \right]$
 - $_{\circ}$ Where $\frac{v_0}{\pi R^2}$ is the average fluid velocity through the tube
- ▶ The time required for a fluid element, t(r), to flow through the tube of length L

$$t(r) = \frac{L}{U(r)} = \frac{\pi R^2 L}{v_0} \frac{1}{2\left[1 - \left(\frac{r}{R}\right)^2\right]} = \frac{\tau}{2\left[1 - \left(\frac{r}{R}\right)^2\right]}$$

- ▶ The volumetric flow rate of fluid element between r and r+dr, dv, is
- $\blacktriangleright dv = U(r)2\pi r dr$ and the fraction of fluid passing is: $\frac{dv}{v_0} = \frac{U(r)2\pi r dr}{v_0}$

The E(t) curve for a laminar flow reactor

- The fraction of fluid between r and r+dr is dv/v_0 , which is $\frac{dv}{v_0} = \frac{U(r)2\pi r dr}{v_0}$
- ▶ This fraction of fluid between r and r + dr and has a flow between between v and v + dv spends time between t and t + dt in the reactor
- Thus, $E(t)dt = \frac{dv}{v_0} = \frac{U(r)2\pi r dr}{v_0}$
- ▶ This fluid fraction between r and r + dr is to be related to the fluid spending between t and t + dt in the reactor
 - o The time required to flow through the reactor of length L: $t(r) = \frac{\tau}{2\left[1-\left(\frac{r}{R}\right)^2\right]}$

o Thus,
$$\frac{dt}{dr} = \frac{d}{dr} \left[\frac{\tau}{2\left[1 - \left(\frac{r}{R}\right)^2\right]} \right] = \frac{4t^2}{\tau R^2} r$$
 Thus, $rdr = \frac{\tau R^2}{4t^2} dt$

The E(t) curve for the Laminar flow reactor ... contd

► Previously,
$$E(t)dt = \frac{dv}{v_0} = \frac{U(r)2\pi r dr}{v_0} = \frac{L}{t} \left(\frac{2\pi}{v_0}\right) r dr = \frac{L}{t} \left(\frac{2\pi}{v_0}\right) \left(\frac{\tau R^2}{4t^2}\right) dt = \frac{\pi R^2 L \tau}{v_0 2t^3} dt$$

$$E(t) = \frac{\tau^2}{2t^3}$$

- Minimum time (t_{min}) the fluid spend in the reactor is: $t_{min} = \frac{L}{U_{max}} = \frac{L}{2U_{avg}} = \frac{\tau}{2}$
- ► Thus, the RTD function is given by:

$$E(t) = 0 \text{ for } t < \frac{\tau}{2}$$

$$E(t) = \frac{\tau^2}{2t^3} \text{ for } t \ge \frac{\tau}{2}$$

▶ Based on this above E(t) it can be shown:

$$t_m = \tau \text{ and } F(t) = 1 - \frac{\tau^2}{4t^2}$$

Further, $E(\theta)$ and $F(\theta)$ can be derived

Summary

- ▶ Determination of volume of reactor from F(t) curve: $V = v \int_0^\infty [1 F(t)] dt$
- lacktriangle Equivalence of space-time and mean residence time: $au=t_m$
- ▶ Three moments of the RTD: t_m , σ^2 , s^3
- ▶ Dimensionless time and RTD function: θ , $E(\theta)$ and $F(\theta)$
- ▶ RTD functions for PFR/PBR and CSTR: $E(t) = \delta(t \tau)$ $E(t) = \frac{\exp(-t/\tau)}{\tau}$
- ► Laminar flow reactor as an ideal reactor: E(t) = 0 for $t < \frac{\tau}{2}$ $E(t) = \frac{\tau^2}{2t^3} \text{ for } t \ge \frac{\tau}{2}$

