

BUM – 5/6 ZÁKLADNÍ ROVNOVÁŽNÉ DIAGRAMY II

NEZBYTNÉ ZNALOSTI

Rovnovážný nerovnovážný stav, metastabilita, stabilita, Samovolný děj, gibbsova energie, hnací síla reakce, aktivační energie, energetická bariéra, Arrheniova rovnice, stacionární difuze, nestacionární difuze, eutektická reakce, peritektická reakce, změna rozpustnosti

MÚKOLY K ŘEŠENÍ 🗷

Do předpřipravených obrázků nakreslete následující rovnovážné binární diagramy:

- s částečnou (při klesající teplotě neměnnou) rozpustností složky B v A, úplnou nerozpustností složky A v B a s eutektickou přeměnou.
- s částečnou vzájemnou rozpustností složky *A* i *B*, s eutektickou přeměnou pro případ, kdy dochází ke změně rozpustnosti obou složek v tuhém stavu.
- s částečnou vzájemnou rozpustností složky A i B a peritektickou přeměnou pro případ, kdy nedochází ke změně rozpustnosti v tuhém stavu
- s úplnou nerozpustností obou složek, s intermediární fází AmBn neproměnného složení

u všech diagramů určete:

- Stupně volnosti ve všech polích, na všech čarách a ve všech bodech
- křivky chladnutí pro vyznačené slitiny (je vždy vyznačena jedna, která je specifická pro daný diagram, je ale dobré procvičit všechny které na obrázcích jsou)
- chemické složení a množství fází u zadaných slitin při vyznačených teplotách, (opět je vyznačena jedna kombinace, která je specifická, je ale dobré procvičit všechny)
- Sauverovy diagramy pro vyznačené teploty,
- schematicky nakreslete struktury vyznačených/zadaných slitin.

□ Literatura □

- 1. Ptáček, L. a kol.: Nauka o materiálu I. CERM akademické nakladatelství s.r.o , Brno, 2001
- 2. Dorazil, E, : Nauka o materiálu I přednášky, Ediční středisko, VUT FSI, Brno, 1989

<u>teploty:</u> $(T_m)_A = 500 \, ^{\circ}\text{C}$, $(T_m)_B = 400 \, ^{\circ}\text{C}$, $T_{ek} = 250 \, ^{\circ}\text{C}$, <u>koncentrace:</u> maximální rozpustnost $B \vee A = 15 \, \text{hm.}\%$, $c_{ek} = 70 \, \text{hm.}\%$ B.

2. BRD s částečnou vzájemnou rozpustností složky A i B, s eutektickou přeměnou pro případ, kdy dochází ke změně rozpustnosti obou složek v tuhém stavu.

<u>teploty:</u> $(T_m)_A = 500 \, ^{\circ}\text{C}$, $(T_m)_B = 400 \, ^{\circ}\text{C}$, $T_{ek} = 250 \, ^{\circ}\text{C}$, <u>koncentrace:</u> maximální rozpustnost $B \, \text{v} \, A = 20 \, \text{hm.}\%$, max. rozpustnost $A \, \text{v} \, B = 20 \, \text{hm.}\%$ při T_{ek} , minimální rozpustnost $B \, \text{v} \, A = 5 \, \text{hm.}\%$, min. rozpustnost $A \, \text{v} \, B = 10 \, \text{hm.}\%$ při $0 \, ^{\circ}\text{C}$, $T_{ek} = 70 \, \text{hm.}\%$ $T_{ek} = 70 \, \text{hm.}\%$ $T_{ek} = 70 \, \text{hm.}\%$

3. BRD s částečnou vzájemnou rozpustností složky A i B a peritektickou přeměnou pro případ, kdy nedochází ke změně rozpustnosti v tuhém stavu.

<u>teploty:</u> $(T_m)_A = 680 \, ^{\circ}\text{C}$, $(T_m)_B = 200 \, ^{\circ}\text{C}$, $T_{per} = 380 \, ^{\circ}\text{C}$, <u>koncentrace:</u> maximální rozpustnost $B \, \text{v} \, A = 20 \, \text{hm.}\%$, maximální rozpustnost $A \, \text{v} \, B = 62 \, \text{hm.}\%$ při T_{per} složení taveniny $\Box \, c_{Lper} = 70 \, \text{hm.}\% \, B$ při T_{per} .

4. BRD s úplnou nerozpustností obou složek, s intermediární fází A_mB_n neproměnného složení.

<u>teploty:</u> $(T_m)_A = 750 \, ^{\circ}\text{C}$, $(T_m)_B = 650 \, ^{\circ}\text{C}$, $(T_m)_{AmBn} = 680 \, ^{\circ}\text{C}$, $T_{ek1} = 400 \, ^{\circ}\text{C}$, $T_{ek2} = 500 \, ^{\circ}\text{C}$, <u>koncentrace:</u> A_mB_n se skládá z $A = 40 \, \text{hm.}\%$, $B = 60 \, \text{hm.}\%$, $C_{ek1} = 35 \, \text{hm.}\%$ B, $C_{ek2} = 80 \, \text{hm.}\%$ B.

