Discrete Structures

Logic Operators/Symbols

Conjunction	AND	\wedge
Disjunction	OR	V
Exclusive disjunction	XOR	\oplus
Implication	IF/THEN	\rightarrow
Biconditional	IFF	\Leftrightarrow

p [operator] q

p	q	^	V	\oplus	\rightarrow	\Leftrightarrow
Т	Т	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	F	Т	Т	Т	F
F	F	F	F	F	Т	Т

Precedence of Operators

$$() \neg \land \lor \oplus \rightarrow \Leftrightarrow$$

Rules of inference

$\begin{array}{c} p \\ \underline{p \to q} \\ \vdots \\ q \end{array}$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	Modus tollens
$\frac{p}{\therefore p \vee q}$	Addition
$\frac{p \wedge q}{\therefore p}$	Simplification
$\begin{array}{c} p \\ \underline{q} \\ \therefore p \wedge q \end{array}$	Conjunction
$\begin{array}{c} p \rightarrow q \\ \hline q \rightarrow r \\ \hline \therefore p \rightarrow r \end{array}$	Hypothetical syllogism
$\begin{array}{c} p \vee q \\ \hline \neg p \\ \hline \therefore q \end{array}$	Disjunctive syllogism
$ \begin{array}{c} p \vee q \\ \hline \neg p \vee r \\ \hline \therefore q \vee r \end{array} $	Resolution

Tree Method

Negate conclusion. Stack \land . Split \lor .

Quantifiers

 \forall universal \exists existential

Quantifiers: De Morgan's laws

$$\neg \forall x P(x) \equiv \exists x \ \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \ \neg P(x)$$

Quantifiers: Rules of inference

AE =arbitrary element PE =particular element

PE = particu	lar element
$c \text{ is } AE/PE$ $\forall x P(x)$ $\therefore P(c)$	Universal instantiation
$c \text{ is } AE$ $\forall x P(c)$ $\therefore \forall x P(x)$	Universal generalization
$\exists x P(x) \\ \therefore c \text{ is } PE \land P(c)$	Existential instantiation*
$c \text{ is } AE/PE$ $\forall x P(c)$ $\therefore \exists P(x)$	Existential generalization

Laws of propositional logic

Laws of propositional logic				
Idempotent laws	$p \lor p \equiv p$	$p \wedge p \equiv p$		
Associative laws	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \land q) \land r \equiv p \land (q \land r)$		
Commutative laws	$p \vee q \equiv q \vee p$	$p \wedge q \equiv q \wedge p$		
Distributive laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$		
Identity laws	$p \vee F \equiv p$	$p \wedge T \equiv p$		
Domination laws	$p \wedge F \equiv F$	$p \vee T \equiv T$		
Double negation law	$\neg\neg p \equiv p$			
Complement laws	$p \land \neg p \equiv F$	$p \vee \neg p \equiv T$		
Complement laws	$\neg T \equiv F$	$\neg F \equiv T$		
De Morgan's laws	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg (p \land q) \equiv \neg p \lor \neg q$		
Absorption laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$		
Conditional identities	$p \to q \equiv \neg p \lor q$	$p \Leftrightarrow q \equiv (p \to q) \land (q \to p)$		

Set Symbols

v	
Set of naturals	N
Set of integers	\mathbb{Z}
Set of rationals	Q
Set of real numbers	\mathbb{R}
Empty set	Ø
Universal set	U
Cardinality of a set	S

Naïve Set Theory

- A set is an unordered collection of objects, called members or elements.
- A set can be an element of another set.
- The empty set \varnothing contains no elements.
- No set can contain itself as a member, either directly or indirectly.

Set Membership	$x \in S$	x is a member of S
Negation of set membership	$x \notin S$	$\neg (x \in S)$

Subset	$A \subseteq B$	$\forall x: (x \in A \Rightarrow x \in B)$
Proper Subset	$A \subset B$	$\forall x: (x \in A \Rightarrow x \in B) \land (\exists x: x \in B \land x \notin A)$

Set Operations

Intersection	$A \cap B$	$\{x: x \in A \text{ and } x \in B\}$
Union	$A \cup B$	$\{x: x \in A \text{ or } B \text{ or both}\}$
Difference	A - B	$\{x: x \in A \text{ and } x \notin B\}$
Symmetric difference	$A \oplus B$	$\begin{cases} \{x : x \in A - B \text{ or } x \in B - A\} \end{cases}$
Complement	\overline{A} A^C	$\{x: x \notin A\}$
Cartesian Product	$A \times B$	$\{(a,b):(a\in A)\wedge(b\in B)\}$
Power Set	P(S)	${X:X\subseteq S}$

English expressions of the conditional operation

	If p then q (If p, q)
	$q ext{ if } p$
	p implies q
$p \to q$	q whenever p
	p only if q
	p is sufficient for q
	q is necessary for p
~ \ aa	p is necessary for q
$q \to p$	p whenever q
$\neg q \rightarrow p$	p unless q

	$p \rightarrow q$
Converse	$q \rightarrow p$
Contrapositive	$\neg q \rightarrow \neg p$
Inverse	$\neg p \rightarrow \neg q$

Set identities

Idempotent laws	$A \cup A = A$	$A \cap A = A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Commutative laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	$A \cup \varnothing = A$	$A \cap U = A$
Domination laws	$A \cap \varnothing = \varnothing$	$A \cup U = U$
Double complement law	$\overline{\overline{A}} = A$	
Complement laws	$A\cap \overline{A}=\varnothing$	$A \cup \overline{A} = U$
Complement laws	$\overline{U}=\varnothing$	$\overline{\varnothing} = U$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$

Relations

A relation R from domain A to B is a subset of $A \times B$. A relation R over a set A is a subset of $A \times A$.

Properties of Relations

Reflexive	$\forall x \in A : (x, x) \in R$
Anti-Reflexive	$\forall x \in A : (x, x) \notin R$
Symmetric	$\forall x, y \in A : (x, y) \in R \Leftrightarrow (y, x) \in R$
Anti-Symmetric	$\forall x, y \in A : ((x, y) \in R \land (y, x) \in R) \Rightarrow (x = y)$
Transitive	$\forall x, y, z \in A : ((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$
Equivalence	Reflexive, symmetric, and transitive

Closure Functions

Reflexive closure	$r(R): r(R) \supseteq R$	$r(R) = R \cup I$
Symmetric closure	$s(R):s(R)\supseteq R$	$s(R) = R \cup R^-$
Transitive closure	$t(R):t(R)\supseteq R$	$t(R) = R \cup R^+$

I is the identity. R^- is the inverse of R.

Composing relations

Given two relations $R:A\to B,\,S:B\to C,$ the composition

 $S \circ R : A \to C$ is defined as

$$\{((a,c):a\in A \land c\in C) \land (\exists\, b\in B:(a,b)\in R \land (b,c)\in S)\}$$

If R is a relation over a set A, then:

$$R \circ R = R^2 = \{(a, b) : \exists x \in A(a, x) \in R \land (x, b) \in R\}$$

$$R \circ (R \circ R) = R^3 = \{(a,b) : \exists x, y \in A(a,x) \in R \land (x,y) \in R \land (y,b) \in R\}$$

In general: $(a, b) \in \mathbb{R}^k$ iff there is a sequence of k flights from a to b.

Theorem: For any relation R over a set A, |A| = n,

 $R^+ = R \cup R^2 \cup R^3 \cup \dots \cup R^n$

Corollary: If R is reflexive, then $R^+ = R^n$ since

 $R \subseteq R^2 \subseteq R^3 \cdots \subseteq R^n$

Functions

A function f from a domain A to a target B is a relation such that every domain element is mapped to exactly one element in the target.

A function $f: A \to B$ is one-to-one (injective) if $\forall x_1, x_2 \in A: (x_1 \neq x_2) \Rightarrow f(x_1) \neq f(x_2)$

"Every domain element is mapped to a unique element in the target."

A function $f: A \to B$ is onto (surjective) if $\forall y \in B \; \exists \, x \in A : f(x) = y$

"Every element in the target is the target of at least one domain element."

A function $f: A \to B$ is a one-to-one correspondence (bijective) if f is both injective and surjective.

"Every domain element is matched with exactly one element in the target, and vice versa."

Composition of functions

 \overline{f} and g are two functions, where $f: X \to Y$ and $g: Y \to Z$. The composition of g with f is the function $(g \circ f): X \to Z$, such that $\forall x \in X, (g \circ f)(x) = g(f(x))$.

 $f\circ g\circ h=(f\circ g)\circ h=f\circ (g\circ h)=f(g(h(x)))$

Identity function $(I_A : A \to A)$ is defined as $I_A(a) = a, \forall a \in A$.

Pigeonhole principle: If k+1 pigeons occupy k pigeonholes,

then at least two pigeons share a pigeonhole.

No function from a domain of size k+1 to a target of size k is injective.

Well-ordering principle: Every non-empty subset of $\mathbb N$ has a least element.

<u>Theorem:</u> The pigeonhole principle is logically equivalent to the well-ordering principle.

Uncountability

- $|\mathbb{N}| = |\mathbb{Z}|$
- A set S is *countable* if there is an injective function $f: S \to \mathbb{N}$.
 - Every finite set is countable.
 - Every subset of \mathbb{N} is countable.
- A set S is countably infinite if there is a bijective function $f: \mathbb{N} \to S$.
 - $-\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countably infinite.
 - Theorem: If A, B are countable sets, then $A \times B$ is countable. ($\mathbb{N} \times \mathbb{N}$ is countable.)
- \mathbb{R} is uncountable.
- If a finite set S has m elements, then P(S) has $2^m > m$ elements.
 - $-P(\mathbb{N})$ is infinite and not countable.
 - For every set S, |S| < |P(S)|.
- The Infinite Hierarchy of Infinite Sets:

N	P(N)	P(P(N))	P(P(P(N)))		D(N) = D
\aleph_0	\aleph_1	\aleph_2	₹3	• • •	$ P(N) = \mathbb{R} $

Proofs

- Direct proofs
- Induction
 - CLAIM: P(n)
 - **BASIS:** P(0) is true
 - INDUCTIVE HYPOTHESIS: For some k > 0, P(k)
 - INDUCTIVE STEP: $P(k) \Rightarrow P(k+1)$
- Strong Induction
 - CLAIM: P(n)
 - **BASE CASES:** $P(x_1), P(x_2), \cdots$ are true
 - INDUCTIVE HYPOTHESIS: $\forall i, 0 \le i \le k \ P(k)$
 - INDUCTIVE STEP: $(\forall i \leq k : P(i)) \Rightarrow P(k+1)$
- Contrapositive
 - Prove $p \to c$ by showing that $\neg c \to \neg p$.
- Contradiction
 - Prove t is true by first assuming $\neg t$ is true and reaching the conclusion $r \land \neg r$, for some proposition r.
- Proof by cases (e.g. When x is odd..., when x is even...)

Number Theory

• Divisibility Lemma

- 1. $a|b \Rightarrow \forall c : a|bc$
- 2. $a|b \wedge b|c \Rightarrow a|c$
- 3. $a|b \wedge a|c \Rightarrow \forall s, t \in \mathbb{Z} : a|(sb+tc)$
- 4. $\forall c \neq 0 : a|b \Leftrightarrow ca|cb$

• Division Theorem

 $\forall n, d \in \mathbb{Z}$ where $d > 0, \exists$ a unique pair $q, r \in \mathbb{Z}$

such that n = qd + r, $0 \le r \le d$.

• GCD Theorem: The smallest positive linear combination m of two integers a, b (at least one of which is non-zero) equals g = gcd(a, b).

<u>Lemma:</u> An integer is a linear combination of a, b if and only if it is a multiple of qcd(a,b).

• GCD Lemma

- 1. $\forall c \in \mathbb{Z} : (c|a \land c|b \Rightarrow c|qcd(a,b))$
- 2. $\forall k > 0 : gcd(ka, kb) = k \cdot gcd(a, b)$
- 3. $(gcd(a,b) = 1 \land gcd(a,c) = 1) \Rightarrow gcd(a,bc) = 1$
- 4. $(a|bc \land gcd(a,b) = 1) \Rightarrow a|c$
- 5. gcd(a,b) = gcd(b, rem(a,b)),

where rem(a, b) is the remainder on dividing a by b.

• Fundamental Theorem of Arithmetic: Every number greater than 1 is uniquely expressed as a product of primes. The natural number p > 1 is prime if $\forall n < p, qcd(n, p) = 1$.

ullet Congruence modulo m

<u>Definition</u>: Integers a, b are congruent modulo m iff m|a-b.

Notation: $a \equiv b \pmod{m}$

Theorem: $a \equiv b \pmod{m} \Leftrightarrow rem(a, m) = rem(b, m)$

Lemma: Congruence mod m is an equivalence relation.

The following properties hold for every $m \in \mathbb{N}^+$

- 1. $a \equiv a \pmod{m}$ Reflexive
- 2. $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$ Commutative
- 3. $a \equiv b \pmod{m} \land b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$ Transitive

• Modular Arithmetic

Rules

- $[x + y] \mod m = [(x \mod m) + (y \mod m)] \mod m$
- $\cdot [x \cdot y] \mod m = [(x \mod m)(y \mod m)] \mod m$
- $\cdot x^a \mod m = (x \mod m)^a$

Lemma

- 1. $a \equiv b \pmod{m} \Rightarrow a + c \equiv b + c \pmod{m}$
- 2. $a \equiv b \pmod{m} \Rightarrow a \cdot c \equiv b \cdot c \pmod{m}$
- 3. $a \equiv b \pmod{m} \land c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$
- 4. $a \equiv b \pmod{m} \land c \equiv d \pmod{m} \Rightarrow a \cdot c \equiv b \cdot d \pmod{m}$

Theorem:

If $a \cdot c \equiv b \cdot c \pmod{m}$ and qcd(c, m) = 1, then $a \equiv b \pmod{m}$

• Modular inverses

<u>Definition</u>: If $a \cdot x \equiv 1 \pmod{m}$ then we say that x is the inverse of a modulo m. (Note: $a, x \in \mathbb{Z}_m$)

Notation: $x \equiv a^{-1} \pmod{m}$.

 $x \equiv a^{-1} \pmod{m}$ also means that $a \equiv x^{-1} \pmod{m}$

Theorem: If gcd(a, m) = 1 then $a^{-1} \pmod{m}$ exists.

Corollary: If m is prime then every non-zero element in \mathbb{Z}_m has an inverse.

- Fermat's Last Theorem: There are no non-zero integer solutions to $a^n + b^n = c^n$ for n > 3.
- Fermat's Little Theorem: If p is prime and $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$

• Euler's Totient Function

Definition: Euler's totient function $\Phi(n)$ = number of numbers in [1, n] relatively prime to n.

Lemma:

- 1. If p is prime, then $\Phi(p) = p 1$.
- 2. If p, q are primes, then $\Phi(pq) = (p-1)(q-1) = \Phi(p)\Phi(q)$.

• Euler's Generalization of Fermat's Little Theorem

If gcd(a, n) = 1 then $a^{\Phi(n)} \equiv 1 \pmod{n}$.

• Euclidean Algorithm

 $acd(a,b) = r_n$

gca(a, 0)) 'n	
У	X	$r = y \mod x$
a	b	r_1
b	r_1	r_2
r_1	r_2	r_3

r_{n-2}	r_{n-1}	r_n
r_{n-1}	r_n	0

• Extended Euclidean Algorithm: Expresses qcd(a,b)as a linear combination of a and b : qcd(a, b) = sa + tb.

 $r = y \mod x$

 $r = y - (y \ div \ x) \cdot x \ (div \ represents \ integer \ division)$

$$r_1 = a - (a / b) \cdot b$$

$$r_2 = b - (b / r_1) \cdot r_1$$

$$r_3 = r_1 - (r_1 / r_2) \cdot r_2$$

$$r_n = r_{n-2} - (r_{n-2} / r_{n-1}) \cdot r_{n-1}$$

Rewrite $r_{n-2} - (r_{n-2} / r_{n-1}) \cdot r_{n-1} \to sa + tb$.

• Chinese Remainder Theorem

If m_1, m_2, \ldots, m_n are pairwise relatively prime, the system:

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$x \equiv a_n \pmod{m_n}$$

has a *unique* solution modulo $m = m_1 \cdot m_2 \cdots m_n$. To solve, construct:

- $-m=m_1\cdot m_2\cdots m_n$
- $-M_i = \frac{m}{m_i}$
- $y_i \equiv M_i^{-1} \pmod{m_i}$
- $-X_i = a_i y_i M_i$

Then: $x \equiv X_1 + X_2 + \cdots + X_n \pmod{m}$

• RSA Cryptosystem

- 1. Select two large prime numbers, p and q.
- 2. Compute N = pq and $\Phi = (p-1)(q-1)$.
- 3. Find integer $e \to gcd(e, \Phi) = 1$.
- 4. Compute integer $d \to (ed \mod \Phi) = 1$.
- 5. Public (encryption) key: N and e.
- 6. Private (decryption) key: d.

 $c = m^e \mod N$ (encryption)

$$m = c^d \mod N$$
 (decryption)

Validity of the RSA cryptosystem:

$c^d \mod N$

$$= (m^e \mod N)^d \mod N$$

$$= m^{e \cdot d} \mod N$$

$$= m^{e \cdot d} \mod N$$
$$= m^{1+k\Phi} \mod N$$

$$= (m \cdot m^{k\Phi}) \bmod N$$

$$= (m \cdot 1) \mod N$$

= m

Exponent rules

$$a^m \cdot a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-r}$$

$$(a^m)^n = a^{mn}$$

$$(ab)^m = a^m b^m$$

Graph Theory

- Vertex: Node
 - Adjacent vertices: Two vertices with an edge between them.
 - Vertices A and B are the **endpoints** of edge $\{A, B\}$. The edge $\{A, B\}$ is **incident** to vertices A and B.
 - Vertex A is a **neighbor** to vertex B if $\{A, B\}$ or $\{B, A\}$ exists.
- Degree of a vertex: The number of edges incident to a vertex (the number of neighbors a vertex has).
 - Total degree: The sum of the degrees of all of the
 - Outdegree of $v(deg^+(v))$: # of outgoing edges; edges with v as initial node.
 - Indegree of $v(deg^-(v))$: # of incoming edges; edges with v as end node.
- Edge: A set of two nodes; a line connecting two nodes together.
 - Undirected edge: - - •
 - Directed edge: - - → •
 - Parallel edges: Multiple edges between the same pair of vertices.
 - **Self-loop:** An edge between a vertex and itself.
- Walk: A sequence of alternating vertices and edges that starts and ends with a vertex.
 - **Open walk:** First and last vertices are not the same.
 - Closed walk: First and last vertices are the same.
 - Length of a walk: The number of edges in the walk.
- Trail: A walk in which no edge is repeated.
- Circuit: A closed walk in which no edge is repeated.
- Path: A trail in which no vertex is repeated.
- Cycle: A circuit of length ≤ 1 with the same first and last vertices and no repeated vertex.
- Eulerian Trail/Circuit: A trail/circuit that traverses every edge exactly once.
- Undirected graph: Edges are unordered pairs of vertices.
- Directed graph: Edges are ordered pairs of vertices.
 - \bullet G = (V, E)
 - V is a set of vertices.
 - $E \subseteq V \times V$ is a set of directed edges, where each edge is an ordered pair $(u, v) : u, v \in V$.
 - $\sum_{v \in V} deg^{+/-}(v) = |E|$ $\sum_{v \in V} deg(v) = 2 \cdot |E|$
- Simple graph: A graph that does not have parallel edges or self-loops.
- Regular graph: All vertices have the same degree.
 - D-regular graph: All vertices have degree d.
- Strongly connected graph: A directed graph where there is a directed path from every node to every other node.
- Directed Acyclic Graph (DAG): A directed graph with no cycles.
 - If G = (V, E) is a DAG, then G has a node with indegree 0 and has a topological ordering.
- K_n : A complete graph on n vertices. A complete graph has an edge between every pair of vertices.
- C_n : A cycle on n vertices; well-defined only for $n \geq 3$.
- $K_{n,m}$: A graph on n+m vertices. The vertices are divided into 2 sets: one with m vertices and one with n vertices. There are no edges between vertices in the same set, but there is an edge between every vertex in one set and every vertex in another set.

• Eulerian Circuits/Trails

An undirected graph G has an Euler circuit iff it is connected and every vertex in G has even degree.

An undirected graph G has an Euler trail iff G is connected and has exactly two vertices with odd degree.

• Trees

Tree: A connected acyclic graph.

Leaves of a tree: Vertices with degree 1.

Observations:

- 1. Every connected subgraph of a tree T is also a tree.
- 2. There is a unique path between every pair of vertices.
- 3. Adding an edge between any two nonadjacent vertices in a tree creates a cycle.
- 4. Removing any tree edge disconnects some pair of vertices.
- 5. Every tree with at least two vertices contains at least two leaves.
- 6. Every tree with n vertices has n-1 edges.

Full binary trees

- Every vertex is either a leaf or has exactly 2 children.
- THEOREM: A full binary tree has n leaves and n-1non-leaves.
- LEMMA: Some two siblings are both leaves.

• Map Coloring

- Four-Color Theorem: At most 4 colors are required to color a map such that no adjacent regions share the same
- For maps with non-contiguous states, 5 colors may be necessary.
- Planar Graphs: A graph is planar if it can be drawn on the plane without crossing edges.
 - 1. Each edge lies once on the boundary of 2 regions, or twice on the boundary of 1 region.
 - 2. Therefore, X = sum of the # of edges of every regionboundary = 2m.
 - 3. Also, since each region has 3 or more bounding edges, if the number of vertices is at least 3: X > 3r.
 - 4. Therefore, $2m \geq 3r$ for every connected planar graph with at least 3 vertices.
 - 5. In general, if every cycle has length c or greater, than $2m \ge cr$.

• Euler's Formula

Theorem: For every connected planar graph with n vertices, m edges, and r regions: n - m + r = 2.

Corollary: The number of regions in all drawings of a planar graph is invariant.

· Planar graphs have few edges

<u>Theorem:</u> For every connected graph G with $n \geq 3$ vertices: m < 3n - 6.

Corollary 1: K_5 is not planar.

Corollary 2: $K_{3,3}$ is not planar.

• Five-Color Theorem: Every planar graph can be colored with 5 or fewer colors.