深圳市雨污处理的措施选择

王汝韵 郑逸斐 张元祚 指导教师:数模教练组 复旦大学数学科学学院

摘要

本文定量分析了雨污分流与混流收集机制对污水处理系统以及海绵城市建设的影响。

首先,从治污效果、污水排放量、溢出水量、费用、海绵城市建设等角度,对一个 区域分别采取清源、截排措施的效用进行比较。通过数值模拟,给出了实施清源或截排 措施的判定条件。

其次,研究了多个区域由一个污水处理厂负责时,各个区域是否实施清源以及何时 实施清源的问题。分别以治污效果、费用、性价比为目标函数,以污水厂处理能力为约 束条件,建立优化模型。通过数值模拟,给出了分时段、分区域实施污水治理的建议方 案。

然后,在多个区域多个污水处理厂的情形下,综合考虑了各厂的污水处理能力与每年的投资建设费用,建立了优化模型,确定了各区域的清源时间和顺序。

由模拟结果可以得到,对于深圳河湾流域,污水处理率将逐年上升,需要建设的污水管网总长度符合政府提出的建设目标,并且在满足治污要求、维持河道生态的前提下,政府的开支也得到了降低。另外,本模型对污水处理系统的管理以及海绵城市的建设都有积极的指导作用。

最后,应用本文的模型,评估了深圳市水务局提供的某河流域水环境综合整治方案, 认为方案切实可行。

关键词: 雨污分流; 截排; 清源; 排水管网; 海绵城市; 优化模型

目 录

一,	引言	4
	1.1 国外排水现状	4
	1.2 国内排水现状	4
_,	问题的重述与分析	5
	2.1 问题的重述	5
	2.2 "清源"与"截排"的含义	5
	2.3 清源与截排、分流与混流的关系	5
	2.4 治污措施对污水系统建设的影响	5
	2.5 排水管道的简化	6
	2.6 目标与要求	6
三、	单个区域的排水模型	6
	3.1 假设	6
	3.2 符号说明	7
	3.3 模型的建立	7
	3.3.1 治污效果	7
	3.3.2 洪涝情况	8
	3.3.3 费用	10
	3.3.4 海绵城市	11
	3.4 考虑错接情况	13
	3.4.1 治污效果	13
	3.4.2 洪涝情况	14
	3.4.3 费用	15
	3.4.4 海绵城市	15
	3.5 最优改建方案	15
	3.5.1 清源或者截排	15
	3.5.2 清源截排同时进行	19
	3.6 数值模拟	20
	3.6.1 数据来源	20
	3.6.2 参数确定	21
	3.6.3 模拟结果	22
	3.6.3.1 清源截排的选择	22
	3.6.3.2 清源截排同时进行	22
四、	多个区域单个污水厂的排水模型	23
	4.1 假设	23
	4.2 符号说明	23
	4.3 模型的建立	24
	4.4 数值模拟	29
	4.4.1 数据来源	29
	4.4.2 参数确定	
	4.4.3 模拟结果	31
五、	多个区域多个污水厂的排水模型	
	5.1 假设	32
	5.2 符号说明	

	5.3 模型的建立	33
	5.4 数值模拟	33
	5.4.1 数据来源	33
	5.4.2 参数确定	34
	5.4.3 模拟结果	34
六、	模型的评价	35
	6.1 深圳河湾区域规划方案的评估	35
	6.1.1 改造区域数量	35
	6.1.2 新建管网长度	35
	6.1.3 处理能力提升	36
	6.1.4 投资额	36
	6.2 某河治理方案评估	36
	6.2.1 考虑截污比例	36
	6.2.2 考虑洪水情况	37
	6.2.3 考虑海绵城市建设情况	40
	6.3 模型的评价	40
	6.4 模型的进一步改进	40
参考	(文献	41
附表	ž	
	表 1: 2014 年深圳市每月降水量 ^[9]	
	表 2: 各区域的面积及污水量 ^[18]	
	表 3: 区域涉及的污水处理厂及其污水处理能力[16]	43
	表 4: 模型 I (治污效果) 求解结果	
	表 5: 截排措施各月排入河道的水量	44
	表 6: 清源措施各月排入河道的水量	46
	表 7: 截排、清源措施各月排入河道的水量之差	48
	表 8: 截排、清源措施建设第一年排入河道的总水量之差	
	表 9: 截排措施各月溢出水量	50
	表 10: 清源措施各月溢出水量	52
	表 11: 截排、清源措施各月溢出水量之差	54
	表 12: 截排各月总费用	56
	表 13: 清源各月总费用	58
	表 14: 截排、清源措施各月总费用之差	60

一、引言

1.1 国外排水现状

国外的排水系统建设已经非常发达,有很多国家和地区在排水方面已经有了非凡的成就,或许能带给我们启示,值得我们借鉴。

1) 东京排水系统

日本是一个台风和强降雨多发的国家,然而东京地区却很少出现积水、内涝等情况。最主要的原因,是东京拥有世界上最先进的排水系统。从 1992 年开始,到 2006 年竣工,东京的城市污水管、雨水管以及合流管的总长度超过 1.5 万公里,地下河深达 60 米,排水标准是"五至十年一遇"。[1]

它的排水系统的先进之处在于:首先,东京利用城区内及周围大小型河流,如江户川、涩谷川等,达到防洪的目的。暴雨来袭的时候,通过城市内部的下水管道将超出储蓄量的雨水从小河流排入大河流,最终汇集入海洋;其次,东京通过先进的降雨信息系统,及时地统计出数据,从而进行排水系统的合理调度。^[2]

这些措施都使得城市防涝功能得到了很大的提升。

2) 柏林排水系统[3]

素来以严谨、有远见号称的德国人,在城市排水系统规划方面绝对是各国应该效仿的榜样。德国历史上依旧遭受过水涝的痛苦,所以他们从 1873 年开始修建下水管道,直到今天全德的下水道总长超过 55 万千米,大约等于 14 个地球周长。

在柏林,雨污合流和雨污分流并存的排水系统,防止了整个城市内涝的发生,同时还能达到蓄积雨水的效果。1/4的下水管道属于合流制,主要集中在市中心。其余 3/4 的下水管道属于分流制,雨水通过雨水管直接排进河流或湖泊,污水通过污水管排到污水处理厂进行处理。

另外,为了防止合流制在暴雨时溢流的发生,德国人还建立了明沟——一种具有蓄水和防溢功能的人工河道。

3) 巴黎排水系统

巴黎多雨,但很少发生下雨积水导致城市交通堵塞的情况。究其原因,得益于巴黎非常庞杂但却十分有效的排水系统。早在1854年,奥斯曼帝国就开始修建下水管道。如今巴黎的下水管道已经长达2347公里,其四通八达俨然是一座地下迷宫。早在1999年,巴黎就已经实现了城市污水和雨水的处理率达到100%。^[4]

这个古老的排水系统,按照沟道的大小,分为小下水道、中下水道和排水沟渠三种^[5]。 当管道发生问题时,维修工人可以随时进入下水道进行维修。这种巨大的工程,虽然初期投入巨大,但却很好地加强了城市的排污、蓄水能力,确保后来的巴黎不会再遭受内涝与污水溢出的痛苦。

1.2 国内排水现状

在中国,排水系统的建设相较国外还是比较落后的,无论是在技术、规划还是管理上,都还有很大的进步空间。

解放前,我国大部分的城市没有完整的排水系统,大多是一些小管道,每次当雨季来临的时候,很多地方都会遭受水灾。解放后,我国城市排水工程开始有了迅猛的发展。改革开放初期,全国大部分城市的排水系统主要是合流制,仅有上海、北京、天津、西安、成都等城市开始部分实施分流制,或已经全部实现分流制,比如兰州市^[6]。随着经济、工业的发展,我国逐步地建成了现代化的排水系统。

从最早期的直排式合流制到60年代开始实施的截排式合流制,沿河而建的截排箱涵管

道,使得旱季污水和部分雨水被拦截,虽然会有溢流污染造成,但相比于之前的直排式合流制,已经极大地改善了排污效果。[7]

到80年代初期,逐步发展建设分流制,以期达到污水和雨水完全分离,避免污染的效果,然而对于城市老城区的分流改建而言,合流制管道已经存在多年,居民和住宅非常密集地分布,给管道改建施工的过程造成了不小的压力,并未达到预期的效果,同时高昂的改造成本也令决策者不得不考虑。

对于深圳市,上世纪 90 年代,排水系统建设不足导致的水体污染、水质恶化问题非常严重,从 1997 年开始的全市水环境大治理,对水质改观并未起到多大的作用。规划部门、环保部门和水务部门曾提出了各自的方案,对于截排式分流制和合流制基础上的"大截排"两种思路也进行过激烈地探讨,争论不休。^{[8}

深圳目前相当面积的区域排水管网实际处于"雨污混流"状态,致使相当数量的污水进入雨水管网后未经处理就直接排入河流和海洋。"截排"无法处理雨量过大时溢出的污水,"清源"需要补建大量管网。目前两种治理方案同时实施。

二、问题的重述与分析

2.1 问题的重述

在找到有关数据的基础上,建立数学模型,量化分析截排和清源对污水处理系统和海绵城市的影响。同时在达到治污要求并且节省开支的前提下,给出实施何种措施的判定条件。对于深圳市一个给定的区域,提出治理方案,并根据政府工作目标进行合理性评价。

2.2 "清源"与"截排"的含义

"清源"是从源头进行废水处理,雨水通过排水口直接排放到河道,污水通过污水管网汇集到污水厂;"清源"的主要投入是铺设污水管道,以及污水管改建所产生的成本。

"截排"是雨水和污水共用一根管道(通常是雨水管),在某处截流后运往污水厂;在建立模型时,由于之前深圳市就已经以"截排"为主要治污方式进行污水处理,所以无需另外铺设截排管道;由于大量雨水被"拦截"后未流入河道,使河道缺水,所以需要大量补水以维持生态。

在实际操作中,"截排"有"小截排"和"大截排"之分:

- "小截排"是在小区域设置收集点,通过截污箱涵拦截雨污混合水送往污水厂;
- "大截排"是直接在河岸两侧修建截污箱涵,把大区域内原本通向河道的排洪管口接入箱涵,将雨污混合水送入污水工厂。沿海城市的排洪管口大多建在河道入海口附近。

2.3 清源与截排、分流与混流的关系

清源、截排是治理措施,分流、混流是其导致的雨水和污水的流通形式,我们认为,清源即分流,截排即混流。污水处理能力的提升主要途径是逐步用"清源"代替"截排",降低流入污水厂的雨污混合水中雨水的比例。

2.4 治污措施对污水系统建设的影响

清源:所需铺设污水管网长度,污水处理费用(包括:(1)建立污水管网系统的投资:对已建成的污水管雨水管错接的整改费用、铺设污水管费用;(2)污水处理费用),输送给污水厂的污水量(给污水系统的压力)

截排:污水处理费用(包括对河道进行补水的费用和污水处理费用),输送给污水厂的雨污混合水量(给污水系统的压力)

2.5 排水管道的简化

为了研究对特定区域选择"清源"还是"截排",需要对区域进行划分,为了叙述方便, 我们将管道类型简化为两种:

小管道:区域内部,连通建筑物与大管道的支管;

大管道:连通区域与污水厂的管道,由于管道的铺设未知,我们难以得到具体的增设污水管网的路径,我们近似的认为区域到污水厂的管道长度就是区域中心到污水厂的直线距离,相应的大管道数量与区域的面积成正比。

2.6 目标与要求

建立模型的目标:部分区域清源、部分区域截排达到节省开支,而且在雨季不会使污水厂超负荷运作的要求。

我们选择的治污要求是:(1)污水厂(在雨季)不超负荷运转;(2)费用合理;

.

三、单个区域的排水模型

只考虑一个区域,分析区域治污时实施清源、截排措施的判定条件。

考虑当下深圳污水系统现状,分流混流并存,即已经有部分清源管网铺建完成,剩下部分雨污混流排入河道的排水口处建有截排箱涵,但由于雨污混合污水量时常超过箱涵的截流倍数而被排入河道造成污染,我们考虑或者进行清源改造——对剩余的雨污混流部分改为雨污分流并且对错接管道进行纠错,或者进行截排改造——不进行清源改造,而是对原来的截排工程进行优化,对截排箱涵改造以提升截流倍数(相应的污水处理厂也需要进行处理能力提升)。

3.1 假设

- (1) 清源的污水单独走一根管道,不与截排的水一起走
- (2) 错接:污水接到了雨水管:由于人工操作,错接的情况是不可避免的,需要长期的纠错:
- (3) 污水管网的铺建费用与管网大管道长度成正比;
- (4) 区域面积越大,认为污水量越大,需要的污水大管越多,假设新建污水管数量正比于面积,比例系数为n;
- (5) 雨水是由江河湖海等中的水蒸发而形成的,所以假设河道需要的水量是全部的降水量;
- (6) 补水走的是污水厂到河流的管道,补水的资金消耗与补水量成正比。
- (7) 截排后送往污水处理厂的污水量在污水厂处理能力内;
- (8) 污水管网的铺建费用与区域面积成正比;
- (9) 采用"清源"的区域的污水是收集在一个地方之后一起运往处理厂,一个区域可有多个 收集点,为了简化,假设每个区域的收集点和污水处理厂的距离,与每个区域中心和污 水处理厂的距离近似相等;

- (10) 区域面积越大,认为污水量越大,需要的污水大管越多,假设新建污水管数量正比于面积,比例系数为n:
- (11) 每个区域污水管网的管理费用(包括错接整改、小管道建设与居民抚慰等费用)与该区域的面积成正比,比例系数与区域的性质(如社区的新旧)有关;
- (12) 在考虑费用时,不考虑降水量关于时间和区域位置的变化,把平均年降水量平摊到每天; 在建立约束时,按照雨季(3-5月)的降水量来计算;

3.2 符号说明

- s: 区域内陆地非绿化面积
- u: 区域内河道面积
- d: 区域中心和污水处理厂之间的直线距离,为已知常数.
- h(t): 深圳市月降雨量(mm)
- x(t): 区域的月污水排放总量
- y(t): 区域的月雨水总量,有y(t) = h(t)s.
- D: 为旱季的月均雨量.
- X: 区域暴雨时每秒进入管道的污水量
- Y: 区域暴雨时每秒进入管道的雨水量
- ϕ : 截流倍数。合流制排水系统在降雨时截留的雨水量与旱流污水量之比值。不从截流井泻出的雨水量,这个指定倍数称为截流倍数。
 - r: 该地区采用截排的比例
- p: 错接率。由于人工总会存在错误,假设每次进行清源污水管网铺建后经过t时间后的错接率为p(t),从接错管道到发现错误进行整改纠错经过了一段时间,所以p随时间不断下降,而每次新建的管网又会经历全新的整修过程,错接率重新从p(0)开始减小

清源和截排的改造均为一个长期过程,即改造不能一蹴而就,我们假设r、p、 ϕ 的改变是一个关于时间的函数。同时,若选择清源,则只有r和p随时间改变, ϕ 恒为 ϕ (0);若选择截排,则只有 ϕ 随时间改变,r、p恒为r(0)与p(0)

$$[\zeta]^{+} = \begin{cases} \zeta, \zeta > 0 \\ 0, \zeta < 0 \end{cases} = max\{\zeta, 0\}$$

- $\xi(t)$: 雨水地面径流污染程度.
- a: 每m³污水的处理费用.
- c: 对河流进行补水,每m3补水量的费用.
- g:前7分钟降雨造成的地面径流污染占总雨水量的比例

3.3 模型的建立

3.3.1 治污效果

用"直接排入河道的污水量"来衡量治污效果。

1) 截排建设 (只有φ在变, r不变):

设 $\tilde{J}(t)$ 为第 t 月直接排入河道的污水量; x(t)为第 t 月的污水量; y(t)为第 t 月的雨水量; $\xi(t)$ 为雨水地面径流污染程度指标; g为前 7 分钟降雨造成的地面径流污染占总雨水量的比例; r为该地区采用截排的比例; p为错接率; ϕ 为截流倍数; D 为旱季的月均污水量。

排入河道的污水量为清源部分带来的地表径流污染、截排部分超出截流倍数排入河道的污水总和。随着截排改建,污水管道数目增加,管道增粗,截流倍数增大。由于雨污混合物

污染与纯污水污染的污染程度不同,我们用系数 $\frac{\mathbf{x}(\mathbf{t})}{\mathbf{x}(\mathbf{t})+\mathbf{y}(\mathbf{t})}$ 进行统一;清源由于雨水直接排放河道会产生地表径流污染,清源区域由于雨水直接排放河道,会产生地表径流污染, $\xi(\mathbf{t})$ 表示该区域的地表污染程度,用 $\xi(\mathbf{t})\cdot\mathbf{y}(\mathbf{t})\cdot\mathbf{g}$ 将地表径流污染与纯生活污水进行统一。

第 t 月,区域直接排入河道的污水量**j**(t)等于截排部分的超出截流倍数直接排入河道的污水加上采用清源因而直接向河道排放雨水造成的初期雨水污染。

$$\tilde{f}(t) = [r_0 \cdot (x(t) + y(t)) - \phi(t) \cdot D]^+ \cdot \frac{x(t)}{x(t) + y(t)} + \xi(t) \cdot y(t) \cdot g \cdot (1 - r_0)$$
(3.1)

污染排放的比例为

$$\frac{\tilde{J}(t)}{x(t) + \xi(t) \cdot y(t) \cdot g}$$

2) 清源整改 (只有r在变, ϕ 不变):

类似的,第t月,区域直接排入河道的污水量 $\tilde{Q}(t)$ 等于清源部分由于初期雨水造成的污染加上截排部分超出截流倍数直接排入河道的污水。

$$\tilde{Q}(t) = \xi(t) \cdot y(t) \cdot g \cdot [1 - r(t)] + [r(t) \cdot (x(t) + y(t)) - \phi_0 \cdot D]^+ \cdot \frac{x(t)}{x(t) + y(t)}$$
(3.2)

污染排放的比例为

$$\frac{\tilde{Q}(t)}{x(t) + \xi(t) \cdot y(t) \cdot g}$$

对 $\tilde{J}(t)$ 、 $\tilde{Q}(t)$ 在0~e月求和(t=0~e),得到两种情况下0~e月区域直接排入河道的污水量 \tilde{J} 、 \tilde{Q} 。

3.3.2 洪涝情况

考虑对雨水管网的压力(排入河道的水量)

1) 截排建设

1.考虑排入河道的水量

第t月,区域i直接排入河道的污水量 $\hat{j}(t)$ =

截排部分超出截流倍数直接排入河道的雨污混合水 + 清源部分排入河道的雨水

$$\hat{J}(t) = [r_0 \cdot (x(t) + y(t)) - \phi(t) \cdot D]^+ + [1 - r_0] \cdot y(t)$$
(3.3)

2.考虑管道溢出

设 X为区域每秒进入管道的污水量

Y为区域每秒进入管道的雨水量

 n_1 、 n_2 、 n_3 分别为建设初始的污水、雨水、雨污混合大管道的数量

 D_1 、 D_2 、 D_3 分别为污水、雨水、雨污混合大管道的管道内直径

 β_1 、 β_2 、 β_3 分别为污水、雨水、雨污混合大管道的最大流速

假设由于 $\eta(t)$ 增加相应的雨污混合大管道也要增加,且增加数量成比例污水管道溢出:

$$[[1-r_0]X-n_1\pi\left(\frac{D_1}{2}\right)^2\beta_1]^+$$

雨水管道溢出:

$$[[1-r_0]Y-n_2\pi\left(\frac{D_2}{2}\right)^2\beta_2]^+$$

雨污混合管道溢出:

$$[r_0(X+Y)-\frac{\phi(t)}{\phi(0)}n_3\pi\left(\frac{D_3}{2}\right)^2\beta_3]^+$$

出现水涝情况后,可以立即启动城市的泵站,将涝水外排,设 PUMP 为排积水水泵每秒的排水量。

则地面积水高度为溢出水量除以占地面积,公式如下:

$$\left[[[1-r_0]X - n_1\pi \left(\frac{D_1}{2}\right)^2\beta_1]^+ + [[1-r_0]Y - n_2\pi \left(\frac{D_2}{2}\right)^2\beta_2]^+ + [r_0(X+Y) - \frac{\phi(t)}{\phi(0)}n_3\pi \left(\frac{D_3}{2}\right)^2\beta_3]^+ - \text{PUMP} \right]^+ / s^{-\frac{1}{2}} \right]^2 + \left[[1-r_0]Y - n_2\pi \left(\frac{D_2}{2}\right)^2\beta_2 \right]^+ + \left[[1-r_0]Y - n_2\pi \left(\frac{D_$$

3. 洪水情况

设 I(t)为 t 时刻河面上升的高度; u 为区域内河道面积

由于河道中水的变化与降雨、流入河道的水量及流出河道的水量有关,可以写出 *I(t)*的表达式如下:

 $dl/dt = \left[-\left[\left(流入水库的速度*时间 - \left(水库总容量 - 现存容量 \right) \right) 流入水库的水流速度 \right]^+$

- +流入区域的干流水流速度 流出区域的干流水流速度
- 流出区域的支流水流速度 + 流入区域的支流水流速度 + 降雨流量
- + 从陆地排水系统进入河道的水流量 /河道面积

$$l(t) \cdot u = \int_0^t [-[(流入水库的速度*时间)]$$

- (水库总容量 现存容量))流入水库的水流速度
- +流入区域的干流水流速度 流出区域的干流水流速度
- -流出区域的支流水流速度 +流入区域的支流水流速度 $]\cdot dt +$ 降水高度 $\cdot u$

$$+\int_{0}^{t} \left[X + Y - \phi(t) \cdot r_{0} \cdot \frac{D}{30 \times 24 \times 60 \times 60} - (1 - r_{0})X \right] dt$$

*I(t)*反映了流域内河道的情况,当超过警戒值时,河水倒灌,造成洪涝灾害。 分有无暴雨预警两种情况讨论:

1) 有预警时,水库提前泄洪,使得水库现存容量减小设提前预警时间为 *T*

现存容量 =
$$[$$
水库的平均蓄水量 – 泄洪速度 * T $]$

2) 无预警时,水库现存容量使得流入水库的水流速度小且能收集水量小 现存容量 = 水库的平均蓄水量

2) 清源整改

1.考虑建设第1年排入河道的水量

第t月,区域i直接排入河道的污水量 $\hat{Q}(t)$ =

截排部分由于超出截流倍数直接排入河道的雨污混合水 + 清源排入河道的雨水

$$\hat{Q}(t) = [r(t)(x(t) + y(t)) - \phi_0 \cdot D]^+ + [1 - r(t)]y(t)$$
(3.4)

2.考虑管道溢出

假设由于1-r(t)增加,相应的雨水、污水大管道也要增加,且增加数量成比例污水管道溢出:

$$[[1-r(t)]X - \frac{1-r(t)}{1-r(0)}n_1\pi \left(\frac{D_1}{2}\right)^2\beta_1]^+$$

雨水管道溢出:

$$[[1-r(t)]X - \frac{1-r(t)}{1-r(0)}n_2\pi \left(\frac{D_2}{2}\right)^2\beta_2]^+$$

雨污混合管道溢出:

$$[r(t)(X+Y)-n_3\pi\left(\frac{D_3}{2}\right)^2\beta_3]^+$$

以上三式相加,得到溢出总量。

出现水涝情况后,可以立即启动城市的泵站,将涝水外排,设 PUMP 为泵站每秒的排涝水量。

地面积水高度为溢出水量除以占地面积,公式如下:

$$\begin{split} \left[[[1-r(t)]X - \frac{1-r(t)}{1-r(0)}n_1\pi \left(\frac{D_1}{2}\right)^2\beta_1]^+ + [[1-r(t)]X - \frac{1-r(t)}{1-r(0)}n_2\pi \left(\frac{D_2}{2}\right)^2\beta_2]^+ \right. \\ \left. + [r(t)(X+Y) - n_3\pi \left(\frac{D_3}{2}\right)^2\beta_3]^+ - \text{PUMP} \right]^+ /s \end{split}$$

3. 洪水情况

$$l(t) \cdot u = \int_0^t [-[(流入水库的速度*时间)] dt$$

- -(水库总容量 现存容量))流入水库的水流速度
- +流入区域的干流水流速度 流出区域的干流水流速度
- 流出区域的支流水流速度 + 流入区域的支流水流速度] $\cdot dt$ + 降水高度 $\cdot u$

$$+ \int_0^t \left[X + Y - \phi_0 \cdot r(t) \cdot \frac{D}{30 \times 24 \times 60 \times 60} - (1 - r(t)) X \right] dt$$

3.3.3 费用

1) 截排建设

1.1) 建设费用(build cost)

 $0\sim t$ 月,区域建设的费用BI(t)=

$$[\phi(t) - \phi(0)] \cdot r_0 \cdot s \cdot \text{单位面积上} \phi \text{增加一个单位所用的费用} \tag{3.5}$$

 $\phi(t)$ 的选择依赖于 $\frac{x(t)+y(t)}{x(t)}$ (所需的承载量)、 $\phi(t)$ 本身的取值范围以及城市建设能力。

1.2) 处理费用(deal cost)

a 为每立方米污水的处理费用。

处理费用为收集到的污水量乘以单位体积污水的处理费用。

第t月,区域污水处理的费用DI(t)=

截排部分的雨污混合水处理费 + 清源部分的污水处理费 + 截排部分的补水费 $DJ(t) = a \cdot min\{r_0 \cdot (x(t) + y(t)), \phi(t) \cdot D\} + [1 - r_0] \cdot a \cdot x(t) + r_0 \cdot c \cdot y(t)$ (3.6)

2) 清源整改

2.1) 建设费用

 $0\sim t$ 月,区域建设的费用BQ(t)=建设管网的费用

$$BQ(t) = s \cdot [r(0) - r(t)] \cdot$$
新建单位面积管网的费用 (3.7)

2.2) 处理费用

第t月,区域污水处理的费用DQ(t)=

截排部分的雨污混合水处理费 + 清源部分的污水处理费 + 截排部分的补水费 $DQ(t) = a \cdot min\{r(t) \cdot (x(t) + y(t)), \phi_0 \cdot D\} + [1 - r(t)] \cdot a \cdot x(t) + r(t) \cdot c \cdot y(t)(3.8)$

3.3.4 海绵城市

海绵城市的建设目标是:在下雨时,城市能够吸水、蓄水、渗水、净水,需要时再将蓄存的水释放并加以利用。

我们希望对雨水进行渗、滞、蓄、净、用、排等措施,"渗"主要利用绿化,如树木、湖泊、草坪等,"滞"利用拦水坝,"净"利用污水处理厂、水净化厂等,"蓄"可利用水库、湿地、地下河等,"排"则依靠城市的排水系统,将雨水排向河流,"用"包括灌溉、生活用水等。

设 V_1 为水库的月用水量, V_2 为湿地的月蓄水能力, V_3 为绿地的月吸水能力,v为绿地面积, Q_2 为湿地面积。第 t 月雨水不同部分的水量分布如下:

1)截排建设

1. 雨水净水部分,用于生活用水等

$$\min\{r_0 \cdot (x(t) + y(t)), \phi(t) \cdot D\} \cdot \frac{y(t)}{x(t) + y(t)}$$

2. 雨水渗水部分,用于补充地下河,浇灌植被

$$min\{h(t)v, V_3\}$$

3. 雨水被湿地吸水蓄水部分

$$min\{h(t)q, V_2\}$$

4. 若考虑雨水收集后不直接排放河道,则其用于水库等的蓄水部分

$$min\{(1-r_0)y(t), V_1\}$$

5. 雨水直接排放河道部分为

$$[r_0 \cdot (x(t) + y(t)) - \phi(t) \cdot D]^+ \cdot \frac{y(t)}{x(t) + y(t)} + [h(t)v - V_3]^+ + [h(t)q - V_2]^+ + [(1 - r_0)y(t) - V_1]^+$$

6. 总雨量

$$h(t)v + h(t)q + y(t)$$

对于海绵城市的建设,我们希望雨水直接排放河道部分占总水量的比例小一些,其他部分根据城市需求进行建设。

一年中不同部分占总雨量的比例如下:

2)清源建设

1. 雨水净水部分,用于生活用水等

$$\min\{r(t)\cdot (x(t)+y(t)), \phi_0\cdot D\}\cdot \frac{y(t)}{x(t)+y(t)}$$

2. 雨水渗水部分,用于补充地下河,浇灌植被

$$min\{h(t)v, V_3\}$$

3. 雨水被湿地吸水蓄水部分

$$min\{h(t)q, V_2\}$$

4. 若考虑雨水收集后不直接排放河道,则其用于水库等的蓄水部分

$$min\{(1-r(t))y(t), V_1\}$$

6. 雨水直接排放河道部分为

$$[r(t) \cdot (x(t) + y(t)) - \phi_0 \cdot D]^+ \cdot \frac{y(t)}{x(t) + y(t)} + [h(t)v - V_3]^+ + [h(t)q - V_2]^+ + [(1 - r(t))y(t) - V_1]^+$$

7. 总雨量

$$h(t)v + h(t)q + y(t)$$

对于海绵城市的建设,我们希望雨水直接排放河道部分占总水量的比例小一些,其他部分根据城市需求进行建设。

一年中不同部分占总雨量的比例如下:

3. 吸水
$$\frac{\sum_{t=1}^{12}[min\{h(t)q,V_2\}]}{\sum_{t=1}^{12}[h(t)v+h(t)q+y(t)]}$$
 (3.11)

4. 蓄水
$$\frac{\sum_{t=1}^{12}[min\{(1-r(t))y(t),V_1\}]}{\sum_{t=1}^{12}[h(t)v+h(t)q+y(t)]}$$
 (3.12)

5.
$$\# \overset{\sum_{t=1}^{12} \left[[r(t) \cdot (x(t) + y(t)) - \phi_0 \cdot D]^+ \cdot \frac{y(t)}{x(t) + y(t)} + [h(t)v - V_3]^+ + [h(t)q - V_2]^+ + [(1 - r(t))y(t) - V_1]^+ \right]}{\sum_{t=1}^{12} [h(t)v + h(t)q + y(t)]}$$

$$(3.13)$$

截排/清源的选择:综合考虑治污效果、费用、洪涝情况及对海绵城市的影响,决定实施的治污措施。

3.4 考虑错接情况

现考虑清源管道错接带来的影响。

3.4.1 治污效果

1) 截排建设 (只有 ϕ 在变, r和p不变):

P 为错接率, 即为所有管道中污水管错接为雨水管的比例。

第t月,区域直接排入河道的污水量 $\tilde{I}(t)$ =

截排部分的超出截流倍数直接排入河道的污水 + 采用清源的管道由于管道错接带来的污水 + 采用清源因而直接向河道排放雨水造成的初期雨水污染

$$\tilde{J}(t) = [r_0 \cdot (x(t) + y(t) - \phi(t) \cdot D)]^+ \cdot \frac{x(t)}{x(t) + y(t)} + (1 - r_0)px(t) + \xi(t) \cdot y(t) \cdot g \cdot (1 - r_0)$$
(3.1')

污染排放的比例为

$$\frac{\tilde{J}(t)}{x(t) + \xi(t) \cdot y(t) \cdot g}$$

2) 清源整改 (只有r和p在变, ϕ 不变):

推导: $0\sim t$ 时间的所有清源整改在t时刻的总的错接量U

G: 建成后应该有的污水管数量

 $[r(0) - r(\Delta t)] \cdot G$:在 Δt 时间修建的清源管道数目

当 Δt 较小时, $p(t-\Delta t)$ 与p(t)近似相同,所以可将 $0\sim\Delta t$ 时间修的清源在t时刻的错接量视为

$$[r(0) - r(\Delta t)]Gp(t - \Delta t)$$

同理可以讨论 $\Delta t \sim 2\Delta t$ 、 $2\Delta t \sim 3\Delta t$ 、 $3\Delta t \sim 4\Delta t$ 、 $(t-\Delta t) \sim t$ 时间修的清源在 t 时刻的错接量

 $0\sim t$ 时间的所有清源整改在t时刻的总的错接量U即为以上所有时刻的错接量的总和

$$[r(0) - r(\Delta t)]Gp(t - \Delta t)$$

$$[r(\Delta t) - r(2\Delta t)]Gp(t - 2\Delta t)$$

$$[r(2\Delta t) - r(3\Delta t)]Gp(t - 3\Delta t)$$
......
$$[r(t - \Delta t) - r(t)]Gp(0)$$

求和

$$U(t) = r(0)Gp(t - \Delta t) - r(\Delta t)G[p(t - \Delta t) - p(t - 2\Delta t)]$$
$$- r(2\Delta t)G[p(t - 2\Delta t) - p(t - 3\Delta t)] - \dots - r(t)Gp(0)$$

对∆t取极限得

$$U(t) = r(0)Gp(t) - \int_0^t r(s)Gp'(t-s)ds - r(t)Gp(0)$$

第t月,区域直接排入河道的污水量 $\tilde{Q}(t)$ =

清源部分由于错接导致的污水 + 清源部分由于初期雨水造成的污染 + 截排部分超出截流倍数直接排入河道的污水

$$\tilde{Q}(t) = [1 - r(t)] \cdot x(t) \cdot \frac{1}{G} \cdot \left[r(0)Gp(t) - r(t)Gp(0) - \int_{0}^{t} r(s)Gp'(t - s)ds \right] + \xi(t) \cdot g$$

$$\cdot y(t) \cdot [1 - r(t)] + [r(t) \cdot (x(t) + y(t)) - \phi_{0} \cdot D]^{+} \cdot \frac{x(t)}{x(t) + y(t)}$$

$$= [1 - r(t)]x(t) \left[r(0)p(t) - r(t)p(0) - \int_{0}^{t} r(s)p'(t - s)ds \right] + \xi(t) \cdot g \cdot y(t)$$

$$\cdot [1 - r(t)] + [r(t) \cdot (x(t) + y(t)) - \phi_{0} \cdot D]^{+}$$

$$\cdot \frac{x(t)}{x(t) + y(t)} \tag{3.2'}$$

污染排放的比例为

$$\frac{\tilde{Q}(t)}{x(t) + \xi(t) \cdot y(t) \cdot g}$$

对 $\tilde{J}(t)$ 、 $\tilde{Q}(t)$ 在 $0\sim n$ 月求和($t=0\sim n$),得到两种情况下 $0\sim n$ 月区域直接排入河道的污水量 \tilde{J} 、 \tilde{Q} 。

3.4.2 洪涝情况

考虑对雨水管网的压力和排入河道的水量。

1) 截排建设

1.考虑建设第1年排入河道的水量

第 t 月,区域直接排入河道的污水量 $\hat{J}(t)$ 等于截排部分超出截流倍数直接排入河道的雨污混合水,加上清源部分由于管道错接导致排入河道的污水,再加上清源部分排入河道的雨水。

$$\hat{J}(t) = [r_0 \cdot (x(t) + y(t)) - \phi(t) \cdot D]^+ + (1 - r_0) \cdot x(t) \cdot p + (1 - r_0) \cdot y(t) \quad (3.3')$$

2.考虑管道溢出

没有变化

3. 洪水情况

没有变化

2) 清源整改

1.考虑建设第1年排入河道的水量

第t月,区域i直接排入河道的污水量 $\hat{Q}(t)$ 等于清源排入河道的雨水,加上清源部分由于错接导致的排入河道的污水,再加上截排部分由于超出截流倍数直接排入河道的雨污混合水。

$$\hat{Q}(t) = [1 - r(t)]y(t) + [1 - r(t)]x(t) \left[r(0)p(t) - r(t)p(0) + \int_0^t r(s)p'(t-s)ds \right] + \frac{1}{2} \left[r(t) + \frac{1}{2}$$

 $[r(t) \cdot (x(t) + y(t)) - \phi_0 \cdot D]^+$ (3.4')

2.考虑管道溢出

没有变化

3. 洪水情况

没有变化

3.4.3 费用

1) 截排建设

1.1) 建设费用(build cost)

没有变化

1.2) 处理费用(deal cost)

第t月,区域污水处理的费用DJ(t)等于截排部分的雨污混合水处理费,加上清源部分的污水处理费,减去错排或因超出承载量而排入河道部分的处理费用,再加上截排部分的补水费。 $DJ(t) = a \cdot min\{r_0 \cdot (x(t) + y(t)), \phi(t) \cdot D\} + [1 - r_0] \cdot a \cdot x(t) - aJ(t) + r_0 \cdot c \cdot y(t)(3.6')$

2) 清源整改

2.1) 建设费用

 $0\sim t$ 月,区域建设的费用BQ(t)等于建设管网的费用,加上整改错接的费用,这就等于修建面积乘以新建单位面积管网的费用,再加上修正的错接率乘以修建面积乘以单位面积管网的纠错费用。

 $(t - \Delta t) \sim t$ 月的纠错率

$$[r(0) - r(\Delta t)] \cdot [p(t - \Delta t) - p(t)]$$

$$[r(\Delta t) - r(2\Delta t)] \cdot [p(t - 2\Delta t) - p(t - 3\Delta t)]$$
.....
$$[r(t - \Delta t) - r(t)] \cdot [p(0) - p(\Delta t)]$$

再对 $0\sim t$ 月求和对 Δt 取极限得 $\int_0^t \int_0^w r^{'}(s)p^{'}(w-s)ds dw$

$$BQ(t) = s \cdot [r(0) - r(t)] \cdot$$
新建单位面积管网的费用 $+ \int_0^t \int_0^w r^{'}(s) p^{'}(w - s) ds dw \cdot s \cdot$ 单位面积管网的纠错费用 (3.7')

2.2) 处理费用

第t月,区域污水处理的费用DQ(t)等于截排部分的雨污混合水处理费,加上清源部分的污水处理费,再减去错排或因超出承载量而排入河道的污水处理费用,再加上截排部分的补水费。

$$DQ(t) = a \cdot min\{r(t) \cdot \left(x(t) + y(t)\right), \ \phi_0 \cdot D\} + [1 - r(t)] \cdot a \cdot x(t) - a\hat{Q}(t) + r(t) \cdot c \cdot y(t)$$

$$(3.8')$$

3.4.4 海绵城市

没有变化

3.5 最优改建方案

3.5.1 清源或者截排

方案一: 以费用作为目标函数,以治污效果作为约束条件 清源:

设置目标函数如下:

1.建设费用最省

 $min\{BQ(e)\}$

2.水处理费用最省

$$\min\left\{\sum_{t=1}^{e} [DQ(t)]\right\}$$

设置约束条件如下:

1.治污效果满足所要求的比例,即

$$\frac{\sum_{t=1}^{e} \left[\left[\mathbf{r} \cdot (x(t) + y(t)) - \phi_0 \cdot D \right]^+ \cdot \frac{x(t)}{x(t) + y(t)} + \xi(t) \cdot y(t) \cdot g \cdot (1 - \mathbf{r}) \right]}{\sum_{t=1}^{e} [x(t) + \xi(t) \cdot y(t) \cdot g]} < target(\%)$$

2.水涝情况满足要求,即

$$\begin{split} \min \left\{ & \left[[[1-r]X - \frac{1-r}{1-r(0)} n_1 \pi \left(\frac{D_1}{2}\right)^2 \beta_1]^+ + [[1-r]X - \frac{1-r}{1-r(0)} n_2 \pi \left(\frac{D_2}{2}\right)^2 \beta_2]^+ \right. \\ & \left. + [r(X+Y) - n_3, \ \pi \left(\frac{D_3}{2}\right)^2 \beta_3]^+ - \text{PUMP} \right]^+ / s \right\} < require \end{split}$$

优化变量为r

根据建设目标,对以上两个目标进行权重配比,得到清源建设时的最优截排比例 \mathbf{r}^* 。进行清源建设过程时, \mathbf{r} 经 \mathbf{n} 个月逐渐从 \mathbf{r} (0)变为 \mathbf{r}^* ,其中

$$n = s \cdot [r(0) - r^*] \cdot$$
新建单位面积管网的时间(单位: 月)

从而可得 $\mathbf{r}(t)$,即截排比例在建设过程中随时间的变化。 截排:

设置目标函数如下:

1.建设费用最省

$$min\{BJ(e)\}$$

2.水处理费用最省

$$\min\left\{\sum_{t=1}^{e} [DJ(t)]\right\}$$

设置约束条件如下:

1.治污效果满足所要求的比例,即

$$\frac{\sum_{t=1}^{e} \left[\left[\mathbf{r}_0 \cdot (x(t) + y(t)) - \phi \cdot D \right]^+ \cdot \frac{x(t)}{x(t) + y(t)} + \xi(t) \cdot y(t) \cdot g \cdot (1 - \mathbf{r}_0) \right]}{\sum_{t=1}^{e} \left[x(t) + \xi(t) \cdot y(t) \cdot g \right]} < target(\%)$$

2.水涝情况满足要求,即

$$\begin{split} \left\{ & \left[[[1-\mathbf{r}_0]X - n_1\pi \left(\frac{D_1}{2}\right)^2\beta_1]^+ + [[1-\mathbf{r}_0]X - n_2\pi \left(\frac{D_2}{2}\right)^2\beta_2]^+ \right. \\ & \left. + \left[\mathbf{r}_0(X+Y) - \frac{\phi}{\phi(0)}n_3\pi \left(\frac{D_3}{2}\right)^2\beta_3 \right]^+ - \mathrm{PUMP} \right]^+ / s \right\} < require \end{split}$$

优化变量为φ

根据建设目标,对以上两个目标进行权重配比,得到截排建设时的最优截排倍数 ϕ^* 。进行截排建设时 ϕ 经 m 个月逐渐从 ϕ (0)变为 ϕ^* ,其中

 $\mathbf{m} = [\mathbf{\phi}^* - \boldsymbol{\phi}(\mathbf{0})] \cdot \mathbf{r}_0 \cdot \mathbf{s} \cdot$ 单位面积上 $\boldsymbol{\phi}$ 增加一个单位所用的时间(单位:月)从而可得 $\boldsymbol{\phi}(t)$,即截排倍数在建设过程中随时间的变化。

针对所得的 $\mathbf{r}(t)$ 、 $\phi(t)$,用前面讨论的量化方式比较清源和截排的治污效果、洪涝情况、费用、海绵城市建设等

治污效果

$$\left[\sum_{t=1}^{e} \tilde{J}(t) - \sum_{t=1}^{e} \tilde{Q}(t)\right] / \sum_{t=1}^{e} \tilde{Q}(t)$$

洪涝情况

$$\left[\sum_{t=1}^{e} \hat{J}(t) - \sum_{t=1}^{e} \hat{Q}(t) \right] / \sum_{t=1}^{e} \hat{Q}(t)$$

建设费用

$$\left[\sum_{t=1}^{e} BJ(t) - \sum_{t=1}^{e} BQ(t) \right] / \sum_{t=1}^{e} BQ(t)$$

处理费用

$$\left[\sum_{t=1}^{e} DJ(t) - \sum_{t=1}^{e} DQ(t)\right] / \sum_{t=1}^{e} DQ(t)$$

e 为比较的时间跨度,可以根据规划的需求等因素调整。根据计算结果综合分析选择清源或者截排。

方案二:以治污效果作为目标函数,以费用作为约束条件 清源:

设置目标函数如下:

1.治污效果最优,即

$$\min \left\{ \frac{\sum_{t=1}^{e} \left[\left[\mathbf{r} \cdot (x(t) + y(t)) - \phi_0 \cdot D \right]^+ \cdot \frac{x(t)}{x(t) + y(t)} + \xi(t) \cdot y(t) \cdot g \cdot (1 - \mathbf{r}) \right]}{\sum_{t=1}^{e} \left[x(t) + \xi(t) \cdot y(t) \cdot g \right]} \right\}$$

设置约束条件如下:

1.每年的建设费用满足政府预算

$$BQ(12) - BQ(0) < budget1(0,12)$$

 $BQ(24) - BQ(12) < budget1(12,24)$

2.水处理费用小于政府预算

$$\sum_{t=1}^{12} DQ(t) < budget2(1,12)$$

$$\sum_{t=13}^{24} DQ(t) < budget2(13,24)$$

•••

3.水涝情况满足要求,即

$$\begin{split} \left\{ & \left[[[1-r]X - \frac{1-r}{1-r(0)} n_1 \pi \left(\frac{D_1}{2}\right)^2 \beta_1]^+ + [[1-r]X - \frac{1-r}{1-r(0)} n_2 \pi \left(\frac{D_2}{2}\right)^2 \beta_2]^+ \right. \\ & \left. + [r(X+Y) - n_3, \ \pi \left(\frac{D_3}{2}\right)^2 \beta_3]^+ - \text{PUMP} \right]^+ / s \right\} < require \end{split}$$

根据建设规划,得到清源建设时的最优截排比例 \mathbf{r}^* 。进行清源建设过程时, \mathbf{r} 经 \mathbf{n} 个月逐渐从 \mathbf{r} (0)变为 \mathbf{r}^* ,其中

 $n = s \cdot [r(0) - r^*] \cdot$ 新建单位面积管网的时间(单位: 月)

从而可得 $\mathbf{r}(t)$,即截排比例在建设过程中随时间的变化。 截排:

设置目标函数如下:

1.治污效果最优,即

$$\min \left\{ \frac{\sum_{t=1}^{e} \left[\left[\mathbf{r}_0 \cdot (x(t) + y(t)) - \phi \cdot D \right]^+ \cdot \frac{x(t)}{x(t) + y(t)} + \xi(t) \cdot y(t) \cdot g \cdot (1 - \mathbf{r}_0) \right]}{\sum_{t=1}^{e} \left[x(t) + \xi(t) \cdot y(t) \cdot g \right]} \right\}$$

设置约束条件如下:

1.每年的建设费用满足政府预算

$$BJ(12) - BJ(0) < budget1(0,12)$$

 $BJ(24) - BJ(12) < budget1(12,24)$

2.水处理费用小于政府预算

$$\sum_{t=1}^{12} DJ(t) < budget2(1,12)$$

$$\sum_{t=13}^{24} DJ(t) < budget2(13,24)$$

3.水涝情况满足要求,即

$$\begin{split} \left\{ & \left[[[1-\mathbf{r}_0]X - n_1\pi \left(\frac{D_1}{2}\right)^2\beta_1]^+ + [[1-\mathbf{r}_0]X - n_2\pi \left(\frac{D_2}{2}\right)^2\beta_2]^+ \right. \\ & \left. + \left[\mathbf{r}_0(X+Y) - \frac{\phi}{\phi(0)}n_3\pi \left(\frac{D_3}{2}\right)^2\beta_3 \right]^+ - \mathrm{PUMP} \right]^+ / s \right\} < require \end{split}$$

根据建设规划,得到截排建设时的最优截排倍数 ϕ^* 。进行截排建设时 ϕ 经 m 个月逐渐从 $\phi(0)$ 变为 ϕ^* ,其中

 $\mathbf{m} = [\mathbf{\phi}^* - \boldsymbol{\phi}(\mathbf{0})] \cdot \mathbf{r}_0 \cdot \mathbf{s} \cdot \mathbf{\hat{\mu}}$ 位面积上 $\boldsymbol{\phi}$ 增加一个单位所用的时间(单位:月)从而可得 $\boldsymbol{\phi}(t)$,即截排倍数在建设过程中随时间的变化。

针对所得的 $\mathbf{r}(t)$ 、 $\phi(t)$,用前面讨论的量化方式比较清源和截排的治污效果、洪涝情况、费用、海绵城市建设等。讨论方式与方案一相同。

3.5.2 清源截排同时进行

根据不同的目标——治污效果、洪涝情况、费用,选择最优的r和 ϕ 。或者也可以根据需要对不同目标配比,对不同目标算得的r和 ϕ 进行加权平均,得到最优的r和 ϕ 。如对治污效果、海绵城市建设更看重一些,则对应的权比例大一些。

初始情况 $\phi(0)$ 、r(0),r、 ϕ 随时间改变。讨论在该情况下最优的r、 ϕ

方案一: 以费用作为目标函数, 以治污效果作为约束条件

设置目标函数如下:

1.建设费用最省

$$BQJ(t) = min\{s \cdot [r(0) - r(t)] \cdot$$
新建单位面积管网的费用 + $[\phi(t) - \phi(0)] \cdot r(t) \cdot s$

·单位面积上
$$\phi$$
增加一个单位所用的费用 $\}+\int_0^t\int_0^w r^{'}(s)p^{'}(w-s)ds\,dw\cdot s$

·单位面积管网的纠错费用

$$min\{BQJ(e)\}$$

2.水处理费用最省

$$\min \left\{ \sum_{t=1}^e \left[a \cdot \min \left\{ \mathbf{r} \cdot \left(x(t) + y(t) \right), \ \phi \cdot D \right\} + \left[1 - \mathbf{r} \right] \cdot a \cdot x(t) \right. \right. \\ \left. + \left. \mathbf{r} \cdot c \cdot y(t) \right] \right\}$$

设置约束条件如下:

1.治污效果满足所要求的比例,即

$$\frac{\sum_{t=1}^{e} \left[\left[\mathbf{r} \cdot (x(t) + y(t)) - \phi \cdot D \right]^{+} \cdot \frac{x(t)}{x(t) + y(t)} + \xi \cdot y(t) \cdot g \cdot (1 - \mathbf{r}) \right]}{\sum_{t=1}^{e} \left[x(t) + \xi(t) \cdot y(t) \cdot g \right]} < target(\%)$$

2. 洪涝情况满足要求

$$\begin{split} \min \left\{ & \Big[[[1-r]X - \frac{1-r}{1-r(0)} n_1 \pi \left(\frac{D_1}{2}\right)^2 \beta_1]^+ + [[1-r]X - \frac{1-r}{1-r(0)} n_2 \pi \left(\frac{D_2}{2}\right)^2 \beta_2]^+ \right. \\ & \left. + [r(X+Y) - \frac{\phi}{\phi(0)} n_3 \pi \left(\frac{D_3}{2}\right)^2 \beta_3]^+ - \text{PUMP} \Big]^+ / s \right\} < require \end{split}$$

根据建设目标,对以上目标进行权重配比,对最优 ϕ 和r进行线性求和,得到最优截排比例r*和截排倍数 ϕ *,进行截排建设过程时,r经 n 个月逐渐从r(0)变为r*, ϕ 经 m 个月逐渐从 ϕ (0)变为 ϕ *,其中

 $n = s \cdot [r(0) - r^*] \cdot$ 新建单位面积管网的时间(单位:月)

 $\mathbf{m} = [\phi^* - \phi(0)] \cdot \mathbf{r}^* \cdot \mathbf{s} \cdot$ 单位面积上 ϕ 增加一个单位所用的时间(单位:月)由上述可得r(t)和 $\phi(t)$ 。

同时可求得建设过程中,第 t 月的治污效果为

$$W(t) = \frac{[r(t) \cdot (x(t) + y(t)) - \phi(t) \cdot D]^{+} \cdot \frac{x(t)}{x(t) + y(t)} + \xi(t) \cdot y(t) \cdot g \cdot [1 - r(t)]}{x(t) + \xi(t) \cdot y(t) \cdot g}$$

同理可得方案二:以治污效果作为目标函数,以费用作为约束条件 设置目标函数如下:

1.治污效果最优,即

$$\min \left\{ \frac{\sum_{t=1}^{e} \left[\left[\mathbf{r} \cdot (x(t) + y(t)) - \phi \cdot D \right]^{+} \cdot \frac{x(t)}{x(t) + y(t)} + \xi \cdot y(t) \cdot g \cdot (1 - \mathbf{r}) \right]}{\sum_{t=1}^{e} \left[x(t) + \xi(t) \cdot y(t) \cdot g \right]} \right\}$$

设置约束条件如下:

1.每年的建设费用满足政府预算

$$BQJ(12) - BQJ(0) < budget1(0,12)$$

 $BQJ(24) - BQJ(12) < budget1(12,24)$

2.水处理费用小于政府预算

$$\sum_{t=1}^{12} \left[a \cdot min\{r \cdot (x(t) + y(t)), \ \phi \cdot D\} + [1 - r] \cdot a \cdot x(t) + r \cdot c \cdot y(t) \right] < budget2(1,12)$$

$$\sum_{t=13}^{24} \left[a \cdot min\{r \cdot (x(t) + y(t)), \ \phi \cdot D\} + [1 - r] \cdot a \cdot x(t) + r \cdot c \cdot y(t) \right] < budget2(13,24)$$

3. 洪涝情况满足要求

$$\begin{split} \min \left\{ & \left[[[1-r]X - \frac{1-r}{1-r(0)} n_1 \pi \left(\frac{D_1}{2}\right)^2 \beta_1]^+ + [[1-r]X - \frac{1-r}{1-r(0)} n_2 \pi \left(\frac{D_2}{2}\right)^2 \beta_2]^+ \right. \\ & \left. + \left[r(X+Y) - \frac{\phi}{\phi(0)} n_3 \pi \left(\frac{D_3}{2}\right)^2 \beta_3 \right]^+ - \text{PUMP} \right]^+ / s \right\} < require \end{split}$$

其余与方案一同。

3.6 数值模拟

3.6.1 数据来源

降水量:采用 2014 年深圳市每月降水量数据^[9] (见附表 1) 考虑深圳河湾区域(图 2 中蓝色部分)

图 1: 深圳河湾区域河流流域分布图[10]

图 2: 深圳市排水分区现状图[11]

区域划分依据:按照区域涉及的河流流域进一步细分,具体数据参见附表 2、附表 3. 区域数量N=58,污水处理厂数量M=6.

3.6.2 参数确定

由于部分参数缺少具体数据,我们依据实际可能的情况给出估计值。

新建一根管道的费用为 $\bar{d}\cdot 4000$ 元/m (\bar{d} : 到污水厂的平均距离)

纠错一根管道的费用为 $\bar{d} \cdot 1000$ 元/m

a = 1.06 元/m³ (每m³污水的处理费用) [12]

c = 0.6 元/m³ (对河流进行补水,每m³补水量的费用)

$$\eta = \frac{12}{10376.6} = 0.00115645$$
 根/公顷

(如右图,一般是把一个区域的污水先由支管汇集到干管,然后 2 根干管运到污水厂; 小区会将污水先汇集到一到两根管,然后再汇集到街道干管。共 6 个污水厂,12 根干管,共10376.6 公顷面积,于是得出平均1089.72 公顷有 1 根干管。)

假设平均面积 \bar{s} 下r从r(0)到 100%要修 12 个月,建设时间与 \bar{s} 区域面积成正比,则 $\frac{12s_i}{\bar{s}}$ 为需要建的时间:

当前时间t,已经花的钱占全部投入的比例:

$$\frac{\min\left\{t, \frac{12s_i}{\bar{s}}\right\}}{\frac{12s_i}{\bar{s}}}$$

截排建设:将截流倍数从 2 提高到 3

0~t月,区域 i 建设的费用 $BI_i(t)$ =

 s_i 对应的污水厂数量×提高截流倍数产生的工程单位造价×时间系数

$$BJ_i(t) = M \cdot \frac{s_i}{s} \cdot (\Phi_3 - \Phi_2) \cdot \frac{\min\{t, \frac{12s_i}{s}\}}{\frac{12s_i}{s}}$$

$$(3.5')$$

M: S的污水厂数量

 $M \cdot \frac{s_i}{s}$: s_i 对应的污水厂数量

v = 3%

 Φ : 提高截流倍数(相对于 ϕ =1)增加的工程单位造价: Φ_2 =727 万元, Φ_3 =2162 万^[13] 三年纠错完毕,p(0)=0.05

$$p'(t) = -\frac{0.05}{36}$$

$$r(t) = r(0) - \frac{r(0)}{\frac{S_i}{\bar{S}} * 12} \cdot t$$

取r(0) = 60% (截排比例^[14]: 特区内 40%, 特区外 70%)

$$r'(t) = -\frac{r(0) \cdot \bar{s}}{12 \cdot s_i}$$

3.6.3 模拟结果

3.6.3.1 清源截排的选择

(一) 治污效果

通过 MATLAB 对 58 个小区域分别求 \tilde{I} 、 \tilde{Q}

结果见附表 4

可知只有 2 个区域(16 和 47)选择截排的治污效果比选择清源的治污效果好,大部分区域采用清源较好。

(二) 洪涝情况

1.考虑建设第一年排入河道的水量,结果见附表 5~8。

18 个区域截排小于清源,40 个清源小于截排;且由表中数据可得,截排小于清源主要集中在后几个月,这是由于截流倍数增加,进行截排建设的区域排入河道的水减少,而清源由于雨污分流,排入河道的雨水量增加。

2.考虑所有管道溢出总量,结果见附表 9~11。

从所有管道溢出总量来看,大部分区域在各月截排溢出量大于清源溢出量,溢出的水将会给区域带来洪涝。第一月的部分地区清源和截排效果一样,但是所有区域在其他月份均是清源优于截排。

(三) 费用

结果见附表 12~14。

考虑第一年总费用(建设费用和处理污水费用),截排的开支大于清源;第一年末建设费用,清源大于截排;第一年的处理污水费用(不将排入河道的污水排除在外,因为它们产生的污染也需要投资治理),截排大于清源。

3.6.3.2 清源截排同时进行

由于很多数据未知,我们取1到12月污水分别为32.9 * 1,32.9 * 1,32.9 * 1,32.9 * 1,32.9 * 1,32.9 * 1,32.9 * 1,32.9 * 1,05,32.9 * 1.1025,32.9 * 1.157625,32.9 * 1.21550625,32.9 *

1.2762815625,32.9 * 1.340095640625 万吨每日, 32.9 万吨每日为规划方案中的旱季日均污水量,比例为我们自己找到的每月污水量平均值的比例。

月 均 雨 量 根 据 所 给 数 据 1961 年 至 2014 年 每 月 雨 量 平 均 值 取 27.9, 42.3, 71.3, 165.7, 217.4, 269.8, 239.6, 277.2, 177.7, 61.2, 28.0, 26.1 毫米。根据规划方案,污水厂处理能力为25 + 15 * 0.5 + 30万吨每日

考虑建设费用时,需要初始时的截排比例与截排倍数,由于确切数据未知,我们取截排比例为 100%,截排倍数为 2,两者的修建费用采取模型一求解中的估计数值。

计算考虑洪水情况时,采用 100 年一遇洪水情况。

求得最优的截排比例与截排倍数如下:

目标	截排比例	截排倍数
建设费用最低	95%	2
处理费用最低	0%	2
防洪效果最好	95%	7
治污效果最好	65%	2.5

考虑权重时,如对建设费用,处理费用,洪水情况,治污效果进行 35.90%,12.82%,20.51%,30.77%的配比,得到最优的截排倍数为 4.5,截排比例最优为 60%,考虑到很多数据是估计的,这与规划的 2017 年截排倍数 5,截排比例 65%已经十分接近了。

在此条件下的海绵城市建设情况如下:

雨水的不同 处理部分	净水	渗水	吸水	蓄水	排放
比例 (%)	34.21	44.97	0.08	15.80	4.94

吸水部分较小的原因是由于湿地面积小,接受的降雨少,但实际上湿地周围部分如绿地等接收的降雨也会被湿地接收,及渗水部分的44.97%有一部分应归到吸水部分。

由结果可知在截排倍数为4.5,截排比例为60%的情况下,海绵城市的建设效果不错。

在单个区域的排水模型中,我们研究了一个区域实施清源、截排措施的判定。但是,在 选择最优改建方案的时候,以治污效果或者费用为目标函数的两种情况可能会出现分歧,讨 论如下:

方案一为minC, $s.t.P \leq P^*$,而方案二为minP, $s.t.C \leq C^*$,由方案一得到 C_{min} ,对应的治污效果为 P_c 。方案二得到 P_{min} ,对应的治污费用为 C_p 。若 $C_{min} \leq C^*$,则有 $P_c \leq P_{min}$;若 $P_c > P_{min}$,则有 $C_{min} > C^*$ 。若 $P_{min} \leq P^*$, $C_p \leq C_{min}$;则 $C_p \leq C_{min}$ 即需要牺牲更好的治污效果来节省开支。但我们希望治污效果可以达到最优,同时符合政府预算,所以可以对一个区域进行分片区建设。把一块大区域分成N个,要求在n年内N个小区域的改建全部投入实施。在这一要求下,我们希望求各个小区域的建设顺序,即应在哪一年建设最好。同时,考虑约束条件:送往污水处理厂的污水量要在处理能力范围内。

由此建立多区域模型。

四、多个区域单个污水厂的排水模型

4.1 假设

- (1) 在n年内N个小区域全部实施建设;
- (2) 截排后送往污水处理厂的污水量(雨水量按雨季算)在污水厂处理能力内;
- (3) 其余假设与单个区域的排水模型相同。

4.2 符号说明

 s_i : 区域i 的面积 i = 1,2,...,N 共有N个区域.

$$S \triangleq \sum_{i=1}^{N} s_i$$

K: 污水处理厂的污水处理量上限.

 d_i : 区域i中心和污水处理厂之间的直线距离,为已知常数.

h: 深圳市平均年降水量(mm).

h': 深圳市 3~5 月降水量 (mm).

 x_i : 区域i 每年的污水排放总量(简称为污水量),不是均匀分布的.

 y_i : 区域i 每年的雨水总量,有

$$y_i = rs_i$$

 y_i' : 区域i 变换后的年雨水总量(3-5 月雨水量 $\times \frac{12}{3}$)

u: 每 m 污水大管道铺设费用.

η: 每平方米上的管道数目

a: 每m³污水的处理费用.

 b_i : 区域 i 中,每 \mathbf{m}^2 面积上的污水管网管理费用(包括纠错、维修、小管道的铺设及修建时安抚民众的费用)

c: 对河流进行补水,每m3补水量的费用.

 δ_i^t : 区域 i 第t年开始建设的示性函数,t = 1, 2, ..., n

$$\delta_i^t =
 \begin{cases}
 1, 区域 i 第t年开始建设 \\
 0, 区域 i 第t年未建设或之前已投入建设
 \end{cases}$$

有
$$\sum_{t=1}^{n} \delta_i^t = 1$$

即 $\delta_i = (\delta_i^1, \delta_i^2, \dots, \delta_i^n)$ 是有且仅有一个分量为 1, 其余分量均为 0 的n维向量.

 Δ_i^t : 为 $\sum_{p=1}^t \delta_i^p$

 S_i^t : 为 $\sum_{n=1}^t \Delta_i^p$, 表示建设开始后经过了多少年。

4.3 模型的建立

(一)清源或者截排

对于每一个小区域,以治污效果作为目标函数,以水涝情况作为约束条件讨论最优建设方案,即选择清源还是截排,对应的截排比例或者截排倍数是多少。 清源:

设置目标函数如下:

治污效果最优,即

$$\min \left\{ \frac{\sum_{t=1}^{e} \left[\left[\mathbf{r}_{i} \cdot (x_{i}(t) + y_{i}(t)) - \phi_{i}^{0} \cdot D_{i} \right]^{+} \cdot \frac{x_{i}(t)}{x_{i}(t) + y_{i}(t)} + \xi_{i}(t) \cdot y_{i}(t) \cdot g \cdot (1 - \mathbf{r}_{i}) \right]}{\sum_{t=1}^{e} \left[x_{i}(t) + \xi_{i}(t) \cdot y_{i}(t) \cdot g \right]} \right\}$$

设置约束条件如下:

水涝情况满足要求,即

$$\begin{split} \left\{ & \left[[[1-\mathbf{r_i}]X_i - \frac{1-\mathbf{r_i}}{1-r_i(0)}n_i^1\pi \left(\frac{D_1}{2}\right)^2\beta_1]^+ + [[1-\mathbf{r_i}]X_i - \frac{1-\mathbf{r_i}}{1-r_i(0)}n_i^2\pi \left(\frac{D_2}{2}\right)^2\beta_2]^+ \right. \\ & \left. + \left[\mathbf{r_i}(X_i + Y_i) - n_i^3\pi \left(\frac{D_3}{2}\right)^2\beta_3 \right]^+ - \mathrm{PUMP_i} \right]^+ / s_i \right\} < require \end{split}$$

根据建设规划,得到清源建设时的最优截排比例 \mathbf{r}^* 。进行清源建设过程时, \mathbf{r} 经 \mathbf{n} 个月逐渐从 \mathbf{r}_i (0)变为 \mathbf{r}_i^* ,其中

 $\mathbf{n}_{i} = s_{i} \cdot [r_{i}(0) - \mathbf{r}_{i}^{*}] \cdot$ 新建单位面积管网的时间(单位:月)从而可得 $\mathbf{r}_{i}(t)$,即截排比例在建设过程中随时间的变化。

截排:

设置目标函数如下: 治污效果最优,即

$$\min \left\{ \frac{\sum_{t=1}^{e} \left[\left[\mathbf{r}_{\mathbf{i}}^{0} \cdot (x_{i}(t) + y_{i}(t)) - \phi_{i} \cdot D_{i} \right]^{+} \cdot \frac{x_{i}(t)}{x_{i}(t) + y_{i}(t)} + \xi_{i}(t) \cdot y_{i}(t) \cdot g \cdot \left(1 - \mathbf{r}_{\mathbf{i}}^{0} \right) \right]}{\sum_{t=1}^{e} [x_{i}(t) + \xi_{i}(t) \cdot y_{i}(t) \cdot g]} \right\}$$

设置约束条件如下:

水涝情况满足要求,即

$$\begin{split} \left\{ & \left[\left[\left[1 - \mathbf{r}_{\mathrm{i}}^{0} \right] X_{i} - n_{i}^{1} \pi \left(\frac{D_{1}}{2} \right)^{2} \beta_{1} \right]^{+} + \left[\left[1 - \mathbf{r}_{\mathrm{i}}^{0} \right] X_{i} - n_{i}^{2} \pi \left(\frac{D_{2}}{2} \right)^{2} \beta_{2} \right]^{+} \right. \\ & \left. + \left[\mathbf{r}_{\mathrm{i}}^{0} (X_{i} + Y_{i}) - \frac{\phi_{i}}{\phi_{i}(0)} n_{i}^{3} \pi \left(\frac{D_{3}}{2} \right)^{2} \beta_{3} \right]^{+} - \mathrm{PUMP_{i}} \right]^{+} / s_{i} \right\} < require \end{split}$$

根据建设规划,得到截排建设时的最优截排倍数 ϕ_i^* 。进行截排建设时 ϕ_i 经 m 个月逐渐从 $\phi_i(0)$ 变为 ϕ_i^* ,其中

 $\mathbf{m} = [\phi_i^* - \phi_i(\mathbf{0})] \cdot \mathbf{r}_i^0 \cdot s_i \cdot$ 单位面积上 ϕ 增加一个单位所用的时间(单位:月)从而可得 $\phi_i(t)$,即截排倍数在建设过程中随时间的变化。

针对所得的 $\mathbf{r}_{i}(t)$ 、 $\mathbf{\phi}_{i}(t)$,用 3.5.1 中讨论的方式比较清源和截排的治污效果、洪涝情况、费用、海绵城市建设等,对区域 i 选择清源或者截排建设。用 $\mathbf{\psi}_{i}=1$ 表示区域 i 采用清源建设,用 $\mathbf{\psi}_{i}=0$ 表示区域 i 采用截排建设。

接下来,我们要确定每一块区域的建设顺序,使得规划满足政府预算。

设置目标函数如下:

1. 总费用最省

 Δ_i^t : 为 $\sum_{p=1}^t \delta_i^p$

$$\Delta_i^t = \sum_{p=1}^t \delta_i^p = \begin{cases} 1, & ext{区域} i \ \exists \text{开始建设} \\ 0, & ext{区域} i \ 未开始建设 \end{cases}$$

 S_i^t : 为 $\sum_{p=1}^t \Delta_i^p$, 表示建设开始后经过了多少年。

 $S_i^t \cdot 12$ 表示建设年末对应的月份, $\left[BQ_i(S_i^t \cdot 12) - BQ_i\left((S_i^t - 1) \cdot 12\right)\right]$ 表示该年的清源建设费用, $\left[BJ_i(S_i^t \cdot 12) - BJ_i\left((S_i^t - 1) \cdot 12\right)\right]$ 表示截排建设费用,同理可计算水处理的费用。

$$cost = \sum_{t=1}^{n} \left\{ \sum_{i=1}^{N} \left\{ \left\{ \psi_{i} \cdot \left[BQ_{i}(S_{i}^{t} \cdot 12) - BQ_{i}\left((S_{i}^{t} - 1) \cdot 12\right) \right] + (1 - \psi_{i}) \right. \right. \\ \left. \cdot \left[BJ_{i}(S_{i}^{t} \cdot 12) - BJ_{i}\left((S_{i}^{t} - 1) \cdot 12\right) \right] \right\} \\ \left. + \left\{ \psi_{i} \cdot \left[\sum_{k=(S_{i}^{t} - 1) \cdot 12 + 1}^{S_{i}^{t} \cdot 12} DQ_{i}(k) \right] + (1 - \psi_{i}) \cdot \left[\sum_{k=(S_{i}^{t} - 1) \cdot 12 + 1}^{S_{i}^{t} \cdot 12} DJ_{i}(k) \right] \right\} \right\} \\ min\{cost\}$$

2. 治污效果最优

根据前述的量化方法可知 $\left[\left[\mathbf{r}_{\mathbf{i}}^{0}\cdot\left(x_{i}(k)+y_{i}(k)\right)-\phi_{i}^{0}\cdot D_{i}\right]^{+}\cdot\frac{x_{i}(k)}{x_{i}(k)+y_{i}(k)}+\xi_{i}(k)\cdot y_{i}(k)\cdot g\cdot \mathbf{r}_{i}(k)\right]$

 $(1-r_i^0)$]为未建设时第 k 月的污水排放量,加上清源及截排的污水排放量,并将各项乘以示性函数就得到区域 i 第 t 年污水排放量为

pollute(i,t)

$$\begin{split} &= (1 - \Delta_i^t) \\ &\cdot \sum_{k=(t-1)\cdot 12+1}^{12\cdot t} \left[\left[\mathbf{r}_i^0 \cdot (x_i(k) + y_i(k)) - \phi_i^0 \cdot D_i \right]^+ \cdot \frac{x_i(k)}{x_i(k) + y_i(k)} + \xi_i(k) \cdot y_i(k) \right. \\ &\cdot g \cdot \left(1 - \mathbf{r}_i^0 \right) \right] + \Delta_i^t \\ &\cdot \left\{ \psi_i \cdot \left[\sum_{k=(S_i^t-1)\cdot 12+1}^{S_i^t\cdot 12} \tilde{Q}_i(k) \right] + (1 - \psi_i) \cdot \left[\sum_{k=(S_i^t-1)\cdot 12+1}^{S_i^t\cdot 12} \tilde{J}_i(k) \right] \right\} \end{split}$$

区域i第t年污水产生总量

$$all(i,t) = \sum_{k=(t-1)\cdot 12+1}^{t\cdot 12} [x_i(k) + \xi_i(k) \cdot y_i(k) \cdot g]$$

注:实际上, $\tilde{Q}_i(k)$ 和 $\tilde{J}_i(k)$ 函数中, $x_i(k)$ 、 $y_i(k)$ 、 $\xi_i(k)$,k 应为 $k+(t-1)\cdot 12$,公式中为了简化未写出。

$$\min \left\{ \frac{\sum_{i=1}^{N} \{\sum_{t=1}^{n} pollute(i,t)\}}{\sum_{i=1}^{N} \{\sum_{t=1}^{n} all(i,t)\}} \right\}$$

3. 性价比最高,即总费用与处理的污水总量比值最小 n 年内处理的污水量为总污水产生量减去排放河道的污水量。

$$\min\left\{\frac{cost}{\sum_{i=1}^{N}\{\sum_{t=1}^{n}all(i,t)\}-\sum_{i=1}^{N}\{\sum_{t=1}^{n}pollute(i,t)\}}\right\}$$

设置约束条件如下:

1.每年的建设费用满足政府预算

$$\sum_{i=1}^{N} \{ \psi_{i} \cdot [BQ_{i}(\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12) - BQ_{i}(\Delta_{i}^{t} \cdot (S_{i}^{t} - 1) \cdot 12)] + (1 - \psi_{i})$$

$$\cdot [BJ_{i}(\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12) - BJ_{i}(\Delta_{i}^{t} \cdot (S_{i}^{t} - 1) \cdot 12)] \} < budget1(t)$$

$$t = 1.2 \quad n$$

2.水处理费用小于政府预算

$$\sum_{i=1}^{N} \left\{ \psi_{i} \cdot \left[\sum_{k=\Delta_{i}^{t} \cdot (S_{i}^{t}-1) \cdot 12+1}^{\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12} DQ_{i}(k) \right] + (1 - \psi_{i}) \cdot \left[\sum_{k=\Delta_{i}^{t} \cdot (S_{i}^{t}-1) \cdot 12+1}^{\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12} DJ_{i}(k) \right] \right\} < budget2(t)$$

$$t = 1, 2, ..., n$$

3.送往污水处理厂的污水量要在处理能力范围内

$$\sum_{i=1}^{N} all(i,t) - \sum_{i=1}^{N} pollute(i,t) < K(t)$$
$$t = 1,2, \dots n$$

K(t)表示第 t 年污水处理厂的处理能力,如果此约束不能满足,则说明需要对污水处理厂进行建设以提升处理能力。

优化变量为:

$$\delta_i^t$$
, $i=1,\cdots,N$, $t=1,\cdots,n$

(二)清源截排同时进行

对于每一个小区域,以治污效果作为目标函数,以水涝情况作为约束条件讨论最优建设方案。 设置目标函数如下:

1.治污效果最优,即

$$\min \left\{ \frac{\sum_{t=1}^{e} \left[\left[\mathbf{r}_{i} \cdot (x_{i}(t) + y_{i}(t)) - \phi_{i} \cdot D_{i} \right]^{+} \cdot \frac{x_{i}(t)}{x_{i}(t) + y_{i}(t)} + \xi_{i}(t) \cdot y_{i}(t) \cdot g \cdot (1 - \mathbf{r}_{i}) \right]}{\sum_{t=1}^{e} \left[x_{i}(t) + \xi_{i}(t) \cdot y_{i}(t) \cdot g \right]} \right\}$$

设置约束条件如下:

1.水涝情况满足要求,即

$$\begin{split} \left\{ & \left[[[1-\mathbf{r_i}]X_i - \frac{1-\mathbf{r_i}}{1-r_i(0)} n_i^1 \pi \left(\frac{D_1}{2}\right)^2 \beta_1]^+ + [[1-\mathbf{r_i}]X_i - \frac{1-\mathbf{r_i}}{1-r_i(0)} n_i^2 \pi \left(\frac{D_2}{2}\right)^2 \beta_2]^+ \right. \\ & \left. + \left[\mathbf{r_i}(X_i + Y_i) - \frac{\phi_i}{\phi_i(0)} n_i^3 \pi \left(\frac{D_3}{2}\right)^2 \beta_3 \right]^+ - \text{PUMP_i} \right]^+ / s_i \right\} < require \end{split}$$

根据建设规划,得到最优截排比例 \mathbf{r}^* 和最优截排倍数 $\mathbf{\phi}_i^*$ 。进行建设过程时, \mathbf{r} 经 \mathbf{n} 个月逐渐从 $\mathbf{r}_i(\mathbf{0})$ 变为 \mathbf{r}_i^* , $\mathbf{\phi}_i$ 经 \mathbf{m} 个月逐渐从 $\mathbf{\phi}_i(\mathbf{0})$ 变为 $\mathbf{\phi}_i^*$,其中

$$\mathbf{n_i} = s_i \cdot [r_i(0) - \mathbf{r_i^*}] \cdot$$
新建单位面积管网的时间(单位:月)
$$\mathbf{m} = [\mathbf{\phi_i^*} - \mathbf{\phi_i(0)}] \cdot \mathbf{r_i^0} \cdot s_i \cdot$$
单位面积上 $\boldsymbol{\phi}$ 增加一个单位所用的时间(单位:月)

从而可得 $\mathbf{r}_{i}(t)$ 、 $\mathbf{\phi}_{i}(t)$,即截排比例和截排倍数在建设过程中随时间的变化。

接下来,我们同样要确定每一块区域的建设顺序,使得规划满足政府预算。

设置目标函数如下:

1.总费用最省

 Δ_i^t : 为 $\sum_{p=1}^t \delta_i^p$

$$\Delta_i^t = \sum_{p=1}^t \delta_i^p = \begin{cases} 1, & ext{区域} i \ \exists \text{开始建设} \\ 0, & ext{区域} i \ 未开始建设 \end{cases}$$

 S_i^t : 为 $\sum_{p=1}^t \Delta_i^p$,表示建设开始后经过了多少年。

 $S_i^t \cdot 12$ 表示建设年末对应的月份, $\left[BQJ_i(S_i^t \cdot 12) - BQJ_i\left((S_i^t - 1) \cdot 12\right)\right]$ 表示该年的建设费用,同理可计算水处理的费用。

$$cost = \sum_{t=1}^{n} \left\{ \sum_{i=1}^{N} \left\{ [BQJ_{i}(\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12) - BQJ_{i}(\Delta_{i}^{t} \cdot (S_{i}^{t} - 1) \cdot 12)] + \sum_{k=\Delta_{i}^{t} \cdot (S_{i}^{t} - 1) \cdot 12 + 1}^{\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12} [a \cdot min\{r_{I}(k) + (x_{I}(k + (t - 1) \cdot 12) + y_{I}(k + (t - 1) \cdot 12)), \ \phi_{I}(k) \cdot D_{I}\} + [1 - r_{I}(k)] \cdot a + \sum_{k=\Delta_{i}^{t} \cdot (S_{i}^{t} - 1) \cdot 12 + 1}^{\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12} (k + (t - 1) \cdot 12) + r_{I}(k) \cdot c \cdot y_{I}(k + (t - 1) \cdot 12)] \right\}$$

$$min\{cost\}$$

2.治污效果最优

根据前述的量化方法可知 $\left[\left[r_i^0\cdot(x_i(k)+y_i(k))-\phi_i^0\cdot D_i\right]^+\cdot\frac{x_i(k)}{x_i(k)+y_i(k)}+\xi_i(k)\cdot y_i(k)\cdot g\cdot\left(1-r_i^0\right)\right]$ 为未建设时第k月的污水排放量,加上清源及截排的污水排放量,并将各项乘以

 $pollute(i,t) = (1 - \Delta_i^t)$

示性函数就得到区域i第t年污水排放量为

$$\cdot \sum_{k=(t-1)\cdot 12+1}^{12\cdot t} \left[\left[r_i^0 \cdot (x_i(k) + y_i(k)) - \phi_i^0 \cdot D_i \right]^+ \cdot \frac{x_i(k)}{x_i(k) + y_i(k)} + \xi_i(k) \cdot y_i(k) \cdot g \right]$$

$$\cdot \left(1 - r_i^0 \right) + \Delta_i^t$$

$$\cdot \sum_{k=\Delta_i^t \cdot (s_i^t - 1) \cdot 12 + 1}^{\Delta_i^t \cdot s_i^t \cdot 12} \left[r_i(k) \cdot (x_i(k + (t-1) \cdot 12) + y_i(k + (t-1) \cdot 12)) - \phi_i(k) \right]$$

$$\cdot D_i + \frac{x_i(k + (t-1) \cdot 12)}{x_i(k + (t-1) \cdot 12) + y_i(k + (t-1) \cdot 12)} + \xi_i(k + (t-1) \cdot 12)$$

$$\cdot y_i(k + (t-1) \cdot 12) \cdot g \cdot [1 - r_i(k)]$$

区域i第t年污水产生总量

$$all(i,t) = \sum_{k=(t-1)\cdot 12+1}^{t\cdot 12} [x_i(k) + \xi_i(k) \cdot y_i(k) \cdot g]$$

$$min\left\{\frac{\sum_{i=1}^{N} \{\sum_{t=1}^{n} pollute(i,t)\}}{\sum_{i=1}^{N} \{\sum_{t=1}^{n} all(i,t)\}}\right\}$$

3.性价比最高,即总费用与处理的污水总量比值最小

n 年内处理的污水量为总污水产生量减去排放河道的污水量。

$$\min\left\{\frac{cost}{\sum_{i=1}^{N}\{\sum_{t=1}^{n}all(i,t)\}-\sum_{i=1}^{N}\{\sum_{t=1}^{n}pollute(i,t)\}}\right\}$$

设置约束条件如下:

1.每年的建设费用满足政府预算

$$\sum_{i=1}^{N} [BQJ_{i}(S_{i}^{t} \cdot 12) - BQJ_{i}((S_{i}^{t} - 1) \cdot 12)] < budget1(t)$$

t = 1, 2, ... n

2.水处理费用小于政府预算

$$\begin{split} \sum_{i=1}^{N} \left\{ \sum_{k=\Delta_{i}^{t} \cdot (S_{i}^{t}-1) \cdot 12+1}^{\Delta_{i}^{t} \cdot S_{i}^{t} \cdot 12} \left[a \cdot min\{\mathbf{r}_{i}(k) \cdot \left(x_{i}(k+(t-1) \cdot 12) + y_{i}(k+(t-1) \cdot 12)\right), \ \phi_{i}(k) \cdot D_{i} \right\} \right. \\ \left. + \left[1 - \mathbf{r}_{i}(k) \right] \cdot a \cdot x_{i}(k+(t-1) \cdot 12) + \mathbf{r}_{i}(k) \cdot c \cdot y_{i}(k+(t-1) \cdot 12) \right] \right\} \\ \left. < budget2(t) \end{split}$$

$$t = 1, 2, ... n$$

3.送往污水处理厂的污水量要在处理能力范围内

$$\sum_{i=1}^{N} all(i,t) - \sum_{i=1}^{N} pollute(i,t) < K(t)$$
$$t = 1,2, \dots n$$

K(t)表示第 t 年污水处理厂的处理能力,如果此约束不能满足,则说明需要对污水处理厂进行建设以提升处理能力。

优化变量为:

$$\delta_i^t$$
, $i=1,\cdots,N$, $t=1,\cdots,n$

4.4 数值模拟

4.4.1 数据来源

由 5.4.3 计算得到的 ω_{ij} ,考虑污水处理厂 4(即布吉污水处理厂)(表 4.4.1)以及使 得 $\omega_{i4}=1$ 的 7 个区域(表 4.4.2)。

表 4.4.1: 7个区域的面积和污水量数据

区域划分i	面积	污水量
区域划为t	(公顷)	(立方米/天)
18	293.00	49493.56
22	240.00	41016.00
23	38.00	13098.60
24	202.00	24240.00
43	41.00	3733.05
44	281.00	58883.55
57	130.00	15600.00

表 4.4.2: 污水处理厂 4 的污水处理能力数据

污水处理厂	编号j	污水处理能力(万立方米/天)
布吉污水处理厂	4	25

4.4.2 参数确定

N = 7

n=8: 根据政府治污的一、三、五、八年目标,希望在第 8 年建成完全清源的治污系统。

m = 4: 要求第 4 年起污水总量维持在污水厂处理能力内.

P = 5% (错接率)

u = 1000 元/米 (每 m 污水大管道铺设费用)

a = 1.06 元/m³ (每m³污水的处理费用) [12]

 $b_i = 1000$ 元/m²(区域 i 每m²面积污水管网管理费用)为了简化,假定各区域 b_i 相同

c=0.6 元/m³(对河流进行补水,每m³补水量的费用)

$$\eta = \frac{12}{10376.6} = 0.00115645$$
 根/公顷

 $\mu = u\eta = 1.1564$

深圳市年降水量平均值 1935.8 $mm^{[15]}$, 2014 年,3-5 月累计雨量 886.7 $mm^{[15]}$ (比历史同期略高)。近似地取值:年降水量h=1900mm, $h^{\prime}=900mm$.

$$y = y' \cdot \frac{13}{24}$$

距离d:按照深圳市地图上区域中心到污水处理厂[16]的直线距离.

绿化面积按 $\frac{1}{3}$ 算(根据深圳市城市规划估计得出),计入 s_i .

4.4.3 模拟结果

注: 由于 $\sum_{i=1}^{N} \{\sum_{t=1}^{n} all(t)\}$ 与优化变量无关,则 $min\left\{\frac{\sum_{i=1}^{N} \{\sum_{t=1}^{n} pollute(t)\}}{\sum_{i=1}^{N} \{\sum_{t=1}^{n} all(t)\}}\right\}$ 与

 $min\{\sum_{i=1}^{N}\{\sum_{t=1}^{n}pollute(t)\}\}$ 结果相同,所以求解结果以 $\sum_{i=1}^{N}\{\sum_{t=1}^{n}pollute(t)\}$ 显示。

假设在考察的这 7 个区域中,第 18、22、23、44 区域选择实施清源,第 24、43、57 区域选择实施截排。

A.无每年政府投资额限制的情况下

a)以治污效果最优为前提:

最优效果= $2.3724 \times 10^7 (m^3)$;

对应性价比= $1.2226(元/m^3)$;

对应费用= 0.70663(亿元);

区域	18	22	23	24	43	44	57
建设年份	1	1	1	1	1	1	1

可以看出,当我们不限制费用时,并且在治污效果、费用和费用-效果比三项指标中选择以效果达到最优为前提时,在考察的这7个区域中,第所有区域第一年实施建设。

b)以性价比最优为前提:

最优性价比= $1.1272(元/m^3)$;

对应费用= 0.64431(亿元);

对应效果= $3.0085 \times 10^7 (m^3)$;

区域	18	22	23	24	43	44	57	ı
建设年份	1	1	1	1	1	1	1	ì

可以看出,当我们不限制投资费用时,并且在治污效果、费用和费用-效果比三项指标中选择以费用-效果比达到最优为前提时,在考察的这 7 个区域中,所有区域都应该在第一年实施建设。

c)以费用最少为前提:

最小费用= 0.64431(亿元);

对应效果= $3.0085 \times 10^7 (m^3)$;

对应性价比= $1.1272(元/m^3)$;

区域	18	22	23	24	43	44	57
建设年份	1	1	1	1	1	1	1

可以看出,当我们不限制每年实施清源的区域数量,并且在治污效果、费用和费用-效果比三项指标中选择以费用达到最少为前提时,在考察的这7个区域中,所有区域应该在第一年实施清源。

B.限制每年投资额

a)以效果最优为前提:

最优效果2.6487 × $10^7 (m^3)$;

对应费用0.71814(亿元);

对应性价比1.2485(元/m³):

7.4/ <u></u>	· () () () () () () () () () (
区域	18	22	23	24	43	44	57			
建设年份	2	2	1	3	3	1	3			

可以看出,在投资额受限时,并且在治污效果、费用和费用-效果比三项指标中选择以效果达到最优为前提时,在考察的这7个区域中,第23、44区域应该在第一年实施清源,

第18、22区域应该在第二年实施清源,第24、43、57在第3年建设。

b)以性价比最优为前提:

最优性价比1.1702(元/ m^3);

对应费用0.66375(亿元);

对应效果3.4511 × 10^7 (m^3);

区域	18	22	23	24	43	44	57
建设年份	1	2	3	2	4	1	3

可以看出,在治污效果、费用和费用-效果比三项指标中选择以费用-效果比达到最优为前提时,在考察的这 7 个区域中,第 18、44 区域应该在第一年实施建设,第 22、24 区域应该在第二年实施建设,第 23、57 区域应该在第三年实施建设,第 43 区域应该在第四年实施建设。

c)以费用最少为前提:

最小费用0.66369(亿元);

对应效果3.6744×10⁷(m^3);

对应性价比1.1747(元/ m^3);

区域	18	22	23	24	43	44	57
建设年份	1	2	4	2	3	1	3

可以看出,在治污效果、费用和费用-效果比三项指标中选择以费用达到最少为前提时,在考察的这 7 个区域中,第 18、44 区域应该在第一年实施建设,第 22、24 区域应该在第二年实施建设,第 23 区域应该在第四年实施建设。

在多区域模型中我们考虑了考虑了污水处理厂处理能力的限制,在实际情况中,区域中分布着多个污水处理厂,那么如何对污水处理厂的负责区域进行划分也是非常重要的,于是,我们在上一个模型的基础上规划每个区域的污水运往哪个污水处理厂,由此建立了多区域多污水厂模型。

五、多个区域多个污水厂的排水模型

5.1 假设

在多区域模型假设的基础上增加如下假设:

- (1) 只考虑"小截排";
- (2) 每个区域"清源"后的污水仅送往一个污水厂,"截排"的雨污混合水仅送往一个污水厂,二者可以送往不同污水厂;
- (3) 在研究费用时不考虑通货膨胀等因素的影响。
- (4) 采用"清源"的区域的污水是收集在一个地方之后一起运往处理厂,一个区域可有 多个收集点,为了简化,假设每个区域的收集点和污水处理厂的距离,与每个区域 中心和污水处理厂的距离近似相等;
- (5) 区域面积越大,认为污水量越大,需要的污水大管越多,假设新建污水管数量正比于面积,比例系数为*n*:
- (6) 污水管网的铺建费用与管网大管道长度成正比;
- (7) 其余假设与多区域模型相同。

5.2 符号说明

 K_i : 污水处理厂i的污水处理量上限 i = 1, 2, ..., M 共有M个污水处理厂.

 d_{ii} : 区域i中心和污水处理厂j之间的直线距离,为已知常数.

D: 距离矩阵,以 d_{ii} 为矩阵元素,是一个 $N \times M$ 维的常矩阵.

Ω: 清源目的地矩阵,每行只有一个1,其余元素全为0;该矩阵为变量.

 γ_{ii} :表示各区域截排后雨污混合水的流向,

Γ: 截排目的地矩阵,每行只有一个1,其余元素全为0;该矩阵为常矩阵.

 ω_{ii} :表示各区域清源后污水的流向,

$$\omega_{ij} =
 \begin{cases}
 1, & 区域i 清源后的污水送往污水厂 j \\
 0, & 区域i 清源后的污水不送往污水厂 j
 \end{cases}$$

maxc(t):表示第 t 年的最大投入费用,t=1,2,...n

5.3 模型的建立

修建污水管网时,我们希望在满足污水处理条件下,修建的管网长度最小,此时修建 费用最省。

(目标函数) min
$$\sum_{i=1}^{N} \left[\eta \sum_{i=1}^{M} \omega_{ij} s_i d_{ij} \right]$$

(优化变量)
$$\omega_{ij} = 0$$
 或 1 ($i = 1,2,...,N; j = 1,2,...,M$)

(约束条件)
$$\sum_{i=1}^{M} \omega_{ij} = 1$$
 ($i = 1,2,...,N$)

$$\sum_{i=1}^{N} \omega_{ij} \cdot [all(i,t) - pollute(i,t)] \le K_{j}(t)$$

$$(j = 1,2,...,M; t = 1,2,...,n)$$

即每年送往每个污水处理厂的污水总量都不能超过该厂的污水处理能力。 求得 ω_{ij} 后,按照多区域模型进行规划即可。

5.4 数值模拟

考虑 3.4.1 的深圳河湾区域

5.4.1 数据来源

参见 4.4.1

5.4.2 参数确定

参见 4.4.2

5.4.3 模拟结果

通过 LINGO 计算,得到各区域区域清源后污水的流向 ω_{ii} ,如表 5.4.1 所示。

1 2 3 4 5 6 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

表 5.4.1: 求解结果的各项检验指标

将 ω_{ij} 代入 4.3 中的模型,目标函数选取 8 年总费用费用最少,求解结果为 46.7526(亿元),得到各区域进行清源改造的年份(表 5.4.2)

区域	年份										
1	1	11	8	21	2	31	4	41	3	51	3
2	2	12	3	22	7	32	8	42	3	52	4
3	1	13	8	23	6	33	2	43	5	53	1
4	2	14	2	24	3	34	5	44	6	54	6
5	1	15	6	25	4	35	3	45	4	55	4
6	1	16	2	26	6	36	1	46	1	56	3
7	7	17	3	27	4	37	1	47	8	57	2
8	3	18	1	28	1	38	1	48	2	58	2
9	3	19	5	29	6	39	1	49	3		
10	1	20	3	30	5	40	3	50	7		

表 5.4.2: 各区域进行清源改造的年份

六、模型的评价

6.1 深圳河湾区域规划方案的评估

表 5.5: 求解结果的各项检验指标

	改造区域	新建大管道	管网(大&小)	直接排放到	污水	总投资
	数量	长度	投入金额	河道的雨水量	クリス が理率	金额
	(个)	(公里)	(万元)	(万立方米)	处理学	(亿元)
第1年	13	27.763	3085.3	4016.48	83.04%	6.7988
第2年	9	24.774	2683.8	6699.68	87.23%	6.5609
第3年	13	20.277	2274.2	9904.18	92.83%	6.1458
第4年	6	11.343	1218.7	11001.38	94.91%	5.7929
第5年	4	5.396	575.3	11465.48	95.82%	5.5271
第6年	6	8.259	901.9	12453.48	97.82%	5.5928
第7年	3	2.673	320.4	13143.78	99.26%	5.1675
第8年	4	3.081	334.7	13489.58	99.58%	5.1668
前1年	13	27.763	3085.3			6.7988
前3年	35	72.814	8043.3		<u>†</u>	19.5055
前5年	45	89.553	9837.3	ſ		30.8255
前8年	58	103.566	11394.3			46.7526

假设以 2018 年为第 1 年: "前 8 年"即"到 2025 年": "前 3 年"即"到 2020 年"。

6.1.1 改造区域数量

在第k年进行改造的区域数量

$$\sum_{i=1}^{N} \delta_i^k$$

由表 5.5 第 2 列,每年改造数量是比较接近的。故本模型具有可操作性。

6.1.2 新建管网长度

区域i, 第k年增设污水大管道长度

$$\delta_i^k \sum_{j=1}^M \omega_{ij} \eta s_i d_{ij}$$

区域i, 1~k年增设污水管网总长度

$$\sum_{p=1}^k \left(\delta_i^k \sum_{j=1}^M \omega_{ij} \eta s_i d_{ij} \right) = \Delta_i^k \sum_{j=1}^M \omega_{ij} \eta s_i d_{ij}$$

根据《深圳市治水提质工作计划(2015—2020 年)》^[17], 其中,深圳市政府工作目标: "一年初见成效",深圳河湾建设污水管网 28.2 公里;"三年消除黑涝",深圳河湾建设污水管网 78 公里。

由表 5.5 第 3、4 列,一年和三年分别建设污水管网长度为 27.763 公里、72.814 公里,比较符合政府的工作目标。

6.1.3 处理能力提升

引入污水处理率的概念

污水处理率 =
$$\frac{$$
总污水产生量 $-$ 污水排放量 \times 100% 总污水产生量

根据模型,可得到所有N个区域在第k年的污水处理率:

$$\frac{\sum_{i=1}^{N} all(i,k) - \sum_{i=1}^{N} pollute(i,k)}{\sum_{i=1}^{N} all(i,k)}$$

在污水处理厂设备及工序等因素不变的情况下,可以用污水处理率来表示污水的处理能力,由表 5.5,可以发现污水处理率增加,即处理能力增强。

6.1.4 投资额

考虑深圳河湾流域的投资总量是否和政府治污的一、三、五、八年目标内的投资额较 接近,是否在限额内

第 t 年投资费用:
$$cost(t) = \sum_{i=1}^{N} \left\{ \{ \psi_i \cdot [BQ_i(\Delta_i^t \cdot S_i^t \cdot 12) - BQ_i(\Delta_i^t \cdot (S_i^t - 1) \cdot 12)] + \right\}$$

$$(1-\psi_i) \cdot [BJ_i(\Delta_i^t \cdot S_i^t \cdot 12) - BJ_i(\Delta_i^t \cdot (S_i^t - 1) \cdot 12)]\} + \left\{ \psi_i \cdot \left[\sum_{k=\Delta_i^t \cdot (S_i^t - 1) \cdot 12 + 1}^{\Delta_i^t \cdot S_i^t \cdot 12} DQ_i(k) \right] + \left[\frac{1}{2} \left[\frac{1} \left[\frac{1}{2} \left$$

$$(1-\psi_i)\cdot\left[\sum_{k=\Delta_i^t\cdot\left(S_i^t-1\right)\cdot 12+1}^{\Delta_i^t\cdot S_i^t\cdot 12}DJ_i(k)\right]\right\}$$

由《工程措施任务责任清单》^[17]可知,在原特区内,污水管网建设的三年总投资额(2017年、2018-2020年)为11744万元,而根据模型得到的结果(表5.5最后一列)为11394.3万元,两者较为接近,说明模型比较符合政府的预计投资。

6.2 某河治理方案评估

6.2.1 考虑截污比例

结合单区域的排水模型和多区域模型:设 deal 为污水处理厂的处理能力

截排系统能传送的污水量为 $min\{r \cdot (x + y), \phi(t) \cdot r \cdot D\}$

清源系统能传送的污水量为 $(1-r)\cdot x$

送至污水处理厂的污水量为 $min\{r\cdot(x+y),\phi(t)\cdot r\cdot D\}+(1-r)\cdot x$

超出污水处理厂处理能力的污水量为

$$[min\{r \cdot (x+y), \phi(t) \cdot r \cdot D\} + (1-r) \cdot x - deal]^+$$

排入河道的污水量为

$$[\min\{r \cdot (x+y), \phi(t) \cdot D\} + (1-r) \cdot x - deal]^+ + \xi \cdot y \cdot g \cdot (1-r)$$

总污水量为 $\xi \cdot y \cdot g \cdot (1-r) + x$

则污水处理率为
$$\frac{[min\{r\cdot(x+y),\phi(t)\cdot D\}+(1-r)\cdot x-deal\}^++\xi\cdot y\cdot g\cdot(1-r)}{\xi\cdot y\cdot g\cdot(1-r)+x}$$

取 $\xi = 1$, g=0.5, 根据所给文件, 截排倍数 phi=5, 分流比例为 35%, 2017 年污水量 x 为 32.9 万吨/日, 2020 年取 39.1 万吨/日, 2020 年非建设用地面积仍保留了 83.5 km^2 , 绿化

面积占 45%,污水处理厂处理能力 deal 为 25+15*0.5 万吨/日,1961 年至 2014 年每月雨量 平均值 h 为:

月 份 (月)	1	2	3	4	5	6	7	8	9	10	11	12
雨 量(mm)	27.9	42.3	71.3	165.7	217.4	269.8	239.6	277.2	177.7	61.2	28	26.1

当 x=32.9 时得出 1 至 12 月的污水处理率如下

份(月)	1	2	3	4	5	6	7	8	9	10	11	12
理率 (%)	99.55	99.32	98.85	97.37	96.58	95.79	96.24	95.68	97.19	99.01	99.55	99.58

当 x=39.1 时得出 1 至 12 月的污水处理率如下

份(月)	1	2	3	4	5	6	7	8	9	10	11	12
理率 (%)	99.62	99.42	99.03	97.78	97.11	87.94	95.73	86.03	97.62	99.17	99.62	99.64

完成 2017 建成区污水截污率达到 70%的要求,由于 2020 年的分流比例与截排倍数未知,难以判断,但是根据以上结果,完成建成区污水完全截污率达到 90%的目标可行。

6.2.2 考虑洪水情况

$$l(t) \cdot u = \int_0^t [-[(流入水库的速度*时间$$

- (水库总容量 现存容量))流入水库的水流速度
- +流入区域的干流水流速度 流出区域的干流水流速度
- 流出区域的支流水流速度 + 流入区域的支流水流速度 $] \cdot dt$ + 降水高度 $\cdot u$

$$+ \int_0^t \left[X + Y - \emptyset \cdot r \cdot \frac{D}{30 \times 24 \times 60 \times 60} - (1 - r)X \right] dt$$

xx 河流域设计暴雨成果表(等值线图查算法)[19]

(表 6.4-1) (单位: mm)

项目	均值				设计频率	率 p(%)		
	均但	٧	1	2	5	10	20	50
H1/6h	20	0.3	38.3	35.4	31.3	28	24.5	19
Hlh	52.5	0.38	117	106	90.9	79.2	66.8	48.3
H6h	105	0.46	269	239	200	169	138	92.8
H24h	170	0.45	428	382	320	272	222	151
H72h	225	0.45	567	505	423	360	294	200

通过数据拟合得,暴雨持续时间约为3天。

根据文件数据,100年一遇暴雨时,流入水库的水流速度为 242 m³/s;

排洪渠为流出,流速分别为 911、900、964、1069 m³/s;

支流部分流速分别为 162、422、509、550、695、853、894、909、957、959 m^3/s ; 支流部分流入部分流出,因为具体情况未知,假设流速为 162、509、695 m^3/s 的三条支流出;

调蓄湖为流出,流速分别为 48.1、417、397、8.40、109、156、172 m 3 /s;河道流域面积为 121.83 km 2 ;水库特性如下:

区域水库特性表[19] (表 6.4-2)

号	水库名称	工程规模	所在河流	建成日期	集雨面积				
Ħ					(KM2)	集雨面积 (km2) 洪水标准 (重现期) (年) (万 设计 校核 总库容 1.17 20 200 64.4 5.3 100 1000 1466.5 0.96 20 200 91.5 2.35 30 500 193 0.95 30 500 80 11.77 14789 0.8 30 200 22 2.57 30 500 259 0.1 30 200 30 0.5 30 500 44.7 3.83 30 500 385 1.7 30 500 142 1.31 30 500 104 2.93 30 500 219 1.12 30 200 53	正常 库容		
	6#	小(2)	玉田河	1954	1.17	20	200	64.4	51
	鹅颈	中型	鹅颈水	2015	5.3	100	1000	1466.5	
	红坳	小(2)	狗现小	1955	0.96	20	200	91.5	71.5
	大凼	小(1)	大凼水	1964	2.35	30	500	193	110
	碧眼	小(2)	东坑水	1962	0.95	30	500	80	66
	xx 水库	大(2)		2017	11.77			14789	
	2#	小(2)	新陂	1966	0.8	30	200	22	
	石狗公	小(1)	利阪 头河	1965	2.57	30	500	259	190
	1#	小(2)	大門	1958	0.1	30	200	30	
0	罗村	小(2)		1957	0.5	30	500	44.7	26.9
1	铁坑	小(1)		1992	3.83	30	500	385	299
2	桂坑	小(1)	西田水	1963	1.7	30	500	142	70
3	白鸽陂	小(1)		1957	1.31	30	500	104	80
4	莲塘	小(1)		1976	2.93	30	500	219	156
5	5#	小(2)		1957	1.12	30	200	53	36
6	3#	小(2)	xx 排洪渠	1957	0.4	20	200	32.7	28
7	4#	小(2)		1955	0.3	30	200	30	25.2

根据库容量,分有预警、无预警讨论。

1) 有预警时,水库提前泄洪,使得水库现存容量减小。 设提前预警时间为 *T*,假设 *T*=2 天,

现存容量 = [水库的平均蓄水量 – 泄洪速度 * T]

模拟得河道水面上升 2.9338m。

2) 无预警时,水库现存容量使得流入水库的水流速度小且能收集水量小 现存容量 = 水库的平均蓄水量

模拟得河道水面上升 3.0482m。

根据文件数据,50年一遇暴雨时,流入水库的水流速度为220 m³/s;

排洪渠为流出,流速分别为 801、800、903、940 m^3/s ;

支流部分流速分别为 144、376、449、485、613、751、786、799、842、848 m³/s; 支流部分流入部分流出,因为具体情况未知,假设流速为 144、449、613 m³/s 的三条支流出:

调蓄湖为流出,流速分别为 28.0、48.0、80.0、37.9、84.7、73.4、143、206、44.0、392、373、7.68、120、138、153 m^3/s ;

河道流域面积为 121.83 km²。

根据库容量,分有预警、无预警讨论。

1) 有预警时,水库提前泄洪,使得水库现存容量减小。 设提前预警时间为 T,假设 T=2 天,

现存容量 = [水库的平均蓄水量 - 泄洪速度 * T]

模拟得河道水面上升 0.8268m。

2) 无预警时,水库现存容量使得流入水库的水流速度小且能收集水量小。

现存容量 = 水库的平均蓄水量

模拟得河道水面上升 0.9373m。

对于支流而言,由于数据缺乏,我们只对鹅颈水塘家村汇入口进行分析。由于支流数目与水库数目大致相同,假设每条支流上有一个水库。当为50年一遇暴雨时,其上游水流为117 m³/s,下游为193 m³/s。

流域面积为 11.23+15.39+6.26km²。

算得水面上升量为 2.7166m。

20 年一遇暴雨时,其上游水流为 $96.2 \text{ m}^3/\text{s}$,下游为 $156 \text{ m}^3/\text{s}$ 。

算得水面上升量为 2.0243m。

由于支流部分还有调蓄湖等水流量未减去,所以实际水面上升量应低于 2.0243m。

基本在河道可承载上升量范围内。

满足 2017 年与 2020 年防洪规划:干流达到 100 年一遇,整治过的支流河道达到 20~50 年一遇防洪标准。

6.2.3 考虑海绵城市建设情况

在 2017 年规划的截排倍数 5,截排比例 65%情况下,海绵城市建设情况如下:

雨水的不同	净水	渗水	吸水	蓄水	排放
处理部分					
比例 (%)	35.72	44.97	0.08	14.29	4.94

吸水部分较小的原因是由于湿地面积小,接受的降雨少,但实际上湿地周围部分如绿地等接收的降雨也会被湿地接收,及渗水部分的 44.97%有一部分应归到吸水部分。由结果知海绵城市的建设效果不错。

6.3 模型的评价

我们的模型以流域为研究对象来进行划分,这样下来得到的最终措施,使得治水可以 按流域统筹,系统性更强,片区污水能够更加有效地收集。

考虑了城市开发建设中水文条件的改变,防止了内涝风险。我们选取一年之中 3-5 月的降水量的数据来计算,这样的话,即使短时间汇流时间缩短,峰值径流增大,也不会过多压缩城市的雨洪调蓄空间,再加之我们考虑了对海绵城市建设的影响,极大地增强了内涝响应能力。

我们考虑的深圳河湾这一典型流域,最终需要建设的污水管网总长度较为符合政府提出的逐渐的建设目标,并且在达到治污要求、维持河道生态的前提下,尽量地降低了政府开支。

实际治污工作中往往需根据具体情况同时实施"截排"和"清源"两种治理方案。模型考虑的是第n年,在针对具体区域进行模型求解时,为了叙述简便,取n=8,即考虑第 8年全部采用清源。从而,在1~8年,区域确实是同时实施了"截排"和"清源"两种治理方案,与实际情况相符。

6.4 模型的讲一步改讲

- 1) ω_{ij} 取值范围为[0,1],引入新的示性函数: $\omega_{ij} > 0$ 时,示性函数取 1; 把示性函数代入表达式。一个区域的污水不一定是运往同一个污水厂, ω_{ij} 实际上是i到j的污水占i全部污水的比例;
- 2) 考虑降水量关于地域的差异:
- 3) 考虑更为细致的绿化面积分布;
- 4) 考虑治污方案的主要目标 主要有以下几种可能的目标:
- A. 比起压低投资费用,更加希望实现的时间短

在投资比较相近的情况下,可以考虑尽早进行清源改造的方案,以提升居民的幸福指数,早日实现雨污分流,推进海绵城市的建设(量化后和投资额作加权平均,成为新的目标函数)对于"实现时间"的要求可以通过改变n的取值来操作;

- B. 每年建设的区域数有上限,或每年改造的区域数比较相近,(δ矩阵每列求和(每年进行清源改造的区域个数)方差较小)防止每年的投资压力过大:
- C. 每年的投资额有一个范围 增加约束条件给各年份的投资额设定上限/下限;
- D. 每年改造的区域是邻近的

建立 $N \times N$ 的矩阵,存放各区域中心之间的距离,对 δ 进行约束,使得对应的区域间距离有一个上限:

参考文献

- [1] 佚名. 国外城市排水系统——东京[J]. 隧道建设, 2012(4):440-440.
- [2] 刘波. 纽约、伦敦和东京等世界城市防洪排涝经验与启示[J]. 城市观察, 2013(2):145-150.
- [3] 弈茗. 充满智慧和远见的德国排水系统[J]. 吉林劳动保护, 2012(8).
- [4] 佚名. 国外大都市排水系统盘点[J]. 水工业市场, 2012(8).
- [5] 佚名. 国外大城市排水系统如何应对暴雨[J]. 新业主:现代物业上旬刊, 2012(7):8-9.
- [6] 佚名. 国内排水和污水处理概况[J]. 市政技术, 1978(3).
- [7] 李海滨. 潍坊市中心城区排水系统雨污分流改造技术的研究[D]. 山东大学, 2013.
- [8] 武勇,刘文国. 深圳水污染治理"大截排"方案遭否定. http://www.h2o-china.com/news/38005.html
- [9] 深圳气候资料查询,深圳市气象局, http://www.szmb.gov.cn/article/QiHouYeWu/qihouxinxigongxiang/climateResource/
- [10] 陶亚. 基于 EFDC 模型的深圳湾水环境模拟与预测研究[D]. 中央民族大学, 2010.
- [11] 深圳市排水(雨水)防涝综合规划,深圳城市规划, http://www.upssz.net.cn/news/newsinfo.aspx?id=1070, 2015/8/22
- [12] 深圳水务部门出污水处理调价依据,深圳市罗湖区电子政务网, http://www.szlh.gov.cn/main/xwzx/bkzy/18299.shtml,2005/3/21
- [13] 林家森. 城市污水治理中截流倍数的影响研究[J]. 给水排水, 2004, 30(11):39-42.
- [14] 一年后深圳河湾基本实现雨污分流,深圳晚报,2016/01/07 第 A04 版
- [15] 2015 卷深圳年鉴,深圳市气象局, www.szmb.gov.cn/article/XinXiGongKai/TongJiShuJu/ZhuanXiangTongJiBaoGao/2015/05/ 07/554ad28a60533.html, 2015/5/7
- [16] 深圳河湾流域污水系统,深圳市城市规划设计研究院,sina.dichan.com/angelqiao/casusview-95362.html, 2009/9/16
- [17] 深圳市治水提质工作计划(2015—2020年)(附件2)
- [18] 李浇. 深圳河(湾)流域污水资源化工程研究[D]. 河海大学, 2006.
- [19] xx 河流域水环境综合整治技术方案简本

附表

表 1: 2014 年深圳市每月降水量[9]

月份	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
降水量 (mm)	0.0	32.0	212.6	128.9	545.2	129.5	255.2	159.7	185.9	15.6	10.7	50.2

表 2: 各区域的面积及污水量[18]

	F- 1-B		₹ 2: 合区域的	m ///////		-7≓1H	>- t. ⊟
流域	区域	面积	污水量	流域	区域	面积	污水量
	划分i	(公顷)	(立方米/天)		划分i	(公顷)	(立方米/天)
	1	100.60	5231.20		18	293.00	49493.56
	2	567.00	38142.09		19	30.00	5017.80
	3	574.00	42912.24		20	457.00	84590.70
大沙河	4	552.00	45606.24	布吉河	21	132.00	26954.40
	5	516.00	46842.48		22	240.00	41016.00
	6	425.00	28789.50		23	38.00	13098.60
1	7	188.00	11125.84		24	202.00	24240.00
	8	41.00	4444.40		37	198.00	20043.54
	9	185.00	21226.90		38	70.00	3974.60
	10	150.00	11602.50		39	190.00	8462.60
	11	194.00	17970.22		40	137.00	5142.98
凤塘河	12	317.00	16442.79	福田河	41	115.00	19425.80
/^(/店代)	13	34.00	4805.56	1田口1円	42	453.00	75768.78
	14	73.00	3990.18		43	41.00	3733.05
	15	125.00	20225.00		44	281.00	58883.55
/ V/H1-3	16	10.00	510.00		45	64.00	4250.24
	17	118.00	12230.70		46	91.00	18582.20
	25	226.00	24498.40		47	16.00	908.48
	26	96.00	9718.08		48	20.00	890.80
	27	232.00	32790.88		49	66.00	12699.72
	28	242.00	13740.76	皇岗河	50	103.00	41925.12
	29	184.00	9384.00	至冈們	51	68.00	6191.40
文广 /	30	110.00	21166.20		52	80.00	6631.20
新洲河	31	133.00	54136.32		53	79.00	8983.88
	32	22.00	2280.30		54	36.00	6152.40
_	33	176.00	16642.56		55	109.00	18628.10
	34	176.00	18912.96	沙湾河	56	230.00	41607.00
	35	76.00	6299.64		57	130.00	15600.00
-	36	161.00	32208.05	莲塘河	58	404.00	74279.44

污水总量: 46393 万立方米/年, 总面积: 10376.6 公顷.

表 3: 区域涉及的污水处理厂及其污水处理能力[16]

污水处理厂	编号 <i>j</i>	污水处理能力 (万立方米/天)	污水处理厂	编号 <i>j</i>	污水处理能力 (万立方米/天)
西丽再生水厂	1	10	布吉污水处理厂	4	25
福田污水处理厂	2	60	罗芳污水处理厂	5	35
滨河污水处理厂	3	30	埔地吓污水处理厂	6	8

表 4: 模型 I (治污效果) 求解结果

区域	J	Q	4: 侯至 1 (石 J-Q	区域	J	Q	J-Q
i	(万立方米)	(万立方米)	(万立方米)	i	(万立方米)	(万立方米)	(万立方米)
1	9. 523	8. 267	1. 256	30	17. 517	10. 627	6. 890
2	70. 760	52. 614	18. 147	31	41. 732	19. 051	22. 681
3	72. 071	49. 525	22. 546	32	2. 097	1. 939	0. 158
4	71. 578	44. 831	26. 747	33	20. 734	15. 329	5. 404
5	68. 492	40. 860	27. 632	34	20. 644	15. 386	5. 258
6	50. 970	39. 093	11.877	35	6. 859	5. 795	1. 064
7	20. 139	18. 137	2.003	36	26. 523	13. 225	13. 299
8	4. 049	3. 612	0. 437	37	23. 934	16. 977	6. 956
9	21. 786	15. 949	5. 838	38	6. 244	5. 005	1. 239
10	16. 774	13. 137	3. 637	39	22. 063	20.094	1. 969
11	23. 262	16. 652	6. 610	40	14. 991	13. 354	1. 637
12	39. 607	34. 398	5. 209	41	16. 368	10.666	5. 702
13	4. 164	3. 401	0. 763	42	63. 933	22. 939	40. 994
14	6. 549	5. 212	1. 337	43	3. 537	3. 373	0. 164
15	17. 150	11. 348	5.802	44	48. 215	16. 178	32. 037
16	0.688	0. 700	-0.013	45	5. 555	4. 627	0. 928
17	12. 219	10. 595	1.624	46	15. 263	9. 668	5. 595
18	41. 702	17. 387	24. 315	47	1.064	1. 153	-0.090
19	4. 234	3. 293	0. 941	48	1. 396	1. 349	0.047
20	70. 368	18. 932	51. 436	49	10. 510	7. 290	3. 220
21	22. 140	12. 222	9. 918	50	32. 319	16. 419	15. 900
22	34. 501	15. 496	19. 005	51	5.866	5. 322	0. 544
23	10. 218	6. 398	3.820	52	7. 404	6. 234	1. 170
24	24. 155	16. 967	7. 188	53	8. 104	6.813	1. 291
25	28. 027	18.884	9. 143	54	5. 175	3. 953	1. 222
26	9. 100	8. 370	0.729	55	15. 669	10. 259	5. 410
27	28. 413	17. 726	10.687	56	34. 719	14. 196	20. 524
28	27. 402	24. 402	3.001	57	13. 924	11.834	2. 089
29	20. 225	18.661	1.564	58	61.846	17. 789	44. 057

表 5: 截排措施各月排入河道的水量 (单位: 万立方米)

区域	1月	2月	3 月	4月	5月	<u>ソ: 刀 ユ</u> 6月	7月	8月	9月	10 月	11月	12 月
1	0. 3139	0. 3152	0. 3224	0. 319	0. 3357	0. 3191	0. 3241	0. 3203	0. 3213	0. 3145	0. 3143	0. 3159
2	2. 2885	2. 2898	2. 297	2. 2937	2. 3103	2. 2937	2. 2987	2. 2949	2. 296	2. 2891	2. 289	2. 2905
3	2. 5747	2. 576	2. 5832	2. 5799	2. 5965	2. 5799	2. 5849	2. 5811	2. 5822	2. 5754	2. 5752	2. 5767
4	2. 7364	2. 7377	2. 7449	2. 7415	2. 7582	2.7416	2. 7466	2. 7428	2. 7438	2. 737	2. 7368	2. 7384
5	2. 8105	2.8118	2.8191	2.8157	2.8324	2.8157	2. 8208	2.8169	2.818	2.8112	2.811	2.8126
6	1.7274	1. 7287	1. 7359	1. 7325	1. 7492	1. 7326	1. 7376	1. 7338	1. 7348	1. 728	1. 7278	1. 7294
7	0.6676	0.6688	0. 6761	0.6727	0.6894	0. 6727	0.6778	0. 6739	0.675	0.6682	0. 668	0.6696
8	0. 2667	0. 2679	0. 2752	0. 2718	0. 2885	0. 2718	0. 2769	0. 2731	0. 2741	0. 2673	0. 2671	0. 2687
9	1. 2736	1. 2749	1. 2821	1. 2788	1. 2954	1. 2788	1. 2838	1. 28	1. 2811	1. 2742	1. 274	1. 2756
10	0.6962	0.6974	0. 7047	0.7013	0.718	0. 7013	0.7064	0. 7025	0. 7036	0. 6968	0. 6966	0.6982
11	1. 0782	1.0795	1.0867	1.0834	1. 1	1.0834	1.0884	1.0846	1.0856	1. 0788	1. 0786	1.0802
12	0. 9866	0. 9878	0. 9951	0. 9917	1.0084	0. 9917	0. 9968	0. 993	0. 994	0. 9872	0. 987	0. 9886
13	0. 2883	0. 2896	0. 2968	0. 2935	0. 3101	0. 2935	0. 2985	0. 2947	0. 2958	0. 289	0. 2888	0. 2903
14	0. 2394	0. 2407	0. 2479	0. 2446	0. 2612	0. 2446	0. 2496	0. 2458	0. 2468	0. 24	0. 2398	0. 2414
15	1. 2135	1. 2148	1. 222	1. 2187	1. 2353	1. 2187	1. 2237	1. 2199	1. 2209	1. 2141	1. 2139	1. 2155
16	0.0306	0.0319	0.0391	0. 0358	0.0524	0. 0358	0.0408	0. 037	0. 038	0.0312	0.031	0. 0326
17	0. 7338	0. 7351	0. 7423	0. 739	0. 7557	0. 739	0. 744	0. 7402	0. 7413	0. 7345	0. 7343	0. 7359
18	2. 9696	2. 9709	2. 9781	2. 9748	2. 9914	2. 9748	2. 9798	2. 976	2. 977	2. 9702	2. 97	2. 9716
19	0. 3011	0. 3023	0. 3096	0.3062	0. 3229	0. 3062	0. 3113	0. 3075	0. 3085	0. 3017	0. 3015	0. 3031
20	5. 0754	5. 0767	5. 0839	5. 0806	5. 0972	5. 0806	5. 0857	5. 0818	5. 0829	5. 0761	5. 0759	5. 0774
21	1. 6173	1.6185	1.6258	1.6224	1.6391	1.6224	1.6275	1.6237	1.6247	1. 6179	1. 6177	1.6193
22	2. 461	2. 4622	2. 4695	2. 4661	2. 4828	2. 4661	2. 4712	2. 4673	2. 4684	2. 4616	2. 4614	2. 463
23	0. 7859	0. 7872	0. 7944	0. 7911	0.8077	0. 7911	0. 7961	0. 7923	0. 7934	0. 7865	0. 7863	0. 7879
24	1. 4544	1. 4557	1. 4629	1. 4596	1. 4762	1. 4596	1. 4646	1. 4608	1. 4618	1. 455	1. 4548	1. 4564
25	1. 4699	1. 4712	1. 4784	1. 4751	1. 4917	1. 4751	1. 4801	1. 4763	1. 4773	1. 4705	1. 4703	1. 4719
26	0. 5831	0. 5844	0. 5916	0. 5882	0.6049	0. 5883	0. 5933	0. 5895	0. 5905	0. 5837	0. 5835	0. 5851
27	1. 9675	1.9687	1. 976	1.9726	1. 9893	1. 9726	1. 9777	1. 9738	1. 9749	1. 9681	1. 9679	1. 9695
28	0.8244	0.8257	0.8329	0.8296	0.8463	0.8296	0.8347	0.8308	0.8319	0.8251	0.8249	0. 8265
29	0. 563	0. 5643	0. 5715	0. 5682	0. 5848	0. 5682	0. 5732	0. 5694	0. 5705	0. 5637	0. 5635	0. 565
30	1. 27	1. 2713	1. 2785	1. 2751	1. 2918	1. 2752	1. 2802	1. 2764	1. 2774	1. 2706	1. 2704	1. 272
31	3. 2482	3. 2495	3. 2567	3. 2533	3. 27	3. 2534	3. 2584	3. 2546	3. 2556	3. 2488	3. 2486	3. 2502
32	0. 1368	0. 1381	0. 1453	0. 142	0. 1586	0. 142	0. 147	0. 1432	0. 1443	0. 1374	0. 1372	0. 1388
33	0. 9986	0. 9998	1. 0071	1. 0037	1. 0204	1. 0037	1. 0088	1. 0049	1.006	0. 9992	0. 999	1.0006
34	1. 1348	1. 1361	1. 1433	1. 1399	1. 1566	1. 14	1. 145	1. 1412	1. 1422	1. 1354	1. 1352	1. 1368
35	0.378	0. 3793	0. 3865	0. 3831	0. 3998	0. 3832	0. 3882	0. 3844	0. 3854	0. 3786	0. 3784	0. 38
36	1. 9325	1. 9338	1. 941	1. 9376	1. 9543	1. 9377	1. 9427	1. 9389	1. 9399	1. 9331	1. 9329	1. 9345
37	1. 2026	1. 2039	1. 2111	1. 2078	1. 2244	1. 2078	1. 2128	1. 209	1. 21	1. 2032	1. 203	1. 2046
38	0. 2385	0. 2398	0. 247	0. 2436	0. 2603	0. 2437	0. 2487	0. 2449	0. 2459	0. 2391	0. 2389	0. 2405
39	0. 5078	0.509	0. 5163	0. 5129	0. 5296	0. 5129	0.518	0. 5141	0. 5152	0. 5084	0.5082	0. 5098
40	0.3086	0.3099	0. 3171	0. 3137	0. 3304	0. 3138	0.3188	0. 315	0. 316	0. 3092	0.309	0.3106

区域	1月	2月	3 月	4月	5月	6月	7月	8月	9月	10 月	11月	12月
41	1. 1655	1. 1668	1. 1741	1. 1707	1. 1874	1. 1707	1. 1758	1. 1719	1. 173	1. 1662	1. 166	1. 1676
42	4. 5461	4. 5474	4. 5546	4. 5513	4. 5679	4. 5513	4. 5563	4. 5525	4. 5536	4. 5468	4. 5466	4. 5481
43	0. 224	0. 2253	0. 2325	0. 2291	0. 2458	0. 2292	0. 2342	0. 2304	0. 2314	0. 2246	0. 2244	0. 226
44	3. 533	3. 5343	3. 5415	3. 5382	3. 5548	3. 5382	3. 5432	3. 5394	3. 5404	3. 5336	3. 5334	3. 535
45	0. 255	0. 2563	0. 2635	0. 2602	0. 2768	0. 2602	0. 2652	0. 2614	0. 2625	0. 2556	0. 2554	0. 257
46	1. 1149	1. 1162	1. 1234	1. 1201	1. 1367	1. 1201	1. 1251	1. 1213	1. 1224	1. 1156	1. 1154	1. 1169
47	0.0545	0.0558	0.063	0.0597	0.0763	0.0597	0.0647	0.0609	0.0619	0.0551	0.0549	0.0565
48	0.0534	0.0547	0.062	0.0586	0.0753	0.0586	0.0637	0.0598	0.0609	0.0541	0.0539	0.0555
49	0. 762	0. 7633	0. 7705	0. 7671	0. 7838	0.7672	0.7722	0.7684	0.7694	0. 7626	0. 7624	0.764
50	2. 5155	2. 5168	2. 524	2. 5207	2. 5373	2. 5207	2. 5257	2. 5219	2. 5229	2. 5161	2. 5159	2. 5175
51	0. 3715	0. 3728	0. 38	0. 3766	0. 3933	0. 3767	0. 3817	0. 3779	0. 3789	0. 3721	0. 3719	0. 3735
52	0. 3979	0.3992	0.4064	0. 403	0. 4197	0. 4031	0.4081	0. 4043	0. 4053	0. 3985	0. 3983	0. 3999
53	0. 539	0. 5403	0. 5475	0. 5442	0.5608	0. 5442	0. 5492	0. 5454	0. 5465	0. 5397	0. 5395	0. 541
54	0. 3691	0.3704	0. 3776	0. 3743	0.391	0. 3743	0.3794	0. 3755	0. 3766	0. 3698	0. 3696	0. 3712
55	1. 1177	1. 119	1. 1262	1. 1228	1. 1395	1. 1229	1. 1279	1. 1241	1. 1251	1. 1183	1. 1181	1. 1197
56	2. 4964	2. 4977	2. 5049	2. 5016	2. 5182	2. 5016	2. 5066	2. 5028	2. 5039	2. 497	2. 4968	2. 4984
57	0. 936	0. 9373	0. 9445	0.9412	0. 9578	0. 9412	0. 9462	0. 9424	0. 9434	0. 9366	0. 9364	0. 938
58	4. 4568	4. 458	4. 4653	4. 4619	4. 4786	4. 4619	4. 467	4. 4632	4. 4642	4. 4574	4. 4572	4. 4588

表 6: 清源措施各月排入河道的水量 (单位: 万立方米)

区域	1月	2月	3 月	4月	5月	立:万立 6月	7月	8月	9月	10 月	11月	12 月
1	0. 033	0. 0786	0. 1448	0. 2041	0. 3131	0. 3611	0. 4496	0. 427	0. 4165	0. 3864	0. 3729	0. 3637
2	0. 0364	0.0758	0. 1235	0. 161	0. 2234	0. 2472	0. 2984	0. 3393	0. 3874	0. 4254	0. 4729	0. 5235
3	0.0404	0.084	0. 136	0. 1779	0. 2448	0. 2734	0. 3293	0. 3751	0. 4281	0. 4711	0. 5236	0. 5792
4	0.0447	0.093	0. 1499	0. 197	0. 2696	0. 3037	0. 3656	0. 4175	0. 4769	0. 5262	0. 5854	0. 6478
5	0.0493	0. 1025	0. 165	0. 218	0. 297	0. 3376	0.4066	0. 4657	0. 5326	0. 5896	0.6568	0. 7276
6	0.0371	0.0782	0. 1286	0. 1693	0. 2369	0. 2646	0. 3218	0. 3687	0. 4238	0. 4684	0. 5238	0. 5831
7	0. 0344	0.0766	0. 1329	0. 1809	0. 265	0.3013	0. 3778	0. 4426	0. 5205	0. 5853	0. 667	0. 7561
8	0. 0867	0. 2334	0. 4035	0. 384	0. 4145	0. 3618	0. 3633	0. 3426	0. 3341	0. 306	0. 2944	0. 2872
9	0.0668	0. 1474	0. 2479	0. 3453	0. 4843	0. 5798	0. 7203	0.8531	1.0031	1. 1434	1. 3041	1. 4752
10	0.0462	0. 1044	0. 1813	0. 253	0.3672	0.432	0. 5438	0.6451	0.7634	0.869	0.8746	0.8495
11	0.0537	0. 1182	0. 1998	0. 2761	0.3908	0. 4607	0. 5727	0.6755	0. 7933	0. 9001	1.0253	1. 1594
12	0. 0289	0.0621	0. 1054	0. 1388	0. 201	0. 2207	0. 2723	0. 3128	0. 3625	0. 4006	0. 4508	0. 5056
13	0. 1212	0. 3358	0. 4316	0. 4113	0. 4409	0. 3873	0. 3878	0. 3663	0. 3569	0. 3278	0. 3153	0. 3073
14	0. 037	0.092	0. 1742	0. 2518	0. 3886	0. 337	0. 3396	0. 3201	0. 3128	0. 2857	0. 2753	0. 2693
15	0. 0991	0. 2263	0. 3883	0. 5587	0. 7883	0. 9767	1. 2278	1. 4783	1. 5992	1. 5317	1. 4806	1. 434
16	0. 0451	0. 047	0.0638	0.0541	0.0945	0.0516	0.0629	0.0521	0.0534	0. 0351	0. 0334	0. 0361
17	0.064	0. 1479	0. 2586	0. 3699	0. 5341	0. 6487	0.8207	0. 9855	0. 9672	0. 9196	0.8885	0.8619
18	0.0946	0. 2009	0. 3246	0. 4448	0.6008	0. 7191	0.8754	1. 0254	1. 1895	1. 3458	1. 5185	1. 6993
19	0. 151	0. 4267	0. 4481	0. 4271	0. 4562	0. 4021	0. 4021	0. 38	0. 3701	0. 3405	0. 3275	0. 3189
20	0. 101	0. 2097	0. 3313	0. 4465	0. 5912	0.6995	0.8394	0. 9715	1. 1138	1. 2477	1. 3938	1. 5451
21	0. 124	0. 2812	0. 4777	0.6874	0. 9597	1. 1964	1. 4984	1.8039	2. 1412	2.0568	1. 989	1. 9255
22	0.0971	0. 2091	0.3416	0. 4729	0.6441	0.7773	0. 9529	1. 1233	1. 3104	1. 4905	1.6898	1.8992
23	0. 2834	0.7664	1. 1443	1. 1032	1. 1121	1.0378	1. 0176	0. 9753	0. 9452	0.8954	0.8622	0.8334
24	0.0693	0. 1516	0. 253	0.351	0. 489	0. 5848	0. 7236	0.8551	1.0028	1. 1411	1. 2988	1. 4663
25	0.0619	0. 1345	0. 2236	0. 3076	0. 4283	0. 5069	0. 6253	0. 7353	0.8596	0. 9739	1. 1054	1. 2453
26	0.0648	0. 1534	0. 2737	0. 3969	0.5804	0.7105	0.8096	0. 7757	0. 7541	0.7127	0. 688	0.6676
27	0. 0806	0. 1742	0. 2865	0. 396	0. 544	0.6521	0.8016	0. 9445	1. 103	1. 2532	1. 4218	1. 5998
28	0. 0323	0.0704	0. 1205	0. 1615	0. 2346	0. 2628	0. 3267	0. 3793	0. 4428	0. 494	0. 5596	0. 631
29	0. 0297	0.0665	0. 1167	0. 158	0. 235	0. 2632	0. 3313	0. 3871	0. 4557	0. 5105	0. 582	0.6605
30	0. 1202	0. 2784	0. 481	0. 7001	0. 989	1. 2407	1. 5654	1. 696	1. 6457	1. 5758	1. 5224	1. 4734
31	0. 247	0. 5578	0. 9372	1. 3577	1. 8668	2. 3655	2. 9528	3. 5656	4. 2306	4. 1341	3. 9982	3. 8668
32	0. 1079	0. 2013	0. 2137	0. 1996	0. 2355	0. 1882	0. 1951	0. 1799	0. 1768	0. 1541	0. 1479	0. 1461
33	0. 0554	0. 123	0. 2091	0. 2907	0. 4129	0. 4896	0. 6107	0. 7229	0. 8513	0. 9688	1. 1061	1. 2532
34	0.0629	0. 1395	0. 236	0. 3293	0. 4644	0. 5552	0. 6914	0.8197	0. 9653	1. 1007	1. 2569	1. 4235
35	0. 0557	0. 1364	0. 251	0. 3679	0. 5517	0. 5262	0. 523	0. 4977	0. 4846	0. 4518	0. 4356	0. 4238
36	0. 1184	0. 2631	0. 4402	0. 6251	0. 8639	1. 0667	1. 326	1. 5856	1. 8714	2. 1539	2. 456	2. 3794
37	0. 0586	0. 1286	0. 2162	0. 2991	0. 4208	0. 4986	0. 6186	0. 73	0. 8567	0. 973	1. 1079	1. 2518
38	0. 0389	0.097	0. 184	0. 2673	0. 3863	0. 3348	0. 3374	0. 3179	0. 3106	0. 2836	0. 2732	0. 2672
39	0. 0259	0. 0579	0. 1026	0. 1375	0. 2072	0. 228	0. 2876	0. 3344	0. 3934	0. 4383	0. 4993	0. 5667
40	0.0227	0.0526	0. 097	0. 1314	0. 2056	0. 2242	0. 2877	0. 3366	0. 3999	0. 3959	0. 3826	0. 3736

区域	1月	2月	3 月	4月	5月	6月	7月	8月	9月	10月	11月	12 月
41	0. 1048	0. 2415	0. 417	0.6039	0.8546	1.0647	1.3423	1.5662	1. 5202	1. 4546	1. 4056	1. 361
42	0.0913	0. 1898	0.3006	0.4046	0. 5378	0. 6339	0.7615	0.8809	1.0101	1. 1307	1. 2634	1. 401
43	0.0728	0. 1964	0. 3423	0. 3246	0. 3569	0. 306	0.3092	0. 2903	0. 2836	0. 2573	0. 2474	0. 242
44	0. 1176	0. 2503	0. 4033	0. 5557	0.7467	0. 902	1.0982	1. 29	1. 4979	1. 6998	1. 9199	2. 1498
45	0.0465	0. 1172	0. 222	0. 3269	0. 4071	0. 3549	0.3568	0. 3367	0. 3287	0. 301	0. 2899	0. 2832
46	0. 132	0. 3129	0. 5495	0.8113	1. 1562	1. 4659	1.5168	1. 4608	1. 417	1. 3535	1. 3066	1. 2641
47	0.0702	0.0817	0.0974	0. 0868	0. 1262	0. 0823	0.0926	0.0808	0.0812	0.0619	0.0591	0.0608
48	0.0487	0.0804	0.0963	0. 0857	0. 1251	0.0813	0.0916	0.0798	0.0802	0.061	0. 0583	0.06
49	0. 1336	0. 3314	0.6012	0. 9076	1. 1102	1.0369	1.0177	0. 9764	0. 9473	0.8985	0.8662	0.8384
50	0. 2572	0. 5982	1.0278	1. 5151	2. 113	2. 7087	3. 4143	3. 3188	3. 2166	3. 0947	2. 9894	2.8886
51	0.0627	0. 1561	0. 2891	0. 4285	0. 5702	0. 5132	0. 5103	0. 4852	0. 4724	0. 4399	0. 4239	0. 4124
52	0.055	0. 1339	0. 2452	0. 358	0. 5354	0. 5555	0. 5515	0. 5254	0. 5114	0. 4778	0. 4607	0. 4481
53	0.0757	0. 1838	0. 3325	0. 4904	0. 7205	0.7472	0. 7373	0. 7053	0. 6855	0. 646	0. 6231	0.6045
54	0. 1434	0.3927	0. 5477	0. 524	0.5502	0. 4933	0. 4904	0. 4655	0. 4528	0. 4203	0. 4045	0. 393
55	0. 1069	0. 2481	0. 4302	0.6254	0.8874	1. 1088	1. 4005	1. 493	1. 449	1. 3854	1. 3384	1. 2958
56	0. 1032	0. 2228	0. 3644	0. 506	0.6892	0.835	1.0248	1. 2102	1. 4136	1.6104	1.8276	2. 0558
57	0.0731	0. 1666	0. 2875	0.41	0. 5845	0. 7128	0.897	1. 0756	1. 2444	1. 1884	1. 1489	1. 1139
58	0. 1009	0. 2107	0. 3346	0. 4529	0.6024	0. 7153	0.8614	1. 0002	1. 1502	1. 2921	1. 4473	1. 6085

表 7: 截排、清源措施各月排入河道的水量之差 (单位:万立方米)

区域	1月	2月	3 月	4月	5月	<u>位: 万立</u> 6月	7月	8月	9月	10 月	11 月	12 月
1	0. 2809	0. 2366	0. 1776	0. 1149	0. 0226	-0. 042	-0. 1255	-0. 1067	-0. 0952	-0. 0719	-0. 0586	-0.0478
2	2. 2521	2. 214	2. 1735	2. 1327	2. 0869	2. 0465	2. 0003	1. 9556	1. 9086	1. 8637	1. 8161	1. 767
3	2. 5343	2. 492	2. 4472	2. 402	2. 3517	2. 3065	2. 2556	2. 206	2. 1541	2. 1043	2. 0516	1. 9975
4	2. 6917	2. 6447	2. 595	2. 5445	2. 4886	2. 4379	2. 381	2. 3253	2. 2669	2. 2108	2. 1514	2. 0906
5	2. 7612	2. 7093	2. 6541	2. 5977	2. 5354	2. 4781	2. 4142	2. 3512	2. 2854	2. 2216	2. 1542	2. 085
6	1. 6903	1. 6505	1. 6073	1. 5632	1. 5123	1. 468	1. 4158	1. 3651	1. 311	1. 2596	1. 204	1. 1463
7	0. 6332	0. 5922	0. 5432	0. 4918	0. 4244	0. 3714	0.3	0. 2313	0. 1545	0. 0829	0.001	-0.0865
8	0. 18	0. 0345	-0. 1283	-0. 1122	-0. 126	-0.09	-0. 0864	-0.0695	-0.06	-0. 0387	-0.0273	-0.0185
9	1. 2068	1. 1275	1. 0342	0. 9335	0.8111	0. 699	0. 5635	0. 4269	0. 278	0. 1308	-0. 0301	-0. 1996
10	0.65	0. 593	0. 5234	0. 4483	0. 3508	0. 2693	0. 1626	0.0574	-0.0598	-0. 1722	-0. 178	-0. 1513
11	1. 0245	0.9613	0.8869	0.8073	0.7092	0. 6227	0. 5157	0. 4091	0. 2923	0. 1787	0. 0533	-0.0792
12	0. 9577	0. 9257	0. 8897	0.8529	0.8074	0. 771	0. 7245	0. 6802	0. 6315	0. 5866	0. 5362	0. 483
13	0. 1671	-0.0462	-0. 1348	-0. 1178	-0. 1308	-0. 0938	-0. 0893	-0. 0716	-0.0611	-0. 0388	-0.0265	-0.017
14	0. 2024	0. 1487	0. 0737	-0.0072	-0. 1274	-0. 0924	-0.09	-0. 0743	-0.066	-0. 0457	-0. 0355	-0.0279
15	1. 1144	0. 9885	0.8337	0.66	0. 447	0. 242	-0.0041	-0. 2584	-0. 3783	-0. 3176	-0. 2667	-0. 2185
16	-0.0145	-0.0151	-0.0247	-0.0183	-0.0421	-0. 0158	-0.0221	-0. 0151	-0. 0154	-0.0039	-0.0024	-0.0035
17	0.6698	0.5872	0. 4837	0.3691	0. 2216	0.0903	-0. 0767	-0. 2453	-0. 2259	-0. 1851	-0. 1542	-0.126
18	2.875	2.77	2. 6535	2. 53	2. 3906	2. 2557	2. 1044	1. 9506	1. 7875	1. 6244	1. 4515	1. 2723
19	0. 1501	-0. 1244	-0. 1385	-0. 1209	-0. 1333	-0. 0959	-0.0908	-0. 0725	-0.0616	-0. 0388	-0.026	-0. 0158
20	4. 9744	4. 867	4. 7526	4. 6341	4. 506	4. 3811	4. 2463	4. 1103	3. 9691	3. 8284	3. 6821	3. 5323
21	1. 4933	1. 3373	1. 1481	0. 935	0. 6794	0. 426	0. 1291	-0. 1802	-0. 5165	-0. 4389	-0.3713	-0.3062
22	2. 3639	2. 2531	2. 1279	1. 9932	1.8387	1. 6888	1. 5183	1. 344	1. 158	0. 9711	0. 7716	0. 5638
23	0.5025	0.0208	-0. 3499	-0. 3121	-0. 3044	-0. 2467	-0. 2215	-0. 183	-0. 1518	-0. 1089	-0. 0759	-0.0455
24	1.3851	1. 3041	1. 2099	1. 1086	0. 9872	0.8748	0. 741	0.6057	0. 459	0. 3139	0. 156	-0.0099
25	1. 408	1. 3367	1. 2548	1. 1675	1.0634	0. 9682	0.8548	0. 741	0. 6177	0. 4966	0. 3649	0. 2266
26	0. 5183	0. 431	0. 3179	0. 1913	0.0245	-0. 1222	-0. 2163	-0. 1862	-0. 1636	-0. 129	-0. 1045	-0.0825
27	1.8869	1. 7945	1. 6895	1. 5766	1. 4453	1. 3205	1. 1761	1. 0293	0.8719	0. 7149	0. 5461	0. 3697
28	0. 7921	0. 7553	0.7124	0.6681	0.6117	0. 5668	0. 508	0. 4515	0. 3891	0. 3311	0. 2653	0. 1955
29	0. 5333	0. 4978	0. 4548	0. 4102	0. 3498	0. 305	0. 2419	0. 1823	0. 1148	0. 0532	-0. 0185	-0. 0955
30	1. 1498	0. 9929	0. 7975	0. 575	0. 3028	0. 0345	-0. 2852	-0. 4196	-0. 3683	-0. 3052	-0. 252	-0. 2014
31	3. 0012	2. 6917	2. 3195	1. 8956	1. 4032	0. 8879	0. 3056	-0. 311	-0. 975	-0. 8853	-0. 7496	-0. 6166
32	0. 0289	-0.0632	-0.0684	-0. 0576	-0. 0769	-0. 0462	-0. 0481	-0. 0367	-0. 0325	-0. 0167	-0. 0107	-0.0073
33	0. 9432	0.8768	0. 798	0. 713	0.6075	0. 5141	0. 3981	0. 282	0. 1547	0. 0304	-0. 1071	-0. 2526
34	1. 0719	0. 9966	0. 9073	0.8106	0. 6922	0. 5848	0. 4536	0. 3215	0. 1769	0. 0347	-0. 1217	-0. 2867
35	0. 3223	0. 2429	0. 1355	0. 0152	-0. 1519	-0. 143	-0. 1348	-0. 1133	-0. 0992	-0. 0732	-0.0572	-0.0438
36	1.8141	1. 6707	1. 5008	1. 3125	1. 0904	0.871	0. 6167	0. 3533	0.0685	-0. 2208	-0. 5231	-0. 4449
37	1. 144	1. 0753	0. 9949	0. 9087	0.8036	0. 7092	0. 5942	0. 479	0. 3533	0. 2302	0. 0951	-0.0472
38	0. 1996	0. 1428	0.063	-0. 0237	-0. 126	-0. 0911	-0. 0887	-0. 073	-0.0647	-0. 0445	-0. 0343	-0. 0267
39	0. 4819	0. 4511	0. 4137	0. 3754	0. 3224	0. 2849	0. 2304	0. 1797	0. 1218	0. 0701	0. 0089	-0.0569
40	0. 2859	0. 2573	0. 2201	0. 1823	0. 1248	0. 0896	0. 0311	-0. 0216	-0. 0839	-0. 0867	-0. 0736	-0.063

(续表)

区域	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11月	12 月
41	1.0607	0. 9253	0. 7571	0. 5668	0. 3328	0. 106	-0. 1665	-0. 3943	-0. 3472	-0. 2884	-0. 2396	-0. 1934
42	4. 4548	4. 3576	4. 254	4. 1467	4. 0301	3. 9174	3. 7948	3. 6716	3. 5435	3. 4161	3. 2832	3. 1471
43	0. 1512	0. 0289	-0. 1098	-0. 0955	-0. 1111	-0. 0768	-0. 075	-0. 0599	-0.0522	-0. 0327	-0. 023	-0. 016
44	3. 4154	3. 284	3. 1382	2. 9825	2.8081	2. 6362	2. 445	2. 2494	2. 0425	1.8338	1. 6135	1. 3852
45	0. 2085	0. 1391	0.0415	-0.0667	-0. 1303	-0. 0947	-0.0916	-0. 0753	-0.0662	-0.0454	-0. 0345	-0. 0262
46	0. 9829	0.8033	0. 5739	0.3088	-0. 0195	-0. 3458	-0. 3917	-0. 3395	-0. 2946	-0. 2379	-0. 1912	-0. 1472
47	-0. 0157	-0. 0259	-0.0344	-0.0271	-0.0499	-0.0226	-0. 0279	-0. 0199	-0.0193	-0.0068	-0.0042	-0.0043
48	0.0047	-0. 0257	-0. 0343	-0.0271	-0.0498	-0. 0227	-0. 0279	-0.02	-0.0193	-0.0069	-0.0044	-0.0045
49	0. 6284	0. 4319	0. 1693	-0. 1405	-0. 3264	-0. 2697	-0. 2455	-0. 208	-0. 1779	-0. 1359	-0. 1038	-0. 0744
50	2. 2583	1. 9186	1. 4962	1.0056	0. 4243	-0. 188	-0.8886	-0. 7969	-0. 6937	-0. 5786	-0. 4735	-0. 3711
51	0. 3088	0. 2167	0.0909	-0.0519	-0. 1769	-0. 1365	-0. 1286	-0. 1073	-0.0935	-0.0678	-0.052	-0. 0389
52	0. 3429	0. 2653	0. 1612	0.045	-0. 1157	-0. 1524	-0. 1434	-0. 1211	-0. 1061	-0.0793	-0.0624	-0.0482
53	0. 4633	0. 3565	0. 215	0.0538	-0. 1597	-0. 203	-0. 1881	-0. 1599	-0. 139	-0. 1063	-0. 0836	-0.0635
54	0. 2257	-0. 0223	-0. 1701	-0. 1497	-0. 1592	-0. 119	-0. 111	-0.09	-0.0762	-0.0505	-0. 0349	-0.0218
55	1. 0108	0.8709	0. 696	0. 4974	0. 2521	0.0141	-0. 2726	-0. 3689	-0. 3239	-0. 2671	-0. 2203	-0. 1761
56	2. 3932	2. 2749	2. 1405	1. 9956	1.829	1.6666	1. 4818	1. 2926	1.0903	0.8866	0.6692	0. 4426
57	0.8629	0. 7707	0. 657	0. 5312	0. 3733	0. 2284	0.0492	-0. 1332	-0.301	-0. 2518	-0. 2125	-0. 1759
58	4. 3559	4. 2473	4. 1307	4. 009	3.8762	3. 7466	3. 6056	3. 463	3. 314	3. 1653	3. 0099	2.8503

表 8: 截排、清源措施建设第一年排入河道的总水量之差

(单位:万立方米)

区域	差值	区域	差值	区域	差值	区域	差值	区域	差值	区域	差值
1	0. 0285	11	0. 6382	21	0. 4335	31	0.8967	41	0. 2119	51	-0. 0237
2	2. 4217	12	0.8846	22	1.8592	32	-0. 0435	42	4. 6017	52	-0.0014
3	2. 7303	13	-0.0661	23	-0. 1476	33	0. 4958	43	-0.0472	53	-0.0014
4	2. 8828	14	-0.0141	24	0. 9135	34	0. 5642	44	2. 9834	54	-0.0779
5	2. 9247	15	0. 2842	25	1.05	35	-0. 0101	45	-0. 0242	55	0. 1712
6	1. 7193	16	-0. 0193	26	0. 0479	36	0.8109	46	0.0702	56	1.8163
7	0. 3739	17	0. 1409	27	1. 4421	37	0. 734	47	-0. 0258	57	0. 2398
8	-0.0542	18	2. 5666	28	0. 6247	38	-0. 0167	48	-0. 0238	58	4. 3774
9	0. 6982	19	-0.0769	29	0. 3029	39	0. 2883	49	-0. 0452	·	
10	0. 2493	20	5. 1484	30	0. 202	40	0.0862	50	0. 3113		

表 9: 截排措施各月溢出水量 (单位:立方米)

区域	1月	2 月	3 月	4月	5月	<u> </u>	7月	8月	9月	10 月	11月	12 月
1	1月	19. 1248	3 月 127. 4776	4 月 77. 2504	327. 0232	77. 596	153. 0107	95. 7107	9 月 111. 4307	9. 2507	6. 3107	30. 0107
2	0	18. 9031	127. 4776	77. 0287	326. 8015	77. 3743	153. 0107	95. 4799	111. 4307	9. 2507	6. 0583	29. 7511
3	0	18. 9295	127. 2823	77. 0551	326. 8279	77. 4007	152. 8135	95. 4799	111. 1927	9. 0055	6. 0847	29. 7775
-	0	18. 9694	127. 3222	77. 095	326. 8678	77. 4406	152. 8534	95. 5462	111. 2191	9. 0319	6. 1246	29. 7775
5	0	19. 0128	127. 3222	77. 1384	326. 9112	77. 484	152. 8968	95. 5462	111. 259	9. 0718	6. 168	29. 8174
6	0	18. 9752	127. 3030	77. 1008	326. 8736	77. 4464	152. 8592	95. 552	111. 2648	9. 1152	6. 1304	29. 8232
7	0	19. 0814	127. 4342	77. 207	326. 9798	77. 5526	152. 9654	95. 6582	111. 2046	9. 1838	6. 2366	29. 9294
8	0	19. 1769	127. 4342	77. 3115	327. 0915	77. 6715	152. 9054	95. 7915	111. 571	9. 3315	6. 3915	30. 0915
9	0	19. 1709	127. 5313	77. 28	327. 0515	77. 6256	153. 0315	95. 7312		9. 2568	6. 3096	30. 0024
						77. 5926	153. 0364	95. 6982	111. 444		6. 2834	
10	0	19. 1214	127. 4742	77. 247	327. 0198				111. 411	9. 2238		29. 9834
11	0	19. 1231	127. 4759	77. 2487	327. 0215	77. 5943	153. 0071	95. 6999	111. 4127	9. 2255	6. 2783	29. 9711
12	0	18. 9938	127. 3466	77. 1194	326. 8922	77. 465	152. 8778	95. 5706	111. 2834	9. 0962	6. 149	29. 8418
13	0	19. 1861	127. 5441	77. 3241	327. 1041	77. 6841 77. 622	153. 1041	95. 8041	111. 5241	9. 3441	6. 4041	30. 1041
14	0. 0126	19. 1428 19. 2054	127. 4956	77. 2684 77. 331	327. 042	77. 6766	153. 042 153. 0894	95. 742	111. 462		6. 342 6. 3794	30. 042
15	0.0126	19. 2054	127. 5582 127. 5491	77. 3291	327. 1038 327. 1091	77. 6891	153. 0894	95. 7822 95. 8091	111. 4994 111. 5291	9. 3194 9. 3491	6. 4091	30. 0794 30. 1091
16	0	19. 1566	127. 5491	77. 2822	327. 1091	77. 6278		95. 7341		9. 3491	6. 3341	30. 1091
							153. 0406		111. 4541			
18	0. 0537	19. 2465 19. 1915	127. 5993	77. 3721 77. 3314	327. 1449	77. 7177 77. 6914	153. 1305	95. 8233	111. 5361 111. 5314	9. 3489	6. 4017	30. 0945
19	0. 1722	19. 1915	127. 5514 127. 7178	77. 4906	327. 1114 327. 2634	77. 8362	153. 1114 153. 249	95. 8114		9. 3514	6. 4114 6. 5202	30. 1114
20	0. 1722	19. 2666	127. 7178	77. 3922	327. 2634	77. 7378	153. 249	95. 9418 95. 8434	111. 6546 111. 5573	9. 4674 9. 3773	6. 4373	30. 213 30. 1373
22	0. 0738	19. 2404	127. 5194	77. 366	327. 1388	77. 7116	153. 1244	95. 8434	111. 5573	9. 3428	6. 3956	30. 1373
23	0. 0476	19. 2404	127. 6268	77. 4068	327. 1868	77. 7668	153. 1244	95. 8868	111. 53	9. 3428	6. 4868	30. 1868
24	0.0779	19. 2707	127. 5208	77. 2845	327. 1606	77. 6301	153. 1606	95. 7357	111. 4485	9. 4208	6. 3141	30. 1000
25	0	19. 1376	127. 4904	77. 2632	327. 0373	77. 6088	153. 0429	95. 7144	111. 4272	9. 2013	6. 2928	29. 9856
	0	19. 1604		77. 286	327. 0588		153. 0210			9. 2885	6. 3485	
26	0		127. 5132 127. 5421		327. 0388	77. 6316	153. 0485	95. 7485	111. 4685 111. 4789			30. 0485 30. 0373
28	0	19. 1893	127. 5421	77. 173	326. 9458	77. 5186	153. 0733	95. 6242	111. 4789	9. 2917	6. 2026	29. 8954
29	0	19. 0474	127. 4002	77. 1987	326. 9715	77. 5443	152. 9514	95. 6499	111. 3627		6. 2283	29. 8954
30	0. 0453	19. 0731	127. 4239	77. 3637	327. 1365	77. 7093	153. 1221	95. 8194	111. 5394	9. 1755 9. 3594	6. 4194	30. 1194
31	0. 0455	19. 5795	127. 9323	77. 7051	327. 1303	78. 0507	153. 4635	96. 1563	111. 8697	9. 6897	6. 7497	30. 1194
32	0. 3807	19. 184	127. 9323	77. 324	327. 104	77. 684	153. 104	95. 804	111. 524	9. 344	6. 404	30. 104
33	0	19. 1313	127. 4841	77. 2569	327. 104	77. 6025	153. 104	95. 7081	111. 324	9. 2337	6. 2865	29. 9807
34	0	19. 1313	127. 4941	77. 2726	327. 0297	77. 6182	153. 0133	95. 7238	111. 4209	9. 2337	6. 3022	29. 9965
35	0	19. 147	127. 4998	77. 2816	327. 0434	77. 6337	153. 0537	95. 7537	111. 4737	9. 2494	6. 3537	30. 0537
36	0. 0839	19. 150	127. 6295	77. 4023	327. 0344	77. 7479	153. 1607	95. 8535	111. 4737	9. 3791	6. 4334	30. 1334
37	0.0039	19. 1336	127. 4864	77. 2592	327. 1731	77. 6048	153. 1007	95. 7104	111. 4232	9. 236	6. 2888	29. 9816
38	0	19. 1356	127. 4984	77. 2712	327. 032	77. 6262	153. 0176	95. 7462	111. 4232	9. 2862	6. 3462	30. 0462
39	0	19. 1430			326. 9593		153. 0402	95. 6377		9. 2602	6. 2161	29. 9089
			127. 4137	77. 1865		77. 5321			111. 3505			
40	0	19. 0891	127. 4419	77. 2147	326. 9875	77. 5603	152. 9731	95. 6659	111. 3787	9. 1973	6. 2573	29. 9573

区域	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11月	12月
41	0.0167	19. 2095	127. 5623	77. 3351	327. 1079	77. 6807	153. 0935	95. 7884	111. 5084	9. 3284	6. 3884	30. 0884
42	0.0817	19. 2745	127. 6273	77. 4001	327. 1729	77. 7457	153. 1585	95. 8513	111. 5641	9. 3769	6. 4297	30. 1225
43	0	19. 1719	127. 5266	77. 3066	327. 0866	77. 6666	153. 0866	95. 7866	111. 5066	9. 3266	6. 3866	30. 0866
44	0. 1827	19. 3755	127. 7283	77. 5011	327. 2739	77. 8467	153. 2595	95. 9523	111. 6651	9. 4779	6. 5307	30. 2235
45	0	19. 1533	127. 5061	77. 2789	327. 0568	77. 6368	153. 0568	95. 7568	111. 4768	9. 2968	6. 3568	30. 0568
46	0.0486	19. 2414	127. 5942	77. 367	327. 1398	77. 7126	153. 1319	95. 8319	111. 5519	9. 3719	6. 4319	30. 1319
47	0	19. 1831	127. 5431	77. 3231	327. 1031	77. 6831	153. 1031	95. 8031	111. 5231	9. 3431	6. 4031	30. 1031
48	0	19. 1772	127. 5372	77. 3172	327. 0972	77. 6772	153. 0972	95. 7972	111. 5172	9. 3372	6. 3972	30. 0972
49	0.0243	19. 2171	127. 5699	77. 3427	327. 1196	77. 6996	153. 1196	95. 8196	111. 5396	9. 3596	6. 4196	30. 1196
50	0. 2978	19. 4906	127. 8434	77. 6162	327. 389	77. 9618	153. 3753	96. 0753	111. 7953	9. 6153	6. 6753	30. 3753
51	0	19. 163	127. 5158	77. 2886	327. 0645	77. 6445	153. 0645	95. 7645	111. 4845	9. 3045	6. 3645	30. 0645
52	0	19. 1544	127. 5072	77. 28	327. 0528	77. 6302	153. 0502	95. 7502	111. 4702	9. 2902	6. 3502	30. 0502
53	0	19. 1717	127. 5245	77. 2973	327. 0701	77. 648	153. 068	95. 768	111. 488	9. 308	6. 368	30. 068
54	0.001	19. 1938	127. 5508	77. 3308	327. 1108	77. 6908	153. 1108	95. 8108	111. 5308	9. 3508	6. 4108	30. 1108
55	0.0177	19. 2105	127. 5633	77. 3361	327. 1089	77. 6817	153. 0945	95. 7923	111. 5123	9. 3323	6. 3923	30. 0923
56	0.0719	19. 2647	127. 6175	77. 3903	327. 1631	77. 7359	153. 1487	95. 8415	111. 5543	9. 3671	6. 4199	30. 1127
57	0	19. 1684	127. 5212	77. 294	327. 0668	77. 6396	153. 0524	95. 7452	111. 4601	9. 2801	6. 3401	30. 0401
58	0. 1456	19. 3384	127. 6912	77. 464	327. 2368	77. 8096	153. 2224	95. 9152	111.628	9. 4408	6. 4936	30. 1864

表 10: 清源措施各月溢出水量 (单位:立方米)

区域	1月	2月	3 月	4月	5月	位: 立方 6月		8月	9月	10 月	11月	12月
1	0	13. 4346	70. 7404	31. 3867	84. 5104	8. 4802	0	0	0	0	0	0
2	0	17. 8933	117. 189	68. 891	283. 7732	65. 1109	124. 5907	75. 3151	84. 7852	6. 5454	4. 203	20. 2451
3	0	17. 9305	117. 3359	69. 0135	284. 3205	65. 2822	124. 9555	75. 5812	85. 1266	6. 594	4. 2435	20. 3781
4	0	17. 929	116. 977	68. 7298	282. 6623	64. 8344	123. 8796	74. 8206	84. 1195	6. 5289	4. 2013	20. 034
5	0	17. 8983	116. 2963	68. 1865	279. 6178	63. 9937	121. 8963	73. 412	82. 2627	6. 3873	4. 1022	19. 3857
6	0	17. 6278	113. 8973	66. 2436	269. 4682	61. 0848	115. 241	68. 6488	76. 033	5. 7943	3. 6538	17. 1396
7	0	16. 0367	97. 074	52. 6654	197. 2101	40. 5688	67. 9288	34. 8448	31. 7304	1. 7679	0.6451	1. 2641
8	0	5. 1981	0	0	0	0	0	0	0	0	0	0
9	0	16. 0488	96. 6374	52. 3174	195. 1499	40. 0075	66. 5825	33. 8855	30. 46	1.6629	0. 5639	0.8031
10	0	15. 3011	89. 4163	46. 4796	164. 3644	31. 2267	46. 4111	19. 4615	11. 5754	0	0	0
11	0	16. 1657	98. 0444	53. 4524	201. 2482	41. 7338	70. 5765	36. 7399	34. 2043	2.0047	0.822	2. 1512
12	0	17. 1905	109. 3448	62. 5695	249. 9369	55. 5385	102. 4543	59. 5141	64. 0624	4.71	2. 846	12. 8559
13	0	2. 3242	0	0	0	0	0	0	0	0	0	0
14	0	11. 2993	49. 3042	14. 0606	0	0	0	0	0	0	0	0
15	0.003	14. 6039	81. 863	40. 3758	131. 8744	21. 986	25. 1162	4. 2295	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	14. 2953	79. 1233	38. 1611	120. 2772	18. 6731	17. 522	0	0	0	0	0
18	0.0434	17. 2709	108. 0861	61. 5813	243. 8248	53. 9216	98. 4909	56. 7152	60. 3367	4. 4807	2. 6931	11. 5699
19	0	0. 0779	0	0	0	0	0	0	0	0	0	0
20	0. 1619	18. 0909	115. 196	67. 3516	273. 825	62. 5572	118. 1913	70. 8382	78. 7951	6. 3088	4. 1013	18. 2913
21	0.0635	14. 9065	84. 3436	42. 3916	142. 2822	24. 9928	31. 9548	9. 1355	0. 0531	0.0531	0.0531	0.0531
22	0.0372	16. 833	103. 7775	58. 097	225. 43	48. 6739	86. 4341	48. 0906	49. 0442	3. 4218	1.8925	7. 4997
23	0.0676	4. 1763	0. 0771	0.0771	0. 0771	0. 0771	0. 0771	0. 0771	0. 0771	0.0771	0.0771	0. 0771
24	0	16. 3128	99. 2371	54. 419	206. 2505	43. 1723	73. 8564	39. 0873	37. 2715	2. 2971	1. 0417	3. 2537
25	0	16. 595	102. 2203	56. 8284	219. 0614	46. 814	82. 2487	45. 0869	45. 1332	3. 0218	1. 5873	6. 0811
26	0	13. 1872	68. 0418	29. 2039	72. 8997	5. 1728	0	0	0	0	0	0
27	0	16. 7055	102. 915	57. 3946	221. 888	47. 6411	84. 1063	46. 4199	46. 8678	3. 1992	1. 7221	6. 7089
28	0	16. 6831	103. 8161	58. 1096	226. 1355	48. 7904	86. 8734	48. 3847	49. 4718	3. 3936	1.8641	7. 6324
29	0	15. 9639	96. 4083	52. 1269	194. 3849	39. 7615	66. 0777	33. 5211	29. 9982	1.6067	0. 5243	0. 6426
30	0. 035	14. 0101	75. 6661	35. 3712	105. 2875	14. 4277	7. 7017	0. 0293	0. 0293	0. 0293	0. 0293	0. 0293
31	0. 3763	15. 252	84. 9816	42. 9673	143. 9848	25. 7017	33. 1784	10. 0996	0. 3658	0. 3658	0. 3658	0. 3658
32	0	0	0	0	0	0	0	0	0	0	0	0
33	0	15. 8715	95. 0427	51. 0271	188. 3934	38. 0747	62. 1546	30. 7184	26. 3166	1. 2748	0. 2726	0
34	0	15. 8846	95. 0545	51. 0375	188. 4025	38. 0824	62. 161	30. 7235	26. 3203	1. 2772	0. 2737	0
35	0	11. 6164	52. 3953	16. 5573	6. 0251	0	0	0	0	0	0	0
36	0. 0735	15. 6982	92. 1431	48. 6986	175. 5848	34. 4923	53. 7821	24. 7488	18. 4654	0.6035	0.0571	0. 0571
37	0	16. 2341	98. 6467	53. 9399	203. 7949	42. 4632	72. 2458	37. 9341	35. 7662	2. 1517	0. 9324	2. 7125
38	0	10. 9654	45. 9551	11. 3534	0	0	0	0	0	0	0	0
39	0	16. 0514	97. 3778	52. 9094	198. 5633	40. 9469	68. 8142	35. 4768	32. 562	1.8408	0. 7003	1. 5638
40	0	14. 9147	85. 7853	43. 5445	148. 9186	26. 8199	36. 2935	12. 2287	2. 1074	0	0	0

区域	1月	2月	3 月	4月	5月	6月	7月	8月	9月	10 月	11月	12月
41	0.0064	14. 208	77. 8939	37. 1668	114. 9025	17. 148	13. 9929	0	0	0	0	0
42	0.0715	17. 9897	114. 9958	67. 1728	273. 2642	62. 3336	117. 7934	70. 5285	78. 4172	6. 1935	3. 9929	18. 0992
43	0	5. 1967	0	0	0	0	0	0	0	0	0	0
44	0. 1723	17. 3163	107. 3829	61. 0375	240. 3975	53. 0367	96. 2892	55. 1772	58. 2828	4. 4057	2.668	10. 9125
45	0	10. 204	38. 3148	5. 1768	0	0	0	0	0	0	0	0
46	0.0383	12. 9262	64. 8345	26. 6155	58. 9815	1. 2313	0. 0366	0. 0366	0. 0366	0.0366	0.0366	0. 0366
47	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0	0
49	0.014	10. 5176	41. 0493	7. 3828	0. 0176	0. 0176	0. 0176	0. 0176	0. 0176	0.0176	0.0176	0. 0176
50	0. 2875	13. 9088	72. 3919	32. 7727	90. 4664	10. 3837	0. 2833	0. 2833	0. 2833	0. 2833	0. 2833	0. 2833
51	0	10. 735	43. 5633	9. 4176	0	0	0	0	0	0	0	0
52	0	11. 9916	56. 1492	19. 5917	22. 0746	0	0	0	0	0	0	0
53	0	11. 9119	55. 2537	18. 8661	18. 2156	0	0	0	0	0	0	0
54	0.0004	3. 262	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
55	0.0073	13. 9347	75. 1624	34. 9587	103. 225	13.82	6. 3406	0.0019	0.0019	0.0019	0.0019	0.0019
56	0.0616	16. 7536	102. 7677	57. 2854	221. 0344	47. 4384	83. 562	46. 0434	46. 3558	3. 1932	1. 726	6. 5473
57	0	14. 7518	83. 5955	41. 776	139. 3661	24. 1148	30. 0291	7. 7455	0	0	0	0
58	0. 1353	17. 8999	113. 5307	66.0003	266. 7947	60. 5343	113. 575	67. 5292	74. 4699	5. 8814	3. 7723	16. 717

表 11: 截排、清源措施各月溢出水量之差 (单位:立方米)

区域	1月	2月	3 月	4月	5月	<u> </u>	7月	8月	9月	10 月	11月	12 月
1	0	5. 6902	56. 7372	45. 8637	242. 5128	69. 1159	153. 0107	95. 7107	111. 4307	9. 2507	6. 3107	30. 0107
2	0	1. 0098	10. 0669	8. 1377	43. 0283	12. 2634	28. 1964	20. 1648	26. 4075	2. 4601	1. 8553	9. 506
3	0	0. 999	9. 9464	8. 0416	42. 5074	12. 1185	27. 858	19. 9251	26. 0924	2. 4378	1.8412	9. 3994
4	0	1. 0404	10. 3452	8. 3653	44. 2055	12. 6062	28. 9738	20. 7256	27. 1395	2. 5429	1. 9233	9. 7835
5	0	1. 1145	11. 0692	8. 9519	47. 2934	13. 4903	31. 0005	22. 1776	29. 0397	2. 7279	2. 0657	10. 475
6	0	1. 3474	13. 4308	10. 8572	57. 4054	16. 3616	37. 6182	26. 9033	35. 2319	3. 2833	2. 4766	12. 6836
7	0	3. 0447	30. 3601	24. 5416	129. 7697	36. 9837	85. 0366	60. 8134	79. 6406	7. 4159	5. 5915	28. 6652
8	0	13. 9788	127. 5315	77. 3115	327. 0915	77. 6715	153. 0915	95. 7915	111. 5115	9. 3315	6. 3915	30. 0915
9	0	3. 1056	30. 8698	24. 9626	131. 9029	37. 6181	86. 4559	61. 8457	80. 984	7. 5939	5. 7457	29. 1994
10	0	3. 8203	38. 0578	30. 7674	162. 6554	46. 3659	106. 5942	76. 2366	99. 8356	9. 2238	6. 2834	29. 9834
11	0	2. 9574	29. 4315	23. 7963	125. 7733	35. 8605	82. 4306	58. 96	77. 2084	7. 2209	5. 4563	27. 8199
12	0	1. 8033	18. 0018	14. 5499	76. 9552	21. 9264	50. 4234	36. 0564	47. 2209	4. 3861	3. 303	16. 9859
13	0	16. 8619	127. 5441	77. 3241	327. 1041	77. 6841	153. 1041	95. 8041	111. 5241	9. 3441	6. 4041	30. 1041
14	0	7. 8435	78. 1914	63. 2078	327. 042	77. 622	153. 042	95. 742	111. 462	9. 282	6. 342	30. 042
15	0.0096	4.6015	45. 6952	36. 9552	195. 2294	55. 6906	127. 9732	91. 5526	111. 4994	9. 3194	6. 3794	30. 0794
16	0	19. 1891	127. 5491	77. 3291	327. 1091	77. 6891	153. 1091	95. 8091	111. 5291	9. 3491	6. 4091	30. 1091
17	0	4. 8613	48. 3861	39. 1211	206. 7779	58. 9547	135. 5187	95. 7341	111. 4541	9. 2741	6. 3341	30. 0341
18	0.0103	1. 9755	19. 5132	15. 7907	83. 3201	23. 7961	54. 6396	39. 108	51. 1993	4. 8682	3. 7086	18. 5245
19	0	19. 1136	127. 5514	77. 3314	327. 1114	77. 6914	153. 1114	95. 8114	111. 5314	9. 3514	6. 4114	30. 1114
20	0.0103	1. 2741	12. 5219	10. 139	53. 4384	15. 2791	35. 0577	25. 1036	32. 8595	3. 1586	2. 4189	11. 9217
21	0.0103	4. 3601	43. 2758	35. 0006	184. 8828	52. 7451	121. 1958	86. 7079	111. 5042	9. 3242	6. 3842	30. 0842
22	0.0103	2. 4074	23. 8157	19. 269	101. 7088	29. 0377	66. 6903	47. 7266	62. 4858	5. 921	4. 5031	22. 5887
23	0.0103	15. 0944	127. 5497	77. 3297	327. 1097	77. 6897	153. 1097	95. 8097	111. 5297	9. 3497	6. 4097	30. 1097
24	0	2. 8461	28. 2747	22. 8656	120. 8068	34. 4579	79. 1865	56. 6484	74. 177	6. 9642	5. 2725	26. 7533
25	0	2. 5426	25. 2701	20. 4348	107. 9746	30. 7947	70. 7728	50. 6275	66. 294	6. 2182	4. 7054	23. 9045
26	0	5. 9732	59. 4714	48. 0821	254. 1591	72. 4588	153. 0485	95. 7485	111. 4685	9. 2885	6. 3485	30. 0485
27	0	2. 4838	24. 6271	19. 9204	105. 1997	30. 0194	68. 9671	49. 3463	64. 6111	6. 0925	4. 6224	23. 3284
28	0	2. 3643	23. 5841	19. 0634	100. 8104	28. 7282	66. 058	47. 2395	61. 8652	5. 7562	4. 3385	22. 263
29	0	3. 1092	31. 0177	25. 0718	132. 5866	37. 7828	86. 8794	62. 1288	81. 3645	7. 5689	5. 704	29. 2785
30	0.0103	5. 228	51. 9248	41. 9925	221. 849	63. 2816	145. 4204	95. 7901	111. 5101	9. 3301	6. 3901	30. 0901
31	0. 0103	4. 3275	42. 9507	34. 7378	183. 4931	52. 3489	120. 2851	86. 0566	111. 5039	9. 3239	6. 3839	30. 0839
32	0	19. 184	127. 544	77. 324	327. 104	77. 684	153. 104	95. 804	111. 524	9. 344	6. 404	30. 104
33	0	3. 2597	32. 4414	26. 2298	138. 6363	39. 5278	90. 8607	64. 9896	85. 1043	7. 9589	6. 0139	29. 9807
34	0	3. 2624	32. 4454	26. 2352	138. 643	39. 5358	90.87	65. 0003	85. 1163	7. 9723	6. 0286	29. 9965
35	0	7. 5396	75. 1135	60. 7242	321. 0293	77. 6337	153. 0537	95. 7537	111. 4737	9. 2937	6. 3537	30. 0537
36	0. 0103	3. 5785	35. 4864	28. 7036	151. 5903	43. 2556	99. 3785	71. 1047	93. 1009	8. 7755	6. 3763	30. 0763
37	0	2. 8995	28. 8397	23. 3193	123. 2371	35. 1417	80. 7719	57. 7764	75. 6571	7. 0844	5. 3564	27. 2691
38	0	8. 1802	81. 5433	65. 9179	327. 0462	77. 6262	153. 0462	95. 7462	111. 4662	9. 2862	6. 3462	30. 0462
39	0	3. 0096	30. 036	24. 2771	128. 396	36. 5853	84. 1307	60. 161	78. 7885	7. 3226	5. 5158	28. 3452
40	0	4. 1744	41. 6566	33. 6701	178. 0688	50. 7404	116. 6796	83. 4372	109. 2713	9. 1973	6. 2573	29. 9573

区域	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11月	12 月
41	0.0103	5. 0015	49. 6684	40. 1683	212. 2054	60. 5327	139. 1006	95. 7884	111. 5084	9. 3284	6. 3884	30. 0884
42	0.0101	1. 2847	12. 6315	10. 2273	53. 9087	15. 4121	35. 3651	25. 3228	33. 1469	3. 1834	2. 4368	12. 0232
43	0	13. 9752	127. 5266	77. 3066	327. 0866	77. 6666	153. 0866	95. 7866	111. 5066	9. 3266	6. 3866	30. 0866
44	0.0103	2. 0591	20. 3453	16. 4635	86. 8763	24. 81	56. 9702	40. 775	53. 3823	5. 0722	3. 8627	19. 311
45	0	8. 9494	89. 1914	72. 1022	327. 0568	77. 6368	153. 0568	95. 7568	111. 4768	9. 2968	6. 3568	30. 0568
46	0.0103	6. 3152	62. 7597	50. 7515	268. 1583	76. 4813	153. 0953	95. 7953	111. 5153	9. 3353	6. 3953	30. 0953
47	0	19. 1831	127. 5431	77. 3231	327. 1031	77. 6831	153. 1031	95. 8031	111. 5231	9. 3431	6. 4031	30. 1031
48	0	19. 1772	127. 5372	77. 3172	327. 0972	77. 6772	153. 0972	95. 7972	111. 5172	9. 3372	6. 3972	30. 0972
49	0.0103	8. 6995	86. 5206	69. 9599	327. 1021	77. 6821	153. 1021	95. 8021	111. 5221	9. 3421	6. 4021	30. 1021
50	0.0103	5. 5819	55. 4515	44. 8435	236. 9226	67. 5781	153. 092	95. 792	111. 512	9. 332	6. 392	30. 092
51	0	8. 428	83. 9524	67. 871	327. 0645	77. 6445	153. 0645	95. 7645	111. 4845	9. 3045	6. 3645	30. 0645
52	0	7. 1628	71. 358	57. 6883	304. 9782	77. 6302	153. 0502	95. 7502	111. 4702	9. 2902	6. 3502	30. 0502
53	0	7. 2598	72. 2708	58. 4312	308. 8545	77. 648	153. 068	95. 768	111. 488	9. 308	6. 368	30. 068
54	0.0006	15. 9318	127. 5502	77. 3302	327. 1102	77. 6902	153. 1102	95. 8102	111. 5302	9. 3502	6. 4102	30. 1102
55	0.0103	5. 2757	52. 4009	42. 3774	223. 8839	63. 8616	146. 7539	95. 7904	111. 5104	9. 3304	6. 3904	30. 0904
56	0.0103	2. 5111	24. 8498	20. 105	106. 1287	30. 2975	69. 5867	49. 7981	65. 1986	6. 1739	4. 6939	23. 5654
57	0	4. 4166	43. 9258	35. 518	187. 7008	53. 5248	123. 0234	87. 9997	111. 4601	9. 2801	6. 3401	30. 0401
58	0.0103	1. 4385	14. 1605	11. 4637	60. 4421	17. 2753	39. 6474	28. 3861	37. 1581	3. 5594	2. 7213	13. 4694

表 12: 截排各月总费用 (单位: 万元)

区域	1月	2月	3 月	4月	5月	<u> </u>	7月	8月	9月	10 月	11月	12 月
1	29. 01	32. 22	50. 31	41. 93	83. 64	41. 99	51. 42	32. 64	35. 26	18. 2	17. 71	21. 67
2	133. 7	151. 74	253. 73	206. 46	441. 56	206. 8	277. 79	223. 86	238. 65	142. 48	139. 71	162. 02
3	148. 8	167. 13	270. 38	222. 53	460. 53	222. 87	294. 74	240. 14	255. 12	157. 76	154. 96	177. 54
4	157. 4	175	274. 29	228. 27	457. 15	228. 6	297. 71	245. 21	259. 61	165. 98	163. 29	185
5					441. 53							
6	161. 3 103. 9	177. 78	270. 6 193. 92	227. 58 158. 49	334. 71	227. 89 158. 75	292. 49 211. 95	243. 41	256. 88 182. 62	169. 35 110. 53	166. 84	187. 14 125. 18
7	47. 76	117. 47 53. 75	87. 57	71. 89	149. 84	72. 01	95. 54	171. 53 77. 66	82. 57	50. 68	108. 46 49. 76	57. 16
8	26. 51	27. 82	32. 08	19. 4	36. 4	19. 42	24. 55	20. 65	21. 72			16. 18
9	79. 88	85. 77		103. 63	180. 34	19. 42	126. 9	109. 3	114. 13	14. 77 82. 75	14. 57	89. 13
			119. 05								81. 85	
10	49. 27	54. 05	81. 04	68. 53	130. 73	68. 62	87. 4	73. 13	77. 05	51.6	39. 19	70. 22
11	69. 52	75. 71	110.6	94. 43 105. 36	174. 87	94. 54	118.83	100.38	105. 44	72. 54	71. 59	79. 22
12	64. 67	74. 77	131. 79		236. 8	105. 55	145. 24	115. 09	123. 36	69. 59	68. 04	80. 51
13	27. 66	28. 74	25. 94	19. 65	33. 74	19. 67	23. 92	20. 69	21. 58	15. 81	15. 64	16. 98
14	25. 07	27. 39	40. 52	34. 44	63. 39	22. 1	31. 24	24. 3	26. 21	13. 82	13. 47	16. 34
15	76. 69	80. 68	103. 16	92. 74	144. 57	92. 82	108. 47	96. 58	92. 16	66. 26	65. 65	70. 57
16	9. 92	1. 94	3. 74	2. 91	7. 05	2. 91	4. 16	3. 21	3. 47	1. 78	1. 73	2. 12
17	51. 27	55. 03	76. 26	66. 42	115. 35	66. 49	81. 26	68. 93	60. 74	40. 73	40. 15	44. 79
18	169. 8	179. 11	231. 81	207. 38	328. 87	207. 56	244. 24	216. 37	224. 02	174. 32	172.89	184. 42
19	28. 33	29. 29	22. 45	19. 81	32. 25	19. 83	23. 58	20. 73	21. 51	16. 42	16. 28	17. 46
20	281. 4	295. 94	378. 15	340. 05	529. 54	340. 32	397. 54	354. 07	365. 99	288. 48	286. 25	304. 23
21	98. 09	102. 3	126. 04	115. 04	169. 77	115. 12	131. 64	119. 09	120. 67	87. 77	87. 12	92. 31
22	142.8	150. 46	193. 63	173. 62	273. 13	173. 76	203. 81	180. 98	187. 25	146. 54	145. 37	154. 81
23	54. 03	55. 24	56. 48	46. 53	62. 29	46. 55	51. 31	47. 7	48. 69	42. 24	42.06	43. 55
24	89. 46	95. 9	132. 23	115. 39	199. 15	115. 51	140.8	121. 59	126. 86	92.6	91.61	99. 56
25	90. 28	97. 49	138. 14	119.3	213	119. 43	147. 73	126. 23	132. 13	93. 79	92. 69	101. 58
26	43. 28	46. 34	63. 61	55. 61	95. 41	55. 66	60. 7	46. 17	48. 68	32. 4	31. 93	35. 7
27	116. 7	124. 05	165. 78	146. 44		146. 58	175. 62	153. 55	159. 61	120. 26	119. 12	128. 25
28	56. 07	63. 79	107. 32	87. 14	187. 48	87. 29	117. 58	94. 57	100.88	59. 83	58. 65	68. 17
29	42. 22	48. 08	81. 18	65. 84	142. 13	65. 95	88. 99	71. 49	76. 29	45. 08	44. 18	51. 42
30	79. 69	83. 19	102. 98	93. 81	139. 42	93. 87	107.65	89. 44	87. 68	69. 02	68. 48	72.81
31	184. 5	188. 77	212. 69	201.61	256. 75	201. 69	218. 34	205. 69	208. 12	174. 22	173. 57	178.8
32	19. 63	13. 83	11. 91	10.08	19. 2	10.09	12.84	10. 75	11. 32	7. 59	7. 49	8. 35
33	65. 3	70. 91	102. 57	87. 9	160. 87	88	110.04	93. 3	97. 89	68. 04	67. 18	71.61
34	72. 52	78. 13	109. 79	95. 12	168. 09	95. 22	117. 26	100. 52	105. 11	75. 25	74. 4	78. 83
35	32. 41	34. 83	48. 5	42. 17	73. 68	31. 01	39. 35	32. 12	34. 1	21. 21	20.84	23.83
36	114.8	119. 93	148. 89	135. 47	202. 22	135. 56	155. 72	140. 41	144. 61	117.3	113. 96	110. 47
37	76. 12	82. 43	118.04	101. 54	183. 63	101.65	126. 44	107.61	112. 78	79. 19	78. 23	86. 02
38	25. 02	27. 25	39. 84	34	59. 22	21. 67	30. 43	23. 77	25. 6	13. 73	13. 39	16. 14
39	39. 29	45. 34	79. 52	63. 68	142. 46	63. 79	87. 58	69. 51	74. 47	42. 24	41.31	48. 79
40	28. 73	33. 1	57. 74	46. 32	103. 13	46. 4	63. 55	50. 52	54. 1	20.77	17.81	23. 2

		ο Π	0 11	4 11	- 11	a H	5 H	0 11	0 11	10 11		10 11
区域	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12 月
41	74. 15	77.82	98. 5	88. 92	136.6	88. 98	103. 38	88. 85	83. 07	63. 56	63	67. 52
42	253. 3	267. 76	349. 24	311.48	499.31	311. 75	368. 47	325. 38	337. 2	260. 36	258. 15	275. 97
43	24. 25	25. 55	29.82	17. 13	34. 13	17. 16	22. 29	18. 39	19. 46	12. 51	12. 31	13.92
44	199.6	208. 58	259. 13	235. 7	352. 22	235. 87	271.05	244. 32	251.66	203. 99	202.62	213.68
45	25. 89	27. 93	39. 44	34. 11	51.86	21.77	29. 78	23. 7	25. 37	14. 51	14. 2	16. 72
46	71. 47	74. 37	90. 74	83. 15	120.88	83. 21	83. 47	73. 57	75. 94	60. 51	60.06	63.64
47	15. 27	4. 3	6. 28	4. 94	11. 58	4. 95	6. 96	5. 43	5. 85	3. 14	3. 06	3. 69
48	15. 21	7. 69	7. 07	5. 4	13. 69	5. 41	7. 92	6. 01	6. 54	3. 14	3. 05	3.83
49	52. 76	54. 87	66. 74	61. 24	81. 48	48. 9	57. 16	50.88	52. 61	41. 41	41.09	43.69
50	145. 7	148. 98	167. 51	158. 92	201.63	158. 98	170. 7	149. 71	152. 39	134. 92	134. 42	138. 47
51	32. 07	34. 23	46. 46	40.8	63. 53	28. 46	36. 97	30. 5	32. 28	20. 75	20. 41	23. 09
52	33. 46	36. 01	50. 4	43. 74	76. 91	35. 9	41. 42	33.81	35. 9	22. 33	21.94	25. 09
53	40. 95	43. 46	57. 67	51. 09	83. 84	42. 42	48.65	41. 13	43. 2	29.8	29. 41	32. 52
54	31. 94	33. 09	32. 3	24. 19	39. 11	24. 21	28. 72	25. 29	26. 23	20. 12	19. 95	21.36
55	71. 61	75. 09	94. 7	85. 61	130.8	85. 67	99. 32	80. 38	79. 42	60. 93	60. 4	64. 69
56	144. 7	152. 02	193. 39	174. 22	269. 58	174. 35	203. 15	181. 27	187. 27	148. 26	147. 14	156. 19
57	61. 99	66. 13	89. 51	78. 68	132. 58	78. 75	95. 03	82.66	82. 53	51.63	50. 99	56. 11
58	248.6	261. 46	334. 13	300. 45	467. 97	300. 69	351. 27	312.85	323. 39	254. 86	252. 89	268. 79

表 13: 清源各月总费用 (单位: 万元)

			1			单位: 万				l	l	ı
区域	1月	2月	3 月	4月	5月	6月	7月	8月	9月	10 月	11月	12月
1	36. 72	38. 17	44. 3	40. 11	45. 79	37. 7	31. 65	16.64	16. 64	16.64	16.64	16.64
2	141. 37	152. 32	212.02	183. 01	312. 17	180. 77	216. 54	186. 94	192.65	145. 65	144. 26	153. 92
3	156. 54	167. 63	228. 13	198. 75	329. 77	196. 52	232.84	202.82	208.65	160.88	159. 47	169. 31
4	165. 11	175. 75	233. 72	205. 51	330. 71	203. 27	237. 84	209. 15	214.61	169. 23	167. 89	177. 17
5	169. 04	178. 95	232. 79	206. 49	322. 16	204. 24	235. 93	209. 43	214. 29	172.81	171.58	179. 95
6	111.63	119.69	163. 08	141.62	233. 19	139. 33	163. 75	142. 78	146. 12	114. 49	113. 55	119.64
7	55. 46	58. 7	74. 86	66. 02	94. 84	63. 64	69. 11	62. 53	61. 93	55. 97	55. 76	55. 9
8	34. 22	34. 46	29. 19	14. 13	14. 13	14. 13	14. 13	14. 13	14. 13	14. 13	14. 13	14. 13
9	87. 58	90. 76	106. 58	97. 9	125. 93	95. 52	100.75	94. 35	93. 7	88. 06	87.87	87. 93
10	56. 98	59. 44	71. 24	64. 43	83. 18	62. 03	64. 46	60. 19	58. 95	57. 11	38. 05	36. 9
11	77. 23	80. 58	97. 44	88. 28	118.69	85. 9	91.85	84. 91	84. 4	77.8	77. 57	77. 86
12	72. 37	78. 23	109. 21	93. 51	156. 48	91. 18	106. 96	92. 54	94. 09	74. 16	73. 55	76. 93
13	35. 36	35. 46	20. 9	15. 28	15. 28	15. 28	15. 28	15. 28	15. 28	15. 28	15. 28	15. 28
14	32.77	33. 66	36. 62	33. 91	30. 69	12. 69	12.69	12.69	12.69	12.69	12.69	12.69
15	84. 4	86. 35	95. 28	89.8	101.94	87. 39	87. 82	85. 07	72	64. 32	64. 32	64. 32
16	15.08	1.62	1.62	1.62	1.62	1.62	1. 62	1.62	1.62	1.62	1.62	1.62
17	58. 98	60.78	68. 91	63.8	74. 09	61. 39	61. 26	57. 28	38. 9	38. 89	38. 89	38. 89
18	177. 47	182.84	211.07	196.64	253. 26	194. 3	208. 16	195. 21	196. 35	179. 02	178. 49	181. 26
19	36.04	36.06	16. 18	15. 96	15. 96	15. 96	15. 96	15. 96	15. 96	15. 96	15. 96	15. 96
20	289. 08	297. 79	344. 85	321.7	421.74	319. 42	346. 39	323. 47	327. 35	292. 26	291. 21	298. 11
21	105.8	107.89	117.62	111.77	125. 76	109. 37	110. 36	107. 18	102.88	85. 71	85. 71	85. 71
22	150. 51	154.8	176. 94	165. 34	207. 93	162. 98	172.6	162.87	163. 13	151. 54	151. 17	152.61
23	61.74	61.92	52. 66	41.65	41.65	41.65	41.65	41.65	41.65	41.65	41.65	41.65
24	97. 17	100.68	118. 46	108.88	141.4	106. 5	113.09	105.66	105. 29	97.81	97. 56	98. 05
25	97. 99	101. 99	122. 52	111.66	150. 55	109. 3	117.8	108. 92	108.95	98. 87	98. 55	99. 64
26	50. 99	52.35	57. 94	54. 01	58. 47	51. 59	39. 7	30. 9	30. 9	30. 9	30. 9	30. 9
27	124. 36	128. 49	149. 7	138. 53	179	136. 16	145. 15	135. 9	136. 03	125. 3	124. 96	126. 2
28	63. 78	68. 11	90. 48	78. 77	121.88	76. 41	86. 19	76. 33	76. 63	64.82	64. 45	65. 94
29	49. 92	53. 07	68. 78	60. 16	87. 92	57. 78	62. 92	56. 59	55. 92	50.39	50. 2	50. 24
30	87. 39	89. 04	96. 24	91. 56	99. 73	89. 15	88. 38	74. 87	67. 31	67.31	67.31	67.31
31	192. 24	194. 35	204. 2	198. 29	212. 55	195. 89	196. 96	193. 72	190.66	172. 16	172. 15	172. 15
32	27. 33	16. 79	7. 25	7. 25	7. 25	7. 25	7. 25	7. 25	7. 25	7. 25	7. 25	7. 25
33	73. 01	75. 99	90. 78	82. 58	108. 23	80. 2	84. 71	78.86	78. 05	73. 4	73. 23	69. 12
34	80. 23	83. 21	98	89.8	115. 45	87. 42	91. 93	86. 08	85. 27	80. 62	80. 45	76. 34
35	40. 11	41.07	44. 37	41.5	40.66	21. 95	20. 03	20.03	20.03	20.03	20. 03	20.03
36	122. 5	125. 19	138. 25	130.85	152. 52	128. 46	131.77	126.83	125. 78	122.75	118. 49	102. 42
37	83. 82	87. 26	104. 57	95. 2	126. 67	92.83	99. 09	91. 91	91. 47	84. 43	84. 19	84. 58
38	32. 72	33. 55	36. 16	33. 61	26. 59	12.64	12.64	12.64	12.64	12.64	12.64	12.64
39	46. 99	50. 27	66.66	57. 72	87. 07	55. 34	60. 97	54. 27	53. 7	47. 52	47. 31	47. 5
40	36. 44	38. 63	48. 94	42.82	58. 14	40. 42	41.81	38. 33	36. 87	20. 1	16. 35	16. 35

区域	1月	2月	3 月	4月	5 月	6月	7月	8月	9月	10 月	11月	12 月
41	81.86	83.6	91. 38	86. 43	95. 93	84. 03	83. 66	76. 1	61. 77	61.77	61. 77	61. 77
42	261.03	269.65	316. 26	293. 31	392. 3	291.04	317.69	295. 01	298.82	264. 17	263. 13	269. 93
43	31. 95	32. 19	26. 93	11.87	11.87	11.87	11.87	11.87	11.87	11.87	11.87	11.87
44	207. 33	212.46	239. 3	225. 52	278.96	223. 17	236. 08	223.85	224. 79	208.77	208. 27	210. 74
45	33.6	34. 31	36. 23	33. 99	19. 37	13. 52	13. 52	13. 52	13. 52	13. 52	13. 52	13. 52
46	79. 17	80. 43	85. 46	81. 78	84. 92	79. 37	61. 13	59. 09	59. 09	59. 09	59. 09	59. 09
47	22. 97	4. 35	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89
48	22. 91	9. 68	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2. 83
49	60. 47	61. 22	63. 37	61. 03	48. 94	40. 39	40. 39	40. 39	40. 39	40. 39	40. 39	40. 39
50	153. 4	154. 91	161.31	157	163. 31	154. 59	151.58	133. 32	133. 32	133. 32	133. 32	133. 32
51	39. 77	40. 56	42. 94	40. 5	30. 94	19. 69	19. 69	19.69	19. 69	19.69	19. 69	19. 69
52	41. 17	42.2	45. 96	42. 88	43. 1	28. 41	21. 09	21.09	21.09	21.09	21. 09	21. 09
53	48. 65	49. 67	53. 31	50. 28	50. 24	34. 54	28. 57	28. 57	28. 57	28. 57	28. 57	28. 57
54	39. 65	39. 79	27. 88	19. 56	19. 56	19. 56	19. 56	19. 56	19. 56	19. 56	19. 56	19. 56
55	79. 32	80. 94	88. 03	83. 41	91. 31	81	80. 15	65. 45	59. 24	59. 24	59. 24	59. 24
56	152. 39	156. 48	177. 47	166. 4	206. 34	164. 03	172.86	163. 73	163.82	153. 32	152. 98	154. 17
57	69. 69	71.74	81. 24	75. 5	88. 96	73. 1	73. 93	70.87	64. 06	49.61	49. 61	49. 61
58	256. 29	263. 92	304.89	284. 56	370. 57	282. 26	305	285. 3	288. 3	258. 94	258. 06	263. 63

表 14: 截排、清源措施各月总费用之差 (单位:万元)

					Г	一	位:万		Г		1	1	1
	区域	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
3 -7.7 -0.5 42.25 23.78 130.76 26.36 61.89 37.32 46.47 -3.13 -4.52 8.23 4 -7.7 -0.75 40.57 22.76 126.44 25.33 59.87 36.05 45 -3.25 -4.67 7.83 5 -7.7 -1.17 37.81 21.09 119.38 23.65 56.56 33.98 42.59 -3.45 -4.74 7.18 6 -7.7 -2.22 30.85 16.87 101.52 91.41 48.2 28.75 36.5 -5.09 5.64 22.96 5.28 10.42 6.52 7.59 0.64 0.44 2.05 9 -7.7 -4.98 12.48 5.73 54.41 8.22 61.61 14.89 10.44 6.52 7.59 0.64 0.42 1.2 10 -7.7 -6.38 4.11 47.54 6.59 2.94 12.94 18.09 5.51 1.14 7.5	1	-7. 7	-5. 95	6. 02	1.81	37. 85	4. 29	19. 77	16	18. 63	1. 56	1. 07	5. 03
44 -7.7 -0.75 40.57 22.76 126.44 25.33 59.87 36.05 45 -3.25 -4.64 7.83 5 -7.7 -1.17 37.81 21.09 119.38 23.65 56.56 33.98 42.59 -3.45 -4.74 7.18 6 -7.7 -2.495 12.21 5.87 155 8.36 26.43 15.13 20.64 -5.29 -6.21 12.58 8 -7.7 -6.64 2.89 5.26 22.26 5.29 10.24 6.52 7.59 0.64 0.44 2.05 9 -7.7 -4.88 12.48 5.73 54.41 8.22 26.16 14.95 20.44 -5.31 6.602 1.25 10 -7.7 -4.88 13.17 6.15 56.18 8.64 26.89 15.47 21.04 -5.51 1.14 7.5 11 -7.7 -5.42 3.94 1.846 4.39 8.64 5.41	2	-7. 7	-0. 58	41.71	23. 46	129. 39	26.03	61. 25	36. 92	46	-3. 17	-4.54	8. 1
5 -7.7 1.17 37.81 21.09 119.38 23.65 56.56 33.98 42.59 -3.45 -4.74 7.18 6 -7.7 -2.22 30.85 16.87 101.52 19.41 48.2 28.75 36.5 -3.96 -5.09 5.54 7 -7.7 -4.98 12.71 5.87 55 8.36 26.43 15.13 20.64 -5.29 -6 1.25 8 -7.7 -6.48 2.99 5.26 22.24 10.42 6.52 7.59 0.64 0.44 2.05 9 -7.7 -4.98 11.7 4.754 6.59 22.94 12.94 18.09 -5.51 1.14 7.5 10 -7.7 -5.88 13.17 6.15 56.18 8.64 26.99 15.47 7.51 7.5 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 <t< td=""><td>3</td><td>-7. 7</td><td>-0.5</td><td>42. 25</td><td>23. 78</td><td>130. 76</td><td>26. 36</td><td>61.89</td><td>37. 32</td><td>46. 47</td><td>-3. 13</td><td>-4. 52</td><td>8. 23</td></t<>	3	-7. 7	-0.5	42. 25	23. 78	130. 76	26. 36	61.89	37. 32	46. 47	-3. 13	-4 . 52	8. 23
66 -7.7 -2.22 30.85 16.87 101.52 19.41 48.2 28.75 36.5 -3.96 -5.09 -5.04 1.25 8 -7.7 -4.95 12.71 5.87 55 8.36 26.43 15.13 20.64 -5.29 -6 1.25 8 -7.7 -6.64 2.89 5.26 22.26 5.29 10.42 6.52 7.59 0.64 0.44 2.05 9 -7.7 -4.88 12.48 5.73 54.41 8.22 26.16 14.95 20.44 -5.31 1.602 1.2 10 -7.7 -4.88 13.17 6.15 56.18 8.64 26.98 15.47 21.04 -5.56 -5.98 1.36 11 -7.7 -6.72 3.91 0.53 32.7 9.42 18.56 1.41 1.53 1.13 0.78 3.65 15 -7.7 -5.67 7.88 2.95 42.63 5.42	4	-7.7	-0. 75	40. 57	22. 76	126. 44	25.33	59.87	36. 05	45	-3. 25	-4.6	7.83
7 -7.7 -4.95 12.71 5.87 55 8.36 26.43 15.13 20.64 -5.29 -6 1.25 8 -7.7 -6.64 2.89 5.26 22.26 5.29 10.42 6.52 7.59 0.64 0.44 2.05 9 -7.7 -4.88 12.48 5.73 54.41 8.22 26.16 14.95 20.44 -5.31 -6.02 1.2 10 -7.7 -5.38 9.8 4.11 47.54 6.59 22.94 12.91 18.09 -5.51 1.14 7.5 11 -7.7 -4.88 13.17 6.15 56.18 8.64 26.98 15.47 21.04 -5.26 -5.98 1.36 12 -7.7 -6.72 5.04 4.37 18.46 4.39 8.64 26.98 15.47 20.16 1.94 1.33 6.25 14 -7.7 -6.77 7.88 2.95 42.63 5.42 20.	5	-7.7	-1. 17	37.81	21.09	119. 38	23.65	56. 56	33. 98	42. 59	-3. 45	-4.74	7. 18
88 -7.7 -6.64 2.89 5.26 22.26 5.29 10.42 6.52 7.59 0.64 0.44 2.05 99 -7.7 -4.98 12.48 5.73 54.41 8.22 26.16 14.95 20.44 -5.31 -6.02 1.2 10 -7.7 -5.38 9.8 4.11 47.54 6.59 22.94 12.94 18.09 -5.51 1.14 7.5 11 -7.7 -4.88 13.17 6.15 56.18 8.64 26.98 15.47 21.04 -5.26 -5.98 1.36 12 -7.7 -3.46 22.58 11.85 80.32 14.38 38.28 22.54 29.77 -4.57 -5.51 3.59 13 -7.7 -6.72 3.04 4.37 18.46 4.39 8.64 5.41 6.3 0.53 0.36 1.7 14 -7.7 -5.67 7.88 2.95 43.68 1.29 1.61 <	6	-7. 7	-2.22	30.85	16.87	101.52	19.41	48. 2	28. 75	36. 5	-3. 96	-5.09	5. 54
	7	-7. 7	-4. 95	12.71	5. 87	55	8. 36	26. 43	15. 13	20.64	-5. 29	-6	1. 25
10	8	-7. 7	-6. 64	2.89	5. 26	22. 26	5. 29	10. 42	6. 52	7. 59	0. 64	0. 44	2.05
111 -7.7 -4.88 13.17 6.15 56.18 8.64 26.98 15.47 21.04 -5.26 -5.98 1.36 12 -7.7 -3.46 22.58 11.85 80.32 14.38 38.28 22.54 29.27 -4.57 -5.51 3.59 13 -7.7 -6.72 5.04 4.37 18.46 4.39 8.64 5.41 6.3 0.53 0.36 1.7 14 -7.7 -6.67 7.88 2.95 42.63 5.42 20.64 11.5 20.16 1.94 1.33 6.25 16 -5.16 0.32 2.12 1.28 5.43 1.29 2.54 1.59 1.85 0.16 0.11 0.5 17 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77 </td <td>9</td> <td>-7.7</td> <td>-4. 98</td> <td>12. 48</td> <td>5. 73</td> <td>54. 41</td> <td>8. 22</td> <td>26. 16</td> <td>14. 95</td> <td>20. 44</td> <td>-5. 31</td> <td>-6.02</td> <td>1.2</td>	9	-7.7	-4. 98	12. 48	5. 73	54. 41	8. 22	26. 16	14. 95	20. 44	-5. 31	-6.02	1.2
12 -7.7 -3.46 22.58 11.85 80.32 14.38 38.28 22.54 29.27 -4.57 -5.51 3.59 13 -7.7 -6.72 5.04 4.37 18.46 4.39 8.64 5.41 6.3 0.53 0.36 1.7 14 -7.7 -6.67 7.88 2.95 42.63 5.42 20.64 11.5 20.16 1.94 1.33 6.25 16 -5.16 0.32 2.12 1.28 5.43 1.29 2.54 1.59 1.85 0.16 0.11 0.5 17 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77	10	-7.7	-5. 38	9.8	4. 11	47. 54	6. 59	22. 94	12.94	18. 09	-5. 51	1. 14	7.5
13 -7.7 -6.72 5.04 4.37 18.46 4.39 8.64 5.41 6.3 0.53 0.36 1.7 14 -7.7 -6.27 3.91 0.53 32.7 9.42 18.56 11.61 13.52 1.13 0.78 3.65 15 -7.7 -5.67 7.88 2.95 42.63 5.42 20.64 11.5 20.16 1.94 1.33 6.25 16 -5.16 0.32 2.12 1.28 5.43 1.29 2.54 1.59 1.85 0.16 0.11 0.5 18 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.1 19 -7.7 -6.77 6.77 3.85 16.29 3.87 7.63 4.77 <td< td=""><td>11</td><td>-7. 7</td><td>-4.88</td><td>13. 17</td><td>6. 15</td><td>56. 18</td><td>8.64</td><td>26. 98</td><td>15. 47</td><td>21.04</td><td>-5. 26</td><td>-5. 98</td><td>1. 36</td></td<>	11	-7. 7	-4.88	13. 17	6. 15	56. 18	8.64	26. 98	15. 47	21.04	-5. 26	-5. 98	1. 36
14 -7.7 -6.27 3.91 0.53 32.7 9.42 18.56 11.61 13.52 1.13 0.78 3.65 15 -7.7 -5.67 7.88 2.95 42.63 5.42 20.64 11.5 20.16 1.94 1.33 6.25 16 -5.16 0.32 2.12 1.28 5.43 1.29 2.54 1.59 1.85 0.16 0.11 0.5 17 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -5.77 6.27 3.85 16.29 3.87 7.63 4.77 5.55 0.47 0.32 1.5 20 -7.7 -1.85 33.29 18.35 107.8 20.9 51.14 30.59 8.64 -3.78 -4.97 6.12 21 -7.7 -4.55 16.69 8.28 65.21 10.79 31.21 18.12 <td>12</td> <td>-7. 7</td> <td>-3. 46</td> <td>22. 58</td> <td>11.85</td> <td>80. 32</td> <td>14.38</td> <td>38. 28</td> <td>22. 54</td> <td>29. 27</td> <td>-4. 57</td> <td>-5. 51</td> <td>3. 59</td>	12	-7. 7	-3. 46	22. 58	11.85	80. 32	14.38	38. 28	22. 54	29. 27	-4. 57	-5. 51	3. 59
15 -7.7 -5.67 7.88 2.95 42.63 5.42 20.64 11.5 20.16 1.94 1.33 6.25 16 -5.16 0.32 2.12 1.28 5.43 1.29 2.54 1.59 1.85 0.16 0.11 0.5 17 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 19 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77 5.55 0.47 0.32 1.5 20 -7.7 -1.85 33.29 18.35 107.8 20.9 51.14 30.59 38.64 -3.78 -4.97 6.12 21 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12	13	-7.7	-6. 72	5. 04	4. 37	18. 46	4. 39	8.64	5. 41	6. 3	0. 53	0.36	1.7
16 -5.16 0.32 2.12 1.28 5.43 1.29 2.54 1.59 1.85 0.16 0.11 0.5 17 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 19 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77 5.55 0.47 0.32 1.5 20 -7.7 -1.85 33.29 18.35 107.8 20.9 51.14 30.59 38.64 -3.78 -4.97 6.12 21 -7.7 -6.59 8.42 3.27 44.01 5.75 51.29 11.91 17.79 2.05 1.41 6.22 22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12	14	-7. 7	-6. 27	3. 91	0. 53	32. 7	9. 42	18. 56	11.61	13. 52	1. 13	0. 78	3. 65
17 -7.7 -5.75 7.35 2.62 41.26 5.1 20 11.65 21.84 1.83 1.26 5.9 18 -7.7 -3.74 20.74 10.74 75.61 13.26 36.08 21.16 27.66 -4.71 -5.6 3.15 19 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77 5.55 0.47 0.32 1.5 20 -7.7 -6.59 8.42 3.27 44.01 5.75 21.29 11.91 17.79 2.05 1.41 6.6 22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12 24.12 -5 -5.8 2.19 23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.81 13.78 6.52 57.75 9.01 27.72 15.93 <td>15</td> <td>-7. 7</td> <td>-5. 67</td> <td>7. 88</td> <td>2. 95</td> <td>42.63</td> <td>5. 42</td> <td>20.64</td> <td>11.5</td> <td>20. 16</td> <td>1.94</td> <td>1. 33</td> <td>6. 25</td>	15	-7. 7	-5. 67	7. 88	2. 95	42.63	5. 42	20.64	11.5	20. 16	1.94	1. 33	6. 25
18 -7.7 -3.74 20.74 10.74 75.61 13.26 36.08 21.16 27.66 -4.71 -5.6 3.15 19 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77 5.55 0.47 0.32 1.5 20 -7.7 -1.85 33.29 18.35 107.8 20.9 51.14 30.59 38.64 -3.78 -4.97 6.12 21 -7.7 -5.59 8.42 3.27 44.01 5.75 21.29 11.91 17.79 2.05 1.41 6.6 22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12 24.12 -5 -5.82 2.19 23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.78 13.78 6.52 57.75 9.01 27.72 <td< td=""><td>16</td><td>-5. 16</td><td>0.32</td><td>2. 12</td><td>1. 28</td><td>5. 43</td><td>1. 29</td><td>2. 54</td><td>1. 59</td><td>1.85</td><td>0. 16</td><td>0.11</td><td>0.5</td></td<>	16	-5. 16	0.32	2. 12	1. 28	5. 43	1. 29	2. 54	1. 59	1.85	0. 16	0.11	0.5
19 -7.7 -6.77 6.27 3.85 16.29 3.87 7.63 4.77 5.55 0.47 0.32 1.5 20 -7.7 -1.85 33.29 18.35 107.8 20.9 51.14 30.59 38.64 -3.78 -4.97 6.12 21 -7.7 -5.59 8.42 3.27 44.01 5.75 21.29 11.91 17.79 2.05 1.41 6.6 22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12 24.12 -5 -5.8 2.19 23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.78 13.78 6.52 57.75 9.01 27.72 15.93 21.57 -5.22 -5.95 1.51 25 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47	17	-7. 7	-5. 75	7. 35	2. 62	41. 26	5. 1	20	11.65	21.84	1.83	1. 26	5. 9
20 -7.7 -1.85 33.29 18.35 107.8 20.9 51.14 30.59 38.64 -3.78 -4.97 6.12 21 -7.7 -5.59 8.42 3.27 44.01 5.75 21.29 11.91 17.79 2.05 1.41 6.6 22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12 24.12 -5 -5.82 2.19 23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.78 13.78 6.52 57.75 9.01 27.72 15.93 21.57 -5.22 -5.95 1.51 25 -7.7 -4.51 15.62 7.63 62.46 10.13 29.92 17.31 23.18 -5.08 -5.86 1.94 26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 <	18	-7. 7	-3. 74	20.74	10.74	75. 61	13. 26	36. 08	21. 16	27. 66	-4.71	-5.6	3. 15
21 -7.7 -5.59 8.42 3.27 44.01 5.75 21.29 11.91 17.79 2.05 1.41 6.6 22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12 24.12 -5 -5.8 2.19 23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.81 13.78 6.52 57.75 9.01 27.72 15.93 21.57 -5.22 -5.95 1.51 25 -7.7 -4.51 15.62 7.63 62.46 10.13 29.92 17.31 23.18 -5.08 -5.86 1.94 26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 15.27 17.78 1.49 1.02 4.8 27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 1	19	-7.7	-6. 77	6. 27	3. 85	16. 29	3. 87	7. 63	4. 77	5. 55	0. 47	0.32	1.5
22 -7.7 -4.35 16.69 8.28 65.21 10.79 31.21 18.12 24.12 -5 -5.8 2.19 23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.78 13.78 6.52 57.75 9.01 27.72 15.93 21.57 -5.22 -5.95 1.51 25 -7.7 -4.51 15.62 7.63 62.46 10.13 29.92 17.31 23.18 -5.08 -5.86 1.94 26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 15.27 17.78 1.49 1.02 4.8 27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 17.66 23.58 -5.05 -5.83 2.05 28 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 <t< td=""><td>20</td><td>-7.7</td><td>-1.85</td><td>33. 29</td><td>18.35</td><td>107.8</td><td>20.9</td><td>51. 14</td><td>30. 59</td><td>38.64</td><td>-3. 78</td><td>-4.97</td><td>6. 12</td></t<>	20	-7.7	-1.85	33. 29	18.35	107.8	20.9	51. 14	30. 59	38.64	-3. 78	-4.97	6. 12
23 -7.7 -6.67 3.81 4.88 20.63 4.9 9.66 6.04 7.04 0.59 0.4 1.9 24 -7.7 -4.78 13.78 6.52 57.75 9.01 27.72 15.93 21.57 -5.22 -5.95 1.51 25 -7.7 -4.51 15.62 7.63 62.46 10.13 29.92 17.31 23.18 -5.08 -5.86 1.94 26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 15.27 17.78 1.49 1.02 4.8 27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 17.66 23.58 -5.05 -5.83 2.05 28 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 <	21	-7. 7	-5. 59	8. 42	3. 27	44. 01	5. 75	21. 29	11. 91	17. 79	2.05	1. 41	6.6
24 -7.7 -4.78 13.78 6.52 57.75 9.01 27.72 15.93 21.57 -5.22 -5.95 1.51 25 -7.7 -4.51 15.62 7.63 62.46 10.13 29.92 17.31 23.18 -5.08 -5.86 1.94 26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 15.27 17.78 1.49 1.02 4.8 27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 17.66 23.58 -5.05 -5.83 2.05 28 -7.7 -4.32 16.84 8.37 65.6 10.88 31.39 18.23 24.25 -4.99 -5.8 2.23 29 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.88 8.5 3.32 44.2 5.8 21.38	22	-7.7	-4.35	16.69	8. 28	65. 21	10.79	31. 21	18. 12	24. 12	-5	-5.8	2. 19
25 -7.7 -4.51 15.62 7.63 62.46 10.13 29.92 17.31 23.18 -5.08 -5.86 1.94 26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 15.27 17.78 1.49 1.02 4.8 27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 17.66 23.58 -5.05 -5.83 2.05 28 -7.7 -4.32 16.84 8.37 65.6 10.88 31.39 18.23 24.25 -4.99 -5.8 2.23 29 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 14.56 20.37 1.71 1.17 5.5 31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38	23	-7.7	-6. 67	3.81	4. 88	20.63	4.9	9. 66	6.04	7.04	0. 59	0.4	1.9
26 -7.7 -6.01 5.67 1.6 36.94 4.07 21 15.27 17.78 1.49 1.02 4.8 27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 17.66 23.58 -5.05 -5.83 2.05 28 -7.7 -4.32 16.84 8.37 65.6 10.88 31.39 18.23 24.25 -4.99 -5.8 2.23 29 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 14.56 20.37 1.71 1.17 5.5 31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38 11.96 17.45 2.06 1.42 6.65 32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3	24	-7.7	-4. 78	13. 78	6. 52	57. 75	9. 01	27.72	15. 93	21.57	-5. 22	-5. 95	1.51
27 -7.7 -4.44 16.07 7.91 63.64 10.41 30.47 17.66 23.58 -5.05 -5.83 2.05 28 -7.7 -4.32 16.84 8.37 65.6 10.88 31.39 18.23 24.25 -4.99 -5.8 2.23 29 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 14.56 20.37 1.71 1.17 5.5 31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38 11.96 17.45 2.06 1.42 6.65 32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3.5 4.07 0.34 0.23 1.1 33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33	25	-7. 7	-4.51	15.62	7. 63	62. 46	10. 13	29. 92	17. 31	23. 18	-5. 08	-5.86	1. 94
28 -7.7 -4.32 16.84 8.37 65.6 10.88 31.39 18.23 24.25 -4.99 -5.8 2.23 29 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 14.56 20.37 1.71 1.17 5.5 31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38 11.96 17.45 2.06 1.42 6.65 32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3.5 4.07 0.34 0.23 1.1 33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14	26	-7. 7	-6. 01	5. 67	1.6	36. 94	4. 07	21	15. 27	17. 78	1. 49	1.02	4.8
29 -7.7 -4.99 12.4 5.68 54.21 8.17 26.06 14.9 20.37 -5.32 -6.02 1.18 30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 14.56 20.37 1.71 1.17 5.5 31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38 11.96 17.45 2.06 1.42 6.65 32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3.5 4.07 0.34 0.23 1.1 33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12	27	-7.7	-4.44	16.07	7. 91	63. 64	10.41	30. 47	17.66	23. 58	-5. 05	-5.83	2.05
30 -7.7 -5.84 6.74 2.25 39.69 4.72 19.26 14.56 20.37 1.71 1.17 5.5 31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38 11.96 17.45 2.06 1.42 6.65 32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3.5 4.07 0.34 0.23 1.1 33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12.09 14.07 1.18 0.81 3.8 36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57	28	-7.7	-4.32	16.84	8. 37	65. 6	10.88	31. 39	18. 23	24. 25	-4. 99	-5.8	2. 23
31 -7.7 -5.58 8.5 3.32 44.2 5.8 21.38 11.96 17.45 2.06 1.42 6.65 32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3.5 4.07 0.34 0.23 1.1 33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12.09 14.07 1.18 0.81 3.8 36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57 18.83 -5.45 -4.53 8.05 37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31	29	-7.7	-4. 99	12. 4	5. 68	54. 21	8. 17	26. 06	14. 9	20. 37	-5. 32	-6. 02	1. 18
32 -7.7 -2.96 4.66 2.82 11.95 2.84 5.59 3.5 4.07 0.34 0.23 1.1 33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12.09 14.07 1.18 0.81 3.8 36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57 18.83 -5.45 -4.53 8.05 37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.	30	-7.7	-5. 84	6. 74	2. 25	39. 69	4. 72	19. 26	14. 56	20. 37	1.71	1. 17	5. 5
33 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12.09 14.07 1.18 0.81 3.8 36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57 18.83 -5.45 -4.53 8.05 37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.92 12.86 5.96 55.39 8.45 26.61 15.24 20.77 -5.28 -6 1.29	31	-7. 7	-5. 58	8. 5	3. 32	44. 2	5.8	21. 38	11. 96	17. 45	2. 06	1. 42	6. 65
34 -7.7 -5.08 11.79 5.31 52.64 7.8 25.33 14.44 19.83 -5.36 -6.05 2.49 35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12.09 14.07 1.18 0.81 3.8 36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57 18.83 -5.45 -4.53 8.05 37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.92 12.86 5.96 55.39 8.45 26.61 15.24 20.77 -5.28 -6 1.29	32	-7. 7	-2.96	4. 66	2.82	11. 95	2.84	5. 59	3. 5	4. 07	0.34	0. 23	1.1
35 -7.7 -6.24 4.13 0.67 33.02 9.06 19.32 12.09 14.07 1.18 0.81 3.8 36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57 18.83 -5.45 -4.53 8.05 37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.92 12.86 5.96 55.39 8.45 26.61 15.24 20.77 -5.28 -6 1.29	33	-7. 7	-5. 08	11. 79	5. 31	52. 64	7.8	25. 33	14. 44	19. 83	-5. 36	-6. 05	2. 49
36 -7.7 -5.26 10.64 4.62 49.7 7.1 23.95 13.57 18.83 -5.45 -4.53 8.05 37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.92 12.86 5.96 55.39 8.45 26.61 15.24 20.77 -5.28 -6 1.29	34	-7. 7	-5. 08	11. 79	5. 31	52.64	7.8	25. 33	14. 44	19.83	-5. 36	-6.05	2. 49
37 -7.7 -4.83 13.47 6.33 56.96 8.83 27.35 15.7 21.31 -5.24 -5.97 1.43 38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.92 12.86 5.96 55.39 8.45 26.61 15.24 20.77 -5.28 -6 1.29	35	-7. 7	-6. 24	4. 13	0. 67	33. 02	9. 06	19. 32	12. 09	14. 07	1. 18	0. 81	3.8
38 -7.7 -6.31 3.68 0.39 32.63 9.03 17.79 11.13 12.96 1.09 0.75 3.5 39 -7.7 -4.92 12.86 5.96 55.39 8.45 26.61 15.24 20.77 -5.28 -6 1.29	36	-7. 7	-5. 26	10. 64	4. 62	49. 7	7. 1	23. 95	13. 57	18. 83	-5. 45	-4. 53	8. 05
39	37	-7. 7	-4.83	13. 47	6. 33	56. 96	8. 83	27. 35	15. 7	21. 31	-5. 24	-5. 97	1. 43
	38	-7. 7	-6. 31	3. 68	0. 39	32. 63	9. 03	17. 79	11. 13	12. 96	1. 09	0. 75	3. 5
40 -7.7 -5.53 8.8 3.5 44.99 5.98 21.75 12.19 17.22 0.67 1.46 6.85	39	-7. 7	-4. 92	12. 86	5. 96	55. 39	8. 45	26. 61	15. 24	20. 77	-5. 28	-6	1. 29
	40	-7. 7	-5. 53	8.8	3. 5	44. 99	5. 98	21. 75	12. 19	17. 22	0. 67	1. 46	6. 85

区域	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12月
41	-7.7	-5. 79	7. 12	2. 48	40. 67	4. 96	19. 72	12.74	21. 29	1. 79	1. 23	5. 75
42	-7.7	-1.89	32. 99	18. 17	107.01	20.72	50. 78	30. 36	38. 37	-3.81	-4. 98	6.04
43	-7.7	-6. 64	2.89	5. 26	22. 26	5. 29	10. 42	6. 52	7. 59	0.64	0.44	2.05
44	-7.7	-3.87	19.82	10. 18	73. 25	12.7	34. 97	20. 47	26.86	-4.77	-5. 65	2. 93
45	-7.7	-6. 37	3. 22	0. 11	32.5	8. 25	16. 27	10. 18	11.85	0. 99	0.68	3. 2
46	-7.7	-6.06	5. 28	1. 37	35. 96	3.84	22. 34	14. 47	16.85	1.41	0. 97	4. 55
47	-7.7	-0.05	3. 39	2.05	8. 69	2.06	4. 07	2.54	2.96	0. 25	0. 17	0.8
48	-7.7	-1.99	4. 23	2. 57	10.86	2. 58	5. 08	3. 18	3. 7	0.31	0. 21	1
49	-7.7	-6. 35	3. 37	0. 21	32. 54	8. 51	16. 78	10.5	12. 22	1.03	0.7	3. 3
50	-7.7	-5. 93	6. 2	1. 92	38. 32	4.4	19. 12	16. 38	19.07	1.6	1. 1	5. 15
51	-7.7	-6. 33	3. 52	0.3	32. 59	8. 77	17. 28	10.82	12. 59	1.06	0.72	3. 4
52	-7.7	-6. 19	4. 44	0.86	33.8	7. 49	20. 33	12.72	14.81	1.24	0.85	4
53	-7.7	-6.2	4. 36	0.81	33. 61	7. 88	20.08	12. 57	14.63	1. 23	0.84	3. 95
54	-7.7	-6. 7	4. 43	4. 62	19. 55	4.64	9. 15	5. 73	6. 67	0. 56	0.38	1.8
55	-7.7	-5. 86	6. 66	2. 2	39. 49	4. 68	19. 17	14. 93	20. 18	1.69	1. 16	5. 45
56	-7.7	-4. 46	15. 92	7.82	63. 24	10. 32	30. 29	17. 54	23. 45	-5. 06	-5.84	2.01
57	-7.7	-5. 61	8. 27	3. 18	43.62	5. 66	21.1	11. 79	18. 46	2. 02	1. 39	6. 5
58	-7.7	-2. 46	29. 24	15. 89	97. 39	18. 43	46. 28	27. 54	35. 09	-4. 08	-5. 17	5. 16