Foundations of Computation

Lecture 6: Regular expressions

Thomas Powell

19 October 2023

Regex and search patterns

You have probably used regular expressions before. They allow us to search for and identify *patterns* in strings e.g. email addresses:

$$[a-zA-z0-9]^*$$
@ $[a-zA-z0-9]^*.(com \cup co.uk)$

Regular expressions have a vast range of applications, including:

- Search and replace in a text editor.
- Validating user input in an application.
- Extracting information from a webpage e.g. topics, links, email addresses (can be done on a very large scale).
- Data processing and analysis (might want to find instances of a certain thing, eliminate noise).
- Searching for file types on an operating system.
- Syntax highlighting in an IDE.
- ► Lexical analysis as the first step of a compiler: Transforming a sequence of characters into a sequence of tokens.

Regular expressions describe patters

▶ Pattern: "Some zeros, then a one, then either a zero or a one, then finally a zero"

Regex: $0*1(0 \cup 1)0$

▶ Pattern: "either the empty string, or an even number of ones followed by a single zero"

Regex: $e \cup (11)^*0$

▶ Regex: $(010)^* \cup (00 \cup 11)^*$

Pattern: ?

Regular expressions

Definition

The set $REG(\Sigma)$ of regular expression over an alphabet Σ is defined by the following inductive rules:

- 1. $a \in REG(\Sigma)$ for any $a \in \Sigma$
- 2. $e \in REG(\Sigma)$
- 3. $\emptyset \in REG(\Sigma)$
- **4**. $(\alpha \cup \beta) \in REG(\Sigma)$ for any $\alpha, \beta \in REG(\Sigma)$
- 5. $(\alpha\beta) \in REG(\Sigma)$ for any $\alpha, \beta \in REG(\Sigma)$
- **6**. $(\alpha^*) \in REG(\Sigma)$ for any $\alpha \in REG(\Sigma)$

Note. We typically remove brackets, using the convention that * binds closer than concatenation, which in turn binds closer than union. So

$$ab^* \cup ba^* = ((a(b^*)) \cup (b(a^*)))$$

The language associated with a regular expressions

Definition

Any regular expression $\alpha \in REG(\Sigma)$ represents a language $L(\alpha) \subseteq \Sigma^*$ using the regular operations as follows:

- 1. $L(a) = \{a\}$
- 2. $L(e) = \{e\}$
- 3. $L(\emptyset) = \emptyset$ (empty language)
- 4. $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$ (union)
- 5. $L(\alpha\beta) = L(\alpha)L(\beta)$ (concatenation)
- 6. $L(\alpha^*) = L(\alpha)^*$ (Kleene star)

Examples

- ► $L(ab^* \cup b^*a)$ Words over $\{a,b\}$ of the form ab^n or b^na for $n \ge 0$.
- ► L((ab(a ∪ b))*)
 Words over {a, b} made up of sequences of blocks in {aba, abb} e.g. e, aba, abbaba.
- ▶ Words over $\{a, b\}$ containing an even number of as. $L((b \cup ab^*a)^*)$

Putting everything together

We have defined regular expressions, and show that these give rise to a class of languages $L(\alpha)$ represented by regular expressions. Coincidentally, if a language is accepted by a finite automaton it is called "regular"...

Theorem

The regular languages are exactly those languages that can be represented by a regular expression.

This is the biggest result of the unit so far! It connected the abstract world of **finite automata** with the practical world of **regular expressions**.

How do we prove the theorem?

It suffices to show the following two things:

- 1. For any regular expression α the language $L(\alpha)$ is regular i.e. accepted by some DFA/NFA (easy direction).
- 2. For any regular language L accepted by some DFA/NFA we can find a regular expression α that represents L (hard direction).

Regular expressions to regular languages (easy direction)

We use induction over the structure of regular expressions:

1. $L(a) = \{a\}$ is accepted by

2. $L(e) = \{e\}$ is accepted by

3. $L(\emptyset) = \emptyset$ is accepted by

4–6. For $L(\alpha \cup \beta)$, $L(\alpha\beta)$ and $L(\alpha^*)$ we use the closure properties of the regular languages.

The importance of finite automata

Finite automata can be used to check if a word fits the pattern described by a regular expression. They are used in all of the applications we listed before:

- Search and replace in a text editor.
- Validating user input in an application.
- Extracting information from a webpage e.g. topics, links, email addresses (can be done on a very large scale).
- Data processing and analysis (might want to find instances of a certain thing, eliminate noise).
- ▶ Searching for file types on an operating system.
- Syntax highlighting in an IDE.
- Lexical analysis as the first step of a compiler: Transforming a sequence of characters into a sequence of tokens.

$Regex \mapsto NFA$ in practice. First option: Just do it directly!

Regex: $e \cup (11)^*0$

NFA:

Regex \mapsto NFA in practice. Second option: Use formal constructions (but make sure you tidy up along the way!)

Regex: $(a \cup ab)^*$

NFA:

(but if we hadn't simplified each step the result would have been a mess!)

Something extra:

One of our former MSc students – Max Wheaton – invented Regex Tetris:

https://steelwing158.itch.io/regetris

You could do something similar in your Year 3 or MSc projects...