Reference Sheet for CO141 Reasoning about Programs

Spring 2017

Stylised Proofs for Reasoning

- 1. Write out and name each given formula.
- 2. Write out and name each formula to be shown.
- 3. Plan out the proof and name intermediate results.
- 4. Justify each step of the proof.

We use the following methods to plan out a proof for P:

- 1. Contradiction i.e. show $\neg P \rightarrow \text{false}$.
- 2. If $P = Q \wedge R$ show both Q and R.
- 3. If $P = Q \vee R$ show either Q or R.
- 4. If $P = Q \to R$ assume Q and show R.
- 5. If $P = \neg Q$ show $Q \to \text{false}$.
- 6. If $P = \forall x Q(x)$ take arbitrary c and show Q(c).
- 7. If $P = \exists x Q(x)$ find some c and show Q(c).

We use the following methods to justify our proof:

- 1. If false holds then P holds.
- 2. If $Q \wedge R$ holds then Q and R both hold.
- 3. If $Q \vee R$ holds we do case analysis assuming each in turn.
- 4. If $Q \to R$ holds and Q holds then R holds.
- 5. If $\forall x Q(x)$ holds then Q(c) holds for any c.
- 6. If $\exists x Q(x)$ holds then Q(c) holds for some c.
- 7. We can apply any lemma / equivalence given or proven earlier.

1 Reasoning about Haskell Programs

1.1 Mathematical Induction

Principle of Mathematical Induction: For any $P \subseteq \mathbb{N}$:

$$P(0) \land \forall k : \mathbb{N}. [P(k) \to P(k+1)] \to \forall \mathbb{N}. P(n)$$

i.e. to prove by induction, we prove a base case and an inductive step. General Technique: For any $P \subseteq \mathbb{Z}$ and any $m : \mathbb{Z}$:

$$P(m) \land \forall k \ge m. [P(k) \rightarrow P(k+1)] \rightarrow \forall n \ge m. P(n)$$

1.2 Strong Induction

$$P(0) \land \forall k : \mathbb{N}. \left[\forall j \in \{0..k\}.P(j) \rightarrow P(k+1) \right] \rightarrow \forall n : \mathbb{N}.P(n)$$

Note: for some problems, it may be necessary to split the inductive step into cases. E.g. k = 0 or $k \neq 0$.

Mathematical induction and strong induction are *equivalent*.

1.3 Structural Induction over Haskell Data Types

We generalise the concept of predecessor and successor.

Example 1: Structural Induction Principle over Lists:

$$P\left([]\right) \land \forall \mathtt{vs} : [\mathtt{T}] \forall \mathtt{v} : \mathtt{T.} \left[P\left(\mathtt{vs}\right) \to P\left(\mathtt{v} : \mathtt{vs}\right)\right] \to \forall \mathtt{xs} : [\mathtt{T}].P\left(\mathtt{xs}\right)$$

Example 2: Structural Induction Principle over Data BExp = Tr \mid Fl \mid BNt BExp \mid BAnd BExp BExp:

$$\begin{split} P\left(\texttt{Tr}\right) \wedge P\left(\texttt{Fl}\right) \wedge \forall \texttt{b} : \texttt{BExp.}\left[P\left(\texttt{b}\right) \rightarrow P\left(\texttt{BNt b}\right)\right] \wedge \\ \forall \texttt{b1}, \texttt{b2} : \texttt{BExp.}\left[P\left(\texttt{b1}\right) \wedge P\left(\texttt{b2}\right) \rightarrow P\left(\texttt{BAnd b1 b2}\right)\right] \rightarrow \forall \texttt{b} : \texttt{BExp.}P\left(\texttt{b}\right) \end{split}$$

Proof Methods

- 1. Invent an Auxiliary Lemma.
- 2. Strengthen the original property. E.g. rewrite $\forall is : [Int].sum is = sum_tr is 0 as <math>\forall k : Int \forall is : [Int].k + sum is = sum_tr is k$.

1.4 Induction over Recursively Defined Structures

Sets, relations and functions can be defined inductively, which leads to inductive principles.

Sets Example: Consider the set of ordered lists, $OL \subseteq \mathbb{N}^*$:

- $1. [] \in OL$
- $2. \ \forall i \in \mathbb{N}.i: [] \in OL$
- 3. $\forall i, j \in \mathbb{N} \forall j s \in \mathbb{N}^*$. $[i \leq j \land j : j s \in L \rightarrow i : j : j s \in OL]$

For a property $Q \subseteq \mathbb{N}^*$, we get the inductive principle

$$\begin{split} Q\left(\left[\right]\right) \wedge \forall i \in \mathbb{N}. Q\left(i:\left[\right]\right) \wedge \\ \forall i,j \in \mathbb{N} \forall js \in \mathbb{N}^*. \left[i \leq j \wedge j: js \in OL \wedge Q\left(j:js\right) \rightarrow Q\left(i:j:js\right)\right] \\ \rightarrow \forall ns \in OL. Q\left(ns\right) \end{split}$$

Relations Example 1: Consider the strictly less than relation, $SL \subseteq \mathbb{N} \times \mathbb{N}$:

- 1. $\forall k \in \mathbb{N}.SL(0, k+1)$
- 2. $\forall m, n \in \mathbb{N}$. $[SL(m, n) \rightarrow SL(m+1, n+1)]$

For a property $Q \subseteq \mathbb{N} \times \mathbb{N}$, we get the inductive principle

$$\begin{aligned} \forall k \in \mathbb{N}.Q\left(0,k+1\right) \wedge \forall m,n \in \mathbb{N}.\left[SL\left(m,n\right) \wedge Q\left(m,n\right) \rightarrow Q\left(m+1,n+1\right)\right] \\ \rightarrow \forall m,n \in \mathbb{N}.\left[SL\left(m,n\right) \rightarrow Q\left(m,n\right)\right] \end{aligned}$$

Example 2: Consider the set of natural numbers, $S_{\mathbb{N}}$:

- 1. Zero $\in S_{\mathbb{N}}$
- 2. $\forall n. [n \in S_{\mathbb{N}} \to \text{Succ } n \in S_{\mathbb{N}}]$

and the predicate $Odd(S_{\mathbb{N}})$:

- 1. Odd (Succ Zero)
- 2. $\forall n \in S_{\mathbb{N}}$. $[Odd(n) \to Odd(\operatorname{Succ}(\operatorname{Succ}(n)))]$

Here it is much simpler to derive the inductive principle from the definition of Odd, rather than from the definition of $S_{\mathbb{N}}$:

$$Q \left(\operatorname{Succ} \operatorname{Zero} \right) \wedge \forall n \in S_{\mathbb{N}}. \left[\operatorname{Odd} \left(n \right) \wedge Q \left(n \right) \to Q \left(\operatorname{Succ} \left(\operatorname{Succ} n \right) \right) \right]$$

$$\to \forall n \in S_{\mathbb{N}}. \left[\operatorname{Odd} \left(n \right) \to Q \left(n \right) \right]$$

Functions Example: Consider the Haskell function:

We can define this inductively as follows:

- $1. \ \forall i,j \in \mathbb{Z}. \left[\mathtt{DM} \left(i,j \right) = \mathtt{DM}' \left(i,j,0,0 \right) \right]$
- $2. \ \forall i,j,cnt,acc \in \mathbb{Z}. \left[acc+j>i \rightarrow \mathtt{DM}'\left(i,j,cnt,acc\right) = \left(cnt,i-acc\right)\right]$
- $3. \ \forall i,j,cnt,acc \in \mathbb{Z}.[acc+j \leq i \land \mathtt{DM}' \ (i,j,cnt+1,acc+j) = (k1,k2) \\ \rightarrow \mathtt{DM}' \ (i,j,cnt,acc) = (k1,k2)]$

For a predicate $Q \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, we get the following inductive principle for DM':

```
\begin{split} \forall i,j,cnt,acc \in \mathbb{Z}. \left[ acc+j > i \rightarrow Q \left( i,j,cnt,acc,cnt,i-acc \right) \right] \land \\ \forall i,j,cnt,acc,k1,k2 \in \mathbb{Z}. \left[ acc+j \leq i \land \mathrm{DM'} \left( i,j,cnt+1,acc+j \right) = \left( k1,k2 \right) \land \\ Q \left( i,j,cnt+1,acc+j,k1,k2 \right) \rightarrow Q \left( i,j,cnt,acc,k1,k2 \right) \right] \\ \rightarrow \forall i,j,cnt,acc,k1,k2 : \mathbb{Z}. \left[ \mathrm{DM'} \left( i,j,cnt,acc \right) = \left( k1,k2 \right) \rightarrow Q \left( i,j,cnt,acc,k1,k2 \right) \right] \end{split}
```

2 Reasoning about Java Programs

2.1 Program Specifications

Pre-Conditions, Mid-Conditions, Post-Conditions

- 1. *Pre-condition*: Must be proven in order to call function, an assumption that code in method can make.
- 2. *Mid-condition*: Assumption made at specific point in code, must be guaranteed by preceding code and can be assumed by subsequent code.
- 3. Post-condition: Expected to hold after the code has been executed (assuming termination and that precondition held).

Example: Consider the Java code:

```
type method(type x_1, ..., type x_n) 
// PRE: P(x_1, \ldots, x_n) 
// POST: Q(x_1, \ldots, x_n) { 
   code1 
   // MID: R(x_1, \ldots, x_n) 
   code2 
   // MID: S(x_1, \ldots, x_n) 
   code3 }
```

Note: if we choose to introduce new (value) variables in our conditions, there is an implicit universal quantification over the whole specification.

Here we need to prove:

```
1. P(x_1, ..., x_n) \land \text{code1} \rightarrow R(x_1, ..., x_n)
2. R(x_1, ..., x_n) \land \text{code2} \rightarrow S(x_1, ..., x_n)
3. S(x_1, ..., x_n) \land \text{code3} \rightarrow Q(x_1, ..., x_n)
```

Program Variables

- 1. x refers to the value of x before code is executed.
- 2. x' refers to its value after code is executed, shouldn't be present in assertions.
- 3. x_0 refers to its original value, as passed into the method.

We use r to refer to the return value of a method.

Arrays

- 1. $a \sim b$ means a is a permutation of b.
- 2. $a \approx b$ means a is identical to b.
- 3. a[x..y] means the elements of a from index x up to (but not including) y.
- 4. Sorted (a) means a is sorted.
- 5. min (a) is the smallest element in a.
- 6. max(a) is the largest element in a.

2.2 Conditional Branches

We can assume the pre-condition and the if else condition. Have to show post-condition holds on borth branches of the code.

Example: Consider the Java code:

```
// PRE: true

if (x \ge y) {
	// MID: x_0 \ge y_0
	res = x;
	// MID: res = x_0 \land x_0 \ge y_0
} else {
	// MID: y_0 > x_0
	res = y;
	// MID: res = y_0 \land y_0 > x_0
}

// MID: res = max\{x_0, y_0\}
```

2.3 Recursion

Method Calls Need to show that the precondition is met before the method call, then can assume postcondition will hold afterwards. We make necessary substitutions in order to prove our assertions.

Example: Consider the java method:

```
1 int sumAux(int[] a, int i)
 2 // PRE: a \neq null \land 0 < i < a.length
 3 // POST: a \approx a_0 \land r = \sum a[i..a.length)
4 {
          if (i == a.length) {
 5
               // MID: a \approx a_0 \wedge i = a.length
               return 0:
          } else {
               // MID: a \approx a_0 \land a \neq null \land 0 \leq i < a.length
9
               int val = a[i] + sumAux(a, i+1);
10
11
               // MID: a \approx a_0 \wedge val = a[i..a.length)
12
               return val:
          }
13
14 }
```

We need to prove:

- 1. Line 6: Show mid-condition holds: $a_0 \neq \text{null} \land 0 \leq i \leq a_0.\text{length} \land i = a_0.\text{length} \land a' \approx a_0 \rightarrow a' \approx a_0 \land i = a'.\text{length}.$
- 2. Line 7: Show post-condition holds: $a \approx a_0 \wedge i = a.length \wedge r = 0 \rightarrow a \approx a_0 \wedge r = \sum a [i..a.length)$.

- 3. Line 9: Show mid-condition holds: $\mathbf{a_0} \neq \mathtt{null} \land 0 \leq \mathbf{i} \leq \mathbf{a_0}.\mathtt{length} \land \mathbf{i} \neq \mathbf{a'}.\mathtt{length} \land \mathbf{a'} \approx \mathbf{a_0} \rightarrow \mathbf{a'} \approx \mathbf{a_0} \land \mathbf{a'} \neq \mathtt{null} \land 0 \leq \mathbf{i} < \mathbf{a'}.\mathtt{length}.$
- 4. Line 10: Show pre-condition for called method holds: $a \approx a_0 \land a \neq null \land 0 \leq i < a.length \rightarrow a \neq null \land 0 \leq i + 1 \leq a.length.$
- 5. Line 11: Show mid-condition holds: $\mathbf{a} \approx \mathbf{a_0} \wedge \mathbf{a} \neq \text{null} \wedge 0 \leq \mathbf{i} < \text{a.length} \wedge \mathbf{a}' \approx \mathbf{a} \wedge \mathbf{r} = \sum \mathbf{a}' [\mathbf{i} + \mathbf{1} ... \mathbf{a}'. \mathbf{length}) \wedge \mathbf{val}' = \mathbf{a}[\mathbf{i}] + \mathbf{r} \rightarrow \mathbf{a}' \approx \mathbf{a_0} \wedge \mathbf{val}' = \sum \mathbf{a}' [\mathbf{i} ... \mathbf{a}'. \mathbf{length}).$
- 6. Line 12: Show post-condition holds: $a \approx a_0 \land val = \sum a[i..a.length) \land r = val \rightarrow a \approx a_0 \land r = \sum a[i..a.length)$.

Blue statements come from the pre-condition or previous mid-condition, green statements implicitly from code, red statements explicitly from code and purple statements from the post-condition of a called method.

2.4 Iteration

Invariant To prove a property holds throughout the loop, we need to prove that the *invariant* holds before entering the loop, and is preserved by the loop body (including at termination). The invariant and $\neg cond$ can be used to prove the following mid-condition.

Variant To prove a loop will terminate, we find an integer expression which is bounded below, and decreases in *every* loop iteration.

Example: Consider the java method:

```
1 int culSum(int[] a)
 2 // PRE P: a \neq null
    // POST Q: a.length = a_0.length \wedge r = \sum a_0 [0..a.length) <math>\wedge
                      \forall k \in [0..a.length) . [a[k] = \sum a_0 [0..k + 1)]
 4
     {
 5
           int res = 0;
 6
 7
           int i = 0;
           // INV I: a \neq null \land a.length = a_0.length \land 0 \le i \le a.length \land
 8
 9
                           res = \sum a_0 [0..i) \land \forall k \in [0..i) . [a[k] = \sum a_0 [0..k + 1)] \land
                           \forall k \in [\texttt{i..a.length}) . [\texttt{a}[k] = \texttt{a}_0[k]]
10
11
           // VAR V: a.length - i
           while (i < a.length) {
12
                  res = res + a[i];
13
                  a[i] = res; i++;
14
15
           // MID M: a.length = a_0.length \wedge res = \sum a_0 [0..a.length) \wedge
16
                             \forall k \in [0..a.length) . [a[k] = \sum a_0 [0..k + 1)]
17
18
           return res;
19
    }
```

We need to prove:

1. Invariant holds before loop is entered.

$$P\left[\mathtt{a}\mapsto\mathtt{a_0}
ight]\wedge\mathtt{res}=0 \wedge \mathtt{i}=0 \wedge \mathtt{a}pprox \mathtt{a_0}$$

 $\rightarrow I$

2. Loop body re-establishes invariant.

$$I \land \mathbf{i} < \mathtt{a.length} \land \mathtt{res'} = \mathtt{res} + \mathtt{a[i]} \land \mathtt{a'[i]} = \mathtt{res'} \land \mathtt{i'} = \mathtt{i} + 1 \land \\ \forall k \in [0..\mathtt{a.length}) \setminus \{i\} \cdot [\mathtt{a'}[k] = \mathtt{a}[k]] \\ \rightarrow I [\mathtt{a} \mapsto \mathtt{a'}, \mathtt{i} \mapsto \mathtt{i'}, \mathtt{res} \mapsto \mathtt{res'}]$$

3. Mid-condition holds straight after loop.

$$I \wedge i \geq a.length$$

 $\rightarrow M$

4. Loop terminates.

$$I \land i < a.length \land res' = res + a[i] \land a'[i] = res' \land i' = i + 1 \land$$

$$\forall k \in [0..a.length) \setminus \{i\} . [a'[k] = a[k]]$$

$$\rightarrow V \ge 0 \land V [a \mapsto a', i \mapsto i', res \mapsto res'] < V$$

5. Post-condition established.

$$M \wedge r = res$$

 $\rightarrow Q$

6. Array accesses are legal.

$$I \wedge \mathtt{i} < \mathtt{a.length}$$

 $\rightarrow 0 \le i < a.length$