PRINCIPIOS Y HERRAMIENTAS DE PROGRAMACIÓN

Departamento de Ciencias e Ingeniería de la Computación TRABAJO PRÁCTICO Nº1 - ALGORITMOS

Ejercicio 1. Dados tres números naturales A, B y C, escriba un algoritmo que determine si alguno está repetido.

Ejercicio 2. Dados cuatro números naturales A, B, C y D, escriba un algoritmo que determine si sus valores son crecientes y equidistantes.

Realice la traza del algoritmo para los valores A=15, B=30, C=45, D=30.

Ejercicio 3. Escribir un algoritmo para cada uno de los incisos que se presentan a continuación. Recordar que en un algoritmo deben especificarse los datos de entrada y los datos de salida con sus respectivos dominios y a continuación, y el conjunto de acciones que resuelven el problema.

- a) Dados dos números a y b, calcular la suma de ambos.
- b) Dado un valor x, calcular el 30% de x.
- c) Dados dos números **num1** y **num2**, si num1 es mayor a num2, devolver num1-num2; si num2 es mayor a num1, devolver num2-num1; si son iguales devolver 0.
- d) Dada una distancia **Dm** expresada en metros, convertirla a su equivalente en pies. Se conoce que 1 metro equivale a 39.37 pulgadas y que 12 pulgadas equivalen a 1 pie.

Ejercicio 4. Una persona compra un objeto que cuesta c pesos pagando con p pesos (tal que c es menor o igual a p). El "vuelto" resultante será p-c pesos. Suponiendo que se dispone de una cantidad ilimitada de billetes de 50, 25, 10, 5 y 1 pesos, escriba un algoritmo que, dados c y p, calcule la cantidad a dar de cada nominación de billete si se desea utilizar la menor cantidad de billetes posibles.

Ejercicio 5. Indicar el valor final de cada dato presente en los siguientes fragmentos de algoritmos. Hacer la traza con el evaluador de expresiones.

i.	ii.	iii.	iv.
b ← 1	c ← 4	a ← 9	b ← 5
mientras b<10	hacer	mientras a<10	mientras $(b = 0)$
b ← b*2	c ← c − 1	a ← a - 1	b ← b − 1
	mientras (c<>0)		

Ejercicio 6. Usando la estructura de control "PARA" (FOR) escriba un algoritmo que permita:

- a) A partir de N, calcular el producto de los primeros N naturales pares.
- b) Escriba un algoritmo que reciba un entero K y un entero N, y muestre por pantalla los primeros N múltiplos de K.
- c) Escriba un algoritmo que reciba un entero K (distinto de 2), y dos enteros a y b, y **cuente** cuantos enteros en el intervalo (a, b) son múltiplos de K y no de 2.
- d) Escriba un algoritmo que reciba un entero K (distinto de 2), y dos enteros a y b, y calcule el **promedio** de los enteros en el intervalo [a, b] que son múltiplos de K y no de 2.

Ejercicio 7. Escriba un algoritmo que pida al usuario dos números a y b, con b mayor que a, y muestre por pantalla para cada valor en el intervalo [a, b] si el valor es par o es impar.

EJEMPLOS:

```
PARES E IMPARES
Escriba un número entero: 6
Escriba un número entero mayor o igual que 6: 2
¡Le he pedido un número entero mayor o igual que 6!
PARES E IMPARES
Escriba un número entero: 4
Escriba un número entero mayor o igual que 4: 8
El número 4 es par
El número 5 es impar
El número 6 es par
El número 7 es impar
El número 8 es par
PARES E IMPARES
Escriba un número entero: 5
Escriba un número entero mayor o igual que 5: 5
El número 5 es impar
```

Ejercicio 8. Escriba un algoritmo que reciba un número natural N y muestre por pantalla todos sus divisores.

EJEMPLOS:

```
DIVISORES
Escriba un número mayor que cero: -5
¡Le he pedido un número entero mayor que cero!

DIVISORES
Escriba un número entero mayor que cero: 200
Los divisores de 200 son 1 2 4 5 8 10 20 25 40 50 100 200
```

Ejercicio 9. Escriba un algoritmo que pregunte al usuario cuántos números va a introducir, pida esos números y al final indique cuantos fueron pares y cuantos fueron impares.

EJEMPLOS:

```
CONTADOR DE PARES E IMPARES
¿Cuántos valores va a introducir? -1
¡Imposible!

CONTADOR DE PARES E IMPARES
¿Cuántos valores va a introducir? 5
Escriba el valor 1: 4
Escriba el valor 2: 3
Escriba el valor 3: 6
Escriba el valor 4: 8
Escriba el valor 5: 7
Ha escrito 3 números pares y 2 números impares.
Gracias por su colaboración.
```

Ejercicio 10. Escriba un algoritmo que pregunte cuántos números se van a introducir, pida esos números, y muestre cuál fue el mayor, el menor y la media aritmética. Se recuerda que la media aritmética de un conjunto de valores es la suma de esos valores dividida por la cantidad de valores.

EJEMPLOS:

```
MAYOR, MENOR Y MEDIA ARITMÉTICA
¿Cuántos valores va a introducir? -1
¡Imposible!

MAYOR, MENOR Y MEDIA ARITMÉTICA
¿Cuántos valores va a introducir? 5
Escriba el número 1: 25
Escriba el número 2: 100
Escriba el número 3: 7
Escriba el número 4: 90
Escriba el número 5: 14
El número más pequeño de los introducidos es 7.0
El número más grande de los introducidos es 100.0
La media de los números introducidos es 47.2
```

Ejercicio 11. Para cada uno de los siguientes enunciados escriba un algoritmo que a partir de un número entero N positivo permita:

- a) Sumar todos sus dígitos. Ej: si ingresa 343 deberá mostrar 10; si ingresa 20 mostrará 2.
- b) Encontrar el mayor dígito presente en N.
- c) Determinar si un dígito D está presente en N.
- Ej. El dígito 5 está presente en el entero 345; el dígito 3 no está presente en el entero -122.
- d) Contar cuantos dígitos impares tiene N.
- e) Obtener el promedio de los dígitos impares de N.

Ejercicio 12. Escriba un algoritmo que reciba un entero positivo y determine si es un número primo. Analice si es más conveniente usar un FOR o un WHILE.

Primitivas

Ejercicio 13. Dado un número natural N, se quiere obtener un número real R que sea el resultado de dividir la **suma de los dígitos** de N por la **cantidad de dígitos** de N.

Por ejemplo:

```
Si\ N = 3421\ queremos\ calcular\ R = 10/4 = 2.5
```

Ejercicio 14. Dados dos números naturales a y b, determinar si el menor dígito de a coincide con el menor dígito de b.

Ejercicio 15. Dado un número natural N, escriba un algoritmo que devuelva el menor y mayor de sus dígitos.

Por ejemplo:

```
Si\ N = 58265, el algoritmo devolverá los dígitos 2 y 8.
```

 $Si\ N = 5$, el algoritmo devolverá los dígitos $5\ y\ 5$.

¿Considera que lo mejor es realizar una primitiva para obtener el mayor dígito y otra para obtener el menor dígito? ¿Hay alguna otra manera de hacerlo?

Ejercicio 16. Sean N y M dos números naturales, escriba un algoritmo para determinar si la suma de los dígitos de N es mayor al producto de los dígitos de M. ¿Qué primitivas podría usar?

Ejercicio 17. Sea N un número natural, escriba un algoritmo que determine si la suma de sus dígitos es divisible por el mayor de sus dígitos. Divida correctamente su problema.