QM206 - 2022 PARCIAL I

NOMBRE: Angelica Guerra 4-810-752

Realizar los siguientes cálculos utilizando los softwares utilizados en clases. Debe complementar sus cálculos con las imágenes correspondientes y anexar el enlace Github de los archivos generados.

PROBLEMA 1: DIAGRAMA DE ENERGÍA

Construya un diagrama de energía vs ángulo de enlace para el 2,3-diclorobutano

PROBLEMA 2: OPTIMIZACIÓN DE LA GEOMETRÍA

a) Optimizar la geometría de la molécula de 1-clorociclobutano

Geometry Sequen	ce Energies	
Step	Energy (au)	<i>></i> 😼 🗏
0	-608.008071102	
1	-608.121933559	
2	-608.229637548	
3	-608.271370538	
4	-608.278459234	
5	-608.278842557	
6	-608.279122288	
7	-608.279268196	
8	-608.279283947	
9	-608.279286234	
10	-608.279286291	
Animation speed	5	
Loop	None 🗸	

b) Encontrar las energías de los diferentes modos de vibración

Vibrational Modes

Mada	A. Summerton	Frequency	ID leteration 4	Raman	_	now all
Mode	♦ Symmetry		IR Intensity ♦	Intensity	\$ А	ctions
1	A'	95.79 (117.2508)	1.0483	0.2436	P	
2	A"	266.77 (326.5245)	3.2872	1.9047	P	
3	A'	323.87 (396.4117)	3.2959	2.8874	P	
4	A'	549.58 (672.6752)	5.6564	7.8453	P	
5	A'	712.08 (871.5799)	7.3258	3.6257	P	
6	A"	751.50 (919.8276)	0.2139	0.3271	P	
7	A'	820.95 (1004.8408)	18.7560	7.1956	P	
8	A'	928.64 (1136.6511)	9.2848	5.6033	P	
9	A"	931.90 (1140.6411)	0.2556	0.5356	P	
10	A"	951.02 (1164.0379)	0.0541	15.8326	P	
11	A'	1010.56 (1236.9187)	9.1000	11.6399	P	
12	A"	1042.28 (1275.7369)	0.7810	4.2080	P	
13	A'	1070.49 (1310.2717)	1.8116	3.6193	P	
14	A'	1181.67 (1446.3492)	3.0784	10.7544	P	
15	A"	1184.12 (1449.3539)	0.0052	9.6984	P	

16	A"	1223.10 (1497.0657)	0.2214	4.4679	P	
17	A'	1239.55 (1517.1968)	38.8729	9.2284	P	
18	Α"	1243.10 (1521.5472)	0.0181	0.3087	P	
19	Α"	1294.26 (1584.1603)	1.1228	2.3906	P	
20	A'	1322.40 (1618.6018)	10.3787	4.2446	P	
21	Α"	1460.47 (1787.5965)	0.1680	3.5089	P	
22	A'	1463.24 (1790.9969)	0.2330	20.3427	P	
23	A'	1486.37 (1819.2963)	0.0729	15.7621	P	
24	A'	2959.25 (3622.0956)	0.1661	23.8940	P	
25	Α"	2962.95 (3626.6276)	0.0347	0.9415	P	
26	A'	2967.88 (3632.6609)	0.3754	85.1714	P	
27	A'	2996.52 (3667.7152)	0.0255	42.1254	P	
28	A'	3065.46 (3752.0880)	0.4817	27.9609	P	
29	Α"	3068.64 (3755.9859)	0.4985	52.1627	P	
30	A'	3071.06 (3758.9428)	0.0769	14.5515	P	

PROBLEMA 3: ORBITALES MOLECULARES

a) Construya un diagrama de energía para los orbitales moleculares del propileno. Para cada nivel de energía presente la imagen con la estructura del OM correspondiente

Orbital 4

Orbital 5

Orbital 6

Orbital 7

Orbital 8

Orbital 9

Orbital 10

Orbita 11

Orbita 12

Orbita 13

Orbital 14

Orbita 15

Orbita 16

PROBLEMA 4: IÓN BROMONIO

a) Determine la estructura del ión bromonio indicado. Señale los ángulos correspondientes y distancia de enlaces C-Br

Estructura

Distancia: 1.982 Â Ángulo C-Br: 43.7°

Angle:	43,7°	
Distance(s):	1,982 Å	1,982 Å