Analysing tongue contours with multivariate Generalised Additive Models

Stefano Coretta, Georges Sakr

s.coretta@ed.ac.uk, georges.sakr@ed.ac.uk

Fan-line coordinate system.

DLC 11 points on tongue surface.

- Wrench and Balch-Tomes (2022) have trained a **DeepLabCut** (DLC) model for markerless estimation of tongue surface points.
- DLC output X and Y coordinates of tracked points (knots) on the tongue surface which move in the 2D space.
- This differs from the use of a fan-line coordinate system of line-vectors which the tongue surface intersects with.

- Generalised Additive (Mixed) Models of the form Y ~ s(X) don't work with DLC knot data, as illustrated in the figure below.
- Since the tongue surface curls on itself, the smooth generates an incorrect flat line at the back of the tongue.

Tongue surface knots (transparent points) with GAM smooth.

OILTHIGH DHUN ÈIDEAN

- We can use instead multivariate Generalised Additive (Mixed) models.
- Multivariate models are models with more than one outcome (aka response) variable.
- The X and Y coordinates of the 11 DLC points are the two outcome variables and we smooth over knot (as a numeric variable of sequential knot numbering).

c(X, Y) ~ s(Knot)

THE DATA

- 5 speakers of Central Mount Lebanon Lebanese.
- /CVb/ nonce syllables.
- C = /t, d, s, z, t, d, s, z/.
- V = /a, e, i, o, u/ (approximately).
- 80
 60
 40
 80
 60
 40
 80
 60
 40
 40
 80
 60
 40
 80
 60
 40
 40
 80
 60
 40
 40
 80
 60
 40
 40
 80
 C
 Emphatic Plain

R CODE library(mgcv) $gam(list(X \sim s(Knot, by = Vow.Emph, k = 4) + s(Knot, Subject, by = Vow.Emph, bs = "fs", m = 1), Y \sim s(Knot, by = Vow.Emph, k = 4) + s(Knot, Subject, by = Vow.Emph, bs = "fs", m = 1)), family = mvn(d = 2))$

- The figure to the left shows the predicted tongue shapes of the first consonant in /CVb/ nonce syllables, 35 ms before the vowel onset.
- Each vowel (columns) and each speaker (rows) is plotted separately.
- Tongue retraction can be observed especially in / a/ and /u/, but there is a lot of variability between and within speakers.

PROS AND CONS

- PRO: Data from multiple speakers can be modelled together.
- PRO: It can fit any tongue shape and many predictors (categorical and numeric).
- CON: It takes a long time to fit multivariate GAMs.
- **CON**: Obtaining uncertainty estimates is not straightforward.