UNCLASSIFIED

AD NUMBER ADB069405 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Critical Technology; Test and Evaluation; FEB 1982. Other requests shall be referred to Air Force Aero Propulsion Laboratory [AFWAL/POTX], Wright-Patterson AFB, OH 45433. **AUTHORITY** 27 Jun 1990, ST-A per WRDC-IST notice

TRANSONIC FAN/COMPRESSOR CROTOR DESIGN STUDY

Volume V

D.E. Parker and M.R. Simonson **General Electric Company** Aircraft Engine Business Group Advanced Technology Programs Dept. Cincinnati, Ohio 45215

February 1982

Final Report for Period September 1980 - February 1982

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic-in-Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of \$100,000 under 22 USC 2778.

include this notice with any reproduced portion of this document.

Distribution limited to U.S. Government agencies only: Test and Evaluation, February 1982. Other requests for this docunent must be referred to Air Force Aero Propulsion Laboratory (AFWAL/POTX), Wright-Patterson AFB, OH 45433

Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force System Command Wright-Patterson Air Force Base, Ohio 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in conjunction with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other persons or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

ARTHUR J. WENNERSTROM

Chief, Compressor Research Group

WALKER H. MITCHELL

Chief, Technology Branch

FOR THE COMMANDER

H. TVAN BUSH

Director, Turbine Engine Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POTX, WPAFB OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

l	REPORT	DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1.	REPORT NUMBER		2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	AFWAL-TR-82-20	17	AD-B069405L	
1	TITLE (and Subtitle)		1112 poor 7 0 32	5. TYPE OF REPORT & PERIOD COVERED
·	Transonic Fan/Com	morecear Rotar	Dacion Study	Final Technical Report
1	Volume V	mbressor wordt i	pesign study	September 1980 - July 1982
l	volume v	r		6. PERFORMING ORG. REPORT NUMBER
i				R82AEB328, Volume V
7.	AUTHOR(#)			8. CONTRACT OR GRANT NUMBER(2)
ł	D.E. Parker			
	M.R. Simonson			F3 ² 615-80-C-2059
İ	IIIII DIMONOON			
9.	PERFORMING ORGANIZATI		5	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
i	General Electric			Project 2307
•	Aircraft Engine			Task S1
	Cincinnati, Ohio	45215		Work Unit 38
11.	CONTROLLING OFFICE N			12. REPORT DATE
l	Aero Propulsion	Laboratory (AFWA	AL/POT)	Strumber 1982
l	Air Force Wright Air Force System	Aeronautical L	aboratories	13. NUMBER OF PAGES
L	Wright-Patterson MONITORING AGENCY NA	Air Force Base	Ohio 45433	117
14.	MONITORING AGENCY NA	ME & ADDRESS(II dillere	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				Unclassified
•				15a. DECLASSIFICATION/DOWNGRADING SCHEJULE
16	DISTRIBUTION STATEMEN	T (of this Penort)		
				
				s only: Test and Evaluation,
l				nt must be referred to Air
l	-	lsion Laborator	y (AFWAL/POTX), I	Wright-Patterson AFB,
	он 45433.			
17.	DISTRIBUTION STATEMEN	NT (of the abetract enterer	i in Block 20. If different fro	m Report)
18.	SUPPLEMENTARY NOTES	<u> </u>		
l				
19.	KEY WORDS (Continue on re			
		Aircraft Engine		
l	Compressor	Blade Thickness		
	Rotor	Camber Distribu	tion	
	Aerodesign	Throat Margin		
	Aerodynamics			
20.	ABSTRACT (Continue on re	<u>*</u>		
Ì		-	_	es the aerodynamic design
1			-	trically related to a
	-		_	AFAPL-TR-79-2078. Each
				in so far as practical,
				metric variations are
l	specified at the	e rotor tip. Th	ne original hub c	haracteristics were pre-
ſ		avimum autant na	continal The wa	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

along the span.

This volume describes the aerodynamic design details of the Phase IV rotor. The Phase IV rotor as well as the Phase III rotor described in detail in Volume IV of this report, was designed to have a steeper average suction surface angle in the supersonic region ahead of the shock than the baseline rotor. This results in a smaller cascade throat area in the outer 80% of the blade than the baseline rotor. While the throat areas of the Phase III and Phase IV rotors are essentially the same, the Phase IV blade has some what less external compression and some what more internal compression. As a result, the Phase IV blade has less suction surface (and meanline) curvatures in the region of the cascade mouth than does the Phase III rotor.

The hub region was kept essentially the same as the baseline rotor. The location of maximum airfoil thickness is 70% of length at the tip and 56% at the hub which is the same as the baseline rotor.

Unclassified

VOLUME V

PHASE IV ROTOR DESIGN

Foreword

This Final Technical Report was prepared by the Advanced Technology Programs Department, Aircraft Engine Business Group, General Electric Company, Evendale, Ohio for the United States Air Force Systems Command, Air Force Wright Aeronautical Laboratories Wright-Patterson Air Force Base, Ohio under Contract F33615-80-C-2059. The work was performed over a period of one year starting in September 1980. Effren Strain (Captain USAF) was the Air Force Project Engineer for this program.

This report describes the results of an effort to aerodynamically define five rotor designs, all parametrically related to a base line design which could be evaluated by future testing in order to define the sensitivity of transonic blade rows to several design variables.

For the General Electric Company Mr. D.E. Parker was the Technical Program Manager for this program. Mr. M.R. Simonson was the principal investigator. Mr. A.J. Bilhardt was the overall Program Manager.

VOLUME V

TABLE OF CONTENTS

SECTION		PAGE
xvi.	DESIGN OF PHASE IV ROTOR	1
	1. Introduction	1
	2. Design Procedure	2
xvII.	DETAILS OF PHASE IV ROTOR DESIGN	13
	1. Circumferential Average Flow Solution	13
	2. Streamsurface Blade Coordinates	43
	3. Plane Section Blade Coordinates	63
XVTTT.	REFERENCES	11.7

VOLUME V

LIST OF ILLUSTRATIONS

FIGURE		PAGE
56.	Phase IV Rotor Static Pressure Distribution	3
57.	Phase IV Rotor Intrablade Work Distribution	4
58.	Phase IV Rotor Throat Margin Compared with Data Match	5
59.	Phase IV Rotor Incidence Angle Versus Fractional Immersion	8
60.	Phase IV Rotor Deviation Angle Versus Fractional Immersion	8
61.	Phase IV Rotor Deviation Angle Minus Reference Deviation Angle Compared with Data Match	9
62.	Phase IV Rotor Intrablade Departure Angle Distribution	10
63.	Phase IV Rotor Streamsurface Tip Section Compared with Baseline Design	11
64.	Phase IV Stator Incidence Angle Compared with Data Match	12
65.	Compressor Flowpath with Calculation Stations	14
66.	Stacked Phase IV Rotor Streamsurface Sections	44
67.	Stacked Phase IV Rotor Plane Sections	64

LIST OF SYMBOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables

THE PROPERTY OF THE PROPERTY O

	·	
STA	calculation station number	
WTF	total airflow	
PSIC	stream function $(0 = tip (OD), 1 = hub (ID))$	
2	axial location	inches
R	radius	inches
PHI	streamline slope	degrees
CURV	streamline curvature — = neg., — = pos.	1/inches
VM	meridional velocity	ft/sec
CU	absolute tangential velocity	ft/sec
ALPHAM	absolute flow angle on stream surface	degrees
MM	meridional Mach number	
SL	calculation streamline number	
BLDBLK	flow blockage factor (free area -	blocked area/free area
PS	static pressure	psia
PT	total pressure	psia
TT	total temperature	degrees
BETAM	relative flow angle on stream surface	degrees
UREL	relative velocity	ft/sec
MREL	relative Mach number	
VABS	absolute velocity	ft/sec
MABS	absolute Mach number	
GAMMA	specific heat ratio	
PT-RAT	total pressure/inlet total pressure	
TT-RAT	total temperature/inlet total temperature	
RCU	radius x tangential velocity	in-ft/sec
CZ	axial velocity	ft/sec
PCT IMM	percent annulus immersion from tip (OD)	
RAD	average of leading and trailing edge streamline radii	inches
ACC PT		
RATIO	cumulative total pressure ratio	
ACC TT RATIC	cumulative total temperature ratio	
	•	

LIST OF SYMBOLS AND ABBREVIATIONS

1.	Used in	Circumferential	Average	Flow	Output	Tables	(Cont'd)
----	---------	-----------------	---------	------	--------	--------	----------

adiabatic efficiency AD. polytropic efficiency POLY axial velocity ratio across blade row

Axial VEL R

2. Used in Stream Surface Blade Coordinate Tables

PT	point number	
PCT X	fraction of meridional distance from leading edge	
x	meridional coordinate on meanline	inches
Y	tangential coordinate on meanline	inches
B*M	meanline angle on stream surface	degrees
T(M)	thickness of blade perpendicular to meanline	inches
xs	meridional coordinate on suction surface	inches
YS	tangential coordinate on suction surface	inches
XP	meridional coordinate on pressure surface	inches
YP	tengential coordinate on pressure surface	inches

3. Used in Plane Section Coordinate Tables

圣	axial coordinate of stacking axis	inches
R	radius of coordinate system origin	inches
MU	tilt angle in axial direction	degrees
ETA	tilt angle in tangential direction	degrees
RHO	section height	inches
PT	point number	
ALPHA	axial coordinate	inches
ZETA*	meanline angle from axial	degrees
UPSILON	coordinate perpendicular to ALPHA and radius	inches
PCT AT.	fraction of axial distance from leading edge	

fraction of axial distance from leading edge

T/C local thickness/chord ratio

SECTION XVI

DESIGN OF PHASE IV ROTOR

1. INTRODUCTION

CALLING THE AND SCHOOL COMMITTEE AND A SCHOOL OF THE CONTROL OF A SCHOOL OF THE CONTROL OF THE C

The efficiency of a transonic rotor is influenced by shock losses as well as losses due to cascade diffusion and secondary flow effects. The magnitude of the shock losses increase rapidly as the inlet Mach number increases. The average Mach number just ahead of the leading edge passage shock is influenced by the shape of the blade suction surface ahead of the shock. Increasing the average suction surface angle ahead of the shock reduces the average Mach number ahead of the shock and presumably reduces the shock losses. However, this results in a reduced cascade throat area. If the throat is too small, the cascade will not pass the design flow and may not achieve the attached shock pattern which is desired for minimum loss.

Also if the blade suction surface angle is made steep ahead of the cascade mouth, or covered portion, it may be necessary to have a rapid change in blade meanline angle of the cascade mouth to prevent the throat from becoming too small within the covered channel. A rapid change of suction surface angle increases the surface Mach number ahead of the shock and tends to worsen the shock-boundary layer interaction. This consideration may influence the optimum throat margin for best efficiency.

For cascades having an inlet Mach number greater than about 1.3, it is possible to achieve a net precompression of the flow ahead of the passage shock and still maintain a throat area sufficiently large to pass the flow.

The maximum flow that a transonic cascade can pass is set by the average suction surface angle in the flow induction region ahead of the first captured Mach wave, provided that the throat area is sufficient and not limiting. Hence any increase in suction surface angle must take place aft of the flow induction region or there will be a reduction of flow.

To get more definitive data on the effect of the suction surface shape ahead of the leading edge passage shock, and on the interrelation of the suction surface shape and the cascade throat area, the Phase III and the Phase IV blades were designed to have smaller throat areas in the outer 80% of the blade than the base line rotor. While the throat areas of the Phase III and Phase IV rotors were essentially the same, the Phase IV blade has some what less external compression and some what more internal compression. As a result, the Phase IV

blade has less suction surface (and meanline) curvatures in the region of the cascade mouth than does the Phase III rotor.

2. DESIGN PROCEDURE

THE THEORY WAS A TOUR WAS TOUR AND THE SECOND OF THE PROPERTY
The "data match" circumferential average flow solution and the Stream Surface Blade Sections (SBS) analysis of the baseline rotor previously described in Volume I were used as a starting point for the design of the Phase IV rotor. Since both the Phase III and Phase IV rotors incorporated reduced throat area in the outer portion of the blade many of the design assumptions were kept the same for the two rotors. For both rotors, a higher efficiency was assumed for the outer 80% of the flow since it was believed that these blades should reduced shock losses relative to the baseline rotor. The rotor exit total pressure was maintained the same as the baseline rotor while the total temperature was reduced to reflect the assumed higher efficiency. The assumed chord-wise distribution of work was iteratively adjusted for the Phase III rotor to obtain a calculated chord-wise distribution of static pressure which had a shape similar to that of the data match calculations of the baseline rotor. However, the level of static pressure was higher in the outer portion at the rotor exit as a result of the assumed higher efficiency and consequent reduced energy input of the Phase III and IV rotors. The chord-wise distribution of work input was maintained the same for the Phase IV rotor as for the Phase III rotor. Since the blade thickness distributions were the same for both rotors, the calculated static pressure distributions were nearly the same.

The resulting streamline static pressure distribution for the Phase IV blade is compared with the data match of the baseline rotor on Figure 56.

The assumed streamline work input (as a fraction of the total streamline work) is plotted versus axial projection in Figure 57. The assumed Phase IV and Phase III work inputs are the same as previously mentioned. In Figure 57, the tip streamline is the one on the left. Each subsequent streamline is indexed to the right by the value of its stream function (fraction of the total flow from the tip). The dashed lines are lines of constant percent axial projection.

Figure 56. Phase IV Rotor Static Pressure Distribution

gure 57 . Phase IV Rotor Intrablade Work Distribution

Figure 58 . Phase IV Rotor Throat Margin Compared With Data Match

The Contraction of the Contracti

The blade meanline departure angles (the difference between the air angle and the meanline angle were adjusted to achieve the desired suction surface contour in the forward part of the blade and yet maintain sufficient throat area to pass the desired flow.

After each modification to the chordwise work distribution and/or departure angles, revised blade annulus blockage and blade lean angles were calculated and input to the circumferential Average Flow Determination (CAFD) computer program for the next iteration.

d

A method of characteristics computer program was used to analyze the flow in the cascade flow induction region for streamlines 3 and 6 to assure that the rotor would achieve the design flow. For other streamlines the difference between the suction surface angle and the "free-flow" streamline angle was compared with similar data from the data match calculations of the baseline rotor. This, then, was used as a guide in setting the suction surface angle in the flow induction region.

Figure 58 shows the radial distribution of the Phase IV rotor throat margin compared with the data match above. Both the Phase III and IV rotors have essentially 5 percent throat margin in the outer 80% span, except locally at the tip where the margin is a little over 6 percent. The throat margin for a stream-surface blade section is defined here as the percent of excess throat area over and above the minimum theoretical area required to pass the streamtube flow at a throat Mach number of 1.0 and assuming a total pressure loss equivalent to a normal shock at the upstream Mach number. In a rotor the effect of radius change (between the leading edge and throat) on the relative total enthalpy and pressure is included.

The radial variation of incidence angle for the Phase IV blade is shown on Figure 59. Both the Phase III and Phase IV incidence angles are nearly the same as the data match of the baseline rotor.

A modified version of Carter's Rule was used to calculate a reference deviation angle for the baseline rotor. This procedure converts the vector diagrams (from the data match calculations) to an equivalent two-dimensional set of vectors which would produce the same circulation as the actual blade taking into account the change in streamline radius and meriodional velocity. The

difference between the deviation angle implied by the data match calculations and the reference deviation angle was then added to the reference deviation angle calculated from the modified Carter's Rule for the Phase IV blade.

THE REPORT OF THE PARTY OF THE

Process of the second s

The radial distribution of the Phase IV rotor deviation angle is shown on Figure 60 and the deviation angle minus the reference deviation angle is compared with the data match values in Figure 61.

A plot of departure angles for each streamsurface section is shown in Figure 62. Once the intrablade work distribution was chosen these departure angles were required to satisfy the desired incidence angles, deviation angles, and passage area ratios. The resulting streamsurface tip section of the Phase IV rotor is compared to that of the baseline rotor in Figure 63.

The radial distribution of the stator incidence angle for the Phase IV rotor is compared with the data match of the baseline rotor in Figure 64. The lower stator incidence angle in the outer 40 percent of span for the Phase IV design is largely the result of the assumed higher efficiency in the outer portion of the rotor.

Details of the Phase IV rotor design are given in Section XVIII.

Figure 59. Phase IV Rotor Incidence Angle Versus Fractional Immersion

Figure 60 . Phase IV Rotor Deviation Angle Versus Fractional Immersion

Figure 61. Phase IV Rotor Deviation Angle Minus Reference Deviation Angle

62 . Phase IV Rotor Intrablade Departure Angle Distribution

Figure 63. Phase IV Rotor Streamsurface Tip Section Compared with Baseline Design

Figure 64. Phase IV Stator Incidence Angle Compared With Data Match

SECTION XVII

DETAILS OF PHASE IV ROTOR DESIGN

1. CIRCUMFERENTIAL AVERAGE FLOW SOLUTION

TOTAL TRANSPORTED TO THE PROPERTY OF THE PROPE

The following tabulation presents the detail results of the Phase IV rotor circumferential average flow computation. Each page of the tabulation gives results for one calculation station. Figure 65 shows the calculation station locations within the gas flowpath. At each calculation station various aerodynamic parameters are given on each of thirteen calculation streamlines. Also given are several mass averaged station flow properties. The Phase IV rotor blade forces are included at the end of this tabulation.

14

Houre 65. Compressor Flowpath With Calculation Stations

	D•H=O.	ABH=0.	Ę		0.163	0.176	0.196		0.227	0.239	0.248	0.257	0.264		0.272	0.274	MARC	7	0.135	0. 163	0.176	0.196	0.213	0.227	0.239	•		•	0.270	0.272	0.274	
FREE			ALPHAM	ö		ö		ö	ö	ö	ó	o O	ö	o O	ó	o.	O B V		150.4	181.0	195.9	218.6	237.4	252.4	265.2	275.9	284.9	292.5	298.9		303.9	
	D+C=0.	ABC=	2	o O	ó	ö	o O	o O	ö	ö	ó	o.	ö	o.	ó	ö	1107	1	2.092	1.997	1.913	1.760	1.617	1.477	1.337	1.190	1.031	0.850	0.629	0.484	0.274	(
	478.13	O INBR=O	¥ >	150.4	181.0	195.9	218.6	237.1	252.4	265.2	275.9	284.9	292.5	298.9	301.6	303.9		ا ا ا	2335.4	2224.5	2130.2	1958.1	1797.9	1641.9	1484.6	1320.6	1143.7	943.5	697.2	536.8	303.9	1
	AFLOW=	ITYPE=0	CURV	0.0831			••	••	••	••	••	•	•	••	••	••	347		86.31	85.33	84.72	83.59	82.42	81.16	79,71	77.94	75.57	71.94	64.61	55.81	% %	,
5.000		OPTY=FREE	O	to 0.	54 0.	31 0.	70 0.			78 0.			. 18 0.	34 0.		Ö	;	-	518.7	518.7		518.7			518.7		518.7	518.7	518.7	518.7	518.7	
STA	MTIP		PHI	-50.	.43	-40.	-34.	-29.	-25.	-21.	- 18	- 14.	- 11	.7.	-4	0.	ř	<u>.</u>	4.696	14.696							969			•	4.696	
	- =	OPTX=DPP	~	3 13.207	12.564	12.	0 11.027	ō	Þ	∞.	7	9	5.083	m	~	ó	ļ	S	.510		382	-	237 1	177 1	124 1	077 1	-	_	_	959 1	.947	
		61.365 (7	-18.800	-18.800	•	-18.800	-18.800	-18,800	- 18,800			- 18.800	•				~	4	7	4	997 14	14	4	4	4			-	-	_	
TA IN		WTF= 61.	PSIC	ó	0.050	0.100	0.200	0.300	0.400	0.500							-	אר פרר	5.0 -	2 0.6	Ö	•	ó	Ö	Ö	ó	Ó	Ö	Ó	Ö	•	

SERVICE CONTROL CONTRO

STA 5.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4015 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 255.3 CZ= 233.4 MM=0.230 MABS=0.230 MREL=1.300

	D+H=0.	ABH=O.	Σ	0.471	0.464	0.458	0.447	0.436	0.426	0.416	0.406	0.395	0.383	0.369	0.361	0.351	MABS	0.471	•	0.458	0.447	0.436	0.426	9.416	0.406	0.395	0.383	0.369	0.361	0.351
FREE			ALPHAM	o O	o O			o O			ö	ö	ö	ö	ó	ပ်	VABS	514.7	507.6	501.1	489.4	478.4	467.8	457.2	446.4	434.9	422.1	406.9	398.1	387.1
			ວ	o O	ö	ö	ö	ó	ö	o.	o O	o O	o	ö	o O	ö	MREL	1.601	1.564	1.525	1.445	1.361	1.271	1.174	1.066	0.945	0.803	0.624	0.508	0.351
	277.56	O INBR=0	¥ >	514.7	507.6	501.1	489.4	478.4	467.8	457.2	446.4	434.9	422.1	406.9	398.1	387.1	VREL	1750.4	1710.1	1668.8	1583.2	1492.3	1394.8	1288.9	1172.0	1039.7	884.2	687.7	560.3	387.1
	AFLOW=	ITYPE=0	CURV	.0952	-0.1028	.0955	.0825	.0712				-0.0390	.0330	-0.0257	-0.0190	•	BETAM	72.90	72.73	72.53	71.99	71.30	70.40	69.22	67.61	65.27	61.49	53.72	44.72	-0.8
6.000	14	OPTY=FREE		-24.96 -0		-22.95 -0			-16.13 -0	.87	. 58	. 23	.73	.03	.57	٥.	1	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA				481 -24				_	446 -16	829 -13		352 -9	403 -6	142 -4	234 -2	8	PT	14.696	14,696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
	I= 2	OPTX=DPP	2	31 9.	6	6	∞	558 8.	506 7.	9	9	ĸ.	4	978 3.	'n	250 -0.000	Sd	12.623	12.676	12.726	12.812	12.892	12.968	13.041	13.116	13, 193	٠,	•	•	13.496
		61.365		- 14	- 14	- 14	- 14.	- 14	- 14	- 1	-14.719		-14.	- 14		-15.	BI DBI K	0.997	.997	0.997	1997	769.	0.997	0.997	. 997	0.997	0.997	0.997	. 997	.997
TN ET	3	WTF= 6	S	0	0.050	0.100	0.200	0.300	0.400	0.500	0.60	0.700	0.800	006.0	0.950	1.000	3		7	0	4	2	9	7 0	8	0	0	-	12 0	13 0
-	•	3																						3	6					

THE REPORT OF THE PROPERTY OF

STA 6.000 MASS AVERAGED PROPERTIES TT= 518.69 GAMMA=1.4016 PT-RAT= 1.000 TT-RAT= 1.000 VM= 455.6 CZ= 438.5 MM=0.415 MABS=0.415 MREL=1.120 PT= 14,696 RCU= 0.

	D+H=0.	ABH=O.	¥	0.578	0.571	0.564	0.549	0.534	0.518	0.503		0.468	0.446	0.415	0.389	0.347	MABS	0.578	0.571	0.564	0.549	0.534	0.518	0.503	0.486	0.468	0.446	0.415	0.389	0.347
FREE			ALPHAM	ó	ó	ö	ö	o o	ó	ö	ö	ó	ö	ö	ö	ö	VABS	625.2	617.9	610.4	595.2	579.7	563.9	547.6	530.4	511.3	488.4	455.8	428.6	383.5
	D+C=0.	O ABC=O	2	o.	0	o O	ö	Ö	Ö	ö	o	ö	ó	ó	ó	ö	MREL	1.560	1.525	1.490	1.415	1.337	1.253	1.162	1.062	0.948	0.815		•	0.347
	244.35	O INBR=O	¥ >	625.2	617.9	610.4	595.2	579.7	563.9	547.6	530.4	511.3	488.4	455.8	428.6	383.5	VRF	1687.2	1650.9	1613.5	1535.5	1452.4	1363.1	1266.0	1158.7	1037.0	893.1	707.2	579.0	383.5
	AFLOW=	ITYPE=0	CURV	-0.0952	-0.087	-0.0849	-0.0795		_	-0.0629		-0.0560	-0.0559		-0.0759		RETAM	68.25	68.02	67.77	67.19	66.48	65.56	64.37	62.76	60.46	56.85	49.87	42.25	0.0
7.000		•				-13.90 -0		-	27	-7.60 -0	-5.79 -0	-3.78 -0	.45 -0	1.53 -0			Ħ	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA			IHd	830 -15.47	75 -14.65		21 -12.40		32 -9.			112 -3	237 -1			000	Fa	14 696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
	1= 3	QCIX=DIPP		8.8	800 8.675	800 8.4	800 8.021	7.	00 7.032	00 6.458	ų,	800 5.1	4	800 3.064	6	င့်	V	1 714	1.779	1.843	1.974	2.104	2.234	2.366	2.502	•	2.820	3.051		3.517
		61.365	Z	- 12.	- 12.8		- 12.8	- 12.	- 12	- 12	- 12	- 12.8	- 12.	- 12.	- 12.	- 12) iac ia	998	4 898 0	0.998	0.998	_	0.998	-	998	_	. 998	988	_	-
TAIRT		WTF= 6	S	o.	0.050	0.100	0.200	0.300	0.400	•	0.600	0.700	0.800	0.900	0.950	- 000	ũ) () ()	4	2		7	8	0	100	110	12 0	13 0
																									١7					

THE REPORT OF THE PROPERTY OF THE PARTY OF T

STA 7.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT= 518.69 GAMMA=1.4017 PT-RAT* 1.000 TT-RAT* 1.000

RCU= 0. VM= 539.2 CZ= 532.1 MM=0.495 MABS=0.495 MREL=1.109

E D+H=O.	ABH=0.	¥	0.665	0.656	0.647	0.629	0.612	0.595	0.578	0.559	0.537	0.509	0.467	0.426	0.394	MABS	0.665			0.629	0.612	0.595	0.578	0.559	0.537	0.509	0.467	0.426	0.394	
FRE		ALPHAM	ó	o.	ó	o O	Ö	o	o.	o O	o O	ö	o.	o O	ö	VABS	712.1	703.3	693.9	675.9	658.9	642.2	625.1	606.2		554.3	510.4	467.9	433.8	
D•C=0.		5	o O	o O	ó	ö	ö	o O	ö	o.	ö	ó	ö	o O	0	MREL	1.567	1.533	1.497	1.425	1.349	1.269	1.184	1.091	0.987	0.865	0.710	•	0.455	
224.07	O INBR = O	¥>	712.1	703.3	633.9	675.9	628.9	642.2	625.1	606.2	583.7	554.3	510.4	467.9	433.8	VREL	1677.6	1642.6	1606.5	1531.9	1453.4	1370.2	1280.6	1182.6	1072.3	942.6	776.8	628.9	501.1	
AFLOW=	ITYPE=0	CURV	-0.0953	-0.0964	6060	.0816	-0.0745			6990	7690	-0.0769	-0.0935		1910	BETAM	64.88	64.65	64.41	63.82	63.04	62.05	60.78	59.16	57.02	53.98		•	30.03	
8.000	_	-			Ŷ	58 -0.	7	ဖ	<u>@</u>			7.1	+	94	.0 66	11	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	
STA=			8 -8.21	~			4-	-2		Ö	, w	ġ	12.		1 47.	14	969	4.696	969	969	4.696	14.696	4.696	4.696	4.696	4.696	4.696	•	4.696	
4	OPTX=DPP	α	•	8.41	8.211	7.	۲.	6.829	9	Ŗ.	IJ.	4	ю	~	1.42	S	918 14				-	564 1	_	879 1	070	_	_	967 14	200	
•		N	-11.499	-11.461	-11.421	-11.339	-11.250	-11,155	-11.052	- 10.938	- 10.809	-10.656	-10.459		-10.086		Ç	-	997 11.	37 11.	97 11.	97 11.	37 11.	97 11.	997 12.	_	_	_	-	
ET	= 61.365	SI	٠.	0.050	0.100	8		8	200	809	. 78	808	906	. 950	000	SI BLOBLK			•	•	•	6 0.9	Ö	8 0.99	Ó	ó	Ó	o	3 0.99	
INLET	1		0	0	0	0	0	0	0	0	0	0	0	0	-	·)							1 (5	-	-	•-	-	

STA 8.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT* 518.69 GAMMA=1.4017 PT-RAT* 1.000 TT-RAT* 1.000

RCU= 0. VM= 612.2 CZ= 604.7 MM=0.566 MABS=0.566 MREL=1.140

W	D+H=0.	ABH=O.	ł	0.714	0.706	0.698	0.684	0.669	0.654	0.635	0.613	0.586	0.550	0.501	0.471	0.468	MABS	0.714	0.706			0.669	0.654	0.635	0.613	0.586	0.550	0.501	0.471	0.468
FREE		ċ	ALPHAM	o.	o.	ö	ó	ö	o.	ö	o.	o O	ö	ö	o.	o.	VABS	759.3	752.4	744.4	730.6	716.4	700.8	682.8	660.8	632.8	596.1	545.9	515.1	511.2
	0+C=0.	O ABC=O	5	Ö	o.	ó	o.	o O	Ö	ö	ó	ö	ó	Ö	ö	ö	MREL	1.580	1.548	1.515	1.448	1.378	1.304	1.223	1, 133	1.032	0.912	0.751	0.667	0.569
	211.87	O INBR=0	¥>	759.3	752.4	744.4	730.6	716.4	700.8	682.8	8.099	632.8	596.1	545.9	515.1	511.2	VREL	1681.2	1649.0	1615.6	1547.1	1474.8	1397.6	1313.7	1220.8	1115.0	989.5	830.0	728.5	622.3
	AFLOW=	ITYPE=0	CURV	o.	-0.0544	-0.0527	0.0512	-0.0516	-0.0538	0.0581	0.0637	-0.0715	-0.0791	-0.0811	-0.0409	0.1881	BETAM	63.15	62.85	62.56	61.82	60.94	59.90	58.69	57.23	55.42	52.96	48.87	45.01	34.77
000.6 =1	μ	OPTY=FREE	IHd		-1.10 -0	-0.87	-0.24 -(0.64 -0	1.81	3.33 -(. 26	7.78 -0	11.19 -0	16.60 -(21.65 -(38.65 (E	518.7	5 518.7	518.7	5 18	5 518.7	518.7	518.7	518.7	518.7	518.7	518	518.7	518.7
STA=	_		<u>α</u>	.500	. 315	125		7.305	.852	6.360	5.817	. 202	.476	542	920	.011	F.	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	4	14.696	14.696
	I= 5		2	8 666.	-9.984 8			-9.900 7				ស	.665 4	.587 3.	.536 2.	.460 2	S	Ç	10.530	10.607	10.741	10.878	11.025	11.194	11.396	11.647	11.966	12.379	12.620	12.650
		61.365	PSIC	6-										6- 006	6-	6- 000	BLDBLK	0.996	966.0	966.0	966.0	966.0	966.0	966.0	966.0	966.0	966.0	966.0	966.0	966.0
INLET		WTF=	PS		0.050	0.100	0.200	0.300	0.400	0.5	9.0	0.700	0.800	6.0	6.0	1.0	SL	-	7	ო	4	ស	9	۰ 1	œ 9	თ	₽	Ξ	12	13

THE TAXABLE PROPERTY OF THE PROPERTY AND AND AND ADDRESS OF THE PROPERTY OF TH

STA 9.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4018 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 663.9 CZ= 655.4 MM=0.617 MABS=0.617 MREL=1.178

E	ABH=O	E	0.731	0.731	0.731	0.728	0.721	0.710	0.693	0.668	0.633	•	0.529	0.491	0.498	MABS	0.731	0.731	0.731	0.728	0.721	0.710	0.693	0.668	0.633	0.587	0.529	0.491	0.498
FRE		PHAM	o.	o.	o o	o O	ó	o.	o O	o .	ó	Ö	o O	ó	ö	VABS	775.8	776.1	776.1	773.3	766.7	755.6	739.0	714.7	680.2	633.9	575.0	535.5	543.3
i c	O=O=O	ວິລີ	ö	ó	o.	ö	ö	o.	o .	ó	ö	ö	o ·	o o	ö	MREL	1.591	1.564	1.537	1.478	1.415	1.346	1.269	1.181	1.079	0.957	0.805	0.706	9.626
200	204.12 A 1800-0	-	775.8	176.1	176.1	773.3	7.997	755.6	739.0	714.7	680.2	633.9	575.0	535.5	543.3	VREL	1688.8	1660.3	1631.3	1570.1	1504.3	1432.7	1352.6	1264.0	1155.5	1033.6	874.6	770.8	682.4
	Ariow=	ರ	o.	0.0031	-0.0023	-0.9130	-0.0226	-0.0330	-0.0429	-0.0588	-0.0732	-0.0859	-0.0852	-0.0845	0.1922	BETAM	62.65	62.13	61.59	60.49	59.36	58.17	56.91	55.57	54.08	52.17	48.89	45.99	37.23
10.000	4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			34			2.55 -(•		19.55 -(12.46 (Ħ	518.7		518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7		518.7	518.7
STA	Ē		200	.317	. 131	7.743	7.334	6.898			.321		734	142	.340 3	T d	14,696	14.696	7	14.696	4	14	14	14.696	14.696	14.696	•	14.696	7.
	L= 0		٠.				-9.00C 7		_		LD.	4	3.		2 000.	Sd	0	10.296	10.296	10.323	10.388	10.498	10.660	10.894	11.218	11.637	12.143	12.462	12.400
۰	100	v	6-	0.050			300		_				900	950	6- 000	BLDBLK		0.994		ó	0.994	Ö	0.994	Ö	Ī	Ö	o.	Ö	Ö
INLET	1		Ö	Ö	Ö	0	Ö	o.	Ö	Ö	Ö		ö	o	÷	25	-	7	n	4	S.	9	7	2	ر س	õ	-	12	(9 **

THE WAR WAS TO THE TAX PROPERTY OF THE PROPERT

~	D+H=0.	4BH=0.	¥	0.796	0.799	0.800	0.801	7.795	7.780	0.752	0.715		•	•	0.515	>. 507	MABS	0.796	0.799	0.800	0.801	0.795	0 780	0.752	0.715	0.671	0.621	0.557	•	0.507	
LE ROTOR			ALPHAM	o.		o o		o O					-	_	.0	ö	VABS	838.0	840.0	841.3	841.9	836.5	822.1	795.9		718.3	668.0	604.0	•	552.0	
	0+0=0.	-3 ABC=0	2	ö	ö	o O	o O	ó	o.	o.	ó	o.	o o	o.	ö	ö	MREL	1.633	1.609	1.583	1.529	_	~	1.316	1.222	1.115	0.994	0.845	0.750	0.664	
	197.31	-4 INBR=3	₹>	838.0	840.0	841.3		836.5	822.1	795.9	760.8	718.3	668.0	604.0	560.2	552.0	VREL	1718.2	1691.9	1664.8	1608.0	1545.6	1475.0	1393.0	1299.5	1193.1	1069.8	916.3	816.0	723.8	
	AFLOW=	ITYPE=4	CURV		.0063	-0.0050	-0.0054	-0.0160	.0321	.0509	-0.0504	-0.0637	-0.0637	-0.0665	-0.0614	0.1471	BETAM	60.81	60.23	59.64	58.43	57.23	56, 13	55, 15	54.17	52.98	51,36	46.76	46.64	40.31	
		OPTY*FREE	PHI			82	83	3.22 -0	95	86		. 33	. 17	.65	91	. 20	Ħ	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	
STA	MTIP		ā. 2				764	. 365		.478		398 12	735 16	905 21		653 31	ΡŢ	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	
	I = 7	OPTX=DPP	2	166 8.	80	.242 8.	321 7.	5	Φ	Φ	ß	624 5.	604 4.	ю	ю	6	S	9.670			•		9.832	10.098	10.447	10.859	11.330	11.898	12.265	12,331	
-		61.365	PSIC	8	050 -8	100	200 -8	8- 00	4008			700	800 -8	8- 006	•	8- 000	BLDBLK	0.990			•	0.990	0.990	0.990	0.990	0.990	0.990		0.990	0.990	
ROTOR		WTF=	PS	Ö	•	ō.	0.5		•	•	0		•	•		0.	75	-	7	6	4	ស	g	7	∞	თ	9	Ξ	12	13	

THE TAXABLE PROPERTY OF THE PR

4

STA 11.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT= 518.69 GAMMA=1.4018 PT-RAT= 1.000 TT-RAT= 1.000

RCU= 0. VM= 757.5 CZ= 743.1 MM=0.713 MABS=0.713 MREL=1.262

OR D•H=0.	ABH=O.	Ī	0.797	0.802	0.811	0.828	0.841	0.840	0.828	0.798	0.764	0.715	0.661	0.626	0.602	MABS	0.798	0.803				0.841	0.829	0.800	0.765	0.717	0.664	0.629	909.0
N ROT		ALPHAM	3.08	2.77	2.62	2.46	2.56	2.71	•	3.21	3.93	3.89	4.94	5.48	6.02	VABS	849.0	852.3	859.8	875.5	887.3	886.6	875.4	847.8	815.8	767.9	715.9	680.3	656.6
0+C=0.		ე ე	45.6	41.3	39.5	37.6	39.6	•	44.9	47.5	56.0	52.2	61.7	65.0	68.8	MREL	1.583	1.566	1.549	1.511	1.464	1.405	1.334	1.247	1.144	1.034	0.894	0.808	0.720
181,03		¥ >	847.7	851.3	858.9	874.7	886.4	885.6	874.2	846.4	813.9	766.1	713.2	677.2	653.0	VREL	1683.4	1662.2	1640.6	1595.0	1542.7	1480.9	1408.8	1321.5	1219.9	1107.3	964.3	874.9	780.9
AFLOW=	ITYPE=5	CURV		0.0190	.0163	.0078	.0073	.0167	.0143	-0.0273	.0026	0.0116	.0120	0.0593	0.080.0	BETAM	59.76	59.19	58.43	56.74	54.93	53.27	51.64	50.17	48.15	46.22	42.30	39.29	33.26
= 11.500 P= 92	_	PHI		0.34 0		1.82 C	3.39 -0	33	51		12.92 -0			25.93 C		Ħ	530.1	528.8	-										524.4
STA= MTIP=		<u>a</u>	200	324		771		964		_		826 1	4.027 2	508 2	817 29	F T	15.513	15.460	15.440	15.432	15.474	15.506	15.525	15.518	15.587	15.430	15.419	15.354	15.248
60	_	2	.963 8.	80	8		7	9		-8.301 6.		4	Ī	က	224 2.	S	10. 188	10, 106	10.001	9.825	9.725	9.751	9.886	10.179	10.572	10.951	11.468	11.762	11.897
	61.365	U	-7	-7		80	80						8	80	89	BLDBLK	0.957										0.880	0.849	0.812
ROTOR 1	WTF=	PSIC	Ö	0.020	0. 400	0.50	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	-	ī		8	m	4	ហ	φ	7	∞ 22	6	0	=	42	43

COURTEM SERVICE CONTINUED - CONTINUED - CONTINUED CONTINUED - PROPERTY - PROP

STA 11.500 MASS AVERAGED PROPERTIES PT= 15.471 TT= 527.14 GAMMA=1.4018 PT-RAT= 1.053 TT-RAT= 1.016 RCU= 287.0 VM= 826.6 CZ= 809.3 MM=0.778 MABS=0.780 MREL=1.273

X	D+H=0.	ABH=C.	ĭ	0.754	0.761	0.770	0.793	0.813	0.825	0.825	0.819	0.800	0.764	0.713	0.678	0.631	MABS	0.759	0.766	0.775	0.798	0.818	0.830	0.831	0.826	0.809	0.774	0.725	0.691	0.646
IN ROTOR			ALPHAM	6.76	6.55	6.34	6.18	6.36	6.67	7.12	7.72	8.27	60.6	10.48	11.34	12.33	VABS	821.4	826.9	835.3	855.9	875.4	887.0	887.5	883.0	866.0	831.6	783.5	748.7	701.9
	0=0+0	3 ABC=0	3	96.7	94.3	92.2	92.2	97.0	103.1	110.0	118.6	124.6	131.3	142.5	147.2	149.9	MREL	1.500	1.483	1.467	1.433	1.391	1.342	1.280	1.210	1.129	1.026	0.898	0.818	0.719
	170.42	5 INBR=3	¥>	815.7	821.5	830.2	850.9	870.0	881.0	880.7	875.0	856.9	821.1	770.5	734.1	685.7	VREL	1623.1	1601.5	1580.9	1537.5	1488.7	1433.1	1367.6	1293.6	1208.5	1102.9	970.2	886.3	781.2
	AFLOW=	ITYPE=5	CURV		0.00.4	0.0387	.0185	.0140	0.0045	.0022	.0132	.0107	9000	.0168	0.0161	.0136	BETAM	59.83	59.14	58.32	56.40	54.24	52.06	49.91	47.44	44.84	41.88	37.43	34.08	28.63
STA= 12.000	105	OPTY=PT									22	35	54		23 0	21 0	11	542.9		540.8	539.8	539.8	539.9	539.9	539.9	539.0	537.7	536.1	534.5	531.8
STA	MT 1P= 105	OPT	Hd	Ö	0.03				5.42	7.	10.07	12.1	16.54	21.			14	16.462		16.482		.655						.461		15.985
	თ	OPTX=TT	~	8.500	8.325	8.146	7.779	7.395	6.989	6.552	6.072	5.535	4.917	4.149	3.548	2.971				•										
	#		7		•	. 798	844	.889	.931	.972	.010	.025	. 995	•		. 941	8	*-	11.174	11.074	10.874	10.725	10.649	10.677	10.751	10.894	11, 190	11.592	11.826	12.07
		61,365	·	-7	7- 0	7- 0	0	0	7- 0		8-0			0 -7	0 -7	7- 0	BI DRI K	0.935	0.934	0.932	•	•	0.911	0.897	•	0.862	0.840	•	0.776	0.733
ROTOR 1		WTF=	PSIC	o O	0.050	0.100	0.20	0.300	0.400		0.600	0.700	0.800	0.900	0.950	1.000	Š		c	n	4	£	ý	7	23	ช	0	-	42	43

RECOLUMNOUS LANGUES LANGUES LANGUES ASSESSED MOSSAMOS LANGUES LANGUES LANGUES LANGUES DE MOSSAMOS DE LA RESERVE

STA 12.000 MASS AVERAGED PROPERTIES
PT= 16.616 TT= 539.05 GAMMA=1.4018 PT-RAT= 1.131 TT-RAT= 1.039
RCU= 691.5 VM= 838.9 CZ= 821.0 MM=0.782 MARS=0.789 MREL=1.229

80	0-H*0	ABH=0	MM	907.0	22.0	727.0	787	•				7.00		2,7	0.0	0.73	?	MABS	0.720	0 732	739	75.0	0.785	G 80.1	0.811	0.817	0.813	0.0	0.77	247.0	0 . A 43	
IN ROTOR	o.	, O	ALPHAM	11.27	11 43	11.35	41.12	 		12.12	12 77	13 60	14 99	10.00	17.53	18.42	•	VABS	793.7	805.4	811.9	832.9	855.6	870.9	880.9	886.0	881.7	868.5	RER	807.4	747 1	•
	0=0+0		2	155.1	159.6	159.8	161.5	168 2	176 B	185	195.0	208.6	224.6	239.6	243.2	236.1		MREL	1.410	1.389	1.370	1.336	1.297	1.251	1.200	1.141	1.069	0.984	0.878	608.0		•
	161.85	=5 INBR=3	¥>	778.3	789.5	0.967	817.1	838.9	852.8	861.2	864.1	856.6	838.9	803.2	769.9	708.8	i	VKEL	1553.9	1528.9	1505.5	1462.0	1414.7	1361.2	1302.9	1236.6	1158.6	1066.8	953.4	879.3	775.6	
٥	AFLOW=	ITYPE=5	CURV	٥.	0.0085	0.0222	0.0467	0.0269	0.0325	0.0314	0.0183	0.0124	0.0208	0.0199	0.0045	0.0461		E 4	59.94	58.91	58.08	56.02	53.63	51.21	48.62	45.67	42.32	38.15	32.60	28.90		•
STA= 12.500	MTIP=118	OPTY=PT	IH4			0.01	1.19	.04		.40	0	12.64	35	. 55		. 51	;	١			557.0				554.6			551.8	548.8	545.8	540.4	
				_	. 324	. 147	. 785	.409	.014	. 589	. 123			. 269	. 786	. 123 2	Ď		17.585	17.789	17.875	•	18.213				18.309	13.182	17.841	17.487	•	
	I=10	ı		7.556 8	•	7.576 8	. 606 7	, 636 7	~	.692 6	-7.720 6	-7.725 5	.690 5	•	.641	.658 3	4		12.446	12.456	12.435	12.283	•	12.023	11.912	11.838	11.845	11.913	•	12, 121	12.318	CTA
R 1		61.365	FSIC								0.600				-7	- 000	RI DRI		116.0	0.910	0.908	0.903	0.896	0.883	0.866	0.846	•	•	0.776	S	0.583	
ROTOR		H .		<i>i</i>	ō.	ဂ်	0	·: o	ડં	0	Ö	0	0	0	6. O	7.	S	•	- (N (m	∢ :	n o	છ 1	~ (9O (ָר פ	<u>o</u> :	_	7	û	

œ	Ū+H=0.	ABH=O.	2	0.670	0.688	0.704	0.731	0.753	0.771	0.778	0.788	0.793	0.786	0.760	0.734	0.670	MABS	0.695	0.714	0.730	0.757	0.781	0.800	6.809	0.823	0.832	0.834	0.817	0.793	0.731	
IN ROTOR			ALPHAM	15.36	15.48		25	. 28	15.59	16.06	16.79	17.77	19.52		22.31	23.55	VABS	777.4	0.767	812.7	839.3	861.7	880.4	888.3	901.4	909.2	910.0	891.2	864.7	798.6	
	0+C=0	3 ABC=0	20	205.9	212.7	215.7	220.8	227.1	236.6	245.7	260.4	277.5	304.1	327.7	328.2	319.0	MREL	1.337	1.319	1.304	1.272	1.237	1, 195	1,146	1.093	1.033	0.956	0.863	908.0	0.711	
	155.06	5 INBR=3	E >	749.6	-	783.6	7.	831.2	0.		6		857.7	828.8	800.0	732.1	VREL	1495.5	1472.3	1451.5	1409.4	1364.9	1315, 1	1257.4	1196.4	1128.0	1043.9	941.4	•	776.8	
	AFLOW=	ITYPE=5	CURV			0.0491	_	0.0430			0240			9600	-0.0137	. 1052	BETAM	59.95	58.55	57.33	54.94	52.48	49.85	47.24	43.84	Ø,	34.75	ω.		9.5	
13.000	= 131	TG=YTGD	-			-0.45 0					ž,	ō,	8		,	29.92 -0	11	570.2	570.8	570.4	569.3	568.3	567.7	566.6	566.0	565.0	564.3	561.0	556.6	549.5	
STA	MTIP=131	9	IHd									_					P.	8.599	8.899	9.083	9.377		9.726				9.636		8.696		
	1=11	OPTX=TT	œ	8.500	80	ω.	7	7	7.037	9	Ç	ល	Ŗ,	4	n	'n	Si	462 1	_	_	•	13.082	•	_	•	•	•	•	•	-	
	-	365 0	7	-7.352				-7.382	-7.397	•			•	-7.345	-7.346	•		£.	_	•	•	•	•	_	_	5	-	-	2 12.	_	
Ď.		6	SIC		020	0.100	200	300	8	200	009	92	808	006	0.950	8	BLOBLK		0.88	0.888		o	0	0	0	o	Ö	Ö	Ö	ó	
Potos		WTF	۵	Ö	Ö	0	Ö	0	Ó	0	Ö	Ó	0	0	0	<u>-</u>	5	,	7	1 M	4	S	9		م 5	, Q1	\$	-	12	13	

THE REPORT OF THE PROPERTY OF

STA 13.000 MASS AVERAGED PROPERTIES
PT= 19.412 TT= 565.94 GAMMA=1.4016 PT.RAT= 1.321 TT-RAT= 1.091
R:U= 1605.3 VM= 829.3 CZ= 811.3 MM=0.754 MABS=0.791 MREL=1.113

80	D+H=0.	ABH=0	22	0.624	0.651	0.668	0.697	0.720	0.737	0.750	0.764	0.774	0.776	0.760	0.740	0.694	2	VOAF C	0.000	0.690	0.710	0.741	0.765	0.783	0.799	0.819	0.835	0.848	0.849	0.831	0.785
IN ROTOR			ALPHAM	19.00	19.50	19.73	19.66	19,73	19.92	20.25	20.99	21.96	23.71	26.48	27.11	27.95	VADC	747	0.000	780.7	801.3	832.4	856.4	873.6	888.1	906.4	920.9	932.9	932.5	910.5	859.5
	0=0+0	£=	5	243.5	260.6	270.5	280.1	289.1	297.6	307.3	324.6	344.3	375.1	415.8	414.9	402.8	303	1 272	2 1	1.251	1.230	1.198	1.163	1.125	1.083	1.035	0.983	0.918	0.835	0.789	0.719
	150.69	=5 INBR=3	¥ >	707.1	735.9	754.3	783.8	806.2	821.3	833.2	846.2	854.1	854.1	834.6	810.5	759.3	VDE	1441 8		1414.2	1389.2	1346.4	1302.0	1254.2	1202.8	1146.1	1084.2	1010.2	916.6	865.0	786.7
8	AFLOW=	ITYPE=5	CURV	o.	-0.0130	-0.0038	0.0210	0.0126	0.0437	0.0306	0.0166	0.0169	-0.0023	-0.0151	0.0280	-0.0937	RETAN			28.04		54.40			46.16					20.45	15.13
1= 13.500	MT I P = 144	OPTY=PT	PHI	o.	72	. 47		13		53	0		2	.32	5.51	.86	11	579 G	TO COR	202.3	034.U	582.9	581.9	580.5	578.9	578.1	576.8	575.9	573.8	568.3	559.6
STA=	¥			500	320 -		7.791	7.432	058	6.657	220	735	183			450 3	pŢ	19.371	10 03/	10.00	20.31	20.783	21.082	21.213	21.204	21.218	21.137	21.063	20.793	20.072	18.981
	I=12	OPTX=TT	2	148 8.	139 8.			129 7.	_	ø.	ø.	Ŋ.	.081 5.	4	4	092 3.	P.S	14.451	14 491		0.0.4	000	14.304	14.141	13.915	13.658	13,385	13, 158	12.971	•	12.629
		51.365	O	-7.		.7- 0					-7.	-7.	-7	-	-7.	-7.	BLOBLK	878	879		027		0/8.	. 856	0.836	. 8 55		766	137	669	.649
ROTOR1		WTF= 61.3	PSI	o.	0.050	Q	0.200	o. 30	0.400	0.500	0.600	0.700	0.800	0.900	0.950	- 80.	SLB	-	0	10	, (ru) ر ا	ن و ر	٠,		ຫ <u>:</u>	9	<u>-</u>	12 0.0	<u>د</u> 0

THE THE THE PARTY OF THE STANDARD OF THE PARTY OF THE PAR

STA 13.500 MASS AVERAGED PROPERTIES
PT= 20.807 TT= 578.32 GAMMA=1.4015 PT-RAT= 1.416 TT-RAT= 1.115
RCU= 2026.3 VM= 813.1 CZ= 794.8 MM=0.731 MABS=0.788 MRFL=1.057

20	0+H=0.	ABH=0.	I	0.583	0.613	0.639	0.672	0.697	0.711	0.718	0.736	0.750	0.758	0.752	0.739	0.714	MABS	0.635	0.670	0.699	0.734	0.762	0.780	0.791	0.814	0.835	0.857	0.874	0.865	0.842
IN ROTOR			ALPHAM	23.39	23.64	23.88	23.79	23.83	24.18	24.72	25.31	•	27.81	30.54	31.28	32.07	VABS	728.2	766.5	798.6	835.1	862.8	879.6	889.6	911.4	930.3	951.3	965.4	952.5	923.6
	0=0+0		25	289.2	307.4	323.2	336.8	348.6	360.3	372.1	389.6	409.2	443.8	490.5	494.6	490.3	MREL	1.206	1.185	1,165	1.133		1.061		-	0.930	0.876	0.808	o.	
	147.28	5 INBR=3	X >	668.4	702.2	730.2	764.1	789.2	802.4	808.1	823.9	835.5	841.4	831.5	814.0	782.7	VREL	1383.1	1356.4	1331.5	1289.1	1246.2	1197.2	1142.9	1091.6	1036.9	971.8	892.8	850.8	197.1
	AFLOW=	ITYPE=5	CURV		-0.0109	-0.0153	-0.0077	0.0134	0.0054	.0259	.0281	0.0116	.0040	-0.0291	-0.0491	.0749	BETAM	61.10	58.82	56.74	53.65	50.71	47.92	45.00	40.99	36.32	30.05	21.36	16.92	10.89
14.000		OPTY=PT	<u></u>	0		-0.61 -0	٠				73	.87	.07	73	23	.48 -0	11	591.0	593.9	596.1	595.9	595.0	593.7	591.9	590.5	588.5	587.5	585.4	579.9	571.1
STA:	MTIP		IHd	200		1410	792 0	441 1				799 11	270 16		2.6 26.	632 33	PŢ	20, 333	20,975	21.541	22, 193	22.608	22.827	22.836	22.800	22.642	22.559	22.274	21.506	20.328
	I=13	OPTX=TT	α	945 8.5	ω.	∞.	7	7	۲.	9	9	Ŋ.	Ŋ.	4	4	ю	P.S	496	529		505	.387	.275	15, 111	746	.337	957		198	•
		61.355	7	-6.9	-6.925	-6.910	-6.89	-6.876	-6.864	-6.854	-6.847	-6.825	-6.7	-6.74	-6.7	-6.8	DBLK	0.873 15	•	-	·	•	_	0.832 1	•	•	•	Ť	Ť	~
ROTOR 1		W?F= 61	PSIC	Ö	0.050	0 100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	4.000	18		2	ю (4	5	6 0.	۲	ο ∞	6		 .0	12 0.	0
																								-						

CONTROLL OF THE PROPERTY OF TH

STA 14.000 MASS AVERAGED PROPERTIES
PT= 22.266 TT* 590.66 GAMMA=1.4014 PT-RAT= 1.515 TT-RAT= 1.139
RCU= 2446.1 VM= 795.7 CZ: 777.1 MM=0.709 MABS=0.789 MREL=1.003

D+H=0	ABH=O	X	0.536	0.570	0.597	0.637	0.663	0.679	0.688	0.703	0.717	0.731	0.739	0.733	0.723	0047	A 46.	65.0					0.788	0.809	0.831	0.859	0.895	0.901	0.899	
	Ö	ALPHAM	29.68	29.35	29.14	28.65	28.45	28.60	29.08	29.70	30.35					VABO	7 18 3	760.4	792.0	837.2	864.4	883.1	895.8	915.9	935.6	961.9	995.2	998.1	989.7	
٥٠٠٥		2	355.6	372.5	385.7	401.4	411.8	422.8	435.3	453.8	472.8	505.7	561.1	580.1	588.4	MDE	119	101	1.085	1.058	1.029	0.994	0.953	0.913	0.873	0.830	0.779	0.753	0.727	
145.21		X >	624.1	662.5	691.8	734.7	760.0	775.4	782.9	795.6	807.3					VRF	1303.5	1279.8	1257.9	1219.9	1180.0	1135.2	1084.2	1033.4	983.4			833.8	800.4	
	ITYPE=	CURV	٥.	0.0189							0.0083	0.0106	0.0519			BETAM								36.					6.20	
P=170	PTY=PT	H				42				.38	.70	.21 -	.49	. 4.	.87	1	607.6	609								598.4	597.0	593.0	584.9	
		<u>د</u> د				793			717				744	354	824	PT	21.783	22.483	23.053	23.871	24.307	•	•		•	24.032			•	
I=14	OPTX=	2	œ	œί	φ.	۲.	7	_	Ġ	9	ľ,	S.	4	4	e,	PS	16.855	16.867	16.865	16.799	16.673	16.507	6.284	5.902	5.399			٠	•	
	61.365								9	φ	9-	φ.	9-		φ.	LDBLK											. 753	.745 1	•	
	# L	PSI	ö	0.05	0 . 1	0.2Q	o. 30				0.700	0.8Q	0.90C	0.950	÷. 8.	SLB	-	n	о п			9	O .	c					_	,
	I=14 MIIP=170 AFLOW= 145,21 D.C=0.	I*14 MIIP=170 AFLOW= 145.21 D*C=0. 61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0.	I=14 MIIP=170 AFLOW= 145.21 D*C=0. 61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. IC Z R PHI CURV VM CU ALPHAM	I=14 MTIP=170 AFLOW= 145.21 D*C=0. D 61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. A 3IC Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68	I=14 MTIP=170 AFLOW= 145.21 D+C=0. 61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. IC Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68 >50 -6.712 8.316 ·0.39 -0.0189 662.5 372.5 29.35	I=14 MIIP=170 AFLOW= 145.21 D+C=0. (COME)	I=14 MIIP=170 AFLOW= 145.21 D+C=0. 61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. 1C Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68 00 -6.712 8.316 ⋅0.39 ⋅0.0189 662.5 372.5 29.35 00 -6.688 8.139 ⋅0.36 ⋅0.0253 691.8 385.7 29.14 100 -6.651 7.793 0.42 ⋅0.0128 734.7 401.4 28.65	I=14 MIIP=170 AFLOW= 145.21 D+C=0. 161.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. 11C Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68 -6.712 8.316 -0.39 -0.0189 662.5 372.5 29.35 -00 -6.688 8.139 -0.36 -0.0253 691.8 385.7 29.14 -00 -6.651 7.793 0.42 -0.0128 734.7 401.4 28.65 -100 -6.622 7.449 1.81 0.0049 760.0 411.8 28.45	I=14 MIIP=170 AFLOW= 145.21 D+C=0. I = 14 MIIP=170 AFLOW= 145.21 D+C=0. II	I=14 MTIP=170 AFLOW= 145.21 D+C=0. 161.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. 11C Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68 00 -6.651 7.793 0.0253 691.8 385.7 29.35 00 -6.651 7.793 0.42 -0.0128 734.7 401.4 28.65 00 -6.652 7.449 1.81 0.0049 760.0 411.8 28.45 00 -6.596 7.094 3.63 0.0216 775.4 422.8 28.60 00 -6.574 6.717 5.79 0.0102 782.9 435.3 29.08	I=14 MTIP=170 AFLOW= 145.21 D+C=0. 161.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. 11C Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68 00 -6.651 7.793 0.0199 662.5 372.5 29.35 00 -6.651 7.793 0.0253 691.8 385.7 29.14 00 -6.652 7.449 1.81 0.0049 760.0 411.8 28.65 00 -6.596 7.094 3.63 0.0216 775.4 422.8 28.60 00 -6.556 6.309 8.38 0.0128 795.6 453.8 29.70	I=14 MTIP=170 AFLOW= 145.21 D+C=0. D D D D D D D D D D D D D D D D D D D	61.365	61.365	I=14 MTIP=170 AFLOW= 145.21 D⋅C=0. 1C Z R PHI CURV VM CU ALPHAM -6.741 8.500 0. 0. 624.1 355.6 29.68 -6.712 8.316 0.039 0.0.018 662.5 372.5 29.35 00 -6.681 8.139 0.42 0.0.23 691.8 385.7 29.14 100 -6.622 7.449 1.81 0.0049 760.0 411.8 28.45 00 -6.596 7.094 3.63 0.0216 775.4 422.8 28.60 00 -6.556 6.309 8.38 0.0102 782.9 435.3 29.08 00 -6.555 5.861 11.70 0.0083 807.3 472.8 30.35 00 -6.441 4.744 22.49 0.0515 812.2 580.1 34.32 50 -6.461 4.354 27.41 -0.0752 812.2 580.1 35.53	61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. 1C Z R PHI CURV VM CU ALPHAM -6.741 8.500 0 0 624.1 355.6 29.68 500 -6.688 8.139 -0.048 662.5 372.5 29.68 000 -6.681 7.793 0.025 691.8 385.7 29.14 100 -6.651 7.793 0.025 691.8 385.7 29.14 100 -6.652 7.449 1.81 0.0012 734.7 401.4 28.65 100 -6.659 7.094 1.81 0.0049 760.0 411.8 28.45 100 -6.596 7.094 3.63 0.0216 775.4 422.8 29.08 100 -6.596 7.094 3.63 0.0102 782.9 435.3 29.08 100 -6.525 5.861 16.21 -0.0102 775.4 422.8	1=14	I=14 MTIP=170 AFLOW= 145.21 D→C=0. DG IC Z R PHI ITPE=5 INBR=3 ABC=0. AE -6.741 8.500 0. 0. 624.1 355.6 29.68 -6.712 8.316 0.03 -0.0189 662.5 372.5 29.68 00 -6.688 8.139 -0.36 -0.0253 691.8 385.7 29.14 00 -6.651 7.793 0.42 -0.0128 734.7 401.4 28.65 00 -6.652 7.449 1.81 0.0049 760.0 411.8 28.45 00 -6.596 7.094 3.63 0.0216 775.4 422.8 28.60 00 -6.556 6.308 11.70 0.0128 735.6 435.3 29.08 00 -6.556 6.308 16.21 -0.016 818.2 505.7 31.72 00 -6.473 5.358 16.21 -0.016 818.2 505.7 31.72 00 -6.441 4.744 22.49 -0.0519 821.9 561.1 34.32 00 -6.451 4.354 27.41 -0.0752 812.2 580.1 35.53 00 -6.526 3.824 34.87 -0.0668 795.7 588.4 36.48 00 873 16.855 21.783 607.6 61.39 130.3 5 1 119 718.7	1=14	I=14 MTIP=170 AFLOW= 145.21 D→C=0. AI 161.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. AI 170	I=14 MTIP=170 AFLOW= 145.21 D→C=0. AI 161.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. AI 170	I=14 MTIP=170 AFLOW= 145.21 D→C=0. AI 161.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. AI 170	WIFE 61.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. PSIC 6.365 OPTX=TT OPTY=PT ITYPE=5 INBR=3 ABC=0. O	WIF= 61.365	WIF= 61.365			Wife	Wife	Note

STA 14.500 MASS AVERAGED PROPERTIES
PT= 23.883 TT= 503.82 GAMMA=1.4012 PT-RAT= 1.625 TT-RAT= 1.164
RCU= 2894.4 VM= 770.2 CZ= 751.0 MM=0.679 MABS=0.788 MREL=0.944

JR.	D+H=0.	ABH=0.	X	0.487	0.526	0.556	0.602	0.629	0.643	0.652	0.665	0.679	0.695	0.720	0.732	0.738	744	0	0.618	0.655	0.681	0.723	0.751	0.767	0.782	0.801	0.826	0.858	0.917	0.948	0.979
N ROT			ALPHAM	37.94	36.49	35.38	33.74	33.04	33.03	33.49	33.98	34.72	35.97	38.20	39.42	41.12	7480	, ,	33.0	774.0	802.1	844.6	870.9	885.5	899.2	916.9	939.6	970.3	1027.0	1055.1	1080.1
(=3 ABC=0	ລ	451.1	460.3	464.4	469.1	474.9	482.6	496.2	512.4	535.1	570.0	635.2	670.0	710.3	1303	1000	2 2 3	1.8	0.995	0.982	0.960	0.928	0.889	0.851	0.813	0.776	0.748	0.741	0.738
;	144.25	INBR	¥>	578.6	622.3	653.9	702.3	730.0	742.4	749.9	760.4	772.3	785.3	807.1	815.1	813.7	1201	1 6 6 7	1197.9	1183.8	1171.2	1146.7	1113.7	1071.2	1021.8	973.8	925.6	877.4	837.7	824.8	813.7
_	AFLOW=	ITYPE=5	CURV			0.0110				0.0094			.0228		-0.0547	-0.0570	MATAG		61.12	58.29	56.06	52.23	49.04	46.12	42.79	38.66	33.44	26.49	15.55	8.80	
* 15.000	MTIP=183	OPTY=PT	PHI		-0.32 0		0.45 0	1.73 0	3.43 0	5.63 0	'	•	16.51 -0	23.53 -0	. 65	. 12	Ļ	- 6	631.4	631.2	629.8					614.4				607.6	
	I		a	500		138 -		457	110			5.923 1			512 2	026 3	F	- 0	23.968	24.616	25.056	25.716	26.092	26.238	26.247	26.080	25.875	25.673	25.616	25.220	24.388
	I=15	0P1X	7	.538 8	-6.499 8	.466 8	.413 7	.369 7.	.329 7				-6.169 5.	4	. 166 4.	.243 4.	č	2 6	18.526	18.455	18.359	18.147	17.950	17.772	17.521	17.081	16.537	15.867	14.866	14.133	13, 189
		1.365		9-													200	1000	0.880	0.883	0.884	0.881	.875	0.866	.851	0.838	0.826	0.814	.785	. 790	.743
ROTOR 1		MTF= 6	PSIC	ö	0.050	9.40	0.500	0.300	0.400	0.500	009	0,700	0.800	0.900	0.950	4.00	ō		-	9	ი ი	4	5	9	7	8	6	0	110	12 0	13 0
ã		3																									29)			

STA 15.000 MASS AVERAGED PROPERTIES
PT= 25.689 TT= 617.96 GAMMA=1.4010 PT-RAT= 1.748 TT-RAT= 1.191
RCU= 3375.9 VM= 740.5 CZ= 720.4 MM=0.646 MABS=0.791 MREL=0.881

20	D+H+0.	ABH=O.	Ŧ	0.452	0.492	0.523	0.569	0.598	0.611	0.616	0.623	0.633	0.649	0.694	0.720	0.763	MABS	0.621										0.928	0.978	1.053
IN ROT			ALPHAM	43.37	41.28	39.85	37.76	36.84		37.38	38.15	39.02	40.32	41.58	42.58	43.53	VABS	746.3	781.8	809.1	848.8	874.2	889.1	899.3	914.7	937.0	972.7	1047.2	1094.3	1161.5
		3 ABC=0	ว	512.5	515.8	518.2	519.7	524.2	532.3	546.0	565.0	590.4	629.4	695.0		6.664	MREL	0.938	0.936	0.932	0.923	0.903	0.873	0.832	0.791	0.752	0.717	0.714	0.724	0.765
	145.07	5 INBR=3	××	542.5	587.5	621.4	671.1	699.7	712.2	714.6	719.4	727.6	741.6	783.4	805.8	842.2	VREL	1126.7	1118.1	1108.3	1087.8	1057.6	1016.5	965.4	913.7	864.1	819.2	805.8	810.3	843.8
	AFLOW=	ITYPE=5	CURV		0.0038											.0158	BETAM	61.22	58.30	55.90	51.91	48.58	45.52	42.25	38.07	32.64	25.14	13.53	6.02	-3.57
5.500	96	-pT		0												0	=	646.7	44.7	642.6	37.8	33.7	30.2	27.4	24.9	22.6	621.2	621.0	620.5	18.3
STA= 1	MTIP= 196	OPTY=PT	PHI	o.	-0.38	-0.3	0.38	1.69	3.47	5.77	8.66	12.31	17.17	24.5	29.65	36.53		_											9 560	567 6
•			œ	.50	.313	. 137	797	.464	. 126	.772	. 394	.986	. 539	.007	.677	.235	PT	25		26.481		27						2	27.	26.
	I = 16	OPTX=TT	N	334 8	286 8	w	-	٦	-	Ψ	Ψ	מן	864 5		4	960	S	19.610	19.519	19.421	19.222	19.027	18.851	18.645	18.266	17.737	17.001	15.642	•	13.174
		.365		-6	•	9	-9	-6.115	-6.062	-6.015	'n	-5.926	ις.	ហ	Į.	5.0	RI DRI K			0.901		0.895					0.862	942	0.847	800
ROTOR 1	!)	WTF= 61	S	0	0.050	00,100	0.200	0.300	0.400	0.500	0.600	8	0.800	006.0	0.950	1.000	ā	i o	2	0	0		9		8		10		12 0	13 0.
80	?	>						-																	2	^				

STA 15.500 MASS AVERAGED PROPERTIES
PT= 27.244 TT= 629.44 GAMMA=1.4008 PT-RAT= 1.854 TT-RAT= 1.214
RCU= 3767.1 VM= 708.3 CZ= 687.2 MM=0.612 MABS=0.790 MREL=0.828

TE ROTOR	Dec. C.	3 ABC=0.	ALPHAM	47.81	.7 45.14	43.46	.6 41.41	.3 40.78		3 41.88	7 20 89	٠,	46.00	7 44.97	707 4 46 44 0 673	1 47.91	MREL VABS MABS	753.0		810.7 0.	849.1	.845 871.5	810	767 896.2	723 912.1	684 937.9	0.654 976.5 0.846	650 1040.3	.676 1098.4 0.	-	ES	9 TT-RA	MABS=0.783 MREL=0.768	EFFICIENCY AXIAL	>	0.711		19 0.751 0.661
	148.29	YPE=6 INBR=	*	505.7	555.1	588.4	636.9	629.9	668.5	667.3	5. 999 6. 898	2000.6	6/2/8	690.9	724.5	, so	SETAM VREL	61.77 1069.3	38.59 1065.2	56.17 1056.9	1034	63 998	952	968 90	.66 844	.74 794	.77 754	.56 742	3 763.	-6.27 790.6	AVERAGED PROPERTIES	I-RAT=	MM=0.568	ACC TT EFF	RATIO AD.	1.2686 0.686		_
8		Y=PT	PHI CURV	· 0	17	02 -0	-	33	16				•		03	35.49 0.08	11	60 658.0	654.9	652.0	647.4	643.7	640.8	638.3	636.2	634.4	633.0	631.6	ဖ	650 632.3	MASS	GAMMA=1	3 CZ= 64	SPEED ACC PT	OUT RATIO	0		-
	I = 17		2 R	131 8.500	.88						-3.736 0.802) و	9	s.	r,	677 4.442	TQ SQ	26	27	2	20, 198 28.	28.	29.	29.	29.	.063 29.	.246 29.	.879 28.	œ	.247 28.	STA. 16.000	3 TT= 64	3.2 < <u>₹</u>	BLADE SI	Z	1500 0		1468.6
ROTOR 1	į	WTF= 61.365	PSIC	9-	- 050	9-	, r	ı ıçı	400			900	. 700	- 008.	- 006	0.950 1.000 -5.	אומיזוא	1 0.538	o	ó	4 0.927	o	6 0.928	7 0.	Ö	9	o.	ö	•	13 0.875		pT= 28.783	2	AVERAGE	PCT TAM RAD	8	,	3.7 8.317

The second of the second secon

									0.878					
IENCY	POLY	0.711	0.751	0.786	0.849	0.897	0.932	0.955	0.969	0.979	0.984	0.983	0.976	0.364
C TT EFFICIENCY	AD.	0.686	0.729	0.766	0.835	0.887	0.925	0.950	0.965	0.977	0.982	0.981	0.974	0.960
ACC 11	RATIO	1.2686	1.2626	1.2570	1.2481	1.2410	1.2354	1.2306	1.2266	1.2231	1.2204	1.2177	1.2175	1.2190
ACC PT	RATIO	1.8073	1.8454	1.8753	1.9318	1.9692	1.9924	1.9992	1.9971	1.9924	1.9842	1.9679	1.9577	1.9495
SPEED	OUT	1500.0	1466.9	1435.7	1376.3	1318.6	1260.6	1200.4	1136.5	1068.3	994.4	907.9	855.0	783.8
									1053.6					
AGE	RAD	8.500	8.317	8, 138	7.781	7.419	7.041	6.640	6.205	5 726	185	4.525	4 103	3.547
AVE	PCT 14M	c	3.7		14.5	60.00	20.50	37.6	46 3 6 205	0.95	6.09	80.3	8	100

STA 17.000 MASS AVERAGED PROPERTIES
PT= 28.777 it= 640.23 GAMMA=1.4006 PT-RAT= 1.958 TT-RAT= 1.234
RCU= 4135.2 VM= 675.4 CZ= 657.4 MM=0.578 MABS=0.788 MREL=0.781

E D•H=O.	ABH=O.	Z.	0.414	0.460	0.492	0.543	0.571	0.588	0.595	0.599	0.606	0.614	0.633	0.655	0.652	MABS	0.619	0.653	0.677	0.719						0.851	0.902	0.948	0.997
FRE		ALPHAM	48.02	45.17	43.38	41.02	40.09	39.98	40.49	41.36	42.43	43.89	45.47	46.32	49.16	VABS	750.4	786.2	811.3	854.2	880.9	900.5	914.7	930.0	951.7	981.7	1031, 1	1075.6	1122.9
D•C=0.		5	557.9	557.6	557.3	560.6	567.4	578.6	593.9	614.5	642.1	680.5	735.0	777.8	849.4	MREL	0.881	0.885	0.884	0.877	0.858	0.830	0.794	0.754	0.715	0.676	0.654	0.660	0.653
146.20	O INBR=O	¥ >	501.9	554.2	589.7	644.5	673.9	0.069	695.7	698.0	702.4	707.5	723.1	742.9	734.4	VREL	1067.5	1065.2	1058.8	1041 6	1012.5	974.7	928.8	878.6	828.8	779.8	747.0	748.7	735.8
AFLOW:	•	CURV		-0.0380	-0.0559	-0.0654	-0.0583	-0.0442	-0.0201	0.0107	0.0445	0.0831	0.1592	0.2181	.2101	BETAM	61.96	58.65	56.16	51.77	48.28	44.93	41.50	37.39	32.05	24.86	14.51	7.12	-3.63
STA= 17.000 MTIP=222	OPTY = FREE		0.	0- 77.0	1.46 -0	2.78 -0	-	5.65 -0	•			16.65 0		. 26	0 06.8	i	658.0	654.9	652.0	647.4	643.7	640.8	638.3	636.2	634.4	633.0	631.6	631.5	632.3
		PHI			-	_								934 26	550 33	P	26.533	27.093	27.532	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	28.770	28.564
£	OPTX=DPP	α	700 8.500	39 8.314	37 8.14	X 7.813	31 7.497		_			3 5.714		4	4	PS	.488												. 135
	61,365	2	-5.70	-5.63	-5.56	-5.50	-5.431	-5.37	-5.33	-5.30	-5.26	-5.30	-5.35	-5.40	-5.52	BLDBLK	0.940 20												940 15
FREE	WTF= 61	PSIC	ö	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	±.000	St BL	o +	2	3 0	4	200	9	7 0.	0	9	0.0	-	12 0.	13 0.
ŭ.	3																							2 (,				

D+H=0.	ABH=O.	Ī	0.447	0.485	0.513	0.562	0.592	0.613	0.624	0.632	0.641	0.652	0.667	0.663	0.719	MABS	0.643	0.671	0.693					0.821	0.844	0.875	0.919	0.944	1.034
¥ ~	•	ALPHAM	45.92	43.69	42.17	39.99	39.00	38.72	39.01	39.62	40.57	41.82	43.53	45.40	45.97	VABS	776.6	806.3	828.4	869.4	897.3	919.4	936.2	953.2	975.3	1005.3	1048.0	1071.6	1157.6
	4 ABC=0	2	557.9	557.0	556.2	558.7	564.7	575.1	589.2	608.5	634.3	4	۲,	o.	832.3	MREL	0.899	0.901	0.900	0.894	0.879	0.856	0.825	0.790	0.755	0.721	0.693	0.672	0.719
4	TINBR.	¥>	540.3	583.1	613.9	666.1	697.4	717.4	727.5	733.7	740.9	749.1	759.8	752.4	804.6	VREL	1086.1	1082.4	1075.7	1060.3	1034.9	1002.2	962.0	917.4	872.5	828.3	790.3	762.7	804.7
•	1TYPE=	CURV	_•	.0113			-0.0186				.0034	.0102	. 0299	.0250	. 3271	BETAM	60.17	57.41	55.20	51.08	47.64	44.29	40.87	36.89	31.88	25.25	15.97	9.39	-0.92
SIA= 18.000 MTIP=235	OPTY=FREE	=	٥.	.41 -0	40	.87	.07	.34		.77	.30	.81	77.	69.	.23 0	11	658.0	654.9	652.0	647.4	643.7	640.8	638.3	636.2	634.4	633.0	631.6	631 5	632.3
		IHd	200	324	157 2		.533 5		901		206 12	801 15	322 21		43 31	pt	26.533	27.093	27.532	28.390	28.940	29.280	29.380	29.350	29.2RO	29,160	28.920	28.770	28.564
I=19	OPTX=DPP	a	∞.	80	∞.	-	-	963 7.224		9	ė	ĸ,	S.	'n.	375 4.6	PS	20.100				19.697	9.489	19.213	18.848	8.364	17,704	16.734	16.199	4.482
	1.365	2	Ų.	-5.	ų,		S)	4-	7	4.	-4.	.5	.5	'n,		BLOBLK		940	940	940	940	940	940	. 940	•	. 940	.940	.940	940 1
<u> </u>	WTF= 61	PSIC		0.050	9. 18	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1.000	SL 8		0	9			9		8	6	0 01		12 0	13 0

THE THE THE PROPERTY OF THE PARTY OF THE PAR

STA 18.000 MASS AVERAGED PROPERTIES
PT= 28.777 TT= 640.23 GAMMA=1.4007 PT-RAT= 1.958 TT-RAT= 1.234
RCU* 4135.2 VM= 706.6 CZ= 689.3 MM=0.607 MABS=0.806 MREL=0.811

TOR	D.H=0.	AIIH=O.	¥	ს. 503	0.530	0.552	0.595	0.625	0.647	0.661	0.672	0.685	0.705	0.736	0.762	0.796	MABS	0.589	0.617	0.640	0.685	0.717	0.741	0.757	0.772	0.792	0.822	0.868	•	0.953
IN STATOR			ALPHAM	31.42	30.86	30.38	29.63	29.29	29.13	29.22	29.50	30.05	30.93	32.05	32.61	33.40	VABS	716.1	746.1	770.2	817.0	849.2	872.9	888.3	902.2	921.9	951.8	997.4	1033.2	1081.1
	D*C=0	-4 ABC=0	5	373.3	382.7	389.5	404.7	415.4	425.0	433.6	444.3	461.6	489.2	529.3	556.9	595.0	MREL	1.05¢	1.044	1.035	1.017	0.998			0.916	0.884	0.853	0.830	0.828	0.834
	126.06	2 INBR=4	¥>	611.1	640.5	664.5	7.607	740.7	762.5	775.3	785.2	798.0	816.4	845.4	870.3	905.6	VREL	1281.8	1262.8	1245.5	1213.5	1181.8	1148.2	1110.8	1070.7	1029.1	987.8	953.3	945.8	945.9
	AFLOW=	ITYPE=2	CURV	•	0.0336	0.0504	.0600	.0536	.0439	0.0347	.0298	.0332	0.0448	0.0875	0.1170	. 1265	BETAM	_	59.52	57.76	54.21	51.19	48.39	45.74	42.83	39.16	34.26	27.53	23.04	17.40
00,0,01	MTIP=248	UPTY=BETM	=	0	.11	.97	0	.63 0.	0		0 67.1	.93	60	47	44	.23 0	F	658.0	654.9	652.0	647.4	643.7	640.8	638.3	636.2	634.4	633.0	631.6	631.5	632.3
STA=	MTIF		R PHI	500	. 336	177	171 3			965 7	643 9	298 11	923 15	497 19		975 26	ρŢ	26.533	27.093	27.532	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	28.770	28.564
	1*20	0P1X=0PP	. 2	770 8.5	.724 8.3		.617 7.8	.567 7.572		512 6.9	9	ģ	Ŋ.	.640 5.4	Ŗ.	770 4.9	PS	20.984	20.957		20.739	20.546			19.792		18.708	17.686	16.922	15.919
		61.365		4	. 4-	-4.	7	4-	4-	4-	4	7	7	1	- 4	4	BLDBLK	875		.878				.880		0.878	.875	.867	.857	.837
STATOR		WTF= 6	PSIC	Ö	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700		006.0	0.950	1.000	SLB	-	2		4		9	0 1	80	0	_	110	12 0	13 0
																								_	•					

STA 19.000 MASS AVERAGED PROPERTIES
PT= 28.777 TT= 640.23 GAMMA=1.4005 PT-RAT= 1.958 TT-RAT= 1.234
RCU= 3035.9 VM= 765.4 CZ= 749.0 KM=0.653 WABS=0.756 MREL=0.940

TOR	D•H=0.	ABH=0.	ĭ	0.534	0.561	0.582	0.622	0.648	999.0	0.677	0.687	0.699	0.716	0.740	0.757	0.777	MABS	0.575	0.604						0.735		0.770	0.800	0.819	0.843
IN STATOR			ALPHAM	21.82	21.64	21.49	21.24	21.03	20.90		20.93	21, 15	21.59	22.20	22.52	22.91	VABS	700.7	731.5	754.6	797.2	824.5	843.4	854.3	863.6	877.1	898.6	927.8	947.7	973.0
	D+C=0.	4 ABC=0	5	260.5	269.8	276.4	288.8	295.9	300.9	304.2	308.4	316.5	330.6	350.6	363.0	378.8	MREL	1.150	1.141	1.131	1.113	1.092	1.069	1.042	1.012	0.982	0.952	0.925	0.914	906.0
	118.88	2 INBR=4	¥>	650.4	680.0	702.1	743.0	769.5	787.9	798.3	9.908	818.1	835.5	859.0	875.5	896.3	VREL	1399.8	1381.2	1363.3	1330.4	1297.8	1264.1	1227.5	1188.9	1149.4	1110.4	1073.2	1057.7	1044.7
	AFLOW=	ITYPE=2	CURV		0.0043			0.0202				0.0535		0.0876	0.1002	0.1259	BETAM	62.31	60.51	59.00	56.05	53.63	51.44	49.43	47.28	44.63	41.20	36.83	34.14	30.91
STA= 20.000	=261	OPTY=BETM			62			3.86 0				90.	80	31	. 54	. 50	Ħ	658.0	654.9	652.0	647.4	643.7	640.8	638.3	636.2	634.4	633.0	631.6	631.5	632.3
STA=	MTIP=261		IHd	o o		_						Ξ	13	32 17	19	18 22	P	26.533	27.093	7.532	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	8.770	8.564
	1=21	OPTX=DPP	~	0 8.500		8 8.188					_		9 6.018	2 5.632		0 5.188	PS	25	174	. 143			•	20.704 2				. 975	511	. 927
			7	-4.300		-4.258	-4.22	-4.201	-4.184	-4.174	-4.173	-4.180	٠.	-4.2%	-4.260	-4.300		2	2									13		
~		61.365	ပ														BLOBLK	0.849	0.851	0.85	0.855	0.85	0.85	0.860	0.860	0.858	0.855	0.847	0.840	0.828
STATOR		WIFE	PSIC	0	0.050	0.40	0.20	0.300	0.40	0.50	0.60	0.70	0.800	0.900	0.950	4.000	5	-	8	က	4	ស	9	7	œ	6	0	=	12	5
V	1	3																						3	5					

PERSON DESCRIPTION OF THE PROPERTY OF THE PERSON OF THE PE

STA 20.000 MASS AVERAGED PROPERTIES PT= 28.777 TT= 640.23 GAMMA=1.4004 PT-RAT= 1.958 TT-RAT= 1.234 RCU* 2126.1 VM= 789.4 CZ* 776.2 MM=0.669 MABS=0.719 MREL=1.034

TOR	D+H=0.	ABH=O.	ĭ	0.546	0.575	0.596	0.636	0.662	0.680	0.691	0.699	0.709	0.721	0.737	0.749	0.762	MABS	0.564	0.592	-						0.728	0.742	0.759	0.77	0.785
IN STATOR		•	ALPHAM	14.20	14.02	•	13.59	13.41	13.29	13.21	13.16	13.20	13.44	13.79	13.90	13.98	VABS	687.1	718.3	741.3	783.4	808.8	827.9	837.8	845.3	855.2	868.4	885.7	838.6	913.4
	0=0+0	A ABC=0	2	168.6	174.0	177.6	184.2	187.9	190.3	191.4	192.4	195.4	201.9	211.2	215.8	220.6	MREL	1:221	1.216	1.209	1, 195	1.177	1.155	1.128	1.099	1.070	1.039	1.010	0.997	0.986
	115, 15	2 INBR=	¥>	666.1	6.969	719.7	761.5	787.7	805.7	815.7	823.2	832.6	844.7	860.2	872.3	886.3	VREL	1488.8	1474.0	1458.9	1430.8	1400.2	1367.6	1331.9	1294.5	1256.4	1217.1	1178.0	1161.7	1147.0
	AFLOW=	ITYPE=2	CURV		0.0026				0.0223				0.0701			1266	BETAM	63.42	61.78	60.44	57.84	55.77	53.90	52.23	50.51	48.50	46.05	43.10	41.33	39.40
200	74	OPTY = BETM	O	Ö					.0							3 0.	11	58.0	54.9	52.0	47.4	43.7	40.8	38.3	36.2	34.4	33.0	631.6	31.5	632.3
STA= 2	MTIP=274	OPTY	Hd	o.	0.5	-	2.22	3.4	4.7	6.26	7.93	9.85	12.10	14.93	16.61	18.63		533 6			390 6	940	280	380	350	280	160	320		564 6
	I=22		α	. 500	.346	1. 197	7.907	.624	.340	7.051	6.752	•	. 109	.757		5.376	PT	26.	27	27	28.	28.	29.	29.	29.	29.	29.	28.	28.	28.
	1=22	OPTX	2	8008	8008						•	•	-3.800	800		-	Sd	21.391	21.369	21.345	21.293	21.224	21.128	20.996	20.817	20.571	20.232	•	19.404	19.01
		1.365													ب ب	ئ	DBLK	0.849		0.851						.859	.858	.855	.854	.852
STATOR		WIF= 6	PSIC	0	0.050	001	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	2.00	S.		7	ю (-	2	9	7	8	0	0	110	12 0	13 0
S	+	3																							36	:				

STA 21.000 MASS AVERAGED PROPERTIES
PT= 28.776 TT= 640.23 GAMMA=1.4003 PT-RAT= 1.958 TT-RAT= 1.234
RCU= 1341.1 VM= 802.9 CZ= 792.8 MM=0.679 MABS=0.698 MREL=1.119

TOR	D+H=0.	ABH=O.	I	0.538	995.0	0.588	0.628	0.654	0.672	0.683	0.691	0.700	0.711	0.719	0.724	0.732	MABS	0.542	0.571	0.592	0.632	0.658	0.677	0.688	0.696	0.705	0.715	0.723	0.729	0.737
IN STATOR			ALPHAM	7.19	7.08	6.97	6.19	99.9	6.56	6.48	6.43	6.43	6.51	6.65	6.72	6.77	VABS	662.1	693.8	716.7	758.9	785.6	804.0	814.1	821.3	830.2	840.5	848.2	853.7	863.3
	D+C=0		20		85.5	87.0	89.8	91.1	91.8	91.9	92.0	•	95.2	98.2	8.66	101.8	MREL	1.278	1.275	1.270	1.259	1.242	1.221	1.196	1.167	1.139	1.109	1.075	1.059	1.044
	114.73		₹ >	626.9	688.5	711.4	753.6	780.3	798.8	808.9	816.1	825.0	835 1	842.5	847.8	857 3	VREL	1562.0	1549.6	1536.0	1510.7	1481.9	1450.7	1415.7	1378.6	1341.2	1302.6	1260.7	1240.3	1222. 1
	AFLOW=	ITYPE.2	CURV		-0.0034	-0.0021	0.0060	0.0147	0.0234	.0318	0.0418	.0537	.0570	.0637	.0820	. 1249	BETAM	65, 13	63.62	62.41	60.08	58.23	56.59	55.15	53.70	52.04	50.13	48.07	46.88	45.45
22.000	MT1P=287	OPTY=BETM	ı	0	. 54	0- 60.	. 98	66.	80.	30	. 68	. 28	.31	.71 0	. 98	. 23 0	=	658.0	654.9	652.0	647.4	643.7	640.8	638.3	636.2	634.4	633.0		631.5	632.3
STA	MIIP		PHI	500	0	207 1	_	655 2	4	105 5	9	519 8	205 10	871 12	696 13	12 15	þŢ	26.533	27.093	27.532	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	28.770	28.564
	1=23	OPTX=DPP	α	ø	ю.	œ	٦.	7	7.	7.	ø,	9	Ġ	ů.	S.	ທ່	PS	. 733	. 723	.716	. 688	.632	. 541	.413	.242	.014	.731	.408	. 204	. 906.
		61.365	7		•	-3.218	•	-3.245	-3.259				-3.316	-3.333	-3.341	-3.350	BLDBLK	880 21	0.880 21						.885 21		886 20	886 20	887 20	887 19
STATOR		WTF= 61	PSIC	o.	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	4.000	SL BL	· •	8		4	0	0	0		0	0	•	12 0.	Ö
•	,	_																							2	~				

THE THE PERSON AND TH

STA 22.000 MASS AVERAGED PROPERTIES
PT= 28.776 TT= 640.23 GAMMA=1.4002 PT-RAT= 1.958 TT-RAT= 1.234
RCU= 649.0 VM= 793.0 CZ= 786.0 MM=0.668 MABS=0.673 MREL=1.184

TDR D+H=0.	ABH=0.	¥	0.533	0.557	0.574	0.614	0.639	0.657	0.668	0.675	0.684	0.703	0.704	0.704	0.692	MABS	0.533	0.557	0.574	0.614	0.639	0.557	0.668	0.675	0.684	0.703	0.704	0.704	0.692
E STA		ALPHAM	o o	o O	ö	ó	o O	ó	٥.	ó	ö	ö	ó	Ö	ö	VABS	651.5	678.5	696.1	738.2	764.1	782.7	792.7	798.8	807.6	827.6	827.3	827.1	815.1
T D•C=0.	-	2	ö	ó	ó	o.	ó	ö	o.	ó	ö	o.	ö	o.	ö	MREL	1.337	1.334	1.327	1.318	1.301	1.281	1.256	1.227	1, 199	1.177	1.140	1.121	1.091
118.18	3 INBR=4	X >	651.5	678.5	696.1	738.2	764.1	782.7	792.7	798.8	807.6	827.6	827.3	827.1	815.1	VREL	1635.4	1623.4	1608.7	1585.0	1556.5	1525.5	1490.5	1452.8	1415.8	1384.8	1340.5	1317.2	1285.3
AFLOW:		CURV	۲.	0.0062	0.0089	0.0120	0.0177	0.0260	0.0370	0.0497	0.0647	0.0931	0.1246	. 1318	. 1267	BETAM	66.52	65.30	64.36	62.24	60.60	59.13	57.87	56.64	55.22	53.30	51.89	51.10	50.64
STA= 23.000 MTIP=300	OPTY=BETM	PHI		0.49 C		1.67	2.43 C		4.17	5.21	6.41 C	7.99 C		10.79 C	1.52 0	F	658.0	654.9		647.4					634.4		631.6	631.5	632.3
		a	500	358	.213	7.948			152	6.876	6.589	. 292				PT	26.109	26.581	26.910	27.731	28.269	28.638	28.780	28.769	28.749	28.851	28.252	27.861	27.159
1=24	OPTX=DPP	Z	.567 8.	.581 8.	.595 8.	.622	648 7			-2.727 6.		85 6	316	832	.850 5.	PS	21.525	21.526	21.522	21.507	21.477	21.425	21.337	21.204	21.020	20.735	20.295	20.015	
α	61.365	10	-2	50 -2	-2	-2	00 -2.					00 -2.7	_	•	00 -2	BLDBLK	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940
STATOR	WTF=	PSIC	ö	0.050	0	0.2	0.300	4 .0	0	0.600	0.7	0.800	0.900	0.950	4.00	SL	•	8	ო	4	ß	9	7	80	თ 3 <i>8</i>	9	=	12	1 3

AND LINES AND COURSE TO A SECTION OF THE SECTION OF

STA 23.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 640.23 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.234
RCU= 0. VM= 777.4 CZ= 773.2 MM=0.654 MABS=0.654 MREL=1.244

				1.135										
IENCY	POLY	0.691	0.727	0.756	0.819	0.866	0.902	0.926	0 941	0.953	0.968	0.949	0.929	0.887
EFFIC	AD.	0.665	0.703	0.734 0.756	0.802	0.853	0.893	0.919	0.935	0.948	0.965	0.944	0.923	0.876
ACC 11	RATIO	1.2686	1.2626	1.2570	1.2481	1.2410	1.2354	1.2306	1.2266	1.2231	1.2204	1.2177	1.2175	1.2190
ACC PT	RATIO	1.7766	1.8088	1.8311	1.8870	1.9236	1.9487	1.9584	1.9576	1.9562	1.9632	1.9224	1.8958	1.8480
	DUT													
BLADE	Z													
AGE	RAD	8.500	8.341	8.188	7.894	7.608	7.322	7.029	6.723	6.398	6.046	5.649	5.419	5.137
AVER	PCT IMM RAD	o O	4.7	9.3 8.188	18.0	26.5	35.0	43.7	52.9	62.5	73.0	84.8	91.6	100.0

ш	D+H=0.	APH=O.	I	0.548	0.572	0.589	0.628	0.655	0.675	0.687	0.695	0.705	0.725	0.722	0.720	0.707	MABS	0.548				0.655	0.675		0.695		0.725	0.722	0.720	0.702
FREE		·	ALPHAM	ó	ö	o.	ö	o.	ö	o O	o O	ó	o o	o.	Ö	ö	VABS	668.7	695.2	712.5	754.6	781.5	801.4	812 9	820.3	830.7	850.3	846.8	844.4	831.1
	D*C	O ABC=O.	ກ	ó	ó	ö	o.	o O	ö	ó	ó	ó	·	ó	Ö	ö	MREL	1.345	1.342	1.336	1.328	1.314	1.296	1.273	1.247	1.222	1.202	1, 165	1.146	1.117
	116.57	O INBR=C	Σ>	668.7	695.2	712.5	754.6	781.5	801.4	812.9	820.3	830.7	850.3	846.8	844.4	831.1	VREL	1642.3	1631.1	1617.2	1595.1	1568.7	1540.1	1507.5	1472.5	1438.€	1410.0	1366.6	1343.5	1312.6
0	AFLOW=	E ITYPE-0	CURV		5000.0	0.0079	0.0157	0.0231	6060.0	0.0398	0.0505	0.0640	0.0789	0.0994	0.1149	0.1260	BETAM	65.97	64.77	63.86	61.77	60.12	58.64	57.37	56.14	54.73	52.91	51.71	51.06	50.71
STA* 24.000		OPTY=FREE	IHd	ö	0.32	0.62	1.18		2.15	2.63	3. 12	3.62	4.1.	4.59	4.85	5.28	1	9 658.0	_		647	9 643.7	640	0 638.3		_	1 633	631.	1 631.5	9 632.3
S		OPTX=OPP	œ	. 500	1.362	8.226	7.964	. 707	.452	7.194	6.929	6.656	6.374	6.078	5.922	. 757	T d	26.109	26.581			28.269	28.	28.780	28.769		28.85	28.252	27.86	27.15
	1=28		7	800	8000	8	8	8	.000		-2.000 6		8	8	8	.000	PS	7	21.294	21.286	21.254	21, 197	21.112	20.995	20.837	20.624	20.339	19.960	19.723	19.454
		61.365	21						400 -2				800 -2.0			000	BLOBLK	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950
EXIT		WTF	PSIC	o.	0.050	٥. ب	0.200	ဂ ဝ	0.40	0.50	0.600	0.70	0.80	0.900	0.950	<u>-</u> 8	SL	₩-	7	က	4	ഹ	9	7	۵ 3	ი 9	ō	-	12	5

TO CHARLES THE PROPERTY OF THE

STA 24.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 640.23 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.234
RCU= 0. VM= 796.6 CZ= 795.5 MM=0.671 MABS=0.671 MREL=1.262

EXIT	E						STA	25.000	8				FREE	w	
				I=2	9		MTIF	MTIP=326		AFLOW=	116.27	D+C=0.	٥.	D+H=0.	
WTF=		61.365	ស្ល	OPT	×	OPTX=DPP	0	OPTY=FREE	EE	ITYPE=0	=O INBR=O		٥.	ABH=O.	
	PSIC		7		_	~	PHI	=	O	CURV	X	20	ALPHAM	Z	
_		1	Ť.	270	80	200	U		o.		685.8	o O	o O	0.562	
_	0.050	•	1.2	270	80	365	o	0.19	ö	0.0025	711.4	ó	o O	0.586	
_	5. 100	1	1.2	270	m	232	Ü	0.36	o.	0048	728.0	ö	ö	0.602	
~	0.200	'	1.2	270	7	.975	U	99.(o.	0091	768.2	ö	o.	0.641	
	0.300	•	1.2	270	7	723	0	.91	o.	0.0135	793.2	ö	ö	0.665	
_	0.400		-1.2	270	7	472	_	. 13	o O	0179	810.9	ó	o O	0.683	
J	0.500	'	1.2	270	7	218	_	.32	o.	0227	819.5	ó	ó	0.693	
	0.600		-1.2	270	9	926.9	_	. 48	o.	0.0279	823.0	o.	0	0.697	
_	0.700	'	1.2	270	9	.686	•	. 58	Ö	0.0334	827.8	ö	ó	0.703	
J	0.300	•	1.2	270	9	.407	_	1.62	Ö	0.0397	839.6	o O	o.	0.715	
J	98.	•	1.2	270	9	112	-	. 54	o.	0.0463	824.5	ö	ó	0.701	
J	0.950	•	1.2	270	5	926	_	. 42	o.	0493	813.9	o.	o.	0.691	
-	.000	'	4.2	20	3	790	0	0.00	o.	1263	794.2	ö	o O	0.673	
•	# E	BI DBI K	¥	PS.		o.	٦.	F		BETAM	VREL	MREL	VABS	MABS	
•		926.0	7	4.067	1	26.	109		0	65.43	1649.3	1.353	685.8	0.562	
	7	0.956	~	1.065	ູເກ	26.	581	654.9	6	64.27	1638.6	1.350	711.4		
	9	926.		21.060	o	26.	910	652.0	0	63.38	1625.0	1.345	728.0	0.602	
	4	•		21.040	0	27.	731	647.	4	61.37	1603.3	1.337	768.2		
		0.956		21.005	ល	8,	569	643.	7	59.80	1576.9	1.323	793.2	0.665	
	9	0.956		20.954	4	28.	638	640.	80	58.41	1548.0	1.304	810.9	0.683	
	7	.956		20.884	4	28.	780	638.3	က	57.24	1514.6	1.280	8 19.5		
4	8	926.		20.792	2	28.	169	636.	7	56.16	1477.9	1.252		Ö	
O	0	•		0.674	4	28.	749	634.	4	54.95	1441.3	1.223	827.8	o.	
-	_	•		20.526	9	•	851	633.	o.	53.40	1408.3	1, 199	839.6	o	
•	110	926.		20.342	Ŋ	28.	252	631.	9	52.61	1357.7	1.155		Ö	
•	12 0			20.235	ñ	27.	861	631.	S	52.25	1329.4	1.129	813.9	0.691	
•	13 0		•	20.05	Ŋ	27.	. 159	632.	ო	52.15	1294.2	1.096	794.2	0.673	

CONTROL CONTROL OF THE PROPERTY OF THE PROPERT

ST& 25.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 640.23 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.234
RCU= 0. VM= 797.9 CZ= 797.7 MM=0.672 MABS=0.672 MREL=1.264

E D*H=O.	ABH=0.	X	0.578	0.601	0.617	0.653	0.675	0.690	969.0	0.695	0.695	0.699	0.675	0.659	0.628	MARA	0.578	0 601	0.617	0.653	0.675	ر. 690	0.696	0.695	0.695	669.0	0.675	0.659	0.628
FRE		ALPHAM	o o	ö	o O	ö	ö	ö	ó	ö	ö	O	ö	o.		VARS	703.4	728.2	743.9	781.9	804.2	818.5	823.0	821.1	819.2	822.6	796.0	778.3	745.2
D+C=0.		ā	:	•	o O	o O	ö	ó	o O	ó	ó	o O	o O	o O	ó	MOR	1.361	1.359	1,353	1.346	1.330	1.310	1.284	1.252	1.220	1.189	1.137	1.107	1.066
116.28	O INBP=0	X >	703.4	728.2	743.9	781.9	804.2	818.5	823.0	821.1	819.2	822.6	0.961	778.3	745.2	VDF	1656. R	1646.3	1632.8	1611.1	1584.0	1553.8	1518.4	1479.0	1438.4	1399.9	1341.8	1308.6	1264.7
AFLOW=	ITYPE=0	CURV		-0.000	-0.0000	0000	-0.000.0-	0000.	0000.	0000	0000.	-0.0000	-0.000	0000.	°.	RETAM	88	63.75	62.90	60.97	59.49	58.21	57.18	56.28	55.28	54.01	53.61	53.50	53.90
ST# 26.000	OPTY=FREE	PHI					0.49 -0				55		2	õ		=	658.0	654.9					638.3	636.2	634.4	633.0	631.6	631.5	632.3
STA		a a	200				7.733		231			419	_	_	_	Þ	26, 109	26.581	26.910	27.731	28.269	28.633	28.780	28.769	28.749	28.851	28.252	27.861	27.159
1 = 27		7	.350 8.				-0.350 7.					.350 6.		350	.350	ď	20.824	20.824		20,823	20.824	20.824	20.824	20.824	20.823	20.822	20.822	•	20.822
	61.365	IC	Ŷ										_		0- 000	אנקט אנקט	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956
EXIT	WTF	PSIC	Ö	0.050	٠	0.5	0.300	0.400	0.5	0.600	0.7	0.8	0.900	0.950	٠. ٩	ï	, -		, m	4	ស	9	-	6 0	6	ç	=	12	.

TARK THE PROPERTY OF THE PROPE

I had he will be being

STA 26.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 640.23 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.234
RCU= 0. VM= 796.1 CZ= 796.1 MM=0.670 MABS=0.670 MREL=1.264

PHASE IV ROTOR

BLADE FORCES

THE FORCE CALCULATIONS ARE 'PER BLADE ROW'.
TO FIND THE FORCE ON A SINGLE BLADE, DIVIDE BY 'NB'

THE FORCES ARE THAT OF THE AIR ON THE BLADES.

POSITIVE AXIAL IS AFT: POSITIVE TANGENTIAL IS IN ROTATION DIRECTION.

THE COLUMNS HEADED BY F-TAN*, F-AXL*, AND F-RAD* ARE THE TANGENTIAL,

AXIAL, AND PADIAL FORCES PER INCH OF CHANGE IN R-AVG.

LB 23.3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
F-AXL 	83.
(LETAN 12093.5 12093.5 12093.6 12096.9 12096.9 12099.3 12099.9	186. 165.
H-A/C IN / B / I I B 3 B / J I B 3 B / J I B 3 I / B 5 B I I B 1 B I B 1	.95
A	. 1.8
N	22

NET TOROUE = -7884.4 IN-L8
NET TAN. FORCE = -1262.7 L8
NET AXIAL FORCE = -1310.9 L8
NET DADIAL FORCE = -104.1 L8

2. STREAMSURFACE BLADE COORDINATES

The Control of the Co

Figure 66 shows the stacked Phase IV rotor streamsurface sections. Each page of the following tabulation gives the coordinates for one of these sections. The streamline designation for these sections corresponds to the calculation streamlines of the circumferential average flow calculation. Streamline 1 is at the casing and streamline 13 is at the hub. Also given in the tabulations are coordinates for the section meanline, the meanline angle, and the section thickness at each point. Streamsurface section chord, camber angle, and stagger angle are also given. All dimensions in this tabulation are in inches or degrees.

resident described described described and respected described described by the second of the second
Figure 66. Stacked Phase IV Rotor Streamsurface Sections

NB 20

MERIDIONAL AIRFOIL GFOMETRY

MEANLINE INPUT DATA - STREAMLINE

THE TAX TO SELECT AND THE PROPERTY OF THE PROP

T(M) 0.01884 0.02248 0.02245 0.03745 0.05344 0.05344 0.09593 0.09593 0.09593 0.09593 0.09593 0.09593	1(M) 0 01946 0 002352 0 004858 0 004858 0 005775 0 005775 0 00817 0 00939 0 00939 0 00939
B:M -54.960 -55.530 -57.786 -58.948 -60.279 -61.540 -62.159 -63.159 -63.010 -62.356 -61.454 -63.010 -52.356 -51.962 -57.962 -57.962 -57.962 -57.962	8.8 -53.574 -54.150 -55.276 -56.396 -57.24 -59.765 -60.176 -59.211 58.169 -57.026
X -1 12800 -0.97530 -0.87360 -0.87360 -0.53370 -0.4920 -0.04920 -0.04920 -0.04920 -0.04920 -0.04920 -0.04920 -0.04930 -0	7 -1.20406 -1.14855 -0.92653 -0.81553 -0.69342 -0.75022 -0.75022 -0.75022 -0.75022 -0.75022 -0.73891 0.37212 0.50532 0.63852 0.63852
PHI 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	PHI 0.815 0 814 0.785 0.676 0.278 0.027 0.047 0.024 0.047 0.047 0.048 0.048 0.048 0.035 0.035 0.035 0.035
1(Z) P 0.01884 0. 0.02248 0. 0.02345 0. 0.05344 0. 0.05344 0. 0.05346 0. 0.09554 0. 0.09554 0. 0.09554 0. 0.09554 0. 0.09554 0. 0.09553 0. 0.09593 0. 0.09593 0. 0.09593 0.	1(2) 0.01946 0.02352 0.03178 0.04017 0.05775 0.05775 0.07637 0.08418 0.09053 0.09053 0.09939 0.09867 0.09867 0.09867 0.09867 0.09867
HETA B+ 21035 -54.960 0 20172 -55.530 0 18391 -56.650 0 14588 -58.948 0 14584 -60.229 0 09762 -61.540 0 07047 -62.612 0 04034 -63.159 0 01397 -63.010 0 01388 -62.356 0 04081 -63.956 0 04081 -59.753 0 14602 -58.872 0 18344 -55.525 0	8 • • • • • • • • • • • • • • • • • • •
THETA 0.21035 0.20172 0.18391 0.16532 0.12344 0.09762 0.07047 0.04234 0.01397 -0.01388 -0.04081 -0.04081 -0.05181 -0.05181 -0.05181 -0.05181 -0.05181 -0.05181 -0.05181 -0.05181	1HETA 0. 21625 0. 20691 0. 18755 0. 16756 0. 14661 0. 17250 0. 0948 0. 0663 0. 01029 0. 01029 0. 01062 0. 01062
88.50000 88.50000 88.50000 88.50000 88.50000 88.50000 88.50000 88.50000 88.50000 88.50000 88.50000 88.50000	R 8 14050 8 14130 8 14140 8 14560 8 14660 8 14660 8 14530 8 14250 8 14090 8 13950 8 13950 8 13950 8 13950 8 13560 8 13560
2 -1, 12800 -1, 07710 -0, 97530 -0, 87360 -0, 77180 -0, 53770 -0, 1950 -0, 19510 -0, 1	2 -1.20400 -1.14850 -0.3150 -0.81550 -0.81550 -0.42700 -0.29380 -0.16060 -0.02740 0.10570 0.10570 0.10570 0.50530 0.50530 0.77170 0.90490
F - 2 2 4 7 8 4 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F - 2 6 4 8 6 7 5 7 5 5 7 8 6

MERIDIONAL AIRFOIL GEOMETRY

MEAN! INE INPUT DATA - STREAM! INE

20

Ë

THE STATE OF THE PROPERTY OF T

T(M)	0.02007	0.02482	0.03443	0.04412	0.05379	0.06422	0.07510	0.08500	0.09343	0 10010	0.10491	0.10788	0.10898	0.10794	0.10319	0.09294	0.07559	0.04969	0.02062
æ•	-52.280	-52,796	-53.801	-54.776	-55.748	-56.839	-57.703	-57.666	-56, 798	-55.429	-54.016	-52 824	-51,818	-50 923	-50.062	-49.205	-48.350	-47.514	-46,819
×	-1 28375	-1.22412	-1,10476	-0.98540	-0.86604	-0.73469	-0.59155	-0.44832	-0.30521	-0.16200	-0.01890	0.12430	0.26740	0.41061	0.55381	0 69692	0.84012	0.98322	1, 10253
рні	1.832	1.834	1.829	1.793	1.706	1.525	1.242	0.931	0.652	0.446	0.317	0.277	0.339	0.434	0.474	0.408	0.363	0.586	0.922
1(2)	0.02006	0.02481	0.03442	0.04411	0.05377	0.06420	0.07509	0.08479	0.09343	0.10010	0.16491	0.10788	0.10898	0 10794	0.10319	0.09294	0.07559	0.04969	0 02062
ů	-52.294	-52.811	-53.814	-54.789	-55.759	-56.848	-57,709	-57.669	-56.800	-55.430	-54.016	-52.824	-51.819	-50.924	-50.063	-49.206	-48.351	-47.516	-46.823
THETA	0.22304	0.21301	0.19239	0. 17 102	0.14889	0.12358	0.09489	0.06573	0.03710	0.00971	-0.01626	-0 04 100	-0.06478	-0.08777	-0.11004	-0.13165	-0.15261	-0.17295	-0.18945
α	7.76360	7.76560	7.76940	7.77320	7.,7690	7.78070	7.78420	7 78690	7.78880	7.73020	7.79110	7.79170	7.79240	7.79340	7.79460	7.79570	7.79670	7.79780	7.79880
7	-1.28340	-1.22380	-1.10450	-0.98520	-0.86590	-0.73460	-0.59150	-0.44830	-0.30520	-0.16200	-0.01896	0.12430	0.26740	0 4 1060	0.55380	0.69690	0.84010	0.98320	1.10250
pt	-	8	က	4	S.	9	7	80	Φ	5	<u>-</u>	12	4 3	14	5	16	17	6	6+

			MEANLIN	IE INPUT DA	MEANLINE INPUT DATA - STREAMLINE	AL INE 5			
pī	2	α	THETA	8	1(2)	PHI	×		T(M)
•	-1.35810	7.36510	0.22850	-50.976	0.02034	3.221	-1.35994		0.02036
8	-1.29480	7.36870	0.21780	-51,425	0.02611	3.274	-1.29654		0.02614
ო	-1.16810	7.37610	0.19590	-52.321	0.03777	3.362	-1,16962	-52.273	0.03781
4	-1 04130	7.38360	0.17329	-53.246	0.04946	3 401	-1.04260	-53, 198	0.04952
ស	-0.91460	7.39120	0.14993	-54, 163	0.06107	2.376	-0.91568	-54,116	0.06114
9	-0.77520	7.39930	0.12339	-55.029	0.07352	3.279	-0.77604	-54,985	0.07360
7	-0.62320	7.40780	0.09373	-55.409	0 08631	3.085	-0.62381	-55.370	0.08639
80	-0.47110	7.41570	0.06428	-54.650	0.09770	2.797	-0.47150	-54,658	0.09778
0	-0.31900	7.42280	0.03606	-53.258	0.10721	2.484	-0.31924	-53 232	0.10727
9	-0.16700	7.42890	0.00937	-51.765	0.11464	2.227	-0.16712	-51.744	0.11469
=	-0.01490	7.43450	-0.01597	-50.414	0.11996	2.057	-0.01491	-50,396	0.12001
12	0.13720	7.43990	-0.04020	-49.287	0.12315	1.955	0.13728	-49.271	0.12319
5	0.28920	7.44490	-0.06356	.48.390	0.12415	1.866	0.28937	-48.375	0.12419
4	0.44130	7.44970	-0.08622	-47.585	0.12252	1.799	0.44155	-47.571	0.12255
15	0.59340	7.45450	-0.10823	-46.735	0.11649	1.763	0.59372	-46.722	0.11652
16	0.74540	7.45900	-0.12958	-45.884	0.10420	1.687	0.74579	-45 871	0 10422
17	0.89750	7.46350	-0.15030	-45.073	0.08393	1.669	0.89795	-45.061	0 08395
18	1.04960	7.46820	-0.17045	-44,307	0.05410	1.942	1,05013	-44 290	0.05412
19	1,17630	7.47230	-0.18693	-43,683	0.02096	2.326	1.17691	-43,660	0.02087

MERIDIONAL AIRFOIL GEOMETRY

20

ξ.

MEANLINE INPUT DATA - STREAMLINE

φ

1(M) 0 02052 0.02799 0.04306 0.05813 0.07297 0.18867 0.13824 0.13824 0.13824 0.14431 0.14823 0.14767 0.14623 0.14516	T(M) 0.02021 0.03008 0.04996 0.06973 0.08899 0.12897 0.12897 0.15995 0.17772 0.18139 0.17647 0.17647
B·M -49.720 -50.137 -51.778 -51.778 -52.498 -52.963 -53.750 -49.653 -45.979 -45.979 -45.979 -45.979 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025 -47.025	B · M - 48 · 593 - 49 · 797 - 50 · 330 - 50 · 600 - 50 · 330 - 49 · 731 - 48 · 127 - 48 · 127 - 48 · 251 - 47 · 300 - 41 · 172 - 40 · 160 - 39 · 234 - 38 · 328 - 37 · 409
X -1.43237 -1.36542 -1.23138 -0.96320 -0.96320 -0.65486 -0.45413 -0.33337 -0.33337 -0.46954 0.46954 0.79043 0.79043 1.1142	X -1.50436 -1.43393 -1.15209 -1.0.85607 -0.68691 -0.51783 -0.17997 -0.17997 -0.17997 -0.17997 -0.17997 -0.17997 -0.17997 -1.17997 -1.17890 -1.16890 -1.16890
PHI 4. 953 5. 254 5. 254 5. 287 5. 387 6. 445 6. 445 7. 27 7. 2	ALINE 7 PHI 6.980 7.131 7.402 7.581 7.645 7.601 7.439 7.192 6.921 6.666 6.393 6.119 5.913 5.729 6.086
1(2) 0.02048 0.02793 0.04295 0.05797 0.08842 0.14801 0.13802 0.14811 0.14807 0.14807 0.14807 0.14807 0.14807 0.14807 0.14807	T(Z) P 0.02995 7.0 0.02995 7.0 0.04972 7.0 0.08937 7.0 0.08937 7.0 0.08952 7.0 0.12833 7.0 0.12934 6.0 0.17719 6.0 0.18095 5.0 0.17719 6.0 0.18095 5.0 0.17719 6.0 0.18095 5.0 0.17719 6.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 6.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.18095 5.0 0.06836 6.0 0.06836 6.0 0.06836 6.0 0.06836 6.0 0.06836 6.0 0.06836 6.0 0.06836 6.0 0.00836 6.0 0.06836 6.0 0.00836 6.0 0.00836 6.0 0.00836 6.0 0.00836 6.0 0.00836 6.0 0.00836 6.0 0.00836 6.0
8. -49.825 -50.247 -51.078 -51.901 -52.623 -52.862 -51.862 -49.756 -49.756 -40.712 -40.712	HETA B+ 23543 -48.905 0 22298 -49.305 0 17177 -50.033 0 17177 -50.851 0 17180 -50.77 0 11680 -50.77 0 08595 -49.970 0 08595 -49.970 0 08591 -48.352 0 02892 -46.46 0 00304 -44.981 0 02158 -41.324 0 06757 -42.324 0 067597 -38.462 0 14935 -37.548 0 16805 -36.640 0
THE TA 0.23262 0.27115 0.19772 0.17363 0.12113 0.09072 0.09072 0.03342 0.00126 0.00126 0.0156 0.01699 0.12928 0.12928 0.14949 0.14949	MEANL IN THE TA 0 23543 0 22298 0 19763 0 14560 0 14560 0 08595 0 05647 0 02892 0 05647 0 04597 0 05647 0 04597 0 04597 0 04597 0 04597 0 04597
R 6.94550 6.94550 6.95760 6.97000 6.99680 7.02580 7.05210 7.05210 7.05210 7.05210 7.05210 7.1550 7.14510 7.14330	R 6.47850 6.50530 6.50530 6.50530 6.56310 6.58340 6.60690 6.64770 6.64770 6.71990 6.73670 6.73670 6.78310
2 -1.42690 -1.36020 -1.22670 -0.95970 -0.81290 -0.65270 -0.17220 -0.17220 -0.17220 -0.14810 0.30830 0.4880 0.94900 1.10920	2 -1.49240 -1.42250 -1.28280 -1.28280 -0.84960 -0.68190 -0.51420 -0.34650 -0.34650 -0.34650 0.32420 0.32420 0.32420 0.65960 0.99500 1.16270
T - 2 L 4 R D L B D O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F - 264867800155486780

MFRIDIONAL AIRFOIL GEOMETRY

	(%)1	0.01929		0.05753	0.08267	0.10692	0 13179					0.21251	0.21601	0.21473	0.20714	0.19128	0 16525		0 07571			(M) 1	0 0 1883	•	0.06566	0.09606	0.12501		0.18208	0.20527	0.22374	0 23732	0.24572	0.24865			0 21487	0.18378	0.13995	0 08174	0.02111
	3		-47.891	-48.294	-48.467	-48.269		-45.794	-43.580		-39.837	-38.609	-37 477	•	-35,339				-31.068	-30.128		χ. α	-46 156	-46, 129	-46.017	-45.726	-45.016	-43.295	-40.543	-38,113	-36.223	-34.550	-33.037	-31,620	-30, 195	-28 833	-27.620	-26.440	-25 247	-24.102	
	×	-1.57450	-1.50082	-1.35342	-1.20580	-1.05823	-0 89583	-0 71877	-0.54183	-0.36499	-0. 18827	-0.01164	0.16487	0.34128	0.51769							×	- 1 62953		-1.39899	-1.24520	-1.09130	-0.92206	-0.73763	-0.55319	-0.36885			0.18329	0 36750		0 73473	0 91859	1.10254	1 28686	1.44067
STREAMLINE 8	1Hd	9.300	9.492	9.830	10.038	10.091	10.016	9 838	9.625	•	9.207	8.993	8.764		8.356			•		9.417	STREAMLINE 9	Hd	12, 323	12,509	12.820	12.952	12.903		12.667	12.533	12.380	12.211	12.046	11.899	11.776	11,689	11.680	11 868	12.236	12.623	12.933
DATA - STREA	1(2)		0.03177	0.05705	Τ,	0.10599		0.15471	0.17501	0.19130	0.20349		0.21507	0.21388	0.20640	0.19064	0.16472		Ψ,		DATA - STREA	1(2)		0.03407	0.06480	0 09478	0.12340	0.15241	0.18017	0.20336	0.22188	0.23555	0.24407		0.24423		0.21389	0.18298	0.13936	0.08140	0.02102
INPUT	ů	-48.026	-48.284	-48.715	-48.906	-48.712	-47.883	-46.219	-43.985	-41.792	-40.203	-38.956	-37.803	-36.699	-35.628	-34.575	-33.523	-32.461	-31.383	4	MEANLINE INPUT D	80	-46 823		-46.739	-46.464	-45.749	-44.014	4	-38.786	-36.868	-35, 165	-33.622			-29.343		-26.937		4	-23.706
ME ANL INE	THETA	0 23707	٠:			0 14096		0.08058	0.05200	0.02574	0.00129	-0.02188		-0.06513	-0.08536	-0.10474	-0.12330	-0.14105	. 15	17	MEANL IN	THETA	0.23545	0.22067	0.19128	0.16224	0.13384	0.10406	0.07431	0.04745	0.02277	-0.00020	-0.02168	-0.04184	-0.06079		Τ,	-0.11117	-0.12613	7	-0, 15139
	œ	5.97040	5.98270	6.00750	6.03290	6.05900					'				6.31330	6.33870	6.36390	6.38970	4	6 44030		~	5.39730	٠	٠	5.48260	•		•	•	٠	٠		٠	•	•				Ö	6.05310
	7	. 552	1.47	334	1.188	<u>~</u>	. 88	.70	53	.36	. 18	ō	9	.33	.51	0.68620	86	6	1.20940	.3547		2	-1 59030	-	-1.36530	-1.21540		-0.90040													
	PT	- -	7	m ·	♥	ហ	9	7	œ	o.	0	=	5	1 3	4	1 5	46	17	18	19		ΡΤ	-	7	ღ	4	ហ	9 (٠,	20 (ָה ל		- 1	12	.	4	15	16	17	18	6

MFRIDIONAL AIRFOIL GEOMETRY

20

N E

のでは、100mの対象とあるとなって、これのでは、100mの対象とは、100mの対象となっては、100mの対象とは、100mのが

MEANLINE INPUT DATA - STREAMLINE

Õ

(¥) ≥	0.02118	0.03955	0.07592	0.11099	0.14380	0 17644	0 20739	0.23316	0.25347	0.26795	0.27623	0.27793	0.27229	0.25794	0.23346	0.19745	0.14859	0.08548	0.02109
8.8 8.8	-44.427	-44.254	-43.702	-42.529	-40 650	- 38, 149	-35,402	-33.087	-31.067	-29.039	-27.114	25.327	-23,565	-21.828	-20.138	- 18,430	-16.711	-15.051	- 13 685
×	-1.63112	- 1,55185	-1,39315	-1.23430	-1.07546	-0 90073	-0 71035	-0.52000	-0 32992	-0.13983	0.05025	0.24025	0.43041	0.62053	0.81087	1.00134	1, 19230	1,38351	1.54311
PHI	16, 169	16.322	16.573	16.659	16.571	16.486	16.377	16.211	16.062	16.015	16.026	16.065	16, 132	16.224	16.374	16.703	17.118	17.356	17.443
1(2)	0.02076	0.03875	0.07436	0.10879	0.14117	0.17356	0.20445	0.23028	0.25072	0.26539	0.27389	0.27584	0.27049	0.25644	0 23227	0.19657	0.14801	0.08520	0.02103
÷	-45.583	-45.433	-44.917	-43.755	-41 858	-39.323	- 36.530	-34,158	-32.084	-30 012	-28.046	-26.220	-24.420	-22.644	-20 917	- 19, 184	-17.440	-15,735	-14.318
THETA	0.22870	0.21238	0.18031	0.14941	0.12042	0.09122	0.06260	0.03685	0.01338	-0.00806	-0 02761	-0.04548	-0 06183	-0.07672	-0.09025	-0.10250	-0.11348	-0.12327	-0.13056
œ	4.73540	4.75810	4.80350	4.84890	4.89420	4.94400	4.99800	5.05140	5.10410	5.15660	5 20900	5.26150	5.31420	5.36710	5.42050	5.47450	5.52980	5.58680	5.63520
2	-1.56520	-1.48910	-1.33690	-1.18470	-1.03250	-0.86500	-0 68240	-0.49970	-0.31710	-0.13440	0.04830	0.23090	0.41360	0.59620	0.77890	0.96150	1.14420	1.32680	1.47910
ΡŢ	-	8	m	4	ស	ဖ	7	8 0	ø	5	Ξ	12	13	14	5	16	17	18	19

MEANLINE INPUT DATA - STREAMLINE

1(M)	0.02618	0.04502	0 00223	0 11817	0, 15199	0.18598	0.21870	0.24650	0.26905	0.28604	0.29715	0.30198	0 29493	0.28896	0.26632	0.22921	0.17487	0.10060	0.02160
æ.	-40.844	-40.423	-39 397	-37.861	-35.746	-33.044	-29 965	-26.969	-24, 159	-21.577	- 19.231	-16.977	-14.578	-12.136	-9.810	-7.514	-5.121	-2.502	-0.152
~	-1.62321	-1 54214	-1.37964	-1.21705	-1.05453	-0.87598	-0.68142	-0.48713	-0.29317	-0.09917	0.09482	0.28919	0.48401	0.67936	0.87560	1.07283	1.27098	1.46965	1.63479
IHd	21.651	21.825	22.096	22.144	21.986	21.772	21.576	21.384	21.260	21.271	21.413	21.683	22.081	22.588	23.194	23.913	24.468	24.402	24.022
1(2)	0 02534	0.04357	0.07963	0.11465	0.14793	0.18172	0.21456	0.24270	0.26570	0.28315	0.29470	0.29997	0.29838	0.28786	0.26561	0.22883	0.17473	0.10058	0.02160
œ	-42 927	-42 537	-41 555	-40.007	-37 820	-35.010	-31.798	-28.655	-25.702	-22.996	-20.541	- 18. 188	- 15.677	-13.111	- 10.653	-8.210	-5.624	-2.747	-0.167
THETA	0 22113	0.20338	0.16909	0 13676	0.10696	0.07749	0.04924	0.02471	0.00345	-0.01498	-0.03100	-0.04489	-0.05675	-0.06658	-0.07450	-0.08067	-0 08512	-0.08776	-0 08852
α	3.90540	3.93600	3.99720	4.05840	4 11950	4.18610	4.25860	4.32900	4.39950	4.46960	4.54010	4.61140	4.68380	4.75790	4.83420	4.91310	4.99430	5.07700	5.14630
2	- 1 50840	-1.43310	-1 28240	-1,13180	-0 98120	-0.81550	-0.63470	-0.45390	-0.27320	-0.09240	0.08830	0.26910	0.44990	0.63060	0.81140	0.99220	1.17290	1.35370	1 50430
рī	-	7	က	4	ស	9	7	c o	6	9	-	12	£	7	15	16	17	18	19

MERIDIONAL AIRFOIL GEOMETRY

8

88

ATTENDED TO THE LANGE AND ADDITIONS OF THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE STREET,

		MEANLIN	MEANLINE INPUT DA	DATA - STREA	STREAMLINE 12		
2	œ	THETA	•8	1(2)	IHd	*	₩•₩
-1.48860	3.36160	0.22120	-41,159	0.03327	25.911	-1.64796	-38.178
-1.41480	3.39830	0.20233	-40.564	0.05424	25.969	-1.56589	-37.581
-1.26740	3.47110	0.16644	-39, 168	0.09573	26.001	-1.40189	-36.212
-1, 12000	3.54270	0.13326	-37.285	0.13583	25.789	-1.23801	-34,432
-0.97250	3.61290	0.10317	-34.893	0.17360	25.398	-1.07446	-32.212
-0.81030	3.68920	0.07378	-32.054	0.21140	25. 102	-0.89516	-29 555 ,
-0.63340	3.77200	0.04582	-28.978	0.24716	25.034	-0.69988	- 26.647
-0.45350	3.85450	0.02170	-25.926	0 27645	25 051	-0.50464	-23 769
-0.27960	3.93720	0.00107	-22.918	0.29844	25, 144	-0.30931	-20 943
-0.10260	4.02050	-0.01641	-20.023	0.31232	25.361	-0.11362	- 18.227
0.07430	4.10490	-0.03114	-17.379	0.31731	25.681	0.08239	- 15.752
0.25120	4.19060	-0.04349	-14.881	0.31283	26. 135	0.27903	- 13.418
0.42810	4.27850	-0.05356	- 12, 184	0.29910	26.787	0.47661	- 10.910
0.60510	4.36900	-0.06137	-9.408	0.27635	27.526	0.67554	-8.359
0.78200	4.46290	-0.06703	-6.594	0.24465	28.252	0.87568	-5 814
0.95890	4.55990	-0.07038	-2.969	0.20421	29.071	1.07728	-2.596
1.13580	4.65920	-0.07087	1.629	0.15510	29.637	1.28035	1.416
1.31280	4.75970	-0.06820	6.541	0.09749	29.260	1.48377	5.712
1.46020	4.84390	-0.06355	10.688	0.04315	28.434	1.65209	9.424

F - 0 6 4 10 6 2 8 9 0 - 5 1 4 10 6 2 8 9

T(M)
0.03474
0.05658
0.09963
0.14081
0.17081
0.25252
0.25252
0.312000
0.312000
0.31485
0.30045
0.204500
0.20427
0.20427

T(M)	0 05300	0.07246	0.11109	0.14851	0.18394	0.21989	0.25472	0.28418	0.30764	0.32438	0.33348	0.33389	0.32516	0.30749	0.28112	0.24613	0.20253	0.15024	0.09934	
æ.	-32.388	-32,148	-31,505	-30.542	-29,150	-26.995	-24.024	-20.900	- 18.022	15.588	- 13,403	11, 133	.8 404	-4.997	-0.799	4.200	9.817	15 716	20 712	
×	-1.68772	-1.60533	-1.44187	-1.27994	-1,11895	-0.94226	-0.74946	-0.55582	-0.36057	-0.16311	0.03679	0.23897	0.44323	0.64950	0.85782	1.06799	1.27927	1.49021	1.66473	
PHI	31.199	30.603	29.513	28.724	28.302	28.181	28.431	29.100	30. 104	31.281	32,389	33,335	34.186	35.003	35.786	36.379	36.561	36, 136	35.488	
1(2)	0.05041	0.06912	0.10653	0.14307	0.17792	0.21366	0.24875	0.27874	0.30281	0.32014	0.32993	0.33123	0.32357	0.30692	0.28111	0.24577	0.20093	0.14739	0.09632	
÷	-36.560	-36, 136	-35.157	-33.934	-32.353	-30.025	-26.879	-23.606	-20.610	- 18.079	-15.758	- 13.254	- 10.127	-6.093	-0.985	5.212	12.158	19.209	24.909	
THETA	0.23827	0.21880	0.18168	0.14705	0.11508	0.08332	0.05320	0.02781	0.00660	-0.01119	-0.02616	-0.03855	-0.04819	-0.05466	-0.05743	-0.05595	-0.04973	-0.03857	-0 02549	
α	2.65330	2.69470	2.77680	2.85610	2.93290	3.01620	3.10760	3.20060	3.29700	3.39790	3.50340	3.61310	3.72660	3.84380	3.96430	4.08830	4.21400	4.33860	4.44150	
2	-1.46880	-1,39810	-1.25660	-1,11510	-0.97360	-0.81790	-0.64810	-0.47830	-0.30850	-0.13870	0.03110	0.20090	0.37970	0.54050	0.71030	0.88010	1.04390	1.21970	1.36120	
ΡŢ	-	8	က	4	ß	9	7	80	თ	<u>0</u>	-	12	13	4	1 5	46	17	2	19	

MEANLINE INPUT DATA - STREAMLINE

PHASE IV ROTOR

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

20

8

The Market Court and the Court of the Court

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MEANLIN	INE DATA		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SURFACE COORDINATES	DINALES	
ΡŢ	PCT X	×	>	æ. •	T (M)	þŢ	xS	۲۶	۵x	γp
-	Ö	-1.12800	1,78797	-54.960	0.01884	-	-1.12800	1,78797	- 1, 12800	1,78797
7	0.02500	-1.07711	1,71453		0.02248	7	-1.13201	1.78140		1.78946
ო	0 02000		1 639 / 2		0.02617	က	-1,13047	1.77475	-1 11473	1.78577
4	0.07500	-0.97534	1.56321	-56.650	0.02990	۲	-1 08638	1.70827	- 1.06785	1.72019
ស	0.10000	-0.92445	1 48505	-57.215	0.03366	ស	-1.03708	1 63242	-1.01537	1.64702
ဖ	0.12500		1,40517			9	-0.98782	1.55499		1 57143
7	₹.		1 32350	-58.364	0.04126	7	-0.93860	1.47594		1 49417
&			1 23994	٠	0.04507	0 0	-0 88941	1,39519	857	1.41516
6		-0.72090	1 15444			თ	-0.84024	1.3126R	-0.80511	1.33432
ç	0.23300	-0.65984	1.04917			5		1.22832	.7524	1.25157
=	•	-0.59877	0 94093	-60.902	0.05797	=	-0.74196	1.14205	•	1, 16633
12	0.29000	-0.53771	0.82974			12	-0.68303	1.03590		1 06243
13		-0.47664		-62.123		1 3	-0.62410	0.92684	-0.57344	
7		-0.41557	0.59897			4				
15	ω.	-0.35451			0.07509	15	-0.50617	•	-0.44711	_
16		-0.29344		e.	•	16	-0.44712		-0.38403	0.61531
17		-0.23238		-63, 164	0.08239	17			-0.32107	0.49720
8	4	-0.17131		-63.010	0.08554	æ	-0.32864	0.34207	-0.25825	-
19		-0.11025	-0.00047			19		•	-0.19562	0 25771
20		-0.04918	-0.11803	•	0.09068	20		0.09934	-0.13320	
21		0.01188	-0.23356	•	0.09264	21		-0.02070	-0.07100	0.01976
22		0.07295	-0.34690			22	0.08935		-0.00902	-0.09699
23	0.62000	0.13401		-61.009	0.09525	23		-0.25536	0.05274	
24	0.65000	0.19508	-0.56736	-60.585		24		-0.36940	0 11430	
25		0.25614	-0.67476		•	52		•	0.17567	
56		0.31721				96			0.23686	5438
27		0.37827	-0.88420	•	•	27		-0.69868	0 29787	
28	0.77000	0.43934	-0 98621		96760.0	28		-0.80453	2	
58	0.80000	0 50040	-1.08644	-58.422	0.08967	58	0.33744	•	0.41910	-0 85997
30	0.83000	0.56147	÷.	•		30		-1 01024	0.47912	-0.96219
31	0.86000	0.62253	-1,28159	-57,475	0.07816	31		-1,10992	0.53860	-1.06296
32	0.89000	0.68360	-	•		32		-1.20740	0.59741	-1.16241
33	0.92000	0.74466	-1.46901	-56.273	0.05900	33		-1.30260	0.65548	- .
34	0.95000	0.80573	÷.	-55.524	0.04595	34	0.65443	- 1.39536	0.71276	-1.35738
35	0.97500	0.8566;	-1.63241	-54.836	0.03310	32	•	-1.48539	0.76919	.
36	00000.	0 90750	- 1,70368	-54.104	0.01923	36	0.78678	-1.57224	0.82467	-1.54622
						37	•	- 1,64194	0.87014	-1 62288
						38	œ,	-1.70199	0.91031	-1.68983
						39		-1.70547	16	- 1.67680
						40	0.90750	-1.70368	0 90750	- 1 70368

STAGGER

0 856

CAMRER

4.04165

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

က

20

Ë

THE PERSONAL PROPERTY OF THE PROPERTY OF THE PERSON OF THE

PCT X									
	×	>	æ. ₹	T(X)	ρŢ	X	۲\$	ç	γp
	-1.20406	1,76155	-53 574	0.01946	-	-1.20406	1.76155	-1.20406	1 76155
.02500	-1.14856	1.68554	-54.150	0.02352	~	-1.20804	1.75466	-1.19614	1.76328
02000	-1.09306	1,60792	-54,715	0.02763	က	-1.20629	1 74783	-1.19029	1 75961
07500	-1.03756	1.52867	-55.276	0.03178	4	-1,15809	1.67866	-1.13903	1 69243
10000		1.44775		0.03597	រប	-1.10434	1.59995	-1 08178	1.61590
2500	•	1,36511		0.04017	ю	-1.05062	1.51962	-1 02450	1.53773
5000	-0.87106			0 04438	7	-0.99694	1.43765	-0.96718	1.45785
7500				0.04858	c o	-0.94329	1,35399	-0.90983	1.37623
0000			-58 077	0.05277	6		1.26860	-0 85246	1 29279
3000					ō		1.18141		1.20750
26000		•	- 59.306		=	-0.78245	1.09238		1.12028
0006		0 77382	-59.765	0.06742	12		0.98306	- O. 66878	1 01304
ጸ			-60.055	0.07201	÷	-0.65380	0.87112	-0.59993	0 90310
35000		٠.	-60, 176	•	14		0.75685		0.79080
8000			-60, 136	0.08044	÷5		0 64084	-0.46247	0.67679
900		0.31111	-59.950	0.08418	16		0.52387	-0.39394	0.56185
4000	-0.22727	0.19667	-59,633		17		٠,	0.32559	0.44674
47000	-0.16067	0.08392	-59.211	0.09053	48		0.29003	-0.25743	0.33218
50000	-0.09407	-0.02678	-58.716	0.09309	19	-0.26504	0.17454	-0.18949	0.21880
53000	-0.02747	-0.13524		0.09521	50	-0.19955	0.06075	-0.12178	0.10709
8			-57.599	0.09691	21	-0.13384	-0.05095	-0.05429	-0.00261
8	0.10573			0.09817	22	-0.06791	-0.16034	0 01298	-0.11013
62000				0.09900	23			0.08004	-0.21538
2000				٠,	24	٠.	-0.37185	0.14691	ຕ.
ጸ			-55.425	0.09934	25	0.13107	-0.47405	0.21359	
7 1000					56		-0.57405		
4000			4		27		-0.67197	0.34643	
7000		-0.92557	-53.883	0.09461	28		0.76786	0.41250	
80000			ė		29		-0 86170		
3000		-1.10465	-52.825	0.08547	30	0.46712	-0.95346	0.54354	-0.89769
9009		÷.	-52.291	0.07850	,	0.53551	-1.04306	0.60835	.0.98888
9000		-1.27695		0.06979	32	0.60448	-1,13047	0 67258	-1.07883
2000		- :	-51.258	0.05921	33	0.67408	-1 21563	0.73618	-1.16762
2000		-1.44299	ö	0.04631	34	0.74432	-1.29855	0.79914	-1.25536
7500	.96	-1.51046	-50.358	0.03363	35	0.81524	-1.37924	0.86142	
00000	0159	-1.57697	-49.952	0.01997	36	0.88699	-1.45764	0.92286	-1.42834
					37	0.94748	-1 52119	0 97337	-1.49973
					38	1.00126	-1.57628	1 01778	-1.56242
					36	1.00775	-1.57944	1.01975	-1.56949
				•					

-56.378

STAGGER

3.622

CAMBER

4.00925

787	20.
CAMPED	STORMS.
90100	5.00.

CHORD

-53,390

STAGGER

>-	₩•	T(H)	ρŢ	xS	۲S	×	4
1.73528		٠.	_	-1.28375	1.73528	-1.28375	1.73528
1.65742	-52.797		7	-1.28771	1.72807	-1 27563	1.73726
1.57811		0.02961	ო	-1.28576	1.72106	-1.26949	1.73362
1.49733	-53.800	٠.	7	-1.23398	1.64992	-1.21421	1.66492
1.41508	-54.291	0.03927	ស	-1,17631	1.56926	-1.15257	1.58695
1.33134	•	0.04412	9	-1.11867	1.48716	- 1.09089	1.50749
1.24608	-55.257		7		1.40362	-1.02918	1,42654
1.15928		0.05378	6 0	-1 00349	1.31861	-0.96745	1.34406
1.07084	-56.249	0.05855	თ	-0.94592	1,23213	-0.90569	1 26004
0.96249		•	0		1.14414	-0.84393	1.17441
_			=	-0.83084	1.05458	-0.782.15	1.08710
_'		0.07509	12	-0.76178	0 94493	-0.70803	O 98005
_'	•	•	13	-0.69268	0.83300		
		0.08498	14		0.71917	-0.55939	•
٠.	•	0.08941	15	-0.55407	0.50430		0 64703
. 28923		0.09343	16	-0.48446	0.48946		0.53491
. 18114		0.09699	17	-0 41459	0.37563		0.42391
07582	•	0.10009	18	-0.34446		-0.26629	0 31481
02668		₹.	19	-0.27406	0.15412		
12652		0.10491	20	-0.20341		-0.12099	0.10421
22398		₹.	24		-0.05636		0.00299
31934	•	٣.	22		┺.	0.02342	٠.
41284	-52.304	0.10866	23		-0.25577		•
.50466		Τ.	24	-		1671	•
59495		₹.	52		•		
•	-50.923	0.10794	56		-0.53835	0.31017	-0.47098
-0.77129		0.10615	27	0.29643		0.38142	
٠.	•		28				
0.94231	-49.634		53		-0.80506	0.52305	
1.02589	•	0.09295	ဓ္ဌ		•		
1.10822	•	•	31			•	. 9102
. 18932	•	•	35	Φ	-1.05626	0.73205	-0.99553
. 26922	.93	0.06392	33		-1.13630		-1.08014
.34795	-47.514	•	34		-1.21444	0.86829	-1.16420
1.41270	-47.168	0.03570	32	0 88790	-1.29063	0.93536	-1 24780
_	-46 819	0.02062	36		-1.36474	1.00154	-1.33117
			37	1.02979	-1.42483	1.05597	-1.40056
			38	1.08733	-1,47683	1,10369	-1.46150
			39	1.09423	-1.47969	1.10609	- 1 46869

MERIDIONAL AIRFOIL GEUMETRY - STREAMLINF

PHASE IV ROTOR

2 EZ EZ

ស MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

SELECTION OF THE SERVICE OF THE SERV

×	- 5	>	Y		7	ΣX	٨٥	Α×	ΥÞ
3	1994	1.69094	-50.932	٠		- 1,35994	1.69094	- 1,35994	1.69094
29	29652	1.61218			7	-1.36379	1.68351	-1.35174	1.69315
	1310	1.53216	-51.824	•	က	-1.36166	1.67644	-1.34540	1.68962
•	16967	1.45084	•		4	- 1.30673	1.60402	-1.28631	1.62034
	10625	1 36818	-52.731	0.04365	ស	-1.24566	1.52228	-1.22053	1.54203
	04283	1 28413	53.		9		1 43927	-1.15472	1.46241
	97941	1,19854	99.		7	-1.12362	1.35497	-1.08888	1.38140
•	91599	1.11171	-54,113	0.06111	œ	-1.06265	1,26930	-1.02302	1.29896
	85257	1.02335	-54.541		6	-1.00169	1.18225	-0.95713	1,21503
	77646	0.91558			õ	-0.94074	1.03380	-0 89123	1, 12962
	70036	_			-	-0.87979	1.00395	-0 82535	1 04273
	62425	۲.	-55.371	0.08636	12	-0.80659	0 89447	-0.74634	9366
	18 15	_	•	0.09226	13	-0.73328	0 78347	6574	
	47204	0.47792		_	14	٠,	0.67160		
-0.39	39593	<u>.</u>	•		615			-0.51029	-
	31983	0.26854	-53.238		4	-0.51191		-0 43217	
·6.24	24372	0.16806			17				
-0.16	. 16762	0.07025	•	0.11467	8	-0.36279	0.23645	-0.27687	0.30063
-0.39	1151	Ī	-51,051	_	19	-0.28783	0.13419	-0.19962	
	.01541	٠.	-50.400	-	23	-0.21264	0.03475		0.10575
9. 29.	05050	-0.20915	-49.806	Ξ.	21	-0.13724	-0.06204		•
	13680		•	Τ.	22	-0.06163	-0.15638		-0.07983
	21291		•	0.12397	23	0.01416	-0.24847	0.10724	-0.16983
	1902	4		•	24	0.09013	-0.33855		•
	36512			Τ.	25	0.16627	-0.42685	0.25955	
	123	_,	-47.573	1225	56	0.24260	-0.51355		-0.43107
	733		. 15	٠.	27	0.31914	•		-0.51592
	59344	_	. 72	٠.	18	0.39599			-0.59987
99	954	٠.	. 29	Ξ.	29	0.47326	-0.76475		-0.68300
7.					30	0.55102	-0.84526		-0.76537
87		-1.04247	-45.461	0.09516	31	0.62932	-0.92399	0.70977	-0.84709
0.89		-1,11927	-45.061	.0839	32	0.70824	- 1.00086	0.78306	.0.92829
	97397	Τ.	-44.672	0.07047	33	0.78784	-1.07584		-1.00910
1.05		Ç	-44.291	0.05413	34	0.86814	-1 14892	•	-1.08962
1.11	349	<u>ن</u>	. 97	0.03811	32	0.94919	-1.22008	0.99874	-1.16996
1.17	691	-1,39215	-43.660	0.02087	36	1.03117	-1.28913	1.06897	-1.25039
					37	1.10026	-1.34500	1,12672	-1 31758
					38	1.16148	-1.39327	1,17733	-1.37669
					39	1.16867	-1.39572	1, 180 10	-1.38386

STAGGER

7.272

CAMBER

NB 20

MERIDIONAL AIRFOIL GFOMFIRY : STREAMLINF G

	4.0	1 62794	1 63037	1.62698	1.55734	1 47889	1.39923	1.31831	1.23612	1 15267	1 06805	0.98243					•				0.09870	0.01148			-0.24135	-0.32308	-0.40370							-0 94743	-1 02378	-1,10014	-1 17679	-1.24100	-1.29748	- 1.30459	-1,31318
INATES	ď×	1 43237	-1.42414	-1 41763	1,35469	-1.28479	-1.21485	-1.14487	-1.07487	-1.00487	0.93489			-0.69761	-0.61431	-0.53147	-0.44902	-0.36697				0413	-				0.36043								0 98231	1.05704	1,13083	1 19154	1.24469	1 24787	1.24514
SURFACE COURDINATES	٨٤	1 62794	1.62034	1.61325	1,53939	1.45634	1.37212	1.28674	1 20018	1,11246	1 02367								0.19500		0 00662	-0.08398	-0.17251	-0.25913	-0.34395	-0.42706	-0.50850						-0 96028	-1.02891	-1.09552	- 1, 16008	- 1,22235	-1 27243		-1,31737	-1 31318
	s ×	-1 43237	-1.43612	-1,43386	-1.37618	-1.31220	-1.24827	-1.18438	-1.12050	-1.05662	-0.99272	-0.92877				-0.61967			-0 38395								0.25560							0.83377	0.91893	1.00484	1.09170	1,16487	1,22958	1 23703	1 24514
;	PT	-	8	ო	4	ស	9	7	œ	6	Ç	-	12	13	4	15	9	17	18	19	50	21	22	23	24	25	56	27	28	23	30	31	32	33	34	35	36	37	38	39	40
1	T (M)	0.02052		0.03550	•	0.05058	0.05809	0 06554	0 07290	0.08014	0.08859	O 09670		-					₹.	0.14156	0 14427		٣.	۲.		٣.	0.14519		-			0.10942	0.09573	0.07918	o.0600€	0.04123	0 02 104				
	₩.	-49.720	-50, 137		.50.959	-51.371	-51,775	N	-52.496		-52.962	-52.982				•		-48.892	-48.214				-45.986	-45.490	-45.007	•		•	•	ä		-41.873	-41.459	-41 053	-40 652	-40.319	-39.984				
NE DATA	>	1 62794	1.54837	1,46761	1 38568	1 30252	1 21815	1 13256				0 74552	0 63934			•				•							-0.6:417	•			•	-0.98817	- 1.05965	-1,13011	-1,19957	-1 25671	-1 31318				
MEANLIN	×	- 1 43237	L.	-1.29850	. 23	Τ.	8	-1.03075	-0.96381	æ	-0.81654			57	-0.49524	-0.41492	-0.33459	-0.25427	-0.17394	-C.09362							0.46866		6293		7	0.87029	٥.	1.03094	1.11127	1,1782	1.24514				
*	PCT X		0.02500	•	0.07500		0 12500	~	0.1.500	C	0.23000	0.2600	O.29000	n	•	က	0 4 1000		0.47000	•		•		•	•		0.71000	۲.	7	Φ.	Φ.	0.86000	0.89000	0.92000	0.95000		0				
1	10	-	7	ო	4	ស	ဖ	7	80	6	0	=	12	1 3	14	1 5	16	17	2	6	20	21	22	23	24	52	56	27	28	58	30	31	32	33	34	32	36				

47.686

STAGGFR

9 735

CAMBFR

3.97735

NB 20

AND THE SECOND DESCRIPTION OF THE PROPERTY OF

. MERIDIONAL AIRFOIL GEOMETRY - STREAMLINF

-44.618

STAGGER

12.987

CAMBER

3.95288

NR 20

THE THE PROPERTY OF THE PROPER

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE 8

:	1	MEANLINE	INE DATA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	;		SURFACE COOR	COORDINATES	* 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ΡŢ	PCT X	×	>	₩.	1 (M)	PT	s×	٨٤	ά×	ď
-	°	-1.57450	1,44175	-47.649	0.01929	-	-1.57450	1.44175	-1.57450	1,44175
7	0.02500	-1.50089	1.36065	-47.891	0.03200	7	-1.57784	1.43441	-1.56681	1.44439
က	0.05000	-1 42727	1.27888	-48.112	0.04476	က	-1.57556	1.42777	-1.56048	1.44151
4	0.07500	-1.35365		-48.294	0.05749	4	-1.51276	1.34992	-1.48902	1.37138
ស	0.10000	-1.28004	1,11372	-48.417	0.07010	ស	-1.44393	1.26393	-1.41061	1.29382
9	0.12500	-1.20642	1.03066	-48 467	0.08256	9	-1.37511	1.17740	-1.33220	1.21564
7		-1.13280	0.94758	-48.426		7	-1.30626	1.09045	-1.25382	1.13698
80	0.17500	-1.05919	0.86478	-48 272	0.10677	œ	-1 23732	1 00328	-1,17552	1.05803
ტ		-0.98557		-47.984	0.11833	6	-1.16827	0.91612	-1.09734	0 97904
9		•		-47 455	0.13159	ç	- 1.09903	0.82925	-1.01934	0 90031
=	0.26000	-0.80889	ហ	-46.726	0.14407	=	-1.02953	0.74302	-0.94161	0.8222
12			0.49792	45.814	0.15568	12	-0.94570	0.64092	-0.84876	0.72990
13				-44.751	0.16633	13	-0.86133	0.54094	-0.75644	0.63970
44			•	-43.606	0.17599	7	-0.77636	0 44367		0.55218
15			0.24033	-42.468	0.18464	15 2	-0.69076		-0.57366	
16	0.41000	-0.36719	•	-41,431	0.19227	16	-0.60456		-0.48318	0 38653
17	0.44000	-0.27885	0.08420	-40.571	0.19888	17	-0.51786	0.17223	-0.39319	0.30843
8		-0.19051		-39.854	0.20446	18	-0.43080		-0.30357	
6		-0. 10217	٠.	-39.217	0.20899	6	-0.34352	0.00867	-0.21417	0.15974
20		-0.01382		-38.624		20	-0.25602	-		0.08802
21		0.07452		-38.050	0.21478	21	-0.16823	-0.14432	-0 03610	0.01759
22		0.16286	-0 27300	-37.490	0.21600	22		-0 21768	0.05248	-0.05171
23		0.25120	•	-36.942	0.21605	23	0.00833	-0.28912		
24		0.33954		-36.404	0.21477	24	0.09713		0.22859	-0.18730
22	0.68000	0.42788	•	-35.873	0.21191	25	0.18627	-0.42643	0.31612	-0.25375
56		0.51622	-0.53365	-35,347	0.20724	96	0.27581	-0 49230		-0.31944
27	0.74000	0.60456		•	0.20048	27	0.36579	-0.55624	0.48997	-0.38452
28		0.69290	٠,	-34.302		28	0.45627		•	-0.44913
29		0.78124			0.17978	29				-0.51342
30			۲.	-33.247	7	30			0.74683	-0.57751
31	0.86000	0.95792	-0.83206			31	•	-0.79096	0.83121	-0.64152
32		1.04626		•		35	•			
33	•	1.13460	-0.94319			33	0.91795		687 bis 0	-0.76983
96	٠	1.22294				34	1.01235	•	1 08016	
32	0.97500	1.29656	9	-30.600	0.04928	32	1.10746	-0.98727	1.16174	
36	• .00000	1.37017	-1.08407	-30.128	0.02116	36	1.20340	-1.02943	1.24248	-0.96457
						37	1.28402	-1.06215	1.30910	-1.01974
						38	1,35495	-1.08949	1.36735	-1 06817
						39	1.36273	-1.08983	1,37153	- 1.07493

-1 08407

1.37017

-1.08407

1.37017

40

-40 622

STAGGER

17.521

CAMBER

3.87955

CHOND

σ
STREAMLINE
1
GEOMETRY
AIRFOIL
MERIDIONAL

NB 20

AT THE SECOND CONTROL OF THE PROPERTY OF THE P

	π·α >	₹	Τd	•	1	\$	
•				YS	۲s ۲	×	۵,
	-46.	0.01883	-	-1.62953	1.30478	-1 62953	1.30478
-:	22490 -46,129	0.03449	7	-1.63264	1.29746	-1.622 0	1.30759
4			ო	-1.63029	1.29103	-1 61576	1.30499
9	-46	•	4	-1,56521	1.21295	-1.54034	1.23686
œ	- 45		ល	-1.49407	1 12774	-1.45797	1.16249
Ö	-45	٠.	9	-1.42287	1.04270	-1.37566	1 08826
2		0.11062	7	-1.35157		-1.29346	1.01425
Š	75128 -45.023	٣.	c o	-1.28011	•		0.94059
75	-44		თ	-1.20842	•		0 36752
989	-43.	Τ,	0	-1,13640		-1.04809	0.79540
50183	-41.	0.16851	-	- 1.06392	0.62578	-0.96706	0 72477
42099	-40	0.18187	12	-0.97622	0.53069	-0.87055	0.64276
34396	-39	0.19405	13	-0.88764	0.43920	0.77492	0.56446
27019	-38	0.20506	14	-0.79831	0.35191	-0.68004	0.49007
19919	-37	0.21491	15	-0.70848	0.26884	-0.58565	0.41907
13057	•	0.22357	16	-0.61827	0.18954	-0.49165	0.35084
06412	2 -35,385		17		0.11353	0.39798	0.28485
00031	•		18		0.04041	-0.30466	0 22073
06285	•		19	-0.34553	-0.03005	-0.21175	0.15829
12362	•		20	-0.25383	-0.09798	-0.11925	0.09736
18274	•		21	-0.16175	-0.16345	0.02711	0.03776
24025	•		22	-0.06931	-0.22658	0.06466	-0.02067
29620	-30.		23	Τ.		•	-0.07802
35059	-30.		24			٠	-0.13440
40345	-29.		25	0.21029	-0.40257		.0. 18983
45486	-28.		26				-0.24445
50492	-28.		27			•	-0.29842
55372	-27.		28	0.49365		0.60698	-0 35195
6013	1 27.		53			0.69589	-0.40525
6477	1 -26.	. 18	ဓ္ဌ			•	-0.45852
6359	1 -25.	0.16344	31			•	-0.51187
73693	93 -25.244	0.13984	32	0.87783	-0.72998	0.95964	-0.56545
77979	19 -24.666	0.11281	33	0.97523	-0.76646	1.04646	-0 61936
82153	53 -24, 101	0.08163	34	1.07313	-0.80017	1,13277	-0.67368
15550	•	0.05223	32	1, 17152		1.21859	-0.72853
888	-2	5.02111	36	1.27049	-0.85879	1,30383	-0.78428
			37	1.35345	-0.87942	1.37439	-0.83157
			38	1.42620	-0.89612	1.43607	•
			39	1,43398	-0.89540	1.44096	-0.87941
			40	1.44067	-0.88871	1.44067	-0 88871

STAGGER -35.544

22.987

CAMBER

3.77327

NR 20

MERIDIONAL AIRFOIL GEOMETRY - STPFAMLINE 10

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MEANLINE	INE DATA	1		;		SURFACE COUR	COURDINATES	* * * * * * * * * * * * * * * * * * * *
ÞΤ	PCT X	×	>	æ. ¥.	1 (M)	ۍ لړ	×S	۲۶	×	ΥP
-	o.	-1.63112	1,12339	,	0.02118	-	-1,63112	1, 12339	-1,63112	1 12339
8	0.02500	-1.55176	•	-44.254		8	-1,63440	1,11198	-1.62284	1.12684
e	0.05000	-1.47240	٠.	-44.032	0.05786	ო	-1.63160	1, 10781	-1 61556	1 12419
4	0 07500	-1.39305	•	-43.701	0.07594	4	-1,56557	1.03166	-1 53795	1.06000
Ľì		-1.31369	w.	-43.207		ស	-1,49251		-1.45230	0 98960
9	0.12500	-1.23434	•	-42.530	0.11099	Ç	-1.41928	0.86504	-1.36682	0.91994
7		-1,15498	•	-41.664		~	-1.34576	0 78312	- 1 28162	0.85141
œ	0 17500	-1.07563	•	-40 652	0.14377	∞	-1.27185	0.70266	-1 19683	0 78445
σ	~	9962	•		. ±5	ტ	-1,19743	0.62412	-1 11253	
5	0.23000	-0.90104		•	0.17638	ţ	-1.12246	0.54789	-1.02879	0 65697
=		-0.80582	0.38593	-36 748	٠.	Ξ	-1.04691		-0.94563	
12			•		0.20736	12	-0.95553	0.38952	-0.84656	
13	0 32000	-0 61536				.	-0.86340		-0.74823	
4		-0.52014	•	•	0.23315	14		0.23206		
5		-0.42491	•			ភ			•	
16	0 4 1000	-0.32968	0.06772	-31.064	0 25349	16	-0 58378	0 08939		0 28473
17	4	-0.23445		•		17			-0.36014	•
8	0.47000	-0.13923	-0.04246	-29.033	0.26799	18		.0.04085	-0 26428	
19	0.50000	-0.04400	٠.	•		19	-0 29992		-0.16899	0 12468
20	,	0.05123		-27.104		20		-0.15962	-0.07420	0.07469
21	0.56000	0.14645	-0. 13177	-26 199	0.27794	21	-0.10817		0.02017	0 02618
22		0.24168	•			22				-0.02102
23		0.33691	-0.28186			23	0.08510	-0.31646	0.20781	-0.06707
24	0.63000	0.43213				24~				
25	0.68000	5273			0.26615	52		-0.40753		
98	0 7 1000	0.62259	-0.40382	_	0.25773	56				-0.19947
27	0.74000	7178	-0.44111	•	0.24677	27				•
28	0 77000	0 81304		-20.118	0.23311	28	0 57471			
53	00008 0	0.90827			. 216	29		-0.55633		-0.32588
30		1.00349	•	-18.411	196	30	0.77295	-0.58623		
31	0.86000	1.09872	-0.57427	•	0.17417	31	0.87253			•
32	0.89000	1,19395	•	•		32	0.97239		1.03460	
33	0.92000	1.28918	-0.63141	•	0.11865	33	1.07246	•	1.12498	•
34	0.95000	1.38440	-0.65774	- 15.044		34	1.17267		1.21522	•
32	ر ~7500	1.46376	-0.67856	-14 365	0.05394	35	1.27296	-0.68848	1 30539	•
36	1 00000	1.54311		-13.685	0.02109	36	1 37335	-0.69885	1.39545	-0.61662
						37	1.45707	-0.70469	704	-0.65243
						38	1.53006	-0 70822	1,53609	-0.68365
						39	1.53757	-0 70616	1,54191	-0.68915
						40	1.54311	0 69838	1 54311	66838 O

-29.853

STAGGER

30.742

CAMBER

3.65986

PHASE IV ROTOR

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINF 11

20 S.

•		MEANLINE								
	PCT X	×	>-	3. W	T(M)	ΡŢ	s×	۲S	ΧP	ď
v		-1.62321	0.91141	-40.844	0.02618	-	-1.62321	0 91141	-1,62321	0.91141
~		-1.54176	0.84152	-40.421	0.04510	~	-1.62662	0.90071	-1 51331	
~		-1.46031		-39.952	0.06388	က	-1.62264	0.89211	- 1.60405	
_	٠.	-1.37886	0,70513	-39.391	0.08241	4	-1.55638	0.82435	-1.52714	
•	٣.	-1.29741	•	-38.696	0.10062	ស	-1.48082		-1.43980	
-	Τ.	ď		-37.849	0.11841	9	-1.40501	0.67328	-1 35271	0.73697
	_		•			7	-1.32886	0 59977	-1 26596	0 67830
						&	-1 25229		-1 17963	
	0.20000	-0.97161	0.39543	-34 522		6	-1.17518	0.45828	-1.09383	0 56683
			0.33006	-33.011	0.18636	õ	-1.09752	0.39092	- 1.00RGO	0.51455
	~	-0.77613		-31 466	0.20336	-	-1.01928	0.32613	-0.92394	0.46473
			٠,	-29.9.7	0.21918	1.	-0.92463		-0.82310	0.40820
	0 32000		0 15587		0.23375	£	-0.82921			0.35514
	0.35000	-0.48291			0.24704	14	-0.73305	0.11541	-0 62373	0.30538
	က	-0.38517				÷	-0.63622	0 05305		0.25869
	4	-0.28743				16	-0.53880	-0 0054R		0 21482
	٦.	-0.18969		-22.751		17	-0.44085	-0.06031	-0.32948	0 17354
-			٠.	-21.486	0.28656	18	-0.34243	-0 11157		0.13460
-		_	Ξ.			6	-0.24360		-0.13577	0.09776
-				-19.129		20	-0.14443			0.06280
_	ß.			•		24	-0.04496			0.02952
•				•		22	0.05479			-0.00227
_	٠,	.3967		- 15 670		23	0.15482			-0.03270
_		0.49449		•	0.29959	24	0.25524	-0 35087	0 34782	-0.06180
_	9			•		25	0.35599	-0.33015		
_	•			- 12.007		56	0.45712	-0.40622		-0.11610
~	1	.7877	-0.32682		0.27806	27	0.55850	-0.42887		
~	۲.					28			-	
•	œ	.9831				53	0.76157	-0.46337	_	-0 19027
_	0.83000	1 08093		-7.419		30				-0.21400
•	00098 0	1.17867	•	•	0.20240	E	0.96473	-0.48287	1.00165	-0.23759
•	0.89000	1.27641		-5.053		32	1.06625	-0.48667	1.09561	-0.26123
-		1.37415	•		•	33	1,16764		1.18970	
~	6	1.47189	•	-2.471	0.09962	34	1.26879	-0.48159	1.28404	
_	0 97500	1.55334	-0.41099	-1.323	0.06181	32	1,36955		1.37876	
	1.00000	1.63479	•	-0 152	0.02160	36	1.46974		1.47404	-0.35853
						37	1.55263	-0 44189	1 55406	
						38	1 62423	. 42	1.62439	
						33	1 63110	-0.42139	1 63148	-0.40301

60

CAMBER 3.51655

CHORD

40.691

STAGGER

-22, 108

-0.41204

1 63479

-0 41204

1.63479

CHORD

A DECEMBER OF A STATE OF THE ST

5 MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

PHASE IV ROTOR

-12 901

STAGGER

CHORD

PHASE IV ROTOR

5 MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

20

S

;		MEANLINE	INE DATA			:		SURFACE COUR	COURDINATES	1 1 1 1 1 1
П	PCT X	×	>	₩•	T(M)	pT	SX	۸۶	ě.	۵×
-	o o	-1.68772	0.69918	-32 388	0.05300		-1.68772	0.69918	-1.68772	0.69918
7	0.02500	-1.60391	•	-32.144	0.07280	~	-1.69146	0.67671	-1.66922	0.71212
က	•	-1.52010	. 59		0.09264	က	-1.68102	0.66046	-1.64988	•
4	٠.	-1.43629	ខ		0.11240	4	-1.62328	0.61544	- 1.58455	•
ស	٠	-1.35248	4	-31.020	0.13192	ស	-1.54454	0.55454	- 1,49566	0.63324
9		-1.26867		-30.460	0 15106	ပ	-1.46564		-1,40694	0.59012
7				-29.781	0.16970	7	-1.38647		-1.31849	
0 0		•			0.18774	6 0	-1.30696	0.37635	-1.23038	
6		-1.01723	•	-27.990	0.20506	đ	-1.22700			
5	•	•	Ŋ	•	0.22480	9	-1.14650	0.26349	-1.05559	0.42774
Ξ		-0.81609		-25.095	0.24326	=	-1.06535	0.20959	-0.96911	
12			0.15399	-23.473	0.26031	12	-0.96704	0.14768	-0.86628	0.34863
5	•	Ξ	•	-21.841		13	-0.86767	0 08922	-0.76450	0.30952
7	0.35000	-0.51436	0 07331	-20.255	0.28971	14	-0.76735	0.03460	-0.66367	
ភ	•		0.03769	- 18 . 762	0.30190	15	-0.66624	-0.01600	-0.56363	0.24001
16	•	-0.31322		-17.397	0.31232	16	-0.56451	-0.06259	-0.46422	0.20921
17		-0.21264	•	-16.161	0.32087	17	-0.46234	-0.10524	-0.36524	O. 180F2
8 2		-0.11207	-0.05348	-15.016	0.32748	81	-0.35991	-0.14414	-0.26653	0.15390
6		-0.01150	-0.07942	-13.922	0.33205	19	-0.25730	-0.17952	-0 16799	
20	•		-0.10335	-12.837	0.33445	20	-0.15449	-0.21163	-0.06465	
21		0 18965	Τ.	-11.713	0.33463	21	-0.05144	-0.24057	0.02845	Τ,
22	•		┺.		0.33255	22	0.05192	-0.26640	0.12623	0.05970
23		0.39080		-9.160	0.32826	23		-0.28907	.2236	0.03859
24		0.49137	┺.			24	•	-0.30850	0 32053	0.01849
25		0.59195			0.31328	52	0.36467	-0.32443	0.41693	-0 00042
56		0.69252			0.30273	56		-0.33682		0.01789
27		۲.	-0.20411		0.29021	27		-0.34524	0.60837	-0.03368
28		0.89367		0.001	0.27575	28	0.68145	-0.34944		-0.04751
53		•	?		\sim	59		-0.34911	0.79863	-0 05911
ဓ္ဓ		•	Ξ.		n	30	0.89367			-0.06818
31	0.86000	1.19539	Ξ.		0.22081	34	0.99959		0.98889	.0.07443
32	٠	1,29596				32	1,10508	-0.31774	1.08455	-0.07756
33		1,39653	-0.15019	13.065	0.17475	33	1 20987	-0.29617	1 18090	-0 07726
34	0.95000	1.49711		15.913	0.14834	34	1.31369	-0.26873	1.27823	-0.07318
32	ი.97500	1.58092		. 32	•	32	1.41629	-0.23531	1.37678	-0.06507
36	4.00000	1.66473	-0.06867	20.712	0.09934	36	1.51744	-0 19553	1.47677	-0.05287
						37	1.60046	-0.15740	1.56138	-0.03937
						38	1.63713	-0.13902	1.59994	-0.03212
						36	1.66212	-0.11378	1.63735	-0.03747
						40	1.66473	-0.06867	1,66473	.0.06867

3. PLANE SECTION BLADE COORDINATES

MINISTER APPROXIMENT CONSTRUCTION AND SECURIOR AND SECURI

Figure 67 shows the stacked Phase IV rotor plane sections. The following tabulation gives the coordinates for these sections. These sections are spaced one half inch apart, beginning at the tip height of 8.5 inches and progressing inward to 2.5 inches. These are the same section locations as given for the baseline rotor in Reference 1. Also included in the tabulation are coordinates for the section meanline, the meanline angle, and the section percent thickness at each point. Plane section chord, camber angle, and stagger angle are also given. These coordinates are intended to represent the blade under hot running conditions and do not include any corrections for blade untwist, meanline deformation, centrifugal growth or thermal growth.

THE REPORT OF THE PROPERTY OF

Figure 67. Stacked Phase IV Rotor Plane Sections

	FTA O.	7 5000		63					
20			CAMBER 7.530	7.92963	LON	336	538	538	
Š	C.	8+40	CA	7	UPSILON	-0 04336	-0.03538	-0.03538	Ċ.
	X			SURFACE ARC LENGTH	ALPHA				02.10
æ				ARC	ALF	-0 00811	-0.01733	-0.01733	-0.00210
POINR	o.	SFCTION CC	3ER	ACE			۰	•	·
	~	1100	STAGGER 51.792	SURF			<u>ئ</u>		
មា	.03550	SFC	s				ION C		IAL)
STAGE	-7						SECT		(RAD
•	2 -	ო		80			Ü		118
	ORIGIN	ON NO	RD 4.4.8	ARFA 0.339480		SECTION C G	STREAMSURFACE SECTION C G.	PLADE AXIS	STACKING AXIS (RADIAL)
	COORD SYSTEM ORIGIN Z -7.07550 R O.	SECTION NO	CHIDRD 3 9448	ARFA		SFCE	STRE	P.L AD	SIAC
	COORD								

·5dZ•

PHASE V ROTOR

20	ETA O.	7 5000	AXIS		UPSILON	0 60110	0.50149	0.40423	0.30940			0.03777		-0.13615	-0.22197	-0.30729		-0.47670	-0.56108	-0 64547	-0.73002	0 81181	-0.89989	-0.98515	-1.07048	-1,15574	-1.24088	-1 31167	-1.37350	-1.38105	-1.38943	***************************************	,	- 1,38081
E E	MU O.	RHO	AT SECTION A	LOWER	ALPHA	-0.48278	-0.40778	-0.33301	-0.25849	-0.18419	-0.11007	-0.03610	0 03774	0.11143	0.18497				0.47725				0.76352		0.90243	0 97059	1.03771	1 09279	1.14087	1 14338	1, 13969			48 UPSTLON
R010R	0	SECTION CC	WITH ORIGIN	2	UPSILON	0 54881	0.44535	0 34435	0.24590			٠.	-0.12430	-0.21250	-0.29960	-0.38579		-0.55584	-0.63977	-0.72300	-0.80552	-0 88731	0.96819	-1.04797	-1.12640	-1,20320	-1.27786	1.33812	-1.38981	-1 39270	-1.38943	•		ALPHA 1.13148
STAGE 5	2 -7.03550	3 SEC1	COURDINATES	UPPER	AI.PHA	-0.55613	-0.48474	-0.41311	-0.34123	-0 26915			-0.05188	0.02082	٠.				0.38698		0.53548	0 61054			0.84C17	0 91840	0.99768	1.06459	1.12371	1.13098	1.13969	•	- I	CENTER AT AL
	SYSIFM ORIGIN	SECTION NO	SURFACE		1/c	0 02283	0.02415	0.02535	_				0 02957	0 03004	-	0 03059	_	0 03061	0 03036	0 02985	0.02902	0 02780	0 02614	0 02395	0 02121	0 01788	0.01381	08600 0	0 00547	0 00547	0.00547	(C	RAD 0.01190
	COORD				1d	15	16	17	18	19	20	21	22	23	24	25	26	27		و 66		31	32	33	34	35	36	37	38	39	40			H.

	ö	8																_									S11.0N	71024	71203	. 708 14	63301	54782	46093	.37272	1.28383	0/881.	01709	0.91126	80636	70285
20	ETA	7.5000	AXIS	ZETA.	51.161	50.621			49.626	49 411				48.735		•			47.726	, i	٠	46.392	FR	30	SIX		Ś	<u>.</u> .			-	_	- '	-		<i>-</i> .		o	0	
S S	o .	RHO	SECTION A	UPSILON	.09153	.02152	76980	17432	26078	34034	51627	.60042	68423	76777	. 85 107	93404	.01656	.09844	17947	25937	5	8943	CAMBER	7.530	SECTION AXIS	LOWER	ALPHA	1.30023	1.29186				•	•	97498		-0.84876 -0.78499			
	¥.		AT	UPS	٥. ن	Ö.	ō.o-			5 6						ο.			. .	7		- 1 38			AT			•	-	1	-	-	•	- '	o q	7	7 7	· ·	Ť	Ÿ
ROTOR	٠. ٥.	TON CC	WITH ORIGIN	ALPHA	15347	.08027	.00707	.06612	13932	71752	35891	43211	. 50531	57851	65170	72490	79810	87130	54450	69710	786	13969	STAGGER	51.792	WITH ORIGIN	~	UPSILON	1.71024	1.70301	1.69578	1.61795	1.52976	•	1.34859	1.25655	1.15426	0.48019			
g.	-7.03550	SECTION	IATES V		o-	o P	o	o o	> (> c	o	C	Ö	Ö	Ö	0 (o (0	о·		<u>-</u>	-	317	ŝ		UPPER		က္	6 0	_	Ģ	c	ტ (20	0 0	ח ת	n C	o o	, 6	27
STAGE	2 -7.0	e	COORDINATES	1/c	•	.02897		-	03038	-	•		•	•		•						.00547			COORDINATES		AI. PHA	-1.30023	-1.30448	-1.30271	-1.24982	-1.19120	-1.13263		-1.01550		-0.83823			627
	NIGIN	2	MEANI INE											0								0		œ	SURFACE			19	19	19	59	<u>.</u>	46	26	BC 5		x g	33.	16	42
	SYSIFM ORIGIN	SECTION NO	Æ	PCT AL	0 4700		_		0065 0													1 0000	CHORD	3 9448	v		1/0	0.00519	0 00519	0 00519					0.01738		2001000			0 02142
	COURD			PT	18	19	o,		22	24	25	26	27	28	29	30		32	33	6.0	35	36					F Q	-	~	က	4	ល	9 (, (oc c	n Ç	2 =	5	<u>-</u>	4

NB 2C	0. ETA 0.	RH0 7.5000		UPSILON	1.71024	1.63138	1.46688	•		0.92347		0.30142	•		-0.25313		-0.60112	9289			-1,38943	SECTION AXIS	N ZETA+	4	8 54.580	6	55.621	56.	56.	56.	55.	55	מי		53.	53.2	52.	_
ROTOR	O. MU	သ	INPU: DATA	THICKNESS	0.02049	•	•		0.05839	0.07037	0.09382		•	. 11633	. 11973	12096	0.11974	10265	.08300	.05389		WITH DRIGIN AT SECT	HA UPSILON	30023 1.7102	1.6254	23 1.	724 1.45039		+	-	o ·	73905 0.89089	o c	ó	0	306 0.3742	86 0.2776	. 1834
STAGE 5.	Z -7.03550 R	SECTION	MEANLINE IN	ZETA•	3.92			,	<u>ن</u> و	55. 743 55. 126					49.659	•	48 922 48 740	•			ė.	COORDINATES WIT	T/C ALPHA	00519 - 1,30	+	- 1 -	00946 -1.1172	÷	Ģ	٠ <u></u>	ġ,	01833 -0.73	; ;		4.0-	-0.37	544 -0.29	02741 -0.22
	SYSTEM ORIGIN 2	SECTION NO 3		P.F. A.; PHA	1 -1.30023	- 1 2	-	-	o :	7 0 61505		-0-	<u></u>	Õ	2 0.13282		c	Ċ	ò	-	9 1 13969	MEANL INE C	PCT AI T	0.0		.0500 0.	•	1250	1500 0.	.1750 0.	2000	•	2800	3200 0.	3500 0.	3800 0.	100 0.	4400 0.
	COORD S			C									÷ ·	-	- •			6.6	_	•	-		14	•-	0	ო	4 0	ာဖ	7	c c	σ ;	9:	: ;	. <u></u>	-	15	9 !	١,

	Ċ	8 0000							
	ETA	0		9					
20	ш	a	æ 2	58 1	7	~	_	_	
NB BN	°.	RHO	CAMRER	7.85816	UPSILON	-0.04949	-0 04701	-0.04701	٥.
	Ð			SURFACE ARC LENGTH	AL PHA	-0.01456	0.01590	0.01590	0.00210
				RC	ALF	0	0	0	ξ.
ROTOR		38		4		Ŷ	C	Ò	o
80	0	_	3 K	VCI					
	œ	NO.	STAGGER 55.634	JRF					
រោ	ç	SECTION BB	51/	S			<u>ئ</u>		
	355	SE					z		\Box
iñ.	0.						Ö) I A
STAGE	17						ECI		RAC
Ŋ	2	8		ဖ			STRFAMSURFACE SECTION C G		STACKING AXIS (RADIAL)
	Z			995		Ġ.	AC		X
	161	Š		289		ن _	S	×	<u>ي</u>
	S	SECTION NO	CHORD 3 9139	0		SECTION C.G.	AMS	BLADE AXIS	Z
	Σ	11.	CHORD 3 9139	_		5	RF	5	∑
	۱۲ کا ۱۲ کا	SFC	Ü. ()	ARFA 0 289956		Š	٦	ē	v
	S			<					
	CUORD SYSTEM ORIGIN Z -7.03550 R O.								

	o.	ç	
20	ETA O.	8.0000	AXIS
NB 20	MU 0.	RHO	SECTION
	3		¥ ¥
ROTOR	Ċ	88	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
ă	~	N	ITH
STAGE 5	03550	SECTION BB	NATES W
TAGE	-7.		ORDI
0,	2	~	Ö
	COORD SYSTEM ORIGIN Z -7.03550 R O.	SECTION NO 2	SURFACE
	COORD		

	UPSILON	0.54830	0.54463	0 44279	0.34291	0.24505	14914	0.05494	-0.03795	-0.12998	-0.22149	-0.31279	-0.40404	-0.49537	-0.58688	-0.67853	-0.77063	-0.86286	-0.95536	-1.04810	-1 14077	-1,23298	-1.32443	-1 39982	-1.46414	-1.47207	-1.48040	1.74202	-1,47160
LOWER	AL PHIA	-0.45692	-0.38400	-0.32127	-0 25374	-0.18639	-0.11921	-0.05218	0.01475	0.08157	0.14827	0.21486	0.28132	0.34762	0.41372	0.47950	0.54486	0.60969	0 67388	0.73732	0.79990	0 86159	0 92223	0.97190	1.01460	1.01743	1.01319	UPSILON	UPSILON
UPPFR	UPSILON	0.60793	0 50152	0 39698	0 29449	0.19416	0.09596	-0.00024	-0.09480	-C. 18813	-0.28059	-0.37251	-0.46409	-0.55547	-0.64669	-0.73772	-0.82844	-0 91866	-1 00824	-1.09704	-1 18470	-1.27068	-1.35429	-1.42165	-1.47935	-1.48273	-1.48040	AI. PHA -1. 19042	ALPHA 1.00621
JAN	ALPHA	-0.52139	-0 45675	-0.39192	-0.32689	-0.26168	-0.19629	-0.13077	-0.06514	0.00061	0.06646	0.13243	0.19854	0.26479	0.33126	0.39803	0 46523	0.53296	0.60133	0.67046	0.74044		0.88323	0.94402	0.99807	1.00468	1.01319	CENTER AT	AT
	1/C	0 01943	0 02052	0.02151	0 02241	0 02322	0 02343	0 02454	0.02505	0 02547	0 02579	0 02601	0.02613	0 02615	0 02603	0 02571		0 02424	0 02294	0 02117	0 01889	0 01606	0 01255	0 00905	0 00524	0 00524	0 00524	0 0 0 10 10	C
	PI	15	16	17	1 8	19	20	2.	22	23	24	25	26	27		60		31	32	33	34	35	36	37	38	39	40	LE RAD	

20	ETA O	8 0000	AXIS	ZETA+	55.400			54.312			54 037	54.045	54.050		•		33 /93 62 643		53.138	•	٠,	51.209	FR	12	AXIS		UPSILON	1.75034	1 75175	1 74729	1.67569	1.59263	1.50983 4.47446	30755	1.25030	1 16197	1.07309	0.96620	0.85957	0.753/2
NB NB	MU O.	RHO	AT SECTION	UPSILON	0.12255	0.02735	-0.06638	-0.15906			-0.52542		-0.70818	-0.79954			-1.0/25/		1.25183	- 1.36936	410/4	-1.48040	CAMBER	4.312	AT SECTION	1 OWER	ALPHA	-1.19614	-1.18771	-1.18180	-1.13085	-1.07.365	0.01640			-0.78741		-0.66171	-0.59330	-0.52503
5. R010R	550 R O.	SECTION BB	TES WITH ORIGIN	AI PHA	-0.15775	-0.09147	-0.02519	0.04109	0.10737		0.30621			•	•		0.70389		0.83645		•	1.01319	STAGGER	55,634	TES WITH ORIGIN	UPPER	UPSILON	1.75034	1.74350	1.73651	1.65220	1.57/83	1,491/5	2,404.0		1 13478	1.04364	Ĭ		0.71577
STAGE	N Z -7.03550	8	NE COORDINATES	1/c	0.02393			0.02547												0.01255	,	0 00524			CE COORDINATES	,	ALPHA	-1.19614	-1.20041	-1.19888	- 1. 15096	- 1.09770	- 1.04448	0.33120	-0.88485	0.83161	-0.77832	-0.71428	-0.65013	
	SYSTEM DRIGIN	SECTION NO	MF ANL INE	PCT AL	0.4700			0 5600	_		0 6800						0000		0025	0 4400		0000	CHORD	3 9139	SURFACE		1/0	0.00504	0 00504	0.00504	•		0.00033						0 01704	0 01827
	COORD			ā	18	19	50	22	3 6	24	25	96	27	"	29	30	3.7	7 6		4 6	ດ	35					r d	-	2	ဗ	₹ 1	S (s 1	- 0	ο σ	Ç	=	5	13	- 4

20	ETA O	8 0000		UPSILON	75034	67441	5 1580	34875	97832	76073	54420	33300	12965	06610	73640	7707	6318/	00871	17632	34654	48040	AXIS	ZETA•	55.521		•	•		58 207					58.236		•	o.	56.499	55.945
82	MU 0.	RH 10		UPS	1.7	+ 6								•	9		6 a					SECTION AXIS	UPSILON	75034	66894	58573	50079	.41428	.32533	. 14837	.05836	95010	.84206	73460	62811	52308	4 1988	31870	21961
ROTOR		88	T DATA	THI CKNESS	0.01972			0.04152					0.09345		0.101.0		0.101/3	•	0000	047	.0205	WITH ORIGIN AT		-	-	8 +.	-	- •			-	0	0	ဝ					
5. RO	50 R O	SECTION	INE INPUT	ZFIA+ I	521	106	130	895	520	312	622	580	475	558	143	170	970	070	979	474	209		AL PHA	-1,1961,	•	-1.08568		٠.	18818 O-	-0.80951							ლ :	5,5	-0.22403
STAGE	-7.03550	S	MEANL INE	2F	55.	. 26		57.			•	•			. 4							COORDINATES	1/c	00504	006 19	00735	00853	0972	01091	01326	01441	01575	01704	01827	01943	5	ē.	~ (7322
	Z NIBIN	NO 2		ALPHA	1, 19614	•	-		70527					٠.	0 24803	0.24802	0.38343				.0131	MFANL INE C		0.0	Ö	o.	Ö	o o	<i>-</i>	ó	0	Ö	ö	Ö	Ö	Ö	0	00	0.03
	SYSTEM ORIGIN	SFCTION		pt	-	•		0 0	9 0			•					פ עַ					ME	PCT AL	o	0 0220	0 0500	_		1500		٠.							0 4100	00%
	COORD			_																			pt	-	5	က	ঘ	ម (۰ م	· c c	6	10	-	2	13	14	5	9 ;	-

20	ETA O.	8.5000	IFR 84	7.68670	Z		=	=	
£		R1 t0	CAMBER 1.184	7.6	UPSILON	-0 04164	-0 04291	-0.04291	c
OR	M	Ø		SURFACE ARC LENGTH	ALPHA	-0 02768	-0.02704	-0 02704	0,000
5. R010R	o & c	SECTION AA	STAGGER 59.293	SURFACE					
STAGE	-7.03550	SE	•				SECTION C		PANTALL
•	COORD S751FM ORIGIN Z -7.03550 R O.	SECTION NO 1	CH(I)PD 3-8302	A 0 267566		SECTION C.G.	SIRFAMSURFACE SECTION C.G.	BLADF AXIS	STACKING AXIS (DADIAL)
	COORD SYS	ş		ARFA		S	S	0	•

THE REPORT OF THE PROPERTY OF

Ċ	8	
FTA	8.500	AXIS
0	RHO	ECTION
Ē		AT S
7 03550 R O.	SECTION AA	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
7	-	ı.
COORD SYSTEM ORIGIN	SECTION NO	SURFAC
	COORD SYSTEM ORIGIN Z -7 03550 R O. MJ O FTA O.	M.J. O.

	UPS11 ON	0 70889	0.60394	99005 0		0.29914	0.20064	0. 10331	0.00681	-0.08919	-0.18496	-0 28073	-0.37666	-0.47288	-0 56934	-0.66599	-0.76274	-0.85953	-0.95635	-1.05315	-1.14977	-1.24590	-1.34117	-1.4 1976	- 1 48948	-1 44651	-1.50333	1 78172	-1,49451
LOWER	ALPHA	-0.43508	-0.37479	-0.31467	-0.25469	-0 19485	-0.13514	-0.07554	-0.01605	0.04334	0.10261	0.16176	0.22079	0.27968	0.33838	0.39682	0. 15487	0.51240	0.56925	0 62528	0.68037	0 73442	0.78720	0.83012	0 86792	0 86900	0 96446	NO 11540	UPSTLON
	UPSILON	0.67538	0.56816	0.46263	0.35890	. 25695	0. 15661	.05767	-0.04019	-0.13729	. 23391	-0.33027	42657	.52294	-0.61937	71573		90736	. 00214	.09595	. 18850	27935	. 36772	.43892	. 50112	.50484	50333	-1 08627	0.85861
UPPER	ALPHA U	.49606 0	-0.43899 0	38176 0	-0.32438 O	.26686 0	20922 0	15146 0	0- 09860	03263 -0	02245 -0	0- 99080	13839 -0	0. 19745 -0		1503 -0.		0.43415 -0	9466 . 1	55599 - 1	0.61825 -1	0.68155 -1	0.74613 -1	0.80101 -1	85035 - 1	.85530 -1	86446 -1	ER AT ALPHA	FR AT ALPHA
	AL	-0.4	4.0-	-0.3	-0.3	-0.2	-0.2	-0.4	0.0-	-0.0		0	0	0.4	0.2	0.3	0.3	0.4	0.4	0	9.0	9.0	0.7	8 .0	8 .0	0.8	8	CENTER	CUNTER
	1/6	0.01817	0.01919	02013	32100	02179	02250	02313	19870	02414	02452	02481	02200	-	02514	02499	02462	02394	02285	02126	01311	01633	101277	0.00910	00505	00505	00505	0 00965	0.01058
	14		Ç	0	18 C	0 61	20 0		22 0		24 0			27 0		29 0		31	32 0	۲,			36 0	37 0	38	39 0	0 01	1 E RAD	IE RAD

8

ROIOR

. ഡ

STAGE

THE TRANSPORT OF THE PROPERTY
ETA O	8.5000	AXIS	ZETA.	59.275					58 544 58 616		•	•				58 297	58.055		56.648		6.43	25	84	XIS		UPS11 DN	1 78985	1 79092	1.78644	1.71816	1.63922	1.55826	0/6/4/0	1.391/8	1.30554	1 13362	٠.	0 92161	
M. O.	RHO	SECTION	UPSILON	0.17862					-0 30550	49791	. 59435	.69086	78728	.88345	0.97924	.07455	16913	25.445	1.42934	20000	•	CAMBER	1.184	AT SECTION AXIS	a swo t	ALPHA	-1.09146	-1.08333	-1.07785		٠.			0.82986					
3. TO 10.	SECTION AA	S WITH ORIGIN AT	ALPHA	0.17218	-0.11350	•		_	0.17989		0.29724						0 554931				•	STAGGFR	59 293	S WITH ORIGIN AT	UPPER	UPSILON	1.78985	1 78347	1.77673	1.70608	•	•		1.3/219			1.00103	0 89252	
3 -7.03550	1 SF	JE COURDINATES	1/c	0 02250		•		•	0.02502				õ	0 02394		5 6					3			E COORDINATES	מנ	ALPHA	-1.09146	-1.09575	-1.03452	•	- 1.00521	-0.95816	0.91113	-0 86409	י פ				
COORD SYSTEM ORIGIN	SECTION NO	MF ANL INE	FCT AL	0 4700	0 5000	-			00/20	-	0 7100		0 7700			0 8600	3200		-		200	CHORD	2 R 302	SURFACE		1/0	0 00492	0 00492				0 00812		0 01137	-				
COORD			ב	18	61	50	21	25	2 4	75	56	27	28	66	ę;	- E	÷ ;	7	. r.	30	G.					10	-	2	~	4	ស	9 1	- c	ρσ	, C	? ‡	. 2	~	

# DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O FTA O. ## DRIGIN Z -7.03550 R O. MU O T. 64232 ## DRIGIN Z -7.0350 R O. MU O. ## DRIGIN Z -7.03550 R O. MU O. ## DRIGIN Z -7.03530 R O. MU O. ## DRIGIN Z -7.03550 R O. MU O. ## DRIGIN Z -7.0353 R O. ## DR																																		
STAGE 5. ROTOR A SECTION DD MEANLINE INPUT DATA A ZETA* THICKNESS 14 52.582 0.02080 77 53.933 0.04157 06 53.933 0.04157 06 53.933 0.04157 06 53.933 0.05577 08 53.005 0.04157 08 53.005 0.04157 09 53.005 0.04157 00 55.582 0.02750 14 52.582 0.02750 14 52.582 0.02750 14 52.582 0.02750 14 52.583 0.14853 15 83.126 0.04157 17 6 45.876 0.14140 18 54 44.047 0.15345 18 44.047 0.15345 18 44.047 0.15345 18 44.047 0.15345 18 44.047 0.15345 18 44.047 0.15345 18 44.047 0.15345 18 54 40.647 0.06368 20 00531 -1.39014 1.6 20 00531 -1.39014 1.6 20 00531 -1.32423 1.15 20 001099 -1.19241 1.5 20 01296 -1.19241 1.00 20 002078 -0.9868 1.1 20 002078 -0.70468 0.7069 20 002071 -0.62550 0.6 20 002071 -0.62550 0.6	FTA	7.0000		ILON	4232	5135	9339	1990	2359	1989	5394	5769	9073	1000	0141	5575	0643	5376	9726	3632 4892	AXIS	7F1A•			•						•			
STAGE 5. ROTOR 2 -7.03550 R 0. 4 SECTION DD MEANLINE INPUT DATA 2ETA+ THICKNES 14 52.582 0.02050 77 53.126 0.02750 77 53.126 0.04157 53.126 0.04157 53.126 0.04157 53.126 0.04157 53.126 0.04157 53.126 0.04157 53.126 0.02750 54.151 0.05417 54.153 0.05418 54.163 0.15245 55.258 0.14859 54.163 0.15245 55.258 0.14859 54.140 0.15245 55.258 0.14859 56.259 0.14859 57.70 0.02218 E COORDINATES WITH ORIGIN T/C ALPHA T/C T/C ALPHA T/C	0	Q12			1.6	1.5		•		. ,		•										PSILON	.64232	•	•		٠	•	, T	.92433	.81902	.71575	ဖ် ပ	5
STAGE 5. Z -7.03550 A SECTI MEANLINE A ZETA+ 14 52.582 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 77 53.126 89 54.151 89 44.047 25 42.163 89 44.047 26 42.163 89 40.47 27 600531 7/C A 4.047 20 00531 7/C A 6.00005 0.01296 0.01296 0.01296 0.01296 0.01296 0.01296 0.01296 0.01296 0.00005 0.01296 0.00005 0.01296 0.00005 0.01296 0.00005 0.01296 0.00005 0.01296 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005	R010R 0.	00	PUT DATA	THICKNESS				٠,				٠.					Τ.	-			ORIGIN		14 1											
STA	5. 03550 R	SECTION		ZEIA+	52.582	53.126			•				•			ω.	8	42.163	•			ALP	-	-1.32	- 1.25	-1.19					-0.78	-0.70		•
M DRIG 10N ND 11.3 11.3 11.3 11.2 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ST		X.	РНА	9014	2877	0477	7906 5.168	5860	5330	9503	3535	7482	100.	0964	7125	3258	9356	5389	1364 4623		1/C	-										•	•
7.	SYSIEM ORIGIN	SECTION NO			-	-		- ç	e c	C	0-	0	c ç	o c	0	0	Ö	o O	0		MEANL	PCT AL	С			-	- 1		_					
26 COOR CO				Φ.				•	•		_	~	<u>-</u>	- -	- 🕶	-	•	-	_	÷ ÷		7	-	2	ო	♥ ।	ກເ	9 7	- α	; 6 1	0	- (12	

0.42090 0.32824 0.23825 0.15068

-C 46741 -0.38832 -0.30923 -0.23014

0.3500 0.2800 0.4100 0.4400

	С	0000		•	_	rc	<u>د</u>	ın e	N 12	, -	. 0	~	0	7	•			c i	.	າ ເ	m (c					UPSILON	64232	64435	.64059	EC 370	47703	10688.	34.650	1220	03528			74590	64789
20	FTA	۸	AXIS	ZETA			•	45.265	44.812	43 984	•	43.303	•	42.727	42.444	42.154	41.824	41.42	41.023		E (39.930	CAMBER	652	AXIS		5	-	-	-	•		- •	- •			0	0	0	0
N S	MG O.	RIFO	AT SECTION	UPSILON	0.06525	0.01832			0.25995					5.71316	-0.78586			7.99937	1.06861			1.24892	CAN	12	AT SECTION	LOWER	AI PHA	-1,39014	- 1.38168	•		٠	-1 17502	- 1.10596	-0.05052				99	-0 58389
ROTOR		00	WITH ORIGIN A	_		•			•	,															WITH ORIGIN A		UPSILON	64232	63485	62755	54690	45604	36378	27065	2070	99156	90005	79182	68561	58172
5. 80	0 8 0	SECTION I		ALPHA	-0.15105				0.16532		0.40259			-		•		٠	1 03532	1.11441	1.18032	1.2462	STAGGER	47.640		UPPER	UPS	1 6	1.6	9.1	1.5	•			- č	- c				0.5
	-7.03550	SE(COORDINATES		9	4	4	9.	Q !!	n o	0.00	17	98	99	3.4	9 1	ច ទ	2	4 9	7 (<u>ლ</u>	2.1	•		COORDINATES	UP	ALPHA	39014	39430	39236	33543	27258	20980	.14704	02470	95850	89547	81966	74352	66730
STAGE	2	4		1/0	0.03646		-		0.03930		0.0393			0.03666				•			0 0111:	0 0056					AL	-1.3				•	٠			•		9.0		0
	SYSIFK ORIGIN	SECTION NO	MF ANL INE	PCT AL	0 4700	_		٠, ١	0 2300		_		0 7400									1 0000	CHOPD	3 9128	SURFACE		1/ ن	0.00531	0 00531	0 00531	-	-			0 01434			0 02302	0 02517	0 02221
	COORD			14	18	19	20	21	0.0	5 6	25	56	27	28	29	၁ ၁	- 60	25 7		3.4	32	36					PI	-	٠	က	4	ស	છ 1	r 0	æ c	, č	Ē	12	13	7

PHASE V ROTOR

	Ċ.	90			UPSILON	55246	45982	36992	28252	19733	11401	0.03230	-0.04806	12725	20541	28265	-0.35908	43487	51025	58541	-0.66048	73556	.81075	88609	96148	96960	11292	17673	23229	23983	24892	1.63379	.24084
20	ETA	7.0000	AXIS		ີ້ລ	Ö	Ö	Ö	Ö	0	Ċ	Ö	o O	o.	o O	ġ.	o.	ė.	o-	o O	ė.	ġ.	Ģ		o	-	-	-	-	-	;	-	;
e e	c	RHO	SECTION A	LOWER	ALPHA	-0.50233	-0.42112	-0.34021	-0.25956	-0, 17916	-0.09897	-0.01901	0.06073	0.14023	0.21950	0 29853		0 45575	0.53384				0.84056		0.98962	1.06286	1 13509	1,19442	1,24582	1,24913	1.24623	UPSILON	UPS11 0N
ROTOR	MU.	OO	DRIGIN AT		UPSILON	48043	38199	28655	19397	10404	01650		15246	23427	31449	39323	47053	54643	62094	69409	76585	83615	90490	97196	03716	10026	16105	20992	25141	25337	24892	-1 38361	1,23659
S RO	0 8 0	SECTION	S WITH	UPPFR	UPS	0	0.3	0.2			0.0	Ξ,			-0.3					٠.			6.0		0.1	- 1.1		1.2	- 2	1.2	-1.2	AL PHA	AI PHA
STAGE	z -7.03550	4 SF	COORDINATES WITH ORIGIN	an	ALPHA	-0.59067	-0.51370	-0.43643			-0.20312			_	0.11113			0 34943					•	•	0.92284	1.00778	1.09373	1.16622	1.22977	1 23765	1.24623	CENTER AT	A T
	SYSTEM ORIGIN	SFCITON NO .	SURFACE		1/c	0 02913	_	-	-		0 03646	0 03744	-	-	0 03830						0 03666	-	-	0 02945			0 01622			O 00567	0 00567	0 01074	
	COORD SY	ر ٠			PT	15	16	17	1 8	19	5,	21	22	53	24	25	26	27		62 7 8		3	32	33	34	32	36	37	38	6٢	40	LF RAD	IF RAD
																				, (,												

	Ċ.	۶							
20	ETA O.	7.0000	CAMBER 12.652	7.88478	NO	95	72	72	
Œ	o O	RH0	CAN 12	•	UPSILON	-0 03695	-0.02172	-0 02172	С
	N			SURFACE ARC LENGTH	ALPHA	-0 00357	-0.02735		.0 00210
ROTOR	o.	00	1ER	ACE AR	Ā	0	ġ.	0.0	٠ ٢
5.	50 R	SECTION OD	STAGGER	SUR			ပ		_
STAGE	-7 035	V					ECTION		RADIAL
S	~	7		Š			Š		S
	COORD SYSTEM ORIGIN 7 -7 03550 R O.	SECTION NO	CHORD 3 9128	ARFA 0.419325		SECTION C G.	STREAMSURFACE SECTION C.G.	BLADE AXIS	STACKING AXIS (RADIAL)
	SYSIE	SFCI	٦٠	ARFA		SEC	STR	BI A	SIA
	บขอดว								

NB 20	O. ETA O.	RH0 6 5000		UPSILON	1.55249	1.47035	1.30186	1.13030	0.95933	0.77509	0.58110	98836	0 22963		0.07416	-0.21494	-0.35041	-0.48114	-0.60769	-0.73025	-0.84893	0.96261	-1.05267	
ROTOR	R 0 MU	ON FE	MEANLINF INPUT DATA	THICKNESS	0.02070	0.02986	0.04902	0.06890	0.08889	0.11027	0.13210	0.15155		0 18110	0.19074	0 19659	0.19830	0.19446	0 18277	0.16092	0.12655	0.07712	0.02260	
STAGE 5.	-7.03550	SECTION	MEANL INF	ZETA•	51.372	51.742	52.200	52.077	51,39R	50,317	48.715	46 394	43,851	41.779			37.871		35,587	35, 125	34, 148	32.797	31.426	
<i>O</i>	COOPD SYSTEM ORIGIN 2	SECTION NO S		ALPHA	-1 46708	-1.40196	- 1 27043	-1 13736	- 1 00274	-0.85295			0 35260		-					0 84358	1.01576	1 18326	1 33224	
	COOPO SYS	کا		19	-	7	~	*	ស		7	6 0	σ	5	-	12	13	~	e e	5	1,1	<u>.</u>	61	

MEANLINE COORDINATES WITH GRIGIN AT SECTION AXIS

ZETA+	51.372	51.801	52.056	52.222	52.212	52.010	51.679	51,243	50.744	50.072	49.263	48.291	47, 153	45.857	44,576	43,373	42.314
UPSILON	1.55249	1.46417	1.37478	1.28471	1.19438	1.10440	1.01530	0.92742	0.84100	0.73942	0.64046	0.54456	0.452:4	0.36360	0.27899	0.19798	5.12013
ALPHA	-1 46708	-1 39710	-1 32712	-1.25713	-1,18715	-1,11717	-1.04718	-0.97720	-0.90722	-0.82324	-0 73926	-0.65528	-0.57130	-0 48732	-0.40334	-0 31936	-0 23538
1/c	0.00541	0 00799	0.01063	0.01334	0.01607	0.01881	0.02153	0.02422	0.02685	0 02990	0.03282	0.03559	0.03817	0 04055	0.04272	0.04467	0.04640
PCT AL	c	0.0520	0050 0	0.0740	0 1000	0 1250	0 1500	0.1750	0 2000	0 2300	0 2600	0.2300	0 3200	0 3500	0 3800	0 4100	0 4400
14	-	^	3	7	ນ	မ	7	œ	6	10	=	12	13	77	1	16	1.7

20	ETA O	6 5000	AXIS	ZE TA+	41.423		39.932	•	38.735	37.672		36.734		35.837		•		33.984	•	•	32.000	31.426	ER	46	XIS		UPSTION	1 55249	1.55472	1,55114	1.47362	•	1,30033	1.21321					0.77512		
NB	MU O.	вно	AT SECTION	UPSILON	0.04489		-0.09933		-0.2358/										-0.91066		-1.00943	-1 05267	CAMBER	19,946	N AT SECTION AXIS	LOWER	AI PIIA	-1.46708	-1,45870		-1.38510	•	•		•		•		0.77939	.0.69118	
5. R0TOR	550 R O.	SECTION FE	ES WITH ORIGIN	ALPHA	· C. 15140		٠.	0.10054	0.18452	0.35248							0.94034	1.02432	1.10830	1.19228	1 26226	1.33224	STAGGER	42 942	COORDINATES WITH ORIGIN	UPPER	UPSTLON	1.55249	-	-	-	-	-	<u>-</u>	-	-		0 80852		0.49928	
STAGE	IN Z -7.03550	rs V	INE COORDINATES	1/C	0.04791			٠,	0 05156					0 04736			٠,					0.00591				_	AI PHA	-1.46708	-1.47112	-1.46908	-1,40911	-1.34315	-1.27729	-1.21143	-1.14551					-0.78681	
	SYSTEM ORIGIN	SECTION NO	ME ANL INE	PCF At	0 4700	-			0086.0	_			0 7400	0 7700				0068 0	0 9200	-	0 9750	1 0000	CHORD	3 8240	SURFACE		1/ر	0 00541	0 00541	0 00541		•							0 02000	0.03559	
	COORD			p1	*	19	20	2 6	22	. 6	25	26	27	28	29	30	31	32	33	34	32	36					r L	-	2	~	7	J.	ၒ	7	c o ·	σ ;	0;	- (2.5	- -	

20	ETA O.	6.5000	SI		UPSILON	0.50178	0.41760	0.33717		0.18573	0.11357	0.04320	-0.02570		-0 15998	-0.22570	-0.29063	-0.35497		-0 48273	-0 54641	-0.61014	-0.67415	-0.73849	-0.80309	-0.86794	-0.93328	-0.98820	-1.03561	-1.04295	-1.05267	1011	10110	1.04558
NB 2	0	RHO	SECTION AXIS	LOWER	ALPHA	-0.51779	-0.43168	-0.34601		-0.17566	-0.09080		0.07819	0 16232	0 24620	0 32979	0.41302	0.49589	0.57831	0.66018	0.74142	0.82201	0.90189	0.98093	1.05911	1, 13641	1.21269	1.27552	1.32963	1,33393	1 33224	10011		NO 115.10
ROTOR	R O MU	ION EE	WITH ORIGIN AT	α	UPSILON	0.40251	0.30959	0.22080		0.05452	-0.02379	-0.09953	-0,17296	-0.24431	-0.31377	-0.38149	-0.44746	-0.51165	-0.57404	-0.63460	.0.69324	-0.74983	-0 80426	-0.85650	-0.90632	-0.95339	-0.99708	-1.03066	-1.05810	- 1.05865	-1.05267	•	- ,	ALPHIA 1.32083
STAGE 5	7.03550	S SECTION	COORDINATES	UPPER	ALPHA	-0.62481	-0.54296	-0 46067		-0.29510	-0.21200	-0.12866	-0.04508	0.03876	0.12283	0.20721	0.29193	0.37703	0.46257	0.54866	0.63538	0.72275	0.81083	0.89974	0.5-1952	1.08018	1,17186	1.24899	1.31584	1.32413	1.33224	+	¥ '	CENIER AL AL
	SYSTEM DRIGIN	SECTION NO	SURFACE		1/0	0 03817	0.04055	0.04272	0 04467		0 04791	0 04918	0.05022	0.05101	0.05156	0 05184	0.05182	0 05143		0 04927	0 04736	0.04481	0 04:53	0 03746	0.03255	0 02675	0 01981	0 01309	0 00591	0 00591	0 00591	()	RAD 0 01338
	COORD				Ы	15	16	17	8	19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40			<u>.</u>

	o.	6 5000								
	ETA	ي ئ			21					
20			CAMRER	0	7.74257	Š	86	52	52	
£	ċ	RHO	CAM		7.	UPSILON	-0.01698	-0.00755	-0.00755	٥.
					Ξ		•	٠	٠	
	¥				SURFACE ARC LENGTH	ALPHA	-0.00538	-0.03739	-0.03739	0.00210
~					NRC	A1.F	8	0.0	0.0	δ.
ROTOR	Ġ.	Ħ	~ .	v	3		ř	ĭ	ř	Ÿ
ă	ω	SFCTION FE	STAGGER	42.342	RF A(
ů.	0	110	STA	4	SU			င		
•	355	SF	•					ن 2		_
JE JE	7.0							SIRFAMSURFACE SECTION C G.		STACKING AXIS (RADIAL)
STAGE	•							SEC		(RA
	7	ស			53			CE		18
	NIC.	0			0 516253		SECTION C.G.	RFA	BLADE AXIS	¥
	0R I	SECTION NO	۵,	į	ن 5		ž	MSD	۲×	1NG
	Σ	110	CHURD	Ċ			110	RFA	AUF	ΛΩK
	SYSI	SEC	ر ر	•	ARFA		, F	S	BL	
	COURD SYSTEM ORIGIN Z -7.03550 R O.									

NB 20	O. ETA O.	RH0 6.0000		UPSILON	1.44767	1.36461	1, 19563	1.02534	0.85779	0 68108	0.50142	0.33765	0.18820	0 04983	-0.08004	-0.20269	-0.31894	-0.42906	-0.53291	0 63019	-0.72029	-0.80232	-0 86394
ROTOR	R O. MU	ON FF	MEANLINF INPUT DATA	THICKNESS	0.01987	0 03189	0.05675	0 08212	0.10716	0.13340	0.15951	0 18232	0.20139	0.21644	0.22718	0.23328	0.23413	0 22789	0.21239	0 18534	0.14421	0.08613	0 02262
STAGE 5	-7.03550	SECTION	MEANL INF	ZETA+	50.437	50.649	50.825	50.403	49.288	47 390	44 659	41.692	39.083	37.000	35.232		32 136	30 602	28.962	27.157	25 120	22.819	20.698
S	COORD SYSTEM DRIGIN Z	SFC110N NO 6		I AL PHA	1 53280	7 1 46439	3 -1 32630	-	5 -1 04556	G 0 88863	7 -0.71589	8 0 54153	9 -0 36594	10 -0 18921	1 -0.01178	12 0 16657	13 0.34556		15 0.70548	16 0 88652	7 1 06845	1 25160	9 1 40510
	COORD S													-	-	-	-	•	•		-	-	-

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

7ETA+	50.437	50.630	50.776	50.788	50.625	50.265	49.721	48.996	48.144	46.965	45.611	44.085	42.574	41 142	39.831	38 665	37,619
UPSILON	1.44767	1.35848	1.26870	1.17866	1.08885	0.94988	0.91232	0.82671	0.74346	0.64703	0.55478	0.46707	0 38394	0.30499	0.22977	0.15779	0 08860
ALPHA	-1 53280	- 1,45936	-1,38591	-1.31246	-1,23901	-1,16557	-1 09212	1.01867	-0 94522	-0.85709	0.76895	-0.68081	.0.59267	-0 50454	-0.41640	.0.32826	-0.24013
1/c	0.00531	0.00817	0.01229	0.01585	0.01943	0.02299	0.02649	0 02991	0.03322	0 03702	0.04062	0.04398	0.04709	0.04993	0.05252	0 05483	0.05686
PCT AL	0	0.0250	0.0500	0 0750	0 1000	0 1250		0 1750	0 2000	0 2300	0 2600	0 2900	0 3200	0 3500		0 4100	0 4400
P1	-	5	က	4	ß	9	7	œ	6	ā	=	12	1 3	~	£1	16	17

	C	ဥ																						
20	ETA	6.0000	SIXY	ZETA.	36.692	35.817	34.984	34, 198	33,460	32.731	32.000	31.258	30.500	29.715	23 897	28.042	27.146	26 175	25.110	23 998	22.867	21.845	20 698	
89 8	°.	ВНО	SECTION	UPSILON	0.02183	1280	0543	5620	7527	3272	3858	9286	1557	49669	1617	59397	1004	3431	2664	1691	511	3533	5394	
	Æ		IN AT	UPS	0.0	-0.04280	-0.10543	-0.16620	-0.22527	-0.28272	-0.33858	-0.39286	-0.44557	-0 45	-0.54617	0.5	-0.64004	-0.68431	-0.72664	-0.7669	-0.80511	-0.83533	-0.86394	
ROTOR	Ο α	SECTION FF	MFANLINE COORDINATES WITH ORIGIN AT SECTION AXIS	ALPHA	0 15199	0 06385	0 02428	0 11242	0 20056	0.28870	0.37683	0.46497	0 55311	0.64124	0.72938	0.81752	0.50566	0.99379	1.08193	1,17007	1.25820	1,33165	1,40510	
STAGE 5	-7.03550	SEC	OPPOINATES	1/c	05860	06005		06205	06257	06273	06249	06177	06050	05861	05605	05274	04861		03760	03062	02237	01447	00605	
•	SIN Z	٥٠	INE CO	7	0.0	0.0	0.06121	0	0	0	0.0	0	ဝ ၁	0.0	0	0	0.0	ŏ	0.0	0		0	0	
	COORD SYSTEM ORIGIN	SECTION NO	MFANI	rer Al	0 4700	0 5000	0 5300	0 5600	0 5900	0 6200	0 6500	O 6800	0.7100	0 7400	0 7700	O BOOO	0 8300	0 8600	0088 0	0 4200	0026 0	0 9750	1 0000	
	COORD			7.	18	19	20	21	22	23	24	25	96	27	28	29	30		33	33	34	35	36	

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

CAMBER 29.739

STAGGER

CHORD 3 7383

	400	UPPER	1001	LOWER	200
⋖	L 711A		UPS1LUN	ALPRIA	NO FISAD
-1.5	.53280	_	1 44767	-1.53280	1 44767
- 1 5	53659	_	1 44027	-1.52478	1 44999
-1.5	.53456		1,43335	-1.51810	1.44670
-1.4	.47203		1.34808	-1 44669	1.36888
-1.4	.40370	•	1 25418	- 1.36811	1.28323
-1 33	33542		1.15993	-1.28950	1.19740
-1.26	.26709	_	1 06581	-1.2109.1	1,11190
-1.19	19861		0.97241	-1.13253	1.02734
-1.1	1,12989	_	0 88031	-1.05435	0.94433
-10	-1 06086		o 79003	-0.97648	0.86339
6 0-	-0 99147		0 70203	-0.89898	0.78489
-0.9	-0.90767		0 59980	-0 80650	0.69476
-0.8	0.82320		0.50167	-0.71470	0 60789
-07	72800	_	C 40803	-0 62362	0.52612

PHASE V POTOR

•

	ö	2	
20	ETA 0.	6.0000	AXIS
NR 20	MU 0.	0 to 10	ECTION
	₹		A1 S
ROIOR	O	FF	ORIGIN
ά	œ	NOI	HITH
STAGE 5	7.03550	SECTION FF	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
S11	. 7	ເລ	2002
	COORD SYSTEM ORIGIN Z -7.03550 R 0.	SECTION NO 6	SURFACE

ALPHA UPSILON ALFHA UPSILON -0 65222 0.31913 -0.53313 0.44875 -0.56594 0.23470 -0.44313 0.37528 -0.47928 0.15439 -0.26424 0.37528 -0.3929 0.07778 -0.26424 0.37581 -0.39500 0.00443 -0.17526 0.1778 -0.13650 0.00443 -0.17526 0.1778 -0.13654 -0.19916 0.08654 0.1778 -0.13744 -0.09916 0.08654 0.107278 -0.1994 -0.19916 0.0988 -0.01770 0.04724 -0.19916 0.0988 -0.01770 0.04724 -0.26212 0.17760 -0.01770 0.13608 -0.32283 0.27534 -0.01770 0.13608 -0.32813 0.27534 -0.1740 0.13644 -0.3813 0.2748 -0.1744 0.2557 -0.3813 0.2748 -0.23441 0.4950 -0.4330 0.7208 0.7809	DIVIER UPSILON ALPHA 22 0.31913 -0.53313 24 0.23470 -0.44313 28 0.15439 -0.35353 29 0.07778 -0.26424 00.00443 -0.26424 00.00443 -0.26424 00.00443 -0.26424 00.00443 -0.26424 00.00443 -0.26424 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.006600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006654 00.00600 -0.006655 00.00600 -0.006655 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.006665 00.00600 -0.0066654 00.00600 -0.0066654 00.00600 -0.0066654 00.00600 -0.0066654 00.00600 -0.0066654 00.00600 -0.0066664 00.00600 -0.006664 00.00600 -0.
22 0.31913 -0.28 0.31913 -0.28 0.23470 -0.294 0.23470 -0.2954 -0.26212 0.31916 0.294 -0.32283 0.294 -0.32283 0.294 -0.32283 0.294 -0.32283 0.294 -0.32283 0.294 -0.32283 0.294 -0.3283 0.294 -0.3283 0.294 -0.3283 0.294 -0.29183 0.294 -0.29183 0.2994 -0.29183 0.2996 -0.29183 0.2996 -0.29183 0.2996 -0.29183 0.2996 -0.29183 0.2996 -0.29183 0.2996 -0.29183 0.2996 -0.29183 0.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 -0.29123 11.2996 11.	UPPER OFFICE ALPHA UPSILON A 04709 -0 65222 0 31913 -0 04793 -0 56594 0 23470 -0 05252 -0 47928 0 15439 -0 05483 -0 39229 0 07778 -0 05860 -0 1744 -0 06600 -0 05860 -0 12954 -0 19916 -0 06121 -0 04413 -0 19916 -0 0627 -0 04124 -0 19916 0 -0 0627 -0 04124 -0 19916 0 0 0627 -0 04124 -0 19916 0 0 0627 -0 04124 -0 19916 0 0 0627 -0 13608 -0 226212 0 0 0627 -0 13608 -0 23283 0 0 0627 -0 13608 -0 23283 0 0 0627 -0 1494 -0 13183 0 0 0628
A UPPER UPSTLON 222 0.31913 22 0.31913 22 0.23470 228 0.15439 229 0.07778 24 0.06600 244 0.06600 244 0.026212 29 0.03283 29 0.03283 29 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.03283 20 0.0328 20 0.032	017PT N 04709 -0 65222 0.31913 04993 -0.56594 0.23470 05252 -0.47928 0.15439 05483 -0.39229 0.07778 05686 -0.39529 0.07778 05860 -0.21744 -0.06600 06073 -0.04131 -0.19916 06273 0.4724 -0.32833 06273 0.4724 -0.32833 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 06273 0.2529 -0.38136 075605 0.49572 -0.59183 07605 1.24196 -0.84364 070605 1.38989 -0.87568 000605 1.39810 -0.86394
A A B B B B B B B B B B B B B B B B B B	04709 -0 65222 04943 -0 65222 04943 -0 56594 05252 -0 47928 05483 -0 39229 05483 -0 39229 054850 -0 21744 06051 -0 04131 06273 -0 04724 06273 -0 04724 06273 -0 04724 06273 -0 04724 06273 -0 04724 06273 -0 04724 06773 -1 1608 067851 -1 177 04861 -1 18875 07760 -1 1679 07760 -1 1679 07760 -1 14679 07760 -1 14679 077760 -1 14679

PHASE V ROTOR

	o.	Ş							
20	ETA 0.	6.0000	3FR 739	7 62101	NO	49	56	99	
Ë	· 0	RHO	CAMBER 29 739	7	UPSILON	-0 00549	0.00166	-0.00166	ċ.
	¥			SURFACE ARC LENGTH	ALPHA	-0.01668	-0 05114	-0.05114	0.00210
ROTOR		<u>. </u>		E AR	₹	o.	ç	o o	0.0
80	0	SECTION FF	STAGER 38.197	FACI					
ν.	α .)T 10	38.	SUR			ى ن		
•	355(SE	•				S N		۲)
STAGE	-7.0						ECT 10		RAD1/
V	2	φ		70			e,) S I
	COORD SYSTEM ORIGIN Z -7.03550 R O	SECTION NO	ت 83	0.596107		SECTION C.G.	SIRFAMSURFACE SECTION C.G	PLADE AXIS	SIACKING AXIS (RADIAL)
	Œ	110	CLIORD 3,7383			CII	RF A	ADF	Ä
	SYST	SEC	υĸ	ARFA		SE	5	<u>ہ</u>	5
	COORD								

+2PC+

20	FTA O.	5.5000		UPSILON	32741	24375	07521	90759	74546	41343	26540	13038	00661	105/3	2,1029	38734	45929	51889	56615	0052	1826	AXIS	ZFTA.	49, 153		•	•	48.630		46.195	45.019	43.374	41.662	39.970	•	•	∞ . (34.613 33.410
N 8	.0 .	R# 10		UPS	7.3	1.2	1.0		, i				٣.		~ ~ ? ?	. ,				9.0		SECTION AXIS	STLON	32741	23825	14913	06047	97765	80221	72069	64222	55257	46808	38850	31340	24206	17397	10892 04674
œ	MU		DATA	THICKNESS	01885	03348	06339	09355	12305	18373	20973	23121	24770	25866	26351 26176	25159	23158	20008	15485	09199	02145	ORIGIN AT	OPS	-	•); u				0.5			0.3		•	00
ROTOR	۵ 0	SECTION GG	INPUT DAT	THI	0	o.	Ö		o c						o c	Ö	Ó	0	Ö	Ö	•	WITH OR	ALTHA	.58170	. 50492			19780	12 102	.04423	.96745	.87532				ហ ។		. 32250
36 5	7.03550	SFCI	MFANI INE	ZETA•	49.153		•		46.504	, o			32 723		25.003			6.		8 224	•	COORDINATES					· ·								•			00
STAGE	7- Z N	7	•	AH,	58170	50965	36416	21686	06/85 90245	72050	53740	35336	16859	970	38937	57652	76424	95269	14181	33143	48952	NE COORE	1/c	0.00518		_	0.01816	0.02230				0.04357			•			0.06445 0.06678
	SYSTEM ORIGIN	SECTION NO		ALPHA	- 1.58				5 6				9 6		0.38		•	•	- 14	1.33	1.48	MEANL INE	PCT AL		0220	0200	0750	1250	1500	1750	2000	2300	. 2600	2900	3200	3500	3800	4400
		SEC		1 d	-	7	ლ -	46	ກ ເວ	۰,	œ	6	₽:	- \$	<u>, t</u>	7	ត្	16	17	48	19			0			0 0											00
	COORD																8	8					pT	•	~	(°)	< 1	n C	, _	œ	O T	₽:	= (5.5	20 1	4 4	n (17

20	ETA O.	5.5000	AXIS	7ETA•	32.228	31.050	•	28.737	27.547 26.313							15.534		•	10.135			0	772	SIX		UPSILON	1.32741	1 32980	1.32684	1.24948	1,16553		0.99968	0.91892					
SS.	MU O.	ВНО	SECTION	UPSILON	-0.01268	-0.06946	12370	17545	-0.22474 -0.22474	31585	35755	. 39654			-0.49593	-0.52301		0.00027	-0.58631	-0.60177			44 7	AT SECTION	0 1	AI PHA	-1.58170	-1.57113		•	•	•	-1.24388	- 1 07968				-0.72541	
5. R010R	50 R O	SECTION GG	COORDINATES WITH ORIGIN AT	AL PHA	-0.13823	-0.04609	Ξ,		0.23032					•		0.96741	1.03933	10103	1.24382	1.41274	1.48952	CTACCED	32,355	ES WITH ORIGIN	03001	UPSILON	1.32741	1.32027	1.31373	1.22702	1.13273	1.03881	0.94561	0.85377	0.67654				0 31638
STAGE	IN Z -7 03550	7		1/C	0.06873	0.07030	•		0.07256	0.07176		•		0 06298		0.05421		•	0.03409					ACE COORDINATES	=	VLPHA	-1.58170	-1.58518	-1.58316	•	-1.44714		1.30527	-1.43399	-1 09027			.0 84096	-0 75150
	SYSTEM ORIGIN	SECTION NO	MEANL INE	PCT AL	0 4700			•	0 5400	0.6500		0 7100				008300						CHOOL	3 6357			1/C	0.00518	0 00518		٠.			0.0220	00160 0		Τ,		0 04781	0.05177
	COORD			P	18	19	5 50	220	2 6	.54	25	56	27	28	29	S .		39			36					7.4	-	٥	6	₹ :) <u>م</u>	r ع	~ c	οσ	, C	=	5	-	

20	ETA 0.	5.5000	15		UPSILON	0.39232	0.32726	0.26501	0.20534	0.14807	0.09302
		_	×	~		•	-	•	10	~	~
S S	ö	R#10	ECTION	LOWER	ALPHA	-0.53629	-0.44234	-0.34889	-0.25595	-0.16352	-0 07159
	M		AT SI			o-	o-	o-	o-	o	ç
ROTOR	0 &	SECTION GG	WITH ORIGIN	œ	UPSILON	0.23448	0.15686	0.08293	0 01249	-0.05459	-0 11837
STAGE 5	7 -7.03550		SURFACE COGRDINATES WITH ORIGIN AT SECTION AXIS	UPPER	ALPHA	-0.66153	-0.57120	-0.48038	-0.38905	-0.29720	-0 20486
	COORD SYSTEM DRIGIN Z -7.03550 R O.	SECTION NO 7	SURFACE		1/c	0 05542	0.05876	0.06178	0 06445	0 06678	0.06873
	COORD 5				PT	15	16 0	17	τ	61	20

-0.48038 -0.08293 -0.34889 -0.38905 -0.01249 -0.25595 -0.20486 -0.11837 -0.07159 -0.1202 -0.17893 -0.01985 -0.01873 -0.23632 0.10082 -0.01873 -0.23632 0.20131 -0.2410 -0.38956 0.20131 0.25169 -0.38081 0.20131 0.35941 -0.47500 0.5818 0.35169 -0.51216 0.64604 0.64862 -0.54230 0.55818 0.74598 -0.51216 0.64504 0.64850 -0.54830 0.92030 1.03852 -0.64732 1.08058 1.32953 -0.64732 1.16751 1.40957 -0.63936 1.48696 1.48605 -0.62728 1.48696
0 01249 -00.05459 -00.11837 -00.29058 -00.34169 00.34169 00.34169 00.47500 00.47500 00.51216 00.57413 00.59839 00.63275 110.64265 110.64265 110.64265 110.64265 110.63936 11.
-0.05459 -00.11837 -00.17893 -00.29058 -00.34169 -00.47500 -00.47500 -00.51216 -00.54530 -00.59839 -00.61795 -00.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -10.64265 -1.
-0.11837 -0. -0.17893 -0. -0.29638 -0. -0.34169 -0. -0.34956 -0. -0.47500 -0. -0.51216 -0. -0.54530 -0. -0.57413 -0. -0.59839 -0. -0.61795 -1. -0.64765 -1. -0.64765 -1. -0.64765 -1. -0.64765 -1.
-0.17893 00.23632 00.29058 00.38956 00.47500 00.51216 00.51216 00.57413 00.57413 00.59839 00.64265 10.64265 10.64265 10.64265 10.64265 10.64265 1.
-0.23632 -0.29058 -0.38956 -0.43406 -0.43406 -0.43406 -0.51216 -0.51216 -0.51216 -0.57413 -0.59839 -0.59839 -0.61795 -0.6426 -0.64265 -0.64265 -0.64265 -0.64265 -0.64265 -0.6426
-0.29058 -0.34169 -0.38956 -0.43406 -0.43406 -0.51216 -0.54530 -0.57413 -0.59839 -0.61795 -0.6426 -0.64265 -0.64265 -0.64265 -0.64265 -0.64265 -0.6426
-0.34169 -0.38956 -0.43406 -0.47500 -0.51216 -0.57413 -0.59839 -0.61795 -0.61795 -0.6426 -0.6426 -0.64
-0.38956 -0.47500 -0.51216 -0.51216 -0.57413 -0.59839 -0.61795 -0.61795 -0.6426 -0.64265 -0.64265 -0.64265 -0.64265 -0.64265 -0.6426
-0.43406 -0.47500 -0.51216 -0.54530 -0.59839 -0.61795 -0.61795 -0.64265 -0.64265 -0.64265 -0.64265 -0.64265 -0.64265 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732 -0.64732
-0.47500 -0.51216 -0.57430 -0.57433 -0.61795 -0.61795 -0.64732
.0.51216 00.54530 00.57413 00.59839 00.64795 10.64732 10.64580 10.63936 10.63936 10.63058 1.
-0.54530 00.57413 00.59839 00.61795 00.64255 110.64265 110.64580 110.63936 110.63058 110.62728 11.
-0.57413 0. -0.59839 0. -0.61795 0. -0.63275 1. -0.64265 1. -0.64580 1. -0.64580 1. -0.63936 1. -0.63058 1. -0.62728 1.
0.59839 00.61795 00.63275 10.64265 10.64580 10.63936 10.63058 10.62728 1.
-0.61795 00.63275 10.64265 10.64732 10.63936 10.63058 10.62728 1.
-0.63275 1. -0.64265 1. -0.64732 1. -0.63580 1. -0.63058 1. -0.62728 1.
-0.64265 1. -0.64732 1. -0.64580 1. -0.63936 1. -0.63058 1.
-0.64732 1. -0.64580 1. -0.63936 1 -0.63058 1. -0.62728 1
-0.64580 1. -0.63936 1 -0.63058 1. -0.62728 1
-0.63936 1 -0.63058 1. -0.62728 1 -0.61826 1.
-0.63058 1. -0.62728 1 -0.61826 1.
-0.62728 t -0.61826 t.
8952 -0.61826 1.
CENTER AT ALPHA -1.57512 UPSILON
AT ALPHA 1

20	ETA O.	5.5000	CAMBER 44.772	7 51481	NO	197	576	576	
Z Z	0	RHO	CAN 44		UPSILON	-0 00097	-0 01576	-0 01576	c
	₩			SURFACE ARC LENGTH	ALPHA	3 01411	0 04600	-0.04603	·0 0n210
ROTOR		ອຍ	ភ ហ៊	CE AR	•	n	0	o O	0-
	α	SECTION	STAGGER 32 355	SURFA			G		
ល	03850	SEC	S				ONO		AL)
STAGE	-7						SECTI		(RADI
	COURD SYSTEM ORIGIN 7 -7 03550 R O.	SECTION NO 7	CH0RD 3 6357	ARFA 0 656981		SECTION C.G	SIREAMSURFACE SECTION C G.	BLADE AXIS	STACKING AXIS (RADIAL)

PHASE V ROTOR

	С	00																																						
	E1A	5.0000																						ZETA+	285	939	781	402	881	193	340	210	709	160	469	866	320	822	ကျ	877
20	m	L)		LON	793	10485	•	953	711	215	32032	18563	5/3	13463	21586	433	•	38235	41110	42383	583	711	AXIS	32	47		46.	46	45.	45	7 7	5 5	40	39.	37.	35.	34	32	. 6	29.
NB BB		8 +0		UPSILON	1. 18	1.10	0.9399	0.779					0.0657.	٦,							4	. 38	Z																	
2	0	u		•	_	_	Ü		0	0	O	Ο (, ر	9 9	Ç	o o	o	Ç	o	0	0	o-	SECTION AXIS	LON	18793	10497	.02268	94130	86118	78274	15001	56117	47953	40231	32943	26069	19581	13453	07664	202
	¥			w																				UPSILON	18				•				0.47			•			.07	0.02
			DATA	THICKNESS	01944	03669	07156	10601	13892	17213	20380	23028	25160	27949	28644	28833	28291	26433	23347	17895	150	∞ .	COORDINATES WITH ORIGIN AT	_				Č	_	•			,		Ü					_
ROTOR	•	Ŧ	T DA	HI CK								•	0.23				•	0.26	0.23		0.101	0.02	0819		_	٠ ٨	_	7	7	۰:	٠,	<i>,</i> ~		ത	7.	_	7	<u>ლ</u>	0	ω
RO	0		INPUT	F			_	_		-	_		_				Ĭ	•	Ī	Ī			Ξ	ALPHA	59027	51332	43637	1594	28247	055	2 2 2	746	88233	78999	69765	60531	51297	2063	28	328
	0	SECT ION		÷	85	101.	53	242	75	47	279	57	466	210	, C	2 5	624	868	53	116	850	56	S WI	Ā	-	•	4.	-	÷.		- (•	-0.2
	-7.03550	SE	MEANL INF	ZETA	47.2	47.1	46.4	45.2		40.6		34.0						10 8	6.6	-	6.8	16 2	VATE																	
STAGE	-7.(ME		•	•	•	•	•		• ′	• • •	•		•						•	ì	RDI		62	9	9	62	28	46	n 1	0.00	33	02	4 1	4	05	(7)	24	
ST	7	6 0			7	0	7	ဗ	ത	က	7	on t	. ,		4	₹	*	ıs	'n	0	0	6		1/0	00562	01060	.01561	.02062	02558	03046	03573	04478	.04933	.05405	.05841	.06241	06605	.069	072	074
	Z			ALPHA	5905	51320	581	20233	459	8737	68577	49799	3005	2777 O5444	2513	4378	62364	80826	99125	17130	34660	4877	ME ANL INE		C	0	0	0	0	0 (O () C	0	0	0	0	0	0	0	0
	ORIGIN	0; ·		7	-	7	_	•				o o					0			-	£.	-	FANL	٧٢		50	8	0270	1000	250	1500	2 2	8	8	8	8	3500	3800	001	400
	Æ	SECTION																					Σ	PCT	c	0 0250				-				0092.0					₹ '	₹.
	SYSTEM	SF		5	-	٠,	ო	4	ហ	9	7	c (n (2 =	5	<u>ب</u>	7	15	16	17	18	σ		<u>.</u>	C	,		C	0	0 (0 0	<i>,</i>	0	¢	J	С	C	C	C	С
	COORD																							PT	-	~	m	4	ស	ဖ ၊	- 0	ς σ	ā	Ξ	2	1 3	7 !	Ē.	9 !	11
	ÖΟ																		a	12																				

92

+2PC+

THE PROPERTY OF THE PROPERTY O

20	F1A 0	5.0000	AXIS	7514.	28 440	•		23.917			17 196		•	11.624	•		•	-1 639		10 983	-16 226	E S		715		UPSITON	1 18793	1 19070	1.18/92	1 04156						0 61787		
NB NB	MU O.	ВНО	AT SECTION	UPSILON	-0.02950	٠.		-0 30549			-0.30519			-0 3/665 0 20200	-0.39394					-0 40569	38711	CAMBER	63.511	W AT SECTION AVIS	LOWER	ALPHA	-1.59027	-1.58256	70976.1-	-1.49990			-1, 16816		-1 00433	0.92773	-0.87671	-0.63623
5 R010R	50 R O	SECTION HIM	ES WITH ORIGIN	VH DHV	-0.14362	-0 05128	0.04106	0.13340					٠,	0 7978	21778 0			1 24148	1 5 1382	1 41077	1 48772	STAGGER	27.099	COORDINATES WITH ORIGIN	UPPER	UPSILON	1 18793	1, 18039	7/8/1	1 00420	0.91673					0 50447		0.24929
STAGE	N Z -7.03550	88	NE COORDINATES	1/0	0.07704	_	0 08049	0.08173	0 08323	•				0.07804		0.06262				0.01993	0.00824				5	ALPHA	-1.59027	•	1.09136	-1.32674		-		•		- 1.02612	98/86 O.	
	SYSTEM ORIGIN	SEC110N NO	MF ANI, INE	PCT AI	0.4700			0 5200	_	0 6500				007.0						0 9750	1 0000	CHORE	3 4576	SURFACE		1/0	0 00562			0.01050		0.02558	0 03046			0.04428		
	COORD			pt	48	61	ç;	- 6	23	24	25	96	27	æ 6	5, 6	· ·		ლ შ		35	36					pt	-	<i>~</i> (ე ₹	7 (· છ	`	Œ	σ	Ç:	- ;	7 <u>C</u>	; 2

CASIA RABBARGA DESERVAR DESERVAR ARRESTA DE RESERVAR LA RESERVA DE RESERVAR DE LA RESERVA DE LA RESE

20	ETA O.	5.0000	AXIS		UPSILON	0 34812		0.23523	0 18331	0 13416	0.08761	0.04354	0.0000	-0 03691	-0.07329	-0.10716	0.13865	-0.16790	-0.19512	0.22055	-0.24450	-0.26727	-0.28902	-0.30985	-0 32975	-0.34838	-0.36376	-0 37187	-0.37376	-0.37734	-0 38711	1.18024	90268 0-
NB	MU 0.	RHO	SECTION	LOWER	AI PHA	-0.54210	-0.44860	-0.35568	-0 26334	-0.17153		₹.	0.10095		0.27996	•				0.72006	0.80696	0 89357	0.97981	1 06593	1 15226	1 23933	1.32790	1.40420	1.46985	1.48097	1.48772	S UPSILON	ND TIE ON
ROTOR	0 8	SECTION HIM	WITH ORIGIN AT	ď	UPSILON	0.17325	0.10151	0.03382	-0.03002	-0 09012					-0.33768	-0.37647	.0.41146	-0.44249	-0.46928	-0.49151	-0.50880		-0.5265		-0.51672			-0.43951	-0 40802	-0.40130	.0.38711	ALPHA -1.58315	AI PHA 1 47009
STAGE 5	Z -7.03550	8 SEC.	COORDINATES	UPPER	ALPHA	-0.66853	-0.57735							_				0.46027		0.65482	٠		0.94910	1.04766	1.14601	1.24363	1.33974	1,41733	1.47905	1.48590	1.48772	CENTER AT AL	CENTER AT AL
	SYSTEM ORIGIN	SECTION NO	SURFACE		1/c	0 06241	-				0.07104					0 08323	٠,			0 08061										٠	0 00824	RAD 0 01048	RAD 0 01831
	COORD				PT	15	16	17	2	19	2C	21	22	23	2.5	25	56		82 94		30	.	32	33	34	34	36	37	38	36	40	LER	

PHASE V ROTOR

3 20	ETA O.	RHO 5.0000	CAMBER 63 511	7.27336	UPSILON	-0 n0851	-0.03786	0.03786	
NB RB	o.	à	.		Š	o-	o.	0	c
	Ð.			SURFACE ARC LENGTH	ALPHA	0 01262	0.00325	0.00325	-0.00.10
OR		I		ARC	AL	0	0.0	0	0
ROTOR	o	SECTION HH	3ER 399	ACE					
	œ	TION	STAGGER 27.099	SURF			65		
ស	3550	SEC	w				Z		_
STAGE	-7.0						ECTIO		ZADIA
S	7	80		7			ES		5
	COORD SYSTEM ORIGIN Z -7.03550 R O.	SECTION NO	CHORD 3.4576	AREA 0 701672		SECTION C G.	STREAMSURFACE SECTION C.G.	RIADE AXIS	CIACKING AXIS (RADIAL)
	SYS	SF		ARE		V.	S	<u>e</u>	ŗ
	COORD								

	Ċ.	2000			UPSILON	.30215	.25276	. 20691	. 16443	. 12508	.08870	.05511	0.02412	-0.00454	.03115	05601	07944			. 14423	16418		19787		21276	. 20757	18940	15888	12898	12459	. 13754	1 03305	2000	-0.16417
	FIA	4	S		כ	o.	0	0	0	0	0	Ö	0	Ŷ	ġ.	o	o	o O	o	0	Ŷ	0	ç	o	0	Ŷ	o	0	o O	Ò	o-	-	- (?
20			AXIS																													2	: :	Z
82	o.	810	SECTION	LOWER	ALPHA	56179	47285	38453	29678	20954	12284	03667	04899	13413	21877	30292	38660	46990	55278	63523	71709	79827	87847	95786	03723	11789	20065	27346	32489	35207	37476	NO 11 VOI		217
	2			_	₹	Ģ	ò	0	o	o	٠.	0.	Ö			0				٠.		0	0	0	_	-	_	_	-	_	-			
	Σ		AT																											•		55:33	, C	. 34437
~			IGIA		Z	53	33	ô	25	5	35	<u>.</u>	စ္က	33	17	35	56	33	59	33	28	Ę.	9	33	98	34	31	63	16	16	54	r r		7. S4
ROTOR	0	3	08		UPSILON	12629	06189	00140	05525	10813	15735	20291	24480	28293	31717	34735	37326	39465	41129	42293	42928	.42993	424	4 1033	38636	34964	29631	23653	19146	17146	13754	Ī		
α	α	NO	WITH ORIGIN	•	D D	o	o.	o.	ė.	ė.	Ġ.	Ċ	ė.	ó.	Ö	Ġ.	ó.	ó.	ó.	ó.	o-	Ġ.	ó	ė.	o	ó.	ó.	ó.	ö	ó.	٠̈́	V710		Ĭ
ភ	50	SEC110N		UPPFR																												ALIG IA		AH.Y.HA
	-7.03550	S	COORDINATES	5	≝	124	13	40	9	28	66.	9	92	56	29	59	95	7	83	48	89	26	-	04	94	15	45	34	9	5	94	A		
STAGE	-7.		JRD I		ALPHA	67924	. 59213	50440	41610	32728	.23793		.05765	٣.		.21659	30895	.40171	.49489	.58848	.68268	77756	.87341	.97007	06676	. 16215	.25545	.32934	.37416	.38415	.374	GENTED		CENTER
S	7	6				Ó	o	o	o -	o	o	0	o O	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	Ü	֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	בֿ
	Z	_	SURFACE																													y	2 9	2
	0816	S Z	SURF		C	06687	07117	07524	0.7905	08262	08580	08887	09148	09364	09522	60960	09611	09509	09287	08937	08454	07854	07 158	06389	05569	04703	03799	03025	02241	02241	241	94466	- (04030
	F. 33	SECTION	•		1/0		-					_	-										_			-	_				0	Ċ		0
	5751	SFC				0	0	0	С	0	C	С	0	0	0	0	С	0	0	C	0	0	၁	С	0	С	C	C	0	0	С	240		KAD
	COORD SYSTEM DRIGIN				4	15	16	17	*	19	20	2	22	23	24	25	56	27	28	59	30	31	32	33	34	35	36	37	38	33	40	-	. F	L -

																											z	c c	c	D.	_	- - ,	0	c r) t~	. ~	_	6	~	ဗ
	o.	ક																									UPSILON	04138	04470	04185	98031	9176	84590	7 4643	65447	59484	53781	47299	41214	3552
	ETA	4.5000	S	ZETA•						200			. 522	•	•	•	•	٠		•	•	. 577			v.		Ď	-	-	-			0 0					•	0	
20			AXIS	2	25	23	2	<u> </u>	φ <u>;</u>	5 5	, to	=	6	7	4	- (ן ני	φ <u>(</u>			32	-42	CAMBER	88.239	AXIS															
N 8		RH0	SECTION	z	2	0	4	~	ဖ	נוס	, ,	က	œ	ღ	σ.	- (י ת	φı	ņ	<u>.</u>	-	57	CA	88	SECTION	LOWER	ALPHA	55947	55103	54369	47239	39315	3,410	1000	07887	00134	92435	83263	74165	65138
	D.			UPSILON	03432	04330		14374	17416	20102	2482	26733	28358	29673	30619	31101		29956	2/865	38747	97	1375				_	AL	1 11	1.5	•	•					•	0.9	-0.8		9.0-
	Σ		N AT	Š	0	ė.	o O	o	o o		ċ	Ó		o O	o ·	٠ ز		, ,	o s	, ,	o	ė.			N AT															
.0R		25	WITH ORIGIN		_		_	_	.			. ~	"	•	_			•			_				WITH ORIGIN		LON	04138	03290	02560	95318	87335	79451	1001	56605	49372	42382	34344	26702	15465
ROTOR	о ~		H	ALPHA	18038	09236	00433	08370	17172	0/607	43580	52383	61186	68669	78791	87594	76236	05199	14002	52802	30140	37476	STAGGER	889	1H		UPSILON	÷.	٥ -	0.			0 0						0 26	
ß	<u>د</u>	SECTION		AL	ó.		o O		,) C		•					•		- ,		-	-	STAG	21		UPPER	; ;													
	03220	S	COORDINATES																						COORDINATES	5		147	86	29	184	31	0 2	0 1	- 6	962	99	527	49	571
STAGE	-7		1080	'n	08280	08887	09148	09364	09522	60960	00500	09287	08937	08454	07854	07 158	68890	05569	04703	66/60	03025	02241			ORD1		ALPHA	.55947	1.56298	•	•			٠		. 09062		.93657	.85	. 76
U	2 1	σ.		1/c	0.08		-			200							•				0.03	0						7	-	7	Ţ.	-		- •		-	1	o	o	Ç
	IGIN	8	MEANLINE		_	_	_	_				_	_	_	_		_			_	_	_			SURFACE			o	ç	o.	0 !	ŭ.	- 4	0 0	? =	· (ç	7	2	ນ	<u> </u>
	M.	SECTION NO	MEA	I AL	4 700	5000	5300	2600	5900	5200	6800	7 100	7400	7700	8000	8300	8600	8900	9200	4500	9750	000	CHORD	1622	2		1/C	00680	00680	00680	01220	01755	02281	96770	03260	04266	04724	05252	05/52	06234
	SYSTEM DRIGIN	SFCT		PCT	С	0	C	0	0 :	0 0	0	0	၁	0	С	0 (0 (0 (0	-	ŧ	m				Ċ	Ö	Ö	0	0	0 0	0 0	0	C	C	c	С	С
	COORD S			P1	18	19	20	21	22	, ,		26	2.7	28	29	30	5	32		2. (35	36					Ę	-	7	ო	4	S	9 1	- 0	σ	, C	=	12	۴	7
	Ö																	0	7																					

20	
N B	
ROTOR	
5.	
STAGE	

COORD SYSTEM ORIGIN Z -7.03550 R O.	7	-7.03550 R O.	MC O.	ö	ETA O.	
SECTION NO 9	6	SECTION JJ		RHO	4.5000	
		MEANITHE INDUIT DATA				

UPSILON	1 04138	0.96095	0.80310	0.65178	0.51026	0.36896	0.23290	0.11482	0.01351	-0.07258	-0.14450	-0.20320	-0.24957	-0.28414	-0.30593	-0.31027	-0.28798	0.22708	-0.13754
THICKNESS	0.02149	0.03994	0.07602	0.11043	0.14265	0.17517	0.20704	0.23533	0.26002	0.28072	0.29624	0.30394	0.30034	0.28208	0.24908	0.20626	0.15916	0.11066	0.07088
ZETA.	45.662	45.333	44.458	47 985	40.735	37 673	34.102	30.458	26.846	23.354	19.896	16.497	13, 125	9.527	4 872	-2.609	- 14 . 408	-29.626	-42.517
ALPHA	1 55947	-1.48029	-1 32200	1.16425	-1.00704	-0.83489	0 64820	-0 46262	C.27835	-0.09541	0 08582	0.26491	0 44161	0.61525	0 78481	0.94915	1 10692	1.25663	1.37476
19	-	^	٣	₹	ŗ,	y	2	œ	σ	ç	=	12	13	7	15	16	17	2	19

MFANI INE COORDINATES WITH ORIGIN AT SECTION AXIS

7F TA •	45.662	45.331	44.976	44,556	44.038	43.344	42.470	41.442	40.264	38.743	37, 121	35.449	33.738	32 003	30 254		25.785
UPSILON	1.04138	0.96674	0.89298	0.82021	0.74859	0.67848	0.61026	0.54428	0.48081	0.40821	0.33958	0.27494	0.21422	0, 15732	0 10416	0.05459	0.00848
ALPHA	. 1.55947	-1.48612	-1.41276	-1 33940	-1.26605	-1.19269	-1.11934	-1.04598	-0.97263	0 88460	-0.79657	-0 70855	0 62052	-0.53249	-0.4446	-0.35644	-0 26841
1/c	0.00680	0.01220	0.01755	0.02281	0.02796	0.03300	0.03791	0.04266	0.04724	0.05252	0.05755	0.06234	0.06687	0.07117	0.07524	0 07905	0.08262
PCT AL	0.	0.0250	0 0200	0.0750	0001 0	0.1250	0.1500	0 1750	0 2000	0 2300	0.2600	0 2900	0 3200	0 3500	0 3800	0.4100	0 4400
r d	-	8	ო	4	ស	9	7	80	6	0	=	12	13	7	15	16	17

	0	သွ							
20	E TA O	4.5000	39 39	6.88268	z	9	2	2	
8 N		RHO	CAMBER 88 239	9.9	UPSILON	-0.00316	-0.05982	-0.05982	c
	M			L ENGTH	ALPHA		0.04395	0.04395	22.50
ROTOR	0	<u>ل</u>	36 36 36	SURFACE ARC LENGTH	ALF	-0 00938	ò. o	0.0	0,000
ις _	50 ع	SECTION JU	STAGGER	SURF			G. G.		
STAGE	-7.035	ß					ECT TON .		T TATA
S	2	6		ñ			S H		,
	COORD SYSTEM OPIGIN Z -7.03550 R O	SECTION NO	CHORD 3 1622	AREA 0 665583		SECTION C.G.	STREAMSURFACE SECTION C.G.	BLADE AXIS	CARCAGA STAA CIATACATA
	SYSTEM	SFCTI	CH0RD 3 162	AREA		SFCI	STRE	BI AD	0410
	COORD								

Ę

ເດ

STAGE

FTA O	4.0000		UPSTLON	90484	82906	68228	54474	42014	9931	18527	O88 10	O0642	6143	1753	6347	9948	2290	22782	0468	÷	242	241	SIXV I	7E 1A+	44 396	43.777	က	42.887	42.178	41.253	40.102	38.823	37 . 438	34.031	۳.	.58	œ	0	Ç	ی
0 D W	CHA		s ups			9.0		4.0				0.0	0 0-			0-	0-	0	o O	o-	0.0-	0.1	AT SECTION	UPSILON	0.90484	.838			.6441	. 5825	. 523	.4663	0.41211	2928	.2386	. 1879	1406	Τ.	0.05588	~
Ċ.	ž	INPUT DATA	THICKNESS	0.02404	0425	93	- 15	. 1528	1918		2667	29		33			~	ď	0.25417		0 16550	1177	ORIGIN	4	240			31527 (. 10813		87,004						4	
.03550 R	SECT 10N	MEANLINF IN	ZETA·	44.396	3.9			φ		S.		23 098	19.609	16.534					15 (53		3	7 93	NATES WITH	ALPI	-1.52	_	-1 38		-1 24	-1.17	1.10	-1.03		08 0-					ຕ	٣
1- 1	10	ME	НА	210	396	795	~	049	387	404						39900				95	3541 -	- 686	INE COORDINATE	1/c	0.00838		0 01971	0.02540		0 03685	•		0.05411	0.06762				0.09186	0969	700
SYSTEM ORIGIN	CECTION NO		ALPHA	- 1.52	-1 44	- 1 28	-1 13	86.0.		0 63		96 0								Ŏ,	- 43		MF ANL INE	PC1 AL	С	0.0220	0.0500	0.0750	_	0 1250	₹.		0.2000			0 3200				_
COOKO SY	ů		PT	-	2	3	4	ស	r		œ	b	5	=	12	13	7	15	16	17	18	61		14	-	0	٣	4	ស	ဖ	7	x	ъ <u>с</u>	> -	. 2	5	7	15	4	

TOTAL CONTROL OF THE PROPERTY
20	ETA 0	4 0000	AXIS	ZETA+	21.913				15,943	13 184			7.005	3.639	-0.897	-6.904			σ.	.54	-	56.894	FR	191	AXIS		UPSILON	0.90484	-		٠.				0.62233				0 37326	0.32857
NB	O AM	RHO	AT SECTION	UPSILON	-0.01661	-0 04858	-0.07196	-0.10434		-0.15279			-0.21869	-0.22653	-0.22866	22326	. 20739	. 17756	13111	06226	.02147	0.12411	CAMRFR	101.291	SECTION	LOWER	AI.PHA	-1.52240	-1 51307	-1.50475	-1.43942	- 1.36488		-1.21624	-1.14231				-0 75003	-0.66460
5 R010R	550 R O.	SFCTION KK	ES WITH URIGIN	AL PHA	-0 22436			_		0 18991	0.35562			0.60418	-			0 93559		1.10130	1.17034	1,23939	SIAGGER	15.785	FS WITH ORIGIN AT	UPPER	UPSILON	0.90484			0.82352				0.54281				0.21243	- .
STAGE	0.5550.1 - 2 1	10	NE COORDINATES	1/c	0.10524		₹.	0 11196	-	0 11209										•		0.04103			CE COORDINATES		ALPHA	-1.52240	-1.52610	-1.52291	-1.46729	-1.40375			-1.21205			-0.93825	-0.85864	
	SESTEM ORIGIN	SECTION NO	MF ANL INE	PCI AL	0 4700		-	-		0 6500		0 7 100		0 7700					-		0 9750	1 0000	CHORD	2 8700	SURFACE		1/1	0 00838	0 00838	0 008.38					0.03685				0 06762	0.07413
	COORD			1 d	18	19	20	21	22	~ ~	25	26	27	28	50	30	31		၉ ၂၀	က	35	36		•			bł	-	0	က	4	ល	ဖ (၁	7	∞ (. 01	-	2	13	7

20	ETA O	4.0000	AXIS		UPSILON	0.28729	0.24920	0.21405	0.18157				0.07229		0.02549	0 00338	-0.01777		-0.05535	-0.07033	-0.08153	-0 08802			-0 06987	-0 04347	0.00075	_	٠.	0.13452	0 12411	0.89572	0.06795	!
NB 2	MU O.	RHO	SECTION	LOWER	ALPHA	-0.57993	-0.49602	-0.41288	-0.33052	٠.	0.16800		-0.00760	۳.	0 15138	0.23039	0.30908	0.38699		0.53956	0.61340	0.68483	0.75363	٠	0 88653	0.95949	1.03709	1.10946	1.15183	1.19352	1.23939	NOTISAN		
ROTOR	R 0.	ON KK	WITH ORIGIN AT	~	UPSILON	0.08867	0.03217	-0.02067	-0.06981		-0.15672	-0.19438	-0.22821		-0.28485		-0.32779	-0.34443	-0.35768	-0.36705	-0.37153	-0.36930	-0.35747	-0.33106	-0 28525	-0 21875	-0.12527	-0.02225	0 03807	0.07637	0 12411	HA - 1.51304		•
STAGE 5	05560.7- 5	SECTION	COORDINATES W	UPPER	ALPHA	-0 69733	-0.61553	-0.53296	-0 44961		-0.28072		-0.10970		Τ,	0.14943	0.23645		0.41291			0.68923	0.78614	•	0.98465	1.07740	1, 16551	1.23123	1 26270	1.26918	1.23939	CENTER AT ALPHA	. 4	•
	COORD SYSTEM ORIGIN	SECTION NO 10	SURFACE		1/c	0 08039	0.08633	0 09186	0 (19692		0 10524	0 10833	0 11058	-	0 11246	0 11209	0 11094	0 10914	0 10683	0 10417	0 10125	0.09802	0 09421	-	0 08247	0 07360	69790 0	0.05224	0.04103	0.04403	0.04103	RAD 0 01307) C	;
	COORD S				č	15	16	17	2	19	20	2.1	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36	31	38	38	40	-		:

PHASE V ROTOR

COORD

	Ċ.	8							
20	FIA	4.0000	3.1 3.1	6.57755	**		"	"	
 22	o.	RIFO	CAMBER 101.291	6.5	UPSILON	0 00936	-0.02376	-0 02376	c
	∑			SURFACE ARC LENGTH					
3		¥		ARC	ALPHA	0.01098	-0.02331	-0.02331	-0.00210
ROIGR	٥ ~	SECTION KK	SIAGGER 15.785	FACE					
	_	110	15.	SUF			G		
ß	550	SEC	v				ပ		_
w	03						S		IAL
STAGE	SYSIEM DRIGIN Z -7 03550 R O						STRFAMSURFACE SECTION C G		STACKING AXIS (RADIAL)
	7	0		32			S.		SI
	SIN	2		80		S.	RFA	18	×
	0R I	z	<u>c</u> 0	0 7		Z	MSC	×	SZ
	Ξ	SECTION NO	CHORD 2 8700			SECTION C.G.	RF A	BLADE AXIS	٨Ç
	5751	210	υ Λ	ARFA 0 700832		SF	5.1	æ	<u>~</u>

NB 20	MU 0 ETA 0	RH0 3 5000	
STAGE 5 ROTOR		SECTION LL	MEANLINE INPUT DATA
S	COORD SYSTEM ORIGIN 2 -7.03550 R O	SEC 110N NO 11	

UPSILON	0.78342	0 71635	0.59017	0.47549	0 37206	0 27010	0.17247	0.08921	0.01979	-0.03764	-0.08560	-0 12478	-0.15295	0.16443	-0 15032	-0.09833	0.00642	0.17879	0 38579
THICKNESS	0.02989	0.05116	0.09443	0 13720	0.17757	0.21752	0.25461	0 28432	0.30660	0 32178	0 33091	0.33578	0 33830	0.33950	0.33650	0.32003	0 28024	0.22120	0.16462
ZF1A•	41.682	40 787	38.665	36.218	33.728	30 947	27 638	24.065	20 569	17 672			8 419	1.293	-10 440	-26.849	-44 291	-58, 153	-66.264
ALPHA	-1.49793	- 1.42205	-1 27143	1 12240	-0 97488	-0 81420	0 64094	0.46974	-0.30092	J 13476	0.02831	0 18773	0 34279	0.49243	0.63570	0.77103	0 89689	1.01370	10399
PT		0	က	4	S	ၒ	1	8	6	10	=	12	13	77	5	91	17	18	19

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

ZFIA·	41.682	41.238	40.290	39.287	38.242	37.159	36.042	34.922	33.814	32.482	31, 122	29.707	28.198	26 602	24 964	23.297	21 667
UPSILON	0.78342	0 72582	0.66973	0.61554	0.56330	0.51302	0.46470	0.41833	0.37385	0.32286	0 27445	0.22861	0 18541	0.14494	0.10722	0.07225	0.03995
ALPHA	-1 49793	-1 43288	-1 36783	-1.30278	-1.23774	-1.17269	-1 10764	-1 042	-0 97754	-0.89949	-0 82443	-0.74337	-0.66531	0.58726	-0 50920	-0.43114	- 0 35308
1/0	0.01136	0.01828	0 02531	0.03243	0.03958	0.04669	0 05370	0.06056	0.06720	0.07481	0.08200	0.08871	0.09491	0.10056	0.10566	0.11019	0.11415
PC I AL	С	0.660	0.050	0.0750	0 1000	0 1250			0002 0		0.36.0	0067 0	0.3200	0.7500	0 3800	0 4100	0.4400
14	-	6	3	4	ប	9	7	œ	6	0	=	12	13	14	15	91	17

THE DESCRIPTION OF THE PROPERTY OF THE PROPERT

20	F1A 0	3 5000	AXIS	ZETA·	20 096			16. 196 16. 016	13,016		•	7.618		-0.753				-47.480	-57,915		8	FR	91	AXIS		UPSILON	0 78342					0 64858	0.56199	0.52185		0.44732			0.33001
NR	MU O	RHO	AT SECTION	UPSILON	0.01019			-0.06620	0 10802					-0.154.35	14399	11506	06680	0 00527		0 23168 -	38579	CAMBER	109.491	SECT ION	LOWER	AL PHA	-1.49793	-1,48653			-1.34629	-1.27575				-0.92833			-0.68551
5 R010R	30 R U.	SECTION LL	S WITH ORIGIN	ALPHA	-0.27502			-0.04085	0.03721	•				0 50555					0 97390	1.03894	1, 10399	STAGGER	8 689	S WITH ORIGIN AT	UPPER	UPS11 0N	0.78342					0.58251	0 35236				٠.	. 182	0. 12721
STAGE	N 2 -7.03550	11 SE	NE COORDINATES	1/C	0 11755	Τ,	٠.	0 12448		-				0.12898					_	0.07826	0 06254			CE COORDINAIFS	Š	AL PHA	-1.49793	-1.50209	-1.49781			٠	- 1 20981				-0 95236	-0.87721	-0.80123
	SYSTEM ORIGIN	SECTION NO	ME ANL I NE	PC1 AL	0 4700			0095 0	00500	_	0 6800		7 /	9.78				0.4200	0.950	0.9750	1 0000	CHORD	2.6324	GURFACE		3/1	0.01136	0.01136	0.01136			0 03:43	000000				-		0 08874
	COORD			14	81	19	20	- 6	22	24	25	56	27	æ 6	ξ 2) E	35			35	36					PI	-	C.	က	4	ស .	မှ (` 0	οσ	. 5	-		13	-

20	ETA O	3.5000	AXIS		UPSTLON	0.29549	0.26327		0.20545			0 11142	0 09112	0.07198		0.03817	0 02445	•	0 00721	0.00537	0.00880	0 01759	0.03169	0.05574	0.10011		0.27424	0 34559	0.38755	0 38579	0 77237		
S S	O NW	RHO	SECT TON	LOWER	ALPHA	-0 60629	-0.52799		-0.37379			-0.07064		0.08012		0 22878	0.30129	0.37187	0 43946	0.50332	0.56261	0.61784	0.66891	0.72427			0.94515	0.98724	1 03737	1, 10399	MOTISTI		
ROIOR	•	רו	WITH ORIGIN AT		UPSILON	07533	02660	.01884		Ξ.						. 29016	30751			.33409		. 30557	. 26181	. 18933		٣.	18913		33	. 38579	-1 48556	_	
ស	3550 R	SFC1 10N		UPPER	Þ	0		•	ī						0-						0-	9	0	0-	o-				0	•	AT A! PHA		
STAGE	Z -7.03550	_	COORDINATES		ALPHA	-0.72433	-0.64652	٠				-0.16718		-0.00571			0 24146	0.32701		0.50778		0 70549	0.81054	0.91130	0.99927	1.07706	1.13274	1.15816	1.15667	1.10399	CFNTER		
	COORD SYSTEM ORIGIN	SECTION NO 1	SURF ACE		1/c	0 09491	0 10056		0 11019		-	0 12267			-	-	0 12815	0 12856		0 12898	0 12863	0 12721		0 11712			-	0 06254	0 06254	0-06254	0.01658	C	:
	COORD SYS	SF			Į,	ر ا	91							24			2.6										37		38	40	1 F RAD		

20	E1A 0	3.5000	3ER 191	6.41009	Z	38	73	73	
œ Ž		RH 10	CAMBER 109.491		UPSILON	0.04938	-0.00773	0.00773	0
~	Ð ₩			SURFACE ARC LENGTH	ALPHA	0.03179	-0.00140	-0.00140	-0.00210
ROTOR	٠ ٥ ۵	SECTION LE	STAGGFR 8.689	URFACE				•	1
STAGE 5	-7.03550	SFCI	S	S			SECTION C.G		(RADIAL)
3	COORD SYSTEM ORIGIN 7 -7.03550 R O.	SECTION NO 11	CHORD 2 6324	ARFA 0.766460		SECTION C G.	SIRFAMSURFACE SECTION C.G.	BLADE AXIS	SIACKING AXIS (RADIAL)
	COORD								

NB 20	0 ETA 0.	RHC 3.0000		UPSILON	0.68860	0 63297	0.52856	O 43207	0.34260	0 25268	0. 16658	0.09433	0.03552	-0.01292	-0 05375	0.08649	-0.10666	-0.10600	-0 07281	0.00802	0.15401	0.38185	0 64746	
ROTOR	R O. MU	WW NO	INPUT DATA	THICKNESS	0.04055	0 06281	0.10561	0.14519	0.18088	0.21549	0.24812	0.27578	0.29906	0.31846	0.33529	0.35127	0.36773	0.38429	0.39506	0 38589	0 34401	0.27691	0 21149	
STAGE 5	-7.03550	SFCTION	MEANI, TNE	ZFIA·	37.748	36 771	34.892	33, 152	31.382	29.012	25.717	22.016	18.625	16.303	14.402	11 633	6.450	-2.957	-17 994	-36.561	-53 213	-64.861	-71.285	
\$	COORD SYSTEM ORIGIN Z	SECTION NO 12		AI PHA	-1,48310	-1 40932	-1 26309	1 11859	0.97584	0 82058	0.65338	0 48848	-0.32613	-0.16679	-0 01123	0 13997	0 28593	0 42525	0 55711	0 67960	0 79084	0 89200	0.96860	
	COORD SYS	ن د		Ğ	-	2	٣	*	ሪ	y	7	80	6	40	=	12	13	7	15	15	1.7	- 8	49	

MFANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

PT	PCT AL	1/c	ALPHA	UPSILON	ZETA·
-	0.	0.01654	-1.48310	0.68860	37 748
8	0 0520	0 02409	-1.42181	0.64222	36.583
ო	0 0500	0 03154	- 1.36052	0.59735	35.828
7	0 0750	0 03885	-1.29923	0.55371	35.067
ស	0 1000	0.04597	-1.23793	0.51131	34.291
Ç	0 1250	0.05288	-1 17664	0 47009	33.552
′	0051 0	0.05956	1 11535	0.42998	32.865
œ	0 1750	0.06598	-1 05406	O.390R9	32.171
ç	0 2000	0.07212	-0.99276	0.35289	31.419
2	0 2300	0.07912	-0.91921	0.30882	30.417
-	0.2600	0.08572	-0 84566	0.26660	29 259
12	0 2900	0 09194	-0 77211	0.22648	27.943
13	0 3200	0.09776	-0.69856	0.18863	26.488
7	0 3500	0.10326	-0.62501	0.15323	24.896
15	0 3800	0.10837	-0.55146	n. 12038	23.218
16	0 4100	0.11314	-0.47791	0.09014	21.470
17	0.4400	0 11758	0.40436	0.06246	19, 805

	0	00																									UPSILON	68860	69732	69440	66293	62871	59270	55787	52413	49131	45936	42835	39247	35829	32606
20	FTA	3.0000	AXIS	2E (A •	18.323	17 038	•	•	13.991	12.832	9 109	6.038		-4.221		-22.031	•		-57,353	9	2	74.886	2	34	AXIS		ď	Ö	Ö	o.											0
SE Z	o.	RHO	SECTION A	Š	90	64	12	49	52	<u>ء</u> ۾	2 6		23	8.7							74	- 46	CAMBER	112.634	SECTION A	OWFR	ALPHA	48310	.46822	.45338	40421	33788	27186	20618	14081	07572	01099	94667	87010	79430	71929
	M		A	UPSILON	0.03706	0.01364		-0.02849	-0.04752	-0.0es10	-0.08083	-0.10401	-0.10923	-0.10787	-0.09751				0 12412		Cŧ.	0.647			AT		4	1	-	-	-	•	7	•							o O
ROTOR	o.	Z	WITH ORIGIN	ď	80	25	02	15	0 1	ຄຸດ) (2)	000	15	7.1	56	31	36	9.1	46	5	30	90	~	_	ORIGIN		UPSILON	68860	67139	65830	61850	56600	51473	46474	41606	36864	32243	27743	22516	17492	12690
ž S	α	SECT ION		AL PHA	-0 33080	٠,				0.03695		٠:							0 77246			0.96860	STAGGER	n 961	WITH	25		0	0					ò						•	ò
	7.03550	SE	COORDINATES		_					2 6	٠ ،		m	(C)	0	ın	m	•	Œ	0	m	S	ν.		COORDINATES	HPPFR	ALPHA	48310	48758	48089	43941	38315	32659	26969	1248	. 15497	09713	03886	96832	2	2493
STAGE	7 - 7	12		1/c	0.1217	Τ,	Τ,	٦.	0.13565	7.13880		0.14861	0.15218	Ξ.	Τ.	_	Ξ.	- .	0.14409	. 126	. 1078	0.0862					ALF	- 1.48	-1.48	_	-1.43	-	÷	÷.	•						-0.82
	ORIGIN	0 2 2	MF ANL INE	۸L	4700	5000							7400		8000								2	20	SURFACE		U	01654	01654	01654	02409	03154	กรุสธร	04597	05288	05956	06598	07212	07912	N8572	194
	SYSTEM ORIGIN	SECTION NO	Σ	PCF	0 47	0.50		_		0079 0			0 74	0 7700		0 8300	0 8600	0068-0				0000	CHOPD	2.4520			1/0	0 01	0 01											•	60 0
	COORD			ā	1	13	20	- 5	22), C	25	56	27	28	29	30	31	32	33	34	35	36					P1	-	2	က	4	S	Ç	7	œ	6	0	-	12	1 3	4

	0	o O	
20	ETA 0.	3.0000	AXIS
NB 20	0 11	RHO	ECTION
	∑		ATS
10R	·	MM	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
80	α	SECTION MM	WITH
5. R010R	03220	SECT	NATES
STAGE	-7.		ORD II
S	7	2	8
	RIGIN	0 N	SURFACE
	COURD SYSTEM ORIGIN Z -7.03550 R O.	SECTION NO 12	0,
	COORD		

				Š	UPPER	•	LOWFR	
C.	٦٦	1	ပ	AL PHA	UPSILON	Z	ALPHA	UP 5 11 0N
-	ហ	0 0	09778	-0 75203	0.08133		-0 64509	0.29593
-	<u>ء</u>	0	10326	-0 67830	0 03840		-0.57172	0 26806
-	17	0	108 37	0.60384	-0.00172		-0.49908	0 24248
_	œ	= =	11314	-0.52868	-0.03894		-0.42714	0.21922
-	13	0	11758	-0 45320	-0.07318		-0.35551	0 19809
~	Ó	-	2171	-0 37772	-0.10460		-0 28389	0 17872
~	-	0 12	2553	-0.30235	-0.13351		-0.21216	0 16079
^	22	_	6066	-0.22721	-0 16029		-0.14020	0.14405
^	က	_	3244	-0.15219	-0. 18533		-0.06812	0.12834
~	4	_	3565	-0 07681	-0.20889		0.00361	0.11385
0	ĥ	0 13	3880	-0 00084	-0.23102		0.07474	0.10083
C	و	0	14197	0.07656	-0 25155		0.14444	0.08988
2	,	0 2	4522	0.15587	-0.26992		0.21224	0.08167
	28	0	4861	0.23844	-0.28521		0.27677	0 07718
٠	59	C 15	5218	C.32527	-0 29572		0 33704	0.07725
	Č	ر 1	5576	0 41876	-C.29832		0.39065	0.08258
r.	-	ο π	6900	0 51933	-0 28808		0.43719	0.09305
m	2	0	16 105		.0 25803		0.47774	0.10803
ς.	5	0 16	16058	0 73567	-0.19909		0.51505	0 12705
3	34	0 15	15544	0.83842	-0 10218		0.55940	0.15747
~	S	0 14	4409	0.92120	0 02882		0.62372	0.21942
က	36	0	2670	0.98812	0.19900		0.70390	0.32443
က	37		10788	1.03372	0.39085		0.78089	0.46862
က	23	-	08625	1.05462	0 51450		0.82696	0.57737
e	39	0 08	08625	1 04359	0.58578	8/	0.88283	0.63854
4	40	0 08	08625	0.96860	0.64746	16	0.96860	0.64746
	LE RAD		0.02286	CENTER AT	ALPHA -	-1 46496	UPSILON	0.67469
_	IF RAD		0.11888	CENTER AT	AL PHA (0.93717	UPSILON	0.53281

THE REPORT OF THE PARTY OF THE

	ö	S							
20	EIA	3.0000	3FR 534	6.37144	Z	80	<u>ო</u>	<u>ب</u>	
NB	o.	RHO	CAMBFR 112.634	œ.	UPSILON	0.10928	0 00113	0 00113	· •
	¥			SURFACE ARC LENGTH	ALPHA	1309	1568	1568	02 10
RUTOR	·	I	. _	E ARC	ALF	0 07309	0.04568	0.04568	-0 00210
	α	SECTION MM	STAGGER O.961	SURFAC			c		
ر د	03220	SEC	δ.				O NO.		(JV)
STAGE	Z -7						SECT		(RAD)
	COORD SESTEM ORIGIN Z -7 03550 R O.	SECTION NO 12	CHORD 2-4520	APFA 0 825127		S O NOTION	SIPFAMSURFACE SECTION C G	PLADE AYIS	STACKING AXIS (RADIAL)
	31575	SFCT	2 G	ARFA		ر ا	ر 10	P.I.A	SIA
	COORD								

20	F1A 0.	2.5000		NC.	513	386	32	528	395	591	34	31	081	061	120	36	757	170	11437	161	161	13	XIS	ZETA·	33.023	32.771	•	•	31.358	30 490							•	<u>.</u> ,	. 58	17.767
NR.	MU O.	RHO		UPSILON	0 61513	•					0.16134			-0.02190		٠		•				0.90913	T SECTION AXIS	UPSILON	.61513					43516							Ξ.		. 105	.0825/
ROIOR	· 0	Z	INPUT DATA	THICKNESS	0.05423	.0740					0.23829	0.26566		0.33966		0.39715		0.45363	0.45175		. 332	0.25837	WITH ORIGIN AT	ALPHA U	46924 0					18144 0				87061 0				59431 0	2524	15617 0
STAGE 5.	-7.03550 R	SECTION	MEANL INE I	ZFIA+	33 576	32,933			29 543			16.652				•	•	₹ .	44.3	59 5	9.34	-74 596	COORDINATES WI	AL	-	-	-	.	- '		. 1	-	Ç-	0	o O	Ç	o.	ċ.	o (1.1
51.	2	NO 13		ALPHA	1 46924	.3976						0 35145		-		0 22907		0 47852		.6847		0.83320	MFANI INE COOL	1/c	0 02337	Ö	o O	o O	· ·	၁ ၀		0	0	Ö	ò	0	o O	0	o (
	SYSTEM ORIGIN	SECTION NO		7.	-			4 - A				ာ တ					44					61	MF	PC1 AL	0	0 0220	C	5	0 (0	0	0 2300	0	0	c	С	0	0 :	0 4400
	COORD																							7	-	2	က	4	ភ	9 1	- α	9 6	0	-	12	13	-		9 !	-

-1.46924 0.615131.46924 0.591941.47346 0.591941.43068 0.575051.37699 0.504871.26917 0.462301.26917 0.450491.16056 0.338761.10581 0.298981.05073 0.260030.91680 0.17047		UPPER		LOWER	
-1.46924 0.61513 -1.47346 0.59194 -1.46314 0.59194 -1.37699 0.57505 -1.37699 0.50487 -1.26917 0.46230 -1.26917 0.42099 -1.26918 -1.10581 0.29898 -1.05073 0.26003 -0.91680 0.17047 -0.91680 0.170	1/c	ALPHA	UPSILON	AI PHA	UPSILON
-1.47346 0.59194 -1.46314 0.57505 -1.43068 0.54833 -1.37699 0.50487 -1.21500 0.37929 -1.16056 0.33876 -1.10581 0.29898 -1.05073 0.26003 -0.91680 0.17047	02337	-1.46924	0.61513	-1.46924	0.61513
-1.46314 0.57505 -1.43068 0.54833 -1.37699 0.50487 -1.26917 0.46230 -1.26917 0.42049 -1.16056 0.33876 -1.10581 0.29898 -1.05073 0.26003 -0.91680 0.1767	02337	-1.47346	0.59194	-1.45012	0.62830
-1,43068 0.54833 -1,37699 0.50487 -1,22314 0.46230 -1,26917 0.42049 -1,16056 0.33876 -1,10581 0.29898 -1,05073 0.26003 -0,91680 0.17047	02337	-1.46314	0.57505	-1.43019	0 62582
-1.37699 0.50487 -1.32314 0.46230 -1.21500 0.37929 -1.16056 0.33876 -1.10581 0.29898 -1.05073 0.26003 -0.91680 0.17047	03024	- 1.43068	0.54833	-1.39268	0.60735
-1.32314 0.46230 -1.26917 0.42049 -1.21500 0.37929 -1.16056 0.33876 -1.10581 0.29898 -1.05073 0.26003 -0.98412 0.21450	66980	-1.37699	0.50487	-1.33125	0 57753
04496 -1.26917 0.42049 05616 -1.21500 0.37929 06215 -1.16056 0.33876 06793 -1.10581 0.29898 07348 -1.05073 0.26003 07986 -0.98412 0.21450	04357	-1.32314	0.46230	-1.26998	0.54832
05616 -1.21500 0.37929 06215 -1.16056 0.33876 06793 -1.10581 0.29898 07348 -1.05073 0.26003 07986 -0.98412 0.21450 08597 -0.91680 0.17047	04936	- 1.26917	0 42049	-1.20882	0 51951
06215 -1.16056 0.33876 06793 -1.10581 0.29898 07348 -1.05073 0.26003 07986 -0.98412 0.21450 08597 -0.91680 0.17047	05616	-1.21500	0.37929	-1.14788	0.49104
06793 -1.10581 0.29898 07348 -1 05073 0.26003 07986 -0.98412 0.21450 08597 -0.91680 0.11047	06215	-1,16056	0.33876	-1 08719	0.46299
0.7348 -1 05073 0.26003 0.7986 -0.98412 0.21450 0.8597 -0.91680 0.17047	06793	-1.10581	0.29898	-1.02681	0.43543
07986 -0.98412 0.21450 08597 -0.91680 0.17047	07348	-1 05073	0.26003	-0.96678	0.40850
-0.91680 0.17047	0.7986	-0.98412	0.21450	-0.89524	0.37718
	08597	-0.91680	0.17047	-0.82441	0.34733
-0.84869 0.12823	09183	-0.84869	0.12823	-0.75438	0.31936

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

ZETA+ 16.255 15.068	14. 136 13. 437 12. 690 11. 783 10. 379	8.256 5.029 0.382 -6.420 -15.653	-39.718 -53.564 -64.177 -71.786 -77.786 79.709	12.731
UPSILON 0.06147 0.04214	0.02417 0.00724 -0.00880 -0.02380 -0.03741	-0.04882 -0.05701 -0.06042 -0.05704 -0.04377 -0.01683		-
ALPHA -0.38709 -0.31802	-0.24895 -0.17987 -0.11080 -0.04173 0.02735	0.09642 .16549 0.23457 0.30364 0.37271	0.51086 0.57993 0.64900 0.71808 0.77564 0.83320	-7.277
1/C 0.12293 0.12766	0. 13234 0. 13705 0. 14191 0. 14702 0. 15249	0.15838 0.16476 0.17167 0.17903 0.18640	0.19684 0.19535 0.18490 0.16482 0.14078	
PCT AL 0.4700 0 5000	0 5300 0 5670 0 5900 0 6200 0 6500	0 6800 0 7400 0 7700 0 8000 0 8300	0 8600 0 8400 0 9200 0 9500 1 0000	2,3211
F 18	2222	25 27 29 30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
			113	

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

	ö	2
2	ETA O.	2,5000
22	U DW	BHQ
	Ŋ	
2010	0	2
¥	~	NO
STAGE 5 KULUK	C000RD SYSTEM ORIGIN Z -7.03550 R 0	SECTION NN
<u> </u>		
	z	5
	0R1G1	SECTION NO 13
	SySIFM	SECTIO
	COORD	

PHASE V ROTOR

20	ETA 0.	2.5000	AYTC
NB 20	0	RHO	11011
	Ð		AT
STAGE 5 ROTOR	7.03550 R O	SECTION NN	STAR COUDDINATES WITH OBJEIN AT SECTION AXES
S1/	TOURD SYSTEM ORIGIN 7 -7.03550 R O	SEC110N NO 13	SUCC SCREEN

	UPSILON	0 29349	0.26985	0.24854	0.22964	0 21311	0 19844	0.18520	0.17310	0.16194	0 15187	0.14323	0.13567	0 13309	0.13348	0.13882	0.14944	0.16454	0 18247	0.20443	0.23754	0.31376	0.45260	0.64371	80608.0	0.88886	0 90913	0.59852	0.76746
LOWER	ALPHA	-0 68504	-0 61642	-0.54849	-0.48121	-0 41434	-0.34716	-0.27950	-0.21144	-0.14291	-0.07462	-0.00688	0.05923	0.12281	0.18225	0.23590	0.28041	0 31434	0.33983	0.36488	0.39753	0 45584	0.53643	0.61595	0.66921	0.72959	0 83320	UPSILON	UPSILON
	UPSILON	0.08810	0.05027	0.01493	01785	-0.04796	07550	. 10092	. 12476			-0.19084	. 21148	-0.23072	. 24749	. 25965	26352	. 25207	. 21613	. 14700	.031-7	12681	. 33272	57458	.75686	84303	. 90913	-1.44371	0.80712
UPPER	-	0	0	0	0-	Ŷ	o-	0	0-	o	o •	Ŷ	o.	Ŷ	Ŷ	o.	Ŷ	o-	O	0.1	0	0	0	0	0	0	0	AL PHA	ALPHA
5	ALPHA	-0 77988	-0 71035	-0.64013	-0 56927	-0 49799	-0 42703	-0.35654	0.28646	-0.21683	-0 14698	-0.07657	-0.00454	0.07002	0.14873	0.23324	0.32687		0.54374	0.65683	0.75233	0 84216	0.89973	0.93533	0.95078	0.92975	0 83320	CENTER AT	CENTER AT
	1/c	09746	10289	10811	11317	11811	12293	12766	13234	13705	14191	14702	15249	15838	16476	17167	17903	18640	19289	19684	19535	18490	16482	14078	11131	11131	11131	0 03047	0 14405
		С	С	С	C	C	С	0	С	0	0	0	C	С	0	0	С	C	0	С	С	С	С	0	С	0	C	RAD	RAD
	P 1	15	16	17	.	13	20	2.1	22	23	24	25	96	27	28	29	30	31	32	33	34	35	36	37	38	39	40	LE	16

20	E1A 0	2.5000	BER 731	6 42542	NC	07	66	66	
œ œ		8i 10	CAMBER 112 731		UPSILON	0 19507	66600 0	66600 0	c
~	MiU			SURFACE ARC LENGTH	AL PHA	0.10985	0 09277	0 09277	0 00210
ROTOR	0	SECTION NN	STAGGER	IRFACE 1		•	Ŭ	Ü	Č
يد ي	03550	SECTI	S14 7-	ง			10N C G		IAL)
STAGE	7 - 7	13		56			CE SECT		IS (RAF
	M ORIGIN	SECTION NO 13	CHORD 2-32-11	AREA 0.902026		SICTION C 6.	STREAMSURFACE SECTION C G	PLADE AVIS	STACKING AXIS (RADIAL)
	(000PD \$451FM ORIGIN 7 -7 03550 R 0	SFCI	٠Ċ	ARE A		210	3115	713	/15

71 1A.2 .

ROIOR

8 5

ROIOR PHINSF

		PUT ON TAPE	WERE PI	THIS BLADE	FOR THIS	THE COORDINATES FOR	IHE CO
	•	0.19684	112.73	.7.28	2.3211	2 50000	13
			112 63	96 0	2.4520	3 00000	12
•	41.68		109.49		2.6321	3.50000	-
	•		101 29	15.79	2.8700	4 00000	ā
•	45.66	0.09611	88 24	21.89	3.1622	4 50000	6
,	47.28		63.51	27 10	3.4576	5.00000	œ
	49.15		44 77	32.36	3.6357	5.50000	7
	50.44		29.74	38.20	3.7383	6.00000	မ
	51.37		19.95	42 94		9 50000	S
	52 58		12 65	47.64		2 00000	4
	53.92		7.53	51 79		7.50000	3
	55 32		4.31	55.63	3 9139	8 00000	0
	57.67		18		3.8302	8 50000	-

SAME ORDER AS PRINTED ABOVE

56. 51. 46. 39. 31. 20. 20. 47. 74. 74.

SECTION XVIII

REFERENCES

- 1. A.J. Wennerstrom, and W.A. Buzzell, Redesign of a Rotor for a 1500 ft/sec Transonic, High-Through-Flow, Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio, Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, Ohio 45433, AFAPL-TR-2078, September 1979.
- 2. George R. Frost, Richard M. Hearsey, Arthur J. Wennerstrom, A Computer Program for the Specification of Axial Compressor Airfoils, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, ARL 72-0171,
- 3. Richard M. Hearsey, A Revised Computer Program for Axial Compressor Design Volume I, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, ARL TF 75-0001, January 1975.
- 4. Arthur J. Wennerstrom, Personal Communication to L.H. Smith of General Electric Company, September 12, 1980.