DIALOG(R) File 351: Derwent WF. (c) 2001 Derwent Info Ltd. All rts. reserv.

007981076

WPI Acc No: 1989-246188/198934

XRAM Acc No: C89-109913

Sterilised water prodn. by electrolysis - providing specified pH and electrical conductivity

Patent Assignee: MATSUO S (MATS-I)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Applicat No Kind Date Kind Date Week 19890718 JP 1180293 Α JP 883790 19880113 198934 B Α B2 19970702 JP 883790 JP 2626778 Α 19880113 199731

Priority Applications (No Type Date): JP 883790 A 19880113

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 1180293 A 9

JP 2626778 B2 9 Previous Publ. patent JP 1180293

Abstract (Basic): JP 1180293 A

Water of pH 1.5-3.2 can be obtd. by electrolysis. Difference in electric conductivity between raw and treated water is 150-14,400 micro ohms/cm3. USE - For production of high volume of sterilised electrolyte water having specified range of pH and electrical conductivity.

0/3

Title Terms: STERÏLE; WATER; PRODUCE; ELECTROLYTIC; SPECIFIED; PH; ELECTRIC ; CONDUCTING

Derwent Class: D15

International Patent Class (Main): C02F-001/46

International Patent Class (Additional): C02F-001/46

File Segment: CPI

Manual Codes (CPI/A-N): D04-A01H; D04-A01M; D04-A02

THIS PAGE BLANK (USPTO)

许出职公阴

@公開特許公報(A)

平1-180293

Mint Cl.

檢別記号

庁内整理番号

母公開 平成1年(1989)7月18日

C 02 F . 1/46

A-6816-4D

審査請求 未請求 請求項の数 5 (全9頁)

殺菌水およびその製造方法と装置 - 🛛 発明の名称

> 度 昭63-3790 **10**

顧 昭63(1988)1月13日

₽	明	渚	松	尾		至	明	東京都大田区大森本町2丁目19番11号
@ ₽	明	老	. <u>. </u>	藤		_	_	東京都新宿区西早稲田1丁目2番1号
-,,		_	. •			1975		· · · · · · · · · · · · · · · · · · ·
伊発		_	Ξ	浦		鱳	郎	東京都大田区上池台3丁目1番13号
包出		人	松	尾		至	明	東京都大田区大森本町2丁目19番11号
砂出		人	伊	夢		4	_	東京都新宿区西阜稲田1丁目2番1号
の出	膜	人	Ξ	浦		**	郎	東京都大田区上池台3丁目1番13号
MACO	72	A	40	-	+	70	始	

- - (1) 電解によって得られる木の戸日僧 おしむ 以上1.1 以下であって、あつ、そ の基本との電気伝導度の差(EC圭)が 110 # 514.400# T/cz! T&& 2 E & 特徴とする意識水や
 - (2) 水を電解して整性水を製造する力性に さいて、電影する電影器の競技太保にア 日催の係い水を供給、またせ、御記電師 質の酸性水質から特た水の一部を展別さ せて、PH保が1.6 以上も2 以下であっ て、あつ、原水との電気低率星の単(8 C 量) # 150 から14,400g ロ/cm! であ
 - (3) 水を競性水おどびアルカリネに電値す る電影質において、酸性水質等出れイブ

ドバックパイプと、このフィードバッ と、貧犯フィードバックバイブが貧 木供給パイプに配置されたペンチェ リー食圧部に接続されたことを特徴とす る?只能が1.6 以上3.2 以下であって、 、原水との電気伝導度の変(6 で生) 第110 から14.400 # ウノ co* であ る最高水の製造装置

- 数据は、電解の数処理配数で、子じめ所 定の電気伝導度(EC)値だ調整をわた 第3項または第3項に記載のPH値 ぎ1.6 以上1.1 以下であって、かつ、意 水との電気伝導度の差(EC金)が188 から14.486m サ/ cm* である歌画水を超 進する方法またはその製造整理

率度(E・)値に開発された原水は、水体性の電差性無機を質を移動させたものである特許様本の英語等2項または第3項に記載のPE値が1.5以上1.2以下であって、かつ、原水との電気伝導度の差(E C 量)が150 から14,403μセノcm²である激音水を製造する方性またはその製造能

3. 発明の評価な説明

(産業上の利用分野)

本発明は、特定のPH値および特定の電気伝導性を有する歌音用電解水に関する。 特に、この歌音用電解水を大量に製造する 方はおよびその製度に関するものである。 (従来依衡)

会品等の君生管理与よび医療における報 教育生などの分野で行なわれる例母教育に 同し、出版人は、既に、親イオンを含む特 定P1保を有した教育または参照用電解水 を別途特徴昭第81-137786号にお

日報武士と根拠効果との事動に関係は、長来の学業によれば、P出価が下がるにしたがって、特に結準調、学塾器に対しては、豊富効果も上がるというものであり、P日1.08以下では一般部職(結準調、李勲等)が死んでしまうが、PH3.09~5.09付近でも歌曲の効果があるというものであった。

しかし、① #affackとりPH調整を行ない、②被数額水はホモッナイズした「相瓜」を用い、②数割水と需水との比率は B: 1 ecとし、さらに、②数額水と割水と割水との検験時間を 1 0 分間とした実数の結果、次のような、第 1 表に示されるPE 信要動に対する直盤単数値を得た。

なお、第1表にあいて、大器質の解散対 酸は、10~以上(>10~)にて実定した。 NT BELTER

しかしながら、上記出版教明等、既に知られている種類本を構造、数値用の水とい本を使用することはなずかしく。また、金月の本作り出すことはなずかしく。また、金月の本として使用することは世間人の出版人の出版による情報ので、上記の出版人の出版を合って、数値、を認め品をを推せんとするのののので、数値、参慮品を生せている。

(従来技術上の問題点)

さこで、本願発明に係る発明者等は、P ド値変動と整理効果との等効に関し、実験 を行なった。

すなわら、電解された酸性水に関する?

35 1 d

	,
	PH 16 B
<u> </u>	太陽直翻教
4.00	>107
3.75	> 107 `
3.50	> 10*
3.25	> 107
3.00	₹015
2.70	^و وا ح
2.50	> 107
2.25	> 10 [†]
200	1.5 4 105
1.72	7.4 × 105
1.50	0

この第1歳に示されるPH値と歌音学的に関する実験商品によれば、単に8258。によりPH質整を行なった場合には、PH1.58以下でなければ大勝器に対する歌音の効果がないことが理解できる。すなわち、提来の学器によれば、およでPH1.68~1.54の間においても、PH位の減少に従っ

本発明は、とのような実験結果から、P 81.89以上とないても変数の効果がある理 第本を結構せんとするものである。

集書すれば、この実施部果を書に、前条、最高用に単位本を製用しようとすればならず、 PH 1.50以下の単位本によらなかればならず、 これは、日常生活を使用される水道水、地下水等のおよそを自住1.00以下にする必要はよって、 PH 461、10以下にする必要はなって得ようとすれば、 それだけで実大なエキルダーを必要とずるの世代水を電解によって得ようとすれば、 それだけで実大なエキルダーを必要とであることはコストと不可能とかる。

第2会に特定のP自催却よび特定のEC 能と、一般相当(結束書、夢趣書)に対す る歌音効果との異体を示す実験能易を示 す。

このような条件下で、特定のア日保治と

(問題成を解放する中語

そこで、水泉発明に係る発明者等は、このような製点から、電解水の戸日値が1.88以上の原本であっても、一般解析(結本 財 出版の原本であっても、一般解析(対 も 財 動 着品の優れた電解をした結果、アロ1.80以上の戸田館を有する水であっても、一定電路内の電気伝導を設めませる。一定電内の電気伝導を設めるのにあっては、強い機器の効果を有することを見い出すに至った。

この歌音の発展とついて、どのような意理と高いて、製画を歌唱するのかの知思を歌唱するのかの知思を明らかに後しないが、あそらくは、高楽音気伝導を有する世界水が都自(悠々 年間、非常電子)と最終する平音で、気気伝導によって、これが影響の症性気にからして一瞬の内に独唱の振風異を歌唱してしたい。歌唱の発展が出しても

びとこ何に推奨する単語効率を第2歳に存た。

E 10

	·			. HELW
7 H	ARC	AAEC'	BALLBR	BALCAR
4	75	200	-10	108
	78	2 0 5	108	10.6
3.0	.80	205	100	100
31	* AS	215	108	100
- 34	15	220	10	103
35	120	240	148	
1.34	140	255	108	108
- 133	26	205	100	214.0
12	220	380	7110	ALKET
	270	480	2.18.m7	\$24 P
140	-334	607	444.07	110
129	5.50	730	TILIES	_L610 ³
بمدر	600	- Ann	217.00	2 6 9 100
127	700		ARE MOT	"LILM"
2.6	Noo_	-1780-	134.00	142 101
7.5	1900	2020	314.00	262.02
144	1650	2710	- LLL D2	E A Ø'
143	1980	3650		
7.	2350	-4434		
144	2650	6050		
بمبدر	32.00	7450	- 0 -	
	4100	8420		
1.5	5300 7260	9550		
1 4 4	3 9170	12000	ت و ت	
-				
لكلت	11000	14400		
				6A.

この表に表された実験部系によれば、意

商効果は、PY値およびまに個に左右されることが理解できる。すなわち、この第3 表が示す前果からすれば、PH値1.5以上であっても、PH値が3.2以下ならば、電解して得られる水の電気伝導値(BC値)を原水との量において、215 メロンcm[®] から14,490メロンcm[®] まで適宜高くすることによって、もわめて絶大な要情効果があることが思い出し様本。

したがって、このような絶大な歌語効果がある電解水を視感歌節用に使用できるようにするためには、会品者生管理上において、知何に大量に、かつ安値に提供できるを答かが問題となり、このような9日値1.6~3.1 で、かつ、原水との電気に傾の差(EC差)が150~14.400μセノに50の電解水を大量に得ることは、過常の状態では、質量であった。

本受明に係る教諭本製造方法およびその 製造機能は、このようなPH値(1,5~2.2

(発明の実施例)

本費明に係るPH値1.5 ~5.2 で、かっ、原水との電気伝導値の差(8C差)が159 ~14,488μロ/ca* 以上の電原水を大量に得るための機械装置の実施例を国際に

て、あつ、日本 電気伝送機の量(E C 玉) # 150 ~ 14,400m ロノca* の電解水が 東田の前来に毎て絶大な効果を生じること ' 「ヒ舞る、とのような競性水を電餅によって 大量に、かつ、安価に得るためのものであ って、木製養物の養物者等は、これに関 し、貧犯罪3歳に基づいて、電解水の電気 伝導館を上げるための実験を行なった基果 、原木に対し、ある種の低血物を増加する とととよって、しかも、原水の電解温程に おいて、散性質の供給に対し、この散性質 長着に暴力物を魅力することによって、上 記のP目値1.4 ~1.2 で、かつ、無水との 電気伝導館の差(モC量)が110~14.488 μ T / cm² の電解水を大量に高効率で得る ことがてきるようにしたものである。

(作用)

本表明に係る政策水は、P自住1.5 ~
1.1 で、かつ、原水との電気伝導性の変 (EC表)が189から14,408μワ/cm*で

基づいて観明する。第1回は本発明に係る 一実集倒線をの観要器である。

 無性水が、食品物を10 には、デルカリ 水が電解により、分割をわることになる。

展観2 には、準備側数水準入パイプ11よりは自 と、この機能側板水準入パイプ11よりは自 径の小さい口径のパイプで構造された他 側板水準入パイプ12が接続されており、こ の機能側板水準入パイプ11と他能側端水準 入パイプ12とは、意水準入パイプ13に会合 され、すなわち、原水準入パイプ13に会合 動された成水は、それぞれ機能離り起よび 機能に分岐して、それぞれ機能を引起とび 機能性16に原水を供給するように構成等れている。

また、重板4には、体影性組織18から覚 頭によるアルカリネを選出するための性温 直側単出パイプ14がパルプ18と共に設けられる一方、質記時温度 8 から電調の検索生 した競性本を導出するための関係電解準出 パイプ18がパルプ17と共に置けられてい

が生で、この食圧によって、食品フィード パッグパイプ18から電解が耐臭生じた酸性 水の一部を食品機構実備が出れイデ18から 吸引するようにしたものである。

この業業、電解された酸性求は、一部フィードパックされて、PHOの係い酸性水をより多く供給できる。

しかしかがら、前記機構監督専出スイブ11から得られる機性水とアルカリ水との検 量比率は、前処理設備で背配フィードスックのデ月値を調整することによって、また は、数フィードスック水に緩加物を懸加し て水のこと値を変化をせることによって、 その性量比率が変化し、前記デ月値の値に 職性水を高い比率で生産することが可能で

をこで、本数発明者は、原水に通知すべ を認知性でなわりフィードバックの氏章に 関し、実験を繰り返した。

この実験に関しては、内容形式が向きた

る。ちらに、この様態 は、パルブ11の配合で、パルブ14を介して 、首記機能能放水準入パイブ11とフィー ドバックパイブ11によって接致され、電源 によって生じた酸性水の一部が、放フィー ドバックパイブ11を進じて、自記機能制度 水準入パイブ11に供給され、質配機能制度 の内部をお表を低くなるようにする。

い、陽磁電板としてFt-Ir 電板(Ft78%,Ir3 GR富量化)、階級電磁として3%670(を使用 した。

とのような電解質を使用して、第3個(A)および(B)に示されるような原本PH条件6.65、電気伝導版(& C) 78以び/cm² のものと、原本PH条件8.5、電気伝導版126 以び/cm² の二つの場合について、酸性本供質量の実験を行なった。なお、これもの場合における供給電池は、それぞれ 2A、5 W、10 Wの電池値とし

での実験競暴からすると、原水の電気伝導体を高く数定しておいた方が、得られる 概性水のPH信が高いことが利用した。そ こで、第3回に示すようなモディファク回に た回において示されるようなブワック回に おいて、原水の電気伝導皮値の条件を含態 扱知によって変化させ、かつ、得られた数 性水の一郎をフィードバックさせて第3金 この実験では、原水の条件に関しては、 P 日 様 8.88 にしておいて、これに会権を 想加することによって、電気伝導値(E C) を 288 μロ/cm² で行なった場合を第 3 歳に、EC 288 μロ/cm² で行なった場合を第 合を第 4 機に、EC 428 μロ/cm² で行なった場合を第 5 歳に、EC 548 μロ/cm² で行なった場合を第 6 歳に、EC 848 μロ/cm² で行なった場合を第 6 歳に、EC 848 μロ / cm² で行なった場合を第 7 歳に示したも のである。

なる、第3回において、21位、根本に電料による数性水をフィードバックするボンブであり、人は、原水に電解による数性水が加った量でる。さらに、貧配フィードバック量は、14*4で一定とした。

これらの雑果、フィードバックの条件は、このように電解質の原水に前島地を住こして、その原水の電気伝導度を高くすることにより、PH値の低い酸性水を効率点く

また、貧配のように最適の後、電解で得られたアルカリ水によって使停すると連接を より、その酸性度を中和するという通理を 最ることがなくても、この酸性水を一定時間放置しておくだけで、外気気的によって サーマ放電によってでしまう。 しまい、無害な水となってしまう。 しまい、無害な水となってしまう。 な場合でも、時間が経ったを な場合でも、 ののので変素水とする な場合でも、 のので変素水とする な場合でも、 のので変素水とする な場合でも、

きちに、このような酸性水は、温常の状。 思で、大量に、かつ、安保に製造すること が問題であるが、水振発明に高く酸性水の 製造方接るよびその装置によれば、低めて 等品、かつ、安保に、しかも大量に製造す ることができ、食品の製造加工の分野また は大品の長期保存を必要とする食品装造の # D M T Z E #

また、このような電影の前島電影階で展 水の電気伝導度(EC)を高く設定するた めには、本実験では、原本にHacilを参加し で電気伝導度を高くしたが、これは、Baso。 、Hcl 等電線度の高い水振性の独電維性物 質を搭離させても、原水の前処理として電 気伝導度を高く設定、かつ、所定の電気伝 導度値になるよう調整することができるも のである。

(発明の効果)

本発明によれば、本を電解するととによって得た単にPH値1.8 以上3.2 以下であって、かつ、原本との電気伝導度の是(とC金)が150 から14.400kログss[®] の微性水を敷置水として利用するので、敷脂の数は、何様に電解で得られたアルカリ水によって洗浄することにより、その酸性度を中和すれば、電解質の水に進元してしまうので、全く無害な最端水とすることができる

分野においても、寒高に、かつ、無害にæ 難を行なうことができるという、大きな効 果を発揮できるという塩めて優れた効果が 「ある。

4. 国面の簡単な業界

第1回は木発明に係る所定P日値を設置した。 所定電気伝導値を有する設置水配設施での 実施例根を回り、第2回(A)いて、待りして、 を放例根を回り、第2回について、でもして、 最性水色の実験をモディファーを したもので、多(A) には第3回にして、 最大なので、多(A) には第3回にして、 また、金組性水の 最大なので、待ちれた。 まないで、まないで、 まないで、 まないでで、 まないで、 まないで、

第1数は、PH保定額に対する複数単数 低を、第2歳は、特定のPH保力とびEC 低に相関する機能分率を、第3表~第7表・ は、第3世に示されてディファイブロック型によって、京本で変質伝導度能の条件を変化させ、かつ、得られた酸性水の一郎をフィードパックさせる場合の実験結果を示す変化ある。

型において、1:電子室、2:路板、2:路板、3:路板板、4:座板、5:路板板、5:路板板、5:路板板、5:路板板が、7:路板板が一とナル。6:飛線、0:路板室、10:路板室、11:路板板車入パイプ、12:路板面屋水平入パイプ、13:軍水平入パイプ、14:底板室側がイブ、15:17、16:パルプ。14:路板室側が出バイブ、15:17、16:アィードパックパイプ、16:パンチェリー部、デュ:ポンプ

第1図

71-FN+7 BIX 24CC. AREC 205110/CM* PRESSANCE 35/00 65 PPM

		6	7	~
	2	200	3	6
		5	Н	5
	4	7.9	2	3
Н		1	0	0
15	E	22	34	9
1	Ţ	3	Ξ	ਨ
١٢	2	JOI	=	
П		Ю	5	0
뵈	E	32	45	9
ا ا	Ţ	13	S	17
5	4	3.	3	3.0
•	7			
:	7	7	0	9
70.4	۲	4	2	3
Ľ	_	Н		Ц
	4	لدا		ہا
H	9	Ξ	2	Ø
また土	Ŧ	9	2	9
13	닠	\dashv		H
14	4	9	26	3
لعا				
붓	7			
1	3	٦	S	9

スードバンをは24cc 最本 EC 295uokm PH655mathmiSPM *1*

(A) (C) (CC) (CC) PH EC PH EC PH EC PH EC C PH		\Box		5	6	9
\$ \$20 \$ \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		æ	1	30	30	29
\$ \$20 \$ \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			E	:65	5.93	5.75
\$ \$20 \$ \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$,	EC	140	16.5	740
\$ \$20 \$ \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		11.7	H	287	39,	913
\$ \$20 \$ \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Н	١.	=======================================	=	=
\$ \$20 \$ \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- 1	*	EC	51	69	85
5 45 45 45 45 45 45 45 45 45 45 45 45 45		郅	PH	4.0	3.08	2.85
5 45 45 45 45 45 45 45 45 45 45 45 45 45		7.		0		\Box
5 45 45 45 45 45 45 45 45 45 45 45 45 45		-	ч		_	9
		3	ÿ	2	9	9
		171 6	7	50	2.0	5.0
CA C		178 - 187	C) (C)	0 20	0 5.0	0 50
		1.3	(22) (23)	970 50	380 50	05 096
53423		1. 现代生	און נככו נכי	8 970 50	8 380 50	05 096 08
		1. 现代生	און נככז וואות	8 970 50	18 380 50	0 5 0 96 05

A-FK1711224CC最大王C 420AUKがPH&65ma はmi65PH

12 E 6K 14 E 711,11 E 8K 171,11 E 8K 171,11 E 9K 171,1	# [711.24] @ '	EC PHIEC PHIEC	600 11.03 460 579 395	700 1154 600 579 400	1250 1172 850 1558 400
14 960	 1 LA 1 & LEE	ICC. PR	450 37	480 3.05	520 276
	LE BEKE	J (72) . (CC)	5 1000	14 960	148 950

\$6.k

A-FANTIA 24CC RKEC SHOUDEN PHESS MODISHING 316.09

ス・ドバック £ 13.24 CC 原本 EC9804ロルメ PH 6.65. MRX 北加500PPM 474

6	Ju E	8	11 30	1150
ľ	E	548	\$52	3
;	EC	050	11.62	12.00
ŀ	\[\]	P.78	11.62	12.00
Į,	EC	1030	0591	2250
3	E	3.49	295	752
	: 3	٥	0	a
711.01	y	54	50	53
-	,	0	q	9
3	3	101	9	9
4	(4)	4	٩	ㅁ
4.4	(V)	7.	4	٩

2 ⊠ (A)			
7247	2 24.5 080 500 5 64 880 500 10 108 1870 630	FI FA IN COLUMN TO THE COLUMN	74 9 4 PM E 6 B6 60 M17 86 D40 120
# 2 图 (B) EC 80 PH 665	活力を		
. 7(a) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	世史	FR 65 S.R 220 6.6 268 3.2 418	7 (n P 1) Pri BC 9,35 272 the 210 the 340
EC 220 PH 5.5	港声を物でし		
Yahija 酸性	#3 B		
	0 原址 No I, EC 205		食堪场加
	No 2, EC 295	_	• •
	No4, EC 540		•
	No5, EC 980		•

昭和日年4月6日

63 6. 6_{8 H H}

特所疗法官

- 1.事件可表示 昭和63年特許服第003790号
- 2. 発明の名称 製御水およびその製造方法と被配
- 3. 福正をする者 事件との関係 特許出版人

住所 京京都大田区大西本町 2丁目19番11号 氏名 松 居 運 明 (外2名)

4.代理人 住所東京都接区会報 3丁目 5番 4号 会板文牌化外4周三电接锋的开车最后 元187 電話音号 93 (585)2377 任名 介理士 (9884) 大 義 持

- 5. 補正命令の日付 昭和67年 3月 2日 (衰退日:昭和57年 3月11日)
- 6. 補正の対象 明確客中の図面の領単な影明の機

6. 補正の対象 明報管中の関係の関係を取引の報 ない意がすっなります。 「相の説明のうち、 ましないと話すなの間 63. 6. 8 (本名の数明のうち、 ましないと話すなの間 本名の数を開除する。 THIS PAGE BLANK USPRO