VE270 Lecture 1

Digitization: From **Analog** to **Digital**.

Signed Binary Numbers

Representation of Negative Numbers

1. Sign and Magnitude

MSB, or the left most digit is the signed bit, $0 \rightarrow$ positive, $1 \rightarrow$ negative.

2. 1's complement representation of -N

Negation of every bit of N.

$$(3)_{10} = (0011)_2$$
, then $(-3)_{10} = (1100)_2$.

3. 2's complement representation of -N

Negation of every bit of N, then plus 1.

$$(3)_{10} = (0011)_2$$
, then $(-3)_{10} = (1100)_2 + (1)_2 = (1101)_2$.

Signed 2's complement Number

If there are n digits, the range is from -2^{n-1} to $2^{n-1} - 1$.

Overflow

If an n-bit 2's complement number is greater than $2^{n-1} - 1$ or less than -2^{n-1} , we say there is an overflow.

- *a*, *b* with sign bits same but result's sign bit is not the same **is overflow**.
- *a*, *b* with different sign bit can't overflow.

Trick

- Addition with **signed 2's complement number** should only in these situations:
 - **a**, **b** are all positive.
 - *a*, *b* are positive and negative.

So if *a*, *b* are all negative will certainly cause a overflow.

VE270 Lecture 2

CMOS Transistor

AND Logic

 $Z = X \cdot Y$ and X, Y, Z are all **variables** with \cdot as **AND operator**.

OR Logic

Z = X + Y and Z = 1 if either X = 1 or Y = 1, or both; with + as **OR operator**.

NOT Logic

 ${m Z}={m X}'$ or ${m Z}=\overline{{m X}}$ means ${m Z}={m 1}-{m X}$ with ${m Z}$ and ${m X}$ either 0 or 1.

Logic Gates Convert

(We can omit **NOT**'s triangle with only a little circle on the diagram.)

Priority of Logic Operations

NOT > AND > OR

From Logic Equation to Logic Circuit

Variables + Constant binary values + Logic operators → Logic Equation

Timing Diagram

Show the response to change on a signal in voltage levels with time.

Gates with Multiple Inputs

More Gates

VE270 Lecture 3

Boolean Algebra & Optimization

Boolean Algebra Terminology

Example: F(a,b,c) = a'bc + abc' + ab + c

- Variable: Represents a value (0, 1)
 - Three variables: a, b, c
- **Literal**: Appearance of a variable, in true or complemented form

(true form: a; complemented form: a')

- Nine literals: a', b, c, a, b, c', a, b, c
- Product term: AND of literals
 - Four product terms: a'bc, abc', ab, c ($c = c \cdot 1$)
- Sum term: OR of literals
 - No sum terms

(in
$$F = (a+b+c) \cdot d$$
, $a+b+c$ is sum term)

- Sum of products: Equation written as OR of product terms only
 - F(a,b,c) = a'bc + abc' + ab + c is a sum of product form
 - $\circ F(a,b,c,d) = (a+b) \cdot c + d$ is not

Basic Theorems of Boolean Algebra

Theorem1

x + 0 = x and $x \cdot 0 = 0$.

 \boldsymbol{x} OR $\boldsymbol{0}$ is \boldsymbol{x} . \boldsymbol{x} AND $\boldsymbol{0}$ is $\boldsymbol{0}$.

Theorem2

x + x' = 1 and $x \cdot x' = 0$.

 $x ext{ OR } \neg x ext{ is } \mathbf{1}, x ext{ AND } \neg x ext{ is } \mathbf{0}.$

Theorem3

x + x = x and $x \cdot x = x$.

 \boldsymbol{x} OR \boldsymbol{x} is only \boldsymbol{x} , since $\boldsymbol{x}=\boldsymbol{x}$; \boldsymbol{x} AND \boldsymbol{x} is only \boldsymbol{x} , since $\boldsymbol{x}=\boldsymbol{x}$.

Theorem4

x+1=1 and $x\cdot 1=x$.

 $oldsymbol{x}$ OR $oldsymbol{1}$ is $oldsymbol{1}$, $oldsymbol{x}$ AND $oldsymbol{1}$ is $oldsymbol{x}$.

Involution

$$(x')' = x$$
, since $\neg(\neg x) = x$.

Commutative

x + y = y + x and $x \cdot y = y \cdot x$.

 $oldsymbol{x}$ or $oldsymbol{y}$ is $oldsymbol{y}$ or $oldsymbol{x}$, $oldsymbol{x}$ and $oldsymbol{y}$ is $oldsymbol{y}$ and $oldsymbol{x}$.

Associative

x + (y + z) = (x + y) + z and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

 $x ext{ OR } (y ext{ OR } z) = x ext{ OR } y ext{ OR } z = (x ext{ OR } y) ext{ OR } z$

 $oldsymbol{x}$ and $(oldsymbol{y}$ and $oldsymbol{z})$ = $(oldsymbol{x}$ and $oldsymbol{y}$ and $oldsymbol{z}$.

Distributive

 $x \cdot (y+z) = x \cdot y + x \cdot z$ and $x + y \cdot z = (x+y) \cdot (x+z)$.

 $x \cdot (y+z) = x \cdot y + x \cdot z$

 $x + y \cdot z = x \cdot 1 + y \cdot z = x \cdot (1 + y) + y \cdot z$

 $= x + x \cdot y + y \cdot z = x \cdot x + (x + z) \cdot y$

 $=x\cdot(x+z)+(x+z)\cdot y=(x+y)\cdot(x+z)$

Absorption

 $x + x \cdot y = x$ and $x \cdot (x + y) = x$.

 $x + x \cdot y = x \cdot (1 + y') + x \cdot y = x + x \cdot (y + y') = x + x = x$

 $x \cdot (x + y) = x + x \cdot y = x.$

Theorem5

$$x \cdot y + x \cdot y' = x$$
 and $(x + y) \cdot (x + y') = x$.

$$x \cdot y + x \cdot y' = x \cdot (y + y') = x$$

$$(x+y)\cdot(x+y')=x+y\cdot y'+x\cdot y+x\cdot y'=x.$$

Theorem6

$$x+x'\cdot y=x+y$$
 and $x\cdot (x'+y)=x\cdot y$.
$$x+x'\cdot y=x\cdot (1+y)+x'\cdot y=x+(x'+x)\cdot y=x+y,$$

$$x\cdot (x'+y)=x\cdot y+0=x\cdot y.$$

Application of Basic Theorems

• $(a+b) \cdot (c+b) \cdot (d'+b) \cdot (a \cdot c \cdot d'+e)$ = $(a \cdot c \cdot d'+b) \cdot (a \cdot c \cdot d'+e)$ = $(a \cdot c \cdot d'+b \cdot e)$ • $w \cdot x' \cdot y' + w \cdot x \cdot z' + w \cdot x' \cdot y \cdot z'$ = $w \cdot x' \cdot (y'+y \cdot z') + w \cdot x \cdot z'$ = $w \cdot x' \cdot (y'+z') + w \cdot x \cdot z'$

De Morgan's Law

 $= w \cdot z' + w \cdot x' \cdot y'$

$$(x+y)' = x' \cdot y'$$
$$(x \cdot y)' = x' + y'$$

Consensus Theorem

$$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$$

$$x \cdot y + x' \cdot z + y \cdot z$$

$$= x \cdot y + x' \cdot z + (x + x') \cdot y \cdot z$$

$$= x \cdot y + x' \cdot z + x \cdot y \cdot z + x' \cdot y \cdot z$$

$$= x \cdot y \cdot (1 + z) + x' \cdot z \cdot (1 + y)$$

$$= x \cdot y + x' \cdot z$$

$$a'b' + ac + bc' + b'c + ab = a'b' + ac + bc'$$

XOR Properties

Theorem1

$$x \oplus 0 = x, x \oplus 1 = x'$$

Theorem2

$$x \oplus x = 0$$
, $x \oplus x' = 1$

Theorem3

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

Commutative

$$x \oplus y = y \oplus x$$

Associative

$$(x\oplus y)\oplus z=x\oplus (y\oplus z)=x\oplus y\oplus z$$

Boolean Representation: Minterm and Maxterm

Minterm

A product of n literals in which each literal appears exactly once in either true or complemented form, but not both.

Represented by m_i .

Maxterm

A sum of n literals in which each literal appears exactly once in either true or complemented form, but not both.

Represented by M_i .

Subscription Example

			M	linterms	Maxterms		
X	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	\mathbf{m}_0	x+y+z	\mathbf{M}_0	
0	0	1	x'y'z	m_1	x+y+z'	M_1	
0	1	0	x'yz'	m_2	x+y'+z	M_2	
0	1	1	x'yz	m_3	x+y'+z'	M_3	
1	0	0	xy'z'	m_4	x'+y+z	M_4	
1	0	1	xy'z	m_5	x'+y+z'	M_5	
1	1	0	xyz'	m_6	x'+y'+z	M_6	
1	1	1	xyz	m_7	x'+y'+z'	M_7	

From Truth Table to Minterm Expression

X	y	Z	F	Result would happen if conl is false AND
con1	con2	con3	result	con2 is false AND con3 is true, x'y'z
0	0	0	0	Result would happen if conl is false AND
0	0	1	1	con2 is true AND con3 is true, x'yz
0	1	0	0	Result would happen if con1 is true AND
0	1	1	1	con2 is false AND con3 is false, xy'z'
1	0	0	1	Result would happen if con1 is true AND
1	0	1	1	con2 is false AND con3 is true, xy'z
1	1	0	0	D 14 1 4 'C C 41 C
1	1	1	0	Result would be true if any of these four conditions is true, implies OR logic,
				This relationship is expressed by:
				$\mathbf{F} = \mathbf{x}'\mathbf{y}'\mathbf{z} + \mathbf{x}'\mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{y}'\mathbf{z}' + \mathbf{x}\mathbf{y}'\mathbf{z}$

- A Boolean Equation can be derived from a truth table and expressed as a sum-of-minterms (standard-sum-of-products).
- Each minterm corresponds to a 1 in the truth table in the sum-of-minterms expression.
- $F = x'y'z + x'yz + xy'z + xy'z = m_1 + m_3 + m_4 + m_5 = \sum m(1,3,4,5)$

Minterms and Maxterms Conversion

Complement of Minterm is corresponding Maxterm

$$m_i = M_i$$

e.g.:
$$m_0 = x'y'z', m_0' = (x'y'z')' = x + y + z = M_0$$

Conversion between Standard Forms

The term numbers **missing from one form** will be the term number **used in the other form**.

e.g.: if all the terms are indexed by 0 ~ 7, then $F = \sum m(1,2,4,7) = \prod M(0,3,5,6)$.

	<u>T</u>	ruth	Tabl	<u>le</u>	Sum-of-minte
another example:	x 0 0 0 0 1 1 1 1	y 0 0 1 1 0 0 1 1	Z 0 1 0 1 0 1 0 0	F1 0 1 0 0 1 1 1	Sum-of-minte F1 = x'y'z + xy'z xyz' + xyz F1 = $m_1+m_4+m_5+$ F1 = Σ (1, 4, 5, 6,
	1	1	1	1	

Incompletely Specified Functions

In a circuit, some input conditions may never happen, then the output is not completely specified.

The corresponding output is set as "x", meaning **don't care**.

The **don't care** output could be either 0 or 1.

$$F = \sum m(1,3,4) + \sum d(2,5)$$
:

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	1
1	0	0	1
1	0	1	X
1	1	0	0
1	1	1	0

Simplified Forms

The minterm and maxterm forms can be further simplified:

- contain less number of terms.
- have less literals.