Stanford AA 203: Introduction to Optimal Control and Dynamic Optimization

Midterm

Instructions:

- Time allowed: 75 minutes.
- Closed book, you are allowed one side of a page for notes.
- Calculators, laptops and smartphones are not allowed.
- Please read all questions carefully before answering. Make sure that you provide answers to all questions asked. Partial credit will be available if sufficient detail is provided.
- The exam consists of **four** problems. Good luck!

Problem 1 (Nonlinear optimization – 25 points): Let $\alpha_1, \ldots, \alpha_n$ be positive scalars with $\sum_{i=1}^{n} \alpha_i = 1$. Use the Lagrange multiplier method to solve the problem

minimize
$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$

subject to $x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} = 1, \quad x_i > 0, \quad i = 1, \dots, n.$

Use this result to establish the arithmetic-geometric mean inequality

$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} \le \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n,$$

for a set of positive numbers x_i , i = 1, ..., n. Hints: Use the change of variables $y_i = \ln x_i$ and assume that the optimization problem has a global minimum (this can be rigorously proven by using a generalized version of the Weierstrass's theorem).

Problem 2 (Dynamic programming – 25 points): A certain material is passed through a sequence of two ovens. Denote by

- x_0 : the initial temperature of the material,
- x_k , k=1,2: the temperature of the material at the exit of oven k,
- u_k , k = 0, 1: prevailing temperature in oven k.

The ovens are modeled as

$$x_{k+1} = (1-a) x_k + a u_k, \quad k = 0, 1,$$

where a is a known scalar from the interval (0,1). The objective is to get the final temperature x_2 close to a given target T, while expending relatively little energy. This is expressed by a cost function of the form

$$r(x_2-T)^2+u_0^2+u_1^2$$

where r > 0 is a given scalar. For simplicity, assume no constraints on u_k . Solve the problem using the DP algorithm assuming a = 1/2, T = 0, and r = 1. Specifically, determine the optimal control policies $u_0^*(x_0)$ and $u_1^*(x_1)$, and find the optimal cost function $J^*(x_0)$ as a function of the initial condition x_0 .

Problem 3 (Calculus of variations – 25 points): Under appropriate assumptions, the total drag experienced by a slender body of revolution is approximated by

$$J(x) = 4\pi\rho v^2 \int_0^L x(t) \, \dot{x}(t)^3 \, dt,$$

where ρ and v are free stream density and velocity, respectively. The boundary conditions are x(0) = 0 and x(L) = R. Find the optimal shape for the body, i.e., the shape minimizing drag. *Hint:* the solution to the differential equation:

$$\dot{x}(t) = \alpha x(t)^{-1/3}$$

is $x(t) = \left(\frac{4}{3}\alpha t + c\right)^{3/4}$, where c is a constant of integration.

Problem 4 (Optimal control – 25 points): Determine the control function that solves the optimal control problem:

$$\underset{u(\cdot)}{\text{minimize}} \quad \int_{0}^{t_{f}} \left(x(t) + u^{2}(t) \right) dt$$

subject to
$$\dot{x}(t) = x(t) + u(t) + 1$$
,
 $x(0) = 0$,

where the final time is *fixed* and the final state is *free*.