1. Propagation rectiligne de la lumière

Dans le vide et dans un milieu transparent et homogène, la lumière se propage en courbe / ligne droite.

On modélise le trajet suivi par la lumière par un rayon lumineux.

figure 1 : Modèle du rayon lumineux.

2. Lois de Snell-Descartes

Réflexion et réfraction de la lumière

Lorsqu'un rayon lumineux arrive à la surface de séparation entre deux milieux, il change de direction et se sépare en deux rayons distincts.

(a)	rayon incident :	
b	rayon réfléchi :	

figure 2 : Réflexion et réfraction d'un faisceau laser.

Lois de Snell-Descartes

<u>LEXIQUE</u>
> <u>indice optique</u> :

milieu matériel	air	eau	diamant	
indice optique	1,00	1,33	2,52	

figure 3: Exemples d'indices optiques.

pour la <u>réflexion</u> :

L'angle d'incidence i_1 et l'angle de réflexion i_R vérifient la relation :

- pour la <u>réfraction</u> :

Exemple: Un rayon lumineux qui se propage dans l'air arrive à la surface de séparation air-eau avec un angle d'incidence $i_1 = 50^\circ$ par rapport à la normale.

 $\underline{Donn\acute{e}s}$: $n_{air} = 1,00 - n_{eau} = 1,33$

Calculer la valeur de l'angle de réfraction i₂ et de l'angle de réflexion i_R.

3. Lumière blanche et lumière colorée

Si on éclaire un prisme avec la lumière blanche du soleil, on observe à la sortie la **décomposition** de la **lumière blanche** en différentes **lumières colorées**.

figure 3 : Lumière blanche décomposée par un prisme.

Chaque radiation colorée est caractérisée par une **longueur d'onde** notée λ (lambda) exprimée en mètres ou plus usuellement à l'aide d'un sous-multiple, le **nanomètre** (1 nm = 10^{-9} m).

Dispersion de la lumière blanche

LEXIQUE

> milieu dispersif :

La dispersion de la lumière blanche est la séparation des différentes radiations colorées qui la composent à l'aide d'un milieu dispersif comme un prisme.

figure 4 : Schématisation du phénomène de dispersion par un prisme.

4. Spectres d'émission

<u>LEXIQUE</u>
> <u>spectre</u> :
Spectre continu d'origine thermique
Un corps chaud émet de la lumière. <u>Exemples</u> : soleil, étoile, ampoule,
Exemple : Spectre continu de la lumière blanche émise par un corps chaud.
Remarque : Le spectre continu de la lumière émise par un corps chaud dépend de la température de ce corps.
T ₁ T ₂ > T ₁
Spectre de raies
Un gaz excité émet de la lumière.
Remarque : Les longueurs d'onde des raies du spectre sont caractéristiques de l'élément, à l'état gazeux, excité. Elles permettent d'identifier une espèce chimique.
Exemple : Identifier à quel gaz correspond le spectre de raies ci-dessous.

élément chimique	longueurs d'onde (nm) des raies sur le spectre de raies d'émission		
hydrogène (H)	410 ; 434 ; 486 ; 656		
mercure (Hg)	405 ; 436 ; 546 ; 579		