第六章 时序逻辑电路

主要要求:

- 熟练掌握时序逻辑电路的描述方法;
- 掌握时序逻辑电路的分析、设计;

■ 掌握寄存器计数器等典型时序逻辑部件的功能和应用。

器件实例: 74LS161 4位同步二进制计数器

CLK	R_D'	LD'	EP	ET	工作状态
X	0	X	X	X	置 0 (异步)
T	1	0	X	X	预置数 (同步)
X	1	1	0	1	保持(包括C)
X	1	1	X	0	保持(C=0)
JL	1	1	1	1	计数

四位二进制同步计数器

器件实例: 74LS160 4位同步十进制计数器

◎ 集成同步十进制加法计数器74LS160。电路框图、功能表和74LS161相同,但输出只有0000-1001十个稳定状态。

(CLK	R_D'	LD'	EP	ET	工作状态
	X	0	X	X	X	置 0 (异步)
	Ţ	1	0	X	X	预置数(同步)
	X	1	1	0	1	保持(包括C)
	X	1	1	X	0	保持(C=0)
	T	1	1	1	1	计数

74LS160的状态转换图(Q₃Q₂Q₁Q₀)

三、任意进制计数器的构成方法

将已有的N进制芯片,组成M进制计数器,是常用的方法。

有两种情况:
$$\begin{cases} N > M \\ N < M \end{cases}$$

1、N > M

原理: 计数循环过程中设法跳过N-M个状态。

具体方法:置零法和置数法两种。

(1) 置零法

「异步置零法」同步置零法

例:将十进制的74160接成六进制计数器

CLK	R'_D	LD'	EP	ET	工作状态	
X	0	X	X	X	置 0 (异步)	
T	1	0	X	X	预置数(同步)	
X	1	1	0	1	保持(包括C)	
X	1	1	X	0	保持(C=0)	
J	1	1	1	1	计数	

例:将十进制的74160接成六进制计数器

异步置零法 D_0 D_1 D_2 D_3 **EP** 1 0010 0011 74160 ETLD | 0-1 R_{D}^{\prime} $\triangleright^{\text{CLK}}_{\underline{Q_0}\ Q_1\ Q_2\ Q_3}$ CLK- R_{D} 计数输入 1001 0100 G 1000 0101 0111 0110 进位输出 清零信号取0110

缺点:置0信号作用时间短

(2) **置数法** {(a) 任意置补法 (b) 进位置数法

例:将十进制的74161接成六进制计数器

例:将74161接成六进制计数器

(b) 进位置补法

例:将十六进制的74161接成六进制计数器

(b) 进位置补法

$$1010 \sim 1111$$
 (6) $= 16 - 6 = 10 = (1010)_2$

例:用同步十进制计数器74160设计六进制计数器

2. N < M

$M=N_1\times N_2$

先用前面的方法分别接成N₁和N₂两个计数器。

N₁和N₂间的连接有两种方式:

- a. 并行进位方式:用同一个clk,低位片的进位输出作为高位片的计数控制信号(如74160的EP和ET)。
- b. 串行进位方式: 低位片的进位输出作为高位片的clk, 两片始终同时处于计数状态。

例: 用74160接成100进制

4位同步二进制计数器74160功能表

0	CLK	R'_D	LD'	EP	ET	工作状态
	X	0	X	X	X	置 0 (异步)
	J	1	0	X	X	预置数 (同步)
	X	1	1	0	1	保持(包括C)
	X	1	1	X	0	保持(C=0)
	Ţ	1	1	1	1	计数

EP、ET同为1时,计数。

例:用两片160接成100进制计数器

例2两片之间用非门连接的原理

74LS160是CP↑作用的计数器,若片间连接不用非门,则:

第9个CP过后, 电路输出 (1,1001), 出错。

若用非门连接,则正常输出。

② M不可分解

采用整体置零和整体置数法:

先用两片接成 M'> M 的计数器

然后再采用置零或置数的方法

例:用74160接成29进制计数器

整体置零

(异步)

整体置数 (同步)

练习 电路如下图,试分析电路为几进制计数器。

- (1)片的进位信号控制(2)片的使能端,
- (2)片仅在 $ET=EP=C_1=1$ 的时间内计数。

当两片计数到0100、0010状态时,电路总体置入0。

进制 $M: M=16\times 4+2+1=67$

4096进制计数器

如果改为74160呢?

174进制计数器

92进制计数器

计数器应用举例——电子表电路

6.4 时序逻辑电路的设计方法

6.4.1 同步时序逻辑电路的设计方法

设计步骤:

例1:用JK触发器设计一个模5计数器。

(1) 建立状态转换图

(2) K图 (用 K图描述状态转换图,然后求触发器输入)

(3) 检查自启动

$Q_3Q_2Q_1$	$Q_3' Q_2' Q_1'$	C
1 0 1	0 1 0	1
1 1 0	0 1 0	1
1 1 1	0 0 0	1

$$Q_3^* = Q_2 Q_1 Q_3'$$

$$Q_2^* = Q_1 Q_2' + Q_1' Q_2$$

$$Q_1^* = Q_3' Q_1'$$

(4) 逻辑电路图

$$J_{3} = Q_{2}Q_{1}$$
 $K_{3} = 1$
 $J_{2} = Q_{1}$ $K_{2} = Q_{1}$
 $J_{1} = Q'_{3}$ $K_{1} = 1$
 $C = Q_{3}$

例:用D触发器设计一个如下所示的可控模6计数器。

(1) 次态K图

$\mathbf{Q}_2\mathbf{Q}_1$				
SQ_3	00	01	11	10
00	XXX	011	010	110
01	101	001	XXX	100
11	110	100	XXX	010
10	XXX	101	001	011

$$(\mathbf{Q_3}\mathbf{Q_2}\mathbf{Q_1})^*$$

(2) 检查自启动

S=1时, $Q_3Q_2Q_1$ 000 \rightarrow 111 \rightarrow 000 S=0时, $Q_3Q_2Q_1$ 000 \rightarrow 111 \rightarrow 000 此电路不能自启动

(3) 修改K图

$$Q_3^* = S'Q_1' + SQ_2' + Q_3Q_2Q_1$$