

Source Enumeration and Robust Voice Activity Detection in Wireless Acoustic Sensor Networks

Tanuj Hasija¹, Martin Gölz², Michael Muma², Peter J. Schreier¹ and Abdelhak M. Zoubir² ¹Signal & System Theory Group, Universität Paderborn, Germany ²Signal Processing Group, Technische Universität Darmstadt, Germany

Overview

- Multispeaker voice activity detection (VAD) prerequisite for speech enhancement and noise cancellation in WASN
- Traditional techniques: Based on energy signatures, e.g., Multiplicative non-negative ICA (M-NICA), degrade in performance
 - . as number of speakers increase
- ii. in presence of impulsive noise
- Proposed technique:
 - i. clusters nodes around each speaker
 - ii. single-source M-NICA with block-sparse penalization
 - iii. no knowledge of source/node positions or number of speakers required

Problem Formulation

- P sensor nodes each with n microphones
- Unknown number of d dominant sources among all q sources
- Goal: Robustly estimate voice activity of d dominant sources

• Cluster information matrix $\mathbf{Z} \in \mathbb{B}^{d \times P}$ whose $\{ij\}$ th entry is 1 if ith dominant source is observed by jth node and 0 otherwise

WASN Setup

- $20m \times 10m$ room with P = 15 nodes (in blue), n = 3 microphones
- d = 4 dominant sources (A-D), bulb-flickering noise by sources E and F

Source Enumeration and Node Clustering

• P-channel model: Observed data at fth frequency index, $\mathbf{x}_p(f) \in \mathbb{C}^n$

$$\mathbf{x}_p(f) = \mathbf{A}_p(f)\mathbf{s}_p(f), \qquad p = 1, \dots, P,$$

 $\mathbf{A}_p(f) \in \mathbb{C}^{n \times m_p}$ is acoustic transfer function, $\mathbf{s}_p(f) \in \mathbb{C}^{m_p}$ contains m_p uncorrelated sources

- Strong correlation among nodes observing same dominant source
- Let $\mathbf{R}_{pq} = E[\mathbf{x}_p \mathbf{x}_q^H]$ and $\mathbf{C}_{pq} = \mathbf{R}_{pp}^{-\frac{1}{2}} \mathbf{R}_{pq} \mathbf{R}_{qq}^{-\frac{H}{2}}$
- Composite coherence matrix C =
- Main results (adapted from [1]):
 - . **C** has exactly *d* eigenvalues greater than one
 - ii. Let $\mathbf{u}^{(i)} = [\mathbf{u}_1^{(i)T}, \mathbf{u}_2^{(i)T}, ..., \mathbf{u}_P^{(i)T}]^T$, be the *i*th eigenvector associated with the above eigenvalue of \mathbf{C} . The *i*th source is observed by the *p*th node iff
- Bootstrap-based hypothesis tests for estimating d and Z

No heuristic thresholds required

Group Sparse Voice Activity Detection

Received signals y composed of N time samples summarized in matrix Y

$$\mathbf{Y} = \mathbf{as} + \mathbf{W}$$
 $\mathbf{Y} \in \mathbb{R}^{n^{(i)} \times N}$ $\mathbf{a} \in \mathbb{R}^{n^{(i)} \times 1}$ $\mathbf{s} \in \mathbb{R}^{1 \times N}$ $\mathbf{W} \in \mathbb{R}^{n^{(i)} \times 1}$

- Singular value decomposition $SVD(\mathbf{Y}) = \sigma \mathbf{u} \mathbf{v}^{\top}$
- Information on shape of dominant source energy signal contained in v [2]
- Divide signal matrix \mathbf{Y} and \mathbf{v} into L groups of length $N_{\mathbf{q}}$

$$\mathbf{Y} = \left[\mathbf{Y}_{\mathbf{g},1}, \ldots, \mathbf{Y}_{\mathbf{g},L}\right], \qquad \mathbf{Y}_{\mathbf{g},I} \in \mathbb{R}^{n^{(i)} \times N_{\mathbf{g}}}$$

Penalize SVD optimization problem to enforce group sparsity

$$\underset{\mathbf{v}}{\operatorname{argmin}} \left\| \sum_{l=1}^{L} \mathbf{Y}_{\mathrm{g},l} - \sigma \mathbf{u} \mathbf{v}_{\mathrm{g},l}^{\top} \right\| + \lambda_{\mathbf{v}} \underbrace{\sum_{l=1}^{L} \sqrt{\sum_{k}^{N_{\mathbf{g}}} |v_{\mathrm{g},l}[k]|}}_{\mathrm{mixed}} \frac{N_{\mathbf{g}}}{\ell 1/\ell 2 \; \mathrm{norm}} \right\|$$

• Tuning parameter $\lambda_{\mathbf{v}}$ determines degree of sparsity in \mathbf{v}

Intrinsic Voice Activity Detection without heuristic threshold

- Without sparsity enforcing penalty term, all entries of **v** are generally non-zero
- Group sparse structure of \mathbf{v} forces entire groups $\mathbf{v}_{\mathbf{b},l}$ to be zero

Results

- Each node corrupted by AWGN, sampled at 16kHz
- Hamming window STFT
- Sc. 1: $\hat{d} = 3$, 15s • Sc. 2: $\hat{d} = 4$, 30s
- Clustering results

Source	Cluster Nodes (Sc. 1)	Cluster Nodes (Sc. 2)
A	2 and 3	2, 3 and 14
В	4, 5 and 6	4, 5 and 6
С	9 and 10	9, 10 and 11
D	Not active	7, 12 and 13

VAD Results

Advantages of Proposed Group-Sparse Method

- + Outperforms standard methods and clustered sparse approach
- + Is scalable to large WASNs with many speakers
- + Handles impulsive noise
- + Does not require heuristic thresholds for node clustering and VAD

Acknowledgements

This research was supported by the German Research Foundation (DFG) under grants SCHR 1384/3-2 and ZO 215/17-2. The WASN speech dataset has been generated within the EU FET-Open Project HANDICAMS (GA no. 323944).

Bibliography

- [1] T. Hasija, C. Lameiro, T. Marrinan & P.J. Schreier, 'Determining the Dimension and Structure of the Subspace Correlated Across Multiple Data Sets," arXiv, 2019
- [2] A. Bertrand & M. Moonen, "Energy-based multi-speaker voice activity detection with an ad hoc microphone array," ICASSP, 2010
- [3] L. K. Hamaidi, M. Muma & A.M. Zoubir, "Multi-Speaker Voice Activity Detection by an Improved Multiplicative Non-Negative Independent Component Analysis with Sparseness Constraints", ICASSP, 2017