Persistence: Solid-State Storage Devices

CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2024

Administrivia

- Project 6 due Nov 27 and Dec 6
- Due to CSL issues, one extra slip day added to all students
- OH and discussions cancelled next Wed, Nov 27th
- Exam 2 Regrades done

Office Hour Tickets

Louis Oliphant

Review FSCK, Journaling & Log-Structured File Systems

- FSCK
 - fsck attempts to scan and correct inconsistencies found in the file system.
 - build used data blocks from inode table, checks inodes and directory entries for consistency
- Data Journaling and Metadata (or ordered) Journaling
 - Understand protocol of what gets written where and what waits occur to insure consistency
- Log-structured File System
 - Layout on disk checkpoint region, segments (data, inodes, imap, segment summary),
 - Memory caching imap and buffered writes
 - Garbage Collection block liveness, which blocks to clean
 - Crash Recovery multiple CRs, roll forward

Quiz 19 LFS

https://tinyurl.com/cs537-fa24-q19

Solid-State Storage Devices

- Physical Storage System
 - SLC, MLC, TLC
 - Banks, Blocks, and Pages
- Flash-based Operations
 - Read (a page), Erase (a block), Program (a page)
- Flash Translation Layer (FTL)
- Log-Structured FTL
- Garbage Collection
- Mapping Tables
- SSD Performance and Cost

NAND Flash Storage

Cell types of storage

1 bit per cell	2 bits per cell	3 bits per cell	4 bits per cell	5 bits per cell
	11	111	1111 1110	
	1 '' 1	110	1101 1100	
'	10	101	1011 1010	
	"	100	1001	
	01	011	0111	
0	"	010	0101 0100	
l "	00	001	0011 0010	
	00	000	0001 0000	
SLC	MLC/DLC	TLC	QLC	PLC

- Single Level Cell (SLC) = 1 bit per cell (faster, more reliable)
- Multi Level Cell (MLC) = 2 bits per cell (slower, less reliable)
- Triple level Cell (TLC) = 4 bits per cell (even more so)

SSD Structure

Flash Translation Layer (Proprietary firmware)

Simplified block diagram of an SSD

SSD Layout and Operations

SSD Operations:

- Read a page
 - ~ 25-75 microseconds
 - independent of page number, prior requests
- Erase a block (reset all pages in block to all 1s)
 - $\bullet \sim 1.5$ to 4.5 milliseconds
 - Pages must be erased before they can be programmed
- Program (i.e. write) a page
 - 200 to 1400 microseconds

Page States

- INVALID Can only be erased
- ERASED Ready to be programmed
- VALID Programmed, ready to be read

Louis Oliphant

FLASH TRANSLATION LAYER

- I. Translate reads/writes to logical blocks into reads/erases/programs
- 2. Reduce write amplification (extra copying needed to deal with block-level erases)
- 3.Implement wear leveling (distribute writes equally to all blocks)

Typically implemented in hardware in the SSD, but in software for some SSDs

FTL: DIRECT MAPPING

Cons?

FTL: LOG-BASED MAPPING

Idea: Treat the physical blocks like a log

Table:	10	00 -	→ 0										Memory
Block: Page:	00	01	02	03	04	05	1	07	08	ng.	2	11	Flash
Content:	a1				04	05		07	00	03		11	Chip
State:	V	E	E	E	i	i	i	i	i	i	i	i	

FTL: LOG-STRUCTURED ADVANTAGES

Avoids expensive read-modify-write behavior

Better wear levelling: writes get spread across pages, even if there is spatial locality in writes at logical level

Challenges? Garbage!

GARBAGE COLLECTION

Flash

Chip

Table:	100 →0	101 →1	2000→2	2001→3	Memory
Block:	0		1	2	
Page:			06 07 08	09 10 11	Flash
Content:	a1 a2 b1	b2			Chip
State:	V V	V i i	i i i	i i i	
Table:	100 →4	101 → 5	2000→2	2001→3	Memory
Block:	0	1	1	2	

00 01 02 03 04 05 06 07 08 09 10 11

E E i

a1 a2 b1 b2 c1 c2

Content:

State:

GARBAGE COLLECTION

Read all pages in

Steps:

physical block

Write out the alive entries to the end of the log

Erase block (freeing it for later use)

OVERHEADS

Garbage collection requires extra read+write traffic

Overprovisioning makes GC less painful

- SSD exposes logical space that is smaller than the physical space
- By keeping extra, "hidden" pages around, the SSD tries to defer GC to a background task (thus removing GC from critical path of a write)

Occasionally shuffle live (i.e., non-garbage) blocks that never get overwritten

- Enforces wear levelling

OVERALL PERFORMANCE

	Ran	dom	Sequential		
Device	Reads (MB/s)	Writes (MB/s)	Reads (MB/s)	Writes (MB/s)	
Samsung 840 Pro SSD	103	287	421	384	
Seagate 600 SSD	84	252	424	374	
Intel SSD 335 SSD	39	222	344	354	
Seagate Savvio 15K.3 HDD	2	2	223	223	

COST?

~I.5 cents / GB

ITB ~ \$150 on average ~15 cents / GB

More Modern Drive - Samsung 970 EVO Plus 2 TB SSD /w Cache

Solid-State-Drive					
Capacity:	2 TB (2000 GB)				
Variants:	250 GB · 500 GB · 1 TB · 2 TB				
Hardware	Elpis + V6 250 GB · 500 GB · 1 TB · 2 TB Phoenix + V5 250 GB · 500 GB · 1 TB · 2 TB				
Overprovisioning:	185.4 GB / 10.0 %				
Production:	Active				
Released:	Feb 2019				
Price at Launch:	220 USD				
Part Number:	MZ-V7S2T0B/AM				

Per	Performance			
Sequential Read:	3,500 MB/s			
Sequential Write:	3,300 MB/s			
Random Read:	620,000 IOPS			
Random Write:	560,000 IOPS			
Endurance:	1200 TBW			
Warranty:	5 Years			
MTBF:	1.5 Million Hours			
Drive Writes Per Day (DWPD):	0.3			
SLC Write Cache:	approx. 78 GB (72 GB Dynamic + 6 GB Static)			
Spood whon				

Louis Oliphant

SSD More Specs

NAND Flash				
Manufacturer:	Samsung			
Name:	V-NAND V5			
Туре:	TLC			
Technology:	92-layer			
Speed:	533 MT/s 1400 MT/s			
Capacity:	2 chips @ 8 Tbit			
Toggle:	4.0			
Topology:	Charge Trap			

Read Time (tR):	73 µs
Program Time (tProg):	500 μs
Block Erase Time (tBERS):	3.5 ms
Die Read Speed:	438 MB/s
Die Write Speed:	64 MB/s
Page Size:	16 KB

SSD Performance Drop 1

Louis Oliphant

SSD Performance Drop 2

Louis Oliphant

Persistence: Solid-State Storage Device

Summary

Persistence Summary

- IO Devices / Disks
- File System API
- File System Implementation / Fast File System
- Journaling
- Log Structured FS
- SSDs

Advanced Topics

- Virtual Machines
- Multiprocessor Scheduling
- Distributed Systems