Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа **№4** «Численное интегрирование»

по дисциплине «Вычислительная математика»

Вариант: 13

Преподаватель: Наумова Надежда Александровна

Выполнил:

Саранча Павел Александрович

Группа: Р3209

<u>Цель работы</u>: найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Линейная аппроксимация:

$$y = \frac{31x}{x^4 + 13}$$

$$n = 11$$

$$x \in [0; 4]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	0.952	1.849	2.468	2.537	2.138	1.611	1.166	0.842	0.617	0.461

$$\varphi(x) = a + bx$$

Вычисляем суммы: sx = 22, sxx = 61.6, sy = 14.64 sxy = 27.048

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a + 22*b = 14.64 \\ 22*a + 61.6*b = 27.048 \end{cases} \begin{cases} a = 1.585 \\ b = -0.127 \end{cases}$$

$$\varphi(x) = 1.585 - 0.127 * x$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	0.952	1.849	2.468	2.537	2.138	1.611	1.166	0.842	0.617	0.461
φ(xi)	1.585	1.534	1.483	1.433	1.382	1.331	1.280	1.229	1.179	1.128	1.077
(φ (xi)- yi)^2	2.512	0.339	0.134	1.072	1.334	0.651	0.109	0.004	0.113	0.261	0.379

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 0.79257$$

Квадратичная аппроксимация:

$$y = \frac{31x}{x^4 + 13}$$

$$n = 11$$

$$x \in [0; 4]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	0.952	1.849	2.468	2.537	2.138	1.611	1.166	0.842	0.617	0.461

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = 22$$
, $sxx = 61.6$, $sxxx = 193.6$, $sxxxx = 648.52$, $sy = 14.64$, $sxy = 27.0476$, $sxxy = 62.35152$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11 * a + 22 * b + 61.6 * c = 14.64 \\ 22 * a + 61.6 * b + 193.6 * c = 27.0476 \\ 61.6 * a + 193.6 * b + 648.52 * c = 62.35152 \end{cases}$$

По методу Крамера:

$$\Delta = 4252.385$$

$$\Delta_1 = 1767.773, \Delta_2 = 7746.592, \Delta_3 = -2071.613$$

$$\begin{cases} a = \frac{\Delta_1}{\Delta} \approx 0.416 \\ b = \frac{\Delta_2}{\Delta} \approx 1.822 \\ c = \frac{\Delta_3}{\Delta} \approx -0.487 \end{cases}$$

$$\varphi(\mathbf{x}) = 0.416 + 1.822x - 0.487x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
y _i	0	0.952	1.849	2.468	2.537	2.138	1.611	1.166	0.842	0.617	0.461
φ(xi)	0.416	1.066	1.561	1.900	2.083	2.110	1.982	1.697	1.257	0.660	-0.092
(φ (xi)- yi)^2	0.173	0.013	0.083	0.322	0.206	0.001	0.137	0.282	0.172	0.002	0.306

$$\sigma = \sqrt{\frac{\Sigma(\phi(xi) - yi)^2}{n}} = 0.39276$$

0.39276 < **0.79257**, у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация задачи

https://github.com/PaulLocust/comp math lab3

Результаты выполнения программы при различных исходных данных:

Вывод

В ходе данной работы была выполнена аппроксимация функций с использованием линейного, квадратичного, кубического, экспоненциального и логарифмического приближений. Также на основе этих методов был реализован Python скрипт, который реализует метод наименьших квадратов и строит графики исходной функции и аппроксимаций.

Исследование позволило определить наилучшее приближение, вычислить среднеквадратические отклонения и коэффициент корреляции Пирсона для линейной зависимости.