PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-060238

(43) Date of publication of application: 04.03.1997

(51)Int.Cl.

E04F 13/00 B32B 5/18 B32B 27/30

E04F 13/18 E04F 15/16

(21)Application number: 07-243711

(71)Applicant : TOLI CORP LTD

(22)Date of filing:

28.08.1995

(72)Inventor: NIWA ISAMU

SUZUKI YASUSHI

(54) INTERIOR MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To eliminate a risk of toxic gas emission at the time of combustion and heighten the safety by laminating a surface layer containing an acrylic resin and plasticizer on a foaming base material containing acrylic resin and plasticizer.

SOLUTION: A filling layer 5 is previously formed on the oversurface of a nonwoven cloth or mesh-backed material 4 consisting of glass-fiber, vinylon, polyester fiber, etc. In the surface layer 1 a plasticizer is mixed with an acrylic resin having the mean particle size 0.1-10 μ m so that the resin can be turned into paste. In the foaming base material layer 3 a plasticizer is mixed with acrylic resin having the mean particle size 0.1- $10\,\mu$ m so that the resin can be turned into paste. It is preferable that the mean molecular weight of the acrylic resin ranges from ten thousands to one million, and either a foaming agent is added to cause foaming or a mechanical foam is formed followed by turned into hot gel so that a foaming layer is established. It may also be accepted that a pattern layer 2 of printing, etc., is interposed between the surface layer 1 and base material layer 3.

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-60238

(43)公開日 平成9年(1997)3月4日

(51) Int.Cl. ⁶ 識別記号 庁内整理		庁内整理番号	ΡI		技術表示箇所		
E 0 4 F 13/00	•	8913-2E	E04F 13	3/00	1	В	
B 3 2 B 5/18			B32B 5	5/18			
27/30			27	7/30	4	A	
E 0 4 F 13/18	8913-2E		E 0 4 F 13/18		A ·		
15/16		8702-2E 15/16		•	Α		
			容查 語	え 有	請求項の数5	FD (á	全 3 頁)
(21)出顧番号	特顧平7-243711		(71)出願人	0002224	195		
				東リ株式	式会社		
(22)出顧日	平成7年(1995)8月28日			兵庫県	伊丹市東有岡 5	丁目125番垻	<u>h</u>
·			(72)発明者	丹羽	勇		
		•		兵庫県	伊丹市東有岡 5	丁目125番组	東リ
				株式会	灶内		
			(72)発明者	鈴木!	集司	•	
					尹丹市東有岡 5	丁目125番地	東リ
				株式会			
			(74)代理人	弁理士	田村厳		
		•			•.		

(54) 【発明の名称】 内装材

(57)【要約】

【課題】 燃焼時に有毒ガスを発生しない安全性の高い ものであって、かつ従来の加工設備で加工可能な内装材 を提供する。

【解決手段】 アクリル系樹脂と可塑剤を含有する発泡 基材層上に、アクリル系樹脂と可塑剤を含有する表面層 が積層された内装材。

1

【特許請求の範囲】

【請求項1】 アクリル系樹脂と可塑剤を含有する発泡 基材層上に、アクリル系樹脂と可塑剤を含有する表面層 が積層された内装材。

【請求項2】 基材及び表面層がアクリル系樹脂ペース トから得られたものである請求項1の内装材。

【請求項3】 凹み回復率が90%以上である請求項1 の内装材。

【請求項4】 アクリル系樹脂の平均粒径が0.1~1 0 μmである韻求項1の内装材。

【請求項5】 発泡基材層のアクリル系樹脂の平均分子 量が1万~100万である請求項1の内装材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はハロゲンを含有せ ず、床材、壁紙等に好適な内装材に関する。

[0002]

【従来の技術】従来よりポリ塩化ビニル(PVC)ペー ストを使った発泡基材層上にPVCペーストの透明樹脂 られている。しかし、これらの内装材は燃焼すると人体 に有毒な塩酸ガスを発生するものであったため、火災発 生時にガス中毒を招く虞れが非常に高く問題となってい た。

[0003]

【発明が解決しようとする課題】本発明の目的は、燃焼 時に有毒ガスを発生しない安全性の高いものであって、 かつ従来の加工設備で加工可能な内装材を提供すること にある。

[0004]

【課題を解決するための手段】本発明はアクリル系樹脂 と可塑剤を含有する発泡基材層上に、アクリル系樹脂と 可塑剤を含有する表面層が積層された内装材に係る。本 発明の発泡内装材は例えば床材、壁材等に好適に用いる ことができる。

[0005]

【発明の実施の形態】図1 に本発明の内装材の断面図を 示す。表面層1はアクリル系樹脂100重量部(以下単 に部という) に対して可塑剤を50~150部の割合で 配合しており、実質的にその他の添加剤は不要である が、勿論添加しても差し支えない。可塑剤としては、D BP (ジブチルフタレート)、BBP (ブチルベンジル フタレート)、TCP(トリクレジルフタレート)、A TBC(アセチルトリプチルシトレート)、DI80 (ミリスチルベンジルフタレート) 等が好適である。本 発明の表面層においては、平均粒径0.1~10μπのア クリル系樹脂に上記範囲の量の可塑剤を混練することに より、アクリル系樹脂のペースト化が可能となる。アク リル系樹脂の平均分子量は50万~800万の範囲が好 ましく、Tgは80~120°Cの範囲が好適である。

2 【0006】発泡基材層3は比較的重合度の低いアクリ ル系樹脂100部に対して表面層と同様の可塑剤を50 ~150部の割合で配合する。発泡剤としては低温でも、 分解する発泡剤が好ましく、例えばジニトロソペンタメ チレンテトラミン、ベンゼンスルホニルヒドラジド、p -トルエンスルホニルヒドラジド、p,p'-オキシビス (ベンゼンスルホニルヒドラジド)、3.3'-ジスルホ ンヒドラジドジフェニルスルホン、アゾビスイソブチロ ニトリル、アゾジカルボンアミド等が挙げられる。場合 10 によっては尿素エタノールアミン、亜鉛華、炭酸鉛、ス テアリン酸鉛、グリコール等の助剤を加えることも好適 である。上記アクリル系樹脂は表面層と同様に平均粒径 0.1~10μmのアクリル系樹脂に上記範囲の量の可塑 剤を配合することにより、アクリル系樹脂のペースト化 が可能となる。アクリル系樹脂の平均分子量は1万~1 00万の範囲が好ましく、Taは80~120℃の範囲 が好適である。表面層1と発泡基材層3の間には印刷模 様等の模様層2を介在させても良い。4はガラス繊維ま たはビニロン、ポリエステル繊維等の不総布またはメッ 層を塗布した内装材は広くクッションフロアーとして知 20 シュ裏打ち材であり、目付けは10~100g/㎡が好 適である。 裏打ち材上面には予め目止め層5を形成して もよい。とのようにして発泡内装材6が得られる。尚、 発泡層は発泡剤を含有させて加熱し、分解剤を分解発泡 させる方法の他に、アクリル系樹脂ペーストでメカニカ

> 【0007】図2は本発明の内装材の製造工程図の一部 を示す。剥離紙7上に発泡性アクリル系樹脂ペースト中 に10~100g/mのガラス織布または不織布のガラ 30 ス繊維布9を介在させて加熱発泡し、発泡層8a、8b を得る。発泡ゲル化に際し、発泡層上には、印刷層10 が形成され、印刷層上には更に透明なアクリル系樹脂ペ ーストの表面層 1 1 が設けられる。次に得られた床材 1 2は、剥離紙7から剥離させる。得られた内装材は軟ら かくクッション性に優れ、しかも凹み回復率が90%以 上であった。また、本発明の内装材はハロゲンを全く含 まないため、焼却してもHC1ガスその他の有毒ガスが 発生せず、環境安全上好ましい。

ル発泡をした後加熱ゲル化する方法も採用することがで

【0008】凹み回復率の測定方法(JIS A570 40 7)

発泡層のあるビニル床シートで直径19mm、先端が半球 状の鋼棒で222.61N(22.7kgf)の荷重を5分 間加える。次に荷重を取り去ってから60分後のへとみ 量をJIS B7503に規定するダイヤルゲージで読 み取り、凹み回復率を求める。凹み回復率は次の式で算 出する。

凹み回復率(%) = { (試験後の厚さ (mm) - 5 分後の 厚さ(mm)]/〔試験前の厚さ(mm)-5分後の厚さ (mm) $\} \times 100$

[0009] 50

3

【発明の作用】表面層、発泡基材層とも平均粒径0.1~10μmのアクリル系樹脂を可塑剤と配合し、発泡基材層はアクリル系樹脂の平均分子量1万~100万で発泡剤を添加して発泡するか、メカニカルフォームを形成して加熱ゲル化し、発泡層を形成する。

[0010]

【実施例】以下に実施例を挙げて本発明を更に詳しく説明する。単に部とあるは重量部を示す。

実施例1

ガラス基材にアクリル系樹脂(F320、日本ゼオン)100部に可塑剤(DBP)70部のペーストを塗布して目止め層を形成した後、これをプリゲル化した。次に下記配合の発泡性ペーストを目止め層上に0.3mmの厚さに塗布して、加熱プリゲル化し、転写紙を転写剥離して模様層を形成した。模様層上に目止め層と同じ組成の透明樹脂を0.15mmの厚さで塗布し、オーブンで200℃に加熱発泡させて、厚さ1.8mmの積層床材を得た。得られた床材は柔軟でクッション性が良いアクリル系樹脂ペースト床材で、その凹み回復率は92%であった。

配合

アクリル系樹脂F325 (日本ゼオン)100部 可塑剤(DBP)(大日本インキ) 90部 発泡剤(AZS)(永和化成) 2.5部 安定剤(ZNOB)(堺化学) 0.5部 二酸化チタン(CR60)(石原産業) 2部 【0011】実施例2

剥離紙上に実施例1と同じ発泡層を0.5mm塗布後、 50g/m³のガラスマットを沈めて加熱ブリゲル化を * *行い、次に第2の発泡層を0.3mm塗布後、加熱し、 転写して模様層を形成し、実施例1同じ表面層0.3mm を塗布し、加熱、発泡し、最後に剥離紙を剥がして3. 5mm厚さの床材を得た。得られた床材は柔軟でクッショ ン性が良いアクリル系樹脂ペースト床材で、その凹み回 復率は94%であった。

[0012]

【発明の効果】本発明の内装材はハロゲンを全く含まないため、焼却してもHC1ガスその他の有毒ガスが発生10 せず、環境安全上好ましい。PVCベースト用の加工設備がそのまま使用できる。また本発明の内装材は柔らかく、巻き取りやすく、クッション性に優れ、凹み回復性が良く、凹み跡が残らない。更に本発明の内装材は可塑剤の添加量により、その柔軟性を調節することができる。本発明の内装材は耐候性にも優れている。

【図面の簡単な説明】

- 【図1】本発明の内装材の断面図である。
- 【図2】本発明の内装材の他の断面図である。 【符号の説明】
- 20 1、11 表面層
 - 2、10 模様層
 - 3 発泡基材層
 - 4 裏打ち材
 - 5 目止め層
 - 6 内装材
 - 7 剥離紙
 - 8 a. 8 b 発泡基材層
 - 9 ガラス繊維布
 - 12 床材

[図1]

[図2]

