Chair of Real-Time Computer Systems TUM Department of Electrical and Computer Engineering Technical University of Munich

Mapping Artificial Neural Network Operations for Inference on Coral Edge TPU

Bachelor's Thesis

Supervisor:

M.Sc. Alex Hoffman

Advising Professor:

Prof. Dr. Daniel Müller-Gritschneder

Student:

Ala Fnayou ge69faf 03697266

Motivation: Edge Al

Edge Computing

Artificial Intelligence

Edge Al

- Edge AI systems
 - Process data gathered by hardware devices locally
 - Eliminate privacy and security issues related to data transfer
 - Reduce network latency times for an improved user experience

⇒ Emergence of a new breed of revolutionary products

Market value of Edge Al (in million \$)

Improvement of Market value of Edge AI between 2018 and 2023 [1]

Amazon's Alexa and Google Home [2]

Set of futuristic wearable products [3]

Motivation: Tiny Machine Learning

- Tiny ML represents the new trend of running ML algorithms on memory and power constrained platforms.
 - → Requires the design of new optimization techniques aimed at the hardware and software level.

Hardware

Google's Coral Edge TPU

Software

Distributed Machine Learning based on the Design Space Exploration methodology

Comparison between TPU and Edge TPU chips [4]

Background: TensorFlow Models on the Edge TPU

- Design Space Exploration analysis generates an operation-mapping that distributes the inference of a ML model on heteregeneous hardware devices including Google's Coral Edge TPU USB Accelerator
- Running models on the Edge TPU requires
 - Tensor parameters to be quantized (8-bit fixed-point numbers; int8 or uint8)
 - The model to use only the operations supported by the Edge TPU

Workflow of deploying TF models on the Edge TPU [5]

Background: TensorFlow Lite and FlatBuffers

- TensorFlow Lite models are saved using an optimized file extension based on FlatBuffers, namely .tflite
- ❖ Using the schema.fbs file provided by TensorFlow and the FlatBuffers schema compiler it is possible to
 - Generate Python helper classes to access and construct serialized data in the model
 - Convert the model from binary to JSON
- ❖ A TF Lite model can be represented as
 - a read-only binary saved in the .tflite file extension
 - ➤ a read/write JSON saved in the .json file extension
 - **⇒** TensorFlow Lite models can be freely modified once converted to JSON

Problem Statement

- ❖ The Edge TPU Compiler
 - analyses the operations present in the model
 - stops When an unsupported operations is encountered
- ⇒ **Only one** portion of the model can be mapped to the Edge TPU
- The Edge TPU Compiler is closed-source software
- ⇒ **Impossible** to change internal behavior

Problem Statement: Desired Behavior

- The described behavior makes the execution of an efficient operation-mapping generated by the DSE analysis impossible to realize
- The proposed solution succeeds at overcoming this challenge
 - ⇒ Allows mapping of any operation either to the Edge TPU or to the CPU

Standard FlatBuffer TF Lite file

Edge TPU FlatBuffer TF Lite file

edgetpu-custom-op

edgetpu-custom-op

Related Work: Software Level Approaches

♦ Virtualizing AI at the Distributed Edge [7]

- Based on the IoT virtualization concept
- Design of a virtualization layer responsible for the semantic description of AI-embedded IoT devices
- ⇒ Relieving the pressure on constrained devices
- ⇒ Targeting interoperability among Al-powered platforms.

ADaptive Synchronous Parallel [8]

a parameter synchronization model

⇒ Decreasing waiting time to a minimum while maintaining an optimized usage of computational resources.

Related Work: Upgrading a TF Lite model

- Upgrading a TF Lite model to run Motion Blur on the Coral Edge TPU
 - Converts TF Lite model to JSON
 - Removes unsupported operations
 - Changes Tensor data types

Goal and Approach

- **□** Goal of the thesis
 - ☐ Map any operation present in a TF Lite model freely either to the Edge TPU or to the CPU.
- Approach
 - Use the JSON representation to modify the TF Lite model
 - Separate the operations mapped to the Edge TPU and save them into separate files
 - ☐ Compile the *submodels* separately using the <code>edgetpu-compiler</code>
 - Re-assemble the model to contain operations with different mapping targets

Implementation: TF Lite model in JSON

Structure of a JSON file representing TF Lite model

```
"version": 3,
"operator codes": [
    "deprecated builtin code": 3,
    "version": 1,
    "builtin code": "ADD"
"subgraphs": [
"description": "TOCO Converted.",
"buffers": [
"metadata": [
    "name": "min runtime version",
    "buffer": 0
```

• Structure of the "subgraphs" element

```
"subgraphs": [
      "tensors": [
      "inputs": [
      "outputs": [
      "operators": [
          "opcode index": 0,
          "inputs": [
          "outputs": [
          "builtin options type":,
          "builtin options": {
          "custom options format":,
          "mutating variable inputs": []
```

Implementation: Algorithm Flow Chart

12

Implementation: Merging Operations

Experimental Setup

- A series of experiments was conducted involving
 - Creation of multiple optimized models, each representing a mapping scenario
 - Benchmarking each model
 - Gathering Python inference times
- The mapping scenarios aim at highlighting the effect of varying some parameters on the inference time
 - Number of edgetpu-custom-ops in the model
 - Total number of operations mapped to the Edge TPU
 - The target hardware on which the model starts its execution

Results: Varying the number of edgetpu-custom-ops

Average Inference Times of models with different numbers of Custom Ops

N° of Custom Ops	Increase in %
1 Custom Ops	
2 Custom Ops	55%
3 Custom Ops	4%
4 Custom Ops	10%
5 Custom Ops	23%

⇒ Increasing the number of Custom Ops while maintaining the same number of operations mapped to the Edge TPU results in an increase in inference times

Results: Varying the total number of Initial operations mapped to the Edge TPU

Average Inference Times of models with different numbers of Initial Ops mapped to the Edge TPU

N° of Ops mapped to the Edge TPU	Decrease in %
4 Ops	
8 Ops	16%
12 Ops	24%
16 Ops	18%
20 Ops	20%
24 Ops	30%
28 Ops	32%

[⇒] Increasing the total number of Ops mapped to the Edge TPU results in a decrease in inference times

Results: Varying the target hardware on which the model starts its execution

⇒ Starting execution on the CPU results in a 20% increase in inference times

Results: Varying the target hardware on which the model starts its execution

⇒ Starting execution on the CPU results in a 18% increase in inference times

Results: Varying the target hardware on which the model starts its execution

Average Inference Times of models with different targets starting the execution

⇒ Starting execution on the CPU results in a 15% increase in inference times

Conclusions and Future Work

Conclusions

- TF Lite models can be freely modified and upgraded once converted to JSON
- Any combination of operations present in a TF Lite model can be freely mapped to either the Edge TPU or a general-purpose CPU

Future Work

- Support bigger and more complex models
- Support more hardware targets like GPUs and potentially, embedded-edge devices

Bibliography

[1] Vector ITC, Edge AI: The Future of Artificial Intelligence, [Online]. Available:

https://www.vectoritcgroup.com/en/tech-magazine-en/artificial-intelligence-en/edge-ai-el-futuro-de-la-intelligencia-artificial/

[2] [Online]. Available: https://uk.pcmag.com/speakers/85210/amazon-echo-vs-google-home-which-voice-controlled-speaker-is-right-for-vou

[3] [Online]. Available: https://www.sportswearable.net/global-smart-wearables-and-sports-clothings-market-2019/

[4] [Online]. Available: https://qengineering.eu/google-corals-tpu-explained.html

[5] Coral-Team. Tensorflow models on the edge tpu. [Online]. Available:

https://coral.ai/docs/edgetpu/models-intro/#compatibility-overview

[6] Coral-Team. Tensorflow models on the edge tpu. [Online]. Available:

https://coral.ai/docs/edgetpu/models-intro/#compiling

[7] C. Campolo, G. Genovese, A. Iera, and A. Molinaro, "Virtualizing ai at the distributed edge towards intelligent iot applications," Journal of Sensor and Actuator Networks, vol. 10, no. 1, 2021. [Online]. Available: https://www.mdpi.com/2224-2708/10/1/13

[8] H. Hu, D. Wang, and C. Wu, "Distributed machine learning through heterogeneous edge systems," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 7179–7186, Apr. 2020. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/ article/view/6207

[9] V. Markovtsev. Hacking google coral edge tpu: motion blur and lanczos resize. [Online]. Available: https://towardsdatascience.com/ hacking-google-coral-edge-tpu-motion-blur-and-lanczos-resize-9b60ebfaa552

Chair of Real-Time Computer Systems TUM Department of Electrical and Computer Engineering Technical University of Munich

Benchmarking Inference on Google's Coral Edge TPU Research Internship

Supervisor:

M.Sc. Alex Hoffman

Advising Professor:

Prof. Dr. Daniel Müller-Gritschneder

Student:

Daniel Duclos-Cavalcanti ga74ped 03692475

Introduction - Design Space Exploration

❖ DSE:

- Optimal mapping to distribute inference of a ML model.
- Done across heterogeneous hardware devices.

Motivation

Motivation:

➤ More granular or precise inference measurements, benchmark Google's Coral Edge.

Problem Statement:

- Google's Coral Edge USB Accelerator internal workings are closed source.
- An analysis of the USB traffic occurring during inference is needed to obtain more precise results.

Background - Single Operation Splitting

- Flatbuffers
- Schema Python Classes
- Single Layers

Background - Single Operation Splitting

- Split into Single Layers
- Flatbuffers
- Schema Python Classes

Background - USB Protocol

Background - USB Protocol

Background - USB Transactions

- Wireshark captures USB traffic
- Main Communication Sections:
 - > Initialization
 - Host-Data Transfer
 - > TPU Acknowledgement
 - > TPU-Data Transfer

Background - USB Transactions

- Wireshark
 - Captures transfers
- Deployment
 - Interpreter Object
 - Delegates

Implementation - USB Packet Analysis

Implementation - USB Packet Analysis

Implementation - Test Parameters

- Different Models:
 - > MNIST
 - > MNIST Layers
 - > Mobilenet
 - Mapped Mobilenet
- Data Size Complexity

Conv2D Layer

MNIST Model

Mobilenet

Mapped Mobilenet

Implementation - Test Parameters

- Different Models:
 - MNIST Layers
 - > MNIST
 - > Mobilenet
 - Mapped Mobilenet
- Data Size Complexity

Conv2D Layer

MNIST

Mobilenet

Mobilenet Mapped

Results - Softmax Layer

- Significant submission average within ratio
- Expressive difference in Python and USB Total times -15.8%

Results - MNIST Model

36

- Inference Ratio increases
- Less of a deviation between USB and Python total times -29.1%

Results - Mobilenet Model

- Drastic increase in Inference Ratio
- Python and USB total times deviate only by 13.3%
- Significant difference in Submission times

Results - Overview

Non-linear increase in Initialization Phase

Results - Overview

Linear increase in Submission time

Results - Mapped Mobilenet Model

More operations mapped to coral edge => faster performance

Results - Mapped Mobilenet Model

Subsequent Operations show slower deployment.

Results - Mapped Mobilenet Model

42

Mobilenet

4 Custom Operations (0-3, 8-11, 16-19, 24-27)

Conclusions and Future Work

Conclusions:

- Single layer/less complex models show a larger deviation of total deployment time.
- More Complex models show a significantly smaller deviation of total deployment time.
- Submission times of data are proven to be linear with an increase in model complexity.
- Initialization phase occurs once and has a non-linear growth with an increase in model complexity.
- Subsequent mapped operations perform slower.

Future Work

> Test larger spectrum of Models with a more granular difference in complexity and larger number of mappings.

Questions

