Formelsammlung Physik

Mechanik

Bewegungen
$$v = \frac{\Delta s}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$

$$-\vec{v} \cdot t$$
 $\vec{v} = \vec{a} \cdot t$

$$\vec{s} = \vec{v} \cdot t \qquad \qquad \vec{v} = \vec{a} \cdot t \qquad \qquad \vec{s} = \frac{1}{2} \cdot \vec{a} \cdot t^2$$

Kräfte
$$\vec{F} = m \cdot \vec{a}$$
 $|\vec{F}_R| = \mu \cdot |\vec{F}_N|$ $\vec{F}_G = m \cdot \vec{g}$ $\vec{F}_{Feder} = -D \cdot \vec{s}$

Luftwiderstand
$$F_{L} = \frac{1}{2} \cdot c_{W} \cdot \rho_{Luft} \cdot A \cdot v^{2}$$

Dichte, Druck
$$\rho = \frac{m}{V}$$

Druck, Auftrieb
$$p = \frac{F}{A}$$
 $p = \rho \cdot g \cdot h$ $F_A = \rho_{FI} \cdot g \cdot V_{eingetaucht}$

Arbeit
$$W = \vec{F} \cdot \vec{s}$$
 $W_{\text{Beschleunigung}} = \frac{1}{2} \cdot m \cdot v^2 \ W_{\text{Hub}} = m \cdot g \cdot h$ $W_{\text{Spann}} = \frac{1}{2} \cdot D \cdot s^2$

Energie
$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{Lage} = m \cdot g \cdot h$ $E_{Spann} = \frac{1}{2} \cdot D \cdot s^2$

Leistung
$$P = \frac{W}{t}$$

Wirkungsgrad
$$\eta = \frac{E_{\text{nutz}}}{E_{\text{auf}}} = \frac{P_{\text{nutz}}}{P_{\text{auf}}}$$

Kreisbewegung
$$f = \frac{1}{T}$$
 $\omega = \frac{\Delta \varphi}{\Delta t} = \frac{2\pi}{T} = 2\pi \cdot f$ $|\vec{v}| = \omega \cdot r = \frac{2\pi \cdot r}{T}$

$$a_Z = \omega^2 \cdot r = \frac{v^2}{r}$$
 $F_Z = m \cdot \omega^2 \cdot r = \frac{m \cdot v^2}{r}$

Gravitation
$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$
 $\frac{r^3}{r^2} = const.$

Wärmelehre

Temperatur
$$^{\circ}C + 273 \rightarrow K$$

Wärmeausdehnung
$$\Delta \ell = \alpha \cdot \ell_0 \cdot \Delta T$$
 $\Delta V = \gamma \cdot V_0 \cdot \Delta T$

Gasgesetze
$$\frac{p \cdot V}{T} = const.$$
 $V \propto T$ $p \propto T$ $p \cdot V = const.$

innere Energie
$$\Delta U = Q + W$$
 $\Delta U = c \cdot m \cdot \Delta T$

Schmelzwärme
$$Q = L_{f} \cdot m$$

Mathematik

Trigonometrie $\sin \alpha = \frac{\text{Gegenkathete}}{\text{Hypothenuse}}$ $\cos \alpha = \frac{\text{Ankathete}}{\text{Hypothenuse}}$ $\tan \alpha$	$= \frac{\text{Gegenkathete}}{\text{Ankathete}}$
--	--

Kreis Umfang
$$u = 2\pi \cdot r$$
 Fläche $A = \pi \cdot r^2$

Kugel Oberfläche
$$M = 4\pi \cdot r^2$$
 Volumen $V = \frac{4\pi}{3} \cdot r^3$

Tabellen

Gravitationskonstante	$G = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$
	ka-

 $m_{\text{Erde}} = 5.97 \cdot 10^{24} \text{ kg}$ $r_{\text{Erde}} = 6'378 \text{ km}$ Masse der Erde Radius der Erde Abstand der Mittelpunkte Sonne-Erde

 $T_{\text{Sonne-Erde}} = 1.496 \cdot 10^8 \text{ km}$ $T_{\text{Erde}} = 365.26 \text{ d}$ Umlaufzeit der Erde um die Sonne Abstand der Mittelpunkte Erde-Mond

 $r_{\text{Erde-Mond}} = 3.844 \cdot 10^5 \text{ km}$ $m_{\text{Venus}} = 4.8673 \cdot 10^{24} \text{ kg}$ Masse der Venus Radius der Venus $r_{Venus} = 6'052 \text{ km}$ $r_{\text{Sonne-Venus}} = 1.082 \cdot 10^8 \text{ km}$

Abstand der Mittelpunkte Sonne-Venus Umlaufzeit der Venus um die Sonne $T_{Venus} = 225 d$

 $m_{\text{Mars}} = 6.4169 \cdot 10^{23} \text{ kg}$ Masse des Mars

 $r_{\rm Mars} = 3'396 \text{ km}$ Radius des Mars

 $r_{\text{Sonne-Mars}} = 2.279 \cdot 10^8 \text{ km}$ Abstand der Mittelpunkte Sonne-Mars

Umlaufzeit des Mars um die Sonne $T_{\rm Mars}$ = 687 d

 $m_{\text{Sonne}} = 1.99 \cdot 10^{30} \text{ kg}$ Masse der Sonne

Fallbeschleunigungen in $\frac{m}{s^2}$:

Erde (Nordpol)	9.83	Erde (Europa)	9.81	Erde (Äquator)	9.78
Mond	1.62	Venus	8.87	Mars	3.73

Haftreibungszahlen Gleitre		Gleitreibungsz	eitreibungszahlen		Rollreibungszahlen	
Stahl-Stahl	0.15	Stahl-Stahl	0.05	Stahl-Stahl	0.005	
Stahl–Eis	0.027	Stahl–Eis	0.014			
Holz-Stein	0.7	Holz-Stein	0.3			
Holz-Holz	0.6	Holz-Holz	0.4			
Glas-Glas	0.94	Glas–Glas	0.40			
Autoreifen:		Autoreifen:		Autoreifen:		
trocken	0.85	trocken	0.65	trocken	0.01	
nass	0.4	• nass	0.3			
vereist	0.1	vereist	0.05			

Widerstandszahlen (Luftwiderstand)

Person (aufrecht)	0.78	Kugel	0.47
Auto (geschlossen)	0.36	Kegel ohne Boden, α = 30°	0.34 → <(1)
Motorrad	0.7	Kegel ohne Boden, α = 60°	0.51
Lastwagen	0.6 - 1.5	Kreisplatte	1.11
Velo mit Fahrer	1	Quadratische Platte	1.10
Fallschirm	1.4	Stromlinienkörper	0.05

Thermische Daten von Festkörpern, Flüssigkeiten und Gasen

Feste Körper	Dichte in kg	Längenausdeh-	Spezifische Wärme-	Schmelzpunkt	Spezifische Schmelz-
	Dichte in $\frac{kg}{m^3}$	nungszahl in $\frac{1}{K}$	kapazität in J	in °C	wärme in J/kg
Aluminium	$2.70 \cdot 10^3$	23.8 · 10 ⁻⁶	$0.896 \cdot 10^{3}$	660	3.97 · 10 ⁵
Beton	$2.2 \cdot 10^{3}$	12 · 10 ⁻⁶	$0.879 \cdot 10^3$	_	_
Blei	11.34 · 10 ³	31.3 · 10 ⁻⁶	0.129 · 10 ³	327	0.23 · 10 ⁵
Eis	$0.917 \cdot 10^3$	37 · 10 ⁻⁶	2.09 · 10 ³	0	3.34 · 10 ⁵
Eisen (rein)	$7.86 \cdot 10^3$	12 · 10 ⁻⁶	0.45 · 10 ³	1535	$2.77 \cdot 10^{5}$
Glas	2.5 · 10 ³	8.5 · 10 ⁻⁶	0.84 · 10 ³	815	_
Gold	19.29 · 10 ³	14 · 10⁻ ⁶	0.129 · 10 ³	1063	0.64 · 10 ⁵
Granit	$2.75 \cdot 10^3$	_	0.892 · 10 ³	_	_
Holz	$0.4 - 0.8 \cdot 10^3$	5 – 8 · 10 ⁻⁶	1.7 – 2.1· 10 ³	_	_
Konstantan	$8.9 \cdot 10^{3}$	15.2 · 10 ⁻⁶	0.41 · 10 ³	1280	_
Kork	$0.3 \cdot 10^{3}$	1 · 10 ⁻⁶	1.88 · 10 ³	_	_
Kupfer	$8.92 \cdot 10^3$	16.8 · 10 ⁻⁶	$0.383 \cdot 10^3$	1083	2.05 · 10 ⁵
Magnesium	$1.74 \cdot 10^3$	26 · 10⁻ ⁶	$1.02 \cdot 10^3$	650	3.70 · 10 ⁵
Natrium	$0.97 \cdot 10^3$	70 · 10 ⁻⁶	$1.22 \cdot 10^3$	97,8	1.13 · 10 ⁵
Platin	$21.4 \cdot 10^3$	9.0 · 10 ⁻⁶	$0.133 \cdot 10^3$	1769	1.11 · 10 ⁵
Porzellan	$2.3 \cdot 10^3$	4.0 · 10 ⁻⁶	0.846 · 10 ³	_	_
Silber	10.51 · 10 ³	19.7 · 10⁻6	$0.235 \cdot 10^{3}$	960.5	1.05 · 10 ⁵
Sand	$1.5 \cdot 10^3$	_	$0.835 \cdot 10^3$	_	_
Stahl	$7.9 \cdot 10^{3}$	13.0 · 10 ⁻⁶	0.47 · 10 ³	ca 1500	2.7 · 10 ⁵
Stein	$2.5 \cdot 10^3$	_	$1.0 \cdot 10^{3}$	_	_
Styropor	17	50 – 80 · 10 ⁻⁶	1.25 · 10 ³	_	_
Wolfram	$19.3 \cdot 10^{3}$	4.3 · 10 ⁻⁶	$0.134 \cdot 10^{3}$	3390	1.91 · 10 ⁵
Zink	$7.14 \cdot 10^3$	26 · 10 ⁻⁶	$0.385 \cdot 10^3$	419.5	1.11 · 10 ⁵

Flüssigkeiten	Dichte bei 20 °C	Raumausdeh-	Spezifische Wärme-	Siedepunkt bei	Spezifische Verdampf-
	in kg/m ³	nungszahl in $\frac{1}{K}$	kapazität in $\frac{J}{kg \cdot K}$	1.013 bar in °C	ungswärme in J/kg
Alkohol (Ethanol)	0.789 · 10 ³	1.10 · 10 ⁻³	2.43 · 10 ³	78.3	0.840 · 10 ⁶
Benzol	0.879 · 10 ³	1.23 · 10 ⁻³	1.725 · 10 ³	80.1	0.394 · 10 ⁶
Diäthyläther	0.716 · 10 ³	1.62 · 10 ⁻³	2.310 · 10 ³	34.5	0.384 · 10 ⁶
Glycerin	1.26 · 10 ³	$0.49 \cdot 10^{-3}$	2.39 · 10 ³	290.5	0.854 · 10 ⁶
Meerwasser	1.03 · 10 ³	0.25 · 10 ⁻³	3.99 · 10 ³	100.1	_
Olivenöl	0.92 · 10 ³	$0.72 \cdot 10^{-3}$	1.97 · 10 ³	300	_
Petroleum	0.85 · 10 ³	0.96 · 10 ⁻³	2.1 · 10 ³	150-300	-
Quecksilber	13.55 · 10 ³	0.182 · 10 ⁻³	0.139 · 10 ³	357	0.285 · 10 ⁶
Wasser	$0.998 \cdot 10^3$	$0.207 \cdot 10^{-3}$	$4.182 \cdot 10^3$	100.0	2.257 · 10 ⁶

Gase	Dichte bei 0 °C und 1.013 bar in $\frac{\text{kg}}{\text{m}^3}$	Spezifische Wärme- kapazität in $\frac{J}{kg \cdot K}$	Siedepunkt bei 1.013 bar in °C	
Ammoniak	0.771	2.160 · 10 ³	- 33.4	
Chlor	3.21	0.74 · 10 ³	- 34.1	
Helium	0.179	5.23 · 10 ³	-269	
Kohlendioxid	1.98	$0.837 \cdot 10^3$	- 78.5	
Luft	1.293	1.005 · 10 ³	-191	
Sauerstoff	1.43	0.917 · 10 ³	-183	
Stickstoff	1.250	1.038 · 10 ³	-196	
Wasserdampf 100 °C, 1.013 bar	0.6	1.863 · 10 ³	100	
Wasserstoff	0.0899	14.32 · 10 ³	-253	