CMPT 409/981: Optimization for Machine Learning

Lecture 14

Sharan Vaswani

November 3, 2022

Function class	<i>L</i> -smooth	<i>L</i> -smooth	G-Lipschitz	G-Lipschitz
	+ convex	$+~\mu$ -strongly convex	+ convex	$+ \mu$ -strongly convex
GD	$O\left(1/\epsilon ight)$	$O\left(\kappa\log\left(1/\epsilon ight) ight)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$
SGD	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$

Table 1: Number of iterations required for obtaining an ϵ -sub-optimality.

Today, we will consider online convex optimization for Lipschitz functions.

Online Optimization

Online Optimization

- 1: Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set \mathcal{C})
- 2: **for** k = 1, ..., T **do**
- 3: Algorithm \mathcal{A} chooses point (decision) $w_k \in \mathcal{C}$
- 4: Environment chooses and reveals the (potentially adversarial) loss function $f_k:\mathcal{C}\to\mathbb{R}$
- 5: Algorithm suffers a cost $f_k(w_k)$
- 6: end for

Application: Prediction from Expert Advice – Given *n* experts,

$$\mathcal{C} = \Delta_n = \{w_i | w_i \geq 0 \; ; \; \sum_{i=1}^n w_i = 1\}$$
 and $f_k(w_k) = \langle c_k, w_k \rangle$ where $c_k \in \mathbb{R}^n$ is the loss vector.

Application: Imitation Learning – Given access to an expert that knows what action $a \in [A]$ to take in each state $s \in [S]$, learn a policy $\pi : [S] \to [A]$ that imitates the expert, i.e. we want that $\pi(a|s) \approx \pi_{\mathsf{expert}}(a|s)$. Here, $w = \pi$ and $\mathcal{C} = \Delta_A \times \Delta_A \dots \Delta_A$ (simplex for each state) and f_k is a measure of discrepancy between π_k and π_{expert} .

Online Optimization

Recall that the sequence of losses $\{f_k\}_{k=1}^T$ is potentially adversarial and can also depend on w_k .

Objective: Do well against the *best fixed decision in hindsight*, i.e. if we knew the entire sequence of losses beforehand, we would choose $w^* := \arg\min_{w \in \mathcal{C}} \sum_{k=1}^T f_k(w)$.

Regret: For any fixed decision $u \in C$,

$$R_T(u) := \sum_{k=1}^T [f_k(w_k) - f_k(u)]$$

When comparing against the best decision in hindsight,

$$R_T := \sum_{k=1}^{T} [f_k(w_k)] - \min_{w \in \mathcal{C}} \sum_{k=1}^{T} f_k(w).$$

We want to design algorithms that achieve a *sublinear regret* (that grows as o(T)). A sublinear regret implies that the performance of our sequence of decisions is approaching that of w^* .

Online Convex Optimization

Online Convex Optimization (OCO): When the losses f_k are (strongly) convex loss functions.

Example 1: In prediction with expert advice, $f_k(w) = \langle c_k, w \rangle$ is a linear function.

Example 2: In imitation learning, $f_k(\pi) = \mathbb{E}_{s \sim d^{\pi_k}}[\mathsf{KL}(\pi(\cdot|s) || \pi_{\mathsf{expert}}(\cdot|s))]$ where d^{π_k} is a distribution over the states induced by running policy π_k .

Example 3: In online control such as LQR (linear quadratic regulator) with unknown costs/perturbations, f_k is quadratic (referred to

In Examples 2-3, the loss at iteration k+1 depends on the *learner's* decision at iteration k.

Online Convex Optimization

Online-to-Batch conversion: If the sequence of loss functions is i.i.d from some fixed distribution, we can convert the regret guarantees into the traditional convergence guarantees for the resulting algorithm.

Formally, if f_k are convex and $R(T) = O(\sqrt{T})$, then taking the expectation w.r.t the distribution generating the losses,

$$\mathbb{E}\left[\frac{R_T}{T}\right] = \mathbb{E}\left[\frac{\sum_{k=1}^T [f_k(w_k)] - \sum_{k=1}^T f_k(w^*)}{T}\right] = \sum_{k=1}^T [f(\bar{w}_T) - f(w^*)] = O\left(\frac{1}{\sqrt{T}}\right)$$

where $f(w) := \mathbb{E}[f_k(w)]$ (since the losses are i.i.d) and $\bar{w}_T := \frac{\sum_{k=1}^T w_k}{T}$ (since the losses are convex, we used Jensen's inequality).

If the distribution generating the losses is a uniform discrete distribution on n fixed data-points, then $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$ and we are back in the finite-sum minimization setting.

Hence, algorithms that attain $R(T) = O(\sqrt{T})$ can result in an $O\left(\frac{1}{\sqrt{T}}\right)$ convergence (in terms of the function values) for convex losses.

Online Gradient Descent

The simplest algorithm that results in sublinear regret for OCO is Online Gradient Descent.

Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, OGD suffers a cost $f_k(w_k)$ and uses the function to compute

$$w_{k+1} = \Pi_C[w_k - \eta_k \nabla f_k(w_k)]$$

where $\Pi_C[x] = \arg\min_{y \in C} \frac{1}{2} \|y - x\|^2$.

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|^2\leq D$, for an arbitrary sequence losses such that each f_k is convex and differentiable, OGD with a non-increasing sequence of step-sizes i.e. $\eta_k\leq \eta_{k-1}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$

6

Online Gradient Descent - Convex functions

Proof: Using the update $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\|w_{k+1} - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - \Pi_{\mathcal{C}}[u]\|^2$$

Since projections are non-expansive i.e. for all x, y, $\|\Pi_{\mathcal{C}}[y] - \Pi_{\mathcal{C}}[x]\| \le \|y - x\|$,

$$\leq \|w_{k} - \eta_{k} \nabla f_{k}(w_{k}) - u\|^{2}$$

$$= \|w_{k} - u\|^{2} - 2\eta_{k} \langle \nabla f_{k}(w_{k}), w_{k} - u \rangle + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\leq \|w_{k} - u\|^{2} - 2\eta_{k} [f_{k}(w_{k}) - f_{k}(u)] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$
(Since f_{k} is convex)

$$\Rightarrow 2\eta_{k}[f_{k}(w_{k}) - f_{k}(u)] \leq [\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\Rightarrow R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}}{2\eta_{k}} \right] + \sum_{k=1}^{T} \frac{\eta_{k}}{2} \|\nabla f_{k}(w_{k})\|^{2}$$

Online Gradient Descent - Convex functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$
.

$$\begin{split} &\sum_{k=1}^{T} \left[\frac{\left\| w_{k} - u \right\|^{2} - \left\| w_{k+1} - u \right\|^{2}}{2\eta_{k}} \right] \\ &= \sum_{k=2}^{T} \left[\left\| w_{k} - u \right\|^{2} \underbrace{\left(\frac{1}{2\eta_{k}} - \frac{1}{2\eta_{k-1}} \right)}_{\text{Non-negative since } \eta_{k} \leq \eta_{k-1}} \right] + \frac{\left\| w_{1} - u \right\|^{2}}{2\eta_{1}} - \frac{\left\| w_{T+1} - u \right\|^{2}}{2\eta_{T}} \\ &\leq D^{2} \sum_{k=2}^{T} \left[\frac{1}{2\eta_{k}} - \frac{1}{2\eta_{k-1}} \right] + \frac{D^{2}}{2\eta_{1}} = D^{2} \left[\frac{1}{2\eta_{T}} - \frac{1}{2\eta_{1}} \right] + \frac{D^{2}}{2\eta_{1}} = \frac{D^{2}}{2\eta_{T}} \end{split}$$

Putting everything together,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \left\| \nabla f_k(w_k) \right\|^2$$

(Since $||x - y|| \le D$ for all $x, y \in \mathcal{C}$)

Online Gradient Descent - Convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|^2\leq D$, for an arbitrary sequence losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k=\frac{\eta}{\sqrt{k}}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + \frac{G^2 \sqrt{T} \eta}{2}$$

Proof: Since the step-size is decreasing, we can use the general result from the previous slide,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \left\| \nabla f_k(w_k) \right\|^2 \leq \frac{D^2}{2\eta_T} + \frac{G^2}{2} \sum_{k=1}^T \eta_k \qquad \text{(Since } f_k \text{ is } G\text{-Lipschitz)}$$

$$\implies R_T(u) \le \frac{D^2 \sqrt{T}}{2\eta} + \frac{G^2 \eta}{2} \sum_{k=1}^T \frac{1}{\sqrt{k}} \le \frac{D^2 \sqrt{T}}{2\eta} + \frac{G^2 \sqrt{T} \eta}{2} \qquad \text{(Since } \sum_{k=1}^T \frac{1}{\sqrt{k}} \le \sqrt{T}\text{)}$$

In order to find the "best" η , set it such that $D^2/\eta=G^2\eta$, implying that $\eta=D/G$ and $R_T(u)\leq DG\sqrt{T}$. Hence, OGD with a decreasing step-size attains sublinear $\Theta(\sqrt{T})$ regret for convex, Lipschitz functions.

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D, for an arbitrary sequence losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k \in [T]} \mu_k > 0$), G-Lipschitz and differentiable, then OGD with $\eta_k = \frac{1}{\sum_{k=1}^k \mu_k}$ and $w_1 \in \mathcal C$ has the following regret for all $u \in \mathcal C$,

$$R_{\mathcal{T}}(u) \leq \frac{G^2}{2\mu} \left(1 + \log(\mathcal{T})\right)$$

Proof: Similar to the convex proof, use the update $w_{k+1} = \Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2\eta_{k}} \right] + \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k}$$
(Since f_{k} is G -Lipschitz)

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \underbrace{\left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} - \frac{\mu_k}{2}\right)}_{=0} \right] + \|w_1 - u\|^2 \underbrace{\left[\frac{1}{2\eta_1} - \frac{\mu_1}{2}\right]}_{=0} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \le 0$$
(Since $\eta_k = \frac{1}{\sum_{k=1}^k \mu_i}$)

Putting everything together,
$$R_T(u) \leq \frac{G^2}{2} \sum_{i=1}^T \frac{1}{\mu k} \leq \frac{G^2}{2\mu} \ (1 + \log(T))$$

(Since $\mu := \min_{k \in [T]} \mu_k$ and $\sum_{k=1}^T 1/k \le 1 + \log(T)$)

There is an $\Omega(\log(T))$ lower-bound on the regret for strongly-convex, Lipschitz functions and hence OGD is optimal in this setting!

Follow the Leader

Another algorithm that achieves logarithmic regret for strongly-convex losses is Follow the Leader.

Follow the Leader (FTL): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, FTL suffers a cost $f_k(w_k)$ and uses it to compute

$$w_{k+1} = \arg\min_{w \in \mathcal{C}} \sum_{i=1}^{k} f_i(w).$$

- Needs to solve a deterministic optimization sub-problem which can be expensive.
- Needs to store all the previous loss functions and requires O(T) memory.
- Does not require any step-size and is hyper-parameter free.
- In applications such Imitation Learning (IL), interacting with the environment and getting access to f_k is expensive. FTL allows multiple policy updates (when solving the sub-problem) and helps better reuse the collected data. FTL is the standard method to solve online IL problems and the resulting algorithm is known as DAGGER [RGB11]. Compared to FTL, OGD requires an environment interaction for each policy update.

Follow the Leader and OGD

To connect FTL and OGD, consider the case when $\mathcal{C} = \mathbb{R}$.

$$w_{k+1} = \arg\min_{w \in \mathbb{R}} \sum_{i=1}^{k} [f_i(w)] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) = 0$$

If we redefine $f_i(w)$ to be a lower-bound on the original μ_i strongly-convex function as $f_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w - w_i \rangle + \frac{\mu_i}{2} \|w - w_i\|^2$, then $\nabla f_i(w) = \nabla f_i(w_i) + \mu_i [w - w_i]$. Computing the gradients at w_{k+1} and w_k ,

$$\sum_{i=1}^{k} \nabla f_i(w_i) + w_{k+1} \left[\sum_{i=1}^{k} \mu_i \right] = \sum_{i=1}^{k} \mu_i w_i \quad ; \quad \sum_{i=1}^{k-1} \nabla f_i(w_i) + w_k \left[\sum_{i=1}^{k-1} \mu_i \right] = \sum_{i=1}^{k-1} \mu_i w_i$$

$$\nabla f_k(w_k) + (w_{k+1} - w_k) \left[\sum_{i=1}^{k} \mu_i \right] = 0 \implies w_{k+1} = w_k - \eta_k \nabla f_k(w_k) \, ,$$

(Adding $\mu_k w_k$ to the second equation, and subtracting the two equations)

where $\eta_k := \frac{1}{\sum_{i=1}^k \mu_i}$. Hence, running FTL on the lower-bound for the loss (instead of the loss itself) recovers OGD in the strongly-convex case!

Follow the Leader

Claim: If the convex set $\mathcal C$ has a diameter D, for an arbitrary sequence losses such that each f_k is μ_k strongly-convex (s.t. $\mu:=\min_{k\in[T]}\mu_k>0$), G-Lipschitz and differentiable, FTL with $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{G^2}{2\mu} \ (1 + \log(T))$$

Hence, FTL achieves the same regret as OGD when the sequence of losses are strongly-convex and Lipschitz (we will prove this later)

What about when the losses are convex but not strongly-convex?

Consider running FTL on the following problem. $\mathcal{C} = [-1,1]$ and $f_k(w) = \langle z_k,w \rangle$ where

$$z_1 = -0.5$$
; $z_k = 1$ for $k = 2, 4, ...$; $z_k = -1$ for $k = 3, 5, ...$

In round 1, FTL suffers cost $-0.5w_1$ cost and will compute $w_2 = 1$. It will suffer cost of 1 in round 2 and compute $w_3 = -1$. In round 3, it will thus suffer a cost of 1 and so on. Hence, FTL will suffer O(T) regret if the losses are not strongly-convex.

A way to fix the performance of FTL for a convex sequence of losses is to add an explicit regularization resulting in *Follow the Regularized Leader*.

Follow the Regularized Leader (FTRL): At iteration $k \ge 0$, the algorithm chooses w_{k+1} as:

$$w_{k+1} = \underset{w \in C}{\operatorname{arg \, min}} \sum_{i=1}^{k} \left[f_i(w) + \frac{\sigma_i}{2} \|w - w_i\|^2 \right] + \frac{\sigma_0}{2} \|w\|^2 ,$$

where $\sigma_i > 0$ is the regularization strength.

Since FTRL is equivalent to running FTL on a sequence of strongly-convex (because of the additional regularization) losses, it can obtain sublinear regret even for convex f_k .

If we set $\sigma_i = 0$ for all i, FTRL reduces to FTL.

Follow the Regularized Leader and OGD

To connect FTL and OGD, consider the case when $\mathcal{C} = \mathbb{R}$ and set $\sigma_0 = 0$.

$$w_{k+1} = \arg\min_{w \in \mathbb{R}} \sum_{i=1}^{k} \left[f_i(w) + \frac{\sigma_i}{2} \|w - w_i\|^2 \right] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) + w_{k+1} \left[\sum_{i=1}^{k} \sigma_i \right] = \sum_{i=1}^{k} \sigma_i w_i$$

If we redefine $f_i(w)$ to be a lower-bound on the original convex function as $f_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w - w_i \rangle$, then, $\nabla f_i(w) = \nabla f_i(w_i)$.

Computing the gradients at w_{k+1} and w_k ,

$$\sum_{i=1}^{k} \nabla f_{i}(w_{i}) + w_{k+1} \left[\sum_{i=1}^{k} \sigma_{i} \right] = \sum_{i=1}^{k} \sigma_{i} w_{i} \quad ; \quad \sum_{i=1}^{k-1} \nabla f_{i}(w_{i}) + w_{k} \left[\sum_{i=1}^{k-1} \sigma_{i} \right] = \sum_{i=1}^{k-1} \sigma_{i} w_{i}$$

$$\nabla f_{k}(w_{k}) + (w_{k+1} - w_{k}) \left(\sum_{i=1}^{k} \sigma_{i} \right) = 0 \implies w_{k+1} = w_{k} - \eta_{k} \nabla f_{k}(w_{k}),$$

(Adding $\sigma_k w_k$ to the second equation, and subtracting the two equations)

where $\eta_k := 1/(\sum_{i=1}^k \sigma_i)$. Hence, running FTRL on a lower-bound for the loss (instead of the loss itself) recovers OGD in the convex case!

To analyze FTRL, define $\psi_k(w) := \sum_{i=1}^{k-1} \frac{\sigma_i}{2} \|w - w_i\|^2 + \frac{\sigma_0}{2} \|w\|^2$. At iteration k-1, FTRL uses the knowledge of the losses upto k-1 and computes the decision for iteration k as:

$$w_k = \operatorname*{arg\,min}_{w \in \mathcal{C}} F_k(w) := \sum_{i=1}^{k-1} f_i(w) + \psi_k(w).$$

Hence F_k is $\lambda_k := \sum_{i=1}^{k-1} \mu_i + \sum_{i=0}^{k-1} \sigma_i$ strongly-convex. The regularizer ψ_k is known as a proximal regularizer and satisfies the condition that,

$$w_k = \arg\min \left[\psi_{k+1}(w) - \psi_k(w) \right] \implies \nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) = 0$$

In order to simplify the analysis, we will assume that w_k lies in the interior of \mathcal{C} . Hence $\nabla F_k(w_k) = 0$ for all k. This assumption is not necessary and can be handled by augmenting the loss with an indicator function $\mathcal{I}_{\mathcal{C}}$ (see [Ora19, Sec 7.2]).

Claim: For an arbitrary sequence losses such that each f_k is convex and differentiable, FTRL with the update $w_k = \arg\min_{w \in \mathcal{C}} F_k(w) = \sum_{i=1}^{k-1} f_i(w) + \psi_k(w)$ such that $\psi_k(w) = \sum_{i=1}^{k-1} \frac{\sigma_i}{2} \|w - w_i\|^2 + \frac{\sigma_0}{2} \|w\|^2$ and $\lambda_k = \sum_{i=1}^{k-1} [\mu_i] + \sum_{i=0}^k [\sigma_i]$ satisfies the following regret for all $u \in \mathcal{C}$,

$$R_T(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2 \right] + \sum_{k=1}^{T} \frac{\sigma_k}{2} \|u - w_k\|^2 + \frac{\sigma_0}{2} \|u\|^2$$

Proof: For k > 1,

$$F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \langle \nabla F_{k+1}(w_{k+1}), w_k - w_{k+1} \rangle + \frac{1}{2\lambda_{k+1}} \|\nabla F_{k+1}(w_k) - \nabla F_{k+1}(w_{k+1})\|^2$$
(By λ_{k+1} strong-convexity of F_{k+1})

$$\leq rac{1}{2\lambda_{k+1}} \left\|
abla F_{k+1}(w_k)
ight\|^2 \qquad \qquad ext{(Since }
abla F_{k+1}(w_{k+1}) = 0 ext{)}$$

$$\implies F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \frac{1}{2\lambda_{k+1}} \left\| \sum_{i=1}^k \nabla f_i(w_k) + \nabla \psi_{k+1}(w_k) \right\|^2 \quad \text{(By def. of } F_{k+1})$$

Recall that
$$F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \frac{1}{2\lambda_{k+1}} \left\| \sum_{i=1}^k \nabla f_i(w_k) + \nabla \psi_{k+1}(w_k) \right\|^2$$

$$\implies F_{k+1}(w_k) - F_{k+1}(w_{k+1})$$

$$= \frac{1}{2\lambda_{k+1}} \left\| \left[\sum_{i=1}^{k-1} \nabla f_i(w_k) + \nabla \psi_k(w_k) \right] + \nabla f_k(w_k) + \left[\nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) \right] \right\|^2$$

$$= \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) + \left[\nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) \right] \right\|^2 \qquad \text{(Since } \nabla F_k(w_k) = 0)$$

$$\implies F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) \right\|^2 \qquad \text{(Since } \nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) = 0)$$

$$F_{k+1}(w_k) - F_{k+1}(w_{k+1}) = [F_{k+1}(w_k) - F_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})]$$

= $[f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})]$

Putting everything together,

$$\implies [f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \le \frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2$$

Recall that
$$[f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \le \frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2$$
.

$$[f_k(w_k) - f_k(u)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \le \frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2 + [\psi_k(w_k) - \psi_{k+1}(w_k)] - f_k(u)$$

$$R_{T}(u) + F_{1}(w_{1}) - F_{T+1}(w_{T+1}) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \underbrace{\sum_{k=1}^{T} [\psi_{k}(w_{k}) - \psi_{k+1}(w_{k})]}_{= -\frac{\sigma_{k}}{2} \|w_{k} - w_{k}\|^{2} = 0} - \sum_{k=1}^{T} f_{k}(u)$$

$$\Rightarrow R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \left[F_{T+1}(w_{T+1}) \right] - \left[\sum_{k=1}^{T} f_{k}(u) + \psi_{T+1}(u) \right] + \psi_{T+1}(u)$$

$$\leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \underbrace{\left[F_{T+1}(w_{T+1}) - F_{T+1}(u) \right]}_{\text{Non-Positive since } w_{T+1} := \arg \min F_{T+1}(w)} + \psi_{T+1}(u)$$

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \left\| \nabla f_{k}(w_{k}) \right\|^{2} \right] + \sum_{k=1}^{T} \frac{\sigma_{k}}{2} \left\| u - w_{k} \right\|^{2} + \frac{\sigma_{0}}{2} \left\| u \right\|^{2}$$

Follow the Regularized Leader - Convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D and for an arbitrary sequence losses such that each f_k is convex, G-Lipschitz and differentiable, then FTRL with $\eta_k := \frac{1}{\sum_{i=0}^k \sigma_i} = \frac{D}{G\sqrt{k}}$ satisfies the following regret bound for all $u \in \mathcal C$,

$$R_T(u) \leq D G \sqrt{T}$$

Proof: Using the general result from the previous slide, for $\lambda_{k+1} = \sum_{i=1}^k \mu_i + \sum_{i=0}^k \sigma_i$. Since f_k is not necessarily strongly-convex, $\lambda_{k+1} = \sum_{i=0}^k \sigma_i$

$$R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \sum_{i=0}^{T} \frac{\sigma_{i}}{2} \|u - w_{i}\|^{2} + \frac{\sigma_{0}}{2} \|u\|^{2}$$

$$\leq \sum_{k=1}^{T} \left[\frac{1}{2\sum_{i=0}^{k} \sigma_{i}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \frac{D^{2} + \|u\|^{2}}{2} \sum_{i=0}^{T} \sigma_{i} \qquad \text{(Since } \|u - w_{i}\|^{2} \leq D\text{)}$$

$$R_{T}(u) \leq \frac{G^{2}}{2} \sum_{k=1}^{T} \left[\frac{1}{\sum_{i=0}^{k} \sigma_{i}} \right] + \frac{D^{2} + \|u\|^{2}}{2} \sum_{i=0}^{T} \sigma_{i} \qquad \text{(Since } f_{k} \text{ is } G\text{-Lipschitz}\text{)}$$

Follow the Regularized Leader - Convex, Lipschitz functions

Recall that
$$R_T(u) \leq \frac{G^2}{2} \sum_{k=1}^T \left[\frac{1}{\sum_{i=0}^k \sigma_i} \right] + \frac{D^2 + \|u\|^2}{2} \sum_{i=0}^T \sigma_i$$
. Denoting $\eta_k := \frac{1}{\sum_{i=0}^k \sigma_i}$,

$$R_{T}(u) \leq \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k} + \frac{(D^{2} + \|u\|^{2})}{2\eta_{T}} = \frac{G^{2} \eta \sqrt{T}}{2} + \frac{(D^{2} + \|u\|^{2}) \sqrt{T}}{2\eta} \qquad (\text{Since } \eta_{k} = \frac{\eta}{\sqrt{k}})$$

Using
$$\eta=rac{\sqrt{D^2+\|u\|^2}}{G}$$
,

$$R_T(u) \leq \sqrt{D^2 + \|u\|^2} G \sqrt{T}$$

If $0 \in C$, then $||u||^2 \le D^2$, and this is exactly the regret bound we derived for OGD (upto a $\sqrt{2}$ factor)!

Follow the Regularized Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D and for an arbitrary sequence losses such that each f_k is μ_k strongly-convex (s.t. $\mu:=\min_{k=1}^T \mu_k>0$), G-Lipschitz and differentiable, then FTL with $w_1\in \mathcal C$ satisfies the following regret bound for all $u\in \mathcal C$,

$$R_T(u) \leq \frac{G^2}{2\mu} \ (1 + \log(T))$$

Proof: Using the general result, for $\lambda_{k+1} = \sum_{i=1}^k \mu_i + \sum_{i=0}^k \sigma_i$. Since f_k is μ_k strongly-convex, we will set $\sigma_i = 0$ for all i. Hence, $\lambda_{k+1} = \sum_{i=1}^k \mu_i \geq \sum_{i=1}^k \mu_i \geq \mu_i$.

$$R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \sum_{i=1}^{T} \frac{\sigma_{i}}{2} \|u - w_{i}\|^{2} \leq \frac{G^{2}}{2\mu} \sum_{k=1}^{T} \left[\frac{1}{k} \right]$$
(Since f_{k} is G -Lipschitz)

$$\implies R_T(u) \leq \frac{G^2(1+\log(T))}{2\mu}$$

Since $\sigma_i = 0$ for all i, the resulting algorithm is the same as FTL. Hence, we have shown that FTL matches the regret for OGD for strongly-convex, Lipschitz functions.

References i

Francesco Orabona, *A modern introduction to online learning*, arXiv preprint arXiv:1912.13213 (2019).

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell, *A reduction of imitation learning and structured prediction to no-regret online learning*, Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.