# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-055693

(43) Date of publication of application: 25.02.1997

(51)Int.CI.

H04B 7/26

H04J 13/02

(21)Application number: 07-204232

(71)Applicant: HITACHI LTD

(22)Date of filing:

(72)Inventor: MASUI HIRONARI

OGOSHI YASUO YANO TAKASHI

DOI NOBUKAZU

# (54) MOBILE COMMUNICATION SYSTEM AND MOBILE TERMINAL EQUIPMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a mobile communication system in which the throughput deterioration is not in existence by a reservation control packet by sending a reservation packet in the CDMA(code division multiple access) system.

10.08.1995

SOLUTION: Mobile terminals 5a, 5b having a transmission request send a reservation packet through a reserved channel by the CDMA system and a base station 4a allocates a transmission channel and a time slot available for the mobile terminals 5a, 5b of request sources by using a reply packet outputted through a reply channel. A short spread code corresponding to a matched filter is applied to the reservation channel. When the reservation packet is sent by the CDMA system, even when plural reservation packets are caused overlappingly timewise, the base station 4a extracts independently when a timing differs and it is not required to make 2nd transmission of the reservation packet due to collision.



### **LEGAL STATUS**

[Date of request for examination]

06.08.1999

[Date of sending the examiner's decision of

rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application] [Patent number]

3212238

[Date of registration]

19.07.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

# (12)公開特許公報 (A)

(11)特許出願公開番号

# 特開平9-55693

(43)公開日 平成9年(1997)2月25日

| (51) Int. Cl. 6 | 識別記号 | 庁内整理番号 | FI         | 技術表示箇所 |
|-----------------|------|--------|------------|--------|
| H04B 7/26       |      |        | H04B 7/26  | P      |
| H04J 13/02      |      |        | H04J 13/00 | F      |

審査請求 未請求 請求項の数13 OL (全17頁)

| (21)出願番号 | 特願平7-204232     | (71)出願人 000005108 |               |
|----------|-----------------|-------------------|---------------|
|          |                 | 株式会社日立鄭           | 以作所           |
| 22) 出願日  | 平成7年(1995)8月10日 | 東京都千代田区           | 区神田駿河台四丁目6番地  |
|          |                 | (72)発明者 増井 裕也     | •             |
|          |                 | 東京都国分寺市           | 可東恋ケ窪1丁目280番地 |
|          |                 | 株式会社日立集           | 以作所中央研究所内     |
|          |                 | (72)発明者 大越 康雄     |               |
|          |                 | 東京都国分寺市           | 5東恋ケ窪1丁目280番地 |
|          |                 | 株式会社日立製           | 以作所中央研究所内     |
| 1        |                 | (72)発明者 矢野 隆      |               |
|          |                 | 東京都国分寺市           | 『東恋ケ窪1丁目280番地 |
|          |                 | 株式会社日立集           | 以作所中央研究所内     |
|          |                 | (74)代理人 弁理士 小川    | 勝男            |
|          |                 |                   | 最終頁に紹         |

### (54) 【発明の名称】移動通信システムおよび移動端末装置

## (57)【要約】

【目的】予約用制御パケットの衝突によるスループット 低下のない移動通信システムを提供する。

【構成】送信要求をもつ移動端末5が、予約チャネル7でCDMA方式により予約パケットを送信し、基地局4が、応答チャネル8に出力した応答パケットにより、要求元の移動端末が使用できる伝送チャネル9とタイムスロットを割当てる。予約チャネルでは、マッチドフィルタ70に対応した短い拡散符号を適用っする。

【効果】予約パケットをCDMA方式で送信すると、複数の予約パケットが時間的に重なって発生しても、タイミングにずれがあれば、基地局側で各パケットを独立に取り出すことができ、衝突による予約パケットの再送信をしなくても済むため、スループットを向上できる。



#### 【特許請求の範囲】

【請求項1】基地局と複数の移動端末との間の無線通信 区間に、移動端末から基地局へ向かう上り方向のデータ パケットおよび基地局から移動端末へ向かう下り方向の データパケットの送信に使用する複数の伝送チャネル と、移動端末から基地局に伝送チャネル割当て要求を示 す予約用制御パケットを送信するために使用される予約 チャネルと、基地局から移動端末に対してデータ送受信 すべき伝送チャネルを示す応答用制御パケットを送信す るために使用される応答チャネルとを設け、上記予約、 応答および伝送の各チャネルにそれぞれ固有の拡散符号 による符号分割多元接続(CDMA)方式を適用した移 動通信システムにおいて、データ送信要求をもつ移動端 末が、任意のタイミングで上記予約チャネルに予約用制 御パケットを送信し、基地局から上記応答チャネルに送 信した応答用制御パケットによって、各移動端末に使用 すべき伝送チャネルとタイムスロットとを指定し、各移 動端末が、上記応答用制御パケットで指定された伝送チ ャネル上の指定されたタイムスロットでデータパケット の送受信を行うようにしたことを特徴とする移動通信シ 20 ステム。

【請求項2】データ送信要求をもつ各移動端末が、前記 伝送チャネルで送信するデータパケットに適用する拡散 符号よりも短い周期をもつ予約チャネルに固有の拡散符 号を適用して前記各予約用制御パケットのスペクトル拡 散を行い、前記基地局が、上記予約チャネルに固有の拡 散符号を設定したマッチドフィルタによって受信信号を 処理し、該マッチドフィルタの出力を上記拡散符号の周 期性を利用してパケット対応の複数の信号列に分離する ことを特徴とする請求項1に記載の移動通信システム。

【請求項3】前記基地局が、各移動端末に、各端末に固有のアドレス情報よりも短いローカルアドレスを付与し、各移動端末が前記応答チャネルで送信された応答用制御パケットのうち、上記ローカルアドレスを送信先アドレスとして含むパケットを受信処理することを特徴とする請求項1に記載の移動通信システム。

【請求項4】前記基地局が、各移動端末に、各端末に固有のアドレス情報よりも短いリンク番号を付与し、各移動端末が、上記リンク番号を宛先アドレスとして含むデータパケットを伝送チャネルに送信することを特徴とす 40 る請求項1に記載の移動通信システム。

【請求項5】前記基地局が、サービスエリア内のトラフィックの状況に応じたビジートーン情報を前記応答用制御チャネルまたはビジートーン専用のチャネルを通して定期的に送信するための手段を有し、データ送信要求をもつ各移動端末が、上記ビジートーン情報に基づいて予約用制御パケットの送信を制御することを特徴とする請求項1に記載の移動通信システム。

【請求項6】前記基地局が、過去一定期間に受信した予約用制御パケットの数に基づいて、次の一定期間に発生 50

する予約用制御パケット数を推定するための手段を有し、上記推定値と次の一定期間に伝送が予定されているパケット数とに基づいて前記ビジートーン情報を生成することを特徴とする請求項5に記載の移動通信システム。

【請求項7】前記各移動端末が、1つの予約用制御パケットで複数のデータパケットの送信を要求することを特徴とする請求項1~請求項6の何れかに記載の移動通信システム。

10 【請求項8】前記基地局が、移動端末にローカルアドレスを付与する制御パケットによって、該移動端末が受信動作すべき応答チャネルを指定することを特徴とする請求項3に記載の移動通信システム。

【請求項9】前記基地局が、同期信号成分を含むパイロット信号をパイロット用チャネルあるいは前記応答チャネルで連続送信し、各移動端末が、受信した上記パイロット信号に基づいて、前記伝送チャネルのタイムスロットを識別することを特徴とする請求項1に記載の移動通信システム。

【請求項10】基地局と複数の無線端末とが、無線区間において符号分割多元接続(CDMA)方式で形成された予約チャネル、応答チャネルおよび複数の伝送チャネルを介して通信するようにした無線通信システムにおいて、

データ送信を要求する各無線端末が、上記予約チャネル に互いに非同期で予約用制御パケットを送信し、

上記基地局が、上記予約チャネルで受信した期間軸上で部分的に重なりをもつ複数の予約用制御パケット信号をパケット対応に分離して受信処理した後、受信した予約30 用制御パケットの送信元となる無線端末に対して使用すべき伝送チャネルとタイムスロットとを指定するための応答用制御パケットを上記応答チャネルで送信し、

上記各無線端末が、上記応答用制御パケットで指定された伝送チャネル上の指定されたタイムスロットでデータパケットを送信することを特徴とする無線通信システム。

【請求項11】前記基地局が、前記伝送チャネルから受信したデータパケットの宛先アドレスによって特定される無線端末に対して、受信動作すべき伝送チャネルとタイムスロットとを指定するための応答用制御パケットを前記応答チャネルで送信した後、上記指定した伝送チャネル上の指定したタイムスロットに上記受信データパケットを送信し、

上記応答用制御パケットの宛先となる無線端末が、該応答用制御パケットで指定された伝送チャネルの指定されたタイムスロットでデータパケットの受信動作を行うことを特徴とする請求項10に記載の無線通信システム。

【請求項12】基地局と無線で通信するための無線端末 装置であって、

上記基地局に対して、予約チャネルに固有の拡散符号で

処理した予約用制御パケットを上記基地局とは非同期で 送信するための手段と、

基地局から送信された応答チャネルに固有の拡散符号で 処理された応答用制御パケットを上記基地局と同期した 所定のタイムスロットタイミングで受信処理するための 手段と、

上記応答用制御パケットで指定された特定の伝送チャネ ル上の特定のタイムスロットタイミングで、上記伝送チ ャネルに固有の拡散符号で処理されたデータパケットを 送信または受信処理するための手段とを備えたことを特 10 徴とする無線端末装置。

【請求項13】それぞれ固有のアドレスを持つ複数の無 線端末との間で、それぞれ固有の拡散符号と対応付けら れた予約チャネル、応答チャネルおよび複数の伝送チャ ネルを介して、スペクトル拡散されたパケットにより通 信する無線通信システム用の基地局であって、

上記予約チャネルから、複数の無線端末が互いに非同期 で送信した伝送チャネルアクセス要求のための予約用制 御パケット信号を受信し、予約用制御パケット毎に分離 して受信処理するための手段と、

上記予約用制御パケットの送信元の無線端末に対して、 上記応答チャネルを介して、使用すべき伝送チャネルと タイムスロットとを指定する応答用制御パケットを送信 するための手段と、

伝送用チャネルの各タイムスロットで、無線端末が送信 したデータパケットの受信処理、または無線端末宛のデ ータパケットの送信処理を行うための手段とを備えたこ とを特徴とする基地局装置。

#### 【発明の詳細な説明】

### [0001]

【産業上の利用分野】本発明は、移動通信システムおよ び移動端末装置に関し、更に詳しくは、符号分割多元接 続(CDMA:Code Division Multiple Access)方式 を適用した予約方式の移動通信システムおよび移動端末 装置に関する。

#### [0002]

【従来の技術】従来、例えばアイ・イー・イー・イー トランザクションズ オン コミュニケーションズ、パ ケット スイッチング イン ラジオ チャネルズ:パ ート3-ポーリング アンド (ダイナミック) スプ 40 に、本発明の移動通信システムでは、基地局と移動端末 リットーチャネルズ リザーベーション マルチプル アクセス、COM-24、8 (1976年) 第832頁 ~第845頁(IEEE Transactions on Communications Packet Switching in Radio Channels: Part3-Polling a nd (Dynamic) Split-Channel Reservation Multiple Ac cess, COM-24, 8 (1976) pp. 832-845) (以下、従来技術1という) に述べられているよ うに、周波数分割多元接続(FDMA: Frequency Divi sion Multiple Access) 方式で予約型アクセス制御を行 ったいどう通信システムが知られている。

【0003】予約型アクセス方式では、データ送信要求 をもつ移動端末が、予約用制御パケットで基地局に伝送 チャネルの予約を行い、基地局が、端末に割り当てるべ き伝送チャネルと送信タイミング (タイムスロット) を スケジューリングし、各端末に対して、応答用制御パケ ットによって使用すべき伝送チャネルとタイムスロット を通知する。この方式によれば、基本的に伝送チャネル ではパケットの衝突は発生しない。予約型アクセス制御 の通信システムの他の例としては、例えば、特開平6-311160号公報(以下、従来技術2という)に、時 間分割多元接続(TDMA:Time Division Multiple A ccess) 方式によるものが提案されている。一方、FP LMTS (Future Public Land Mobile Telecommunicat ion Systems) の標準方式として、符号分割多元接続 (CDMA: Code Division MultipleAccess) 方式が有 望となっている。CDMA方式の移動通信システムは、 例えば特開平7-38496号公報(以下、従来技術3 という)で提案されている。

#### [0004]

【発明が解決しようとする課題】しかしながら、従来技 術1および2で提案されたFDMAおよびTDMAによ る予約型アクセス方式の移動通信システムでは、各移動 端末は、予約用制御チャネルで互いに非同期で予約用制 御パケットを送出するため、複数の予約用制御パケット が衝突する可能性が高く、衝突に伴う予約用制御パケッ トの再送信が繰り返されてシステム全体のスループット を劣化させる要因となっている。一方、CDMAを採用 した従来技術3は、予約型アクセス制御における上記問 題に関して特に有効な情報を与えていない。

【0005】本発明の目的は、予約型アクセス制御方式 30 の移動通信システムにおける予約用制御パケットの衝突 の問題を解決し、スループットの高い移動通信システム および移動端末装置を提供することにある。本発明の他 の目的は、予約型アクセス制御方式の移動通信システム における予約用制御パケットの衝突の問題を解決し、ス ループットの高い移動通信システムおよび移動端末装置 を提供することにある。

#### [0006]

【課題を解決するための手段】上記目的を達成するため との間の無線通信区間に、移動端末から基地局へ向かう 上り方向のデータパケットおよび基地局から移動端末へ 向かう下り方向のデータパケットの送信に使用する複数 の伝送チャネルと、移動端末から基地局に伝送チャネル 割当て要求を示す予約用制御パケットを送信するために 使用される予約チャネルと、基地局から移動端末に対し てデータ送受信すべき伝送チャネルを示す応答用制御パ ケットを送信するために使用される応答チャネルとを設 け、上記予約、応答および伝送の各チャネルにはCDM 50 A方式によるスペクトラム拡散を適用し、データ送信要 求をもつ移動端末が、任意のタイミングで上記予約チャ ネルに予約用制御パケットを送信し、基地局から上記応 答チャネルに送信した応答用制御パケットによって、各 移動端末に使用すべき伝送チャネルとタイムスロットと を指定し、各移動端末が、上記応答用制御パケットで指 定された伝送チャネル上の指定されたタイムスロットで データパケットの送受信を行うようにしたことを特徴と する。

【0007】更に詳述すると、上記予約、応答および伝 送の各チャネルには、それぞれ固有の拡散符号、例えば 10 疑似雑音 (PN: Pseudo Noise) を割り当て、特に、予 約チャネルには、他の応答用および伝送用のチャネルよ りも短い拡散符号を割り当てる。基地局は、複数の移動 端末から時間的に互いに重なりをもって送信された複数 の予約用制御パケットの信号をマッチドフィルタによっ て識別し、各パケット対応にビット信号の受信処理を行 う。本発明の好ましい実施例によれば、移動端末から予 約パケットを受信すると、基地局は、スケジュール制御 によって各伝送チャネルにおけるタイムスロットの割当 てを行い、その結果を応答用制御パケットで各移動端末 20 宛に通知する。また、同時通信されるパケットの総量を 規制するために、基地局が、トラフィックの状況に応じ たビジートーン信号を周期的に送信し、データ送信要求 をもつ各移動端末が、上記ビジートーン信号に応じた予 約パケット送信制御を行うようにする。尚、無線区間に 応答チャネルを複数用意しておき、移動端末毎の受信す べき応答チャネルを指定するようにしてもよい。

#### [0008]

【作用】本発明によれば、伝送チャネルにはタイムスロ 定のタイムスロットでデータの送受信を行うようにし、 予約チャネルに対しては、タイムスロットは設けずに、 データ送信要求をもつ各移動端末が任意のタイミングで 予約用制御パケットを送信するようにしているため、各 移動端末における予約用制御パケットの送信動作が容易 となる。また、各移動端末が、予約用制御パケットを伝 送チャネルで送信されるデータパケットよりも短い周期 を持つ拡散符号によってスペクトル拡散し、基地局側で は、予約チャネルの信号をマッチドフィルタにより受信 する。この場合、同一拡散符号でスペクトル拡散された 40 2以上の制御パケットが時間軸上で部分的に重なってい ても、各パケット間に拡散符号上の1チップ以上のタイ ミングずれがあれば、マッチドフィルタは、受信パケッ トを識別できるため、複数の移動端末がそれぞれ任意の タイミングで予約用制御パケットを発生しても、それら が衝突によって受信不能となる可能性は極めて低い。

### [0009]

【実施例】図1は、本発明を適用する移動通信ネットワ ークの構成の1例を示す。1は電話機等の固定端末3を 収容した公衆網、2は、複数の基地局4(4a、4b、

…)を収容し、上記公衆網に接続された移動通信網であ り、各基地局4は、それぞれのサービスエリア (セル) 内に位置する移動端末5(5a、5b、…)と無線チャ ネル6で通信する。尚、無線チャネル上では、データ・ 音・画像が混在したマルチメディア情報の通信に適した CDMA方式のパケット伝送が適用される。

【0010】図2は、本発明による無線通信システムの 送受信プロトコルを示す。図2の(A)は、コールセッ トアップ処理のプロトコルを示す。コールセットアップ 処理には2種類あり、1つは、無線端末に対してサービ スエリア内のローカルID(ローカルアドレス)を最初 に付与する処理であり、もう1つは、無線端末に他の送 信先端末と通信するためのリンク番号を付与するための 処理である。上記ローカルIDは、各無線端末に予め与 えてある固有のアドレス番号よりも短縮されたアドレス 番号であり、このローカルIDを使用することによっ て、パケット長の短縮が図られる。リンク番号もこれと 同様の効果を持つ。

【0011】コールセットアップ処理の手順は、上述し たローカルIDの付与、リンク番号付与のどちらにも共 通であり、送信端末が、予約チャネル7を利用して、基 地局にコールセットアップ予約用の制御パケット10a を送信し、基地局が、応答チャネル8を利用して、送信 端末にコールセットアップ応答用の制御パケット11a を送信する。上記予約用制御パケット10 aには、送信 元を示すアドレス情報が設定されている。また、上記応 答用の制御パケットには、受信動作すべき送信端末アド レスと、受信動作すべき伝送チャネル9上のタイムスロ ットが指定されている。これによって、上記応答用制御 ットを定義し、各移動端末が、基地局から指定された特 30 パケットで指定された送信端末が、伝送チャネル9上の 指定されたタイムスロットで、基地局が送信した位置登 録情報(ローカルID番号)あるいはリンク情報(リン ク番号)を含むコールセットアップ用のデータパケット 12aを受信する。なお、制御用パケットに余裕があれ ば、コールセットアップ用データパケット12aを利用 することなく、コールセットアップ応答用の制御パケッ ト11aで上記位置登録情報あるいはリンク情報を伝送 することも処理も可能である。

> 【0012】上記予約、応答、伝送チャネルは、適用す るPN符号によって選択される。また、基地局による各 伝送チャネル上でのタイムスロットの割当ては、例え ば、管理テーブルを参照して、空きチャネルの中から、 応答用制御パケットの送出スロット以降で時間的に最も 近い空きスロットを割り当てるように、スケジューリン

【0013】図2の(B)は、情報伝送のためのプロト コルを示す。データ送信要求をもつ各送信端末は、予約 用チャネル7を利用して、基地局に予約用制御パケット 10bを送信する。これに応答して、基地局が、応答制 50 御用チャネル8を利用して送信端末に応答用制御パケッ

ト8bを送信し、送信端末が送信動作に使用すべき伝送 チャネル9とタイムスロットを指定する。予約パケット を送信した各伝送端末は、自局宛の応答用制御パケット 11bを受信すると、そこで指定された伝送チャネル9 中の特定のタイムスロットを利用して、基地局に情報伝 送用のデータパケット12bを送出する。

【0014】上記データパケット12bは、一旦、基地局によって受信される。基地局は、上記データパケットの宛先アドレスを確認し、宛先端末(受信端末)がサービスエリア内に位置する移動端末の場合は、応答チャネ10ル8を利用して、受信端末と受信動作すべき伝送チャネルおよびタイムスロットを指定した制御パケット13を送信した後、上記指定したタイムスロットで、上記送信端末からの受信パケット12bを転送動作する。受信端末は、上記制御パケット13で指定された伝送チャネル9のタイムスロットで、基地局が転送したデータパケット14を受信する。

【0015】上述した情報伝送プロトコルによれば、移動端末から基地局へ向かう上り方向のデータ転送には予約用の制御パケットを必要としているが、基地局から移20動端末へ向かう下り方向のデータ転送には、予約用の制御パケットは不要である。基地局は、パイロット信号によって、各移動端末に送受信動作における基準タイミングを与えており、各移動端末は、基地局からの情報伝送用のデータパケット14とパイロット信号とを同一の遅延時間で受信できるため、パイロット信号を参照していれば、データパケットの同期捕捉は容易に行える。

【0016】図3は、従来の予約方式の無線通信システムにおけるアクセス制御方式を示す。予約方式は、図2で説明したように、情報伝送用のデータパケットの送信 30に先立って、予約パケットを送出し、予約が成立してからデータパケットを送信する方式であり、伝送チャネル9の他に、予約チャネル7と応答チャネル8とが用意される。チャネルの分割は、周波数分割(従来技術1参照)あるいは時分割(従来技術2参照)によって行われる。

【0017】図3では、横軸に時間21を示す。無線端末が、予約チャネル7で基地局に予約用制御パケットを送信すると、基地局が、伝送チャネル上でのタイムスロットのスケジューリング24を行い、応答チャネル8を 40利用して無線端末に予約結果を示す制御パケットを送信する。従来の方式によれば、22a、22bで示すように、予約チャネル上で複数の移動端末からの予約パケットが衝突する可能性がある。各位相端末は、予約用制御用パケットを送出した後、一定時間待っても自分宛の応答用制御パケットが返って来ない場合、予約チャネル上で衝突が発生したものと判断し、予約用の制御用パケットを再送動作(23a、23b)する。予約方式のスループットは、上述した予約パケットの衝突に依存して制限されてしまう。 50

【0018】図4は、本発明による予約チャネルにCD MA (Code Division Multiple Access、符号分割多元 接続)によるアクセス制御方式を適用した示す。本発明 は、予約制御用チャネルをCDMA方式によってアクセ ス制御(従来技術3参照)する点で、従来の予約方式と 異なる。図3に示した予約チャネル7において、横軸は 時間21、縦軸は送信端末25を示し、複数の端末から の予約パケットが時間軸上で部分的に重なって送出され た状況を表現している。CDMA方式では、送信データ の各シンボル (「1」、「0」) を、チャネルに固有の パターンをもつ複数チップの拡散符号(直交符号または PN符号) に置換することによって、スペクトル拡散し ている。例えば、直接拡散方式において、複数の送信端 末が、同一のPN (Pseudo Noise、疑似雑音) 系列を使 用してデータをスペクトル拡散し、同一のキャリア周波 数でデータ送信した場合、データの送信タイミングに1 チップ以上の時間的なずれがあれば、受信側では、各送 信データを独立に識別することが可能である。

【0019】本発明では、予約チャネルにCDMA方式のパケット通信を適用し、複数の移動端末に対して、予約用の制御パケットを任意のタイミングで送信させる。複数の端末からの予約制御パケットの送信タイミングが完全に一致した場合は、パケットが衝突したことになるが、通常、このような完全一致は稀であり、26(26a、26b)で示すように、時間的に重なっても、2つのパケットに1チップ以上のタイミングのずれがあれば、衝突は回避されたことになり、再送の必要はない。従って、本発明の方式によれば、従来の予約方式と比較して、スループットが著しく改善される。

【0020】本発明では、データ送信要求をもつ各移動端末は、予約チャネルにおいて、任意のタイミングで伝送チャネルタイムスロットの予約用制御パケットを送信し、応答チャネルで基地局が送信する応答用制御パケットによって指定された伝送チャネルの指定されたタイムスロットで、送信データを送出する。データ伝送は、原則としてタイムスロット単位で行い、送信データが複数タイムスロットに及ぶ場合は、各タイムスロット毎に予約を行うが、予約処理を効率課するために、1個の予約用制御パケットで複数タイムスロットの伝送チャネルを予約可能にしておき、1個の予約用制御パケットに対して、基地局が、1つの応答用制御パケット、またはタイムスロット毎の複数の応答用制御パケットで、複数のタイムスロットを割り当てるようにしてもよい。

【0021】本発明において、予約パケットは任意のタイミングでの送信を許容するが、応答用の制御パケットと情報伝送用のデータパケットの送受信は、予め決められた一定長のタイムスロットに同期して行う。応答チャネルと各伝送チャネルを固定長をもつタイムスロットに分割することにより、各無線端末と基地局での高速同期を容易にする。すなわち、基地局が、適切な周期をもつ

PN系列を用いたスペクトル拡散によって生成したパイ ロット信号を共通チャネル (パイロットチャネル) で送 信し続け、各無線端末が、上記パイロット信号をモニタ ーすることによって同期信号(基準信号)を抽出し、応 答チャネルおよび各伝送チャネルに基地局と同期したタ イムスロットを設定する。尚、パイロット信号は拡散符 号の同期を目的としているため、伝送情報の内容は何で も良い。従って、パイロット信号は、専用のパイロット チャネルを使用する代わりに、例えば、応答用の制御チ ャネルを利用することも可能である。

【0022】図5は、本発明の移動通信システムで使用 するパケットのフォーマットを示す。予約用制御パケッ トは、図5の(A)に示すように、先頭から順に、同期 獲得のためのプリアンブル31a、パケットの種別(位 置登録用、リンク確保用、情報伝送用)を表す予約種別 432b、送信元アドレス33(位置登録済ならローカ ル I Dを使用)、送信先アドレス34 (リンク確保済な らリンク番号を使用)、予約したい送信パケット数(タ イムスロット数) 35、誤り検出符号であるCRC (Cy clic Redundancy Check) 36 a から構成される。な お、送信パケット数は、位置登録あるいはリンク確保の ためのコールセットアップ処理では不要である。

【0023】応答用制御パケットは、図5の(B)に示 すように、先頭から順に、送信先アドレス34、パケッ トの種別(位置登録用、リンク確保用、上り情報伝送 用、下り情報伝送用)を表す応答種別32b、割当てた チャネルの拡散符号を表すPN種別37、割当てた送信 タイミングを表すタイミング情報38、CRC36bか ら構成される。本発明において、応答用制御パケットで は、プリアンブルが不要である。これは、各移動端末 (無線端末) が常にパイロット信号をモニターしてお り、該パイロット信号に基づいて、応答チャネルにおけ る各タイムスロットの同期をとり、各応答用パケットを 捕捉処理できるからである。 情報伝送用のデータパケ ットは、図5の(C)に示すように、先頭から順に、プ リアンブル31b、パケット種別(位置登録用、リンク 確保用、上り情報伝送用、下り情報伝送用)32c、送 信元アドレス33 (位置登録済ならローカル I Dを使 用)、送信先アドレス34(リンク確保済ならリンク番 号を使用)、データ39 (情報伝送用チャネルあるいは 40 応答制御用チャネルのPN符号、送信あるいは受信のタ イミング、伝送情報)、CRC36cから構成される。 応答用の制御チャネルと情報伝送用のチャネルでは、タ イムスロット化されているため、パケット種別が異なっ ても、パケットサイズを固定長に統一しておく必要があ る。このため、例えば、各パケットの前方部に位置した アドレス部にダミービットを挿入し、それ以降の各フィ ールドの開始位置を調節する。なお、下り方向の通信で は、応答用制御パケットの場合と同様に、プリアンブル を省略することも可能である。

【0024】図6は、基地局4の概略的な構成を示すブ ロック図である。基地局は、アンテナ41と、CDMA 送受信部50と、パケット制御部90と、基地局と移動 通信網との間に介在する制御装置(BSC43)に接続 されたBSCインターフェース42とからなる。

【0025】図7は、基地局のCDMA送受信部50の 詳細構成を示すブロック図である。52、53はそれぞ れ受信用、送信用の無線モジュールであり、ベースバン ド信号の変復調と、高/中間周波での送受信処理を行 10 う。基地局が送信する応答用の制御パケットは、応答チ ヤネル信号線45aを介して符号化回路58aに入力さ れ、例えば、畳み込み符号等を用いた誤り訂正のための 符号化をした後、乗算器56aにおいて、直交符号発生 器59から出力される応答チャネル用の直交符号によっ てスペクトル拡散され、加算器60に入力される。これ と同様に、伝送チャネル対応の複数の信号線45トに出 力された送信データは、符号化回路58bで符号化さ れ、乗算器56bにおいて各伝送チャネル対応の直交符 号でスペクトル拡散された後、加算器60に供給され る。信号線45cに出力されたパイロット信号も、符号 化回路58cで符号化され、乗算器56cにおいてパイ ロットチャネルに固有の直交符号でスペクトル拡散され た後、上記加算器60に供給される。上記加算器60の 出力は、乗算器56において、PN発生器57aから出 力される各基地局に固有のPN(ロングコード)でスペ クトル拡散された後、上記送信用の無線モジュール53 に供給される。

【0026】一方、受信用の無線モジュール52で受信 処理された信号は、予約チャネル用のマッチドフィルタ 70aと、伝送チャネル用の複数のマッチドフィルタ7 0b~70b'に入力される。予約チャネルの受信パケ ットは、マッチドフィルタ70aにおいて、受信信号を 予約チャネルに固有のPNによって逆拡散処理し、パケ ット分離回路80において、時間的に重なりのあるパケ ット同士を分離することによって受信処理される。この 場合、図8、図9で後述するように、逆拡散に適用する PN系列の周期をマッチドフィルタのタップ数と等しく しておくと、マッチドフィルタの出力がそのまま逆拡散 処理結果となるため、高速同期が可能となる。互いに分 離された予約パケットは、復号化回路55aにおいて、 例えばビタビ復号等の誤り訂正を伴った復号処理の後、 パケット制御部90に供給される。

【0027】伝送チャネルの受信信号は、マッチドフィ ルタ70b~70b, において最初の同期捕捉を行な い、その後は、上記捕捉されたタイミングを起点とし て、PN発生器57bから各チャネル対応のPN系列を 発生させ、乗算器56~56,において、受信信号と上 記PN発生器57bから発生させた各チャネル対応のP N系列と乗算することによって逆拡散を行い、アキュム レータ54~54)で1シンボル分の逆拡散結果を累積

し、累積結果を復号化回路55~55°を介してパケット制御部90に供給する。

【0028】図8は、マッチドフィルタ70aによる予 約用制御パケットの受信処理を示す。図の(A)は、マ ッチドフィルタの原理図である。マッチドフィルタは、 PN系列のチップ幅に等しい遅延時間Tをもつ多段接続 された複数の遅延素子71と、初段の入力タップと各遅 延素子の出力タップ毎にに設けられた複数の係数乗算器 72とからなり、チップ時間毎に入力された受信信号が 上記各タップ間を遅延時間T71で伝搬する。そこで、 各遅延素子の遅延時間を予約チャネル用のPN系列のチ ップ幅と等しくし、PN系列の周期長(チップ数)とマ ッチドフィルタのタップ数とを等しくすれば、入力信号 の先頭チップが右端の出力タップに到達した時点で、タ ップ出力に1周期分のPN系列が同時に見えることにな る。各タップ出力と、各係数乗算器72に設定された予 約チャネル用の2値のPN符号(「1」または「-1」)とを乗算し、その総和を累算器73で求めて相関 値として出力すれば、チップ時間後とに変化する相関値 がピーク値になった時点が同期捕捉時となる。また、こ 20 の時の出力値が、受信信号を逆クペクトル拡散して得ら れる復調値を示している。本発明では、拡散符号長とマ ッチドフィルタのタップ数とを等しくして、マッチドフ ィルタの出力値が、予約パケットの1ビット分の情報 (シンボル符号)となるようにしている。また、予約チ ャネル用のPN系列としショートコードを適用すること によって、マッチドフィルタのタップ数を少なくし、同 期補足を容易にしている。

【0029】図12の(B)は、2つの予約パケット A、Bが時間軸上で部分的に重なって発行された場合を 30 例にとって、マッチドフィルタ70aによる予約パケッ トの識別動作を示した図である。累算器73の出力がピ 一ク値を示した時点(同期補足時点)を起点として、P N周期(シンボル周期)で累算器73に現われるその後 のフィルタ出力信号をグルーピングすると、同一の予約 パケットに属したビットデータ列を再現できる。図示し た例では、最初に現われたピーク値75-1を起点とし て、その後にPN周期75毎に現われる信号値(「1」 または「-1」) 76-2、76-3、76-4、…… を1つのビットデータグループとして集めると、予約パ 40 ケット(A) 76を再現できる。また、上記ビットデー タグループと非同期で現われたピーク値77-1を起点 として、PN周期75毎に現われる信号値(「1」また は「-1」) 77-2、77-3、77-4、……を1 つのビットデータグループとして集めると、予約パケッ ト(B) 77を再現できる。これによって、時間的に重 なったパケットであっても、原理的には、1チップ以上 の位相のずれがあれば、別々のパケットとして識別する ことが可能となる。

【0030】図9は、パケット分離回路80の構成の1 50 期捕捉タイミングの値は、比較器83bにおいて、カウ

例を示す。マッチドフィルタ70aの出力信号79aを 絶対値回路(ABS)81に入力し、比較器83aで、 上記マッチドフィルタ出力信号79aの絶対値と、閾値 回路82から出力される所定の閾値とを比較する。絶対 値が閾値よりも大きい時、比較器82の出力がオン

(「1」状態)となり、AND回路84aに入力される。上記AND回路84aの他の入力信号は、初期状態においてオフ状態であり、これらが反転して入力されているため、AND回路84aは、上記比較器出力によって開かれ、その出力信号がオン状態(「1」状態)となる。AND回路84aのオン出力は、AND回路84bと84dに入力される。

【0031】上記AND回路84bは、他方の入力端子 にタイマ85aの出力の否定信号が入力されいる。初期 状態において、上記タイマ85aの出力はオフ

(「0」) 状態となっているため、AND回路84aの 出力がオンとなった時点で、AND回路84bの出力も オン状態となる。上記AND回路84bのオン出力は、 タイミングレジスタ86aにイネーブル信号として入力 され、このとき、PN符号のチップ周期でカウント動作 しシンボル周期で初期値に戻るカウンタ87の値が、上 記レジスタ86aに設定される。尚、カウンタ87の出 力値は、図8の(B)で説明した同期補足時のチップ位 置(同期捕捉タイミング)を示している。

【0032】上記AND回路84bのオン出力は、AN D回路84bと84dの他方の入力を制御するタイマー 85aを起動させる。上記タイマー85aは、予約パケ ットの1パケット期間が経過する迄の間、出力をオン状 態に維持し、この期間が経過するまで、上記AND回路 84bを閉じて、上記タイミングレジスタ86aに他の カウンタ値が設定されるのを防止する。タイマー85が タイムアウトする前に、マッチドフィルタから次のピー ク値が出力されると、AND回路84aから出力された オン出力は、タイマー85aの出力で開かれた状態にあ るAND回路84dと、次のタイミングレジスタ86b と対をなすAND回路84b、を介して、次のタイミン グレジスタ86bのイネーブル端子に入力される。この 結果、タイミングレジスタ86bにカウンタ87の出力 値が設定される。この時、レジスタ86bと対をなすタ イマー85bが起動され、上述したタイマー85aと同 様の動作によって、1パケット期間が経過するまでの 間、レジスタ86bへの他の値の設定を禁止すると共 に、次回発生したイネーブル信号を更に次のレジスタ8 6 cへ入力するよう動作する。この実施例では、4つの タイミングレジスタ86a~86dを備えているため、 以下、同様の動作の繰返しによって、時間的に重複して 発生する複数の予約パケットのうち、発生順に4個のパ ケットについて、同期捕捉タイミングが記憶される。

【0033】タイミングレジスタ86aに設定された同期捕捉タイミングの値は、比較器83bにおいて、カウ

ンタ87の出力値と比較され、カウンタ値が上記タイミ ングレジスタ86aに設定された同期捕捉タイミングと 一致する度に、比較器83bの出力がオン状態となる。 上記比較器のオン出力は、タイマ85aがオン状態にあ る間は開かれた状態にあるAND回路84cを介して、 データレジスタ87aのイネーブル端子に入力される。 この結果、データレジスタ87aには、上記同期捕捉タ イミングにおけるマッチドフィルタの出力が入力され る。他のタイミングレジスタ86b~86dも、上記と 同様に動作し、データレジスタ876~87dに予約パ 10 ケット毎のマッチドフィルタの出力が記憶される。上記 データレジスタ87a~87dには、各予約パケット毎 の同期捕捉タイミングに従ってデータが入力されるた め、クロック発生回路88で生成したビット周期のクロ ックに同期して、これらのデータレジスタ87a~87 dの内容を出力レジスタ88a~88dに転送し、出力 レジスタ88a~88dから図7に示した復号化回路5 5 a に各予約パケットの受信データを転送する。

【0034】図10は、基地局4のパケット制御部90 の詳細構成を示す。パケット制御部90は、ディジタル 20 信号処理装置(DSP) 91を有し、予約チャネルの受 信データ(予約パケットの内容)は、上記DSP91の 解読ルーチン92によって解読された後、上り方向スケ ジュール制御ルーチン93によって、伝送チャネルとタ イムスロットの割当て処理 (スケジューリング) が行な われる。上記上り方向スケジュール制御ルーチン93で 決定した伝送チャネルとタイムスロットを応答パケット 作成回路97に伝え、応答パケット作成回路97で生成 し各端末宛の応答パケットを応答チャネルで送信するこ とによって、各移動端末から基地局への上り方向の伝送 30 パケットを基地局のスケジューリングに従って行わせる ことが可能となる。

【0035】各伝送チャネルからの受信データは、信号 線44b~44b'を介して、各伝送チャネル対応に設 けた受信処理回路96b~96b, に入力され、データ パケットとしてBSCインターフェイスに転送される。 一方、下り方向のデータパケットは、一端送信バッファ 99に蓄積された後、DSPの下り方向スケジュール制 御ルーチン95で行ったスケジュールに従って、送信制 御される。すなわち、下り方向スケジュールに応じて、 先ず、応答パケット構造作成回路97で作成した応答パ ケットを応答チャネルから送出し、その後、上記下り方 向スケジュールで決めた伝送チャネルの所定のタイムス ロットで、伝送パケット構造作成回路98a~98a、 で生成したデータパケットを送出する。なお、本実施例 では、伝送チャネルがビジー状態にあるときに移動端末 からの予約パケットの発行を抑制するために、予約チャ ネルで受信された予約パケットの数と、上り方向スケジ ュール制御ルーチン93が把握している伝送チャネルの 計算ルーチン94がビジートーン情報を生成し、これを 応答チャネル45aで各移動端末に通知する。

【0036】図11は、移動端末(無線端末)5の構成 を示すプロック図である。移動端末は、アンテナ100 と、上記アンテナに接続されたCDMA送受信部110 と、上記CDMA送受信部110に接続されたパケット 制御部130と、上記パケット制御部130に接続され たデータ処理装置とからなる。データ処理装置は、マイ クロプロセッサ (MPU) 101と、データ及びプログ ラムを貯蔵するためのメモリ102と、内部バスに I/ Oインターフェイス103を介して接続された複数の入 出力装置からなる。入出力装置としては、例えば、カメ ラ104a、スピーカ104b、ディスプレイ104 c、キーボード104d等がある。

【0037】図12は、移動端末のCDMA送受信部1 10の詳細構成を示す。112、113は、ベースバン ド信号の変復調と高/中間周波での受信処理および送信 処理を行う無線モジュールである。送信回路では、予約 チャネルと伝送チャネルの各々において、符号化回路1 20a、120bで送信パケットの誤り訂正の符号化を 行なった後、PN発生器121a、121bで発生させ た各チャネルに固有のPN系列を用いて、乗算器114 a、114bで送信パケットを拡散処理し、送信用無線 モジュール113に送りこむ。このとき、伝送チャネル での拡散処理は、PN発生器119から発生させた基準 タイミング105 cに同期して行う。

【0038】一方、受信回路では、受信用無線モジュー ル112から出力された受信信号を乗算器114cに入 カレ、PN発生器119で発生させた基地局に固有のP N符号を用いてスペクトル逆拡散する。乗算器114 c の出力は、応答チャネル、伝送チャネル、パイロットチ ャネル対応の設けた乗算器114d、114e、114 fに入力され、直交符号発生器117で発生させた各チ ャネルに固有の直交符号によって逆拡散される。応答チ ャネルと伝送チャネルでは、直交符号で逆拡散した信号 を、それぞれ累算器115d、115eを介して、復号 化回路116d、116eに入力し、誤り訂正の復号化 された信号を信号線105d、105eを介してパケッ ト制御部130に転送する。パイロットチャネルでは、 直交符号で逆拡散したパイロット信号を累算器115 f を介してDLL (Delay Locked Loop) 回路118に入 カレ、同期追跡する。PN発生器119は、上記DDL 回路118の出力に同期してPN系列を発生させる。ま た、復号化回路116 d、116 eは、累算器115 f から出力されるパイロット信号に同期して動作させる。 【0039】図13は、移動端末のパケット制御部13 0の構成の1例を示す。応答チャネルの復号データは、 DSP131のモニタリングルーチン132で解読さ れ、応答パケットの内容は、上り方向スケジュール制御 利用状態情報とに応じて、DSP91のビジートーン値 50 ルーチン134と下り方向スケジュール制御ルーチン1

35に供給され、応答チャネルで受信されたビジートーン信号は、ビジートーン計算ルーチン133に供給される。

【0040】下り方向の伝送チャネルでのパケット受信処理回路136は、下り方向スケジュール制御ルーチン135の出力と基準タイミング信号105cによって制御される。送信データは、送信バッファ138に一時的に蓄積され、上り方向スケジュール制御ルーチン134からの制御信号に従って、伝送パケット構造作成回路139に入力され、伝送チャネルへのデータパケットの送10出が行なわれる。上り方向スケジュール制御ルーチン134は、応答パケットの内容に従って、伝送パケットを送出すべき伝送チャネルの指定信号106を発生し、基地局が指定したタイムスロットのタイミングで、伝送パケット構造作成回路139を起動する。PN発生器121bは、上記伝送チャネルの指定信号106で指定されたチャネルのPN符号を発生する。

【0041】また、ビジートーン値計算ルーチン133は、応答チャネルで受信されるビジートーン信号からビジートーンの値を計算し、トラフィックの状況情報を上20り方向スケジュール制御ルーチン134は、トラフィックの状況に応じて予約パケットの発生を制御し、送信バッファに送信データがある時、基地局から予約パケットの抑制指示がなければ、任意のタイミングで予約パケットの抑制指示がなければ、任意のタイミングで予約パケット構造作成回路137を起動し、予約パケットの送信を指示する。伝送パケットの送信処理も、基準タイミング105cに同期したタイムスロットで行なわれる。

【0042】上述したように、本発明では、予約チャネルにCDMA方式を適用することによって、各移動端末 30に予約用制御パケットの送信を任意のタイミングで行わせた場合でも、パケット衝突による再送の可能性を低減できるようになった。しかしながら、時間的な重なりをもって複数のパケットが発生されると、パケット信号は互いに雑音として影響し合うため、同時に発生するパケットの量が多くなると、パケット信号の全てが雑音に埋

$$R(t)^* = \frac{R(t-1)}{P(t-1)}$$

【0047】この式は、以下のように導出される。先ず、タイムスロット「t」におけるサービスエリア内の全移動端末の予約用制御パケットの数R(t) と、1つ前のタイムスロット「t-1」における予約制御用パケットの数R(t-1) とが等しいと見積る。

【0048】R(t-1)、を基地局が把握している予I(t)+R(t)、 $\geq T$ 

【0050】と推定された場合、送出確率P(t)が式(3)に従うようにビジートーン制御し、各移動端末から実際に送出される予約用制御パケットの量を抑制する50

もれてしまい、受信側で識別できなくなるという問題が ある。

【0043】予約用制御チャネル、応答用制御チャネル、および複数の情報伝送用チャネルからなる本発明の移動通信システムにおいて、応答用の制御パケットとデータパケットの総量は基地局で制御することができるが、予約用制御パケットは、各移動端末が自律的に発行するため、基地局で直接的に制御することはできない。このパケット総量規制の問題を解決するため、本発明の1実施例では、基地局がトラフィックの状況を示すビジートーン信号を発生し、各移動端末が、上記ビジートーン信号を参照して予約用制御パケットの送出を制御するようにしている。ビジートーン信号は、ビジートーン専用のチャネルで送信してもよいが、下り方向の制御チャネルである応答用制御チャネルにおいて周期的に現われる空き時間帯を利用してもよい。

【0044】図14は、応答用制御チャネルの空き時間 帯を利用してビジートーン信号を送信する制御方式を示した図である。図において、「t-1」、「t」、「t+1」は応答用制御チャネルにおけるタイムスロット番号であり、143は上記応答用制御チャネルにおける空き時間帯で送信されるビジートーン信号を示す。また、148は予約用制御パケット、R(t)はタイムスロットなど信した予約用制御パケットの個数、R(t)がはタイムスロットなにおける予約用制御パケットの送信要求個数、149は情報伝送用のデータパケット、I(t)はタイムスロットなで発生したデータパケットの個数、Tは同時送信を許容できる局の数(同時許容パケット数)、P(t)は予約用制御パケットの送出確率を示す。ここで、R(t)がとR(t)は、情報伝送用のデータパケットの長さで規格化した個数とする。

【0045】最初に、次式(1)を仮定する。 【0046】 【数1】

·····(数1)

40 約制御用パケット数R(t-1)を用いて書き直せば、式(1)の右辺に等しくなる。以下、R(t)・を式(1)から推定し、もし、通信パケットの総量が、許容値Tを越え、式(2)

[0049]

【数2】

・・・・・(数2)

ことによって、予約用制御パケット数と情報伝送用のデータパケット数との和を許容値Tと同程度にする。

[0051]

【数3】

$$P(t) = \frac{\{T - I(t)\}}{R(t)} \qquad \cdots \qquad (数3)$$

【0052】ここで、送出する予約制御用パケット数は 確率的に決まるため、マージンを見込んでTを少なめに 設定しておくことを考慮する必要がある。一方、式

17

$$I(t)+R(t)' < T$$

【0054】の関係にある場合は、送出確率P(t)は、式(5)に従うものとする。

$$P(t) = 1.0$$

【0056】つまり、送出要求した予約制御用パケットを全部送出する。式(3)あるいは式(4)の送出確率が、ビジートーン情報となる。

【0057】応答用制御チャネルは、図2で示したように、パイロット信号に基づいて、情報伝送チャネルにおけるデータパケット長に対応させたタイムスロット化を行っている。ここで、応答用制御パケット長は、データ 20パケット長よりも短く設定するものとし、パイロット信号に基づいて設定した各タイムスロットを応答パケット長に合わせて更に細分化すると、例えば、タイムスロット長(データパケット長)を512ビット、応答パケット長を42ビットとした場合、1タイムスロット中に応答パケット用のサブスロットを12個設定でき、最後に8ビット分の空き時間帯ができる。図14のビジートーン143は、このようにして得られる空き時間帯を利用し、情報伝送用チャネルの1スロット分の間隔で周期的に送信される。 30

### [0058]

【発明の効果】以上の説明から明らかなように、本発明 は、予約型パケットアクセス制御方式の移動通信システ ムにCDMAを適用することによって、各移動端末に予 約用制御パケットを任意のタイミングで送信させた場合 でも、衝突による再送信発生の可能性を低減し、スルー プットの向上を図ったものである。本発明によれば、例 えば、予約用制御パケットに短い拡散符号を適用し、基 地局側にマッチドフィルタにより同期捕捉を行わせるこ とによって、複数の移動端末が互いに非同期で予約用制 40 御パケットを送信した場合でも、基地局側で各予約パケ ットを高速に識別可能としている。また、各パケットに 設定する端末アドレス情報に、本来のアドレス番号より も短縮されたローカルアドレス (自アドレス)、または リンク番号(送信先アドレス)を使用することによって 伝送効率を向上できる。さらに、各端末装置に、基地局 からのビジートーン信号に応じて予約用制御パケットの 送信を制御させた場合、同時通信パケット量が過多にな るのを回避し、良好な通信を保証することができる。

【図面の簡単な説明】

·

(4)

【0053】 【数4】

· · · · · (数4)

10 [0055]

【数5】

・・・・・(数5)

【図1】本発明を適用する移動通信ネットワークの構成の1例を示す図。

18

【図2】本発明の無線通信システムにおける送受信プロトコルを説明するための図。

【図3】従来の無線通信システムにおけるチャネルアク セス制御方式を説明するための図。

0 【図4】CDMA方式を適用した本発明の無線通信システムにおけるチャネルアクセス制御方式を説明するための図。

【図5】本発明の移動通信システムで使用するパケット フォーマットを示す図。

【図6】基地局の構成を示すブロック図。

【図7】基地局のCDMA送受信部50の構成を示すブロック図。

【図8】マッチドフィルタ70の構成と予約用制御パケットの受信処理を示す図。

30 【図9】パケット分離回路80の構成を示す図。

【図10】基地局のパケット制御部90の構成を示す図。

【図11】移動端末の構成を示すブロック図。

【図12】移動端末のCDMA送受信部110の構成を 示す図。

【図13】移動端末のパケット制御部130の構成を示す図。

【図14】ビジートーン制御を説明するための図。

【符号の説明】

1…公衆網、2…移動通信網、4…基地局、5…移動端末、7…予約チャネル、8…応答チャネル、9…伝送チャネル、41、100…アンテナ、50、110…CD MA送受信部、90、130…パケット制御部、42… BSCインタフェース、101…MPU、102…メモリ、103…入出力インタフェース、55、116…復号器、57、121…PN発生器、118…DLL、58、120…符号化器、70…マッチドフィルタ、83…比較器、84…AND回路、85…タイマー、86…レジスタ、87…カウンタ、88…クロック。



t-1

【図2】

# 図





(B)

【図7】

# 図 7



【図11】

# 図 11



【図8】

# 図 8





(B)

. . . .

【図9】



【図13】



【図10】

# 図 10



【図12】

## 図 12



フロントページの続き

## (72)発明者 土居 信数

東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内