Mathematical Logic Questions

1. Исчисление высказываний. Общезначимость, следование, доказуемость, выводимость. Корректность, полнота, непротиворечивость. Теорема о дедукции для исчисления высказываний.

- Общезначимость ($\models \alpha$) . Общезначимое высказывание высказывание, которое истинно при любой оценке пропозициональных переменных.
- Следование($\Gamma \models \alpha$). Пусть $\Gamma = \gamma_1, \gamma_2, \ldots, \gamma_n$. Тогда α следует из Γ , если при любой оценке пропозициональных переменных, входящих в высказывания Γ и α , на которых все высказывания из Γ истинны, α также истинна.
- Доказуемость($\vdash \alpha$) . Высказывание α доказуемо, если существует доказательство $\alpha_1, \alpha_2 \dots \alpha_k$ и α_k совпадает с α

Доказательство. Доказательство в исчислении высказываний — это некоторая конечная последовательность выражений (высказываний) $\alpha_1,\alpha_2\ldots\alpha_k$, что каждое из высказываний α_i либо является аксиомой, либо получается из других утверждений $\alpha_{P_1},\alpha_{P_2},\ldots,\alpha_{P_n}$ $(P_1\ldots P_n< i)$ по правилу вывода.

• Выводимость ($\Gamma \vdash \alpha$). Высказывание α выводимо из списка гипотез Γ , если существует вывод $\alpha_1, \alpha_2...\alpha_k$ и α_k совпадает с α .

Вывод. Доказательство, в котором могут использоваться гипотезы. Ака. Вывод в исчислении высказываний — это некоторая конечная последовательность выражений (высказываний) $\alpha_1,\alpha_2\dots\alpha_k$, что каждое из высказываний α_i либо является аксиомой, либо получается из других утверждений $\alpha_{P_1},\alpha_{P_2},\dots,\alpha_{P_n}$ ($P_1\dots P_n < i$) по правилу вывода, либо является гипотезой из списка Γ .

- **Корректность(** $\vdash \alpha \Rightarrow \models \alpha$ **).** Если высказывание доказуемо, то оно общезначимо
- Полнота($\models \alpha \Rightarrow \vdash \alpha$). Если высказывание общезначимо, то оно доказуемо.
- **Непротиворечивость.** Множество высказываний Γ (тут может иметься ввиду теория) непротиворечиво, если не существует формулы α такой, что $\vdash \alpha$ и $\vdash \neg \alpha$
- Теорема о дедукции. Пусть имеется Γ, α, β . Утверждение $\Gamma \vdash \alpha \to \beta$ тогда и только тогда, когда $\Gamma, \alpha \vdash \beta$

(если из списка высказываний Γ выводится импликация α и β , то можно перестроить вывод таким образом, что из из Γ, α выводимо β и наоборот)

Доказательство

Лемма 1. $\vdash \alpha \rightarrow \alpha$

$$1. \ \alpha \rightarrow \alpha \rightarrow \alpha \ (sch. \ ax \ 1)$$

2.
$$(\alpha \to \alpha \to \alpha) \to (\alpha \to ((\alpha \to \alpha) \to \alpha)) \to (\alpha \to \alpha)$$
 (sch. ax 2)

3.
$$(\alpha \to ((\alpha \to \alpha) \to \alpha)) \to (\alpha \to \alpha)$$
 (MP 1, 2)

$$4. (\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha))(sch. \ ax \ 1)$$

5.
$$\alpha \rightarrow \alpha \ (MP\ 4,3)$$

• (1 часть) $\Gamma \vdash \alpha \to \beta \Rightarrow \Gamma, \alpha \vdash \beta$. Покажем как перестроить док-во (здесь мы его просто дополним)

Выведем доказательство $\Gamma \vdash \alpha \rightarrow \beta$:

(1).
$$\delta_1$$

. . .

$$(m-1). \ \delta_{m-1}$$

 $(m). \ \alpha o eta$ и дополним это док-во двумя утверждениями\

(m+1). lpha (гипотеза, которая добавилась $(\Gamma, lpha dash eta)$)\

$$(m+2)$$
. $\beta (MP m, m+1)$

• (2 часть) $\Gamma, \alpha \vdash \beta \Rightarrow \Gamma \vdash \alpha \to \beta$. Снова возьмем наше доказательство (только теперь оно доказывает β), также попытаемся перестроить. Наметим план что нам нужно получить и покажем, что мы можем выводить любую формулу из намеченного плана (допишем промежуточные формулы).

План: (навесим на каждую строчку док-ва lpha слева)

(1).
$$\alpha \rightarrow \delta_1$$

. .

$$(m-1). \ \alpha \rightarrow \delta_{m-1}$$

$$(m). \ \alpha \rightarrow \beta$$

Теперь этот план требуется дополнить до полноценного вывода. Будем рассматривать все формулы подряд и перед каждой формулой добавлять некоторое кол-во формул, обосновывающийх соответствующие высказывания. Рассмотрим формулу i, возможны следующий варианты:

- 1. δ_i аксиома или предположение, входящее в Γ . Тогда перед этой формулой вставим формулы δ_i и $\delta_i \to \alpha \delta_i$, и окажется, что i-ая формула выводится из предыдущих двух путем применения MP.
- 2. δ_i совпадает с lpha. Тогда требуемое утверждение выводится при помощи леммы 1.
- 3. δ_i выводится по правилу MP из каких-то других утверждений δ_j, δ_k ($\delta_k := \delta_i \to \delta_j$), где j < i и k < i. Покажем, что $\alpha \to \delta_i$ тоже может быть выведена из $\alpha \to \delta_j$ и $\alpha \to \delta_k$ (нам этого достаточно, тк мы до этого перестроили их док-во).

Для этого добавим 2 высказывания:\

$$(\alpha o \delta_j) o (\alpha o \delta_k) o (\alpha o \delta_i) \ (sch \ ax. \ 2)$$

$$(lpha
ightarrow \delta_k)
ightarrow (lpha
ightarrow \delta_i) \ (MP\ j, \dots)$$

2. Теорема о полноте исчисления высказываний.

• Классическое исчисление высказываний полно.

Полнота($\models \alpha \Rightarrow \vdash \alpha$). Если высказывание общезначимо, то оно доказуемо.

▶ Вспомогательные утверждения

- \circ Лемма 1. Если $\Gamma, \Sigma \vdash \alpha$, то $\Gamma, \Sigma, \Delta \vdash \alpha$. Если $\Gamma, \Sigma, \Delta, \Phi \vdash \alpha$, то $\Gamma, \Delta, \Sigma, \Phi \vdash \alpha$.
 - Доказательство Леммы 1

(1 часть) Тк у нас существует построенный вывод $\Gamma, \Sigma \vdash \alpha$, то при добавлении в список гипотез еще утверждений Δ вывод можно не изменять и оставить таким же, тк мы до этого не использовали добавленные утверждения $\Rightarrow \Gamma, \Sigma, \Delta \vdash \alpha$ верно. (2 часть) Оттого, что мы поменяли местами некоторые гипотезы в списке гипотез, то ход вывода и сами утверждения в нем можно не менять, стоит изменить только ссылки на гипотезы (если они упоминались в самом выводе).

- \circ Лемма 2. Если справедливы три утверждения: $\Gamma \vdash \gamma, \ \Delta \vdash \delta, \ \gamma, \delta \vdash \alpha$, то справделиво и $\Gamma, \Delta \vdash \alpha$
 - ▶ Доказательство Леммы 2

Мы получим требуемый вывод, просто последовательно соединив все три исходных вывода. Первые два вывода будут (очевидно) корретными при допущениях Γ и Δ . В третьем же выводе могут использоваться высказывания Γ и Δ , отсутствующие в

предположениях. Но поскольку эти высказывания доказаны в первых двух частях вывода, мы будем иметь полное право их упоминать — на тех же основаниях, на которых они указаны в конце соответствующих доказательств.

- Лемма 3. Каждое из построенных по таблицам истинности утверждений доказуемо.
 - Доказательство Леммы 3

Доказательство каждого из утверждений стоит провести формально.

Ex:
$$\neg \alpha, \beta \vdash \alpha \rightarrow \beta$$

1.
$$\beta \rightarrow \alpha \rightarrow \beta$$
 (Sch. Ax 1)

2.
$$\beta$$
 (Hypothesis 2)

$$3. \alpha \rightarrow \beta \ (MP \ 1, \ 2)$$

- \circ Лемма 4. (Правило контрапозиции). Каковы бы ни были формулы α,β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
 - ▶ Доказательство Леммы 4

Докажем
$$(\alpha \to \beta)$$
, $\neg \beta \vdash \neg \alpha$

1.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$
 (Sch. Ax. 9)

2.
$$(\alpha \rightarrow \beta)$$
 (Hypothesis 1)

3.
$$(\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha \ (MP\ 2, 1)$$

$$4. \neg \beta \rightarrow \alpha \rightarrow \neg \beta \ (Sch. Ax. 1)$$

5.
$$\neg \beta$$
 (Hypothesis 2)

$$6. \ \alpha \rightarrow \neg \beta \ (MP \ 5, 4)$$

7.
$$\neg \alpha$$
 (MP 6, 3)

И два раза применим дедукцию

- \circ Лемма 5. Правило исключенного третьего. Какова бы ни была формула $\alpha, \vdash \alpha \lor \lnot \alpha$
 - ▶ Доказательство Леммы 5

- 1 часть. Для начала покажем $\vdash \neg(\alpha \lor \neg \alpha) \to \neg \alpha$
 - 1. $\alpha \rightarrow \alpha \vee \neg \alpha$ (Sch. Ax. 6)
 - $2.\dots(n+1)\ \gamma_1,\dots,\gamma_{n-1},(\alpha\to\alpha\vee\neg\alpha)\to\neg(\alpha\vee\neg\alpha)\to\neg\alpha\ (Lemma\ 4\ proof)$

$$(n+2)$$
. $\neg(\alpha \lor \neg \alpha) \to \neg \alpha \ (MP\ 1, n+1)$

- lacktriangle 2 часть. Покажем $\vdash \neg(\alpha \lor \neg \alpha) \to \neg \neg \alpha$
 - 1. $\neg \alpha \rightarrow \alpha \vee \neg \alpha$ (Sch. Ax. 6)

$$2....(n+1) \gamma_1,...,\gamma_{n-1}, (\neg \alpha \rightarrow \alpha \lor \neg \alpha) \rightarrow \neg (\alpha \lor \neg \alpha) \rightarrow \neg \neg \alpha \ (Lemma \ 4 \ proof)$$

$$(n+2)$$
. $\neg(\alpha \lor \neg \alpha) \to \neg\neg\alpha \ (MP\ 1, n+1)$

- 3 часть\
 - $1. \neg (\alpha \lor \neg \alpha) \rightarrow \neg \alpha \ (p \ 1)$
 - $2. \neg (\alpha \lor \neg \alpha) \rightarrow \neg \neg \alpha \ (p \ 2)$

3.
$$(\neg(\alpha \lor \neg \alpha) \to \neg \alpha) \to (\neg(\alpha \lor \neg \alpha) \to \neg \neg \alpha) \to \neg \neg(\alpha \lor \neg \alpha) (Sch. Ax. 9)$$

4.
$$(\neg(\alpha \lor \neg\alpha) \to \neg\neg\alpha) \to \neg\neg(\alpha \lor \neg\alpha) \ (MP\ 1,3)$$

$$5. \neg \neg (\alpha \lor \neg \alpha) (MP 2, 5)$$

6.
$$\neg \neg (\alpha \lor \neg \alpha) \to (\alpha \lor \neg \alpha)$$
 (Sch. Ax. 10)

7.
$$(\alpha \vee \neg \alpha)$$
 $(MP 5, 6)$

- Лемма 6. Исключение допущения. Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$. Тогда также справедливо $\Gamma \vdash \alpha$.
 - ▶ Доказательство Леммы 6

 $\Gamma dash
ho o lpha$ Дедукция.\

 $\Gamma \vdash \neg
ho
ightarrow lpha$ Дедукция.\

- 1. $\rho \rightarrow \alpha$
- $2. \neg \rho \rightarrow \alpha$
- $3. \rho \lor \neg \rho \ (Lemma5)$

4.
$$(\rho \to \alpha) \to (\neg \rho \to \alpha) \to \rho \lor \neg \rho \to \alpha \ (Sch. \ Ax. \ 8)$$

3 MP

 $7. \alpha$

Для доказательства теоремы мы докажем чуть более сильное утверждение — что для любого k от 0 до n и любой оценки переменных x_1,\ldots,x_k справедливо\$\$ \${}^{[x_1]}P_1,..., {}^{[x_k]}P_k\vdash\alpha\$. Нетрудно заметить, что утверждение теоремы непосредственно следует из данного утверждения для k = 0. Доказательство будет вестись индукцией по k = k.

База.

- Классическое исчисление высказываний корректно.
 - ▶ Доказательство корректности КИВ

3. Интуиционистское исчисление высказываний. ВНК-интерпретация. Решётки. Булевы и псевдобулевы алгебры.

- Интуиционистское исчисление высказываний. Чтобы получить ИИВ (Интуиционистское исчисление высказываний) нужно в КИВ (Классическое исчисление высказываний) заменить 10-ю аксиому $(\neg\neg\alpha\to\alpha)$ на $\alpha\to\neg\alpha\to\beta$
 - В интуиционистском исчислении высказываний невозможно доказать правило исключенного третьего: $\alpha \& \neg \alpha$
 - Существует множество способов построить модель для интуиционистской логики: ВНК-интерпретация, Модели Крипке, Топологическая интерпретация...
 - Топологическая интерпретация.

Начнем с множества истинностных значений. Возьмем в качестве этого множества все открытые множества некоторого заранее выбранного топологического пространства. Определим оценку для связок интуиционисткого исчисления высказываний следующим образом:

- $[A\&B] = [A] \cap [B]$
- $\circ \ [A \lor B] = [A] \cup [B]$
- \circ $[A \rightarrow B] = (c[A] \cup [B])^{\circ}$
- \circ $[\neg A] = (c[A])^{\circ}$

Будем считать, что формула истинна в данной модели, если её значение оказалось равно всему пространству.

* Example: возьмем пространство R, и вычислим значение формулы $A \vee \neg A$ при A равном (0,1):

$$[A \vee \neg A] = (0,1) \cup [\neg A] = (0,1) \cup (c(0,1))^\circ = (0,1) \cup ((-\infty,0) \cup (1,\infty)) = (-\infty,0) \cup (0,1) \cup (1,\infty)$$

- ВНК-интерпретация (Brouwer-Heyting-Kolmogorov interpretation). Пусть заданы высказывания α, β , тогда:
 - $\circ \,$ мы считаем $\alpha\&\beta$ доказанным, если у нас есть доказательство α и есть доказательство β
 - мы считаем $\alpha \vee \beta$ доказанным, если у нас есть доказательство α или доказательство β , и мы точно знаем какое
 - $\circ~$ мы считаем $\alpha \to \beta$ доказанным, если из доказательства α мы можем построить доказательство β
 - мы считаем \bot (aka 0) утверждением не имеющим доказательства
 - \circ $\neg \alpha$ есть сокращение $\alpha \to \bot$. Мы считаем $\neg \alpha$ доказанным, если мы умеем из доказательства α получить противоречие
- Решётка. Частично-упорядоченное(рефлексивно, транзитивно, антисимметрично) множество $\langle M, \sqsubseteq \rangle$, в котором, для любых a,b определены две операции:
 - \circ верняя грань a,b: a+b=c, наименьший c, что $a\sqsubseteq c,b\sqsubseteq c$
 - \circ нижняя грань a,b: a*b=c, наибольший c, что $c\sqsubseteq a,c\sqsubseteq b$
 - example: a + b = x, a * b = y

• наименьший и минимальный:\

z-наименьший, если для всех $t \in M: \ z \sqsubseteq t \setminus$

z-минимальный, если нет такого $t \in M: \ t \sqsubseteq z$

example: $z,z^{\prime}:$ никакой не наименьший, но оба минимальные

- Дистрибутивная решетка. Для любых a,b,c: (a+b)*c = a*c+b*c
 - \circ Решетка дистрибутивна т. и т. т., когда при любых a,b,c : a*b+c=(a+c)*(b+c)
- Импликативная решётка. Решетка с псевдодополнением, определённым для любых двух элементов этой решетки
 - $\circ~$ Операция псевдополнения. $c=a \to b$, c это такой наибольший t, что $t*a \sqsubseteq b$
 - В импликативной решетке есть наибольший элемент
- Псевдобулева алгебра (ака алгебра Гейтинга). Импликативная решетка с 0
 - 0 наименьший элемент решетки
 - ▶ Корректность псевдобулевой алгебры для ИИВ

- Булева алгебра. Псевдобулева алгебра, в которой для любых a: a + (a → 0) = 1. \
 Булева алгебра пример классической логики:
 a + (a -> 0) = 1 Закон исключенного третьего, который читается как "Либо альфа, либо не альфа выполнено"
 - ▶ Неполнота классической модели для ИИВ

4. Алгебра Линденбаума. Полнота интуиционистского исчисления высказываний в псевдобулевых алгебрах.

- **Алгебра Линдебаума.** Множество множеств (классов) факторизованных по отношению эквивалентности.
 - Определение. Возьмем множество всех формул ИИВ, тогда:
 - 1. $\alpha \sqsubseteq \beta$, если $\alpha \vdash \beta$
 - 2. $\alpha \approx \beta$, если $\alpha \sqsubseteq \beta$ и $\beta \sqsubseteq \alpha$
- Полнота ИИВ TODO()

5. Модели Крипке. Сведение моделей Крипке к псевдобулевым алгебрам. Нетабличность интуиционистского исчисления высказываний.

- Вообще, очень полезно посмотреть видосики на степике
- Определение
 - 1. Пусть W множество миров. (миры это какие-то множества;
 - 2. $(\preceq) \subseteq W \times W$ отношение частичного порядка на W;
 - 3. (\Vdash) $\subseteq W \times P$ отношение вынужденности, причём если $W_x \preceq W_y$ и $W_x \Vdash X$, то $W_y \Vdash X$, где X переменная. (Мы требуем, чтобы если некоторый мир наследует нашему, то все переменные, которые вынуждены в нашем мире в нем тоже были бы вынуждены)

Тогда
$$< W, (\preceq), (\Vdash) >$$
 - модель Крипке

Как оценить высказывание в модели Крипке?

- Определение
 - 1. $W_k \Vdash P$ задано в модели.
 - 2. $W_k \Vdash \phi \& \psi$ если $W_k \Vdash \phi$ и $W_k \Vdash \psi$
 - 3. $W_k \Vdash \phi \lor \psi$ если $W_k \Vdash \phi$ или $W_k \Vdash \psi$
 - 4. $W_k \Vdash \phi o \psi$ если в любом $W_i: W_k \prec W_i$ из $W_i \Vdash \phi$ следует $W_i \Vdash \psi$
 - 5. $W_k \Vdash \neg \phi$ если в любом $W_i: W_k \preceq W_i$ выполнено $W_i \nVdash \phi$
 - 6. $W_k \not\Vdash \bot$

• Определение

- $\vdash \phi$ в модели W (иначе: $W \models \phi$), если $W_i \vdash \phi$ при всех $W_i \in W$ (Будем говорить, что формула ϕ истинна в данной модели, если она вынуждена в каждом мире этой модели)
- $\models \phi$, если $\vdash \phi$ во всех моделях W (Будем говорить, что формула ϕ общезначима, если она вынуждена во всех моделях)

• Теорема

- Модель Крипке это алгебра Гейтинга
- Табличная модель. Будем говорить, что модель исчисления табличная, если:
 - 1. Задано множество истиностных значений V.
 - 2. Для каждой связки задана функция оценки: $f_\star: V * V o V$ и $f_\lnot: V o V$
 - 3. Среди V выделены некоторые истинные значения \top . Мы считаем, что $\models \alpha$, если $[\alpha] \in \top$ при любых оценках пропозициональных переменных.
 - 4. Модель корректна
 - классическая оценка для исчисления высказываний табличная модель
- ТООО картинки?, ...
- Теорема В интуционистской логике нет полной табличной модели
 - Доказательство

6. Гёделева алгебра. Операция $\Gamma(A)$. Дизъюнктивность интуиционистского исчисления высказываний.

- Гёделева алгебра Алгебра A гёделева, если для любых $a,b\in A$ если a+b=1, то a=1 и b=1.
- Гёдевелизация ($\Gamma(A)$) Добавление элемента, который больше всех

Алгебра с добавлением ω и $1_{\Gamma(A)}.$ Причем если $a\in A$, то $\omega\geqslant a, 1_{\Gamma}(A)\geqslant a$ и $1_{\Gamma}(A)>\omega$

- Дизъюнктивность ИИВ. Если $\vdash \alpha \lor \beta$, то $\vdash \alpha$ или $\vdash \beta$
 - ▶ Доказательство

7. Исчисление предикатов. Общезначимость, следование, выводимость. Теорема о дедукции в исчислении предикатов.

• Определение

- Терм исчисления предикатов (или предметное выражение) это:
 - Предметная переменная маленькая буква начала или конца лат. алфавита, (возможно с индексами или апострофом)
 - Применение функции: если $(\theta_1, \dots \theta_n)$ термы и f функциональный символ (некая функция), то $f(\theta_1, \dots \theta_n)$ тоже терм. (Например константы нульместные функции)

• Определение

- Формула исчисления предикатов это:
 - Если α и β формулы исчисления предикатов, то $\neg \alpha, \alpha \& \beta, \alpha \lor \beta, \alpha \to \beta$ также формула
 - Если α формула, и x предметная переменная, то $\forall x \alpha$ и $\exists x \alpha$ также формулы
 - Применение предиката: если $(\theta_1, \dots \theta_n)$ термы, и P предикатный символ, то $P(\theta_1, \dots \theta_n)$ формула.

• Определение

• Дана некоторая формула s. Будем говорить, что подстрока s_1 строки s является подформулой если она в точности соответствует какому-то одному нетерминалу в дереве разбора строки s.

• Определение

• Если в формулу входит подформула, полученная по правилам для кванторов $(\forall x\alpha, \exists x\alpha)$, то мы будем говорить, что формула α находится в области действия данного квантора по переменной x. Также будем говорить, что любая подформула формулы α находится в области действия данного квантора.

• Определение

• Если некоторое вхождение переменной x находится в области действия квантора по переменной x, то такое вхождение мы назовем **связанным**. Вхождение x непосредственно рядом с квантором назовём **связывающим**. Те вхождения переменных, которые не являются связанными или связывающими назовём **свободными**. Формула не имеющая свободных вхождений переменных называется **замкнутой**.

• Определение

- Будем говорить, что терм θ свободен для подстановки в формулу ψ вместо x, если после подстановки вместо свободных вхождений x ни одно вхождение свободной переменной в θ не станет связанным.
- В исчислении предикатов к схемам аксиом из исчисления высказываний добавляется две схемы аксиом:

Пусть θ свободно для подстановки вместо x

11.
$$\forall x(\psi) \rightarrow (\psi[x := \theta])$$

12. $(\psi[x := \theta]) \rightarrow \exists x(\psi)$

• Правила вывода:

Пусть x не входит свобоно в ϕ , тогда имеют место следующие правила вывода:

$$\frac{(\phi) \rightarrow (\psi)}{(\phi) \rightarrow \forall x(\psi)} \\ \frac{(\psi) \rightarrow (\phi)}{\exists x(\psi) \rightarrow (\phi)}$$

• Определения

• Формула в исчислении предикатов **общезначима**, если она истинна на любом предметном множестве D, при любой оценке предикатных и функциональных символов, и при любых оценках свободных предметных переменных.

- Пусть имеется некоторое исчисление предикатов с множеством аксиом A, и пусть дан некоторый список Γ формул исчисления предикатов. Тогда **вывод** формулы α в исчислении с аксиомами $A \cup \Gamma$ мы назовем выводом из допущений Γ и будем записывать как $\Gamma \vdash \alpha$
- Пусть имеется какое-то предметное множество D, список формул Γ и высказывание α , тогда **следованием** из Γ в α назовем следующее утверждение: если при всех оценках (предикатных, функциональных и тд) в предметном множестве D, где формулы Γ истинны, истинна и α . (мб можно понятнее написать TODO)

• Теорема о дедукции

Если $\Gamma, \alpha \vdash \beta$, и в доказательстве отсутствуют применения правил для кванторов, использующих свобоные применения правил для кванторов, использующих свободные переменные из формулы α , то $\Gamma \vdash \alpha \to \beta$. Обратно, если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$

- Доказательство
- Исчисление предикатов корректно, т.е любое доказуемое утверждение общезначимо
 - Доказательство

8. Непротиворечивые множества формул. Доказательство существования моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.

- **Непротиворечивое множество формул.** Назовем Γ множество замкнутых формул непротиворечивым, если ни для какой формулы α невозможно показать, что $\Gamma \vdash \alpha$ и $\Gamma \vdash \neg \alpha$
- **Def.** Полным непротиворечивым множеством (непротиворечивым бескванторным множеством) формул назовем такое множество Γ , что для любой замкнутой (замкнутой и бескванторной) формулы α либо $\alpha \in \Gamma$, либо $(\neg \alpha) \in \Gamma$
- **Lemma.** Пусть Γ полное непротиворечивое множество бескванторых формул. Тогда существует модель для Γ .
 - Доказательство

9. Теорема Гёделя о полноте исчисления предикатов. Доказательство полноты исчисления предикатов.

• Определение

• Назовём формулу α формулой с поверхностными кванторами, если существует такой узел в дереве разбора формула, не являющийся квантором, ниже которого нет ни одного квантора, а выше - нет ничего кроме кванторов. (Например: $\forall x \exists y \forall z (P(x,y,z) \& P(z,y,x))$

• Лемма

Для любой формулы исчисления предикатов найдётся эквивалентная ей формула с поверхностными кванторами.

- Доказательство
- Теорема Гёделя о полноте исчисления предикатов.

Пусть Γ - непротиворечивое множество формул исчисления предикатов. Тогда существует модель для Γ .

Доказательство

• Теорема

Если $\models \alpha$, то $\vdash \alpha$

Доказательство

10. Теории первого порядка, структуры и модели. Аксиоматика Пеано. Арифметические операции. Формальная арифметика.

- **Теория первого порядка.** Теорией первого порядка назовем исчисление предикатов с дополнительными ("нелогическими" или "математическими")
 - предикатными и функциональными символами
 - аксиомами\
 сущности, взятые из исходного исчисления высказываний, назовём логическими.
- Структура. Структурой теории первого порядка мы назовем упорядоченную тройку $\langle D, F, P \rangle$, где $F = \langle F_0, F_1 \dots \rangle$ списки оценок для 0-местных, 1-местных и тд функций, и $P = \langle P_0, P_1 \dots \rangle$ списки оценок для 0-местных, 1-местных и тд предикатов, D предметное множество.
 - ▶ Небольшое пояснение
- **Def.** Назовем структуру корректной, если любая доказуемая формула истинна в данной структуре.
- Модель. Модель теории любая корректная структура
- **Аксиоматика Пеано.** Рассмотрим некоторое множество N. Будем говорить, что оно удовлетворяет аксиомам Пеано, если выполнено:
 - \circ В нем существует некоторый выделенный элемент $0 \ (0 \in N)$
 - $\circ~$ Для каждого элемента определена операция ' , результат ее также принадлежит множеству N~(N o N)

Кроме того, эти элементы и операция к этим элементам должны удовлетворять следующим требованиям:

- \circ Не существует такого $x\in N$, что x'=0 (Нет предшественника у минимального элемента)
- \circ Если при x и y из N верно, что x'=y', то x=y. Если x=y', то x назовем следующим за y, а y предшествующим x (определение операции y')
- \circ Каково бы ни было свойство ("предикат") $P: N \to V$, если:
 - выполнено P(0)
 - при любом $x\in N$ из $P(x)\Rightarrow P(x')$ то при любом $x\in N$ выполнено P(x) (Индукция)
- Формальная арифметика. (формализация аксиоматики Пеано) формальная арифметика теория первого порядка, со следующими добавленными нелогическими:
 - двуместными функциональными символами (+),(*), одноместным функциональным символом ('), нульместным функциональным символом 0;
 - двуместным предикатным символом (=);
 - восемью аксиомами:
 - (A1) a=b
 ightarrow a=c
 ightarrow b=c (транзитивность равенства)
 - $lacktriangledown (A2) \ a=b
 ightarrow a'=b'$ (инъективность штриха)
 - $(A3) \ a' = b' \to a = b$ (инъективность штриха)

- $(A4) \neg a' = 0$ (у нуля нет предшественников)
- (A5) a + 0 = a (определение сложения)
- (A6) a = b' = (a+b)' (определение сложения)
- $(A7) \ a*0 = 0$ (определение умножения)
- $(A8) \ a*b' = a*b+a$ (определение умножения)
- схемой аксиом индукции

$$\psi[x:=0]\&(orall x.\,(\psi o\psi[x:=x'])) o\psi$$

• Еще один пример теории первого порядка.

Теория групп. К исчислению предикатов добавим двуместный предикат (=), двуместную функцию (*), одноместную функцию x^{-1} , нульместную функцию 1 и следующие аксиомы:

- ullet (E1) a=b
 ightarrow a=c
 ightarrow b=c
- $(E2) \ a = b \rightarrow (a * c = b * c)$
- $\circ \ (E3) \ a = b \rightarrow (c*a = c*b)$
- \circ (G1) a * (b * c) = (a * b) * c
- \circ (G2) a * 1 = a
- $(G3) a * a^{-1} = 1$

11. Примитивно-рекурсивные и рекурсивные функции. Функция Аккермана. Примитивная рекурсивность арифметических функций, функций вычисления простых чисел, частичного логарифма.

- Примитивы:
 - 1. Ноль. $Z: \mathbb{N}_0 \to \mathbb{N}_0, Z(x) = 0$
 - 2. Инкремент. $N:\mathbb{N}_0 o \mathbb{N}_0, N(x)=x'$
 - 3. Проекция. $V_i^n:\mathbb{N}_0 o\mathbb{N}_0, V_i^n(x_1,\ldots,x_n)=x_i$
 - 4. Подстановка. Если $f:\mathbb{N}_0^n o\mathbb{N}_0$ и $g_1,\dots,g_n:\mathbb{N}_0^m o\mathbb{N}_0$, то $S\langle f,g_1,\dots,g_n\rangle:\mathbb{N}_0^m o\mathbb{N}_0$, при этом:

$$S\langle f,g_1,\ldots,g_n\rangle(x_1,\ldots,x_m)=f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m))$$

5. Примитивная рекурсия. Если $f:\mathbb{N}_0^n o\mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o\mathbb{N}_0$, то $R\langle f,g\rangle:\mathbb{N}_0^{n+1} o\mathbb{N}_0$, при этом

$$R\langle f,g
angle(x_1,\ldots,x_n,y)=\left\{egin{aligned} f(x_1,\ldots,x_n),y=0\ g(x_1,\ldots,x_n,y-1,R\langle f,g
angle(x_1,\ldots,x_n,y)),y>0 \end{aligned}
ight.$$

6. Минимизация. Если $f:\mathbb{N}_0^{n+1} o\mathbb{N}_0$, то $\mu\langle f
angle:\mathbb{N}_0^n o\mathbb{N}_0$, при этом

$$\mu\langle f
angle(x_1,\ldots,x_n)=$$
 такое минимальное число $y,$ что $f(x_1,\ldots,x_n,y)=0.$ Если такого y нет , то результат примитива неопределен

- Примитивно-рекурсивная функция. Функция называется примитивно-рекурсивной, если возможно построить выражение только из первых пяти примитивов, такое, что оно при всех аргументах возвращает значение, равно значению требуемой функции.
- **Рекурсивная функция.** Если функция может быть выражена только из 6 примитивов, то она называется рекурсивной.
- Функция Аккермана. Рекурсивна, но не примитивно-рекурсивна

$$A(m,n) = \left\{egin{aligned} n+1, \ \mathtt{ec} \pi \mathtt{i} & m=0 \ A(m-1,1), \ \mathtt{ec} \pi \mathtt{i} & m>0, n=0 \ A(m-1,A(m,n-1)), \ \mathtt{ec} \pi \mathtt{i} & m>0, n>0 \end{aligned}
ight.$$

- Доказательство
- **Проверка числа на простоту.** Функция проверки числа на простоту примитивнорекурсивна.
- ► Haskell code

```
eq :: [Int] -> Int
eq = s if' [s lower [u 1, u 2], z, s if' [s lower [u 2, u 1], z, one]]

primef :: [Int] -> Int
primef = s z [u 1]

primeg :: [Int] -> Int
primeg = s if' [s eq [u 2, one], one, s if' [s modhs [u 1, u 2], s prodhs
[one, u 3], z]]

prime :: [Int] -> Int
prime = sr (r . (,,) primef primeg) [u 1, u 1]
```

- Частичный логарифм. Частичный логарифм примитивно-рекурсивен.
- ► Haskell code

```
div2while0h :: [Int] -> Int
div2while0h = s if' [s eq [s div2 [u 1], z], u 2, s div2while0' [s div2 [u
1], s plus [u 2, one], z]]

div2while0' :: [Int] -> Int
div2while0' = sr (r . (,,) div2while0h z) [u 1, u 2, z]

div2while0 :: [Int] -> Int
div2while0 = s div2while0' [u 1, one]

plogkh :: [Int] -> Int
plogkh = s z [u 1]

plogkg :: [Int] -> Int
plogkg = s if' [s eq [s modhs [u 1, s powhs [u 2, u 3]], z], u 3, u 4]

plogk :: [Int] -> Int
plogk = sr (r . (,,) plogkh plogkg) [u 1, u 2, s plus [s div2while0 [u 1], one]]
```

12. Выразимость отношений и представимость функций в формальной арифметике. Представимость примитивов N, Z, S, U в формальной арифметике.

• Выразимое отношение. Отношение R называется выразимым (в формальной арифметике), если существует такая формула $\alpha(x_1,\dots x_n)$ с n свободными переменными, что для любых натуральных чисел k_1,\dots,k_n

```
1. если (k_1,\ldots,k_n)\in R, то доказуемо \alpha(\overline{k_1},\ldots,\overline{k_n}) 2. если (k_1,\ldots,k_n)
otin R, то доказуемо \neg\alpha(\overline{k_1},\ldots,\overline{k_n})
```

- **Представимость.** Функция f от n аргументов называется представимой в формальной арифметике, если существует такая формула $\alpha(x_1,\ldots,x_{n+1})$ с n+1 свободной переменной, что для любых натуральных k_1,\ldots,k_n :
 - 1. $f(k_1,\ldots,k_n)=k_{n+1}$ тогда и только тогда, когда доказуемо $lpha(\overline{k_1},\ldots,\overline{k_{n+1}})$
 - 2. Доказуемо $\exists ! b. \, \alpha(\overline{k_1}, \ldots, \overline{k_n}, \overline{b}),$

где
$$\exists ! y. \, \alpha(y) = (\exists y. \, \alpha(y)) \& \forall a. \, \forall b. \, \alpha(a) \& \alpha(b) o a = b$$

- Вспомогательные утверждения.
 - ▶ Spoiler

Для любого выводимого выражения мы можем составить этот же вывод с другими переменными, пусть $T:=0=0 \to 0=0 \to 0=0$ (sch.ax.1) : \

$$Lemma\ 1) \vdash P[x := \Theta] \setminus$$

1.
$$P \rightarrow T \rightarrow P$$
 (sch.ax.1)\

 $1.5\ P$ (тк это выводимое утверждение) \

$$2.\ T
ightarrow P$$
 (MP 1, 1.5) \

 $3.\ T o orall x.\ (P)$ (по правилу вывода(2) можно ввести кванторы по переменным внутри P, если эти переменные не входят свободно в T, что верно по построению) \

$$3.5 T$$
 (sch.ax.1) \

4.
$$\forall x. (P) \text{ (MP 3.5, 3) }$$

5. $(\forall x.\,(P)) \to (P[x:=\Theta])$ (по sch.ax.11 можно заменить переменные по кванторам внутри P) \

$$6.(P[x := \Theta]) \text{ (MP 4,5)}$$

Lemma 2)
$$a = b \vdash b = a$$

1.
$$a = b$$
 (Hypothesis 1)

$$2.\ a=a\ ($$
нетрудно показать по Лемме $1)$

3.
$$a = b \to a = a \to b = a \, (Ax. \, 2 \, (FA))$$

$$4. b = a (2 MP from 3)$$

• Представимость примитива Z (Ноль). Примитив Z представим в ФА

$$\psi(x_1,x_2):=x_1=x_1\&x_2=0$$

▶ Доказательство

Возьмем формулу $\psi(x_1,x_2):=x_2=0$. Более формально: $\psi(x_1,x_2):=x_1=x_1\&x_2=0$, тк формула с какими-то параметрами требует начилие этих параметров в кач-ве свободных переменных.

Теперь покажем представимость ((1)докажем эту формулу и (2) покажем, что выполняется только при одном аргументе).

(1)
$$y = 0 \vdash (x = x) \& (y = 0)$$

$$1. y = 0 (Hypothesis 1)$$

$$2. \ x = x \ ($$
нетрудно показать по лемме $1)$

3.
$$x = x \rightarrow y = 0 \rightarrow (x = x) \& (y = 0)$$
 (Sch. Ax. 5)

4.2MP

(2)
$$\vdash \exists_1 y. \, \psi(x,y)$$
, $\exists y. \, (x=x) \& (y=0)$ доказано по пред пункту + $Sch. \, Ax \, 12$, тогда осталось доказать $\forall a. \, \forall b. \, ((x=x) \& (a=0)) \& ((x=x) \& (b=0)) \to a=b$

1.
$$((x = x)\&(a = 0))\&((x = x)\&(b = 0))$$
 (Hypothesis 1)

2.
$$((x = x)\&(a = 0))$$
 (Sch. Ax. 3 (from 1) + MP)

3.
$$((x = x)\&(b = 0))$$
 (Sch. Ax. 4 (from 1) + MP)

$$4. a = 0 (Sch. Ax 4 (from 2) + MP)$$

5.
$$b = 0$$
 (Sch. Ax 4 (from 3) + MP)

$$6.\ 0 = a \rightarrow 0 = b \rightarrow a = b \ (Ax\ 2\ (FA))$$

$$7.0 = a (лемма 2)$$

$$8.0 = b$$
 (лемма 2)

9.
$$a = b (2 MP from 6)$$

10. Дедукция

11. Навешивание кванторов по Лемме 1 (ПОЛОВИНА ЛЕММЫ)

- Представимость примитива N (Инкремент). Примитив N представим в ФА. $\alpha(x_1,x_2):=x_2=x_1'$
 - Доказательство

Возьмем формулу: $lpha(x_1,x_2):=x_2=x_1'$. Покажем представимость. TODO()

• Представимость примитива U (Проекция). Примитив U представим в ФА $\beta(x_1,\ldots,x_{n+1}):=(\&_{i\neq k}x_i=x_i)\&x_k=x_{n+1}$

Доказательство

Возьмем формулу: $\beta(x_1,\ldots,x_{n+1}):=x_k=x_{n+1}$, формальнее: $\beta(x_1,\ldots,x_{n+1}):=(\&_{i\neq k}x_i=x_i)\&x_k=x_{n+1}$. Покажем представимость. Доказательство почти такое же как с примитивом Z, единственная проблема, это большое кол-во конъюнкий (но они все очевидно доказуемы).

• Представимость примитива S (Подстановка). Пусть функции f,g_1,\ldots,g_k представимы в ФА. Тогда $S\langle f,g_1,\ldots,g_k\rangle$ представим в ФА $\exists g_1\ldots\exists g_k. \phi(g_1,\ldots,g_k,x_{n+1})\&\gamma_1(x_1,\ldots,x_n,g_1)\&\ldots\&\gamma_k(x_1,\ldots x_n,g_k)$

Доказательство

Пусть f,g_1,\ldots,g_k представляются формулаии $\phi,\gamma_1,\ldots\gamma_k$. Тогда $S\langle f,g_1,\ldots,g_k \rangle$ будет представлена формулой:

$$\exists g_1 \dots \exists g_k . \phi(g_1, \dots, g_k, x_{n+1}) \& \gamma_1(x_1, \dots, x_n, g_1) \& \dots \& \gamma_k(x_1, \dots, x_n, g_k)$$

Суть. У нас есть выражения γ_i , которые истинны, когда последний аргумент есть результат применения функции g к первым аргументам x_i , но как взять результаты мы не знаем, при этом зная, что они существуют (потому что функции f, g_i представимы и дают какой-то результат) поэтому навешиваем квантор существования.

- 1. Подаем x_i
- 2. Угадываем результаты промежуточные результаты с помощью квантора существования
- 3. Подставляем в формулу ϕ промежуточные результаты, а x_{n+1} результат всей подстановки S

Формальное док-во???

13. Бета-функция Гёделя. Представимость примитивов R и M и рекурсивных функций в формальной арифметике.

• eta-функция Гёделя. eta(b,c,i) := b%(1+(i+1)*c)

Здесь b,c параметры, а i - какой-то элемент последовательности. Ака b,c определяют что за массив, а i говорит о каком-то индексе.

▶ Представление бета-функции в ФА

eta-функция Гёделя представима в ФА формулой: $eta(c,d,i,d) := \exists q.\, (b=q*(1+c*(i+1))+d)\&(d<1+c*(i+1)) \land$ Деление b на x с отстатком: найдутся частное (q) и остаток (d), что b=q*x+d и $0\leq d< x$

Доказать формально???

Теорема. Китайская теорема об остатках (вариант формулировки):

если u_0, \dots, u_n - попарно взаимно-просты, и $0 \leq a_i < u_i$, то существует такой b, что $a_i = b\% u_i$

Теорема. Главное свойство β -функции.

Если $a_0,\dots,a_n\in\mathbb{N}_0$, то найдутся такие $b,c\in\mathbb{N}_0$, что $a_i=eta(b,c,i)$

Доказательство

Положим $c = max(a_0, \dots, a_n, n)!$ и $u_i = 1 + c * (i+1)$.

- 1. Покажем нод $(u_i,u_j)=1$, если $i\neq j$. Доказательство от противного. Пусть p-простое, u_i делится на p и u_j делится на p (i< j). Заметим, что $u_j-u_i=c*(j-i)$. Значит, c делится на p или (j-i) делится на p. Тк $j-i\leq n$, то c делится на (j-i), поэтому если и j-i делится на p, то все равно c делится на p. Но и 1+c*(i+1) делится на p, отсюда 1 делится на p что невозможно.
- 2. $0 \le a_i < u_i$. Очевидно из определения.

Условие китайской теоремы выполняется и найдется b, что:

$$a_i = b\%(1 + (i+1)*c) = \beta(b, c, i)$$

• Представимость примитива R (Примитивная рекурсия). Примитив R представим в ФА. примитив $R\langle f,g\rangle$ представим в ФА формулой $\rho(x_1,\ldots,x_n,y,a)$:

$$egin{aligned} \exists b. \ \exists c. \ (\exists a_0. \ eta(b,c,0,a_0)\&\phi(x_1,\ldots,x_n,a_0)) \ \&orall k. \ k < y &
ightarrow \exists d. \ \exists e. \ eta(b,c,k,d)\η(b,c,k',e)\&\gamma(x_1,\ldots,x_n,k,d,e) \ \η(b,c,y,a) \end{aligned}$$

Доказательство

Начнем с понимания определения примитивной рекурсии. Это цикл, который многократно вызывает функции в процессе вычисления. Соответственно, чтобы удостовериться в том, что цикл действительно правильно выполняется, нам надо запомнить каждую итерацию и проверить, что она действительно получается из предыдущей. Следовательно надо научиться строить длинные списки и каким-то образом научиться их представлять в рамках атуральных чисел.

Пусть $f:\mathbb{N}_0^n \to \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами ϕ и γ . Зафиксируем $x_1,\dots,x_n,y\in\mathbb{N}_0$

Шаг вычисления	Обозначение	Утверждение в ФА
$R\langle f,g angle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$	a_0	$\vdash \phi(\overline{x_1},\ldots,\overline{x_n},\overline{a_0})$
$R\langle f,g angle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0)$	a_0	$\vdash \gamma(\overline{x_1},\ldots,\overline{x_n},\overline{a_1})$
$R\langle f,g angle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,y-1,a_{y-1}$	a_y	$\vdash \gamma(\overline{x_1},\ldots,\overline{x_n},\overline{a_y})$

По свойству β -функции, найдутся b и c, что $\beta(b,c,i)=a_i$ для $0\leq i\leq y$

Таким образом примитив $R\langle f,g \rangle$ представимв Φ А форму лой \rho(x_1,...,x_n,y,a)\$:

$$\exists b. \exists c. (\exists a_0. \beta(b, c, 0, a_0) \& \phi(x_1, \dots, x_n, a_0))$$

$$\& \forall k. \ k < y \rightarrow \exists d. \ \exists e. \ \beta(b,c,k,d) \& \beta(b,c,k',e) \& \gamma(x_1,\ldots,x_n,k,d,e)$$

 $\&\beta(b,c,y,a)$

Пояснение.

1 строка. b,c просто параметры. 1 скобка. Есть значение a_0 , которое с одной стороны, является запомненным значением β -функции Гёделя с 0 значением, с другой стороны явяется значением применения функции f к аргументам x_i .

2 строка. Промежуточные значения задаются формулой γ . Бета-функция от двух соседних элементов равно d,e соответсвенно и результат применение γ from x_i and d=e 3 строка. Последний элемент данного выражения есть последний элемент бета-функции Гёделя

Формальное доказательство???

- Представимость примитива M (Минимизация). Примитив M представим в ФА. Пусть функция $f:\mathbb{N}_0^{n+1} \to \mathbb{N}_0$ представима в ФА формулой $\phi(x_1,\dots,x_n,y)$. Тогда примитив $M\langle f \rangle$ представим в ФА формулой:
 - Доказательство
- Представимость рекурсивных в формальной арифметике. Рекурсивные функции представимы в формальной арифметике (индукция по длине док-ва)
 - Доказательство

символов:

14. Гёделева нумерация. Рекурсивность представимых в формальной арифметике функций.

- Гёделева нумерация. Будем называть Гёделевой нумераций следующую конструкцию. Пусть $\langle a_0,\dots,a_{n-1}\rangle$ -некоторый список положительных натуральных чисел. Пусть p_i -простое число номер i, тогда Гёделева нумерация этого списка: \$\ulconner\langle a_0,...,a_{n-1}\rangle\urcorner=2^{a_0}\ast 3^{a_1}\ast...\ast p_{n-1}^{a_{n-1}}\$
- Также мы можем составить Гёделеву нумерацию для всей программы, в тч для отдельных

Номер	Символ
\$3\$	(
\$5\$)
\$7\$	1
\$9\$	
\$11\$	\$\neg\$
\$13\$	\$\rightarrow\$
\$15\$	\$\lor\$
\$17\$	\$\&\$
\$19\$	\$\forall\$
\$21\$	\$\exist\$
\$23\$	\$\vdash\$
\$25+6k\$	\$x_k\$
\$27+6\ast 2^k\ast 3^n\$	\$f_k^n\$
\$29+6\ast 2^k\ast 3^n\$	\$p_k^n\$

- Рекурсивность функций представимых в ФА. Функции, представимые в ФА, рекурсивны.
 - Доказательство

15. Непротиворечивость и ω -непротиворечивость. Первая теорема Гёделя о неполноте арифметики, её неформальный смысл.

- **Непротиворечивость.** Формальная арифметика непротиворечива, если нет формулы α , что $\vdash \alpha$ и $\vdash \neg \alpha$
- ω -непротиворечивость. Формальная арифметика ω -непротиворечива, если для любой формулы $\rho(x)$, что
 - \$\vdash\phi(\overline{p})\$ при всех \$p\in\N_0\$ выполено \$\nvdash\exist p.\neg\phi(p)\$
 - (менее фомально) пусть $\$ \vdash\phi(\overline{0}),\vdash\phi(\overline{1})\$... Значит, z нет p, что $\$ \vdash\neg\phi(p)\$
- Первая теорема Гёделя о неполноте арифметики.

Теорема. Существует формула \$\omega_1\$ со своодными переменными \$x_1,x_2\$ такая, что:

- 1. $\$ \vdash\omega_1(\overline{\ulcorner\phi\urcorner},\overline{p})\$, если p гёделев номер доказательства самоприменения ϕ
- 2. \$\vdash\neg\omega_1(\overline{\ulcorner\phi\urcorner},\overline{p})\$ иначе

Доказательство

Теорема Гёделя

- Если формальная арифметика непротиворечива,то \$\nvdash\sigma(\overline{\ulcorner\sigma\urcorner})\$
- Если формальная арифметика ω -непротиворечива,то $\$ \nvdash\neg\sigma(\overline{\ulcorner\sigma\urcorner})\$

 $s\simeq (x,p)$: $\simeq (x,p)$

Теорема \$\models\sigma(\overline{\ulcorner\sigma\urcorner})\$ В стандартной интерпретации формальной арифметики: \$D=\N_0,a'=a+1\$ и тд.

Доказательство

16. Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера, её неформальный смысл. Формулировка второй теоремы Гёделя о неполноте арифметики, \$Consis\$. Неформальное пояснение метода доказательства.

- Первая теорема Гёделя в форме Россера.
 - def. \$W_2(x,p)=1\$, если p-доказательство отрицания самоприменения.
 - Лемма. Существует формула \$\omega_2\$, что
 \$\vdash\omega_2(\overline{x},\overline{p})\$, если \$W_2(x,p)=1\$, иначе
 \$\vdash\neg\omega_2(\overline{x},\overline{p})\$
 - Теорема. Пусть \$\alpha(x):=\forall p.\omega_1(x,p)\rightarrow\exist q.q<p\&\omega_2(x,q)\$,
 тогда \$\nvdash \alpha(\overline{\ulcorner\alpha\urcorner})\$ и \$\nvdash\neg
 \alpha(\overline{\ulcorner\alpha\urcorner})\$

Описание. Мы говорим, что если p является доказательством самоприменения x, то найдется доказательство q, причем, с меньшим Гёделевым номером, чем p, который является док-вом отрицания самоприменения x. Тогда не доказуемо ни самоприменение α , ни отрицание самоприменения.

Менее формальное определение теоремы. Если существует доказательство самоприменения α , то существует и доказательство отрицания самоприменения α , причем с меньшим номером

TODO (степик лег)