Lieferschein / Delivery Note

SIEMENS

Siemens AG CT SR SI Otto-Hahn-Ring 6 81739 München

Continental Teves AG & CO. oHG Frankfurt Hauptverwaltung Hr. Kilb QPF. Geb. 20/5.068/H.-L.Ross Guerickestr. 7 60488 Frankfurt am Main

Banf-Nr. / tracking no. 11072364 Datum / date 2005-03-11		thr Ruf / your telephone +49 69 7603-3270 thr Fax / your fax +49 69 7603-3947	69 7603-3270 2005-03-		
Org-ID / Customer no. 23019920		Bestellnummer / Order no. 44224675 0002 YK1 SN 29500		Positionanr. / Order position no.	
			Unsere Abteilung / our department CT SR SI	Name / name Oliv	Durchwahl / telephone +49 89 636-40682
Position / Item	Menge / Quantity	SN 29500-3 Ausgabe: 200 Sprache: de/e)4-12		

Hinweis:

Das Normungs-Informationssystem NORIS-Web von CT SR SI, bietet Ihnen Infomationen und Service zu allen Normen und Technischen Regeln sowie zu Firmencodes. Sie können NORIS-Web erreichen unter http://nweb.mchp.siemens.de/

Note:

The CT SR SI standard information system NORIS-Web offers you informations and services regarding all standards and technical regulations as well as company codes. You can find us at: http://nweb.mchp.siemens.de/

SIEMENS

SIEMENS NORM **SN 29500-3**

Ausgabe / Edition 2004-12

ICS 31.020

Deskriptoren: Ausfallrate, Bauelement, Erwartungswert, Halbleiter Descriptors: Failure rate, component, expected value, semiconductor Ersatz für Ausgabe 1997-07 Supersedes Edition 1997-07

Ausfallraten Bauelemente

Teil 3: Erwartungswerte von Diskreten Halbleitern

Failure rates of components

Part 3: Expected values for discrete semiconductors

Fortsetzung Seite 2 bis 13 Continued on pages 2 to 13 SN 29500-3 : 2004-12

In Zweifelsfällen ist der deutsche Originaltext als maßgebend heranzuziehen.

In Übereinstimmung mit der gängigen Praxis in Normen der Internationalen Elektrotechnischen Kommission (IEC) und der Internationalen Organisation für Normung (ISO), wird in dieser Norm auch im englischen Text das Komma als Dezimalzeichen verwendet.

Frühere Ausgaben

1984-09; 1992-04; 1997-07

Änderungen

Gegenüber der Ausgabe Juli 1997 wurden folgende Änderungen durchgeführt:

- Aktualisierung der Ausfallratenwerte
- redaktionelle Überarbeitung.

Table 2

Table 3

4.1

4.2

4.3

4.4

5 6

In case of doubt the German language original should be consulted as the authoritative text.

In keeping with current practice in standards published by the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO), a comma has been used throughout as the decimal marker.

Earlier Editions

1984-09; 1992-04; 1997-07

Amendments

Compared to the July 1997 edition, the following amendments have been introduced:

- update of the failure rates
- editorial revision.

Inhalt	5	Seite
1	Anwendungsbereich	3
2	Referenzbedingungen	
3	Erwartungswerte bei Referenzbedingungen Tabelle 1 Ausfallraten für Transistoren Tabelle 2 Ausfallraten für Dioden	4
	Tabelle 3 Ausfallraten für Leistungshalbleiter	
4	Umrechnung von Referenz- auf Betriebsbedingungen	
4.1	Spannungsabhängigkeit, Faktor π_0	
4.2	Temperaturabhängigkeit, Faktor π_1	
4.3	Driftempfindlichkeit, Faktor π_{D}	10
4.4	Aussetzbetrieb, Faktor π_W	10
5	Einfluss von Impulsbetrieb	11
6	Frühausfallphase	
	Anhang A: Symbole	
	Zitierte Normen	
Contents	: ·	Page
1	Scope	3
2	Reference conditions	
3	Expected values under reference conditions Table 1 Failure rates for transistors	4 4

Effect due to pulsed operation11

Seite / page 3 SN 29500-3 : 2004-12

1 Anwendungsbereich

Diese Norm ist für Zuverlässigkeitsberechnungen von Erzeugnissen anzuwenden, in denen Diskrete Halbleiter eingesetzt werden.

Sie ergänzt SN 29 500 Teil 1 "Allgemeines".

Die in dieser Norm angegebenen Ausfallraten gelten, wenn nichts anderes angegeben, für bedrahtete und SMT-Bauelemente (Surface Mounted Technology).

2 Referenzbedingungen

Ausfallkriterien

Totalausfälle und solche Änderungen von Hauptmerkmalen, die in der Mehrzahl der Anwendungen zum Ausfall führen.

Zeitbereich

Betriebszeit > 1000 Stunden

Betriebsspannung

50% der maximal zulässigen Spannung für Transistoren

Sperrschichttemperatur 1

Siehe Tabellen 1 bis 3 ($\theta_{i,1}$)

Mittlere Umgebungstemperatur ²

 $\theta_{\text{U,ref}} = 40 \, ^{\circ}\text{C}$

Einsatzart

Die angegebenen Ausfallraten gelten für den Einsatz der Geräte in folgenden Umweltbedingungen nach DIN IEC 60721 Teile 3-1, 3-2, und 3-3:

Klima ³	3K3
mechanische Einflüsse	3M3
chemische Einflüsse	3C2
Sand und Staub	3S2

Es wird dabei vorausgesetzt, dass die Bauelemente nicht durch Überschreiten der folgenden Bedingungen bei Transport und Lagerung vorgeschädigt werden.

Transport:	Klima	2K4
•	mechanische Einflüsse	2M2
	chemische Einflüsse	2Ç2
	Sand und Staub	2S2
Lagerung:	Klima	1K5
	mechanische Einflüsse	1M3
	chemische Einflüsse	1C2
	Sand und Staub	1S2

Die im Abschnitt 3 angegebenen Ausfallraten gelten auch für hiervon abweichende Bedingungen, wenn der Einfluss durch konstruktive Maßnahmen kompensiert werden kann.

Betriebsart 2

Dauerbetrieb mit gleich bleibender Beanspruchung.

1 Scope

This standard is to be used for reliability calculations on products in which discrete semiconductors are used. It supplements SN 29500 Part 1 "General".

If nothing to the contrary is noted, then the failure rates stated in this standard apply to wired and SMT components (Surface Mounted Technology).

2 Reference conditions

Failure criterion

Complete failures and changes of major parameters leading to failure in the majority of applications.

Time interval

Operating time > 1000 hours

Operating voltage

50% of the maximum permissible voltage for transistors

Junction temperature 1

See Tables 1 to 3 ($\theta_{i,1}$)

Mean ambient temperature 2

 $\theta_{\mathrm{U,ref}} = 40~\mathrm{^{\circ}C}$

Description of environment

The failure rates stated apply to the use of equipment under the following environmental conditions according to IEC 60721 Parts 3-1, 3-2, and 3-3:

climatic conditions 3	class 3K3
mechanical stresses	class 3M3
chemical influences	class 3C2
sand and dust	class 3S2

It is assumed that the components were not damaged during transport and storage due to conditions exceeding those stated below.

Transportation:	climatic conditions mechanical stresses chemical influences	class 2K4 class 2M2 class 2C2
Storage:	sand and dust climatic conditions	class 2S2 class 1K5
	mechanical stresses chemical influences	class 1M3 class 1C2
	sand and dust	class 1S2

The failure rates stated in clause 3 also apply if the conditions deviate from those specified, provided that compensation can be made by design measures.

Operating mode ²

Continuous duty under constant stress.

¹ Für die Bestimmung der Sperrschichttemperatur $\theta_{j,1}$ wurden die mittlere Umgebungstemperatur θ_{l} =40 °C und, wenn nichts anderes angegeben, freie Konvektion zugrunde gelegt.

For determining the junction temperature $\theta_{j,1}$ the mean ambient temperature θ_0 =40 °C and, if nothing else to the contrary has been stated, free convection were used.

² Siehe SN 29500 Teil 1 / See SN 29500 Part 1

³ Die Temperaturabhängigkeit der Ausfallrate ist zu berücksichtigen / Temperature dependence of the failure rate to be considered.

SN 29500-3: 2004-12

3 Erwartungswerte bei Referenzbedingungen

Die Ausfallraten λ_{ref} in den Tabellen 1, 2 und 3 sind bei Betrieb unter den angegebenen Referenzbedingungen (siehe Abschnitt 2) als Erwartungswerte für den angegebenen Zeitbereich und für die Gesamtheit der Lose zu verstehen. Im Rahmen der Wertestreuung kann in extremen Einzellosen etwa der fünffache Betrag des betreffenden Erwartungswertes auftreten.

3 Expected values under reference conditions

The failure rates λ_{ref} stated in Tables 1, 2 and 3 should be understood for operation under the stated reference conditions (see clause 2) as expected values for the stated time interval and the entirety of lots. Within the scope of the variations of values, in exceptional lots, the actual value may differ from the expected by a factor of up to five.

Tabelle 1 Ausfallraten für Transistoren Table 1 Failure rates for transistors

Transistortyp / Type of trans	sistor	λ _{ref} in FIT	θ _{j,1} in ^o C
Allgemein / common	NF / Low frequency		
Bipolar, universal 1)	z.B. / e.g. TO18, TO92, SOT(D)(3)23 oder ähnliche / or similar	3	55
Transistor-Arrays ¹⁾ Transistor arrays ¹⁾		12	55
Bipolar-Kleinleistung, Bipolar, low power	z.B. / e.g. TO5, TO39 SOT223, SO8, SMA-SMC	20	85
Bipolar, Leistung, Bipolar, power	z.B. / e.g. TO3, TO220, D(D)-Pack	60	100
FET	Sperrschicht / junction MOS	5 5	55
MOS, Leistung / power (SI	PMOS), z.B. / e.g. TO3, TO220, D(D)-Pack	60	100
Mikrowellen / microwave	z.B. / e <i>.g.</i> RF >800 MHz		
bipolar	Breitband, Kleinsignal /wide band, small signal	10	55
bipolar	Leistung / power	200	125
GaAs FET	Kleinsignal, Low Noise / small signal low noise medium power high power	25 50 250	95 110 145
MOSFET	Breitband, Kleinsignal /wide band, small signal Leistung / power	10 200	55 125

¹ FIT=1x10⁻⁹ 1/h; (Ein Ausfall pro 10⁹ Bauelementestunden)

Bei der Verwendung von nackten Chips sind die angegebenen Ausfallraten mit einem Faktor von mindestens 2 zu multiplizieren, wenn keine eigenen Erfahrungen in der Aufbautechnik vorliegen.

For bare chips the indicated failure rates shall be multiplied by a factor of at least 2 if no experience has been gained in the mounting technology used.

¹⁾ Für driftempfindliche Schaltungen ist der Driftempfindlichkeitsfaktor π_D zu berücksichtigen (siehe Abschnitt 4.3).

¹ FIT equals one failure in 10⁹ component hours

¹⁾ For drift-sensitive circuits the drift sensitivity factor π_0 shall be taken into account (see Clause 4.3).

Tabelle 2 Ausfallraten für Dioden Table 2 Failure rates for diodes

Diodentyp / Type of diode		λ _{ref}	$\theta_{ m j,1}$
		in FIT	in °C
Universal-Diode 1) 2) / Universal	diode ^{1) 2)}	1	55
ichottky-Diode ²⁾ / Schottky diode ²⁾		1	55
Begrenzungsdiode (Suppressor Limiting diode (suppressor diod	7	40	
Z-Diode, (Ptot < 1 W) Spannungsschutz 4) / voltage protection 4)		1	40
Z-Diode, Leistung / power	Stabilisation ³⁾ / stabilization ³⁾	25	100
Referenzdiode / Reference diod	7	45	
Mikrowellen-Diode, Kleinsignal Microwave diode, small signal	Detektordiode / detector diode Kapazitätsdiode / capacitance diode Mischerdiode / mixer diode Pindiode / pin diode	20 10 20 5	45 45 70 55
Mikrowellen-Diode, Leistung Microwave diode, power	Speichervaraktor <i>/ storage varactor</i> Gunndiode <i>/ Gunn diode</i> Impattdiode <i>/ Impatt diode</i> Pindiode <i>/ pin diode</i>	200 500 (500) 50	100 160 180 100
Hochspannungsgleichrichterdic High-voltage rectifier diode	de	(200)	85

1 FIT=1x10⁻⁹ 1/h; (Ein Ausfall pro 10⁹ Bauelementestunden) Für Bauelemente ohne ausreichende Erfahrung sind die Ausfallraten einzuklammern. Bei der Verwendung von nackten Chips sind die angegebenen Ausfallraten mit einem Faktor von mindestens 2 zu multiplizieren, wenn keine eigenen Erfahrungen in der Aufbautechnik vorliegen.

- 1) auch mit Avalache-Charakter
- 2) Für driftempfindliche Schaltungen ist der Driftempfindlichkeitsfaktor π_D zu berücksichtigen (siehe Abschnitt 4.3)
- 3) Bei der Anwendung für Spannungsschutz kann ohne Eigenerwärmung gerechnet werden ($\theta_{i,1}$ = 40 °C)
- 4) Bei der Anwendung für Stabilisation muss mit Eigenerwärmung gerechnet werden
- 1 FIT equals one failure in 10⁹ component hours Failure rates of components for which no sufficient operating experience has been gained are given in brackets. For bare chips the indicated failure rate shall be multiplied by a factor of at least 2 if no experience has been gained in the mounting technology used.
 - 1) also with avalanche characteristics
 - 2) For drift-sensitive circuits the drift-sensitive factor π_D shall be taken into consideration (see Clause 4.3).
- 3) If applied for voltage protection the calculation can be made without accounting for self-heating ($\theta_{i,1}$ = 40 °C).
- If used for stabilization, then the calculation must take self-heating into account

Tabelle 3 Ausfallraten für Leistungshalbleiter 1) Table 3 Failure rates for power semiconductors 1)

Bauelement / Component	λ_{ref}	$\theta_{j,1}$	
Dadelement / Component	in FIT	in °C	
Gleichrichterdioden ²⁾ / rectifier diodes ²⁾	2	70	
Gleichrichterbrücken / rectifier bridges	10	85	
Schottky-Dioden / Schottky diodes	10	85	
Thyristoren / thyristors	50	85	
Triac's, Diac's	75	85	
Sondergefertigte und kundenspezifische Leistungshalbleiter	Rücksprache mit Hersteller	Rücksprache mit Hersteller	
Specialized and custom-made power semiconductors	consult manufacturer	consult manufacturer	

1 FIT=1x10⁻⁹ 1/h; (Ein Ausfall pro 10⁹ Bauelementestunden) Bei der Verwendung von nackten Chips sind die angegebenen Ausfallraten mit einem Faktor von mindestens 2 zu multiplizieren, wenn of at least 2 if no experience has been gained in the mounting keine eigenen Erfahrungen in der Aufbautechnik vorliegen.

- 1) für Leistungshalbleiter (> 15 A) Rücksprache mit Hersteller
- 2) auch mit Avalanche-Charakter

1 FIT equals one failure in 10⁹ component hours

For bare chips the indicated failure rate shall be multiplied by a factor technology used.

- 1) for power semiconductors (> 15 A) consult manufacturer
- 2) also with avalanche characteristics

4 Umrechnung von Referenz- auf Betriebsbedingungen

Werden die Diskreten Halbleiter nicht mit der in Abschnitt 2 "Referenzbedingungen" genannten elektrischen Beanspruchung und der mittleren Umgebungstemperatur betrieben, dann ergeben sich Ausfallraten, die von den Erwartungswerten in den Tabellen 1 bis 3 abweichen.

Zur Berücksichtigung der tatsächlichen elektrischen Beanspruchungen und der sich während des Betriebes einstellenden mittleren Umgebungstemperatur werden die Erwartungswerte bei Referenzbedingungen mit den jeweiligen π- Faktoren umgerechnet.

Die Ausfallrate bei Betriebsbedingungen λ errechnet sich während der Betriebszeit zu:

 für Transistoren bipolar, universal und Transistor-Arrays

4 Conversion from reference to operating conditions

If the discrete semiconductors are not operated under the electrical stresses and at the average ambient temperature as stated in clause 2 "Reference conditions", the result can be failure rates which differ from the expected values given in Tables 1 to 3.

To account for the actual electrical stresses and the average ambient temperature that occur during operation, the expected values under reference conditions need to be converted with the relevant π factors.

The failure rate under operating conditions λ is calculated for operations as follows:

For bipolar transistors, universal transistors and transistor arrays

$$\lambda = \lambda_{\text{ref}} \times \pi_{\text{U}} \times \pi_{\text{T}} \times \pi_{\text{D}} \tag{4.1}$$

• für sonstige Transistoren

· for other transistors

$$\lambda = \lambda_{\text{ref}} \times \pi_{\text{U}} \times \pi_{\text{T}} \tag{4.2}$$

• für Universal- und Schottky-Dioden

• for universal and Schottky diodes

$$\lambda = \lambda_{\text{ref}} \times \pi_{\text{D}} \times \pi_{\text{T}} \tag{4.3}$$

- für sonstige Dioden und Leistungshalbleiter
- · for other diodes and power semiconductors

$$\lambda = \lambda_{\text{ref}} \times \pi_{\text{T}} \tag{4.4}$$

hierin bedeuten / where:

λ_{ref} Ausfallrate bei Referenzbedingungen

π_U Faktor für Spannungsabhängigkeit

π_T Faktor für Temperaturabhängigkeit

 π_{D} Faktor für Driftempfindlichkeit

failure rate under reference conditions voltage dependence factor temperature dependence factor drift sensitivity factor

4.1 Spannungsabhängigkeit, Faktor π₁

Die Spannungsabhängigkeit wird für Transistoren nach Gleichung (4.5) berücksichtigt.

4.1 Voltage dependence, factor π_{i1}

The voltage dependence of transistors is taken into account as in formula (4.5).

$$\pi_{\mathsf{U}} = \exp\left\{C_3 \times \left((U/U_{\mathsf{max}})^{C_2} - (U_{\mathsf{ref}}/U_{\mathsf{max}})^{C_2} \right)\right\} \tag{4.5}$$

Hierin bedeuten /where:

U Betriebsspannung in VU_{ref} Referenzspannung in V

 $U_{\sf max}$ maximal zulässige Betriebsspannung in V

C₂,C₃ Konstanten

operating voltage in V reference voltage in V rated voltage in V constants Tabelle 4 Konstanten

Table 4 (<u> Constants</u>	
$U_{\rm ref}/U_{\rm max}$	C_2	C ₃
0,5	8	1,4

Tabelle 5 Faktor π_U für Transistoren

Table 5 Factor π_U for transistors

Spannungsverhältnis U/U _{max} Voltage ratio U/U _{max}	≤ 0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Faktor π_{U} Factor π_{U}	1	1	1	1	1,1	1,3	1,8	4

4.2 Temperaturabhängigkeit, Faktor π_{T}

Die Abhängigkeit von der Temperatur betrifft nur den temperaturaktivierbaren Anteil des Diskreten Halbleiters.

Der folgende Zusammenhang gilt nur bis zur maximal zulässigen Sperrschichttemperatur. Dabei werden die in Tabelle 6 angegebenen Konstanten verwendet.

4.2 Temperature dependence, factor π_T

The temperature dependence applies only to the temperature-activated part of the discrete semiconductor.

The following formula applies up to the maximum permissible junction temperature only. The values of the constants are given in Table 6.

$$\pi_{T} = \frac{A \times e^{Ea_{1} \times z} + (1 - A) \times e^{Ea_{2} \times z}}{A \times e^{Ea_{1} \times z_{ref}} + (1 - A) \times e^{Ea_{2} \times z_{ref}}}$$
(4.6)

mit / with
$$z = 11605 \times \left(\frac{1}{T_{\text{U,ref}}} - \frac{1}{T_2}\right)$$
 in $\frac{1}{eV}$
und / and $z_{\text{ref}} = 11605 \times \left(\frac{1}{T_{\text{U,ref}}} - \frac{1}{T_1}\right)$ in $\frac{1}{eV}$

Hierin bedeuten / where:

$$T_2 = \theta_{\rm j,2} + 273 \, \, {
m in \, K}$$
 tatsächliche Sperrschichttemperatur in °C /
Actual virtual (equivalent) junction temperature in °C

A, Ea₁, Ea₂ Konstanten / Constants

Seite / page 8

SN 29500-3: 2004-12

Tabelle 6 Konstanten Table 6 Constants

		А	<i>Ea</i> ₁ in eV	Ea ₂ in eV	θ _{U,ref} in °C
Transistoren Referenz- und Mikrowellendioden	Transistors Reference and microwave diodes	0,9	0,3	0,7	40
Dioden (ohne Referenz- und Mikrowellendioden) Leistungshalbleiter	Diodes (without reference and microwave diodes) Power semiconductors	1	0,4	- -	40

Die damit berechneten Faktoren $\pi_{\rm T}$ sind in Abhängigkeit von der Referenz-Ersatzsperrschicht-Temperatur $\theta_{\rm i,1}$

- für Transistoren, Referenz- und Mikrowellendioden aus Tabelle 7 und
- für Dioden (ohne Referenz- und Mikro-wellendioden) und Leistungshalbleiter aus Tabelle 8 zu ersehen

Die in den Tabellen 7 und 8 notwendigen tatsächlichen Sperrschichttemperaturen $\,\theta_{\,\mathrm{j,2}}$ errechnen sich zu

The calculated factors $\pi_{\rm T}$ depend on the reference virtual (equivalent) junction temperature $\theta_{\rm j,1}$ and are given

- for transistors, reference and microwave diodes in Table 7 and
- for diodes (without reference and microwave diodes) and power semiconductors in Table 8.

In Tables 7 and 8 the required actual junction temperatures $\theta_{\rm j,2}$ are calculated as per

$$heta_{\mathrm{j,2}} = heta_{\mathrm{U}} + \Delta heta$$

_		-			
	I: _		 	iter	٠.

 $\theta_{\sf U}$ Mittlere Umgebungstemperatur

des Bauelementes in °C

 $\Delta \theta = P \times R_{th}$ Temperaturerhöhung

aufgrund von Eigenerwärmung

P Verlustleistung

R_{th} Wärmewiderstand

(Sperrschicht - Umgebung)

where:

mean ambient temperature of the component in °C

increase in temperature due to self-heating

operating power dissipation

thermal resistance (junction - ambient)

Tabelle 7 Faktor π_T für Transistoren, Referenz- und Mikrowellendioden Table 7 Factor π_T for transistors, reference and microwave diodes

			_							_			_
	200	689	563	377	206	110	72	58	38	20	8,3	4,6	2,1
-	180	332	272	182	66	53	35	28	18	9,4	4,0	2,2	-
• •	175	275	225	150	82	44	29	23	15	7,8	3,3	1,87	0,83
-	160	153	125	84	46	24	16	13	8,3	4,3	1,85	1	0,46
-	150	102	83	99	30	16	11	8,5	5,6	2,9	1,2	0,67	0,31
-	145	83	68	45	25	13	8,6	6,9	4,5	2,3	1	0,54	0,25
-	140	29	55	37	20	11	7	5,6	3,6	1,9	0,81	0,44	0,2
-	130	44	36	24	13	7	4,6	3,7	2,4	1,2	0,53	6,0	0,13
	125	35	29	19	11	5,6	3,7	3,0	1,9	1	0,43	0,24	0,11
	120	28	23	16	8,5	4,5	3	2,4	1,5	18,0	0,34	0,19	0,085
	110	18	15	10	2'2	2,9	1,9	1,5	1	0,52	0,22	0,12	0,055
-	100	12	7'6	6,5	3,6	1,9	1,2	1	0,65	0,34	0,14	0,074	0,036
•	95	9,6	7,8	5,3	2,9	1,5	1	0,81	0,52	0,27	0,12	0,063	0,029
$\theta_{j,2}$	06	7,7	6,3	4,2	2,3	1,2	0,81	0,65	0,42	0,22	0,094	0,051	0,023
	85	6,3	5,1	3,4	1,9	1	0,65	0,53	0,34	0,18	0,076	0,041	0,019
•	80	5,1	4,4	2,8	1,5	0,81	0,53	0,43	0,28	0,14	0,061	0,033	0,015
•	75	4,1	3,4	2,3	1,2	99'0	0,43	0,35	0,22	0,12	0,05	0,027	0,012
•	70	3,3	2,7	1,8	-	0,54	0,35	0,28	0,18	0,095	0,041	0,022	0,01
	65	2,7	2,2	1,5	0,82	44.0	0,29	0,23	0,15	8/0,0	0,033	0,018	0,0082
	60	2,2	1,8	1,2	79'0	96,0	0,23	0,19	0,12	0,063	0,027	0,015	0,0067
	55	1,8	1,5	-	0,54	0,29	0,19	0,15	660'0	0,052	0,022	0,012	0,0055
	50	1,5	1,2	0,82	0,45	0,24	0,16	0,13	0,081	0,043	0,018	0,0098	0,0045
,	45	1,2	-	79'0	0,37	0,2	0,13	0,1	0,067	0,035	0,015	0,0080	0,0037
	40	1	0,82	0,55	0,3	0,16	0,10	0,084	0,055	0,028	0,012	9900'0	0,0030
·	35	0,82	79'0	0,45	0,24	0,13	0,085	690'0	0,045	0,023	6600'0	0,0044	0,0025
	8	29'0	0,54	0,37	0,2	0,11	70,0	0,056	0,036	0,019	0,0081	0,0054	0,0020
	25	0,54	0,44	0,3	0,16	0,087	0,057	0,046	0,03	0,015	0,0066 0,0081	0,0035 0,0054 0,0044 0,0066 0,0080 0,0098	0,0016 0,0020 0,0025 0,0030 0,0037 0,0045 0,0055 0,0067 0,0082
θ _{j,1}	(in Tabellen in Tables 1 - 3)	40	45	55	70	85	95	100	110	125	145	160	180

Factor π_1 for diodes (without reference and microwave diodes) and power semiconductors Faktor $\pi_{\rm T}$ für Dioden (ohne Referenz- und Mikrowellendioden) und Leistungshalbleiter Tabelle 8 Table 8

	200	151	77	41	23	4
_	180	98	50	27	15	9,0
-	175	87	44	24	4	8,0
-	160	61	31	17	9,5	5,6
-	150	47	24	13	7,3	4,
=	145	41	21	11,3	6,4	ဗ
-	140	36	18	6, 6	5,6	3,3
-	130	27	14	7,5	4,3	2,5
-	25	24	12	9'9	3,7	2,2
-	120	20	10	9'9	3,2	1,9
-	100 110	15	9'2	4,1	2,3	1,4
•	100	11	5,5	3,0	1,7	
•	95	9,2	4,7	2,5	1,4	0,84
$\theta_{j,2}$	90	7,7	3,9	2,1	1,2	0,71
- :	85	6,5	3,3	1,8	-	0,59
- 	80	5,4	2,7	1,5	0,83	0,49
	75	4,4	2,3	1,2	69'0	0,41
•	70	3,7	1,9	-	0,57	0,34
•	65	3	1,5	0,82	0,46	0,28
•	8	2,4	1,2	0,67	0,38	0,22
•	55	2	_	0,54	0,31	0,18
	50	1,6	08'0	0,43	0,25	0,15
	45	1,3	0,64	0,35	0,2	0,12
	40		0,51	0,27	0,16	0,092
	35	62'0	4,0	0,21	0,12	0,072
	30	0,61	0,31	0,17	0,074 0,095	0,044 0,056 0,072 0,092
	<25	0,47	0,24	0,13	0,074	0,044
θj,1	(in Tabellen in Tables 1 - 3)	40	55	70	85	100

SN 29500-3: 2004-12

4.3 Driftempfindlichkeit, Faktor π_D

Zur Berücksichtigung eines erhöhten Wertes der Ausfallrate in driftempfindlichen Schaltungen wird für

- Transistoren bipolar, universal,
- Transistoren-Arrays und
- Universal- und Schottky-Dioden

der Driftempfindlichkeitsfaktor π_D eingeführt.

Es gelten für Anwendungen in

- nicht driftempfindliche Schaltungen,

75h =1

- driftempfindlichen Schaltungen,

 $\pi_0 = 2$

4.4 Aussetzbetrieb, Faktor π_W

Werden Diskrete Halbleiter während der Betriebszeit der Baugruppe oder des Gerätes nicht immer beansprucht (Pausen ohne elektrische Belastung zwischen den Betriebsperioden), so kann dies durch den Umrechnungsfaktor für Aussetzbetrieb $\pi_{\rm W}$, bezogen auf die Ausfallrate λ nach Gleichung (4.1), (4.2), (4.3) oder (4.4) berücksichtigt werden.

Damit erhält man die Ausfallrate bei Aussetzbetrieb zu

4.3 Drift sensitivity, factor π_D

A drift sensitivity factor π_D has been introduced for drift-sensitive circuits and circuits to take into account an increased value of the failure rate for

- bipolar, universal transistors,
- transistors arrays and
- universal and Schottky diodes

The factors applicable are

- for use in non-drift circuits,

zn =1

- for use in drift-sensitive circuits,

4.4 Stress profile, factor 76w

If discrete semiconductors are not continuously stressed during the operating time of the module or equipment (breaks without electrical stress during operating periods), this can be taken into account for by the conversion factor for intermittent operation $\pi_{\rm W}$ related to the failure rate λ in equations (4.1), (4.2), (4.3) or (4.4).

The failure rate for intermittent operation is then obtained by using the formula

$$\lambda_{\mathsf{W}} = \lambda \times \pi_{\mathsf{W}} \tag{4.8}$$

mit / with
$$\pi_W = W + R \frac{\lambda_0}{\lambda} (1 - W), \quad 0 \le W \le 1, \quad R = 0.08$$

Hierin bedeuten / where:

- W Beanspruchungsdauer Bauelement / Betriebszeit Gerät
- R Konstante; sie berücksichtigt die Erfahrung, dass auch nicht beanspruchte Bauelemente Ausfälle zeigen können.
- λ₀ Ausfallrate bei Stillstandtemperatur θ₀, jedoch unter elektrischer Last. Die Stillstandtemperatur ist die Bauelemente- bzw. Speerschichttemperatur während der beanspruchungsfreien Pause.

$$\lambda_0 = \lambda_{\text{ref}} \times \pi_{\mathsf{T}}(\theta_0)$$

Ausfallrate bei Betriebs- bzw. Referenztemperatur nach Gleichung (4.1), (4.2) (4.3) oder (4.4).

Ratio: duration of component stress to operating time of equipment

Constant; taking into account that even non-stressed components may fail.

Failure rate at wait-state temperature, but under electrical stress. The wait-state temperature is the component or junction temperature during the non-stress phase.

$$\lambda_0 = \lambda_{\text{ref}} \times \pi_{\mathsf{T}}(\theta_0)$$

Failure rate under actual operating or reference temperature as in Equation (4.1), (4.2), (4.3) or (4.4).

Seite / page 11 SN 29500-3 : 2004-12

5 Einfluss von Impulsbetrieb

Aufgrund mangelnder Einsatzerfahrungen können derzeit keine Angaben zu Umrechnungsfaktoren gemacht werden.

Allerdings ist bei Leistungshalbleitern mit Bondanschlusstechnik unter Impulsbetrieb in Abhängigkeit des zeitlichen Ein-/Ausschaltverhaltens (Tastverhältnis) und den daraus resultierenden Sperrschichttemperaturzyklen $\Delta\theta_{\rm j}$ mit einer deutlichen Erhöhung des Ausfallratenwertes zu rechnen.

Diesbezügliche Angaben sind in Abhängigkeit vom Einsatzfall unter dem Stichwort "Wechsellasthäufigkeit" vom jeweiligen Hersteller anzufordern.

6 Frühausfallphase

Die Frühausfallphase von Diskreten Halbleitern ist der Zeitbereich vom ersten Beanspruchungsbeginn bis zum Erreichen der konstanten Ausfallrate nach ca. 1 000 Betriebsstunden.

Die zu erwartende mittlere Ausfallrate für den betrachteten Zeitbereich ergibt sich durch Multiplikation des betreffenden Ausfallratenwertes aus den Tabellen 1 bis 3 mit dem Faktor π_{F} (für den betrachteten Zeitabschnitt) aus Tabelle 9.

5 Effect due to pulsed operation

Currently, due to lack of experience no values are available for conversion factors.

However, power semiconductors using bonding techniques are expected to have significantly higher failure rates when used in pulsed operation depending on the on/off cycles (duty factor) and the resulting junction temperature cycles $\Delta\theta_i$.

Values referring to this type of operation can be obtained from the manufacturer for each individual application under the key phrase "alternating load frequency".

6 Early failure period

The early failure period of discrete semiconductors is the time from the very first beginning of operation to the time when the constant failure rate period starts after approx. 1 000 operating hours.

The expected mean failure rate during the time interval under observation is obtained by multiplying the relevant failure rate from Tables 1 to 3 by the factor π_F (for the appropriate time interval under observation) in Table 9.

Tabelle 9 Faktor π_{F} Table 9 Factor π_{R}

Betriebsze	eit in	 h	Faktor / Factor			
Operating	time	in h	$\pi_{_{F}}$	π _{F,max}		
		30	2,9			
30	-	300	2,2	3		
300	-	1000	1,3			
1000	-		1	1		

Die Werte gelten für Diskrete Halbleiter, die den Anforderungen nach SN 72500 entsprechen. Bei nicht nach SN 72500 qualifizierten Diskreten Halbleitern können deutlich höhere π -Faktoren auftreten.

Die Angabe von $\pi_{F,max}$ =3 sagt aus, dass bei nicht monotoner Abnahme der Frühausfallrate der Faktor π_{F} den Wert "3" nicht überschreiten darf.

The values are valid for discrete semiconductors conforming to the requirements in SN 72500. Significant higher π factors can occur for discrete semiconductors not conforming to SN 72500.

The stated value $\pi_{F,max}$ =3 indicates that if the early failure rate does not decrease monotonically the factor π_F shall not exceed the value "3".

Seite / page 12 SN 29500-3 : 2004-12

Anhang A	a: Symbole	Annex A: Symbols
λ	Ausfallrate unter Betriebsbedingungen	Failure rate under operating conditions
λ_0	Ausfallrate bei Stillstandtemperatur	Failure rate at wait-state temperature
λ_{ref}	Ausfallrate bei Referenzbedingungen	Failure rate under reference conditions
$\pi_{\!\scriptscriptstyle m D}$	Faktor für Driftabhängigkeit	Drift sensitivity factor
$\pi_{\!\scriptscriptstyle{\sf F}}$	Faktor für Frühausfallverhalten	Early failure dependence factor
π_{i}	Faktor für Stromabhängigkeit	Current dependence factor
π_{T}	Faktor für Temperaturabhängigkeit	Temperature dependence factor
π_{\cup}	Faktor für Spannungsabhängigkeit	Voltage dependence factor
π_{W}	Faktor für Wechsellastbetrieb	Stress profile factor
$\Delta heta$	Temperaturerhöhung aufgrund von Eigenerwärmung in °C	Increase in temperature due to self-heating in °C
$ heta_0$	Stillstandtemperatur in °C	Wait-state temperature in °C
$ heta_{\sf U}$	Mittlere Umgebungstemperatur des Bauelementes in °C	Average ambient temperature of the component in °C
$ heta_{U,ref}$	Referenz-Umgebungstemperatur in °C	Reference ambient temperature in °C
$\theta_{\mathrm{j,1}}$	Referenz-Sperrschichttemperatur in °C	Reference junction temperature in °C
$ heta_{ exttt{j,2}}$	Tatsächliche Sperrschichttemperatur in °C	Actual junction temperature in °C
$\mathcal{T}_{U,ref}$	Referenz-Umgebungstemperatur in K	Reference ambient temperature in K
<i>T</i> ₁	Referenz-Sperrschichttemperatur in K	Reference junction temperature in K
T ₂	Tatsächliche Sperrschichttemperatur in K	Actual junction temperature in K
P	Verlustleistung	Operating power dissipation
R	Konstante (Restfaktor)	Constant (rest factor)
R_{th}	Thermischer Widerstand (Sperrschicht - Umgebung)	Thermal resistance (junction - environment)
U	Betriebsspannung	Operating voltage
U_{max}	Maximal zulässige Betriebsspannung	Rated voltage
U_{ref}	Referenzspannung	Reference voltage
W	Verhältnis: Beanspruchungsdauer Bauelement zu Betriebszeit Gerät	Ratio: duration of component stress to operating time of equipment
A, C_2, C_3	Konstanten	Constants
<i>E</i> a₁, <i>E</i> a₂	Aktivierungsenergien in eV	Activation energies in eV

Seite / page 13 SN 29500-3 : 2004-12

Zitierte Normen

DIN IEC 60721 Teil 3 Elektrotechnik; Klassifizierung von Umweltbedingungen; Klassen von Umwelteinflussgrößen und deren

Grenzwerte

Teil 3-0: Einführung

(identisch mit IEC 60721-3-0)

Teil 3-1: Langzeitlagerung (identisch mit IEC 60721-3-1)

Teil 3-2: Transport

(identisch mit IEC 60721-3-2)

Teil 3-3/A2: Ortsfester Einsatz,

wettergeschützt

(identisch mit IEC 60721-3-3)

SN 29500 Teil 1

Ausfallraten Bauelemente -Erwartungswerte. Allgemeines

SN 72500 Technische Lieferbedingungen

für elektrische / elektronische

Bauelemente

Normative references

IEC 60721-3

Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities

Part 3-0 Edition 1.1:2002-10

Introduction

Part 3-1:1997-02 Section 1:

Storage

Part 3-2 :1997-03 Transportation

Part 3-3 Edition 2.2 :2002-10 Stationary use at weather

protected locations

SN 29500 Part 1

Failure Rates of Components -

Expected values. General

SN 72500

Technical Terms of Delivery

for Electrical/ Electronic

Components

Erläuterungen

Auf Veranlassung der Geschäftsbereiche wurde die Bearbeitung siemenseinheitlicher Ausfallraten unter Mitwirkung von Vertretern der Geschäftsbereiche und CT SR durchgeführt.

Diese Norm wurde im TRAK SN 29500 vereinbart.

Explanations

At the instigation of the Siemens operating Groups, the failure rates in this standard were established and implemented in collaboration with representatives of the Groups and CT SR. This standard was agreed to by the expert team of the TRAK SN 29500.