

Primer Parcial Análisis Matemático I	C 1	2/10/19	Carrera: Bioquímica
Nombre del Alumno:	• • • • • • • • • • • • • • • • • • • •	•••••	Comisión:

IMPORTANTE: Todas las respuestas deberán estar debidamente justificadas y no se permite que el estudiante realice consultas sobre la resolución del examen una vez comenzado el mismo.

Ejercicio 1.

- a) Hallar la ecuación de la recta paralela a y = -4x + 7 y que pase por el punto A=(2,-3)
- b) **Graficar** la recta encontrada en el ítem a).

Ejercicio 2.

- a) Dada la siguiente función cuadrática f(x) = a.(x-3).(x+1), **hallar** "a", que pertenece a reales, de modo que la gráfica de dicha función posea vértice en $(x_y, 8)$.
- b) Graficar f(x)

Ejercicio 3.

- a) Dado $f(x) = e^x$, $g_1(x) = -x$, $g_2(x) = g_1(x) 2$, <u>hallar</u> la expresión analítica de:
 - i) fog_1
 - ii) fog 2
 - iii) $fog_2 1$
- b) **Graficar** cada una de las funciones halladas anteriormente.

Ejercicio 4.

Determinar si f(x) resulta continua en x=-6

$$f(x) = \begin{cases} \frac{3x^2 + 21x + 18}{x + 6} & \text{si } x < -6\\ (x + 1)^2 + 2 & \text{si } x \ge -6 \end{cases}$$

Ejercicio 5.

Sea la gráfica de f(x):

Determinar:

- a) Dominio e imagen de f(x)
- b) Co, C+ y C- de f(x)
- c) $\lim_{x \to -2^+} f(x)$ y $\lim_{x \to +\infty} f(x)$

	Ejercicio 1		Ejercicio 2		Ejercicio 3		Ejercicio 4	Ejercicio 5		Total			
Ítem	a	b	a	b		a		b		a	b	c	
Puntaje	1	1	1	1	i	ii	iii	1	2	0.6	0.7	0.7	
					0.3	0.3	0.4						

Firma alumno Firma docente

1 Resolución Primer parcial comisión 1, segundo cuatrimestre de 2019.

1. Ejercicio 1

(a) La recta paralela va a tener una ecuación $y = m_p x + b$, donde m_p es la pendiente y b es la ordenada al origen. Se puede obtener m_p a partir de la condición de paralelismo que implica que dos rectas paralelas tienen la misma pendiente y por lo tanto $m = -4 = m_p$ (m es la pendiente de la recta del enunciado). La ordenada al origen la determinamos sabiendo que pasa por el punto A = (2, -3). Reemplazando en la ecuación podemos despejar b,

$$-3 = -4 * 2 + b \tag{1}$$

$$5 = b \tag{2}$$

Respuesta: La ecuación de la recta paralela es y = -4x + 5

(b) La gráfica de las rectas es

Figure 1: La recta verde tiene ecuación y = -4x + 5 y la roja, y = -4x + 7.

2. Ejercicio 2

(a) La función dada es una cuadrática expresada en su forma factorizada $f(x) = a(x - x_1)(x - x_2)$ con $x_1 = 3$ y $x_2 = -1$ raices (ceros) de la parábola. Para determinar a necesitamos un punto de la

gráfica que nos permita evaluar la función. De la imagen obtenemos la coordenada y_v del vértice y a partir de las raices podemos calcular la coordenada x y determinar el punto que necesitamos.

$$x_v = \frac{x_1 + x_2}{2} = \frac{3 - 1}{2} = 1 \tag{3}$$

El vértice es el V = (1,8) e implica f(1) = 8. Aplicamos esta condición y despejamos a.

$$f(2) = a(1-3)(1+1) = 8 (4)$$

$$a(-4) = 8 \tag{5}$$

$$a = -2 \tag{6}$$

Respuesta: La función es f(x) = -2(x-3)(x+1)

(b) La gráfica de la función cuadrática es

Figure 2: Gráfica de la función f(x) = -2(x-3)(x+1)

3. Ejercicio 3

(a)
$$f(x) = e^x$$
, $g_1(x) = -x$, $g_2(x) = -g_1(x) - 2 = -(x+2)$

(i)
$$h_1(x) = fog_1(x) = f(g_1(x)) = f(-x) = e^{-x}$$

(ii)
$$h_2(x) = fog_2(x) = f(g_2(x)) = f(-(x+2)) = e^{-(x+2)}$$

(iii)
$$h_3(x) = fog_2(x) - 1 = e^{-(x+2)} - 1$$

(iii)

Figure 3: (i) corresponde a la gráfica de h_1 ,(ii) corresponde a la gráfica de h_2 y (iii) corresponde a la gráfica de h_3 .

- (b) Los gráficos de detallan en la figura 3.
- 4. Ejercicio 4 Para determinar si la función es continua en x = -6 debemos calcular el límite lateral por izquierda L_1 , el límite lateral por derecha L_+ y la función en el punto f(-6) y verificar si estos valores coinciden.

La función es continua si o solo si $L_- = L_+ = f(-6)$. A continuación se calculan los límites correspondientes.

$$L_{-} = \lim_{x \to -6^{+}} \frac{3x^{2} + 21x + 16}{x + 6} = \lim_{x \to -6^{+}} \frac{3(x + 6)(x + 1)}{x + 6}$$

$$= \lim_{x \to -6^{+}} 3(x + 1) = -15$$
(8)

$$= \lim_{x \to -6^+} 3(x+1) = -15 \tag{8}$$

En el límite lateral L_{-} hay una indeterminación $\binom{0}{0}'$ que se resuelve factorizando la cuadrática (por Rufini o resolvente) y luego cancelando (x + 6) que tiende a cero en el numerador y denominador.

$$L_{+} = \lim_{x \to -6^{-}} (x+1)^{2} + 2 = 27 \tag{9}$$

$$f(-6) = (-6+1)^2 + 2 = 27 (10)$$

Como los límites laterales no coinciden la función no es continua en x = -6.

5. Ejercicio 5

(a)

$$Dom(f(x)) = \mathbb{R} - \{-2, 2\} \tag{11}$$

$$Im(f(x)) = \mathbb{R} \tag{12}$$

(b)

$$c_0 = \{-3, 0\} \tag{13}$$

$$c_{+} = (-\infty, -3) \cup (0, 2) \cup (2, +\infty)$$
 (14)

$$c_{-} = (-3,0) \cup (-2,2) \tag{15}$$

(c)

$$\lim_{x \to -2^+} f(x) = -\infty \tag{16}$$

$$\lim_{x \to -2^+} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = 1$$
(16)