3. Potencial Eléctrico

- 3.1. Diferença de Potencial e Potencial Eléctrico.
- 3.2. Diferenças de Potencial num Campo Eléctrico Uniforme.
- 3.3. Potencial Eléctrico e Energia Potencial de Cargas pontuais.
- 3.4. Potencial dum Condutor Carregado.

Exemplos: Força da gravidade, força elástica duma mola, força electrostática ...

Potencial Eléctrico (grandeza escalar) (grande valor prático)

Lei da conservação da energia

A voltagem (tensão eléctrica) que se mede entre dois pontos dum circuito eléctrico é a diferença do potencial eléctrico (d.d.p.) entre esses pontos.

Uma vez que a força electrostática dada pela lei de Coulomb é <u>conservativa</u>, podemos descrever os fenómenos electrostáticos em termos de uma <u>energia</u> potencial.

3.1. Diferença de Potencial e Potencial Eléctrico

Iniversidade do Minho

- A força gravitacional é conservativa (Lei da gravitação universal)
- A força electrostática (Lei de Coulomb) tem a mesma forma, também é
 conservativa ⇒ É possível definir uma função energia potencial associada a
 essa força.
- Para qualquer carga de prova ${f q}_0$ colocada num campo electrostático: ar E

$$|\vec{F} = q_0 \vec{E}|$$
 Soma vectorial de todas as forças individuais \Rightarrow conservativa.

• O **trabalho** feito pela força $m{q}_0 m{E}$ é simétrico da variação da energia potencial de uma carga que deslocasse no campo $m{E}$ sobre acção de uma força externa

O trabalho efectuado pela força eléctrica $m{q}_0m{E}$, sobre a carga de prova, num deslocamento infinitesimal $m{d}\vec{s}$ é:

 Por definição, o trabalho feito por uma força conservativa é igual ao simétrico da variação da energia potencial entre A e B, dU:

$$dU = -q_0 \vec{E} \cdot d\vec{s}$$

 No caso de um deslocamento finito de carga de prova, entre os pontos A e B, a variação da energia potencial é:

$$\Delta U = U_B - U_A = -q_0 \int_A^B \vec{E} \cdot d\vec{s}$$
 Integral de linha Não depende do percurso seguido entre A e B

Força Conservativa

Por definição, a diferença de potencial (d.d.p.), V_B - V_A, entre os pontos A e B
é igual à variação da energia potencial dividida pela carga de prova q₀.

$$V_B - V_A = \frac{U_B - U_A}{q_0} = -\int_A^B \vec{E} \cdot d\vec{s}$$

- Diferença de potencial ≠ energia potencial.
- Proporcionais $\Delta \mathbf{U} = \mathbf{q}_{o} \Delta \mathbf{V}$
- $\Delta U \rightarrow \text{escalar} \Rightarrow \Delta V \text{ escalar}$

$$\Delta U = -W = -\Delta K$$

- $\Delta \mathbf{U}$ = simétrico do trabalho (\mathbf{W}) feito sobre a carga pela força eléctrica dessa carga, sendo também igual ao simétrico da variação da energia cinética ($\Delta \mathbf{K}$).
- \Rightarrow V_B V_A = ao trabalho, por unidade de carga, que uma força externa deve efectuar para deslocar uma carga de prova, no campo eléctrico, de A até B, sem alterar a variação da energia cinética (K) da carga.

Carlos Tavares -

- define somente a diferença de potencial ⇒ somente as diferenças de V têm sentido.
- Por conveniência, a função **V** é tomada muitas vezes como nula num determinado ponto. Usualmente escolhemos um ponto no infinito (∞) como o ponto de **potencial nulo** \Rightarrow Com essa escolha: O potencial eléctrico num ponto arbitrário é igual ao trabalho necessário, por unidade de carga, para trazer uma carga de prova positiva do infinito até o ponto considerado.

$$V_{\rm A}$$
 = 0 no ∞ \Rightarrow $V_{\rm P} = -\int_{\infty}^{P} \vec{E} \cdot d\vec{s}$

Na realidade V_P representa a diferença de potencial entre P e um ponto no ∞ .

Diferença de potencial é uma medida de energia por unidade de carga (SI)

Iniversidade do Minho

$$1 \text{ V (volt)} = 1 \text{ J/C}$$

 A diferença de potencial também tem as unidades de campo eléctrico vezes distância ⇒ a unidade SI de campo eléctrico (N/C) também pode ser expressa como volt por metro:

$$1 \text{ N/C} = 1 \text{ V/m}$$

 Unidade de energia usualmente usada em física atómica e nuclear é o electrãovolt [def.: energia que um electrão (ou um protão) adquire ao deslocar-se através de uma diferença de potencial de 1V].

1 eV =
$$1.6 \times 10^{-19} \text{ C} \cdot \text{V} = 1.6 \times 10^{-19} \text{ J}$$

Exercício 1: Calcule a a diferença de potencial necessária para acelerar um electrão num feixe de um tubo de TV a partir do repouso, sabendo que a sua velocidade é de 5x10⁷ m/s.

$$\Delta K = \frac{1}{2}m_e(v_f^2 - v_i^2) = 0,5.9,11x10^{-31} \cdot (5x10^7)^2 - 0 = 1,14x10^{-15} J$$

 $\Rightarrow \Delta V = \Delta U/q_e = -\Delta K/q_e = -7125 V$

3.2. Diferenças de Potencial num Campo Eléctrico Uniforme

Universidade do Minho

 A diferença de potencial não depende da trajectória entre esses dois pontos; isto é, o trabalho de levar uma carga de prova (q₀), do A até B, é sempre o mesmo, ao longo de qualquer trajectória. ⇒ Um campo eléctrico uniforme, estático, é conservativo.

duas placas carregadas

$$V_B - V_A = \Delta V = -\int_A^B \vec{E} \cdot d\vec{s} = -\int_A^B E \cdot \cos \theta \cdot ds = -\int_A^B E ds$$

⇒Linhas do campo eléctrico apontam no sentido do potencial decrescente.

 Se uma carga de prova q₀ se deslocar de A para B ⇒ a variação da sua energia potencial vai ser:

Universidade do Minho

$$\Delta U = q_0 \Delta V = -q_0 E d$$

$$\vec{F} = q_0 \vec{E} = m\vec{a}$$

- Se $q_0 > 0 \implies \Delta U < 0 \implies$ Uma carga (+) perde energia potencial eléctrica quando se desloca na direcção e sentido do campo eléctrico.
- \Rightarrow **q**₀ é acelerada no sentido de $E \Rightarrow$ ganha energia cinética (K) e perde igual quantidade de energia potencial (U).
- Se $\mathbf{q_0} < \mathbf{0} \Rightarrow \Delta \mathbf{U} > \mathbf{0} \rightarrow$ Uma carga (-) ganha energia potencial eléctrica (U) quando se move na direcção do campo eléctrico, mas no sentido contrário (\vec{a} tem direcção oposta à direcção do campo eléctrico).
- ⇒ Quando uma partícula carregada é acelerada, ela perde na realidade, energia, pela radiação de ondas electromagnéticas.

Universidade do Minho

Caso geral:

$$\Delta V = -\int_{A}^{B} \vec{E} \cdot d\vec{s} = -\vec{E} \cdot \int_{A}^{B} d\vec{s} = \vec{E} \cdot \vec{d} = E \cdot d \cdot \cos \theta$$

$$\Rightarrow \quad \Delta U = q_0 \Delta V = -q_0 \vec{E} \cdot \vec{d}$$

Todos os pontos sobre um plano perpendicular a um campo eléctrico uniforme estão num mesmo potencial: B e C estão ao mesmo potencial

$$\Rightarrow$$
 $V_B - V_A = V_C - V_A$

- Superfície equipotencial é qualquer superfície constituída por uma distribuição contínua de pontos que possuam o mesmo potencial.
- Sendo ∆U = q₀-∆V, não há trabalho para se deslocar a carga de prova entre dois pontos sobre uma mesma superfície equipotencial.
- O ponto B está a um potencial inferior ao de A.

Uma bateria de 12 V está ligada a duas placas planas e paralelas, conforma a figura em baixo. A separação entre as placas é de 0,3 cm. Determine o módulo do campo eléctrico entre as placas, assumindo que é uniforme.

$$E = \frac{|V_B - V_A|}{d} = \frac{12}{0,003} = 4000 \text{ (V/m)}$$

A placa positiva está a um potencial mais elevado que o da placa negativa

Entre as placas metálicas paralelas de dois condutores electrizados existe um campo eléctrico uniforme de intensidade E = 100 N/C. Uma partícula de carga q =10 µC e massa m=1 g penetra na região perpendicularmente às linhas de força do campo, com uma velocidade horizontal $v_0 = 10$ m/s, de acordo com a figura, atingindo, depois de certo tempo, a placa negativa. Admitindo que a única interacção sobre a partícula é eléctrica, determine:

- a)a aceleração da partícula;
- b)o intervalo de tempo que a partícula leva para ir de uma placa à outra;
- c)a energia cinética da partícula imediatamente antes de atingir a placa negativa;
- d)o trabalho da força eléctrica no deslocamento da partícula de uma placa à outra.

$$\Leftrightarrow a = \frac{qE}{m} \Rightarrow \mathbf{a} = \mathbf{1} \,\mathbf{m/s^2}$$

b)
$$y = \frac{1}{2}a_y t^2 \Leftrightarrow 2 = \frac{1}{2} \cdot 1 \cdot t^2 \Rightarrow \mathbf{t} = \mathbf{2}\mathbf{s}$$

c)
$$v_{fy} = v_{0y} + a_y t = 0 + 1 \cdot 2 \implies v_{fy} = 2 \text{ m/s}$$

$$v_f = \sqrt{v_{fx}^2 + v_{fy}^2} = \sqrt{10^2 + 2^2} = 10,2 \text{ m/s}$$

$$K_f = \frac{1}{2} m v_f^2 \Rightarrow K_f = 0.052 J$$

d)
$$W_{+\rightarrow -} = qEd \implies W_{+\rightarrow -} = 2 \times 10^{-3} \text{ J}$$

Universidade do Minho

Carga pontual positiva isolada.

 $ec{E}$ radial, para fora

Diferença de potencial na superfície entre A e B:

$$V_A - V_B = -\int_A^B \vec{E} \cdot d\vec{s}$$

$$\vec{E} = k \frac{q}{r^2} \hat{r}$$

$$\vec{E} \cdot d\vec{s} = k \frac{q}{r^2} (\hat{r} \cdot d\vec{s})$$

$$\hat{r} \cdot d\vec{s} = 1 \cdot ds \cdot \cos \theta = d\vec{r}$$
 ($\theta = \text{angulo entre} \quad \hat{r} \quad e \quad d\vec{s}$)

$$\left| \vec{E} \cdot d\vec{s} = k \frac{q}{r^2} \hat{r} \cdot d\vec{s} = \left(k \frac{q}{r^2} \right) d\vec{r} \right|$$

$$V_{B} - V_{A} = -\int E_{r} dr = -kq \int_{r_{A}}^{r_{B}} \frac{dr}{r^{2}} = \frac{kq}{r} \Big|_{r_{A}}^{r_{B}}$$

$$V_B - V_A = kq \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$

$$nota: \int x^n dx = \frac{x^{n+1}}{n+1} + C$$

é independente da trajectória entre A e B, como deve ser.

- .
- $V_B V_A$ só depende das coordenadas radiais r_A e r_B
 - É comum escolher como zero o potencial em $\mathbf{r_A} = \infty$ (naturalmente $V \propto \frac{1}{r_A}$; $r_A \to \infty \Rightarrow V \to 0$)
 - \Rightarrow Com esta escolha, o potencial eléctrico de uma carga pontual, a uma distância \vec{r} da carga, é:

$$V = k \frac{q}{r}$$

⇒ V é constante sobre uma superfície esférica de raio r. No caso de uma esfera, as superfícies equipotenciais são superfícies esféricas e concêntricas com a carga.

Recorde que uma Superfície equipotencial é perpendicular em cada ponto a uma linha do campo eléctrico. $\Delta V = -Ed$

$\Delta V = -Ed$

Superfícies equipotenciais (→) e linhas do campo eléctrico (→)

(b)

a campo eléctrico uniforme provocado por um plano∞ carregado

(b) uma carga pontual

$$V = k \frac{q}{r}$$

- Potencial eléctrico de duas ou mais cargas pontuais
 - ⇒ princípio da sobreposição.

Potencial total em P: $V = k \sum_{i} \frac{q_i}{r_i}$

$$V = k \sum_{i} \frac{q_i}{r_i}$$

Onde tomamos V = 0 no ∞ , e r_i é a distância do ponto P à carga q_i

é uma soma algébrica de escalares ⇒ é muito mais fácil calcular $oldsymbol{V}$ do que calcular $oldsymbol{E}$

- V_1 = potencial da carga q_1 no $P \Rightarrow$ o trabalho necessário para trazer q_2 , do ∞ até P, sem aceleração, é dado por $|q_2 \cdot V_1|$
- •Por definição, esse trabalho é o simétrico da variação da energia potencial, U, do sistema de 2 partículas separadas por r_{12} .

$$U = q_2 V_1 = k \frac{q_1 q_2}{r_{12}}$$

- ¬q₁ e q₂ mesmo sinal ⇒ U > 0

 q₁ e q₂ repelem-se e efectuou-se trabalho sobre o sistema para aproximar uma carga da outra (W<0).

- → q₁ e q₂ sinais opostos ⇒ U < 0
 q₁ e q₂ atraem-se e o sistema cede trabalho quando as cargas se aproximam (W>0).

Exemplo: Trabalho realizado para levar a carga **q** de **A** para **B** na presença da carga **Q**

Universidade do Minho

$$W_{F_{e(A\to B)}} = \int_{A}^{B} \vec{F}_{e} \cdot d\vec{s} = q \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

$$W_{F_e} = -\Delta U = -\left(U_f - U_i\right) = -\left(U_B - U_A\right)$$

$$W_{F_e} = U_A - U_B = qV_A - qV_B = k \cdot \frac{qQ}{d} - k \cdot \frac{qQ}{d}$$

$$W_{F_e} = q \cdot k \left(\frac{Q}{d_A} - \frac{Q}{d_B} \right)$$

O **trabalho** realizado pode também ser calculado a partir da área **A** sob o gráfico da **Força** em função da **distância** à carga **Q**.

O trabalho realizado não depende da trajectória efectuada para ir de A para B, em virtude da força eléctrica ser conservativa.

Cálculo da energia potencial U para todos os pares de cargas

Soma algébrica dos resultados.

Para 3 cargas, por exemplo, teremos a **energia potencial de interacção entre essas cargas**:

$$U = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

Interpretação: Suponhamos $\mathbf{q_1}$ fixa (numa posição dada) e $\mathbf{q_2}$ e $\mathbf{q_3}$ no ∞ .

Trabalho para trazer q₂ do ∞ à sua posição na vizinhança de q₁ é igual à energia potencial:

$$U = q_2 V_1 = k \frac{q_1 q_2}{r_{12}}$$

Trabalho para trazer **q**₃ do ∞ à sua posição na vizinhança de **q**₁ e **q**₂ é igual à energia potencial:

$$U = q_3 V_1 + q_3 V_2 = k \frac{q_1 q_3}{r_{13}} + k \frac{q_2 q_3}{r_{23}}$$

Duas cargas pontuais, $Q_1 = 4x10^{-8}$ C e $Q_2 = -4x10^{-8}$ C, criam um campo eléctrico, como mostra a figura. Determine:

- a) o potencial eléctrico total no ponto a;
- **b)** o potencial eléctrico total no ponto **b**;
- **c)** o trabalho realizado pela resultante das forças eléctricas, no deslocamento de uma carga q= 1x10⁻¹⁰ C, desde o ponto **a** até ao ponto **b**.

a)
$$V_{a1} = \frac{kQ_1}{d_1} = 3,6x10^3 \text{ V}$$
 $V_{a2} = \frac{kQ_2}{d_2} = -3,6x10^3 \text{ V}$ $V_a = V_{a1} + V_{a2} \implies V_a = 0$

b)
$$V_{b1} = \frac{kQ_1}{d'_1} \Rightarrow V_{b1} = 6x10^3 \text{ V}$$
 $V_{b2} = \frac{kQ_2}{d'_2} \Rightarrow V_{b2} = -9x10^3 \text{ V}$ $V_b = V_{b1} + V_{b2} \Rightarrow V_b = -3x10^3 \text{ V}$

c)
$$W_{a \to b} = -\Delta U = -q\Delta V_{AB} = -q(V_b - V_a) \implies W_{a \to b} = 3 \times 10^{-7} J_{22}$$

Universidade do Minho Física Depto. Carlos Tavares

condutor em equilibro (resumo):

- Se tiver excesso de carga ela distribui-se na superfície externa.
- \vec{E} no exterior é perpendicular à superfície.
- $\vec{E} = 0$ no interior do condutor.
- Todo ponto sobre a superfície dum condutor carregado, em equilíbrio, tem o mesmo potencial.

Sobre qualquer curva, na superfície: $\vec{E} \perp d\vec{s}$

$$\vec{E} \cdot d\vec{s} = 0 \Rightarrow \Delta V = 0$$

$$\left|V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s} = 0\right|$$
 para todo A e B

⇒ A superfície de qualquer condutor carregado, em equilíbrio, é uma superfície equipotencial.

 $\vec{E}=0$ no interior \Rightarrow o potencial é constante $\forall P$ no interior do condutor, é igual ao valor que tem na superfície do condutor.

- ⇒ Não há trabalho para deslocar uma carga de prova do interior dum condutor carregado até a sua superfície.
- Esfera metálica maciça raio R, carga Q

$$E = k \frac{Q}{r^2}$$
 r>R; E = 0 se r < R

$$V = k \frac{Q}{R}$$
 $r \le R \Rightarrow V = constante$

$$V = k \frac{Q}{r}$$
 $r \ge R$; (V = 0 no ∞)

- Não existem cargas no interior da cavidade.
- O campo eléctrico no interior da cavidade deve ser nulo, independentemente da distribuição da carga na superfície externa do condutor e mesmo que exista \hat{E} no exterior do condutor.

$$V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s}$$

 $V_{B} - V_{A} = 0$ (todo ponto num condutor está ao mesmo potencial)

$$\Rightarrow -\int_{A}^{B} \vec{E} \cdot d\vec{s} = 0 \Rightarrow \vec{E} = 0$$

i! Uma cavidade, envolta por paredes condutoras, é uma região livre de campos, desde que não haja cargas no interior da cavidade.

Aplicações: blindar circuitos electrónicos, laboratórios... contra campos externos.

Densidade de Carga (σ)

Universidade do Minho

- o uniforme num condutor esférico

- Condutor não esférico ⇒
 - σ elevada onde o raio de curvatura for pequeno e a superfície convexa.
 - σ baixa onde o raio de curvatura for grande e a superfície côncava.

• \vec{E} grande nas vizinhanças dos pontos que têm curvatura convexa, com pequeno raio de curvatura, e atinge valores muito elevados nas vizinhanças de pontas agudas.

Descarga em Coroa

Universidade do Minho

- Brilho azulado, visível a olho nu nas vizinhanças de pontas agudas de um condutor num potencial eléctrico elevado.
- O ar atmosférico torna-se condutor, em virtude da ionização das moléculas de ar nas regiões de campos eléctricos elevados.
- Em condições normais de T e P esse tipo de descarga acontece quando E ≈ 3×10⁶ V/m ou mais.
- Condutor carregado ⇒ atrai os iões de sinais opostos ao seu.
- Vizinhanças de pontas agudas ⇒ campo muito elevado ⇒ iões do ar acelerado a velocidades muito elevadas.
- lões muito energéticos colidem com outras moléculas de ar ⇒ produzem mais iões e elevam a condutividade eléctrica do ar.
- Descarga do condutor acompanhada, muitas vezes, por uma luminosidade azulada que envolve as pontas aguçadas.

As células e o sangue do corpo contêm agua salgada que funciona como um condutor. O óleo natural do cabelo também funciona como um condutor, daí que uma pessoa colocada num campo eléctrico muito forte pode funcionar como um condutor inicialmente descarregado.

Gerador de Van de Graaff

Esquema de um gerador de Van de Graaff. A carga eléctrica é transferida para o condutor oco (de A para B) através de uma passadeira (correia móvel). É possível elevar o potencial do eléctrodo (condutor oco) até que ocorra uma descarga no ar. Sabendo que o potencial de rompimento do ar (rigidez dieléctrica) $3x10^6$ V/m, uma esfera com um raio de 1 m pode ser elevada a $3x10^6$ V.

Esta experiência, decorrida no princípio do sec. XX, possibilitou a determinação da carga elementar do electrão e natureza quantificada da carga eléctrica. Valeu-lhe o prémio Nobel da Física em 1923.

