```
In [36]:
        from scipy import stats
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
In [51]: import warnings
         warnings.filterwarnings("ignore")
In [2]: gla_df=pd.read_csv(r"D:\NIT\DATASCIENCE\ARNAK TASK\1 to 100\day 1\stat\inf stats
In [3]: bem_df=pd.read_csv(r"D:\NIT\DATASCIENCE\ARNAK TASK\1 to 100\day 1\stat\inf stats
In [4]:
         gla_df
Out[4]:
                     Date
                              Date.1
                                       Close
                                                  gain
            0 2010-01-05 2010-01-05 1616.80 -0.005444
            1 2010-01-06 2010-01-06 1638.50 0.013422
            2 2010-01-07 2010-01-07 1648.70 0.006225
            3 2010-01-08 2010-01-08 1639.80 -0.005398
            4 2010-01-11 2010-01-11 1629.45 -0.006312
         1733 2016-12-26 2016-12-26 2723.50 -0.001283
         1734 2016-12-27 2016-12-27 2701.75 -0.007986
         1735 2016-12-28 2016-12-28 2702.15 0.000148
         1736 2016-12-29 2016-12-29 2727.90 0.009529
         1737 2016-12-30 2016-12-30 2729.80 0.000697
```

1738 rows × 4 columns

In [5]: bem df

Out[5]:		Date	Date.1	Close	gain
	0	2010-01-05	2010-01-05	1134.60	-0.000881
	1	2010-01-06	2010-01-06	1139.60	0.004407
	2	2010-01-07	2010-01-07	1144.15	0.003993
	3	2010-01-08	2010-01-08	1144.05	-0.000087
	4	2010-01-11	2010-01-11	1137.00	-0.006162
	•••				
	1733	2016-12-26	2016-12-26	950.25	-0.021924
	1734	2016-12-27	2016-12-27	975.70	0.026782
	1735	2016-12-28	2016-12-28	974.40	-0.001332
	1736	2016-12-29	2016-12-29	986.05	0.011956
	1737	2016-12-30	2016-12-30	1000.60	0.014756

1738 rows × 4 columns

In [21]: bem_df.describe()

```
In [7]: gla_df.gain.mean()
Out[7]: 0.00038604108259229303
In [8]: gla_df.gain.std()
Out[8]: 0.013360538552253302
In [9]: bem_df.gain.mean()
Out[9]: 0.00027074807905723414
In [12]: np.round(bem_df.gain.std(),4)
Out[12]: 0.0264
```

	Close	gain
count	1738.000000	1738.000000
mean	698.183688	0.000271
std	357.378754	0.026431
min	129.150000	-0.133940
25%	370.650000	-0.013736
50%	682.100000	-0.001541
75%	1010.350000	0.011985
max	1558.500000	0.198329

Out[21]:

```
In [52]: plt.figure(figsize=(10,5))
    sns.distplot(gla_df.gain, label = 'gla_df')
    sns.distplot(bem_df.gain, label = 'bem_df')
    plt.xlabel('Gain')
    plt.ylabel('Density')
    plt.legend()
```

Out[52]: <matplotlib.legend.Legend at 0x204384a64d0>

In [49]: sns.displot(gla_df.gain)

Out[49]: <seaborn.axisgrid.FacetGrid at 0x204386d7310>

In [17]: sns.displot(bem_df.gain)

Out[17]: <seaborn.axisgrid.FacetGrid at 0x2042baaa690>

confidence interval using the Normaldistribution

```
In [20]: # Calculate the 95% confidence interval
    glo_ci = stats.norm.interval(0.95, loc=0.000386, scale=0.013361)
    # Round the interval to four decimal places
    rounded_interval = np.round(glo_ci, 4)
    print(rounded_interval)

[-0.0258    0.0266]

In [23]: # Calculate the 95% confidence interval
    bem_ci = stats.norm.interval(0.95, loc=0.00027074807905723414, scale=0.026431)
    # Round the interval to four decimal places
    rounded_interval = np.round(bem_ci, 4)
    print(rounded_interval)

[-0.0515    0.0521]
```

confidence interval using the tdistribution

```
In [26]: # Calculate the 95% confidence interval
bem_ci = stats.t.interval(0.95,1731, loc=0.00027074807905723414, scale=0.026431)
# Round the interval to four decimal places
```

```
rounded_interval = np.round(bem_ci, 4)
print(rounded_interval)

[-0.0516  0.0521]

In [27]: # Calculate the 95% confidence interval
glo_ci = stats.t.interval(0.95,1731, loc=0.000386, scale=0.013361)
# Round the interval to four decimal places
rounded_interval = np.round(glo_ci, 4)
print(rounded_interval)

[-0.0258  0.0266]
In []:
```