

Topics

- Unsupervised Learning
 - × Clustering
 - × Introduction
 - × K-Means
 - × Optimization Objective
 - × Random Initialization
 - × Choosing Cluster Amount
- × Dimensionality Reduction
 - × Reasons for Usage
 - × Data Compression
 - × Visualization
 - × Principal Component Analysis (PCA)
 - × Summary

1. Unsupervised Learning

1a.

Clustering

Introduction

- Learning algorithms without needed input labels"y" in the usual (x,y) pair
- Good for finding structures within data and for visualization
- We consider finding a set of clusters to group together similar data

K-Means

- × Choose the number "k" clusters you want
 - × k will also be the number of centroids to consider
 - × Choose random points for the centroids to represent
- \times Iterate through all your data: O(n)
 - × Assign each data point to the most similar centroid
- \times Iterate for k centroids: O(k)
 - \times Calculate the average for all points in the "bag" O(n)
 - × Reassign the centroids to the corresponding averages
 - × REPEAT UNTIL CONVERGENCE "OR" TERMINATION

Optimization Objective

- Min(Cost Function) Min(Distortion Function)
- Given "m" samples
- Cost equals the average of the squared length of the difference between some "x" data point and some "u_" centroid

Random Initialization

× The algorithm will sometimes come up with different solutions depending on this stochastic initialization

Amount of Clusters

k should always be less than the number of samples

× Elbow Method

2. Dimensionality Reduction

Reasons for Usage

- × Data Compression (EXAMPLE)
- × Data Visualization (**EXAMPLE**)

$$x' = \frac{x - \text{average}(x)}{\max(x) - \min(x)}$$

- Preprocessing Step:
 - × Feature Scaling / Mean Normalization
- × Compute the vectors to project the data on
 - Use Singular Value Decomposition
 - × Use the obtained "U" matrix to obtain the x1(dim) vector z
 - × Equivalently:
 - × Calculate the Covariance Matrix
 - \times Calculate the eigenvectors of Σ
 - Use $U=[u_1,u_2,u_3,...,u_n] \in \mathbb{R}^{n\times n}$ to get

$$z = \frac{[u_1, u_2, ..., u_k]}{[v_1, v_2, ..., v_k]} x = [v_1, v_2, ..., v_k]$$

- Choosing k principal components
 - × Initialize small to minimize the averaged square projection error

Let's review some concepts

Unsupervised Learning

Learning without labels!

108

Mapping N dimensional data to a lower dimension as specified by the programmer. Highly recommended!

Dimensionality Reduction

K-Means

Clustering w/ K clusters & centroids and using a similarity metric to "bag" similar data to the centroids together.

PCA

Calculate the z "kx1 (dim)" vector using the transformed(reduced(covariance matrix))x

Initializations

Random initializations are usually better, despite (the programmer) having to run it more to find a more optimal solution.

Amount of Clusters

Run the program many times to find the elbow in the cost function plot.

TIMEFOR CODE!

K-Means & Kohonen SOMs

CODE DEMO 1

https://github.com/ECE-Eng ineer/MachineLearning-Big Data-Project/blob/master/3 65/src/main/java/GUI.java

CODE DEMO 2

http://cs.oswego.edu/~kzelle r/Portfolio/coursework/csc4 66/Al.html

Credits

- × https://www.ritchieng.com/
- × https://nghiaho.com/?page_id=1030
- * https://www.researchgate.net/figure/Two-step-d ata-compression-using-SOM-machine-learning-Fi rstly-the-input-data-are_fig1_262232523
- × https://www.mathworks.com/matlabcentral/fileex change/46481-self-organizing-map-kohonen-neu ral-network

