Theoretische Informatik

Übungsblatt 5 (für die 46. Kalenderwoche)

zur Vorlesung von Prof. Dr. Till Mossakowski im Wintersemester 2016/2017

Magdeburg, 7. November 2016

- 1. Konstruieren Sie (gemäß der Konstruktion für die Abschlusseigenschaften, wie im Beweis des Satzes von Kleene benutzt) für jede der Sprachen, die durch die folgenden regulären Ausdrücke über $\{a,b\}$ beschrieben werden, einen (nichtdeterministischen) endlichen Automaten, der die Sprache akzeptiert. Geben Sie jeweils den Zustandsgraphen des Automaten an.
 - a) a^*b
 - b) $\emptyset^* \cup aaa$
- 2. Es seien Σ ein Alphabet und α ein regulärer Ausdruck über Σ . Geben Sie einen Algorithmus zur Konstruktion eines regulären Ausdrucks α' für das Komplement der Sprache $\mathcal{L}(\alpha)$ bezüglich Σ an, also mit $\mathcal{L}(\alpha') = \overline{\mathcal{L}(\alpha)}$.

Hinweis: Sie dürfen für den zu konstruierenden Algorithmus alle Algorithmen der Vorlesung als Anweisung verwenden.

- 3. Beweisen Sie, dass die Sprache $L = \{ww^R \mid w \in \{a, b\}^*\}$ nicht regulär ist.
- 4. Beweisen Sie, dass die Sprache $\{a^{n^2} \mid n \ge 1\}$ nicht regulär ist.
- 5. Welche der folgenden Sprachen sind regulär, welche nicht? Beweisen Sie jeweils Ihre Antwort.
 - a) $L = \{w \in \{0,1\}^* \mid w \text{ ist die Binärdarstellung einer durch fünf teilbaren Zahl}\}$
 - b) $L = \{xyx^R \mid x, y \in \{a, b\}^*\}$
 - c) $L = \{w \in \{a, b, c\}^* \mid \text{ die Anzahl der Vorkommen von } c \text{ in } w \text{ ist eine Primzahl}\}$
- 6. Welche der folgenden Aussagen sind wahr, welche falsch? Begründen Sie jeweils Ihre Antwort!
 - a) Jede Teilmenge einer regulären Sprache ist eine reguläre Sprache.
 - b) Falls $L \subseteq \Sigma^*$ regulär ist, dann ist auch $\operatorname{Pref}(L) = \{ w \in \Sigma^* \mid x = wy \text{ für } x \in L, \ y \in \Sigma^* \}$ regulär.
 - c) Wenn L_1, L_2 und L_3 reguläre Sprachen sind, dann ist auch die Sprache $\overline{(L_1 \cup L_2)} L_3$ regulär.