

DUAL N-CHANNEL AND DUAL P-CHANNEL MATCHED MOSFET PAIR

GENERAL DESCRIPTION

The ALD1105 is a monolithic dual N-channel and dual P-channel complementary matched transistor pair intended for a broad range of analog applications. These enhancement-mode transistors are manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process. It consists of an ALD1116 N-channel MOSFET pair and an ALD1117 P-channel MOSFET pair in one package. The ALD1105 is a low drain current, low leakage current version of the ALD1103.

The ALD1105 offers high input impedance and negative current temperature coefficient. The transistor pair is matched for minimum offset voltage and differential thermal response, and it is designed for precision signal switching and amplifying applications in +2V to +12V systems where low input bias current, low input capacitance and fast switching speed are desired. Since these are MOSFET devices, they feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment. When used in complementary pairs, a dual CMOS analog switch can be constructed. In addition, the ALD1105 is intended as a building block for differential amplifier input stages, transmission gates, and multiplexer applications.

The ALD1105 is suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. The high input impedance and the high DC current gain of the Field Effect Transistors result in extremely low current loss through the control gate. The DC current gain is limited by the gate input leakage current, which is specified at 30pA at room temperature. For example, DC beta of the device at a drain current of 3mA at 25°C is = 3mA/30pA = 100,000,000.

FEATURES

- Thermal tracking between N-channel and P-channel pairs
- Low threshold voltage of 0.7V for both N-channel & P-channel MOSFETS
- · Low input capacitance
- Low Vos -- 10mV
- High input impedance -- $10^{13}\Omega$ typical
- Low input and output leakage currents
- Negative current (IDS) temperature coefficient
- Enhancement mode (normally off)
- DC current gain 10⁹
- Matched N-channel and matched P-channel in one package
- RoHS compliant

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

	•	. ,,					
Operating Temperature Range*							
0°C to +70°C	0°C to +70°C	-55°C to +125°C					
14-Pin Small Outline Package (SOIC)	14-Pin Plastic Dip Package	14-Pin CERDIP Package					
ALD1105SBL	ALD1105PBL	ALD1105DB					

^{*} Contact factory for leaded (non-RoHS) or high temperature versions.

APPLICATIONS

- · Precision current mirrors
- Complementary push-pull linear drives
- Analog switches
- Choppers
- · Differential amplifier input stage
- Voltage comparator
- Data converters
- · Sample and Hold
- Analog inverter
- Precision matched current sources

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Drain-source voltage, V _{DS}		10.6V
Gate-source voltage, VGS		10.6V
Power dissipation		500mW
Operating temperature range	SBL, PBL packages	0°C to +70°C
	DB package	55°C to +125°C
Storage temperature range	<u> </u>	65°C to +150°C
Lead temperature, 10 seconds	-	+260°C
CAUTION: ESD Sensitive Dev	ice. Use static control procedures in ESD controlled environment.	

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise specified

		N-	- Chanı	nel		Test	P	- Chann	el		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	Min	Тур	Max	Unit	Conditions
Gate Threshold Voltage	VT	0.4	0.7	1.0	V	$I_{DS} = 1\mu A V_{GS} = V_{DS}$	-0.4	-0.7	-1.0	V	$I_{DS} = -1\mu A V_{GS} = V_{DS}$
Offset Voltage VGS1 - VGS2	V _{OS}		2	10	mV	$I_{DS} = 10\mu A V_{GS} = V_{DS}$		2	10	mV	$I_{DS} = -10\mu A V_{GS} = V_{DS}$
Gate Threshold Temperature Drift	TC _{VT}		-1.2		mV/°C			-1.3		mV/°C	
On Drain Current	I _{DS} (ON)	3	4.8		mA	$V_{GS} = V_{DS} = 5V$	-1.3	-2		mA	$V_{GS} = V_{DS} = -5V$
Trans conductance	Gfs	1	1.8		mmho	V _{DS} = 5V I _{DS} = 10mA	0.25	0.67		mmho	$V_{DS} = -5V I_{DS} = -10mA$
Mismatch	ΔG _{fs}		0.5		%			0.5		%	
Output Conductance	G _{OS}		200		μmho	V _{DS} = 5V I _{DS} = 10mA		40		μmho	V _{DS} = -5V I _{DS} = -10mA
Drain Source ON Resistance	R _{DS(ON)}		350	500	Ω	V _{DS} = 0.1V V _{GS} = 5V		1200	1800	Ω	V _{DS} = -0.1V V _{GS} = -5V
Drain Source ON Resistance Mismatch	ΔR _{DS(ON)}		0.5		%	V _{DS} = 0.1V V _{GS} = 5V		0.5		%	V _{DS} = -0.1V V _{GS} = -5V
Drain Source Breakdown Voltage	BV _{DSS}	12			V	$I_{DS} = 1\mu A V_{GS} = 0V$	-12			V	I _{DS} = -1μΑ V _{GS} =0V
Off Drain Current	I _{DS(OFF)}		10	400 4	pA nA	V _{DS} =12V I _{GS} = 0V T _A = 125°C		10	400 4	pA nA	V _{DS} = -12V V _{GS} = 0V T _A = 125°C
Gate Leakage Current	I _{GSS}		0.1	30 1	pA nA	V _{DS} = 0V V _{GS} =12V T _A = 125°C		1	30 1	pA nA	V _{DS} = 0V V _{GS} =-12V T _A = 125°C
Input Capacitance	C _{ISS}		1	3	pF			1	3	pF	

TYPICAL P-CHANNEL PERFORMANCE CHARACTERISTICS

OUTPUT CHARACTERISTICS

DRAIN SOURCE CURRENT

FORWARD TRANSCONDUCTANCE vs. DRAIN SOURCE VOLTAGE

FORWARD TRANSCONDUCTANCE

DRAIN SOURCE ON RESISTANCE

DRAIN SOURCE ON RESISTANCE

TYPICAL N-CHANNEL PERFORMANCE CHARACTERISTICS

DRAIN SOURCE CURRENT

OUTPUT CHARACTERISTICS

LOW VOLTAGE OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE vs. DRAIN SOURCE VOLTAGE

FORWARD TRANSCONDUCTANCE (mmho)

DRAIN SOURCE ON RESISTANCE

TRANSFER CHARACTERISTIC

DRAIN SOURCE ON RESISTANCE

OFF DRAIN CURRENT vs. **AMBIENT TEMPERATURE**

TYPICAL APPLICATIONS

CURRENT SOURCE MIRROR

CURRENT SOURCE WITH GATE CONTROL

DIFFERENTIAL AMPLIFIER

CURRENT SOURCE MULTIPLICATION

Q₁, Q₂: N - Channel MOSFET Q₃, Q₄: P - Channel MOSFET

Q_{SET}, Q₁..Q_N: ALD 1106 or ALD 1105 N - Channel MOSFET

TYPICAL APPLICATIONS (cont.)

BASIC CURRENT SOURCES

N-CHANNEL CURRENT SOURCE

ISOURCE | SET | $\frac{V+-Vt}{2}$ | $\frac{V+-1.0}{2}$ | $\frac{4}{2}$

Q₁, Q₂: N - Channel MOSFET

P-CHANNEL CURRENT SOURCE

Q3, Q4: P - Channel MOSFET

CASCODE CURRENT SOURCES

Q₁, Q₂, Q₃, Q₄: N - Channel MOSFET (1/2 ALD1105 + ALD1116)

$$I_{SOURCE} = I_{SET} = \frac{V^+ - 2Vt}{R_{SET}} \cong \frac{3}{R_{SET}}$$

Q1, Q2, Q3, Q4: P - Channel MOSFET (1/2 ALD1105 + ALD1117)

SOIC-14 PACKAGE DRAWING

14 Pin Plastic SOIC Package

PDIP-14 PACKAGE DRAWING

14 Pin Plastic DIP Package

	Millin	neters	Inches			
Dim	Min	Max	Min	Max		
Α	3.81	5.08	0.105	0.200		
A ₁	0.38	1.27	0.015	0.050		
A ₂	1.27	2.03	0.050	0.080		
b	0.89	1.65	0.035	0.065		
b ₁	0.38	0.51	0.015	0.020		
С	0.20	0.30	0.008	0.012		
D-14	17.27	19.30	0.680	0.760		
E	5.59	7.11	0.220	0.280		
E ₁	7.62	8.26	0.300	0.325		
е	2.29	2.79	0.090	0.110		
e ₁	7.37	7.87	0.290	0.310		
L	2.79	3.81	0.110	0.150		
S-14	1.02	2.03	0.040	0.080		
ø	0°	15°	0°	15°		

CERDIP-14 PACKAGE DRAWING

14 Pin CERDIP Package

	Millim	neters	Inches			
Dim	Min	Max	Min	Max		
Α	3.55	5.08	0.140	0.200		
A ₁	1.27	2.16	0.050	0.085		
b	0.97	1.65	0.038	0.065		
b ₁	0.36	0.58	0.014	0.023		
С	0.20	0.38	0.008	0.015		
D-14		19.94		0.785		
E	5.59	7.87	0.220	0.310		
E ₁	7.73	8.26	0.290	0.325		
е	2.54 E	BSC	0.100 BSC			
e ₁	7.62 E	BSC	0.300 BSC			
L	3.81	5.08	0.150	0.200		
L ₁	3.18	-	0.125			
L ₂	0.38	1.78	0.015	0.070		
S		2.49		0.098		
Ø	0°	15°	0°	15°		