1

Assignment 1

Sachinkumar Dubey - EE20MTECH11009

Download all codes from

https://github.com/sachinomdubey/FPGA_Lab/ Assignment1/codes

and latex-tikz codes from

https://github.com/sachinomdubey/FPGA_Lab/ Assignment1

1 Problem

(CBSE/CS/2019/6.c) Derive a Canonical POS expression for a Boolean function F, represented by the following TABLE \ref{TABLE} ?:

X	Y	Z	F(X, Y, Z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

TABLE 0: Truth table for Function F

2 Solution

Here, the output F is '0' for four combinations of inputs. The corresponding Max terms are $(X+Y+\bar{Z})$, $(X+\bar{Y}+\bar{Z})$, $(\bar{X}+\bar{Y}+\bar{Z})$, $(\bar{X}+\bar{Y}+\bar{Z})$. By doing logical AND of these four Max terms, we will get the Boolean function F,

$$F = (X + Y + \bar{Z}) \cdot (X + \bar{Y} + \bar{Z}) \cdot (\bar{X} + \bar{Y} + Z) \cdot (\bar{X} + \bar{Y} + \bar{Z})$$
(2.0.1)

This is the canonical POS form for the Boolean function F. We can also represent this function in following two notations.

$$F = M_1 \cdot M_3 \cdot M_6 \cdot M_7 \tag{2.0.2}$$

$$F = \prod M(1, 3, 5, 7) \tag{2.0.3}$$

Implementation using two input NAND gates

Minimizing the function using K-maps,

We get the following minimized POS form,

$$F = (A + \bar{C}) \cdot (\bar{A} + \bar{B}) \tag{2.0.4}$$

Using Demorgan's law, we can write:

$$F = \overline{(\bar{A} \cdot C)} \cdot \overline{(A \cdot B)} \tag{2.0.5}$$

$$= \overline{(\bar{A} \cdot C) \cdot (\bar{A} \cdot B)}$$
 (2.0.6)

Implementing using two input NAND gate:

Fig. 0: Implementation using two input NAND gates