BUSINESS ANALYTICS 4TH ASSIGNMENT

CONTEXT

- A. Variable selection
- **B.** Modeling (+ Data Partition)
- C. Result of Modeling

VARIABLE SELECTION

DELETING OUTLIERS

```
#데이터 삭제 open = 0인 데이터들
# 그리고 평균내서 store데이터에 추가 ~ 변수와 상관관계 파악하기 위해서
train.drop(train[train['Open']==0].index,inplace=True)
```

```
train.reset_index(drop=True,inplace=True)

def find_outlier(data):
    Q1 , Q3 = np.percentile(data,[25,75])
    IQR = Q3 - Q1
    Over_outlier = Q3 + 1.5*IQR
    Low_outlier = Q1 - 1.5*IQR
    location = np.where((data>Over_outlier)|(data<Low_outlier))
    result = [list(location[0]),len(list(location[0]))]
    return result

locationOfOutlier = find_outlier(train['Sales'])[0]
numOfOutlier = find_outlier(train['Sales'])[1]

print("Number of Outlier is " , numOfOutlier)
print("percentage of Outlier of whole data ", (numOfOutlier/len(train))*100,"%")

train.drop(index = locationOfOutlier,inplace = True)
train</pre>
```

- > I delete data of Open =0. Because this data not help predict sales information and don't have another important information.
- > And I delete outlier of Sales by using IQR.
- > By using IQR 30000 data are deleted, this data is 3% of whole dataset

VARIABLE SELECTION IN STORE SET

```
# befor merge data s
# f-test & Data for store data Assortment and StoreType
from scipy.stats import f_oneway
import matplotlib.pyplot as plt

sale_mean = train.groupby('Store')['Sales'].mean()
store['sale_mean'] = sale_mean.values

catvar = ['StoreType', 'Assortment', 'Promo2']

f_value ={}
for i in catvar:
    groups = [x[1].values for x in store.groupby([i])['sale_mean']]
    f_value[i] = f_oneway(*groups)
f_value
```

```
{'StoreType': F_onewayResult(statistic=7.489503916409775, pvalue=5.7746499655616875e-05),
'Assortment': F_onewayResult(statistic=16.52706865516541, pvalue=8.452680077617934e-08),
'Promo2': F_onewayResult(statistic=30.741717259621808, pvalue=3.679881968221907e-08)}
```

- Firstly I want to meaningful variables of Store data related to Sales.
- So I make new column in store dataset 'sale_mean'. This is mean of sales in each Store.
- And I think StoreType and Assortment and Promo2 is possible values in explanatory variables. So I take one-way Anova to sale_mean data.
- Those f-value all close to 0. This mean average of sale of (StoreType, Assortment, Promo2) differ

VARIABLE SELECTION IN STORE SET

- In graph about CompetitionDistance, around 0 competition value have many sale_mean values. And this can't found regularity. So I don't select CompetitionDistance variable.
- > And in graph about another 3 categorical variables, meaningful difference exists in StoreType and Assortment. Promo2 don't have meaningful difference

VARIABLE SELECTION IN TRAIN SET

```
catvar =['StateHoliday', 'SchoolHoliday', 'Promo', 'DayOfWeek']

f_value ={}
for i in catvar:
    groups = [x[1].values for x in train.groupby([i])['Sales']]
    f_value[i] = f_oneway(*groups)

f_value

{'StateHoliday': F_onewayResult(statistic=3.76574141157973, pvalue=0.010222936253496073),
    'SchoolHoliday': F_onewayResult(statistic=1200.2217330785584, pvalue=8.501063011071299e-263),
    'Promo': F_onewayResult(statistic=157887.1072157874, pvalue=0.0),
```

'DayOfWeek': F_onewayResult(statistic=7036.196758622229, pvalue=0.0)}

- Categorical variables which are meaningful are StateHoliday, SchoolHoliday, Promo and DayOfWeek.
- Those categorical variable's oneway Anova test's p-value close to 0.
- So mean of sales groupby them is differ each

VARIABLE SELECTION IN TRAIN SET

10000 - 8000 - 6000 - 4000 - 2000 - - 2000 - - 2000 - - 2000 - - 2000 - - 2000 - - 2000 - - 2000 - 2

- Customer data is meaningful in common sense and those scatter plot shows that.
- ▶ Among 4 categorical variables, DayOfweek and Promo shows meaningful difference between data
- > So I select customer DayOfWeek
 Promo variables to model

MERGING TWO DATASET & MAKING DUMMY VARIABLES

```
store = store.drop(columns = ['CompetitionDistance', 'CompetitionOpenSinceMonth', 'Competition
train = pd.merge(train, store, on = "Store")

catvar = ['StoreType', 'Assortment', 'Promo', 'DayOfWeek']

for c in catvar:
    dummy = pd.get_dummies(train[c], prefix = c, drop_first = True)
    train = pd.concat((train, dummy), axis=1)|
```

- > Selected variables in store data set are Assortment and StoreType. So using merge method merge two datasets.
- After merge datasets, I make dummy variables for 4 categorical variables.
- Train data set have those columns in picture.

MODELING

CHECK MULTICOLLINEARITY

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
from patsy import dmatrices

y, X = dmatrices('Sales ~Customers+StoreType_b+StoreType_c+StoreType_d+Assortment_b+Assortme
vif = pd.DataFrame()
vif["vif value"] = [variance_inflation_factor(X.values,i) for i in range(len(X.columns))]
vif["explanatory variables"] = X.columns
vif
```

	vif value	explanatory variables
0	17.356940	Intercept
1	1.364152	Customers
2	2.680438	StoreType_b
3	1.089902	StoreType_c
4	1.233840	StoreType_d
5	2.509553	Assortment_b
6	1.079218	Assortment_c
7	1.240741	Promo_1
8	1.744583	DayOfWeek_2
9	1.748424	DayOfWeek_3
10	1.715736	DayOfWeek_4
11	1.725435	DayOfWeek_5
12	1.968784	DayOfWeek_6
13	1.104302	DayOfWeek_7

- This shows multicollinearity between explanatory variables.
- **All of VIF values are lower than 10**
- > So this mean there are a little multicollinearity.

DATA PARTITIONING

```
train = train.sort_values('Store')
X_train = train.loc[train['Date']<'2015-01-01']</pre>
X_train = X_train.drop(catvar+['Sales','Date','Store','SchoolHoliday','StateHoliday','Open',
X_train['intercept'] = 1
y_train = train.loc[train['Date']<'2015-01-01']</pre>
y_train = y_train['Sales']
X_vaild = train.loc[train['Date']>='2015-01-01']
X_vaild = X_vaild.drop(catvar+['Sales','Date','Store','SchoolHoliday','StateHoliday','Open',
X_vaild['intercept'] = 1
y_vaild = train.loc[train['Date']>='2015-01-01']
y_vaild = y_vaild['Sales']
X_train.reset_index(drop = True,inplace=True)
y_train.reset_index(drop = True,inplace=True)
X_vaild.reset_index(drop = True,inplace=True)
y_vaild.reset_index(drop = True,inplace=True)
```

- For partitioning data, I make those code. Reference point is '2015-01-01'
- For training and testing, I make X_train and y_train
- For vaildating, I make X_vaild and y_vaild.

BY OLS MODELING, CHECK MODEL SIGNIFICANCE AND VARIABLE SIGNIFICANCE

import statsmodels.api as sm

model1 = sm.OLS(y_train, X_train)
result = model1.fit()
result.summary()

	•					
Dep. Variable:		Sales	R-squared: 0.7		0.780	
Model:		OLS	Adj. R-squared:		0.780	
Method:	Least	Squares	F-	statistic:	1.704e+05	
Date:	Sun, 03	Oct 2021	Prob (F-statistic):		0.00	
Time:		16:28:06	Log-Likelihood:		-5.2825e+06	
No. Observations:		624629	AIC:		1.057e+07	
Df Residuals:	624615			BIC:	1.057e+07	
Df Model:		13				
Covariance Type:	n	onrobust				
	coef	std err	t	P> t	[0.025	0.9
Customers	6.9983	0.005	1286.834	0.000	6.988	7.0

 Covariance Type:
 std err
 t
 P>|t|
 [0.025]
 0.975]

 Customers
 6.9983
 0.005
 1286.834
 0.000
 6.988
 7.009

 StoreType_b
 -2289.7321
 19.560
 -117.059
 0.000
 -2328.070
 -2251.394

 StoreType_c
 -178.3845
 4.404
 -40.504
 0.000
 -187.016
 -169.753

 StoreType_d
 1102.3546
 3.461
 318.495
 0.000
 1095.571
 1109.138

 Assortment_b
 -4248.9158
 24.283
 -174.972
 0.000
 -4296.510
 -4201.321

 Assortment_c
 319.6375
 3.004
 106.418
 0.000
 313.751
 325.524

 Promo_1
 1177.5872
 3.238
 363.724
 0.000
 1171.242
 1183.933

 DayOfWeek_2
 -350.7921
 5.053
 -69.427
 0.000
 -360.695
 -340.889

 DayOfWeek_3
 -466.7062
 5.073
 -92.000
 0.000
 -476.649
 -456.764

 DayOfWeek_5
 -386.7261
 5.088
 <

- Model's F-value close to 0. This mean this model have significance for predicting sales.
- > And variables's t-test p-value all close to 0. This mean those variables have significance.
- And in error term, residual don't have normality.

Omnibus:	32331.370	Durbin-Watson:	0.418
Prob(Omnibus):	0.000	Jarque-Bera (JB):	77318.492
Skew:	0.318	Prob(JB):	0.00
Kurtosis:	4.602	Cond. No.	1.60e+04

TWO REGRESSION MODEL

```
from sklearn.model_selection import GroupKFold
from sklearn.linear_model import LinearRegression,Lasso
linear_model = LinearRegression()
lasso_model = Lasso(alpha = 1.0)
train_group = train.loc[train['Date']<'2015-01-01']</pre>
train_group = train_group['Store']
gkf = GroupKFold(n_splits=train_group.nunique())
linear_score = []
lasso_score = []
for train_index,test_index in gkf.split(X_train,y_train,np.array(train_group)):# y informati
   X1_train, X1_test= X_train.iloc[train_index], X_train.iloc[test_index]
   y1_train, y1_test= y_train.iloc[train_index], y_train.iloc[test_index]
   linear_model.fit(X1_train,y1_train)
   lasso_model.fit(X1_train,y1_train)
   linear_score.append(linear_model.score(X1_test,y1_test))
    lasso_score.append(lasso_model.score(X1_test,y1_test))
```

- > I use LinearRegression Model and Lasso Model for predicting sales
- And I split X_train,y_train data by using group-K-Fold. Group is divided by store number.
- > So I want to see data score in each store

RESULT

SCORE VALUE OF MODELS

```
LinearScore = list(filter(lambda x: x>-10, linear_score))
LassoScore = list(filter(lambda x: x>-10, lasso_score))
LinearScore = pd.DataFrame(LinearScore,columns = ['ScoreOfLinearModel'])
LassoScore = pd.DataFrame(LassoScore,columns = ['ScoreOfLassoModel'])
print(LinearScore['ScoreOfLinearModel'].describe(),"\n\n\n")
print(LassoScore['ScoreOfLassoModel'].describe())
#LassoModel is a little better than LinearModel
         1110.000000
count
            0.427847
mean
            0.883985
std
           -8.990817
min
            0.358791
            0.694677
            0.821268
            0.945245
max
Name: ScoreOfLinearModel, dtype: float64
         1110.000000
count
            0.429338
mean
            0.876319
std
           -8.959885
min
            0.359307
            0.694334
50%
75%
            0.821031
            0.945974
max
Name: ScoreOfLassoModel, dtype: float64
```

- First I delete 5 Score data because that have almost -100 score value
- ▶ And then those described datas shows score's data, over 50% score data are larger than 0.7 => this means over 50% store's sales prediction have 70% explanatory power

MODEL COMPARING BY USING VALIDATIO NS

▶ I make DataFrame for comparing two model.

<pre>linear_predict = linear_model.predict(X_vaild) lasso_predict = lasso_model.predict(X_vaild)</pre>					result['PredictSalesOfLinearModel'].describe()			
<pre>linear_predict = linear_model.predict(X_vaild) linear_predict = linear_model.predict(X_vaild) linear_predict = lasso_model.predict(X_vaild) linear_predict = pd.DataFrame(linear_predict,columns = ['PredictSalesOfLinearModel']) lasso_predict = pd.DataFrame(lasso_predict,columns = ['PredictSalesOfLassoModel']) y_vaild = pd.DataFrame(y_vaild) y_vaild = y_vaild.rename(columns = {'Sales':'RealSale'})</pre>						188994.000000 6506.344925 2050.252396 -1230.121286 5084.188531 6322.662595 7717.364911 23761.879943 redictSalesOfLinearModel, dtype: float6	54	
result = pd result	.concat([linear_pred	ict,lasso_predict	t , y_vai	d],axis=1) res	esult['PredictSalesOfLassoModel'].describe()		
Predic 0	etSalesOfLinearModel Predic	tSalesOfLassoModel F 5416.937161	RealSale 5263			188994.000000 6506.510730 2045.611151 -1111.294655		
1	6583.505141	6559.659844	5942	259	5%	5085.807175		
2	5088.182992	5103.588208	5289	50° 75°		6322.638304 7712.556811		
3	4130.412770	4148.510641	4708	max		23842.366877		
4	3607.487587	3626.002587	4042	Nai	ame: P	redictSalesOfLassoModel, dtype: float64		
				res	esult['RealSale'].describe()		
188989	5370.891043	5374.074169	7295	COL	ount	188994.000000		
188990	4786.967575	4791.442536	5570	mea	ean	6732.904605		
188991	5025.783918	4990.336928	5025	sto min		2389.504938 0.000000		
188992	6618.584338	6619.377941	8509	259	5%	4985.000000		
188993	6357.459998	6361.308060	7345	50° 75°		6419.000000 8221.000000		
188994 rows ×	3 columns			max	ax	13611.000000 ealSale, dtype: float64		

- Above picture shows comparing predict data of Linear model and Lasso Model with sales data of validation set.
- The Lasso model is a little more similar with sales data of validation set than Linear Model. SO I can select Lasso model not Linear Model

TRY TO PREDICT FUTURE_SALES BY USING VAR

```
data = data.diff().dropna()
# for stationary
forecast = VAR(data)
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:218: ValueWarn
ing: A date index has been provided, but it has no associated frequency information and so
will be ignored when e.g. forecasting.
  ' ignored when e.g. forecasting.', ValueWarning)
/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:222: ValueWarn
ing: A date index has been provided, but it is not monotonic and so will be ignored when e.
g. forecasting.
   ' forecasting.', ValueWarning)
results = forecast.fit(2)
results.summary()
  Summary of Regression Results
 _____
                              0LS
Method:
                Sun, 03, Oct, 2021
Date:
                          17:49:30
Time:
No. of Equations:
                                                            88.4587
                          780826.
                                                            88.4543
                     -5.00439e+07
                                                        2.59712e+38
                                    Det(Omega_mle):
                                                        2.59577e+38
Results for equation Sales
                    coefficient
                                      std. error
                                                                           0.000
                                                         -221.092
L1.Sales
                                                                           0.000
```

	Sales	Customers	StoreType_b	StoreType_c	StoreType_d	Assortment_b	Assortment_c	Promo_1	DayOfWeek_2
1	-2494.665589	-315.832995	-0.001490	0.002945	-0.060445	-0.000664	-0.095951	17.813035	12.559067
2	1464.428706	201.717182	0.005276	0.034603	0.102841	0.002674	0.116429	22.540482	64.777862
3	-1591.342115	-199.468953	0.006925	0.021690	0.067283	0.003995	0.085362	48.521138	133.720428
4	-2046.376416	-204.383527	0.006168	0.042900	0.082790	0.003663	0.099577	67.028203	5.042057
5	2813.928678	318.688741	0.009957	0.086806	0.142958	0.004790	0.173820	10.333819	10.430341
6	3.940656	-6.980003	0.009093	0.057307	0.098061	0.005192	0.116063	15.407140	10.334106
7	-76.554780	-11.078068	0.002038	0.020180	0.063654	0.001367	0.055175	15.411780	33.092116
8	-203.786152	-24.611557	0.002492	0.027892	0.057087	0.000990	0.063074	24.921014	26.975669
9	206.366141	16.589312	0.004648	0.030409	0.064399	0.002395	0.073125	25.284484	59.023289
10	-732.384087	-79.208079	0.006132	0.043977	0.086057	0.003172	0.102376	38.751365	69.274934

- I want to predict future_sales by using vak.
- ▶ Right picture shows when int date = 2013-11-16, shows predicting values of all columns of model during 10 days(this steps = 10
- > But the problem is the number of dummy variables are float. I can't know how to manage dummy variables (categorical variables) in that model. So I' cannot predict future sale

THANKYOU

PREDICTING BY VAR