

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

Signali i sustavi

Profesor Branko Jeren

6. svibnja 2013.

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava

Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

integral

Impulsni odziv vremenski diskretnog sustava

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski

zbroj
Impulsni odziv
vremenski
kontinuiranih
linearnih sustava
Konvolucijski
integral

Impulsni odziv vremenski diskretnog sustava

 odziv linearnog, vremenski stalnog (LTI), vremenski diskretnog sustava,

$$S: [\mathbb{Z} \to \mathbb{R}] \to [\mathbb{Z} \to \mathbb{R}],$$

na pobudu u, definiran je kao

$$\forall n \in \mathbb{Z}, \quad y(n) = S(u)(n)$$

• odziv ovog sustava na jedinični impuls δ , Kroneckerovu δ funkciju, uz uvjet da je sustav bio miran prije dovođenja pobude, nazivamo impulsnim odzivom sustava i označavamo kao $h = S(\delta)$, dakle

$$\forall n \in \mathbb{Z}, \quad h(n) = S(\delta)(n)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj

zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

vremenski diskretan sustav zadan je jednadžbom diferencija

$$\forall n \in \mathbb{Z}, \quad y(n) - 0.75y(n-1) = u(n)$$

- sustav je miran, dakle vrijedi y(-1)=0, i određujemo impulsni odziv sustava, dakle odziv na pobudu $u(n)=\delta(n), \, \forall n\in\mathbb{Z}$
- ovdje ćemo to učiniti metodom izračunavanja korak po korak

$$y(n) = 0.75y(n-1) + u(n)$$

za $u(n) = \delta(n) \Rightarrow$
 $h(n) = 0.75h(n-1) + \delta(n)$

• dovoljno je promatrati odziv za $n \ge 0$, jer pobuda djeluje za n > 0

2012/2013

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski

zbroj
Impulsni odziv
vremenski
kontinuiranih
linearnih sustav
Konvolucijski
integral

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

• dakle, za h(-1) = y(-1) = 0, i za n = 0, 1, 2, ... slijedi

$$h(0) = 0.75h(-1) + 1 = 1$$

$$h(1) = 0.75h(0) + 0 = 0.75 \cdot 1 = 0.75$$

$$h(2) = 0.75h(1) + 0 = 0.75 \cdot 0.75 = 0.75^{2}$$

$$h(3) = 0.75h(2) + 0 = 0.75 \cdot 0.75^{2} = 0.75^{3}$$

$$h(4) = 0.75h(3) + 0 = 0.75 \cdot 0.75^{3} = 0.75^{4}$$
...
$$h(n) = 0.75h(n-1) + 0 = 0.75 \cdot 0.75^{n-1} = 0.75^{n}$$

• zaključujemo kako je impulsni odziv zadanog sustava, $\forall n \geq 0$, $h(n) = 0.75^n$, beskonačnog trajanja i asimptotski se približava k nuli

beskonačnog trajanja i asimptotski se približava k nuli

2012/2013

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava

Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

razmatrani vremenski diskretan sustav

$$\forall n \in \mathbb{Z}, \quad y(n) - 0.75y(n-1) = u(n)$$

prikazujemo blokovskim dijagramom i analiziramo odziv na jedinični impuls δ uz y(-1)=0, dakle za miran sustav

Impulsni odziv i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava

Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

integral

Odziv sustava na niz impulsa

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Diskretni signal kao zbroj jediničnih impulsa

 svaki niz može biti prikazan uz pomoć niza vremenski diskretnih jediničnih impulsa što proizlazi iz:

$$u(n) = u(n) \cdot comb(n) = u(n) \sum_{m=-\infty}^{\infty} \delta(n-m) = \sum_{m=-\infty}^{\infty} u(m)\delta(n-m)$$

$$u(n) = .5\delta(n) + .3\delta(n-1) + .1\delta(n-2) + .3\delta(n-3) + .5\delta(n-4)$$

 razmotrimo odziv linearnog, vremenski stalnog, diskretnog sustava na pobudu prikazanu kao niz impulsa

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava

Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav

Odziv sustava na niz impulsa

Slika 1: Konvolucijski zbroj SISO sustava

2012/2013 Cjelina 9.

Branko Jeren

Impulsni odz i konvolucija linearnih

sustava

diskretnih linearnih sustav

Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Konvolucijski zbroj

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

diskretnih linearnih susta Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Konvolucijski zbroj

pobuda sustava prikazana je kao zbroj niza impulsa

$$\forall n \in \mathbb{Z}$$

$$u(n) = \ldots + u(-1)\delta(n+1) + u(0)\delta(n) + u(1)\delta(n-1) + u(2)\delta(n-2) + u(3)\delta(n-3) \ldots \Rightarrow$$

$$u(n) = \sum_{m=-\infty}^{\infty} u(m)\delta(n-m)$$

za linearni sustav vrijedi svojstvo homogenosti

$$u(m)\delta(n-m) \rightarrow u(m)h(n-m)$$

pa je odziv na pobudu prikazanu nizom impulsa

$$y(n) = \ldots + u(-1)h(n+1) + u(0)h(n) + u(1)h(n-1) + u(2)h(n-2) + u(3)h(n-3) \ldots \Rightarrow$$

$$\forall n \in \mathbb{Z}, \quad y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m)$$
 (1)

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih

diskretnih linearnih susta Konvolucijski zbroi

zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav Ko

Konvolucijski zbroj

• izvedeni izraz predstavlja konvoluciju nizova *u* i *h*

$$\forall n \in \mathbb{Z}, \quad y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m) = (u*h)(n)$$

i zato ga nazivamo **konvolucijski zbroj** (suma)

• supstitucijom k = n - m slijedi alternativni prikaz

$$\forall n \in \mathbb{Z}, \quad y(n) = \sum_{k=-\infty}^{\infty} h(k)u(n-k),$$

pa za konvoluciju vrijedi svojstvo komutativnosti

$$y = h * u = u * h$$
 odnosno

$$\forall n \in \mathbb{Z}, \quad y(n) = (h * u)(n) = (u * h)(n)$$

Impulsni odz i konvolucija linearnih sustava

diskretnih linearnih sustav Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Konvolucijski zbroj kauzalnih nizova

ullet konvolucijski zbroj, za $orall n\in\mathbb{Z}$, možemo raspisati kao

$$y(n) = \sum_{m=-\infty}^{-1} u(m)h(n-m) + \sum_{m=0}^{n} u(m)h(n-m) + \sum_{m=n+1}^{\infty} u(m)h(n-m)$$

• za kauzalne u(n) i h(n)

$$y(n) = \sum_{m=-\infty}^{-1} \underbrace{u(m)}_{=0} h(n-m) + \sum_{m=0}^{n} u(m)h(n-m) + \sum_{m=n+1}^{\infty} u(m)\underbrace{h(n-m)}_{=0}$$

konvolucijski zbroj se reducira u¹

$$y(n) = \sum_{m=0}^{n} u(m)h(n-m) = \sum_{m=0}^{n} h(m)u(n-m), \qquad n \ge 0$$

što je odziv linearnog vremenski stalnog kauzalnog sustava

¹Uz svojstvo komutativnosti dana su oba izraza za konvoluciju

Impulsni odz i konvolucija linearnih

sustava

diskretnih linearnih sustav Konvolucijski

zbroj

vremenski kontinuiranih linearnih sustav Konvolucijski integral IIR sustavi - primjer

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih sust Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

IIR sustavi

- iz $y(n) = \sum_{m=-\infty}^{\infty} h(m)u(n-m)$ zaključujemo da je, uz poznavanje impulsnog odziva sustava h, moguće odrediti odziv na bilo koju pobudu
- sustavi s beskonačnim trajanjem impulsnog odziva nazivaju se IIR (Infinite Impulse Response) sustavi
- primjer IIR sustava je prije razmatrani vremenski diskretni sustav

$$\forall n \in \mathbb{Z}, \quad y(n) - 0.75y(n-1) = u(n)$$

čiji je impulsni odziv

$$h(n) = \begin{cases} 0.75^n, & n \ge 0; \\ 0, & n < 0 \end{cases}$$

• ilustrira se odziv ovog sustava na pobudu $u(n) = 0.5^n \mu(n), \forall n \in \mathbb{Z}$

2012/2013

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih susta

Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

IIR sustav – primjer

• oba niza, *h* i *u*, su kauzalna, pa je konvolucijski zbroj

$$y(n) = \sum_{m=0}^{n} h(m)u(n-m), \qquad n \ge 0$$

$$= \sum_{m=0}^{n} 0.75^{m}0.5^{n-m} = 0.5^{n} \sum_{m=0}^{n} \left(\frac{0.75}{0.5}\right)^{m} =$$

$$= 0.5^{n} \frac{\left(\frac{0.75}{0.5}\right)^{n+1} - 1}{\frac{0.75}{0.5} - 1} = 4 \left[0.75^{n+1} - 0.5^{n+1}\right], \qquad n \ge 0$$

Impulsni odz i konvolucija linearnih

sustava

diskretnih linearnih sustav Konvolucijski

Konvolucijsk zbroj

vremenski kontinuiranih linearnih sustava Konvolucijski integral FIR sustavi - primjer

Impulsni odz i konvolucija linearnih

diskretnih linearnih susta Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

FIR sustavi

• sustavi za koje je impulsni odziv konačne duljine, M+1, nazivaju se sustavi s konačnim impulsnim odzivom ili FIR (Finite Impulse Response) sustavi:

$$\forall n \in \mathbb{Z}, \quad y(n) = \sum_{m=0}^{M} h(m)u(n-m)$$

sustav za usrednjavanje je primjer FIR sustava

$$\forall n \in \mathbb{Z}$$
,

$$y(n) = \frac{1}{M+1} \sum_{m=0}^{M} u(n-m) = \sum_{m=0}^{M} \frac{1}{M+1} u(n-m),$$

pri čemu je njegov impulsni odziv

$$h(n) = \begin{cases} \frac{1}{M+1}, & 0 \le n \le M; \\ 0, & n < 0 \text{ in } > M \end{cases}$$

2012/2013

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih susta Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

FIR sustav – blokovski dijagram

- na naredne dvije prikaznice su blokovski dijagrami koji predstavljaju realizaciju FIR sustava za koji je M=3
- blokovski dijagram je izveden izravno iz jednadžbe za konvolucijski zbroj i radi se o dva ekvivalentna prikaza istog sustava
- na slikama je prikazano napredovanje signala (njegovih očitaka) kroz sustav, te svi međurezultati svih operacija koje se u modelu sustava događaju tijekom određivanja odziva u pojedinom koraku
- važno je uočiti ulogu koju početni uvjeti (različiti od nule) imaju na odziv sustava
- evidentno je zašto se pri definiciji impulsnog odziva naglašava da je to odziv na jedinični impuls za slučaj mirnog sustava (početni uvjeti jednaki nuli)

Impulsni odzi i konvolucija linearnih sustava

sustava Impulsni odziv diskretnih

Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski interral

n=4

n = 5

v(4) = h(0)u(4)

v(5) = h(0)u(5)

FIR sustav – blokovski dijagram

iz
$$y(n) = \sum_{m=0}^{3} h(m)u(n-m) = h(0)u(n) + h(1)u(n-1) + h(2)u(n-2) + h(3)u(n-3)$$

+h(2)u(2)

+h(2)u(3)

+h(1)u(3)

+h(1)u(4)

+h(3)u(1)

+h(3)u(2)

Impulsni odziv i konvolucija linearnih

linearnih sustava Impulsni odziv

Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Impulsni odziv FIR sustava – blokovski dijagram

iz
$$y(n) = \sum_{m=0}^{3} h(m)\delta(n-m) = h(n) = h(0)\delta(n) + h(1)\delta(n-1) + h(2)\delta(n-2) + h(3)\delta(n-3)$$

2012/2013

Impulsni odz i konvolucija linearnih

sustava

diskretnih linearnih sustav

Konvolucijski zbroj

vremenski kontinuiranih linearnih sustav Konvolucijski integral

Impulsni odziv i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustav Konvolucijski

Konvolucijsk zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m),$$

$$za \ n = 2 \Rightarrow y(2) = \sum_{m=-\infty}^{\infty} u(m)h(2-m)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih susta Konvolucijski

Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustar Konvolucijski integral

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

sustava Impulsni odziv diskretnih

linearnih susta Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih susta Konvolucijski integral

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih susta

Konvolucijski zbroj

vremenski kontinuiranih linearnih susta Konvolucijski integral

Impulsni odz i konvolucija linearnih

sustava

diskretnih linearnih sustav

Konvolucijski zbroj

vremenski kontinuiranih linearnih sustav Konvolucijski integral

Svojstva konvolucijskog zbroja

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih

diskretnih linearnih susta Konvolucijski

zbroj Impulsni odzi

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Svojstva konvolucijskog zbroja – komutativnost i asocijativnost

već je pokazano da vrijedi komutativnost

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m) = \sum_{m=-\infty}^{\infty} h(m)u(n-m) \Leftrightarrow u*h = h*u$$

svojstvo asocijativnosti

$$y(n) = ((u * h_1) * h_2)(n) = (u * (\underbrace{h_1 * h_2}_{h}))(n) = (u * h)(n)$$

Slika 6: Konvolucijski zbroj – asocijativnost

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih susta Konvoluciiski

Konvolucijsk zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Svojstva konvolucijskog zbroja – asocijativnost

 izvod svojstva asocijativnosti za linearni, vremenski stalni, diskretni sustav

$$y(n) = \sum_{j=-\infty}^{\infty} \left[\sum_{m=-\infty}^{\infty} u(m)h_1(j-m) \right] h_2(n-j) =$$

$$= \sum_{m=-\infty}^{\infty} u(m) \left[\sum_{j=-\infty}^{\infty} h_1(j-m)h_2(n-j) \right]$$

za
$$k = j - m$$
 ⇒

$$y(n) = \sum_{m=-\infty}^{\infty} u(m) \left[\underbrace{\sum_{k=-\infty}^{\infty} h_1(k) h_2(n-m-k)}_{h(n-m)} \right]$$

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m)$$

Konvolucijski

zbroi

Svojstva konvolucijskog zbroja – distributivnost

svojstvo distributivnosti za linearni, vremenski stalni, diskretni sustav

$$y(n) = (u * (h_1 + h_2))(n) = (u * h_1)(n) + (u * h_2)(n)$$

Slika 7: Konvolucijski zbroj – distributivnost

$$y(n) = \sum_{m=-\infty}^{\infty} u(m) \left[h_1(n-m) + h_2(n-m) \right]$$

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h_1(n-m) + \sum_{m=-\infty}^{\infty} u(m)h_2(n-m)$$

2012/2013

Impulsni odzi i konvolucija linearnih sustava

linearnih sust Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Konvolucija proizvoljnih signala

- dosadašnja razmatranja konvolucijskog zbroja odnosila su se na jedan od mogućih opisa LTI sustava
- konvolucijski zbroj možemo definirati i za proizvoljne signale, pa pišemo

$$y(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m) = (x_1 * x_2)(n)$$

- već prije izvedena svojstva konvolucijskog zbroja vrijede i za proizvoljne signale:
 - komutativnost:

$$(x_1 * x_2)(n) = (x_2 * x_1)(n)$$

distributivnost:

$$(x_1*(x_2+x_3))(n)=(x_1*x_2)(n)+(x_1*x_3)(n)$$

asocijativnost:

$$(x_1 * (x_2 * x_3))(n) = ((x_1 * x_2) * x_3)(n)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih sustav Konvolucijski

Konvolucijski zbroj Impulsni odziv

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Svojstva konvolucijskog zbroja – pomak

• za $y(n) = (x_1 * x_2)(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m)$, te uz oznake $(E^{-p}(x_1))(n) = x_1(n-p)$ i $(E^{-q}(x_2))(n) = x_2(n-q)$, vrijedi svojstvo pomaka

$$(E^{-p}(x_1) * E^{-q}(x_2))(n) = y(n-p-q)$$

izvod svojstva pomaka

$$\sum_{m=-\infty}^{\infty} [E^{-p}(x_1)(m)][E^{-q}(x_2)(n-m)]$$

$$=\sum_{m=-\infty}x_1(m-p)x_2(n-m-q)$$

za j = m - p slijedi

$$\sum_{i=-\infty}^{\infty} x_1(j)x_2(n-p-q-j) = y(n-p-q)$$

Signali i sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih

diskretnih linearnih susta Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Svojstva konvolucijskog zbroja – konvolucija s jediničnim impulsom, duljina konvolucijskog zbroja

- konvolucija s jediničnim impulsom
 - za bilo koji signal x(n), $n \in \mathbb{Z}$, i jedinični impuls $\delta(n)$, $n \in \mathbb{Z}$,

$$(x * \delta)(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m) = x(n)$$

- duljina konvolucijskog zbroja konačnih nizova
 - neka je L_1 duljina (broj elemenata) niza $x_1(n)$, a L_2 duljina niza $x_2(n)$
 - duljina $(x_1 * x_2)(n)$ je $L_1 + L_2 1$

dokaz slijedi iz:
$$y(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m)$$

 $0 \le m \le L_1 - 1$
 $0 \le n - m \le L_2 - 1 \qquad |+m$
 $m \le n \le L_2 - 1 + m \implies$
 $0 \le m \le n \le L_2 - 1 + m \le L_2 - 1 + L_1 - 1 \implies$
 $0 \le n \le L_1 + L_2 - 2$
pa je duljina konvolucije $L = L_1 + L_2 - 1 \implies 0 \le n \le L_1 + L_2 - 1 \implies 0 \le L_1 + L_2 - 1 \implies 0 \le n \le L_1 + L_2 - 1 \implies 0 \le n \le L_1 + L_2 - 1 \implies 0 \le n \le L_1 + L_2 - 1 \implies 0 \le n \le L_1 + L_2 - 1 \implies 0 \le n \le L_1 + L_2 - 1 \ge L_1 + L_2 - 1 \ge$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

diskretnih linearnih sust Konvolucijski

zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav

Konvolucijski zbroj – primjer

 u Cjelini 3 dan je primjer konvolucije dva pravokutna signala

• signali x_1 i x_2 definirani su kao

$$x_1(n) = \begin{cases} 1, & 0 \le n \le 3; \\ 0, & \text{inače} \end{cases}$$
 $x_2(n) = \begin{cases} 1, & 0 \le n \le 3; \\ 0, & \text{inače} \end{cases}$

- duljine nizova $x_1(n)$ i $x_2(n)$ su $L_1 = L_2 = 4$, pa je duljina niza koji je rezultat njihove konvolucije, $(x_1 * x_2)(n)$, jednaka $L_1 + L_2 1 = 7$
- očigledno da je dovoljno računanje konvolucije za 0 < n < 6

Signali i sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih susta Konvolucijski

Konvolucijski zbroj Impulsni odziv

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Konvolucijski zbroj – primjer

• konvoluciju $(x_1 * x_2)(n)$, uzimajući u obzir da se radi o kauzalnim nizovima, određujemo iz

$$y(n) = \sum_{m=0}^{n} x_1(m)x_2(n-m), \qquad n \geq 0,$$

$$y(0) = x_1(0)x_2(0) = 1$$

$$y(1) = x_1(0)x_2(1) + x_1(1)x_2(0) = 2$$

$$y(2) = x_1(0)x_2(2) + x_1(1)x_2(1) + x_1(2)x_2(0) = 3$$

$$y(3) = x_1(0)x_2(3) + x_1(1)x_2(2) + x_1(2)x_2(1) + x_1(3)x_2(0) = 4$$

$$y(4) = x_1(1)x_2(3) + x_1(2)x_2(2) + x_1(3)x_2(1) = 3$$

$$y(5) = x_1(2)x_2(3) + x_1(3)x_2(2) = 2$$

$$y(6) = x_1(3)x_2(3) = 1$$

Impulsni odzi i konvolucija linearnih

sustava

diskretnih linearnih sustav

Konvolucijski zbroj

vremenski kontinuiranih linearnih sustav Konvolucijski integral Konvolucijski zbroj – izračun

sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih

diskretnih linearnih susta Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Konvolucijski zbroj – izračun

izračunava se konvolucijski zbroj signala x₁ i x₂ definiranih kao

$$x_1(n) = \begin{cases} 1, & 1 \le n \le 7; \\ 0, & \text{inače} \end{cases}$$
 $x_2(n) = \begin{cases} \frac{1}{2}, & 0 \le n \le 3; \\ 0, & \text{inače} \end{cases}$

konvoluciju izračunavamo iz $y(n) = \sum_{m=0}^{n} x_1(m)x_2(n-m)$

Impulsni odzi i konvolucija linearnih

diskretnih linearnih susta Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Konvolucijski zbroj – izračun

• djelomično preklapanje $x_1(m)$ i $x_2(n-m)$ započinje za n=1 i završava za n=3

pa su, za interval $1 \le n \le 3$, donja granica zbrajanja m=1 i gornja m=n, pa vrijedi

$$y(n) = \sum_{m=1}^{n} x_1(m)x_2(n-m) = \sum_{m=1}^{n} 1 \cdot \frac{1}{2} = (n-1+1)\frac{1}{2} = \frac{1}{2}n$$

Konvolucijski zbroi

Konvolucijski zbroj – izračun

• potpuno preklapanje $x_1(m)$ i $x_2(n-m)$ započinje za n=4i završava za n=7

pa su, za interval 4 < n < 7, gornja granica zbrajanja m=n i donja m=n-3, pa vrijedi

$$y(n) = \sum_{m=n-3}^{n} x_1(m)x_2(n-m) = \sum_{m=n-3}^{n} 1 \cdot \frac{1}{2} = (n-(n-3)+1)\frac{1}{2} = 2$$

Konvolucijski zbroi

Konvolucijski zbroj – izračun

• ponovno djelomično preklapanje $x_1(m)$ i $x_2(n-m)$ započinje za n=8 i završava za n=10

pa su, za interval $8 \le n \le 10$, gornja granica zbrajanja m=7 i donja m=n-3, pa vrijedi

$$y(n) = \sum_{m=n-3}^{7} x_1(m)x_2(n-m) = \sum_{m=n-3}^{7} 1 \cdot \frac{1}{2} = (11-n)\frac{1}{2}$$

Konvoluciiski zbroi

integral

Konvolucijski zbroj – izračun

- preklapanje $x_1(m)$ i $x_2(n-m)$ ne postoji za n<1 i n > 11 i tada je v(n) = 0
- finalno, rezultat konvolucije signala x_1 i x_2 je

$$y(n) = \begin{cases} 0, & n < 1; \\ \frac{1}{2}n, & 1 \le n \le 3, \\ 2, & 4 \le n \le 7, \\ (11-n)\frac{1}{2}, & 8 \le n \le 10, \\ 0, & n \ge 11; \end{cases}$$

Impulsni odz i konvolucija linearnih

sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral Impulsni odziv vremenski kontinuiranog sustava

sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustav Konvolucijski zbroj Impulsni odziv

Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijsk integral

Impulsni odziv vremenski kontinuiranog sustava

 odziv linearnog, vremenski stalnog (LTI), vremenski kontinuiranog sustava,

$$S: [\mathbb{R} \to \mathbb{R}] \to [\mathbb{R} \to \mathbb{R}],$$

na pobudu u, definiran je kao

$$\forall t \in \mathbb{R}, \quad y(t) = S(u)(t)$$

• odziv ovog sustava na jedinični impuls δ , Diracovu δ funkciju, uz uvjet da je sustav bio miran prije dovođenja pobude, nazivamo impulsnim odzivom sustava i označavamo kao $h = S(\delta)$, dakle

$$\forall t \in \mathbb{R}, \quad h(t) = S(\delta)(t)$$

2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

diskretnih
linearnih sustava
Konvolucijski
zbroj
Impulsni odziv
vremenski
kontinuiranih

linearnih sustava Konvolucijski integral

Impulsni odziv vremenski kontinuiranog sustava – primjer

odziv integratora

$$\int : [\mathbb{R} \to \mathbb{R}] \to [\mathbb{R} \to \mathbb{R}],$$

na pobudu u, definiran je kao

$$\forall t \in \mathbb{R}, \quad y(t) = \int_{-\infty}^t u(\tau) d\tau = y(0^-) + \int_{0^-}^t u(\tau) d\tau,$$

• odziv ovog sustava na jedinični impuls δ (Diracovu δ funkciju), uz uvjet da je sustav bio miran, $h(0^-) = y(0^-) = 0$, prije dovođenja pobude, nazivamo impulsnim odzivom sustava i označavamo

$$\forall t \in \mathbb{R}, \quad h(t) = \int_{0^-}^t \delta(\tau) d\tau = \mu(t)$$

sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustav Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijsk integral

Impulsni odziv vremenski kontinuiranog sustava – primjer

blokovski dijagram integratora je

• očigledno je kako će, zbog djelovanja Diracove funkcije u t=0, početni uvjet u $h(0^+)$ biti različit od $h(0^-)$

$$h(0^+) = \underbrace{h(0^-)}_{=0} + \int_{0^-}^{0^+} \delta(\tau) d\tau = \mu(0^+) = 1$$

• na slici je ta činjenica naglašena oznakama crvenom bojom

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Impulsni odziv vremenski kontinuiranog sustava – primjer

 razmatra se impulsni odziv sustava koji je nastao kao kaskada triju integratora

$$y''(t) \qquad \int_{y'(0^{-})} y(t) \qquad \int_{y(0^{-})} y$$

$$y(t) = y(0^-) + \int_{0^-}^t \left[y'(0^-) + \int_{0^-}^\tau \left[y''(0^-) + \int_{0^-}^\lambda u(\vartheta) \, d\vartheta \right] d\lambda \right] d\tau$$
za miran sustav.

 $h(0^-) = y(0^-) = 0,$

$$h'(0^-) = y'(0^-) = 0,$$

 $h''(0^-) = y''(0^-) = 0,$

određujemo impulsni odziv iz

$$h(t) = \int_{0^{-}}^{t} \left[\int_{0^{-}}^{\tau} \left[\int_{0^{-}}^{\lambda} \delta(\vartheta) \, d\vartheta \right] d\lambda \right] d\tau = \frac{t^{2}}{2} \mu(t)$$

Signali i sustavi školska godina 2012/2013

Cjelina 9. Profesor Branko Jeren

Imearnih sustava Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

Impulsni odziv vremenski kontinuiranog sustava – primjer

ullet uzimajući u obzir poznate činjenice, $orall t \in \mathbb{R}_0^+$,

$$\int_{0^{-}}^{t} \delta(\tau) d\tau = \mu(t), \quad \int_{0^{-}}^{t} \mu(\tau) d\tau = t\mu(t), \quad \int_{0^{-}}^{t} \tau d\tau = \frac{t^{2}}{2} \mu(t),$$

i uvidom u blokovski dijagram

zaključujemo kako se, djelovanjem Diracove funkcije u t=0, mijenja samo početni uvjet prvog integratora u kaskadi, dok su početni uvjeti ostalih nepromijenjeni (vidi vrijednosti gornjih integrala za gornju granicu 0^+)

2012/2013

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustav Konvolucijski zbroi

Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijsk

Primjer određivanja impulsnog odziva vremenski kontinuiranog sustava

vremenski kontinuiran sustav zadan je diferencijalnom jednadžbom

$$\forall t \in \mathbb{R}, \quad y'(t) + 2y(t) = u(t)$$

- sustav je miran, dakle vrijedi $y(0^-)=0$, i određujemo impulsni odziv sustava, dakle odziv na pobudu $u(t)=\delta(t), \ \forall t\in \mathbb{R}$
- transformirajmo gornju jednadžbu

$$y'(t) = -2y(t) + u(t)$$
a za $u(t) = \delta(t) \Rightarrow$

$$h'(t) = -2h(t) + \delta(t)$$
(2)

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski

Primjer određivanja impulsnog odziva vremenski kontinuiranog sustava

impulsni odziv određujemo rješavanjem diferencijalne jednadžbe

$$\forall t \in \mathbb{R}, \quad h'(t) = -2h(t) + \delta(t)$$

• za t<0 impulsni odziv je h(t)=0, a za t>0 jednadžba prelazi u homogenu diferencijalnu jednadžbu

$$h'(t)=-2h(t),$$

 jednostavnim zaključivanjem² određujemo njezino rješenje kao

$$h(t) = Ce^{-2t}, \quad \forall t > 0$$

koje očigledno zadovoljava gornju jednadžbu

²Postupke za rješavanje diferencijalnih jednadžbi analiziramo kasnije

sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv

vremenski kontinuiranih linearnih sustava Konvolucijski

Primjer određivanja impulsnog odziva vremenski kontinuiranog sustava

- ullet postavlja se pitanje što je s impulsnim odzivom u t=0
- diferencijalna jednadžba mora biti zadovoljena za $\forall t$, pa i za t=0, a do zaključka o vrijednosti $h(0^+)$ dolazimo integriranjem njezine obje strane od $t=0^-$ do $t=0^+$

$$\int_{0^{-}}^{0^{+}} h'(t) dt = -2 \underbrace{\int_{0^{-}}^{0^{+}} h(t) dt}_{=0} + \underbrace{\int_{0^{-}}^{0^{+}} \delta(t) dt}_{1}$$
$$h(0^{+}) - \underbrace{h(0^{-})}_{=0} = 1 \quad \Rightarrow \quad h(0^{+}) = 1$$

• napomena: da bi bila zadovoljena jednadžba $h'(t) = -2h(t) + \delta(t)$ evidentno je da h'(t) sadrži impuls u t = 0, dakle h(t) sadrži tek konačni skok, i zato vrijedi $\int_{0-}^{0+} h(t) dt = 0$

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

Primjer određivanja impulsnog odziva vremenski kontinuiranog sustava

• iz $h(0^+)=1$ određujemo konstantu C, dakle iz $h(t)=Ce^{-2t}$ slijedi, za $t=0^+$,

$$h(0^+)=1=C$$

pa je impulsni odziv danog sustava³

$$\forall t \in \mathbb{R}, \quad h(t) = e^{-2t}\mu(t)$$

³uvrštenjem rješenja u jednadžbu $h'(t)+2h(t)=\delta(t)\Rightarrow e^{-2t}\delta(t)-2e^{-2t}\mu(t)+2e^{-2t}\mu(t)==e^{-2t}\delta(t)=e^{0}\delta(t)=\delta(t)$ čime je dokazana valjanost rješenja

2012/2013

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustav Konvolucijski zbroj Impulsni odziv

vremenski kontinuiranih linearnih sustava Primjer određivanja impulsnog odziva vremenski kontinuiranog sustava

 uvidom u blokovski dijagram koji realizira jednadžbu sustava također zaključujemo o odzivu na pobudu jediničnim impulsom, dakle iz

$$\forall t \in \mathbb{R}, \quad h'(t) = -2h(t) + \delta(t)$$

2012/2013

Impulsni odzi i konvolucija linearnih

sustava

diskretnih
linearnih sustava
Konvolucijski
zbroj
Impulsni odziv
vremenski
kontinuiranih
linearnih sustava

Konvolucijski integral

Konvolucijski integral

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustavi Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustavi Konvolucijski

integral

Izvod konvolucijskog integrala

 konvoluciju dvaju signala f i g definiramo s konvolucijskim integralom

$$orall t \in \mathbb{R}, \quad (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$$

razmatramo konvoluciju signala u i Diracove delta funkcije

$$\forall t \in \mathbb{R}, \quad (u * \delta)(t) = \int_{-\infty}^{\infty} u(\tau)\delta(t - \tau) d\tau = u(t), \quad (3)$$

pa zaključujemo kako ulazni signal možemo pisati kao⁴

$$u(t) = \int_{-\infty}^{\infty} u(\tau) \delta(t - \tau) \, d\tau$$

⁴Usporediti s $u(n)=\sum_{m=-\infty}^{\infty}u(m)\delta(n-m)$ za vremenski diskretne signale

Konvolucijski integral

Konvolucijski integral

linearan vremenski stalan kontinuiran sustav definiran je kao

$$\forall t \in \mathbb{R}, \quad y(t) = S(u)(t)$$
 (4)

a njegov impulsni odziv

$$\forall t \in \mathbb{R}, \quad h(t) = S(\delta)(t)$$
 (5)

pa je iz (4), i uz (5), $\forall t \in \mathbb{R}$,

$$y(t) = S\left\{ \int_{-\infty}^{\infty} u(\tau)\delta(t-\tau) d\tau \right\} = \int_{-\infty}^{\infty} u(\tau) \underbrace{S\{\delta(t-\tau)\}}_{\text{vrem. stalnost}} d\tau$$

 dakle, uz poznate h i u, odziv vremenski kontinuiranog sustava određujemo pomoću konvolucijskog integrala

$$\forall t \in \mathbb{R}, \quad y(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau = (u*h)(t)$$

Profesor Branko Jeren

Konvolucijski integral

Konvolucijski integral – svojstva⁵

 u Cjelini 2 je pokazano da konvolucijski integral možemo definirati i za proizvoljne signale, pa možemo pisati

$$(x_1 * x_2)(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$$

komutativnost:

$$(x_1 * x_2)(t) = (x_2 * x_1)(t)$$

distributivnost:

$$(x_1*(x_2+x_3))(t) = (x_1*x_2)(t) + (x_1*x_3)(t)$$
• asocijativnost:

$$(x_1 * (x_2 * x_3))(t) = ((x_1 * x_2) * x_3)(t)$$

pomak:

za
$$(E_{T_1}^{-1}(x_1))(t) = x_1(t - T_1)$$
 i $(E_{T_2}^{-1}(x_2))(t) = x_2(t - T_2)$ $(E_{T_1}^{-1}(x_1) * E_{T_2}^{-1}(x_2))(t) = y(t - T_1 - T_2)$

konvolucija s impulsom

$$(x * \delta)(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau = x(t)$$

⁵lzvode se na sličan način kao i za konvolucijski zbroj pa je ovdje njihov izvod izostavlien

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 1.

- neka je zadan linearni, vremenski stalni, vremenski kontinuiran sustav, svojim impulsnim odzivom $h(t)=e^{-3t}\mu(t)$
- određuje se odziv na pobudu $u(t) = \mu(t)$
- odziv izračunavamo pomoću konvolucijskog integrala

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau) u(\tau) d\tau$$

• sa slike 8 je vidljivo kako se $u(\tau)$ i $h(t-\tau)$ ne poklapaju za $t \le 0$ pa slijedi da je y(t) = 0 za $t \le 0$

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustav. Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav. Konvolucijski

integral

Grafička interpretacija izračunavanja konvolucijskog integrala – Primjer 1.

Slika 8: Konvolucijski integral – primjer

Signali i sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

diskretnih
linearnih sustava
Konvolucijski
zbroj
Impulsni odziv
vremenski
kontinuiranih
linearnih sustava
Konvolucijski

integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 1. nastavak

ullet za t>0, postoji preklapanje u(au) i h(t- au), pa je

$$y(t) = \int_{-\infty}^{\infty} h(t-\tau)u(\tau) d\tau = \int_{0}^{t} h(t-\tau)u(\tau) d\tau \quad \Rightarrow$$

$$y(t) = \int_0^t e^{-3(t-\tau)} d\tau = e^{-3t} \int_0^t e^{3\tau} d\tau = \frac{1}{3} [1 - e^{-3t}]$$

- grafička interpretacija postupka konvolucije dana je na slici 8, i treba uočiti kako trenutna vrijednost y(t) odgovara površini preklapanja $u(\tau)$ i $h(t-\tau)$ (žuto na slici)
- tako je za t=1

$$y(t) = \int_0^1 e^{-3(1-\tau)} d\tau = \frac{1}{3} [1 - e^{-3}] = 0.3167$$

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Nekauzalni sustavi

- za nekauzalni sustav, odziv započinje prije nego je djelovala pobuda, dakle, sustav anticipira buduću pobudu (radi predikciju)
- nekauzalni vremenski sustavi su često rezultat postupaka sinteze na temelju idealiziranih zahtjeva
- nekauzalni vremenski sustavi ne mogu biti realizirani u stvarnom vremenu
- nekauzalne sustave možemo koristiti u slučajevima kada je dozvoljeno kašnjenje ili kada su konačni signali pohranjeni (poznati u cijelom području definicije)
- ovdje se demonstrira odziv nekauzalnog sustava konvolucijskim integralom

sustavi školska godina 2012/2013 Cjelina 9.

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2.

- neka je zadan linearni, vremenski stalni, vremenski kontinuiran sustav, svojim impulsnim odzivom $h(t) = \mu(t+1) \mu(t-2)$
- određuje se odziv na pobudu $u(t) = \mu(t+3) \mu(t-4)$
- odziv izračunavamo pomoću konvolucijskog integrala

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau) u(\tau) d\tau$$

- grafička interpretacija dana je na slici 9
- sa slike 9 je vidljivo kako se $u(\tau)$ i $h(t-\tau)$ preklapaju u tri intervala
 - u intervalu $-4 \le t \le -1$, djelomično,
 - u intervalu $-1 \le t \le 3$, potpuno (cijeli $h(t-\tau)$ zahvaćen s $u(\tau) \ne 0$),
 - u intervalu $3 \le t \le 6$, djelomično,

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustav Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 1

Slika 9: Grafička interpretacija izračunavanja konvolucijskog integrala – Primjer 2.

63

2012/2013

Impulsni odziv i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 2

- na slici 9 je ilustrirano kako vrijednosti y(-3)=1, y(2)=3 i y(5)=1, odgovaraju površini produkata $u(\tau)*h(-3-\tau)$, $u(\tau)*h(2-\tau)$, odnosno, $u(\tau)*h(5-\tau)$
- evidentno je kako, zbog nekauzalnosti impulsnog odziva, odziv starta prije pobude
- odziv započinje za $t \geq -4$, trenutak kada se počinju preklapati $u(\tau)$ i $h(t-\tau)$, i u intervalu $-4 \leq t \leq -1$ računa se iz

$$y(t) = \int_{-3}^{t+1} u(\tau)h(t-\tau) d\tau = \int_{-3}^{t+1} d\tau = t+4$$

• obrazložimo gornju i donju granicu

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustav: Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 3

djelomično preklapanje počinje za t = -4, a završava za t = -1

granica integracija za interval $-4 \le t \le -1$ su: donja je -3; gornja je t+1

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala - Primjer 2. nastavak 4

• u intervalu -1 < t < 3 odziv se računa iz

$$y(t) = \int_{t-2}^{t+1} u(\tau)h(t-\tau) d\tau = \int_{t-2}^{t+1} d\tau = 3,$$

Impulsni odz i konvolucija linearnih

sustav

Impulsni odziv diskretnih linearnih sustav Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 5

granica integracija za interval $3 \le t \le 6$ su: donja je t-2; gornja je 4

u intervalu 3 < t < 6,iz

$$y(t) = \int_{t-2}^{4} u(\tau)h(t-\tau) d\tau = \int_{t-2}^{4} d\tau = 6 - t$$

Impulsni odziv i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijski zbroj Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 6

• finalno, odziv sustava $h(t)=\mu(t+1)-\mu(t-2)$, na pobudu $u(t)=\mu(t+3)-\mu(t-4)$, je

$$y(t) = \begin{cases} 0, & t \le -4 \\ t+4, & -4 \le t \le -1 \\ 3, & -1 \le t \le 3 \\ 6-t, & 3 \le t \le 6 \\ 0, & t \ge 6 \end{cases}$$