FRA231: Robotics Modelling & Experimentation (RMX)

By Narongsak Tirasuntarakul

Lecture 10: Actuator 2

Lecture Contents

- Working Principles of a Stepper Motor
- Stepper Motor Specification
- Stepper Motor Driver
- Working Principles of a Solenoid
- Types of Solenoid
- Solenoid Driver
- Solenoid Specification

Lecture Objectives

- Answer these following questions
 - 1. What are the advantages and disadvantages of a stepper motor comparing with brushed DC motor?
 - 2. What are the key specification of a stepper motor, and what are their effects?
 - 3. How to control the direction and speed of a stepper motor?
 - 4. What are the advantages and disadvantages of each drive mode for a stepper motor?
 - 5. What are the advantages and disadvantages of a solenoid comparing with other actuators?
 - 6. How to drive a solenoid?
 - 7. What are the key specification of a solenoid, and what are their effects?

Stepper Motor

Example applications

VMC650 CNC Milling Machine - Vertical machining center manufacturer -

CNC milling machine

<u>Original Prusa MK4S 3D Printer MMU3 Bundle</u> | Original Prusa 3D printers directly from Josef Prusa

3D printer

Stepper Motor – Overview

Wave Drive

Stepper Motor – Rotor Types

https://www.youtube.com/watch?v=TWMai3oirnM&ab_channel=HowToMechatronics

Hybrid Stepper Motor Rotor

https://www.orientalmotor.com/steppermotors/technology/hybrid-stepper-motors-v-hybrid-control.html

Stepper Motor – Motor Characteristics Radial load

Basic Specifications

Katalog-Deckblatt-SM April 2015.indd

Motor Structural Diagram: Cross-Section Parallel to Shaft

Stepper Motor Specifications

- **NEMA:** 23

- **Size:** 56-3

- Current/Phase: 2.0 A

- Resistance/Phase: 2.3 Ohm

Inductive/Phase: 9.3 mH

- **AWG:** 26

Max Voltage: 72V

- **Holding Torque:** 2300 mNm

Detent torque: 75 mNm

Rotor Inertia: 0.39 kg cm²

Bearing Load: Axial (push) 40 N/(pull) 130 N

Bearing Load: Radial 70 N

Mass: 1 kg

Stepper Motor – Motor Characteristics

Stepper – DC motor characteristics comparison

DC and stepper motor have differences in motion generation and motor driving method. This cause a difference in characteristics.

Stepper Motor – Stepper Driver Types

Bipolar Stepper Motor

Unipolar Stepper Motor

PKP264U20A2 / PKP264U20B2

- Bipolar driver is more efficient than unipolar
- Bipolar driver is more complicated to drive than unipolar
- Bipolar has a better ability to send current to a coil.

** By changing from driver types, we are changing the torque characteristics of the motor.

Stepper Motor Wiring Basics: Unipolar vs Bipolar

https://www.applied-motion.com/news/2015/10/whatunipolar-step-motor-drive

Stepper Motor – Drive Modes

Full Step Drive

Half Step Drive

Micro Step Drive

Stepper Motor – Stepper Driver

Stepper Motor – Stepper Driver

DRV 8825

MODE0	MODE1	MODE2	Microsteps Full step		
Low	Low	Low			
High	Low	Low	Half step		
Low	High	Low	1/4 step		
High	High	Low	1/8 step		
Low	Low	High	1/16 step		
High	Low	High	1/32 step		
Low	High	High	1/32 step		
High	High	High	1/32 step		

EN = Enable - Active LOW, (default state) Leave unconnected if always enabled

M0 = Mode 0 (Set microstep size) Leave unconnected for full Step Mode

M1 = Mode 1 (Set microstep size) Leave unconnected for full Step Mode

M2 = Mode 2 (Set microstep size) Leave unconnected for full Step Mode

RST = Reset - Active LOW (default state) Must pull high to take out of reset

SLP = Sleep - Active LOW (default state) Must pull high to take out of sleep

STP = Step Input (pulse increments step)

Driven by microcontroller

DIR = Direction Input (rotation direction)

Driven by microcontroller

VMOT = Motor Voltage (8.2 - 45V)

GND = Motor Power Supply Ground

2B = Stepper Coil B (leg 2)

1B = Stepper Coil B (leg 1)

1A = Stepper Coil A (leg 1)

2A = Stepper Coil A (leg 2)

FLT = Fault Output - Active LOW when fault detected

GND = Microcontroller Ground

Stepper Motor – Stepper Driver

DRV 8825 current draw from microstepping

Microstepping Current (Phase A) vs STEP Input, Slow Decay on Increasing Steps Microstepping Current (Phase A) vs STEP Input, Mixed Decay on Decreasing Steps

Solenoid

Example applications

<u>TAILONZ PNEUMATIC 1/4"NPT Solenoid Valve DC12V Single Coil</u> <u>Pilot-Operated Electric 2 Position 5 Way Connection Type</u>

Solenoid Valve

GD004 กลอนไฟฟ้า กลอนแม่เหล็กไฟฟ้า กลอนประตูไฟฟ้า LY-03 DC12V 0.3A 3.6W Electromagnetic Lock โซลินอยด์ล็อค Solenoid lock

Solenoid Lock Door

Solenoid – Basic Principle

Electromagnetic Waves in Solenoid

https://circuitdigest.com/article/what-is-solenoid-its-working-principle-and-types

 $\mu_0 = 4\pi \times 10^{-7} T \cdot m/A$ permeability of free space

Solenoid – DIY Solenoid

Solenoid – Basic design of solenoid

Solenoid – Latching Solenoid

Low frequency application Low power consumption

Solenoid – Bi-Stable Linear Solenoid

Solenoid – Proportional Solenoid

https://www.youtube.com/watch?v=Sq-CYfp9t4c

https://www.youtube.com/watch?v=xVk1CT3FWlo

Solenoid – Frame of Solenoid

Minimize flux leakage Reduce operational noise

Simplest design Low cost

C Frame (U Frame) solenoid

D Frame (Box Frame) solenoid

Solenoid – Linear Solenoid Application

Solenoid – Rotary Solenoid

Bi-stable rotary solenoids

fast response times holds the position even when power is not applied

Step rotary solenoids

multiple position control durable, high-torque holds the position even when power is not applied

Latching solenoids

low duty cycle negative electrical pulse unlatches the plunger

https://www.bicronusa.com/solenoid-applications/rotary-dc

Solenoid – Rotary Solenoid Application

Solenoid - Driver

Reduce Heat

Solenoid - Specification

Data at 20°C , device performance measured without heat sink

duty cycle = -	on time	– x 100%	100%	30%	25%	10%	
duty cycle =	"on" time + "off" time	- X 100%	cont.	or less	or less	or less	
Max. "on" time in seconds			∞	310	48	14	
watts at 20°C			10,4	20,8	41,6	104	
ampere-turns at 20°			1335	1888	2670	4222	
AWG no.	resistance	number	volts DC				
	Ω±10% (at 20°C)	of turns					
M320SS-12v	14	1541	12,0	17,0	24,0	38,0	
M320SS-24v	55	3060	24,0	34,0	48,0	76,0	
M320SS-48v	214	5992	48,0	68,0	96,0	152,0	
M320SS-96v	900	12200	96,0	136,0	192	304	

100%

50%

25%

10%