Логика и алгоритмы, лекция 26

лектор: Кудинов Андрей Валерьевич

1 июня 2021 г.

План лекции:

- Универсальная машина Тьюринга
- Главность универсальной МТ
- m-сводимость и m-полнота
- Теорема Клини о неподвижной точке
- Арифметика Пеано

Кодирование машин Тьюринга

Машина $M = \langle Q, \Sigma, P, q_0, q_1 \rangle$ задаётся

•
$$Q = \{q_0, \dots, q_s\}$$
 — внутр. состояния;

•
$$\Sigma = \{a_0, \dots, a_r\}$$
 — рабочий алфавит;

•
$$P = \{p_0, \dots, p_{s(r+1)}\}$$
 — набор команд.

$$q_1$$
 — нач., q_0 — кон., a_0 = $\#$ — пробел.

Кодирование Q и Σ

Алфавит программ есть $\Pi := \{ \rightarrow, L, N, R, q, a, \mathbf{1} \}$.

Сопоставим элементам Q и Σ следующие коды в алфавите Π : $q_i \longmapsto q \mathbf{1}^i; \quad a_j \longmapsto a \mathbf{1}^j.$

Слово $x \in \Sigma^*$ кодируется конкатенацией Code(x) кодов всех его букв, например $Code(a_2a_0a_1) = a\mathbf{11}aa\mathbf{1}$.

Коды команд

Код команды $q_i a_k \to q_j a_l \nu$, где $\nu \in \{L, N, R\}$, есть слово $q \mathbf{1}^i a \mathbf{1}^k \to q \mathbf{1}^j a \mathbf{1}^l \nu$ в алфавите Π .

Код команды $p \in P$ обозначим Code(p).

Коды машин

Код машины M есть конкатенация кодов всех её команд, то есть $Code(M) := Code(p_0) \dots Code(p_{s(r+1)})$

Утверждение

Отображение $M \longmapsto Code(M)$ инъективно.

В частности, по Code(M) однозначно восстанавливаются рабочий алфавит. множество внутренних состояний, команды и т.д.

Утверждение

Множество кодов всевозможных машин Тьюринга (выбранного нами формата) есть разрешимое подмножество Π^* .

Функция, вычислимая машиной Тьюринга

Пусть $\Delta \subset \Sigma$ и $\# \notin \Delta$.

Mчисто вычисляет частичную функцию $f:\Delta^*\to\Delta^*,$ если для каждого $x\in\Delta^*$

- если $x \in dom(f)$, то начав работу в конфигурации $q_1 \# x$, машина M останавливается в конфигурации $q_0 \# f(x)$;
- ullet если $x \notin dom(f)$, то машина M не останавливается.

M вычисляет частичную функцию $f:\Delta^*\to\Delta^*$, если для каждого $x\in\Delta^*$

- если $x \notin dom(f)$, то начав работу в конфигурации $q_1 \# x$, машина M не останавливается;
- если $x \in dom(f)$, то машина M останавливается, на ленте написано слово y = f(x), слева и справа от него стоят символы не из Δ^* , а головка остановилась внутри или непосредственно перед y.

Jan 1 He my A

Обозначения

 $M_{\Delta}(x)$ есть результат работы M на слове $x \in \Delta^*$.

 $M_{\Delta}:\Delta^* \to \Delta^*$ — частичная функция, вычислимая M.

Замечание 26.1

 M_{Δ} определена для любой машины M с рабочим алфавитом $\Sigma \supset \Delta$.

Утверждение

Для любой МТ M и Δ можно указать машину M' вычисляющую функцию M_{Δ} чисто.

- Преобразуем M так, чтобы M не печатала # (добавив «двойник» пробела).
- Добавим к программе M инструкции, определяющие по завершении работы M слово $M_{\Delta}(x)$ и удаляющие весь мусор слева и справа до символов #.

Универсальная машина Тьюринга

Универсальная машина U_{Δ} с рабочим алфавитом, содержащим $\Pi \cup \Delta \cup \{\$\}$, для любой МТ M и слова $x \in \Delta^*$ (чисто) вычисляет результат работы машины M на входе x, то есть частичную функцию

$$Code(M)$$
\$ $x \mapsto M_{\Delta}(x)$.

Другими словами:

- Если U_{Δ} начинает работу в конфигурации $q_1 \# Code(M) \$ x$ для $x \in \Delta^*$, то заключительная конфигурация $q_0 \# M_{\Delta}(x)$;
- Иначе U_{Δ} зацикливается.

Алгоритм работы машины U_{Δ} :

- Читаем входное слово вплоть до первого пробела и проверяем, что оно имеет вид Code(M) x для $x \in \Delta^*$. Если нет, зацикливаемся.
- ullet Эмулируем работу M на входе x, пользуясь частью ленты справа от \$ для записи кодов конфигураций M.

- В случае завершения работы M на входе x с результатом y выделяем слово Code(y) из кода заключительной конфигурации M.
- Преобразуем Code(y) в y.

Пусть $\Delta = \{1\}$ и МТ \underline{M} вычисляет $\underline{g}(e,x)$ в унарной записи, то есть $M_{\Delta}(\underline{c}(e,x)) \simeq \underline{g}(e,x)$.

Сопоставим МТ M машину M[n], которая для данного входа \overline{x} вычисляет $\overline{c(n,x)}$, а далее работает как M. Преобразование $n\mapsto \underline{Code(M[n])}$ является тотальной вычислимой функцией.

Ha brog (M u ~)
Code (Min) Kog

Halxon M[n]

Halxon Z e(n,x)

Пусть $\phi_{\Pi}: \mathbb{N} \to \Pi^*$ произвольная вычислимая тотальная биекция, такая что обратная биекция тоже вычислима.

Имеем

$$M_{\Delta}(\overline{c(e,x)}) \simeq M[e]_{\Delta}(\overline{x}) \simeq U_{\Delta}(Code(M[e])\$\overline{x}).$$

Вспомним, что универсальная функция $F(i,n) := |U_{\Delta}(\phi_{\Pi}(i)\$\overline{n})|.$

Отсюда
$$g(\underline{e},\underline{x}) \simeq F(\underline{s(e)},x),$$
 где

т-сводимость

Говорят, что множество A натуральных чисел m-сводится к другому множеству B натуральных чисел, если существует всюду определённая вычислимая функция $f: \mathbb{N} \to \mathbb{N}$ с таким свойством:

$$x \in A \iff f(x) \in B$$

для всех $x \in \mathbb{N}$. Обозначение: $A \leqslant_m B$.

Свойства:

- \leq_m рефлексивно и транзитивно;
- B разрешима (перечислима) и $A \leqslant_m B \Rightarrow A$ разрешима (перечислима);
- B неразреш. (неперечис.) и $A \leqslant_m B \Leftarrow A$ неразреш. (неперечис.);
- $\bullet \ \underline{A} \leqslant_m B \iff \mathbb{N} \setminus A \leqslant_m \mathbb{N} \setminus B;$
- A разрешима и $B \neq \emptyset$, $\mathbb{N} \Rightarrow A \leqslant_m B$.

Пусть F — главная универсальная вычислима функция.

 $A = \{e \mid F_e(0) \neq 0\}$. Что можно сказать про множество A?

No T. Perica- Yen. A - He paymentino X_A^K - bearing years A - reperioration $A = Le \mid F_E - TOTORNEO$ A - HE repersionation

m-полные множества

Множество A называется m-полным (в классе перечислимых множеств), если для любого перечислимого множества B верно, что $B \leqslant_m A$.

Теорема 26.2

Для главной <u>УВФ F(e,x)</u> множество $K = \{ \begin{subarray}{c} K = e \\ \begin{subarray}{c} E \\ \bed$

K — перечислимо.

Предположим, что $\underline{A-\text{перечислимо}}$. Рассмотрим функцию

$$g(n,x) = \begin{cases} \frac{\text{неопред.}}{n}, & \text{если } n \in A; \\ \frac{n}{n} \notin A; \end{cases}$$

По главность F найдется тотальная функция $f: \mathbb{N} \to \mathbb{N}$, т.ч.

$$g(n,x) \simeq F(f(n),x)$$

$$g(n,x) = \begin{cases} \text{неопред.}, & \text{если } n \not\in A; \\ 1, & \text{если } n \not\in A; \end{cases}$$
 $g(n,x) \simeq F(f(n),x).$ $g(n,x) = X \not\in X$ $f(n) \in K$ $f(n) \notin X$ $f(n) \notin X$

・ロト・(型ト・(型ト・(型ト・) 注 ・ かん()

Покажем, что

Теорема Клини о неподвижной точке

Теорема 26.3 (Клини)

Пусть F — главная УВФ для класса $Com(\mathbb{N}, \mathbb{N})$, а h — всюду определённая вычислимая функция одного аргумента. Тогда существует такое число 🙀, что $F_{\mathbf{M}} \cong F_{h(n)}$, то есть n и h(n) — номера одной функции.

h=m
$$\iff$$
 $f_n \simeq f_n$

Nemug \forall $f_n \simeq f_n$

Nemug \forall $f_n \simeq f_n \simeq f_n$

Superson $f_n \simeq f_n \simeq f_n \simeq f_n$

Superson $f_n \simeq f_n \simeq f_$

Теорема Клини о неподвижной точке

Теорема 26.3 (Клини)

Пусть F— главная УВФ для класса $Com(\mathbb{N}, \mathbb{N})$, а h— всюду определённая вычислимая функция одного аргумента. Тогда существует такое число m, что $F_n = F_{h(n)}$ то есть n и h(n)— номера одной функции.

The hon have unex seeroge. To use the cutt se =

Thyon have Samerum, or of the unex belongs on p

The hone of the wax to use the p

To leave
$$\exists f$$
 - To varie by a $\forall h$ of d on f $f(h) = f(h)$
 $t(h) = h(f_0(h))$
 $t(h) = h(f_0(h))$
 $t(h) = h(f_0(h))$

Программа печатающая свой номер (текст)

MYSA

Следствие 26.4

Существует n, такой что F(n,x) = n при любом x.

$$g(n,x) = N - lowering$$

$$\exists s = ton low + n \cdot \forall x (f(s(n),x) \approx g(n,x))$$

$$f(k,x) = f(k,x)$$

$$f(k,x) = f(s(k),x) = g(k,x) = k$$

$$f(k,x) = f(s(k),x) = g(k,x) = k$$

Программа печатающая свой номер (текст)

Следствие 26.4

Существует n, такой что F(n,x) = n при любом x.

$$y_{y}$$
 y_{x}
 $(F(n_{1}x)=m) F(m_{1}x)=n)$

Арифметика Пеано РА

Сигнатура: $0, S, +, \cdot, \text{Exp}, \leq, =$

Стандартная модель: $(\mathbb{N}; 0, S, +, \cdot, \text{Exp}, \leq, =)$, где S(x) = x + 1 и $\text{Exp}(x) = 2^x$.

Аксиомы РА

$$a + 0 = a, \quad a + S(b) = S(a + b),$$

$$a \cdot 0 = 0, \quad a \cdot S(b) = a \cdot b + a,$$

•
$$\exp(0) = S(0), \quad \exp(S(a)) = \exp(a) + \exp(a),$$

Схема аксиом индукции)

$$A[a/0] \wedge \forall x \left(A[a/x] \to A[a/S(x)] \right) \to \forall x \, A[a/x],$$

для любой формулы A.

Арифметика Робинсона

Теория Q получается из РА заменой схемы индукции единственной аксиомой:

$$a \le b \lor b \le a$$
.

Упражнение 26.1

Показать, что $PA \vdash Q$.

Решение

- (1) Сначала покажем индукцией по x, что $\forall x (a \le x \leftrightarrow a = x \lor S(a) \le x)$.
- (2) Затем покажем индукцией по x, что $\forall x (a \le x \lor x \le a)$.

Заметим, что из (1) следует $a \le a$ и $a \le S(a)$.

Вывод (1)

Базис: $a \le 0 \leftrightarrow a = 0 \lor S(a) \le 0$. Поскольку $S(a) \le 0 \to S(a) = 0$, имеем $\neg S(a) < 0$.

Вывод (1)

Базис: $a \le 0 \leftrightarrow a = 0 \lor S(a) \le 0$. Поскольку $S(a) \le 0 \to S(a) = 0$, имеем $\neg S(a) \le 0$.

Шаг: эквивалентно преобразуем

- $a \le S(x)$
- $a \le x \lor a = S(x) \quad (\text{аксиома})$
- \bullet $(a = x \lor S(a) \le x) \lor a = S(x)$ (пр. инд.)

28 / 29

Вывод (2)

Базис: $a \le 0 \lor 0 \le a$ поскольку $0 \le a$.

Шаг:

- \bullet $a \leq x \lor x \leq a$ (пр. инд.)
- $a \le x \lor a = x \lor S(x) \le a$
- \bullet $a \le x \to a \le S(x)$ (аксиома)
- **1** $a = x \to a \le S(x)$ (из (1))
- $a \leq S(x) \vee S(x) \leq a$