APRILE 2004 - MECCANICA - TERZO COMPITINO

1)Un punto materiale si muove con velocità v (t) data dalla seguente espressione :

$$v(t) = A x t^2 + log(B t^3/x)$$

dove x = lunghezza e t = tempo.

Trovare l'errore dimensionale contenuto nella relazione precedente e trovare le dimensioni di A e B .

- 2)Enunciare il teorema dell'energia cinetica, dicendo per quali forze è valido Spieg.are i passaggi attraverso i quali si arriva alla conservazione dell'energia meccanica. E' possibile parlare di energia potenziale in un punto? Calcolare l'energia potenziale di una molla di costante elastica k= 1000 N/m quando la molla sia allungata di 0.5 m.
- 3)Un punto materiale di massa m = 1 kg viene lasciato cadere, da fermo, lungo uno scivolo (come mostrato in figura) da una altezza h. Trovare il minimo valore di h (rispetto a C) per cui il punto materiale arrivi in A senza staccarsi dalla guida circolare di raggio R = 1m. Si trascurino gli attriti.

4)Un punto materiale viene lanciato dall' origine O di un sistema di assi cartesiani xy (asse x orizzontale, asse y verticale) con velocità iniziale in modulo = 3√2 m/s formante un angolo di 45° con l'asse delle x. Determinare, svolgendo i calcoli, il valore della gittata.

5) Trovare la posizione del centro di massa di una barretta di lunghezza L la cui densità vari con la legge σ = σ_ox. (si puo' considerare la barretta come un segmento messo sull'asse delle x e quindi si possono trascurare le dimensioni trasversali).

- Un corpo puntiforme si muove con velocita' data dalla relazione :
 V(t) = A exp (Bx + Ct),
 dove x dimensionalmente è una lunghezza e t un tempo. Trovare le dimensioni di A,B,C.
- 2) E' dato il percorso mostrato in figura . Un blocco di massa M=10~Kg, inizialmente fermo in A, viene lasciato libero e arriva in D. La guida è liscia (cioe' non esiste attrito) tranne nel tratto BC lungo 6 m- dove esiste attrito con coefficiente di attrito μ . Nel punto D il blocco comprime la molla DE e si ferma. Se la mollaviene compressa di una lunghezza pari a 0.3~m, trovare il coefficiente di attrito μ .

3) Una sbarra AO di lunghezza l e massa trascurabile reca all'estremo A una pallina di massa m ed è libera di ruotare senza attriti attorno al punto O , in un piano verticale . Inizialmente la sbarra è in quiete nella posizione mostrata in figura. Una seconda pallina di massa m, uguale a quella della prima pallina, arriva con velocita' v orizzontale e urta in modo elastico la prima pallina. Trovare per quale valore di v la sbarra riesce ad arrivare nella posizione OB .

4) Un blocco di massa M (M= 10 Kg) trascina un blocco di massa m_1 (m_1 = 10 Kg) mediante una fune inestensibile che passa sopra una carrucola di massa m_2 (m_2 = 20 Kg), assimilabile ad un disco di raggio R (R = 24 cm) che ruota senza attrito . Sapendo che tra la massa m_1 ed il piano vi è un attrito con coefficiente μ = 0.2 , calcolare l'accelerazione del sistema e le tensioni della fune .

5) Enunciare e discutere le leggi di conservazione della meccanica.

INGEGNERIA INFORMATICA- APPELLO 19 GIUGNO 2008

1)Un punto materiale si muove su di un tavolo orizzontale e cade al suolo ad una distanza di 1,40 m dalla base del tavolo (tratto OB). Se l'altezza del tavolo è di 0.86 m (tratto OA) calcolare 1) la velocità v₀ del punto al momento del distacco dal tavolo e 2) la direzione del vettore velocità all' istante precedente l'impatto col suolo.

- 2)Spiegare cosa è una forza conservativa e come si può vedere se una forza è conservativa. In particolare come si può dimostrare che siano conservative :
 - a) la forza gravitazionale,
 - b) la forza $\mathbf{F} = 2 \mathbf{y} \mathbf{i} + \mathbf{x}^2 \mathbf{j}$.

3)Un ragazzo seduto sulla cima di un blocco di ghiaccio a forma di mezza sfera comincia a scivolare sul ghiaccio partendo da fermo. Trascurando gli attriti dimostrare che il ragazzo si stacca dal ghiaccio in un punto ad altezza 2 R / 3 dove R e' il raggio della mezza sfera. In presenza di attrito il ragazzo si staccherà dal blocco ad una altezza maggiore o minore che nel caso precedente?

- 4)Trovare la posizione del centro di massa di un cono circolare retto, omogeneo, di altezza h = 2m, di raggio di base R = 0.5 m e di massa m = 2 Kg.
- 5)Un punto materiale di massa 0,50 Kg, collegato ad una molla di costante elastica uguale a 8,00 N/m oscilla di moto armonico in un piano orizzontale con una ampiezza di 10,0 cm. Trovare il valore massimo del modulo della sua velocità e della sua accelerazione.
- 6)E' dato un cilindro di massa M e raggio R, libero di ruotare attorno al suo asse. Agli estremi del diametro della base viene applicata una coppia di forze di modulo F. Trovare l'accelerazione angolare del cilindro.

INGEGNERIA INFORMATICA -

METTERE L'INDIRIZZO DI POSTA ELETTRONICA O IL NUMERO DI TELEFONO.

- 1) Una asta OA di lunghezza L=1 m ha il punto O nell'origine degli assi cartesiani ed è posta sull'asse delle x. Su di essa è messa una carica $Q=3,5\ 10^{-6}$ C distribuita con densità lineare data da $\lambda=k$ x. C/m. Trovare il potenziale nel punto P (0,4).
- 2) Una sbarretta di massa m=20 g e lunghezza 1=30 cm si muove su due guide parallele lisce in presenza di un campo magnetico (B=0,2 T) uniforme e perpendicolare al piano delle due guide e con verso rivolto verso l'alto. La spira comprende una resistenza di $10~\Omega$ e un generatore di f.e.m. costante di 10~V. Trovare la velocità limite della sbarretta .

3) Si consideri il circuito R L riportato in figura . All'istante t=0 viene chiuso l'interruttore. Scrivere l'equazione differenziale del circuito e risolverla. Δ V = 50 V , R = 1000 Ω , L = 10 mH.

4) Si consideri il circuito disegnato in figura. All'istante t=0 si chiude l'interruttore. Trovare la corrente che circola nel circuito a t=0 cioè quando si chiude l'interruttore, e a t>>0. Δ V = 50 V, R₁=1000 Ω , R₂=200 Ω R₃=100 Ω , L=20 mH.

5)Un condensatore di capacità C_1 viene caricato ad una differenza di potenziale V_0 per mezzo di una batteria che viene poi staccata ed il condensatore carico viene collegato ad un secondo condensatore scarico di capacità C_2 . Quale è la differenza di potenziale finale ? Quale è l'energia immagazzinata prima e dopo la chiusura dell'interruttore ?

1)
$$V = \frac{1}{4\pi\epsilon_0} \int_0^1 \frac{k \times dx}{\sqrt{x^2+16}} = \dots = \frac{k}{4\pi\epsilon_0} (\sqrt{17}-4)$$

2)
$$v = \frac{E}{8.01} = \frac{10V}{0.12T \cdot 0.3m} = 166.67 \frac{m}{5}$$

3)
$$\Delta V = R \cdot i + L \cdot \frac{di(t)}{dt}$$
 $i(t) = \frac{1}{20} \left(1 - e^{\frac{-5C}{40^{-3}}}\right)$

A)
$$R_2//R_3 = \frac{100.200}{100+200} = 66.67 \, \pi \quad R_1 + R_2//R_3 = 1000 + 66.67 = 1066.67 \, \pi = R_{eq}$$

$$i(t) = \frac{50 \, \text{V}}{1066.67 \, \pi} \left[1 - e^{-\frac{t \cdot 1066.67}{20 \cdot 10^{-3}}} \right] \qquad \text{re} \quad t = 0 \qquad t = 0$$

$$re \quad t >> 0 \qquad \frac{50 \, \text{V}}{1066.67 \, \pi} = 2.047 \, \text{A}$$

5)
$$C_{1}V_{0} = C_{2}V + C_{1}V$$
 $V = V_{0} \frac{C_{1}}{c_{1}+c_{2}}$

ENERGIA $M_{1} = \frac{1}{2}C_{1}V_{0}^{2}$

ENERGIA $M_{2} = \frac{1}{2}C_{2}V^{2} + \frac{1}{2}C_{2}V^{2} = \frac{1}{2}(C_{1}+C_{2}) \cdot V_{0}^{2} \cdot \frac{C_{1}^{2}}{(C_{1}+C_{2})^{4}} = \frac{1}{2}(C_{1}+C_{2})^{4}$
 $= \frac{1}{2}(C_{1}+C_{2})^{4}$

CORSO DI LAUREA IN INGEGNERIA INFORMATICA- APPELLO DI LUGLIO 2008

METTERE L'INDIRIZZO DI POSTA ELETTRONICA O IL NUMERO DI TELEFONO.

- 1) Un lungo solenoide e' composto da 220 spire/cm ed e' percorso da una corrente i di intensità 1,5
- A. Nel centro di questo solenoide, e coassiale con esso, viene posto un secondo solenoide con N 130 spire e di diametro d= 2,1 cm inferiore al diametro del cilindro precedente che è di 5 cm. La corrente del primo solenoide viene portata a zero in 25 ms. Trovare l'intensita' della f.e.m. indotta nel solenoide interno mentre la corrente sta variando.
- 2) In figura è rappresentata la sezione di un filo infinito di diametro r = 2 m percorso, da una corrente di intensità i = 0,5 A. Determinare il campo magnetico in un piano orizzontale perpendicolare al filo in funzione della distanza R dall'asse del filo stesso per R che va da zero all 'infinito. Il campo magnetico è conservativo o no? Da cosa si vede che sia conservativo o no?

4) Una bacchetta di materiale isolante a forma di mezza
circonferenza di raggio R = 0.5 m è carica nel quarto
di circonferenza superiore con una carica q = 1 mC
e nel quarto sottostante con una carica q = -1 mC.
Trovare il campo elettrico nel centro C della semicirconferenza.

circuito RC?

- 5) Scrivere in forma integrale e differenziale le equazioni di Maxwell spiegando brevemente le leggi dell'elettromagnetismo da cui derivano. In particolare spiegare cosa è la corrente di spostamento.
- 6) Una batteria ha una f.e.m. di 150 V. La d.d.p. ai suoi capi diventa di 11,6 V se essa fornisce 20,0 W ad un resistore R di carico esterno. Trovare il valore di R e il valore della resistenza interna della batteria.

$$\ell \cdot e \cdot m \cdot = -N \cdot \frac{\Delta \Phi \delta}{\Delta t} = -130 \cdot \frac{2,74 \cdot 10^{-5}}{0,025} = 142,48 \cdot 10^{-3} \text{ V}$$

t=0 la corrente passa tutta attraverso il condensatore perché è come se c non ci forse -> R nulla £720 il condensatore è carica e i passa tutta nel

$$\mathcal{E} = i R + V_c = R \cdot i + \frac{9}{c}$$
 $\mathcal{E} - R \cdot \frac{dq}{dt} - \frac{9}{c} = 0$ $q(t) = C \cdot \mathcal{E} \left[1 - e^{-\frac{C}{Rc}} \right]$

$$\mathcal{E} - \mathcal{P} \cdot \frac{dq}{dt} - \frac{q}{c} = 0$$

$$E = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{4\pi \epsilon_0} \frac{\lambda R\theta}{R^2} \cdot \cos \theta$$

$$E = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{4\pi \epsilon_0} \frac{\lambda R\theta}{R^2} \cdot \cos \theta$$

$$eviticale$$

$$eviticale$$

$$former$$

$$eviticale$$

$$former$$

$$forme$$

$$9 \times \phi(\vec{\epsilon}) = \frac{9}{\epsilon_0}$$

$$\operatorname{div} \vec{E} = \frac{g(x,y,z)}{\varepsilon_0} = \nabla \cdot \vec{E}$$

$$* \oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{0}^{\infty} \vec{B} \cdot d\vec{s} \qquad \nabla \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

*
$$\oint_{\mathcal{E}} \mathcal{B} \cdot d\mathbf{L} = \mu_0 \mathbf{i} + \mu_{\mathcal{E}_0} \frac{d}{dt} \int_{\mathcal{E}} \hat{\mathbf{g}} \nabla \Lambda \hat{\mathbf{g}} = \mu_0 \mathcal{I} + \mathcal{E}_0 \mu_0 \frac{\partial \mathcal{E}}{\partial t}$$