Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему:
«Вычисление интеграла с помощью квадратурных формул»

Выполнил: студент группы 09-221 Саитов М.А. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы	5
3	Выводы	9
4	Листинг программы	10

1 Постановка задачи

Необходимо изучить и сравнить различные способы приближённого вычисления функции ошибок

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt \tag{1}$$

1. Протабулировать $\operatorname{erf}(x)$ на отрезке [a,b] с шагом h и точностью ε , основываясь на ряде Маклорена, предварительно вычислив его. Получив таким образом таблицу из 11 точек вида:

$$x_0 x_1 x_2 \dots$$

 $f_0 f_1 f_2 \dots$

$$f_i = \text{erf}(x_i), \quad x_i = a + ih, \quad i = 0, \dots, n.$$

2. Вычислить $\operatorname{erf}(\mathbf{x})$ при помощи пяти составных квадратурных формул при $h = (x_{i+1} - x_i),$

$$g(x) = \frac{2}{\sqrt{\pi}}e^{-x^2} \tag{2}$$

2.1. Формула правых прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg(x_i) \tag{3}$$

2.2. Формула центральных прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg\left(\frac{x_i + x_{i+1}}{2}\right) \tag{4}$$

2.3. Формула трапеции:

$$J_N(x) = \sum_{i=1}^n h \frac{g(x_i) + g(x_{i+1})}{2}$$
 (5)

2.4. Формула Симпсона:

$$J_N(x) = \sum_{i=1}^n \frac{h}{6} \left[g(x_i) + 4g\left(\frac{x_i + x_{i+1}}{2}\right) + g(x_{i+1}) \right]$$
 (6)

2.5. Формула Гаусса:

$$J_N(x) = \sum_{i=1}^n \frac{h}{2} \left[g \left(x_i + \frac{h}{2} \left(1 - \frac{1}{\sqrt{3}} \right) \right) + g \left(x_i + \frac{h}{2} \left(1 + \frac{1}{\sqrt{3}} \right) \right) \right]$$
(7)

Вычисления проводятся от начала интегрирования до каждой из 11 точек, увеличивая количество разбиений между точками в 2 раза до тех пор, пока погрешность больше ε .

2 Ход работы

Для того чтобы найти значение функции в точке, необходимо протабулировать искомый интеграл на отрезке [a, b] с шагом h=0.2 и точностью ε . Для этого:

1. Найдём разбиение подинтегральной функции e^{-t^2} в ряд Маклорена, подставив в стандартное разбиение функции e^x в ряд Маклорена $x = -t^2$:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \implies e^{-t^2} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!}$$
 (8)

2. Проинтегрируем полученное выражение на интеграле [0, х]:

$$\frac{2}{\sqrt{\pi}} \int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!} dt = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n-1)n!} \bigg|_{0}^{x} = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n-1)n!}$$
(9)

3. Выделим два общих члена $a_n,\ a_{n+1}$ из полученного выражения и найдём $q_n=rac{a_{n+1}}{a_n}$:

$$a_n = \frac{(-1)^n x^{2n+1}}{n!(2n+1)}, \quad a_{n+1} = \frac{(-1)^{n+1} x^{2n+3}}{(n+1)!(2n+3)}.$$
 (10)

$$q_n = \frac{-x^2(2n+1)}{(n+1)(2n+3)}. (11)$$

Таким образом,

$$a_n = a_0 \prod_{n=0}^{n-1} q_n. (12)$$

Для каждой точки $x_i = a + ih$ найдём значение $erf(x_i)$ и составим таблицу результатов (Таблица 1).

x_i	$erf(x_i)$
0,0	0,0000000000
0,2	0,2227025926
0,4	$0,\!4283923805$
0,6	0,6038561463
0,8	0,7421009541
1,0	0,8427006602
1,2	0,9103140831
1,4	0,9522852302
1,6	0,9763484001
1,8	0,9890906215
2,0	0,9953226447

Таблица 1 - точки x_i и значения разложения в ряд Маклорена функции $erf(x_i)$

После нахождения значений разложения в ряд Маклорена в точках, вычислим значение erf(x) при помощи 5 составных квадратурных формул. Для каждой формулы составим свою таблицу. В таблицах будут находится значения точки, для которой производились расчёты, значение разбиения в ряд Маклорена в точке, значение найденного с помощью формулы интеграла в точке, модуль разницы между значениями найденного интеграла и разбиения, количества разбиений, которые пришлось совершить для нахождения значения интеграла с нужной точностью.

1. Левые прямоугольники:

x_i	$J_0(x_i)$	$J_{(}x_{i})$	$ J_0(x_i) - J_N(x_i) $	N
0.2	0.222703	0.222707	4.32204e-06	1024
0.4	0.428392	0.428425	3.25766e-05	1024
0.6	0.603856	0.603956	9.9908e-05	1024
0.8	0.742101	0.742309	0.000208343	1024
1.0	0.842701	0.843049	0.000348225	1024
1.2	0.910314	0.910818	0.000504366	1024
1.4	0.952285	0.952948	0.00066258	1024
1.6	0.976348	0.977162	0.00081329	1024
1.8	0.989091	0.990043	0.000952791	1024
2.0	0.995322	0.996404	0.00108161	1024

Таблица 2 - таблица значений для формулы Левых прямоугольников

2. Правые прямоугольники:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0.2	0.222703	0.222698	4.31945e-06	1024
0.4	0.428392	0.42836	3.25944e-05	1024
0.6	0.603856	0.603756	9.99763e-05	1024
0.8	0.742101	0.741893	0.000208371	1024
1.0	0.842701	0.842352	0.00034833	1024
1.2	0.910314	0.909809	0.000504659	1024
1.4	0.952285	0.951622	0.000662823	1024
1.6	0.976348	0.975535	0.000813508	1024
1.8	0.989091	0.988138	0.000953008	1024
2.0	0.995322	0.99424	0.00108189	1024

Таблица 3 - таблица значений для формулы Правых прямоугольников

3. Центральные прямоугольники:

x_i	$J_0(x_i)$	$J_(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0.2	0.222703	0.222703	1.80774e-07	64
0.4	0.428392	0.428393	3.14933e-07	128
0.6	0.603856	0.603856	2.09718e-07	256
0.8	0.742101	0.742101	1.31198e-07	512
1.0	0.842701	0.842701	1.45324e-07	512
1.2	0.910314	0.910314	7.42506e-08	512
1.4	0.952285	0.952285	8.73705e-08	512
1.6	0.976348	0.976348	6.19822e-08	512
1.8	0.989091	0.989091	2.63449e-07	256
2.0	0.995322	0.995322	9.90524e-08	256

Таблица 4 - таблица значений для формулы Центральных прямоугольников

4. Формула трапеций:

x_i	$J_0(x_i)$	$J_(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0.2	0.222703	0.222703	8.39077e-08	128
0.4	0.428392	0.428392	1.55199e-07	256
0.6	0.603856	0.603856	1.16408e-07	512
0.8	0.742101	0.742101	1.59468e-07	512
1.0	0.842701	0.842701	2.50953e-07	512
1.2	0.910314	0.910314	3.70479e-07	512
1.4	0.952285	0.952285	3.2974e-07	512
1.6	0.976348	0.976348	2.80325e-07	512
1.8	0.989091	0.98909	2.31385e-07	512
2.0	0.995322	0.995322	2.17437e-07	512

Таблица 5 - таблица значений для формулы Трапеций

5. Формула Симпсона

5.1. Вывод формулы Симпсона через интегральный полином Лагранжа: Формула для полинома Лагранжа:

$$L_n(x) = \sum_{i=0}^n f(x_i) \prod_{i \neq i, j=0}^n \frac{x - x_j}{x_i - x_j}$$
 (13)

По трём узлам $(x_1 = a, x_2 = \frac{a+b}{2}, x_3 = b)$:

$$L_{2} = f(a) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}} \right) \left(\frac{x-b}{a-b} \right) + f\left(\frac{a+b}{2} \right) \left(\frac{x-a}{\frac{a+b}{2} - a} \right) \left(\frac{x-b}{\frac{a+b}{2} - b} \right) + f(b) \left(\frac{x - \frac{a+b}{2}}{b - \frac{a+b}{2}} \right) \left(\frac{x-b}{b-a} \right).$$

Проинтегрируем выражение по интервалу [a,b]:

$$\int_{a}^{b} L_{2}(x)dx = f(a)c_{1} + f\left(\frac{a+b}{2}\right)c_{2} + f(b)c_{3}$$
(14)

где
$$c_1 = \frac{b-a}{6}, c_2 = \frac{2}{3}(b-a), c_3 = \frac{b-a}{6}.$$

Тогда:

$$\int_{a}^{b} L_{2}(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$
 (15)

5.2. Значения полученные для формулы Симпсона:

x_i	$J_0(x_i)$	$J_{(x_i)}$	$ J_0(x_i) - J_N(x_i) $	N
0.2	0.222703	0.222703	1.20186e-08	4
0.4	0.428392	0.428392	1.23149e-08	8
0.6	0.603856	0.603856	4.87389e-08	8
0.8	0.742101	0.742101	4.40568e-08	16
1.0	0.842701	0.842701	3.49238e-08	16
1.2	0.910314	0.910314	6.97319e-08	8
1.4	0.952285	0.952285	7.4049e-08	16
1.6	0.976348	0.976348	9.72274e-08	16
1.8	0.989091	0.98909	1.38559e-07	16
2.0	0.995322	0.995322	1.00857e-07	32

Таблица 6 - таблица значений для формулы Симпсона

6. Формула Гаусса:

x_i	$J_0(x_i)$	$J_(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0.2	0.222703	0.222703	9.76378e-11	4
0.4	0.428392	0.428392	9.54019e-09	8
0.6	0.603856	0.603856	3.76879e-08	8
0.8	0.742101	0.742101	2.71688e-08	16
1	0.842701	0.842701	5.74231e-09	16
1.2	0.910314	0.910314	9.95342e-08	8
1.4	0.952285	0.952285	4.75374e-08	16
1.6	0.976348	0.976348	9.31051e-09	16
1.8	0.989091	0.989091	2.59625e-08	16
2	0.995322	0.995322	4.66851e-08	16

Таблица 7 - таблица значений для формулы Гаусса

3 Выводы

Проделав все вычисления, можно сделать выводы, что более комплексные методы вычисления интеграла, как формула Гаусса и Симпсона, показыают наилучшие результаты за меньшее количество разбиений. В это же время худшие результаты вычисления показыают методы правых прямоугольников и метод трапеций, приводя к довольно большому значению ошибки.

4 Листинг программы

```
#include <math.h>
# include <iostream>
# include < iomanip >
5 #define Eps pow(10, -6)
6 #define a O
7 #define b 2
 #define H 0.2
10 enum FuncType {
      leftRec, rightRec, centralRect,
11
      trapezoid, simpson, gauss
12
13 };
14
15 class Function {
16 private:
      FuncType type;
17
  public:
18
      Function() = default;
19
20
      void set_FuncType(FuncType type);
21
22
      double Qn(double n, double x);
23
      double erf(double x);
24
25
      double calculatedFunction(int n, double x);
26
      void calculateAndWrite(double x, double y);
2.7
      void printTable();
28
29
      double Left_Rect(int n, double x);
30
      double Right_Rect(int n, double x);
31
      double Central_Rect(int n, double x);
32
      double Trapezoid(int n, double x);
33
      double Simpson(int n, double x);
34
      double Gaus(int n, double x);
35
36 };
```

```
#include "Function.h"

void Function::set_FuncType(FuncType typeToCopy){
   type = typeToCopy;
```

```
5 }
double Function::Qn(double n, double x){
      return -(((x * x) / (n + 1)) * ((2 * n + 1) / (2 * n + 3)));
 }
  double Function::erf(double x){
      int n = 1;
1.1
      double prevA = x;
12
      double currentA = x;
13
      double result = x;
14
      while (abs(prevA) >= Eps){
15
           currentA = Qn(n - 1, x) * prevA;
16
          result += currentA;
17
          prevA = currentA;
18
          n++;
19
      }
20
      result *= 2 / sqrt(M_PI);
21
      return result;
22
23 }
24
float func(float t) { return (2 / sqrt(M_PI)) * pow(std::exp(1.0), -(
     t * t)); }
26
 double Function::Left_Rect(int n, double x){
      double h = x/n;
28
      double sum = 0.0;
29
      for(int i = 0; i < n; i++){</pre>
30
          double xi = a + i*h;
31
          sum += h * func(xi);
32
      }
33
      return sum;
34
35 }
36
  double Function::Right_Rect(int n, double x){
37
      double h = x/n;
38
      double sum = 0.0;
39
      for(int i = 1; i <= n; i++){
40
          double xi = a + i*h;
41
          sum += h * func(xi);
42
      }
43
      return sum;
44
45 }
46
```

```
double Function::Central_Rect(int n, double x){
      double h = x/n;
48
      double sum = 0.0;
49
      double xi = h/2;
50
      for(int i = 0; i <= n-1; i++){
51
           sum += h * func(xi);
52
           xi += h;
53
      }
54
      return sum;
55
56
57
  double Function::Trapezoid(int n, double x){
      double h = x/n;
59
      double sum = 0.0;
60
      double xi = 0.0;
61
      for(int i = 0; i <= n-1; i++){
62
           sum += h*(func(xi) + func(xi+h))/2;
63
           xi += h;
64
      }
65
      return sum;
66
 }
67
68
  double Function::Simpson(int n, double x){
      double h = x/n;
70
      double sum = 0.0;
71
      double xi = 0.0;
72
      for(int i = 0; i <= n-1; i++){</pre>
73
           sum += (func(xi) + 4 * func(xi + h / 2) + func(xi + h)) * h /
74
               6;
           xi += h;
75
      }
76
      return sum;
77
 }
78
79
  double Function::Gaus(int n, double x){
80
      double h = x/n;
81
      double num1 = (1 - 1.0 / sqrt(3)) * h / 2;
82
      double num2 = (1 + 1.0 / sqrt(3)) * h / 2;
83
      double sum = 0;
84
      double xi = 0.0;
85
      for(int i = 0; i <= n-1; i++){</pre>
86
           sum += (func(xi + num1) + func(xi + num2)) * h/2;
87
           xi += h;
88
```

```
89
       return sum;
90
91
92
  void Function::calculateAndWrite(double x, double y){
93
       double lastJ = 0;
94
       double J = 0;
95
       int n = 1;
96
       do{
97
           n *= 2;
98
           lastJ = J;
99
           J = calculatedFunction(n, x);
100
       }
101
       while (abs(lastJ - J) > Eps && n < 1024);
102
       double accuracy = abs(J - y);
103
       std::cout << std::setw(3) << x << " & " << std::setw(9) << y << "
104
           & " << std::setw(9) << J << " & " << std::setw(11) <<
          accuracy << " & " << n << std::endl;
105 }
  double Function::calculatedFunction(int n, double x){
106
       double result = 0.0;
107
       switch(type){
108
            case leftRec:{
109
                result = Left_Rect(n, x);
110
                break;
111
           }
112
            case rightRec:{
113
                result = Right_Rect(n, x);
114
                break;
115
116
            case centralRect:{
117
                result = Central_Rect(n, x);
118
                break;
119
120
            case trapezoid:{
121
                result = Trapezoid(n, x);
122
                break;
123
124
            case simpson:{
125
                result = Simpson(n, x);
126
                break;
127
128
            case gauss:{
129
```

```
result = Gaus(n, x);
130
                break;
131
           }
132
       }
133
       return result;
134
135
  void Function::printTable(){
136
       double* x = new double[11];
137
       double* y = new double[11];
138
       x[0] = 0;
139
       y[0] = erf(x[0]);
140
       for (int i = 1; i < 11; i++){</pre>
141
           x[i] = x[i - 1] + H;
142
           y[i] = erf(x[i]);
143
       }
144
       std::cout << "\033[1m" << "\033[3m" << "Left Rectangle\n" << "
145
          \033[0m";
       set_FuncType(leftRec);
146
       for (int i = 1; i < 11; i++){
147
            calculateAndWrite(x[i], y[i]);
148
149
       std::cout << "\033[1m" << "\033[3m" << "Right Rectangle\n" << "
150
          \033[0m";
       set_FuncType(rightRec);
151
       for (int i = 1; i < 11; i++){
152
            calculateAndWrite(x[i], y[i]);
153
       }
154
       std::cout << "\033[1m" << "\033[3m" << "Central Rectangle\n" << "
155
          \033[0m";
       set_FuncType(centralRect);
156
       for (int i = 1; i < 11; i++){</pre>
157
            calculateAndWrite(x[i], y[i]);
158
       }
159
       std::cout << "\033[1m" << "\033[3m" << "Trapezoid\n"<< "\033[0m";
160
       set_FuncType(trapezoid);
161
       for (int i = 1; i < 11; i++){
162
            calculateAndWrite(x[i], y[i]);
163
164
       std::cout << "\033[1m" << "\033[3m" << "Simpson\n" << "\033[0m";
165
       set_FuncType(simpson);
166
       for (int i = 1; i < 11; i++){</pre>
167
            calculateAndWrite(x[i], y[i]);
168
       }
169
```

```
#include "Function.h"

int main(){
   Function f;
   f.printTable();
   return 0;
}
```