CS 321 HW3 - Lyell Read

Submit a pdf in Canvas. Use a word processor and/or text editor. (30 pts, 6 pts each)

Determine whether or not the following languages are regular. If the language is regular then give a regular expression for the language. Otherwise, use the pumping lemma for regular languages or closure properties to prove the language is not regular.

1) L = {
$$a^nb^k : k \le n \le 2k$$
}

Not Regular.

- 1. Assume for contradiction that L is a regular language
- 2. Given that L is infinite, we can apply Pumping Lemma to prove that L is regular.
- 3. Choose Pumping Lemma integer m>0
- 4. For string w in L, aⁿb^{m+k}
- 5. For string w, we can define w = xyz such that $x = a^q$, $y = a^{(n-q)}$, $z = b^{m+k}$, such that |xy| <= m and |y| >= 1 (this implies that q < n).
- 6. Thus, $xy^{i}z$ in L for j = (4 * (m+k))
- 7. Thus a in L
- 8. But $a^{(q+4m+4k)}b^{(m+k)}$ not in L as it is not the case that $(m+k) \le (q+4m+4k) \le 2(m+k)$, therefore contradiction.
- 9. By contradiction of the Pumping Lemma, we can assert that L is not a regular language.

2) L = {
$$b^n a^k : n > 0, k > 0$$
 } \cup { $a^n b^k : k > 0, n > 0$ }

This language is regular, regular expression for the language:

$$(bb*aa*) + (aa*bb*)$$

3) L = { a^n : n=3k for some $k \ge 0$ }

This language is regular, regular expression for the language:

(aaa)*

4) L = {
$$a^n$$
 : $n=k^3$ for some $k \ge 0$ }

Not Regular.

- 1. Assume for contradiction that L is a regular language
- 2. Given that L is infinite, we can apply Pumping Lemma to prove that L is regular.
- 3. Choose Pumping Lemma integer m>0

- 4. For string w in L, a^{n+m}
- 5. For string w, we can define w = xyz such that x = a, y = a, $z = a^{(n+m-2)}$, such that |xy| <= m and |y| >= 1 (this implies that n >= 1). In this case, we specify that $m <= (\sqrt[3]{n} + 1)^3 1$.
- 6. Thus, $xy^{j}z$ in L for j = 1
- 7. Thus $a^{(n+m+1)}$ in L
- 8. But $a^{(n+m+1)}$ not in L as it is not the case that $\sqrt[3]{(n+m+1)}$ is an integer, because $\sqrt[3]{(n)}$ is and $(m+1)<(\sqrt[3]{(n)}+1)^3$ (m+1 will always be less than the next cube), therefore contradiction.
- 9. By contradiction of the Pumping Lemma, we can assert that L is not a regular language.

5) L = { w : $n_a(w) > n_b(w), w \in \{a, b\}^*$ }

Not Regular.

- 1. Assume for contradiction that L is a regular language
- 2. Given that L is infinite, we can apply Pumping Lemma to prove that L is regular.
- 3. Choose Pumping Lemma integer m>0
- 4. We find string w in L
- 5. For string w, we can define w = xyz such that x = w[0], y = w[1], z = w[2:], such that |xy| <= m and |y| >= 1, and y = b.
- 6. Thus, w' = $xy^{j}z$ in L for $j = (n_a(w)-n_b(w)+1)$
- 7. Thus w' in L
- 8. But w' not in L as the number of 'b' exceeds the number of 'a's, as we pumped enough times to make $n_b(w') > n_a(w')$, therefore contradiction.
- 9. By contradiction of the Pumping Lemma, we can assert that L is not a regular language.