Let E be the elliptic curve given by the polynomial $y^2z - x^3 + xz^2$. Let $P = (0,0,1) \in E$. We will consider the the generators of L(P), 1 and y/x. Note that $\operatorname{ord}_P(y/x) = 1 - 2 = -1$.

We will consider the map $f: E \to \mathbb{P}^1$ determined by the linear system |P|, given by f(Q) = (1, y(Q)/x(Q)). Note that f is 2-to-1 because the line L_{α} given by $y/x = \alpha$ intersects E at two points different from P. Given $L_{\alpha}.E = A_{\alpha} + B_{\alpha} + P$, then $f(A_{\alpha}) = f(B_{\alpha})$.

For α such that $A_{\alpha} = B_{\alpha}$, then A_{α} is a ramification point, and $f(A_{\alpha})$ is a branch point. This occurs when L_{α} is tangent to E at A_{α} , and therefore $A_{\alpha} \in \mathcal{P}_{P}(E) \cap E$. Since $\#(\mathcal{P}_{P}(E) \cap E) = 4$, we have that there are 4 ramification points (as also predicted by the Riemann-Hurwitz formula).

Note that $f(P) = (1, \infty)$, since $\operatorname{ord}_P(y/x) = -1$, so we have f(P) = (0, 1). Also f(0, 1, 0) = (0, 1). We have f(-1, 0, 1) = (1, 0), and f(1, 0, 1) = (1, 0).

A claim I found in a paper about theta characteristics: If X is a smooth curve and there exist distinct points $P, Q, R, S \in X$ we have $P + Q \sim R + S$, then X is hyperelliptic. (We will just assume X is quartic.)

When X is smooth $g \geq 3$, the canonical divisor K determines an embedding. For example, with deg X=4, $K_X=L.X=A+B+C+D$, four collinear points on X. Note that $\mathcal{O}_{\mathbb{P}^2}(L)$ is three dimensional, spanned by x, y, and z. Therefore $\ell(K)=h^0(K)=\dim |K|+1=3$, and the linear system |K| defines the map $k:X\to\mathbb{P}^2$ given by k(P)=(x(P),y(P),z(P)).

With deg X=5, we have $K_X=2L.X=$ ten coconical points. Since $\mathcal{O}_{\mathbb{P}^2}(2L)=6$, generated by x^2 , xy, xz, y^2 , yz, and z^2 , we get the embedding $X\to\mathbb{P}^5$ given by $P\mapsto (x^2(P),xy(P),xz(P),y^2(P),yz(P),z^2(P))$.

In general when you have a divisor D you can determine a linear system by taking the generators f_1, \ldots, f_n of $\mathcal{L}(D)$ and sending P to the point $(f_1(P), \ldots, f_n(P)) \in \mathbb{P}^{\ell(D)-1}$.