

Dokumentation Parkassist

Graphische Programmierung und Simulation

an der Dualen Hochschule Baden-Württemberg Stuttgart

von

Nahku Saidy und Hanna Siegfried

07.04.2020

Bearbeitungszeitraum Matrikelnummer, Kurs Ausbildungsfirma Dozent

24.03.2020 - 07.04.2020 8540946; XXX, STG-TINF17-ITA Daimler AG, Stuttgart Dr. Kai Pinnow

Inhaltsverzeichnis

Αb	okurzungsverzeichnis	
Αb	bildungsverzeichnis	П
Ta	bellenverzeichnis	Ш
Lis	stings	IV
1	D1: Aufwandsabschätzung nach der Dreipunktmethode	1
2	D2: Machbarkeitsdemonstration	2
3	D3: Anlyse des menschlichen Geschwindigkeitsprofils	3
4	D4*: Betrachtung von Unebenheiten des Parkplatzes	4
5	D5: Betrachtung von Unsicherheiten in der Geschwindigkeitsmessung	5
6	D6: Implementierung des Pulssignals in Simulink	6
7	D7: Übernahme des Simulinkmodells nach ASCET	7
8	D8: Implementierung des Pulssignals in ASCET	8
9	D9: Unit-Tests für das Pulssignal in ASCET	9
10	D10: Entwicklung und Druchführung von Systemtests für die ASCET Simulation	10
11	D11*: Plausibilitätsprüfung gemessener Geschwindigkeiten und Strecken gegeneinander	11
12	D13*: Einfluss von Ungenauigkeiten	12
13	D14*: Reflexion	13

Abkürzungsverzeichnis

AABB Axis-Aligned Bounding Box

Abbildungsverzeichnis

2.1	UML	diagram	of the	architecture	of the	software	tool											2
-----	-----	---------	--------	--------------	--------	----------	------	--	--	--	--	--	--	--	--	--	--	---

Tabellenverzeichnis

1 1	Droinunleta backätzung dog	Aufrenda den Anforderungen	•
1.1	Dielpunktabschatzung des	Aufwands der Anforderungen	

Listings

1 D1: Aufwandsabschätzung nach der Dreipunktmethode

Tabelle 1.1: Dreipunktabschätzung des Aufwands der Anforderungen

Tabelle 1.1. Dielpunktabsenatzung des Aufwahlds der Amforderungen							
Anforderung Optimistisch	Wahrscheinlich	Pessimistisch	<T $>$	${ m sigmahoch 2}$	wirklich		
D1							

2 D2: Machbarkeitsdemonstration

- Minimale Geschwindigkeit 0,29km/h beachten -> in m/s umrechnen
- Switch -> wenn Geschwindigkeit kleiner 0,29 folgt daraus Geschwindigkeit = 0
- Screenshot Simulink Modell und Ergebnis
- R5 auch beachtet

Abbildung 2.1: UML diagram of the architecture of the software tool

3 D3: Anlyse des menschlichen Geschwindigkeitsprofils

4 D4*: Betrachtung von Unebenheiten des Parkplatzes

5 D5: Betrachtung von Unsicherheiten in der Geschwindigkeitsmessung

validate findings by numbers from simulation

6 D6: Implementierung des Pulssignals in Simulink

7 D7: Übernahme des Simulinkmodells nach ASCET

8 D8: Implementierung des Pulssignals in ASCET

9 D9: Unit-Tests für das Pulssignal in ASCET

10 D10: Entwicklung und Druchführung von Systemtests für die ASCET Simulation

11 D11*: Plausibilitätsprüfung gemessener Geschwindigkeiten und Strecken gegeneinander

12 D13*: Einfluss von Ungenauigkeiten

13 D14*: Reflexion