AC Fundamentals

Day 11 RL Circuit

ILOs – Day 11

- For a resistive + inductive circuit with AC supply:
 - Derive the expression for current and power
 - Draw phasor diagram

AC circuit operation with resistance and inductance together

Phasor diagram

- To draw the phasor diagram, we consider RMS values of the different signals
- ullet These signals are: V_{RMS} , I_{RMS} , V_R , V_L
- The RMS value of current I_{RMS} is considered as the reference phasor and it is thus drawn along the X-axis
- The general convention is to take the signal which is common to most part of the circuit as the reference phasor.
- (In a series circuit, current is common to all the elements)

Phasor diagram

• The RMS value of current I_{RMS} is drawn along the X-axis

Phasor diagram

- Voltage drop across the resistance is $V_R = I_{RMS}R$
- V_R phasor is drawn in the same direction as the current phasor
- (remember, the current and voltage in a resistance are in the same phase)

Phasor diagram

Voltage drop across the inductor is

$$V_L = I_{RMS} X_L$$

- V_L phasor is drawn 90⁰ leading to the current phasor
- (remember, voltage across an inductor leads the current through it by 90°)

Phasor diagram

 According to KVL, the supply voltage must equal summation of the two voltage drops, one across the resistance and the other across the inductance

$$\overline{V_{\rm RMS}} = \overline{V_{\rm R}} + \overline{V_{\rm L}}$$

Phasor diagram

$$\overline{V_{\!\scriptscriptstyle RMS}} = \overline{V_{\!\scriptscriptstyle R}} + \overline{V_{\!\scriptscriptstyle L}}$$

• Thus, the supply voltage phasor V_{RMS} is drawn as the vector addition (resultant) of the two phasors V_R and V_I

Phasor diagram

• The angle between the supply voltage V_{RMS} phasor and the supply current I_{RMS} phasor is known as the **power factor angle** ϕ

Phasor diagram

Value of the power factor angle can be expressed from the phasor diagram as:

$$\phi = \tan^{-1} \left(\frac{V_L}{V_R} \right) = \tan^{-1} \left(\frac{I_{RMS} \times X_L}{I_{RMS} \times R} \right) = \tan^{-1} \left(\frac{X_L}{R} \right)$$

Phasor diagram

Drawing only the voltage phasors from the phasor diagram we obtain the so-called **voltage triangle** of a series R-L circuit:

From the voltage triangle we have the relation:

$$V_{RMS} = \sqrt{{V_R}^2 + {V_L}^2}$$

$$V_{RMS} = \sqrt{(I_{RMS}R)^2 + (I_{RMS}X_L)^2}$$

$$V_{RMS} = I_{RMS}\sqrt{R^2 + X_L^2}$$

$$\frac{V_{RMS}}{I_{RMS}} = \sqrt{R^2 + X_L^2}$$

This ratio of V_{RMS} and I_{RMS} in a series R-L circuit is called **impedance** of the circuit that has a magnitude

$$Z = \sqrt{R^2 + X_L^2}$$

The unit of impedance is also "Ohm" (Ω).

Voltage triangle

- Redraw the same triangle in terms of the resistance, reactance, and impedance only
- (by eliminating the common quantity I_{RMS})

$V_R = I_{RMS} \times R$

$$V_L = I_{RMS} \times X_L$$

$$V_{RMS} = I_{RMS} \times Z$$

Impedance triangle

Hypotenuse of the impedance triangle is the impedance Z

More on phase angle

- The supply voltage signal leads the current by a phase angle ϕ which is less than 90°
- This is expected because it is a combination of R and L circuit
- In an R + L circuit, the angle between voltage and current should lie somewhere between 0° (pure resistance) and 90° (pure inductance)
- When R > X_1 , the phase angle ϕ < 45 $^{\circ}$
- When $X_1 > R$, then the phase angle $\phi > 45^0$
- When $X_1 = R$, the phase angle $\phi = 45^{\circ}$

$$v = V_m \sin \omega t$$

$$i = I_m \sin(\omega t - \phi)$$

Instantaneous power

$$p = v \times i$$

$$p = V_m \sin \omega t \times I_m \sin(\omega t - \phi)$$

$$p = V_m I_m \sin \omega t \sin(\omega t - \phi)$$

$$p = \frac{V_m I_m}{2} \left[\cos(\omega t - \omega t + \phi) - \cos(\omega t + \omega t - \phi) \right]$$

$$p = \frac{V_m I_m}{2} \left[\cos(\phi) - \cos(2\omega t - \phi) \right]$$

As earlier, the instantaneous power is an alternating quantity, but it varies at **twice the frequency** of the input voltage signal (note the 2ω term).

$$p = \frac{V_m I_m}{2} \left[\cos(\phi) - \cos(2\omega t - \phi) \right]$$

Average power

$$P = \frac{1}{T} \int_{0}^{T} p dt$$

$$P = \frac{1}{T} \int_{0}^{T} \frac{V_m I_m}{2} \left[\cos(\phi) - \cos(2\omega t - \phi) \right] dt$$

$$P = \frac{V_m I_m}{2T} \int_{0}^{T} \left[\cos \phi - \cos \left(2 \frac{2\pi}{T} t - \phi \right) \right] dt$$

$$P = \frac{V_m I_m}{2T} \left[\cos \phi t - \frac{T}{4\pi} \sin \left(\frac{4\pi}{T} t - \phi \right) \right]_0^T$$

$$P = \frac{V_m I_m}{2T} \left[\cos \phi t - \frac{T}{4\pi} \sin \left(\frac{4\pi}{T} t - \phi \right) \right]_0^T$$

$$P = \frac{V_m I_m}{2T} \left[\left(\cos \phi \times T - \cos \phi \times 0 \right) - \left\{ \frac{T}{4\pi} \sin \left(\frac{4\pi}{T} T - \phi \right) - \frac{T}{4\pi} \sin \left(\frac{4\pi}{T} \times 0 - \phi \right) \right\} \right]$$

$$P = \frac{V_m I_m}{2T} \left[\left(T \cos \phi \right) - \left\{ \frac{T}{4\pi} \sin(4\pi - \phi) - \frac{T}{4\pi} \sin(-\phi) \right\} \right]$$

$$V_{\text{RMS}} P = \frac{V_m I_m}{2T} \left[(T \cos \phi) - \left\{ \frac{T}{4\pi} \sin(-\phi) - \frac{T}{4\pi} \sin s(-\phi) \right\} \right]$$

$$P = \frac{V_m I_m}{2T} \left(T \cos \phi \right)$$

$$P = \frac{V_m I_m}{2} \cos \phi$$

$$P = \frac{V_m I_m}{2} \cos \phi$$

$$P = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos \phi$$

$$P = V_{RMS} I_{RMS} \cos \phi$$

Thus, the average active power consumed by a R-L series circuit is the product of RMS values of voltage and current and cosine of the angle between them.

The quantity $cos\phi$ is called **power** factor of the circuit

Power factor,
$$\cos \phi = \frac{P}{V_{RMS}I_{RMS}}$$