Problem 1.

Without using a graphing calculator, show that the equation $x^3 + 2x^2 - 2 = 0$ has exactly one positive root.

This root is denoted by α and is to be found using two different iterative methods, starting with the same initial approximation in each case.

- (a) Show that α is a root of the equation $x = \sqrt{\frac{2}{x+2}}$, and use the iterative formula $x_{n+1} = \sqrt{\frac{2}{x_n+2}}$, with $x_1 = 1$, to find α correct to 2 significant figures.
- (b) Use the Newton-Raphson method, with $x_1 = 1$, to find α correct to 3 significant figures.

Solution

Let $f(x) = x^3 + 2x^2 - 2 = 0$. Consider $f'(x) = 3x^2 + 4x$. Observe that for all x > 0, we have f'(x) > 0. Hence, f(x) is increasing for all positive x. Note that f(0) = -2 < 0 and f(1) = 1 > 0. Thus, f(x) has exactly one positive root.

Part (a)

We know $f(\alpha) = 0$. Hence,

$$\alpha^{3} + 2\alpha^{2} - 2 = 0$$

$$\Rightarrow \quad \alpha^{2}(\alpha + 2) = 2$$

$$\Rightarrow \quad \alpha^{2} = \frac{2}{\alpha + 2}$$

$$\Rightarrow \quad \alpha = \sqrt{\frac{2}{\alpha + 2}} \quad \text{(rej. } \alpha = -\sqrt{\frac{2}{\alpha + 2}} \because \alpha > 0\text{)}$$

Thus, α is a root of the equation $x = \sqrt{\frac{2}{x+2}}$.

$$x_1 = 1$$

$$\Rightarrow x_2 = \sqrt{\frac{2}{x_1 + 2}} = 0.81650$$

$$\Rightarrow x_3 = \sqrt{\frac{2}{x_2 + 2}} = 0.84268$$

$$\Rightarrow x_4 = \sqrt{\frac{2}{x_3 + 2}} = 0.83879$$

$$\boxed{\alpha = 0.84 \ (2 \text{ s.f.})}$$

$$x_{1} = 1$$

$$\implies x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = 0.857143$$

$$\implies x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})} = 0.839545$$

$$\implies x_{4} = x_{3} - \frac{f(x_{3})}{f'(x_{3})} = 0.839287$$

$$\implies x_{5} = x_{4} - \frac{f(x_{4})}{f'(x_{4})} = 0.839287$$

$$\alpha = 0.839 (3 \text{ s.f.})$$

Problem 2.

- (a) Show that the tangent at the point (e, 1) to the graph $y = \ln x$ passes through the origin, and deduce that the line y = mx cuts the graph $y = \ln x$ in two points provided that $0 < m < \frac{1}{e}$.
- (b) For each root of the equation $\ln x = \frac{1}{3}x$, find an integer n such that the interval n < x < n+1 contains the root. Using linear interpolation, based on x=n and x=n+1, find a first approximation to the smaller root, giving your answer to 1 decimal place. Using your first approximation, obtain, by the Newton-Raphson method, a second approximation to the smaller root, giving your answer to 2 decimal places.

Solution

Part (a)

Using the point slope formula, we see that the equation of the tangent at the point (e, 1) is given by

$$y - 1 = \frac{dy}{dx} \Big|_{x=e} (x - e)$$

$$\implies y = \frac{1}{x} \Big|_{x=e} (x - e) + 1$$

$$\implies y = \frac{1}{e} (x - e) + 1$$

$$\implies y = \frac{1}{e} x$$

Since x = 0, y = 0 is clearly a solution, the tangent at the point (e, 1) passes through the origin.

From the graph below, it is clear that for y = mx to intersect $y = \ln x$ twice, we must have $0 < m < \frac{1}{e}$.

Consider $f(x) = \frac{1}{3}x - \ln x$. Let α be the smaller root to f(x) = 0.

Observe that f(1) = 1 > 0 and f(2) = -0.03 < 0. Thus, for the smaller root α , n = 1.

Smaller root:
$$n = 1$$

Observe that f(4) = -0.05 < 0 and f(5) = 0.06 > 0. Hence, for the larger root β , n = 4.

Larger root:
$$n = 4$$

Using linear interpolation, we have that α is approximately equal to x_1 , where

$$x_1 = \frac{1f(2) - 2f(1)}{f(2) - f(1)}$$
$$= 1.9 \text{ (1 d.p.)}$$

First approximation = 1.9

Using the Newton-Raphson method,

$$x_1 = 1.9$$

$$\implies x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.85585$$

$$\implies x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.85718$$

$$\boxed{\alpha = 1.86 \ (2 \text{ d.p.})}$$

Problem 3.

Find the exact coordinates of the turning points on the graph of y = f(x) where $f(x) = x^3 - x^2 - x - 1$. Deduce that the equation f(x) = 0 has only one real root α , and prove that α lies between 1 and 2. Use the Newton-Raphson method applied to the equation f(x) = 0 to find a second approximation x_2 to α , taking x_1 , the first approximation, to be 2. With reference to a graph of y = f(x), explain why all further approximations to α by this process are always larger than α .

Solution

For turning points, f'(x) = 0.

$$f'(x) = 0$$

$$\implies 3x^2 - 2x - 1 = 0$$

$$\implies (3x+1)(x-1) = 0$$

Hence, $x = -\frac{1}{3}$ or x = 1. When $x = -\frac{1}{3}$, we have y = -0.815, giving the coordinate $\left(-\frac{1}{3}, -0.815\right)$. When x = 1, we have y = -2, giving the coordinate (1, -2).

The coordinates of the turning points are
$$\left(-\frac{1}{3}, -0.815\right)$$
 and $(1, -2)$.

Observe that f(x) is strictly increasing for all x > 1. Since f(1) = -2 < 0 and f(2) = 1 > 0, the equation f(x) = 0 has only one real root.

Using the Newton-Raphson method with $x_1 = 2$, we have $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \frac{13}{7}$.

$$x_2 = \frac{13}{7}$$

$$y$$

$$y$$

$$x_2 = \frac{13}{7}$$

$$y = x^3 - x^2 - x - 1$$

$$x = x$$

Since x_2 lies on the right of α , the Newton-Raphson method gives an over-estimation given an initial approximation of 2. Thus, all further approximations to α will also be larger than α .

Problem 4.

A curve C has equation $y = x^5 + 50x$. Find the least value of $\frac{\mathrm{d}y}{\mathrm{d}x}$ and hence give a reason why the equation $x^5 + 50x = 10^5$ has exactly one real root. Use the Newton-Raphson method, with a suitable first approximation, to find, correct to 4 decimal places, the root of the equation $x^5 + 50x = 10^5$. You should demonstrate that your answer has the required accuracy.

Solution

Since $y = x^5 + 50x$, we know that $\frac{dy}{dx} = 5x^4 + 50$. Since $x^4 \ge 0$ for all real x, the minimum value of $\frac{dy}{dx}$ is 50.

$$\min \frac{\mathrm{d}y}{\mathrm{d}x} = 50$$

Let $f(x) = x^5 + 50x$. Since $\min \frac{\mathrm{d}f}{\mathrm{d}x} = 50 > 0$, we have that f(x) is a strictly increasing function. Thus, f(x) will intersect only once with the line $y = 10^5$. Hence, the equation $x^5 + 50x = 10^5$ has exactly one real root.

Observe that f(9) = -40901 < 0 and f(10) = 50 > 0. Thus, there must be a root on the interval (9, 10). We now use the Newton-Raphson method with $x_1 = 9$ as the first approximation.

$$x_{1} = 9$$

$$\Rightarrow x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = 10.2178921$$

$$\Rightarrow x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})} = 10.0017491$$

$$\Rightarrow x_{4} = x_{3} - \frac{f(x_{3})}{f'(x_{3})} = 9.9901221$$

$$\Rightarrow x_{5} = x_{4} - \frac{f(x_{4})}{f'(x_{4})} = 9.9899912$$

$$\Rightarrow x_{6} = x_{5} - \frac{f(x_{5})}{f'(x_{5})} = 9.9899900$$

The root is 9.9900 (4 d.p.).

Observe that f(9.98995) = -2.00 < 0 and f(9.99005) = 3.00 > 0. Hence, the root lies in the interval (9.98995, 9.99005). Thus, the calculated root has the required accuracy.

Problem 5.

(a) A function f is such that f(4) = 1.158 and f(5) = -3.381, correct to 3 decimal places in each case. Assuming that there is a value of x between 4 and 5 for which f(x) = 0, use linear interpolation to estimate this value.

For the case when $f(x) = \tan x$, and x is measured in radians, the value of f(4) and f(5) are as given above. Explain, with the aid of a sketch, why linear interpolation using these values does not give an approximation to a solution of the equation $\tan x = 0$.

(b) Show, by means of a graphical argument or otherwise, that the equation $\ln(x-1) = -2x$ has exactly one real root, and show that this root lies between 1 and 2.

The equation may be written in the form $\ln(x-1) + 2x = 0$. Show that neither x = 1 nor x = 2 is a suitable initial value for the Newton-Raphson method in this case.

The equation may also be written in the form $x - 1 - e^{-2x} = 0$. For this form, use two applications of the Newton-Raphson method, starting with x = 1, to obtain an approximation to the root, giving 3 decimal places in your answer.

Solution

Part (a)

Let the root of f(x) = 0 be α . Using linear interpolation on the interval [4, 5], we have

$$\alpha = \frac{4f(5) - 5f(4)}{f(5) - f(4)}$$
$$= 4.255 (3 \text{ d.p.})$$

 $f(x) = \tan x$ is not continuous on the interval [4,5] as there is a vertical asymptote at $x = \frac{3}{2}\pi$. Since linear interpolation requires a function be continuous, linear interpolation does not give an approximation to a solution of the equation $\tan(x) = 0$.

Since there is only one intersection between the graphs $y = \ln(x-1)$ and y = -2x, there is only one real root to the equation $\ln(x-1) = -2x$. Furthermore, since y = -2x is negative for all x > 0 and $y = \ln(x-1)$ is negative for all 1 < x < 2, it follows that the root must lie between 1 and 2.

Let
$$f(x) = \ln(x-1) + 2x$$
. Then $f'(x) = \frac{1}{x-1} + 2$.

Using the Newton-Raphson method with the initial approximation $x_1 = 1$, we see that $x_2 = 1 - \frac{f(1)}{f'(1)}$. However, f'(1) is undefined. Thus, $x_1 = 1$ is not a suitable initial value.

Using the Newton-Raphson method with the initial approximation $x_2 = 2$, we see that $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1$, whence $x_3 = 1 - \frac{f(1)}{f'(1)}$. Once again, f'(1) is undefined. Thus, $x_1 = 2$ is also not a suitable initial value.

Let $g(x) = x - 1 - e^{-2x}$. Then $g'(x) = 1 + 2e^{-2x}$. Using the Newton-Raphson method with the initial approximation $x_1 = 1$, we have

$$x_1 = 1$$

$$\implies x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.106507$$

$$\implies x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.108857$$

$$\boxed{x = 1.109 \text{ (3 d.p.)}}$$

Problem 6.

The equation $x = 3 \ln x$ has two roots α and β , where $1 < \alpha < 2$ and $4 < \beta < 5$. Using the iterative formula $x_{n+1} = F(x_n)$, where $F(x) = 3 \ln x$, and starting with $x_0 = 4.5$, find the value of β correct to 3 significant figures. Find a suitable F(x) for computing α .

Solution

$$x_0 = 4.5$$

 $\Rightarrow x_1 = F(x_0) = 4.51223$
 $\Rightarrow x_2 = F(x_1) = 4.52038$
 $\Rightarrow x_3 = F(x_2) = 4.52579$
 $\Rightarrow x_4 = F(x_3) = 4.52937$
 $\Rightarrow x_5 = F(x_4) = 4.53175$
 $\Rightarrow x_6 = F(x_5) = 4.53333$
 $\Rightarrow x_7 = F(x_6) = 4.53437$
 $\Rightarrow x_8 = F(x_7) = 4.53506$
 $\beta = 4.54 (3 \text{ s.f.})$

$$x = 3 \ln x$$

$$\implies \frac{1}{3}x = \ln x$$

$$\implies x = e^{\frac{1}{3}x}$$

Observe that $\frac{\mathrm{d}}{\mathrm{d}x}(e^{\frac{1}{3}x}) = \frac{1}{3}e^{\frac{1}{3}x} < 1$ for all 1 < x < 2. Thus, $F(x) = e^{\frac{1}{3}x}$ is suitable for computing α as the iterative formula $x_{n+1} = F(x_n)$ will converge.

$$F(x) = e^{\frac{1}{3}x}$$

Problem 7.

Show that the cubic equation $x^3 + 3x - 15 = 0$ has only one real root. This root is near x = 2. The cubic equation can be written in any one of the forms below:

(a)
$$x = \frac{1}{3}(15 - x^3)$$

(b)
$$x = \frac{15}{x^2 + 3}$$

(c)
$$x = (15 - 3x)^{\frac{1}{3}}$$

Determine which of these forms would be suitable for the use of the iterative formula $x_{r+1} = F(x_r)$, where $r = 1, 2, 3, \ldots$

Hence, find the root correct to 3 decimal places.

Solution

Let $f(x) = x^3 + 3x - 15$. Then $f'(x) = 3x^2 + 3 > 0$ for all real x. Hence, f is strictly increasing. Since f is continuous, f(x) = 0 has only one real root.

Part (a)

Let $g_1(x) = \frac{1}{3}(15 - x^3)$. Then $g'_1(x) = -x$. For values of x near 2, $|g'_1(x)| > 1$. Hence, the iterative formula $x_{n+1} = g_1(x_n)$ will diverge. Thus, $g_1(x)$ is unsuitable.

Part (b)

Let $g_2(x) = \frac{15}{x^2 + 3}$. Then $g_2'(x) = \frac{-30x}{(x^2 + 3)^2}$. For values of x near 2, $|g_2'(x)| > 1$. Hence, the iterative formula $x_{n+1} = g_2(x_n)$ will diverge. Thus, $g_2(x)$ is unsuitable.

Part (c)

Let $g_3(x) = (15 - 3x)^{\frac{1}{3}}$. Then $g_3'(x) = -(15 - 3x)^{-\frac{2}{3}}$. For values of x near 2, $|g_3'(x)| < 1$. Hence, the iterative formula $x_{n+1} = g_3(x_n)$ will converge. Thus, $g_3(x)$ is suitable.

$$x_1 = 2$$

 $\Rightarrow x_2 = g_3(x_1) = 2.080084$
 $\Rightarrow x_3 = g_3(x_2) = 2.061408$
 $\Rightarrow x_4 = g_3(x_3) = 2.065793$
 $\Rightarrow x_5 = g_3(x_4) = 2.064765$
 $x = 2.065 (3 \text{ d.p.})$

Problem 8.

The equation of a curve is y = f(x). The curve passes through the points (a, f(a)) and (b, f(b)), where 0 < a < b, f(a) > 0 and f(b) < 0. The equation f(x) = 0 has precisely one root α such that $a < \alpha < b$. Derive an expression, in terms of a, b, f(a) and f(b), for the estimated value of α based on linear interpolation.

Let $f(x) = 3e^{-x} - x$. Show that f(x) = 0 has a root α such that $1 < \alpha < 2$, and that for all x, f'(x) < 0 and f''(x) > 0. Obtain an estimate of α using linear interpolation to 2 decimal places, and explain by means of a sketch whether the value obtained is an over-estimate or an under-estimate.

Use one application of the Newton-Raphson method to obtain a better estimate of α , giving your answer to 2 decimal places.

Solution

We begin by finding the equation of the line that passes through both (a, f(a)) and (b, f(b)). Using the point-slope formula, we have

$$y - f(a) = \frac{f(a) - f(b)}{a - b}(x - a)$$

 α is hence approximately the root of the above equation. Thus,

$$-f(a) = \frac{f(a) - f(b)}{a - b} (\alpha - a)$$

$$\implies \qquad \alpha = -f(a) \cdot \frac{a - b}{f(a) - f(b)} + a$$

$$= \frac{bf(a) - af(a)}{f(a) - f(b)} + \frac{af(a) - af(b)}{f(a) - f(b)}$$

$$= \frac{bf(a) - af(b)}{f(a) - f(b)}$$

$$\alpha = \frac{bf(a) - af(b)}{f(a) - f(b)}$$

Observe that f(1) = 0.10 > 0 and f(2) = -1.6 < 0. Since f is continuous, there exists a root $\alpha \in (1, 2)$.

Note that $f'(x) = -3e^{-x} - 1$ and $f''(x) = 3e^{-x}$. Since $e^{-x} > 0$ for all x, we have that f'(x) < 0 and f''(x) > 0 for all x.

Using linear interpolation on the interval (1,2), we have

$$\alpha = \frac{2 \cdot f(1) - 1 \cdot f(2)}{f(1) - f(2)}$$
$$= 1.0610$$

$$\alpha = 1.06 \; (2 \; \text{d.p.})$$

Since f'(x) < 0 and f''(x) > 0, we know that f is strictly decreasing and has an upwards concave shape. This gives the following sketch of f(x).

Hence, the value obtained is an over-estimate.

Using the Newton-Raphson method with the initial approximation $x_1 = 1.06$, we get $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.05$.

$$\alpha = 1.05 \ (2 \text{ d.p.})$$

Problem 9.

The diagram shows a sketch of the graph $y = \frac{1}{3}x - \ln(x+2)$. Find the x-coordinate of the minimum point M on the graph, and verify that y is positive when x = 20.

Show that the gradient of the curve is always less than $\frac{1}{5}$. Hence, by considering the line through M having gradient $\frac{1}{5}$, show that the positive root of the equation $\frac{1}{3}x - \ln(x+2) = 0$ is greater than 8.

Use linear interpolation, once only, on the interval [8, 20], to find an approximate value a for this positive root, giving your answer to 1 decimal place.

Using a as an initial value, carry out one application of the Newton-Raphson method to obtain another approximation to the positive root, giving your answer to 2 decimal places.

Solution

Let the x-coordinate of M be x_M . Since M is a minimum, we know that $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_M}=0$.

$$\frac{dy}{dx}\Big|_{x=x_M} = 0$$

$$\implies \frac{1}{5} - \frac{1}{x+2}\Big|_{x=x_M} = 0$$

$$\implies \frac{1}{5} - \frac{1}{x_M+2} = 0$$

$$\implies x_M = 3$$

$$x_M = 3$$

Substituting x = 20 into the equation of the curve gives $y = 4 - \ln 22 = 0.909 > 0$.

We know that $\frac{dy}{dx} = \frac{1}{5} - \frac{1}{x+2}$, hence $\frac{dy}{dx} < \frac{1}{5}$ for all x > -2. Since the domain of the curve is x > -2, $\frac{dy}{dx}$ is always less than $\frac{1}{5}$.

Let $(\alpha, 0)$ be the coordinates of the root of the line through M having gradient $\frac{1}{5}$. We know that the coordinates of M are $\left(3, \frac{3}{5} - \ln 5\right)$. Hence,

$$\frac{\frac{3}{5} - \ln 5 - 0}{3 - \alpha} = \frac{1}{5}$$

$$\implies 3 - \alpha = 3 - 5 \ln 5$$

$$\implies \alpha = 5 \ln 5$$

$$= 8.05$$

$$> 8$$

Since the gradient of the curve is always less than $\frac{1}{5}$, α represents the lowest possible value of the positive root of the curve. Hence, the positive root of the equation $\frac{1}{5}x - \ln(x+2) = 0$ is greater than 8.

Let $f(x) = \frac{1}{5}x - \ln(x+2)$. Using linear interpolation on the interval [8, 20], we have

$$a = \frac{8f(20) - 20f(8)}{f(20) - f(8)}$$
$$= 13.2$$

$$a = 13.2 (1 \text{ d.p.})$$

Using the Newton-Raphson method with the initial approximation $x_1 = 13.2$, we have $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 13.81$.

$$a = 13.81 (2 \text{ d.p.})$$

Problem 10.

- (a) The function f is such that f(a)f(b) < 0, where a < b. A student concludes that the equation f(x) = 0 has exactly one root in the interval (a, b). Draw sketches to illustrate two distinct ways in which the student could be wrong.
- (b) The equation $\sec^2 x e^2 = 0$ has a root α in the interval [1.5, 2.5]. A student uses linear interpolation once on this interval to find an approximation to α . Find the approximation to α given by this method and comment on the suitability of the method in this case.
- (c) The equation $\sec^2 x e^x = 0$ also has a root β in the interval (0.1, 0.9). Use the Newton-Raphson method, with $f(x) = \sec^2 x e^x$ and initial approximation 0.5, to find a sequence of approximations $\{x_1, x_2, x_3, \ldots\}$ to β . Describe what is happening to x_n for large n, and use a graph of the function to explain why the sequence is not converging to β .

Solution

Part (a)

Let $f(x) = \sec^2 x - e^x$. Using linear interpolation on the interval [1.5, 2.5],

$$a = \frac{1.5f(2.5) - 2.5f(1.5)}{f(2.5) - f(1.5)}$$
$$= 1.06$$
$$\boxed{a = 1.06 \text{ (2 d.p.)}}$$

 $\sec^2 x$ is not continuous on the interval [1.5, 2.5] due to the presence of an asymptote at $x = \frac{\pi}{2}$. Hence, linear interpolation is not suitable in this case.

Part (c)

We know $f'(x) = 2 \sec^2 x \tan(x) - e^x$. Using the Newton-Raphson method with the initial approximation $x_1 = 0.5$,

$$x_{1} = 0.5$$

$$\implies x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = -1.02272$$

$$\implies x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})} = -0.75526$$

$$\implies x_{4} = x_{3} - \frac{f(x_{3})}{f'(x_{3})} = -0.40306$$

$$\implies x_{5} = x_{4} - \frac{f(x_{4})}{f'(x_{4})} = -0.09667$$

$$\implies x_{6} = x_{5} - \frac{f(x_{5})}{f'(x_{5})} = -0.00466$$

$$\implies x_{7} = x_{6} - \frac{f(x_{6})}{f'(x_{6})} = -0.00000$$

As $n \to \infty$, $x_n \to 0^-$.

The initial approximation of $x_1 = 0.5$ is past the turning point. Hence, all subsequent approximations will converge to the root at 0 instead of the root at β . Thus, the sequence does not converge to β .

Problem 11.

The function f is given by $f(x) = \sqrt{1 - x^2} + \cos x - 1$ for $0 \le x \le 1$. It is known, from graphical work, that the equation f(x) = 0 has a single root $x = \alpha$.

(a) Express g(x) in terms of x, where $g(x) = x - \frac{f(x)}{f'(x)}$.

A student attempts to use the Newton-Raphson method, based on the form $x_{n+1} = g(x_n)$, to calculate the value of α correct to 3 decimal places.

- (b) (i) The student first uses an initial approximation to α of $x_1 = 0$. Explain why this will be unsuccessful in finding a value for α .
 - (ii) The student next uses an initial approximation to α of $x_1 = 1$. Explain why this will also be unsuccessful in finding a value for α .
 - (iii) The student then uses an initial approximate to α of $x_1 = 0.5$. Investigate what happens in this case.
 - (iv) By choosing a suitable value for x_1 , use the Newton-Raphson method, based on the form $x_{n+1} = g(x_n)$, to determine α correct to 3 decimal places.

Solution

Part (a)

We know $f'(x) = \frac{-x}{\sqrt{1-x^2}} - \sin x$. Hence,

$$g(x) = x - \frac{\sqrt{1 - x^2 + \cos x - 1}}{\frac{-x}{\sqrt{1 - x^2}} - \sin x}$$

Part (b)

Subpart (i)

Observe that f'(0) = 0. Hence, g(0) is undefined. Thus, starting with an initial approximation of $x_1 = 0$ will be unsuccessful in finding a value for α .

Subpart (ii)

Observe that $\sqrt{1-x^2}$ is 0 when x=1. Hence, f'(0) is undefined. Thus, g(0) is also undefined. Hence, starting with an initial approximation of $x_1=1$ will also be unsuccessful in finding a value for α .

Subpart (iii)

When $x_1 = 0.5$, we have $x_2 = g(x_1) = 1.20$. Since g(x) is only defined for $0 \le x \le 1$, $x_3 = g(x_2)$ is undefined. Hence, an initial approximation of $x_1 = 0.5$ will also be unsuccessful in finding a value for α .

Subpart (iv)

Using the Newton-Raphson method with $x_1 = 0.9$, we have

$$x_1 = 0.9$$

 $\implies x_2 = g(x_1) = 0.92019$
 $\implies x_3 = g(x_2) = 0.91928$
 $\implies x_4 = g(x_3) = 0.91928$
 $\boxed{\alpha = 0.919 \text{ (3 d.p.)}}$